Basics of ARM Cortex

ARM cortex theory.pdf

 $A \Rightarrow Advanced$

 $R \Rightarrow Reduced Instruction Set Computer[RISC]$

M ⇒Machine

CISC ⇒ Complex Instruction Set Computer

1 MB Flash memory, 4 GB of Memory space

Flash memory stores code and this memory does not wipe out data even after power loss.

STM32F-Discovery board uses following processors: Cortex-M33F, Cortex-M7F, Cortex-M4F, Cortex-M3, Cortex-M0+, or Cortex-M0.

RISC vs. CISC Architecture

RISC	CISC
Fixed width instructions	Variable length instructions
Few formats of instructions	Several formats of instructions
Load/Store Architecture	Memory values can be used as operands in instructions
Large Register bank	Small Register Bank
Instructions are pipelinable	Pipelining is Complex

TOPS ⇒ Tera Operations Per Seconds.

NVIC ⇒ Nested Vector Interrupt Controller sets interrupt priority.

In ARM, Lower the number, Higher the priority.

In Others, Higher the number, Higher the priority.

 $T \Rightarrow Thumb Instructions.$

 $D \Rightarrow JTAG Debug.$

 $M \Rightarrow Multiplier$.

I ⇒ ICE

ICE ⇒ In Circuit Emulator.

The microprocessor cannot do anything by itself therefore, It needs to be linked with memory, extra peripherals, or IO devices. This linking is called Interfacing.

The interfacing of the I/O devices in 8085 can be done in two ways:

1. Memory-Mapped I/O Interfacing:

In this kind of interfacing, we assign a memory address that can be used in the same manner as we use a normal memory location.

2. I/O Mapped I/O Interfacing:

A kind of interfacing in which we assign an 8-bit address value to the input/output devices which can be accessed using IN and OUT instruction is called I/O Mapped I/O Interfacing.

Differ	Difference between Memory-Mapped I/O Interfacing and I/O Mapped I/O Interfacing :				
	Features	Memory Mapped IO	IO Mapped IO		
	Addressing	IO devices are accessed like any other memory location.	They cannot be accessed like any other memory location.		
	Address Size	They are assigned with 16-bit address values.	They are assigned with 8-bit address values.		
	Instructions Used	The instruction used are LDA and STA, etc.	The instruction used are IN and OUT.		
	Cycles	Cycles involved during operation are Memory Read, Memory Write.	Cycles involved during operation are IO read and IO writes in the case of IO Mapped IO.		
	Registers Communicating	Any register can communicate with the IO device in case of Memory Mapped IO.	Only Accumulator can communicate with IO devices in case of IO Mapped IO.		
	Space Involved	2 ¹⁶ IO ports are possible to be used for interfacing in case of Memory Mapped IO.	Only 256 I/O ports are available for interfacing in case of IO Mapped IO.		
	IO/M` signal	During writing or read cycles (IO/M` = 0) in case of Memory Mapped IO.	During writing or read cycles (IO/M` = 1) in case of IO Mapped IO.		
	Control Signal	No separate control signal required since we have unified memory space in the case of Memory Mapped IO.	Special control signals are used in the case of IO Mapped IO.		

Pipelining ⇒ Multiple Instructions in single cycle.

3 stage pipelining is provided by ARM.

Memory mapping for 32 bit uP/μC

0x0000

0x0004

0x0008

0x000C

0x0010

.

0x0014

0x0018

0x001C

0x0020

0x0024

0x0028

0x002C

•

•

..

0xFFFFFFF

Stack grows in downward direction.

Stack has a memory allocated in a memory mapping.

PUSH ops \Rightarrow SP = SP-1 1 is 4bytes

POP ops \Rightarrow SP = SP+1 1 is 4bytes

Naming conventions of ARM

- ARMv& M [Microcontroller series]
- ARMv7 A [Application series]
- ARMv7 R [Real time]

RaspPi3 ⇒ A8

RaspPi4 ⇒ A72

MMU ⇒ Memory Management Unit.

CPU works on virtual addr space.

Types of RESETs

- Power On Reset ⇒ Resets process the moment power turns on.
- Brownout Reset ⇒ If the supply power drops below a particular voltage, This resets process.
- Watchdog Reset ⇒ If process does not respond in a particular time, This resets process.
- Thermal Reset ⇒ If a processor temperature drops or goes above the specified temperature, This
 resets process.

Sr.No.	Key	мми	MPU
1	Definition	MMU stands for Memory Management Unit.	MPU stands for Memory Protection Unit.
2	Primary Operation	MMU is used for multiple memory related operations like Virtual Memory, translation of virtual address to physical address and memory protection.	MPU is used for memory protection only.
3	Usage	Processors running high end Operating systems like Windows, Linux, Android use MMU. Such processors are called App Processors.	Processors running RTOS operations like ThreadX use MPU. Such processors are called baseband processors and are useful where 3G/4G protocols are running.

SIMD ⇒ Single Instruction Multiple Data.

CoreMarks per MHz.

- Cortex-M4 ARMv7-M 3.42
- Cortex-M3 ARMv7-M 3.34
- Cortex-M7 ARMv7-M 5

DMIPS ⇒ Dhrystone Million Instructions Per Seconds.

CMSIS \Rightarrow Cortex μ C S/w Interface Standard.

 $FPGA \Rightarrow Field Programmable Git Arrays.$

PLL \Rightarrow Phase Locked Loop modulates frequency of Input signal. It is used to change clock frequency of μ C / μ P.

HSI ⇒ High Speed Internal [16 MHz **default]

ISR Vector holds all the addresses of ISR.

Linker [.ld] files contains memory mapp specification.

Terms Size
Byte 8-bit
Half Word 16-bit
Word 32-bit
Double Word 64-bit

M0 follows von-nueman architecture.

M3,M4 follows harward architecture.

Load and store method \Rightarrow First load the data in register, operate or execute on it and then store it in a memory space.

Only two Instructions works on memory space.

- LDR ⇒ Load Register.
- SDR ⇒ Store Register.

Disadvantage of ARM7TDMI

• Latency due to switching between the ARM state and Thumb state.

ARM mode ⇒ 32 bit

Thumb mode ⇒ 16 bit

BLX is used to enter ARM state.

BXLR is used to return from ARM state to Thumb sate.

Dark colored boxes are for debug support features.

NVIC is closely embeded with the core. helps to execute nested interrupt.

Fetch \Rightarrow Read the data from ptogram memory.

Decode \Rightarrow Read the register placed in data memory.

Execute \Rightarrow Execution of instruction/s.

Register bank has 18 registers, each of 32 bit.

Memory interface connects external memory to core.

SysTick \Rightarrow Provides timer for OS.

Ex. RTOS Task Schedular.

WIC \Rightarrow This helps processor to wakeup on Interrupt if it is in a sleep mode.

Instruction Trace interface contains details of Instructions that are being executed.

Software trace holds the amount of memory used. [Stack, Heap, RAM]

MPU provides excess level privileges to actions.

- User space will have full privilege.
- Kernel space will have less privilege.

During Interrupt, vector addresses will be fetched by I-CODE and stacking and unstackig will be provided by D-CODE.

AMBA \Rightarrow Advance μ C Bus Architectur.

APB ⇒ Advance Peripheral BUS(UART,SPI,I2C)

AHB ⇒ Advance High Performance(USB, Ethernet, Memory, DMA,RAM)

DMA ⇒ Direct Memory Access

AXI ⇒ Advance eXtansible Interface

PPB ⇒ Private Peripheral Bus

- Internal PPB (For connect Core to NVIC,SB)
- External PPB

Burst support

The buses will provide error free data transmission even after having data burst from different peripherals. The data may be of 8/16/32 bit.

Multiple Bus Master

This allows multiple MASTER-SLAVE configurations. By default core is Master.

© ® 2022, Rohit Akurdekar™