

marco.stenta@syngenta.com

syngenta

CATLAS: Catalyst Atlas

Marco Stenta (Syngenta Crop Protection) on behalf of the

Data 4 Synthesis Project team and Computer-Aided Synthesis Team

12.09.2024 Classification: PUBLIC

Lean on Open-Source Technology and support OM handling

Mrv2115 10102311132D

0 0 0 0 0 999 V3000

M V30 BEGIN CTAB

M V30 COUNTS 4 2 0 0 0

M V30 BEGIN ATOM

M V30 1 C -39.4583 13.4167 0 0

M V30 2 C -38.1247 14.1867 0 0

M V30 <mark>3 *</mark> -38.7915 13.8017 0 0

M V30 4 Pd -37.9477 11.8652 0 0

M V30 END ATOM

M V30 BEGIN BOND

M V30 1 2 1 2

M V30 2 9 3 4 ENDPTS=(2 1 2) ATTACH=ALL

M V30 END BOND

M V30 END CTAB

M END

RDKit 2023.3

David Cosgrove CozChemlx

Greg Landrum

Oxidation state calculation
Support for multicenter bonds (molv3000)
Extended support for dative bonds across the periodic table
Metal disconnection algorithm

Extend RDKit Support to organometallic structures

Input Structure: consistency and correctness over familiarity

Covalent

Na-CI

The charge on M depends of the overall charge: need to specify it or use rules

Disconnected

Na⁺ Cl[−]

Pd CF CF CF CF

[CI-].[CI-].[CI-].[Pd]

CH₃ Mg²⁺ Br

- Separate the requirements for inputting a structure to those of outputting them
 - Input consistency
 - Output: freedom (depiction)

OrganoMetal Data Model

Automatic Annotation from Chemical Structure

```
# read in a molecule from a string using RDKit
rdmol = rdmol_from_string(input_string=molblock, inp_fmt="molblock")

# inspect the molecular structure using the Inspector class
# this will return a StructuralAnalysis instance
inspector = Inspector(rdmol=rdmol)
structural_analysis = inspector.structural_analysis
structural_assessment = inspector.structural_assessment

# construct the organometallic molecule using the Constructor class
constructor = Constructor(structural_analysis=structural_analysis)
organometal = constructor.construct()
```

pprint.pprint(organometal.metal_centers[0].metal.labels)
pprint.pprint(organometal.metal_centers[1].metal.labels)

```
{'atomic_name': ['Platinum'],
   'availability_threat': ['3__rising_threat'],
   'electron_configuration_string': ['[Xe]6s1 4f14 5d9'],
   'metal_group_block': ['transition_metal'],
   'possible_oxidation_states_string': ['+2 +4']}
{'atomic_name': ['Potassium'],
   'availability_threat': ['1__no_threat'],
   'electron_configuration_string': ['[Ar]4s1'],
   'metal_group_block': ['alkali_metal'],
   'possible_oxidation_states_string': ['+1']}
```



```
"fragment idx": 2,
          "formal_charge": 0,
          "dentic bonds": [],
          "haptic bonds": [
               "dummy atom idx": 4,
               "donors": [
                    "atom idx": 2,
                    "fragment idx": 2,
                    "fragment atom idx": 0,
                    "atomic_symbol": "C",
                    "atomic number": 6,
                    "smarts string": "C",
                    "ox no": -2,
                    "formal charge": 0,
                    "uid": "99914b932bd37a50b983c5e7c90ae93b'
                    "atom idx": 3,
                    "fragment idx": 2,
                    "fragment_atom_idx": 1,
                    "atomic symbol": "C",
                    "atomic number": 6,
                    "smarts string": "C",
                    "ox no": -2,
                    "formal_charge": 0,
                    "uid": "99914b932bd37a50b983c5e7c90ae93b'
                "uid": "99914b932bd37a50b983c5e7c90ae93b"
          "labels": {},
           "uid": "99914b932bd37a50b983c5e7c90ae93b"
```


Persistence: Register/Retrieve

Element properties

From the Periodic Table

- Atomic Number (z), Atomic Symbol, Atomic Mass
- Chemical Group Block
- Electronic Configuration
- Possible Oxidation states

Metal Labels

Provided by Users

- Natural Abundance/Scarcity
- Environmental/Toxicological risks

• ...

Metal properties

In the context of a specific complex

- Charge / Oxidation State
- Coordination number/geometry
- Geometric descriptors 2D>3D

Ligand Structure

- Substructure (ex by SMARTS patterns)
- Similarity (ex by SMILES query)
- Equivalence (ex by usign RDKit/NexMove MolHashes)
- Chirality (central, axial, partially unspecified, etc)

Ligand Labels

- · Common names, synonyms
- Catalog names (ex CASNO)
- User-defined labels and tags

Ligand Binding Properties

In the context of a specific complex

- Denticity (number and nature of "donor" atoms)
- Hapticity (number and nature of "donor" atoms)

Acknowledgements

Edouard Godineau Process Chemist S&T Fellow

Serge Parel
Platform Manager &
Technical Lead

Guillaume Berthon
Change Lead Digitization
of Chemical Synthesis

Marco Stenta
Computational Chemist
S&T Fellow

Bringing plant potential to life