Modul Praktikum ke-1

Peluang (Peubah Acak, Sebaran Diskret, dan Sebaran Kontinu)

AKT1442 Simulasi Model Aktuaria Semester Ganjil 2025/2026

Praktikum ke-1 ini dibagi menjadi dua sesi, yaitu:

- Sesi 1 (Pukul 14:00-16:00 WIB): Mahasiswa harus mengerjakan soal-soal yang telah disediakan secara mandiri dan mengunggah jawabannya ke https://ipb.university/prak-sma-2025 untuk mendapatkan poin tugas.
- Sesi 2 (Pukul 16:00-17:00 WIB): Mahasiswa dipersilakan untuk mempresentasikan jawabannya untuk mendapatkan poin aktivitas partisipatif.

Soal-Soal:

1. Tabel berikut berisi nilai ujian teori (UT) dan ujian praktik (UP) suatu mata kuliah dari beberapa mahasiswa yang dipilih secara acak.

UT	89	31	60	31	24	40	23	25	44	21	36	45	72	43	33	71	45	47
UP	70	45	28	29	21	67	49	21	57	60	33	59	65	57	65	71	83	85

- a. Hitung *sample mean*, *sample variance*, dan *sample standard deviation* dari masing-masing nilai ujian tersebut.
 - Data mana yang memiliki *sample mean* lebih besar? Apa maknanya?
 - Data mana yang memiliki *sample variance* lebih besar? Apa maknanya?
 - Data mana yang memiliki *sample standard deviation* yang lebih besar? Apa maknanya?
- b. Gambarkan *scatterplot* antara kedua data tersebut. Kemudian, hitung *sample covariance* dan *sample correlation* antara kedua data tersebut. Berikan interpretasi kedua nilai tersebut.
- 2. Tabel berikut berisi data banyaknya klaim dari 67856 polis asuransi kendaraan berjangka satu tahun yang diterbitkan oleh suatu perusahaan asuransi pada tahun tertentu.

Banyaknya klaim	Banyaknya polis
0	63232
1	4333
2	271
3	18
4	2

- a. Hitung rata-rata dan ragam banyaknya klaim. Berdasarkan nilai-nilai tersebut, perkirakan sebaran diskret apa yang cocok untuk memodelkan data. Kemudian, duga parameter-parameter dari sebaran tersebut dengan metode momen.
- b. Gambarkan histogram data (dengan sumbu vertikalnya adalah *probability*, bukan *frequency*) beserta fungsi massa peluang dari sebaran hasil bagian a dalam satu koordinat kartesius. Apakah secara visual, sebaran tersebut diperkirakan cocok untuk memodelkan data?
- Apabila banyaknya klaim dari setiap polis dimodelkan dengan sebaran hasil bagian a dan besarnya klaim untuk setiap klaim yang diajukan dimodelkan dengan sebaran eksponensial dengan nilai harapan \$1000, maka dengan menggunakan simulasi (1000 kali pengulangan), hitung peluang bahwa total besarnya klaim yang harus dibayarkan oleh perusahaan tersebut pada tahun tersebut lebih dari \$5500000.
- 3. Sample skewness (z_3) dan sample kurtosis (z_4) dari data $x_1, x_2, ..., x_n$ dapat dihitung menggunakan formula-formula berikut:

$$z_{3} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{3}}{\left(\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}\right)^{\frac{3}{2}}}$$

$$z_{4} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{4}}{\left(\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}\right)^{2}}$$

dengan

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- a. Buat sebuah fungsi skew dengan *input* berupa sebuah vektor x (berisi data $x_1, x_2, ..., x_n$) yang menghasilkan nilai *sample skewness* dari data tersebut.
- b. Buat sebuah fungsi kurt dengan *input* berupa sebuah vektor x (berisi data $x_1, x_2, ..., x_n$) yang menghasilkan nilai *sample kurtosis* dari data tersebut.
- 3. Berdasarkan bentuk dari grafik tersebut, perkirakan apakah peubah acak khi-kuadrat dengan derajat bebas 3 memiliki *skewness* yang bernilai positif, nol, ataukah negatif. Perkirakan juga apakah peubah acak tersebut memiliki *kurtosis* yang bernilai lebih besar dari 3 (*leptokurtic*), sama dengan 3 (*mesokurtic*), ataukah lebih kecil dari 3 (*platykurtic*).
- d. Bangkitkan 1000 nilai data dari sebaran khi-kuadrat dengan derajat bebas 3. Hitung nilai sample skewness dan sample kurtosis dari data tersebut menggunakan fungsi-fungsi yang

telah dibuat pada bagian a dan b. Bandingkan nilai-nilai tersebut dengan perkiraan pada bagian c.

e. Hitung *skewness* dan *kurtosis* dari peubah acak khi-kuadrat dengan derajat bebas 3 menggunakan formula-formula berikut:

$$skewness = \frac{2^{\frac{3}{2}}}{\sqrt{\omega}}$$
 dan $kurtosis = 3 + \frac{12}{\omega}$ dengan $\omega = derajat$ bebas.

- f. Ulangi pembangkitan data dan penghitungan *sample skewness* dan *sample kurtosis* pada bagian d sebanyak 100 kali. Hitung rata-rata 100 *sample skewness* dan rata-rata 100 *sample kurtosis* yang diperoleh. Bandingkan nilai-nilai tersebut dengan hasil pada bagian e.
- 4. Unduh harga harian dari saham Microsoft Corporation (MSFT) dari 15 Mei 2023 hingga 14 Agustus 2023 di laman Yahoo! Finance.
 - a. Hitung return harian dengan formula berikut:

$$r_t = \frac{P_t}{P_{t-1}} - 1$$

dengan r_t menyatakan return harian pada hari ke-t dan P_t menyatakan harga penutupan harian yang disesuaikan ($adjusted\ daily\ close\ price$) pada hari ke-t.

- b. Gambarkan histogram data *return* harian tersebut. Berdasarkan gambar tersebut, perkirakan sebaran kontinu apa yang cocok untuk memodelkan data. Kemudian, duga parameter-parameter dari sebaran tersebut dengan metode *maximum likelihood*.
- c. Gambarkan histogram data (dengan sumbu vertikalnya adalah *probability*, bukan *frequency*) beserta fungsi kepekatan peluang dari sebaran hasil bagian b dalam satu koordinat kartesius. Apakah secara visual, sebaran tersebut diperkirakan cocok untuk memodelkan data?
- d. Apabila *return* harian dimodelkan dengan sebaran hasil bagian b, maka dengan menggunakan simulasi (1000 kali pengulangan), hitung peluang bahwa harga penutupan harian yang disesuaikan pada tanggal 17 Agustus 2023 lebih dari \$325. Asumsikan bahwa tanggal 15-17 Agustus 2023 termasuk ke dalam *trading days*.