Оглавление

Лекция 10

10.11.2023

0.1 Кольцо многочленов, деление многочленов с остатком

Теорема 1. A[x] — является кольцом

```
Доказательство. Проверим дистрибутивность (остальное — упр):  (P+Q)R = PR + QR   P = (a_0, a_1, \ldots); \quad Q = (b_0, b_1, \ldots)   R = (c_0, c_1, \ldots)   P + Q = (a_0 + b_0, a_1 + b_1, \ldots)   (P+Q)R = (\ldots, (a_0 + b_0)c_k + (a_1 + b_1)c_{k-1} + \ldots + (a_k + b_k)c_0, \ldots)   PR = (\ldots, a_0c_k + a_1c_{k-1} + \ldots + a_kc_0, \ldots)   QR = (\ldots, b_0c_k + b_1c_{k-1} + \ldots + b_kc_0, \ldots)   PR + QR = (\ldots, a_0c_k + a_1c_{k-1} + \ldots + a_kc_0 + b_0c_k + \ldots + b_kc_0, \ldots)
```

Обозначение: Пусть $a \in A$. Элемент a отождествляется $(a,0,0,\ldots)$ Коррекстность: $a,b \in A \Rightarrow a+b$ и ab в A и в A[x] согласованны

Свойства. Пусть A — ассоциативное кольцо с 1

- 1. Пусть $b \in A, P \in A[x]; P = (a_0, a_1, \ldots)$ Тогда $bP = (ba_0, ba_1, \ldots)$
- 2. Пусть $P \in A[x], P = (a_0, a_1, \ldots)$ Тогда $xP = (0, a_0, a_1, \ldots)$
- 3. $x^n = (0, 0, \dots, 1_n, 0, \dots)$

Доказательство.

1.
$$b = (b, 0, 0, \ldots), P = (a_0, a_1, \ldots)$$

 Π усть $bP = (c_0, c_1, \ldots)$
 $c_k = ba_k + 0a_{k-1} + \ldots + 0a_0 = ba_k$

2. Пусть
$$(0,1,0,\ldots)(a_0,a_1,\ldots)=(c_0,c_1,\ldots)$$
 $c_0=0,a_0=0$ При $k\geq 1:c_k=0a_k+1a_{k-1}+0a_{k-1}+\ldots=1a_{k-1}=a_{k-1}$

3. Из (2) (п раз применяем свойство 2)

Обозначение: Будем использвать обозначение $P(x) = a_0 + a_1 x + \ldots + a_n x^n$ для $P = (a_0, a_1, \ldots, a_n, 0, 0, \ldots)$

Определение 1. Пусть $P=(a_0,a_1,\ldots)$ — многочлен не равный 0 Степенью P называют $\max\{k\mid a_k\neq 0\}$

Обозначение: $\deg P$

Если P — нулевой многочлен, считаем $\deg P = -\infty$

Напоминание: Кольцо A называется областью целостности, если оно ассоциативно, коммутативно и если ab=0, то a=0 или b=0

Теорема 2. Пусть A — область целостности

Тогда

1.
$$\deg(P+Q) \le \max\{\deg P, \deg Q\}$$

2.
$$deg(PQ) = deg P + deg Q$$

3. A[x] — область целостности

Доказательство. Пусть $P = (a_0, a_1, \ldots); \quad Q = (b_0, b_1, \ldots)$

- 1. Пусть $N=\max\{\deg P,\deg Q\}$ При $k>N: \quad a_k=0, b_k=0\Rightarrow a_k+b_k=0$
- 2. При P=0 или $Q=0:-\infty=-\infty+\dots$ Считаем $P\neq 0, Q\neq 0$ Пусть $k=\deg P, m=\deg Q$ Пусть $PQ=(c_0,c_1,\dots)$

$$c_{k+m} = \sum_{i+j=k+m} a_i b_i$$

При
$$i = k, j = m$$
: $a_k b_k$

При
$$i < k, j > m$$
: $a_i * 0 = 0$

При
$$i > k, j < m : 0 * b_i = 0$$

Пусть
$$N > k + m$$
; $c_n = \sum_{i+j=N} a_i b_i = 0 + 0 + \ldots = 0$

Для любого слагаемого i > k или j > m

3. Коммутативность — упражнение

Ассоциативность:
$$P=(a_0,a_1,\ldots); \quad Q=(b_0,b_1,\ldots); \quad R=(c_0,c_1,\ldots)$$
 Пусть $T-PQ,T=(d_0,d_1,\ldots)$ $S=(PQ)R=(e_0,e_1,\ldots)$ $e_k=\sum_{i+j=k}d_ic_i=\sum_{i+j=k,l+m=i}a_lb_mc_j=\sum_{l+m+j=k}a_lb_mc_j$ $d_i=\sum_{l+m=i}a_lb_m$ Аналогично $P(QR)$ Если $P\neq 0,Q\neq 0$, то $degPQ=degP+degQ\neq -\infty\Rightarrow PQ\neq 0$

Определение 2. Пусть A — коммутативное, ассоциативное кольцо $P\in A[x], P=(a_0,a_1,,a_2\dots)$ и $c\in A$ Значением P в c (или при x=c) называется $a_0+a_1c+a_2c^2+\ldots\in A$ Обозначение: P(c)

Свойства. Пусть
$$P,Q \in A[x], F = P + Q, G = PQ$$
 Тогда $F(c) = P(c) + Q(c); \quad G(c) = P(c)Q(c)$

0.1.1 Деление многочленов с остатком

Определение 3. Пусть K — поле, $F,G\in K[x],G\neq 0$ Если для $Q,R\in K[x]$ выполнено $F=QG+R,\deg R<\deg G,$ то Q и R назвается неполным частным и остатком от деления F на G

Теорема 3. (Деление многочленов с остатком)

Пусть K — поле, $F,G\in K[x],G\neq 0$ Тогда существует единственные Q,R, такие что $F=QG+R,\deg R<\deg G$

Доказательство. 1. Существование

Положим, $A = \{F(x) - T(x)G(x) \mid T \in K[x]\}$ Пусть R — элемент A имеет стпень Q: R = F - QGДокажем, что $\deg R < \deg G$

$$Q = a_n x^n + a_{n-1} x^{n-1} + \dots, R(x) = b_m x^m + b_{m-1} x^{m-1} + \dots$$

$$\Rightarrow m \ge n$$

Положим $R_1(x) = R(x) - \frac{b_n}{a_n} x^{m-n} G(x)$

Тогда

$$R_1(x) \in AR_1(x) = b_m x^m + b_{m-1} x^{m-1} + \dots - \frac{b_m}{a_n} x^{m-n} a_n x^n - \frac{b_m}{a_n} x^{m-n} a_{n-1} x^{n-1} - \dots$$

 $\deg R_1 < m = \deg R$

Противоречие с выбором R

2. Единственность

Пусть:
$$F = GQ_1 + R_1$$
; $F = GQ_2 + R_2$; $degR_1, degR_2 < degG$ $GQ_1 + R_1 = GQ_2 + R_2$ $G(Q_1 - Q_2) = R_2 - R_1$ $\deg(R_2 - R_1) \le \max\{degR_1, degR_2\} < \deg G$ $\deg(G(Q_1 - Q_2)) = defG - \deg(Q_1 - Q_2)$ $\Rightarrow Q_1 - Q_2 = 0 \Rightarrow Q_1 = Q_2 \Rightarrow R_1 = R_2$

Теорема 4. Безу

Пусть K — поле, $F \in K[x], c \in K$,тогда

Тогда остаток от деления F(c) на x-c равен F(c)

$$F(x) = (x - c)Q(x) + r$$
 Подставим $x = c$:

$$F(c) = (c - c)Q(c) + r \Rightarrow F(c) = r$$

Следствие: c – корень $F(x) \Leftrightarrow F(x) : x - c$

Доказательство.
$$F(x)$$
 : $x-c \Rightarrow r=0 \Rightarrow F(c)=0$

Теорема 5. (о количестве корней многочлена)

Пусть K — поле, $F \in K[x], F \neq 0$

Тогда количество корней F(x) не превосходит $\deg F$

Доказательство. Докажем, что у многочлена степени n не более n корней:

По индукции:

- База: n = 0; $F(x) = a_0$; $a_0 \neq 0 \Rightarrow$ нет корней
- Переход $n \to n+1$: Пусть $\deg F = n+1$ Если у F нет корней — верно Пусть c — корень $F(x) \Rightarrow$ (теорема Безу) $F(x) \vdots x - c \Rightarrow$ $\Rightarrow F(x) = (x-c)Q(x)$ $\deg F = \deg(x-c) + \deg Q \Leftrightarrow n+1 = 1 + \deg Q \Rightarrow$ $\Rightarrow \deg Q = n \Rightarrow y \ Q(x)$ не более n — корней (x_1, \dots, x_k) ; kПусть x_0 — корень $F \Rightarrow 0 = F(x_0) = (x_0 - c)Q(x_0) \Rightarrow$

$$\Rightarrow x_0 = c$$
 или x_0 — корень $Q(x) \Rightarrow$ есть корень (x_1, \dots, x_k, c)

Следствие (формальное и функциональное равенство многочлена):

Пусть K — бесконечное поле, $F,G \in K[x]$

Если для любого $c \in K$ выполнено F(c) = G(c) (функциональное), то F = G (формальное)

(функциональное) → (формальное) всегда. наоборот не всегда

```
Доказательство. Пусть F \neq G, H = F - G \Rightarrow H \neq 0 \Rightarrow у H не более чем degH корней \Rightarrow \exists c: H(c) \neq 0 \Rightarrow F(c) - G(c) \neq 0 \Rightarrow F(c) \neq G(c) Замечание: Верное не всегда K = \mathbb{Z}_p, p \in \mathbb{P} F(x) = x^p - p, G(x) = 0 F(c) = G(c), F \neq G
```

Оглавление 5