ЛЕКЦІЯ 9

Розв'язування систем нелінійних рівнянь

Постановка задачі

Найбільш загальними є системи нелінійних рівнянь.

Системи n нелінійних рівнянь з n невідомими $x_1, x_2, x_3, ..., x_n$ у загальному випадку записують в такий спосіб:

$$\begin{cases} f_1(x_1, x_2, ..., x_n) = 0, \\ f_1(x_1, x_2, ..., x_n) = 0, \\ ... \\ f_n(x_1, x_2, ..., x_n) = 0, \end{cases}$$

де $f_1, f_2, f_3, ..., f_n$ – будь-які функції від n незалежних змінних, у тому числі й нелінійні щодо невідомих.

Визначення розв'язку системи нелінійних рівнянь

Розв'язок системи нелінійних рівнянь – це такий вектор $x = (x_1, x_2, ..., x_n)$,

який перетворює систему нелінійних рівнянь в тотожність.

Система рівнянь може:

- не мати розв'язків,
- мати єдиний розв'язок,
- скінченну чи нескінченну кількість розв'язків.

Питання щодо кількості розв'язків потрібно розглядати для кожної конкретної задачі окремо.

Приклад 1.

Розглянемо систему двох нелінійних рівнянь:

$$\begin{cases} 2x_1^2 - x_1x_2 - 5x_1 + 1 = 0, \\ x_1 + 3\lg x_1 - x_2^2 = 0, \end{cases}$$

Розділимо змінні у рівняннях системи:

$$x_2 = \frac{2x_1^2 - 5x_1 + 1}{x_1}$$
 - перше рівняння,

$$x_2 = \pm \sqrt{x_1 + 3 \lg x_1}$$
 - друге рівняння.

Відомо, що графічно розв'язок системи двох рівнянь – це точки перетину графіків функцій системи.

Побудуємо графіки цих двох рівнянь:

На графіку рис. 1 дві криві функцій перетинаються приблизно в точках (1.5; –1.4) та (3.5; 2.2), які можна вважати за наближені значення розв'язків рівнянь.

Рис.1. Графічний розв'язок системи нелінійних рівнянь

Вектор розв'язків у загальній формі $x = (x_1, x_2)$

$$\begin{cases} 2x_1^2 - x_1x_2 - 5x_1 + 1 = 0, \\ x_1 + 3\lg x_1 - x_2^2 = 0. \end{cases}$$

- Система нелінійних рівнянь не має прямих методів розв'язування у загальному випадку.
- Систему нелінійних рівнянь можна розв'язати точно, якщо існує можливість представити одне невідоме через інше.
- Тоді зводять задачу до розв'язання одного нелінійного рівняння.
 - Загальним підходом до розв'язування систем нелінійних рівнянь є ітераційні методи.

Метод простої ітерації

Для реалізації цього методу стосовно заданої нелінійної системи рівнянь треба виконати наступну послідовність кроків.

Крок 1. Шляхом алгебраїчних перетворень виокремити з кожного рівняння по одній змінній і в такий спосіб привести систему нелінійних рівнянь до вигляду:

$$\begin{cases} x_1 = \varphi_1(x_1, x_2, ..., x_n), \\ x_2 = \varphi_2(x_1, x_2, ..., x_n), \\ ... \\ x_n = \varphi_n(x_1, x_2, ..., x_n), \end{cases}$$

Крок 2. Обрати вектор початкового наближення $x^{(0)}$

$$x^{(0)} = \begin{pmatrix} x_1^{(0)} \\ x_2^{(0)} \\ \dots \\ x_n^{(0)} \end{pmatrix}$$

Крок 3. Підставити вектор початкового наближення в праву частину рівнянь системи.

$$\begin{cases} x_1^{(1)} = \varphi_1 \left(x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)} \right), \\ x_2^{(1)} = \varphi_2 \left(x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)} \right), \\ \dots \\ x_n^{(1)} = \varphi_n \left(x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)} \right), \end{cases}$$

Крок 4. З першого рівняння обчислити нове наближення до першої змінної $x_1^{(1)}$,

$$x_1^{(1)} = \varphi_1(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}),$$

з другого – до другої змінної $x_2^{(1)}$,

$$x_2^{(1)} = \varphi_2\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right)$$
, тощо.

Крок 5. Обчислені уточнені значення змінних

$$x^{(1)} = \begin{pmatrix} x_1^{(1)} \\ x_2^{(1)} \\ \dots \\ x_n^{(1)} \end{pmatrix}$$

знову підставляти у рівняння.

Крок 6. На (k+1)-му кроці ітераційної процедури формула методу ітерацій для розв'язання системи нелінійних рівнянь має вигляд:

$$\begin{cases} x_1^{(k+1)} = \varphi_1 \left(x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)} \right), \\ x_2^{(k+1)} = \varphi_2 \left(x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)} \right), \\ x_n^{(k+1)} = \varphi_n \left(x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)} \right), \end{cases}$$

Крок 7. Ітерації повторювати до досяжності заданої точності ітераційного процесу. Для цього необхідно перевіряти досяжність точності після кожної ітерації

Збіжність ітераційного процесу

Процес ітерації для системи нелінійних рівнянь збігається до єдиного її розв'язку, якщо кожна норма матриці $\Phi'(x)$ в заданому околі є меншою за одиницю.

Для збіжності розв'язків системи достатньою є умова:

$$\left\|\Phi'(x)\right\| < 1$$

де $\Phi'(x)$ – матриця частинних похідних, яку називають матрицею Якобі.

Увага! Грубою помилкою є обчислення ітерацій без попереднього аналізу умови збіжності

Матриця Якобі

$$\Phi'(x) = \begin{pmatrix} \frac{\partial \varphi_1}{\partial x_1} & \frac{\partial \varphi_1}{\partial x_2} & \dots & \frac{\partial \varphi_1}{\partial x_n} \\ \frac{\partial \varphi_2}{\partial x_1} & \frac{\partial \varphi_2}{\partial x_2} & \dots & \frac{\partial \varphi_n}{\partial x_n} \\ \dots & \dots & \dots \\ \frac{\partial \varphi_n}{\partial x_1} & \frac{\partial \varphi_2}{\partial x_2} & \dots & \frac{\partial \varphi_n}{\partial x_n} \end{pmatrix}$$

Частинна похідна $\frac{\partial \varphi_k}{\partial x_i}$ функції $\varphi_k \left(x_1, x_2, ..., x_i, ..., x_n \right)$ є звичайною похідною від функції однієї змінної x_i при

фіксованих значеннях всіх інших змінних:

$$x_1 = const, x_2 = const, ..., x_i = var, ..., x_n = const$$

Приклад обчислення частинних похідних

Нехай дана нелінійна функція:

$$\varphi(x) = 2xy + x^2y$$

Частинна похідна по x обчислюється за умови, що змінна y розглядається як константа

$$\varphi(x) = 2xy + x^2y$$
 $\frac{\partial \varphi}{\partial x} = 2y + 2yx = 2y(x+1)$

Частинна похідна по y обчислюється за умови, що змінна x розглядається як константа

$$\varphi(x) = 2xy + x^2y$$
 $\frac{\partial \varphi}{\partial y} = 2x + x^2 = 2x\left(1 + \frac{x}{2}\right)$

Перевірка досягнення точності ітераційним процесом

Досягнення точності ітераційного процесу перевіряється за формулою:

$$\frac{\left\|x^{(k+1)} - x^{(k)}\right\|_{2}}{\left\|x^{(k)}\right\|_{2}} \le \varepsilon$$

де ε - похибка розв'язку системи рівнянь;

 $\left\|x^{(k+1)} - x^{(k)}\right\|_2$ — норми векторів різниці останнього та передостаннього наближень відповідно. $\left\|x^{(k)}\right\|_2$ - норма попереднього вектора.

Приклад 2. Розв'яжемо методом простих ітерацій систему нелінійних рівнянь

$$\begin{cases} 2x_1^2 - x_1x_2 - 5x_1 + 1 = 0, \\ x_1 + 3\lg x_1 - x_2^2 = 0. \end{cases}$$
 з похибкою 0.0001.

Розв'язок.

Крок 1. Перетворимо цю систему до вигляду, за якого можна використовувати метод простих ітерацій:

$$\begin{cases} x_1 = \sqrt{\frac{x_1(x_2+5)-1}{2}}, \\ x_2 = \sqrt{x_1+3\lg x_1}, \end{cases}$$

Крок 2. Оберемо вектор початкового наближення:

$$x^{(0)} = \begin{pmatrix} x_1^{(0)} \\ x_2^{(0)} \end{pmatrix} = \begin{pmatrix} 3.5 \\ 2.2 \end{pmatrix}$$
 Ці значення одержано в результаті побудови графіка рівнянь, показаного на рис.1.

Крок 3. Обчислимо перше наближення:

$$x_1^{(1)} = \sqrt{\frac{x_1^{(0)} \left(x_2^{(0)} + 5\right) - 1}{2}} = \sqrt{\frac{3.5(2.2 + 5) - 1}{2}} = 3.478505,$$

$$x_2^{(1)} = \sqrt{x_1^{(0)} = 3 \lg x_1^{(0)}} = \sqrt{3.5 + 3 \lg 3.5} = 2.265436.$$

Крок k. Формули для обчислення (k+1)-го наближення мають вигляд:

$$\begin{cases} x_1^{(k+1)} = \sqrt{\frac{x_1^{(k)} \left(x_2^{(k)} + 5\right) - 1}{2}}, \\ x_2^{(k+1)} = \sqrt{x_1^{(k)} + 3\lg x_1^{(k)}}, \end{cases}$$

Результати ітераційного процесу наведені в таблиці

<i>k</i> – номер	$x_1^{(k)}$	$x_2^{(k)}$
ітерації	1	2
0	3.5	2.2
1	3.478505	2.265436
2	3.483738	2.258912
3	3.484834	2.260503
4	3.485804	2.260836
5	3.486391	2.261131
6	3.486771	2.261309
7	3.487013	2.261424

Обчислимо досягнення точності ітераційним процесом, використовуючи формулу після 3-ї ітерації

$$\frac{\left\|x^{(3)} - x^{(2)}\right\|_{2}}{\left\|x^{(2)}\right\|_{2}} \le \varepsilon$$

Обчислимо відповідні норми з використанням евклідової

норми
$$\|x\|_2 = \sqrt{\sum_i |x_i|^2}$$
:
$$\|x^{(2)}\|_2 = \sqrt{|x_1^{(2)}|^2 + |x_2^{(2)}|^2} = \sqrt{12.136430 + 5.102683} = 4.1558503$$
$$\|x^{(3)} - x^{(2)}\|_2 = \sqrt{|x_1^{(3)} - x_1^{(2)}|^2 + |x_2^{(3)} - x_2^{(2)}|^2} = \sqrt{0.0123285 + 0.001591} = \sqrt{12.00123285 + 0.001591}$$

$$\sqrt{|0.001096|^2 + |0.001591|^2} = \sqrt{0.0000012013 + 0.000002531} =$$

$$=\sqrt{0.00000373222}=0.001932$$

Тоді:

$$\frac{\left\|x^{(3)} - x^{(2)}\right\|_{2}}{\left\|x^{(2)}\right\|_{2}} = \frac{0.001932}{4.1520012} = 0.000465 < 0.001$$

Приклад обчислення точності після 7-ї ітерації:

$$\frac{\left\|x^{(7)} - x^{(6)}\right\|_{2}}{\left\|x^{(6)}\right\|_{2}} \le \varepsilon$$

Одержимо після аналогічних обчислень:

$$\frac{\left\|x^{(7)} - x^{(6)}\right\|_{2}}{\left\|x^{(6)}\right\|_{2}} = \frac{0.0002682}{4.1558503} = 0.0000645 < 0.0001$$

Відповідь: x_1 = 3.487013; x_2 = 2.261424.

Перевірка умови збіжності

Процес ітерації для системи нелінійних рівнянь збігається до єдиного її розв'язку, якщо кожна норма матриці $\Phi'(x)$ в заданому околі є менша за одиницю, тобто для збіжності розв'язків системи достатньою є умова

$$\|\Phi'(x)\| < 1$$

Перевіримо збіжність системи нелінійних рівнянь,

$$\begin{cases} x_1 = \sqrt{\frac{x_1(x_2+5)-1}{2}}, \\ x_2 = \sqrt{x_1+3\lg x_1}, \end{cases}$$

Для цього обчислимо матрицю частинних похідних

$$\Phi'(x) = \begin{pmatrix} \frac{\partial \varphi_1}{\partial x_1} & \frac{\partial \varphi_1}{\partial x_2} \\ \frac{\partial \varphi_2}{\partial x_1} & \frac{\partial \varphi_2}{\partial x_2} \end{pmatrix} = \begin{pmatrix} \frac{x_2 + 5}{4\sqrt{\frac{x_1(x_2 + 5) - 1}{2}}} & \frac{x_1}{4\sqrt{\frac{x_1(x_2 + 5) - 1}{2}}} \\ \frac{1 + \frac{3 \cdot 0.4343}{x_1}}{2\sqrt{x_1 + 3\lg x_1}} & 0 \end{pmatrix}$$

В околі точки $(x_1 = 3.5 \pm 0.1, x_2 = 2.2 \pm 0.1)$ значення частинних похідних задовольняють умовам

$$\frac{\partial \varphi_1}{\partial x_1} = \frac{x_2 + 5}{4\sqrt{\frac{x_1(x_2 + 5) - 1}{2}}} = \frac{2.2 + 5}{4\sqrt{\frac{3.5(2.2 + 5) - 1}{2}}} = \frac{7,5}{14.2} = 0.53$$

$$\frac{\partial \varphi_1}{\partial x_2} \frac{x_1}{4\sqrt{\frac{x_1(x_2+5)-1}{2}}} = \frac{3.5}{4\sqrt{\frac{3.5(2.2+5)-1}{2}}} = \frac{3.5}{14.2} = 0.25$$

$$\frac{\partial \varphi_2}{\partial x_1} = \frac{1 + \frac{3 \cdot 0.4343}{x_1}}{2\sqrt{x_1 + 3\lg x_1}} = \frac{1 + \frac{3 \cdot 0.4343}{3.5}}{2\sqrt{3.5 + 3 \cdot \lg(3.5)}} = \frac{1.37}{4.53} = 0.3$$

$$\frac{\partial \varphi_2}{\partial x_2} = 0$$

$$\left| \frac{\partial \varphi_1}{\partial x_1} \right| = 0.53, \ \left| \frac{\partial \varphi_1}{\partial x_2} \right| = 0.25, \ \left| \frac{\partial \varphi_2}{\partial x_1} \right| \le 0.3, \ \left| \frac{\partial \varphi_2}{\partial x_2} \right| = 0$$

Підставимо ці значення в матрицю $\Phi'(x)$ та обчислимо її норми:

1. *m* – норма матриці:

$$\left\|\Phi'(x)\right\|_{m} = \max_{i} \sum_{j=1}^{n} \left|a_{ij}\right| = \left|\frac{\partial \varphi_{1}}{\partial x_{1}}\right| + \left|\frac{\partial \varphi_{2}}{\partial x_{1}}\right| = 0.53 + 0.3 = 0.83$$

2. *l* – норма матриці:

$$\left\|\Phi'(x)\right\|_{l} = \max_{j} \sum_{i=1}^{n} \left|a_{ij}\right| = \left|\frac{\partial \varphi_{1}}{\partial x_{1}}\right| + \left|\frac{\partial \varphi_{1}}{\partial x_{2}}\right| = 0.53 + 0.25 = 0.78$$

3. E – норма матриці:

$$\|\Phi'(x)\|_{E} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^{2}} = \sqrt{\frac{\partial \varphi_{1}}{\partial x_{1}}^{2} + \left|\frac{\partial \varphi_{1}}{\partial x_{2}}\right|^{2} + \left|\frac{\partial \varphi_{2}}{\partial x_{1}}\right|^{2} + \left|\frac{\partial \varphi_{2}}{\partial x_{2}}\right|^{2}} = \sqrt{0.28 + 0.06 + 0.09} = \sqrt{0.43} = 0.67$$

Отже, ми одержали значення усіх норм матриці $\Phi'(x)$ меншими за одиницю. Тому система нелінійних рівнянь задовольняє умові збіжності методу простих ітерацій: $\|\Phi'(x)\| < 1$.

Метод Зейделя

Метод Зейделя для систем нелінійних рівнянь полягає у використовуванні уточнених значень змінних уже на поточному ітераційному кроці.

- 1. Для уточнення значення першої змінної $x_1^{(k+1)}$ використовуємо усі значення попереднього k-го кроку
- 2. Для другої змінної $x_2^{(k+1)}$ значення $x_1^{(k+1)}$ (k+1) -го кроку та значення решти змінних з попереднього k -го кроку.
- 3. Для третьої змінної $x_3^{(k+1)}$ значення $x_1^{(k+1)}, x_2^{(k+1)}$ (k+1) -го кроку та значення решти змінних з попереднього k-го кроку. і т.д.

Використання попередніх ітерацій за методом Зейделя

$$\begin{cases} x_1^{(k+1)} = \varphi_1 \left(x_1^{(k)}, x_2^{(k)}, x_3^{(k)}, \dots, x_{n-1}^{(k)}, x_n^{(k)} \right), \\ x_2^{(k+1)} = \varphi_2 \left(x_1^{(k+1)}, x_2^{(k)}, x_3^{(k)}, \dots, x_{n-1}^{(k)}, x_n^{(k)} \right), \\ x_3^{(k+1)} = \varphi_3 \left(x_1^{(k+1)}, x_2^{(k+1)}, x_3^{(k+1)}, \dots, x_{n-1}^{(k)}, x_n^{(k)} \right), \\ x_n^{(k+1)} = \varphi_n \left(x_1^{(k+1)}, x_2^{(k+1)}, x_3^{(k+1)}, \dots, x_{n-1}^{(k+1)}, x_n^{(k)} \right). \end{cases}$$

де k — номер кроку ітерації.

Умова збіжності ітераційного процесу за методом Зейделя

Умова збіжності ітераційного процесу розв'язку системи нелінійних рівнянь за методу Зейделя повністю співпадає з умовою збіжності за методом простих ітерацій, а саме:

$$\left\|\Phi'(x)\right\| \le 1 ,$$

де

$$\Phi'(x) = \begin{pmatrix} \frac{\partial \varphi_1}{\partial x_1} & \frac{\partial \varphi_1}{\partial x_2} & \dots & \frac{\partial \varphi_1}{\partial x_n} \\ \frac{\partial \varphi_2}{\partial x_1} & \frac{\partial \varphi_2}{\partial x_2} & \dots & \frac{\partial \varphi_n}{\partial x_n} \\ \dots & \dots & \dots \\ \frac{\partial \varphi_n}{\partial x_1} & \frac{\partial \varphi_2}{\partial x_2} & \dots & \frac{\partial \varphi_n}{\partial x_n} \end{pmatrix}$$

Перевірка досягнення точності ітераційним процесом

Досягнення точності ітераційного процесу перевіряється за формулою, яка повністю співпадає з формулою для методу простих ітерацій:

$$\frac{\left\|x^{(k+1)} - x^{(k)}\right\|_{2}}{\left\|x^{(k)}\right\|_{2}} \le \varepsilon$$

де ε - похибка розв'язку системи рівнянь;

$$||x^{(k+1)} - x^{(k)}||_2$$
 – норми векторів різниці останнього та

передостаннього наближень відповідно.

$$\|x^{(k)}\|_2$$
 - норма попереднього вектора.

Приклад. Розв'язати методом Зейделя систему нелінійних рівнянь

$$\begin{cases} 2x_1^2 - x_1x_2 - 5x_1 + 1 = 0, \\ x_1 + 3\lg x_1 - x_2^2 = 0. \end{cases}$$
 з похибкою 0.0001.

Розв'язок.

Крок 1. Використовуватимемо цю систему, як і для методу ітерацій, у перетвореному вигляді:

$$\begin{cases} x_1 = \sqrt{\frac{x_1(x_2+5)-1}{2}}, \\ x_2 = \sqrt{x_1+3\lg x_1}, \end{cases}$$

Крок 2. Оберемо вектор початкового наближення

$$x^{(0)} = \begin{pmatrix} x_1^{(0)} \\ x_2^{(0)} \end{pmatrix} = \begin{pmatrix} 3.5 \\ 2.2 \end{pmatrix}$$
 Ці значення візьмемо, як і в попередньому випадку, з графіка рівнянь, що показаний на рис.1.

Крок 3. Обчислимо перше наближення:

$$x_1^{(1)} = \sqrt{\frac{x_1^{(0)}(x_2^{(0)} + 5) - 1}{2}} = \sqrt{\frac{3.5(2.2 + 5) - 1}{2}} = 3.478505,$$

$$x_2^{(1)} = \sqrt{x_1^{(1)}} = 3\lg x_1^{(1)} = \sqrt{3.478505 + 3\lg 3.478505} = 2.258912.$$

Подальші наближення обчислимо за поступового використовування формули розв'язання системи на (k+1)-му кроці ітераційної процедури:

$$\begin{cases} x_1^{(k+1)} = \sqrt{\frac{x_1^{(k)} \left(x_2^{(k)} + 5\right) - 1}{2}}, \\ x_2^{(k+1)} = \sqrt{x_1^{(k+1)} + 3\lg x_1^{(k+1)}}, \end{cases}$$

Відповідні значення поступових наближень розв'язків системи наведено в таблиці.

k – номер ітерації	$x_1^{(k)}$	$x_2^{(k)}$
0	3.5	2.2
1	3.478505	2.258912
2	3.482109	2.260008
3	3.484260	2.260662
4	3.485544	2.261052
5	3.486310	2.261284
6	3.486767	2.261423
7	3.487039	2.261506
8	3.487169	2.261528
9	3.487299	2.261585

Приклад обчислення точності після 2-ї ітерації:

$$\frac{\left\|x^{(2)} - x^{(1)}\right\|_{2}}{\left\|x^{(1)}\right\|_{2}} = \frac{0.0037664}{4.1476118} = 0.000908 < 0.001;$$

після 9-го кроку ітерації

$$\frac{\left\|x^{(9)} - x^{(8)}\right\|_{2}}{\left\|x^{(8)}\right\|_{2}} = \frac{0.0001014}{4.156346} = 0.0000244 < 0.0001;$$

Отже, наближення, обчислені на 2-му кроці ітерації, можна вважати за розв'язки системи (2) з похибкою 0.001; наближення, обчислені на 9-му кроці ітерації, — за розв'язки системи з похибкою 0.0001, тобто

$$x_1 = 3.487299$$
 $x_2 = 2.261585$

Метод Ньютона

Метод полягає у лінеаризації функцій $f_1, f_2, ..., f_n$ шляхом розкладання в ряд Тейлора в околі точки початкового наближення до розв'язку системи рівнянь. Для спрощення обчислень нехтують всіма членами ряду, окрім лінійних щодо приростів змінних.

Для однієї змінної ряд Тейлора в околі певної точки $x=x_0$ виглядає так:

$$\begin{split} &f_{i}(x) = f_{i}(x_{0}) + \frac{1}{1!}(x - x_{0})f_{i}'(x_{0}) + \frac{1}{2!}(x - x_{0})^{2}f_{i}''(x_{0}) + \ldots + \frac{1}{n!}(x - x_{0})^{n}f_{i}^{(n)}(x_{0}) \\ & \begin{cases} f_{1}(x_{1}, x_{2}, \ldots, x_{n}) = 0, & \text{Для функцій } f_{1}, f_{2}, \ldots, f_{n} \text{ даної системи} \\ f_{2}(x_{1}, x_{2}, \ldots, x_{n}) = 0, & \text{рівнянь візьмемо лише лінійну частину} \\ (\text{до другої похідної) розкладання в ряд} \\ \vdots \\ f_{n}(x_{1}, x_{2}, \ldots, x_{n}) = 0, & x^{(0)} = \left\{x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{n}^{(0)}\right\}. \end{split}$$

Спрощений ряд Тейлора для довільної функції

$$f_i(x) = f_i(x_0) + \frac{1}{1!}(x - x_0)f_i'(x_0)$$

$$f_i\left(x_1, x_2, ..., x_n\right) = f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right)$$

$$+\left(x_{2}-x_{2}^{(0)}\right)\frac{\partial}{\partial x_{2}}f_{i}\left(x_{1}^{(0)},x_{2}^{(0)},...,x_{n}^{(0)}\right)+...+\left(x_{n}-x_{n}^{(0)}\right)\frac{\partial}{\partial x_{n}}f_{i}\left(x_{1}^{(0)},x_{2}^{(0)},...,x_{n}^{(0)}\right),$$

де i = 1, 2, ..., n.

Уведемо позначення для змінних:

$$\Delta x_i^{(0)} = (x_i - x_i^{(0)})$$
— приріст i — ї змінної,

 f_i – значення i – ї функції в точці $x^{(0)}$.

$$F'_{ij} = \frac{\partial}{\partial x_i} f_i \left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)} \right)$$
— значення першої частинної

похідної функції f_i по змінній x_j

Представлення функції рядом Тейлора

Після введення згаданих позначень функція

$$f_i\left(x_1, x_2, ..., x_n\right) = f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right) \frac{\partial}{\partial x_1} f_i\left(x_1^{(0)}, x_1^{(0)}, ..., x_n^{(0)}\right) + \left(x_1 - x_1^{(0)}\right)$$

$$+\left(x_{2}-x_{2}^{(0)}\right)\frac{\partial}{\partial x_{2}}f_{i}\left(x_{1}^{(0)},x_{2}^{(0)},...,x_{n}^{(0)}\right)+...+\left(x_{n}-x_{n}^{(0)}\right)\frac{\partial}{\partial x_{n}}f_{i}\left(x_{1}^{(0)},x_{2}^{(0)},...,x_{n}^{(0)}\right),$$

матиме вигляд:

$$f_i(x_1, x_2, ..., x_n) = f_i + \Delta x_1^{(0)} F'_{i1} + \Delta x_2^{(0)} F'_{i2} + ... + \Delta x_n^{(0)} F'_{in}$$

Підставимо одержані представлення функцій $f_i \left(x_1, x_2, ..., x_n \right)$ рядом Тейлора в початкову систему нелінійних рівнянь

Формування матриці рівнянь

$$\begin{cases} f_{1}(x_{1}, x_{2}, ..., x_{n}) = 0, \\ f_{2}(x_{1}, x_{2}, ..., x_{n}) = 0, \\ f_{n}(x_{1}, x_{2}, ..., x_{n}) = 0, \end{cases} \Rightarrow \begin{cases} F'_{11} \Delta x_{1} + F'_{12} \Delta x_{2} + ... + F'_{1n} \Delta x_{n} = -f_{1}, \\ F'_{21} \Delta x_{1} + F'_{22} \Delta x_{2} + ... + F'_{2n} \Delta x_{n} = -f_{2}, \\ F'_{n1} \Delta x_{1} + F'_{n2} \Delta x_{2} + ... + F'_{nn} \Delta x_{n} = -f_{n}, \end{cases}$$

або у матричній формі:

$$\begin{pmatrix} F'_{11} & F'_{12} & \dots & F'_{1n} \\ F'_{21} & F'_{22} & \dots & F'_{1n} \\ \dots & \dots & \dots \\ F'_{n1} & F'_{n2} & \dots & F'_{nn} \end{pmatrix} \cdot \begin{pmatrix} \Delta x_1 \\ \Delta x_2 \\ \dots \\ \Delta x_n \end{pmatrix} = \begin{pmatrix} -f_1 \\ -f_2 \\ \dots \\ -f_n \end{pmatrix}$$

У скороченому вигляді можна записати $F(\Delta x) = -f$, де матриця значень частинних похідних (F) називається матрицею Якобі, чи якобіаном системи рівнянь.

Базові поняття про метод Ньютона

Розв'язок цієї системи $F(\Delta x) = -f$, за умови $\det(F) \neq 0$, є

вектор нев'язок початкового наближення: $\Delta x = -(F)^{-1}(f)$.

Додаємо дану нев'язку до вектора початкового наближення і одержуємо уточнені значення змінних:

$$x^{(1)} = x^{(0)} + \Delta x^{(0)} \rightarrow x^{(0)} + x^{(1)} - x^{(0)} = x^{(1)}$$

Продовжуємо ітераційний процес і одержуємо нові наближення розв'язків системи лінійних рівнянь

$$x^{(k+1)} = x^{(k)} + \Delta x^{(k)}$$

Підставимо нев'язку в одержане рівняння ітераційного процесу:

$$x^{(k+1)} = x^{(k)} - F^{-1}(x^{(k)}) \cdot f(x^{(k)}),$$

де $F^{-1}\!\left(x^{(k)}\right)$ – обернена матриця Якобі F' для наближення

$$x^{(k)} = \left\{x_1^{\{k\}}, x_2^{\{k\}}, \dots, x_n^{\{k\}}\right\}, \ k = 1, 2, \dots$$

Перевірка досягнення точності ітераційним процесом

Досягнення точності ітераційного процесу перевіряється за формулою, яка повністю співпадає з формулою для методу простих ітерацій:

$$\frac{\left\|x^{(k+1)} - x^{(k)}\right\|_{2}}{\left\|x^{(k)}\right\|_{2}} \le \varepsilon$$

де ε - похибка розв'язку системи рівнянь;

$$\|x^{(k+1)} - x^{(k)}\|_2$$
 — норми векторів різниці останнього та

передостаннього наближень відповідно.

$$||x^{(k)}||_2$$
 - норма попереднього вектора.

Алгоритм розв'язування системи нелінійних рівнянь за методом Ньютона

Крок 1. Обираємо початкове наближення

$$x^{(0)} = \left\{ x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)} \right\};$$

Крок 2. Обчислюємо матрицю Якобі (F) – значення частинних похідних $F'_{ij} = \partial f_i \Big(x^{(k)} \Big) / \partial x_j$ для обраного наближення $x^{(k)}$:

$$F\left(x^{(k)}\right) = \begin{pmatrix} \frac{\partial f_1\left(x^{(k)}\right)}{\partial x_1} & \frac{\partial f_1\left(x^{(k)}\right)}{\partial x_2} & \dots & \frac{\partial f_1\left(x^{(k)}\right)}{\partial x_n} \\ \frac{\partial f_2\left(x^{(k)}\right)}{\partial x_1} & \frac{\partial f_2\left(x^{(k)}\right)}{\partial x_2} & \dots & \frac{\partial f_2\left(x^{(k)}\right)}{\partial x_n} \\ \dots & \dots & \dots & \dots \\ \frac{\partial f_n\left(x^{(k)}\right)}{\partial x_1} & \frac{\partial f_n\left(x^{(k)}\right)}{\partial x_2} & \dots & \frac{\partial f_n\left(x^{(k)}\right)}{\partial x_n} \end{pmatrix} = \begin{pmatrix} F'_{11} & F'_{12} & \dots & F'_{1n} \\ F'_{21} & F'_{22} & \dots & F'_{2n} \\ \dots & \dots & \dots & \dots \\ F'_{n1} & F'_{n2} & \dots & F'_{nn} \end{pmatrix}$$

Крок 3. До вектора наближення $x^{(k)}$ додаємо вектор приростів змінних та дістаємо нове наближення

$$x^{(k+1)} = x^{(k)} - F^{-1}(x^{(k)}) \cdot f(x^{(k)})$$

Крок 4. Перевіряємо досягнення точності ітераційним процесом:

$$\frac{\left\|x^{(k+1)} - x^{(k)}\right\|_{2}}{\left\|x^{(k)}\right\|_{2}} \le \varepsilon$$

Якщо точність не досягнуто, то значення k збільшуємо на одиницю і повторюємо процедуру з кроку 2, інакше процес ітерації зупиняємо.

Частинні похідні для матриці Якобі, можна обчислити аналітично або ж обчислити за формулами чисельного диференціювання.

Приклад. Розв'яжемо за методом Ньютона систему нелінійних рівнянь:

$$\begin{cases} f_1\left(x_1,x_2\right) \equiv 2x_1^2 - x_1x_2 - 5x_1 + 1 = 0,\\ f_2\left(x_1,x_2\right) \equiv x_1 + 3\lg x_1 - x_2^2 = 0. \end{cases}$$
 з похибкою 0.0001:

Етап 1. Оберемо вектор початкового наближення $x^{(0)}$ – точку перетинання функцій графіка (рис. 1) з додатними значеннями: $x_1^{(0)} = 3.5$ і $x_2^{(0)} = 2.2$

Визначимо значення у функції
$$f_1(x^{(0)})$$
 та $f_2(x^{(0)})$ $f_1 = 2x_1^2 - x_1x_2 - 5x_1 + 1 = 2 \cdot (3.5)^2 - 3.5 \cdot 2.2 - 5 \cdot 3.5 + 1 = 0.300000$ $f_2 = x_1 + 3\lg x_1 - x_2^2 = 3.5 + 3 \cdot \lg(3.5) - (2.2)^2 = 0.292204$

Етап 2. Складемо матрицю Якобі

$$\frac{\partial f_1(x)}{\partial x_1} = 4x_1 - x_2 - 5, \quad \frac{\partial f_1(x)}{\partial x_2} = -x_1 \quad \frac{\partial f_2(x)}{\partial x_1} = 1 + \frac{3}{x_1 \ln 10}, \frac{\partial f_2(x)}{\partial x_2} = -2x_2$$

$$\begin{cases} f_1(x_1, x_2) \equiv 2x_1^2 - x_1 x_2 - 5x_1 + 1 = 0, \\ f_2(x_1, x_2) \equiv x_1 + 3 \lg x_1 - x_2^2 = 0. \end{cases} F = \begin{pmatrix} 4x_1 - x_2 - 5 & -x_1 \\ 1 + \frac{3}{x_1 \ln 10} & -2x_2 \end{pmatrix}$$

Етап 3. Обчислимо значення відповідних частинних похідні при початковому наближенні $x = x^{(0)}$.

$$\frac{\partial f_1(x)}{\partial x_1}\Big|_{x^{(0)}} = 4 \cdot 3.5 - 2.2 - 5 = 6.8, \frac{\partial f_1(x)}{\partial x_2}\Big|_{x^{(0)}} = -3.5,$$

$$\frac{\partial f_2(x)}{\partial x_1}\Big|_{x^{(0)}} = 1 + \frac{3}{3.5 \cdot 2.3} = 1.373, \ \frac{\partial f_2(x)}{\partial x_2}\Big|_{x^{(0)}} = -4.4$$

Етап 4. Сформуємо матрицю Якобі для початкового наближення і обчислимо її визначник:

$$F(x^{(0)}) = \begin{pmatrix} 6.8 & -3.5 \\ 1.373 & -4.4 \end{pmatrix};$$

$$\det(F(x^{(0)})) = \begin{vmatrix} 6.8 & -3.5 \\ 1.373 & -4.4 \end{vmatrix}$$

$$\det(F(x^{(0)})) = 6.8 \cdot (-4.4) - 1.373 \cdot (-3.5) = -25.11 \neq 0$$

Отже, матриця $F'\Big(x^{(0)}\Big)$ – невироджена і метод Ньютона розв'язування відповідної системи рівнянь застосовний.

Етап 4. Обчислимо її обернену матрицю до матриці $F(x^{(0)})$

$$F(x^{(0)}) = \begin{pmatrix} 6.8 & -3.5 \\ 1.372 & -4.4 \end{pmatrix}.$$

Скористаємося правилом обчислення оберненої матриці:

$$F^{-1} = \frac{F^*}{\det F}$$
 де F^* -приєднана матиця

Приєднана матриця $F^* = \tilde{F}^T$, де $\tilde{F}-$ матриця, яка отримана заміною її елементів їх алгебраїчними доповненнями.

Алгебраїчні доповнення: $A_{11} = (-1)^{1+1}(-4.4), \quad A_{12} = (-1)^{1+2}1.373$ $A_{21} = (-1)^{2+1}(-3.5), \quad A_{22} = (-1)^{2+2} = 6.8$

$$\tilde{F} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} -4.4 & -1.373 \\ 3.5 & 6.8 \end{pmatrix}$$

$$F^* = \tilde{F}^T = \begin{pmatrix} -4.4 & 3.5 \\ -1.373 & 6.8 \end{pmatrix} \qquad F^{-1} \left(x^{(0)} \right) = \frac{F^*}{\det F} = \begin{pmatrix} 0.1752 & -0.1394 \\ 0.0547 & -0.2708 \end{pmatrix}$$

Етап 5. За формулою
$$x^{(k+1)} = x^{(k)} - F^{-1}(x^{(k)}) \cdot f(x^{(k)})$$

обчислимо перше наближення:

$$F^{-1}(x^{(0)}) \cdot f(x^{(0)}) = \begin{pmatrix} 0.1752 & -0.1394 \\ 0.0547 & -0.2708 \end{pmatrix} \cdot \begin{pmatrix} 0.300000 \\ 0.292204 \end{pmatrix} = \begin{pmatrix} 0.0118268 \\ -0.0627188 \end{pmatrix}$$

$$x^{(1)} = x^{(0)} - F^{-1}(x^{(0)}) \cdot f(x^{(0)}) =$$

$$= \begin{pmatrix} 3.5 \\ 2.2 \end{pmatrix} - \begin{pmatrix} 0.0118268 \\ -0.0627188 \end{pmatrix} = \begin{pmatrix} 3.4881732 \\ 2.2627187 \end{pmatrix}$$

Аналогічно обчислюють наступні наближення. Результати обчислень на-ведено в табл. 3

Таблиця 3 — Результати послідовного обчислення розв'язків системи рівнянь методом Ньютона

k — номер				
кроку	$x_1^{(k)}$	(k)	$f_1(x^k)$	$f_2(x^{(k)})$
ітерації	$ x_1^{(i)} $	$x_2^{(k)}$	$J1 \begin{pmatrix} x \end{pmatrix}$	J2 (w)
0	3.5	2.2	0.3	0.2922041
1	3.488173	2.262719	0.001022	- 0.003941
2	3.487443	2.261629	2.5404·10 ⁻⁷	–1.211·10 ^{–6}
3	3.4874428	2.2616286	1.7763·10 ⁻¹⁴	8.899·10 ⁻¹³
4	3.4874428	2.2616286	0	0

Зупинимось на наближенні $x^{(3)}$, за якого значення функцій системи рівнянь є меншими за 10^{-12} , тобто розв'язок системи рівнянь є $x_1 = 3.4874428$; $x_2 = 2.2616286$.

Етап 6. Перевіримо досягнення точності ітераційного процесу після 3-го кроку ітерації за формулою:

$$\frac{\left\|x^{(3)} - x^{(2)}\right\|_{2}}{\left\|x^{(2)}\right\|_{2}} = \frac{0.0000004}{4.156588} = 9.46603 \cdot 10^{-8} < 0.0001$$

Умови збіжності методу Ньютона

Умови збіжності методу Ньютона для систем нелінійних рівнянь досліджували відомі вчені: Канторович, Островський, Віллерс, Стенін.

Узагальнюючи їх дослідження, можна вважати за достатні умови збіжності розв'язків систем нелінійних рівнянь методу Ньютона такі:

1. Матриця Якобі для початкового наближення $F\left(x^{(0)}\right)$ має мати обернену матрицю F^{-1} з нормою, меншою за певну величину A, тобто

$$\|F^{-1}(x^{(0)})\| \le A;$$

2. Норма добутку оберненої матриці Якобі на вектор заданих функцій f(x) повинна мати значення, менше за певну величину B:

$$||F^{-1}(x^{(0)})f(x^{(0)})|| \le B;$$

3. Значення матриці Якобі для частинних похідних другого порядку мають задовольняти умові

$$\sum_{k=1}^{n} \left| \frac{\partial^2 f_i(\overline{x})}{\partial x_j \partial x_k} \right| \le C$$

де $i, j = 1, 2, ..., n; \ \overline{x}$ –певні значення наближень розв'язків системи рівнянь в околі точки $x^{(0)}$.

4. Константи A, B та C мають задовольняти умову $2nABC \le 1$

Перевірка умов збіжності для системи нелінійних рівнянь

$$\begin{cases} f_1(x_1, x_2) \equiv 2x_1^2 - x_1 x_2 - 5x_1 + 1 = 0, \\ f_2(x_1, x_2) \equiv x_1 + 3\lg x_1 - x_2^2 = 0. \end{cases}$$

1. Матриця Якобі цієї системи

$$F = \begin{pmatrix} 4x_1 - x_2 - 5 & -x_1 \\ 1 + \frac{3 \cdot 0.4343}{x_1} & -2x_2 \end{pmatrix}$$

має обернену матрицю для початкового наближення $x^{(0)}$:

$$F^{-1}\left(x^{(0)}\right) = \begin{pmatrix} 0.1752 & -1.1394 \\ 0.0543 & -0.2708 \end{pmatrix}$$

Норма цієї матриці $\left\|F^{-1}\left(x^{(0)}\right)\right\|_2 = 0.325366 < 0.33$, тобто величина A = 0.33.

2. Обчислимо добуток оберненої матриці Якобі на вектор заданих функцій f(x) для початкового наближення $x^{(0)}$):

$$F^{-1}(x^{(0)})f(x^{(0)}) = \begin{pmatrix} 0.1751 & -0.1393 \\ 0.0546 & -0.2707 \end{pmatrix} \cdot \begin{pmatrix} 0.300000 \\ 0.292204 \end{pmatrix} = \begin{pmatrix} 0.011836 \\ -0.062718 \end{pmatrix}$$

Норма вектора добутку $\left\|F^{-1}\left(x^{(0)}\right)f\left(x^{(0)}\right)\right\|_2 = 0.063826 < 0.1,$ тобто величина B=0.1.

3. Обчислимо значення матриці Якобі для частинних похідних другого порядку для початкового наближення $x^{(0)}$:

$$F'' = \begin{pmatrix} 4 & -1 & -1 & 0 \\ -\frac{1.3029}{x_1^2} & 0 & 0 & -2 \end{pmatrix}, F''(x^{(0)}) = \begin{pmatrix} 4 & -1 & -1 & 0 \\ -0.10636 & 0 & 0 & -2 \end{pmatrix}$$

3 матриці
$$F''\Big(x^{(0)}\Big)$$
 обчислимо матрицю значень
$$\sum_{k=1}^n \left|\frac{\partial^2 f_i\left(\overline{x}\right)}{\partial x_j \partial x_k}\right|, \text{ де } i,j=1,2.$$

 \overline{x} – значення наближень розв'язків системи рівнянь в точці $x^{(0)}$:

$$\begin{pmatrix} 5 & 1 \\ 0.10636 & 2 \end{pmatrix}$$

Усі елементи цієї матриці є менше чи дорівнюють 5, тобто величина C = 5;

4. Підставимо значення величин A,B,C та n=2 й перевіримо умову

$$2nABC = 2 \cdot 2 \cdot 0.33 \cdot 0.1 \cdot 5 = 0.66 \le 1$$

Отже система нелінійних рівнянь задовольняє умові збіжності метода Ньютона.