Quiz 1. True/False: If P is the proposition 6 < 5 and Q is the proposition, "Earth is a planet," then the logical statement $P \to Q$ is false.

Solution. The statement is *false*. Recall that the truth table for $P \rightarrow Q$ is as follows:

$$\begin{array}{c|ccc} P & Q & P \rightarrow Q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$

Here, P is the proposition P:6<5 and Q is the proposition Q: "Earth is a planet." It is clear that P is false and Q is true. But then examining the logic table above, we can see that $P \to Q$ is true.

Quiz 2. True/False:
$$\neg(P \rightarrow \neg Q) \equiv P \land Q$$

Solution. The statement is *true*. To determine if two propositions are logically equivalent, one can either examine the truth table or apply logical rules to obtain one logical expression from the other. If we construct a truth table, we have...

P	Q	$\neg Q$	$P \to \neg Q$	$\mid \neg(P \to \neg Q) \mid$	$P \wedge Q$
\overline{T}	T	F	F	T	T
T	F	T	T	F	F
F	$\mid T \mid$	F	T	F	F
F	$\mid F \mid$	T	T	F	F

Because for each possible pair of choices for P and Q the outputs for $\neg(P \to \neg Q)$ and $P \land Q$ match, $\neg(P \to \neg Q) \equiv P \land Q$. Alternatively, we can transform one into the other by applying logical equivalences (recall $P \to Q \equiv \neg P \lor Q$ or $\neg(P \to Q) \equiv P \land \neg Q$):

$$\neg (P \to \neg Q) \equiv \neg (\neg P \lor \neg Q) \equiv \neg (\neg P) \land \neg (\neg Q) \equiv P \land Q.$$

Quiz 3. *True/False*: The logic corresponding to the circuit shown below is the proposition:

$$(\neg P \land Q) \lor \neg Q.$$

Solution. The statement is *false*. We can trace through the circuit. We see that the current from P passes through a NOT gate and we obtain $\neg P$. This then feeds into an AND gate along with Q so that we obtain $\neg P \land Q$. The resulting current is then passed through a NOT gate, obtaining $\neg (\neg P \land Q)$. This finally reaches an OR gate—along with Q—to obtain $\neg (\neg P \land Q) \lor Q$. We can see a diagrammatic explanation below.

Quiz 4. *True/False*: Let the universe \mathcal{U} be the set of real numbers and define P(x) to be the predicate $P(x): x^2 + x - 4 \ge 0$. Then $(\forall x)(\neg P(x))$ is true.

Solution. The statement is *false*. If $P(x): x^2+x-4 \ge 0$, then $\neg P(x): x^2+x-4 < 0$. But then $(\forall x) (\neg P(x))$ is the statement, "For all $x, x^2+x-4 < 0$." Now if x=1, we have $\neg P(1): 1^2+1-4 < 0$, i.e. -2 < 0, which is true. If x=0, we have $\neg P(0): 0^2+0-4 < 0$, i.e. -4 < 0, which is true. However, while $(\forall x) (\neg P(x))$ is clearly true for *some* (we found at least two), it is not true *for all x*. As a counterexample, let x=10. Then $\neg P(10): 10^2+10-4 < 0$, which is 104 < 0—clearly false. Therefore, $\neg P(x)$ is not true for all x. But then $(\forall x) (\neg P(x))$ is false.

Quiz 5. True/False: Let the domain of x, y be the integers. Then $(\exists! x)(\forall y)(x+2y=5)$.

Solution. The statement is *false*. The logical proposition $(\exists ! x)(\forall y)(x+2y=5)$ in words states, "There exists a unique x such that for all y, x+2y=5." Suppose that there were such a x, say x_0 . Then we know that $x_0+2y=5$ for all y. In particular, x_0 satisfies this equality when y=0. But then we know that $x_0=5$. But also, it must satisfy the equality when x=1. But then $x_0+2=5$ so that x_0 . Then there is not a unique x that works for all y! Therefore, the statement is false. Note that if we reverse the quantifiers, the statement is true: $(\forall y)(\exists ! x)(x+2y=5)$. In this case, this is the statement, "For all y, there exists a unique x such that x+2y=5." If you were given any y, define $x_0:=5-2y$. But then x+2y=(5-2y)+2y=5. So there exists such an x. Is it unique? Well if there were two or more x values that worked for some y, say two of them are x_0 and \tilde{x}_0 , then we have $x_0+2y=5=\tilde{x}_0+2y$. But then $x_0+2y=\tilde{x}_0+2y$. Subtracting 2y, we have $x_0=\tilde{x}_0$. Therefore, there can only be one such x. Because we have found one, we know that the statement that for all y, there exists a unique y such that x+2y=5 is true.

Quiz 6. True/False: $\{1,2\} \subseteq \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$

Solution. The statement is *false*. We know that $A \subseteq B$ if and only if for all $a \in A$, we have $a \in B$. We test every element of the set $\{1,2\}$. The first element is 1. However, $1 \notin \{\varnothing, \{1\}, \{2\}, \{1,2\}\}$. [Note that $1 \notin \{\varnothing, \{1\}, \{2\}, \{1,2\}\}$ but $\{1\} \in \{\varnothing, \{1\}, \{2\}, \{1,2\}\}$.] However, we do have $\{1,2\} \notin \{\varnothing, \{1\}, \{2\}, \{1,2\}\}$.

Quiz 7. True/False:
$$\bigcap_{n\in\mathbb{N}}\left(-\frac{1}{n},\frac{1}{n}\right)=\varnothing$$

Solution. The statement is *false*. For n=1, the set $(-\frac{1}{n},\frac{1}{n})$ is the interval (-1,1). For n=2, the set $(-\frac{1}{n},\frac{1}{n})$ is the interval $(-\frac{1}{2},\frac{1}{2})$. For n=3, the set $(-\frac{1}{n},\frac{1}{n})$ is the interval $(-\frac{1}{3},\frac{1}{3})$. Note that 0 is an element of all these sets. Generally, we have $0\in(-\frac{1}{n},\frac{1}{n})$ for all $n\in\mathbb{N}$. But then we know that $0\in\bigcap_{n\in\mathbb{N}}\left(-\frac{1}{n},\frac{1}{n}\right)$. This is sufficient to demonstrate that this is not empty. [Note that it is actually true that $\bigcap_{n\in\mathbb{N}}\left(-\frac{1}{n},\frac{1}{n}\right)=\{0\}$ —though this takes more work to prove.]

Quiz 8. *True/False*: Let E(n) denote the relation from \mathbb{N} to $\mathbb{Z}^{\geq 0}$ given by the rule that E(n) is the number of positive even integers less than or equal to n. Then this relation is a function with E(5)=2, i.e. 2 is in the image of 5, and 10 in the preimage of 5.

Solution. The statement is *true*. There are several claims here. First, the claim that $E(n): \mathbb{N} \to \mathbb{Z}^{\geq 0}$ is a function. Given some $n \in \mathbb{N}$, there is a single number of positive even integers $\leq n$. But then for every input for E(n), there is only one possible output. Therefore, E(n) is a function from \mathbb{N} to $\mathbb{Z}^{\geq 0}$. For 2 to be in the image of 5, we need E(5)=2. There are two positive even integers ≤ 5 (namely, 2 and 4) so that 2 is in the image of 5. For 10 to be in the preimage of 5, we would have to have E(10)=5. Note that there are 5 positive even integers ≤ 10 (namely 2, 4, 6, 8, 10). Therefore, 10 is in the preimage of 5.

Quiz 9. True/False: Let $f: X \to Y$ be a function. Then f^{-1} will be a function if and only if the preimage set satisfies the following: $(\forall y \in \text{im } f)(\exists x \in X)(f^{-1}(y) = x)$.

Solution. The statement is *false*. Take for example the function $f: \mathbb{R} \to \mathbb{R}^{\geq 0}$ given by $f(x) = x^2$. For all $y \in \mathbb{R}^{\geq 0}$, there exists an $x \in \mathbb{R}$ such that f(x) = y, namely $\pm \sqrt{y}$. But if y > 0, then there are two possibilities: $+\sqrt{y}$ and $-\sqrt{y}$. But this function f(x) has f^{-1} with the property that $(\forall y \in \text{im } f)(\exists x \in X)(f^{-1}(y) = x)$. If we want f^{-1} to be a function, we require $(\forall y \in \text{im } f)(\exists ! x \in X)(f^{-1}(y) = x)$.

Quiz 10. True/False: Suppose that $f:A\to B$ and $g:B\to C$ are functions and that $g\circ f$ is injective. Then it must be that f is injective.

Solution. The statement is *true*. Observe that $g \circ f : A \to C$. Suppose f were not injective. Then there are two values in A, say a_1, a_2 , such that $a_1 \neq a_2$ and $f(a_1) = f(a_2)$. But then we have...

$$f(a_1) = f(a_2)$$

$$g(f(a_1)) = g(f(a_2))$$

$$(g \circ f)(a_1) = (g \circ f)(a_2)$$

But then there are two values in the domain of $g \circ f$, namely a_1, a_2 such that $a_1 \neq a_2$ but $(g \circ f)(a_1) = (g \circ f)(a_2)$. But then $g \circ f$ is not injective, contrary to what we were told. Our assumption that f was not injective must then be wrong. Therefore, it must be that f is injective.

Quiz 11. True/False: Fix an integer n > 1 and let $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}}$ be sequences. Then $\prod_{k=1}^n a_n b_n = \prod_{k=1}^n a_n \cdot \prod_{k=1}^n b_n \text{ but } \sum_{k=1}^n a_n b_n \neq \sum_{k=1}^n a_n \cdot \sum_{k=1}^n b_n.$

Solution. The statement is *true*. It is true that $\prod_{k=1}^n a_n b_n = \prod_{k=1}^n a_n \cdot \prod_{k=1}^n b_k$. For instance, if n=2, we have...

$$\prod_{k=1}^{2} a_n b_n = a_1 b_1 \cdot a_2 b_2 = (a_1 a_2) \cdot (b_1 b_2) = \prod_{k=1}^{2} a_n \cdot \prod_{k=1}^{2} b_n$$

We can always rearrange the terms in this way for any n. Therefore, the statement is true for products.

However, even in the case of n=2, the statement is untrue for sums. For example, if n=2 in $\sum_{k=1}^{n} a_n b_n \neq \sum_{k=1}^{n} a_n \cdot \sum_{k=1}^{n} b_n$, then we have...

$$\sum_{k=1}^{2} a_n b_n = a_1 b_1 + a_2 b_2$$

$$\sum_{k=1}^{2} a_n \cdot \sum_{k=1}^{n} b_2 = (a_1 + a_2) \cdot (b_1 + b_2) = a_1 b_1 + a_1 b_2 + a_2 b_1 + a_2 b_2$$

While this may be true for some sequences $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$, it will not generally be true. The 'issues' the distributive property cause for larger n make this even 'more untrue.'

Quiz 12. True/False: Suppose that $a_{n+2}=6a_n-a_{n+1}$ with $a_0=4$ and $a_1=3$. Then the characteristic polynomial is given by the equation $x^2=6-x$, i.e. the characteristic polynomial is x^2+x-6 . Because $x^2+x-6=(x+3)(x-2)$ has roots -3,2, the general solution is $a_n=c_1(-3)^n+c_22^n$. The specific solution is then $a_n=(-3)^n+3\cdot 2^n$.

Solution. The statement is *true*. Because $a_{n+2}=6a_n-a_{n+1}$ and the 'lowest' term involved is n, we give the nth term power 0 for x. Then we have $x^{0+2}=6x^0-x^{0+1}$. This is $x^2=6-x$. We then have $x^2+x-6=0$. Therefore, the characteristic polynomial for this homogeneous linear recurrence relation is x^2+x-6 . This polynomial has roots -3 and 2 because $x^2+x-6=0$ is equivalent to (x+3)(x-2)=0, which has solutions x=-3 and x=2. Therefore, we know that $a_n=c_1(-3)^n+c_2\cdot 2^n$. Now we use the fact that when n=0, we have $a_0=4$, and when n=1, we have $a_1=3$. But then we have. . .

$$4 = a_0 = c_1(-3)^0 + c_2 \cdot 2^0 = c_1 + c_2$$
$$3 = a_1 = c_1(-3)^1 + c_2 \cdot 2^1 = -3c_1 + 2c_2$$

This is a linear system of two equations in two unknowns. Solving this system yields $c_1 = 1$ and $c_2 = 3$. Therefore, we have $a_n = (-3)^n + 3 \cdot 2^n$.

Quiz 13. *True/False*: $6^{2022} \equiv 1 \mod 5$

Solution. The statement is *true*. Using the division algorithm, we know that 6 = 1(5) + 1. But then we know that $6 \equiv 1 \mod 5$. But then we have...

$$6^{2022} \equiv 1^{2022} \equiv 1 \mod 5$$

Quiz 14. *True/False*: There is a unique solution to the following system of linear congruences:

$$2x - 1 \equiv 2 \mod 3$$
$$x \equiv 0 \mod 5$$
$$6x \equiv 5 \mod 7$$

Solution. The statement is *true*. The first congruence is $2x-1\equiv 2 \mod 3$. Adding 1 to both sides, we see that this is equivalent to $2x\equiv 3\equiv 0 \mod 3$. Because $\gcd(2,3)=1$, we know that 2^{-1} exists mod 3. In fact, because $2\cdot 2\equiv 4\equiv 1 \mod 3$. Therefore, $2^{-1}\equiv 2 \mod 3$. Therefore, $2x\equiv 0 \mod 3$ implies $2^{-1}\cdot 2x\equiv 2^{-1}\cdot 0 \mod 3$. This is $x\equiv 0 \mod 3$. In the last congruence, because $\gcd(6,7)=1$, we know that 6^{-1} exists mod 7. In fact, because $6\cdot 6\equiv 36\equiv 1 \mod 7$, we know that $6^{-1}\equiv 6 \mod 7$. But then $6x\equiv 5 \mod 7$ implies $6^{-1}\cdot 6x\equiv 6^{-1}\cdot 5 \mod 7$. But this is $x\equiv 6\cdot 5\equiv 30\equiv 2 \mod 7$. The original system of congruences is then equivalent to...

$$x \equiv 0 \mod 3$$

 $x \equiv 0 \mod 5$
 $x \equiv 2 \mod 7$

This system now has the 'proper form' to apply the Chinese Remainder Theorem. Because gcd(3,5,7) = 1, we know there exists a unique solution to the system of congruences. In fact, we have solution...

$$x = \sum a_i N_i M_i = 0 \cdot 2 \cdot 35 + 0 \cdot 1 \cdot 21 + 2 \cdot 1 \cdot 15 = 0 + 0 + 30 = 30$$

The solution is then the congruence class of 30 modulo $3 \cdot 5 \cdot 7 = 105$. Therefore, the solution is 30, i.e. $[30] = \{\dots, -720, -570, -420, -270, -120, 30, 180, 330, 480, 630, 780, \dots\}$.

Quiz 15. *True/False*: The number 1 is prime.

Solution. The statement is *false*. A prime number is an integer greater than 1 which has no proper divisors. Because 1 is not greater than 1, 1 cannot be prime. Note that 1 is also not composite. To be composite, an integer need have proper divisors. However, the only divisor of 1 is 1. Therefore, 1 also cannot be composite. This shows 1 is neither prime nor composite.

Quiz 16. True/False: Using the division algorithm to divide -10 by 3, we have -10 = 3(3) + 1.

Solution. The statement is *false*. Recall that given $a,b \in \mathbb{Z}$ with $a \neq 0$, we can write b = qa + r for some $q,r \in \mathbb{Z}$ and $0 \leq r < a$. Clearly, the statement is false because $3(3) + 1 = 9 + 1 = 10 \neq -10$. The multiple of 3 that is less than or equal to -10 is -12. Because -10 = -12 + 2, we have -10 = -4(3) + 2. Because $-4, 2 \in \mathbb{Z}$ and $0 \leq 2 < 3$, we have expressed -10 divided by 3 using the division algorithm. Note that one cannot use -10 = -3(3) - 1 because it is not the case that $0 \leq -1 < 3$.

Quiz 17. True/False: The number 2B002B in base-10 is 2818091.

Solution. The statement is *true*. The number 2B002B is in hexadecimal. Converting this to base-10 (and recalling A = 10, B = 11, C = 12, D = 13, E = 14, and E = 15), we have...

$$2B002B = 2 \cdot 16^5 + 11 \cdot 16^4 + 0 \cdot 16^3 + 0 \cdot 16^2 + 2 \cdot 16^1 + 11 \cdot 16^0 = 2097152 + 720896 + 0 + 0 + 32 + 11 = 2818091$$

Quiz 18. True/False: If A, B are $n \times n$ matrices, then AB = BA.

Quiz 19. True/False: Let S be a nonempty finite set with |S|=n. Then the number of subsets of size at least 2 is...

$$2^{n} - n - 1$$

Quiz 20. *True/False*: If n is sufficiently large, then the number of dearrangements of n is approximately n!/e.

Quiz 21. *True/False*: The number of ways of choosing a committee of 10 people with a president and vice president from 120 people is $_{120}C_{10} \cdot _{10}C_{2}$.