Friday, 10 June 2022

(2.41) A sphere between planes **

10:02 AM

A spherical shell with radius R and surface charge density σ is sandwiched between two infinite sheets with surface charge densities $-\sigma$ and σ , as shown in Fig. 2.46. If the potential far to the right at $x = +\infty$ is taken to be zero, what is the potential at the center of the sphere? At $x = -\infty$?

We know the electric field due to a charge sheet of charge density $+ \sigma$; $E = \frac{+\sigma}{2\xi_0}$ $- \sigma$; $E = \frac{-\sigma}{2\xi_0}$

Thus \vec{E} outside the plate is $\frac{D}{2\xi_0} + (-\frac{D}{2\xi_0}) = D$ b/w the plate is $\frac{D}{2\xi_0} + \frac{D}{2\xi_0} = \frac{D}{\xi_0}$

Thus the \vec{E} due to sheets is non-zero only blue them, i.e the \vec{E} on the right of the system is solely due to the sphere in between.

Right

Now the potential at the point where the sphere touches the $_{\Lambda}$ sheet is <u>kDsphere</u> = <u>Dsphere</u> = <u>D. Asphere</u> = <u>D. 4TTR² = <u>DR</u>

R 4TTSOR 4TTSOR 4TTSOR 5</u>

The sphere has no internal electric field : $q_{enc} = 0 \Rightarrow \varphi = Q_{enc} = 0$ But $\varphi = \varphi \in dA$ $\Rightarrow \vec{E} = 0$

 $0 = E \oint dA co$ The field in its interior is only due to the sheets. i.e it takes the value $\frac{D}{E_0}$ pointing leftwards.

The potential difference between the surface of the sphere and its center is $-\frac{\sigma R}{\epsilon_0}$, with the center at lower potential.

(The \vec{E} inside a hollow conducting sphere is 0, so the potential remains

constant at the value it reaches the surface.)

The total potential of the center relative to $z=+\infty$ is therefore $\frac{\nabla R}{E_D} = \frac{\nabla R}{E_D} = 0$

The potential at the point where the sphere touches the left sheet, relative to center of sphere = $-\frac{DR}{E_0}$ The potential at $\pi = -\infty$ relative to the contact point on left sheet = $\frac{R}{R}$ $\frac{R}{R}$

The total potential at $x = -\infty$ relative to renter (which has same potential as $x = +\infty$, i.e. 0) is $-\frac{\sigma R}{60} - \frac{\sigma R}{60} = \frac{-2\sigma R}{60}$