Instructor Name: Siddhartha Nath Email: s.nath@northeastern.edu

Program Structure and Algorithms (INFO 6205) Quiz #3 - 30 points

Student NAME:

Student ID:

Question 1 (30 points). You are given a sorted array of integers A[1:n] that may or may not contain duplicate values. You are also given a target integer k. You want to find out if there strictly more than one occurrence of k in A[1:n] and the count of the occurrence.

For example, if A = [2, 5, 5, 5, 6, 6, 8, 9, 9, 9] and k = 5, then your algorithm should output 3. If k = 3 or k = 7, then your algorithm should output "False".

- (a) (2 points) Please describe a linear search algorithm in English.
- (b) (2 points) What is the asymptotic running time of your algorithm in (a) in $O(\cdot)$ or $\Theta(\cdot)$?
- (c) (6 points) Please describe an efficient divide-and-conquer algorithm in English to find the first and last occurrences of k.
- (d) (6 points) Please write the **pseudocodes** for find_first_index() and find_last_index() of your algorithm in (c). You must use recursion to receive any credit. Consider the main driver code as follows.

```
procedure count_occurrence(A, k)
1 first ← find_first_index(A, 1, n, k)
2 if first != -1:
3    last ← find_last_index(A, first, n, k)
4    count ← last - first + 1
5    print(count)
6 else:
7    print(False)
```

- (e) (3 points) Please write the recurrence relation (T(n)) of your pseudocode in (d). That is, T(n) = ???.
- (f) (3 points) Please solve your recurrence in (e) using the Master method. Please clearly write the asymptotic running time of your algorithm in $O(\cdot)$ or $O(\cdot)$.

(g) (8 points) For the example, A = [2, 5, 5, 5, 6, 6, 8, 9, 9, 9] and k = 5. please fill in the tables below for the values of start, end, mid, returned indices.

$find_first_index()$ calls	start	end	mid	Returned Index (ϕ if recursion continues)
1				
2				
3				

fir	$nd_last_index()$ calls	start	end	mid	Returned Index (ϕ if recursion continues)
	1				
	2				
	3				