GOTO and Gravitational Wave Transient Followup

ASTR 581 Annotated Bibliography

Tom Wagg 101

¹Department of Astronomy, University of Washington, Seattle, WA, 98195

(Received August 20, 2022)

1. INTRODUCTION

For my bibliography I decided to investigate more about GOTO and transient follow up for gravitational wave events. I've previously worked on projects about LISA and LIGO predictions and heard a lot about GOTO so wanted to learn more.

GOTO, the gravitational wave optical transient observer, is a telescope designed specifically for quickly and efficiently following up on short-lived transients that occur after gravitational wave events. This sort of follow up is essential for connecting gravitational wave events to their electromagnetic counterparts and can help us learn more about the endpoints of massive stars, the neutron star equation of state and r-process enrichment.

Each of the papers that I discuss below consider the working of GOTO, design choices that went into it and some examples of how it can be used. I also touch on how other telescopes can do the same, in particular I focus on LSST.

2. GOTO TELESCOPE CONTROL SYSTEM

Dyer et al. (2018, 2020a) describe the GOTO telescope control system and highlight how it can operate entirely robotically, with no need for human technicians except in the case of errors.

The first of these papers (Dyer et al. 2018) outlines how the telescope control and scheduling system will work. GOTO is controlled by a series of daemons, the most important of which are the conditions, sentinel, scheduler and pilot daemons. The conditions daemon keeps track of the weather (e.g. rain, humidity, temperature, wind) and other system conditions and, if necessary, causes the dome to close or sets off an error. The

sentinel daemon listens for alerts of new transients and adds them to database of potential pointings.

The scheduler then takes this database and ranks each of the potential transients based on a variety of parameters, but in particular prioritises gravitational wave events over all other transients. If at any point there is no transient then GOTO performs an all-sky survey in order to perform image differencing at a later time. Importantly, the GOTO scheduler operates on a "justin-time" scheduling model rather than creating a plan at the start of the night. This allows it to be very reactive to new events, though does mean that its choice of targets may be less efficient. Finally, the pilot daemon reacts to the input of the other daemons and skews the telescope, operates the dome, performs calibrations and takes images. If the pilot runs into any errors that can't be solved then it will alert a human technician but otherwise it is able to operate without any human intervention. Very cool!

3. GOTO TELESCOPE

3.1. Prototype performance

Steeghs et al. (2022) Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Dyer et al. (2020b) Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

4. GOTO IN PRACTICE

4.1. General

Gompertz et al. (2020) Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

$4.2.\ Lightcurves$

Burhanudin et al. (2021) Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna

sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

$4.3.\ Kilonovae$

Chase et al. (2022) Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

5. OTHER TELESCOPES

5.1. LSST

Andreoni et al. (2022) Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

REFERENCES

Andreoni, I., Margutti, R., Salafia, O. S., et al. 2022, ApJS, 260, 18, doi: 10.3847/1538-4365/ac617c

Burhanudin, U. F., Maund, J. R., Killestein, T., et al. 2021, MNRAS, 505, 4345, doi: 10.1093/mnras/stab1545

Chase, E. A., O'Connor, B., Fryer, C. L., et al. 2022, ApJ, 927, 163, doi: 10.3847/1538-4357/ac3d25

Dyer, M. J., Dhillon, V. S., Littlefair, S., et al. 2018, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 10704, Observatory Operations: Strategies, Processes, and Systems VII, 107040C, doi: 10.1117/12.2311865 Dyer, M. J., Dhillon, V. S., Littlefair, S., et al. 2020a, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 11452, Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, 114521Q, doi: 10.1117/12.2561506

Dyer, M. J., Steeghs, D., Galloway, D. K., et al. 2020b, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 11445, Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, 114457G, doi: 10.1117/12.2561008

Gompertz, B. P., Cutter, R., Steeghs, D., et al. 2020, MNRAS, 497, 726, doi: 10.1093/mnras/staa1845 Steeghs, D., Galloway, D. K., Ackley, K., et al. 2022, MNRAS, 511, 2405, doi: 10.1093/mnras/stac013