# Санкт-Петербургский государственный университет Математико-механический факультет

Бадмаев Чингис Юрьевич

Кластеризация (k-means)

Практическая работа

### Оглавление

| 1.        | Постановка задачи                       | 3 |
|-----------|-----------------------------------------|---|
| 2.        | Теорминимум                             | 4 |
| 3.        | Тесты                                   | 5 |
| 4.        | Выбор оптимального количества кластеров | 6 |
| <b>5.</b> | Ссылка на код                           | 7 |

## 1. Постановка задачи

В данном задании речь идет о решении задачи кластеризации методом k-средних.

#### 2. Теорминимум

Выбираем начальные центры кластеров. В наших тестах будем использовать два способа выбора начальных центров: случайный выбор и выбор центров, равных максимуму/минимуму по координатам.

На каждой итерации:

• Определяем кластер, к которому относится точка

$$l_j = \operatorname*{arg\,min}_{i=1,\ldots,k} \rho(x_j, c_i),$$

где  $l_j$  — метка кластера,  $c_i$  — центр кластера,  $\rho(x_j,c_i)$  — функция расстояния. В наших тестах будем использовать две функции расстояния: евклидово расстояние и расстояние городских кварталов.

• Пересчитываем координаты нового центра каждого из кластеров, используя среднее арифметическое.

Продолжаем процесс до тех пор, пока составы кластеров не перестанут меняться.

#### 3. Тесты



Рис. 1: Результаты кластеризации при случайном выборе начальных центров.



Рис. 2: Результаты кластеризации при выборе начальных центров, равных максимуму/минимуму по координатам.

## 4. Выбор оптимального количества кластеров

Для вычисления надо прогнать на разных алгоритмах(для разного количества кластеров), посчитать сумма расстояний до ближайших центор и воспользуемся "локтем".



Рис. 3: Евклидово расстояние



Рис. 4: Манхэттенское расстояние

## 5. Ссылка на код

Ссылка