Wspomaganie decyzji w warunkach ryzyka

Bartłomiej Krawczyk, 310774

Zadanie

Rozważamy następujące zagadnienie planowania produkcji: Przedsiębiorstwo wytwarza 4 produkty P_1, P_2, P_3, P_4 na następujących maszynach: - 4 szlifierkach, - 2 wiertarkach pionowych, - 3 wiertarkach poziomych, - 1 frezarce - 1 tokarce.

Wymagane czasy produkcji 1 sztuki produktu (w godzinach) w danym procesie obróbki zostały przedstawione w poniższej tabeli:

proces	P1	P2	Р3	P4
Szlifowanie	0.4	0.6	-	_
Wiercenie pionowe	0.2	0.1	-	0.6
Wiercenie poziome	0.1	-	0.7	-
Frezowanie	0.06	0.04	-	0.05
Toczenie	-	0.05	0.02	-

Dochody ze sprzedaży produktów (w zł/sztukę) modelują składowe wektora losowego $R=(R_1,R_2,R_3,R_4)^T$. Wektor losowy R opisuje 4-wymiarowy rozkład t-Studenta z 4 stopniami swobody, którego wartości składowych zostały zawężone do przedziału [5;12]. Parametry μ oraz Σ niezawężonego rozkładu t-Studenta są następujące:

$$\mu = \begin{bmatrix} 9\\8\\7\\6 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 16 & -2 & -1 & -3\\-2 & 9 & -4 & -1\\-1 & -4 & 4 & 1\\-3 & -1 & 1 & 1 \end{bmatrix}$$

Istnieją ograniczenia rynkowe na liczbę sprzedawanych produktów w danym miesiącu:

miesiąc	P1	P2	Р3	P4
Styczeń Luty	200 300	0 100	100 200	200 200
Marzec	0	300	100	200

Jeżeli w danym miesiącu jest sprzedawany produkt P_1 lub P_2 , to musi być również sprzedawany produkt P_4 w liczbie sztuk nie mniejszej niż suma sprzedawanych produktów P_1 i P_2 .

Istnieje możliwość składowania do 200 sztuk każdego produktu w danym czasie w cenie 1 zł/sztukę za miesiąc. Aktualnie firma nie posiada żadnych zapasów, ale jest pożądane mieć po 50 sztuk każdego produktu pod koniec marca.

Przedsiębiorstwo pracuje 6 dni w tygodniu w systemie dwóch zmian. Każda zmiana trwa 8 godzin. Można założyć, że każdy miesiąc składa się z 24 dni roboczych.

- 1. Zaproponować jednokryterialny model wyboru w warunkach ryzyka z wartością średnią jako miarą zysku. Wyznaczyć rozwiązanie optymalne.
- 2. Jako rozszerzenie powyższego zaproponować dwukryterialny model zysku i ryzyka z wartością średnią jako miarą zysku i odchyleniem przeciętnym jako miarą ryzyka. Dla decyzji $x \in Q$ odchylenie przeciętne jest definiowane jako $\delta(x) = \sum_{t=1}^{T} |\mu(x) r_t(x)| p_t$, gdzie $\mu(x)$ oznacza wartość średnią, $r_t(x)$ realizację dla scenariusza t, p_t prawdopodobieństwo scenariusza t.
 - Wyznaczyć obraz zbioru rozwiązań efektywnych w przestrzeni ryzyko-zysk.
 - Wskazać rozwiązania efektywne minimalnego ryzyka i maksymalnego zysku. Jakie odpowiadają im wartości w przestrzeni ryzyko-zysk?
 - Wybrać trzy dowolne rozwiązania efektywne. Sprawdzić czy zachodzi pomiędzy nimi relacja dominacji stochastycznej pierwszego rzędu. Wyniki skomentować, odnieść do ogólnego przypadku.

Jednokryterialny model wyboru w warunkach ryzyka z wartością średnią jako miarą zysku

Analityczne sformułowanie modelu

Wartość oczekiwana zawężonego rozkładu t-Studenta wektora losowego R

Zmienna losowa R ma niestandardowy rozkład t-Studenta z 4 stopniami swobody zaweżony do przedziału [5; 12].

$$\mu = \begin{bmatrix} 9 \\ 8 \\ 7 \\ 6 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 16 & -2 & -1 & -3 \\ -2 & 9 & -4 & -1 \\ -1 & -4 & 4 & 1 \\ -3 & -1 & 1 & 1 \end{bmatrix}$$

$$\alpha = 5\beta = 12$$

$$R_1 \sim Tt_{(5;12)}(9,16;4)R_2 \sim Tt_{(5;12)}(8,9;4)R_3 \sim Tt_{(5;12)}(7,4;4)R_4 \sim Tt_{(5;12)}(6,1;4)$$

$$E(R) = \mu + \sigma \frac{\Gamma((v-1)/2)((v+a^2)^{-(v-1)/2} - (v+b^2)^{-(v-1)/2})v^{v/2}}{2(F_v(b) - F_v(a))\Gamma(v/2)\Gamma(1/2)} dlav > 1$$

$$a = (\alpha - \mu)/\sigma, b = (\beta - \mu)/\sigma$$

 $E(R_0) = 8.6274568376001E(R_1) = 8.304864144322744E(R_2) = 7.605077266035032E(R_3) = 6.421595377441505$

Specyfikacja problemu decyzyjnego

Dostępne zbiory

- $PRODUCTS = \{P_1, P_2, P_3, P_4\}$ zbiór produktów,
- $PROCESSES = \{szlifowanie, wiercenie_pionowe, wiercenie_poziome, frezowanie, toczenie\}$ zbiór procesów,
- $MONTHS = \{stycze\acute{n}, luty, marzec\}$ zbiór miesięcy,
- $MONTH_PREDECESSORS = \{(grudzie\acute{\mathbf{n}}, stycze\acute{\mathbf{n}}), (stycze\acute{\mathbf{n}}, luty), (luty, marzec)\}$ zbiór miesięcy oraz ich poprzedników.

Parametry

- $HOURS_IN_A_SHIFT = 8$ zmiany trwają po 8h,
- $NUMBER_OF_SHIFTS = 2$ przedsiębiorstwo pracuje w systemie dwóch zmian,
- $WORKING_DAYS_IN_A_MONTH = 24$ każdy miesiąc składa się z 24 dni roboczych,
- $WORKING_HOURS_IN_A_MONTH = HOURS_IN_A_SHIFT * NUMBER_OF_SHIFTS * WORKING_DAYS_IN_A_MONTH = 384$ całkowita liczba przepracowanych godzin w miesiącu,
- $PRODUCT_STORAGE_LIMIT = 200$ przedsiębiorstwo ma możliwość składowania do 200 sztuk każdego produktu,

- $MONTHLY_PRODUCT_STORAGE_COST = 1$ cena składowania produktu to 1 zł/sztukę,
- $PRODUCT_MINIMAL_LEFT_OVER = 50$ pożądany zapas każdego produktu pod koniec marca to 50 produktów,
- $PROCESS_TOOLS[p]$ dla $p \in PROCESSES$ liczba maszyn pozwalających na równoległe wytwarzanie w danym procesie,

$$PROCESS_TOOLS = [4, 2, 3, 1, 1]$$

• $PRODUCTION_TIME[i][p]$ dla $p \in PRODUCTS$, $i \in PROCESSES$ - wymagany czas produkcji 1 sztuki produktu (w godzinach) w danym procesie obróbki:

$$PRODUCTION_TIME = \begin{bmatrix} 0, 4 & 0, 6 & 0 & 0 \\ 0, 2 & 0, 1 & 0 & 0, 6 \\ 0, 1 & 0 & 0, 7 & 0 \\ 0, 06 & 0, 04 & 0 & 0, 05 \\ 0 & 0, 05 & 0, 02 & 0 \end{bmatrix}$$

• $EXPECTED_INCOME_PER_PRODUCT[p]$ dla $p \in PRODUCTS$ - średni dochód ze sprzedaży produktów (w zł/sztukę):

$$EXPECTED_INCOME_PER_PRODUCT = [E(R_1), E(R_2), E(R_3), E(R_4)]$$

• $SELL_LIMIT[m][p]$ dla $p \in PRODUCTS$, $m \in MONTHS$ - ograniczenia rynkowe na liczbę sprzedawanych produktów w danym miesiącu:

$$SELL_LIMIT = \begin{bmatrix} 200 & 0 & 100 & 200 \\ 300 & 100 & 200 & 200 \\ 0 & 300 & 100 & 200 \end{bmatrix}$$

Zmienne decyzyjne

- production[p][m] dla $p \in PRODUCTS$, $m \in MONTHS$ ilość danego produktu wytworzona w ciągu miesiąca,
- sale[p][m] dla $p \in PRODUCTS$, $m \in MONTHS$ oczekiwana ilość produktu, sprzedana w ciągu miesiąca,
- $left_over[p][m]$ $dla~p \in PRODUCTS,~m \in MONTHS \cup \{grudzie\acute{\mathbf{n}}\}$ ilość produktu, która pozostanie w magazynie na koniec miesiąca,
- income całkowity dochód.

Ograniczenia

• Czas produkcji wszystkich przedmiotów w miesiącu nie może przekroczyć dostępności maszyn w miesiącu:

• Pozostałości ze sprzedaży są różnicą sumy produktów przechowywanych z poprzedniego miesiąca i wyprodukowanych oraz sprzedanych:

 $\forall_{(s,c) \in MONTH_PREDECESSORS, \ p \in PRODUCTS} \ left_over[p][c] = production[p][c] + left_over[p][s] - sale[p][c] + left_over[p][s] - sale[p][s] -$

• Firma na początku stycznia nie posiada żadnych zapasów, więc pozostałości przedmiotów z grudnia są równe 0:

$$\forall_{p \in PRODUCTS} \ left_over[p][grudzie\acute{\mathbf{n}}] = 0$$

• Dochodem całkowitym jest różnica dochodu ze sprzedaży oraz kosztu magazynowania:

• Ograniczenia rynkowe na liczbę sprzedawanych produktów w danym miesiącu nie mogą być przekroczone:

$$\forall_{p \in PRODUCTS, m \in MONTHS} \ sale[p][m] \le SELL_LIMIT[m][p]$$

• Produkt P_4 musi być sprzedawany w liczbie sztuk nie mniejszej niż suma sprzedawanych produktów P_1 i P_2 :

$$\forall_{m \in MONTHS} \ sale[P_4][m] \ge sale[P_1][m] + sale[P_2][m]$$

• Istnieje możliwość składowania do PRODUCT STORAGE LIMIT sztuk każdego produktu:

$$\forall_{p \in PRODUCTS, \ m \in MONTHS} \ left_over[p][m] \leq PRODUCT_STORAGE_LIMIT$$

- Pożądane jest, aby pod koniec marca firma posiadała po $PRODUCT_MINIMAL_LEFT_OVER$ sztuk każdego produktu pod koniec marca:

$$\forall_{p \in PRODUCTS} \ left_over[p][marzec] \ge PRODUCT_MINIMAL_LEFT_OVER$$

• Produkcja nie może być negatywna:

$$\forall_{p \in PRODUCTS, m \in MONTHS} \ production[p][m] >= 0$$

• Sprzedaż nie może być negatywna:

$$\forall_{p \in PRODUCTS, m \in MONTHS} \ sale[p][m] >= 0$$

• Pozostałości w magazynach nie mogą być negatywne:

$$\forall_{p \in PRODUCTS, m \in MONTHS} \ left_over[p][m] >= 0$$

Funkcja oceny

Firma chce osiągnąć największy zysk. Maksymalizujemy dochód z produkcji, zatem funkcją oceny jest:

$$\max(income)$$

Sformułowanie modelu

Testy poprawności implementacji

Wyniki

Dwukryterialny model zysku i ryzyka z wartością średnią jako miarą zysku i odchyleniem przeciętnym jako miarą ryzyka