COMP4620 – Advanced Topics in Al Partially Observable Markov Decision Processes (POMDP) 1/3

Hanna Kurniawati

http://users.cecs.anu.edu.au/~hannakur/ hanna.kurniawati@anu.edu.au

Topics

- Lecture 1: What is POMDPs?
- Lecture 2: How do we solve POMDPs?
- Lecture 3: Applications of POMDPs in Robotics & Cyber

What is POMDPs?

- Intuition
- Formal definitions
- Beliefs

The problem

What should robots/agents do now, so that they can get good long-term returns, despite various types of uncertainty

Intelligent Agent: Types of environments

- Fully observable vs. partially observable
 - Does the agent know the state of the world exactly?
- Deterministic vs. non-deterministic
 - Does an action map one state into a single other state?
- Static vs. dynamic
 - Can the world change while the agent is "thinking"?
- Discrete vs. continuous
 - Are the sets of actions & percepts/observations discrete?

MDP: Non-Deterministic & Fully Observable Partially

- 1. Starts from the initial state.
- 2. Move according to the policy.
- 3. The agent moves to a new state.

The new state the agent ends up may be different in different runs.

4. Repeat to 2 until stopping criteria is satisfied (e.g., goal is reached)

Partially Observable Markov Decision Processes (POMDPs)

Strategy/policy: mapping from beliefs to actions.

What is POMDPs?

- ✓ Intuition
- Formal definitions
- Beliefs

POMDP Model

- Main components:
 - State space (S)
 - Action space (A)
 - Observation space (O)

POMDP Model

Not known

- Main components:
 - State space (S) 5
 - Action space (A)
 - Observation space (O)
 - Transition function (T)
 - T = P(s' | s, a)
 - Observation function (Z)
 - Z = P(o | s', a)
 - Reward function (R)
 - R(s, a)

POMDP Model

- Belief: distribution over the state space.
- Strategy/policy: mapping from beliefs to actions.

Belief can also be represented as parametric distributions

taken from Statistical Inference by Casella and Berger

Discrete Distributions

distribution	pmf	mean	variance	mgf/moment	
$\operatorname{Bernoulli}(p)$	$p^x(1-p)^{1-x}; \ x=0,1; \ p\in(0,1)$	p	p(1-p)	$(1-p)+pe^t$	
Beta-binomial (n, α, β)	$\binom{n}{x} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(x+\alpha)\Gamma(n-x+\beta)}{\Gamma(\alpha+\beta+n)}$	$\frac{n\alpha}{\alpha+\beta}$	$rac{nlphaeta}{(lpha+eta)^2}$		
Notes: If $X P$ is binomial (n, P) and P is $beta(\alpha, \beta)$, then X is $beta$ -binomial (n, α, β) .					
Binomial(n, p)	$\binom{n}{x}p^{x}(1-p)^{n-x}; \ x=1,\ldots,n$	np	np(1-p)	$[(1-p)+pe^t]^n$	
${\bf Discrete~Uniform}(N)$	$rac{1}{N};\;x=1,\ldots,N$	$\frac{N+1}{2}$	$\frac{(N+1)(N-1)}{12}$	$\frac{1}{N}\sum_{i=1}^{N}e^{it}$	
Geometric(p)	$p(1-p)^{x-1}; p \in (0,1)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$rac{pe^t}{1-(1-p)c^t}$	
Note: $Y = X - 1$ is negative binomial $(1, p)$. The distribution is memoryless: $P(X > s X > t) = P(X > s - t)$.					
${\bf Hypergeometric}(N,M,K$	$\left(\frac{\binom{M}{x}\binom{N-M}{K-x}}{\binom{N}{K}};\;x=1,\ldots,K ight)$	$\frac{KM}{N}$	$\frac{KM}{N} \frac{(N-M)(N-k)}{N(N-1)}$?	
	$M - (N - K) \le x \le M; \ N, M, K > 0$				
Negative $Binomial(r, p)$	$\binom{r+x-1}{x}p^r(1-p)^x;\ p\in (0,1)$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$	$\left(rac{p}{1-(1-p)e^t} ight)^r$	
	$\binom{y-1}{r-1}p^r(1-p)^{y-r};\ Y=X+r$				
$\operatorname{Poisson}(\lambda)$	$\frac{e^{-\lambda}\lambda^x}{x!}$; $\lambda \ge 0$	λ	λ	$e^{\lambda(e^t-1)}$	
Notes: If Y is gamma (α, β) , X is Poisson $(\frac{x}{\beta})$, and α is an integer, then $P(X \ge \alpha) = P(Y \le y)$.					

"Best" policy

 Maps each belief to an action that satisfies the following objective function

$$V^*(b) = \max_{a \in A} \left(\sum_{s \in S} R(s, a)b(s) + \gamma \sum_{o \in O} P(o|b, a)V^*(b') \right)$$

Expected immediate reward

Expected total future reward

b': next belief after the system at belief b performs action a and observes o

 γ : discount factor, (0,1)

Two notations from previous slides

- The next belief b'
- The function P(o|b,a)
 - Notice that the definition in the observation function is conditioned on the **resulting** state after the action is performed, while in this notation, b is the belief **from where** the action is performed

Formulation for b' and P(o|b,a)?

- Mathematically,
 - Use Bayes rule

$$b'(s') = P(s'|o,a,b)$$

$$= \frac{P(o|s',a,b)P(s'|a,b)P(a,b)}{P(o|a,b)P(a,b)}$$

$$= \frac{P(o|s',a,)\sum_{s}P(s'|a,s)b(s)}{\sum_{s''}(P(o|a,s'')\sum_{s}P(s''|a,s)b(s))}$$

The denominator P(o|a,b) is essentially the normalizing factor that makes b' over the state space sums to 1.

What is POMDPs?

- ✓ Intuition
- √ Formal definitions
- Beliefs

- Intuitively, divide into 2 steps
 - Compute the next belief after an action is performed
 - Adjust the belief based on the perceived observation

- Intuitively, divide into 2 steps
 - Compute the next belief after an action is performed
 - Adjust the belief based on the perceived observation

- Intuitively, divide into 2 steps
 - Compute the next belief after an action is performed
 - Adjust the belief based on the perceived observation

- Intuitively, divide into 2 steps
 - Compute the next belief after an action is performed
 - Adjust the belief based on the perceived observation

- Represent distributions as particles.
 - Basically as a set of single states.
 - Can be weigthed or unweighted
 - The number of sets at a certain region, represents the probability.

0.2	0.0	0.1
0.0	0.0	0.0
0.3	0.0	0.4

Recall 2 steps:

- Effect of action a: For each particle s, compute next particle by sampling from transition function T (i.e., P(s'l s, a))
- Effect of observation o:
 - Assign weight to the samples, based on Bayes rule on Z
 (i.e., P(o I s, a)P(s))
 - Resample based on the weight

Two steps:

 Predict next state, based on dynamics. For each particle s, compute next particle by sampling from the transition function

Two steps:

- Predict next state, based on dynamics. For each particle s, compute next particle by sampling from the transition function
- Update based on data/measurement
 - Assign weight to the samples based on the measurement (o) perceived:

$$w(s) = P(o l s) P(s)$$

• Two steps:

- Predict next state, based on dynamics. For each particle s, compute next particle by sampling from the transition function
- Update based on data/measurement
 - Assign weight to the samples based on the measurement (o) perceived:

$$w(s) = P(o | s) P(s)$$

• Resample based on the weight to get a list of (unweighted) particles that represent the new distribution.

What is POMDPs?

- ✓ Intuition
- √ Formal definitions
- √ Beliefs

Next: Solving POMDPs