· ME THE COPY

•	REPORT DOCUMENTATION PAGE				
AD-A218 013		1b. RESTRICTIVE	MARKINGS		
,			AVAILABILITY OF		
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE		This document has been approved for			
25. DECEMBRICATION / DOWNSHADING SCHEDULE		<pre>public release adn sale; its distribution if unlimited.</pre>			
4. PERFORMING ORGANIZATION REPORT NUMBER	R(S)		ORGANIZATION RE		R(S)
6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL	7a NAME OF MONITORING ORGANIZATION			
Oklahoma State Univ.	(If applicable)	Office of Naval Research			
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (City, State, and ZIP Code)			
Department of Chemistry Oklahoma State University Stillwater. OK 74078	Chemistry Division, Code 1113 800 North Quincy Street Arlington, VA 22217-5000				
8a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			NUMBER
8c. ADDRESS (City, State, and ZIP Code)	<u></u>	10. SOURCE OF FUNDING NUMBERS			
		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.
Ford, Warren T. 13a. TYPE OF REPORT Final 16. SUPPLEMENTARY NOTATION	OVERED 1/87 ^{TO} 9/30/8	14. DATE OF REPO 2/5/90	ORT (Year, Month, (Day) 15. PAG	E COUNT 8
17. COSATI CODES	18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)			
FIELD GROUP SUB-GROUP		liquid crystal, nonlinear optical			
19. ABSTRACT (Continue on reverse if necessary	•				-h
Three types of liquidized: discotic aza-macrocy substituted side chain staboth second-order and this crystal phases at elevated glasses at room temperature. Certain of the phthalocyan	ycles, discoti ilbene polyaci rd-order nonli d temperature re, and form s	c phthalo ylates. Inear opti and can be stable mon	cyanines, a The stilber cal respons e cooled to olayers on	and donor ne polymoses, have no anisot:	r-acceptor ers have e liquid ropic surface.
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT QUINCLASSIFIED/UNLIMITED \(\Boxed{\omega} \) SAME AS	21. ABSTRACT SECURITY CLASSIFICATION unclassified				
22a. NAME OF RESPONSIBLE INDIVIDUAL	22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL				
Dr. JoAnn Millikin	202-696-4410 ONR				

Final Report Polymer Liquid Crystals with Side Chain Discogens Warren T. Ford Oklahoma State University

With the long term goal of creating new polymers that have novel optical and electronic properties and can be fabricated as thin films, we have investigated three classes of liquid crystalline materials: discotic aza-macrocycles that may form complexes with metal ions with high selectivity, discotic phthalocyanines that may have strong nonlinear optical properties and are semiconductors, and polarized stilbenes that have strong second and third order nonlinear optical responses. Except for the research on the discotic phthalocyanines, the results have been described in technical reports based on manuscripts submitted for publication. The unpublished work is described here in some detail, and expanded abstracts of the manuscripts are provided.

Discotic Phthalocyanines

The combination of semiconductor properties, strong absorption of visible light, and thermal and chemical stability make phthalocyanines (Pc's) candidates for molecular electronic materials. Many monomeric Pc's with flexible side chains have discotic mesophases. Unsubstituted metalloPc's coated as thin films onto electrodes are photovoltaic and photoelectrolytic devices in which the active potentials depend upon the metal. Langmuir Blodgett films of substituted metalloPc's are sensitive to low concentrations of solvents, which can be detected by surface acoustic wave spectroscopy. Several NLO experiments on phthalocyanines have been reported.

We have synthesized a series of symmetrical octaalkoxy H₂Pc and CuPc compounds (1), and isomeric mixtures of the tetramethoxytetraalkoxy H₂Pc and CuPc compounds (2), and characterized them by ¹H NMR, IR, and UV-visible spectroscopy, and by DSC and polarizing microscopy. Unknown to us simultaneously several of the same materials were investigated in the laboratories of Prof. Wiendelt Drenth at the University of Utrecht (Rec. Trav. Chim. Pays-Bas 1988, 107, 615; Liq. Cryst., 1989, 6, 577) and Prof. J. Simon in Paris (Liq. Cryst. 1989, 4, 707). Their work is now mostly published. Ours is not. The following description of materials mentions only compounds that we have made, but phases and properties that are the results of X-ray, electronic conduction, and luminescence experiments are due to Drenth or to Simon. The phase transitions of our materials are listed in Table I. Drenth and Simon assigned the Dho (discotic hexagonal ordered) phases from X-ray analyses. We observe no change in the polarizing microscopic texture at the crystal to D_{ho} transition. Some of our compounds show transitions by DSC that are not detected by polarizing microscopy. These have arbitrarily been called crystalline at room temperature and liquid crystalline in all higher temperature phases, but some of those higher temperature phases may be crystals with disorder only in the side chains. The D_{ho} phases are liquid crystalline, for they lack 3dimensional crystallographic order, but they do not flow at temperatures up to 250 °C during our microscopic observations. Exciton migration lengths of >4000 molecules per stack at 300 K have been calculated from quenching of the fluorescence of

Accession For NTIS GRA&I DTIC TAB

Unannounced Justification

Availability Codes Avail and/or Special Dist

OCH₃

RO

Table I. Thermal transitions of octaalkoxy Pc's.a

structure	transitions in °C (ΔH, cal/g)b	ref
1a: R = n-octyl, M = H,H	C 106(10.6) Dho	
•	C 94 D _{ho}	Drenth
1b : $R = n$ -octyl, $M = Cu$	C 119(11.8) D _{ho}	
·	C 112 D _{ho}	Drenth
1c: $R = 2$ -ethylhexyl, $M = H,H$	C 158 M ₁ 224 N _d 255 I	
	C 170 M1 223 N _d 270 I	Simon
1d: $R = 2$ -ethylhexyl, $M = Cu$	C 200 M ₁ 240 M ₂ 288 U	
1e: $R = n$ -dodecyl, $M = H,H$	C 91(13.2) D _{ho} 310(1.0) U	
•	C 91(15.6) D _{ho} >300	Simon
	C 75 D _{ho} 265 U	Choc
	C 83 Dho 309 I	Drenth
1f: $R = n$ -dodecyl, $M = Cu$	C 99(10.8) D _{ho}	
• ,	C 78 D _{ho} 307 U	Choc
	C 95 D _{ho} >300	Drenth
1g: $R = n$ -octadecyl, $M = H,H$	C 53(1.1) M ₁ 60(3.0) M ₂ 197	
1h: $R = n$ -octadecyl, $M = Cu$	C 34 M ₁ 45 M ₂	
2a: $R = n$ -dodecyl, $M = H,H$	C 79(0.5) M	
2b : $R = n$ -dodecyl, $M = Cu$	C 66(1.1) M ₁ 249(0.05) M ₂	
2c: $R = n$ -octadecyl, $M = H,H$	C 53(3.4) M ₁ 57 M ₂ 87(0.5) M ₃ 158(0.	4) M₄
2d: $R = n$ -octadecyl, $M = Cu$	$C 52(6.7) M_1 80(1.2) M_2$, 7

^aAll transition temperatures are from the first heating scan by DSC. All samples were examined up to 310 °C by DSC. ^bC = crystal; M = unidentified mesophase; I = isotropic; U = unknown, either mesophase or isotropic.

octa(dodecyloxy)PcH₂ by traces of the PcCu. (Drenth, Chem. Phys. Lett. 1989, 154, 420). A stack of 4000 molecules separated by the graphite interplanar distance of 3.4 Å is 1.4 µm high, greater than the thickness of many spin-coated films. The luminescence intensity decreases markedly upon heating into the Dho phase, but transient current measurements on the Dho phase show irregular periods of as long as ten seconds with high conductivity through a thin film, which has been attributed to dynamic formation and breakup of stacks that persist through the thickness of the film. (Drenth, Electroanal. Chem. 1989, 271, 41). Thus the fluorescence and conduction results indicate that films of our Pc's may be ordered with some of the discotic stacks extending through the complete thickness of the film.

In collaboration with the group of Prof. Richard C. Powell of the Physics Department at Oklahoma State University we attempted to measure third order nonlinear optical susceptibility by the degenerate four wave mixing (DFWM) method at 532 nm with an amorphous dispersion of 1c in polystyrene. However, the green Pc bleached too quickly in the laser to record an output signal. Although the absorption spectra of Pc's in solution have a local minimum at 532 nm, the molar extinction coefficients at that minimum still exceed 10³ L mol⁻¹ cm⁻¹. With equipment available in the Powell laboratory we plan to shift our attention to nonresonant DFWM experiments at 1064 nm. Dr. James S. Shirk and coworkers at the Naval Research Laboratory observed DFWM at 1064 nm with

^cCho and Lim, Mol. Cryst. Liq. Cryst. 1988, 154, 9.

metalloPc solutions but not with thin films, which are needed for practical devices. (Appl. Phys. Lett. 1989, 55, 1287). According to Shirk (personal communication) preliminary attempts to observe DFWM of their films failed because of excessive scattering. The key to success is the preparation of optically clear films. We have prepared intensely green films of 1c so clear that through them we can see the mortar between the bricks of a building 50 meters away. CuPc's will be used for initial experiments because Shirk observed ten times greater $\chi^{(3)}$ with a CuPc than with a H₂Pc. It may be possible to prepare by spin coating films of 1d in polystyrene and of 1d alone with high optical clarity for 1064 DFWM measurements.

Discotic Aza-macrocycles

The hexa-(4-dodecyloxy)benzamide and hexa-(4-hexyloxy)benzamide derivatives of [18]- N_6 (3 and 4) and the tetra-(4-dodecyloxy)benzamide derivative of [14]- N_4 (5) were prepared, and their phase transition temperatures were determined by DSC and polarizing microscopy. The melting and isotropic transition temperatures (101 and 135 °C) of the mesophase of 3 differed substantially from those reported earlier (121.5 and 141.5 °C, and 105 and 140 °C in two other laboratories), apparently due to the presence of 4 molecules of water per macrocycle in our material. No liquid crystal phase was detected for compounds 4 and 5. (Technical Report No. 1)

Polarized Stilbenes

ω-Acryloxyalkyl 4-dimethylamino-trans-stilbene-4'-carboxylates with $(CH_2)_n$ spacer chains having n=2,4,6,8, and 10 (P-n) have been synthesized and polymerized to give side chain liquid crystal polymers. DSC and polarizing microscopy show that the polymers have glass and isotropization transition temperatures that decrease with increasing length of the spacer chain to $T_g=83$ °C and $T_i=125$ °C for the polymer P-10. Low isotropization enthalpies of ≤ 1.2 cal/g and polarizing microscopic textures indicate a low degree of order in the liquid crystal phases. The polymers are soluble, which indicates no significant cross-linking through the stilbene double bond, and the trans configuration of the stilbene was maintained throughout the syntheses. (Technical Report No. 2)

The polymers P-n with 2, 6, and 10-carbon spacer chains spread on water, and can be compressed to form stable monolayers and transferred to substrates to form Langmuir-Blodgett films. (Preliminary experiments by Dr. R. S. Duran at the University of Florida).

Thin films of the side chain liquid crystal polymer (P-10) with a 4-dimethylaminostilbene-4'-carboxylic ester mesogen were measured to have degenerate four wave mixing efficiencies at 532 nm 90 times that of carbon disulfide and 0.5 times that of a film of 4-dimethylamino-4'-nitrostilbene (DANS) in poly(methyl methacrylate) [PMMA] and second harmonic generation efficiencies at 1064 nm 0.17 times that of a film of DANS in PMMA. Single shot and cumulative laser induced damage thresholds were measured at both wavelengths. (Technical Report No. 3)

P-n

$$(CH_3)_2N$$
 NO_2

DANS

Technical Reports and Journal Articles

Technical Report No. 1. Liquid Crystalline Macrocycles and Polyacrylates Containing 4-Alkoxybenzoic Acid and 4-Alkoxybenzamide Structural Units, D. Tatarsky, K. Banerjee, and W. T. Ford.

Technical Report No. 2. Side-Chain Polyacrylates with 4-Dimethylamino-4'-stilbenecarboxylic Ester Mesogens, M. Zhao and W. T. Ford.

Technical Report No. 3. Second-order and third-order nonlinear optical responses and laser damage thresholds of a polarized stilbene side chain liquid crystal polymer. R. J. Reeves, R, C. Powell, M. Bautista, M. Zhao, and W. T. Ford.

- D. Tatarsky, K. Banerjee, and W. T. Ford, Synthesis and Phase Transitions of 4-(Dodecyloxy)benzamide Derivatives of Azacrowns [14]-N₄ and [18]-N₆, Chem. Mater. 1990, in press.
- M. Zhao and W. T. Ford, Side-Chain Polyacrylates with 4-Dimethylamino-4'-stilbenecarboxylic Ester Mesogens, *Macromolecules*, submitted.
- R. J. Reeves, R, C. Powell, M. Bautista, M. Zhao, and W. T. Ford, Second-order and third-order nonlinear optical responses and laser damage thresholds of a polarized stilbene side chain liquid crystal polymer, J. Opt. Sci. Am., B, submitted.

Personnel Supported

Warren T. Ford, principal investigator.
David Tatarsky, postdoctoral associate.
Krishna Banerjee, postdoctoral associate.
M. Periyasamy, postdoctoral associate.
Mingyang Zhao, graduate research assistant.
Weiming Zhu, graduate research assistant.
Marietta Bautista, graduate research assistant.