Aufgaben zur Vorlesung Thermodynamik

Autor: Florian Kluibenschedl

30. Oktober 2019

Semester: WS2019/20

Lehrveranstaltung: VU Thermodynamik

Institut: Physikalische Chemie Professor: Dipl.-Chem. Dr. Julia

Kunze-Liebhäuser

Inhaltsverzeichnis

L	\mathbf{Zus}	standsgrößen und totale Differentiale							
	1.1	Extensive und Intensive Zustandsgrößen							
	1.2	Das Volumen eines Zylinders ein totales Differential?							
	1.3	Totales Differential einer exemplarischen Funktion							
	1.4	Das molare Volumen ein totales Differential?							
	1.5	Zusammensetzung eines Gasgemisches							
2	Kin	Kinetische Gastheorie							
	2.1	Energieverteilung und wahrscheinlichste Energie							
	2.2	Zusammenstöße in einem N_2 Kolben							
	2.3	Freiheitsgrade und Beitrag zur inneren Energie							
3	Bet	crachtung von realen Gasen							
		Volumensarbeit eines realen und idealen Gases							

1 Zustandsgrößen und totale Differentiale

1.1 Extensive und Intensive Zustandsgrößen

Extensive Zustandsgrößen hängen von der Größe des Systems ab. Intensive Zustandsgrößen sind demgegenüber unabhängig von der Systemgröße.

Tabelle 1: Beispiele für Zustandsgrößen und Einteilung in intensive und extensive

Intensive Zustandsgrößen	Extensive Zustandsgrößen
Molvolumen	Entropie
Temperatur	Stoffmenge
Druck	Volumen
Partialdruck	innere Energie
molare Masse	Enthalpie
Konzentration	Masse
Dichte	
spezifisches Volumen	

1.2 Das Volumen eines Zylinders ein totales Differential?

Das Volumen eines Zylinders kann mit

$$V(r,h) = r^2 \pi h \tag{1}$$

berechnet werden. Das totale Differential berechnet sich zu

$$dV = \left(\frac{\partial V}{\partial r}\right)_h dr + \left(\frac{\partial V}{\partial h}\right)_r dh = 2r\pi h dr + r^2 \pi dh.$$
 (2)

Um zu überprüfen, ob V(r,h) eine Zustandsfunktion ist, muss untersucht werden, ob die gemischten zweiten partiellen Ableitungen gleich sind. Auf einem sternförmigen Gebiet gelten dann die Integrabilitätsbedingungen sowie der Satz von Schwarz. Es gilt

$$\begin{aligned}
\partial_r \partial_h V &= 2r\pi \\
\partial_h \partial_r V &= 2r\pi.
\end{aligned} \tag{3}$$

Daraus folgt, dass $\partial_r \partial_h V = \partial_h \partial_r V$ und damit ist V(r,h) eine Zustandsfunktion. \square

1.3 Totales Differential einer exemplarischen Funktion

Wir betrachten die Funktion

$$f(x,y) = x^4 + xy \tag{4}$$

und bilden $J = (\partial_x f(x, y) \quad \partial_y f(x, y)) = (4x^3 + y \quad x)$ sowie die Hesse-Matrix

$$H_f = \begin{pmatrix} \partial_{xx} f(x, y) & \partial_{yx} f(x, y) \\ \partial_{xy} f(x, y) & \partial_{yy} f(x, y) \end{pmatrix} = \begin{pmatrix} 12x^2 & 1 \\ 1 & 0 \end{pmatrix}.$$
 (5)

Aufgrund der Symmetrie von H_f ist auf einem sternförmigen Gebiet der Satz von Schwarz erfüllt und damit f(x, y) eine Zustandsfunktion. Das totale Differential lässt sich schreiben als

$$df(x,y) = (\partial_x f(x,y))_y dx + (\partial_y f(x,y))_x dy = (4x^3 + y) dx + (x) dx,$$
(6)

wobei die Einträge der oben angegebenen Jakobi-Matrix eingesetzt wurden.

1.4 Das molare Volumen ein totales Differential?

Wir betrachten das totale Differential

$$dV_m = \left(\frac{R}{p}\right)_p dT - \left(\frac{RT}{p^2}\right)_T dp. \tag{7}$$

Die gemischten zweiten partiellen Ableitungen lauten

$$\partial_p \partial_T V_m = -\frac{R}{p^2}$$

$$\partial_T \partial_p V_m = -\frac{R}{p^2}$$
(8)

und damit ist V_m eine Zustandsfunktion, was wiederum impliziert, dass $\mathrm{d}V_m$ wirklich ein totales Differential ist.

1.5 Zusammensetzung eines Gasgemisches

Folgende Daten eines Gasgemisches der drei Komponenten A, B, C sind gegeben: $p_{Ges.}=1.00$ bar, $V_{Ges.}=1$ m³, T=298 K, $x_A=0.3$ und $p_B=0.25$ bar. Wir rechnen wie folgt:

$$p_{A} = x_{A} \cdot p_{Ges.}$$

$$\Rightarrow p_{C} = p_{Ges.} - p_{B} - p_{A}$$

$$\Rightarrow n_{C} = \frac{p_{C} \cdot V_{Ges.}}{RT}$$

$$\Rightarrow m_{C} = n_{C} \cdot M_{N_{2}} = 508.6 \,\mathrm{g}$$

$$(9)$$

Das Gasgemisch enthält demnach $508.6\,\mathrm{g}$ an N_2 .

2 Kinetische Gastheorie

2.1 Energieverteilung und wahrscheinlichste Energie

Wir betrachten die Energieverteilung (E_K ist die kinetische Energie)

$$f(E_K) dE_K = \frac{2\pi}{(\pi kT)^{3/2}} \cdot \sqrt{E_K} \cdot e^{-\frac{E_K}{kT}} dE_K,$$
(10)

die sich aus f(v)dv ergibt. Die erste Ableitung

$$f'(E_K) = \frac{2\pi}{(\pi kT)^{3/2}} \cdot e^{-\frac{E_K}{kT}} \left(\frac{1}{2\sqrt{E_K}} - \frac{\sqrt{E_K}}{kT} \right) \stackrel{!}{=} 0$$
 (11)

wird null gesetzt, woraus folgt, dass $E_K = \frac{1}{2}kT$. Daraus folgt, wie bereits des öfteren erwähnt, dass die Temperatur ein Maß für die Kinetische Energie ist. Für T = 20 °C ist $E_K = 2.02 \times 10^{-21}$ J.

2.2 Zusammenstöße in einem N_2 Kolben

Wir betrachten einen Kolben mit reinem N_2 bei einer Temperatur von 217 K und einem Druck von 0.05 atm, $\sigma=0.43\,\mathrm{nm}^2$. Bewegt sich nur ein Teilchen, so kann die Zahl der Zusammenstöße pro Sekunde mit

$$z_1 = \sqrt{2}\sigma < v > \frac{p}{kT} \tag{12}$$

berechnet werden. Die mittlere Geschwindigkeit

$$\langle v \rangle = \sqrt{\frac{8RT}{\pi M}}$$
 (13)

ergibt sich aus der Boltzmann Verteilung. Es ergeben sich $z_1=4.8\times 10^8\,{\rm St\"{o}Be/s}$. Die Gesamtzahl aller Zusammenst\"{o}Be kann mit

$$z_{11} = \frac{1}{\sqrt{2}}\sigma \langle v \rangle \left(\frac{p}{kT}\right)^2 \tag{14}$$

berechnet werden. Es ergeben sich also $z_{11} = 4.02 \times 10^{32} \, \text{Stöße/s}.$

Florian Kluibenschedl

2.3 Freiheitsgrade und Beitrag zur inneren Energie

Die Anzahl an möglichen Freiheitsgraden setzt sich aus den Freiheitsgraden der Translation, Rotation und Schwingung zusammen $(FG_G = FG_T + FG_R + FG_S)$. Für die Freiheitsgrade der Schwingung gilt $FG_S = 3N - 3 - FG_R$. Jeder Freiheitsgrad trägt mit $\frac{1}{2}kT$ zur inneren Energie bei, also $U = \frac{1}{2}\left(FG_T + FG_R + 2FG_S\right)kT$. In der folgenden Tabelle wird dies für einige Moleküle festgehalten (U bei $1000\,\mathrm{K})$.

	$\mid FG_T$	FG_R	FG_S	FG_G	U
$\overline{\mathrm{CO}_2}$	3	2	4	9	$8.97 \times 10^{-20} \mathrm{J}$
Ar	3	0	0	3	$2.07 \times 10^{-20} \mathrm{J}$
C_2H_2	3	2	7	12	$1.31 \times 10^{-19} \mathrm{J}$
N_2	3	2	1	6	$4.83 \times 10^{-20} \mathrm{J}$
H_2O	3	3	3	9	$8.28 \times 10^{-20} \mathrm{J}$

Tabelle 2: Moleküle und ihre zugehörigen Freiheitsgrade

3 Betrachtung von realen Gasen

3.1 Volumensarbeit eines realen und idealen Gases

Wir betrachten Stickstoff ($n=1\,\mathrm{mol}$) bei einer Temperatur von 298 K. Mithilfe der Van-Waals-Gleichung

$$p = \frac{RTn}{V - nb} - a\frac{n^2}{V^2} \tag{15}$$

kann die Volumensarbeit des realen Gases W_r bei einer Expansion von 20 L auf 40 L berechnet werden. Dazu setzen wir obigen Ausdruck für den Druck ein und integrieren.

$$W_{r} = -\int_{V_{1}}^{V_{2}} p dV = -\int_{V_{1}}^{V_{2}} \frac{RTn}{V - nb} - a \frac{n^{2}}{V^{2}} dV$$

$$= \left[-RTn \ln(V - nb) - a \frac{n^{2}}{V} \right]_{V_{1}}^{V_{2}}$$

$$= RTn \ln\left(\frac{V_{1} - nb}{V_{2} - nb}\right) + an^{2} \left(\frac{1}{V_{1}} - \frac{1}{V_{2}}\right) = -1716.2 \,\mathrm{J} \,\mathrm{mol}^{-1}$$
(16)

Betrachten wir ein ideales Gas, so setzen wir für den Druck die ideale Gasgleichung ein und integrieren analog.

$$W_{i} = -\int_{V_{1}}^{V_{2}} p dV = -\int_{V_{1}}^{V_{2}} \frac{RTn}{V} dV$$

$$= [-RTn \ln(V)]_{V_{1}}^{V_{2}} = -RTn \ln\left(\frac{V_{2}}{V_{1}}\right) = -1717.3 \,\mathrm{J} \,\mathrm{mol}^{-1}$$
(17)

Damit wird bei der Expansion eines idealen Gases mehr Arbeit theoretisch frei werden wie beim realen Gas. Dies kann durch die nicht berücksichtigten Wechselwirkungen im idealen Gas erklärt werden.