ELECTRICAL ANALOGY

Objectives

- To draw electrical analogous circuits (loop and nodal circuits) for the given mechanical system (translational and rotational)
- To derive the dynamic equations for mechanical systems as well as the analogous electrical circuits and show one to one analogous equivalence between them and thus verifying the analogy.

Why is this electrical analogy important?

- Mechanical, thermal, hydraulic and electromechanical systems could be represented and studied by their equivalent electrical circuits which are most easily constructed than the corresponding models.
- The equations of electrical and the corresponding mechanical or hydraulic systems are compared and from that equivalent electrical circuits are obtained. If the differential equations of both electrical and mechanical or hydraulic systems are equal, then one system is said to be analogous to the other.

MECHANICAL SYSTEM:

Input – force

Output – Velocity

Input – Voltage source ELECTRICAL SYSTEM: Output – current though the element

Mass

$$f(t) = M \frac{d^2x}{dt^2}$$
$$= M \frac{dv}{dt}$$

Inductance

$$e(t) = L\frac{di}{dt}$$

$$f(t) = Bv$$

	f(t)	e(t)	
	ν	i	
$M\frac{dv}{dt}$	M	L	$L\frac{di}{dt}$
Bv	В	R	iR
$K \int v dt$	K	$\frac{1}{C}$	$\frac{1}{c}\int idt$

Resistance

$$e(t) = iR$$

B − Damping Coefficient

K − Spring Stiffness

Capacitance

$$e(t) = \frac{1}{C} \int idt$$

$$f(t) = Kx = K \int v dt$$

MECHANICAL SYSTEM

- Input force
- Output velocity

	Mechanical System	Electrical System	
	f(t)	e(t)	
	v	i	
$M\frac{dv}{dt}$	M	L	$L\frac{di}{dt}$
Bv	B	R	iR
$K \int v dt$	K	1 C	$\frac{1}{C}\int idt$

ELECTRICAL SYSTEM

Input – voltage source

Output-Current though the element

- •In mechanical systems, elements having same velocity are said to be in series. Similarly, in electrical systems, the elements having same current are said to be in series.
- Each mass in the mechanical system corresponds to a closed loop in electrical system.
- Number of meshes in the electrical system is equal to the number of masses in the mechanical system
- The element connected between two masses in mechanical system is represented by common element between two meshes in electrical system.

MECHANICAL SYSTEM

- Input force
- Output velocity

	f(t)	e(t)	
	v	i	
$M\frac{dv}{dt}$	M	L	$L\frac{di}{dt}$
Bv	В	R	iR
$K\int vdt$	K	$\frac{1}{C}$	$\frac{1}{c}\int idt$

ELECTRICAL SYSTEM

Input – voltage source

Output-Current though the element

Mechanical System

Force Voltage Analogous Electrical circuit

MECHANICAL SYSTEM

- Input force
- Output velocity

	f(t)	e(t)	
	v	i	
$M\frac{dv}{dt}$	M	L	$L\frac{di}{dt}$
Bv	В	R	iR
K∫ vdt	K	$\frac{1}{C}$	$\frac{1}{c}\int idt$

ELECTRICAL SYSTEM

Input – voltage source
Output–Current though the element

Force Voltage Analogous circuit

$$M\frac{d^2x}{dt^2} + B\frac{dx}{dt} + Kx = f(t)$$

$$M\frac{dv}{dt} + Bv + K \int vdt = f(t)$$

$$L\frac{di}{dt} + iR + \frac{1}{C}\int i dt = e(t)$$

	f(t)	e(t)	
	υ	i	
$M\frac{dv}{dt}$	M	L	$L\frac{di}{dt}$
Bv	В	R	iR
$K \int v dt$	K	$\frac{1}{C}$	$\frac{1}{C}\int idt$

$$M_1 \frac{dv_1}{dt} + B_1 v_1 + K_1 \int v_1 dt + B(v_1 - v_2) + K \int (v_1 - v_2) dt = f_1(t)$$

$$M_2 \frac{dv_2}{dt} + B_2 v_2 + K_2 \int v_2 dt + B(v_2 - v_1) + K \int (v_2 - v_1) dt = f_2(t)$$

$$L_2 \frac{di_2}{dt} + i_2 R_2 + \frac{1}{C_2} \int i_2 dt + R(i_2 - i_1) + \frac{1}{C} \int (i_2 - i_1) dt = e_2(t)$$

MECHANICAL SYSTEM: Input – force

Output – Velocity

ELECTRICAL SYSTEM: Input – Current source
Output – Voltage across the element

Mass $f(t) = M \frac{dv}{dt}$ Dash pot

t -	1	- FRef
Spring	D	f(t) = Bv
Spring		, A

f(t) = K	vdt
J	

	f(t)	$\boldsymbol{i}(\boldsymbol{t})$	
	v	e	
$M\frac{dv}{dt}$	M	C	$C\frac{de}{dt}$
Bv	В	$\frac{1}{R}$	$\frac{e}{R}$
$K \int v dt$	K	$\frac{1}{L}$	$\frac{1}{L}\int edt$

Capacitance

$$i(t) = C\frac{de}{dt}$$

Resistance

$$i(t) = \frac{e}{R}$$

Inductance

$$i(t) = \frac{1}{L} \int e dt$$

MECHANICAL SYSTEM

- Input force
- Output velocity

	Mechanical System	Electrical System	
	f(t)	$\boldsymbol{i}(\boldsymbol{t})$	
	v	e	
$M\frac{dv}{dt}$	M	C	$C\frac{de}{dt}$
Bv	В	$\frac{1}{R}$	$\frac{e}{R}$
$K \int v dt$	K	$\frac{1}{L}$	$\frac{1}{L}\int edt$

Input – current source Output– voltage across the element

- •In mechanical systems, elements in parallel have same force. Similarly, in electrical systems, parallel systems will have same voltage.
- Each mass in the mechanical system corresponds to a node in a electrical system.
- Number of nodes in the electrical system is equal to the number of masses in the mechanical system
- The element connected between two masses in mechanical system is represented by common element between two nodes in electrical system.

MECHANICAL SYSTEM

- Input force
- Output velocity

IVI			
	f(t)	i(t)	
	v	e	
$M\frac{dv}{dt}$	M	C	$C\frac{de}{dt}$
Bv	В	$\frac{1}{R}$	$\frac{e}{R}$
$K\int vdt$	K	$\frac{1}{L}$	$\frac{1}{L}\int edt$

ELECTRICAL SYSTEM

Input – voltage source
Output–Current though the element

Force Current Analogous circuit

$$M\frac{dv}{dt} + Bv + K\int vdt = f(t)$$

$$C\frac{de}{dt} + \frac{e}{R} + \frac{1}{L} \int e \, dt = i(t)$$

	f(t)	i(t)	
	v	e	
$M\frac{dv}{dt}$	M	C	$c\frac{de}{dt}$
Bv	В	$\frac{1}{R}$	$\frac{e}{R}$
$K\int vd$	K	$\frac{1}{L}$	$\frac{1}{L}\int edt$

$$M_1 \frac{dv_1}{dt} + B_1 v_1 + K_1 \int v_1 dt + B_1 (v_1 - v_2) + K \int (v_1 - v_2) dt = f_1(t)$$

$$M_2 \frac{dv_2}{dt} + B_2 v_2 + K_2 \int v_2 dt + B(v_2 - v_1) + K \int (v_2 - v_1) dt = f_2(t)$$

$$C_2 \frac{de_2}{dt} + \frac{e_2}{R_2} + \frac{1}{L_2} \int e_2 dt + \frac{e_2 - e_1}{R_1} + \frac{1}{L} \int (e_2 - e_1) dt = i_2(t)$$

TORQUE VOLTAGE ANALOGY

MECHANICAL SYSTEM: Input – Torque Output – Angular Velocity

Input – Voltage source **ELECTRICAL SYSTEM: Output – current though the element**

Moment of inertia of Mass

Dash pot

Spring

$$T(t) = J\frac{d^2\theta}{dt^2} = J\frac{d\omega}{dt}$$

3		K			
	10	mm	1	K	
	2		2	8	
			0		

$$T(t) = K\theta = K \int \omega dt$$

	T(t)	e(t)	
	ω	i	
$J\frac{d\omega}{dt}$	J	L	$L\frac{di}{dt}$
Βω	В	R	iR
$K\int \omega dt$	K	$\frac{1}{C}$	$\frac{1}{c}\int idt$

- Polar Moment of Inertia θ – Angular displacement ω – Angular velocity

Inductance

$$e(t) = L\frac{di}{dt}$$

Resistance

$$e(t) = iR$$

$$e(t) = \frac{1}{C} \int idt$$

TORQUE VOLTAGE ANALOGY

MECHANICAL SYSTEM

- Input Torque
- Output Angular velocity

ELECTRICAL SYSTEM

Input – voltage source

Output-Current though the element

	T(t)	e(t)	
	ω	i	
$J\frac{d\omega}{dt}$	J	L	$L\frac{di}{dt}$
Βω	В	R	iR
$K\int \omega dt$	K	$\frac{1}{C}$	$\frac{1}{C}\int idt$

- •In mechanical systems, elements having same angular velocity are said to be in series. Similarly, in electrical systems, the elements having same current are said to be in series.
- Each mass in the mechanical system corresponds to a closed loop in electrical system.
- Number of meshes in the electrical system is equal to the number of masses in the mechanical system
- The element connected between two masses in mechanical system is represented by common element between two meshes in electrical system.

TORQUE VOLTAGE ANALOGY

	T(t)	e(t)	
	ω	i	
$J\frac{d\omega}{dt}$	J	L	$L\frac{di}{dt}$
Βω	В	R	iR
$K\int \omega dt$	K	$\frac{1}{C}$	$\frac{1}{C}\int idt$

$$J_1\frac{d\omega_1}{dt}+\omega_1B_1+K_1\int(\omega_1-\omega_2)dt=T(t)$$

$$J_2\frac{d\omega_2}{dt} + \omega_2B_2 + K_2\int(\omega_2 - \omega_3)dt + K_1\int(\omega_2 - \omega_1)dt = 0$$

$$J_3\frac{d\omega_3}{dt}+\omega_3B_3+K_2\int(\omega_3-\omega_2)dt=0$$

 $J_3 \frac{d\omega_3}{dt} + \omega_3 B_3 + K_2 \int (\omega_3 - \omega_2) dt = 0$

TORQUE CURRENT ANALOGY

MECHANICAL SYSTEM: Input – Torque **Output – Angular Velocity**

ELECTRICAL SYSTEM: Input – Current source **Output – Voltage across the element**

Moment of inertia of Mass

Dash pot

Spring

$$T(t) = J\frac{d^2\theta}{dt^2} = J\frac{d\omega}{dt}$$

3		Κ.	
	1	Casses 23	-6
- 1	2	comen	8
-		0	

$$T(t) = K\theta = K \int \omega dt$$

	T(t)	i(t)	,
	ω	e	
$J\frac{d\omega}{dt}$	J	C	$C\frac{de}{dt}$
Βω	В	$\frac{1}{R}$	$\frac{e}{R}$
$K\int \omega dt$	K	$\frac{1}{L}$	$\frac{1}{L}\int edt$

Capacitance

$$i(t) = C \frac{de}{dt}$$

$$i(t) = \frac{1}{L} \int e dt$$

TORQUE CURRENT ANALOGY

MECHANICAL SYSTEM

- Input Torque
- Output Angular velocity

ELECTRICAL SYSTEM

Input – current source

Output- voltage across the

element

	T(t)	i(t)	
	ω	e	
$Jrac{d\omega}{dt}$ $B\omega$	J	C	$C\frac{de}{dt}$
Βω	В	$\frac{1}{R}$	$\frac{e}{R}$
$K\int \boldsymbol{\omega} dt$	K	$\frac{1}{L}$	$\frac{1}{L}\int edt$

- •In mechanical systems, elements in parallel have same torque. Similarly, in electrical systems, parallel systems will have same voltage.
- Each mass in the mechanical system corresponds to a node in a electrical system.
- Number of nodes in the electrical system is equal to the number of masses in the mechanical system
- The element connected between two masses in mechanical system is represented by common element between two nodes in electrical system.

TORQUE CURRENT ANALOGY

	T(t)	i(t)	
	ω	e	
$J\frac{d\omega}{dt}$	J	C	$C\frac{de}{dt}$
Βω	В	$\frac{1}{R}$	$\frac{e}{R}$
$K\int \boldsymbol{\omega} dt$	K	$\frac{1}{L}$	$\frac{1}{L}\int edt$

$$J_1\frac{d\omega_1}{dt}+\omega_1B_1+K_1\int(\omega_1-\omega_2)dt=T(t)$$

$$J_2\frac{d\omega_2}{dt}+\omega_2B_2+K_2\int(\omega_2-\omega_3)dt+K_1\int(\omega_2-\omega_1)dt=0$$

$$J_3\frac{d\omega_3}{dt}+\omega_3B_3+K_2\int(\omega_3-\omega_2)dt=0$$

00000 $i_{L_2}L_2 \rightarrow 1/K_2$ L₁ → 1/K₁ $i \rightarrow T$

TORQUE CURRENT ANALOGY

	T(t)	i(t)	
	ω	e	
$J\frac{d\omega}{dt}$	J	C	$C\frac{de}{dt}$
Βω	В	$\frac{1}{R}$	$\frac{e}{R}$
$K\int \omega dt$	K	$\frac{1}{L}$	$\frac{1}{L}\int edt$

Node
$$e_1$$
, $i(t) = i_{c_1} + i_{R_1} + i_{L_1}$

$$C_1 \frac{de_1}{dt} + \frac{e_1}{R_1} + \frac{1}{L_1} \int (e_1 - e_2) dt = i(t)$$

Node
$$e_2$$
, $i_{L_1} = i_{c_2} + i_{R_2} + i_{L_2}$

$$\frac{1}{L_1} \int (e_1 - e_2) dt = C_2 \frac{de_2}{dt} + \frac{e_2}{R_2} + \frac{1}{L_2} \int (e_2 - e_3) dt$$

$$C_2 \frac{de_2}{dt} + \frac{e_2}{R_2} + \frac{1}{L_2} \int (e_2 - e_3) dt + \frac{1}{L_1} \int (e_2 - e_1) dt = 0$$

Node
$$e_3$$
, $i_{L_2} = i_{c_3} + i_{R_3}$

$$\frac{1}{L_2} \int (e_2 - e_3) dt = C_3 \frac{de_3}{dt} + \frac{e_3}{R_3}$$

$$de_3 \quad e_3 \quad 1 \quad \text{(a)}$$

$$C_3 \frac{de_3}{dt} + \frac{e_3}{R_3} + \frac{1}{L_2} \int (e_3 - e_2) dt = 0$$

L₁ → 1/K₁

	T(t)	$\boldsymbol{i}(\boldsymbol{t})$	
	ω	e	
$J\frac{d\omega}{dt}$	J	C	$C\frac{de}{dt}$
Βω	В	$\frac{1}{R}$	$\frac{e}{R}$
$K\int \omega dt$	K	$\frac{1}{L}$	$\frac{1}{L}\int edt$

$$C_{1}\frac{de_{1}}{dt} + \frac{e_{1}}{R_{1}} + \frac{1}{L_{1}}\int(e_{1} - e_{2})dt = i(t)$$

$$J_{1}\frac{d\omega_{1}}{dt} + \omega_{1}B_{1} + K_{1}\int(\omega_{1} - \omega_{2})dt = T(t)$$

$$C_{2}\frac{de_{2}}{dt} + \frac{e_{2}}{R_{2}} + \frac{1}{L_{2}}\int(e_{2} - e_{3})dt + \frac{1}{L_{1}}\int(e_{2} - e_{1})dt = 0$$

$$J_{2}\frac{d\omega_{2}}{dt} + \omega_{2}B_{2} + K_{2}\int(\omega_{2} - \omega_{3})dt + K_{1}\int(\omega_{2} - \omega_{1})dt = 0$$

$$C_{3}\frac{de_{3}}{dt} + \frac{e_{3}}{R_{2}} + \frac{1}{L_{2}}\int(e_{3} - e_{2})dt = 0$$

$$J_{3}\frac{d\omega_{3}}{dt} + \omega_{3}B_{3} + K_{2}\int(\omega_{3} - \omega_{2})dt = 0$$

$$J_1 \frac{d\omega_1}{dt} + \omega_1 B_1 + K_1 \int (\omega_1 - \omega_2) dt = T(t)$$

$$J_2 \frac{d\omega_2}{dt} + \omega_2 B_2 + K_2 \int (\omega_2 - \omega_3) dt + K_1 \int (\omega_2 - \omega_1) dt = 0$$

$$J_3 \frac{d\omega_3}{dt} + \omega_3 B_3 + K_2 \int (\omega_3 - \omega_2) dt = 0$$