실험 3

산-염기 적정을 통하여 표준용액을 이용하여 농도를 모르는 어떤 산이나 염기의 농도를 알아낸다.

6.2 용액의 농도

$$몰농도(M) = $\frac{8질의 몰수(mol)}{8액의 부피(L)}$$$

- 0.25 M NaCl(aq)
- = 0.25 mol/L NaCl(aq)
- = NaCl(aq) 1 L 속에 NaCl(s) 17.1 g

6.2 용액의 농도

몰농도(M) = $\frac{용질의 몰수(mol)}{용액의 부피(L)}$

mol/L • 몰 농도 (molarity)

용질의 몰수(n) = 용액의 농도(M) × 용액의 부피(V)

18 mol/ 2L

용질의 몰수(일정) = 용액의 농도(M) × 용액의 부피(V)(6.1) $= M_1 \times V_1 = M_2 \times V_2$

• 6.2 용액의 농도

예제 6.1

다음 용질이 <mark>완벽히 해리</mark>된다고 가정한다면, 다음 농도로 조성된 수용액에 존재할 각각 이온의 농도를 계산하시오.

- (a) 6 M HCl (aq) (b) 2 M H_2SO_4 (aq) (c) 2.5 M $FeBr_3$ (aq) (d) 0.7 M Na_2SO_4 (aq)

• 6.2 용액의 농도

예제 6.2

NaCl (58.44g/mol) 25 g을 정확히 저울로 측정하고 물에 녹여 75 mL의 소금물을 만들었다면, 이 용액의 몰농도는 얼마인가?

• 6.2 용액의 농도

예제 6.3

다음 용액에는 용질이 몇 몰 들어 있는가?

(a) 0.2 M NaHCO₃ 125 mL (b) 2.50 M H₂SO₄ 650 mL

6.3 주요 용액 반응

■ 산-염기 중화 반응

$$HCl(aq) + NaOH(aq) \longrightarrow NaCl(aq) + H2O(l)$$

6.3 주요 용액 반응

$$HCl(aq) + NaOH(aq) \longrightarrow NaCl(aq) + H2O(l)$$

$$H^{+}(aq) + Cl^{-}(aq) + Na^{+}(aq) + OH^{-}(aq) \longrightarrow Na^{+}(aq) + Cl^{-}(aq) + H_{2}O(l)$$

$$H^{+}(aq) + OH^{-}(aq) \longrightarrow H_2O(l)$$

적정을 이용해서 산이나 염기의 농도를 알아내기 위해서는 농도를 정확하게 알고 있는 염기나 산 용액이 필요하다. 정확한 농도를 미리 알고 있는 용액을 표준용액(standard solution)이라고 한다.

이 실험에서 중화반응이 완전히 이루어졌다고 판단되는 상태를 **종말점(end point)**이라고 부른다. 이상적으로는 종말점과 당량점은 같아야 하지만, 여러가지 불확실도 때문에 실제로는 정확하게 일치하지는 않을 수도 있다.

적정 (Titrations)

몰농도를 모르는 시료에 몰농도를 알고 있는 용액을 이용해 화학반응을 일으키게 하여 몰농도를 구하는 실험.

당량점 (Equivalence point) 산 염기에 의해 이론적으로 완전히 반응되는 점.

지시약 (Indicator) - 당량점에서 또는 당량점 근처에서 색깔이 변하는 물질

적정은 산염기 반응에 이용할 수 있다

$$H_2SO_4 + 2NaOH \longrightarrow 2H_2O + Na_2SO_4$$

Redox reactions

실험시 유의사항

- 1.색깔변화 관찰 위해 흰종이를 깔고 적정
- 2.분홍색이 30초 이상 유지되면 적정을 멈춘다.

실험 순서

- A. 0.5M NaOH 용액의 제조
- 1. 500 mL 부피플라스에 증류수를 적당량 채운다.
- 2. 0.5M 농도가 될수 있는 NaOH의 질량측정후 첨가
- 3. 증류수를 더 채워 흔든다.→부피플라스크 목의 눈금까지 증류수채우기

0.5M NaOH 용액

$$H^+$$
 + NaOH \longrightarrow 2H₂O + Na⁺

아세트산 + 페놀프탈레인 2~3방울

6. 실험 결과(Experimental Results)

A. 시간이 부족하면 1회만 실시하여 결과 처리한다.

	19	2회	354	용균
격정에 사용한 식초의 무게	g	g	g	g
NaOH의 농도	М	М	М	$\bigwedge \bigwedge$ M
소비된 NeOH의 부피	ml	ml	ml	ml
소비된 NaOH의 율수	mmol	mmol	mmol	mmol
식초 중 아세트산의 물수	mmol	mmol	mmol	mmol
아세트산의 질량	g	g	0	g
식초의 순도	%	- %	%	%

- * 아세트산의 몰질량 = 60.0 g/mol
- * 1 mmol = 10⁻³ mol
- B. 위 결과 처리에서 사용한 계산 과정을 모두 서술하여라.

7. 토의 및 고촬(Discussion and Consideration)

- A. [시판되는 양조 식초의 (평균) %농도]를 검색하여 확인해라.
 - 실제 실험결과인 식초의 순도(%)와 비교하고 오차 발생의 원인을 팀원들과 토의하여 서술하여라. 반대로, 만약 오차가 없다고 판단했다면, 실험에서 어떤 이유로 정확하게 분석할 수 있었는지를 팀원들과 토의하여 적어라.
- B. 실험을 하는 과정에서 깨닫게 된 사실이나 미처 몰랐던 사실을 서술하여라.
- C. 기타 추가하고 싶은 내용을 서술할 것.