Deep Learning Specialization Formula Sheet

Fady Morris Ebeid July 6, 2020

Chapter 1 Neural Networks and Deep Learning

1 Standard Notation for Deep Learning

1.1 General Comments

Superscript (i) denotes the i^{th} training example while superscript [l] denotes the l^{th} layer.

Vectors are represented by bold small letters (example: \mathbf{x}) and matrices are represented by bold capital letters (example: \mathbf{X}).

1.2 Sizes

m: Number of examples in the dataset.

 n_x : Input size.

 n_y : Output size (or number of classes).

 $n_h^{[l]}$: number of hidden units of the l^{th} layer.

L: Number of layers in the network.

1.3 Objects

 $\boldsymbol{X} \in \mathbb{R}^{n_x \times m}$: The input matrix.

 $\mathbf{x}^{(i)} \in \mathbb{R}^{n_x}$: Is the i^{th} example represented as a column vector.

 $Y \in \mathbb{R}^{n_y \times m}$: Is the *label* matrix.

 $\mathbf{y}^{(i)} \in \mathbb{R}^{n_y}$: Is the *output label* for the i^{th} example represented as a column vector.

column vector. $\boldsymbol{W}^{[l]} \in \mathbb{R}^{n_h^{[l]} \times n_h^{[l-1]}}$: is the weight matrix, superscript [l] indicates the layer.

 $\mathbf{b}^{[l]} \in \mathbb{R}^{n_h^{[l]}}$: Is the *bias* vector in the l^{th} layer.

 $\hat{\mathbf{y}} \in \mathbb{R}^{n_y}$: Is the *predicted output* vector. It can also be denoted $\mathbf{a}^{[L]}$, where L is the number of layers in the network.

2 Logistic Regression

For one example $\mathbf{x}^{(i)} \in \mathbb{R}^n$:

$$\mathbf{z}^{(i)} = \mathbf{w}^\mathsf{T} \mathbf{x}^{(i)} + b$$

$$\hat{\mathbf{y}}^{(i)} = \mathbf{a}^{(i)} = \sigma(\mathbf{z}^{(i)})$$

Cross-entropy loss function (for one training example):

$$\mathcal{L}(\mathbf{a}^{(i)}, \mathbf{y}^{(i)}) = -\mathbf{y}^{(i)} \log(\mathbf{a}^{(i)}) - (1 - \mathbf{y}^{(i)}) \log(1 - \mathbf{a}^{(i)})$$

The cost function (for all training examples) is then computed by summing over the loss for all training examples:

$$\mathcal{J}(\mathbf{w},b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\mathbf{a}^{(i)}, \mathbf{y}^{(i)})$$

Collecting all training examples in a matrix X:

$$\boldsymbol{X} = \left[\mathbf{x}^{(1)} | \mathbf{x}^{(2)} | \dots | \mathbf{x}^{(m)} \right]$$

$$\boldsymbol{A} = \sigma(\mathbf{w}^{\mathsf{T}}\boldsymbol{X} + b) = \left[\mathbf{a}^{(1)}|\mathbf{a}^{(2)}|\dots|\mathbf{a}^{(m)}\right]$$

$$\frac{\partial \mathcal{J}}{\partial \mathbf{w}} = \frac{1}{m} \mathbf{X} (\mathbf{A} - \mathbf{Y})^{\mathsf{T}}$$

$$\frac{\partial \mathcal{J}}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} \left(\mathbf{a}^{(i)} - \mathbf{y}^{(i)} \right)$$

3 Neural Networks

3.1 Feed-Forward Propagation

$$oldsymbol{A}^{[l]} = q^{[l]}(oldsymbol{Z}^{[l]})$$

$$\boldsymbol{Z}^{[l]} = \boldsymbol{W}^{[l]} \boldsymbol{A}^{[l-1]} + \mathbf{b}^{[l]}$$

Input : $\mathbf{A}^{[0]} = X$ Output : $\mathbf{A}^{[L]} = \hat{\mathbf{Y}}$

Activation Functions

The activation function $g^{[l]}$ can be one of the following:

• Sigmoid:

$$\sigma(\mathbf{Z}) = \sigma(\mathbf{W}\mathbf{A} + \mathbf{b}) = \frac{1}{1 + e^{-(\mathbf{W}\mathbf{A} + \mathbf{b})}}$$

• Rectified Linear Unit (ReLU):

$$\mathrm{relu}(\boldsymbol{Z}) = \max(0,\boldsymbol{Z})$$

Cost Function

Cross-entropy cost function:

$$\begin{split} \mathcal{J} &= -\frac{1}{m} \sum_{i=1}^{m} \left[\mathbf{y}^{(i)} \log \left(\mathbf{a}^{[L](i)} \right) + \left(1 - \mathbf{y}^{(i)} \right) \log \left(1 - \mathbf{a}^{[L](i)} \right) \right] \\ &= -\frac{1}{m} \left[\mathbf{Y} \cdot \log \left(\mathbf{A}^{[L]\mathsf{T}} \right) + (1 - \mathbf{Y}) \cdot \log \left(1 - \mathbf{A}^{[L]\mathsf{T}} \right) \right] \end{split}$$

3.2 Backpropagation

$$d\mathbf{A}^{[L]} = \frac{\partial \mathcal{J}}{\partial \mathbf{A}^{[L]}} = -\frac{\mathbf{Y}}{\mathbf{A}^{[L]}} + \frac{1 - \mathbf{Y}}{1 - \mathbf{A}^{[L]}}$$

$$d\mathbf{Z}^{[l]} = \frac{\partial \mathcal{J}}{\partial \mathbf{Z}^{[l]}} = d\mathbf{A}^{[l]} \odot g^{[l]'} \left(\mathbf{Z}^{[l]}\right)$$

$$d\mathbf{A}^{[l-1]} = \frac{\partial \mathcal{J}}{\partial \mathbf{A}^{[l-1]}} = \mathbf{W}^{[l]\mathsf{T}} d\mathbf{Z}^{[l]}$$

$$d\mathbf{W}^{[l]} = \frac{\partial \mathcal{J}}{\partial \mathbf{W}^{[l]}} = \frac{1}{m} d\mathbf{Z}^{[l]} \mathbf{A}^{[l-1]\mathsf{T}}$$

$$d\mathbf{b}^{[l]} = \frac{\partial \mathcal{J}}{\partial \mathbf{b}^{[l]}} = \frac{1}{m} \sum_{i=1}^{m} d\mathbf{Z}^{[l](i)}$$

$$(1.1)$$

3.3 Gradient Descent

Update the parameters:

$$\mathbf{W}^{[l]} := \mathbf{W}^{[l]} - \alpha \ d\mathbf{W}^{[l]}$$
$$\mathbf{b}^{[l]} := \mathbf{b}^{[l]} - \alpha \ d\mathbf{b}^{[l]}$$

where α is the learning rate.

Chapter 2

Improving Deep Neural Networks: Hyperparameter Tuning

1 Setting up Machine Learning Application

1.1 Train/Dev/Test Sets

Splitting the data into $\operatorname{Train}/\operatorname{dev}(\operatorname{validation})/\operatorname{test}$ sets according to its size

- For small dataset (m = 100 1,000 10,000): A ratio of 60%, 20%, 20% works well.
- For large datasets (m = 1,000,000): A ratio of 98%, 1%, 1%

2 Regularization

2.1 Logistic Regression

$$\mathcal{J}(\mathbf{w}, \mathbf{b}) = \frac{1}{m} \sum_{j=1}^{m} \mathcal{L}(\hat{\mathbf{y}}^{(i)}, \mathbf{y}^{(i)}) + \text{Regularization term}$$

The regularization term can be:

- L_2 Regularization : $\frac{\lambda}{2m} \|\mathbf{w}\|_2^2 = \frac{\lambda}{2m} \sum_{i=1}^{n_x} w_j^2 = \mathbf{w}^\mathsf{T} \mathbf{w}$
- L_1 Regularization : $\frac{\lambda}{2m} \|\mathbf{w}\|_1 = \frac{\lambda}{2m} \sum_{i=1}^{n_x} |w|$

Neural Network

$$\mathcal{J}(\boldsymbol{W}^{[1]}, \mathbf{b}^{[1]}, \dots, \boldsymbol{W}^{[L]}, \mathbf{b}^{[L]}) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{\mathbf{y}}^{(i)}, \mathbf{y}^{(i)}) + \frac{\lambda}{2m} \sum_{l=1}^{L} ||\boldsymbol{W}^{[l]}||_F^2$$

Where $\|\boldsymbol{W}^{[l]}\|_F^2$ is called Frobenius norm and

$$\|\boldsymbol{W}^{[l]}\|_F^2 = \sum_{i=1}^{n^{[l]}} \sum_{j=1}^{n^{[l-1]}} \left(W_{i,j}^{[l]}\right)^2$$

Therefore

 $\mathcal{J}_{\text{regularized}}$

$$= \underbrace{-\frac{1}{m} \sum_{i=1}^{m} \left[\mathbf{y}^{(i)} \log \left(\mathbf{a}^{[L](i)} \right) + \left(1 - \mathbf{y}^{(i)} \right) \log \left(1 - \mathbf{a}^{[L](i)} \right) \right]}_{\text{cross-entropy cost}}$$

$$+ \underbrace{\frac{1}{m} \frac{\lambda}{2} \sum_{l} \sum_{k} \sum_{j} \boldsymbol{W}_{k,j}^{[l]^2}}_{\text{L2 regularization cost}}$$

Backpropagation:

$$d\boldsymbol{W}^{[l]} \stackrel{\text{(1.1)}}{=} \frac{1}{m} d\boldsymbol{Z}^{[l]} \boldsymbol{A}^{[l-1]\mathsf{T}} + \frac{\lambda}{m} \boldsymbol{W}^{[l]}$$

Gradient Descent:

$$\begin{aligned} \boldsymbol{W}^{[l]} &:= \alpha \, d\boldsymbol{W}^{[l]} \\ &:= \boldsymbol{W}^{[l]} - \alpha \left[\frac{1}{m} d\boldsymbol{Z}^{[l]} \boldsymbol{A}^{[l-1]\mathsf{T}} + \frac{\lambda}{m} \boldsymbol{W}^{[l]} \right] \\ &:= \boldsymbol{W}^{[l]} - \frac{\lambda \alpha}{m} \boldsymbol{W}^{[l]} - \alpha \left(\frac{1}{m} d\boldsymbol{Z}^{[l]} \boldsymbol{A}^{[l-1]\mathsf{T}} \right) \\ &:= \underbrace{\left(1 - \frac{\alpha \lambda}{m} \right)}_{\text{Weight}} \boldsymbol{W}^{[l]} - \alpha \left(\frac{1}{m} d\boldsymbol{Z}^{[l]} \boldsymbol{A}^{[l-1]\mathsf{T}} \right) \end{aligned}$$

2.3 Dropout

Implementing dropout ("Inverted dropout") in Python. Illustrate with l = 3.

Setting Up Optimization Problem

3.1 Normalizing Training Sets

Mean

$$\boldsymbol{\mu} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}^{(i)}$$

Variance

$$\boldsymbol{\sigma}^2 = \frac{1}{m} \sum_{i=1}^m \left(\mathbf{x}^{(i)} \odot \mathbf{x}^{(i)} \right) - \boldsymbol{\mu}^2$$

Dataset Normalization:

$$\mathbf{x}^{(i)} := rac{\mathbf{x}^{(i)} - oldsymbol{\mu}}{oldsymbol{\sigma}}$$

Note: We use the same μ and σ to normalize the test set.

Weight Initialization for Deep Networks

To solve the problem of vanishing and exploding gradients. For sigmoid or tanh activation function we use Xavier initialization:

$$oldsymbol{W}^{[l]}$$
 = np.random.randn($oldsymbol{W}^{[l]}$.shape) * $\sqrt{rac{1}{n^{[l-1]}}}$

or

$$oldsymbol{W}^{[l]}$$
 = np.random.randn($oldsymbol{W}^{[l]}$.shape) * $\sqrt{rac{1}{n^{[l-1]+n^{[l]}}}}$

For RelU activation function:

$$oldsymbol{W}^{[l]}$$
 = np.random.randn($oldsymbol{W}^{[l]}$.shape) * $\sqrt{rac{2}{n^{[l-1]}}}$

Numerical Approximation of Gradients Two Sided difference

$$f'(\theta) = \lim_{\varepsilon \to 0} \frac{f(\theta + \varepsilon) - f(\theta - \varepsilon)}{2\varepsilon}$$

Order of the error $O(\varepsilon^2)$

One sided difference

$$f'(\theta) = \lim_{\varepsilon \to 0} \frac{f(\theta + \varepsilon) - f(\theta)}{\varepsilon}$$

Order of the error $O(\varepsilon)$

Gradient Checking for a Neural Network

Take $W^{[l]}, \mathbf{b}^{[l]}, \dots, W^{[L]}, \mathbf{b}^{[L]}$ and reshape into a big vector $\boldsymbol{\theta}$

$$\mathcal{J}(\boldsymbol{W}^{[l]}, \mathbf{b}^{[l]}, \dots, \boldsymbol{W}^{[L]}, \mathbf{b}^{[L]}) = \mathcal{J}(\boldsymbol{\theta})$$
$$= \mathcal{J}(\theta_1, \theta_2, \dots, \theta_i, \dots)$$

Take $d\mathbf{W}^{[l]}, d\mathbf{b}^{[l]}, \dots, d\mathbf{W}^{[L]}, d\mathbf{b}^{[L]}$ and reshape into a big vector

For each i:

$$d\theta_{i \text{ approx}} = \frac{\mathcal{J}(\theta_1, \theta_2, \dots, \theta_i + \varepsilon, \dots) - \mathcal{J}(\theta_1, \theta_2, \dots, \theta_i - \varepsilon, \dots)}{2\varepsilon}$$

$$d\theta_{i \text{ approx}} \approx d\theta_{i} = \frac{\partial \mathcal{J}}{\partial \theta_{i}}$$

 $d\theta_{\rm approx} \approx d\theta$

Check
$$\frac{\|d\boldsymbol{\theta}_{\text{approx}} - d\boldsymbol{\theta}\|_{2}}{\|d\boldsymbol{\theta}_{\text{approx}}\|_{2} + \|d\boldsymbol{\theta}\|_{2}} < \epsilon$$

in practice we set $\epsilon = 10^{-7}$

Gradient checking implementation notes:

- Don't use in training only to debug
- If algorithm fails grad check, look at components $(d\mathbf{b}^{[l]}, d\mathbf{W}^{[l]})$ to try to identify bug.
- Remember to include regularization.
- Doesn't work with dropout.
- Run at random initialization; perhaps again after some training.

Optimization Algorithms

Suppose that we have m total number of examples.

Batch gradient descent: Using all training examples m at once.

Mini-batch gradient descent: Using a subset (< m) of training examples at a time.

Stochastic gradient descent: Using a mini-batch that has just 1 example at a time.

Mini-Batch Gradient Descent

Reference: [Hin12]

Cost function may not decrease on every iteration.

Algorithm 1: Mini-Batch Gradient Descent Result: Trained network parameters for each layer $W^{[l]}$, $\mathbf{b}^{[l]}$ 1 for each epoch: for each mini-batch t: /* Forward-Propagation on $X^{\{t\}}$ */ $A^{[0]} = X^{\{t\}}$ 3 for layer $l = 1, \ldots, L$: 4 $\mathbf{Z}^{[l]} = \mathbf{W}^{[l]} \mathbf{A}^{[l-1]} + \mathbf{b}^{[l]}$ 5 6 Compute Cost $\mathcal{J}^{\{t\}}$ = $\frac{1}{k} \sum_{i=1}^{l} \mathcal{L} \quad \underbrace{\left(\hat{\mathbf{y}}^{(i)}, \mathbf{y}^{(i)}\right)}_{} \quad + \frac{\lambda}{2 \cdot k} \sum_{l} \|\boldsymbol{W}^{[l]}\|_{F}^{2}$ Backpropagate to compute gradients w.r.t $\mathcal{J}^{\{t\}}$ 8 (using $(X^{\{t\}}, Y^{\{t\}})$) for layer $l = 1, \ldots, L$: 9 $\mathbf{W}^{[l]} := \mathbf{W}^{[l]} - \alpha d\mathbf{W}^{[l]}$ 10 $\mathbf{b}^{[l]} := \mathbf{b}^{[l]} - \alpha \, d\mathbf{b}^{[l]}$ 11

Choosing Mini-Batch Size

- If small training set (m < 2000): Use batch gradient descent
- Typical mini-batch sizes: 64, 128, 256, 512 (Powers of 2)
- Make sure that the mini-batch $X^{\{t\}}, Y^{\{t\}}$ fits in CPU/GPU memory.

Exponentially Weighted Averages

$$V_t = \beta V_{t-1} + (1 - \beta)\theta_t$$

averages over $\approx \frac{1}{1-\beta}$ previous values of θ

Bias Correction

$$V_t := \frac{V_t}{1 - \beta}$$

Gradient Descent with Momentum

Momentum β takes past gradients into account to smooth out the steps of gradient descent. It can be applied with batch gradient descent, mini-batch gradient descent or stochastic gradient descent.

Algorithm 2: Gradient Descent with Momentum

Result: Trained network parameters for each layer $W^{[l]}$, $\mathbf{b}^{[l]}$

1
$$oldsymbol{V}_{doldsymbol{W}^{[l]}}=oldsymbol{0}, \quad oldsymbol{V}_{d\mathbf{b}^{[l]}}=oldsymbol{0}$$

2 for each epoch:

5

6

for each mini-batch:

Forward-propagation on current mini-batch. Compute cost \mathcal{J} of current mini-batch.

Backpropagate to compute $d\mathbf{W}^{[l]}$, $d\mathbf{b}^{[l]}$ on the current mini-batch.

for layer $l = 1, \ldots, L$:

$$\begin{array}{|c|c|c|} \hline \textbf{7} & \textbf{Ior} & tayer \ t = 1, \dots, L; \\ \hline \textbf{8} & \textbf{V}_{d\mathbf{W}^{[l]}} := \beta_1 \mathbf{V}_{d\mathbf{W}^{[l]}} + (1 - \beta_1) d\mathbf{W}^{[l]} \\ \hline \textbf{9} & \textbf{V}_{d\mathbf{b}^{[l]}} := \beta_1 \mathbf{V}_{d\mathbf{b}^{[l]}} + (1 - \beta_1) d\mathbf{b}^{[l]} \\ \hline \textbf{W}^{[l]} := \mathbf{W}^{[l]} - \alpha \mathbf{V}_{d\mathbf{W}^{[l]}}, & \mathbf{b}^{[l]} = \\ \hline \textbf{b}^{[l]} - \alpha \mathbf{V}_{d\mathbf{b}^{[l]}} \end{array}$$

A common practice is to set the hyperparameter $\beta = 0.9$

4.4 RMSprop

RMSprop stands for root mean square prop

Algorithm 3: RMSprop

Result: Trained network parameters for each layer $W^{[l]}$, $\mathbf{b}^{[l]}$

$$oldsymbol{S}_{doldsymbol{W}^{[l]}} = oldsymbol{0}, \quad oldsymbol{S}_{doldsymbol{b}^{[l]}} = oldsymbol{0}$$

2 for each epoch:

6

7

for each mini-batch:

Forward-propagation on current mini-batch. Compute cost \mathcal{J} of current mini-batch.

Backpropagate to compute $d\mathbf{W}^{[l]}$, $d\mathbf{b}^{[l]}$ on the current mini-batch.

for layer $l = 1, \ldots, L$:

$$S_{dW^{[l]}} := \beta_2 S_{dW^{[l]}} + (1 - \beta) dW^{[l] \circ 2} /* \text{ small}$$

$$oldsymbol{S}_{d\mathbf{b}^{[l]}} = eta_2 oldsymbol{S}_{d\mathbf{b}^{[l]}} + (1 - eta) d\mathbf{b}^{[l] \circ 2}$$
 /* large */

$$egin{align*} oldsymbol{w}^{[l]} &:= oldsymbol{W}^{[l]} - lpha rac{doldsymbol{W}^{[l]}}{\sqrt{oldsymbol{S}_{doldsymbol{W}^{[l]}}} + arepsilon}, \ oldsymbol{\mathbf{b}}^{[l]} &:= oldsymbol{\mathbf{b}}^{[l]} - lpha rac{doldsymbol{\mathbf{b}}^{[l]}}{\sqrt{oldsymbol{S}_{doldsymbol{\mathbf{b}}^{[l]}}} + arepsilon}, \end{split}$$

$$\mathbf{b}^{[l]} := \mathbf{b}^{[l]} - \alpha \frac{d\mathbf{b}^{[l]}}{\sqrt{S_{d\mathbf{b}^{[l]}}} + \varepsilon}$$

4.5 Adam Optimization Algorithm

Adam stands for Adaptive Moment Estimation Paper: [KB14]

Algorithm 4: Adam Optimization Algorithm

Result: Trained network parameters for each layer

$$m{V}_{dm{W}^{[l]}} = m{0}, m{S}_{dm{W}^{[l]}} = m{0}, \ m{V}_{dm{b}^{[l]}} = m{0}, m{S}_{dm{b}^{[l]}} = m{0}$$

з for each epoch:

5

6

7

11

12

13

14

15

16

for each mini-batch:

Forward-propagation on current mini-batch. Compute cost \mathcal{J} of current mini-batch.

Backpropagate to compute $d\mathbf{W}^{[l]}$, $d\mathbf{b}^{[l]}$ on the current mini-batch.

t := t + 1

for layer $l = 1, \ldots, L$:

$$\begin{split} & \boldsymbol{V}_{d\boldsymbol{W}^{[l]}} := \beta_1 \boldsymbol{V}_{d\boldsymbol{W}^{[l]}} + (1 - \beta_1) d\boldsymbol{W}^{[l]} \\ & \boldsymbol{V}_{d\mathbf{b}^{[l]}} := \beta_1 \boldsymbol{V}_{d\mathbf{b}^{[l]}} + (1 - \beta_1) d\mathbf{b}^{[l]} \ / * \ "moment" \\ & \beta_1 \ * / \\ & \boldsymbol{S}_{d\boldsymbol{W}^{[l]}} := \beta_2 \boldsymbol{S}_{d\boldsymbol{W}^{[l]}} + (1 - \beta_2) d\boldsymbol{W}^{[l] \circ 2} \end{split}$$

$$egin{align*} S_{dW}^{[l]} &:= eta_2 S_{dW}^{[l]} + (1 - eta_2) d\mathbf{b}^{[l]} \circ 2 \ /* \text{"RMSprop"} \ eta_2 \ */ \end{aligned}$$

$$oldsymbol{V}_{doldsymbol{W}^{[l]}}^{ ext{corrected}} = rac{oldsymbol{V}_{doldsymbol{W}^{[l]}}}{1 - (eta_1)^t},$$

$$oldsymbol{V}_{d\mathbf{b}^{[l]}}^{ ext{corrected}} = rac{oldsymbol{V}_{d\mathbf{b}^{[l]}}}{1-(eta_1)^t}$$

$$oldsymbol{S_{doldsymbol{W}^{[l]}}^{ ext{corrected}}} = rac{1-(eta_1)}{1-(eta_2)^t}$$

$$oldsymbol{S}_{d\mathbf{b}^{[l]}}^{ ext{corrected}} = rac{oldsymbol{\hat{S}}_{d\mathbf{b}^{[l]}}^{ ext{}}}{1-(eta_2)^t}$$

$$oldsymbol{W}^{[l]} := oldsymbol{W}^{[l]} - lpha rac{oldsymbol{V}^{ ext{corrected}}_{doldsymbol{W}^{[l]}}}{\sqrt{oldsymbol{S}^{ ext{corrected}}_{doldsymbol{W}^{[l]}}} + arepsilon}$$

$$\mathbf{b}^{[l]} := \mathbf{b}^{[l]} - \alpha \frac{\mathbf{V}_{d\mathbf{b}^{[l]}}^{\text{corrected}}}{\sqrt{\mathbf{S}_{d\mathbf{b}^{[l]}}^{\text{corrected}}} + \varepsilon}$$

4.6 Hyperparameter Choice

 α : needs to be tuned.

 $\beta_1: 0.9$ (momentum of $d\mathbf{W}^{[l]}$)

 $\beta_2: 0.999 \text{ (momentum of } d\mathbf{W}^{[l] \circ 2})$

 $\varepsilon:10^{-8}$

4.7 Learning Rate Decay

Learning rate decay is to slowly reduce learning rate over time, to help speeding up the learning algorithm.

$$\alpha = \frac{1}{1 + rt} \alpha_0$$

Where r is the decay rate, t is the epoch number.

Other Learning Rate Decay Methods

- Exponential Decay $\alpha = r^t \cdot \alpha_0$
- $\bullet \ \alpha = \frac{k}{\sqrt{t}} \cdot \alpha_0$
- Discrete staircase
- Manually setting α

5 Hyperparameter Tuning

5.1 Appropriate Scale for Hyperparameters

Suppose you want to search for a parameter $\alpha=i,\ldots,j$ on a logarithmic scale instead of a linear scale.

Calculate

$$a = \log_{10} i, \qquad b = \log_{10} j$$

then

$$\alpha = 10^r$$

where

$$r \sim U(a, b)$$

 $\sim a + (b - a)U(0, 1)$

5.2 Hyperparameters for exponentially weighted averages

For sampling the hyperparameter $\beta=i,\ldots,j$ used to compute exponentially weighted averages.

$$1 - \beta = 1 - i, \dots, 1 - i$$

Calculate

$$a = \log_{10}(1-i), \quad b = \log_{10}(1-j)$$

then

$$\beta = 1 - 10^r$$

where

$$r \sim U(b, a)$$
$$\sim b + (a - b)U(0, 1)$$

6 Batch Normalization

6.1 Implementing Batch Norm

Algorithm 5: Batch Norm Data: training data X, batch size = k1 for each $Batch \ X^{\{t\}}$ in X: 2 | for each Intermediate value $\mathbf{Z}^{\{t\}[l]} = \left[\mathbf{z}^{(1)}|\dots|\mathbf{z}^{(k)}\right]$ in Layer l in the neural network: 3 | $\boldsymbol{\mu}^{\{t\}[l]} = \sum_{i=1}^{k} \mathbf{z}^{(i)}$ 4 | $\boldsymbol{\sigma}^{\{t\}[l]^2} = \frac{1}{m} \sum_{i=1}^{k} \left(\mathbf{z}^{(i)} - \boldsymbol{\mu}^{\{t\}[l]}\right)^2$ 5 | $\mathbf{z}_{norm}^{(i)} = \frac{\mathbf{z}^{(i)} - \boldsymbol{\mu}^{\{t\}[l]}}{\sqrt{\boldsymbol{\sigma}^{\{t\}[l]^2} + \varepsilon}}$

Batch Norm Gradient Descent

Algorithm 6: Batch Norm Gradient Descent

Result: Trained network parameters for each layer $oldsymbol{W}^{[l]},oldsymbol{eta}^{[l]},oldsymbol{\gamma}^{[l]}$ 1 for each epoch: for $t = 1, \ldots, num(mini-batches)$: /* Forward-Propagation on $\boldsymbol{X}^{\{t\}}$ */ $A^{[0]} = X^{\{t\}}$ for layer $l = 1, \ldots, L$: $\mathbf{Z}^{[l]} = \mathbf{W}^{[l]} \mathbf{A}^{[l-1]} + \mathbf{b}^{[l]}$ Use Batch Norm (algorithm 5) to Compute $\tilde{m{Z}}^{[l]}$ from $m{Z}^{[l]}$ $oldsymbol{A}^{[l]} = g^{[l]}(ilde{oldsymbol{Z}}^{[l]})$ Compute Cost $\mathcal{J}^{\{t\}}$ = $\frac{1}{k} \sum_{i=1}^{k} \mathcal{L} \quad \underbrace{\left(\hat{\mathbf{y}}^{(i)}, \mathbf{y}^{(i)}\right)}_{l} \quad + \frac{\lambda}{2 \cdot k} \sum_{l} \|\mathbf{W}^{[l]}\|_{F}^{2}$ Backpropagate to compute gradients w.r.t $\mathcal{J}^{\{t\}}$ $(d\mathbf{W}^{[l]}, d\boldsymbol{\beta}^{[l]}, d\boldsymbol{\gamma}^{[l]})$ (using $(\mathbf{X}^{\{t\}}, \mathbf{Y}^{\{t\}})$) for layer $l = 1, \ldots, L$: 10 $\mathbf{W}^{[l]} := \mathbf{W}^{[l]} - \alpha d\mathbf{W}^{[l]}$ $\boldsymbol{\beta}^{[l]} := \boldsymbol{\beta}^{[l]} - \alpha d\boldsymbol{\beta}^{[l]}$ 12 $\gamma^{[l]} := \gamma^{[l]} - \alpha d\gamma^{[l]}$

6.2 Batch Norm as Regularization

- Each mini-batch $X^{\{t\}}$ is scaled by the mean/variance computed on just that mini-batch.
- This adds some noise to the values $\mathbf{z}^{[l]}$ to scale them to $\tilde{\mathbf{z}}^{[l]}$ within that mini-batch. so similar to dropout, it adds some noise to each hidden layer's activations.
- This has a slight regularization effect.

6.3 Batch Norm at Test Time

Calculate the weighted average of $\pmb{\mu}^{\{t\}[l]}, \pmb{\sigma}^{\{t\}[l]}$ across all mini-batches $\pmb{X}^{\{t\}}$

$$\mathbf{v}_{\boldsymbol{\mu}}^{\{t\}[l]} = \beta_{w} \boldsymbol{\mu}^{\{t-1\}[l]} + (1 - \beta_{w}) \boldsymbol{\mu}^{\{t\}[l]}$$
$$\mathbf{v}_{\boldsymbol{\sigma}^{2}}^{\{t\}[l]} = \beta_{w} \boldsymbol{\sigma}^{\{t-1\}[l]^{2}} + (1 - \beta_{w}) \boldsymbol{\sigma}^{\{t\}[l]^{2}}$$

Bias correction:

$$oldsymbol{\mu}^{[l]} = rac{\mathbf{v}_{oldsymbol{\mu}}^{\{t\}[l]}}{1-eta_w}$$
 $oldsymbol{\sigma}^{[l]^2} = rac{\mathbf{v}_{oldsymbol{\sigma}}^{\{t\}[l]}}{\sigma^2}$

Then Use them in forward-propagation:

$$\begin{split} \mathbf{z}_{\text{norm}}^{[l](i)} &= \frac{\mathbf{z}^{[l](i)} - \boldsymbol{\mu}^{[l]}}{\sqrt{\boldsymbol{\sigma}^{[l]^2} + \varepsilon}} \\ \tilde{\mathbf{z}}^{[l](i)} &= \boldsymbol{\gamma}^{[l]} \mathbf{z}_{\text{norm}}^{[l](i)} + \boldsymbol{\beta}^{[l]} \end{split}$$

7 Multi-Class Classification

7.1 Softmax Layer

$$\mathbf{a}^{[L]} = g^{[L]}(\mathbf{z}^{[L]}) = \frac{e^{\mathbf{z}^{[L]}}}{\sum_{i=1}^{C} e^{z_{i}^{[L]}}} \;, \qquad a_{i}^{[L]} = g^{[L]}(z_{i}^{[L]}) = \frac{e^{z_{i}^{[L]}}}{\sum_{i=1}^{C} e^{z_{i}^{[L]}}}$$

If number of classes ${\cal C}=2,$ then softmax reduces to logistic regression.

7.2 Loss Function

$$\mathcal{L}(\hat{\mathbf{y}}, \mathbf{y}) = -\sum_{j=1}^{C} y_j \log \hat{y}_j = -\mathbf{y}^\mathsf{T} \log(\hat{\mathbf{y}})$$

Cost:

$$\mathcal{J}\left(\boldsymbol{W}^{[1]}, \mathbf{b}^{[1]}, \dots, \boldsymbol{W}^{[L]}, \mathbf{b}^{[L]}\right) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{\mathbf{y}}^{(i)}, \mathbf{y}^{(i)})$$

Chapter 3 Convolutional Neural Networks

1 Filters

detection filter

2 Notation

- n: Original image dimension.
- f: Filter size.
- p: Padding size.
- s: Stride.

3 Padding

Types of Padding:

- 1. Valid: no padding
- 2. Same padding: pad so that the output size is the same as the input size.

$$n + 2p - f + 1 = n$$
$$\therefore p = \frac{f - 1}{2}$$

f is usually odd in same padding.

4 One Layer of CNN

$$\begin{aligned} \mathbf{z}^{[l]} &= \boldsymbol{W}^{[l]} * \mathbf{a}^{[l-1]} + \mathbf{b}^{[l]} \\ \mathbf{a}^{[l]} &= g^{[l]} \left(\mathbf{z}^{[l]} \right) \end{aligned}$$

$$\begin{split} & \text{Input} \quad (\mathbf{a}^{[l-1]}) \quad \text{size: } (n_H^{[l-1]} \times n_W^{[l-1]} \times n_c^{[l-1]}) \\ & \text{Filter} \quad (\boldsymbol{W}^{[l]}) \quad \text{size: } (f^{[l]} \quad \times f^{[l]} \quad \times n_c^{[l-1]} \quad \times n_c^{[l]}) \\ & \text{Bias} \quad (\mathbf{b}^{[l]}) \quad \text{size: } (1 \quad \times 1 \quad \times 1 \quad \times n_c^{[l]}) \\ & \text{Output } (\mathbf{a}^{[l]}) \quad \text{size: } (n_H^{[l]} \quad \times n_W^{[l]} \quad \times n_C^{[l]}) \end{split}$$

Number of parameters = size
$$\left(\mathbf{W}^{[l]} \right)$$
 + size $\left(\mathbf{b}^{[l]} \right)$ = $(f^{[l]} \times f^{[l]} \times n_c^{[l-1]} + 1) \times n_c^{[l]}$

Output size

$$\begin{split} &= n_H^{[l]} & \times n_W^{[l]} & \times n_c^{[l]} \\ &= \left \lfloor \frac{n_H^{[l-1]} + 2p^{[l]} - f^{[l]}}{s^{[l]}} + 1 \right \rfloor \times \left \lfloor \frac{n_W^{[l-1]} + 2p^{[l]} - f^{[l]}}{s^{[l]}} + 1 \right \rfloor \times n_c^{[l]} \end{split}$$

Number of multiplication operations

$$= n_H^{[l]} \times n_W^{[l]} \times \left(f^{[l]} \times f^{[l]} \times n_c^{[l-1]} \times n_c^{[l]} \right)$$

Number of summation operations is the same as multiplication.

5 Pooling Layer

No parameters to learn.

Input size:
$$(n_H^{[l-1]} \times n_W^{[l-1]} \times n_c)$$

Filter size: $(f^{[l]} \times f^{[l]} \times n_c)$
Output size: $(n_H^{[l]} \times n_W^{[l]} \times n_c)$

Output size =
$$\left(\begin{array}{cc} n_H^{[l]} & \times n_W^{[l]} & \times n_c \right)$$

= $\left(\left[\begin{array}{cc} \frac{n_H^{[l-1]} - f^{[l]}}{s^{[l]}} + 1 \end{array}\right] \times \left[\begin{array}{cc} \frac{n_W^{[l-1]} - f^{[l]}}{s^{[l]}} + 1 \end{array}\right] \times n_c \right)$

6 Residual Networks

Source paper: [He+15]

Implementing "shortcut" / "skip connection" in a ResNet block:

$$\mathbf{z}^{[l+1]} = \mathbf{W}^{[l+1]} * \mathbf{a}^{[l]} + \mathbf{b}^{[l+1]}$$
$$\mathbf{a}^{[l+1]} = g^{[l+1]} \left(\mathbf{z}^{[l+1]} \right)$$
$$\mathbf{z}^{[l+2]} = \mathbf{W}^{[l+2]} * \mathbf{a}^{[l+1]} + \mathbf{b}^{[l+2]}$$

For identity block $(\mathbf{a}^{[l]})$ has the same dimensions as $\mathbf{a}^{[l+2]}$:

$$\mathbf{a}^{[l+2]} = g^{[l+2]} \left(\mathbf{z}^{[l+2]} + \mathbf{a}^{[l]} \right)$$

Figure 3.1: Identity block

If $\mathbf{a}^{[l]}$ has different dimensions than $\mathbf{a}^{[l+2]}$, then multiply $\mathbf{a}^{[l]}$ by an extra matrix W_s

$$\mathbf{a}^{[l+2]} = g^{[l+2]} \left(\mathbf{z}^{[l+2]} + \mathbf{W_s} * \mathbf{a}^{[l]} \right)$$

Figure 3.2: Convolutional block

7 YOLO Object Detection

References: [Ser+13]

YOLO paper: [Red+15]

YOLO stands for "You Only Look Once"

7.1 Notation

 $p_{c}^{[i]}\colon$ the probability that there is an object for box number i (box i confidence probability)

 $c_i^{[i]} \colon$ the probability that the object in box i is a certain class j .

t: maximum number of boxes.

s: number of filtered(selected output boxes).

 n_{grid} : Output grid size (number of grid cells in each row and column).

 $b_x^{[i]}, b_y^{[i]}$: Midpoint coordinates of box i.

 $b_w^{[i]}, b_h^{[i]}$: Height and width of box *i*.

7.2 The Algorithm

Algorithm 7: YOLO

Data: Input image of shape $(n_H, n_W, 3)$ **Result:**

A list of selected bounding boxes along with the recognized classes. Each bounding box is represented by 6 numbers $[p_c, b_x, b_y, b_h, b_w, c]^\mathsf{T}$. If you expand c into an n_{classes} -dimensional vector, each bounding box is then represented by $(5+n_{\text{classes}})$ numbers. The output tensor shape is $(n_{\text{grid}}, n_{\text{grid}}, s, 6)$, where $s \leq t$ and the last two dimensions can be represented by the matrix:

$$\begin{bmatrix} p_c^{[1]} & p_c^{[2]} & \dots & p_c^{[s]} \\ b_x^{[1]} & b_x^{[2]} & \dots & b_x^{[s]} \\ b_y^{[1]} & b_y^{[2]} & \dots & b_y^{[s]} \\ b_h^{[1]} & b_h^{[2]} & \dots & b_h^{[s]} \\ b_w^{[1]} & b_w^{[2]} & \dots & b_w^{[s]} \\ c^{[1]} & c^{[2]} & & c^{[s]} \end{bmatrix}$$

Steps

• The input image goes through a YOLO CNN Model, resulting in a $(n_{\rm grid}, n_{\rm grid}, t, 5 + n_{\rm classes})$ dimensional output. The last two dimensions can be represented as the following matrix:

$$\begin{bmatrix} p_c^{[1]} & p_c^{[2]} & \dots & p_c^{[t]} \\ b_x^{[1]} & b_x^{[2]} & \dots & b_x^{[t]} \\ b_y^{[1]} & b_y^{[2]} & \dots & b_y^{[t]} \\ b_h^{[1]} & b_h^{[2]} & \dots & b_h^{[t]} \\ b_w^{[1]} & b_w^{[2]} & \dots & b_w^{[t]} \\ c_1^{[1]} & c_1^{[2]} & c_1^{[t]} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n_{\text{classes}}}^{[1]} & c_{n_{\text{classes}}}^{[2]} & c_{n_{\text{classes}}}^{[t]} \end{bmatrix}$$

• From the output of the YOLO CNN model, extract the following: - box_confidence: tensor of shape $(n_{\rm grid}, n_{\rm grid}, t, 1)$. The last dimension containing p_c (confidence probability that there's some object) for each of the t boxes predicted in each of the $n_{\rm grid} \times n_{\rm grid}$ cells. The last two dimensions of the tensor can be represented as follows:

$$\begin{bmatrix} p_c^{[1]} & p_c^{[2]} & \dots & p_c^{[t]} \end{bmatrix}$$

- boxes: tensor of shape $(n_{\text{grid}}, n_{\text{grid}}, t, 4)$ containing the midpoint and dimensions $[b_x, b_y, b_h, b_w]^\mathsf{T}$ for each of the t boxes in each cell. The last two dimensions matrix is:

- box_class_probs : tensor of shape

 $(n_{\rm grid}, n_{\rm grid}, t, n_{\rm classes})$ containing the "class probabilities" $(c_1, c_2, ... c_{n_{\rm classes}})$ for each of the $n_{\rm classes}$ classes for each of the t boxes per cell. The last two dimensions can be represented as:

$$\begin{bmatrix} c_1^{[1]} & c_1^{[2]} & c_1^{[t]} \\ c_2^{[1]} & c_2^{[2]} & c_2^{[t]} \\ \vdots & \vdots & \ddots \\ c_{n_{\text{classes}}}^{[1]} & c_{n_{\text{classes}}}^{[2]} & c_{n_{\text{classes}}}^{[t]} \end{bmatrix}$$

• Convert boxes to be ready for filtering functions (convert boxes from midpoint coordinates to corner coordinates):

$$\begin{bmatrix} b_x^{[1]} & b_x^{[2]} & \dots & b_x^{[t]} \\ b_y^{[1]} & b_y^{[2]} & \dots & b_y^{[t]} \\ b_h^{[1]} & b_h^{[2]} & \dots & b_h^{[t]} \\ b_w^{[1]} & b_w^{[2]} & \dots & b_w^{[t]} \end{bmatrix} \Rightarrow \begin{bmatrix} x_1^{[1]} & x_1^{[2]} & \dots & x_1^{[t]} \\ y_1^{[1]} & y_1^{[2]} & \dots & y_1^{[t]} \\ x_2^{[1]} & x_2^{[2]} & \dots & x_2^{[t]} \\ y_2^{[1]} & y_2^{[2]} & \dots & y_2^{[t]} \end{bmatrix}$$

• Calculate score and predicted class for each box:

- Box classes: tensor of shape $(n_{grid}, n_{grid}, t, 1)$ classes[j,k]

$$= \begin{bmatrix} c^{[1]} & c^{[2]} & \dots & c^{[t]} \end{bmatrix}$$

$$= \operatorname{argmax} \begin{pmatrix} \begin{bmatrix} c_1^{[1]} & c_1^{[2]} & & c_1^{[t]} \\ c_2^{[1]} & c_2^{[2]} & & c_2^{[t]} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n_{\text{classes}}}^{[1]} & c_{n_{\text{classes}}}^{[2]} & & c_{n_{\text{classes}}}^{[t]} \end{bmatrix}$$

- Calculate box scores (the probability that the box contains a certain class):

The class score is scores^[i] = $p_c^{[i]} \times c^{[i]}$

scores[j,k]

$$= \begin{bmatrix} p_c^{[1]} & p_c^{[2]} & \dots & p_c^{[t]} \end{bmatrix} \odot \begin{bmatrix} c^{[1]} & c^{[2]} & \dots & c^{[t]} \end{bmatrix}$$

$$= \begin{bmatrix} p_c^{[1]} c^{[1]} & p_c^{[2]} c^{[2]} & \dots & p_c^{[t]} c^{[t]} \end{bmatrix}$$

- Select only few boxes using score-filtering and non-max suppression:
- Perform Score-filtering with a threshold: throw away boxes that have detected a class with a

 $scores^{[i]} < threshold$.

- Non-max suppression:

for each class c_i :

Select the box that has the highest score.

Compute the overlap of this box with all other boxes, and remove boxes that overlap significantly (iou >= iou_threshold).

Iterate until there are no more boxes with a lower score than the currently selected box.

/* The selected boxes count is less than the total number of boxes $s \leq t$ */

8 Face Recognition

8.1 One-Shot Learning

Learning a similarity function d(img1, img2) = degree of difference between images.

If $d(\text{img1, img2}) \begin{cases} \leq \tau & \text{The two images are the same.} \\ > \tau & \text{The two images are the different.} \end{cases}$

8.2 Siamese Network

Paper: [Tai+14]

Goal of Learning

- Parameters of the neural network define an encoding $f(\boldsymbol{X}^{(i)})$ of 128 units.
- Learn parameters so that: If $\boldsymbol{X}^{(i)}, \boldsymbol{X}^{(j)}$ are the same person, $d(\boldsymbol{X}^{(i)}, \boldsymbol{X}^{(j)})$ is small. If $\boldsymbol{X}^{(i)}, \boldsymbol{X}^{(j)}$ are different persons, $d(\boldsymbol{X}^{(i)}, \boldsymbol{X}^{(j)})$ is large.

$$d(\mathbf{X}^{(i)}, \mathbf{X}^{(j)}) = \left\| f(\mathbf{X}^{(i)}) - f(\mathbf{X}^{(j)}) \right\|_{2}^{2}$$

8.3 Triplet Loss

Paper: [SKP15]

Given three input images: an anchor image A, a positive image P and a negative image N,

We want

$$||f(\mathbf{A}) - f(\mathbf{P})||_2^2 + \alpha \le ||f(\mathbf{A}) - f(\mathbf{N})||_2^2$$

$$\therefore ||f(\mathbf{A}) - f(\mathbf{P})||_2^2 + \alpha - ||f(\mathbf{A}) - f(\mathbf{N})||_2^2 \le 0$$

We define triplet loss function as:

$$\mathcal{L}(\boldsymbol{A}, \boldsymbol{P}, \boldsymbol{N}) = \max \left(\|f(\boldsymbol{A}) - f(\boldsymbol{P})\|_{2}^{2} - \|f(\boldsymbol{A}) - f(\boldsymbol{N})\|_{2}^{2} + \alpha, 0 \right)$$
$$= \left[\underbrace{\|f(\boldsymbol{A}) - f(\boldsymbol{P})\|_{2}^{2}}_{(1)} - \underbrace{\|f(\boldsymbol{A}) - f(\boldsymbol{N})\|_{2}^{2}}_{(2)} + \alpha \right]_{+}$$

where,

- The term (1) is the squared distance between the anchor A
 and the positive P for a given triplet; you want this to be
 small.
- The term (2) is the squared distance between the anchor A
 and the negative N for a given triplet, you want this to be
 relatively large. It has a minus sign preceding it because
 minimizing the negative of the term is the same as
 maximizing that term.
- α is called the margin. It is a hyperparameter that you pick manually.

Triplet cost function can be defined as

$$\mathcal{J} = \sum_{i=1}^{m} \mathcal{L}(\boldsymbol{A}^{(i)}, \boldsymbol{P}^{(i)}, \boldsymbol{N}^{(i)})$$

8.4 Face Verification and Binary Classification

Paper: [Tai+14]

Verification: Input is an image and name/ID. Output whether the input image is that of the claimed person.

Recognition: Has a database of K persons. Get an input image and output ID if the image is any of the K persons (or "not recognized").

Learning a Similarity Function for Face Verification

$$\hat{\mathbf{y}} = \sigma \left(\sum_{k=1}^{128} W_k \underbrace{\left| f(\mathbf{X}^{(i)})_k - f(\mathbf{X}^{(j)})_k \right|}_{(1)} + b \right)$$

Term (1) can also be the chi square (χ^2) formula:

$$\chi^{2} = \frac{\left[f(X^{(i)})_{k} - f(X^{(j)})_{k} \right]^{2}}{f(X^{(i)})_{k} + f(X^{(j)})_{k}}$$

9 Neural Image Style Transfer

References: [ZF13], [GEB15]

The goal is to generate an image G from a content image C and a style image S.

9.1 Total Cost Function

$$\mathcal{J}(\boldsymbol{G}) = \alpha \mathcal{J}_{content}(\boldsymbol{C}, \boldsymbol{G}) + \beta \mathcal{J}_{style}(\boldsymbol{S}, \boldsymbol{G})$$

Where $\mathcal{J}_{\text{content}}$ is the content cost and $\mathcal{J}_{\text{style}}$ is the style cost. To find the generated image G:

- ullet Initiate $oldsymbol{G}$ randomly
- Use gradient descent to minimize $\mathcal{J}(\mathbf{G})$:

$$m{G} := m{G} - rac{\partial}{\partial m{G}} \mathcal{J}(m{G})$$

9.2 Content Cost

- Say you use a hidden layer l to compute content cost.
- Use pre-trained ConvNet. (E.g., VGG network).
- Let a^[l](C) and a^[l](G) be the activation of layer l on the images. If they are similar then both images have similar content. The content cost function is:

$$\begin{split} \mathcal{J}_{\text{content}}(\boldsymbol{C}, \boldsymbol{G}) &= \frac{1}{2} \left\| \mathbf{a}^{[l](\boldsymbol{C})} - \mathbf{a}^{[l](\boldsymbol{G})} \right\|_F^2 \\ &= \frac{1}{2} \sum_{i=1}^{n_H^{[l]}} \sum_{i=1}^{n_W^{[l]}} \sum_{k=1}^{n_C^{[l]}} \left(a_{ijk}^{[l](\boldsymbol{C})} - a_{ijk}^{[l](\boldsymbol{G})} \right)^2 \end{split}$$

9.3 Style Cost

Gram matrix

Let $a_{i,j,k}^{[l]}$ be an element of an activation $\mathbf{a}^{[l]}$ of an input image at layer l at (i,j,k). Then the *Gram matrix* $\mathbf{G}_{(\mathrm{gram})}^{[l]}$ has a shape of $n_c^{[l]} \times n_c^{[l]}$ and the matrix elements can be calculated as:

$$G_{(\text{gram})kk'}^{[l]} = \sum_{i=1}^{n_H^{[l]}} \sum_{j=1}^{n_W^{[l]}} a_{ijk}^{[l]} a_{ijk'}^{[l]}$$

Gram matrix captures the degree of correlation between a layer l channels as a measure of the style.

Style Cost Function

First calculate the gram matrix for the style image $G_{(\text{gram})}^{[l](S)}$ and the generated image $G_{(\text{gram})}^{[l](G)}$ for every layer l. Then the style cost function for a layer l is

$$\begin{split} \mathcal{J}_{\text{style}}^{[l]}(\boldsymbol{S}, \boldsymbol{G}) &= \frac{1}{\left(2n_{H}^{[l]}n_{W}^{[l]}n_{c}^{[l]}\right)^{2}} \left\|\boldsymbol{G}_{(\text{gram})}^{[l](\boldsymbol{S})} - \boldsymbol{G}_{(\text{gram})}^{[l](\boldsymbol{G})}\right\|_{F}^{2} \\ &= \frac{1}{\left(2n_{H}^{[l]}n_{W}^{[l]}n_{c}^{[l]}\right)^{2}} \sum_{i=1}^{n_{c}^{[l]}} \sum_{j=1}^{n_{c}^{[l]}} \left(G_{(\text{gram})ij}^{[l](\boldsymbol{S})} - G_{(\text{gram})ij}^{[l](\boldsymbol{G})}\right)^{2} \end{split}$$

And the style cost function for all layers:

$$\mathcal{J}_{ ext{style}}(oldsymbol{S}, oldsymbol{G}) = \sum_{l} \lambda^{[l]} \mathcal{J}_{ ext{style}}^{[l]}(oldsymbol{S}, oldsymbol{G})$$

Chapter 4 Sequence Models

1 Recurrent Neural Networks

1.1 Notation

 $\mathbf{x}^{\langle t \rangle} :$ A one-dimensional input vector of a single example at time step t.

 $\mathbf{y}^{\langle t \rangle}$: Output label at time step t.

 $\hat{\mathbf{y}}^{\langle t \rangle}$: Prediction at time step t.

 $\mathbf{a}^{\langle t \rangle} :$ Hidden state, The activation that is passed to the RNN from one time step to another.

 T_x : Length of input sequence.

 T_y : Length of output sequence.

 n_x : Number of units in input.

 n_y : Number of units in output.

m: batch size.

W: Weight matrix.

b: Bias vector.

1.2 Recurrent Neural Networks

$$\begin{aligned} \mathbf{a}^{\langle t \rangle} &= \tanh \left(\boldsymbol{W}_{\mathbf{a}\mathbf{a}} \mathbf{a}^{\langle t-1 \rangle} + \boldsymbol{W}_{\mathbf{a}\mathbf{x}} \mathbf{x}^{\langle t \rangle} + \mathbf{b}_{\mathbf{a}} \right) \\ &= \tanh \left(\left[\boldsymbol{W}_{\mathbf{a}\mathbf{a}} \mid \boldsymbol{W}_{\mathbf{a}\mathbf{x}} \right] \begin{bmatrix} \mathbf{a}^{\langle t-1 \rangle} \\ \mathbf{x}^{\langle t \rangle} \end{bmatrix} + \mathbf{b}_{\mathbf{a}} \right) \\ &= \tanh \left(\boldsymbol{W}_{\mathbf{a}} \left[\mathbf{a}^{\langle t-1 \rangle}, \mathbf{x}^{\langle t \rangle} \right] + \mathbf{b}_{\mathbf{a}} \right) \end{aligned}$$

$$\begin{split} \hat{\mathbf{y}}^{\langle t \rangle} &= \operatorname{softmax} \! \left(\boldsymbol{W}_{\mathbf{y} \mathbf{a}} \mathbf{a}^{\langle t \rangle} + \mathbf{b}_{\mathbf{y}} \right) \\ &= \operatorname{softmax} \! \left(\boldsymbol{W}_{\mathbf{y}} \; \mathbf{a}^{\langle t \rangle} + \mathbf{b}_{\mathbf{y}} \right) \end{split}$$

RNN Types

Loss Function

$$\mathcal{L}^{\langle t \rangle} \left(\hat{\mathbf{y}}^{\langle t \rangle}, \mathbf{y}^{\langle t \rangle} \right) = -\mathbf{y}^{\langle t \rangle} \log \left(\hat{\mathbf{y}}^{\langle t \rangle} \right) - \left(1 - \mathbf{y}^{\langle t \rangle} \right) \log \left(1 - \hat{\mathbf{y}}^{\langle t \rangle} \right)$$
$$\mathcal{J} \left(\hat{\mathbf{y}}, \mathbf{y} \right) = \sum_{t=0}^{T_y} \mathcal{L}^{\langle t \rangle} \left(\hat{\mathbf{y}}^{\langle t \rangle}, \mathbf{y}^{\langle t \rangle} \right)$$

1.3 Language Model and Sequence Generation

$$P(\text{Sentence}) = P\left(\mathbf{y}^{\langle 1 \rangle}, \mathbf{y}^{\langle 2 \rangle}, \dots, \mathbf{y}^{\langle T_y \rangle}\right)$$

Training

$$P\left(\mathbf{y}^{\langle 1 \rangle}, \mathbf{y}^{\langle 2 \rangle}, \dots, \mathbf{y}^{\langle n \rangle}\right) = P\left(\mathbf{y}^{\langle 1 \rangle}\right) P\left(\mathbf{y}^{\langle 2 \rangle} \mid \mathbf{y}^{\langle 1 \rangle}\right) P\left(\mathbf{y}^{\langle 3 \rangle} \mid \mathbf{y}^{\langle 1 \rangle}, \mathbf{y}^{\langle 2 \rangle}\right)$$
$$\dots P\left(\mathbf{y}^{\langle n \rangle} \mid \mathbf{y}^{\langle 1 \rangle}, \mathbf{y}^{\langle 2 \rangle}, \dots, \mathbf{y}^{\langle n-1 \rangle}\right)$$
$$\mathbf{x}^{\langle t+1 \rangle} = \mathbf{y}^{\langle t \rangle}$$

Loss Function

$$\begin{split} \mathcal{L}^{\langle t \rangle} \left(\hat{\mathbf{y}}^{\langle t \rangle}, \mathbf{y}^{\langle t \rangle} \right) &= -\sum_{i} y_{i}^{\langle t \rangle} \log \hat{y}_{i}^{\langle t \rangle} \\ \mathcal{J} &= \sum_{i} \mathcal{L}^{\langle t \rangle} \left(\hat{\mathbf{y}}^{\langle t \rangle}, \mathbf{y}^{\langle t \rangle} \right) \end{split}$$

Sampling a Sequence from Trained RNN

1.4 Gated Recurrent Unit(GRU)

References: [Cho+14b], [Chu+14]

Notation

 $\mathbf{c}^{\langle t \rangle}$: Memory cell state(variable) at time step t.

 $\tilde{\mathbf{c}}^{\langle t \rangle}$: Candidate value for cell state.Contains information from the current time step that **may** be stored in the current cell state $\mathbf{c}^{\langle t \rangle}$. Contains values between -1 and 1.

 $\Gamma_u^{\langle t \rangle}$: Update gate. Used to decide what aspects of the candidate $\tilde{\mathbf{c}}^{\langle t \rangle}$ to add to the cell state $\mathbf{c}^{\langle t \rangle}$. It contains values that range between 0 and 1.

GRU(Full)

$$\mathbf{c}^{\langle t-1 \rangle} = \mathbf{a}^{\langle t-1 \rangle}$$

$$\boldsymbol{\Gamma}_{u}^{\langle t \rangle} = \sigma \left(\boldsymbol{W}_{\mathbf{u}} \left[\mathbf{c}^{\langle t-1 \rangle}, \mathbf{x}^{\langle t \rangle} \right] + \mathbf{b}_{\mathbf{u}} \right)$$

$$\boldsymbol{\Gamma}_{r}^{\langle t \rangle} = \sigma \left(\boldsymbol{W}_{\mathbf{r}} \left[\mathbf{c}^{\langle t-1 \rangle}, \mathbf{x}^{\langle t \rangle} \right] + \mathbf{b}_{\mathbf{r}} \right)$$

$$\tilde{\mathbf{c}}^{\langle t \rangle} = \tanh \left(\boldsymbol{W}_{\mathbf{c}} \left[\boldsymbol{\Gamma}_{r}^{\langle t \rangle} \odot \mathbf{c}^{\langle t-1 \rangle}, \mathbf{x}^{\langle t \rangle} \right] + \mathbf{b}_{\mathbf{c}} \right)$$

$$\mathbf{c}^{\langle t \rangle} = \mathbf{a}^{\langle t \rangle} = \boldsymbol{\Gamma}_{u}^{\langle t \rangle} \odot \tilde{\mathbf{c}}^{\langle t \rangle} + \left(1 - \boldsymbol{\Gamma}_{u}^{\langle t \rangle} \right) \odot \mathbf{c}^{\langle t-1 \rangle}$$

$$\hat{\mathbf{y}}^{\langle t \rangle} = \operatorname{softmax} \left(\boldsymbol{W}_{\mathbf{y}} \mathbf{a}^{\langle t \rangle} + \mathbf{b}_{\mathbf{y}} \right)$$

1.5 Long Short Term Memory(LSTM)

Paper: [HS97]

Notation

 $\Gamma_f^{\langle t \rangle}$: Forget gate. It contains values that range between 0 and 1.

 $\Gamma_o^{(t)}$: Output gate. Decides what gets sent as the prediction (output) of the time step. It contains values that range between 0 and 1.

 $\mathbf{a}^{\langle t \rangle}$: Hidden state. Values between -1 and 1.

Calculations

$$\begin{split} \tilde{\mathbf{c}}^{\langle t \rangle} &= \tanh \left(\boldsymbol{W}_{\mathbf{c}} \left[\mathbf{a}^{\langle t-1 \rangle}, \mathbf{x}^{\langle t \rangle} \right] + \mathbf{b}_{\mathbf{c}} \right) \\ \boldsymbol{\Gamma}_{u}^{\langle t \rangle} &= \sigma \left(\boldsymbol{W}_{\mathbf{u}} \left[\mathbf{a}^{\langle t-1 \rangle}, \mathbf{x}^{\langle t \rangle} \right] + \mathbf{b}_{\mathbf{u}} \right) \\ \boldsymbol{\Gamma}_{f}^{\langle t \rangle} &= \sigma \left(\boldsymbol{W}_{\mathbf{f}} \left[\mathbf{a}^{\langle t-1 \rangle}, \mathbf{x}^{\langle t \rangle} \right] + \mathbf{b}_{\mathbf{f}} \right) \\ \boldsymbol{\Gamma}_{o}^{\langle t \rangle} &= \sigma \left(\boldsymbol{W}_{\mathbf{o}} \left[\mathbf{a}^{\langle t-1 \rangle}, \mathbf{x}^{\langle t \rangle} \right] + \mathbf{b}_{\mathbf{o}} \right) \\ \mathbf{c}^{\langle t \rangle} &= \boldsymbol{\Gamma}_{u}^{\langle t \rangle} \odot \tilde{\mathbf{c}}^{\langle t \rangle} + \boldsymbol{\Gamma}_{f}^{\langle t \rangle} \odot \mathbf{c}^{\langle t-1 \rangle} \\ \mathbf{a}^{\langle t \rangle} &= \boldsymbol{\Gamma}_{o}^{\langle t \rangle} \odot \tanh \left(\mathbf{c}^{\langle t \rangle} \right) \\ \hat{\mathbf{y}}^{\langle t \rangle} &= \operatorname{softmax} \left(\boldsymbol{W}_{\mathbf{y}} \mathbf{a}^{\langle t \rangle} + \mathbf{b}_{\mathbf{y}} \right) \end{split}$$

1.6 Bidirectional RNN

$$\hat{\mathbf{y}}^{\langle t \rangle} = g \left(\mathbf{W}_{\mathbf{y}} \left[\vec{\mathbf{a}}^{\langle t \rangle}, \vec{\mathbf{a}}^{\langle t \rangle} \right] + \mathbf{b}_{\mathbf{y}} \right)$$

$$\hat{\mathbf{y}}^{\langle 1 \rangle} \qquad \hat{\mathbf{y}}^{\langle 2 \rangle} \qquad \hat{\mathbf{y}}^{\langle T_{y} \rangle}$$

$$\vec{\mathbf{a}}^{\langle 1 \rangle} \qquad \vec{\mathbf{a}}^{\langle 2 \rangle} \qquad \vec{\mathbf{a}}^{\langle T_{x} \rangle} \qquad \vec{\mathbf{a}}^{\langle T_{x} \rangle}$$

1.7 Deep RNNs

 $\mathbf{a}^{[l]\langle t \rangle} = g\left(\mathbf{W}_{\mathbf{a}}^{[l]} \left[\mathbf{a}^{[l]\langle t-1 \rangle}, \mathbf{a}^{[l-1]\langle t \rangle} \right] + \mathbf{b}_{\mathbf{a}}^{[l]} \right)$

2 Natural Language Processing and Word Embeddings

2.1 Notation

 n_v : Vocabulary size.

 n_e : Embedding size, $n_e \ll n_v$.

 \mathbf{o}_i : One-hot vector for a word i. Its' length is n_v .

 $\mathbf{e}_i :$ Feature vector (word embedding vector) for a word $i. \mathrm{Its'}$ length .

is n_e .

O: One-hot matrix, of size $n_v \times n_v$.

E: Embedding matrix, of size $n_e \times n_v$.

2.2 Word Representation

Reference: Visualizing word embeddings [MH08]

2.3 Transfer learning and word embeddings

- Learn word embeddings from a large text corpus. (1 100B words) (Or download pre-trained embedding online.).
- Transfer embedding to new task with smaller training set. (eg. 100k words).
- Optional: continue to fine-tune the word embeddings with new data.

2.4 Properties of Word Embeddings

Reference: [MYZ13].

Analogies using word vectors

 $\mathbf{e}_{\mathrm{man}} - \mathbf{e}_{\mathrm{woman}} \approx \mathbf{e}_{\mathrm{king}} - \mathbf{e}_{w}$

Find a word w that maximizes the similarity function:

$$\underset{w}{\operatorname{arg}} \max_{w} (\sin(\mathbf{e}_{w}, \mathbf{e}_{\operatorname{king}} - \mathbf{e}_{\operatorname{man}} + \mathbf{e}_{\operatorname{woman}}))$$

The similarity function can be one of the following:

• Cosine similarity (more frequently used)

$$sim(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u}^\mathsf{T} \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = cos(\theta)$$

Where θ is the angle between the two vectors.

• Squared distance:

$$sim(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|^2$$

2.5 Embedding Matrix

$$E \cdot \mathbf{o}_i = \mathbf{e}_i$$

In practice we use a specialized function to look up an embedding instead of matrix-vector multiplication.

2.6 A Simple Language Model

Reference: [Ben+03]

Given an input sequence of words for an example i, with

embeddings. $\begin{bmatrix} \mathbf{e}_1^{(i)} & \mathbf{e}_2^{(i)} & \dots & \mathbf{e}_{T_x}^{(i)} \end{bmatrix}$

First, calculate the average of the sequence embeddings:

$$\boldsymbol{\mu}_{\mathbf{e}}^{(i)} = \mathbb{E}\left[\begin{bmatrix} \mathbf{e}_1^{(i)} & \mathbf{e}_2^{(i)} & \dots & \mathbf{e}_{T_x}^{(i)} \end{bmatrix}\right] = \frac{1}{T_x} \sum_{n=1}^{T_x} \mathbf{e}_n^{(i)}$$

Forward propagation:

$$\mathbf{z}^{(i)} = \boldsymbol{W} \boldsymbol{\mu}_{\mathbf{e}}^{(i)} + \mathbf{b}$$

 $\hat{\mathbf{v}}^{(i)} = \mathbf{a}^{(i)} = \operatorname{softmax}(\mathbf{z}^{(i)})$

Loss function:

$$\mathcal{L}\left(\hat{\mathbf{y}}^{(i)}, \mathbf{y}^{(i)}\right) = \sum_{k=1}^{n_y} y_k^{(i)} \log\left(\hat{y}_k^{(i)}\right) = -\mathbf{y}^{(i)\mathsf{T}} \log\left(\hat{\mathbf{y}}^{(i)}\right)$$

Backpropagation:

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{(i)}} &= \mathbf{a}^{(i)} - \mathbf{y}^{(i)} \\ \frac{\partial \mathbf{z}^{(i)}}{\partial \mathbf{W}} &= \boldsymbol{\mu}_{\mathbf{e}}^{(i)} \\ \frac{\partial \mathbf{z}^{(i)}}{\partial \mathbf{b}} &= \vec{\mathbf{1}} \\ \frac{\partial \mathcal{L}}{\partial \mathbf{W}} &= \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{(i)}} \frac{\partial \mathbf{z}^{(i)}}{\partial \mathbf{W}} \\ \frac{\partial \mathcal{L}}{\partial \mathbf{b}} &= \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{(i)}} \frac{\partial \mathbf{z}^{(i)}}{\partial \mathbf{b}} \end{split}$$

2.7 Word2Vec

Reference: [Mik+13b]

Notation:

t: target word, the word we want to predict.

c: context word, n words before and/or after the target word.

Word2Vec Model (Skipgram model)

Vocabulary size : n_v , embedding size: n_e (for Word2Vec $n_e = 300$).

$$\mathbf{o}_c \overset{(E)}{\longrightarrow} \mathbf{e}_c \overset{(\boldsymbol{\Theta})}{\longrightarrow} \mathbf{z} \overset{(\mathrm{softmax})}{\longrightarrow} \mathbf{\hat{y}}$$

Where Θ is parameter matrix, its size is $n_e \times n_v$

$$\mathbf{e}_c = \mathbf{E} \mathbf{o}_c$$

 $\mathbf{z} = \mathbf{\Theta}^\mathsf{T} \mathbf{e}_c$

$$\hat{\mathbf{y}} = \operatorname{softmax}(\mathbf{z}) = \frac{e^{\mathbf{z}}}{\sum_{i=1}^{n_v} e^{z_i}}$$

$$\hat{y}_t = P\left(t|c\right) = \frac{e^{\boldsymbol{\theta}_t^{\mathsf{T}} \mathbf{e}_c}}{\sum_{j=1}^{n_v} e^{\boldsymbol{\theta}_j^{\mathsf{T}} \mathbf{e}_c}}$$

Where θ_j is a column vector of the parameter matrix $\boldsymbol{\Theta}$, θ_t is the parameter vector associated with the output target word t. The downside of the *skipgram* model is that the softmax objective function is expensive to compute.

Loss function

$$\mathcal{L}(\mathbf{\hat{y}}, \mathbf{y}) = -\sum_{i=1}^{n_v} y_i \log(\hat{y}_i) = -\mathbf{y}^\mathsf{T} \log(\mathbf{\hat{y}}_i)$$

2.8 Negative Sampling

Reference: [Mik+13a]

k: Number of negative examples.

y: Target label. 1 for positive example, 0 for negative example.

Model

$$P(y = 1|t, c) = \sigma\left(\boldsymbol{\theta}_t^{\mathsf{T}} \mathbf{e}_c\right)$$

On every iteration, choose k different random negative words with which to train the algorithm on. So the total number of training examples is k+1 (including one positive example).

Selecting Negative Examples

Sample according to the empirical frequency of words in your corpus.

$$P(w_i) = \frac{f(w_i)^{3/4}}{\sum_{j=1}^{n_v} f(w_j)^{3/4}}$$

2.9 GloVe Word Vectors

Reference: [PSM14]

 X_{ij} : Is the number of times word j occurs in the context of

word \underbrace{i}_{c}

It is a count that captures how often do words i and j appear close to each other.

If you define context to be $\pm n$ words after and before target word, then \boldsymbol{X} is symmetric $(X_{ij} = X_{ji})$

Model

Minimize $\sum_{i=1}^{n_v} \sum_{j=1}^{n_v} \underbrace{f(X_{ij})}_{(1)} \left(\boldsymbol{\theta}_i^{\mathsf{T}} \mathbf{e}_j + b_i + b_j' - \log(X_{ij}) \right)^2$

- Term (1), $f(X_{ij})$ is a weighted sum.
- $f(X_{ij}) = 0$ if $X_{ij} = 0$, so the expression evaluates to zero $(0 \log(0) = 0)$.
- θ_i and \mathbf{e}_j are symmetric. They end up with the same optimization objective.
- Initialize θ_w and \mathbf{e}_w at random for every word, run gradient descent to optimize them, then take the average of θ_w and \mathbf{e}_w to calculate the final embedding:

$$\mathbf{e}_w^{\text{(final)}} = \frac{\mathbf{e}_w + \boldsymbol{\theta}_w}{2}$$

2.10 Debiasing Word Embeddings

Word embeddings can reflect gender, ethnicity, age, sexual orientation and other biases of the text used to train the model, so they need to be debiased [Bol+16].

Addressing bias in word embeddings:

Identify the bias direction (gender subspace).
 Collect n pairs of embedding vectors that differ by gender (masculine m and feminine f), subtract them, then average the result to get the bias vector b:

$$\mathbf{b} = \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{e}_{m}^{(i)} - \mathbf{e}_{f}^{(i)} \right)$$

• Neutralize: For every word embedding that is not definitional, project to get rid of bias.

First calculate the bias component e_B

$$\mathbf{e}_B = \operatorname{proj}_{\mathbf{b}} \mathbf{e} = \frac{\mathbf{e} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b}$$

The debiased embedding vector \mathbf{e}^{\perp} is the orthonormal vector to \mathbf{e} it is obtained by zeroing out the component in the direction of \mathbf{b} :

$$\mathbf{e}^{\perp} = \mathbf{e} - \mathbf{e}_{B}$$

• Equalize pairs.

For a pair of words w1, w2 that differ by gender:

$$\begin{split} \mu &= \frac{\mathbf{e}_{w1} + \mathbf{e}_{w2}}{2} \\ \mu_B &= \frac{\mu \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} \\ \mu^\perp &= \mu - \mu_B \\ \mathbf{e}_{w1_B} &= \frac{\mathbf{e}_{w1} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} \qquad \mathbf{e}_{w2_B} = \frac{\mathbf{e}_{w2} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} \\ \mathbf{e}_{w1_B}^{\text{(corrected)}} &= \sqrt{\left|1 - \left\|\mu^\perp\right\|_2^2\right|} \odot \frac{\mathbf{e}_{w1_B} - \mu_B}{\left\|\left(\mathbf{e}_{w1} - \mu^\perp\right) - \mu_B\right\|} \\ \mathbf{e}_{w2_B}^{\text{(corrected)}} &= \sqrt{\left|1 - \left\|\mu^\perp\right\|_2^2\right|} \odot \frac{\mathbf{e}_{w2_B} - \mu_B}{\left\|\left(\mathbf{e}_{w2} - \mu^\perp\right) - \mu_B\right\|} \\ \mathbf{e}_1 &= \mathbf{e}_{w1_B}^{\text{(corrected)}} + \mu^\perp \\ \mathbf{e}_2 &= \mathbf{e}_{w2_B}^{\text{(corrected)}} + \mu^\perp \end{split}$$

3 Various Sequence to Sequence Architectures

3.1 Basic Models

Sequence to sequence model

References: [SVL14], [Cho+14a]

Image Captioning

References: [Mao+14], [Vin+14], [KL15]

3.2 Machine Translation

Building a Conditional Language Model

The model output the conditional probability:

$$P\left(\mathbf{y}^{\langle 1 \rangle}, \dots, \mathbf{y}^{\langle T_y \rangle} \middle| \mathbf{x}^{\langle 1 \rangle}, \dots, \mathbf{x}^{\langle Tx \rangle}\right)$$

In this model you don't sample words at random. Instead you find a sentence **y** that maximizes the conditional probability.

The most common algorithm to do this is called *beam search*

Beam Search

B: Beam width parameter, the number of possibilities for beam search to consider at a time.

Normalized log probability objective function (normalized log likelihood objective):

$$\begin{split} \frac{1}{T_y^{\alpha}} \log P\left(\hat{\mathbf{y}} \middle| \mathbf{x}\right) &= \frac{1}{T_y^{\alpha}} \log P\left(\hat{\mathbf{y}}^{\langle 1 \rangle}, \dots, \hat{\mathbf{y}}^{\langle T_y \rangle} \middle| \mathbf{x}\right) \\ &= \frac{1}{T_y^{\alpha}} \log \prod_{t=1}^{T_y} P\left(\hat{\mathbf{y}}^{\langle t \rangle} \middle| \mathbf{x}, \hat{\mathbf{y}}^{\langle 1 \rangle}, \dots, \hat{\mathbf{y}}^{\langle t-1 \rangle}\right) \\ &= \frac{1}{T_y^{\alpha}} \sum_{t=1}^{T_y} \log P\left(\hat{\mathbf{y}}^{\langle t \rangle} \middle| \mathbf{x}, \hat{\mathbf{y}}^{\langle 1 \rangle}, \dots, \hat{\mathbf{y}}^{\langle t-1 \rangle}\right) \end{split}$$

Algorithm 8: Beam Search

Data: An input sequence \mathbf{x} , its length is T_x

Result: A sequence of predictions $\hat{\mathbf{y}}$, its length is T_y

- 1 Run the input sentence **x** through the encoder network.
- ² Pick the top B words from the first output of the sequence of the decoder network ($\hat{y}^{\langle 1 \rangle}$) with the highest probabilities as the first predicted word in the sequence.
- 3 for sentence lengths T_y starting from 2:
 - keep track of the top B sentences that maximize the normalized log probability objective function (normalized log likelihood objective).

$$\arg\max_{\mathbf{\hat{y}}} \left(\frac{1}{T_y^{\alpha}} \sum_{t=1}^{T_y} \log P\left(\mathbf{\hat{y}}^{\langle t \rangle} \middle| \mathbf{x}, \mathbf{\hat{y}}^{\langle 1 \rangle}, \dots, \mathbf{\hat{y}}^{\langle t-1 \rangle}\right) \right)$$

- Repeat and increment T_y until encountering an end of sentence character $\langle \text{EOS} \rangle$ for all B sentences.
- 6 Finally, pick up one sentence from B sentences with the highest value of normalized log likelihood objective as the final translation output.

Notes:

- To avoid numerical underflow(numerical rounding errors) that results of multiplying many small probability numbers, we maximize the log of probabilities instead.
- $\frac{1}{T_y^{\alpha}}$ is a length normalization term. To prevent objective function from preferring short sentences over long sentences. Reduces the penalty for outputting longer translations.
- α can range between 0 (no normalization) and 1 (full normalization), in practice it is commonly set to 0.7
- Unlike exact search algorithms, beam search runs faster but it is not guaranteed to find the exact maximum for $\arg\max_{\hat{\mathbf{y}}} \left(\frac{1}{T_{c}^{c}} \log P\left(\hat{\mathbf{y}} \middle| \mathbf{x}\right) \right)$

- The larger B , the more possibilities and better results, but the algorithm becomes slower, more computationally expensive and has more memory requirements.
- For production systems B=10, for research B is chosen to be up to 100.

Error Analysis in Beam Search

 y^* : Translation by a human (reference sentence).

Example:

Human: Jane visits Africa in September (y^*) .

Algorithm: Jane visited Africa last September. (\hat{y})

- Case 1: P(y*|x) > P(ŷ|x)
 Beam search chose ŷ. But y* attains higher P(y|x).
 Conclusion: Beam search is at fault.
- Case 2: P(y*|x) ≤ P(ŷ|x)
 y* is better translation than ŷ. But RNN predicted P(y*|x) ≤ P(ŷ|x).
 Conclusion: RNN model is at fault.

3.3 BLEU Score

[Pap+02]

BLEU: bilingual evaluation understudy.

Modified *n*-gram precision (p_n) for sentences:

$$p_n = \frac{\sum_{n-\text{gram} \in \hat{\mathbf{y}}} \text{count}_{\text{clip}}(n\text{-gram})}{\sum_{n-\text{gram} \in \hat{\mathbf{y}}} \text{count}(n\text{-gram})}$$

Where $count_{clip} = min(count, \texttt{Max_ref_count})$. In other words, one truncates each word's count, if necessary, to not exceed the largest count observed in any single reference for that word.

Combined **B**LEU score for n-grams up to length N:

$$\mathbf{B}_{\text{LEU}} = \text{BP} \cdot \exp\left(\frac{1}{N} \sum_{n=1}^{N} \log p_n\right)$$

Where BP: Brevity penalty.

$$BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \le r \end{cases}$$

Where c is the length of the candidate translation (machine translation) and r is the effective reference corpus length (reference output length).

3.4 Attention Model

References: [BCB15], [Xu+15]

Properties of The Model

- Pre-attention and Post-attention RNNs on both sides of the attention mechanism
 - There are two separate RNNs in this model (see figure): pre-attention and post-attention RNNs.
 - Pre-attention Bi-RNN is the one at the bottom of the picture is a Bi-directional RNN and comes before the attention mechanism.
 - * The attention mechanism is shown in the middle of the left-hand diagram.
 - * The pre-attention Bi-RNN goes through T_x time steps
 - Post-attention RNN: at the top of the diagram comes after the attention mechanism.

The post-attention RNN goes through T_y time steps.

- The post-attention RNN passes the hidden state $\mathbf{s}^{\langle t \rangle}$ from one time step to the next.
- Each time step uses predictions from the previous time step.

Notation

 $\overrightarrow{\mathbf{a}}^{\langle t' \rangle}$: hidden state of the forward-direction, pre-attention RNN.

 $\overleftarrow{\mathbf{a}}^{\langle t' \rangle}$: hidden state of the backward-direction, pre-attention RNN.

 $\mathbf{a}^{\langle t'\rangle}$: the concatenation of the activations of both the forward-direction and backward-directions of the pre-attention Bi-RNN.

e: is called the "energies" variable.

 $\mathbf{s}^{\langle t-1 \rangle}$: is the hidden state of the post-attention RNN.

 $\mathbf{a}^{\langle t' \rangle}$: is the hidden state of the pre-attention RNN.

 $\alpha^{\langle t,t' \rangle}$: The attention variable, amount of "attention" $\mathbf{y}^{\langle t \rangle}$ should pay to $\mathbf{a}^{\langle t' \rangle}$.

The Model

Figure 4.1: Attention Model

Figure 4.2: one "attention" step

Algorithm 9: Attention Model

Data: An input sequence \mathbf{x} , its length is T_x **Result:** A sequence of predictions $\hat{\mathbf{y}}$, its length is T_y /* Run the input \mathbf{x} through the pre-attention Bi-RNN to get $[\mathbf{a}^{(1)}, \mathbf{a}^{(2)}, \dots, \mathbf{a}^{(T_x)}]$ */

1 for input time steps $t' = 1, ..., T_x$:

 $\mathbf{a}^{\langle t' \rangle} = \left[\overrightarrow{\mathbf{a}}^{\langle t' \rangle}, \overleftarrow{\mathbf{a}}^{\langle t' \rangle}\right] = \left[\overrightarrow{\overrightarrow{\mathbf{a}}}^{\langle t' \rangle}\right]$

/* Pass the sequence of $\mathbf{a}^{\langle t' \rangle}$ to the post-attention RNN to get the predictions $\hat{\mathbf{y}}^{\langle t \rangle}$ */

- 3 for output time steps $t = 1, ..., T_y$:
- Compute "energies" $e^{\langle t,t' \rangle}$: $\mathbf{s}^{\langle t-1 \rangle}$ and $\mathbf{a}^{\langle t' \rangle}$ are fed into a simple neural network, which learns the function to output $e^{\langle t,t' \rangle}$.

$$e^{\langle t, t' \rangle} = \text{relu}\left(\mathbf{w}_e^{[2]\mathsf{T}} \cdot \tanh\left(\mathbf{W}_{\mathbf{e}}^{[1]}\left[\mathbf{s}^{\langle t-1 \rangle}, \mathbf{a}^{\langle t' \rangle}\right] + \mathbf{b}_{\mathbf{e}}^{[1]}\right) + b_e^{[2]}\right)$$

Calculate the attention variable $\alpha^{\langle t,t'\rangle}$

$$\alpha^{\langle t,t'\rangle} = \frac{\exp\left(e^{\langle t,t'\rangle}\right)}{\displaystyle\sum_{t'=1}^{T_x} \exp\left(e^{\langle t,t'\rangle}\right)}$$

Calculate the context vector $\mathbf{c}^{\langle t \rangle}$

$$\mathbf{c}^{\langle t \rangle} = \sum_{t'=1}^{T_x} \alpha^{\langle t, t' \rangle} \mathbf{a}^{\langle t' \rangle}$$

Pass the computed context vector $\mathbf{c}^{\langle t \rangle}$ to the post-attention RNN and calculate the hidden state $\mathbf{s}^{\langle t \rangle}$.

$$\mathbf{s}^{\langle t
angle} = anh\left(oldsymbol{W_s} \left[\mathbf{s}^{\langle t-1
angle}, \mathbf{c}^{\langle t
angle}, \mathbf{y}^{\langle t-1
angle}
ight] + \mathbf{b_s}
ight)$$

Run the output of the post-attention RNN through a dense layer with softmax activation to generate a prediction $\hat{\mathbf{y}}^{\langle t \rangle}$

$$\hat{\mathbf{y}}^{\langle t \rangle} = \operatorname{softmax} \left(\mathbf{W_y} \mathbf{s}^{\langle t \rangle} + \mathbf{b_y} \right)$$

3.5 Speech Recognition

Reference: [Gra+06]

https://github.com/FadyMorris/formula-sheets DOI: 10.5281/zenodo.3987343

^{© 2020} Fady Morris Ebeid

References		[HS97]	Sepp Hochreiter and Jürgen Schmidhuber. "Long Short-Term Memory". In: Neural Computation 9.8	[PSM14]	Jeffrey Pennington, Richard Socher, and Christopher D. Manning. "GloVe: Global Vectors
[BCB15]	Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. "Neural Machine Translation by Jointly Learning to Align and Translate". In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track	[KB14]	(1997), pp. 1735–1780. DOI: 10.1162/neco.1997.9.8.1735. Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2014. arXiv: 1412.6980 [cs.LG].		for Word Representation". In: Empirical Methods in Natural Language Processing (EMNLP). Vol. 14. Doha, Qatar: Association for Computational Linguistics, Oct. 2014, pp. 1532–1543. DOI: 10.3115/v1/D14-1162. URL: http://www.aclweb.org/anthology/D14-1162.
[Ben+03]	Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2015. arXiv: 1409.0473. Yoshua Bengio et al. "A Neural Probabilistic	[KL15]	Andrej Karpathy and Fei-Fei Li. "Deep Visual-Semantic Alignments for Generating Image Descriptions". In: (2015). URL: https://cs.	[Red+15]	Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object Detection. 2015. arXiv: 1506.02640 [cs.CV].
[Bell 00]	Language Model". In: Journal Of Machine Learning Research 3 (Mar. 2003), pp. 1137-1155. URL: http://www.jmlr.org/papers/volume3/ bengio03a/bengio03a.pdf.	[Mao+14]	stanford.edu/people/karpathy/deepimagesent/. Junhua Mao et al. "Deep Captioning with Multimodal Recurrent Neural Networks (m-RNN)".	[Ser+13]	Pierre Sermanet et al. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. 2013. arXiv: 1312.6229 [cs.CV].
[Bol+16]	Tolga Bolukbasi et al. "Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings". In: <i>CoRR</i> abs/1607.06520 (July 2016). arXiv: 1607.06520.	[MH08]	In: (Dec. 2014). URL: http://www.cs.jhu.edu/ ~ayuille/Pubs15/JunhuaMaoDeepICLR2015.pdf. Laurens van der Maaten and Geoffrey Hinton. "Viualizing data using t-SNE". In: Journal of	[SKP15]	Florian Schroff, Dmitry Kalenichenko, and James Philbin. "FaceNet: A unified embedding for face recognition and clustering". In: 2015 IEEE Conference on Computer Vision and Pattern
[Cho+14a]	Kyunghyun Cho et al. "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation". In: <i>CoRR</i> abs/1406.1078 (2014). arXiv: 1406.1078.		Machine Learning Research 9 (Nov. 2008), pp. 2579-2605. URL: http://www.jmlr.org/papers/ v9/vandermaaten08a.html.		Recognition (CVPR) (June 2015). DOI: 10.1109/cvpr.2015.7298682. arXiv: 1503.03832. URL: http://dx.doi.org/10.1109/CVPR.2015.7298682.
[Cho+14b]	Kyunghyun Cho et al. On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. 2014. arXiv: 1409.1259 [cs.CL].	[Mik+13a]	Tomas Mikolov et al. "Distributed Representations of Words and Phrases and their Compositionality". In: Advances in Neural Information Processing Systems 26. Ed. by C. J. C. Burges et al. Vol. 26.	[SVL14]	Ilya Sutskever, Oriol Vinyals, and Quoc V Le. "Sequence to Sequence Learning with Neural Networks". In: Advances in Neural Information Processing Systems 27. Ed. by Z. Ghahramani
[Chu+14]	Junyoung Chung et al. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. 2014. arXiv: 1412.3555 [cs.NE].	: : : : [Mik+13b]	Curran Associates, Inc., Oct. 2013, pp. 3111–3119. arXiv: 1310.4546 [cs.CL]. Tomas Mikolov et al. "Efficient Estimation of Word	· · ·	et al. Curran Associates, Inc., 2014, pp. 3104-3112. URL: http://papers.nips.cc/paper/5346- sequence-to-sequence-learning-with-neural- networks.pdf.
[GEB15]	Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. A Neural Algorithm of Artistic Style. 2015. arXiv: 1508.06576 [cs.CV].		Representations in Vector Space". In: <i>Proceedings</i> of Workshop at ICLR (Jan. 2013). Ed. by Yoshua Bengio and Yann LeCun. arXiv: 1301.3781.	: [Tai+14]	Y. Taigman et al. "DeepFace: Closing the Gap to Human-Level Performance in Face Verification". In: 2014 IEEE Conference on Computer Vision and
[Gra+06]	Alex Graves et al. "Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks". In: Proceedings of the 23rd International Conference	: : [MYZ13] :	URL: http://arxiv.org/abs/1301.3781. Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. "Linguistic Regularities in Continuous Space Word	· · ·	Pattern Recognition. 2014, pp. 1701-1708. URL: https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf.
	on Machine Learning. ICML '06. Pittsburgh, Pennsylvania, USA: ACM, 2006, pp. 369–376. ISBN: 1-59593-383-2. DOI: 10.1145/1143844.1143891. URL: https:	· · ·	Representations". In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Atlanta, Georgia:	[Vin+14]	Oriol Vinyals et al. "Show and Tell: A Neural Image Caption Generator". In: $CoRR$ abs/1411.4555 (2014). arXiv: 1411.4555.
[He+15]	//www.cs.toronto.edu/~graves/icml_2006.pdf. Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv: 1512.03385		Association for Computational Linguistics, June 2013, pp. 746-751. URL: https://www.aclweb.org/anthology/N13-1090.	[Xu+15]	Kelvin Xu et al. "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention". In: <i>CoRR</i> abs/1502.03044 (2015). arXiv: 1502.03044.
[Hin12]	[cs.CV]. Geoffrey Hinton. Neural Networks for Machine Learning - Lecture 6a - Overview of mini-batch gradient descent. Lecture 6 of the online course "Neural Networks for Machine Learning" on Coursera. 2012. URL: https://www.cs.toronto.edu/~tijmen/csc321/ slides/lecture_slides_lec6.pdf.	[Pap+02]	Kishore Papineni et al. "Bleu: a Method for Automatic Evaluation of Machine Translation". In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. Philadelphia, Pennsylvania, USA: Association for Computational Linguistics, July 2002, pp. 311–318. DOI: 10.3115/1073083.1073135. URL: https://www.aclweb.org/anthology/P02-1040.	[ZF13]	Matthew D Zeiler and Rob Fergus. Visualizing and Understanding Convolutional Networks. 2013. arXiv: 1311.2901 [cs.CV].