Orbitaly, VSEPR

Rezonanční struktury, atomové a molekulové orbitaly, hybridizace, určování tvaru molekuly pomocí teorie VSEPR, úvod do symetrie molekul, dipólový moment

Zdeněk Moravec, hugo@chemi.muni.cz

Formální náboj

- Rozdíl mezi počtem valenčních elektronů ve volném atomu a valenčních elektronů ve vázaném atomu.
- Záporný náboj je umístěn na nejelektronegativnějším atomu.
- Součet formálních nábojů všech atomů v molekule je roven jejímu náboji.
- H_3O^+ : H: 0; O: 6-5=+1
- CH₃⁺: H: 0; C: 4-3=+1

Rezonanční struktury

- Popisují polohu elektronů v molekulách.
- Vyjadřují jednotlivé limitní stavy.

Atomové orbitaly

- Funkce popisující prostorové rozložení pravděpodobnosti výskytu elektronu.
- Orbitaly jsou popsány třemi kvantovými čísly.
 - Hlavní kvantové číslo (n) popisuje příslušnost orbitalu do elektronové slupky – velikost orbitalu. Nabývá hodnot větších než 0.
 - \bullet Vedlejší kvantové číslo (I) popisuje tvar orbitalu. Často se používá označení pomocí písmen: s, p, d, f, g, h, ... Nabývá hodnot v intervalu <0,n-1> .
 - Magnetické kvantové číslo (m) popisuje prostorovou orientaci orbitalu. Nabývá hodnot v intervalu <-l;l>.
 - Spinové kvantové číslo (s) nepopisuje orbital, ale spin elektronu v orbitalu. Nabývá hodnot ±½.
- Nodální rovina rovina, kde je pravděpodobnost výskytu elektronu nulová, vlnová funkce orbitalu mění při průchodu touto rovinou znaménko.

¹www.chemguide.co.uk/atoms/properties/atomorbs.htmb → ⟨♂ → ⟨ □ →

Atomové orbitaly

- ullet Orbital s kulově symetrický, magnetické číslo je vždy rovno 0. Tyto orbitaly mají n-1 kulových nodálních ploch.
- Orbital p středově symetrický tvar, skládající se ze dvou laloků.
 V místě spojení laloků je nodální plocha, kde vlnová funkce popisující orbital mění znaménko. Magnetické kvantové číslo pro orbital p nabývá hodnot: -1, 0, 1.
- Orbital d existuje pět typů orbitalů d, tři meziosé, jejichž laloky leží mezi osami souřadného systému d_{xy} , d_{xz} a d_{zy} . Orbital $d_{x^2-y^2}$ má čtyři laloky umístěné v osách x a y. Poslední orbital, d_{z^2} má dva laloky umístěné v ose z a prstenec, ležící v rovině xy.

Atomové orbitaly

• Orbital f - existuje sedm degenerovaných orbitalů typu f. Tyto orbitaly jsou obsazovány elektrony až u vnitřně přechodných prvků.

https://commons.wikimedia.org/wiki/File:F_orbital.png Autor: A2569875

Molekulové orbitaly

- Teorie LCAO-MO Linear Combination of Atomic Orbitals Molecular Orbital.
- Molekulové orbitaly vznikají lineární kombinací atomových orbitalů.
- Kombinací dvou AO vznikají dva MO vazebný a protivazebný. Protivazebné orbitaly se označují hvězdičkou, např. σ^* .
- Aby byl překryv úspěšný musí mít vlnové funkce orbitalů v místě překryvu stejná znaménka.
- Protivazebný orbital má o jednu nodální plochu více než vazebný a pokud je obsazen elektronovým párem, snižuje řád vazby o jedna. Obsazený vazebný orbital naopak řád vazby zvyšuje.
- ullet Vazba σ vzniká osovým překryvem orbitalů.
- Vazba π vzniká bočným překryvem orbitalů, je přítomna v násobných vazbách.
- Vazba δ vzniká překryvem všech čtyř laloků d-orbitalu, je přítomna ve čtverné vazbě např. v $\left[\text{Re}_2 \text{Cl}_8 \right]^{2-}$.

¹Molecular Orbital Theory

Molekulové orbitaly

Molekulové orbitaly v O_2

 ${\sf Zdroj:\ https://commons.wikimedia.org/}$

Autor: Tem5psu

Řád vazby

- Řád vazby popisuje počet elektronových párů, které tvoří vazbu mezi atomy.
- Lze jej odvodit z Lewisovského vzorce molekuly nebo z diagramu MO.

- Řád vazby lze spočítat z počtu elektronů ve vazebných a protivazebných orbitalech.
- $RV = \frac{vazebne\ elektrony-protivazebne\ elektrony}{2}$
- Neobsazené molekulové orbitaly neovlivňují ani řád vazby, ani energii systému.

Oktetové pravidlo

- Nepřechodné prvky se snaží vytvářet chemické vazby tak, aby měly ve valenční slupce osm elektronů, čímž dosáhnou na elektronovou konfiguraci vzácného plynu.
- Elektrony, které atomy sdílí v kovalentních vazbách se započítávají pro každý atom zvlášť. Např. v molekule CO₂ jsou kyslíky obklopeny čtyřmi nevazebnými elektrony a čtyři vazebnými, centrální uhlík je pak obklopen celkem osmi elektrony ze čtyř kovalentních vazeb.

$$\ddot{\Omega}$$
 — C — $\ddot{\Omega}$

- Existuje několik výjimek z oktetového pravidla, u nekovů z třetí a vyšší periody se setkáváme s tzv. elektronovým dodecetem, kdy má atom ve valenční slupce 12 elektronů. Toho může dosáhnout díky nezaplněným d-orbitalům.
 - Příkladem je molekula ICl₅, kde má jód dva nevazebné elektrony a celkem 10 elektronů z pěti kovalentních vazeb.
 - Podobně síra v molekule SF₆ má ve valenční slupce celkem 12 elektronů ze šesti kovalentních vazeb S-F.

Hybridizace

- Hybridizace atomových orbitalů proces energetického mísení a směrového vyrovnání atomových orbitalů daného atomu
- Počet hybridních orbitalů odpovídá počtu mísených atomových orbitalů

Hybridizace	Geometrie molekuly
sp	lineární
sp^2	rovnostranný trojúhelník
sp^3	tetraedr
d^2sp^3	oktaedr
dsp^2	čtverec
dsp^3	trigonální bipyramida
usp	čtvercová pyramida

¹Valence Bond Theory and Hybrid Atomic Orbitals

- Valence Shell Electron Pair Repulsion
- Tvar molekuly určíme na základě rozmístění elektronových párů v okolí centrálního atomu tak, aby jejich vzájemné odpuzování bylo co nejmenší.
- Tento model je vhodný převážně pro sloučeniny nepřechodných prvků.
- Uvažujeme pouze nevazebné elektronové páry n a vazebné elektronové páry σ .
- Základní pravidla VSEPRu
 - Elektronové páry centrálního atomu se v prostoru rozmístí tak, aby byly co nejdále od sebe a měly minimální energii.
 - Nevazebný elektronový pár odpuzuje ostatní elektronové páry nejvíce, odpuzování vazebných elektronových párů je slabší a klesá v pořadí trojná vazba > dvojná vazba > jednoduchá vazba.
 - Tvar molekuly je dán pouze polohou vazebných elektronových párů.

¹Teorie VSEPR

Výchozí tvary

Počet elektronových párů	Т	var
2	lineární	X—A—X
3	trojúhelník	X
4	tetraedr	X A.mily X

Výchozí tvary

Počet elektronových párů	Tvar	
5	trigonální bipyramida	X—————————————————————————————————————
6	oktaedr	X X X X

Dva elektronové páry na centrálním atomu

Pokud centrální atom (A) nese dva elektronové páry, je tvar molekuly vždy lineární. Pokud jsou oba vazebné (X), označujeme molekulu jako AX_2 , pokud je jeden nevazebný (E), označení je AXE.

 AX_2

X—A—X

Tvar: lineární; $\angle XAX=180^\circ$; Příklad: $\mathrm{CO_2}$, $\mathrm{BeF_2}$

AXE

E—A—X

Tři elektronové páry na centrálním atomu

Tvar: rovnostranný trojúhelník; $\angle XAX = 120^{\circ}$ Příklad: $\mathrm{BCl_3}$

Tři elektronové páry na centrálním atomu

Čtyři elektronové páry na centrálním atomu

Pět elektronových párů na centrálním atomu

Šest elektronových párů na centrálním atomu

Symetrie molekul

- Operace symetrie geometrická operace, jejímž provedením dostaneme objekt do polohy nerozlišitelné od výchozí.
- **Prvek symetrie** body, jejichž poloha se v průběhu provádění operace symetrie nemění.
- U molekul existuje pět prvků symetrie.

Operace symetrie	Symbol	Prvek symetrie
Identita	E	Celý objekt
Rotace	C_n	Rotační osa
Zrcadlení	σ	Rovina symetrie
Inverze	i	Střed symetrie
Nevlastní osa	S_n	Rotačně-reflexní osa

Dipólový moment

- Vektor popisující rozložení elektrického náboje v molekule.
- Výsledný dipólmoment získáme vektorovým součtem dipólmomentů jednotlivých vazeb.

