Cyclistic Case Study Q4_2021

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for 2021's fourth quarter.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

library(tidyverse)

```
## — Attaching packages -
                                                               – tidyverse 1.3.2 <del>–</del>
## / ggplot2 3.4.0
                    ✓ purrr
                                 0.3.5
## ✓ tibble 3.1.8
                       √ dplyr
                                  1.0.10
## ✔ tidyr
                       ✓ stringr 1.4.1
            1.2.1
## ✓ readr 2.1.3
                       ✓ forcats 0.5.2
## — Conflicts -
                                                         – tidyverse conflicts() —
## * dplyr::filter() masks stats::filter()
## * dplyr::lag()
                   masks stats::lag()
```

library(lubridate)

```
## Loading required package: timechange
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
```

library(data.table)

```
##
## Attaching package: 'data.table'
##
##
  The following objects are masked from 'package:lubridate':
##
##
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
##
       yday, year
##
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
##
## The following object is masked from 'package:purrr':
##
##
       transpose
```

```
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Oct21 <- read_csv("202110-divvy-tripdata.csv")
```

```
## Rows: 631226 Columns: 13
## — Column specification —
## Delimiter: ","
## chr (7): ride_id, rideable_type, start_station_name, start_station_id, end_...
## dbl (4): start_lat, start_lng, end_lat, end_lng
## dttm (2): started_at, ended_at
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

```
Nov21 <- read_csv("202111-divvy-tripdata.csv")
```

```
## Rows: 359978 Columns: 13
## — Column specification —
## Delimiter: ","
## chr (7): ride_id, rideable_type, start_station_name, start_station_id, end_...
## dbl (4): start_lat, start_lng, end_lat, end_lng
## dttm (2): started_at, ended_at
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

```
Dec21 <- read_csv("202112-divvy-tripdata.csv")</pre>
```

```
## Rows: 247540 Columns: 13
## — Column specification —
## Delimiter: ","
## chr (7): ride_id, rideable_type, start_station_name, start_station_id, end_...
## dbl (4): start_lat, start_lng, end_lat, end_lng
## dttm (2): started_at, ended_at
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**. Then, we need to combine all data one dataframe. Then we examine dataframes to find dimensions, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

```
colnames(Oct21)
```

```
colnames (Nov21)
```

```
colnames(Dec21)
```

Since all column names are the same. We can combine the data for each month into quarters.

```
q4_2021 <- bind_rows(Oct21, Nov21, Dec21)
```

```
View(q4_2021)
```

```
## [1] 1238744

dim(q4_2021)

## [1] 1238744 13

head(q4_2021)
```

```
## # A tibble: 6 × 13
## ride_id
                    ridea…¹ started_at
                                                                         start...2 start...3
                                                   ended at
## <chr>
                     <chr> <dttm>
                                                   <dttm>
                                                                         <chr>
                                                                                 <chr>
## 1 620BC6107255B... electr... 2021-10-22 12:46:42 2021-10-22 12:49:50 Kingsb... KA1503...
## 2 4471C70731AB2... electr... 2021-10-21 09:12:37 2021-10-21 09:14:14 <NA>
## 3 26CA69D43D15E... electr... 2021-10-16 16:28:39 2021-10-16 16:36:26 <NA>
                                                                                  <NA>
## 4 362947F0437E1... electr... 2021-10-16 16:17:48 2021-10-16 16:19:03 <NA>
                                                                                  <NA>
## 5 BB731DE2F2EC5... electr... 2021-10-20 23:17:54 2021-10-20 23:26:10 <NA>
                                                                                  <NA>
## 6 7176307BBC097... electr... 2021-10-21 16:57:37 2021-10-21 17:11:58 <NA>
                                                                                  <NA>
## # ... with 7 more variables: end station name <chr>, end station id <chr>,
## #
       start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
       {\tt member\_casual~<chr>,~and~abbreviated~variable~names~^1rideable\_type,}
## #
## #
       <sup>2</sup>start station name, <sup>3</sup>start station id
```

tail(q4 2021)

nrow(q4_2021)

```
## # A tibble: 6 × 13
##
    ride id
                     ridea…¹ started_at
                                                   ended at
                                                                        start...2 start...3
                     <chr> <dttm>
##
    <chr>
                                                   <dttm>
                                                                         <chr> <chr>
## 1 92BBAB97D1683... electr... 2021-12-24 15:42:09 2021-12-24 19:29:35 Canal ... 13341
## 2 847431F3D5353... electr.. 2021-12-12 13:36:55 2021-12-12 13:56:08 Canal ... 13341
## 3 CF407BBC3B9FA... electr... 2021-12-06 19:37:50 2021-12-06 19:44:51 Canal ... 13341
## 4 60BB69EBF5440... electr... 2021-12-02 08:57:04 2021-12-02 09:05:21 Canal ... 13341
## 5 C414F654A2863... electr... 2021-12-13 09:00:26 2021-12-13 09:14:39 Lawnda... 362.0
## 6 37AC57E34B2E7... classi... 2021-12-13 08:45:32 2021-12-13 08:49:09 Michig... TA1309...
## # ... with 7 more variables: end_station_name <chr>, end_station_id <chr>,
     start lat <dbl>, start lng <dbl>, end lat <dbl>, end lng <dbl>,
       member casual <chr>, and abbreviated variable names ¹rideable type,
## #
       <sup>2</sup>start station name, <sup>3</sup>start station id
```

summary(q4_2021)

```
##
      ride id
                      rideable_type
                                           started at
   Length: 1238744
                      Length: 1238744
                                         Min. :2021-10-01 00:00:09.00
##
                      Class :character
                                         1st Qu.:2021-10-14 18:54:24.25
##
   Class :character
##
   Mode :character Mode :character
                                         Median :2021-10-31 11:33:29.50
##
                                         Mean :2021-11-04 20:35:06.04
                                         3rd Qu.:2021-11-22 21:52:28.25
##
##
                                         Max. :2021-12-31 23:59:48.00
##
##
      ended at
                                    start station name start station id
##
         :2021-10-01 00:03:11.00
                                    Length: 1238744
                                                       Length: 1238744
   1st Ou.:2021-10-14 19:08:30.75
                                                       Class :character
##
                                    Class :character
##
   Median :2021-10-31 11:51:44.50
                                    Mode :character
                                                      Mode :character
##
         :2021-11-04 20:52:02.20
##
   3rd Qu.:2021-11-22 22:09:58.75
##
   Max. :2022-01-03 17:32:18.00
##
##
   end station name
                      end station id
                                           start_lat
                                                           start_lng
                                         Min. :41.64
                                                        Min. :-87.84
##
   Length: 1238744
                      Length: 1238744
##
    Class :character
                      Class :character
                                         1st Qu.:41.88
                                                         1st Qu.:-87.66
##
   Mode :character
                      Mode :character
                                         Median :41.90
                                                         Median :-87.64
##
                                         Mean :41.90
                                                        Mean :-87.65
##
                                         3rd Qu.:41.93
                                                        3rd Qu.:-87.63
##
                                         Max. :42.07 Max. :-87.52
##
##
      end lat
                      end_lng
                                    member casual
##
   Min. :41.39
                   Min. :-88.97
                                    Length: 1238744
##
   1st Qu.:41.88
                   1st Qu.:-87.66
                                    Class :character
   Median :41.90
                                    Mode :character
                   Median :-87.64
##
   Mean :41.90
                   Mean :-87.65
##
   3rd Qu.:41.93
                   3rd Qu.:-87.63
##
   Max. :42.13
                  Max. :-87.52
##
   NA's
          :819
                   NA's
                          :819
```

str(q4 2021)

```
## spc tbl [1,238,744 \times 13] (S3: spec tbl df/tbl df/tbl/data.frame)
                      : chr [1:1238744] "620BC6107255BF4C" "4471C70731AB2E45" "26CA69D43D15EE14" "362947F0437E1
## $ ride_id
514" ...
## $ rideable_type
                       : chr [1:1238744] "electric bike" "electric bike" "electric bike" ...
## $ started at
                      : POSIXct[1:1238744], format: "2021-10-22 12:46:42" "2021-10-21 09:12:37" ...
                       : POSIXct[1:1238744], format: "2021-10-22 12:49:50" "2021-10-21 09:14:14" ...
## $ ended_at
   \ start_station_name: chr [1:1238744] "Kingsbury St & Kinzie St" NA NA NA ...
##
##
   $ start_station_id : chr [1:1238744] "KA1503000043" NA NA NA ...
   ##
                       : chr [1:1238744] NA NA NA NA ...
##
   $ end station id
##
                      : num [1:1238744] 41.9 41.9 41.9 41.9 ...
   $ start lat
                      : num [1:1238744] -87.6 -87.7 -87.7 -87.7 -87.7 ...
##
   $ start lng
##
   $ end lat
                      : num [1:1238744] 41.9 41.9 41.9 41.9 ...
                       : num [1:1238744] -87.6 -87.7 -87.7 -87.7 -87.7 ...
##
   $ end lna
##
    $ member casual
                       : chr [1:1238744] "member" "member" "member" "member" ...
##
    - attr(*, "spec")=
##
    .. cols(
##
         ride id = col character(),
##
         rideable_type = col_character(),
        started_at = col_datetime(format = ""),
##
##
         ended at = col datetime(format = ""),
     . .
##
         start_station_name = col_character(),
     . .
##
         start_station_id = col_character(),
##
         end station name = col character(),
     . .
##
         end_station_id = col_character(),
     . .
##
         start_lat = col_double(),
##
     . .
         start_lng = col_double(),
##
         end lat = col double(),
     . .
##
         end lng = col double(),
     . .
##
    . .
         member casual = col character()
    ..)
   - attr(*, "problems")=<externalptr>
##
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
q4_2021$date <- as.Date(q4_2021$started_at)
q4_2021$month <- format(as.Date(q4_2021$date), "%m")
q4_2021$day <- format(as.Date(q4_2021$date), "%d")
q4_2021$year <- format(as.Date(q4_2021$date), "%Y")
q4_2021$day_of_week <- format(as.Date(q4_2021$date), "%A")
q4_2021$ride_length <- difftime(q4_2021$ended_at,q4_2021$started_at)</pre>
```

Convert *ride_length* column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(q4 2021$ride length)
```

```
## [1] FALSE
```

Recheck ride_length data type.

```
q4_2021$ride_length <- as.numeric(as.character(q4_2021$ride_length))
is.numeric(q4_2021$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
q4_2021 <- na.omit(q4_2021)
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
q4_2021 <- subset(q4_2021, nchar(as.character(ride_id)) == 16)
```

Remove rows with the ride length less than 1 minute.

```
q4_2021 <- subset (q4_2021, ride_length > "1")
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride_length.

```
mean(q4_2021$ride_length)
```

```
## [1] 960.2098
```

```
median(q4_2021$ride_length)
```

```
## [1] 580
```

max(q4 2021\$ride length)

[1] 2442301

min(q4 2021\$ride length)

[1] 2

Run a statistical summary of the ride_length.

```
summary(q4_2021$ride_length)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.0 340.0 580.0 960.2 1017.0 2442301.0
```

Compare the members and casual users

```
aggregate(q4_2021$ride_length \sim q4_2021$member_casual, FUN = mean)
```

```
## q4_2021$member_casual q4_2021$ride_length
## 1 casual 1513.0161
## 2 member 682.7694
```

```
aggregate(q4_2021$ride_length \sim q4_2021$member_casual, FUN = median)
```

```
## q4_2021$member_casual q4_2021$ride_length
## 1 casual 798
## 2 member 500
```

```
aggregate(q4_2021$ride_length ~ q4_2021$member_casual, FUN = max)
```

```
## q4_2021$member_casual q4_2021$ride_length
## 1 casual 2442301
## 2 member 87634
```

```
aggregate(q4_2021$ride_length ~ q4_2021$member_casual, FUN = min)
```

```
## q4_2021$member_casual q4_2021$ride_length
## 1 casual 2
## 2 member 2
```

Aggregate the average ride length by each day of the week for members and users.

```
aggregate(q4\_2021\$ride\_length \sim q4\_2021\$member\_casual + q4\_2021\$day\_of\_week, \ FUN = mean)
```

```
##
      q4 2021$member casual q4 2021$day of week q4 2021$ride length
## 1
                      casual
                                           Friday
## 2
                      member
                                           Friday
                                                              670.1576
## 3
                                                             1462.5653
                      casual
                                           Monday
## 4
                                                              649.5880
                      member
                                           Monday
## 5
                      casual
                                         Saturday
                                                             1670.0758
## 6
                      member
                                         Saturday
                                                              773.2222
## 7
                      casual
                                           Sunday
                                                             1833.7524
## 8
                      member
                                           Sunday
                                                              773.4277
## 9
                                         Thursday
                                                             1255.4720
                      casual
## 10
                      member
                                         Thursday
                                                              639.0782
## 11
                                          Tuesday
                                                             1268.8793
                      casual
## 12
                      member
                                          Tuesday
                                                              648.1809
## 13
                                        Wednesday
                                                             1262.4824
                      casual
## 14
                      member
                                        Wednesday
                                                              657.5466
```

Sort the days of the week in order.

```
q4_2021$day_of_week <- ordered(q4_2021$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
 x <- aggregate(q4\_2021\$ride\_length \sim q4\_2021\$member\_casual + q4\_2021\$day\_of\_week, \ FUN = mean)   head(x)
```

```
q4 2021$member casual q4 2021$day of week q4 2021$ride length
##
## 1
                     casual
                                          Sunday
                                                            1833.7524
## 2
                     member
                                                             773.4277
                                          Sunday
## 3
                     casual
                                          Monday
                                                            1462.5653
## 4
                     member
                                          Monday
                                                             649.5880
## 5
                     casual
                                         Tuesday
                                                            1268.8793
## 6
                     member
                                         Tuesday
                                                             648.1809
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
    member_casual weekday number_of_rides average_duration
##
                                      <int>
## 1 casual
                                      58044
                                                        1834.
                         1
                                                        1463.
## 2 casual
                          2
                                      29886
## 3 casual
                          3
                                      33053
                                                        1269.
## 4 casual
                          4
                                      33986
                                                        1262.
## 5 casual
                          5
                                      30147
                                                        1255.
## 6 casual
                                      45083
                                                        1416.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
##
## casual member
## 304125 605976
```

```
table(q4_2021$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 568996 35127 305978
```

```
table(q4_2021$day_of_week)
```

```
##
## Sunday Monday Tuesday Wednesday Thursday Friday Saturday
## 125058 112879 133588 133720 114491 133796 156569
```

```
table(q4_2021$month)
```

```
## 10 11 12
## 477914 255841 176346
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(q4_2021$day_of_week,q4_2021$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
                        casual 58044
## 1
          Sunday
## 2
          Monday
                        casual 29886
## 3
         Tuesday
                        casual 33053
## 4
       Wednesday
                        casual 33986
## 5
        Thursday
                        casual 30147
                        casual 45083
## 6
          Friday
```

Weekday trends (Monday through Friday).

Weekdays Trends

Weekend trends (Sunday and Saturday).

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(q4_2021$rideable_type,q4_2021$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

```
##
   rideable_type member_casual
                              Freq
## 1 classic_bike casual 156506
## 2
     docked bike
                       casual 35127
## 3 electric bike
                      casual 112492
## 4 classic bike
                     member 412490
## 5 docked_bike
                     member
                                 0
## 6 electric_bike
                       member 193486
```

Plot for bike user vs bike type.

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(q4_2021, "q4_2021.csv")