

Learning rule
Assuming:
$$x \in \{-1,+1\}^N$$
, $y \in \{-1,+1\}^M$

Hebb learning formular $W_1 = \sum_{k=1}^p x^T y$ $W_2 = \sum_{k=1}^p y^T x$ $W_1 = W_2^T$

Definition of energy function:
$$E(x,y) = -\frac{1}{2}xWy^T - \frac{1}{2}yW^Tx^T$$

$$= -xWy^T$$

$$x_i = \begin{cases} 1, & yw_i^T > 0 \\ -1, & yw_i^T < 0 \end{cases}$$

$$y_i = \begin{cases} 1, & xw^j > 0 \\ -1, & xw^j < 0 \end{cases}$$

$$y_i = \begin{cases} 1, & xw^j > 0 \\ -1, & xw^j < 0 \end{cases}$$
If $\Delta x_i > 0$ then $yw_i^T > 0$

We is the y^{th} row weight factors in the y^{th} or y^{th} is the y^{th} or y^{t

Chapter 6 ANN Hybrid System

- 6.1 Fuzzy Neural Network
- 6.2 Evolutionary Computation and Genetic Algorithm
- 6.3 A Hybrid System of Expert Systems and Neural Networks

6.1 Fuzzy Neural Network

Neural-fuzzy networks implements fuzz-logic inferencing through neural networks.

1. Fuzzy-logic Systems

Fuzzy logic grew out of a desire to quantify rule-based systems. It provides a way to quantify certain quantifiers such as approximately, often, rarely, several, few, and very.

Relationship of fuzzy-logic systems to the two main areas of AI

		Information framework			
be		symbolic	numerical		
dge ty	structured (based on rules)	expert system	fuzzy-logic system		
nowle	unstructured		neural network		

A. Fuzzy set

quantify the *degree of membership* with values between 0 (not a member) and 1 (definitely a member).

The following figure shows a representation of energy requirement in fuzzy terms.

B. Conversion Between Numeric and Fuzzy-Logic Variables

How to convert a numeric variable to a fuzzy-logic variable through fuzzifier, and to convert the fuzzy-logic variable back to a numeric variable through a defuzzifier.

The numeric variable are denoted numeric(x) and the fuzzy-logic variables are denoted fuzzy(e.g., 50 to 70 for low,and 80 to 100 for moderate).

numeric(60)=fuzzy(0, 1, 0, 0, 0) numeric(90)=fuzzy(0, 0, 1, 0, 0)

For numeric values in the transition regions, we use a linear interpolation between the beginning and ending values of the region.

 $\textit{numeric}(74) = \textit{fuzzy}(0, \frac{80 - 74}{80 - 70}, \frac{74 - 70}{80 - 70}, 0, 0) = \textit{fuzzy}(0, 0.6, 0.4, 0, 0)$

Similarly, we can convert the fuzzy-logic variable back to a numeric variable using the exact opposite process.

 $\begin{aligned} & fuzzy(0,0.3,0.7,0,0) = numeric(0.3 = \frac{80 - x_1}{80 - 70}) & or & numeric(0.7 = \frac{x_2 - 70}{80 - 70}) \\ & x_1 = 77 & x_2 = 77 \end{aligned}$

C. Union and Intersection of Fuzzy sets

Define two fuzzy sets:

$$\begin{split} & I {=} \{i_1/x_1,\, i_2/x_2,\, \dots, i_n/x_n,\} \\ & J {=} \{j_1/x_1,\, j_2/x_2,\, \dots, j_p/x_p,\} \end{split}$$

where $x_1,x_2,...$ are members of the set with degrees of membership $i_1,i_2,...$ (for set I) and $j_1,j_2,...$ (for set J).

Union of two fuzzy sets:

$$I \cup J = \{(\max(i_1, j_1)) / x_1, (\max(i_2, j_2)) / x_2, \ldots\}$$

Intersection of two fuzzy sets:

$$I \cap J = \{(\min(i_1, j_1)) / x_1, (\min(i_2, j_2)) / x_2, ...\}$$

Hidden layer 3: operates the same as a standard backpropagation network, having weight factors (w_{ij}) and a sigmoid transfer function. The weight factors are adjusted to map the firing strength of the fuzzy rules onto the desired output variable. Hidden layer 4: operate the same as a standard backpropagation network, as in layer 3.

Practice

Max{ $f(x)=x^2$ }, $x=0 \sim 31$

1. Initiation (binary code)

标号	串	X	适配值	占整体百 分数
1	01101	13	169	14.4
2	11000	24	576	49.2
3	01000	8	64	5.5
4	10011	19	361	30.9
总计(初始种群整体)			1170	100

2. Selection(reproduction)

第一代群体的选择(复制)

	标号	初始群体	X	f(x)=x2	选择复制 的概率	期望复 制数	实际得到 复制数	
	1	01101	13	169	0.14	0.58	1	
	2	11000	24	576	0.49	1.97	2	
	3	01000	8	64	0.06	0.22	0	
	4	10011	19	361	0.31	1.23	1	
		总计		1170	1.0	4.0	4	
		平均		293	0.25	1.0	1	
	最大值		最大值		576	0.49	1.97	2

169/1170=0.14 169/293=0.58

3. Crossover

复制交叉后的各项数据

27722071111 773011						
新标号	复制后的 匹配池	匹配对象 (随机选取)	交叉点 (随机取)	新种群	X值	f(x)=x2
1	01101	2	4	01100	12	144
2	11000	1	4	11001	25	625
3	11000	4	2	11011	27	729
4	10011	3	2	10000	16	256
总计						1754
平均					439	
最大值					729	

平均值 293 → 439 最大值 576 →729

4. Mutation

取变异概率0.001, 种群共有4*5=20位,20*0.001=0.02位, 所以本例无串位值的改变。至此,完成一代遗传。

Application in ANN

用遗传算法学习神经网络权值 \mathbf{w}_{ij}

1. 二进制编码

W字符串表示的值和实际数值间的关系:

$$w(i, j) = w_{\min}(i, j) + \frac{binary(t)}{2^{n} - 1} [w_{\max}(i, j) - w_{\min}(i, j)]$$

如w在1~0间,4位二进制: $w = 0 + \frac{1111}{2^4 - 1}[1 - 0] = 1$

W学习过程: 交叉、变异,产生下一代网络。

2. Real number code

* code (0.4, -0.3, 2.1, 1.3, 0.9, -0.6, 4.5, -0.1, 0.7)

* estimate function $f=1/\Sigma e_i^{\ 2}$

* Initiation

determine the weight factors at random

 $(0.4, \ -0.3, \ 2.1, \ 1.3, \ 0.9, \ -0.6, \ 4.5, \ -0.1, \ 0.7)$

(0.7, -0.9, 1.2, 0.8, 1.4, 0.1, -1.1, 0.2, -1.1)

* crossover (0.4, -0.9, 1.2, 1.3, 1.4, 0.1, 4.5, 0.2, -1.1)

* mutation (0.4, -0.3, 2.1, 1.3, 0.9, -0.6, 4.5, -0.1, 0.7) stochastic value -1.1 stochastic value -0.7

(0.4, -0.3, 1.0, 1.3, 0.9, -0.6, 4.5, -0.8, 0.7)

1. The structure of an expert system

| knowledge | inference | user | interface |
| shell | knowledge in expert systems

| Knowledge = facts + rules + heuristics |
| shell | 1. Explains how the system reaches a conclusion |
| 2. Explains why it needs certain information |
| 3. Adds information to the knowledge base

6.3 A Hybrid System of Expert Systems and Neural Networks

2. Neural networks versus expert systems

Neural networks	Expert systems
example-based	rule-based
domain-free	domain-specific
finds rules	needs rules
little programming	much programming
easy to maintain	difficult to maintain
fault-tolerant	not fault-tolerant
needs a database	needs a human expert
fuzzy logic	rigid logic
adaptive system	requires reprogramming

3. Advantages and limitations of expert systems and neural networks

	Expert systems	Neural networks
very effective	In applying a fixed set of facts, rules and heuristic(i.e., knowledge) to a domain- specific problem, typically involving only simple mathematics.	In organizing and detecting patterns from unpredictable and/or imprecise input data, in learning by examples, and in generalizing to new situations.
less effective	In processing raw sensory data from the real, unpredictable world.	In providing in-depth solutions and full understanding of each problem as well as the reasoning behind its solution(i.e., no explanation capability).

