

Floating Point

- 1 Fixed point representation
- ② Floating point representation
 - ③ IEEE 754 standard

Is it true for all values of x and y:

A. (x>0) | | (x-1<0)

B.
$$(x&7)!=7||(x<<29<0)|$$

C.
$$(x*x) > = 0$$

D.
$$x<0 | |-x<=0$$

E.
$$x>0 | |-x>=0$$

Real Numbers

$$10^{m} \ 10^{m-1}$$
 $10^{2} \ 10^{1} \ 10^{0}$ $10^{-1} \ 10^{-2}$ 10^{-n} $d_{m} \ d_{m-1} \ ... \ d_{2} \ d_{1} \ d_{0} \ . \ d_{-1} \ d_{-2} \ ... \ d_{-n}$ $1 \ 0 \ 2 \ . \ 0 \ 1 \ ... \ 6$

$$d = \sum_{i=-n}^{m} 10^i \times d_i$$

Binary Representation

$$2^{m}$$
 2^{m-1} 2^{2} 2^{1} 2^{0} 2^{-1} 2^{-2} 2^{-n} 2^{-

$$b = \sum_{i=-n}^{m} 2^i \times b_i$$

Examples

Fractional		Binary						Decimal
value	re	representation					rep	resentation
1/8		O	•	O	O	1		0.125
25/16		1	•	1	Ο	0	1	1.5625
43/16	1	O	•	1	O	1	1	2.6875
9/8		1	•	O	O	1		1.125
1/3		O	•	(O	1)	0.(3)
1/10				m				0.1
		<i>b</i> =	=		2^i	$\times b$	i	
			i=	=-n				5

Precision

8 bits	0.0001100
16 bits	0.00011001100
24 bits	0.0001100110011001100
32 bits	0.00011001100110011001100
,	
1/10	0.0(0011)

The Patriot Missile Failure

Fixed-point representation

more precision less range

middle?

more range less precision

Floating-point representation

$$(-1)^S \times M \times 2^E$$

1001.1101

 \rightarrow 1.0011101×2³

0.011101

1.1101×2⁻²

-0.011101

 \rightarrow -1×1.1101×2⁻²

Arithmetic formats (1)

Rounding rules

(3)

(4)

Exception handling (5)

Interchange formats

(2)

Operations

Normalized values

Precision options

Single precision: 32 bits

S	exp	frac
1	8 bits	23 bits

Double precision: 64 bits

S	exp	frac
1	11 bits	52 bits

Example

Single precision: 32 bits

0 10001100 1101101101101000000000

Example 2

Single precision: 32 bits

Denormalized Values

-o.o and +o.o

5 000...00

all zeros

E = 1 - bias

Implied leading o

Gradual underflow (closest to o.o)

5 000...00

not all zeros

Special Values

 $-\infty$ and $+\infty$

S 111...11

all zeros

NaN (Not a Number)

S 111...11

not all zeros

Summary

- Fixed-point representation
- Floating-point representation

James Gosling Java Inventor

