

ADS AD VIDEO COSOUN

www.aduni.edu.pe

QUÍMICA

SOLUCIONES I Semana 27

www.aduni.edu.pe

ADUNI

I. OBJETIVOS

Los estudiantes, al término de la sesión de clase serán capaces de:

- Identificar la dispersión denominada solución, conocer sus componentes y clasificación.
- 2. Reconocer las características generales que tienen las soluciones.
- 3. Calcular la concentración de una solución y determinar la solubilidad de un determinado soluto en una solución saturada.

II. INTRODUCCIÓN

 En la naturaleza, la materia se encuentra formando mezclas (generalmente denominado sistemas dispersos, ejemplo:

- Los componentes de un sistema disperso son medio disperso y medio dispersante.
- En el agua con arena:

 Generalmente en mayor proporción.

- Arena (constituido principalmente por SiO₂)
- **Medio disperso**
- Generalmente en menor proporción.

 Según el tamaño de las partículas que forman el medio disperso, (ø), un sistema disperso se clasifica:

CLASIFICACIÓN DE UN SISTEMA DISPERSO SEGÚN EL TAMAÑO DE LAS PARTÍCULAS DEL MEDIO DISPERSO (ϕ)

El agua con aceite forman una mezcla heterogénea pero no un sistema disperso.

SOLUCIONES

III. CONCEPTO

- Es una mezcla homogénea que resulta de la unión física de dos o más sustancias diferentes, donde el grado de subdivisión de la fase dispersa es del tamaño atómico, iónico o molecular, menor a un nanómetro.
- En una solución al componente que generalmente está presente en menor proporción se le denomina soluto y al que está presente en mayor proporción se le denomina solvente :

• Soluto (Sto): NaCl

Solvente (Ste): H₂O

Se cumple:

$$Soluci\'on = Sto_1 + Sto_2 + \dots + Sto_n + Ste$$

Otras soluciones: agua potable, bebidas alcohólicas, aire, acero, latón, vinagre, formol, agua oxigenada, etc.

¿Qué significa ser una mezcla homogénea?

Significa que es monofásica y cualquier porción que se tome de la mezcla tendrá las mismas propiedades como la **concentración**, sabor, color, densidad, conductividad...etc.

IV. CARACTERÍSTICAS DE UNA SOLUCIÓN

- A) No presentan fórmula química.
- B) Tiene composición uniforme en toda su extensión y propiedades definidas.

C) Sus componentes no se distinguen a simple vista, ni tampoco con microscopio, ya que el soluto se encuentra disgregado en tamaños menores a un nanómetro $(1nm = 10^{-9} m)$.

D) Los componentes de una solución se pueden separar por métodos físicos, como la **destilación**, la vaporización, cristalización, cromatografía etc.

E) El nombre y la concentración de una solución, lo define el **soluto.**

EJEMPLO, al disolver sacarosa ($C_{12}H_{22}O_{11}$) en agua.

Nombre de la solución: Solución acuosa de C₁₂H₂₂O₁₁

La sacarosa presente en la solución genera el **dulzor** característico e indicará que tan concentrado se encuentra la solución.

F) El estado físico de una solución lo determina el solvente.

EJEMPLO:

El agua tiene la capacidad de disolver a muchas sustancias (sales, ácidos, alcoholes) por eso es el disolvente más conocido, existen otros disolventes como el benceno (C₆H₆) y tetracloruro de carbono (CCl₄) usados para disolver grasas.

ADUNI

V. CLASIFICACIÓN DE LAS SOLUCIONES

según su estado de agregación

			U. V. J.
SOLUCIÓN	SOLVENTE	SOLUTO	Ejemplo
		Gas	Aire (O ₂ en N ₂), Gas natural
Gaseosa	Gas	Líquido	Evaporación de alcohol en aire.
DUNI	ADUNI	Sólido	Sublimación del hielo seco en aire.
		Gas	Agua Gasificada (CO ₂ en agua)
Líquido	Líquido	Líquido	Aguardiente (etanol en agua) Agua oxigenada, ácido de bateria
DUNI	ADUNI	Sólido	Salmuera (NaCl en agua), agua dulce
Sólida	Sólido	Gas	H ₂ ocluido en Pt
		Líquido	Amalgama dental (Hg en Ag)
		Sólido	Acero (C en Fe), bronce (Sn en Cu) Latón (Cu + Zn)

SOLVATACIÓN

Es la interacción entre el soluto y el solvente pero que no llegan a generar una reacción química, en el proceso de solvatación debemos recordar:

"Lo semejante disuelve a lo semejante"

- Solvente polar disuelve a soluto polar y compuesto iónico.
- Solvente apolar disuelve a soluto apolar.

EJEMPLO

El agua disuelve al NaCl por solvatación iónica.

EJEMPLO

El agua disuelve al HCl por solvatación molecular (al inicio) y luego en forma definitiva por solvatación iónica.

VI. CONCENTRACIÓN

Expresa la cantidad presente de soluto respecto de la cantidad total de la solución. Además las propiedades y aplicaciones de la solución dependerán de su concentración.

Soluto (Sto)

% vol. de sto.	APLICACIONES	
4%	Medicinal (desinfectante)	
20%	Cosmetología (teñido de cabello)	
40%	Blanqueador de tela y papel	
90%	Combustible de cohetes	

En general:

$$Concentración = \frac{Cantidad\ de\ soluto}{Cantidad\ de\ solución}$$

 Según la cantidad de soluto disuelto las soluciones se clasifican:

Mayor cantidad de soluto disuelto

Solución diluida:

Son soluciones que tienen una pequeña cantidad de soluto respecto a la cantidad de solvente.

- Solución concentrada:
 - Si la cantidad de soluto respecto a la cantidad de solvente es grande.
- Solución saturada:

Si la cantidad de soluto es la máxima que puede disolver el solvente a una temperatura determinada.

VII. Solubilidad $(S_{Sto}^{t^{\circ}C})$

Expresa la concentración de una **solución saturada**. Su valor indica la *cantidad máxima de soluto* (en gramos) *que se puede disolver en 100 g de solvente a una determinada temperatura.*

$$S_{\text{Sto}}^{\text{T}^{\circ}\text{C}} = \frac{m_{\text{max}} \text{ Sto}}{100 \text{g Ste}}$$

Dato experimental:

A 20 °C, en 100 g de H₂O se disuelve como máximo 36 g de NaCl. Entonces:

$$S_{\text{NaCl}}^{20^{\circ}\text{C}} = \frac{36 \text{ g } NaCl}{100 \text{ g H}_20}$$

Interpretación:

se disuelve como máximo En $100 g H_2 O$ 36 *g NaCl* se disuelve como máximo $En 200 g H_2 O$ 72 g NaCl se disuelve como máximo $En\ 1000\ g\ H_2O$ 360 *g NaCl* se disuelve $En 50 g H_2 O$ como máximo 18 g NaCl

EJEMPLO

Si enfriamos 500 g de solución saturada de sacarosa $(C_{12}H_{22}O_{11})$ de 50 °C a 20 °C. ¿Cuántos gramos de sacarosa se cristalizan?

$$S_{sacarosa}^{50^{\circ}C} = 260 \ g$$

$$S_{sacarosa}^{50^{\circ}C} = 260 g$$
 y $S_{sacarosa}^{20^{\circ}C} = 204 g$

RESOLUCIÓN

Solución saturada a 50 °C

Solución saturada con precipitado A 20 °C

$$S_{sacarosa}^{50^{\circ}C} = \frac{(260 \ g)x}{(100 \ gH_2O)x} \quad S_{sacarosa}^{20^{\circ}C} = \frac{(204 \ g)x}{(100 \ gH_2O)}$$

$$260x + 100x = 500$$

 $x = 1,39$

La cantidad de sacarosa, $(C_{12}H_{22}O_{11})$, que precipita:

$$m_{precipita}$$
: 260x-204x=56x
56x1,39= 77,84 g

La curva de solubilidad del oxígeno en agua a diversas temperaturas a una presión de 1 atm, nos indica que al aumentar la temperatura del agua disminuye su solubilidad. ¿Es favorable que los residuos calientes lleguen a los lagos, por qué?

EJERCICIO

A 20 °C, el coeficiente de solubilidad de la sacarosa es 204. Teniendo en cuenta lo anterior, determine las proposiciones correctas.

- I. A 20 °C y en 100 mL de agua pura se puede disolver como máximo 204 g de sacarosa.
- II. A 20 °C se puede disolver como máximo 306 g de sacarosa en 150 g de agua.
- III. Si se tiene 300 mL de agua destilada y 500 g de sacarosa a 20 °C, se requiere 112 g de sacarosa para saturar la solución inicial.
 - A) Solo I

B) solo III

C) I y III

D) I, II y III

RESOLUCIÓN

T=20°C

I) CORRECTO

A 20°C se cumple que 100 mL de agua pura disuelve como máximo 204 g de sacarosa, formando así una solución saturada.

II) CORRECTO A 20°C se cumplirá que 150 g de agua disolverá como máximo:

m _{sacarosa} =
$$150 g H_2Ox \frac{204 gsacarosa}{100 g H_2O}$$
 = 306 g sacarosa

(II) CORRECTO Calculamos que masa de sacarosa se disuelve como máximo en 300mL de agua:

m _{sacarosa} =
$$300mL H_2Ox \frac{204gsacarosa}{100mLH_2O}$$
 = 612 g sacarosa

Si se agregó inicialmente 500g de sacarosa, entonces hace falta agregar **112g** de sacarosa para saturar la solución inicial.

CLAVE: D

VIII. BIBLIOGRAFÍA

- Química, colección compendios académicos UNI; Lumbreras editores
- Química, fundamentos teóricos y aplicaciones; 2019 Lumbreras editores.
- Química, fundamentos teóricos y aplicaciones.
- Química esencial; Lumbreras editores.
- Fundamentos de química, Ralph A. Burns; 2003; PEARSON
- Química, segunda edición Timberlake; 2008, PEARSON
- Química un proyecto de la ACS; Editorial Reverte; 2005
- Química general, Mc Murry-Fay quinta edición