

VLSI Testing 積體電路測試

Fault Modeling

Professor James Chien-Mo Li 李建模
Lab. of Dependable Systems (LaDS)
Graduate Institute of Electronics Engineering
National Taiwan University

Course Roadmap (EDA Topics)

Motivating Problem

- Totally we have 4 possible test patterns: 00, 01, 10, 11
- But your manager says we have time only for 2 test patterns
- Please select 2 best test patterns. Which? Why?

Why Am I Learning This?

- Fault models quantify test quality
- Fault models make test automation possible

"All models are wrong. But some are useful."

(George Box)

Fault Modeling

- Introduction
- Fault Models
- Fault Detection
- Fault Coverage
- Conclusion

Definitions

Defect

 Unintended physical difference between hardware implementation and its intended design

- Example: unwanted wire (short to ground)
- Fault
 - Representation of defects at abstracted logic level
 - Example: b stuck at zero fault
- Error
 - Wrong output signal value
 - Example: output = 0, when a=b=1
- Failure
 - Deviation from expected behavior
 - Example: computer crash

Defect → Fault → Error → Failure

Examples of Defects

- Material
 - Bulk defect (cracks, crystal imperfections)
 - Surface impurities
- Wafer process
 - Dust particle → Opens, shorts
 - Gate oxide pinhole → gate oxide shorts
 - ▶ Bad ion implantation → transistor Vt shift
 - Mask problem → Missing/extra wires, missing contacts/vias
 - Lithography problem → Missing/extra wires, missing contacts/vias
 - Poor etching → ill formed contacts, vias
 - Careless handling → Oxide breakdown → gate oxide shorts
- Package problem
 - Careless handling → Oxide breakdown
 - ▶ Bad soldering → Contact degradation
 - Seal leaks
- Aging (wear-out)
 - Overstress → Oxide breakdown
 - Electromigration → open, short

There are Many More Defects ...

Photos of Defects

Photo 2-4 Dust-induced Wiring Short

[Vallet IBM 1997]

(a) Line-open failure.

(b) Open failure in contact plug.

[Nigh IBM 1998]

Random Defects, Systematic Defects

Random defects

- Caused by random factors such as particles, scratches, ...
- No correlation across wafers, dies

Systematic defects

- Caused by deterministic factors such as mask, lithography, ...
- Strong correlation across wafers, dies

What is Fault Modeling?

Representing defects at abstracted logic level

Why Fault Modeling?

- 1. Fault model quantify test quality
 - Defects are hard to handle
 - How many possible defects in a circuit? Way too many
 - Number of faults can be easily calculated in a circuit
- 2. Fault models makes test automation possible
 - Automatic test pattern generation (ATPG)
 - * generate test patterns
 - Fault simulation
 - evaluate test quality
 - Automatic diagnosis
 - * locate defects

Automatic Tools Need Fault Model

Test Patterns and Test Sets

- Test patterns, also known as (aka): Test Vectors
 - Input Boolean values for specific fault
 - Expected output often included (but not required)
 - Example: b stuck-at zero fault
 - Test pattern a=1, b=1
- Test Set = A set of test patterns
 - Example: ab= {11, 00}

- Test Length = Number of test patterns in a test set
 - Example: ab= {11, 00}, TL=2

Shorter TL = Lower Test Cost

Fault Coverage (FC)

$$Fault\ Coverage = \frac{number\ of\ detected\ faults}{number\ of\ total\ faults} \times 100\%$$

- Between 0-100%
- FC is most widely used quantitative measure of test set quality
 - * Higher fault coverage implies more effective tests
 - 0-70% → not good
 - 70-95% → sometimes acceptable
 - 95-100% → good

(Standard depends on company and products)

- In Brown & Williams model,
 - Defect Level = 1-Y (1-FC)

Higher FC = Higher Quality

Quiz

- (Cont'd from P.3) Manager asked you to pick 2 patterns...
- Suppose you picked {11, 00} for AND gate
 - both output 1 and 0 functions are tested

Q: What is single stuck-at fault coverage?

A:

Table: total six single stuck-at faults

Input	Fault-free	Faulty Output Value with SSF					
a b	Output	a/0	a/1	<i>b</i> /0	<i>b</i> /1	<i>c</i> /0	<i>c</i> /1
0 0	0	0	0	0	0	0	<u>1</u>
11	1	0	1	0	1	0	1

^{*}erroneous output values highlighted

Testing With or W/O Fault Models

Comparison	Functional testing test ckt functionality w/o fault model	Structural testing test ckt structure with fault model			
Test pattern generation	⇔ manual	© automatic			
Fault coverage	[⊗] low	© high			
Test speed	at-speed testing test at specified circuit speed helps to defect delay faults	Slow speed testing exercise ckt in different ways from functional mode			
Test power	© low power	(2) high power			
Verification / silicon debug	○ helps to debug	⇔ does not help			

Func. and Structural Tests Both Needed

Summary

- Fault modeling
 - Fault models helps to quantify and automate testing
 - Defect → fault → error → failure
 - Test length = number of test patterns
 - Fault coverage = detected faults / total faults
 - Structural test and functional test both needed

