Part - B Asynchronous Sequential circuit

- Asynchronous sequential arcuit also could event diven account does not have any clock to trigger change of state.
- -) state changes are triggered by change in input signal.

11-8 Analysis of asynchronous sequentied circuit.

- -> memory is the most important element in Sequentral accept.
- -> In synchronous system we use clock diven flip flops which we chanot use here
- This is done through feedback similar to basic latch portion of a flip flop.
- -) First we discuss how a two input Awp gate and two input WAND gate behave with output fed back to one of the input.

AND hoste:

of the two input AND gate with output fed back as one input is shown below

-> 7 -> Finite time after which is a gate reacts to us imput.

-) If x is current output obtained following togic relation & x 78 the feedback output we write

 $\chi = \times (x - 7)$.

-> The truth table is also called state table and each location in k map a state of asynchronous sequential cht.

The encircled states indicate stable condition. of the circuit.

 \rightarrow A=0 $\chi=0$ then $\chi=\chi\cdot A=0.0=0$

-) After time t = 7 x takes the value of X

 $\rightarrow A = 0$, $\pi = 0$ represents a stable state and is encircled.

 \rightarrow similarly x=0, A=1, \rightarrow stable state.

$$\sum_{i=1}^{\infty} A=0 \qquad X=1$$

Tor
$$A = 1$$
 there is nothby $x = 1$.

There is nothby $x = 1$.

There is nothby $x = 1$.

There is oscillation between there is oscillation.

$$P_{X=1} = 1 \qquad X = 1$$

$$X = 1 \qquad X = 0$$

11-0

Two input NAND Latch;

- In analysis of sequential circuit there is an important constraint to be followed.
- Though there can be more than one input feeding the axist, at a time only one input variable can change.
 - The other input can change only when the circuit is stabilized following the Previous input change.
 - If there are two or more output variables only one output variable can thank

- -) If X=x the circuit is stable
 - -) Arrows show the movements from transient states
 -) het us see now imput changes exfect the output.

Input AB charge from 00 to 01:

- -) The circuit moves from XAB=100, a stable position to XAB=101, which is unstable and then moves to XAB =001
 - -> This is a stable state that has the · o tupus
 - travoition in AB - There fore 00 -> 01 making 1-0 has output X rainsition.

Input AB Changes from 00 to 10:

- The circuit moves from xAB=100, con stable position to scAB=801.110.
- Therefore a 00 -> 10 transition in AB
 does not outer the value of output

 X=1
- -) AB cannot change from 00 to 11 as there will be a finite delay.
- -) Thus the transition path of AB is either 00-) 01-> 11 or 00-) 10-) 11

depending on which of A or B changes earlier.

input AB	state (XAB) travillon	xtuqtue
00 -> 01	100 - 101 - 001	170,00
00 -> 10	100 -> 110	
01 -> 00	001-000-100	$0 \rightarrow 1 \rightarrow 1$
01 -> 11	001-011	0 -> 0
19-)00	110 -) \$00	
10-)11	110 -> 111	()
11 -> 01	011-) 001 , 111-101-)	
11-)10	011-)010-101, 111-)11	0 0-1 -1 -1

- -> Refore we go for me design of congractions sequential incit we will dook at a few design related
 - -> There are non issues in sync cht.
 - Async cht responds to all the transient values and problems like oscillation, critical race, hazards can cause major problem.
 - of EX: cut with two inputs AB and two outputs x, Y.
 - -> Both the outputs are fedback to the imput side in the formi of x dy but with sufficent prop delays. Thus x, y cannot change simultaneously -) They change with time delays I, & Iz
 - respectively.

-> Truth table - 1 1 -map.

oscillation:

- -) xyAB = 0000 x=x y=Y.
- -) AB -> DO 10 10. 24/B = 0010 % X7 = 01
- -> This is a transient state because my + XY
 - -) After time To the circuit goes to 24 AB = 0010.
 - Thus are circuit oscillates between state.
 - a time Jap 12.
 - In englishmonous sequential circuits for any. Given input, transitions between two unstable states like these are to be avoided

- This occurs when an input Change tries to modify more than one output.
 - -) consider the stable state 27 AB = 0500.
 - -> AB changes to 01 cht moves to xy AB = 000) where XY=11
 - -> NOW depending which of I, and Iz is lower. Ty moves from oo to either 01 65 10.
 - -> ZI Lower: cut goes to scy AB = 1001. oc changes earlier ×4 = 11 .
 - -> 12-10mer = cut goes to xy AB =0101. .y changes cartier × y = 01.
 - Thus depending on prop delays in feedback path, the circuit settles at two different states, generally two different outputs.
 - such a situation is called critical race condition and is to be avoided in anyn seg cht:

- -) Stable state XYAB = 1110.
- -) If AB changes to 11, the CINEUIT goes to xyAB = 1111 where output X7=00.
 - -) Again depending on propogation delays 24 secomes either 01 or 10.
 - -) In both cases me final state is 0011 and output = 00. since
 - -> since the race condition does not accept the state it is accepted to two different state it is tuned as non-critical race.

- -) State + dynamic hazards causes med functioning of asyn seq chit.
 - -) In cixcuit with feedback even when these hazonds are adequately covered there can be another problem could hazard.
 - -> This occurs when change in input closs not reach one point of the circuit while from other part one output fed back to the import side

-> Essential hazard com be avoided 38 by adding delay, may be in the form of additional gates that does not change the logic level. Design of asynchronous sequential ent: The problem: - Two inputs AB, one output X 7 × your high if A=1 B makes transition 1->0. - x remains high as long as this A = 1 B=0 one maintained State 00 State transition diagram 10 -1 J 11 0 11/ J d/0

Primitive table:

- -) Weset step is to form state table from. State transition diagram.
- of In this table if all the rows representing a state has only one stable input combinations state for all possible input combinations 'it is turned as primitive table or primitive flow tuble.
 - -) Each vow in this table has one dont care state
 - The don't care state in each row comis to a condition which as his both input to change at the same has
 - -) This condition is not allowed in an asynchronous sequential logic.
 - -> The suffix like 1,2 are given (not compulsar)
 - -) This will be useful when we check state redundancy. AB

State	00	01	11	10	\times	-
	(a)	5	$\times I$	C -	0	
5	a	(b)	3	X2	0	A 8
	a	×3	ک	0	0	
4 1	Хч	b	d	e	0	20 120 E.
e (ā A	X5	7	(e)	1	

- c column c, e condution is not satisfied.

 e cannot be equal to a, b, c, d.
 - b column b with d not possible

 e, xz not possible
- \rightarrow b column \rightarrow b, \times 3 \rightarrow possible if \rightarrow $\times_2 = c$
 - (bc) -> Parlition group.
- -> a column -> a vita d -> mot pomble.
- \rightarrow a column. \rightarrow let $X_1 = d_1/X_2 = c_1/X_3 = b$
 - $d, x_1 \implies d, d \implies (ab)$ can be grouped $c, x_2 \implies c, c$
- \Rightarrow acolumn \Rightarrow Let $\times_1 = d$, $\times_2 = c$, $\times_3 = b$ $d, \times_1 \Rightarrow d, d \Rightarrow (bic) can be grouped$ $b, \times_3 \Rightarrow b, b \Rightarrow (bic)$

Partidon groups une

Reduced state table

1		AB			
	00	01	11	10	X
Q	(a)	(a)	4	6	0
d	Χų	a	(4)	2	0
e	a	X5	d	(e)	

State air griment.

- -> suppose {a,d,e} is represented by [00,01,10] it occurs twice for dre end transition.
- -) There arises a critical rece problem for of to 10 transition
- y we can solve this by changing the representation (00, 01, 11)
- -) Here e + a transition cause problem

-> Hence we introduce a domany variable & between e & a.

a:00 d:01 e:11 \$=10

Tel Q, feedback voniables p& 2.

Design eques & cht diagram.

- nue use k-map to get expression of state variables P&Q as function of input A,B&P&Q.
 - -) A,B -) input variables -> 00,01,11,10
 - -> p,2 -> states, a, d, e, d -> 00,01, 11,10
 - -) Inside know PU up the next states.
 - Jer P & equation for Q.

egn	for	P

Pa	3	01	11	10	
00	0	0	0	0	
01	X	O	0	T	
11		×	0		
10	0	×	X	X	

egn	for	Q

P2 AB	60	0	11	10
00	0	0	١	0
701	X	6	1	1
()	0	×	1	\\
OJ	0	×	×	×
	L		\ h	0

P2		0/8
00	\rightarrow	0
0 1	-9	0
10	\rightarrow	0
1)	١

$$X = PQ$$