Process Mining: Data Science in Action

Evaluating Mining Results

prof.dr.ir. Wil van der Aalst www.processmining.org

TU

Where innovation starts

Evaluating (data/process) mining results

Confusion matrix and related measures

Straight Ahead

Confusion matrix for decision tree

Another example

Confusion matrix for binary classification

- True Positives (TP): positive instances predicted to be positive.
- True Negatives (TN): negative instances predicted to be negative.
- False Positives (FP): negative instances predicted to be positive.
- False Negatives (FN): positive instances predicted to be negative.

Quality measures

(based on confusion matrix)

- error = (FP+FN)/K
- accuracy = (TP+TN)/K
- precision = TP/P' = TP/(TP+FP)
- recall = TP/P = TP/(TP+FN)
- F1-score =
 (2 x precision x recall)/(precision + recall)
 (harmonic mean of precision and recall)

Question: Compute precision, recall, and the F1-score before and after splitting

Answer

precision = 546/(546+314) = 0.635recall = 546/(546+0) = 1.000F1-score = 0.777

		predicted class	
		young	old
actual class	young	546	0
	old	314	0

		predicted class	
		young	old
actual class	young	544	2
	old	251	63

Cross-validation

Evaluation

Straight Ahead

Consider your 10 best friends

You can create a decision tree that accurately predicts the length of a friend based on his/her birth date and eye color.

... but the model will be overfitting the data set and will most likely not apply to any new friends.

Overfitting and underfitting

- Overfitting: the model is too specific for the data set used to learn the model and performs poorly on new instances.
 - If birth date = 16-05-1998 and eye color = blue,
 then length = 172.8 cm.
- Underfitting: the model is too general and does not exploit the data.
 - If gender = male, then length > 1 meter.

Cross-validation

k-fold cross-validation

Possible complications

- Concept drift (model should change over time).
- No negative examples (we only know about sick customers that complained afterwards).

• ...

Part I: Introduction

Chapter 1 Data Science in Action

Chapter 2 Process Mining: The Missing Link

Part II: Preliminaries

Chapter 3 Process Modeling

and Analysis

Chapter 4
Data Mining

Part III: From Event Logs to Process Models

Chapter 5 Getting the Data

Chapter 6 Process Discovery: An Introduction

Chapter 7

Advanced Process
Discovery Techniques

Part IV: Beyond Process Discovery

Chapter 8 Conformance Checking

Chapter 9 Mining Additional Perspectives

Chapter 10 Operational Support

Part V: Putting Process Mining to Work

Chapter 11

Process Mining Software

Chapter 12

Process Mining in the Large

Chapter 13

Analyzing "Lasagna Processes"

Part VI: Reflection

Chapter 15

Cartography and Navigation

Chapter 16

Epilogue

Chapter 14

Analyzing "Spaghetti Processes"

Process

Mining

Second Edition

Wil van der Aalst

