Analyse

Félix Yvonnet

11 octobre 2023

1 Analyse

1.1 Rappel de topologie

Définition 1. Un espace topologique est une paire (X, \mathbb{U}) , où X est un ensemble et

 $\mathbb{U}\subset\mathcal{P}(X)$ est l'ensemble des ouverts satisfait :

- 1. \emptyset , $X \in \mathbb{U}$
- $2. \ \forall \mathcal{U} \subset \mathbb{U} \ \bigcup_{U \in \mathcal{U}} U \in \mathbb{U}$
- 3. $\forall U, V \in \mathbb{U} \ U \cap V \in \mathbb{U}$

Remarque. si $\mathcal{U} = \emptyset$ alors $\bigcap_{u \in \mathcal{U}} u = \emptyset$. En revanche l'intersection vide n'est pas définie

Remarque. Un fermé est le complémentaire d'un ouvert. Les ensembles \emptyset et X sont fermés. Les fermés sont stable par union finie et intersection quelconque. On notera $\overline{\mathbb{U}}$ l'ensemble des fermés construits par les complémentaires des ouverts de \mathbb{U} .

Définition 2. Soit $A\subset X$ où (X,\mathbb{U}) est un espace topologique. On définit l'intérieur $\mathring{A}:=\bigcap_{F\in\overline{\mathbb{U}}}F$

On note que
$$X \backslash \mathring{A} = \overline{X \backslash A}$$
 et $X \backslash \overline{A} = X \backslash \overline{A}$

1.2 Comparaison de topologies :

Définition 3. Soit X un ensemble muni des topologies $\mathbb U$ et $\mathbb V$. On dit que $\mathbb U$ est **plus fine** que $\mathbb V$ si $\mathbb U\supset \mathbb V$

Exemple. la topologie discrète définie par $\mathbb{U} = \mathcal{P}(X)$ est la topologie la plus fine sur X. la topologique la moins fine sur X est donnée par la topologie grossière : $\mathbb{U} = \{\emptyset, X\}$

Définition 4. Soit X ensemble et $\mathcal{F}_0 \subset \mathcal{P}(X)$. La topologie \mathbb{U} la moins fine

(ou la plus grossière) contenant
$$\mathcal{F}_0$$
 est définie par :
$$\mathbb{U}_{\mathcal{F}_0} = \bigcap_{\substack{\mathcal{F}_0 \subset \mathbb{U}' \\ \mathbb{U}' \text{ topologie sur } X}} \mathbb{U}' = \{X\} \cup \{\bigcup_{\substack{\text{quelconque finie}}} U \mid U \in \mathcal{F}_0\}.$$

 $\mathbb{U}_{\mathcal{F}_0}$ est bien une topologie en tant qu'intersections de topologies.

Cette dernière égalité montre que la définition de topologie engendrée par une partie quelconque \mathcal{F}_0 n'est pas forcément très pratique à utiliser. C'est pourquoi on introduit la notion de base d'ouverts

Définition 5. Une base d'ouverts sur X est une partie $\mathcal{B} \subset \mathcal{P}(X)$ tq

- $-- \text{ (couverture)} \bigcup_{U \in \mathcal{B}} U = X$
- (stabilité par intersections) $\forall U, V \in \mathcal{B}, \ \forall x \in U \cap V, \ \exists W \in \mathcal{B}$ $x \in W \subset U \cap V$

Proposition 1. Soit (X, \mathbb{U}) un espace topologique, et $\mathcal{B} \subset \mathcal{P}(X)$ une base d'ouverts de U. Alors :

$$\mathbb{U}_{\mathcal{B}} = \{ \bigcup_{\text{quelconque}} U \mid U \in \mathcal{B} \}$$

Preuve. On note $A = \{ \bigcup_{\text{quelconque}} U \mid U \in \mathcal{B} \}$. On va montrer que $A = \mathbb{U}_{\mathcal{B}}$.

Dans un premier temps, par l'hypothèse de couverture de \mathcal{B} , on a bien que $X = \bigcup U$ qui est une union quelconque d'éléments de \mathcal{B} .

Ensuite, si $U, V \in \mathcal{B}$, on note $W_x \in \mathcal{B}$ tq $x \in W_x \subset U \cap V$ (on peut se donner un tel W_x d'après la stabilité par intersection) pour tout $x \in$ $U \cap V$. Alors $U \cap V = \bigcup W_x$. Donc les intersections d'éléments de \mathcal{B} $x \in U \cap V$

s'écrivent également comme union quelconque. On a montré que $\mathbb{U}_{\mathcal{B}} \subset A$, et naturellement il vient que $A \subset \mathbb{U}_{\mathcal{B}}$.

D'où le résultat.

Exemple (topologie de l'ordre). : Soit (X, <) un ensemble totalement ordonné avec au moins 2 éléments. On définit une base d'ouverts par les intervalles : $]-\infty, b[,]a, b[,]a, \infty[$ pour $a, b \in X$

Preuve. Si
$$a < b \in X$$
 alors $X =]-\infty, b[\cup]a, \infty[$. De plus $]\alpha, \beta[\cap]\delta, \gamma[=]\min(\alpha, \delta), \max(\beta, \gamma)[$

Exemple (topologie produit). : $(X_i, \mathbb{U}_i)_{i \in I}$ une famille d'espace topologiques, on définit la topologie produit par la base d'ouverts :

 $\{\prod_{i\in I}u_i|\forall i\in I,u_i\in\mathbb{U}_i\text{ et }u_i=X_i\text{ sauf pour un nombre fini de }i\in I\}$

Exemple. Si $X_i = X, \forall i \in I$, alors $\prod_{i \in I} X = X^I$ est l'ensemble des fonctions de I dans X. La topo produit sur X^I correspond à la convergence simple. $f_n \xrightarrow[n \to \infty]{} f \Leftrightarrow \forall i \in I, \ f_n(i) \to f(i)$

1.3 Voisinages:

Définition 6 (Voisinage). Soit (X, \mathbb{U}) un espace topologique et $x \in X$. Un voisinage V de x est une partie $V \subset X$ tq $\exists U \in \mathbb{U}, \ x \in U \subset V$. De manière équivalente V est une voisinage de x si et seulement si : $x \in \mathring{V}$. On note \mathcal{V}_x l'ensemble des voisinages de $x \in X$.

Définition 7 (Caractérisation de l'adhérence). $\forall A \subset X$, On définit l'adhérence $\overline{A} = \{x \in X | \forall V \in \mathcal{V}_x, \ A \cap V \neq \emptyset\}$, l'intérieur $\mathring{A} = \{x \in X | \exists V \in \mathcal{V}_x, \ V \subset A\}$

Définition 8. une partie $W_x \subset \mathcal{V}_x$ est une **base de voisinage** ssi $\forall V \in \mathcal{V}_x, \ \exists W \in W_x, \ (x \in) \ W \subset V$. I.e. les éléments de W_x sont plus fins que \mathcal{V}_x .

Définition 9. une topologie \mathbb{U} de X est :

- 1. A base dénombrable de voisinages ssi tout point $x \in X$ admet une base dénombrable W_x de voisinage.
- 2. A <u>base dénombrable</u> si elle est engendrée par une base d'ouverts dénombrable.

Remarque. si (X,d) est un espace métrique et $x\in X$, alors $W_x=\{B(x,\frac{1}{n})\mid n\in\mathbb{N}^*\}$ est une base de voisinage dénombrable de x.

Remarque. Si (X,d) est un espace métrique admettant une suite $(x_n)_{n\in\mathbb{N}}$ dense, alors une base dénombrable d'ouverts est : $\mathbb{U}_0 = \{B(x_n,r) \mid n\in\mathbb{N} \ r\in\mathbb{Q}\}$

Preuve. \mathbb{U}_0 recouvre bien X.

Soit $x \in B(x_n, r) \cap B(x_n, s) = BB$ et $\varepsilon \in \mathbb{Q} > 0$ tq $B(x, \varepsilon) \subset BB$. Soit $k \in \mathbb{N}$ tq $x_k \in B(x, \varepsilon/2)$. Alors $x \in B(x_k, \varepsilon/2) \subset B(x, \varepsilon/2 + \varepsilon/2) = B(x, \varepsilon)$.

Par le même raisonnement, \mathbb{U} contient les voisinages arbitrairement petits de tout point. C'est donc une base d'ouverts pour les topologies de X. \square

Proposition 2 (Caractérisation séquentielle de l'adhérence). Soit (X, \mathbb{U}) à base de voisinage dénombrable. Alors $\forall A \subset X, \ \overline{A} = \{x \in X \mid \exists (x_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}, \ x_n \to x\}.$

Preuve. Soit $(V_n)_{n\in\mathbb{N}}$ une base de voisinages de x, soit $x_n \in \underbrace{V_0 \cap \cdots \cap V_n \cap A}_{\text{une } \cap \text{ finie de vois de } x}$ Alors $x_n \to x. (\Leftrightarrow \forall v \in V_x, \ \exists N, \forall n \geq N, \ x_n \in V)$

Remarque. Dans la dernière proposition, l'inclusion réciproque est toujours vérifiée pour un espace topologique quelconque (pas forcément à base de voisinage dénombrable).

Proposition 3. Soit (X, \mathbb{U}) un espace topologique à base dénombrable de voisinage et $(x_n)_{n\in\mathbb{N}}\in X^{\mathbb{N}}$. Alors toutes valeurs d'adhérence de (x_n) est la limite d'une sous suite.

On rappelle que
$$Adh((x_n)) = \bigcap_{N \in \mathbb{N}} \overline{\{x_n | n \geq N\}}$$
.

Preuve. on note que $Adh(x_n) = \{x \in X | \forall v \in \mathcal{V}_x, \{n \in \mathbb{N} \mid x_n \in V\} \text{ est infini}\}$. La preuve suit comme précédemment en choisissant (V_n) base de voisinages \searrow pour l'inclusion et $x_{\sigma(n)} \in \mathcal{V}_x$ avec σ strictement croissante.

1.4 Séparation :

Définition 10. Un espace topologique est **séparé** ssi $\forall x,y \in X$, $x \neq y \Rightarrow \exists u,v \in \mathbb{U}, \ x \in u,y \in v, u \cap v = \emptyset$. Si (X,\mathbb{U}) est séparé, alors toute suite a au plus une limite (Haussdorff, T_2).

Définition 11. Un espace (X, \mathbb{U}) satisfait l'axiome T_1 de Kolmogorov, ssi $\forall x \neq y \in X \ \exists u \in \mathbb{U}, \ x \in u \text{ et } y \notin u.$

Exemple (topologie T_1 mais pas T_2). Vérifier l'axiome T_1 est moins fort que vérifier l'axiome T_2 ($T_2 \Rightarrow T_1$).

- $1.\ \mathbb{N}$ muni de la topologie cofinie : les fermés sont les ensembles finis.
- 2. \mathbb{C}^d muni de la topo de Zariski : les fermés ont les ensembles algébriques $F = \{x \in \mathbb{C}^* | P_1(x) = \cdots = P_n(x) = 0\}$ $n \geq 0$; $P_1, \cdots, P_n \in \mathbb{C}[X]$

Exemple. La suite $(n)_{n\in\mathbb{N}}$ converge vers tous les points de \mathbb{N} pour la topo cofinie. En effet, soit $k\in\mathbb{N}$ et V un voisinage de k. Alors V contient tous les points sauf un nombre fini. Donc tous les termes de la suite à partir d'un certain rang.

De même, une suite de point qui n'est continue dans aucun ensemble algébrique propre converge vers t
t point de \mathbb{C}^d pour Zariski.

1.5 Continuité:

Définition 12. Soit (X, \mathbb{U}) un espace topologique. Une application $f: X \to Y$ est continue en $x \in X$ si et seulement si $\forall W \in \mathcal{V}_{f(x)}, \ f^{-1}(W) \in \mathcal{V}_x$. (ie $\forall W \in \mathcal{V}_{f(x)}, \ \exists V \in \mathcal{V}_x, \ f(V) \subset W$). On dit que f est continue si pour tout $x \in X$, f est continue en x.

Proposition 4 (Caractérisation de la continuité d'une fonction dans un espace topologique). Soit $(X,\mathbb{U}),(Y,\mathbb{V})$ des espaces topologiques et $f:X\to Y$. Sont équivalents :

- 1. f continue
- 2. $\forall V \in \mathbb{V} \ f^{-1}(V) \in \mathbb{U}$ (l'image réciproque d'un ouvert est un ouvert)
- 3. $\forall F \in \overline{\mathbb{V}}, \ f^{-1}(F) \in \overline{\mathbb{U}}.$ (l'image réciproque d'un fermé est fermé)
- 4. $\forall A \subset X, \ f(\overline{A}) \subset \overline{f(A)}$ (et donc égaux)

La composition de fonctions continues est continue, l'image par une fonction continue d'une suite convergente est convergente.

Exemple. Soit X un ensemble et $(f_i: X \to Y_i)$ une famille d'applications vers des espaces topologiques. On peut considérer la topologie la moins fine qui les rend continue. Elle est engendrée par les $\{f^{-1}(U_i) \mid i \in I, U_i \in \mathbb{U}_i\}$.

1.6 Espace métrique

Définition 13. (X,d) espace métrique où $d: X \times X \to \mathbb{R}$ est application distance, ci elle satisfait :

- 1. (Positivité) $\forall x, y \in X, \ d(x, y) \ge 0$
- 2. (Séparation) $\forall x, y \in X, \ d(x, y) = 0 \Leftrightarrow x = y$).
- 3. (Symétrie) $\forall Ax, y \in X, d(x, y) = d(y, x)$
- 4. (Inégalité triangulaire) $\forall x, y, z \in X, d(x, z) \leq d(x, y) + d(y, z)$

Définition 14. $\forall x \in X, \ \forall r > 0 \text{ on définit} :$

- $--B(x,r) := \{ y \in X | d(x,y) < r \}$
- $-- B'(x,r) := \{ y \in X | d(x,y) \le r \}$

Les topologies associées à un espace métrique est celle induite par la base d'ouverts $\{B(x,r)|x\in X, r>0\}$.

Remarque. . Attention à ne pas confondre les deux définitions suivantes :

- (X, \mathbb{U}) est séparable $\Leftrightarrow \exists A \subset X$ dénombrable $\overline{A} = X$.
- (X, \mathbb{U}) est <u>séparé</u> \Leftrightarrow il satisfait l'axiome T_2 .

On peut utiliser dans un espace métrique les caractérisations séquentielles de l'adhérence et sur les fonctions continues.

Définition 15. Un module de continuité est une application $\mathbb{R}^+ \to [0,\infty]$, telle que $w(x) \underset{x\to 0}{\longrightarrow} 0$

Définition 16. Soit (X, d_X) et (Y, d_Y) des espaces métriques, une fonction $f: X \to Y$ est :

- **continue** en $x \in X$ ssi il existe w_x un module de continuité tq $\forall y \in X, \ d_Y(f(x), f(y)) \leq w_x(d_X(x, y)).$
- uniformément continue ssi il existe w un module de continuité tq $\forall x, y \in X, \ d_Y(f(x), f(y)) \leq w(d_X(x, y)).$
- **Lipschitzienne** ssi $\exists C \geq 0$, $\forall x, y \in X$, $d(f(x), f(y)) \leq Cd_x(x, y)$ (w = CId).
- α -Holderienne pour $0 < \alpha < 1$ ssi $\exists C \ge 0, \ \forall x, y \in X, d_Y(f(x), f(y)) \le C d_X(x, y)^{\alpha} \ (w = C I d^{\alpha}).$

Remarque. Si w est un module de continuité,

- $\tilde{w}(r) := \sup_{0 \le s \le r} w(s)$ est un module de continuité croissant et $\tilde{w} \ge w$
- $\hat{w}(r)$; = $\frac{1}{2} \int_0^{2r} \tilde{w}(s) ds$ est un module de continuité croissant et continue et $\hat{w}(r) \geq \tilde{w}(r) \geq w(r)$.

On peut toujours se ramener à un module de continuité croissant et continue

1.7 Espaces vectoriels normés (evn)

Contexte : $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}

Définition 17. une evn est une paire (E, ||.||) où E est un \mathbb{K} espace vectoriel et ||.|| est une norme sur E. La norme ||.|| satisfait :

- (Positivité) $\forall x \in E, ||x|| \ge 0$
- (Homogénéité) $\forall c \in E, \ \forall \lambda \in \mathbb{K}, \ \|\lambda x\| = |\lambda| \|x\|$
- (Inégalité triangulaire) $\forall x, y \in E, ||x + y|| \le ||x|| + ||y||$
- (Séparation) $\forall x \in E, ||x|| = 0 \Leftrightarrow x = 0$

On lui associe d(x,y) = ||x - y|| pour former la topologie associée.

Propriété 1. Soit E, F des evn, une application linéaire $u: E \to F$ est continue ssi $\exists C, \ \forall x \in E, \ \|u(x)\|_F \le C\|x\|_E$ ie u lineaire est continue ssi elle est lipschitzienne.

On note $L_c(E,F)$ l'espace vectoriel des applications linéaire et continues de E dans F.

C'est un evn pour la norme $|||u|||_{L_c(E,F)} := \sup\{||u(x)||_F \mid x \in E, ||x||_E \le 1\}$. En particulier $E^* = L_c(E,\mathbb{K})$ l'espace vectoriel des formes linéaires continues est aussi un evn.

Exemple. Soit (X, d) un espace métrique, alors $C_b(X, \mathbb{K})$, l'espace des fonctions **continues bornées** de X dans \mathbb{K} , est un evn pour la norme $||f||_{\infty} := \sup ||f(x)||$.

De même, pour $0 < \alpha < 1$, l'espace des fonctions α -Hölderienne (continues) bornées $C_b^{\alpha}(X)$ est un evn muni de la norme :

$$||f||_{C_b^{\alpha}} := ||f||_{\infty} + ||f||_{C^{\alpha}} \text{ où } ||f||_{C^{\alpha}} := \sup \frac{||f(x) - f(y)||}{d(x, y)^{\alpha}}.$$

Ces normes peuvent aussi s'appliquer aux fonctions Lipschitziennes.

Exemple. Soit $\Omega \subset \mathbb{R}^d$ ouvert et $n \in \mathbb{N}$. $C_b^{\alpha}(\Omega)$ [underscore b pour bornée] est un evn pour la norme . . .

 $C_b^n(\overline{\Omega})$ muni de la même norme est constitué des $f \in C_b^n(\Omega)$ tq $\partial_{\alpha} f$ s'étend continuellement à $\overline{\Omega}$. [Rem : on peut montrer qu'elles admettent une extension continue a un voisinage de x].

Définition 18 (Espaces L^p). Soit (X, μ) un espace mesuré, on définit :

- $-- \mathcal{L}^*(X,\mu) := \{ f : X \to \mathbb{R} \mid f \text{ mesurable} \}$
- $-- \ \mathcal{L}^p(X,\mu) := \{f: X \to \mathbb{R} \ | \ \int |f|^p \ < +\infty \} \ \mathrm{pour} \ p \in [1,+\infty[$
- $--\mathcal{L}^{\infty}(X,\mu):=\{f:X\to\mathbb{R}\mid \inf_{M>0}\{f\leq M \text{ μ-p.p.}\}<+\infty\}$

Et la relation d'équivalence sur chacun de ces espaces : $f \sim g \Leftrightarrow f = g \ \mu\text{-p.p.}$.

De telle manière, on définit les espaces $L^p(X,\mu)$ avec :

$$L^p(X,\mu) = \mathcal{L}^p(X,\mu)/\sim$$
, et $L^\infty(X,\mu) = \mathcal{L}^\infty(X,\mu)/\sim$.

Quand le contexte ne crée pas d'ambiguïté on pourra omettre (X,μ) et noter uniquement L^p

Proposition 5. Pour $p \in [1, \infty]$, les espaces L^p sont des evn pour la norme :

$$||f||_p := \left(\int ||f||^p \right)^{\frac{1}{p}} \text{ si } p < +\infty \text{ et } ||f||_{\infty} := \inf_{M \ge 0} \{ f \le M \text{ μ-p.p.} \}$$

Preuve. Preuve pour $p < \infty$ L'homogénéité, la séparation et la positivité

sont clairs.

L'inégalité triangulaire est appelée inégalité de Minkowski :

Soit $p \in [1, \infty[, f, g \in L^p \text{ On peut supposer } ||f||_p > 0, ||g||_p > 0$ (le cas $\|f\|_p = 0 \text{ ou } \|g\|_p = 0 \text{ se v\'erifiant naturellement}), \|f\|_p + \|g\|_p = 1. \text{ Posons}$ $F = \frac{f}{\|f\|_p} \text{ et } G = \frac{f}{\|g\|_p}.$ Alors $\|f(x) + g(x)\|_p = \|(1 - \lambda)F(x) + \lambda G(x)\|$ pour $\lambda = \|g\|_p$. Le module

est convexe et la fonction puissance est aussi convexe donc la composition l'est. Ainsi $||f(x)+g(x)|| \le (1-\lambda)||F(x)||_p + \lambda ||G(x)||_p$. Donc tout va bien la suite en exercice :)

Espaces vectoriels topologiques localement convexes

Pour I une famille quelconque, on note $\mathcal{P}_f(I)$ l'ensemble des parties finies de I.

Définition 19. Un evtlc est un \mathbb{K} -ev E muni d'une famille de semi normes $(|.|_i)_{i\in I}$. La topologie associée est définie par la base d'ouverts de la forme $U_{x,I_0}^{\varepsilon} := \{ y \in E \mid \forall i \in I_0, |x - y|_i < \varepsilon \} \text{ avec } x \in E, \ \varepsilon > 0 \text{ et } I_0 \in \mathcal{P}_f(I).$

Remarque. Une semi norme est une application $|.|: E \to \mathbb{R}^+$ positive et homogène, satisfaisant l'inégalité triangulaire (pas de séparation).

Remarque. .

- La topologie n'est pas automatiquement séparée.
- Tout evn est un evtlc avec une famille $(|.|_i)_{i\in I}$ réduite à un élément

Proposition 6. une application linéaire $u: E \to F$, avec $(E,(|\cdot|_i^E))$ et $(F,(|.|_j^F))$ est continue ssi $\forall j \in J, \exists I_0 \in \mathcal{P}_f(I), \exists C \geq 0, \ \forall x \in E:$

$$|u(x)|_j^F \le C \sum_{i \in I_0} |x|_i^E$$

En particulier une forme linéaire $u: E \to \mathbb{K}$ est continue ssi $\exists I_0 \in \mathcal{P}_f(I), \ \exists C >$ $0, \ \forall x \in E \ \|u(x)\| \le C \sum_{i \in I_0} |x|_i^E.$

Preuve. Supposons u continue. Soit $j \in J$, on a un voisinage de 0_F $W:=\{y\in E\mid |y|_j^F<1\}$. On a u(0)=0 par linéarité. Par continuité, il existe un voisinage V de 0 dans E tel que $u(V) \subset W$. V contient un élément de la base de voisinage donc $\exists \varepsilon > 0$, $\exists I_0 \in \mathcal{P}_f(I)$ tel que $U_{0_E,I_0}^{\varepsilon} = \{x \in E | \forall i \in I_0, \ |x|_i^E < \varepsilon\} \subset V$. On a montré que : $\forall i \in I_0, \ |x|_i^E < \varepsilon \Rightarrow |u(x)|_j^F < 1$.

En particulier : $\sum_{i \in I_0} |x|_i^E < \varepsilon \Rightarrow |u(x)|_j^F < 1.$ Par homogénéité : $|u(x)|_j \leq \varepsilon^{-1} \sum_{i \in I_0} |x|_i^E.$

Réciproque: Par linéarité, on peut se restreindre à montrer la conti-

On a u(0) = 0. Soit W un voisinage de 0_F . Quitte à réduire W d'après la définition de voisinage, on peut supposer que : $\exists J_0 \subset J$ fini $\varepsilon > 0, W = \{y \in F | \forall j \in J_0, \ |y|_j^F < \varepsilon\} = U_{0_F,J_0}^{\varepsilon}$. Pour chaque $j \in J_0$ on dispose de $C_j \geq 0$ et $I_j \in \mathcal{P}_f(I)$ tels que :

$$\forall x \in E, \ |u(x)|_j^F \le C_j \sum_{i \in I_j} |x|_i^E$$

On pose $I_0=\bigcup_{j\in J_0}I_j$ et $\eta=\frac{\varepsilon}{\max_{j\in J_0}(C_j)|I_0|}>0$ et $V=\{x\in E|\forall i\in I_0,\ |x|_i^E<\eta\}=U_{0_E,I_0}^\eta$ est un voisinage de 0. Ainsi :

$$\forall x \in V, \ \forall j \in J_0, \ |u(x)|_j^F \le C_j \sum_{i \in I_0} |x|_i^E < C_j \eta |I_j| \le \frac{C_j \varepsilon}{\max_{l \in J_0} (C_l) |I_0|} \le \varepsilon$$

Donc $u^{-1}(W) \subset V$ ce qui montre la continuité de u en 0 et donc la continuité de u

Propriété 2. Soit E un evtlc séparé muni d'une famille dénombrable de semi normes $(|.|_{n\in\mathbb{N}})$. Alors la topologie de E est métrisable pour la distance

$$d(x,y) := \sum_{n \in \mathbb{N}} \min(2^{-n}, |x - y|_n)$$

Preuve. Tout d'abord, d définit bien une distance car E est supposé séparé (voir Lemme 1 ci-dessous).

Montrons que les bases de voisinage de l'origine $(B_d(0,\varepsilon)_{\varepsilon>0})$ (pour les boules données par la distance d) et $\left(U_{0_E,I_0}^{\eta}\right)$ (où $U_{0_E,I_0}^{\eta}:=\{x\in E|\forall i\in I_0,\ |x|_i<\eta\}$), pour $I_0\in\mathcal{P}_f(I),\eta>0$ sont équivalentes.

Soit $\varepsilon>0$ et N tq $2^{-N}<\varepsilon/3$. On considère $V=\{x\in E|\forall n< N,\ |x|_n<\frac{\varepsilon}{3N}\}(=U_{0_E,[\![0,N-1]\!]}^{\varepsilon/3N})$. Alors :

$$\forall x \in V, \ d(x,0) < \sum_{n=0}^{N-1} \frac{\varepsilon}{3N} + \sum_{n=N}^{\infty} 2^{-n} = \varepsilon/3 + 2^{-N} \cdot 2 \le \varepsilon$$

Réciproquement : pour un certain voisinage de 0_E de la forme $V = \{x \in$ $E|\forall n\in I_0, |x|_n<\varepsilon\} (=U^{\varepsilon}_{0_E,I_0}, \text{ alors en notant }N=\max I_0 \text{ et }\varepsilon'=\min(2^{-N-1},\varepsilon), \text{ on a }B(0,\varepsilon')\subset V.$ D'où l'équivalence des topologies.

La topologie est engendrée par la base d'ouverts : $\{y \in E | \forall i \in I_0, |x-y|_i < \varepsilon\}$ où $x \in E, I_0 \subset I$ est fini et $\varepsilon > 0$. Si on fixe x, on obtient une base de voisinage de x.

Lemme 1. Un evtle $(E, |.|_i)$ est séparé si et seulement si :

 $\forall x \in E, \ (\forall i \in I, \ |x|_i = 0) \Rightarrow x = 0$

si et seulement si :

 $\forall x \in E \setminus \{0\}, \ \exists i \in I, \ |x|_i > 0.$

On abrège evtlc séparé en evtlcs.

Preuve. (\Leftarrow) Si il existe $x \neq 0$ tel que : $\forall i \in I$, $|x|_i = 0$, alors x appartient à une base de voisinage de 0. $\{y \in E | \forall i \in I_0, |y|_i < \varepsilon\}$ pour $\varepsilon > 0$ et $I_0 \in \mathcal{P}_f(I)$.

Donc l'espace n'est pas séparé.

(\$\Rightarrow\$) Si on suppose : \$\forall z \in E\{0\}, \$\Begin{aligned} \Begin{aligned} \Begi

 $z-y|_i<\varepsilon/2\}$ sont des voisinages distincts de x et y donc l'espace est séparé.

Soit $(E, |.|_i)$) un evtlcs muni d'une famille dénombrable de semi normes.

- On dit qu'elle est **étagée** si $\forall x \in E$, $(|x|_i)$ est croissante. On peut supposer, quitte à considérer $(|.|'_i)$ où $|x|'_i := \max_{n \le i} |x|_n$ qui définit la même topo.
- On a la base d'ouverts $B_N(x,\varepsilon) := \{ y \in E | \forall n \leq N, |y-x|_n < \varepsilon \} = \{ y \in E | |y-x|_N' < \varepsilon \}$ où $x \in E, N \in \mathbb{N}, \varepsilon > 0$.
- La topologie est métrisable pour la distance $d(x,y) = \max_{n \in \mathbb{N}} \min(2^{-n}, |x y|_n)$.

On note que $B_d(n,\eta) = \{y \in E | \forall n \in \mathbb{N}, \min(2^{-n}, |x-y|_n) < \eta\} = \{y \in E | \forall n \leq |\log_2 \eta|, |x-y|_n < \varepsilon\}.$ En effet $2^{-n} \geq \eta \Leftrightarrow -n\log_2 \geq \log_2 \eta$.

On note que $B_d(x, \min(2^{-N}, \varepsilon)) \subset B_N(x, \varepsilon)$. $B_{\lfloor \log_2 \eta \rfloor}(x, \eta) \subset B_d(x, \eta)$

Exemple (Fonctions non bornées). Soit $\Omega \subset \mathbb{R}^d$ ouvert et (Ω_i) une suite d'ouverts tq $\bigcup_{n \in \mathbb{N}} \Omega_n = \Omega$ et $\forall n \in \mathbb{N}, \ \overline{\Omega_n} \underset{\text{partie compacte de}}{\subset} \Omega$.

Remarque. On peut poser $\Omega_n := \{x \in B(0,n) | \forall y \in \mathbb{R}^d \setminus \Omega, |x-y| > \frac{1}{n} \}.$

Pour tout $n \in \mathbb{N}, \alpha \in \mathbb{N}^d$ et $f: \Omega \to R$ assez régulière, on pose $|f|_{n,\alpha} := \sup_{x \in \overline{\Omega_n}} |\partial_{\alpha} f(x)|$ où $\partial_{\alpha_1, \dots, \alpha_d} f := \frac{\partial^{|\alpha|} f}{\partial_{\alpha_1}^{\alpha_1} \cdots \partial_{\alpha_d}^{\alpha_d}}$. Alors $\forall k \in \mathbb{N}, (C^k(\Omega), (|.|_{n,\alpha})_{n \in \mathbb{N}}^{|\alpha| \le k}$.

Est séparé et métrisable car $\mathbb{N} \times \mathbb{N}^d$ est dénombrable.

10

Exemple. Classe $D(\Omega)$ des fonctions test : Soit $\Omega \subset \mathbb{R}^d$ ouvert, $D(\Omega) =$ $\{f \in \mathcal{C}^{\infty}(\Omega) | supp f \subset_C \Omega\}$

Pour tout
$$w, \eta \in C^0(\Omega, \mathbb{R}_+)$$
 on pose sur $f \in D(\Omega)$. $|f|_{w,\eta} := \sup_{x \in \Omega, \alpha \le \eta(x)} |w(x)| |\partial^{\alpha} f(x)|$.

Alors $D(\Omega)$ est un ouvert et evtlc :).

L'espace $D^*(\Omega)$ des formes linéaires continues sur $D(\Omega)$ est appelé espace des distributions.

des distributions.
$$\forall \varphi \in D^*(\Omega), \ \exists w, \eta \in C^0(\Omega, \mathbb{R}^+), \ \forall f \in D(\Omega), \ |\underbrace{\varphi(f)}| \ \leq \underbrace{|f|_{w,\eta}}_{\substack{\text{En principe,} \\ <\varphi, f>_{D^* \times D}}} C_{\max_{1 \leq i \leq I} |f|_{w_i, \eta_i}} C_{\max_{1 \leq i \leq I} |f|_{w_i, \eta_i}}$$
 mais on peut se ramener à une seule

Une distribution φ est d'ordre fini $k \in \mathbb{N}$ si $\exists w \in C^0(\Omega, \mathbb{R}_+), \forall f \in D(\Omega), |\varphi(f)| \leq$ $|f|_{w,k}$.

Exemple. Distribution d'ordre fini :

- Masse de Dirac $\varphi(f) = f(0)$ est d'ordre 0
- Si $g\in L_{loc}(\Omega)$, alors $\varphi(f):=\int_{\Omega}fg$ est une distribution. Si $d=1,\,\varphi$ est d'ordre 1. En effet soit G une primitive de g s'annulant en 0 (si $0 \in \Omega$).

Alors
$$\int_{t_0}^{t_1} f(t)g(t)dt = [fG]_{t_0}^{t_1} - \int_{t_0}^{t_1} f'(t)G(t)dt$$
. On choisit t_0, t_1 to $supp(f) \subset [t_0, t_1]$.

Alors
$$\int_{t_0} f(t)g(t)dt = [fG]_{t_0} - \int_{t_0} f(t)G(t)dt$$
. On choisit t_0, t_1 to $supp(f) \subset [t_0, t_1]$.

Alors $|\varphi(f)| = \int_{t_0}^{t_1} |f'(t)| |G(t)| dt$ On pose $\eta = 1, w(t) = z(t) \sup |G(s)|$
(à vérifier)

 $\varphi(f) = f'(0)$ est une distribution d'ordre 1

- $\varphi(f) = f'(0)$ est une distribution d'ordre 1
- $\varphi(f) = \sum_{n \in \mathbb{N}} f^{(n)}(n)$ est une distribution d'ordre ∞ avec $\eta = Id, w = Id$ Id.
- Classe de Schwartz (compatible avec la transformée de Fourier et métrisable) : on pose pour tout $n \in \mathbb{N}, \alpha \in \mathbb{N}^d, f \in C^{\infty}(\mathbb{R}^d), |f|_{n,\alpha} :=$ $\sup (1+|x|^2)^{\frac{n}{2}} |\partial_{\alpha} f(x)|$. Toutes les dérivées décroissent plus vite que n'importe quelle paissance négative. evtlc métrisable séparable...
- La **topologie faible** : soit E un evtlc la topo faible sur E est définie par les semi normes $x \in E \mapsto |l(x)|$ où $l \in E^*$. C'est la topo la plus faible qui rend les formes linéaire continue. La séparation nécessite de construire des formes linéaires et découle du théorème de Hahn-Banach. Pas métrisable (exo) sauf en dim finie.
- La topologie *-faible sur E^* est définie par la famille de semi normes $l \in E^* \mapsto |l(x)|$. Elle est séparé (en effet pour $l \in E^*$ sur lequel toutes ces semi normes s'annulent alors l est la fonction nulle ie l = 0.) et pas métrisable sauf en dimension finie.

Proposition 7. Métrisabilité de la boule unité pour la topologie *-faible : Soit E un evn séparable, soit (x_n) une suite dense dans $B'_E(0,1)$ et soit $B := B'_{E^*}(0,1)$. Alors la topologie *-faible sur B est métrisable poir la distance $d(u,v) := \max_n \min(2^{-n}, |u(x_n) - v(x_n)|)$

Remarque. On pourrait remplacer B par n'importe quelle partie bornée de E^* .

Preuve. Soit $u \in B$ et un voisinage de u pour la distance $d_{|B \times B}$ de la forme $B_d(u,\eta) = \{v \in B | \forall n \leq |\log_2 \eta|, |u(x_n) - v(x_n)| < \varepsilon\}.$

Réciproquement : soit $u \in B$ et soit un voisinage de u pour la topologie *-faible de la forme $\{v \in B | \forall 0 \le k \le K, |u(y_k) - v(y_k)| < \varepsilon\}$. On peut supposer que $\|y_k\| \le 1$ quitte à considérer y_k/α et $\varepsilon\alpha$. Soit n_0, \dots, n_K tels que $\|x_{n_k} - y_k\| \le \varepsilon/2$ avec $\alpha = \max(1, \max_{0 \le k \le K} \|y_k\|)$. Soit

 $N:=\max(n_0,\cdots,n_K \text{ et } \eta=\min(2^{-N},\varepsilon/2). \text{ Alors } B_d(u,\eta)\cap B\subset \{v\in B|\forall n\leq N,\ |v(x_n)-u(x_n)|<\varepsilon/3\}=V. \text{ Soit } v\in V \text{ et } k\leq K \text{ alors } |v(y_k)-u(y_k)|\leq |v(y_k)-v(x_{n_k})|+|v(x_{n_k})-u(x_{n_k})|+|u(x_{n_k})-u(x_k)|\leq \|v\|_{E^*}\|y_k-x_{n_k}\|+|v(x_{n_k})-u(x_{n_k})|+\|u\|_{E^*}\|y_k-x_{n_k}\|\leq 1*\varepsilon/3+\varepsilon/3+1*\varepsilon/3<\varepsilon \text{ donc } V\subset V_0 \text{ on a bien une base de voisinage fournie par la métrique.}$

2 Complétude

2.1 Critère de Cauchy

Définition 20. Une suite (x_n) dans un espace métrique (X,d) est de Cauchy si et seulement si :

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall p, q \ge N, \ d(x_p, x_q) \le \varepsilon$$

De manière équivalente : $d(x_p, x_q) \le \varepsilon_{\min p, q}$ avec $\varepsilon_n \xrightarrow[n \to +\infty]{} 0$.

Une suite de Cauchy:

- est toujours bornée : $d(x_0, x_n) \leq \varepsilon_0$
- admet au plus une valeur d'adhérence
- si elle admet une valeur d'adhérence alors elle converge vers celle ci

Toutes suites convergente est de Cauchy.

Définition 21. (X, d) est complet si et seulement si toutes suites de Cauchy converge

Lemme 2. Soit (X,d) complet, $A\subset X$ alors $(A,d_{|A\times A})$ est complet si et seulement si A est fermé

Remarque. — un evn complet est appelé un (espace de) Banach.

— un evtlc complet pour la distance associée est appelé un (espace de) Fréchet.

Lemme 3 (Série dans un Banach). Soit $(E, \|.\|)$ un evn. Sont équivalents :

- --E est complet
- toute série absolument convergente (ie $\sum_{n=1}^{\infty}\|y_n\|<\infty$) est convergente.

Preuve. Supposons E complet. Soit (y_n) le terme général d'une série absolument convergente. On définit $x_N:=\sum_{n\leq N}y_n,\ \varepsilon_n:=\sum_{n>N}\|y_n\|$. Alors $\varepsilon_n\xrightarrow[n\to+\infty]{}0$ comme reste d'une série sommable, et $\forall p\leq q,$

 $\|x_p - x_q\| = \|\sum_{r=p+1}^q y_r\| \le \sum_{r=p+1}^q \|y_r\| \le \varepsilon_p = \varepsilon_{\min p,q}$ donc les sommes partielles satisfont le critère de Cauchy donc convergent.

Réciproquement : si (x_n) de Cauchy, $\|x_p - x_q\| \le \varepsilon_{\min p,q}$ où $\varepsilon_N \to 0$. Soit $(N_k)_k$ strictement croissante telle que $\varepsilon_{N_k} \le 2^{-k}$. Posons $y_k := x_{N_{k+1}} - x_{N_k}$. La série des y_k est sommable donc converge par hypothèse donc $\sum_{k < K} y_k = x_{N_k} - x_{N_0}$ converge. Donc x_n est une suite de Cauchy admettant une valeur d'adhérence donc elle est également convergente. \square

2.2 Exemple d'espaces fonctionnels complets

Exemple (Fonctions bornées). : soit (X, d) espace métrique E de Banach. Alors $C_b^0(X, E)$ est complet pour norme ∞ .

Preuve. Soit (f_n) de Cauchy. $|f_p(x) - f_q(x)| \le ||f_p - f_q||_{\infty} \le \varepsilon_{\min p,q}$. Donc $(f_n(x))$ de Cauchy et admet une limite $f_{\infty}(x)$. De plus $||f_p - f_{\infty}|| \le \varepsilon_p$. Enfin f_{∞} est continue (resp bornée) comme limite uniforme d'une suite de fonction continues.

Exemple (Espaces L^p). : soit $p \in [1, \infty]$, (X, d) espace mesuré, alors L^p est complet.

Preuve. \exists classes d'équivalences modulo égalité pp. Soit (f_n) une série sommable. Posons $S_N(x):=\sum_{n\leq N}|f_n(x)|$ et S_∞ la limite (possiblement

 ∞). Alors $\left(\int_X S_N(x)^p dx\right)^{\frac{1}{p}} = \|S_N\|_p \le \sum_{nn \le N} \|f_n\|_p \le C < \infty$. D'où $\int_X S_\infty(x)^p d\mu(x) = \lim \int_X S_N(x)^p d\mu(x) \le C^p < \infty$. Par le th de convergence monotone (Boffo Levi) car $S_N(x) \searrow S_\infty(x)$. Donc $S_\infty < \infty$ pour $\mu - pp \ x$. On pose alors $g_\infty(x) := \sum_{n \in \mathbb{N}} f_n(x)$ qui est convergente $\mu pp \ x$. On pose aussi $g_N(x)$ la somme partielle. Alors $|g_\infty(x) - g_N(x)| \le \sum_{n > N} |f_n(x)|$

Exemple (Fonctions bornées). : soit $k \in \mathbb{N}$, $\Omega \subset \mathbb{R}^d$ ouvert, alors $C_b^k(\Omega)$ est un Banach pour la norme $||f|| := \sum_{|\alpha| \le k} ||\partial_{\alpha} f||_{\infty}.$

Preuve. Soit (f_n) de Cauchy et $(f_n^{\alpha}) = \partial_{\alpha} f_n$. Alors c'est aussi de Cauchy dans $C_b^0(X)$ donc ev vers f^{α} . Soit $\alpha \in \mathbb{N}^d$ avec $|\alpha| < k \ x \in \Omega, \ 1 \le i \le d$. Justifions que $\partial/\partial_{x_i} f^{\alpha}(x) = f^{\alpha + e_i}(x)$ avec e_i la base canonique. Soit p > 0tq $[x, x + pe_i] \subset \Omega$, alors $f_n^{\alpha}(x + pe_i) - f_n^{\alpha}(x) = \int_0^p f_n^{\alpha + e_i}(x + te_i)dt$ car

 $\frac{\partial}{\partial_{x_i}} f_n^{\alpha} = f_n^{\alpha + e_i}.$ Par cv uniforme, on a pareil mais sans $f^{\alpha}(x + pe_i) - f^{\alpha}(x) = \int_0^p f^{\alpha}(x + te_i)dt \text{ continument dérivable } / \text{ p.}$ Finalement $\|f_n - f^0\| = \sum_{|\alpha| \le k} \|\partial_{\alpha} f_n - \partial_{\alpha} f^0\| = \sum_{|\alpha| \le k} \|f_n^{\alpha} - f^{\alpha}\| \xrightarrow[n \to +\infty]{} 0$

Exemple. Soit Ω ouvert et $(\Omega_n \neq \emptyset)$ tq $\bigcup_{n \in \mathbb{N}} \Omega_n = \Omega$ et $\overline{\Omega} \subset_C \Omega_{n+1}$. Soit $k \in \mathbb{N} \cup \{\infty\}$, alors $\left(C^k(\Omega), (|.|_{n,\alpha})_{n \in \mathbb{N}}^{|\alpha| \leq k}\right)$ est un Fréchet.

Preuve. (cas $k = \infty$). Soit (f_n) de Cauchy. Soit $k' \in \mathbb{N}$ arbitraire (on prendrait $k' \leq k$ dans le cas $k < \infty$). Alors $(f_{n|\Omega_n}$ est une suite de Cauchy de C_b . Or elle admet une limite $g_n^{\prime k}$ sur Ω_n .

Exemple. $C_b^{\infty}(\Omega)$ muni de $(\|.\|_n)_n$ où $\|f\|_n := \max_{|\alpha| \le n} \|\partial_{\alpha} f\|_{\infty}$ est Fréchet.

Proposition 8. $\mathcal{D}_k(\Omega)$ où $k \subset_C \Omega$, compact et Ω ouvert. $\mathcal{D}_K(\Omega) := \{ f \in$ $\mathcal{D}(\Omega)|supp(f) \subset K$ est un espace fermé de l'ensemble initial. De plus la topologie induite sur $\mathcal{D}_K(\Omega)$ par $(\mathcal{D}(\Omega), (|.|_{w,\eta}))$ et $(C_b^{\infty}(\Omega), \cdots)$ est la **Preuve.** Fermeture : Si $f_n \xrightarrow[n \to +\infty]{} f$ avec $f_n \in \mathcal{D}_{\alpha}(\Omega)$ pour la topo C_c^{∞} alors en particulier $f_n \xrightarrow[n \to +\infty]{} f$ uniformément donc $supp(f) \subset K$.

Posons $supp(f) := \overline{\{x \in \Omega | f(x) \neq 0\}}.$

Mêmes topologies suivantes : $||f||_n \le |f_{w,\eta}|$ en prenant $w = 1, \eta = n$. $|f|_{w,\eta}| \leq C||f||_n, \forall f \in \mathcal{D}_K(\Omega)$, en prenant $C = \max_{x \in K} w(x)$, on peut borner les semi normes d'une famille par une c
te \boldsymbol{x} un max d'un nombre fini de semi normes de l'autre donc les mêmes topos.

Proposition 9. Soit φ une forme linéaire sur $\mathcal{D}(\Omega)$. Sont équivalent :

- φ est continue sur $\mathcal{D}(\Omega)$, ie $\exists w, \eta \in C^{\infty}(\Omega, \mathbb{R}^+), \forall f \in \mathcal{D}(\Omega), |\varphi(f)| \leq$
- φ est continue sur $D_K(\Omega)$ ie $\forall K \subset_C \Omega, \exists w_k, \eta_K \in \mathbb{R}^+ \times \mathbb{N}, \forall f \in$ $\mathcal{D}_K(\Omega), |\varphi(f)| \le w_K ||f||_{\eta_K}$

De plus, φ est d'ordre fini $k \in \mathbb{N}$ ssi on peut choisir $\eta = k$, de manière équivalente, $\eta_K = k, \forall K \subset_C \Omega$.

Remarque. On dit que $\mathcal{D}(\Omega)$ est la limite inductive des $\mathcal{D}_K(\omega)$

Lemme 4 (Quelques fonctions C^{∞}). Les fonctions suivantes sont C^{∞} :

- 1. La fonction $\psi_0: \mathbb{R} \to \mathbb{R}$ $x \mapsto 0 \text{ si } x < 0, e^{-\frac{1}{x}} \text{ sinon}$
- 2. La fonction $\psi_1 x \mapsto \int_0^x \psi_0(t) \psi_0(1-t) dt$ est C^{∞} , vaut 0 sur $]-\infty,0]$ vaut une constante sur $[1,\infty[.\ H:=\frac{\psi_1}{\psi_1(1)}$ est une application de la fonction de Heaviside
- 3. La fonction $\psi_2: x \in \mathbb{R}^d \mapsto \psi_0(1-\|x\|^2)$ est C^∞ positive, radiale, à support égal à $B'_{\mathbb{R}^d}(0,1)$. Souvent utilisée comme noyau de convolution pour régulariser les filtres.
- 4. Soit $K \subset_C U$, K compact, $U \subset \mathbb{R}^d$ ouvert. Alors $\exists \psi \in C^{\infty}(\mathbb{R}^d)$, $\psi = 1 \text{ sur } Ket \ supp(f) \subset U$

Preuve. 1. Classique

- 2. facile
- 3. facile
- $\begin{array}{l} 4. \ \forall x \in K \text{, soit } r_x > 0 \ \text{tq } B(x,r_x) \subset U \text{. On extrait un sous recouvrement fini de } K \subset \bigcup_{x \in K} B(x,\frac{r_x}{3}) \text{, noté } K \subset \bigcup_{1 \leq i \leq I} B(x_i,\frac{r_i}{3}) \text{. Posons} \\ \varphi(x) := \sum_{1 \leq i \leq I} \psi_2(\frac{x-x_i}{r_i/2}) \text{. Alors } \psi_2(\frac{x-x_i}{r_i/2}) > 0 \ \text{sur } B(x_i,\frac{r_i}{3}) \ \text{et son} \end{array}$

$$\varphi(x) := \sum_{1 \le i \le I} \psi_2(\frac{x - x_i}{r_i/2}). \text{ Alors } \psi_2(\frac{x - x_i}{r_i/2}) > 0 \text{ sur } B(x_i, \frac{r_i}{3}) \text{ et sor}$$

support (supp) sur $B'(\cdots)$. Donc $\varphi > 0$ sur $\bigcup_{1 \le i \le I} B(x_i, \frac{r_i}{3}) \supset K$.

$$supp(\varphi) = \bigcup_{1 \le i \le I} B'(x_i, \frac{r_i}{3}) \subset_C U$$

 $supp(\varphi) = \bigcup_{1 \le i \le I} B'(x_i, \frac{r_i}{3}) \subset_C U.$ Par compacité, $\varepsilon := \min_{x \in K} \varphi(x)$ est strictement positif. On considère finalement $\psi := H \circ \varphi$. Où $H \in C^{\infty}(\mathbb{R}, \mathbb{R}), H = 0$ sur $]-\infty, 0], H = 1$ sur $[\varepsilon, \infty[$ satisfait $supp(\psi) \subset supp(\varphi) \subset_C U$ et $\psi^{-1}([\varepsilon,\infty[))\supset \varphi^{-1}([\varepsilon,\infty[.$

Lemme 5. Soit $f, g \in C^{\infty}(\mathbb{R}^d)$, $\alpha \in \mathbb{N}^d$ alors $\partial_{\alpha}(fg) = \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} \partial_{\beta} f \partial_{\alpha - \beta} g$ où $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} := \prod_{1 \le i \le d} \begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix}$

Preuve. Cas où $\alpha = (n, 0, \dots, 0)$ alors $\frac{\partial^n}{\partial x_1}(fg) = \sum_{0 \le k \le n} \binom{n}{k} \frac{\partial^k}{\partial x_i^k} f \frac{\partial^{n-k}}{\partial x_i^{n-k}} g$

par récurrence immédiate.

Passage de $(\alpha_1, \dots, \alpha_{k-1}, 0 \dots, 0) = \alpha_*$ à $(\alpha_1, \dots, \alpha_k, 0 \dots, 0)$. Récurrence

sur k. $\partial_{\alpha}(fg) = \frac{\partial^{\alpha_k}}{\partial x_k^{\alpha_k}} = \sum_{\beta_* \leq \alpha_*} \binom{\alpha_*}{\beta_*} \cdots \text{ Par HR et linéarité de la dérivation.}$ Puis on utilise $\binom{\alpha_0}{\beta_0} \binom{\alpha_k}{\beta_k} = \binom{\alpha}{\beta}$ et le résultat tombe.

Preuve. (Critère de continuité des distributions) : Soit (Ω_n) tq $\overline{\Omega_n} \subset_C$ Ω_{n+1} , tous ouvert et formant une partition de Ω . Soit (γ_n) tq $\gamma_n \in C^{\infty}$, $\gamma_n =$ 1 sur [?,?] et $supp(\gamma_n) \subset \Omega_n$. Supp (ii : $\mathcal{D}_K(\Omega) \cdots$). Soit w_n, η_n tq $\forall f \in \mathcal{D}(\Omega)$, $supp(f) \subset \overline{\Omega} \Rightarrow |\varphi(f)| \leq w_n ||f||_{\eta_n}$. Soit $f \in \mathcal{D}(\Omega)$. Alors

 $f = \sum_{n \in \mathbb{N}} f(\gamma_n - \gamma_{n+1}) := \beta_n$ avec $\gamma_{-1} = 0$. De plus cette somme a un nombre

fini de termes non nuls. En effet, $\exists N, \ \forall n \geq N, \ supp(f) \subset \Omega_n$, par compacité de supp(f). Donc $\forall n \geq N+1, f(\underbrace{\gamma_n - \gamma_{n-1}}_{\text{nul sur } \overline{\Omega_{n-1}}}) = 0$ Par linéarité, $|\varphi(f)| \leq$

$$\sum_{n\in\mathbb{N}} |\varphi(f_{\beta_n})| \le \sum_{n\in\mathbb{N}} w_n ||f\beta_n||_{\eta_n} \ (\operatorname{car} \ supp(\beta_n) \subset \Omega_{n+1} \backslash \Omega_{n-1}) \le \sum_{n\in\mathbb{N}} w_{n+1}$$

$$\sup_{\alpha \leq \eta_{n+1}, x \in \Omega_{n+1} \setminus \Omega_{n-1}} |\partial_{\alpha}(f\beta_{n})(x)| \leq \sum_{n \in \mathbb{N}} \underbrace{w_{n+1}^{\tilde{}}}_{\substack{\text{dépend des } \|\partial_{\alpha}, \beta_{n}\|}} \sup \cdots (paseuletemps d'ecrire) \leq \sup_{n \in \mathbb{N}, \alpha \leq \eta_{n+1}, x \in \Omega_{+1} \setminus \Omega_{n-1}} w_{n+1}^{\tilde{}} |\partial_{\alpha}f(x)| \text{ avec } w_{+1}^{\tilde{}} := C_{\alpha}(1+n)^{\alpha}w_{n+1}^{\tilde{}}$$

$$\leq |f|_{w,\eta} \text{ où } w, \eta \text{ vérifient } w(x) \geq w_{n} \text{ si } x \notin \Omega_{n-2}, \eta(x) \geq \eta_{n} \text{ si de même.}$$

$$\operatorname{Par} \operatorname{ex} w(x) = \sum_{n \in \mathbb{N}}^{\infty} w_{n} (\underbrace{1 - \gamma_{n-3}}_{\text{vaut 1 hors de } \Omega_{n-2}}) \qquad \Box$$

16

Exemple. Soit (X, d) un espace métrique, w un module de continuité strictement positif hors de 0. Posons $\forall f \in C_b^{\infty}(X)$,

$$|f|_{w} = \sup_{x,y \in X} \frac{|f(x) - f(y)|}{w(d(x,y))}, ||f||_{w} := |f|_{w} + ||f||_{\infty}.$$

Alors $\{f \in C_b^0(X) | ||f||_w < \infty\}$ est un Banach.

Cas particulier : fct Lipschitziennes bornées / Hölderienne bornées.

2.3 Prolongements:

Propriété 3 (Prolongement des fonctions uniformément continues). : Soit X,Y des espaces métriques complets, $A\subset X$ une partie dense, $f:A\to Y$ uniformément continue. Alors f admet une unique extension continue $F:X\to Y$ (qui se trouve être uniformément continue).

Preuve. Construction: on def $f(x) := \lim f(x_n)$ où $x_n \in A$ et $x_n \to x$. $(x_n)cv \Rightarrow (x_n)$ est de Cauchy $\Rightarrow f(x_n)$ est de Cauchy $\Rightarrow f(x_n)cv$ **Bonne définition**: Si $x_n, y_n \to x, x$ alors $d(x_n, y_n) \to 0$ donc

Bothle definition: Si $x_n, y_n \to x, x$ alois $d(x_n, y_n) \to 0$ donc $d(f(x_n), f(y_n)) \to 0$ par uniforme continuité de f. Finalement $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(y_n)$.

Continuité uniforme : supposons $x_n \to x, y_n \to y$ alors $d(\lim f(x_n), \lim f(y_n)) = \lim d(f(x_n), f(y_n)) \le \lim w(d(x_n, y_n)) = w(d(x, y))$. On peut supposer w continue donc le résultat tombe.

Unicité : parmi les fct continues, découle de la construction.

Remarque (Extension de Tietze). : Si f uniformément continue sur $A \subset X$ qcq, on a toujours une extension à priori pas unique. OPS(on peut supposer) w croissant et sous additif. $F(x) := \inf_{y \in A} f(y)w(d(x,y))$

Remarque. En pratique X et Y sont souvent des Banach, f est une application linéaire continue de $A \subset X$ dense dans Y.

Propriété 4 (Complété d'un espace). Soit (A, d) un espace métrique. Alors il existe (X, d) métrique, complet et une injection isométrique $i_A : A \to X$ tq $Im(i_A)$ est dense dans X. De plus X est unique à isométrie près.

Preuve. Existence : $X = \{\text{suites de Cauchy de } A\}/\sim \text{où } (x_n)\sim (y_n)\Leftrightarrow d(x_n,y_n)\to 0.$

Unicité : découle du résultat d'extension précédent :

Alors $\varphi: Im(i_A) \longrightarrow Im(\tilde{i_A})$ est une isométrie sur une partie dense de $x \longmapsto \tilde{i_A}(i_A^{-1}(x))$

X donc s'étend uniquement en une isométrie de $X \to \tilde{X}$

Point fixes de Picard

Propriété 5. Soit (X,d) métrique complet, $f:X\to X$, K-lipschitzienne avec K < 1 (ie contractante). Alors f a un unique point fixe x_* . De plus $\forall x_0 \in X, \ d(x_0, x_*) \le \frac{d(x_0, f(x_0))}{1 - K}.$

Preuve. Unicité: Si x_* et $\tilde{x_*}$ sont des points fixes, $d(x_*, \tilde{x_*}) = d(f(x_*), f(\tilde{x_*})) \le$ $K \cdots < d(x_*, \tilde{x_*}) \text{ donc } d(x_*, \tilde{x_*}) = 0.$ Extension et estimation : soit $x_0 \in K$ puis $x_{n+1} = f(x_n)$ alors $d(x_n, x_{n+1}) \le$ $Kd(x_{n-1},x_n) \leq K^n d(x_0,x_1)$. Ainsi pour $p \leq q \cdots$ Donc (x_n) satisfait le critère de Cauchy donc c
v vers une limite x_* . $d(x_N,x_*) \leq K^N \frac{d(x_0,x_1)}{L}$. Ainsi $d(x_*, f(x_*)) = \lim d(x_n, x_{n+1}) = 0$

Remarque. (Stabilité) : Si f est K-lipschitzienne avec K < 1, si ||f| $g\|_{\infty} \le \varepsilon$ et si x_{ε} est un point fixe de g, alors $d(\underbrace{x_{\varepsilon}}_{\text{pt fixe de }g}, \underbrace{x_{*}}_{\text{pt fixe de }f}) \le \varepsilon$

$$\frac{d(x_{\varepsilon}, f(x_{\varepsilon}))}{1 - K} \le \frac{\varepsilon}{1 - K}$$

Théorème 1 (Cauchy Lipschitz). Soit $\Omega \subset \mathbb{R}^d$ ouvert. Soit $f: \mathbb{R}^+ \times \Omega \to \mathbb{R}^d$ \mathbb{R}^d continue et localement lipschitzienne en sa seconde variable ie $\forall T \geq$ $0, \ \forall K \subset_C \Omega, \ \exists C = C(T, K), \ \forall t \in [0, T], \ \forall x, y \in K, \ \|f(t, x) - f(t, y)\| \le C$ $C\|x-y\|$. Alors $\forall x \in \mathbb{R}$, il existe $t_* > 0$ et $u:[0,t_*] \to \Omega$ to $u(0) = x_0$ et u'(t) = f(t, u(t)).

Remarque. Une propriété $P: \mathcal{P}(\Omega) \to \{\text{Vrai, Faux}\}\ \text{est satisfaite locale-}$ ment ssi tout point $x \in \Omega$ admet un voisinage $V \in \mathcal{V}_x$ tq P(V) est vrai. Si Ω est localement compact (vrai si $\Omega \subset \mathbb{R}^d$), (tt pt admet une base de voisinage compact) et $(P(A) \land P(B)) \Rightarrow P(A \cup B), (P(A) \land B \subset A)) \Rightarrow P(B)$ alors P est satisfaite localement ssi elle est satisfaite sur tout compact.

Preuve. Preuve de l'existence dans CL : Soit $r_0 > 0$ tq $B'(x_0, r_0) \subset \Omega$. Soit $t_0 > 0$ alors f est bornée par C^{∞} sur $[0, t_*] \times B'(x_0, r_0)$ et f est C_{lip} lipschitzienne sur le même intervalle.

Définissions $t_1 > 0$ tq $C_{\infty}t_1 < r_0$ et $C_{lip}t_1 < 1$. Posons $X = C^0([0, t_1], B'(x_0, r_0))$ complet. $F: X \to X$ tq $F(u) = F_u: [0, t_1] \to B'(x_0, r_0)$ avec $F_u(t) =$

$$x_0 + \int_0^{t_1} C_\infty ds \le t_1 C_\infty \le r_0.$$

Caractère contractant : $\forall u, v \in X$, $||F_u(t) - F_v(t)|| \leq \int_0^{t_1} ||f(s, u(s)) - f(s, v(s))||ds \leq \int_0^{t_1} C_{lip} ||u(s) - v(s)||ds \leq C_{lip} t_1 ||u - v||_{\infty}$. Donc les conditional les de la Contractant in the contractant is a finite of the contractant in the contractant is a finite of the contractant in the contractant is a finite of the contractant in the contractant is a finite of the contractant in the contractant is a finite of the contractant in the contractant is a finite of the contractant in the contractant is a finite of the contractant in the contractant is a finite of the contractant in the contractant is a finite of the contractant in the contractant is a finite of the contractant in the contractant is a finite of the contractant in the contractant is a finite of the contractant in the contractant is a finite of the contractant in the contractant is a finite of the contractant in the contractant is a finite of the contractant in the contractant in the contractant in the contractant is a finite of the contractant in the contractant is a finite of the contractant in the contractant is a finite of the contractant in the contractant is a finite of the contractant in the contractant in the contractant in the contractant is a finite of the contractant in the contractant is a finite of the contractant in the contractant is a finite of the contractant in the cont tions du point fixe de Picard sont réunies. F admet un point fixe qui est par contraction C^1 et par dérivation est solution du pb de Cauchy :) \square Remarque. Le pt fixe de Picard implique aussi la stabilité par rapport aux conditions initiales. Cependant on le montre en général en utilisant le lemme de Gronwall, un peu plus précis

Lemme 6 (Gronwall). Soit $f \in C^0([0,T],\mathbb{R}^+)$ et $A,B \ge 0$ tq $\forall t \in [0,T], f(t) \le 0$ $A\underbrace{\int_0^t f(s)ds}_{B} + B$. Alors $f(t) \le Be^{-At}$.

Preuve. On a $F'(t) = Af(t) \le AF(t)$ donc $(F(t)e^{-At})' = (F' - AF)e^{-At} \le AF(t)$ 0. Donc $F(t)e^{-At}$ est décroissante en t. Donc $F(t)e^{-At} \le F(0) = B$. Donc $f(t) \le F(t) \le Be^{-At}$

Propriété 6 (Stabilité dans CL). Sous les hypothèses $f: R \times \Omega \to \mathbb{R}^d$ continue, localement lipschitzienne selon la seconde variable. Soit $u,v\in$ $C^1([0,T],K)$ solution de u'(t)=f(t,u(t)) où $K\subset_C\Omega$. Alors ||u(t)-u'(t)| $|v(t)| \le e^{Ct} ||u(0) - v(0)||$ avec C = C(T, K) constante de Lipschitz.

Preuve. $\|u(t) - v(t)\| = \|\int_0^t (u'(s) - v'(s))ds + (u(0) - v(0)\| \text{ car } u(t) = u(0) + \int_0^t u'(s)ds. \text{ Donc } \leq \|\int_0^t (f(s,u(s)) - f(s,v(s)))ds\| + \underbrace{\|u(0) - v(0)\|}_{=:B}$ $\leq C \int_0^t \|u(s) - v(s)\|ds + B \text{ le résultat s'obtient par Gronwall appliqué}$ à u - v.

Exemple (EDO avec retard). Il existe une unique solution $\nu \in C^1([0,1],\mathbb{R})$ de $\left\{ \begin{array}{c} \nu(0)=1 \\ \nu'(t)=\nu(t-t^2) \end{array} \right.$

Preuve. On cherche un point fixe de $F: X \to X$ définit comme avant. $|F_u(t)| \le 1 + \int_0^{\frac{1}{2}} 4 = 3 \text{ donc } F \text{ bien def et } F_u \text{ positive.}$ $|F_u(t) - F_v(t)| \le \int_0^{\frac{1}{2}} |u(t-t^2) - v(t-t^2)| dt \le \frac{1}{2} \|u-v\|_{\infty} \qquad \Box$

$$|F_u(t) - F_v(t)| \le \int_0^{\frac{1}{2}} |u(t - t^2) - v(t - t^2)| dt \le \frac{1}{2} ||u - v||_{\infty}$$

Exemple. Soit $k \in C^0([0,1]^2,]-1,1[)$ et $\varphi \in C^0([0,1],\mathbb{R})$ alors il existe une unique sol de $u(t) = \int_0^1 \underbrace{k(s,t)}_{r \mapsto \frac{r}{1+r^2}} \underbrace{\frac{u(s)}{1+u^2(s)}}_{\text{est lipschitzienne}} ds$. D'où $|F_u(t)-F_u(t)| = \int_0^1 \underbrace{k(s,t)}_{r \mapsto \frac{r}{1+r^2}} \underbrace{\frac{u(s)}{1+u^2(s)}}_{\text{est lipschitzienne}} ds$.

 $|F_v(t)| \leq K||u-v||_{\infty}$ et F est contractante sur cette topologique.

2.5 Théorème de Baire

Lemme 7 (Fermés emboités).: Soit (X,d) un espace métrique complet et (F_n) une suite de fermés de X tq $F_{n+1} \subset F_n$ et $diam(F_n) \to 0$. $diam(F_n) := \sup_{x,y \in F_n} d(x,y)$. Alors $\bigcap_{n \in \mathbb{N}} F_n = \{x_*\}$ pour un certain $x_* \in X$.

Preuve. Soit $x_n \in F_n$ arbitraire. Alors $\forall N, \forall p, q \geq N, d(x_p, x_q) \leq diam(F_N)$. donc (x_n) est de Cauchy. Sa limite x_* appartient à chaque disque F_n par fermeture donc $x_* \in \cap F_n$. De plus si $y_* \in \cap F_n$ alors $\forall n, d(x_n, y_*) \leq diam(F_n) \to 0$ donc $x_* = y_*$.

Théorème 2 (Baire). Soit (X, d) mesuré et (U_n) une suite d'ouverts denses. Alors $\bigcap_{n \in \mathbb{N}} U_n$ est dense.

Preuve. Soit $x_0 \in X$, $\varepsilon_0 > 0$ arbitraire. $B(x_0, \varepsilon_0)$, rencontre U_0 par densité en un point x_1 . Soit ε_1 tq $\varepsilon_1 \leq \varepsilon_0/2$ et $B'(x_1, \varepsilon_1) \subset U_0 \cap B(x_0, \varepsilon_0)$ qui est ouvert.

On construit alors par récurrence $x_{n+1} \in B(x_n, \varepsilon_n) \cap U_n$ vérifiant $\varepsilon_{n+1} \le \varepsilon_n/2$ et $B'(x_{n+1}, \varepsilon_{n+1}) \subset U_n \cap B(x_n, \varepsilon_n)$. Or $B'(x_{n+1}, \varepsilon_{n+1})$ suite de fermés emboités de diamètre $\le 2\varepsilon_n \to 0$.

Soit $x_* \in \bigcap_{n \in \mathbb{N}} B'(x_n, \varepsilon_n)$ par th des fermés emboités, alors $\forall n \in \mathbb{N}, x_* \in B'(x_{n+1}, \varepsilon_{n+1}) \subset U_n$. Donc on a bien la densité de $\cap U_n$.

Exemple. Soit (q_k) une énumération de \mathcal{O} posons $U_x := \bigcup]q_k - \frac{1}{nk^2}, q_k + \frac{1}{nk^2}[$ Alors $Leb(U_n) \leq \sum_{k \geq 1} \frac{2}{nk^2} = \frac{\pi^2}{3n}.$ Ainsi $\bigcap U_n$ est une intersection

d'ouverts denses mais de mesure nulle.

Corollaire. Soit (γ, d) un espace métrique complet et (F_n) une suite de fermé d'intérieur vide. Alors $\bigcup_{n\in\mathbb{N}} F_n$ est d'intérieur vide.

Terminologie de Baire

- Une intersection dénombrable d'ouverts est un G_{δ}
- Une union dénombrable de germés est un F_{σ}
- Un ensemble qui contient un G_{δ} dense est dit gras
- Un ensemble contenu dans un F_{σ} d'intérieur vide est dit maigre

Remarque. Soit (X, d) un espace métrique complet et sans points isolés. Alors tout ensemble A gras est indénombrable.

Preuve. Soit $x \in X$. Alors $\{x\}$ est fermé (car x n'est pas un point isolé) et d'intérieur vide. Donc $X \setminus \{x\}$ est un ouvert dense. Si par l'absurde A est dénombrable, alors $A \cap \left(\bigcap_{x \in A} X \setminus \{x\}\right)$ contient une intersection dénombrable d'ouvert denses donc est dense par Baire. Contradiction!

2.6 Applications de Baire aux opérateurs linéaires continus.

Théorème 3 (Banach-Steinhaus). Soit E un Banach, F un evn et $A \subset L_c(E,F)$ un ensemble d'applications linaires continues. Si A est simplement borné (ie $\forall x \in E$, $\sup_{u \in A} \|u(x)\|_F < \infty$) alors A est uniformément borné (ie $\sup_{u \in A} \|u\| \|u\| \| < \infty$, ie on peut choisir $C(x) := \sup_{u \in A} \|u\| \|u\| \|x\|_E$).

Preuve. (via Baire) Pour tout $k \in \mathbb{N}$, posons $E_k := \{x \in E \mid \forall u \in A, \|u(x)\|_F \leq k\}$. C'est un fermé, comme intersection de fermés. Par hypothèse, $\bigcup_{k \in \mathbb{N}} E_k = \underbrace{E}_{k}$, car $x \in E_k$ dès que $k \geq C(x)$. Donc par Baire, intérieur non vide

l'un au moins des E_k est d'intérieur non vide. Disons $B(x,r) \subset E_k$, pour un certain $x \in E, k \in \mathbb{N}$. Par symétrie, $B(-x,r) \subset E_k$. Par continuité, $B(0,r) \subset E$ (car $\|u(k)\| \leq \frac{\|u(x+k)\| + \|u(-x+k)\|}{2}$). On en déduit $\forall y \in B(0,x), \ \forall u \in A, \ \|u(y)\| \leq k$. Donc $\forall u \in A, \ \|u\| \leq \frac{k}{r}$. Comme enpagé

Corollaire. Soit E, F des Banach et $u_n \in L_c(E, F)$. On suppose $u_n(x)$ u(x) pour tout $x \in E$. Alors u est linéaire continue. (ie Une limite simple de fonctions linéaire continues est linéaire continue.)

Preuve. La linéarité de u découle de la limite simple : $u(\lambda x + y) = \lim u_n(\lambda x + y) = \lim \lambda u_n(x) + u_n(y) = \lambda u(x) + u(y)$. La suite (u_n) est simplement bornée, en effet $\forall x \in E, \ (u_n(x))$ est convergente donc bornée. Par Banach-Steinhaus $||u_n|| \le C_* ||x||$. Donc $||u(x)|| = \lim_{n \to \infty} \underbrace{||u_n(x)||}_{\le ||u_n|| ||x||} \le C_* ||x||$ donc u est continue.

Corollaire. Soit E un Banach et $A \subset E^*$ simplement borné (ie $\forall x \in E, |l(x)|_{l \in A}$ est borné) "faiblement borné". Alors A est uniformément borné (ie ($|l|_{E^*}$) est borné)

Preuve. Prendre $F=\mathbb{K}$ le corps de base $(\mathbb{K}=\mathbb{R} \text{ ou } \mathbb{C})$ et appliquer Banach-Steinhaus

Remarque. Il y a une version duale de ce résultat mais les preuves nécessitent le théorème de Hahn-Banach

Exemple. Il existe $f \in C^{(\Pi, \mathbb{C})}$ donc la série de Fourier diverge en 0. $\Pi := \mathbb{R}/_{2\pi\mathbb{Z}} = [0, 2\pi[$. On a $L_N(f) := \frac{1}{2\pi} \sum_{|n| \leq N} \int_0^{2\pi} f(t) e^{-int} dt$, alors $\exists f \in C^0$, $\exists \varphi$ extractrice telle que $|L_{\varphi(n)}(f)| \to \infty$.

Preuve. On a

$$L_N(f) = \int_0^{2\pi} f(t) \underbrace{\sum_{|n| \le N} e^{-int}}_{D_n(t)} dt$$

$$D_n(t) = e^{-iNt} \frac{1 - e^{i(2N+1)t}}{1 - e^{it}}$$

$$= \frac{\sin(\frac{1}{2}(2N+1)t)}{\sin(\frac{1}{2}t)}$$

. On munit C^0 de $\|\|_{\infty}$ qui en fait un complet. Donc $\|D_n\| = \sup_{\|f\|_{\infty} \le 1} \int_0^{2\pi} f(t)D_n(t)dt = \int_0^{2\pi} |D_n(t)|dt$ en appliquant le sugne de D_n .

$$|||L_N||| = \int_{-\pi}^{\pi} \frac{/|\sin\left(\frac{1}{2}(2N+1)t\right)}{|\sin\frac{t}{2}|} dt$$

$$\geq \int_{-\pi}^{\pi} |\sin\left((2N+1)\frac{t}{2}\right)| \frac{dt}{t} \qquad \text{car } |\sin t| \leq |t|$$

$$= 2 \int_{0}^{2N+1)\frac{\pi}{2}} |\sin s| \frac{ds}{s} \qquad \text{par symétrie}$$

. Diverge car $\int_0^\infty \frac{|\sin s|}{s}ds=\infty$. (découper l'intégrale selon $\bigcup_{k\in\mathbb{N}}[k\pi,(k+1)\pi[$.

Ainsi ($|||L_n|||$ est bien bornée. Donc par contraposée de Banach-Steinhaus $\exists f \in E = (C^0(\Pi, \mathbb{C}), ||.||_{\infty}), \sup_{n \in \mathbb{N}} |L_n(f)| = \infty.$

Théorème 4 (Banach-Steinhaus dans les Fréchets). Soit $(E,(|.|_n))$ et $(F,(|.|'_n))$ des Fréchets et $A \subset L(E,F)$ une famille d'applications linéaires continues.

Si A est simplement borné, i.e. $\forall x \in E, \ \forall m \in \mathbb{N}, \ \sup_{x \in \mathcal{X}} |u(x)|_m < \infty$. Alors A est équicontinue ie $\exists w$, module de continuité $\forall x, y \in E, d_F(u(x), u(y)) \leq$ $w(d_E(x,y)).$

Preuve. Soit $m \in \mathbb{N}$ fixé. Posons $E_k := \{x \in E \mid \forall u \in A, |u(x)|'_m \leq k\}.$ Alors E_k est fermé et comme avant on a l'union fait l'ensemble non vide. Par Baire il y a un E_k non d'intérieur vide. Par symétrie et continuité il continent un voisinage de 0. Donc $\exists N(m), r > 0, \{x \in E \mid \forall n \leq N(m), |x|_n < 0\}$ $r\} \subset E_k$. On en déduit $|u(x)|_m' \leq \frac{k}{r} \max_{n \leq N(m)} |x|_m$. Noter que $\frac{k}{r}$ et N(m)sont indépendant de $u \in A$. On en déduit l'équicontinuité en 0 puis en tout point par linéarité. Rappelons $d_F(x,y) = \max_{x \in \mathbb{N}} \min(2^{-m}, |x-y|_m')$ et $d_E(x,y) = \max_{m \in \mathbb{N}} \min(2^{-m}, |x-y|_m).$

Théorème 5 (Application ouverte, Banach). Soit E, F Banach et $u \in L(cE, F)$ surjective. Alors u est ouverte, ie u(O)est un ouvert dans F pour tout ou-

vert O de E.

Ou, de manière équivalente :

- 2. $\exists C, \forall y \in F, \exists x \in E, y = u(x) \text{ et } ||x|| \le C||y||$
- 3. $\exists r > 0, B_F(0,r) \subset u(B_E(0,1)).$

Preuve. .

 $1 \Rightarrow 3 \ u(B_E(0,1))$ est un ouvert car image d'un ouvert et continent 0 donc continent un voisinage de 0 dans F.

 $3 \Rightarrow 1$ Soit U ouvert de E et $x \in U$. Soit $\varepsilon > 0$ tq $B_E(x, \varepsilon) \subset U$. Alors

$$u(U) \supset u(B_E(x,\varepsilon))$$

$$= u(x) + \varepsilon u(B_E(0,1))$$

$$\supset u(x) + \varepsilon B_F(0,r)$$

$$= B_F(u(x), \varepsilon r)$$

 $3 \Rightarrow 2 \text{ Soit } y \in E \setminus \{0\}, \text{ alors } \frac{y}{\|y\|} \frac{r}{2} \in B(0, r). \text{ Donc } \frac{y}{\|y\|} \frac{r}{2} = u(x_*) \text{ pour un}$ $x_* \in B(0, 1). \text{ Donc } y = u(\underbrace{\frac{2}{r} \|y\| x_*}_{x}) \text{ et } \|x\| \leq \frac{2}{r} \|y\|.$ $2 \Rightarrow 3 \text{ Soit } r = \frac{1}{C}, \text{ si } y \in B(0, r), \text{ alors } \exists x \in B(0, 1), \ y = u(x).$

Preuve du point 2 à partir des hypothèses. Par surjectivité, $\bigcup \overline{u(B_E(0,n))} = F$.

Par Baire, $\exists n, \ u(B_E(0,n))$ est d'intérieur non vide. Par symétrie et continuité, $\exists r > 0$, $B_F(0,r) \subset u(B_E(0,n))$. Donc $\forall y \in B_F(0,r), \ \forall \varepsilon > 0, \ \exists x \in \mathbb{R}$ $B_E(0,n), \|y-u(x)\| < \varepsilon$. Par homogénéité $\forall y \in F, \forall \varepsilon > 0, \exists x \in$

 $E, \ \|y-u(x)\| < \varepsilon \text{ et } \|x\|_E \le C\|y\|_F \text{ pour } C = \frac{2n}{r}.$ Soit $y_0 \in F \setminus \{0\}$ dont on veut construire un antécédent. On choisit $x_0 \in E$ tq $\|x_0\| \le C\|y_0\|$ et $\|y_0-u(x_0)\| \le \frac{\|y_0\|}{2}$. On pose $y_1 = y_0 - u(x_0)$. OPS $y_1 \ne 0$ sinon on a bien un antécédent. Par récurrence on construit $(y_n), (x_n)$ tq $\|x_n\| \le C\|y_n\|$ et $\|y_n-u(x_n)\| \le \|y_n\|/2$. On a $y_{n+1} = y_n - u(x_n)$. Alors

 $||y_n|| \le 2^{-n} ||y_0||$ par récurrence et $||x_n|| \le C_2^{-n} ||y_0||$. Or $\sum_{n=0}^{\infty} x_n \to x_*$ par

complétude de E. Par ailleur

$$y_n = y_{n-1} - u(x_{n-1})$$

= $y_{n-2} - u(x_{n-1} + x_{n-2})$
...

$$= y_0 - u(\sum_{k < n} x_k).$$

Donc
$$||y_0 - u(\sum_{k < n} x_k)|| = ||y_n|| \to 0$$
 et $\to ||y_0 - u(x_*)||$. On en conclut $y_0 = u(x_*)$ et $x_* \le \sum_{n=0}^{\infty} ||x_n|| \le \sum_{n=0}^{\infty} C_2^{-n} ||y_0|| \le 2C ||y_0||$.

Corollaire (Isomorphisme de Banach). Si E, F est de Banach et $u \in L_c(E, F)$ bijective, alors $u^{-1} \in L_c(F, E)$

Preuve. u^{-1} est linéaire comme inverse d'une application linéaire. Montrons qu'elle est continue. Si $U \subset E$ est ouvert alors $(u^{-1})^{-1}(U) = u(U)$ est ouvert par th de l'application ouverte, ce qui conclut (u est bijective donc surjective).

Corollaire. Soit E un espace vectoriel muni de $\|.\|$ et $\|.\|'$ tq $(E,\|.\|)$ et $(E, \|.\|')$ sont complets. Supposons $\exists C, \ \forall x \in E, \ \|x\|' \leq C\|x\|$. Alors $\exists c > 0$ $0, \forall x \in E, ||x||' \ge c||x||$ (équivalence des normes).

Preuve. L'application $Id: (E, ||.||) \to (E, ||.||')$ est continue car ||Id(x)||' = $||x||' \le C||x||$ pour tout $x \in E$ et bijective. Par le corollaire isomorphisme de Banach, $Id^{-1}: (E, \|.\|') \to (E, \|.\|)$ est continue ie $\|Id^{-1}(x)\| = \|x\| \le 1$ $\tilde{C}||x||'$. On pose $c=\frac{1}{\tilde{C}}$

Théorème 6 (Graphe fermé). Soit E, F de Banach et $u: E \to F$ linéaire. Sont équivalent :

- u est continue
- $\mathcal{G}(u) := \{(x, u(x)) \in E \times F \mid x \in E\}$ est fermé

Preuve. On rappel que $E \times F$ est un Banach pour la norme $\|(x, f)\|_{E \times F} := \|x\|_E + \|y\|_F$.

- $||x||_E + ||y||_F.$ $1 \Rightarrow 2 \ \mathcal{G}(u) = \{(x,y) \in E \times F \mid y u(x) = 0\}. \text{ Or } \varphi : \underbrace{E \times F \longrightarrow F}_{(x,y) \longmapsto y u(x)}$ est continue donc $\mathcal{G}(u) = \varphi^{-1}(\{O_F)\}$ est fermé.
- $2\Rightarrow 1$ $\mathcal{G}(u)$ est un sous espace vectoriel fermé de $E\times F$ donc c'est un Banach pour la norme $\|.\|_{E\times F}.$ De plus l'application $\varphi: \begin{matrix} \mathcal{G}(u)\times F\longrightarrow E\\ (x,u(x))\longmapsto x\end{matrix}$ est linéaire, continue et bijective. (on aurait aussi pu faire avec équivalence des normes) Par l'isomorphisme de Banach, φ^{-1} est continue. Donc $\|x\|+\|u(x)\|=\|\varphi^{-1}(x)\|\leq C\|x\|.$ Finalement $\|u(x)\|\leq (C+1)\|x\|.$

3 Compacité

3.1 Caractérisation topologique

Définition 22 (Axiome de Borel-Lebesgue). Un espace topologique (X, \mathbb{U}) est dit compact si :

- ---X est séparé
- Pour tout $\mathcal{U} \subset \mathbb{U}$ tel que $\bigcup_{U \in \mathcal{U}} U = X$, il existe $\mathcal{U}_0 \in \mathcal{P}_f(\mathcal{U})$ tel que $\bigcup \mathcal{U}_0 = X$. (De toute couverture de X par des ouverts, on peut extraire une sous couverture finie).

il est séparé et

Remarque.

$$\bigcup \mathcal{U} = \{ x \in X \mid \exists A \in \mathcal{U}, \ x \in A \}$$
$$= \bigcup_{A \in \mathcal{U}} A$$

Remarque. On pouvait considérer les familles d'ouverts. Si $X=\bigcup_{i\in I}U_i$ avec U_i ouvert alors $\exists I_0\subset I,\ I_0$ fini et tq $\bigcup_{i\in I_0}U_i=X.$

Remarque (Intersection de fermés). Soit (X, \mathbb{U}) compact. Si $(F_i)_{i \in I}$ est une

famille de fermés de X tq $\bigcap_{i \in I} F_i = \emptyset$, alors $\exists I_0 \subset I$, I_0 fini et $\bigcap_{i \in I_0} F_i = \emptyset$. En particulier, si (F_n) est une suite de fermés emboités non vides alors $\bigcap F_n \neq \emptyset.$

Lemme 8. Soit (X, \mathbb{U}) espace topologique séparé et $F \subset X$ compact. Alors F est fermé.

Preuve. Par contraposée, on suppose F non fermé et on va montrer qu'il n'est pas compact.

Comme F non fermé, il existe $x \in \overline{F} \backslash F$. Soit $y \in F$, V_y et W_y des ouverts disjoints $\operatorname{tq} x \in V_y$ et $y \in W_y$. On a $F = \bigcup_{y \in F} W_y$. Si par l'absurde il existe $F_0 \subset F$ fini tel que $F = \bigcup_{y \in F_0} W_y$, alors l'ensemble $V_* = \bigcap_{y \in F_0} V_y$ est un ouvert (comme intersection **finie** d'ouverts) qui continent x et n'intersecte

aucun W_y pour $y \in F_0$.

On a donc trouvé V ouvert tq $x \in V$ et $V \cap F = \emptyset$. Cela contredit l'hypothèse que $x \in \overline{F} \backslash F$ (tout ouvert contenant x doit rencontrer F).

Corollaire. Soit (X, \mathbb{U}) compact et $F \subset X$. F fermé $\Leftrightarrow F$ compact.

Preuve. \Leftarrow Voir la preuve précédente (note que compact \Rightarrow séparé).

 \Rightarrow Soit $(U_i)_{i\in I}$ une couverture de F par des ouverts. Alors

Soit
$$(U_i)_{i\in I}$$
 une couverture de F par des ouverts. Alors $X = \left(\bigcup_{i\in I} U_i\right) \cup \underbrace{(X\backslash F)}_{\text{ouvert}}$. Donc $\exists I_0 \subset I$, I_0 fini et $X = \left(\bigcup_{i\in I_0} U_i\right) \cup \underbrace{(X\backslash F)}_{i\in I_0}$. Donc $F \subset \bigcup_{i\in I_0} U_i$.

Lemme 9. Soit $(X, \mathbb{U}), (Y, \mathbb{V})$ des espaces topologiques séparés. Alors pour $f: X \to Y$ continue, et $K \subset_C X$, f(K) est un compact.

Preuve. Soit $(U_i)_{i\in I}$ tq $f(K)\subset\bigcup_{i\in I}U_i$. Alors $K\subset\bigcup_{i\in I}\underbrace{f^{-1}(U_i)}_{\text{ouvert car}}$. Donc $K\subset\bigcup_{i\in I_0}f^{-1}(U_i)$ avec $I_0\in\mathcal{P}_f(I)$. Donc $f(K)\subset\bigcup_{i\in I_0}f(U_i)$, donc K vérifie la propriété de Borel-Lebesgue, et est séparé car Y est séparé. \square

Corollaire. Soit $(X, \mathbb{U}), (Y\mathbb{V})$ des compacts et $f: X \to Y$ continue bijective. Alors f^{-1} est continue.

Preuve. Soit $F \subset X$ fermé. Alors F est compact, donc f(F) et compact

puis f(F) est fermé. Ainsi $(f^{-1})^{-1}(F)$ est fermé. Ainsi l'image réciproque d'un fermé par f^{-1} est un fermé donc f^{-1} est continue.

Définition 23 (Espace localement compact). (X, \mathbb{U}) un espace topologique séparé est dit localement compact ssi

- 1. tout point admet un voisinage compact
- 2. tout point admet une base de voisinages compact

(Ces conditions sont équivalentes)

Preuve. .

- $-2 \Rightarrow 1$ est clair
- Supposons 1, soit $x \in X, K \subset X$ un voisinage compact de x et $V \subset X$ un voisinage ouvert de x.

Posons $\forall y \in K \setminus \{x\}, \ V_y$ et W_y ouverts disjoint tq $x \in V_y$ et $y \in W_y$.

Alors
$$K \subset \left(\bigcup_{y \in K \setminus \{x\}} W_y\right) \cup V$$
. Par compacité $\exists K_0 \subset K \setminus \{x\}, \ K \subset X$

Alors
$$K \subset \left(\bigcup_{y \in K \setminus \{x\}} W_y\right) \cup V$$
. Par compacité $\exists K_0 \subset K \setminus \{x\}, \ K \subset \left(\bigcup_{y \in K_0} W_y\right) \cup V$. Alors $K_* := K \setminus \left(\bigcup_{y \in K_0} W_y\right)$ est un fermé de K ,

donc un compact. De plus $K_* \subset V$ et $\bigcap V_y \subset K_*$

Définition 24 (Compactifié d'Alexandroff). Soit (X, \mathbb{U}) un espace localement compact séparé. On pose $\hat{X} := X \sqcup \{\infty\}$, où ∞ est un symbole supplémentaire arbitraire. $\hat{\mathbb{U}} := \mathbb{U} \cup \{\hat{X} \setminus K \mid K \subset_C X\}$. Alors $(\hat{X}, \hat{\mathbb{U}})$ est un espace topologique compact qui induit la topologie sur \mathbb{U} . (Idée : X un segment ouvert qu'on relie sur lui même pour former un cercle).

3.2 Compacts métriques

Définition 25. (X,d) est précompact $\Leftrightarrow \forall \varepsilon > 0, \exists X_0 \subset X$ fini, X = $B(x,\varepsilon)$. $x \in X_0$

Théorème 7. Soit (X, d) un espace métrique. Sont équivalent :

- 1. X est un compact (au sens de l'axiome de Borel-Lebesgue)
- 2. Toute suite à valeur dans X admet une sous suite convergente (Axiome de Bolzano-Weiestrass)
- 3. X est précompact et complet.

Preuve. On note que X est métrique donc séparé.

- $1 \Rightarrow 2$ Soit (x_n) une suite à valeur dans X. On note $F_n := \overline{\{x_n \mid n \geq N\}}$. Alors $Adh((x_n)) = \bigcap F_n$ est une intersection \searrow de fermés non vides donc est non vide. Donc (x_n) admet une valeur d'adhérence. Comme (X, d) est métrique, c'est la limite d'une suite extraite.
- $2 \Rightarrow 3$ Preuve de la complétude. Soit (x_n) une suite de Cauchy. Par Bolzano-Weierstrass, elle admet une sous suite convergente. Comme elle est de Cauchy, elle converge.

Preuve de la précompacité. Soit $x_0 \in X$, on construit par récurrence

tant que c'est possible, $x_n \in X \setminus \bigcup_{k < n} B(x_n, \varepsilon)$. Si la construction s'arrête à l'indice N alors $X = \bigcup_{n < N} B(x_n, \varepsilon)$ comme souhaité. Sinon,

on remarque que $\forall m < n, \ x_n \not\in B(x_m, \varepsilon), \ \mathrm{donc} \ d(x_n, x_m) \geq \varepsilon.$ Alors la suite (x_n) ne peut pas avoir de sous suite convergente (sinon $d(x_{\varphi(n)}, x_{\varphi(m)}) \to 0$.) Contradiction avec la précompacité.

 $3 \Rightarrow 1$ Soit (x_n) une suite de points de X et $A = \{x_n\}$. On construit pour $k \in \mathbb{N}, X = \bigcup_{r \leq R(k)} B(y_r^k, 2^{-k} \text{ une converture de } X \text{ par } R(k) \text{ boules}$

de diamètre 2^{-k} et $\sigma(k) \in [1, R(k)]$ tq $A_k = A \cap B(y^0_{\sigma(0)}, 2) \cap \cdots \cap B(y^k_{\sigma(k)}, 2^{-k})$ est infini. (Note : $\underbrace{A_{k+1}}_{\text{infini}} = A_{k-1} \cap \bigcup_{r \leq R(k)} B(y^k_r, 2^{-k}) = A_{k-1} \cap \bigcup_{r \leq R(k)} B(y^k_r, 2^{-k})$

$$\underbrace{\sum_{r \leq R(k)}}_{r \leq R(k)} \underbrace{A_{k-1} \cap B(y_r^k, 2^{-k})}_{\substack{\text{l'un doit être infini d'indice } r = \sigma(k)}}$$

Soit φ une extractrice to $x_{\varphi(n)} \in A_n$ pour tout $n \in \mathbb{N}$. Alors $\forall q \geq$

$$d(x_{\varphi(p)}, x_{\varphi(q)}) \le diam(A_N)$$

$$\le 2 \times 2^N.$$

Donc $x_{\varphi(n)}$ converge par complétude.

 $2 \Rightarrow 1$ Soit $X = \bigcup U_i$ une couverture par des ouverts. On affirme qu'il

existe r > 0 tq $\forall x \in X, \exists i \in I, B(x,r) \subset U_i$ (nombre de Lebesgue). Par l'absurde, soit (x_n) tq $B(x_n, 2^n) \not\subset U_i$ pour tout $i \in I$. Par Bolzano-Weiestrass, $\exists \varphi + \nearrow$, $x_{\varphi(n)} \to x_* \in X$.

Soit $i \in I$ to $x \in U_i$, et r > 0 to $B(x, r) \subset U_i$. Alors en se rapprochant assez de x avec φ on entre dans la boule et donc dans U_i absurde! Soit (U_i) une couverture d'ouverts et r > 0 le nombre de Lebesgue associé. Soit $X = \bigcup B(x,r)$ avec X_0 fini, par précompacité. Pour

tout $x \in X_0$, soit $i(x) \in I$ tq $B(x,r) \subset U_{i(x)}$. Alors $X = \bigcup_{x \in X_0} B(x,r) \subset U_{i(x)}$

 $\bigcup U_{i(x)}$ réunion finie comme annoncé!

Théorème 8. Heine Soit ((X, d) compact et (Y, d) métrique.

Si $f: X \to Y$ est continue alors selle est uniformément continue. $[\forall x \in X, \exists w_x, \text{ module de continuité}, \forall y \in X, d(f(x), f(y))) <$ $w_x(d(x,y))$] \Rightarrow $[\exists w, \text{ module de continuité}, \forall x, y \in X, d(f(x), f(y)) \leq$ w(d(x,y))].

2. Si $(f_i)_{i\in I}, f_i: X \to Y$ est equi continue, alors elle est uniformément equi continue.

$$[------, \forall i \in I, \ d(f_i(x), f_i(y)) \le w_x(d(x, y))] \Rightarrow ------, \forall i \in I, \ d(f_i(x), f_i(y))].$$

Preuve. 1. Par l'absurde, si f n'est pas uniformément continue, alors $\exists \varepsilon >$ 0, $\exists (x_n), (y_n), \ d(x_n, y_n) \underset{n \to +\infty}{\longrightarrow} 0 \text{ et } d(f(x_n), f(y_n)) \geq \varepsilon$. Par continuité, $\exists \varphi \text{ extractrice}, x_{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} x_*$. On a de plus $y_{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} x_*$ et $\max_{\varepsilon} (d(f(y_{\varphi n})), f(x_*)), d(f(x_{\varphi(n)}), f(x_*))) \geq (d\frac{f(x_{\varphi n}), f(y_{\varphi(n)})}{2} \geq$ $\frac{\varepsilon}{2}$. Contredit la continuité en x_* .

2. Posons $F: X \longrightarrow Y^I$ On munit Y^I de la distance de la convergence uniforme : $d_{Y^I}((u_i), (v_i)) = \max_{i \in I} \min_{i \in I} (1, d_Y(u_i, v_i)) \neq$ Pour prendre des vals finies

topologie produit.

Alors (f_i) equicontinue $\Leftrightarrow F$ continue. Or (f_i) uniformément continue $\Leftrightarrow F$ uniformément continue et F uniformément continue $\Leftrightarrow F$ continue par th de Heine!

3.3 Compacité en dimension finie.

Propriété 7. Une partie $A \subset \mathbb{R}^d$ est ssi elle est fermée et bornée.

Preuve. \Rightarrow Trivial

- \Leftarrow On a montré que (X,d) est compact \Leftrightarrow (X,d) est précompact com-
 - $A \subset \mathbb{R}^d$ est complet car ferlé dans un complet.
 - On peut inclure A dans $[-R, R]^d$ pour un R > 0 car A est borné. On peut recouvrir $[-R, R]^d$ d'un nombre fini de boules de rayon $\varepsilon>0$ donné, disposés en grille : $[-R,R]^d\subset\bigcup\ B(x_i,\varepsilon)$ pour $x_i \in [-R, R]^d$. Posons $J = \{1 \le i \le I \mid B(x_i, \varepsilon) \cap A \ne \emptyset\}$, et soit $y_i \in B(x, \varepsilon) \cap A, \ \forall j \in J$.

Alors
$$A \subset \bigcup_{j \in J} B(y_j, 2\varepsilon)$$
, car $B(x_j, \varepsilon) \subset B(y_j, 2\varepsilon)$.

Corollaire. Soit $f \in C^0(X, \mathbb{R})$, avec X compact. Alors f est bornée et atteint ses bornes.

Preuve. $f(X) \subset \mathbb{R}$ est l'image d'un compact donc compact, donc fermé borné, donc admet une borne sup et inf.

Corollaire. (équivalence des normes en dim finie) : Soit E un espace vectoriel de dim finie, $\|.\|$ et $\|.\|'$ des normes sur E. Alors $\exists C, c > 0, \ \forall x \in E, \ c\|x\| \le \|x\|' \le C\|x\|$.

Preuve. On peut supposer $E=\mathbb{R}^d$ (quitte à choisir une base) et $\|x\|=\sum_{i=1}^d |x_i|$ (car l'équivalence des normes est une relation d'équivalence).

On a $\|x\|' = \|\sum_{i=1}^d x_i e_i\|' \le \sum_{i=1}^d |x_i| \|e_i\|' C \|x\|$ où $C = \max_{1 \le i \le d} \|e_i\|'$ en notant (e_i) la base canonique. On en déduit la borne supérieure $\|x\|' \le C \|x\|$, et $\|x\|' - \|y\|' \| \le \|x - y\|' \le C \|x - y\|$ donc $\|.\|'$ est C-Lipschitz. On pose $c = \inf\{\underbrace{\|x\|'}_{>0 \text{ car}} \|\underbrace{x \in E, \|x\| = 1}_{\text{compact car}}\}$ Comme c est atteint on a c > 0 et

 $||x||' \ge c$ si ||x|| = 1. Par homogénéité $||x||' \le c||x||$.

Théorème 9. compacité de Rietz Soit E un evn. Sont equivalent : E de dim finie

- **2.** $B'_E(0,1)$ est complet
- 3. $\exists I \in \mathbb{N}^*, \ x_1, \dots, x_I \in E, \ B'_E(0,1) \subset \bigcup_{1 \le i \le I} B_E(x_i,1).$

Preuve. Clairement $1) \Rightarrow 2$) et $2 \Rightarrow 3$). Rester à montrer $3) \Rightarrow 1$).

Lemme 10. de Riez Soit E un evn, $F \subset E$ un sous espace propre $(F \neq E)$ et fermé, p < 1. Alors $\exists x \in B'_E(0,1), \ p \leq d(x,F) := \inf\{\|x - v\| \mid v \in F\}$. Si E est de dimension finie, alors on peut prendre p = 1.

Preuve. Soit $u \in E \setminus F$ (u existe car F propre). On a d(u, F) > 0 car Fest fermé. Il existe $v\in F$ t
q $\|u-v\|\leq \frac{1}{p}d(u,F):=\inf\{\|u-v'\|v'\in$

- Par définition de l'inf en dimension quelconque.
- En dimension finie, on note que $d(u,F) = \inf\{\underbrace{\|u-v'\|}_{v'\in F \mapsto \|u-v'\|} \underbrace{v'\in F, \ \|u-v'\| \le d(u,F)+1}_{\text{fermé borné de }F \text{ qui est de dim finie}}\}$

On suppose alors 3). On pose $F = Vect\{x_i \mid i \in [1; I]\}$. F est de dimension finie et $F \subset E$. Donc F est fermé. Si F = E alors 1) est prouvé. Sinon $\exists x \in B'_E(0,1), \ d(x,F) = 1$. En particulier, $x \notin B(y,1)$ pour tout $y \in F$. Donc $x \notin \bigcup B(x_i, 1)$ contradiction!

3.4 Produit de compact.

Théorème 10. Tychonov Soit (X_i, U_i) une famille d'espace topologique compact. Alors $\prod X_i$ est compact pour la topologie produit.

Preuve. Dans le cas métrique dénombrable, (X_n, d_n) une famille de compacts métriques. $X_* = \prod_{n=1}^{\infty} X_n$ est muni de la distance $d_*((x_n), (y_n)) :=$ $\max_{n\in\mathbb{N}}\min\left(2^{-n},d_n(x_n,y_n)\right) \text{ topologie de la convergence simple.}$

Preuve. Compacité par le critère de Bolzano Weierstrass. On considère $(x^k)_{k\in\mathbb{N}}\in X_*$. On utilise le "procédé d'extraction diagonal".

Soit φ_0 extractrice tq $x_0^{\varphi_0(k)} \xrightarrow[k \to +\infty]{} \hat{x_0} \in X_0$.

Soit φ_n extractrice tq $x_n^{\varphi_0 \circ \cdots \circ \varphi_n(k)} \underset{k \to +\infty}{\longrightarrow} \hat{x_n} \in X_n$. On pose $\varphi_*(k) := \varphi_0 \circ \cdots \circ \varphi_k(k)$. Alors $x_n^{\varphi_*(k)} \underset{k \to +\infty}{\longrightarrow} \hat{x_n}$. Posons $\hat{x} := (\hat{x_n}) \in X_*$. On a $d(x^{\varphi_*(k)}, \hat{x}) = \max_{n \in \mathbb{N}} \min(2^{-n}, \underbrace{d_n(x_n^{\varphi_*(k)}, \hat{x_n})}_{\underset{k \to +\infty}{\longrightarrow} 0})$.

Exemple. (Satisfiability des familles de formules logiques): Une formule logique est une application $f:\{0,1\}^{\mathbb{N}} \to \{0,1\}$, qui ne dépend que d'un nombre fini de variables : $f(x_0, x_1, \dots) = f(x_0, \dots, x_{N(f)}, 0, \dots)$. Soit \mathcal{F} un ensemble de formules logiques. Sont équivalent :

- 1. \mathcal{F} est satisfiable $(\exists x \in \{0,1\}^{\mathbb{N}}, \ \forall Af \in \mathcal{F}, \ f(x) = 1)$
- 2. Toute partie finie de \mathcal{F} est satisfiable.

Preuve. Clairement $1) \Rightarrow 2$). Supposons non 1). Alors $\bigcap_{f \in \mathcal{F}} f^{-1}\{1\} \neq \emptyset$. Or $X = \{0,1\}^{\mathbb{N}}$ est compact et une formule logique $f: X \to \{0,1\}$ est une application continue. $d_*((u_n),(v_n)) = \max(2^{-n},|u_n,v_n|)$. Si $d_*((u_n),(v_n)) < 2^{-N(f)}$ Alors $f((u_n)) = f((v_n))$. Donc par la propriété de Borel Lebesgue appliqué aux fermés, $\exists \mathcal{F}_i \subset \mathcal{F}$, \mathcal{F}_i , fini et $\bigcap_{f \in \mathcal{F}_i} f^{-1}(\{1\}) = \emptyset$. Donc \mathcal{F} n'est pas finiment satisfiable ie non 2).

Théorème 11. Banach Alaoglu Soit E un Banach, $B := B'_{E^*}(0,1)$ la boule unité fermée de son dual. Alors B est compacte pour la topologie * faible.

Preuve. Dans le cas où E est séparable. Soit $D \subset E$ une partie dénombrable dense. Soit $(f_n) \in B$. On note que $|f_n(x)| \leq ||x||_E$, car $||f_n|| \leq 1$. Alors $\exists \varphi$ extractrice tq $f_{\varphi(n)}(x) \underset{n \to +\infty}{\longrightarrow} f_*(x)$. On obtient φ par compa-

cité de $\prod_{x \in D} [-\|x\|, \|x\|]$, ou directement par procédé d'extraction diagonal (équivalent).

On définit $f_*:D\to\mathbb{R}$. On note que

$$|f_*(x) - f_*(y)| = \lim_{n \to \infty} |f_n(x) - f_n(y)|$$

$$= \lim_{n \to \infty} \underbrace{|f_n(x - y)|}_{\le ||x - y|| \text{ car } ||f_n||_{E^*} \le 1}$$

$$\le \lim_{n \to \infty} ||x - y||$$

$$= ||x - y||.$$

Donc $f_*:D\to\mathbb{R}$ est 1-Lipschitzienne donc uniformément continue. Donc elle se prolonge en $f_*:E\to\mathbb{R}$ également 1-Lipschitz.

Enfin, soit $x \in E, \varepsilon > 0, y \in D$ tq $||x - y|| \le \varepsilon$. Alors $|f_{\varphi(n)}(x) - f_n(x)| \le \underbrace{|f_{\varphi n}(x) - f_{\varphi n}(y)|}_{\le ||x - y|| \text{ car } ||f_{\varphi n}||_{E^*} \le 1} + \underbrace{|f_{\varphi n}(y) - f_*(y)|}_{n \to +\infty} + \underbrace{|f_*(y) - f_-(x)|}_{\text{est 1-Lipschitz}} \le 3\varepsilon \text{ pour } n \text{ assez}$

Ainsi $|f_{\varphi n}(x) - f_*(x)| \to 0$ pour tout $x \in E$ (convergence simple $f_{\varphi n} \to f_*$). On en déduit que f_* est linéaire $f_*(\lambda x + y) = \lim_{n \to \infty} f_{\varphi n}(\lambda x + y) = \lambda \lim_{n \to \infty} f_{\varphi n}(x) + \lim_{n \to \infty} f_{\varphi n}(y) = \lambda f_*(x) + f_*(y)$. Alors $f_* \in B'_{E^*}(0,1)$ car elle est linéaire et 1-Lip. Donc $f_{\varphi n} \to f_*$ convergence * faible. E evn, $x_n \in E \to (\text{faible})x \Leftrightarrow \forall \varphi \in E^*, \ \varphi(x_n) \to \varphi(n)$.

 $\varphi_n \in E^* \to (* \text{ faible}) \ \varphi \Leftrightarrow \forall x \in E, \ \varphi_n(x) \to \varphi(x).$ Topologie qio rend continue $E^* \to \mathbb{K}, \varphi \mapsto \varphi(x)$ semi norme $|\varphi|_* = |\varphi(x)|$ pour tout $x \in E$. \square

Théorème 12. Ascoli Soit (X, d), (Y, d) des espaces métriques compacts. Alors $Lip_1(X, Y) := \{f : X \to Y \mid f \text{ est 1-Lipschitz}\}$ muni de d(f, g) :=

 $\max_{x \in X} d(f(x), f(y))$ est métrique compact.

Preuve. Soit $D \subset X$ une partie dénombrable dense. Soit $(f_n) \in Lip_1(X,Y)^{\mathbb{N}}$. Par le procédé d'extraction diagonal ou par compacité de $Y^D = \prod_{x \in D} Y$, il existe $f_* : D \to Y$ et φ une extractrice tq $f_{\varphi n}(x) \underset{n \to +\infty}{\longrightarrow} f_*(x)$. On remarque que $\forall x, y \in D$, $d(f_*(x), f_*(y)) = \lim_{n \to \infty} d(f_{\varphi n}(x), f_{\varphi n}(y)) \leq \limsup_{n \to \infty} d(x,y) = d(x,y)$. Donc $f_* : D \to Y$ est 1-Lip. Donc elle s'étend en $f_* : X \to Y$ aussi 1-Lip. Montrons $d(f_{\varphi n}, f_*) \underset{n \to +\infty}{\longrightarrow} 0$ (ie on passe de la cv simple à la cv uniforme).

Soit $\varepsilon > 0, D_{\varepsilon} \subset D$ fini tq $X = \bigcup_{x \in D_{\varepsilon}} B(x, \varepsilon)$, obtenu par compacité et densité de D. Soit $N \in \mathbb{N}$ tq $\forall n \geq N, \ \forall x \in D_{\varepsilon}, \ d(f_{\varphi n}(x), f_{\varphi n}(y)) \leq \varepsilon$. Alors, $\forall n \geq N, \ \forall x \in X$, choisissons $y \in D_{\varepsilon}$ tq $x \in B(y, \varepsilon)$. On a

$$d(f_{\varphi n}(x), f_{\varphi n}(y)) \leq \underbrace{d(f_{\varphi n}(x), f_{\varphi n}(y))}_{\leq d(x,y) \leq \varepsilon} + \underbrace{d(f_{\varphi n}(y), f_{*}(y))}_{\text{et } y \in D_{\varepsilon}} + \underbrace{d(f_{*}(x), f_{*}(y))}_{\leq d(x,y) \leq \varepsilon}$$
$$\leq 3\varepsilon.$$

Ainsi $(f_{\varphi n}, f_*) \underset{n \to +\infty}{\longrightarrow} 0$, donc $Lip_1(X, Y)$ est compact.

Théorème 13. Ascoli équicontinue Soit (X, d) compact, (Y, d) métrique et $(f_i)_{\in I}$ avec $f_i: X \to Y$. On suppose :

 (f_i) équicontinue $(\forall x,\ \exists w_x\ \text{module}$ de continuité, $\forall y\in X,\ \forall i\in I,\ d(f_i(x),f_i(y))\leq w_x(d(x,y))$

 $- \forall x \in X, \ \overline{\{f_i(x) \mid i \in I\}} \text{ est compact.}$

Alors $\overline{\{f_i \mid i \in I\}}$ est une partie compact de $C^0(X,Y)$ pour $d(f,g) = \max_{x \in X} d(f(x),g(x))$

Preuve. Par le théorème de Heine, (f_i) équicontinue sur (X,d) compact $\Rightarrow (f_i)$ uniformément équicontinue. OPS $w \leq 1$, quitte) remplacer d_Y par $min(1,d_Y)$. On a vu que l'on peut construire \tilde{w} module de continuité tq $\tilde{w} \geq w$ et \tilde{w} est sous additif et croissant. OPS $\tilde{w} \neq 0$ sinon le résultat est prouvé.

Alors $\tilde{d}_Y(u,v) := \tilde{w}(\min(1,d_Y(u,v)))$ est une distance sur Y, définissant la même topologie que d_Y .

Par construction, $\forall i \in I, \ f_i(X, d_Y) \to (Y, \tilde{d_Y})$ est 1-Lip. La preuve d'Ascoli dans le cas 1-Lip s'applique. ($\prod_{x \in D} Y_x$ compact comme produit de compact

avec $D \subset X$ dense). On obtient que $\overline{\{f_i \mid i \in I\}}$ est compact pour $\tilde{d}(f,g) = \max_{x \in X} \tilde{d}_Y(f(x), g(x))$. donc aussi pour $d(f,g) = \max_{x \in X} d_Y(f(x), g(x))$.

Propriété 8. Soit E un Banach, $K \subset E$. Si \overline{K} est compact alors $\overline{Hull(K)}$ est compact. On a noté $Hull(K):=\{\sum_{1\leq i\leq I}\lambda_ix_i\mid I\in\mathbb{N}^*,\ \lambda_1,\cdots\lambda_I\geq 1\}$ 0, $\sum_{i=1}^{n} \lambda_i = 1$ } l'enveloppe convexe.

Preuve. Pour tout $\varepsilon \geq 0$, soit $D_{\varepsilon} \subset K$ fini tq $\overline{K} \subset \bigcup_{x \in D_{\varepsilon}} B(x, \varepsilon)$ (existe par compacité de \overline{K} et car $\overline{K} \subset \bigcup_{x \in K} B(x, \varepsilon)$). Posons $H_{\varepsilon} = Hull(D_{\varepsilon}) = \{\sum_{x \in D_{\varepsilon}} \lambda(x)x \mid \lambda : D_{\varepsilon} \to \mathbb{R}_{+}, \sum_{x \in D_{\varepsilon}} \lambda(x) = 1\}$. On note que H_{ε} est compact. définie une partie compacte de $\mathbb{R}^{D_{\varepsilon}}$

De plus soit $x \in Hull(K), x = \sum_{1 \le i \le I} \lambda_i x_i$ avec $x_i \in K, \lambda_i \ge 0$ et de somme

1. Choisissons $y_i \in D_{\varepsilon}$ tq $||x_i - y_i|| \le \varepsilon$. Posons $y = \sum_{i=1}^{I} \lambda_i y_i \in Hull(D_{\varepsilon})$.

On a
$$||x - y|| \le \sum_{i=1}^{I} \lambda_i ||x_i - y_i|| \le \varepsilon$$
.

On a $||x-y|| \leq \sum_{i=1}^{I} \lambda_i ||x_i-y_i|| \leq \varepsilon$. Soit (x^k) une suite à valeur dans Hull(K). Pour tout $n \in \mathbb{N}^*$, soit $x_n^k \in H_{\frac{1}{n}} = Hull(D_{\frac{1}{n}})$ tq $||x^k - x_n^k|| \leq \frac{1}{n}$. Par compacité de $\prod_{n \in \mathbb{N}} H_{\frac{1}{n}}$, ou par procédé d'extraction diagonal, il existe φ extractrice tq $x_n^{\varphi k} \underset{k \to +\infty}{\longrightarrow} \hat{x_n} \in$ $H_{\frac{1}{n}}$. On a

$$||x_n^k - x_m^k|| \le ||x_n^k - x^k|| + ||x^k - x_m^k||$$

 $\le \frac{1}{n} + \frac{1}{m}.$

Donc $\|\hat{x_n} - \hat{x_m}\| \le \lim_{k \to \infty} \|x_n^k - x_m^k\| \le \frac{1}{n} + \frac{1}{m} \to 0$. Donc $(\hat{x_n})$ est de Cauchy et admet une limite $\hat{x} \in E$ qui est un Banach et $\|\hat{x_n} - \hat{x}\| = \lim_{m \to \infty} \|\hat{x_n} - \hat{x_m}\| \le \limsup_{m \to \infty} \frac{1}{n} + \frac{1}{m} = \frac{1}{n}$. Reste à montrer que $x^{\varphi k} \xrightarrow[k \to +\infty]{k} \hat{x}$. Soit $\varepsilon > 0, n \in \mathbb{N}^*$ tq $\frac{1}{n} \le \varepsilon$. Alors $\|x^{\varphi k} - \hat{x}\| \le \underbrace{\|x^{\varphi k} - x_n^{\varphi k}\|}_{\le \frac{1}{n} < /\varepsilon} + \underbrace{\|x_n^{\varphi k} - \hat{x_n}\|}_{\ge + \infty} + \underbrace{\|\hat{x_n} - \hat{x}\|}_{\le \frac{1}{n} \le \varepsilon} \le 3\varepsilon$ pour n assez grand. Donc

Remarque. (Th de Carathéodory) : Soit
$$A \subset \mathbb{R}^d$$
, alors $Hull(A) = \{\sum_{i=0}^d \lambda_i x_i \mid x_0, \cdots x_d \in A\}$

 $A, \lambda_0, \cdots, \lambda_d \geq 0, \text{ de somme 1}.$

En particulier, si $K \subset \mathbb{R}^d$ est compact alors Hull(K) est compact.

Preuve. Soit $x \in Hull(A)$. On écrit $x = \sum_{i=1}^{n} \lambda_i x_i$ selon les conditions habituelles. On suppose n minimal. Si par l'absurde $n \geq d+1$, alors (x_1-x_0,\cdots,x_n-x_0) est une famille de $n\geq d+1$ vecteurs qui admet donc une une relation de liaison. On a donc $0 = \sum_{i=1}^{n} \mu_i(x_i - x_0)$, avec les μ_i non tous nuls. Alors avec $\mu_0 = -\sum_{i=1}^n \mu_i$ on a $\sum_{i=0}^n \mu_i = 0$. Par minimalité de n, on a $\lambda_i>0$ posons donc $\rho=\max\{\frac{\lambda_i}{\mu_i}\mid \mu_i>0\}$ alors $(\lambda_0 - \rho \mu_0)x_0 + \dots + (\lambda_n - \rho \mu_n)x_n = x$. De plus, après un peu de trucs moches que je n'ai pas envie de copier, il existe i_0 tq $\rho=\frac{\lambda_{i_0}}{\mu_{i_0}}$ donc $\lambda_{i_0}-\rho\mu_{i_0}=0$ Contradiction avec la minimalité de n!

Finalement c'est compact comme image d'un compact par une application continue (celle qui associe la somme au couple de d+1-uplet de x_i et

3.5 Point fixe de Brouwer.

Théorème 14. Brouwer Soit $B := B'_{\mathbb{R}^d}(0,1)$ la boule unité fermée de \mathbb{R}^d et soit $f \in C^0(B, B)$. Alors f admet un point fixe.

Preuve. (De Peter Lax, cf livre de T.Alazard basée sur une formule de changement de variable non difféomorphique).

Rappel (changement de variable dans une intégrale générale) : Soit u, vdes ouverts de \mathbb{R}^d , $\varphi: u \to v$ un difféomorphisme et $f: v \to \mathbb{R}$ intégrable.

Alors
$$\int_{v} f(x)dx = \int_{u} f(\varphi(x))|det(D\varphi(x))|dx$$
.

Alors $\int_v f(x)dx = \int_u f(\varphi(x))|det(D\varphi(x)|dx$. Note: $D\varphi(x) = \left(\frac{\partial \varphi_i}{\partial x_j}(x)\right)_{i,j\in [\![1:d]\!]} \in \mathbb{R}^{d\times d}$ est la matrice jacobienne de φ . Par hypothèse φ est bijective et $D\varphi$ est continue et inversible en tout

Lemme 11. (Peter Lax) : Soit $\varphi \in C^2(\mathbb{R}^d, \mathbb{R}^d)$ tq $\varphi(x) = x \forall x \notin B$. soit $f \in C^1(\mathbb{R}^d)$ à support compact. Alors $\int_{\mathbb{R}^d} f(x) dx = \int_{\mathbb{R}^d} f(\varphi(x)) det(D\varphi(x)) dx$.

Remarque.

- Pas d'hypothèse " φ différentiable" et pas de valeur absolue sur le $det(D\varphi)$.
- Le lemme implique la formule de changement de variable.