# **College Of Engineering and Technology**

# SRMIST, Kattankulathur

# MCQs /Virtual Examination

Program: B.Tech Sub/Code: Chemistry/ 18CYB101J

Sem: I and II Max.Marks:2 Marks

# **Module I**

- 1) Which of the following pairings is incorrect?
  - a) 1s orbital; zero radial node.
  - b) 3s orbital; one radial node.
  - c) 2p orbital; no radial nodes.
  - d) 3d orbital; no radial nodes.
- 2) s-p mixing that is seen in lighter second period elements are due to the
  - a) effective nuclear charge that increases to the right of the period, stabilizing the 2s orbital more drastically than the 2p orbital.
  - b) effective nuclear charge that decreases to the right of the period, stabilizing the 2s orbital more drastically than the 2p orbital.
  - c) effective nuclear charge that increases to the right of the period, stabilizing the 2p orbital more drastically than the 2s orbital.
  - d) Both b and c
- 3) What is the bond order of BC<sup>-1</sup>?
  - a) 1
  - **b**) 2
  - c) 1.5
  - d) 2.5
- 4) An electron is bound in one-dimensional box of size  $6 \times 10^{-10}$  m. What will be its minimum energy?
  - a) 1.86 eV
  - **b)** 1.04 eV
  - c) 1.27 eV
  - d) 1.64 eV
- 5) Which of the following statement in incorrect?
  - a) Benzene is less reactive than 1,3,5 hexatriene

# **College Of Engineering and Technology**

#### SRMIST, Kattankulathur

- b) Highest occupied molecular orbitals (HOMO) of benzene are higher in energy than the highest occupied molecular orbital (HOMO) of hexatriene.
- c) Highest occupied molecular orbitals (HOMO) of benzene are lower in energy than the highest occupied molecular orbital (HOMO) of hexatriene.
- d) Highest occupied molecular orbitals (HOMO) of benzene and the highest occupied molecular orbital (HOMO) of hexatriene is at same energy level
- 6) Which of the following is the most paramagnetic in nature?
  - a) NF
  - b) BC
  - c) NO
  - d) O<sub>2</sub>
- 7) Arrange the following molecules in the order of increasing stability.
  - a)  $N_2^+ < N_2 < N_2^- < N_2^{2-}$
  - b)  $N_2^{2-} < N_2^- < N_2 < N_2^+$
  - c)  $N_2^{2-} < N_2^{-} = N_2^{+} < N_2$
  - d)  $N_2 < N_2^+ = N_2^- < N_2^{2-}$
- 8) The wave function for which quantum state is shown in the figure?



- a) 1
- b) 2
- c) 3
- d) 4
- 9) A quantum particle confined to one-dimensional box of width 'a' is known to be in its first excited state. Determine the probability of the particle in the central half
  - a) 0
  - b) 1
  - c) 1/2

# **College Of Engineering and Technology**

# SRMIST, Kattankulathur

# MCQs/Virtual Examination

 $d) \infty$ 

10) For the energy level n=3, the probability density for a particle of mass m in a one-dimensional box of width L is given by



**Answer: B** 

- 11) Arrange the following molecules in decreasing bond length.
- a)  $O_2 > O_2^- > O_2^+ > O_2^{2-}$
- b)  $O_2^{2-} > O_2^- > O_2 > O_2^+$
- c)  $O_2^{2-} > O_2^- > O_2^+ > O_2$
- d)  $O_2^- > O_2^+ > O_2^{2-} > O_2$
- 12) In the molecular orbital diagram of NO molecule, how many unpaired electrons would be present?
  - a) three
  - b) Two
  - c) Zero
  - d) One
- 13) Which of the following statements is wrong?
- a) When two orbitals overlap in-phase with each other, a bonding molecular orbital form.
- b) When two orbitals overlap out-of-phase with each other, an antibonding molecular orbital form.
- c) When one of two atoms connected by a  $\sigma$  bond rotates about the bond axis, orbital overlap is lost.

# **College Of Engineering and Technology**

#### SRMIST, Kattankulathur

- d) When one of two atoms connected by a  $\pi$  bond rotates about the bond axis, orbital overlap is lost.
- 14) Gold has a work function of 5.1 eV. Find the cut off wavelength for the photoelectric effect.
  - a) 286 nm
  - **b)** 243 nm
  - c) 186 nm
  - d) 267 nm
- 15) Bond Order of CO, B<sub>2</sub>, F<sub>2</sub> respectively are \_\_\_\_\_
  - a) +3, +2, +1
  - b) +2, +3, +1
  - c) +3, +1, +1
  - d) +2, +2, +1
- 16) Which of the following statement is FALSE
- a) the 1s from one atom overlaps the 1s from the other atom to form a  $\sigma$ 1s bonding molecular orbital and a  $\sigma$ \*1s antibonding molecular orbital.
- b) When p orbitals overlap end to end, they create  $\sigma$  and  $\sigma^*$  orbitals.
- c) Except for their orientation, the  $\pi py$  and  $\pi pz$  orbitals are identical and have the same energy.
- d) The energy difference between 2s and 2p orbitals in Neon is smaller than that in Boron.
- 17) For a particle in a 1-D box, which of the following statement is INCORRECT?
- a) The energy of a particle is quantized.
- b) The lowest possible energy for a particle is NOT zero even at 0 K.
- c) The probability changes with decreasing energy of the particle and depends on the position in the box you are attempting to define the energy for.
- d) The square of the wavefunction is related to the probability of finding the particle in a specific position for a given energy level.
- 18) Which of the following molecular orbital has two nodal planes?
- a) σ2s
- b) π2py
- c)  $\pi$ \*2py
- d)  $\sigma^*2px$

# **College Of Engineering and Technology**

# SRMIST, Kattankulathur

| 19) The highest occupied pi molecular orbital of butadiene will have how many nodes?                            |
|-----------------------------------------------------------------------------------------------------------------|
| a) 2                                                                                                            |
| b) 1                                                                                                            |
| c) 0                                                                                                            |
| d) 3                                                                                                            |
| 20) The Energy of the particle is proportional to                                                               |
| a) L                                                                                                            |
| b) L/2                                                                                                          |
| c) 1/L <sup>2</sup>                                                                                             |
| d) $L^2$                                                                                                        |
| 21) For a one-dimensional gallium arsenide quantum well of width 21 nm, calculate the                           |
| difference in energies between the $n=2$ and $n=3$ states for travel of conduction electrons                    |
| across the width of the well. The mass of gallium arsenide is $(0.067 \times 9.109 \times 10^{-31} \text{ kg})$ |
| a) 0.064 eV                                                                                                     |
| b) 0.098 eV                                                                                                     |
| c) 1.15 eV                                                                                                      |
| d) 0.24 eV                                                                                                      |

# **College Of Engineering and Technology**

# SRMIST, Kattankulathur

# MCQs /Virtual Examination

#### **Module II**

- 1. The wavelength of a radiation is 5  $\mu m$ . What is wavenumber and frequency? (c=  $2.998 \times 10^8 \, ms^{-1}$ )
- a)  $2000 \text{ cm}^{-1}$  and  $59.95 \times 10^{14} \text{ Hz}$
- b) 2000 cm<sup>-1</sup> and 59.95x10<sup>12</sup> Hz
- c)  $2 \text{ cm} \text{ and } 59.95 \times 10^{12} \text{ Hz}$
- d) 59 cm<sup>-1</sup> and 2000 Hz
- 2. Among the complexes  $[Cr(NH_3)_6]^{3+}$  and  $[V(NH_3)_6]^{2+}$  which one possesses larger value of  $\Delta_o$  ?
- a) [Cr(NH<sub>3</sub>)<sub>6</sub>]<sup>3+</sup>
- b)  $[V(NH_3)_6]^{2+}$
- c)  $[V(NH_3)_6]^{4+}$
- d) Same  $\Delta_0$
- 3. Calculate the CFSE values for d³ and d8 configurations of weak field octahedral complexes.
- a)  $0 \Delta_0$  and  $-1.2 \Delta_0$
- b)  $1.2 \Delta_o$  and  $-1.2 \Delta_o$
- c) -1.2  $\Delta_0$  and -1.2  $\Delta_0$
- d) -1.2 and 0
- 4. Calculate the CFSE values for d<sup>4</sup> and d<sup>7</sup> configurations of high spin tetrahedral complexes.
- a)  $0 \Delta_0$  and  $0 \Delta_0$
- b)  $0.18 \Delta_o$  and  $0.54 \Delta_o$
- c)  $-0.54 \Delta_o$  and  $-0.18 \Delta_o$
- d) -0.18  $\Delta_0$  and -0.54  $\Delta_0$
- 5. Identify the increasing order of spectrochemical series
- a)  $I^- < Br^- < S^{2-} < en < NO_2^- < CN^- < CO$
- b)  $I^- < Br^- < S^{2-} < en < NO_2^- < CO < CN^-$
- c)  $CO>CN^->NO_2^->en>I^-<Br^-<S^{2-}$
- d)  $I^- < Br^- < S^{2-} = en = NO_2^- = CN^- < CO$

# **College Of Engineering and Technology**

# SRMIST, Kattankulathur

- 6. Calculate the magnetic moment of Na<sub>3</sub>[Fe<sup>3+</sup>F<sub>6</sub>]
- a) 4.9 BM
- **b)** 5.92 BM
- c) 0 BM
- d) 2.80 BM
- 7. Calculate the number of fundamental vibrations for CO<sub>2</sub> and HCl molecules
- a) 1 and 3
- b) 4 and 1
- c) 0 and 1
- d) 3 and 4
- 8. Among bending and stretching of a CO<sub>2</sub> molecule which mode occurs at low wavenumber?
- a) Bending
- b) Stretching
- c) Both bending and stretching
- d) Stretching followed by bending
- 9. What happens to the vibrational frequency of molecule upon increasing bond strength
- a) Decreases
- b) Remains same
- c) Increases
- d) No dependence
- 10. Identify the finger print and functional group regions of IR spectroscopy
- a)  $400 140 \text{ cm}^{-1} \text{ and } 140 500 \text{ cm}^{-1}$
- b) 1400 500 nm and 4000 1400 nm
- c)  $4000 1400 \text{ cm}^{-1}$  and  $1400 500 \text{ cm}^{-1}$
- d)  $1400 500 \text{ cm}^{-1}$  and  $4000 1400 \text{ cm}^{-1}$
- 11. Identify the regions of Bracket, Balmer and Lyman series of hydrogen atomic spectrum.
- a) IR, UV-Vis and UV
- b) UV-Vis, IR and UV
- c) UV, IR and UV-Vis

# **College Of Engineering and Technology**

# SRMIST, Kattankulathur

- d) UV-Vis, UV and IR
- 12. What happens to the absorbance of the sample upon increasing the path length (from 0.1 to 1 cm) of the sample tube?
- a) Decreases
- b) No change
- c) Increases
- d) Sample's absorbance and path length are independent
- 13. Identify the allowed spin selection and forbidden Laporte selection rule of electronic spectroscopy
- a) singlet  $\rightarrow$  triplet and  $u \rightarrow u$
- b) triplet  $\rightarrow$  triplet and  $u \rightarrow g$
- c) triplet  $\rightarrow$  singlet and  $u \rightarrow u$
- d) triplet  $\rightarrow$  triplet and  $u \rightarrow u$
- 14. Which among the following doesn't show rotational spectrum?
- a) HCl
- **b**) **O**<sub>2</sub>
- c) HBr
- d) H<sub>2</sub>O
- 15. The unit of rotational constant is
- a) cm<sup>-1</sup>
- b) cm
- c) Joule
- d) unit less
- 16. In NMR spectra, "up-field" and "downfield" describe the relative location of peaks.
- a) Up-field means to the right. Downfield means to the left
- b) Up-field means to the left. Downfield means to the right
- c) no preference
- d) Up-field and downfield remain same
- 17. The <sup>1</sup>H NMR spectrum of ethanol consists of
- a) 0 signals

# **College Of Engineering and Technology**

# SRMIST, Kattankulathur

- b) 1 signal
- c) 3 signals
- d) 10 signals
- 18. Calculate the magnetic moment of Na<sub>2</sub>[Co<sup>2+</sup>F<sub>4</sub>] compound.
- a) 4.9 BM
- **b) 3.87 BM**
- c) 2.84 BM
- d) 1.73 BM
- 19. How many signals does the aldehyde (CH<sub>3</sub>)<sub>3</sub>CCH<sub>2</sub>CHO have in <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra?
- a) five <sup>1</sup>H signals and six <sup>13</sup>C signals
- b) three <sup>1</sup>H signals and four <sup>13</sup>C signals
- c) five <sup>1</sup>H signals and four <sup>13</sup>C signals
- d) three <sup>1</sup>H signals and six <sup>13</sup>C signals
- 20. Identify the correct sequence with increasing order for  $\Delta_o$
- a)  $[CrCl_6]^{3-} > [Cr(H_2O)_6]^{3+} > [Cr(NH_3)_6]^{3+} > [Cr(CN)_6]^{3-}$
- b)  $[Cr(CN)_6]^{3-} > [CrCl_6]^{3-} > [Cr(NH_3)_6]^{3+} > [Cr(H_2O)_6]^{3+}$
- c)  $[Cr(H_2O)_6]^{3+} > [Cr(NH_3)_6]^{3+} > [CrCl_6]^{3-} > [Cr(CN)_6]^{3-}$
- d)  $[Cr(NH_3)_6]^{3+} > [CrCl_6]^{3-} > [Cr(CN)_6]^{3-} > [Cr(H_2O)_6]^{3+}$
- 21. The wavelength range for rotational spectroscopy in the electromagnetic spectrum include
- a) 200-800 mm
- b) 100-150 nm
- c) 800-1500 nm
- d) 0.75 3.75 mm

# **College Of Engineering and Technology**

# SRMIST, Kattankulathur

# MCQs /Virtual Examination

#### **Module III**

|  | 1. | Choose | the | correct | statement(s | ) among | the | following | ζ: |
|--|----|--------|-----|---------|-------------|---------|-----|-----------|----|
|--|----|--------|-----|---------|-------------|---------|-----|-----------|----|

# a) [FeCl4] has tetrahedral geometry

- b) [Co(en)(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>]<sup>+</sup> has 2 geometrical isomers
- c) [FeCl<sub>4</sub>] has low spin
- d) The cobalt ion in  $[Co(en)(NH_3)_2Cl_2]^+$  has  $sp^3 d^2$  hybridization
- 2. The order of increasing ionic radius of the following is
- a)  $K^+ < Li^+ < Mg^{2+} < Al^{3+}$
- b)  $K^+ < Mg^{2+} < Li^+ < Al^{3+}$
- c)  $Li^+ < K^+ < Mg^{2+} < Al^{3+}$

# d) $Al^{3+} < Mg^{2+} < Li^+ < K^+$

- 3. Which of the following ions is most unlikely to exist?
- a) Li
- b) Be-
- c) B
- d) F
- 4. The kinetic energy of the ejected photoelectron is dependent upon the energy of which of the following?
- a) Ions around
- b) Photons around
- c) Material

# d) Impinging photon

- 5. X-ray diffractometers provide \_\_\_\_\_\_ information about the compounds present in a solid sample.
- a) Quantitative
- b) Qualitative

# c) Quantitative and qualitative

d) Either quantitative or qualitative

# **College Of Engineering and Technology**

# SRMIST, Kattankulathur

- 6. Between these two complexes  $Ni(CO)_4$  and  $[Ni(CN)_4]^{2-}$  which of the following statement is correct,
- a) nickel is in the same oxidation state in both
- b) both have tetrahedral geometry
- c) both have square planar geometry
- d) both have tetrahedral and square planar geometry respectively
- 7. The number of unidentate ligands in the complex ion is called
- a) EAN
- b) Coordination number
- c) Primary valency
- d) Oxidation number
- 8. How many geometrical isomers are possible for [Co(NH<sub>3</sub>)<sub>3</sub>(NO<sub>2</sub>)<sub>3</sub>] complex
- a) 2
- b) 3
- c) 4
- d) 0
- 9. Which of the following compounds show optical isomerism?
- a) cis-[Co(NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub>]<sup>+</sup>
- b) trans- $[Co(en)_2Cl_2]^+$
- c) cis-[Co(en)2Cl2]+
- d)  $[Co(en)_3]^{3-}$
- 10. Identify the reagent, among the following, which one will provide distinction between the ionisation isomers of the formula Co(NH<sub>3</sub>)<sub>5</sub>BrSO<sub>4</sub>.
- a) BaCl<sub>2</sub>
- b) HCl
- c) H<sub>2</sub>SO<sub>4</sub>
- d) Fenton's reagent
- 11. The compound [Pt(NH<sub>3</sub>)Cl<sub>2</sub>] can exhibit
- a) Linkage isomerism
- b) Coordination isomerism
- c) Optical isomerism

#### **College Of Engineering and Technology**

# SRMIST, Kattankulathur

#### MCQs /Virtual Examination

#### d) Geometrical isomerism

- 12. In PCl<sub>5</sub>, the bond between P and Cl is?
- a) Ionic with no covalent character

# b) Covalent with some ionic character

- c) Covalent with no ionic character
- d) Ionic with some metallic character
- 13. When EDTA solution is added to Mg<sup>2+</sup> ion solution, then which of the following statements is not true?
- a) Four coordinate sites of  $Mg^{2+}$  are occupied by EDTA and remaining two sites are occupied by water molecules

# b) All six coordinate sites of Mg<sup>2+</sup> are occupied

- c) pH of the solution is decreased
- d) Colorless [Mg-EDTA]<sup>2-</sup> chelate is formed
- 14. The first, 2<sup>nd</sup> and 3<sup>rd</sup> ionization enthalpies of gallium are 579 KJmol<sup>-1</sup>, 1979 KJmol<sup>-1</sup> and 2962 KJ mol<sup>-1</sup> even though the 3<sup>rd</sup> I.P is highest, Ga<sup>3+</sup>is the most stable because-----.
- a) The energy loss is maximum resulting greater stability
- b) The size of Ga<sup>3+</sup> is smallest
- c) Ga<sup>3+</sup>is most reactive

# d) It attains a stable configuration

15. Choose the correct statement

#### a) As shielding effect increases electro negativity decreases

- b) As shielding effect increases electro negativity increases
- c) As ionization potential increases metallic property increases
- d) As +ve charge on species increases ionic radii increases
- 16. Amorphous solids may be classified as

# a) isotropic and supercooled liquids

- b) anisotropic and supercooled liquids
- c) iso enthalpic and superheated liquids
- d) isotropic and superheated solids

# **College Of Engineering and Technology**

# SRMIST, Kattankulathur

| 17. Which of the following gas is adsorbed most by activated charcoal?          |
|---------------------------------------------------------------------------------|
| a) CO <sub>2</sub>                                                              |
| b) N <sub>2</sub>                                                               |
| c) CH <sub>4</sub>                                                              |
| d) Ar                                                                           |
| 18. Which of the following may act as an oxidizing as well as a reducing agent? |
| a) $H_2S$                                                                       |
| b) H <sub>2</sub> SO <sub>4</sub>                                               |
| c) SO <sub>2</sub>                                                              |
| d) NaCl                                                                         |
| 19. Among the following which is least soluble in water                         |
| a) CaSO <sub>4</sub>                                                            |
| b) MgSO <sub>4</sub>                                                            |
| c) Na <sub>2</sub> SO <sub>4</sub>                                              |
| d) BaSO <sub>4</sub>                                                            |
| 20. The effective nuclear charge realised by 1s electron of helium atom is      |
| a) 0.70                                                                         |
| b) 0.30                                                                         |
| c) 2.00                                                                         |
| d) 1.70                                                                         |
| 21. According to Fajan's rule, covalent bond is favoured by                     |
| a) Large cation and small anion                                                 |
| b) Large cation and large anion                                                 |
| c) Small cation and large anion                                                 |
| d) Small cation and small anion                                                 |

# **College Of Engineering and Technology**

#### SRMIST, Kattankulathur

# MCQs /Virtual Examination

#### **Module IV**

- 1) Which of the following metal ions for sulphides?
- a)  $Ca^{2+}$  and  $Al^{3+}$
- b) Ag<sup>+</sup> and Hg<sup>2+</sup>
- c) Ca<sup>2+</sup> and Ag<sup>+</sup>
- d)  $Al^{3+}$  and  $Hg^{2+}$
- 2) One mole of an ideal gas expands against a constant external pressure of 1 atm from a volume of 10 dm<sup>3</sup> to a volume of 30 dm<sup>3</sup>. Calculate work done by the gas in joules.
- a) 3026 J
- b) 2026 J
- c)-3026 J
- d) -2026J
- 3) Which molecule has zero standard molar enthalpy of formation at 298 K
- a)  $Cl_2(g)$
- b) H<sub>2</sub>O
- c)  $Br_2(g)$
- d) CH<sub>4</sub> (g)
- 4) Calculate the standard free energy change of the reaction. Is this reaction feasible at standard state (25 C and 1 atm)?

$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g) \qquad \Delta H^{\circ} = -282.84 \text{kJ}$$

$$\Delta S^{\circ}$$
 for CO = 197.9 J K<sup>-1</sup> mol<sup>-1</sup> ;  $\Delta S^{\circ}$  for O<sub>2</sub> = 205.01 J K<sup>-1</sup> mol<sup>-1</sup>;  $\Delta S^{\circ}$  for CO<sub>2</sub> = 213.80 J K<sup>-1</sup> mol<sup>-1</sup>

- a) 469.03 kJ and reaction is not feasible
- b) 257.03 kJ and reaction is not feasible
- c) -469.03 kJ and reaction is not feasible

#### d) -257.03 kJ and reaction is not feasible

- 5) One mole of an ideal gas at 300 K in thermal contact with surroundings expands isothermally from 1.0 L to 2.0 L against a constant pressure of 3.0 atm. In this process, the change in entropy of surroundings ( $\Delta S_{surr}$ ) in JK<sup>-1</sup> is (1 L atm = 101.3 J)
- a) 5.763

# **College Of Engineering and Technology**

#### SRMIST, Kattankulathur

#### MCQs /Virtual Examination

- b) 1.013
- c) 1.013
- d) 5.763
- 6) STATEMENT-1: For every chemical reaction at equilibrium, standard Gibbs energy of reaction is zero.

and

STATEMENT-2: At constant temperature and pressure, chemical reactions are spontaneous in the direction of decreasing Gibb's energy.

- a) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
- b) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
- c) STATEMENT-1 is True, STATEMENT-2 is False
- d) STATEMENT-1 is False. STATEMENT-2 is True
- 7) A process is carried out at constant volume and at constant entropy. It will be spontaneous if:
- a)  $\Delta H < 0$
- b)  $\Delta U < 0$
- c)  $\Delta A < 0$
- d)  $\Delta G < 0$
- 8) The value of  $\log_{10} K$  for a reaction  $A \rightleftharpoons B$

(Given  $\Delta_r H^o_{298K} =$  - 54.07 kJ mol<sup>-1</sup>,  $\Delta_r S^o_{298K} = 10$  J K<sup>-1</sup>mol<sup>-1</sup> and R = 8.314 JK-1mol-1;

- 2.303x8.314x298 = 5705
- a) 100
- b) 50
- c) 10
- d) 5
- 9) For the following electrochemical cell at 298 K,

 $Pt(s) | H_2(g,1atm) | H^+(aq,1M) | M^{4+}(aq), M^{2+}(aq) | Pt(s)$ 

 $E_{cell} = 0.092 \ V \ when \ [M^{2+}(\textit{aq})] \ / [M^{4+}(\textit{aq})] = 10^x \ ; \ Given: E^0_{M2+/M4+} = 0.151 \ V; \ 2.303 \ RT/F = 0.059 \ V$ 

# **College Of Engineering and Technology**

# SRMIST, Kattankulathur

# MCQs /Virtual Examination

The value of  $\mathbf{x}$  is

#### a)2

- b)1
- c)-1
- d)-2
- 10) For a potentiometric titration, in the curve of emf (E) vs volume (V) of the titrant added, the equivalence point is indicated by
- a) |dE/dV| = 0,  $|d^2E/dV^2| = 0$

# b) |dE/dV| > 0, $|d^2E/dV^2| = 0$

- c) |dE/dV| = 0,  $|d^2E/dV^2| > 0$
- d) |dE/dV| > 0,  $|d^2E/dV^2| > 0$
- 11) The Daniel Cell is:

# a) $Pt_I(s) \mid Zn(s) \mid Zn^{2+}(aq) \mid Cu^{2+}(aq) \mid Cu(s) \mid Pt_{II}(s)$

- b)  $\operatorname{Pt}_{I}(s) \mid \operatorname{Zn}(s) \mid \operatorname{Zn}^{2+}(aq) \mid \operatorname{Ag}^{+}(aq) \mid \operatorname{Ag}(s) \mid \operatorname{Pt}_{II}(s)$
- c)  $Pt_{I}(s) \mid Fe(s) \mid Fe^{2+}(aq) \mid Cu^{2+}(aq) \mid Cu(s) \mid Pt_{II}(s)$
- d)  $Pt_{I}(s) \mid H_{2}(s) \mid H_{2}SO_{4}(aq) \parallel Cu^{2+}(aq) \mid Cu(s) \mid Pt_{II}(s)$
- 12) The cell potential for a Zn/Cu cell when [Zn2+] = 10 M and [Cu2+] = 1 M at 25 °C, where for  $Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$ ,  $E^o = +0.34$  V and  $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^- E^o = +0.76$  V.

# a) 1.07 V

- b) 2.14 V
- c) 1.10 V
- d) 2.20 V
- 13) The standard electrode potentials ( $E^{o}$ ) for  $Fe^{3+}/F^{2+}$  and  $Fe^{2+}/Fe$  electrodes are + 0.77V and
- 0.44~V respectively at 300~K. The  $E^o$  of  $Fe^{3+}/Fe$  electrode at the same temperature is
- a) -0.11 V
- b) 1.21 V
- c) 0.33 V

# d) - 0.04 V

- 14) Which type of chemical reaction is observed at cathode, in electrochemical corrosion?
- a) Reduction reaction
- b) Peretectic reaction

# **College Of Engineering and Technology**

# SRMIST, Kattankulathur

# MCQs/Virtual Examination

- c) Oxidation reaction
- d) Radical reaction
- 15) Newman projections I, II, III and IV are shown below:

Which one of the following options represents identical molecules?

- a) II and III
- b) III and IV
- c) II and IV
- d) I and II
- 16) The number of structural isomers for C<sub>6</sub>H<sub>14</sub> is
- a) 2
- b) 3
- c) 4
- d) 5
- 17) The correct statement about the compound given below is

- a) The compound is optically active and possesses plane of symmetry
- b) The compound possesses center of symmetry and plane of symmetry
- c) The compound possesses plane of symmetry and axis of symmetry
- d) The compound is optically active and possesses axis of symmetry

#### **College Of Engineering and Technology**

# SRMIST, Kattankulathur

# MCQs /Virtual Examination

18) For the following structures I, II and III

- i) I, II and III are resonance structures
- ii) I, II and I, III are tautomer
- iii) II and III are geometrical isomers
- iv) II and III are diastereomers

Among the statement(s) given above, which is (are) correct?

- a) i only
- b) i and ii only
- c) i, ii, iii only

### d) ii, iii and iv only

- 19) The correct statement(s) about the compound H<sub>3</sub>C(HO)HC-CH=CH-CH(OH)CH<sub>3</sub> is
- a) The total number of stereoisomers possible is 6 and if the stereochemistry about the double bond in the compound is *cis*, the number of enantiomers possible is 2
- b) The total number of diastereomers possible is 3 and if the stereochemistry about the double bond in the compound is *trans*, the number of enantiomers possible is 4
- c) The total number of stereoisomers possible is 3 and if the stereochemistry about the double bond in the compound is *cis*, the number of enantiomers possible is 4
- d) The total number of diastereomers possible is 6 and if the stereochemistry about the double bond in the compound is *trans*, the number of enantiomers possible is 2
- 20) The two compounds given below are

# **College Of Engineering and Technology**

# SRMIST, Kattankulathur

- a) Enantiomers
- b) Identical
- c) Diastereomers
- d) Regio isomers
- 21) Identify two enantiomers among the following compounds



- a) A and B
- b) B and D
- c) C and D
- d) A and C

# **College Of Engineering and Technology**

# SRMIST, Kattankulathur

# MCQs /Virtual Examination

#### **Module V**

1. Which of the following Fischer projections is different from the other three?



- a) 1
- b) 2
- c) 3
- d) 4
- 2. Which of the following is an alkane which can exhibit optical activity?
  - a) Neopentane
  - b) Isopentane
  - c) 3–Methylpentane

# d) 3-Methylhexane

3. The number of racemic forms of molecules having (n) different chiral carbons is

- a) 2n
- b) 2<sup>n</sup>
- c) 2<sup>n-1</sup>
- d)  $2^{n+1}$
- 4. What is the relationship between the structures shown?



# **College Of Engineering and Technology**

# SRMIST, Kattankulathur

| (a) | structural isomers                                                                                                    |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| (b) | geometric isomers                                                                                                     |  |  |  |  |  |
| (c) | identical structures                                                                                                  |  |  |  |  |  |
| (d) | (d) conformational structures                                                                                         |  |  |  |  |  |
| 5.  | The molecular formula $C_5H_{12}$ contains how many isomeric alkanes?                                                 |  |  |  |  |  |
|     | a) 1                                                                                                                  |  |  |  |  |  |
|     | b) 2                                                                                                                  |  |  |  |  |  |
|     | c) 3                                                                                                                  |  |  |  |  |  |
|     | d) 4                                                                                                                  |  |  |  |  |  |
| 6.  | How many optically active stereoisomers are possible for butane-2,3-diol?                                             |  |  |  |  |  |
|     | a) 1                                                                                                                  |  |  |  |  |  |
|     | b) 2                                                                                                                  |  |  |  |  |  |
|     | c) 3                                                                                                                  |  |  |  |  |  |
|     | d) 4                                                                                                                  |  |  |  |  |  |
| 7.  | Which of the following pairs represents linkage isomers?                                                              |  |  |  |  |  |
| (a) | [Pd(PPh <sub>3</sub> ) <sub>2</sub> (NCS) <sub>2</sub> ] and [Pd(PPh <sub>3</sub> ) <sub>2</sub> (SCN) <sub>2</sub> ] |  |  |  |  |  |
| (b) | [Co (NH3)5 NO3]SO4 and [Co(NH3)5SO4] NO3                                                                              |  |  |  |  |  |
| (c) | [Pt Cl2(NH3)4]Br2 and [PtBr2(NH3)4]Cl2                                                                                |  |  |  |  |  |
| (d) | [Cu(NH3)4] [PtCl4] and [Pt(NH3)4] [CuCl4]                                                                             |  |  |  |  |  |

# **College Of Engineering and Technology**

# SRMIST, Kattankulathur

# MCQs/Virtual Examination

8. The reactivity order of alkyl halides in S<sub>N</sub>2 is \_\_\_\_\_

a) CH<sub>3</sub> 
$$X > 1^0 > 2^0 > 3^0$$

b) CH<sub>3</sub> 
$$X > 2^0 > 1^0 > 3^0$$

c) CH<sub>3</sub> 
$$X > 3^0 > 1^0 > 2^0$$

d) 
$$CH_3 X > 3^0 > 2^0 > 1^0$$

9. Arrange the following in the decreasing order of leaving group in nucleophilic substitution reaction.

a) 
$$H^- > Cl^- > HO^- > Br^- > CH_3COO^-$$

b) 
$$Cl^- > Br^- > HO^- > H^- > CH_3COO^-$$

c) 
$$Cl^- > Br^- > CH_3COO^- > HO^- > H^-$$

d) 
$$HO^- > CH_3COO^- > H^- > Br^- > Cl^-$$

10. Predict the product in the following reaction oxidised by KMNO<sub>4</sub>:



# Answer: a)

- 11. Correct steps for the mechanism of action of the drug acetaminophen can be?
  - I. Decreases in prostaglandin synthesis
  - II. Increase in prostaglandin synthesis
  - III. Stimulation of COX-2
  - IV. Inhibition of COX-2

c) 
$$IV - I$$

# **College Of Engineering and Technology**

# SRMIST, Kattankulathur

# MCQs/Virtual Examination

12. The rate of nucleophilic substitution reactions are higher in the presence of

- a) Electron withdrawing groups
- b) Electron releasing groups
- c) Both electron withdrawing and releasing groups
- d) Initiators
- 13. Identify the incorrect statement regarding cycloalkanes.
- a) These have sp3 hybridized carbons
- b) These have tetrahedral bond angles
- c) Stability of the cycloalkanes varies directly with their respective size
- d) These undergo nucleophilic substitution reactions
- 14. Which of the following reaction is an example for E2 mechanism?

a) 
$$H_3PO_4 \xrightarrow{\Delta} H_2O_4$$

# **College Of Engineering and Technology**

# SRMIST, Kattankulathur

# **MCQs /Virtual Examination**

$$\begin{array}{ccc} & & & & & & & \\ & & & & & & \\ \text{CH}_{3}^{-} \text{C} - \text{CH}_{3} & & & & & \\ \text{CH}_{3} & & & & & \\ \text{d}) & & & & & \\ \end{array}$$

- 15. Which of the following substances can act as both oxidising and reducing agent?
  - a. KMnO<sub>4</sub>
  - b.  $K_2Cr_2O_7$
  - c. HNO<sub>3</sub>

# d. $H_2O_2$

15. What is the dihedral angle for the given conformation?



- (a)  $0^0$
- (b) 120<sup>0</sup>
- (c)  $360^0$
- (d)  $300^0$
- 17. In which of the following complex, the oxidation number of Fe is +1?
- (a)  $Fe_4[Fe(CN)_6]_3$
- (b) [Fe(H<sub>2</sub>O)<sub>5</sub>NO]SO<sub>4</sub>
- (c) [FeBr<sub>4</sub>]<sup>-</sup>
- (d)  $[Fe(H_2O)_6]^{2-}$

# **College Of Engineering and Technology**

# **SRMIST, Kattankulathur**

# **MCQs /Virtual Examination**

18. The energy required to rotate n-butane molecule about the carbon-carbon bond is called

a) Rotational energy

# b) Torsional energy

- c) Enantiomeric energy
- d) Potential energy
- 19. Which is the correct assignment of chirality at C<sub>2</sub> and C<sub>4</sub> of the following molecule?



- a) 2S,4S
- b) 2R,4R
- c) 2S,4R
- d) 2R,4S
- 20. Predict the major product for the following reaction:



(B)

(C) OH

(D) The reaction can not proceed

#### **Answer: C**

- 21. The conformations n-butane commonly known as gauche, eclipsed and anticonformations can be inter-converted by rotation around
- a) C-H bond of methyl group
- b) C<sub>1</sub>-C<sub>2</sub> linkage
- c) C2-C3 linkage
- d) C-H bond of methylene group