Homework 9

Math 55b Due Tuesday, 7 April 2009.

Notation: $S^1(r)$ denotes the circle of radius r about the origin in \mathbb{C} , oriented counterclockwise as usual; $S^1 = S^1(1)$; $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$.

- 1. Show, directly from the definition of $\int_{\gamma} f(z) dz$ as a limit of Riemann sums, that $\int_{\gamma} z dz = 0$ for any closed loop γ in the plane.
- 2. What is the most general form of a rational function f(z) which has absolute value 1 on the circle |z| = 1? In particular, how are the zeros and poles of f related to each other?
- 3. Let $f:U\to\mathbb{C}$ be an analytic function on a connected domain and suppose |f(z)| is constant. Prove that f(z) is constant.

*More generally, prove that if $f_i: U \to \mathbb{C}$ are analytic and $\sum_{i=1}^{n} |f_i(z)|^2$ is constant, then all the functions $f_i(z)$ are constant.

4. Show that

$$\prod_{1}^{\infty} (1 + a_n) := \lim_{N \to \infty} \prod_{1}^{N} (1 + a_n) \neq 0$$

provided $a_n \in \mathbb{C}$ satisfies $a_n \neq -1$ and $\sum |a_n| < \infty$.

$$1 + \sum_{n=1}^{\infty} p(n)z^n = \prod_{n=1}^{\infty} \frac{1}{1 - z^n} \neq 0$$

for all complex z with |z| < 1.

6. Let G denote the group of rational maps $f:\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ of degree one (called Möbius transformations), with composition as the group operation. Prove that the map $\phi:\mathrm{SL}_2(\mathbb{C})\to G$ given by

$$\phi: A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto f(z) = \frac{az+b}{cz+d}$$

is a surjective homomorphism, and compute its kernel. Explain this homomorphism geometrically in terms of the 'slope map' $s: \mathbb{C}^2 - \{(0,0)\} \to \widehat{\mathbb{C}}$ given by $s(z_1,z_2) = z_1/z_2$. Which vectors in \mathbb{C}^2 correspond to the fixed-points of f?

- 7. Prove that every $f \in G$ is conjugate to either $f(z) = \lambda z$ (for some $\lambda \in \mathbb{C}^*$) or f(z) = z + 1. Show that the value of λ can be determined from $\operatorname{tr}(A)$ if $f = \phi(A)$. Is it unique? What value(s) of $\operatorname{tr}(A)$ correspond to f(z) = z + 1?
- 8. Let $H \subset G$ be the subgroup generated by a single map of th form $f(z) = \alpha z$, $\alpha \neq 0$. What is the centralizer of H in G? What is the normalizer? Answer the same question where H is generated by f(z) = z + 1, and where H is the group of all translations f(z) = z + t, $t \in \mathbb{C}$.
- 9. Prove that the image of a circle or a line under a Möbius transformation is a circle or a line.