This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

AUTOMOTIVE CONTROL UNIT

Pat nt Number:

JP7040794

Publication date:

1995-02-10

Inventor(s):

MINOWA TOSHIMICHI; others: 04

Applicant(s):

HITACHI LTD

Requested Patent:

□ JP7040794

Application Number: JP19930184101 19930726 Priority Number(s):

IPC Classification: B60R16/02; F02B77/00; F02D41/00; F02D45/00; G06F15/78

EC Classification:

Equivalents:

Abstract

PURPOSE:To provide an automotive control unit for facilitating increase an the number of input and output points or addition of a function and change of program for control unit even if a single-chip microcomputer is used.

CONSTITUTION:An automotive control unit is provided with an interface software memory means containing interface software for interface application software with OS (Operating System) in an internal ROM 2 and a CPU (Central Processing Unit) 3 for executing arithmetic operation for the application software and the interface software: This unit is also provided with a RAM (reloadable memory) 4 for memorizing the result of the arithmetic operation, etc., an I/O for control unit expansion, and an expansion means 5 for intercommunicating memories, etc., through a bus or a LAN. The configuration of the control unit is thus made to immediately meet increase in the number of input and output points or addition of a function.

Data supplied from the esp@cenet database - 12

€ 公群 氘 华 噩 4 (22) (19) 日本国物路庁 (JP)

(11)特許出顧公開森母

特開平7-40794

(43)公開日 平成7年(1995)2月10日

技術数形簡形	t					最終頁に被く
•						(全23里)
						010
				٠		客査耐収 米耐収 耐収項の数19 O.L. (全 23 頁) 最終頁に扱く
F						米龍水
广内数现番号	8012-3D	7541 -3G	8011-3G			- 特別報外
歃	×	۵	<	2	В	
1000000				372	5 1 0	
	70/91	21/00	41/00	45/00	15/78	•
(SI) Int.CL.	BGOR	F02B	F 0 2 D		G06F	

(21)出職等時	物原平5 —184101	(71) 出版人	(71) 出版人 000005108
			株式会社日立製作所
B 11 (22)	平成5年(1993)7月26日		東京都千代田区神田駿河台四丁目6番地
		(72)発明者	(72)発明者 英格利通
			実域県日立市大みか町七丁目1番1号 株
			式会社日立製作所日立研究所内
		(72)発明者	中国 大学 日本
			茨城県日立市大みか町七丁目1番1号 株
			式会社日立製作所日立研究所內
•		(72) 発明者	石井 資市
			※城県日立市大みか町七丁目1番1号· 株
			式会社日立製作所日立研究所內
		(74) 代理人	井理士 平木 枯輔
			を本国に扱く
	•		

自動車用値割ユニット (54) [発明の名称]

【目的】 シングルチップマイコンを用いた場合でも、 (修正社)

人出力点散の増加や機能の追加を容易にし、また、制御 ユニットのプログラム変更を容易にする自動中用制御ユ ニットを提供すること。

「精成】 内部ROM2にアプリケーションソフトとO を例算與行するCPU (中央領算処理数据) 3と、海算 S (Operating System) の仲介を行うインターフェース 上紀アプリケーションソフトとインターフェースソフト 結果等をメモリするRAM(曹換え可能なメモリ)4及 **び開御ユニット拡張用の1/0と、メモリ等をパスある** いはLAN等を介して通信する拡張手段5を有し、入出 ソフトを内臓したインターフェースソフト記憶手段と、

カ点数の増加や機能の追加に即対応可能な関御ユニット

の転扱かした。

「請求項1] マイクロコンピュータにより各種制御を アブリケーションソフトとオペレーティングシステムと を接続するインターフェースソフトが第1のメモリに内 リケーションソフト及び前記インターフェースソフトを を格納する第2のメモリと、を備えた自動車用制御ユニ **低されたインターフェースソフト記憶手段と、前記アブ** 質算実行する中央演算処理装置と、演算結果等のデータ **行うようにした自動車用制御ユニットにおいて、** 、特許臨米の徳田

「翻求項2】 マイクロコンピュータにより各種制御を アブリケーションソフトとオペレーティングシステムと を接続するインターフェースソフトが第 1のメモリに内 リケーションソフト及び前記インターフェースソフトを **載されたインターフェースソフト記憶手段と、前記アフ** 黄昇與行する中央漢算処理装置と、漢算結果等のデータ 0と、演算処理されたデータを通信手段を介して通信す を格納する第2のメモリと、制御ユニット拡張用の 1、 【請求項3】 翻求項2記載の自動車用制御ユニット 行うようにした自動車用制御ユニットにおいて、 る拡張手段と、を備えた自動車用制御ユニット。

こ、拡張用の外付け記録手段を散けたことを特徴とする 【群次頃4】 類求頃2記載の自動車用制御ユニット 自動車用網御ユニット。

に、拡張用の1/0処理装置を設けたことを特徴とする

自動車用制御ユニット。

こ、タイマと、I/Oと、A/D変換器を設けたことを に、姑蝦用の1/0 処理装配および拡張用の外付け 記憶 手段を設けたことを特徴とする自動車用制御ユニット。 【群水項5】 解水項2記載の自動車用制御ユニット 【精水母6】 競水頃2記載の自動車用制御ユニット 特徴とする自動中用制御ユニット。

に、キャッシュメモリを散けたことを特徴とする自動取 「請求項7] 請求項6記載の自動車用制御ユニット 用制御ユニット。 [翻次項8] 耐水項3記載の拡張用の1/0処理装置 は、拡張用のI/0処理装置及び拡張用の外付け記憶手 るポート数以上のポート数を有することを特徴とする自 段を翻求項2記載の倒御ユニットに拡張する際に減少す **り車用制御ユニット。**

(請求項9) 請求項4記載の自動車用制御ユニットに おいて、 前記拡張用の外付け記憶手段にアプリケーショ ソソフトを記憶したことを特徴とする自動車用制御ユニ

続するインターフェースソフト及びアプリケーションソ 「翻求項10】 少なくとも2つの機能を実行するアブ リケーションソフトを備えた制御ユニットにおいて、オ フトを内部記憶手段に記憶させるとともに、拡張用の外 付け記憶手段に前記アプリケーションソフト以外のアプ

ノケーションソフトを記憶させたことを特徴とする自動

前記インターフェースソフトを徴算実行する中央演算処 ヒオペレーティングシステムとを接続するインターフェ スソフト記憶手段と、前記アプリケーションソフト及び 理装置と、演算結果等のデータを格納する第2のメモリ c、制御ユニット拡張用のI/Oと、徴算処理されたデ -タを通信手段を介して通信する妨瑕手段と、からなる 複数個の制御ユニットを備えた自動車用制御ユニットに 【群水項11】 少なくとも、アブリケーションソフト **ースソフトが第1のメモリに内蔵されたインターフェー**

前記少なくとも2つの自動中用協御ユニット間に通復回 **裔を設けるとともに、該通信回路を介してLANで通信** 【節求項12】 少なくとも、アブリケーションソフト 「ろことを特徴とする自動車用側御ユニット。

とオペレーティングシステムとを接続するインターフォ スソフト記憶手段と、前記アプリケーションソフト及び 前記インターフェースソフトを演算要行する中央演算処 と、簡御ユニット枯暇用の1/0と、破算処理されたデ -タを通信手段を介して通信する拡張手段と、からなる 5月10日にかりを備えるとともに、少なくども前記2個の 崩御ユニット間をLANで接続する通信回路を設けた自 -- スソフトが第1のメモリに内蔵されたインターフェー **町数置と、演算結果等のデータを格帥する第2のメモリ** 助年用値御ユニットにおいて、

. つの節御コニットは、内部ROMにインターフェース ノフトを記憶させた I /0 処理専用のユニットとし、他 **の飯御ユニットは、内部ROMにアプリケーションンフ** トを記憶させた演算専用のユニットとしたことを特徴と "る自動中用制御ユニット。

スソフトに、A/D変換処理された配号をフィルタリン された信号をアプリケーションソフトで使用可能な関数 こ変換する 1/0処理手段を設けたことを特徴とする自 グするディジタルフィルタ手段と、前記フィルタリンク **【翻吹項13】 群坎項1又は2記載のインターフェー**

【糖氷項14】 「群氷項13項配載のディジタルフィル タ手段が可変式のハードフィルタであることを特徴とす る自動車用制御ユニット。 的年用制御ユニット。

【醋水項15】 第13項額水箱囲のディジタルフィル 7 手段が入力本数分のハードフィルタであることを特徴 とする自動中用価御ユニット。

スソフトに、少なくとも 2つのセンサの宿母から 断たな 百号を作り出す処理ソフトを設けたことを特徴とする自 **[静水項16] 静水項1又は2記載のインターフェ-**的中用制御ユニット。

「翻求項17] 1/0変数を定義及び宣告して関数化 された基本処理関数を、アブリケーションソフトの関発 又は変更に供される仕様割としてインターフェースソフ 特囲平07-040794

「翻求項18】 少なくども2個以上のアクチュエータ トにおいて、少なくとも2つ以上のアクチュエータ間御 周母のうち同一の初御偈母は、同一のタイマから出力す るようにしたことを特徴とする自動中用倒御ユニット。 により同一の何節を行うようにした自動中用制御ねニッ トに備えたことを特徴とする自動中用制御ユニット。

ることを特徴とする自動中用倒御ユニット。 (発明の詳細な説明)

フトウェア的タイマあるいはハードウェア的タイマであ

【翻米項19】 翻米項2記載の拡張用の1/0は、ソ

0001

1年り、甘に、ドンジン、安班祖、 ファーキ及びサスス 【密葉上の利用分野】本発明は、自動中用制御ユニット ソション等を図的する自動中川図御ユニットに図する。 [0002]

の預算に必要なメモリ(ROM、RAM等)及びA/D **変換器等を一括して内蔵している。そのため、全体とし** レンや柘象した包御ユニットが用いのれたきている。シ て小型化が図れるとともに、使い恐さ、処理時間の選さ 【従来の技術】 概近、自動中御御にシングルチップマイ ングルチップマイコンは、中央資料処理被関(CPU) などの点からも右利である。

なり俯吸されるという問題点があった。また、自動中制 [発明が解決しようとする課題] しかしながら、前記従 来技術においては、胡彻仕様の変更等によりソフトウェ ア、ハードウェアが変更になった場合に、拡充の面でか **都にシングルチップマイコンを用いた場合、ハードウェ** 特に、燃費向上、排気浄化等を行う場合は、入出力点数 のハードウェア、ソフトウェアを作り直す必要があると の増加や機能の追加が必須となり、その結度新たに金て アに俯限を受けてソフトウェアを作成する必要が生じ、 いう四田点があった。

[0004] さらに、風々の向仰を行うためにROMの 中に音き込まれた何仰ソフトがアセンブラ書語で表現さ れているため、そのプログラムの内容及び作成宇法は専 門家にしか解読できないような、いわば馬人的なもので トの作成段階において、最初のプログラマー以外の寄に あった。そのため、特に、実際のアプリケーションソフ ず、別の機能のソフトを追加する場合には、始めから金 は、ソフトウェア内容の詳細が関解できないのみなら 節作成し位す必要があった。

[0005] 本角明は、このような問題に鑑みてなされ たもので、その目的は、シングルチップマイコンを用い た場合でも、入出力価号数の増加や規能の追加を容易に し、しかも、何彻ユニットのプログラム変更を容易にす る自動中用倒御ユニットを提供することにある。 【限題を解決するための手段】前記目的を遠成するため に、本発明に係わる自動中用制御ユニットは、基本的に

プリケーションソフトとインターフェースソフトを徴算 英行する C.P.U(中央演算処理遊配)と、演算結果等を ット拡張用の1/0と、メモリ等をパスあるいはLAN は、内部ROMにアプリケーションソフトとOS(Oper ating System)の仲介を行うインターフェースソフトを メモリするRAM(曹換え可能なメモリ)及び制御ユニ し、入出力点数の増加や機能の追加に即対応可能な制御 内臓したインターフェースソ フト記憶手段と、前紀ア **英を介して通信する拡張手段とを備えたことを特徴と** ユニットの構成とした。 [0000]

関御にシングルチップマイコンを用いた場合でも、入出 が不必要となるため、プログラムを含めた制御ユニット 【作用】このように構成された本発明によれば、自動車 ンソフトが永杭的に使え、更にコアユニットの作り換え インターフェースソフトの哲換えのみでアプリケーショ カ点数の増加や機能の追加に対する対応が容易になり、 の開発を容易にすることができる。 [0008]

説明する。なお、以下の実施例を説明するための図にお いて、同一機能を有するものは同一符号を付し、その機 3返しの説明は省略する。図1、2に本発明に係わる自 英施例】以下、本発明の実施例を図面に基づき詳細に 動中用制御ユニットの一英施例を示す。

ず。コアユニット 1は、アブリケーションソフトと0S が、第1のメモリである内部ROM2に内蔵されたイ ソフトとインターフェースソフトを演算実行する中央演 のメモリであるRAM(曹換え可能なメモリ) 4及び制 ンターフェースソフト記憶手段、前記アプリケーション 算処理装置(CPU)3、演算結果等をメモリする第2 をパスあるいはLAN等を介して通信する拡張手段5か 的ユニット拡張用のI/O(Input/Output)、メモリ等 (Operating System) を接続するインターフェースソフ [0009] 図1にコアユニット1の概略の一例を示 **も粧成されている。**

[0010]内部ROM2内のインターフェースソフト 手段5は入出力点数の増加や機能の追加に伴う外付けの **追、学習制御等の自動マッチング機能、ポート割付機能** 及び標準自動中I/0処理等(後述する)が含まれてい 5。また、内部ROM2には自動車メーカ等で作成する アブリケーションソフトも犇き込むことができる。 拡張 よ、割込み処理、タスクディスパッチャ、デバッグ機 1/0 (後述する)、ROM等のためのものである。

twork)等の通信検を介して自動即用拡張 I /06及び 106には、ソフトウェア的タイマあるいはハードウェ ア的タイマが存在する。そして、ハードウェア的タイマ **外である。殴2において、図1で示したコアユニット1** の拡張手段5に、バスあるいはLAN(Local Arear Ne 外付けROM7が付加的に連結されている。この拡張I [0011]図2は拡張した場合のユニット構成図の

は、例えば点火時期制御や燃料制御のように、時間を精 **軽に合わせる場合等の高格度制御に用いられ、ソフトウ** ェアタイマはメータのようなラフな制御に用いることが 可能な入出力装置であり、コアユニット1内のCPU3 は電気的に替換え可能なメモリ(フラッシュメモリ、E できる。また、前記拡張I/06は、例えばプログラム が可能なものである。なお、内部ROM、外付けROM でデータをレジスタに書き込み、パルス幅変調 (PW M:PulseWidth Modulation)等の信号を出力すること EPROM)を用いることもできる。

[0012] このようにして、図1に示したコアユニッ ト1のパージョンが例えば4気筒エンジンに対応したも 関御を増加させる場合には、外付けROM7に制御内容 を入力し、かつ、増加した制御量を拡張 1 /06を介し てアクチュエータ(図示せず)に信号を出力するように ひためした、次に、 医れば 6 欠陥 エンジンに 対応 すくへ

[0013]次に、図3、4に本発明の他の実施例を示 ット1がそのまま標準ユニット8となる。拡張年段5は も、センサA、B及びアクチュエータA、B毎のI/O ポートとして使用できる。また、制御ユニット9はコア 及びアクチュエータ個号の増幅を行うパワー回路11か 例である。図3において、拡張なしの場合は、コアユニ す。図3は拡張なしの場合の具体的ユニット構成図の― ユニット 1、センサ佰号の処理を行うBard Filter 10 1/0ポートの一部であり、したかって、拡張手段5

【0014】図4は拡張あり場合の具体的ユニット構成 パス及びデータバスとして用いられる。 上記3つのバス ユニット 1の拡張手段 5 がコントロールパス、アドレス によって自動中用拡張 1/06及び外付けROM7かコ アユニット1と後続され、標準ユニット12か構成され た分のI/0ポートの数を含めたポート数とする必要が 30一例である。図4において、拡張した場合は、コア ている。この場合、I/Oポートとして用いていた拡張 う。そこで、拡張1/06は上記コアユニット1で減っ エータCが増えたとすると、上記3つのポートとセンサ ユニット12、センサC、D及びアクチュエータC用の **手段5が拡張用に使用されるため、センサA、B及びア** ある。ここで、一例として、センサC、D及びアクチュ Bardfilter 1 4 及びパワー回路 15、センサA、B及び A、B及びアクチュエータA、Bを加えた I /Oポート 数が用意されることになる。制御ユニット13は、標準 クチュエータA、BのI/Oポートがなくなってしま アグチュエータA、B用のHard Filter 10及びパワー 回路11から構成される。

[0015] 図5はコアユニット1自体の拡張構成図の -例である。コアユニット1内には、CPU3、内部R OM2、RAM4、拡張手段5を含んだ1/016、A /D17、タイマ18、自動専用拡張1/06及び外付

るためのキャッシュメモリ19が股けられている。すな わち、このキャッシュメモリ19は、次に読み込まれる で、CPU3はわざわざ外付けROM7までアクセスし なくても、キャッシュメモリ19から次に読み込まれる データにアクセスすることができるため、外付けROM き、応答性を向上させることができる。また、これらは けROM7等の外部メモリからアクセスを南遠に奥行す 7 の内容を読み込むのに要する時間を節約することがで 外付けROM7からのデータを予めメモリさせるもの 全てパス20で接続される。

例を示す。図6は、例えば4又は6気筒エンジンに用い 商用対象車における制御対象が4 又は6 気筒エンジン制 多くないため、コアユニット 1のみで対応することがで き、コアユニット1がそのまま標準ユニットとなる。ご 【0016】図6~8は各仕様に応じた拡張構成図の~ Hのみである場合には、制御項目や I /O 数等かさほど の場合、内部ROM2にアブリケーションソフトとイン 5場合の標準ユニット構成の例である。図6において、 ターフェースソフトを告き込んで制御を行う。

[0017] 図7は、図6の構成に故障診断を加えた6 気筒エンジン、あるいは自動変選機関御を加えた6気筒 外付けROM7 (a)を拡張して設け(拡張部1)、当 において、適用対象中が故障診断を加えた6 気筒エンジ ン、あるいは自動変避機師御を加えた6気筒エンジンの 場合は、コアユニット1に自動車用拡張1/021及び 数6気筒エンジンの仕様で必要なポート数の確保、並び 合、ソフトは、迫加分を外付けROM7(a)に記憶さ トを、外付けROM7 (a) にアブリケーションソフト **エンジンの場合の標準ユニット構成の一例を示す。図7** せるか、あるいは内部ROM2にインターフェースソフ に、制御項目増加に伴うメモリの確保を行う。この場 を記憶させることもできる。

前御などの多数の制御を付加した 6 気筒エンジンを搭載 [0018]図8に6気筒統合制御を行う場合の標準ユ ニット構成の一例を示す。適用対象中が、例えば、故障 加え、更に拡張I/022及び外付けROM7を拡張し **参断、自動変速機、定選走行制御、計器類等のインパネ** した甲両、すなわち 6 気筒統合制御の追加機能を増大さ せた中間の場合には、図8に示すように、図7の構成に て対処する (拡張部2)。 なお、図8の場合も図7と同 を、外付けROM7(a)及び外付けROM7にアブリ ケーションソフトを記憶させることができる。後者の場 トが分離されているため、アブリケーションソフトのデ 合は、インターフェースソフトとアプリケーションソフ 策に、外付けROM7及び7 (a) が拡張された場合 は、迫加分を外付けROM7,7 (a) に記憶させる あるいは内部ROM2にインターフェースソフ

[0019]このように、入出力点数の増加やソフトを 含めた機能の迫加に対してすぐに対処できることもコア **特開平07-040794**

ユニット1と拡張手段5の特徴である。図9はコアユニ ットを用いた場合のエンジンAT(Automatic Transmis て、コアユニット 1 内の内部ROM2には、エンジン及 (例えば、点火燃料制御等のハード的割り込み処理) と インターフェースソフトが特き込まれている。また、コ アユニット1には、A/D17の有効利用のため、複数 (MPX) 23か備えられており、スロットル間度TV JAT的的で高速徴算か必要なアプリケーションソフト のアナログ商母を状況に応じて選択するマルチプレクサ さらには、スイッチ個雪(アイドルSW)及び中選Vg マを数多く用いるのでエンジン開御用拡張 1/024か 必要となる。エンジン随御用拡張1/024は、多くの タイマを内蔵したものである。そこで、エンジンの回転 商母POS及び気筒判別同母REFを拡張1/024に p等のパルス個母が入力される。コアユニット 1 でのA A、solBが出力される。また、エンジン関御はタイ 入力し、燃料噴射量 I N J、点火時期 I G N、アイドル 例初15Cを出力する。また、外部ROM7にはエンジ ンAT厨的の底斑斑がオータなアンリケーションソント (例えば、変選点関仰、ロックアップ制御) を告き込む 0、空気流量問時Q a、水攝Tw等の信号処理を行う。 T俐御の出力信号として、変選機の油圧を制御するライ sion) 飼御ユニット構成図の一倒である。図りにおい ン圧PL、安選位配を制御するソレノイド佰号801

[0020]図10はコアユニットを用いた場合のAB ト構成図の一例である。コアユニット1内の内部ROM 2 にはABS倒御川のアブリケーションソフトと、AB フトが笛き込まれている。また、A/D17の有効利用 の絶対中選を求めるためのG(加選度)センサ等の信号 S (Anliskid Brake System) トラクション例約ユニッ S飦節とトラクション街御で必要なインターフェースン のため、複数のアナログ信号を状況に応じて選択するM PX(マルチブレクサ)23が備えられており、自動車 p、非駆動輪側の選度である中輪選(右前)及び中輪選 (左前) 等のバルス信号が入力される。また、コアユニ ット1でのABS钢御の出力個母として、プレーキ圧を 関御する PWM 偶母Doutが出力される。また、トラ クション財狗の機能を付加する場合は、トラクション街 本図示例では、ABS朗御のユニットを作成して標準化 御用拡張 I ╱025を用いて、エンジントルクを低減す を行い、それに拡張してトラクション前御を行うように る。また、外部ROM7にはトラクション旬御のアプリ るためのスロットル開度、点火時期リタード量を出力す 処理を行う。さらに、駆動輪側の選度である中選VS ケーションソフトを悟き込むようにする。このように、

る。図11は、エンジンAT倒御ユニット及びABSト [0021] 次に、超御ユニット間をLAN (Local Ar ca Network)で連絡させた場合の奥筋例について説明す

ラクション制御ユニットの両方のユニットを使用する申 ステム構成図の一例である。図7、図8で示したエンジ 岡において、岡ユニットをLANで連結させた場合のシ ンAT邸御ユニット27、ABSトラクション勧御ユニ ット28符がLAN (データ通信線) 26で連絡されて いる。LAN26と倒御ユニット27のバス129は通 う。また、LAN26と制御ユニット28のパス132 ユニット28に送信し、申輪空転時のエンジントルク低 は通信コネクタ 133、通信回路 134でデータ通信を 行う。例えば、エンジンAT側御ユニット27で海算し たエンジントルク等のデータをABSトラクション制御 域制御(スロットル関度減少,点火時期リタード及び橋 料量減少等)をエンジントルクフィードバックで実行し 個コネクタ 1 3 0、通信回路 1 3 1でデータ通信を行

ト32とを分割し、これら相互間をLAN126で通信 した場合の構成図の一例である。1/0ユニット32は CPU3、内部ROM2、RAM4、拡張手段5を含ん だI/016、A/D17、タイマ18、MPX23及 [0022] 図12は領算ユニット33と1/0ユニッ 0ユニット32ではセンサから入力された信号をフィル タ処理,A/D変換処理等を実行し、その処理データを LAN126を介して荷算ユニット33に送困する。そ して、エンジンAT徴算ユニット33では送回されたデ h、その徴算結果をLAN126を介して1/0ユニッ ト32に送信する。そして、インターフェースソフトを 一夕を用いて燃料噴射幅INJ、点火時期IGN、アイ 合むコアユニット 1内の 1/0 16及びエンジンAT倒 この場合、徴算ユニット33は1/0ユニット32と同 じコアユニット1を用いているため、同様の機能を持っ ている。しかし、資算ユニット33の内部ROM2には ている。LAN126とユニット32、33との通信は **びエンジンAT耐御用拡張1/0124から成る。1**/ 徴算で用いるアプリケーションソフトのみが昏き込まれ **即用拡張1/0124より上配出力信号が出力される。** 6, 139、通信回路137, 140は各制御ユニット ドル制御盘ISC、変選機のライン圧PL等が領算さ , 140で英行する。また、上記通信コネクタ13 それぞれ通信コネクタ136, 139、通信回路13 のCPUの命令で動作する。

ースソフトという I ∕ O 処理ソフトを内部ROM2に告 **を込み、一つのユニットでⅠ/0ユニット32を構成し 例御ユニットやエンジンAT倒御ユニット等に入力され** 32に一本化して入力することができ、1/0の共用化 [0023]このように、本図示例では、インターフェ たものであり、したがって、例えばABSトラクション 5、同じ佰号(オーバーラップ佰号)を1/0ユニット を図り、部品点数の削減を可能とする。

[0024]以下、前述のインターフェースソフトの概 略を実施例により説明する。前述したように、インタ・

フェースソフトとは、05とアプリケーションソフトと の仲介をなすソフトである。そのため、アブリケーショ ンソフト提供メーカは0 Sを考慮することなくアプリケ ―ションソフトを作成することができ、ソフト開発が容 [0025] 図13から図17に制御ユニットによる入 5個号処理の比較を示す。図13及び図14は従来の空 気流量センサ信号の処理構成である。図13は空気流量 Qaを検出及び演算する際にホットワイヤ(HW)式空 は、まず 制御ユニット38に設けられたハードフィル タ138で信号のノイズ除去を行い、シングルチップマ て、A/D変換器240で変換された個号は関数A40 で空気流量Gaに変換される。また、図14のように吸 気管内圧力計を用いた場合は、制御ユニット39に設け られたホットワイヤ (HW) 式空気流量計とは異なるハ ルチップマイコン 1 4 1のA/D変換器 2 4 1に入力さ hる。そして、A/D変換器24.1で変換された個号は イコン140のA/D変換器240に入力される。そし -ドフィルタ139で信号のノイズ除去を行い、シング 気流量計を用いた場合である。上記空気流量計の信号 関数B41で空気流量88に変換される。

【0026】図15はインターフェースソフト内蔵の内 第R O M 1 4 3 を搭載した標準ユニット 4 2 の入力信号 処理構成の一例である。標準ユニット42を用いた場合 は、図13及び14で示した吸気質内圧力計あるいはH つまり、内部ROM143のインターフェースソフトが 上記2つのセンサのフィルタリング及び関数処理を実行 OM 143のインターフェースソフトによる処理が行わ りにディジタルフィルタ243を用い、ソフト的にそれ 42のA/D変換器142でディジタル化され、内部R れる。次に、上記ハードフィルタ138,139の代わ るようにしておく。更に、各センサ信号によって異なる *V K1:次数, V:ディジタル化した電圧倡号)を するからである。まず、入力される居号は標準ユニット それのセンサ信号に対応したカットオフ周波数を設定す 特性を持つ関数の代わりに高次関数43(Qa=SKi 用いて各信号に対応した次数Kiを設定し、それぞれに W式空気流量計のいずれのセンサにも対応可能となる。 う。これにより各種のセンサ佰母入力をソフト的に切り ソフトにより、前記関数A及びBの特性を高次関数43 替えることが可能となる。すなわち、インターフェース で作出することができ、Qaは同一のポートでどのよう 対応した関数を作り、資算して空気量G8の算出を行 な方式でも算出することができる。

よ、センサ佰号の理類によって可変抵抗等を変化させる 【0021】図16は可変式ハードフィルタを用いた人 とともに、カットオフ周波数を変えて信号に対応したフ I ルタリングを実行する町変式ハードフィルタもも、A /D変換器147、インターフェースソフト(陶数A, 力倡号処理構成の一例である。制御ユニット144に

同号に対応した関数、例えばHW式空気流量計式なら間 うな演算関数が備えられており、セレクタ47により入 カセンサ佰号に対応した陽数を選択して空気量ももが算 5。そして、標準ユニット244内にそれぞれのセンサ 数A45、吸気暂内圧力計式ならば関数B46というよ まず、入力される筒号を上記可変式ハードフィルタ44 日毎)から成る標準ユニット244が設けられている。 でノイズ除去を実行し、標準ユニット244に入力す Hされる。

| 8 において、各種のセンサ (HW式空気流量計, 吸気 [0028] 図17は使用センサ分にハードフィルタを 質内圧力計)に対する入力端子及びそれぞれに固有のハ ードフィルタ48,49を備えておき、標路ユニット 1 49内に備えた母数A45,国数B46,セレクタ47 指えた人力信号処理構成の一例である。 傾御ユニット により空気量Qaを算出する。

【0029】図18はインターフェースソフトによるポ は標準ユニット50を用いたHW式空気流量計式の6気 す。図18(a)の場合、HW式空気流量信号Qa,,エ /ジン回転数個号Ne,水嶺個号Tw,酸素センサ信号 筒エンジン制御、図18(b)は吸気質内圧力計式の4 カポートとして割り当てられる。この騒弊ユニット50 INJパルス佰号か6気筒の6本から4気筒の4本に減 少するため、2本のポートが余る。しかし、吸気管内圧 一ト割当機能の一例を示す機略図である。図18(ね) 0.2等の個号が入力ポート、また、6気筒分の燃料噴射 信号INJ, DIST (Distributor) 方式の点火信号 : GN及びISC (Idle Speed Control) 等の信号が出 **力計を使用するエンジン制御では、空気流量を硝算する** 際、吸気福補正、排圧補正が必要となる。そこで、出力 ポートで余った 2 本を上記吸気温及び排圧の入力ポート として用いれば有効な標準ユニット50使用が実現でき C、吸気管内圧力値母 P m が入力ポートに割り当てられ ている。このような、ポート割当機能を爆幣ユニット5 の個号取り込みに関しては、マルチプレクサ等を標準ユ る。なお、図18(b)では、空気流量信号のaに代え 0のインターフェースソフトに持たせることによりユニ ットの有効利用が実現できる。また上記吸気温及び抹圧 気筒エンジン制御の入出力ポート割当構成の一例を示 を図18 (b) 仕様の4気筒エンジンに用いる場合は、 ニット50との間にハード的に組み込み、切り替えるこ とで柔軟性を持たせる。このようにエンジン仕様及びセ ンサ仕様が違った場合でもインターフェースソフトのポ --ト韶当機能により効率の良い入出力個号変更が可能に

力信号の組み合わせ処理の構成図の一例である。組み合 [0030] 図19はインターフェースソフトによる人 わせ処理とは、センサ等からの入力信号の組み合わせに -フェースソフト57で奥行する。例えば、エンジン回 より別の信号を生成する処理であり、この処理をインタ

特開平07-040794

や、また、エンジン回転51とタービン回転54から処 団Bを介してターピントルク 5 5 及び出力軸トルク 5 6 を讽算する。このような処理機能をインターフェースン れた、前記ギャ比信号等のデータにアクセスすれば、何 うな組み合わせ処理の実行により、今後の倒御項目増大 フト57に挤たせることにより、ユーザーつまりアプリ ケーションソフト 肌発倒が R. A.Mの名アドレスに格納さ 時でも自由にその内容をみることが可能となる。このよ による必要パラメータの増加が生じた場合でも新たなセ 〒5 1 と中選5 2 から処理Λを介してギャ比佰号5 3 ンナの過加なしで対応が可能となる。

ン町的では、笠気量センサ,水脂センサ,スロットル間 【0031】図20はインターフェースソフトによるセ 算を施して、初めてアプリケーションソフトで使用可能 ンサ入力時の徴算処理機能の一例を示す。現状のエンジ **食センナ及びクランク角センサの宿号A/D変換あるい** はパルス数計剤等の同号処理を施した値が直接アプリケ ーションソフトで用いられるわけではない。例えば、空 気量センサからの間号は、一度テーブルを参照し補悶計 な吸入控気量指数QAを求めることができる。このよう に、アプリケーションソフトで必要な信号、すなわち吸 水温格子検索用TWK, スロットル閉度ADTVO, T ておくことによりソフト開発が容易になる。また、前記 O, TVO1S及びエンジン回転数LNRPM, HNR PM, MNR PMの各データをRAMに格約しておくこ とにより、これらアプリケーションのデータは、RAM MNR P Mの資料をインターフェースソフト 5 8 に設け 入空気量指数QA,吸入空気量定数QS,水漏TWN, VO1S及びエンジン回転数LNRPM, HNRPM 吸入空気量指数QA,吸入空気量定数QS,水温TW N. 水温格子検給用TWK, スロットル間度ADTV にアクセスすれば何時でもみることができる。

法、つまりソースリストのフローの契施例を示す。図2 1はインターフェースソフトによる時間割付の一例を示 ず概略図である。自動中倒御にはさまざまなタイミング **れぞれがある一定周期で動作している。C音語記述では** 的間管理及びタイミング割付が困難であるため、自動的 て起動する各国物のタスク及びサブルーチンがあり、そ **割当て機能をインターフェースソフトにもたせた。エン** ジン街部アグリケーションソフトにはクランク角度割り 込み、点火パルス発生、インターパル割り込み、エンジ ン回転数収り込み処理といった各組の起動タスクが存在 しており、それぞれが固有の要求タイミングを持ち、そ れに見合った回転または時間周期で起動している。また 他のAT倒御やABSIII 御アプリケーションソフトに対 しても同様である。このようにさまざまな嬰状タイミン グがある各アブリケーションソフト及び内部の各タスク をインターフェースソフトの自動的割当て処理機能にお いてそれぞれの要求タイミングを判断してマイコンの起 【0032】次に、インターフェースソフトの記述方

ミングでの処理内容としてベクタアドレスの割付を自動 動局開設定に必要なタイマ等の初期設定さらに要求タイ 的に行うようにしている。

ソフトにおいて、タスク起動タイミングの記述形式を例 としてJOB=要求タイミングとした場合に、JOBの 【0033】図22は図21の詳細な制御フローチャー 内容が何であるかを各起動タスクごとに判別プログラム を動作させ、JOB=A(59)ならマイコンへ2mg **刷処理としてベクタアドレスの割付60をする。JOB** =B(61)なら上記と同様にマイコンへ4m8周毎処 、の一例である。たとえばC言語記述アプリケーション **周期処理タイミングの初期設定を行い、さらに2ms周 関タイミングの初期設定を行い、また4ms 周期処理と** してベクタアドレスの割付62を行い、JOB=REF (65)ならば回転周期処理の初期設定をマイコンに行 い、起動タスクのペクタアドレスを割り付ける(6 ゙

た独自のタイミングたとえば20ms 周期とするとそれ 6)。また、JOB=X (63)ならばユーザが要求し に応じたマイコンへの初期設定及びベクタア ドレスの割 付64を行うようにしている。このような機能をインタ **ーフェースソフトに持たせておくことで自動中制御ソフ** トがC吉都紀述に移行した際の時間管理及びタイミング 別付の問題を回避することができる。

り込みレベル割付のフローチャートの一例である。 基本 [0034] 図23はインターフェースソフトによる割 **的には時間割付のフローと同様に、各制御内の起動タス** クからの現状割り込みアベルのブベルが何であるか判別 **に、マイコンへの優先原位の初期設定を自動的に行うよ** うにしている。要求レベルがL7かを判断67し、ye 位散定68を行う。以下同様に、要求レベルを判別(6 Sならば各対象JOBを割り込みレベル7として優先順 数多くのタスクが個々のタイミングで起動する中で、各 タスクの割り込みレベルの設定は、リアルタイム性が虹 **税される自動車側御では重要な役割をもち、 C 曽稲記述** 化を図った場合には不可能な割り込みレベルの記述が可 して、そのラベルに応じて優先原位を各タスクへ割当 4)を行う。各倒御アプリケーションソフトにおいて、 9, 71, 73) し、各レベル設定 (70, 72, 7 能となる。

[0035] 殺1はタイミング及び優先順位割付のため スク起助タイミングをピックアップして予め仕様化して **おき、それを各例彻のソフトを開発するときにタスクに** のC韋語記述仕様である。自動中制御に必要な大体のタ し、タスクの先頭に例えば 2 m s 周期のタスクで優先順 位7ならばラベルA,L?を、4ms周期のタスクで優 先順位5ならばラベルB,L5を記述すればよい。また (アプリケーションソフト開発倒) 設定用のラベルも備 えることで要求タイミングを自由に設定できる。このよ 要求するタイミング及び優先順位を仕様の中から選択 回転周期のラベルも数個設けておく。さらに、ユーザ

うに、アブリケーションソフトはそのままで、インター フェースソフトにおいてマイコンへの初期設定値の決定 及び割付を行うこと、つまりインターフェースソフトの 改良を行うだけで各種マイコン(CPU)への対応が容

易に行うことができる。 [0036] [表1]

8 12-31

松	2 m s J O B設定 4 m s J O B設定 X m s J O B設定(ユーザー設定用) 回転 J O B設定	優先順位レベル1を設定 優先順位レベル6を設定 優先順位レベル5を設定
ラベル	А В Х В Э Т Т Т	L 7 L 6 L 5 :
項目	タイミング	割り込みレベル

[0037] さらに、インターフェースソフトの処理機 **第として対応マイコンで最適と考えられる入出力ポート** の割付けを行う。標準ユニットを用いて制御対象の異な った自動車制御を行う場合には、入出力ポートは標準ユ ニットにより数が限られており、4気筒と6気筒の制御 め、最適入出カポートの割当てのバターンを設定してお には別々の入出力ポートの割当てが要求される。そのた き、自動車制御ソフトが、どのタイプを制御しようとし ているかを判断してポート割当てのパターンを自動的に 5。 閉御対象に対応した最適な入出力ポートの割当てを **磁択し、マイコンへの入出力信号を決定するようにす** それぞれバターン化して備えておく。

決定のフローチャートの一例である。まず、制御対象が 4気筒エンジン制御ならば、次に空気量湖定の方式を判 [0038]図24は液磨入出カポート初当のパターン 別して空気流量計式ならばパターンAを、吸気質内圧力 計式ならばパターンBを割当て、6 気筒エンジンの制御 においてもパターンC、パターンD等をそれぞれの測定 **方式のタイプを判別し、それに応じて割当てを行う。こ** トの割当てをパターン化することで、自動的に倒御対象 れにより共通ユニットを用いての有限である人出力ポー こ対応した割当てが可能となる。

[0039] 図25はRAM領域内における多用データ hたエンジン, AT, ABS制御用のデータかそれそれ 確保されるが、その中で2つ以上の制御内で使われる使 -括集団配配の一例である。RAM領域には独自開発さ これによりペースレジスタを活用することでプログラム OR OM容屈を減らすことができる。また、各制御アプ 用頻度の高いデータを多用データとして集団配置する。

リケーションソフト間向志での通信いわゆるデータ協供 を行うにしても多用データとして一語配図しておいた方 が1プロックでデータ参照が可能となる。

トを用いて、その流れを説明する。図26において、ま ず、エンジン制御に使用するために宜君された変数が宜 苔の原香にRAM領域に割り付けられる75。ここでR AM領域内の多用データ割当て領域の先頭アドレスを# ADDとしておき、AT制御で宜售されている変数にエ T郁御、ABS郁御のC吉喆記述アプリケーションソフ ドレスADDをインクリメントする。すべてのAT朗仰 の宣言変数をエンジン制御変数と照らし合むせ終わるま ノジン邸御変数と画-変数がないが破祭76する。周-[0040] 図26は多用データー揺配匠のフローチ 変数が見つかればそのデータをADD番地に格納し、 一トの一例である。独自に開発されたエンジン制御、 で繰り返す。

ABS倒御において宜言した変数についてエンジン制御 ータとして配置されていないかを判別し、なければAD D番地にそのデータを格納して、上記と同様にADDを インクリメントしながら全ての変数の照合が終了するま 見つかれば、まず多用データ割当て領域にすでに多用デ 及びAT制御変数に同一変数がないか検索78を行い、 [0041] AT閉御変数中を検索終了後17、次に で繰り返す。

領域内に多用データとして一括して配置することが可能 [0042] このような宇原を経ることにより、RAM となる。また、エンジン制御だけをみても数多くの起動 タスクから構成されており、各タスクにおいて数個の使 **用変数が宣言されている。このように、1つの制御中に** **内**刚平07-040794

も使用頻度の高いデータが多く合まれている可能性があ り、同様の簡単なフロー構成を用いることにより、制御 間のみならず各角御内のタスク間における多用データの 保釈及び一括配配をも行うことができる。

[0043]次に、監視プログラムにより異常な制御簡 **所を殆凡するための一契施例について説明する。図27** は監視プログラムを利用した異常箇所発見のフローチャ ートの概略図の一例である。図27において、自動中制 **初の各的切断並びに各タスクには、特有のエラーコード** が散定してある。監視プログラムは、エラーコードが発 生した時にコード観別により、エンジン制御部か、AT **例御語か、あるいはABS舶御部かを特別して、それぞ** 九の原御部に設定されたフェール対策を起動するように してフェールセーフを行う。また、このようなエラーコ ードを各制御師とその中の各タスクに殺定しておくこと れば、どの俐御アプリケーションソフトにおける、どの により、【つにした自動中的街の駅大なアンリケーショ タスクにおいて異常が発生したか等のパグ要因の発見を ンソフトのデバッグを行う際に、エラーコードを識別す 容易に行うことが可能となる。

[0044] さらに、インターフェースソフトにおいて スクには、タスク起動時に起動フラグをたてるフラグ操 う。そうして監視プログラム内に設定された各タスクの **始自団角した各世街アプリケーションンフトの各々の夕** スソフトには、フラグ操作プログラムによる起動フラグ をある一定周期で監視する監視プログラムが設けられて いる。この監視プログラムは、各タスクの処理時間を資 昇及び哲理を行うとともに、 CPU負荷本の診断をも行 **規定処理時間内にタスク処理が終了しなかったり、ある** いは各個御に割り当てられた C P U 負荷率を越えた場合 に、予め股定された離別可能なエラーコードを出力させ **祝プログラムを利用して異常箇所を発見するための手法** 作プログラムが付股されている。また、インターフェー **ールセーフソフト、監視内容を拡張した起動タスク監視** としては、例えば、ソフトウェアタイマを引用したフェ プログラム、ウォッチドッグタイマを用いたマクロ処理 てフェールセーフ対策やデバッグ処理に活用する。 時間監視の方式などが考えられる。

において、複数のタスクを優先閉位が高い顔に並べてお 【0045】 前記ソフトウェアタイマを引用したフェー ルセーフソフトは、たとえば、その処理時間監視タスク き、現行中のタスクの処理時間監視用のタイマをインク リメントする動作を行い、次に政行中のタスクが規定の 処限時間内に終了しているかを聞くるもので、予め設定 時間は監視プログラムの起動周期をもとにしてその整数 **現定時間を超過していれば各タスク特有のエラーコード** を出力するようにしたものである。なお、前紀規定処理 倍で決まるため、起動周期を可変させることにより何m しておいた規定処理時間とタイマのデータを比較して、 3 にでも股定することができる。

[0046] 監視内容を拡張した起動タスク監視プログ 御による C P U 負荷本の監視を行えるようにしたもので ラムは、たとえば、1つのソフト上に各制御のプログラ ムがあり、それらのタスクを実行した際に監視プログラ ムが英行タスクの処理時間の徴算及び管理、並びに各制 ある。この起動タスク監視プログラムには、例えばエン ジン制御、AT関御、共通制御等の各制御によるCPU このプログラムは、CPUに対する各制御の負荷をカウ ばその制御部中の各タスクの優先原位の高いほうから処 ントし、CPU負荷率の過占有として各制御関係のタス ク(仕事)が全体の70%を超えるとエラーとするよう な負荷卒エラーの取り決めを行っておき、各制御部に用 **意されたカウンタが70以上かを診断して、異常があれ** 理時間を診断し、異常タスクを指すエラーコードを出力 ENGINE, AT, COMMON等の各関御部のカウ 負荷率を監視するためのプログラムが備えられている。 ずる。負荷帯エラーが発生しなくてもCPU負荷率は、 ンタから知ることができる。

【0047】ウォッチドッグタイマを用いたマクロ処理 がクリアされないと、オーバーフローにより強制割り込 芽間監視の方式は、たとえば、処理に異常が生じてウォ ッチドッグタイマのオーバーフロー設定時間内にタイマ (NMI)が発生して監視プログラムが動きだし、異 ログラムの格納されているアドレスとで比較し、異常発 情発生の直前のスタックポインタ(SP)をもとに各プ このように、ウォッチドッグタイマ方式は、プログラム 規模は小さくて済むが、各タスクの状態を大雑杷にしか 監視できない。しかし、パグの発生しにくさではウォッ 生のタスクを指すエラーコードを出力するものである。 チドッグタイマ方式の方が疑ましい。

[0048] 次に、インターフェースソフトに記述され、 ンターフェースソフトに基本処理プログラムの組み込み り込みプログラム93及びさまざまな周波数で使用され る各フィルタの徴算プログラム94を関数化し、さらに るリストに係わる更施例について説明する。図28はイ **単選禎算91,ターピン回転数92,スロットル関度取** LAN等の通信用の組み込みソフト95も関数化してイ 関数化の一構成例である。エンジン回転取り込み90, ンターフェースソフトに持たせた。

[0049] 図29は一般的自動中制御用変数の定義及 び宣音の関数化の一例である。膨大なフラグ変数や入出 力間号等の I /O変数をインターフェースソフトに定義 及び宜替してヘッダファイルとして関数化させる。フラ グ変数等は最適の言語となるように、翌宜君さらにピッ トフィールドを考慮して定義しておく。図30は組み込 み関数の仕様の一例である。仕様化しておくことで簡简 ソフト団発団がヘッダファイルをインクルードし、定義 済みの変数を利用して倒御を構成することができ、また 制御工程で信号取り込みや預算が生じた場合には、先に 述くた話本処理関数の中から必要な処理関数を呼び出す

ようにすれば良い。これらの基本処理プログラムの関数 化,一般的自動車制御用の1/0,変数を定費したヘッ ダファイルの関数化により、自動車制御ソフトの開発を **商略化することができる。すなわち、1/0処理等によ** りソフトウェアを標準化し、それを仕様費としてアブリ ケーションソフト開発の(ユーザー)に投示すれば、ユ -ザー側は、その仕様曹を基に必要な機能ソフトをサブ ルーチン等により追加または変更することができ、槌能 アップを図ることができる。

段の一例である。各制御のアプリケーションソフトから 【0050】図31は基本処理関数の処理選択機能の手 の基本処理闘数の呼出しをする時に、引数により処理条 件を選択する例を示す。例えば、エンジン回転取り込み 関数には、回転数徴算方式や取り込みサンプリング時間 さらにパルス湖定センサに関しても各隅の手段が存在す る。これらの手段に対応したプログラムをインターフェ —スソフトに持たせておき、開発側が引数により手段を 選択し、これを記述することで開発側の要求を違成する カットオフ周波数,次数等をわたせばそれに対応したフ ことができ、基本処理関数の汎用性が向上する。同様 に、フィルタの演算においても引数にフィルタタイプ。 イルタを散定できる。

[0051]以上、本発明の実施例を詳述したが、本発 明は、前記実施例に限定されるものではなく、特許請求 の範囲に記載された本発明を逸脱することなく種々の設 計変更を行うことが可能である。 [0052]

明によれば、自動車制御にシングルチップマイコンを用 [発明の効果] 以上の説明から理解されるように、本発 いた場合でも、入出力点数の増加や機能の追加に対する 対応が容易になり、インターフェースソフトの書換えの り、しかも、コアユニットの作り換えが不必要となるた め、プログラムを含めた制御ユニットの関発が容易にな みでアプリケーションソフトが永続的に使用可能とな

【図面の簡単な説明】

[図1] コアユニットの概略図。

【図3】 拡張なしの場合の具体的ユニット構成図。 【図2】拡張した場合のユニット構成図。

[図4] 拡張あり場合の具体的ユニット構成図。

【図5】コアユニット自体の拡張構成図。

【図6】4,6気筒エンジンに用いる場合の標準ユニッ 、新馬因。

【図7】故障診断を加えた6気筒エンジンあるいは自動 **交速機制御を加えた 6 気筒エンジンの場合の標準ユニッ** ·森成区。

【図 9】 コアユニットを用いた場合のエンジン・A T制 【図8】6気筒統合制御の場合の標準ユニット構成図。

御ユニット構成図。

10 v-v-

[図10] コアユニットを用いた場合のABS・トラク ション無御リニット権収配.

【図11】LAN(Local Area Network)を用いた場合 のシステム構成図。

[図12] ヴ昇ユニットと1/0ユニットをLANで洒

【図13】従来の空気流量(HW式)センサ信号の処理 **育した場合の構成図。** 区位置 [図14] 従来の空気流量(吸気管内圧力式)センサ信 号の処理情成図。 【図15】 インターフェースソフト内裁内部 R O M 桁 截 した標準ユニットの入力個号処理構成図。

【図16】 可変式ハードフィルタ を用いた入力信号処理 新成図。

【図17】使用センサ分にハードフィルタを備えた人力 医母処理構成図,

【図18】 インターフェースソフトによるポート割当機 [図19] インターフェースソフトによる人力信号の組 筋の敵略図。

[図20] インターフェースソフトによるセンサスカ時 み合むせ処理の構成図。

の海算処理機能を示す図。

[図21] インターフェースソフトによる時間割付の概

[図23] インターフェースソフトによる割り込みレベ 【図22】時間割付の詳細関御フローチャート。

[図24] 最適人出力ポート割当のパターン決定のフロ ル割付プログラムのフローチャート。

[図25] RAM領域内における多用データー括浜団配 ×

【図27】監視プログラムを利用した異常箇所発見の簡 [図26] 多用データー揺配面のフローチャート。 単なフローチャート、

[図28] 基本処理プログラムの組み込み関数化の構成 [図29] 一般的自動車制御用変数の定義及び宣昌の関

[図30] 組み込み関数の仕様を示す図。 数化の図。

[図31] 基本処理関数の処理遊択機能の手段を示す

(符号の説明)

1…コアユニット、2…内部ROM、3…CPU (中央 リ)、5…拡張手段、6…拡張1/0、7…外付けR0 資昇処型設置)、 4…RAM (費を換え可能なメモ

[四4]

[図31] N *(A.B.C) 祖字張政 [[8]]

標準ユニット METHROM 自動車用 拡張 1.70

[图1]

(88)

11 10-31

特閥平07-040794

特加平07-040794

RAM語域

多用データ

エンジン田・データード

914

284

ABS用データ <

AT用データ

[図25]

[図]

1,~=+7=

÷ ÷

吸気管内圧力計

Hard Filter

[図20]

[図18]

[图19]

アプリケーションソフト 水温 (済算:判定用) ▼ TWN スロットル副反 ADTVO (10bit) TVO1S (8bit) 吸入空気量指数 → OA 吸入空気量定数 →▼ OS **水溜格子檢索用** ▼ IWK エンジン回転数 (12.5rpmbii) HNRPM (25pmbii) MNRPM (56pmbii) / 58 空汽盘定数变换 QAXRQAVR# + QA(-4ms)X(1-RQAVR#) RQAVR# : 空汽星の平均串 - 次四数数数 (TWN-10)X1.6 データ長変換 (10 → 8bit) 回転数 分解能变换 清草 ・エンジン回転 NRPM (12.5pm/bit) インターフェースソフト テーブル参照 (補間計算付) テーブル参照 (権間計算付) スロットル開度 センサ ADTVO ဗျ 水温センサ TW 空気量センサ クランク角 一 センサ

[🖾 2 1]

対象タスクを 割込みレベル7として 優先期位設定

LEVEL=17

対象クスクを 割込みレベル6として 優先順位設定

LEVEL=L6

89 |

対象タスクを 割込みレベル5として 優先顧位設定

LEVEL=L5

対象タスクを 割込みレベル4として 優先額位設定

LEVEL=L4

END

特開平07-040794

(國23)

START

特限407-040794

特刚平07-040794

既別記号 庁内整理番号 (51)Int.Cl.4 G O G F 15/78

レロントスーツの枕を

技術表示箇所

茨城県日立市大みか町七丁目1番1号 株式会社日立製作所日立研究所内 (72) 発明者 片山 16 (72)発明者 禁永 茂台 茨城県日立市大みか町七丁目1着1号 株 式会社日立製作所日立研究所内