Chapitre 3

I. Rappel sur les atomes

X : Elément chimique

A : nombre de nucléons (nombre de masse)

Z : nombre de protons (numéro atomique) N : nombre de neutrons (N = Z – A)

Isotope d'un élément :

Deux noyaux isotopes d'un élément possèdent le même nombre de proton mais diffèrent par leur nombre de neutrons.

$$^{12}_{6}C$$
 et $^{14}_{6}C^*$

II. Stabilité des noyaux

La stabilité d'un noyau résulte de la compétition entre l'interaction électrique entre protons (répulsive) et l'interaction forte entre nucléons (attractive).

$$_{-1}^{0}e$$
: électron $_{1}^{0}e$: positron $_{0}^{1}n$: neutron $_{1}^{1}p$: proton

Radioactivité α (excès de nucléons)	Formation de noyau fils et d'un noyau d'hélium (particule α)
	${}_Z^A X \rightarrow {}_{Z-2}^{A-4} Y + {}_2^4 H$
Radioactivité β ⁻ (excès de neutrons)	Formation de noyau fils et d'un électron
	${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}Y + {}_{-1}^{0}e$
Radioactivité β ⁺ (excès de protons)	Formation de noyau fils et d'un positron
	${}_Z^A X \rightarrow {}_{Z-1}^A Y + {}_1^0 e$
Radioactivité γ (noyaux excités)	Retour du noyau a son état stable et émission de rayonnement gamma
	${}_{Z}^{A}Y^{*} \rightarrow {}_{Z}^{A}Y + \gamma$

Loi de désintégration radioactive III.

1. Hypothèses et loi de Soddy

- « Un noyau meurt sans vieillir »: La probabilité qu'un noyau radioactif se désintègre est indépendante de son âge.
- La désintégration d'un noyau n'affecte pas celle d'un noyau voisin.
- La désintégration est imprévisible et aléatoire.

Loi de Soddy: Lors d'une réaction nucléaire, il y a conservation du nombre de charges Z et du nombre de masses A.

La radioactivité

Chapitre 3

2. Evolution d'une population moyenne d'un ensemble de noyaux

$$-\Delta N = \lambda N \Delta t$$

 λ (s⁻¹) : constante radioactive = probabilité par unité de temps pour un noyau de se désintégrer.

 $N(t) = N_0 e^{-\lambda t}$

Δt (s) : durée d'étude N : nombre de noyaux

- ΔN : nombre de désintégrations

3. Constante de temps et demi-vie

Constante de temps :

τ est la constante de temps

$$\tau = \frac{1}{\lambda}$$

Pour trouver τ , on peut tracer la tangente à la courbe à t_0 , celle-ci coupe l'axe des x en t = τ

Demi-vie:

La demi-vie $t_{1/2}$ (ou période) est la durée correspondant à la désintégration de la moitié des noyaux radioactifs d'un échantillon.

Lien entre $t_{1/2}$ et λ (à connaitre) :

$$N(t_{1/2}) = \frac{N_{\theta}}{2} = N_{\theta}e^{-\lambda t_{1/2}} \iff \frac{1}{2} = e^{-\lambda t_{1/2}} \iff 2 = e^{\lambda t_{1/2}} \iff \lambda t_{1/2} = \ln(2)$$

$$\boxed{t_{1/2} = \frac{\ln 2}{\lambda}}$$

4. Activité d'un échantillon radioactif

L'activité A d'un échantillon radioactif est le nombre de désintégration par unité de temps ayant lieu dans cet échantillon.

Le becquerel correspond à la désintégration d'un noyau par seconde.

$$A = -\frac{\Delta N}{\Delta t} = \lambda N = A_0 e^{-\lambda t}$$

A (Bq) : activité

Δt (s): durée d'étude

ΔN : variation du nombre de noyaux

5. Datation

$$t = \frac{1}{\lambda} \ln \frac{N}{N_0}$$

t (s): temps écoulé depuis t₀

λ (s⁻¹): constante radioactive N: nombre de noyaux

 N_0 : nombre de noyaux à t_0