1.25 Represent the decimal number 6,514 in (a) BCD, (b) excess-3 code, (c) 2421 code, and (d) a 6311 code.

<mark>Ans.</mark>

	(6514) ₁₀
(a) BCD	0110 0101 0001 0100
(b) Excess 3	1001 1000 0100 0111
(c) 2421	1100 1011 0001 0100
(d) 6311	1000 0111 0001 0101

1.28 Write the expression "George B." in ASCII, using an eight-bit code. Include the period and the space. Treat the leftmost bit of each character as a parity bit. Each eight-bit code should have odd parity. (George Boole was a 19th-century mathematician. Boolean algebra, introduced in the next chapter, bears his name.)

<mark>Ans.</mark>

G	e	O	r	g
1 100 0111	1 110 0101	1 110 1111	1 111 0010	0110 0111
е	(space)	В		
1 110 0101	0010 0000	1 100 0010	1010 1110	

^{*} Add the 8th bit, a parity bit (red), to ensure that each code has odd parity (total number of 1 is an odd value).

2.1 Demonstrate the validity of the following identities by means of truth tables:

(a) DeMorgan's theorem for three variables: (x + y + z)' = x'y'z' and (xyz)' = x' + y' + z'

<mark>Ans.</mark>

(a)

x y z	x + y + z	(x+y+z)'	x'	y'	z'	x'y'z'
000	0	1	1	1	1	1
001	1	0	1	1	0	0
010	1	0	1	0	1	0
011	1	0	1	0	0	0
100	1	0	0	1	1	0
101	1	0	0	1	0	0
110	1	0	0	0	1	0
111	1	0	0	0	0	0

x y z	(xyz)	(xyz)'	x'	y'	z'	x' + y' + z'
000	0	1	1	1	1	1

001	0	1	1	1	0	1
010	0	1	1	0	1	1
011	0	1	1	0	0	1
100	0	1	0	1	1	1
101	0	1	0	1	0	1
110	0	1	0	0	1	1
111	1	0	0	0	0	0

2.3 Simplify the following Boolean expressions to a minimum number of literals: (a)* A'B'C + AB'C + BC (b)* x'y'z' + y'z

<mark>Ans.</mark>

(a)
$$A'B'C + AB'C + BC = B'C + BC = C$$

(b)
$$x'y'z' + y'z = y'(x'z' + z) = y'(x' + z) = x'y' + y'z$$

2.9 Find the complement of the following expressions:

(a)*
$$x'y' + xy$$

(b)
$$ac + ab' + a'bc'$$

Ans.

(a)

$$F = x'y' + xy$$

$$F' = (x'y' + xy)' = (x'y')'(xy)' = (x + y)(x' + y') = xy' + x'y$$

(b)

$$F = ac + ab' + a'bc'$$

$$F' = (ac + ab' + a'bc')'$$

$$= (ac)'(ab')'(a'bc')'$$

$$= (a' + c')(a' + b)(a + b' + c)$$

$$= (a' + a'b + a'c' + bc')(a + b' + c)$$

$$= [a'(1+b+c')+bc'](a+b'+c)$$

$$= (a' + bc')(a + b' + c)$$

$$= (a' + bc')[a + (bc')']$$

$$=(a'+x)(a+x')$$
 assume: $bc'=x$

$$= a'x' + ax$$

$$= (a \ xnor \ x) = (a \ xnor \ bc')$$