Auditory Scene Recognition Using Textual Knowledge

Xun Xu Xinyu Hua

May 6, 2015

Overview

Introduction

Approach

Evaluation

Problems and Improvements

Introduction

What is Auditory Scene Recognition(ASR)?

- Recognizing context of audio clips
- ► Usually from a set of predefined class labels
- ► Example: play pause resume stop

Introduction

Possible Usage

- ► Crime Investigation
- ► Cellphone Volume Adjustment

Introduction

Related Works

- ► Scene Detection(Video)
- ► Scene Detection(Audio)
- ► Event Detection(Audio)

OVERVIEW

Introduction

Approach

Evaluation

Problems and Improvements

Approach

Problem Definition:

Input: An audio clip

Output: The most likely scene where the audio clip was recorded, chosen from a given set.

Approach

Intuition:

We assume scenes are composed of multiple primitive events.

By using textual knowledge to construct Scene-Event Relation, we only need to detect events, and refer back to that relation to find out the most likely scene.

Approach

Roadmap:

- ► Build Vocabulary
- ► Construct Scene Event Map
- ► Feature Extraction for events
- ► Model Building
- ► Scene Recognition

- 1. Sound search engine Taxonomy
- 2. Bootstrapping to Expand
- 3. Filter by number of downloadable event clips

- 1. Sound search engine Taxonomy
- 2. Bootstrapping to Expand
- 3. Filter by number of downloadable event clips

- 1. Sound search engine Taxonomy
- 2. Bootstrapping to Expand
- 3. Filter by number of downloadable event clips

Example of Events

Vehicle, dog bark, laughter, applause, phone ring

Obtain Scene vocabulary

- 1. Scene indicator in TV, Movie scripts
- 2. Using Stanford NLP to get the scene from a sentence
- 3. Sort scene to filter those appear less than 50 times

Obtain Scene vocabulary

- 1. Scene indicator in TV, Movie scripts
- 2. Using Stanford NLP to get the scene from a sentence
- 3. Sort scene to filter those appear less than 50 times

Obtain Scene vocabulary

- 1. Scene indicator in TV, Movie scripts
- 2. Using Stanford NLP to get the scene from a sentence
- 3. Sort scene to filter those appear less than 50 times

Approach - Build Vocabulary Example:

FADE IN:

EXT. TWO-LANE HIGHWAY - SUNRISE

A dishevelled WOMAN in a business suit (27) runs down a lonely highway in Texas hill country, moving desperately through the thick morning fog. She's carrying a VHS cassette. The sounds of her breathing and SHOES HITTING the PAVEMENT ECHO into the mist.

Example of scene:

Plane, Bus stop, theatre, bar, office

- 1. Sort corpus into sets of contexts
- 2. Parse all the contexts into Noun-Verb pairs
- 3. Association Network to expand

- 1. Sort corpus into sets of contexts
- 2. Parse all the contexts into Noun-Verb pairs
- 3. Association Network to expand

- 1. Sort corpus into sets of contexts
- 2. Parse all the contexts into Noun-Verb pairs
- 3. Association Network to expand

- 1. Sort corpus into sets of contexts
- 2. Parse all the contexts into Noun-Verb pairs
- 3. Association Network to expand

APPROACH - CONSTRUCT SCENE EVENT MAP

Mine Scene Event Relation

- 1. Compute Occurrence of each event in each scene
- 2. Compute TFIDF
- 3. Construct Scene Event Map

Mine Scene Event Relation

- 1. Compute Occurrence of each event in each scene
- 2. Compute TFIDF
- 3. Construct Scene Event Map

APPROACH - CONSTRUCT SCENE EVENT MAP

Mine Scene Event Relation

- 1. Compute Occurrence of each event in each scene
- 2. Compute TFIDF
- 3. Construct Scene Event Map

Approach - Construct Scene Event Map Example:

Office Corridor Street Phone ring Crowds footstep footstep footstep Phone ring Crowds Phone ring Crowds Phone ring Printer footstep

APPROACH - CONSTRUCT SCENE EVENT MAP

Example:

	Phone ring	Footstep	Crowds	Printer
Office	0.392	0.176	0	0.778
Corridor	0.301	0.176	0	0
Street	0	0.229	0.621	0

Table: TFIDF value for each Scene-Event pairs

Approach - Feature Extraction for events

- ► Spetrogram
- ► Framing and Fast Fourier Transform
- ► Mel-frequency Analysis
- ▶ Cepstral Analysis

SPECTROGRAM

Here is the spectrogram of the example audio:

Approach - Feature Extraction for events

- ► Spetrogram
- ► Framing and Fast Fourier Transform
- ► Mel-frequency Analysis
- ▶ Cepstral Analysis

Framing and Fast Fourier Transform

Frame the audio and apply FFT on each frame.

Framing and Fast Fourier Transform

Here is the spectrum of example audio in 0-2s.

Approach - Feature Extraction for events

- ► Spetrogram
- ► Framing and Fast Fourier Transform
- ► Mel-frequency Analysis
- ► Cepstral Analysis

Mel-frequency Analysis

Perceptually, the difference between 500-1000Hz is different from 5000-5500Hz.

Approach - Feature Extraction for events

- ► Spetrogram
- ► Framing and Fast Fourier Transform
- ► Mel-frequency Analysis
- Cepstral Analysis

CEPSTRAL ANALYSIS

Get the envelope from spectrum.

Approach - Feature Extraction for events

- ► Spetrogram
- ► Framing and Fast Fourier Transform
- ► Mel-frequency Analysis
- ▶ Cepstral Analysis

Approach - Model Building

- Model the Spectrum
- ► Gaussian Mixture Model
- ► Training GMMs

Model the Spectrum

A comparison of different models

Approach - Model Building

- ► Model the Spectrum
- ► Gaussian Mixture Model
- ► Training GMMs

Gaussian Mixture Model

Introduction

A model with multiple gaussian distribution

$$P(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \times N(x|\mu_k, \sigma_k)$$

Approach - Model Building

- ► Model the Spectrum
- ► Gaussian Mixture Model
- Training GMMs

Training GMMs

- The features we extracted before are used here to train a GMM for each event.
- Expectation-Maximization(EM) algorithm are used to estimate the parameters.

Approach - Scene Recognition

- ► Audio Segmentation
- ► Event Detection for Segments
- ► Infer Scene from Events

AUDIO SEGMENTATION

We use a filter to smooth the frame energy

AUDIO SEGMENTATION

Using the last value of smoothed line as threshold to segment:

Audio Segmentation

Introduction

Exponential filter:

$$Y(n) = (1 - \alpha) \times Y(n - 1) + \alpha \times X(n)$$

Choosing α :

$$\begin{cases} Y(n) \le Y(n-1) & \alpha = 1/50 \\ Y(n) > Y(n-1) & \alpha = 1/500 \end{cases}$$

Approach - Scene Recognition

- ► Audio Segmentation
- ► Event Detection for Segments
- ► Infer Scene from Events

EVENT DETECTION FOR SEGMENTS

We apply GMMs to segments and find the events which have the highest score for features.

Approach - Scene Recognition

- ► Audio Segmentation
- ► Event Detection for Segments
- ► Infer Scene from Events

Infer Scene from events

Use TFIDF scores as weight for voting.

	Phone ring	Footstep	Crowds	Printer
Office	0.392	0.176	0	0.778
Corridor	0.301	0.176	0	0
Street	0	0.229	0.621	0

Table: TFIDF value for each Scene-Event pairs

Assume we detect "Phone ring" and "Printer" in the example audio.

Office: 0.392 + 0.778 = 1.17

Corridor: 0.301

Street: 0

OVERVIEW

Introduction

Approach

Evaluation

Problems and Improvements

EVALUATION

We have performed a 5 scene classification task on our system and other 4 systems.

20 clips for each scene, and a five-fold cross validation are conducted for other four systems.

EVALUATION

Table: Recognition Accuracy for 5 Audio Scenes

	bathroom	kitchen	office	restaurant	street	average
baseline	55%	25%	20%	50%	55%	41%
RNH1	55%	55%	35%	80%	40%	53%
RNH2	55%	45%	50%	70%	55%	55%
GSR	70%	15%	15%	75%	10%	37%
Grao	65%	35%	75 %	5%	65 %	49%

EVALUATION

If "restaurant" was removed:

OVERVIEW

Introduction

Approach

Evaluation

Problems and Improvements

Problems and Improvements

- ► Hard to control the quality of event vocabulary(Granularity of primitive events)
- ► Fail to detect multiple events occuring at the same time
- ► Perform bad under noisy environment.