Discrepancy Minimization via Regularization

Lucas Pesenti

Bocconi University

Adrian Vladu

CNRS & Université Paris Cité

Discrepancy/Vector Balancing problem: Given $u_1, \ldots, u_n \in K \subseteq \mathbb{R}^d$, find $x_1, \ldots, x_n \in \{\pm 1\}$ s.t. the *discrepancy* $\|\sum_i x_i u_i\|$ is "small"

Discrepancy/Vector Balancing problem: Given $u_1, \ldots, u_n \in K \subseteq \mathbb{R}^d$, find $x_1, \ldots, x_n \in \{\pm 1\}$ s.t. the *discrepancy* $\|\sum_i x_i u_i\|$ is "small"

Examples:

- ▶ (Spencer's theorem) $K := \{u : ||u||_{\infty} \leq 1\}$, target $||\cdot||_{\infty}$
- ► (Komlós conjecture) $K := \{u : ||u||_2 \leqslant 1\}$, target $||\cdot||_{\infty}$
- ▶ (Matrix Spencer conjecture) $K := \{M : \|M\|_{op} \leqslant 1\}$, target $\|\cdot\|_{op}$

Discrepancy/Vector Balancing problem: Given $u_1, \ldots, u_n \in K \subseteq \mathbb{R}^d$, find $x_1, \ldots, x_n \in \{\pm 1\}$ s.t. the *discrepancy* $\|\sum_i x_i u_i\|$ is "small"

Examples:

- ▶ (Spencer's theorem) $K := \{u : ||u||_{\infty} \leq 1\}$, target $||\cdot||_{\infty}$
- ► (Komlós conjecture) $K := \{u : ||u||_2 \le 1\}$, target $||\cdot||_{\infty}$
- ▶ (Matrix Spencer conjecture) $K := \{M : ||M||_{op} \leq 1\}$, target $||\cdot||_{op}$

Motivations:

- ▶ Prove the existence of rare objects
- ► Toy problem/building block for "sparsification" tasks

Discrepancy/Vector Balancing problem: Given $u_1, \ldots, u_n \in K \subseteq \mathbb{R}^d$, find $x_1, \ldots, x_n \in \{\pm 1\}$ s.t. the *discrepancy* $\|\sum_i x_i u_i\|$ is "small"

Examples:

- ▶ (Spencer's theorem) $K := \{u : ||u||_{\infty} \leq 1\}$, target $||\cdot||_{\infty}$
- lackbrack (Komlós conjecture) $K:=\{u:\|u\|_2\leqslant 1\}$, target $\|\cdot\|_\infty$
- ▶ (Matrix Spencer conjecture) $K := \{M : ||M||_{op} \leq 1\}$, target $||\cdot||_{op}$

Our contribution:

- ▶ A new algorithmic framework for these problems
- ► A tighter constant in Spencer's theorem
- A proof of Komlós conjecture for "pseudorandom" inputs

Discrepancy and Continuous Methods

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there exists $x \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}x\|_{\infty} = O(\sqrt{n})$

Discrepancy and Continuous Methods

```
Thm: [Spencer'85] For any \mathbf{A} \in \mathbb{R}^{n \times n} s.t. |\mathbf{A}_{ij}| \leq 1, there exists x \in \{\pm 1\}^n s.t. \|\mathbf{A}x\|_{\infty} = O(\sqrt{n})
```

Many different algorithmic proofs:

- ► [Bansal'10, Lovett-Meka'12] random walks, SDP
- ► [Eldan-Singh'14, Rothvoss'14] LP with random objective
- ► [Levy-Ramadas-Rothvoss'17] multiplicative weights update
- ► [Bansal-Laddha-Vempala'22] barrier potential function

Discrepancy and Continuous Methods

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there exists $x \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}x\|_{\infty} = O(\sqrt{n})$

Many different algorithmic proofs:

- ► [Bansal'10, Lovett-Meka'12] random walks, SDP
- ► [Eldan-Singh'14, Rothvoss'14] LP with random objective
- ► [Levy-Ramadas-Rothvoss'17] multiplicative weights update
- ► [Bansal-Laddha-Vempala'22] barrier potential function

More and more inspired by "continuous" optimization

Our algorithm: Newton's method on a regularized objective

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there exists $x \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}x\|_{\infty} = O(\sqrt{n})$

- 1. Define a "smooth" proxy $\omega^*(\cdot)$ for $\|\cdot\|_{\infty}$
- 2. Run "sticky" Newton's Method on $x \mapsto \omega^*(\mathbf{A}x)$

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there exists $x \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}x\|_{\infty} = O(\sqrt{n})$

- 1. Define a "smooth" proxy $\omega^*(\cdot)$ for $\|\cdot\|_{\infty}$
- 2. Run "sticky" Newton's Method on $x \mapsto \omega^*(\mathbf{A}x)$

Algorithm:

Start from $x = (0, \dots, 0)$

While $x \notin \{\pm 1\}^n$

$$F:=\{i:x_i\notin\{\pm 1\}\}$$

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there exists $x \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}x\|_{\infty} = O(\sqrt{n})$

- 1. Define a "smooth" proxy $\omega^*(\cdot)$ for $\|\cdot\|_{\infty}$
- 2. Run "sticky" Newton's Method on $x \mapsto \omega^*(\mathbf{A}x)$

Algorithm:

Start from $x = (0, \dots, 0)$

While $x \notin \{\pm 1\}^n$

$$F:=\{i:x_i\notin\{\pm 1\}\}$$

Find δ s.t. supp $(\delta) \subseteq F$, $\delta \perp x$ minimizing $\langle \mathbf{A}\delta, \nabla \omega^*(\mathbf{A}x) \rangle + \frac{1}{2} \langle \mathbf{A}\delta, \nabla^2 \omega^*(\mathbf{A}x) \mathbf{A}\delta \rangle$

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there exists $x \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}x\|_{\infty} = O(\sqrt{n})$

- 1. Define a "smooth" proxy $\omega^*(\cdot)$ for $\|\cdot\|_{\infty}$
- 2. Run "sticky" Newton's Method on $x \mapsto \omega^*(\mathbf{A}x)$

Algorithm:

Start from $x = (0, \dots, 0)$

While $x \notin \{\pm 1\}^n$

$$F := \{i : x_i \notin \{\pm 1\}\}$$

Find δ s.t. $\operatorname{supp}(\delta) \subseteq F$, $\delta \perp x$ minimizing $\langle \mathbf{A}\delta, \nabla \omega^*(\mathbf{A}x) \rangle + \frac{1}{2} \langle \mathbf{A}\delta, \nabla^2 \omega^*(\mathbf{A}x) \mathbf{A}\delta \rangle$

x makes a small step in direction δ while staying in $[-1,1]^n$

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there exists $x \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}x\|_{\infty} = O(\sqrt{n})$

- 1. Define a "smooth" proxy $\omega^*(\cdot)$ for $\|\cdot\|_{\infty}$
- 2. Run "sticky" Newton's Method on $x\mapsto \omega^*(\mathbf{A}x)$

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there exists $x \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}x\|_{\infty} = O(\sqrt{n})$

- 1. Define a "smooth" proxy $\omega^*(\cdot)$ for $\|\cdot\|_{\infty}$
- 2. Run "sticky" Newton's Method on $x \mapsto \omega^*(\mathbf{A}x)$

Up to tracking
$$\begin{bmatrix} \mathbf{A} & \mathbf{0} \\ -\mathbf{A} & \mathbf{0} \end{bmatrix}$$
, assume WLOG

$$\|\mathbf{A}x\|_{\infty} = \max_{1 \leqslant i \leqslant n} (\mathbf{A}x)_i = \max_{r \in \Delta_n} \langle \mathbf{A}x, r \rangle \quad \text{ where } \Delta_n := \{r \in \mathbb{R}^n_+ : \sum_i r_i = 1\} \ .$$

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there exists $x \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}x\|_{\infty} = O(\sqrt{n})$

- 1. Define a "smooth" proxy $\omega^*(\cdot)$ for $\|\cdot\|_{\infty}$
- 2. Run "sticky" Newton's Method on $x \mapsto \omega^*(\mathbf{A}x)$

Up to tracking $\begin{bmatrix} \mathbf{A} & \mathbf{0} \\ -\mathbf{A} & \mathbf{0} \end{bmatrix}$, assume WLOG

$$\|\mathbf{A}x\|_{\infty} = \max_{1\leqslant i\leqslant n} (\mathbf{A}x)_i = \max_{r\in\Delta_n} \langle \mathbf{A}x, r\rangle \quad \text{ where } \Delta_n := \{r\in\mathbb{R}^n_+: \sum_i r_i = 1\} \ .$$

Def: Regularized maximum

$$\omega^*(y) := \max_{r \in \Delta_n} \langle y, r \rangle + \sum_{i=1}^n r_i^{\frac{1}{2}}.$$

Graph sparsification [Allen-Zhu, Liao, Orecchia'15], bandits [Audibert, Bubeck'09]

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there exists $x \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}x\|_{\infty} = O(\sqrt{n})$

- 1. Define a "smooth" proxy $\omega^*(\cdot)$ for $\|\cdot\|_{\infty}$
- 2. Run "sticky" Newton's Method on $x \mapsto \omega^*(\mathbf{A}x)$

Up to tracking $\begin{bmatrix} A & 0 \\ -A & 0 \end{bmatrix}$, assume WLOG

$$\|\mathbf{A}x\|_{\infty} = \max_{1 \leqslant i \leqslant n} (\mathbf{A}x)_i = \max_{r \in \Delta_n} \langle \mathbf{A}x, r \rangle \quad \text{ where } \Delta_n := \{r \in \mathbb{R}^n_+ : \sum_i r_i = 1\} \ .$$

Def: Regularized maximum

$$\omega^*(y) := \max_{r \in \Delta_n} \langle y, r \rangle + \sum_{i=1}^n r_i^{\frac{1}{2}}.$$

Graph sparsification [Allen-Zhu, Liao, Orecchia'15], bandits [Audibert, Bubeck'09]

Claim:
$$\omega^*(\mathbf{A}x) = \|\mathbf{A}x\|_{\infty} \pm O(\sqrt{n})$$

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there exists $x \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}x\|_{\infty} = O(\sqrt{n})$

- 1. Define a "smooth" proxy $\omega^*(\cdot)$ for $\|\cdot\|_{\infty}$
- 2. Run "sticky" Newton's Method on $x \mapsto \omega^*(\mathbf{A}x)$

Analysis idea:

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there exists $x \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}x\|_{\infty} = O(\sqrt{n})$

- 1. Define a "smooth" proxy $\omega^*(\cdot)$ for $\|\cdot\|_{\infty}$
- 2. Run "sticky" Newton's Method on $x \mapsto \omega^*(\mathbf{A}x)$

Analysis idea:

1. By studying $\nabla^2 \omega^*(\mathbf{A}x)$, we prove that there always exists a direction $\delta \perp x$, $\operatorname{supp}(\delta) \subseteq F$ s.t.

$$\omega^*(\mathbf{A}(x+\delta)) - \omega^*(\mathbf{A}x) \leqslant \frac{\|\delta\|_2^2}{\sqrt{|F|}}.$$

- 2. Hence we get charged $\frac{1}{\sqrt{|F|}}$ cost "per unit of $||x||_2^2$ "
- 3. Worst case: coordinates get frozen every time $||x||_2^2$ increases by 1, total cost

$$1 \times \frac{1}{\sqrt{n}} + 1 \times \frac{1}{\sqrt{n-1}} + \ldots = O(\sqrt{n})$$
. \square

Our Results (1/2)

Improved Constant for Spencer's Theorem:

Thm: [P-V'23] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there is $x \in \{\pm 1\}^n$ s.t. $|\mathbf{A}x||_{\infty} \leq 3.68\sqrt{n}$.

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there is $x \in \{\pm 1\}^n$ s.t. $|\mathbf{A}x||_{\infty} \leq 5.32\sqrt{n}$.

Our Results (1/2)

Improved Constant for Spencer's Theorem:

Thm: [P-V'23] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there is $x \in \{\pm 1\}^n$ s.t. $|\mathbf{A}x||_{\infty} \leq 3.68\sqrt{n}$.

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there is $x \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}x\|_{\infty} \leq 5.32\sqrt{n}$.

Proof idea: slightly different regularizer, track constants carefully

Our Results (2/2)

Komlós conjecture for "pseudorandom" inputs:

Thm: [P-V'23] For any $\mathbf{A} = [u_1 \mid ... \mid u_n]$ s.t. $||u_i||_2 \le 1$, there is $x \in \{\pm 1\}^n$ s.t.

$$\|\mathbf{A}x\|_{\infty} = O(1 + \sqrt{\lambda \log n})$$
 ,

where $\lambda := \max_{\|v\|_2 = 1, v \perp 1} \|\mathbf{A}^{\odot 2}v\|_2$ ($\odot \equiv$ entrywise product)

Our Results (2/2)

Komlós conjecture for "pseudorandom" inputs:

Thm: [P-V'23] For any $\mathbf{A} = [u_1 \mid ... \mid u_n]$ s.t. $||u_i||_2 \le 1$, there is $x \in \{\pm 1\}^n$ s.t.

$$\|\mathbf{A}x\|_{\infty} = O(1 + \sqrt{\lambda \log n})$$
,

where $\lambda := \max_{\|v\|_2 = 1, v \perp 1} \|\mathbf{A}^{\odot 2}v\|_2$ ($\odot \equiv$ entrywise product)

- ► Generalizes Banaszczyk's bound and [Potukuchi'18]
- Special case:

"A randomly rotated hypercube has a corner at ∞ -distance O(1) from the origin"

Open problem: Komlós conjecture for worst-case rotations?

Conclusion

Our algorithm: Newton's method on a regularized objective

Thm: [P-V'23] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there is $x \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}x\|_{\infty} \leq 3.68\sqrt{n}$.

Thm: [P-V'23] For any
$$\mathbf{A} = [u_1 \mid \dots \mid u_n]$$
 s.t. $\|u_i\|_2 \le 1$, there is $x \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}x\|_{\infty} = O(1 + \sqrt{\lambda \log n})$, with
$$\lambda := \max_{\|v\|_2 = 1, v \perp 1} \|\mathbf{A}^{\odot 2}v\|_2.$$

Conclusion

Our algorithm: Newton's method on a regularized objective

Thm: [P-V'23] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there is $x \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}x\|_{\infty} \leq 3.68\sqrt{n}$.

Thm: [P-V'23] For any
$$\mathbf{A} = [u_1 \mid \dots \mid u_n]$$
 s.t. $||u_i||_2 \le 1$, there is $x \in \{\pm 1\}^n$ s.t. $||\mathbf{A}x||_{\infty} = O(1 + \sqrt{\lambda \log n})$, with
$$\lambda := \max_{\|v\|_2 = 1, v \perp 1} ||\mathbf{A}^{\odot 2}v||_2.$$

Future directions:

- Prove a tight constant in Spencer's theorem
- ► Application of this framework to matrix discrepancy and graph sparsification
- ▶ Bridge this framework and arguments based on Lovász local lemma (→ Beck-Fiala conjecture)