Using Chernoff Bound in the Proof of Lemma 6 of Approximate Similarity Search Under Edit Distance using Locality-Sensitive Hashing

Lemma 6. For any string x of length d, $Pr_{\rho}[\tau(x,\rho)iscomplete] \geq 1 - 1/n^2$.

A transcript $\tau(x,\rho)$ is complete if $|\tau(x,\rho)| < 8d/(1-p_a) + 6\log n$. Let the transcript contain l insert operations, as the maximum length of a string is d, $|\tau(x,\rho)| \leq d+l$

We check the bounds for the probability of $l > 7d/(1 - p_a) + 6 \log n$.

Consider success to be when we do not have hash-insert operations. This behaves like a geometric progression with probability = $(1 - p_a)$. The Expected number of hash-inserts we need to get an operation which is not a hash-insert would be $\frac{1}{(1-p_a)}$

Hence, $E[hash\ inserts\ for\ each\ character] = 1/(1-p_a)$. $: E[1] = d/(1 - p_a).$

One of the Chernoff bounds is:
$$Pr(X \geq (1+\delta)E[X]) \leq (\frac{e^{\delta}}{(1+\delta)(1+\delta)})^{E[X]} \\ \Longrightarrow Pr(X \geq (1+\delta)E[X]) \leq e^{(\delta-(1+\delta)ln(1+\delta))*E[X]} - - (1)$$
 To calculate $Pr(l > 7d/(1-p_a) + 6\log n)$ with $E[X] = d/(1-p_a)$, $\delta = 6 + \frac{6(1-p_a)\log n}{d}$

Referring to "A guided tour of Chernoff bounds": $\epsilon - (1 + \epsilon) \ln(1 + \epsilon) \le -\epsilon^2/3$, when $0 \le \epsilon \le 1$

We have the value of $\delta = 6 + \frac{6(1-p_a)\log n}{d} > 6$, hence we cannot use the above bound, instead we use:

$$\delta - (1+\delta)ln(1+\delta) \le -\delta/3$$
, when $\delta > 1$

Substituting in (1), we get:

$$Pr(l \ge (1+\delta)E[X]) \le e^{-\delta E[X]/3}$$

 $Pr(l > 7d/(1-p_a) + 6\log n) < e^{-(6d/(1-p_a)+6\log n)/3}$

As
$$\frac{6d}{(1-p_a)} > 0$$
,

$$\implies Pr(l > 7d/(1-p_a) + 6\log n) < e^{-(6\log n)/3} \\ \implies Pr(l > 7d/(1-p_a) + 6\log n) < 1/n^2 \\ \text{Hence, } Pr(l < 7d/(1-p_a) + 6\log n) > 1 - 1/n^2$$