Команда ГАДы: Крылов Андрей m3234 Фунин Георгий m3234 Дударев Денис m3235

Отчет Лабораторная работа №3

Введение

В этой лабораторной работе мы реализовали и исследовали методы стохастической оптимизации поиска минимума многомерных функций, а также сравнили их с методами из прошлых лабораторных работы. В работе были использованы Python 3 и библиотека scipy-optimyze.

1 Описание методов

SGD

Реализация SGD

Листинг 1: Реализация метода SGD

```
def sgd(
           Х, у,
2
           lr_fun,
            lr0=0.01,
            n_epochs=800,
            batch=1,
            decay=0.003,
            momentum=0.
            reg_type=None,
            tol=1e-4,
10
            patience=20,
11
            log_every=1
   ):
13
       m, n = X.shape
14
       w = np.zeros((n, 1))
15
       v = np.zeros_like(w)
16
17
       loss_hist, iter_hist = [], []
18
       best_loss, wait, it = np.inf, 0, 0
19
20
       for epoch in range(1, n_epochs + 1):
21
22
            lr = lr_fun(epoch - 1, lr0, decay)
            perm = np.random.permutation(m)
23
24
            for i in range(0, m, batch):
                xi = X[perm[i:i + batch]]
26
27
                yi = y[perm[i:i + batch]]
                g = calc_gradient(xi, yi, w, reg_type)
29
                v = momentum * v - lr * g
30
                w += v
31
                it += 1
32
33
                if it % log_every == 0:
34
                    cur_loss = calc_loss(X, y, w, reg_type)
35
                    loss_hist.append(cur_loss)
36
                    iter_hist.append(it)
37
38
                     if best_loss - cur_loss > tol:
39
                        best_loss = cur_loss
40
41
                         wait = 0
                     else:
42
                         wait += 1
43
                         if wait >= patience:
                             return w, iter_hist, loss_hist
45
       return w, iter_hist, loss_hist
46
```

2 Графики

Реализуем отображение графиков на Python, который:

- отображает визуализацию 2D
- отрисовывает траекторию градиентного спуска

Используемые библиотеки

- numpy работа с массивами данных
- matplotlib.pyplot создание 2D-графиков

3 Описание результатов

Результаты для разных размеров батчей и learning rate $=10^5$

3.1 Реализация SGD с разными batch size

batch size	Iterations	Mem (MiB)	MSE	MAE	\mathbb{R}^2
1	297	1.3	0.425	0.526	0.350
10	402	0.9	0.394	0.508	0.397
100	449	1.0	0.391	0.503	0.402
500	466	1.5	0.390	0.503	0.403
1000	465	1.0	0.390	0.503	0.403

Рис. 1: batch size 1

Рис. 2: batch size 100

Рис. 3: batch size 1000

3.2 Выбор шага и регуляция

Method	Iterations	Mem (MiB)	MSE	MAE	$ m R^2$
exp	427	1.6	0.400	0.512	0.388
step	938	0.4	0.429	0.513	0.344
const	413	0.7	0.401	0.513	0.386
$\exp + l1(0.1)$	437	2.0	0.401	0.513	0.387
$\mathrm{step} + \mathrm{l1}(0.1)$	933	0.5	0.429	0.513	0.344
$\mathrm{const} + \mathrm{l1}(0.1)$	426	1.2	0.401	0.513	0.387
$\exp + l2(0.1)$	430	2.3	0.400	0.513	0.387
step + l2(0.1)	929	0.4	0.429	0.513	0.344
$\mathrm{const} + \mathrm{l2}(0.1)$	386	0.7	0.402	0.512	0.385
$\exp + elasticnet$	430	2.6	0.400	0.512	0.388
step + elasticnet	932	1.0	0.429	0.513	0.344
const + elasticnet	374	0.1	0.403	0.513	0.384

Рис. 4: step + 11(0.1)

Pис. 5: exp + elasticnet

Регуляция меняет не так много, выбор шага реально влияет на результат, что наглядно видно. Так, ехр хорошо себя показал в малом количестве итераций, но достаточно много тратил памяти. Противоположно же работал метод step. Чем то средним между двумя этими методами был const.

3.3 Keras и torch

\mathbf{Method}	MSE	\mathbf{MAE}	$ R^2 $
KERAS	0.691	0.665	-0.057
TORCH	0.482	0.539	0.263

Рис. 6: Keras и Torch

Рис. 7: batch size 100

Ключевое различие состоит в том, что в Keras вы просто описываете архитектуру модели и вызываете метод fit, передавая нужные параметры (число эпох, размер батча, разделение на тренировочную и валидационную выборки)

В PyTorch же вам нужно вручную реализовать этот цикл: в каждом проходе по эпохам формировать батчи, вычислять выходы модели, считать лосс, выполнять backward() и step(), то есть напрямую управлять всеми этапами оптимизации.

3.4 Momentum

Реализуем моментум

Momentum	Iterations	Mem (MiB)	MSE	MAE	\mathbb{R}^2
0	417	1.9	0.401	0.512	0.387
0.3	460	2.0	0.401	0.514	0.386
0.6	434	2.2	0.400	0.512	0.388
0.9	453	1.8	0.399	0.512	0.389

Как видим моментум незначительно улучшил нащ рузультат

4 Поставим задачу регрессии с ε -insensitive-потерями

Пусть $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^m, \ x_i \in \mathbb{R}^d, \ y_i \in \mathbb{R}$ — обучающая выборка. Будем искать линейный предсказатель в (возможно) «скрытом» пространстве

$$f(x) = w^{\top} \varphi(x) + b, \qquad w \in \mathcal{H}, \ b \in \mathbb{R},$$

где $\varphi: \mathbb{R}^d \to \mathcal{H}$ — фиксированное отображение (ядровой трюк позволит не выписывать φ явно).

-insensitive-loss игнорирует ошибки радиусом до $\varepsilon > 0$:

$$|y - f(x)|_{\varepsilon} := \max(0, |y - f(x)| - \varepsilon).$$

 ${\rm E\ddot{e}}$ график — «плоская» центральная полка шириной 2ε .

Прямая задача SVR

Чтобы свести абсолютную величину к линейным ограничениям, вводим неотрицательные slack-переменные ξ_i^+, ξ_i^- для превышений сверху/снизу трубы.

$$\min_{w,b,\xi^+,\xi^-} \frac{1}{2} ||w||^2 + C \sum_{i=1}^m (\xi_i^+ + \xi_i^-)$$

$$\begin{cases} y_{i} - (w^{\top}\varphi(x_{i}) + b) \leq \varepsilon + \xi_{i}^{+}, \\ (w^{\top}\varphi(x_{i}) + b) - y_{i} \leq \varepsilon + \xi_{i}^{-}, \\ \xi_{i}^{+}, \xi_{i}^{-} \geq 0, \quad i = 1, \dots, m. \end{cases}$$

 $\frac{1}{2}\|w\|^2$ — регуляризация, эквивалентная максимизации ширины зазора $2/\|w\|$; C>0 — жёсткость модели: чем больше C, тем дороже ошибаться маленькое $C\to$ модель более плоская и допускает больше выбросов.

Лагранжиан и условия ККТ

Введём множители $\alpha_i, \alpha_i' \geq 0$ для первых двух ограничений и $\eta_i^+, \eta_i^- \geq 0$ для $\xi_i^{\pm} \geq 0$. Лагранжиан:

$$\mathcal{L} = \frac{1}{2} \|w\|^2 + C \sum_{i} (\xi_i^+ + \xi_i^-) - \sum_{i} \alpha_i (\varepsilon + \xi_i^+ - y_i + w^\top \varphi_i + b)$$
$$- \sum_{i} \alpha_i' (\varepsilon + \xi_i^- + y_i - w^\top \varphi_i - b) - \sum_{i} \eta_i^+ \xi_i^+ - \sum_{i} \eta_i^- \xi_i^-,$$

где $\varphi_i = \varphi(x_i)$.

Условия стационарности $\partial \mathcal{L}/\partial(\cdot) = 0$:

$$\begin{cases} w = \sum_{i} (\alpha_i - \alpha'_i) \varphi_i, \\ \sum_{i} (\alpha_i - \alpha'_i) = 0, \\ 0 = C - \alpha_i - \eta_i^+, \quad 0 = C - \alpha'_i - \eta_i^-. \end{cases}$$

$$\eta_i^{\pm} \ge 0 \Rightarrow 0 \le \alpha_i, \alpha_i' \le C.$$

Двойственная задача

Подставляя выражение для w в \mathcal{L} и используя $K(x_i, x_j) = \varphi_i^{\mathsf{T}} \varphi_j$, получаем:

$$\max_{\alpha, \alpha'} -\frac{1}{2} \sum_{i,j} (\alpha_i - \alpha_i')(\alpha_j - \alpha_j') K(x_i, x_j) - \varepsilon \sum_i (\alpha_i + \alpha_i') + \sum_i (\alpha_i - \alpha_i') y_i$$
s.t.
$$\sum_i (\alpha_i - \alpha_i') = 0, \qquad 0 \le \alpha_i, \alpha_i' \le C.$$

Размерность задачи — 2m вместо d; ядро $K(\cdot, \cdot)$ позволяет работать в бесконечномерном \mathcal{H} .

Разреженность. В оптимуме большинство α_i , α'_i обнулены. Точки с ненулевыми коэффициентами называются опорными (SV) и полностью определяют модель.

Восстановление прямого решения

$$w^* = \sum_{i \in SV} (\alpha_i - \alpha_i') \varphi(x_i), \quad b^* = y_k - w^\top \varphi(x_k) - \operatorname{sgn}(\alpha_k - \alpha_k') \varepsilon,$$

где x_k — любой SV, находящийся внутри трубы $(0 < \alpha_k < C$ или $0 < \alpha_k' < C)$. Прогноз для новой точки x:

$$f(x) = \sum_{i \in SV} (\alpha_i - \alpha_i') K(x_i, x) + b^*.$$