UNIVERSIDADE DO VALE DO ITAJAÍ ENGENHARIA DE COMPUTAÇÃO JOÃO VITOR SPECHT KOGUT NICOLE MIGLIORINI MAGAGNIN

LABORATÓRIO ELETRÔNICA BÁSICA - M2

Relatório apresentado como requisito parcial para a obtenção da M2 da disciplina de Eletrônica básica do curso de Engenharia de Computação pela Universidade do Vale do Itajaí da Escola do Mar, Ciência e Tecnologia.

Prof. Walter Antonio Gontijo

OBJETIVOS

- Avaliar o funcionamento do transistor bipolar.
- Verificar o funcionamento do TBJ como chave.
- Verificar o funcionamento de circuitos de polarização DC.
- Avaliar o funcionamento do TBJ como amplificador.

EXPERIMENTOS

1) Meça com o multímetro as tensões "DC" da bancada/fonte e anote seus valores mínimo e máximo.

Valor mínimo: 1.2 V

Valor máximo: 21.1 V

2) Antes do experimento meça com o multímetro o Beta dos transistores e os resistores utilizados.

Componente	Valor teórico	Valor mensurado
Transistor BC548B	90 < B > 450	468
Resistor 10k Ω	10k Ω	9,41k Ω
Resistor 1k Ω	1k Ω	$0,95\Omega$
Resistor 560Ω	560Ω	540Ω
Resistor 220Ω	220Ω	204Ω
Resistor 680 Ω	680 Ω	673 Ω
Resistor 2.2k Ω	2.2k Ω	2.1k Ω
Resistor 470k Ω	470k Ω	471k Ω
Resistor 22k Ω	22k Ω	19k Ω
Resistor 3.3k Ω	3.3k Ω	3k Ω

Tabela 1

3) Monte o circuito apresentado, varie a tensão Vi (V3 mostrada na figura), meça VB, VC, VE e preencha a tabela. Faça uma comparação entre os valores obtidos no experimento e os teóricos.

Figura 1 - Circuito 3 proposto

Vi(V)	VB	VC	VE	R_op
0	0 V	5 V	0 V	Corte
5	0,7 V	5 V	0 V	Saturação

CÁLCULOS

P/vi = 0

$$Vi - IB * RB - VBE = 0$$
 $0 - IB * 10000 - 0.7 = 0$
 $- 10000IB = 0.7$
 $IB = \frac{0.7}{-10000}$
 $IB = -70\mu A$
 $IC = 468 * -70\mu A = -32mA$
 $IE = 469 * -70\mu A = -33mA$
 $VB = VBE - VE$
 $VE = 0$
 $VB = 0.7 - 0$
 $VB = 0.7 V$
 $VC = 5 V$

P/Vi = 5

$$Vi - IB * RB - VBE = 0$$

$$5 - IB * 10000 - 0,7 = 0$$

$$- 10000IB = 0,7 - 5$$

$$IB = \frac{-4,3}{-10000}$$

$$IB = 430\mu A$$

$$IC = 468 * - 430 \mu A = 200 mA$$

$$IE = 469 * - 430\mu A = 200 mA$$

$$VB = VCC - IB*RB$$

$$VB = 0,7$$

$$VB = 0,7 V$$

$$VC = 5$$

$$VE = 0$$

$$IC \ saturação = \frac{VCC}{RC} = 5 \ mA$$

Figura 2 – Circuito projetado

RESULTADOS:

Vi(V)	VB	VC	VE	R_op
0	0 V	4,96 V	0 V	Corte
5	4,23 V	0,04 V	0 V	Saturação

Os resultados práticos foram compatíveis com os valores calculados e com a teoria esperada, uma vez que com um Vi de zero e um transistor NPN é esperada uma operação de corte, assim como com o Vi = 5 em um VCC = 5, o circuito deveria saturar.

4) Monte os circuitos de polarização "D C" e meça as tensões VB, VE e VC, para cada valor de RC (R2 na figura). De posse dessas tensões calcule as correntes IB, IC e IE. Faça uma comparação entre os valores obtidos no experimento e os teóricos.

Figura 3 - Circuito proposto

RC	VB	VE	VC	IB	IC	IE	R_op
2k2	1,23 V	0,53 V	0 V	8,02 μΑ	2,4 mA	2,41	Saturação
						mA	
220	1,23 V	0,53 V	4,47 V	8,02 μΑ	2,4 mA	2,41	Ativa
						mA	
560	1,23 V	0,53 V	3,653 V	8,02 μΑ	2,4 mA	2,41	Ativa
						mA	
680	1,23 V	0,53 V	3,37 V	8,02 μΑ	2,4 mA	2,41	Ativa
						mA	

CÁLCULOS

$$VCC - IB * RB - VBE - IE * RE = 0$$

$$IB = (VCC - VBE)/(RB + (1 + \beta) * RE)$$

$$= (5 - 0.7)/(470000 + (1 + 300) * 220) = 8.02 \,\mu A$$

$$VB = VCC - IB * 470000 = 1.23 \,V$$

$$IC = 300 * 8.02 \,\mu A = 2.4 \,m A$$

$$VC = VCC - IC * RC$$

$$VC = 5 - 2.4 \,m A * 2200 = 0 \,V$$

$$IE = (1 + \beta) * IB = 301 * 8.02 \,\mu A$$

$$IE = 2.41 \,m A$$

$$VE = VB - VBE = 1.23 - 0.7 = 0.53 \,V$$

$$\frac{VCC}{RC} = 2.27 \,m A$$

P/RC = 220
$$VC = 5 - IC * RC$$

$$VC = 5 - 2.4 mA * 220 = 4.47 V$$

$$\frac{VCC}{RC} = 0.03 A$$

P/RC = 560
$$VC = 5 - 2.4 \, mA * 560 = 3.653 \, V$$

$$\frac{VCC}{RC} = 8.9 \, mA$$

P/RC = 680
$$VC = 5 - 2.4 \, mA * 680 = 3.37 \, V$$

$$\frac{vcc}{RC} = 7.3 mA$$

Figura 4 - Circuito projetado

IB, IC E IE com valores experimentais:

$$IB = \frac{(VCC - VBE)}{(RB + (1 + \beta) * RE)} = \frac{(5 - 0.7)}{(470000 + (1 + 468) * 220)} = 7.5 \mu A$$

$$IC = 468 * 7.5 \mu A = 3.5 mA$$

$$IE = 469 * 7.5 \mu A = 3.52 mA$$

RESULTADOS:

RC	VB	VE	VC	IB	IC	IE	R_op
2k2	1,08 V	0,43 V	0,59 V	8 μΑ	3,5mA	3,52	Saturação
						mA	
220	1,12 V	0,53 V	4,40 V	8 μΑ	3,5mA	3,52	Ativa
						mA	
560	1,12 V	0,53 V	3,57 V	8 μΑ	3,5mA	3,52	Ativa
						mA	
680	1,12 V	0,53 V	3,27 V	8 μΑ	3,5mA	3,52	Ativa
				-		mA	

- 5) Verifique a calibração do scope (freqüência de 1kHz e amplitude dada no aparelho).
- 6) Conecte a saída do gerador de funções ao Scope. Ajuste o gerador e meça no Scope um sinal senoidal de 50mV de pico e freqüência de 1kHz.
- 7) Monte o circuito amplificador e meça as tensões VB, VE e VC. Obtenha o ganho de tensão (Av) teórico para as duas condições do circuito (chave S1 aberta e fechada). Ajuste o gerador (XFG1) para um sinal senoidal de 50mV de pico e freqüência de 1kHz, meça com o Scope Vi e Vo e apresente as formas de onda. Faça uma comparação entre os valores obtidos no experimento e os teóricos. Obs: O transistor Q1 é um BC548

Figura 5 - Circuito proposto

CÁLCULOS

$$IR1 = IR2$$

$$IR1 = \frac{VCC}{(R1 + R2)} * VB - IR1 * R1$$

$$IR1 = \frac{15}{22k + 4k7} * VB - IR1 * 22k$$

$$IR1 = \frac{V}{R} = \frac{15}{22k + 3k3} = 0,6 mA$$

$$VB = VCC - 0,6mA * 22k$$

$$VB = 1,8 V$$

$$VE = VB - VBE$$

$$VE = 1,8 - 0,7 = 1,1 V$$

$$B > 100 \text{ então IE} \cong IC$$

$$VCE = VCC - IC * (RC + RE)$$

$$Ou VC = VCC - IE*RC$$

$$IE = \frac{VE}{RE} = \frac{1,1}{1000} = 1,1mA$$

$$VC = 15 - 1,1mA * 4700$$

$$VC = 9,38 V$$

Figura 6 - Circuito projetado

RESULTADOS E COMPARAÇÃO:

Componente	Valor Calculado	Valor Experimental
VB	1,8 V	1,9 V
VC	9,38 V	14 V
VE	1,1 V	1,5 V

DISCUSSÃO DE RESULTADOS

Os resultados obtidos via experimentos foram satisfatórios, tornando-se extremamente aproximados aos experimentais, além do comportamento dos circuitos ter sido o esperado. As pequenas diferenças de valor obtidas, devem-se principalmente pela diferença entre os componentes práticos e teóricos (descritos em tabela 1).

Os experimentos foram de extrema importância para a consolidação dos conhecimentos adquiridos em sala durante a M2 da disciplina de Eletrônica Básica onde foram tratados transistores bipolares, seus cálculos, teoria e prática.