2.7 Энергия и мощность дискретных сигналов

Важными характеристиками дискретных сигналов являются их энергия E_x и мощность P_x . Энергия дискретного сигнала определяется как

$$E_x = \sum_{n = -\infty}^{\infty} |x(n)|^2.$$
 (2.21)

Данное определение справедливо как для действительных так и для комплексных сигналов x(n). Чтобы данное определение имело смысл, энергия сигнала должна иметь конечное значение. Для этого амплитуда сигнала должна стремится к нулю при $|n| \to \infty$ (необходимое условие). В противном случае числовой ряд (2.21) не будет сходится. Сигналы, которые имею конечную энергию называются энергетическими сигналами.

В некоторых случаях амплитуда сигнала x(n) не стремится к нулю при $|n| \to \infty$ и энергия сигнала является бесконечной. В таких случаях, более разумным является измерение мощности сигнала P_x , которая определяется как усредненное значение энергии:

$$P_{x} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)|^{2}.$$
 (2.22)

В данном уравнении сумма делится на 2N+1 поскольку суммируются 2N+1 отсчетов x(n) попадают в интервал от -N до N. Для N_0 -периодических сигналов усреднение выполняется только на одном периоде:

$$P_{x} = \frac{1}{N_0} \sum_{n=0}^{N_0 - 1} |x(n)|^2.$$
 (2.23)

Сигнал для которого P_x имеет конечное ненулевое значение называют мощностным.

Пример 2.6 На рисунке 2.11 показан дискретный сигнал x(n), а также два периодических сигнала, полученных из x(n) периодическим расширениям:

$$x_1(n) = \sum_{k=-\infty}^{\infty} x(n+6k)$$
 и $x_2(n) = \sum_{k=-\infty}^{\infty} x(n+7k)$.

Определите энергию и мощность каждого из трех сигналов.

Решение. Поскольку x(n) = n при $0 \le 0 \le 5$ и 0 при всех других n, то его энергия может быть найдена используя (2.21)

$$E_x = \sum_{n=0}^{5} n^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55.$$

Сигнал $x_1(n)$ является периодическим повторением x(n) с периодом 6. Все периодические сигналы имеют бесконечную энергию, т.е. $E_{x_1}=\infty$. Мощность $x_1(n)$ можно найти при помощи выражения (2.23) как

$$P_{x_1} = \frac{1}{6} \sum_{n=0}^{5} n^2 = \frac{1}{6} E_x = \frac{55}{6} \approx 9,1667.$$

Сигнал $x_2(n)$ является периодическим повторением x(n), но только с периодом 7. Его энергия также равна бесконечности. Мощность $x_2(n)$ можно вычислить по формуле (2.23) как

$$P_{x_2} = \frac{1}{7} \sum_{n=0}^{5} n^2 = \frac{1}{7} E_x = \frac{55}{7} \approx 7,8571.$$

Рисунок 2.11 – Дискретные сигналы из примера 1.5

Два дискретных сигнала *ортогональны*, если их взаимная энергия удовлетворяет условию

$$E_{xy} = \sum_{n=-\infty}^{\infty} x(n)y^*(n) = 0.$$

Энергия и мощность ортогональных сигналов аддитивны, т.е.

$$\sum_{n=-\infty}^{\infty} |x(n) + y(n)|^2 = \sum_{n=-\infty}^{\infty} |x(n)|^2 + \sum_{n=-\infty}^{\infty} |y(n)|^2.$$

Таблица 1 – Основные типы дискретных сигналов

Тип сигнала	Обозначение	Энергия	Мощность
Сигнал конечной длины	$x(n),$ $n = 0,1, \dots, N-1$	$\sum_{n=0}^{N-1} x(n) ^2$	Не определена
Апериодический сигнал	$x(n), n \in \mathbb{Z}$	Формула (2.21)	Формула (2.22)
Периодический сигнал	$ \widetilde{x}(n), n \in \mathbb{Z} $ $ \widetilde{x}(n) = \widetilde{x}(n + kN) $	8	Формула (2.23)
Сигнал с компактным носителем	$ ilde{x}(n), \qquad n \in \mathbb{Z}$ $ ilde{x}(n) eq 0$ для $M \leq n \leq M + N$ -1	$\sum_{n=M}^{M+N-1} x(n) ^2$	0

В таблице 1 суммируются базовые понятия о типах дискретных сигналов.