ASSIGNMENT 1

NIKHIL LOHAR

14 JAN 2022

1 Question

Derive a Canonical POS expression for a Boolean function G, represented by the following truth table:

X	Y	Z	G(X,Y,Z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1
I	i	ı	l

SOLUTION: G = $(X+Y+Z).(X+Y+\bar{Z}).(X+\bar{Y}+\bar{Z}).(X+\bar{Y}+Z)$ Minimization Using K-Map : G = $(X+Y).(X+\bar{Z}).(\bar{X}+\bar{Y}+Z)$

Figure 1: POS for G

1.1 Implement NAND Logic in SOP Form

$$\begin{array}{c} X.Z + \overline{X}.Y.\overline{Z} + X.Y \\ X.Z + (Y(\overline{X}.\overline{Z} + X)) \\ X.Z + (Y(\overline{Z} + X)) \\ X.Z + Y.\overline{Z} + X.Y \end{array}$$

Output Using NAND Gates. $\,$

