Sets and Maps

Sets

$$\mathbb{N} = \{0,1,2,\dots\} \\ \mathbb{Z} = \{\dots,-2,-1,0,1,2,\dots\} \\ \mathbb{Q} = \{\frac{k}{n} \mid k,n \in \mathbb{N}, n \neq 0\} \\ \mathbb{R} = \\ \mathbb{C} = \{a+bi \mid a,b \in \mathbb{R}\} \\ \mathbb{R}^d = \{(a_1,\dots,a_d) \mid a_i \in \mathbb{R}\} \\ \mathbb{R}^d = \{(a_0,a_1,a_2,\dots) \mid a_i \in \mathbb{R}\} \\ \mathbb{R}^\infty = \{(a_0,a_1,a_2,\dots) \mid a_i \in \mathbb{R}\} \\ \mathbb{R}^\infty = \{(a_0,a_1,a_2,\dots) \mid a_i \in \mathbb{R}\} \\ \mathbb{R}^{\text{snatural numbers*}} \\ \text{*rationals*} \\ \text{*real numbers*} \\ \text{*complex numbers*} \\ \text{*imaginary unit*} \\ \text{*characterized by* } i^2 = -1. \\ \mathbb{R}^d = \{(a_0,a_1,a_2,\dots) \mid a_i \in \mathbb{R}\} \\ \mathbb{R}^\infty = \{(a_0,a_1,a_2,\dots) \mid a_i \in \mathbb{R}\} \\ \text{*space of infinite sequences of reals*} \\ \mathbb{R}^\infty = \{(a_0,a_1,a_2,\dots) \mid a_i \in \mathbb{R}\} \\ \mathbb{R}^\infty = \{(a$$

Set Operations

Let A, B be sets.

$$A \cup B = \{c \mid c \in A \text{ or } c \in B\}$$
 union
$$A \cap B = \{c \mid c \in A \text{ and } c \in B\}$$
 intersection
$$A \setminus B = \{c \in A \mid c \notin B\}$$
 difference
$$A \Delta B = A \cup B \setminus (A \cap B)$$
 symmetric difference

Indexed Family of Sets

Let $(A_{\alpha})_{\alpha \in I}$ be an *indexed family* of *sets* (*index set* I). **Examples:**

1.
$$I = \mathbb{N} \ A_{\alpha} := \{\alpha, \alpha + 1\}$$

2. $I = \mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\} \ A_{\alpha} := [\alpha, \infty)$

Union:

$$\bigcup_{\alpha \in I} A_{\alpha} = \{ a \mid a \in A_{\alpha} \text{ for some } \alpha \in I \}$$
$$= \{ a \mid \exists \alpha \in I \text{ such that } a \in A_{\alpha} \}$$

Intersection:

$$\bigcap_{\alpha \in I} A_{\alpha} = \{ a \mid a \in A_{\alpha} \text{ for every } \alpha \in I \}$$
$$= \{ a \mid \forall \alpha \in I, a \in A_{\alpha} \}$$

Maps

Definition: Let A, B be sets. A *map* f is an *assignment* that assigns a unique element $b \in B$ to each element $a \in A$. This element b is called the *value of f at a* and is denoted by f(a).

Note: f assigns to each $a \in A$ a value, but there may exist $b \in B$ such that $f(a) \neq b$ for some $a \in A$.

A is called the *domain* of f. B is called the *target space* of f.

If $A' \subseteq A$, then the *map* f' (0.15)

$$f': A' \to B$$

 $a \mapsto f'(a) = f(a)$

is called the *restriction* of f to A' (denoted by $f' = f|_{A'}$). **Examples:**

1. $f: \mathbb{R} \to \mathbb{R} \ x \mapsto \sin(x) \ f = \sin *function*$

$$2. \ f: \mathbb{R}_{>0} \to \mathbb{R} \ x \mapsto y^x$$

3.
$$g: \mathbb{R} \to \mathbb{R} \ x \mapsto \begin{cases} \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

4. $f: V \to \text{set of subspaces of } V = S \ v \mapsto \text{span}(v)$

5.
$$D: P(\mathbb{R}) \to P(\mathbb{R}) \ p(x) \mapsto p'(x) = p' \text{ *derivative}^*$$