Communication Protocols I

Team Emertxe

Communication Protocols I

- Introduction
- UART
- SPI
- |2C
- CAN

Introduction

Introduction

- What do mean by Communication?
- Mode of Communications
- Type of Communications
- Why Protocols?

UART

- Introduction
- Interface
- Hardware Configurations
- Frame Format

UARTIntroduction

- Asynchronous
- Duplex Any
- Master / Slave

UARTInterface

- RX
- TX

UARTHardware Configuration

UARTFrame Format

S D0 D1 D2 D3 D4 D5 D6 D7 P ST

- Data part can be 5 to 9 bits
- Stop could be 2 bits
- Parity could be 0 or 1 bit

UART Baud Rate

- Number of symbols per second (In this context the a symbol is a bit)
- So, sometimes referred as Bit Rate (No of bits per second)
- The frequency of the data transfer
- Both transmitter and receiver has to agree upon a common frequency for data integrity

UARTBaud Rate

Transmitter Sample Frequency

Receiver Sample Frequency

UART

Baud Rate vs Bit Rate

Serial Peripheral Interface

Serial Peripheral Interface

- Introduction
- Interface
- Hardware Configurations
- Data Transmission
 - Data Validity

SPIIntroduction

- Synchronous
- Full Duplex
- Master / Slave

SPIInterface

- SCLK
- MOSI
- MISO
- nSS

SPIHardware Configuration

Single Master and Single Slave

SPIHardware Configuration

Single Master and Three Slaves

SPIHardware Configuration

Single Master and Three Daisy Chained Slaves

MASTER SLAVE MOSI SDI MISO SDO 0 0 0 0 SCLK SCK CONTROL CONTROL CS SS

MASTER | MOSI | SDI | SDO | O 1 0 0 0 1 1 0 MISO | SDO | O 1 1 1 0 1 1 1 1 | SCLK | SCK | CONTROL | SS | CS | CONTROL | SS | CS | CONTROL | CONTRO

MASTER SLAVE MOSI SDI MISO SDO 0 0 0 0 SCLK SCK CONTROL CONTROL CS SS

MASTER | MOSI | SDI | SDO | 1 1 1 0 1 0 0 0 0 | SCLK | SCK | CONTROL | SS | CS | CONTROL | SS | CS | CONTROL | SLAVE

MASTER SLAVE MOSI SDI MISO SDO 0 0 0 0 SCLK SCK CONTROL CONTROL CS SS

MASTER SLAVE MOSI SDI MISO SDO 0 0 0 0 1 SCLK SCK CONTROL CONTROL CS SS

SPIData Validity

- Data Write
- Data Read

Inter Integrated Circuits

Inter Integrated Circuits

- Introduction
- Bus Features
- The Protocol
- Bus Speeds

I²C Introduction

- Synchronous
- Half Duplex
- Multi Master / Slave

I²C Bus Features

- Two Line Interface
- Software Addressable
- Multi Master with CD
- Serial, 8 bit Oriented, Bidirectional with 4 Modes
- On Chip Filtering

I²C Protocol

- Example
- Signals
- A Complete Data Transfer

I²C Example

I²C Signals

- Two-wired Interface
 - SDA
 - SCL
- Wired-AND
- Conditions and Data Validity
- Transmission

I²**C** Signals - Wired-AND

I²**C**Signals - Conditions and Data Validity

- Data Write
- Data Read
- Conditions

I²C Signals - Transmission

- Data on SDA
- Clocking on SCL
- Clock Synchronization
- Data Arbitration

I²**C** Signals - Data on SDA

I²C Signals - Clocking on SCL

I²**C**Signals - Clock Synchronization

I²C Signals - Data Arbitration

I²C A Complete Data Transfer

I²C Bus Speeds

- Bidirectional Bus
 - Standard Mode 100 Kbit/s
 - Fast Mode 400 Kbits/s
 - Fast Mode Plus 1 Mbits/s
 - High Speed Mode 3.4 Mbits/s
- Unidirectional Bus
 - Ultra Fast Mode 5 Mbits/s
 - Uses Push-Pull Drivers (No Pullups)

Controller Area Network

Controller Area Network

- Introduction to CAN
- Basic Concepts
- Message Transfer
- Error Handling
- Fault Confinement

CAN Introduction

- Asynchronous
- Half Duplex
- Multi Master / Slave

CANBasic Concepts

- Example
- Versions
- Absence of node addressing
 - Message identifier specifies contents and priority
 - Lowest message identifier has highest priority
- Non-destructive arbitration system by CSMA with collision detection
- Simple Transmission Medium
 - Twisted pair CAN H and CAN L
- Properties
- Layered Architecture

CANBasic Concepts - Example

CANBasic Concepts - Versions

NOMENCLATURE	STANDARD	MAX SIGNALING RATE	IDENTIFIER
Low Speed CAN	ISO 11519	125 kbps	11 bit
CAN 2.0A	ISO 11898:1993	1 Mbps	11 bit
CAN 2.0B	ISO 11898:1995	1 Mbps	29 bit

CANBasic Concepts - Properties

- Prioritization of Messages
- Guarantee of Latency Times
- Configuration Flexibility
- Multicast Reception with Time Synchronization
- System wide Data Consistency
- Multi master
- Error Detection and Error Signaling
- Automatic Retransmission
- Distinction between temporary errors and permanent failures of nodes and autonomous switching off of defect nodes

CANBasic Concepts - Layered Architecture

7	Application
6	Presentation
5	Session
4	Transport
3	Network
2	Data Link
1	Physical
	OSI Model

Application Presentation Session **Transport** Network Data Link **Physical**

CANBasic Concepts - Layered Architecture

7	Application
6	Presentation
5	Session
4	Transport
3	Network
2	Data Link
1	Physical
	OSI Model

LLC:

Acceptance Filtering Overload Notifications Recovery Managment

MAC:

Data En / Decapsulation Frame Coding (Stuffing, Destuffing) Medium Access Managment Error Detection

Error Signalling
Acknowledgement
Serialization / Deserialization

Bit Encoding / Decoding Bit Timing Synchronization

Driver / Receiver Characteristics

OSI Model

CANMessage Transfer

- Frame Formats
 - Standard Frame 11 bits Identifiers
 - Extended Frame 29 bits Identifiers
- Frame Types
 - Data Frame
 - Remote Frame
 - Error Frame
 - Overload Frame
- Frame Fields

CANMessage Transfer - Data Frame

 A data frame consists of seven fields: start-of-frame, arbitration, control, data, CRC, ACK, and end-of-frame.

CANMessage Transfer - Remote Frame

- Used by a node to request other nodes to send certain type of messages
- Has six fields as shown in above figure
 - These fields are identical to those of a data frame with the exception that the RTR bit in the arbitration field is recessive in the remote frame.

CANMessage Transfer - Error Frame

- This frame consists of two fields.
 - The first field is given by the superposition of error flags contributed from different nodes.
 - The second field is the error delimiter.
- Error flag can be either active-error flag or passive-error flag.
 - Active error flag consists of six consecutive dominant bits.
 - Passive error flag consists of six consecutive recessive bits.
- The error delimiter consists of eight recessive bits.

CAN

Message Transfer - Overload Frame

- Consists of two bit fields: overload flag and overload delimiter
- Three different overload conditions lead to the transmission of the overload frame:
 - Internal conditions of a receiver require a delay of the next data frame or remote frame.
 - At least one node detects a dominant bit during intermission.
 - A CAN node samples a dominant bit at the eighth bit (i.e., the last bit) of an error delimiter or overload delimiter.
- Format of the overload frame is shown in above fig
- The overload flag consists of six dominant bits.
- The overload delimiter consists of eight recessive bits.

CANMessage Transfer - Frame Fields

- Control Field
- Arbitration Field
- Data Field
- CRC Field
- ACK Field

CAN Frame Fields - Control Field

- The first bit is IDE bit for the standard format but is used as reserved bit r1 in extended format.
- r0 is reserved bit.
- DLC3...DLC0 stands for data length and can be from 0000 (0) to 1000 (8).

CANFrame Fields - Arbitration Field

- The identifier of the standard format corresponds to the base ID in the extended format.
- The RTR bit is the remote transmission request and must be 0 in a data frame.
- The SRR bit is the substitute remote request and is recessive.
- The IDE field indicates whether the identifier is extended and should be recessive in the extended format.
- The extended format also contains the 18-bit extended identifier.

CANFrame Fields - Data Field

May contain 0 to 8 bytes of data

CANFrame Fields - CRC Field

- It contains the 16-bit CRC sequence including CRC delimiter.
- The CRC delimiter is a single recessive bit.

CANFrame Fields - Ack Field

- Consists of two bits
- The first bit is the acknowledgement bit.
- This bit is set to recessive by the transmitter, but will be reset to dominant if a receiver acknowledges the data frame.
- The second bit is the ACK delimiter and is recessive.

CANError Handling

- Error Detection
 - Bit Error
 - Stuff Error
- Error Signaling
 - CRC Error
 - Form Error
 - Acknowledgment Error

CANFault Confinement

- Counters
 - Transmit Error Counter & Receive Error Counter

Thank You