МФТИ ФПМИ Случайные процессы

Гагаринов Даниил Кулапин Артур Рухадзе Альбина

Весна 2021

Содержание

1	Пункт 1				
	1.1	Понятие случайного процесса	5		
	1.2	Примеры случайных процессов	5		
	1.3	Модель страхования Спарре-Андерсена	6		
	1.4	Лемма о конечности процесса восстановления п.н	6		
2	Пункт 2				
	2.1	Производящие функции	7		
	2.2	Ветвящийся процесс Гальтона-Ватсона	7		
	2.3	Уравнение вероятности вырождения	8		
3	Пу	нкт 3	9		
	3.1	Теорема о вероятности вырождения	9		
4	Пункт 4				
	4.1	Пространство траекторий. Цилиндрическая сигма-алгебра	10		
	4.2	Эквивалентное определение случайного процесса	11		
5	Пункт 5				
	5.1	Конечномерные распределения случайного процесса	11		
	5.2	Условия симметрии и согласованности	12		
6	Пункт 6				
	6.1	Процессы с независимыми приращениями	13		
	6.2	Критерий существования через хар. функции	13		
7	Пункт 7				
	7.1	Пуассоновский процесс	15		
	7.2	Явная конструкция	15		
	7.3	Свойства траекторий	17		
8	Пу	нкт 8	18		

	8.1	Ковариационная функция	18		
	8.2	Гауссовский случайный процесс	19		
9	Пункт 9				
	9.1	Винеровский процесс, два определения	20		
10	Пун	икт 10	22		
	10.1	Модификация случайного процесса	22		
	10.2	Непрерывная модификация для винеровского процесса	22		
	10.3	ЗПЛ для винеровского процесса	23		
11	Пун	ікт 11	23		
	11.1	Пространство $L^2(\Omega, \mathcal{F}, \mathcal{P})$ случайных величин	23		
		11.1.1 Свойства пространства L^2	23		
	11.2	Скалярное произведение	24		
12	Пун	икт 12	24		
	12.1	Функции Хаара и Шаудера	24		
	12.2	Вспомогательные леммы	25		
	12.3	Явная конструкция винеровского процесса	26		
13	Пун	икт 13	28		
	13.1	Фильтрация	29		
	13.2	Марковский момент	29		
	13.3	Процессы Леви́	30		
14	Пун	ікт 14	33		
	14.1	Закон 0 или 1 Колмогорова	33		
	14.2	Момент достижения уровня винеровским процессом	34		
15	Пун	икт 15	35		
	15.1	Принцип отражения	35		
	15.2	Совместное распределение максимума и правого конца	35		

	15.3 Теорема Башелье	36		
16 Пункт 16				
	16.1 Мартингалы	36		
	16.2 Критерий мартингальности для процессов с незав. приращ	37		
	16.3 Разложение Дуба для дискретного времени	38		
17	Тункт 17	39		
	17.1 Теорема об остановке	39		
	17.2 Следствие из теоремы об остановке	40		
18 Пункт 18				
	18.1 Задача о разорении игрока	40		
19 Пункт 19				
	19.1 Опциональный момент	42		
	19.2 Модель Крамера-Лундберга	43		
20	Пункт 20	45		
	20.1 Марковские цепи с дискретным временем	45		
	20.2 Независимость будущего и прошлого	46		
	20.3 Уравнения Колмогорова-Чепмена	46		
21	Пункт 21	47		
	21.1 Однородные марковские цепи	47		
	21.2 Эргодическая теорема	50		

1 Пункт 1

1.1 Понятие случайного процесса

Def. Пусть $(\Omega, \mathcal{F}, \mathcal{P})$ — вероятностное пространство, (E, \mathcal{E}) — измеримое пространство. Тогда отображение $X: \Omega \to E$ называется случайным элементом, если оно измеримо, то есть $\forall B \in \mathcal{E} \hookrightarrow X^{-1}(B) = \{\omega : X(\omega) \in B\} \in \mathcal{F}.$

Если $(E,\mathcal{E})=(\mathbb{R},\mathcal{B}(\mathbb{R})),$ то X называется случайной величиной.

Если $(E,\mathcal{E})=(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n)),$ то X называется случайным вектором.

Def. Пусть T — некоторое множество. Тогда набор $X = (X_t, t \in T)$ случайных элементов X_t , заданных на одном и том же вероятностноном пространстве $(\Omega, \mathcal{F}, \mathcal{P})$ называется случайной функцией.

Def. Если $T \subset \mathbb{R}$, то случайная функция называется случайным процессом.

Note. Области значений X_t не обязаны совпадать.

Note. Так же используется обозначение $(X(t), t \in T)$. На самом деле $X(t) = X(t, \omega)$ — функция двух переменных.

Def. При фиксированном $\omega_0 \in \Omega$ функция $\widetilde{X}_{\omega_0}(t) = X(t,\omega)|_{\omega=\omega_0}, t \in T$ называется траекторией (реализацией) случайной функции X.

1.2 Примеры случайных процессов

- 1. Пусть $\{\xi_n, n \in \mathbb{N}\}$ н.с. векторы из \mathbb{R}^m , тогда процесс $(S_n, n \in \mathbb{Z}_+)$, где $S_0 = 0, S_n = \xi_1 + \ldots + \xi_n$, называется случайным блужданием. Физическая модель: прыжки кузнечика.
- 2. Пусть $\{\xi_n, n \in \mathbb{N}\}$ н.о.р.с.в., неотрицательные и невырожденные $(\neq const)$. Положим $S_0 = 0$, $S_n = \xi_1 + \ldots + \xi_n$. Тогда процесс $X_t = \sup\{n : S_n \leqslant t\}, t \geqslant 0$ называется процессом восстановления, построенным по с.в $\{\xi_n, n \in \mathbb{N}\}$. Физическая модель: замена лампочки.

1.3 Модель страхования Спарре-Андерсена

Пусть $\{\xi_n, n \in \mathbb{N}\}$ - н.о.р.с.в. неотрицательные и невырожденные. $(X_t, t \ge 0)$ — процесс восстановления для них, $\{\eta_n, n \in \mathbb{N}\}$ - н.о.р.с.в. неотрицательные и независимые с $\{\xi_n, n \in \mathbb{N}\}$. Пусть $y_0, c > 0$ — константы.

Положим $Y_t = y_0 + c \cdot t - \sum\limits_{k=1}^{X_t} \eta_k, t \geqslant 0$ — модель страхования.

- y_0 начальный капитал;
- \bullet c скорость поступления страховых взносов;
- η_k размер k-й выплаты;
- ξ_k время между (k-1)-й и k-й выплатами;
- ullet Y_t текущий капитал компании.

1.4 Лемма о конечности процесса восстановления п.н.

Лемма. Процесс восстановления конечен п.н. или $P(\exists t: X_t = +\infty) = 0.$

Доказательство:

Если $E\xi_i=0$, то $\xi=0$ п.н. (так как $\xi\geqslant 0$), что противоречит невырожденности.

Пусть сначала $E\xi_i = a > 0$. Заметим, что $X_t = \sup\{n : S_n \leqslant t\} = \sum_{n=1}^{\infty} I\{S_n \leqslant t\}$.

С другой стороны, $S_{n+1} \geqslant S_n \Rightarrow \{S_{n+1} \leqslant t\} \subseteq \{S_n \leqslant t\}$, а $\{X_t = +\infty\} = \{\forall n : S_n \leqslant t\} = \bigcap_n \{S_n \leqslant t\}$.

В силу непрерывности вероятностной меры

$$P(X_t = +\infty) = \lim_n P(S_n \leqslant t) = \lim_n P\left(\frac{S_n}{n} \leqslant \frac{t}{n}\right) \leqslant |\text{При больших } n| \leqslant \lim_n P\left(\frac{S_n}{n} \leqslant \frac{a}{2}\right)$$

По УЗБЧ $\frac{S_n}{n} \xrightarrow{\text{п.н.}} a \Rightarrow \frac{S_n}{n} \xrightarrow{d} a$. Тогда

$$\lim_{n} P\left(\frac{S_n}{n} \leqslant \frac{a}{2}\right) =$$
|из сходимости по распределению $|= P\left(a \leqslant \frac{a}{2}\right) = 0$

Значит, $\forall t \geqslant 0 \hookrightarrow P(X_t = +\infty) = 0$

Заметим, что траектории процесса X_t не убывают $\Rightarrow P(\exists t: X_t = +\infty) = P(\exists m \in \mathbb{N}: X_m = +\infty) = 0$

Если $E\xi_i=+\infty$, то положим $\widetilde{\xi_i}=min(\xi_i,1)$, тогда $E\widetilde{\xi_i}<+\infty$.

$$\widetilde{S_n} = \widetilde{\xi_1} + \ldots + \widetilde{\xi_n} \leqslant S_n \Rightarrow P(S_n \leqslant t) \leqslant P(\widetilde{S_n} \leqslant t)$$
, а про $\widetilde{S_n}$ доказали выше $\Rightarrow \lim_n P(S_n \leqslant t) \to 0$

2 Пункт 2

2.1 Производящие функции

Def. Пусть ξ — случайная величина, тогда её производящая функция $\varphi_{\xi}\left(z\right)=\mathbb{E}z^{\xi}.$ Считаем $z\geqslant0.$

Свойства:

- 1. $\varphi_{\xi}(1) = 1$.
- 2. $\varphi'_{\xi}(1) = \mathbb{E}\xi$.
- 3. Если $\xi \perp \!\!\! \perp \eta$, то $\varphi_{\xi+\eta}(z) = \varphi_{\xi}(z) \cdot \varphi_{\eta}(z)$.

Теперь, если $\xi \in \mathbb{Z}_+$ — дискретная случайная величина с неотрицательными значениями, тогда появляеются еще свойства:

4.

$$\varphi_{\xi}(z) = \sum_{k=0}^{\infty} z^k P(\xi = k)$$

Это ряд, который сходится и абсолютно равномерно на $\{|z| \leqslant 1\}$.

- 5. В области $\{|z|<1\}$ производящая функция непрерывно дифференцируема бесконечное число раз.
- 6. $\varphi_{\xi}(0) = P(\xi = 0)$.

7.

$$P(\xi = k) = \frac{1}{k!} \left(\varphi_{\xi}^{(k)}(z) \right) \Big|_{z=0}$$

2.2 Ветвящийся процесс Гальтона-Ватсона

Пусть $\left\{ \xi_k^{(n)}, \ k, n \in \mathbb{N} \right\}$ — н.о.р.с.в., имеющее распределение с.в. ξ со значениями в \mathbb{Z}_+ . Положим, что

$$X_0 = 1$$

$$X_n = \sum_{k=1}^{X_{n-1}} \xi_k^{(n)}, n \in \mathbb{N}$$

Def. Последовательность $\{X_n, n \in \mathbb{Z}_+\}$ — ветвящийся процесс Гальтона-Ватсона с законом размножения частиц ξ .

Note. $\xi_k^{(n)}$ — число потомков k-й частицы в (n-1)-м поколении, а X_n — число частиц в n-м поколении.

Лемма. Рекуррентные соотношения

$$\varphi_{X_n}(z) = \varphi_{X_{n-1}}(\varphi_{\xi}(z))$$

Доказательство:

$$\varphi_{X_n}(z) = \mathbb{E}z^{X_n} = \mathbb{E}\left(\mathbb{E}\left(z^{X_n} \mid X_{n-1}\right)\right)$$

по телескопическому свойству УМО/по формуле полной верояности.

Заметим, что сумма $\xi_k^{(n)}$ и X_{n-1} независимы, так как X_{n-1} зависит только от $\xi_k^{(j)},\,j\leqslant n-1.$

$$\mathbb{E}\left(z^{X_n} \mid X_{n-1} = m\right) = \mathbb{E}\left(z^{\sum_{k=1}^{X_{n-1}} \xi_k^{(n)}} \mid X_{n-1} = m\right) = \mathbb{E}z^{\sum_{k=1}^{m} \xi_k^{(n)}} = \prod_{k=1}^{m} \varphi_{\xi_k^{(n)}}(z) = (\varphi_{\xi}(z))^m$$

Откуда

$$\varphi_{X_n}(z) = \mathbb{E}z^{X_n} = \mathbb{E}\left(\mathbb{E}\left(z^{X_n} \mid X_{n-1}\right)\right) = \mathbb{E}\left(\varphi_{\xi}(z)\right)^{X_{n-1}} = \varphi_{X_{n-1}}\left(\varphi_{\xi}(z)\right)$$

Следствие.

- 1. $\varphi_{X_n}\left(z\right) = \varphi_{\xi}\left(\varphi_{\xi}\left(\ldots\varphi_{\xi}\left(z\right)\right)\ldots\right)\left(n\right)$ композиций)
- 2. $\varphi_{X_n}(z) = \varphi_{\varepsilon} \left(\varphi_{X_{n-1}}(z) \right)$

2.3 Уравнение вероятности вырождения

Введём обозначения:

- $q_n = P(X_n = 0)$
- $q = P(\exists n: X_n = 0)$ вероятность вырождения

Лемма. $\forall n \ q_n \leqslant q_{n+1}$ и $q = \lim_{n \to \infty} q_n$

Доказательство: События вложенны, значит, монотонность верна.

А второе утверждение следует из непрерывности вероятностной меры:

$$q = P(\exists n : X_n = 0) = P\left(\bigcup_{n=1}^{\infty} \{X_n = 0\}\right) = \lim_{n \to \infty} P(X_n = 0) = \lim_{n \to \infty} q_n$$

Лемма. Вероятность вырождения q удовлетворяет соотношению:

$$q = \varphi_{\xi}(q) \tag{2.1}$$

Доказательство: Заметим, что

$$q_n = P(X_n = 0) = \varphi_{X_n}\left(0\right) = \{$$
следствие первой леммы $\} = \varphi_{\xi}\left(\varphi_{X_{n-1}}\left(0\right)\right) = \varphi_{\xi}\left(q_{n-1}\right)$

Тогда, устремляя к бесконечности, по второй лемме и непрерывности производящей функции в круге $\{|z|\leqslant 1\}$, получаем требуемое.

3 Пункт 3

3.1 Теорема о вероятности вырождения

Теорема. Пусть $P(\xi = 1) < 1$. Пусть $\mathbb{E}\xi = \mu$ быть может бесконечное, тогда

- 1. $\mu \leqslant 1$, тогда уравнение $z = \varphi_{\xi}(z)$ имеет только решение 1 на [0,1] и q=1.
- 2. $\mu > 1$, тогда уравнение $z = \varphi_{\xi}(z)$ имеет только одно решение z_0 на [0,1) и $q = z_0$.

Доказательство:

1. Пусть $\mu \leqslant 1$. Если $P(\xi=0)=1$, то вырождаемся на первом шаге. Иначе рассмотрим производную:

$$\varphi'_{\xi}(z) = \sum_{k=1}^{\infty} kz^{k-1} P(\xi = k)$$

Откуда получаем, что $\varphi'_{\xi}(z)>0$ при z>0, ведь не все $P(\xi=k)=0.$

Тогда, так как $\varphi_{\xi}(z)$ строго возрастает на отрезке, по теореме Лагранжа о среднем:

$$1-\varphi_{\xi}\left(z\right)=\varphi_{\xi}\left(1\right)-\varphi_{\xi}\left(z\right)=\varphi_{\xi}'(\theta)\cdot(1-z),$$
 для некоторого $\theta\in\left(z,1\right)$

Проверим, что $\varphi'_{\varepsilon}(\theta) < 1$.

Если $\exists k\geqslant 2\ P(\xi=k)>0,$ то $\varphi_{\xi}''(z)>0$ при z>0, а тогда

$$\varphi_{\xi}'(\theta) < \varphi_{\xi}'(1) = \mu \leqslant 1$$

Если $\forall k \geqslant 2 \ P(\xi = k) = 0$, то $P(\xi \leqslant 1) = 1$ и $\mu < 1$, тогда

$$\varphi'_{\xi}(\theta) \leqslant \varphi'_{\xi}(1) = \mu < 1$$

Последнее неравенство строгое, потому что иначе $\xi = 1$ п.н., но по условию $P(\xi = 1) < 1$.

В итоге, $\forall z \in [0,1) \hookrightarrow 1-\varphi_{\xi}\left(z\right) < 1-z \Longleftrightarrow z < \varphi_{\xi}\left(z\right)$, то есть нет других решений, кроме 1.

2. Пусть $\mu > 1$, тогда $\exists k \geqslant 2 \ P(\xi = k) > 0$, откуда

$$\forall z \in (0,1) \ \varphi_{\xi}''(z) = \sum_{k=2}^{\infty} k(k-1)z^{k-2}P(\xi=k) > 0$$

Значит, $\varphi'_{\xi}(z)$ строго возрастает.

Теперь рассмотрим $f(z) = z - \varphi_{\xi}(z)$, тогда f(1) = 0.

Заметим, что $f'(z) = 1 - \varphi'_{\xi}(z)$ строго убывает и f''(z) < 0, то есть f(z) строго выпукла вверх. Но ещё

$$f'(0) = 1 - \varphi'_{\xi}(0) = 1 - P(\xi = 1) > 0$$

$$f'(1) = 1 - \varphi'_{\xi}(1) = 1 - \mu < 0$$

Тогда $\exists ! z_1 \in (0,1) : f'(z_1) = 0$, тогда z_1 — точка максимума f(z).

Исследуем $f(0) = 0 - \varphi_{\xi}(0) = -P(\xi = 0) \leq 0$:

- (a) Если $P(\xi = 0) = 0$, то q = 0.
- (b) Если $P(\xi = 0) > 0$, то f(0) < 0 и $\exists ! z_0 \in (0,1)$ решение уравнения f(z) = 0. Осталось узнать, чему равно q.

Заметим, что $f(z) < 0 \iff z < z_0$. Покажем, что $\forall n \ q_n < z_0$:

$$q_n = \varphi_{\mathcal{E}}(q_{n-1}) < \varphi_{\mathcal{E}}(q_n) \Longrightarrow f(q_n) < 0$$

Данное неравенство будет верно в силу строго возрастания $\varphi_{\xi}(z)$, если $q_n > q_{n-1}$:

$$q_n = q_{n-1} + \sum_{m=1}^{\infty} P(X_{n-1} = m) \cdot (P(\xi = 0))^m > q_{n-1}$$

так как не все $P(X_{n-1}=m)=0$ и $P(\xi=0)>0$.

Значит, $f(q_n) < 0$. Следовательно, в пределе $q = z_0$.

4 Пункт 4

4.1 Пространство траекторий. Цилиндрическая сигма-алгебра

Пусть $(X_t, t \in T)$ — случайный процесс и $\forall t \in T \ X_t$ — случайная величина со значениям в \mathbb{R} .

Def. Пространство траекторий процесса X_t называется $\left\{y(t) = X_t\big|_{\omega=\omega_0} \mid \omega_0 \in \Omega\right\} = S \subset \mathbb{R}^T = \{y = (y(t), t \in T), \ y(t) \in \mathbb{R}\}$ — множество вещественных функций на T.

Def. $\forall t \in T$ и $\forall B_t \in \beta(\mathbb{R})$ введём на S элементарный цилиндр:

$$C(t, B_t) = \{ y \in S \mid y(t) \in B_t \}$$

То есть множество траекторий (или функций), которые в момент времени t проходят через B_t .

Def. Наименьшая σ -алгебра на S, содержащая все элементарные цилиндры, называется цилиндрической σ -алгеброй и обозначается β_T .

Note. Таким образом, получили измеримое пространство (S, β_T) .

4.2 Эквивалентное определение случайного процесса

Лемма. Отображение $X: \Omega \to S$ измеримо относительно β_T . То есть $X: \Omega \to S$ является случайным процессом в смысле изначального определения тогда и только тогда, X измеримо относительно β_T , то есть $\forall E \in \beta_T \ X^{-1}(E) \in \mathcal{F}$, где $\mathcal{F} - \sigma$ -алгебра на Ω .

Доказательство:

 \longleftarrow Зафиксируем $t \in T$ и $B_t \in \beta(\mathbb{R})$, тогда

$$\{X_t \in B_t\} = \{X \in C(t, B_t) \in \beta_T\} \in \mathcal{F} \Longrightarrow X_t$$
— случайная величина

⇒ ∀ элементарного цилиндра

$$\{X\in C(t,B_t)\in \beta_T\}=\{X_t\in B_t\}\in \mathcal{F}$$
 (так как X_t — случайная величина)

Тогда элементарные цилиндры порождают β_T . Согласно достаточному условию измеримости отображения $\forall E \in \beta_T \ \{X \in E\} = X^{-1}(E) \in \mathcal{F}$

Note. Теперь можно смотреть на случайный процесс как на единый случайный элемент со значениями в измеримом пространстве (S, β_T) .

5 Пункт 5

5.1 Конечномерные распределения случайного процесса

Def. Распределением случаного процесса X называется вероятностная мера P_X на (S, β_T) , заданная по правилу $\forall E \in \beta_T \ P_X(E) = P(X \in E)$ — мера на (Ω, \mathcal{F}) .

Def. $\forall n \in \mathbb{N} \ t_1, \dots, t_n \in T$ обозначим через P_{t_1, \dots, t_n} — распределение вектора $(X_{t_1}, \dots, X_{t_n})$ — конечномерное распределение процесса X.

Лемма. Пусть $(X_t, t \in T)$ и $(Y_t, t \in T)$ — два случайных процесса.

Тогда $P_X = P_Y \Longleftrightarrow$ все конечномерные распределения X и Y совпадают.

Доказательство:

 \longleftarrow Пусть $\forall n \in \mathbb{N} \ \forall t_1, \dots, t_n \ P^X_{t_1, \dots, t_n} = P^Y_{t_1, \dots, t_n}$. Рассмотрим для $B_{t_1}, \dots, B_{t_n} \in \beta(\mathbb{R})$ цилиндр (не элементарный!) в S:

$$C(t_1,\ldots,t_n;B_{t_1},\ldots,B_{t_n})=\left\{y\in S\mid \forall i\in\overline{1,n}\ y(t_i)\in B_{t_i}
ight\}$$
 (пересечение n элем. цилиндров)

Множество цилиндров образует π -систему (пересечение двух цилиндров будет цилиндром). При этом наименьшая σ -алгебра, содержащая все цилиндры — это β_T . Тем самым достаточно проверить, что распределение совпадает на цилиндрах, тогда распределение совпадает на порождающих π -системах.

$$P_X(C(t_1, \dots, t_n; B_{t_1}, \dots, B_{t_n})) = P(X_{t_1} \in B_{t_1}, \dots, X_{t_n} \in B_{t_n}) =$$

$$= P_{t_1, \dots, t_n}^X(B_{t_1} \times \dots \times B_{t_n}) = P_{t_1, \dots, t_n}^Y(B_{t_1} \times \dots \times B_{t_n}) = P_Y(C(t_1, \dots, t_n; B_{t_1}, \dots, B_{t_n}))$$

 \Longrightarrow Из приведенных строчек выше следует, что $P^X_{t_1,\dots,t_n}=P^Y_{t_1,\dots,t_n}$ на прямоугольниках в \mathbb{R}^n , откуда по теореме о продолжении меры $P^X_{t_1,\dots,t_n}=P^Y_{t_1,\dots,t_n}$ на всей $\beta(\mathbb{R}^n)$.

Следствие. Конечномерные распределения однозначно определяют распределение процесса целиком.

5.2 Условия симметрии и согласованности

Лемма. Пусть процесс $(X=(X_t,t\in T))$ имеет конечномерные распределения $\{P_{t_1,\dots,t_n},n\in\mathbb{N},t_1,\dots,t_n\in T\}$. Тогда набор P_{t_1,\dots,t_n} удовлетворяет следующим условиям:

- 1. $P_{t_1,\dots,t_n}(B_{t_1}\times\dots\times B_{t_n})=P_{t_{\sigma(1)},\dots,t_{\sigma(n)}}(B_{t_{\sigma(1)}}\times\dots\times B_{t_{\sigma(n)}})$ для любой перестановки $\sigma\in S_n$.
- 2. $P_{t_1,\dots,t_n}(B_{t_1} \times \dots \times \mathbb{R}) = P_{t_1,\dots,t_{n-1}}(B_{t_1} \times \dots \times B_{t_{n-1}})$

Доказательство:

- 1. Очевидно, так как $P(X_{t_1} \in B_{t_1}, \dots, X_{t_n} \in B_{t_n}) = P_{t_1, \dots, t_n}^X(B_{t_1} \times \dots \times B_{t_n})$ не зависит от перестановки событий.
- 2. Очевидно, что $\{X_{t_n} \in \mathbb{R}\} = \Omega$, а пересечение с Ω тривиально.

Теорема (Колмогорова о существовании случайного процесса) (б/д).

Пусть $\forall n \ \forall t_1, \dots t_n \in T$, где T — любое множество, задана вероятностная мера P_{t_1,\dots,t_n} на $(\mathbb{R}^n, \beta(\mathbb{R}^n))$. Если мера удовлетворяет условиям симметрии и согласованности, то существует вероятностное пространство $(\Omega, \mathcal{F}, \mathcal{P})$ и случайный процесс $X = (X_t, t \in T)$ на нём такие, что P_{t_1,\dots,t_n} будут конечномерными распределениями процесса X.

Теорема (условия симметрии и согласованности для хар. функций) (б/д).

Пусть T — некоторое множество, $\{P_{t_1...t_n}, n \in \mathbb{N}, t_1...t_n \in T\}$ — набор вероятностных мер, а $\{\varphi_{t_1...t_n}, n \in \mathbb{N}, t_1...t_n \in T\}$ — соответствующие им хар. функции. Тогда набор мер $P_{t_1...t_n}$ удовлетворяет условиям симметрии и согласованности \Leftrightarrow хар. функции $\varphi_{t_1...t_n}$ удовлетворяют следующим условиям:

1.
$$\varphi_{t_1...t_n}(\lambda_1,\ldots,\lambda_n)=\varphi_{t_{\sigma(1)}...t_{\sigma(n)}}(\lambda_{\sigma(1)},\ldots,\lambda_{\sigma(n)})$$
 для \forall перестановки σ

2.
$$\varphi_{t_1...t_n}(\lambda_1,\ldots,\lambda_{n-1},0) = \varphi_{t_1...t_{n-1}}(\lambda_1,\ldots,\lambda_{n-1})$$

Следствие. Если $T \subset \mathbb{R}$ и $\forall t_1 < \ldots < t_n, \ t_i \in T$ задана хар. функция $\varphi_{t_1 \ldots t_n}$, причём набор $\{\varphi_{t_1 \ldots t_n}\}$ удовлетворяет условию $\forall m = \overline{1,n}$:

$$\varphi_{t_1\dots t_n}(\lambda_1,\dots,\lambda_n)|_{\lambda_m=0}=\varphi_{t_1\dots t_{m-1}t_{m+1}\dots t_n}(\lambda_1,\dots,\lambda_{m-1},\lambda_{m+1},\dots,\lambda_n)$$

то \exists случайный процесс $(X_t, t \in T) : \varphi_{t_1...t_n}$ — хар. фукнция вектора $(x_{t_1}, \ldots, x_{t_n})$.

6 Пункт 6

6.1 Процессы с независимыми приращениями

Def. Пусть $(X_t, t \ge 0)$ — случайный процесс. Он имеет независимые приращения, если $\forall n \in \mathbb{N} \ \forall 0 \leqslant t_1 < t_2 < \ldots < t_n$ случайные величины $X_{t_1}, X_{t_2} - X_{t_1}, \ldots, X_{t_n} - X_{t_{n-1}}$ независимы в совокупности.

Note. Процесс с независимыми приращениями и дискретным временем — случайное блуждание.

6.2 Критерий существования через хар. функции

Теорема (о существовании процессов с независимыми приращениями).

Пусть $\forall 0 \leqslant s < t$ задано распределение $Q_{s,t}$ вероятностей на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ с хар. функцией $\varphi_{s,t}$. Пусть Q_0 — распределение вероятностей на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Тогда выполнен следующий критерий: существует случайный процесс $(X_t, t \geqslant 0)$ с независимыми приращениями и условиями:

- $X_t X_s \stackrel{d}{=} Q_{s,t}, \ 0 \leqslant s < t$
- $X_0 \stackrel{d}{=} Q_0$

$$\iff \forall 0 \leqslant s < u < t \hookrightarrow \varphi_{s,t}(\tau) = \varphi_{s,u}(\tau) \cdot \varphi_{u,t}(\tau)$$

Доказательство:

 $\Longrightarrow X_t - X_s = (X_t - X_u) + (X_u - X_s)$. Случайные величины в скобках независимы, поэтому $\varphi_{s,t}(\tau) = \varphi_{X_t - X_s}(\tau) = \varphi_{X_t - X_u}(\tau) \cdot \varphi_{X_u - X_s}(\tau) = \varphi_{s,u}(\tau) \cdot \varphi_{u,t}(\tau)$

$$\underbrace{\begin{pmatrix} x_{t_n} \\ \vdots \\ x_{t_0} \end{pmatrix}}_{\xi} = \underbrace{\begin{pmatrix} 1 & \dots & 1 & 1 \\ 0 & 1 & \dots & 1 \\ \vdots & & \ddots & 1 \\ 0 & \dots & 0 & 1 \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x_{t_n} - x_{t_{n-1}} \\ \vdots \\ x_{t_1} - x_{t_0} \\ x_{t_0} \end{pmatrix}}_{\eta}$$

Тогда хар. функция (x_{t_0},\ldots,x_{t_n}) равна

$$\varphi_{t_0...t_n}(\lambda_0,\ldots,\lambda_n) = \mathbb{E}e^{i\sum_{j=1}^n x_{t_j}\lambda_j} = \mathbb{E}e^{i\langle\vec{x},\vec{\lambda}\rangle} = \mathbb{E}e^{i\langle\vec{x},\vec{\lambda}\rangle} = \mathbb{E}e^{i\langle\vec{x},\vec{\lambda}\rangle} = \mathbb{E}e^{i\langle\vec{x},\vec{\lambda}\rangle} = \mathbb{E}e^{i\langle\vec{x},\vec{\lambda}\rangle} = \varphi_{t_n-x_{t_{n-1}}}(\lambda_n)\varphi_{x_{t_{n-1}}-x_{t_{n-2}}}(\lambda_n + \lambda_{n-1})\ldots\varphi_{x_{t_1}-x_{t_0}}(\lambda_n + \ldots + \lambda_1)\varphi_{x_{t_0}}(\lambda_n + \ldots + \lambda_0) = \varphi_0(\lambda_n + \ldots + \lambda_0)\varphi_{0,t_1}(\lambda_n + \ldots + \lambda_1)\ldots\varphi_{t_{n-1},t_n}(\lambda_n) = \varphi_{0,t_1...t_n}(\lambda_0,\ldots,\lambda_n)$$

Запомним последнее равенство

$$\varphi_0(\lambda_n + \ldots + \lambda_0)\varphi_{0,t_1}(\lambda_n + \ldots + \lambda_1)\ldots\varphi_{t_{n-1},t_n}(\lambda_n) = \varphi_{0,t_1\ldots t_n}(\lambda_0,\ldots,\lambda_n)$$

$$(6.1)$$

Теперь отвлечемся от процесса. Для \forall набора индексов $0 < t_1 < \ldots < t_n$ зададим хар. фукнцию $\varphi_{0,t_1\ldots t_n}$ по формуле 6.1

Также положим $\varphi_{t_1...t_n}(\lambda_1,\ldots,\lambda_n)=\varphi_{0,t_1...t_n}(0,\lambda_1,\ldots,\lambda_n)$

Проверим, что набор хар. фукнций $\{\varphi_{t_1...t_n}, n \in \mathbb{N}, 0 \leqslant t_1 < \ldots < t_n\}$ удовлетворяют следствию.

Проверим свойство: $\varphi_{0,t_1...t_n}(0,\lambda_1,\ldots,\lambda_n)|_{\lambda_m=0} = |$ по формуле 6.1 $|=\varphi_0(\lambda_n+\ldots+\lambda_0)\varphi_{0,t_1}(\lambda_n+\ldots+\lambda_1)\ldots\varphi_{t_{n-1},t_n}(\lambda_n)|_{\lambda_m=0} = \varphi_{t_{n-1},t_n}(\lambda_n)\varphi_{t_{n-2},t_{n-1}}(\lambda_n+\lambda_{n-1})\ldots\varphi_{t_m,t_{m+1}}(\lambda_n+\ldots+\lambda_{m+1})\varphi_{t_{m-1},t_m}(\lambda_n+\ldots+\lambda_{m+1}+1) \ldots \varphi_0(\lambda_n+\ldots+\lambda_{m+1}+\lambda_{m-1}+\ldots+\lambda_0) = |$ условие теоремы $|=\varphi_{t_{n-1},t_n}(\lambda_n)\varphi_{t_{n-2},t_{n-1}}(\lambda_n+\lambda_{n-1})\ldots\varphi_{t_{m-1},t_{m+1}}(\lambda_n+\ldots+\lambda_{m+1})\ldots\varphi_0(\lambda_n+\ldots+\lambda_{m+1}+\lambda_{m-1}+\ldots+\lambda_0) = |$ по формуле 6.1 $|=\varphi_{0,t_1,\ldots,t_{m-1},t_{m+1},\ldots,t_n}(\lambda_0,\ldots,\lambda_{m-1},\lambda_{m+1},\ldots,\lambda_n)$

По следствию \exists процесс $(X_t, t \geqslant 0)$ такой, что $\varphi_{t_1...t_n}$ — хар. функция $(X_{t_1}, \ldots, X_{t_n}) \Rightarrow$ по построению хар. функции приращения будут независимы, соответственно будут выполнятся свойства

- $X_t X_s \stackrel{d}{=} Q_{s,t}, 0 \leqslant s < t$
- $X_0 \stackrel{d}{=} Q_0$

7 Пункт 7

7.1 Пуассоновский процесс

Def. Процесс $(N_t, t \ge 0)$ называется пуассоновским процессом интенсивности $\lambda > 0$, если выполнены следующие свойства:

- 1. $N_0 = 0$ п.н.;
- 2. N_t имеет независимые приращения;
- 3. $N_t N_s \sim Pois(\lambda(t-s)), \ t \geqslant s \geqslant 0.$

Утверждение. Пуассоновский процесс существует.

Доказательство: Пусть $\varphi_{s,t}(\tau)$ — хар. функция $Pois(\lambda(t-s))$. Тогда

$$\varphi_{s,t}(\tau) = \sum_{k=0}^{\infty} e^{i\tau k} \frac{(\lambda(t-s))^k}{k!} e^{-\lambda(t-s)} = e^{\lambda(t-s)(e^{i\tau}-1)} \Longrightarrow \varphi_{s,t}(\tau) = \varphi_{s,u}(\tau) \cdot \varphi_{u,t}(\tau) \ \forall 0 \leqslant s < u < t$$

По теореме процесс существует. ■

Наблюдения:

- 1. $N_t = N_t N_0 + N_0 \sim Pois(\lambda t) \Longrightarrow N_t \in \mathbb{Z}_+$, то есть траектории целочислены.
- 2. $N_t N_s \sim Pois(\lambda(t-s)) \Longrightarrow N_t \geqslant N_s \; \forall t \geqslant s \Longrightarrow$ траектории неубывающие.

7.2 Явная конструкция

Теорема (явная конструкция N_t).

Пусть $\{\xi_n, n \in \mathbb{N}\}$ — н.о.р.с.в. и $\xi_n \sim Exp(\lambda)$. Пусть $(X_t, t \geqslant 0)$ — процесс восстановления, построенный по ним, то есть

$$X_0 = 0,$$

 $X_t = \sup\{n : S_n \le t\}, \ t > 0$

где $S_n = \xi_1 + \ldots + \xi_n$.

Тогда X_t — это пуассоновский процесс интенсивности $\lambda > 0$.

Доказательство:

- 1. $X_0 = 0$ по построению. Надо проверить независимость приращений X_t и найти их распределение.
- 2. Зафиксируем $n \in \mathbb{N}, \ t_n > t_{n-1} > \ldots > t_1 > 0, \ k_n \ge k_{n-1} \ge \ldots \ge k_1 \ge 0, k_i \in \mathbb{Z}_+$. Хотим найти

$$P(X_{t_n} - X_{t_{n-1}} = k_n - k_{n-1}, \dots, X_{t_2} - X_{t_1} = k_2 - k_1, X_{t_1} = k_1) = ?$$

Эта вероятность равна

$$P((S_1,\ldots,S_{k_1})\in(0,t_1],(S_{k_1+1},\ldots,S_{k_2})\in(t_1,t_2],\ldots,(S_{k_{n-1}+1},\ldots,S_{k_n})\in(t_{n-1},t_n],S_{k_{n+1}}>t_n).$$

$$\begin{pmatrix} S_1 \\ \vdots \\ S_n \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & & \ddots & & \vdots \\ \vdots & & & \ddots & 0 \\ 1 & & \dots & & 1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix}$$

$$t_0 = k_0 = 0$$

Плотность вектора (S_1, \ldots, S_n) равна

$$p_{S_1,\dots,S_n}(x_1,\dots,x_n) = p_{\xi_1}(x_1) \cdot p_{\xi_2}(x_2 - x_1) \cdot \dots \cdot p_{\xi_n}(x_n - x_{n-1}) =$$

$$= \lambda e^{-\lambda x_1} \cdot \lambda e^{-\lambda(x_2 - x_1)} \cdot \dots \cdot \lambda e^{-\lambda(x_n - x_{n-1})} I\{0 < x_1 < \dots < x_n\} =$$

$$= \lambda^n e^{-\lambda x_n} I\{0 < x_1 < \dots < x_n\}$$

В итоге,

$$\begin{split} P\left((S_1,\dots,S_{k_1})\in(0,t_1],(S_{k_1+1},\dots,S_{k_2})\in(t_1,t_2],\dots,(S_{k_{n-1}+1},\dots,S_{k_n})\in(t_{n-1},t_n],S_{k_{n+1}}>t_n\right) = \\ &= \int \dots \int \qquad \lambda^{k_n+1}e^{-\lambda x_{k_n+1}}I\{0 < x_1 < \dots < x_n\}dx_1\dots dx_{k_n+1} = \\ & (x_1,\dots,x_{k_1})\in(0,t_1], \\ & \dots \\ & (x_{k_{n-1}+1},\dots,x_{k_n})\in(t_{n-1},t_n], \\ & x_{k_n+1}>t_n \\ &= \lambda^{kn}\int\limits_{t_n}^{+\infty}\lambda e^{-\lambda x_{k_n+1}}dx_{k_n+1}\cdot\prod\limits_{j=1}^n\int\limits_{(t_{j-1},t_j]^{k_j-k_{j-1}}}\dots\int\limits_{j=1}^nI\{x_{k_{j-1}+1}<\dots< x_{k_j}\}dx_{k_{j-1}+1}\dots dx_{k_j} = \\ &= \lambda^{kn}e^{-\lambda t_n}\cdot\prod\limits_{j=1}^n\frac{(t_j-t_{j-1})^{k_j-k_{j-1}}}{(k_j-k_{j-1})!}=\lambda^{\sum\limits_{j=1}^n(k_j-k_{j-1})}\exp(-\lambda\sum\limits_{j=1}^n(t_j-t_{j-1}))\cdot\prod\limits_{j=1}^n\frac{(t_j-t_{j-1})^{k_j-k_{j-1}}}{(k_j-k_{j-1})!}=\\ &=\prod\limits_{j=1}^n\left(\frac{(\lambda(t_j-t_{j-1}))^{k_j-k_{j-1}}}{(k_j-k_{j-1})!}e^{-\lambda(t_j-t_{j-1})}\right)=\\ &=\prod\limits_{j=1}^n\left(P\left(X_{t_j}-X_{t_{j-1}}=k_j-k_{j-1}\right)\right)\sim Pois(\lambda(t_j-t_{j-1})). \end{split}$$

Следовательно, приращения независимые и имеют пуассоновское распределение: $X_t - X_s \sim Pois(\lambda(t-s)).$

7.3 Свойства траекторий

Утверждение. У явной конструкции имеются следующие свойства траекторий:

- 1. Траектории не убывают и непрерывны справа.
- 2. Пусть Y_n момент n-ого скачка X_t . Тогда $Y_1, Y_2 Y_1, \dots, Y_n Y_{n-1}$ независимые и $Y_j Y_{j-1} \sim Exp(\lambda), \ Y_n \sim \Gamma(\lambda, n).$
- 3. Процесс X_t п.н. имеет только единичные скачки.

Доказательство:

- 1. По построению.
- 2. У X_t скачки происходят в моменты времени S_n :

Но $S_j - S_{j-1} = \xi_j$ — независ. $Exp(\lambda), S_n \sim \Gamma(\lambda, n),$ как сумма экспоненциальных распределений.

3. Можем «прыгнуть» на 2 и более только если какие-то из с.в. S_j совпали:

$$P(\exists$$
 скачки размера $\geqslant 2) \leqslant P(\exists n: S_n = S_{n+1}) = P(\exists n: \xi_n = 0) = 0,$

т.к. с.в. имеют плотности.

Note. Всюду далее будем считать (когда потребуется), что задана именно явная конструкция пуассоновского процесса.

8 Пункт 8

8.1 Ковариационная функция

 ${f Def.}\ \Pi$ усть $(X_t,t\in T)$ — случайный процесс. Функция

$$a(t) = \mathbb{E}X_t, \ t \in T$$

называется функцией среднего процесса X_t .

Функция

$$R(s,t) = cov(X_s, X_t), \ s, t \in T$$

называется ковариационной функцией процесса X_t .

Note. Конечномерное распределение гауссовского процесса определяется этими двумя функциями.

Def. Функция r(s,t), $s,t \in T$ — неотрицательно определенная (в действительном смысле), если

$$\forall n \in \mathbb{N} \ \forall t_1, \dots, t_n \in T \ \forall x_1, \dots, x_n \in \mathbb{R} \ \sum_{i,j=1}^n r(t_i, t_j) x_i x_j \ge 0$$

Утверждение. Ковариационная функция любого случайного L^2 -процесса ($\mathbb{E}X_t^2 < \infty$) является симметричной и неотрицательно определенной.

Доказательство: Пусть $X_t - L^2$ -процесс, а $R(s,t) = cov(X_s, X_t)$.

- 1. Симметрия следует из симметрии ковариации.
- 2. Докажем неотрицательную определенность. Пусть $n \in \mathbb{N}, t_1, \dots, t_n \in T$ и $x_1, \dots, x_n \in \mathbb{R}$, тогда

$$\sum_{i,j=1}^{n} R(x_i, x_j) x_i x_j = \sum_{i,j=1}^{n} cov(X_{t_i}, X_{t_j}) x_i x_j = \sum_{i,j=1}^{n} cov(x_i \cdot X_{t_i}, x_j \cdot X_{t_j}) =$$

$$= cov\left(\sum_{i=1}^{n} x_i X_{t_i}, \sum_{j=1}^{n} x_j X_{t_j}\right) = Var\left(\sum_{i=1}^{n} x_i X_{t_i}\right) \ge 0$$

8.2 Гауссовский случайный процесс

Def. Случайный процесс $(X_t, t \in T)$ называется *гауссовским*, если все его конечномерные распределения — гауссовские, то есть $\forall n \in \mathbb{N} \ \forall t_1, \ldots, t_n \in T$ вектор $(X_{t_1}, \ldots, X_{t_n})$ является гауссовским.

Теорема (о существовании гауссовских процессов).

Пусть T — некоторое множество, пусть $(a(t), t \in T)$ — произвольная функция, а $(R(s,t), s, t \in T)$ — симметричная и неотрицательно определенная на $T \times T$, тогда существует вероятностное пространство $(\Omega, \mathcal{F}, \mathcal{P})$ и гауссовский случайный процесс $(X_t, t \in T)$ на нём такой, что a(t) — функция среднего, а R(s,t) — ковариационная функция.

Доказательство: $\forall n \in \mathbb{N} \ \forall t_1, \dots, t_n \in T$ рассмотрим $a(t_1, \dots a_n) = (a(t_1), \dots, a(t_n))$ и $\Sigma(t_1, \dots, t_n) \in Mat_{n \times n}(\mathbb{R})$ такая, что $\Sigma(t_1, \dots, t_n)_{i,j} = R(t_i, t_j)$. По свойствам R(s, t) Σ неотрицательно определена и симметрична. Рассмотрим многомерное нормальное распределение $\mathcal{N}\left(a(t_1, \dots a_n), \Sigma(t_1, \dots a_n)\right)$).

Проверим условия симметрии и согласованности. Воспользуемся характеристическими функциями.

$$\varphi_{t_1,\dots,t_n}(\lambda_1,\dots,\lambda_n) = e^{(\vec{\lambda},a(t_1,\dots,t_n)) - \frac{1}{2}(\Sigma(t_1,\dots,t_n)\vec{\lambda},\vec{\lambda})} = e^{i\sum_{j=1}^n \lambda_j a(t_j) - \frac{1}{2}\sum_{j,k=1}^n R(t_j,t_k)\lambda_j \lambda_k}$$

- Симметрия тривиальна
- Пусть $\lambda_n = 0$, тогда

$$\varphi_{t_1,\dots,t_n}(\lambda_1,\dots,\lambda_{n-1},0) = e^{i\sum_{j=1}^{n-1}\lambda_j a(t_j) - \frac{1}{2}\sum_{j,k=1}^{n-1} R(t_j,t_k)\lambda_j \lambda_k} = \varphi_{t_1,\dots,t_{n-1}}(\lambda_1,\dots,\lambda_{n-1})$$

В итоге по теореме Колмогорова существует случайный процесс с такими конечномерными распределениями. Так как эти распределения гауссовские, по построению и процесс будет гауссовским, при этом функции выше (a(t), R(s,t)) и будут его характеристиками.

9 Пункт 9

9.1 Винеровский процесс, два определения

Def. Процесс $(W_t, t \ge 0)$ называется винеровским (или процессом броуновского движения), если

- 1. $W_0 = 0$ п.н.
- 2. W_t имеет независимые приращения
- 3. $W_t W_s \sim \mathcal{N}(0, t s), \forall t > s \geqslant 0$
- 4^* W_t имеет непрерывные траектории (пока это свойство игнорируем)

Утверждение. Винеровский процесс (свойства 1-3) существует

Доказательство:

По теореме о существовании процессов с независимыми приращениями достаточно проверить, что хар. функции правильно перемножаются:

Пусть $0 \le s < u < t$

$$\varphi_{W_t - W_s}(\tau) \stackrel{?}{=} \varphi_{W_t - W_u}(\tau) \cdot \varphi_{W_u - W_s}(\tau)$$

Так как
$$W_t - W_s \sim \mathcal{N}(0, t - s)$$
, то $W_t - W_s = e^{-\frac{1}{2}\tau^2(t - s)} = e^{-\frac{1}{2}\tau^2(t - u)} \cdot e^{-\frac{1}{2}\tau^2(u - s)}$

Дадим эквивалентное определение винеровского процесса

Теорема (эквивалентное определение винеровского процесса). Процесс $(W_t, t \ge 0)$ является винеровским \Leftrightarrow выполняются следующие свойства

- 1. W_t гаусовский процесс
- 2. $\mathbb{E}W_t = 0 \ \forall t \geqslant 0$
- 3. $cov(W_t, W_s) = min(t, s) \forall t, s \ge 0$

Доказательство:

 \Rightarrow

1) Проверим, что W_t — гауссовский процесс. Для $\forall n \in N$ и $\forall 0 \leqslant t_1 \leqslant \ldots \leqslant t_n$ рассмотрим вектор приращений $(W_{t_1}, W_{t_2} - W_{t_1}, \ldots, W_{t_n} - W_{t_{n-1}})^T$. По условию приращения независимые в совокупности и нормальные (или нули) \Rightarrow это гауссовский вектор.

Но вектор $(W_{t_1}, \dots, W_{t_n})^T$ есть линейное преобразование веткора приращений \Rightarrow он тоже гауссовский $\Rightarrow W_t$ — гауссовский процесс.

2)
$$W_t - W_s \sim \mathcal{N}(0, t - s) \Rightarrow W_t - W_0 \sim \mathcal{N}(0, t) \forall t \geqslant 0 \Rightarrow EW_t = 0$$

3) Найдем ковар. функцию W_t . Рассмотрим $cov(W_t,W_s)=|$ пусть $t>s|=cov(W_t-W_s+W_s,W_s)=cov(W_t-W_s,W_s)+cov(W_s,W_s)=DW_s=s$ (т.к. $W_s\sim\mathcal{N}(0,s)$) 0 т.к. независимы по опр.

Для случая t <= s получили бы $t \Rightarrow cov(W_t, W_s) = min(t, s)$

 \Leftarrow Проверим существование процесса с указанными свойствами. Казалось бы, зачем нам это делать? «Это представляет определенный интерес». Согласно теореме о существовании гауссовских процессов необходимо проверить неотрицательную определенность ковариационной функции, то есть минимума на $\mathbb{R}_+ \times \mathbb{R}_+$. Пусть $n \in \mathbb{N}$, $t_1, \ldots, t_n \in \mathbb{R}_+$, $x_1, \ldots, x_n \in \mathbb{R}$, тогда

$$\sum_{i,j=1}^{n} \min(t_i, t_j) x_i x_j = \sum_{i,j=1}^{n} \left(\int_{0}^{\infty} I_{[0,t_i]}(y) I_{[0,t_j]}(y) dy \right) x_i x_j =$$

$$= \int_{0}^{\infty} \left(\sum_{i,j=1}^{n} \left(x_i I_{[0,t_i]}(y) \cdot x_j I_{[0,t_j]}(y) \right) dy \right) = \int_{0}^{\infty} \left(\sum_{i=1}^{n} x_i I_{[0,t_i]}(y) \right)^2 dy \ge 0$$

Значит по теореме такой процесс существует. Теперь надо проверить свойства из изначального определения.

- 1. Так как процесс W_t гауссовский, $W_0 \sim \mathcal{N}(a, \sigma^2)$. По условию a=0 и $\sigma^2=\mathbb{D}W_0=\min(0,0)=0$, откуда $W_0=0$ поти наверное.
- 2. Пусть $n \in \mathbb{N}$ и $0 \le 0 < t_1 < t_2 < \ldots < t_n$. Надо проверить, что приращения независимы. Вектор приращений является линейным преобразованием гауссовского вектора, то есть гауссовский вектор. Тогда достаточно проверить некореллированность компонент вектора приращений $(W_{t_1}, W_{t_2} W_{t_1}, \ldots, W_{t_{n-1}} W_{t_n})$. Посчитаем ковариации, зная ковариационную функцию. Пусть $t_0 = 0$ и $k > j \ge 1$

$$\begin{split} cov(W_{t_k} - W_{t_{k-1}}, W_{t_j} - W_{t_{j-1}}) &= \\ &= cov(W_{t_k}, W_{t_j}) - cov(W_{t_{k-1}}, W_{t_j}) - cov(W_{t_k}, W_{t_{j-1}}) + cov(W_{t_{k-1}}, W_{t_{j-1}}) = \\ &= \min(t_k, t_j) - \min(t_{k-1}, t_j) - \min(t_k, t_{j-1}) + \min(t_{k-1}, t_{j-1}) = \\ &= t_j - t_j - t_{j-1} + t_{j-1} = 0 \end{split}$$

3. Заметим, что $\forall t>s\geq 0\ W_t-W_s\sim \mathcal{N}(a,\sigma^2)$ так как это линейное преобразование гауссовского вектора. a=0 по линейности, а дисперсия

$$\mathbb{D}(W_t - W_s) = cov(W_t - W_s, W_t - W_s) = cov(W_t, W_t) - 2 \cdot cov(W_t, W_s) + cos(W_s, W_s) = t - 2s + s = t - s$$

10 Пункт 10

10.1 Модификация случайного процесса

Def. Процесс $(X_t, t \in T)$ — модификация процесса $(Y_t, t \in T)$, если $\forall t \in T \ P(X_t = Y_t) = 1$.

Теорема (о непрерывной модификации, Колмогоров) (б/д).

Пусть $(X_t, t \in [a, b])$ таков, что $\exists C, \varepsilon, \alpha > 0$ такие, что $\forall s, t \in [a, b]$

$$\mathbb{E}|X_t - X_s|^{\alpha} \le c \cdot |t - s|^{1 + \varepsilon}$$

Тогда у процесса X_t существует модификация, все траектории которой непрерывны.

10.2 Непрерывная модификация для винеровского процесса

Утверждение. У винеровского процесса существует непрерывная модификация (модификация с непрерывными траекториями).

Доказательство: Пусть $\alpha=4$, тогда $\mathbb{E}(W_t-W_s)^4=3(t-s)^2$. Тогда по теореме Колмогорова W_t допускает непрерывную модификацию на [a,b] $\forall a< b$. Пусть $(W_t^{(n)},t\in[n,n+1])$ — непрерывная модификация W_t на $[n,n+1], n\in\mathbb{Z}_+$. Рассмотрим $\widetilde{W}_t=W_t^{(n)}$, если $t\in[n,n+1)$, а $n\in\mathbb{Z}_+$. Проблема в том, что в целых точках (и только в них) может быть разрыв при склейке различных модификаций.

$$\begin{cases} P\left(W_{n+1}^{(n)} = W_{n+1}\right) = 1 \\ P\left(W_{n+1}^{(n+1)} = W_{n+1}\right) = 1 \end{cases} \implies P\left(W_{n+1}^{(n)} = W_{n+1}^{(n+1)}\right) = 1 \implies P\left(\exists n : W_{n+1}^{(n)} \neq W_{n+1}^{(n+1)}\right) = 0$$

А значит \widetilde{W}_t имеет почти непрерывные траектории. Тогда положим

$$\widetilde{\widetilde{W}}_t(\omega) = egin{cases} \widetilde{W}_t(\omega), & \text{если траектория } \widetilde{W}_t(\omega) \text{ непрерывна} \\ 0, & \text{иначе} \end{cases}$$

Тогда $\widetilde{\widetilde{W}}_t$ является модификацией \widetilde{W}_t , которая является модификацией W_t (модификация моей модификации — моя модификация). Значит построили нужную непрерывную модификацию.

Теорема (б/д). (Пэли, Зигмунд, Винер)

С вероятностью 1 траектория W_t не дифференцируема ни в одной точке \mathbb{R}_+

10.3 ЗПЛ для винеровского процесса

Теорема (б/д). Для винеровского процесса верен закон повторного логарифма в следующем виде

$$P\left(\lim_{t\to\infty}\sup_{s\geq t}\frac{W_s}{\sqrt{2s\log\log s}}=1\right)=1$$

11 Пункт 11

11.1 Пространство $L^2(\Omega, \mathcal{F}, \mathcal{P})$ случайных величин

Def. Пусть $(\Omega, \mathcal{F}, \mathcal{P})$ — вероятностное пространство. Тогда пространством $L^2(\Omega, \mathcal{F}, \mathcal{P})$ называется пространство случайных величин на $(\Omega, \mathcal{F}, \mathcal{P})$ с конечным вторым моментом:

$$L^{2}(\Omega, \mathcal{F}, \mathcal{P}) = \{ \xi \mid E|\xi|^{2} < +\infty \}$$

11.1.1 Свойства пространства L^2

- 1. Линейное пространство Если $\xi, \eta \in L^2, a, b \in \mathbb{R}$, то $a\xi + b\eta \in L^2$
- 2. "Почти"
нормированное пространство Функция $||\xi|| = \sqrt{E\xi^2}$ обладает свойствами нормы:
 - $||a\xi|| = |a| \cdot ||\xi||, a \in \mathbb{R}$
 - $\bullet \ ||\xi+\eta||\leqslant ||\xi||+||\eta||$

Note. если вместо случайных величин рассмотреть их классы эквивалентности

$$\overline{\xi} = \{\eta | \eta = \xi$$
 п.н. $\}$

то $||\cdot||$ станет настоящей нормой,

$$||\overline{\xi}|| = 0 \Leftrightarrow \overline{\xi} = 0$$

3. Сходимость в пространстве L^2

Сходимость задается следующим образом:

$$\xi_n \stackrel{L^2}{\to} \xi$$
, если $E|\xi_n - \xi|^2 \to 0$ при $n \to \infty$ $||\xi_n - \xi||^2$

Пространство L^2 относительно такой сходимости является полным:

последовательность $\{\xi_n, n \in \mathbb{N}\}$ сходится в $L^2 \Leftrightarrow$ она фундаментальна, т.е. $||\xi_n - \xi_m|| \to 0$ при $n, m \to +\infty$

4. Скалярное произведение в L^2

Задается по формуле $<\xi,\eta>_{L^2}=E\xi\eta$

Выполнено неравенство Коши-Бунаковского:

$$|<\xi,\eta>|=|E\xi\eta| \leqslant \sqrt{E\xi^2 \cdot E\eta^2} = ||\xi|| \cdot ||\eta||$$

11.2 Скалярное произведение

Лемма. (непрерывность скалярного произведения)

Если
$$\xi_n \stackrel{L^2}{\to} \xi, \eta_n \stackrel{L^2}{\to} \eta$$
, где $\xi_n, \xi, \eta_n, \eta \in L^2$, то $|<\xi, \eta>| = E\xi_n\eta_n \to E\xi\eta = <\xi, \eta>$

Доказательство:

Рассмотрим
$$|E\xi_n\eta_n - E\xi\eta| = |E\xi_n\eta_n - E\xi\eta_n + E\xi\eta_n - E\xi\eta| \le |E(\xi_n - \xi)\eta_n| + |E(\eta_n - \eta)\xi| \le |\text{нер-во}|$$

 $|E\xi_n\eta_n - E\xi\eta| \le \sqrt{E(\xi_n - \xi)^2 E\eta_n^2} + \sqrt{E(\eta_n - \eta)^2 E\xi^2}$

$$E(\eta_n-\eta)^2 \to 0$$
 так как $\eta_n \stackrel{L^2}{\to} \eta$, а $E\xi^2={
m const}$

Аналогично $E(\xi_n - \xi)^2 \to 0$.

Осталось проверить, что $E\eta_n^2$ ограничено:

 $||\eta_n||\leqslant|$ нер-во треугольника $|\leqslant||\eta-\eta_n||+||\eta||,$ где $||\eta-\eta_n||\to 0$ и $||\eta||=const\Rightarrow||\eta_n||$ ограничена.

Следовательно, $E\xi_n\eta_n \to E\xi\eta$

Следствие. Если $\xi_n \stackrel{L^2}{\to} \xi$, то

- 1. $E\xi_n \to E\xi$
- 2. $E\xi_n^2 \to E\xi^2$
- 3. $\xi_n \stackrel{L^1}{\to} \xi, E|\xi_n \xi| \to 0$

12 Пункт 12

12.1 Функции Хаара и Шаудера

 $(H_k(t), k \in \mathbb{N}, t \in [0,1])$ — функции Хаара.

$$H_1(t) = 1 \forall t \in [0, 1]$$

$$H_2(t) = I_{[0,\frac{1}{2}]}(t) - I_{(\frac{1}{2},1]}(t)$$

Далее
$$H_k(t)=2^{rac{n}{2}}(I_{A_k}(t)-I_{B_k}(t)),$$
 где

$$2^n < k \leqslant 2^{n+1}, A_k = [(k-2^n-1)2^{-n}, (k-2^n-1)2^{-n} + 2^{-(n+1)}], B_k = ((k-2^n-1)2^{-n} + 2^{-(n+1)}, (k-2^n)2^{-n}]$$

Лемма. (свойства функций Хаара)

Последовательность $(H_k(t), k \in \mathbb{N})$ является полной ортонормированной системой функций в $L^2[0,1]$ Тогда выполнено равенство Парсеваля:

$$\forall f, g \in L^2[0,1] < f, g > = \int_0^1 f(x)g(x)dx = \sum_{k=1}^\infty < f, H_k > < g, H_k >$$

Def. Функциями Шаудера $(S_k(t), t \in [0,1]), k \in \mathbb{N}$ называются $S_k = \int\limits_0^t H_k(x) dx$

Note. Носители функций $S_k(t), 2^n < k \leqslant 2^{n+1}$ не пересекаются

12.2 Вспомогательные леммы

Лемма. 1.

Пусть $\{a_k, k \in \mathbb{N}\}$ — последовательность такая, что $a_k = O(k^{\varepsilon})$ для фиксированного $\varepsilon \in (0, \frac{1}{2})$. Тогда ряд

$$\sum_{k=1}^{\infty} a_k \cdot S_k(t)$$

задает непрерывную функцию на [0,1] и сходится равномерно на [0,1].

Доказательство: Рассмотрим частичные суммы, то есть $\sum_{k=1}^{N} a_k S_k(t)$ и проверим, что они сходятся равномерно по $t \in [0,1]$. Оценим

$$\sup_{t \in [0,1]} \sum_{k > 2^m} |a_k| S_k(t)$$

$$\sum_{k=2^{n+1}}^{2^{n+1}} |a_k| S_k(t) \le \left\{ |a_k| \le C \cdot k^{\varepsilon} \le C \cdot 2^{n+1} \right\} \le C \cdot 2^{(n+1)\varepsilon} \cdot \underbrace{\sum_{k=2^{n+1}}^{2^{n+1}} S_k(t)}_{\le 2^{-1-n/2}} \le C \cdot 2^{(n+1)\varepsilon} \cdot \underbrace{\sum_{k=2^{n+1}}^{2^{n+1}} S_k(t)}_{\le 2^{n+1}} \le C \cdot 2^{(n+1)\varepsilon} \cdot 2^{(n+$$

 \leq |носители не пересекаются | $\leq C \cdot 2^{(n+1)\varepsilon} \cdot 2^{-1-n/2} = C \cdot 2^{(n+1)\varepsilon-1-n/2} \leq C \cdot 2^{(\varepsilon-0.5)n} \to 0$

Откуда

$$\sup_{t \in [0,1]} \sum_{k > 2^m} |a_k| S_k(t) \le \sum_{n > m} C \cdot 2^{(\varepsilon - 0.5)n} \to 0$$

Тогда получили равномерную сходиомсть и, так как частичные суммы непрерывны, непрерывен и ряд.

Лемма. 2.

Пусть $\{\xi_n, n \in \mathbb{N}\}$ — независимые из $\mathcal{N}(0,1)$ Тогда $\forall C > \sqrt{2}$ с вероятностью 1 будет верно, что, начиная с некоторого $n = n(\omega) \ |\xi_n| \le C \cdot \sqrt{\log n}$.

Доказательство: Надо доказать, что $P\left(\{A_n\} \text{ б.ч.}\right) = 0$, где $A_n = \left\{|\xi_n| > C \cdot \sqrt{\log n}\right\}$. По лемме Бореля-Кантелли достаточно показать, что $\sum_n P(A_n) < \infty$.

$$\begin{split} P(A_n) &= P(|\xi_n| > C \cdot \sqrt{\log n}) = 2 \int\limits_{C \cdot \sqrt{\log n}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 2 \int\limits_{C \cdot \sqrt{\log n}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2} + x - x} dx \leq \\ &\leq \left\{ e^{x - \frac{x^2}{2}} \text{ убывает при } x > 1 \right\} \leq \frac{2}{\sqrt{2\pi}} \cdot e^{C\sqrt{\log n} - \frac{C^2 \log n}{2}} \int\limits_{C \cdot \sqrt{\log n}}^{\infty} e^{-x} dx = \sqrt{\frac{2}{\pi}} \cdot e^{-\frac{C^2 \log n}{2}} = O\left(n^{-\frac{C^2}{2}}\right) \end{split}$$

Так как $C > \sqrt{2}$, получаем, что ряд сходится. Откуда получаем требуемое.

Лемма. 3.

Пусть $\{\xi_n, n \in \mathbb{N}\}$ — последовательность гауссовских векторов из \mathbb{R}^m . Если $\xi_n \xrightarrow{L_2} \xi$, то ξ тоже гауссовский.

Доказательство: Векторная сходимость расносильна покомпонентная. Пусть $\xi_n = (\xi_n^1, \dots, \xi_n^m)$, а $\xi = (\xi^1, \dots, \xi^m)$. В силу непрерывности скалярного произведения $\forall i \in \overline{1,m} \ \mathbb{E} \xi_n^i \to \mathbb{E} \xi^i$. И еще верен такой факт: $\forall i, j \in \overline{1,m} \ \mathbb{E} \xi_n^i \xi_n^j \to \mathbb{E} \xi^i \xi^j$. Векторная сходимость расносильна покомпонентная, отсюда $\mathbb{E} \xi_n \to \mathbb{E} \xi$ и $\mathbb{D} \xi_n \to \mathbb{D} \xi$.

Из схоимости векторов в L_2 следует сходимость по распределению. Тогда рассмотрим характеристические функции:

$$\varphi_{\xi_{n}}\left(t\right)=e^{i<\mathbb{E}\xi,t>-\frac{1}{2}<\mathbb{D}\xi\cdot t,t>}\varphi_{\xi_{n}}\left(t\right)\rightarrow\varphi_{\xi}\left(t\right)e^{i<\mathbb{E}\xi,t>-\frac{1}{2}<\mathbb{D}\xi\cdot t,t>}\rightarrow e^{i<\mathbb{E}\xi,t>-\frac{1}{2}<\mathbb{D}\xi\cdot t,t>}$$

Тогда ξ — гауссовский вектор.

12.3 Явная конструкция винеровского процесса

Теорема (явная конструкция винеровского процесса).

Пусть $\{\xi_n, n \in \mathbb{N}\}$ — независимые случайные величины из $\mathcal{N}(0,1)$. Тогда

$$W_t = \sum_{k=1}^{\infty} \xi_k S_k(t), \ t \in [0, 1]$$

является винеровским процессом на [0,1] и имеет непрерывные траектории с вероятностью 1.

Доказательство: По лемме 2 с вероятностью 1 последовательность $|\xi_k| = O(\sqrt{\log k})$. Тогда по лемме 1 с вероятностью 1 (когда верна лемма 2) ряд $\sum_{k=1}^{\infty} \xi_k S_k(t)$ сходится равномерно и задает на [0,1] непрерывную функцию. Осталось проверить, что данный процесс винеровский. $\forall n \in \mathbb{N}$ рассмотрим

$$W_t^n = \sum_{k=1}^n \xi_k S_k(t)$$

Проверим, что $W_t^n \xrightarrow{L_2} W_t$. Покажем, что последовательность $\{W_t^n\}$ фундаментальна.

$$\begin{aligned} \left\|W^n_t - W^{m+n}_t\right\|^2 &= \mathbb{E}\left(\sum_{k=n+1}^m \xi_k S_k(t)\right)^2 = \{\text{пользуемся независимостью } \xi_k\} = \sum_{k=n+1}^m S^2_k(t) \leq \\ &\leq \{n=2^s\} \leq \sum_{l=s}^\infty \left(2^{\left(-1-\frac{j}{2}\right)}\right)^2 \to 0 \text{ равномерно по } m \end{aligned}$$

Это и означает, что последовательность фундаментальна. В силу полноты L_2 , ряд W_t^n сходится в L_2 , то есть $W_t^n \xrightarrow{L_2} Z_t$. Но $W_t^n \xrightarrow{\text{п.н.}} W_t$ по построению, откуда следует, что $W_t = Z_t$ почти наверное. Значит $W_t^n \xrightarrow{L_2} W_t$.

Воспользуемся определением винеровского процесса через гауссовский.

- 1. $\mathbb{E}W_t=\{$ непрерывность скалярного произведения $\}=\lim_{n\to\infty}\mathbb{E}W_t^n=0$
- 2. Проверим ковариацию:

$$cov(W_t, W_s) = \mathbb{E}W_t W_s = \lim_{n \to \infty} \mathbb{E}W_t^n W_s^n = \lim_{n \to \infty} \mathbb{E}\left(\sum_{k=1}^n \xi_k S_k(t)\right) \left(\sum_{k=1}^n \xi_k S_k(s)\right) =$$

$$= \lim_{n \to \infty} \sum_{k=1}^n S_k(t) S_k(s) = \sum_{k=1}^\infty S_k(t) S_k(s) = \sum_{k=1}^\infty \langle I_{[0,t]}, H_k \rangle \langle I_{[0,s]}, H_k \rangle =$$

$$= \{\text{равенство Парсеваля}\} = \langle I_{[0,t]}, I_{[0,s]} \rangle = \min\{t, s\}$$

3. Проверим, что $\forall N \in \mathbb{N}$ W_t^N — гауссовский процесс. Возьмем $\forall m \in \mathbb{N}$ и $t_1, \ldots, t_m \in [0, 1]$, тогда $(W_{t_1}^m, \ldots, W_{t_m}^N)$ — гауссовский вектор, так как является линейным преобразованием вектора (ξ_1, \ldots, ξ_N) . Тогда все конечномерные распределения W_t^N гауссовские, откуда W_t^N гауссовский. Пусть $m \in \mathbb{N}$, $t_1, \ldots, t_m \in [0, 1]$ фиксированы. Тогда гауссовский вектор $(W_{t_1}^m, \ldots, W_{t_m}^N) \xrightarrow{L_2} (W_{t_1}, \ldots, W_{t_m})$. По лемме 3 вектор $(W_{t_1}, \ldots, W_{t_m})$ гауссовский, откуда все конечномерные распределения W_t гауссовские, откуда W_t гауссовский

Тогда W_t винеровский.

Note. Построим винеровский процесс на \mathbb{R}^+ . Для этого построим винеровский процесс W_t^1 на [0,1] по прошлой теореме, потом к нему «приклеим» W_t^2 на [1,2], взятый независимо от W_t^1 (в плане набора ξ_i

из формулировки теоремы). «приклеем» значит, что запустим W_t^2 из точки W_1^1 . И так далее строим винеровский процесс W_t , строя последовательность W_t^m , будем приклеивать их последовательно друг к другу. Теперь формально

Следствие. Пусть $\left\{W_t^{(k)},\ t\in[0,1]\right\},\ k\in\mathbb{N}$ — независимые (в плане $\xi_i^{(k)}$) явные конструкции винеровского процесса на [0,1]. Тогда

$$W_{t} = \left\{ \sum_{l=1}^{k} W_{1}^{(l)} + W_{t-k}^{(k+1)}, \ t \in (k, k+1] \right\}$$

явялется винеровским процессом на \mathbb{R}^+ с почти наверное непрерывными траекториями.

Доказательство: Нужно проверить, что приращения распределены нормально и что они независимы.

Докажем независимость, рассмотрим $\forall 0 < s < u < t$.

$$W_t - W_u = W_t - \sum_{k=[u]+1}^{[t]} W_k + \sum_{k=[u]+1}^{[t]} W_k - W_u = (W_t - W_{[t]}) + (W_{[t]} - W_{[t]-1}) + \dots + (W_{[u]+1} - W_u)$$

Все слагаемые такого вида независмы по построению (так как лежат внутри одного отрезка единичной длины). Аналогично

$$W_u - W_s = W_u - \sum_{k=[s]+1}^{[u]} W_k + \sum_{k=[s]+1}^{[u]} W_k - W_s = (W_u - W_{[u]}) + (W_{[u]} - W_{[u]-1}) + \dots + (W_{[s]+1} - W_s)$$

Отсюда получаем, что это $W_t - W_u$ и $W_u - W_s$ независимы как функции от независимых случайных величин. Независимость в совокупности через аналогичное представление и переход к харфункциям приращений.

Осталось показать, что $W_t - W_s \sim \mathcal{N}(0, t-s)$. Воспользуемся тем же представлением

$$W_t - W_s = W_t - \sum_{k=[s]+1}^{[t]} W_k + \sum_{k=[s]+1}^{[t]} W_k - W_s = (W_t - W_{[t]}) + (W_{[t]} - W_{[t]-1}) + \dots + (W_{[s]+1} - W_s)$$

И вспомним, что у независимых нормальных величин (внутри отрезка единичной длины нормальность и независимость по построению) при сложении складываются дисперсии, откуда следует нужный факт. Непрерывность траекторий и равенство в нуле нулю почти наверное очевидны из построения.

13 Пункт 13

13.1 Фильтрация

Def. Пусть $(\Omega, \mathcal{F}, \mathcal{P})$ — вероятностное пространство, пусть $T \subseteq \mathbb{R}$. Тогда набор σ -алгебр $\mathbb{F} = (\mathcal{F}_t, t \in T)$ называется фильтрацией на $(\Omega, \mathcal{F}, \mathcal{P})$, если $\forall t, s \in T, s \leq t$ выполнено

$$\mathscr{F}_s \subset \mathscr{F}_t \subset \mathscr{F}$$
.

Def. Случайный процесс $(X_t, t \in T)$ называется согласованным с фильтрацией $\mathbb{F} = (\mathcal{F}_t, t \in T)$, если $\forall t \in T \ X_t$ измерим относительно \mathscr{F}_t , т.е. $\mathscr{F}_{X_t} \subset \mathscr{F}_t$, где $\mathscr{F}_{X_t} - \sigma$ -алгебра, порожденная X_t .

Def. Если ξ — случайная величина, то σ -алгеброй, порожденной ξ , называется

$$\mathscr{F}_{\xi} = \{ \{ \xi \in B \}, B \in \beta(\mathbb{R}) \} =: \sigma(\xi)$$

Def. Пусть $\{\xi_{\alpha}, \alpha \in \mathfrak{A}\}$ — набор случайных величин на $(\Omega, \mathcal{F}, \mathcal{P})$. Тогда σ -алгеброй, порожеденной наборами $\{\xi_{\alpha}, \alpha \in \mathfrak{A}\}$, называется наименьшая σ -алгебра, содержащая внутри все σ -алгебры $\mathscr{F}_{\xi_{\alpha}}, \alpha \in \mathfrak{A}$. Формально

$$\sigma\left(\xi_{\alpha},\alpha\in\mathfrak{A}\right):=\sigma\left(\bigcup_{\alpha\in\mathfrak{A}}\mathscr{F}_{\xi_{\alpha}}\right).\left(\subset\mathscr{F}\right)$$

Def. Если $(X_t, t \in T)$ — случайный процесс, $T \subset \mathbb{R}$, то его естественной фильтрацией называется $\mathbb{F}^X = (\mathscr{F}_t^X, t \in T)$, где

$$\mathscr{F}_t^X = \sigma(X_s, s \le t, s \in T).$$

Note. Любой процесс согласован со своей естественной фильтрацией.

13.2 Марковский момент

Def. Пусть $(\Omega, \mathcal{F}, \mathcal{P})$ — вероятностное пространство, $\mathbb{F} = (\mathcal{F}_t, t \in T)$ — фильтрация на нем. Отображение

$$\tau:\Omega\to T\cup\{+\infty\}$$

называется марковским моментом относительно фильтрации \mathbb{F} , если $\forall t \in T$

$$\{\tau \leq t\} \in \mathscr{F}_t.$$

Если к тому же $P(\tau < +\infty) = 1$, то τ называется *моментом остановки* относительно фильтрации \mathbb{F} .

Пример: Пусть $(X_n, n \in \mathbb{Z}_+)$ — случайный процесс, а \mathbb{F}^X — его естественная фильтрация. Тогда $\forall B \in \beta(\mathbb{R})$

$$\tau_B = \min\{n : X_n \in B\}$$

является марковским моментом относительно \mathbb{F}^X .

Доказательство:

$$\{ au_B \leq n\} = igcup_{k=0}^n \{X_k \in B\} \in \mathscr{F}_n^X; X_k \in \mathscr{F}_k^X \subset \mathscr{F}_n^X$$
 $\Rightarrow au_B$ — марковский момент.

Наблюдается случайный процесс $(X_t, t \in T)$, в его рамках происходит случайный момент времени τ . Если $\forall t$ по значениям процесса до момента времени t мы можем однозначно сказать, наступил ли уже τ или нет, то τ является марковским моментом. Иначе τ не марковский момент.

13.3 Процессы Леви́

Def. Случайный процесс $(X_t, t \ge 0)$ называется процессом Леви́, если

- 1. $X_0 = 0$ п.н.
- 2. X_t имеет независимые приращения
- 3. Распределение приращений стационарное, т.к. $\forall t>s\geq 0, \forall h>0$

$$X_t - X_s \stackrel{d}{=} X_{t+h} - X_{s+h}$$
.

(распределение $X_t - X_s$ зависит только от t-s)

Примеры. Винеровский процесс W_t , пуассоновский процесс N_t .

Def. Пусть τ — марковский момент относительно $\mathbb{F} = (\mathcal{F}_t, t \in T)$, тогда

$$\mathcal{F}_{\tau} = \{ A \in \mathcal{F} : \forall t \in T \mid \{ t \le \tau \} \cap A \in \mathcal{F}_t \}$$

Note. Часто добавляют четвертое свойство, гласящее, что такой процесс должен иметь траектории, непрерывные справа. (Мы его заявим в теореме)

Теорема (строго марковское свойство).

Пусть $(X_t, t \ge 0)$ — процесс Леви с непрерывными справа траекториями, τ — момент остановки относительно \mathbb{F}^X — естественной фильтрации процесса X_t . Тогда процесс

$$Y_t = X_{t+\tau} - X_{\tau}, t > 0$$

имеет те же конечномерные распределения, что и X_t и не зависит от $\mathscr{F}_{ au}.$

Утверждение.

- 1. Пусть ξ, η случайные векторы из \mathbb{R}^m . Если $\forall f : \mathbb{R}^m \to \mathbb{R}$ ограниченной и непрерывной, $\mathbb{E}f(\xi) = \mathbb{E}f(\eta)$, то $\xi \stackrel{d}{=} \eta$.
- 2. Пусть ξ случайный вектор из \mathbb{R}^m , \mathscr{A} σ -алгебра. Тогда ξ и \mathscr{A} независимы \Leftrightarrow \forall $f:\mathbb{R}^m\to\mathbb{R}$ ограниченной и непрерывной функции и \forall $A\in\mathscr{A}$ выполнено

$$\mathbb{E}(f(\xi) \cdot I_A) = \mathbb{E}f(\xi) \cdot P(A)$$

Доказательство:

- 1. (⇐) Очевидно.
 - $(\Rightarrow)\ \forall \lambda \in \mathbb{R}^m\ \cos\langle \lambda, x \rangle, \sin\langle \lambda, x \rangle$ ограниченные непрерывные функции \Rightarrow характеристические функции ξ и η одинаковы $\Rightarrow \xi \stackrel{d}{=} \eta$.
- 2. (⇒) Очевидно.
 - (\Leftarrow) Проверим, что ξ и I_A независимы для \forall $A \in \mathscr{A}$. Рассмотрим совместную характеристическую функцию ξ и I_A :

$$\varphi_{\xi,I_A}(\lambda,t) = \mathbb{E}e^{i\langle\lambda,\xi\rangle+it\cdot I_A} = \mathbb{E}\left(e^{i\langle\lambda,\xi\rangle}\left(e^{it}\cdot I_A + I_{\overline{A}}\right)\right) = |\text{условиe}| =$$

$$= \mathbb{E}e^{i\langle\lambda,\xi\rangle}\cdot e^{it}\cdot P(A) + \mathbb{E}e^{i\langle\lambda,\xi\rangle}\cdot P(\overline{A}) = \mathbb{E}e^{i\langle\lambda,\xi\rangle}\cdot\underbrace{\left(e^{it}P(A) + P(\overline{A})\right)}_{=\varphi_{I_A}(t)} = \varphi_{\xi}(\lambda)\varphi_{I_A}(t)$$

Доказательство строго марковского свойства (часть 1):

Убедимся в том, что X_{τ} — это случайная величина.

Рассмотрим для $n \in N$

$$\tau_n = \left\{ \sum_{k=1}^\infty \frac{k}{2^n} I\left\{\frac{k-1}{2^n} < \tau \le \frac{k}{2^n}\right\}, \quad \tau < +\infty \\ +\infty, \qquad \qquad \text{иначе.} \right.$$

Заметим, что

- 1. $\tau_n \downarrow \tau$ п.н.
- 2. $X_{\tau_n} = \sum\limits_{k=1}^\infty X_{k/2^n} I\left\{\frac{k-1}{2^n} < \tau \le \frac{k}{2^n}\right\}$ это случайная величина, причем в силу непрерывности справа тракеторий X_t выполнено

$$X_{ au_n} \xrightarrow{\mathrm{n.H.}} X_{ au} \Rightarrow X_{ au}$$
 — это случайная величина.

3. τ_n — момент остановки относительно \mathbb{F}^X .

$$P(\tau_n < +\infty) = P(\tau < +\infty) = 1$$

$$\{\tau_n \le t\} = \left\{\tau_n \le \frac{l}{2^n}\right\} = \left|l = [t2^n]\right| = \left\{\tau \le \frac{l}{2^n}\right\} \stackrel{(*)}{\in} \mathscr{F}_{l/2^n}^X \subset \mathscr{F}_t^X$$

(*) т.к. au — момент остановки.

Доказательство строго марковского свойства (часть 2):

Рассмотрим процесс $Y_t^n = X_{t+\tau_n} - X_{\tau_n}$.

Проверим, что он независим с \mathscr{F}_{τ} и что его конечномерные распределения совпадают с конечномерными распределениями исходного X_t

Зафиксируем $t_1, \ldots, t_m \in \mathbb{R}_+, \ A \in \mathscr{F}_\tau$. Пусть $f: \mathbb{R}^m \to \mathbb{R}$ — ограниченная непрерывная функция. Хотим проверить, что

1.
$$\mathbb{E}f(Y_{t1}^n, \dots, Y_{tm}^n) = \mathbb{E}f(X_{t1}, \dots, X_{tm})$$

2.
$$\mathbb{E}[f(Y_{t1}^n, \dots, Y_{tm}^n) \cdot I_A] = \mathbb{E}f(Y_{t1}^n, \dots, Y_{tm}^n) \cdot P(A)$$

В случае успеха будет доказана независимость Y_t^n и \mathscr{F}_{τ} , а также совпадение конечномерных распределений.

$$\mathbb{E}\left[f\left(Y_{t1}^{n},\ldots,Y_{tm}^{n}\right)\cdot I_{A}\right] = \sum_{k=1}^{\infty}\mathbb{E}\left(f\left(Y_{t1}^{n},\ldots,Y_{tm}^{n}\right)\cdot I_{A}\cdot I\left\{\tau_{n} = \frac{k}{2^{n}}\right\}\right) =$$

$$= \sum_{k=1}^{\infty}\mathbb{E}\left[f\left(X_{t1+k/2^{n}} - X_{k/2^{n}},\ldots,X_{tm+k/2^{n}} - X_{k/2^{n}}\right)\cdot I_{A}\cdot I\left\{\tau_{n} = \frac{k}{2^{n}}\right\}\right] \bigoplus$$

Согласно марковскому свойству $(X_{t1+k/2^n}-X_{k/2^n},\ldots,X_{tm+k/2^n}-X_{k/2^n})$ не зависит от $\mathscr{F}_{k/2^n}^X$ и распределен так же, как (X_{t1},\ldots,X_{tm}) .

$$A \cap \left\{ \tau_n = \frac{k}{2^n} \right\} = \underbrace{\left(\underbrace{A}_{\in \mathscr{F}_{\tau}} \cap \left\{ \tau_n \le \frac{k}{2^n} \right\} \right)}_{\in \mathscr{F}_{k/2n}^X} \setminus \underbrace{\left(A \cap \left\{ \tau_n = \frac{k-1}{2^n} \right\} \right)}_{\mathscr{F}_{(k-1)/2n}^X} \in \mathscr{F}_{k/2n}^X$$

Продолжим:

$$\bigoplus_{k=1}^{\infty} \mathbb{E} f\left(X_{t1+k/2^n} - X_{k/2^n}, \dots, X_{tm+k/2^n} - X_{k/2^n}\right) \cdot \mathbb{E} \left[I_A \cdot I\left\{\tau_n = \frac{k}{2^n}\right\}\right] = \\
= \mathbb{E} f\left(X_{t1}, \dots, X_{tm}\right) \cdot \sum_{k=1}^{\infty} \mathbb{E} \left(I_A \cdot I\left\{\tau_n = \frac{k}{2^n}\right\}\right) = \mathbb{E} f\left(X_{t1}, \dots, X_{tm}\right) \cdot P(A).$$

- 1. \Rightarrow подставляем $A = \Omega$.
- 2. используем п. (1):

$$\mathbb{E}[f(Y_{t1}^n, \dots, Y_{tm}^n) \cdot I_A] = \mathbb{E}f(Y_{t1}^n, \dots, Y_{tm}^n) \cdot P(A)$$

Доказательство строго марковского свойства (часть 3):

В силу непрерывности справа траекторий X_t , вектор

$$(Y_{t1}^n,\ldots,Y_{tm}^n) \xrightarrow[n\to\infty]{\text{\tiny II.H.}} (Y_{t1},\ldots,Y_{tm})$$

По теореме о наследовании сходимости

$$f(Y_{t1}^n, \dots, Y_{tm}^n) \xrightarrow{\text{п.н.}} f(Y_{t1}, \dots, Y_{tm})$$

Функция f ограничена, по теореме Лебега

$$\mathbb{E}f\left(Y_{t1}^{n},\ldots,Y_{tm}^{n}\right)\xrightarrow{\Pi.H.}\mathbb{E}f\left(Y_{t1},\ldots,Y_{tm}\right)$$

$$\mathbb{E}\left(f\left(Y_{t1}^{n},\ldots,Y_{tm}^{n}\right)I_{A}\right)\xrightarrow{\text{n.H.}}\mathbb{E}\left(f\left(Y_{t1},\ldots,Y_{tm}\right)\cdot I_{A}\right)$$

Следовательно,

$$\mathbb{E}\left(f\left(Y_{t1},\ldots,Y_{tm}\right)I_{A}\right) = \lim_{n} \mathbb{E}\left(f\left(Y_{t1}^{n},\ldots,Y_{tm}^{n}\right)\cdot I_{A}\right) \stackrel{(*)}{=}$$
$$\lim_{n} \mathbb{E}f\left(Y_{t1}^{n},\ldots,Y_{tm}^{n}\right)\cdot P(A) = \mathbb{E}f\left(Y_{t1},\ldots,Y_{tm}\right)\cdot P(A) \Rightarrow$$

 $\Rightarrow Y_t$ независим с \mathscr{F}_{τ} . Также

$$\mathbb{E}f\left(Y_{t1},\ldots,Y_{tm}\right) = \lim_{n} \mathbb{E}f\left(Y_{t1}^{n},\ldots,Y_{tm}^{n}\right) \stackrel{(**)}{=} \mathbb{E}f\left(Y_{t1},\ldots,Y_{tm}\right)$$

- (*) воспользовались п. (2) из второй части доказательства.
- (**)воспользовались п. (1) из второй части доказательства. \blacksquare

Следствие.

Если $(W_t, t \ge 0)$ — винеровский процесс, то для $\forall \tau$ — момента остановки относительно \mathbb{F}^W , процесс $X_t = W_{t+\tau} - W_{\tau}$ является винеровским и не зависит от \mathscr{F}_{τ} .

14 Пункт 14

14.1 Закон 0 или 1 Колмогорова

Def. Пусть $(\Omega, \mathcal{F}, \mathcal{P})$ — вер. пр-во., $\{\xi_n, n \in \mathbb{N}\}$ — н.с.в. Положим $\mathscr{F}_{\geqslant n} = \sigma(\xi_k, k \geqslant n)$

Хвостовой σ -алгеброй называется $X=\bigcap\limits_{n=1}^{\infty}\mathscr{F}_{\geqslant n}$

Теорема (Закон 0 или 1 Колмогорова). $\forall A \in X$ верно, что $P(A) \in \{0,1\}$.

Доказательство: Пусть $\mathscr{A} = \sigma\left(\xi_n, \ n \in \mathbb{N}\right) = \mathscr{F}_{\geq 1}$, положим $\mathscr{F}_n = \sigma(\xi_1, \dots, \xi_n)$. Тогда $\mathscr{F}_{\geq k}$ независима с \mathscr{F}_n для $\forall k \geq n+1$. Тогда X независима с \mathscr{F}_n , это верно $\forall n \in \mathbb{N}$.

Пусть $\mathcal{E} = \bigcup_{n=1}^{\infty} \mathscr{F}_n$, тогда \mathcal{E} — алгебра, причем $\sigma(\mathcal{E}) = \mathscr{A}$. Тогда X независим как с \mathcal{E} , так и с \mathscr{A} . Но $X \subset \mathscr{A}$, откуда X независим сам с собой. Значит $\forall A \in X$ A независимо с самим собой. Откуда $P(A) \in \{0,1\}$.

14.2 Момент достижения уровня винеровским процессом

Def. Пусть $(W_t, t \ge 0)$ — винеровский процесс с непрерывными траекториями. Тогда для $\forall x \ne 0$:

$$\tau_x = \min\{t : W_t = x\} - \text{первый момент достижения уровня } x.$$

 ${f Лемма.}$ 1. au_x — момент остановки относительно ${\mathbb F}^W.$

Доказательство: считаем, что траектории W_t непрерывны. Без ограничения общности считаем, что x>0. Рассмотрим событие $\{\tau_x>t\}=\{\forall s\in[0,t],W_s\neq x\}=\{\forall s\in[0,t],W_s< x\}=\bigcup_{k=1}^{\infty}\{\forall s\in[0,t],W_s\leqslant x-\frac{1}{k}\}=|$ непрерывность траекторий $|=\bigcup_{k=1}^{\infty}\bigcap_{s\in[0,t]\cap\mathbb{Q}}\{W_s\leqslant x-\frac{1}{k}\}\in\mathbb{F}_t^W\Rightarrow\tau_x$ — марковский момент относительно \mathbb{F}^W .

Лемма. 2. Траектории W_t растут вверх неограниченно:

$$P\left(\overline{\lim_{n}}\frac{W_{n}}{\sqrt{n}} = +\infty\right) = 1$$

Доказательство: Пусть $\xi_n = W_n - W_{n-1}$, тогда $\xi_n -$ н.с.в. Рассмотрим их хвостовую сигма-алгебру X. Для C>0 введем

$$\left\{ \overline{\lim_{n \to \infty}} \frac{W_n}{\sqrt{n}} < C \right\} \in X$$

Проверим принадлежность X. Рассмотрим $\forall k \in \mathbb{N}$

$$\left\{ \overline{\lim_{n \to \infty}} \frac{W_n}{\sqrt{n}} < C \right\} = \left\{ \overline{\lim_{n \to \infty}} \frac{W_n - W_k}{\sqrt{n}} < C \right\} \in \mathscr{F}_{\geq k} = \sigma(\xi_{k+1}, \xi_{k+2}, \ldots)$$

Значит $\left\{\overline{\lim_{n\to\infty}}\frac{W_n}{\sqrt{n}} < C\right\} \in X$, откуда $P\left(\left\{\overline{\lim_{n\to\infty}}\frac{W_n}{\sqrt{n}} < C\right\}\right) \in \{0,1\}$ (по закону 0 или 1). Покажем, что 1 невозможна.

$$P\left(\left\{\overline{\lim_{n\to\infty}}\frac{W_n}{\sqrt{n}} < C\right\}\right) = P\left(\bigcup_{k=1}^{\infty}\bigcup_{n=1}^{\infty}\bigcap_{m>n}\left\{\frac{W_m}{\sqrt{m}} \le C - \frac{1}{k}\right\}\right) \Longrightarrow$$

$$P\left(\bigcup_{n=1}^{\infty}\bigcap_{m\geq n}\left\{\frac{W_m}{\sqrt{m}}\leq C-\frac{1}{k}\right\}\right)=\lim_{n\to\infty}P\left(\bigcap_{m\geq n}\left\{\frac{W_m}{\sqrt{m}}\leq C-\frac{1}{k}\right\}\right)\leq C$$

$$\leq \lim_{n \to \infty} P\left(\frac{W_n}{\sqrt{n}} \leq C - \frac{1}{k}\right) = \Phi\left(C - \frac{1}{k}\right) \leq \Phi(C)$$

$$\implies \lim_{k \to \infty} P\left(\bigcup_{n=1}^{\infty} \bigcap_{m \geq n} \left\{\frac{W_m}{\sqrt{m}} \leq C - \frac{1}{k}\right\}\right) \leq \Phi(C) < 1$$

Откуда единица недостижима, а значит вероятность нулевая.

Из леммы 2 следует, что уровень x будет превзойден п.н. Значит, п.н. найдется такое t, что $W_t = x$, т.е. $\tau_x < +\infty$

15 Пункт 15

15.1 Принцип отражения

Теорема (Принцип отражения).

Пусть $(W_t,\ t\geq 0)$ — винеровский, au — момент остановки относительно \mathbb{F}^W . Тогда процесс

$$Z_t = egin{cases} W_t, & t \leq \tau \\ 2W_{ au} - W_t, & t > \tau \end{cases}$$
 является винеровским

Доказательство: Рассмотрим процесс $B_t = W_{t+\tau} - W_{\tau}$ — винеровский по строго марковскому свойству, который не зависит от \mathscr{F}_{τ} . Тогда (B, τ, W^{τ}) совпадает по распределению с $(-B, \tau, W^{\tau})$, где $W^{\tau} = (W_{\min\{t,\tau\}}, t \geq 0)$. Заметим, что

$$Z_t = W_{\min\{t,\tau\}} - B_{\max\{(t-\tau),0\}}$$
$$W_t = W_{\min\{t,\tau\}} + B_{\max\{(t-\tau),0\}}$$

 Z_t и W_t — одинаковые функции от одинаково распределенных троек выше. Получаем, что Z и W одинаково распределены. Осталось проверить измеримость отображений из тройки (B, τ, W^{τ}) в $W_{\min\{t,\tau\}} - B_{\max\{(t-\tau),0\}}$ (проверяется как в доказательстве строго марковского свойства).

Таким образом, к τ_x можно применять как строго марковское свойство, так и принцип отражения. То есть в винеровском процессе можно сдвигать кооординаты не только по времени в марковских моментах, но и по времени первого достижения уровня.

15.2 Совместное распределение максимума и правого конца

Def.
$$M_t = \max_{s \in [0,t]} W_s$$
.

Заметим, что $\{M_t \ge x\} = \{\tau_x \le t\}$, откуда M_t — процесс, согласованный с \mathbb{F}^W .

Теорема (совместное распределение W_t и M_t).

Пусть $x, y \ge 0, t > 0$, тогда $P(W_t < y - x, M_t \ge y) = P(W_t > x + y)$

Доказательство: Если y=0, то $P(W_t<-x)=P(W_t>x)$ — верно в силу симметрии распределения W_t . Если y>0, то рассмотрим $\tau_y=\min\{t: W_t=y\}$ и отраженный процесс Z_t . Тогда

$$P(W_t < y - x, \ M_t \ge y) = P(W_t < y - x, \ \tau_y \le t) = P(2W_{\tau_y} - Z_t < y - x, \ \tau_y \le t) =$$

$$= P(Z_t > y + x, \ \tau_y \le t) = P(Z_t > y + x) = \{\text{принцип отражения}\} = P(W_t > y + x)$$

15.3 Теорема Башелье

Теорема (Башелье).

 M_t равно по распределению $|W_t|$.

Доказательство: Для y > 0 рассмотрим

$$P(M_t \ge y) = P(M_t \ge y, \ W_t < y) + P(M_t \ge y, \ W_t \ge y) = \{$$
первая вер-ть — теорема выше с $x = 0\} = P(W_t > y) + P(M_t \ge y, \ W_t \ge y) = P(W_t > y) + P(W_t \ge y) = 2P(W_t \ge y) = P(|W_t| \ge y)$

16 Пункт 16

16.1 Мартингалы

Пусть $T \subseteq \mathbb{R}$

Def. Случайный процесс $(X_t, t \in T)$ называется мартингалом относительно фильтрации $\mathbb{F} = (\mathcal{F}_t, t \in T)$ если

- 1. X_t согласован с \mathbb{F}
- 2. X_t это L^1 -процесс, то есть $E|X_t|<+\infty$
- 3. $\mathbb{E}(X_t|\mathcal{F}_s) = X_s$ для $\forall t \geqslant s, \ s,t \in T$

Def. Если в свойстве 3) условие $\mathbb{E}(X_t|\mathcal{F}_s) = X_s$ заменить на $\mathbb{E}(X_t|\mathcal{F}_s) \geqslant X_s$, то процесс X_t называется субмартингалом относительно \mathbb{F}^X . Если $\mathbb{E}(X_t|\mathcal{F}_s) \leqslant X_s$, то X_t называется супермартингалом относительно \mathbb{F}

Note. Если X_t — мартингал (суб, супер) относительно своей естественной фильтрации \mathbb{F}^X , то будем называть X_t просто мартингалом

16.2 Критерий мартингальности для процессов с незав. приращ.

Лемма. (критерий мартингальности для процессов с независимыми приращениями)

Пусть $(X_t, t \in T) - L^1$ -процесс с независимыми приращениями, тогда X_t это (суб, супер) мартингал $\Leftrightarrow EX_t = a = const \ \forall t \in T \ (EX_t$ не убывает для субмартингалов, EX_t не возрастает для супермартингалов)

Доказательство: Заметим, что $X_t - X_s$ не зависит от \mathcal{F}_s , тогда

$$\mathbb{E}(X_t|\mathcal{F}_s) = \mathbb{E}(X_t - X_s|\mathcal{F}_s) + \mathbb{E}(X_s|\mathcal{F}_s) = \mathbb{E}(X_t - X_s) + X_s$$

Откуда верно, что условие три для определения мартингала верно тогда и только тогда, когда верно условие теоремы.

Примеры.

- 1. Винеровский процесс мартингал.
- 2. Пуассоновский процесс субмартингал.
- 3. Случайное блуждание мартингал тогда и только тогда, когда $\forall n \ \mathbb{E}\xi_n = 0$ (тут случайное блуждание сумма независимых, но необязательно одинаково распределенных случайных величин).
- 4. Пусть ξ_n независимые неотрицательные случайные величины, $\forall n \mathbb{E} \xi_n > 0$ (заметим, что случай, когда все ξ_i равны нулю почти наверное нам не подходит). Тогда пусть $\Pi_n = \prod_{i=1}^n \xi_i$, $\Pi_0 = 0$. Откуда Π_n мартингал относительно $(\sigma(\xi_1, \dots, \xi_n))$ тогда и только тогда, когда $\mathbb{E} \xi_n = 1$.
- 5. Пусть ξ случайная величина и $\mathbb{E}|\xi| < \infty$. Пусть $\mathbb{F} = (\mathcal{F}_t, t \in T)$). Тогда $X_t = \mathbb{E}(\xi|\mathcal{F}_t)$ мартингал относительно \mathbb{F} мартингалы Леви.

Доказательство: Пусть t > s, тогда по телескопическому свойству УМО

$$\mathbb{E}(X_t|\mathcal{F}_s) = \mathbb{E}(\mathbb{E}(\xi|\mathcal{F}_t)|\mathcal{F}_s) = \mathbb{E}(\xi|\mathcal{F}_s) = X_s$$

6. Пусть $(X_t, t \in T)$ — мартингал относительно \mathbb{F} , h(x) — выпуклая книзу функция. Тогда $Y_t = h(X_t)$ — субмартингал относительно \mathbb{F} .

Доказательство: Воспользуемся неравенством Йенсена при условии, что t>s:

$$\mathbb{E}(Y_t|\mathcal{F}_s) = \mathbb{E}(h(X_t)|\mathcal{F}_s) \ge h(\mathbb{E}(X_t|\mathcal{F}_s)) = h(X_s) = Y_s$$

Следствие. $(W_t)^2$, e^{W_t} — субмартингалы.

16.3 Разложение Дуба для дискретного времени

Def. Процесс $(X_n, n \in \mathbb{N})$ предсказуемый относительно $\mathbb{F} = (\mathcal{F}_n, n \in \mathbb{Z}_+)$, если $\forall n \ X_n$ измерим относительно \mathcal{F}_{n-1} .

Теорема (разложение Дуба-Мейера).

Пусть $(X_n, n \in \mathbb{Z}_+)$ — L^1 -процесс, согласованный с фильтрацией $\mathbb{F} = (\mathcal{F}_n, n \in \mathbb{Z}_+)$. Тогда существует единственное (с точностью до равенства почти наверное) разложение следующего вда: $X_n = M_n + A_n$, где $(M_n, n \in \mathbb{Z}_+)$ — мартингал относительно \mathbb{F} , а $(A_n, n \in \mathbb{N})$ — предсказуемый процесс относительно \mathbb{F} и $A_0 = 0$ почти наверное.

Доказательство: Допустим, что разложение существует, и докажем его единственность. То есть $X_n = M_n + A_n$, тогда

$$A_n - A_{n-1} = \{\text{предсказуемость}\} = \mathbb{E}(A_n - A_{n-1}|\mathcal{F}_{n-1}) =$$

$$= \mathbb{E}(X_n - M_n - (X_{n-1} - M_{n-1})|\mathcal{F}_{n-1}) = \mathbb{E}(X_n - X_{n-1}|\mathcal{F}_{n-1}) - \mathbb{E}(M_n - M_{n-1}|\mathcal{F}_{n-1}) = \mathbb{E}(X_n - X_{n-1}|\mathcal{F}_{n-1})$$

Отсюда в силу условия $A_0 = 0$ почти наверное получаем, что

$$A_n = \sum_{k=1}^n \mathbb{E}(X_k - X_{k-1} | \mathcal{F}_{k-1}), \tag{16.1}$$

откуда A_n однозначно определен, а отсюда вытекает единственность разложения.

Теперь докажем существование разложения. Для этого определим A_n по формуле 16.1 и заметим, что такой процесс является предсказуемым. Осталось проверить мартингальность $M_n = X_n - A_n$ относительно \mathbb{F} .

$$\mathbb{E}(M_n|\mathcal{F}_{n-1}) = \mathbb{E}(X_n - A_n|\mathcal{F}_{n-1}) = \mathbb{E}(X_n|\mathcal{F}_{n-1}) - A_n = \{\text{по формуле 16.1}\} =$$

$$= \mathbb{E}(X_n|\mathcal{F}_{n-1}) - A_{n-1} - \mathbb{E}(X_n - X_{n-1}|\mathcal{F}_{n-1}) = \mathbb{E}(X_{n-1}|\mathcal{F}_{n-1}) - A_{n-1} = \{\text{согласованность}\} =$$

$$= X_{n-1} - A_{n-1} = M_{n-1}$$

Следствие. X_n — субмартингал \iff $(A_n, n \in \mathbb{N})$ в его разложении Дуба-Мейера является неубывающей.

17 Пункт 17

17.1 Теорема об остановке

Теорема (об остановке).

Пусть $(X_n, n \in \mathbb{Z}_+)$ — L^1 -процесс, согласованный с фильтрацией $\mathbb{F} = (\mathcal{F}_n, n \in \mathbb{Z}_+)$, тогда X_n — мартингал (субмартингал) \iff для любых τ, σ — ограниченных марковских моментов относительно \mathbb{F} с условием, что $\tau \leq \sigma$ п. н. выполнено

$$\mathbb{E} X_{ au} = \mathbb{E} X_{\sigma}$$
 в случае субмартингальности \leq

Доказательство:

 \Longrightarrow пусть τ, σ — ограниченные марковские моменты и $\tau \leq \sigma \leq m$ почти наверное, тогда $\mathbb{E}|X_{\sigma}| \leq \sum_{i=1}^{m} \mathbb{E}|X_{i}| < \infty$, то есть $\mathbb{E}X_{\tau}$ и $\mathbb{E}X_{\sigma}$ конечны.

Пусть l < m, рассмотрим

$$\mathbb{E}(X_{\tau} \cdot I \, \{\tau = l\}) = \mathbb{E}(X_{l} \cdot I \, \{\tau = l, \sigma \geq l\}) = \mathbb{E}(X_{l} \cdot I \, \{\tau = l, \sigma = l\}) + \mathbb{E}(X_{l} \cdot I \, \{\tau = l, \sigma > l\}) =$$

$$= \left\{ \, \sigma, \tau - \text{марк. м-ты, } \, \{\tau = l, \sigma > l\} \in \mathcal{F}_{l} \text{ и } \mathbb{E}(X_{l+1}|X_{l}) = X_{l}, \text{ по инт. св-ву УМО} \, \right\} =$$

$$= \mathbb{E}(X_{l} \cdot I \, \{\tau = l, \sigma = l\}) + \mathbb{E}(X_{l+1} \cdot I \, \{\tau = l, \sigma > l\}) =$$

$$= \sum_{k=l}^{l+1} \mathbb{E}(X_{k} \cdot I \, \{\tau = l, \sigma = k\}) + \mathbb{E}(X_{l+1} \cdot I \, \{\tau = l, \sigma > l + 1\}) = \dots =$$

$$= \sum_{k=l}^{m} \mathbb{E}(X_{k} \cdot I \, \{\tau = l, \sigma = k\}) + \mathbb{E}(X_{m+1} \cdot I \, \{\tau = l, \sigma > m\}) = \{\sigma \leq m\} =$$

$$= \sum_{k=l}^{m} \mathbb{E}(X_{k} \cdot I \, \{\tau = l, \sigma = k\}) = \sum_{k=l}^{m} \mathbb{E}(X_{\sigma} \cdot I \, \{\tau = l, \sigma = k\}) =$$

$$= \mathbb{E}(X_{\sigma} \cdot I \, \{\tau = l, \sigma > l\}) = \mathbb{E}(X_{\sigma} \cdot I \, \{\tau = l\}) =$$

$$= \mathbb{E}(X_{\sigma} \cdot I \, \{\tau = l, \sigma > l\}) = \mathbb{E}(X_{\sigma} \cdot I \, \{\tau = l\})$$

Суммируя по всем l от 0 до m, получаем, что $\mathbb{E}X_{\sigma} = \mathbb{E}X_{\tau}$.

Заметим, что в случае субмартингальности в третьем переходе и до конца меняем знаки с равенства на соответствующее неравенство.

 \longleftarrow Пусть k < n, возьмем $A \in \mathcal{F}_k$, рассмотрим

$$\tau_A(\omega) = \begin{cases} k, & \omega \in A \\ n, & \omega \notin A \end{cases}$$

Заметим, что $\tau_A \leq n = \sigma_A$ и τ_A — марковский момент относительно \mathbb{F} .

$$\{ au_A \leq t\} = egin{cases} arnothing, & t < k ext{ что лежит в } \mathcal{F}_t \ \Omega, & t \geq n ext{ что лежит в } \mathcal{F}_t \ A, & k \leq t < n ext{ что лежит в } \mathcal{F}_k \subset \mathcal{F}_t \end{cases}$$

Откуда во всех случаях $\{\tau_A \leq t\} \in \mathcal{F}_t$. По условию $\mathbb{E}X_{\tau_A} = \mathbb{E}X_{\sigma} = \mathbb{E}X_n$ (в случае субмартингальности не больше). Разложим

$$\mathbb{E}X_{\tau_A} = \mathbb{E}(X_k \cdot I_A) + \mathbb{E}(X_n \cdot I_{\overline{A}}) = \mathbb{E}(X_n \cdot I_A) + \mathbb{E}(X_n \cdot I_{\overline{A}}) \Longrightarrow \forall A \in \mathcal{F}_k \ \mathbb{E}(X_k \cdot I_A) = \mathbb{E}(X_n \cdot I_A)$$

Учитывая, что X_k является \mathcal{F}_k -измеримой величиной получаем, что $\mathbb{E}(X_n|\mathcal{F}_k) = X_k$ (в случае субмартингальности не больше).

17.2 Следствие из теоремы об остановке

Следствие. Пусть $(X_n, n \in \mathbb{Z}_+)$ — мартигнал относительно $\mathbb{F} = (\mathscr{F}_n, n \in \mathbb{Z}_+)$. Пусть τ — момент остановки относительно \mathbb{F} , причем $\exists C > 0$, т.ч. $\forall n \in Z_+$

$$|X_{\min(\tau,n)}| \le C$$

Тогда

$$\mathbb{E}X_{\tau} = \mathbb{E}X_{0}$$
.

Доказательство:

Рассмотрим $\tau_n = \min(\tau, n)$ — ограниченный марковский момент относительно \mathbb{F} . Тогда по теореме об остановке $\mathbb{E}X_{\tau_n} = \mathbb{E}X_0$.

Заметим, что $X_{\tau_n} \xrightarrow{n} X_{\tau}, |X_{\tau_n}| \leq C \Rightarrow$ по теореме Лебега $\mathbb{E}X_{\tau_n} \to \mathbb{E}X_{\tau}$. Но $\forall n \ \mathbb{E}X_{\tau_n} = \mathbb{E}X_0$ Следовательно, $\mathbb{E}X_{\tau} = \mathbb{E}X_0$.

18 Пункт 18

18.1 Задача о разорении игрока

Игрок играет в казино.

- начальные деньги: $x \in \mathbb{Z}$ (каждая ставка 1 ед. денег);
- вероятность выигрыша: p, проигрыша 1 p;
- цель: набрать b > x денег;
- проигрыш: деньги равны a < x;
- вопрос: какова вероятность проигрыша?

Наблюдаем блуждание на прямой:

Формально: $\{\xi_n, n \in \mathbb{N}\}$ — н.о.р.с.в., $P(\xi_n = 1) = p$, $P(\xi_n = -1) = 1 - p = q$.

$$S_n = x + \xi_1 + \ldots + \xi_n, \quad S_0 = x$$

 $\tau = \min\{n : S_n \in \{a, b\}\} - \text{окончание игры.}$

Вопрос: $P(S_{\tau} = a) = ?$ (вероятность проигрыша)

Наблюдение. au — марковский момент относительно \mathbb{F}^S .

Утверждение. au — момент остановки относительно \mathbb{F}^S .

Доказательство:

$$P(\tau = +\infty) = P(\forall n : a < S_n < b) = \lim_{k \to \infty} P(\forall n \le k \cdot (b-a), \ a < S_n < b) \le$$

Рассмотрим значения ξ блоками размера a:

$$|\xi_1,\ldots,\xi_{b-a}|$$
 $|\xi_{b-a+1},\ldots,\xi_{2(b-a)}|$ \ldots

 $S_n \in (a,b) \Rightarrow$ блок не состоит из только 1 или только -1 (т.к. иначе вышли бы за границу).

$$\underbrace{\left\{ \sum_{k \to \infty} P\left(\left(\xi_1, \dots, \xi_{(b-a)} \right), \dots, \left(\xi_{(k-1)(b-a)+1}, \dots, \xi_{k(b-a)} \right) \neq (1, \dots, 1), (-1, \dots, -1) \right)}_{k \to \infty} = \lim_{k \to \infty} \underbrace{\left(\underbrace{1 - p^{b-a} - q^{b-a}}_{1} \right)^k}_{1}$$

Теперь рассмотрим два случая: симметричный и несимметричный.

1. $p=q=\frac{1}{2}$. Здесь S_n — мартингал. Заметим, что $|S_{\min(\tau,n)}| \leq \max(|a|,|b|)$, откуда, по следствию из теоремы об остановке, $\mathbb{E}S_{\tau}=\mathbb{E}S_0=x$, но $S_{\tau}\in\{a,b\}$, следовательно

$$\mathbb{E}S_{\tau} = a \cdot P(S_{\tau} = a) + b \cdot P(S_{\tau} = b).$$

Так как $P(S_{\tau} = a) + P(S_{\tau} = b) = 1$, откуда $P(S_{\tau} = a) = \frac{b-x}{b-a}$.

2. $p \neq q$. Тут нужен другой мартингал, что неприятно. Заметим, что $X_n = \left(\frac{q}{p}\right)^{S_n}$ — мартингал относительно \mathbb{F}^S , то есть

$$\left(\frac{q}{p}\right)^{S_n} = \left(\frac{q}{p}\right)^x \cdot \prod_{j=1}^n \left(\frac{q}{p}\right)^{\xi_j} \iff \mathbb{E}\left(\frac{q}{p}\right)^{\xi_j} = 1$$

Проверим, что матожидание равно единице:

$$\mathbb{E}\left(\frac{q}{p}\right)^{\xi_j} = \frac{q}{p} \cdot p + \left(\frac{q}{p}\right)^{-1} \cdot q = 1$$

Значит X_n — мартингал. S_n ограничен до τ , а значит и $\forall n \ |X_{\min(\tau,n)}| \leq \max\left(\left(\frac{q}{p}\right)^a, \left(\frac{q}{p}\right)^b\right)$, откуда, по следствию из теоремы об остановке, $\mathbb{E}X_{\tau} = \mathbb{E}X_0 = \left(\frac{q}{p}\right)^x$, но

$$\mathbb{E}X_{\tau} = \left(\frac{q}{p}\right)^{a} \cdot P(S_{\tau} = a) + \left(\frac{q}{p}\right)^{b} \cdot P(S_{\tau} = b)$$

Откуда
$$P(S_{\tau} = a) = \frac{\left(\frac{q}{p}\right)^b - \left(\frac{q}{p}\right)^x}{\left(\frac{q}{p}\right)^b - \left(\frac{q}{p}\right)^a}$$

19 Пункт 19

19.1 Опциональный момент

Def. Пусть $\mathbb{F} = (\mathcal{F}_t, t \geq 0)$ — фильтрация на $(\Omega, \mathcal{F}, \mathcal{P})$. Отображение $\tau : \Omega \to [0, \infty]$ называется опциональным моментом относительно \mathcal{F} , если $\forall t \geq 0 \ \{\tau < t\} \in \mathcal{F}_t$.

 ${f Y}$ тверждение. au — марковский $\Longrightarrow au$ — опциональный.

Доказательство: $\{\tau < t\} = \bigcup_{k=1}^{\infty} \{\tau \le t - \frac{1}{k}\} \in \mathcal{F}_t$.

Пример: Пусть G — открытое множество, $(X_t, t \ge 0)$ — процесс с непрерывными справа траекториями. Тогда $\tau_G = \inf\{t \mid X_t \in G\}$ — опциональный момент относительно \mathbb{F}^X .

Доказательство:

$$\{\tau_G \geq t\} = \{\forall s < t \ X_s \not\in G\} = \{\text{траектории непрерывны справа и } G \text{ открыто}\} =$$

$$= \{\forall s < t, s \in \mathbb{Q} \ \underbrace{X_s \not\in G}_{\in \mathcal{F}_s^X \subset \mathcal{F}_t^X}\} \Longrightarrow \{\tau_G \geq t\} \in \mathcal{F}_t^X$$

Теорема (об остановке для непрерывного времени) (б/д).

Пусть $(X_t, t \ge 0)$ — мартингал относительно $\mathbb{F} = (\mathcal{F}_t, t \ge 0)$, имеющий непрерывные справа траектории. Пусть τ — ограниченный опциональный момент относительно \mathbb{F} . Тогда $\mathbb{E} X_\tau = \mathbb{E} X_0$.

19.2 Модель Крамера-Лундберга

Пусть $X_t = y_0 + c \cdot t - \sum_{k=1}^{N_t} \eta_k$, η_k — н.о.р.с.в. неотрицательные и независимые с пуассоновским процессом N_t интенсивности λ .

Разорение $X_t < 0$.

Предположения.

- 1. $\forall v > 0 \ \psi(v) = \mathbb{E}e^{v\eta_t} < \infty$ хвосты легкие
- 2. Пусть $\mathbb{E}\eta_1 = a$ и $c \lambda a > 0$

Лемма. Процесс X_t имеет независимые приращения.

Доказательство: Достаточно доказать, что процесс $Z_t = \sum_{k=1}^{N_t} \eta_k$ имеет независимые приращения.

Пусть $0 < t_1 < \ldots < t_n, n \in \mathbb{N}$ фиксированы.

Рассмотрим совместную характеристическую функцию вектора $(Z_{t_1}, Z_{t_2} - Z_{t_1}, \dots, Z_{t_n} - Z_{t_{n-1}})$: $|t_0 = 0, Z_0 = 0|$

$$\begin{split} \varphi_{Z_{t_1},Z_{t_2}-Z_{t_1},\dots,Z_{t_n}-Z_{t_{n-1}}}(\lambda_1,\dots,\lambda_n) &= \mathbb{E}^{i\sum\limits_{j=1}^n \left(Z_{t_j}-Z_{t_{j-1}}\right)\lambda_j} = \\ &= \mathbb{E}\left(\mathbb{E}\left(e^{i\sum\limits_{j=1}^n \lambda_j \left(Z_{t_j}-Z_{t_{j-1}}\right)} \middle| N_{t_n} = k_n,\dots,N_{t_1} = k_1\right)\right) & \\ &\mathbb{E}\left(e^{i\sum\limits_{j=1}^n \lambda_j \left(Z_{t_j}-Z_{t_{j-1}}\right)} \middle| N_{t_n} = k_n,\dots,N_{t_1} = k_1\right) = \\ &= \mathbb{E}\left(e^{i\sum\limits_{j=1}^n \lambda_j \cdot \left(\sum\limits_{k=k_{j-1}+1}^{k_j} \eta_k\right)} \middle| N_{t_n} = k_n,\dots,N_{t_1} = k_1\right) = \{\eta_k \text{ независимы c } N_t\} = \\ &= \mathbb{E}\left(e^{i\sum\limits_{j=1}^n \lambda_j \cdot \left(\sum\limits_{k=k_{j-1}+1}^{k_j} \eta_k\right)} \middle| N_{t_n} = k_n,\dots,N_{t_1} = k_1\right) = \prod_{j=1}^n \varphi_{\eta_1}\left(\lambda_j\right)^{k_j-k_{j-1}} \\ & \\ &= \mathbb{E}\left(e^{i\sum\limits_{j=1}^n \lambda_j \cdot \left(\sum\limits_{k=k_{j-1}+1}^{k_j} \eta_k\right)} \middle| N_{t_n} = k_n,\dots,N_{t_1} = k_1\right) = \prod_{j=1}^n \varphi_{\eta_1}\left(\lambda_j\right)^{k_j-k_{j-1}} \\ & \\ &= \mathbb{E}\left(e^{i\sum\limits_{j=1}^n \lambda_j \cdot \left(\sum\limits_{k=k_{j-1}+1}^{k_j} \eta_k\right)} \middle| N_{t_n} = k_n,\dots,N_{t_1} = k_1\right) = \prod_{j=1}^n \varphi_{\eta_1}\left(\lambda_j\right)^{k_j-k_{j-1}} \\ &= \mathbb{E}\left(e^{i\sum\limits_{j=1}^n \lambda_j \cdot \left(\sum\limits_{k=k_{j-1}+1}^{k_j} \eta_k\right)} \middle| N_{t_n} = k_n,\dots,N_{t_1} = k_1\right) = \prod_{j=1}^n \varphi_{\eta_1}\left(\lambda_j\right)^{k_j-k_{j-1}} \\ &= \mathbb{E}\left(e^{i\sum\limits_{j=1}^n \lambda_j \cdot \left(\sum\limits_{k=k_{j-1}+1}^{k_j} \eta_k\right)} \middle| N_{t_n} = k_n,\dots,N_{t_1} = k_1\right) = \prod_{j=1}^n \varphi_{\eta_1}\left(\lambda_j\right)^{k_j-k_{j-1}} \\ &= \mathbb{E}\left(e^{i\sum\limits_{k=k_{j-1}+1}^n \eta_k}\right) = \prod_{j=1}^n \varphi_{\eta_1}\left(\lambda_j\right)^{k_j-k_{j-1}} \\ &= \mathbb{E}\left(e^{i\sum\limits_{k=k_{j-1}+1}^n \eta_k}\right) = \prod_{j=1}^n \varphi_{\eta_1}\left(\lambda_j\right)^{k_j-k_{j-1}} = \left\{\text{независимость приращений } N_t\right\} = \prod_{j=1}^n \mathbb{E}\varphi_{\eta_1}\left(\lambda_j\right)^{k_j-k_{j-1}} \\ &= \mathbb{E}\left(e^{i\sum\limits_{k=k_{j-1}+1}^n \eta_k}\right) = \prod_{j=1}^n \varphi_{\eta_1}\left(\lambda_j\right)^{k_j-k_{j-1}} = \left\{\text{независимость приращений } N_t\right\} = \prod_{j=1}^n \mathbb{E}\varphi_{\eta_1}\left(\lambda_j\right)^{k_j-k_{j-1}} = \prod_{j=1}^n \varphi_{Z_{t_j}-Z_{t_{j-1}}}\left(\lambda_j\right)^{k_j-k_{j-1}} \right\}$$

Лемма. $\mathbb{E}e^{-v(X_t-X_s)}=e^{(t-s)g(v)},$ где $g(v)=\lambda(\psi(v)-1)-vc,$ $t\geq s,$ v>0

Доказательство:

$$\mathbb{E}\left(e^{-v(X_t - X_s)}|N_t = m, N_s = k\right) = \mathbb{E}\left(e^{-vc(t-s) + v \cdot \sum\limits_{j=N_s+1}^{N_t} \eta_j}|N_t = m, N_s = k\right) =$$

$$= e^{-vc(t-s)} \cdot \mathbb{E}\left(e^{v \cdot \sum\limits_{j=k+1}^{m} \eta_j}|N_t = m, N_s = k\right) = e^{-vc(t-s)} \cdot \prod_{j=k+1}^{m} \mathbb{E}e^{v\eta_j} = e^{-vc(t-s)} \cdot (\psi(v))^{m-k} \Longrightarrow$$

$$\Longrightarrow \mathbb{E}\left(\mathbb{E}\left(e^{-vc(t-s)}|N_t, N_s\right)\right) = e^{-vc(t-s)}\mathbb{E}\left(\psi(v)\right)^{N_t - N_s} = e^{-vc(t-s)} \cdot \sum\limits_{k=0}^{\infty} (\psi(v))^k \cdot \frac{(\lambda(t-s))^k}{k!} e^{-\lambda(t-s)} =$$

$$= e^{-\lambda(t-s)(\psi(v)-1) - vc(t-s)} = e^{(t-s)g(v)}$$

Лемма. $Y_t = e^{-vX_t - tg(v)}$ — мартингал относительно \mathbb{F}^X .

Доказательство: Пусть t > s, рассмотрим

$$\mathbb{E}(Y_t|\mathcal{F}_s^X) = \mathbb{E}\left(e^{-v(X_t - X_s) - vX_s - tg(v)}|\mathcal{F}_s^X\right) = \{\text{лемма } 1\} = e^{-vX_s - tg(v)} \cdot \mathbb{E}e^{-v(X_t - X_s)} = \{\text{лемма } 2\} = e^{-vX_s - sg(v)}$$

Рассмотрим $\tau = \inf\{t \mid X_t < 0\}$ — момент разорения. Процесс имеет непрерывные справа траектории, значит τ — опциональный момент относительно \mathbb{F}^X , причем $X_\tau \leq 0$. Тогда по теореме об остановке:

$$\begin{split} \mathbb{E}Y_0 &= e^{-vy_0} = \mathbb{E}Y_{\min(\tau,t)} \geq \mathbb{E}(Y_{\min(\tau,t)} \cdot I\tau \leq t) = \mathbb{E}(Y_\tau \cdot I\{\tau \leq t\}) = \mathbb{E}\left(e^{-vX_\tau - \tau g(v)} \cdot I\left\{\tau \leq t\right\}\right) \geq \\ &\geq \mathbb{E}\left(e^{-\tau g(v)} \cdot I\left\{\tau \leq t\right\}\right) \geq \min\left\{e^{-sg(v)}|s \in [0,t]\right\} \cdot P(\tau \leq t) \Longrightarrow \\ &\Longrightarrow P(\tau \leq t) \leq e^{-vy_0} \cdot \max\left\{e^{sg(v)}|s \in [0,t]\right\} = \{\text{подберем } v \text{ так, чтобы } g(v) = 0\} = e^{-vy_0} \end{split}$$

- 1. Если g(v) > 0, то $\max_{0 \le s \le t} e^{g(v)s} = e^{g(v)t} \xrightarrow[t \to +\infty]{} +\infty$;
- 2. Если $g(v) \le 0$, то $\max_{0 \le s \le t} e^{g(v)s} = 1$;

Тогда

$$P(\tau \le t) \le e^{-y_0 v} \xrightarrow[t \to +\infty]{} P(\tau < +\infty) \le e^{-y_0 v}.$$

Вывод: надо взять наибольшее v, т.ч. $g(v) \le 0$.

Изучим функцию $g(v) = \lambda(\psi(v) - 1) - vc, t \ge s, v > 0.$

- 1. q(0) = 0;
- 2. $g'(v) = \lambda \mathbb{E} \eta_1 e^{v\eta_1} c$ возрастает,

$$g'(0) = \lambda a - c < 0;$$

- 3. $g''(0) = \lambda \mathbb{E} (\eta_1^2 e^{v\eta_1}) > 0$ возрастающая функция;
- 4. g(v) растет неограниченно вместе со своими производными.

Теорема (о вероятности разорения в модели Крамера-Лундберга).

Пусть $c-\lambda a>0, \psi(v)=\mathbb{E}e^{v\eta_1}$ конечно для $\forall v>0, g(v)=\lambda(\psi(v)-1)-vc, v_0$ — единственный корень уравнения g(v) = 0 из $(0, +\infty)$. Тогда

$$P(\tau < +\infty) \le e^{-y_0 v_0},$$

где $\tau = \inf\{t : X_t < 0\}$ — момент разорения.

Π ункт 2020

20.1 Марковские цепи с дискретным временем

Пусть \mathcal{X} — не более чем счетное.

Def. Процесс $(X_n, n \in \mathbb{Z}_+)$ со значениями в \mathcal{X} называется марковской цепью (цепью Маркова), если выполняется марковское свойство: $\forall n \ \forall m < n-1 \ \forall 0 \le k_1 < k_2 < \ldots < k_m < k < n \ \forall a_1, \ldots, a_m \in \mathcal{X}$ выполнено

$$P(X_n = j \mid X_k = i, X_{k_m} = a_m, \dots, X_{k_1} = a_1) = P(X_n = j \mid X_k = i)$$

всегда, если вероятность $P(X_k=i,X_{k_m}=a_m,\ldots,X_{k_1}=a_1)>0$

Пример немарковской цепи

Пусть $(S_n, n \in \mathbb{Z}_+)$ — простейшее случайное блуждание. $X_n = sgn(S_n)$. Рассмотрим вероятности

$$\frac{1}{2} = P(X_n = 1 | X_{n-1} = 1, X_{n-2} = 0, X_{n-3} = -1) \neq$$

$$\neq P(X_n = 1 | X_{n-1} = 1, X_{n-2} = 1, X_{n-3} = 1, X_{n-4} = 0) = \frac{3}{4}$$

20.2 Независимость будущего и прошлого

Теорема (о независимости будущего и прошлого).

Пусть $(X_n, n \in \mathbb{Z}_+)$ — марковская цепь. Обозначим

$$A = \{X_n = a_n, \dots, X_{k+1} = a_{k+1}\}$$

$$B = \{X_k = a_k\}$$

$$C = \{X_{k-1} = a_{k-1}, \dots, X_0 = a_0\}$$

Тогда $P(A \cap C|B) = P(A|B)P(C|B)$.

Доказательство: Если $P(B \cap C) = 0$, то все очевидно. Пусть $P(A \cap B \cap C) > 0$, тогда P(A|BC) = P(A|B).

$$P(A \cap B \cap C) = P(X_n = a_n, \dots, X_0 = a_0) =$$

$$= P(X_n = a_n | X_{n-1} = a_{n-1} \dots, X_0 = a_0) \cdot$$

$$\cdot P(X_{n-1} = a_{n-1} | X_{n-2} = a_{n-2} \dots, X_0 = a_0) \cdot$$

$$\cdots$$

$$\cdot P(X_{k+1} = a_{k+1} | X_k = a_k \dots, X_0 = a_0) \cdot P(B \cap C)$$

Но по марковскому свйству получаем, что

$$P(A \cap B \cap C) = P(X_n = a_n, \dots, X_0 = a_0) =$$

$$= P(X_n = a_n | X_{n-1} = a_{n-1}) \cdot$$

$$\cdot P(X_{n-1} = a_{n-1} | X_{n-2} = a_{n-2}) \cdot$$

$$\cdot \cdot$$

$$\cdot P(X_{k+1} = a_{k+1} | X_k = a_k) \cdot P(B \cap C) = \prod_{j=k+1}^n P(X_j = a_j | X_{j-1} = a_{j-1}) \cdot P(B \cap C)$$

Аналогично $P(A \cap B) = \prod_{j=k+1}^n P(X_j = a_j | X_{j-1} = a_{j-1}) \cdot P(B)$. Отсюда получаем, что $P(A \cap B \cap C) = P(A|B) \cdot P(B \cap C)$, делим на P(B) и получаем искомое.

20.3 Уравнения Колмогорова-Чепмена

Def. Множество значений \mathcal{X} — фазовое пространство цепи.

Def. Распределение X_0 — начальное распределение цепи $\Pi(0), p_i(0) = P(X_0 = i)$.

Def. Переходные вероятности цепи — $p_{ij}(k,n) = P(X_n = j | X_k = i), k < n, i, j \in \mathcal{X}.$

Def. Матрицами переходных вероятностей $P(k,n) = (p_{ij}(k,n), i, j \in \mathcal{X}).$

Лемма. Свойства переходных вероятностей:

1.
$$p_{ii}(k,n) \in [0,1]$$

2.
$$\forall i \in \mathcal{X} \sum_{j \in \mathcal{X}} p_{ij}(k, n) = 1$$

3.
$$p_{ij}(n,n) = I(i=j)$$

4. Уравнения Колмогорова-Чепмена. $\forall k \leq l \leq n \ p_{ij}(k,n) = \sum_{\alpha \in \mathcal{X}} p_{i\alpha}(k,l) p_{\alpha j}(l,n)$ То есть $P(k,n) = P(k,l) \cdot P(l,n)$.

Доказательство: Если вам это неочевидно, то как вы вообще до этого места дочитали? В четвертом просто представьте это как граф и все будет хорошо в вашей жизни. Формально:

$$p_{ij}(k,n) = P(X_n = j | X_k = i) = \sum_{\alpha \in \mathcal{X}} P(X_n = j, X_l = \alpha | X_k = i) =$$

$$= \sum_{\alpha \in \mathcal{X}} P(X_n = j | X_l = \alpha, X_k = i) \cdot P(X_l = \alpha | X_k = i) =$$

$$= \sum_{\alpha \in \mathcal{X}} P(X_n = j | X_l = \alpha) \cdot P(X_l = \alpha | X_k = i) = \sum_{\alpha \in \mathcal{X}} p_{i\alpha}(k, l) p_{\alpha j}(l, n)$$

Вся цепь определяется начальным распределением и переходными матрицами.

Теорема (о существовании цепи) (б/д).

Пусть $\forall i, j \in \mathcal{X}$ и $\forall 0 \leq k < n$ заданы $p_{ij}(k, n)$, удовлетворяющие свойствам выше, тогда существует марковская цепь $(X_n, n \in \mathbb{Z}_+)$ с данными переходными вероятностями и произвольным начальным распределением.

21 Пункт 21

21.1 Однородные марковские цепи

Def. Марковская цепь $(X_n, n \in \mathbb{Z}_+)$ называется однородной, если $\forall i, j \in \mathcal{X} \ \forall k, n, h \in \mathbb{Z}_+ : \ k \leqslant n \hookrightarrow p_{ij}(k,n) = p_{ij}(k+h,n+h)$

Note. Неформально это означаает, что p_{ij} зависит только от i, j, n-k

Введем следующие обозначения:

- $p_{ij}(n) = p_{ij}(0,n) = p_{ij}(h,n+h)$ переходные вероятности за n шагов
- $p(n) = (p_{ij}(n)|i,j\in\mathcal{X})$ матрица переходных вероятностей за n шагов

• $p=p(1)=(p_{ij}|i,j\in\mathcal{X})$ — матрица переходных вероятностей за 1 шаг

Наблюдение Из уравнений Колмогорова-Чепмена: если $k \leqslant l \leqslant n$, то

$$P(k,n) = P(k,l)P(l,n)$$

В случае однородной цепи $\forall k, l$:

$$P(k+l) = P(k)P(l) \Rightarrow P(n) = P^n$$

Примеры.

1. Простейшее случайное блуждание $(S_n, n \in \mathbb{Z}_+)$, где $S_n = \xi_1 + \ldots + \xi_n$, $\{\xi_n, n \in \mathbb{Z}\}$ н.о.р.с.в., $P(\xi_n = 1) = p, P(\xi_n = -1) = 1 - p = q$

Покажем, что является однородной марковской цепью

$$\begin{split} &P(S_n=j|S_{n-1}=i,S_{n-2}=a_{n-2},\ldots,S_1=a_a)=P(S_{n-1}+\xi_n=j|S_{n-1}=i,S_{n-2}=a_{n-2},\ldots,S_1=a_a)=P(\underbrace{\xi_n=j-i|S_{n-1}=i,S_{n-2}=a_{n-2},\ldots,S_1=a_a})=P(\xi_n=j-i)=P(S_n=j|S_{n-1}=i)\\ &\Rightarrow S_n \quad -\text{ однородная марковская цепь } \left(P(\xi_n=j-i)\text{ не зависит от } n\right) \end{split}$$

2. Ветвящиеся процессы

 $(X_n, n \in \mathbb{Z}_+)$ — ветв. процесс Гальтона-Ватсона с законом размножения частиц ξ

Покажем, что является однородной марковской цепью:

$$P(X_n = j | X_{n-1} = i, X_{n-2} = a_{n-2}, ..., X_1 = a_1) =$$

$$= P\left(\sum_{k=1}^{X_{n-1}} \xi_k^{(n)} = j | X_{n-1} = i, X_{n-1} = a_{n-2}, ..., X_1 = a_1\right) =$$

$$= P\left(\sum_{k=1}^{i} \xi_k^{(n)} = j | X_{n-1} = i, X_{n-2} = a_{n-2}, ..., X_1 = a_1\right) = P\left(\sum_{k=1}^{i} \xi_k^{(n)} = j\right) = P(X_n = j | X_{n-1} = i)$$

Предпоследнее равенство следует из независимости величин.

Заметим, что $P\left(\sum_{k=1}^{i} \xi_k^{(n)} = j\right)$ не зависит от n, потому что все $\xi_k^{(n)}$ одинаково распределены $\Rightarrow X_n$ — однородная марковская цепь

Note. Посмотрим на $P(X_n = j | X_{n-1} = i)$ которая в однородной марковской цепи должна быть равна $P(X_1 = j | X_0 = i)$. Здесь абстрагируемся от того, что X_0 это константа. Важно понимать, что можно игнорировать распределение X_0

3. Графы переходов

Пусть $(X_n, n \in \mathbb{Z}_+)$ — однородная марковская цепь с фазовым пространством $\mathcal{X} = \{1, 2, 3\}$ и матрицей переходных вероятностей $P = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} & 0 \end{pmatrix}$

Такую цепь удобно нарисовать графом

Тогда вершина 1 называется поглощающим состоянием

Def. Распределение $\Pi = (\pi_j, j \in \mathcal{X})$ вероятностей на \mathcal{X} называется *стационарным* для матрицы переходных вероятностей P, если

$$\Pi P = \Pi$$

или

$$\forall j \in \mathcal{X} \ \pi_j = \sum_{\alpha \in \mathcal{X}} \pi_{\alpha} P_{\alpha,j}$$

Утверждение. Пусть $(X_n, n \in \mathbb{Z}_+)$ — однородная марковская цепь с матрицей переходных вероятностей P. Пусть $\Pi(n) = (p_j(n), j \in \mathcal{X})$ — распределение цепи в момент времени n. Тогда если $\Pi(0)$ является стационарным для P, то

$$\forall n \; \Pi(n) = \Pi(0)$$

Доказательство:

По формуле полной вероятности

$$p_j(n) = P(X_n = j) = \sum_{\alpha \in \mathcal{X}} P(X_n = j | X_0 = \alpha) P(X_0 = \alpha)$$

т.е. $\Pi(n) = \Pi(0)P^n = |$ в силу стационарности $| = \Pi(0) \blacksquare$

Смысл: если начальное распределение стационарно, то распределение цепи не меняется со временем.

Def. Распределение $\Pi = (\pi_j, j \in \mathcal{X})$ вероятностей на \mathcal{X} называется *предельным* для матрицы переходных вероятностей P, если \forall начального распределения $\Pi(0)$ выполнено:

$$\Pi(n) = \Pi(0)P^n \underset{n \to \infty}{\longrightarrow} \Pi$$

то есть

$$p_j(n) \underset{n \to \infty}{\longrightarrow} \pi_j \ \forall j \in \mathcal{X}$$

21.2 Эргодическая теорема

Теорема (Эргодическая).

Пусть P — матрица переходных вероятностей для конечного фазового пространства \mathcal{X} , $|\mathcal{X}| = N$. Если $\exists n_0 \in \mathbb{N}$: все элементы матрицы P^{n_0} положительны, то \exists такой набор $(\pi_j, j \in \mathcal{X})$, что

1.
$$\pi_j > 0$$
 и $\sum_{j=1}^N \pi_j = 1$

2. Для
$$\forall i, j \in \mathcal{X} \ p_{i,j}(n) \underset{n \to \infty}{\longrightarrow} \pi_j$$

Доказательство:

Обозначим $m_j(n) = \min_i p_{i,j}(n)$ и $M_j(n) = \max_i p_{i,j}(n)$.

Проверим, что $m_j(n) \leqslant m_j(n+1)$ и $M_j(n) \geqslant M_j(n+1)$.

Согласно уравнениям Колмогорова-Чепмена:

$$p_{i,j}(n+1) = \sum_{\alpha \in \mathcal{X}} p_{i,\alpha} \cdot \underbrace{p_{\alpha,j}(n)}_{\geqslant m_j(n)} \geqslant m_j(n) \cdot \underbrace{\sum_{\alpha \in \mathcal{X}} p_{i,\alpha}}_{1} = m_j(n) \Rightarrow m_j(n+1) \geqslant m_j(n)$$

Неравенство для $M_i(n)$ доказывается аналогично.

Будем доказывать, что $M_j(n) - m_j(n) \underset{n \to \infty}{\to} 0$.

Положим $\varepsilon = \min_{i,j} p_{i,j}(n_0) > 0$. Тогда по уравнениям Колмогорова-Чепмена:

$$p_{i,j}(n+n_0) = \sum_{\alpha \in \mathcal{X}} p_{i,\alpha}(n_0) p_{\alpha,j}(n) = \sum_{\alpha \in \mathcal{X}} \left(p_{i,\alpha}(n_0) + \varepsilon p_{j,\alpha}(n) - \varepsilon p_{j,\alpha}(n) \right) p_{\alpha,j}(n) =$$

$$= \sum_{\alpha \in \mathcal{X}} \underbrace{p_{\alpha,j}(n)}_{m_j(n) \le \cdot \le M_j(n)} \underbrace{\left(p_{i,\alpha}(n_0) - \varepsilon p_{j,\alpha}(n) \right)}_{\geqslant 0} + \varepsilon \underbrace{\sum_{\alpha \in \mathcal{X}} p_{j,\alpha}(n) \cdot p_{\alpha,j}(n)}_{=p_{j,j}(2n)}$$

Отсюда получаем, что
$$p_{i,j}(n+n_0)\leqslant M_j(n)\underbrace{\sum_{\alpha\in\mathcal{X}}(p_{i,\alpha}(n_0)-\varepsilon p_{j,\alpha}(n))}_{=1-\varepsilon}+\varepsilon p_{j,j}(2n)=M_j(n)(1-\varepsilon)+\varepsilon p_{j,j}(2n)$$

Аналогично $p_{i,j}(n+n_0) \geqslant m_j(n)(1-\varepsilon) + \varepsilon p_{j,j}(2n)$.

Таким образом, $M_j(n+n_0)-m_j(n+n_0) \leq (1-\varepsilon)(M_j(n)-m_j(n))$. Учитывая, что последовательность $M_j(n)-m_j(n)$ монотонно убывает, их разность стремится к нулю (экспоненциально убывает).

Обозначим за $\pi_j = \lim_{n \to \infty} m_j(n), j \in \mathcal{X}$. Тогда

$$|p_{i,j}(n) - \pi_j| \le |p_{i,j}(n) - m_j(n)| + \pi_j - m_j(n) \le \underbrace{M_j(n) - m_j(n)}_{\to 0} + \underbrace{\pi_j - m_j(n)}_{\to 0} \to 0$$

Заметим, что $\pi_j \geq m_j(n_0) \geq \varepsilon > 0$, значит все числа положительные. И $\forall i \in \mathcal{X}$ $\sum_{j=1}^N p_{i,j}(n) = \underbrace{1}_{\rightarrow \sum_{j=1}^N \pi_j}$.

Def. Распределение из теоремы выше — эргодическое.

Следствие. Эргодическое распределение является предельным и единственным стационарным.

Доказательство: Из уравнений Колмогорова-Чепмена:

$$\underbrace{p_{i,j}(n+1)}_{\to \pi_j} = \underbrace{\sum_{\alpha=1}^{N} p_{i,\alpha}(n) p_{\alpha,j}}_{\to \sum_{\alpha=1}^{N} \pi_{\alpha} p_{\alpha,j}} \Longleftrightarrow \Pi = \Pi P$$

То есть P — стационарное. Пусть $\Pi(0)$ — произвольное начальное распределение и

$$\Pi(n) = \Pi(0) \cdot P^n \to \Pi(0) \cdot \begin{pmatrix} \pi_1 & \pi_2 & \dots & \pi_N \\ \vdots & \vdots & \ddots & \vdots \\ \pi_1 & \pi_2 & \dots & \pi_N \end{pmatrix} = \Pi$$

Отсюда П — предельное. А, так как предельное существует, получаем, что стационарное единственное.