Automating Myelin Defect Detection

Progress update: May 8th, 2024

Arjun Chandra & Anna Novoseltseva

Creating the Dataset

- 9 fully annotated images (3000x3000x25)
 - \circ Grayscale \rightarrow RGB
 - ~7000 total annotations
- Large dataset
 - Train: ~4000 images
 - Validation: ~600 images
- Three classes
 - o Defect (82%)
 - Swelling (12%)
 - Vesicle (6%)
- Annotation bugs

Annotation Bugs

- Duplicate bounding boxes
- Same bounding box coordinates jumping multiple planes

206	22	206	364	2344	21	12
207	23	207	364	2344	21	12
208	4	208	364	2344	21	12
209	23	209	364	2344	21	12
210	23	210	364	2344	21	12
211	5	211	364	2344	21	12
212	19	212	364	2344	21	12

Annotation Bug

Training Pipeline

- Data cleaning
 - Remove annotations from the initial and final planes (1-7 & 22-25)
 - Remove duplicate bounding boxes
 - Remove bounding boxes which jump multiple planes*
- Crop image around boxing boxes
 - \circ 300x300 .png images
 - Alternative approach to sliding window
- Convert annotation format
 - \circ .mat \rightarrow .txt YOLO format
- Create Training and Validation Split
 - Reserve images for validation set instead of random splits to avoid overlap

Alternative Cropping Algorithm

Evaluating the Model: YOLOv8

- Loss Functions
 - \circ box (7.5): Bounding box regression
 - \circ cls (0.5): Classification loss
 - o dfl (1.5): Distribution focal loss (additional bbox regression)
- Metrics
 - Precision: TP/(TP+FP)
 - How many of the model's detections are correct?
 - Recall: TP/(TP+FN)
 - How many detections did the model miss?
 - o mAP50: Average area under PR curve across all classes
 - Standard object detection performance metric
 - Aggregate measure of precision, recall, confidence, IoU

Initial Results (3/30)

- Classification loss is much higher than other loss metrics
- Overfitting occurs very early

Initial Results (3/30)

Validation Batch Labels

Validation Batch Predicted

Label Predicted

Distinguishing Classes

Improving Results

- Combatting overfitting
 - Increasing weight decay (L2 Regularization)
 - Decreasing learning rate
 - No improvement overfitting is likely related to the dataset and not the model training
- Data Augmentation
 - Custom augmentations added in training pipeline as opposed to default YOLO augmentation
- Increasing image size
 - Generally useful for small object detection
- Transfer Learning
 - Starting from pretrained model weights
 - Freezing layers in the backbone

YOLOv8 Architecture

- Backbone is responsible for extracting features from the image
 - Freezing the entire backbone corrupts learning
 - Freezing first layer and first three layers yielded no improvement
 - Starting from random initialization and pretrained weights yielded similar results
- Convolutional layers in the backbone use a stride of 2 to downsample
 - Residual connections along the way accommodate smaller objects

Small Object Detection

• Training with a larger image size (1280x1280) improved results slightly (~0.25 mAP)

Data Augmentation

- Default YOLO augmentations are not well suited for medical imaging
 - Simulate different weather conditions, time of day, lighting etc.
- Three custom augmentations
 - \circ Swap red and blue: $(R,G,B) \rightarrow (R-1.4B,G,B)$
 - Random cropping
 - o 4 orientations
- With 10x random croppings, dataset is scaled 80x

Original Orientation

Rotated Orientation (90° CCW)

1st Cropping

2nd Cropping

(R,G,B) (R-1.4B,G,B)

Data Augmentation Results

- Led to even quicker overfitting and similar performance
 - \sim 10,000 weight updates per epoch as opposed to \sim 200 without augmentation
 - Augmented images were added directly to dataset rather than being applied at training time

Cropping Algorithm Bug

- Moved dataset to Roboflow to examine it closely
- Discovered bug in the cropping algorithm
 - Bounding boxes after cropping for the first time leading to contradictory annotations

```
Algorithm 1: CropBboxes(G, A, W)
   /* Input: G is an annotated 3-D image where G[z] indexes the image in plane z
      A is a dictionary where A[z] contains the bounding box annotations in plane z
      W is the cropping window size
                                                                                                    */
 1 r = \{\}; // \text{ cropping bounds}
 2 C = None; // cropped image
 O = \{\}; // \text{ bboxes in current window}
 4 for z in 1 ...z_plane do
      for bbox in A[z] do
          r \leftarrow random cropping bounds around bbox with size W;
          C \leftarrow \operatorname{crop} A[z] \text{ at } r;
          O \leftarrow all bounding boxes in C (cropped as needed);
          Write and save C and O;
          Delete all bounding boxes in O;
11 return None
```

Contradictory Annotations

Results (5/3)

- All annotations combined into a single "Defect" class
- Cropping algorithm bug fix

Results (5/3)

Validation Batch Labels

Validation Batch Predicted

Label Predicted

Label Predicted

Results (5/7)

- Training with Roboflow achieves better results
 - Roboflow 3.0 Object Detection: 0.38 mAP50
 - YOLO-NAS Object Detection: 0.425 mAP50

Label Predicted

Label Predicted

Next Steps

- Classifying defects
 - Train CNN/Autoencoder and extract image embeddings
 - Or another suitable algorithm?
 - Clustering algorithm: K-Means

VGG-19 Architecture

KNN Clusters

Next Steps

- Backpropagation
 - Test model on an unannotated image and evaluate performance
 - Split image (3000x3000x25) into subimages \rightarrow get model predictions on subimages
 - → stitch predictions back together
 - Dataset from Anna's paper
 - Compare results with previous annotations expecting linear trend between human annotations and model annotations