Pattern Recognition- Assignment 1

Date Uploaded: 28 June 2023, Submission Due: 8 July 2023

Bayes Decision Theory

- 1. Prepare a formula sheet for
 - Notations and symbols for Prior Probability, class-conditional probability density, evidence, posterior probability and Bayes formula
 - What do you understand by the likelihood $p(x|\omega j)$?
 - What is P (error|x)?
 - What is the formula for Bayes' decision rule for minimizing the probability of error?
 - What is conditional risk and how it is defined in notations?
 - What is the formula for Bayes min risk?
 - How do you write Bayes risk rule for two-category classification problems over continuous feature vector?
 - Derive formula for minimum error rate classifier.
 - What is the formula for univariate NDF and Multivariate NDF?
 - Write discriminant functions for Multivariate NDF for all three cases.

2. Given this data, where each feature vector X has 2 feature components (x1, x2):

	ω1				ω2				ω3			
x1	2.1	1.1	1.4	3.3	4.4	3.4	4.5	4.1	-1.3	-3.2	-3.2	-2.1
x2	-2.5	-3.1	-2.1	-1.8	6.5	5.8	7.2	5.65	-2.3	-4.5	-4.5	-3.3

- a. Compute Mean vector μ over all samples, and class means $\mu 1$, $\mu 2$ and $\mu 3$.
- b. Use numpy.cov() to compute covariance matrix Σ for each class $\Sigma 1$, $\Sigma 2$, $\Sigma 3$.
- c. Out of the three cases which case applies for computing discriminant function of Multivariate NDF?
- d. Let $p(\omega 1)=0.4$, $p(\omega 2)=0.35$, $p(\omega 3)=0.25$. Can you write a python function for computing the discriminant functions defined in part c?
- e. Compute and plot discriminant functions g1(X), g2 (X), g3(X) and the sample points in 2 dimensions.

Some Helpful points:

- How to compute covariance matrix.
 Read the following link on how to compute covariance matrix: https://www.cuemath.com/algebra/covariance-matrix/
- 2. python scripts for computing the same https://www.geeksforgeeks.org/python-numpy-cov-function/
- 3. Search for python functions to compute inverse and determinants of matrix.