Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Факультет Программной Инженерии и Компьютерной Техники

Дисциплина: Основы профессиональной деятельности

Лабораторная работа №5

Выполнил: Конаныхина Антонина

Группа: P3115 Вариант: 1534

Преподаватель: Перцев Тимофей

Сергеевич

Цель работы:

Задание:

По выданному преподавателем варианту разработать программу асинхронного обмена данными с внешним устройством. При помощи программы осуществить ввод или вывод информации, используя в качестве подтверждения данных сигнал (кнопку) готовности ВУ.

Вариант:

- 1. Программа осуществляет асинхронный ввод данных с ВУ-3
- 2. Программа начинается с адреса 173₁₆. Размещаемая строка находится по адресу 5Е5₁₆.
- 3. Строка должна быть представлена в кодировке ISO-8859-5.
- 4. Формат представления строки в памяти: АДР1: СИМВ2 СИМВ1 АДР2: СИМВ4 СИМВ3 ... СТОП СИМВ.
- 5. Ввод или вывод строки должен быть завершен по символу с кодом 0D (CR). Стоп символ является обычным символом строки и подчиняется тем же правилам расположения в памяти что и другие символы строки.

Текст программы:

ORG 0x173 ADR: WORD \$RES I: WORD 0x0000 MASK: WORD 0x00FF EXIT: WORD 0x000D BEGIN: CLA LD **ADR** ST Ι CLA FIRST IN: IN 7 AND #0x40 BEQ FIRST_IN IN 6 ST (I) **CMP EXIT** BEO END_PROG SECOND IN: IN 7 AND #0x40 BEQ SECOND_IN IN

SWAB

OR (I)

ST (I)+

SWAB

AND MASK

CMP EXIT

BEQ END_PROG

JUMP FIRST_IN

END_PROG: HLT

ORG 0x5E5

RES: WORD ?

Назначение программы:

Программа осуществляет асинхронный ввод с ВУ-3 в кодировке ISO8859-5. В 16-битной ячейку памяти БЭВМ размещается два 8-битных символа. Адрес 1 ячейки программы: 17С. Ввод осуществляется до тех пор, пока не будет введен символ CR (0x000D).

Расположение в памяти исходных данных и результата (назначение ячеек):

Переменная, хранящая адрес 1 ячейки: 173 (ADR)

Переменная, хранящая адрес текущей ячейки массива символов: 174 (I)

Маска (константа для отбрасывания первого байта): 175 (MASK)

Константа символа конца строки: 176 (EXIT)

Программа: 177...18Е

Введенная строка: $5E5...5E5 + \left[\frac{N-1}{2}\right]$ где N — длина строки.

Адреса первой и последней выполняемой процессором команд:

Первая команда: 177, последняя 18Е.

Область представления:

ADR – Адрес ячейки (11-битное беззнаковое число)

I – Адрес ячейки (11-битное беззнаковое число)

EXIT – Символ в кодировке ISO8859-5 (8-битное число)

RES – Массив из символов в кодировке ISO8859-5 (8-битных чисел)

Область допустимых значений:

Длина вводимой строки:

Строка может лежать в ячейках с 5E5 до 7FF и с 000 до 172, то есть всего ячеек памяти может быть 539 + 371 = 910 и 1820 символов.

Строка:

Шоколадный Рогалик?

Трассировка с выданной строкой:

Кириллица	ISO-5589-5	Кириллица	ISO-5589-5
Ш	C8	Н	DD
O	DE	Ы	EB
К	DA	й	D9
Л	DB	P	C0
a	D0	Γ	D3
Д	D4	И	D8
?	3F		

Таблица:

Адр	Знчн	IP	CR	AR	DR	SP	BR	AC	NZVC	Адр	Знчн
177	0200	178	0200	177	0200	000	0177	0000	0100	11ДР	
178	AEFA	179	AEFA	173	05E5	000	FFFA	05E5	0000		
179	EEFA	17A	EEFA	174	05E5	000	FFFA	05E5	0000	174	05E5
17A	0200	17B	0200	17A	0200	000	017A	0000	0100		
17B	1207	17C	1207	17B	1207	000	017B	0040	0100		
17C	2F40	17D	2F40	17C	0040	000	0040	0040	0000		
17D	F0FD	17E	F0FD	17D	F0FD	000	017D	0040	0000		
17E	1206	17F	1206	17E	1206	000	017E	00C8	0000		
17F	E8F4	180	E8F4	5E5	00C8	000	FFF4	00C8	0000	5E5	00C8
180	7EF5	181	7EF5	176	000D	000	FFF5	00C8	0001		
181	F00C	182	F00C	181	F00C	000	0181	00C8	0001		
182	1207	183	1207	182	1207	000	0182	0040	0001		
183	2F40	184	2F40	183	0040	000	0040	0040	0001		
184	F0FD	185	F0FD	184	F0FD	000	0184	0040	0001		
185	1206	186	1206	185	1206	000	0185	00DE	0001		
186	0680	187	0680	186	0680	000	0186	DE00	1001		
187	38EC	188	38EC	5E5	00C8	000	2137	DEC8	1001		
188	EAEB	189	EAEB	5E5	DEC8	000	FFEB	DEC8	1001	5E5	DEC8
										174	05E6
189	0680	18A	0680	189	0680	000	0189	C8DE	1001		
18A	2EEA	18B	2EEA	175	00FF	000	FFEA	00DE	0001		
18B	7EEA	18C	7EEA	176	000D	000	FFEA	00DE	0001		
18C	F001	18D	F001	18C	F001	000	018C	00DE	0001		
18C	CEED	17B	CEED	18D	017B	000	FEED	00DE	0001		
17B	1207	17C	1207	17B	1207	000	017B	0040	0101		
17C	2F40	17D	2F40	17C	0040	000	0040	0040	0001		
17D	F0FD	17E	F0FD	17D	F0FD	000	017D	0040	0001		
17E	1206	17F	1206	17E	1206	000	017E	00DA	0001		
17F	E8F4	180	E8F4	5E6	00DA	000	FFF4	00DA	0001	5E6	00DA
180	7EF5	181	7EF5	176	000D	000	FFF5	00DA	0001		
181	F00C	182	F00C	181	F00C	000	0181	00DA	0001		

Вывод:

В ходе выполнения этой лабораторной работы была изучена работа устройств вводавывода в БЭВМ и организация асинхронного ввода-вывода.