

SF1625 Envariabelanalys

Föreläsning 18: Parameterkurvor

Innehåll. Parameterkurvor, längd av parameterkurvor.

Introduktion. Ett sätt att beskriva en kurva i planet är genom en ekvation, t ex $x^2+y^2=1$ eller $y=x^2$. Den sista är en funktionskurva men inte den första. Detta har vi sett tidigare. Nu får vi ett nytt sätt att beskriva kurvor i planet: genom parametrisering. Då ska x och y anges som funktioner av någon parameter t. Om resultatet ska bli en sammanhängande kurva behöver dessa funktioner vara kontinuerliga. Till exempel kan vi beskriva enhetscirkeln $x^2+y^2=1$ genom att säga att $x=\cos t$ och $y=\sin t$ då t går från 0 till 2π . Gör vi det så har beskrivit enhetscirkeln som en parameterkurva. Vi kan även ge en parametrisering av funktionskurvan $y=x^2$. Det är enklare, för på en funktionskurva kan man använda x som parameter. Vi kan alltså sätta x=t och $y=t^2$, $t\in R$.

Exempel. Parametrisera $y = \sin x$. Detta är en funktionskurva så vi kan använda x som parameter. En parametrisering är alltså x = t och $y = \sin t$, då $t \in \mathbf{R}$.

Exempel. Parametrisera kurvan med ekvation $(x-1)^2+(y-2)^2=9$. Kurvan är en cirkel med radie 3 och medelpunkt i (1,2). Vi kan sätta $x=1+3\cos t$ och $y=2+3\sin t$, då $t\in[0,2\pi)$.

Observation. Parametriseringar är inte unika, utan det finns många parametriseringar av samma kurva. I det sista exemplet kunde vi t ex lika gärna har tagit $x=1+3\cos 2\pi t$ och $y=2+3\sin 2\pi t$, då $t\in[0,1)$.

Längden av en parameterkurva. Längden av kurvan med parametrisering x=x(t) och y=y(t), då $a\leq t\leq b$ fås som

$$\int_a^b \sqrt{x'(t)^2 + y'(t)^2} \, dt.$$

Formeln kan härledas med hjälp av Riemannsummor och Pythagoras sats.

Exempel. Längden av enhetscirkeln fås med formeln ovan till

$$\int_0^{2\pi} \sqrt{(-\sin t)^2 + (\cos t)^2} \, dt = \int_0^{2\pi} 1 \, dt = 2\pi.$$

Exempel. Längden av kurvan med parameterisering $x=\cos^3 t, y=\sin^3 t, 0 \le t \le \pi/2$ fås med formeln ovan till

$$\int_0^{\pi/2} \sqrt{9\cos^4 t \sin^2 t + 9\sin^4 t \cos^2 t} \, dt = \frac{3}{2},$$

där vi på slutet har använt elementär räkning (bryta ut, använda trig-ettan, ta roten ur en jämn kvadrat). Kolla igenom detta själv!