| COMS W3261 - Lecture 9, part 3:                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------|
| From Turing Machines to Algorithms. Church-Turing Thesis                                                                        |
| - We saw: several models of compulation are equivalent in power to TMs:  - Moltitage TMs.                                       |
| - Nondefermmistic TIVIS.                                                                                                        |
| - What other high-level automata exist?                                                                                         |
| - Post-Turing Machine (Post, 1936). = TM                                                                                        |
| - Lambob Calculus (Church, 1930s). = TM                                                                                         |
| - Wang Tile (1961). = TM                                                                                                        |
| - Futomaton with a Ocece. H == TM                                                                                               |
| (Lots of tungs are equivalent!)                                                                                                 |
| - Anything that can simulate a TM can be used to recognize and decide Conguages. (This property is called Toving-completeness.) |
| - Most programming languages (C, C++, Java, Rythou, Sua Eript,)                                                                 |
| - LATEX                                                                                                                         |
| - Conway's Game of Life. + => +=                                                                                                |
| - Microsoft Excel and Power Point.                                                                                              |
| - Minecraft, Partal, Magic the Gothering                                                                                        |
| The Church-Toing thesis: "Our intritive notion of an algorithm (completely)                                                     |
| specified process for performing a took) corresponds precisely to the set of tasks                                              |
| that can be performed on a Toring machine."                                                                                     |
|                                                                                                                                 |
| Encoding Problems: How do we speak generally, but processly, about                                                              |
| powerfil automata?                                                                                                              |

| <u> deal:</u> a<br>formal desc | Every high-level description she<br>cription (in principle.)    | ld be reducible to a full      |
|--------------------------------|-----------------------------------------------------------------|--------------------------------|
| So far:                        | · Formal descriptions (7-typles · Implementation descriptions ( | escribe head movement and tope |

· High-level description: precise English proce-that describes an algorithm while ignoring implementation details.

Observation: All finite mathematical objects can be encoded as strings.

Example. G = (V, E)

We can write G as a string Lower any (non-empty) alphabet using an inspecified encoding as SG>.

Example: could list all vertices and egges.

G, encoded as a string.

- We will assume that if some TM takes an encoded object <07 as inpt, if begins by scanning <0> and rejecting if <0> is not a volid encoding of the right kind of object.

Example. Recognize  $A = \frac{7}{6} \cdot \frac{1}{6} \cdot \frac$ 

M= "On mpt (G), an encoding of G= (U,E):

- (O. Reject if (G) is not an encoded graph)
- 1. Select a node of G and mark it.
- 2. For each note, mark it if it is adjacent to some marked note.
- 3. Repeat (2) until no new nodes are marked
- 4. If all nodes are marked, accept; otherwise, reject."



How does this translate to implementation details?

Well - suppose



Could encode G as (vertices) (edges):

For each marked node u:

For each unmarked note U:

Chak of (u,v) E E and mark v if so.

Nort fine: More high-level descriptions of TMs,

Show many cool anguages are lare not decidable.

Reading:

Sipser 3.1 (TMs) Sipser 3.2 (Variant TMs)

Siprer 3.3 (High-Covel representations, CT thesis).