试 卷 (四)

一、选择题(每题2分,共10分)

1. 设 A, B, C 为随机事件, 若 P(C) > 0, 且

$$P(A \cup B \mid C) = P(A \mid C) + P(B \mid C)$$
,

则下列结论正确的是

-)
- (A) $P(A \cup B \mid \overline{C}) = P(A \mid \overline{C}) + P(B \mid \overline{C})$;
- (B) $P(A \cup B) = P(A \mid C) + P(B \mid C)$;
- (C) $P(C) = P(A)P(C \mid A) + P(B)P(C \mid B)$;
- (D) $P(C(A \cup B)) = P(AC) + P(BC)$.
- 2. 若函数 f(x)是某个随机变量的概率密度,则一定成立的是

()

- (A) f(x)的定义域为 $(0, +\infty)$;
- (B) f(x)的值域为(0, 1);
- (C) f(x)为非负函数;
- (D) f(x) 为连续函数.
- 3. 设某连续型随机变量的密度函数 f(x) 为偶函数, F(x) 为其分 布函数,则对任意实数 a,有

(A)
$$F(-a) = 1 - \int_0^a f(x) dx$$
; (B) $F(-a) = \frac{1}{2} - \int_0^a f(x) dx$;

(C) F(-a) = F(a):

(D)
$$F(-a) = 2F(a) - 1$$
.

4. 设 (X_1, X_2, \dots, X_n) 是总体 X 的简单随机样本, $E(X) = \mu, \mu$

未知,
$$D(X) = \sigma^2$$
, $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,则 σ^2 的无偏估计量是 ()

(A)
$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$
; (B) $\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$;

(B)
$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

(C)
$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \mu)^2$$
; (D) $\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$.

5. 设总体 X 和 Y 分别服从正态分布 $N(\mu_1, \sigma_1^2)$ 及 $N(\mu_2, \sigma_2^2)$. (X_1, X_2, \dots, X_n) 是从总体 X 中抽取的简单随机样本; (Y_1, Y_2, \dots, Y_m) 是从总体 Y 中抽取的简单随机样本,其中 μ_1, σ_1^2 ; μ_2, σ_2^2 均未知, S_1^2, S_2^2 分别是两个样本的方差,则 $\frac{\sigma_1^2}{\sigma_2^2}$ 的 $1-\alpha$ 置信区间为 ()

(A)
$$\left(\frac{S_1^2/S_2^2}{F_a(n, m)}, \frac{S_1^2/S_2^2}{F_{1-a}(n, m)}\right)$$
;

(B)
$$\left(\frac{S_1^2/S_2^2}{F_{\alpha}(n-1, m-1)}, \frac{S_1^2/S_2^2}{F_{1-\alpha}(n-1, m-1)}\right)$$
;

(C)
$$\left(\frac{S_1^2/S_2^2}{F_{\frac{\alpha}{2}}(n, m)}, \frac{S_1^2/S_2^2}{F_{1-\frac{\alpha}{2}}(n, m)}\right);$$

(D)
$$\left(\frac{S_1^2/S_2^2}{F_{\frac{\alpha}{2}}(n-1, m-1)}, \frac{S_1^2/S_2^2}{F_{1-\frac{\alpha}{2}}(n-1, m-1)}\right)$$
.

二、填空题 (每题 2 分,共 10 分)

- 1. 设 A, B 为随机事件,已知 P(A) = 0.7, P(B) = 0.5, P(A B) = 0.3,则 P(AB) = 0.8, P(B A) = 0.8
- 2. 每天某种商品的销售量(件)服从参数为λ的泊松分布,随机选取4天,其中恰有一天的销售量为5件的概率是 .
- 3. 设相互独立的两个随机变量 X, Y 具有相同的分布,且 $X \sim \begin{pmatrix} -1 & 1 & 2 \\ 0.2 & 0.2 & 0.6 \end{pmatrix}$,则 $Z=\max(X^2, Y^2) \sim (\underline{\hspace{1cm}})$.
- 4. 设二维随机变量 $(X, Y) \sim N\left(1, 4; 1, 4; \frac{1}{2}\right), Z = X Y,$ 则 cov(X, Z) =
- 5. 设 (X_1, X_2, X_3, X_4) 是来自正态总体 $N(0, 2^2)$ 的简单随机样本, $X = a(X_1 2X_2)^2 + b(3X_3 4X_4)^2$,则当 $a = _____$, $b = ____$ 时,统计量 X 服从 χ^2 分布.

三、计算题(前8题每题9分,第9题8分,共80分)

- 1. 在某通信渠道中,传送的字符为 AAAA, BBBB, CCCC 三者之一. 假定传送这三组字符的概率分别为 0. 3, 0. 4, 0. 3. 由于通道噪声的干扰,每个字母被正确接收的概率为 0. 8,而错被接收为其他两个字母的概率均为 0. 1. 假定前后字母是否被歪曲互不影响. 若接收到的字母为 ABBC,求被传送的字符为 BBBB 的概率.
 - 2. 设随机变量(X, Y)的联合分布律为

0	1	2	
0. 125	0.25	0	
0. 125	0.25	0. 25	

求: (1) Z = XY 的分布律:

- (2) 条件分布律 $P(X = i \mid Y = 2)$ (i = 0, 1, 2).
- 3. 设随机变量(X, Y)的联合密度函数

$$f(x, y) = \begin{cases} \frac{1}{2} & (x+y > 2, x \le 2, y \le 2), \\ 0 & (\sharp e). \end{cases}$$

求: Z = X + Y 的分布密度函数.

4. 设随机变量(X, Y)的联合密度函数

$$f(x, y) = \begin{cases} cxy^2 & (y^2 < x < 1), \\ 0 & (\sharp e). \end{cases}$$

求:

- (1) 常数 c;
- (2) 问 X 和 Y 是否相互独立? 说明理由.
- 5. 设随机变量 X 的密度函数

$$f(x) = \begin{cases} 2e^{-2x} & (x > 0), \\ 0 & (x \le 0). \end{cases}$$

独立重复作 n 次试验,随机变量 Y 表示 n 次试验中事件 $\left(X > \frac{1}{2}\right)$ 出现的次数. 求 E(Y),D(Y).

- 6. 独立地多次测量一个物理量,每次测量产生的随机误差都服从 (-1,1)内的均匀分布. 若把 n 次测量的算术平均 \overline{X} 作为测量结果,分别用切比雪夫不等式和中心极限定理估计 \overline{X} 与真值的差小于 ϵ 的概率 $(\prod \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$ 表示).
- 7. 设 X 服从 $(0, \theta)$ 上的均匀分布, (X_1, X_2, \dots, X_n) 是从总体 X 中抽取的简单随机样本. 求. θ 的矩估计量 $\hat{\theta}_1$ 和极大似然估计量 $\hat{\theta}_2$.
- 8. 机器自动包装某食品,设每袋食品的净重量服从正态分布,规定每袋食品的标准重量为 500 g. 某天开工后,为了检查机器是否正常工作,从包装好的食品中随机抽查 9 袋,测得净重为

问:在下面两种情形下能否认为每袋重量符合标准(α=0.05)?

- (1) 已知 $\sigma^2 = 16$;
- (2) σ^2 未知.

附:分布数值

$$\Phi(1.28) = 0.9 \quad \Phi(1.64) = 0.95 \quad \Phi(1.96) = 0.975$$

 $\Phi(2.33) = 0.99$

$$t_{0.05}(8) = 1.8331$$
 $t_{0.05}(9) = 1.8125$

$$t_{0.025}(8) = 2.2622$$
 $t_{0.025}(9) = 2.2281$

9. 设随机变量(X, Y)在区域 $\{(x, y) | 0 < x < 2, 0 < y < 1\}$ 服从均匀分布. 令

$$U = \begin{cases} 0 & (X < Y), \\ 1 & (X \ge Y), \end{cases} \quad V = \begin{cases} 0 & (X < 2Y), \\ 1 & (X \ge 2Y). \end{cases}$$

求:

- (1) (U, V)的联合分布律:
- (2) U, V 的相关系数 ρυν.

试卷(四)考核内容分值表

	概 率 论 76			数理统计 24			
随机事件	一维变量	二维变量	数字特征	极限定理	抽样分布	参数估计	假设检验
13	6	33	15	9	2	13	9