SPRAWOZDANIE

PAMSI Lab pn 9:15-11:00 Krystian Lema 218453

Temat: Grafy, DFS, BFS

1. Wybór sposobu implementacji grafu

Na implementacje mojego grafu wybrałem sposób macierzy sąsiedztwa. Jest to moim zdaniem najprostsze rozwiązanie. Sposób ten pozwala na zrozumienie struktury grafu i operacji wykonywanych na nim operacji. Implementacja macierzowa pozwala na szybki dostęp do sąsiadów dowolnego wierzchołka, a co za tym idzie do krawędzi incydentnych tego wierzchołka. Niestety dużym minusem tego sposobu jest złożoność pamięciowa która wynosi, aż n². O ile dodawanie krawędzi odbywa się ze stałym czasem to już dodawanie wierzchołka ze względu na strukturę macierzową zajmuje n² czasu co też jest dużym minusem. Jednak testując algorytmy na grafie, sposób implementacji grafu nie powinien wpływać na czas działania algorytmu. Stąd mój wybór prostszego rozwiązania : macierz sąsiedztwa.

2. Wyniki pomiarów

Przy tworzeniu grafu o V wierzchołkach, losowo tworzone było 3*V krawędzi. Tak więc złożoność O(n+m) można przedstawić jako O(4n) co po uproszczeniu jest złożonością liniową O(n).

2.1. DFS

pomiar / V	10	100	1000
1	41 μs	1974 μs	139839 μs
2	42 μs	9154 μs	167613 μs
3	45 μs	1509 μs	141858 μs
4	48 μs	2248 μs	142215 μs
5	38 μs	2765 μs	150802 μs
6	36 μs	1903 μs	144640 μs
7	44 μs	1810 μs	142408 μs
8	48 μs	1854 μs	146954 μs
9	50 μs	1992 μs	147700 μs
10	43 μs	11520 μs	121384 μs
średnia	43,5 μs	3672,9 μs	144541,3 μs

2.2. BFS

pomiar / V	10	100	1000
1	44 μs	1982 μs	145606 μs
2	40 μs	4197 μs	144836 μs
3	49 μs	2062 μs	145928 μs
4	61 μs	2528 μs	145016 μs
5	48 μs	1857 μs	145101 μs
6	55 μs	1815 μs	145291 μs
7	48 μs	2039 μs	144276 μs
8	47 μs	1711 μs	143781 μs
9	60 μs	1419 μs	145170 μs
10	48 μs	1941 μs	127162 μs
średnia	50 μs	21 55,1 μs	143216,7 μs

3. Analiza wyników i wnioski

Z przeprowadzonych pomiarów i na podstawie wykresów można potwierdzić teoretyczną złożoność algorytmów przeszukiwania DFS i BFS. Krzywe nachylone są niemalże pod tym samym kątem co krzywe o złożoności teoretycznej O(n+m). Niepełna ilość pomiarów była spowodowana rodzajem implementacji grafu. Jak się okazało implementacja macierzowa nie jest dobrą implementacją dla dużej ilości elementów. Przy próbie stworzenia grafu o 10⁵ wierzchołkach trzeba stworzyć macierz 10⁵x10⁵ co daje aż10¹⁰ elementów do zainicjalizowania. Jest to liczba przekraczające możliwości pamięciowej mojego komputera stąd pomiary były niemożliwe. Złożoność pamięciowa implementacji macierzowej jest bardzo szkodliwa przy dużej ilości elementów w grafie. Po wykonanych testach wnioskuję, że lepszym rozwiązaniem było by zaimplementowanie grafu sposobem listy sąsiedztwa co jest sposobem trudniejszym ale bardziej optymalnym przede wszystkim pod względem zajmowanej pamięci.