Double-click (or enter) to edit

from google.colab import drive import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import plotly.express as ex

source: 'cancer reg'

drive.mount('/content/drive')

Mounted at /content/drive

data = pd.read_csv('/content/drive/MyDrive/dataset/cancer_reg.csv')

data.head(

₽	a	vganncount	avgdeathsperyear	target_deathrate	incidencerate	medincome	popest2015	povertypercent	studypercap	binnedinc	medianage	 р
	0	1397.0	469	164.9	489.8	61898	260131	11.2	499.748204	(61494.5, 125635]	39.3	
	1	173.0	70	161.3	411.6	48127	43269	18.6	23.111234	(48021.6, 51046.4]	33.0	
	2	102.0	50	174.7	349.7	49348	21026	14.6	47.560164	(48021.6, 51046.4]	45.0	
	3	427.0	202	194.8	430.4	44243	75882	17.1	342.637253	(42724.4, 45201]	42.8	
	4	57.0	26	144.4	350.1	49955	10321	12.5	0.000000	(48021.6, 51046.4]	48.3	
5	rows	s × 33 column	is									
	(•

▼ TABLE COLUMNS

```
1.avganncount - Mean number of reported cases of cancer diagnosed annually (a)
```

2.avgdeathsperyear - Mean number of reported mortalities due to cancer (a)

3.target_deathrate - Dependent variable. Mean per capita (100,000) cancer mortalities (a)

4.incidencerate - Mean per capita (100,000) cancer diagnoses (a)

5.medincome - Median income per county (b)

6.popest2015 - Population of county (b)

7.povertypercent - Percent of populace in poverty (b)

 $8. study per cap \cdot Per \ capita \ number \ of \ cancer-related \ clinical \ trials \ per \ county \ (a)$

9.binnedinc - Median income per capita binned by decile (b)

10.medianage - Median age of county residents (b)

11.medianagemale - Median age of male county residents (b)

12.medianagefemale - Median age of female county residents (b)

13.geography - County name (b)

14.percentmarried - Percent of county residents who are married (b)

15.pctnohs18_24 - Percent of county residents ages 18-24 highest education attained: less than high school (b)

16.pcths18_24 - Percent of county residents ages 18-24 highest education attained: high school diploma (b)

17.pctsomecol18_24 - Percent of county residents ages 18-24 highest education attained: some college (b)

18.pctbachdeg18_24 - Percent of county residents ages 18-24 highest education attained: bachelor's degree (b)

19.pcths25_over - Percent of county residents ages 25 and over highest education attained: high school diploma (b)

20.pctbachdeg25_over - Percent of county residents ages 25 and over highest education attained: bachelor's degree (b)

21.pctemployed16_over - Percent of county residents ages 16 and over employed (b)

22.pctunemployed16_over - Percent of county residents ages 16 and over unemployed (b)

 $23. pct private coverage - Percent \ of \ county \ residents \ with \ private \ health \ coverage \ (b)$

 $24. pct private coverage alone \cdot Percent \ of \ county \ residents \ with \ private \ health \ coverage \ alone \ (no \ public \ assistance) \ (b)$

 $25. pct empprive overage \cdot Percent \ of \ county \ residents \ with \ employee-provided \ private \ health \ coverage \ (b)$

 $26. pct public coverage - Percent \ of \ county \ residents \ with \ government-provided \ health \ coverage \ (b) \ description \ (b) \ description \ (b) \ description \ (c) \ description \ (c) \ description \ (d) \ description \ (d) \ description \ (e) \ descrip$

27.pctpubliccoveragealone - Percent of county residents with government-provided health coverage alone (b)

28.pctwhite - Percent of county residents who identify as White (b)

29.pctblack - Percent of county residents who identify as Black (b)

30.pctasian - Percent of county residents who identify as Asian (b)

31.pctotherrace - Percent of county residents who identify in a category which is not White, Black, or Asian (b)

32.pctmarriedhouseholds - Percent of householdsmarried (b)

33.birthrate - Number of live births relative to number of women in county (b)

Double-click (or enter) to edit

data.shape

(3047, 33)

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3047 entries, 0 to 3046
Data columns (total 33 columns):
Column Non-Null Count Dtype

4	medincome		non-null	int64
5	popest2015	3047	non-null	int64
6	povertypercent	3047	non-null	float64
7	studypercap	3047	non-null	float64
8	binnedinc	3047	non-null	object
9	medianage	3047	non-null	float64
10	medianagemale	3047	non-null	float64
11	medianagefemale	3047	non-null	float64
12	geography	3047	non-null	object
13	percentmarried	3047	non-null	float64
14	pctnohs18_24	3047	non-null	float64
15	pcths18_24	3047	non-null	float64
16	pctsomecol18_24	762 1	non-null	float64
17	pctbachdeg18_24	3047	non-null	float64
18	pcths25_over	3047	non-null	float64
19	pctbachdeg25_over		non-null	float64
20	pctemployed16_over		non-null	float64
21	pctunemployed16_over		non-null	float64
22	pctprivatecoverage		non-null	float64
23	pctprivatecoveragealone		non-null	float64
24	pctempprivcoverage	3047	non-null	float64
25	pctpubliccoverage		non-null	float64
26	pctpubliccoveragealone		non-null	float64
27	pctwhite		non-null	float64
28	pctblack		non-null	float64
29	pctasian		non-null	float64
30	pctotherrace	3047	non-null	float64
31	pctmarriedhouseholds	3047	non-null	float64
32	birthrate		non-null	float64
dtyp	es: float64(28), int64(3)	, obje	ect(2)	
memo	ry usage: 785.7+ KB			

▼ Exploratory Data Analysis

data.describe().T

	count	mean	std	min	25%	50
avganncount	3047.0	606.338544	1416.356223	6.000000	76.000000	171.00000
avgdeathsperyear	3047.0	185.965868	504.134286	3.000000	28.000000	61.00000
target_deathrate	3047.0	178.664063	27.751511	59.700000	161.200000	178.10000
incidencerate	3047.0	448.268586	54.560733	201.300000	420.300000	453.54942
medincome	3047.0	47063.281917	12040.090836	22640.000000	38882.500000	45207.00000
popest2015	3047.0	102637.370528	329059.220504	827.000000	11684.000000	26643.00000
povertypercent	3047.0	16.878175	6.409087	3.200000	12.150000	15.90000
studypercap	3047.0	155.399415	529.628366	0.000000	0.000000	0.00000
medianage	3047.0	45.272333	45.304480	22.300000	37.700000	41.00000
medianagemale	3047.0	39.570725	5.226017	22.400000	36.350000	39.60000
medianagefemale	3047.0	42.145323	5.292849	22.300000	39.100000	42.40000
percentmarried	3047.0	51.773679	6.896928	23.100000	47.750000	52.40000
pctnohs18_24	3047.0	18.224450	8.093064	0.000000	12.800000	17.10000
pcths18_24	3047.0	35.002068	9.069722	0.000000	29.200000	34.70000
pctsomecol18_24	762.0	40.977034	11.115805	7.100000	34.000000	40.40000
pctbachdeg18_24	3047.0	6.158287	4.529059	0.000000	3.100000	5.40000
pcths25_over	3047.0	34.804660	7.034924	7.500000	30.400000	35.30000
pctbachdeg25_over	3047.0	13.282015	5.394756	2.500000	9.400000	12.30000
pctemployed16_over	2895.0	54.152642	8.315064	17.600000	48.600000	54.50000
ctunemployed16_over	3047.0	7.852412	3.452371	0.400000	5.500000	7.60000
pctprivatecoverage	3047.0	64.354939	10.647057	22.300000	57.200000	65.10000
ctprivatecoveragealone	2438.0	48.453774	10.083006	15.700000	41.000000	48.70000
pctempprivcoverage	3047.0	41.196324	9.447687	13.500000	34.500000	41.10000
pctpubliccoverage	3047.0	36.252642	7.841741	11.200000	30.900000	36.30000
ctpubliccoveragealone	3047.0	19.240072	6.113041	2.600000	14.850000	18.80000
pctwhite	3047.0	83.645286	16.380025	10.199155	77.296180	90.05977
pctblack	3047.0	9.107978	14.534538	0.000000	0.620675	2.24757
pctasian	3047.0	1.253965	2.610276	0.000000	0.254199	0.54981
pctotherrace	3047.0	1.983523	3.517710	0.000000	0.295172	0.82618
octmarriedhouseholds	3047.0	51.243872	6.572814	22.992490	47.763063	51.66994

▼ treat: Target variable

data['avgdeath']=data['avgdeathsperyear'].astype('int64')
data2=data.drop(['avgdeathsperyear'],axis='columns')
data2

	avganncount	target_deathrate	incidencerate	medincome	popest2015	povertypercent	studyperca
0	1397.000000	164.9	489.800000	61898	260131	11.2	499.74820
1	173.000000	161.3	411.600000	48127	43269	18.6	23.11123
2	102.000000	174.7	349.700000	49348	21026	14.6	47.56016
3	427.000000	194.8	430.400000	44243	75882	17.1	342.63725
4	57.000000	144.4	350.100000	49955	10321	12.5	0.00000
304	1962.667684	149.6	453.549422	46961	6343	12.4	0.00000
304	1962.667684	150.1	453.549422	48609	37118	18.8	377.17549
304	1962.667684	153.9	453.549422	51144	34536	15.0	1968.95992
304	1962.667684	175.0	453.549422	50745	25609	13.3	0.00000
304	1962.667684	213.6	453.549422	41193	37030	13.9	0.00000
3047	rows × 34 column	ns					

data2['avgdeath'].plot.box(figsize=(5,10))

999 14010 2373 9445 Name: avgdeath, dtype: int64

data2.loc[999]

avganncount				38150.0
target_deathrate				148.4
incidencerate				405.5
medincome				55686
popest2015				10170292
povertypercent				18.7
studypercap				255.941521
binnedinc			(54545.6	5, 61494.5]
medianage				35.6
medianagemale				34.4
medianagefemale				36.8
geography	Los	Angeles	County,	California
percentmarried				42.4
pctnohs18_24				15.3
pcths18_24				27.0
pctsomecol18_24				47.9
pctbachdeg18_24				9.9
pcths25_over				20.7
pctbachdeg25_over				19.8
pctemployed16_over				58.0
pctunemployed16_over				10.0
pctprivatecoverage				55.0
pctprivatecoveragealone				47.4
pctempprivcoverage				39.7
pctpubliccoverage				32.9
pctpubliccoveragealone				23.0
pctwhite				53.25871
pctblack				8.27614
pctasian				14.12938
pctotherrace				19.591522
pctmarriedhouseholds				44.58165
birthrate				4.705281
deathrate				148
avgdeath				14010
Name: 999, dtype: object				

data2.loc[2373]

avganncount
target_deathrate
incidencerate
medincome
popest2015
povertypercent
studypercap
binnedinc
medianagemale
medianagefemale
geography
percentmarried
pcthohs18_24
pctssomecol18_24
pctssomecol18_24
pctbachdeg18_24
pctbachdeg25_over
pctmployed16_over
pctprivatecoverage
pctpubliccoverage
pctpubli 24965.0 177.0 470.8 55058 5238216 17.1 371.118717 (54545.6, 61494.5] 35.9 34.7 ook County, Illinois 34.7 37.1 Cook County, Illinois 41.9 26.7 Nan 15.5 24.0 21.5 59.0 10.7 61.5 Nan 46.3 32.6 22.0 56.842582 22.0 56.842582 23.982596 6.77283 9.847733 41.008791 4.994881

sns.displot(data2, x="avgdeath",bins=30)

data3=data2.loc[data2.avgdeath<5000]
data3['avgdeath'].hist()</pre>

```
1/13/23, 3:42 PM
            <matplotlib.axes._subplots.AxesSubplot at 0x7fcf605dbb50>
    data3=data2.loc[data2.avgdeath<500]
print("less than 500 avarge count :",len(data3))
data3['avgdeath'].hist()</pre>
           less than 500 avarge count : 2811
<matplotlib.axes._subplots.AxesSubplot at 0x7fcf6051b390>
            1200
            1000
              800
              600
              400
     a_col = data2[['avganncount','avgdeath','target_deathrate','incidencerate','studypercap','country']]
     sns.pairplot(a col.hue='country'.size=1.5);
           /usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:2076: UserWarning: The `size` parameter ha warnings.warn(msg, UserWarning)
```

4

Kitsap County, Washington Kittitas County, Washington Klickitat County, Washington Lewis County, Washington Lincoln County, Washington 3042 Ellsworth County, Kansas 3043 Finney County, Kansas 3044 Ford County, Kansas 3045 Franklin County, Kansas 3046 Geary County, Kansas 3046 Geary County, Kansas Name: geography, Length: 3047, dtype: object

data_copy = data2.copy
data2[['state','country']]=data2['geography'].str.split(',',expand=True)
data2.head()

	avganncount	target_deathrate	incidencerate	medincome	popest2015	povertypercent	studypercap	ı
0	1397.0	164.9	489.8	61898	260131	11.2	499.748204	
1	173.0	161.3	411.6	48127	43269	18.6	23.111234	
2	102.0	174.7	349.7	49348	21026	14.6	47.560164	
3	427.0	194.8	430.4	44243	75882	17.1	342.637253	
4	57.0	144.4	350.1	49955	10321	12.5	0.000000	
5 r	ows × 36 column	is						
4)	

data_contry = data2['country'].value_counts(ascending = False).index

plt.figure(figsize=(20,8))
sns.set_style("darkgrid")
sns.countplot(data=data2,y='country',order=data_contry)

▼ Independent Variable (Numerical)

```
plt.figure(1)
plt.subplot(121)
sns.distplot(data["avganncount"]);
plt.subplot(122)
data["avganncount"].plot.box(figsize*(15,5))
plt.show()

plt.figure(1)
plt.subplot(121)
sns.distplot(data["target_deathrate"]);
plt.subplot(122)
data["target_deathrate"].plot.box(figsize*(15,5))
plt.show()

0016
0014
0012
0010
0016
0014
0017
0019
0006
0004
0006
0004
0006
0004
0006
0004
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0006
0
```


data2.corr()

	avganncount	target_deathrate	incidencerate	medincome	popest2015	povert
avganncount	1.000000	-0.143532	0.073553	0.269145	0.926894	
target_deathrate	-0.143532	1.000000	0.449432	-0.428615	-0.120073	
incidencerate	0.073553	0.449432	1.000000	-0.001036	0.026912	
medincome	0.269145	-0.428615	-0.001036	1.000000	0.235523	
popest2015	0.926894	-0.120073	0.026912	0.235523	1.000000	
povertypercent	-0.135694	0.429389	0.009046	-0.788965	-0.065299	
studypercap	0.082071	-0.022285	0.077283	0.044003	0.055722	
medianage	-0.024098	0.004375	0.018089	-0.013288	-0.025219	
medianagemale	-0.124969	-0.021929	-0.014733	-0.091663	-0.176608	
medianagefemale	-0.122844	0.012048	-0.009106	-0.153278	-0.177932	
percentmarried	-0.106108	-0.266820	-0.119524	0.355123	-0.160463	
pctnohs18_24	-0.143327	0.088463	-0.170762	-0.289383	-0.126582	
pcths18_24	-0.182054	0.261976	0.022644	-0.190006	-0.151821	
pctsomecol18_24	0.109455	-0.188688	0.077666	0.212953	0.093202	
pctbachdeg18_24	0.284176	-0.287817	0.046835	0.492810	0.248375	
pcths25_over	-0.311375	0.404589	0.121725	-0.471348	-0.311849	
pctbachdeg25_over	0.321021	-0.485477	-0.038177	0.704928	0.297463	
pctemployed16_over	0.199459	-0.412046	0.004906	0.693432	0.140146	
pctunemployed16_over	-0.009016	0.378412	0.099979	-0.453108	0.050768	
pctprivatecoverage	0.132244	-0.386066	0.105174	0.724175	0.052677	
pctprivatecoveragealone	0.186045	-0.363704	0.109278	0.788048	0.132660	
pctempprivcoverage	0.202349	-0.267399	0.149825	0.747294	0.158650	
pctpubliccoverage	-0.173548	0.404572	0.046109	-0.754822	-0.160066	
pctpubliccoveragealone	-0.093699	0.449358	0.040812	-0.719756	-0.041469	
pctwhite	-0.136501	-0.177400	-0.014510	0.167225	-0.190095	
pctblack	0.031376	0.257024	0.113489	-0.270232	0.073044	
pctasian	0.435071	-0.186331	-0.008123	0.425844	0.464168	
pctotherrace	0.209184	-0.189894	-0.208748	0.083635	0.241468	
pctmarriedhouseholds	-0.106221	-0.293325	-0.152176	0.446083	-0.127979	
birthrate	-0.034508	-0.087407	-0.118181	-0.010195	-0.057740	•
4						+

final = data2[['avganncount','avgdeath','target_deathrate','incidencerate','studypercap']]

sns.scatterplot(data=final, x="avganncount", y="avgdeath")

sns.scatterplot(data=final, x="target_deathrate", y="avgdeath")

sns.scatterplot(data=final, x="incidencerate", y="avgdeath")

sns.scatterplot(data=final, x="studypercap", y="avgdeath")

Assumptions for Linear Regression

```
import statsmodels.api as sm
X = data2[['avganncount','target_deathrate','incidencerate','studypercap']]
Y = data2['avgdeath']
# Defining the modell
X = sm.add_constant(X)
model = sm.OLS(Y, X)
# Fitting the model
result = model.fit()
# Printing the model sur
print(result.summary())
                                                            OLS Regression Results
        Dep. Variable:
Model:
Method:
Date:
Time:
No. Observations:
Df Residuals:
Df Model:
Covariance Type:
                                                      avgdeath
OLS
Least Squares
1, 19 Sep 2022
16:15:11
3047
3042
                                                                                                                                        0.886
0.885
5883.
0.00
-19982.
3.997e+04
4.000e+04
                                                                                   R-squared:
                                                                                   BIC:
                                                                  std err
                                                                                                               P>|t|
                                                                                                                                   [0.025
                                                                                                                                                          0.975]
         const
                                             -75.1640
                                                                    27.342
                                                                                      -2.749
151.295
                                                                                                               0.006
                                                                                                                                 -128.776
                                                                                                                                                        -21.552
                                                                                                                                    0.334
0.855
-0.439
-0.022
          avganncount
                                                0.3387
                                                                                                                                                           0.343
1.355
         target_deathrate
incidencerate
studypercap
                                               1.1047
-0.3123
-0.0101
                                                                                         8.669
-4.844
-1.721
                                                                      0.127
         Omnibus:
Prob(Omnibus):
                                                               1249.435
0.000
                                                                                   Durbin-Watson:
Jarque-Bera (JB):
                                                                                                                                         0.592
70380.791
                                                                                   Prob(JB):
Cond. No.
                                                                  -1.146
26.433
                                                                                                                                          0.00
1.38e+04
         Skew:
Kurtosis:
         Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.38e+04. This might indicate that there are

strong multicollinearity or other numerical problems.
plt.rcParams["figure.figsize"] = (15,10)
plt.subplot(2, 2, 1)
plt.title("avganncout and avgdeath Relationship")
sns.regplot(X['avganncount'], Y, scatter_ws={"color": "yellow"}, line_kws={"color": "red"})
plt.subplot(2, 2, 2)
plt.title("target_deathrate and avgdeath Relationship")
sns.regplot(X['target_deathrate'], Y, scatter_kws={"color": "cyan"}, line_kws={"color": "red"})
```


→ Assumption 2: No or Less Multicollinearity

Formula to calculate variance inflation factor

▼ Assumption 3: Homoskedasticity - Constant Variance

- List item
- List item

```
residuals = result.resid
plt.rcParams['figure.figsize']=(10, 5)
plt.scatter(Y, residuals)
plt.plot(Y, [0]*len(Y), color='red')

[<matplotlib.lines.Line2D at 0x7fcf4d03ddd0>]

2500

2000

1500

1000

-500
```

▼ Assumption 4 : No Autocorrelation of errors

▼ Assumption 5: Residual Normality

Assumption 6: Residual relation with independent variables

```
plt.rcParams["figure.figsize"] = (15,10)
plt.subplot(2, 2, 1)
plt.title("avganncout and avgdeath Relationship")
sns.replot(X("avganncount'), residuals, scatter_kws=("color": "yellow"), line_kws=("color": "red"))
plt.title("target_deathrate and avgdeath Relationship")
sns.regplot(X['target_deathrate'], residuals, scatter_kws={"color": "cyan"}, line_kws={"color": "red"})
plt.subplot(2, 2, 3)
plt.title("incidencerate and avgdeath Relationship")
sns.regplot(X['incidencerate'], residuals, scatter_kws={"color": "green"}, line_kws={"color": "red"})
plt.subplot(2, 2, 4)
pr.t.suprotect, ","

plt.title("studypercap and avgdeath Relationship")

sns.regplot(X['studypercap'], residuals, scatter_kws={"color": "green"}, line_kws={"color": "red"})
      /usr/local/lib/python 3.7/dist-packages/seaborn/\_decorators.py: 43: \ Future Warning: \\
      Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argu
      /usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning:
      Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argu
      /usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning:
      Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argu
      Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argu
      <matplotlib.axes. subplots.AxesSubplot at 0x7fcf4d165b90>
                                                                                   target_deathrate and avgdeath Relationship
        2000
        1500
                                                                                      0 150 200 250 300
target_deathrate
studypercap and avgdeath Relationship
X.head()
                                  target_deathrate incidencerate
                                                                  489.8 499.748204
             1.0
                          1397.0
                                                164.9
       1
             1.0
                          173.0
                                                161.3
                                                                  411.6
                                                                             23.111234
       2
             1.0
                                                174.7
                                                                   349.7
                                                                              47.560164
             1.0
                          427.0
                                                194.8
                                                                  430.4 342.637253
       3
             1.0
                           57.0
                                                144 4
                                                                   350.1
                                                                              0.000000
Y.head()
```

469

202 26 ne: avgdeath, dtype: int64

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=10)

from sklearn.linear_model import LinearRegression
lr_clf = LinearRegression()
lr_clf.fit(X_train,y_train)
lr_clf.score(X_test,y_test)

0.9038004299620067

▼ Using K Fold Cross Validation to measure accuracy of our LinearRegression Model

from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import cross_val_score
v = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
cross_val_score(LinearRegression().Xy,cvecv) array([0.92931238, 0.77437374, 0.71255449, 0.65469105, 0.75541814])