6 Вопрос

Отношения между множествами. Бинарные отношения. Способы задания бинарных отношений. Примеры. Операции над отношениями. Обратное отношение.

Отношения между множествами

<u>Определение</u>: $R\subseteq A_1\times A_2\times \cdots \times A_n$ - n-местное отношение между множествами A_1,A_2,\ldots,A_n . $n=1;R\in A$ - унарное $n=2;R\subseteq A\times B$ - бинарное

Бинарные отношения

<u>Определение</u>: Бинарное отношение на множестве A - это любое подмножество $R\subseteq A\times A$

 $R \subseteq A \times A$

<u>Обозначение</u>. $(x,y) \in R \iff xRy$ - x находится в отношении R с y.

Сколько всего бинарных отношений на А: |A| = n, $|A \times A| = |A|^2 = n^2 \implies$ всего бинарных отношений на А: 2^{n^2}

Пример: A= $\{1,2,3\}$ R= $\{(1,2),(1,3),(2,3)\}$ $(1,2) \in R \iff 1R2$ $(2,1) \in R \iff 2 \cancel{R} \ 1$

Пример: A - люди, B - страны $R \subseteq A \times B$, $xRy \iff$ человек x бывал в стране у.

Пример:

- 1. Отношение равенства "=" на любом множестве А.
- 2. Отношение принадлежности \in между A и 2^A (x- элемент A, y элемент 2^A)
- \bullet $x \in y$
- $x \notin y$
- 3. Отношение делимости на N: $x|y\iff$ х делит у \iff у:х \iff у=kx, k \in N
- 1|y для любого у∈N
- 2/3

Способы задания бинарных отношений

А, В - конечные.

$$R\subseteq A\times B$$

1. Перечисление

$$\mathsf{R} = \{(x_1, y_1), (x_2, y_2), (x_3, y_3) \ldots \}$$

2. Таблица или матрица

$$A=\{a_1, a_2, \dots, a_n\}$$

 $B=\{b_1, b_2, \dots, b_n\}$

	b_1	• • •	b_{j}	• • •	b_n
a_1					
•••					
a_i			0 или 1		
a_n					

"1" если $a_i\mathsf{R}b_j$, иначе "0".

3. Граф отношение

Примеры:

1. $A = \{$ светофор, лимон, огурец, арбуз $\}$ $B = \{$ красный, желтый, зеленый $\}$ хRy \iff в объекте х есть объект у.

	Красный	Желтый	Зеленый
Светофор	1	1	1
Лимон	0	1	0
Огурец	0	0	1
Арбуз	1	0	1

2. A = {1, 2, 3, 4} Делимость на A:

Операции над отношениями

Так как отношение есть множество пар, то любые операции над множествами можно применять к отношениям

1. Объединение

$$R_1 \cup R_2 = \{(a,b): (a,b) \in R_1 ext{ или } (a,b) \in R_2\}$$

2. Пересечение

$$R_1 \cap R_2 = \{(a,b) : (a,b) \in R_1 \text{ if } (a,b) \in R_2\}$$

3. Разность

$$R_1\setminus R_2=\{(a,b):(a,b)\in R_1 \text{ if } (a,b)
otin R_2\}$$

4. Дополнение

$$\overline{R} = U \setminus R$$
 , где U = $M_1 imes M_2$ (или $U = M^2$)

5. Композиция отношений

$$R \subseteq A \times B$$
 , $S \subseteq B \times C$. Композицией отношений S и R называется отношение $T \subseteq A \times C$, определяется таким образом: $T = \{ (a,c) : \text{ существует такой элемент b из B, что } (a,b) \in R$ и $(b,c) \in S$ }. Обозначается как: $T = S \circ R$.

Обратное отношение

Обратное отношение \mathbb{R}^{-1} к отношению \mathbb{R} определяется следующим образом:

$$\bullet \ \ R^{-1} = \{(y,x): (x,y) \in R\}$$

Примеры двух отношений на A={a,b,c} и операций над ними в виде графов:

