Practice session IV

Thermodynamics

1. One mole of an ideal monoatomic gas ($C_V = 1.5R$) is allowed to undergo the following cyclic process ABC. Calculate the efficiency of the cycle.

- 2. Calculate the entropy change of a sample of perfect gas under reversible isothermal expansion. (Given: the Volume occupied by 2 mole of any perfect gas molecules is tripled at any constant temperature).
- 3. Calculate the entropy change when 1 mole of argon at 25°C and 1.00 bar in a container of volume 0.8 dm^3 is allowed to expand to 1.2 dm^3 and is simultaneously heated to 75°C. ($C_V=3/2 \text{ R}$)
- 4. Find entropy change for the melting of 3 g of ice (heat of fusion 79.7 cal/g) at STP. Find the same for the reverse process.
- 5. Show that $\Delta S_{mix,molar} = Rln2$ if equal volumes of two gases under the same conditions are mixed. Calculate the entropy of mixing if two moles of N_2 (g) are mixed with three moles of O_2 (g) at the same temperature and pressure. (Assume ideal behaviour).