中华人民共和国国家标准

NICAM-728 卫星电视 信道副载波传送数字声技术规范

GB/T 16812-1997

Technical specification for NICAM-728 digital audio signal transmission with satellite TV channel subcarrier

1 范围

本标准规定了卫星电视信道副载波传送数字立体声或两路单声信号的技术要求和格式。 本标准适用于中国卫星电视信道副载波传送数字立体声或两路单声信号(NICAM-728)系统。

2 引用标准

下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

GB 3174-1995 PAL-D 制电视广播技术规范

GB 11443.4—89 国内卫星通信地球站总技术要求 第四部分:电视/调频载波通道

3 术语

3.1 NICAM-728

near-instantaneously companded audio multiplex-728 准瞬时压扩音频复用,728 代表数据传输速率为 728 kb/s。

3.2 DQPSK

differentially encoded quadrature phase shift keying 差分编码正交相移键控。

4 数据特性

4.1 数据格式

4.1.1 帧结构

将串行数据流按帧结构划分,每帧 728 b,帧速率为 1 帧/ms。其中:

8 比特帧同步字

8 kb/s

5 比特控制信息

5 kb/s

11 比特附加数据

11 kb/s

704 比特声音/数据及奇偶校验位

704 kb/s

总码率:

728 kb/s

图 1a,1b 是传送立体声、两路单声信号的帧结构。

4.1.3 能量扩散加扰

为了使传输的数据流频谱成形,信号能量不集中于局部频段,采用了能量扩散加扰技术。实现方法是将伪随机序列发生器 (PRSG)产生的伪随机序列代码与待加扰的数据串进行模 2 加,帧同步字不加扰,帧同步字之后的位是第一个加扰位。能量扩散加扰伪随机序列发生器如图 2 所示,生成多项式为: x^9+x^4+1 ,每帧进行一次初始化,初始字为 1111111111。

4.2.3 附加数据

11 位附加数据比特 AD。~AD10尚待规定。

4.2.4 声音/数据信息块

每帧中最后的 704 b 为声音或数据信息,每帧共传送 64 个声音样值($D_1 \sim D_{64}$),传送立体声时的帧结构见图 1a,传送两路单声信号时的帧结构见图 1b。

 $C_1=C_2=C_3=0$,传送立体声信号,奇数样值 $(D_1,D_3\cdots D_{63})$ 传送 A 声道(左声道),偶数样值 $(D_2,D_4\cdots D_{64})$ 传送 B 声道(右声道)。

 $C_1=0$, $C_2=1$, $C_3=0$,传送两路单声信号,奇数帧传送单声信号 M_1 ,偶数帧传送单声信号 M_2 。

 $C_1=1$, $C_2=C_3=0$,奇数帧传送单声信号,偶数帧传送数据。数据格式尚未规定。

4.2.5 声音信号

4.2.5.1 准瞬时压扩

NICAM-728 系统传送的数字声信号的取样频率为 32 kHz,每样值以 14 b 量化,以 2 的补码进行编码。为了提高传输效率,在发端,采用准瞬时压扩技术将每样值 14 b 压缩至 10 b,在每样值 10 b 之后增加一个奇偶校验位用作错误检测和传送标度系数。

准瞬时压扩是以相邻 32 个样值为一组进行处理。以组中最大取样值来确定标度系数,将 1 ms 内的全部样值按标度系数进行 14~10 b 压缩编码,形成的标度系数将压缩程度信息传送给接收机。图 3 说明被压缩声音信号的编码。

图 3 数字声音 14~10 b 压缩

声音信号在压缩处理之前进行预加重处理。预加重按照 CCITT Rec. J17 的规定(见附录 A)。 表 2 为 NICAM-728 方式声音编码特性概要。

4.2.5.2 误码保护

在每一压缩的 10 b 样值的末尾增加一奇偶校验位,它与 10 b 中的高 6 b 组成偶校验,因此,每样值由 10 b 增至 11 b。

在实际传输过程中,奇偶码还兼任传送标度系数的作用,采用所谓 SIP(signalling-in-parity)技术,即在奇偶校验位中传送信息的技术来兼传送标度系数。

表 3 是与每个三位标度系数字有关的编码范围和保护范围。五个编码范围表征了准瞬时压扩过程中,取样组被压缩的程度。除了表征编码范围之外,标度系数还说明七个保护范围。这些信息可用于接收机中对样值的最高有效位提供额外保护。

取样频率	32 kHz			
初始分辨率	14 b/样值			
压扩特性	准瞬时压扩,在 32 个样值(1 ms)信息组中每样值 14 b 压缩至 10 b			
压缩样值的编码	2 的补码(见图 3)			
预加重特性	CCITT Rec. J17			
音频过载电平	+14.8 dBu,在2 kHz			

表 2 声音编码特性概要

编码范围	保护范围	标度系数	R_2	R_1	R_{\circ}
第一范围	第一范围	1	1	1	
第二范围	第二范围	1	1	0	
第三范围	第三范围	1	0	1	
第四范围	第四范围	0	. 1	1	
第五范围	第五范围	1	0	0	
第五范围	第六范围	0	1	0	
第五范围	第七范围	0	0	1	
第五范围	第七范围	0 %	. 0	0	

表 3 编码范围和保护范围

4.2.5.3 奇偶码兼传标度系数

通过修改传送声音信号样值的奇偶校验位来实现传送标度系数。

发送立体声信号时,令 FE_1 为与 A 取样有关的标度系数 R_{2A} 、 R_{1A} 、 R_{0A} ,而 FE_2 为与 B 取样有关的标度系数 R_{2B} 、 R_{1B} 、 R_{0B} 。如果 P_i 为第 i 个取样的奇偶校验位,则要根据以下关系式,将标度系数的一位与 P_i 作模 2 加,将 P_i 修改为 P'_i 。

$$P'_{i} = P_{i} \oplus R_{2A}$$
 $i = 1,7,13,19,25,31,37,43,49$
 $P'_{i} = P_{i} \oplus R_{1A}$ $i = 3,9,15,21,27,33,39,45,51$
 $P'_{i} = P_{i} \oplus R_{0A}$ $i = 5,11,17,23,29,35,41,47,53$

$$P'_{i} = P_{i} \oplus R_{2B}$$
 $i = 2,8,14,20,26,32,38,44,50$
 $P'_{i} = P_{i} \oplus R_{1B}$ $i = 4,10,16,22,28,34,40,46,52$
 $P'_{i} = P_{i} \oplus R_{0B}$ $i = 6,12,18,24,30,36,42,48,54$

发送两路单声信号时,令 FE_1 为与每帧中前 32 个取样有关的标度系数 R_{2n} 、 R_{1n} 、 R_{0n} ;而 FE_2 为与每帧中后 32 个取样有关的标度系数 R_{2n+1} 、 R_{1n+1} 、 R_{0n+1} 。与传送立体声的情形一样,第 i 个取样的奇偶校验位 P_i 与相关的标度系数字的一位模 2 加而修改为 P'_i 。但单声情况奇偶校验位的修改与单声信号块的结构有关,其关系式如下:

$$P'_{i} = P_{i} \oplus R_{2n}$$
 $i = 1,4,7,10,13,16,19,22,25$
 $P'_{i} = P_{i} \oplus R_{1n}$ $i = 2,5,8,11,14,17,20,23,26$
 $P'_{i} = P_{i} \oplus R_{0n}$ $i = 3,6,9,12,15,18,21,24,27$

$$P'_{i} = P_{i} \bigoplus R_{2n+1}$$
 $i = 28,31,34,37,40,43,46,49,52$
 $P'_{i} = P_{i} \bigoplus R_{1n+1}$ $i = 29,32,35,38,41,44,47,50,53$
 $P'_{i} = P_{i} \bigoplus R_{0n+1}$ $i = 30,33,36,39,42,45,48,51,54$

5 调制参数

5.1 视频和电视伴音的调制特性

视频和电视伴音的特性依据 GB 11443.4—89。

5.2 数字声副载波的调制特性

5.2.1 调制类型

差分编码正交相移键控(DQPSK)。将串行数据流依次形成并行比特对 (A_n,B_n) ,比特对 (A_n,B_n) 与载波调制后相位变化的关系如表 4。

表 4 (A_n,B_n)-载波相位关系

其中
$$t_{\rm s} = \frac{1}{364\ 000}$$
s

在接收端,采用相同的低通滤波器。

附录A

(标准的附录)

音频预加重特性

本附录参照采用 CCITT Rec. J17。

音频预加重特性曲线由公式(A1)决定,根据(A1)式所计算的预加重特性曲线通过表 A1 中各点,接收设备的去加重网络特性应与预加重网络特性互补。

$$L = 10 \lg \frac{75 + (\omega/3\ 000)^2}{1 + (\omega/3\ 000)^2} \qquad \dots$$
 (A1)

式中: L——插入损耗,dB;

ω——相对频率(f)的角频率。

表 A1

频率	插入损耗			
kHz	dB ,			
0	18.75			
0.05	18. 70			
0. 2	18.06			
0. 4	16. 48			
0.8	13. 10			
2.0	6.98			
4. 0	3. 10			
6. 4	1.49			
8. 0	1.01			
10.0	0.68			
∞	0			