ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น

AEL-04 การทำงานของทรานซิสเตอร์ประเภท BJT เบื้องต้น

วัตถุประสงค์ของการทดลอง

- 1. ศึกษาแบบจำลองทรานซิสเตอร์ประเภท BJT อย่างง่าย
- 2. ศึกษาการทำงานของวงจรทรานซิสเตอร์ประเภท BJT เบื้องต้น
- 3. เรียนรู้การใช้ทรานซิสเตอร์ประเภท BJT ทำงานเป็นสวิทช์

ทรานซิสเตอร์ประเภท bipolar junction มีสถานะการทำงานอยู่ 3 สถานะ คือ สถานะคัทออฟ (cut-off state), สถานะแอกทีฟ (active state), และสถานะอิ่มตัว (saturation state). โดยทั่วไป สถานะคัทออฟ และสถานะอิ่มตัวจะเกิดขึ้นเมื่อทรานซิสเตอร์ถูกใช้เป็นสวิทช์ปิด/เปิด. ถ้าทรานซิสเตอร์ถูกออกแบบให้ ขยายสัญญาณ ทรานซิสเตอร์จะทำงานในสถานะแอกทีฟเป็นหลัก.

4.1. แบบจำลองของทรานซิสเตอร์อย่างง่าย

แบบจำลองของทรานซิสเตอร์มีหลายแบบ ขึ้นอยู่กับรายละเอียดที่ต้องการ. รูปที่ 4.1 แสดง แบบจำลองทรานซิสเตอร์อย่างง่ายสำหรับการขยายสัญญาณไฟฟ้ากระแสตรง. ในการขยายสัญญาณ emitter junction ซึ่งถูก forward biased จะถูกแทนด้วยใดโอด และ collector junction ซึ่งถูก reversed biased จะถูกแทนด้วย current-controlled current source.

รูปที่ 4.1 แบบจำลองทรานซิสเตอร์ประเภท BJT อย่างง่ายสำหรับการขยาย สัญญาณไฟฟ้ากระแสตรง. (ทิศของกระแสที่แสดงไว้ เป็นทิศ กระแสในสภาวะทำงานปกติ ซึ่งมีค่าเป็นบวก.)

กระแสเบส (base current หรือ I_B) เป็นกระแสที่ควบคุมการทำงานของทรานซิสเตอร์ประเภท BJT. ถ้ากระแสเบสเป็นศูนย์ กระแสคอลเลคเตอร์ (collector current หรือ I_C) และกระแสอิมิตเตอร์ (emitter current หรือ I_E) จะเป็นศูนย์ด้วย ซึ่งสถานะนี้เรียกว่า สถานะคัทออฟ. ถ้าให้ I_B ใหล ก็จะมี I_C และ I_E ใหล ด้วย. (ทิศทางของกระแสนั้น ขึ้นอยู่กับชนิดของทรานซิสเตอร์ว่าเป็นชนิด NPN หรือ PNP.) อัตราส่วนของ I_C ต่อ I_B จะเป็นอัตราการขยายกระแสตรงของทรานซิสเตอร์ (β_{dc} หรือ h_{FE}). ขนาดแรงดันระหว่างเบสและ อิมิตเตอร์ของทรานซิสเตอร์จะมีค่าประมาณ $0.7~\mathrm{V}$ (ประมาณเท่ากับ forward voltage ของใดโอด). สถานะ ตอนนี้ของทรานซิสเตอร์เรียกว่า สถานะแอคทีฟ. ถ้า I_C ที่เพิ่มขึ้นนี้ ทำให้ V_{CE} ของทรานซิสเตอร์ที่ถูกใช้ งานในวงจร ลดลงเรื่อยๆจนกระทั่งมีค่าประมาณ $0.2~\mathrm{V}$ ทรานซิสเตอร์จะเข้าสู่สถานะอิ่มตัว ซึ่งจะทำให้ $I_C <$

 $eta_{dc}\,I_B$. ขนาดของแรงดันระหว่างเบสและอิมิตเตอร์ของทรานซิสเตอร์จะมีค่าเพิ่มขึ้นอีกเล็กน้อยเป็น 0.8~
m Vโดยประมาณ.

ทรานซิสเตอร์ประเภท BJT เป็นอุปกรณ์ที่ไวต่ออุณหภูมิ. ถ้าอุณหภูมิสูงขึ้น β จะมีค่าสูงขึ้น และ V_{BE} จะมีค่าเปลี่ยนไปประมาณ -2.5 mV/°C. นอกจากนี้ แรงคัน breakdown ที่ collector junction จะต่ำลง ค้วย. ทรานซิสเตอร์ประเภท BJT จึงเสี่ยงต่อความเสียหายแบบ secondary breakdown ซึ่งเกิดจากกระแสที่ ใหลไม่เท่ากันตลอดพื้นที่ของ junction. จุดใดที่มีกระแสไหลมาก จะมีความร้อนมาก ซึ่งทำให้ค่า β ที่จุดนั้น มีค่าสูงขึ้น. β ที่สูงขึ้น ยิ่งทำให้กระแสไหลไปรวมที่จุดนั้นมากขึ้นไปอีก และทำให้จุดนั้นยิ่งร้อนขึ้นไปอีก. ถ้าอุณหภูมิที่จุดนั้นสูงเกินไป แรงคัน breakdown ที่จุดนั้นจะต่ำลง ทำให้เกิดความเสียหายแก่ตัว ทรานซิสเตอร์ได้.

4.2. การทำงานของวงจรทรานซิสเตอร์เบื้องต้น

เมื่อนำทรานซิสเตอร์ชนิด NPN มาต่อในวงจรดังแสดงในรูปที่ 4.2 ก ความสัมพันธ์ระหว่างกระแส และแรงคันที่จุดต่างๆของวงจร ได้ถูกสรุปไว้ในตารางที่ 4.1.

รูปที่ 4.2 วงจรทคสอบการทำงานของทรานซิสเตอร์ประเภท BJT. ตารางที่ 4.1 แสดงความสัมพันธ์ระหว่างกระแสและแรงคันของวงจรในรูปที่ 4.2 ก.

สถานะ	V_{BE}	I_C	V_{CE}	V_I
คัทออฟ ($I_{B0}=0$)	< 0.5 V	= 0 A	$=V_{CC}$	= 0 V
แอคทีฟ (I _{Ba} > 0)	0.6 - 0.7 V	$=eta_{dc}I_B$	$= V_{CC} - I_C R_C$	$=I_C R_C$
อื่มตัว (I_{Bs} > I_{Ba} > 0)	0.8 V	$\approx (V_{CC} - 0.2 \text{ V}) / R_C$	≈ 0.2 V	$\approx V_{CC}$ - 0.2 V
		$$		

สำหรับทรานซิสเตอร์ชนิด PNP เมื่อนำมาต่อในวงจรที่แสดงไว้ในรูปที่ 4.2 ข ความสัมพันธ์ ระหว่างกระแสและแรงดันที่จุดต่างๆของวงจร ได้สรุปไว้ในตารางที่ 4.2. ไม่ว่าจะเป็นทรานซิสเตอร์แบบ NPN หรือ PNP ก็ตาม การเปลี่ยนจากสถานะคัทออฟเป็นอิ่มตัว หรือกลับกัน จะต้องผ่านสถานะแอคทีฟ เสมอ.

สถานะ	V_{EB}	I_C	V_{EC}	V_{I}
คัทออฟ ($I_{B0}=0$)	< 0.5 V	= 0	$=V_{CC}$	= 0
แอคทีฟ ($I_{Ba} > 0$)	0.6 - 0.7 V	$=eta_{dc}I_B$	$= V_{CC} - I_C R_C$	$=I_C R_C$
์ อิ่มตัว (I_{Bs} > I_{Ba} > 0)	0.8 V	$\approx (V_{CC} - 0.2) / R_C$	≈ 0.2 V	$\approx V_{CC}$ - 0.2
		$$		

ตารางที่ 4.2 แสดงความสัมพันธ์ระหว่างกระแสและแรงคันของวงจรในรูปที่ 4.2 ข.

กำลังงานสูญเสียที่เกิดขึ้นในตัวทรานซิสเตอร์ส่วนใหญ่ สามารถประมาณได้จากผลคูณของกระแส I_C และ $|V_{CE}|$. สถานะคัทออฟและสถานะอื่มตัวเป็นสถานะที่มีกำลังสูญเสียในตัวทรานซิสเตอร์ต่ำ เนื่องจากสถานะคัทออฟมีกระแส I_C ประมาณศูนย์ ส่วนสถานะอื่มตัวมี $|V_{CE}|$ ต่ำประมาณ $0.2~\rm V$. ในทาง ตรงกันข้าม สถานะแอกทีฟเป็นสถานะที่มีกำลังงานสูญเสียในตัวทรานซิสเตอร์สูง และจะมีค่าสูงสุดเมื่อ $|V_{CE}|$ เท่ากับ $0.5V_{CC}$ ซึ่งจะมีค่ากำลังงานสูญเสียเท่ากับ $(0.5V_{CC})^2/R_C$.

4.3. การออกแบบให้ทรานซิสเตอร์ทำงานเป็นสวิทช์

ทรานซิสเตอร์ที่ทำงานเป็นสวิทช์ จะอยู่ในสถานะคัทออฟหรือสถานะอิ่มตัว เป็นหลัก. สถานะคัท ออฟเทียบได้กับสวิทช์ที่ Off ซึ่งไม่มีกระแสไหล. วิธีที่ทำให้ทรานซิสเตอร์อยู่ในสถานะนี้ สามารถทำได้ โดยให้ I_B เป็นศูนย์(ทั้ง emitter junction และ collector junction ถูก reverse biased). ส่วนสถานะอิ่มตัว เทียบได้กับสวิทช์ที่ On มีกระแสไหลได้ โดยมีแรงคันตกคร่อมสวิทช์ต่ำประมาณ $0.2~\mathrm{V}$. วิธีที่ทำให้ ทรานซิสเตอร์อยู่ในสถานะอิ่มตัวนี้ สามารถทำได้โดยเพิ่มกระแส I_B ไปเรื่อยๆ จนกว่า β_{dc} $I_B > I_C$ ซึ่ง I_C จะ ประมาณเท่ากับ $(V_{CC}$ - 0.2) / R_C .

ตัวอย่างเช่น วงจรในรูปที่ 4.3 ให้ทรานซิสเตอร์ Q_1 ทำหน้าที่เป็นสวิทช์ โดยรับแรงคัน V_i มาจาก วงจรอื่น. ถ้า V_i มีค่าเท่ากับศูนย์ ให้สวิทช์อยู่ในสถานะ Off. แต่ถ้า V_i มีค่าเป็น 5V ให้สวิทช์อยู่ในสถานะ On และ ให้มีกระแสผ่าน R_C เท่ากับ $100~\mathrm{mA}$. ถ้ากำหนดให้ β_{dc} ของ Q_1 เท่ากับ $55~\mathrm{hi}~R_B$ ที่เหมาะสมจะต้อง น้อยกว่า $\frac{5-0.8}{100\times 10^{-3}}\times 55~\mathrm{g}$ ซึ่งเท่ากับ $2310~\Omega$. เลือก R_B เท่ากับ $2.2~\mathrm{k}\Omega$. ค่า β_{dc} ของทรานซิสเตอร์ จะต้องดู จาก datasheet ของเบอร์ที่จะใช้งาน และจะต้องทราบย่านกระแส I_C ที่จะใช้งานด้วย.

รูปที่ 4.3 วงจรทรานซิสเตอร์ชนิค NPN ทำหน้าที่เป็นสวิทช์.

ทรานซิสเตอร์ชนิค PNP สามารถนำมาใช้งานเป็นสวิทช์ได้เช่นกัน คั้งแสดงในรูปที่ 4.4 ซึ่งจะมีการ ทำงานตรงข้ามกับวงจรในรูปที่ 4.3. เมื่อ V_i เท่ากับศูนย์ สวิทช์จะ On. แต่ถ้า V_i เท่ากับ 5 V สวิทช์จะ Off.

รูปที่ 4.4 วงจรทรานซิสเตอร์ชนิด PNP ทำหน้าที่เป็นสวิทช์.

ถ้า I_C มีค่าสูง ทรานซิสเตอร์เพียงตัวเคียวมีอัตราขยายกระแสไม่พอ เราสามารถต่อทรานซิสเตอร์ แบบ Darlington คั้งแสดงในรูปที่ 4.5 เพื่อให้ช่วยขยายกระแสให้ได้มากขึ้น. อัตราขยายกระแสรวมของ ทรานซิสเตอร์แบบ Darlington นี้มีค่ามากกว่า 1000 เท่า. ทรานซิสเตอร์บางเบอร์มีการต่อเป็นแบบ Darlington ไว้ภายในแล้ว. ถ้า I_C ของทรานซิสเตอร์มีขนาดหลายสิบถึงหลายร้อยแอมป์ อาจมีการใช้ ทรานซิสเตอร์มากกว่าสองตัวต่อพวงกันแบบ Darlington นี้ เพื่อช่วยกันขยายกระแส.

รูปที่ 4.5 ทรานซิสเตอร์แบบ Darlington.

แรงคันระหว่างขา base และ emitter ของทรานซิสเตอร์แบบ Darlington จะเพิ่มขึ้นเป็น 1.4 V และ แรงคัน V_{CE} ในสถานะอิ่มตัวจะมีค่าเพิ่มขึ้นเป็น 0.9 V โดยประมาณ.

4.4. การทำให้ทรานซิสเตอร์ทำงานเป็นสวิทช์ได้เร็วขึ้นโดยการต่อ Schottky Diode

ถ้าให้ I_B เพื่อให้ทรานซิสเตอร์ทำงานในสถานะอิ่มตัวมากเกินไปมาก ทรานซิสเตอร์จะ Off ได้ช้า เนื่องจากมีประจุในบริเวณ junction มากเกินไป. วิธีหนึ่งที่ทำให้ทรานซิสเตอร์ Off ได้เร็วขึ้น คือ การต่อ Schottky diode ระหว่างขา base และ collector ดังแสดงในรูปที่ 4.6. Schottky diode เป็น diode ที่มี forward voltage ต่ำประมาณ 0.2-0.3 V และทำงานได้เร็วมาก. ในสภาวะการทำงานปกติ Schottky diode จะถูก reversed bias ทำให้ไม่มีกระแสไหล. แต่ถ้าทรานซิสเตอร์ Q_1 จะเข้าสู่สภาวะอิ่มตัว แรงดันที่ขา base จะสูง กว่าขา collector ทำให้ Schottky diode นำกระแส. แรงดัน V_{CE} ของทรานซิสเตอร์จะไม่ลดค่ำถึงประมาณ 0.2 V เพราะการนำกระแสของ Schottky diode. ทรานซิสเตอร์จึงไม่เข้าสู่สถานะอิ่มตัว แต่จะเป็นสถานะ แอคทีฟที่เกือบจะเป็นสถานะอิ่มตัว. การทำงานของทรานซิสเตอร์จะเร็วขึ้นกว่าที่เข้าสู่สถานะอิ่มตัวไปแล้ว. ทรานซิสเตอร์ที่มีการต่อ Schottky diode ไว้ภายใน จึงเรียกว่า Schottky transistor.

รูปที่ 4.6 การต่อ Schottky diode เข้ากับทรานซิสเตอร์เพื่อให้ทำงานได้เร็วขึ้น.

Standard digital IC ได้มีการนำ Schottky diode ไปใช้อย่างแพร่หลาย. ถ้าเบอร์ของ IC เหล่านี้มี ตัวอักษร S อยู่ เช่น 74S00, 74LS00 แสดงว่ามีการใช้ Schottky diode อยู่ภายในด้วย.

4.5. การควบคุมกระแสของโหลดที่เป็นขดลวด

ถ้าโหลดที่จะถูกควบคุมกระแสเป็นขดลวด เช่น รีเลย์ (relay) หรือ มอเตอร์ การหยุดไม่ให้กระแส ใหลในขดลวด จะทำให้เกิดแรงดันเหนี่ยวนำสูงในขดลวด ซึ่งสามารถทำลายทรานซิสเตอร์ที่ทำหน้าที่เป็น สวิทช์ได้. เราสามารถป้องกันความเสียหายที่อาจเกิดขึ้นกับทรานซิสเตอร์ โดยการต่อ diode ดังแสดงไว้ใน รูปที่ 4.7. ใดโอดนี้เป็น power diode ก็ได้ ทำหน้าที่เป็น free-wheeling diode คือ เมื่อทรานซิสเตอร์หยุด นำกระแส กระแสในขดลวดยังคงใหลต่อผ่านใดโอดตัวนี้อีกชั่วครู่หนึ่ง จนกระทั่งพลังงานสะสมในขดลวด และกระแสในขดลวดลดลงเป็นศูนย์. ในสภาวะการทำงานปกติ ใดโอดจะถูก reverse biased ทำให้ไม่มีกระแสไหล.

รูปที่ 4.7 การต่อ power diode ให้ทำหน้าที่เป็น free-wheeling diode เพื่อป้องกันทรานซิสเตอร์ สำหรับโหลดที่เป็นขดลวด.

4.6. การควบคุมแบบ Pulse-Width Modulation

ถึงแม้ว่าทรานซิสเตอร์ที่ทำงานเป็นสวิทช์จะอยู่ในสถานะคัทออฟหรือสถานะอิ่มตัวเป็นหลัก แต่ถ้า เราให้สวิทช์เหล่านี้ทำงานที่ความถี่สูง แล้วควบคุมความกว้างของการ On และ Off จะทำให้สามารถ กำลังงานเฉลี่ยที่เกิดขึ้นที่อุปกรณ์ที่ถูกควบคุม ค่อยๆเปลี่ยนอย่างต่อเนื่องได้ ดังแสดงในรูปที่ 4.8. การ ควบคุมแบบนี้ เรียกว่า pulse-width modulation.

รูปที่ 4.8 การควบคุมแบบ pulse-width modulation.

4.7. อุปกรณ์

Transistors 2N4401, 2N4403 อย่างละ	1 ตัว
R 1/4W 5% ค่า 27k Ω , 120 Ω อย่างละ	1 ตัว
R 2W 5% ค่า 100Ω	1 ตัว
Digital Multimeters	2 ตัว
Function Generator	1 ตัว
DC Power Supply	1 ตัว

4.8. การทดลอง

4.8.1. การทดลองวงจรทรานซิสเตอร์เบื้องต้น

ต่อวงจรตามรูปที่ 4.9 กำหนดให้ R_B เป็นความต้านทาน 27 k Ω 5% และ V_{CC} มีค่าเท่ากับ 5 V. เปลี่ยนแรงคัน V_{BB} เพื่อให้กระแส I_B และแรงคัน V_{CE} เปลี่ยนตาม. บันทึกผลการทดลองไว้ในตารางที่ 4.3. ให้ใช้การวัดแรงคันคร่อม R_B และ R_C แล้วแปลงมาเป็น I_B และ I_C แทนการวัดกระแสโดยตรง.

รูปที่ 4.9 วงจรทคสอบการทำงานของทรานซิสเตอร์

ตารางที่ 4.3 บันทึกผลการทดลองวงจรในรูปที่ 4.9 โดยมีแรงดัน V_{CC} เท่ากับ $5~{
m V.}$

$V_{CE}\left(\mathrm{V}\right)$	$V_{RC}\left(\mathbf{V}\right)$	I_{C} (mA)	$V_{BE}\left(\mathbf{V}\right)$	$V_{1}\left(\mathbf{V}\right)$	I_{B} (mA)	I_C/I_B
4						
3						
2.5						
2						
1						
0.4						
0.3						
0.2						

ในรายงานให้เขียนอภิปรายความสามารถในการใช้ I_B ควบคุม I_C ในช่วงที่ทรานซิสเตอร์อยู่ใน สถานะแอคทีฟ เปรียบเทียบกับช่วงที่ทรานซิสเตอร์อยู่ในสถานะอิ่มตัว.

ต่อไปให้ใช้แรงคัน V_{CC} เป็น $10~\rm V$. เปลี่ยนแรงคัน V_{BB} เพื่อให้กระแส I_B และแรงคัน V_{CE} เปลี่ยน ตาม. บันทึกผลการทดลองไว้ในตารางที่ 4.4.

			•			
$V_{CE}\left(\mathbf{V}\right)$	$V_{RC}\left(\mathbf{V}\right)$	I_{C} (mA)	$V_{BE}\left(\mathbf{V}\right)$	$V_{l}\left(\mathbf{V}\right)$	I_{B} (mA)	I_C/I_B
8						
6						
5						
4						
2						
0.4						
0.3						
0.2						

ตารางที่ 4.4 บันทึกผลการทดลองวงจรในรูปที่ 4.9 โดยมีแรงดัน V_{CC} เท่ากับ $10~{
m V}.$

ในรายงานให้เขียนอภิปรายความสามารถในการใช้ I_B ควบคุม I_C ในช่วงที่ทรานซิสเตอร์อยู่ใน สถานะแอคทีฟ เปรียบเทียบกับช่วงที่ทรานซิสเตอร์อยู่ในสถานะอิ่มตัว ที่แรงคัน V_{CC} เท่ากับ $10 \ V \$ นี้ และ ให้เขียนอภิปรายเปรียบเทียบค่า I_C/I_B ในตารางที่ 4.3 และ 4.4 ในช่วงที่ทรานซิสเตอร์อยู่ในสถานะแอคทีฟ.

4.8.2. การใช้ทรานซิสเตอร์ทำงานเป็นสวิทช์

ให้ออกแบบวงจรใช้ทรานซิสเตอร์เป็นสวิทช์ เพื่อทำให้ LED ติด เมื่อแรงคันอินพุท V_i เป็น $0 \ {
m V}$ และดับเมื่อ V_i เป็น $5 \ {
m V}$. รูปที่ 4.10 แสดงการทำงานของวงจรที่ต้องการ. เมื่อออกแบบเสร็จแล้วให้ต่อวงจร เพื่อทดสอบ และบันทึกค่ากระแส I_C และแรงคัน V_{CE} ขณะที่ทรานซิสเตอร์อยู่ในสถานะอิ่มตัว.

รูปที่ 4.10 Block diagram แสดงการทำงานของวงจรที่ต้องการ.

ในรายงานให้เขียนอธิบายการออกแบบวงจรอย่างละเอียด และเปรียบเทียบกระแส I_C และแรงคัน V_{CE} ที่วัดได้ขณะที่ทรานซิสเตอร์อยู่ในสถานะอิ่มตัว กับค่าที่ใช้ในการออกแบบ.

4.8.3. การควบคุมแบบ Pulse-Width Modulation

ต่อวงจรตามรูปที่ 4.11 ในหน้าถัดไป. คำนวณค่า R_B ที่เหมาะสม สำหรับแรงคันอินพุท v_i ระหว่าง 0 - 3 V.

รูปที่ 4.11 วงจรสำหรับการทดลอง pulse-width modulation

ค่า R_B ที่เหมาะสมตามทฤษฎี =	Ω
ค่า R_B ที่เลือกใช้ =	Ω

ใช้ function generator ป้อนสัญญาณสี่เหลี่ยมที่มีแรงคันในช่วง 0 - 3 V มี duty cycle ประมาณ 50 % และมีความถี่ต่ำๆ เพื่อหาว่าความถี่ต่ำเท่าใด จึงจะเริ่มเห็นภาพติดตา ไม่กระพริบ.

ใช้ function generator ป้อนสัญญาณสี่เหลี่ยมที่มีแรงดันในช่วง 0 - 3 V และมีความถี่ประมาณ 1 kHz. ให้ปรับ duty cycle ของสัญญาณตามค่าในคอลัมน์ซ้ายมือของตารางที่ 4.5. ใช้มัลติมิเตอร์วัดค่า $I_{C\ dc}$ และ $V_{I\ dc}$ เพื่อบันทึกลงในตารางที่ 4.5 นี้. สังเกตความสว่างของ LED ที่มองเห็นด้วยตา เพื่อเขียนใน รายงานด้วย.

The two the Button with the topic with modulation.					
Duty Cycle (%) ของ v _i	$I_{C dc}$ (mA)	$V_{Idc}\left(\mathrm{V}\right)$			
20					
32					
44					
56					
68					
80					

ตารางที่ 4.5 บันทึกผลการทดลอง pulse-width modulation.

ในรายงานให้แสดงการคำนวณค่า R_B ที่เหมาะสม สำหรับ v_i ระหว่าง 0 - 3 V และอภิปราย ความสัมพันธ์ระหว่าง duty cycle กับค่า $I_{C\,dc}$ และ $V_{I\,dc}$ รวมทั้งความสว่างของ LED ด้วย.

4.9. สรุปสิ่งที่ได้เรียนรู้

ให้สรุปสิ่งที่เรียนรู้ทั้งหมดจากการทดลองแยกเป็นอีกหัวข้อหนึ่งในท้ายรายงาน โดยสรุปเรียง ตามลำดับเรื่องที่ทดลอง.