

日本国特許庁
PATENT OFFICE
JAPANESE GOVERNMENT

Sugihara, Toshiro
P 60360

09/651096 U.S. PRO
08/30/00
Barcode

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
in this Office.

出願年月日
Date of Application:

2000年 6月 5日

願番号
Application Number:

特願2000-167763

願人
Applicant(s):

セイコーエプソン株式会社

CERTIFIED COPY OF
PRIORITY DOCUMENT

2000年 6月 29日

特許庁長官
Commissioner,
Patent Office

近藤 隆

出証番号 出証特2000-3052633

【書類名】 特許願
【整理番号】 12535201
【提出日】 平成12年 6月 5日
【あて先】 特許庁長官殿
【国際特許分類】 H02P 5/00
【発明の名称】 プリンタ用モータの制御装置および制御方法ならびに制御プログラムを記録した記録媒体
【請求項の数】 17
【発明者】
【住所又は居所】 長野県諏訪市大和三丁目3番5号 セイコーホームズ株式会社内
【氏名】 岩 村 克 寿
【特許出願人】
【識別番号】 000002369
【住所又は居所】 東京都新宿区西新宿二丁目4番1号
【氏名又は名称】 セイコーホームズ株式会社
【代理人】
【識別番号】 100064285
【弁理士】
【氏名又は名称】 佐 藤 一 雄
【選任した代理人】
【識別番号】 100088889
【弁理士】
【氏名又は名称】 橘 谷 英 俊
【選任した代理人】
【識別番号】 100082991
【弁理士】
【氏名又は名称】 佐 藤 泰 和

【選任した代理人】

【識別番号】 100096921

【弁理士】

【氏名又は名称】 吉 元 弘

【先の出願に基づく優先権主張】

【出願番号】 平成11年特許願第246209号

【出願日】 平成11年 8月31日

【手数料の表示】

【予納台帳番号】 004444

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9908789

【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 プリンタ用モータの制御装置および制御方法ならびに制御プログラムを記録した記録媒体

【特許請求の範囲】

【請求項1】

モータの回転に従って回転するエンコーダの出力パルスをカウントすることによって前記モータによって搬送される前記印刷媒体の位置を検出する位置カウンタと、

前記印刷媒体の送り量の目標値と、前記位置カウンタによって検出された前記印刷媒体の前回の停止位置に基づいて前記送り量の修正された目標値を演算し、前記修正された目標値を前記位置カウンタのカウント値に設定する目標制御量修正演算部と、

前記位置カウンタのカウント値が零を含む所定の範囲の値となるように前記モータを制御する位置制御部と、

を備えたことを特徴とするプリンタ用モータの制御装置。

【請求項2】

前記印刷媒体は紙であり、前記モータは紙送りモータであることを特徴とする請求項1記載のプリンタ用モータの制御装置。

【請求項3】

前記位置制御部はPID制御することを特徴とする請求項1または2記載のプリンタ用モータの制御装置。

【請求項4】

前記位置カウンタは前記モータの正転および逆転に応じてカウントアップおよびカウントダウンするカウンタであることを特徴とする請求項1乃至3のいずれかに記載のプリンタ用モータの制御装置。

【請求項5】

モータによって搬送される印刷媒体の位置を検出する位置検出部と、

前記モータの今回の起動時の前記印刷媒体の送り量の目標値および前記モータの前回の起動時の前記送り量の目標値ならびに前記モータの今回の起動直前の前

記位置検出部の検出位置に基づいて、前記印刷媒体の修正された目標位置を演算する目標位置修正演算部と、

前記修正された目標位置と、前記位置検出部の検出位置との位置偏差に基づいて前記モータを制御する位置制御部と、
を備えていることを特徴とするプリンタ用モータの制御装置。

【請求項6】

前記目標位置修正演算部は、
前回の起動時の制御量の目標値と、前記モータの今回の起動直前の前記位置検出部の検出値に基づいて前回の起動後の前記送り量の誤差を演算する誤差演算部と、

今回の起動時の前記送り量の目標値と前記誤差との和である修正された目標位置を演算する加算器と、

を備えていることを特徴とする請求項5記載のプリンタ用モータの制御装置。

【請求項7】

前記位置検出部は、前記モータの回転に従って回転するエンコーダの出力パルスをカウントする位置カウンタであり、

前記目標位置修正演算部は、前記位置カウンタのカウント値をリセットするリセット信号を発生するリセット信号発生部を更に備えていることを特徴とする請求項6記載のプリンタ用モータの制御装置。

【請求項8】

前記印刷媒体は紙であり、前記モータは紙送りモータであることを特徴とする請求項5乃至7のいずれかに記載のプリンタ用モータの制御装置。

【請求項9】

前記位置制御部はPID制御することを特徴とする請求項5乃至8記載のプリンタ用モータの制御装置。

【請求項10】

モータの回転に従って回転するエンコーダの出力パルスをカウントすることによって前記モータによって搬送される印刷媒体の位置を位置カウンタによって検出するステップと、

前記印刷媒体の送り量の目標値と、前記位置カウンタによって検出された前記印刷媒体の前回の停止位置とに基づいて前記送り量の修正された目標値を演算し、前記修正された目標値を前記位置カウンタのカウント値に設定するステップと、
前記位置カウンタのカウント値が零を含む所定の範囲の値となるように前記モータを制御するステップと、
を備えたことを特徴とするプリンタ用モータの制御方法。

【請求項11】

前記印刷媒体は紙であり、前記モータは紙送りモータであることを特徴とする請求項10記載のプリンタ用モータの制御方法。

【請求項12】

前記制御するステップはP.I.D制御することを特徴とする請求項10または11記載のプリンタ用モータの制御方法。

【請求項13】

前記位置カウンタは前記モータの正転および逆転に応じてカウントアップおよびカウントダウンするカウンタであることを特徴とする請求項10乃至12のいずれかに記載のプリンタ用モータの制御方法。

【請求項14】

モータによって搬送される印刷媒体の位置を検出するステップと、前記モータの今回の起動時の前記印刷媒体の送り量の目標値および前記モータの前回の起動時の前記送り量の目標値ならびに前記モータの今回の起動直前の前記印刷媒体の検出位置に基づいて、前記印刷媒体の修正された目標位置を演算するステップと、

前記修正された目標位置と、前記印刷媒体の検出位置との位置偏差に基づいて前記モータを制御するステップと、
を備えていることを特徴とするプリンタ用モータの制御方法。

【請求項15】

前記修正された目標位置を演算するステップは、前回の起動時の送り量の目標値と、前記モータの今回の起動直前の前記印刷媒

体の検出値とに基づいて前回の起動後の前記送り量の誤差を演算するステップと

今回の起動時の前記送り量の目標値と前記誤差との和である修正された目標位置を演算するステップと、

を備えていることを特徴とする請求項14記載のプリンタ用モータの制御方法

【請求項16】

モータの回転に従って回転するエンコーダの出力パルスをカウントすることによって前記モータによって搬送される印刷媒体の位置を位置カウンタによって検出する手順と、

前記印刷媒体の送り量の目標値と、前記位置カウンタによって検出された前記印刷媒体の前回の停止位置とに基づいて前記送り量の修正された目標値を演算し、前記修正された目標値を前記位置カウンタのカウント値に設定する手順と、

前記位置カウンタのカウント値が零を含む所定の範囲の値となるように前記モータを制御する手順と、

を備えたことを特徴とするコンピュータによってプリンタ用モータを制御するプリンタ用モータの制御プログラムを記録した記録媒体。

【請求項17】

モータによって搬送される印刷媒体の位置を検出する手順と、

前記モータの今回の起動時の前記印刷媒体の送り量の目標値および前記モータの前回の起動時の前記送り量の目標値ならびに前記モータの今回の起動直前の前記印刷媒体の検出位置に基づいて、前記印刷媒体の修正された目標位置を演算する手順と、

前記修正された目標位置と、前記印刷媒体の検出位置との位置偏差に基づいて前記モータを制御する手順と、

を備えていることを特徴とするコンピュータによってプリンタ用モータを制御するプリンタ用モータの制御プログラムを記録した記録媒体。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明はプリンタ用モータの制御装置および制御方法ならびに制御プログラムを記録した記録媒体に関する。

【0002】**【従来の技術】**

従来、プリンタの紙送りの制御は紙送りモータ（以下、P F モータともいう）を制御することによって行っていた。DCモータを用いたP F モータの制御は、まず加速制御によってP F モータを起動させた後、P I D制御によってP F モータを定速運転し、続いて減速させ停止させていた。そしてこのP I D制御は、P F モータの回転に従って回転するエンコーダの出力パルスのカウント値と目標位置（目標パルス数）との偏差に基づいて行われていた。

【0003】**【発明が解決しようとする課題】**

一般にP I D制御は、P F モータを目標位置に完全に停止させることは難しく、実際の停止位置は、許容範囲内であるが、目標位置からずれた位置となる。

【0004】

また、許容範囲内の位置に停止後、外乱（例えばシリアルプリンタにおいてはキャリッジの振動等）により動いてしまう場合もあった。

【0005】

そして、P F モータの停止後に再度起動させて紙送り処理を行う場合には、前回の起動時の目標位置を基準として今回の起動の目標位置が設定されるため、今回の起動によって印刷媒体（紙）が更にずれた位置に停止する可能性がある。このため、所望の位置からずれた位置に印字が行われるという問題があった。

【0006】

本発明は上記事情を考慮してなされたものであって、印刷媒体を駆動するモータの停止後にモータを再起動させても印刷媒体の停止を精度良く行うことが可能なプリンタ用モータの制御装置および制御方法ならびに制御プログラムを記録した記録媒体を提供することを目的とする。

【0007】

【課題を解決するための手段】

本発明によるプリンタ用モータの制御装置は、モータの回転に従って回転するエンコーダの出力パルスをカウントすることによって前記モータによって搬送される印刷媒体の位置を検出する位置カウンタと、前記印刷媒体の送り量の目標値と、前記位置カウンタによって検出された前記印刷媒体の前回の停止位置に基づいて前記送り量の修正された目標値を演算し、前記修正された目標値を前記位置カウンタのカウント値に設定する目標制御量修正演算部と、前記位置カウンタのカウント値が零を含む所定の範囲の値となるように前記モータを制御する位置制御部と、を備えたことを特徴とする。

【0008】

なお、前記印刷媒体は紙であり、前記モータは紙送りモータであるように構成しても良い。

【0009】

なお、前記位置制御部はP I D制御するように構成しても良い。

【0010】

なお、前記位置カウンタは前記モータの正転および逆転に応じてカウントアップおよびカウントダウンするカウンタであることが好ましい。

【0011】

また、本発明によるプリンタ用モータの制御装置は、モータによって搬送される印刷媒体の位置を検出する位置検出部と、前記モータの今回の起動時の前記印刷媒体の送り量の目標値および前記モータの前回の起動時の前記送り量の目標値ならびに前記モータの今回の起動直前の前記位置検出部の検出位置に基づいて、前記印刷媒体の修正された目標位置を演算する目標位置修正演算部と、前記修正された目標位置と、前記位置検出部の検出位置との位置偏差に基づいて前記モータを制御する位置制御部と、を備えていることを特徴とする。

【0012】

なお、前記目標位置修正演算部は、前回の起動時の送り量の目標値と、前記モータの今回の起動直前の前記位置検出部の検出値に基づいて前回の起動後の前記送り量の誤差を演算する誤差演算部と、今回の起動時の前記送り量の目標値と

前記誤差との和である修正された目標位置を演算する加算器と、を備えているように構成しても良い。

【0013】

なお、前記位置検出部は、前記モータの回転に従って回転するエンコーダの出力パルスをカウントする位置カウンタであり、前記目標位置修正演算部は、前記位置カウンタのカウント値をリセットするリセット信号を発生するリセット信号発生部を更に備えているように構成しても良い。

【0014】

また、本発明によるプリンタ用モータの制御方法は、モータの回転に従って回転するエンコーダの出力パルスをカウントすることによって前記モータによって駆動される印刷媒体の位置を位置カウンタによって検出するステップと、前記印刷媒体の送り量の目標値と、前記位置カウンタによって検出された前記印刷媒体の前回の停止位置とに基づいて前記送り量の修正された目標値を演算し、前記修正された目標値を前記位置カウンタのカウント値に設定するステップと、前記位置カウンタのカウント値が零を含む所定の範囲の値となるように前記モータを制御するステップと、を備えたことを特徴とする。

【0015】

なお、前記印刷媒体は紙であり、前記モータは紙送りモータであるように構成しても良い。

【0016】

なお、前記制御するステップはP I D制御するように構成しても良い。

【0017】

なお、前記位置カウンタは前記モータの正転および逆転に応じてカウントアップおよびカウントダウンするカウンタであるように構成しても良い。

【0018】

また、本発明によるプリンタ用モータの制御方法は、モータによって搬送される印刷媒体の位置を検出するステップと、前記モータの今回の起動時の前記印刷媒体の送り量の目標値および前記モータの前回の起動時の前記送り量の目標値ならびに前記モータの今回の起動直前の前記印刷媒体の検出位置に基づいて、前記

印刷媒体の修正された目標位置を演算するステップと、前記修正された目標位置と、前記印刷媒体の検出位置との位置偏差に基づいて前記モータを制御するステップと、を備えていることを特徴とする。

【0019】

なお、前記修正された目標位置を演算するステップは、前回の起動時の送り量の目標値と、前記モータの今回の起動直前の前記印刷媒体の検出位置とに基づいて前回の起動後の前記送り量の誤差を演算するステップと、今回の起動時の前記送り量の目標値と前記誤差との和である修正された目標位置を演算するステップと、を備えているように構成しても良い。

【0020】

また、本発明によるプリンタ用モータの制御プログラムを記録した記録媒体は、モータの回転に従って回転するエンコーダの出力パルスをカウントすることによって前記モータによって搬送される印刷媒体の位置を位置カウンタによって検出する手順と、前記印刷媒体の送り量の目標値と、前記位置カウンタによって検出された前記印刷媒体の前回の停止位置とに基づいて前記送り量の修正された目標値を演算し、前記修正された目標値を前記位置カウンタのカウント値に設定する手順と、前記位置カウンタのカウント値が零を含む所定の範囲の値となるように前記モータを制御する手順と、を少なくとも備えるように構成しても良い。

【0021】

また、本発明によるプリンタ用モータの制御プログラムを記録した記録媒体は、モータによって搬送される印刷媒体の位置を検出する手順と、前記モータの今回の起動時の前記印刷媒体の送り量の目標値および前記モータの前回の起動時の前記送り量の目標値ならびに前記モータの今回の起動直前の前記印刷媒体の検出位置に基づいて、前記印刷媒体の修正された目標位置を演算する手順と、前記修正された目標位置と、前記印刷媒体の検出位置との位置偏差に基づいて前記モータを制御する手順と、を少なくとも備えるように構成しても良い。

【0022】

【発明の実施の形態】

以下、本発明によるプリンタ用モータの制御装置の実施の形態を図面を参照し

て説明する。

【0023】

まず本実施の形態のプリンタ用モータの制御装置が用いられるインクジェットプリンタの概略の構成について説明する。このインクジェットプリンタの概略の構成を図5に示す。

【0024】

このインクジェットプリンタは、紙送りを行う紙送りモータ（以下、PFモータともいう）1と、この紙送りモータ1を駆動する紙送りモータドライバ2と、キャリッジ3と、このキャリッジ3を駆動するキャリッジモータ（以下、CRモータともいう）4と、このキャリッジモータ4を駆動するCRモータドライバ5と、DCユニット6と、目詰まり防止のためのインクの吸い出しを制御するポンプモータ7と、このポンプモータ7を駆動するポンプモータドライバ8と、キャリッジ3に固定されて印刷紙50にインクを吐出する記録ヘッド9と、この記録ヘッド9を駆動制御するヘッドドライバ10と、キャリッジ3に固定されたリニア式エンコーダ11と、所定の間隔にスリットが形成された符号板12と、PFモータ1用のロータリ式エンコーダ13と、印刷処理されている紙の終端位置を検出する紙検出センサ15と、プリンタ全体の制御を行うCPU16と、CPU16に対して周期的に割込み信号を発生するタイマIC17と、ホストコンピュータ18との間でデータの送受信を行うインターフェース部（以下IFともいう）19と、ホストコンピュータ18からIF19を介して送られてくる印字情報に基づいて印字解像度やヘッド9の駆動波形等を制御するASIC20と、ASIC20およびCPU16の作業領域やプログラム格納領域として用いられるROM21、RAM22およびEEPROM23と、印刷中の紙50を支持するプラテン25と、PFモータ1によって駆動されて印刷紙50を搬送する搬送ローラ27と、CRモータ4の回転軸に取付けられたブーリ30と、このブーリ30によって駆動されるタイミングベルト31と、を備えている。

【0025】

なお、DCユニット6は、CPU16から送られてくる制御指令およびエンコーダ11、13の出力に基づいて紙送りモータドライバ2およびCRモータドライバ5を駆動する。

イバ5を駆動制御する。また、紙送りモータ1およびC.R.モータ4はいずれもDCモータで構成されている。

【0026】

このインクジェットプリンタのキャリッジ3の周辺の構成を図6に示す。

【0027】

キャリッジ3は、タイミングベルト31によりブーリ30を介してキャリッジモータ4に接続され、ガイド部材32に案内されてプラテン25に平行に移動するように駆動される。キャリッジ3の印刷紙に対向する面には、ブラックインクを吐出するノズル列およびカラーインクを吐出するノズル列からなる記録ヘッド9が設けられ、各ノズル列はインクカートリッジ34からインクの供給を受けて印刷紙にインク滴を吐出して文字や画像を印字する。

【0028】

またキャリッジ3の非印字領域には、非印字時に記録ヘッド9のノズル開口を封止するためのキャッピング装置35と、図5に示すポンプモータ7を有するポンプユニット36とが設けられている。キャリッジ3が印字領域から非印字領域に移動すると、図示しないレバーに当接してキャッピング装置35は上方に移動し、記録ヘッド9を封止する。

【0029】

記録ヘッド9のノズル開口列に目詰まりが生じた場合や、カートリッジ34の交換等を行って記録ヘッド9から強制的にインクを吐出する場合は、記録ヘッド9を封止した状態でポンプユニット36を作動させ、ポンプユニット36からの負圧により、ノズル開口列からインクを吸い出す。これにより、ノズル開口列の近傍に付着している塵埃や紙粉が洗浄され、さらには記録ヘッド9内の気泡がインクとともにキャップ37に排出される。

【0030】

次に、キャリッジ3に取付けられたリニア式エンコーダ11の構成を図7に示す。このエンコーダ11は発光ダイオード11aと、コリメータレンズ11bと、検出処理部11cとを備えている。この検出処理部11cは複数（4個）のフォトダイオード11dと、信号処理回路11eと、2個のコンパレータ11f_A

, 11f_Bと、を有している。

【0031】

発光ダイオード11aの両端に抵抗を介して電圧Vccが印加されると、発光ダイオード11aから光が発せられる。この光はコリメータレンズ11bによって平行にされて符号板12を通過する。符号板12には所定の間隔（例えば1/180インチ（=1/180×2.54cm））毎にスリットが設けられた構成となっている。

【0032】

この符号板12を通過した平行光は、図示しない固定スリットを通って各フォトダイオード11dに入射し、電気信号に変換される。4個のフォトダイオード11dから出力される電気信号が信号処理回路11eにおいて信号処理される。この信号処理回路11eから出力される信号がコンパレータ11f_A、11f_Bにおいて比較され、比較結果がパルスとして出力される。コンパレータ11f_A、11f_Bから出力されるパルスENC-A、ENC-Bがエンコーダ11の出力となる。

【0033】

パルスENC-AとパルスENC-Bは位相が90度だけ異なっている。CRモータ4が正転すなわちキャリッジ3が主走査方向に移動しているときは図8(a)に示すようにパルスENC-AはパルスENC-Bよりも90度だけ位相が進み、CRモータ4が逆転しているときは図8(b)に示すようにパルスENC-AはパルスENC-Bよりも90度だけ位相が遅れるようにエンコーダ4は構成されている。そして、上記パルスの1周期Tは符号板12のスリット間隔（例えば1/180インチ（=1/180×2.54cm））に対応し、キャリッジ3が上記スリット間隔を移動する時間に等しい。

【0034】

一方、PFモータ1用のロータリ式エンコーダ13は符号板がPFモータ1の回転に応じて回転する回転円板である以外は、リニア式エンコーダ11と同様の構成となっている。なおインクジェットプリンタにおいては、PFモータ1用のエンコーダ13の符号板に設けられている複数のスリットのスリット間隔は、1

／180インチ（＝1／180×2.54cm）であり、PFモータ1が上記1スリット間隔だけ回転すると、1／1440インチ（＝1／1440×2.54cm）だけ紙送りされるような構成となっている。

【0035】

次に図5において示した紙検出センサ15の位置について図9を参照して説明する。図9において、プリンタ60の給紙挿入口61に挿入された紙50は、給紙モータ63によって駆動される給紙ローラ64によってプリンタ60内に送り込まれる。プリンタ60内に送り込まれた紙50の先端が例えば光学式の紙検出センサ15によって検出される。この紙検出センサ15によって先端が検出された紙50はPFモータ1によって駆動される紙送りローラ65および従動ローラ66によって紙送りが行われる。

【0036】

続いてキャリッジガイド部材32に沿って移動するキャリッジ3に固定された記録ヘッド（図示せず）からインクが滴下されることにより印字が行われる。そして所定の位置まで紙送りが行われると、現在、印字されている紙50の終端が紙検出センサ15によって検出される。そしてPFモータ1によって駆動される歯車67aにより、歯車67bを介して歯車67cが駆動され、これにより、排紙ローラ68および従動ローラ69が回転駆動されて、印字が終了した紙50が排紙口62から外部に排出される。

【0037】

(第1の実施の形態)

次に、本発明によるプリンタ用モータの制御装置の第1の実施の形態について説明する。この実施の形態のプリンタ用モータの制御は、図5に示したDCユニット6によって行われその構成を図1に示す。

【0038】

本実施の形態のプリンタ用モータの制御装置すなわちDCユニット6は、位置カウンタ6aと、減算部6bと、目標速度演算部6cと、速度演算部6dと、減算器6eと、比例要素6fと、積分要素6gと、微分要素6hと、加算器6iと、D/Aコンバータ6jと、タイマ6kと、加速制御部6mと、送り量修正演算

部90とを備えている。

【0039】

位置カウンタ6aはエンコーダ13の出力パルスENC-A, ENC-Bの各々の立ち上がりエッジ、立ち下がりエッジを検出し、検出されたエッジの個数を計数し、この計数値に基づいて、PFモータ1の回転位置を演算する。この計数はPFモータ1が正転しているときは1個のエッジが検出されると「+1」を加算し、逆転しているときは、1個のエッジが検出されると「-1」を加算する。パルスENC-AおよびENC-Bの各々の周期は符号板のスリット間隔に等しく、かつパルスENC-AとパルスENC-Bは位相が90度だけ異なっている。このため、上記計数のカウント値「1」はエンコーダ13の符号板のスリット間隔の1/4に対応する。これにより上記計数値にスリット間隔の1/4を乗算すれば、PFモータ1の、計数値が「0」に対応する位置からの回転量を求めることができる。このときエンコーダ13の解像度は符号板のスリットの間隔の1/4となる。上記スリットの間隔を1/1440インチ($=1/1440 \times 2.54\text{ cm}$)とすれば解像度は1/5760インチ($=1/5760 \times 2.54\text{ cm}$)となる。

【0040】

送り量修正演算部90は、CPU16から送られてくるPFモータ1の起動指令に基づいて動作し、起動の目標位置「0」と、上記起動指令受信直後の位置カウンタ6aのカウント値(パルス数)、すなわち前回の停止位置とにに基づいて、修正された紙の送り量を演算する。そして、この修正された送り量を位置カウンタ6aに送り、位置カウンタ6aのカウント値を上記修正された送り量となるよう設定する。なおこの時、位置カウンタ6aのカウント値は、目標位置に近づくにつれてそのカウント値も小さくなるように設定される。

【0041】

減算器6bは、目標位置「0」と、位置カウンタ6aのカウント値との位置偏差を演算する。

【0042】

目標速度演算部6cは、減算器6bの出力である位置偏差に基づいてPFモー

タ1の目標速度を演算する。この演算は位置偏差にゲインK_Pを乗算することにより行われる。このゲインK_Pは位置偏差に応じて決定される。なお、このゲインK_Pの値は図示しないテーブルに格納していても良い。

【0043】

速度演算部6dはエンコーダ13の出力パルスENC-A, ENC-Bに基づいてPFモータ1の速度を演算する。この速度は次のようにして求められる。まずエンコーダ13の出力パルスENC-A, ENC-Bの各々の立ち上がりエッジ、立ち下がりエッジを検出し、エッジ間の時間間隔を例えばタイマカウンタによってカウントする。このカウント値をTとすると、速度は $1/T$ に比例したものとなる。本実施の形態においては、出力パルスENC-Aの1周期、例えば立ち上がりエッジから次の立ち上がりエッジまでをタイマカウンタによって計測することにより求めている。

【0044】

減算器6eは、目標速度と、速度演算部6dによって演算されたPFモータ1の実際の速度との速度偏差を演算する。

【0045】

比例要素6fは上記速度偏差に定数G_Pを乗算し、乗算結果を出力する。積分要素6gは速度偏差に定数G_iを乗じたものを積算する。微分要素6hは現在の速度偏差と、1つ前の速度偏差との差に定数G_dを乗算し、乗算結果を出力する。なお比例要素6f、積分要素6g、および微分要素6hの演算はエンコーダ13の出力パルスENC-Aの1周期毎を、例えば出力パルスENC-Aの立ち上がりエッジに同期して行う。

【0046】

比例要素6f、積分要素6g、および微分要素6hの出力は加算器6iにおいて加算される。そして加算結果、すなわちPFモータ1の駆動電流がD/Aコンバータ6jに送られてアナログ電流に変換される。このアナログ電流に基づいて紙送りモータドライバ2によってPFモータ1が駆動される。

【0047】

また、タイマ6kおよび加速制御部6mは加速制御に用いられ、比例要素6f

、積分要素 6 g、および微分要素 6 h を使用する P I D 制御は加速途中の定速および減速制御に用いられる。

【0048】

タイマ 6 k は C P U 1 6 から送られてくるクロック信号に基づいて所定時間毎にタイマ割込み信号を発生する。

【0049】

加速制御部 6 m は上記タイマ割込信号を受ける度毎に所定の電流値（例えば 20 mA）を目標電流値に積算し、積算結果すなわち加速時における P F モータ 1 の目標電流値が D/A コンバータ 6 j に送られる。P I D 制御の場合と同様に上記目標電流値は D/A コンバータ 6 j によってアナログ電流に変換され、このアナログ電流に基づいてドライバ 2 によって P F モータ 1 が駆動される。

【0050】

ドライバ 2 は、例えば 4 個のトランジスタを備えており、D/A コンバータ 6 j の出力に基づいて上記トランジスタを各々 ON または OFF させることにより

- (a) P F モータ 1 を正転または逆転させる運転モード
- (b) 回生ブレーキ運転モード（ショートブレーキ運転モード、すなわち P F モータ 1 の停止を維持するモード）
- (c) P F モータ 1 を停止させようとするモード

を行わせることが可能な構成となっている。

【0051】

次に図 3 (a), (b) を参照して本実施の形態のプリンタ用モータの制御装置、すなわち DC ユニット 6 の動作を説明する。P F モータ 1 が停止しているときに C P U 1 6 から DC ユニット 6 に P F モータ 1 を起動させる起動指令信号が送られると、送り量修正演算部 9 0 によって修正された紙の送り量が演算され、この演算された送り量が位置カウンタ 6 a のカウント値として設定される。このとき加速制御部 6 m から起動初期電流値 I_0 が D/A コンバータ 6 j に送られる。なお、この起動初期電流値 I_0 は起動指令信号とともに C P U 1 6 から 加速制御部 6 m に送られてくる。そしてこの電流値 I_0 は D/A コンバータ 6 j によってアナログ電流に変換されてドライバ 2 に送られ、このドライバ 2 によって P F

モータ1が起動開始する（図3（a）,（b）参照）。

【0052】

起動指令信号を受信した後、所定の時間毎にタイマ6kからタイマ割込信号が発生される。加速制御部6mはタイマ割込信号を受信する度毎に、起動初期電流値 I_0 に所定の電流値（例えば20mA）を積算し、積算した電流値をD/Aコンバータ6jに送る。するとこの積算した電流値はD/Aコンバータ6jによってアナログ電流に変換されてドライバ2に送られる。そしてPFモータ1に供給される電流の値が上記積算した電流値となるように、ドライバ2によってPFモータ1が駆動されPFモータ1の速度は上昇する（図3（b）参照）。このためPFモータ1に供給される電流値は図3（a）に示すように階段状になる。

【0053】

なお、このときPID制御系も動作しているが、D/Aコンバータ6jは加速制御部6mの出力を選択して取込む。

【0054】

加速制御部6mの電流値の積算処理は、積算した電流値が一定の電流値 I_S となるまで行われる。時刻 t_1 において積算した電流値が所定値 I_S となると、加速制御部6mは積算処理を停止し、D/Aコンバータ6jに一定の電流値 I_S を供給する。これによりPFモータ1に供給される電流の値が電流値 I_S となるようにドライバ2によって駆動される（図3（a）参照）。

【0055】

そして、PFモータ1の速度がオーバーシュートするのを防止するために、PFモータ1が所定の速度 V_1 になると（時刻 t_2 ）になると、PFモータ1に供給される電流を減小させるように加速制御部6mが制御する。このときPFモータ1の速度は更に上昇するが、PFモータ1の速度が所定の速度 v_c に達すると（図3（b）の時刻 t_3 参照）、D/Aコンバータ6jが、PID制御系の出力すなわち加算器6iの出力を選択し、PID制御が行われる。

【0056】

すなわち、目標位置「0」と、カウンタ6aのカウント値との位置偏差に基づいて目標速度が演算され、この目標速度と、エンコーダ13の出力から得られる

実際の速度との速度偏差に基づいて、比例要素 $6 f$ 、積分要素 $6 g$ 、および微分要素 $6 h$ が動作し、各々比例、積分、および微分演算が行われ、これらの演算結果の和に基づいて、P F モータ 1 の制御が行われる。なお、上記比例、積分、および微分演算は、例えばエンコーダ 1 3 の出力パルス E N C - A の立ち上がりエッジに同期して行われる。これにより P F モータ 1 の速度は所望の速度 v_e となるように制御される。なお、所定の速度 v_c は所望の速度 v_e の 70 ~ 80 % の値であることが好ましい。

【0057】

時刻 t_4 から P F モータ 1 は所望の速度 v_e となる。その後、P F モータ 1 が目標位置に近づくと（図3（b）の時刻 t_5 参照）、P F モータ 1 の減速が行われ、時刻 t_6 に P F モータ 1 が停止する。

【0058】

以上説明したように本実施の形態によれば、今回の目標送り量と、起動指令を受信した直後の位置カウンタ 6 a のカウント値すなわち前回の停止位置に基づいて送り量修正演算部 9 0 によって今回の起動時の送り量を修正し、この修正された送り量を位置カウンタ 6 a のカウント値として設定し、目標値「0」と、位置カウンタ 6 a の出力との位置偏差に基づいて紙送り制御を行っているので、紙を目標位置に停止させることができが可能となり精度の良い紙送りを行うことができる。なお目標値は、「0」を含む所定の範囲の値、例えば -3 ~ +3 の範囲の値であっても良い。

【0059】

また、本実施の形態においては、位置カウンタ 6 a の最大カウント値は、修正された送り量となるため、位置カウンタ 6 a の容量を小さくすることが可能となる。

【0060】

（第2の実施の形態）

次に、本発明によるプリンタ用モータの制御装置の第2の実施の形態について説明する。この実施の形態のプリンタ用モータの制御は、図5に示した D C ユニット 6 によって行われその構成を図3に示す。

【0061】

本実施の形態のプリンタ用モータの制御装置すなわちDCユニット6は、図1に示す第1の実施の形態のプリンタ用モータの制御装置において、目標位置修正演算部80を新たに設けた構成となっている。

【0062】

目標位置修正演算部80は、CPU16から送られてくるPFモータ1の起動指令に基づいて動作し、PFモータ1の前回の起動時の目標送り量（パルス数）と、CPU16から送られてくる今回の起動の目標送り量（目標パルス数）と、上記起動指令受信直後（すなわちPFモータ1の起動直前）の位置カウンタ6aのカウント値（パルス数）とに基づいて、修正された目標位置を演算し、この演算結果を減算器6bに送出する。

【0063】

この目標位置修正演算部80の一具体例の構成を図2に示す。この具体例の目標位置演算部80は、メモリ81と、誤差演算部82と、加算器83と、リセット信号発生部84と、を備えている。

【0064】

メモリ81は上記起動指令に基づいて、記憶していたPFモータ1の前回の起動時の目標送り量を誤差演算部82に出力するとともに、前記記憶していた目標送り量の代わりにCPU16から送られてくる、今回の起動の目標送り量を記憶する。

【0065】

誤差演算部82はメモリ81から出力された前回の起動時の目標送り量と、上記起動指令受信直後の位置カウンタ6aのカウント値（パルス数）との差である誤差を演算し、この誤差を加算器83に送出するとともに指令信号をリセット信号発生部84に送り、リセット信号発生部84からリセット信号を発生させる。なお、この誤差は正負の値をとるものとする。

【0066】

加算器83は上記誤差と、CPU16から送られてくる今回の起動の目標位置との和を演算し、この和を修正された目標位置として出力する。

【0067】

リセット信号発生部84はリセット信号を発生して位置カウンタ6aのカウント値を「0」にリセットする。なお、リセット信号発生部84は誤差演算部82から指令信号を受ける代わりに加算器83の出力に基づいてリセット信号を発生するように構成しても良い。

【0068】

減算器6bは、目標位置修正演算部80から送られてくる修正された目標位置と、位置カウンタ6aによって求められたP Fモータ1の実際の位置との位置偏差を演算する。

【0069】

この位置偏差が零となるように、第1の実施の形態で説明したと同様に紙送りが制御される。

【0070】

この実施の形態においては、目標位置と、起動指令を受信した直後の位置カウンタ6aのカウント値に基づいて目標位置修正演算部80による今回の起動の目標位置を修正し、この修正された目標値と、位置カウンタ6aの出力との位置偏差に基づいて紙送り制御を行っているので、精度の良い紙送りを行うことができる。

【0071】

なお上記第1および第2の実施の形態においては、プリンタとしてインクジェットプリンタを例にとって説明したが、他のシリアルプリンタやレーザプリンタにも適用できることはいうまでもない。

【0072】

なお、上記第1および第2の実施の形態においては、DCモータについて説明したが、ACモータにも適用できることはいうまでもない。

【0073】

なお、上記第1および第2の実施の形態においては、印刷媒体は紙であったが、紙以外のものにも本発明を適用できることは云うまでもない。

【0074】

(第3の実施の形態)

次に、本発明の第3の実施の形態を図10を参照して説明する。この第3の実施の形態はプリンタ用モータの制御方法であって、その制御手順を図10に示す。

【0075】

まずPFモータの回転に従って回転するエンコーダの出力パルスをカウントすることによってPFモータによって搬送される印刷媒体（紙）の位置を位置カウンタによって検出する（図10のステップF10参照）。次に上記印刷媒体の送り量の目標値と、上記位置カウンタによって検出された上記印刷媒体の前回の停止位置とに基づいて送り量の修正された目標値を演算し、この修正された目標値を上記位置カウンタのカウント値に設定する（図10のステップF11参照）。続いて上記位置カウンタのカウント値が零を含む所定の範囲の値となるようにPFモータを制御する（図11のステップF12参照）。

【0076】

このように構成された本実施の形態の制御方法によれば、印刷媒体を目標位置に停止させることができるので精度の良い紙送りを行うことができる。

【0077】

(第4の実施の形態)

次に、本発明の第4の実施の形態を図11を参照して説明する。この第4の実施の形態はプリンタ用モータの制御方法であって、その制御手順を図11に示す。

【0078】

まず、PFモータによって搬送される印刷媒体（紙）の位置を検出する（図11のステップF20参照）。次にPFモータの今回の起動時の印刷媒体の送り量の目標値およびPFモータの前回の起動時の送り量の目標値ならびにPFモータの今回の起動直前の印刷媒体の検出位置に基づいて、印刷媒体の修正された目標位置を演算する（図11のステップF21参照）。続いて上記修正された目標位置と、印刷媒体の検出位置との位置偏差に基づいてPFモータを制御する（図11のステップF22参照）。

【0079】

このように構成された本実施の形態の制御方法によれば、精度の良い紙送りを行うことができる。

【0080】

なお、前記修正された目標位置を演算するステップは、前回の起動時の送り量の目標値と、前記モータの今回の起動直前の前記印刷媒体の検出値に基づいて前回の起動後の前記送り量の誤差を演算するステップと、今回の起動時の前記送り量の目標値と前記誤差との和である修正された目標位置を演算するステップと、を備えているように構成しても良い。

【0081】

(第5の実施の形態)

次に、本発明の第5の実施の形態を図12および図13を参照して説明する。この実施の形態は、プリンタ用モータの制御プログラムを記録した記録媒体である。図12および図13は、本実施の形態の印刷制御プログラムを記録した記録媒体が用いられるコンピュータシステム130の一例を示す斜視図およびブロック図である。

【0082】

図12において、コンピュータシステム130は、CPUを含むコンピュータ本体131と、例えばCRT等の表示装置132と、キーボードやマウス等の入力装置133と、印刷を実行するプリンタ134と、を備えている。

【0083】

コンピュータ本体131は、図13に示すように、RAMより構成される内部メモリ135と、内蔵または外付け可能なメモリユニット136と、を備えており、メモリユニット136としてはフレキシブルまたはフロッピディスク(FD)ドライブ137、CD-ROMドライブ138、ハードディスクドライブ(HD)ユニット139が搭載されている。図12に示すように、これらのメモリユニット136に用いられる記録媒体140としては、FDドライブ137のスロットに挿入されて使用されるフレキシブルディスクまたはフロッピディスク(FD)141と、CD-ROMドライブ138に用いられるCD-ROM142等

が用いられる。

【0084】

図12および図13に示すように、一般的なコンピュータシステムに用いられる記録媒体140としては、FD141やCD-ROM142が考えられるが、本実施の形態は特にプリンタ134に用いられるモータの制御プログラムに関するものであるので、例えばプリンタ134に内蔵させる不揮発性メモリとしてのROMチップ143に本発明の制御プログラムを記録させるようにしても良い。

【0085】

また、記録媒体としては、FD、CD-ROM、MO(Magneto-Optical)ディスク、DVD(Digital Versatile Disk)、その他の光学的記録ディスク、カードメモリ、磁気テープ等であっても良いことは云うまでもない。

【0086】

本実施の形態の記録媒体140は、図10示す制御手順ステップF10～F12を備えるように構成したものである。即ち本実施の形態の記録媒体140は、モータの回転に従って回転するエンコーダの出力パルスをカウントすることによって前記モータによって搬送される印刷媒体の位置を位置カウンタによって検出する手順と、前記印刷媒体の送り量の目標値と、前記位置カウンタによって検出された前記印刷媒体の前回の停止位置とに基づいて前記送り量の修正された目標値を演算し、前記修正された目標値を前記位置カウンタのカウント値に設定する手順と、前記位置カウンタのカウント値が零を含む所定の範囲の値となるように前記モータを制御する手順と、を少なくとも備えるように構成しても良い。

【0087】

(第6の実施の形態)

次に本発明の第6の実施の形態を説明する。この第6の実施の形態は、プリンタ用モータの制御プログラムを記録した記録媒体であって、図11示す制御手順ステップF20～F22を備えるように構成したものである。即ち本実施の形態の記録媒体は、モータによって搬送される印刷媒体の位置を検出する手順と、前記モータの今回の起動時の前記印刷媒体の送り量の目標値および前記モータの前

回の起動時の前記送り量の目標値ならびに前記モータの今回の起動直前の前記印刷媒体の検出位置に基づいて、前記印刷媒体の修正された目標位置を演算する手順と、前記修正された目標位置と、前記印刷媒体の検出位置との位置偏差に基づいて前記モータを制御する手順と、を少なくとも備えるように構成しても良い。

【0088】

なお、前記修正された目標位置を演算する手順は、前回の起動時の送り量の目標値と、前記モータの今回の起動直前の前記印刷媒体の検出値に基づいて前回の起動後の前記送り量の誤差を演算する手順と、今回の起動時の前記送り量の目標値と前記誤差との和である修正された目標位置を演算する手順と、を少なくとも備えているように構成しても良い。

【0089】

【発明の効果】

以上述べたように、本発明によれば、印刷媒体を搬送するモータの停止後にモータを再起動させても印刷媒体の停止を精度良く行うことができる。

【図面の簡単な説明】

【図1】

本発明によるプリンタ用モータの制御装置の第1の実施の形態の構成を示すブロック図。

【図2】

第1の実施の形態のプリンタ用モータの制御装置の動作を説明する波形図。

【図3】

本発明によるプリンタ用モータの制御装置の第2の実施の形態の構成を示すブロック図。

【図4】

本発明に係る目標位置修正演算部の一具体例の構成を示すブロック図。

【図5】

インクジェットプリンタの概略の構成を示す構成図。

【図6】

キャリッジ周辺の構成を示す斜視図。

【図7】

リニア式エンコーダの構成を示す模式図。

【図8】

エンコーダの出力パルスの波形図。

【図9】

紙検出センサの位置を説明するプリンタの概略の斜視図。

【図10】

本発明によるプリンタ用モータの制御方法の制御手順を示すフローチャート。

【図11】

本発明によるプリンタ用モータの制御方法の他の制御手順を示すフローチャート。

【図12】

本発明による印刷制御プログラムを記録した記録媒体が用いられるコンピュータシステムの一例を示す斜視図。

【図13】

本発明による印刷制御プログラムを記録した記録媒体が用いられるコンピュータシステムの一例を示すブロック図。

【符号の説明】

- 1 紙送りモータ (P F モータ)
- 2 紙送りモータドライバ
- 3 キャリッジ
- 4 キャリッジモータ (C R モータ)
- 5 キャリッジモータドライバ (C R モータドライバ)
- 6 DC ユニット
- 6 a 位置カウンタ
- 6 b 減算器
- 6 c 目標速度演算手段
- 6 d 速度演算部
- 6 e 減算器

- 6 f 比例要素
- 6 g 積分要素
- 6 h 微分要素
- 6 i 加算器
- 6 j D/Aコンバータ
- 6 k タイマ
- 6 m 加速制御部
- 7 ポンプモータ
- 8 ポンプモータドライバ
- 9 記録ヘッド
- 10 ヘッドドライバ
- 11 リニア式エンコーダ
- 12 符号板
- 13 エンコーダ (ロータリ式エンコーダ)
- 15 紙検出センサ
- 16 C P U
- 17 タイマ I C
- 18 ホストコンピュータ
- 19 インタフェース部
- 20 A S I C
- 21 P R O M
- 22 R A M
- 23 E E P R O M
- 25 プラテン
- 30 プーリ
- 31 タイミングベルト
- 32 キャリッジモータのガイド部材
- 34 インクカートリッジ
- 35 キャッピング装置

- 3 6 ポンプユニット
- 3 7 キャップ
- 5 0 記録紙
- 8 0 目標位置修正演算部
- 8 1 メモリ
- 8 2 誤差演算部
- 8 3 加算器
- 8 4 リセット信号発生部
- 9 0 送り量修正演算部

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【書類名】 要約書

【要約】

【課題】 精度の良い紙送りを可能にする。

【解決手段】 モータ1の回転に従って回転するエンコーダ13の出力パルスをカウントすることによってモータによって搬送される印刷媒体の位置を検出する位置カウンタ6aと、印刷媒体の送り量の目標値と、位置カウンタによって検出された印刷媒体の前回の停止位置とに基づいて送り量の修正された目標値を演算し、修正された目標値を前記位置カウンタのカウント値に設定する目標制御量修正演算部90と、位置カウンタのカウント値が零を含む所定の範囲の値となるようモータを制御する制御部6c, 6e, 6f, 6g, 6h, 6iと、を備えたことを特徴とする。

【選択図】 図1

認定・付加情報

特許出願の番号	特願2000-167763
受付番号	50000695158
書類名	特許願
担当官	小野田 猛 7393
作成日	平成12年 6月 8日

<認定情報・付加情報>

【特許出願人】

【識別番号】	000002369
【住所又は居所】	東京都新宿区西新宿2丁目4番1号
【氏名又は名称】	セイコーエプソン株式会社

【代理人】

【識別番号】	100064285
【住所又は居所】	東京都千代田区丸の内3-2-3 富士ビル 協和特許法律事務所内
【氏名又は名称】	佐藤 一雄

【選任した代理人】

【識別番号】	100088889
【住所又は居所】	東京都千代田区丸の内3丁目2番3号 協和特許法律事務所
【氏名又は名称】	橋谷 英俊

【選任した代理人】

【識別番号】	100082991
【住所又は居所】	東京都千代田区丸の内3丁目2番3号 富士ビル 協和特許法律事務所
【氏名又は名称】	佐藤 泰和

【選任した代理人】

【識別番号】	100096921
【住所又は居所】	東京都千代田区丸の内3-2-3 富士ビル3階 協和特許法律事務所
【氏名又は名称】	吉元 弘

次頁無

【書類名】 手続補正書

【整理番号】 12535202

【提出日】 平成12年 6月 9日

【あて先】 特許庁長官殿

【事件の表示】

【出願番号】 特願2000-167763

【補正をする者】

【識別番号】 000002369

【氏名又は名称】 セイコーエプソン株式会社

【代理人】

【識別番号】 100064285

【弁理士】

【氏名又は名称】 佐 藤 一 雄

【手続補正 1】

【補正対象書類名】 明細書

【補正対象項目名】 0051

【補正方法】 変更

【補正の内容】 1

【手続補正 2】

【補正対象書類名】 明細書

【補正対象項目名】 0052

【補正方法】 変更

【補正の内容】 2

【手続補正 3】

【補正対象書類名】 明細書

【補正対象項目名】 0054

【補正方法】 変更

【補正の内容】 3

【手続補正 4】

【補正対象書類名】 明細書

【補正対象項目名】 0055

【補正方法】 変更

【補正の内容】 4

【手続補正 5】

【補正対象書類名】 明細書

【補正対象項目名】 0057

【補正方法】 変更

【補正の内容】 5

【手続補正 6】

【補正対象書類名】 明細書

【補正対象項目名】 0063

【補正方法】 変更

【補正の内容】 6

【ブルーフの要否】 要

【0051】

次に図2 (a), (b) を参照して本実施の形態のプリンタ用モータの制御装置、すなわちDCユニット6の動作を説明する。PFモータ1が停止しているときにCPU16からDCユニット6にPFモータ1を起動させる起動指令信号が送られると、送り量修正演算部90によって修正された紙の送り量が演算され、この演算された送り量が位置カウンタ6aのカウント値として設定される。このとき加速制御部6mから起動初期電流値 I_0 がD/Aコンバータ6jに送られる。なお、この起動初期電流値 I_0 は起動指令信号とともにCPU16から加速制御部6mに送られてくる。そしてこの電流値 I_0 はD/Aコンバータ6jによってアナログ電流に変換されてドライバ2に送られ、このドライバ2によってPFモータ1が起動開始する(図2 (a), (b) 参照)。

【0052】

起動指令信号を受信した後、所定の時間毎にタイマ6kからタイマ割込信号が発生される。加速制御部6mはタイマ割込信号を受信する度毎に、起動初期電流値 I_0 に所定の電流値（例えば20mA）を積算し、積算した電流値をD/Aコンバータ6jに送る。するとこの積算した電流値はD/Aコンバータ6jによってアナログ電流に変換されてドライバ2に送られる。そしてPFモータ1に供給される電流の値が上記積算した電流値となるように、ドライバ2によってPFモータ1が駆動されPFモータ1の速度は上昇する（図2（b）参照）。このためPFモータ1に供給される電流値は図2（a）に示すように階段状になる。

【0054】

加速制御部 6 m の電流値の積算処理は、積算した電流値が一定の電流値 I_S となるまで行われる。時刻 t_1 において積算した電流値が所定値 I_S となると、加速制御部 6 m は積算処理を停止し、D/A コンバータ 6 j に一定の電流値 I_S を供給する。これにより P F モータ 1 に供給される電流の値が電流値 I_S となるようにドライバ 2 によって駆動される（図 2 (a) 参照）。

【0055】

そして、PFモータ1の速度がオーバーシュートするのを防止するために、PFモータ1が所定の速度 V_1 になると（時刻 t_2 ）になると、PFモータ1に供給される電流を減小させるように加速制御部6mが制御する。このときPFモータ1の速度は更に上昇するが、PFモータ1の速度が所定の速度 v_c に達すると（図2（b）の時刻 t_3 参照）、D/Aコンバータ6jが、PID制御系の出力すなわち加算器6iの出力を選択し、PID制御が行われる。

【0057】

時刻 t_4 から P F モータ 1 は所望の速度 v_e となる。その後、P F モータ 1 が目標位置に近づくと（図2（b）の時刻 t_5 参照）、P F モータ 1 の減速が行われ、時刻 t_6 に P F モータ 1 が停止する。

【0063】

この目標位置修正演算部80の一具体例の構成を図4に示す。この具体例の目標位置演算部80は、メモリ81と、誤差演算部82と、加算器83と、リセット信号発生部84と、を備えている。

認定・付加情報

特許出願の番号	特願2000-167763
受付番号	50000718126
書類名	手続補正書
担当官	第三担当上席 0092
作成日	平成12年 6月14日

＜認定情報・付加情報＞

【補正をする者】

【識別番号】	000002369
【住所又は居所】	東京都新宿区西新宿2丁目4番1号
【氏名又は名称】	セイコーエプソン株式会社

【代理人】

【識別番号】	100064285
【住所又は居所】	東京都千代田区丸の内3-2-3 富士ビル 協和特許法律事務所内
【氏名又は名称】	佐藤 一雄

次頁無

出願人履歴情報

識別番号 [000002369]

1. 変更年月日 1990年 8月20日

[変更理由] 新規登録

住 所 東京都新宿区西新宿2丁目4番1号
氏 名 セイコーエプソン株式会社