Calcul propositionnel

Table des matières

1	Pro	position et valeur de vérité	2
2	Cor	nnecteurs logiques	3
	2.1	Négation	3
		Équivalence	3
	2.3	Conjonction (et)	4
	2.4	Disjonction (ou)	4
	2.5	Implication	5
3	Pro	priétés des connecteurs logiques	7
	3.1	Commutativité	7
	3.2	Associativité	7
	3.3	Distributivité	7
	3.4	Lois de De Morgan	8

1 Proposition et valeur de vérité

Définition:

Une proposition est une expression bien former de point de vue d'un certaine langage, à laquelle est affecté clairement (par une communauté) une valeur de vérité. Cette valeur de vérité sera notée :

- ${f V}$ si la proposition est vraie.
- ${f F}$ si la proposition est fausse.

Exemple 1:

- " $\Pi > 3, 14$ " est une proposition vraie : $\mathbf{V}(1)$ ($\Pi = \mathrm{pi}$)
- "x>3" n'est pas une proposition, car sa valeur de vérité dépende de la valeur de x.
- "8 > 18" est une proposition fausse : \mathbf{F} (0)

Remarque:

Les proposition seront notées P, Q, R, S, ... etc.

À partir de ces propositions, on peut former d'autres propositions en utilisant des connecteurs logiques :

- négation
- et
- ou
- ⇔
- ⇒

2 Connecteurs logiques

Négation 2.1

Définition:

La négation notée \neg (nonP, \overline{P} , \neg P) est un connecteur logique unaire dont la table de vérité ci-dessous :

Р	¬P
F	V
V	F

Si P est F, la négation de P est V.
Si P est V, la négation de P est F.

Unaire = on a besoin juste un numéro (\mathbf{P}) Binaire = on a besoin 2 numéros $(\mathbf{p}; \mathbf{q})$

Équivalence 2.2

Définition:

L'équivalence est un connecteur logique binaire noté 😝 dont la table de vérité est donnée ci-dessous :

Р	Q	$P \Leftrightarrow Q$
F	F	V
F	V	F
V	F	F
V	V	V

Remarque:

 $P \Leftrightarrow Q$ est identique à $Q \Leftrightarrow P$

2.3 Conjonction (et)

Définition:

La conjonction est un connecteur logique binaire noté \land dont la table de vérité est donnée ci-dessous :

Р	Q	$P \wedge Q$		
F	F	F		
F	V	F		
V	F	F		
V	V	V		

$$P \text{ et } Q \text{ est} = V$$

2.4 Disjonction (ou)

Définition:

La disjonction est un connecteur logique binaire noté \bigvee dont la table de vérité est donnée ci-dessous :

Р	Q	$P \vee Q$
F	F	F
F	V	V
V	F	V
V	V	V

Exercice 1:

Montrer que :

$$\neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q)$$

$$\neg(P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$$

P	Q	$P \vee Q$	$\neg(P \vee Q)$	¬P	$\neg Q$	$\neg P \wedge \neg Q$
F	F	F	V	V	V	V
F	V	V	F	V	F	F
V	F	V	F	F	V	F
V	V	V	F	F	F	F

Les deux colonnes ($\neg (P \, \vee \, Q)$ et $\neg P \, \wedge \neg Q$) sont identiques

2.5 Implication

Définition:

L'implication est un connecteur logique binaire noté \Rightarrow dont la table de vérité est donnée ci-dessous :

Р	Q	$P \Rightarrow Q$
F	F	V
F	V	V
V	F	F
V	V	V

Exercice 2:

Montrer que : $(P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P)$

Р	Q	$P \Rightarrow Q$	$\neg Q$	¬Р	$\neg Q \Rightarrow \neg P$
F	F	V	V	V	V
F	V	V	F	V	V
V	F	F	V	F	F
V	V	V	F	F	V

Les deux colonnes (${\rm P} \Rightarrow {\rm Q} \;$ et $|\neg {\rm Q} \Rightarrow \neg {\rm P} \;)$ sont identiques

Exercice 3:

Montrer que : (P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)

Р	Q	$P \Rightarrow Q$	¬P	Q	$\neg P \vee Q$
F	F	V	V	F	V
F	V	V	V	V	V
V	F	F	F	F	F
V	V	V	F	V	V

Les deux colonnes ($\mbox{P} \Rightarrow \mbox{Q}$ et $\mbox{\neg P} \vee \mbox{Q}$) sont identiques

3 Propriétés des connecteurs logiques

3.1 Commutativité

$$\begin{split} \mathbf{P} \, \wedge \, \mathbf{Q} & \Leftrightarrow \mathbf{Q} \, \wedge \, \mathbf{P} \\ \mathbf{P} \, \vee \, \mathbf{Q} & \Leftrightarrow \mathbf{Q} \, \vee \, \mathbf{P} \end{split}$$

3.2 Associativité

$$\begin{aligned} & (P \land Q) \land R \Leftrightarrow P \land (Q \land R) \\ & (P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R) \end{aligned}$$

Démonstration :

P	Q	R	$P \vee Q$	$(P \vee Q) \vee R$	$Q \vee R$	$P \vee (Q \vee R)$
F	F	F	F	F	F	F
F	F	V	F	V	V	V
F	V	F	V	V	V	V
F	V	V	V	V	V	V
F	F	F	V	V	F	V
F	F	V	V	V	V	V
V	V	F	V	V	V	V
V	V	V	V	V	V	V

Les deux colonnes ($(P \lor Q) \lor R$ et $P \lor (Q \lor R)$) sont identiques

3.3 Distributivité

$$\begin{split} \mathbf{P} \wedge (\mathbf{Q} \vee \mathbf{R}) &\Leftrightarrow (\mathbf{P} \wedge \mathbf{Q}) \vee (\mathbf{P} \wedge \mathbf{R}) \\ \mathbf{P} \vee (\mathbf{Q} \wedge \mathbf{R}) &\Leftrightarrow (\mathbf{P} \vee \mathbf{Q}) \wedge (\mathbf{P} \vee \mathbf{R}) \end{split}$$

3.4 Lois de De Morgan

$$\neg \ (P \land Q) \Leftrightarrow \neg \ P \lor \neg Q$$

$$\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$$

Démonstration :

Р	Q	$P \wedge Q$	$\neg(P \land Q)$	$\neg P$	$\neg Q$	$\neg P \vee \neg Q$
F	F	F	V	V	V	V
F	V	F	V	V	F	V
V	F	F	V	F	V	V
V	V	V	F	F	F	F

Les deux colonnes ($\neg (P \, \wedge \, Q)$ et $\neg P \, \vee \, \neg Q$) sont identiques