

SÍLABO INTELIGENCIA ARTIFICIAL Y ROBÓTICA

ÁREA CURRICULAR: CIENCIAS DE LA COMPUTACIÓN

I. DATOS GENERALES

1.1 Departamento Académico : Ingeniería y Arquitectura

1.2 Semestre Académico : 2019-I

1.3 Código de la asignatura : 09066607040

1.4 Ciclo: VII1.5 Créditos: 41.6 Horas semanales totales: 8

1.6.1 Horas lectivas (Teoría, Práctica, Laboratorio) : 4 (T=4, P=0, L=0)

1.6.2 Horas no lectivas : 4

1.7 Condición del Curso : Obligatorio

1.8 Requisito(s)1.9 Docente1.9 Docente1.9 Docente1.9 Mag. Ing. Javier Cieza Dávila

II. SUMILLA

El curso es de naturaleza de formación especializada; dirigido a que el estudiante adquiera los conceptos relacionados con la Teoría de los Autómatas, la Inteligencia Artificial y la Robótica, sus técnicas y los procedimientos usados para resolver problemas de Ingeniería.

Contenidos: Teoría de los Autómatas, Lenguajes Formales- Inteligencia artificial – Robótica.

III. COMPETENCIAS Y SUS COMPONENTES COMPRENDIDOS EN LA ASIGNATURA

3.1 Competencia

- Aplica conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas
- Analiza un problema e identificar y definir los requerimientos apropiados para su solución
- Trabaja con efectividad en equipos para lograr una meta común.
- Usa técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.

3.2 Componentes

Capacidades

- Diseña el modelo de un Autómata Finito Determinista de un proceso
- Resuelve problemas relacionados a modelos abstractos de Autómatas Finitos de diferente índole
- Define los principales conceptos de la Inteligencia Artificial (IA)
- Interpreta los algoritmos relacionados a las redes neuronales y otros métodos de IA
- Diferencia las partes principales de un Robot.

Contenidos actitudinales

- Valora su carrera al elegir los temas de redacción en temas tecnológicos y científicos.
- Aprende a trabajar en equipo.
- Aprende de sus propios errores a partir de su propia experiencia
- Entiende que conocimientos debe lograr para aprender los contenidos de manera más eficiente
- Es responsable y cumple con las actividades asignadas por el docente

IV. PROGRAMACIÓN DE CONTENIDOS

UNIDAD I: TEORÍA DE LOS AUTÓMATAS – LENGUAJES FORMALES

CAPACIDAD:

- Reconoce los diferentes lenguajes formales y las gramáticas que los definen
 Entiende los conceptos básicos de la Teoría de los Autómatas

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HOI L	RAS T.I.
1	Primera sesión Lenguajes de programación: Visión general. Introducción histórica. Introducción a los lenguajes simbólicos de los Autómatas Finitos. Segunda sesión	Entiende los lenguajes simbólicos de los Autómatas finitos. Realiza ejercicios sobre las simbologías	Lectivas (L): - Desarrollo del tema – 3h - Ejercicios en aula - 1h	4	4
	Lenguajes y Gramáticas – Notación de Lenguajes, Noción de gramática –clasificación				
2	Primera sesión Gramática de Contexto Libre Segunda	Entiende la gramática de contexto libre Entiende las formas normales de Chomsky	Lectivas (L): - Desarrollo del tema – 3h - Ejercicios en aula - 1h	4	4
	Formas Normales de Chomsky. Introducción a la Teoría de los Autómatas.	Entiende los conceptos básicos de la Teoría de los Autómatas	De trabajo Independiente (T.I):		
3	Primera sesión Autómatas Finitos, representaciones estructurales, Autómatas y Complejidad. Segunda sesión	Desarrolla los conceptos de los AFD y sus tipos. Analiza los Autómatas finitos deterministas	Lectivas (L): - Desarrollo del tema – 3h - Ejercicios en aula - 1 h	4	4
	Demostraciones formales Autómatas Finitos. Autómata Finito Determinista (AFD).		<u>De trabajo Independiente (</u> T.I): 4 h		
	Primera sesión Autómatas Finitos No Deterministas (AFND), Finitos con Transiciones. Búsqueda de texto.	Desarrolla los conceptos de los AFD y AFND, uso de software para	Lectivas (L): - Desarrollo del tema – 3h - Ejercicios en aula - 1h		
4	Segunda sesión Lenguajes y Expresiones Regulares. Autómatas Finitos y Expresiones Regulares. Aplicaciones de Expresiones Regulares, Algebra de las Expresiones Regulares	simulación de los Autómatas Desarrolla ejercicios con AFD y AFND	De trabajo Independiente (T.I): 4 h	4	4
5	Primera sesión Propiedades de los Lenguajes Regulares. Como demostrar que un Lenguaje no es Regular.	Entiende los lenguajes regulares y su relación con los AFD. Ejemplos en pizarra y uso de software de simulación.	Lectivas (L): - Desarrollo del tema – 3h - Ejercicios en aula - 1h	4	4

	Segunda sesión Propiedades de clausura y decisión de los Lenguajes Regulares. Equivalencia y minimización de Autómatas	Exposición con ejemplos. Ejercicios para desarrollar en clase y lecturas para la casa	De trabajo Independiente (T.I):		
6	Primera sesión Autómatas a Pila, Lenguajes de un Autómata a Pila. Autómata a Pila Determinista. Segunda sesión Máquinas de Turing y computadoras Máquina de Turing. Técnicas de simulación de la máquina de Turing	Revisa los conceptos de autómatas finitos, clasificación y su uso en las tecnologías modernas. Ejercicios en pizarra y uso de software de simulación y ejemplo de un programa que simula un autómata para detectar cadenas de un lenguaje	- Ejercicios en aula - 1h	4	4

UNIDAD II: INTELIGENCIA ARTIFICIAL

CAPACIDAD:

Entiende los conceptos básicos de Inteligencia Artificial.
Resuelve diversos problemas de computación utilizando Redes Neuronales y Lógica Difusa

SEMANA	CONTENIDOS CONCEDIDALES	CONTENIDOS DEOCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HOI	RAS
SEWANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES		L	T.I.
7	Primera sesión Definiciones y fundamentos de IA. Historia de la Inteligencia Artificial. Visión de diferentes aplicaciones de la Inteligencia Artificial. Segunda sesión	Entiende conceptos de Inteligencia Artificial, su clasificación, discusión sobre su aplicación en la actualidad. Ejemplos actuales	Lectivas (L): - Desarrollo del tema – 3h - Ejercicios en aula - 1h	4	4
	Agentes inteligentes y su entorno. El concepto de racionalidad.	y asociación con agentes inteligentes racionales	De trabajo Independiente (T.I): 4 h		
8	Primera sesión Repaso de los temas vistos en clase Segunda sesión Examen parcial	Refuerza lo aprendió en clase y aplica sus conocimientos	Lectivas (L): - Desarrollo de ejercicios – 2h - Examen parcial - 2h De trabajo Independiente (T.I): 4 h	4	4
9	Primera sesión: Introducción a las Redes Neuronales Artificiales (RNA). Redes Neuronales Artificiales y Redes Neuronales Biológicas. Definiciones. Nomenclatura. Aplicaciones de las RNA Segunda sesión: Arquitecturas típicas (capa simple, múltiple capa, etc.). Funciones de Activación. Codificación. Aplicaciones a puertas lógico-digitales (AND, OR, XOR). Implementación en computador de Redes Neuronales para mapear puertas lógicas.	Expone de conceptos de redes neuronales biológicas y artificiales. Aplicaciones y modelos. Ejemplos de Desarrollo del modelo de una neurona para la puerta lógica AND. Cálculo en pizarra y en programación. Lecturas complementarias para la casa	Lectivas (L): - Desarrollo del tema – 3h - Ejercicios en aula - 1h De trabajo Independiente (T.I): 4 h	4	4

10	Primera sesión: Reconocimiento y clasificación de patrones. Algoritmos de entrenamiento para asociación de patrones. Regla de Hebb. Segunda sesión: Regla de Aprendizaje de Perceptrón. Tasa de Aprendizaje. Regla de adaptación de pesos de la Red Neuronal	Definición de patrones y técnicas para su clasificación. Revisión de perceptrón y su utilidad para la clasificación de patrones. Ejemplo de programación sobre el modelo del perceptrón, Ejemplos y ejercicios para casa	Lectivas (L): - Desarrollo del tema – 3h - Ejercicios en aula - 1h De trabajo Independiente (T.I): 4 h	- 4	4
11	Primera sesión: Reconocimiento y clasificación de Patrones a múltiples categorías. Codificación. Segunda sesión: Redes Neuronales basadas en Competencia. Mapas Auto Organizantes de Kohonen.	Ejercicios sobre clasificación de patrones, regresión lineal para predicción. Revisión de RNA	Lectivas (L): - Desarrollo del tema – 3h - Ejercicios en aula - 1h De trabajo Independiente (T.I): 4 h	4	4
12	Primera sesión: Clustering. K vecinos cercanos Segunda sesión: Representación del conocimiento en la Inteligencia Artificial. Representaciones basadas en lógica. Introducción a la Lógica Difusa.	Definiciones de clusterización. Exposición de grupo de estudiantes sobre K vecinos cercanos Evaluación de las exposiciones y discusiones de los temas expuestos	Lectivas (L): - Desarrollo del tema – 3h - Ejercicios en aula - 1h De trabajo Independiente (T.I): 4 h	4	4
13	Primera sesión: Sistemas Fuzzy. Conjuntos Fuzzy. Operadores de Zadeh. Segunda sesión: Sistemas Difusos. Fuzzyficación. Inferencia.	Exposición de grupo de estudiantes sobre Fuzzy Logic Evaluación de las exposiciones y discusiones de los temas expuestos	Lectivas (L): - Desarrollo del tema – 3h - Ejercicios en aula - 1h De trabajo Independiente (T.I): 4 h	4	4
14	Variables Lingüísticas, Relaciones Fuzzy. Funciones de Membrecía Difuso Segunda sesión: Sistema de Inferencia Difuso FIS (Fuzzy Inference System). Sistemas Fuzzy. Fuzzyficación. Inferencia. Reglas. Defuzzyficación. Inferencia min-max.	Exposición de grupo de estudiantes sobre aprendizaje automáticos y otros algoritmos de clasificación.	Lectivas (L): - Desarrollo del tema – 3h - Ejercicios en aula - 1h De trabajo Independiente (T.I): 4 h	4	4

UNIDAD III. ROBÓTICA

CAPACIDAD:

- Entiende los conceptos básicos de la robótica
 Entiende las partes que componen un robot: sensores y actuadores

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE -	НО	RAS
				L	T.I.
15	Primera sesión: Conceptos y definiciones de robótica. Sensores y Efectores, características. Aplicaciones de la robótica Segunda sesión: Percepción. Detección de imágenes	Exposición de los conceptos principales que definen un robot según organismos especializados. Explicación de las partes que componen un robot y asignación de conceptos para investigar en casa. Exposición de videos de robótica		4	4
16	Examen final.				
17	Entrega de promedios finales y acta del curso.				

V. ESTRATEGIAS METODOLÓGICAS

Método Expositivo: Interactivo. Disertación docente, exposición del estudiante.

Método de Discusión Guiada: Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones

Método de Demostración: Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

VI. RECURSOS DIDÁCTICOS

Equipos: Computadora, ecran y proyector multimedia.

Materiales: Material docente, prácticas dirigidas de laboratorio y textos bases (ver fuentes de consultas).

Software: El alumno tendrá completa libertad para desarrollar la programación de sus aplicaciones en cualquier

lenguaje de su elección.

VII. EVALUACIÓN DEL APRENDIZAJE

El promedio final (PF) de la asignatura se obtiene mediante la fórmula siguiente:

PF = 0.30*PE + 0.30*EP + 0.40*EF

PE= (P1 + P2 + P3 + P4) / 4

Donde:

Donde:

PF = Promedio final

P1...P4 = Práctica Calificada

EP = Examen parcial **EF** = Examen final

PE = Promedio de evaluaciones

VIII. FUENTES DE CONSULTA.

Bibliográficas

- Russell, S. & Norving, P. (2015) Inteligencia Artificial un enfoque Moderno. Tercera Edición. Prentice Hall.
- John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman (2008). Introducción a la Teoría de los Autómatas, lenguajes y computación. Tercera Edición. Pearson Educación
- David Coley (2001). An Introduction to Genetic Algorithms for Scientists and Engineers. World Scientific Publishing Company.
- García Serrano, A. (2012) Inteligencia Artificial. Fundamentos, práctica y aplicaciones. RC libros.
- J.Palma y R. Marín (2008) Inteligencia Artificial, Técnicas, métodos y Aplicaciones. McGraw Hill.
- Freeman, J. Skapura, D. (2005). Redes Neuronales. Algoritmos, Aplicaciones y Técnicas de Programación. Addison-Wesley Publishing

IX. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

a.	Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas.	R
b.	Habilidad para analizar un problema e identificar y definir los requerimientos apropiados para su solución.	R
C.	Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas.	
d.	Habilidad para trabajar con efectividad en equipos para lograr una meta común.	R
e.	Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.	
f.	Habilidad para comunicarse con efectividad con un rango de audiencias.	
g.	Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.	
h.	Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional.	
i.	Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.	K
j	Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.	