An extension of the theorem of

contraction mapping and fixed point¹

胡悦科²

(I) A specific problem

T is a mapping on Banach space and satisfies

$$||Tx - Ty|| \le \alpha [p||Tx - y|| + (1 - p)||x - Ty||]$$
, (*)

where $0 < \alpha < 1$, $0 \le p \le 1$, and x y are any two points in the space. One can claim that there is a unique point in the space that satisfies Tx = x.

Lemma 1. For any trial point x, the sequence $\{x, Tx, T^2x, T^3x ...\}$ is bounded.

Proof. Define index sets $A_k = \{1, 2, 3 \dots 2^k\}$ for $k \ge 0$. Define $M_k = \max_{i \in A_k} \{ ||T^i x - x|| \}$. Then

for $i \in A_{k+1} \setminus A_k$

$$||T^{i}x - x|| \le ||T^{i}x - T^{2^{k}}x|| + ||T^{2^{k}}x - x|| \le ||T^{i}x - T^{2^{k}}x|| + M_{k}$$

For the first term on the right, apply (*) once and one can get

$$\left\| T^{i}x - T^{2^{k}}x \right\| \leq \alpha \left[p \left\| T^{i}x - T^{2^{k}-1}x \right\| + (1-p) \left\| T^{i-1}x - T^{2^{k}}x \right\| \right]$$

Apply (*) to every term on the right and one gets

$$\left\| T^{i}x - T^{2^{k}} x \right\| \leq \alpha^{2} \left[p^{2} \left\| T^{i}x - T^{2^{k}-2} x \right\| + 2 p(1-p) \left\| T^{i-1}x - T^{2^{k}-1} x \right\| + (1-p)^{2} \left\| T^{i-2}x - T^{2^{k}} x \right\| \right]$$

Carry out the process for a total of 2^k times and one gets

$$\begin{split} \left\| T^{i}x - T^{2^{k}}x \right\| &\leq \alpha^{2^{k}} \left[p^{2^{k}} \left\| T^{i}x - x \right\| + \binom{2^{k}}{1} p^{2^{k}-1} (1-p) \left\| T^{i-1}x - T^{1}x \right\| \\ &+ \binom{2^{k}}{2} p^{2^{k}-2} (1-p)^{2} \left\| T^{i-2}x - T^{2}x \right\| + \ldots + (1-p)^{2^{k}} \left\| T^{i-2^{k}}x - T^{2^{k}}x \right\| \right] \end{split}$$

For any term on the right which has the form of $\|T^{i-j}x - T^jx\|$, where $1 \le j \le 2^k$

$$||T^{i-j}x - T^{j}x|| \le ||T^{i-j}x - x|| + ||x - T^{j}x|| \le 2M_{k+1}$$

Thus

 $^{^{1}}$ 本文是作者在 2008 年春季学期泛函分析课程中推导出的结果。 2 基数 52。

$$\|T^{i}x - T^{2^{k}}x\| \le 2\alpha^{2^{k}} M_{k+1} [p^{2^{k}} + \binom{2^{k}}{1} p^{2^{k}-1} (1-p) + \binom{2^{k}}{2} p^{2^{k}-2} (1-p)^{2} + \dots + (1-p)^{2^{k}}]$$

$$= 2\alpha^{2^{k}} M_{k+1}$$

Suppose i_0 is the index that $\|T^ix-x\|$ reaches M_{k+1} . If $i_0\in A_{k+1}\setminus A_k$, then from result above one gets $M_{k+1}\leq 2\alpha^{2^k}M_{k+1}+M_k$, or $M_{k+1}\leq M_k/(1-2\alpha^{2^k})$ for large enough k such that $1-2\alpha^{2^k}>0$. Otherwise, if $i_0\in A_k$, then $M_{k+1}\leq M_k$, and the relation $M_{k+1}\leq M_k/(1-2\alpha^{2^k})$ also holds. Thus for any N>k

$$M_N \le M_k \frac{1}{1 - 2\alpha^{2^k}} \frac{1}{1 - 2\alpha^{2^{k+1}}} \frac{1}{1 - 2\alpha^{2^{k+2}}} \dots \frac{1}{1 - 2\alpha^{2^{N-1}}}$$

The product $\frac{1}{1-2\alpha^{2^k}} \frac{1}{1-2\alpha^{2^{k+1}}} \frac{1}{1-2\alpha^{2^{k+2}}} \dots \frac{1}{1-2\alpha^{2^{N-1}}} \dots$ converges if and only if the

summation $\sum_{i\geq k}\ln(1-2\alpha^{2^i})$ converges. And the convergence of latter is equivalent to the

convergence of $\sum_{i>k} 2\alpha^{2^i}$, which is quite obvious. So there is an upper bound on M_k .

QED

Define $M = \sup\{\|T^i x - x\|\}$. According to the lemma, it is finite.

Corollary. For any point x, the sequence $\{x, Tx, T^2x, T^3x ...\}$ converges to some point x_0

Proof. Suppose $m \ge n$, then apply (*) n times. As in the proof of lemma 1, one gets

$$||T^{m}x - T^{n}x|| \le \alpha^{n} [p^{n}||T^{m}x - x|| + \binom{n}{1} p^{n-1} (1-p)||T^{m-1}x - T^{1}x||$$

$$+ \binom{n}{2} p^{n-2} (1-p)^{2} ||T^{m-2}x - T^{2}x|| + \dots + (1-p)^{n} ||T^{m-n}x - T^{n}x||]$$

$$\le 2\alpha^{n} M$$

Obviously it goes to 0 when $m, n \to \infty$. $\{x, Tx, T^2x, T^3x ...\}$ is a Cauchy sequence and converges to some point x_0 in the space. **QED**

Lemma 2. For T that satisfies (*), it has a fixed point.

Proof. The only thing one has to do is to prove that for the convergent sequence $\{T^ix'\}$, its

limit point x_0 is a fixed point. Let $x = T^n x'$, and $y = x_0$ in the inequality (*), then

$$||T^{n+1}x - Tx_0|| \le \alpha [p||T^{n+1}x - x_0|| + (1-p)||T^nx - Tx_0||]$$

Let $n \to \infty$, one gets

$$||x_0 - Tx_0|| \le \alpha [p||x_0 - x_0|| + (1-p)||x_0 - Tx_0||] = \alpha (1-p)||x_0 - Tx_0||$$

It holds only when $||x_0 - Tx_0|| = 0$. This is what we want. **QED**

Lemma 3. T has at most one fixed point.

Proof. Suppose Tx = x and Ty = y. Apply (*),

$$||x - y|| = ||Tx - Ty|| \le \alpha [p||Tx - y|| + (1 - p)||x - Ty||] = \alpha ||x - y||$$

It holds only when ||x - y|| = 0.

QED

Thus the claim in the beginning is proved.

(II)General cases

For T that satisfies(*), there is a much easier way to prove that $\{x, Tx, T^2x, T^3x ...\}$ converges. But the method used above can be applied to more general cases. Consider T that satisfies

$$||T^{m}x - T^{n}y|| \le \alpha \sum_{i=1}^{t} p_{i} ||T^{m-a_{i}}x - T^{n-b_{i}}y||$$
(**)

Where $\sum_{i=1}^{t} p_i = 1, 0 \le p_i \le 1, 0 < \alpha < 1$, integers $a_i, b_j \ge 0$, $\max\{a_i\} \le m$, $\max\{b_i\} \le n$.

Lemma 4. For mapping that satisfies(**), the sequence $\{x, Tx, T^2x, T^3x ...\}$ is bounded for any point x.

Proof. Define A_k and M_k as one does in the proof of lemma 1. Use $\begin{pmatrix} n \\ s_1 & s_2 & \cdots & s_t \end{pmatrix}$,

 $\sum_{i=1}^{t} s_i = n \text{ to denote the coefficient of the term } p_1^{s_1} p_2^{s_2} \cdots p_k^{s_t} \text{ when one expands}$

 $(p_1 + p_2 + \dots + p_t)^n$. Define $l_k = [\min_{1 \le i \le t} \{2^k / a_i, 2^k / b_i\}]$, where [x] is the largest integer that

is no larger than x. For large enough k such that $2\alpha^{l_k} < 1$, one has similar results as in

lemma 1. For $i \in A_{k+1} \setminus A_k$

$$||T^{i}x - x|| \le ||T^{i}x - T^{2^{k}}x|| + M_{k}.$$

Then apply (**) l_k times to the first term on the right

$$\left\| T^{i}x - T^{2^{k}}x \right\| \leq \alpha^{l_{k}} \sum_{s_{1} + \dots + s_{s} = l_{t}} \begin{pmatrix} l_{k} & \\ s_{1} & s_{2} & \dots & s_{t} \end{pmatrix} p_{1}^{s_{1}} p_{2}^{s_{2}} \cdots p_{t}^{s_{t}} \left\| T^{i - s_{1}a_{1} - \dots - s_{t}a_{t}}x - T^{2^{k} - s_{1}b_{1} - \dots s_{t}b_{t}}x \right\|$$

Notice that $i - s_1 a_1 - \dots - s_t a_t$ and $2^k - s_1 b_1 - \dots - s_t b_t$ in the terms on the right are always larger than or equals 0, according to the definition of l_k .

Then $\left\|T^{i-s_1a_1-\cdots-s_ta_t}x-T^{2^k-s_1b_1-\cdots s_tb_t}x\right\| \leq 2M_{k+1}$ holds for all terms on the right, and

$$\left\| T^{i}x - T^{2^{k}}x \right\| \leq 2\alpha^{l_{k}} M_{k+1} \sum_{s_{1} + \dots + s_{t} = l_{k}} {l_{k} \choose s_{1} \quad s_{2} \quad \dots \quad s_{t}} p_{1}^{s_{1}} p_{2}^{s_{2}} \cdots p_{t}^{s_{t}} = 2\alpha^{l_{k}} M_{k+1}$$

$$M_{k+1} \leq M_k / (1 - 2\alpha^{l_k})$$

Notice that as k adds up, l_k also increases. Then for large enough k, $\sum_{i\geq k} 2\alpha^{l_i}$ is smaller than $\sum_{j\geq 1} 2\alpha^j$ (the set $\{l_i\}_{i\geq k}$ being just a subset of all positive integers) and thus converges.

So M_k have an upper bound M.

QED

Corollary. For T that satisfies (**) and any point x, the sequence $\{x, Tx, T^2x, T^3x ...\}$ converges to some point x_0 .

Lemma 5. For T that satisfies (**), there is at most one fixed point.

Lemma 6. Suppose $m \ge 1$, n = 1, then the limit point x_0 for a convergent sequence $\{x', Tx', T^2x', T^3x'...\}$ is the fixed point for T

Proof. Let $x = T^k x'$, and $y = x_0$ as in the proof of lemma 2. Apply (**)

$$\left\| T^{m+k} x' - Tx_0 \right\| \le \alpha \left[\sum_{b=1}^{n} p_i \right\| T^{m+k-a_i} x' - x_0 + \sum_{b=0}^{n} p_i \left\| T^{m+k-a_i} x' - Tx_0 \right\| \right]$$

Let $k \to \infty$, one gets

$$||x_0 - Tx_0|| \le \alpha \sum_{b_i=0} p_i ||x_0 - Tx_0||$$

It holds only when $||x_0 - Tx_0|| = 0$.

QED

There is some difficulty to prove that the limit point x_0 is the fixed point for T when both m and n is larger than 1. The condition of continuity of T is required to deal with such cases easily. Then one can apply the limit process on both sides of the equation $T^{n+1}x = T \circ T^n x$ and claim that the limit point is the fixed point. Thus the following theorem is now valid.

Theorem. If a mapping T on Banach space satisfies

$$||T^m x - T^n y|| \le \alpha \sum_{i=1}^t p_i ||T^{m-a_i} x - T^{n-b_i} y||,$$

where $\sum_{i=1}^{t} p_i = 1$, $0 \le p_i \le 1$, $0 < \alpha < 1$, $a_i, b_j \ge 0$, $\max\{a_i\} \le m$, $\max\{b_i\} \le n$. And if m or n equals 1, or T is continuous, then there is a unique fixed point for T.

Mathematical Quotations

Hardy, Godfrey H. (1877 - 1947)

The mathematician's patterns, like the painter's or the poet's must be beautiful; the ideas, like the colors or the words must fit together in a harmonious way. Beauty is the first test: there is no permanent place in this world for ugly mathematics.

Hilbert, David (1862-1943)

Mathematics knows no races or geographic boundaries; for mathematics, the cultural world is one country.