Introduction to Causal Machine Learning

Accounting for Confounders with Double ML

Anthony Strittmatter

Reference

Huber (2023): "Causal Analysis: Impact Evaluation and Causal Machine Learning with Applications in R", Chapters 5.1-5.2, online version.

Chernozhukov, Hansen, Kallus, Spindler, Syrgkanis (2024): "The Causal ML Book", Chapter 4, download.

Belloni, Chernozhukov, and Hansen (2014): "High-Dimensional Methods and Inference on Structural and Treatment Effects", Journal of Economic Perspectives, 28 (2), pp. 29-50, download.

Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, and Newey (2017): "Double/Debiased/Neyman Machine Learning of Treatment Effects", American Economic Review, 107 (5), pp. 261-265, download.

Outline

Selection Bias

Selection-on-Observables Identification Strategy

Multivariate Regression

Post-Double-Selection Procedure

Partialling Out Procedure

Augmented Inverse Probability Weighting

Impact Evaluation

- ▶ Impact evaluation is a fascinating field of econometrics.
- ▶ It allows to make policy recommendations and business decisions.
- ► It enables to answer questions like: What is the causal impact of variable *D* on variable *Y*?
- Examples include:
 - What is the causal effect of one additional year of education on wages?
 - Do micro-finance programs reduce poverty in developing countries?
 - What is the causal effect of value added taxes on customer purchases?
 - ► How large is the incumbency advantage in elections?
 - What is the causal effect of a marketing campaign on revenues?
- ⇒ The ability to conduct and/or interpret an impact evaluation study is useful in (almost) every field of economics and management!

Causal Pitfalls

Impact of having a lighter in your pocket on the likelihood of lung cancer?

Causal Pitfalls

Impact of having a lighter in your pocket on the likelihood of lung cancer?

Philip Morris Advertisement

Causal Pitfalls

Impact of marketing budget on sales/returns?

Causal Pitfalls

Impact of marketing budget on sales/returns?

Causal Effect

- ► Lets say we want to analyse the causal effect of participation in a job search assistance course on earnings
- ▶ *D* is a dummy indicating the participation in the job search assistance course
 - \triangleright D=1 under participation
 - \triangleright D = 0 under non-participation
 - → We often call this the treatment dummy
- Potential outcomes:
 - $ightharpoonup Y^1$ denotes the potential earnings under participation in the job search assistance course
 - $ightharpoonup Y^0$ denotes the potential earnings under non-participation in the job search assistance course
- ► The expected causal effect for a randomly selected individual from the population (Average Treatment Effect, ATE) is

$$ATE = E[Y^1] - E[Y^0]$$

Stable Unit Treatment Value Assumption (SUTVA)

$$Y = D \cdot Y^{1} + (1 - D) \cdot Y^{0} \tag{1}$$

- 1. This assumption states that there are only two types of treatment (participation and non-participation),
 - ► The job search assistance course is always the same (no heterogeneous treatments, e.g., the duration of the course should not vary)
 - ► There are no alternative treatments (e.g., there should be no substitute for job search assistance for non-participants)
- It excludes general equilibrium effects of the job search assistance course
 - Spillover effects could occur if course participants would inform non-participants about the course contents
 - Crowding-out effects could occur when course participants get jobs that would be devoted to non-participants in the absence of the course
 - ▶ Large courses could have externalities on the business cycle
- \Rightarrow We refer to (1) often as the "observational rule" (OR)

Selection Bias

- ightharpoonup We assume that 0 < Pr(D=1) < 1
- Naive estimation strategy:

$$E[Y|D=1] - E[Y|D=0] \stackrel{OR}{=} E[Y^1|D=1] - E[Y^0|D=0]$$

$$= \underbrace{(E[Y^1|D=1] - E[Y^0|D=1])}_{ATET}$$

$$+ \underbrace{(E[Y^0|D=1] - E[Y^0|D=0])}_{Selection \ Bias \ ATET}$$

$$= \underbrace{(E[Y^1|D=0] - E[Y^0|D=0])}_{ATENT}$$

$$+ \underbrace{(E[Y^1|D=1] - E[Y^1|D=0])}_{Selection \ Bias \ ATENT}$$

- ► ATET: Average Treatment Effect on the Treated
- ► ATENT: Average Treatment Effect on the Non-Treated

Law of Iterative Expectations (LIE)

► Law of Iterative Expectations:

$$E[Y] = E[E[Y|X]] = E_X[E[Y|X]] = \int E[Y|X]f_X(x)dx$$

Special case for dummy variables:

$$E[Y] = Pr(D = 1) \cdot E[Y|D = 1] + Pr(D = 0) \cdot E[Y|D = 0]$$

Average Treatment Effect (ATE):

$$ATE \stackrel{LIE}{=} Pr(D=1) \cdot ATET + Pr(D=0) \cdot ATENT$$

Randomised Experiments

- Randomised experiments are often called the "gold standard" of impact evaluation
- ▶ Under random assignment (RA), the potential outcomes are independent of the treatment, such that $(Y^1, Y^0) \perp \!\!\!\perp D$ is satisfied
 - ATET:

$$E[Y^1|D=1] - E[Y^0|D=1] = E[Y^1] - E[Y^0] = ATE$$

ATENT:

$$E[Y^1|D=0] - E[Y^0|D=0] = E[Y^1] - E[Y^0] = ATE$$

Selection Bias ATET:

$$E[Y^{0}|D=1] - E[Y^{0}|D=0] = E[Y^{0}] - E[Y^{0}] = 0$$

Selection Bias ATENT:

$$E[Y^{1}|D=1] - E[Y^{1}|D=0] = E[Y^{1}] - E[Y^{1}] = 0$$

Some Disadvantages of Randomised Experiments

- Minimal social acceptance:
 - Would you agree to randomize the years of schooling for your children?
 - Would you agree to randomize police interventions to combat domestic violence?
- Randomisation technically impossible or impractical:
 - We cannot randomize climate change, gender, and incumbency.
 - Randomizing the Fed rate or value added taxes on the unit level is impractical (or even impossible).
- Costly and time consuming:
 - Poverty programs can be randomized, but the randomization can cause welfare losses during the experimental period.

Some Disadvantages of Randomised Experiments

- External validity:
 - Are experiments carried-out with a small group of economic students externally valid?
- Imperfect compliance
 - We can randomize the offer to participate in training programs, but not everybody participates.
 - We can randomize phone calls of get-out-the-vote (GOTV) campaigns, but not everybody answers the phone.
- ⇒ There is need for alternative empirical strategies!

Outline

Selection Bias

Selection-on-Observables Identification Strategy

Multivariate Regression

Post-Double-Selection Procedure

Partialling Out Procedure

Augmented Inverse Probability Weighting

Notation

- We assume to observe i.i.d. (independent and identically distributed) data on the triple (Y, D, X)
- ▶ X: K-dimensional vector of exogenous pre-treatment control variables which can have values $x \in \mathcal{X}$ (with $\mathcal{X} \subseteq \mathbb{R}^K$ being the support of X). The first element of X is a constant term
- ▶ $\mu_d(x) = E[Y^d | X = x]$: Conditional expectation of the potential outcome Y^d (for $d \in \{0,1\}$) when control variables have values x
- ▶ p(x) = Pr(D = 1|X = x): Condition probability that D = 1 when control variables have values x (propensity score)

Individual Causal Effects

$$\delta_i = Y_i^1 - Y_i^0$$

for observation units i = 1, ..., N (e.g., individuals)

- ▶ Most of the time we omit the subscript *i* for ease of notation. We only use it when needed for clarity.
- ► Here the subscript makes clear that we allow for heterogeneous effects of each observation units.
- However, individual causal effects can only be identified under assumptions that are unplausible in most applications

Parameters of Interest

► Average Treatment Effects (ATE):

$$\delta = E[Y^1 - Y^0] = E[\delta_i]$$

Average Treatment Effects on the Treated (ATET):

$$\theta = E[Y^1 - Y^0|D = 1] = E[\delta_i|D = 1]$$

▶ Average Treatment Effects on the Non-Treated (ATENT):

$$\rho = E[Y^1 - Y^0|D = 0] = E[\delta_i|D = 0]$$

► Conditional Average Treatment Effects (CATE):

$$\delta(x) = E[Y^1 - Y^0 | X = x] = E[\delta_i | X = x] = \mu_1(x) - \mu_0(x)$$

Identifying Assumptions

Assumptions for non-parametric models:

- 1. SUTVA (or observational rule, OR)
- 2. Conditional Independence Assumption (CIA):

$$(Y^1, Y^0) \perp \!\!\!\perp D | X = x \text{ for all } x \in \mathcal{X}$$

3. Common Support (CS) Assumption:

$$0 < p(x) = Pr(D = 1|X = x) < 1$$
 for all $x \in \mathcal{X}$

Interpretation of Assumptions

Conditional Independence Assumption (CIA):

- \triangleright Potential outcomes Y^1 and Y^0 are independent of the treatment D conditional on the covariates X.
- Implies that we have to control for all covariates that have a joint impact on the treatment and the potential outcomes.
- ▶ All covariates X have to be exogeneous (typically determined pre-treatment).
- ► The CIA is an untestable assumption. We have the use application specific economic arguments to justify this assumptions.

Common Support (CS) Assumption:

- Requires that we observe for each treated observation unit a comparable (in terms of covariates X) non-treated observation unit.
- ► The CS assumption can be tested.

Identification of ATEs

Under Assumption 1-3, we can identify δ from observable data (Y, D, X):

$$\delta = E[Y^{1} - Y^{0}] = E[Y^{1}] - E[Y^{0}]$$

$$\stackrel{LIE}{=} \int (E[Y^{1}|X = x] - E[Y^{0}|X = x])f_{X}(x)dx$$

$$\stackrel{CS,CIA}{=} \int (E[Y^{1}|D = 1, X = x] - E[Y^{0}|D = 0, X = x])f_{X}(x)dx$$

$$\stackrel{OR}{=} \int (E[Y|D = 1, X = x] - E[Y|D = 0, X = x])f_{X}(x)dx$$

$$= E_{X}[E[Y|D = 1, X = x] - E[Y|D = 0, X = x]]$$

Power of Conditioning

- Y: Earnings (in Euro).
- ▶ D: Dummy for participation in a job search assistant program (D = 1 under participation, D = 0 under non-participation).
- ightharpoonup X: Gender dummy (X=1 for women, X=0 for men).
- We observe a sample (Y, D, X) with N = 100.
- Observations:

		Participants $D=1$	Non-participants $D = 0$
Women	X = 1	N = 10	N = 30
Men	X = 0	N = 40	<i>N</i> = 20

Power of Conditioning

Observable expected earnings:

	$E[Y^1 D=1,X=x]$	$E[Y^0 D=0,X=x]$
	= E[Y D=1, X=x]	= E[Y D=0, X=x]
Women $(X = 1)$	4000	3000
Men $(X = 0)$	5000	5000

► Counterfactual expected earnings (unobservables are in red):

	$E[Y^0 D=1,X=x]$	$E[Y^1 D=0,X=x]$
Women $(X = 1)$	3500	3500
Men $(X = 0)$	4875	5750

True Causal Effects

Average Treatment Effect on the Treated (ATET):

$$ATET = Pr(X = 1|D = 1) \cdot (E[Y^{1}|D = 1, X = 1] - E[Y^{0}|D = 1, X = 1])$$

$$+ Pr(X = 0|D = 1) \cdot (E[Y^{1}|D = 1, X = 0] - E[Y^{0}|D = 1, X = 0])$$

$$= \frac{10}{50} \cdot (4000 - 3500) + \frac{40}{50} \cdot (5000 - 4875) = 200$$

Average Treatment Effect on the Non-Treated (ATENT):

ATENT =
$$Pr(X = 1|D = 0) \cdot (E[Y^1|D = 0, X = 1] - E[Y^0|D = 0, X = 1])$$

+ $Pr(X = 0|D = 0) \cdot (E[Y^1|D = 0, X = 0] - E[Y^0|D = 0, X = 0])$
= $\frac{30}{50} \cdot (3500 - 3000) + \frac{20}{50} \cdot (5750 - 5000) = 600$

Average Treatment Effect (ATE):

$$ATE = Pr(D = 1) \cdot ATET + Pr(D = 0) \cdot ATENT$$
$$= \frac{50}{100} \cdot 200 + \frac{50}{100} \cdot 600 = 400$$

Naive Estimator

Expected earnings of participants:

$$E[Y|D=1] = Pr(X=1|D=1) \cdot E[Y|D=1, X=1]$$

$$+ Pr(X=0|D=1) \cdot E[Y|D=1, X=0]$$

$$= \frac{10}{50} \cdot 4000 + \frac{40}{50} \cdot 5000 = 4800$$

Expected earnings of non-participants:

$$E[Y|D=0] = Pr(X=1|D=0) \cdot E[Y|D=0, X=1]$$

$$+ Pr(X=0|D=0) \cdot E[Y|D=0, X=0]$$

$$= \frac{30}{50} \cdot 3000 + \frac{20}{50} \cdot 5000 = 3800$$

Naive estimator:

$$E[Y|D=1] - E[Y|D=0] = 4800 - 3800 = 1000$$

Average Treatment Effect on the Treated (ATET)

Under Assumptions 1-3,

$$\begin{split} E[Y^1 - Y^0|D = 1] &= E[Y^1|D = 1] - E[Y^0|D = 1] \\ &\stackrel{LIE}{=} E[Y^1|D = 1] - Pr(X = 1|D = 1) \cdot E[Y^0|D = 1, X = 1] \\ &- Pr(X = 0|D = 1) \cdot E[Y^0|D = 1, X = 0] \\ &\stackrel{CS,CIA}{=} E[Y^1|D = 1] - Pr(X = 1|D = 1) \cdot E[Y^0|D = 0, X = 1] \\ &- Pr(X = 0|D = 1) \cdot E[Y^0|D = 0, X = 0] \\ &\stackrel{QR}{=} E[Y|D = 1] - Pr(X = 1|D = 1) \cdot E[Y|D = 0, X = 1] \\ &- Pr(X = 0|D = 1) \cdot E[Y|D = 0, X = 0] \\ &= 4800 - \frac{10}{50} \cdot 3000 - \frac{40}{50} \cdot 5000 = 200 \end{split}$$

Selection bias for ATET:

- ▶ Share of women lower among participants than non-participants (and *vice versa* for men) (—)
- \triangleright Effects of participation are lower for treated women than treated men (-)
- → Positive bias (= 1000 200 = 800)!

Average Treatment Effect on the Non-Treated (ATENT)

Under Assumptions 1-3,

$$\begin{split} E[Y^1 - Y^0|D = 0] &= E[Y^1|D = 0] - E[Y^0|D = 0] \\ &\stackrel{LIE}{=} Pr(X = 1|D = 0) \cdot E[Y^1|D = 0, X = 1] \\ &+ Pr(X = 0|D = 0) \cdot E[Y^1|D = 0, X = 0] - E[Y^0|D = 0] \\ &\stackrel{CS,CIA}{=} Pr(X = 1|D = 0) \cdot E[Y^1|D = 1, X = 1] \\ &+ Pr(X = 0|D = 0) \cdot E[Y^1|D = 1, X = 0] - E[Y^0|D = 0] \\ &\stackrel{OR}{=} Pr(X = 1|D = 0) \cdot E[Y|D = 1, X = 1] \\ &+ Pr(X = 1|D = 0) \cdot E[Y|D = 1, X = 0] - E[Y|D = 0] \\ &= \frac{30}{50} \cdot 4000 + \frac{20}{50} \cdot 5000 - 3800 = 600 \end{split}$$

Average Treatment Effect (ATE)

► ATE:

$$E[Y^{1} - Y^{0}] = Pr(D = 1) \cdot E[Y^{1} - Y^{0}|D = 1]$$

$$+ Pr(D = 0) \cdot E[Y^{1} - Y^{0}|D = 0]$$

$$= \frac{50}{100} \cdot 200 + \frac{50}{100} \cdot 600 = 400$$

ightarrow The average effect of participation in job search assistance on earnings is 400 Euro.

- Suppose we investigate the gender wage gap.
- ► We observe the following average wages of 100 women and 100 men in management and non-management positions:

	Women	Men
Non-management	1581.65 Euro (<i>N</i> = 87)	1507.59 Euro (<i>N</i> = 59)
Management	2796.22 Euro (<i>N</i> = 13)	2659.91 Euro (<i>N</i> = 41)

- ▶ In the sample, 13 women and 43 men have a management position.
- ► How large is the gender wage gap?

On average women earn less in this example:

$$\underbrace{\left(\frac{13}{100} \cdot 2796.22 + \frac{87}{100} \cdot 1581.65\right)}_{\text{Average Wage Women}}$$

$$-\underbrace{\left(\frac{41}{100} \cdot 2659.91 + \frac{59}{100} \cdot 1507.59\right)}_{\text{Average Wage Men}} = -240.50$$

▶ Without conditioning on management position, women earn on average 240.50 Euro less than men.

- ▶ But in each sub-category women earn more than men:
 - Management: 2796.22 2659.91 = 136.31
 - Non-management: 1581.65 1507.59 = 74.06
- ▶ The gender wage gap after conditioning on management position is:

$$\frac{13+41}{200} \cdot 136.31 + \frac{87+59}{200} \cdot 74.06 = 90.87$$

After conditioning on management position, women earn on average 90.87 Euro more than men.

- ⇒ What is the correct gender wage gap?
- ⇒ Do we need to control for management position or not?
- ⇒ The seemingly contradicting results of the conditional and unconditional estimator are called Simpson's Paradox.
- ⇒ The correct answers depends on the (typically untestable) assumptions we impose.

Directed Acyclic Graphs (DAGs)

► Undirected graphs:

► Directed cyclic graphs:

► Directed acyclic graphs:

$$A \longrightarrow B \longrightarrow C$$

Gender Wage Gap

Gender Wage Gap

Manager Wage Premium

Manager Wage Premium

Glass Ceiling Effect

Overview

Selection Bias

Selection-on-Observables Identification Strategy

Multivariate Regression

Post-Double-Selection Procedure

Partialling Out Procedure

Augmented Inverse Probability Weighting

Conditional Expectations of Potential Outcomes

▶ We saw on Slide 22, that

$$\delta = \int (\underbrace{E[Y|D=1, X=x]}_{=\mu_1(x)} - \underbrace{E[Y|D=0, X=x]}_{=\mu_0(x)}) f_X(x) dx$$

• We can identify $\mu_1(x)$ and $\mu_0(x)$ from observable data

$$\mu_1(x) = E[Y|D=1, X=x] \stackrel{OR}{=} E[Y^1|D=1, X=x] \stackrel{CS,CIA}{=} E[Y^1|X=x]$$

 $\mu_0(x) = E[Y|D=0, X=x] \stackrel{OR}{=} E[Y^0|D=0, X=x] \stackrel{CS,CIA}{=} E[Y^0|X=x]$

T-Learner

▶ Using the sample analogy principle, an estimator for ATE is

$$\hat{\delta} = \frac{1}{N} \sum_{i=1}^{N} (\tilde{\mu}_1(X_i) - \tilde{\mu}_0(X_i))$$
 (2)

where $\tilde{\mu}_1(X_i)$ and $\tilde{\mu}_0(X_i)$ are the estimated conditional expectation of the potential outcome for observation units with characteristics X_i

Regression Model

- ▶ There are many possible ways how we can estimate $\tilde{\mu}_1(X_i)$ and $\tilde{\mu}_0(X_i)$
- ► A very simple way is to use OLS regressions
- We can estimate $\tilde{\mu}_1(\cdot)$ and $\tilde{\mu}_0(\cdot)$ in two separate empirical models

$$\tilde{\mu}_1(X_i)=X_i\tilde{\beta}^1$$
 in the sample of participants with $D=1$ $\tilde{\mu}_0(X_i)=X_i\tilde{\beta}^0$ in the sample of non-participants with $D=0$

- After we have estimated the coefficients $\tilde{\beta}^1$ and $\tilde{\beta}^0$, we can calculate $\tilde{\mu}_1(X_i)$ and $\tilde{\mu}_0(X_i)$ for the entire sample (since X_i is observed for all units i=1,...,N)
- Accordingly, we have all ingredients to estimate (2)

Alternative Representation

The empirical model interacted with the treatment dummy is an alternative representation for the conditional expectations of the potential outcomes

$$\tilde{\mu}_d(x) = \tilde{E}[Y^d | D = d, X = x] = x \cdot \tilde{\beta}^0 + d \cdot x \cdot \underbrace{(\tilde{\beta}^1 - \tilde{\beta}^0)}_{=\tilde{\gamma}}$$
(3)

where $\tilde{\gamma}$ is a K-dimensional vector of coefficients

▶ We can rewrite the T-Learner as

$$\hat{\delta} = \frac{1}{N} \sum_{i=1}^{N} X_i \tilde{\gamma}$$

Effect Homogeneity

- We assume additionally that the treatment effects do not vary with regard to the characteristics X, such that $X\beta^1 = X\beta^0 + \alpha$, where α is a scalar
- Under effect homogeneity, the empirical model (3) simplifies to

$$\tilde{\mu}_d(x) = \tilde{E}[Y^d | D = d, X = x] = x \cdot \tilde{\beta}^0 + d \cdot \tilde{\alpha}$$
 (4)

and the T-Learner simplifies to $\hat{\delta} = \tilde{\alpha}$

▶ Note that the canonical model in (4) is used very often to estimate ATEs, even though this model makes unnecessarily strong assumptions about linearity and effect homogeneity

Overview

Selection Bias

Selection-on-Observables Identification Strategy

Multivariate Regression

Post-Double-Selection Procedure

Partialling Out Procedure

Augmented Inverse Probability Weighting

Estimation Target

Multivariate Linear Regression Model:

$$Y_i = D_i \delta + X_i \beta_g + U_i$$
 (structural model)
 $D_i = X_i \beta_m + V_i$ (selection model)

- ightharpoonup Parameter of interest: δ
- Nuisance parameters: β_g and β_m
- $ightharpoonup X_i$ contains $p \gg N$ covariates.
- We assume controlling for $K \ll N$ covariates is sufficient to identify δ .
- ► Controlling for too many irrelevant covariates may reduce the efficiency of OLS.

Types of Covariates

Relation between covariates and outcome (for some $s_g > 0$):

- ▶ $|\beta_{gj}| > s_g$: covariate X_j has a **strong association** with Y_i
- ▶ $0 < |\beta_{gj}| \le s_g$: covariate X_i has a **weak association** with Y_i
- $\beta_{gj} = 0$: covariate X_j has a **no association** with Y_i

Relation between covariates and treatment (for some $s_m > 0$):

- ▶ $|\beta_{mj}| > s_m$: covariate X_j has a **strong association** with D_i
- ▶ $0 < |\beta_{mj}| \le s_m$: covariate X_j has a **weak association** with D_i
- $ightharpoonup eta_{mj} = 0$: covariate X_j has a **no association** with D_i
- → All covariates are standardised

Types of Covariates (cont.)

	$\beta_{gj} = 0$	$0< eta_{gj} \leq s_g$	$ eta_{g j} > s_{g}$
$\beta_{mj} = 0$	Irrelevant	Irrelevant	Irrelevant
$0< \beta_{mj} \leq s_m$	Irrelevant	Unclear?	Weak Confounder
$ \beta_{mj} > s_m$	Irrelevant	Weak Confounder	Strong Confounder

- ▶ $|\beta_{gi}| > s_g$ and $0 < |\beta_{mi}| \le s_m$: "Weak Outcome Confounder"
- $ightharpoonup |eta_{mj}| > s_m$ and $0 < |eta_{gj}| \le s_g$: "Weak Treatment Confounder"

Naive Approach I: Structural Model

Apply Lasso to the structural model

$$\min_{\beta_g} \{ E[(Y_i - D_i \delta - X_i \beta_g)^2] + \lambda \|\beta_g\|_1 \}$$

without a penalty on δ and estimate a Post-Lasso model using all covariates with non-zero $\beta_{\mathbf{g}}$ coefficients.

Covariates that are weakly associated with Y_i could be dropped.

→ Potentially we drop "weak treatment confounders"

Covariates that are strongly associated with D_i could be dropped.

→ Potentially we drop "strong confounders"

Illustration Naive Approach I

- Effect of assignment to a training programme on earnings
- ightharpoonup Stratified experiment ightarrow randomisation within gender groups
- ▶ Women are more likely to be assigned to training programme
- \Rightarrow The only confounder is gender

	OLS Unbiased	OLS Biased	Lasso	Post-Lasso
Assignment	18.969	-52.473	-49.872	-47.306
Female	-87.451			
High School			16.675	44.458
White			7.916	23.954
African-American			-18.539	-37.835
Work Experience			28.373	41.210
Employed			5.568	24.790
Employed Last Year			21.552	31.755
Previous Earnings			14.720	52.168
Intercept	236.186	231.316	208.011	188.298

Naive Approach II: Selection Model

Apply Lasso to the selection model

$$\min_{\beta_m} \{ E[(D_i - X_i \beta_m)^2] + \lambda \|\beta_m\|_1 \}$$

and estimate a Post-Lasso structural model using all covariates with non-zero β_m coefficients.

Covariates that are weakly associated with D_i could be dropped.

 \rightarrow Potentially we drop "weak outcome confounders"

Double Selection Procedure

1. Apply Lasso to the reduced form models

$$\min_{\tilde{\beta}_{\varepsilon}} \{ E[(Y_i - X_i \tilde{\beta}_{g})^2] + \lambda ||\tilde{\beta}_{g}||_1 \}, \tag{5}$$

$$\min_{\beta_m} \{ E[(D_i - X_i \beta_m)^2] + \lambda \|\beta_m\|_1 \}, \tag{6}$$

with
$$\tilde{\beta}_{\mathbf{g}} = \delta \beta_{\mathbf{m}} + \beta_{\mathbf{g}}$$
.

2. Take the union of all covariates \tilde{X}_i with either non-zero β_m or $\tilde{\beta}_g$ coefficients and estimate the Post-Lasso structural model

$$Y_i = D_i \delta + \tilde{X}_i \beta_g^* + u_i.$$

Double Selection Procedure (cont.)

Potentially (6) omits "weak outcome confounders"

 $\tilde{\beta}_g \approx \beta_g$ when $0 < |\beta_m| \le s_m$, such that the missing "weak outcome confounders" are likely selected in (5).

Disadvantages:

- ightarrow Potentially we omit "very weak" confounders with $0<|\beta_{gj}|\leq s_g$ and $0<|\beta_{mj}|\leq s_g$.
- → All procedures potentially include irrelevant variables.

Excursus: Omitted Variable Bias

Suppose the true cause-and-effect relationship is:

$$Y = D\delta + X\beta_g + U$$

► The omitted variable in (5) is:

$$D = X\beta_m + V$$

Merging the two equations gives:

$$Y = (X\beta_m + V)\delta + X\beta_g + U$$

$$= X\beta_m \delta + V\delta + X\beta_g + U$$

$$= X\underbrace{(\beta_m \delta + \beta_g)}_{\tilde{\beta}_g} + (V\delta + U)$$

- ▶ The omitted variable bias is: $\beta_m \delta$
- ▶ When $0<|\beta_m|\leq s_m$, the omitted variable bias is ≈ 0 and $\tilde{\beta}_{\it g}\approx \beta_{\it g}$

Simulation Exercise

Distribution of Estimators

Source: Belloni, Chernozhukov, and Hansen (2014)

Asymptotic Results

Consistency and asymptotic normality

$$\sqrt{N}(\hat{\delta} - \delta) \stackrel{d}{\to} N(0, \sigma^2).$$

- Model selection step is asymptotically negligible for building confidence intervals.
- Poptimal penalty parameter $λ^* = 2c \cdot Φ^{-1}(1 \gamma/2p)/\sqrt{N}$ (e.g., c = 1.1 and $\gamma \le 0.05$) for "Feasible LASSO"

$$\min_{\beta} E[(Y_i - X_i\beta)^2] + \lambda^* \|\beta\|_1.$$

Reference: Belloni, Chernozhukov, and Hansen (2014)

Outline

Selection Bias

Selection-on-Observables Identification Strategy

Multivariate Regression

Post-Double-Selection Procedure

Partialling Out Procedure

Augmented Inverse Probability Weighting

Partial Regression

Frisch-Waugh-Lovell (FWL) Theorem

▶ Suppose we want to estimate the coefficient δ in the model:

$$Y = D\delta + X\beta_g + U$$

▶ Applying the FWL Theorem, we can retrieve the estimated coefficient $\hat{\delta}$ from

$$\tilde{Y} = \tilde{D}\hat{\delta} + U$$

after partialling-out

$$\tilde{Y} = Y - X\hat{\beta}_{g}$$
 $\tilde{D} = D - X\hat{\beta}_{m}$

⇒ YouTube Video explaining FWL Theorem

Double Lasso Procedure

1. Apply Lasso to the reduced form models

$$\begin{split} & \min_{\tilde{\beta}_{g}} \{ E[(Y_{i} - X_{i}\hat{\beta}_{g})^{2}] + \lambda \|\hat{\beta}_{g}\|_{1} \}, \\ & \min_{\beta_{m}} \{ E[(D_{i} - X_{i}\hat{\beta}_{m})^{2}] + \lambda \|\hat{\beta}_{m}\|_{1} \}, \end{split}$$

and obtain the resulting residuals:

$$\tilde{Y}_i = Y_i - X_i \hat{\beta}_g$$
 $\tilde{D}_i = D_i - X_i \hat{\beta}_m$

2. We run the least squares regression of \tilde{Y}_i on \tilde{D}_i to obtain the estimate $\hat{\delta}$. We can use standard results from this regression, ignoring that the input variables were previously estimated, to perform inference about $\hat{\delta}$.

Partialling Out Procedure

Main Advantages:

- Generic approach, can be combined with any supervised ML estimator
- Sparsity assumptions can be avoided by appropriate choice of estimators

Main Disadvantages:

- ► Still assumption of linearity for the main effect
- Does not incorporate effect heterogeneity

Outline

Selection Bias

Selection-on-Observables Identification Strategy

Multivariate Regression

Post-Double-Selection Procedure

Partialling Out Procedure

Augmented Inverse Probability Weighting

T-Learner for ATE

Identification:

$$\delta = E[Y_i(1)] - E[_iY(0)]$$

$$= \int \underbrace{E[Y_i|D_i = 1, X_i = x]}_{=\mu_1(x)} - \underbrace{E[Y_i|D_i = 0, X_i = x]}_{=\mu_0(x)} f_X(x) dx$$

Estimator:

$$\hat{\delta} = rac{1}{N} \sum_{i=1}^N (\hat{\mu}_1(X_i) - \hat{\mu}_0(X_i))$$

with $\hat{\mu}_1(x) = \hat{E}[Y_i|D_i = 1, X_i = x]$ and $\hat{\mu}_0(x) = \hat{E}[Y_i(0)|D_i = 0, X_i = x]$ being the estimated conditional expectations of the potential outcomes.

T-Learner

Main Advantages:

- ► Generic approach
- ► Sparsity assumptions can be avoided by appropriate choice of estimator for propensity score
- ► Heterogeneous treatment effects

Main Disadvantages:

- ▶ Potentially omitting "weak selection confounders"
- Not \sqrt{N} -consistent in high-dimensional setting

Modified Outcome Method for ATE

Inverse Probability Weighting:

$$Y_{i,IPW}^* = \frac{D_i}{p(X_i)}Y_i - \frac{1 - D_i}{1 - p(X_i)}Y_i = \frac{D_i - p(X_i)}{p(X_i)(1 - p(X_i))}Y_i$$

with the propensity score $p(x) = Pr(D_i = 1 | X_i = x)$.

ATE:
$$\delta = E[Y_{i,IPW}^*]$$
 and $\hat{\delta} = \frac{1}{N} \sum_{i=1}^N \hat{Y}_{i,IPW}^*$

Proof of Identification

$$\delta = E[Y_{i}(1)] - E[Y_{i}(0)] \stackrel{LIE}{=} \int E[Y_{i}(1)|X_{i} = x] - E[Y_{i}(0)|X_{i} = x] f_{X}(x) dx$$

$$\stackrel{CIA}{=} \int E[Y_{i}(1)|D_{i} = 1, X_{i} = x] - E[Y_{i}(0)|D_{i} = 0, X_{i} = x] f_{X}(x) dx$$

$$= \int E[Y_{i}|D_{i} = 1, X_{i} = x] - E[Y_{i}|D_{i} = 0, X_{i} = x] f_{X}(x) dx$$

$$= \int E[D_{i}Y_{i}|D_{i} = 1, X_{i} = x] - E[(1 - D_{i})Y_{i}|D_{i} = 0, X_{i} = x] f_{X}(x) dx$$

$$\stackrel{LIE}{=} \int E\left[\frac{D_{i}Y_{i}}{p(X_{i})} \middle| X_{i} = x\right] - E\left[\frac{(1 - D_{i})Y_{i}}{1 - p(X_{i})} \middle| X_{i} = x\right] f_{X}(x) dx$$

$$= \int E\left[\frac{D_{i}Y_{i}}{p(X_{i})} - \frac{(1 - D_{i})Y_{i}}{1 - p(X_{i})} \middle| X_{i} = x\right] f_{X}(x) dx$$

$$= \int E\left[\frac{D_{i} - p(X_{i})}{p(X_{i})(1 - p(X_{i}))} Y_{i} \middle| X_{i} = x\right] f_{X}(x) dx \stackrel{LIE}{=} E\left[\frac{D_{i} - p(X_{i})}{p(X_{i})(1 - p(X_{i}))} Y_{i} \middle| X_{i} = x\right] f_{X}(x) dx$$

Reference: Horvitz and Thompson (1952)

Modified Outcome Method with IPW

Main Advantages:

- ► Generic approach
- Sparsity assumptions can be avoided by appropriate choice of estimator for propensity score
- ► Heterogeneous treatment effects

Main Disadvantages:

- Potentially omitting "weak outcome confounders"
- Shows weak performance in simulations (Knaus, Lechner, and Strittmatter, 2018)
- Not \sqrt{N} -consistent in high-dimensional setting

Double/Debiased Machine Learning (DML)

Efficient Score:

$$Y_{i,DML}^* = \mu_1(X_i) - \mu_0(X_i) + \frac{D_i - p(X_i)}{p(X_i)(1 - p(X_i))} Y_i - \frac{D_i}{p(X_i)} \mu_1(X_i) + \frac{1 - D_i}{1 - p(X_i)} \mu_0(X_i)$$

$$= \mu_1(X_i) - \mu_0(X_i) + \frac{D_i(Y_i - \mu_1(X_i))}{p(X_i)} - \frac{(1 - D_i)(Y_i - \mu_0(X_i))}{1 - p(X_i)}$$

ATE:
$$\delta = E[Y_{i,DML}^*]$$
 and $\hat{\delta} = \frac{1}{N} \sum_{i=1}^N \hat{Y}_{i,DML}^*$

We can use standard ML methods to estimate $\hat{\mu}_1(x)$, $\hat{\mu}_0(x)$, and $\hat{p}(x)$.

Reference: Chernozhukov et al., 2017

Proof of Identification

$$\delta = E\left[\mu_{1}(X_{i}) - \mu_{0}(X_{i}) + \frac{D_{i}(Y_{i} - \mu_{1}(X_{i}))}{p(X_{i})} - \frac{(1 - D_{i})(Y_{i} - \mu_{0}(X_{i}))}{1 - p(X_{i})}\right]$$

$$= \int \mu_{1}(x) - \mu_{0}(x) + \frac{E\left[D_{i}Y_{i} \mid X_{i} = x\right] - E\left[D_{i}\mu_{1}(x) \mid X_{i} = x\right]}{p(x)}$$

$$- \frac{E\left[(1 - D_{i})Y_{i} \mid X_{i} = x\right] - E\left[(1 - D_{i})\mu_{0}(x) \mid X_{i} = x\right]}{1 - p(x)} f_{X}(x)dx$$

$$= \int \mu_{1}(x) - \mu_{0}(x) + \frac{p(x)(E\left[Y_{i} \mid D_{i} = 1, X_{i} = x\right] - \mu_{1}(x))}{p(x)}$$

$$- \frac{(1 - p(x))(E\left[Y_{i} \mid D_{i} = 0, X_{i} = x\right] - \mu_{0}(x))}{1 - p(x)} f_{X}(x)dx$$

$$= \int \mu_{1}(x) - \mu_{0}(x) + \underbrace{\left(E\left[Y_{i}^{1} \mid X_{i} = x\right] - \mu_{1}(x)\right) - \left(E\left[Y_{i}^{0} \mid X_{i} = x\right] - \mu_{0}(x)\right)}_{=\mu_{0}(x)} f_{X}(x)dx$$

$$= \int \mu_{1}(x) - \mu_{0}(x) + \underbrace{\left(\mu_{1}(x) - \mu_{1}(x)\right) - \left(\mu_{0}(x) - \mu_{0}(x)\right)}_{=0} f_{X}(x)dx$$

$$= \int \mu_{1}(x) - \mu_{0}(x) f_{X}(x)dx$$

DML Cross-Fitting Algorithm

- 1. Partition the data randomly in samples S^A and S^B
- 2. Estimate the nuisance parameters $\hat{\mu}_1^A(x), \hat{\mu}_0^A(x)$, and $\hat{p}^A(x)$ in S^A ; and $\hat{\mu}_1^B(x), \hat{\mu}_0^B(x)$, and $\hat{p}^B(x)$ in S^B with ML
- 3. Calculate the efficient scores in samples S^A and S^B , respectively:

$$\begin{split} \hat{Y}_{i,DML}^{A*} &= \hat{\mu}_{1}^{B}(X_{i}^{A}) - \hat{\mu}_{0}^{B}(X_{i}^{A}) + \frac{D_{i}^{A}(Y_{i}^{A} - \hat{\mu}_{1}^{B}(X_{i}^{A}))}{\hat{p}^{B}(X_{i}^{A})} - \frac{(1 - D_{i}^{A})(Y_{i}^{A} - \hat{\mu}_{0}^{B}(X_{i}^{A}))}{1 - \hat{p}^{B}(X_{i}^{A})} \\ \hat{Y}_{i,DML}^{B*} &= \hat{\mu}_{1}^{A}(X_{i}^{B}) - \hat{\mu}_{0}^{A}(X_{i}^{B}) + \frac{D_{i}^{B}(Y_{i}^{B} - \hat{\mu}_{1}^{A}(X_{i}^{B}))}{\hat{p}^{A}(X_{i}^{B})} - \frac{(1 - D_{i}^{B})(Y_{i}^{B} - \hat{\mu}_{0}^{A}(X_{i}^{B}))}{1 - \hat{p}^{A}(X_{i}^{B})} \end{split}$$

4. Calculate ATE.

$$\hat{\delta} = \frac{1}{2} \underbrace{(\hat{E}[\hat{Y}_{i,DML}^{A*}|S^A]}_{=\hat{\delta}_A} + \underbrace{\hat{E}[\hat{Y}_{i,DML}^{B*}|S^B]}_{=\hat{\delta}_B}),$$

Asymptotic Results for ATE

- Main Regularity Condition: Convergence rate of nuisance parameters is at least $\sqrt[4]{N}$.
- ▶ ATE can be estimated \sqrt{N} -consistently

$$\sqrt{N}(\hat{\delta} - \delta) \stackrel{d}{\rightarrow} N(0, \sigma^2)$$

with
$$\sigma^2 = Var(Y_{i,DML}^*)$$
 and $Var(\hat{\delta}) = \sigma^2/N$

▶ Split sample estimator of σ^2

$$\hat{\sigma}^2 = \frac{1}{2} \left(\hat{\sigma}_A^2 + (\hat{\delta}_A - \hat{\delta})^2 \right) + \frac{1}{2} \left(\hat{\sigma}_B^2 + (\hat{\delta}_B - \hat{\delta})^2 \right)$$

for
$$\hat{\delta}=1/2(\hat{\delta}_{A}+\hat{\delta}_{B})$$

Advantages of DML

Advantages compared to IPW and T-Learner:

- ▶ Treatment and outcome equations are modelled explicitly
- Double robustness property
- $ightharpoonup \sqrt{N}$ -consistent and asymptotically normal even under high-dimensional confounding

Efficient Score for ATET

$$Y_{i,ATET}^* = \frac{D_i(Y_i - \mu_0(X_i))}{p} - \frac{p(X_i)(1 - D_i)(Y_i - \mu_0(X_i))}{p(1 - p(X_i))}$$

with $p = Pr(D_i = 1)$.

ATET:
$$\rho = E[Y_{i,ATET}^*]$$
 and $\hat{\rho} = \frac{1}{N} \sum_{i=1}^{N} \hat{Y}_{i,ATET}^*$

Estimator of Asymptotic Variance:

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} \left(\hat{Y}_{i,ATET}^* - \hat{\rho} \right)^2$$

and $\hat{Var}(\hat{\rho}) = \hat{\sigma}^2/N$

References: Chernozhukov et al., 2017, Farrell, 2015

Proof of Identification for ATET

$$\begin{split} \rho = & E\left[\frac{D_{i}(Y_{i} - \mu_{0}(X_{i}))}{p} - \frac{p(X_{i})(1 - D_{i})(Y_{i} - \mu_{0}(X_{i}))}{p(1 - p(X_{i}))}\right] \\ = & \int E\left[\frac{D_{i}Y_{i}}{p} - \frac{p(X_{i})(1 - D_{i})Y_{i}}{p(1 - p(X_{i}))} - \frac{(D_{i} - p(X_{i}))\mu_{0}(X_{i})}{p(1 - p(X_{i}))} \middle| X_{i} = x\right] f_{X}(x)dx \\ = & \int \left(\frac{E[D_{i}Y_{i}|X_{i} = x]}{p} - \frac{p(x)E[(1 - D_{i})Y_{i}|X_{i} = x]}{p(1 - p(x))} - \frac{E[D_{i} - p(X_{i})|X_{i} = x]}{p(1 - p(x))} \mu_{0}(x)\right) f_{X}(x)dx \\ = & \int \left(\frac{E[D_{i}Y_{i}|X_{i} = x]}{p} - \frac{p(x)E[(1 - D_{i})Y_{i}|X_{i} = x]}{p(1 - p(x))}\right) f_{X}(x)dx \\ = & \int \frac{p(x)}{p}\left(E[D_{i}Y_{i}|D_{i} = 1, X_{i} = x] - E[(1 - D_{i})Y_{i}|D_{i} = 0, X_{i} = x]\right) f_{X}(x)dx \\ = & \int (E[Y_{i}(1)|D_{i} = 1, X_{i} = x] - E[Y_{i}(0)|D_{i} = 0, X_{i} = x]) f_{X|D=1}(x)dx \\ = & \int (E[Y_{i}(1)|D_{i} = 1, X_{i} = x] - E[Y_{i}(0)|D_{i} = 1, X_{i} = x]) f_{X|D=1}(x)dx \\ = & E[Y_{i}(1) - Y_{i}(0)|D_{i} = 1] \end{split}$$