ARMA(1,1)

Intro to Autoregressive Moving Average Processes

STAT 464 / 864 | Fall 2024
Discrete Time Series Analysis
Skyepaphora Griffith, Queen's University

Autoregressive Moving Average Process | Order (1,1) **ARMA (1,1)**

For some parameters

ARMA(1,1) and the Backshift Operator

$$(Y) X_t - \phi X_{t-1} = +Z_t + \theta Z_{t-1}$$

$$\phi(B)X_t = \theta(B)Z_t$$

$$= X_t =$$

$$= (1 + \theta B)$$

$$= \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right) Z_t$$

ARMA(1,1) and the Backshift Operator

$$(Y) X_t - \phi X_{t-1} = +Z_t + \theta Z_{t-1}$$

$$X_t = \left(\sum_{j=0}^{\infty} (\phi B)^j + \theta \sum_{j=0}^{\infty} \phi^j B^{j+1}\right) Z_t$$

$$=$$
 $\left(\begin{array}{c} \\ \end{array} \right) Z$

$$=\left(\begin{array}{ccc} & & \\ & & \end{array} \right) Z_{t}=$$

$$\phi(B) \stackrel{\text{def}}{=} 1 - \phi B$$

$$\theta(B) \stackrel{\text{def}}{=} 1 + \theta B$$

$$\phi(B)X_t = \theta(B)Z_t$$

ARMA(1,1) | Filter

$$(Y) X_t - \phi X_{t-1} = +Z_t + \theta Z_{t-1}$$

$$X_t = Z_t + (\phi + \theta) \sum_{j=1}^{\infty} \phi^{j-1} Z_{t-j}$$
 $\{a_j\} = \begin{cases} a_j \\ a_j \end{cases}$

$$\{a_j\} = \left\{ \right.$$

If then {Xt} is just {Zt}

ARMA(1,1) | ACVF

$$(Y)$$
 $X_t - \phi X_{t-1} = +Z_t + \theta Z_{t-1}$

Filter

$$\{a_j\} = \begin{cases} 0 & j < 0 \\ 1 & j = 0 \\ (\phi + \theta)\phi^{j-1} & j \ge 1 \end{cases}$$

since $\{Y_t\}$ is a zero-mean $wn(\sigma^2)$ process,

$$\gamma_X(h) = \sum_{j=-\infty}^{\infty} \sigma^2 a_j a_{j+h} = 0$$

Deriving the ACVF of an ARMA(1,1) | h = 0

$$\gamma_X(0) = \sum_{j=0}^{\infty}$$

=

=

Filter

$$\{a_j\} = \begin{cases} 0 & j < 0 \\ 1 & j = 0 \\ (\phi + \theta)\phi^{j-1} & j \ge 1 \end{cases}$$

General ACVF, by Prop. 2.2.1

$$\gamma_X(h) = \sum_{j=0}^{\infty} \sigma^2 a_j a_{j+h}$$

Deriving the ACVF of an ARMA(1,1) | $h \ge 0$

$$\frac{\gamma_X(h)}{\sigma^2} = \sum_{j=0}^{\infty} a_j a_{j+h} = \sum_{j=1}^{\infty} a_j a_{j+h}$$

$$\sum_{j=1}^{\infty} a_j a_{j+h}$$

$$\{a_j\} = \begin{cases} 0 & j < 0 \\ 1 & j = 0 \\ (\phi + \theta)\phi^{j-1} & j \ge 1 \end{cases}$$

$$= (\phi + \theta)\phi^{h-1} + (\phi + \theta)^2$$

$$= (\phi + \theta)\phi^{h-1} +$$

Problem Setup

Let Y be an RV with finite variance

Consider some sequence of RVs $W = \{W_N, ..., W_1\}$

We want W to give a good prediction of Y (function of W that is "close" to Y)

We'll measure that "closeness" using Mean Squared Error (MSE)

Linearity of our Prediction

$$MSE \stackrel{\text{def}}{=} E\Big[\big(Y - g(W_1, \dots, W_N) \big)^2 \Big]$$
 prediction

In time series, we typically don't estimate beyond 2nd order properties (Example: variance / covariance)

Optimal Prediction: **E[YIW**₁,..., **W**_N]

Only have 2nd order properties?

→ optimal prediction not computable without joint distribution of Y and {Wt}

If we specify the prediction to be a linear function **g**, of **W**, We can compute optimal prediction using only 2nd order properties

We learned something Today, in Time Series 🕛

What do we tell quin?