

Descripción de circuitos digitales

CIRCUITOS COMBINACIONALES ARITMÉTICOS

Índice

- ☐ Representación de números con y sin signo
- Operaciones aritméticas
- Circuitos aritméticos
- Descripción de circuitos aritméticos en VHDL

Representación de números con signo

- Los números con signo tienen dos partes: signo y magnitud
- ☐ Es necesario <u>codificar el signo</u> del número para poder representarlo utilizando sólo 0s y 1s:
 - Normalmente se codifica el signo con un 0 para números positivos y un 1 para números negativos
- Según diferentes formas de <u>codificar la magnitud</u> se obtienen 3 diferentes sistemas de representación:
 - Signo y magnitud
 - Complemento a 1
 - Complemento a 2

Representación Signo y Magnitud

- Los números en el sistema de Signo y Magnitud se codifican de la siguiente forma:
 - ➤ El MSB es el signo (0 si es positivo o 1 si es negativo)
 - ➤ El resto de los bits son la magnitud del número a representar, codificada en binario natural

$$25_{10} = 11001_{BIN}$$

☐ Ejemplos:

```
+25_{10} = 011001_{SM}
```

$$-25_{10} = 111001_{SM}$$

- ☐ Los números en el sistema de Complemento a 1 se codifican:
 - ❖Si el número es positivo:
 - ➤ El MSB es un 0 (signo)
 - ➤ El resto de los bits son la magnitud en binario natural
 - ❖Si el número es negativo:
 - ➤ El MSB es un 1 (signo)
 - ➤ El resto de los bits son el complemento (a 1) de la magnitude
 - Cambiar de signo es cambiar ceros y unos
- Ejemplos: $+25_{10} = 011001_{Ca1}$ $-25_{10} = 100110_{Ca1}$

- ☐ Los números en el sistema de Complemento a 2 se codifican:
 - ❖ Si el número es **positivo**:
 - > El MSB es un 0 (signo)
 - > El resto de los bits son la magnitud en binario natural
 - ❖ Si el número es **negativo**:
 - > El MSB es un 1 (signo)
 - > El resto de los bits son el complemento a 2 de la magnitud.
 - El complemento a dos de un número es su complemento + 1

$$Ca2(A) = \overline{A} + 1$$

• Equivalentemente, se puede definir como (siendo n el número de bits):

$$Ca2(A) = 2^{n} - A$$

 $(2^{n} - A = 2^{n} - 1 + 1 - A = 11....11 - A + 1 = \overline{A} + 1)$

Ejemplos:
$$+25_{10} = 011001_{Ca2}$$

 $-25_{10} = 100111_{Ca2}$

- No hay que confundir los conceptos de "operación de complementar a 2" y "representación en complemento a 2" de un número:
 - Operación de complementar a 2 de un número A:

$$Ca2(A) = 2^n - A = \overline{A} + 1$$

- Representación en complemento a 2 de un número A:
 - > Hay que distinguir si es positivo o negativo, sólo en el caso de que sea negativo dicha representación se obtiene aplicando la operación de complementar a 2.
- ☐ La representación en complemento a 2 es la más utilizada en los sistemas digitales para números con signo.

Extensión del número de bits

☐ Un mismo número se puede representar con diferente número de bits:

$$+25_{10} = 011001_{SM} = 0000011001_{SM} = 00000000011001_{SM}$$

- ☐ Para extender el signo:
 - ♣En SM:
 - ➤ Añadir ceros justo después del signo
 - ❖En Ca1 y Ca2:
 - ➤ Si es positivo añadir ceros a la izquierda
 - ➤ Si es negativo añadir unos a la izquierda

```
+25_{10} = 011001_{Ca2} = 0000011001_{Ca2} = 0000000000011001_{Ca2}
```

$$-25_{10} = 100111_{Ca2} = 11111100111_{Ca2} = 111111111111111100111_{Ca2}$$

Codificación			SM	Ca1	Ca2
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	2	2	2
0	1	1	3	3	3
1	0	0	-0	-3	-4
1	0	1	-1	-2	-3
1	1	0	-2	-1	-2
1	1	1	-3	-0	-1

- En SM y en Ca1 hay dos codificaciones distintas que representan el 0
- En Ca2 la representación del 0 es única

 Otra propiedad del Ca2 es que el complemento a 2 del complemento a 2 de un número es el mismo número (la operación inversa del Ca2 es el propio complemento a 2):

$$Ca2(Ca2(A_{Ca2})) = A_{Ca2}$$

Dem: Ca2(Ca2(A_{Ca2})) = 2^n - (Ca2(A_{Ca2})) = 2^n - (2^n - A_{Ca2}) = A_{Ca2}

De lo que se deduce esta otra propiedad:

$$-A_{\text{Ca}2} = \text{Ca}2 (A_{\text{Ca}2})$$

Dem: Si A_{Ca2} es positivo, entonces por la propia definición de representación en Ca2

Si A_{Ca2} es negativo, entonces $-A_{Ca2}$ se obtiene haciendo la operación inversa del Ca2, pero como $Ca2(Ca2(A_{Ca2})) = A_{Ca2}$, se tiene que $-A_{Ca2} = Ca2 (A_{Ca2})$

Ejemplo: Partiendo de un número positivo: 00001001 (+9)

Realizando la operación de Ca2: 11110111 (-9)

Realizando la operación de Ca2: 00001001 (+9)

- Otra forma de calcular el complemento a 2 de un número:
 - Empezando por el LSB, dejar iguales los bits hasta encontrar el primer 1 e invertir el resto:
 - Ca2(11100100) =00011100

Comprobación: Ca2(11100100) = 00011011 + 1 = 00011100

- Otra forma de convertir de Ca2 a decimal (Ca2 es un código ponderado):
 - Considerar el peso del signo como negativo
 - Ejemplos:

•
$$1110_2 = 1*(-2^3) + 1*2^2 + 1*2^1 + 0*2^0 = -8 + 4 + 2 = -2_{10}$$

•
$$0110_2 = 0*(-2^3) + 1*2^2 + 1*2^1 + 0*2^0 = 4 + 2 = 6_{10}$$

Suma binaria

■ Las sumas de números naturales en binario se realizan igual que en decimal:
1001 (9)

+ 1101 (13) 10110 (22)

- Utilizando la representación de los números en Ca2, el método es válido también para números con signo, si se siguen las siguientes reglas.
 - Operandos con el mismo número de bits
 - Se descarta el acarreo final
 - Si los dos operandos tienen el mismo signo, y el resultado de la operación tiene signo diferente el resultado no es válido. Se dice que hay desbordamiento ("overflow"):
 - Esto sucede porque haría falta un bit adicional para poder representar el resultado.

Suma binaria en Ca2: Ejemplos

Dos números positivos: (+9) + (+4)

$$0 \ 1001_{Ca2} \ (+9)$$

$$+ \ 0 \ 0100_{Ca2} \ (+4)$$

$$0 \ 1101_{Ca2} \ (+13)$$

Dos números negativos:(-9) + (-4)

$$1 0111_{Ca2} (-9)$$
+ 1 1100_{Ca2} (-4)
1 0011_{Ca2} (-13)

Número positivo grande y número negativo pequeño: (+9) + (-4)

Número positivo pequeño y número negativo grande: (-9) + (+4)

Números iguales de signo contrario: (+9) + (-9)

$$0\ 1001_{\text{Ca}2}\ (+9)$$

Dos números grandes (overflow):

$$(+9) + (+9)$$

$$0\ 1001_{Ca2}\ (+9)$$

Resta binaria

Para realizar restas binarias se utiliza la propiedad vista anteriormente del complemento a 2:

$$-A_{Ca2} = Ca2 (A_{Ca2})$$

Y por tanto:

$$A_{Ca2} - B_{Ca2} = A_{Ca2} + Ca2 (B_{Ca2})$$

O equivalentemente:

$$A_{Ca2} - B_{Ca2} = A_{Ca2} + \overline{B_{Ca2}} + 1$$

■ En los sistemas digitales se representan los números con signo en Ca2, y no se utilizan restadores (no hacen falta), sólo sumadores

Sumador con propagación de acarreo serie

Suma decimal y binaria

> Operandos: n bits

> Resultado: n+1 bits

Sumador con propagación de acarreo serie

■ Semisumador

A	В	S	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Sumador con propagación de acarreo serie

☐ Sumador completo

Aritmética VHDL: IEEE.NUMERIC_STD

- ☐ Tipos:
 - Vector de bits: no numérico
 - ➤ STD_LOGIC_VECTOR(7 DOWNTO 0)
 - Binario natural: números positivos
 - ➤ NATURAL RANGE 0 to 255 (no necesario, usar INTEGER)
 - ➤ UNSIGNED (7 downto 0)
 - Ca2: números positivos y negativos
 - ➤ INTEGER RANGE -128 to 127
 - ➤ SIGNED (7 downto 0)
- ☐ Operadores: +,-,*,/,REM,MOD
 - ❖ INTEGER y NATURAL se pueden mezclar
 - ❖ SIGNED <= SIGNED operador SIGNED/INTEGER/NATURAL
 - ❖ UNSIGNED <= UNSIGNED operador UNSIGNED/INTEGER/NATURAL
- Operadores: <,>,<=,>=,=, /=
 - ❖ BOOLEAN <= SIGNED operador SIGNED/INTEGER/NATURAL
 - ❖ BOOLEAN <= UNSIGNED operador UNSIGNED/INTEGER/NATURAL

Aritmética VHDL: IEEE.NUMERIC_STD

- ☐ Funciones: devuelven mismo tipo que el operando, salvo STD_MATCH que devuelve BOOLEAN
 - SHIFT_LEFT(), SHIFT_RIGHT(): desplazamientos
 - * ROTATE_LEFT(), ROTATE_RIGHT(): rotaciones
 - RESIZE(): cambia el tamaño, teniendo en cuenta el signo
 - STD_MATCH(): comprueba la igualdad teniendo en cuenta dont_care ('-')
- ☐ Funciones de conversión (cast):
 - STD_LOGIC_VECTOR() SIGNED,UNSIGNED => STD_LOGIC_VECTOR
 - ❖ SIGNED()
 UNSIGNED,STD LOGIC VECTOR ⇒ SIGNED
 - UNSIGNED()
 SIGNED,STD_LOGIC_VECTOR => UNSIGNED
- ☐ Funciones de conversion:
 - ❖ TO INTEGER()
 SIGNED, UNSIGNED ⇒ INTEGER/NATURAL
 - ❖ TO SIGNED()
 INTEGER/NATURAL ⇒ SIGNED
 - ❖ TO_UNSIGNED() INTEGER/NATURAL ⇒ UNSIGNED

Aritmética VHDL IEEE.NUMERIC_STD

- std_logic_vector no representa números, no se pueden convertir a enteros ni ser usados como argumentos de operaciones aritméticas (suma, mult, ...)
- ☐ Hacer cast entre *std_logic_vector*, *signed* y *unsigned* no cambia el contenido en bits del vector: usar con cuidado.

Aritmética VHDL: ejemplos

☐ Calificadores de tipo

```
signal a_un, b_un, c_un: unsigned(7 downto 0);
signal a_sg,b_sg,c_sg,d_sg: signed(7 downto 0);
. . .
a_un <= "1111"; -- a_sg vale 15
b_un <= a_un + "0001"; -- No válido: ambiguo
c_un <= a_un + unsigned("0001");
d_un <= a_un + 1;
. . .
a_sg <= "1111"; -- a_sg vale -1
c_sg <= a_sg + signed("0001");
d_sg <= a_sg + 1;</pre>
```


Aritmética VHDL: ejemplos

☐ Sumador con generador de acarreo

```
signal a,b,s: unsigned(7 downto 0);
signal cy: std_logic;
...
process(a,b)
  variable result: unsigned(8 downto 0);
begin
  result := resize(a,9)+resize(b,9); -- Suma con 9 bits
  cy <= result(8); -- Acarreo es el noveno bit
  s <= result(7 downto 0);
end process;</pre>
```


Aritmética VHDL: ieee.std_logic_arith

std_logic_arith

Tipos: signed, unsigned

Operadores:

+,-,*,/,rem,mod

Funciones:

SHR, SHL, EXT, SEXT

Funciones de conversión:

SIGNED, UNSIGNED, STD_LOGIC_VECTOR

Creados por

Synopsys,

no estándar

CONV_UNSIGNED, CONV_SIGNED

CONV_INTEGER

CONV_STD_LOGIC_VECTOR

std_logic_signed std_logic_unsigned

std_logic_vector se usa como signed o unsigned

Operadores:

Func. de conversión (std_logic_vector):

CONV INTEGER

Aritmética VHDL

Usos de bibliotecas típicos

```
-- Declaración mínima para usar STD_LOGIC y STD_LOGIC_VECTOR library IEEE; use IEEE.std_logic_1164.all; -- Operaciones aritméticas con tipos SIGNED y UNSIGNED library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all;
```

```
-- Operaciones aritméticas con tipos SIGNED y UNSIGNED library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_arith.all;
```

```
-- Operaciones aritméticas que usan STD_LOGIC_VECTOR como
-- enteros sin signo
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
```


Aritmética VHDL: recomendaciones

- □ Acotar los rangos facilita la depuración
 ❖INTEGER RANGE 0 to 255;
- ☐ Trabajar en enteros es más sencillo... pero los puertos deben ser vectores
- ☐ Usar STD_LOGIC_VECTOR para agrupaciones de bits no numéricas y SIGNED/UNSIGNED para números
- ☐ Controlar el tamaño de los datos:
 - La señal destino debe ser lo suficientemente grande para contener el resultado
 - El truncamiento de bits se hace conservando los bits de menos peso

