Inhaltsverzeichnis

	$0.1 \\ 0.2$	_	keit in einer Dimension			
	0.2	Zwer	Jondenane	J		
1	Diff	fferentialrechnung in höheren Dimensionen				
	1.1	Topolo	ogie			
		1.1.1	Korollar	5		
		1.1.2	Konvention	6		
		1.1.3	Definition der ε -Umgebung	6		
		1.1.4	Topologische Grundbegriffe	6		
		1.1.5	Definition von offen und abgeschlossen	6		
		1.1.6	Beispiele	6		
		1.1.7	Satz	7		
		1.1.8	Satz	7		
		1.1.9	Satz	8		
		1.1.10	Definition von beschränkt und kompakt	8		
	1.2	Folgen	1	8		
		1.2.1	Definition von Konvergenz und Beschränktheit	8		
		1.2.2	Bemerkung	8		
		1.2.3	Satz von Bolzano Weierstraß	9		
		1.2.4	Abschließende Bemerkungen	9		
	1.3	Funkt	ionsgrenzwerte und Stetigkeit	9		
		1.3.1	Definition	9		
		1.3.2	Definition Grenzwert/Limes	9		
		1.3.3	Bemerkung			
		1.3.4	Beispiel	10		
		1.3.5	Lemma Folgenkriterium	10		
		1.3.6	Satz zu Grenzwerte verketteter Funktionen			
		1.3.7	Beispiel	10		
		1.3.8	Definition der Stetigkeit	11		
		1.3.9	Bemerkung			
	1.4	Partie	lle Ableitungen, Richtungsableitungen			
		1.4.1	Definition der partiellen Ableitung			
		1.4.2	Beispiel			
		1.4.3	Definition der Richtungsableitung			
	1.5		Differenzierbarkeit			
		1.5.1	Definition der totalen Differenzierbarkeit	12		
		1.5.2	Beispiele			
		1.5.3	Satz			
		1.5.4	Satz			
		1 5 5	Domorleung	1.4		

	1.5.6	Satz zur Kettenregel	14
1.6	Lokale	Extremstellen und Mittelwertsätze	14
	1.6.1	Definition lokale/globale Extremstellen	14
	1.6.2	Satz zur notwendigen Bedingung für eine lokale Extremstelle	15
	1.6.3	Definition des kritischen Punktes	15
	164	Mittelwertsatz	15

Einführung

Stetigkeit in einer Dimension 0.1

f ist stetig in x_0 $\Leftrightarrow \quad \lim_{x \to x_0} f(x) = f(x_0)$ $\Leftrightarrow \forall (x_n) \text{ mit } \lim_{n \to \infty} x_n = x_0 \text{ gilt } \lim_{n \to \infty} f(x_n) = f(x_0)$

 $\Leftrightarrow \forall \varepsilon > 0 \quad \exists \delta \quad \text{mit} \quad |f(x) - f(x_0)| < \varepsilon \quad \forall x \in (x_0 - \delta, x_0 + \delta)$

Bemerkung: Der Grenzwert von Funktionen ist über den Grenzwert von Folgen definiert und kann auch nur so überprüft werden.

0.2Zwei Sonderfälle

Skalarfeld

Sei $f: \mathbb{R}^2 \to \mathbb{R}$

Visualisierung durch Höhenlinien: $H_c := \{x \in \mathbb{R}^n : f(x) = c\}$ Beispiel: $f(x,y) = x^2 + y^2$

Vektorfeld

Sei $f: \mathbb{R}^2 \to \mathbb{R}^2$

Beispiel: $f(x,y) = \begin{pmatrix} x \\ y \end{pmatrix}$

Kapitel 1

Differentialrechnung in höheren Dimensionen

1.1 Topologie

Skalarprodukt

Definition: $\langle x, y \rangle := x^{\top} y = \sum_{k=1}^{n} x_k y_k$ für $x, y \in \mathbb{R}^n$

Euklidische Norm

Definition:
$$||x||_2 := \sqrt{\langle x, x \rangle} = \sqrt{\sum_{k=1}^n x_k^2}$$

1.1.1 Korollar

Sei
$$x \in \mathbb{R}^n$$
 mit $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

1.

$$\max_{1\leqslant k\leqslant n}|x_k|\leqslant \|x\|\leqslant \sqrt{n}\max_{1\leqslant k\leqslant n}|x_k|$$

2. Cauchy-Schwarz-Ungleichung:

$$\forall x, y \in \mathbb{R}^n : |\langle x, y \rangle| \leqslant ||x|| \cdot ||y||$$

Begründung (nicht Beweis!) durch alternative Definition: $\langle x, y \rangle = \|x\| \cdot \|y\| \underbrace{\cos \alpha}_{\leqslant 1}$

Dabei ist α der Winkel der zwischen x und y eingeschlossen wird. Daraus folgt:

$$|\langle x,y\rangle|=\|x\|\cdot\|y\|\Leftrightarrow x,y$$
 sind lin. unabhängig : $x=\lambda y$ oder $y=\lambda x$ für $\lambda\in\mathbb{R}$

- 3. $\|\cdot\|$ ist eine Norm. Eine Norm hat folgende Eigenschaften:
 - (i) $||x|| \ge 0$ und $||x|| = 0 \Leftrightarrow x = 0$
 - (ii) $\|\lambda x\| = |\lambda| \cdot \|x\|$
 - (iii) $||x + y|| \le ||x|| + ||y||$ Dreiecksungleichung

1.1.2 Konvention

Für $A \subset \mathbb{R}^n$ gilt für das Komplement $A^c = \mathbb{R}^n \setminus A$

1.1.3 Definition der ε -Umgebung

Sei $x_0 \in \mathbb{R}^n$ und $\varepsilon > 0$, dann gilt für die ε -Umgebung $U_{\varepsilon}(x_0)$ von x_0 :

$$U_{\varepsilon}(x_0) := \{ x \in \mathbb{R}^n : ||x - x_0|| < \varepsilon \}$$

Bemerkung: Die punktierte ε -Umgebung ist definiert als: $\dot{U}_{\varepsilon} = U_{\varepsilon}(a) \setminus \{a\}$

1.1.4 Topologische Grundbegriffe

Sei $A \subset \mathbb{R}^n$, dann heißt ein Punkt $x_0 \in \mathbb{R}^n$

- (i) ein **innerer Punkt**, wenn gilt $\exists \ \varepsilon > 0$ mit $U_{\varepsilon}(x_0) \subset A$ Menge aller inneren Punkte: $\mathring{A} = \{x \in \mathbb{R}^n : \exists \ \varepsilon > 0 \text{ mit } U_{\varepsilon}(x) \subset A\}$
- (ii) ein **Berührungspunkt**, wenn $\forall \ \varepsilon > 0$ gilt $U_{\varepsilon}(x_0) \cap A \neq \emptyset$ abgeschlossene Hülle: $\overline{A} = \{x \in \mathbb{R}^n : \forall \ \varepsilon > 0 \text{ gilt } U_{\varepsilon}(x_0) \neq \emptyset\}$
- (iii) ein **Häufungspunkt**, wenn $\forall \varepsilon > 0$ gilt $(U_{\varepsilon}(x_0) \setminus \{x_0\}) \cap A \neq \emptyset$ Die Menge aller Häufungspunkte wird mit A' bezeichnet.
- (iv) ein **Randpunkt**, wenn $\forall \varepsilon > 0$ gilt $U_{\varepsilon}(x_0) \cap A \neq \emptyset$ und $U_{\varepsilon}(x_0) \cap A^c \neq \emptyset$ Menge aller Randpunkte oder auch **Rand** von A wird mit ∂A bezeichnet.

Korollar

- (i) $\mathring{A} \subset A$
- (ii) $\mathring{A} \subset \overline{A}$
- (iii) $\partial A \subset \overline{A}$
- (iv) $\overline{A} = \mathring{A} \cup \partial A$
- (v) $\overline{A} = A \cup \partial A$ (schwächere Aussage als (iv))

1.1.5 Definition von offen und abgeschlossen

Eine Menge $A \subset \mathbb{R}^n$ heißt

- (i) **offen**, wenn $A = \mathring{A}$ gilt (A besteht nur aus inneren Punkten)
- (ii) **abgeschlossen**, wenn $\partial A \subset A$ gilt (wenn der Rand in der Menge enthalten ist)

1.1.6 Beispiele

- 1. Jede ε -Umgebung $U_{\varepsilon}(x_0 \in \mathbb{R}^n)$ ist offen
- 2. Sei $I \subset \mathbb{R}$, dann gilt
 - (i) I ist offen, wenn I=(a,b) mit $-\infty \leqslant a \leqslant b \leqslant \infty$ für a=b gilt $I=\varnothing$ mit I offen und für $a=-\infty, b=\infty$ ist I auch offen

1.1. TOPOLOGIE 7

(ii)
$$I$$
 ist abgeschlossen, wenn $I = [a, b]$ mit $a, b \in \mathbb{R}$ oder $I = (-\infty, b]$ oder $I = [a, \infty)$ oder $I = (-\infty, \infty) = \mathbb{R}$

(die reellen Zahlen sind offen und abgeschlossen zugleich)

1.1.7 Satz

für $A \subset \mathbb{R}^n$ sind folgenden Aussagen äquivalent:

- (i) A ist abgeschlossen $A = \overline{A}$
- (ii) A enthält alle Häufungspunkte, $A' \subset A$
- (iii) A enthält alle Randpunkte, $\partial A \subset A$
- (iv) A^c ist offen

1.1.8 Satz

- (i) \varnothing und \mathbb{R}^n sind offen.
- (ii) Die Vereinigung beliebig vieler offene Mengen ist offen:

$$\bigcup_{j \in J} (O_j \text{ offen}) = O \text{ offen}$$

(iii) Der Durchschnitt endlich vieler offener Mengen ist offen:

$$\bigcap_{j=1}^{n} (O_j \text{ offen}) = O \text{ offen}$$

Bemerkung: Für unendlich viele offene Mengen gilt dies nicht immer:

$$\bigcap_{k=1}^{\infty} \left(-\frac{1}{k}, \frac{1}{k}\right) = (-1, 1) \cap \left(-\frac{1}{2}, \frac{1}{2}\right) \cap \left(-\frac{1}{3}, \frac{1}{3}\right) \cap \ldots = \{0\} \text{ abgeschlossen}$$

Beispiel

Seien A_1, A_2 zwei abgeschlossene Mengen, dann gilt

(i) $A_1 \cup A_2$ ist abgeschlossen $Beweisidee: A_1$ ist abgeschlossen $\Rightarrow A_1^c$ ist offen

$$(A_1 \cup A_2)^c \stackrel{\text{De Morgan}}{=} \underbrace{A_1^c}_{\text{offen}} \cap \underbrace{A_2^c}_{\text{offen}} \text{ ist offen wegen Satz } 1.1.8$$

 $((A_1 \cup A_2)^c)^c = A_1 \cup A_2 \text{ ist abgeschlossen}$

8

1.1.9 Satz

- (i) \varnothing und \mathbb{R}^n sind abgeschlossen.
- (ii) Der Durchschnitt beliebig vieler abgeschlossener Mengen ist abgeschlossen:

$$\bigcap_{j \in J} (A_j \text{ abgeschlossen}) = A \text{ abgeschlossen}$$

(iii) Die Vereinigung endlich vieler abgeschlossenen Mengen ist abgeschlossen:

$$\bigcup_{j=1}^{n} (A_j \text{ abgeschlossen}) = A \text{ abgeschlossen}$$

Bemerkung: Für unendlich viele abgeschlossene Mengen gilt dies nicht immer:

$$\bigcup_{k=1}^{\infty} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right] = \{0\} \cup \left[-\frac{1}{2}, \frac{1}{2} \right] \cup \left[-\frac{2}{3}, \frac{2}{3} \right] \cup \dots = (-1, 1) \text{ offen}$$

1.1.10 Definition von beschränkt und kompakt

Eine Menge $A \subset \mathbb{R}^n$ heißt:

- (i) **beschränkt** wenn $\exists c > 0$ mit $||x|| < c \quad \forall x \in A$
- (ii) kompakt, wenn A abgeschlossen und beschränkt ist.

1.2 Folgen

1.2.1 Definition von Konvergenz und Beschränktheit

Eine Folge $(a_k)_{k=1}^{\infty}$ heißt

(i) konvergent, wenn gilt

$$\exists a \in \mathbb{R}^n \quad \text{mit} \quad \forall \varepsilon > 0 \quad \exists N(\varepsilon) : \quad ||a_k - a|| \quad \forall k \geqslant N(\varepsilon)$$

Dann ist a der Grenzwert der Folge:

$$a = \lim_{k \to \infty} a_k$$
 oder $a_k \stackrel{k \to \infty}{\to} a$

(ii) **beschränkt**, wenn $\exists c > 0$ mit $||a_k|| < c \quad \forall k$

1.2.2 Bemerkung

Wenn eine Folge
$$(a_k) = \begin{pmatrix} a_1^{(k)} \\ \vdots \\ a_n^{(k)} \end{pmatrix} \in \mathbb{R}^n$$
 konvergiert, so gilt

(i) \Leftrightarrow jede Komponente $\left(a_1^{(k)}\right),...,\left(a_n^{(k)}\right)$ konvergiert:

$$\lim_{k \to \infty} a_k = a \quad \Leftrightarrow \quad \lim_{k \to \infty} a_i^{(k)} = a_i \quad \text{für } i = 1, ..., n$$

(ii) \Leftrightarrow (a_k) erfüllt das Cauchy-Kriterium:

$$\forall \varepsilon > 0 \quad \exists N(\varepsilon) : \quad ||a_k - a_l|| < \varepsilon \quad \forall k, l \geqslant N(\varepsilon)$$

- (iii) \Leftrightarrow jede Teilfolge von (a_k) konvergiert gegen $a: a_{l_k} \stackrel{k \to \infty}{\to} a$ für $l_1 \geqslant 1, l_2 \geqslant 2, ...$
- (iv) der Grenzwert a ist eindeutig.

1.2.3 Satz von Bolzano Weierstraß

Jede beschränkte Folge im \mathbb{R}^n besitzt einen konvergente Teilfolge.

Beispiele

- (i) n = 1: Sei $A \leq (a_k) \leq B \quad \forall k$. Konstruiert man eine neue Schranke mit $\frac{A+B}{2}$ so liegen wiederum ∞ viele Elemente in der oberen und/oder unteren Hälfte.
- (ii) Sei $(a_k) = \begin{pmatrix} (x_k) \\ (y_k) \end{pmatrix}$ eine beschränkte Folge im \mathbb{R}^2 $\Rightarrow (x_k), (y_k) \text{ sind beschränkte Folgen}$ Satz von
 Bolzano
 Wierstraß $\exists (x_k), (y_k) \text{ sind konvergent}$

1.2.4 Abschließende Bemerkungen

- (i) Grenzwert Rechenregeln können aus dem \mathbb{R} für \mathbb{R}^n übernommen werden. z.b. $a_k \overset{k \to \infty}{\longrightarrow} a, \quad b_k \overset{k \to \infty}{\longrightarrow} b \quad \Rightarrow \quad a_k^\top b_k \overset{k \to \infty}{\longrightarrow} a^\top b$
- (ii) Es gibt viele Zusammenhänge zwischen den Eigenschaften von Folgen und den topologischen Eigenschaften von Mengen. z.b. Sei $A \subset \mathbb{R}^n$ und $a \in \mathbb{R}^n$ ein Häufungspunkt $\Leftrightarrow \exists (a_k)_{k=1}^{\infty} \text{ mit } a_k \in A \setminus \{a\} \, \forall \, k \quad \text{und} \quad a_k \overset{k \to \infty}{\to} a$

1.3 Funktionsgrenzwerte und Stetigkeit

1.3.1 Definition

Eine Funktion $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ nennt man eine Funktion mit n-Veränderlichen.

$$f(x_1, ..., x_n) = f\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} f_1(x_1, ..., x_n) \\ \vdots \\ f_m(x_1, ..., x_n) \end{pmatrix} \quad \text{mit} \quad f_1, ..., f_m : \mathbb{R}^n \to \mathbb{R}$$

1.3.2 Definition Grenzwert/Limes

Sei $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ und $a\in\overline{A}$. Ein $b\in\mathbb{R}^m$ heißt Grenzwert von f für $x\to a$, wenn gilt:

$$\forall \varepsilon > 0 \quad \exists \ \delta(\varepsilon) > 0 : \quad ||f(x) - b|| < \varepsilon \quad \forall \ x \in \dot{U}_{\delta(\varepsilon)}(a) \cap A$$

Bemerkung: Die Funktion f muss in a nicht stetig sein, so kann z.b. gelten: $\lim_{x\to a} f(x) = b \neq f(a)$

1.3.3 Bemerkung

Sei $f:A\subset\mathbb{R}^n\to\mathbb{R}^m, a\in\overline{A}, b\in\mathbb{R}^m$ dann sind folgende Aussagen äquivalent:

(i)
$$f(x) \stackrel{x \to a}{b}$$

(ii)
$$||f(x) - b|| \stackrel{x \to a}{0} \in \mathbb{R}^1$$
 (Eine Norm bildet immer auf ein Skalar ab)

(iii)
$$f_1(x) \stackrel{x \to a}{\to} b_1, ..., f_m(x) \stackrel{x \to a}{\to} b_m$$

Zusätzlich gilt das Cauchy-Kriterium:

$$\lim_{x \to a} f(x) = b \quad \Leftrightarrow \quad \forall \ \varepsilon > 0 \ \exists \ \delta(\varepsilon) > 0 : \quad \|f(x), f(y)\| < \varepsilon \quad \forall \ x, y \in \dot{U}_{\delta(\varepsilon)}(a) \cap A$$

1.3.4 Beispiel

Sei
$$f(x,y) = \frac{xy}{x^2 + y^2}$$

$$a_k = \begin{pmatrix} x_k \\ y_k \end{pmatrix} = \begin{pmatrix} \frac{1}{k} \\ \frac{1}{k} \end{pmatrix}, \quad f(a_k) = \frac{\frac{1}{k^2}}{\frac{1}{k^2} + \frac{1}{k^2}} = \frac{1}{2} \quad \forall \ k$$

$$b_k = \begin{pmatrix} x_k \\ 0 \end{pmatrix} \text{ mit } x_k \stackrel{k \to \infty}{\to} 0, \quad f(b_k) = \frac{0}{x_k^2} \quad \forall \ k$$

Da $\lim_{k\to\infty} f(a_k) = \frac{1}{2} \neq 0 = \lim_{k\to\infty} f(b_k)$ kann der Grenzwert nicht existieren.

1.3.5 Lemma Folgenkriterium

Sei $f: A \subset \mathbb{R}^n \to \mathbb{R}^m, a \in \overline{A}$

$$\underbrace{\exists b \in \mathbb{R}^m \text{ mit } \lim_{x \to a} f(x) = b}_{\text{der Grenzwert } b \text{ existiert}} \quad \Leftrightarrow \quad \underbrace{\underbrace{\text{jede Folge } (x_k)_{k=1}^{\infty} \subset A \text{ mit } x_k \neq a \ \forall \ k \text{ und } x_k \overset{k \to \infty}{\to} a}_{\text{jede beliebige Folge konvergiert gegen } b}$$

1.3.6 Satz zu Grenzwerte verketteter Funktionen

Sei
$$A \subset \mathbb{R}^n, B \subset \mathbb{R}^m, a \in \overline{A}, f : A \to B, g : \overline{B} \to \mathbb{R}^l$$

$$\exists \ b \in \overline{B} \ \mathrm{mit} \ \lim_{x \to a} f(x) = b, \quad \exists \ c \in \mathbb{R}^l \ \mathrm{mit} \ \lim_{y \to b} g(y) = c \quad \Rightarrow \quad \lim_{x \to a} \underbrace{g\left(f(x)\right)}_{(g \circ f)(x)} = \lim_{y \to b} g(y) = c$$

1.3.7 Beispiel

Sei
$$f(x,y) = e^{-x^2+y^2} = \exp(g(x,y))$$
 mit $g(x,y) = x^2 + y^2$, dabei gilt:

$$\lim_{(x,y)^{\top} \to (0,0)^{\top}} g(x,y) = \lim_{(x,y)^{\top} \to (0,0)^{\top}} x^2 + y^2 = 0 \quad \Rightarrow \quad \lim_{z \to 0} f(z) = \lim_{z \to 0} e^z = 1$$

1.3.8 Definition der Stetigkeit

Sei $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$

(i) f ist **stetig** in $a \in A$ wenn gilt:

$$\forall \ \varepsilon > 0 \ \exists \delta(\varepsilon) : \quad \|f(x) - f(a)\| < \varepsilon \quad \forall \ x \in U_{\delta(\varepsilon)}(a) \cap A$$

Bemerkung: Es wird $\lim_{x\to a} f(x) = f(a)$ gefordert.

Diese Definition unterscheidet sich in der nicht punktierten ε -Umgebung und es gilt f(a) anstatt b.

(ii) f ist stetig auf A, wenn f in jedem Punkt $a \in A$ stetig ist.

1.3.9 Bemerkung

- (i) Kompositionen stetiger Funktionen sind wieder stetig: f, g stetig $\Rightarrow f + g, f g, ...$ stetig
- (ii) Das Folgenkriterium überträgt sich: Sei $(a_k)_{k=1}^{\infty}$ eine Folge in A mit $\lim_{k\to\infty} a_k = a$ \Leftrightarrow $\lim_{k\to\infty} f(a_k) = f(a)$
- (iii) Ist A kompakt, dann nimmt eine stetige Funktion $f: A \to \mathbb{R}$ immer ein Maximum und Minimum an:

$$\exists x_m, x_M \in A \text{ mit } f(x_m) = \min_{x \in A} f(x), f(x_M) = \max_{x \in A} f(x)$$

1.4 Partielle Ableitungen, Richtungsableitungen

1.4.1 Definition der partiellen Ableitung

Die Funktion $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ heißt **partielle differenzierbar** in $a \in A$ nach der k-ten Variable x_k mit $k \in \{1, ..., n\}$ wenn der folgender Grenzwert existiert:

$$\frac{\partial}{\partial x_k} f(a) = f_{x_k}(a) = \lim_{h \to 0} \frac{f(a + h \cdot e_k) - f(a)}{h}$$

Existieren alle partielle Ableitungen $f_{x_1}(a), ..., f_{x_n}(a)$, dann ist der **Gradient** von f wie folgt definiert:

$$\nabla f(a) = \begin{pmatrix} f_{x_1}(a) \\ \vdots \\ f_{x_n}(a) \end{pmatrix}$$

und die Funktion f heißt mindestens einmal partielle differenzierbar. Sind die partiellen Ableitungen $f_{x_1}(a), ..., f_{x_n}(a)$ zudem stetig, so heißt f einmal stetig differenzierbar: $f \in C^1(A, \mathbb{R}^m)$ oder kurz $f \in C^1(A)$.

1.4.2 Beispiel

Sei
$$f(x, y, z) = x^2 - xy + 3z$$

$$\begin{split} \frac{\partial}{\partial x}f(x,y,z) &= \lim_{h \to 0} \frac{f(x+h,y,z) - f(x,y,z)}{h} \\ &= \lim_{h \to 0} \frac{(x+h)^2 - (x+h)y + 3z - (x^2 - xy + 3z)}{h} \\ &= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} - \frac{(x+h)y - xy}{h} + \frac{3z - 3z}{h} \\ &= \left(\frac{d}{dx}x^2\right) - \left(\frac{d}{dx}x\right)y + \left(\frac{d}{dx}0\right)z \\ &= 2x - y + 0 \\ \Rightarrow \nabla f(x,y,z) = \begin{pmatrix} 2x - y \\ -x \\ 3 \end{pmatrix} \end{split}$$

1.4.3 Definition der Richtungsableitung

Sei $a, r \in \mathbb{R}^n$ mit ||r|| = 1 (normiert), $f : \mathbb{R}^n \to \mathbb{R}^m$, dann heißt der folgende Grenzwert die Richtungsableitung von f bei a in Richtung r:

$$\frac{\partial}{\partial r}f(a) = f_r(a) = \lim_{h \to 0} \frac{f(a+h \cdot r) - f(a)}{h}$$

Bemerkung

- (i) Ist $r = e_k$, dann erhalten wir gerade eine partielle Ableitung.
- (ii) Es gibt Funktionen die in a in <u>jede Richtung differenzierbar</u> sind, aber in a <u>nicht stetig</u> sind!

1.5 Total Differenzierbarkeit

Idee: Differenzierbare Funktionen sind lokal im Punkt x_0 linear approximierbar:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \underbrace{r(x)||x - x_0||}_{\bar{r}(x)}$$

Dabei muss der Fehler $\tilde{r}(x) = r(x)||x - x_0||$ schneller gegen Null gehen als x gegen x_0 also muss $\tilde{r}(x) = o(x - x_0)$ gelten (Landau-Notation: klein-oh).

1.5.1 Definition der totalen Differenzierbarkeit

Sei $f: A \subset \mathbb{R}^n \to \mathbb{R}^m, A$ offen, $x_0 \in A$

(i) Die Funktion f nennt man **total differenzierbar** bei x_0 , wenn eine Matrix $A \in \mathbb{R}^{m \times n}$ existiert, mit der sich die Funktion f in einer ε -Umgebung um x_0 mittels einer Hyperebene approximieren lässt:

$$f(x) = f(x_0) + A(x - x_0) + r(x)||x - x_0||$$

Dann nennt man die Matrix $A = f'(x_0) = \frac{\partial}{\partial x} f(x_0)$ die total Ableitung von f in x_0 .

(ii) Ist $f = \begin{pmatrix} f_1 \\ \vdots \\ f_m \end{pmatrix}$ partiell diff'bar, so nennt man die Ableitung **Jacobi-Matrix**:

$$f'(x_0) = \frac{\partial}{\partial x} f(x_0) = J_f(x_0) = \begin{pmatrix} \frac{\partial}{\partial x_1} f_1(x_0) & \dots & \frac{\partial}{\partial x_n} f_1(x_0) \\ \vdots & & \vdots \\ \frac{\partial}{\partial x_1} f_m(x_0) & \dots & \frac{\partial}{\partial x_n} f_m(x_0) \end{pmatrix} \in \mathbb{R}^{m \times n}$$

Bemerkung: Es gilt: $\exists f'(x_0) \Rightarrow f'(x_0) = J_f(x_0)$, nicht aber die Gegenrichtung! Es kann also sein, dass die Jacobi-Matrix J_f existiert die Funktion aber nicht total diff'bar ist.

1.5.2 Beispiele

(i)

$$f(r,\varphi) = r \cdot \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix} \quad \Rightarrow \quad J_f = \begin{pmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{pmatrix}$$

(ii)
$$f(x) = a + b^{\top}(x - x_0), \quad f : \mathbb{R}^n \to \mathbb{R}, \quad a \in \mathbb{R}, \quad b, x_0 \in \mathbb{R}^n$$

 $\Rightarrow \quad f(x_0) = a, \quad f'(x_0) = b^{\top}$

(iii)
$$f(x) = a + A(x - x_0), \quad f: \mathbb{R}^n \to \mathbb{R}^m, \quad a \in \mathbb{R}^m, \quad A \in \mathbb{R}^{m \times n}, \quad x_0 \in \mathbb{R}^n$$

 $\Rightarrow \quad f(x_0) = a, \quad f'(x_0) = A$

Bemerkung: Beispiel (ii) und (iii) sind lineare Funktionen.

1.5.3 Satz

Ist $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ in jedem Punkt $x_0\in A$ total differenzierbar, so ist f stetig in A. Beweis:

$$f(x) = \underbrace{f(x_0)}_{\stackrel{x \to x_0}{\to} f(x_0)} + \underbrace{A\underbrace{(x - x_0)}_{\stackrel{x \to x_0}{\to} 0 \in \mathbb{R}^n}}_{\stackrel{x \to x_0}{\to} 0 \in \mathbb{R}^n} + \underbrace{\underbrace{r(x)}_{\stackrel{x \to x_0}{\to} 0 \in \mathbb{R}^m}}_{\stackrel{x \to x_0}{\to} 0 \in \mathbb{R}^m} \underbrace{\frac{\|x - x_0\|}{\|x - x_0\|}}_{\stackrel{x \to x_0}{\to} 0 \in \mathbb{R}}$$
 mit $r(x) \stackrel{x \to x_0}{\to} 0$

$$\lim_{x \to a} f(x) = f(x_0) \quad \Box$$

1.5.4 Satz

Sei $f: A \subset \mathbb{R}^n \to \mathbb{R}^m, x_0 \in A$

- a. Ist f total differenzierbar in x_0 , so gilt
 - (i) $f'(x_0) = J_f(x_0)$
 - (ii) f ist in jede Richtung r differenzierbar mit: $\frac{\partial}{\partial r} f(x_0) = J_f(x_0) \cdot r$
- b. Existieren in x_0 alle partiellen Ableitungen (also alle Komponenten der Jacobi-Matrix) und diese stetig sind \Rightarrow f ist in x_0 total differenzierbar.

Beweis zu a: ...Beweis zu b: ...

1.5.5 Bemerkung

Sei r eine Richtung mit ||r|| = 1 und $x = x_0 + r$, dann gilt:

$$f(x) \approx f(x_0) + \nabla f(x_0)^{\top} \cdot r$$

$$\Rightarrow 1. \text{ Fall}: \quad r, \nabla f(x_0) \text{ zeigen in dieselbe Richtung}:$$

$$f(x) - f(x_0) \approx ||\nabla f(x_0)|| ||r|| = ||\nabla f(x_0)|| > 0$$

$$\Rightarrow 2. \text{ Fall}: \quad r, \nabla f(x_0) \text{ zeigen in entgegengesetzte Richtungen}:$$

$$f(x) - f(x_0) \approx -||\nabla f(x_0)|| < 0$$

In allen Fällen gilt Näherungsweise:

$$-\|\nabla f(x_0)\| < \nabla f(x_0)^{\top} r \le \|\nabla f(x_0)\|$$

Fazit: Beim Reinzoomen sind die Höhenlinien parallel. Der Gradient zeigt in Richtung des steilsten Anstieges.

1.5.6 Satz zur Kettenregel

Ist $f:A\subset\mathbb{R}^n\to B\subset\mathbb{R}^m$ differenzierbar in $a\in A$ und $g:B\subset\mathbb{R}^m\to\mathbb{R}^l$ differenzierbar in $b\in B$, so gilt:

$$(g \circ f)'(a) = g'\left(\underbrace{f(a)}_{=b}\right) f'(a) = \underbrace{J_g(b)}_{\in \mathbb{R}^{l \times m}} \underbrace{J_f(a)}_{\in \mathbb{R}^{m \times n}}$$

1.6 Lokale Extremstellen und Mittelwertsätze

In einer Dimension gilt:

1. Mittelwertsatz

Ist f differenzierbar auf (a, b) und stetig auf [a, b], so gilt:

$$\exists \ \xi \in (a,b) \text{ mit } f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Satz von Rolle

Ist f differenzierbar auf (a, b) und stetig auf [a, b] und gilt f(a) = f(b), so gilt:

$$\exists \ \xi \in (a,b) \ \mathrm{mit} \ f'(\xi) = 0$$

1.6.1 Definition lokale/globale Extremstellen

a. Eine Funktion $f: A \subset \mathbb{R}^n \to \mathbb{R}$ (Skalarfeld) hat bei $x_0 \in A$ ein lokales Minimum (Maximum) wenn in einer Umgebung $U = U_{\varepsilon}(x_0) \cap A$ für $\varepsilon > 0$ (offen bezüglich A) von x_0 gilt:

$$f(x_0) \stackrel{(\geqslant)}{\leqslant} f(x) \quad \forall x \in U$$

Ist bei x_0 ein lokales Minimum (Maximum) dann nennt man x_0 eine lokale Extremstelle.

b. f besitzt in x_0 ein globales Minimum (Maximum), wenn gilt:

$$f(x_0) \stackrel{(\geqslant)}{\leqslant} f(x) \quad \forall x \in A$$

1.6.2 Satz zur notwendigen Bedingung für eine lokale Extremstelle

Besitzt $f: \mathring{A} \subset \mathbb{R}^n \to \mathbb{R}$ bei $x_0 \in A$ eine lokale Extremstelle und f ist partiell differenzierbar, dann ist

$$\nabla f(x_0) = 0$$

 $Bemerkung\colon Der Rand ist ausgeschlossen da <math display="inline">\mathring{A}$ (alle inneren Punkte) gilt. Es gilt:

$$x_0$$
 ist eine lokale Extremstelle $\stackrel{\not=}{\Rightarrow}$ $f'(x_0) = 0$

Aus $f'(x_0)$ folgt nicht direkt die Extremstelle, denn Sattelpunkte sind keine Extremstellen.

 $Beweis \dots$

1.6.3 Definition des kritischen Punktes

Ein $x_0 \in \mathbb{R}^n$ mit $\nabla f(x_0) = 0$ heißt **kritischer** oder stationärer Punkt.

1.6.4 Mittelwertsatz

Sei $f: G \subset \mathbb{R}^n \to \mathbb{R}$ differenzierbar und sei G offen und enthalte die Menge $\overline{a,b} = \{a,b \in G \text{ mit } a+t(b-a): t \in [0,1]\}$ (a,b) können durch eine Gerade verbunden werden). Dann:

$$\exists \ \xi \in (0,1) \quad \text{mit} \quad f(b) = f(a) + \nabla f(a + \xi(b-a))^{\top} (b-a)$$

Bemerkung:

$$h(t) = a + t(b - a)$$
 $g(t) = f(h(t))$ (differenzierbar)
 $\Rightarrow \exists \xi \in (0, 1)$ mit $g'(\xi) = \frac{g(1) - g(0)}{1 - 0}$

 $Beweis: \dots$

1.6.5 Definition eines Gebiets