Learning from Multilingual Multimodal Data

Desmond Elliott

Dagstuhl Seminar 19021, 8 January 2019

Machine translation works in practice ...

A baseball player in a black shirt just tagged a player in a white shirt.

Ein Baseballspieler in einem schwarzen Shirt fängt einen Spieler in einem weißen Shirt.

... but multimodality can help to resolve ambiguities

Applications for Multilingual Multimodal Models

- Localised alt-text generation across the Web
- Image search and retrieval
- Audio described movies for more languages

The Danish flag flying against a cloudy sky

Det danske flag vajende mod en blå himmel

This talk

Multimodal machine translation

2. Multilingual imagesentence retrieval

Multimodal machine translation

Elliott and Kádár. Imagination Improves Multimodal Translation. IJCNLP 2017

Elliott, Frank, Hasler (2015)

- Data \in (x, y, v):
 - x is a description of image v
 - \circ y is a translation of x

A brown dog is running after the black dog.

Ein brauner Hund rennt dem schwarzen Hund hinterher

- Task: Generate best \hat{y} , given x and v.
- Evaluation: Meteor (Denkowski and Lavie, 2014)

Decomposing Multimodal Translation

- Decompose the problem into two steps:
 - 1. Learning to translate: $J_T(\theta, \phi^t)$
 - 2. Learning to ground: $J_G(\theta, \phi^g)$
 - → Use external resources for each problem

• Multitask learning shared parameters θ (Caruana, 1997)

Model: Learning to Translate: $J_T(\theta, \phi^t)$

Model: Learning to ground: $J_G(\theta, \phi^g)$

Multitask Learning Model

Objectives

Translation model:

$$J_{T}(\theta, \phi^{t}) = -\sum_{j} \log p(y_{j}|y_{< j}, x)$$

Image prediction model:

$$J_G(\theta, \phi^g) = \underbrace{\sum_{\mathbf{v}' \neq \mathbf{v}} \max\{0, \alpha - \underbrace{\cos(\hat{\mathbf{v}}, \mathbf{v})}_{\text{Constrastive examples}} + \underbrace{\cos(\hat{\mathbf{v}}, \mathbf{v}')}_{\text{Maximise similarity between true pair}} + \underbrace{\cos(\hat{\mathbf{v}}, \mathbf{v}')}_{\text{Minimise similarity between true pair}}$$

Data: Multi30K

Elliott et al. (V&L 2016, WMT 2017) Barrault et al. WMT 2018

32K English-captioned images with German, French, and Czech translations

A group of people are eating noodles.

Eine Gruppe von Leuten isst Nudeln.

Un groupe de gens mangent des nouilles.

Skupina lidí jedí nudle.

Related Work

Models

- Sentence-to-image prediction for word similarity and image retrieval (Chrupala et al. ACL 2015)
- Word-to-image prediction for word similarity and zero-shot image retrieval (Collell et al. AAAI 2017)
- Video description with video prediction and lexical entailment (Pasunuru and Bansal, EMNLP 2017)
- Related caption prediction and image prediction (Kiela et al. NAACL 2018)

Data

- Turkish Flickr8K (Unal et al. SIU 2016)
- Chinese Flickr8K (Li et al. MM 2016)
- Japanese extension of COCO (Yoshikawa et al. ACL 2017)
- How2: 300 hours of instructional videos with Portuguese translations (Sanabria et al. NeurIPS ViGIL 2018)

See Frank et al. (NLE 2018) for a more comprehensive overview of related datasets.

Image Prediction Improves Translation

Further Improvements with External Resources

Conclusions

- Image representation prediction helps multimodal translation
- Easy to train with external data
 - Improvements with out-of-domain
 - Newswire parallel text
 - Crowdsourced described images

Multilingual image - sentence retrieval

Kádár, Elliott, Côté, Chrupała, Alishahi. Lessons learned in multilingual grounded language learning. CoNLL 2018

Problem Formulation

- Given an image, retrieve its sentence from a shared space (and vice-versa)
- Evaluation: Recall@K, Median Rank

Model (following Gella et al. 2017)

Training

end while

```
while not stopping criterion do
        T \sim \mathrm{Bern}(p)
        if T=1 then
                 D_n \sim \mathcal{D}_{c2i}
                 \langle c, i \rangle \sim D_n
                 \mathbf{a} \leftarrow \phi(c, \theta_{\phi})
        else
                < c_a, c_b > \sim D_{c2c}

\mathbf{a} \leftarrow \phi(c_a, \theta_\phi)
                 \mathbf{b} \leftarrow \phi(c_b, \theta_\phi)
        end if
         [\theta_{\phi}; \theta_{\psi}] \leftarrow \text{SGD}(\nabla_{[\theta_{\phi}; \theta_{\psi}]} \mathcal{J}(\mathbf{a}, \mathbf{b}))
```

- Choose a task T
- $m{\mathcal{D}_{c2i}}$: image--caption datasets
- $\phi(c, heta_\phi)$: sentence encoder
- $\psi(i, heta_\phi)$: image encoder
- D_{c2c} : caption--caption datasets

Gella et al. (EMNLP 2017)

•
$$\mathcal{J}(\mathbf{a}, \mathbf{b})^{\frac{1}{2}} \max_{c'} \left[\alpha + s(i, c') - s(i, c) \right]_{+}$$

+ $\max_{i'} \left[\alpha + s(i', c) - s(i, c) \right]_{+}$

Related Work

- Image—sentence ranking with KCCA (Hodosh et al. JAIR 2013)
- Ranking with dependency tree recursive neural nets (Socher et al. TACL 2014)
- Order-embeddings for ranking (Kiros et al. ICLR 2015)
- Bilingual ranking with caption—caption objective (Gella et al. EMNLP 2017)
- Max-of-hinges training for ranking models (Faghri et al. BMVC 2018)

Multilingual data improves image retrieval

High-to-low resource transfer with multilingual data

Controlling for data exposure

Conclusions

- Multilingual data improves the ranking model
- Improvements also hold for "low-resource" settings
- Mixed results when controlling for data exposure

Summary

- Two ways of looking at multilingual and multimodal data
 - Retrieval task: multilinguality is useful
 - Translation task: multimodality is useful
- Both models benefited from learning to solve multiple tasks

Open Problems

- Data: need larger (more naturally occurring) multimodal datasets
- Ranking: how can our models exploit disjoint datasets?

Translation: how can we show the value of the visual data?

Why does MTL help for translation?

Image Prediction Visualisation

"there is a cafe on the street corner with an oval painting on the side of the building."

Improved prepositional phrase translation

Two children on their stomachs lay on the ground under a pipe

Zwei Kinder auf ihren Gesichtern liegen unter dem Boden auf dem Boden

Zwei Kinder liegen Bäuchlings auf dem Boden unter einer Schaukel

Worse preposition selection

A bird flies across the water

Ein Vogel fliegt über das Wasser

Ein Vogel fliegt durch das Wasser

Data: translation won't always work

"draaiorgel"

- A yellow truck is standing on a busy street in front of the Swarovski store.
- A strange looking wood trailer is parked in a street in front of stores.
- An unusual looking vehicle parked in front of some stores.

van Miltenburg et al. INLG 2017