

rRNA Gene Cluster

FIG. 1

50

1 AAAGTCGCA² CTTTCCCCAT AAACCCCCTC CCCACCCCT³ TGGACATTGT
 51 TCCACTT⁴ ACTTGTATTG TGAAGCACCC AATGCTA⁵ CATAGAACAG
 101 TCCAGTAGTT CAATAGAGAG ACTAGTGAAC ATAGTTTATA ACATTGTCCA
 151 AGGGGTGGAG GGGGATGCGC GAAATCGATG TGCACGTTG GTCAAAGATG
 201 CTCGCGAAAG CTGCACATCA ATTCGCACA TGGGCGAAAT TGACTTGCAG
 251 GTGGGTATAA AAGTTGATGT AGGCCATGTG GCTCGATTTC AACCATATGG
 301 GTATGCTTCT GAGGATGGGG TGTACAGTG GACCATATGA GGTAGGTCAT
 351 TTGGAGATGT CACCAAAATG GTCTAAATCT GCGCATTCCA TTTAAGTGAA
 401 TTTAAGTGAA ATTTAAGTGA ATTTTACTTA AAATTGACCT TTTTCGTTGC
 451 GCAGATTG⁶ GGTGGTGATG GGTGACGCGG CGAATT⁷ AAAAAAGAGG
 500 TATATCGCGT GCTATTGTA TTTTGGTAT CACCGCGTCA CCAATCACCA
 551 TTGACGGTTT CTTTTTCGAA GTTTTCCGG ATTATTGCAT TTTTTATATA
 600 ATTGTGGGTG GCTGATTCTT GCGAAAGGAC TGTTGTGATG TCCGAGTTCC
 651 CAAATTGGGA GTTTTGGAC ATCACTCCTG ATCTGCCGGC GGCGATCAGG
 700 ATGACTGACA TTTCGATATA TTTTGGTAT TCGATAGCTG CCAAATCGGT
 751 CAGCGTCGAG TATTCCGGTT TATTCGAAGG ATTCA⁸TGATA TTGCAAATA
 800 TCATTGATTT TCATGGGGTT TTGTATTAGT ACCCGCTCAT TGTGGGAAAG
 851 TCGGGTGGAT TTATCTTACC CGCAAATCTA ATACAAGATT TGCATGATGC
 900 AGCAATAGAC CAAGGTTAGT ATAGCAGTTG TATTTATACG ACTAGTTATG
 951 CAAACCC⁹ GTGTTTTTG TTGCGACTCT TGGCGTGAAC CGGAAGACCG
 1000 GACCTCGCTT TCGACTATTC ATCTTGATG GATATGAGAT CGCAAGGGTA
 1051 TCGCTTCGTG CGATATTAG TGACCATCAG AGCACGCTAC GACTTTTGAT
 1100 TATATCCTTG GATTAAATCG GAAGCTCGCA AGCATTGCAT TGATGCAATC
 1150

FIG. 2

ttttcaTTT TTTTCAACACCCCGCACC CCATGTACAA TTGCCAAC
#1
CACTAGAGTT TCAACAACAT TCGGATTGAA CAACATGTCA ACAATTACAA
#51
ACAGAAAATTG ACAACATTGT CACAAATTCT CAAATTGGAC AACATTGGAC
#101
AAAAAATTACAC AACATACATT GGACAACAGT GGACAACGAA CCCAAACCCG
#151
ACAAACATTGT CCAGGGGAT AGGGGGTGAA AAAGCAGTGC CGGCAAAGTC
#201
GAAAGATGTC AAGTGGAAAT GCGGCTCAAA TTGGTCAATT GTGTAATCC
#251
GCAATTTCGC CAATGTGCAA TTTGCAAAT GTGCAATT GTGTAATTC
#301
AATTTGCCA ATGTGCAATT TTGCAAATGC GCAATTTCGC AAATCCGCAA
#351
TTTGCAAAT GTGCAATT GTGCAATT GTGCAATT GTGCAATT
#401
CGAATTGGAG GCGTGGTGAC ATGGTCCCAG GATCCCCTGG TTACAGTGGAA
#451
CAATATCCCA GCAATATTG CTGTAATTG GAGTTTCGCT GTTTGGCAA
#501
ATTTGAGTC TGAAAAAAA AATTGCAAAT GCGCAAAGGG GGTGAAGGAA
#551
AAAAAAGCAC CCCCCGAAGGT AAAATTCCCT TTAAGTCCCT TCGCATTG
#601
CAAATTTTC AAAAATTGTT GCAAATGCGC TTTTGTATT TGGCCGGTTC
#651
ATTGGTGTCA AAAGTTGCCT GGGGTGGTA CACAATGCAC GGAATTGGTT
#701
GGAAGTTGTG TGATTGAAAA TTGGTCGTGT CACACAATT TGCGCATTG
#751
CAAAATTGCG CAAATTGGAC AAAAAAGGGT CGCGCACAGT CAAATTGCGC
#801
AAATTCACT TTGAAGTGAG TGCGCATTG TGGGGCAGAA ATGTGGTGAC
#851
AGCATCGTTT TTTATAATAA ATATTCTATA TTTAGTATCT TTATTATAAT
#901
TTGCTGTCAC CAATCACCAT TTTAGAATT TTATTTTTT ATGTTTAGT
#951
GACCGCGGGAA TTTTTGCAA AGTACTATYG TGATGTTGA GTTGTGAA
#1001
ATGGGCAATT TAGAACATCA TCAGAAATCG CTGAATAGTG ATTTTGAGT
#1051
TTGACTGTTT GAAGTGTGTTT GGGTATTGG CAGCTGCCAA ATCGGTCA
#1101
GTCGAATATA ATAGCATTGTT TGTGTGTATA TGATATTAG CGATATCATT
#1151
GGAATCATGG GGTGTTGTAT TAGTACCCGC TCATTGTGGG AATGTCGGGT
#1201
GGTCAATAT CACCTGCAA TTTAACACAG GATTGCAATG ATGCAGCGAC
#1251
TGACCGGGGT TGGTATAATA GCTGATTATT CGGCTTATTA TGCAGACCTA
#1301
TCGTGTTAGT AGTTGCGACT CTTGGCGTGA ACCGGAAGAC CGGAACCTGA
#1351
ATTGCACTAT TTACGTCCGT AAACAGGAGA TTTCAAGAAT ATTGCACATT
#1401
TTGCGTGATA TAAACGTGAT CATCTGAGCA CGCTTCGACT CTTGGATATC
#1451
TGCTAATCAG CCGTCATCTG AGAGCTCGCA AGCATTGCAA TTGATGCAAT
#1501

FIG. 3

1 CGTGCCTTT TCACGAATTC ACAGCCCCGC ACCCCATGTA CAATGTTGCC
 51 CACCGA[REDACTED] GCCTGCCTGC CCACCCGAAA TGCCCGA[REDACTED] GCCCGTTAGA
 101 AAAAGTATGC GAAAAGTTCT TGTCAATTTC GACAGTGTGT GAAAAAAACTG
 151 AAAAAGTCCA CTCAACATTG CATTATGCAA TTTGCCACTC AACATTGTCC
 201 AGGGGGATAG GGGGTGAAAA AGTATCGCAG TCCAAGTGAA AAGATGCTAA
 251 GTTGAATGC GGCGCAAATT CATCACTTGA GTTGCAGAAA TCCCTAAAGT
 301 CGAATTGGC ACTCGGTGAC ATGATCGGGA ATTTCCCTGG TTACAGTGGT
 351 CAAATCCCAG CAATTTGGC AAAGTTTTG AGTTTCGAC TTTTCGAAA
 401 TTTCGTGTCT GAAAAAAA TTTCAACTTT GCGCAAAGGG GTCAAAGGG
 451 AAAAAAGCAC CCTCAAAAGG AAATTCCTT TTAATCCCT TTGAAAAAAA
 500 TGCGCAAAGT TAAATTCGCG AAAATTCGA TTTTCTCATA TGACCGATTA
 551 GTTGGTGCCA GATGGTAGTC GGGATGGTTA CACGGTGCAC GGAACTCGTT
 600 GGAAGTTCTG GAGTTACGAA TTGGTCCCGT CACCACAATT TGCGCATT
 651 TGAAATTGCG CAAATTTGCG AAAAAAGCAG CGCGAAAGT TAAATTGTGC
 700 GAAAATTGAC TTTCAGGTGCG GTGCGCAAAT TTGGGGTGAA AAAGTGGTGA
 751 CAGCATCAGA ATTATAATAA ATAATCTATA ATCTAGTTCT TTTATTATAA
 800 TTAGCTGTCA CCAATCACCA TTTGAGATT TTTATTTTTT TATGTTTTAG
 851 TGACCGCGGT ATTTTTCCA GAGTACTATC GTGATGTCTG AGTTGTCTAA
 900 AACGGCAATT TCAGAACATT ACCAGAAAAC ACTGAATAGT GGTTCTGAG
 951 TCTGACTGTT TGAAGTGTGTT TGGGTATTGCG GCAGCTGCCA ATTGGTCAG
 1000 GGTGAAATAT ACTAACATT CTGTGTGTAT ATGGTATTAA GCGATATCAT
 1051 TGGAATCATG GGGTTTGTA TTGACCGCCTCATGTTG GAAAGTCGGG
 1100 TGGTTCAATA TCACCTGCAA ATTTAACACA GGATTGCGAT GATGCAGCGA
 1151 CTGACCGGGG TTAGTATAAT AGCTGATTAT TCGGCTTATT ATGCAGACCT
 1200 ATCGTGTAG TAGTTGCGAC TCTTGGCGTG AACCGGAAGA CCGGAACCTG
 1251 ATTTCGACTA TTTACGTCCG TAACACGTCC GTAAACAGGA GATTTCAAGA
 1300 ATATTGCACA TTTTGTGTGA TATAATCGTG ATCATCTGAG CACGCTTCGA
 1351 CTCTTGAATA TTTGTTAAC AACCGATATT CGGGAGCTCG CAAGCATTGC
 1400 AATTGATGCA ATC

FIG. 4

Primer	Sequence	Target
300 F	5'-CACTTGTATTGTGAAGCACCC-3'	
300 R	5'-TTG GTG ACA TCT CCA AAT GAC-3'	<i>Perkinsus marinus</i>
500 F	5'-ATGCTAGCCCATAAGAACAGT-3'	
500 R	5'-ATGCTAGCCCACATCACAGC-3'	
NTS7	5'-AAGTCGAATTGGAGGCCGTGGTGAC-3'	
NTS6	5'-ATTGTGTAACCACCCCCAGGC-3'	<i>Perkinsus andrewsi</i>
PM5	5'-ATGCTAGCCC ATAGAACAGT-3'	<i>P. marinus</i> type I
PM7	5'-CAT CTC CAA ATG ACC TAC CT-3'	<i>P. marinus</i> type I
PM6	5'-ATGCTAGCCC ACATCACAGC-3'	<i>P. marinus</i> type II
PM8	5"-CAT CTC CAA ATG ACC TAC CA-3'	<i>P. marinus</i> type II

FIG. 5

FIG. 6

P.sp. *P.o.* *P.a.* *P.m.*
M d a d a d a d a M

FIG. 7

FIG. 8

Samples

	1	2	3	4			
M	a	b	a	b	a	b	M

FIG. 9

FIG. 10

		50
Type-I	1	CACTTGTATT GTGAAGCACC CAATGCTAGC CCATAGAACA GTCCAGTAGT
Type-II		CACTTGTATT GTGAAGCACC CAATGCTAGC CCACATCACA GCCCAGTAGT
		100
Type-I	51	TCAATAGAGA GACTAGTGAA CATAGTTAT AACATTGTCC AAGGGGTGGA
Type-II		TCAATAGAGA GACGAGTGAA CATAGTTAT AACATTGTCC AAGGGGTGGA
		150
Type-I	101	GGGGGATGCG CGAAATCGAT GTGCACGTT GGTCAAAGAT GCTCGCGAAA
Type-II		GGGGGATGCG CGAAATCGAT GTGCACGTT GGTCAAAGAT GCTCGCGAAA
		200
Type-I	151	GCTGCACATC AATTTCGCAC ATGGGCGAAA TTGACTTGCA GGTGGGTATA
Type-II		GCTGCACATC AATTTCGCAC ATGGGCGAAA TTGACTTGCA GGTGGGTATA
		250
Type-I	201	AAAGTTGATG TAGGCCATGT GGCTCGATTT CAACCATATG GGTATGCTTC
Type-II		AAAGTTGATG TAGGCCATGT GGCTCGATTT CAACCATATG GGTATGCTTC
		300
Type-I	251	TGAGGGATGGG GTGTTACAGT GGACCATATG AGGTAGGTCA TTTGGAGATG
Type-II		TGAGGGATGGG GTGTTACAGT GGACCATATG TGGTAGGTCA TTTGGAGATG
		301
Type-I		TCACCAA
Type-II		TCACCAA

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

TCTTTTTCAGTCGCACTCAT GGCTTGCGA TGCGTGCACCCCGGAGC
 #1
 >P. atlanticus.CCCCTGGACA ATGTTATCCC AGCTAACAA CGAGCAACAG TGCTATGGCA
 #51
 >P. atlanticus.AGTTAGTCCAC TAGAGAGCCA AGTCGACAAT CTCTACAACA TTGTCCAAGG
 #101
 >P. atlanticus.GGGAAAGGGG GGCGCGCGAA GTTGACCTGC AGCAGAGGGG AAAGATGCTG
 #151
 >P. atlanticus.AGTTTGCTG CACCCCAACT TTGCGCACTT GGCGAAGTTG ACTTGCAGGC
 #201
 >P. atlanticus.GAGGGTAAAAA GATGCTATGG TTGGTTGCGG ACCAAGTTG CCGTGTGGGT
 >PA690F-Text ATGCTATGG TTGGTTGCGG ACC
 #251
 >P. atlanticus.CATCATTATC GAGGTCTGTG GTGACGATGG ACTAGTTTT AGGGATTTTC
 #301
 >P. atlanticus.CGGAGGTGTC ACCACGGACC CCCCAACTT GCGCACGGGG GGTACTCAAT
 #351
 >P. atlanticus.TTTAAGTGAA ATTAAAGTAA AATTACTTA AAATTACACGT TTTTGGGTGC
 #401
 >P. atlanticus.GCAAAGTTGA GGTGGTGA CTTGGTGA CAAATTTAAA AAAGAGAGAT
 #451
 >P. atlanticus.ATTAAAAAAA TATTTATATT TTCTGTGTCA CCGTGTCAAGCAGCAGC
 #501
 >P. atlanticus.GGGCGTAATT TTCCGGAAA TTTTCAGATT TTCCGGAAA ATTGCATTT
 #551
 >P. atlanticus.GGGGTAAATA GTGTCCGTCA GAATTTGCC AAAGGACTGT CGTGATGTCC
 #601
 >P. atlanticus.GAGTTCCAA ATTGAGGGTT TTTGGACATC GCTCTGAAAT CGCTAACGGC
 #651
 >P. atlanticus.GTTTCAGATT TCCGACTTT CGACATATTC TGGGTATTG ATAGCTGCCA
 #701
 >P. atlanticus.AATCGGTCA CGTCGAATAT TCCAATATTT CGAAGGATAT ATGATATCGC
 #751
 >P. atlanticus.GAGATATCAT TGGATTCAT GGGGTTTGT ATTAGTACCC GCTCATTGTG
 >PER1-Text TAGTACCC GCTCATTGTG
 #801
 >P. atlanticus.GGAAAGTCGG GTGAATTAT TCAACCCGCA AATCTAATAC AAGATTGCA
 >PER1-Text G
 #851
 >P. atlanticus.TGATGCAGCG ACTGACCGGG GTGAGTGTAG CAGCTGTTCT ACGGCTTGCT
 <PA690R-Text GCTGTTCT ACGGCTTGCT
 #901
 >P. atlanticus.ACGCAGACCT ATCGTGTAG TAGTTGCGAC TCTTGGCGTG AACCGGAAGA
 <PA690R-Text AC
 #951
 >P. atlanticus.CCGGACCTCG CTTTCGACTA TTCATTCCGA TGAATATGAG ATTGCAAGGG
 #1001
 >P. atlanticus.TATCGCTTCG TGCGATATTT AGTGATCATC AGAGCACGCT ACGACTTCAG
 #1051
 >P. atlanticus.TATATCCTCG GATACACAGA AGCTCGCAAG CATTGCATGA TGCAATC
 <PER2-Text AGCTCGCAAG CATTGCA
 #1101

FIG. 17

>P. andrewsi-S.ACCTTTGATCCTGCCAGT AGTCATATGC TTGATCTCAA GATTAAGCCA
#1

>P. andrewsi-S.TGCATGTCTA AGTATAAGCT TTAAACGGCG AACTGCGAA TGGCTCATTA
#51

>P. andrewsi-S.AAACAGTTAT AGTTTATTTG GTGATCGATT ACTATTTGGA TAACCGTAGT
#101

>P. andrewsi-S.AATTCTAGAG CTAATACATG CGTCAAGGCC CGACTTCGGA AGGGCTGCGT
#151

>P. andrewsi-S.TTATTAGATA CAGAACCAAC CTAGCTCCGC CTAGTCCTTG TTGGTGATTG
#201

>P. andrewsi-S.ATAATAACCC GGCGAATCGC ACGGCTTGTC CGGCGATGGA CCATTCAAGT
#251

>P. andrewsi-S.TTCTGACCTA TCAGCTATGG ACGGTAGGGT ATTGGCCTAC CGTGGCGTTG
#301

>P. andrewsi-S.ACAGGGTAACG GGGATTAGG GTTCGATTCC GGAGAGGGAG CCTGAGAAC
#351

>P. andrewsi-S.GACTACCACA TCTAAGGAAG GCAACAGGCC CGCAAATTAC CCAATCCTGA
#401

>P. andrewsi-S.TACAGGGAGG TAGTGACAAG AAATAACAAT ACAGGGCAAT TCTGTCTTGT
#451

>P. andrewsi-S.AATTGGAATG AGTAGATTT AAATCTCTT ACGAGTATCA ATTGGAGGGC
#501

>P. andrewsi-S.AAGTCTGGTG CCAGCAGGCC CGGTAAATTCC AGCTCCAATA GCGTATATTA
#551

>P. andrewsi-S.AAGTTGTTGC GGTAAAAAG CTCGTAGTTG GATTCTGCC TTGGCGACC
>SSU3F-Text
#601

>P. andrewsi-S.GGTCCACCTT TCCTACGGGT TAGTTGGTA CCAGGTTGA CCTTGGCTTT
#651

>P. andrewsi-S.TTCTTGGGAT TCGTGCTCAC GCACTTAAC GTGCGCTGAC CGTGTCCAA
#701

>P. andrewsi-S.GACTTTACT TTGAGGAAAT TAGAGTGTGTT CAAGCAGGCT TATGCCGTGA
#751

>P. andrewsi-S.ATACATTAGC ATGGAATAAT AGGATATGAC TTTGGTCATA TTTGTTGGT
#801

>P. andrewsi-S.TTCTAGGACT GAAGTAATGA TTAATAGGGA CAGTCGGGGG CATTGTTATT
#851

>P. andrewsi-S.TAACTGTCAG AGGTGAAATT CTTGGATTTG TTAAAGACGA ACTACTGCGA
#901

FIG.18A

>P. andrewsi-S.AAGCATTTGC CAAGGATGTT TTCATTGATC AAGAACGAAA GTTAGGGGAT
#951

>P. andrewsi-S.CGAAGACGAT CAGATACCGT CCTAGTCTTA ACCATAAACT ATGCCGACTA
#1001

>P. andrewsi-S.GGGATTGGGA GTCGTTAATT TTAGACGCTC TCAGCACCTC GTGAGAAATC
#1051

>P. andrewsi-S.AAAGTCCTTG GGTTCCGGGG GGAGTATGGT CGCAAGGCTG AACTTAAAG
#1101

>P. andrewsi-S.GAATTGACGG AAGGGCACCA CCAGGAGTGG AGCCTGCGGC TTAATTGAT
#1151

>P. andrewsi-S.TCAAACACGGG AAAACTCACC AGGTCCAGAC ATAGGAAGGA TTGACAGATT
>SSU4F-Text ACC AGGTCCAGAC ATAGGAAGG
#1201

>P. andrewsi-S.GATAGCTCTT TCTTGATTCT ATGGGTGGTG GTGCATGGCC GTTCTTAGTT
#1251

>P. andrewsi-S.GGTGGAGTGA TTTGTCTGGT TAATTCCGTT AACGAACGAG ACCTTAACCT
#1301

>P. andrewsi-S.GCTAAATAGT TGCGTGAAT CTTGTATTTC ACCGCTACTT CTTAGAGGGA
#1351

>P. andrewsi-S.CTTTGTGTGT TTAACACAAG GAAGCTTGAG GCAATAACAG GTCTGTGATG
#1401

>P. andrewsi-S.CCCTTAGATG TTCTGGGCTG CACGCGCGT AACTGACAC GATCAACGAG
#1451

>P. andrewsi-S.TATTCCTTG CCCGGTAGGG TTAGGGTAAT CTTTGAAAT CGTGTGTC
#1501

>P. andrewsi-S.TAGGGATAGA CGATTGCAAT TATTCGTCTT CAACGAGGAA TTCCTAGTAA
#1551

>P. andrewsi-S.ATGCAAGTCA TCAGCTTGC G TGATTACGT CCCTGCCCTT TGTACACACC
#1601

>P. andrewsi-S.GCCCCGCTGCT CCTACCGATT GAGTGATCCG GTGAGCTGTC CGGACTGCGA
#1651

>P. andrewsi-S.TTAGTTCACT TTCTGTTCTT TTGCGGGAA GTTCTGCAA CCTTATCACT
#1701

>P. andrewsi-S.TAGAGGAAGG AGAAGTCGTA ACAAGGTTTC CGTAGGTGAA CCTGCAGAAG
#1751

>P. andrewsi-S.GATCATTC

FIG. 18B

ACACCGATT ATTCTCTGAG AAACCAGCGG TCTCTGTAAA AGGAGATGGG
#1 ATCTCCGCTT TGTTTAGATC CCCACACCTG ACCGCTTAA CGGGCCGGGT
#51 AGGTGCATAA CTTCTATGAA CCAATTGTAC TAGTCTAAAG TATCCAATAT
#101 CCTTTGGAT TTTGGTATT CAAAACGAAA TTCCAAACTC TCAACGATGG
#151 ATGCCTCGGC TCGAGAATCG ATGAAGGACG CAGCGAAGTG CGATAAGCAC
#201 TCGGATTGC AGAATTCCGT GAACCAGTAG AAATCTCAAC GCATACTGCA
#251 CAAAGGGGAT TTATCCTCTT TGTACATACA TATCAGTGT GCTCTTCTTC
#301 CCGATACAAA CATTGTTG ATTTACAATC AACATTATGC TTTGTATCCC
#351 GCTTGGATT CTTTATTGGG ATCCGCTGTG TCGGCTTGCT GACACAGGCG
#401 CATTAATTG CAAGGCTATA ATACTACTGT ACTGTAGCCC CTTCGCAAGA
#451 AGGACTGCGC TAGTGAGTAT CTTGGATGC TCGCGAACTC GACTGTGTTG
#501 TGGTTGATT CGTGTTCCTC GATCACGCGA TTCATCGCTT CAACGCATTA
#551 TGTCAAATT GATGAATGCA GAGAGTTGTT TATGAATTAC GCGATCGCTT
#601 TGGTCTCAGA ATCGTTACTA TAGCACGCTT GTCGGTTGCA AACCTGGCAA
#651 TATGTCATCA TT
#701

FIG. 19

		Primers to claim							
Perkinsus species	PCR	Name	Forward Primer (5'-3')	Position ¹	Name	Reverse Primer (5'-3')	Position ¹	Amplicon Size (bp)	Publication
<i>Perkinsus marinus</i>	Species specific	300F	CAC TTG TAT TGT	60-80	300R	TTG GTG ACA TCT	346-366	307	Marsh et al.
			GAA GCA CCC			CCA AAT GAC			J. Parasitol. 1995 81(4):577-83.
<i>Perkinsus atlanticus</i>	Species specific	PA690F	ATG CTA TGG TTG	262-283	PA690R	GTA GCA AGC CGT	933-952	691	Roldedo et al.
			GTT GCG GAC C			AGA ACA GC			J. Parasitol. 2000 86(5):972-8
<i>Perkinsus andrewsi</i> ²	Species specific	NTS7	AAG TCG AAT	447-470	NTS6	ATT GTG TAA CCA	717-736	290	Coss et al.
			TGG			CCC CAG GC			J. Euk. Microbiol. (In Press)
<i>Perkinsus marinus</i>	Generic	PER1	AGG CGT GGT						
			GAC						
<i>Perkinsus atlanticus</i>	Generic	PER1	TAG TAC CCG CTC	827-845	PER2	TGC AAT GCT TGC	1123-1139	313	Coss et al.
			AT(TC) GTG G			GAG CT			J. Parasitol. (Submitted)
<i>Perkinsus andrewsi</i>	Generic	PER1	TAG TAC CCG CTC	833-851	PER2	TGC AAT GCT TGC	1121-1137	305	Coss et al.
			ATT GTG G			GAG CT			J. Parasitol. (Submitted)

¹Relative to the NTS sequence

²*Perkinsus* sp. (*Macoma balthica*)

FIG. 20

Primers to claim						Position ¹	Publication
Perkinsus species	PCR	Name	Forward Primer (5'-3')	Position	Name		
<i>Perkinsus andrewsi</i>	Sequencing	SSU3F	AGT TGG ATT TCT	626-647	SSU4F	ACC AGG TCC AGA	Cos et al.
			GCC TTG GGC G			CAT AGG AAG G	J. Euk. Microbiol. (In Press)

FIG. 21