THE COMPLEX PARAMETERS THAT ARE USED FOR ROUTING RESULTS ASSESSMENT AND COMPARISON

Parameter	Parameter explanation	Expected result	
Number of assigned activities	The value of assigned activities defines the profit	Should be maximized by routing	t of profit
Price of losses (costs)	Sum of losses gained because of travel, overdue, SLA violation	Should be minimized by routing	Assessment of
Rout density parameter	Defines the efficiency of workforce usage	If all activities are assigned it should be minimized otherwise maximized	int of efficiency
Value of overtime	The losses that associated with the extra time of work for each tech.	Shod be minimized by routing	Assessment

TECHNICAL DESIGN

Input parameters from the rhs server

Assessment of profit and loss that was obtained by the routing is based on the parameters of penalty prices of overdue, travel and SLA violation.

AA - Assigned Activities

AA = raw_total_activities-raw_not_assigned_activities

OvC - Overdue cost

TrC - Travel cost

SIC – Sla violation cost

$$OvC = \frac{\text{sum_overdue_time}}{AA}$$

$$TrC = \frac{\text{sum_travel_time}}{AA}$$

$$SlC = \frac{\text{sum_sla_violation}}{AA}$$

RP - Average profit on each assigned job

$$RP = \frac{\text{info_sum_assigned}}{AA}$$

Target vector*

OvC	TrC	SIC	RP
0	0 0		1

^{*0 –} decreasing is preferable

Normalized Target parameters

AAs - percentage of assigned activities

$$AAs = \frac{AA}{raw_total_activities}$$

AL* - Average loss on each assigned job

$$AL = \frac{\text{sum_overdue_time+sum_travel_time+sum_sla_violation}}{AA}$$

Complex target vector

AAs	AL
1	0

^{*1 –} increasing is preferable

0 – decreasing is preferable

1 – increasing is preferable

*In order the parameter *info_sum_assigned* is not available for all the routing versions, the relative assessment of losses is calculated by dividing the maximum value of losses(AL) from the all compared results.

Assessment of efficiency

The **complex assessment of effective time** is formed with the indexes represented below.

WT - work time

WT = raw_work_time_sum+raw_travel_time_sum+raw_waiting_time_sum

RD - rout density

$$RD = \frac{\text{raw_work_time_sum}}{WT}$$

Ov - overtime

$$Ov = \frac{\text{raw_overtime_soft_sum+raw_overtime_hard_sum}}{providers_used}$$

OvWt – percentage of overtime in the Work time

$$OvWt = \frac{Ov}{WT}$$

Complex target vector*

RD	OvWt
1	0

Summary assessment

Summary target vector

According to the essential meaning of the rout density parameter and its level of significance the target parameter of this value depends on the percentage of assigned activities, so the target vector has two different options:

1. All activities are assigned (AAs==1)

AAs	AL	RD	<i>OvWt</i>	
1	0	0	0	

2. Not all activities are assigned (AAs!=1)

Tvector:

AAs	AL	RD	<i>OvWt</i>
1	0	1	0

The **summary assessment** is calculated using the value of correlation between the calculated and target vectors. the Pearson product-moment correlation coefficient between the **Tvector** and **N_rout**(constructed with the routing results);

$$r = \frac{\sum (\textit{N_rout} - \textit{E(N_rout)})(\textit{Tvector} - \textit{E(Tvector}))}{\sigma_{\textit{N_rout}}\sigma_{\textit{Tvector}}}$$

The value r is calculated for every routing result and the comparison of these values is performed for the similar routing run id. The higher it is for the specific case the better quality of rout can be registered. The most probable value of this r value is used further.

Now the comparison is developed using the Rstudio environment and results of assessment for all the companies are calculated.

Routing analysis (comparison) flow

SCREENSHOTS OF APPLICATION

Ono

Choose an initial version: 2.0.7 **Date range** 2014-07-01 to 2014-10-14 Choose a stage version: **Date range** 2014-08-20 to 2014-10-14 Company Go! Detail analysis of parameters Assigned_activities

Results assessment

The selected initial version 2.0.7

The selected stage version 2.1.1

The selected company vm

0.4343

0.5509

2.1.1

← Previous 1 2 3 4 5 Next →

Summary of performance time

Showing 1 to 10 of 60 entries

2104332

2104333

2104334

rout_run_id

	Min.:	1st Qu.:	Median:	Mean:	3rd Qu.:	Max.:
time_human2.0.7	3.288	9.861	19.552	46.225	44.064	374.924
time_human2.1.1	2.389	18.395	54.601	144.159	127.473	1937.656
Difftime_human	-140.943	4.997	30.902	97.934	91.983	1711.712
time_machine2.0.7	3.296	9.879	19.570	46.238	44.082	374.947
time_machine2.1.1	2.406	18.410	54.615	144.174	127.487	1937.672
Difftime_machine	-140.952	5.002	30.900	97.936	91.984	1711.710

0.4142

0.5461

0.4186 2.0.7