Домашнє завдання №2

Зміст

1.	Щільність розподілу енергії	2
	Експериментальний тест №1	3
	Експериментальний тест №2	4
	Експериментальний тест №3	5
2.	Метод найменших квадратів	6
П	ерелік посилань	10

1. Щільність розподілу енергії

Нехай задано таку функціональну залежність значень енергії E та температури T :

$$E(T) = A + B \tanh\left(\frac{T - T_0}{C}\right),\tag{1.1}$$

де значення A, B, C та T_0 в рамках фізичної моделі є константами. Тепер нехай покладемо величину C як неперервно розподілену нормальну випадкову величну з математичним сподіванням μ_c та дисперсією σ_c :

$$C \sim N(\mu_c, \sigma_c^2),$$
 (1.2)

а отже, щільність розподілу введеної випадкової величини буде такою:

$$f_C(x) = \frac{1}{\sqrt{2\pi\sigma_c^2}} e^{-\frac{(x-\mu_c)^2}{2\sigma_c^2}}$$
 (1.3)

Відтак, енергія E матиме функціональну залежність (1.1) від випадкової величини C, де значення T, T_0 , A та B є фіксованими:

$$g(C) = A + B \tanh\left(\frac{T - T_0}{C}\right) \tag{1.4}$$

Таким чином, з'ясуємо безпосередній вигляд щільности $f_E(y)$ випадкової величини E як результату перетворень, заданих формулою (1.4):

$$E \sim f_E(y) \tag{1.5}$$

За формулою заміни змінних:

$$f_E(y) = f_C\left(g^{-1}(y)\right) \cdot \left| \frac{d}{dy}g^{-1}(y) \right|, \tag{1.6}$$

де обернена залежність $g^{-1}(y)$ задаватиметься виразом

$$g^{-1}(y) = \frac{2(T - T_0)}{\ln(B - A + y) - \ln(B + A - y)},$$
(1.7)

а Якобіан перетворення, відповідно, матиме вид

$$\frac{d}{dy}g^{-1}(y) = -2(T - T_0) \cdot \left(\ln \frac{B - A + y}{B + A - y}\right)^{-2} \cdot \frac{2B}{(B - A + y)(B + A - y)}$$
(1.8)

Тоді щільність розподілу $f_E(y)$ записуватиметься так:

$$f_E(y) = \frac{1}{\sqrt{2\pi\sigma_c^2}} \cdot \exp\left[-\frac{1}{2\sigma_c^2} \left(\frac{2(T - T_0)}{\ln(B - A + y) - \ln(B + A - y)} - \mu_c\right)^2\right] \times \left|\left(\ln\frac{B - A + y}{B + A - y}\right)^{-2} \cdot \frac{4B(T - T_0)}{(B - A + y)(B + A - y)}\right|$$
(1.9)

Експериментальний тест №1

Для перевірки коректності наведених викладок порівняємо гістограму значень функції g(C) симуляції $N=10\,000$ значень випадкової величини C та аналітичну криву щільності випадкової величини E (1.9). Першим тестом зафіксуємо значення параметрів, ігноручи фізичну інтерпретацію (Табл. 1). На Рис. 1 зображено відповідні «результати життєздатності» аналітичного розподілу.

Рис. 1: Порівняльний графік симуляції та аналітичного розподілу (Табл. 1)

μ_c	σ_c	A	В	T	T_0
0	5	1	1	2	1

Таблиця 1: Значення параметрів (без фізичного контексту)

Експериментальний тест №2

Наступним тестом спробуємо зафіксувати значення параметрів з огляду на фізичний зміст. До прикладу [1, розділ 3, Табл. 4], використовуючи значення $A=46.4\pm6.7,\,B=51.5\pm8.0,\,C=18.9\pm5.9$ та $T_0=-64.5\pm3.5$ було отримано довірчий інтервал $T_{85}=-46\pm20$ для відповідного значення енергії E=85. Спробуємо інтерпретувати цей приклад в рамках нашої задачі (Табл. 2). Отримані результати зображені на Рис. 2.

Рис. 2: Порівняльний графік симуляції та аналітичного розподілу (Табл. 2)

μ_c	σ_c	A	В	T	T_0
18.9	5.0	46.4	51.5	-46.0	-64.5

Таблиця 2: Значення параметрів (з огляду на приклад [1, розділ 3, Табл. 4])

Експериментальний тест №3

Ще один тест проведемо для дещо інших значень параметрів (Табл. 3), при цьому коефіцієнти A та B визначимо через U та L таким чином:

$$A = \frac{U+L}{2}, \ B = \frac{U-L}{2} \tag{1.10}$$

Крім того, зобразимо розподіл енергії для 12 різних точок температури T, рівновіддалено розподілених на проміжку від -90 до 0 (Puc. 3).

μ_c	σ_c	L	U	T_0
15	5	2	210	-50

Таблиця 3: Значення параметрів (моделювання Монте-Карло)

Рис. 3: Порівняльний графік симуляції та аналітичного розподілу (Табл. 3)

2. Метод найменших квадратів

Нехай задана така нелінійна регресійна модель:

$$E_{i} = A + B \tanh\left(\frac{T_{i} - T_{0}}{C}\right) + \varepsilon_{i}, \ i = \overline{1, n}, \tag{2.1}$$

де значення A, B та T_0 є фіксованими (Табл. 4), величина C є невідомим параметром моделі, а випадкова похибка ε_i має стандартний нормальний розподіл:

$$\varepsilon_i \sim N(0,1), \ i = \overline{1,n}$$
 (2.2)

Першим кроком згенеруємо вибірку даних $(T_i, E_i)_{i=\overline{1,n}}$, на основі якої наступним кроком оцінимо параметр C за методом найменших квадратів (МНК).

Для генерування даних параметр C покладемо як нормально розподілену випадкову величину з математичним сподіванням μ_c та дисперсією σ_c (Табл. 5):

$$C \sim N(\mu_c, \sigma_c^2)$$
 (2.3)

В рамках задачі фокус зосереджений навколо 12 точкових значень температури T, рівновіддалено розподілених на проміжку [-90,0]. Таким чином, організуємо генерування даних так: збиратимемо по k спостережень на кожну з 12 досліджуваних точок, тобто в результаті матимемо вибірку даних розміром n=12k. Такий підхід дозволить спостерігати за результатами МНК при збільшенні розміру вибірки.

A	В	T_0
106	104	-50

Таблиця 4: Значення параметрів регресійної моделі

Почнімо з випадку k=1, тобто одного спостереження на кожну з 12 рівновіддалених значень температури на проміжку [-90,0], тож розмір вибірки складатиме n=12.

μ_c	σ_c
15	5

Таблиця 5: Істинні параметри розподілу коефіцієнта C (2.3)

Імплементація МНК реалізована засобами мови R за допомогою бібліотеки gslnls. Короткі викладки програмного коду наведені у Лістингу 1.

Лістинг 1: Запуск МНК для нелінійної регресіїної моделі (2.1)

```
energy_dependency <- function(T, T0, A, B, C) {</pre>
       return(A + B * tanh((T - T0) / C))
2
  }
  data <- data.frame(</pre>
       T = as.vector(x_generated_points),
       y = as.vector(y_generated_points)
   # Run nonlinear least-squares model
10
   model_gslnls <- gsl_nls(</pre>
11
       fn = y ~ energy_dependency(
13
            T0 = input_parameters$T0,
14
            A = input_parameters$A,
15
            B = input_parameters$B,
16
17
18
       data = data,
       algorithm = "lmaccel",
       start = c(C = 1)
   )
22
```

В результаті отримаємо оцінку параметра C на основі наявних згенерованих даних. Для більш наочної картини проведемо серію з $N=10\,000$ повторних запусків МНК при фіксованому істинному значенні коефіцієнта C для щоразу інших згенерованих даних згідно моделі (2.1).

Зобразимо на Рис. 4 гістограму оцінок параметра C, а у Табл. 6 — вибіркове середнє та стандартне відхилення вибірки оцінок.

Істинне	Вибіркове Стандарт	
значення	середнє	відхилення
16.4534	16.4537	0.1690

Таблиця 6: Статистичні характеристики серії з $N=10\,000$ повторних запусків МНК, розмір вибірки при кожному запуску n=12

Своєю чергою, довірчий інтервал рівня довіри $\gamma = 0.95$ для математичного сподівання μ у припущенні нормальної розподіленості оцінок параметра C матиме вигляд (детальніше про побудову інтервалу — у Домашньому завданні $\mathbb{N} 1$):

$$\mu = 16.4537 \pm 0.0033 \tag{2.4}$$

One-shot sample size n = 12 Real value 1.50.016.0 16.4 16.8 17.2

Рис. 4: Гістограма серії з $N=10\,000$ повторних запусків МНК, розмір вибірки при кожному запуску n=12

C estimation value

Наостанок, проведемо аналогічні обчислення при розмірі вибірки в межах кожного з $N=10\,000$ запусків МНК як n=120 та n=1200, тобто при генеруванні k=10 та k=100 спостережень на кожну фокус-точку, відповідно. Усі графіки продемонстровано на Рис. 5, а порівняльні ознаки наведені у Табл. 7.

Розмір	Істинне	Вибіркове	Стандартне
вибірки	значення	середнє	відхилення
n = 12		16.4537	0.1690
n = 120	16.4534	16.4532	0.0533
n = 1200		16.4533	0.0172

Таблиця 7: Статистичні характеристики серії з $N=10\,000$ повторних запусків МНК для різних розмірів вибірки

Рис. 5: Гістограми серії з $N=10\,000$ повторних запусків МНК для різних розмірів вибірки

Перелік посилань

1. Algorithms to Estimate the Ductile to Brittle Transition Temperature, Upper Shelf Energy, and Their Uncertainties for Steel Using Charpy V-Notch Shear Area and Absorbed Energy Data / N. T. Switzner [та ін.] // Metals. — 2023. — Трав. — Т. 13, № 5. — С. 877. — ISSN 2075-4701. — DOI: 10.3390/met13050877. — URL: http://dx.doi.org/10.3390/met13050877.