Ejercicio 70

Como el ejercicio pone una restricción (que el volumen de la lata sea 16π), se trata de un problema para resolver con multiplicadores de Lagrange.

Repasemos primero en qué consiste este método. Sean f(x,y) y g(x,y) funciones derivables y que $\nabla g \neq \mathbf{0}$ cuando g(x,y) = 0. Para determinar los máximos y mínimos locales de f sujeta a la restricción g(x,y) = 0, se deben encontrar los valores de x, y, z y λ que satisfagan las ecuaciones:

$$\begin{cases}
\nabla f = \lambda \nabla g \\
g(x,y) = 0
\end{cases}$$
(1)

En este caso, la función que se quiere minimizar es el área de una lata cilíndrica por lo que la función f tiene la forma:

$$f(r,h) = 2\pi r^2 + 2\pi rh \tag{2}$$

donde r es el radio de la base de la lata y h su altura. El gradiente de f luego es:

$$\nabla f(r,h) = (4\pi r + 2\pi h, 2\pi r) \tag{3}$$

Por otro lado, la restricción es que el volumen de la lata sea 16π por lo que la función g está dada por:

$$g(r,h) = \pi r^2 h \tag{4}$$

Y su gradiente es:

$$\nabla g(r,h) = (2\pi r h, \pi r^2) \tag{5}$$

A partir de las Ecs. (3) y (5) podemos escribir el sistema dado en (1). Recordemos que el gradiente de una función es un vector y dos vectores son iguales si sus componentes son iguales, el sistema entonces queda:

$$\begin{cases}
4\pi r + 2\pi h = \lambda \cdot 2\pi r h \\
2\pi r = \lambda \cdot \pi r^2 \\
\pi r^2 h - 16\pi = 0
\end{cases}$$
(6)

Despejando λ de la segunda ecuación del sistema (6) se tiene que $\lambda=2/r$ (notar que r no puede ser cero porque es un radio). Reemplazando este valor de λ en la primera ecuación se llega a que h=2r. Luego, sustituyendo este valor de h en la condición g(x,y)=0 se tiene que $r^3=8$ y la única solución real de esta ecuación es r=2.

El punto buscado es entonces (r,h)=(2,4) y el valor del área en dicho punto es $f(2,4)\simeq 75,4.$

Vale la pena aclarar que el método de multiplicadores de Lagrange no establece cómo determinar si en el punto crítico encontrado hay un mínimo o un máximo. Sabemos que en este caso se trata de un mínimo porque lo dice el enunciado del problema.