Monitoria 07/07/2022

- (X, d) espaço métrico. $A \subseteq X$ é denso em X se $\overline{A} = X$, ou seja, $\forall x \in X$ e $\forall E > 0$, $B_E(x) \cap A \neq \emptyset$. Em particular, existe $(a_n) \subseteq A$ com $\lim a_n = x$.
- (X, d) espaço métrico e $A \subseteq X$. A fronteira de A e définida como $x \in \partial A \Longrightarrow \forall E > 0$, $B_{\varepsilon}(x) \cap A \ne \emptyset$ e $B_{\varepsilon}(x) \cap A^{c} \ne \emptyset$

A. X. Be(x)

Para $\mathcal{E} = 1/n$, uncontramos $(x_n) \subseteq A$ com $(y_n) \subseteq A^c$ com $y_n \to y$.

 $\partial A = \overline{A} \cap \overline{A^c}$

Defininos espaço discreto como espaço cujos conjuntos unitários são discretos, isto é, 5x3 é aberto,

