MAE0312 - Introdução aos Processos Estocásticos - Lista 01

Profa. Beti

Entregar os exercícios assinalados com \clubsuit . Os exercícios assinalados com \varnothing serão resolvidos em classe.

- As listas devem ser feitas INDIVIDUALMENTE.
- Não esqueça de colocar seu NOME e N.USP de forma bem visível na lista.
- 1. Sejam X e Y variáveis aleatórias com distibuição conjunta. Mostre que :

(a)
$$E(E(X \mid Y)) = E(X)$$
.

(b)
$$\operatorname{Var}(X) = \operatorname{E}(\operatorname{Var}(X \mid Y)) + \operatorname{Var}(\operatorname{E}(X \mid Y)).$$

Você pode considerar o caso que X e Y são ambas contínuas com função densidade de probabilidade conjunta f(x,y) ou o caso em que ambas são discretas com função discreta de probabilidade p(x,y).

2. Sejam X_1, X_2, \ldots variáveis aleatórias independentes e identicamente distribuídas e seja N uma variável aleatória inteira, não-negativa e **independente** dos X_i 's. Em muitas aplicações tem-se interesse na variável que é representada pela **soma aleatória** de variáveis aleatórias. **Mostre** que

(a)
$$\operatorname{E}\left(\sum_{i=1}^{N} X_i\right) = \operatorname{E}(N).\operatorname{E}(X)$$
 (b) $\operatorname{Var}\left(\sum_{i=1}^{N} X_i\right) = \operatorname{E}(N).\operatorname{Var}(X) + (\operatorname{E}(X))^2.\operatorname{Var}(N)$

- 3. \clubsuit Considere uma urna contendo 50 bolas vermelhas e 50 bolas azuis. Retira-se uma bola por vez, sem reposição. Denote por X_n o número de bolas vermelhas remanescentes na urna após a retirada da n—ésima bola.
 - (a) A seq. $\{X_1, X_2, \dots, X_{100}\}$ possui a propriedade Markoviana?
 - (b) Calcule $P(X_{10} = 47 \mid X_9 = 48)$.
 - (c) Calcule $P(X_{20} = 47 \mid X_{19} = 48)$.
 - (d) Calcule $P(X_{n+1} = j \mid X_n = i)$ especificando os possíveis valores de j.
 - (e) A seq. $\{X_1, X_2, \dots, X_{100}\}$ tem probabilidades de transições homogêneas (no tempo) ?
- 4. ② (Ruina do jogador) Considere um jogador que a cada jogada da partida ganha R\$ 1,00 com probabilidade p ou perde R\$ 1,00 com probabilidade 1 − p. Se supormos que o jogador abandona o jogo quando ele for a ruína (ficar com R\$ 0,00) ou se ele obtiver a fortuna de R\$ N, então "esse jogo pode ser modelado por uma cadeia de Markov com um número finito de estados". (Na verdade esse é um exemplo de um passeio aleatório com finitos estados). Defina qual é a sequência de variáveis aleatórias que representa o "jogo" e que pode ser modelada por uma cadeia de Markov. Forneça o espaço de estados e determine as probabilidades de transição da cadeia.

- 5. (Ruina do jogador) Um jogo consiste em partidas que um jogador, chamado de jogador A, ganha cada partida valendo R\$ 1,00 com probabilidade p, ou perde R\$1,00 com probabilidade 1-p, $0 . Isto é, se <math>X_i$ representa o valor ganho pelo jogador A na i-ésima partida, então $X_i \in \{-1, +1\}$, com $P(X_i = +1) = p = 1 P(X_i = -1)$. Considere a sequência de variáveis $\{S_0, S_1, \ldots, \}$ tal que $S_o = 0$, $S_n = X_1 + \cdots + X_n$.
 - (a) Simule no computador (linguagem a sua escolha) uma sequência $\{S_0, S_1, \ldots, S_n\}$ para p = 1/2 e n = 1.000. E imprima o resultado num gráfico coordenado (n, S_n) .
 - (b) Calcule a probabilidade

$$P(S_{2n} = 0 \mid S_0 = 0), \quad n = 1, 2, \dots$$

6. \mathcal{Q} Uma cadeia de Markov $\{X_n\}$ com espaço de estados $S = \{0, 1, 2\}$ tem a seguinte matriz de transição de probabilidades.

$$\mathbf{P} = \left(\begin{array}{ccc} 0, 6 & 0, 3 & 0, 1 \\ 0, 3 & 0, 3 & 0, 4 \\ 0, 4 & 0, 1 & 0, 5 \end{array}\right)$$

Se sabe-se que o processo inicia no estado 1 $(X_0 = 1)$, determine a probabilidade do processo estar no estado 2 no instante 2.

7. \clubsuit Considere uma cadeia de Markov $\{X_n; n \geq 0\}$ com espaço de estados $S = \{0, 1, 2\}$, distribuição de probabilidade inicial $\mathbf{p}_0 = (1/4, 1/2, 1/4)$, e matriz de transição

$$\mathbf{P} = \begin{pmatrix} 1/4 & 3/4 & 0\\ 1/3 & 1/3 & 1/3\\ 0 & 1/4 & 3/4 \end{pmatrix}$$

- (a) Calcule $P(X_0 = 0, X_1 = 1, X_2 = 1)$.
- (b) Mostre que $P(X_1 = 1 \text{ e } X_2 = 1 \mid X_0 = 0) = p_{01} \ p_{11}$.
- (c) Calcule $p_{01}^{(2)}$.
- 8. Uma cadeia de Markov $\{X_n\}$ com espaço de estados $S=\{0,1,2\}$ tem a seguinte matriz de transição de probabilidades.

$$\mathbf{P} = \left(\begin{array}{ccc} 0, 1 & 0, 2 & 0, 7 \\ 0, 2 & 0, 2 & 0, 6 \\ 0, 6 & 0, 1 & 0, 3 \end{array}\right)$$

Calcule $P(X_3 = 1 \mid X_1 = 0)$ e $P(X_3 = 1 \mid X_0 = 0)$.

9. \clubsuit Três bolas brancas e três bolas pretas são distribuídas aleatoriamente em 2 urnas de maneira que cada urna conterá 3 bolas. Dizemos que o sistema está no estado i, i = 0, 1, 2, 3 se a primeira urna conter i bolas brancas. A cada passo uma bola é retirada de cada urna e as bolas são trocadas de urnas. Denote por X_n o estado do sistema após n passos. Explique por que $\{X_n, n = 0, 1, 2, \ldots\}$ é uma cadeia de Markov e determine sua matriz de probabilidades de transição.

2

- 10. \mathcal{O} Urna de Ehrenfest Suponha que um compartimento, com M moléculas, tem uma membrana separando o compartimento em duas partes: A e B. Inicialmente o compartimento A possui j moléculas e o compartimento B, M-j moléculas. Dizemos que uma transição ocorre toda vez que uma molécula atravessa a membrana (de A para B ou de B para A). Denote por X_n o número de moléculas no compartimento A após n transições. Note que a cada transição a variável X_n é acrescida ou decrescida de exatamente uma molécula. Suponha que a probabilidade de que uma molécula mude de compartimento é proporcional ao número de moléculas no compartimento que a molécula estava. Construa um cadeia apropriada para esse processo, isto é, descreva em português a sequência de variáveis que representa o processo, defina o espaço de estados e forneça matriz de transição do processo. O modelo descrito acima é chamado de modelo de difusão de Ehrenfest.
- 11. \$\infty\$ Suponha que o fato de chover ou não hoje depende apenas nas condições do tempo dos 2 últimos dias. Isto é suponha que se choveu nos 2 últimos dias então choverá hoje com probabilidade 0,7; se choveu ontem, mas não antes-de-ontem, então choverá hoje com probabilidade 0,5; e se choveu antes-de-ontem, mas não ontem, então choverá hoje com probabilidade 0,4; e se não choveu nos 2 últimos dias então choverá hoje com probabilidade 0,2.
 - (a) Se o estado do processo no instante n depende apenas se choveu ou não no instante n-1, então o modelo acima **não** é uma cadeia de Markov. Explique.
 - (b) Podemos transformar o modelo acima em uma cadeia de Markov dizendo que o estado no instante n é determinado pela presença ou não de chuva nos 2 dias anteriores, adotando a seguinte nomenclatura.

```
estado 0 \Leftrightarrow se choveu hoje e ontem;
estado 1 \Leftrightarrow se choveu hoje mas não ontem;
estado 2 \Leftrightarrow se choveu ontem mas não hoje;
estado 3 \Leftrightarrow se não choveu hoje nem ontem.
```

Determine a matriz de probabilidades de transição para a cadeia de Markov com 4 estados definidos acima.

(c) Se não choveu ontem nem antes de ontem, qual a probabilidade que choverá amanhã?