Memória virtual (um estudo introdutório)

A noção de memória virtual

MP como "cache" do HD

- Execução simultânea
 - Múltiplos programas
 - » Memória requerida > capacidade da MP
- Requisito: compartilhamento de memória
 - Eficiente: degradação aceitável do desempenho
 - Seguro: garantia de não-interferência

Ideia-chave

"Nem todas as porções de cada programa estão simultaneamente ativas" (localidade)

- MP deve conter só porções ativas
 - De cada programa em execução
- Porções inativas mantidas em HD
 - Até tornarem-se ativas

Propriedades da memória virtual

- Extensão do espaço de endereçamento
 - Além dos limites da MP
 - Requer controle da transferência: MP ↔ HD
- Relocação de programas e dados
 - Simplifica carga de programas em MP
- Compartilhamento de memória
 - Requer proteção

Proteção do sistema

- Mecanismos para garantir não-interferência de múltiplos processos ao compartilhar:
 - Processador
 - Memória
 - Dispositivos de E/S
- Não-interferência
 - Um processo n\(\tilde{a}\) deve ler/escrever dados de outro processo (a menos que tenha permiss\(\tilde{a}\))
- Proteção de memória:
 - Um programa só deve ler/escrever as porções da MP que lhe foram atribuídas (de acordo com suas permissões)

Proteção da memória (Solução 1)

- Faixas de endereços exclusivas
 - Atribuir posições de MP acessíveis apenas por um determinado programa
- Dificuldade:
 - Como determinar que programas?
 - » Impossível em tempo de compilação
 - » Programas em execução mudam dinamicamente

Proteção da memória (Solução 2)

- Espaços de endereçamento separados
 - Cada programa compilado em seu próprio
 - » Espaço virtual de endereçamento
 - Espaços virtuais em locais diferentes do HD
 - Proteção atua só quando há carga em memória
- Dificuldade:
 - Como harmonizar espaços separados na MP?
- Ideias-chave:
 - Endereço virtual ≠ endereço físico
 - Tradução ao carregar na MP
 - » Dinâmica

Tradução de endereços

- Mapeamento:
 - Endereço no espaço virtual (HD)
 - Endereço no espaço real (MP)
- Memória virtual e física
 - Divididas em páginas
 - » Blocos de tamanho fixo
- Análoga ao mapeamento de caches
 - » Bloco → página
 - » Miss → page fault

Tradução de endereços

Todo endereço virtual corresponde a um endereço de HD

Um subconjunto dos endereços virtuais corresponde a endereços físicos Diferentes endereços virtuais podem ser mapeados para mesmo endereço físico

Mapeamento

Como é implementada a tradução ?

Relocação

- Antes de acessar uma posição de memória
 - Ocorre mapeamento: endereço virtual → físico
- Consequências:
 - Dados e instruções automaticamente relocados
 - Podem ser carregados em qualquer lugar da MP
- Relocação feita pelo ligador
 - Feita no espaço de endereçamento virtual
 - » Viabiliza modularidade dos programas
- Relocação decorrente de memória virtual
 - Feita no espaço de endereçamento físico
 - » Flexibiliza a carga de programas e dados em MP

Falta de página: características

- Pode levar milhões de ciclos de relógio
 - HD ≈ 100.000x MP; MP ≈ 10-100x CPU
 - » Consequência de diferentes tecnologias
- Penalidade de falta
 - Dominada pelo acesso à primeira palavra
 - » Consequência de como são construídos os HDs
- Como dimensionar o sistema?

Princípios de projeto

- Páginas grandes (4KB a 16KB)
 - Amortizar o grande tempo de acesso
- Posicionamento "totalmente associativo"
 - Reduzir a taxa de faltas
 (Mapeamento geraria faltas devidas a conflitos)
- Falta de página resolvida em SW
 - Degradação pequena face ao acesso ao HD
- Consistência do HD via "write-back"
 - "Write-through" inviável (escritas em HD lentas demais; "write buffer" grande demais)

Posicionamento de páginas na MP

- Posicionamento totalmente associativo
 - Página virtual mapeada p/ qualquer página física
 - » Pois penalidade de falta é muito alta
- SO usa algoritmo sofisticado
 - Para monitorar uso de páginas
 - Tentar substituir páginas que não serão necessárias por um longo período
- Mas busca não pode ser exaustiva
 - Páginas são localizadas através de uma tabela

Tabela de páginas (TP)

- Tradução = consulta à TP
 - Entrada: número da página virtual (índice)
 - Saída: número da página física
- Onde é mantida?
 - Residente na MP
 - Cada programa tem a sua
- Suporte de HW
 - Registrador que aponta para TP (RTP)
 - » "Page table register"

A tabela de páginas

A interface HW/SW

- Estado de um programa (processo)
 - PC, registradores e TP
 - Preservado antes de permitir que outro programa use o processador
 - Restaurado para continuar execução
- Processo
 - Ativo: tem posse do processador
 - Inativo: em caso contrário

A interface HW/SW

- Cada processo tem sua TP em MP
 - Antes de ser desativado
 - » RTP é preservado (ao invés de toda a tabela)
 - Antes de ser ativado
 - » RTP é carregado com endereço de sua TP
- SO aloca memória física
 - Páginas livres ou liberadas
- SO mantém e atualiza TPs
 - Toda vez que uma página é carregada em MP
 - Garantindo não-colisão de espaços de endereçamento

Falta de página

- Detectada quando bit de validade é nulo
- Uma exceção é disparada
 - Transferindo o controle para o SO
- SO busca a página no HD
- SO decide onde carregá-la na MP

Como achar a página no HD?

- Quando SO cria um processo...
- Cria um espaço no HD
 - Para armazenar todas as suas páginas
 - » "Swap space"
- Cria também uma estrutura de dados
 - Para registrar onde no HD está cada página virtual
 - » Parte da TP ou estrutura auxiliar similar

Organização da memória virtual

E quando não há mais páginas livres?

- SO escolhe uma página para substituir
 - Critério: LRU (aproximadamente)
 - Para monitorar uso:
 - » "Reference bit" na TP
- A página escolhida é escrita no swap space
 - Atualização: "Write-back" ("copy-back")
 - Para aumentar eficiência:
 - » "Dirty bit" na TP

Aceleração da tradução

- Cada acesso à memória virtual
 - Leva no mínimo o tempo de 2 acessos à MP
 - » Um para obter o endereço físico na TP
 - » Outro para obter o item referenciado
- Capturar localidade de referência à TP
 - Se um número de página virtual foi traduzido
 - Então será provavelmente reusado
 - » Localidade temporal e espacial das palavras na página

Aceleração da tradução

- Ideia-chave:
 - Armazenamento das traduções mais recentes
- "Translation-lookaside buffer" (TLB)
 - Cache especial para traduções de endereço

Organização com TLB

TLB

- Associatividade da cache
 - Totalmente associativa, se pequena
 - Associativa por conjunto, se maior
- Valores típicos
 - Tamanho total: 16 a 512 entradas
 - Tamanho do bloco: 1 a 2 entradas
 - » 4 a 8 bytes cada
 - Hit time: 0,5 a 1 ciclo
 - Penalidade de falta: 10-100 ciclos
 - Taxa de faltas: 0,01% a 1%

Unidade de gerenciamento de memória

"Memory management unit" (MMU)

Conclusões

- Hierarquia de memória
 - Memória virtual é nível mais baixo
 - » Tempo de acesso: milhões de ciclos de relógio
- - Acesso MP/acesso cache ≈ 10 a 100
 - Mecanismo: índices+"tags" por um controlador
- Gerenciamento HD ↔ MP: em SW
 - Acesso HD/acesso MP = 100.000
 - Mecanismo: via TP atualizada pelo SO

Conclusões

- Mecanismo de memória virtual permite:
 - Compartilhamento de memória
 - Extensão do espaço de endereçamento em MP
 - Proteção
 - Relocação
- Chaves do mecanismo
 - Divisão da memória em páginas
 - Tradução de endereços

Conclusões

- Tradução de endereços
 - Via tabela de páginas
 - Acelerada com TLB
- Estudo aprofundado de memória virtual
 - INE 5412 Sistemas Operacionais I
 - » "Memória: Alocação, Gerência e Memória Virtual"