The group G is isomorphic to the group PSL(2,17): C2. Ordinary character table of $G \cong PSL(2,17)$: C2:

1a 3e	a 9 a	9b	9c	2a $6a$	18a	18b	18c	2b $4a$	8 <i>a</i>	8b	16a	16b	16c	16d	17a
χ_1 1 1	1	1	1	1 1	1	1	1	1 1	1	1	1	1	1	1	1
χ_2 1 1	1	1	1	-1 -1	-1	-1	-1	1 1	1	1	-1	-1	-1	-1	1
χ_3 16 -	2 1	1	1	$2 \qquad 2$	-1	-1	-1	0 0	0	0	0	0	0	0	-1
χ_4 16 -	2 1	1	1	-2 -2	1	1	1	0 0	0	0	0	0	0	0	-1
χ_5 16 1	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	2 -1	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	$E(9)^2 + E(9)^7$	$E(9)^4 + E(9)^5$	0 0	0	0	0	0	0	0	-1
χ_6 16 1	$-E(9)^4 - E(9)^5$	$E(9)^{2} + E(9)^{4} + E(9)^{5} + E(9)^{7}$	$-E(9)^2 - E(9)^7$	2 -1	$E(9)^4 + E(9)^5$	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	$E(9)^2 + E(9)^7$	0 0	0	0	0	0	0	0	-1
χ_7 16 1	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	$E(9)^{2} + E(9)^{4} + E(9)^{5} + E(9)^{7}$	2 -1	$E(9)^{2} + E(9)^{7}$	$E(9)^4 + E(9)^5$	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	0 0	0	0	0	0	0	0	-1
χ_8 16 1	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	-2 1	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	0 0	0	0	0	0	0	0	-1
χ_9 16 1	$-E(9)^4 - E(9)^5$	$E(9)^{2} + E(9)^{4} + E(9)^{5} + E(9)^{7}$	$-E(9)^2 - E(9)^7$	-2 1	$-E(9)^4 - E(9)^5$	$E(9)^{2} + E(9)^{4} + E(9)^{5} + E(9)^{7}$	$-E(9)^2 - E(9)^7$	0 0	0	0	0	0	0	0	-1
χ_{10} 16 1	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	$E(9)^{2} + E(9)^{4} + E(9)^{5} + E(9)^{7}$		$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	$E(9)^{2} + E(9)^{4} + E(9)^{5} + E(9)^{7}$	0 0	0	0	0	0	0	0	-1
$ \chi_{11} 17 -$	$1 \qquad -1$	-1	-1	-1 -1	-1	-1	-1	1 1	1	1	1	1	1	1	0
χ_{12} 17 -	1 -1	-1	-1	1 1	1	1	1	1 1	1	1	-1	-1	-1	-1	0
χ_{13} 18 0	0	0	0	0 0	0	0	0	$2 \qquad 2$	-2	-2	0	0	0	0	1
χ_{14} 18 0	0	0	0	0 0	0	0	0	-2 0	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	$-E(16)^3 + E(16)^5$	$-E(16) + E(16)^7$	$E(16)^3 - E(16)^5$	$E(16) - E(16)^7$	1
χ_{15} 18 0	0	0	0	0 0	0	0	0	-2 0	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	$E(16)^3 - E(16)^5$	$E(16) - E(16)^7$	$-E(16)^3 + E(16)^5$	$-E(16) + E(16)^7$	7 1
$\begin{array}{c ccccc} \chi_{12} & 17 & - \\ \chi_{13} & 18 & 0 \\ \chi_{14} & 18 & 0 \\ \chi_{15} & 18 & 0 \\ \chi_{16} & 18 & 0 \end{array}$	0	0	0	0 0	0	0	0	-2 0	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	$-E(16) + E(16)^7$	$E(16)^3 - E(16)^5$	$E(16) - E(16)^{7}$	$-E(16)^3 + E(16)^5$	
$ \begin{vmatrix} \chi_{17} \\ \chi_{17} \\ \chi_{18} \\ \chi_{19} \\ 18 \end{vmatrix} $	0	0	0	0 0	0	0	0	-2 0		$-E(8) + E(8)^3$	$E(16) - E(16)^{7}$	$-E(16)^3 + E(16)^5$	$-E(16) + E(16)^7$	$E(16)^{3} - E(16)^{5}$	1
$ \chi_{18} 18 = 0$	0	0	0	0 0	0	0	0	2 -2	0	0	$-\dot{E}(8) + \dot{E}(8)^3$	$E(8) - E(8)^3$	$-\dot{E}(8) + \dot{E}(8)^{3}$	$E(8) - E(8)^{3}$	1
$ \chi_{19} 18 = 0$	0	0	0	0 0	0	0	0	2 -2	0	0	$E(8) - E(8)^{3}$	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	1

Trivial source character table of $G \cong PSL(2,17)$: C2 at $p=2$:											,
Normalisers N_i		N_1		N_2		N_3	N	V_4 N_5 N_6	δ N_7 N_8	$N_9 \mid N_{10} \mid N$	$11 N_{12} N_{13}$
p-subgroups of G up to conjugacy in G		P_1		P_2		P_3	P_4	P_4 P_5 P_6	P_6 P_7 P_8	P_9 P_{10} P_{11}	$P_{11} P_{12} P_{13}$
Representatives $n_j \in N_i$	9a	9b	9 <i>c</i>	17a 1a 1a	9a $3a$	a 9c	$9b$ 1 ϵ	a + 1a - 3a + 1a	$a \mid 1a \mid 1a \mid 1$	$1a \mid 1a \mid 1a$	$1a \mid 1a \mid 1a \mid$
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 2 \cdot \chi_{13} + 2 \cdot \chi_{14} + 2 \cdot \chi_{15} + 2 \cdot \chi_{16} + 2 \cdot \chi_{17} + 2 \cdot \chi_{18} + 2 \cdot \chi_{19} \begin{vmatrix} 288 & 0 & 0 & 0 \\ 288 & 0 & 0 & 0 \end{vmatrix}$	0	0	0	16 0 0	0 0	0	0 0	0 0 0	0 0	0 0 C	$\sqrt{0}$ 0 $\sqrt{0}$
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	2	$-2 \ \ 0 \ \ 0$	0 0	, 0		0 0 0	1 - 1 - 1		
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	-2	-2	-2	7 0 0	0 0	, 0		0 0 0			
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-2*E(9)^4 - 2*E(9)^5$	$2 * E(9)^2 + 2 * E(9)^4 + 2 * E(9)^5 + 2 * E(9)^7$		$-2 \mid 0 \mid 0$	0 0	0		0 0 0	1 - 1 - 1		
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2 * E(9)^2 + 2 * E(9)^4 + 2 * E(9)^5 + 2 * E(9)^7$	$-2*E(9)^2 - 2*E(9)^7$	$-2*E(9)^4 - 2*E(9)^5$	$-2 \mid 0 \mid 0$	0 0	0		0 0 0			
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-2*E(9)^2 - 2*E(9)^7$	$-2*E(9)^4 - 2*E(9)^5$	$2 * E(9)^2 + 2 * E(9)^4 + 2 * E(9)^5 + 2 * E(9)^6$	$(9)^7 -2 \mid 0 \mid 0$	0	0	0	0 0 0	0 0	$0 \boxed{ 0 \boxed{}}$	$J = \begin{bmatrix} 0 & 0 \end{bmatrix}$
$1 \cdot \chi_{1} + 1 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 2 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 2 \cdot \chi_{18} + 2 \cdot \chi_{19} 144 0 \cdot \chi_{17} + 2 \cdot \chi_{18} + 2 \cdot \chi_{19} 144 0 \cdot \chi_{18} + 2 \cdot \chi_{19} + $	0	0	0	8 16 0	0 0	0		0 0 0			
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} 144 0$	0	0	0	8 0 2	2 2	$\overline{2}$		0 0 0			
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	1	-1 0 2	-1 2	<i>i</i> −1		0 0 0	1 - 1 - 1		
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-E(9)^4 - E(9)^5$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	$-1 \mid 0 \mid 2$	$E(9)^4 + E(9)^5$ -	$-1 -E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$		0 0 0			
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	-1 0 2	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7 -$	$-1 E(9)^2 + E(9)^7$		0 0 0			
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	-1 0 2	$E(9)^2 + E(9)^7$ -	$-1 E(9)^4 + E(9)^5$	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$ 0	0 0 0	0 0	$0 \mid 0 \mid C$	$J \mid 0 \mid 0 \mid$
$1 \cdot \chi_{1} + 1 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 2 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} \right 72 0$	0	0	0	4 8 0	0 0	0		8 0 0 0			
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} 56 2$	2	2	2	5 8 0	0 0	0) 2 2 0			
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	-2	-2	-2	$3 \mid 8 \mid 0$	0 0) 0	0 0	$\begin{vmatrix} 2 & -1 & 0 \end{vmatrix}$		$0 \mid 0 \mid C$	$J \mid 0 \mid 0 \mid$
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} 72 0$	0	0	0	4 8 2	2 2	$\overline{2}$	2 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0	0 0 0	J 0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} \begin{vmatrix} 20 & 2 & 2 & 2 \\ 20 & 2 & 2 & 2 \end{vmatrix}$	2	2	2	3 4 0	0 0	0	0 4	2 2 0	2 0	0 0 0	J 0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} \begin{vmatrix} 36 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix}$	0	0	0	2 4 0	0 0	0	0 4	1 0 0 0	0 4	0 0 0	J 0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} \begin{vmatrix} 36 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix}$	0	0	0	2 4 2	2 2	2	2 4	1 0 0 2	0 0	2 0 r	J 0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} = 2$	2	2	2	2 2 0	0 0	0	0 2	. 2 2 0	2 2	0 2 r	J 0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} = 18$	0	0	0	1 2 2	2 2	2	2 2	. 0 0 2	0 2	2 0 2	2 0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} 18 0$	0	0	0	1 2 0	0 0	0	0 2	2 2 2 0 2 0 0 2 2 0 0 0	0 2	0 0 0	J 2 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} = 1$	1	1	1	1 1 1	1 1	. 1	1 1	. 1 1 1	1 1	1 1 1	1 1
·	-	-									

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1,13)(2,17)(3,5)(4,8)(6,10)(7,12)(11,15)(14,18)]) \cong C2$

 $P_3 = Group([(1,3)(2,15)(4,6)(5,13)(7,14)(8,10)(9,16)(11,17)(12,18)]) \cong C2$

 $P_4 = Group([(1,13)(2,17)(3,5)(4,8)(6,10)(7,12)(11,15)(14,18),(1,12,13,7)(2,8,17,4)(3,14,5,18)(6,11,10,15)]) \cong C4$

 $P_7 = Group([(1,13)(2,17)(3,5)(4,8)(6,10)(7,12)(11,15)(14,18), (1,12,13,7)(2,8,17,4)(3,14,5,18)(6,11,10,15), (1,13)(2,14)(3,8)(4,5)(6,11)(9,16)(10,15)(17,18)]) \cong D8$

 $P_8 = Group([(1,13)(2,17)(3,5)(4,8)(6,10)(7,12)(11,15)(14,18), (1,12,13,7)(2,8,17,4)(3,14,5,18)(6,11,10,15), (1,6,12,11,13,10,7,15)(2,14,8,5,17,18,4,3)]) \cong \mathbb{C}8$

 $P_9 = Group([(1,13)(2,17)(3,5)(4,8)(6,10)(7,12)(11,15)(14,18),(1,12,13,7)(2,8,17,4)(3,14,5,18)(6,11,10,15),(1,3)(2,15)(4,6)(5,13)(7,14)(8,10)(9,16)(11,17)(12,18)]) \cong D8$

 $P_{10} = Group([(1,13)(2,17)(3,5)(4,8)(6,10)(7,12)(11,15)(14,18),(1,12,13,7)(2,8,17,4)(3,14,5,18)(6,11,10,15),(1,11)(3,14)(4,8)(5,18)(6,12)(7,10)(9,16)(13,15),(1,13)(2,14)(3,8)(4,5)(6,11)(9,16)(10,15)(17,18)]) \cong D16$

 $P_{11} = Group([(1,13)(2,17)(3,5)(4,8)(6,10)(7,12)(11,15)(14,18),(1,12,13,7)(2,8,17,4)(3,14,5,18)(6,11,10,15),(1,3)(2,15)(4,6)(5,13)(7,14)(8,10)(9,16)(11,17)(12,18),(1,6,12,11,13,10,7,15)(2,14,8,5,17,18,4,3)]) \cong D16$

 $P_{12} = Group([(1,13)(2,17)(3,5)(4,8)(6,10)(7,12)(11,15)(14,18),(1,12,13,7)(2,8,17,4)(3,14,5,18)(6,11,10,15),(1,8,15,14,7,2,10,3,13,4,11,18,12,17,6,5),(1,6,12,11,13,10,7,15)(2,14,8,5,17,18,4,3)]) \cong C16$

 $P_{13} = Group([(1,13)(2,17)(3,5)(4,8)(6,10)(7,12)(11,15)(14,18), (1,12,13,7)(2,8,17,4)(3,14,5,18)(6,11,10,15), (1,11)(3,14)(4,8)(5,18)(6,11)(9,16)(10,15)(17,18), (1,3)(2,15)(4,6)(5,13)(7,14)(8,10)(9,16)(11,17)(12,18)]) \cong D32$

 $N_1 = Group([(1,2)(3,4)(5,7)(6,8)(9,13)(10,14)(11,15)(12,16)(17,18),(1,2,3)(4,5,6)(7,9,10)(8,11,12)(13,14,15)(16,17,18)]) \cong PSL(2,17) : C2$

 $N_2 = Group([(1,13)(2,17)(3,5)(4,8)(6,10)(7,12)(11,15)(14,18),(1,10)(2,8)(3,5)(4,17)(6,13)(7,15)(9,16)(11,12),(1,14)(2,6)(3,12)(4,11)(5,7)(8,15)(9,16)(10,17)(13,18)]) \cong D32$

 $N_3 = Group([(1,3)(2,15)(4,6)(5,13)(7,14)(8,10)(9,16)(11,17)(12,18),(1,10)(2,16)(3,8)(4,12)(5,7)(6,18)(9,15)(13,14),(1,11)(2,7)(3,17)(4,16)(5,8)(6,9)(10,13)(14,15)]) \cong D36$

 $N_4 = Group([(1,12,13,7)(2,8,17,4)(3,14,5,18)(6,11,10,15),(1,13)(2,17)(3,5)(4,8)(6,10)(7,12)(11,15)(14,18),(2,18)(3,4)(5,8)(6,15)(7,12)(9,16)(10,11)(14,17),(1,2,11,5,7,4,6,14,13,17,15,3,12,8,10,18)]) \cong D32$

 $N_5 = Group([(2,18)(3,4)(5,8)(6,15)(7,12)(9,16)(10,11)(14,17),(1,13)(2,17)(3,5)(4,8)(6,10)(7,12)(11,15)(14,18),(1,13)(3,10)(4,11)(5,15)(6,8)(7,16)(9,12)(14,17),(1,7,9)(2,3,10)(4,15,17)(5,11,14)(6,18,8)(12,16,13)]) \\ \cong SA_{-1}(1,13)($

 $N_6 = Group([(1,3)(2,15)(4,6)(5,13)(7,14)(8,10)(9,16)(11,17)(12,18),(1,13)(2,17)(3,5)(4,8)(6,10)(7,12)(11,15)(14,18),(1,7,13,12)(2,4,17,8)(3,18,5,14)(6,15,10,11)]) \cong D8$

 $N_7 = Group([(2,18)(3,4)(5,8)(6,15)(7,12)(9,16)(10,11)(14,17),(1,12,13,7)(2,8,17,4)(3,14,5,18)(6,11,10,15),(1,13)(2,17)(3,5)(4,8)(6,10)(7,12)(11,15)(14,18),(1,11)(3,14)(4,8)(5,18)(6,12)(7,10)(9,16)(13,15)]) \cong D16$

 $N_8 = Group([(1,6,12,11,13,10,7,15)(2,14,8,5,17,18,4,3),(1,12,13,7)(2,8,17,4)(3,14,5,18)(6,11,10,15),(1,13)(2,17)(3,5)(4,8)(6,10)(7,12)(11,15)(14,18),(2,18)(3,4)(5,8)(6,15)(7,12)(9,16)(10,11)(14,17),(1,2,11,5,7,4,6,14,13,17,15,3,12,8,10,18)]) \cong D32$

 $N_9 = Group([(1,3)(2,15)(4,6)(5,13)(7,14)(8,10)(9,16)(11,17)(12,18),(1,12,13,7)(2,8,17,4)(3,14,5,18)(6,11,10,15),(1,13)(2,17)(3,5)(4,8)(6,10)(7,12)(11,15)(14,18),(1,2)(3,6)(4,12)(5,10)(7,8)(9,16)(11,17)(14,15)]) \cong D16$

 $N_{10} = Group([(2,18)(3,4)(5,8)(6,15)(7,12)(9,16)(10,11)(14,17),(1,11)(3,14)(4,8)(5,18)(6,12)(7,10)(9,16)(13,15),(1,12,13,7)(2,8,17,4)(3,14,5,18)(6,11,10,15),(1,13)(2,17)(3,5)(4,8)(6,10)(7,12)(11,15)(14,18),(1,2,11,5,7,4,6,14,13,17,15,3,12,8,10,18)] \\ \cong D32 + D$

 $N_{11} = Group([(1,6,12,11,13,10,7,15)(2,14,8,5,17,18,4,3),(1,3)(2,15)(4,6)(5,13)(7,14)(8,10)(9,16)(11,17)(12,18),(1,12,13,7)(2,8,17,4)(3,14,5,18)(6,11,10,15),(1,13)(2,17)(3,5)(4,8)(6,10)(7,12)(11,15)(14,18),(2,18)(3,4)(5,8)(6,15)(7,12)(9,16)(10,11)(14,17)]) \cong D32$

 $N_{12} = Group([(1,8,15,14,7,2,10,3,13,4,11,18,12,17,6,5),(1,15,7,10,13,11,12,6)(2,3,4,18,17,5,8,14),(1,12,13,7)(2,8,17,4)(3,14,5,18)(6,11,10,15),(1,13)(2,17)(3,5)(4,8)(6,10)(7,12)(11,15)(14,18),(2,18)(3,4)(5,8)(6,15)(7,12)(9,16)(10,11)(14,17)]) \cong D32$

 $N_{13} = Group([(1,3)(2,15)(4,6)(5,13)(7,14)(8,10)(9,16)(11,17)(12,18),(2,18)(3,4)(5,8)(6,15)(7,12)(9,16)(10,11)(14,17),(1,11)(3,14)(4,8)(5,18)(6,12)(7,10)(9,16)(13,15),(1,12,13,7)(2,8,17,4)(3,14,5,18)(6,11,10,15),(1,13)(2,17)(3,5)(4,8)(6,10)(7,12)(11,15)(14,18)] \cong D32$