Atlanta R Meetup

Matthew Turner, Ph.D.

mturner46@gsu.edu

Georgia State University August 28, 2018

github.com/theEducationalCollective/ATL-R-Meetup-August-2018

http://bit.ly/turner-atlrug

Formulas

R has a shorthand formula language

- Developed in the 1980's by John Chambers
- It is designed to make it easy to enter (linear) statistical models
- It is used for all linear models (ANOVA, Regression) and simple extensions of the language cover mixed and hierarchical models (Ime4, nIme packages)

Basic Idea

A model is specified as:

Dependent Variable ~ Independent Variable(s)

- You just list the variables as they appear in your mathematical notation
- The constant term (in regression) is assumed

Basic Idea

• Example:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

y ~ x1 + x2

If you wanted no intercept:

$$y = \beta_1 x_1 + \beta_2 x_2$$

y ~ -1 + x1 + x2

Symbol	Example	Meaning
+	+X	include this variable
_	-X	delete this variable
:	X:Z	include the interaction between these variables
*	X*Y	include these variables and the interactions between them
	$X \mid Z$	conditioning: include x given z
^	$(X + Z + W)^3$	include these variables and all interactions up to three way
I	I(X*Z)	as is: include a new variable consisting of these variables multiplied
1	X - 1	intercept: delete the intercept (regress through the origin)

For example, these all specify a model with main effects and 2-way interaction terms (all three lines produce the same model):

$$Y \sim X + Z + W + X:Z + X:W + Z:W$$

 $Y \sim X * Z * W - X:Z:W$
 $Y \sim (X + Z + W)^2$

See the file: "Richard Hahn - UChicago - R Formula Notation Intro.pdf" in the supplemental handouts. Source: http://faculty.chicagobooth.edu/richard.hahn/teaching/formulanotation.pdf

Variable Types Determine Models

• For the model: $y \sim x1 + x2$

- If x1 and x2 are categorical then it is an ANOVA
- If x1 and x2 are numerical then it is a regression
- If x1 is categorical an x2 is numerical then it is an ANCOVA

See: https://ww2.coastal.edu/kingw/statistics/R-tutorials/formulae.html for more details of this.

Resources

- The following are good summaries of the model formulae:
 - https://ww2.coastal.edu/kingw/statistics/R-tutorials/formulae.html (costal.edu has many other introductory articles, too!)
 - https://science.nature.nps.gov/im/datamgmt/statistics/r/formulas/
 - http://conjugateprior.org/2013/01/formulae-in-r-anova/ (this page has many examples of ANOVA and mixed-models)
 - More advanced:
 http://genomicsclass.github.io/book/pages/expressing_design_formula.html this covers the relationship from formula to the design matrix for linear models