Resolución TP5:

Ejercicio 11 - Regla Nemotécnica

Tomando el sistema conformado por:

$$\begin{cases} 3x = u + v + w \\ x^2 + y^2 = u^2 + v^2 \\ x^3 + y^3 + z^3 = 3u^3 \end{cases} \rightarrow \begin{cases} F(x, y, z, u, v, w) = 0 \\ G(x, y, z, u, v, w) = 0 \end{cases} respectivamente \\ H(x, y, z, u, v, w) = 0$$

b- ¿Es posible que x, y, z sean funciones de u, v, w en un entorno del mismo punto P?

Herramientas:

- Se deben formular las 3 condiciones del teorema usando regla de la cadena.
- Una vez que sabemos el funcionamiento de regla de la cadena podemos utilizar una regla Nemotécnica

Para empezar:

$$\begin{cases} 3x = u + v + w \\ x^2 + y^2 = u^2 + v^2 \\ x^3 + y^3 + z^3 = 3u^3 \end{cases}$$

$$\begin{cases} 3x - u - v - w = 0 \\ x^2 + y^2 - u^2 - v^2 = 0 \\ x^3 + y^3 + z^3 - 3u^3 = 0 \end{cases}$$

$$\begin{cases} F(x, y, z, u, v, w) = 3x - u - v - w = 0 \\ G(x, y, z, u, v, w) = x^2 + y^2 - u^2 - v^2 = 0 \\ H(x, y, z, u, v, w) = x^3 + y^3 + z^3 - 3u^3 = 0 \end{cases}$$

Derivamos:

F(x, y, z, u, v, w) = 3x - u - v - w = 0

$F_{x}=3$	$F_{x}(P)=3$
$F_{\nu} = 0$	$F_{\nu}(P)=0$
$F_z = 0$	$F_z(P) = 0$
$F_{u}^{2} = -1$	$F_{\nu}(P) = -1$
$F_{12}^{(1)} = -1$	$F_{\nu}(P) = -1$
$F_{w} = -1$	$F_w(P) = -1$

$G(x, y, z, u, v, w) = x^{2} + y^{2} - u^{2} - v^{2} = 0$

$G_x = 2x$	$G_{x}(P)=2$
$G_{y}=2y$	$G_{\mathcal{V}}(P)=2$
$G_z = 0$	$G_z(P)=0$
$G_u = -2u$	$G_u(P) = -2$
$G_v = -2v$	$G_v(P) = -2$
$G_w = 0$	$G_{\mathcal{W}}(P)=0$

$$H(x, y, z, u, v, w) = x^3 + y^3 + z^3 - 3u^3 = 0$$

$H_x = 3x^2$	$H_{x}(P)=3$
$H_y = 3y^2$	$H_{\mathcal{Y}}(P) = 3$
$H_z = 3z^3$	$H_z(P) = 3$
$H_u = -9u^2$	$H_u(P) = -9$
$H_{v}=0$	$H_v(P) = 0$
$H_w = 0$	$H_w(P)=0$

b- Sacamos las siguientes condiciones nemotécnicamente, se cumple TFI en un sistema del enunciado:

- 1) El punto pertenece a los conjuntos de nivel solicitados.
 - F(P) = 0, G(P) = 0, H(P) = 0
- 2) Las derivadas parciales son continuas en el entorno del punto P
 - Las derivadas F_xF_yF_zF_uF_vF_wG_xG_yG_zG_uG_vG_w y H_xH_yH_zH_uH_vH_w son continuas en el entorno del punto.
- 3) El jacobino de las variables dependientes es distinto de 0
 - Variables dependientes son x, y, z

$$\bullet \quad \frac{\partial(F,G,H)}{\partial(x,y,z)}(P) = \begin{vmatrix} F_x & F_y & F_z \\ G_x & G_y & G_z \\ H_x & H_y & H_z \end{vmatrix}_P \neq 0$$

TFI-Condición 1) ya vimos que se cumple en F, se cumple en G y se cumple en H

TFI-Condición 2) ya vimos que se cumple en F, se cumple en G y se cumple en H

TFI-Condición 3)

$$\frac{\partial(F,G,H)}{\partial(x,y,z)}(P) = \begin{vmatrix} F_x & F_y & F_z \\ G_x & G_y & G_z \\ H_x & H_y & H_z \end{vmatrix}_P = \begin{vmatrix} 3 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 3 & 3 \end{vmatrix} = 18 \neq 0$$

El determinante es distinto de 0 por lo que se cumple la condición.

Se cumple TFI por lo tanto existenx = x(u, v, w), y = y(u, v, w) y = z(u, v, w) enP = (1,1,1,1,1,1).

Además, podríamos calcular sus derivadas parciales en el punto P' = (1,1,1) consiste en la formula nemotécnica siguiente

$$\frac{\partial V_d}{\partial V_i}(P') = -\frac{\frac{\partial (F,G,H)}{\partial \left(\begin{bmatrix} V_i & si & x=V_d \\ x & si & x\neq V_d \end{bmatrix}, \begin{bmatrix} V_i & si & y=V_d \\ y & si & y\neq V_d \end{bmatrix}, \begin{bmatrix} V_i & si & z=V_d \\ y & si & y\neq V_d \end{bmatrix}, \begin{bmatrix} V_i & si & z=V_d \\ z & si & z\neq V_d \end{bmatrix})}{\frac{\partial (F,G,H)}{\partial (x,y,z)}}(P)$$

Reemplazos

$$\partial \left(\begin{bmatrix} V_i & si & x = V_d \\ x & si & x \neq V_d \end{bmatrix}, \begin{bmatrix} V_i & si & y = V_d \\ y & si & y \neq V_d \end{bmatrix}, \begin{bmatrix} V_i & si & z = V_d \\ z & si & z \neq V_d \end{bmatrix} \right)$$

$$\frac{\partial V_d}{\partial V_i} (P') = -\frac{\frac{\partial (F,G,H)}{\partial \left(\begin{bmatrix} V_i & si & x = V_d \\ x & si & x \neq V_d \end{bmatrix}, \begin{bmatrix} V_i & si & y = V_d \\ y & si & y \neq V_d \end{bmatrix}, \begin{bmatrix} V_i & si & z = V_d \\ z & si & z \neq V_d \end{bmatrix})}{\frac{\partial (F,G,H)}{\partial (x,y,z)}} (P)$$