Devanshu Surana 1032210756 Pounel-C Batch-CI FDS

Lab Assignment - 2

Problem statement
Write a program for sparse matrix realization and
operations on-it-simple Transpose, fast transpose

objective

- 1. To study the concept of sparse matrix, how it is stored and displayed
- 2. To understand the implementation of sparse matrix operations simple and foot transpose

Theory:

Sparse Matrix = A sporse matrix is a matrix in which many or most of the elements have a value of zero. This is in contract to a dense matrix, where many or most of the elements have a non-zero value

- Need for conversion of sparse matrix to its Compact form.

Representing a sparse matrix by a 2D array leads to wastage of lots of money memory as zeroes in the matrix are of no use in most of the cases.

elements, only storing non-zero elements transveral time and storage space. To avoid such wastage, we can store only fast transpose over simple transpose non-zero reduces

Advantage of

Time complexity of fust transpose (columns + elements) is less than that of simple transpose (columns X elements) Implementation Platfor m -64-bit Open-Source Linux or its derivatives

-Open Source editor. c programming tool line accledipse

RSEUDDO Gode:

```
Conversion to compact form
for (i=0; i<m; i++)
                                                                                        void ampact Cint a CIOJCIOJ, int c CIOJCSJ, int m, int n)
                                              int id;
                             MY K=1
```

if (acijcji) = 0 C [k][o] = i

for (j=0; j(n)j++)

```
c [K][i]=1;
         C[K][2]: a[i][j];
          K++;
          4
        4
   3
   c [o][o] = m;
  CEOJLIJ = n;
   C[0][2] = K-1;
 Simple transpose
 void simpletranspose Cint c[10][3], int [10][3])
   int is;
   intk=1;
for G=1;j <=c [O][1],j++)
 for (j=1;j <= c [0][2];j++)
E
    if (ccj]ci] ==i)
     t [k][o] =i;
     t 05 (1) = CG3(0];
     t[K][2]: c[j][2];
    3
  t LOJEOJ = c COJEIJ;
                                            www.mitwpu.edu.in
```



```
+ [0][0] = C[0][0],
 t (0) (2) = c (0) (2)
 Fast transpose:
void fasttranspose Cint c [10][3], int ft [10][3])
  int nterm [10], n pos [10], i, local;
for Ci=0; ixc Co][1]; i++)
 2 n term [i] = 0;
 4
 for (i=1, i <= c [0][2]; i++)
   n term [c[i][i]]++;
npas EOJ = 1;
  for Ci=1; i <CEOJLIJ; i++)
á_
npos [i] = npos [i-1] + nterm [i-1];
for Ci=1; i <= c [o][2]; i++)
 local = npos [C[i][i]]
 Ft [local][0] = c[i][i];
ft [local][I] = c[i][I];
 Ft [local][2]: c[i][2];
 npos [c[i][i]]++;
```


ft COJCOJ = CCOJCIJ; ft cojcij = ccojcoj; ft CoJ [2] = c CoJ (2];

Time Complexity:

- i) For simple franspose = 0 (n*t)
- ii) For fast transpose = o(n+t)

Conclusion:

Implemented Sparse matrix operation assignment. This system is able to perform different operations on sparse matrix such as simple and fast transpose and their time complexity.

FAQ's

Ans-1) A sparse matrix is a matrix that mostly comprises zeroes

Applications:

- i) computing solving partial differential using finite element method.
- ii) Optimisation problems

iii) Structural engineering

Ans-2) It can be presented in 2 ways: -

il Array Representation

- 2D array is used to represent a sparse matrix in which there are 3 yours and named: Row, Column and value.

		0		_	
0	0	3	0	4	Row. 001133
0	0	5	٦	0	= 1 column 242312
0	0	0	0	0	Value 345726
0	2	6	0	0	14146 243120

Eq: int sp[4][6] = { 1010,3,043, {0,0,5,7,03, 80,0,0,0,43, 20,2,6,0,03

ii Y Linked list -In linked list each node has 4 fields - Row, column,

value, Next, Node Caddress

Eq: Start 125 -137 -312

· Simple transpose

first the sparse matrix is converted into its compact form for simple transpose, column numbers of the non-zero elements in the sparse matrix are considered we check if 1st entry in column 1 of compact form is zero for all elements, and write down those which are in format (column, you and value) If there are no zero in column , we check for I, and continue this process till the column number is equal

innue ins process				
" (- (15)	ų	5	5	
Ex. 6 1 6 0 5 43	0	2	8	
0	l	0		
7 C X	1	1	5	
0 0 10 2 0 3	2	3	7	
y 3 10	3	4	10	
Sparse matrix				

Compact Simple matrix transpose

Fast transpose The we calculate how many elements are there in all columns. Based on that we determine the starting position from where the elements having a certain column number in the sparse matrix will have Then all the elements are entered starting from o in 'Column' in Cuolumn, row and value) format.

227	column: 0 1 2 3 4 n-terms: 1 2 2 1 1 Starting pos: 1 2 4 6 7 Fast transpose
3 2 9 4 1 8	5 5 7 0 0 1 1 2 6 1 4 8 2 2 7
	2 3 9 3 1 5 4 0 3

Ans (3)	M1 = [4	5 6	M2= 4 5 6
,	0	3 5	0 3 7
		3 8	0 4 6
	2	4 45 3 4	2 1 8
	3	2 45	3 2 45
	<u> </u>	1 2 -	4 4 21

10	5	= 4	Result) M/+ M2
12	3	0	
6	٧ 3	0	
4	Ÿ		
45	4		
8			
45		2	
21	1 1	C	
	12 6 8 4 45 8 9 45 2	3 12 4 6 3 8 4 4 1 8 3 9 2 45	0 3 12 0 4 6 1 3 8 1 4 4 1 4 45 2 1 8 2 3 4 3 2 45 4 1 2

5	4	6	
l	4	2	
2	3	45	
3	0	5	
3	1	8	
3	2	4	
4	l	45	
 0			

5 l	4	6	
2	3	45	
3	6	7	\
4	0	6	
4	1	4	
4	4	21	

M. Simple Transpose M. Fast Transpose

M2 Simple Transpose M2 Fast Transpose

Oliver 1					
num terms (m,).	D	(2	3	4
Starting position (MI)	0	l	l	3	1
	6	1	2_	3	6
num terms (M2) '.	0	١	2	3	4
Starting position (M2)!	٥		1	1	3
	0	1	2	3	4

*

4/11/22