SPH3U: 1.2 Speed and Velocity

1. Recap

distance			position	disp	lacement
d	Scalar	(m)	à vector	(m) Do	l vector (m)

2. Average speed and velocity

Average speed:
$$V_{au} = \frac{\Delta d}{\Delta t}$$
 Units: m/s.

Your dog runs in a straight line for a distance of $43~\mathrm{m}$ in $28~\mathrm{s}$. What is your dog's average speed?

A baseball rolls along a flat parking lot in a straight line at a constant speed of 3.8 m/s. How far will the baseball roll in 15 s?

$$V_{\alpha \nu} = 3.8 \, \text{m/s}$$
. $V_{\alpha \nu} = \frac{\delta d}{\delta t} \longrightarrow \delta d = V_{\alpha \nu} \Delta t$
 $\Delta d = V_{\alpha \nu} \Delta t = (3.8 \, \text{m/s})(15 \, \text{s})$
 $= 5.7 \, \text{m}$.

	total displacement over total time.
Average velocity:	Vau = Dd
position-time graph	a graph with position (d) on the y-axis and time on the x-axis.
slope	slope of a P-T graph is the average velocity.

On a windy day, the position of a balloon changes as it is blown 82 m [N] away from a child in 15 s. What is the average velocity of the balloon?

A subway train travels at an average velocity of 22.3 km/k [W]. How long will it take for the subway train to undergo a displacement of 241 m [W]? w/s.

$$\frac{1}{V_{av}} = 22.3 \frac{1}{w} \times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{1}{60 \text{ sin}} \times \frac{1}{60 \text{ sin}} = 22.3 \times \frac{1000}{3600} = 6.194 \text{ m/s}.$$

$$V_{av} = \frac{\vec{\Delta} d}{\vec{\Delta} t} \Rightarrow \Delta t = \frac{\vec{\Delta} d}{V_{av}} = \frac{241 \text{ m Fu}}{6.194 \text{ m/s Fw}} = 38.95$$

3. Motion with uniform and non-uniform velocity

Uniform velocity:	constant velocity in a Straight line.		
Non-uniform velocity:	constant velocity in a Straight line. velocity that changes or does not travel in a straight line.		
accelerated motion	another name for non-unifor- velocity.		

Example	Uniform?	Why?
A car travels down a straight highway at a steady 100 km/h.	J	-straight line -constant velocity.
A passenger on an amusement park ride travels in a circle at a constant speed of 1.2 m/s.	×	-not a straight line.
A parachutist jumps out of an aircraft.	×	- accelerating towards Earth.

Position-Time Graph	Type of Motion	Example
Graph A	-at rest. · v=0, a=0. - East of reference.	
Graph B (I) w p 0 t(s)	-at rest. - West of reference.	
Graph C	-constant valocityuniform motionmoving East.	
Graph D (i) w (ii) t (s)	-constant valority - maving East - faster	
Graph E	-constat velocitymoving West.	

Homework: page 20: #1, 4-8