Transformadas de Laplace más comunes

	f(t)	F(s)
1		1
	Unit impulse $\delta(t)$	
2	Unit step $1(t)$	1 s
3	t	$\frac{1}{s^2}$
4	$\frac{t^{n-1}}{(n-1)!} \qquad (n=1,2,3,\dots)$	$\frac{1}{s^n}$
5	$t^n \qquad (n=1,2,3,\ldots)$	$\frac{n!}{s^{n+1}}$
6	e^{-at}	$\frac{1}{s+a}$
7	te^{-at}	$\frac{1}{(s+a)^2}$
8	$\frac{1}{(n-1)!}t^{n-1}e^{-at} \qquad (n=1,2,3,\dots)$	$\frac{1}{(s+a)^n}$
9	$t^n e^{-at}$ $(n = 1, 2, 3,)$	$\frac{n!}{(s+a)^{n+1}}$
10	sin ωt	$\frac{\omega}{s^2 + \omega^2}$
11	$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
12	$\sinh \omega t$	$\frac{\omega}{s^2-\omega^2}$
13	$\cosh \omega t$	$\frac{s}{s^2-\omega^2}$
14	$\frac{1}{a}(1-e^{-at})$	$\frac{1}{s(s+a)}$
15	$\frac{1}{b-a}(e^{-at}-e^{-bt})$	$\frac{1}{(s+a)(s+b)}$
16	$\frac{1}{b-a} \big(b e^{-bt} - a e^{-at} \big)$	$\frac{s}{(s+a)(s+b)}$
17	$\frac{1}{ab}\left[1+\frac{1}{a-b}\left(be^{-at}-ae^{-bt}\right)\right]$	$\frac{1}{s(s+a)(s+b)}$
18	$\frac{1}{a^2}(1-e^{-at}-ate^{-at})$	$\frac{1}{s(s+a)^2}$
19	$\frac{1}{a^2}(at-1+e^{-at})$	$\frac{1}{s^2(s+a)}$
20	$e^{-at}\sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
21	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$
22	$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\omega_n\sqrt{1-\zeta^2}t (0<\zeta<1)$	$\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$

23	$-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin(\omega_n\sqrt{1-\zeta^2}t-\phi)$ $\phi = \tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta}$ $(0<\zeta<1, \ 0<\phi<\pi/2)$		$\frac{s}{s^2+2\zeta\omega_n s+\omega_n^2}$	
24	$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_n \sqrt{1 - \zeta^2} t + \phi)$ $\phi = \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}$ $(0 < \zeta < 1, 0 < \phi < \pi/2)$		$\frac{\omega_n^2}{s(s^2+2\zeta\omega_n s+\omega_n^2)}$	
25	$1-\cos\omega t$		$\frac{\omega^2}{s(s^2+\omega^2)}$	
26	$\omega t - \sin \omega t$		$\frac{\omega^3}{s^2(s^2+\omega^2)}$	
27	$\sin \omega t - \omega t \cos \omega t$		$\frac{2\omega^3}{\left(s^2+\omega^2\right)^2}$	
28	$\frac{1}{2\omega}t\sin\omega t$		$\frac{s}{(s^2+\omega^2)^2}$	
29	$t\cos\omega t$		$\frac{s^2-\omega^2}{\left(s^2+\omega^2\right)^2}$	
30	$\frac{1}{\omega_2^2 - \omega_1^2} \left(\cos \omega_1 t - \cos \omega_2 t\right) \qquad \left(\omega_1^2 \neq \omega_2^2\right)$		$\frac{s}{(s^2 + \omega_1^2)(s^2 + \omega_2^2)}$	
31	$\frac{1}{2\omega}\left(\sin\omega t + \omega t\cos\omega t\right)$		$\frac{s^2}{(s^2+\omega^2)^2}$	
Pulse function				
$f(t) = \frac{A}{t_0} 1(t) - \frac{A}{t_0} 1(t - t_0)$		$\mathscr{L}[f(t)] = \frac{A}{t_0 s} - \frac{A}{t_0 s} e^{-st_0}$		
Impulse function				
$g(t) = \lim_{t_0 \to 0} \frac{A}{t_0}, \text{for } 0 < t < t_0$		$\mathscr{L}[g(t)] = \lim_{t_0 \to 0} \left[\frac{A}{t_0 s} \right]$	$\left[\left(1-e^{-st_0}\right)\right]$	
$t = 0,$ for $t < 0, t_0 < t$		$= \lim_{t_0 \to 0} \frac{\frac{d}{dt_0}}{dt}$ $= \frac{As}{s} = A$	$\frac{\left[A(1-e^{-st_0})\right]}{\frac{d}{dt_0}(t_0s)}$	
		_		

Resumen de Propiedades de Laplace

1	$\mathscr{L}\big[Af(t)\big] = AF(s)$		
2	$\mathscr{L}\big[f_1(t) \pm f_2(t)\big] = F_1(s) \pm F_2(s)$		
3	$\mathcal{L}_{\pm}\left[\frac{d}{dt}f(t)\right] = sF(s) - f(0\pm)$		
4	$\mathscr{L}_{\pm}\bigg[\frac{d^2}{dt^2}f(t)\bigg] = s^2F(s) - sf(0\pm) - \dot{f}(0\pm)$		
5	$\mathcal{L}_{\pm}\left[\frac{d^{n}}{dt^{n}}f(t)\right] = s^{n}F(s) - \sum_{k=1}^{n} s^{n-k}f(0\pm)$		
	where $f(t) = \frac{d^{k-1}}{dt^{k-1}} f(t)$		
6	$\mathcal{L}_{\pm} \left[\int f(t) dt \right] = \frac{1}{2}$	$\frac{F(s)}{s} + \frac{1}{s} \left[\int f(t) dt \right]_{t=0\pm}$	
7	$\mathcal{L}_{\pm}\left[\int \cdots \int f(t)(dt)^n\right] = \frac{F(s)}{s^n} + \sum_{k=1}^n \frac{1}{s^{n-k+1}} \left[\int \cdots \int f(t)(dt)^k\right]_{t=0\pm}$		
8	$\mathscr{L}\Big[\int_0^t\!f($	$(t) dt \bigg] = \frac{F(s)}{s}$	
9	$\int_0^\infty f(t) dt = \lim_{s \to 0} F(s) \qquad \text{if } \int_0^\infty f(t) dt \text{ exists}$		
10	$\mathscr{L}\big[e^{-\alpha t}f(t)\big] = F(s+a)$		
11	$\mathscr{L}[f(t-\alpha)1(t-\alpha)] = e^{-\alpha s}F(s) \qquad \alpha \ge 0$		
12	$\mathscr{L}[tf(t)] = -\frac{dF(s)}{ds}$		
13	$\mathscr{L}[t^2f(t)] = \frac{d^2}{ds^2}F(s)$		
14	$\mathcal{L}[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} F(s) \qquad (n = 1, 2, 3, \dots)$		
15	$\mathcal{L}\left[\frac{1}{t}f(t)\right] = \int_{s}^{\infty} F(s) ds \qquad \text{if } \lim_{t \to 0} \frac{1}{t}f(t) \text{ exists}$		
16	$\mathscr{L}\left[f\left(\frac{1}{a}\right)\right] = aF(as)$		
17	$\mathscr{L}\left[\int_0^t f_1(t-\tau)f_2(\tau)d\tau\right] = F_1(s)F_2(s)$		
18	$\mathscr{L}[f(t)g(t)] = \frac{1}{2\pi i} \int_{c-j\infty}^{c+j\infty} F(p)G(s-p) dp$		
Initia	l value theorem	$f(0+) = \lim_{t \to 0+} f(t) = \lim_{s \to \infty} sF(s)$	
Final	value theorem	$f(\infty) = \lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$	

Expansiones en fracciones parciales más comunes

(i) Factored roots

$$\frac{K}{s(s+a)} = \frac{A}{s} + \frac{B}{(s+a)}$$

(ii) Repeated roots

$$\frac{K}{s^2(s+a)} = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{(s+a)}$$

(iii) Second-order real roots ($b^2 > 4ac$)

$$\frac{K}{s(as^2 + bs + c)} = \frac{K}{s(s+d)(s+e)} = \frac{A}{s} + \frac{B}{(s+d)} + \frac{C}{(s+e)}$$

(iv) Second-order complex roots ($b^2 < 4ac$)

$$\frac{K}{s(as^2 + bs + c)} = \frac{A}{s} + \frac{Bs + C}{as^2 + bs + c}$$

Completing the square gives

$$\frac{A}{s} + \frac{Bs + C}{(s + \alpha)^2 + \omega^2}$$
; being $s_{1,2} = -\alpha \pm j \omega$

Note: In (iii) and (iv) the coefficient a is usually factored to a unity value.