

Серия 1. Системы счисления

- 1. Переведите в 10-ичную систему числа (Каждый пункт 0.25 балла)
 - (a) 10000_2 ,
 - (b) 12401_{-7} ,
 - (c) 66666666_7 ,
 - (d) $1_2 + 2_4 + 3_8 + \dots + (N^2)_{2^{N^2}}$
 - (e) 10101010101010_{-2}
 - (f) $1221_{2,5}$
- **2.** Представьте число 18437 в системе счисления с основанием e. Точность не менее 6 знаков после запятой (1 балл)
- **3.** $533533_9 = X_{101}$. Найдите X. (1 балл)
- **4.** Петя взял число N и пусть S сумма всех таких N-битных чисел, в двоичной записи которых, единиц не меньше, чем нулей. Докажите, что S делится на 2^N-1 . (1.5 балла)
- **5.** Докажите, что число $0.10100100010000100001...._2$ не представимо в виде $\frac{p}{q}$, где p целое, а q натуральное. (2 балла)
- **6.** Напишите программу, которая переводит число из системы счисления X в систему счисления Y. Формально даны $A, X, Y \in \mathbb{N}$, преобразовать A_X в A_Y и вывести. Добавьте в вашу программу проверку корректности записи числа A в системе счисления X. Допустимые языки: C, C++, Java, Pascal, JavaScript, Python, Clojure. (2 балла)
- 7. Дано выражение: $XYZ_9 + ZXY_{12} + YZX_{15} = 3000_{10}$. В данном выражении X, Y и Z допустимые различные цифры указанных систем счисления. Найдите какое-нибудь решение выражения или докажите, что решений нет. (2 балла)
- **8.** Найдите все решения уравнения $(X^2)_Y N(Y^2)_X = 1$, где X,Y целые числа, а N целое число, не являющееся квадратом натурального. (4 балла)

P.S. Нижний индекс обозначает систему счисления. Системы счисления приведены в 10-ичной форме. Если рядом с числом не указан нижний индекс, значит оно находится в 10-ичной системе счисления.

Серия 2. Логические элементы, булевы функции

- 1. На вход даются 2 бита A_1, B_1 . Вывести их
 - (а) Сумму отрицаний (0,25 баллов)
 - (b) Штрих Шеффера. (0,25 баллов)
 - (с) Стрелку Пирса. (0,25 баллов)
 - (d) Тождественную единицу (0,25 баллов)
- **2.** На вход даются 3-битные числа $A_1, A_2, A_3, B_1, B_2, B_3$. Вывести их сумму (1 балл)
- **3.** На вход даются 3-битные числа $A_1, A_2, A_3, B_1, B_2, B_3$. Вывести их произведение (1 балл)
- **4.** На вход даются 3-битные числа $A_1, A_2, A_3, B_1, B_2, B_3$. Вывести их сумму по модулю 5. (1,5 балла)
- **5.** Дан логический элемент "Штрих Шеффера". Можно ли выразить через него остальные булевы функции? (2 балла)
- **6.** На вход даются 2 матрицы. $\begin{pmatrix} A_1 & B_1 \\ C_1 & D_1 \end{pmatrix} \begin{pmatrix} A_2 & B_2 \\ C_2 & D_2 \end{pmatrix}$. Вывести произведение матриц (2 балла)
- 7. На вход даются 2 матрицы. $M_1=\begin{pmatrix} \mathrm{A}_1 & \mathrm{B}_1 \\ \mathrm{C}_1 & \mathrm{D}_1 \end{pmatrix},\ M_2=\begin{pmatrix} \mathrm{A}_2 & \mathrm{B}_2 \\ \mathrm{C}_2 & \mathrm{D}_2 \end{pmatrix}.$ Вывести $det(M_1)^{det(M_2)}$. (2,5 балла)
- 8. Майнкрафт! Дедлайн конец лагеря! Соберите 2 битную ячейку памяти, которая была показана на занятии в майнкрафте. (25 баллов)
- P.S Матрицы состоят из однобитных чисел. В каждой задаче все вычисления происходят с учётом битов переноса.

Серия 3. Дробные числа

1. Объясните, почему следующий код выводит false. (1 балл)

float f = 1.1f;

double d = f;

std::cout * (d == 1.1 ? "true": "false");

- 2. Какое максимальное число unsigned int может храниться во float без потери точности? (1 балл)
- **3.** Выведите битовое представление числа $\pi = 3.1415926535.(1$ балл)
- **4.** Почему 0.1 не может быть точно представлено? Объясните, почему число 0.1 в двоичной системе становится периодической дробью. Приведите примеры других таких чисел. (1 балл)
- **5.** Объясните, почему денормализованные числа нарушают закон тождества (x y == 0 => x == y).

Приведите пример кода, где это проявляется. (1 балл)

6. Возьмите алгоритм численного интегрирования (например, метод трапеций) и исследуйте, как выбор типа (float vs double) влияет на точность результата. (3 балла)

Серия 4. Затишье перед бурей

- 1. Даны арифметические выражения V_i , записанные в инфиксной записи. Переведите эти выражения в постфиксную запись. Можно заменять выражения на экваивалентные, например 2*2+2*2=2*(2+2)
 - а) $V_1: z = 9*2+13*2$. (0,125 балла)
 - b) $V_2: z = (187 3) * 13. (0,125 балла)$
 - с) $V_3: z = 7*(4-1) + 10/2.$ (0,125 балла)
 - d) $V_4: z = (30/(2+3))*(8-4)+6.$ (0,25 балла)
- **2.** Дано выражение: z = 4*a*b-13*a*e+d-c*13+17*37 Архитектура памяти регистрово-регистровая. (0,375 балла)
- **3.** z=(a+b)*c+d-e/(f+(g-h*i+j)-k)+(l/m*(n+(o-p))). Дано выражение. Написать команды, которые его вычисляют. Архитектура памяти аккумуляторная. (1 балл)
- **4.** Напишите программу, которая преобразует выражения, записанные в инфиксной записи в выражения в префиксной записи. Доступные языки: C++, Java. Пример (a * b + a / c) -> (+ * a b / a c). (5 баллов)

Серия 5. Ассемблер. Синтаксис. Условные операторы

- 1. Учебные задачки
 - а) Даны 3 числа, сложите их. (0,5 балла)
- b) Даны 2 числа, проверьте, что первое больше удвоенного второго. (0,5 балла)
- с) Даны 3 числа, сложите их попарные произведения, учитывая переполнение типа данных uint32 t. (0,5 балла)
 - d) Даны 2 даты. Сравните их на равенство. (0,5 балла)
- **2.** Даны 3 числа a,b,c. Положить среднее из $\frac{a+b}{2},\frac{b+c}{2},\frac{a+c}{2}$ в 0-ой регистр. (1 балл)
- **3.** Дан год. Выведите в 0-ой регистр, сколько дней в этом году. (Прикол в том, что бывают високосные года) (1 балл)
- **4.** Даны 5 чисел. Отсортируйте их пузырьковой сортировкой. Запишите результат сортировки в первые 5 регистров. (2 балла).
- **5.** Даётся шахматная доска. Также даны сначала координаты чёрного слона, потом координаты белого. Через какое минимальное число ходов на доске может остаться ровно 1 слон? Ответ должен быть в первом регистре. (3 балла)
- 6. Крестики-нолики! Дана доска 3*3. Клетки нумеруются от 1 до 9. Игроки играют в крестики-нолики. В регистрах лежит информация по каждому ходу в виде 32-битного числа, где первые 8 битов ASCII-код (0) или (х), ещё по 2 следующих бита на 2 координаты символа на доске. В нулевом регистре должна появиться информация о том, на каком ходу закончилась игра. Также в первом регистре должна появиться информация о результате игры. (7 баллов)
- P.S. Вы сами можете определять в каких регистрах будут производиться вычисления и в каких лежат данные.

Серия 6. Ассемблер. Циклы. Рекурсия

- **1.** Дано число N. Положите в первый регистр число (N!) (1 балл)
- 2. Дано число N. Найдите N-ое число Фибоначчи. (1 балл)
- **3.** Даны числа a, b. Найдите ближайшее к b число, делящееся на a. Числа могут быть отрицательными. (1 балл)
- **4.** Дано натуральное число. Определить, сколько в его троичной записи битов, равных 0 или 1. (1 балл)
- **5.** Дано число вида $2^n 3^k 5^m$. Вывести список делителей этого числа в разные регистры. (3 балла)
- **6.** Дано число N. Найдите максимальное такое чётное K, что K $< N^2$ и среди чисел N+1,N+3,....,N+K не более 5 простых. (6 баллов)

Серия 7. Чемпионат по ассемблеру

Серия 7..1 Правила

В чём состоит игра? В начале у каждой команды есть по 100 баллов. Вам будут даваться некоторые задачи на минимизацию/максимизацию ответа, в которых нужно будет дать только ответ. Раунд происходит следующим образом: сначала все команды ставят по 5 баллов и на доске пишется какой-то неоптимальный ответ. З раза по истечении 2 минут можно поднимать ставку. Каждая из команд может поддержать и поставить столько же, поднять, или же может уйти и отдать ставку. В конце оставшиеся в игре команды открывают свои ответы, та команда, у которой ответ оптимальнее, демонстрирует алгоритм решения. Если алгоритм неверный, команда проигрывает и право доказывать решение переходит к следующей команде и так до тех пор, пока одна из команд не докажет ответ. Выигравшая команда забирает на свой счёт очки. Игра заканчивается, когда все команды обанкротятся, или когда задачи закончатся.

Серия 7..2 Стоимости операций

Рассмотрим стоимости операций:

Операции за 20 тактов: деление (div r3 r1 r2), взятие остатка от деления (rem r3 r1 r2).

Операции за 10 таков: добавление переменной (load r1 x).

Операции за 4 такта: умножение (mul r3 r1 r2).

Операции за 1 такт: загрузка констант (load r3 const), сложение (add/addi r3 r1 r2/const), вычитание (sub r3 r1 r2), битовые операции(xor/or/and r3 r2 r1/const).

Серия 7..3 Задачи

Будут на игре. Эти задачи можно будет сдать только сегодня, за них тоже будут поставлены баллы, возможно частичные, каждому члену команды.

Серия 8. Многопоточность

1. Вычислите с помощью метода Монте-Карло объём единичного шара. Количество точек $N_1=10^7, N_2=10^8, N_3=10^9$. Сделайте замеры времени работы для минимального и максимального числа потоков и нарисовать графики. Язык выполнения работы Python. (25 баллов)