Encrypt the plaintext 'security' using the RSA algorithm for the values $p_B = 7$, $q_B = 11$ and $e_B = 13$.

Solution

Encryption:

Plaintext = security

plaintext (p):

Plaintext	s	e	c	u	r	i	t	У
Numeric notation	18	4	2	20	17	8	19	24

Ciphertext	Encryption	Encryption result	
Ciphertext (C_i)	18 ¹³ mod 77		
Ciphertext (C ₂)	413 mod 77	77	
Ciphertext (C ₃)	213 mod 77	30	
Ciphertext (C_4)	2013 mod 77	69	
Ciphertext (C_5)	1713 mod 77	7	
Ciphertext (C_n)	813 mod 77	50	
Ciphertext (C_{γ})	19 ¹³ mod 77	61	
Ciphertext (C_8)	2413 mod 77	52	
Ciphertext (C): 46 77	30 69 7 50 61 52		

Decryption:

Ciphertext (C): 46 77 30 69 7 50 61 52

Key generation in Bob side:

1.
$$n_B = p_B \times q_B = 7 \times 11 = 77$$

2.
$$\varphi(n_B) = (p_B - 1) \times (q_B - 1) = (7 - 1) \times (11 - 1) = 6 \times 10 = 60$$

3.
$$e_R = 13$$

4.
$$e_B \times d_B \equiv 1 \mod \varphi(n_B)$$

 $e_B \times d_B \equiv 1 + (k \times \varphi(n_B))$
 $d_B = \frac{1 + (k \times \varphi(n_B))}{e_B}$
 $d_B = ((k \times 60) + 1)/13$
If $k = 1$, $d_B = 61/13 = 4.69$
If $k = 2$, $d_B = 121/13 = 9.30$
If $k = 3$, $d_B = 181/13 = 13.92$

If
$$k = 4$$
, $d_R = 241/13 = 18.53$

If
$$k = 5$$
, $d_R = 301/13 = 23.15$

If
$$k = 6$$
, $d_B = 361/13 = 27.76$
If $k = 7$, $d_B = 421/13 = 32.38$
If $k = 8$, $d_B = ((8 \times 60) + 1)/13 = 481/13 = 37$

Plaintext	Decryption	Decryption result	Alphabetic notation	
Plaintext (p ₁)	46 ³⁷ mod 77	18		
Plaintext (p ₂)	53 ³⁷ mod 77	4	e	
Plaintext (p ₃)	30 ³⁷ mod 77	2	c	
Plaintext (p ₄)	69 ³⁷ mod 77	20	u	
Plaintext (p ₅)	73 ³⁷ mod 77	17	r	
Plaintext (p ₆)	50 ³⁷ mod 77	8	i	
Plaintext (p ₇)	61 ³⁷ mod 77	19	t	
Plaintext (p_8) 52 ³⁷ mod 77		24	y	

plaintext = security