Participation au Concours USAIRE Student Awards 2024

Statut du projet : Terminé.

<u>Problématique</u>: "Propose a specific and concrete project with an associated business case that you hope will disrupt the aerospace industry by 2040".

Contenu du document :

One Pager (Proposition d'une solution): Pages 1 à 3.

10-Pagers (Solution détaillée) : Pages 4 à 16.

Propose a **specific and concrete project** with an associated business case that you hope will **disrupt the aerospace industry by 2040**

One Pager

Submission date

Candidate 1

First Name : Alexandre Last Name : CORRE

School: Junia HEI Châteauroux

Nationality: Française

Email: coralexandre36@gmail.com

Phone number: 06 58 54 91 08

If in pair,

Candidate 2

First Name : Domitille Last Name : FAIDEAU

School: Junia HEI Châteauroux

Nationality: Française

Email: <u>domitille.faideau@student.junia.com</u>

Phone number: 06 25 17 16 15

How did you hear about this contest?

This one-pager should be sent before April 21th 2024 to the following addresses: student-award@usaire.org and oraje.info@gmail.com. It may be written in French or in English and should not exceed the page hereafter, with a limit of **500 words**.

Voyage Eco-Electrique : L'énergie durable à portée de main.

Problématique: Révolutionner l'aérospatiale avec l'énergie Seebeck d'ici 2040?

<u>Contexte</u>: L'énergie verte est au cœur de tous les secteurs aujourd'hui. Chaque domaine d'activité s'efforce de réduire son empreinte carbone et de trouver des solutions écologiques pour répondre à la demande grandissante. Dans ce contexte, nous nous pencherons sur la partie électrique d'un avion, en nous appuyant sur l'Airbus A220-300.

Après avoir effectué différentes recherches sur le sujet, la **répartition électrique à bord de l'A220-300** est la suivante :

Répartition électrique à bord d'un A220-300					
Système de bord					
Navigation, communications,	30				
instruments de vol.					
Eclairage de la cabine	20				
Confort des passagers.	20				
Divertissement à bord	15				
Ecrans individuels, systèmes audio	15				
Climatisation et chauffage	10				
Température ambiante de l'appareil.	10				
Autres équipements	25				
Systèmes hydrauliques, mécaniques	25				

Notre solution se concentre principalement sur la partie « Eclairage de la cabine » et « Divertissement à bord », qui représentent environ 35 % des besoins énergétiques de l'avion.

L'objectif est de réduire ces besoins d'au moins **50** %, voire idéalement de **les éliminer complètement**.

» Figure 1 : Répartition électrique à bord d'un A220-300.

Notre projet envisage la création d'une housse, composée des éléments suivants :

Figure 2 : Vue en coupe de la solution (Housse).

<u>Principe</u>: Notre solution repose sur l'exploitation de la différence de température entre l'intérieur de l'avion et la « partie refroidissement » de la solution (alimentée par la température externe de l'avion). Grâce au module Seebeck, cette différence thermique générera un courant électrique qui alimentera une batterie. Pour finir, cette batterie fournira l'énergie nécessaire aux deux parties de l'avion mentionnées précédemment.

Cette solution présente à la fois des avantages et des inconvénients. Les voici :

Avantage(s)	Inconvénient(s)
Réduction de la consommation de carburant	Maintenance nécessaire
Diminution du poids de l'appareil (en supprimant certaines batteries)	Coût de la mise en place
S'adapte aux formes de l'utilisateur	Changement du système Seebeck tous les 2-3 ans
Peut-être changée/remplacée rapidement	
Réponds aux normes et aux enjeux environnementaux	

Figure 3 : Tableau des avantages et des inconvénients de la solution.

Expérience personnelle: Lors de ma première année à l'école d'ingénieur HEI Châteauroux, j'ai réalisé une étude similaire. Cependant, le dispositif devait être mis en place dans les gradins d'un stade de sport. En résumé, ce projet s'est avéré rentable, et il était possible d'alimenter un vestiaire pendant 2 heures avec 10 000 sièges équipés et utilisés le temps d'un match de football. Dans le contexte de l'aviation, ce dispositif serait encore plus rentable car le gradient de différence de température y serait plus élevé. De plus, la solution fonctionne aussi lorsqu'il est vide (tant qu'il y a une différence de température, le système fonctionnera).

<u>Conclusion</u>: Nous avons concentrés nos efforts sur les données disponibles pour l'A220-300. Cependant, le système a un potentiel plus vaste. Il est conçu pour s'adapter à n'importe quel type d'avion. Cette flexibilité nous permettra de répondre aux besoins spécifiques de l'industrie de l'aviation.

<u>Bibliographie :</u>

Informations	Combien de carburant consomme un avion ? (travelguys.fr)
sur l'Airbus	<u>L'avion électrique</u> : le rêve devient réalité Thales Group
A220-300 et	Un avion de ligne 100 % électrique a réalisé son premier vol (futura-sciences.com)
sur les avions	FR-Airbus-A220-Facts-and-Figures-February-2022.pdf
de manière	
générale.	A220-300 A220 Aircraft Airbus Aircraft
Informations	Effet Seebeck — Wikipédia (wikipedia.org)
concernant le	Effet Seebeck : Définition, Coefficient et Formule - Instrumentys
système	THERMODYNAMIQUE - Processus irréversibles linéaires : Couplage dans les solides -
Seebeck.	Encyclopædia Universalis

Etude de faisabilité similaire (Projet PISTE Junia HEI Châteauroux 2023- 2024).	En pièce jointe dans le mail. (Sous le nom : Rapport PISTE A2).	
	2	S.

USAIRE Student Awards 2024

Révolutionner l'aérospatiale avec l'énergie Seebeck d'ici 2040 ?

Le 12/08/2024

Résumé de ce rapport :

Ce rapport présente le développement d'une housse équipée d'un système basé sur l'effet Seebeck, destinée à convertir la chaleur corporelle des passagers en électricité. En exploitant la différence de température entre le corps humain et l'air ambiant, notre solution vise à améliorer l'efficacité énergétique des vols commerciaux.

SOMMAIRE

Sommaire	2
Introduction	2
Cadre et Périmètre du Projet	3
Analyse approfondie de notre solution	3
Module Seebeck: Conversion de la chaleur en électricité	3
Couche(s) thermoconductrice(s) : Assure une conductivité thermique optimale	5
Mousse : Protège contre les pertes de chaleur et assure le confort de l'utilisateur	6
Tissu : Offre une protection extérieure du système et regroupe celui-ci en un bloc	7
Partie refroidissement : Améliore les performances du système	8
Partie structure et câblage : Support, câblage et autres éléments intégrés	8
Synthèse du système	9
Normes et sécurité du système	10
Pistes d'améliorations	11
Conclusion	11

INTRODUCTION

Dans ce rapport de dix pages, **nous mettrons en lumière la solution** que nous avons présentée lors du One Pager. Avant de plonger dans l'analyse technique, nous rappellerons brièvement **la problématique et la solution proposée par notre équipe**.

La problématique qui nous a été soumise est la suivante :

« Proposez un projet spécifique et concret, assorti d'une analyse de rentabilité, qui, selon vous, bouleversera l'industrie aérospatiale d'ici 2040. »

À partir de cela, nous avons travaillé sur la problématique suivante :

« Révolutionner l'aérospatiale avec l'énergie Seebeck d'ici 2040 ? »

La solution proposée consiste en la création d'une housse, composée des éléments suivants :

Figure 1 : Décomposition des différentes parties de notre solution (One Pager).

Notre objectif est de récupérer l'énergie thermique générée par le corps humain, d'exploiter la différence de température et de la convertir en énergie électrique. Cette énergie sera ensuite stockée dans une batterie ou redistribuée pour réduire les besoins énergétiques de l'avion. Tout au long de ce rapport, nous examinerons en détail chaque composante de notre solution et la justifierons. Des illustrations et des exemples viendront appuyer nos arguments.

CADRE ET PERIMETRE DU PROJET

Notre projet se focalise sur **l'A220-300**, un avion d'exception **développé par Airbus**, **leader mondial** dans le secteur de l'**aéronautique**.

Voici quelques caractéristiques de l'A220-300 (ces données peuvent varier selon la compagnie aérienne choisie).

Informations sur l'A220-300 :							
Masse maxir	nale au décoll	67585	kg				
Nombr	e de siège ma	ximum	160	\setminus			
Poids r	noyen d'un pa	ssager	80	kg			
Durée de vol	théorique poι	ır simplifier le:	s calculs :				
Notre A220-3	00 fera 3 cycle	s de 6 heures	par jour avec ι	ıne pause de			
2 heures entr	e chaque sessi	on.					
Durée d	le vol sur une	journée	18	heures			
Durée	de vol sur une	année	6300	heures			
En prenant	en compte 35	0 jours dans l'a	année car on s	uppose 15			
jours de mo	aintenance lou	rde.					
Informations sur le siège de l'A220-300 (partie assise) :							
Longueur	45	cm	soit 0,45 m				
Largeur	43	cm	soit 0,43 m				

Figure 2 : Caractéristiques de l'A220-300.

ANALYSE APPROFONDIE DE NOTRE SOLUTION

Après un travail approfondi, nous vous présentons une **représentation 3D de notre solution**, réalisée avec **SolidWorks 2023**.

Figure 3 : Vue de haut et vue éclatée du système, avec identification des différentes parties.

Nous allons maintenant détailler les différentes sous-couches de notre système dans l'ordre suivant :

- Module Seebeck : Convertit la chaleur en électricité.
- **Couche(s) thermoconductrice(s) :** Assure une conductivité thermique optimale.
- **Mousse :** Protège contre les pertes de chaleur et assure le confort de l'utilisateur.
- Tissu : Offre une protection extérieure du système et regroupe celui-ci en un bloc.
- Partie refroidissement : Améliore les performances du système.
- Partie structure et câblage :

Enfin, une synthèse du système global conclura cette section.

Module Seebeck: Convertit la chaleur en électricité.

Le module Seebeck est au cœur de notre système, car il constitue la base de notre problématique. Pour maximiser l'efficacité de notre solution, nous avons exploré en détail le principe du Seebeck. Voici une synthèse de nos conclusions :

Principe du module Seebeck:

Le module Seebeck **convertit la chaleur en électricité** grâce à l'**effet thermoélectrique**. Lorsque deux matériaux conducteurs sont soumis à une différence de température, les électrons se déplacent du côté chaud vers le côté froid, générant ainsi une tension électrique. Ce phénomène permet d'exploiter les **gradients thermiques** pour **produire de l'énergie**.

Figure 4 : Principe du module Seebeck.

Nous avons constaté qu'il est possible de **fabriquer un module Seebeck** en combinant deux matériaux différents. Afin de déterminer la meilleure approche, nous avons comparé deux options : **créer notre propre module** ou **l'acheter dans le commerce**. Cette analyse, divisée en deux parties permet de visualiser clairement les différences entre ces alternatives.

Calculs comparatifs des modules Seebeck :

Pour cette comparaison, le tableau présente à gauche un module Seebeck commercialisé, et à droite un module Seebeck optimisé, fabriqué à partir des matériaux les plus rentables et accessibles. Les calculs ont été effectués en tenant compte des données générales suivantes :

Figure 5 : Données générales pour la partie calcul des modules Seebeck.

Partie calcul et comparaison de deux manières de procéder :

Cas n°1 : Module Seebeck Commercialisé	Cas n°2 : Module Seebeck Optimisé
Matériau 1 : Fer (coefficient Seebeck : +11,6 μV/K)	<u>Matériau 1 :</u> Sélénium (coefficient Seebeck : +900 μV/K)
<u>Matériau 2 :</u> Nickel (coefficient Seebeck : -8,5 μV/K)	Matériau 2 : Cérium (coefficient Seebeck : +13,6 μV/K)
Puissance générée par un module Seebeck :	Puissance générée par un module Seebeck :
$P = \frac{(S \times \Delta T)^2}{R}$	$P = \frac{(S \times \Delta T)^2}{R}$
$P = \frac{(100 \times 17)^2}{2} = 1,445 \mu W$	$P = \frac{(0.91 \times 17)^2}{2} = 120,609 \mu\text{W}$

Nombre de modules Seebeck dans un système :

Nous prenons une marge d'un module Seebeck de côté (0,04 m \times 0,04 m) par rapport à la surface d'assise du siège. Ainsi, nous avons les dimensions suivantes : (0,37 m \times 0,35 m \times 0,06 m).

Nous avons la possibilité de placer 9 modules Seebeck en longueur et 8 en largeur, soit un total de 72 modules Seebeck par siège. Nombre de modules Seebeck dans un A220-300 de 160 sièges : 160 × 72 = **11 520** modules Seebeck Puissance générée par un système : Puissance générée par un système : $1,445 \mu W \times 72 = 104,04 \mu W$ 120,609 μW × 72 = **8 683,85** μW Puissance générée avec 160 sièges équipés : Puissance générée avec 160 sièges équipés : $(8683,85 \mu W/10^6) \times 160 = 1,39 W$ $(104,04 \,\mu\text{W}/10^6) \times 160 = 0,02 \,\text{W}$ Calculs et résultats par rapport aux conditions de vol : Pour plus de détails, veuillez-vous référer à la partie « Cadre et périmètre du projet ». Puissance générée pour 18 heures de vol : Puissance générée pour 18 heures de vol : $0.02 \times 18 = 0.36 \text{ W}$ 1,39 × 18 = **25,02** W Puissance générée pour 6300 heures de vol : Puissance générée pour 6300 heures de vol : $0.02 \times 6300 = 126 \text{ W}$ 1,39 × 6300 = **8753,59** W Prix d'un module Seebeck : 9,22 € Prix d'un module Seebeck : 10,24 € Prix des modules Seebeck dans un système : Prix des modules Seebeck dans un système : 9,22 × 72 = **663,84** € 10,24 × 72 = **737,29** € Prix pour 160 sièges équipés : 106 214,4 € Prix pour 160 sièges équipés : 117 964.8 € Poids d'un module Seebeck : **35** g (soit 0,035 kg) Poids d'un module Seebeck: **55** g (soit 0,055 kg) Poids des modules Seebeck dans un système : Poids des modules Seebeck dans un système : $(35/1000) \times 72 = 2,52 \text{ kg}$ $(55/1000) \times 72 = 3,96 \text{ kg}$ Poids pour 160 sièges équipés : Poids pour 160 sièges équipés : $2,52 \text{ kg} \times 160 = 403,2 \text{ kg}$ $3,96 \text{ kg} \times 160 = 633,6 \text{ kg}$

Tableau 1 : Tableau comparatif entre le module Seebeck commercial et le module Seebeck personnalisé.

Pour nos calculs comparatifs, nous avons dimensionné les modules Seebeck en utilisant les mêmes dimensions, comme indiqué dans la figure en début de partie, afin de garantir une comparaison la plus efficace possible. Néanmoins, il serait largement plus avantageux d'opter pour un module Seebeck de plus grande taille. Une telle configuration réduirait le nombre de soudures entre les modules, entraînant ainsi une diminution des coûts et une augmentation de la quantité produite. De plus, un module de plus grande taille réduirait la résistance électrique, minimisant ainsi les pertes d'énergie lors du transfert vers la batterie ou vers son point d'utilisation.

Bien que le module Seebeck optimisé soit le plus onéreux, il offrirait une puissance supérieure, rendant le système plus rentable et efficace sur le long terme. En optimisant la résistance électrique, il est possible d'atteindre une rentabilité significative. Le potentiel complet de cette configuration sera détaillé dans la synthèse globale du système.

Couche(s) thermoconductrice(s): Assure une conductivité thermique optimale.

Nous avons décidé d'utiliser deux couches thermoconductrices fabriquées à partir d'un matériau spécifique afin de maintenir un environnement thermique stable pour nos modules Seebeck. Cette stabilité est essentielle, car elle réduit les variations de températures, améliorant ainsi l'efficacité globale des modules.

Pour identifier le matériau le plus approprié, nous avons effectué une analyse approfondie des options disponibles. Voici la synthèse des matériaux que nous avons répertoriés et évalués :

	Cuivre	Pad thermique	Gel thermique	Graphite	Aluminium	Graphène	Nom du matériau	Densité	Prix approximatif	Conductivité	
	Excellente			Bonne	Bon rapport	Conductivité thermique		(en kg/cm ³)	(en €/kg)	(en W/m.K)	
Avantages	conductivité thermique,	Léger.	Léger.	conductivité qualité/prix, bonne thermique, conductivité	4	extrêmement élevée, très	Cuivre	0,00896	23,51€	385	
	prix modéré.		prix très bas.	thermique. léger.	léger.	Pad thermique	0,0015	50,00€	1 et 10		
		Très faible	Très faible	Conductivité	Um mass miss become		Gel thermique	0,0025	100,00€	1 et 10	
Inconvénients	Relativement	conductivité	conductivité		Un peu plus lourd que le graphite et le graphène.	que le graphite et le	Prix élevé.	Graphite	0,0016	1,40 €	100 et 400
moonvements	lourd.	thermique, prix	thermique, très	variable.			T TIX CLOVE.	Aluminium	0,0027	0,79€	205
		non déterminé.	cher.		0 ,		Graphène	0,0022	29,15€	1500 et 5000	

Figure 6 : Synthèse sur les matériaux thermoconducteurs.

Dans la figure précédente, nous avons mis en orange les matériaux les plus rentables dans chaque catégorie : densité, prix et conductivité thermique. Nous avons ainsi pu comparer ces aspects pour sélectionner le matériau offrant le meilleur rapport qualité-prix. Voici la synthèse des résultats obtenus :

Les deux matériaux qui se distinguent le plus de cette synthèse sont le **graphite** et l'aluminium, en raison de leur **bonne conductivité thermique**, de leur **faible densité** et de leur **coût abordable**. Pour déterminer lequel de ces deux matériaux est le plus adapté à notre application, nous avons réalisé une étude comparative supplémentaire :

	Notre choix		
	Graphite	Aluminium	
Dbilis 4	Très durable et résistant à la corrosion.	Durable et résistant à la corrosion, mais	
Durabilité	rres durable et resistant à la corrosion.	moins que le graphite à long terme.	
Impacte écologique	Impact environnemental modéré.	Impact environnemental plus élevé.	
Accessibilité	Très accessible.	Très accessible.	
Datida ak damatak	Plus léger et moins dense que	Plus lourd et plus dense que	
Poids et densité	l'aluminium.	l'aluminium.	
Prix	Coût modéré (1,40 €).	Coût très faible (0,79 €).	

Figure 8 : Comparaison entre les deux matériaux les plus avantageux d'après nos recherches.

Pour les deux plaques thermoconductrices à intégrer dans notre système, le **graphite** s'avère être le **meilleur choix** en termes de **performances thermiques**, de **durabilité** et de **légèreté**, malgré un **coût légèrement supérieur** à celui de l'aluminium.

Mousse: Protège contre les pertes de chaleur et assure le confort de l'utilisateur.

La mousse est essentielle pour **limiter les pertes de chaleur** en maintenant un environnement chaud au-dessus du module Seebeck. Elle **contribue à stabiliser la température** en permettant à la chaleur de se maintenir, ce qui réduit les variations thermiques. Cette fonction est fondamentale non seulement pour **assurer des performances optimales des modules Seebeck**, mais aussi pour garantir le **confort des passagers**.

Contraintes identifiées pour la mousse :					
Environnement : Boisson renversée, température, frottements, usure de tout type.					
Confort de l'utilisateur.					
Accès pour maintenance : Assurer l'accès au système en cas de maintenance.					
Résistance au feu.					

Tableau 2 : Tableau des contraintes identifiées pour la mousse.

Pour répondre à ces exigences, nous avons examiné les différents types de mousse disponibles et avons élaboré la synthèse suivante :

Type(s) de mousse existar	nte(s):	Notre choix n°1		Notre choix n°2				
Mousse à mémoire de forme (viscoélastique)		Mousse à haute résilience (HR)		Mousse en latex		Mousse de polyuréthane		
Avantages	Inconvénients	Avantages	Inconvénients	Avantages	Inconvénients	Avantages	Inconvénients	
Confort	Retiens la chaleur (incofortable pour certaines personnes)	Confortable	Assez ferme	Naturelle	Prix élevé	Abordable	Dissipation de la chaleur dépend de l'épaisseur de la mousse	
Soutien ergonomique		Durable		Très respirante		Durable		
		Bon soutien		Bon soutien				
		Meilleure ventilation que Mousse à mémoire de forme		Bon confort				
				Excellente dissipation de la chaleur				

Figure 9 : Type(s) de mousse existante(s).

Les mousses à haute résilience et les mousses en polyuréthane sont nos choix privilégiés en raison de leurs nombreux avantages et de leurs rares inconvénients. Nous avons d'abord déterminé l'épaisseur optimale de chaque type de mousse identifié pour garantir le confort des passagers. La synthèse des résultats obtenus est la suivante :

Figure 10 : Dimensionnement de l'épaisseur de la mousse par type de mousse.

Dans la figure ci-dessus, la déformation relative représente la proportion de l'épaisseur initiale de la mousse qui se comprime sous une charge spécifiée. L'épaisseur déformée indique l'épaisseur résiduelle de la mousse après compression. Enfin, la résistance thermique mesure la capacité de la mousse à limiter le flux de chaleur à travers son épaisseur.

Tous les types de mousse identifiés assurent un bon transfert de chaleur tout en garantissant le confort du passager. Nous allons désormais les comparer en fonction de leur poids et de leur coût :

Après avoir effectué nos calculs, nous avons sélectionné une mousse en polyuréthane flexible. Ce choix est justifié par son efficacité à garantir le confort des passagers ainsi que par son coût et son poids, qui sont nettement inférieurs à ceux des autres types de mousse.

Tissu: Offre une protection extérieure du système et regroupe celui-ci en un bloc.

Le tissu joue un **rôle protecteur** tout en servant de **liant pour assembler l'ensemble du système** en un bloc cohérent. Nous avons pris en compte les contraintes identifiées pour la mousse, car elles sont également pertinentes pour le tissu. Toutefois, nous devons également veiller à faciliter l'entretien du tissu, assurer sa capacité à maintenir et relier les éléments du système, tout en prenant en compte le confort et l'esthétique.

Nous avons suivi une procédure similaire à celle utilisée pour la mousse pour sélectionner le tissu. Voici les différentes catégories de tissus existantes :

Notre choix n°1							
Tissu Néoprène		Tissu Polyester déperlant		Tissu Coton			
Avantages	Inconvénients	Avantages Inconvénients		Avantages	Inconvénients		
Bonne isolation thermique permettant de maintenir la différence de température nécessaire pour le module Seebeck	Poids lourd	Bonne protection contre les liquides	Ventilation faible ce qui pourrait créer une accumulation d'humidité si la housse reste trop longtemps dans un milieu liquide ou humide	Très confortable	Très peu durable dans le temps		
Durable dans le temps face à l'usure	Pas très respirant donc on peut avoir une accumulation de chaleur et d'humidité	Facilité d'entretien		Doux au toucher	Nécessite un traitement thermique pour améliorer ses propriétés d'isolation		
Souple et confortable		Durable dans le temps car protège de l'humidité		Hautement respirant			
		Léger et résistant		Facile à travailler			
		Coût très faible		40			

Figure 12 : Catégories de tissus.

À première vue, nous privilégions un tissu en polyester déperlant. Pour affiner notre choix, nous avons réalisé une étude comparative des prix et des masses de différents tissus disponibles sur le marché. Voici la synthèse des résultats obtenus :

D'après la synthèse précédente, un tissu déperlant en polyester de type extérieur apparaît comme le choix le plus avantageux en termes de coût. Toutefois, étant donné que la contrainte de poids est plus cruciale que le coût dans le contexte aéronautique, nous avons sélectionné un tissu polyester déperlant de type POLYGON noir.

Partie refroidissement : Améliore les performances du système.

Le système de refroidissement est essentiel pour **optimiser les performances de nos modules Seebeck**, ce qui **augmente la rentabilité** et **la production d'énergie**. À cette fin, nous avons examiné deux propositions :

	Proposition 1 : Système posé sur le siège	Proposition 2 : Système intégré avec déviation			
	existant	du réseau de climatisation			
Description	-Système posé sur le siège existantUtilise la différence de température entre le corps humain et l'air ambiant de l'avion.	- Système intégré dans les sièges de l'avionDéviation du réseau de climatisation pour refroidir la partie froide du module SeebeckIdéalement installé lors de la fabrication de l'avion.			
Avantages	-Simplicité d'installationAucun frais d'installation supplémentaireFlexibilité pour le déplacement ou le changement du système.	-Performance optimisée grâce à une température très froide sous le systèmeRéduction des coûts à long terme grâce à une meilleure intégration.			
Inconvénients	-Efficacité limitée en raison d'un faible gradient de température.	-Coût initial élevé en raison des frais d'installation et de modification du réseau de climatisation. -Moins de flexibilité pour le déplacement ou le changement du système.			
Illustration	Energie stockée ou directement utilisée Partie chaude (T+) Partie froide (T-) En gris foncé : Notre système.	Energie stockée ou directement utilisée Partie chaude (T+) Sorties de climatisation En gris foncé : Notre système.			
Calcul de rendement	$\Delta T = T_{chaud} - T_{froid}$ $\Delta T = 310,15 \text{ K} - 299,15 \text{K} = \textbf{11} \text{ K}$ $\textit{Voir partie module Seebeck pour comprendre}$ $\textit{l'importance de ce } \Delta T.$ $\underline{\textit{Rendement :}}$ $\text{Seebeck Commercial : 0,605 } \mu \text{W}$ $\text{Seebeck Personnalisé : 50,49 } \mu \text{W}$	$\Delta T = T_{chaud} - T_{froid}$ $\Delta T = 310,15 \text{ K} - 293,15 \text{ K} = \textbf{17} \text{ K}$ Voir partie module Seebeck pour comprendre l'importance de ce ΔT . $\underline{Rendement:}$ Seebeck Commercial: $\textbf{1,445} \ \mu\text{W}$ Seebeck Personnalisé: $\textbf{120,6} \ \mu\text{W}$			

Tableau 3 : Comparaison des deux propositions de refroidissement du système.

Nous avons choisi de privilégier la première proposition en raison de son coût inférieur et de sa simplicité d'évaluation en termes de prix et d'autres paramètres. Bien que la seconde proposition puisse offrir de meilleures performances et une rentabilité accrue, sa mise en œuvre présente des difficultés importantes pour quantifier les coûts. Ainsi, la première option s'avère être le choix le plus prudent.

Partie structure et câblage : Support, câblage et autres éléments intégrés.

Pour garantir le maintien, la sécurité, et l'accessibilité rapide de notre système, ainsi que pour assurer une redistribution efficace de l'énergie produite, il est nécessaire d'ajouter certains composants. Voici la liste de ces éléments :

Composant(s)	Description
Support	Permet de rendre notre housse rigide permettant de limiter l'usure de l'ensemble du système. Ce support est en matière PPS.
Grille de maintien	Permet de maintenir les plaques thermoconductrices et les modules Seebeck en place sur le support du système. La grille sera insérée dans une rainure et maintenue en position par la pression naturelle du tissu sur la mousse.
Câble à embout magnétique	Transfère l'énergie produite par le système vers une batterie intégrée dans l'avion ou directement distribuée dans les appareils nécessitant de l'énergie. Grâce à son embout magnétique, le risque de déconnexion ou d'endommagement du système en cas de forte traction est réduit.
Système de scratch/fermeture éclair	Facilite l'accès rapide aux différentes couches du système sans nécessiter le retrait du tissu déperlant. Le système fonctionne comme une housse pour une maintenance aisée.
Revêtement anti- dérapant Une bande recouvrira entièrement le dessous du support. La rugosité de couche permet au système de rester en place, même en cas de turbulenc offrant une adhérence accrue avec le poids du passager.	
Système anti-vol discret	Relie le système au siège pour éviter les manipulations non autorisées, en particulier par des enfants. Ce mécanisme discret assure la sécurité du système sans compromettre son accessibilité ou son intégrité.

Tableau 3 : Composants supplémentaires pour la bonne conception de notre système.

Pour conclure cette section, nous avons réalisé une estimation du poids et du coût des composants nécessaires précédents. Chaque ensemble de composants pèse environ **250 grammes**, ce qui représente **un poids total de 40 kg pour 160 sièges**. En ce qui concerne le coût, **le prix unitaire par ensemble est de 45 €**, soit **un coût total de 7 200 €** pour équiper l'ensemble de l'avion.

SYNTHESE DU SYSTEME

Dans cette section, nous allons présenter une synthèse de notre système et interpréter les résultats obtenus. Voici le résumé concernant les dimensions et son poids :

Figure 14 : Dimensions et données de notre système (synthèse).

Les données précédentes fournissent une vue d'ensemble, mais voici une synthèse plus détaillée en ce qui concerne le poids et le coût du système en fonction des deux cas étudiés :

Cas 1 : Module Seebeck co	mmercial (pour	un siège).		
Nom de la partie	Poids (en kg)	Poids (en %)	Prix <i>(en €)</i>	Prix (en %)
Partie tissu	0,06	1,6%	2,91€	0,4%
Partie mousse	0,52	13,8%	7,29€	1,0%
Partie Thermoconductrice	0,41	10,9%	0,58€	0,1%
Partie Module Seebeck	2,52	67,1%	663,84€	92,2%
Partie Structure/Câblage	0,25	6,7%	45,00€	6,3%
TOTAL	3,76	100%	719,62€	100%
Légende des diagrammes				
■ Partie tissu ■ Par	tie mousse	6,7% 13,	8%	6,3%
■ Partie Thermoconductrice ■ Par	tie Module Seebeck			V
■ Partie Support ■ Par	tie structure/Câblag	e	10,9%	V
		67,1%		92,2%

Figure 15 : Synthèse détaillée de la répartition du poids et des coûts du système.

La partie la plus onéreuse et la plus lourde de notre système est la partie « module Seebeck », une partie essentielle qui ne peut être négligée. Passons maintenant à l'analyse de la production d'énergie de ce système :

Figure 15 : Production d'énergie du système avec une résistance électrique de 2 Ω.

Pour 160 sièges équipés du système

Notre système produit donc au maximum 8,75 kW sur une période de 6 300 heures, ce qui peut sembler modeste mais reste non négligeable. Comme discuté dans la partie « Module Seebeck », une résistance électrique plus faible des modules améliore la rentabilité du système. Voici à nouveau les données avec une résistance électrique R de $0.1~\Omega$:

Figure 16 : Production d'énergie du système avec une résistance électrique de 0,1 Ω .

Les résultats précédents sont **nettement plus intéressants**, et le système serait **beaucoup plus rentable** à mettre en place. Pour conclure, **voici la synthèse de notre système**, accompagnée d'exemples permettant de visualiser plus facilement sa rentabilité tout en sachant que sa durée de vie est de 20 à 25 ans.

CAS 1 : Avec module Seebeck Commercial.		CAS 2 : Avec module Seebeck Optimisé.		
Prix du système pour 160 sièges : 115 139,2€		Prix du système pour 160 sièges : 126 939,2€		
Poids du système pour 160 sièges : 601,6 kg soit 7,5 personnes de 80 kg.		Poids du système pour 160 sièges : 832 kg soit 10,4 personnes de 80 kg.		
Production d'énergie (R = 2 Ω) en 6300 heures : 0,104 kW Avec un ΔT de 17 K.		Production d'énergie (R = 2 Ω) en 6300 heures : 8,75 kW Avec un ΔT de 17 K.		
Production d'énergie (R = 0,1 Ω) en 6300 heures : 2,097 kW		Production d'énergie (R = 0,1 Ω) en 6300 heures : 174,90 kW		
Nombre de téléphone pouvant être chargés avec 0,104 kW ==> 20 (pour 5 W de charge par téléphone)		Nombre de téléphone pouvant être chargés avec 8,75 kW ==> 1750 (pour 5 W de charge par téléphone)		
Nombre de téléphone pouvant être chargés avec 2,097 kW ==> 419 (pour 5 W de charge par téléphone)		Nombre de téléphone pouvant être chargés avec 174,90 kW ==> 34 981 (pour 5 W de charge par téléphone)		
Durée pendant laquelle nos systèmes peuvent compenser l'éclairage de la cabine (consommant 1,5 kWh) :		Durée pendant laquelle nos systèmes peuvent compenser l'éclairage de la cabine (consommant 1,5 kWh) :		
0 heures sur les 6 300 heures pour R = 2 Ω		6 heures sur les 6300 heures pour R = 2Ω		
1,39 heures sur les 6300 heures pour $R=2\Omega$		117 heures sur les 6 300 heures pour R = 2Ω		

Figure 17 : Synthèse finale.

NORMES ET SECURITE DU SYSTEME

Norme/Réglementation	Description		Tableau 4 : Normes et sécurité du système.
FAA FAR 25.853 (a) / EASA CS 25.853	Normes relatives à la flammabilité des matériaux utilisés en cabine.		Nos composants plastique seront en PPS et la mousse sera ignifugée.
ISO 2685	Norme sur la résistance des équipements et matériaux au feu dans les avions.	_	En théorie notre système est conforme, mais il faudra effectuer des tests dans la pratique.
DO-160G	Norme sur les exigences environnementales et de performance pour les équipements électroniques aéronautiques.		Conforme aux 26 sections de cette norme.
CS 25.1309 / FAR 25.1309	Exigences relatives à la sécurité fonctionnelle des systèmes électriques et électroniques.	/	Le câblage sera minutieux et les connexions seront le plus réduites possibles.
ISO 9001	Norme pour les systèmes de gestion de la qualité.		Conforme aux pratiques de gestion de la qualité et devra être certifié selon les
EASA Part 21 / FAR Part 21	Exigences pour la certification des produits aéronautiques.	<	procédures requises pour les équipements aéronautiques.
ISO 31000	Gestion des risques rigoureuse pour prévenir les incidents.	7	Prévoir un plan d'action sous forme d'organigramme en cas de défaillance du système.

Notre système devra se conformer à une succession de tests et de normes, dans le tableau précédent, on en retrouve une courte synthèse mais il en existe des centaines.

PISTES D'AMELIORATIONS

De nombreuses opportunités d'amélioration existent pour optimiser notre système. Voici les principales propositions que nous vous soumettons :

1. Extension au dossier du passager

Il serait intéressant d'étendre le système au niveau du dossier du passager en y intégrant des générateurs piézoélectriques. Ces générateurs seraient reliés à des ventilateurs situés dans un nouveau compartiment entre le siège de l'avion et le support du système. Lors des mouvements du passager, ces générateurs produiraient du courant pour alimenter les ventilateurs, améliorant ainsi le refroidissement des modules Seebeck.

2. Intégration de Modules Peltier

Nous pourrions intégrer des modules Peltier dans un nouvel étage du système. L'énergie produite par les modules Seebeck serait utilisée pour alimenter ces modules Peltier, qui peuvent générer du froid ou du chaud. Par conséquent, on distribuerait de l'énergie que l'on crée pour en créer davantage.

3. Utilisation de matériaux de récupération

Dans une démarche éco-responsable, il serait possible de fabriquer les modules Seebeck à partir des matériaux de récupération, mais cela s'applique aussi à l'ensemble du système. Cela inclurait l'utilisation de matériaux recyclés qui conservent des propriétés thermiques adéquates. On réduirait donc l'empreinte écologique du système et cela pourrait potentiellement réduire les coûts de production tout en conservant l'efficacité et la fiabilité du système. Nous pouvons aussi optimiser notre système en faisant des enlèvements de matière dans des endroits stratégiques.

4. Intégration d'un logiciel de suivi

Pour faciliter la maintenance et le contrôle des performances de nos systèmes, nous pourrions mettre en place un système de LED relié à une carte de programmation, elle-même connectée à un logiciel. Cela permettrait de suivre la production d'énergie de chaque système et de vérifier l'absence de défauts ou autres problèmes. La maintenance pourrait ainsi être effectuée rapidement, en remplaçant simplement les systèmes défaillants.

CONCLUSION

Notre rapport touche à sa fin. Nous avons pris un grand plaisir à travailler sur ce système et à explorer les différentes notions qui le composent. Nous avons proposé un système innovant qui répond à notre problématique et pourrait **potentiellement être mis en œuvre dans un avenir proche**. Bien qu'il soit **coûteux**, il reste assez **léger** et il produit de l'énergie de manière à charger une grande quantité de téléphones par exemple.

Nous avons démontré qu'un système avec une **résistance électrique de 0.1** Ω serait plus avantageux, même si sa réalisation est plus complexe. De plus, sa durée de vie estimée est assez importante (20 à 25 ans) et nécessiterait **très peu de maintenance**. Nous avons fait de notre mieux pour être aussi clairs et précis que possible en effectuant des recherches approfondies pour chaque partie de ce rapport. Cependant, il est difficile de comparer notre système à des systèmes existants, car aucun système connu n'est actuellement utilisé. Nous savons néanmoins que **les systèmes Seebeck sont principalement utilisés dans le domaine spatial**. Nous espérons que ce travail sera utile pour guider les prochaines étapes et **encourager l'innovation dans ce secteur**.

BIBLIOGRAPHIE

Informations sur	A220-300 A220 Aircraft Airbus Aircraft
l'Airbus A220-300.	Airbus A220 - Wikipedia
Informations concernant la partie "Seebeck".	Thermoelectric effect - Wikipedia
	N2_3_Article_Menu.pdf (samuelniang.eu)
	THERMODYNAMIQUE - Processus irréversibles linéaires : Couplage dans les solides - Encyclopædia Universalis
Seebeck.	Microsoft Word - 07 module Peltier.doc (enspsp.gitlab.io)
	Thermal conduction - Wikipedia
	Copper - Wikipedia
	Thermal paste - Wikipedia
Informations	Gel thermique - Gravic Group
concernant la partie	Graphite Wikipedia
"Couche(s)	Aluminium - Wikipedia
thermoconductrice(s)".	Graphene - Wikipedia
	Graphite Formule, propriétés et application (material-properties.org)
	L'impact environnemental de l'aluminium Reynaers Aluminium
	Cycle de vie et recyclage - Aluminium France : la fédération professionnelle de l'aluminium en France
	La classification de mousses et leurs utilisations (boutiquedutapissier.fr)
	Les types de mousses : Mousses HR, mousses polyether, qualités de mousse. Mousse confort (Hénin-Beaumont - Pas-de-
	calais)
Informations	<u>Découpe de mousse sur mesures Morel mousse (morel-mousse.fr)</u>
concernant la partie	Mousse coussin Aéronautique Celso
"Mousse".	Memory Foam – A Complete Guide [What is Memory Foam, Types & How it Works] (memoryfoamlab.com)
	<u>Dunlop Latex Foam - Uses, Firmness, Weight, Longevity FoamOnline</u>
	Polyurethane Foam Properties Technical Foam Services
	(PDF) IMPLEMENTATION OF TPSA IN THE MATHEMATICA CODE LieMath (researchgate.net)
Informations	<u>Les différents types de tissus : guide complet – Mister Tissu</u>
concernant la partie	Qu'est-ce que le Néoprène ? Caractéristiques, utilisation & entretien (nautisports.com)
"Tissu"	Polyester Déperlant : notre sélection de tissus Déperlant (mondialtissus.fr)
Tissu	<u>Le coton : tout savoir sur le coton, ses avantages, son entretien (aufeminin.com)</u>
Informations	Plastiques PPS - Propriétés et applications du polysulfure de phénylène MCG (mcam.com)
Informations concernant la partie "Structure et câblage".	Grillage maille très fine au meilleur prix Leroy Merlin
	Les avantages et les inconvénients des câbles de recharge magnétiques - Smart Choices - Primus - Quebec
	Revêtement Antidérapant Sud Antidérapant (sud-antiderapant.fr)
Informations concernant la partie	Plastique intérieur d'avion testés FAR 25.853 Ensinger (ensingerplastics.com)
	eCFR :: 14 CFR 25.853 Compartment interiors. (FAR 25.853)
	Equivalent Safety Finding on "Flammability Testing Hierarchy" on JAR/CS 25.853(a) - Applicable to certain Boeing models EASA (europa.eu)
	Norme internationale ISO 2685:1998 (afnor.org)
"Normes et sécurité du	RTCA DO-160G for Airborne Equipment DO-160 (do160.org)
système".	Deviation on CS 25.1301, 25.1302, 25.1309 and 25.1523 at Amendment 15 – User Defined Approaches EASA (europa.eu)
	ISO - ISO 31000 — Management du risque

Etude de faisabilité similaire	For all the desired and the small (Oncord to some Desired DIOTE AC)			
(Projet PISTE 2023-2024).	En pièce jointe dans le mail. (Sous le nom : Rapport PISTE A2).			
Cours du domaine aéronautique : Mécanique de vol, Conception d'avion, Matériaux, RDM, Normes et réglementation, Qualité, Electricité.				
Cours du domaine de pharmaceutique-cosmétique : Matériaux Polymères, Polymères pour la pharmaceutique-cosmétique, Qualité, Risques des				
installations industrielles.				
Fichier Excel Automatisé.	En pièce jointe dans le mail. (Sous le nom : Usaire – Fichier automatisé). Regroupe l'ensemble de nos			
	recherches et calculs effectués.			

