TAN

1. A boy rides a sled down an icy (and therefore frictionless) hill whose height above the ground is given by the equation $y = x^{5/2}$, where y is in meters when x is in meters. If he starts from rest at x = 1.75 m, how fast will he be going at the bottom?

(a) 7.0 m/s	(b) 8.91 m/s	7
(c) 5.86 m/s	$(\mathrm{d})~0m/s$	

GRAVITY ONLY FORCE Doing work! $\frac{1}{2}mV_{1}^{2} + mgy_{1} = \frac{1}{2}mV_{2}^{2} + mgy_{2}^{2}$ $V_{1} = 0, \quad y_{1} = (1.75)^{5/2} = 4.05m$ $V_{2} = ?, \quad y_{2} = 0$ $\Rightarrow (9.8m)(4.00m) = \frac{1}{2}V_{2}^{2} \Rightarrow V_{2} = 8.9m)$

=.01015

2. A 5.0-kg ball going $6.0 \, m/s$ at -35° hits the ground and bounces at $5.3 \, m/s$ at $+43^{\circ}$ (both angles are from the positive x-axis). If during its bounce, the average force on the ball has a y-component $F_{av,y} = 3500 \, N$, how long was the bounce time?

	(a) $0.0101 s$ (b) $0.0126 s$	(c) 0.0161 s	(d) 0.001 s		
7-35° 77	@)43°	Jy = 1	B = 1/Fm	24) St = MV2, y - MI	VI., Y
BEFORE	AFTER	<i>⇒™=</i>	MUZ, Y-MV,	Y = M(V2,y-V1.y))
D+= 5Kg (5.3ml	53~13°-(M(53~(-35°))		.61mb3	TAULY	

3. A 6 kg collar is allowed to slide over a frictionless pole whose height above the ground obeys the parabolic equation $y = 8 - (1/2) x^2$, where y is in meters when x is in meters. Attached to the collar is a k = 25 N/m spring. The spring, unstretched length 2m, is connected such that as the collar moves, the spring is always oriented along the line connecting the point O and the collar. If the collar is started from rest at x = 0, which of the following graphs correctly displays the collar's total energy, E, versus position, x as it slides down the pole?

GRAVITY AND Spring Doing WORK. No 10ther Forces

I TOTAL ENERGY CONSERVED - CONSTANT TOTAL

ENERGY

4. A roller coaster starts from rest at point A where the height $h = 26 \, m$. It slides along the track without friction. What is the normal force acting on a 75 kg rider of the roller coaster at the top of the loop-to-loop (point B)? As shown, the radius of the loop-to-loop's circle is 7.5 m.

MS Larad

$$\sum_{i} F_{i} = Mq_{i} \Rightarrow n + Mq = Marad$$

 $\Rightarrow n = M(arad - q) = M(\frac{V^{2}}{r} - q)$

From A to B gravity only Force Doing Work: \$\frac{1}{2}mV_1^2 + mg/2 = \frac{1}{2}mV_2^2 + mg/2 = \fra

5. A 0.9-m long pendulum is started from the vertical position by giving it a speed of $1.65 \, m/s$. To what maximum angle θ (from the vertical) will the pendulum go before turning around?

(a) 81.1°	(b) 57.7°
(c) 32.3°	(d) 8.88°

Tension Does No work =) $\frac{1}{2}$ MV/+ Mg/= $\frac{1}{2}$ and $\frac{1}{2}$ + mg/2 D) $V_1 = 1.65$ m/s, $V_2 = 0$, $V_1 = 0$, $V_2 = 2 - 2600 = 2(1-600)$ $\frac{1}{2}$ $\frac{1}{2}$

6. A 5.00 kg mass with $\overrightarrow{\mathbf{V}}_{A1} = 3.00 \, m/s$ at 45.0° has an elastic collision with a 12.5 kg mass with $\overrightarrow{\mathbf{V}}_{B1} = 6.00 \, m/s$ at 135°. If the 5.00 kg mass bounces with $\overrightarrow{\mathbf{V}}_{A2} = 7.29 \, m/s$ at 163°, with what speed does the 12.5 kg mass bounce? All angles are from the positive x-axis.

 $\Rightarrow 209.65 + 12.97N \times = (3120)M) \times^{2} \Rightarrow (3120)M) \times^{2} (12.97N) \times -209.65 = 0$ $\Rightarrow \times = 12.97N \pm .511.6N = 12.97N \pm .511.6N = .841m \text{ or } -.799m$ = .841m or -.799mUse positive.

8. One day while driving your $M_A = 1500 \, kg$ car while going Northeast you, very embarrassingly, smash into your instructor's $M_B = 2000 \, kg$ car which was going due West. If the cars have a completely inelastic collision and just after the collision are going $12 \, m/s$ at 30° East of North, how fast was each car going before the collision?

Completely INELASTIC = MAVAI, X + MB UBI, X = (MA+MB) Va, Y

MA VAI, Y + MB VBI, Y = (MA+MB) Va, Y

VBI VAI

VAI, X = VAI SIN450 = . 7071 VAI VAI, Y = VAI COS450 = . 7071 VAI VBI, X = -VBI, VBI, Y = 0

$$V_{2,X} = V_{2} \sin 30^{\circ}$$

= $12 \text{m/s} \sin 30^{\circ} = 6 \text{m/s}$
 $V_{2,Y} = V_{2} \cos 30^{\circ} = 12 \text{m/s} \cos 30^{\circ}$
= 10.3923m/s

STARTWITH Y-Component: MADAI, $7 + MBVBI_{1} = (MA+MB)V_{2}$, $7 = (1500K_{3} + 2000K_{3})(10.3923m/s)$ $\Rightarrow 1500K_{3}(.7071VAI) + 0 = (1500K_{3} + 2000K_{3})(10.3923m/s)$ $\Rightarrow 1500K_{3}(.7071VAI) = (3500K_{3})(10.3923m/s)$ $\Rightarrow VAI = \frac{3500K_{3}(10.3923m/s)}{1500K_{3}(.7071)} \Rightarrow VAI = 34.3m/s$

X-ComposeDT: MAVAI,x+MBVBI,x = $(MA+MB)V_{2,X}$ = $1500K_{3}(.7071)(34.3m/s) + 2000K_{3}(-Vai) = (3500K_{3})(6m/s)$ = $3(6373K_{3}\cdot m/s - 2000K_{3}V_{BI} = 210000K_{3}\cdot m/s$ = $V_{BI} = -15373K_{3}\cdot m/s$ = $V_{BI} = -7.69m/s$

I THINK YOU WERE Speeding!