Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Estatística

Prof. Moisés Lima de Menezes

1ª lista de exercícios de Análise de Séries Temporais

- 1) Considere a série temporal tal que em um determinado instante de tempo T, tem-se $Z_T = 14$, $Z_{T-1} = 6$, $Z_{T-2} = 11$, $Z_{T-3} = 9$, $Z_{T-4} = 16$. Assuma que o modelo constante $Z_t = a_1 + e_t$ seja adotado e que o procedimento MM(4) seja aplicado para estimar o nível. Obtenha:
 - a) A previsão pontual para T + 1 e T + 2 (Ou seja, 1 e 2 passos à frente).
 - b) O desvio padrão dos erros de previsão assumindo que $V(e_t) = 25$ para todo t = 1, 2, ... (sugestão: erro de previsão = $e_t(h) = Z_t \hat{Z}_{t-h}(h)$, com Z_t definido acima e $Z_{t-h}(h)$ obtido via MM(4))
- 2) Considere a série temporal: $Z_1 = 14$, $Z_2 = 11$, $Z_3 = 12$, $Z_4 = 22$, $Z_5 = 25$, $Z_6 = 21$, $Z_7 = 18$, $Z_8 = 13$, $Z_9 = 22$, $Z_{10} = 16$, $Z_{11} = 10$, $Z_{12} = 18$. Assuma o modelo constante. Pede-se:
 - a) O modelo com previsão 1 passo à frente segundo o método NAIVE.
 - b) Os modelos com previsão 1 passo à frente segundo os métodos MM(3) e MM(4).
 - c) Os modelos com previsão 1 passo à frente segundo o método de amortecimento exponencial com fatores de amortecimento iguais à 0,2 e 0,8.
 - d) Verifique qual o melhor modelo em termos de ajustes.
- 3) Seja $\Delta^r Z_t$ a série $Z_t = (Z_1, Z_2, ..., Z_T)$ após r > 0 diferenças. Deduza a expressão:

$$\Delta^r Z_t = \sum_{j=0}^r (-1)^j \binom{r}{j} Z_{t-j}$$

4) Mostre que, para um estimador MM(N), $\forall N \geq 1$ de um modelo constante, tem-se:

$$M_T = M_{T-1} + \frac{Z_T - Z_{T-N}}{N}$$

- 5) Considere o modelo $Z_T = a_1 + a_2T + e_T$ e seja T o momento atual. Suponha que os parâmetros tenham sido estimados por um método qualquer e que no instante T os seus estimadores sejam $\hat{a}(T) = [\hat{a}_1(T), \hat{a}_2(T)]$. Assuma ainda que a matriz de variância e covariância destes estimadores seja: $V(\hat{a}(T)) = \frac{\sigma_e^2}{16} \begin{bmatrix} 9 & 4 \\ 4 & 16 \end{bmatrix}$, onde σ_e^2 é a variância dos erros.
 - a) obtenha a expressão de $Z_{T+h} = \hat{Z}_T(h)$.
 - b) obtenha a previsão acumulada até o instante T+h. Ou seja, $\hat{Z}_T(1)+\cdots+\hat{Z}_T(h)$.
 - c) Obtenha a variância da previsão calculada em (a) assumindo que $\sigma_e^2 = 1$ e h = 4.
- 6) No processo de amortecimento exponencial no modelo constante, qual a razão entre a soma dos pesos das 5 observações mais recentes (T, T-1, T-2, T-3, T-4) e a soma dos pesos das próximas 5 observações (T-5, T-6, T-7, T-8, T-9)?
- 7) Considere a seguinte série temporal:

Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
20	17	12	13	15	20	21	26	17	12	14	10

Assuma que o método de Holt-Winters com sazonalidade multiplicativa foi utilizado para ajustar um modelar de tendência linear com sazonalidade para esta série e que no mês de junho foram estimados os seguintes parâmetros:

$\hat{\rho}_{jan}(t)$	$\hat{ ho}_{fev}(t)$	$\hat{\rho}_{mar}(t)$	$\hat{ ho}_{abr}(t)$	$\hat{ ho}_{mai}(t)$	$\hat{\rho}_{jun}(t)$	$\hat{a}_1(t)$
0,92	1,31	0,86	0,89	1,00	X	20
$\hat{ ho}_{jul}(t)$	$\hat{ ho}_{ago}(t)$	$\hat{ ho}_{set}(t)$	$\hat{ ho}_{out}(t)$	$\hat{ ho}_{nov}(t)$	$\hat{ ho}_{dez}(t)$	$\hat{a}_2(t)$
1,60	0,99	1,12	0,65	1,14	0,79	0,2

Assumindo que $\alpha = 0.2$, $\beta = 0.004$ e $\gamma = 0.7$, obtenha:

- a) $\hat{\rho}_{jun}(t)$; b) A previsão 1-passo-à-frente para o mês de agosto.