Surprise Quiz: Probability and Statistics (30 Marks)

Each question: 5 marks

- 1. Suppose $X \sim \mathcal{N}(\mu, \Sigma)$. Let $Y = W^{-1}(X \mu)$ where W is a matrix that satisfies $W^2 = \Sigma$. Obtain the distribution for the random vector Y.
- 2. (Memory test:)
 - State the Central limit theorem. (2.5 marks)
 - Write the three equivalent definitions for a multivariate Gaussian. (2.5 mks)
- 3. Find the stationary distribution π for Markov Chain with the following transition probability matrix. (3 marks) State if π is unique. (1 mark) Is the chain irreducible? Give reasons (1mark)

$$P = \begin{bmatrix} 0.2 & 0.8 & 0 \\ 0 & 0.9 & 0.1 \\ 0.1 & 0.9 & 0 \end{bmatrix}$$

Suppose X is a standard normal vector of size n. Let Y = AX + b where A is a square symmetric invertible matrix. Derive the expression for $f_Y(y)$.

Each question: 10 marks

1. Let (X,Y) be a pair of continuous random variables with joint PDF $f_{X,Y}(x,y)$. Define a transformation from (X,Y) to (U,V) given by

$$U = X + Y$$
, $V = X - Y$.

- (a) Find the joint PDF $f_{U,V}(u,v)$ of the transformed random vector (U,V). (5mks)
- (b) Assume $f_{X,Y}(x,y) = ce^{-(x^2+y^2)}$ for all $x,y \in \mathbb{R}$. Find $f_{U,V}(u,v)$ for this specific case and elaborate on what kind of random variables are U and V. (5mks)