MATERI PERSIAPAN KUIS 1 MATEMATIKA INFORMATIKA RUANG VEKTOR - VEKTOR (M1-M6)

Disusun oleh:

Yosef Rafael Bonar Clinton Rumahorbo (yosephrafael.com)

FAKULTAS ILMU KOMPUTER PRODI ILMU KOMPUTER UNIVERSITAS INDONESIA

PDA 2025/2026

***** What is Vector?

Vector is an object that has both a magnitude and a direction. So Geometrically, we can picture a vector as a directed line segment, whose length is the magnitude of the vector and with an arrow indicating the direction.

***** Vector Space

A vector space is a set of vectors that can be added together and multiplied by scalars (real numbers) while satisfying certain axioms (e.g., associativity, distributivity, zero vector existence). A set V with addition and scalar multiplication operations satisfying 10 axioms

Key Materials:

- Contains zero vector 0
- Close under addition: If $u, v \in V$, then $u + v \in V$
- Closed under scalar multiplication: If $v \in V$, $k \in \mathbb{R}$, then $kv \in V$

Example:

- \mathbb{R}^n = all n-dimensional real vectors
- $M_{nn} = all n \times n matrices$
- P_n = all polynomials of degree $\leq n$

***** Linear Independence

Vectors $\{v_1,...,v_n\}$ are linearly independent if the only solution to:

$$c_1v_1 + c_2v_2 + ... + c_nv_n = 0$$

is $c_1 = c_2 = ... = c_n = 0$.

Key Materials:

- Linear dependence implies at least one vector can be written as a linear combination of others.
- Linear independence means no vector can be formed from the others.

How to check :

- Create a matrix with the vectors as columns
- Perform row reduction (Gaussian elimination)
- If only trivial solution \rightarrow independent, If non-trivial solutions exist \rightarrow dependent

***** Linear Combination

A vector w is a linear combination of vectors $v_1, v_2, ..., v_n$ if: $w = c_1v_1 + c_2v_2 + ... + c_nv_n \text{ for some scalars } c_1,...,c_n \in \mathbb{R}$

Example:

Is [2 5 8] a linear combination of [1 0 1], [1 1 1], [0 2 3]? \rightarrow Solve the system: $c_1[1\ 0\ 1] + c_2[1\ 1\ 1] + c_3[0\ 2\ 3] = [2\ 5\ 8]$

Proving a Linear Combination

To prove one vector is a linear combination of others, solve:

$$W = c_1V_1 + c_2V_2 + ... + c_nV_n$$

Example:

Prove [5 2 4] is a combination of [1 0 1] and [2 1 1] $\rightarrow c_1[1 \ 0 \ 1] + c_2[2 \ 1 \ 1] = [5 \ 2 \ 4] \rightarrow Solve the system$

***** Exercises and Answers

- Q1. Determine if vectors [1 2] and [3 6] are linearly independent → They are dependent (second is a scalar multiple of the first)
- Q2. Is [4 5] a linear combination of [1 2], [1 1]? Solve:

$$c_1[1\ 2] + c_2[1\ 1] = [4\ 5]$$

 $\rightarrow c_1 + c_2 = 4, 2c_1 + c_2 = 5 \rightarrow c_1 = 1, c_2 = 3 \rightarrow Yes$

Vector Space – Exercises

Question

- Q1. Is the set of all 2x2 matrices a vector space?
- Q2. Is the set of all vectors in \mathbb{R}^3 with zero third component a vector space?
- Q3. Does the set of all polynomials of degree exactly 2 form a vector space?
- Q4. Is the set of all continuous functions a vector space?
- Q5. Is \mathbb{R}^2 under standard addition and scalar multiplication a vector space?
- Q6. Show that the zero vector is unique in any vector space.
- Q7. Prove that every vector has a unique additive inverse in a vector space.
- Q8. Does closure under addition imply associativity? Explain.
- Q9. Is the union of two subspaces always a subspace? Justify.
- Q10. Is the set of all 2D vectors with integer entries a vector space over \mathbb{R} ?

Vector Space – Answers and Explanations

Answers

Q1. Yes, 2x2 matrices form a vector space under standard addition and scalar multiplication.

Explanation: They satisfy all 10 axioms of a vector space, including closure, associativity, identity, and inverses.

Q2. Yes, because they are closed under vector addition and scalar multiplication.

Explanation: The set is a subspace of \mathbb{R}^3 .

Q3. No, because it's not closed under addition (sum of two degree 2 polynomials might be degree ≤ 2).

Explanation: Closure under addition fails since degree may drop.

Q4. Yes, continuous functions form an infinite-dimensional vector space.

Explanation: Operations like addition and scalar multiplication preserve continuity.

Q5. Yes, \mathbb{R}^2 is a standard example of a vector space.

Explanation: All vector space axioms are satisfied.

Q6. Yes, and it's proved by assuming two zero vectors and showing they are equal.

Explanation: Let 0 and 0' be zero vectors, then 0 + 0' = 0' implies 0 = 0'.

Q7. Yes, every vector has a unique additive inverse in a vector space.

Explanation: Let v + w = 0 and v + w' = 0, then w = w'.

Q8. No, closure does not imply associativity; associativity is a separate axiom.

Explanation: Each axiom must be independently verified.

Q9. No, the union of two subspaces is not necessarily a subspace.

Explanation: Counterexample: x-axis and y-axis in \mathbb{R}^2 .

Q10. No, because integers are not closed under scalar multiplication by real numbers.

Explanation: For example, $0.5 * [1 \ 0] = [0.5 \ 0]$, which is not in \mathbb{Z}^2 .

Linear Independence – Exercises

Ouestion

- Q1. Are [1 0], [0 1] linearly independent?
- Q2. Are [2 4], [1 2] linearly independent?
- Q3. Determine if [1 2 3], [4 5 6], [7 8 9] are linearly independent.
- Q4. Can three vectors in \mathbb{R}^2 be linearly independent?
- Q5. Can the zero vector be part of a linearly independent set?
- Q6. If $\{v_1, v_2\}$ is linearly dependent, what does it mean?
- Q7. Are the columns of the identity matrix linearly independent?
- Q8. Determine if vectors [1 -1 0], [2 1 1], [3 0 1] are dependent.

Q9. Show that any set with more vectors than the dimension is dependent.

Q10. Are [1 1 0], [2 2 0], [0 0 1] independent?

Linear Independence - Answers and Explanations

Answer

Q1. Yes, they are independent.

Explanation: Each cannot be written as a scalar multiple of the other.

Q2. No, because [2 4] = 2 * [1 2].

Explanation: They are linearly dependent.

Q3. No, determinant is $0 \rightarrow$ dependent.

Explanation: The rows are linearly dependent.

Q4. No, maximum number of independent vectors in \mathbb{R}^2 is 2.

Explanation: More than 2 vectors in \mathbb{R}^2 are always dependent.

Q5. No, a set containing the zero vector is always dependent.

Explanation: c=1 for zero vector gives non-trivial solution.

Q6. It means at least one vector is a scalar multiple of the other.

Explanation: That's the definition of dependence for two vectors.

Q7. Yes, because each standard basis vector is independent.

Explanation: Each has a unique 1 in one coordinate.

Q8. Yes, they are linearly dependent.

Explanation: Row reduction yields a free variable.

Q9. Yes, it's a fundamental theorem in linear algebra.

Explanation: In \mathbb{R}^n , any set of >n vectors is dependent.

Q10. No, because $[2\ 2\ 0] = 2 * [1\ 1\ 0]$

Explanation: The first two vectors are dependent, so the whole set is.

Linear Combination - Additional Exercises

Q1. Is [3 4] a linear combination of [1 0], [0 1]?

Q2. Can [2 2] be written as a combination of [1 1] and [1 -1]?

Q3. Write [2 3 4] as a combination of [1 0 0], [0 1 0], [0 0 1].

Q4. Express [5 2 4] using [1 0 1] and [2 1 1].

Q5. Is [4 4] in the span of {[1 2], [2 1]}?

Q6. Determine c_1 , c_2 such that $c_1[1 \ 1] + c_2[2 \ 1] = [5 \ 3]$

Q7. Can [6 8] be written as a combination of [2 3] and [1 2]?

Q8. Find a combination of [2 1 0] and [1 2 0] that gives [5 4 0].

Q9. Are [3 2], [1 0] sufficient to express [4 2]?

Q10. Use linear combination to determine if [5 7] is in span{[1 1], [2 3]}.

Linear Combination - Answers and Explanations

Answer

Q1. Yes, because $[3 \ 4] = 3*[1 \ 0] + 4*[0 \ 1]$

Explanation: It is a combination of standard basis vectors.

Q2. Yes,
$$[2\ 2] = 1*[1\ 1] + 0*[1\ -1]$$

Explanation: Solve system of equations.

Q3. Yes, just use coefficients as $[2\ 3\ 4] = 2*[1\ 0\ 0] + 3*[0\ 1\ 0] + 4*[0\ 0\ 1]$

Explanation: Standard basis expansion.

Q4. Yes, solution: $[5\ 2\ 4] = 1*[1\ 0\ 1] + 2*[2\ 1\ 1]$

Explanation: Solving the linear system gives coefficients.

Q5. Yes, solve:
$$a*[1\ 2] + b*[2\ 1] = [4\ 4]$$

Explanation: It has a solution (a=0.8, b=1.6).

Q6.
$$c_1 = 1$$
, $c_2 = 2$

Explanation: $1*[1\ 1] + 2*[2\ 1] = [5\ 3]$

Q7. Yes, use system of equations to verify.

Explanation: Solution exists: a=2, b=0.

Q8.
$$a = 1, b = 1$$

Explanation: $1*[2\ 1\ 0] + 1*[1\ 2\ 0] = [3\ 3\ 0]$

Q9. Yes,
$$a = 1, b = 1$$

Explanation: $[3\ 2] = [1\ 0] + [2\ 2]$

Q10. Yes, [57] = 1*[11] + 2*[23]

Explanation: Check by substitution.

Proving a Linear Combination - Additional Exercises

Question

- Q1. Prove [3 5] is a combination of [1 2] and [2 1].
- Q2. Show [7 8 9] can be formed from [1 0 1], [1 1 1], [0 2 3].
- Q3. Is [5 2 4] a combination of [1 0 1] and [2 1 1]?
- Q4. Demonstrate that [4 4] is a combination of [1 2] and [2 1].
- Q5. Prove $[0\ 0\ 1]$ is not in the span of $\{[1\ 0\ 0], [0\ 1\ 0]\}$
- Q6. Show that [67] is a combination of [23] and [12]
- Q7. Is [3 6] in the span of {[1 2], [1 1]}?
- Q8. Show how [4 6] can be expressed from [2 3] and [1 1]
- Q9. Find scalars a, b so that $a[1 \ 1] + b[2 \ 1] = [5 \ 3]$
- Q10. Can [10 10] be written as a combination of [2 3] and [3 2]?

Proving a Linear Combination - Answers and Explanations

Answer

Q1. Yes,
$$[3 5] = 1*[1 2] + 1*[2 1]$$

Explanation:
$$1*[1\ 2] + 1*[2\ 1] = [3\ 3]$$

Q2. Yes,
$$[7 8 9] = 2*[1 0 1] + 3*[1 1 1] + 1*[0 2 3]$$

Explanation: Solve the system.

Q3. Yes,
$$[5\ 2\ 4] = 1*[1\ 0\ 1] + 2*[2\ 1\ 1]$$

Explanation: Same as previous example.

Q4. Yes,
$$a = 0.8$$
, $b = 1.6$

Explanation: Satisfies linear combination equation.

Q5. No, [0 0 1] cannot be formed by [1 0 0] and [0 1 0]

Explanation: Missing third dimension.

Explanation:
$$[6\ 7] = 2*[2\ 3] + 1*[1\ 2]$$

Explanation:
$$[3 \ 6] = 3*[1 \ 2] + 0*[1 \ 1]$$

Explanation:
$$[4 6] = 1*[2 3] + 2*[1 1]$$

Q9.
$$a=1, b=2$$

Explanation: Check:
$$1*[1\ 1] + 2*[2\ 1] = [5\ 3]$$

Explanation:
$$2*[2\ 3] + 2*[3\ 2] = [10\ 10]$$