In Search of the Perfect Fluid

Thomas Schaefer, North Carolina State University

See T. Schäfer, D. Teaney, "Perfect Fluidity" [arXiv:0904.3107]

The bottom-line

Remarkably, the best fluids that have been observed are the coldest and the hottest fluid ever created in the laboratory, cold atomic gases $(10^{-6} \rm K)$ and the quark gluon plasma $(10^{12} \rm K)$ at RHIC.

Both of these fluids come close to a bound on the shear viscosity that was first proposed based on calculations in string theory, involving nonequilibrium evolution of back holes in 5 (and more) dimensions.

Measures of Perfection

Viscosity determines shear stress ("friction") in fluid flow

$$F = A \eta \frac{\partial v_x}{\partial y}$$

Dimensionless measure of shear stress: Reynolds number

- $[\eta/n] = \hbar$
- Relativistic systems $Re = \frac{s}{\eta} \times \tau T$

Other sources of dissipation (thermal conductivity, bulk viscosity, ...) vanish for certain fluids, but shear viscosity is always non-zero.

There are reasons to believe that η is bounded from below by a constant times $\hbar s/k_B$. In a large class of theories $\eta/s \geq \hbar/(4\pi k_B)$.

A fluid that saturates the bound is a "perfect fluid".

Fluids: Gases, Liquids, Plasmas, ...

Hydrodynamics: Long-wavelength, low-frequency dynamics of conserved or spontaneously broken symmetry variables.

 $\tau \sim \tau_{micro}$

$$\tau \sim \lambda^{-1}$$

Example: Simple Fluid

Conservation laws: mass, energy, momentum

$$\frac{\partial \rho}{\partial t} + \vec{\nabla}(\rho \vec{v}) = 0$$

$$\frac{\partial \epsilon}{\partial t} + \vec{\nabla} \vec{\jmath}^{\,\epsilon} = 0$$

$$\frac{\partial}{\partial t}(\rho v_i) + \frac{\partial}{\partial x_j} \Pi_{ij} = 0$$

[Euler/Navier-Stokes equation]

Constitutive relations: Energy momentum tensor

$$\Pi_{ij} = P\delta_{ij} + \rho v_i v_j + \eta \left(\partial_i v_j + \partial_j v_i - \frac{2}{3} \delta_{ij} \partial_k v_k \right) + O(\partial^2)$$

reactive

dissipative

2nd order

Kinetic Theory

Kinetic theory: conserved quantities carried by quasi-particles

$$\frac{\partial f_p}{\partial t} + \vec{v} \cdot \vec{\nabla}_x f_p + \vec{F} \cdot \vec{\nabla}_p f_p = C[f_p]$$

$$\eta \sim \frac{1}{3} n \, \bar{p} \, l_{mfp}$$

Normalize to density. Uncertainty relation suggests

$$\frac{\eta}{n} \sim \bar{p} \, l_{mfp} \ge \hbar$$

Also: $s \sim k_B n$ and $\eta/s \geq \hbar/k_B$

Validity of kinetic theory as $\bar{p} \, l_{mfp} \sim \hbar$?

Effective Theories for Fluids (Here: Weak Coupling QCD)

$$\mathcal{L} = \bar{q}_f (iD\!\!/ - m_f) q_f - \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}$$

$$\frac{\partial f_p}{\partial t} + \vec{v} \cdot \vec{\nabla}_x f_p = C[f_p] \qquad (\omega < T)$$

$$\frac{\partial}{\partial t}(\rho v_i) + \frac{\partial}{\partial x_j} \Pi_{ij} = 0 \qquad (\omega < g^4 T)$$

Holographic Duals: Transport Properties

Thermal (conformal) field theory $\equiv AdS_5$ black hole

CFT entropy

shear viscosity

 \Leftrightarrow

Hawking-Bekenstein entropy

 \sim area of event horizon

Graviton absorption cross section

 \sim area of event horizon

$$T_{\mu\nu} = \frac{\delta S}{\delta g_{\mu\nu}} \qquad g_{\mu\nu} = g_{\mu\nu}^0 + \gamma_{\mu\nu}$$

$$g_{\mu\nu} = g_{\mu\nu}^0 + \gamma_{\mu\nu}$$

Holographic Duals: Transport Properties

Thermal (conformal) field theory $\equiv AdS_5$ black hole

CFT entropy

 \Leftrightarrow

shear viscosity

 \Leftrightarrow

Strong coupling limit

$$\frac{\eta}{s} = \frac{\hbar}{4\pi k_B}$$

Son and Starinets (2001)

Hawking-Bekenstein entropy

 \sim area of event horizon Graviton absorption cross section

 \sim area of event horizon

Strong coupling limit universal? Provides lower bound for all theories?

Effective Theories (Strong coupling)

$$\mathcal{L} = \bar{\lambda}(i\sigma \cdot D)\lambda - \frac{1}{4}G^a_{\mu\nu}G^a_{\mu\nu} + \dots \iff S = \frac{1}{2\kappa_5^2} \int d^5x \sqrt{-g}\mathcal{R} + \dots$$

$$\frac{\partial}{\partial t}(\rho v_i) + \frac{\partial}{\partial x_j} \Pi_{ij} = 0 \ (\omega < T)$$

Kinetics vs No-Kinetics

Spectral function $\rho(\omega) = \text{Im}G_R(\omega,0)$ associated with T_{xy}

weak coupling QCD

strong coupling AdS/CFT

transport peak vs no transport peak

Perfect Fluids: How to be a contender?

Bound is quantum mechanical

need quantum fluids

Bound is incompatible with weak coupling and kinetic theory

strong interactions, no quasi-particles

Model system has conformal invariance (essential?)

(Almost) scale invariant systems

Perfect Fluids: The contenders

QGP (T=180 MeV)

Liquid Helium (T=0.1 meV)

Perfect Fluids: The contenders

$$\mathsf{QGP}\ \eta = 5\cdot 10^{11} Pa \cdot s$$

Trapped Atoms

$$\eta = 1.7 \cdot 10^{-15} Pa \cdot s$$

Liquid Helium

$$\eta = 1.7 \cdot 10^{-6} Pa \cdot s$$

Consider ratios

$$\eta/s$$

Kinetic Theory: Quasiparticles

low temperature

high temperature

unitary gas

phonons

atoms

<u>helium</u>

phonons, rotons

atoms

QCD

pions

quarks, gluons

Theory Summary

I. Experiment (Liquid Helium)

Fig. 1. The viscosity of liquid helium II measured by flow through a $10^{-4} \ \rm cm$ channel.

Hollis-Hallett (1955)
roton minimum, phonon rise
rotation viscometer

$$\eta/s \simeq 0.8 \, \hbar/k_B$$

II. Collective Modes (Fermions)

Radial breathing mode

Ideal fluid hydrodynamics $(P \sim n^{5/3})$

$$\frac{\partial n}{\partial t} + \vec{\nabla} \cdot (n\vec{v}) = 0$$

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla}) \vec{v} = -\frac{\vec{\nabla}P}{mn} - \frac{\vec{\nabla}V}{m}$$

Hydro frequency at unitarity

$$\omega = \sqrt{\frac{10}{3}} \, \omega_{\perp}$$

Damping small, depends on T/T_F .

experiment: Kinast et al. (2005)

Viscous Hydrodynamics

Energy dissipation (η, ζ, κ) : shear, bulk viscosity, heat conductivity)

$$\dot{E} = -\frac{1}{2} \int d^3x \, \eta(x) \left(\partial_i v_j + \partial_j v_i - \frac{2}{3} \delta_{ij} \partial_k v_k \right)^2$$
$$- \int d^3x \, \zeta(x) \left(\partial_i v_i \right)^2 - \frac{1}{T} \int d^3x \, \kappa(x) \left(\partial_i T \right)^2$$

Shear viscosity to entropy ratio (assuming $\zeta = \kappa = 0$)

$$\frac{\eta}{s} = \frac{3}{4} \xi^{\frac{1}{2}} (3N)^{\frac{1}{3}} \frac{\Gamma}{\omega_{\perp}} \frac{\bar{\omega}}{\omega_{\perp}} \frac{N}{S}$$

Schaefer (2007), see also Bruun, Smith

Dissipation

III. Elliptic Flow (QGP)

Hydrodynamic expansion converts coordinate space anisotropy

to momentum space anisotropy

source: U. Heinz (2005)

Viscosity and Elliptic Flow

Consistency condition $T_{\mu\nu} \gg \delta T_{\mu\nu}$ (applicability of Navier-Stokes)

$$\frac{\eta + \frac{4}{3}\zeta}{s} \ll \frac{3}{4}(\tau T)$$

Danielewicz, Gyulassy (1985)

Very restrictive for $\tau < 1$ fm

Romatschke (2007), Teaney (2003)

Many questions: Dependence on initial conditions, freeze out, etc.

<u>Outlook</u>

Too early to declare a winner.

$$\eta/s \simeq 0.8$$
 (He), $\eta/s \leq 0.5$ (CA), $\eta/s \leq 0.5$ (QGP)

Other experimental constraints, more analysis needed.

Kinetic theory: o.k. in He (all T), o.k. close to T_c in CA, QGP?

New theory tools: AdS/Cold Atom correspondence? Field theory approaches in cross over regime (large N, epsilon expansions, . . .)