MADS-MMS – Mathematics and Multivariate Statistics

Density-Based Clustering

Prof. Dr. Stephan Doerfel

Moodle (WiSe 24/25)

Outline

Motivation

Basics

DBSCAN

Choosing the Hyperparameters

Density-based Hierarchical Clustering

OPTICS

▶ *k*-means has various limitations:

- ▶ *k*-means has various limitations:
 - ▶ fixed on Euclidean distance

- ▶ k-means has various limitations:
 - ▶ fixed on Euclidean distance
 - cannot discover outliers/noise

- ▶ k-means has various limitations:
 - ► fixed on Euclidean distance
 - cannot discover outliers/noise
 - discovers compact, round centered shapes

- ▶ k-means has various limitations:
 - ▶ fixed on Euclidean distance
 - cannot discover outliers/noise
 - discovers compact, round centered shapes
 - needs the number of clusters upfront

- k-means has various limitations:
 - ▶ fixed on Euclidean distance
 - cannot discover outliers/noise
 - discovers compact, round centered shapes
 - needs the number of clusters upfront
- exploit the idea of density rather than of distance to a central entity

Examples

Clusters of different size, form, density, and hierarchical structure

understand the basics of density based clustering

- understand the basics of density based clustering
- understand and apply parameters of DBSCAN and their influence on the resulting clustering

- understand the basics of density based clustering
- understand and apply parameters of DBSCAN and their influence on the resulting clustering
- understand the difference between clusters and noise

- understand the basics of density based clustering
- understand and apply parameters of DBSCAN and their influence on the resulting clustering
- understand the difference between clusters and noise
- understand and apply OPTICS to choose good DBSCAN parameters or to create OPTICS clusterings

Outline

Motivation

Basics

DBSCAN

Choosing the Hyperparameters

Density-based Hierarchical Clustering

OPTICS

Idea:

Idea:

 clusters are regions in space, that are densely populated with data instances

Idea:

- clusters are regions in space, that are densely populated with data instances
- clusters are separated by regions that are sparsely populated with data instances

Idea:

- clusters are regions in space, that are densely populated with data instances
- clusters are separated by regions that are sparsely populated with data instances

Handling Noise:

datasets are rarely clean and contain noise

→ noise detection

Requirements:

Requirements:

each object that belongs to a cluster comes from a neighborhood whose data-density exceeds a fixed threshold.

Requirements:

- each object that belongs to a cluster comes from a neighborhood whose data-density exceeds a fixed threshold.
- ▶ the set of instances belonging to one cluster is "connected".

Requirements:

- each object that belongs to a cluster comes from a neighborhood whose data-density exceeds a fixed threshold.
- ▶ the set of instances belonging to one cluster is "connected".

Ingredients:

Requirements:

- each object that belongs to a cluster comes from a neighborhood whose data-density exceeds a fixed threshold.
- ▶ the set of instances belonging to one cluster is "connected".

Ingredients:

distinction between noise and valid data

Requirements:

- each object that belongs to a cluster comes from a neighborhood whose data-density exceeds a fixed threshold.
- ▶ the set of instances belonging to one cluster is "connected".

Ingredients:

- distinction between noise and valid data
- notion of density

Requirements:

- each object that belongs to a cluster comes from a neighborhood whose data-density exceeds a fixed threshold.
- ▶ the set of instances belonging to one cluster is "connected".

Ingredients:

- distinction between noise and valid data
- notion of density
- neighborhoods

Requirements:

- each object that belongs to a cluster comes from a neighborhood whose data-density exceeds a fixed threshold.
- ▶ the set of instances belonging to one cluster is "connected".

Ingredients:

- distinction between noise and valid data
- notion of density
- neighborhoods
- selection of density threshold

Neighborhoods and Core Points

Definition 1 (Neighborhood)

Let D be a dataset and $\operatorname{dist}(\cdot,\cdot)$ a distance function. For an instance $o \in D$ and a given radius ε , the neighborhood of o w.r.t. ε is given as

$$N_{\varepsilon}(o) = \{ p \in D \mid \operatorname{dist}(o, p) \leq \varepsilon \}.$$

Basics 6 / 27

Neighborhoods and Core Points

Definition 1 (Neighborhood)

Let D be a dataset and $\operatorname{dist}(\cdot,\cdot)$ a distance function. For an instance $o \in D$ and a given radius ε , the neighborhood of o w.r.t. ε is given as

$$N_{\varepsilon}(o) = \{ p \in D \mid \operatorname{dist}(o, p) \leq \varepsilon \}.$$

Definition 2 (Core Point)

Let D, dist (\cdot, \cdot) , ε and o be as above. Then instance o is called a **core point** w.r.t. the radius ε and the threshold MinPts, if:

$$|N_{\varepsilon}(o)| \geq \text{MinPts}.$$

Basics 6 / 27

Neighborhoods and Core Points

Definition 1 (Neighborhood)

Let D be a dataset and $\operatorname{dist}(\cdot,\cdot)$ a distance function. For an instance $o \in D$ and a given radius ε , the neighborhood of o w.r.t. ε is given as

$$N_{\varepsilon}(o) = \{ p \in D \mid \operatorname{dist}(o, p) \leq \varepsilon \}.$$

Definition 2 (Core Point)

Let D, dist (\cdot, \cdot) , ε and o be as above. Then instance o is called a **core point** w.r.t. the radius ε and the threshold MinPts, if:

$$|N_{\varepsilon}(o)| \geq \text{MinPts}.$$

With the parameter MinPts, we control the required minimum density of neighborhoods.

Basics 6 / 27

Definition 3 (Reachability)

For a dataset D, distance function $\operatorname{dist}(\cdot,\cdot)$, and parameters ε and MinPts:

▶ a data instance $p \in D$ is called directly (density-)reachable from $q \in D$ if $p \in N_{\varepsilon}(q)$ and q is a core point.

Basics 7 / 27

Definition 3 (Reachability)

For a dataset D, distance function $\operatorname{dist}(\cdot,\cdot)$, and parameters ε and MinPts:

- ▶ a data instance $p \in D$ is called directly (density-)reachable from $q \in D$ if $p \in N_{\varepsilon}(q)$ and q is a core point.
- ▶ a data instance $p \in D$ is called (density-)reachable if there is a chain of directly reachable objects from q to p.

Basics 7 / 27

Definition 3 (Reachability)

For a dataset D, distance function dist (\cdot, \cdot) , and parameters ε and MinPts:

- ▶ a data instance $p \in D$ is called directly (density-)reachable from $q \in D$ if $p \in N_{\varepsilon}(q)$ and q is a core point.
- ▶ a data instance $p \in D$ is called (density-)reachable if there is a chain of directly reachable objects from q to p.
- ▶ two data instances p and q are called (density-)connected, if both are reachable from the same instance $o \in D$.

Basics 7 / 27

Use Euclidean distance and set $\varepsilon = 1.5$ cm, MinPts = 3

Use Euclidean distance and set $\varepsilon = 1.5$ cm, MinPts = 3

 \triangleright p and q are core points

Use Euclidean distance and set $\varepsilon = 1.5$ cm, MinPts = 3

- p and q are core points
- w is not a core point

Use Euclidean distance and set $\varepsilon = 1.5$ cm, MinPts = 3

- p and q are core points
- w is not a core point
- w is directly reachable from p but not from q

Examples: Reachability

Use Euclidean distance and set $\varepsilon = 1.5$ cm, MinPts = 3

- p and q are core points
- w is not a core point
- w is directly reachable from p but not from q
- w is reachable from q (via p)

Basics 8 / 27

Use Euclidean distance and set $\varepsilon = 1.5$ cm, MinPts = 3

Basics 9 / 27

Use Euclidean distance and set $\varepsilon = 1.5$ cm, MinPts = 3

► s is not reachable from any instance

Basics 9 / 27

Use Euclidean distance and set $\varepsilon = 1.5$ cm, MinPts = 3

- ➤ s is not reachable from any instance
- w is reachable from t

9 / 27

Use Euclidean distance and set $\varepsilon = 1.5$ cm, MinPts = 3

- ► s is not reachable from any instance
- w is reachable from t
- ightharpoonup t is not reachable from w

Basics 9 / 27

Use Euclidean distance and set $\varepsilon = 1.5$ cm, MinPts = 3

- ➤ s is not reachable from any instance
- w is reachable from t
- ▶ t is not reachable from w
- v,w are connected

Basics 9 / 27

ightharpoonup reachability is a parametrized property – depending on the choices of ε and MinPts

- ightharpoonup reachability is a parametrized property depending on the choices of ε and MinPts
- works with any distance function

- ightharpoonup reachability is a parametrized property depending on the choices of ε and MinPts
- works with any distance function
- reachability is not symmetric!

- ightharpoonup reachability is a parametrized property depending on the choices of ε and MinPts
- works with any distance function
- reachability is not symmetric!
- reachability implies that all instances in the chain of direct reachability are core points

- ightharpoonup reachability is a parametrized property depending on the choices of ε and MinPts
- works with any distance function
- reachability is not symmetric!
- reachability implies that all instances in the chain of direct reachability are core points
- \triangleright if p is reachable from q, then p and q are connected

- ightharpoonup reachability is a parametrized property depending on the choices of ε and MinPts
- works with any distance function
- reachability is not symmetric!
- reachability implies that all instances in the chain of direct reachability are core points
- \triangleright if p is reachable from q, then p and q are connected
- reachability gives rise to a notion of noise: everything that is not reachable!

Density-based Clusters

Definition 4 (Density Cluster)

A density cluster C w.r.t. ε and MinPts is a non-empty subset of the data D for which hold:

 $\textbf{maximality} \ : \ \forall p,q \in \textit{D} : \textit{p} \in \textit{C} \land \textit{q} \ \text{reachable from} \ \textit{p} \Rightarrow \textit{q} \in \textit{C}$

connectedness: $\forall p, q \in C$: p and q are connected.

Density-based Clusters

Definition 4 (Density Cluster)

A density cluster C w.r.t. ε and MinPts is a non-empty subset of the data D for which hold:

maximality : $\forall p, q \in D : p \in C \land q$ reachable from $p \Rightarrow q \in C$ connectedness : $\forall p, q \in C : p$ and q are connected.

Definition 5 (Density Clustering)

A density clustering $\mathcal C$ of the data D w.r.t. ε and MinPts is the set of all density clusters.

Density-based Clusters

Definition 4 (Density Cluster)

A density cluster C w.r.t. ε and MinPts is a non-empty subset of the data D for which hold:

maximality : $\forall p, q \in D : p \in C \land q$ reachable from $p \Rightarrow q \in C$ **connectedness** : $\forall p, q \in C : p$ and q are connected.

Definition 5 (Density Clustering)

A density clustering $\mathcal C$ of the data D w.r.t. ε and MinPts is the set of all density clusters.

Definition 6 (Noise)

With the above definitions, $Noise_{\mathcal{C}}$ is defined as the set of all instances of D that belong to none of the clusters $C \in \mathcal{C}$.

Outline

Motivation

Basics

DBSCAN

Choosing the Hyperparameters

Density-based Hierarchical Clustering

OPTICS

Basics for DBSCAN

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Basics for DBSCAN

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Lemma 7 (Characterization)

Let $p \in D$ be a core point. Then the density cluster C that contains p can be constructed as

$$C = \{q \in D \mid q \text{ is reachable from } p\}.$$

DBSCAN: For each core-point, add all reachable instances to the same cluster.

DBSCAN: Main Loop

```
DBSCAN (D: dataset, \varepsilon: float, MinPts: int):
   mark each instance as unvisited
  C = 0 \# ClusterID
   for each instance p in D:
     if ( p has been visited ):
        continue
     mark p visited
     if (|N_{\varepsilon}(p)| < \text{MinPts}):
        mark p NOISE
     else:
        C++:
        expand cluster (p, N_{\varepsilon}(p) \setminus p, C, \varepsilon, MinPts)
```

DBSCAN: expand Cluster

```
expand cluster(p: instance, L: list of instances,
\varepsilon: float, MinPts: int):
  mark p with C
  for each point q in L:
     if (q not visited):
       mark q visited
       if (|N_{\varepsilon}(q)| >= MinPts):
       L = N_{\varepsilon}(q) \cup L
     if (q is not yet member of any cluster):
       unmark q as NOISE
       mark q with C
```

DBSCAN: expand Cluster

```
expand cluster(p: instance, L: list of instances,
\varepsilon: float, MinPts: int):
  mark p with C
  for each point q in L:
     if (q not visited):
       mark q visited
       if (|N_{\varepsilon}(q)| > = MinPts):
       L = N_{\varepsilon}(q) \cup L
     if (q is not yet member of any cluster):
       unmark q as NOISE
       mark q with C
```

Notebook 09 1 density synthetic, Cells 1–12

positive:

positive:

number of clusters must not be set upfront

positive:

- number of clusters must not be set upfront
- clusters can obtain arbitrary geometric shapes

positive:

- number of clusters must not be set upfront
- clusters can obtain arbitrary geometric shapes
- solution is unique (except for cluster enumeration and non-core-point memberships)

positive:

- number of clusters must not be set upfront
- clusters can obtain arbitrary geometric shapes
- solution is unique (except for cluster enumeration and non-core-point memberships)
- works with any distance function

positive:

- number of clusters must not be set upfront
- clusters can obtain arbitrary geometric shapes
- solution is unique (except for cluster enumeration and non-core-point memberships)
- works with any distance function
- ▶ noise is separated from data

positive:

- number of clusters must not be set upfront
- clusters can obtain arbitrary geometric shapes
- solution is unique (except for cluster enumeration and non-core-point memberships)
- works with any distance function
- ▶ noise is separated from data

negative:

positive:

- number of clusters must not be set upfront
- clusters can obtain arbitrary geometric shapes
- solution is unique (except for cluster enumeration and non-core-point memberships)
- works with any distance function
- noise is separated from data

negative:

ightharpoonup worst case complexity $O(n^2)$

positive:

- number of clusters must not be set upfront
- clusters can obtain arbitrary geometric shapes
- solution is unique (except for cluster enumeration and non-core-point memberships)
- works with any distance function
- noise is separated from data

negative:

- \blacktriangleright worst case complexity $O(n^2)$
- \triangleright computing ε -neighborhoods is expansive

positive:

- number of clusters must not be set upfront
- clusters can obtain arbitrary geometric shapes
- solution is unique (except for cluster enumeration and non-core-point memberships)
- works with any distance function
- noise is separated from data

negative:

- \blacktriangleright worst case complexity $O(n^2)$
- \triangleright computing ε -neighborhoods is expansive
- \triangleright suitable ε , MinPts must be chosen

positive:

- number of clusters must not be set upfront
- clusters can obtain arbitrary geometric shapes
- solution is unique (except for cluster enumeration and non-core-point memberships)
- works with any distance function
- ▶ noise is separated from data

negative:

- ightharpoonup worst case complexity $O(n^2)$
- \triangleright computing ε -neighborhoods is expansive
- \blacktriangleright suitable ε , MinPts must be chosen
- ▶ does not allow for differently dense clusters

positive:

- number of clusters must not be set upfront
- clusters can obtain arbitrary geometric shapes
- solution is unique (except for cluster enumeration and non-core-point memberships)
- works with any distance function
- ▶ noise is separated from data

negative:

- \blacktriangleright worst case complexity $O(n^2)$
- \triangleright computing ε -neighborhoods is expansive
- \blacktriangleright suitable ε , MinPts must be chosen
- ▶ does not allow for differently dense clusters

Outline

Motivation

Basics

DBSCAN

Choosing the Hyperparameters

Density-based Hierarchical Clustering

OPTICS

Parameters

ightharpoonup determine good values for ε , MinPts

Parameters

- ▶ determine good values for ε , MinPts
- ► heuristic approach: order instances by their distance to their *k*-nearest neighbors

Parameters

- determine good values for ε , MinPts
- heuristic approach: order instances by their distance to their k-nearest neighbors

Definition 8 (k-distance)

In the above setting, the k-distance of an instance p is: $\operatorname{dist}_k(p) := \min\{\varepsilon \in \mathbb{R}_{\geq 0} \mid |N_\varepsilon(p)| > k\}$. (Note: p is not counted as its own neighbor.)

Parameters

- determine good values for ε , MinPts
- heuristic approach: order instances by their distance to their k-nearest neighbors

Definition 8 (k-distance)

In the above setting, the k-distance of an instance p is: $\operatorname{dist}_k(p) := \min\{\varepsilon \in \mathbb{R}_{\geq 0} \mid |N_\varepsilon(p)| > k\}$. (Note: p is not counted as its own neighbor.)

▶ k-distance diagram: the ordered k-distances of all objects

Heuristic Choice of Parameters

▶ choose k (rule of thumb k > d), and MinPts := k + 1

Heuristic Choice of Parameters

- ▶ choose k (rule of thumb k > d), and MinPts := k + 1
- ► compute *k*-distance diagram

Heuristic Choice of Parameters

- ▶ choose k (rule of thumb k > d), and MinPts := k + 1
- ► compute *k*-distance diagram
- ▶ choose instance o as border object (elbow in graph) and set $\varepsilon := \operatorname{dist}_k(o)$

Problem: Hierarchical Clusters

An example from IRIS

hierarchical clusters

Problem: Hierarchical Clusters

An example from IRIS

- hierarchical clusters
- strong differences in density in different parts of the space

Problem: Hierarchical Clusters

An example from IRIS

- hierarchical clusters
- strong differences in density in different parts of the space
- clusters and noise are not well separated

Outline

Motivation

Basics

DBSCAN

Choosing the Hyperparameters

Density-based Hierarchical Clustering

OPTICS

Theorem 9 (Cluster Monotony)

Let D be a dataset and C a density based clustering with ε and MinPts. Let C' be another such clustering with MinPts and $\varepsilon' \geq \varepsilon$. Then, for each $C \in C$ there exists a $C' \in C'$ such that $C \subseteq C'$.

Theorem 9 (Cluster Monotony)

Let D be a dataset and C a density based clustering with ε and MinPts. Let C' be another such clustering with MinPts and $\varepsilon' \geq \varepsilon$. Then, for each $C \in C$ there exists a $C' \in C'$ such that $C \subseteq C'$.

Remark:

Theorem 9 (Cluster Monotony)

Let D be a dataset and $\mathcal C$ a density based clustering with ε and MinPts. Let $\mathcal C'$ be another such clustering with MinPts and $\varepsilon' \geq \varepsilon$. Then, for each $C \in \mathcal C$ there exists a $C' \in \mathcal C'$ such that $C \subseteq C'$.

Remark:

ightharpoonup lowering arepsilon makes the density constraint harder to meet

Theorem 9 (Cluster Monotony)

Let D be a dataset and C a density based clustering with ε and MinPts. Let C' be another such clustering with MinPts and $\varepsilon' \geq \varepsilon$. Then, for each $C \in \mathcal{C}$ there exists a $C' \in \mathcal{C}'$ such that $C \subseteq C'$.

Remark:

- \blacktriangleright lowering ε makes the density constraint harder to meet
- thus, clusters decompose into smaller subsets and noise

Outline

Motivation

Basics

DBSCAN

Choosing the Hyperparameters

Density-based Hierarchical Clustering

OPTICS

Idea

Idea

reate a data structure from which one can obtain DBSCAN clusterings for different choices of ε in linear(!) time

Idea

- reate a data structure from which one can obtain DBSCAN clusterings for different choices of ε in linear(!) time
- ▶ Ordering Points To Identify the Clustering Structure → OPTICS

Idea

- reate a data structure from which one can obtain DBSCAN clusterings for different choices of ε in linear(!) time
- ▶ Ordering Points To Identify the Clustering Structure → OPTICS

Steps

Idea

- reate a data structure from which one can obtain DBSCAN clusterings for different choices of ε in linear(!) time
- ▶ Ordering Points To Identify the Clustering Structure → OPTICS

Steps

▶ fix MinPts

Idea

- reate a data structure from which one can obtain DBSCAN clusterings for different choices of ε in linear(!) time
- ▶ Ordering Points To Identify the Clustering Structure → OPTICS

Steps

- ▶ fix MinPts
- \blacktriangleright fix an upper bound for ε

Idea

- reate a data structure from which one can obtain DBSCAN clusterings for different choices of ε in linear(!) time
- ▶ Ordering Points To Identify the Clustering Structure → OPTICS

Steps

- ▶ fix MinPts
- fix an upper bound for ε
- ▶ find a clever ordering of points

Idea

- reate a data structure from which one can obtain DBSCAN clusterings for different choices of ε in linear(!) time
- Ordering Points To Identify the Clustering Structure >
 OPTICS

Steps

- ▶ fix MinPts
- fix an upper bound for ε
- ▶ find a clever ordering of points
- ightharpoonup compute the minimum arepsilon for which a point is still reachable from its predecessors

Idea

- reate a data structure from which one can obtain DBSCAN clusterings for different choices of ε in linear(!) time
- ▶ Ordering Points To Identify the Clustering Structure → OPTICS

Steps

- ▶ fix MinPts
- ightharpoonup fix an upper bound for ε
- ► find a clever ordering of points
- ightharpoonup compute the minimum arepsilon for which a point is still reachable from its predecessors
- ▶ the upper bound is used to determine whether an instance can be a core point at all (for this or lower values of ε)

Principle: Given fix MinPts and ε , in a DBSCAN-like procedure yield a data structure with three components:

Principle: Given fix MinPts and ε , in a DBSCAN-like procedure yield a data structure with three components:

1. the core distance for each instance

Principle: Given fix MinPts and ε , in a DBSCAN-like procedure yield a data structure with three components:

- 1. the core distance for each instance
- 2. an order on the dataset

Principle: Given fix MinPts and ε , in a DBSCAN-like procedure yield a data structure with three components:

- 1. the core distance for each instance
- 2. an order on the dataset
- 3. a reachability distance for each instance

Principle: Given fix MinPts and ε , in a DBSCAN-like procedure yield a data structure with three components:

- 1. the core distance for each instance
- 2. an order on the dataset
- 3. a reachability distance for each instance

Visual Representation: a reachability distance diagram, which is readable even for very large datasets with high dimensionality

Core Distance

Definition 10 (Core Distance)

For an instance o of a dataset D with distance dist, the core distance of o, given ε and MinPts is

$$egin{aligned} \mathit{core} - \mathit{dist}(o) \coloneqq egin{cases} \mathit{undefined} & |\mathit{N}_{arepsilon}(o)| < \mathsf{MinPts} \ \mathit{dist}_{\mathsf{MinPts}-1}(o) & \mathsf{else} \end{cases} \end{aligned}$$

Core Distance

Definition 10 (Core Distance)

For an instance o of a dataset D with distance dist, the core distance of o, given ε and MinPts is

$$core - \operatorname{dist}(o) \coloneqq egin{cases} undefined & |\mathcal{N}_{\varepsilon}(o)| < \operatorname{MinPts} \\ \operatorname{dist}_{\operatorname{MinPts}-1}(o) & \operatorname{else} \end{cases}$$

In a clustering with MinPts and $\varepsilon' \leq \varepsilon$, o will be a core point if $core - \operatorname{dist}_{\varepsilon, \operatorname{MinPts}}(o) \leq \varepsilon'$.

Definition 11 (Reachability Distance)

For an instances p and o of a dataset D with distance dist, the reachability distance of p from o, given ε and MinPts is

Definition 11 (Reachability Distance)

For an instances p and o of a dataset D with distance dist, the reachability distance of p from o, given ε and MinPts is

The reachability distance of p from o tells us, for which $\varepsilon' \leq \varepsilon$ is directly reachable, meaning

Definition 11 (Reachability Distance)

For an instances p and o of a dataset D with distance dist, the reachability distance of p from o, given ε and MinPts is

The reachability distance of p from o tells us, for which $\varepsilon' \leq \varepsilon$ is directly reachable, meaning

o must be a core point and

Definition 11 (Reachability Distance)

For an instances p and o of a dataset D with distance dist, the reachability distance of p from o, given ε and MinPts is

The reachability distance of p from o tells us, for which $\varepsilon' \leq \varepsilon$ is directly reachable, meaning

- ▶ o must be a core point and
- ▶ p must be in the neighborhood $N_{\varepsilon}(o) = \{p \in D \mid \operatorname{dist}(o, p) \leq \varepsilon\}$ of o.

Cluster Order

1. start with an arbitrary object

Cluster Order

- 1. start with an arbitrary object
- **2.** as soon as the first object *p* with defined core distance is found, start an ordered priority list

- 1. start with an arbitrary object
- **2.** as soon as the first object *p* with defined core distance is found, start an ordered priority list

3. for each neighbor q of p do:

- 1. start with an arbitrary object
- **2.** as soon as the first object *p* with defined core distance is found, start an ordered priority list
- **3.** for each neighbor q of p do:
 - if q is not on the list, add it with its reachability distance from p

- 1. start with an arbitrary object
- **2.** as soon as the first object *p* with defined core distance is found, start an ordered priority list
- **3**. for each neighbor q of p do:
 - if q is not on the list, add it with its reachability distance from p
 - ▶ if q is on the list and the reachability distance from p is smaller than the previous reachability distance, replace the previous reachability distance

- 1. start with an arbitrary object
- 2. as soon as the first object *p* with defined core distance is found, start an ordered priority list
- **3**. for each neighbor q of p do:
 - if q is not on the list, add it with its reachability distance from p
 - ▶ if *q* is on the list and the reachability distance from *p* is smaller than the previous reachability distance, replace the previous reachability distance
- 4. repeat 3 with the first object from from the ordered priority list until the list is empty.

- 1. start with an arbitrary object
- **2.** as soon as the first object *p* with defined core distance is found, start an ordered priority list
- **3**. for each neighbor q of p do:
 - if q is not on the list, add it with its reachability distance from p
 - ▶ if *q* is on the list and the reachability distance from *p* is smaller than the previous reachability distance, replace the previous reachability distance
- **4.** repeat 3 with the first object from from the ordered priority list until the list is empty.
- 5. repeat 2 with an arbitrary unprocessed instance.

- 1. start with an arbitrary object
- 2. as soon as the first object *p* with defined core distance is found, start an ordered priority list
- **3**. for each neighbor q of p do:
 - if q is not on the list, add it with its reachability distance from p
 - ▶ if *q* is on the list and the reachability distance from *p* is smaller than the previous reachability distance, replace the previous reachability distance
- **4.** repeat 3 with the first object from from the ordered priority list until the list is empty.
- 5. repeat 2 with an arbitrary unprocessed instance.

Note that the ordered priority list is updated while it is processed (recursive algorithm).

- 1. start with an arbitrary object
- **2.** as soon as the first object *p* with defined core distance is found, start an ordered priority list
- **3**. for each neighbor q of p do:
 - if q is not on the list, add it with its reachability distance from p
 - ▶ if *q* is on the list and the reachability distance from *p* is smaller than the previous reachability distance, replace the previous reachability distance
- **4.** repeat 3 with the first object from from the ordered priority list until the list is empty.
- 5. repeat 2 with an arbitrary unprocessed instance.

Note that the ordered priority list is updated while it is processed (recursive algorithm).

Notebook 09_2_optics_toy_example

Reachability Diagram

visualize reachability distances of objects, next to each other, ordered by the cluster order

Reachability Diagram

- visualize reachability distances of objects, next to each other, ordered by the cluster order
- ▶ valleys are clusters

Reachability Diagram

- visualize reachability distances of objects, next to each other, ordered by the cluster order
- ▶ valleys are clusters
- ▶ the deeper the valley, the more dense the cluster

Example: Parameter Sensitivity

How to determine "a valley"?

How to determine "a valley"?

Distance Cut:

How to determine "a valley"?

Distance Cut:

select a reachability distance (y-axis) in the reachability diagram

How to determine "a valley"?

Distance Cut:

- select a reachability distance (y-axis) in the reachability diagram
- ▶ points between two intersections form a DBSCAN cluster

How to determine "a valley"?

Distance Cut:

- select a reachability distance (y-axis) in the reachability diagram
- ▶ points between two intersections form a DBSCAN cluster

OPTICS ξ **method** : (sketch)

How to determine "a valley"?

Distance Cut:

- select a reachability distance (y-axis) in the reachability diagram
- ▶ points between two intersections form a DBSCAN cluster

OPTICS ξ **method** : (sketch)

▶ go through cluster order

How to determine "a valley"?

Distance Cut:

- select a reachability distance (y-axis) in the reachability diagram
- ▶ points between two intersections form a DBSCAN cluster

OPTICS ξ method : (sketch)

- ▶ go through cluster order
- \blacktriangleright start cluster when in an area reachability distance falls ξ -steep

How to determine "a valley"?

Distance Cut:

- select a reachability distance (y-axis) in the reachability diagram
- ▶ points between two intersections form a DBSCAN cluster

OPTICS ξ **method** : (sketch)

- ▶ go through cluster order
- \blacktriangleright start cluster when in an area reachability distance falls ξ -steep
- \blacktriangleright end cluster when in an area reachability rises ξ -steep

How to determine "a valley"?

Distance Cut:

- select a reachability distance (y-axis) in the reachability diagram
- ▶ points between two intersections form a DBSCAN cluster

OPTICS ξ **method** : (sketch)

- ▶ go through cluster order
- \blacktriangleright start cluster when in an area reachability distance falls ξ -steep
- \blacktriangleright end cluster when in an area reachability rises ξ -steep
- clusters contain at least MinPts instances

Notebook 09 1 density synthetic, Cells 13-21

How to determine "a valley"?

Distance Cut:

- select a reachability distance (y-axis) in the reachability diagram
- ▶ points between two intersections form a DBSCAN cluster

OPTICS ξ method : (sketch)

- ▶ go through cluster order
- \blacktriangleright start cluster when in an area reachability distance falls ξ -steep
- \blacktriangleright end cluster when in an area reachability rises ξ -steep
- clusters contain at least MinPts instances

Notebook 09 1 density synthetic, Cells 13–21

