1. Fie graful orientat G = (V, E) creat astfel: fiecare individ are asociat un nod, iar E este formata din toate perechile (a, b) cu propritatea ca individul a cunoaste pe individul b. Din problema deducem ca fiecare nod are gradul de iesire cel mult k.

Demonstram urmatoarea lema: exista un nod in G cu gradul maxim 2k.

Intr-adevar, in caz contrar, fiecare nod are gradul $\geq 2k+1$, deci suma gradelor ar fi $\geq n(2k+1)$

Din fiecare nod pleaca cel mult k muchii, deci G contine maxim nk muchii. Deoarece suma gradelor nodurilor este egala cu dublul numarului de muchii, obtinem inegalitatea $2nk \ge n(2k+1)$ $\Leftrightarrow n \le 0$, contradictie.

Aratam prin inductie dupa n = |V| ca exista o 2k+1 colorare a grafului G.

Pentru n = 1, coloram singurul nod cu culoarea 1. Deoarece 2k+1≥1, aceasta este o 2k+1 colorare.

Presupunem ca pentru orice graf cu cel mult n noduri exista o 2k+1 colorare si aratam pentru un graf H, cu n+1 noduri.

Fie v un nod cu gradul cel mult 2k (folosim lema). Coloram cu 2k+1 culori graful H' obtinut din H prin eliminarea lui v (pasul de inductie). Deoarece v are cel mult 2k vecini, acesta poate fi colorat cu una din cele 2k+1 culori, deci am obtinut o 2k+1 colorare pentru H.

Pentru fiecare culoare din cele maxim 2k+1, formam un juriu cu toate nodurile de respectiva culoare. Se observa ca nu pot exista 2 indivizi intr-un juriu astfel incat unul sa il cunoasca pe celalalt si fiecare individ face parte din exact un juriu, deci aceasta este o solutie a problemei.

2. a) Atasat la foile printate

b)
$$D_n = (V, E)$$
, unde $\forall x \in V$ este de forma $(x_1, x_2, ..., x_n)$, iar $E = \{xy \mid (x_2, x_3, ..., x_n) = (y_1, y_2, ..., y_{n-1})$.

Fie succ(x) = {y | xy \in E}. succ(x) = {($x_2, x_3, ..., x_n, 0$), ($x_2, x_3, ..., x_n, 1$)} si BFS(x) multimea nodurilor ce pot fi vizitate din x, x de forma ($x_1, x_2, ..., x_n$).

Demonstram ca pentru 2 varfuri aleatorii x, y \in V, exista drum de la x la y in D_n .

Cu alte cuvinte, prin n shiftari la stanga (n BFS-uri), putem obtine orice secventa de 0 si 1.

Cum y \in {0, 1}ⁿ, reiese ca exista drum de la x la y, pentru \forall x, y \in V din $D_n => D_n$ tare conex.

 D_n admite un parcurs eulerian inchis $\Leftrightarrow D_n$ este tare conex si $d_g^+(x) = d_g^-(x)$, pt. \forall x \in V

 \forall nod x \in V are exact 2 succesori $(x_2, x_3, ..., x_n, 0)$, $(x_2, x_3, ..., x_n, 1)$ si exact 2 predecesori $(0, x_1, x_2, ..., x_{n-1})$, $(1, x_1, x_2, ..., x_{n-1})$ => $d_g^+(x) = d_g^-(x) = 2$.

Cum D_n este tare conex si $d_g^+(x) = d_g^-(x) \Rightarrow D_n$ admite un parcurs eulerian inchis

c) Observam ca un nod din D_n este determinat unic de o secventa de n valori de 0 si 1. Avem deci 2^n noduri in total pentru D_n . Pentru fiecare varf v, avem exact 2 arce care il au pe v ca extremitate initiala. Avem astfel 2^n*2 = 2^(n+1) arce distincte in total

$$L(D_n)$$
 si D_{n+1} au, asadar, acelasi numar de varfuri, 2^(n+1).

Pentru orice arc din D_n care pleaca din varful x si adauga la sfarsit bitul b, ii asociem varful $(x_1, x_2, ..., x_n, b)$ in $L(D_n)$. Pentru fiecare varf x din D_n , vom avea 2 varfuri corespondente in $L(D_n)$: $(x_1, x_2, ..., x_n, 0)$ si $(x_1, x_2, ..., x_n, 1)$.

Exista o functie bijectiva $f: V(L(D_n)) \rightarrow V(D_{n+1})$ care pentru \forall varf y din D_{n+1} de forma $(y_1, y_2, ..., y_{n+1})$ asigneaza un corespondent unic x in $L(D_n)$ de forma $(x_1, x_2, ..., x_n, b)$, a.i. $y_1 = x_1, y_2 = x_2, ..., y_n = x_n, y_{n+1} = b$.

$$f(y_1, y_2, ..., y_{n+1}) = (x_1, x_2, ..., x_n, b)$$

Exista o functie g : $E(L(D_n)) \rightarrow E(D_{n+1})$ care pentru fiecare arc $((x_1, x_2, ..., x_n, b), (b x'_2, ..., x'_{n-1}))$ din $L(D_{n+1})$ asigneaza

g (
$$(x_1, x_2, ..., x_n, b)$$
, (b, $x'_2, ..., x'_{n-1}$))= (f($x_1, x_2, ..., x_n, b$), f(b, $x'_2, ..., x'_{n-1}$)).

Avem, deci, $L(D_n)$ izomorf cu D_{n+1} .

Stim ca D_n este eulerian si ca line-graph-ul oricarui graf eulerian e hamiltonian. Deducem de aici ca $\mathsf{L}(D_n)$ admite un ciclu hamiltonian.

3. Aratam ca daca un nod v arbitrar apare pe pozitia i intr-un (s, t) path de lungime d, atunci el nu poate aparea pe o pozitie j \neq i intr-un alt (s, t) path de lungime d.

Daca prin absurd ar fi doua (s, t) path-uri de lungime d

P = (s =
$$x_1$$
, x_2 , ..., v = x_i , ..., x_d = t)
P' = (s = x'_1 , x'_2 , ..., v = x'_j , ..., x'_d = t) (v si x'_{j+1} sunt adiacente)
i < j

atunci Q = (s = x_1 , x_2 , ..., v = x_i , x'_{j+1} , ..., x'_d = t) ar fi un (s, t) path de lungime d-(j-i) < d (contradictie)

Fie doua (s, t) path-uri P si P' arbitrare de lungime d. Aratam ca exista drum intre ele prin inductie dupa numarul de pozitii pe care difera (jumatate din diferenta simetrica).

Fie i prima pozitie pe care difera (i > 1) si j prima pozitie dupa i a.i. drumurile sunt egale incepand cu pozitia j incolo (i < j < d)

$$P = (s = x_1, x_2, ..., x_{i-1}, x_i, x_{i+1}, ..., x_{j-1}, x_j, x_{j+1}, ..., x_d = t)$$

$$P' = (s = x_1, x_2, ..., x_{i-1}, x'_i, x'_{i+1}, ..., x'_{j-1}, x_j, x_{j+1}, ..., x_d = t)$$

Ciclul $(x_{i-1}, x_i, ..., x_j, x'_{j-1}, ..., x'_i)$ contine doar noduri distincte si are lungime (j - i + 1 + j - i + 1) >= 4, deci contine cel putin o coarda, deoarece graful e cordal.

Lg ciclu >=4

Daca lungimea ciclului = 4, inseamna ca $|V(P) \Delta V(P')|$ = 2, deci avem muchie directa de la P la P', conform enuntului.

Pp. ca exista drum intre oricare 2 (s, t) path-uri care difera in k varfuri (j-i = k)

Demonstram ca exista drum intre P si P' care difera in k+1 varfuri.

G fiind graf cordal, stim sigur ca pentru oricare 2 noduri pe pozitii consecutive din P si P' exista 1 coarda care le leaga: (x_i, x'_{i+1}) sau (x'_i, x_{i+1}) . Daca aceasta coarda leaga 2 varfuri egale $(x_i = x'_i \text{sau } x_{i+1} = x'_{i+1})$, atunci afirmatia este adevarata intrucat avem muchiile (x_i, x_{i+1}) si (x'_i, x'_{i+1})

Daca ar exista o coarda intre 2 varfuri la distanta >= 2, atunci ar exista un (s, t) path cu $d_G(s, t) < d$ (contradictie)

Deci, exista un drum Q de forma

$$P = (s = x_1, x_2, ..., x_{i-1}, x_i, x_{i+1}, ..., x_{j-1}, x_j, x_{j+1}, ..., x_d = t)$$

$$P' = (s = x_1, x_2, ..., x_{i-1}, x'_i, x'_{i+1}, ..., x'_{j-1}, x_j, x_{j+1}, ..., x_d = t)$$

$$Q = (s = x_1, x_2, ..., x_{i-1}, x'_i, x'_{i+1}, ..., x'_{j-2}, x_{j-1}, x_j, ..., x_d = t)$$

Avem Q si P' difera intr-un varf, iar Q si P difera in k varfuri. Q si P' sunt adiacente din enunt, iar intre Q si P exista drum prin ipoteza presupusa adevarata => exista drum intre P si P'.

Avem drum pentru oricare 2 drumuri P si P' => H conex

Sa presupunem ca diametrul lui H >= d. Asta inseamna ca exista doua drumuri P si P' care difera in cel putin d varfuri. Stim ca orice drum este format din d+1 noduri, primul fiind s si ultimul fiind t. Raman astfel d+1-2 = d-1 varfuri in care cele doua drumuri pot diferi => contradictie => doua drumuri P si P' pot diferi in maxim d-1 noduri.

Conform inductiei de mai sus, exista intre P si P' un drum de lungime $d-1 \Rightarrow lungimea$ maxima intre oricare 2 drumuri = $d-1 \Rightarrow lungimea$ diametrul lui H = d-1.

4. Pentru o zi $k \in \{1, 2, 3, 4\}$, valoarea maxima a lui color(v) este n (initial 5000). Pozitia i pe care se gaseste un bit diferit este cel mult [log2(n)], deci pana acum, noua valoarea a lui color(v) = [log2(n)]. Adaugand si bitul care difera, color(v) poate fi maxim 2 * [log2(n)] + 1.

Putem deduce astfel urmatoarele:

Initial,
$$color(v) \in \{1, 2, ..., 5000\}$$
, \forall angajat v
 $k = 1 \Rightarrow color(v) \in \{0, 1, ..., 25\}$, \forall angajat v
 $k = 2 \Rightarrow color(v) \in \{0, 1, ..., 9\}$, \forall angajat v
 $k = 3 \Rightarrow color(v) \in \{0, 1, ..., 7\}$, \forall angajat v
 $k = 4 \Rightarrow color(v) \in \{0, 1, ..., 5\}$, \forall angajat v

Dupa orice zi k, pentru \forall angajat v \neq v0, noua culoare a lui v va fi diferita de cea a lui boss(v); color(v) \neq color(boss(v)).

Pp. prin reducere la absurd ca asta s-ar intampla. Asta inseamna ca, dupa transformare, reprezentarea binara a noilor valori color(v) si color(boss(v)) sunt identice.

Inseamna ca pozitia i pentru valorile initiale color(v) si color(boss(v)) este identica cu pozitia i pentru valorile initiale color(boss(v)) si color(boss(boss(v))), iar bitul de pe pozitia i din reprezentarea in baza 2 a lui color(v) initial = bitul de pe pozitia i din reprezentarea in baza 2 a lui color(boss(v)) initial.

Dar dupa modul in care construim noua culoare color(v), stim ca bitul de pe pozitia i din color(v) initial ≠ bitul de pe pozitia I din color(boss(v)) initial. Avem, deci, contradictie.

Analizam pentru urmatoarele 3 zile (5, 6, 7) valorile pentru color(v) in a k-a zi (dintre acestea).

color(v) = color(boss(v)). Momentan, singurele 2 noduri care au aceeasi culoare sunt v0, si subalternii directi ai lui v0. De asemenea, max(color(v)) = 5

v0 isi alege o culoare din {0, 1, 2}

 $k=1 \Rightarrow \forall$ angajat v cu color(v) = 5 va avea acum color(v) ∈ {0, 1, 2} ≠ color(boss(v)), iar max(color(v)) = 4

 $k=2 \Rightarrow \forall$ angajat v cu color(v) = 4 va avea acum color(v) ∈ {0, 1, 2} ≠ color(boss(v)), iar max(color(v)) = 3

 $k=3 \Rightarrow \forall$ angajat v cu color(v) = 3 va avea acum color(v) ∈ {0, 1, 2} ≠ color(boss(v)), iar max(color(v)) = 2

Orice culoare noua pe care v si-o alege difera de cea trimisa subalternilor lui

In a opta zi, avem color(v) \in {0, 1, 2}, \forall angajat v. Din modul in care fiecare v si-a ales culoarea, stim ca color(v) \neq color(boss(v)), \forall angajat v \neq v0.

Construing arborele G = (V, E), V = multimea angajatilor, |V| = 5000, iar E = {uv | u = boss(v)}, pentru orice varf v avem color(v) \in {0, 1, 2} si color(v) \neq color(boss(v)), \forall v \neq v0. Asadar, protocolul este o 3-colorare.