Multi-Rate Processing

Neural Networks: ECE 5630

Figure: Linear Data Classifier

Clint Ferrin Utah State University Tue Nov 14, 2017

Table of Contents

1	\mathbf{Intr}	roduction	1
2	Filte	er Design Problem 1:	1 1
3	Con	aclusion	3
$\mathbf{L}^{:}$	ist o	f Figures	
	1	Impulse Response	1
	2	Plot of Magnitude and Phase Response	2
	3	fdatool in Matlab	2

1 Introduction

This paper shows how to perform multi-rate processing using decimation and interpolation. Matlab's fdatool was utilized to create the filters necessary for the sample rate conversion, and c plus plus for programming.

2 Filter Design

Problem 1: Design a linear phase FIR low-pass (prototype) filter H(z) to be used in your sample-rate converter. Be sure that the cutoff of the filter is appropriate for the conversion.

To design the filter necessary for the sample-rate converter, I calculated the cutoff frequency necessary for the down-sampler and interpolator, and found that the narrower low-pass filter of the two was the interpolation filter (L=3>M=2).

The coefficients for the filter are:

Listing 1: Test

(a) The impulse response for the given filter is seen in Figure 1

Figure 1: Impulse Response

(b) Plots the magnitude and phase response can be seen in Figure 2

Figure 2: (a) Plot of Magnitude Response for Low-pass Filter. (b) Plot for Phase Response for Low-pass Filter

- (c) The difference equation for the filter is of length 21 as seen in Listing 1.
- (d) To design the filter I used the FDA tool in Matlab. Note that the Sample Frequency was input as 11025 because that was the sample rate of the original sound file. The low-pass filter needed to be the smaller of the low-pass filter needed for the interpolator and the decimator. The Decimator required a cutoff frequency of $\frac{\pi}{2}$ and the interpolator required a cutoff frequency of $\frac{\pi}{3}$, so I maintained the lower of the two cutoff frequencies. $\frac{\pi}{3}$ of F_s is equal to 1837.5, so I made 1838 the cutoff frequency.

Figure 3: fdatool in Matlab

- (e) The pass-band and stop-band edge frequencies are 1737 Hz and 1838 Hz respectively.
- (f) The size of the ripple in the pass-band is 0.001 dB
- (g) The peak side-lobe level is equal to -80 dB?

3 Conclusion

This is a conclusion paragraph. $\,$