Exam Tuesday, 31st of October (Halloween)

Covers: Section 4.2 (4.2.5 through end of section), 4.3, 4.4

Limit Superior & Limit Inferior

Definition 4.4.9

Let $\{s_n\}$ be a bounded sequence.

A subsequential limit of $\{s_n\}$ is a real number s such that $s = \lim_{k \to \infty} s_{n_k}$ for some subsequence $\{s_{n_k}\}$. If $S = \{s \in \mathbb{R} : \lim_{k \to \infty} s_{n_k} = s \text{ for some } \{s_{n_k}\} \text{ of } \{s_n\}\}, \text{ then }$

- a. the **limit superior** (or **upper limit**) of $\{s_n\}$ is given by $\limsup s_n = \sup S$
- b. the **limit inferior** (or **lower limit**) of $\{s_n\}$ is given by $\lim \inf s_n = \inf S$
- c. Clearly, $\lim \inf s_n \leq \lim \sup s_n$. If it happens that $\lim \inf s_n < \lim \sup s_n$, then we say that $\{s_n\}$ oscillates.

Side Note

```
|\mathbf{s}_n| \leq \mathbf{M}, \, \forall \, \mathbf{n} \in \mathbb{N}
-M < s_n < M
If \lim_{k \to \infty} s_{n_k} = s \in S, then
-M < s_{n_k} < M, so
-M < s < M
#18, page 179
```

Theorem 1

A bounded sequence $\{s_n\}$ converges to s iff $\lim \inf s_n = \lim \sup s_n = s$

```
\longrightarrow Assume \{s_n\} converges to s.
By Theorem 4.4.4, S = \{s\} (contains only one element).
\lim \inf s_n = \inf S = s
\limsup s_n = \sup S = s
\lim \inf s_n = \lim \sup s_n = s
(see HW 8, Exercise 9, page 194)
```

Example 4.4.10

Let: $s_n = (-1)^n + \frac{1}{n}$ Show that $\lim \inf s_n = -1$, $\lim \sup s_n = 1$ Notice that if $n \text{ is even } \Rightarrow s_n = 1 + \frac{1}{n}$ $n \text{ is odd } \Rightarrow s_n = -1 + \frac{1}{n}$ Thus, $\lim_{k \to \infty} s_{2k+1} = -1$ $\lim_{k \to \infty} s_{2k+1} = -1$ Thus, $S = \{-1, 1\}$ Hence, $\lim \sup s_n = 1$

Theorem 4.4.11

Let $\{s_n\}$ be a bounded sequence and let

$$s^* = \lim \sup s_n$$

 $\lim \inf s_n = -1$

$$s_* = \lim \inf s_n$$

a.
$$\forall \epsilon > 0, \exists N(\epsilon) \in \mathbb{N} \text{ st}$$

$$s_n < s^* + \epsilon \text{ for } n \ge N$$

b.
$$\forall \epsilon > 0$$
 and $i \in \mathbb{N}$, $\exists j > i$ st

$$s_i > s^* - \epsilon$$

i.e. there are an infinite number of terms of $\{s_n\}$ that are greater than $s^* - \epsilon$

i.e. in the interval ($s^* - \epsilon$, $s^* + \epsilon$), there are an infinite number of terms of s_n .

Outside of that interval, there are a finite number of terms of s_n .

c.
$$\forall \epsilon > 0, \exists N(\epsilon) \in \mathbb{N} \text{ st}$$

$$s_n > s_* - \epsilon \ \forall \ n \ge N$$

d.
$$\forall \ \epsilon > 0$$
 and $i \in \mathbb{N}$, $\exists \ j > i$ st

$$s_j < s_* + \epsilon$$

Proof.

We shall prove a and b. c and d are similar.

(a)

Suppose it's false. i.e.:

Suppose: $\exists \ \epsilon > 0 \ \mathrm{st} \ \forall \ \mathrm{N} \in \mathbb{N} \ , \ \exists \ \mathrm{n} \geq \mathrm{N} \ \mathrm{st}$

$$s_n \ge s^* + \epsilon$$

-Side Note-

In other words, suppose: $\{s_{n_k} \ge s^* + \epsilon \}$

By Theorem 4.4.4, every bounded sequence has a convergent subsequence.

If we let $\{s_{n_k}\}$ be a subsequence of itself and label it differently:

 $\{s_{n_l}\}_{i=1}^{\infty}$,

then

 $s_{n_l} \longrightarrow s \text{ as } l \longrightarrow \infty$

So, for N = 1, $\exists n_1 \ge N$ st

$$s_{n_1} \ge s^* + \epsilon$$

Then,

for $N = n_1 + 1$, $\exists n_2 \ge n_1 + 1 > n_1$ st

$$s_{n_2} \ge s^* + \epsilon$$

So, inductively, we find a subsequence $\{s_{n_k}\}$ st

$$s_{n_k} \ge s^* + \epsilon \ \forall \ \mathbf{k} \in \mathbb{N}$$

Since $\{s_{n_k}\}$ is itself a bounded sequence, there is a subsequence of $\{s_{n_k}\}$ that we refer to by:

$$\{s_{n_l}\}_{l=1}^{\infty}$$

 st

 $\lim s_{n_l} = s \in k \text{ (Theorem 4.4.7)}$

 $\lim_{l \to \infty} \int_{0}^{l} s^{s} ds = \int_{0}^{l} s^{s} + \epsilon$ where $s \ge s^{*} + \epsilon$

Since s \in S, we see that $\limsup s_n = s^* \ge s^* + \epsilon$, which is a contradiction.

Hence, (a) is true.

(b)

Suppose it's false. i.e.:

Suppose: $\exists \epsilon > 0 \text{ and } \exists i \in \mathbb{N} \text{ st } \forall j > i,$

$$s_j \le s^* - \epsilon$$

Thus, if $\{s_{n_k}\}$ is a subsequence st $\lim_{k\to\infty} s_{n_k} = s$, then

$$s \le s^* - \epsilon$$

which is like saying:

$$s^* \le s^* - \epsilon$$

(a contradiction)

For further clarification, notice that $s^* - \epsilon$ is an upper bound for all $s \in S$, which says: $s^* \le s^* - \epsilon$ (a contradiction)

Summary:

In (a), we said $\exists N_1 \in \mathbb{N} \text{ st } s_n < s + \epsilon \ \forall n \geq N_1$

In (b), we said $\exists N_2 \in \mathbb{N} \text{ st s} - \epsilon < s_n \ \forall \ n \geq N_2$

At the bottom of page 190:

Furthermore,

if $s^* \in \mathbb{R}$ satisfying (a) and (b),

then $s^* = \lim \sup s_n$

Also,

if $s_* \in \mathbb{R}$ satisfying (c) and (d),

then $s_* = \lim \inf s_n$

We shall complete the proof by proving the result for s*

Let: $s^* \in \mathbb{R}$ satisfy (a) and (b)

We claim that $s^* = \lim \sup s_n$, and will prove it by contradiction.

Suppose: $s^* \neq \lim \sup s_n$

Case:

i) $s^* > \lim \sup s_n$

So, $s^* - \epsilon$ is between $\limsup s_n$ and s^*

Let:

$$\epsilon = \frac{s^* - \limsup \, \mathbf{s}_n}{2}$$

By (b), for this $\epsilon > 0$, and for $i \in \mathbb{N}$, $\exists j \in \mathbb{N}$ st

j > i and

$$s_j > s^* - \epsilon$$

Since there are an infinite number of possible values of j, there is a subsequence $\{s_{n_k}\}$ st

$$s_{n_k} > s^* - \epsilon$$

 $\forall \ k \in \mathbb{N}$

This contradicts the definition of $\limsup s_n$.

Thus, there is a further subsequence converging to a limit s st

$$s \ge s^* - \epsilon \ge s^*$$

Which is also a contradiction.

ii)