Application layer: overview

- Principles of network applications
- Web and HTTP
- E-mail, SMTP, IMAP
- The Domain Name System DNS

- P2P applications
- Video streaming and content distribution networks
- Socket programming with UDP and TCP

Some network apps

- social networking
- Web
- text messaging
- e-mail
- multi-user network games
- streaming stored video (YouTube, Netflix)
- P2P file sharing
- voice over IP (Skype)
- real-time video conferencing (Zoom)
- Internet search
- remote login
- ...

Creating a network app

write programs that:

- run on (different) end systems
- communicate over network
- e.g., web server software communicates with browser software

no need to write software for network-core devices

- network-core devices do not run user applications
- applications on end systems allows for rapid app development, propagation

Client-server paradigm

server:

- always-on host
- permanent IP address
- often in data centers, for scaling

clients:

- contact, communicate with server
- may be intermittently connected
- may have dynamic IP addresses
- do not communicate directly with each other
- examples: HTTP, IMAP, FTP

Peer-peer architecture

- no always-on server
- arbitrary end systems directly communicate
- peers request service from other peers, provide service in return to other peers
 - self scalability new peers bring new service capacity, as well as new service demands
- peers are intermittently connected and change IP addresses
 - complex management
- example: P2P file sharing

Processes communicating

process: program running
 within a host

- within same host, two processes communicate using inter-process communication (defined by OS)
- processes in different hosts communicate by exchanging messages

clients, servers

client process: process that
 initiates communication
server process: process
 that waits to be contacted

 note: applications with P2P architectures have client processes & server processes

Sockets

- process sends/receives messages to/from its socket
- socket analogous to door
 - sending process shoves message out door
 - sending process relies on transport infrastructure on other side of door to deliver message to socket at receiving process
 - two sockets involved: one on each side

Addressing processes

- to receive messages, process must have *identifier*
- host device has unique 32-bit
 IP address
- Q: does IP address of host on which process runs suffice for identifying the process?
 - A: no, many processes can be running on same host

- identifier includes both IP address and port numbers associated with process on host.
- example port numbers:

HTTP server: 80

mail server: 25

 to send HTTP message to gaia.cs.umass.edu web server:

• IP address: 128.119.245.12

port number: 80

An application-layer protocol defines:

- types of messages exchanged,
 - e.g., request, response
- message syntax:
 - what fields in messages & how fields are delineated
- message semantics
 - meaning of information in fields
- rules for when and how processes send & respond to messages

open protocols:

- defined in RFCs, everyone has access to protocol definition
- allows for interoperability
- e.g., HTTP, SMTP

proprietary protocols:

• e.g., Skype, Zoom

What transport service does an app need?

data integrity

- some apps (e.g., file transfer, web transactions) require
 100% reliable data transfer
- other apps (e.g., audio) can tolerate some loss

timing

 some apps (e.g., Internet telephony, interactive games) require low delay to be "effective"

throughput

- some apps (e.g., multimedia) require minimum amount of throughput to be "effective"
- other apps ("elastic apps")
 make use of whatever
 throughput they get

security

encryption, data integrity,

Transport service requirements: common apps

ар	plication	data loss	throughput	time sensitive?
file transfer/download		no loss	elastic	no
	e-mail	no loss	elastic	no
Web do	cuments	no loss	elastic	no
real-time aud	dio/video	loss-tolerant	audio: 5Kbps-1Mbps video:10Kbps-5Mbps	yes, 10's msec
streaming aud	dio/video	loss-tolerant	same as above	yes, few secs
interactiv	e games	loss-tolerant	Kbps+	yes, 10's msec
text m	essaging	no loss	elastic	yes and no

Internet transport protocols services

TCP service:

- reliable transport between sending and receiving process
- flow control: sender won't overwhelm receiver
- congestion control: throttle sender when network overloaded
- connection-oriented: setup required between client and server processes
- does not provide: timing, minimum throughput guarantee, security

UDP service:

- unreliable data transfer
 between sending and receiving
 process
- does not provide: reliability, flow control, congestion control, timing, throughput guarantee, security, or connection setup.

Internet applications, and transport protocols

application	application layer protocol	transport protocol
file transfer/download	FTP [RFC 959]	TCP
e-mail	SMTP [RFC 5321]	TCP
Web documents	HTTP 1.1 [RFC 7320]	TCP
Internet telephony	SIP [RFC 3261], RTP [RFC	TCP or UDP
	3550], or proprietary	
streaming audio/video	HTTP [RFC 7320], DASH	TCP
interactive games	WOW, FPS (proprietary)	UDP or TCP

Securing TCP

Vanilla TCP & UDP sockets:

- no encryption
- cleartext passwords sent into socket traverse Internet in clear text

Transport Layer Security (TLS)

- provides encrypted TCP connections
- data integrity
- end-point authentication

TLS implemented in application layer

- apps use TLS libraries, that use TCP in turn
- cleartext sent into "socket" traverse Internet encrypted

Application layer: overview

- Principles of network applications
- Web and HTTP
- E-mail, SMTP, IMAP
- The Domain Name System
 DNS

- P2P applications
- video streaming and content distribution networks
- socket programming with UDP and TCP

Web and HTTP

- web page consists of objects, each of which can be stored on different Web servers
- object can be HTML file, JPEG image, Java applet, audio file,...
- web page consists of base HTML-file which includes several referenced objects, each addressable by a URL, e.g.,

HTTP overview

HTTP: hypertext transfer protocol

- Web's application-layer protocol
- client/server model:
 - client: browser that requests, receives, (using HTTP protocol) and "displays" Web objects
 - server: Web server sends (using HTTP protocol) objects in response to requests

HTTP overview (continued)

HTTP uses TCP:

- client initiates TCP connection (creates socket) to server, port 80
- server accepts TCP connection from client
- HTTP messages (application-layer protocol messages) exchanged between browser (HTTP client) and Web server (HTTP server)
- TCP connection closed

HTTP is "stateless"

 server maintains no information about past client requests

aside

protocols that maintain "state" are complex!

- past history (state) must be maintained
- if server/client crashes, their views of "state" may be inconsistent, must be reconciled

HTTP connections: two types

Non-persistent HTTP

- 1. TCP connection opened
- 2. at most one object sent over TCP connection
- 3. TCP connection closed

downloading multiple objects required multiple connections

Persistent HTTP

- TCP connection opened to a server
- multiple objects can be sent over single TCP connection between client, and that server
- TCP connection closed

Non-persistent HTTP: example

User enters URL: www.someSchool.edu/someDepartment/home.index (containing text, references to 10 jpeg images)

- - 1a. HTTP client initiates TCP connection to HTTP server (process) at www.someSchool.edu on port 80
 - 2. HTTP client sends HTTP request message (containing URL) into TCP connection socket. Message indicates that client wants object someDepartment/home.index

- 1b. HTTP server at host www.someSchool.edu waiting for TCP connection at port 80 "accepts" connection, notifying client
 - 3. HTTP server receives request message, forms *response message* containing requested object, and sends message into its socket

time

Non-persistent HTTP: example (cont.)

User enters URL: www.someSchool.edu/someDepartment/home.index (containing text, references to 10 jpeg images)

5. HTTP client receives response message containing html file, displays html. Parsing html file, finds 10 referenced jpeg objects

4. HTTP server closes TCP connection.

6. Steps 1-5 repeated for each of 10 jpeg objects

Non-persistent HTTP: response time

RTT (definition): time for a small packet to travel from client to server and back

HTTP response time (per object):

- one RTT to initiate TCP connection
- one RTT for HTTP request and first few bytes of HTTP response to return
- object/file transmission time

Non-persistent HTTP response time = 2RTT+ file transmission time

Persistent HTTP (HTTP 1.1)

Non-persistent HTTP issues:

- requires 2 RTTs per object
- OS overhead for each TCP connection
- browsers often open multiple parallel TCP connections to fetch referenced objects in parallel

Persistent HTTP (HTTP1.1):

- server leaves connection open after sending response
- subsequent HTTP messages between same client/server sent over open connection
- client sends requests as soon as it encounters a referenced object
- as little as one RTT for all the referenced objects (cutting response time in half)

HTTP request message

- two types of HTTP messages: request, response
- HTTP request message:
 - ASCII (human-readable format)

```
GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
Connection: close
User-agent: Mozilla/5.0
Accept-language: fr
```

HTTP request message: general format

Other HTTP request messages

POST method:

- web page often includes form input
- user input sent from client to server in entity body of HTTP POST request message

GET method (for sending data to server):

• include user data in URL field of HTTP GET request message (following a '?'):

www.somesite.com/search?name&telephoneNumber

HEAD method:

for debugging

PUT method:

uploads new file (object) to server

HTTP response message

```
HTTP/1.1 200 OK
Connection: close
Date: Tue, 18 Aug 2015 15:44:04 GMT
Server: Apache/2.2.3 (CentOS)
Last-Modified: Tue, 18 Aug 2015 15:11:03 GMT
Content-Length: 6821
Content-Type: text/html
(data data data data data ...)
```

HTTP response status codes

- status code appears in 1st line in server-to-client response message.
- some sample codes:

200 OK

request succeeded, requested object later in this message

301 Moved Permanently

 requested object moved, new location specified later in this message (in Location: field)

400 Bad Request

request msg not understood by server

404 Not Found

requested document not found on this server

505 HTTP Version Not Supported

Maintaining user/server state: cookies

Web sites and client browser use cookies to maintain some state between transactions

four components:

- 1) cookie header line of HTTP *response* message
- 2) cookie header line in next HTTP request message
- 3) cookie file kept on user's host, managed by user's browser
- 4) back-end database at Web site

Example:

- Susan uses browser on laptop, visits specific e-commerce site for first time
- when initial HTTP requests arrives at site, site creates:
 - unique ID (aka "cookie")
 - entry in backend database for ID
- subsequent HTTP requests from Susan to this site will contain cookie ID value, allowing site to "identify" Susan

Maintaining user/server state: cookies

Web caches

Goal: satisfy client requests without involving origin server

- user configures browser to point to a (local) Web cache
- browser sends all HTTP requests to cache
 - *if* object in cache: cache returns object to client
 - else cache requests object from origin server, caches received object, then returns object to client

HTTP/2

Key goal: decreased delay in multi-object HTTP requests

<u>HTTP/2:</u> [RFC 7540, 2015] increased flexibility at *server* in sending objects to client.

methods, status codes, most header fields unchanged from HTTP 1.1

HTTP/2: mitigating HOL blocking

HTTP 1.1: client requests 1 large object (e.g., video file) and 3 smaller objects

objects delivered in order requested: O_2 , O_3 , O_4 wait behind O_1

HTTP/2: mitigating HOL blocking

HTTP/2: objects divided into frames, frame transmission interleaved

 O_2 , O_3 , O_4 delivered quickly, O_1 slightly delayed

Application layer: overview

- Principles of network applications
- Web and HTTP
- E-mail, SMTP, IMAP
- The Domain Name System
 DNS

- P2P applications
- video streaming and content distribution networks
- socket programming with UDP and TCP

E-mail

Three major components:

- user agents
- mail servers
- simple mail transfer protocol: SMTP

User Agent

- a.k.a. "mail reader"
- composing, editing, reading mail messages
- e.g., Outlook, iPhone mail client
- outgoing, incoming messages stored on server

Application Layer: 2-36

E-mail: mail servers

mail servers:

- mailbox contains incoming messages for user
- message queue of outgoing (to be sent) mail messages

SMTP protocol between mail servers to send email messages

- client: sending mail server
- "server": receiving mail server

SMTP RFC (5321)

- uses TCP to reliably transfer email message from client (mail server initiating connection) to server, port 25
 - direct transfer: sending server (acting like client) to receiving server
- three phases of transfer
 - SMTP handshaking (greeting)
 - SMTP transfer of messages
 - SMTP closure
- command/response interaction (like HTTP)
 - commands: ASCII text
 - response: status code and phrase

Scenario: Alice sends e-mail to Bob

- 1) Alice uses UA to compose e-mail message "to" bob@someschool.edu
- 2) Alice's UA sends message to her mail server using SMTP; message placed in message queue
- 3) client side of SMTP at mail server opens TCP connection with Bob's mail server

- 4) SMTP client sends Alice's message over the TCP connection
- 5) Bob's mail server places the message in Bob's mailbox
- 6) Bob invokes his user agent to read message

Sample SMTP interaction

```
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
```

Mail message format

SMTP: protocol for exchanging e-mail messages, defined in RFC 5321 (like RFC 7231 defines HTTP)

RFC 2822 defines *syntax* for e-mail message itself (like HTML defines syntax for web documents)

- header lines, e.g.,
 - To:
 - From:
 - Subject:

these lines, within the body of the email message area different from SMTP MAIL FROM:, RCPT TO: commands!

Body: the "message", ASCII characters only

Retrieving email: mail access protocols

- SMTP: delivery/storage of e-mail messages to receiver's server
- mail access protocol: retrieval from server
 - IMAP: Internet Mail Access Protocol [RFC 3501]: messages stored on server, IMAP provides retrieval, deletion, folders of stored messages on server
- HTTP: gmail, Hotmail, Yahoo!Mail, etc. provides web-based interface on top of STMP (to send), IMAP (or POP) to retrieve e-mail messages

Application Layer: Overview

- Principles of network applications
- Web and HTTP
- E-mail, SMTP, IMAP
- The Domain Name System DNS

- P2P applications
- video streaming and content distribution networks
- socket programming with UDP and TCP

DNS: Domain Name System

people: many identifiers:

SSN, name, passport #

Internet hosts, routers:

- IP address (32 bit) used for addressing datagrams
- "name", e.g., cs.umass.edu used by humans

Q: how to map between IP address and name, and vice versa?

Domain Name System (DNS):

- distributed database implemented in hierarchy of many name servers
- application-layer protocol: hosts, DNS servers communicate to resolve names (address/name translation)

DNS: services

- hostname-to-IP-address translation
- host aliasing
 - canonical, alias names
 relay1.west-coast.enterprise.com
 enterprise.com, www.enterprise.com
- mail server aliasing relay1.west-coast.yahoo.com
 - yahoo.com
- load distribution
 - replicated Web servers: many IP addresses correspond to one name

Thinking about the DNS

humongous distributed database:

~ billion records, each simple

handles many trillions of queries/day:

- many more reads than writes
- performance matters: almost every Internet transaction interacts with DNS - msecs count!

organizationally, physically decentralized:

 millions of different organizations responsible for their records

DNS: a distributed, hierarchical database

Client wants IP address for www.amazon.com

- client queries root server to find .com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: root name servers

13 logical root name "servers" worldwide each "server" replicated many times (~200 servers in US)

Top-Level Domain, and authoritative servers

Top-Level Domain (TLD) servers:

- responsible for .com, .org, net, .edu, .aero, .jobs, .museums, and all top-level country domains, e.g.: .cn, .uk, .fr, .ca, .jp
- Verisign: authoritative registry for .com

Educause: .edu TLD

authoritative DNS servers:

- organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- can be maintained by organization or service provider

Local DNS name servers

- when host makes DNS query, it is sent to its local DNS server
 - Local DNS server returns reply, answering:
 - from its local cache of recent name-to-address translation pairs (possibly out of date!)
 - forwarding request into DNS hierarchy for resolution
 - each ISP has local DNS name server; to find yours:
 - MacOS: % scutil --dns
 - Windows: >ipconfig /all
- local DNS server doesn't strictly belong to hierarchy

DNS name resolution: iterated query

Example: host at engineering.nyu.edu wants IP address for gaia.cs.umass.edu

Iterated query:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

root DNS server

DNS name resolution: recursive query

Example: host at engineering.nyu.edu wants IP address for gaia.cs.umass.edu

Recursive query:

 puts burden of name resolution on contacted name server

root DNS server

authoritative DNS server dns.cs.umass.edu

Caching DNS Information

- once (any) name server learns mapping, it caches mapping, and immediately returns a cached mapping in response to a query
 - caching improves response time
 - cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
- cached entries may be out-of-date
 - if named host changes IP address, may not be known Internetwide until all TTLs expire!
 - best-effort name-to-address translation!

DNS records

DNS: distributed database storing resource records (RR)

RR format: (name, value, type, ttl)

type=A

- name is hostname (e.g. relay1.bar.foo.com)
- value is IP address (e.g. 145.37.93.126)

type=NS

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain (e.g. dns.foo.com)

type=CNAME

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name

type=MX

 value is name of SMTP mail server associated with name

DNS protocol messages

DNS query and reply messages, both have same format:

message header:

- identification: 16 bit # for query,
 reply to query uses same #
- flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

DNS protocol messages

DNS query and reply messages, both have same format:

Getting your info into the DNS

example: new startup "Network Utopia"

- register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts NS, A RRs into .com TLD server:

```
(networkutopia.com, dns1.networkutopia.com, NS) (dns1.networkutopia.com, 212.212.212.1, A)
```

- create authoritative server locally with IP address 212.212.212.1
 - type A record for www.networkuptopia.com
 - type MX record for networkutopia.com

DNS security

DDoS attacks

- bombard root servers with traffic
 - not successful to date
 - traffic filtering
 - local DNS servers cache IPs of TLD servers, allowing root server bypass
- bombard TLD servers
 - potentially more dangerous

Spoofing attacks

- intercept DNS queries, returning bogus replies
 - DNS cache poisoning
 - RFC 4033: DNSSEC authentication services

Application Layer: Overview

- Principles of network applications
- Web and HTTP
- E-mail, SMTP, IMAP
- The Domain Name System
 DNS

- P2P applications
- video streaming and content distribution networks
- socket programming with UDP and TCP

Peer-to-peer (P2P) architecture

- no always-on server
- arbitrary end systems directly communicate
- peers request service from other peers, provide service in return to other peers
 - self scalability new peers bring new service capacity, and new service demands
- peers are intermittently connected and change IP addresses
 - complex management
- examples: P2P file sharing (BitTorrent), streaming (KanKan), VoIP (Skype)

File distribution: client-server vs P2P

- Q: how much time to distribute file (size F) from one server to N peers?
 - peer upload/download capacity is limited resource

File distribution time: client-server

- server transmission: must sequentially send (upload) N file copies:
 - time to send one copy: F/u_s
 - time to send N copies: NF/u_s
- client: each client must download file copy
 - d_{min} = min client download rate
 - min client download time: F/d_{min}

time to distribute F to N clients using client-server approach

$$D_{c-s} \ge max\{NF/u_{s,}, F/d_{min}\}$$

File distribution time: P2P

- server transmission: must upload at least one copy:
 - time to send one copy: F/u_s
- client: each client must download file copy
 - min client download time: F/d_{min}
- clients: as aggregate must download NF bits
 - max upload rate (limiting max download rate) is $u_s + \Sigma u_i$

time to distribute F to N clients using P2P approach

$$D_{P2P} > max\{F/u_{s,}, F/d_{min,}, NF/(u_s + \Sigma u_i)\}$$

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, $u_s = 10u$, $d_{min} \ge u_s$

Application layer: overview

- Principles of network applications
- Web and HTTP
- E-mail, SMTP, IMAP
- The Domain Name System
 DNS

- P2P applications
- video streaming and content distribution networks
- socket programming with UDP and TCP

Video Streaming and CDNs: context

- stream video traffic: major consumer of Internet bandwidth
 - Netflix, YouTube, Amazon Prime: 80% of residential ISP traffic (2020)
- challenge: scale how to reach ~1B users?
- challenge: heterogeneity
 - different users have different capabilities (e.g., wired versus mobile; bandwidth rich versus bandwidth poor)
- *solution:* distributed, application-level infrastructure

Multimedia: video

- video: sequence of images displayed at constant rate
 - e.g., 24 images/sec
- digital image: array of pixels
 - each pixel represented by bits
- coding: use redundancy within and between images to decrease # bits used to encode image
 - spatial (within image)
 - temporal (from one image to next)

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

frame i

temporal coding example: instead of sending complete frame at i+1, send only differences from frame i

frame i+1

Streaming stored video

simple scenario:

Streaming multimedia: DASH

Dynamic, Adaptive Streaming over HTTP

server:

- divides video file into multiple chunks
- each chunk encoded at multiple different rates
- different rate encodings stored in different files
- files replicated in various CDN nodes
- manifest file: provides URLs for different chunks

clien

client:

- periodically estimates server-to-client bandwidth
- consulting manifest, requests one chunk at a time
 - chooses maximum coding rate sustainable given current bandwidth
 - can choose different coding rates at different points in time (depending on available bandwidth at time), and from different servers

Content distribution networks (CDNs)

challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?

- option 1: single, large "megaserver"
 - single point of failure
 - point of network congestion
 - long (and possibly congested) path to distant clients

....quite simply: this solution doesn't scale

Content distribution networks (CDNs)

challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?

- option 2: store/serve multiple copies of videos at multiple geographically distributed sites (CDN)
 - enter deep: push CDN servers deep into many access networks
 - close to users
 - Akamai: 240,000 servers deployed in > 120 countries (2015)
 - *bring home:* smaller number (10's) of larger clusters in POPs near access nets
 - used by Limelight

Application Layer: Overview

- Principles of network applications
- Web and HTTP
- E-mail, SMTP, IMAP
- The Domain Name System
 DNS

- P2P applications
- video streaming and content distribution networks
- socket programming with UDP and TCP

Socket programming

goal: learn how to build client/server applications that communicate using sockets

socket: door between application process and end-end-transport protocol

Socket programming

Two socket types for two transport services:

- UDP: unreliable datagram
- TCP: reliable, byte stream-oriented

Application Example:

- 1. client reads a line of characters (data) from its keyboard and sends data to server
- 2. server receives the data and converts characters to uppercase
- 3. server sends modified data to client
- 4. client receives modified data and displays line on its screen

Socket programming with UDP

UDP: no "connection" between client and server:

- no handshaking before sending data
- sender explicitly attaches IP destination address and port # to each packet
- receiver extracts sender IP address and port# from received packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:

UDP provides unreliable transfer of groups of bytes ("datagrams")
 between client and server processes

Client/server socket interaction: UDP

Example app: UDP client

Python UDPClient

```
include Python's socket library — from socket import *
                                              serverName = 'hostname'
                                              serverPort = 12000
                  create UDP socket for server — clientSocket = socket(AF_INET,
                                                                     SOCK_DGRAM)
                      get user keyboard input — message = raw_input('Input lowercase sentence:')
attach server name, port to message; send into socket --- clientSocket.sendto(message.encode(),
                                                                     (serverName, serverPort))
       read reply characters from socket into string — modifiedMessage, serverAddress =
                                                                     clientSocket.recvfrom(2048)
          print out received string and close socket — print modifiedMessage.decode()
                                              clientSocket.close()
```

Example app: UDP server

Python UDPServer

```
from socket import *
serverPort = 12000
```

create UDP socket → serverSocket = socket(AF_INET, SOCK_DGRAM)

bind socket to local port number 12000 → serverSocket.bind((", serverPort))

print ("The server is ready to receive")

loop forever → while True:

Read from UDP socket into message, getting — message, clientAddress = serverSocket.recvfrom(2048) client's address (client IP and port) modifiedMessage = message.decode().upper()

send upper case string back to this client serverSocket.sendto(modifiedMessage.encode(),

clientAddress)

Socket programming with TCP

Client must contact server

- server process must first be running
- server must have created socket (door) that welcomes client's contact

Client contacts server by:

- Creating TCP socket, specifying IP address, port number of server process
- when client creates socket: client TCP establishes connection to server TCP

- when contacted by client, server
 TCP creates new socket for server
 process to communicate with that
 particular client
 - allows server to talk with multiple clients
 - source port numbers used to distinguish clients

Application viewpoint

TCP provides reliable, in-order byte-stream transfer ("pipe") between client and server processes

Client/server socket interaction: TCP

Example app: TCP client

create TCP socket for server, -

remote port 12000

No need to attach server name, port

Python TCPClient

from socket import * serverName = 'servername' serverPort = 12000clientSocket = socket(AF_INET(SOCK_STREAM) clientSocket.connect((serverName,serverPort)) sentence = raw_input('Input lowercase sentence:') clientSocket.send(sentence.encode()) modifiedSentence = clientSocket.recv(2048) print ('From Server:', modifiedSentence.decode()) clientSocket.close()

Example app: TCP server

```
from socket import *
                                       serverPort = 12000
       create TCP welcoming socket --- serverSocket = socket(AF_INET,SOCK_STREAM)
                                       serverSocket.bind((",serverPort))
          server begins listening for _____ serverSocket.listen(1)
          incoming TCP requests
                                       print 'The server is ready to receive'
                                     while True:
                      loop forever
                                          connectionSocket, addr = serverSocket.accept()
server waits on accept() for incoming
requests, new socket created on return
                                          sentence = connectionSocket.recv(2048).decode()
         read bytes from socket (but
                                          capitalizedSentence = sentence.upper()
         not address as in UDP)
                                          connectionSocket.send(capitalizedSentence.
                                                                              encode())
 close connection to this client (but not
                                          connectionSocket.close()
 welcoming socket)
```

Python TCPServer

General flow

