3. Methods

In this chapter, methods used for performing the change point analysis in this thesis are explained. It first starts by providing general details about Markov chains. Later on, the simple Markov switching model feature and more general model specifications namely Markov switching autoregressive model are discussed. Next three sections are devoted to some methods for estimating the values of parameters, predicting a state for a new observation and selecting a suitable model for the datasets. Another change point method in a non-parametric approach is described. Finally, a simulation technique is explained.

3.1. Markov chains

A Markov chain is a random process which has a property that is given on the current value, the future is independent of the past. A random process X contains random variables $X_t: t \in T$ indexed by a set of T, where $T = \{0, 1, 2, ...\}$ is called a discrete-time process, and $T = [0, \infty)$ is called a continuous-time process. Let X_t be a sequence which has values from a state space S. The process begins from one of these states and moves to another state. The move between states is called a step. The process of Markov chains is described here.

Definition 3.1.1. (Grimmett and Stirzaker, 2001, p.214) If a process X satisfies the Markov property, the process X is a first order Markov chain

$$P(X_t = s | X_0 = x_0, X_1 = x_1, ..., X_{t-1} = x_{t-1}) = P(X_t = s | X_{t-1} = x_{t-1})$$

where $t \ge 1$ and $s, x_0, ..., x_{t-1} \in S$

If $X_t = i$ then the chain is being in state i or the chain is in the ith state at the tth step.

There are transitions between states which describe the distribution of the next state given the current state. This evolution of changing from $X_t = i$ to $X_t = j$ is defined by the transition probability as $P(X_t = j | X_{t-1} = i)$. Markov chains are frequently assumed that these probabilities depend only on i and j and do not depend on t.

Definition 3.1.2. (Grimmett and Stirzaker, 2001, p.214) The chain is time-homogeneous if

$$P(X_{t+1} = j | X_t = i) = P(X_1 = j | X_0 = i)$$

for all t, i, j. The probability of the transition is independent of t. A transition matrix $\mathbf{P} = (p_{ij})$ is a matrix of transition probabilities

$$p_{ij} = P(X_t = j | X_{t-1} = i)$$

Theorem. (Grimmett and Stirzaker, 2001, p.215) The transition matrix \mathbf{P} is a matrix that

- Each of the entries is a non-negative real number or $p_{ij} \geq 0$ for all i, j
- The sum of each row equal to one or $\sum_{j} p_{ij} = 1$ for all i

Definition 3.1.3. (Grimmett and Stirzaker, 2001, p.220) State i is called persistent (or recurrent) if

$$P(X_t = i \text{ for some } n \ge 1 | X_0 = i) = 1$$

Let $f_{ij}(n) = P(X_1 \neq j, X_2 \neq j, ..., X_t \neq j | X_0 = i)$ be the probability of visiting state j first by starting from i, takes place at tth step.

Definition 3.1.4. (Grimmett and Stirzaker, 2001, p.222) The mean recurrence time of a state i is defined as

$$\mu_i = E(T_i|X_0 = i) = \sum_n n \cdot f_{ii}(n)$$

State i is a non-null persistent (or positive recurrent) if μ_i is finite. Otherwise, the state i is null persistent.

Definition 3.1.5. (Grimmett and Stirzaker, 2001, p.222) A state i that has a period d(i) is defined as

$$d(i) = \gcd\{n : p_{ii}(n) > 0\}$$

where gcd is the greatest common divisor. If d(i) = 1, then the state is said to be aperiodic. Otherwise, the state is said to be periodic.

Definition 3.1.6. (Grimmett and Stirzaker, 2001, p.222) A state is called ergodic if it is non-null persistent and aperiodic.

Definition 3.1.7. A chain is called irreducible if it is possible to go from every state to every other states.

Theorem. (Manning et al., 2008) If there is a aperiodic finite state space, an irreducible Markov chain is the same thing as ergodic Markov chain.

3.2. Markov switching model

A Markov switching model is a switching model where the shifting back and forth between the states or regimes is controlled by a latent Markov chain. The model structure consists of two stochastic processes embedded in two levels of hierarchy. One process is an underlying stochastic process that is not normally observable, but possible to be observed through another stochastic process which generates the sequence of observation (Rabiner and Juang, 1986). The time that transition between state occurs is random. In addition, the state assumes to follow the Markov property that the future state depends only on the current state.

The Markov switching model is able to model more complex stochastic processes and describe changes in the dynamic behavior. A general structure of the model can be drawn graphically as shown in Figure 3.1, where S_t and y_t denote the state sequence and observation sequence in the Markov process, respectively. The arrows from one state to another state in the diagram imply a conditional dependency.

Figure 3.1.: Model structure

The process is given by (Hamilton, 1989)

$$y_t = X_t' \beta_{S_t} + \varepsilon_t \tag{3.1}$$

where y_t is an observed value of the time series at time t X_t are predictor variables of the time series at time t

 β_{S_t} are coefficients in state S_t , where $S_t = i$, $1 \leq i \leq k$

 ε_t follows a Normal distribution with zero mean and variance given by $\sigma_{S_t}^2$

Equation 3.1 is the simplest form for the switching model where there are k-1 structural breaks in the model parameters. To aid understanding, the baseline model is assumed to have only two states (k=2) in this discussion. S_t is a random variable which is assumed that the value $S_t = 1$ for $t = 1, 2, ..., t_0$ and $S_t = 2$ for $t = t_0 + 1, t_0 + 2, ..., T$ where t_0 is a known change point. The transition matrix \mathbf{P} is an 2x2 matrix where row j column i element is the transition probability p_{ij} . Since the whole process S_t is unobserved, the initial state where t = 0 of each state also needs to be specified. The probability which describes the starting distribution over states is denoted by

$$\pi_i = P(S_0 = i)$$

There are several options for computing the probability of the initial state. One procedure is to commonly set $P(S_0 = i) = 0.5$. Alternatively, the unconditional probability of S_t

$$\pi_1 = P(S_0 = 1) = \frac{1 - p_{jj}}{2 - p_{ii} - p_{jj}}$$

can be used by presuming an ergodic Markov chain (Hamilton, 2005).

3.3. Autoregressive (AR) model

An autoregressive model is one type of time series models that is used to describe the time-varying process. The model is flexible in handling various kinds of time series patterns. The name autoregressive comes from how the model performs a regression of the variable against its own previous outputs (Cryer and Kellet, 1986). The number of autoregressive lags is denoted by p.

Definition 3.3.1. An autoregressive model of order p or AR(p) model can be written as

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t$$

or

$$y_t = c + \sum_{i=1}^{p} \phi_i y_{t-i} + \varepsilon_t$$

where c is a constant, ϕ_i are coefficients in the autoregression and ε_t is a Gaussian white noise with zero mean and variance σ^2 .

If p is equal to one, the model AR(1) is called the first order autoregression process.

3.4. Markov switching autoregressive model

A Markov switching autoregressive model is an extension of a basic Markov switching model where observations are drawn from an autoregression process. The model relaxes the conditional independent assumption by allowing an observation to depend on both past observation and a current state (Shannon and Byrne, 2009).

Definition 3.4.1. The first order Markov switching autoregressive model is

$$y_t = X_t' \beta_{S_t} + \phi_{1,S_t} y_{t-1} + \varepsilon_t$$

where ϕ_{1,S_t} is an autoregression coefficient of the observed value at time t-1 in state S_t . ε_t follows a Normal distribution with zero mean and variance given by $\sigma_{S_t}^2$.

The structure of the model is shown in Figure 3.2. It can be clearly seen that there is a dependency at the observation level and the observation is not independent from one another.

Figure 3.2.: Model structure of Markov switching AR(1)

Assuming two states $S_t = 1$ or 2, the set of parameters that are necessary to describe the law of probability that governs y_t are $\theta = \{\beta_1, \beta_2, \phi_{1,1}, \phi_{1,2}, \sigma_1^2, \sigma_2^2, \pi_1, \pi_2, p_{11}, p_{22}\}.$

3.5. Parameter estimation

There are various ways to estimate parameters of Markov switching model. Methods which have been widely used are as follow: E-M algorithm (Hamilton, 1990; Kim, 1994) used the maximum likelihood criterion, Segmental K-means (Juang and Rabiner, 1990) used K-means algorithm and maximized the state-optimized likelihood criterion, and Gibbs sampling (Kim et al., 1999) used a Markov chain Monte Carlo simulation method based on the Bayesian inference. In this thesis framework, E-M algorithm is used in estimating parameters and its general procedure is briefly described below.

3.5.1. The Expectation-Maximization algorithm

E-M algorithm is originally designed to deal with incomplete or missing values in data (Dempster et al., 1977). Nevertheless, it could be implemented in Markov switching model since the unobserved state S_t can be viewed as missing values. The set of parameters θ is estimated by iterative two-step procedure. In the first step, the algorithm starts with arbitrary initial parameters, and then finds the expected values of the state process from the given observations. In the second step of the iterative procedure, a new maximum likelihood from the derived parameters in the previous step is calculated. These two steps are repeated until the maximum value of the likelihood function is reached (Janczura and Weron, 2012).

3.5.1.1. E-step

In this step, $\theta^{(n)}$ is the derived set of parameters in M-step from the previous iteration, and the available observations of time t-1 is denoted as $\Omega_{t-1} = (y_1, y_2, ..., y_{t-1})$. The general idea of this step is to calculate the expectation of S_t under the current estimation of the parameters. The obtained result is called smoothed inferences probability, and is denoted by $P(S_t = j | \Omega_T; \theta)$. The E-step which consists of filtering and smoothing algorithm is described as follows (Kim, 1994):

Filtering A filtered probability is a probability of a non-observable Markov chain being in a given state j at time t, conditional on information up to time t. The algorithm starts from t = 1 to t = T. A starting point for the first iteration where t = 1 is chosen from arbitrary values. The probabilities of each state, given that the available observation is up to time t - 1, is calculated by

$$P(S_t = j | \Omega_{t-1}; \theta^{(n)}) = \sum_{i=1}^k p_{ij}^{(n)} P(S_{t-1} = i | \Omega_{t-1}; \theta^{(n)})$$
(3.2)

The conditional densities of y_t given Ω_{t-1} are

$$f(y_t|\Omega_{t-1};\theta^{(n)}) = \sum_{j=1}^{k} f(y_t|S_t = j, \Omega_{t-1};\theta^{(n)})P(S_t = j|\Omega_{t-1};\theta^{(n)})$$
(3.3)

where $f(y_t|S_t = j, \Omega_{t-1}; \theta) = \frac{1}{\sqrt{2\pi\sigma_{S_t}^2}} exp\left\{-\frac{(y_t - \beta_{S_t})^2}{2\sigma_{S_t}^2}\right\}$ is the likelihood function in each state for time t. This is simply a Gaussian probability density function.

Then, with the new observation at time t, the probabilities of each state are updated by using Bayes' rule as shown below

$$P(S_t = j | \Omega_t; \theta^{(n)}) = \frac{f(y_t | S_t = j, \Omega_{t-1}; \theta^{(n)}) P(S_t = j | \Omega_{t-1}; \theta^{(n)})}{f(y_t | \Omega_{t-1}; \theta^{(n)})}$$
(3.4)

The process above is computed iteratively until all the observation is reached i.e., t=T.

Smoothing A smoothed probability is a probability of a non-observable Markov chain being in state j at time t, conditional on all available information. The algorithm iterates over t = T - 1, T - 2, ..., 1. The starting values are obtained from the final iteration of the filtered probabilities.

By noting that

$$P(S_{t} = j | S_{t+1} = i, \Omega_{T}; \theta^{(n)}) \approx P(S_{t} = j | S_{t+1} = i, \Omega_{t}; \theta^{(n)})$$

$$= \frac{P(S_{t} = j, S_{t+1} = i | \Omega_{t}; \theta^{(n)})}{P(S_{t+1} = i | \Omega_{t}; \theta^{(n)})}$$

$$= \frac{P(S_{t} = j | \Omega_{t}; \theta^{(n)}) p_{ij}^{(n)}}{P(S_{t+1} = i | \Omega_{t}; \theta^{(n)})}$$
(3.5)

and

$$P(S_t = j | \Omega_T; \theta^{(n)}) = \sum_{i=1}^k P(S_t = j, S_{t+1} = i | \Omega_T; \theta^{(n)})$$
(3.6)

then, the smoothed probabilities can be expressed as

$$P(S_t = j | \Omega_T; \theta^{(n)}) = \sum_{i=1}^k \frac{P(S_{t+1} = i | \Omega_T; \theta^{(n)}) P(S_t = j | \Omega_t; \theta^{(n)}) p_{ij}^{(n)}}{P(S_{t+1} = i | \Omega_t; \theta^{(n)})}$$
(3.7)

Once the filtered probabilities are estimated, there is enough necessary information to calculate the full log-likelihood function.

$$\ln L(\theta) = \sum_{t=1}^{T} \ln(f(y_t | \Omega_{t-1}; \theta^{(n)})) = \sum_{t=1}^{T} \ln \sum_{j=1}^{k} ((f(y_t | S_t = j, \Omega_{t-1}; \theta^{(n)})) P(S_t = j | \Omega_{t-1}))$$
(3.8)

This is simply a weighted average of the likelihood function in each state. The probabilities of states are considered as weights.

3.5.1.2. M-step

The new estimated model parameters $\theta^{(n+1)}$ is obtained by finding a set of parameters that maximizes Equation 3.8. This new set of parameters is more precise than the previous estimated value of the maximum likelihood. $\theta^{(n+1)}$ serves as a set of parameters in the next iteration of the E-step.

Each individual parameter in $\theta^{(n+1)}$ are taken from its maximum value, which is determined by taking partial derivative of the log-likelihood function with respect to each parameter. Generally, this process is similar to the standard maximum likelihood estimation. However, it has to be weighted by the smoothed probabilities because each observation y_t contains probability from each k states.

3.6. State prediction

A function to predict the most probable state for the new observation is implemented in this analysis (see Appendix B).

The probabilities of being in state j at time T+1 on a basis of the current information are computed by performing the filtering algorithm in the E-step of E-M algorithm. The filtered probabilities are

$$P(S_{T+1} = j | \Omega_{T+1}; \theta) = \frac{f(y_{T+1} | S_{T+1} = j, \Omega_T; \theta) P(S_{T+1} = j | \Omega_T; \theta)}{f(y_{T+1} | \Omega_T; \theta)}$$

This is Equation 3.4 where t = T + 1. Then, the new observation at time T + 1 is said to be in the state j if it has the highest probability.

3.7. Model selection

Model selection is a task of selecting the most suitable model for a given set of data, based on the quality of the model. The Bayesian Information Criterion (BIC) is widely employed in the applied literature and proved to be useful in selecting the model among a finite set of models. It is also known as Schwarz Information Criterion (Schwarz et al., 1978).

$$BIC = -2\ln(L(\hat{\theta})) + m \cdot \ln(T)$$

where $L(\hat{\theta})$ represents the maximized value of the likelihood function, T is the number of observations, and m is the number of parameters to be estimated in the model. One benefit from using BIC is that this criterion heavily penalizes model complexity as it takes into account the number of parameters in the model. In addition, BIC attempts to reduce the risk of over-fitting.

3.8. Non-parametric analysis

A parametric analysis outperform a non-parametric analysis if the applied data belongs to a known distribution family. However, a parametric test does not perform well in detecting change point of an unknown underlying distribution (Sharkey and Killick, 2014). Applying a non-parametric analysis to a real-world process gives a real advantage to the analysis. Data collected from a real-world process, in general, usually does not have a well-defined structure, which is more suitable to be applied with the non-parametric analysis that is not too restricted (Hawkins and Deng, 2010). For this reason, the non-parametric analysis is implemented in order to get a rough idea of the change point location in this thesis framework. The obtained result is also compared with the result from using the Markov switching autoregressive model.

E-divisive

An ecp^1 is an extension package in R which mainly focuses on computing a non-parametric test for multiple change point analysis. This change point method is applicable to both univariate and multivariate time series. A fundamental idea of the package is based on the hierarchical clustering approach (James and Matteson, 2013).

An E-divisive method is an algorithm in the *ecp* package. This algorithm performs a divisive clustering in order to estimate the multiple change points. The E-divisive

¹https://cran.r-project.org/web/packages/ecp/index.html

recursively partitions a time series and estimates a single change point in each iteration. Consequently, the new change point is located in each iteration, which divides the time series into different segments. The algorithm also uses a permutation test to compute the statistical significance of an estimated change point. More details about the estimation is described in Matteson and James (2014). The computational time of the E-divisive algorithm is $O(kT^2)$, where k is number of estimated change points and T is number of observations in the time series data.

3.9. Simulation study

Since the state of the CPU utilization in the data is unknown, an accuracy of the model cannot be computed. One possible solution to test and verify how well the implemented predict function performs is to used a simulation technique. The data that consists of two predictor variables and one response variable with already known states is simulated. y is assumed to be a value of a CPU usage. The actual models of each state are

$$y = \begin{cases} 10 + 0.6X1_t - 0.9X2_t + 0.5Y_{t-1} + \varepsilon_t^{(1)} & \varepsilon_t^{(1)} \sim N(0, 1); \text{ Normal} \\ 2 + 0.8X1_t + 0.2Y_{t-1} + \varepsilon_t^{(2)} & \varepsilon_t^{(2)} \sim N(2, 0.5); \text{ Bad} \\ -12 + 0.7X1_t + 0.2X2_t - 0.2Y_{t-1} + \varepsilon_t^{(3)} & \varepsilon_t^{(3)} \sim N(1, 1); \text{ Good} \end{cases}$$

There are two simulated datasets – Dataset 1 and Dataset 2 – and each of them contains 500 observations. Figure 3.3 and Figure 3.4 present plots of y over a period of time, and the period where observations in the data belong to one of the state for the first and second simulated data, respectively.

Figure 3.3.: *Top:* A simulated data of Dataset 1 where y variable is the response variable. *Bottom:* The period in the time series when observation is in each state.

Figure 3.4.: Top: A simulated data of Dataset 2 where y variable is the response variable. Bottom: The period in the time series when observation is in each state.