#### Exercice 3.

Soit f la fonction entière de la variable complexe z définie par :  $f(z) = \exp(2xz - z^2)$ , où x est un paramètre réel, et soit  $\sum_{n=0}^{+\infty} H_n(x)z^n$  le développement en série entière de f.

- 1.)- Montrer que  $H_n(x) = \frac{1}{2i\pi} \int_{\partial\Omega^*} \exp(2xz z^2) \frac{dz}{z^{n+1}}$  où  $\Omega$  est un ouvert convenable. Calculer  $H'_n(x)$  ( sans justifier la dérivation sous l'intégrale ). Montrer que  $H'_{n+1} = 2H_n$  pour  $n \ge 0$ . En déduire que  $H_n$  est un polynôme de degré n.
- 2.)- Si  $\Omega$  est un disque de centre 0 et de rayon plus grand que |x|, montrer que l'on a  $e^{-x^2}H_n(x)=\frac{1}{2i\pi}\int_{\partial\Omega^+}\frac{e^{-x^2}dx}{(x+x)^{n-1}}$ . En déduire que  $e^{-x^2}H_n(x)=\frac{(-1)^n}{n!}\left(\frac{d^n}{dx^n}e^{-x^2}\right)_{x=x}$ .
- 3.)- Soit  $\varphi(x)$  une fonction continue telle que  $\int_{-\infty}^{+\infty} |\varphi(x)|^2 e^{-x^2} dx < +\infty$ . On lui associe la fonction  $\Phi(z) = \int_{-\infty}^{+\infty} \exp[-(x-z)^2] \varphi(x) dx$  qui est une fonction entière de z (On ne demande pas de le démontrer). On pose  $\Phi(z) = \sum_{n=0}^{+\infty} a_n(\varphi) z^n$  le développement en série entière de  $\Phi$ . Démontrer la formule :  $a_n(\varphi) = \int_{-\infty}^{+\infty} H_n(x) e^{-x^2} \varphi(x) dx$ .
- 4.)- Pour  $\varphi = H_n$  on note  $\Phi = \Phi_n$  Démontrer les relations :  $\Phi_{n+1}^+(z) = 2\Phi_n(z)$ ,  $\Phi_n(0) = 0$   $(n \ge 1)$ , et  $\Phi_0(z) = \sqrt{\pi}$ . En déduire la valeur de  $\Phi_n$ .
- 5.)- On pose  $\omega(x)=e^{-x^2}$  et on considère l'ensemble  $S_\omega=\left\{f\in \mathcal{C}(\mathbb{R},\mathbb{R})/\int_{-\infty}^{+\infty}|f(x)|^2\omega(x)dx<+\infty\right\}$ . On munit  $S_\omega$  du produit scalaire  $< f,g>=\int_{-\infty}^{+\infty}f(x)g(x)\omega(x)dx$  qui en fait un espace préhilbertien. La norme associée étant  $\|f\|=\sqrt{< f,f>}$ .
  - a)- Verifier que les  $H_n$  appartiennent à  $S_{\omega}$  et calculer  $< H_p, H_{\bar{q}} >. p, q \in \mathbb{N}$ .
  - b)- Soit  $\varphi \in S_{\omega}$ . On pose  $f(x) = \varphi(x)e^{-x^2}$ . Montrer que  $f \in L^1(\mathbb{R})$ .
- c)- Que représente la fonction  $u \to e^{-\pi^2 u^2} \Phi(-i\pi u)$ .  $\Phi$  etant la fonction, associée à  $\varphi$ , définie dans la question 3.).
  - d)- Montrer que si tous les  $a_n(\varphi)$  sont nuls alors  $\varphi$  est nulle.
  - e)- Montrer que le système {H<sub>n</sub>/n ∈ N} est une base hilbertienne de S<sub>∞</sub>.

On consider un espace mesure (X,X,y) et  $(b_n)$  une suite croissante de fonctions positives y-intégrale à valeurs dans  $R_+$ , telle que  $\int b_n dy \leq M$ ,  $\forall n \in \mathbb{N}$ . Soient  $A_n(P) = \{ x \in X \mid b_n(x) \geq p \}, n \in \mathbb{N}, p \in \mathbb{N} \}$  et  $A = \{ x \in X \mid Cb_n(x) \}$  m'est pas une suite bornée  $\}$ 

- A) Posons  $A(p) = \coprod_{n=1}^{\infty} A_n(p)$ .

  Montrer que.  $y(A(p)) = \lim_{n \to \infty} y(A_n(p))_{-}$
- 2) Montrer que y (A(P))  $\leq \frac{M}{P}$
- 3) Escprimer A en bonction des A(P).
- 4) Calculer y (A).
- 5) Montrer que l'en converge presque partont vers une fonction meanable l'à valeurs dans R.
- 6) Montrer que f'est intégrable et que lim f fon dy = f f dy.
- 7) On pose  $M(oc, y) = -6 \propto y + 2 oc + 1$ Trouver toutes les fonctions holomorphes f(z) telles que M(x,y) = Re f(z). Exprimer co fonctions en fonction de Z et calculer leur dérivée.

# E.H.T.P. Contrôle nº 1 de mathématiques.

2/11/2006.

on considére un espace mesuré (X,X,y) et (bn) une suite croissante de bonctions positives y-intégrable à valeurs dans R+, telle que Sbndy &M, FNEN.

Soient  $A_m(P) = \{ x \in X \mid b_m(x) \ge P \}, n \in \mathbb{N}, P \in \mathbb{N} \}$ et  $A = \{ x \in X \mid C b_n(m) \}$  n'est pas une suite bornée }

A) Posons  $A(p) = \prod_{n=1}^{\infty} A_n(p)$ .

Montrer que. y (A(P)) = lim y (An(P))\_

- 2) Monther que y (A(P))  $\leq \frac{M}{P}$ .
- 3) Eseptimer A en bonetion des A(P)
- 4) Calculer y (A).
- 5) Montrer que la converge presque partout vers une fonction mesurable l'àvaleurs dans Rt.
- 6) Montrer que f'est intégrable et que lim  $\int bn \, dy = \int f \, dy$ .
- 7) On pose M(oc,y) = -6xy + 2oc + 1 Trouver toutes les fonctions holomorphes f(2) telles que M(oc,y) = Re f(≥). Exprimer ces fonctions en fonction de 2 et calcular leur dérivée.

Rattrapage d'analyse

1º année 7/3 2011

# Partie A. Duvée 45 mm.

- 1) Montrer que toute fonction mesurable à valeurs dans IR est limite d'une suite de fonctions simples mesurables.
- 2) Soient (bn) une suite de fonctions mesurables, et b: X -> R une fonction mesurable telles que: line for= b y-presque partout avec | bol 4 M 4+00, Vm.
  Montrer que si y(X) L +00, alors lim Sbndy = Sbdy
- 3) Verifier que gS = g(0) S ∀g∈C°(R)
- 4) Soit P(n) ED(R) telle qué Supp P = [c,0],
- c  $\angle o$ , et  $\int P(x) dx = 1$ .

  a) Monther que la fonction  $\nabla(x) = \int P(t) dt$  est  $C^{\infty}(\mathbb{R})$ .
- b) Calculer T(n) pour i) n≥0 et pour ii) n∠ C.

1) Calculer dans D'(R1:

a) 
$$\lim_{k\to 0} \frac{\operatorname{Tr} T - T}{k}$$
,  $T \in \mathbb{D}^1(\mathbb{R})$ 

c) 
$$\frac{d^2}{dx^2} |x|$$

2) Soit fine fonction holomorphe sur C, non constante et qui ne s'annule pas sur C. Montrer que

4€>0, 4×>0, 3 € € €, 121 > v tel que | 6(2) | KE

3) Cherchen la formation 
$$f(t)$$
 don't la transformée de Laplace est:
$$F(p) = \text{Log}\left(1 + \frac{w^2}{p^2}\right)$$

4) Calculer l'intégrale:

$$\int_{0}^{2\pi} \frac{\sin 3\theta}{5 - 3\cos \theta} d\theta$$

5) Calculir l'intégrale en utilisant le chemin



6 1° année Contrôle nº 2 E.H.T.P. 24/12/2008 d'analyse Durée 2 h Les 7 excencios sont indépendants. Barême: 3 points par exercice. (E>0). X 2) Soient Hun espais préhilbertien sur C, et V & un sous-espace vectoriel complet de H. Montrer que < f , pr(&) > = < pr(6), h> , \f, h \ H (3) Calculer dans D'(R), lim Tom, civec  $f_n(t) = \frac{m}{\sqrt{TT}} e^{-\frac{1}{N}t}$ . (4) Calculer dans D'(R), dn (x-1)!), nEN\*. 5) Trouver le développement de Laurent, +  $f(z) = \sum_{n=-\infty}^{+\infty} a_n (z+2)^n, \text{ autouv de } z_0 = -2,$   $g(z) = \frac{Z}{(z+1)(z+2)}.$ (6) Calculer l'intégrale J. dZ 1+23 1. + Pest l'ellipse 200° + y° - 3 = 0 17) Calculer l'intégrale  $\int_{0}^{2\pi} \cos^{2\pi} \theta \ d\theta$ , m=1,2,... $\left( \text{Rappel: } (1+z^2)^{en} = \sum_{p=0}^{en} \frac{(en)!}{p!(en-p)!} z^{ep} \right).$ < \$(m, 4) = < \$50, \$(4) >

< box = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1014 = 1

E.H.T.P.

Contrôle nº 1 d'analyse.

3/11/2010 Durée 18 30 min

Barème: 2,5 points par question.

A/ Soit  $g \in M^+(X,X)$  et y une mesure sur X. Posons  $v(E) = \int_E g \, dy$ .

a) Montrer que D'est une mesure sur X.

b) Soit f∈M+(X,X) simple. Monther que

 $\int \beta dv = \int \beta g dy . \tag{1}$ 

c) En déduire la rélation (1) pour b ∈ M+(X,X).

B/ on considere la distribution  $V_P(1/n)$  définie par  $\langle V_P \frac{d}{dx}, f \rangle = \lim_{E \to 0^+} \int_{\mathbb{R}} \frac{f(n)}{n} dn, \forall f \in D(\mathbb{R}).$ 

1) Mouther que Vp (1/h) est impaire.

2) Vérifier que: scVp(1/2) = 1.

3) Soient To et Te deux distributions verifiant la relation oct = 1. Calculer To-Te.

4) En déduire que  $V_P(1/n)$  est la seule distribution impaire verifiant P(T=1).

5) Calculer dans J'(R"),  $\hat{A} = F1$ .

E.H.T.P.

# Contrôle nº 1 (5)

1º année. 19/11/2008 Durée 1 30.

# Les 5 exercices sont indépendants

- 1) on pose  $M(x,y) = 2x^3 6xy^2 y + 1$ Trouver toutes les fonctions holomorphes f(z) telles que M(x,y) = Re f(z). Exprimer analytiquement les fonctions et leurs dérivées en fonction de z.
- , 2) Montrer que toute fonction mesurable à valeurs dans R est limite d'une suite de fonctions simples mesurables.
- , 3) Montrer que toute fonction positive appartenant à L'(X), p>0 est limite d'une suite de bonctions simples appartenant à L'(X).
  - 4) Soit ( $f_m$ ) une suite de fonctions dans  $M(X,\overline{X},Y)$  telles que  $\forall m \in M$ ,  $\forall x \in X$ ,  $f_m(x) \leq 0$ .

    Montrer que

lim sup Stndy & Slimsup fon dy

. 5) Soit (fm) une suite décroissante dans M+ qui converge vers f.

a) Montrer qu'on peut avoir lim Sbn # Sb b) Si en plus f E L, montrer que

lim Sbn = Sb

# E.H.T.P. Contrôle n° 1 De 1° année G. G+Mi de mathématiques. 2/11/2006.

on considére un espace mesuré (X,X,y) et (bn) une suite croissante de bonctions positives y-intégrable à valeurs dans R+, telle que Sbndy &M, FrEN.

Soient  $A_n(P) = \{x \in X \mid b_n(x) \ge p\}, n \in \mathbb{N}, p \in \mathbb{N}\}$ et  $A = \{x \in X \mid Cb_n(x)\}$  n'est pas une suite bornée}

1) Posons  $A(p) = \prod_{n=1}^{\infty} A_n(p)$ .

Montrer que. y (A(P)) = lim y (An(P))\_

- e) Montrer que y (A(P)) ≤ M/P:
- 3) Exprimer A en bonetion des A(P).
- 4) Calculer y (A).
- 5) Montrer que la converge presque partout vers une fonction mesurable l'à valeurs dans R+.
- 6) Monther que f est intégrable et que lim  $\int f_n dy = \int f dy$ .
- 7) On pose M(oc, y) = -6 ocy + 2 oc + 1Trouver toutes les fonctions holomorphes f(z) telles que M(oc, y) = Re f(z). Exprimer ces fonctions en fonction de Z et calculer leur dérivée.

(a) Calcular
$$T_{\Lambda} = \int_{-\infty}^{+\infty} \frac{doc}{(ac^2 + \Lambda)(ac^2 + 4)^2}$$

2) Calculu 
$$= \int_{0}^{2\pi} \frac{\sin 3\theta}{5 - 3\cos \theta} d\theta$$

3) Calculer au sens des elistributions

$$T = \left(\frac{d^2}{dx^2} + k^2\right) \left( V(x) \sin(kx) \right), k \in \mathbb{R}^*.$$

- 4) Calculer or S'en bonction de S (Dans D'(R
- .5) Résondre dans D'(R) l'équation :

$$nc. \frac{dT}{dnc} = 0$$



### Ecole Hassania des Travaux Publics

#### CONTRÔLE 1 de Mathématiques Durée 1h 30 mn

Exercice 1 Soient X un ensemble, B une tribu sur X,  $\mu$  une mesure positive sur X et A, B deux éléments de B tels que  $A \subset B$  et  $\mu(A) = \mu(B) < +\infty$ . Montrer que pour tout  $C \in B$ , on a

$$\mu(A \cap C) = \mu(B \cap C).$$

Exercice 2 On considère, dans  $\mathbb{R}^2$ , le sous ensemble  $D = ]1, +\infty[\times]0,1[$ . Soit f la fonction définie sur  $\mathbb{R}^2$  par

$$\mathbf{f}(\mathbf{x},\mathbf{y}) = \begin{cases} e^{-\mathbf{x}\mathbf{y}} - 2e^{-2\mathbf{x}\mathbf{y}} & si \ (\mathbf{x},\mathbf{y}) \in \mathbf{D} \\ 0 & si \ (\mathbf{x},\mathbf{y}) \notin \mathbf{D}. \end{cases}$$

- (a) Montrer que pour tout x ∈ IR, la fonction y → f(x,y) est Lebesgue-intégrable sur IR et calculer son intégrale I(x) = ∫<sub>IR</sub> f(x,y)dy.
  - (b) Démontrer que la fonction I est Lebesgue-intégrable sur IR.
  - (c) Quel est le signe de  $\int_{\mathbb{R}} I(x)dx$ ?
- (a) Montrer que pour tout y ∈ R, la fonction x → f(x,y) est Lebesgue-intégrable sur R et calculer son intégrale J(y) = ∫<sub>R</sub> f(x,y)dx.
  - (b) Démontrer que la fonction J est Lebesgue-intégrable sur R.
  - (c) Quel est le signe de ∫<sub>IR</sub> J(y)dy ?
- La fonction f est-elle Lebesgue-intégrable sur IR<sup>2</sup>? Justifier votre réponse.



## de mathématiques

21/10/2003

10) Considérans un signal f(u) intégrable et de carré intégrable. On appelle densité spectrale d'energie la fonction | E(E) et fonction d'autocorrélation la quantite

C(nc) = Stub (u-nc) du . (18)

a) Trouver use forction g(x) telle que c(x) = (6 \* g) (x

E) Calculer g

c) Quelle relation existe-t-il entre la fonction d'autocorrélation et la densité spéchale d'energie.

1 2°) soit (bn) une suite de fonctions mesurables. Soil p E M et Ap l'ensemble défini par : Ap = { oc \( X \) \\ mo \( \mathred \mathred \), \( \mathred \mathred \mathred \), \( \mathred \mathred \mathred \), \( \mathred \mathred \mathred \mathred \mathred \), \( \mathred \ma a) Montrer que Ap est mesurable.

b) En déduire que l'ensemble A des points oc tels que f (x) ne so pas une suite de couchy est un ensemble mesurable.

3º) Soit 
$$g \in M^+(X, X)$$
 et y une mesure sur  $X$ .

posons  $U(E) = \int_E g \, dy$ .

a) Montrer que D'est une mesure sur X.

b) soit f ∈ M+(X, X). Montrer que:

Durée: 2h

#### Exercice 1:

Déterminer les réels a,b,c,d tels que l'intégrale

$$\int_{-1}^{-1} [x^4 + (1-a)x^3 - bx^2 + (1-c)x - d]^2 dx$$
 Soit minimale.

#### Exercice 2:

Résoudre à l'aide de la transformation de Laplace l'équation différentielle suivante :

$$y''(t)+y(t)=2t$$
 avec  $y(\pi)=0$  et  $y'(\pi)=2$ 

- 1) Donner l'expression de y(t) en fonction de y(0) et y'(0).
- Déterminer y(0), y'(0) puis y(t).

#### Problème:

On pose 
$$a = (1+i)\sqrt{\frac{\pi}{2}}$$
 et  $g(z) = \frac{e^{-z^2}}{1-e^{-z}ez}$ 

- 1) Montrer que  $g(z) g(z+a) = e^{-z^2}$ .
- Déterminer les points singuliers de gainsi que leur nature.
- 3) Calculer le résidu de g(z) en  $\frac{s}{z}$ .
- 4) Pour r>0 soit C, le parallélogramme de sommets  $-\mathbf{r}$ , r, r+a , -r+a parcouru dans le sens positif. Calculer l'intégrale  $\int_{C_r} \mathcal{G}(z) dz$ .
- Montrer que, lorsque r - - , l'intégrale de g sur les cotés « non horizontaux » du parallélogramme tend vers 0.
- 6) En déduire la valeur de l'intégrale  $I = \int_{-\infty}^{\infty} e^{-x^2} dx$ .

Barème: Ex1:5 pts, Ex2:5 pts, Problème: 10 pts

$$g(3) = \frac{e^{-3^2}}{1 + e^{2a_3}} ; a = (1+i)\sqrt{\frac{\pi}{2}} ;$$

# Contrôle: 0

Transformée de Laplace.

Mathematiques.

(1º) Soit F(p) la transformée de Laplace d'une fonction f(t). lim F(p) = 0 p→+× p∈R. Montrer que

20) Soit 11 (t) une fonction nulle pour t négatif vérifiant pour t positif l'équation différentielle:

$$E \frac{d^2u}{dE^2} + \frac{du}{dE} + Eu = 0.7$$

et soit U(p) sa transformée de Laplace.

Etablir et résouche l'équation différentielle satisfaite par LI(p). Dans la suite du problème, on supposera que M(0) = 1.

3º) Déterminer dans ce cas LI(p).

4°) Calculer le produit de convolution (M × M)(E).

-50) Trouver une fonction v(t) telle que

where the forecast 
$$\sigma(z) = \int_{0}^{t} \cos(t-\infty) \mu(\infty) dx$$
,  $t \ge 0$ 

60) Trouver une fonction w (E) telle que  $u(t) = \omega(t) * Y(t) \frac{e^{it}}{\sqrt{\pi t}}$ 

où V(t) est la fonction de Heavisiele.

(7°) En déduire l'expression intégrale de M(E):

$$u(t) = \frac{2}{TT} \int_{0}^{\infty} \frac{\cos(5b)}{\sqrt{1-s^2}} ds$$

#### ECOLE HASSANIA DES TRAVAUX PUBLICS

lères Années- 2010/2011 Mathématiques

Durée : 1 heure Documents non autorisés

#### Exercice 1.

Soit f la fonction définie par  $f(z)=\frac{\cot g(\pi z)}{n}$ . On désigne par  $\gamma_n$   $(n\in\mathbb{N})$  la frontière orientée positivement du carré  $\Omega_n^{r,z}$  défini par

$$\Omega_n = \left\{ x + iy; \ \sup(\left|x\right|,\left|y\right|) \leq n + \frac{1}{2} \right\}$$

- Quels sont les points singuliers de f?. Donner leurs types.
- Calculer le résidu de f en chaque point singulier.
- 3. Montrer que  $\int_{\gamma_u} f(u)du = 0$

#### Exercice 2.

On considère la fonction F de la variable complexe p, avec Re(p) > 0, définie par

$$F(p) = \frac{1}{p(p^2 + 1)(1 - e^{-p\pi})}$$

1. Montrer que

$$F(p) = \sum_{n=0}^{+\infty} e^{-n\pi p} G(p)$$

- avec  $G(p) = \frac{1}{p(p^2+1)}$ 2. Donner la transformée de Laplace inverse de G.
  - En déduire la transformée de Laplace inverse de F.

#### Exercice 3.

Calculer

$$\min_{a,b,c \in \mathbb{R}} \int_{\mathbb{R}^+} (x^3 - a - bx - cx^2)^2 e^{-x} dx$$

E.H.T.P.

Contrôle nº 2 de mathématiques.

1º année G1

: 1) Calculer

$$T_{\Lambda} = \int_{-\infty}^{+\infty} \frac{d \propto}{(\infty^2 + \Lambda)(\infty^2 + 4)^2}$$

2) Calculer  $I_2 = \int \frac{\sin 3\theta}{5 - 3\cos \theta} d\theta$ 

3) Calculer au seux des élistributions

$$T = \left(\frac{d^2}{dx^2} + k^2\right) (Y(x) Sin(kx)), k \in \mathbb{R}^*$$

- 4) Calculer se S'en fonction de S (Dans D'(R
- .5) Résoudre dans D'(R) l'équation:

$$ac. \frac{dT}{dx} = 0$$

E.H.T.P.

# <u>Contrôle:</u> Transformée de Laplace.

Mathinatiques

Montrer que  $P \to +\infty$  P = 0.

2°) Soit u(t) une fonction nulle pour t mégatif vérifiant pour t positif l'équation différentielle :

et soit U(p) sa transformée de Laplace.

Etablia et résouche l'équation différentielle sotisfaite par L(p).

Dans la suite du problème, on supposera que M(0) = 1.

30) Déterminer dans ce cas U(p)

40) Calculer le produit de convolution (n \* n)(t).

-50) Trouver une fonction v(t) telle que

u(E). M(E) = ∫ cos(E-x) M(x)dx, E≥0/

69) Trouver une fonction we (t) telle que  $M(t) = \omega(t) \times Y(t) \frac{e^{it}}{\sqrt{\pi t}}$ 

où V(t) est la fonction de Heaviside.

7°) En déduire l'expression intégrale de 11 (E):

$$\mathcal{M}(t) = \frac{2}{TT} \int_0^{\infty} \frac{\cos(5t)}{\sqrt{1-5^2}} ds$$

E.H.T.P. 1° année. Contrôle nº 1 d'analyse.

3/11/2010 Durée 18 30 min

Barème: 2,5 points par question.

A/ Soit  $g \in M^+(X,X)$  et y une mesure sur X. Posons  $V(E) = \int_E g \, dy$ .

- a) Montrer que D'est une mesure sur X.
- b) Soit & EM+(X,X) simple. Monther que

 $\int b \, dv = \int b g \, dy \qquad (1)$ 

- c) En déduire la rélation (1) pour  $f \in M^+(X, X)$ .
- B/ on considere la distribution  $V_p(1/n)$  définie par  $\langle V_p \frac{1}{2}, f \rangle = \lim_{E \to 0^+} \int \frac{f(n)}{n} dn, \forall f \in D(\mathbb{R}).$
- 1) Mouther que Vp (1/h) est impaire.
- 2) Vérifier que: sc Vp (1/m) = 1.
- 3) Soient T, et Te deux distributions vérifient la relation seT = 1. Calculer T, -T2.
- 4) En déduire que  $V_P(1/n)$  est la seule distribution impaire vérifiant scT=1.
- 5) Calculer dans J'(R"), I= F1.

- 1) Calcular dans D'(R1:
- a) lim trT-T, TED'(IR)
- b) lim cosmoc
- c) de /20/
- 2) Soit fine fonction holomorphe sur Œ, mon constante et qui ne s'annule pas sur Œ. Montrer que ∀E>0, ∀V>0, ∃ Z € Œ, 171>V tel que | f(Z) | ∠€.
- 3) Chercher la fourtion f(t) don't la transformaie de Loplace est:  $F(p) = \text{Log}(1 + \frac{w^{E}}{p^{E}})$
- 4) Calculer l'intégrale:

$$\int_{0}^{2\pi} \frac{\sin 3\theta}{5 - 3\cos \theta} d\theta$$

5) Calculir l'intégrale en utilisant le chemin





### Contrôle de Mathématiques Durée : 12

I. Soit (X, X, μ) un espace mesuré. On suppose que μ(x) <+ 00. On considère β: X -> IR+ intégrable. Pour tout me IN, on pose

An = {x \in X / n \in \gamma(\alpha) \land n + 1} et Bn = {x \in X / f(x) > n}

a/ Montrer que:

$$\sum_{n=0}^{+\infty} n \mu(A_n) = \sum_{n=1}^{+\infty} \mu(B_n)$$

by Montrer que la série \$ 100m) est convergente.

II. Soit (X, X, u) un espace mesuré et Bn: X -> IR, une suite de fonctions u intégrables qui converge simplement vers une fonction u intégrable p. On suppose de plus que pour lout n'e IN, on a:

Som du = Sodu.

Montrer que

II. Calculer

Barème: I:3 pls II:2 pls II:2 pls

11) Soit  $f(x,y) = \begin{cases} 0 & \text{si} (x,y) = (0,0) \\ \frac{\alpha y}{(n^2 + y^2)^2} & \text{si} (x,y) \in [-1,1]^2, (x,y) \neq (0,0) \end{cases}$ a) Calculer f(m,y) dy et Grand Grand fin'est pas intégrable sur [0,1] x [0,1].

Duelle remarque peut-on faire? 12) a) Soit amn > 0 pour m, n & N, montrer en utilisant le théorème de Tonelle qua  $\sum_{n=1}^{\infty}\sum_{n=1}^{\infty}a_{m,n}=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}a_{m,n}$ (4+0) b) Posons an, n = +1, an, n+1 = -1 et ann = 0 si m + m ou m + n+1. Monter gue  $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{m,n} = 0 , \sum_{m=1}^{\infty} \sum_{m=1}^{\infty} a_{m,n} = 1$ ainsi l'hypothèse d'intégrabilité dons le théreme de Fubini est nécessaira.  $\Delta = \Delta x = \Delta x + \Delta y$ Funginal = aum, no By Tallian A. San San San San San San I consider the second to the water to be a place to be a p

### Contrôle de Mathématiques Durée: 1h

I. Soit (X, χ, μ) un espace mesuré. On suppose que μ(x) <+ 00 On considere B: X -> IR+ intégrable. Pour tout ne IN, on

 $A_n = \{x \in X \mid n \leq f(x) < n+1\} \text{ et } B_n = \{x \in X \mid f(x) \geq n\}$ 

a/ Montrer que:

 $\sum_{m=0}^{+\infty} n_{j} u(A_{m}) = \sum_{m=0}^{+\infty} \mu(B_{m}).$ 

b/ Montrer que la série E MIBn) est convergente.

II. Soit (X, x, u) un espace mesuré et fn: X -> IR+ une suite de fonctions u-intégrables qui converge simplement vers une fonction u-intégrable f. On auppose de plus que pour Lout nie IN, on a: \int Bn du = \int B du.

Montrer que

lim 1 Bm - B1 du = 0.

II. Calculer

 $\lim_{n\to+\infty} \int_{0}^{+\infty} \frac{m \times \sin x}{1 + n^2 x^2} dx$ 

正:2 pls 正:2 pts Bareme: I:3 pls

11) Soit  $f(x,y) = \begin{cases} 0 & \text{si} (x,y) = [0,0) \\ \frac{xy}{(x^2 + y^2)^2} & \text{si} (x,y) \in [-1,1]^{\frac{2}{3}} (x,y) \neq (9,0) \end{cases}$ a) Calculer | dn | f(n,y) dy et E-1,+1) [-1,11] ) dy f (n,y) d x 5) Noutrer que 4 n'est pas intégrable sur [0,1] x [0,1]. Quelle remarque pent-on faire? 12) a) Soit amin > 0 pour min EN, montin en utilisant le théorème de Tonelle que  $\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}a_{m,n}=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}a_{m,n}\quad \left( \angle+\infty\right) .$ b) Posons an, n = +1, an, n+1 = -1 et ann = 0 si m + m ou m + n+1. Montrer que  $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{m,n} = 0 , \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{m,n} = 1$ 

ainsi l'hypothèse d'intégrabilité dans le thévelme de Fubini est nécessaire.

#### ECOLE HASSANIA DES TRAVAUX PUBLICS

#### 1ères Années- 2010/2011 Contrôle de Mathématiques

Durée : 2 heures

#### Documents autorisés

#### Exercice 1.

Soit f la fonction de la variable complexe définie par  $f(z) = \frac{2z}{e^{4z} \cdot e^{-zz}}$ .

1.)- Déterminer les points singuliers de f, leur nature et les résidus de f en ces points.

On considère le contour  $\Gamma_{Rc} = ABCDEFA$ , orienté dans le sens positif, avec A(-R,0), B(R,0), C(R,1),  $D(\epsilon,1)$ ,  $E(-\epsilon,1)$ , F(-R,1) où AB,BC,CD,EF,FA sont des segments de droite et DE est l'arc de cercle  $\gamma_{\epsilon}$  de centre i et de rayon  $\epsilon$  dont les points verifient  $Im(z) \ge 1$ , R et  $\epsilon$  étant deux réels strictement positifs. On suppose  $\epsilon$  assez petit et R assez grand.

- 2.)- Calculer  $J = \int_{\Gamma_{z}^{\infty}} f(z)dz$
- 3.)- Montrer que  $f(z) = \frac{Res(f,t)}{z-t} + g(z)$ , avec g(z) holomorphe au voisinage de i. Montrer que  $\lim_{\epsilon \to 0} \int_{y_z} f(z) dz = 1$ 
  - 4.)- Calculer  $\lim_{\epsilon \to 0 \text{ et } R \to +\infty} \left\{ \int_{CB} f(z) dz + \int_{EF} f(z) dz \right\}$  en fonction de  $I = \int_0^{+\infty} \frac{z}{\sinh(zx)} dx$ .
  - 5.)- Calculer  $\lim_{R\to\infty} \left\{ \int_{BC} f(z)dz + \int_{FA} f(z)dz \right\}$ .
  - 6.)- En déduire la valeur de I.

#### Exercice 2.

 Soit F la transformée de Laplace d'une fonction f. On pose G(p) = L(t<sup>m</sup>f(t))(p).  $m \in \mathbb{N}$ . Verifier que  $G(p) = (-1)^m F^{(m)}(p)$ .

On considère la fonction de la variable complexe p définie par

- $F_n(p) = 2(2p-1)^n(2p+1)^{-n-1}$ . On pose  $F_n(p) = \mathcal{L}(f_n(t))(p)$ . 2.)- Montrer que, pour tout  $k \in \{0,1,\dots,n-1\}$ , on a  $\int_0^{+n} e^{-\frac{t}{n}} t^n f_n(t) dt = 0$ 
  - 3.)- Calculer  $\mathcal{L}[e^{\frac{1}{2}}f_{\theta}(t)](p)$ .
- 4.)- En déduire que  $e^{\frac{i}{2}f_n(t)} = \sum_{k=0}^n (-1)^k C_n^k \frac{t^k}{t^k}$ . On rappelle que  $\mathcal{L}(t^m)(p) = \frac{m!}{m!}$ .  $m \in \mathbb{N}$ 
  - 5.)- Calculer  $\mathcal{L}[v^{-1}f_n(t)](p)$ .
  - 6.)- En déduire que  $e^{\frac{i}{T}}f_n(t) = \frac{1}{n!}e^{i\frac{2t^n}{4t^n}}(e^{-iT^n})$ . On rappelle que  $\mathcal{L}(e^{-iT^n})(p) = \frac{2t^n}{(n+n)!}$