Introduction to TDVP

Johannes Hauschild, UC Berkeley Winterschool Barcelona Sept 2021

References:

Haegeman et al arXiv:1103.0936

Haegeman et al arXiv:1408.5056 (follow here)

Vanderstraeten et al arXiv:1810.07006 Paeckel et al arXiv:1901.05824

it 0, (4) = H14 goal: evolution with Schrödinger equation

issue: solution is not a (finite-bond dimension) MPS

Time dependent variational principle (TDVP):

 $(\mathcal{A}(\mathcal{A}))$ and derive equations for $\frac{d}{d\mathcal{L}}\mathcal{A}^{\iota} = \mathcal{A}^{\iota}$ parametrize

 $\| \dot{M}^{\bar{i}}(t) \| \partial_{\bar{i}} \Psi(\dot{M}^{\bar{i}}) \rangle - (-\bar{\underline{i}}) H \| \Psi(\dot{M}^{\bar{i}}(t)) \|$

in tangent space

not in tangent space

 $\frac{d}{dt} |\mathcal{H}(\mathcal{H}^{\bar{c}}(t))\rangle = \left(-\frac{1}{4}\right) |\mathcal{P}| |\mathcal{H}(\mathcal{H}^{\bar{c}}(t))\rangle$

MPS manifold

MPS with fixed bond dimension (and non-zero singular values)..

form a manifold

space of MPS tensor entries

i= superindex

$$\{(\alpha^n, \gamma^n, \alpha^{n+n}, n)\}_{\nu_n}$$

|T[mi]) = P- (-i) H 12+(mi))

Hilbert space

projector into tangent space

Tangent vector of general MPS

$$\frac{X^{\overline{i}}}{|\partial_{M^{\overline{i}}}|^{2}} \frac{Y(M^{\overline{i}})}{|\partial_{M^{\overline{i}}}|^{2}} = \sum_{n=1}^{N} \frac{Z^{1}}{|\partial_{M^{\overline{i}}}|^{2}} \frac{(n)}{|\partial_{M^{\overline{i}}}|^{2}} \frac{(n)}{|\partial_{M^{\overline{i$$

partial derivative = leave tensor out

$$\partial_{\text{Mab}} = \sum_{\alpha b c} \partial_{\text{Mab}} N^{bc} O^{c\alpha} = \sum_{\alpha b c} \partial_{\text{Mab}} N^{bc} O^{c\alpha} = \sum_{\alpha b c} \partial_{\text{Mab}} O^{c\alpha} = \sum_{\alpha b c} \partial_{\text{Mab}} O^{c\alpha} = \sum_{\alpha b c} \partial_{\text{Mab}} O^{c\alpha} = \sum_{\alpha b c} O^{c\alpha} = \sum_{\alpha$$

Tangent vector in mixed canonical form

$$\left[T \left[X^{i} \right] \right] = \sum_{n=1}^{N} \left[A^{n} A^{$$

overcomplete:
$$-(x^n) - \rightarrow -(x^n) + -(y^n) - (y^n) - ($$

for some tensors Y describes same tangent vector

 $\begin{cal} \end{cal} \end{cal}$. simplifies overlaps of tangent vectors:

$$\langle T[x^t] | T[z^t] \rangle = \sum_{i=1}^{\infty} \binom{z^i}{x^i}$$

Tangent space projector P_{T}

given
$$|\varphi\rangle$$
 we need to find $\min_{x \in \mathbb{Z}} ||f(x)||^2 = \lim_{x \in \mathbb{Z}} |$

under the constraint

$$\begin{bmatrix} x^{h} \\ A^{h} \end{bmatrix} = 0$$

for n< N

minimal for

$$h < N: \qquad -(x^{n}) - = (11 - |A^{n} \times A^{n}|) - (F^{n}) - (F^{n}) - (F^{n})$$

$$(A^{n}) - (A^{n})$$

$$n = N$$
: $-(x^n) = -(x^n)$

Plug this into $T[x^h]$

$$|T[X^n]\rangle = P_T|\varphi\rangle = \sum_{n=1}^{N} (x^n | A^n - A^{n-1})$$

$$|T[X^n]\rangle = P_T|\varphi\rangle = \sum_{n=1}^{N} (x^n | A^n - A^{n-1})$$

$$|T[X^n]\rangle = P_T|\varphi\rangle = \sum_{n=1}^{N} (x^n | A^n - A^{n-1})$$

$$|T[X^n]\rangle = P_T|\varphi\rangle = \sum_{n=1}^{N} (x^n | A^n - A^{n-1})$$

$$P_{+} = \sum_{n=1}^{N} |\alpha^{n}\rangle \langle \alpha^{n}|_{\mathcal{R}} \otimes \mathcal{A}_{n} \otimes |\alpha^{n+1}\rangle_{\mathcal{R}} \langle \alpha^{n+1}|_{\mathcal{R}}$$

$$= \sum_{n=1}^{N-1} |\alpha^{n+1}\rangle_{\mathcal{L}} \langle \alpha^{n+1}|_{\mathcal{L}} \otimes |\alpha^{n+1}\rangle_{\mathcal{R}} \langle \alpha^{n+1}|_{\mathcal{R}}$$

Plugging this into the TDVP equation yields

$$\sum_{n=1}^{N} \left[\widehat{\alpha}^{n} \right] \left(-\frac{\widehat{\nu}}{K} \right) \left$$

$$= \begin{pmatrix} \frac{1}{2} \\ \frac{1}{4} \end{pmatrix} \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4$$

We don't know how to integrate all terms at once, but we can integrate each term individually!

Doing so yields the TDVP algorithm on the next page."

TDVP algorithm for MPS

Start with MPS in right canonical form

for n in {1, 2, ..., N-1}:

sweep left to right

evolve
$$-6^{n}$$
 with $+e^{n}$ forward by $+\frac{dt}{2}$ split -6^{n} $=\frac{sub}{aR}$ -6^{n+1} calculate -6^{n+1} $+6^{n}$ $+6^{n}$

evolve
$$(n^{n+1})$$
 with (n^{n}) backward by evolve (n^{n}) forward by (n^{n})

sweep right to left

split
$$-6^{n+1}$$
 -8^{n+1} -8^{n+1} -8^{n+1} -8^{n+1}

evolve
$$\sqrt{n}$$
 with \sqrt{n} backward by $-\frac{df}{2}$

evolve
$$-\frac{d^2}{2}$$
 with $+\frac{d^2}{2}$ forward by $+\frac{d^2}{2}$

Properties:

very similar to DMRG:

recover (finite) DMRG for imaginary evolution with $d + \rightarrow \infty$

symmetric under inverse evolution, hence correct to second order in \mathcal{L}_+

no truncation necessary, always stay in manifold of MPS with fixed bond dimension ->can use two-site scheme to expand the bond dimension

symplectic, preserves the energy