1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (напиональный исслеловательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Дисциплина: «Моделирование» Лабораторная работа №4

Тема работы:

«Программно- алгоритмическая реализация моделей на основе дифференциальных уравнений в частных производных с краевыми условиями II и III рода.»

Студент: Левушкин И. К.

Группа: ИУ7-62Б

Преподаватель: Градов В. М.

Цель работы

Получение навыков разработки алгоритмов решения смешанной краевой задачи при реализации моделей, построенных на квазилинейном уравнении параболического типа.

Исходные данные

1. Задана математическая модель.

Уравнение для функции T(x,t)

$$c(T)\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(k(T)\frac{\partial T}{\partial x} \right) - \frac{2}{R}\alpha(x)T + \frac{2T_0}{R}\alpha(x) \tag{1}$$

Краевые условия

$$\begin{cases} t = 0, T(x,0) = T_0, x = 0, -k(T(0)) \frac{\partial T}{\partial x} = F_0, \\ x = l, -k(T(l)) \frac{\partial T}{\partial x} = \alpha_N(T(l) - T_0) \end{cases}$$

В обозначениях уравнения (14.1) лекции №14

$$p(x) = \frac{2}{R}\alpha(x), f(u) \equiv f(x) = \frac{2T_0}{R}\alpha(x).$$

- 2. Разностная схема с разностным краевым условием при x=0 получена в Лекции №14 (14.6),(14.7) и может быть использована в данной работе. Самостоятельно надо получить интегро-интерполяционным методом разностный аналог краевого условия при x=l, точно так же, как это сделано при x=0 (формула (14.7)). Для этого надо проинтегрировать на отрезке $[x_{N-\frac{1}{2}},x_N]$ выписанное выше уравнение (1) и учесть, что поток $\widehat{F_N}=\alpha_N(\widehat{y_N}-T_0)$, а $\widehat{F_{N-\frac{1}{2}}}=\widehat{\chi_{N-\frac{1}{2}}}^{\widehat{y_{N-1}}-\widehat{y_N}}$.
- 3. Значения параметров для отладки (все размерности согласованы)

$$k(T) = a_1(b_1 + c_1 T^{m_1}), \, \text{Вт/см K},$$
 $c(T) = a_2 + b_2 T^{m_2} - \frac{c_2}{T^2}, \, \text{Дж/см}^3 \, \text{K}.$
 $a_1 = 0.0134, b_1 = 1, c_1 = 4.3510^{-4}, m_1 = 1,$
 $a_2 = 2.049, b_2 = 0.56310^{-3}, c_2 = 0.52810^5, m_2 = 1.$
 $\alpha_0 = 0.05 \, \, \text{Вт/см}^2 \, \, \text{K},$
 $\alpha_N = 0.01 \, \, \, \text{Вт/см}^2 \, \, \text{K},$
 $l = 10 \, \, \, \, \text{см},$

```
T_0 = 300 \; {
m K}, R = 0.5 \; {
m cm}, F(t) = 50 \; {
m BT/cm^2} (для отладки принять постоянным)
```

Физическое содержание задачи (для понимания получаемых результатов при отладке программы).

Постановки задач в данной лабораторной работе и работе №3 во многом совпадают. Отличия заключаются в следующем:

- 1. Сформулированная в данной работе математическая модель описывает **нестационарное** температурное поле T(x,t), зависящее от координаты х и меняющееся во времени.
- 2. Свойства материала стержня привязаны к температуре, т.е. теплоемкость и коэффициент теплопроводности c(T), k(T) зависят от T, тогда как в работе №3 k(x) зависит от координаты, а c=0.
- 3. При x=0 цилиндр нагружается тепловым потоком F(t), в общем случае зависящим от времени, а в работе N = 3 поток был постоянный.

Если в настоящей работе задать поток постоянным, т.е. F(t) = const, то будет происходить формирование температурного поля от начальной температуры T_0 до некоторого установившегося (стационарного) распредения T(x,t). Это поле в дальнейшем с течением времени меняться не будет и должно совпасть с температурным распределением T(x), получаемым в лаб. работе №3, если все параметры задач совпадают, в частности, вместо k(T) надо использовать k(x) из лаб. работы №3. Это полезный факт для тестирования программы.

Если после разогрева стержня положить поток F(t) = 0, то будет происходить остывание, пока температура не выровняется по всей длине и не станет равной T_0 .

При произвольной зависимости потока F(t) от времени температурное поле будет как-то сложным образом отслеживать поток.

Замечание. Варьируя параметры задачи, следует обращать внимание на то, что решения, в которых температура превышает примерно 2000К, физического смысла не имеют и практического интереса не представляют.

Результаты работы

Задание 1.

Представить разностный аналог краевого условия $npu \ x = l \ u$ его краткий вывод интегро-интерполяционным методом.

Проинтегрируем уравнение (14.3) с учетом (14.2) из Лекции №14 на отрезке $[x_{N-\frac{1}{2}},x_N]$ и на временном интервале $[t_m,t_{m+1}]$

$$\int_{x_{N-\frac{1}{2}}}^{x_N} dx \int_{t_m}^{t_{m+1}} c(u) \frac{\partial u}{\partial t} dt = -\int_{t_m}^{t_{m+1}} dt \int_{x_{N-\frac{1}{2}}}^{x_N} \frac{\partial F}{\partial x} dx - \int_{x_{N-\frac{1}{2}}}^{x_N} dx \int_{t_m}^{t_{m+1}} p(x) u dt + \int_{x_{N-\frac{1}{2}}}^{x_N} \int_{t_m}^{t_{m+1}} f(u) dt$$

Приближенно вычисляя итегралы по времени, как и выше получим

$$\int_{x_{N-\frac{1}{2}}}^{x_N} \widehat{c}(\widehat{u} - u) dx = -\int_{t_m}^{t_{m+1}} (F_N - F_{N-\frac{1}{2}}) dt - \int_{x_{N-\frac{1}{2}}}^{x_N} p\widehat{u}\tau dx + \int_{x_{N-\frac{1}{2}}}^{x_N} \widehat{f}\tau dx$$

Вычисляем интегралы. Первый интеграл справа, как и ранее, находим методом правых прямоугольников, а остальные - методом трапеций

$$\frac{h}{4} \left[\widehat{c_N} (\widehat{y_N} - y_N) + \widehat{c_{N - \frac{1}{2}}} (\widehat{y_{N - \frac{1}{2}}} - y_{N - \frac{1}{2}}) \right] = -(\widehat{F_N} - \widehat{F_{N - \frac{1}{2}}}) \tau - (p_N \widehat{y_N} + p_{N - \frac{1}{2}} \widehat{y_{N - \frac{1}{2}}}) \tau \frac{h}{4} + (\widehat{f_{N - \frac{1}{2}}} + \widehat{f_N}) \tau \frac{h}{4}$$

Подставляя в данное уравнение выражение для потока $\widehat{F_{N-\frac{1}{2}}}$, учитывая, что $\widehat{F_N}=F(t_{m+1})=\alpha(\widehat{y_N}-\beta)$ (где $\alpha=\alpha_N,\beta=T_0$), и заменяя $\widehat{y_{N-\frac{1}{2}}}=\frac{\widehat{y_N}+\widehat{y_{N-1}}}{2},y_{N-\frac{1}{2}}=\frac{y_N+y_{N-1}}{2}$, найдем разностный аналог краевого условия

$$\left[\alpha \tau + \frac{h}{4} \widehat{c_N} + \frac{h}{8} \widehat{c_{N - \frac{1}{2}}} + \frac{\widehat{\chi_{N - \frac{1}{2}}} \tau}{h} + \frac{p_N \tau h}{4} + \frac{p_{N - \frac{1}{2}} \tau h}{8} \right] \widehat{y_N} + \\ \left[\frac{h}{8} \widehat{c_{N - \frac{1}{2}}} - \frac{\widehat{\chi_{N - \frac{1}{2}}} \tau}{h} + \frac{p_{N - \frac{1}{2}} \tau h}{8} \right] \widehat{y_{N - 1}} = \\ \alpha \beta \tau + (\widehat{f_{N - \frac{1}{2}}} + \widehat{f_N}) \tau \frac{h}{4} + \frac{h}{4} \widehat{c_N} y_N + \frac{h}{4} \widehat{c_{N - \frac{1}{2}}} \frac{y_N + y_{N - 1}}{2}$$

Задание 2.

График зависимости температуры $T(x,t_m)$ от координаты x при нескольких фиксированных значениях времени t_m (аналогично рисунку в лекции №14) при заданных выше параметрах. Обязательно представить распределение T(x,t) в момент времени, соответствующий установившемуся режиму, когда поле перестает меняться c некоторой точностью (например, $\left[\frac{T(t+\tau)-T(t)}{T(t+\tau)}\right] < 10^{-4}$), т.е. имеет место выход на стационарный режим. На этой стадии левая часть дифференциального уравнения близка к нулю, и на самом деле решается уравнение из лабораторной работы №3 (отличие только в том, что там было линейное уравнение).

Ниже приведены графики зависимости температуры стержня T, зависящее от координаты x в разные моменты времени t_m - от начального момента t=0 (синий график) до момента, когда поле перестает меняться с точностью (серый график): $\left[\frac{T(t+\tau)-T(t)}{T(t+\tau)}\right] < 10^{-4}$. Поток постоянный: $F(x) = const = F_0$. Шаг по x: $h_x = 0.01$ см. Шаг по t: $h_t = 1$ сек.. Все остальные параметры взяты из значений параметров для отладки.

Рис. 1: Графики зависимости температуры $T(x,t_m)$ при $h_x=0.01$ см; $h_t=1$ сек.; $F_0=50.0$ Вт/см².

Рис. 2: Графики зависимости температуры $T(x,t_m)$ при $h_x=0.01$ см; $h_t=1$ сек.; $F_0=50.0$ Вт/см².

Где

- ullet Синий цвет соответствует графику при t=0 сек..
- ullet Оранжевый цвет соответствует графику при t=1 сек..
- ullet Зеленый цвет соответствует графику при t=2 сек..
- \bullet Красный цвет соответствует графику при t=3 сек..
- \bullet Фиолетовый цвет соответствует графику при t=4 сек..
- \bullet Коричневый цвет соответствует графику при t=5 сек..
- \bullet Розовый цвет соответствует графику при t=12 сек..
- ullet Серый цвет соответствует графику при t=71 сек. (стационарный режим).

Задание 3.

График зависимости $T(x_n,t)$ при нескольких фиксированных значениях координаты x_n . Обязательно представить случай n=0, т.е. $x=x_0=0$. Ниже приведены графики зависимости температуры стержня T от координаты t в разные моменты времени x_n - от начала стержня x=0.0 см (синий график) до конца стержня x=10.0 (серый график). Поток постоянный: $F(x)=const=F_0$. Шаг по x: $h_x=0.01$ см. Шаг по t: $h_t=1$ сек.. Все остальные параметры взяты из значений параметров для отладки.

Рис. 3: Графики зависимости температуры $T(x_n,t)$ при $h_x=0.01$ см; $h_t=1$ сек.; $F_0=50.0$ Вт/см².

Где

- \bullet Синий цвет соответствует графику при x=0 см.
- Оранжевый цвет соответствует графику при x=0.15 см.
- \bullet Зеленый цвет соответствует графику при x=0.3 см.
- Красный цвет соответствует графику при $x=0.5~{\rm cm}.$
- \bullet Фиолетовый цвет соответствует графику при x=1.0 см.
- Коричневый цвет соответствует графику при $x=1.5~{\rm cm}.$

- Розовый цвет соответствует графику при x = 2.0 см.
- Серый цвет соответствует графику при x = 10.0 см.

Вопросы при защите лабораторной работы.

Ответы на вопросы дать письменно в Отчете о лабораторной работе.

1. Приведите результаты тестирования программы (графики, общие соображения, качественный анализ). Учесть опыт выполнения лабораторной работы №3.

Пример 1.

Ниже приведены графики зависимости температуры стержня T, зависящее от координаты x в разные моменты времени t_m - от начального момента t=0 (синий график) до момента, когда поле перестает меняться с точностью (серый график): $\left[\frac{T(t+\tau)-T(t)}{T(t+\tau)}\right]<10^{-4}$. Поток постоянный: $F(x)=const=F_0$. Шаг по x: $h_x=0.01$ см. Шаг по t: $h_t=1$ сек.. Все остальные параметры взяты из значений параметров для отладки за исключением k(T) (заменен на k(x) из лаб. работы №3).

Рис. 4: Графики зависимости температуры $T(x,t_m)$ при $h_x=0.01$ см; $h_t=1$ сек.; $F_0=50.0$ Вт/см².

Где график серого цвета отвечает за состояние температуры стержня в момент установления стационарного режима. Этот график полностью совпадает с графиком, полученным в 3 лаб. работе при тех же параметрах, что иллюстрирует правильную работу программы.

Пример 2.

Ниже приведены графики с теми же параметрами, что и в задании 2 из раздела «Результаты работы» за исключением $F(x) = const - 0.0 \; \mathrm{Bt/cm^2}$ и начальной температуры стержня. Она задается такой, какой была температура стержня из примера 1 в момент установления стационарного режима. Таким образом модулируется процесс остывания стержня после его разогрева.

Рис. 5: Графики зависимости температуры $T(x,t_m)$ при $h_x=0.01$ см; $h_t=1$ сек.; $F_0=0.0$ Вт/см².

Рис. 6: Графики зависимости температуры $T(x,t_m)$ при $h_x=0.01$ см; $h_t=1$ сек.; $F_0=0.0$ Вт/см².

Где график серового цвета отвечает за состояние температуры стержня в момент установления стационарного режима. На нем, как и ожидалось, температура выровнилась по всей длине стержня и стала равной T_0 , что также иллюстрирует правильную работу программы.

Пример 3.

Ниже приведены графики с теми же параметрами, что и в задании 2 из раздела «Результаты работы» за исключением того, что $F(t) \neq const.$ Было решено задать F(t) = 10 + 20sin(t) Вт/см².

Рис. 7: Графики зависимости температуры $T(x,t_m)$ при $h_x=0.01$ см; $h_t=1$ сек.; F(t)=10+20sin(t) Вт/см².

Рис. 8: Графики зависимости температуры $T(x,t_m)$ при $h_x=0.01$ см; $h_t=1$ сек.; F(t)=10+20sin(t) Вт/см².

Из графиков видно, что стержень то остывает, то нагревается в разные промежутки времени. Это происходит из-за немонотонности функции F(t).

2. Выполните линеаризацию уравнения (14.8) по Ньютону, полагая для простоты, что все коэффициенты зависят только от одной переменной $\hat{y_n}$. Приведите линеаризованный вариант уравнения и опишите алгоритм его решения. Воспользуйтесь процедурой вывода, описанной в лекции №8.

В нащем случае:

$$\widehat{A}_n = \widehat{A}_n(\widehat{y}_n), \widehat{B}_n = \widehat{B}_n(\widehat{y}_n), \widehat{C}_n = \widehat{C}_n(\widehat{y}_n), \widehat{D}_n = \widehat{D}_n(\widehat{y}_n).$$

Выполняя линеаризацию по Ньютону по неизвестному $\widehat{y_n}$, получим

$$\frac{(\widehat{A}_{n}\widehat{y_{n-1}} - \widehat{B}_{n}\widehat{y_{n}} + \widehat{D}_{n}\widehat{y_{n+1}} + \widehat{F}_{n})|_{s-1} + }{\delta(\widehat{A}_{n}\widehat{y_{n-1}} - \widehat{B}_{n}\widehat{y_{n}}) + \widehat{D}_{n}\widehat{y_{n+1}} + \widehat{F}_{n}}|_{s-1}\Delta\widehat{y_{n-1}^{s}} + }
\frac{\delta(\widehat{A}_{n}\widehat{y_{n-1}} - \widehat{B}_{n}\widehat{y_{n}}) + \widehat{D}_{n}\widehat{y_{n+1}} + \widehat{F}_{n}}{\delta\widehat{y_{n}}}|_{s-1}\Delta\widehat{y_{n}^{s}} + }
\frac{\delta(\widehat{A}_{n}\widehat{y_{n-1}} - \widehat{B}_{n}\widehat{y_{n}}) + \widehat{D}_{n}\widehat{y_{n+1}} + \widehat{F}_{n}}{\delta\widehat{y_{n+1}}}|_{s-1}\Delta\widehat{y_{n+1}^{s}} = 0$$
(2)

$$(\widehat{A_n}\widehat{y_{n-1}} - \widehat{B_n}\widehat{y_n} + \widehat{D_n}\widehat{y_{n+1}} + \widehat{F_n})|_{s-1} + \widehat{A_n}|_{s-1}\Delta\widehat{y_{n-1}} + \left(\frac{\delta\widehat{A_n}}{\delta\widehat{y_n}}\widehat{y_{n-1}} - \frac{\delta\widehat{B_n}}{\delta\widehat{y_n}}\widehat{y_n} - \widehat{B_n} + \frac{\delta\widehat{D_n}}{\delta\widehat{y_n}}\widehat{y_{n+1}} + \frac{\delta\widehat{F_n}}{\delta\widehat{y_n}}\right)|_{s-1}\Delta\widehat{y_n^s} + \widehat{D_n}|_{s-1}\Delta\widehat{y_{n+1}^s} = 0 \quad (3)$$

Уравнение (3) решается методом прогонки, в результате находитятся все $\Delta \widehat{y_n^s}$, после чего определяются значения искомой функции в узлах на s-итерации $\widehat{y_n^s} = \widehat{y_n^{s-1}} \Delta \widehat{y_n^s}$. Итерационный процесс заканчивается при выполнении условия $\max \left| \frac{\Delta \widehat{y_n^s}}{\widehat{y_n^s}} \right| \leqslant \varepsilon$, для всех n = 0, 1, ...N

Листинг кода программы

```
Листинг 1: Реализация задачи
```

```
from progonka import *

from math import *

import numpy as np
```

```
def get_abs_dif(y_n_s_minus_1, y_n_s):
    return fabs((y_n_s - y_n_s_minus_1) / y_n_s)
  def get_max_dif_from_result(T_list, T_new_list):
    max dif = 0
10
    for i in range(len(T_list)):
11
       dif = get_abs_dif(T_list[i], T_new_list[i])
12
       if (max_dif < dif):</pre>
13
         max dif = dif
14
    return max dif
15
16
17
18
  def calc A n(T n, T n plus 1, data, h x, h t):
19
    return data.X_n and half(T_n, T_n plus 1) * h_t / h_x
20
21
22
  def calc_C_n(T_n, T_n_minus_1, data, h_x, h_t):
23
    return data. X n and half (T n, T n minus 1) * h t / h x
24
25
26
  def calc B n(T n, data, A, C, h x, h t, cur x):
    \textbf{return} \ \ A + C + \ \mathsf{data.c\_T}(\mathsf{T\_n}) \ * \ \mathsf{h\_x} + \ \mathsf{data.p\_x}(\mathsf{cur\_x}) \ * \ \mathsf{h\_x} \ * \ \mathsf{h\_t}
29
  def calc_F_n(T_n, data, h_x, h_t, cur_x, T_time_ago):
30
    return data.f x(cur x) * h x * h t + data.c T(T n) * T time ago * h x
31
  def calc_coeff(data, T_list, h_x, h_t, T_time_ago_list):
    A_{list}, B_{list}, C_{list}, F_{list} = [], [], []
34
35
    for i in range (1, len(T list) - 1):
36
      cur x = i * h x
37
      \#A = calc A n(cur x, cur x + h x, data, h x, h t)
39
40
      \#C = calc_C_n(cur_x, cur_x - h_x, data, h_x, h_t)
41
42
      A = calc A n(T list[i], T list[i + 1], data, h x, h t)
43
44
      C = calc_C_n(T_list[i], T_list[i-1], data, h_x, h_t)
45
46
      B = calc_B_n(T_list[i], data, A, C, h_x, h_t, cur_x)
47
      F = calc F n(T list[i], data, h x, h t, cur x, T time ago list[i])
48
49
       A _ list . append (A)
50
       C _ list . append (C)
51
       B list.append(B)
52
       F list.append(F)
53
54
    return A_list, B_list, C_list, F_list
55
56
57
  def calc_left_condition(data, T_list, h_x, h_t, T_old_list, t):
58
    c_0 = data.c_T(T_list[0])
```

```
c_1 = data.c_T(T_list[1])
     p_0 = data.p_x(0)
61
     p_1 = data.p_x(h_x)
62
     p_half = (p_0 + p_1) / 2
63
     c_half = (c_0 + c_1) / 2
    \#X half = data.X n and half(0, h x)
65
     X_half = data.X_n_and_half(T_list[0], T_list[1])
66
     y 0 = T \text{ old list}[0]
67
    y_1 = T_old_list[1]
68
     f 0 = data.f \times (0)
69
     f 1 = data.f x(h x)
70
     f_half = (f_0 + f_1) / 2
71
72
    K 0 = h_x * (c_half / 8 +
73
     (c 0 / 4) +
74
     (h_t * p_half / 8) +
75
     (h_t * p_0 / 4)) + 
76
     X_half * h_t / h_x
77
78
    M \ 0 = h \ x * c \ half / 8 - \
79
     X_half * h_t / h_x + 
80
     h t * h x * p half / 8
81
82
     P \ 0 = h \ x * (
83
     c_half * (y_0 + y_1) / 8 +
84
     c_0 * y_0 / 4 +
85
     h t * (f half + f 0) / 4
86
     ) + data.F 0 * h t
87
     return K_0, M_0, P_0
89
90
  def calc right condition(data, T list, h x, h t, T old list):
91
    N = len(T_list)
92
    c_N = data.c_T(T_list[N-1])
     c N minus 1 = data.c T(T list[N - 2])
     p N = data.p x(data.l)
95
     p_N_{minus_1} = data.p_x(data.l - h_x)
96
     p_N_minus_half = (p_N + p_N_minus_1) / 2
97
     c N minus half = (c N + c N minus 1) / 2
98
    \#X N minus half = data.X n and half(data.I, data.I - h x)
     X N minus half = data.X n and half(T list[N - 1], T list[N - 2])
100
    y_N = T_old_list[N-1]
101
     y_N_{minus_1} = T_{old_list_N - 2}
102
     f N = data.f x(data.l)
103
     f N minus 1 = data.f \times (data.l - h \times)
104
105
    K_N = h_t * (X_N_minus_half / h_x + data.alpha_N + h_x / 4 * p_N + h_x / 8
106
         * p_N_minus_half) +\
     h \times *c \times /4 + h \times *c \times minus half / 8
107
108
    M N = -h t * (X N minus_half / h_x - h_x * p_N_minus_half / 8) + 
109
    h \times * c N minus half / 8
110
111
    P N = data.alpha N * data.T 0 * h t + \
112
     h_t * h_x * (3 * f_N + f_N_{minus}_1) / 8 +
113
```

```
h_x * c_N * y_N / 4 + 
114
     h_x * c_N_minus_half * (y_N + y_N_minus_1) / 8
115
116
117
     return K_N, M_N, P_N
118
119
120
   def get_T_list_for_cur_time(data, T_old_list, h_x, h_t, t):
121
122
     T list = T old list
123
     max dif = 1
124
125
     while (max_dif > data.eps):
126
127
       A_list, B_list, C_list, F_list = calc_coeff(data, <math>T_list, h_x, h_t,
128
           T old list)
       K_0, M_0, P_0 = calc_left_condition(data, <math>T_list, h_x, h_t, T_old_list,
130
           t )
131
       K_N, M_N, P_N = calc_right_condition(data, T_list, h_x, h_t, T_old_list)
132
133
       T new list = progonka(A list, B list, C list, F list, K 0, M 0, P 0, K N
134
           , M N, P N)
135
       max_dif = get_max_dif_from_result(T_list, T_new_list)
136
137
       T list = T new list
138
139
     return T_list
140
141
142
   def solve_task(data, h_x, h_t):
143
     T_list_list = []
144
145
     T base list = [data.T \ 0 \ for \ i \ in \ np.arange(0, \ data.l, \ h \ x)]
146
147
     \max dif = 1
148
149
     T list list.append(T base list)
150
151
     t = 0
152
     while (max_dif > data.eps):
153
       T new list = get T list for cur time(data, T base list, h \times h + t, t)
154
       T_list_list.append(T_new_list)
155
156
       max_dif = get_max_dif_from_result(T_base_list, T_new_list)
157
158
       T base list = T new list
159
       t += h t
160
161
     return T list list
```

Листинг 2: Класс данных передаваемых в программу

```
ı class Data:
```

```
2
    def __init__(self):
3
      self.a_1 = 0.0134
4
      self.b 1 = 1.0
      self.c_1 = 4.35e-4
5
      self.m_1 = 1.0
      self.a 2 = 2.049
7
      self.b_2 = 0.563e-3
8
      self.c 2 = 0.528e5
9
      self.m_2 = 1.0
10
      self.alpha 0 = 0.05
11
      self.alpha N = 0.01
12
      self.l = 10.0
13
      self.T_0 = 300.0
14
      self.R = 0.5
15
      self.F 0 = 50.0
16
      self.eps = 1e-4
17
      self.k_0 = 0.4
18
      self.k_N = 0.1
19
      self.a, self.b = self.get_a_b()
20
      self.c, self.d = self.get_c_d()
21
22
    def get c d(self):
23
      d = (self.alpha N * self.l) / (self.alpha N - self.alpha 0)
24
      c = self.alpha 0 * (-d)
^{25}
      return c, d
26
27
    def F t(self, t):
28
      return 10 + 20 * \sin(t)
29
30
    def get_a_b(self):
31
      b = (self.k_N * self.l) / (self.k_N - self.k_0)
32
      a = self.k_0 * (-b)
33
      return a, b
34
    def X n and half(self, T n, T n and 1):
36
      return 2.0 * self.k_T(T_n) * self.k_T(T_n_and_1) / (self.k_T(T_n) + self
37
          .k_T(T_n_and_1)
38
    def alpha x(self, x):
39
      return self.c / (x - self.d)
40
41
    def f_x(self, x):
42
      return 2 * self.T_0 * self.alpha_x(x) / self.R
43
44
    def p x(self, x):
45
      return 2 * self.alpha_x(x) / self.R
46
47
    def k_T(self, T):
48
      return self.a_1 * (self.b_1 + self.c_1 * pow(T, self.m_1))
49
50
    def c T(self, T):
51
      return self.a 2 + self.b + 2 * pow(T, self.m 2) - self.c 2 / (T * T)
```