Complexidade Parametrizada

Complexidade clássica

Suponha um problema Π , se Π possui um algoritmo que o resolve em tempo polinomial dizemos que $\Pi \in P$.

Se dado um certificado de resposta sim para Π se posso validar tal resposta em tempo polinomial então $\Pi \in NP$.

Chamamos de NP-Completo a classe de problemas Π' no qual dado o problema 3-SAT 3S $3s \propto \Pi'$.

Complexidade Parametrizada

O que traz de diferente?

Une teoria e prática, não ignorando nuances práticas de um problema sabidamente NP-Completo, resolve problemas. Difere de heurísticas e aproximações, pois não perde garantia de tempo ou otimalidade.

O objetivo é desenvolver um algoritmo $\mathcal{O}(f(k).n^{\mathcal{O}(1)})$. Se um problema Π admite uma solução dessa forma, dizemos que $\Pi \in FPT$. Quando isso ocorre, afirmamos que existe um pré-processesamento capaz de reduzir a entrada obtendo uma instância menor, limitado por k, chamamos isso de kernelização; Uma solução para o kernel é uma solução para o problema.

Características - $FPT \subset XP$