Sequential Quantile Prediction of Time Series. Joined work with Gérard Biau.

Benoît Patra, benoit.patra@lokad.com

JDS BORDEAUX, MAY 2009.

Time series prediction.

- Time series prediction has a long history (Yule, 1927).
- Parametric approaches (Until 70's).
- Recently non parametric approach.

Quantile forecasting.

Given a stochastic process Y_1, Y_2, \ldots

- Usually, estimate the conditional mean of Y_n given Y_1, \ldots, Y_{n-1} .
- Here: the conditional τ th quantile of Y_n given Y_1, \ldots, Y_{n-1} .

Time series prediction.

- Time series prediction has a long history (Yule, 1927).
- Parametric approaches (Until 70's).
- Recently non parametric approach.

Quantile forecasting.

Given a stochastic process Y_1, Y_2, \ldots

- Usually, estimate the conditional mean of Y_n given Y_1, \ldots, Y_{n-1} .
- Here: the conditional τ th quantile of Y_n given Y_1, \ldots, Y_{n-1} .

What for?

- Understand conditional distributions.
- $\tau = 0.5$ robust forecasting.
- Build confidence interval.

Applications fields.

- Finance: CVAR. Also biology, medecine, telecoms...
- Here: call volumes (optimize staff in a call center).

What for?

- Understand conditional distributions.
- $\tau = 0.5$ robust forecasting.
- Build confidence interval.

Applications fields.

- Finance: CVAR. Also biology, medecine, telecoms...
- Here: call volumes (optimize staff in a call center).

Figure: Quantile forecast with $\tau = 0.1, 0.9$.

Quantile Regression.

Conditional quantiles.

X multivariate random variable, Y real valued random variable,

$$q_{\tau}(X) \triangleq F_{Y|X}^{\leftarrow}(\tau) = \inf\{t \in \mathbb{R} : F_{Y|X}(t) \geq \tau\}.$$

 $F_{Y|X}$ conditional cumulative distribution function.

Proposition (Koenker, 2005)

$$q_{ au}(X) \in \operatorname*{argmin}_{q(.) \in \mathbb{R}} \mathbb{E}_{\mathbb{P}_{Y|X}} \left[\rho_{ au} \left(\mathbf{Y} - q(X) \right) \right].$$

Quantile Regression.

Conditional quantiles.

X multivariate random variable, Y real valued random variable,

$$q_{\tau}(X) \triangleq F_{Y|X}^{\leftarrow}(\tau) = \inf\{t \in \mathbb{R} : F_{Y|X}(t) \geq \tau\}.$$

 $F_{Y|X}$ conditional cumulative distribution function.

Proposition (Koenker, 2005)

$$q_{\tau}(X) \in \operatorname*{argmin}_{q(.) \in \mathbb{R}} \mathbb{E}_{\mathbb{P}_{Y|X}} \left[\rho_{\tau} \left(\frac{Y}{Y} - q(X) \right) \right].$$

Figure: Pinball function graph.

On line

- Consider the sequential (= on-line) quantile prediction of time series.
- Including series that do not necessarily satisfy classical statistical assumptions for bounded, mixing or Markovian process.

Goal.

Show consistency results under a minimum of hypotheses.

Notation

- $y_1^n = (y_1, ..., y_n)$ real sequence.
- $Y_1^n = (Y_1, \dots, Y_n)$ random variables sequence.

On line.

- Consider the sequential (= on-line) quantile prediction of time series.
- Including series that do not necessarily satisfy classical statistical assumptions for bounded, mixing or Markovian process.

Goal.

Show consistency results under a minimum of hypotheses.

Notation

- $y_1^n = (y_1, ..., y_n)$ real sequence.
- $Y_1^n = (Y_1, \dots, Y_n)$ random variables sequence.

On line.

- Consider the sequential (= on-line) quantile prediction of time series.
- Including series that do not necessarily satisfy classical statistical assumptions for bounded, mixing or Markovian process.

Goal.

Show consistency results under a minimum of hypotheses.

Notation

- $y_1^n = (y_1, \dots, y_n)$ real sequence.
- $Y_1^n = (Y_1, \dots, Y_n)$ random variables sequence.

On line.

- Consider the sequential (= on-line) quantile prediction of time series.
- Including series that do not necessarily satisfy classical statistical assumptions for bounded, mixing or Markovian process.

Goal.

Show consistency results under a minimum of hypotheses.

Notation.

- $y_1^n = (y_1, \dots, y_n)$ real sequence.
- $Y_1^n = (Y_1, \dots, Y_n)$ random variables sequence.

Framework.

- Here, we observe a string realization y_1^{n-1} of a stationary and ergodic process $\{Y_n\}_{-\infty}^{\infty}$...
- ... and try to estimate $q_{\tau}(y_1^{n-1}) = F_{Y_n|Y_1^{n-1}=y_1^{n-1}}^{\leftarrow}(\tau)$, the conditional quantile at time n.

Strategy

Sequence $g = \{g_n\}_{n=1}^{\infty}$ of τ th quantile forecasting functions

$$g_n: \mathbb{R}^{n-1} \longrightarrow \mathbb{R}$$

Quantile estimation at time *n* is $g_n(y_1^{n-1})$.

Framework.

- Here, we observe a string realization y_1^{n-1} of a stationary and ergodic process $\{Y_n\}_{-\infty}^{\infty}$...
- ... and try to estimate $q_{\tau}(y_1^{n-1}) = F_{Y_n|Y_1^{n-1}=y_1^{n-1}}^{\leftarrow}(\tau)$, the conditional quantile at time n.

Strategy.

Sequence $g = \{g_n\}_{n=1}^{\infty}$ of τ th quantile forecasting functions

$$g_n: \mathbb{R}^{n-1} \longrightarrow \mathbb{R}$$
.

Quantile estimation at time *n* is $g_n(y_1^{n-1})$.

Errors.

Empirical measure criterion.

At time *n* the cumulative pinball error of the strategy *g* is

$$L_n(g) = \frac{1}{n} \sum_{t=1}^n \rho_\tau \left(\mathbf{y}_t - g_t(\mathbf{y}_1^{t-1}) \right).$$

A fundamental limit (Algoët, 1994).

For any stationary and ergodic process $\{Y_n\}_{n=-\infty}^{+\infty}$,

$$\liminf_{n\to\infty} L_n(g) \geq L^*$$
 a.s.,

where

$$\mathcal{L}^{\star} = \mathbb{E}\left[\min_{q(.)} \mathbb{E}_{\mathbb{P}_{Y_0|Y_{-\infty}^{-1}}}\left[
ho_{ au}\left(Y_0 - q(Y_{-\infty}^{-1})
ight)
ight]
ight]$$

Errors.

Empirical measure criterion.

At time n the cumulative pinball error of the strategy g is

$$L_n(g) = \frac{1}{n} \sum_{t=1}^n \rho_\tau \left(\mathbf{y}_t - g_t(\mathbf{y}_1^{t-1}) \right).$$

A fundamental limit (Algoët, 1994).

For any stationary and ergodic process $\{Y_n\}_{n=-\infty}^{+\infty}$,

$$\liminf_{n\to\infty} L_n(g) \geq L^*$$
 a.s.,

where

$$L^\star = \mathbb{E}\left[\min_{q(.)} \mathbb{E}_{\mathbb{P}_{\mathbf{Y_0}|Y_{-\infty}^{-1}}}\left[
ho_ au\left(\mathbf{Y_0} - q(\mathbf{Y_{-\infty}^{-1}})
ight)
ight]
ight].$$

A NN based aggregation scheme.

On line learning.

Scheme inspired from prediction of individual sequences.

Reference: Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and Games, Cambridge University Press, New York, 2006.

Previous works.

- Sequential prediction of bounded time series. Györfi, Lugosi, 2001.
- ... portfolio optimization. Györfi, Lugosi, 2006.
- ... prediction of time series (fourth moment). Biau, Beakley, Györfi, Ottucsàk, 2009.

A NN based aggregation scheme.

On line learning.

Scheme inspired from prediction of individual sequences.

Reference: Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and Games, Cambridge University Press, New York, 2006.

Previous works.

- Sequential prediction of bounded time series. Györfi, Lugosi, 2001.
- ... portfolio optimization. Györfi, Lugosi, 2006.
- ... prediction of time series (fourth moment). Biau, Beakley, Györfi, Ottucsàk, 2009.

A NN based aggregation scheme.

On line learning.

Scheme inspired from prediction of individual sequences.

Reference: Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and Games, Cambridge University Press, New York, 2006.

Previous works.

- Sequential prediction of bounded time series. Györfi, Lugosi, 2001.
- ... portfolio optimization. Györfi, Lugosi, 2006.
- ... prediction of time series (fourth moment). Biau, Beakley, Györfi, Ottucsàk, 2009.

Nearest neighbors strategy.

Elementary predictors.

• Define infinite array of experts $h_n^{(k,\ell)}$: $k, \ell = 1, 2, ...$

Each expert has a job.

• At time n, expert $h_n^{(k,\ell)}$ searches for the $\bar{\ell}$ nearest neighbors of length k.

Nearest neighbors strategy.

Elementary predictors.

• Define infinite array of experts $h_n^{(k,\ell)}$: $k,\ell=1,2,...$

Each expert has a job.

• At time n, expert $h_n^{(k,\ell)}$ searches for the $\bar{\ell}$ nearest neighbors of length k.

1,34	1,78	2,56	1,88	0,57	-1,25	0,19	3,18	4,13	2,22	1,34	0,26	-1,90	-2,29	0,88	1,28	3,31	4,12	5,15	3,31
2,27	2,89	2,12	1,78	2,67	-3,16	0,01	1,16	5,17	6,17	7,18	9,10	8,18	7,16	6,17	5,15	3,14	2,18	1,18	0,99
0,10	1,15	2,17	3,72	-1,71	6,39	5,16	3,13	1,89	0,90	0,91	0,11	-0,20	1,89	2,84	3,92	2,99	2,21	1,73	?

Figure: Work of fundamental expert with k = 3 and $\bar{\ell} = 4$.

1,34	1,78	2,56	1,88	0,57	-1,25	0,19	3,18	4,13	2,22	1,34	0,26	-1,90	-2,29	0,88	1,28	3,31	4,12	5,15	3,31
2,27	2,89	2,12	1,78	2,67	-3,16	0,01	1,16	5,17	6,17	7,18	9,10	8,18	7,16	6,17	5,15	3,14	2,18	1,18	0,99
0,10	1,15	2,17	3,72	-1,71	6,39	5,16	3,13	1,89	0,90	0,91	0,11	-0,20	1,89	2,84	3,92	2,99	2,21	1,73	?

2,99 2,21 1,73 ?

1,34	1,78	2,56	1,88	0,57	-1,25	0,19	3,18	4,13	2,22	1,34	0,26	-1,90	-2,29	0,88	1,28	3,31	4,12	5,15	3,31
2,27	2,89	2,12	1,78	2,67	-3,16	0,01	1,16	5,17	6,17	7,18	9,10	8,18	7,16	6,17	5,15	3,14	2,18	1,18	0,99
0,10	1,15	2,17	3,72	-1,71	6,39	5,16	3,13	1,89	0,90	0,91	0,11	-0,20	1,89	2,84	3,92	2,99	2,21	1,73	?

1,34	1,78	2,56	1,88	0,57	-1,25	0,19	3,18	4,13	2,22	1,34	0,26	-1,90	-2,29	0,88	1,28	3,31	4,12	5,15	3,31
2,27	2,89	2,12	1,78	2,67	-3,16	0,01	1,16	5,17	6,17	7,18	9,10	8,18	7,16	6,17	5,15	3,14	2,18	1,18	0,99
0,10	1,15	2,17	3,72	-1,71	6,39	5,16	3,13	1,89	0,90	0,91	0,11	-0,20	1,89	2,84	3,92	2,99	2,21	1,73	?

1,34	1,78	2,56	1,88	0,57	-1,25	0,19	3,18	4,13	2,22	1,34	0,26	-1,90	-2,29	0,88	1,28	3,31	4,12	5,15	3,31
2,27	2,89	2,12	1,78	2,67	-3,16	0,01	1,16	5,17	6,17	7,18	9,10	8,18	7,16	6,17	5,15	3,14	2,18	1,18	0,99
0,10	1,15	2,17	3,72	-1,71	6,39	5,16	3,13	1,89	0,90	0,91	0,11	-0,20	1,89	2,84	3,92	2,99	2,21	1,73	?

1,34	1,78	2,56	1,88	0,57	-1,25	0,19	3,18	4,13	2,22	1,34	0,26	-1,90	-2,29	0,88	1,28	3,31	4,12	5,15	3,31
2,27	2,89	2,12	1,78	2,67	-3,16	0,01	1,16	5,17	6,17	7,18	9,10	8,18	7,16	6,17	5,15	3,14	2,18	1,18	0,99
0,10	1,15	2,17	3,72	-1,71	6,39	5,16	3,13	1,89	0,90	0,91	0,11	-0,20	1,89	2,84	3,92	2,99	2,21	1,73	?

1,34	1,78	2,56	1,88	0,57	-1,25	0,19	3,18	4,13	2,22	1,34	0,26	-1,90	-2,29	0,88	1,28	3,31	4,12	5,15	3,31
2,27	2,89	2,12	1,78	2,67	-3,16	0,01	1,16	5,17	6,17	7,18	9,10	8,18	7,16	6,17	5,15	3,14	2,18	1,18	0,99
0,10	1,15	2,17	3,72	-1,71	6,39	5,16	3,13	1,89	0,90	0,91	0,11	-0,20	1,89	2,84	3,92	2,99	2,21	1,73	?

Prediction and Aggregation.

Prediction of one expert.

$$h_n^{(k,\ell)}(y_1^{n-1}) = \underset{q \in \mathbb{R}}{\operatorname{argmin}} \sum_{\{t \in J_n^{(k,\ell)}\}} \rho_{\tau}(y_t - q).$$

[Can be easily computed by sorting the sample.]

Aggregated prediction of all experts.

$$g_n(y_1^{n-1}) = \sum_{k,\ell=1}^{\infty} \rho_{k,\ell,n} h_n^{(k,\ell)}(y_1^{n-1}).$$

Where do the $p_{k,\ell,n}$ come from?

Exponentially weight the experts based on their past performance.

Prediction and Aggregation.

Prediction of one expert.

$$h_n^{(k,\ell)}(y_1^{n-1}) = \underset{q \in \mathbb{R}}{\operatorname{argmin}} \sum_{\{t \in J_n^{(k,\ell)}\}} \rho_{\tau}(y_t - q).$$

[Can be easily computed by sorting the sample.]

Aggregated prediction of all experts.

$$g_n(y_1^{n-1}) = \sum_{k,\ell=1}^{\infty} \rho_{k,\ell,n} h_n^{(k,\ell)}(y_1^{n-1}).$$

Where do the $p_{k,\ell,n}$ come from?

Exponentially weight the experts based on their past performance.

Prediction and Aggregation.

Prediction of one expert.

$$h_n^{(k,\ell)}(y_1^{n-1}) = \underset{q \in \mathbb{R}}{\operatorname{argmin}} \sum_{\{t \in J_n^{(k,\ell)}\}} \rho_{\tau}(y_t - q).$$

[Can be easily computed by sorting the sample.]

Aggregated prediction of all experts.

$$g_n(y_1^{n-1}) = \sum_{k,\ell=1}^{\infty} {}_{p_{k,\ell,n}} h_n^{(k,\ell)}(y_1^{n-1}).$$

Where do the $p_{k,\ell,n}$ come from?

Exponentially weight the experts based on their past performance.

Definitions.

- Let $\{q_{k,\ell}\}$ be a probability distribution over all pairs (k,ℓ) of positive integers such that $q_{k,\ell} > 0$ for all (k,ℓ) .
- For $\eta_n > 0$, we define the weights

$$W_{k,\ell,n} = q_{k,\ell} e^{-\eta_n(n-1)L_{n-1}(h_n^{(k,\ell)})}.$$

• We normalize these weights:

$$p_{k,\ell,n} = \frac{w_{k,\ell,n}}{\sum_{i,j=1}^{\infty} w_{i,j,n}}.$$

$$g_n(y_1^{n-1}) = \sum_{k,\ell=1}^{\infty} {\color{red}p_{k,\ell,n}} h_n^{(k,\ell)}(y_1^{n-1}).$$

Definitions.

- Let $\{q_{k,\ell}\}$ be a probability distribution over all pairs (k,ℓ) of positive integers such that $q_{k,\ell} > 0$ for all (k,ℓ) .
- For $\eta_n > 0$, we define the weights

$$W_{k,\ell,n} = q_{k,\ell} e^{-\eta_n(n-1)L_{n-1}(h_n^{(k,\ell)})}.$$

• We normalize these weights:

$$p_{k,\ell,n} = \frac{w_{k,\ell,n}}{\sum_{i,j=1}^{\infty} w_{i,j,n}}.$$

$$g_n(y_1^{n-1}) = \sum_{k,\ell=1}^{\infty} \rho_{k,\ell,n} h_n^{(k,\ell)}(y_1^{n-1}).$$

Definitions.

- Let $\{q_{k,\ell}\}$ be a probability distribution over all pairs (k,ℓ) of positive integers such that $q_{k,\ell} > 0$ for all (k,ℓ) .
- For $\eta_n > 0$, we define the weights

$$W_{k,\ell,n} = q_{k,\ell} e^{-\eta_n(n-1)L_{n-1}(h_n^{(k,\ell)})}.$$

• We normalize these weights:

$$p_{k,\ell,n} = \frac{w_{k,\ell,n}}{\sum_{i,j=1}^{\infty} w_{i,j,n}}.$$

$$g_n(y_1^{n-1}) = \sum_{k,\ell=1}^{\infty} \mathbf{p}_{k,\ell,n} h_n^{(k,\ell)}(y_1^{n-1}).$$

Definitions.

- Let $\{q_{k,\ell}\}$ be a probability distribution over all pairs (k,ℓ) of positive integers such that $q_{k,\ell} > 0$ for all (k,ℓ) .
- For $\eta_n > 0$, we define the weights

$$W_{k,\ell,n} = q_{k,\ell} e^{-\eta_n(n-1)L_{n-1}(h_n^{(k,\ell)})}.$$

• We normalize these weights:

$$p_{k,\ell,n} = \frac{w_{k,\ell,n}}{\sum_{i,j=1}^{\infty} w_{i,j,n}}.$$

$$g_n(y_1^{n-1}) = \sum_{k,\ell=1}^{\infty} {}_{p_{k,\ell,n}} h_n^{(k,\ell)}(y_1^{n-1}).$$

Theoretical Results.

Theorem

- Let ${\mathcal C}$ be the class of all jointly stationary and ergodic processes $\{Y_n\}_{-\infty}^{\infty}$ such that $\mathbb{E}\{Y_0^2\}<\infty$ and $F_{Y_0|Y_{-\infty}^{-1}}$ is a.s. increasing.
- Then the nearest neighbor quantile forecasting strategy is universally consistent with respect to the class \mathcal{C} , that is, for all process $Y \in \mathcal{C}$

$$\lim_{n\to\infty} L_n(g) = L^*$$
 almost surely.

Theoretical Results.

Theorem

- Let ${\mathcal C}$ be the class of all jointly stationary and ergodic processes $\{Y_n\}_{-\infty}^{\infty}$ such that $\mathbb{E}\{Y_0^2\}<\infty$ and $F_{Y_0|Y_{-\infty}^{-1}}$ is a.s. increasing.
- Then the nearest neighbor quantile forecasting strategy is universally consistent with respect to the class C, that is, for all process $Y \in C$

$$\lim_{n \to \infty} L_n(g) = L^{\star}$$
 almost surely.

Experimental results.

Call center data set.

- Daily call volumes entering a call center.
- Long series between 382 and 826 time values. 21 series.

Future outcome predictions results.

 $\tau = 0.5$ median base forecaster : robustness.

Model Name	Avg Abs Error	Avg Sqr Error	Mape (%)
<i>AR</i> (7)	65.80	9738	31.6
<i>QAR</i> (8) _{0.5}	57.8	9594	24.9
DayOfTheWeekMean	53.95	7099	22.8
HoltWinters	49.84	6025	21.5
QuantileExpertMixture _{0.5}	48.1	5731	21.6
MeanExpertMixture	52.37	6536	22.3
MA	179	62448	0.52

Figure: Forecasting future outcomes.

Quantile forecasting.

Model Name	PinBall Loss (0.1)	Ramp Loss
QuantileExpertMixture _{0.1}	13.71	0.80
<i>QAR</i> (7) _{0.1}	13.22	0.88

Figure: $\tau = 0.1$

Model Name	PinBall Loss (0.9)	Ramp Loss
QuantileExpertMixture _{0.9}	12.27	0.07
$QAR(7)_{0.9}$	19.31	0.07

Figure: $\tau = 0.9$

Quantile forecasting.

Model Name	PinBall Loss (0.1)	Ramp Loss
QuantileExpertMixture _{0.1}	13.71	0.80
<i>QAR</i> (7) _{0.1}	13.22	0.88

Figure: $\tau = 0.1$

Model Name	PinBall Loss (0.9)	Ramp Loss
QuantileExpertMixture _{0.9}	12.27	0.07
<i>QAR</i> (7) _{0.9}	19.31	0.07

Figure: $\tau = 0.9$

Questions?