Probabilités et Statistiques

Propriétés, Notations, Définitions, Rappels.

Dans la suite n, p, q ou q' désigneront des nombres entiers naturels non nuls.

- 1. Dans tout le problème les variables aléatoires (notées de manière abrégée v.a., on notera aussi v.a.r. pour des variables aléatoires réelles) sont définies sur $(\Omega, \mathcal{A}, \mathbb{P})$, un espace probabilisé tel que si X est une v.a. à valeurs dans \mathbb{R}^p , il existe une v.a. X' de même loi que X et indépendante de X; on note alors \mathbb{P}_X la loi du vecteur aléatoire X.
- 2. L'espérance d'une variable aléatoire réelle ou vectorielle Z est notée $\mathbb{E} Z$ lorsqu'elle peut être définie. On note L^p l'espace des classes de v.a.r. (presque sûrement égales) X définies sur $(\Omega, \mathcal{A}, \mathbb{P})$ et telles que $\mathbb{E}|X|^p < \infty$. Soient X, Y deux v.a.r. de carré intégrable, on définit leur covariance par $\operatorname{Cov}(X, Y) = \mathbb{E}(XY) \mathbb{E}(X)\mathbb{E}(Y)$. On définit aussi la variance de X par $\operatorname{Var} X = \operatorname{Cov}(X, X)$.
- 3. On note $\mathcal{B}(\mathbb{R}^p)$ l'ensemble des parties boréliennes de \mathbb{R}^p .
- 4. On admettra qu'une loi P quelconque sur \mathbb{R}^p est intérieurement régulière: pour tout borélien B de \mathbb{R}^p et tout $\epsilon > 0$, il existe un compact K inclus dans B tel que $P(K) > P(B) \epsilon$.
- 5. On rappelle l'énoncé du théorème de Fubini pour une fonction positive. Soit $(E_i, \mathcal{E}_i, m_i)$, i = 1, 2, un couple d'espaces mesurés, et soit f une fonction numérique positive et mesurable sur $(E_1 \times E_2, \mathcal{E}_1 \otimes \mathcal{E}_2)$, alors les applications

$$f_1: x_1 \to \int_{E_2} f(x_1, x_2) m_2(dx_2), \qquad f_2: x_2 \to \int_{E_1} f(x_1, x_2) m_1(dx_1)$$

sont mesurables et de plus

$$\int_{E_1 \times E_2} f dm_1 \otimes m_2 = \int_{E_1} f_1 dm_1 = \int_{E_2} f_2 dm_2$$

- 6. Soit $f: \mathbb{R}^p \to \mathbb{R}$ une fonction bornée, on note $||f||_{\infty} = \sup_{x \in \mathbb{R}^p} |f(x)|$. Soit $C(\mathbb{R}^p)$ l'ensemble des fonctions numériques continues sur \mathbb{R}^p , on note $C_b(\mathbb{R}^p)$ le sous ensemble de $C(\mathbb{R}^p)$ formé des fonctions continues et bornées sur \mathbb{R}^p . De plus $C^n(\mathbb{R}^p)$ (resp. $C_b^n(\mathbb{R}^p)$) désigne pour tout entier $n \geq 1$ le sous ensemble de $C(\mathbb{R}^p)$) (resp. de $C_b(\mathbb{R}^p)$) formé des fonctions dont toutes les dérivées partielles existent jusqu'à l'ordre n et sont dans $C(\mathbb{R}^p)$ (resp. $C_b(\mathbb{R}^p)$).
- 7. On admettra qu'un couple de variable aléatoires (X,Y) de $\mathbb{R}^p \times \mathbb{R}^q$ est indépendant si et seulement si Cov(f(X),g(Y))=0 pour toutes fonctions f et g de $C_b^1(\mathbb{R}^p)$ et $C_b^1(\mathbb{R}^q)$.
- 8. On note $\mathcal{M}(\mathbb{R}^p)$ l'ensemble des fonctions mesurables $f: \mathbb{R}^p \to \mathbb{R}$ et croissantes par rapport à chaque coordonnée, c'est à dire que pour tout $x \in \mathbb{R}^p$ et tout entier $j \in [1, p]$, l'application $f_{x,j}: \mathbb{R} \to \mathbb{R}$ est croissante, où l'on a posé $f_{x,j}(t) = f(x_1, ..., x_{j-1}, t, x_{j+1}, ..., x_p)$ si $x = (x_1, ..., x_p)$.

- 9. Soient x et y deux vecteurs de \mathbb{R}^p , on note $x \geq y$ (resp. x > y) si $x_i \geq y_i$ (resp. $x_i > y_i$) pour tout entier $1 \leq i \leq p$. Rappelons que cet ordre n'est pas total.
- 10. On note $\mathcal{S}(\mathbb{R}^p)$ l'ensemble des fonctions indicatrices d'ensembles fermés de \mathbb{R}^p (i.e. f(x) = 1 pour $x \in A$ et f(x) = 0 pour $x \notin A$, si A est fermé dans \mathbb{R}^p : on posera $f = \mathbb{I}_A$), ces fonctions sont dites simples sur \mathbb{R}^p . On note, de plus, $\mathcal{M}_c(\mathbb{R}^p) = C_b(\mathbb{R}^p) \cap \mathcal{M}(\mathbb{R}^p)$ et $\mathcal{M}_s(\mathbb{R}^p) = \mathcal{S}(\mathbb{R}^p) \cap \mathcal{M}(\mathbb{R}^p)$.

Le vecteur aléatoire X de \mathbb{R}^p est dit associé si pour tout couple de fonctions (f,g) de $\mathcal{M}(\mathbb{R}^p)$,

$$\mathbb{E}(f^2(X) + g^2(X)) < \infty \Rightarrow \text{Cov}(f(X), g(X)) \ge 0. \tag{1}$$

De façon plus générale, la suite de variables aléatoires réelles $X = (X_n)_{n \ge 0}$ est dite associée si, pour tout nombre entier p, le vecteur aléatoire $(X_0, ..., X_{p-1})$ de \mathbb{R}^p est associé.

L'objet du problème est l'étude de telles suites. Les résultats prouvés dans les préliminaires sont utiles dans toute la suite. Les parties I et II sont essentiellement indépendantes, les résultats de la partie IV reposent sur ceux de la partie III.

Préliminaires.

- 1. Soient X et Y des variables aléatoires réelles de carré intégrable et positives.
- a) Montrez que

$$\mathbb{E}XY = \int_0^\infty \int_0^\infty \mathbb{P}(X > x, Y > y) dx dy.$$

b) En déduire que

$$Cov(X,Y) = \int_0^\infty \int_0^\infty (\mathbb{P}(X > x, Y > y) - \mathbb{P}(X > x)\mathbb{P}(Y > y)) dx dy.$$

2. Soient X et Y des variables aléatoires réelles quelconques de carré intégrable. Montrer l'identité suivante, dite de Hoeffding:

$$\mathrm{Cov}(X,Y) = \int_{\mathbb{R}} \int_{\mathbb{R}} \left(\mathbb{P}(X > x, Y > y) - \mathbb{P}(X > x) \mathbb{P}(Y > y) \right) dx dy.$$

3. Soient $f, g : \mathbb{R}^p \to \mathbb{R}$ deux fonctions mesurables; on note f << g si g - f et g + f sont dans $\mathcal{M}(\mathbb{R}^p)$.

Soit X un vecteur associé de \mathbb{R}^p . Soient f_1, f_2, g_1 et g_2 des fonctions mesurables telles que $f_1(X), f_2(X), g_1(X)$ et $g_2(X)$ soient de carré intégrable; montrez que si $f_1 << f_2$ et $g_1 << g_2$ alors

$$|Cov(f_1(X), g_1(X))| \le Cov(f_2(X), g_2(X)).$$

4. Soit (X,Y) un couple de variables aléatoires réelles associées de carré intégrable et soient f et q dans $C_h^1(\mathbb{R})$. Montrez que

$$|\operatorname{Cov}(f(X), g(Y)))| \le ||f'||_{\infty} ||g'||_{\infty} \operatorname{Cov}(X, Y).$$

5. Plus généralement, soient $X=(X_1,...,X_p)$ et $Y=(Y_1,...,Y_q)$ des vecteurs aléatoires de \mathbb{R}^p et \mathbb{R}^q dont les composantes sont de carré intégrable et tels que le vecteur (X,Y) soit associé. Soient f et g deux fonctions numériques dans $C_b^1(\mathbb{R}^p)$ et $C_b^1(\mathbb{R}^q)$ respectivement. Montrez qu'il existe une constante C>0 ne dépendant que de f et de g telle que

$$|\operatorname{Cov}(f(X), g(Y)))| \le C \sum_{i=1}^{p} \sum_{j=1}^{q} \operatorname{Cov}(X_i, Y_j).$$

Partie I. Association et indépendance

- 1. Soit X une variable aléatoire réelle quelconque.
- a) Soient f et g des fonctions mesurables telles que f(X) et g(X) soient des variables de carré intégrable. Soit X' une v.a.r. indépendante de X et de même loi que X, montrez que

$$Cov(f(X), g(X)) = \frac{1}{2}\mathbb{E}(f(X) - f(X'))(g(X) - g(X')).$$

- b) Montrez que X est une variable aléatoire associée.
- 2. Soient $X \in \mathbb{R}^p$ et $Y \in \mathbb{R}^q$ des variables aléatoires vectorielles associées, indépendantes.
- a) Soient f et g des éléments de $\mathcal{M}(\mathbb{R}^{p+q})$. On suppose que f(Z) et g(Z) sont de carré intégrable. On pose $F(x) = \mathbb{E}(f(x,Y))$ et $G(x) = \mathbb{E}(g(x,Y))$. On note Z = (X,Y), montrez que

$$\mathrm{Cov}(f(Z),g(Z)) = \int_{\mathbb{R}^p} \mathrm{Cov}(f(x,Y),g(x,Y)) \mathbb{P}_X(dx) + \mathrm{Cov}(F(X),G(X)).$$

- b) En déduire que le vecteur aléatoire (X,Y) est associé dans \mathbb{R}^{p+q} .
- 3. Soient $X_1, ..., X_n$ des variables aléatoires réelles indépendantes; prouvez que $(X_1, ..., X_n)$ est un vecteur aléatoire associé.

On se propose de montrer que si les coordonnées d'un veçteur aléatoire associé sont non corrélées alors elles sont indépendantes.

- 4. Soient $X = (X_1, ..., X_p) \in \mathbb{R}^p$ et $Y = (Y_1, ..., Y_q) \in \mathbb{R}^q$ des variables aléatoires telles que la v.a. (X, Y) soit associée. On suppose que $Cov(X_i, Y_j) = 0$ pour tout couple (i, j) d'entiers de $[1, p] \times [1, q]$. Prouvez que les v.a. X et Y sont indépendantes (on pourra utiliser la propriété 7).
- 5. Soit $X = (X_1, ..., X_p)$ une v.a. associée de \mathbb{R}^p . On suppose que $Cov(X_i, X_j) = 0$ pour tout couple (i, j) d'entiers distincts de [1, p]. Prouvez que les coordonnées de la v.a. X sont des v.a.r. indépendantes.
- 6. Donnez un exemple de vecteur aléatoire (X,Y) de \mathbb{R}^2 tel que Cov(X,Y)=0 et dont les coordonnées ne sont pas indépendantes. Existe-t-il un vecteur aléatoire gaussien ou associé de \mathbb{R}^2 dont les coordonnées sont non corrélées et non indépendantes ?

Partie II. Association et convergence en loi A.

Soit X un vecteur aléatoire de \mathbb{R}^p . On se propose de montrer que les trois propriétés suivantes sont équivalentes

- (i) La relation (1) vaut pour toutes fonctions $f, g \in \mathcal{M}_c(\mathbb{R}^p)$.
- (ii) La relation (1) vaut pour toutes fonctions $f, g \in \mathcal{M}_s(\mathbb{R}^p)$.
- (iii) Le vecteur X de IR^p est associé.
- 1. Soit $f = \mathbb{I}_A$ un élément quelconque de $\mathcal{M}_s(\mathbb{R}^p)$ on pose

$$f_n(x) = \int_{[0,1]^p} f(x+n^{-1}u)du.$$

- a) Montrez que $(f_n)_{n\geq 1}$ est une suite de fonctions de $\mathcal{M}_c(\mathbb{R}^p)$, décroissante, et que cette suite de fonctions converge simplement vers f.
- b) En déduire que (i) implique (ii).
- 2. Montrez que X est associé si et seulement si la relation (1) est satisfaite pour tous les couples (f,g) de fonctions croissantes indicatrices d'ensembles (on pourra utiliser l'identité de Hoeffding).

3. Soit $f = \mathbb{I}_A$ un élément de $\mathcal{M}(\mathbb{R}^p)$ et K un compact inclus dans A. Montrez qu'il existe un fermé F tel que

$$K \subset F \subset A$$
 et $\mathbb{1}_F \in \mathcal{M}_s(\mathbb{R}^p)$.

4. En utilisant la régularité intérieure de la loi \mathbb{P}_X du vecteur X (propriété 4), en déduire que (ii) implique (iii). Conclure.

B.

- 1. Soit $(X_n)_{n\geq 0}$ une suite de variables aléatoires réelles. On suppose que la suite $(X_n)_{n\geq 0}$ est limite de suites associées, c'est à dire qu'il existe des suites associées $(X_{K,n})_{n\geq 0}$, avec K décrivant $\mathbb N$, telles que pour tout entier p la suite de vecteurs $(X_{K,0},...,X_{K,p})$ converge en loi vers $(X_0,...,X_p)$ lorsque K converge vers l'infini. Montrez qu'alors la suite $(X_n)_{n\geq 0}$ est encore associée.
- 2. Soit $(\xi_n)_{n\in\mathbb{Z}}$ une suite de variables aléatoires indépendantes et de même loi; on suppose que $\mathbb{E}\xi_0 = 0$ et $\mathbb{E}\xi_0^2 = 1$. Soit, de plus, $(a_n)_{n\geq 0}$ une suite de nombres réels telle que $\sum_{n=0}^{\infty} a_n^2 < \infty$.
- a) Soit $X_{K,n} = \sum_{k=0}^{K} a_k \xi_{n-k}$. Montrez que pour tout entier $n \geq 0$, la suite $(X_{K,n})_{K \geq 0}$ converge dans L^2 vers une variable aléatoire X_n .
- b) Montrez que si, de plus, $a_n \ge 0$ pour tout entier $n \ge 0$, alors la suite $(X_n)_{n \ge 0}$ définie ci-dessus est associée.

Partie III. Inégalités de moments

Soient $(Y_n)_{n\geq 0}$ une suite associée et stationnaire (i.e. pour tout couple (n,k) d'entiers positifs, les vecteurs $(Y_0,...,Y_n)$ et $(Y_p,...,Y_{n+p})$ ont la même loi). Soit T dans $C_b^1(\mathbb{R})$ telle que $\mathbb{E}T(Y_0)=0$. On pose pour tout entier $n\geq 1$,

$$X_n = T(Y_n)$$
 et $S_n = X_1 + ... + X_n$.

Soit p un entier positif quelconque, on note aussi

$$M_{n,p} = \mathbb{E} S_n^p, \quad A_{n,p} = \sum_{1 \leq i_1 \leq \ldots \leq i_p \leq n} |\mathbb{E} X_{i_1} \ldots X_{i_p}|, \quad \text{et} \quad \rho(k) = \sup \{ \operatorname{Cov}(Y_0, Y_p); |p| \geq k \}.$$

1. Prouvez que $M_{n,p} \leq p! A_{n,p}$.

Soient $p \ge 2$ un entier, on note $c_{r,p}$ la borne supérieure des expressions

$$|Cov(X_{i_1}...X_{i_m}, X_{i_{m+1}}...X_{i_p})|$$

lorsque l'entier m décrit l'intervalle [1, p[et les indices $(i_1, ..., i_p)$ vérifient $1 \le i_1 \le ... \le i_p$ et $i_{m+1} - i_m = r$.

2. Prouvez que

$$c_{r,p} \leq \frac{p^2}{4} ||T||_{\infty}^{p-2} ||T'||_{\infty}^2 \rho(r).$$

Pour tout entier positif $p \geq 2$, on pose

$$H_{n,p} = \sum_{r=0}^{n} (r+1)^{p-2} c_{r,p}.$$

3. Soit $p \ge 2$, prouvez l'inégalité

$$A_{n,p} \le npH_{n,p} + \sum_{k=2}^{p-2} A_{n,k}A_{n,p-k}$$

(on pourra considérer, pour chaque couple d'entiers $(m,r) \in [1,p[\times[0,n[, l'ensemble\ E_{m,r}] + ensemble\ E_{m,r}]]$ des p-uplets d'entiers $1 \le i_1 \le ... \le i_p \le n$ tels que $i_{m+1} - i_m = r = \max_{1 \le k < p} \{i_{k+1} - i_k\}$).

Le reste de cette partie consiste en deux applications de cette dernière inégalité.

4. Soit p un entier quelconque, on suppose que

$$C = \sum_{r=0}^{\infty} (r+1)^{p-2} \rho(r) < \infty.$$

Prouvez qu'il existe une constante C_p ne dépendant que de p et de C telle que

$$|M_{n,p}| \leq C_p \max\{n ||T||_{\infty}^{p-2} ||T'||_{\infty}^2, (n ||T'||_{\infty}^2)^{p/2}\}.$$

5. a) On définit par récurrence la suite $(K_p)_{p\geq 0}$ par les relations $K_0=0, K_1=1$ et, si $p\geq 2$, par la relation de récurrence

$$K_{p} = \sum_{k=1}^{p-1} K_{k} K_{p-k}.$$

Prouvez qu'il existe une constante $K \ge 1$ telle que pour tout entier $p \ge 1$, $K_p \le K^p$ (on montrera que le rayon de convergence de la série entière $K(x) = \sum_{p=0}^{\infty} K_p x^p$ est non nul, directement ou par le calcul de ses coefficients).

- b) On définit par récurrence la suite $(L_p)_{p\geq 0}$ par les relations $L_0=L_1=0, L_2=1$ et, si $p\geq 3$, par la relation de récurrence $L_p=2+\sum_{k=2}^{p-2}L_kL_{p-k}$. Prouvez que pour tout entier $p\geq 2$, $L_p\leq K_p\leq K^p$.
- 6. On suppose à présent que la suite associée vérifie $\text{Cov}(Y_0, Y_r) = \mathcal{O}(e^{-ar})$ pour une constante a > 0. On suppose de plus que $||T||_{\infty} = 1$ et $||T'||_{\infty} = \sigma$ et que l'entier n vérifie $n\sigma^2 \ge 1$.
- a) Soit $p \geq 2$ un entier pair. Prouvez qu'il existe des constantes U et u strictement positives, et telles que $H_{n,p} \leq Uu^{p-1}(p-1)!\sigma^2$. Prouvez qu'il existe une constante V > 0 telle que pour tout entier pair $p \geq 2$:

$$M_{n,p} \leq (Vp^2\sigma\sqrt{n})^p$$
.

b) En déduire qu'il existe des constantes L et M strictement positives, et telles que pour tout réel t>0:

$$\mathbb{P}(|S_n| \ge t\sigma\sqrt{n}) \le L\exp(-M\sqrt{t})$$

(on pourra prouver que $\mathbb{P}(|S_n| \ge t\sigma\sqrt{n}) \le (Vp^2/t)^p$, pour tout nombre réel t > 0 et tout entier pair $p \ge 2$; on cherchera une bonne valeur de p pour conclure).

Partie IV. Estimation fonctionnelle

Soit $(Y_n)_{n\geq 0}$ une suite associée et stationnaire. Soient $h\in \mathbb{R}^+_*, t\in \mathbb{R}$ arbitraires et $u\in C^1_b(\mathbb{R})$ une densité paire et à support compact sur \mathbb{R} , on pose

$$f_{n,h}(t) = \frac{1}{nh} \sum_{k=1}^{n} u\left(\frac{Y_k - t}{h}\right).$$

On suppose dans toute la suite que

(H) Pour tout entier $k \geq 1$, la variable aléatoire bidimensionnelle (Y_0, Y_k) admet une densité f_k et cette densité est uniformément bornée par une constante F (indépendante de k).

L'objet de cette partie est l'étude du comportement asymptotique de $f_{n,h}(t)$. Soient t et h>0 des réels fixés, on note

$$T(y) = \frac{1}{nh} \left(u \left(\frac{y-t}{h} \right) - \mathbb{E}u \left(\frac{Y_0 - t}{h} \right) \right)$$

utilisant les notations de la partie III on posera, par exemple, $S_{n,h} = f_{n,h}(t) - \mathbb{E} f_{n,h}(t)$, $M_{n,p} = \mathbb{E} S_{n,h}^p$, etc...

Α.

Suites satisfaisant la condition (H)

1. Soit $(\xi_n)_{n\in\mathbb{Z}}$ une suite de v.a. gaussiennes $\mathcal{N}(0,1)$ équidistribuée et indépendantes. Ici, $(X_n)_{n\geq 0}$ désigne la suite stationnaire construite lors de la question II-B-2 à l'aide de ces variables; si $a_0\neq 0$, prouvez que la suite $(X_n)_{n\geq 0}$ satisfait à la condition (H).

Donnez une condition sur la fonction G et sur la suite $(a_n)_{n\geq 0}$ pour que la suite $(Y_n)_{n\geq 0}$ définie par $Y_n = G(X_n)$ vérifie la condition (**H**) et soit associée.

B. Inégalités de moments

1. Ici n, h et t sont fixés et satisfont à l'inégalité $nh \ge 1$. Prouvez qu'il existe une constante G_p , que l'on précisera, telle que

$$c_{r,p} \leq G_p \left(\frac{1}{nh}\right)^p \min\{h^2, \frac{\rho(r)}{h^2}\}.$$

En déduire que pour tout entier p > 2 pair, si $Cov(Y_0, Y_n) = \mathcal{O}(n^{-a})$ pour un nombre réel a > 4(p-1), alors il existe une constante H_p indépendante de n et de h telle que

$$nH_{n,p}\leq H_p(nh)^{1-p}.$$

Conclure qu'il existe une constante D_n indépendante de n et de h et telle que

$$\mathbb{E}(f_{n,h}(x) - \mathbb{E}f_{n,h}(x))^p) \le D_p(nh)^{-p/2}.$$

Soit $(h(n))_{n\geq 0}$ une suite de nombres réels positifs telle que:

$$\{\forall n \in \mathbb{N}^*, nh(n) \ge 1\}, \quad \lim_{n \to \infty} h(n) = 0 \quad \text{et} \quad \lim_{n \to \infty} nh(n) = +\infty.$$

On pose, dans toute la suite, $f_n(t) = f_{n,h(n)}(t)$.

2. Soient f une fonction de $C^2(\mathbb{R})$ et $h(n) = n^{-1/5}$. Prouvez que

$$\mathbb{E} f_n(t) - f(t) = \mathcal{O}(n^{-2/5}).$$

En déduire que, sous les conditions de la question 1, pour tout entier pair $p \ge 2$, on a:

$$\mathbb{E}(f_n(t) - f(t))^p = \mathcal{O}(n^{-2p/5}).$$

3. Soit f une fonction de $C(\mathbb{R})$, on fixe t dans \mathbb{R} et un nombre $0 < \eta < 1$. On pose ici $h(n) = n^{-\eta}$. Prouvez que $\lim_{n\to\infty} \mathbb{E} f_n(t) = f(t)$.

En déduire qu'il existe a > 0 tel que si $Cov(Y_0, Y_r) = \mathcal{O}(r^{-a})$ alors presque sûrement, $\lim_{n\to\infty} f_n(t) = f(t)$.

(

Inégalités exponentielles

On suppose à présent que la suite associée satisfait de plus, pour une constante a > 0,

$$Cov(Y_0, Y_r) = \mathcal{O}(e^{-ar}).$$

1. a) Soit p > 2 un entier fixé. Montrez qu'il existe une constante B > 0 vérifiant

$$nH_{n,p} \leq \left(\frac{Bp}{nh}\right)^{p-1}$$
.

En déduire qu'il existe une constante C telle que

$$|M_{n,p}| \leq \left(\frac{Cp^2}{\sqrt{nh}}\right)^p.$$

b) Utilisez les résultats précédents pour prouver qu'il existe des constantes F et G telles que pour tout nombre réel t, tout entier n et toute suite réelle h(n) > 0 telle que $nh(n) \ge 1$:

$$\mathbb{P}\left(|f_n(t) - \mathbb{E}f_n(t)| > \frac{\lambda}{\sqrt{nh}}\right) \leq F \exp(-G\sqrt{\lambda}).$$

c) Soit M > 0 un nombre réel fixé. Prouvez qu'il existe des constantes H, K et $L \ge 0$ telles que pour tout entier n et toute suite de réels telle que $nh(n) \ge 1$:

$$\mathbb{P}\left(\sup_{|t|\leq M}|f_n(t)-\mathbb{E}f_n(t)|>\frac{\lambda}{\sqrt{nh}}\right)\leq Hn^K\exp(-L\sqrt{\lambda}).$$

2. Si $\lim_{n\to\infty} nh(n)/\log^4 n = \infty$, prouvez que, presque sûrement,

$$\lim_{n\to\infty} \sup_{|t|\leq M} |f_n(t) - \mathbb{E}f_n(t)| = 0.$$

3. Si de plus f est une fonction de $C^2(\mathbb{R})$, prouvez qu'il existe une suite h(n) telle que presque sûrement,

$$\sup_{|t| \leq M} |f_n(t) - \mathbb{E}f_n(t)| = \mathcal{O}\left(\left(\frac{\log^4 n}{n}\right)^{2/5}\right).$$