Particle in a Box - MATLAB exercise

Nikola Zotev (nikola.zotev@ed.ac.uk)

In this exercise, you will have the opportunity to write a short MATLAB script to illustrate some important concepts connected to wavefunctions, and practice your newly acquired programming skills. The task is based on the good old particle in a box model. Do not feel constrained to the steps outlined below experiment with the code and see what you can learn.

Task 1:

- Create a new script file. You may consider starting the file by clearing old variables from the workspace (clear), clear the command window (clc) and close old figures (close all).
- Define variables for the box length (let's say 10 au), \hbar and the mass of the particle (electron). Ideally, you would use atomic units so these are set to unity but it is a good practice to keep them as variables in case you need to change to some other units.
- Define a vector representing your x values.
- Use Eq. 22 in your lecture notes to compute the wavefunctions for state with n=1 and n=2.
- Plot the two wavefunctions on a single plot and label the figure. Compare your results to FIG. 1 in the notes.
- What are the expectational values for the position in the two states? What are the most probable values?

Task 2:

- Define a vector to represent the momentum space of the particle. What is the range that you need to use?
- Using Eq. 23 in your lecture notes, calculate the momentum wavefunction for n=10,20. Plot the corresponding probability amplitude, label and compare to FIG. 2.
- Add the mometum function for n=100. What has changed?

Task 3:

- Define an empty 2xM matrix (use zeros()), where 2 is the number of states and M is the number of points in space. Populate the matrix, using a for loop, with the values of the wavefunction for states n=12 and n=13.
- What is the period of oscillation, T, for a wavepacket comprising these states.
- Define a wavepacket, assuming equal probability for the two states, at times t=0, T/4 and T/2.
- Check that the wavepacket is normalised at each timestep.
- Plot the probability amplitude on three sub-figures. Compare with FIG. 4 in the notes.
- If you have time, try making a short animation using timepoints between t=0 and t=2T.
- What is the formula for the flux for this wavepacket? Calculate its values from t=0 to t=T, and plot them.