

Continuous scans with position based hardware triggers

H. Enquist, A. Bartalesi, B. Bertrand, J. Forsberg, A. Freitas, V. Hardion, M. Lindberg, C. Takahashi

Outline

- Why continuous scans
- Parametric trajectory motion
- Overview of the system
- Trigger generation
- Scan procedure
- Measurements
- Challenges
- Outlook
- Acknowledgements

Step scans vs continuous scans

Standard PseudoMotor, nominal velocities

Standard PseudoMotor, matched velocities

Parametric trajectory

Must follow trajectory, at a constant speed in units/s

Monochromator

Position based hardware triggers

Sequencer generates triggers when the encoder reaches values in a list. Values generated by Sardana controller.

Sequencer generates triggers when the encoder reaches values in a list. Values generated by Sardana controller.

Capture encoder readings at each trigger

Sequencer generates triggers when the encoder reaches values in a list. Values generated by Sardana controller.

Sequencer table

PANDA V layout V SEQ2 V table V ···				
	REPEATS	TRIGGER		POSITION
① _	1	POSA<=POSITION		-429359
① _	1	POSA<=POSITION		-429387
① _	1	POSA<=POSITION		-429414
① _	1	POSA<=POSITION		-429442
① _	1	POSA<=POSITION		-429469
① _	1	POSA<=POSITION		-429497
① _	1	POSA<=POSITION		-429524
① _	1	POSA<=POSITION		-429552
① _	1	POSA<=POSITION		-429579
① _	1	POSA<=POSITION		-429607
① _	1	POSA<=POSITION		-429634
① _	1	POSA<=POSITION		-429662
(i) _	1	POSA<=POSITION		-429689
① _	1	POSA<=POSITION		-429717

Trigger positions in encoder counts

Scan procedure

Scans on N₂

Scans on N₂

250 steps of 0.2s = 50 seconds of acquisition

Challenges

- Position accuracy in motion
 - Vibrations
 - Mechanical precision
 - Closed loop tuning
 - Minimize mechanical errors
- Detector speed
 - Trigger rate
 - Analog bandwidth

Outlook

Parametric trajectory for insertion device

For long scans

Extend to more beamlines and applications!

- Sample translation and rotation stages
- All monochromators

Acknowledgements

Controls & IT Software
Controls & IT Hardware
Insertion Devices Group
FlexPES beamline
DanMAX beamline
Bloch beamline

Thanks!

H. Enquist, A. Bartalesi, B. Bertrand,J. Forsberg, A. Freitas, V. Hardion,M. Lindberg, C. Takahashi

