9.15 Theorem Suppose E is an open set in R^n , f maps E into R^m , f is differentiable at $\mathbf{x}_0 \in E$, \mathbf{g} maps an open set containing $\mathbf{f}(E)$ into R^k , and \mathbf{g} is differentiable at $\mathbf{f}(\mathbf{x}_0)$. Then the mapping \mathbf{F} of E into R^k defined by $\mathbf{F}(\mathbf{x}) = \mathbf{g}(\mathbf{f}(\mathbf{x}))$

(21) $\mathbf{F}'(\mathbf{x}_0) = \mathbf{g}'(\mathbf{f}(\mathbf{x}_0))\mathbf{f}'(\mathbf{x}_0).$ On the right side of (21), we have the product o

is differentiable at xo, and

(22)

(23)

On the right side of (21), we have the product of two linear transformations, as defined in Sec. 9.6.

for all $h \in R^n$ and $k \in R^m$ for which $f(x_0 + h)$ and $g(y_0 + k)$ are defined.

Proof Put $\mathbf{y}_0 = \mathbf{f}(\mathbf{x}_0)$, $A = \mathbf{f}'(\mathbf{x}_0)$, $B = \mathbf{g}'(\mathbf{y}_0)$, and define

Proof Put
$$y_0 = f(x_0)$$
, $A = f'(x_0)$, $B = g'(y_0)$, and define
$$u(h) = f(x_0 + h) - f(x_0) - Ah,$$

 $\mathbf{v}(\mathbf{k}) = \mathbf{g}(\mathbf{y}_0 + \mathbf{k}) - \mathbf{f}(\mathbf{x}_0) - B\mathbf{k},$

Then $|\mathbf{u}(\mathbf{h})| = \varepsilon(\mathbf{h})|\mathbf{h}|, \quad |\mathbf{v}(\mathbf{k})| = \eta(\mathbf{k})|\mathbf{k}|,$

where $\varepsilon(\mathbf{h}) \to 0$ as $\mathbf{h} \to \mathbf{0}$ and $\eta(\mathbf{k}) \to 0$ as $\mathbf{k} \to \mathbf{0}$.

Given h, put $k = f(x_0 + h) - f(x_0)$. Then

 $|\mathbf{k}| = |A\mathbf{h} + \mathbf{u}(\mathbf{h})| \le [||A|| + \varepsilon(\mathbf{h})] |\mathbf{h}|,$

and $\mathbf{F}(\mathbf{x}_0 + \mathbf{h}) - \mathbf{F}(\mathbf{x}_0) - BA\mathbf{h} = \mathbf{g}(\mathbf{y}_0 + \mathbf{k}) - \mathbf{g}(\mathbf{y}_0) - BA\mathbf{h}$

$$\mathbf{F}(\mathbf{x}_0 + \mathbf{h}) - \mathbf{F}(\mathbf{x}_0) - BA\mathbf{h} = \mathbf{g}(\mathbf{y}_0 + \mathbf{k}) - \mathbf{g}(\mathbf{y}_0) - BA\mathbf{h}$$
$$= B(\mathbf{k} - A\mathbf{h}) + \mathbf{v}(\mathbf{k})$$
$$= B\mathbf{u}(\mathbf{h}) + \mathbf{v}(\mathbf{k}).$$

Hence (22) and (23) imply, for $h \neq 0$, that

$$\frac{|\mathbf{F}(\mathbf{x}_0 + \mathbf{h}) - \mathbf{F}(\mathbf{x}_0) - BA\mathbf{h}|}{|\mathbf{h}|} \le ||B|| \, \varepsilon(\mathbf{h}) + [||A|| + \varepsilon(\mathbf{h})] \eta(\mathbf{k}).$$

Let $h \to 0$. Then $\varepsilon(h) \to 0$. Also, $k \to 0$, by (23), so that $\eta(k) \to 0$. It follows that $F'(x_0) = BA$, which is what (21) asserts.