FLT Seminar Series¹, Session 2 **How Feature Learning Theory Works?**

Chen Yanbo²

Ph.D. Candidate School of Computer Science, Wuhan University 430072, Wuhan, Hubei, China

Jun. 1st, 2025

1/22

¹This project is open for collaboration. For details, see our project page at https://github.com/yanboc/feature-learning-theory.

²Contact: yanboch@126.com.

Outline

An Quick Start to FLT

- Highlights from our last session: **what** is feature learning theory?
 - ► Terminologies: what are feature and learning, respectively?
 - A bird's-eye view summary of FLT
- A simplified example: how FLT works?
 - The theoretical framework of FLT
 - The theoretical goal of FLT

2/22

Table of Contents

A brief review of our last session

A simplified example: how FLT works?

3/22

What is feature learning theory (FLT)?

What are *feature* and *learning*, respectively?

Terminologies

• We focus on **features** in DL (w.r.t. data, NNs, and specific tasks); the main goal of DL is to *find NNs that extract useful features from data*.

Figure: Higher- and lower-level features in CNN-based classification

What is *feature learning theory (FLT)?*

What are *feature* and *learning*, respectively?

Terminologies

• Machine **learning** uses a specified *algorithm* to find the best model in the *hypothesis class* (e.g., NNs) according to the performance of the model on the *data*, concerning the *evaluation* standard.

Table: The four core elements of the ML&DL paradigm

	Theoretical	In Practice
Data	vectors and matrices	tensor
Hypothesis Class	functions and mappings	multi-layer NN
Algorithm	optimization	optimizer, LR,
Evaluation	loss function, regularization	CE, MSE,

A bird's-eye view summary of FLT

Machine learning uses a specified algorithm to find the best model in the hypothesis class (e.g., NNs) according to the performance of the model on the data, concerning the evaluation standard.

FLT specifies the learning task (network structure, data assumption, loss, and algorithm) and explore the **dynamics** of training.

Dynamics: how the *parameters of the NN* iterate from random initialization (noise) to *useful features* capable of accurate classification/regression?

Table of Contents

A brief review of our last session

A simplified example: how FLT works?

7/22

How FLT works? (1/2)

Step 1. FLT specifies the learning task

(network structure, data assumption, loss, and algorithm)

Theoretical framework [Allen-Zhu & Li, 2005.10190v4]

- **Hypothesis Class**: 2-layer (symmetric)-ReLU network f(x; w)
- Data: orthogonal feature + sparse coding model

$$x = Mz + \xi, \ y = sign(\langle w^*, z \rangle)$$

• Algorithm: GD with random initialization

$$w^{(t+1)} = w - \eta \nabla Loss(f(x, w), y)$$

• Evaluation: logistic loss for classification.

Intuition: specifying the learning task is like creating a **virtual environment** to *play around* with.

The triviality & tractability trade-off

Specifying the learning task is a **tricky job**

Figure: There is a trade-off between triviality and tractability.

Data Distribution

We consider a supervised binary classification task.

Sparse Coding Model, SCM (1/2)

Consider the training data $x \in \mathbb{R}^d$ generated from $x = Mz + \xi$ for *coding* matrix $M \in \mathbb{R}^{d \times d}$, hidden vector $z \in \mathbb{R}^d$, and noise vector $\xi \in \mathbb{R}^d$ such that

- $M = (M_1, M_2, \dots, M_d)$ is a unitary (i.e., orthonormal) matrix.
- z is a sparse vector in the sense that $||z||_0 = \Theta(\sqrt{d})$.
- for simplicity, we let $\xi \sim \mathcal{N}(0, \sigma_0 \mathbf{I})$ in this seminar

Remarks:

- The *sparsity* of z and the *magnitude* of ξ are *non-negligible* to guarantee the expressiveness of SCM.
- More choices of (implicit) data distributions (delayed to FLT-3).

Chen Yanbo (WHU) FLT-2 Jun. 1st, 2025 10/22

Data Distribution

Sparse Coding Model, SCM (2/2)

The label of x is decided by the hidden vector z and a labeling function w^* .

$$y = \operatorname{sign}(\langle w^*, z \rangle). \tag{1}$$

For simplicity, assume that $|w_i^*| = \Theta(1)$ for all $i \in [d]$ (i.e., balanced setting).

learning goal: predict the label of x

We need to find f such that $f(Mz + \xi) \approx \text{sign}(\langle w^*, z \rangle)$.

11/22

The Philosophy of FLT

Philosophy No.1., Symmetry

In the specified learning tasks, the data, networks, and algorithms must embody certain symmetries or self-similarities. For instance,

- the coding matrix *M* is orthonormal,
- the labeling function w^* is balanced,
- the self-similarity within the GD algorithm.

In FLT, we only need to analyze a single part of the symmetric system, rather than all the parts.

Hypothesis Class (i.e., Network Structure)

learning goal: predict the label of x

We need to find f such that $f(Mz + \xi) \approx \text{sign}(\langle w^*, z \rangle)$.

Natural intuition

A natural intuition is letting

$$f(x) = \langle w^{\star}, \mathbf{M}^{\top} x \rangle = \langle w^{\star}, z \rangle + \langle \mathbf{M} w^{\star}, \xi \rangle.$$
 (2)

The non-negligible magnitude of ξ would lead to inaccuracy.

Linear models are *not complicated (expressive) enough* to characterize SCM.

(cf. the expressiveness of NN, VC-dimension theory, the overfitting phenomenon, regularization & the Occam's Razor principle.)

Hypothesis Class (i.e., Network Structure)

Two-layer (symmetric) ReLU network

We consider the following network

$$f_t(x; \mathbf{w}^{(t)}) = \sum_{i=1}^m \left(\text{ReLU}\left(\langle \mathbf{w}_i^{(t)}, \mathbf{x} \rangle - b_i^{(t)} \right) - \text{ReLU}\left(-\langle \mathbf{w}_i^{(t)}, \mathbf{x} \rangle - b_i^{(t)} \right) \right)$$

(optimized to)
$$f(x) \approx \sum_{i=1}^{n} w_i^* (\text{ReLU}(\langle \mathbf{M}_i, x \rangle - b_i) - \text{ReLU}(-\langle \mathbf{M}_i, x \rangle - b_i))$$

parameterized by $\mathbf{w}^{(t)} := \left(w_{\lfloor m \rfloor}^{(t)}, b_{\lfloor m \rfloor}^{(t)}\right)$, where m denotes the width of f_t .

Remarks:

- The ReLU activation is smoothified (using a mollifier), omitted here.
- How to obtain Eq. (14)? It can neither be more complicated nor simpler (cf. Figure 2). Pure tricks or intuition, maybe.
- Over-parameterization & Thresholding.

14/22

The Philosophy of FLT

Philosophy No.1., Symmetry.

Philosophy No.2., Programmatic Thinking

When performing feature learning analysis, one should think and act like a programmer, rather than a mathematician. For instance,

- Programmatic definitions. Find intuitions and definitions from practical code and PyTorch documentation!
- **Programmatic tuning**. There are many parameters in the analysis, e.g., m and σ_0 , that require careful tuning.
- Programmatic workflow. FLT undergoes the entire training process, starting with random initialization and stopping by the attainment of an accurate classifier.

In FLT, we only commit the *minimum necessary changes* to a practical training process of NNs.

Evaluation

Loss function and empirical risk

We consider the standard logistic loss

$$Loss_t\left(\boldsymbol{w}^{(t)}; x, y\right) := \log\left(1 + \exp\left(-yf_t\left(x; \boldsymbol{w}^{(t)}\right)\right)\right)$$
(3)

and the corresponding empirical risk

$$\operatorname{Risk}_{t}\left(\boldsymbol{w}^{(t)}\right) := \frac{1}{N} \sum_{j \in [N]} \left(\operatorname{Loss}_{t}\left(\boldsymbol{w}^{(t)}; x_{j}, y_{j}\right) \right) \tag{4}$$

The **training goal** is to find the best w that minimizes the empirical risk (i.e., the ERM training paradigm).

Remark:

 FLT for other training paradigms (e.g., Bayesian NN, GANs, RL, Causal Inference). (Good choices for future research!)

Chen Yanbo (WHU) FLT-2 Jun. 1st, 2025 16/22

Algorithm

Gradient descent with random initialization

For each $i \in [m]$, the update rule of $\mathbf{w}_{i}^{(t)}$ is

$$\boldsymbol{w}_{i}^{(t+1)} \leftarrow \boldsymbol{w}_{i}^{(t)} \eta \nabla_{\boldsymbol{w}_{i}^{(t)}} \operatorname{Risk}(\boldsymbol{w}_{i}^{(t)}), \tag{5}$$

for any $t \in [T]$, where w is initialized as

$$\boldsymbol{w}_{i}^{(0)} \sim \mathcal{N}(0, \sigma_{1}^{2} \boldsymbol{I}). \tag{6}$$

Remark:

- About the parameters: recall the *programmatic thinking* philosophy.
- Some neurons have already been good enough at initialization (cf. concentration inequalities & the lottery ticket hypothesis).

Chen Yanbo (WHU) FLT-2 | Jun. 1st, 2025 17/22

Summary

- The first step of FLT is to *specify* the learning task, including network structure, data assumption, loss, and algorithm (check it!).
- Specifying the learning task is like creating a **virtual environment** to *play around* with.
 - What is playing around? Acts like tuning parameters, network structures, and data assumptions.
 - How to advance an FLT proof? Just play around and observe the changes in the proofs. The difficulty curve of FLT is almost linear.
- The Philosophy of FLT No. 1&2
 - Design a symmetric system to reduce the complexity of analysis.
 - ► Think and act like a programmer, rather than a mathematician.

18 / 22

Step 2. FLT defines multiple **good property sets** and studies how the neurons **enter or exit** these sets. (**Dynamics!**)

What *defines* a good feature?

Recall the network structure

$$f_t(x; \mathbf{w}^{(t)}) = \sum_{i=1}^m \left(\text{ReLU}\left(\langle w_i^{(t)}, x \rangle - b_i^{(t)} \right) - \text{ReLU}\left(-\langle w_i^{(t)}, x \rangle - b_i^{(t)} \right) \right)$$

(optimized to)
$$f(x) \approx \sum_{i=1}^{n} w_i^* (\text{ReLU}(\langle \mathbf{M}_i, x \rangle - b_i) - \text{ReLU}(-\langle \mathbf{M}_i, x \rangle - b_i))$$

- One good feature $\mathbf{w}_{i}^{(t)}$ should approximate the *direction* of \mathbf{M}_{i} .
- Multiple good features should approximate the *magnitude* of w_i^* .

Chen Yanbo (WHU) FLT-2 Jun. 1st, 2025 19/22

Good Property Sets

FLT defines multiple levels of good property sets. We consider two of them.

Surely Good Neurons $S_{i,sure}^t$ and Potentially Good Neurons $S_{i,pot}^t$

Let $S_{i,sure}^t \subseteq [m]$ be those neurons $i \in [m]$ satisfying

- $\langle \mathbf{w}_{i}^{(t)}, \mathbf{M}_{i} \rangle^{2} \geq (c_{1} + c_{2})(\sigma_{2}^{(t)})^{2} \log d$
- $\langle \mathbf{w}_{i}^{(t)}, \mathbf{M}_{i'} \rangle^{2} < (c_{1} c_{2})(\sigma_{3}^{(t)})^{2} \log d$

for every $j' \neq j$,

 $\langle \mathbf{w}_{i}^{(t)}, \mathbf{M}_{i} \rangle \mathbf{w}_{i}^{\star} > 0.$

Let $S_{i,pot}^t \subseteq [m]$ be those neurons $i \in [m]$ satisfying

• $\langle \mathbf{w}_{:}^{(t)}, \mathbf{M}_{i} \rangle^{2} \geq (c_{1} - c_{2})(\sigma_{3}^{(t)})^{2} \log d.$

Remarks:

- For the flexibility of the theory, more parameters are introduced.
- **Feature Learning**: The neurons $\{w_i\}_{i \in S_i}$ approximate the direction and magnitude of M_i and w_i^* .

Chen Yanbo (WHU) Jun. 1st, 2025 20 / 22 How the neurons *enter* and *exit* these sets?

Theoretical Goals

The *desired principles* of neurons' entering and exiting good property sets can be summarized as follows.

Entering:

- Some of the neurons have already been in these sets at initialization.
- Neurons from lower-level sets enter higher-level sets with probability.

Exiting:

- Neurons exit lower-level sets and enter higher-level sets.
- Neurons never exit the highest-level sets.

The main goal of FLT analyses are to prove the above principles.

The proof techniques are postponed to FLT-3.

Thanks for your participation!

Welcome to join our WeChat group! If this expires, please don't hesitate to contact me at yanboch@126.com.