The Ninth Grade Math Competition Class Unit Digit Anthony Wang

1. What is the units digit of $(23^{13})^3$?

 $(3^{13})^{3} = 3^{39}$

3-37

2. Find the units digit of n given that $m = 2 \cdot 1^6$ and m has a units digit of $n \cdot 7$.

3. (a:) Find the units digit of the sum

$$1! + 2! + 3! + \cdots + 2006!$$

(b:) Find the units digit of the above sum when it is expressed in base 7.

$$n = ab \in \{ \frac{1}{2} = 7^3 at 7^2 bt + t \}$$
 $n = 7(7^2 at 7b + t) + \delta$

4.	1	integer is divisible by	n and its	units digit is n .	What is the greatest possible
	value of n ?				
	9	9	9		

5. Find the units digit of $3^{2016} - 2^{2016}$.

3¹-3 3¹-3 3²-9 3³-3 3⁴-3

6. The cube of the 3-digit natural number A7B is 108531333. What is A + B?

 $(A78)^{3} = 108,531,333$ B=7 $2108 \cdot 10^{6}$ $A78 = 35108 \cdot 10^{2}$ 444 = 45 4400 = 4500

 \bigcirc How many of the positive divisors of 6^{2006} have a units digit of 6?

- (b) Find all possible units digits of perfect fourth powers when written in base 16.
- (c) Determine all non-negative integral solutions $(n_1, n_2, \dots, n_{14})$ if any, of the Diophantine equation.

$$n_1^4 + n_2^4 + \dots + n_{14}^4 = 1599.$$

(A Diophantine equation is an equation in which only integer solutions are allowed.)

16 99 10 4 10 2 4 ... 194 = 159 10 0 1 0 1 19

NO solutions