Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 16: Raggiungibilità e controllabilità a tempo continuo

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2021-2022

Nella scorsa lezione

- ▶ Controllabilità di sistemi lineari a t.d.
- De Controllabilità e forma di Kalman
- ▶ Test PBH di controllabilità

In questa lezione

▶ Raggiungibilità di sistemi lineari a t.c.

▶ Controllabilità di sistemi lineari a t.c.

Raggiungibilità di sistemi LTI a tempo continuo

$$\dot{x}(t) = Fx(t) + Gu(t), \ x(0) = x_0$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum x(t) \in \mathbb{R}^n$$

$$x^* = x(t) = \underbrace{e^{Ft}x_0}_{\text{ev. Libera}} + \underbrace{\int_0^t e^{F(t-\tau)}Gu(\tau)\,d\tau}_{\text{ev. for eator}}$$

Raggiungibilità di sistemi LTI a tempo continuo

$$\dot{x}(t) = Fx(t) + Gu(t), \ x(0) = 0$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum x(t) \in \mathbb{R}^n$$

$$x^* = x(t) = \int_0^t e^{F(t-\tau)} Gu(\tau) d\tau$$

Raggiungibilità di sistemi LTI a tempo continuo

$$\dot{x}(t) = Fx(t) + Gu(t), \ x(0) = 0$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum \qquad x(t) \in \mathbb{R}^n \qquad \text{patio infinite-dim.}$$

$$x^* = x(t) = \int_0^t e^{F(t-\tau)} Gu(\tau) \, \mathrm{d}\tau \qquad \text{nell'intervalle [0,t]}$$

Insieme di stati x^* raggiungibili al tempo t a partire da x(0) = 0?

Quando possiamo raggiungere tutti i possibili stati $x^* \in \mathbb{R}^n$?

 $_{A}\times_{\mathbf{r}}(\mathbf{t})^{2}$

Criterio di raggiungibilità del rango

$$X_R(t)=$$
 spazio raggiungibile al tempo t $X_R=$ (massimo) spazio raggiungibile (al variate $L^{(t)} d$)

Definizione: Un sistema Σ a t.c. si dice (completamente) raggiungibile se $X_R=\mathbb{R}^n$. $\{x\in\mathbb{R}^n: \exists \ u\in\mathcal{U}_{[0,t]} \ \text{t.c.} \ x=\int_0^t e^{F(t-t)} Gu(t) dt\}$

Criterio di raggiungibilità del rango

$$X_R(t)=$$
 spazio raggiungibile al tempo t $X_R=$ (massimo) spazio raggiungibile

Definizione: Un sistema Σ a t.c. si dice (completamente) raggiungibile se $X_R = \mathbb{R}^n$.

$$\mathcal{R} \triangleq \mathcal{R}_n = \text{matrice di raggiungibilità del sistema} \quad \text{(Matlab}^{\mathbb{R}} \text{ ctrb(sys))}$$

$$= \left[G \quad \text{FG} \quad \cdots \quad \text{F}^{n-1} G \right]$$

$$= \left[\Sigma \quad \text{raggiungibile} \quad \iff \quad \text{im}(\mathcal{R}) = \mathbb{R}^n \quad \iff \quad \text{rank}(\mathcal{R}) = n \right]$$

Criterio di raggiungibilità del rango

$$X_R(t)=$$
 spazio raggiungibile al tempo t $X_R=$ (massimo) spazio raggiungibile

Definizione: Un sistema Σ a t.c. si dice (completamente) raggiungibile se $X_R = \mathbb{R}^n$.

$$\Sigma$$
 raggiungibile \iff im $(\mathcal{R}) = \mathbb{R}^n \iff$ rank $(\mathcal{R}) = n$

N.B. Se un sistema Σ a t.c. è raggiungibile allora $X_R(t) = \mathbb{R}^n$ per ogni t > 0!!

Piv in generale vale
$$X_R(t) = X_R = imR \quad \forall t > 0$$

G. Baggio

Lez. 16: Raggiungibilità e controllabilità a t.c.

Molti dei risultati sulla raggiungibilità a t.d. valgono anche a t.c. !

Molti dei risultati sulla raggiungibilità a t.d. valgono anche a t.c. !

1. $X_R
in F$ -invariante e contiene im(G)

Molti dei risultati sulla raggiungibilità a t.d. valgono anche a t.c. !

- 1. X_R è F-invariante e contiene im(G)
- 2. Forma canonica di Kalman:

$$\begin{bmatrix} x_R \\ x_{NR} \end{bmatrix} \triangleq T^{-1}x, \ F_K \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \ G_K \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}.$$

Molti dei risultati sulla raggiungibilità a t.d. valgono anche a t.c. !

- 1. $X_R
 ilde{e} F$ -invariante e contiene im(G)
- 2. Forma canonica di Kalman:

$$\begin{bmatrix} x_R \\ x_{NR} \end{bmatrix} \triangleq T^{-1}x, \ F_K \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \ G_K \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}.$$

3. Criterio PBH:

$$\Sigma$$
 raggiungibile \iff rank $\begin{bmatrix} zI-F & G \end{bmatrix}=n, \quad orall z \in \mathbb{C}.$ antovalory differential $\forall z \in \lambda(F)$

Esempio

$$x_1(t) = v_{C_1}(t), x_2(t) = v_{C_2}(t)$$

 $x_1(0) = x_2(0) = 0$

 Σ raggiungibile?

Esempio

$$x_1(t) = v_{C_1}(t), x_2(t) = v_{C_2}(t)$$

 $x_1(0) = x_2(0) = 0$

 Σ raggiungibile ?

Se $C_1 = C_2$, Σ non raggiungibile

Se $C_1 \neq C_2$, Σ raggiungibile!

In questa lezione

▶ Raggiungibilità di sistemi lineari a t.c.

▶ Controllabilità di sistemi lineari a t.c.

Controllabilità di sistemi LTI a tempo continuo

$$\dot{x}(t) = Fx(t) + Gu(t), \ x(0) = x_0$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum x(t) \in \mathbb{R}^n$$

$$x^* = x(t) = e^{Ft}x_0 + \int_0^t e^{F(t-\tau)}Gu(\tau) d\tau$$

Controllabilità di sistemi LTI a tempo continuo

$$\dot{x}(t) = Fx(t) + Gu(t), \ x(0) = x_0$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum x(t) \in \mathbb{R}^n$$

$$\sum_{\tau} \chi_{c}(t) \gamma = e^{Ft} x_{0} + \int_{0}^{t} e^{F(t-\tau)} Gu(\tau) d\tau$$

Insieme di stati x_0 controllabili al tempo t allo stato x(t) = 0?

Quando possiamo controllare a zero tutti i possibili stati $x_0 \in \mathbb{R}^n$?

Controllabilità = raggiungibilità

 $X_C(t) = \text{spazio controllabile al tempo } t$ $X_C = (\text{massimo}) \text{ spazio controllabile}$

Definizione: Un sistema Σ a t.c. si dice (completamente) controllabile se $X_C = \mathbb{R}^n$.

Controllabilità = raggiungibilità

 $X_C(t) = \text{spazio controllabile al tempo } t$ $X_C = (\text{massimo}) \text{ spazio controllabile}$

Definizione: Un sistema Σ a t.c. si dice (completamente) controllabile se $X_C = \mathbb{R}^n$.

$$x_0 \in X_C(t) \iff e^{Ft} x_0 \in X_R \iff x_0 \in e^{-Ft} X_R \iff x_0 \in X_R$$

$$X_C = X_C(t) = X_R$$

controllabilità = raggiungibilità !!

Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 16: Raggiungibilità e controllabilità a tempo continuo

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2021-2022

⊠ baggio@dei.unipd.it

R, C1, C2 > 0

$$R = \begin{bmatrix} G & FG \end{bmatrix} = \begin{bmatrix} \frac{1}{RC_1} & \frac{1}{R^2C_1^2} \\ \frac{1}{RC_2} & \frac{1}{R^2C_2^2} \end{bmatrix}$$

$$\begin{cases}
= 0 & C_1 = C_2 \longrightarrow \Sigma \text{ non ragg.} \\
\neq 0 & C_1 \neq C_2 \longrightarrow \Sigma \text{ ragg.}
\end{cases}$$

G. Baggio Lez. 15: Raggiungibilità e controllabilità a t.c. 20 Marzo 2021

$$x_{o} \in X_{c}(t) \iff \exists u \in \mathcal{U}_{[o,t]} \quad t.c. \quad 0 = e^{\mathsf{F}t} x_{o} + \int_{o}^{t} e^{\mathsf{F}(t-t)} \mathsf{G} u(\tau) d\tau$$

$$e^{\mathsf{F}t} x_{o} = -\int_{o}^{t} e^{\mathsf{F}(t-\tau)} \mathsf{G} u(\tau) d\tau$$

$$\iff$$
 $e^{Ft} \times_{\sigma} \in \times_{R}(t) = \times_{R}(t \times \sigma)$

$$\iff$$
 $X_o \in X_g$ perché $e^{-Ft}X_g = X_g$ essendo:

-1) $X_R \in F$ -invariante (e quindi e^{Ft} invariante) 2) $e^{-Ft} \in invertibile \rightarrow dim \left[e^{-Ft}X_R\right] = dim \left[X_R\right]$

X_R e F-invariante: VVEX_R, FVEX_R