

RESOLUÇÃO DE PROBLEMAS COM LÓGICA MATEMÁTICA

2023

Manipulação Sintática

Regras para manipulação e substituição:

• São princípios que permitem a obtenção de fórmulas proposicionais equivalentes a uma fórmula dada, através da substituição de suas subfórmulas.

A fórmula substituída deve ser EQUIVALENTE à fórmula original.

Seja A uma fórmula que contém as variáveis p_1 , p_2 , ..., p_n . Se A é uma tautologia, então a fórmula B, obtida pela substituição de p_1 , ..., p_n por fórmulas A_1 , ..., A_n , é uma tautologia.

Dada uma fórmula *H*, suas subfórmulas são definidas por:

- H é uma subfórmula de H.
- Se H = ¬p, então p é uma subfórmula de H.
- Se H é uma fórmula do tipo: (q ∧ r), (q ∨ r), (q → r) ou (q ↔ r), então q e r são subfórmulas de H.
- Se G é uma subfórmula de H, então toda subfórmula de G é subfórmula de H.

Quais são as subfórmulas?

Exemplos:

a)
$$H = (\neg p \land q)$$

b)
$$G = ((p \leftrightarrow q) \lor \neg r)$$

Quais são as subfórmulas?

Exemplos:

a)
$$H = (\neg p \land q)$$

 $\{\neg p \land q, \neg p, q, p\}$ 4 subformulas!

b)
$$G = ((p \leftrightarrow q) \lor \neg r)$$

Quais são as subfórmulas?

Exemplos:

a)
$$H = (\neg p \land q)$$

 $\{\neg p \land q, \neg p, q, p\}$ 4 subfórmulas!

b)
$$G = ((p \leftrightarrow q) \lor \neg r)$$

 $\{(p \leftrightarrow q) \lor \neg r, p \leftrightarrow q, \neg r, p, q, r\}$ 6 subformulas!

1)
$$(A \rightarrow B) \equiv (\neg A \lor B)$$

Р	Q	$P \rightarrow Q$	~P	~P v Q
V	V	V	F	V
V	F	F	F	F
F	V	V	V	V
F	F	V	V	V

"Se você fizer isto, então irá se arrepender."

"Não faça isto ou irá se arrepender."

 $o \rightarrow c$

~p ∨ q

De acordo com a lógica proposicional, a frase que é equivalente a: "Se Marcos estudou, então foi aprovado" é:

- (A) Marcos não estudou e foi aprovado.
- (B) Marcos não estudou e não foi aprovado.
- (C) Marcos estudou ou não foi aprovado.
- (D) Marcos estudou se, e somente se, foi aprovado.
- (E) Marcos não estudou ou foi aprovado.

2)
$$(A \rightarrow B) \equiv \neg (A \land \neg B)$$

3)
$$(A \leftrightarrow B) \equiv (A \rightarrow B) \land (B \rightarrow A)$$

4)
$$(A \underline{\vee} B) \equiv \neg (A \longleftrightarrow B) \equiv (A \vee B) \land \neg (A \land B)$$

5)
$$(A \uparrow B) \equiv \neg (A \land B) \equiv (\neg A \lor \neg B)$$

Negação disjunta: ↑

$$p \uparrow q \equiv \neg p \ V \neg q$$

$$\sim p \uparrow q \equiv$$

$$\sim (p \uparrow q) \equiv$$

$$\sim p \uparrow \sim q \equiv$$

5)
$$(A \uparrow B) \equiv \neg (A \land B) \equiv (\neg A \lor \neg B)$$

Negação disjunta: ↑

$$p \uparrow q \equiv \neg p \ V \neg q$$

$$\sim p \uparrow q \equiv \sim p V \sim q \text{ ou seja } p V \sim q$$

$$\sim$$
(p \(\gamma\) q) \(\epsi\) \(\sim(\sigma\)

$$p \uparrow q \equiv p V q$$
 ou seja p V q

6)
$$(A \downarrow B) \equiv \neg (A \lor B) \equiv (\neg A \land \neg B)$$

Negação conjunta: ↓

$$p \downarrow q \equiv \neg p \land \neg q$$

$$\sim p \downarrow q \equiv$$

$$\sim (p \downarrow q) \equiv$$

6)
$$(A \downarrow B) \equiv \neg (A \lor B) \equiv (\neg A \land \neg B)$$

Negação conjunta: ↓

$$p \downarrow q \equiv \neg p \land \neg q$$

$$\sim p \downarrow q \equiv \sim \sim p \land \sim q$$
 ou seja $p \land \sim q$

$$\sim (p \downarrow q) \equiv \sim (\sim p \land \sim q)$$

$$p \downarrow q \equiv p \land q$$
 ou seja $p \land q$

7)
$$\neg A \equiv (A \uparrow A) \equiv (A \downarrow A)$$

8) $(A \land B) \equiv ((A \downarrow A) \downarrow (B \downarrow B))$
9) $(A \lor B) \equiv ((A \uparrow A) \uparrow (B \uparrow B))$

Princípio da Dualidade

Definição de dualidade:

- Dada uma proposição composta P formada, exclusivamente, pelos conectivos { ¬, ∧, ∨ }, mas não necessariamente todos.
- A proposição DUAL de P, chamada de P', se dá pela troca dos conectivos ∨ por ∧ e ∧ por ∨.

A fórmula dual de $\neg((p \land q) \lor \neg r)$ é $\neg((p \lor q) \land \neg r)$

Princípio da Dualidade

Definição do Princípio de Dualidade:

• Se A e B são fórmulas equivalentes que contêm no máximo os conectivos $\{\neg, \land, \lor\}$, então as duais respectivas A' e B' também são equivalentes.

a)
$$p \land (p \lor q) \equiv p$$

 $p \lor (p \land q) \equiv p$

$$p \vdash \land q \vdash \equiv (p \lor q) \vdash (q \lor p \lor q) \vdash (p \land q) \vdash (p \land q) \vdash (p \land q) \vdash (p \land q) \vdash (q \lor q)$$

Princípio da Dualidade

Onde aplicar o Princípio de Dualidade na lógica matemática?

- 1. Teoria dos Conjuntos: O Princípio da Dualidade é aplicado na teoria dos conjuntos para estabelecer relações de dualidade entre afirmações envolvendo a união e interseção de conjuntos. Por exemplo, se uma afirmação é verdadeira para a união de conjuntos, sua dualidade pode ser obtida substituindo a união pela interseção e os elementos verdadeiros por falsos, e vice-versa.
 - 2. Álgebra de Boole: O Princípio da Dualidade é aplicado na álgebra de Boole, que é uma forma de álgebra utilizada em lógica digital e projeto de circuitos eletrônicos. Ele permite estabelecer relações de dualidade entre as operações lógicas de "E" (AND) e "OU" (OR), bem como entre as constantes "0" e "1", que representam os valores falsos e verdadeiros, respectivamente, em lógica booleana.
- 3. Projeto de Circuitos Lógicos O Princípio da Dualidade é aplicado no projeto de circuitos lógicos para simplificar a implementação de circuitos e reduzir o número de portas lógicas necessárias. Por exemplo, é possível obter uma versão dual de um circuito, trocando as operações "E" por "OU" e vice-versa, e invertendo as entradas e saídas do circuito.

Propriedades

São características específicas de cada conectivo lógico.

Propriedades dos Conectivos:							
1. Comutativa:	$(A \lor B) \equiv (B \lor A)$	$(A \wedge B) \equiv (B \wedge A)$					
2. Associativa:	$(A \lor B) \lor C \equiv A \lor (B \lor C)$	$(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$					
3. Distributiva:	$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$	$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$					
4.Identidade	$(A \vee F) \equiv A$	$(A \wedge V) \equiv A$					
(elemento neutro):							
5. Complementativas	$(A \lor V) \equiv V$	$(A \wedge F) \equiv F$					
(elem. absorvente):							
6. De Morgan:	$\neg (A \lor B) \equiv (\neg A \land \neg B)$	$\neg (A \land B) \equiv (\neg A \lor \neg B)$					
7. Idempotentes:	$(A \lor A) \equiv A$	$(A \wedge A) \equiv A$					
8. Dupla Negação:	$A \equiv \neg \neg A$						
9. Absorção:	$A \vee (A \wedge B) \equiv A$	$A \wedge (A \vee B) \equiv A$					
10. Contraposição:	$(A \rightarrow B) \equiv (\neg B \rightarrow \neg A)$						
11. Prova Condicional:	$A \rightarrow (B \rightarrow C) \equiv (A \land B) \rightarrow C$						
12. Tautologia:	$(A \lor \neg A) \equiv V$						
13. Contradição:	$(A \land \neg A) \equiv F$						

Idempotente

Quando uma proposição composta pela mesma proposição simples é equivalente à proposição simples.

р	рур
V	V
F	F

р	p ^ p
٧	٧
F	H-

Comutativa

Quando a ordem das proposições não altera a tabela verdade.

р	q	p ^ q	q ^ p
V	٧	V	V
V	F	F	F
F	٧	F	F
F	F	F	F

р	q	pvq	qvp
V	V	V	V
V	F	F	F
F	٧	F	F
F	F	F	F

Associativa

Usando um mesmo conectivo a ordem da resolução não altera a tabela verdade.

$$p v (q v r) \leq (p v q) v r$$

р	q	r	(q v r)	p	v (q v r)	(p v q)	(p v q) v	r
٧	٧	٧	V		V		V	V	
٧	٧	F	V		V		V	V	
٧	F	٧	V		V		V	V	
٧	F	F	F		V		V	V	
F	٧	٧	V		V		V	V	
F	٧	F	V		V		V	V	
F	F	٧	V		V		F	V	
F	F	F	F		F		F	F	

$$p ^ (q ^ r) <=> (p ^ q) ^ r$$

р	q	r	(q ^ r)	р	^ (q ^	r)	(p ^ q)	(p ^ q) ^	r
٧	V	٧	V		V		V		V	
٧	٧	F	F		F		V		F	
٧	F	٧	F		F		F		F	
٧	F	F	F		F		F		F	
F	٧	٧	V		F		F		F	
F	V	F	F		F		F		F	
F	F	٧	F		F		F		F	
F	F	F	F		F		F		F	
							•			

Distributiva

Ao usar o conectivo E e OU podemos distribuir o conectivo fora do parênteses para dentro.

$$p^{(q v r)} \le (p^{(q v r)})$$

$$p v (q ^ r) <=> (p v q) ^ (p v r)$$

Transforme nas equivalentes as seguintes proposições:

1)
$$q v q v q v q ^r$$

$$(p v q) \wedge (p v r)$$

3)
$$p v p \wedge (p v r)$$

Transforme nas equivalentes as seguintes proposições:

- 2) (p v q) ^ (p v r) p v (q ^ r) (**Distributiva**)
- 3) p v p ^ (p v r)
 p ^ (p v r) (Idempotente)
 (p ^ p) v (p ^ r) (Distributiva)
 p v (p ^ r) (Idempotente)

Leis de De Morgan

Primeira Lei:

• Negar duas proposições ligadas com "E" é o mesmo que negar duas proposições e ligá-las com "OU".

$$\sim (\mathbf{p} \wedge \mathbf{q}) = \sim \mathbf{p} \vee \sim \mathbf{q}$$

Exemplo:

Não é verdade que (Maria trabalha **e** João estuda).

$$\sim$$
(p \land q)

Aplicando a primeira lei:

Maria não trabalha ou João não estuda.

Exemplo:

Não é verdade que (Pedro não brinca **e** Ana dorme).

Aplicando a primeira lei:

Pedro brinca ou Ana não dorme.

Leis de De Morgan

Será que são equivalentes mesmo? Como confirmar?

Exemplo:

Não é verdade que (Maria trabalha **e** João estuda).

 \sim (p \wedge q)

Aplicando a primeira lei:

Maria não trabalha ou João não estuda.

~p V ~q

Exemplo:

Não é verdade que (Pedro não brinca **e** Ana dorme).

~(~p \(\Lambda\) q)

Aplicando a primeira lei:

Pedro brinca ou Ana não dorme.

p V ~q

Leis de De Morgan

Segunda Lei:

• Negar duas proposições ligadas com "OU" é o mesmo que negar duas proposições e ligá-las com "E".

$$\sim (p \ V \ q) = \sim p \ \land \sim q$$

Exemplo:

Não é verdade que (Maria trabalha ou João estuda).

Aplicando a segunda lei:

Maria não trabalha e João não estuda.

Dupla negação

A negação da negação de uma proposição apresenta o mesmo valor lógico que a própria proposição.

$$\sim (\sim p) \Leftrightarrow p$$

p	$\sim p$	~(~ <i>p</i>)
V	F	V
F	V	F
	\Leftrightarrow	

- 1) A frase "Se o time jogou bem, então foi campeão" é equivalente a qual alternativa? Mostre sua demonstração através da expressão lógica formada.
- a) O time jogou bem e foi campeão.
- b) O time não jogou bem ou não foi campeão.
- c) O time não jogou bem ou foi campeão.
- d) Se o time não jogou bem, então não foi campeão.
- e) O time jogou bem se, e somente se, foi campeão.

- 1) A frase "Se o time jogou bem, então foi campeão" é equivalente a qual alternativa? Mostre sua demonstração através da expressão lógica formada.
- a) O time jogou bem e foi campeão.
- b) O time não jogou bem ou não foi campeão.
- c) O time não jogou bem ou foi campeão.
- d) Se o time não jogou bem, então não foi campeão.
- e) O time jogou bem se, e somente se, foi campeão.

a)
$$\sim$$
(P V Q) V \sim (\sim R)

b)
$$P \rightarrow (Q \lor R)$$

c)
$$\sim$$
(P V (Q \wedge R))

```
a) \sim (P \lor Q) \lor \sim (\sim R)

\sim (P \lor Q) \lor R (remove dupla negação)

(\sim P \land \sim Q) \lor R (De Morgan)

(R \lor \sim P) \land (R \lor \sim Q) (Distributiva)

b) P \rightarrow (Q \lor R)
```

$$c) \sim (P \vee (Q \wedge R))$$

```
a) \sim (P \lor Q) \lor \sim (\sim R)
\sim (P \lor Q) \lor R (remove dupla negação)
(\sim P \land \sim Q) \lor R (De Morgan)
(R \lor \sim P) \land (R \lor \sim Q) (Distributiva)
b) P \to (Q \lor R)
\sim P \lor (Q \lor R) (Simplificação da implicação)
(\sim P \lor Q) \lor (\sim P \lor R) (Distributiva)
c) \sim (P \lor (Q \land R))
```

```
a) \sim (P \lor Q) \lor \sim (\sim R)
\sim (P \lor Q) \lor R (remove dupla negação)
(\sim P \land \sim Q) \lor R (De Morgan)
(R \lor \sim P) \land (R \lor \sim Q) (Distributiva)
b) P \rightarrow (Q \lor R)
\sim P \lor (Q \lor R) (Simplificação da implicação)
(\sim P \lor Q) \lor (\sim P \lor R) (Distributiva)
c) \sim (P \lor (Q \land R))
\sim P \land \sim (Q \land R) (De Morgan)
\sim P \land (\sim Q \lor \sim R)
```

3) Simplifique as expressões lógicas usando as propriedades e regras vistas até o momento.

d)
$$\sim$$
 (P \leftrightarrow Q)

e) ~(P V Q) V ~R (usando as propriedades de Morgan e distributiva)

3) Simplifique as expressões lógicas usando as propriedades e regras vistas até o momento.

```
d) \sim (P \leftrightarrow Q)

\sim [ (P \rightarrow Q) \wedge (Q \rightarrow P) ]

\sim [ (\simP \vee Q) \wedge (\simQ \vee P) ]

\sim (\simP \vee Q) \vee \sim (\simQ \vee P)

(P \wedge \simQ) \vee (Q \wedge \simP)
```

e) ~(P V Q) V ~R (usando as propriedades de Morgan e distributiva)

3) Simplifique as expressões lógicas usando as propriedades e regras vistas até o momento.

```
d) \sim (P \leftrightarrow Q)

\sim [ (P \rightarrow Q) \wedge (Q \rightarrow P) ]

\sim [ (\simP \vee Q) \wedge (\simQ \vee P) ]

\sim (\simP \vee Q) \vee \sim (\simQ \vee P)

(P \wedge \simQ) \vee (Q \wedge \simP)
```

e) ~(P V Q) V ~R (usando as propriedades de Morgan e distributiva) (~P ^ ~Q) v ~R (~R v ~P) ^ (~R v ~P)

Identidade (elemento neutro)

$$(A \lor F) \equiv A$$

$$F \lor F = F$$

V v F = V

$$(A \wedge V) \equiv A$$

$$F \wedge V = F$$

 $V \wedge V = V$

Complementativas (elemento absorvente)

$$(A \lor V) \equiv V$$

$$F \lor V = V$$

$$V \lor V = V$$

$$(A \wedge F) \equiv F$$

$$F \wedge F = F$$

 $V \wedge F = F$

Absorção

$$A \vee (A \wedge B) \equiv A$$

$$A \wedge (A \vee B) \equiv A$$

Contraposição

$$(A \rightarrow B) \equiv (\neg B \rightarrow \neg A)$$

A → B: Se hoje é Páscoa então amanhã é segunda-feira.

 $\neg B \rightarrow \neg A$: Se amanhã não é segunda-feira então hoje não é Páscoa

Prova Condicional

$$A \rightarrow (B \rightarrow C) \equiv (A \land B) \rightarrow C$$

Tautologia

$$(A \lor \neg A) \equiv V$$

Contradição

$$(A \land \neg A) \equiv F$$

Propriedades

Propriedades dos Conectivos:		
1. Comutativa:	$(A \lor B) \equiv (B \lor A)$	$(A \wedge B) \equiv (B \wedge A)$
2. Associativa:	$(A \lor B) \lor C \equiv A \lor (B \lor C)$	$(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$
3. Distributiva:	$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$	$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$
4.Identidade	$(A \vee F) \equiv A$	$(A \wedge V) \equiv A$
(elemento neutro):		
5. Complementativas	$(A \lor V) \equiv V$	$(A \wedge F) \equiv F$
(elem. absorvente):		
6. De Morgan:	$\neg (A \lor B) \equiv (\neg A \land \neg B)$	$\neg (A \land B) \equiv (\neg A \lor \neg B)$
7. Idempotentes:	$(A \lor A) \equiv A$	$(A \wedge A) \equiv A$
8. Dupla Negação:	A≡¬¬A	
9. Absorção:	$A \vee (A \wedge B) \equiv A$	$A \wedge (A \vee B) \equiv A$
10. Contraposição:	$(A \rightarrow B) \equiv (\neg B \rightarrow \neg A)$	
11. Prova Condicional:	$A \rightarrow (B \rightarrow C) \equiv (A \land B) \rightarrow C$	
12. Tautologia:	$(A \lor \neg A) \equiv V$	
13. Contradição:	(A ∧ ¬ A) ≡ F	

Equivalências entre os conectivos:

- 1) $(A \rightarrow B) \equiv (\neg A \lor B)$
- 2) $(A \rightarrow B) \equiv \neg (A \land \neg B)$
- 3) $(A \leftrightarrow B) \equiv (A \rightarrow B) \land (B \rightarrow A)$
- 4) $(A \underline{\vee} B) \equiv \neg (A \leftrightarrow B) \equiv (A \vee B) \land \neg (A \wedge B)$
- 5) $(A \uparrow B) \equiv \neg (A \land B) \equiv (\neg A \lor \neg B)$
- 6) $(A \downarrow B) \equiv \neg (A \lor B) \equiv (\neg A \land \neg B)$
- 7) $\neg A \equiv (A \uparrow A) \equiv (A \downarrow A)$
- 8) $(A \wedge B) \equiv ((A \downarrow A) \downarrow (B \downarrow B))$
- 9) $(A \lor B) \equiv ((A \uparrow A) \uparrow (B \uparrow B))$

1) Demonstre a equivalência entre as expressões a seguir.

a)
$$((p \land \sim p) \rightarrow q) \equiv V$$

b)
$$\sim (\sim A \rightarrow B) \equiv \sim A \land \sim B$$

1) Simplifique as expressões lógicas.

a)
$$((p \land \neg p) \rightarrow q) \equiv V$$
 $(\neg (p \land \neg p) \lor q)$
 $(\neg p \lor p) \lor q$
 $(\neg p \lor p) \lor q$ (Tautologia)

 $V \lor q$ (Complementativa)

b)
$$\sim (\sim A \rightarrow B) \equiv \sim A \land \sim B$$

 $\sim (\sim A \lor B)$
 $\sim (A \lor B)$
 $\sim A \land \sim B$

1) Simplifique as expressões lógicas.

c)
$$p \rightarrow q \land r \equiv (p \rightarrow q) \land (p \rightarrow r)$$

1) Simplifique as expressões lógicas.

c)
$$p \rightarrow q \wedge r \equiv (p \rightarrow q) \wedge (p \rightarrow r)$$

-p v (q \wedge r) (Substitui implicação)

(-p v q) \wedge (-p v r) (Substitui implicação inversa)

(p -> q) \wedge (p -> r)

