CODECS LOSSLESS DE IMAGEM

Licenciatura em Engenharia Informática 2020/2021

Teoria da Informação

Duarte Meneses - 2019216949

Inês Marçal - 2019215917

Patricia Costa - 2019213995

PONTO DE PARTIDA

- Este trabalho de investigação tem como objetivo explorar os conceitos de teoria da informação, mais concretamente, os que dizem respeito à teoria da compressão.
- Para isso, tínhamos de encontrar uma solução para comprimir de forma eficiente e não destrutiva imagens monocromáticas.

COMPRESSÃO: LOSSLESS VS LOSSY

ETAPAS DA COMPRESSÃO E DESCOMPRESSÃO

lmagem original

Transformação

lmagem transformada

Mapeamento de dados para símbolos

Encoder

Símbolos

Compressão lossless de símbolos lmagem comprimida

lmagem comprimida

Descompressão lossless de símbolos

Símbolos

Mapeamento de símbolos para dados lmagem transformada

Transformação inversa

lmagem original

Decoder

CRITÉRIOS DE COMPRESSÃO

• Rácio de compressão = $\frac{Tamanho do ficheiro sem compressão (MB)}{Tamanho do ficheiro com compressão (MB)}$

• Velocidade de compressão (MB/s) = $\frac{Tamanho do ficheiro sem compressão (MB)}{Tempo de compressão (s)}$

• Velocidade de descompressão (MB/s) = $\frac{Tamanho do ficheiro sem compressão (MB)}{Tempo de descompressão (s)}$

TRANSFORMADAS

Transformadas são métodos que, por si só, não comprimem dados, mas que são capazes de os transformar em elementos que posteriormente são mais facilmente comprimidos. Exemplos disso são:

- Burrows-Wheeler (BWT)
- Move-to-Front
- Prediction by Partial Matching (PPM)
- Delta Encoding

PRINCIPAIS ALGORITMOS

- Codificação Run Length (RLE)
- Codificação de Huffman
- Códigos Aritméticos
- Codificação Lempel-Ziv (LZ77, LZ78, LZW)
- Deflate (combinação de LZ77 e Codificação de Huffman)
- Bzip2 (combinação de RLE, BWT e Codificação de Huffman)

ANÁLISE DO DATASET

ANÁLISE DO DATASET (CONTINUAÇÃO)

lmagens	Entropia	Potencial de Compressão Entrópica
egg.bmp	5.7242	28.45%
landscape.bmp	7.4205	7.24%
pattern.bmp	1.8292	77.13%
zebra.bmp	5.8312	27.11%

EFEITOS DO AUMENTO DA REDUNDÂNCIA

lmagens	Entropia original	Entropia pós Delta encoding
egg.bmp	5.7242	2.6994
landscape.bmp	7.4205	2.8242
pattern.bmp	1.8292	0.5957
zebra.bmp	5.8312	3.2219

RESULTADOS – RÁCIOS DE COMPRESSÃO

Algoritmos	egg.bmp	landscape.bmp	pattern.bmp	zebra.bmp
Huffman	1.397	1.064	4.155	1.359
Delta + Huffman	2.944	2.766	6.201	2.461
Aritméticos	1.397	1.069	4.394	1.371
Delta + Aritméticos	2.964	2.811	13.441	2.477
LZW	1.536	0.972	9.913	1.617
Delta + LZW	2.955	2.842	16.618	2.480
BWT (512) + LZW	1.641	0.937	6.652	1.574
BWT (1024) + LZW	1.657	0.937	6.585	1.600

COMPARAÇÃO COM VALORES DE REFERÊNCIA

Imagens	PNG	Nossas
egg. bmp	4.41 MB	5.70 MB
landscape.bmp	3.17 MB	3.66 MB
pattern.bmp	2.17 MB	2.75 MB
zebra.bmp	5.21 MB	6.41 MB