TRABALHO MININET [C115-L1]

Matheus Henrique Martins

QUESTÃO 1

Considere uma topologia linear com oito hosts. Com uso de linha de comando padrão do Mininet, crie a topologia considerando o endereço MAC padronizado, larguras de banda bw de 6 Mbps e controlador do Mininet.

COMANDO: sudo mn --mac --topo=linear,8 --link=tc,bw=6

```
mininet@mininet-um:"$ sudo mn --mac --topo=linear,8 --link=tc,bw=6

*** Creating network

*** Adding controller

*** Adding bosts:

h 12 h3 h4 h5 h6 h7 h8

*** Adding switches:

s1 s2 s3 s4 s5 s6 s7 s8

*** Adding links:

(6.00Mbit) (6.00Mbit) (h1, s1) (6.00Mbit) (6.00Mbit) (h2, s2) (6.00Mbit) (6.00Mbit) (h3, s3) (6.00Mbit) (6.00Mbit) (h4, s4) (6.00Mbit) (6.00Mbit) (h5, s5) (6.00Mbit) (6.00Mbit) (h6, s6) (6.00Mbit) (6.00Mbit) (h7, s7) (6.00Mbit) (6.00Mbit) (h8, s8) (6.00Mbit) (6.00Mbit) (s2, s1) (6.00Mbit) (6.00Mbit) (s3, s2) (6.00Mbit) (6.00Mbit) (s4, s3) (6.00Mbit) (6.00Mbit) (s5, s4) (6.00Mbit) (6.00Mbit) (s6, s5) (6.00Mbit) (6.00Mbit) (s7, s6) (6.00Mbit) (6.00Mbit) (s8, s7)

*** Configuring hosts

h1 h2 h3 h4 h5 h6 h7 h8

*** Starting controller

c0

**** Starting 8 switches

s1 s2 s3 s4 s5 s6 s7 s8 ...(6.00Mbit) (6.00Mbit) (6.00Mb
```

b) Inspecione informações das interfaces, endereços MAC, IP e portas através de linhas de comando.

HOST 1

```
mininet> h1 ifconfig -a
h1-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 10.0.0.1 netmask 255.0.0.0 broadcast 10.255.255.255
    ether 00:00:00:00:00:00:01 txqueuelen 1000 (Ethernet)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
    inet 127.0.0.1 netmask 255.0.0.0
    loop txqueuelen 1000 (Local Loopback)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

HOST 2

```
mininet> h2 ifconfig -a
h2-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 10.0.0.2 netmask 255.0.0.0 broadcast 10.255.255.255
    ether 00:00:00:00:00:02 txqueuelen 1000 (Ethernet)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
    inet 127.0.0.1 netmask 255.0.0.0
    loop txqueuelen 1000 (Local Loopback)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX packets 0 bytes 0 (0.0 B)
    TX packets 0 bytes 0 (0.0 B)
```

HOST 3

```
mininet> h3 ifconfig -a
h3-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.3 netmask 255.0.0.0 broadcast 10.255.255.255
ether 00:00:00:00:00:00:03 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
loop txqueuelen 1000 (Local Loopback)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

HOST 4

```
mininet> h4 ifconfig -a
h4-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 10.0.0.4 netmask 255.0.0.0 broadcast 10.255.255.255
    ether 00:00:00:00:00:00 txqueuelen 1000 (Ethernet)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
    inet 127.0.0.1 netmask 255.0.0.0
    loop txqueuelen 1000 (Local Loopback)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

HOST 5

```
mininet> h5 ifcomfig -a
h5-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 10.0.0.5 netmask 255.0.0.0 broadcast 10.255.255.255
    ether 00:00:00:00:00:05 txqueuelen 1000 (Ethernet)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
    inet 127.0.0.1 netmask 255.0.0.0
    loop txqueuelen 1000 (Local Loopback)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

HOST 6

```
mininet> h6 ifconfig -a
h6-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.6 netmask 255.0.0.0 broadcast 10.255.255.255
ether 00:00:00:00:00:00:00 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
loop txqueuelen 1000 (Local Loopback)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

HOST 7

```
mininet> h7 ifconfig -a
h7-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 10.0.0.7 netmask 255.0.0.0 broadcast 10.255.255.255
    ether 00:00:00:00:00:07 txqueuelen 1000 (Ethernet)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
    inet 127.0.0.1 netmask 255.0.0.0
    loop txqueuelen 1000 (Local Loopback)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

HOST 8

```
mininet> h8 ifconfig -a
h8-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 10.0.0.8 netmask 255.0.0.0 broadcast 10.255.255.255
    ether 00:00:00:00:00:08 txqueuelen 1000 (Ethernet)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
    inet 127.0.0.1 netmask 255.0.0.0
    loop txqueuelen 1000 (Local Loopback)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Informações Gerais

```
mininet> net
h1 h1-eth0:s1-eth1
   h2 h2-eth0:s2-eth1
   h3 h3-eth0:s3-eth1
   h4 h4-eth0:s4-eth1
   h5 h5-eth0:s5-eth1
   h6 h6-eth0:s6-eth1
h7 h7-eth0:s7-eth1
   h8 h8-eth0:s8-eth1
               NB-eth0:s8-eth1
lo: s1-eth1:h1-eth0 s1-eth2:s2-eth2
lo: s2-eth1:h2-eth0 s2-eth2:s1-eth2 s2-eth3:s3-eth2
lo: s3-eth1:h3-eth0 s3-eth2:s2-eth3 s3-eth3:s4-eth2
lo: s4-eth1:h4-eth0 s4-eth2:s3-eth3 s4-eth3:s5-eth2
lo: s5-eth1:h5-eth0 s5-eth2:s4-eth3 s5-eth3:s6-eth2
lo: s6-eth1:h6-eth0 s6-eth2:s5-eth3 s6-eth3:s7-eth2
lo: s7-eth1:h7-eth0 s7-eth2:s6-eth3 s7-eth3:s8-eth2
lo: s8-eth1:h8-eth0 s8-eth2:s7-eth3
     s2
    s3
    s6
    82
                 lo:
                                          s8-eth1:h8-eth0 s8-eth2:s7-eth3
Mininet> dump

(Host h1: h1-eth0:10.0.0.1 pid=852>
(Host h2: h2-eth0:10.0.0.2 pid=856>
(Host h3: h3-eth0:10.0.0.3 pid=858>
(Host h4: h4-eth0:10.0.0.4 pid=860>
(Host h5: h5-eth0:10.0.0.5 pid=862>
(Host h6: h6-eth0:10.0.0.7 pid=862>
(Host h7: h7-eth0:10.0.0.7 pid=866>
(Host h8: h8-eth0:10.0.0.8 pid=868>
(OVSSwitch s1: lo:127.0.0.1,s1-eth1:None,s1-eth2:None pid=873>
(OVSSwitch s2: lo:127.0.0.1,s2-eth1:None,s2-eth2:None,s2-eth3:None pid=876>
(OVSSwitch s3: lo:127.0.0.1,s3-eth1:None,s3-eth2:None,s3-eth3:None pid=879>
(OVSSwitch s4: lo:127.0.0.1,s3-eth1:None,s4-eth2:None,s4-eth3:None pid=882>
(OVSSwitch s5: lo:127.0.0.1,s5-eth1:None,s5-eth2:None,s5-eth3:None pid=885>
(OVSSwitch s6: lo:127.0.0.1,s6-eth1:None,s6-eth2:None,s6-eth3:None pid=888>
(OVSSwitch s6: lo:127.0.0.1,s6-eth1:None,s6-eth2:None,s7-eth3:None pid=889>
(OVSSwitch s8: lo:127.0.0.1,s8-eth1:None,s8-eth2:None,s7-eth3:None pid=891>
(OVSSwitch s8: lo:127.0.0.1,s8-eth1:None,s8-eth2:None pid=894>
(Controller c0: 127.0.0.1:6653 pid=845>
mininet>
    mininet> dump
        ininet>
```

c) Crie um desenho ilustrativo da topologia com todas as informações obtidas no item anterior.

d) Execute testes de ping entre os diferentes nós, mostre os pacotes chegando nos nós com uso do comando tcpdump.

ÎNFORMAÇÕES DETALHADAS SOBRE AS INTERFACES DE REDE DO SISTEMA:

COMANDO: IFCONFIG -A

```
mininet@mininet-um: fifconfig -a
eth0: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
inet 10.0.2.15 netmask 255.255.05 broadcast 10.0.2.255
ether 08:00:27:1c:hf:e0 txqueuelen 1000 (Ethernet)
RX packets 408 bytes 47691 (47.6 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 406 bytes 36009 (36.0 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
eth1: flags=4098<BROADCAST, MULTICAST> mtu 1500
ether 08:00:27:53:73:b5 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP, LOOPBACK, RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
loop txqueuelen 1000 (Local Loopback)
RX packets 7414 bytes 426508 (426.5 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 7414 bytes 426508 (426.5 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

mininet@mininet-um: $\frac{1}{2}$
```

A INTERFACE ETH1 NÃO TEM IP ATRIBUÍDO. PARA ATRIBUIR UM IP A ESTÁ INTERFACE, DIGITE O SEGUINTE COMANDO: SUDO DHCLIENT ETH1

Configuração do Software PuTTY

- Inserindo o endereço IP

- Habilitando o comando Enable X11 forwarding no PuTTY

Execução do Software PuTTY:

```
mininet@mininet-vm: ~
🛂 login as: mininet
mininet@192.168.56.101's password:
Welcome to Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0-42-generic x86 64)
 * Documentation: https://help.ubuntu.com
 * Management:
                  https://landscape.canonical.com
 * Support:
                  https://ubuntu.com/advantage
New release '22.04.2 LTS' available.
Run 'do-release-upgrade' to upgrade to it.
Last login: Mon Jun 12 11:03:17 2023 from 192.168.56.1
mininet@mininet-vm:~$ sudo -E mn --mac --topo=linear,8 --link=tc,bw=6
*** Creating network
*** Adding controller
*** Adding hosts:
hl h2 h3 h4 h5 h6 h7 h8
*** Adding switches:
sl s2 s3 s4 s5 s6 s7 s8
*** Adding links:
(6.00Mbit) (6.00Mbit) (h1, s1) (6.00Mbit) (6.00Mbit) (h2, s2) (6.00Mbit) (6.00Mb
it) (h3, s3) (6.00Mbit) (6.00Mbit) (h4, s4) (6.00Mbit) (6.00Mbit) (h5, s5) (6.00
Mbit) (6.00Mbit) (h6, s6) (6.00Mbit) (6.00Mbit) (h7, s7) (6.00Mbit) (6.00Mbit) (
h8, s8) (6.00Mbit) (6.00Mbit) (s2, s1) (6.00Mbit) (6.00Mbit) (s3, s2) (6.00Mbit)
(6.00Mbit) (s4, s3) (6.00Mbit) (6.00Mbit) (s5, s4) (6.00Mbit) (6.00Mbit) (s6, s
5) (6.00Mbit) (6.00Mbit) (s7, s6) (6.00Mbit) (6.00Mbit) (s8, s7)
*** Configuring hosts
hl h2 h3 h4 h5 h6 h7 h8
*** Starting controller
*** Starting 8 switches
sl s2 s3 s4 s5 s6 s7 s8 ...(6.00Mbit) (6.00Mbit) (6.00Mbit) (6.00Mbit) (6.00Mbit)
) (6.00Mbit) (6.00Mbit) (6.00Mbit) (6.00Mbit) (6.00Mbit) (6.00Mbit) (6.00Mbit) (
6.00Mbit) (6.00Mbit) (6.00Mbit) (6.00Mbit) (6.00Mbit) (6.00Mbit) (6.00Mbit) (6.00Mbit)
OMbit) (6.00Mbit) (6.00Mbit)
*** Starting CLI:
mininet>
```

Execução do Software Xming:

Com tudo configurado e em execução, podemos fazer os testes de ping:

```
X "Node: h1"
root@mininet-vm:~# for i in {2..8}; do ping -c 4 10.0.0.$i; done PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=5.39 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.405 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.069 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=0.068 ms
--- 10.0.0.2 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3031ms
rtt min/avg/max/mdev = 0.068/1.483/5.392/2.260 ms
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp_seq=1 ttl=64 time=3.70 ms
64 bytes from 10.0.0.3: icmp_seq=2 ttl=64 time=0.552 ms
64 bytes from 10.0.0.3: icmp_seq=3 ttl=64 time=0.073 ms
64 bytes from 10.0.0.3: icmp_seq=4 ttl=64 time=0.048 ms
--- 10.0.0.3 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3032ms
rtt min/avg/max/mdev = 0.048/1.093/3.700/1.518 ms
PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.
64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=4.02 ms
64 bytes from 10.0.0.4: icmp_seq=2 ttl=64 time=0.309 ms
64 bytes from 10.0.0.4: icmp_seq=3 ttl=64 time=0.087 ms
64 bytes from 10.0.0.4: icmp_seq=4 ttl=64 time=0.078 ms
--- 10.0.0.4 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3037ms
rtt min/avg/max/mdev = 0.078/1.122/4.017/1.673 ms
PING 10.0.0.5 (10.0.0.5) 56(84) bytes of data.
64 bytes from 10.0.0.5: icmp_seq=1 ttl=64 time=4.76 ms
64 bytes from 10.0.0.5; icmp_seq=2 ttl=64 time=0.493 ms
64 bytes from 10.0.0.5: icmp_seq=3 ttl=64 time=0.056 ms
64 bytes from 10.0.0.5: icmp_seq=4 ttl=64 time=0.073 ms
--- 10.0.0.5 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3032ms
rtt min/avg/max/mdev = 0.056/1.346/4.764/1.980 ms
PING 10.0.0.6 (10.0.0.6) 56(84) bytes of data.
64 bytes from 10.0.0.6; icmp_seq=1 ttl=64 time=9.79 ms
64 bytes from 10.0.0.6: icmp_seq=2 ttl=64 time=0.394 ms
64 bytes from 10.0.0.6: icmp_seq=3 ttl=64 time=0.063 ms
64 bytes from 10.0.0.6: icmp_seq=4 ttl=64 time=0.065 ms
--- 10.0.0.6 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3033ms
rtt min/avg/max/mdev = 0.063/2.578/9.790/4.166 ms
PING 10.0.0.7 (10.0.0.7) 56(84) bytes of data.
64 bytes from 10.0.0.7: icmp_seq=1 ttl=64 time=7.62 ms
64 bytes from 10.0.0.7; icmp_seq=2 ttl=64 time=0.433 ms
64 bytes from 10.0.0.7: icmp_seq=3 ttl=64 time=0.079 ms
64 bytes from 10.0.0.7: icmp_seq=4 ttl=64 time=0.060 ms
--- 10.0.0.7 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3034ms
rtt min/avg/max/mdev = 0.060/2.047/7.618/3.219 ms
PING 10.0.0.8 (10.0.0.8) 56(84) bytes of data.
64 bytes from 10.0.0.8: icmp_seq=1 ttl=64 time=6.32 ms
64 bytes from 10.0.0.8: icmp_seq=2 ttl=64 time=0.438 ms
64 bytes from 10.0.0.8: icmp_seq=3 ttl=64 time=0.096 ms
64 bytes from 10.0.0.8: icmp_seq=4 ttl=64 time=0.074 ms
--- 10.0.0.8 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3035ms
rtt min/avg/max/mdev = 0.074/1.731/6.317/2.651 ms
```

e) Especifique que o host 1 na porta 5555 vai ser um servidor TCP e o host 2 um cliente e execute testes de iperf, considere um relatório por segundo com teste de 20 segundos. Faça os testes para larguras de banda bw de 1, 5, 20 e 25 Mbps.

BANDA 1 MBPS

BANDA 5 MBPS

BANDA 20 MBPS

BANDA 25 MBPS

QUESTÃO 2

Crie um código Python para a topologia customizada abaixo:

CÓDIGO PYTHON

https://github.com/Matheuwss/C115

```
topo-8hosts-3switches.py
     from mininet.topo import Topo
      class MyTopo( Topo ):
          "8 hosts and 3 switches - custom topology"
         def __init__( self ):
              "Create custom topo."
              Topo.__init__( self )
             h1 = self.addHost('h1')
             h2 = self.addHost('h2')
             h3 = self.addHost('h3')
             h4 = self.addHost('h4')
             h5 = self.addHost('h5')
             h6 = self.addHost('h6')
             h7 = self.addHost('h7')
             h8 = self.addHost('h8')
             s1 = self.addSwitch('s1')
              s2 = self.addSwitch('s2')
              s3 = self.addSwitch('s3')
              self.addLink(s1, s2)
              self.addLink(s1, s3)
              self.addLink(s1, h7)
              self.addLink(s1, h8)
              self.addLink(s2, h1)
              self.addLink(s2, h2)
              self.addLink(s2, h3)
              self.addLink(s3, h4)
              self.addLink(s3, h5)
              self.addLink(s3, h6)
      topos = { 'mytopo': ( lambda: MyTopo() ) }
```

a) Com uso de linha de comando padrão do Mininet, crie a topologia customizada considerando o endereço MAC padronizado e controlador manual.

```
mininet@mininet-vm: ~/C115
mininet@mininet-vm:~$ ls
Cll5 mininet oflops oftest
mininet@mininet-vm:~$ cd Cll5
mininet@mininet-vm:~/Cl15$ sudo -E mn --custom topo-8hosts-3switches.py --topo mytopo --mac
*** Creating network
*** Adding controller
*** Adding hosts:
hl h2 h3 h4 h5 h6 h7 h8
*** Adding switches:
sl s2 s3
*** Adding links:
*** Configuring hosts
hl h2 h3 h4 h5 h6 h7 h8
*** Starting controller
*** Starting 3 switches
*** Starting CLI:
mininet>
mininet>
```

b) Inspecione informações das interfaces, endereços MAC, IP e portas através de linhas de comando.

HOSTS 1, 2, 3

```
mininet> hl ifconfig -a
hl-eth0: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
       inet 10.0.0.1 netmask 255.0.0.0 broadcast 10.255.255.255
       ether 00:00:00:00:00:01 txqueuelen 1000 (Ethernet)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
       inet 127.0.0.1 netmask 255.0.0.0
       loop txqueuelen 1000 (Local Loopback)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
mininet> h2 ifconfig -a
h2-eth0: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
       inet 10.0.0.2 netmask 255.0.0.0 broadcast 10.255.255.255
       ether 00:00:00:00:00:02 txqueuelen 1000 (Ethernet)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
       inet 127.0.0.1 netmask 255.0.0.0
       loop txqueuelen 1000 (Local Loopback)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
mininet> h3 ifconfig -a
h3-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
       inet 10.0.0.3 netmask 255.0.0.0 broadcast 10.255.255.255
       ether 00:00:00:00:00:03 txqueuelen 1000 (Ethernet)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
       inet 127.0.0.1 netmask 255.0.0.0
       loop txqueuelen 1000 (Local Loopback)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

```
mininet> h4 ifconfig -a
h4-eth0: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
       inet 10.0.0.4 netmask 255.0.0.0 broadcast 10.255.255.255
       ether 00:00:00:00:00:04 txqueuelen 1000 (Ethernet)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
        inet 127.0.0.1 netmask 255.0.0.0
       loop txqueuelen 1000 (Local Loopback)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
mininet> h5 ifconfig -a
h5-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
       inet 10.0.0.5 netmask 255.0.0.0 broadcast 10.255.255.255
       ether 00:00:00:00:00:05 txqueuelen 1000 (Ethernet)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
       inet 127.0.0.1 netmask 255.0.0.0
       loop txqueuelen 1000 (Local Loopback)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
mininet> h6 ifconfig -a
h6-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
       inet 10.0.0.6 netmask 255.0.0.0 broadcast 10.255.255.255
       ether 00:00:00:00:00:06 txqueuelen 1000 (Ethernet)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
       inet 127.0.0.1 netmask 255.0.0.0
       loop txqueuelen 1000 (Local Loopback)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

```
mininet> h7 ifconfig -a
h7-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
       inet 10.0.0.7 netmask 255.0.0.0 broadcast 10.255.255.255
       ether 00:00:00:00:00:07 txqueuelen 1000 (Ethernet)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
       inet 127.0.0.1 netmask 255.0.0.0
       loop txqueuelen 1000 (Local Loopback)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
mininet> h8 ifconfig -a
h8-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
       inet 10.0.0.8 netmask 255.0.0.0 broadcast 10.255.255.255
        ether 00:00:00:00:00:08 txqueuelen 1000 (Ethernet)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP, LOOPBACK, RUNNING> mtu 65536
        inet 127.0.0.1 netmask 255.0.0.0
       loop txqueuelen 1000 (Local Loopback)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Informações Gerais

```
available nodes are:
c0 hl h2 h3 h4 h5 h6 h7 h8 sl s2 s3
mininet> net
hl hl-eth0:s2-eth2
h3 h3-eth0:s2-eth4
h4 h4-eth0:s3-eth2
h5 h5-eth0:s3-eth3
h6 h6-eth0:s3-eth4
h7 h7-eth0:s1-eth3
h8 h8-eth0:s1-eth4
s2 lo: s2-eth1:s1-eth1 s2-eth2:h1-eth0 s2-eth3:h2-eth0 s2-eth4:h3-eth0
s3 lo: s3-eth1:s1-eth2 s3-eth2:h4-eth0 s3-eth3:h5-eth0 s3-eth4:h6-eth0
mininet> dump
<Host h1: h1-eth0:10.0.0.1 pid=1251>
(Host h2: h2-eth0:10.0.0.2 pid=1255>
<Host h3: h3-eth0:10.0.0.3 pid=1257>
<Host h4: h4-eth0:10.0.0.4 pid=1259>
<Host h5: h5-eth0:10.0.0.5 pid=1261>
<Host h7: h7-eth0:10.0.0.7 pid=1265>
<Host h8: h8-eth0:10.0.0.8 pid=1267>
<OVSSwitch sl: lo:127.0.0.1,sl-ethl:None,sl-eth2:None,sl-eth3:None,sl-eth4:None pid=1272>
<OVSSwitch s2: lo:127.0.0.1,s2-ethl:None,s2-eth2:None,s2-eth3:None,s2-eth4:None pid=1275>
<OVSSwitch s3: lo:127.0.0.1,s3-ethl:None,s3-eth2:None,s3-eth3:None,s3-eth4:None pid=1278>
Controller c0: 127.0.0.1:6653 pid=1244>
```

c) Crie um desenho ilustrativo da topologia com todas as informações obtidas no item anterior.

d) Faça testes de ping considerando os switches normais.

Linhas de comando:

xterm s1 s2 s3

S1: sudo ovs-ofctl add-flow s1 action=normal

S2: sudo ovs-ofctl add-flow s2 action=normal

S3: sudo ovs-ofctl add-flow s3 action=normal

```
minnet@minnet.miniert.mirct.lli$ audo -F mn --custom topo-8hosts-3awitches.py --topo mytopo --controller=none --made minnet@minnet.mirct.lli$ audo or-foll add-flow s1 action=normal root@minnet-wir.*/Lli$ audo ovs-foll add-flow s2 action=normal root@minnet-wir.*/Lli$ audo ovs-foll add-flow s2 action=normal root@minnet-wir.*/Lli$ audo ovs-foll add-flow s2 action=normal root@minnet-wir.*/Lli$ audo ovs-foll add-flow s3 action=normal root@minnet-wir.*/Lli$ ovs-foll add-flow s3 action=normal root@minnet-wir.*/Lli$ audo ovs-foll add-flow s3 action=normal root@minnet-wir.*/Lli$ ovs-foll add-flow s3 a
```

Teste de ping

Comando: pingall

```
mininet> pingall

*** Ping: testing ping reachability
hl -> h2 h3 h4 h5 h6 h7 h8
h2 -> h1 h3 h4 h5 h6 h7 h8
h3 -> h1 h2 h4 h5 h6 h7 h8
h4 -> h1 h2 h3 h5 h6 h7 h8
h5 -> h1 h2 h3 h5 h6 h7 h8
h5 -> h1 h2 h3 h4 h6 h7 h8
h6 -> h1 h2 h3 h4 h6 h7 h8
h7 -> h1 h2 h3 h4 h5 h6 h8
h8 -> h1 h2 h3 h4 h5 h6 h8
h8 -> h1 h2 h3 h4 h5 h6 h7

*** Results: 0% dropped (56/56 received)
mininet>
```

e) Apague as regras anteriores e crie regras baseadas em endereços MAC para alguns nós. (Deve-se comunicar hosts dos diferentes switches).

Criando regras para os switches s1, s2 e s3

Usando 3 Switches (h1 – h4)

f) Faça testes de ping para demonstrar que as regras foram bem implementadas.

Usando 3 Switches (h1 – h4)

Linhas de comando:

xterm h1 h4

H1: ping 10.0.0.4

H4: tcpdump -XX -n -i h4-eth0

