习题——数学分析

HJY

2020.09.26

第一部分 单变量微积分

第一章 数列极限

第二章 连续函数

第三章 导数与微分

第四章 导数的应用

第五章 一元函数的积分

问题 **5.1.** Assume f is defined on [a,b]. If $f^2(x)$ is integrable, then |f(x)| is integrable.

解答. Solution 1: Hint: Use the Lesbegue criterion.

Solution 2: Hint: Consider composite functions $\varphi(x) = \sqrt{x}, \psi(x) = f^2(x)$.

Solution 3: Hint: Consider Darboux upper sum and Darboux lower sum.

 $f^{2}(x)$ is integrable, so f is bounded. Let $m = \inf f^{2}$.

 $\forall \varepsilon > 0, \exists \text{partition } \pi, \text{ s.t. } S(\pi) - s(\pi) < \varepsilon.$

Let
$$M_i = \sup_{[x_i, x_{i+1}]} f^2(x) = f^2(\xi_i), m_i = \inf_{[x_i, x_{i+1}]} f^2(x) = f^2(\eta_i),$$

Darboux upper sum of |f(x)| is $S'(\pi)$, Darboux lower sum of |f(x)| is $s'(\pi)$.

$$S(\pi) - s(\pi) < \varepsilon$$

$$\Leftrightarrow \sum_{i=0}^{n-1} f^2(\xi_i) \Delta x_i - \sum_{i=0}^{n-1} f^2(\eta_i) \Delta x_i < \varepsilon$$

$$\Leftrightarrow \left(\sum_{i=0}^{n-1} f^2(\xi_i) - f^2(\eta_i)\right) \Delta x_i < \varepsilon$$

$$\Leftrightarrow \sum_{i=0}^{n-1} \left(f(\xi_i) - f(\eta_i)\right) \left(f(\xi_i) + f(\eta_i)\right) \Delta x_i < \varepsilon$$

$$\Rightarrow \sum_{i=0}^{n-1} \left(f(\xi_i) - f(\eta_i)\right) 2\sqrt{m} \Delta x_i < \varepsilon$$

$$\Rightarrow S'(\pi) - s'(\pi) < \varepsilon/2\sqrt{m}$$

So, $|f| \in R[a, b]$.

问题 **5.2.** 计算积分 $\int_0^1 \sqrt{\frac{1-r^2}{1+r^2}} r dr$.

解答.
$$\int_0^1 \sqrt{\frac{1-r^2}{1+r^2}} r \mathrm{d}r = \frac{1}{2} \int_0^1 \sqrt{\frac{1-r^2}{1+r^2}} \mathrm{d}r^2 = \frac{1}{2} \int_0^1 \sqrt{\frac{1-t}{1+t}} \mathrm{d}t = \frac{1}{2} \int_0^1 \frac{1-t}{\sqrt{1-t^2}} \mathrm{d}t = \frac{1}{2} \int_0^{\pi/2} \frac{1-\sin\theta}{\cos\theta} \mathrm{d}\sin\theta = \frac{1}{2} \int_0^{\pi/2} (1-\sin\theta) \mathrm{d}\theta = \frac{\pi}{4} - \frac{1}{2}$$

第六章 积分的应用

第二部分 级数

第七章 广义积分

问题 7.1. (梅 [7.2] 5(1)) 讨论瑕积分 $\int_0^1 \frac{dx}{\ln x}$ 的敛散性.

解答. tentative: $\int_0^1 \frac{dx}{\ln x} = \int_0^{1/e} \frac{dx}{\ln x} + \int_{1/e}^1 \frac{dx}{\ln x}$. 其中 $\int_0^{1/e} \frac{dx}{-\ln x} \stackrel{x=1/t}{=} \int_{e}^{+\infty} \frac{dt}{t^2 \ln t}$ 收敛. 当 $x \to 1^-$ 时, $\frac{1}{\ln x} = \frac{1}{\ln(1+(x-1))} \sim \frac{1}{x-1}$, 而 $\int_{1/e}^1 \frac{1}{x-1}$ 发散. 故原积分发散.

问题 7.2. (梅 [7.2] 8) (1) 设 f(x) 在 $[a,\infty)$ 上广义可积, 如果 f(x) 在 $[a,\infty)$ 上一致连续, 则 $\lim_{x\to\infty}f(x)=0$.

(梅 [7.2] 12) (2) 举例说明, 当无穷积分 $\int_a^{+\infty} f(x)dx$ 收敛, 且 f(x) 为正连续函数时, 不一定有 $\lim_{x\to\infty} f(x)=0$.

解答. (1) (提示: 先用 Cauchy 准则和中值定理找收敛子列)

(法二提示: 反证法)

(2) (提示: 考虑 $\int_0^{+\infty} \frac{x dx}{1 + x^6 \sin^2 x}$ 或分段函数)

问题 7.3. (梅 [7.2] 11) (1) 举例说明, 当无穷积分 $\int_a^{+\infty} f(x)dx$ 收敛, 且 f(x) 为正连续函数时, 无穷积分 $\int_a^{+\infty} f^2(x)dx$ 不一定收敛.

(2) 对于瑕积分, 证明: 平方收敛一定绝对收敛, 但逆命题不成立.

解答. (1) 提示: 若本题不要求 f(x) 连续, 则可以取分段函数 $f(x) = \begin{cases} n, & x \in \bigcup_{n=2}^{+\infty} \left[n, n + \frac{1}{n^3}\right] \\ 0, & \text{otherwise} \end{cases}$. 然后在此基础上进行改进.

(2) 注意到 $2|f(x)| \le 1 + f^2(x)$

问题 7.4. (梅 [7.3] 7) 设 f(x) 在 $[a,+\infty)$ 上单调递减, 且 $\int_a^{+\infty} f(x) \mathrm{d}x$ 收敛, 证明 $\lim_{x\to\infty} x f(x) = 0$.

证明. 提示: 由 Cauchy 收敛准则, 在区间 [A, A/2] 估计积分. \square

问题 7.5. (梅 [7.3] 8) 设 f(x) 在 $[a, +\infty)$ 上单调递减趋于 0, 且 $\int_a^{+\infty} \sqrt{f(x)/x} dx$ 收敛, 则 $\int_a^{+\infty} f(x) dx$ 也收敛.

提示: 利用上题, 比较被积函数 (相除取极限)

问题 7.6. (梅 [7.3] 9) 设 $\int_a^{+\infty} f(x) dx$ 收敛, 如果 $x \to +\infty$ 时 xf(x) 单调递减趋于 0, 则

$$\lim_{x \to +\infty} x f(x) \ln x = 0$$

解答. 提示: 利用 Cauchy 准则, 考虑积分 $\int_{\sqrt{x}}^{x} f(t)dt = \int_{\sqrt{x}}^{x} t f(t) \frac{1}{t} dt$.

问题 7.7. (梅 [7.3] 10) 设 f(x) > 0 在 $[0,\infty)$ 上连续,且 $\int_0^{+\infty} \frac{dx}{f(x)}$ 收敛,证明

$$\lim_{\lambda \to +\infty} \frac{1}{\lambda} \int_0^{\lambda} f(x) dx = +\infty$$

证明. 提示: 使用 Cauchy 不等式:

$$\left(\int_0^{\lambda} f(x)dx\right)\left(\int_0^{\lambda} \frac{dx}{f(x)}\right) \ge \left(\int_0^{\lambda} 1dx\right)^2$$

问题 7.8. (梅 [7.3] 10) 研究广义积分

$$\int_{2}^{+\infty} \frac{dx}{x^{p} \ln^{q} x} (p, q \in \mathbb{R})$$

的敛散性.

解答. p > 1 收敛; p = 1, q > 1 收敛. 其余均发散.

问题 7.9. (梅 [7.4] 8) (1) 设 f(x) 在 $[0,+\infty)$ 上连续, 且对任意 c>0, 积分 $\int_c^\infty \frac{f(x)}{x}$ 收敛, 则

$$\int_{0}^{+\infty} \frac{f(\alpha x) - f(\beta x)}{x} dx = f(0) \ln \frac{\beta}{\alpha} \qquad (\alpha, \beta > 0)$$

(梅 [7.4] 9) (2) 设 f(x) 是定义在 $(0,+\infty)$ 上的函数, 如果对于任意 b>a>0, 积分 $\int_a^b \frac{f(x)}{x} dx$ 收敛, 且

$$\lim_{x \to 0^+} f(x) = L, \quad \lim_{x \to +\infty} f(x) = M$$

则

$$\int_{0}^{+\infty} \frac{f(\alpha x) - f(\beta x)}{x} dx = (L - M) \ln \frac{\beta}{\alpha} \quad (\alpha, \beta > 0)$$

解答. 本题为伏汝兰尼积分,备忘:整理伏汝兰尼积分的详细讨论 (梅书同一页第 10 题, 菲砖卷二 P531)

一页第 10 题, 菲砖卷二 P531) 提示: 考虑 $\int_A^B \frac{f(\alpha x) - f(\beta x)}{x} dx$, 做变量替换, 最后令 $A \to 0^+, B \to +\infty$ 即可.

第八章 数项级数

问题 8.1. (梅 [8.2] 6, 9) 设 $a_n > 0$, $S_n = a_1 + a_2 + \cdots + a_n$, 证明:

- (1) 级数 $\sum_{n=1}^{\infty} \frac{a_n}{S_n^2}$ 总收敛; 更一般地, 级数 $\sum_{n=1}^{\infty} \frac{a_n}{S_n^p}$ (p > 1) 总收敛. (2) 级数 $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{S_n}}$ 收敛当且仅当 $\sum_{n=1}^{\infty} a_n$ 收敛; 更一般地, $\sum_{n=1}^{\infty} \frac{a_n}{S_n^p}$ $(p \le 1)$ 1) 收敛当且仅当 $\sum_{n=1}^{\infty} a_n$ 收敛.

$$\frac{1}{S_{n-1}^{p-1}} - \frac{1}{S_n^{p-1}} = \frac{p-1}{\xi^p} (S_n - S_{n-1}), \ \xi \in [S_{n-1}, S_n]$$
$$= \frac{p-1}{\xi^p} a_n$$
$$\ge (p-1) \frac{a_n}{S_n^p}$$

因此

$$\begin{split} \sum_{k=2}^n \frac{a_k}{S_k^p} &\leq \sum_{k=2}^n \frac{1}{p-1} \left(\frac{1}{S_{k-1}^{p-1}} - \frac{1}{S_k^{p-1}} \right) \\ &= \frac{1}{p-1} \left(\frac{1}{S_1^{p-1}} - \frac{1}{S_n^{p-1}} \right) \leq \frac{1}{p-1} \cdot \frac{1}{S_1^{p-1}} \vec{\Lambda} \, , \end{split}$$

故收敛.

- (2) 充分性是容易的. 下证必要性:
- i) $p \ge 0$ 时. $\forall \epsilon < 1$, $\exists N$ s.t. m > n > N 时, $\epsilon > \sum_{k=n+1}^m \frac{a_t}{S_k^p} > \frac{S_m S_n}{S_m^p}$, 即 $S_m - \epsilon S_m^p < S_n$. 则 S_m 必然有界, 否则固定 n, 令 $m \to \infty$ 矛盾.
- ii) p<0 时. $\epsilon>\sum_{k=n+1}^m \frac{a_t}{S_k^p}\geq (S_m-S_n)S_n^{-\alpha}$. 同样 S_m 必然有界, 否 则固定 n, 令 $m \to \infty$ 矛盾.

由 S_m 单调增加且有界可得 S_m 收敛.

问题 8.2. (梅 [8.2] 7) 设正项级数 $\sum_{n=1}^{\infty} a_n$ 发散, 试用积分的方法证明 $\sum_{n=1}^{\infty} \frac{a_{n+1}}{S}$ 也发散, 其中 S_n 为 $\sum_{n=1}^{\infty} a_n$ 的部分和.

证明. 其部分和

$$\sum_{k=1}^{n} \frac{a_{k+1}}{S_k} = \sum_{k=1}^{n} \frac{S_{k+1} - S_k}{S_k} = \sum_{k=1}^{n} \int_{S_k}^{S_{k+1}} \frac{1}{S_k} dx$$
$$\geq \sum_{k=1}^{n} \int_{S_k}^{S_{k+1}} \frac{1}{x} dx = \ln \frac{S_{n+1}}{S_1} \to +\infty$$

问题 8.3. (梅 [8.2] 8(1)) 判断级数 $\sum_{n=1}^{\infty} \frac{n!e^n}{n^{n+p}}$ 的敛散性.

解答. (法一)

$$\begin{split} \frac{a_n}{a_{n+1}} &= \frac{1}{e} (1 + \frac{1}{n})^{n+p} = e^{(n+p)\ln(1 + \frac{1}{n}) - 1} \\ &= 1 + \left[(n+p)\ln(1 + \frac{1}{n}) - 1 \right] + O\left[(n+p)\ln(1 + \frac{1}{n}) - 1 \right]^2 \\ &= 1 + \left[(n+p)\left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right) - 1 \right] + O\left(\frac{1}{n^2}\right) \\ &= 1 + \frac{(2p-1)/2}{n} + \frac{p^2 - \frac{3p}{2} + \frac{7}{12}}{n^2} + O\left(\frac{1}{n^2}\right) \end{split}$$

由 Gauss 判别法, $p-\frac{1}{2}>1$ 时收敛, $p-\frac{1}{2}\leq 1$ 时发散. (法二) 利用 Stirling 公式: $n!\sim \sqrt{2\pi n}\left(\frac{n}{e}\right)^n$ 代入即可

问题 8.4. 设 a_n 单调递减趋于 0, 级数 $\sum_{n=1}^{\infty} a_n$ 发散, 则级数 $\sum_{n=1}^{\infty} \min \left\{ a_n, \frac{1}{n} \right\}$ 也发散.

证明. (法一)

- i) 如果 $\exists N$, s.t. $a_n \leq \frac{1}{n}, \forall n > N$, 则结论成立.
- ii) 可以找到无穷多 n_k $(k \ge 1)$, s.t. $a_{n_k} > \frac{1}{n_k}$. 由于 a_n 单调减, 所以当 $n < n_k$ 时, $a_n > \frac{1}{n_k}$, min $\left\{\frac{1}{n}, a_n\right\} > \frac{1}{n_k}$.

在 $\{n_1, n_2, \ldots, n_k, \ldots\}$ 中取子列 $N_1, N_2, \ldots, N_k, \ldots$ s.t. $N_{t+1} > 2N_t$,则

$$\sum_{n=N_1}^{\infty} \min\left\{a_n, \frac{1}{n}\right\} = \sum_{t=1}^{\infty} \sum_{k=N_t}^{N_{t+1}-1} \min\left\{a_n, \frac{1}{n}\right\}$$

$$> \sum_{t=1}^{\infty} \sum_{k=N_t}^{N_{t+1}-1} \frac{1}{N_{t+1}}$$

$$= \sum_{t=1}^{\infty} \frac{N_{t+1} - N_t}{N_{t+1}} > \sum_{t=1}^{\infty} \frac{1}{2}$$

因此级数发散.

(法二) 注意到 $a_n \downarrow 0$, 故可以使用柯西凝聚判别法.

 $\sum_{n=1}^{\infty} a_n$ 发散 $\Leftrightarrow \sum_{k=0}^{\infty} 2^k a_{2^k}$ 发散, 而要证的 $\sum_{n=1}^{\infty} \min \left\{ a_n, \frac{1}{n} \right\}$ 发散 $\Leftrightarrow \sum_{k=0}^{\infty} 2^k \min \left\{ a_{2^k}, \frac{1}{2^k} \right\}$ 发散.

令 $b_k = 2^k a_{2^k}$, 则 $\sum_{n=1}^{\infty} b_n$ 发散, 只要证 $\sum_{n=1}^{\infty} \min\{b_n, 1\}$ 发散. 这是容易证明的.

问题 8.5. (梅 [8.2] 14) (1) 设 $\sum_{n=1}^{\infty} a_n$ 为收敛的正项级数, 则存在另一收敛的正项级数 $\sum_{n=1}^{\infty} b_n$, 使得 $\lim_{n\to\infty} \frac{b_n}{a_n} = +\infty$.

(梅 [8.2] 15) (2) 设 $\sum_{n=1}^{\infty} a_n$ 为发散的正项级数,则存在另一发散的正项级数 $\sum_{n=1}^{\infty} b_n$,使得 $\lim_{n\to\infty} \frac{b_n}{a_n} = 0$.

解答. (思路) (1) 记 $\sum_{n=1}^{\infty} a_n$ 的部分和为 S_n , $\sum_{n=1}^{\infty} b_n$ 的部分和为 T_n . 设 S_n 收敛于 S. 将 $0\sim S$ 不断二等分. 若 $S_n\in (0,\frac{1}{2}S]$, 取 $b_n=\sqrt{2}a_n$, 若 $S_n\in (\frac{2^{k-1}}{2^k}S,\frac{2^k}{2^{k+1}}S], k=1,2,\cdots$ 取 $b_n=\left(\sqrt{2}\right)^{k+1}a_n$. 则 $T\approx \frac{1}{2}S\cdot\sqrt{2}+\frac{1}{2^2}S\cdot\left(\sqrt{2}\right)^2+\cdots=\left[\frac{1}{\sqrt{2}}+\left(\frac{1}{\sqrt{2}}\right)^2+\cdots\right]S$ 有界.

(2) 取 M > 0, 将 $(M, +\infty)$ 分段: (M, 2M], $(2M, 2^2M]$, · · · . 若 $S_n \in (2^{k-1}M, 2^kM]$, $k = 1, 2, \cdots$, 取 $b_n = \left(\frac{1}{\sqrt{2}}\right)^{k-1} a_n$. 则 $T_n \approx M + \frac{1}{\sqrt{2}} \cdot 2^kM + \left(\frac{1}{\sqrt{2}}\right)^2 2^2M + \cdots + \left(\frac{1}{\sqrt{2}}\right)^k 2^kM = \left[1 + \sqrt{2} + \left(\sqrt{2}\right)^2 + \cdots + \left(\sqrt{2}\right)^k\right]M$ 发散.

问题 8.6. (梅 [8.2] 17) 设 $a_n > 0$, $\sum_{n=1}^{\infty} \frac{1}{a_n}$ 收敛. 证明级数 $\sum_{n=1}^{\infty} \frac{n}{a_1 + a_2 + \dots + a_n}$ 也收敛.

解答. (法一)

分析: 如果对于任意的 n, 能够找到一个公共的 M, 使得 $\sum_{k=1}^{n} \frac{k}{a_1 + a_2 + \cdots + a_k} \le M \sum_{k=1}^{n} \frac{1}{a_k}$ 成立,那么结论就成立. 由 Cauchy 不等式,我们可以知道 $\left(\sum_{k=1}^{n} a_k\right) \left(\sum_{k=1}^{n} \frac{1}{a_k}\right) \ge n^2$,即 $\frac{n}{\sum_{k=1}^{n} a_k} \le \frac{1}{n} \sum_{k=1}^{n} \frac{1}{a_k}$,两边求和,得到

$$\sum_{k=1}^{n} \frac{k}{a_1 + a_2 + \dots + a_k} \le \sum_{k=1}^{n} \left(\frac{1}{k} \sum_{i=1}^{k} \frac{1}{a_i} \right)$$

可惜的是, $\sum_{k=1}^{n} \frac{1}{k}$ 无界. 所以我们需要对不等式进行调整, 为了得到更精确的放缩, 使用待定系数法.

曲 Cauchy 不等式, $\left(\sum_{i=1}^{n} a_i\right) \left(\sum_{i=1}^{n} \frac{x_i^2}{a_i}\right) \ge \left(\sum_{i=1}^{n} x_i\right)^2$, $x_i > 0$. 化简后 得到 $\frac{n}{\sum_{i=1}^{n} a_i} \le \frac{n}{\left(\sum_{i=1}^{n} x_i\right)^2} \cdot \left(\sum_{i=1}^{n} \frac{x_i^2}{a_i}\right)$. 然后取不同的数列 x_i 进行尝试.

取
$$x_i = i$$
, 则 $\frac{n}{\sum_{i=1}^n a_i} \le \frac{n}{\left(\frac{n(n+1)}{2}\right)^2} \cdot \left(\sum_{i=1}^n \frac{i^2}{a_i}\right)$, 两边求和得到
$$\sum_{k=1}^n \frac{k}{a_1 + a_2 + \dots + a_k} \le \sum_{k=1}^n \frac{c_k}{a_k}$$

其中

$$c_k = \frac{i^2 \cdot i}{\left(\frac{i(i+1)}{2}\right)^2} + \frac{i^2 \cdot (i+1)}{\left(\frac{(i+1)(i+2)}{2}\right)^2} + \dots + \frac{i^2 \cdot n}{\left(\frac{n(n+1)}{2}\right)^2}$$

$$= 4i^2 \sum_{j=i}^n \frac{1}{j(j+1)^2} \le 2i^2 \sum_{j=i}^n \frac{2j+1}{j^2(j+1)^2}$$

$$= 2i^2 \sum_{j=i}^n \left(\frac{1}{j^2} - \frac{1}{(j+1)^2}\right) = 2 - \frac{2i^2}{(n+1)^2} < 2$$

所以

$$\sum_{k=1}^{n} \frac{k}{a_1 + a_2 + \dots + a_k} \le 2 \sum_{k=1}^{n} \frac{1}{a_k}$$

(法二)

参见 [谢惠民下册 P16]

问题 8.7. (梅 [8.3] 7) 如果 $\sum_{n=1}^{\infty} a_n$ 收敛, 则 $\sum_{n=1}^{\infty} a_n^3$ 是否也收敛?

解答. 否. 反例如下: 取

$$a_n = \begin{cases} \frac{1}{\sqrt[3]{n}}, & n = 3k \\ \frac{1}{\sqrt[3]{n}}, & n = 3k + 1 \\ \frac{-2}{\sqrt[3]{n}} & n = 3k + 2 \end{cases} \quad k \in \mathbb{N}^*$$

由 Cauchy 收敛准则容易验证 $\sum_{n=1}^{\infty} a_n$ 收敛. 但是

$$a_n^3 = \begin{cases} \frac{1}{n}, & n = 3k \\ \frac{1}{n}, & n = 3k+1 \\ \frac{-8}{n} & n = 3k+2 \end{cases} \quad k \in \mathbb{N}^*$$

$$S_{3n} = \sum_{k=1}^{n} \frac{-6}{k}$$

发散. 故 $\sum_{n=1}^{\infty} a_n^3$ 发散.

问题 8.8. (梅 [8.3] 12) 设 $a_n > 0$, $na_n \downarrow 0$, $\sum_{n=1}^{\infty} a_n$ 收敛. 证明: $(n \ln n) a_n \rightarrow 0$.

证明. 记 $b_n = na_n$, 则 $b_n \downarrow 0$, $\sum_{n=1}^{\infty} \frac{b_n}{n}$ 收敛. 因此 $\forall \epsilon > 0$, $\exists N_1 > 0$, 当 $m > n > N_1$ 时,

$$\epsilon > \sum_{k=n+1}^{m} \frac{b_k}{k} > b_m \sum_{k=n+1}^{m} \frac{1}{k}$$

$$= b_m \left[\left(\sum_{k=1}^{m} \frac{1}{k} - \ln m \right) - \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right) + \ln \frac{m}{n} \right]$$

$$= b_m (c_m - c_n) + b_m \ln m - b_m \ln n$$

其中 $c_n:=\sum_{k=1}^n\frac{1}{k}-\ln n$, 则 $c_n\to\gamma$ as $n\to\infty$. 故 $\forall \epsilon>0$, $\exists N_2>0$, 当 $m>n>N_2$ 时,

$$|c_m - c_n| < \frac{\epsilon}{b_1}$$

故 $m > n > \max\{N_1, N_2\}$ 时

$$|b_m \ln m| < |\epsilon - b_m (c_m - c_n) + b_m \ln n|$$

$$< \epsilon + |b_m (c_m - c_n)| + |b_m \ln n|$$

$$< 2\epsilon + |b_m \ln n|$$

固定 n, 令 $m \to \infty$, 得 $|b_m \ln m| \le 2\epsilon$, 即 $\lim_{n\to\infty} (n \ln n) a_n = 0$

第九章 函数项级数

第十章 幂级数

第十一章 Fourier 分析

第十二章 含参变量的积分

第三部分 多变量微积分

第十三章 度量空间与连续映射

问题 13.1. 证明: \mathbb{R}^n 上有界无限点集必有聚点.

证明. (提示: Heine-Borel: $S \in \mathbb{R}^n$ 上的紧致集合的充分必要条件是 $S \in \mathbb{R}^n$ 有界闭集.)

设 $S \in \mathbb{R}^n$ 上有界无限点集. $\overline{S} = S \cup S^d$ 是闭集, 如果 S 没有聚点, 则 $S^d = \emptyset$, $\overline{S} = S$. 因此, 由 Heine-Borel, S 为紧致集合.

但是, S 没有聚点表明 $\forall x \in S, \exists \delta(x) > 0$, s.t. $B_{\delta(x)}(x)$ 只含有 S 中有 限个点. 而 $B_{\delta(x)}(x)$ 形成了 S 的一个开覆盖, 它有有限子覆盖, 这个有限子 覆盖中至多含有 S 中有限个点, 这与 S 是无限点集矛盾.

问题 13.2. (陈纪修 [11.3] 7) 设 $f: \mathbb{R}^n \to \mathbb{R}^m$ 为连续映射. 证明: 对于 \mathbb{R}^n 中的任意子集 A, 都有 $f(\overline{A}) \subset \overline{f(A)}$. 并举例说明 $f(\overline{A})$ 能够是 $\overline{f(A)}$ 的真子 集.

证明. 提示: 利用闭包的性质: $x \in \overline{A} \Leftrightarrow \exists \{x_k\} \subset A, \text{ s.t. } \lim_{k \to \infty} x_k = x.$ 举例: $f(x,y) = e^{-x^2-y^2} \in C(\mathbb{R}^2,\mathbb{R}).$ 令 $A = \mathbb{R}^2, \text{ 则 } \overline{A} = A,$ 但是

$$f(\overline{A}) = (0, +\infty), \quad \overline{f(A)} = [0, +\infty)$$

问题 13.3. Is the function $F(x,y) = \frac{x^3+y^3}{x^2+y}$ continuous at (0,0)? Or does the limit $\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y}$ exist?

解答. No.

$$\lim_{y=0,(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y} = \lim_{x\to 0} \frac{x^3}{x^2} = 0$$

$$\lim_{y=x^3-x^2,(x,y)\to(0,0)}\frac{x^3+y^3}{x^2+y}=\lim_{x\to0}\frac{x^3+(x^3-x^2)^3}{x^3}=\lim_{x\to0}\left[1+(x^2-x)^3\right]=1$$

第十四章 多元函数的微分

第十五章 多元函数的积分

问题 **15.1.** (陈纪修 [13.2] 9) 求四张平面 x = 0, y = 0, x = 1, y = 1 所围成的柱体被平面 z = 0 和 2x + 3y + z = 6 截得的立体的体积.

解答. (此类题有个小技巧, 利用对称性) 记 $D = [0,1] \times [0,1]$, 由对称性得

$$\iint_D x dx dy = \iint_D y dx dy$$

于是

$$V = \iint_D (6 - 2x - 3y) dx dy = 6 - 5 \iint_D x dx dy = 6 - 5 \int_0^1 x dx \int_0^1 dy = \frac{7}{2}$$

问题 15.2. (陈纪修 [13.2] 17) 若 f(x) 在 [a,b] 上连续, 证明: $\left[\int_a^b f(x)dx\right]^2 \le (b-a) \int_a^b \left[f(x)\right]^2 dx$.

解答. 法一: 使用重积分

法二: 两边同除 $(b-a)^2$, 可以看出这是积分形式的均值不等式 (算术平均 < 平方平均). 分割取模求极限转化为离散形式即可.

问题 15.3. (陈纪修 [13.3] 2) 计算图形的面积:

- (1) 三叶玫瑰线 $(x^2 + y^2)^2 = a(x^3 3xy^2), (a > 0)$ 所围成的图形.
- (2) 曲线 $\left(\frac{x}{h} + \frac{y}{k}\right)^4 = \frac{x^2}{a^2} + \frac{y^2}{b^2}$, h, k, a, b > 0 所围图形在 x > 0, y > 0 的部分.

解答. (1) 回忆三倍角公式 $\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$, $\cos 3\alpha = 3\cos \alpha + 4\cos^3 \alpha$.

令 $x = r \cos \theta, y = r \sin \theta$ 将三叶玫瑰线化为极坐标形式 $r = a \cos 3\theta$. 注意这里 $r \geq 0$, 因此 θ 的取值范围是 $\left[-\frac{\pi}{6}, \frac{\pi}{6}\right] \cup \left[-\frac{\pi}{2}, \frac{5\pi}{6}\right] \cup \left[-\frac{7\pi}{6}, \frac{3\pi}{2}\right]$ (只有一半可以取值). 然后用重积分的变量代换公式不难计算.

(2) 提示: 作变换
$$\begin{cases} x = hr \cos \theta \\ y = kr \sin \theta \end{cases}$$
, 其 Jacobbi 行列式 $\det \frac{\partial(x,y)}{\partial(r,\theta)} = |hkr \sin 2\theta| \neq 0, (\theta \in [0, \frac{\pi}{2}])$

问题 15.4. (陈纪修 [13.3] 5 (5)) 计算重积分 $\iiint_{\Omega}(x+y+z)^2\mathrm{d}x\mathrm{d}y\mathrm{d}z$, 其中 Ω 为抛物面 $x^2+y^2=2az$ 与球面 $x^2+y^2+z^2=3a^2(a>0)$ 所围的区域.

解答. 此题的一个重要技巧是利用对称性. 注意到积分区域关于 yz 平面和 xz 平面都对称. 于是

$$\iiint_{\Omega} xy \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iiint_{\Omega} yz \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iiint_{\Omega} zx \mathrm{d}x \mathrm{d}y \mathrm{d}z = 0$$

因此

$$\iiint_{\Omega} (x+y+z)^2 dx dy dz = \iiint_{\Omega} (x^2+y^2+z^2) dx dy dz$$

然后再使用柱坐标变换, (计算过程较为复杂, 不再赘述). 结果是 $\frac{108\sqrt{3}-97}{30}\pi a^5$.

第十六章 曲线积分与曲面积分

问题 16.1. 求第一型曲线积分:

 $\int_{L} |x| \, \mathrm{d}s$, 其中 L 为双纽线 $(x^2 + y^2)^2 = x^2 - y^2$

解答. 化为极坐标方程 $L: r^2 = \cos 2\theta$. 则 $\int_L |x| \, \mathrm{d}s = \int_L |r \cos \theta| \, \mathrm{d}s = 4 \int_0^{\pi/4} |r \cos \theta| \sqrt{1 + (r')^2} \, \mathrm{d}r = 4 \int_0^{\pi/4} \cos \theta \, \mathrm{d}\theta = 2 \sqrt{2}$

第十七章 微分形式的积分