SUPPLEMENTARY MATERIAL for "Endogeneity kink threshold regression model with linear control function"

Jianhan Zhang* Chaoyi Chen^{†‡} Yiguo Sun[§] Thanasis Stengos ¶
October 24, 2023

This online supplement is composed of four parts. Section A contains the proof of Theorem 1-Time Series. Section B contains the proof of Theorem 2-panel. Section C shows the proof of Lemma 1. Section D gives the Monte Carlo simulation results for DGP2 an DGP4.

A Proof of Theorem 1-time series

We first show that $\sup_{\phi \in B \times \Gamma} |S_n(\phi) - S_n^*(\phi)| \stackrel{p}{\to} 0$, which implies that minimizing $S_n(\phi)$ with respect to ϕ is equivalent to minimizing $S_n^*(\phi)$, where $S_n(\phi)$ and $S_n^*(\phi)$ are defined in (??) and Assumption T7, respectively. Then, closely following the mathematical proof of Hansen (2017), we can show that the optimization problem of $S_n^*(\phi)$ with respect to ϕ satisfies all the required conditions in Section 3.2 of Andrews (1994), which completes the proof of this theorem. Hence, below, we only need to prove $\sup_{\phi \in B \times \Gamma} |S_n(\phi) - S_n^*(\phi)| \stackrel{p}{\to} 0$.

Now, we denote
$$P_{\gamma} = X(\gamma)[X'(\gamma)X(\gamma)]^{-1}X'(\gamma)$$
 and $P_{\gamma}^* = X^*(\gamma)[X^{*\prime}(\gamma)X^*(\gamma)]^{-1}X^{*\prime}(\gamma)$,

^{*}Department of Economics and Finance, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Email: jzhang56@uoguelph.ca.

[†]Magyar Nemzeti Bank (Central Bank of Hungary), Budapest, 1054, Hungary; Email: chenc@mnb.hu.

[‡]MNB Institute, John von Neumann University, Kecskemét, 6000, Hungary.

[§]Department of Economics and Finance, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Email: yisun@uoguelph.ca.

[¶]Department of Economics and Finance, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Email: tstengos@uoguelph.ca.

where $X^*(\gamma)$ is defined in the same form as $X(\gamma)$ by replacing $x_t(\gamma)$ with $x_t^*(\gamma)$. For any $\phi \in B \times \Gamma$, we have

$$S_n(\phi) = \frac{1}{n} \sum_{t=1}^n \left[y_t - x_t'(\gamma)\theta \right]^2 = \frac{1}{n} y' (I_n - P_\gamma) y.$$
 (A.1)

Let $X - \gamma_0 \tau_n$ and $I_n(\gamma_0)(X - \gamma_0 \tau_n)$ be the matrix form of $x_t - \gamma_0$ and $(x_t - \gamma_0)I(x_t \ge \gamma_0)$ respectively, where τ_n is an $n \times 1$ vector of ones, $I_n(\gamma_0) = \text{diag}\{I(x_1 \ge \gamma_0), \dots, I(x_n \ge \gamma_0)\}$. Also, let ε stack up ε_i , v stack up v_i , and \hat{v} stack up \hat{v}_i for $i = 1, \dots, n$. Below, we decompose $S_n(\phi)$. By simple calculation, we have

$$y = X^*(\gamma_0)\theta_0 + \varepsilon = X(\gamma)\theta_0 + [X^*(\gamma) - X(\gamma)]\theta_0 + [X^*(\gamma_0) - X^*(\gamma)]\theta_0 + \varepsilon,$$

where we have

$$X^{*}(\gamma) - X(\gamma) = [\mathbf{0}_{n \times 1}, \mathbf{0}_{n \times 1}, \mathbf{0}_{n \times \ell}, v - \hat{v}],$$

$$X^{*}(\gamma_{0}) - X^{*}(\gamma) = [(\gamma - \gamma_{0})\tau_{n}, I_{n}(\gamma_{0})(X - \gamma_{0}\tau_{n}) - I_{n}(\gamma)(X - \gamma\tau_{n}), \mathbf{0}_{n \times \ell}, \mathbf{0}_{n \times (1 + d_{z1})}].$$

Note that $X'(\gamma)(I_n - P_{\gamma}) = \mathbf{0}_{(k+d_{z1})\times n}$ and $\hat{\varepsilon} = (v - \hat{v})\beta_{40} + \varepsilon$, where $\hat{\varepsilon}$ stacks up $\hat{\varepsilon}_i$ for $i = 1, \ldots, n$. Thus, we can show

$$S_{n}(\phi) = \frac{1}{n} \left\{ \tau_{n}(\gamma - \gamma_{0})\beta_{10} + [I_{n}(\gamma_{0})(X - \gamma_{0}\tau_{n}) - I_{n}(\gamma)(X - \gamma\tau_{n})]\delta_{0} + \hat{\varepsilon} \right\}' (I_{n} - P_{\gamma}) \times$$

$$\left\{ \tau_{n}(\gamma - \gamma_{0})\beta_{10} + [I_{n}(\gamma_{0})(X - \gamma_{0}\tau_{n}) - I_{n}(\gamma)(X - \gamma\tau_{n})]\delta_{0} + \hat{\varepsilon} \right\}$$

$$= \frac{1}{n} \hat{\varepsilon}' (I_{n} - P_{\gamma})\hat{\varepsilon} + \frac{2}{n} \delta_{0} [I_{n}(\gamma)\tau_{n}(\gamma - \gamma_{0}) + d(\gamma_{0}, \gamma)(X - \gamma_{0}\tau_{n})]' (I_{n} - P_{\gamma})\hat{\varepsilon}$$

$$+ \frac{1}{n} \delta_{0}^{2} [I_{n}(\gamma)\tau_{n}(\gamma - \gamma_{0}) + d(\gamma_{0}, \gamma)(X - \gamma_{0}\tau_{n})]'$$

$$\times (I_{n} - P_{\gamma})[I_{n}(\gamma)\tau_{n}(\gamma - \gamma_{0}) + d(\gamma_{0}, \gamma)(X - \gamma_{0}\tau_{n})]$$

$$(A.2)$$

where $d(\gamma_0, \gamma) = I_n(\gamma_0) - I_n(\gamma)$.

Next, we decompose $S_n^*(\phi)$. By simple calculation, we have

$$y = X^*(\gamma_0)\theta_0 + \varepsilon = X^*(\gamma)\theta_0 + [X^*(\gamma_0) - X^*(\gamma)]\theta_0 + \varepsilon.$$

As $X^{*'}(\gamma)(I_n - P_{\gamma}^*) = \mathbf{0}_{(k+d_{z_1})\times n}$, we obtain

$$S_{n}^{*}(\phi) = \frac{1}{n} \{ \tau_{n}(\gamma - \gamma_{0})\beta_{10} + [I_{n}(\gamma_{0})(X - \gamma_{0}\tau_{n}) - I_{n}(\gamma)(X - \gamma\tau_{n})]\delta_{0} + \varepsilon \}'(I_{n} - P_{\gamma}^{*}) \times$$

$$\{ \tau_{n}(\gamma - \gamma_{0})\beta_{10} + [I_{n}(\gamma_{0})(X - \gamma_{0}\tau_{n}) - I_{n}(\gamma)(X - \gamma\tau_{n})]\delta_{0} + \varepsilon \}$$

$$= \frac{1}{n}\varepsilon'(I_{n} - P_{\gamma}^{*})\varepsilon + \frac{2}{n}\delta_{0}[I_{n}(\gamma)\tau_{n}(\gamma - \gamma_{0}) + d(\gamma_{0}, \gamma)(X - \gamma_{0}\tau_{n})]'(I_{n} - P_{\gamma}^{*})\varepsilon$$

$$+ \frac{1}{n}\delta_{0}^{2}[I_{n}(\gamma)\tau_{n}(\gamma - \gamma_{0}) + d(\gamma_{0}, \gamma)(X - \gamma_{0}\tau_{n})]'(I_{n} - P_{\gamma}^{*})$$

$$\times [I_{n}(\gamma)\tau_{n}(\gamma - \gamma_{0}) + d(\gamma_{0}, \gamma)(X - \gamma_{0}\tau_{n})].$$

Subtracting (A.3) from (A.2), we have

$$S_{n}(\phi) - S_{n}^{*}(\phi)$$

$$= \frac{1}{n} (\hat{\varepsilon}'\hat{\varepsilon} - \varepsilon'\varepsilon) + \frac{2}{n} \delta_{0} [I_{n}(\gamma)\tau_{n}(\gamma - \gamma_{0}) + d(\gamma_{0}, \gamma)(X - \gamma_{0}\tau_{n})]'(\hat{\varepsilon} - \varepsilon)$$

$$- \frac{1}{n} \delta_{0}^{2} [I_{n}(\gamma)\tau_{n}(\gamma - \gamma_{0}) + d(\gamma_{0}, \gamma)(X - \gamma_{0}\tau_{n})]'(P_{\gamma} - P_{\gamma}^{*})[I_{n}(\gamma)\tau_{n}(\gamma - \gamma_{0}) + d(\gamma_{0}, \gamma)(X - \gamma_{0}\tau_{n})]$$

$$- \frac{1}{n} (\hat{\varepsilon}'P_{\gamma}\hat{\varepsilon} - \varepsilon'P_{\gamma}^{*}\varepsilon) + \frac{2}{n} \delta_{0} [I_{n}(\gamma)\tau_{n}(\gamma - \gamma_{0}) + d(\gamma_{0}, \gamma)(X - \gamma_{0}\tau_{n})]'(P_{\gamma}^{*}\varepsilon - P_{\gamma}\hat{\varepsilon})\}$$

$$= S_{1} + 2S_{2} - S_{31} - S_{32} + 2S_{33}.$$

Below, we show that S_1 , S_2 , S_{31} , S_{32} , and S_{33} are all $o_p(1)$ uniformly over the domain of ϕ .

S₁: Denoting $\hat{\pi} = [\hat{\pi}'_x, \hat{\pi}'_z]'$, $\pi_0 = [\pi'_{x0}, \pi'_{z0}]'$ and $\rho_t = [p'_{xt}, p'_{zt}]'$, we have $\hat{\pi} - \pi_0 = O_p(n^{-1/2})$ under Assumptions T2(b) and T5(b) and

$$S_{1} = \frac{1}{n} (\hat{\varepsilon}'\hat{\varepsilon} - \varepsilon'\varepsilon)$$

$$= \frac{2}{n} \beta'_{40} (v - \hat{v})'\varepsilon + \frac{1}{n} \beta'_{40} (v - \hat{v})'(v - \hat{v})\beta_{40}$$

$$= O_{p}(n^{-1/2}) + O_{p}(n^{-1}) = o_{p}(1), \tag{A.3}$$

since $n^{-1}\varepsilon'\varepsilon=\sigma_\epsilon^2+o_p(1)$ under Assumption T5 and

$$\|v - \hat{v}\|^2 = (\hat{\pi} - \pi_0)' \sum_{t=1}^n \rho_t \rho_t'(\hat{\pi} - \pi_0) \le n \|\hat{\pi} - \pi_0\|^2 \lambda_{max} (n^{-1} \sum_{t=1}^n \rho_t \rho_t') = O_p(1)$$
 (A.4)

under Assumption T2(b), where $\lambda_{max}(A)$ denotes the largest eigenvalue of a symmetric matrix A.

 S_2 : By Assumptions T2 (a), T7 and applying $\frac{1}{n} \|\hat{\varepsilon} - \varepsilon\| = \frac{1}{n} \|(v - \hat{v})\beta_{40}\| \le \frac{1}{n} \|\beta_{40}\| \|v - \hat{v}\| = O_p(n^{-1})$, for all $\gamma \in \Gamma$, we can show

$$S_2 = \frac{1}{n} \delta_0(\gamma - \gamma_0) \tau_n' I_n(\gamma) (\hat{\varepsilon} - \varepsilon) + \frac{1}{n} \delta_0(X - \gamma_0 \tau_n)' d(\gamma_0, \gamma) (\hat{\varepsilon} - \varepsilon) = O_p(n^{-1/2}) + O_p(n^{-1/2}) = o_p(1).$$

 S_{31}, S_{32}, S_{33} : By showing S_{31}, S_{32}, S_{33} are all $o_p(1)$ for any $\phi \in B \times \Gamma$, we only need to prove:

$$\max_{\gamma \in \Gamma} \frac{1}{n} \left\| \left[I_n(\gamma) \tau_n(\gamma - \gamma_0) + d(\gamma_0, \gamma) (X - \gamma_0 \tau_n) \right]' \left[X(\gamma) - X^*(\gamma) \right] \right\| = o_p(1), \tag{A.5}$$

$$\max_{\gamma \in \Gamma} \frac{1}{n} \|\hat{\varepsilon}' X(\gamma) - \varepsilon' X^*(\gamma)\| = o_p(1), \tag{A.6}$$

$$\max_{\gamma \in \Gamma} \frac{1}{n} \|X'(\gamma)X(\gamma) - X^{*'}(\gamma)X^{*}(\gamma)\| = o_p(1). \tag{A.7}$$

First, applying (A.4), we have

$$\max_{\gamma \in \Gamma} \frac{1}{n} \|X(\gamma) - X^*(\gamma)\| = \frac{1}{n} \|\hat{v} - v\| = O_p(n^{-1}) = o_p(1). \tag{A.8}$$

Next, by Assumptions T2(a) and T7, we have

$$\max_{\gamma \in \Gamma} \frac{1}{n} \left\| \left[I_n(\gamma) \tau_n(\gamma - \gamma_0) + d(\gamma_0, \gamma) (X - \gamma_0 \tau_n) \right]' \left[X(\gamma) - X^*(\gamma) \right] \right\| \\
\leq \max_{\gamma \in \Gamma} \frac{1}{n} \left\| I_n(\gamma) \tau_n(\gamma - \gamma_0) + d(\gamma_0, \gamma) (X - \gamma_0 \tau_n) \right\| \left\| X(\gamma) - X^*(\gamma) \right\| = O_p(n^{-1/2}) = o_p(1),$$

which verifies (A.5).

Next, we show (A.6). Applying triangle inequality gives

$$\max_{\gamma \in \Gamma} \frac{1}{n} \|\hat{\varepsilon}' X(\gamma) - \varepsilon' X^*(\gamma)\|
\leq \max_{\gamma \in \Gamma} \frac{1}{n} \|\varepsilon' [X(\gamma) - X^*(\gamma)]\| + \max_{\gamma \in \Gamma} \frac{1}{n} \|\beta'_{40}(v - \hat{v})' X(\gamma)\|
= \frac{1}{n} \|\varepsilon'(\hat{v} - v)\| + \max_{\gamma \in \Gamma} \frac{1}{n} \|\beta'_{40}(v - \hat{v})' X(\gamma)\|
= O_p(n^{-1/2}) + O_p(n^{-1/2}) = o_p(1),$$
(A.10)

where $\frac{1}{n} \| \varepsilon'(\hat{v} - v) \| = O_p(n^{-1/2})$ by (A.3), and $\max_{\gamma \in \Gamma} \frac{1}{n} \| (v - \hat{v})'X(\gamma) \| \le \frac{1}{n} \| v - \hat{v} \| \| X(\gamma) \| = O_p(n^{-1/2})$ by (A.4) and under Assumption T2.

Finally, by Assumption P2 and (A.8), we can show

$$\max_{\gamma \in \Gamma} \frac{1}{n} \|X'(\gamma)X(\gamma) - X^{*'}(\gamma)X^{*}(\gamma)\|
= \max_{\gamma \in \Gamma} \frac{2}{n} \|(X - \gamma \tau_{n})'(\hat{v} - v)\| + \max_{\gamma \in \Gamma} \frac{2}{n} \|[I_{n}(\gamma)(X - \gamma \tau_{n})]'(\hat{v} - v)\| + \frac{2}{n} \|z'(\hat{v} - v)\| + \frac{1}{n} \|\hat{v}'\hat{v} - v'v\|
= O_{p}(n^{-1/2}) + O_{p}(n^{-1/2}) + O_{p}(n^{-1/2}) + \frac{1}{n} \|\hat{v}\hat{v}' - vv'\|,$$
(A.11)

where z is an $n \times \ell$ matrix, and $z = [z_1, z_2, ..., z_n]'$. Then, we only left to show $\frac{1}{n} ||\hat{v}'\hat{v} - v'v|| = o_p(1)$. Note that,

$$\frac{1}{n} \|\hat{v}'\hat{v} - v'v\| = \frac{1}{n} \|(\hat{v} - v)'(\hat{v} - v)\| + \frac{2}{n} \|(\hat{v} - v)'v\|
= O_p(n^{-1}) + A,$$
(A.12)

where, under Assumption T2, for any bounded v_t , we have

$$A = \frac{1}{n} \|(\hat{v} - v)'v\| \le \frac{1}{n} \|(\hat{v} - v)\| \|v\| = O_p(n^{-1/2}). \tag{A.13}$$

Thus, combining (A.11),(A.12) with (A.13), we obtain

$$\frac{1}{n} \max_{\gamma \in \Gamma} \|X'(\gamma)X(\gamma) - X^{*\prime}(\gamma)X^{*\prime}(\gamma)\| = o_p(1).$$

To sum up, we have $\sup_{\phi \in B \times \Gamma} |S_n(\phi) - S_n^*(\phi)| \xrightarrow{p} 0$, which completes the proof of Theorem 1-time series.

B Proof of Theorem 2-panel

Similar to the proof of Theorem 1-Time Series, we first prove $\sup_{\phi \in B \times \Gamma} |S_{NT}(\phi) - S_{NT}^*(\phi)| \xrightarrow{p}$ 0, which implies that the minimizer of $S_{NT}(\phi)$ is also the minimizer of $S_{NT}^*(\phi)$, where $\phi = (\theta', \gamma)'$, and the definition of $S_{NT}(\phi)$ and $S_{NT}^*(\phi)$ are given by (??) and Assumption P7, respectively. Then, by showing that, for $\phi \in B \times \Gamma$, the optimization problem of $S_{NT}^*(\phi)$ satisfies all the four required conditions in Section 3.2 of Andrews (1994), we verify Theorem 1-panel.

We first show that $\sup_{\phi \in B \times \Gamma} |S_{NT}(\phi) - S_{NT}^*(\phi)| \stackrel{p}{\to} 0$.

Define $P(\gamma) = \Delta x(\gamma)[\Delta x(\gamma)'\Delta x(\gamma)]^{-1}\Delta x(\gamma)'$ and $P^*(\gamma)$ is in the same form of $P(\gamma)$ with $\Delta x(\gamma)$ being replaced by $\Delta x^*(\gamma)$, where $\Delta x(\gamma) = [\Delta x_{12}(\gamma), ..., \Delta x_{1T}(\gamma), ..., \Delta x_{N2}, ..., \Delta x_{NT}(\gamma)]'$ is an $[N(T-1)] \times (k+d_{z1})$ matrix, and $\Delta x^*(\gamma)$ equals $\Delta x(\gamma)$ with $\Delta x_{it}(\gamma)$ being replaced by $\Delta x_{it}^*(\gamma)$. Then, for any $\phi \in B \times \Gamma$, $S_{NT}(\phi)$ can be expressed as

$$S_{NT}(\phi) = \frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} (\Delta y_{it} - \Delta x_{it}(\gamma)'\theta)^2 = \frac{1}{N(T-1)} \Delta y' P(\gamma) \Delta y,$$

where $\Delta y = [\Delta y_{12}, ..., \Delta y_{1T}, ..., \Delta y_{N2}, ..., \Delta y_{NT}]'$ is an $[N(T-1)] \times 1$ vector. Note that, we can rewrite Δy as

$$\Delta y = \Delta x^*(\gamma_0)\theta_0 + \Delta \varepsilon = [\Delta x^*(\gamma_0) - \Delta x(\gamma)]\theta_0 + \Delta x(\gamma)\theta_0 + \Delta \varepsilon,$$

where $\Delta \varepsilon = [\Delta \varepsilon_{12}, ..., \Delta \varepsilon_{1T}, ..., \Delta \varepsilon_{N2}, ..., \Delta \varepsilon_{NT}]'$ an $[N(T-1)] \times 1$ vector.

As
$$\Delta x(\gamma)'[I_{NT} - P(\gamma)] = \mathbf{0}_{(1+d_{z1})\times N(T-1)}$$
, we have

$$S_{NT}(\phi) = \frac{1}{N(T-1)} \{ [\Delta x^*(\gamma_0) - \Delta x(\gamma)] \theta_0 + \Delta \varepsilon \}' [I_N - P(\gamma)] \times \{ [\Delta x^*(\gamma_0) - \Delta x(\gamma)] \theta_0 + \Delta \varepsilon \}.$$

where I_{NT} is an identity matrix with dimension N(T-1).

Similarly, we can also decompose Δy as

$$\Delta y = \Delta x^*(\gamma_0)\theta_0 + \Delta \varepsilon = \left[\Delta x^*(\gamma_0) - \Delta x^*(\gamma)\right]\theta_0 + \Delta x^*(\gamma)\theta_0 + \Delta \varepsilon.$$

Since $\Delta x^{*\prime}(\gamma)[I_{NT} - P^*(\gamma)] = \mathbf{0}_{(k+d_{z1})\times N(T-1)}$, we have

$$S_{NT}^*(\phi) = \frac{1}{N(T-1)} \left\{ \left[\Delta x^*(\gamma_0) - \Delta x^*(\gamma) \right] \theta_0 + \Delta \varepsilon \right\}' \left[I_{NT} - P^*(\gamma) \right] \times \left\{ \left[\Delta x^*(\gamma_0) - \Delta x^*(\gamma) \right] \theta_0 + \Delta \varepsilon \right\}.$$

Therefore, we obtain

$$S_{NT}(\phi) - S_{NT}^{*}(\phi)$$

$$= \frac{1}{N(T-1)} \{ [\Delta x^{*}(\gamma) - \Delta x(\gamma)] \theta_{0} \}' [I_{NT} - P(\gamma)] \{ [\Delta x^{*}(\gamma) - \Delta x(\gamma)] \theta_{0} \}$$

$$+ \frac{1}{N(T-1)} \{ [\Delta x^{*}(\gamma_{0}) - \Delta x^{*}(\gamma)] \theta_{0} + \Delta \varepsilon \}' [P^{*}(\gamma) - P(\gamma)] \{ [\Delta x^{*}(\gamma_{0}) - \Delta x^{*}(\gamma)] \theta_{0} + \Delta \varepsilon \}$$

$$+ \frac{2}{N(T-1)} \{ [\Delta x^{*}(\gamma) - \Delta x(\gamma)] \theta_{0} \}' [I_{NT} - P(\gamma)] \{ [\Delta x^{*}(\gamma_{0}) - \Delta x^{*}(\gamma)] \theta_{0} + \Delta \varepsilon \}$$

$$= S_{1} + S_{2} + 2S_{3},$$

where denoting $\Delta w = [\Delta w'_{12}, ..., \Delta w'_{1T}, ..., \Delta w'_{N2}, ..., \Delta w'_{NT}]'$ for w = v and \hat{v} and $\chi(\gamma) = [(X_{12} - \gamma \tau_2)' \mathbf{I}_{12}(\gamma), ..., (X_{1T} - \gamma \tau_2)' \mathbf{I}_{1T}(\gamma), ..., X_{N2} - \gamma \tau_2)' \mathbf{I}_{N2}(\gamma), ..., (X_{NT} - \gamma \tau_2)' \mathbf{I}_{NT}(\gamma)]'$, we have

$$\Delta x^*(\gamma) - \Delta x(\gamma) = [\mathbf{0}_{N(T-1)\times 1}, \mathbf{0}_{N(T-1)\times 1}, \mathbf{0}_{N(T-1)\times 1}, \Delta v - \Delta \hat{v}],$$

$$\Delta x^*(\gamma_0) - \Delta x^*(\gamma) = [\mathbf{0}_{N(T-1)\times 1}, \chi(\gamma_0) - \chi(\gamma), \mathbf{0}_{N(T-1)\times 1}, \mathbf{0}_{N(T-1)\times (1+d_{z1})}].$$

Hence, we obtain

$$S_{1} = \frac{1}{N(T-1)} \beta'_{40} (\Delta v - \Delta \hat{v})' (I_{NT} - P(\gamma)) (\Delta v - \Delta \hat{v}) \beta_{40}$$

$$\leq \frac{1}{N(T-1)} \lambda_{max} (I_{NT} - P(\gamma)) \beta'_{40} (\Delta v - \Delta \hat{v})' (\Delta v - \Delta \hat{v}) \beta_{40}$$

$$= O_{p} ([N(T-1)]^{-1})$$
(B.1)

since $I_{NT} - P(\gamma)$ is an idempotent matrix with $\lambda_{max}(I_{NT} - P(\gamma)) = 1$ and denoting $\hat{\Pi} = [\hat{\Pi}'_x, \hat{\Pi}'_z]'$, $\Pi_0 = [\Pi'_{x0}, \Pi'_{z0}]'$, and $\mathcal{P}_{it} = [p'_{x,it}, p'_{z,it}]'$, we have $\hat{\Pi} - \Pi_0 = O_p([N(T-1)]^{-1/2})$ under Assumptions P2(b) and P5(b) and

$$\|\Delta v - \Delta \hat{v}\|^{2} = (\hat{\Pi} - \Pi_{0})' \sum_{i=1}^{N} \sum_{t=2}^{T} \Delta \mathcal{P}_{it} \Delta \mathcal{P}'_{it} (\hat{\Pi} - \Pi_{0})$$

$$\leq N(T-1) \|\hat{\Pi} - \Pi\|^{2} \lambda_{max} \left(\frac{1}{N(T-1)} \sum_{i=1}^{N} \sum_{t=2}^{T} \Delta \mathcal{P}_{it} \Delta \mathcal{P}'_{it} \right)$$

$$= O_{p}(1)$$
(B.2)

under Assumption P2(b).

Next, we consider

$$S_{2} = \frac{\delta_{0}^{2}}{N(T-1)} [\chi(\gamma_{0}) - \chi(\gamma)]'[P^{*}(\gamma) - P(\gamma)][\chi(\gamma_{0}) - \chi(\gamma)] + \frac{1}{N(T-1)} \Delta \varepsilon'[P^{*}(\gamma) - P(\gamma)] \Delta \varepsilon + \frac{2\delta_{0}}{N(T-1)} [\chi(\gamma_{0}) - \chi(\gamma)]'[P^{*}(\gamma) - P(\gamma)] \Delta \varepsilon,$$

$$= S_{21} + S_{22} + 2S_{23}$$
(B.3)

where $\Delta \varepsilon = [\Delta \varepsilon_{12}, ..., \Delta \varepsilon_{1T}, ..., \Delta \varepsilon_{N2}, ..., \Delta \varepsilon_{NT}]'$. First, we establish S_{21} . Under Assumption P2(a), we have $\frac{1}{N(T-1)} \|\chi(\gamma_0) - \chi(\gamma)\|^2 = O_p(1)$. Then, by Lemma-1 and Assumption P2, we have

$$S_{21} = \frac{\delta_0^2}{N(T-1)} \left\| [\chi(\gamma_0) - \chi(\gamma)]'[P^*(\gamma) - P(\gamma)][\chi(\gamma_0) - \chi(\gamma)] \right\|_{sp}$$

$$\leq \frac{\delta_0^2}{N(T-1)} \left\| (\chi(\gamma_0) - \chi(\gamma)) \right\|_{sp}^2 \left\| P^*(\gamma) - P(\gamma) \right\|_{sp}$$

$$= o_p(1) \tag{B.4}$$

where $||A||_{sp}$ is the spectral norm of a square matrix A and $||A||_{sp} = \lambda_{max}^{1/2}(A'A)$. Then by Lemma-1 and closely following the proof of (B.4), we can show that S_{22} and S_{23} are also $o_p(1)$.

Last, by simple calculation, we can express S_3 as

$$S_{3} = \frac{2\beta_{10}\delta_{0}}{N(T-1)}(\Delta v - \Delta \hat{v})'[I_{NT} - P(\gamma)][\chi(\gamma_{0}) - \chi(\gamma) + \Delta \varepsilon]$$

$$= \frac{2\beta_{10}\delta_{0}}{N(T-1)}(\Delta v - \Delta \hat{v})'[\chi(\gamma_{0}) - \chi(\gamma) + \Delta \varepsilon] - \frac{2\beta_{10}\delta_{0}}{N(T-1)}(\Delta v - \Delta \hat{v})'P(\gamma)[\chi(\gamma_{0}) - \chi(\gamma) + \Delta \varepsilon]$$

$$= S_{31} - 2S_{32}$$
(B.5)

where $S_{31} = o_p(1)$ under Assumption P2 and

$$S_{32} = \frac{2\beta_{10}\delta_{0}}{N(T-1)}(\Delta v - \Delta \hat{v})'P(\gamma)[\chi(\gamma_{0}) - \chi(\gamma) + \Delta \varepsilon]$$

$$\leq 2\beta_{10}\delta_{0} \max_{\gamma \in \Gamma} \left\| \frac{1}{N(T-1)}(\Delta v - \Delta \hat{v})'\Delta x(\gamma) \right\| \max_{\gamma \in \Gamma} \left\| \left[\frac{1}{N(T-1)}\Delta x(\gamma)'\Delta x(\gamma) \right]^{-1} \right\|$$

$$\times \max_{\gamma \in \Gamma} \left\| \frac{1}{N(T-1)}\Delta x(\gamma)'[\chi(\gamma_{0}) - \chi(\gamma) + \Delta \varepsilon] \right\|$$

$$= o_{p}(1)O_{p}(1)o_{p}(1)$$
(B.6)

by (C.4) in Lemma-1 and Assumption P2.

To sum up, we have $\sup_{\phi \in B \times \Gamma} |S_{NT}(\phi) - S_{NT}^*(\phi)| \stackrel{p}{\to} 0$.

Next, we show that the four conditions required by Section 4.3 Andrews (1994) also hold in our case. Denote $\frac{1}{N(T-1)}\sum_{i=1}^{N}\sum_{t=2}^{T}M_{it}(\phi)$ as the first order partial derivative of $S_{NT}^{*}(\phi)$ and the minimizer of $S_{NT}^{*}(\phi)$ is given by solving $\frac{1}{N(T-1)}\sum_{i=1}^{N}\sum_{t=2}^{T}M_{it}(\phi)=0$. By definition, $M_{it}(\phi)=\Delta H_{it}(\phi)\Delta\varepsilon_{it}(\phi)$, and $\Delta\varepsilon_{it}(\phi)=\Delta y_{it}-\Delta x_{it}^{*\prime}(\gamma)\theta$. Under Assumption P7, the true threshold value γ_{0} is the unique minimizer of $L^{*}(\theta^{*}(\gamma),\gamma)$. And, by Assumption P3, $\theta^{*}(\gamma)$ is uniquely defined for all $\gamma\in\Gamma$, where Γ is a compact set. Combining Assumptions T3 and T7, we have the true parameter ϕ_{0} minimizes $L^{*}(\phi)=L^{*}(\theta,\gamma)$ and is the unique solution of $M(\phi_{0})=E[M_{it}(\phi_{0})]=0$, where $L^{*}(\phi)=E[S_{NT}^{*}(\phi)]$. Following we establish the four conditions one by one.

Condition 1: $\hat{\phi} \stackrel{p}{\rightarrow} \phi_0$.

For the kink regression model, $\Delta x_{it}^*(\gamma)$ is continuous in γ and we have $\Delta \varepsilon_{it}(\phi) = \Delta y_{it} - \Delta x_{it}^{*\prime}(\gamma)\theta$. Therefore, $\Delta \varepsilon_{it}(\phi)$ and $\Delta \varepsilon_{it}(\phi)^2$ are continuous in ϕ . Using the Cauchy-Schwarz inequality, we have,

$$\Delta \varepsilon_{it}^{2}(\phi) \le 2\Delta y_{it}^{2} + 2|x_{it}^{*\prime}(\gamma)\theta|^{2} \le 2\Delta y_{it}^{2} + 2\bar{\theta}^{2} \|\Delta x_{it}^{*}(\gamma)\|^{2}, \tag{B.7}$$

where $\bar{\theta} = \sup\{\|\theta\| : \theta \in B\}$ and is bounded under Assumption P6. Recall the definition of $\Delta x_{it}^*(\gamma)$, under Assumptions P2 and P7, we have the finite bound $\|\Delta x_{it}^*(\gamma)\|^2 \leq \Delta x_{it}^2 + \Delta x_{it}^2$

 $2(x_{it} - \gamma)^2 + \Delta z'_{it} \Delta z_{it} + \Delta v'_{it} \Delta v_{it}$. Thus, for $\phi \in B \times \Gamma$, $E[\Delta \varepsilon_{it}^2(\phi)] = O(1)$. Applying Lemma 2.4 of Newey and Mcfadden (1994), we can show $\sup_{\phi \in B \times \Gamma} |S_{NT}^*(\phi) - L^*(\phi)| \xrightarrow{p} 0$ as $NT \to \infty$, where $L^*(\phi) = E[S_{NT}^*(\phi)]$.

Finally, by Assumptions P3, P6, and P7, $B \times \Gamma$ is compact and ϕ_0 is the unique minimizer of $L^*(\phi)$. Thus, we conclude the proof of Condition 1 by applying Theorem 2.1 of Newey and Mcfadden (1994).

Condition 2:
$$\frac{1}{\sqrt{N(T-1)}} \sum_{i=1}^{N} \sum_{t=2}^{T} \Delta H_{it} \Delta \varepsilon_{it} \stackrel{d}{\to} N(0, \mathcal{S}).$$

Following Herrndorf (1984), we complete the proof for Condition 2 by applying the CLT for the strong mixing process under Assumptions P1 and P2.

Condition 3: $\mathcal{Q}(\phi)$ is continuous in ϕ for $\phi \in B \times \Gamma$ and $\mathcal{Q}(\phi_0) = \mathcal{Q}$, where

Obviously, $Q(\phi)$ is continuous w.r.t. θ . For γ , note that the parameter γ enters $Q(\phi)$ through one of the following forms: $W_{i,t-D_1}I(x_{i,t-D_2} \geq \gamma)$, $x_{i,t-D_1}I(x_{it} \geq \gamma)I(x_{i,t-1} \geq \gamma)$, or $I(x_{it} \geq \gamma)I(x_{i,t-1} \geq \gamma)$, where $D_j \in \{0,1\}$, j=1,2 and $W_{i,t-D_j}$ can be any vector whose elements are pairwise products of $(1, y_{it}, y_{i,t-1}, x_{it}, x_{i,t-1}, z_{it}, z_{i,t-1}, v_{it}, v_{i,t-1})$. By Assumptions P2, P4 and applying the law of iterated expectation, we can show that $Q(\phi)$ is also continuous w.r.t γ . By definition, the second term of $Q(\phi)$ equals zero when we evaluate it at $\phi = \phi_0$, which implies $Q(\phi_0) = Q$. Hence, we conclude our proof for Condition 3.

Condition 4: $g_{NT}(\phi) = \frac{1}{\sqrt{N(T-1)}} \sum_{i=1}^{N} \sum_{t=2}^{T} (M_{it}(\phi) - M(\phi))$ is stochastic equicontinuous, where $M_{it}(\phi) = \Delta H_{it}(\phi) \Delta \varepsilon_{it}(\phi)$ and $M(\phi) = E[M_{it}(\phi)]$.

Note that θ enters $M_{it}(\phi)$ with linear or quadratic forms. Therefore, we only need to establish the stochastic equicontinuity w.r.t. γ . Hence, without loss of generality, we temporarily ignore θ and focus on γ in $M_{it}(\phi)$ and write $M_{it}(\phi)$ as $M_{it}(\gamma)$. Then, we have

$$M_{it}(\gamma) = \Delta H_{it}(\gamma) \Delta \varepsilon_{it}(\gamma)$$

$$= [\Delta x_{it}^*(\gamma)(\Delta y_{it} - \Delta x_{it}^{*\prime}(\gamma)\theta), \delta[I(x_{it} \ge \gamma) - I(x_{i,t-1} \ge \gamma)(\Delta y_{it} - \Delta x_{it}^{*\prime}(\gamma)\theta)].$$
(B.8)

Note that the parameter γ enters $M_{it}(\gamma)$ through one of the following forms: $W_{i,t-D_1}I(x_{i,t-D_2} \geq \gamma)$, $x_{i,t-D_1}I(x_{it} \geq \gamma)I(x_{i,t-1} \geq \gamma)$, or $I(x_{it} \geq \gamma)I(x_{i,t-1} \geq \gamma)$, where where $D_j \in \{0,1\}$, j = 1, 2, which defined in Condition 3. Then we construct a bound which helps establishing Condition 4.

We denote $\mathbf{F}(.)$ as the cumulative distribution of x_{it} . Then, for any $\gamma_2 \geq \gamma_1$ and $\gamma_1, \gamma_2 \in \Gamma$, by Assumption P4 and employing Taylor expansion, we have $\mathbf{F}(\gamma_2) - \mathbf{F}(\gamma_1) \leq \bar{f}|\gamma_2 - \gamma_1|$. Thus, the bound equation for $W_{i,t-D_1}I(x_{i,t-D_2} \geq \gamma)$, $x_{i,t-D_1}I(x_{it} \geq \gamma)I(x_{i,t-1} \geq \gamma)$ and $I(x_{it} \geq \gamma)I(x_{i,t-1} \geq \gamma)$ are given as follows by applying the Hölder's inequality:

$$E|W_{i,t-D_1}I(\gamma_1 \leq x_{i,t} \leq \gamma_2)I(\gamma_1 \leq x_{i,t-1} \leq \gamma_2)|^2$$

$$\leq E(|W_{i,t-D_1}|^{2r})^{1/r}(E|I(\gamma_1 \leq x_{it} \leq \gamma_2)|)^{1/q_1}(E|I(\gamma_1 \leq x_{i,t-1} \leq \gamma_2)|)^{1/q_2}$$

$$\leq C(\mathbf{F}(\gamma_2) - \mathbf{F}(\gamma_1))^{(1/q_1+1/q_2)}$$

$$\leq C\bar{f}^{(1/q_1+1/q_2)}|\gamma_2 - \gamma_1|^{(1/q_1+1/q_2)},$$
(B.9)

where $\frac{1}{q_1} + \frac{1}{q_2} + \frac{1}{r} = 1$ and $E(\|W_{i,t-D_1}\|^{2r})^{1/r} \leq C$.

Following we establishing Condition 4 by applying Doukhan et al. (1995) Theorem 1. In our case, with martingale differences sequences, their condition (2.15) holds. Let γ_k be an equally spaced grid search point on Γ , where $k = 1, ..., \mathcal{N}$. Then, for any $\gamma \in \Gamma$, there exist a bracket such that $\min[M_{it}(\gamma_{k-1}), M_{it}(\gamma_k)] \leq M_{it}(\gamma) \leq \max[M_{it}(\gamma_{k-1}), M_{it}(\gamma_k)]$.

Denote μ as any positive number and $\mathcal{N}(\mu) = \mu^{-2/q}$. By the bound equation (B.9), we have $E \|M_{it}(\gamma_k) - M_{it}(\gamma_{k-1})\|^2 \le C\bar{f}^{1/q}|\gamma_k - \gamma_{k-1}|^{1/q} \le O(\mathcal{N}(\mu)^{-q}) = O(\mu^2)$, where $O(\mathcal{N}(\mu)^{-1})$ is the distance between grid points and $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2}$. Thus, we have $\mathcal{N}(\mu)$ are the L^2 bracketing numbers and $H_2(\mu) = \ln \mathcal{N}(\mu) = |\log \mu|$ is the metric entropy for the class $\{m_{it}(\gamma)|\gamma \in \Gamma\}$. Combining this with Assumption P1, we can apply Theorem 1 of Doukhan et al. (1995)¹ to establish the stochastic equicontinuity of g_{NT} w.r.t γ , which finish the proof of condition 4.

As Conditions 1-4 are proved above, it is sufficient for us to establish Theorem 1-panel.

C Lemma

Lemma 1 Under Assumptions P2, P3, P5(b) and P7, we have $\max_{\gamma \in \Gamma} \|P^*(\gamma) - P(\gamma)\|_{sp} = o_p(1)$.

Proof. By triangular inequality and simple calculations, we have

$$\max_{\gamma \in \Gamma} \|P(\gamma) - P^*(\gamma)\|_{sp}$$

$$= \max_{\gamma \in \Gamma} \|\Delta x(\gamma) [\Delta x(\gamma)' \Delta x(\gamma)]^{-1} \Delta x(\gamma)' - \Delta x^*(\gamma) [\Delta x^*(\gamma)' \Delta x^*(\gamma)]^{-1} \Delta x^*(\gamma)'\|_{sp}$$

$$\leq \max_{\gamma \in \Gamma} \|\Delta x(\gamma) \left\{ [\Delta x(\gamma)' \Delta x(\gamma)]^{-1} - [\Delta x^*(\gamma)' \Delta x^*(\gamma)]^{-1} \right\} \Delta x(\gamma)'\|_{sp}$$

$$+ \max_{\gamma \in \Gamma} \|[\Delta x(\gamma) - \Delta x^*(\gamma)] [\Delta x^*(\gamma)' \Delta x^*(\gamma)]^{-1} [\Delta x(\gamma) - \Delta x^*(\gamma)]'\|_{sp}$$

$$+ 2 \max_{\gamma \in \Gamma} \|[\Delta x(\gamma) - \Delta x^*(\gamma)] [\Delta x^*(\gamma)' \Delta x^*(\gamma)]^{-1} \Delta x^*(\gamma)'\|_{sp}$$

$$= \mathcal{S}_{p1} + \mathcal{S}_{p2} + 2\mathcal{S}_{p3} = o_p(1). \tag{C.1}$$

First, we verify that S_{p2} and S_{p3} are $o_p(1)$. Under Assumptions P2, P3 and P7, by equation

¹Note that, by collecting the bounded condition we show above and the Assumption P1, condition (2.15) in Doukhan et al. (1995) is satisfied. Thus, Theorem 1 of Doukhan et al. (1995) holds here.

(B.2), we have

$$S_{p2} = \max_{\gamma \in \Gamma} \left\| [\Delta x(\gamma) - \Delta x^{*}(\gamma)] [\Delta x^{*}(\gamma)' \Delta x^{*}(\gamma)]^{-1} [\Delta x(\gamma) - \Delta x^{*}(\gamma)]' \right\|_{sp}$$

$$\leq \frac{1}{N(T-1)} \max_{\gamma \in \Gamma} \left\| \Delta x(\gamma) - \Delta x^{*}(\gamma) \right\| \max_{\gamma \in \Gamma} \left\| [\frac{1}{N(T-1)} \Delta x^{*}(\gamma)' \Delta x^{*}(\gamma)]^{-1} \right\|_{sp}$$

$$\times \max_{\gamma \in \Gamma} \left\| \Delta x(\gamma) - \Delta x^{*}(\gamma) \right\|$$

$$= \frac{1}{N(T-1)} \left\| \Delta v - \Delta \hat{v} \right\|^{2} \max_{\gamma \in \Gamma} \left\| [\frac{1}{N(T-1)} \Delta x^{*}(\gamma)' \Delta x^{*}(\gamma)]^{-1} \right\|_{sp}$$

$$= O_{p}([N(T-1)]^{-1}) O_{p}(1) = o_{p}(1), \tag{C.2}$$

and

$$S_{p3} = \max_{\gamma \in \Gamma} \| [\Delta x(\gamma) - \Delta x^{*}(\gamma)] [\Delta x^{*}(\gamma)' \Delta x^{*}(\gamma)]^{-1} \Delta x^{*}(\gamma)' \|_{sp}$$

$$\leq \| \Delta \hat{v} - \Delta v \| \max_{\gamma \in \Gamma} \| [\frac{1}{N(T-1)} \Delta x^{*}(\gamma)' \Delta x^{*}(\gamma)]^{-1} \| \max_{\gamma \in \Gamma} \frac{1}{N(T-1)} \| \Delta x^{*}(\gamma) \|$$

$$= O_{p}(1) O_{p}(1) o_{p}(1) = o_{p}(1), \tag{C.3}$$

where we have

$$\left\| \left[\frac{1}{N(T-1)} \Delta x^{*}(\gamma)' \Delta x^{*}(\gamma) \right]^{-1} \right\|_{sp} \\
= \left\| \left[\frac{1}{N(T-1)} \Delta x^{*}(\gamma)' \Delta x^{*}(\gamma) \right]^{-1} \right\|_{sp} = \lambda_{min}^{-1} \left[\frac{1}{N(T-1)} \Delta x^{*}(\gamma)' \Delta x^{*}(\gamma) \right] \\
= \lambda_{min}^{-1} \left(E[\Delta x_{it}^{*}(\gamma) \Delta x_{it}^{*\prime}(\gamma)] \right) + O_{p} \left(\left\| \frac{1}{N(T-1)} \Delta x^{*}(\gamma)' \Delta x^{*}(\gamma) - E[\Delta x_{it}^{*}(\gamma) \Delta x_{it}^{*\prime}(\gamma)] \right\| \right) \\
= O_{p}(1). \tag{C.4}$$

by Assumption P3 and applying Weyl's theorem in Seber (2008). $\lambda_{min}(A)$ denotes the smallest eigenvalue of a symmetric matrix A. Next, we show \mathcal{S}_{p1} is $o_p(1)$. Under Assumption P2, we have

$$S_{p1} = \max_{\gamma \in \Gamma} \left\| \Delta x(\gamma) \left\{ \left[\Delta x(\gamma)' \Delta x(\gamma) \right]^{-1} - \left[\Delta x^*(\gamma)' \Delta x^*(\gamma) \right]^{-1} \right\} \Delta x(\gamma)' \right\|_{sp}$$

$$\leq \max_{\gamma \in \Gamma} \frac{1}{N(T-1)} \left\| \Delta x(\gamma) \right\|^2 N(T-1) \max_{\gamma \in \Gamma} \left\| \left[\Delta x(\gamma)' \Delta x(\gamma) \right]^{-1} - \left[\Delta x^*(\gamma)' \Delta x^*(\gamma) \right]^{-1} \right\|_{sp}$$

$$= O_p(1) o_p(1) \tag{C.5}$$

whereby (C.4) and closely following the proof of Theorem 1-time series (A.11), (A.12) and (A.13), we obtain

$$N(T-1) \max_{\gamma \in \Gamma} \left\| [\Delta x(\gamma)' \Delta x(\gamma)]^{-1} - [\Delta x^*(\gamma)' \Delta x^*(\gamma)]^{-1} \right\|_{sp}$$

$$= N(T-1) \max_{\gamma \in \Gamma} \left\| [\Delta x(\gamma)' \Delta x(\gamma)]^{-1} \left\{ [\Delta x(\gamma)' \Delta x(\gamma)] - [\Delta x^*(\gamma)' \Delta x^*(\gamma)] \right\} [\Delta x^*(\gamma) \Delta x^*(\gamma)]^{-1} \right\|_{sp}$$

$$\leq \max_{\gamma \in \Gamma} \left\| \left[\frac{1}{N(T-1)} \Delta x(\gamma)' \Delta x(\gamma) \right]^{-1} \right\|_{sp} \max_{\gamma \in \Gamma} \frac{1}{N(T-1)} \left\| [\Delta x(\gamma)' \Delta x(\gamma)] - [\Delta x^*(\gamma)' \Delta x^*(\gamma)] \right\|_{sp}$$

$$\times \max_{\gamma \in \Gamma} \left\| \left[\frac{1}{N(T-1)} \Delta x^*(\gamma) \Delta x^*(\gamma) \right]^{-1} \right\|_{sp}$$

$$= O_p(1) o_p(1) O_p(1) = o_p(1)$$
(C.6)

Given S_{p1} , S_{p2} and S_{p3} are both $o_p(1)$, we have $\max_{\gamma \in \Gamma} \|P^*(\gamma) - P(\gamma)\|_{sp} = o_p(1)$.

D Monte Carlo simulation results for DGP2 and DGP4

	Table 1: Estimation Results for DGP2									
	MEAN- β_1	RMSE- β_1	MEAN- δ	RMSE- δ	MEAN- β_3	RMSE- β_3	MEAN- γ	RMSE- γ		
	$(\beta_{10}=1)$		$(\delta_0 = 1)$		$(\beta_{30}=1)$		$(\gamma_0=2)$			
$\kappa = 0.05$	NO CF									
T=100	1.025	0.0263	0.9999	0.0134	1.025	0.0253	2	0.0072		
T=200	1.0252	0.0257	0.9997	0.0092	1.025	0.0251	2	0		
T=300	1.025	0.0254	1.0001	0.0076	1.025	0.0251	2	0		
T=400	1.025	0.0253	1.0001	0.0064	1.025	0.0251	2	0		
$\kappa = 0.05$	CF									
T=100	0.9973	0.0158	1	0.0036	0.9973	0.0144	2	0		
T=200	0.9986	0.0092	1	0.0026	0.9987	0.0089	2	0		
T=300	0.9991	0.007	1	0.0021	0.9989	0.0071	2	0		
T=400	0.9993	0.0059	1	0.0018	0.9992	0.006	2	0		
$\kappa = 0.5$	NO CF									
T=100	1.2398	0.2639	1.0225	0.1387	1.2498	0.2529	2.0055	0.2354		
T=200	1.2458	0.256	1.0061	0.0934	1.2498	0.2514	1.9966	0.1509		
T=300	1.2475	0.2536	1.0061	0.0764	1.2502	0.2513	2.0004	0.1139		
T=400	1.2475	0.2521	1.0046	0.0648	1.2502	0.251	1.9991	0.1003		
$\kappa = 0.5$	CF									
T=100	0.9718	0.1592	1.0011	0.037	0.9734	0.1439	1.9995	0.0581		
T=200	0.9862	0.0929	1.0001	0.0261	0.9871	0.0888	2.0002	0.0392		
T=300	0.9902	0.0709	1.0004	0.0209	0.9889	0.0709	1.9994	0.0283		
T=400	0.9929	0.0593	1.0001	0.0181	0.9923	0.0599	2.0001	0.0205		

NOTE: CF=Control function approach

Table 2: Estimation Results for DGP2(continue)

	MEAN- β_1	RMSE- β_1	MEAN- δ	RMSE- δ	MEAN- β_3	RMSE- β_3	MEAN- γ	RMSE- γ
	$(\beta_{10}=1)$		$(\delta_0 = 1)$		$(\beta_{30}=1)$		$(\gamma_0=2)$	
$\kappa = 0.95$	NO CF							
T=100	1.4286	0.4884	1.0985	0.291	1.4745	0.4805	2.0119	0.496
T=200	1.4544	0.4791	1.0371	0.185	1.4747	0.4777	1.995	0.3374
T=300	1.4639	0.4776	1.026	0.1481	1.4754	0.4774	2.0036	0.2525
T=400	1.4646	0.4744	1.0184	0.1241	1.4754	0.4769	1.9957	0.2076
$\kappa = 0.95$	CF							
T=100	0.9456	0.3031	1.0045	0.0702	0.9494	0.2735	2.0004	0.1086
T=200	0.9733	0.177	1.0015	0.0497	0.9756	0.1687	2.0009	0.0756
T=300	0.9809	0.1354	1.0017	0.0398	0.979	0.1347	1.9988	0.063
T=400	0.9861	0.1131	1.0008	0.0344	0.9853	0.1138	2.0004	0.0544
$\kappa = 2$	NO CF							
T=100	1.8606	1.0037	1.2899	0.7563	1.9988	1.0113	2.0196	0.7939
T=200	1.905	0.9702	1.1844	0.4575	1.9992	1.0055	1.9949	0.6813
T=300	1.9323	0.9709	1.1381	0.3534	2.0009	1.005	1.995	0.5806
T=400	1.9453	0.9746	1.1051	0.292	2.0008	1.0039	1.9941	0.5139
$\kappa = 2$	CF							
T=100	0.8766	0.6408	1.0267	0.1509	0.8935	0.576	2	0.2634
T=200	0.9411	0.3734	1.01	0.1048	0.9485	0.3551	2.0037	0.1688
T=300	0.958	0.2849	1.008	0.0839	0.9557	0.2836	1.9983	0.1342
T=400	0.969	0.2384	1.0049	0.0726	0.9691	0.2396	2.0002	0.1122

NOTE: CF=Control function approach

Table 3: Estimation Results for DGP4

		MEAN- β_1	RMSE- β_1	MEAN- δ	RMSE- δ	MEAN- β_3	RMSE- β_3	MEAN- γ	$\text{RMSE-}\gamma$
		$(\beta_{10}=1)$		$(\delta_0 = 1)$		$(\beta_{30}=1)$		$(\gamma_0=2)$	
NO CF	FD								
T=10	N=10	1.7416	0.9354	1.3258	0.8619	1.9018	0.9184	1.9902	0.8476
	N=20	1.7905	0.874	1.2138	0.4971	1.9009	0.9087	1.9916	0.7119
	N=30	1.8294	0.8789	1.149	0.3836	1.9001	0.9049	2.0128	0.6166
	N=40	1.8449	0.8812	1.1172	0.3118	1.8986	0.9024	2.0096	0.5386
T=20	N=10	1.7918	0.8753	1.208	0.4986	1.9042	0.9118	1.9933	0.7021
	N=20	1.8465	0.8823	1.119	0.3122	1.9018	0.9057	2.0081	0.5382
	N=30	1.8651	0.8883	1.0694	0.2445	1.8996	0.9021	1.9976	0.4546
	N=40	1.8752	0.89	1.0503	0.1984	1.9001	0.9019	2.0002	0.3741
T=30	N=10	1.823	0.8713	1.1592	0.3758	1.9019	0.9069	2.0049	0.6126
	N=20	1.8632	0.8854	1.0746	0.2411	1.9005	0.9028	2.0009	0.4428
	N=30	1.8758	0.8896	1.0469	0.1885	1.9007	0.9024	1.998	0.3572
	N=40	1.8851	0.8947	1.0329	0.1637	1.8994	0.9006	2.0015	0.2947
T=40	N=10	1.8471	0.8811	1.1107	0.3088	1.9008	0.9045	2.0049	0.5353
	N=20	1.8685	0.8845	1.0586	0.2051	1.8992	0.9011	1.993	0.3747
	N=30	1.8835	0.893	1.0318	0.1602	1.9003	0.9015	1.9987	0.2959
	N=40	1.8898	0.8962	1.0213	0.1372	1.9003	0.9012	1.9985	0.2416

NOTE: FD=first difference; CF=control function approach

Table 4: Estimation Results for DGP4(continue)

		MEAN- β_1	RMSE- β_1	MEAN- δ	RMSE- δ	MEAN- β_3	RMSE- β_3	MEAN- γ	RMSE- γ
		$(\beta_{10}=1)$		$(\delta_0 = 1)$		$(\beta_{30}=1)$		$(\gamma_0=2)$	
CF	FD								
T=10	N=10	0.9636	0.2427	1.0296	0.1492	0.9752	0.2144	2.0028	0.2642
	N=20	0.9831	0.1608	1.0093	0.098	0.9922	0.1437	1.9959	0.1591
	N=30	0.9875	0.1327	1.0035	0.0802	0.9919	0.1168	1.9979	0.1253
	N=40	0.9942	0.1113	1.0045	0.0671	0.9938	0.0993	2.0006	0.106
T=20	N=10	0.9845	0.1584	1.0072	0.0875	0.9895	0.1459	1.9958	0.1443
	N=20	0.9948	0.1103	1.0026	0.0615	0.9961	0.1015	2.0018	0.0959
	N=30	0.9964	0.0878	1.0017	0.0499	0.9976	0.0815	1.9994	0.0773
	N=40	0.9986	0.0764	1.0016	0.0426	0.9987	0.07	2.0007	0.0689
T=30	N=10	0.9918	0.1271	1.0031	0.0687	0.9929	0.1185	2.0003	0.1061
	N=20	0.997	0.0879	1.0019	0.0479	0.9972	0.0832	2.0004	0.075
	N=30	0.9967	0.0706	1.0009	0.039	0.9982	0.0667	1.9999	0.0629
	N=40	0.9975	0.0612	1.0011	0.0337	0.9967	0.0585	1.9985	0.0541
T=40	N=10	0.9926	0.1086	1.0026	0.0579	0.9962	0.1014	2.0002	0.0894
	N=20	0.9978	0.0752	1.0008	0.0398	0.9987	0.0711	2.0013	0.0647
	N=30	0.9996	0.0612	1.0011	0.0333	0.998	0.0573	2.001	0.0516
	N=40	0.9982	0.0536	1.0011	0.0287	0.9995	0.0493	2.0011	0.0455

NOTE: FD=first difference; CF=control function approach

References

- Andrews, D. W. (1994). Chapter 37 empirical process methods in econometrics. *Handbook of Econometrics*, 2247–2294.
- Doukhan, P., P. Massart, and E. Rio (1995). Invariance principles for absolutely regular empirical processes. *Annales de l'I.H.P. Probabilités et statistiques 31*(2), 393–427.
- Hansen, B. E. (2017). Regression kink with an unknown threshold. *Journal of Business & Economic Statistics* 35(2), 228–240.
- Herrndorf, N. (1984). A Functional Central Limit Theorem for Weakly Dependent Sequences of Random Variables. The Annals of Probability 12(1), 141 153.
- Newey, W. K. and D. Mcfadden (1994). Chapter 36 large sample estimation and hypothesis testing. *Handbook of Econometrics*, 2111–2245.
- Seber, G. A. F. (2008). A matrix handbook for statisticians. J. Wiley.