BT5110: Tutorial 3 — Functional Dependencies

Pratik Karmakar

School of Computing, National University of Singapore

AY25/26 S1

Example Relation,
$$R = \{A, B, C\}$$
 and $\Sigma = \{\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}\}$

The column in red decides the color of the row: The rows having same values in the red column, have same color.

Α	В	C
a1	b1	c1
a1	b1	c1
a2	b2	c2
a2	b2	c2
a3	b3	c2
a3	b3	c2
a4	b1	c1
a4	b1	c1
a5	b2	c2

Example Relation,
$$R = \{A, B, C\}$$
 and $\Sigma = \{\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}\}$

The column in red decides the color of the row: The rows having same values in the red column, have same color.

Α	В	С
a1	b1	c1
a1	b1	c1
a2	b2	c2
a2	b2	c2
a3	b3	c2
a3	b3	c2
a4	b1	c1
a4	b1	c1
a5	b2	c2
(A) -	→ { <i>A</i> ,	B, C}

Example Relation,
$$R = \{A, B, C\}$$
 and $\Sigma = \{\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}\}$

The column in red decides the color of the row: The rows having same values in the red column, have same color.

Α	В	C
a1	b1	c1
a1	b1	c1
a2	b2	c2
a2	b2	c2
a3	b3	c2
a3	b3	c2
a4	b1	c1
a4	b1	c1
a5	b2	c2
{ <mark>A} −</mark>	→ { <i>A</i> ,	<i>B</i> , <i>C</i> }

Α	В	С
a1	b1	c1
a1	b1	c1
a2	b2	c2
a2	b2	c2
a3	b3	c2
a3	b3	c2
a4	b1	c1
a4	b1	c1
a5	b2	c2

Example Relation,
$$R = \{A, B, C\}$$
 and $\Sigma = \{\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}\}$

The column in red decides the color of the row: The rows having same values in the red column, have same color.

Α	В	С
a1	b1	c1
a1	b1	c1
a2	b2	c2
a2	b2	c2
a3	b3	c2
a3	b3	c2
a4	b1	c1
a4	b1	c1
a5	b2	c2
{ <mark>A} −</mark>	→ { <i>A</i> ,	<i>B</i> , <i>C</i> }

Α	В	С
a1	b1	c1
a1	b1	c1
a2	b2	c2
a2	b2	c2
a3	b3	c2
a3	b3	c2
a4	b1	c1
a4	b1	c1
a5	b2	c2
{ B }	$\rightarrow \{E$	3. <i>C</i> }

Example Relation,
$$R = \{A, B, C\}$$
 and $\Sigma = \{\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}\}$

The column in red decides the color of the row: The rows having same values in the red column, have same color.

Α	В	С
a1	b1	c1
a1	b1	c1
a2	b2	c2
a2	b2	c2
a3	b3	c2
a3	b3	c2
a4	b1	c1
a4	b1	c1
a5	b2	c2
{ <mark>A} −</mark>	→ { <i>A</i> ,	<i>B</i> , <i>C</i> }

Α	В	С
a1	b1	c1
a1	b1	c1
a2	b2	c2
a2	b2	c2
a3	b3	c2
a3	b3	c2
a4	b1	c1
a4	b1	c1
a5	b2	c2
{ B }	$\rightarrow \{E$	3, <i>C</i> }

Α	В	С
a1	b1	c1
a1	b1	c1
a2	b2	c2
a2	b2	c2
a3	b3	c2
a3	b3	c2
a4	b1	c1
a4	b1	c1
a5	b2	c2

Example Relation,
$$R = \{A, B, C\}$$
 and $\Sigma = \{\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}\}$

The column in red decides the color of the row: The rows having same values in the red column, have same color.

Α	В	С
a1	b1	c1
a1	b1	c1
a2	b2	c2
a2	b2	c2
a3	b3	c2
a3	b3	c2
a4	b1	c1
a4	b1	c1
a5	b2	c2
(A) -	→ { <i>A</i> ,	<i>B</i> , <i>C</i> }

Α	В	С
a1	b1	c1
a1	b1	c1
a2	b2	c2
a2	b2	c2
a3	b3	c2
a3	b3	c2
a4	b1	c1
a4	b1	c1
a5	b2	c2
{ B }	$\rightarrow \{E$	3, <i>C</i> }

Α	В	С
a1	b1	c1
a1	b1	c1
a2	b2	c2
a2	b2	c2
a3	b3	c2
a3	b3	c2
a4	b1	c1
a4	b1	c1
a5	b2	c2
{ C	$\rightarrow \{$	C }

Rules for Functional Dependencies (Armstrong's Axioms)

W, X, Y, Z mentioned here are sets of attributes.

Sound & complete inference system

- **Reflexivity**: If $Y \subseteq X$, then $X \to Y$.
- Augmentation: If $X \to Y$, then $X \cup Z \to Y \cup Z$ for any Z.
- Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$.

Common derived rules (from the three above)

- Union / Additivity: If $X \to Y$ and $X \to Z$, then $X \to Y \cup Z$.
- Decomposition / Projectivity: If $X \to Y \cup Z$, then $X \to Y$ and $X \to Z$.
- Pseudotransitivity: If $X \to Y$ and $W \cup Y \to Z$, then $W \cup X \to Z$.
- Composition: If $X \to Y$ and $Z \to W$, then $X \cup Z \to Y \cup W$.
- Self-determination: $X \to X$.

How we use them here

- LHS reduction: test if $X \setminus \{A\} \to Y$ holds via closure using the axioms.
- Redundancy removal: test if an FD X → Y is implied by the rest (i.e., Y ⊆ X⁺ computed from the others).

Question 1.a.

Your company, Apasaja Private Limited, is commissioned by *Toko Kopi Luwak* to design the relational schema for coffee beans, drinks, and cafes. We are given

$$R = \{A, B, C, D, E, F, G, H\},\$$

$$\Sigma = \{\{A\} \to \{C, E\}, \{A, B\} \to \{D\}, \{F\} \to \{H\}, \{C, E\} \to \{A\}, \{B, C, E\} \to \{D\}, \{A, B, F\} \to \{D, G\}, \{B, C, E, F\} \to \{G\}\}.$$

Question 1.a.

Your company, Apasaja Private Limited, is commissioned by *Toko Kopi Luwak* to design the relational schema for coffee beans, drinks, and cafes. We are given

$$R = \{A, B, C, D, E, F, G, H\},\$$

$$\Sigma = \{ \{A\} \to \{C, E\}, \{A, B\} \to \{D\}, \{F\} \to \{H\}, \{C, E\} \to \{A\}, \{B, C, E\} \to \{D\}, \{A, B, F\} \to \{D, G\}, \{B, C, E, F\} \to \{G\} \}.$$

Attribute mapping

Symbol	Meaning
A	name (bean brand)
В	dname (drink name)
C	cultivar
D	price

Question 1.a.

Your company, Apasaja Private Limited, is commissioned by *Toko Kopi Luwak* to design the relational schema for coffee beans, drinks, and cafes. We are given

$$R = \{A, B, C, D, E, F, G, H\},\$$

$$\Sigma = \{\{A\} \to \{C, E\}, \{A, B\} \to \{D\}, \{F\} \to \{H\}, \{C, E\} \to \{A\}, \{B, C, E\} \to \{D\}, \{A, B, F\} \to \{D, G\}, \{B, C, E, F\} \to \{G\}\}.$$

Attribute mapping

Symbol	Meaning
A	name (bean brand)
В	dname (drink name)
C	cultivar
D	price

Symbol	Meaning	
E	region	
F	bname (branch)	
G	qty (quantity sold)	

address

Attribute mapping

Notes: A bean is identified by name or by (cultivar, region); a drink name is unique *per bean*; branches sell drinks, with address and quantity recorded.

Н

Question 1.b. Candidate keys via closures

$$\Sigma = \{ \{A\} \to \{C, E\}, \{A, B\} \to \{D\}, \{F\} \to \{H\}, \{C, E\} \to \{A\}, \{B, C, E\} \to \{D\}, \{A, B, F\} \to \{D, G\}, \{B, C, E, F\} \to \{G\} \}.$$

Observation: Since B and F never appear on the RHS of any FD, every key must contain B and F. We enumerate closures starting from supersets of $\{B, F\}$.

Question 1.b. Candidate keys via closures

```
\Sigma = \{ \{A\} \to \{C, E\}, \{A, B\} \to \{D\}, \{F\} \to \{H\}, \{C, E\} \to \{A\}, \{B, C, E\} \to \{D\}, \{A, B, F\} \to \{D, G\}, \{B, C, E, F\} \to \{G\} \}.
```

Observation: Since B and F never appear on the RHS of any FD, every key must contain B and F. We enumerate closures starting from supersets of $\{B, F\}$.

```
Size 2 \{B, F\}^+ = \{B, F, H\} (not a key)

Size 3 (supersets of \{B, F\})

\{A, B, F\}^+ = \{A, B, C, D, E, F, G, H\}

\{B, C, F\}^+ = \{B, C, F, H\}

\{B, D, F\}^+ = \{B, D, F, H\}

\{B, E, F\}^+ = \{B, E, F, H\}

\{B, F, G\}^+ = \{B, F, G, H\}

\{B, F, H\}^+ = \{B, F, H\}
```

Question 1.b. Candidate keys via closures

$$\Sigma = \{ \{A\} \to \{C, E\}, \{A, B\} \to \{D\}, \{F\} \to \{H\}, \{C, E\} \to \{A\}, \{B, C, E\} \to \{D\}, \{A, B, F\} \to \{D, G\}, \{B, C, E, F\} \to \{G\} \}.$$

Observation: Since B and F never appear on the RHS of any FD, every key must contain B and F. We enumerate closures starting from supersets of $\{B, F\}$.

```
Size 4 (not containing \{A, B, F\})
Size 2
                                           \{B, C, D, F\}^+ = \{B, C, D, F, H\}
\{B, F\}^+ = \{B, F, H\} (not a key)
                                           \{B, C, E, F\}^+ =
                                           \{A, B, C, D, E, F, G, H\}
Size 3 (supersets of \{B, F\})
                                           \{B, C, F, G\}^+ = \{B, C, F, G, H\}
\{A, B, F\}^+ =
                                           \{B, C, F, H\}^+ = \{B, C, F, H\}
\{A, B, C, D, E, F, G, H\}
                                           \{B, D, E, F\}^+ = \{B, D, E, F, H\}
\{B, C, F\}^+ = \{B, C, F, H\}
                                           \{B, D, F, G\}^+ = \{B, D, F, G, H\}
\{B, D, F\}^+ = \{B, D, F, H\}
                                           \{B, D, F, H\}^+ = \{B, D, F, H\}
\{B, E, F\}^+ = \{B, E, F, H\}
                                           \{B, E, F, G\}^+ = \{B, E, F, G, H\}
\{B, F, G\}^+ = \{B, F, G, H\}
                                           \{B, E, F, H\}^+ = \{B, E, F, H\}
\{B, F, H\}^+ = \{B, F, H\}
                                           \{B, F, G, H\}^+ = \{B, F, G, H\}
```

Question 1.b. Candidate keys via closures

$$\Sigma = \{ \{A\} \to \{C, E\}, \{A, B\} \to \{D\}, \{F\} \to \{H\}, \{C, E\} \to \{A\}, \{B, C, E\} \to \{D\}, \{A, B, F\} \to \{D, G\}, \{B, C, E, F\} \to \{G\} \}.$$

Observation: Since B and F never appear on the RHS of any FD, every key must contain B and F. We enumerate closures starting from supersets of $\{B, F\}$.

Size 2 {
$$\{B,F\}^+ = \{B,F,H\} \ (\text{not a key})\}$$
 Size 4 (not containing $\{A,B,F\}\}$ $\{B,C,D,F\}^+ = \{B,C,D,F,H\}$ $\{B,C,D,F\}^+ = \{B,C,D,F,H\}$ $\{B,C,E,F\}^+ = \{A,B,C,D,E,F,G,H\}$ $\{B,C,F\}^+ = \{B,C,F,H\}$ $\{B,C,F,H\}^+ = \{B,C,F,H\}$ $\{B,D,F\}^+ = \{B,D,F,H\}$ $\{B,D,F,G\}^+ = \{B,D,F,H\}$ $\{B,D,F,G\}^+ = \{B,D,F,H\}$ $\{B,B,F,G\}^+ = \{B,F,G,H\}$ $\{B,F,G\}^+ = \{B,F,G,H\}$ $\{B,F,G\}^+ = \{B,F,G,H\}$ $\{B,F,G\}^+ = \{B,F,G,H\}$ $\{B,F,G,H\}^+ = \{B,F,G,H\}$ $\{B,F,G,H\}^+ = \{B,F,G,H\}$

Larger supersets (that are not supersets of keys above) All such closures remain proper subsets of R.

Tedious by hand?
I made your life a bit easier: Here

Question 1.c. Prime attributes

Keys are $\{A, B, F\}$ and $\{B, C, E, F\}$. Prime attributes are those that appear in at least one key.

Prime attributes =
$$\{A, B, F\} \cup \{B, C, E, F\} = \{A, B, C, E, F\}$$
.

Question 2.a. Minimal cover of R with Σ

Start from Σ : $\{A\} \rightarrow \{C, E\},$ $\{A,B\} \rightarrow \{D\},$ $\{F\} \rightarrow \{H\},$ $\{C,E\} \rightarrow \{A\},$ $\{B,C,E\} \rightarrow \{D\},$ $\{A,B,F\} \rightarrow \{D,G\},$ $\{B,C,E,F\} \rightarrow \{G\}.$

Question 2.a. Minimal cover of R with Σ

Start from Σ : $\{A\} \rightarrow \{C, E\}$, $\{A,B\} \rightarrow \{D\}$, $\{F\} \rightarrow \{H\}$, $\{C,E\} \rightarrow \{A\}$, $\{B,C,E\} \rightarrow \{D\}$, $\{A,B,F\} \rightarrow \{D,G\}$, $\{B,C,E,F\} \rightarrow \{G\}$.

```
Step 1: Split RHS \{A\} \rightarrow \{C\},\ \{A\} \rightarrow \{E\},\ \{A,B\} \rightarrow \{D\},\ \{F\} \rightarrow \{H\},\ \{C,E\} \rightarrow \{A\},\ \{B,C,E\} \rightarrow \{D\},\ \{A,B,F\} \rightarrow \{D\},\ \{A,B,F\} \rightarrow \{G\},\ \{B,C,E,F\} \rightarrow \{G\}.
```

Question 2.a. Minimal cover of R with Σ

Start from Σ: $\{A\} \to \{C, E\}, \{A,B\} \to \{D\}, \{F\} \to \{H\}, \{C,E\} \to \{A\}, \{B,C,E\} \to \{D\}, \{A,B,F\} \to \{D,G\}, \{B,C,E,F\} \to \{G\}.$

Step 1: Split RHS $\{A\} \rightarrow \{C\},\$ $\{A\} \rightarrow \{E\},\$ $\{A,B\} \rightarrow \{D\},\$ $\{F\} \rightarrow \{H\},\$ $\{C,E\} \rightarrow \{A\},\$ $\{B,C,E\} \rightarrow \{D\},\$ $\{A,B,F\} \rightarrow \{D\},\$ $\{A,B,F\} \rightarrow \{G\},\$ $\{B,C,E,F\} \rightarrow \{G\}.$

Step 2: Reduce LHS where possible
$$\{A\} \rightarrow \{C\}$$
, $\{A\} \rightarrow \{E\}$, $\{A,B\} \rightarrow \{D\}$, $\{F\} \rightarrow \{H\}$, $\{C,E\} \rightarrow \{A\}$, $\{B,C,E\} \rightarrow \{D\}$, because $\{A,B\} \rightarrow \{D\}$ $\{A,B,F\} \rightarrow \{G\}$, $\{B,C,E,F\} \rightarrow \{G\}$.

Question 2.a. Minimal cover of R with Σ

Step 3: Remove redundancies

Minimal Cover

$$\{A\} \to \{C\},\$$

 $\{A\} \to \{E\},\$
 $\{F\} \to \{H\},\$
 $\{C,E\} \to \{A\},\$
 $\{B,C,E\} \to \{D\},\$
 $\{B,C,E,F\} \to \{G\}.$

Question 2.a. Minimal cover of R with Σ

Step 3: Remove redundancies

$$\begin{cases} A \rbrace \rightarrow \{C\}, \\ \{A\} \rightarrow \{E\}, \\ \{A,B\} \rightarrow \{D\}, \\ \{B,C,E\} \rightarrow \{D\}, \\ \{F\} \rightarrow \{H\}, \\ \{C,E\} \rightarrow \{A\}, \\ \{B,C,E\} \rightarrow \{D\}, \\ \{A,B,E\} \rightarrow \{C\}, E\} \text{ and } \{B,C,E\} \rightarrow \{D\}, \\ \{B,C,E,F\} \rightarrow \{G\}. \end{cases}$$

Minimal Cover

$${A} \rightarrow {C},$$

 ${A} \rightarrow {E},$
 ${F} \rightarrow {H},$
 ${C,E} \rightarrow {A},$
 ${B,C,E} \rightarrow {D},$
 ${B,C,E,F} \rightarrow {G}.$

(Alternative minimal covers exist, e.g., replace
$$\{B, C, E\} \to \{D\}$$
 by $\{A, B\} \to \{D\}$ and $\{B, C, E, F\} \to \{G\}$ by $\{A, B, F\} \to \{G\}$.)

 $\{B,C,E\} \rightarrow \{D\},\$ $\{B,C,E,F\} \rightarrow \{G\}$

Question 2.b. Canonical cover (merged by LHS)

One canonical cover (aka Compact Minimal Cover) (grouping by identical LHS) is: $\{A\} \to \{C, E\}, \\ \{F\} \to \{H\}, \\ \{C,E\} \to \{A\},$

Question 2.b. Canonical cover (merged by LHS)

One canonical cover (aka Compact Minimal Cover) (grouping by identical LHS) is:

$${A} \rightarrow {C, E},$$

 ${F} \rightarrow {H},$
 ${C,E} \rightarrow {A},$
 ${B,C,E} \rightarrow {D},$
 ${B,C,E,F} \rightarrow {G}$

Other canonical covers are possible depending on which equivalent minimal cover you merge.

Questions?

Drop a mail at: pratik.karmakar@u.nus.edu