Mathématiques – Terminale spécialité

Corrigés des exercices

Table des matières

1	Compléments sur la dérivation	2
2	Suites et récurrence	19
3	Dénombrement	37
4	Limites de suites	44
5	Géométrie repérée dans l'espace	53

1 Compléments sur la dérivation

Exercice 1 La fonction f est définie sur l'intervalle [-2;6] par

$$f(x) = 0,5x^2 - 2x - 4.$$

Pour tout $x \in \mathbb{R}$:

$$f'(x) = 0.5 \times 2x - 2 \times 1 - 0 = x - 2.$$

La dérivée est du premier degré, donc pour obtenir le tableau de signe, il faut résoudre une équation, puis regarder le signe de *a* :

$$x-2=0$$

$$x-\cancel{2}+\cancel{2}=0+2$$

$$x=2.$$

a=1 (puisque x-2 signifie $\frac{1}{2}x-2$), a est \oplus donc le signe est de la forme $\boxed{-\varphi+}$

On en déduit le tableau de signe de f' et le tableau de variations de f:

x	-2	2	6
f'(x)	_	0	+
f(x)	2	-6	2

Pour compléter l'extrémité des flèches, on calcule :

- $f(-2) = 0.5 \times (-2)^2 2 \times (-2) 4 = 2$
- $f(2) = 0.5 \times 2^2 2 \times 2 4 = -6$
- $f(6) = 0.5 \times 6^2 2 \times 6 4 = 2$

On peut aussi faire un tableau de valeurs à la calculatrice.

Remarque: La courbe représentative est une parabole, dont le sommet *S* a pour coordonnées (2; -6).

Exercice 2 On considère un segment [AB] de longueur 4 et un point mobile M pouvant se déplacer librement sur ce segment.

$$A \xrightarrow{M} A \xrightarrow{I}$$

On note x la longueur du segment [AM] et f(x) le produit des longueurs $AM \times BM$.

1.
$$BM = AB - AM = 4 - x$$
, donc

$$f(x) = AM \times BM$$

$$= x \times (4 - x)$$

$$= x \times 4 + x \times (-x)$$

$$= 4x - x^{2}.$$

2

2. Le produit des longueurs $AM \times BM$ est donné par f(x), donc maximiser ce produit revient à maximiser la fonction f. On étudie donc les variations : pour tout $x \in [0;4]$,

$$f'(x) = 4 \times 1 - 2x = -2x + 4.$$

On résout :

$$-2x+4=0$$

$$-2x+4-4=0-4$$

$$\frac{-2x}{-2}=\frac{-4}{-2}$$

$$x=2.$$

a = -2, a est Θ donc le signe est de la forme $|+ \varphi -$

On obtient le tableau de signe de f' et le tableau de variations de f:

Il n'est pas utile ici de compléter l'extrémité des flèches : tout ce qui nous intéresse, c'est la valeur de x pour laquelle f atteint son maximum.

Conclusion: f atteint son maximum lorsque x = 2, donc le produit $AM \times BM$ est maximal lorsque x = 2; c'est-à-dire quand M est le milieu de [AB].

Remarque: Cet exemple est celui qu'a choisi Fermat vers 1637 pour exposer sa méthode de l'adégalité – ancêtre de la dérivation – pour déterminer le maximum et le minimum d'une fonction.

Exercice 3 La fonction g est définie sur \mathbb{R} par

$$g(x) = 0.5x^3 + 0.75x^2 - 3x - 1.$$

Pour tout $x \in \mathbb{R}$:

$$g'(x) = 0.5 \times 3x^2 + 0.75 \times 2x - 3 \times 1 - 0 = 1.5x^2 + 1.5x - 3.$$

La dérivée est du second degré, donc on utilise la méthode de la classe de première :

- a = 1, 5, b = 1, 5, c = -3.
- le discriminant est $\Delta = b^2 4ac = 1,5^2 4 \times 1,5 \times (-3) = 20,25$.
- $\Delta > 0$, donc il y a deux racines :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-1, 5 - \sqrt{20, 25}}{2 \times 1, 5} = \frac{-1, 5 - 4, 5}{3} = \frac{-6}{3} = -2,$$
$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-1, 5 + \sqrt{20, 25}}{2 \times 1, 5} = \frac{-1, 5 + 4, 5}{3} = \frac{3}{3} = 1.$$

3

 $a = 1.5 \ a \text{ est} \oplus \text{donc le signe est de la forme} + \phi - \phi +$

х	$-\infty$		-2		1		+∞
g'(x)		+	0	_	0	+	
g(x)			, ⁴ -		-2.75	/	<i></i>

- $g(-2) = 0.5 \times (-2)^3 + 0.75 \times (-2)^2 3 \times (-2) 1 = 4$ $g(1) = 0.5 \times 1^3 + 0.75 \times 1^2 3 \times 1 1 = -2.75$

Remarque: Voici à quoi ressemble la courbe représentative :

Exercice 4 La fonction h est définie sur $[1; +\infty]$ par

$$h(x) = (x-6)\sqrt{x}$$
.

On utilise la formule pour la dérivée d'un produit avec

$$u(x) = x - 6 \qquad , \qquad v(x) = \sqrt{x},$$

$$u'(x) = 1 \qquad , \qquad v'(x) = \frac{1}{2\sqrt{x}}.$$

On obtient, pour tout $x \in [1; +\infty[$:

$$h'(x) = u'(x) \times v(x) + u(x) \times v'(x)$$

$$= 1 \times \sqrt{x} + (x - 6) \times \frac{1}{2\sqrt{x}}$$

$$= \frac{\sqrt{x} \times 2\sqrt{x}}{2\sqrt{x}} + \frac{x - 6}{2\sqrt{x}}$$

$$= \frac{2x}{2\sqrt{x}} + \frac{x - 6}{2\sqrt{x}}$$

$$= \frac{3x - 6}{2\sqrt{x}}.$$
(rappel: $\sqrt{x} \times \sqrt{x} = \sqrt{x^2} = x$)

• On résout rapidement :

$$3x - 6 = 0 \iff 3x = 6 \iff x = \frac{6}{3} = 2.$$

- Dans 3x 6, $a = 3 \oplus$, donc $\varphi +$
- $2\sqrt{x}$ est strictement positif pour tout $x \in [1; +\infty[$.

On a donc le tableau:

x	1		2		$+\infty$
3x-6		-	0	+	
$2\sqrt{x}$		+		+	
h'(x)		-	0	+	
h(x)	-5		$-4\sqrt{2}$	/	<i>></i> *

- $h(1) = (1-6) \times \sqrt{1} = -5 \times 1 = -5$; $h(2) = (2-6) \times \sqrt{2} = -4\sqrt{2}$.

Exercice 5 La fonction f est définie sur [1;4] par $f(x) = x + \frac{4}{x} - 3$. On note $\mathscr C$ sa courbe représentative, A, B, C les points de $\mathscr C$ d'abscisses respectives 1, 2, 4; et T_A , T_B , T_C les tangentes à $\mathscr C$ en ces points.

1. Pour dériver, le plus simple est de réécrire f(x) sous la forme

$$f(x) = x + 4 \times \frac{1}{x} - 3.$$

On obtient alors, pour tout $x \in [1;4]$:

$$f'(x) = 1 + 4 \times \left(-\frac{1}{x^2}\right) - 0$$

$$= 1 - \frac{4}{x^2}$$

$$= \frac{x^2}{x^2} - \frac{4}{x^2}$$

$$= \frac{x^2 - 4}{x^2}$$

- 2. Les racines de $x^2 4$ sont évidentes : ce sont $x_1 = -2$ et $x_2 = 2$. Seule la deuxième est dans l'intervalle [1;4].
 - x^2 est strictement positif pour tout $x \in [1;4]$.

On obtient donc le tableau:

x	1		2		4
$x^2 - 4$		-	0	+	
x^2		+		+	
f'(x)		-	0	+	
f(x)	2		1		_* 2

Le signe de $x^2 - 4$ sur $]-\infty; +\infty[$ est de la forme $\boxed{+ \varphi - \varphi + \varphi}$ Mais comme on travaille sur l'intervalle [1;4], il ne reste plus que la partie droite $\boxed{- \varphi + \varphi}$ On calcule les valeurs aux extrémités des flèches :

• $f(1) = 1 + \frac{4}{1} - 3 = 2$;
• $f(2) = 2 + \frac{4}{2} - 3 = 1$;
• $f(4) = 4 + \frac{4}{4} - 3 = 2$.

3. On rappelle que la tangente à la courbe en un point d'abscisse *a* a pour équation

$$y = f'(a)(x - a) + f(a).$$

Appliquons cette formule avec a = 1 – puisque le point A a pour abscisse 1:

f(1) = 2 (déjà calculé) et $f'(1) = \frac{1^2 - 4}{1^2} = \frac{-3}{1} = -3$, donc l'équation de T_A est

$$y = f'(1)(x-1) + f(1)$$

$$y = -3(x-1) + 2$$

$$y = -3x + 3 + 2$$

$$y = -3x + 5$$
.

Le point A a pour coordonnées (1;2), puisque f(1) = 2; la tangente T_A passe donc par ce point. Pour la tracer, il faut placer un deuxième point (c'est une droite); ce que l'on peut faire de trois façons différentes :

- (a) L'ordonnée à l'origine est 5 (puisque T_A : y = -3x+5), donc T_A passe par le point de coordonnées (0;5).
- (b) Le coefficient directeur de T_A est -3 (puisque T_A : y = -3x + 5), donc en partant de A, il suffit d'avancer de 1 carreau en abscisse et de descendre de 3 carreaux en ordonnée – T_A passe donc par le point de coordonnées (2; –1).
- (c) On calcule un deuxième point avec la formule : par exemple, si x = 2, $y = -3 \times 2 + 5 = -1$. On obtient le point de coordonnées (2; -1) (le même qu'avec la méthode (b)) et on trace la tangente.
- 4. f(2) = 1 et $f'(2) = \frac{2^2 4}{2^2} = \frac{0}{4} = 0$, donc l'équation de T_B est

$$y = f'(2)(x-2) + f(2)$$

$$y = 0(x-1) + 1$$

5

$$y = 1$$
.

Le coefficient directeur étant égal à 0, la tangente T_B est horizontale.

• f(4) = 2 et $f'(4) = \frac{4^2 - 4}{4^2} = \frac{12}{16} = 0,75$, donc l'équation de T_C est

$$y = f'(4)(x-4) + f(4)$$

$$y = 0,75(x-4) + 2$$

$$y = 0,75x - 3 + 2$$

$$y = 0,75x - 1.$$

On trace la tangente T_C par la même méthode que T_A (le plus simple et le plus précis est d'utiliser l'ordonnée à l'origine).

5. On place les points *A*, *B*, *C*, on trace les trois tangentes et on construit la courbe de la fonction *f* (en bleu) en s'appuyant sur ces tangentes.

Exercice 6 La fonction i est définie sur \mathbb{R} par

$$i(x) = \frac{2x}{x^2 + 1}.$$

1. On utilise la formule pour la dérivée d'un quotient avec

$$u(x) = 2x$$
 , $v(x) = x^2 + 1$, $u'(x) = 2x$, $v'(x) = 2x$.

On obtient, pour tout $x \in \mathbb{R}$:

$$i'(x) = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{(v(x))^2}$$

$$= \frac{2 \times (x^2 + 1) - 2x \times 2x}{(x^2 + 1)^2}$$

$$= \frac{2x^2 + 2 - 4x^2}{(x^2 + 1)^2}$$

$$= \frac{-2x^2 + 2}{(x^2 + 1)^2}.$$

2. • Les racines de $-2x^2 + 2$ sont assez évidentes :

$$-2x^2 + 2 = 0 \iff 2 = 2x^2 \iff 1 = x^2 \iff (x = 1 \text{ ou } x = -1).$$

• $(x^2 + 1)^2$ est strictement positif pour tout réel x.

On obtient donc le tableau:

x	$-\infty$		-1		1		+∞
$-2x^2 + 2$		_	0	+	0	-	
$(x^2+1)^2$		+		+		+	
i'(x)		_	0	+	0	-	
<i>i</i> (<i>x</i>)			-1		, ¹ \		`

3. (a) $i(0) = \frac{2 \times 0}{0^2 + 1} = \frac{0}{1} = 0$ et $i'(0) = \frac{-2 \times 0^2 + 2}{(0^2 + 1)^2} = \frac{2}{1} = 2$, donc l'équation de (T) est

$$y = f'(0)(x-0) + f(0)$$

$$y = 2x + 0$$

$$y = 2x$$
.

(b) Pour étudier les positions relatives de (C): $y = \frac{2x}{x^2+1}$ et (T): y = 2x, on étudie **le signe de la différence**:

$$\frac{2x}{x^2+1}-2x.$$

- Pour les valeurs de x pour lesquelles cette différence vaut 0, les deux courbes se coupent;
- pour les valeurs de x pour lesquelles cette différence est strictement positive, (C) est au-dessus de (T);
- pour les valeurs de x pour lesquelles cette différence est strictement négative, (C) est en-dessous de (T).

On commence par calculer la différence :

$$\frac{2x}{x^2+1} - 2x = \frac{2x}{x^2+1} - \frac{2x(x^2+1)}{x^2+1}$$
$$= \frac{2x}{x^2+1} - \frac{2x^3+2x}{x^2+1}$$
$$= \frac{2x - 2x^3 - 2x}{x^2+1}$$
$$= \frac{-2x^3}{x^2+1}.$$

x	-∞	0	+∞
$-2x^{3}$	+	0	-
$\left(x^2+1\right)^2$	+		+
$\frac{-2x^3}{x^2+1}$	+	0	-
Positions relatives des courbes	(C) au-dessus de (T)	S e c o u p e n t	(C) en-dessous de (T)

Pour compléter le tableau de signe :

- -2x³ = 0 lorsque x = 0;
 -2x³ est ⊕ lorsque x est strictement positif;
 -2x³ est ⊕ lorsque x est strictement négatif;
 (x²+1)² est strictement positif pour tout réel x.

4.

Exercice 7 La distance (en m) parcourue au temps t (en s) par une pierre en chute libre est $d(t) = 5t^2$. On lance cette pierre d'une hauteur de 20 m.

1. La pierre arrive au sol quand elle a parcouru 20 m. Il faut donc résoudre l'équation $5t^2 = 20$:

$$5t^2 = 20 \iff t^2 = \frac{20}{5} \iff t^2 = 4 \iff \left(t = 2 \text{ ou } \underbrace{t = -2}_{\text{impossible}}\right)$$

Conclusion : la pierre arrive au sol après 2 s.

2. On construit la courbe à partir d'un tableau de valeurs (avec un pas de 0,4 par exemple).

t	0	0,4	0,8	1,2	1,6	2
d(t)	0	0,8	3,2	7,2	12,8	20

Pour obtenir ce tableau, on utilise la calculatrice (bien sûr, on met des x à la place des t):

NUMWORKS Calculatrices collège TI graphiques **CASIO** graphiques x s'obtient avec les touches s'obtient avec la touche alpha x X, θ, T s'obtient avec la touche MENU puis choisir TABLE x, t, θ, n • Fonctions EXE puis choi-EXE sir Fonctions EXE f(x)• $Y_1:5X^2$ EXE MODE • $f(x)=5x^2$ EXE • $Y_1 = 5X^2$ EXE • F5 (on choisit donc SET) 4: TABLE ou 4: Tableau 2nde déf table • Start :0 EXE • choisir Tableau EXE puis • $f(X)=5X^2$ EXE • End:2 EXE Régler l'intervalle EXE • DébTable=0 EXE (si on demande g(X)=, ne • Step :0.4 EXE rien rentr<u>er</u>) X début 0 EXE • PasTable=0.4 EXE • Début?0 EXE 2 EXE ou • X fin EXIT ∆Tbl=0.4 EXE • Fin?2 EXE 0.4 EXE F6 Pas (on choisit donc • Pas? 0,4 EXE choisir Valider 2nde table TABLE) distance (en m) 16 12 8 4

8.0

1.2

1.6

0.4

temps (en s)

2.0

3. La vitesse de la pierre au moment de l'impact au sol est d'(2).

Or $d'(t) = 5 \times 2t = 10t$, donc $d'(2) = 10 \times 2 = 20$. Ainsi la vitesse au moment de l'impact est de 20 m/s.

Remarques:

- cette vitesse instantanée est le coefficient directeur de la tangente au point A d'abscisse 2 (en rouge).
- la « vraie formule » (valable en l'absence de frottements) est $d(t) = 4.9t^2$. Dans l'exercice, on a pris 5 au lieu de 4,9 pour simplifier les calculs.

Exercice 8 Dans cet exercice, on utilise deux propriétés du cours :

- la dérivée de $x \mapsto e^{ax+b}$ est $x \mapsto ae^{ax+b}$;
- une exponentielle est strictement positive.

Pour tout $x \in \mathbb{R}$:

$$f(x) = e^{0.5x+1}$$

 $f'(x) = \underbrace{0.5}_{\oplus} \underbrace{e^{0.5x+1}}_{\oplus}$

Pour tout $x \in \mathbb{R}$:

Pour tout $x \in \mathbb{R}$:

Pour tout $x \in \mathbb{R}$:

$$i(x) = e^{-1x+1}$$
 $i'(x) = \underbrace{-1}_{0} e^{-1x+1}$

i' < 0 donc i strictement décrois-

f' > 0 donc f strictement croissante sur \mathbb{R} .

h' > 0 donc h strictement croissante sur \mathbb{R} .

À titre d'illustration, on a tracé les courbes des quatre fonctions. Elles ont toutes une allure très similaire, à deux différences près :

- elles montent lorsque a > 0, elles descendent lorsque a < 0;
- plus |a| est grand, plus la pente de la partie inclinée est forte.

Exercice 9 La fonction f est définie sur l'intervalle [0;4] par

$$f(x) = (-2x+1)e^{-x}$$
.

1. On utilise la formule pour la dérivée d'un produit avec

$$u(x) = -2x + 1$$
$$u'(x) = -2$$

$$\nu(x) = e^{-x}.$$

$$v'(w) = e^{-\lambda}$$

On obtient, pour tout $x \in [0;4]$:

$$f'(x) = u'(x) \times v(x) + u(x) \times v'(x)$$

$$= -2 \times e^{-x} + (-2x+1) \times (-e^{-x})$$

$$= -2 \times e^{-x} + (-2x) \times (-e^{-x}) + 1 \times (-e^{-x})$$

$$= -2 \times e^{-x} + 2x \times e^{-x} - 1 \times e^{-x}$$

$$= (-2+2x-1) e^{-x}$$

$$= (2x-3) e^{-x}.$$

9

2. On étudie le signe de f' et on en déduit les variations de f:

- $2x-3=0 \iff 2x=3 \iff x=\frac{3}{2} \iff x=1,5$;
- e^{-x} est \oplus pour tout réel x.

x	0		1.5		4
2x-3		-	0	+	
e-x		+		+	
f'(x)		-	0	+	
f(x)	1		$-2e^{-1,5}$		-7e ⁻⁴

•
$$f(0) = (-2 \times 0 + 1) \times \underbrace{e^{-0}}_{=1} = 1 \times 1 = 1$$

• $f(1,5) = (-2 \times 1,5 + 1) \times e^{-1,5} = -2e^{-1,5} \approx -0,45$
• $f(4) = (-2 \times 4 + 1) \times e^{-4} = -7e^{-4} \approx -0,13$

•
$$f(1,5) = (-2 \times 1, 5 + 1) \times e^{-1,5} = -2e^{-1,5} \approx -0.45$$

•
$$f(4) = (-2 \times 4 + 1) \times e^{-4} = -7e^{-4} \approx -0.13$$

Exercice 10 La fonction g est définie sur \mathbb{R} par $g(x) = e^x - x - 1$.

Pour tout $x \in \mathbb{R}$:

$$g'(x) = e^x - 1 - 0 = e^x - 1.$$

On résout l'équation :

$$e^x - 1 = 0 \iff e^x = 1 \iff x = 0.$$

∧On a utilisé la propriété : le seul nombre dont l'exponentielle est égale à 1 est 0.

Pour avoir les signes dans chaque case du tableau, on remplace par des valeurs de x:

• pour l'intervalle $]-\infty;0[$, on prend (par exemple) x=-1et on calcule avec la calculatrice:

$$g'(-1) = e^{-1} - 1 \approx -0.63$$
 Θ

• pour l'intervalle $]0; +\infty[$, on prend (par exemple) x = 1et on calcule avec la calculatrice:

$$g'(1) = e^1 - 1 \approx 3,72$$
 \oplus

$$g(0) = e^{0} - 0 - 1 = 1 - 1 = 0.$$

Remarque: Le minimum de g est 0, donc $g(x) \ge 0$ pour tout réel x; autrement dit $e^x - x - 1 \ge 0$. Cette inégalité se réécrit

$$e^x \ge x + 1$$
.

On obtiendra ce résultat par une autre méthode dans l'exercice 18 (utilisation de la convexité). Cette inégalité sera utilisée plus tard dans l'année, pour démontrer des résultats sur les limites.

Exercice 11

$$\frac{e^8}{e^2 \times e^1 \times e^3} = \frac{e^8}{e^{2+1+3}} = \frac{e^8}{e^6} = e^{8-6} = e^2$$
$$\frac{e \times e^2}{\left(e^2\right)^2} = \frac{e^1 \times e^2}{e^{2 \times 2}} = \frac{e^{1+2}}{e^4} = e^{3-4} = e^{-1}$$
$$\left(e^2\right)^3 \times e^{-5} = e^{2 \times 3} \times e^{-5} = e^{6-5} = e^1$$

Exercice 12 Dans chaque cas, on note $\mathcal S$ l'ensemble des solutions.

1.

$$e^x = -3$$

Impossible, car une exponentielle est strictement positive

$$\mathcal{S} = \emptyset$$

2.

3. L'équation $e^{2x} + 2e^x = 3$ se réécrit

$$(e^x)^2 + 2e^x - 3 = 0.$$

Pour résoudre, il est astucieux de noter $X = e^x$; l'équation se réécrit alors sous la forme

$$X^2 + 2X - 3 = 0.$$

On résout avec la méthode de la classe de première :

- a = 1, b = 2, c = -3.
- le discriminant est $\Delta = b^2 4ac = 2^2 4 \times 1 \times (-3) = 16$.
- $\Delta > 0$, donc il y a deux racines :

$$X_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-2 - \sqrt{16}}{2 \times 1} = \frac{-2 - 4}{2} = \frac{-6}{2} = -3,$$

$$X_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-2 + \sqrt{16}}{2 \times 1} = \frac{-2 + 4}{2} = \frac{2}{2} = 1.$$

On a posé $X = e^x$, donc il y a deux possibilités :

$$e^x = -3$$
 ou $e^x = 1$.

La première équation n'a pas de solution, car une exponentielle est strictement positive; la deuxième équation a une seule solution : x = 0.

Conclusion : L'unique solution de l'équation $e^{2x} + 2e^x = 3$ est x = 0 :

$$\mathcal{S} = \{0\}.$$

Exercice 13 On utilisera la propriété : pour tout nombre réel x,

$$e^x \times e^{-x} = 1$$
.

1. D'après l'identité remarquable $(a+b)^2 = a^2 + 2ab + b^2$:

$$(e^x + e^{-x})^2 = (e^x)^2 + 2 \times \underbrace{e^x \times e^{-x}}_{=1} + (e^{-x})^2 = e^{2x} + 2 + e^{-2x}.$$

2. On multiplie le numérateur et le dénominateur par e^x :

$$\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = \frac{(e^{x} - e^{-x}) \times e^{x}}{(e^{x} + e^{-x}) \times e^{x}}$$

$$= \frac{e^{x} \times e^{x} - e^{-x} \times e^{x}}{e^{x} \times e^{x} - e^{-x} \times e^{x}}$$

$$= \frac{e^{x+x} - e^{-x+x}}{e^{x+x} + e^{-x+x}}$$

$$= \frac{e^{2x} - e^{0}}{e^{2x} + e^{0}}$$

$$= \frac{e^{2x} - 1}{e^{2x} + 1}.$$

Exercice 14 1. La fonction f est de la forme $f(x) = e^{u(x)}$, avec

$$u(x) = -x^2, \qquad u'(x) = -2x.$$

On a donc, pour tout $x \in \mathbb{R}$:

$$f'(x) = u'(x) \times e^{u(x)} = -2xe^{-x^2}$$
.

2. La fonction h est de la forme $h(x) = (u(x))^n$, avec

$$u(x) = -4x + 1,$$
 $u'(x) = -4,$ $n = 3.$

On a donc, pour tout $x \in \mathbb{R}$:

$$h'(x) = n \times u'(x) \times (u(x))^{n-1} = 3 \times (-4) \times (-4x+1)^{3-1} = -12(-4x+1)^2$$
.

3. La fonction i est de la forme $i(x) = e^{u(x)}$, avec

$$u(x) = 5x - 9,$$
 $u'(x) = 5.$

On a donc, pour tout $x \in \mathbb{R}$:

$$i'(x) = u'(x) \times e^{u(x)} = 5e^{5x-9}$$
.

4. La fonction j est de la forme $j(x) = (u(x))^n$, avec

$$u(x) = x^2 - 3x$$
, $u'(x) = 2x - 3$, $n = 5$.

On a donc, pour tout $x \in \mathbb{R}$:

$$j'(x) = n \times u'(x) \times (u(x))^{n-1} = 5 \times (2x - 3) \times (x^2 - 3x)^{5-1} = (10x - 15) \times (x^2 - 3x)^4.$$

5. L'énoncé nous donne

$$k(x) = \sqrt{x^2 - x + 2}.$$

Il faut se méfier : on ne peut calculer la racine carrée d'un nombre que si celui-ci est positif; et on ne peut dériver une fonction de la forme \sqrt{u} que lorsqu'elle est strictement positive. Intéressons-nous donc au signe de $x^2 - x + 2$:

Le discriminant est $\Delta = b^2 - 4ac = (-1)^2 - 4 \times 1 \times 2 = -7$. Il s'ensuit qu'il n'y a pas de racine, et que $x^2 - x + 2$ est strictement positif sur \mathbb{R} . La fonction k est donc bien définie sur \mathbb{R} , mais aussi dérivable.

Elle est de la forme $k(x) = \sqrt{u(x)}$, avec

$$u(x) = x^2 - x + 2,$$
 $u'(x) = 2x - 1.$

On a donc, pour tout $x \in \mathbb{R}$:

$$k'(x) = \frac{u'(x)}{2\sqrt{u(x)}} = \frac{2x - 1}{2\sqrt{x^2 - x + 2}}.$$

Remarque informelle: On a déjà vu les dérivées suivantes dans le cours de première :

$$(x^n)' = nx^{n-1}$$
$$(e^x)' = e^x$$
$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

Les trois nouvelles formules du cours de terminale peuvent se réécrire

$$(u^n)' = nu^{n-1} \times u'$$

$$(e^u)' = e^u \times u'$$

$$(\sqrt{u})' = \frac{1}{2\sqrt{u}} \times u'$$

On voit qu'il suffit de remplacer x par u, et de multiplier par u'.

Exercice 15 1. Pour tout $x \in \mathbb{R}$:

$$f(x) = x^2$$
$$f'(x) = 2x$$

$$f''(x) = 2.$$

Conclusion : f'' est strictement positive, donc f est convexe sur \mathbb{R} .

On peut aussi présenter les choses avec un tableau de signe :

x	-∞	+∞
f''(x) = 2	+	
Convexité	f convexe	

2. Pour tout $x \in \mathbb{R}$:

$$g(x) = x^3$$

$$g'(x) = 3x^2$$

$$g''(x) = 6x.$$

Cette fois, le tableau de signe est fortement recommandé :

x	-∞	0		+∞
g''(x) = 6x	_	0	+	
Convexité	g concave	t i n f l e x i o n	g convexe	

Conclusion:

• g est concave sur $]-\infty;0]$;

- g est convexe sur $[0; +\infty[$;
- le point de coordonnées (0;0) est un point d'inflexion.

3. Pour tout $x \in \mathbb{R}$:

$$h(x) = e^{x}$$

$$h'(x) = e^{x}$$

$$h''(x) = e^{x}$$

Conclusion : h'' est strictement positive, donc h est convexe sur \mathbb{R} (cette fois, on se passe du tableau de signes).

Exercice 16 La fonction g est définie sur l'intervalle [-1;3] par

$$g(x) = -0.5x^3 + 2x^2 - 2x.$$

1. Pour tout $x \in [-1;3]$:

$$g'(x) = -0.5 \times 3x^2 + 2 \times 2x - 2 \times 1 = -1.5x^2 + 4x - 2.$$

La dérivée est du second degré, donc on utilise la méthode de la classe de première :

- a = -1, 5, b = 4, c = -2.
- le discriminant est $\Delta = b^2 4ac = 4^2 4 \times (-1, 5) \times (-2) = 4$.
- $\Delta > 0$, donc il y a deux racines :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-4 - \sqrt{4}}{2 \times (-1,5)} = \frac{-4 - 2}{-3} = \frac{-6}{-3} = 2,$$
$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-4 + \sqrt{4}}{2 \times (-1,5)} = \frac{-4 + 2}{-3} = \frac{-2}{-3} = \frac{2}{3}.$$

a = -1.5 a est Θ donc le signe est de la forme |- + + -

x	-1		$\frac{2}{3}$		2		3
g'(x)		_	0	+	0	_	
<i>g</i> (<i>x</i>)	3.5	\	$-\frac{16}{27}$, 0		-1.5

•
$$g(-1) = -0.5 \times (-1)^3 + 2 \times (-1)^2 - 2 \times (-1) = 3.5$$

•
$$g(-1) = -0.5 \times (-1)^3 + 2 \times (-1)^2 - 2 \times (-1) = 3.5$$

• $g(\frac{2}{3}) = -0.5 \times (\frac{2}{3})^3 + 2 \times (\frac{2}{3})^2 - 2 \times (\frac{2}{3}) = -\frac{16}{27}$
• $g(2) = -0.5 \times 2^3 + 2 \times 2^2 - 2 \times 2 = 0$
• $g(3) = -0.5 \times 3^3 + 2 \times 3^2 - 2 \times 3 = -1.5$

•
$$g(2) = -0.5 \times 2^3 + 2 \times 2^2 - 2 \times 2 = 0$$

•
$$g(3) = -0.5 \times 3^3 + 2 \times 3^2 - 2 \times 3 = -1.5$$

2. Pour tout $x \in [-1;3]$:

$$g''(x) = -1,5 \times 2x + 4 \times 1 - 0 = -3x + 4.$$

On étudie le signe de g'':

$$-3x + 4 = 0 \iff -3x = -4 \iff x = \frac{-4}{-3} = \frac{4}{3}.$$

x	-1	$\frac{4}{3}$		3
-3x+4	+	0	-	
Convexité	g convexe	t i n f l e x i i o n	g concave	

 $g\left(\frac{4}{3}\right) = [\cdots] = -\frac{8}{27}$, donc le point de coordonnées $\left(\frac{4}{3}; -\frac{8}{27}\right)$ est un point d'inflexion (noté I sur la figure ci-dessous).

3.

Exercice 17 La fonction h est définie sur l'intervalle [-1;4] par

$$h(x) = (2x+3)e^{-x}$$
.

On calcule les dérivées première et seconde :

1. **Dérivée première.** On utilise la formule pour la dérivée d'un produit avec

$$u(x) = 2x + 3$$
 , $v(x) = e^{-x}$, $u'(x) = 2$, $v'(x) = -e^{-x}$

On obtient, pour tout $x \in [-1;4]$:

$$h'(x) = u'(x) \times v(x) + u(x) \times v'(x)$$

$$= 2 \times e^{-x} + (2x+3) \times (-e^{-x})$$

$$= 2 \times e^{-x} + 2x \times (-e^{-x}) + 3 \times (-e^{-x})$$

$$= 2 \times e^{-x} - 2x \times e^{-x} - 3 \times e^{-x}$$

$$= (2 - 2x - 3) e^{-x}$$

$$= (-2x - 1) e^{-x}.$$

2. **Dérivée seconde.** On utilise la formule pour la dérivée d'un produit avec

$$u(x) = -2x - 1$$
 , $v(x) = e^{-x}$, $u'(x) = -e^{-x}$.

On obtient, pour tout $x \in [-1; 4]$:

$$h''(x) = u'(x) \times v(x) + u(x) \times v'(x)$$

$$= -2 \times e^{-x} + (-2x - 1) \times (-e^{-x})$$

$$= -2 \times e^{-x} + (-2x) \times (-e^{-x}) + (-1) \times (-e^{-x})$$

$$= -2 \times e^{-x} + 2x \times e^{-x} + 1 \times e^{-x}$$

$$= (-2 + 2x + 1) e^{-x}$$

$$= (2x - 1) e^{-x}.$$

On étudie le signe de la dérivée seconde :

$$h''(x) = (2x-1)e^{-x}$$
.

- $2x-1=0 \iff 2x=1 \iff x=\frac{1}{2}$.
- e^{-x} est \oplus pour tout $x \in [-1; 4]$.

On a donc le tableau:

x	-1	$\frac{1}{2}$		4
2x-1	_	0	+	
e^{-x}	+		+	
h''(x)	_	0	+	
Convexité	<i>h</i> concave	P t i n f l e x i o n	t i n f l h convexe e x i o	

Exercice 18 On note \mathscr{C} la courbe de la fonction exponentielle et T sa tangente au point A(0;1).

1. On pose $f(x) = e^x$ pour tout $x \in \mathbb{R}$. On sait que $f'(x) = e^x$ pour tout $x \in \mathbb{R}$, donc

$$f(0) = f'(0) = e^0 = 1.$$

L'équation de la tangente T est donc

$$y = f'(0)(x-0) + f(0)$$

y = 1(x-0) + 1
y = x + 1

2. On a déjà vu dans un exercice précédent que la fonction exponentielle était convexe sur \mathbb{R} . D'après le théorème 8 du cours, la courbe \mathscr{C} est au-dessus de toutes ses tangentes; elle est donc en particulier au-dessus de T. Il s'ensuit que

$$e^x \ge x + 1$$

pour tout $x \in \mathbb{R}$.

Remarque: On a déjà démontré ce résultat par une étude de fonction, dans l'exercice 10.

Exercice 19 1. Si $u(x) = x^2$ et v(x) = 4x + 1, alors

$$v \circ u(x) = v(u(x)) = v(x^2) = 4x^2 + 1.$$

2. Si u(x) = x + 2 et $v(x) = x^3 - 3x$, alors

$$v \circ u(x) = v(u(x)) = v(x+2) = (x+2)^3 - 3(x+2).$$

3. Si u(x) = x - 4 et $v(x) = \sqrt{x}$, alors

$$v \circ u(x) = v(u(x)) = v(x-4) = \sqrt{x-4}$$
.

4. Si u(x) = 2x + 3 et $v(x) = e^x$, alors

$$v \circ u(x) = v(u(x)) = v(2x+3) = e^{2x+3}$$
.

Exercice 20 1. Sachant que $v \circ u(x) = \sqrt{x^2 + 1}$, on peut prendre

$$u(x) = x^2 + 1$$
 , $v(x) = \sqrt{x}$.

2. Sachant que $v \circ u(x) = (x-3)^2 + 5(x-3) + 1$, on peut prendre

$$u(x) = x - 3$$
 , $v(x) = x^2 + 5x + 1$.

3. Sachant que $v \circ u(x) = e^{3x-1}$, on peut prendre

$$u(x) = 3x - 1$$
 , $v(x) = e^x$.

Remarque: Il y a une infinité de choix possibles. Par exemple, pour le deuxième, on pourrait prendre

$$u(x) = (x-3)^2 + 5(x-3)$$
 , $v(x) = x+1$;

ou encore

$$u(x) = (x-3)^2 + 5(x-3) + 1$$
 , $v(x) = x$;

etc.

Exercice 21 On considère dans un repère orthonormé la parabole $P: y = x^2$ et le point A(3;0).

1. Soit m un réel et soit M le point de P d'abscisse m. L'ordonnée de M est m^2 , donc

$$AM = \sqrt{(x_M - x_A)^2 + (y_M - y_A)^2}$$
$$= \sqrt{(m-3)^2 + (m^2 - 0)^2}$$
$$= \sqrt{m^2 - 2 \times m \times 3 + 3^2 + m^4}$$
$$= \sqrt{m^4 + m^2 - 6m + 9}.$$

On remarque que AM = f(m), où f est la fonction définie dans la question suivante. De ce fait, trouver le point M pour lequel la longueur AM est minimale revient à trouver la valeur de x pour laquelle f atteint son minimum. Nous y reviendrons dans la question f.

2. On pose $f(x) = \sqrt{x^4 + x^2 - 6x + 9}$ pour tout $x \in \mathbb{R}$. La fonction f est de la forme $f(x) = \sqrt{u(x)}$, avec

$$u(x) = x^4 + x^2 - 6x + 9,$$
 $u'(x) = 4x^3 + 2x - 6.$

On a donc, pour tout $x \in \mathbb{R}$:

$$f'(x) = \frac{u'(x)}{2\sqrt{u(x)}} = \frac{4x^3 + 2x - 6}{2\sqrt{x^4 + x^2 - 6x + 9}} = \frac{2(2x^3 + x - 3)}{2\sqrt{x^4 + x^2 - 6x + 9}} = \frac{2x^3 + x - 3}{\sqrt{x^4 + x^2 - 6x + 9}}.$$

Pour démontrer la formule de l'énoncé, on développe :

$$(x-1)(2x^2+2x+3) = x \times 2x^2 + x \times 2x + x \times 3 - 1 \times 2x^2 - 1 \times 2x - 1 \times 3 = 2x^3 + 2x^2 + 3x - 2x^2 - 2x - 3 = 2x^3 + x - 3$$

On retombe sur le numérateur obtenu précédemment; on a donc bien

$$f'(x) = \frac{(x-1)(2x^2 + 2x + 3)}{\sqrt{x^4 + x^2 - 6x + 9}}.$$

Pour construire le tableau de variations de la fonction f, il faut étudier le signe de $2x^2 + 2x + 3$. Son discriminant est $\Delta = 2^2 - 4 \times 2 \times 3 = -20$, donc il n'y a pas de racine et $2x^2 + 2x + 3$ est strictement positif pour tout réel x. On peut donc compléter le tableau :

x	$-\infty$	1		+∞
x - 1	_	0	+	
$2x^2 + 2x + 3$	+	;	+	
$\sqrt{x^4 + x^2 - 6x + 9}$	+		+	
f'(x)	-	0	+	
f(x)				/

- 3. La fonction f atteint son minimum pour x = 1, donc la longueur AM est minimale lorsque m = 1. Autrement dit, le point de P le plus proche de A est le point M(1;1).
 - La tangente (T) à la parabole P au point M a pour équation

$$y = g'(1)(x-1) + g(1),$$

avec $g(x) = x^2 - \text{donc } g'(x) = 2x$, et $g'(1) = 2 \times 1 = 2$. On a ainsi

$$(T): y = g'(1)(x-1) + g(1)$$
$$y = 2(x-1) + 1$$
$$y = 2x - 1.$$

• Pour prouver que (AM) est perpendiculaire à (T), on utilise le produit scalaire : (T) passe par M(1;1) et par N(2;3) (puisque $2 \times 2 - 1 = 3$), donc elle est dirigée par le vecteur $\overrightarrow{MN} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Par ailleurs $\overrightarrow{AM} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$, donc

$$\overrightarrow{MN} \cdot \overrightarrow{AM} = 1 \times (-2) + 2 \times 1 = 0.$$

Les droites (T) et (AM) sont donc bien perpendiculaires.

2 Suites et récurrence

Exercice 22 On calcule trois ou quatre termes, suivant le cas – suffisamment pour « avoir compris le principe ».

1. Pour tout $n \in \mathbb{N}$: $u_n = \frac{n^2 - 1}{n + 2}$.

$$u_0 = \frac{0^2 - 1}{0 + 2} = -\frac{1}{2}$$

$$u_1 = \frac{1^2 - 1}{1 + 2} = \frac{0}{3} = 0$$

$$u_2 = \frac{2^2 - 1}{2 + 2} = \frac{3}{4}$$

19

2. Pour tout $n \in \mathbb{N}^*$: $v_n = \frac{(-1)^n}{n}$. \wedge On « démarre » à n = 1, puisqu'on ne peut pas diviser par 0.

$$v_1 = \frac{(-1)^1}{1} = \frac{-1}{1} = -1$$

$$v_2 = \frac{(-1)^2}{2} = \frac{1}{2}$$

$$v_3 = \frac{(-1)^3}{3} = \frac{-1}{3} = -\frac{1}{3}$$

$$v_4 = \frac{(-1)^4}{4} = \frac{1}{4}$$

Les termes sont alternativement positifs et négatifs. On dit que la suite est alternée.

3. $u_0 = 3$ et pour tout $n \in \mathbb{N}$:

$$u_{n+1} = 2u_n - 1$$
.

On prend
$$n = 0$$
: On prend $n = 1$: On prend $n = 2$: On prend $n = 3$:
$$u_{0+1} = 2u_0 - 1 \qquad u_{1+1} = 2u_1 - 1 \qquad u_{2+1} = 2u_2 - 1 \qquad u_{3+1} = 2u_3 - 1$$
$$u_1 = 2 \times 3 - 1 \qquad u_2 = 2 \times 5 - 1 \qquad u_3 = 2 \times 9 - 1 \qquad u_4 = 2 \times 17 - 1$$
$$u_1 = 5 \qquad u_2 = 9 \qquad u_3 = 17 \qquad u_4 = 33$$

4. $v_0 = -1$ et $v_{n+1} = v_n + n$ pour tout $n \in \mathbb{N}$.

On prend
$$n = 0$$
: On prend $n = 1$: On prend $n = 2$: On prend $n = 3$:
$$v_{0+1} = v_0 + 0 \\ v_1 = -1 + 0 \\ v_1 = -1$$
 On prend $n = 2$:
$$v_{2+1} = v_2 + 2 \\ v_2 = -1 + 1 \\ v_2 = 0$$

$$v_3 = 0 + 2 \\ v_3 = 2$$
 On prend $n = 3$:
$$v_{3+1} = v_3 + 3 \\ v_4 = 2 + 3 \\ v_4 = 5$$

Exercice 23 1. Pour diminuer un nombre de 8 %, il faut le multiplier par 0,92, car 100 % – 8 % = 92 % = 0,92. On peut donc compléter le schéma :

Conclusion:

$$v_0 = 10$$
; $v_1 = 9.2$; $v_2 = 8.464$.

La suite $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison q=0,92.

2. La masse d'iode 131 après 10 jours est

$$v_{10} = v_0 \times q^{10} = 10 \times 0.92^{10} \approx 4.3 \ \mu g.$$

3. On part de 10 μ g d'iode 131, donc il s'agit de déterminer à partir de quand il en restera moins de 5 μ g. Pour cela, on fait un tableau de valeurs avec la calculatrice, en rentrant la formule

$$Y = 10 * 0.92^{X}$$

(on peut aussi utiliser le mode suite ou le mode tableur, suivant les modèles).

Après quelques essais ¹, on obtient :

^{1.} On ne peut pas savoir en démarrant jusqu'à quelle valeur de n il faut aller; il faut donc faire des essais. Lorsque nous connaîtrons le logarithme népérien, nous pourrons donner une méthode plus efficace; et nous pourrons même donner une formule : la demi-vie est $-\frac{\ln 2}{\ln 0.92}$.

n	8	9
ν_n	5,13	4,72

Conclusion : la demi-vie de l'iode 131 est de 8 jours et quelques.

Exercice 24 1. 100 % - 15 % = 85 % = 0.85, donc pour diminuer un nombre de 15 %, il faut le multiplier par 0.85. Ainsi, dans le schéma ci-dessous, l'intensité lumineuse est-elle multipliée par 0.85 à chaque nouvelle plaque :

Remarque : Le lumen est une unité de mesure du flux lumineux, utilisée notamment pour indiquer la capacité d'éclairement des ampoules électriques.

2. La suite $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison q=0,85, donc pour tout $n\in\mathbb{N}$:

$$v_n = v_0 \times q^n = 12 \times 0.85^n.$$

3. Comme on part de 12 lm, il s'agit de savoir le nombre de plaques nécessaires pour que l'intensité lumineuse soit inférieure à 0,12 lm (puisque 12 ÷ 100 = 0,12).

Comme dans l'exercice précédent, on rentre la formule

$$Y = 12 * 0.85^{X}$$

dans le mode fonction de la calculatrice, puis on fait des essais. On obtient :

n	28	29
ν_n	0,13	0,11

Conclusion: il faut superposer au moins 29 plaques pour que l'intensité lumineuse soit divisée par 100.

Exercice 25 Une suite ν est définie par ν_0 = 4 et la relation de récurrence

$$v_{n+1} = 2v_n + 2$$

pour tout entier naturel n.

1.

$$v_0 = 4$$

$$v_1 = 2 \times 4 + 2 = 10$$

$$v_2 = 2 \times 10 + 2 = 22$$
.

2. Avec un schéma:

Les résultats en rouge (6 et 12) sont différents, donc u n'est pas arithmétique.

Les résultats en vert (2,5 et 2,2) sont différents, donc u n'est pas géométrique.

Calculs utiles:

$$10-4=6$$
, $22-10=12$.

$$10 \div 4 = 2, 5,$$

 $22 \div 10 = 2, 2.$

puo Scometrique.

Exercice 26 La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=2$ et la relation de récurrence

$$u_{n+1} = 3u_n - 1$$

pour tout $n \in \mathbb{N}$.

1.

$$u_0 = 2$$

 $u_1 = 3 \times 2 - 1 = 5$
 $u_2 = 3 \times 5 - 1 = 14$

2. On pose $v_n = u_n - 0.5$ pour tout entier naturel n.

$$v_0 = u_0 - 0.5 = 2 - 0.5 = 1.5$$

 $v_1 = u_1 - 0.5 = 5 - 0.5 = 4.5$
 $v_2 = u_2 - 0.5 = 14 - 0.5 = 13.5$

3. Pour tout $n \in \mathbb{N}$:

$$v_{n+1} = u_{n+1} - 0.5$$
 (déf. de $(v_n)_{n \in \mathbb{N}}$)
 $= (3u_n - 1) - 0.5$ (rel. réc. pour $(u_n)_{n \in \mathbb{N}}$)
 $= 3u_n - 1.5$ (calcul)
 $= 3\left(u_n - \frac{1.5}{3}\right)$ (factorisation)
 $= 3(u_n - 0.5)$ (calcul)
 $= 3v_n$ (déf. de $(v_n)_{n \in \mathbb{N}}$)

Conclusion : pour tout $n \in \mathbb{N}$, $v_{n+1} = 3v_n$, donc $(v_n)_{n \in \mathbb{N}}$ est géométrique de raison q = 3.

Remarque : L'étude d'une suite arithmético-géométrique $(u_{n+1} = au_n + b, \text{ avec } a \neq 1)$ se ramène toujours à celle d'une suite géométrique $(v_n)_{n \in \mathbb{N}}$. Pour prouver que $(v_n)_{n \in \mathbb{N}}$ est géométrique, la méthode est toujours celle que nous venons de donner. À la quatrième ligne de calcul, c'est a qu'il faut mettre en facteur (ici, on a mis 3 en facteur).

4. La suite $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison q=3, et $v_0=u_0-0.5=2-0.5=1.5$, donc pour tout $n\in\mathbb{N}$:

$$v_n = v_0 \times q^n = 1, 5 \times 3^n.$$

5. Enfin $v_n = u_n - 1.5$ donc

$$u_n = v_n + 1, 5 = 1, 5 \times 3^n + 0, 5.$$

Exercice 27 1. On complète le schéma ci-dessous pour calculer les termes u_1 et u_2 . Les sommes écrites dans chaque case sont les sommes restant à rembourser aux dates indiquées.

Pour passer d'un terme de la suite au terme suivant, on multiplie par 1,02 (ajout des intérêts) puis on retranche 300 (remboursement mensuel). On peut donc continuer plus rapidement :

$$u_3 = 9798 \times 1,02 - 300 = 9693,96$$
 (somme à rembourser le 01/04/20),
 $u_4 = 9693,96 \times 1,02 - 300 = 9587,84$ (somme à rembourser le 01/05/20).

2. Pour tout $n \in \mathbb{N}$:

$$u_{n+1} = 1,02u_n - 300.$$

3. Pour tout $n \in \mathbb{N}$:

$$\begin{split} \nu_{n+1} &= u_{n+1} - 15000 & (\text{d\'ef. de } (\nu_n)_{n \in \mathbb{N}}) \\ &= (1,02u_n - 300) - 15000 \text{ (rel. r\'ec. pour } (u_n)_{n \in \mathbb{N}}) \\ &= 1,02u_n - 15300 & (\text{calcul}) \\ &= 1,02 \left(u_n - \frac{15300}{1,02} \right) & (\text{factorisation}) \\ &= 1,02(u_n - 15000) & (\text{calcul}) \\ &= 1,02\nu_n & (\text{d\'ef. de } (\nu_n)_{n \in \mathbb{N}}) \end{split}$$

Conclusion : pour tout $n \in \mathbb{N}$, $v_{n+1} = 1,02v_n$, donc $(v_n)_{n \in \mathbb{N}}$ est géométrique de raison q = 1,02.

4. La suite $(v_n)_{n \in \mathbb{N}}$ est géométrique de raison q = 1,02, et $v_0 = u_0 - 15000 = 10000 - 15000 = -5000$, donc pour tout $n \in \mathbb{N}$:

$$v_n = v_0 \times q^n = -5000 \times 1,02^n$$
.

Enfin $v_n = u_n - 15000$ donc

$$u_n = v_n + 15000 = -5000 \times 1,02^n + 15000.$$

5. Déterminer la durée du crédit revient à savoir quand la somme restant à rembourser est nulle. En réalité, au bout d'un moment, elle est négative, comme on le voit avec un tableau de valeurs :

n	55	56
u_n	141,34	-155,83

À la fin du 55e fois, il reste 141,35 € à rembourser; et si on rembourse 300 € au début du 56e mois, la banque nous devra 155,83 €.

Conclusion:

- le crédit dure 56 mois;
- on rembourse 56 fois 300 €, mais à la fin on a dépassé de 155,83 € ce que l'on devait à la banque;
- la somme totale remboursée est donc

$$56 \times 300 - 155,83 = 16664,17 \in$$
;

• le « coût du crédit » est la différence entre ce que l'on a remboursé et ce que la banque nous a prêté :

Coût du crédit = Somme remboursée - Somme empruntée = 16664,17 - 10000 = 6664,17 €.

Exercice 28 La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=0$ et pour tout $n\in\mathbb{N}$:

$$u_{n+1} = 2u_n + 1$$
.

Pour tout $n \in \mathbb{N}$, on note \mathcal{P}_n la propriété

$$u_n = 2^n - 1$$
.

• **Initialisation.** On prouve que \mathcal{P}_0 est vraie.

$$\begin{bmatrix} u_0 & = 0 \\ 2^0 - 1 & = 1 - 1 = 0 \end{bmatrix} \implies \mathcal{P}_0 \text{ est vraie.}$$

• **Hérédité.** Soit $k \in \mathbb{N}$ tel que \mathscr{P}_k soit vraie. On a donc

$$u_k = 2^k - 1.$$

Objectif

Prouver que \mathcal{P}_{k+1} est vraie, c'est-à-dire que

$$u_{k+1} = 2^{k+1} - 1$$
.

On part de

$$u_k = 2^k - 1$$
.

On a alors:

$$u_{k+1} = 2u_k + 1$$
 (rel. réc. pour $(u_n)_{n \in \mathbb{N}}$)
 $= 2\left(2^k - 1\right) + 1$ (H.R.)
 $= 2 \times 2^k - 2 + 1$ (on développe)
 $= 2^{k+1} - 1$ (calcul).

La propriété \mathcal{P}_{k+1} est donc vraie.

• **Conclusion.** \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire, donc elle est vraie pour tout $n \in \mathbb{N}$.

Exercice 29 La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=1$ et pour tout $n\in\mathbb{N}$:

$$u_{n+1} = u_n + 2n + 3$$
.

1.

$$(n = 0)$$
 $u_1 = u_0 + 2 \times 0 + 3 = 1 + 0 + 3 = 4$

$$(n = 1)$$
 $u_2 = u_1 + 2 \times 1 + 3 = 4 + 2 + 3 = 9$

$$(n = 2)$$
 $u_3 = u_2 + 2 \times 2 + 3 = 9 + 4 + 3 = 16$

Remarque: Pour passer de u_n à u_{n+1} , on ajoute 2n+3, donc à partir de $u_0=1$ (rond rose ci-dessous):

- on obtient u_1 en ajoutant $2 \times 0 + 3 = 3$ ronds bleus;
- on obtient u_2 en ajoutant $2 \times 1 + 3 = 5$ ronds oranges;
- on obtient u_3 en ajoutant $2 \times 2 + 3 = 7$ ronds verts;
- etc.

On devine que u_n sera toujours un carré :

$$u_0=1=1^2$$

$$u_1 = 4 = 2^2$$

$$u_2 = 9 = 3^2$$

$$u_3 = 16 = 4^2$$

Plus généralement, $u_n=(n+1)^2$ pour tout $n\in\mathbb{N}$ – ce que l'on démontre rigoureusement dans la question suivante.

2. Pour tout $n \in \mathbb{N}$, on note \mathcal{P}_n la propriété

$$u_n = (n+1)^2$$
.

• **Initialisation.** On prouve que \mathcal{P}_0 est vraie.

$$\begin{bmatrix} u_0 & = 1 \\ (0+1)^2 & = 1 \end{bmatrix} \Longrightarrow \mathscr{P}_0 \text{ est vraie.}$$

• **Hérédité.** Soit $k \in \mathbb{N}$ tel que \mathcal{P}_k soit vraie. On a donc

$$u_k = (k+1)^2$$
.

Objectif

Prouver que \mathcal{P}_{k+1} est vraie, c'est-à-dire que

$$u_{k+1} = ((k+1)+1)^2$$
,

ou encore

$$u_{k+1} = (k+2)^2$$
.

On part de

$$u_k = (k+1)^2.$$

On a alors:

$$u_{k+1} = u_k + 2k + 3$$
 (rel. réc. pour $(u_n)_{n \in \mathbb{N}}$)
 $= (k+1)^2 + 2k + 3$ (H.R.)
 $= k^2 + 2k + 1 + 2k + 3$ (on développe avec l'IR)
 $= k^2 + 4k + 4$ (on réduit)
 $= (k+2)^2$ (on factorise avec l'IR).

La propriété \mathcal{P}_{k+1} est donc vraie.

• Conclusion. \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire, donc elle est vraie pour tout $n \in \mathbb{N}$.

Exercice 30 La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=1$ et la relation de récurrence

$$u_{n+1} = 0.5u_n + 3$$

pour tout $n \in \mathbb{N}$.

1.

$$u_0 = 1$$

 $u_1 = 0.5 \times 1 + 3 = 3.5$
 $u_2 = 0.5 \times 3.5 + 3 = 4.75$
 $u_3 = 0.5 \times 4.75 + 3 = 5.375$

2. Pour tout $n \in \mathbb{N}$, on note \mathcal{P}_n la propriété

$$u_n \leq 6$$
.

• Initialisation. On prouve que \mathcal{P}_0 est vraie.

$$\begin{bmatrix} u_0 & =1\\ 1 & \leq 6 \end{bmatrix} \Longrightarrow \mathscr{P}_0 \text{ est vraie.}$$

• **Hérédité.** Soit $k \in \mathbb{N}$ tel que \mathscr{P}_k soit vraie. On a donc

$$u_k \leq 6$$
.

Objectif

Prouver que \mathcal{P}_{k+1} est vraie, c'est-à-dire que

$$u_{k+1} \leq 6.$$

On part de

$$u_k \leq 6$$
.

On multiplie par 0,5:

$$u_k \times 0, 5 \le 6 \times 0, 5$$
$$0, 5u_k \le 3$$

Puis on ajoute 3:

$$0,5u_k+3 \le 3+3$$
$$u_{k+1} \le 6.$$

La propriété \mathcal{P}_{k+1} est donc vraie.

• **Conclusion.** \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire, donc elle est vraie pour tout $n \in \mathbb{N}$.

Exercice 31 La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=1$ et la relation de récurrence

$$u_{n+1} = \frac{u_n}{u_n + 1}$$

pour tout $n \in \mathbb{N}$.

1.

$$u_0 = 1$$

$$u_1 = \frac{u_0}{u_0 + 1} = \frac{1}{1 + 1} = \frac{1}{2}$$

$$u_2 = \frac{u_1}{u_1 + 1} = \frac{\frac{1}{2}}{\frac{1}{2} + 1} = \frac{\frac{1}{2}}{\frac{1}{2} + \frac{2}{2}} = \frac{\frac{1}{2}}{\frac{3}{2}} = \frac{1}{2} \times \frac{2}{3} = \frac{1}{3}$$

$$u_3 = \frac{u_2}{u_2 + 1} = \frac{\frac{1}{3}}{\frac{1}{3} + 1} = \frac{\frac{1}{3}}{\frac{1}{3} + \frac{3}{3}} = \frac{\frac{1}{3}}{\frac{4}{3}} = \frac{1}{3} \times \frac{3}{4} = \frac{1}{4}$$

2. Pour tout $n \in \mathbb{N}$, on note \mathcal{P}_n la propriété

$$u_n = \frac{1}{n+1}$$
.

• **Initialisation.** On prouve que \mathcal{P}_0 est vraie.

$$\begin{pmatrix} u_0 & = 1 \\ \frac{1}{0+1} & = 1 \end{pmatrix} \Longrightarrow \mathscr{P}_0 \text{ est vraie.}$$

• **Hérédité.** Soit $k \in \mathbb{N}$ tel que \mathscr{P}_k soit vraie. On a donc

$$u_k = \frac{1}{k+1}.$$

Objectif

Prouver que \mathcal{P}_{k+1} est vraie, c'est-à-dire que

$$u_{k+1} = \frac{1}{k+2}.$$

On part de

$$u_k = \frac{1}{k+1}.$$

On utilise la formule de récurrence et on remplace :

$$u_{k+1} = \frac{u_k}{u_k+1} \stackrel{\text{H.R.}}{=} \frac{\frac{1}{k+1}}{\frac{1}{k+1}+1} = \frac{\frac{1}{k+1}}{\frac{1}{k+1}+\frac{k+1}{k+1}} = \frac{\frac{1}{k+1}}{\frac{k+2}{k+1}} = \frac{1}{k+1} \times \frac{k+7}{k+2} = \frac{1}{k+2}.$$

La propriété \mathcal{P}_{k+1} est donc vraie.

• **Conclusion.** \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire, donc elle est vraie pour tout $n \in \mathbb{N}$.

Exercice 32 Soit q un réel différent de 1. Pour tout $n \in \mathbb{N}$, on note \mathscr{P}_n la propriété

$$1+q+q^2+\cdots+q^n=\frac{q^{n+1}-1}{q-1}.$$

• Initialisation. On prouve que \mathcal{P}_0 est vraie.

La somme dans le membre de gauche va de 1 à q^n , qui, dans le cas où n=0, vaut 1. Autrement dit, la somme dans le membre de gauche est une somme d'un seul terme : 1.

D'un autre côté, $\frac{q^{0+1}-1}{q-1} = \frac{q-1}{q-1} = 1$. \mathscr{P}_0 est donc vraie. • **Hérédité.** Soit $k \in \mathbb{N}$ tel que \mathscr{P}_k soit vraie. On a donc

$$1+q+q^2+\cdots+q^k = \frac{q^{k+1}-1}{q-1}.$$

Prouver que \mathcal{P}_{k+1} est vraie, c'est-à-dire que

$$1+q+q^2+\cdots+q^{k+1}=\frac{q^{k+2}-1}{q-1}.$$

On part de

$$1+q+q^2+\cdots+q^k=\frac{q^{k+1}-1}{q-1}.$$

On ajoute q^{k+1} , puis on réduit au même dénominateur :

$$1 + q + q^{2} + \dots + q^{k} + q^{k+1} = \frac{q^{k+1} - 1}{q - 1} + q^{k+1}$$

$$= \frac{q^{k+1} - 1}{q - 1} + \frac{q^{k+1} \times (q - 1)}{q - 1}$$

$$= \frac{q^{k+1} - 1}{q - 1} + \frac{q^{k+1} \times q - q^{k+1} \times 1}{q - 1}$$

$$= \frac{q^{k+1} - 1}{q - 1} + \frac{q^{k+2} - q^{k+1}}{q - 1}$$

$$= \frac{q^{k+2} - 1}{q - 1}.$$

Conclusion:

$$1+q+q^2+\cdots+q^{k+1}=\frac{q^{k+2}-1}{q-1},$$

et la propriété \mathcal{P}_{k+1} est donc vraie.

• **Conclusion.** \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire, donc elle est vraie pour tout $n \in \mathbb{N}$.

Remarque : La somme $1 + q + q^2 + \cdots + q^n$ se réécrit sous la forme condensée

$$\sum_{i=0}^{n} q^{i}.$$

Exercice 33 Soit *x* un réel positif.

Pour tout $n \in \mathbb{N}^*$, on note \mathcal{P}_n la propriété

$$(1+x)^n \ge 1 + nx.$$

• **Initialisation.** On prouve que \mathcal{P}_1 est vraie (\bigwedge Ça démarre à n=1 et non pas n=0.)

$$\left. \begin{array}{ll} (1+x)^1 & = 1+x \\ 1+1x & = 1+x \end{array} \right\} \Longrightarrow (1+x)^1 \ge 1+1x \Longrightarrow \mathscr{P}_1 \text{ est vraie.}$$

• **Hérédité.** Soit $k \in \mathbb{N}^*$ tel que \mathcal{P}_k soit vraie. On a donc

$$(1+x)^k \ge 1 + kx.$$

Objectif

Prouver que \mathcal{P}_{k+1} est vraie, c'est-à-dire que

$$(1+x)^{k+1} \ge 1 + (k+1)x.$$

On part de

$$(1+x)^k \ge 1 + kx.$$

On multiplie par 1 + x et on développe :

$$(1+x)^{k} \times (1+x) \ge (1+kx) \times (1+x)$$

$$(1+x)^{k+1} \ge 1 \times 1 + 1 \times x + kx \times 1 + kx \times x$$

$$(1+x)^{k+1} \ge 1 + x + kx + kx^{2}$$

$$(1+x)^{k+1} \ge 1 + (k+1)x + kx^{2}$$

Or $kx^2 \ge 0$, car k et x^2 sont positifs, donc $1 + (k+1)x + kx^2 \ge 1 + (k+1)x$; et par conséquent

$$(1+x)^{k+1} \ge 1 + (k+1)x$$
.

La propriété \mathcal{P}_{k+1} est donc vraie.

• Conclusion. \mathcal{P}_1 est vraie et \mathcal{P}_n est héréditaire, donc elle est vraie pour tout $n \in \mathbb{N}^*$.

Exercice 34 La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=1$ et la relation de récurrence

$$u_{n+1} = \frac{4u_n}{u_n + 4}$$

pour tout $n \in \mathbb{N}$. On pose également $v_n = \frac{4}{u_n}$ pour tout $n \in \mathbb{N}$.

1. Pour démontrer qu'une suite est géométrique, on part de $v_{n+1} = \cdots$ et on essaye d'aboutir à $\cdots = v_n \times q$. Pour une suite arithmétique, c'est le même principe : on part de $v_{n+1} = \cdots$ et on essaye d'aboutir à $\cdots = v_n + r$.

Pour tout $n \in \mathbb{N}$:

$$\nu_{n+1} = \frac{4}{u_{n+1}} = \frac{4}{\frac{4u_n}{u_n+4}} = 4 \times \frac{u_n+4}{4u_n} = \cancel{4}(u_n+4) = \frac{u_n}{u_n} + \frac{4}{u_n} = 1 + \nu_n.$$

Conclusion : pour tout $n \in \mathbb{N}$, $v_{n+1} = v_n + 1$, donc $(v_n)_{n \in \mathbb{N}}$ est arithmétique de raison r = 1.

2. La suite $(v_n)_{n\in\mathbb{N}}$ est arithmétique de raison r=1, et $v_0=\frac{4}{u_0}=\frac{4}{1}=4$, donc pour tout $n\in\mathbb{N}$:

$$v_n = v_0 + n \times r = 4 + n \times 1 = n + 4.$$

Enfin
$$v_n = \frac{4}{u_n}$$
 donc

$$u_n = \frac{4}{v_n} = \frac{4}{n+4}.$$

Remarque: On a utilisé : si $a = \frac{b}{c}$, alors $c = \frac{b}{a}$.

Exercice 35 1. (a) Chaque année, 80 % des abonnés se réabonnent (multiplication par 0,8), puis 40 nouvelles personnes s'inscrivent, donc

$$u_0 = 500$$

 $u_1 = 500 \times 0, 8 + 40 = 440$
 $u_2 = 440 \times 0, 8 + 40 = 392$

Conclusion : $u_1 = 440$ et $u_2 = 392$.

(b) La formule de récurrence est $u_{n+1} = u_n \times 0.8 + 40$, ou encore

$$u_{n+1} = 0.8u_n + 40.$$

(c) Avec un schéma:

Les résultats en rouge (-6 et -48) sont différents, donc u n'est pas arithmétique. Les résultats en vert (0,88 et 0,89) sont différents, donc u n'est pas géométrique.

- 2. On pose $v_n = u_n 200$ pour tout $n \in \mathbb{N}$.
 - (a) Pour tout $n \in \mathbb{N}$:

$$\begin{split} v_{n+1} &= u_{n+1} - 200 & (\text{d\'ef. de } (v_n)_{n \in \mathbb{N}}) \\ &= (0, 8u_n + 40) - 200 \text{ (rel. r\'ec. pour } (u_n)_{n \in \mathbb{N}}) \\ &= 0, 8u_n - 160 & (\text{calcul}) \\ &= 0, 8\left(u_n - \frac{160}{0, 8}\right) & (\text{factorisation}) \\ &= 0, 8(u_n - 200) & (\text{calcul}) \\ &= 0, 8v_n & (\text{d\'ef. de } (v_n)_{n \in \mathbb{N}}) \end{split}$$

Conclusion : pour tout $n \in \mathbb{N}$, $v_{n+1} = 0.8v_n$, donc $(v_n)_{n \in \mathbb{N}}$ est géométrique de raison q = 0.8.

(b) La suite $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison q=0,8, et $v_0=u_0-200=500-200=300$, donc pour tout $n\in\mathbb{N}$:

$$v_n = v_0 \times q^n = 300 \times 0.8^n$$
.

Enfin $v_n = u_n - 200$ donc

$$u_n = v_n + 200 = 300 \times 0.8^n + 200.$$

(c) Suivant ce modèle, en 2030 (donc après 10 ans), il devrait y avoir

$$u_{10} = 300 \times 0.8^{10} + 200 \approx 232$$
 abonnés.

3. Pour tout $n \in \mathbb{N}$, on note \mathcal{P}_n la propriété

$$u_n = 300 \times 0.8^n + 200.$$

• Initialisation. On prouve que \mathcal{P}_0 est vraie.

$$\begin{array}{ll} u_0 & = 500 \\ 300 \times 0, 8^0 + 200 & = 300 \times 1 + 200 = 500 \end{array} \right\} \Longrightarrow \mathcal{P}_0 \text{ est vraie.}$$

• **Hérédité.** Soit $k \in \mathbb{N}$ tel que \mathscr{P}_k soit vraie. On a donc

$$u_k = 300 \times 0, 8^k + 200.$$

Prouver que \mathcal{P}_{k+1} est vraie, c'est-à-dire que

$$u_{k+1} = 300 \times 0.8^{k+1} + 200.$$

On part de

$$u_k = 300 \times 0.8^k + 200.$$

On a alors:

$$u_{k+1} = 0.8u_k + 40$$
 (rel. réc. pour $(u_n)_{n \in \mathbb{N}}$)
= $0.8 \left(300 \times 0.8^k + 200\right) + 40$ (H.R.)
= $300 \times 0.8 \times 0.8^k + 0.8 \times 200 + 40$ (on développe)
= $300 \times 0.8^{k+1} + 200$ (calcul).

La propriété \mathcal{P}_{k+1} est donc vraie.

• **Conclusion.** \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire, donc elle est vraie pour tout $n \in \mathbb{N}$.

Exercice 36 On définit deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ par $u_0=0$, $v_0=8$ et les relations de récurrence :

$$\begin{cases} u_{n+1} &= \frac{3}{4}u_n + \frac{1}{4}v_n \\ v_{n+1} &= \frac{1}{4}u_n + \frac{3}{4}v_n \end{cases}$$

pour tout $n \in \mathbb{N}$.

1.

$$u_0 = 0$$

$$u_1 = \frac{3}{4} \times u_0 + \frac{1}{4} \times v_0 = \frac{3}{4} \times 0 + \frac{1}{4} \times 8 = 2$$

$$u_2 = \frac{3}{4} \times u_1 + \frac{1}{4} \times v_1 = \frac{3}{4} \times 2 + \frac{1}{4} \times 6 = 3$$

$$u_{0} = 0$$

$$u_{1} = \frac{3}{4} \times u_{0} + \frac{1}{4} \times v_{0} = \frac{3}{4} \times 0 + \frac{1}{4} \times 8 = 2$$

$$u_{2} = \frac{3}{4} \times u_{1} + \frac{1}{4} \times v_{1} = \frac{3}{4} \times 2 + \frac{1}{4} \times 6 = 3$$

$$v_{0} = 8$$

$$v_{1} = \frac{1}{4} \times u_{0} + \frac{3}{4} \times v_{0} = \frac{1}{4} \times 0 + \frac{3}{4} \times 8 = 6$$

$$v_{2} = \frac{1}{4} \times u_{1} + \frac{3}{4} \times v_{1} = \frac{1}{4} \times 2 + \frac{3}{4} \times 6 = 5$$

Remarque: Pour placer u_{n+1} et v_{n+1} , on coupe le segment $[u_n; v_n]$ en 4 ; et on place u_{n+1} au quart du segment, v_{n+1} aux trois-quarts du segment.

2. On pose $s_n = v_n + u_n$ et $d_n = v_n - u_n$ pour tout $n \in \mathbb{N}$.

• Pour tout $n \in \mathbb{N}$:

$$\begin{split} s_{n+1} &= v_{n+1} + u_{n+1} \\ &= \left(\frac{1}{4}u_n + \frac{3}{4}v_n\right) + \left(\frac{3}{4}u_n + \frac{1}{4}v_n\right) \\ &= \frac{4}{4}v_n + \frac{4}{4}u_n \\ &= v_n + u_n \\ &= s_n. \end{split}$$

Conclusion : pour tout $n \in \mathbb{N}$, $s_{n+1} = s_n$ donc $(s_n)_{n \in \mathbb{N}}$ est constante. Et comme $s_0 = v_0 + u_0 = 8 + 0 = 8$, $(s_n)_{n \in \mathbb{N}}$ est constante égale à 8 :

pour tout $n \in \mathbb{N}$, $s_n = 8$.

• Pour tout $n \in \mathbb{N}$:

$$\begin{split} d_{n+1} &= v_{n+1} - u_{n+1} \\ &= \left(\frac{1}{4}u_n + \frac{3}{4}v_n\right) - \left(\frac{3}{4}u_n + \frac{1}{4}v_n\right) \\ &= \frac{2}{4}v_n - \frac{2}{4}u_n \\ &= \frac{1}{2}(v_n - u_n) \\ &= \frac{1}{2}d_n. \end{split}$$

Conclusion : pour tout $n \in \mathbb{N}$, $d_{n+1} = \frac{1}{2}d_n$ donc $(d_n)_{n \in \mathbb{N}}$ est géométrique de raison $q = \frac{1}{2}$.

3. La suite $(d_n)_{n\in\mathbb{N}}$ est géométrique de raison $q=\frac{1}{2}$, et $d_0=v_0-u_0=8-0=8$, donc pour tout $n\in\mathbb{N}$:

$$d_n = d_0 \times q^n = 8 \times \left(\frac{1}{2}\right)^n.$$

On sait par ailleurs que $s_n = 8$ pour tout $n \in \mathbb{N}$.

Les relations

$$\begin{cases} s_n = v_n + u_n \\ d_n = v_n - u_n \end{cases}$$

se réécrivent donc

$$\begin{cases} 8 = v_n + u_n \\ 8 \times \left(\frac{1}{2}\right)^n = v_n - u_n \end{cases}$$

On ajoute membre à membre :

$$8+8 \times \left(\frac{1}{2}\right)^n = v_n + y_n + v_n - y_n$$

$$8+8 \times \left(\frac{1}{2}\right)^n = 2v_n$$

$$\frac{8+8 \times \left(\frac{1}{2}\right)^n}{2} = v_n$$

$$4+4 \times \left(\frac{1}{2}\right)^n = v_n$$

Enfin, comme $s_n = v_n + u_n$:

$$u_n = s_n - v_n = 8 - \left(4 + 4 \times \left(\frac{1}{2}\right)^n\right) = 8 - 4 - 4 \times \left(\frac{1}{2}\right)^n = 4 - 4 \times \left(\frac{1}{2}\right)^n.$$

Conclusion : pour tout $n \in \mathbb{N}$,

$$v_n = 4 + 4 \times \left(\frac{1}{2}\right)^n$$

$$u_n = 4 - 4 \times \left(\frac{1}{2}\right)^n$$

Exercice 37

Programme for i in range(1,6): print(i**2)

Traduction en français

Pour i allant de 1 à 5 : afficher i²

Commentaires

• ALa commande

for i in range(1,6)

signifie que i va de 1 à 5 – il y a un décalage à la fin.

 On n'oublie pas les «:» à la fin de la première ligne. L'incrément qui suit (équivalent à une tabulation sur Thonny) est alors automatiquement inséré lorsqu'on passe à la ligne.

Exercice 38

for i in range(1,11): print(8*i)

Commentaires

On affiche les résultats les uns en-dessous des autres :

$$8 \times 1 = 8$$
, $8 \times 2 = 16$, $8 \times 3 = 24$, ..., $8 \times 10 = 80$.

Exercice 39 On explique le fonctionnement du programme en remplissant un tableau.

Programme

Tableau

On a une boucle **Pour**, où i va de 1 à 100.

Valeur de i	Valeur de s
	0
1	0 + 1 = 1
2	1 + 2 = 3
3	3 + 3 = 6
4	6 + 4 = 10
•••	•••
99	•••
100	•••

Explications

- La 1^{re} ligne du tableau ci-contre correspond à la 1^{re} ligne du code : s = 0 et i n'existe pas encore.
- Dans la boucle, i va de 1 à 100, donc on écrit les valeurs de 1 jusqu'à 100 dans la 1^{re} colonne.
- À chaque étape de la boucle Pour, s reçoit la valeur s + i.
 Donc au début, lorsque i = 1, s re-
- ponc au debut, forsque i = 1, s'reçoit la valeur s + i = 0 + 1 = 1. La valeur de s a donc été modifiée et il vaut maintenant 1 (et non plus 0).
- Ensuite, lorsque i = 2, s reçoit la nouvelle valeur s + i = 1 + 2 = 3. La valeur de s a été une nouvelle fois modifiée.
- Puis quand i = 3, s reçoit la nouvelle valeur s + i = 3 + 3 = 6. Cela continue ainsi de suite jusqu'en bas du tableau.

Finalement, on part de 0, puis on ajoute 1, puis 2, puis 3; et ainsi de suite jusque 100. On calcule donc

$$1+2+3+\cdots+99+100$$
.

Le résultat, 5 050, s'affiche en fin de programme.

Exercice 40 On édite en machine un programme Python qui calcule :

$$10! = 1 \times 2 \times 3 \times \cdots \times 10.$$

On s'inspire pour cela du programme précédent, avec trois différences :

- on **multiplie** par i à chaque étape, au lieu **d'ajouter** i;
- au début s = 1, élément neutre de la multiplication (si on démarrait avec s = 0, la valeur de s vaudrait toujours 0);
- la boucle ne va que de 1 à 10.

Exercice 41 La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0 = 3$ et la formule de récurrence

$$u_{n+1} = 2u_n - 1$$

pour tout $n \in \mathbb{N}$.

Nous allons calculer les premiers termes, puis, comme dans l'exercice 39, compléter un tableau avec les calculs à chaque étape de la boucle **Pour**.

Calcul des premiers termes $u_0 = 3$

$u_1 = 2 \times 3 - 1 = 5$ $u_2 = 2 \times 5 - 1 = 9$

$$u_3 = 2 \times 9 - 1 = 17$$

$$u_4 = 2 \times 17 - 1 = 33$$

Tableau

On a une boucle **Pour**, où i va de 0 à 3.²

Valeur de i	Valeur de u	
	3	$\leftarrow u_0$
0	$2 \times 3 - 1 = 5$	$\leftarrow u_1$
1	$2 \times 5 - 1 = 9$	$\leftarrow u_2$
2	$2 \times 9 - 1 = 17$	$\leftarrow u_3$
3	$2 \times 17 - 1 = 33$	$\leftarrow u_4$

Dans la boucle **Pour**, u prend successivement les valeurs u_0 , u_1 , u_2 , u_3 et u_4 . C'était prévisible, puisque l'instruction

```
u=2*u-1
```

est la même que la formule de récurrence.

Conclusion : la valeur affichée en sortie est $u_4 = 33$.

Exercice 42 Commençons par des rappels concernant les listes, avec quelques exemples :

• La commande

$$L = [5, 6, 10]$$

crée une liste L de trois éléments. Le premier, L[0], est égal à 5; le deuxième, L[1], est égal à 6; le troisième, L[2], est égal à 10. On notera en particulier l'indexation des termes à partir de 0.

· La commande

L.append(2)

ajoute un terme à la liste, égal à 2. On aura donc ensuite une liste de 4 éléments : L = [5, 6, 10, 2].

· La commande

len(L)

renvoie la longueur de la liste.

2. La commande

for i in range(n):

signifie que i va de 0 à n-1.

• La commande

$$L = []$$

crée une liste vide (donc de longueur 0).

Venons-en à l'exercice. On souhaite afficher la liste des nombres de la table de 8 :

$$[8, 16, 24, \cdots, 80]$$
.

Pour cela, on crée une liste vide L, puis on reprend le programme de l'exercice 38, en ajoutant les nombres de la table à la liste L au fur et à mesure de leur calcul :

```
L=[]
for i in range(1,11):
        L.append(8*i)
print(L)
```

Exercice 43 On reprend la suite de l'exercice $41: u_0 = 3$ et $u_{n+1} = 2u_n - 1$ pour tout $n \in \mathbb{N}$.

Pour afficher la liste des termes de u_0 à u_6 , on crée d'abord une liste qui contient le premier terme avec la commande

```
L=[3]
```

Ensuite, on reprend le programme de l'exercice 41, en ajoutant à la liste L chacun des termes de la suite au fur et à mesure de leur calcul.

Pour plus de clarté, on a ajouté un tableau explicatif :

Programme

Tableau

Valeur de i	Valeur de u	liste L
	3	L=[3]
0	$2 \times 3 - 1 = 5$	L = [3, 5]
1	$2 \times 5 - 1 = 9$	L = [3, 5, 9]
2	$2 \times 9 - 1 = 17$	L = [3, 5, 9, 17]
3	$2 \times 17 - 1 = 33$	L = [3, 5, 9, 17, 33]
4	$2 \times 33 - 1 = 65$	L = [3,5,9,17,33,65]
5	$2 \times 65 - 1 = 129$	L = [3, 5, 9, 17, 33, 65, 129]

Exercice 44

Programme 1

Puisque $x \neq 4$, le programme affiche

$$2 \times x = 2 \times 3 = 6.$$

Programme 2

Puisque $x \le 4$, le programme affiche

$$5 \times x = 5 \times 3 = 15.$$

Exercice 45 On commence par deux remarques:

- Un entier $n \ge 1$ est un diviseur de 30 si, et seulement si, 30%n = 0.
- En python, on teste les égalités avec == . Par exemple, la commande

```
4==4
```

renvoie True; tandis que

```
4==5
```

renvoie False.

On édite un programme Python qui renvoie la liste des diviseurs positifs de 30 :

Exercice 46 On édite la fonction :

```
def f(x):
    return x**2
```

On obtient

$$f(3) = 3^2 = 9$$
$$f(-2) = (-2)^2 = 4$$

Exercice 47 La fonction

```
def g():
    return 5
```

renvoie toujours la valeur 5.

Remarque: Pour lancer la fonction, il faut entrer la commande

```
g()
```

sans oublier les parenthèses, mais sans rien écrire à l'intérieur ³.

Exercice 48

```
def moyenne(a,b):
    return (a+b)/2
```

Exercice 49

```
def transforme(note):
    x=1.2*note
    if x<=20:
        return x
    else:
        return 20</pre>
```

Exercice 50 On reprend encore la suite définie par $u_0 = 3$ et $u_{n+1} = 2u_n - 1$ pour tout $n \in \mathbb{N}$.

On recopie quasiment à l'identique les programmes que nous avons écrits dans les exercices 41 et 43. Il y a tout de même trois différences :

- on utilise une fonction;
- la boucle **Pour** a n étapes, et non plus 4 (ex 41) ou 6 (ex 43);
- on utilise **return** au lieu de **print** pour renvoyer le résultat.
- 1. Fonction qui renvoie la valeur de u_n :

^{3.} Cela fait une différence notable avec les mathématiques, où une fonction dépend forcément d'une (ou plusieurs) variables.

2. Fonction qui renvoie la liste de tous les termes de u_0 à u_n :

Exercice 51 On explique le fonctionnement du programme avec un tableau :

Programme

```
def somme(n):
    s=0
    for k in range(1,n+1):
        s=s+1/k
    return s
```

Tableau

Avec la commande somme(100), k va de 1 à 100, puisque n+1=100+1=101.

On laisse volontairement les résultats sous forme de sommes de fractions.

Valeur de k	Valeur de s	
	0	
1	$0 + \frac{1}{1} = \frac{1}{1}$	
2	$\frac{1}{1} + \frac{1}{2}$	
3	$\frac{1}{1} + \frac{1}{2} + \frac{1}{3}$	
•••	•••	
100	$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{100}$	

Conclusion: somme(100) renvoie la valeur de la somme

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{100}$$

(qui vaut environ 5, 19).

Exercice 52

On explique encore une fois le programme avec un tableau :

Commentaires

On entre la commande mystere([2, 3, 7,0]). Dans ce cas, en notant $L = [2,3,7,0]\,$:

- la longueur de la liste L est 4, donc len(L) = 4; et i va de 0 à 3;
- L[0] = 2, L[1] = 3, L[2] = 7 et L[3] = 0;
- Au départ, M = L[0] = 2. Puis, à chaque étape de la boucle, on regarde si L[i] > M. Si c'est le cas, on remplace M par L[i].

Tableau

Valeur de i	A-t-on L[i]>M?		Valeur de M
			2
0	A-t-on $L[0] > 2?2 > 2?$	non	2
1	A-t-on $L[1] > 2?3 > 2?$	oui	3
2	A-t-on $L[2] > 3?7 > 3?$	oui	7
3	A-t-on L[3] > 7 ? $0 > 7$?	non	7

Conclusion : la valeur renvoyée en sortie est 7, maximum de la liste L. Notez que l'on aurait pu obtenir ce maximum avec la simple commande

max(L)

Exercice 53 1. Les termes successifs sont :

$$26-13-40-20-10-5-16-8-4-2-1-4-2-1-\cdots$$

On aboutit à une suite périodique; phénomène qui semble d'ailleurs avoir lieu quel que soit le nombre de départ (on invite le lecteur curieux à faire des essais avec d'autres entiers et à lire l'article Wikipédia sur la conjecture de Syracuse).

2. Avec Thonny, un entier n est pair si, et seulement si, n%2 = 0. On utilise ce résultat pour tester la parité :

3 Dénombrement

Exercice 54 1. Pour chacun des 4 symboles, il y a 12 possibilités, donc au total $12 \times 12 \times 12 \times 12 = 12^4 = 20736$ codes différents possibles.

Remarque : Chaque code est ce que l'on appelle une 4-liste d'un ensemble à 12 éléments.

- 2. On raisonne comme dans la question 1: il y a 11^4 = 14641 codes d'entrée ne comportant pas la lettre A.
- 3. Il y a 12 possibilités pour le 1^{er} symbole, 11 pour le 2^e (car il diffère du premier symbole), puis 10 pour le 3^e; et enfin 9 pour le 4^e. Donc au total.

$$12 \times 11 \times 10 \times 9 = 11880$$

codes avec 4 symboles différents.

Remarque : Chaque code est ce que l'on appelle un arrangement de 4 éléments d'un ensemble à 12 éléments. Le cours donne directement la réponse :

nombre d'arrangements =
$$\frac{12!}{(12-4)!} = \frac{12!}{8!} = \frac{12 \times 11 \times 10 \times 9 \times \cancel{8} \times \cancel{7} \times \dots \times \cancel{1}}{\cancel{8} \times \cancel{7} \times \dots \times \cancel{1}} = 12 \times 11 \times 10 \times 9.$$

Exercice 55 1. On obtient les anagrammes de VOYAGE en permutant les lettres de toutes les façons possibles. La lettre V peut prendre 6 positions différentes, puis il reste 5 positions possibles pour le O, puis 4 pour le Y, etc. Au final, il y a

$$6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$$

anagrammes.

Remarque: On dit qu'il y a 720 permutations possibles des lettres.

2. Si les 8 lettres du mot ANTILLES étaient toutes différentes, il y aurait 8! = 40320 anagrammes différentes. Mais il y a deux «L», donc chaque anagramme est comptée deux fois. En effet, si on différencie les deux «L» en les coloriant, les mots INALSLET et INALSLET, par exemple, semblent différents; mais ils représentent en réalité le même mot INALSLET. Finalement, il n'y a que

$$40320 \div 2 = 20160$$

anagrammes différentes.

Exercice 56 Il y a 2 possibilités pour la 1^{re} réponse, 2 possibilités pour la 2^{e} , 2 pour la 3^{e} , etc. Donc au total $2^{10} = 1024$ façons possibles de remplir le questionnaire.

Remarques:

- Il s'agit du nombre de 10-listes d'un ensemble à deux éléments (ces deux éléments étant Vrai/Faux).
- Au collège, vous auriez pu présenter la solution avec un arbre :

Exercice 57 1. Les podiums sont les arrangements de 3 éléments d'un ensemble à 8 éléments (car les trois premiers de la course sont différents), donc il y en a

$$\frac{8!}{(8-3)!} = \frac{8!}{5!} = 8 \times 7 \times 6 = 336.$$

2. On s'intéresse à l'événement contraire : on compte le nombre de podiums sans aucun Américain. Il s'agit du nombre d'arrangements de 3 éléments d'un ensemble à 5 éléments (les 5 non Américains) ; il y en a

$$\frac{5!}{(5-3)!} = \frac{5!}{2!} = 5 \times 4 \times 3 = 60.$$

Conclusion: il reste

$$336 - 60 = 276$$

podiums comportant au moins un Américain.

Exercice 58 On a déjà rencontré ce code dans l'exercice 40 (à quelques différences près). On explique son fonctionnement avec un tableau :

Programme

Tableau

On rentre par exemple la commande fact(4) – donc i va alors de 1 à 4 :

Valeur de i	Valeur de p
	1
1	$1 \times 1 = 1$
2	$1 \times 2 = 2$
3	$2 \times 3 = 6$
4	$6 \times 4 = 24$

La valeur renvoyée est 24, qui correspond à

$$4! = 1 \times 2 \times 3 \times 4.$$

Exercice 59 Pour simplifier et sans rien enlever à la généralité du raisonnement, on suppose que les questions sont numérotées de 1 à 6 en histoire et de 1 à 5 en géographie, et que le candidat connaît les questions n°1, 2, 3 en histoire, n°1 et 2 en géographie. Dans le tableau ci-dessous, les questions connues sont écrites en bleu, les questions inconnues sont écrites en rouge.

On a colorié les cases de trois couleurs :

- en vert : le candidat connaît les deux questions ;
- en orange : le candidat connaît une seule des deux questions ;
- en magenta : le candidat ne connaît aucune des deux questions.

Hist Géo	1	2	3	4	5	6
1						
2						
3						
4						
5				,		

Conclusion : il y a $6 \times 5 = 30$ cases au total, 6 vertes et 15 oranges, donc :

- la probabilité que le candidat connaisse les deux questions est $\frac{6}{30} = \frac{1}{5}$;
- la probabilité que le candidat connaisse au moins l'une des deux questions est $\frac{6+15}{30} = \frac{21}{30} = \frac{7}{10}$.

Remarque: On aurait pu se passer du tableau:

- il y a $6 \times 5 = 30$ tirages possibles;
- il y a $3 \times 2 = 6$ cas favorables à l'événement « le candidat connaît les deux questions »;
- il y a 3 × 3 = 9 cas favorables à l'événement « le candidat ne connaît aucune des deux questions », donc 30 9 = 21 cas favorables à l'événement contraire « le candidat connaît au moins l'une des deux questions ».

Exercice 60 • Les cas possibles sont les 3-listes d'un ensemble à 4 éléments; il y en a $4^3 = 64$.

- Les cas favorables à G sont les arrangements de 3 éléments d'un ensemble à 4 éléments $(\heartsuit, \diamondsuit, \clubsuit, \clubsuit)$; il y en a $\frac{4!}{(4-3)!} = \frac{4!}{1!} = 4 \times 3 \times 2 = 24$. On a donc $P(G) = \frac{24}{64} = \frac{3}{8}$.
- Pour calculer P(H), on prend l'événement contraire \overline{H} : « aucun cœur n'apparaît à l'écran ». Les cas favorables à \overline{H} sont les 3-listes d'un ensemble à 3 éléments (\diamondsuit , \clubsuit), il y en a donc $3^3 = 27$. Il reste 64 27 = 37 cas favorables à H, et ainsi $P(H) = \frac{37}{64}$.

Exercice 61 1. • Les cas possibles sont les 30-listes d'un ensemble à 200 éléments, il y en a 200³⁰.

• Les cas favorables sont les arrangements de 30 éléments d'un ensemble à 200 éléments ; il y en a

$$\frac{200!}{(200-30)!} = \frac{200!}{170!} = 200 \times 199 \times 198 \times \dots \times 172 \times 171.$$

• La probabilité que les élèves choisissent tous un nombre différent est donc

$$p = \frac{200 \times 199 \times 198 \times \dots \times 172 \times 171}{200^{30}}.$$

2. On remarque que

$$p = \frac{200 \times 199 \times 198 \times \dots \times 172 \times 171}{200 \times 200 \times 200 \times 200 \times 200} = \frac{200}{200} \times \frac{199}{200} \times \frac{198}{200} \times \frac{172}{200} \times \frac{171}{200}.$$

C'est sous cette forme, en calculant le produit de proche en proche, que l'on peut obtenir la réponse avec un programme 4 : on part de la valeur 1, puis on multiplie par $\frac{171}{200}$, puis par $\frac{172}{200}$, puis par $\frac{173}{200}$, ... jusqu'à $\frac{200}{200}$.

La réponse obtenue en sortie est $p \approx 0, 10$.

Exercice 62 • Les podiums possibles sont les 3-listes d'un ensemble à 12 éléments; il y en a $12^3 = 1728$.

• Les cas favorables à l'événement A : « Le joueur obtient le tiercé » sont toutes les permutations possibles des 3 premiers de la course ; il y en a 3! = 3 × 2 × 1 = 6. On peut d'ailleurs les énumérer rapidement :

$$(7,4,10)\; ;\; (7,10,4)\; ; (4,7,10)\; ; (4,10,7)\; ; (10,4,7)\; ; (10,7,4).$$

• Conclusion : $P(A) = \frac{6}{1728} = \frac{1}{288}$.

Exercice 63 1. On commence par $A = {5 \choose 2}$. Il y a trois méthodes :

 $^{4. \ \} Le \ nombre \ 200^{30} \ d\'{e}passe \ les \ capacit\'es \ de \ votre \ calculatrice, faisant \ du \ calcul \ de \ proche \ en \ proche \ une \ n\'{e}cessit\'e.$

· avec la formule:

$$A = \begin{pmatrix} 5 \\ 2 \end{pmatrix} = \frac{5!}{2! \times 3!} = \frac{5 \times 4 \times \cancel{3} \times \cancel{2} \times \cancel{1}}{2 \times 1 \times \cancel{3} \times \cancel{2} \times \cancel{1}} = \frac{20}{2} = 10.$$

• avec le triangle de Pascal :

	0	1	2	3	4	5
0	1	0	0	0	0	0
1	1	1	0	0	0	0
2	1	2	1	0	0	0
3	1	3	3	1	0	0
4	1	4	6	4	1	0
5	1	5	10	10	5	1

• avec la calculatrice:

Calculatrices collège Il faut écrire le calcul (le symbole! est sur le clavier): Calculs EXE puis (boîte à outils) • Choisir Dénombrement EXE • choisir binomial(n,k) EXE • compléter (5/2) EXE CASIO graphiques • MENU puis RUN EXE • MENU puis RUN EXE • 5 OPTN ▷ • F3 (on choisit donc nCr) • 2 EXE (on affiche 5C2 à l'écran avant d'exécuter)

Quelle que soit la méthode, on obtient

$$A = \begin{pmatrix} 5 \\ 2 \end{pmatrix} = 10.$$

On obtient également :

$$B = \begin{pmatrix} 6 \\ 3 \end{pmatrix} = 20, \quad C = \begin{pmatrix} 50 \\ 1 \end{pmatrix} = 50, \quad D = \begin{pmatrix} 4 \\ 0 \end{pmatrix} = 1.$$

Remarque : Pour C et D, le résultat s'obtient sans calcul :

- pour *C*, on choisit 1 élément parmi 50, donc il y a 50 choix possibles;
- pour *D*, on on sait (cf cours) que $\binom{n}{0} = 1$ quelle que soit la valeur de *n*.
- 2. $\binom{10}{3} = \binom{10}{7} = 120$. L'égalité était prévisible : choisir 3 éléments que l'on conserve dans un ensemble à 10 éléments revient à choisir les 7 éléments que l'on met de côté.
 - Par le même raisonnement, vu que 100-60=40, $\binom{100}{60}=\binom{100}{40}$. Et d'une manière plus générale, si $0 \le k \le n$:

$$\binom{n}{k} = \binom{n}{n-k}.$$

Exercice 64 On choisit trois numéros sur une grille de neuf cases. Il y a $\binom{9}{3}$ = 84 grilles possibles.

1	2	3
4	>	6
7	8	9

Exercice 65 On prend 5 cartes dans un jeu de 32. Il y a $\binom{32}{5}$ = 201 376 mains possibles.

Exercice 66 Lorsqu'ils se rencontrent en arrivant le matin au lycée, les 24 élèves d'une classe se serrent la main.

Choisir une poignée de main, c'est choisir deux personnes dans la classe. Il s'échange donc $\binom{24}{2}$ = 276 poignées de mains au total.

Exercice 67 1. Si $p \ge 2$:

$$(p-1)! \times p = 1 \times 2 \times \cdots \times (p-1) \times p = p!$$

(l'égalité est également vraie lorsque p = 1, puisque $0! \times 1 = 1 = 1!$).

2. Si $n \ge 2$:

$$\binom{n+1}{2} = \frac{(n+1)!}{2! \times (n+1-2)!} = \frac{(n+1)!}{2! \times (n-1)!} = \frac{(n-1)! \times n \times (n+1)}{2 \times (n-1)!} = \frac{n^2 + n}{2}.$$

Remarque : On peut aussi obtenir la réponse par un raisonnement de dénombrement : choisir 2 éléments parmi n+1 revient à compter le nombre de poignées de mains lorsque n+1 personnes se serrent la main les unes les autres (comme dans l'exercice précédent). Chacune des n+1 personnes donne n poignées de main; et on divise par 2, parce que sinon chaque poignée de main est comptée deux fois. On total, on en dénombre $(n+1) \times n \div 2 = \frac{n^2+n}{2}$.

3. Soit $n \ge k \ge 1$. On calcule séparément :

$$n \times \binom{n-1}{k-1} = n \times \frac{(n-1)!}{(k-1)! \times ((n-1)-(k-1))!}$$

$$= \frac{(n-1)! \times n}{(k-1)! \times (n-1/-k+1/)!}$$

$$= \frac{n!}{(k-1)! \times (n-k)!}$$

$$= \frac{n!}{(k-1)! \times (n-k)!}$$

$$= \frac{n!}{(k-1)! \times (n-k)!}$$

On a donc bien

$$n \times \binom{n-1}{k-1} = k \times \binom{n}{k}$$

(formule du pion).

Exercice 68 1. Il faut choisir 12 personnes parmi 20, donc on peut constituer (20/12) groupes différents.

2. David est un des membres de l'association. Il y a :

- (19) groupes de 12 personnes contenant David (puisque si David est pris, il reste 11 personnes à choisir parmi les 19 autres);
- (19) groupes de 12 personnes ne contenant pas David (puisque si David n'est pas pris, il reste encore 12 personnes à choisir parmi les 19 autres).
- 3. D'après les questions 1 et 2 :

$$\begin{pmatrix} 20 \\ 12 \end{pmatrix} = \begin{pmatrix} 19 \\ 11 \end{pmatrix} + \begin{pmatrix} 19 \\ 12 \end{pmatrix}.$$

4. On généralise : si $1 \le k \le n-1$,

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

5. On redémontre par le calcul la formule obtenue à la question précédente :

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)!}{(k-1)! \times ((n-1)-(k-1))!} + \frac{(n-1)!}{k! \times ((n-1)-k)!}$$

$$= \frac{(n-1)!}{(k-1)! \times (n-1)! \times k} + \frac{(n-1)!}{k! \times (n-1-k)!}$$

$$= \frac{(n-1)! \times k}{(k-1)! \times k \times (n-k)!} + \frac{(n-1)! \times (n-k)}{k! \times (n-k-1)! \times (n-k)}$$

$$= \frac{(n-1)! \times k}{k! \times (n-k)!} + \frac{(n-1)! \times (n-k)}{k! \times (n-k-1)!}$$

$$= \frac{(n-1)! \times k}{k! \times (n-k)!} + \frac{(n-1)! \times (n-k)}{k! \times (n-k)!}$$

$$= \frac{(n-1)! \times (k+n-k)}{k! \times (n-k)!}$$

$$= \frac{(n-1)! \times n}{k! \times (n-k)!}$$

$$= \frac{n!}{k! \times (n-k)!}$$

$$= \binom{n}{k}$$

Remarque : Cette égalité, appelée formule de Pascal, permet de faire le lien entre le triangle de Pascal et les $\binom{n}{k}$. En effet :

- La première colonne du triangle de Pascal contient uniquement des 1, qui correspondent bien aux $\binom{n}{0}$.
- La diagonale du triangle de Pascal contient uniquement des 1, qui correspondent bien aux $\binom{n}{n}$.
- On remplit chacune des cases « centrales » en ajoutant le nombre au-dessus et celui au-dessus à gauche. Si les nombres de la ligne n-1 correspondent aux (ⁿ⁻¹_k), alors ceux de la ligne du dessous correspondront également, via la formule de Pascal :

C'est une sorte de raisonnement par récurrence : la correspondance entre les termes du triangle de Pascal et les $\binom{n}{k}$ « se propage de ligne en ligne ».

Exercice 69 Le sélectionneur choisit 10 joueurs de champ parmi 17, puis 1 gardien parmi 3; il a donc

$$\binom{17}{3} \times \binom{3}{1} = 680 \times 3 = 2040$$
 équipes possibles.

Exercice 70 Il faut choisir 2 moniteurs parmi 5, puis 10 enfants parmi 40. Il y a donc

$$\binom{5}{2} \times \binom{40}{10}$$
 groupes possibles

(la valeur explicite est entre 8 et 9 milliards).

Exercice 71 On écrit les formules, mais on ne fait pas les calculs explicites (sans grand intérêt mathématique à ce stade du cours).

- 1. Il y a $\binom{32}{5}$ mains possibles.
- 2. La probabilité qu'une main contienne :
 - · exactement 3 dames est

$$\frac{\binom{4}{3} \times \binom{28}{2}}{\binom{32}{5}}$$

(on choisit 3 dames parmi 4, puis 2 cartes parmi les 28 autres);

· trois cœurs et deux carreaux est

$$\frac{\binom{8}{3} \times \binom{8}{2}}{\binom{32}{5}}$$

(on choisit 3 cœurs parmi 8, puis 2 carreaux parmi 8) 5;

· exactement un roi et deux valets est

$$\frac{\binom{4}{1} \times \binom{4}{2} \times \binom{24}{2}}{\binom{32}{5}}$$

(on choisit 1 roi parmi 4, puis 2 valets parmi 4; et enfin 2 cartes parmi les 24 autres).

Exercice 72 1. (a) Le recrutement de 3 candidats peut se faire de $\binom{8}{3} = 56$ façons possibles.

- (b) Le recrutement de 7 candidats peut se faire de $\binom{8}{7}$ = 8 façons possibles.
- (c) On peut recruter entre 0 et 8 candidats, donc en raisonnant comme dans les questions 1 et 2, on voit qu'il y a

$$\binom{8}{0} + \binom{8}{1} + \binom{8}{2} + \binom{8}{3} + \binom{8}{4} + \binom{8}{5} + \binom{8}{6} + \binom{8}{7} + \binom{8}{8}$$

recrutements différents possibles.

^{5.} On pourrait multiplier par $\binom{16}{0}$ au numérateur, puisqu'on ne choisit aucune carte parmi les piques et les trèfles. Bien sûr, cela ne changerait rien à la réponse, puisque $\binom{16}{0} = 1$.

(d) Chaque candidat est soit accepté (A), soir refusé (R). On peut donc assimiler le recrutement à une liste de 8 éléments à choisir parmi A/R. Ainsi y a-t-il

$$2^8 = 256$$

recrutements différents possibles (nombre de 2-listes d'un ensemble à 8 éléments) ⁶.

2. Soit $n \ge 1$. On imagine n candidats au lieu 8 et on raisonne comme dans la question 1 : le nombre de recrutements différents possibles est

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n.$$

Avec le symbole Σ , cette formule (fort connue) se réécrit

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

(On vérifie sans peine qu'elle est également vraie lorsque n = 0.)

Exercice 73

6 9 7

 U_2

• Ilya

$$\binom{5}{2} \times \binom{5}{2} = 10 \times 10 = 100$$

tirages possibles (puisqu'on choisit 2 des 5 boules de l'urne U_1 , 2 des 5 boules de l'urne U_2).

- Pour avoir 2 boules blanches il faut, au choix :
 - Tirer 2 blanches et 0 noire dans l'urne U_1 , 0 blanche et 2 noires dans l'urne U_2 . Le nombre de façons différentes de faire ce tirage est

$$\begin{pmatrix} 3 \\ 2 \end{pmatrix} \times \begin{pmatrix} 2 \\ 0 \end{pmatrix} \times \begin{pmatrix} 2 \\ 0 \end{pmatrix} \times \begin{pmatrix} 3 \\ 2 \end{pmatrix} = 3 \times 1 \times 1 \times 3 = 9.$$

— Tirer 1 blanche et 1 noire dans l'urne U_1 , 1 blanche et 1 noire dans l'urne U_2 . Le nombre de façons différentes de faire ce tirage est

$$\begin{pmatrix} 3 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 1 \end{pmatrix} = 3 \times 2 \times 2 \times 3 = 36.$$

— Tirer 0 blanche et 2 noires dans l'urne U_1 , 2 blanches et 0 noire dans l'urne U_2 . Le nombre de façons différentes de faire ce tirage est

$$\begin{pmatrix} 3 \\ 0 \end{pmatrix} \times \begin{pmatrix} 2 \\ 2 \end{pmatrix} \times \begin{pmatrix} 2 \\ 2 \end{pmatrix} \times \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 1 \times 1 \times 1 \times 1 = 1.$$

- Conclusion : $P(A) = \frac{9+36+1}{100} = 0,46$.
- 6. Le lecteur qui n'est pas convaincu peut faire un arbre.

4 Limites de suites

Exercice 74 1.
$$u_n = 3 + \frac{1}{n}$$
.

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} 3 = 3$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n} = 0$$

$$\Rightarrow \lim_{\substack{n \to +\infty \\ n \to +\infty}} \left(3 + \frac{1}{n}\right) = 3 + 0 = 3.$$

On s'autorise à aller un peu plus vite : on écrit simplement

$$\lim_{n \to +\infty} u_n = 3 + 0 = 3.$$

2. On écrit
$$v_n = 4 - \frac{1}{n^2} = 4 - \frac{1}{n} \times \frac{1}{n}$$
. On a donc

$$\lim_{n \to +\infty} \nu_n = 4 - 0 \times 0 = 4.$$

3. On écrit
$$w_n = \left(5 + \frac{3}{n}\right) \left(2 + \frac{1}{n}\right) = \left(5 + 3 \times \frac{1}{n}\right) \left(2 + \frac{1}{n}\right)$$
. On a donc

$$\lim_{n \to +\infty} w_n = (5+3\times 0)(2+0) = 10.$$

4. On écrit
$$x_n = \frac{1}{1 + \frac{2}{n}} = \frac{1}{1 + 2 \times \frac{1}{n}}$$
.

On a donc

$$\lim_{n \to +\infty} x_n = \frac{1}{1 + 2 \times 0} = 1.$$

5. On met n en facteur au numérateur et au dénominateur :

$$y_n = \frac{3n-5}{4n+1} = \frac{\varkappa(3-\frac{5}{n})}{\varkappa(4+\frac{1}{n})} = \frac{3-5\times\frac{1}{n}}{4+\frac{1}{n}}.$$

On a donc

$$\lim_{n \to +\infty} y_n = \frac{3 - 5 \times 0}{4 + 0} = \frac{3}{4}.$$

Bilan : Pour calculer les limites, il suffit de faire apparaître des $\frac{1}{n}$ et de les remplacer par 0 lorsqu'on « passe à la limite ».

Exercice 75 La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=6$ et la relation de récurrence

$$u_{n+1} = 0,6u_n - 4$$

pour tout $n \in \mathbb{N}$. On admet qu'elle converge et on note ℓ sa limite.

Les suites $(u_n)_{n\in\mathbb{N}}=(u_0,u_1,u_2,\cdots)$ et $(u_{n+1})_{n\in\mathbb{N}}=(u_1,u_2,u_3,\cdots)$ ont la même limite puisque les indices sont simplement décalés :

$$\lim_{n\to+\infty}u_n=\ell,$$

$$\lim_{n \to +\infty} u_{n+1} = \ell.$$

Par opération sur les limites, on peut « passer à la limite » dans la relation de récurrence :

$$u_{n+1} = 0,6u_n - 4$$
 pour tout $n \in \mathbb{N}$,

donc

$$\ell = 0.6\ell - 4.$$

On résout cette équation :

$$\ell = 0, 6\ell - 4 \iff \ell - 0, 6\ell = -4 \iff 0, 4\ell = -4 \iff \ell = \frac{-4}{0, 4} \iff \ell = -10.$$

Conclusion : $\lim_{n \to +\infty} u_n = -10$.

Exercice 76 La suite $(v_n)_{n \in \mathbb{N}}$ est géométrique de premier terme $v_0 = 20$ et de raison q = -0.5.

- 1. $v_0 = 20$; $v_1 = 20 \times (-0.5) = -10$; $v_2 = -10 \times (-0.5) = 5$; $v_3 = 5 \times (-0.5) = -2.5$; $v_4 = -2.5 \times (-0.5) = 1.25$.
- 2. On admet que $(v_n)_{n\in\mathbb{N}}$ converge, on note ℓ sa limite.

On « passe à la limite » dans la relation de récurrence : $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison q=-0,5, donc

$$v_{n+1} = -0.5 \times v_n$$
 pour tout $n \in \mathbb{N}$;

et donc

$$\ell = -0.5 \times \ell$$
.

On résout:

$$\ell = -0.5 \times \ell \iff \ell + 0.5\ell = 0 \iff 1.5\ell = 0 \iff \ell = \frac{0}{1.5} \iff \ell = 0.$$

Conclusion : $\lim_{n\to+\infty} v_n = 0$.

Exercice 77 1. Il est clair que $0 \le \frac{1}{n+\sqrt{n}}$ pour tout entier $n \ge 1$. Pour l'autre inégalité, on part de

$$n + \sqrt{n} \ge n$$
.

Deux nombres strictement positifs sont rangés en sens contraire de leurs inverses, donc

$$\frac{1}{n+\sqrt{n}} \le \frac{1}{n}$$

(∧en prenant l'inverse, le sens de l'inégalité est renversé).

2. $0 \le \frac{1}{n+\sqrt{n}} \le \frac{1}{n}$ pour tout entier $n \ge 1$ et

$$\lim_{n \to +\infty} 0 = 0 \qquad , \qquad \lim_{n \to +\infty} \frac{1}{n} = 0.$$

Donc d'après le théorème des gendarmes :

$$\lim_{n\to+\infty}\frac{1}{n+\sqrt{n}}=0.$$

Exercice 78 La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=1$ et la relation de récurrence

$$u_{n+1} = 0,6u_n + 0,4n + 1$$

pour tout $n \in \mathbb{N}$.

1.

$$u_1 = 0,6u_0 + 0,4 \times 0 + 1 = 0,6 \times 1 + 0 + 1 = 1,6$$

 $u_2 = 0,6u_1 + 0,4 \times 1 + 1 = 0,6 \times 1,6 + 0,4 + 1 = 2,36$

2. Pour tout $n \in \mathbb{N}$, on note \mathcal{P}_n la propriété

$$n \le u_n \le n+1$$
.

• Initialisation. On prouve que \mathcal{P}_0 est vraie.

$$\begin{array}{ll} u_0 & = 1 \\ 0 & \le u_0 \le 0 + 1 \end{array} \right\} \Longrightarrow \mathscr{P}_0 \text{ est vraie.}$$

• **Hérédité.** Soit $k \in \mathbb{N}$ tel que \mathcal{P}_k soit vraie. On a donc

$$k \le u_k \le k+1$$
.

Objectif

Prouver que \mathcal{P}_{k+1} est vraie, c'est-à-dire que

$$k+1 \leq u_{k+1} \leq k+2.$$

On part de

$$k \le u_k \le k + 1$$
.

On multiplie par 0,6:

$$k \times 0.6 \le u_k \times 0.6 \le (k+1) \times 0.6$$

 $0.6k \le 0.6u_k \le 0.6k + 0.6$

Puis on ajoute 0,4k+1:

$$0,6k+0,4k+1 \le 0,6u_k+0,4k+1 \le 0,6k+0,6+0,4k+1$$

$$k+1 \le 0,6u_k+0,4k+1 \le k+1,6$$

$$k+1 \le u_{k+1} \le k+1,6$$

Or $k+1, 6 \le k+2$, donc la propriété \mathcal{P}_{k+1} est vraie.

- Conclusion. \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire, donc elle est vraie pour tout $n \in \mathbb{N}$.
- 3. Soit $n \ge 1$. On reprend l'inégalité de la question précédente et on divise par n:

$$n \le u_n \le n+1$$

$$\frac{n}{n} \le \frac{u_n}{n} \le \frac{n+1}{n}$$

$$1 \le \frac{u_n}{n} \le 1 + \frac{1}{n}$$

On conclut:

$$\lim_{n \to +\infty} 1 = 1$$
 , $\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right) = 1 + 0 = 1$,

donc d'après le théorème des gendarmes

$$\lim_{n\to+\infty}\frac{u_n}{n}=1.$$

Exercice 79 On veut prouver que $\lim_{n \to +\infty} \frac{n-3}{4} = +\infty$. On se donne pour cela un réel M > 0 et on écrit les équivalences :

$$\frac{n-3}{4} \ge M \iff n-3 \ge 4M \iff n \ge 4M+3.$$

Conclusion : quand *n* dépasse 4M+3, $\frac{n-3}{4}$ dépasse *M*. On a donc bien $\lim_{n\to+\infty}\frac{n-3}{4}=+\infty$.

Exercice 80 Soit M > 0. On sait que $\lim_{n \to +\infty} u_n = +\infty$, donc $u_n \ge M$ à partir d'un certain rang N. On a donc $v_n \ge u_n \ge M$ à partir du rang N. On en déduit $\lim_{n \to +\infty} v_n = +\infty$.

Exercice 81 Il est conseillé de calculer les premiers termes des suites pour se faire une idée des variations et de l'existence éventuelle d'un majorant ou d'un minorant. Cela permet ensuite de traiter les questions avec efficacité : si par exemple on a prouvé qu'une suite était croissante, alors on est certain (théorème du cours) qu'elle est minorée par son premier terme.

- 1. $u_n = e^{-n}$ pour tout $n \in \mathbb{N}$.
 - Une exponentielle est strictement positive, donc $(u_n)_{n\in\mathbb{N}}$ est minorée par 0.
 - Pour tout $n \in \mathbb{N}$:

$$u_{n+1} - u_n = e^{-(n+1)} - e^{-n}$$

$$= e^{-n-1} - e^{-n}$$

$$= e^{-n} \times e^{-1} - e^{-n} \times 1$$

$$= \underbrace{e^{-n}}_{\oplus} \underbrace{(e^{-1} - 1)}_{\bullet}$$

Conclusion : $u_{n+1} - u_n \le 0$, donc $(u_n)_{n \in \mathbb{N}}$ est décroissante.

- Comme $(u_n)_{n\in\mathbb{N}}$ est décroissante, elle est majorée par son premier terme, $u_0=\mathrm{e}^{-0}=1$.
- 2. $v_n = n^2$ pour tout $n \in \mathbb{N}$.
 - Un carré est positif, donc $(v_n)_{n\in\mathbb{N}}$ est minorée par 0.
 - Soit M > 0. La fonction carré est strictement croissante sur $[0; +\infty[$, donc

$$n > \sqrt{M} \implies n^2 > \sqrt{M}^2 \implies u_n > M.$$

Le réel M ne peut donc être un majorant. Et comme cela est vrai quel que soit M, la suite $(v_n)_{n\in\mathbb{N}}$ n'est pas majorée.

• Pour tout $n \in \mathbb{N}$:

$$u_{n+1} - u_n = (n+1)^2 - n^2$$

$$= \cancel{n^2} + 2n + 1 - \cancel{n^2}$$

$$= \underbrace{2n+1}_{\oplus}$$

Conclusion : $u_{n+1} - u_n \ge 0$, donc $(u_n)_{n \in \mathbb{N}}$ est croissante.

3. $(w_n)_{n\in\mathbb{N}}$ est définie par $w_0=1$ et la relation de récurrence

$$w_{n+1} = \frac{w_n}{1 + 2w_n}$$

pour tout $n \in \mathbb{N}$.

• L'énoncé nous dit d'admettre que $(w_n)_{n\in\mathbb{N}}$ est à termes positifs, donc elle est minorée par 0.

• Pour tout $n \in \mathbb{N}$:

$$w_{n+1} - w_n = \frac{w_n}{1 + 2w_n} - w_n$$

$$= \frac{w_n}{1 + 2w_n} - \frac{w_n(1 + 2w_n)}{1 + 2w_n}$$

$$= \frac{w_n}{1 + 2w_n} - \frac{w_n + 2w_n^2}{1 + 2w_n}$$

$$= \frac{w_n - w_n - 2w_n^2}{1 + 2w_n}$$

$$= \frac{e}{1 + 2w_n}$$

Conclusion : $w_{n+1} - w_n \le 0$, donc $(w_n)_{n \in \mathbb{N}}$ est décroissante.

• Comme $(w_n)_{n\in\mathbb{N}}$ est décroissante, elle est majorée par son premier terme, $w_0=1$.

Exercice 82 La suite $(w_n)_{n\in\mathbb{N}}$ de l'exercice précédent est décroissante et minorée par 0. Or d'après le théorème de limite monotone, toute suite décroissante minorée converge, donc $(w_n)_{n\in\mathbb{N}}$ converge.

Exercice 83 La suite $(v_n)_{n \in \mathbb{N}^*}$ est définie par $v_n = \frac{n}{2^n}$ pour tout $n \in \mathbb{N}^*$.

1. Pour tout $n \in \mathbb{N}^*$:

$$v_{n+1} - v_n = \frac{n+1}{2^{n+1}} - \frac{n}{2^n}$$

$$= \frac{n+1}{2^{n+1}} - \frac{n \times 2}{2^n \times 2}$$

$$= \frac{n+1}{2^{n+1}} - \frac{2n}{2^{n+1}}$$

$$= \frac{-n+1}{2^{n+1}}$$

Conclusion : $v_{n+1} - v_n \le 0$, donc $(v_n)_{n \in \mathbb{N}^*}$ est décroissante.

La suite $(v_n)_{n\in\mathbb{N}^*}$ est décroissante et elle est clairement minorée par 0. D'après le théorème de limite monotone, toute suite décroissante minorée converge, donc $(v_n)_{n\in\mathbb{N}^*}$ converge. De plus, comme elle est minorée par 0, sa limite ℓ est supérieure ou égale à 0.

2. Pour tout $n \in \mathbb{N}^*$:

$$\nu_{n+1} = \frac{n+1}{2^{n+1}} = \frac{1}{2} \times (n+1) \times \frac{1}{2^n} = \frac{1}{2} \times \frac{n+1}{n} \times \frac{n}{2^n} = \frac{1}{2} \times \left(1 + \frac{1}{n}\right) \times \nu_n.$$

3. On sait que:

• $\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} v_{n+1} = \ell$.

• $\lim_{n \to +\infty} \frac{1}{n} = 0$.

On « passe à la limite » dans l'égalité de la question précédente :

$$v_{n+1} = \frac{1}{2} \times \left(1 + \frac{1}{n}\right) \times v_n$$
 pour tout $n \in \mathbb{N}$,

donc

$$\ell = \frac{1}{2} \times (1+0) \times \ell.$$

On résout cette équation :

$$\ell = \frac{1}{2}\ell \iff \ell - \frac{1}{2}\ell = 0 \iff \frac{1}{2}\ell = 0 \iff \ell = 2 \times 0 \iff \ell = 0.$$

Conclusion : $\lim_{n\to+\infty} v_n = 0$.

Exercice 84 La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=10$ et la relation de récurrence

$$u_{n+1} = 0,5u_n + 2$$

pour tout $n \in \mathbb{N}$.

1. Pour tout $n \in \mathbb{N}$, on note \mathcal{P}_n la propriété

$$4 \le u_{n+1} \le u_n$$
.

• Initialisation. On prouve que \mathcal{P}_0 est vraie.

$$\begin{array}{ll} u_0 &= 10 \\ u_1 &= 0,5 \times 10 + 2 = 7 \\ 4 &\leq 7 \leq 10 \end{array} \right\} \Longrightarrow 4 \leq u_1 \leq u_0 \Longrightarrow \mathscr{P}_0 \text{ est vraie.}$$

• **Hérédité.** Soit $k \in \mathbb{N}$ tel que \mathcal{P}_k soit vraie. On a donc

$$4 \le u_{k+1} \le u_k$$
.

Objecti

Prouver que \mathcal{P}_{k+1} est vraie, c'est-à-dire que

$$4 \le u_{k+2} \le u_{k+1}$$
.

On part de

$$4 \leq u_{k+1} \leq u_k.$$

On multiplie par 0,5:

$$4 \times 0, 5 \le u_{k+1} \times 0, 5 \le u_k \times 0, 5$$

 $2 \le 0, 5u_{k+1} \le 0, 5u_k.$

Puis on ajoute 2:

$$2+2 \le 0,5u_{k+1}+2 \le 0,5u_k+2$$

 $4 \le u_{k+2} \le u_{k+1}.$

La propriété \mathcal{P}_{k+1} est donc vraie.

- **Conclusion.** \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire, donc elle est vraie pour tout $n \in \mathbb{N}$.
- 2. D'après la question précédente :

- $u_{n+1} \le u_n$ pour tout $n \in \mathbb{N}$, donc $(u_n)_{n \in \mathbb{N}}$ est décroissante.
- $4 \le u_n$ pour tout $n \in \mathbb{N}$, donc $(u_n)_{n \in \mathbb{N}}$ est minorée par 4.

Or d'après le théorème de limite monotone, toute suite décroissante minorée converge, donc $(u_n)_{n\in\mathbb{N}}$ converge.

3. On note ℓ la limite de $(u_n)_{n\in\mathbb{N}}$ et « on passe à la limite » dans la formule de récurrence :

$$u_{n+1} = 0,5u_n + 2$$
 pour tout $n \in \mathbb{N}$,

donc

$$\ell = 0.5\ell + 2.$$

On résout cette équation :

$$\ell = 0, 5\ell + 2 \iff \ell - 0, 5\ell = 2 \iff 0, 5\ell = 2 \iff \ell = \frac{2}{0.5} \iff \ell = 4.$$

Conclusion: $\lim_{n\to+\infty} u_n = 4$.

Exercice 85 1. Pour tout $n \in \mathbb{N}$:

$$w_{n+1} - w_n = \left(w_n + \frac{1}{w_n}\right) - w_n = \underbrace{\frac{1}{w_n}}_{\Phi}.$$

 $w_{n+1} - w_n \ge 0$, donc $(w_n)_{n \in \mathbb{N}}$ est croissante.

- 2. La suite $(w_n)_{n\in\mathbb{N}}$ est croissante, donc d'après le théorème de limite monotone, il y a deux possibilités :
 - soit elle est majorée, et dans ce cas elle converge;
 - soit elle n'est pas majorée, et dans ce cas elle a pour limite $+\infty$.

Par conséquent, si (\clubsuit) n'est pas vraie (et donc que $(w_n)_{n\in\mathbb{N}}$ n'a pas pour limite $+\infty$), elle converge vers une limite finie ℓ .

De plus, $(w_n)_{n\in\mathbb{N}}$ étant croissante, $\ell \geq w_0 = 2$.

3. On « passe à la limite » dans la formule de récurrence :

$$w_{n+1} = w_n + \frac{1}{w_n}$$
 pour tout $n \in \mathbb{N}$,

donc

$$\ell = \ell + \frac{1}{\ell}.$$

On résout cette équation :

$$\ell = \ell + \frac{1}{\ell} \iff 0 = \frac{1}{\ell} \iff 0 \times \ell = \frac{1}{\ell} \times \ell \iff \underbrace{0 = 1}_{\text{absurde}}.$$

Conclusion : il n'y a pas de solution, donc en supposant que (♣) est fausse, on aboutit à une absurdité. C'est donc que (♣) est vraie :

$$\lim_{n\to+\infty}w_n=+\infty.$$

Exercice 86 On détermine les limites des suites de terme général :

1. $u_n = 0.8^n + (-0.2)^n$.

$$\begin{array}{ll} -1 < 0, 8 < 1 & \Longrightarrow \lim_{n \to +\infty} 0, 8^n = 0 \\ -1 < -0, 2 < 1 & \Longrightarrow \lim_{n \to +\infty} (-0, 2)^n = 0 \end{array} \right\} \\ \Longrightarrow \lim_{n \to +\infty} \left(0, 8^n + (-0, 2)^n \right) = 0 + 0 = 0.$$

2.
$$v_n = 4 - 3 \times \left(\frac{2}{3}\right)^n$$
.

$$-1 < \frac{2}{3} < 1 \implies \lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0 \implies \lim_{n \to +\infty} \left(4 - 3 \times \left(\frac{2}{3}\right)^n\right) = 4 - 3 \times 0 = 4.$$

3.
$$w_n = \frac{0.5^n - 1}{0.5^n + 1}$$
.

$$-1 < 0, 5 < 1 \implies \lim_{n \to +\infty} 0, 5^n = 0 \implies \lim_{n \to +\infty} \left(\frac{0, 5^n - 1}{0, 5^n + 1} \right) = \frac{0 - 1}{0 + 1} = -1.$$

4.
$$x_n = \frac{2^n - 1}{2^n + 1}$$
.

Cette fois, on ne peut pas conclure directement, car 2 > 1, donc $\lim_{n \to +\infty} 2^n = +\infty$. L'astuce consiste à mettre 2^n en facteur au numérateur et au dénominateur :

$$x_n = \frac{2^n - 1}{2^n + 1} = \frac{2^{n} \left(1 - \frac{1}{2^n}\right)}{2^{n} \left(1 + \frac{1}{2^n}\right)} = \frac{1 - \left(\frac{1}{2}\right)^n}{1 + \left(\frac{1}{2}\right)^n}.$$

On peut alors conclure:

$$-1 < \frac{1}{2} < 1 \implies \lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0 \implies \lim_{n \to +\infty} x_n = \frac{1-0}{1+0} = 1.$$

Exercice 87 La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=10$ et $u_{n+1}=0,5u_n+2$ pour tout $n\in\mathbb{N}$. On pose

$$v_n = u_n - 4$$

pour tout $n \in \mathbb{N}$.

1. Pour tout $n \in \mathbb{N}$:

$$v_{n+1} = u_{n+1} - 4$$
 (déf. de $(v_n)_{n \in \mathbb{N}}$)
 $= (0, 5u_n + 2) - 4$ (rel. réc. pour $(u_n)_{n \in \mathbb{N}}$)
 $= 0, 5u_n - 2$ (calcul)
 $= 0, 5\left(u_n - \frac{2}{0, 5}\right)$ (factorisation)
 $= 0, 5(u_n - 4)$ (calcul)
 $= 0, 5v_n$ (déf. de $(v_n)_{n \in \mathbb{N}}$)

Conclusion : pour tout $n \in \mathbb{N}$, $v_{n+1} = 0.5v_n$, donc $(v_n)_{n \in \mathbb{N}}$ est géométrique de raison q = 0.5.

2. La suite $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison q=0,5, et $v_0=u_0-4=10-4=6$, donc pour tout $n\in\mathbb{N}$:

$$v_n = v_0 \times q^n = 6 \times 0, 5^n.$$

3. Enfin $v_n = u_n - 4$ donc

$$u_n = v_n + 4 = 6 \times 0.5^n + 4$$
.

4. Pour tout $n \in \mathbb{N}$, $u_n = 6 \times 0, 5^n + 4$.

$$-1 < 0.5 < 1 \implies \lim_{n \to +\infty} 0.5^n = 0 \implies \lim_{n \to +\infty} u_n = 6 \times 0 + 4 = 4.$$

Exercice 88 1. La zone grise fait 1/2 disque, la zone quadrillée 1/4 du disque, la zone hachurée 1/8, la zone noircie 1/16, etc. Si on continue indéfiniment, on obtiendra le disque entier, si bien que

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = 1,$$

ou encore

$$\frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^4 + \dots = 1.$$

Dans les questions suivantes, on justifie ce résultat de façon rigoureuse.

2. Soit q un réel dans l'intervalle]-1;1[. On sait que pour tout $n \in \mathbb{N}$:

$$1+q+q^2+\cdots+q^n=\frac{q^{n+1}-1}{q-1}$$
;

on a donc

$$q+q^2+\cdots+q^n=\frac{q^{n+1}-1}{q-1}-1.$$

Or

$$-1 < q < 1 \implies \lim_{n \to +\infty} q^{n+1} = 0 \implies \lim_{n \to +\infty} \left(\frac{q^{n+1} - 1}{q - 1} - 1 \right) = \frac{0 - 1}{q - 1} - 1 = \frac{-1}{q - 1} - 1,$$

donc

$$\lim_{n \to +\infty} (q + q^2 + \dots + q^n) = \frac{-1}{q-1} - 1.$$

Remarque: Il est agréable de réécrire la réponse sous une forme un peu différente :

$$\frac{-1}{q-1} - 1 = \frac{-1}{q-1} - \frac{q-1}{q-1} = \frac{-1 - (q-1)}{q-1} = \frac{-1 - q+1}{q-1} = \frac{-q}{q-1} = \frac{-q \times (-1)}{(q-1) \times (-1)} = \frac{q}{1-q}.$$

3. On applique la formule de la question 2 à $q = \frac{1}{2}$:

$$\lim_{n \to +\infty} \left(\frac{1}{2} + \left(\frac{1}{2} \right)^2 + \dots + \left(\frac{1}{2} \right)^n \right) = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1.$$

On retrouve bien le résultat de la question 1.

Exercice 89 Nous rencontrons pour la première fois une boucle Tant que. Il est sûrement nécessaire de faire quelques rappels.

Programme	Traduction en français
<pre>n=10 while n<=14:</pre>	$n = 10$ Tant que $n \le 14$: $n = n + 1$ afficher n

Explications

- Au départ, n = 10;
- Puis, tant que $n \le 14$, n avec un tableau : augmente de 1.
- n prend donc successivement les valeurs 11, 12, 13, 14 et 15
- Lorsque n = 15, on sort de la boucle **Tant que**.
 La valeur affichée en sortie est 15 (valeur finale de n).

Tableau

Il est agréable d'expliquer avec un tableau :

Valeur de n	Boucle à continuer? n≤14?
10	oui
10 + 1 = 11	oui
11 + 1 = 12	oui
12 + 1 = 13	oui
13 + 1 = 14	oui
14 + 1 = 15	non

Exercice 90

∧ On s'arrête quand le résultat est strictement inférieur à 1, donc on continue tant qu'il est supérieur ou égal à 1.

Exercice 91 On reprend la suite $(u_n)_{n\in\mathbb{N}}$ de l'exercice 84 : $u_0 = 10$ et $u_{n+1} = 0,5u_n + 2$ pour tout $n \in \mathbb{N}$. On a vu qu'elle était décroissante, et qu'elle convergeait vers 4.

Calculons les premiers termes :

$$u_0 = 10$$

 $u_1 = 0.5 \times 10 + 2 = 7$
 $u_2 = 0.5 \times 7 + 2 = 5.5$
 $u_3 = 0.5 \times 5.5 + 2 = 4.75$
 $u_4 = 0.5 \times 4.75 + 2 = 4.375$

On explique maintenant le programme avec un tableau :

Programme

Tableau

u		n	Boucle à continuer? u≥4,5 ?
10	$\leftarrow u_0$	0	oui
$0.5 \times 10 + 2 = 7$	$\leftarrow u_1$	0 + 1 = 1	oui
$0,5 \times 7 + 2 = 5,5$	$\leftarrow u_2$	1 + 1 = 2	oui
$0,5 \times 5, 5 + 2 = 4,75$	$\leftarrow u_3$	2 + 1 = 3	oui
$0,5 \times 4,75 + 2 = 4,375$	$\leftarrow u_4$	3 + 1 = 4	non

Conclusion : la valeur en sortie est n = 4. C'est l'indice du premier terme de la suite strictement inférieur à 4,5 :

- u_0 , u_1 , u_2 et u_3 sont supérieurs ou égaux à 4,5;
- u_4 est strictement inférieur à 4,5.

Il s'agit donc de déterminer l'indice (ou le rang) à partir duquel la suite descend en-dessous du seuil 4,5 – d'où le nom de la fonction.

Exercice 92 On reprend les idées de l'exercice précédent :

```
def seuil():
    somme=100
    annees=0
    while somme < 200:
        somme = somme * 1.5
        annees = annees + 1
    return annees</pre>
```

Exercice 93

Remarque : Quand on lance la fonction, on a une surprise désagréable : toutes les réponses apparaissent avec un chiffre après la virgule. Par exemple, **syr(26)** renvoie

```
[26.0, 13.0, 40.0, 20.0, 10.0, 5.0, 16.0, 8.0, 4.0, 2.0, 1.0]
```

Pour éviter cela, il faut remplacer l'avant-dernière ligne par

```
L.append(int(u))
```

Les élèves qui font (ou ont fait) la spécialité NSI reconnaîtront le type **int** (entier), alors que Python considère par défaut que a est de type **float** (réel).

5 Géométrie repérée dans l'espace

Exercice 94 1. Commençons par deux remarques concernant les figures en perspective cavalière :

- Dans une figure en perspective cavalière, on respecte la proportionnalité. Par exemple, un point situé au milieu d'un segment dans la réalité doit être représenté au milieu du segment sur la figure.
- Dans une figure en perspective cavalière, deux droites parallèles sont représentées par des droites parallèles.

2. Dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$:

$$B(1;0;0)$$
, $H(0;1;1)$, $I(0;0;0,75)$, $J(1;1;0,25)$.

• Parallélogramme. On prouve que deux vecteurs sont égaux :

$$\overrightarrow{BJ} \begin{pmatrix} x_J - x_B \\ y_J - y_B \\ z_J - z_B \end{pmatrix} \qquad \overrightarrow{BJ} \begin{pmatrix} 1-1 \\ 1-0 \\ 0,25-0 \end{pmatrix} \qquad \overrightarrow{BJ} \begin{pmatrix} 0 \\ 1 \\ 0,25 \end{pmatrix}$$

$$\overrightarrow{IH} \begin{pmatrix} x_H - x_I \\ y_H - y_I \\ z_H - z_I \end{pmatrix} \qquad \overrightarrow{IH} \begin{pmatrix} 0-0 \\ 1-0 \\ 1-0,75 \end{pmatrix} \qquad \overrightarrow{IH} \begin{pmatrix} 0 \\ 1 \\ 0,25 \end{pmatrix}$$

Conclusion : $\overrightarrow{BJ} = \overrightarrow{IH}$, donc BJHI est un parallélogramme.

∧La colinéarité des vecteurs ne suffit pas, il doivent être égaux.

• Losange. Un losange a 4 côtés égaux. Or

$$BI = \sqrt{(x_I - x_B)^2 + (y_I - y_B)^2 + (z_I - z_B)^2} = \sqrt{(0 - 1)^2 + (0 - 0)^2 + (0, 75 - 0)^2} = \sqrt{1,5625}$$

$$BJ = \sqrt{(x_J - x_B)^2 + (y_J - y_B)^2 + (z_J - z_B)^2} = \sqrt{(1 - 1)^2 + (1 - 0)^2 + (0, 25 - 0)^2} = \sqrt{1,0625}$$

53

Conclusion : BJHI a deux côtés de longueurs différentes, donc ce n'est pas un losange.

Exercice 95

- 2. Dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$: $A(0;0;0), \quad B(1;0;0), \quad C(1;1;0), \quad D(0;1;0),$ $E(0;0;1), \quad F(1;0;1), \quad G(1;1;1), \quad H(0;1;1),$ $J(1;0,5;0), \quad K(0,5;1;0).$
- 3. On utilise la colinéarité:

$$\overrightarrow{FH} \begin{pmatrix} x_H - x_F \\ y_H - y_F \\ z_H - z_F \end{pmatrix} \qquad \overrightarrow{FH} \begin{pmatrix} 0 - 1 \\ 1 - 0 \\ 1 - 1 \end{pmatrix} \qquad \overrightarrow{FH} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

$$\overrightarrow{JK} \begin{pmatrix} x_K - x_J \\ y_K - y_J \\ z_K - z_J \end{pmatrix} \qquad \overrightarrow{JK} \begin{pmatrix} 0, 5 - 1 \\ 1 - 0, 5 \\ 0 - 0 \end{pmatrix} \qquad \overrightarrow{JK} \begin{pmatrix} -0, 5 \\ 0, 5 \\ 0 \end{pmatrix}$$

Exercice 96 1.

2. Dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$: $F(1;0;1), \quad K(0;1;2).$

On détermine ensuite les coordonnées de J:

On voit que $\overrightarrow{FH} = 2\overrightarrow{JK}$, donc \overrightarrow{FH} et \overrightarrow{JK} sont colinéaires; et donc les droites (FH) et (JK) sont parallèles.

4. Les droites (*FH*) et (*JK*) étant parallèles, les quatre points *F*, *H*, *J* et *K* sont coplanaires (dans un même plan); et les droites (*FJ*) et (*HK*) aussi. Pour prouver qu'elles se coupent, il suffit donc de prouver qu'elles ne sont pas parallèles. On utilise à nouveau la colinéarité :

$$\overrightarrow{FJ} \begin{pmatrix} x_J - x_F \\ y_J - y_F \\ z_J - z_F \end{pmatrix} \qquad \overrightarrow{FJ} \begin{pmatrix} 1-1 \\ 0, 5-0 \\ 0-1 \end{pmatrix} \qquad \overrightarrow{FJ} \begin{pmatrix} 0 \\ 0, 5 \\ -1 \end{pmatrix}$$

$$\overrightarrow{HK} \begin{pmatrix} x_K - x_H \\ y_K - y_H \\ z_K - z_H \end{pmatrix} \qquad \overrightarrow{HK} \begin{pmatrix} 0, 5-0 \\ 1-1 \\ 0-1 \end{pmatrix} \qquad \overrightarrow{HK} \begin{pmatrix} 0, 5 \\ 0 \\ -1 \end{pmatrix}$$

Les vecteurs \overrightarrow{FJ} et \overrightarrow{HK} ne sont pas colinéaires, puisque le tableau

 $\begin{array}{c|cc}
0 & 0,5 \\
0,5 & 0 \\
-1 & -1
\end{array}$

n'est pas un tableau de proportionnalité. Les droites (FJ) et (HK) sont donc bien sécantes. On a noté L leur point d'intersection sur la figure.

On sait que $\overrightarrow{DJ} = 2\overrightarrow{DB}$. Or

$$\overrightarrow{DJ} \begin{pmatrix} x_J - x_D \\ y_J - y_D \\ z_J - z_D \end{pmatrix} \quad \overrightarrow{DJ} \begin{pmatrix} x_J - 0 \\ y_J - 1 \\ z_J - 0 \end{pmatrix} \quad \overrightarrow{DJ} \begin{pmatrix} x_J \\ y_J - 1 \\ z_J \end{pmatrix}$$

et

$$\overrightarrow{DB} \begin{pmatrix} x_B - x_D \\ y_B - y_D \\ z_B - z_D \end{pmatrix} \quad \overrightarrow{DB} \begin{pmatrix} 1 - 0 \\ 0 - 1 \\ 0 - 0 \end{pmatrix} \quad \overrightarrow{DB} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \quad \text{et donc} \quad 2\overrightarrow{DB} \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix}.$$

On a donc

$$x_J = 2$$

 $y_J - 1 = -2 \iff y_J = -2 + 1 = -1$
 $z_J = 0$.

Conclusion : J(2;-1;0).

3. On utilise la colinéarité:

$$\overrightarrow{KF} \begin{pmatrix} x_F - x_K \\ y_F - y_K \\ z_F - z_K \end{pmatrix} \qquad \overrightarrow{KF} \begin{pmatrix} 1 - 0 \\ 0 - 1 \\ 1 - 2 \end{pmatrix} \qquad \overrightarrow{KF} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$

$$\overrightarrow{KJ} \begin{pmatrix} x_J - x_K \\ y_J - y_K \\ z_J - z_K \end{pmatrix} \qquad \overrightarrow{KJ} \begin{pmatrix} 2 - 0 \\ -1 - 1 \\ 0 - 2 \end{pmatrix} \qquad \overrightarrow{KJ} \begin{pmatrix} 2 \\ -2 \\ -2 \end{pmatrix}$$

On voit que $\overrightarrow{KJ} = 2\overrightarrow{KF}$, donc \overrightarrow{KJ} et \overrightarrow{KF} sont colinéaires; et donc les points K, F et J sont alignés.

Remarque : On a tracé une partie de la figure en rouge pour mettre en évidence une configuration de Thalès.

Exercice 97 \triangle Sur la figure ci-contre, on représente les plans (ABC) et (MNC) par des triangles colorés. Mais ces plans « ne s'arrêtent pas aux triangles » , ils continuent indéfiniment dans toutes les directions.

Pour construire la droite d'intersection des plans (ABC) et (MNC), il suffit d'avoir deux points de cette droite; et donc deux points communs à chacun des deux plans. Le point \mathbf{C} , évidemment, appartient à chacun des deux plans (ABC) et (MNC); il reste donc à trouver un deuxième point.

Les droites (MN) et (AB) sont toutes deux dans le plan (ABD) et elles ne sont pas parallèles d'après l'énoncé; elles se coupent donc en un point K. Ce point K appartenant à (AB), il appartient également au plan (ABC). Mais K appartient aussi à (MN), donc au plan (MNC). Finalement, K appartient à chacun des deux plans (ABC) et (MNC).

Chacun des points C et K appartient à la fois aux plans (ABC)

Exercice 98 Le point G est sur la face ABC, donc la droite (AG) coupe le segment [BC] en un point J. Les cinq points A, I, D, G, J sont dans un même plan (le plan (ADJ)), coloré en rose sur la figure. Il s'ensuit que les droites (IG) et (DJ) sont dans ce plan. De plus, (IG) et (DJ) ne sont pas parallèles (sinon la droite (IG) serait parallèle à une droite du plan (BCD), et donc parallèle au plan (BCD) – ce que l'énoncé exclut). On en déduit que (IG) et (DJ) se coupent en un point K^7 .

Par construction, le point K appartient à la droite (IG). Il appartient également à la droite (DJ), qui est incluse dans le plan (BCD); le point K appartient donc au plan (BCD).

Conclusion : le point K appartient à la droite (IG) et au plan (BCD), donc c'est leur point d'intersection.

et (MNC), donc l'intersection de ces deux plans est la droite (CK).

^{7.} Deux droites non parallèles de l'espace ne se coupent pas forcément. Ce qui fait que (IG) et (DJ) se coupent, c'est qu'elles sont coplanaires $(=dans\ un\ même\ plan)$ et non parallèles.

Exercice 99

1.

- 2. Dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$: $H(0;1;1), \quad I(0,25;1;0), \quad J(1;0,75;0), \quad E(0;0;1), \quad G(1;1;1).$
- 3. Les faces *ABCD* et *EFGH* sont parallèles, donc le plan (*EGJ*) (en bleu) les coupe suivant des segments parallèles. Pour construire la section du cube par le plan (*EGJ*), on trace donc la parallèle à (*EG*) passant par *J*. Elle coupe [*AB*] en *K*.

Le point K appartient au segment [AB], donc il a des coordonnées de la forme (x;0;0). Pour déterminer la valeur de x, on utilise la colinéarité :

$$\overrightarrow{EG} \begin{pmatrix} x_G - x_E \\ y_G - y_E \\ z_G - z_E \end{pmatrix} \qquad \overrightarrow{EG} \begin{pmatrix} 1 - 0 \\ 1 - 0 \\ 1 - 1 \end{pmatrix} \qquad \overrightarrow{EG} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$\overrightarrow{JK} \begin{pmatrix} x_K - x_J \\ y_K - y_J \\ z_K - z_J \end{pmatrix} \qquad \overrightarrow{JK} \begin{pmatrix} x - 1 \\ 0 - 0, 75 \\ 0 - 0 \end{pmatrix} \qquad \overrightarrow{JK} \begin{pmatrix} x - 1 \\ -0, 75 \\ 0 \end{pmatrix}$$

Exercice 100 Les faces ABFE et DCGH sont parallèles, donc le plan (EBI) les coupe suivant des segments parallèles. Pour construire la section du parallélépipède par le plan (EBI), il suffit donc de tracer la parallèle à (EB) passant par I. Elle coupe [GC] en J, et la section est le quadrilatère EBJI.

Or (EG) est parallèle à (JK), donc \overrightarrow{EG} et \overrightarrow{JK} sont colinéaires, et le tableau

1	x-1
1	-0,75
0	0

est un tableau de proportionnalité. On a donc

$$1 \times (-0,75) = 1 \times (x-1).$$

On développe et on résout :

$$-0.75 = x - 1 \iff x = -0.75 + 1 = 0.25.$$

Conclusion : K(0, 25; 0; 0).

4. Pour prouver que la droite (*HI*) est parallèle au plan (*EGJ*), il suffit de prouver qu'elle est parallèle à une droite de ce plan. La bonne candidate est la droite (*EK*), et l'outil est la colinéarité. On obtient (en accélérant un petit peu) :

$$\overrightarrow{HI} \begin{pmatrix} 0,25 \\ 0 \\ -1 \end{pmatrix}$$
 , $\overrightarrow{EK} \begin{pmatrix} 0,25 \\ 0 \\ -1 \end{pmatrix}$.

Conclusion : les vecteurs \overrightarrow{HI} et \overrightarrow{EK} sont égaux (et donc colinéaires!), donc (HI) est parallèle à (EK); et donc au plan (EGJ).

Exercice 101 Dans l'espace muni d'un repère orthonormé de centre O, on considère les points A(4;0;0), B(0;3;0), C(0;0;4) et D(4;3;0).

1.

On prend la même unité de longueur pour graduer les axes (Ox) et (Oz), qui sont vus de face, puis une unité arbitraire (plus petite) pour graduer l'axe (Oy), qui est une ligne de fuite.

2. On utilise la colinéarité:

$$\overrightarrow{CD} \begin{pmatrix} 4-0 \\ 3-0 \\ 0-4 \end{pmatrix} \qquad \overrightarrow{CD} \begin{pmatrix} 4 \\ 3 \\ -4 \end{pmatrix}$$

$$\overrightarrow{CM} \begin{pmatrix} \frac{8}{3} - 0 \\ 2-0 \\ \frac{4}{3} - 4 \end{pmatrix} \qquad \overrightarrow{CM} \begin{pmatrix} \frac{8}{3} \\ 2 \\ \frac{4}{3} - \frac{12}{3} \end{pmatrix} \qquad \overrightarrow{CM} \begin{pmatrix} \frac{8}{3} \\ 2 \\ -\frac{8}{3} \end{pmatrix}.$$

On voit que $\overrightarrow{CM} = \frac{2}{3}\overrightarrow{CD}$, donc M appartient au segment [CD]; et il est aux 2/3 de ce segment en partant de C.

- 3. La parallèle à (Oz) passant par M coupe [OD] en P, dont les coordonnées sont $\left(\frac{8}{3};2;0\right)$.
 - La parallèle à (Oy) passant par P coupe [OA] en H, dont les coordonnées sont $\left(\frac{8}{3};0;0\right)$.