

3BIT

до лабораторної роботи №1 з дисципліни "Чисельні методи" на тему:
"Розв'язок нелінійного рівняння" варіант №9

Виконав Студент третього курсу Групи ТТП-31 Факультету комп'ютерних наук та кібернетики Назарій ЯГОТІН

Постановка задачі

Знайти розв'язок нелінійного рівняння модифікованим методом Ньютона:

$$x^3 - 5x^2 - 4x + 20 = 0 (1)$$

Знайти розв'язок нелінійного рівняння методом простої ітерації:

$$x^3 - 8x^2 + 9x + 18 = 0 (2)$$

Точність обчислень ε має складати 10^{-3} ; користувач повинен мати можливість змінити точність.

Рис 1: Графік рівняння (**1**)

Рис 2: Графік рівняння (2)

Програма має виконувати потрібну кількість ітерацій за вказаним методом, перед цим розрахувавши їх апріорно необхідну кількість, в програмі також можна додати перевірку умов теореми або допоміжні розрахунки для звіту.

Теоретичні відомості та розрахунки

Модифікований метод Ньютона

Для обчислення рівняння (1) необхідно скористатися модифікованим методом Ньютона. Цей метод застосовують для розв'язання задачі типу f(x) = 0 із неперервно диференційовною функцією f(x).

Метод Ньютона базується на ідеї поступового наближення до кореня функції за допомогою дотичних до графіка функції. Кожна ітерація використовує попереднє наближення, а нова точка обчислюється за допомогою дотичної до графіка функції в цій точці.

Спершу необхідно обрати початкове наближення x_0 , а наступні наближення обчислювати за формулою:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}, n = 0, 1, 2, \dots$$
 (3)

Порядок швидкості збіжності модифікованого методу Ньютона є лінійним.

Достатня умова збіжності. Якщо функція $f(x) \in C^2_{[a;b]}$; f'(x), f''(x) – знакосталі на [a;b]; $f'(x) \neq 0$ на [a;b], то ітераційний процес (3) збігається $\exists x^* : \lim_{n \to \infty} x_n = x^*$.

Умова припинення ітераційного процесу: $|x_n - x_{n-1}| \leq \varepsilon$.

Рис 3: геометрична репрезентація модифікованого методу Ньютона

Початкові розрахунки

Проаналізувавши графік рівняння (1) можна зробити висновок, що один з коренів знаходиться на проміжку [4,5; 5,4]

Перевіримо це: f(4,5) = -8,125; f(5,4) = 10,064

Отже, a = 4.5, b = 5.4, f(a) * f(b) < 0

Обрахуємо першу похідну функції (1):

$$f'(x) = 3x^2 - 10x - 4 \tag{4}$$

Рис 4: Графік першої похідної функції (1)

Та другу похідну:

Рис 5: Графік другої похідної функції (1)

Що перша, що друга похідні є монотонно зростаючими на проміжку [4,5; 5,4]. Це можна побачити на графіку, а також нескладно довести аналітично. Значення обох цих функцій у точці а є більшими за 0, отже $f'(x), f''(x) > 0, x \in [4,5;5,4]$

Достатня умова збіжності для модифікованого методу Ньютона виконана, проте про всяк випадок перевіримо достатню умову збіжності для методу Ньютона, а саме:

1)
$$f(x_0)f''(x_0) > 0$$
, 2) $q = \frac{M_2|x_0 - x^*|}{2m_1} < 1$,

де $M_2 = \max_{x \in S} |f''(x)| = |f''(b)| = |f''(5,4)| = 22,4; m_1 = \min_{x \in S} |f'(x)| = |f'(a)| = f'(4,5) = 11,75.$ Нехай $x_0 = 5,05 \in [4,5;5,4]$, тоді:

$$f(x_0)f''(x_0) = f(5,05)f''(5,05) = 1,07513 * 20,3 > 0$$

 $|x_0 - x^*| \le |x_0 - a| = 0,55$

Маємо:

$$q = \frac{M_2|x_0 - x^*|}{2m_1} = \frac{22, 4|x_0 - x^*|}{2 * 11,75} \le \frac{22, 4 * 0,55}{23,5} \approx 0,524 < 1$$

Отже, обидві умови для методу Ньютона також виконуються. Можемо приступити безпосередньо до виконання:

Виконання

Рис. 6: Результати обчислення для рівняння (1).

Метод простої ітерації

Метод простої ітерації грунтується на зведенні нелінійного рівняння до вигляду

$$x = \varphi(x),$$

де $\varphi(x)=x+\Psi(x)f(x),\ \Psi(x)$ – знакостала неперервна функція.

Початкове наближення обирається довільне з проміжку: $x_0 \in [a;b]$, ітераційний процес має вигляд:

$$x_{n+1} = \varphi(x_n). \tag{6}$$

Достатня умова збіжності. Нехай для $\forall x_0: x_0 \in S, \text{ де } S = \{x: |x-x_0| \leqslant \delta\}, \ \varphi(x)$ задовольняє умовам:

- 1. $\max_{x \in S} |\varphi'(x)| \leqslant q < 1;$
- 2. $|\varphi(x_0) x_0| \le (1 q)\delta$;

тоді ітераційний процес (6) збігається $\exists x^*: \lim_{n\to\infty} x_n = x^*$, при чому швидкість збіжності лінійна:

$$|x_n - x^*| \le \frac{q^n}{1 - q} |\varphi(x_0) - x_0|.$$
 (7)

Зауваження. Замість умови 1) $\max_{x \in S} |\varphi'(x)| \leqslant q < 1$ можна використати умову Ліпшиця: $|\varphi(x) - \varphi(y)| \leqslant q|x-y|, \ x,y \in S.$

З формули швидкості збіжності (7) можна вивести апріорну оцінку кількості кроків:

$$n \geqslant \left\lceil \frac{\ln \frac{|\varphi(x_0) - x_0|}{(1-q)\varepsilon}}{\ln(1/q)} \right\rceil + 1.$$

Умова припинення залежить від q:

$$|x_n - x_{n-1}| \leqslant \frac{1-q}{q} \varepsilon$$
, якщо $q < \frac{1}{2}$;

 $|x_n - x_{n-1}| \leqslant \varepsilon$, в інших випадках.

Початкові розрахунки

Графічне дослідження рівняння (2) показує, що воно має додатний корінь на проміжку [5,5; 6,6]. Виведемо φ (x):

$$x^3 = 8x^2 - 9x - 18$$

$$x = 8 - \frac{9}{x} - \frac{18}{x^2}$$

$$\varphi(x) = -\frac{18}{x^2} - \frac{9}{x} + 8$$

Обрахуємо першу похідну функції $\varphi(x)$:

$$\varphi'(x) = \frac{9(x+4)}{x^3} \tag{8}$$

Рис 7. Графік першої похідної функції $\varphi(x)$

Та другу похідну:

$$f''(x) = -18\frac{x+6}{x^4} \tag{9}$$

Рис 8: Графік другої похідної функції $\varphi(x)$

Нескладно помітити, що $\varphi'(x) < 1$ на проміжку [5,5; 6,6]:

• з графіку видно, що $\varphi''(x) < 0, x \in [5, 5; 6, 6]$, отже функція монотонно спадає на заданому проміжку

•
$$\varphi'(a) = \varphi'(5,5) = 0,513899 = \max_{x \in S} |f'(x)| = q$$

Перевіримо другу умову збіжності:

Нехай $x_0 = \frac{a+b}{2} = 6,05$, тоді:

$$|\varphi(x_0) - x_0| = |\varphi(6,05) - 6,05| = |6,02063 - 6,05| \approx$$

$$\approx 0.03 \leqslant (1-q)\delta = (1-0.513899)\frac{b-a}{2} \approx 0.28$$

Обидві умови збіжності виконуються, тепер знайдемо п:

$$n \geqslant \left[\frac{\ln \frac{0.03}{(0.4186)\varepsilon}}{\ln(1.946)} \right] + 1.$$

Для
$$\varepsilon=10^{-3}~\mathrm{n}=12$$

Виконання

```
Оберіть метод знаходження наближеного розв'язку:
1 - Модифікований метод Ньютона для рівняння x^3 - 5x^2 - 4x + 20 = 0
2 - Метод простої ітерації для рівняння x^3 - 8x^2 + 9x + 18 = 0
Введіть бажану точність у діапазоні від 10^-12 до 0.549999999999998: 0.001
| n | x_n
               | x_n - phi(x_n)
| -0.029372993647974965 |
| 1 | 6.05
<del>+---+--------</del>
| 2 | 6.020627006352025 | -0.012067734836879396 |
 3 | 6.0085592715151455 | -0.004999003333721497 |
| 4 | 6.003560268181424 | -0.0020778786675421657 |
| 5 | 6.001482389513882 | -0.0008649102868849567 |
| 6 | 6.000617479226997 | 0.0003602279853165413 |
Апріорна оцінка: 12
Апостеріорна оцінка: 6
```

Рис 9: результати обчислень для рівняння (2)

Додаток: код програми

https://github.com/8ctag8ne/numerical-methods/tree/main/Lab%201