云南大学数学与统计学院 实验报告

实验课名称	: 随机过程实验
指导教师:	韩博 王晓波
实验名称:	更新过程的模拟与计算
•): 统计学 2021 级
学生姓名:	
学 号:	
实验成绩:	

《随机过程实验》实验报告 8

实验名称	更新过程的模拟与计算	指导教师	韩博 王晓波
实验时间	2024年5月5日	实验地点	格物楼 3508
学号		姓名	枫叶

一、实验目的

学习使用 R 软件对更新过程进行模拟和计算。

二、实验要求

- 1. 对所使用的方法与所得到的结果进行适当的文字描述。
- 2. 在实验结果的相应部分附上完整的代码与适当的注释。
- 3. 采用一定的可视化方法体现出对应计算结果。
- 注: 所有结果保留小数点后1位数字。

三、实验内容

第一题. 对更新过程 $\{N(t),t\geq 0\}$,设更新时间间隔 X_n 独立同分布于 $Gamma(\alpha,\sigma)$ 分布,其中shape参数 $\alpha=1$,scale参数 $\sigma=2.5$:

- 1. 生成更新时间间隔 X_n 。特别地,在 R 语言中设置 set. seed (1),然后产生 5 个更新时间间隔 X_n 的随机数 $x_1,...,x_5$,将结果填在表格中。
 - 2. 计算第n次更新的更新时刻 $T_n = \sum_{i=1}^n X_i$ 。特别地,利用 X_n 的随机数

 $x_1,...,x_5$, 计算出更新时刻 $T_1,...,T_5$, 将结果填在表格中。

3. 根据更新过程的定义 $N(t) = \sup\{n: T_n \le t\}$,计算更新过程N(t)。特别地,结合第 2 题的结果 $T_1, ..., T_5, ...$,计算更新过程N(t) 在t = 0, 3, 7, 10, 12 处的值。

4. 绘制更新过程N(t) 的路径图。提示,首先产生更新时间间隔 X_n 的随机数 $x_1,...,x_5$,然后计算更新时刻 $T_1,...,T_5$,进一步计算出更新过程N(t) 在 $t=T_1,...,T_5$ 处的值,以N(t) 为纵轴,以 T_n 为横轴,绘制阶梯函数曲线。样例图示如下。

Renewal process

第二题. 已知如下命题:

如果随机变量 $X_1 \sim Poisson(\lambda_1), X_2 \sim Poisson(\lambda_2),$ 则独立随机变量和

 $X_1 + X_2 \sim Poisson(\lambda_1 + \lambda_2).$

证明如下:

 $X_1 + X_2$ 的矩母函数为

$$M_{X_1+X_2}(t)=Ee^{\,t(X_1+X_2)}=Ee^{\,tX_1}Ee^{\,tX_2}=e^{\,\lambda_1(e^t-1)}e^{\,\lambda_2(e^t-1)}=e^{(\lambda_1+\lambda_2)(e^t-1)}$$
证毕。

题目: 对更新过程 $\{N(t),t\geq 0\}$,设更新时间间隔 X_n 独立同分布于 $Poisson(\lambda)$ 分布,其中参数 $\lambda=2$:

1. 计算第n次更新的更新时刻 $T_n = \sum_{i=1}^n X_i$ 的分布 $F_n(t) = P(T_n \le t)$ 。特别地,

当n=5时, 计算 $F_n(t)$ 在t=3,6,9,12 处的值, 将结果填在表格中。提示:

 $T_{n} \sim Poisson\left(n\lambda
ight).$

2. 计算更新过程 $\{N(t),t\geq 0\}$ 的分布P(N(t)=n)。特别地,分别计算在 t=3,6,9,12 时,N(t) 取值为n,n=0,1,...,10 的概率P(N(t)=n),将结果填在 表格中。提示: $P(N(t)=n)=P(T_n\leq t)-P(T_{n+1}\leq t)=F_n(t)-F_{n+1}(t)$.

3. 计算更新函数M(t) = E(N(t))的值。特别地,分别在t = 3, 6, 9, 12处,计

第三题. 本题计算结果保留小数点后 2 位数字。对更新过程 $\{N(t),t\geq 0\}$,设更新时间间隔 X_n 独立同分布于 $Poisson(\lambda)$ 分布,其中参数 $\lambda=2$:

- 1. 验证 Feller 初等更新定理。计算更新平均速率M(t)/t = E(N(t))/t 在 t = 0.5, 1, 10, 100 处的值;计算 $1/\mu = 1/E(X_n)$ 的值,将计算结果填在表格中。
- 2. 验证 Blackwell 更新定理。设 $\mu = E(X_n)$,计算M(t+a) M(t)在 $t = \{0.5, 100\}, a = \{2, 4, 6, 8\}$ 的值,计算 a/μ 的值,将计算结果填在表格中。

四、 实验软件

R语言

五、 实验结果

【第一题】

1. 模拟结果

$\overline{x_1}$	x_2	x_3	x_4	x_5
0.4	4.7	4.5	2.1	3.1

2. 模拟结果

$\overline{T_1}$	T_2	T_3	T_4	T_5
0.4	5.0	9.6	11.7	14.8

3. 模拟结果

t	0	3	7	10	12
N(t)	0	1	2	3	4

4. 更新过程N(t)的路径图

【第二题】

1. 模拟结果

t	3	6	9	12
$F_n(t)$	0.01	0.1	0.5	0.8

2. 模拟结果

n	P(N(3)=n)	P(N(6)=n)	P(N(9) = n)	P(N(12) = n)
1	1.4E-01	4.5E-03	4.6E-05	2.1E-07
2	4.2E-01	1.1E-01	8.1E-03	2.7E-04
3	2.8E-01	2.8E-01	7.6E-02	8.6E-03
4	1.1E-01	2.9E-01	2.0E-01	5.5E-02
5	3.2E-02	1.8E-01	2.6E-01	1.4E-01
6	8.0E-03	8.4E-02	2.2E-01	2.2E-01
7	1.8E-03	3.2E-02	1.3E-01	2.2E-01
8	3.8E-04	1.0E-02	6.6E-02	1.7E-01
9	7.6E-05	3.0E-03	2.8E-02	1.0E-01
10	1.4E-05	7.9E-04	1.0E-02	5.3E-02

3. 模拟结果

t	3	6	9	12
M(t)	1.5	3	4.5	6

【第三题】

1. 模拟结果

t	0.1	1	10	100	$1/\mu$
M(t)/t	0.3	0.5	0.5	0.5	0.5

2. 模拟结果

	а	2	4	6	8
	a/μ	1	2	3	4
t=0.5	M(t+a)- $M(t)$	0.8	1.8	2.8	3.8
t=100	M(t+a)- $M(t)$	1	2	3	4

附上R code 及其运行结果:

注: R code 运行结果的输出格式,按照如下示意图的格式:

```
----- 1th Simulation -----
Name: 你的姓名
-----Question 1-----
Xn: 0.4 4.7 4.5 2.1 3.1
-----Question 2-----
Tn: 0.4 5.1 9.6 11.7 14.8
-----Question 3-----
N(t): 0 1 2 3 4
  Name: 你的姓名
   -----Question 1-----
  Fn: 0 0.1 0.5 0.8
   -----Question 3-----
  M(t): 1.5 3 4.5 6
  -----Question 2-----
  > round(fit,1)
    n Pr.Nt1 Pr.Nt2 Pr.Nt3 Pr.Nt4
   0 0.1 0.0 0.0 0.0
       0.4
            0.1 0.0 0.0
    1
    2 0.3 0.3 0.1 0.0
  4 3 0.1 0.3 0.2 0.1
  5 4 0.0 0.2 0.3 0.1
    5 0.0 0.1 0.2 0.2
6 0.0 0.0 0.1 0.2
  6
  7
  8 7 0.0 0.0 0.1 0.2
  9 8 0.0 0.0 0.0 0.1
  10 9 0.0 0.0 0.0 0.1
11 10 0.0 0.0 0.0 0.0
  Name: 你的姓名
   -----Question 1-----
   M(t)/t: 0.31 0.52 0.5 0.5
   1/mu 0.5
   -----Question 2-----
   M(t+a)-M(t) at t=0.5: 0.84 1.84 2.84 3.84
   M(t+a)-M(t) at t=100: 1 2 3 4
   a/mu: 1 2 3 4
```

Show your R code:

【第一题】

```
library(purrr)
library(ggplot2)
library(dplyr)
library(tidyr)
set.seed(1)
X n \leftarrow rgamma(5, shape = 1, scale = 2.5)
T_n \leftarrow cumsum(X_n)
t \leftarrow c(0,3,7,10,12)
N_t <- map(t,function(t) T_n<=t) %>%
 map vec(sum)
ggplot(data.frame(时刻=T_n,次数=1:5)) +
  geom_step(aes(x=时刻,y=次数)) +
  geom point(aes(x=时刻,y=次数)) +
  xlab("t") +
  ylab("N(t)") +
  labs(title = "Renewal Process") +
  theme_bw()
result_out <- function(order,name,q_num,answers,answers_names){</pre>
  split_1 <- paste(rep("=",25),collapse = "")</pre>
  split_2 <- paste(rep("-",20),collapse = "")</pre>
  cat(split_1,paste0(order,"th Simulation"),split_1,"\n")
  cat("Name:",name,"\n")
  cat("\n")
  for (i in 1:q_num){
    cat(split_2,paste0("Question ",i),split_2,"\n")
    if (is.data.frame(answers[[i]])){
      print(round(answers[[i]],1))
    }else{
      cat(answers_names[[i]],": ",round(answers[[i]],1),"\n")
    cat("\n")
  }
options(digits = 2)
result_out(1,"孙浩杰",3,list(X_n,T_n,N_t),c("Xn","Tn","N(t)"))
```

【第二题】

```
由 Poisson 分布的可加性知,T_n \sim Poisson(n\lambda),即P(T_n = k) = e^{-n\lambda} \frac{(n\lambda)^k}{k!},则F_n(t) = e^{-n\lambda} \sum_{k=0}^{\lfloor t \rfloor} \frac{(n\lambda)^k}{k!}

F_n <- function(t,n,lambda=2){
    t <- floor(t);lambda <- n*lambda
    exp(-lambda)*sum(lambda^(0:t)/factorial(0:t))
```

```
F_n_{out} \leftarrow map_{vec}(c(3,6,9,12),F_n,n=5)
利用P(N(t) = n) = F_n(t) - F_{n+1}(t)得到分布列
P_n <- function(t,n){</pre>
 F_n(t,n)-F_n(t,n+1)
}
#分布列
P data <- data.frame(t=rep(c(3,6,9,12),each=11),
           n=rep(0:10,4)) %>%
  rowwise() %>%
 mutate(p=P n(t,n)) %>%
  ungroup() %>%
  pivot_wider(names_from = t,names_glue = "P(N({t})=n)",values_from = p)
#更新函数
M <- function(t){</pre>
 data.frame(t=rep(t,each=101),#由于<math>n 过大时,分布函数趋近于0,考虑这一部分意义不大,故
只取到100
           n=0:100) %>%
    rowwise() %>%
    mutate(p=P_n(t,n)) %>%
    ungroup() %>%
    summarise(M=sum(n*p)) %>%
    . $M
M_t \leftarrow map_vec(c(3,6,9,12),M)
result_out(3,"孙浩杰",3,list(F_n_out,P_data,M_t),c("Fn","分布列","M(t)"))
```

【第三题】

```
#沿用第二题的函数
#Feller 初等更新定理
a1 <- map vec(c(0.5,1,10,100),M)/c(0.5,1,10,100)
#Blackwell 更新定理
a2 <- map vec(c(2,4,6,8),function(a) M(0.5+a)-M(0.5))
a3 <- map vec(c(2,4,6,8),function(a) M(100+a)-M(100))
special out <- function(){</pre>
  split_1 <- paste(rep("=",25),collapse = "")</pre>
 split_2 <- paste(rep("-",20),collapse = "")</pre>
  cat(split_1,"3th Simulation",split_1,"\n")
  cat("Name:","孙浩杰","\n")
  cat("\n")
  cat(split_2,"Question 1",split_2,"\n")
  cat("M(t)/t: ",a1,"\n")
  cat("1/mu",0.5,"\n")
  cat("\n")
  cat(split_2,"Question 2",split_2,"\n")
  cat("M(t+a)-M(t) at t=0.5: ",a2,"\n")
  cat("M(t+a)-M(t) at t=100: ",a3,"\n")
```

```
cat("a/mu",1,2,3,4)
}
special_out()
```

Show your results from the R code:

【第一题】

【第二题】

```
## =============== 3th Simulation ====================
## Name: 孙浩杰
##
## ------ Question 1 ------
## Fn : 0 0.1 0.5 0.8
## ------ Question 2 -----
## # A tibble: 11 × 5
      n P(N(3)=n) P(N(6)=n) P(N(9)=n) P(N(12)=n)
##
    <dbl>
           <dbl>
                      <dbl>
                             <dbl>
               0.1
                        0
                                  0
                                            0
## 1
      0
## 2
      1
               0.4
                        0.1
                                  0
                                            0
## 3 2
                        0.3
                                            0
              0.3
                                 0.1
## 4 3
## 5 4
## 6 5
## 7 6
## 8 7
              0.1
                                            0.1
                        0.3
                                 0.2
                        0.2
              0
                                 0.3
                                            0.1
                        0.1
              0
                                 0.2
                                            0.2
              0
                        0
                                 0.1
                                            0.2
              0
                                 0.1
                                           0.2
## 9
      8
               0
                                            0.1
## 10
      9
                                            0.1
            0
## 11
      10
## ------ Question 3 ------
## M(t): 1.5 3 4.5 6
```

【第三题】

=============== 3th Simulation ==============
Name: 孙浩杰
##
Question 1
M(t)/t: 0.3 0.5 0.5
1/mu 0.5
##
Question 2
M(t+a)-M(t) at t=0.5: 0.8 1.8 2.8 3.8
M(t+a)-M(t) at t=100: 1 2 3 4
a/mu 1 2 3 4
教师评语:
我如此
实验成绩:
大型,