CS3243: Introduction to Artificial Intelligence

Semester 2, 2019/2020

AIMA Chapter 21

Based in part on slides from Zemel, Urtason and Fidler (2016), as well as Li, Johnson and Yeung (2017)

Outline

- Introduction to Learning Agents
- Reinforcement Learning Formulation
- Agent policy and optimal policies
- Learning an optimal policy
- Q-learning

Supervised Learning

=dog

=dog

=cat

=cat

=cat

=dog

=?

Unsupervised Learning

Markov property: next state is determined only based on current action and state, not entire sequence

Policy

Policy π determines agent's behavior, i.e. actions

- Deterministic policy: $a_t = \pi(s_t)$
- Stochastic policy: $\pi(a \mid s_t) = \Pr[a_t = a \mid s_t]$

Value Function

Value function tries to predict how good a state is, given the rewards.

$$V^{\pi}(s_t) = r_t(a_t, s_t) + \gamma r_{t+1}(a_{t+1}, s_{t+1}) + \gamma^2 r_{t+2}(a_{t+2}, s_{t+2}) + \cdots$$

$$= \sum_{\ell=0}^{\infty} \gamma^{\ell} r_{t+\ell}(a_{t+\ell}, s_{t+\ell})$$

Value Function

Value function tries to predict how good a state is, given the rewards.

$$V^{\pi}(s_t) = r_t(a_t, s_t) + \gamma r_{t+1}(a_{t+1}, s_{t+1}) + \gamma^2 r_{t+2}(a_{t+2}, s_{t+2}) + \cdots$$
$$= \sum_{\ell=0}^{\infty} \gamma^{\ell} r_{t+\ell}(a_{t+\ell}, s_{t+\ell})$$

The value γ (a value between 0 and 1) is called the **discount rate**.

- High value of γ long-sighted agent, cares about future rewards.
- Low value of γ agent is greedy, who cares about the future?

Value Function – The Challenge

We want to choose a value maximizing policy.

However, we are missing two key bits of information:

The rewards of unobserved states.

What the next state will be when we take an action.

The challenge:

Infer rewards/state transitions as we go along

...while maximizing revenue.

State:

(x, y) position

Actions:

Up/Down/Left/Right

Reward:

-1 per time step (+10 for reaching goal)

Policy:

Direction to go from each position (can be randomized).

Value Function:

Total reward of policy execution from given state.

State:

(1,1) position

(2,1) position

(2,2) position

(2,3) position

(3,3) position

(4,3) position

State:

(5,4) position

(5,5) position

Optimal policy:

spend as little time in the maze as possible, get to the goal.

Value Function:

Discounted reward if starting from this state.

Numbers shown for discount factor $\gamma = 1$

-8					- 9	-8	-7	-8	- 9
-7	-6	-5	-6				-6		
-8		-4			-3	-4	-5	-6	
		-3			-2			-7	
	-3	-2	-1	0	-1			-8	
				1					
	-1	0	1	2	1	0	-1		7
	0			3					8
	1	2	3	4	5	6	7	8	9
				3			6		10

Reward:

-1,0,+1 lose/tie/win (seen only on final move)

State:

Current positions of X's and O's on board

Policy:

What moves to make in given position?

Value function:

predict future reward given state.

Win Prob.

- All values are 0/0.5/1 initially
- At each turn choose move with highest win prob.
- Update table entries based on the game outcome.
- Value function will eventually represent true win probabilities

Alternatively:

- pick with probability proportional to win prob
- make a random choice.

Update strategy is critical:

- Necessary for convergence to optimal strategy.
- Some will work better than others.

Markov Decision Problem

Completely specified by a distribution:

$$\Pr[s_{t+1} = s; r_{t+1} = r \mid s_t, a_t]$$

"What is the next state and reward given current state and action?"

Planning: given an MDP, compute optimal policy

Learning: don't know the MDP, learn a strategy.

Markov Decision Problem

Given complete knowledge of MDP:

$$\Pr[s_{t+1} = s; r_{t+1} = r \mid s_t, a_t]$$

The optimal policy is deterministic - select optimal action in each state.

But... agent doesn't know the underlying MDP.

Needs to perform trial-and-error, interact with environment.

... and not lose too much reward along the way.

Learning Optimal Policies

We want to maximize (discounted) revenue.

Note that:

$$V^{\pi}(s_t) = r_{t+1} + \gamma V^{\pi}(s_{t+1})$$

Value now

Reward now

Value later

Optimal policy: $\pi(s)$ is an action in

$$\operatorname{argmax}_{a} \{ r(s, a) + \gamma V(\delta(s, a)) \}$$

Reward now Value later $\delta(s,a)$: next state given current state and action

Learning Optimal Policies

Optimal policy: $\pi^*(s)$ is an action in

$$\operatorname{argmax}_{a} \{ r(s, a) + \gamma V^{*}(\delta(s, a)) \}$$

Its value is:

$$V^*(s_t) = r_{t+1} + \gamma V^*(s_{t+1})$$

We could identify optimal policy $\pi^*(s)$ if we knew r(s,a) and $\delta(s,a)$.

We don't. Cannot choose optimal actions.

Q-Learning

Define:

$$Q^{\pi}(s,a) = r(s,a) + \gamma V^{\pi}(\delta(s,a))$$

 $Q^{\pi}(s,a)$ is the utility we obtain if we take action a at state s, and then follow the policy π from then on.

Define:

$$Q^*(s,a) = r(s,a) + \gamma V^*(\delta(s,a))$$

 $Q^*(s,a)$ is the utility we obtain if we take action a at state s, and then follow the optimal policy from then on.

Q-Learning

 Q^* and V^* are very similar:

$$V^*(s) = \max_{a} Q(s, a)$$

Therefore:

$$Q^*(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t))$$

= $r(s_t, a_t) + \gamma \max Q(s_{t+1}, a)$

 $=s_{t+1}$

- 1. Initialize $\widehat{Q}(s,a) \leftarrow 0$ for all s,a.
- 2. Start at s_0
- 3. For t = 0, ..., ∞:
 - 1. For every $a: \hat{Q}(s_t, a) \leftarrow r(s_t, a) + \gamma \max_{a'} \hat{Q}_i(\delta(s_t, a), a')$
 - 2. Pick action a_t maximizing $\widehat{Q}(s_t,a)$
 - 3. Set $s_{t+1} \leftarrow \delta(s_t, a_t)$

Key observation: when $r(s,a) \ge 0$ and $\widehat{Q} = 0$, $\widehat{Q}(s,a) \le Q^*(s,a)$ always.

In other words – we always underestimate the optimal Q values.

They always increase at every iteration, thus we converge to Q^* ... and in particular to an optimal policy!

- 1. Initialize $\widehat{Q}(s,a) \leftarrow 0$ for all s,a.
- 2. Start at s_0
- 3. For $t = 0, ..., \infty$:
 - 1. For every $a: \hat{Q}(s_t, a) \leftarrow r(s_t, a) + \gamma \max_{a'} \hat{Q}_i(\delta(s_t, a), a')$
 - 2. Pick action a_t maximizing $\widehat{Q}(s_t,a)$
 - 3. Set $s_{t+1} \leftarrow \delta(s_t, a_t)$

Problem:

We ignore current $\hat{Q}(s_t, a)$ value in computation.

r(s,a) can be stochastic, as is $\delta(s,a)$.

One bad experience can result in bad underestimate of $Q^*(s,a)$.

- 1. Initialize $\hat{Q}(s, a) \leftarrow 0$ for all s, a.
- 2. Start at s_0
- 3. For $t = 0, ..., \infty$:
 - 1. For every $a: \hat{Q}(s_t, a) \leftarrow r(s_t, a) + \gamma \max_{a'} \hat{Q}_i(\delta(s_t, a), a')$
 - 2. Pick action a_t maximizing $\widehat{Q}(s_t,a)$
 - 3. Set $s_{t+1} \leftarrow \delta(s_t, a_t)$

Solution:

We need to maintain value of \hat{Q}_i stable as we observe it more.

Change update rule:

$$\hat{Q}(s_t, a) \leftarrow (1 - \alpha_t) \hat{Q}(s_t, a) + \alpha_t \left(r(s_t, a) + \gamma \max_{a'} \hat{Q}_i(\delta(s_t, a), a') \right)$$

Where

$$\alpha_t = \frac{1}{1 + N[s_t, a]}$$
 # of times action a taken at state s_t .

- 1. Initialize $\hat{Q}(s, a) \leftarrow 0$ for all s, a.
- 2. Start at s_0
- 3. For $t = 0, ..., \infty$:
 - 1. For every $a: \hat{Q}(s_t, a) \leftarrow r(s_t, a) + \gamma \max_{a'} \hat{Q}_i(\delta(s_t, a), a')$
 - 2. Pick action a_t maximizing $\widehat{Q}(s_t,a)$
 - 3. Set $s_{t+1} \leftarrow \delta(s_t, a_t)$

Problem:

We greedily, deterministically, pick action a_t maximizing $\hat{Q}(s_t, a)$.

Deterministic algorithms can be 'fooled' by stochastic (or adversarial) inputs (more of this next lecture).

- 1. Initialize $\hat{Q}(s, a) \leftarrow 0$ for all s, a.
- 2. Start at s_0
- 3. For $t = 0, ..., \infty$:
 - 1. For every $a: \hat{Q}(s_t, a) \leftarrow r(s_t, a) + \gamma \max_{a'} \hat{Q}_i(\delta(s_t, a), a')$
 - 2. Pick action a_t maximizing $\widehat{Q}(s_t,a)$
 - 3. Set $s_{t+1} \leftarrow \delta(s_t, a_t)$

Solution:

Pick action a_t randomly.

- 1. Totally randomly?
- 2. Randomly amongst current best actions?

3. Set Pr[choosing action
$$a \mid s$$
] = $\frac{e^{\varepsilon \widehat{Q}(s,a)}}{\sum_{a'} e^{\varepsilon \widehat{Q}(s,a')}}$ Pr[$a \mid s$] ~ $e^{\varepsilon \widehat{Q}(s,a)}$