2023-2024 学年第 1 学期抽象代数 I 课程期末考试试卷

参考解答

- 一, 判断下列论断是否正确, 若正确, 给出简要证明, 否则举反例说明.
- 1. 若群 G 的子群 H 和 K 满足 $K \triangleleft H$ 且 $H \triangleleft G$, 则有 $K \triangleleft G$.
- 2. 有理数加法群 ℚ 不是循环群.
- 3. 若群 G 为两个有限阶元素生成,则 G 为有限群.
- 4. 若群 G 为无限群,则 G 作用在任意一个无限集 X 上的轨道个数都是无限的.
- 5. 记 G 为一个群. 记其中心为

$$Z(G) := \{ a \in G \mid \forall b \in G, ab = ba \}.$$

若 G/Z(G) 为一个循环群,则 G 为一个交换群.

解. 1. 错误. 反例: 令 $G = S_4$, $H = \{e, (12)(34), (13)(24), (14)(23)\}$, $K = \{e, (12)(34)\}$, 则有

$$K \triangleleft H \mid \exists H \triangleleft G.$$

注意到 (12)(34) 的共轭类为 H 中的非幺元构成的集合, 因此 K 不是 G 的正规子群.

2. 正确. 任取 \mathbb{Q} 的元素 p/q $(p \in \mathbb{Z}, q \in \mathbb{N}^*$ 且 gcd(p,q) = 1), 我们有

$$\left\langle \frac{p}{q} \right\rangle = \left\{ \left. \frac{kp}{q} \right| k \in \mathbb{Z} \right\},\,$$

则

$$\frac{1}{q+1} \notin \langle S \rangle.$$

(否则有 kp(q+1) = q, 注意到若 $kp \neq 0$, 我们有 |kp(q+1)| > |q|. 若 kp = 0, 则 q = 0, 均矛盾. 因此该等式不成立.)

3. 错误. 反例: 我们取 SL(2, ℝ) 中两个元素

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}$$

则有

$$AB = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

注意到 $|\operatorname{tr} AB| = 3 > 2$, 且 $\det AB = 1$, 因此有两个不同的互为倒数的特征根, 所以为无限阶.

4. 错误. 反例: 考虑 ℝ 在 ℝ 上的作用:

$$\Phi: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
$$(x, y) \mapsto x + y$$

是可递的. 因此只有一个轨道. (群的左平移作用是可递的)

5. 正确. 由于 G/Z(G) 为循环群, 存在元素 $a\in G$, 满足 aZ(G) 为 G/Z(G) 的生成元, 因此 $G=\{a^kb\mid k\in\mathbb{Z},\quad b\in Z(G)\}.$

任取 a^kb 和 a^lc , 满足 $k,l\in\mathbb{Z}$ 以及 $b,c\in Z(G)$, 我们有

$$(a^k b)(a^l c) = a^{k+l} bc = (a^l c)(a^k b).$$

因此 G 交换.

注 0.0.1.

注意到 Z(G) = G, 我们进一步得到循环群 G/Z(G) 实际上是平凡的.

二, 记 G 为一个群. 任取 G 的非空子集 S, 我们考虑以下 G 的子集

$$\langle\langle S\rangle\rangle:=\bigcap\{N\lhd G\mid S\subset N\},$$

即 $\langle\langle S\rangle\rangle$ 为所有包含 S 的 G 的正规子群的交集.

1. 试证明: $\langle \langle S \rangle \rangle \triangleleft G$.

证明. 首先我们有

$$S \subset G \lhd G$$
,

因此

$$G \in \{N \lhd G \mid S \subset N\} \neq \emptyset.$$

注意到子群对任意交封闭, 因此

$$\langle\langle S \rangle\rangle < G.$$

下证子群 $\langle\langle S\rangle\rangle$ 是 G 的正规子群. 任取 $a\in G, b\in \langle\langle S\rangle\rangle$, 由 $\langle\langle S\rangle\rangle$ 的定义, 任取 $N\lhd G$, 满足 $S\subset N$, 都有 $b\in N$. 由于 N 为正规子群, 因此

$$aba^{-1} \in N$$
.

由此可得

$$aba^{-1} \in \bigcap \{N \lhd G \mid S \subset N\} = \langle \langle S \rangle \rangle.$$

因此

$$\langle\langle S\rangle\rangle \lhd G$$
.

2. 记 $a \in G$ 的共轭类为

$$[a] := \{ b \in G \mid \exists c \in G, \ b = cac^{-1} \}.$$

试证明: $\langle\langle S \rangle\rangle$ 为由 G 的子集

$$\bigcup_{a \in S} [a]$$

生成 G 的子群.

证明. 由子群生成的定义, 我们有

$$\left\langle \bigcup_{a \in S} [a] \right\rangle := \bigcap \left\{ K < G \left| \bigcup_{a \in S} [a] \subset K \right. \right\}$$

任取 $a \in S$, 注意到 $\langle\langle S \rangle\rangle$ 为 G 的正规子群, 因此

$$[a] \subset \langle \langle S \rangle \rangle.$$

我们有

$$\bigcup_{a \in S} [a] \subset \langle \langle S \rangle \rangle,$$

进而有

$$\left\langle \bigcup_{a \in S} [a] \right\rangle \subset \langle \langle S \rangle \rangle.$$

我们现在考虑另一个方向的包含关系. 注意到

$$\left\langle \bigcup_{a \in S} [a] \right\rangle = \{b_1 a_1 b_1^{-1} \cdots b_k a_k b_k^{-1} \mid k \in \mathbb{N}^*, a_1, ..., a_k \in S \cup S^{-1}, b_1, ..., b_k \in G\}.$$

任取 $c \in G$, 任取

$$b_1 a_1 b_1^{-1} \cdots b_k a_k b_k^{-1} \in \left\langle \bigcup_{a \in S} [a] \right\rangle$$

都有

$$c(b_1a_1b_1^{-1}\cdots b_ka_kb_k^{-1})c^{-1} = (cb_1)a_1(cb_1)^{-1}\cdots (cb_k)a_k(cb_k)^{-1} \in \left\langle \bigcup_{a\in S} [a] \right\rangle.$$

因此

$$\left\langle \bigcup_{a \in S} [a] \right\rangle \lhd G.$$

由 $\langle\langle S\rangle\rangle$ 的定义可知

$$\langle\langle S \rangle\rangle \subset \left\langle \bigcup_{a \in S} [a] \right\rangle.$$

综上所述

$$\langle\langle S \rangle\rangle = \left\langle \bigcup_{a \in S} [a] \right\rangle.$$

三, 任取自然数 $n\in\mathbb{N}\setminus\{0,1\}$, 我们考虑 \mathbb{Z}_n 中关于乘法可逆的元素构成的乘法群

$$U_n := \{ \overline{m} \in \mathbb{Z}_n \mid \exists \overline{k} \in \mathbb{Z}_n, \ \overline{k} \cdot \overline{m} = \overline{1} \}.$$

1. 任取 $\overline{m} \in \mathbb{Z}_n$, 试证明 $\overline{m} \in U_n$ 当且仅当 $\gcd(m,n) = 1$.

证明. 任取 $m \in \mathbb{Z}$, 注意到 $\overline{m} \in U_n$ 当且仅当存在 $k \in \mathbb{Z}$, 满足

$$\overline{k} \cdot \overline{m} = \overline{1},$$

等价地

$$km = 1 + ln$$
,

其中 $l \in \mathbb{Z}$. 利用 Bezout 等式, 这等价于 gcd(m, n) = 1.

2. 设 n=p 为一个素数. 试证明任取 $\overline{m}\in U_p$ 都有

$$\overline{m}^{p-1} = \overline{1}.$$

证明. 注意到 U_p 中有 p-1 个元素. 利用 Lagrange 定理, 任取 $\overline{m} \in U_p$, 都有

$$o(\overline{m}) \mid p-1.$$

因此有

$$\overline{m}^{p-1} = \overline{1}.$$

四, 记 G 为一个群, H 为 G 的一个子群. 考虑 G 在 H 的左陪集空间 G/H 上通过左平移得到的作用:

$$\Phi: G \times G/H \to G/H$$
$$(a, bH) \mapsto (ab)H$$

记

$$\Phi_a: G/H \to G/H$$
$$bH \mapsto (ab)H$$

1. 试证明: 由 Φ 给出的群 G 在 G/H 上的作用是可递的.

证明. 任取 $a,b \in G$, 注意到存在 $c = ba^{-1}$, 满足

$$\Phi(c, aH) = (ba^{-1}a)H = bH.$$

因此该作用是可递的.

2. 设 G 为一个有限群. 记 p 为整除 |G| 最小的素数, 且 |G:H|=p. 考虑由 Φ 给出的群同态

$$\varphi: G \to S_{G/H}.$$
$$a \mapsto \Phi_a$$

记 $N = \ker \varphi$.

a) 试证明: $N \triangleleft H$.

证明. 由于 $N = \ker \varphi$, 因此 $N \triangleleft G$. 任取 K < G, 满足 N < K, 都有 $N \triangleleft K$.

任取 $a \in N$, 任取 $b \in H$, 我们有

abH = bH.

特别地, 令 b = e, 我们有

aH = H.

这等价于 $a \in H$. 因此

N < H,

进而有

 $N \triangleleft H$.

b) 试证明: [G:N] | p!.

证明. 利用群同态基本定理, 我们有

$$G/N \cong \varphi(G) < S_{G/H},$$

其中 $S_{G/H}$ 为 G/H 的对称群. 因此我们有

$$[G:N] = |G/N| = |\varphi(G)|.$$

由于 [G:H]=p, 集合 G/H 中有 p 个元素, 因此 $S_{G/H}$ 同构于 S_p , 有 p! 个元素. 利用 Lagrange 定理, 我们有

$$[G:N] = |\varphi(G)| | |S_{G/H}| = p!$$

c) 试证明: H = N.

证明. 由于

$$N \lhd H < G$$
,

我们有以下指数之间的关系

[G:N] = [G:H][H:N] = p[H:N].

由于 [G:N]|p!, 因此 p 是 [G:N] 最大的素因子, 且唯一. 另一方面

 $[G:N] \mid |G|,$

因此 p 是 [G:N] 最小的素因子.

因此 [G:N] = p. 由此可知 [H:N] = 1, 我们有

H = N.

五, 记 G 为一个有限群, X 为一个非空有限集合且 |X|>1. 设 G 在 X 上有一个可递群作用

$$\Phi: G \times X \to X$$
$$(a, x) \mapsto ax$$

记

$$D = \{(a, x) \in G \times X \mid ax = x\}.$$

任取 $a \in G$ 和 $x \in X$, 我们记

$$Stab(x) := \{ b \in G \mid bx = x \}$$
$$Fix(a) := \{ y \in X \mid ay = y \}$$

1. 试证明: 任取 $x \in X$, 都有以下等式

$$|X| = [G : \operatorname{Stab}(x)].$$

证明. 任取 $x \in X$, 注意到 G 在 X 上的作用是可递的, 任取 $y \in X$, 存在 $a \in G$, 满足

$$ax = y$$
.

记

$$G_{x,y} := \{ b \in G \mid bx = y \}.$$

任取 $b \in G_{x,y}$,都有

$$a^{-1}b \in \operatorname{Stab}(x)$$
.

因此

$$b = a(a^{-1}b) \in a\mathrm{Stab}(x).$$

考虑所有的 $b \in G_{x,y}$, 我们就有

$$G_{x,y} \subset a\mathrm{Stab}(x)$$
.

另一方面, 任取 $c \in Stab(x)$, 我们有

$$(ac)x = ax = y.$$

因此

$$G_{x,y} \supset a\mathrm{Stab}(x)$$

我们进而有

$$G_{x,y} = a \operatorname{Stab}(x).$$

由此我们可以构造以下映射

$$F: X \to G/\mathrm{Stab}(x)$$

$$y \mapsto G_{x,y} = a\mathrm{Stab}(x)$$

由于 $G_{x,y} = G_{x,y'}$ 当且仅当 y = y', 因此这是一个单射. 另一方面, 任取 $a \in G$, 都有

$$F(ax) = a\operatorname{Stab}(x).$$

因此 F 是满射. 由于 F 是双射, 我们有

$$|X| = |G/\operatorname{Stab}(x)| = [G : \operatorname{Stab}(x)].$$

2. 考虑 |D|, 试证明: 我们有以下等式

$$|G| = \sum_{a \in G} |\operatorname{Fix}(a)|.$$

证明. 注意到集合 D 有以下不交并分解

$$D = \coprod_{a \in G} \{a\} \times Fix(a).$$

因此

$$|D| = \sum_{a \in G} |\operatorname{Fix}(a)|.$$

另一方面,

$$D = \coprod_{x \in X} \operatorname{Stab}(x) \times \{x\}.$$

因此

$$|D| = |X||\operatorname{Stab}(x)|.$$

由之前的结论

$$|X| = \frac{|G|}{|\operatorname{Stab}(x)|},$$

我们有

$$\sum_{a \in G} |\mathrm{Fix}(a)| = |X| |\mathrm{Stab}(x)| = |X| \frac{|G|}{|X|} = |G|.$$

3. 试证明: 存在 $a \in G$, 满足

$$Fix(a) = \emptyset.$$

证明. 若所有的元素 $a \in G$ 都有

$$Fix(a) \neq \emptyset$$
,

则对任意 $a \in G$ 有

$$|\operatorname{Fix}(a)| \ge 1.$$

因此

$$|G| = \sum_{a \in G} |\operatorname{Fix}(a)| \ge \operatorname{Fix}(e) + |G| - 1 = |X| + |G| - 1 > |G|.$$

最后一个不等式是由于 |X| > 1. 因此矛盾. 所以一定存在 $a \in G$, 满足

$$Fix(a) = \emptyset$$
.

例子 0.0.2.

考虑群 S_n 在 $\{1,...,n\}$ 上的作用 (n>1), 注意到作用是可递的, 其中 n-轮换没有不动点. 考虑 S_n 的一个可递子群, 即在 $\{1,...,n\}$ 上的作用是可递的. 例如一个 n-轮换生成的循环群.

一个 S_n 的可递子群不一定有 n-轮换, 比如 $\{e, (12)(34), (13)(24), (14)(23)\}$. 这个群作用在 $\{1, 2, 3, 4\}$ 上是可递的. 注意到除了 e 之外的 3 个元素都没有不动点. 这里有关系

$$4 = |G| = Fix(e) + Fix((12)(34)) + Fix((13)(24)) + Fix((14)(23)) = 4 + 0 + 0 + 0.$$

六,记 $n \in \mathbb{N} \setminus \{0,1\}$. 考虑 n-元对称群 S_n 在 $\{1...,n\}$ 作用. 任取 $i \in \{1,...,n\}$, 我们记

$$Stab(i) = \{ \sigma \in S_n \mid \sigma(i) = i \}.$$

1. 试证明: 任取 $i, j \in \{1, ..., n\}$, 都有 Stab(i) 和 Stab(j) 在 S_n 中共轭.

证明. 任取 $i, j \in \{1, ..., n\}$, 任取 $\sigma \in \text{Stab}(i), \tau \in S_n$, 满足

$$\tau(i) = j$$
,

例如 $\tau = (ij)$, 我们都有

$$(\tau \sigma \tau^{-1})(j) = j.$$

因此

$$\tau \sigma \tau^{-1} \in \operatorname{Stab}(j)$$
.

因此我们有

$$\tau \operatorname{Stab}(i)\tau^{-1} \subset \operatorname{Stab}(j)$$
.

交换 i 和 j 的角色, 考虑 τ^{-1} , 以上结论告诉我们

$$\tau^{-1}\operatorname{Stab}(j)(\tau^{-1})^{-1}\subset\operatorname{Stab}(i),$$

等价地, 我们有

$$\operatorname{Stab}(j) \subset \tau \operatorname{Stab}(i) \tau^{-1}$$
.

因此我们有

$$\operatorname{Stab}(j) = \tau \operatorname{Stab}(i)\tau^{-1}.$$

2. 设 n > 4. 试证明: 任取 $\varphi \in \operatorname{Aut}(S_n)$, 若对任意 $i \in \{1, ..., n\}$, 都存在 $\sigma_i \in S_n$, 满足

$$\varphi(\operatorname{Stab}(i)) = \operatorname{Ad}_{\sigma_i}(\operatorname{Stab}(i)),$$

其中 Ad_{σ_i} 为 σ_i 给出的内自同构,则存在 $\sigma \in S_n$,满足

$$\varphi = \mathrm{Ad}_{\sigma} \in \mathrm{Inn}(S_n).$$

证明一. 若作为集合, 我们有

$$\varphi(\operatorname{Stab}(i)) = \operatorname{Ad}_{\sigma_i}(\operatorname{Stab}(i)),$$

则由于

$$Ad_{\sigma_i}(Stab(i)) = Stab(\sigma_i(i)).$$

注意到 φ 为同构, 任取不同的 $i, j \in \{1, ..., n\}$, 我们有

$$\operatorname{Stab}(i) \neq \operatorname{Stab}(j),$$

因此有

$$\varphi(\operatorname{Stab}(i)) \neq \varphi(\operatorname{Stab}(j)).$$

因此 φ 给出了

$$\{\operatorname{Stab}(1), ..., \operatorname{Stab}(n)\}$$

的置换. 考虑 $\sigma \in S_n$, 满足对任意 i, 有 $\sigma(i) = \sigma_i(i)$,我们有

$$\varphi(\operatorname{Stab}(i)) = \operatorname{Stab}(\sigma(i)).$$

考虑 $(12) \in S_n$. 由于

$$(12) \in \operatorname{Stab}(3) \cap \cdots \cap \operatorname{Stab}(n),$$

因此

$$\varphi((12)) \in \operatorname{Stab}(\sigma(3)) \cap \cdots \cap \operatorname{Stab}(\sigma(n)),$$

即 $\varphi((12))$ 固定 $\sigma(3),...,\sigma(n)$. 由于 $\varphi((12))$ 非平凡, 我们有

$$\varphi((12)) = (\sigma(1)\sigma(2)).$$

类似地, 我们可以证明任取 (ij), 我们有 $\varphi(ij) = (\sigma(i)\sigma(j))$. 由于对换生成 S_n , 我们有

$$\varphi = \mathrm{Ad}_{\sigma}$$
.

证明二:. 若题目为 " $\varphi|_{Stab(i)} = Ad_{\sigma_i}|_{Stab(i)}$ "

考虑 i = 1, j = 2, 以及 $Stab(1) \cap Stab(2)$ 中元素在 φ 下的像. 由条件, 我们有

$$(\sigma_1(3)\cdots\sigma_1(n))=\mathrm{Ad}_{\sigma_1}(3\cdots n)=\varphi(3\cdots n)=\mathrm{Ad}_{\sigma_2}(3\cdots n)=(\sigma_2(3)\cdots\sigma_2(n)),$$

且任取 $k \in \{3, ..., n\}$, 我们考虑去掉 k 剩下的元素给出的轮换 $(3 \cdots \hat{k} \cdots n)$, 有

$$Ad_{\sigma_1}(3\cdots \widehat{k}\cdots n) = \varphi(3\cdots \widehat{k}\cdots n) = Ad_{\sigma_2}(3\cdots \widehat{k}\cdots n),$$

因此任取 $k \in \{3, ..., n\}$, 我们有

$$\sigma_1(k) = \sigma_2(k)$$
.

不妨设

$$\sigma_1(k) = \sigma_2(k) = k.$$

若 $\sigma_1 \neq \sigma_2$, 我们不妨设 $\sigma_1(1) = 1$, 且 $\sigma_2(1) = 2$, 则有

$$\varphi(\operatorname{Stab}(1)) = \operatorname{Stab}(\sigma_1(1)) = \operatorname{Stab}(1) = \operatorname{Stab}(\sigma_2(2)) = \varphi(\operatorname{Stab}(2)),$$

矛盾. 因此 $\sigma_1 = \sigma_2$. 对所有 $\{1, ..., n\}$ 不同的数 i 和 j 做以上讨论, 我们可以得到

$$\sigma_1 = \cdots = \sigma_n,$$

记为 $\sigma \in S_n$.

因此任取 $(ij) \in S_n$, 我们有

$$\varphi(ij) = \mathrm{Ad}_{\sigma}(ij).$$

由于 $\{(ij) \mid 1 \le i \ne j \le n\}$ 生成 S_n , 因此

$$\varphi = \mathrm{Ad}_{\sigma}.$$

3. 设 n > 4. 已知 A_n 为单群. 试证明: 任取 S_n 的子群 H 和 K, 满足

$$[S_n:H] = [S_n:K] = n,$$

则存在 $\varphi \in \operatorname{Aut}(S_n)$, 满足 $\varphi(H) = K$.

证明. 我们考虑 S_n 在 S_n/H 上的左平移作用.

$$F: S_n \times S_n/H \to S_n/H$$

 $(\sigma, \tau H) \mapsto (\sigma \tau)H$

我们有群同态

$$f: S_n \to S_{S_n/H}$$

 $\sigma \mapsto F(\sigma, \cdot)$

由于 $\ker f \triangleleft S_n$, 我们有

$$\ker f = \{e\}, A_n$$
 或者 S_n .

由于 $\ker f \triangleleft H$, 因此

$$[S_n : \ker f] = [S_n : H][H : \ker f] \ge n > 2.$$

由此可知 $\ker f = \{e\}$, 同态 f 为单射. 注意到

$$|S_n/H| = [S_n : H] = n,$$

因此 f 为同构.

考虑作用 F 在 H 上的限制, 我们有 f 给出了子群同构

$$f(H) = \operatorname{Stab}(H).$$

这里 Stab(H) 为 $S_{S_n/H}$ 中 $H \in S_n/H$ 的稳定化子. 类似的, 我们考虑 S_n 在 S_n/K 上的作用, 则有群同构

$$g: S_n \to S_{S_n/K}$$
.

进一步 g 给出了子群同构

$$g(K) = \operatorname{Stab}(K),$$

其中 $\operatorname{Stab}(K)$ 为 $S_{S_n/K}$ 中 $K \in S_n/K$ 的稳定化子.

我们记

$$S_n/H = \{a_1H, a_2H, ..., a_nH\},\$$

以及

$$S_n/K = \{b_1K, b_2K, ..., b_nK\},\$$

满足 $a_1H = H$, $b_1K = K$.

我们考虑集合 S_n/H 和 S_n/K 之间的将 H 送到 K 双射 η : 任取 $i \in \{1,...,n\}$,

$$\eta(a_i H) = b_i K.$$

双射 η 诱导了 $S_{S_n/H}$ 到 $S_{S_n/K}$ 的一个群同构 $\tilde{\eta}$. 任取 $h \in S_{S_n/H}$, 我们有

$$\widetilde{\eta}(h) = \eta \circ h \circ \eta^{-1}$$
.

注意到

$$\widetilde{\eta}(\operatorname{Stab}(H)) = \operatorname{Stab}(K).$$

令 $\varphi = g^{-1} \circ \widetilde{\eta} \circ f$, 则有 $\varphi(H) = K$.

4. 试证明: 以下两个叙述等价,

- a) $\operatorname{Inn}(S_n) = \operatorname{Aut}(S_n)$.
- b) 任取 S_n 的子群 H 和 K,满足

$$[S_n:H] = [S_n:K] = n$$

都有 H 和 K 在 S_n 中共轭.

证明. 由前边的结论知, 任取这样的 H 和 K, 都有 $\varphi \in \operatorname{Aut}(S_n)$, 满足 $\varphi(H) = K$. 因此若 $\operatorname{Inn}(S_n) = \operatorname{Aut}(S_n)$, 存在 $\sigma \in S_n$, 满足

$$Ad_{\sigma}(H) = K.$$

因此二者共轭.

反过来假设任意两个指数为 n 的 S_n 的子群都相互共轭. 任取 $\varphi \in \operatorname{Aut}(S_n)$, 则任取 $i \in \{1,...,n\}$, 由于 $\operatorname{Stab}(i)$ 在 S_n 中的指数为 n, 因此 $\varphi(\operatorname{Stab}(i))$ 也是指数为 n 的 S_n 的子群. 有之前的结论知, $\varphi \in \operatorname{Inn}(S_n)$.

因此
$$\operatorname{Aut}(S_n) = \operatorname{Inn}(S_n)$$

注 0.0.3.

这个题目给出了 S_n 的自同构都是内自同构的一个充要条件. 我们在习题中证明了 $n \neq 2,6$ 的时候, S_n 的自同构都是内自同构,以上几个问题告诉我们,此时,所有 S_n 的指数 n 的子群都是某个 i 的稳定化子 Stab(i).

另一方面, 我们也可以考虑 n=6 的情形. 考虑以下几个命题:

命题 0.0.4

任取 S_5 的一个 5 阶子群 P, 我们有 P 的正规化子

$$N(P) := \{ \sigma \in S_5 \mid \sigma P \sigma^{-1} = P \}$$

满足 |N(P)| = 20.

考虑 S_5 在 $S_5/N(P)$ 上的左平移作用.

命题 0.0.5

该作用给出 S_5 到 S_6 的一个群单同态 φ .

命题 0.0.6

群 S_5 在 $S_5/N(P)$ 上的作用是可递的.

推论 0.0.7

 $\varphi(S_5)$ 是 S_6 的可递子群.

推论 0.0.8

 $\operatorname{Inn}(S_6) \neq \operatorname{Aut}(S_6)$.