4. Поверхностные интегралы

4.1. Поверхностные интегралы первого рода, их геометрический и физический смысл

Пусть функция F(x, y, z) есть функция, непрерывная на некоторой гладкой поверхности S.

Поверхность называется **гладкой**, если в каждой её точке существует касательная плоскость, непрерывно изменяющаяся вдоль поверхности.

Разобьём эту поверхность на ячейки $\Delta\sigma_1,\ \Delta\sigma_2,\ \dots,\ \Delta\sigma_n$. В каждой ячейке $\Delta\sigma_i,\ (i=1,2,\dots,n)$ выберем произвольную точку $M_i(x_i,y_i,z_i)$ и умножим значение функции $F_i=F(x_i,y_i,z_i)$ в этой точке на площадь ячейки $\Delta\sigma_i$. Сумма таких произведений по всем ячейкам $\sum\limits_{i=1}^n F_i\Delta\sigma_i$ называется интегральной суммой. Обозначим через d_i диаметр ячейки $\Delta\sigma_i$ – её наибольший размер, а через $\max d_i$ наибольший из диаметров всех ячеек.

Поверхностным интегралом первого рода от функции F(x,y,z) по площади поверхности S называется предел интегральных сумм при неограниченном возрастании числа ячеек, когда все ячейки стягиваются в точку:

$$\iint\limits_{S} F(x, y, z) d\sigma = \lim_{\substack{n \to \infty \\ \max d_i \to 0}} \sum_{i=1}^{n} F(x_i, y_i, z_i) \Delta \sigma_i , \qquad (1)$$

Поверхностный интеграл по площади поверхности (I-го рода) обладает свойствами, аналогичными свойствам криволинейного интеграла по длине дуги.

Если функция $\delta(x,y,z)$ означает поверхностную плотность материальной поверхности (оболочки) S, то интеграл (1) определяет массу этой поверхности:

$$M=\iint\limits_{\mathbb{S}}\delta(x,y,z)d\sigma \ .$$

Если $\delta(x,y,z)$, то поверхностный интеграл (1) представляет собой площадь поверхности S:

$$S = \iint\limits_S d\sigma \ .$$

В этом состоит геометрический смысл интеграла по площади поверхности.

■ Вопросы преподавателю

Перейти на...

8. Теория вероятностей и математическая статистика >