11.03.2016 - N3

Show your work for each problem using numbers, sketches, or words.

Name:_____

- 1) Derive the formula for the electric potential generated by a charge distributed along a spatial curve L with continuous line density $\mu(x, y, z)$ where x = x(t), y = y(t), z = z(t), $t_0 \le t \le t_1$ are parametric equations of the curve L.
- 2) The moon orbits about the Earth with an average speed of just over 1000 m/s; yet its acceleration is less than 0.003 m/s^2 . It is the truth that the moon is a fast-moving object with a low acceleration.
- 3) Prove that:

$$\cos(\theta) + \cos(\theta + \alpha) + \dots + \cos(\theta + n \cdot \alpha) = \frac{\sin\left(\frac{\alpha \cdot (n+1)}{2}\right) \cdot \cos\left(\theta + \frac{\alpha \cdot n}{2}\right)}{\sin\left(\frac{\alpha}{2}\right)}$$

- **4)** Find the function $\phi(|\vec{r}|)$ which satisfies the condition $\operatorname{div}(\phi(|\vec{r}|)\vec{r}) = 0$, by using the expressions for the divergence in terms of spherical coordinates.
- 4) Consider the nonlinear system of ordinary differential equations:

$$\frac{du_1}{dt} = (\lambda_3 - \lambda_2) \cdot u_2 \cdot u_3$$

$$\frac{du_2}{dt} = (\lambda_1 - \lambda_3) \cdot u_1 \cdot u_3$$

$$\frac{du_3}{dt} = (\lambda_2 - \lambda_1) \cdot u_2 \cdot u_1$$

where $\lambda_i \in R$. Show that the first integrals are given by:

$$I_1 = (u_1)^2 + (u_2)^2 + (u_3)^2$$
, $I_2 = \lambda_1 \cdot (u_1)^2 + \lambda_2 \cdot (u_2)^2 + \lambda_3 \cdot (u_3)^2$

Hint: the first integral -	is a quantity that is	conserved throughou	it the motion.