Math. - CC 3 - CORRECTION

EXERCICE 1

Résoudre dans \mathbb{R}^3 les systèmes linéaires suivants où a,b,c sont des réels fixés :

1.
$$\begin{cases} x+y+z &= 2\\ x+y-z &= 0\\ x+2y-z &= 3 \end{cases}$$

Par le pivot de Gauss, en utilisant la matrice augmentée ou non, on obtient comme ensemble solution

$$\mathcal{S} = \{(-2, 3, 1)\}$$

2.
$$\begin{cases} 2x - y + 2z &= a \\ 3x - y + z &= b \\ -2x + 3y - 10z &= c \end{cases}$$

La matrice augmentée du système est

$$\left(\begin{array}{ccc|c}
2 & -1 & 2 & a \\
3 & -1 & 1 & b \\
-2 & 3 & -10 & c
\end{array}\right)$$

qui est équivalente par lignes à

$$\left(\begin{array}{ccc|c}
1 & 0 & -1 & b-a \\
0 & 1 & -4 & 2b-3a \\
0 & 0 & 0 & 7a-4b+c
\end{array}\right)$$

Les opérations élémentaires appliquées sur les lignes sont $L_2 \leftarrow 2L_2, L_2 \leftarrow L_2 - 3L_1, L_3 \leftarrow L_3 + L_1, L_1 \leftarrow L_1 + L_2, L_3 \leftarrow L_3 - 2L_2, L_1 \leftarrow \frac{1}{2}L_1.$

Premier cas 7a - 4b + c = 0

On peut conclure que le système est compatible et ses solutions sont

$$\{(z+b-a, 4z+2b-3a, z), z \in \mathbb{R}\}\$$

Second cas $7a - 4b + c \neq 0$

On peut conclure que le système est incompatible et il n'y a pas de solution.

EXERCICE 2

On s'intéresse dans cet exercice aux trois suites réelles (a_n) , (b_n) et (c_n) définies par

$$\forall n \in \mathbb{N}, \begin{cases} a_{n+1} = 2a_n - b_n + c_n \\ b_{n+1} = -4a_n + 7b_n - 6c_n \\ c_{n+1} = -5a_n + 7b_n - 6c_n \end{cases}$$

avec $a_0 = 2$, $b_0 = 1$ et $c_0 = -1$.

Pour tout entier naturel n, on note :

$$X_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$$
 et $A = \begin{pmatrix} 2 & -1 & 1 \\ -4 & 7 & -6 \\ -5 & 7 & -6 \end{pmatrix}$

1. a. Vérifier que

$$\forall n \in \mathbb{N}, \ X_{n+1} = A \ X_n$$

On effectue le produit $A X_n$ et on retrouve X_{n+1} .

b. En déduire que

$$\forall n \in \mathbb{N}, \ X_n = A^n \ X_0$$

Récurrence immédiate.

2. Soit P la matrice définie par

$$P = \begin{pmatrix} 0 & 1 & -2 \\ 1 & 0 & 2 \\ 1 & -1 & 3 \end{pmatrix}$$

a. Calculer P^2 et déterminer $\alpha, \beta \in \mathbb{R}$ tels que :

$$P^2 = \alpha P + \beta I_3$$

On trouve

$$P^2 = \begin{pmatrix} -1 & 2 & -4 \\ 2 & -1 & 4 \\ 2 & -2 & 5 \end{pmatrix}$$

et $P^2 = \alpha P + \beta I_3$ donne par identification

$$\alpha = 2$$
 et $\beta = -1$

b. En déduire que P est inversible, et déterminer P^{-1} .

On a $P^2 = 2P - I_3$ donc $P(-P + 2I_3) = I_3$; ainsi, par définition, P est inversible et

$$P^{-1} = -P + 2I_3 = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -2 \\ -1 & 1 & -1 \end{pmatrix}$$

3. a. Calculer $T = P^{-1}AP$ et en déduire que

$$\forall n \in \mathbb{N}, \ A^n = PT^nP^{-1}$$

Par produit matriciel,

$$T = P^{-1}AP = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

Ensuite

$$T = P^{-1}AP \iff A = PTP^{-1}$$

Enfin, par récurrence immédiate

$$\forall n \in \mathbb{N}, \ A^n = PT^nP^{-1}$$

b. A l'aide du binôme de Newton dont on justifiera l'utilisation, calculer T^n .

$$T = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{I}_3 + N$$

avec

$$N = \begin{pmatrix} 0 & 2 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

Comme $I_3N = NI_3$, on a, par le binôme de Newton matriciel :

$$T^{n} = (N + I_{3})^{n} = \sum_{k=0}^{n} {n \choose k} N^{k}$$

Par ailleurs,

 $N^2 = \begin{pmatrix} 0 & 0 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

et

 $\forall k \ge 3, \ N^k = 0$

donc

$$T^{n} = I_{3} + nN + \frac{n(n-1)}{2}N^{2}$$

puis

$$T^n = \begin{pmatrix} 1 & 2n & 3n - n^2 \\ 0 & 1 & -n \\ 0 & 0 & 1 \end{pmatrix}$$

c. En déduire A^n en fonction de $n \in \mathbb{N}$.

Comme

$$\forall n \in \mathbb{N}, \ A^n = PT^nP^{-1}$$

par produit matriciel on obtient

$$\forall n \in \mathbb{N}, \ A^n = \begin{pmatrix} n+1 & -n & n \\ n^2 - 5n & 1 + 7n - n^2 & n^2 - 7n \\ n^2 - 6n & 8n - n^2 & 1 - 8n + n^2 \end{pmatrix}$$

4. Donner l'expression de a_n , b_n et c_n en fonction de $n \in \mathbb{N}$.

$$\forall n \in \mathbb{N}, \ X_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix} = A^n \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 4n+1 \\ 4n-1 \end{pmatrix}$$

On a donc

$$\forall n \in \mathbb{N}, \begin{cases} a_n = 2 \\ b_n = 4n + 1 \\ c_n = 4n - 1 \end{cases}$$

EXERCICE 3

1. Montrer que

$$\forall x > 0, \ \operatorname{Arctan}(x) + \operatorname{Arctan}\left(\frac{1}{x}\right) = \frac{\pi}{2}$$

Soit f la fonction

$$f: \begin{array}{ccc}]0,+\infty[& o & \mathbb{R} \\ & x & \mapsto & \operatorname{Arctan}(x) + \operatorname{Arctan}\left(\frac{1}{x}\right) \end{array}$$

Par composition et somme, f est dérivable sur $]0, +\infty[$ et

$$\forall x > 0, \quad f'(x) = \frac{1}{1+x^2} + \frac{\frac{-1}{x^2}}{1+\left(\frac{1}{x}\right)^2} = 0$$

On en déduit que f est constante sur $]0,+\infty[$. Comme $f(1)=\operatorname{Arctan}(1)+\operatorname{Arctan}(1)=\frac{\pi}{4}+\frac{\pi}{4}=\frac{\pi}{2}$ on obtient

$$\forall x > 0, \ \operatorname{Arctan}(x) + \operatorname{Arctan}\left(\frac{1}{x}\right) = \frac{\pi}{2}$$

2. Donner le développement limité de Arctan à l'ordre 3 au voisinage de 0.

Arctan(x) =
$$x - \frac{x^3}{3} + o(x^3)$$

3. Trouver alors trois réels a, b, c tels que

$$\operatorname{Arctan}(x) \underset{x \to +\infty}{=} a + \frac{b}{x} + \frac{c}{x^3} + o\left(\frac{1}{x^3}\right)$$

D'après la question précédente, on a :

Arctan
$$\left(\frac{1}{x}\right) \underset{x \to +\infty}{=} \frac{1}{x} - \frac{1}{3x^3} + o\left(\frac{1}{x^3}\right)$$

On a montré à la première question que

$$\forall x > 0, \quad \operatorname{Arctan}(x) = \frac{\pi}{2} - \operatorname{Arctan}\left(\frac{1}{x}\right)$$

on en déduit que

$$\operatorname{Arctan}(x) = \underset{x \to +\infty}{=} \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} + o\left(\frac{1}{x^3}\right)$$

EXERCICE 4

Soit a et b deux réels strictement positifs.

1. Donner le domaine de définition de

$$f: x \mapsto \frac{1}{x^a \left(\ln(x)^b\right)}$$

Pour tout réel a la fonction $x \mapsto x^a$ est définie sur $]0, +\infty[$ donc f(x) est définie sur x > 0 et $\ln(x) > 0$. On en déduit le domaine de définition de f:

$$D_f =]1, +\infty[$$

2. Trouver les valeurs de $c \in \mathbb{R}$ telles que

$$f(x) \underset{x \to +\infty}{=} \circ \left(\frac{1}{x^c}\right)$$

Pour
$$x > 1$$
, $\frac{f(x)}{\frac{1}{x^c}} = \frac{x^{c-a}}{(\ln(x))^b}$.

Par croissances comparées, comme b > 0, on a $\lim_{x \to +\infty} \frac{f(x)}{\frac{1}{x^c}} = 0$ si, et seulement si $c \le a$ et par suite

$$f(x) \underset{x \to +\infty}{=} \circ \left(\frac{1}{x^c}\right) \Longleftrightarrow c \le a$$

3. Donner un équivalent de f(x) en 1.

On a : $\frac{1}{x^a} \underset{x \to 1}{\sim} 1$ et $\ln(1+h) \underset{h \to 0}{\sim} h$ donc $(\ln(1+h))^b \underset{h \to 0}{\sim} h^b$ et par suite, $(\ln(x))^b \underset{x \to 1}{\sim} (x-1)^b$. Par quotient, on obtient :

$$f(x) \underset{x \to 1}{\sim} \frac{1}{(x-1)^b}$$

EXERCICE 5

Soit f la fonction suivante :

$$f: \begin{array}{ccc} [0,1] & \to & \mathbb{R} \\ x & \mapsto & \mathrm{e}^{-\frac{x^2}{2}} \end{array}$$

1. a. Montrer que f est deux fois dérivable sur [0,1] et que

$$\forall x \in [0, 1], \ f''(x) = (x^2 - 1)f(x)$$

Par composition, f est deux fois dérivable sur [0,1] et

$$\forall x \in [0,1], \quad f'(x) = -xe^{-\frac{x^2}{2}} \quad \text{puis} \quad f''(x) = -e^{-\frac{x^2}{2}} + x^2e^{-\frac{x^2}{2}} = (x^2 - 1)e^{-\frac{x^2}{2}} = (x^2 - 1)f(x)$$

b. En déduire les variations de la fonction f' sur [0,1].

La fonction exponentielle étant strictement positive, on en déduit que

$$\forall x \in [0,1], \quad f''(x) = (x^2 - 1)e^{-\frac{x^2}{2}} \le 0$$

et par suite que la fonction f' est décroissante sur [0,1].

c. Montrer que pour tous $\alpha, \beta \in [0,1]$ tels que $\alpha \leq \beta$, on a :

$$f'(\beta)(\beta - \alpha) \le f(\beta) - f(\alpha) \le f'(\alpha)(\beta - \alpha)$$

Pour $\alpha, \beta \in [0, 1]$ tels que $\alpha < \beta$, on a f continue sur $[\alpha, \beta]$, dérivable sur $[\alpha, \beta]$ donc d'après le théorème des accroissements finis, il existe $\gamma \in]\alpha, \beta[$ tel que $f(\beta) - f(\alpha) = f'(\gamma)(\beta - \alpha)$.

Comme f est décroissante sur [0,1], elle l'est sur $[\alpha,\beta]$ et on a $f'(\alpha) \ge f'(\gamma) \ge f'(\beta)$ d'où, puisque $\beta - \alpha > 0$:

$$f'(\beta)(\beta - \alpha) \le f(\beta) - f(\alpha) \le f'(\alpha)(\beta - \alpha)$$

L'encadrement reste v
rai lorsque $\alpha=\beta,$ tous les membres étant nuls.

- **2.** Soit $a \in [0,1]$. On note T_a la tangente à la courbe représentative de f au point d'abscisse a.
 - a. Donner l'équation réduite y = u(x) de T_a .

$$y = f'(a)(x - a) + f(a)$$

b. Montrer que :

$$\forall x \in [0,1], \ f(x) \le u(x)$$

On pourra distinguer les cas $0 \le x \le a < 1$ et $0 < a \le x \le 1$.

Pour $x \in [0, 1]$, on a:

$$u(x) - f(x) = f'(a)(x - a) + f(a) - f(x)$$

 \leadsto Si $0 \le x \le a < 1$, alors en prenant $\alpha = x$ et $\beta = a$ dans la question précédente, on obtient :

$$f(a) - f(x) \ge f'(a)(a - x)$$

done

$$u(x) - f(x) \ge 0$$

 \leadsto Si $0 < a \le x \le 1$, alors en prenant $\alpha = a$ et $\beta = x$ dans la question précédente, on obtient :

$$f(x) - f(a) \le f'(a)(x - a)$$

donc

$$u(x) - f(x) > 0$$

Finalement,

$$\forall x \in [0,1], \ f(x) \le u(x)$$

c. Interpréter géométriquement ce résultat.

On déduit de la question précédente que la courbe de f sur [0,1] est située en dessous de T_a .

- **3.** Soit $a, b \in [0, 1]$ tels que a < b. On note $D_{a,b}$ la droite passant par les points de coordonnées (a, f(a)) et (b, f(b)).
 - **a.** Donner l'équation réduite y = v(x) de $D_{a,b}$.

$$y = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

b. Montrer que

$$\exists c \in [a,b], \ f'(c) = v'(c)$$

f est continue sur [a, b], dérivable sur]a, b[donc d'après le théorème des accroissements finis, il existe $c \in]a, b[$ tel que

$$f(b) - f(a) = f'(c)(b - a)$$

c'est-à-dire

$$f'(c) = \frac{f(b) - f(a)}{b - a} = v'(c)$$

c. Montrer que

$$\forall x \in [a, b], \ f(x) \ge v(x)$$

Soit h la fonction définie sur [a,b] par

$$h(x) = f(x) - v(x)$$

Par somme h est dérivable sur [a, b] et

$$\forall x \in [a, b], \quad h'(x) = f'(x) - v'(x)$$

v est une fonction affine et

$$\forall x \in [a, b], \quad v'(x) = v'(c) = f'(c)$$

On sait (question $\mathbf{1.b}$) que f est décroissante sur [0,1] donc en particulier sur [a,b]. On en déduit que

$$\forall x \in [a, c], \quad h'(x) = f'(x) - f'(c) \ge 0$$

donc h est croissante sur [a, c] et

$$\forall x \in [c, b], \quad h'(x) = f'(x) - f'(c) \le 0$$

donc h est décroissante sur [c, b].

De plus
$$h(a) = f(a) - v(a) = 0$$
 et $h(b) = f(b) - v(b) = 0$.

Finalement, on en déduit que

$$\forall x \in [a, b], \quad h(x) \ge 0$$

ce qui équivaut à

$$\forall x \in [a, b], \quad f(x) \ge v(x)$$

d. Interpréter géométriquement ce résultat.

On déduit de la question précédente que sur [a,b] la courbe de f est située au-dessus de $D_{a,b}$.