For Reference

NOT TO BE TAKEN FROM THIS ROOM

For Reference

NOT TO BE TAKEN FROM THIS ROOM

Ex ubris universitatis aubertaeasis

Digitized by the Internet Archive in 2018 with funding from University of Alberta Libraries

162

THE UNIVERSITY OF ALBERTA

A MODEL STUDY OF AN UNCONSOLIDATED SANDSTONE SYSTEM

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF SCIENCE IN PETROLEUM ENGINEERING

DEPARTMENT OF CHEMICAL AND PETROLEUM ENGINEERING

bу

K.C.G. PRITCHARD

EDMONTON, ALBERTA FEBRUARY, 1962

ABSTRACT

There is little data in the literature regarding the performance of a nine-spot water flood project. The ultimate objective of this research was to obtain such data, with special emphasis on oil recovery after water breakthrough.

Before such data was obtained, several preliminary investigations were undertaken on the sand-fluid system, utilizing synthetic core models. Good capillary pressure and effective permeability characteristics were obtained, although they deviated somewhat from literature results reported on unconsolidated sandstones. An investigation of the rate of injection at which oil recovery is rate independent was carried out. Results showed that this type of critical rate did not exist for this system but rather that there was an optimum rate with recovery declining at high rates: some attempt is made to account for this phenomenon.

Four well patterns were studied on the two dimensional sand models: confined five-spot, isolated five-spot, line drive, and nine-spot. Two models and two viscosity oils were used. High recoveries to breakthrough were experienced on all isolated floods run on the low viscosity oil and the small model. Some postulates regarding this are put forward. For three floods run on the same sand-fluid system, the line-drive was more efficient than the five-spot or nine-spot. Although a universal nine-spot correlation for areal sweep efficiency as a function of water injected was not obtained for a wide range of mobility ratio, several general conclusions are made regarding the performance of these floods.

ACKNOWLEDGEMENTS

The writer wishes to express his gratitude to Dr. D.L Flock,
Department of Chemical and Petroleum Engineering, University of Alberta,
under whose direction this research project was undertaken.

Thanks are also due to Mr. Frank Butz, Mr. Ray Kirby, and the technical staff of the Chemical and Petroleum Engineering shop for their assistance in the design and construction of equipment. The writer is also indebted to many friends and colleagues who gave of their time and knowledge in making helpful suggestions and construction criticisms regarding both the experimental techniques employed and the results obtained.

TABLE OF CONTENTS

	page
List of Tables	i
List of Figures	iii
INTRODUCTION	1
STUDY OF FUNDAMENTAL RESERVOIR PROPERTIES	14
Capillary Pressure	4
Theory	4
Experimental Procedure and Apparatus	6
Discussion of Results	7
Absolute, Effective, and Relative Permeabilities	13
Critical Rate	15
MODEL WATER-FLOOD STUDIES	25
Description of the Apparatus	25
Definition of Efficiency Terms	26
Literature Review	30
Calculation of Displacement Efficiency	36
EXPERIMENTAL RESULTS	44
Confined Five-Spot Flood	44
Isolated Five-Spot Flood	45
Discussion of the Two Assumptions	46
Line Drive Flood	46
Isolated Nine-Spot Floods	56
Comparison of the Three Isolated Patterns	58

	page
Postulates Regarding the High Breakthrough Recoveries	67
Imbibition into the Sand	67
Well Design	67
General Notes	68
The Applicability of the Displacement Efficiency Correction	69
RECOMMENDATIONS FOR FUTURE INVESTIGATIONS	72
CONCLUSIONS	74
Fundamental Reservoir Properties	74
Capillary Pressure	74
Effective Permeability	75
Critical Rate	75
Model Water-Flood Studies	75
REFERENCES CITED	78
APPENDIX	80

LIST OF TABLES

			page
Table	1	Capillary Pressure Core: Calibration Data.	81
Table	2	Resistivity Readings After Drainage, and Conversion to Water Saturations.	82
Table	3	Leverett's J-Function: Calculation of the Constant for the Unconsolidated Sandstone.	82£
Table	4	Converting Capillary Pressure into the J-Function.	83
Table	5	Calculation of Absolute and Effective Permeabilities.	84
Table	6	Effective Permeability Tests: Calculation of Fluid Saturations.	86
Table	7	Calculation of Relative Permeabilities.	87
Table	8	Experimental Fractional-Flow Data.	.88
Table	9	Fractional-Flow Calculations for Three Oil Viscosities.	89
Table	10	Production History of the Several Critical Rate Tests.	90
Table	11	Geometric and Reservoir Properties of the Two Models.	93
Table	12	The Calculation of Displacement Efficiency from the Fractional-Flow Curves.	94
Table	13	The Calculation of Breakthrough Mobility Ratios	96
Table	14	Confined Five-Spot Flood: Production History.	97
Table	15	Confined Five-Spot Flood: Calculation of $E_{\rm s}$, $E_{\rm as}$, and $Q/Q_{\rm bt}$.	98
Table	16	Isolated Five-Spot Flood: Production History	100
Table	17	Isolated Five-Spot Flood: Calculation of E_s , E_{as} , and Q/Q_{bt} .	101
Table	18	Line Drive Flood: Production History.	102

			page
Table 19	Line Drive Flood: Calcul and Q/Qbt.	ation of E _s , E _{as} ,	103
Table 20	Nine-Spot Flood No. 2-1: History.	Total Production	104
Table 21	Nine-Spot Flood No. 2-1: Direct Offset Wells.	Production History,	105
Table 22	Nine-Spot Flood No. 2-1: Diagonal Offset Wells.	Production History,	106
Table 23	Nine-Spot Flood No. 2-1: E_{as} , and Q/Q_{bt} .	Calculation of E_s ,	107
Table 24	Nine-Spot Flood No. 2-2:	Production History.	110
Table 25	Nine-Spot Flood No. 2-2: Eas, and Q/Qbt.	Calculation of E _s ,	111
Table 26	Nine-Spot Flood No. 2-3: History.	Total Production	112
Table 27	Nine-Spot Flood No. 2-3: Direct Offset Wells.	Production History,	113
Table 28	Nine-Spot Flood No. 2-3: Diagonal Offset Wells.	Production History,	114
Table 29	Nine-Spot Flood No. 2-3: E_{as} , and Q/Q_{bt} .	Calculation of E _s ,	115
Table 30	Nine-Spot Flood No. 2-4: History.	Total Production	116
Table 31	Nine-Spot Flood No. 2-4: Direct Offset Wells.	Production History,	118
Table 32	Nine-Spot Flood No. 2-4: Diagonal Offset Wells.	Production History,	120
Table 33	Nine-Spot Flood No. 2-4: E_{as} , and Q/Q_{bt} .	Calculation of E_s ,	122

LIST OF FIGURES

			page
Figure	1	Capillary Pressure Apparatus: Detail of the Synthetic Core and Calibration Set-Up.	8
Figure	2	Capillary Pressure Apparatus: Gravity Drainage Set-Up and Wiring Diagram.	9
Figure	3	Calibration Points (R_{o}/R vs. S_{w}) on a Log-Log Plot.	10
Figure	4	Calibration Points ($R_{\rm O}/R$ vs. $S_{\rm W}$) on an Arithmetic Plot.	11
Figure	5	Capillary Pressure Results Compared to Leverett's J-Function.	12
Figure	6	Effective Permeability and Critical Rate Apparatus.	19
Figure	7	Experimental Effective Permeability Curves.	20
Figure	8	Relative Permeabilities.	21
Figure	9	Experimental and Calculated Fractional-Flow Data.	22
Figure	10	Production Histories of the Several Critical Rate Tests.	23
Figure	11	Critical Rate: Oil Recovery as a Fraction of Pore Volume Versus Rate of Injection, with Producing Water-Oil Ratio as a Parameter.	24
Figure	12	Photographs of the Flood Front.	28
Figure	13	Schematic Diagram of the Two Dimensional Models Showing the Various Well Patterns Used.	29
Figure	14	Potentiometric Model Results of 1/4 of a Five-Spot Pattern (after Wykoff, Botset and Muskat).	37
Figure	15	Isolated, Inverted Five-Spot: Flood Fronts, Flow Lines and Isopotentials.	38
Figure	16	Sweep Efficiency Versus Mobility Ratio with Injected Volumes as a Parameter (after Dyes et al).	39
Figure	17	The Ratio of the Volume of Water Injected to the Volume Injected at Breakthrough (Q/Q_{bt}) Versus the Areal Sweep Efficiency (E_{as}) for a Variety of Mobility Ratios (after Craig et al).	40

		barke
Figure 18	Calculated Fractional-Flow Curves for Two Oil Viscosities.	41
Figure 19	Displacement Efficiency Versus Producing Water- Oil Ratio, Low Viscosity Oil.	42
Figure 20	Displacement Efficiency Versus Producing Water- Oil Ratio, High Viscosity Oil.	43
Figure 21	Confined Five-Spot Flood: Producing Water-Oil Ratio Versus Oil Recovered and Water Injected.	48
Figure 22	Confined Five-Spot Flood: Total and Areal Sweep Efficiencies (E _s , E _{as}) Versus the Ratio of the Volume of Water Injected to the Volume of Water Injected to Breakthrough.	49
Figure 23	Confined Five-Spot Flood: Areal Sweep Efficiency Versus Injection Ratio: Experimental Data Modified and Compared to Dyes et al and Craig et al.	50
Figure 2	Isolated Five-Spot Flood: Producing Water-Oil Ratio Versus Oil Recovered and Water Injected.	51
Figure 25	Isolated Five-Spot Flood: Total and Areal Sweep Efficiencies (E_s , E_{as}) Versus the Ratio of the Volume of Water Injected to the Volume of Water Injected to Breakthrough (Q/Q_{bt}).	52
Figure 26	Isolated Five-Spot Flood: Areal Sweep Efficiency Versus Injection Ratio: Experimental Data Modified and Compared to Dyes et al and Craig et al.	53
Figure 27	Line Drive Flood: Producing Water-Oil Ratio Versus Oil Recovered and Water Injected.	54
Figure 28	Line Drive Flood: Total and Areal Sweep Efficiencies (E_s, E_{as}) Versus the Ratio of the Volume of Water Injected to the Volume of Water Injected to Breakthrough.	·55
Figure 29	Nine-Spot Flood No. 2-1: Producing Water-Oil Ratio Versus Oil Recovered and Water Injected.	59
Figure 30	Nine-Spot Flood No. 2-1: Total and Areal Sweep Efficiencies (E _s , E _{as}) Versus the Ratio of the Volume of Water Injected to the Volume of Water Injected to Breakthrough.	60

		page
Figure 31	Nine-Spot Flood No. 2-3: Producing Water-Oil Ratio Versus Oil Recovered and Water Injected.	61
Figure 32	Nine-Spot Flood No. 2-3: Total and Areal Sweep Efficiencies (E_s , E_{as}) Versus the Ratio of the Volume of Water Injected to the Volume of Water Injected to Breakthrough (Q/Q_{bt}).	62
Figure 33	Nine-Spot Flood No. 2-4: Producing Water-Oil Ratio Versus Oil Recovered and Water Injected.	63
Figure 34	Nine-Spot Flood No. 2-4: Total and Areal Sweep Efficiencies (E_s , E_{as}) Versus the Ratio of the Volume of Water Injected to the Volume of Water Injected to Breakthrough.	64
Figure 35	Areal Sweep Efficiency Versus Injection Ratio for Two Nine-Spot Floods Run on the Same Sand- Fluid System Using Different Models.	65
Figure 36	Areal Sweep Efficiency Versus Injection Ratio for Three Different Well Patterns Run on the Same Sand-Fluid System.	66
Figure 37	Schematic Drawing of an Hypothetical Two Well Confined System.	71
Figure 38	Surface Tension of an NaCl Brine Versus Concentration.	124
Figure 39	Viscosity of Water Versus Temperature.	125

INTRODUCTION

Many of the fundamental properties of an oil reservoir are evaluated by core analysis. The techniques and apparatus used have been readily adapted to studying the effects of water flooding in core specimens. While this work indicated many of the effects and phenomena of the process, it has proven difficult to apply the results of these linear investigations to a two dimensional oil field project except in the most qualitative manner.

In an attempt to introduce the concept of two dimensional flow, investigators utilized potentiometric, electrolytic, and mathematical models. Several analogies between electrical flow, heat flow, and fluid flow have been devised. However, in spite of this abundance of data, it became evident that if the many variables encountered in secondary recovery projects were to be adequately studied, laboratory equipment which more closely resembled the actual field operation must be used. This lead to the advent of the two dimensional geometric or flow model. Early work on these models utilized unit patterns (such as 1/4 of a five-spot pattern) and, by assuming symmetry, the drilled out pattern and its performance would be evaluated. Lately the trend has been to duplicate well patterns in their entirety and even whole fields on a single model.

Reservoir models have not been extensively scaled to field prototypes. However, several attempts at dimensional analysis and the use of dimension-less groupings of fundamental properties have been made. To date there is much controversy as to what properties should be scaled and which may be ignored. However, it is conceivable that, with time, the scaling of model

oil reservoirs will be as thoroughly undertaken as the scaling of hydraulic apparatus and transportation vehicles; with the same success in designing and interpretting the performance of the prototype.

The most important pattern on which secondary recovery is undertaken is the "five-spot". This refers to a unit of five wells located on a square pattern; one well at each corner and one in the center. In the isolated case, a central producing well surrounded by injection wells is the normal five-spot; a central injection well surrounded by producers is the inverted pattern. A similar pattern is referred to as the "nine-spot". It is a unit of nine wells on a square pattern, as above, except now there are wells midway along each of the sides of the square. Much research has been done on the five-spot pattern -- although the field is by no means exhausted. To the writer's knowledge little published work is available on the nine-spot pattern.

For this reason, the present research was set up to ultimately investigate the relationship between sweep efficiency and the volume of injection water for a nine-spot water flood project. Before this data was taken, however, it was thought desirable to investigate several preliminary properties of the sand-fluid system to be used in the model studies. A set of experiments, utilizing synthetis core models, was devised and investigations were undertaken of capillary pressure, effective permeabilities and critical rate.

From a literature review it was found that the term sweep efficiency was ambiguous in many cases. Indeed, several component efficiencies made up the efficiency of a water flood project. It was resolved to investigate these components to see if they could be evaluated separately. Sweep

efficiency data was obtained for each of three well patterns: five-spot, line drive, and nine-spot.

From the above preamble it can be seen that the study was carried out in two phases:

- 1. One dimensional flow studies through synthetic core models, and
- 2. Two dimensional flow studies through sand packed reservoir models.

STUDY OF FUNDAMENTAL RESERVOIR PROPERTIES

CAPILLARY PRESSURE

Theory

Capillary pressure is a combination of surface tension and wettability effects. It has been described as: "the capillary suction exerted by a wetting phase holding it within the interstices of the rock" (11). The adhesion tension or attractive force between the rock and the fluids indicates which fluid will wet a given rock type. This leads to the concept of preferential wettability. Where two fluids are present with a solid phase, preferential wettability is measured as a function of the contact angle which the interface between the fluids makes with the rock. By definition the contact angle is measured through the denser liquid phase. This indicates that if the adhesive tension is large and the contact angle small, the denser phase will wet the rock surface.

For capillary tubes, the capillary pressure has been related to the surface tension and wetting angle by the relationship:

$$P_{c} = \frac{2\delta \cos \theta}{r} \qquad (1)$$

where P_c is the capillary pressure

Y is the surface tension

cos 0 is the wetting angle

r is the radius of the capillary tube

In a porous medium the fluids exist in spaces which are capillary in size so that the analogy between a bundle of capillaries has often been used. In an attempt to relate capillary pressure to wetting angle and inter-

facial tension for a porous medium Leverett (14, 15) proposed his "J-function".

This J-function is a dimensionless grouping of surface tension, capillary pressure, wetting angle, porosity and permeability as follows:

$$J = \frac{\Delta \rho g h}{\chi \cos \theta} \qquad \frac{k}{\phi} \qquad (2)$$

where Δρ is the difference in density between the fluids.

g is the acceleration of gravity

h is the height above some datum.

 $P_c = \Delta \rho g h$, capillary pressure dynes/cm²

Y = interfacial tensions, dynes/cm.

k = permeability, cm²

 ϕ = fractional porosity

0 = contact angle

This J-function was originally proposed as a universal correlation for porous media. Most unconsolidated sandstones do fall in the same range as Leverett's curve but work by Rose and Bruce (22) and Brown indicates that there is considerable variation in the J-function for different porous media.

The problem was to obtain the capillary pressure characteristics for the 30-60 mesh Ottawa sand with which the various synthetic cores and models were constructed. More explicitly, it was to measure capillary pressure as a function of water saturation. Several methods have been devised. One is the Purcell mercury injection apparatus (20); another is the porous plate, gravity drainage method (19). For an unconsolidated sediment, neither of these methods can be used. The method which is particularly useful in this case utilizes a long vertical synthetic core or sand packed tube.

The pressure varies over the length of the sand pack, from top to bottom as the head of wetting fluid and after a long period of drainage or imbibition a wide range of saturations is present over the length of the core.

As indicated above, the capillary pressure at any point will be the height of the wetting phase above some datum (in this case the discharge end). The problem reduces to one of measuring the saturations of the wetting phase. Some attempts at this have utilized removable sections of core which could be weighed. However, using this technique, it is difficult to minimize loss of fluid.

A method which utilizes the relationship between resistivity and saturation has been used by some workers (15, 12). Archie (2) has put forth the following empirical formula, which is widely used in logging work:

$$S_{W} = \left[\frac{R_{O}}{R}\right]^{1/n} \qquad (3)$$

S, is the water saturation

 ${\rm R}_{\rm O}$ is the resistivity of the formation when it is entirely saturated with water

R is the resistivity of the formation at water saturation $S_{\overline{W}}$

n is the saturation exponent, generally assumed to be 2.0

Experimental Procedure and Apparatus

To evaluate the capillary pressure properties of the unconsolidated sandstone system, it was decided to use apparatus modified after Leverett⁽¹⁵⁾ and Flock⁽¹²⁾. That is, a lucite tube was fitted with screen electrodes throughout its length (see Figure 1) and packed with the Ottawa sand to a maximum density. This maximum density pack was obtained by aggitating the sand as it was introduced under water.

Rather than use the empirical Archie equation, it was decided to calibrate the core by taking a series of resistance measurements at known saturations. An air-brine mixture was passed through the core (see Figure 1) until equilibrium had been attained. The resistance of each segment was then measured and recorded. The overall saturation of the core was obtained by weighing. If the core followed the Archie relationship, these data plotted on log-log paper should result in a straight line with slope of 1/n.

Basically, the electrical apparatus consisted of a resistance box used in conjunction with a bridge (see Figure 2). A constant current input was maintained by means of an AC oscillator operating at 100 cps. The resistance box was adjusted until the same voltage reading was obtained in both circuits. As the water saturation of the core was reduced, the resistance of each core segment increased and correspondingly larger settings of the box were required.

Discussion of Results

Figure 3 shows the calibration points plotted on log-log paper.

As can be seen, they do not fall on the straight line as expected although possibly some best fit straight line could be passed through them. Figure 4 shows the same data plotted on arithmetic paper. As a reasonably uniform curve can be fitted to these points, these curves were used as the calibration rather than the semi-empirical log-log plot. In order to eliminate end-effects, the end segments were calibrated separately.

To compare the results with those of Leverett, the drainage capillary pressure was converted into the J-function (see Tables 3 and 4). The results are plotted in Figure 5. As can be seen, the J-function of the sand pack is not identical to Leverett's. The points are lower in all cases, although the general shape of the curve is the same.

DETAIL OF THE SYNTHETIC CORE

FIG. 1 CAPILLARY PRESSURE APPARATUS DETAIL OF
THE SYNTHETIC CORE AND CALIBRATION SET-UP

FIG. 2 CAPILLARY PRESSURE APPARATUS GRAVITY

DRAINAGE SET-UP AND WIRING DIAGRAM

FIG. 5 CAPILLARY PRESSURE RESULTS

COMPARED TO LEVERETT'S J-FUNCTION

ABSOLUTE, EFFECTIVE, AND RELATIVE PERMEABILITY

Multi-phase flow in porous media has lead to the concept of effective permeability. In this concept each fluid is considered to be independent of the other fluids in the flow network. The fluids are also considered immiscible so that Darcy's law may be applied to each phase. Absolute permeability refers to a porous medium which is fully saturated with a homogeneous, single phase fluid. It has been found, experimentally, that the absolute permeability varies widely with the effective permeability even when the second phase is immobile, as in the case of a connate water or a residual oil saturation. Relative permeability is the ratio of the effective permeability to the absolute permeability, at any saturation. Relative permeability at the connate water saturation; or for the water phase, as the ratio of the effective permeability to the effective permeability at the residual oil saturation.

The apparatus (Figure 6) consisted of a sand packed lucite tube used in conjunction with two Ruska constant rate pumps. It was possible to inject two liquids simultaneously but at different rates. A mercury manometer was used to measure pressures. The effective permeabilities were obtained by evaluating the Darcy equation for each phase, at each point.

where k is the effective permeability, darcies

Q is the flow rate of the phase in question, cc/sec.

u is the viscosity of the phase in question, centipoise.

L is the length of the core, cm.

A is the cross-sectional area, cm^2 .

 ΔP is the pressure differential, atmospheres.

The results are presented in Tables 5 and 6, and are plotted as Figure 7. Saturations were obtained by keeping a close material balance of fluids injected and produced.

The relative permeability, as a ratio to the absolute permeability was computed (see Table 7). Relative permeabilities were also calculated using the effective permeabilities to oil and water at the connate water saturation and residual oil saturation respectively. Both sets of curves are compared to Leverett's in Figure 8.

These same data were used to construct an experimental fractionalflow curve (Table 8). These experimental points are compared to a calculated
curve (see Figure 9). The calculated points were obtained (Table 9) from the
fractional flow formula:

where fw = the fraction of water flowing

k_O = effective permeability to oil

kw = effective permeability to water

 μ_0 = oil viscosity

 μ_{W} = water viscosity

The above equation ignores the capillary and gravity terms. The effective permeabilities were read from Figure 7. As can be seen from Figure 9, the calculated curve verifies the experimental data as all the experimental points fit the curve closely.

CRITICAL RATE

Rapoport and Leas (21) found that for a linear flood recovery varied with length, rate, and viscosity of the displacing phase; for a given porous medium and a given water-oil viscosity ratio. They also found that for floods with the same Lv μ_w product, the production behavior was similar and that equal injection volumes resulted in equal recoveries. This resulted in their proposal of Lv μ_w as a general scaling coefficient for model tests. They further discovered that at some critical value of Lv μ_w recovery was independent of this factor; this is referred to as the critical scaling coefficient. The use of $\frac{\text{Lv}\mu_w}{\delta \cos \theta}$ as a dimensionless scaling factor has been proposed (13). However, difficulty exists in obtaining accurate contact angle and interfacial tension data, so that the scaling coefficient is usually used in its original form.

The same experimental set-up as for the effective permeability tests was used (Figure 6). As length and water viscosity were constant for all tests, it remained only to determine the critical rate. Recovery and water-oil ratios were recorded for a variety of different rates.

The production histories of these several tests are presented in Table 10 and Figure 10. The relationship between recovery and rate, with producing water-oil ratio as a parameter, was obtained by cross-plotting Figure 10 and is presented as Figure 11.

As can be seen, recovery increases with rate to a maximum as expected. However, beyond this point there is a decrease in recovery with increasing rate. The phenomenon is much more pronounced at breakthrough but at high water-oil ratios the system behaves more closely to the Rapoport data.

The increase of recovery with rate is generally attributed to capillary forces. From their laboratory results, Rapoport and Leas (21) developed the following unsteady state equation for flow through porous media:

where $T = \frac{tv}{L\phi}$; the accumulated injection at time t expressed as a fraction of total pore volume.

X = x/L; distance expressed as a fraction of length.

S = saturation of the wetting phase.

 $C = viscosity ratio \mu_O/\mu_W$

 $F = 1 + \text{the mobility ratio; } 1 + \frac{k_0}{C k_W}$

All other terms as defined previously.

It can be seen that as $Lv\mu_W$ increases and approaches infinity, the third term becomes negligible so that at some rate (assuming L and μ_W as constant):

$$\frac{\partial S}{\partial T} + \frac{\partial F}{\partial S} \frac{\partial S}{\partial X} = 0 \dots (7)$$

This indicates that if the rate is large enough the capillary pressure term becomes negligible. At rates below this, it is probable that capillary pressure gradients result in water flowing preferentially ahead of the front. Such gradients are the result of changes in saturation at the flood front, degree of preference of the sand to be water wet, pore size and geometry, and the interfacial tension between oil and water.

Little data is available regarding the relationship between recovery and rate of displacement at high rates. Some possible explanations for the phenomenon are:

1. Capillary Pressure

From Figure 11, it can be seen that the deviation in recovery with rate is much more pronounced at breakthrough. At high water-oil ratios, where the saturation of the core is approaching that of the residual oil, the effect is much smaller. A casual examination of the fractional flow formula indicates that this is to be expected:

$$f_{W} = \frac{1 - \frac{k_{O}}{\mu_{O} \text{ qt}} \left(\frac{\partial P_{C}}{\partial L} + g \Delta \rho \sin \alpha \right)}{1 + \frac{k_{O} \mu_{W}}{k_{W} \mu_{O}}} \dots (8)$$

where q_t is the rate of the total flow stream.

a is the angle of dip.

All other terms as defined previously.

As q_t increases the capillary pressure term in the numerator decreases. At high water-oil ratios or as the saturation of the system approaches that of the residual oil, the capillary pressure effects become negligible. Possibly at breakthrough, saturations and total recovery are low enough so that capillary pressure gradients result in preferential water production even at high displacement rates.

2. Turbulence

It has been recognized that for gas flow through a porous medium, turbulence does occur in the vicinity of the well bore. However, for liquid flow through porous media, only flow in the laminar region has been reported. Possibly at very high rates, turbulence does exist and the decline in recovery at high rates is a result of the onset of turbulence.

3. Instability of the Flood Front

It is well known, especially in miscible floods, that fingering can occur at the flood front. Scheidegger (23) gives the following definition of fingering: "Protuberences may arise which shoot through the porous medium at relatively great speed, leaving behind large amounts of the liquid intended to be displaced. This phenomenon is commonly referred to as fingering". Scheidegger further concludes that the initial growth of fingers is conditioned by two effects: the rate of starting of fingers due to heterogenieties of the porous medium and prevailing flow potentials. It is possible that at high rates both these conditions are of sufficient magnitude to cause fingering and hence the low oil recoveries.

4. Equipment Design

The fluids were injected into the core through a point source.

Immediately ahead of this inlet is a porous bronze plate which is to disperse the fluid over the entire cross-sectional area of the core. It is possible that, at high rates, the injection fluid enters the core as a jet and displaces fluid only over a cross-sectional area of the same magnitude as the orifice.

This could account for the early breakthrough to water at high rates.

APPARATUS PERMEABILITY AND CRITICAL RATE EFFECTIVE

FIG. 7 EXPERIMENTAL EFFECTIVE PERMEABILITY CURVES

O ABSOLUTE PERMEABILITY = 40.7 d

◆ ABSOLUTE PERMEABILITY = 40.7 d

• EFFECTIVE PERMEABILITY = 18.2 d

EFFECTIVE PERMEABILITY = 19.3 d

---- LEVERETT'S CURVES

FIG. 8 RELATIVE PERMEABILITIES

FIG. 9 EXPERIMENTAL AND CALCULATED FRACTIONAL-FLOW DATA

MODEL WATER-FLOOD STUDIES

Two models were used and shall be referred to as "the large model" and "the small model" for the remainder of this report. Dimensions and other data are included in Table 11. It was originally hoped that the flood front might be visually observed by using a water soluble dye. However, attempts using dyed water met with only moderate success. The use of a fluorescene tracer dye and an ultraviolet lamp resulted in only a vague suggestion of the location of the flood front. A more successful dye was used on the large model. In this case, although the front was visible and could be mapped, the sand pack retained the dye -- resulting in a one run process. Figure 12 shows the location of the flood front at various times as it was observed during this test. The dark pattern around the injection well is due to the dye being adsorbed on the sand.

Data taken on the model consisted of records of the water injected, oil and water produced, and producing water-oil ratios. These data were later converted to total sweep efficiency, areal sweep efficiency, and the ratio of the volume of water injected to the volume of water injected to breakthrough.

Description of the Apparatus

The models are basically a maximum density sand bed packed between two lucite plates. Nine simulated oil wells are located on an isolated pattern in the center (see Figure 13). Figure 13 also shows the injection and producing wells for the various patterns that were studied. There are also wells in the four outside corners of the models. Injection was maintained by means of the constant rate Ruska pump. A mercury manometer was fitted to the injection line as a pressure measuring device. The producing

wells discharged to atmospheric pressure. The bed was initially evacuated from the four corner wells and saturated with water from the center well. By measuring the amount of water injected to fully saturate the bed, the porosity was calculated. Permeability data from the synthetic core studies were used in any subsequent calculations.

To initially establish the connate water saturation, the water saturated bed was driven down with oil until no more water was produced. The bed was then ready for a water flood test which was continued to a producing water-oil ratio of 20:1 or higher. The connate water was re-established by the same procedure subsequent to each test.

Definition of Efficiency Terms

While it would appear that only the total efficiency or the amount of oil produced in relation to the amount of oil in place is of main concern, several other efficiency terms are widely used in reservoir engineering. The total efficiency of a water-flood program is the product of three efficiencies: the vertical sweep efficiency, the areal sweep efficiency, and the displacement efficiency. The vertical sweep efficiency refers to that portion of a vertical section of reservoir which is encountered by the injection fluid at any time as compared to the total reservoir thickness. It is a function of permeability layering or stratification. Several methods have been devised to deal with vertical sweep efficiency, most notably that of Stiles (25), which attempts to break the reservoir into several layers each of which is approximately homogeneous. In a reservoir which is homogeneous throughout its vertical section, the vertical sweep efficiency is 100%. This is the case of the sand packed reservoir models and for this reason vertical sweep efficiency is not considered in the model studies.

Areal sweep efficiency may be considered as the measure of the area of reservoir which is contacted by the injection fluid at any time as compared to the unit area of the pattern. It is a term restricted to a pattern flood; if the flood is linear as in the case of a core, the areal sweep efficiency is 100%.

Displacement efficiency refers to the fraction of oil which is swept from the individual pores as compared with the amount of oil originally in the pore. It refers to the amount of oil produced by stripping action or subordinate recovery which is obtained from that portion of the reservoir which has already been encountered by the injection fluid. Because a certain residual oil remains, even at a producing water-oil ratio of infinity, the displacement efficiency must always be less than 100%.

A. Saturating the evacuated sand bed with water.

B. Location of the flood front during a water-flood test.

FIG. 12 PHOTOGRAPHS OF THE FLOOD FRONT

SCHEMATIC DIAGRAM OF THE TWO DIMENSIONAL MODEL APPARATUS
SHOWING THE WELL PATTERNS USED FOR THE WATER-FLOOD TESTS

LITERATURE REVIEW

Various methods have been devised to study the sweep efficiencies of an oil-water-porous medium system. One of the early methods involved the use of the potentiometric analogue. This type of a laboratory analysis is based on the analogy between Ohm's law and Darcy's law, which in their simplest form are:

$$I = E/R \dots (9)$$

where I is the current

E is the potential or voltage

R is the resistance

And
$$Q = \frac{k A \Delta P}{\mu L}$$
 (10)

All terms as defined previously

That is, pressure drops may be equated to voltage drops; flow rates to current rates; and the other parameters may be equated to resistances.

The model is a pool of water containing an electrolyte whose depth is proportional to the reservoir thickness and whose areal geometry and well locations are similar to the reservoir it represents. Currents are adjusted proportional to existing or proposed production or injection rates. By using a voltage measuring device the isopotential lines may be mapped. The position of the flood front (which is, in effect, a constant time line) is obtained as follows: The relative time of travel between two isopotential lines is directly proportional to the distance ΔX and inversely proportional to the voltage gradient $\Delta E/\Delta X$, so that

The front for any relative time is found by joining points of equal relative time along the several flow lines.

Figure 14 shows results obtained by Wykoff, Botset, and Muskat (27) using a potentiometric model of 1/4 of a confined five-spot pattern. The drawback of this method is that it is impossible to simulate two-phase fluid properties. Hence the assumption of unit mobility ratio (i.e. invading and invaded fluid have the same flow properties) is inherent in the solution. The concept of displacement efficiency is also not considered and as a result these solutions assume a displacement efficiency of 100%.

The electrolytic model works on the same analogy as the potentiometric model but flow actually takes place through a physical porous medium. To simulate the porous medium, investigators have used either blotting paper or an agar geletin. The process consists of observing the advance of a colored liquid (usually copper-ammonium) into a colorless liquid (zinc ammonium). The ions move under voltages applied to electrodes inserted at well locations and the advance of the front is observed visually or photographed at various intervals. Both geometric and electrical scaling is necessary. The effect of a variety of mobility ratios may be taken into account by the use of different fluids. As the flow takes place through an actual porous media, displacement efficiency will be accounted for, at least in so far as it is defined by the blotting paper or agar gelatin.

Mathematical solutions have often been referred to as the mathematical model. Two such approaches have been devised by Muskat $^{(17)}$ and Bruce $^{(4)}$. Even for very simple systems the equations are quite complex and difficult to

solve. They are not included in this report but are readily available from the literature.

The geometric model is the most versatile method for the laboratory investigation of water-flood efficiencies. This type of model allows almost unlimited variation of the factors which effect the reservoir performance. Slobod and Caudle⁽²⁴⁾ were the early workers in this field. They developed a procedure using the X-ray shadowgraph. The reservoir unit was a porous plate or rock specimen sealed on the top, bottom, and edges. Liquids were injected and produced through various well patterns. Variation in mobility ratio may be studied by using fluids of different viscosities. The injection fluid was rendered more strongly absorbant to X-rays than the reservoir fluid by the addition of some X-ray absorbing material such as iodobenzene or potassium iodide.

Most of the above papers considered only areal sweep efficiency up to breakthrough. Production after breakthrough was not taken into account. The following table (23) gives the results of several investigations of areal sweep efficiency for a confined five-spot, mobility ratio of one, at breakthrough.

Muskat (early electroytic model)	75%
Muskat (early mathematical solution)	72.3
Hurst (mathematical solution)	72.6
Muskat (later mathematical solution)	71.5
Fay and Prats (numerical solution)	73
Aronofsky (potentiometric model)	72.2

Work at the University of Alberta by Neilson (18) obtained the following results from an isolated, inverted five-spot pattern at a mobility

ratio of 0.423.

Breakthrough_	110%_areal_sweep_efficiency
W.O.R. = 0.5:1	305
W.O.R. = 1.0:1	410
W.O.R. = 20:1	655

As can be seen this investigation took into account recovery and increase in areal sweep efficiencies after breakthrough. Original thought was that areal sweep efficiencies of such high magnitude were unreasonable. However, a mathematical treatment by Bruce⁽⁴⁾ has resulted in the configuration of isopotentials and flow lines for an isolated, inverted five-spot pattern. These are presented as Figure 15. The location of the flood front at various water-oil ratios are after Neilson.

Work by Caudle, Erickson, and Slobod (6) and by Dalton, Rapoport, and Carpenter (9) also tend to substantiate Neilson's results. These two papers are concerned with additional production to be realized from undrilled boundary areas of an oil field. Both sets of data were obtained from geometric models and both show that considerable area outside the well pattern is swept. The parameter which controls the magnitude of this additional area was found to be mobility ratio. They also found that results of a pilot flood (such as an isolated five-spot) and a drilled out (or confined) pattern did not correspond. It is therefore apparent that Neilson's work should not be compared to previous confined five-spot studies but rather to isolated or pilot studies.

As mentioned above, much of the work done on areal sweep efficiencies has only been concerned with sweep efficiency to breakthrough. Work by Dyes, Caudle and Erickson (10) has taken into account additional sweepout efficiency

with production after breakthrough. Work along a similar line was done by Craig, Geffen and Morse (8). The following remarks refer to these investigations where they pertain to the five-spot pattern.

The Dyes et al investigation was carried out on models cut from alundum plates and flooded with fluids at a wide range of mobility ratios. The injected and displaced phases were miscible in all proportions. Fluids were injected at constant rates via a constant rate pump. Tracings of areal sweep were obtained from X-ray shadowgraphs and plotted versus the number of displacable volumes injected, with mobility ratio as a parameter. Figure 16 shows the graphical results of this investigation.

The Craig et al investigation also utilized the X-ray shadowgraph technique. Their models were cut from outcrop samples of sandstone and the fluids used were immiscible water and oil. They found good agreement between their investigration and that of Dyes et al for areal sweep efficiencies at breakthrough for the same mobility ratios. Mobility ratio was calculated in the following manner:

- 1. The average saturation behind the flood front is obtained from the fractional-flow versus saturation curve. This is done by utilizing the Welge (26) modification to the Buckley and Leverett procedure (5): a straight line whose origin is the displacing fluid saturation is drawn tangent to the curve and extended to $f_d = 1.0$. This is the saturation of the invading fluid behind the flood front.
- 2. The effective permeability to water at this saturation is read from the experimental effective permeability curve.
- 3. The effective permeability to oil, k_0 , is the value corresponding to the oil saturation at the flood front. If there is no gas phase, this will

be the connate water saturation.

4. The values are substituted along with the respective viscosities into the equation:

Where M is the mobility ratio and all other terms are as defined previously.

The results of the Craig et all investigation are presented (see Figure 17) as areal sweep efficiency versus the ratio of the volume of water injected to the volume of water injected to breakthrough for various mobility ratios at breakthrough. Dyes et al results may be converted to this form by cross plotting his curves at a constant mobility ratio and converting $D_{\rm V}$ to $Q/Q_{\rm bt}$ by $D_{\rm V}/D_{\rm Vbt}$. One such curve is included in Figure 17.

CALCULATION OF DISPLACEMENT EFFICIENCY

As the Buckley Leverett theory $^{(5)}$ was developed for linear flow, the areal sweep efficiency is 100%. Recovery is merely a measure of the displacement efficiency of the system. On the strength of the close correlation between calculated and experimental fractional-flow curves (Figure 9), calculated fractional-flow curves were constructed for the two viscosity oils which were used in the model tests (see Figure 18). In this case, displacement efficiency is the oil produced over the oil in place. The oil produced at any time is the water saturation at that time minus the connate water saturation. The problem is to obtain the average saturation of the invaded section after breakthrough. To do this the Welge modification $^{(26)}$ to Buckley Leverett theory was utilized. That is, tangents were drawn to the fractional-flow curve at various water cuts (f_w) and extended to $f_w = 1.0$. The intercept of this tangent is the average water saturation of the formation. The results of these calculations are tabulated in Table 12 and plotted in Figures 19 and 20.

PRODUCING WELL

FIG. 14 POTENTIOMETRIC MODEL RESULTS FOR 1/4 OF A FIVE-SPOT PATTERN (AFTER WYCKOFF, BOTSET AND MUSKAT)

FIG. 15 ISOLATED, INVERTED FIVE-SPOT FLOOD FRONTS, FLOW LINES, AND ISOPOTENTIALS

F16. 16

OF MOBILITY RATIOS (AFTER CRAIG ET AL SWEEP THE INJECTED TO THE AREAL INJECTED AT BREAKTHROUGH VERSUS RATIO OF THE VOLUME OF WATER VARIETY FOR A EFFICIENCY THE

FIG. 19 DISPLACEMENT EFFICIENCY VERSUS
PRODUCING WATER-OIL RATIO, LOW
VISCOSITY OIL

FIG. 20 DISPLACEMENT EFFICIENCY VERSUS
PRODUCING WATER-OIL RATIO, HIGH
VISCOSITY OIL

FIG. 18 CALCULATED FRACTIONAL-FLOW CURVES
FOR TWO OIL VISCOSITIES

EXPERIMENTAL RESULTS

CONFINED FIVE-SPOT FLOOD

By injecting in the center well and producing from the four outside corner wells, the small model was converted to a confined five-spot pattern (see Figure 13). The production history of the tests is given in Table 14. Figure 21 shows the producing water-oil ratio versus the oil recovered and the water injected. The total sweep efficiency of the system was calculated by dividing values from the oil produced curve by the oil in place of the unit pattern (70.8 cc). The areal sweep efficiency was then calculated by dividing the total efficiency by the displacement efficiency. These curves are presented in Figure 22. The two curves are roughly parallel with the deviation increasing as the life of the test progressed. The curves are convex up and it appears that limiting values of total sweep efficiency and areal sweep efficiency of 80.5% and 98.5% respectively have been reached. Areal sweep efficiency at breakthrough was 68.0%.

An attempt to compare the data with that of Dyes et al⁽¹⁰⁾ and Craig et al⁽⁸⁾ was made as follows: The mobility ratio of the flood, at breakthrough, was 1.235 (see Table 13). According to Craig this should result in an areal sweep efficiency of 71.5%. The Craig curve with this origin is plotted in Figure 23. The Dyes data for this mobility ratio was crossplotted and is presented on the same figure, also with 71.5% as origin. The experimental total efficiency data was then transposed to this datum and also plotted in Figure 23. These are the points shown as modified by assumption one. Points modified by assumption two were obtained by applying the displacement efficiency correction to this data and transposing the resulting curve to the datum. These points are also plotted on the same figure. As

can be seen from Figure 23, points modified by assumption one closely approximate the Dyes curve while those of assumption two lie someplace between it and the Craig curve. Again both experimental curves seem to be approaching a maximum; 100% for assumption one and 93% for assumption two.

ISOLATED FIVE-SPOT FLOOD

The producing and injection wells are shown in Figure 13. Production history of this test is presented in Table 16 while Table 17 gives the calculation of total sweep efficiency, areal sweep efficiency, and the injection ratio. These parameters are presented graphically as Figure 25.

As can be seen from Figure 24, the general configuration of the production and injection history curves is normal but the recovery to break-through is 7.35 times the initial oil in place of the unit area. Areal sweep efficiency was 9.68 times the unit area, at breakthrough. Both efficiency curves (Figure 25) are roughly parallel and approach limiting values of 12.5 and 10.2 for total sweep and areal sweep efficiency respectively. There is some suggestion of an "S-shape" configuration of the curves.

Again an attempt was made to compare the data to the Dyes and Craig curves. The calculation was similar to that described above and is presented in tabular form as Table 17. Results are plotted along with the literature curves as Figure 26. As can be seen, points modified by assumption one closely approximate the Dyes curve while those obtained by assumption two fall between the two curves. The points appear to be approaching maximum values as in the previous case (99.5% and 92.0% respectively), while the literature curves do not.

DISCUSSION OF THE TWO ASSUMPTIONS

The first consists of essentially assuming all the recovery to be due to areal sweep, and breakthrough recovery to be 71.5% of the oil in place for the unit area. The close approximation to Dyes results may indicate that miscible data can be modified and utilized in immiscible (i.e. waterflood) studies.

The second assumption involves the displacement efficiency correction and the transposition to 71.5% areal sweep efficiency at breakthrough. The elimination of displacement efficiency should correct the data to the Craig curve. In both cases it does not. This indicates that the displacement correction is inadequate or that the Craig data is not applicable to this system.

Both the actual efficiency curves and the corrected ones seem to be approaching maximum values in direct contrast to the literature results. It can be postulated that for an infinite reservoir the sweep efficiency would continue to increase with the injection ratio. However, for a confined system of any type, a maximum efficiency is to be expected as the reservoir saturation approaches that of the residual oil. This seems to be the situation exhibited in the above results.

LINE DRIVE FLOOD

One set of line drive data, with one row of injection wells and two rows of producing wells, was run. The pattern used is shown in Figure 13. The production and injection history is presented as Figure 27 and Table 18. The unit area was isolated. Table 19 and Figure 28 give the actual results, processed as total sweep efficiency, areal sweep efficiency and the ratio of water injected to water injected to breakthrough. Recovery at breakthrough

was 9.82 times the oil in place while breakthrough areal sweep efficiency was 12.94 times the unit pattern area. The ultimate total sweep efficiency and areal sweep efficiency were 11.6 and 14.2 respectively. No attempt to correct for the high breakthrough recovery was made as no data for comparison were readily available from the literature.

VISCOSITY RATIO μ_{w}/μ_{o} = 0.94881 MOBILITY RATIO, AT BREAKTHROUGH $\frac{k_{o}\mu_{w}}{k_{w}\mu_{o}}$ = 1.235

FIG. 23 CONFINED FIVE-SPOT FLOOD AREAL
SWEEP EFFICIENCY VERSUS INJECTION RATIO.
EXPERIMENTAL DATA MODIFIED AND COMPARED
TO DYES ET AL AND CRAIG ET AL

AND AREAL SWEEP EFFICIENCIES (E_s, E_{as})

VERSUS THE RATIO OF THE VOLUME OF WATER
INJECTED TO THE VOLUME OF WATER INJECTED

TO BREAKTHROUGH

WATER-WATER PRODUCING AND RATIO VERSUS OIL RECOVERED FIVE-SPOT FLOOD INJECTED ISOLATED

FIG. 25 ISOLATED FIVE-SPOT FLOOD TOTAL AND AREAL SWEEP EFFICIENCIES (E_s , E_{ds}) VERSUS THE RATIO OF THE VOLUME OF WATER INJECTED TO BREAKTHROUGH (Q/Q_{bt})

VISCOSITY RATIO $\mu_{\rm w}/\mu_{\rm o}$ = 0.94881 MOBILITY RATIO, AT BREAKTHROUGH, $\frac{k_{\rm o}\,\mu_{\rm w}}{k_{\rm w}\,\mu_{\rm o}}$ = 1.235

FIG. 26 ISOLATED FIVE-SPOT FLOOD AREAL

SWEEP EFFICIENCY VERSUS INJECTION

RATIO - EXPERIMENTAL DATA MODIFIED AND

COMPARED TO DYES ET AL AND CRAIG ET AL

RATIO RECOVERED AND WATER INJECTED WATER-OIL PRODUCING FLOOD LINE-DRIVE VERSUS OIL

F16.27

AREAL SWEEP EFFICIENCIES (E_s, E_{as}) VERSUS
THE RATIO OF THE VOLUME OF WATER INJECTED
TO THE VOLUME OF WATER INJECTED TO BREAKTHROUGH

ISOLATED NINE-SPOT FLOODS

Four isolated nine-spot water floods were run and are identified as follows:

Flood No. 2-1; large model, low viscosity oil

Flood No. 2-2; small model, low viscosity oil

Flood No. 2-3; small model, low viscosity oil

Flood No. 2-4; small model, high viscosity oil

Flood No. 2-3 was run as a repeat of Flood No. 2-2 as only a limited amount of production data was collected in the latter test. For this reason, results of Flood No. 2-2 have not been used in any computations and are only referred to quantitatively.

Nine-spot floods 2-2 and 2-3 both exhibited high breakthrough recoveries of 9.04 and 7.06 times the oil in place respectively. These high breakthrough recoveries are similar to those experienced from the line drive and isolated five-spot tests. On Flood No. 2-1 breakthrough recovery was 52.2% of the oil in place. When this was corrected for displacement efficiency, the resulting areal sweep efficiency was 74.0%. The ultimate recovery was 2.28 times the oil in place and the ultimate areal sweep efficiency was 2.84 times the pattern unit area.

Flood No. 2-4, on a 5.107 centipoise oil, also did not exhibit the high breakthrough recovery. In this case breakthrough recovery was 89.2% of the oil in place while the areal sweep efficiency was 210%.

Production and injection histories of tests 2-1, 2-3, and 2-4 are shown in Figures 29, 31 and 33 respectively. The conversion of this data to total sweep efficiency, areal sweep efficiency and the injection ratio $(Q/Q_{\rm bt})$ is tabulated as Tables 23, 29, and 33. The resulting curves are plotted in Figures 30, 32, and 34.

Injection ratio values over a much greater range were obtained for Flood No. 2-4 than for either of the other two floods. This is the result of the much greater subordinate production (i.e. production after breakthrough) of Flood No. 2-4. As can be seen from all three sets of curves, the total efficiency and areal sweep efficiency parallel each other although they deviate more over the high efficiency portion of the curves. This may be considered a function of the higher displacement efficiency in this range. In all cases the efficiencies appear to be approaching a maximum.

A comparison of Figure 20 (Flood No. 2-1) and Figure 34 (Flood No. 2-4) shows that both curves exhibit the same characteristic "S-shape" although the injection ratio $(Q/Q_{\rm bt})$ and efficiency values for Flood No. 2-4 cover a much greater range. Shortly after breakthrough both curves are slightly concave up, although they approximate a straight line. This indicates that the relationship between sweep efficiency and the injection ratio is essentially the same as for Craig's five-spot flood; i.e. the sweep efficiency varies directly with the logarithm of $Q/Q_{\rm bt}$. Following the straight line portion of the curve is a section of increasing slope, passing through an inflection point to a decreasing slope, and finally approaching a maximum.

This latter portion of the curve (i.e. that which deviates from the straight line) might be interpretted as due to boundary effects. Up until this point the bed has acted essentially as an infinite reservoir. The injection of more and more fluid has swept more and more area in what may be visualized as essentially a circular pattern. At the point where the edges have been contacted, only unswept area in the corners is available. Now most of the injection fluid enters these areas, accounting for the increased slope of curve. When these areas have been swept there is no more reservoir

available for flooding so the curve approaches a maximum efficiency for any particular flood.

Flood No. 2-3 was run on the same fluid-sand system as Flood No. 2-1; but on a different model. As mentioned above, the breakthrough recoveries did not compare. In an attempt to compare the data from Flood No. 2-3 to that of Flood No. 2-1, a correction similar to that of the five-spot was made. That is, the areal sweep efficiency at breakthrough was assumed to be 74.0%, the same as for Flood No. 2-1. The resulting curve is plotted in Figure 35 along with the actual result of Flood No. 2-1. As can be seen, the curves coincide over the early life of the flood but deviate greatly over the later life of the flood.

COMPARISON OF THE THREE ISOLATED PATTERNS

Figure 36 shows the areal sweep efficiency versus the injection volume ratio for the five-spot, nine-spot and line drive patterns. All three tests were run on the same model using the low viscosity oil, the same rate of injection and the same pattern unit area. All floods were taken to a producing water-oil ratio of 20:1. The only variation was in the well pattern used.

As can be seen, results of the five-spot and nine-spot patterns coincide closely; the five-spot having slightly higher areal sweep efficiencies over the life of the flood but a lower ultimate areal sweep efficiency. The line drive system exhibits higher areal sweeps over its entire history with a much smaller change in areal sweep over this period.

PRODUCING WATER-OIL RATIO VERSUS OIL RECOVERED AND WATER NINE-SPOT FLOOD NO. 2-3 INJECTED

F16. 31

FIG. 32 NINE-SPOT FLOOD NO. 2-3 TOTAL AND AREAL SWEEP EFFICIENCIES (E_s , E_{as}) VERSUS THE RATIO OF THE VOLUME OF WATER INJECTED TO THE VOLUME OF WATER INJECTED TO BREAKTHROUGH (Q/Q_{bt})

VISCOSITY RATIO $\mu_{\rm W}/\mu_{\rm 0}$ = 0.94881 MOBILITY RATIO, AT BREAKTHROUGH, $\frac{k_{\rm 0}\mu_{\rm W}}{k_{\rm W}\mu_{\rm 0}}$ = 1.235

FIG. 35 AREAL SWEEP EFFICIENCY VERSUS INJECTION RATIO FOR TWO NINE-SPOT FLOODS RUN ON THE SAME SAND-FLUID SYSTEM USING DIFFERENT MODELS

FIG.36 AREAL SWEEP EFFICIENCY VERSUS
INJECTION RATIO FOR THREE DIFFERENT
WELL PATTERNS RUN ON THE SAME SANDFLUID SYSTEM

POSTULATES REGARDING THE HIGH BREAKTHROUGH RECOVERIES

From the forgoing, it can be noted that all tests run on the small model with the low viscosity oil resulted in extremely high breakthrough recoveries. The writer has arrived at two possibilities which may account for these high recoveries. Each are briefly put forward.

Imbibition Into the Sand

In a water wet sand, if there is a capillary pressure gradient in the direction of flow, displacement will be increased because of this gradient. The process is referred to as imbibition. Mattax and Kyte (16) have illustrated that a permeability discontinuity in the system will result in imbibition taking place more rapidly in the less permeable portion of the reservoir at certain rates. They conducted their experiments on a fractured limestone and found that at rates below their critical, water would invade and displace oil in the limestone itself; but not in the fracture.

In the small model, it is possible that the well bores exhibited this larger permeability condition so that injection water actually by-passed the well bore to imbibe into additional reservoir. When the entire reservoir was flushed to some critical water saturation, the easiest water path would be through the well bore and breakthrough would occur.

Well Design

One of the main differences between the large model (Flood No. 2-1) and the small model was the design of the well bore. The basic difference is that the large model well utilizes a perforated sleeve while the other consists of two large perforations at right angles with a screen sleeve liner in the upper perforation. This screen is of smaller mesh size so that the sand cannot

be produced with the liquid flow stream.

It is not known if the screen is preferentially water wet or oil wet but for the balance of this discussion it will be assumed oil wet.

An oil wet screen, due to capillary forces and wetting attractive forces, retains oil on the members and in the mesh voids. An outside force or a pressure differential is required to move this oil. At some maximum or critical pressure differential (and hence and injection rate) the capillary force will be over-come and all the oil flushed from the mesh, except for a residual which cannot be removed due to the screen being oil wet (analogous to the connate water saturation in a porous rock). Using this reasoning, it is possible that at certain pressures an oil wet screen could pass oil and not water. It was noticed that just before breakthrough the pressure increased slightly. Possibly there is a critical water saturation at which production through the screen occurred; as a constant rate pump was used the only noticeable effect would be a slight increase in pressure.

From the above postulate it can be imagined that the screen, included in the well design, acted as a water filter up to a critical saturation at which time water broke through and was produced.

General Notes

Both of the above postulates depend on flow below the critical rate and on capillary pressure effects; in the first case these parameters apply to the screen sleeve; in the second to the sand bed itself.

The phenomenon was not exhibited in Flood No. 2-1 nor Flood No. 2-4. As can be seen from Darcy's law (eqn. 10), the injection rate is a function of the sand permeability, liquid viscosity, differential pressure, and dimensions of the system. Flood No. 2-1 was run on the large model at the

same rate, on the same viscosity oil. Because of the larger dimensions a larger pressure differential resulted so that the flood took place at pressures above the capillary pressure of the system. High breakthrough recoveries were not exhibited in Flood No. 2-4 for similar reasons. A higher viscosity oil was used which resulted in a larger pressure differential for the same rate.

Again this larger operating pressure was above the capillary pressure of the system.

THE APPLICABILITY OF THE DISPLACEMENT EFFICIENCY CORRECTION

In the two dimensional, model water floods the relationship between total sweep efficiency, displacement efficiency, and areal sweep efficiency are defined by the simple equation:

If E_s is known as in the present case, E_{as} may be calculated by substituting the appropriate E_d term. For a linear system the displacement efficiency can be calculated from the fractional-flow curve as it was this type of data that Buckley and Leverett used in developing the theory.

The question is whether or not this theory may be used to calculate the displacement efficiency of a two dimensional flood.

Let us consider a simple, two well, confined system as shown in Figure 37. Area 1 indicates area flooded at time 1; area 2 indicates additional area flooded at time 2. Oil production during the time interval comes from both area 1 (by displacement or stripping action) and from area 2 by areal sweep. In this case does the producing water cut result in the proper saturation value from the fractional-flow curve? If area 1 was the only area swept and all the injection fluid passed through it, then the resulting oil production would be due only to displacement. However, in this case some of

the injection fluid goes into the newly swept area and results in what appears to be a lower water cut figure than would occur in the linear flood.

No attempt was made to prove or disprove the applicability of the correction as it now stands. The above dissertation merely illustrates the problem. Some suggestion as to setting up experimental procedures for verifying the correction are included in the following section.

FIG. 37 SCHEMATIC DRAWING OF AN HYPOTHETICAL TWO WELL CONFINED SYSTEM

WELL

RECOMMENDATIONS FOR FUTURE INVESTIGATIONS

What was originally thought to be a fairly simple experimental procedure resulted in several difficulties and unusual effects. For this reason, further work on the nine-spot study should be delayed until some of these problems are overcome.

Some investigation of the high breakthrough recoveries should be carried out. By substituting wells of a different design the well bore effect could be evaluated. If the well design is not the cause, the problem becomes one of investigating the properties of the sand bed. This could possibly be carried out as a critical rate study; that is, using the same oil, to flood the model at different rates and to determine if the effect is overcome at one particular rate.

It is very desirable to obtain and test a suitable dye. If a suitable dye is obtained, the flood front could be visually mapped at various times throughout the tests. The areal sweep efficiency would then be readily obtained by planimetering the area behind the flood front. It would then be possible to determine if the displacement efficiency correction, made in this report, is accurate. Possibly a correlation for obtaining displacement efficiency or a method of calculation could be devised. This, of course, presumes that the displacement efficiency calculation used here is incorrect.

Because of the correlation between the five-spot data run and the literature, the above investigations could best be carried out on a five-spot pattern. As there is an abundance of data on this pattern to be found in the literature, a ready means of comparison would then be available.

When the above problems have been overcome, nine-spot data for a variety of oil viscosities could be run with some assurance as to accuracy. If it is felt that data is to be obtained which is directly applicable to a drilled out field, consideration should be given to running data on a confined model. These remarks, of course, also apply to patterns other than the nine-spot which are deemed worthy of investigation.

CONCLUSIONS

FUNDAMENTAL RESERVOIR PROPERTIES

Capillary Pressure

The capillary pressure curve obtained indicates that good capillary pressure data may be obtained from the experimental procedure used. The results obtained were of the same magnitude as those of Leverett for an unconsolidated sand (see J-function comparison, Figure 5). This indicates that where time is a factor, or it is inconvenient to run capillary data, fairly accurate data may be obtained by utilizing the J-function correlation. This is not a universal correlation, however, and care must be taken to choose data which most closely corresponds to the rock type being investigated.

Wettability

The resistivity results do not agree with those which are anticipated by the Archie relationship. Archie's work involved a multitude of water wet specimens and must be accepted as authentic. The deviation experienced here may be interpretted to indicate that the system is not entirely water wet. It is possible that, during the course of the experiments, the wetting properties of the sand pack were undergoing a change from fully water wet to partially water wet.

Effective Permeability

The Ruska pump set-up results in very good effective permeability data. Since this type of information is not readily available for many porous media, the experimental technique may be readily utilized in obtaining such data. The poor comparison of the relative permeability curves to those of Leverett indicate that it is desirable to obtain this data for each unique system which is to be studied. If the data from the literature must be used, extreme care should be exercised in obtaining effective permeability curves which were run on systems very similar to those under consideration.

Critical Rate

When recovery of oil is considered as a function of rate, there is an optimum rate at which maximum recovery occurs for any given sand-fluid system. This is in contrast to the literature which suggests a maximum or critical above which recovery is rate independent.

This optimum rate suggests that there would also be an optimum pressure at which to conduct flood experiments. This, in turn, indicates an optimum rate and pressure for a field project.

MODEL WATER-FLOOD STUDIES

Other than the general shape of the curves, little comparison is apparent from the several sets of data processed for the pattern floods. However, a few general observations can be made.

1. Area much in excess of the unit pattern is swept when the flood is continued to high water-oil ratios. (The water-oil ratiocut off used was 20:1 in all cases).

- 2. At these high water-oil ratios, sufficient reservoir has been swept so that the isolated pattern no longer acts as if it were an infinite reservoir, and boundary effects influence the performance.
- 3. There is a maximum total sweep efficiency, areal sweep efficiency, and displacement efficiency for this type of system.
- 4. Breakthrough recoveries vary with the mobility ratio; and low breakthrough recoveries are followed by a much greater subordinate production.
- 5. Because the two floods run on the same sand-fluid system (but different models) did not compare, it appears that boundary effect was more pronounced and was felt earlier in the life of the flood for the smaller model.
- 6. For the three patterns run on the same sand-fluid system, the line drive was the most effective from the standpoints of high recovery to breakthrough, short subordinate production, and high ultimate areal sweep efficiency.
- 7. The most important factor in scaling an oil field reservoir model is the capillary pressure. Care should be used in choosing injection rates and operating pressures which are of sufficient magnitude to overcome capillary pressure gradients which may exist in the system.
- 8. High recoveries of oil (up to several times the unit pattern) can be obtained before water breakthrough. This is possibly the result of preferential imbibition allowing injection water to by-pass the producing well bores. Production by this method could possibly be utilized in a field prototype providing the production rates were high enough to result in the economic operation of the project.
 - 9. The close proximity between the modified five-spot data (immiscible

flood) and that of Dyes et al (miscible flood) indicates that miscible data may be modified and utilized in the prediction of a water flood project if other data is not available.

10. The method of re-establishing the initial saturations before each run may have altered the wetting properties of the bed. This in turn could have some influence on the performance of the water-flood tests.

REFERENCES CITED

- 1. Amyx, J.W., Bass, D.M. Jr., Whiting, R.L., "Petroleum Reservoir Engineering Physical Properties", McGraw Hill, New York, (1960).
- 2. Archie, G.E., "Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics", A.I.M.E. trans. (1942).
- 3. Brown, Harry W., "Capillary Pressure Investigations", A.I.M.E. trans. (1949).
- 4. Bruce, W.A., "Mathematical Aids in Reservoir Engineering", Carter Oil Company (limited publication).
- 5. Buckley, S.E., Leverett, M.C., "Mechanism of Fluid Displacement in Sands", A.I.M.E. trans. vol. 146, p. 117, (1942).
- 6. Caudle, B.H., Erickson, R.A., Slobod, R.L., "The Encroachment of Injected Fluids Beyond the Normal Well Pattern", A.I.M.E. trans. vol. 204, p. 79, (1955).
- 7. Craft, B.C., Hawkins, M.F., "Applied Petroleum Reservoir Engineering", Prentice Hall, Englewood Cliffs, N.J., (1959).
- 8. Craig, F.F. Jr., Geffen, T.M., Morse, R.A., "Oil Recovery of Pattern Gas or Water Injection Operations from Model Tests", A.I.M.E. trans. vol. 204, p. 7, (1955).
- 9. Dalton, R.L. Jr., Rapoport, L.A., Carpenter, C.W. Jr., "Laboratory Studies of Pilot Waterfloods", Jour. Pet. Tech., p. 24, Feb. (1960).
- 10. Dyes, A.B., Caudle, B.H., Erickson, R.A., "Oil Production After Breakthrough as Influenced by Mobility Ratio", A.I.M.E. trans. vol. 201, p. 81, (1954).
- 11. Elmdahl, B.A., "Core Analysis and Some Reservoir Rock Characteristics", The Mines Magazine, Oct. (1957).
- 12. Flock, D.L., "Drilling Mud Filtration and Its Effect on the Electrical Resistivity of Porous Rocks", unpublished manuscript, Ph.D. thesis, Agricultural and Mechanical College of Texas, (1956).
- 13. Jones-Parra, J., Calhoun, John C. Jr., "Computation of a Linear Flood by the Stabilized Zone Method", A.I.M.E. trans. vol. 198, p. 335, (1953).
- 14. Leverett, M.C., "Flow of Oil Water Mixtures Through Unconsolidated Sands", A.I.M.E. trans. (1938).

- 15. Leverett, M.C., "Capillary Behavior in Porous Solids", A.I.M.E. trans. (1941).
- 16. Mattax, C.C., Kyte, J.R., "Imbibition Oil Recovery from Fractured Water-Drive Reservoirs", A.I.M.E. tech. paper No. SPE-187, Presented at Dallas meeting, Oct. 8-11, (1961).
- 17. Muskat, M., "Physical Principals of Oil Production", McGraw-Hill, New York, (1959).
- 18. Neilson, I.D.R., "The Effect of a Free Gas Saturation on the Sweep Efficiency of an Isolated Inverted Five-Spot", unpublished manuscript, M.Sc. thesis, University of Alberta, (1960).
- 19. Pirson, S.J., "Oil Reservoir Engineering", 2nd edition, McGraw-Hill, New York, (1958).
- 20. Purcell, W.R., "Capillary Pressures Their Measurement Using Mercury and Calculation of Permeability Therefrom", A.I.M.E. trans., (1949).
- 21. Rapoport, L.A., Leas, W.J., "Properties of Linear Waterfloods", A.I.M.E. trans. vol. 109, p. 139, (1953).
- 22. Rose, Walter, Bruce, W.A., "Evaluation of Capillary Characteristics in Reservoir Rocks", A.I.M.E. trans. (1949).
- 23. Scheidegger, A.E., "General Spectral Theory for the Onset of Instabilities in Displacement Processes in Porous Media", A.I.M.E. tech. paper No. 1551-G, presented at Denver meeting, Oct. 2-5, (1960).
- 24. Slobod, R.L., and Caudle, B.H., "X-ray Shadowgraph Studies of Areal Sweepout Efficiencies", A.I.M.E. trans., vol. 195, p. 265, (1952).
- 25. Stiles, W.E., "Use of Permeability Distribution in Waterflood Calculations", A.I.M.E. trans. vol. 186, p. 9 (1949).
- 26. Welge, H.J., "A Simplified Method of Computing Oil Recovery by Gas or Water Drive", A.I.M.E. trans. vol. 195, (1952).
- 27. Wykoff, R.D., Botset, H.G., Muskat, M., "The Mechanics of Porous Flow Applied to Water-Flooding Problems", vol. 103, p. 219, A.I.M.E. trans., (1933).

APPENDIX

TABLE 1

CAPILLARY PRESSURE CORE: CALIBRATION DATA

	Segment	lent 1-2	Segmen.	Segment 11-12	Segmen	Segments 2-11
Saturation	R	Ro/R	R	Ro/R	R	Ro/R
				-		
100.0	194	1,0000	181	1,0000	1,94	1,0000
98,5	317	0.6120	190	0.9526	1,588	0.9408
95.3	331	0.5861	200	0.9050	1,646	0.9077
2.88 7.788	376	0.5160	300	0.6033	1,708	0.8747
83,7	36.	0.5105	620	0.2919	1,748	0.8547
77.1	369	0.5257	1,650	0.1097	2,123	0.7037
69.5	009	0,3233	2,900	0.0624	2,705	0.5523
50.5	1,550	0.1252	2,900	0.0229	6,540	0.2284
58.0	770	0.2519	3,490	0.0519	7,620	0.3234
40.2	1.630	0,1190	7,190	0.0252	13,480	0,1108
32.6	1,400	0.1386	004,6	0.0193	22,240	0.0672
26.4	2,350	0.0826	29,000	0,0062	30,550	0.0489
25.6	3,600	0.0539	138,000	0.0013	29,920	0.0499

TABLE 2

RESISTIVITY READINGS AFTER DRAINAGE AND CONVERSION

TO WATER SATURATIONS

Segment	Resistivity R, ohms	Ro/R	Saturation (From Fig. 5)
11-12	5,250,000	0.000	0.0
10-11	15,323	0.0106	6.1
9-10	9,100	0.0176	11.0
8-9	3,650	0.0430	23.8
7 - 8 6 - 7	1,870	0.0893	35.8
6-7	800	0.2100	50.0
5 - 6	355	0.4366	64.1
5-6 4-5 3-4 2-3	395	0.4304	63.9
3-4	300	0.5800	71.0
2-3	235	0.7702	79.8
1-2	285	0.6807	99.4

LEVERETT'S J-FUNCTION: CALCULATION OF THE CONSTANT

FOR THE UNCONSOLIDATED SANDSTONE

 $\phi = 0.318$

TABLE 4

CONVERTING CAPILLARY PRESSURE INTO

THE J-FUNCTION

Segment (1)	Saturation (2)	Capil Press Inches H ₂ O (3)	llary sure CM H ₂ O (4)	J-Function (4) x 150.44 x 10 ⁻⁴ (5)
11-12	0.0	13.688	34.76752	0.52306
10-11	6.1	12.375	31.43250	0.47289
9-10	11.0	11.125	28.25750	0.42512
8-9	23.8	9.875	25.0825	0.37735
7-8	35.8	8.625	21.9075	0.32959
6-7	50.0	7.375	18.7325	0.28182
5-6	64.1	6.125	15.5575	0.23405
4-5	63.9	4.875	12.3825	0.18629
3-4	71.0	3.625	9.2075	0.13852
2-3	79.8	2.375	6.0325	0.09076
1-2	99.4	0.875	2.225	0.03347

CALCULATION OF ABSOLUTE AND

EFFECTIVE PERMEABILITIES

Core and Fluid Characteristics

$$\begin{array}{lll} \mu_{a} &=& 1.00 \text{ cp} \\ \mu_{0} &=& 1.49 \text{ cp} \\ L &=& 29.5 \text{ in.} \\ d &=& 1.5 \text{ in.} \end{array} \qquad \begin{array}{lll} \text{For water, constant} \\ &=& \frac{\text{"Hg}}{2.036} \\ \text{atmos} &=& \frac{\text{psi}}{14.65} \\ \text{cc/sec} &=& \frac{\text{cc/hr}}{3600} \end{array} \qquad \begin{array}{lll} =& \frac{1.00 \times 29.5 \times 2.54 \times 14.65 \times 2.036}{\text{/4} \times (1.5)^{2} \times (2.54)^{2} \times 3600} \\ &=& 0.0545 \end{array}$$

For oil, constant $= \frac{1.49 \times 29.5 \times 2.54 \times 14.65 \times 2.036}{/4 \times (1.5)^2 \times (2.54)^2 \times 3600}$ = 0.0812

Absolute Permeability

(1) Q cc/hr	(2) ΔP "Hg	= $\frac{(1)^{(3)}K}{(2)}$ x 0.0545 Darcies
560 400 2285	0.71 0.58 2.91	43.0 37.6 41.6 40.7 Darcies

TABLE 5 (con't)

EFFECTIVE PERMEABILITY

((1)	(2)	(3)	(4)	(5)
Run	Water Rate cc/hr	Oil Rate cc/hr	ΔP "Hg	(1) (3) x.0545 Darcies	$K_0 = \frac{(2)}{(3)} \times .0812$ Darcies
0 1 2 3 4 5 6 7 8 9	840 560 560 560 560 560 373 280	0 112 140 187 280 373 560 560 560	2.52 3.36 4.27 5.53 6.02 6.10 7.28 6.35 5.76 4.56	18.18 9.07 7.13 5.51 5.06 5.00 4.19 3.20 2.65 2.23	0.000 2.71 2.66 2.75 3.78 4.96 6.25 7.17 7.92 9.98
10 11 12	140 112 0	560 560 560	4.20 3.82 2.36	1.81 1.60 0.00	10.82 11.91 19.28

TABLE 6

EFFECTIVE PERMEABILITY TESTS: CALCULATION OF

FLUID SATURATIONS

Run No.	(1) Oil Injected To Core cc	(2) Oil in Core cc	(3) Oil in Core as Fraction of Total Pore Space (2)/29.010
0 1 2 3 4 5 6 7 8 9 10 11	0.0 53.6 14.5 7.0 18.1 1.2 14.3 15.3 11.8 - 1.4 11.1 10.5 48.5	41.0 94.6 109.1 116.1 134.2 135.4 149.7 165.0 176.8 175.4 186.5 197.0 245.5	0.141 0.326 0.376 0.400 0.462 0.466 0.515 0.568 0.609 0.605 0.644 0.679 0.845

connate water = 44.6 cc.

CALCULATION OF RELATIVE PERMEABILITIES

Absolute permeability equals 40.7 Darcies; effective permeability to water at the residual oil saturation = 18.2 Darcies; effective permeability to oil at the connate water saturation = 19.3 Darcies.

to	
(7) Relative Perm. to	0.143 0.138 0.138 0.196 0.324 0.372 0.372 0.114 0.562 0.562 0.562
(6) Relative Perm. to Water	0.498 0.392 0.392 0.275 0.176 0.123 0.100 0.088
(5) Relative Perm. to	0.067 0.065 0.067 0.122 0.176 0.176 0.245 0.266 0.093
(4) Relative Perm. to Water	0.223 0.175 0.135 0.123 0.079 0.065 0.044 0.039 0.039
(3) Effective Permeability to Oil Darcies	2.7. 2.66 3.78 4.96 6.25 10.82 19.28 0.00
(2) Effective Water Perm. to Darcies	9.07 7.13 5.06 7.00 3.20 1.81 1.60 1.60
(1) Run No.	1 0 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

(4) K absolute = 40.7 i.e. (5)/40.7

(5) K absolute = $\frac{1}{1}$ 0.7 i.e. $\frac{(6)}{40.7}$

(6) K effective = 18.2 i.e. (5)/18.2 (7) K effective = 19.3 i.e. (6)/19.3

	(7) Water Se 1.0 - (6	
	(6) Oil in Core Fraction of Total Pore Space	326 .376 .400 .515 .569 .609 .644 .675
AL-FLOW DATA	(5) Fraction of Water Flowing	834 800 667 500 100 100 100 100 100 100 100
EXPERIMENTAL FRACTIONAL-FLOW DATA	(4) Total cc/hr	672 747 933 1120 933 747 672 840
EXPERIMEN	(3) Oil Rate cc/hr	112 140 183 343 560 560 560 560 560
	(2) Water Rate cc/hr	560 560 560 560 560 560 560 560 560 560
	(1) Run No.	

TABLE 9

FRACTIONAL-FLOW CALCULATIONS FOR

THREE OIL VISCOSITIES

TABLE 10

PRODUCTION HISTORY OF THE SEVERAL

CRITICAL RATE TESTS

Oil Production Instantaneous c.c.	Cur	mulative Fraction of Pore Space	Producing Water-Oil Ratio	Mid-Point Frac. of Pore Space (i.e. points Plotted on Fig. 11)
RUN NO. 1 60.0 82.5 8.9 5.6 2.0 2.5 2.2	Rate = 10 60.0 142.5 151.4 157.0 159.0 161.5 163.7	0.207 0.491 0.522 0.541 0.548 0.556 0.564	0.0 0.212 3.49 9.00 10.4 12.8 40.4	0.207 0.491 0.507 0.532 0.544 0.552 0.560
RUN NO. 2 104.3 30.0 9.1 12.8 6.4 4.8 2.6	Rate = 40 104.3 134.3 143.4 156.2 162.6 167.4 170.0	0.360 0.463 0.495 0.538 0.560 0.576 0.586	0.0 0.033 1.09 3.27 6.93 11.52 23.2	0.360 0.463 0.479 0.517 0.549 0.568 0.581
RUN NO. 3 98.8 42.5 17.5 7.0 2.9 1.0	Rate = 10 98.8 141.3 158.8 165.8 168.7 169.7	0.341 0.487 0.546 0.572 0.581 0.585	0.0 0.0 2.14 9.43 25.7 30.8	0.341 0.487 0.517 0.559 0.577 0.583
RUN NO. 4 100.0 48.4 10.5 3.6 2.6 1.8	Rate = 20 100.0 148.4 158.9 162.5 165.1 166.9	00 cc/hr 0.345 0.511 0.547 0.560 0.569 0.575	0.0 0.0 1.81 7.3 ⁴ 1 ⁴ .38 21.2	0.345 0.511 0.529 0.554 0.564 0.572

TABLE 10 (cont'd.)

Oil Production			_	Mid-Point
Instantaneous		mulative	Producing	Frac. of Pore
	cc.		Water-Oil	Space (i.e. points
		Pore Space	Ratio	Plotted on Fig. 11)
RUN NO. 5	Rate = 3	320 cc/hr		
100.0	100.0	0.345	0.0	0.345
49.5	149.5	0.525	0.0	0.525
6.8	156.3	0.539	0.442	0.532
3.4	159.7	0.550	1.94	0.545
2.3	162.0	0.558	3·3 ¹ 4	0.554
1.8	163.8	0.564	10.10	0.561
3.2	167.0	0.576	11.3	0.570
0.8	167.8	0.578	24.0	0.577
0.0	167.8	0.578		0.577
RUN NO. 6	Rate = 5	660 cc/hr		
100.0	100.0	0.345	0.0	0.345
42.0	142.0	0.489	0.0	0.489
7.8	149.8	0.576	0.334	0.503
4.6	154.4	0.532	1.17	0.524
2.2	156.6	0.539	3.54	0.535
1.7	158.3	0.546	4.94	0.542
1.3	159.6	0.550	6.76	0.548
1.1	160.7	0.553	8.18	0.551
1.0	161.7	0.557	19.0	0.555
1.4 0.8	163.1 163.9	0.562 0.564	20.4 24.3	0.559 0.563
0.6	164.5	0.567	49.0	0.566
0.6	165.1	0.569	66.0	0.568
0.0	107.1	0.,0,	00.0	0.,00
RUN NO. 7		40 cc/hr		
76.6	76.6	0.2645	0.0	0.264
48.5	125.1	0.431	0.309	0.348
35.1	160.2	0.553	0.413	0.492
1.6	161.8	0.558	30.1	0.555
2.5 2.4	164.3 166.7	0.566 0.575	39.0 40.9	0.562 0.570
0.8	167.5	0.578	62.5	0.576
0.7	168.2	0.580	70.8	0.579
0.2	168.4		234.0	0.580

TABLE 10 (cont'd.)

Oil Production Instantaneous	Cu	mulative Fraction of Pore Space	Producing Water-Oil Ratio	Mid-Point Frac. of Pore Space (i.e. points Plotted on Fig. 11)
RUN NO. 8	Rate = 4	0 cc/hr		
100.0	100.0	0.345	0.0	0.345
41.2	141.2	0.487	0.0	0.487
12.3	153.5	0.532	1.71	0.509
7.3	160.8	0.554	5.82	0.543
2.7	163.5	0.564	9.55	0.559
1.7	165.2	0.570	11.78	0.567
1.8	167.0	0.576	19.22	0.573
1.8	168.8	0.582	99.5	0.579
0.8	169.6	0.585	259.	0.583

GEOMETRIC AND RESERVOIR PROPERTIES OF

THE TWO MODELS

Large Model	Small Model	
60 inches	32 inches	Length
1/2 inch	1/4 inch	Thickness
24 inches	8 inches	Length (unit area)
22.4%	22.4% (low visc. oil 17.6% high visc. oil	Connate water Saturation
34.8%	34.8	Porosity
1273 cc.	70.8 cc. low visc. oil 82.4 high visc.	Oil in place of unit area

TABLE 12

CALCULATION OF DISPLACEMENT EFFICIENCY

FROM FRACTIONAL-FLOW CURVES

LOW VISCOSITY OIL

(1) W.O.R.	$f_W = \frac{(2)}{W.0.R.}$	(3) S _W (From Fig. 23)	(4) S _w - 0.156
0.0 0.2 0.4 0.8 1.2 1.8 2.4 3.0 4.0	0.0 0.1668 0.286 0.445 0.545 0.643 0.706 0.750 0.800	0.796 0.817 0.830 0.841 0.843 0.845 0.846 0.846	0.640 0.661 0.674 0.685 0.687 0.689 0.690 0.690

(5) Displacement Efficiency (4) 1 - 0.156	
0.759 0.785 0.799 0.812 0.815 0.816 0.818 0.818	

TABLE 12 (cont'd.)

HIGH VISCOSITY OIL

(1)	(2)	(3)	(4)	(5)
W.O.R.	$f_{W} = \frac{W.O.R.}{1 + W.O.R}.$	S _W (From Fig. 23)	S _w - 0.156	(4) 1 - 0.156
0.0 0.2 0.4 0.8 1.2 1.8 2.4 3.0 4.0 6.0 8.0 10.0 18.0	0.0 0.1668 0.286 0.445 0.545 0.643 0.706 0.750 0.800 0.858 0.889	0.514 0.564 0.602 0.660 0.698 0.742 0.761 0.780 0.803 0.826 0.840 0.846	0.358 0.408 0.446 0.504 0.542 0.586 0.605 0.624 0.647 0.670 0.684 0.690	0.424 0.484 0.529 0.596 0.642 0.694 0.717 0.730 0.766 0.794 0.818 0.818

TABLE 13

CALCULATION OF BREAKTHROUGH MOBILITY RATIOS

$$M = \frac{K_O}{K_W} \frac{\mu_W}{\mu_O}$$

LOW VISCOSITY OIL

$$\frac{\mu_{W}}{\mu_{O}} = 0.94881$$
at B.T., $S_{W} = 0.796$

$$K_{W} = 14.80$$

$$K_{O} = 19.28$$

$$M = \frac{19.28}{14.80} \times 0.94881$$

$$= 1.235$$

HIGH VISCOSITY OIL

$$\frac{\mu_{W}}{\mu_{O}} = 0.16840$$
at B.T., $S_{W} = 0.514$

$$K_{W} = 4.65$$

$$M = \frac{19.28}{4.65} \times 0.16840$$

$$= 0.697$$

TABLE 14

CONFINED FIVE-SPOT FLOOD: PRODUCTION HISTORY

(6) Instantaneous Water-Oil Ratio	0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 0.000
(5) Instantaneous Water Prod'n.	
(4) Instantaneous Oil Production	000 14 200 14 200 200 200 200 200 200 200 200 200 20
(3) Total Cum. Prod'n.	200. \$602.0 \$602.0 \$602.0 \$728.0 \$602.0
(2) Cumulative Water Prod'n.	20000000000000000000000000000000000000
(1) Cumulative Oil Prod'n.	99999999999999999999999999999999999999

TABLE 15

CONFINED FIVE-SPOT FLOOD: CALCULATION OF TOTAL SWEEP

EFFICIENCY (E_s), AREAL SWEEP EFFICIENCY (E_{As}), AND

THE RATIO OF WATER INJECTED TO WATER

INJECTED TO BREAKTHROUGH (Q/Q_{bt})

(1) Water- Oil Ratio	(2) Cum. Oil Production (From Fig. 21) cc	(3) Cum. Water Injected (From Fig. 21) cc	(4) E _s = Oil Rec./ Oil in Place = (2)/1162	(5) Q/Q _{bt} = (3)/600
0.0 0.2 0.4 0.8 1.2 1.8 2.4 3.0 4.0 6.0 8.0 10.0 18.0	600 725 788 848 869 888 900 908 917 923 926 928 936 (6) Displacement Efficiency, Ed (From Fig. 19) 0.759 0.785 0.799 0.812 0.815 0.816 0.818 0.818 0.818 0.818 0.818	600 730 821 917 975 1015 1062 1090 1121 1154 1180 1207 1317	0.516 0.624 0.678 0.728 0.748 0.765 0.774 0.781 0.789 0.794 0.796 0.799 0.805 (7) Areal Sweep Efficiency, E _{as} (4)/(6) 0.680 0.795 0.849 0.897 0.917 0.937 0.946 0.955 0.964 0.970 0.973 0.976 0.984	1.000 1.218 1.370 1.530 1.625 1.690 1.770 1.818 1.870 1.925 1.968 2.01 2.19

TABLE 15 (cont'd.)

CORRECTING EFFICIENCIES TO A COMMON DATUM

(8) E _g Transposed	(9) Pseudo Eas (8)/(6)	(10) E _{as} Transposed (9) x 71.5 0.943
0.715 0.823 0.877 0.927 0.947 0.964 0.973 0.980 0.988 0.993 0.995 0.998	0.943 1.048 1.098 0.142 1.162 1.180 1.189 1.198 1.208 1.213	0.715 0.795 0.832 0.866 0.881 0.895 0.900 0.908 0.915 0.920 0.921
1.004	1.227	0.929

TABLE 16

ISOLATED FIVE-SPOT FLOOD: PRODUCTION HISTORY

(6) Instantaneous Water-Oil Ratio	-0.000	000.00	0.020	00000	0.111	0.026	0.081	0.250	009.0	0.951	1.712	7.333	21.222	22,167
(5) Instantaneous Water Prod'n.	0.0	0.0	2.0	0.0	0.0	0.5	7.5	0.4	22.5	19.5	101.0	88.0	95.5	133.0
(4) Instantaneous Oil Prod'n.	200.0	200.0	98.0	20.0	18.0	19.5	18.5	16.0	37.5	20.5	59.0	12,0	4.5	0.9
(3) Total Cum. Production	200.0	0.004	500.0	520.0	540.0	560.0	580.0	0.009	0.099	700.0	860.0	0.096	1060.0	1200.0
(2) Cum. Water Production	0.0	0.0	2.0	2.0	0.4	4.5	0.9	10.0	32.5	52.0	153.0	241.0	336.5	469.5
(1) Cum. 0il Prod'n.	200.0	400.0	498.0	518.0	536.0	555.5	574.0	590.0	627.5	648.0	707.0	719.0	723.5	730.5

TABLE 17

ISOLATED FIVE-SPOT FLOOD: CALCULATION OF TOTAL SWEEP EFFICIENCY ($E_{\rm gs}$), AND THE RATIO OF WATER INJECTED TO WATER INJECTED TO BREAKTHROUGH ($Q/Q_{\rm bt}$)

(1) Water-Oil Ratio	(2) Cum. Oil Production (Fig. 24)	(3) Cum. Water Injected Fig. 24)	(4) E _s = Oil Rec./ Oil in Place = (2)/70.8	(5) Q/Qpt = (4)/520
0.0 0.2 0.4 0.8 1.2 1.8 2.4 3.0 4.0 6.0 8.0 10.0 18.0	520 578 602 628 644 661 672 681 692 706 715 720 721	520 580 620 682 728 771 802 826 860 908 941 973 1082	7.35 8.16 8.50 8.86 9.10 9.34 9.49 9.62 9.78 9.96 10.10 10.18	1.000 1.117 1.192 1.312 1.402 1.482 1.542 1.590 1.655 1.748 1.810 1.872 2.080
(6) Displacement Efficiency, Ed (Fig. 19)	Actua Areal	(7) 1 E _{as} Sweep iency	(8) E _s by assumi (4) x $\frac{71.5}{735}$	(9) ng E _s (h) E _{as x} 71.5 968
0.759 0.785 0.799 0.812 0.815 0.816 0.818 0.818 0.818 0.818 0.818	9. 10. 10. 11. 11. 11. 11. 12. 12.	64 90 16 45 59 75 95 18 33 43	.715 .794 .828 .862 .885 .908 .923 .935 .935 .951 .969 .982 .990	.715 .766 .786 .805 .824 .846 .855 .868 .883 .900 .911 .918

TABLE 18

LINE DRIVE FLOOD: PRODUCTION HISTORY

(1) Cum. Oil	(2) Cum. Water	(3) Total Cum. Prod'n.	(4) Inst. 011	(5) Inst. Water	(6) Inst. W.O.R.
ALL WELLS 300.0 600.0 686.0 711.5 756.5 781.5 797.0 807.5 815.0 820.0 823.5 825.5	0.0 0.0 4.0 8.5 23.5 58.5 103.0 152.5 205.0 260.0 316.5	300.0 600.0 690.0 720.0 780.0 840.0 900.0 960.0 1020.0 1080.0 1140.0	300.0 300.0 86.0 25.5 45.0 25.0 15.5 10.5 7.5 5.0 3.5 2.0	0.0 0.0 4.0 4.5 15.0 35.0 44.5 49.5 52.5 55.0 56.5 58.0	0.000 0.000 0.046 0.176 0.333 1.400 2.871 4.714 7.000 11.000 16.143 29.000
FIRST LINE 150.0 300.0 341.0 354.0 375.0 385.0 393.0 396.5 400.5 402.5 403.5 404.5	0.0 0.0 0.0 4.0 6.0 15.0 35.0 57.0 83.5 109.5 137.5 166.5	150.0 300.0 345.0 360.0 390.0 420.0 450.0 480.0 510.0 540.0 570.0 600.0	150.0 300.0 41.0 13.0 21.0 10.0 8.0 3.5 4.0 2.0 1.0	0.0 0.0 4.0 2.0 9.0 20.0 22.0 26.5 26.0 27.5 29.5	0.000 0.000 0.098 0.154 0.429 2.000 2.750 7.571 6.500 13.750 29.500
SECOND LIN 150.0 300.0 345.0 357.5 382.5 396.5 404.0 411.0 414.5 417.0 420.0 421.0	© OF WELLS: 0.0 0.0 0.0 2.5 8.5 23.5 46.0 69.0 95.5 123.0 150.0 179.0	150.0 300.0 345.0 360.0 390.0 420.0 450.0 480.0 510.0 540.0 570.0	150.0 150.0 45.0 12.5 25.0 14.0 7.5 7.0 3.5 2.5 3.0	0.0 0.0 0.0 2.5 6.0 15.0 22.5 23.0 26.5 27.5 27.0	0.000 0.000 0.000 0.200 0.240 1.071 3.000 3.286 7.571 11.000 9.000 29.000

TABLE 19

LINE DRIVE FLOOD: CALCULATION OF TOTAL SWEEP

EFFICIENCY (E_s), AREAL SWEEP EFFICIENCY (E_{as}) AND

THE RATIO OF WATER INJECTED TO WATER

INJECTED TO BREAKTHROUGH (Q/Qbt)

(1) Water -Oil Ratio	(2) Cumulative Oil Production (Fig. 27)	(3) Cumulative Water Injected (Fig. 27)	(4) E _s = Oil Recovery/ Oil in Place (2)/70.8
0.0 0.2 0.4 0.8 1.2 1.8 2.4 3.0 4.0 6.0 8.0 10.0 18.0	695 720 735 756 767 777 785 792 799 810 815 818 823	695 723 746 781 807 837 862 885 9.8 965 1007 1039 1148	9.82 10.18 10.39 10.69 10.85 10.98 11.09 11.18 11.29 11.44 11.50 11.55
(5) Q/Q _{bt} = (3)/695		(6) Displacement Efficiency Ed, (Fig. 19)	(7) Eas Areal Sweep Eff. (4)/(6)
1.000 1.040 1.074 1.124 1.162 1.204 1.240 1.273 1.322 1.388 1.448 1.495 1.651		0.759 0.785 0.799 0.812 0.815 0.816 0.818 0.818 0.818 0.818 0.818 0.818	12.94 12.98 13.00 13.17 13.22 13.45 13.55 13.66 13.80 14.00 14.06 14.12

NINE-SPOT FLOOD NO. 2-1; TOTAL PRODUCTION HISTORY

(6) Instantaneous Water-oil Ratio	0.045 0.000 0.000 0.015 0.015 0.028 0.033 0.0416 0.076 0.088 0.088 0.075 1.988 1.988 1.988 1.988
(5) Instantaneous Water Prod'n.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
(4) Instantaneous Oil Prod'n.	201.0 91.20 91.9 200.4 1.09.3 1.00.3 1.00.3 1.00.3 1.00.3 1.00.3 1.00.3 1.00.3 1.00.3 1.00.3
(3) Total Cum. Production	210.1 cc 332.4 424.3 627.7 835.1 1056.1 1279.7 1647.3 1886.4 2238.6 2842.6 3127.0 3575.0 3575.0 3575.0 5539.7 5930.3
(2) Cumulative Water Prod'n.	9.0 10.0 10.0 10.0 10.0 101.7
(1) Cumulative Oil Prod'n.	201.1 cc 323.4 415.3 615.7 819.1 1033.1 1250.7 1432.2 1595.4 1784.7 2046.4 2571.4 2827.3 3009.9 3135.8 3135.8 3235.7

NINE-SPOT FLOOD NO. 2-1: PRODUCTION HISTORY, DIRECT OFFSET WELLS

	10)
(6) Instantaneous Water-oil Ratio	00000000000000000000000000000000000000
(5) Instantaneous Water Prod'n.	11111111111111111111111111111111111111
(4) Instantaneous Oil Prod'n.	0.479 0.479 0.439 0.
(3) Total Cum. Prod'n.	265.5 265.5 265.5 250.9 2350.1 1261.2 1158.2 1261.2 1261.2 1261.2 1261.2 1261.2 1261.2 1261.2 1261.2 1261.2 1261.2
(2) Cumulative Water Prod'n.	0.00 0.00 10
(1) Cumulative Oil Prod'n.	90.3 182.2 265.5 350.1 442.5 1091.4 1370.0 1438.4 1447.7

NINE-SPOT FLOOD NO. 2-1: PRODUCTION HISTORY, DIAGONAL OFFSET WELLS

us	100	
(6) Instantaneous Water-oil Ratio	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.100 0.000 1.000 1.000 1.000 1.000	1.571 5.144 6.860 8.878 12.861
(5) Instantaneous Water Prod'n.	1111 136.77 145.00 125.00 125.00 125.00 125.00 125.00 125.00 125.00	136.5 189.3 196.2 217.5
(h) Instantaneous Oil Prod'n.	110.8 70.7 71.6 118.8 121.6 98.9 99.5 139.5 139.2	86.9 8.6.9 16.6.8 16.7.7.7.
(3) Total Cum. Prod'n.	119.8 190.5 242.1 362.2 485.0 611.6 757.1 1095.0 1303.2 1865.8 2150.5	2618.1 2844.2 3069.0 3311.0 3539.7
(2) Cumulative Water Prod'n.	12999999999999999999999999999999999999	873.2 1062.5 1258.7 1476.2 1688.4
(1) Cumulative Oil Production	110.8 181.5 233.1 350.2 469.0 732.1 1010.6 1140.6 1540.6 1540.6	1744.9 1781.7 1810.3 1834.8 1851.3

TABLE 23

NINE-SPOT FLOOD NO. 2-1: CALCULATION OF TOTAL SWEEP EFFICIENCY (Es),

AREAL SWEEP EFFICIENCY (Eas), AND THE RATIO OF WATER

INJECTED TO WATER INJECTED TO BREAKTHROUGH (Q/Q_{bt})

(1) Water- Oil Ratio	(2) Cum. Oil Production (Figs. 31 and 32)	(3) Cum. Water Injected (Figs. 31 and 32)	(4) E _s = Oil Rec./ Oil in Place = (2)/1426
0.000	800 cc	800 cc	0.562
0.008	950	1040	0.666
0.016	990	1140	0.695
0.020	1030	1200	0.722
0.032	1140	1290	0.800
0.040	1200	1350	0.842
0.048	1260	1410	0.884
0.060	1330	1500	0.933
0.080	1430	1620	1.003
0.100	1510	1720	1.060
0.14	1 <i>6</i> 10	1890	1.130
0.18	1710	2040	1.200
0.22	1800	2180	1.262
0.24	1830	2240	1.284
0.28	1900	2380	1.332
0.32	1980	2500	1.390
0.35	2020	2590	1.417
0.40	2100	2720	1.473
0.45	2180	2840	1.530
0.50	2250	2950	1.578
0.55	2320	3070	1.628
0.60	2400	3170	1.683
0.65	2470	3270	1.731
7.70	2540	3360	1.780
0.75	2610	3440	1.830
0.80	2670	3520	1.872
0.85	2720	3580	1.907
0.90	2770	3640	1.942
0.95	2840	3680	1.991
1.00	2850	3720	2.000

TABLE 23 (Cont'd.)

(1)	(2)	(3)	(4)
Water-	Cum. Oil	Cum. Water	$E_s = Oil Rec./$
Oil Ratio	Production	Injected	Oil in Place
	(Figs. 31 and 32)	(Figs. 31 and 32)	= (2)/1426
1.2	2920	3810	2.05
1.8	3015	4030	2.12
2.4	3070	4160	2.15
3.0	3100	4280	2.18
4.0	31.20	4430	2.19
6.0	3170	4670	2.22
8.0	3210	4970	2.26
10.0	3240	5280	2.27
18.0	3300	6010	2.32

TABLE 23 (Cont'd.)

(5) Q/Q _b t = (3)/800	(6) Displacement Eff., Ed (Fig. 25)	(7) Areal Sweep Efficiency, E _{as} (4)/(6)
1.00	0.759	0.740
1.30	0.7615	0.875
1.426	0.7620	0.913
1.500	0.7625	0.947
1.612	0.7645	1.047
1.688	0.7660	1.100
1.762	0.7675	1.152
1.876	0.769	1.214
2.025	0.774	1.298
2.150	0.775	1.368
2.365	0.779	1.450
2.550	0.784	1.530
2.725	0.787	1.605
2.800	0.789	1.628
2.975	0.792	1.682
3.125	0.795	1.749
3.24	0.797	1.778
3.40	0.7995	1.845
3.55	0.802	1.908
3.69	0.804	1.963
3.84	0.806	2.02
3.96	0.807	2.09
4.08	0.8085	2.14
4.20	0.8095	2.20
4.30	0.8105	2.26
4.40	0.8115	2.31
4.47	0.8120	2.35
4.55	0.8130	2.39
4.60	0.8135	2.45
4.65	0.8140	2.46
4.76	0.815	2.52
5.05	0.817	2.60
5.20	0.818	2.63
5.35	0.818	2.66
5.55	0.818	2.68
5.85	0.818	2.72
6.22	0.818	2.76
6.61	0.818	2.78
7.52	0.818	2.84

TABLE 24

NINE-SPOT FLOOD NO. 2-2: PRODUCTION HISTORY

(6) Instantaneous Water-oil Ratio	0.007 0.270 1.162 1.857 3.706 7.000 11.615 8.639	0.013 0.509 3.000 4.333 15.000 64.200	0.002 0.096 0.481 0.951 1.759 5.308 4.714 6.273
(5) Instantaneous Water Prod'n.	4.5 17.0 43.0 52.0 63.0 70.0 77.7	4.0 13.5 30.0 32.5 37.5	24,5 23,5 33,5 34,5 34,5 34,5 34,5 34,5 34,5 3
(4) Instantaneous Oil Prod'n.	641.2 63.0 83.0 17.0 10.0 6.5 6.3	316.8 26.5 10.0 7.5 2.5	324, 36, 27, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20
(3) Total Cum. Production	645.7 725.7 805.7 895.7 965.7 1127.7 1289.7	320.8 360.8 400.8 440.8 643.8	324-33 364-9 444-9 524-9 605-9 605-9
(2) Cum. Water Prod'n.	4.5 64.5 116.5 179.5 179.5 396.7 472.0	OFFSET WELLS 17.5 17.5 47.5 80.8 117.5	DIAGONAL OFFSET WELLS 324.4 326.9 387.9 4.0 387.9 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
ALL WELLS (1) Cum. Oil Prod'n.	641.2 704.2 741.2 779.2 796.2 802.7 811.0	DIRECT OF 316.8 343.3 353.3 363.3 365.8	DIAGONAL 324.4 360.9 387.9 408.4 422.9 432.9 432.9 446.4 451.9

 $\frac{\text{TABLE 25}}{\text{NINE-SPOT FLOOD NO. 2-2: }} \text{ CALCULATION OF } \mathbf{E_{s}, E_{as} \text{ AND } Q/Q_{bt}}$

	(2) a. Oil oduction	(3) Cum. Water Injected	(4) E _s , Oil Rec./ Oil in Place (2)/70.8	(5) Q/Q _b t = (3)/ ₆₄₀
0.0 0.2 0.4 0.8 1.2 1.8 2.4 3.0 4.0 6.0 8.0 10.0 18.0	640 672 688 710 726 745 757 767 778 790 796 803 812	640 691 723 774 813 862 902 939 989 1066 1129 1182 1272	9.04 9.49 9.72 10.03 10.26 10.52 10.70 10.83 11.00 11.16 11.24 11.35 11.48	1.000 1.080 1.130 1.210 1.271 1.348 1.410 1.468 1.545 1.665 1.762 1.849 1.990
(6) Displacement Efficiency Ed, (Fig. 25)	Are: Eff:	(7) ual E _{as} al Sweep iciency /(6)	(8) E _s , assuming E _{so} = .740 (4) $\times \frac{.740}{9.04}$	(9) E_{as} , assuming $E_{aso} = .740$ (7) $\times \frac{.740}{11.90}$
0.759 0.785 0.799 0.812 0.815 0.816 0.818 0.818 0.818 0.818 0.818 0.818		11.90 12.09 12.18 12.36 12.59 13.09 13.24 13.45 13.63 13.75 13.88 14.04	0.740 0.777 0.796 0.822 0.840 0.862 0.876 0.888 0.901 0.914 0.921 0.930 0.940	0.740 0.751 0.757 0.768 0.783 0.802 0.814 0.824 0.836 0.848 0.855 0.864

TABLE 26

NINE-SPOT FLOOD NO. 2-3: TOTAL PRODUCTION HISTORY

(6) Instantaneous Water-oil Ratio	900°0	0.043	960.0	0.043	0.356	0.818	1 1 000	1,581	2.667	2.636	2,809	2,809	3.000	2,809	3.706	7.000	5.154	10,429	13.545	11,308	7,889	15,000	159,000
(5) Instantaneous Water Prod'n.	ທູ່ທູ	, s, s	3.5	2.5	10.5	0°0	0.00	24.5	16.0	29.0	29.5	29.5	30.0	29.5	63.0	35.0	33.5	36.5	74.5	73.5	77.0	75.0	79.5
(4) Instantaneous Oil Prod'n.	397.5	37.5	36.5	37.5	29.5	0.03.5	0 0	15.5	6.0	11.0	10.5	10.5	10.0	10.5	17.0	5.0	6.5	3.5	5.5	6.5	0.6	5.0	0.5
(3) Total Cum. Prod'n.	0.004	480.0	520.0	2,60.0	0.009	0.040	720.0	760.0	782.0	822.0	862.0	905.0	942.0	982.0	1062.0	1102.0	1142.0	1182.0	1262.0	1342.0	1422.0	1502.0	1582.0
(2) Cumulative Water Prod'n.	, v , v			13.5	24°0	4 7 0 0	88.0	112.5	128.5	157.5	187.0	216.5	246.5	276.0	339.0	374.0	407.5	0*†††	578.5	592.0	663.0	738.0	817.5
(1) Cumulative Oil Prod'n.	397.5 435.0	472.5	509.0	546.5	576.0	730°0 614°0	632.0	647.5	653.5	664.5	675.0	685.5	695.5	0.907	723.0	728.0	734.5	738.0	743.5	750.0	759.0	764.0	764.5

NINE-SPOT FLOOD NO. 2-3: PRODUCTION HISTORY, DIRECT OFFSET WELLS

(6) Instantaneous Water-oil Ratio 0.013	0.143 0.143 0.143	1.105 2.077 1.667	2.636 3.538 4.712	7.000 4.000 3.444 5.667	5.154 19.000 19.000 25.667	25.667 19.000 25.667 79.000
(5) Instantaneous Water Prod'n. 2.5	រុសសល់	10. 13. 13. 10.	14.5 23.0 16.5	17.5 16.0 15.5 17.0	133.5 20.0 20.0 20.0	33 38 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
(4) Instantaneous Oil Prod'n. 197.5	11.7. 2.5.1 2.5.71		າ ກ່ຽນການ ເກີນການ	n 4 4 w	1 p 1 6 5 0 0 5	0100
(3) Total Cum. Prod'n. 200.0	240.0 260.0 280.0	320°0 320°0 340°0	360.0 389.5 7.09.5	4,29,4,4 4,49,5 7,69,5 7,69,5	529.5 549.5 589.5 57.5 50.5	669.5 709.5 749.5 789.5
(2) Cumulative Water Prod'n. 2.5	13.0	24.0 37.5 50.0	64.5 87.5 104.0	137.5 153.0 170.0	203.5 222.5 299.0	337.5 375.5 414.0 453.5
(1) Cumulative Oil Prod'n. 197.5	232.5 249.0 266.5	276.0 282.5 290.0	895.5 305.5 305.5	25.00 25.00 20.00	329.0 329.0 330.5	332.0 334.0 335.5 336.0

NINE-SPOT FLOOD NO. 2-3: PRODUCTION HISTORY, DIAGONAL OFFSET WELLS

(6) Instantaneous Water-oil Ratio	10.429 10.429 10.429 10.429
(5) Instantaneous Water Prod'n.	0000004 1 5 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(4) Instantaneous Oil Prod'n.	00000000000000000000000000000000000000
(3) Total Cum. Prod'n.	7717 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(2) Cumulative Water Prod'n.	38 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(1) Cumulative Oil Prod'n.	200 200 200 200 200 33 33 33 33 33 33 33 33 33 33 33 33 3

TABLE 29

NINE-SPOT FLOOD NO. 2-3: CALCULATION OF

Es, Eas AND Q/Qbt

(1) Water-Oil Ratio	(2) Cum. Oil Prod'n. (Fig. 30)	(3) Cum. Water Injected (Fig. 30)	(4) E _s Oil Rec. ÷ Oil in Place (2)/70.8
0.0 0.2 0.4 0.8 1.2 1.8 2.4 3.0 4.0 6.0 8.0 10.0 18.0	500 530 576 613 640 666 687 701 720 742 752 756 760	500 535 581 656 713 776 848 900 976 1081 1162 1238 1488	7.06 7.49 8.14 8.66 9.04 9.41 9.70 9.90 10.18 10.48 10.62 10.68 10.73
(5) Q/Q _{bt} = (3)/500	(6) Displacement Efficiency Ed, (Fig. 25)	(7) (8) Actual E_s , assuming E_{as} , Areal $E_{so} = 0.740$ Sweep Effic. (4) $\times \frac{.740}{7.06}$	
1.000 1.070 1.162 1.311 1.428 1.552 1.698 1.800 1.952 2.165 2.325 2.475 2.975	0.759 0.785 0.799 0.812 0.815 0.816 0.818 0.818 0.818 0.818 0.818 0.818	9.31 0.740 9.54 0.784 10.19 0.853 10.67 0.908 11.09 0.946 11.53 0.986 11.86 1.017 12.10 1.038 12.43 1.067 12.81 1.098 13.00 1.113 13.06 1.120 13.13 1.124	0.740 0.758 0.809 0.846 0.880 0.916 0.942 0.961 0.988 0.018 1.033 1.038

TABLE 30

FLOOD NO. 2-4: TOTAL PRODUCTION

Total Cum.	Cum. Wtr.	Cum. Oil Production	Inst. Oil	Inst. Wtr.	Inst.
Production	Production		Prod'n.	Production	W.O.R.
40.0	tr.	40.0	40.0	tr.	0.000
80.0	1.0	79.0	39.0	1.0	0.026
120.0	7.0	113.0	34.0	6.0	0.176
160.0	17.0	143.0	30.0	10.0	0.333
200.0	29.5	170.5	27.5	12.5	0.454
240.0	46.5	193.5	23.0	17.0	0.739
320.0	80.0	240.0	46.5	33.5	0.720
400.0	124.0	276.0	36.0	44.0	1.222
480.0	165.0	315.0	39.0	41.0	1.051
560.0	215.5	344.5	29.5	50.5	1.712
640.0	267.5	372.5	28.0	52.0	1.857
720.0	316.5	403.5	31.0	49.0	1.581
800.0	376.0	424.0	20.5	59.5	2.902
880.0	415.0	465.0	41.0	39.0	0.951
960.0	467.5	492.5	27.5	52.5	1.909
1040.0	524.5	515.5	23.0	57.0	2.478
1120.0	582.0	538.0	22.5	57.5	2.555
1200.0	638.0	562.0	24.0	56.0	2.333
1280.0	693.0	587.0	25.0	55.0	2.200
1360.0	750.5	609.5	22.5	57.5	2.555
1440.0	808.5	631.5	22.0	58.0	2.636
1520.0	866.5	653.5	22.0	58.5	2.659
1600.0	927.0	673.0	19.5	60.0	3.077
1680.0	980.5	699.5	26.5	53.5	2.019
1760.0	1036.5	723.5	24.0	56.0	2.333
1840.0	1100.0	740.0	16.5	63.5	3.848
1920.0	1162.5	757.5	17.5	62.5	3.571
2000.0	1223.0	777.0	19.5	60.5	3.103
2080.0	12825	797.5	20.5	59.5	2.902
2160.0	1343.0	817.0	19.5	60.5	3.103
2240.0	1404.5	835.5	18.5	61.5	3.324
2320.0	1467.0	853.0	17.5	62.5	3.571
2400.0	1531.0	869.0	16.0	64.0	4.000
2520.0	1625.0	895.0	26.0	94.0	3.615
2640.0	1722.5	917.5	22.5	97.5	4.333
2720.0	1789.5	930.5	13.0	67.0	5.154
2800.0	1856.5	943.5	13.0	67.0	5.154

117

TABLE 30 (Cont'd.)

Total Cum.	Cum. Wtr.	Cum. Oil	Inst. Oil	Inst. Wtr.	Inst.
Production	Production	Production	Prod'n.	Production	W.O.R.
2880.0	1924.0	956.0	12.5	67.5	5.400
2960.0	1991.0	969.0	13.0	67.0	5.154
3040.0	2061.0	979.0	10.0	70.0	7.000
3120.0	2134.5	985.5	6.5	73.5	11.308
3200.0	2207.0	993.0	7.5	72.5	9.667
3360.0 3440.0 3520.0 3600.0	2350.5 2424.0 2500.0 2575.5 2651.5	1009.5 1016.0 1020.0 1024.5	8.0 6.5 4.0 4.5	72.0 73.5 76.0 75.5 76.0	9.000 11.308 19.000 16.778
3760.0	2726.5	1033.5	5.0	75.0	15.000
3840.0	2801.5	1038.5	5.0	75.0	15.000
3920.0	2877.5	1042.5	4.0	76.0	19.000
4000.0	2954.0	1046.0	3.5	76.5	21.857

TABLE 31

NINE-SPOT FLOOD NO. 2-4: DIRECT OFFSET WELLS

Total Cum. Production	Cum. Wtr. Production	Cum. Oil Production	Inst. Oil Production	Inst. Wtr. Production	Inst. W.O.R.
20.0 40.0 60.0 80.0 100.0 120.0 160.0 200.0	tr. 1.0 7.0 15.0 25.5 38.0 63.0 91.5	20.0 39.0 53.0 65.0 74.5 82.0 97.0 108.5	20.0 19.0 14.0 12.0 9.5 7.5 15.0	tr. 1.0 6.0 8.0 10.5 12.5 25.0 28.5	0.000 0.053 0.429 0.667 1.105 1.667 2.478
240.0	116.5	123.5	15.0	25.0	1.667
280.0	145.0	135.0	11.5	28.0	2.478
320.0	173.0	147.0	12.0	28.0	2.333
360.0	198.0	162.0	15.0	25.0	1.667
400.0	231.5	168.5	6.5	33.5	5.154
440.0	254.0	186.0	17.5	22.5	1.286
480.0	283.0	197.0	11.0	29.0	2.636
520.0	313.0	207.0	10.0	30.0	3.000
560.0	344.0	216.0	9.0	31.0	3.444
600.0	374.0	226.0	10.0	30.0	3.000
640.0	404.5	235.5	9.5	30.5	3.211
680.0	436.5	243.5	8.0	32.0	4.000
720.0	466.5	253.5	10.0	30.0	3.000
760.0	498.5	261.5	8.0	32.0	4.000
800.0	531.5	268.5	7.0	33.0	4.714
840.0	559.0	281.0	12.5	27.5	2.200
880.0	590.0	290.0	9.0	31.0	3.444
920.0	623.0	297.0	7.0	33.0	4.714
960.0	654.5	305.5	8.5	31.5	3.706
1000.0	687.0	313.0	7.5	32.5	4.333
1040.0	719.5	320.5	7.5	32.5	4.333
1080.0	750.5	329.5	9.0	31.0	3.444
1120.0	783.5	336.5	7.0	33.0	4.714
1160.0	817.0	343.0	6.5	33.5	5.154
1200.0	851.5	348.5	5.5	34.5	6.273
1260.0	901.0	359.0	10.5	49.5	4.714
1320.0	950.5	369.5	10.5	49.5	4.714
1360.0	985.5	374.5	5.0	35.0	4.000
1400.0	1021.5	378.5	4.0	36.0	9.000

TABLE 31 (Cont'd.)

Total Cum. Production	Cum. Wtr. Production	Cum. Oil Production	Inst. Oil Production	Inst. Wtr. Production	Inst. W.O.R.
1440.0	1056.0	384.0	5.5	34.5	6.273
1480.0	1091.0	389.0	5.0	35.0	7.000
1520.0	1126.5	393.5	4.5	33.5	7.889
1560.0	1164.0	396.0	2.5	37.5	15.000
1600.0	1201.0	399.0	3.0	37.0	12.333
1640.0 1680.0 1720.0 1760.0 1800.0	1237.0 1273.5 1311.0 1349.5 1388.0	403.0 406.5 409.0 410.5 412.0	4.0 3.5 2.5 1.5	36.0 36.5 37.5 38.5 38.5	9.000 10.429 15.000 25.667 25.667
1840.0	1426.0	414.0	2.0	38.0	19.000
1880.0	1463.5	416.5	2.5	37.5	15.000
1920.0	1501.5	418.5	2.0	38.0	19.000
1960.0	1539.5	420.5	2.0	38.0	19.000
2000.0	1578.5	421.5	1.0	39.0	39.000

TABLE 32

NINE-SPOT FLOOD NO. 2-4: DIAGONAL OFFSET WELLS

Total Cum. Production	Cum. Water Production	Cum. Oil Production	Inst. Oil Production	Inst. Wtr. Production	Inst. W.O.R.
20.0 40.0 60.0 80.0 100.0 120.0 160.0 200.0	tr. tr. 2.0 4.0 8.5 17.0 32.5	20.0 40.0 60.0 78.0 96.0 111.5 143.0 167.5	20.0 20.0 20.0 18.0 18.5 31.5 24.5	tr. tr. tr. 2.0 2.0 4.5 8.5 15.5	0.000 0.000 0.000 0.111 0.111 0.290 0.270 0.633
240.0	48.5	191.5	24.0	16.0	0.667
280.0	70.5	209.5	18.0	22.0	1.222
320.0	94.5	225.5	16.0	24.0	1.500
360.0	118.5	241.5	16.0	24.0	1.500
400.0	144.5	255.5	14.0	26.0	1.857
440.0	161.0	279.0	23.5	16.5	0.702
480.0	184.5	295.5	16.5	23.5	1.424
520.0	211.5	308.5	13.0	27.0	2.077
560.0	238.0	322.0	13.5	26.5	1.963
600.0	264.0	336.0	14.0	26.0	1.857
640.0	288.5	351.5	15.5	24.5	1.581
680.0	314.0	366.0	14.5	25.5	1.759
720.0	342.0	378.0	12.0	28.0	2.333
760.0	368.5	392.0	14.0	26.5	1.893
800.0	395.5	404.5	12.5	27.0	2.160
840.0	421.5	418.5	14.0	26.0	1.857
880.0	446.5	433.5	15.0	25.0	1.667
920.0	477.0	443.0	9.5	30.5	3.211
960.0	508.0	452.0	9.0	31.0	3.444
1000.0	536.0	464.0	12.0	28.0	2.333
1040.0	563.0	477.0	13.0	27.0	2.077
1080.0	592.5	487.5	10.5	29.5	2.810
1120.0	621.0	499.0	11.5	28.5	2.478
1160.0	650.0	510.0	11.0	29.0	2.636
1200.0	679.5	520.5	10.5	29.5	2.810
1260.0	724.0	536.0	15.5	44.5	2.870
1320.0	772.0	548.0	12.0	48.0	4.000
1360.0	804.0	556.0	8.0	32.0	4.000
1400.0	835.0	565.0	9.0	31.0	3.444

121

TABLE 32 (Cont'd.)

Total Cum. Production	Cum. Water Production	Cum. Oil Production	Inst. Oil Production	Inst. Wtr. Production	Inst. W.O.R.
1440.0	868.0	572.0	7.0	33.0	4.714
1480.0	900.0	580.0	8.0	32.0	4.000
1520.0	934.5	585.5	5.5	34.5	6.273
1560.0	970.5	589.5	4.0	36.0	9.000
1600.0	1006.0	594.0	4.5	35.5	7.889
1640.0	1041.5	598.5	4.5	35.5	7.889
1680.0	1077.0	603.0	4.5	35.5	7.889
1720.0	1113.0	607.0	4.0	36.0	9.000
1760.0	1150.5	609.5	2.5	37.5	15.000
1800.0	1187.5	612.5	3.0	37.0	12.333
1840.0	1225.5	614.5	2.0	38.0	19.000
1880.0	1263.0	617.0	2.5	37.5	15.000
1920.0	1300.0	620.0	3.0	37.0	12.333
1960.0	1338.0	622.0	2.0	38.0	19.000
2000.0	1375.5	624.5	2.5	37.5	15.000

TABLE 33

NINE-SPOT FLOOD NO. 2-4: CALCULATION OF TOTAL SWEEP EFFICIENCY (Es),

AREAL SWEEP EFFICIENCY (Eas) AND THE RATIO OF WATER INJECTED TO BREAKTHROUGH (Q/Qbt).

(1) Water-Oil Ratio	(2) Cum. Oil Production Fig. 33	(3) Cum. Water Injected Fig. 33	(4) E _s = oil rec./ Oil in Place = (2)/75.2	(5) Q/Q _{bt} = (3)/67
0.0	67 cc	67 cc	0.892	1.000
0.1	88	94	1.172	1.403
0.2	109	122	1.451	1.821
0.3	130	150	1.731	2.24
0.4	151	177	2.01	2.64
0.5	161	205	2.40	3.06
0.6	193	232	2.570	3.46
0.7	214	263	2.85	3.93
0.8	234	300	3.115	4.48
0.9	255	333	3.395	4.96
1.0	276	368	3.675	5.49
1.2	318	440	4.23	6.56
1.4	360	540	4.79	8.06
1.6	401	670	5.3 ⁴	10.00
2.0	498	990	6.6 ⁴	14.78
2.4	591	1390	7.86	20.75
2.8	740	1790	9.85	26.7
3.2	838	2085	11.17	31.15
3.6	866	2305	11.53	34.45
4.0	890	2480	11.85	37.00
6.0	969	2995	12.90	44.7
8.0	998	3260	13.30	48.6
12.0	1015	3375	13.52	50.4
20.0	1038	3930	13.82	65.6

TABLE 33 (Cont'd.)

(6) Displacement Efficiency Ed, (Fig. 20)	(7) Areal Sweep Efficiency Eas = (4)/(6)
0.424 0.450 0.479 0.502 0.527 0.545 0.562 0.580 0.592 0.605 0.618 0.640 0.660 0.678 0.698 0.716 0.728 0.728 0.744 0.752 0.761 0.794	2.10 2.60 3.03 3.43 3.815 4.41 4.58 4.92 5.26 5.61 5.94 6.62 7.25 7.88 9.51 10.98 13.52 15.02 15.38 15.58 16.25
0.802 0.804 0.804	16.58 16.86 17.20

FIG. 38 SURFACE TENSION OF AN NaCI BRINE VERSUS CONCENTRATION

FIG. 39 VISCOSITY OF WATER VERSUS TEMPERATURE

B29798