P8131 HW8

1. Health

(a) Evaluate the bivariate, cross-sectional relationship between randomized group assignment and participants health self-rating at the time of randomization.

```
health <- readxl::read_excel("HW8-HEALTH.xlsx", col_names = TRUE) %>%
  janitor::clean_names() %>%
 mutate(id = as.factor(id),
        txt = as.factor(txt),
        health = factor(health, levels = c("Poor", "Good")),
        time = factor(time, ordered = TRUE),
         agegroup = as.factor(agegroup))
head(health) # data is sorted
## # A tibble: 6 x 5
##
     id
          time txt
                             health agegroup
     <fct> <ord> <fct>
                             <fct> <fct>
## 1 101
                                    15-24
          1
                Intervention Good
## 2 101
                Intervention Good
                                   15-24
          2
## 3 101
          3
                Intervention Good
                                    15-24
## 4 101
          4
                Intervention Good
                                   15-24
## 5 102
          1
                                    15-24
                Control Poor
## 6 102
                Control
                             Poor
                                    15-24
```

Cross-sectional table:

		тхт			
		Control		Intervention	
		Count	Percentage %	Count	Percentage %
Good	15-24	10	52.63	9	47.37
	25-34	9	60.00	6	40.00
	35+	1	50.00	1	50.00
	Total	20	55.56	16	44.44
Poor	15-24	11	55.00	9	45.00
	25-34	7	36.84	12	63.16
	35+	3	60.00	2	40.00
	Total	21	47.73	23	52.27
Total	15-24	21	53.85	18	46.15
	25-34	16	47.06	18	52.94
	35+	4	57.14	3	42.86
	Total	41	51.25	39	48.75

Figure 1: Cross-Sectional table for randomized group assignment and participants health self-rating at the time of randomization

Interpret and discuss these findings:

Equal percentage

(b) Perform a longitudinal data analysis across all study follow-up visits

```
health.new <- subset(health, time > "1")
baseline <- rep(subset(health, time == "1"))</pre>
# make time 1 as another covariate: baseline
#113, 119, 123... only has 3 observations
add baseline <- function(id){
  outcome = baseline$health[baseline$id == id]
  as.character(outcome)
health.new$baseline <- map(health.new$id, add_baseline) %>%
  factor(levels = c("Poor", "Good"))
health.new$nhealth <- as.numeric(health.new$health == "Good") # 1=qood, 0=poor
health.new$postM <- (as.numeric(health.new$time)-1)*3 # month post randomization
# fit with unstructured correlation structure
health.new <- as.data.frame(health.new)
gee.health <- gee(nhealth ~ postM + txt + agegroup + baseline, data = health.new,
                  family = "binomial",
                  id = id.
                  corstr = "unstructured",
                  scale.fix = FALSE) # scale parameter is phi (over dispersion)
## Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27
## running glm to get initial regression estimate
##
       (Intercept)
                             postM txtIntervention
                                                      agegroup25-34
                                                                        agegroup35+
                                         1.99778060
##
       -1.60936174
                        0.04404073
                                                         1.19586376
                                                                         1.39542710
##
      baselineGood
        1.71129313
summary(gee.health)
##
   GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
##
   gee S-function, version 4.13 modified 98/01/27 (1998)
##
## Model:
## Link:
                               Logit
## Variance to Mean Relation: Binomial
## Correlation Structure:
                               Unstructured
##
## Call:
  gee(formula = nhealth ~ postM + txt + agegroup + baseline, id = id,
       data = health.new, family = "binomial", corstr = "unstructured",
##
##
       scale.fix = FALSE)
##
## Summary of Residuals:
##
           Min
                        1Q
                                Median
  -0.98120150 -0.18801168 0.09128879 0.17516123 0.83424138
##
##
##
```

```
## Coefficients:
##
                     Estimate Naive S.E.
                                            Naive z Robust S.E. Robust z
                  -1.76899848 0.66103146 -2.6761184 0.57887503 -3.055925
## (Intercept)
                   0.05100277 0.06725101 0.7583941 0.07024227 0.726098
## postM
## txtIntervention 2.09950310 0.60087382 3.4940832 0.53792705 3.902951
## agegroup25-34
                   1.35098483 0.59300433 2.2782040 0.50386082 2.681266
## agegroup35+
                   1.41166003 0.98252381 1.4367693 0.78644380 1.794992
## baselineGood
                   1.81448641 0.60333504 3.0074276 0.51044100 3.554743
## Estimated Scale Parameter: 1.516997
## Number of Iterations: 5
## Working Correlation
##
             [,1]
                       [,2]
                                [,3]
## [1,] 1.0000000 0.1743007 0.5809889
## [2,] 0.1743007 1.0000000 0.2049833
## [3,] 0.5809889 0.2049833 1.0000000
```

(c) Fit a generalized linear mixed effects model with subject-specific random intercepts

GLMM

```
glmm <- glmer(nhealth ~ postM + txt + agegroup + baseline + (1 | id),</pre>
                 family = 'binomial', data = health.new)
summary(glmm) # pay attention to: random effects, fixed effects,
## Generalized linear mixed model fit by maximum likelihood (Laplace
     Approximation) [glmerMod]
  Family: binomial (logit)
## Formula: nhealth ~ postM + txt + agegroup + baseline + (1 | id)
##
     Data: health.new
##
##
       AIC
                BIC
                      logLik deviance df.resid
##
      184.8
              207.9
                       -85.4
                                170.8
##
## Scaled residuals:
               1Q Median
      Min
                                3Q
                                       Max
## -2.5390 -0.2367 0.1427 0.2909 1.8719
##
## Random effects:
  Groups Name
                       Variance Std.Dev.
           (Intercept) 5.765
                               2.401
## Number of obs: 199, groups: id, 78
##
## Fixed effects:
##
                  Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                  -2.72189
                              1.11457 -2.442 0.01460 *
## postM
                                       0.654 0.51296
                   0.06738
                              0.10300
## txtIntervention 3.42309
                              1.07794
                                       3.176 0.00150 **
## agegroup25-34
                   2.25874
                              1.01277
                                        2.230 0.02573 *
## agegroup35+
                   1.98025
                              1.38527
                                        1.430 0.15286
## baselineGood
                                       2.817 0.00485 **
                   2.78128
                              0.98734
## ---
```

How are the interpretations different from the GEE model?