16 (a) A student walks from A to B along the path shown in Fig. 2.1.

Fig. 2.1

The student takes time *t* to walk from A to B.

(i)	State the quantity,	apart from	t, that	must be	measured	in	order	to	determine	the
	average value of									

	1. speed,	
		1]
	2. velocity.	
ii)	Define acceleration.	•
	[1]

(b) A girl falls vertically onto a trampoline, as shown in Fig. 2.2.

Fig. 2.2

The trampoline consists of a central section supported by springy material. At time t=0 the girl starts to fall. The girl hits the trampoline and rebounds vertically. The variation with time t of velocity v of the girl is illustrated in Fig. 2.3.

Fig. 2.3

the distance fallen between time t = 0 and when she hits the trampoline,

For the motion of the girl, calculate

		distance = m [2]
	(ii)	the average acceleration during the rebound.
		acceleration = ms ⁻² [2]
(c)	(i)	Use Fig. 2.3 to compare, without calculation, the accelerations of the girl before and after the rebound. Explain your answer.
		[2]
	(ii)	Use Fig. 2.3 to compare, without calculation, the potential energy of the girl at $t = 0$ and $t = 1.85 \text{s}$. Explain your answer.

17 (a) Define

(i)	velocity,	
(ii)	acceleration.	
		[1]

(b) A car of mass 1500 kg travels along a straight horizontal road. The variation with time *t* of the displacement *x* of the car is shown in Fig. 3.1.

Fig. 3.1

(i)	Use Fig. 3.1 to describe qualitatively the velocity of the car during the first seconds of the motion shown. Give reasons for your answers.	six
		[3]
(ii)	Calculate the average velocity during the time interval $t = 0$ to $t = 1.5$ s.	
	average velocity = ms ⁻¹	[1]
(iii)	Show that the average acceleration between $t = 1.5 \mathrm{s}$ and $t = 4.0 \mathrm{s}$ is $-7.2 \mathrm{m}\mathrm{s}^{-2}$.	
		[2]
(iv)		[-]
(,		
	force = N	[0]
	1010 0 –	[ک]

18	(a)(i)	Define <i>velocity</i> .
	(ii)	Distinguish between <i>speed</i> and <i>velocity</i> .

(b) A car of mass 1500 kg moves along a straight, horizontal road. The variation with time *t* of the velocity *v* for the car is shown in Fig. 1.1.

Fig. 1.1

The brakes of the car are applied from t = 1.0 s to t = 3.5 s. For the time when the brakes are applied,

(i) calculate the distance moved by the car,

	(ii) calculate the magnitude of the resultant force on the car.	
	resultant force =	N [3]
((c) The direction of motion of the car in (b) at time $t = 2.0 \mathrm{s}$ is shown in Fig. 1.	2.
	direction of motion	
	Fig. 1.2	
	On Fig. 1.2, show with arrows the directions of the acceleration (label this resultant force (label this arrow F).	s arrow A) and the [1]
19 (a	(a) Explain what is meant by a <i>scalar</i> quantity and by a <i>vector</i> quantity.	
	scalar:	
	vector:	
		[2]
(b)	A ball leaves point P at the top of a cliff with a horizontal velocity of 15 m Fig. 2.1.	

Fig. 2.1

The height of the cliff is 25 m.	The ball	hits the	ground	at point	Q.
Air resistance is negligible.					

(i)	Calculate the vertical velocity	y of the ball	just before it makes	impact with the	ground at Q

(ii) Show that the time taken for the ball to fall to the ground is 2.3s.

[1]

(iii) Calculate the magnitude of the displacement of the ball at point Q from point P.

displacement = m [4]

(iv) Explain why the distance travelled by the ball is different from the magnitude of the displacement of the ball.

.....[2]