姓名<u>刘若涵</u> 学号<u>2020011126</u> 班级<u>自 05</u> 组号<u>双一晚 N</u> 座位号<u>20</u>

1.实验名称

阻尼振动和受迫振动

2.实验目的

- 1.观察阻尼振动,学习测量振动系统基本参数的方法
- 2.研究受迫振动的幅频特性和相频特性
- 3.观测不同阻尼对受迫振动的影响

3.实验原理

阻尼振动方程为 $J\frac{d^2\theta}{dt^2} + \gamma\frac{d\theta}{dt} + k\theta = 0$,受迫振动方程为 $J\frac{d^2\theta}{dt^2} + \gamma\frac{d\theta}{dt} + k\theta = M\cos\omega t$,共振时振幅有极大值。

4.实验仪器

波尔共振仪 BG-2 型

5.实验任务或步骤

- 1.在阻尼为 0 档测 50 个振幅和五个 $10T_d$,求 ω_0 和 ξ 。
- 2.在阻尼 1-3 档每组测 10 个振幅和 10 个 T_d ,求 ω_0 和 ξ 。
- 3.在阻尼 1-3 档测受迫振动幅频、相频曲线。

6.数据处理

1. "0" 档阻尼振动特性

I = int(n/2) = 25

<u>g</u> 7. 0

姓名<u>刘若涵</u> 学号<u>2020011126</u> 班级<u>自 05</u> 组号<u>双一晚 N</u> 座位号<u>20</u>

序号	$\theta_j(^{\circ})$	序号	$\theta_{j+I}(^{\circ})$	$ln(\theta_j)$	$\ln(\theta_{j+I})$	$D_{j} = \ln(\theta_{j+I}) - \ln(\theta_{j})$
1	189	26	155	5.242	5.043	-0.198
2	187	27	154	5.231	5.037	-0.194
3	186	28	153	5.226	5.030	-0.195
4	185	29	152	5.220	5.024	-0.196
5	183	30	151	5.209	5.017	-0.192
6	182	31	149	5.204	5.004	-0.200
7	180	32	148	5.193	4.997	-0.196
8	179	33	147	5.187	4.990	-0.197
9	177	34	146	5.176	4.984	-0.193
10	176	35	145	5.170	4.977	-0.194
11	175	36	143	5.165	4.963	-0.202
12	173	37	143	5.153	4.963	-0.190
13	172	38	142	5.147	4.956	-0.192
14	171	39	141	5.142	4.949	-0.193
15	169	40	140	5.130	4.942	-0.188
16	168	41	139	5.124	4.934	-0.189
17	167	42	138	5.118	4.927	-0.191
18	165	43	136	5.106	4.913	-0.193
19	164	44	135	5.100	4.905	-0.195
20	163	45	134	5.094	4.898	-0.196
21	161	46	133	5.081	4.890	-0.191
22	160	47	132	5.075	4.883	-0.192
23	159	48	131	5.069	4.875	-0.194
24	158	49	130	5.063	4.868	-0.195
25	157	50	129	5.056	4.860	-0.196

由上表知, $\bar{D} = -0.194$

可求出级差
$$b = \frac{1}{I}\overline{D} = -7.77 \times 10^{-3}$$

$$\Delta_b = S_b = \frac{1}{I} \sqrt{\sum (D_J - \overline{D})^2/(I-1)}$$

由 b =
$$-\frac{2\pi}{\sqrt{\xi^{-2}-1}}$$
 得 $\xi = 1.236 \times 10^{-3}$

$$\Delta_{\xi} = \sqrt{(\frac{d\xi}{db}\Delta_b)^2} = \frac{4\pi^2}{(4\pi^2 + b)^{3/2}}\Delta_b = 2.1 \times 10^{-5}$$

则 $\xi = (1.236 \pm 0.021) \times 10^{-3}$

序号	1	2	3	4	5
$10\overline{T_d}(s)$	15.233	15.250	15.270	15.289	15.309

由上表得 $\overline{T_d} = 1.5270 \, s$

$$\Delta_{T_d} = \frac{T_d}{10^5} + 0.001 = 1.0 \times 10^{-3}$$

姓名<u>刘若涵</u> 学号<u>2020011126</u> 班级<u>自 05</u> 组号<u>双一晚 N</u> 座位号<u>20</u>

$$\omega_0=\frac{2\pi}{T_d\sqrt{1-\xi^2}}=4.1147~\text{rad/s}$$

$$\Delta_{\omega_0} = \omega_0 \sqrt{(\frac{\Delta_{T_d}}{T_d})^2 + \frac{\xi^2 \cdot \Delta \xi^2}{(1 - \xi^2)^2}} = 2.7 \times 10^{-3}$$

则 $\omega_0 = 4.1147 \pm 0.0027 \, \text{rad/s}$

(1) 阻尼档为1

I = int(n/2) = 6

序号	$\theta_j(^\circ)$	$T_d(s)$	$ln(\theta_j)$	序号	$\theta_{j+I}(^{\circ})$	$T_d(s)$	$\ln(\theta_{j+I})$	$D_j =$
								$\ln(\theta_{j+I})$
								$-\ln(\theta_j)$
1	190	1.523	5.247	7	113	1.535	4.727	-0.520
2	176	1.525	5.170	8	103	1.536	4.635	-0.536
3	160	1.527	5.075	9	94	1.537	4.543	-0.532
4	147	1.529	4.990	10	86	1.539	4.454	-0.536
5	134	1.531	4.898	11	79	1.540	4.369	-0.528
6	123	1.532	4.812	12	72	1.541	4.277	-0.536

计算过程与0档阻尼类似,相同部分在此省略,得

$$\bar{D} = -0.531$$

$$b = -8.85 \times 10^{-2}$$

$$\Delta_b = 1.1 \times 10^{-3}$$

$$\xi = 1.409 \times 10^{-2}$$

$$\Delta_\xi = 1.7 \times 10^{-4}$$

则
$$\xi = (1.409 \pm 0.017) \times 10^{-2}$$

$$\overline{T_d} = 1.533 \, s$$

$$\Delta_{T_d} = 1.0 \times 10^{-3}$$

$$\omega_0 = 4.0990 \text{ rad/s}$$

$$\Delta_{\omega_0} = 2.7 \times 10^{-3}$$

则 $\omega_0 = 4.0990 \pm 0.0027 \text{ rad/s}$

$$\beta=\xi\omega_0=5.775\times 10^{-2}$$

$$\Delta_{\beta} = \beta \sqrt{(\frac{\Delta_{\xi}}{\xi})^2 + (\frac{\Delta_{\omega_0}}{\omega_0})^2} = 7.0 \times 10^{-4}$$

则
$$\beta = (5.775 \pm 0.070) \times 10^{-2}$$

(2) 阻尼档为 2

$$I = int(n/2) = 6$$

姓名<u>刘若涵</u> 学号<u>2020011126</u> 班级<u>自 05</u> 组号<u>双一晚 N</u> 座位号<u>20</u>

序号	$\theta_j(^\circ)$	$T_d(s)$	$\ln(\theta_j)$	序号	$\theta_{j+l}(^{\circ})$	$T_d(s)$	$\ln(\theta_{j+I})$	$D_j =$
								$\ln(\theta_{j+l})$
								$-\ln(\theta_j)$
1	184	1.524	5.215	7	85	1.539	4.443	-0.772
2	162	1.527	5.088	8	74	1.541	4.304	-0.784
3	143	1.530	4.963	9	65	1.542	4.174	-0.788
4	126	1.532	4.836	10	57	1.542	4.043	-0.793
5	110	1.535	4.700	11	50	1.543	3.912	-0.788
6	97	1.537	4.575	12	44	1.543	3.784	-0.791

 $\bar{D} = -0.786$

b = -0.1310

 $\Delta_b=1.2\times 10^{-3}$

 $\xi = 2.085 \times 10^{-2}$

 $\Delta_\xi = 2.0 \times 10^{-4}$

则 $\xi = (2.085 \pm 0.020) \times 10^{-2}$

 $\overline{T_d} = 1.536 \, s$

 $\Delta_{T_d}=1.0\times 10^{-3}$

 $\omega_0 = 4.0915 \text{ rad/s}$

 $\Delta_{\omega_0} = 2.7 \times 10^{-3}$

则 $\omega_0 = 4.0915 \pm 0.0027 \, \text{rad/s}$

 $\beta=8.530\times10^{-2}$

 $\Delta_{\rm B}=8.1\times10^{-4}$

则 $\beta = (8.530 \pm 0.081) \times 10^{-2}$

(3) 阻尼档为3

I = int(n/2) = 6

序号	$\theta_j(^\circ)$	$T_d(s)$	$ln(\theta_j)$	序号	$\theta_{j+I}(^{\circ})$	$T_d(s)$	$\ln(\theta_{j+I})$	$D_j =$
								$\ln(\theta_{j+I})$
								$-\ln(\theta_j)$
1	202	1.523	5.308	7	60	1.542	4.094	-1.214
2	165	1.527	5.106	8	49	1.544	3.892	-1.214
3	135	1.531	4.905	9	40	1.545	3.689	-1.216
4	110	1.535	4.700	10	32	1.544	3.466	-1.235
5	90	1.539	4.500	11	26	1.545	3.258	-1.242
6	73	1.542	4.290	12	21	1.544	3.045	-1.246

 $\bar{D} = -1.228$

b = -0.2046

 $\Delta_b = 2.4 \times 10^{-3}$

 $\xi = 3.255 \times 10^{-2}$

 $\Delta_{\xi} = 3.9 \times 10^{-4}$

则 $\xi = (3.255 \pm 0.039) \times 10^{-2}$

 $\overline{T_d} = 1.538 \, s$

物 理 实 验 报 告

姓名<u>刘若涵</u> 学号<u>2020011126</u> 班级<u>自 05</u> 组号<u>双一晚 N</u> 座位号<u>20</u>

$$\Delta_{T_d} = \frac{T_d}{10^5} + 0.001 = 1.0 \times 10^{-3}$$

 $\omega_0=4.0875~\text{rad/s}$

 $\Delta_{\omega_0} = 2.7 \times 10^{-3}$

则 $\omega_0 = 4.0875 \pm 0.0027 \, \text{rad/s}$

 $\beta = 0.1331$

 $\Delta_\beta = 1.6 \times 10^{-3}$

则 $\beta = 0.1331 \pm 0.0016$

3. "1-3" 阻尼档受迫振动幅频相频特性

(1) 阻尼档为1

 $\beta = 5.775 \times 10^{-2}, \ \omega_0 = 4.0990 \ rad/s$

序号	$T_d(s)$	θ(°)	$\phi_1(^\circ)$	$\phi_2(^\circ)$	$\overline{\phi}(^{\circ})$	ω =	ω	$\phi_0 =$	E =
						$\frac{2\pi}{T_d}$ (rad/s)	$\overline{\omega_0}$	$arctan \frac{2\beta\omega}{\omega_0^2 - \omega^2}$	$\frac{\overline{\phi} - \phi_0}{\phi_0}$
1	1.418	24	171	169	170.0	4.431	1.081	169.8	0.12%
2	1.466	40	166	165	165.5	4.286	1.046	162.5	1.81%
3	1.508	92	145	144	144.5	4.167	1.016	139.2	3.67%
4	1.516	128	129	128	128.5	4.145	1.011	128.1	0.31%
5	1.520	150	114	113	113.5	4.134	1.008	120.9	-6.52%
6	1.523	158	105	105	105.0	4.126	1.006	114.6	-9.14%
7	1.526	165	92	91	91.5	4.117	1.004	107.7	-17.70%
8	1.530	164	83	82	82.5	4.107	1.002	97.5	-18.18%
9	1.536	154	71	70	70.5	4.091	0.998	81.7	-15.89%
10	1.539	147	64	64	64.0	4.083	0.996	74.2	-15.94%
11	1.545	136	56	55	55.5	4.067	0.992	60.8	-9.55%
12	1.569	96	36	35	35.5	4.005	0.977	31.2	12.11%
13	1.592	66	26	25	25.5	3.947	0.963	20.4	20.00%
14	1.618	47	16	15	15.5	3.883	0.947	14.6	6.16%

(2) 阻尼档为2

 $\beta = 8.530 \times 10^{-2} \text{, } \omega_0 = 4.0915 \ \text{rad/s}$

物 理 实 验 报 告

姓名<u>刘若涵</u> 学号<u>2020011126</u> 班级<u>自 05</u> 组号<u>双一晚 N</u> 座位号<u>20</u>

序号	$T_d(s)$	θ(°)	φ ₁ (°)	φ ₂ (°)	$\overline{\phi}(^{\circ})$	ω =	ω	$\phi_0 =$	E =
						$\frac{2\pi}{T_d}$ (rad/s)	$\overline{\omega_0}$	$arctan \frac{2\beta\omega}{\omega_0^2 - \omega^2}$	$\frac{\overline{\phi} - \phi_0}{\phi_0}$
1	1.383	17	169	167	168.0	4.543	1.110	168.8	-0.48%
2	1.431	26	166	164	165.0	4.391	1.073	163.6	0.85%
3	1.474	42	158	156	157.0	4.263	1.042	153.0	2.55%
4	1.512	80	133	132	132.5	4.156	1.016	126.7	4.38%
5	1.522	96	118	117	117.5	4.128	1.009	113.2	3.66%
6	1.529	106	106	105	105.5	4.109	1.004	101.8	3.51%
7	1.533	111	95	95	95.0	4.099	1.002	94.8	0.21%
8	1.536	111	91	90	90.5	4.091	1.000	89.4	1.22%
9	1.539	111	85	84	84.5	4.083	0.998	84.1	0.47%
10	1.545	108	75	74	74.5	4.067	0.994	73.8	0.94%
11	1.552	102	66	64	65.0	4.048	0.989	63.1	2.92%
12	1.571	80	46	46	46.0	3.999	0.978	42.5	7.61%
13	1.603	54	28	26	27.0	3.920	0.958	25.9	4.07%
14	1.646	35	18	19	18.5	3.817	0.933	16.7	10.78%
15	1.699	25	13	11	12.0	3.698	0.904	11.6	3.45%

(3) 阻尼档为3

 $\beta=0.1331,~\omega_0=4.0875~rad/s$

序号	$T_d(s)$	θ(°)	φ ₁ (°)	φ ₂ (°)	$\overline{\phi}(^{\circ})$	ω =	ω	$\phi_0 =$	E =
						$\frac{2\pi}{T_d}$ (rad/s)	$\overline{\omega_0}$	$arctan \frac{2\beta\omega}{\omega_0^2 - \omega^2}$	$\frac{\overline{\phi}-\phi_0}{\phi_0}$
1	1.352	14	166	164	165.0	4.647	1.137	165.8	-0.48%
2	1.430	24	158	156	157.0	4.394	1.075	155.8	0.76%
3	1.477	39	146	144	145.0	4.254	1.041	140.8	2.90%
4	1.512	58	123	124	123.5	4.156	1.017	116.9	5.34%
5	1.526	66	109	109	109.0	4.117	1.007	102.6	5.87%
6	1.532	68	102	101	101.5	4.101	1.003	95.9	5.52%
7	1.538	70	95	94	94.5	4.085	0.999	89.1	5.71%
8	1.541	70	91	91	91.0	4.077	0.998	85.6	5.93%
9	1.545	70	86	85	85.5	4.067	0.995	81.1	5.15%
10	1.551	68	79	79	79.0	4.051	0.991	74.6	5.57%
11	1.557	67	73	72	72.5	4.035	0.987	68.5	5.52%
12	1.569	63	62	61	61.5	4.005	0.980	57.8	6.02%
13	1.597	49	44	42	43.0	3.934	0.963	40.5	5.81%
14	1.633	36	30	28	29.0	3.848	0.941	28.3	2.47%
15	1.677	27	22	20	21.0	3.747	0.917	20.5	2.44%
16	1.725	21	16	14	15.0	3.642	0.891	15.7	4.46%

姓名<u>刘若涵</u> 学号<u>2020011126</u> 班级<u>自 05</u> 组号<u>双一晚 N</u> 座位号<u>20</u>

阻尼档	1	2	3
阻尼系数β	0.05775	0.08530	0.1331
共振时外激励角频率ω	4.115	4.091	4.076
固有角频率 $\omega_{0}_{ }=\sqrt{\omega^2+2\beta^2}$	4.1558	4.0928	4.0803
练习 2 中得出的固有角频率ω0	4.0990	4.0915	4.0875
相对误差 $E = \frac{\omega_{0} - \omega_0}{\omega_0}$	0.410%	0.032%	-0.176%

姓名<u>刘若涵</u> 学号<u>2020011126</u> 班级<u>自 05</u> 组号<u>双一晚 N</u> 座位号<u>20</u>

7.实验小结

本次实验我学会了波尔共振仪的使用,掌握了测振动系统基本参数的方法,熟悉了受迫振动幅频相频特性。

思考题:

- 如何判断受迫振动已处于稳定状态?
 调节完强迫力激励周期旋钮后,等振幅示数稳定,即可视为进入稳态。
- 2. 从幅频曲线的相对振幅比为 1/2 的点,也可求出 β 值。试用你作出的幅频特性曲线进行计算,把结果与练习 2 的结果相比较。

$$\beta = \frac{1}{2}\omega_0\sqrt{\frac{(\frac{\theta_1}{\theta_2})^2(1-\frac{\omega_1^2}{\omega_0^2})^2-(1-\frac{\omega_2^2}{\omega_0^2})^2}{\frac{\omega_2^2}{\omega_0^2}-\frac{\omega_1^2}{\omega_0^2}(\frac{\theta_1}{\theta_2})^2}}$$

阻尼档	1	2	3
振幅比为1处ω/ω0	1.004	1.000	0.998
振幅比为 1/2 处ω/ω0	0.971	0.958	0.941
幅频曲线测的β _测	0.06163	0.09583	0.1326
练习2算的β	0.05775	0.08530	0.1331
相对误差 $E = \frac{\beta_{m} - \beta}{\beta}$	6.72%	12.34%	-0.38%

3. 实验中如何判断达到共振? 共振频率是多少? 调节强迫力激励周期,待受迫振动进入稳态,若读取的相位差为 90°,则表示共振。共振频率为 $\omega = \sqrt{\omega_0{}^2 - 2\beta^2}\,.$

附原始数据记录图表等

姓名<u>刘若涵</u> 学号<u>2020011126</u> 班级<u>自 05</u> 组号<u>双一晚 N</u> 座位号<u>20</u>

阻尼振动和受迫振动实验记录

班级 605 姓名 刘若良 学号 2020 川北 组号 双一晚 从 座位号 20

1、"0"档小阻尼的阻尼振动特性

10 倍周期测量结果

$10\overline{T_d}$	
15.2335	
15.2505	
15.270 5	
15.2895	
15.3095	

振幅θ测量结果(50个点)

派阳0侧里归木	(00 757			
189°	175°	161°	1490	139°
187 °	173°	160	148°	138°
186°	172°	159°	147'	136°
185°	1710	1589	146°	135°
183°	169°	157°	45°	134°
182°	168.	155°	143°	133°
180	167°	154°	143°	132°
174°	165°	153°	142°	131°
177°	164°	1520	141	1300
176°	163°	121.	140°	129.

2、"2-4"(后排 1-3)阻尼档的阻尼振动特性

阻尼档:	
$\overline{T_d}$	θ
1.523	1900
1.525	1760
1.527	1600
1.529	147°_
1.53	134°
1.532	123°
1.535	113.
1.536	103°
1.53]	940
1.539	86'
1.540	79.
1.541	720

阻尼档:	ν
$\overline{T_d}$	θ
1.524	184°
1.57	1620
1.530	143°
1.532	1260
1.535	110°
1.537	97°
1.539	gs*
1.541	74°
1.542	65°
1.542	s٦°
1.543	500
1.543	44°

阻尼档:	3
$\overline{T_d}$	θ
1.523	202
1.527	165
1.53	35°_
1.535	110°
1.:539	900
1.542	73°
1.542	60°
1.544	490_
1.545	40°
1.544	32"
1.545	26.
1.544	u°

灰盖湖

姓名<u>刘若涵</u> 学号<u>2020011126</u> 班级<u>自 05</u> 组号<u>双一晚 N</u> 座位号<u>20</u>

3、"2-4"(后排 1-3) 阻尼档的受迫振动幅频特性

Pri ta In			
阻尼档:			
$\overline{T_d}$	θ	ϕ_1	ϕ_2
1.466	40°	166	_ 165°
1.508	92°	166° 145°	144
1.516	1280	1290	165° 144° 128°
1.508 1.516 1.520	40° 92° 128°	11.40	_ [13]
1.523	158° 165° 164° 154°	105	105.
1.526	145	92°	11.
1.530	164°	92.	920
1.536	1540	71.	70
1.539	147'	64°	640
1.545	136.	56°	35°
1.569	136° 96° 66° 47°	36°	35°
1.592	660	26°	25°
1.618	47'	26°	15°_
1.010		1	
	-		

附尼档: T _d	φ ₁ βη° ββ° S8°	φ ₂ 167° 164°
1.383 17° 1.431 26°	169° 166°	167.
1.383 17° 1.431 26°	169° 166°	164°
1 (10 1)	166°	164°
1 (10 1)	158°	156°
	12.0	
1.512 80°	34"	132.
1.5>2 96°	134°	1170
1529 1060	106	105°
1.533 111"	95°	95°
1.53/ 1110	910	9c°
1.539 111°	85°	84°
1.545 108'	75.	74°
1.552 102"	66.	64.
1.571 80	46°	46°
1.603 540	28°	260
1.646 35°	18	19°
1.699 250	13°	

阻尼档:			
$\overline{T_d}$	θ	ϕ_1	ϕ_2
1.725	2 '	16° 22° 30° 44° 62° 73°	14.
1.677	27.	22'	20'
1.633	36°	30	28°
1.597	49'	44.	28°
1.569	639	62°	61°
1.557	47.	73°	72.
1.545	67°	79°	79°
1.545	70°	86' 91°	85°
1.541	70°	91°	
1.538	70°	95°	94.
1.532	68°	102°	101°
1.526	66°_	1091	1090
1.512	58°	130	1240
1.477	39°	146	144
1.430	249	186.	156°
1.352	140_	166°	164°
	-		