

卷積式神經網路概念

MLP模型訓練之缺點

> 輸入的圖像檔需轉換成一維陣列, 輸入層和第一個隱藏層之間的權重數量非常大。

1024

1024

1024 X 1024 X 1 100

Photo from https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia

 $1024 \text{ X } 1024 \text{ X } 100 \cong 10^8 \text{ weights}$

降低圖像訓練的複雜度

機器學習實務

- >僅萃取圖像中重要特徵 (feature) 進行訓練
- >特徵是由相鄰像素 (pixel)所構成
- > 使用卷積運算萃取特徵

卷積運算

- > 將每個像素及其鄰近像素由一個濾波器 filter (kernel) 加權後加總起來。
- > 對每個像素執行此卷積過程

卷積運算

>兩層卷積的feature maps

卷積神經網路

> 卷積神經網路 (Convolutional Neural Network) 由輸入和輸出層以及多個隱藏層組成。

CNN的隱藏層通常由卷積層、池化層、激活層、 平坦層和完全連接層組成。

卷積層的超參數

Zero-padding (0-填充)

Stride (跨步)

Depth (深度)

Zero-padding

>在圖像的邊界添加額外的零

Image

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	1	1	0	0
0	<u> </u>	1	1	1	1	0
0	0	1	0	1	1	0
0	0	0	1	0	1	0
0	0	0	0	0	0	0

Filter

1	0	0
0	1	0
0	0	1

New image

0	1	1	0	0
1	1	2	2	0
2	1	2	3	2
0	3	_1	3	2
0	0	2	0	2

- > 窗格滑動的步距
- >縮小卷積層的輸出

Image

	0	0	0	0	0
>	0	0	1	1	0
	1	1	1	77	1
	0	1	0	1	1
	0	0	1	0	1

Filter

1	0	0
0	1	0
0	0	1

New image

1	2
3	3

- > 滑動窗口的步距
- >縮小卷積層的輸出

Image

0	0	0	0	0
0	0	1	1	0
1	1	1	7	1
0	1	0	1	1
0	0	1	0	1

Filter

1	0	0
0	1	0
0	0	1

New image

1	2
3	3

- > 滑動窗口的步距
- >縮小卷積層的輸出

Image

0	0	0	0	0
0	0	1	1	0
1	1	1 -	77	1
0	1	0	1	1
0	0	1	0	1

Filter

1	0	0
0	1	0
0	0	1

New image

1	2
3	3

- > 滑動窗口的步距
- >縮小卷積層的輸出

Image

0	0	0	0	0
0	0	1	1	0
1	1	1	7	1
0	1	0	1	1
0	0	1	0	1

Filter

1	0	0
0	1	0
0	0	1

New image

1	2
3	3

- > 滑動窗口的步距
- >縮小卷積層的輸出

Image

0	0	0	0	0
0	0	1	1	0
1	1	1 -	1	1
0	1	0	1	1
0	0	1	0	1

Filter

1	0	0
0	1	0
0	0	1

New image

1	2
3	3

• Depth

> Depth就是filter的個數

RGB images

)			•
1	1	1	1
0	1	0	1
0	0	1	0

	1	0	0
*	0	1	0
	0	0	1

Filters×n

ř	~	0	0	_
4	0	1	0	=
	0	0	1	

	0	1	0	1
/	1	1	0	1
/	0	0	0	1
	0	1	1	1

	1	0	0
1111	0	1	0
	0	0	1

		11116	ayes							
	1	1	2	1						
	2	1	2	2	_	ı				
	0	3	1	2						
	0	0	2	0						
	0	1	2	0			2	3	5	2
	2	0	2	2	→ →	· →	5	2	6	5
	0	3	0	2	4		1	8	3	5
	1	0	2	0			1	1	5	1
TV.	1	1	1	1				×	n	
	1	1	2	1			Fea			aps

Conv.

images

Pooling

機器學習實務

- > 池化層的優勢
 - 減少權重
 - 防止過度學習
- >最大池化
 - 保留每個區域中之最大值

1	2	2	0
1	2	3	2
3	1	3	2
0	2	0	4

超參數的設置

- >影像的大小須要能夠被 2 整除數次
 - 常見的影像 size 32, 64, 96, 224, 384, 512
- > 卷積層filter和stride的選擇
 - 比起使用一個 size 較大的 filter (7x7),可先嘗試連續使用數個 size 小的 filter (3x3)
 - Stride 的值與 filter size 相關,通常 $stride ≤ (W_f 1)/2$
- > 很深的CNN model (16+層) 多使用 3x3 filter 與 stride 1。

超參數的設置

- > Zero-padding 與 pooling layer 是選擇性的結構
- > Zero-padding 的使用取決於是否要保留邊界的資訊
- > Pooling layer目的在避免overfitting與降低weights 的數量,但也減少影像所包含資訊,一般不會大於3x3
- > 嘗試修改不錯效能的模型,會比建立一個全新的模型容易收斂,且模型的權重數量愈多,愈難調整出好的參數。