Machines synchrones

I. Présentation

I.1. Conversion d'énergie

Une machine synchrone est un convertisseur d'énergie. En mode alternateur, il y a conversion d'énergie mécanique en énergie électrique. En mode moteur, l'énergie électrique est convertie en énergie mécanique.

I.2. Principe

La machine est constituée de deux parties :

• le rotor. Il produit un champ magnétique grâce à un bobinage ou à des aimants permanents. C'est l'inducteur.

Remarque : il peut-être à pôles lisses ou à pôles saillants

• le stator, constitué de bobinages placés dans des encoches. Il possède <u>p paires de pôles</u> et constitue <u>l'induit</u> de la machine.

I.3. Champ tournant et synchronisme

Les courants alternatifs dans le stator créent un champ magnétique tournant à la vitesse de synchronisme :

 $n_s = \frac{f}{p}$

 n_S : <u>vitesse synchrone</u> de rotation du champ tournant en **tr.s**⁻¹.

f: fréquence des courants alternatifs en Hz. $\omega = 2.\pi.f$

p: nombre de paires de pôles.

Cette relation s'écrit également $n_{s}=60\frac{f}{p}$ avec n_{s} en ${\rm tr.min^{-1}}.$

Le rotor tourne à la <u>vitesse de rotation</u> $n = n_s$: ceci explique pourquoi on parle de moteur synchrone.

Remarque : le moteur synchrone ne peut pas tourner à une autre vitesse que la vitesse de synchronisme.

II. Alternateur synchrone

avec

II.1. Présentation

Lorsque le rotor tourne, chaque bobine du stator est soumise à un flux magnétique variable. Il apparaît alors au niveau de ces bobines une force électromotrice de valeur efficace

1

 $E = KN\Phi f$

K constante de la machine

N nombre de conducteurs d'une phase

Φ flux magnétique (Wb)

f fréquence (Hz)

En régime non saturé, cette relation s'écrit également $E = K'NI_epn_S$ avec I_e courant inducteur.

II.2. Schémas électriques équivalents

Une phase du stator peut être représentée par :

e: f.é.m. à vide (V)

v: tension aux bornes d'un enroulement de la machine (V)

r: résistance de l'enroulement (Ω)

 $X = L.\omega$: réactance synchrone (Ω)

Le courant est orienté en « convention générateur ».

L'inducteur est modélisé par :

toute l'énergie absorbée par l'inducteur est dissipée par effet joule : $P_e = U_eI_e = R_eI_e^2$

II.3. Fonctionnement à vide

A vide (càd qu'on ne branche rien sur la phase du stator), i = 0. Ainsi, E = V (un voltmètre placé aux bornes de la phase du stator permet donc de mesurer E).

En fixant la vitesse de rotation et en faisant varier le courant inducteur I_e on obtient la caractéristique interne de l'alternateur :

Pour les faibles valeurs de I_e , c'est la zone linéaire. Ensuite, le matériau magnétique sature et E n'est plus proportionnelle à I_e .

Le fonctionnement à vide permet de déterminer E.

II.4. Fonctionnement en court-circuit

En court-circuit, \underline{V} = 0 donc la loi des mailles dans la phase du stator donne : \underline{E} = $jX\underline{I}$ + $r\underline{I}$. La résistance r est bien souvent négligeable devant la réactance synchrone r donc \underline{E} = $jX\underline{I}$. Comme r est connue, en mesurant r avec un ampèremètre on peut en déduire r.

III. Moteur synchrone

III.1. Présentation

Lorsque les phases du stator sont alimentées par le réseau, il y a création d'un champ magnétique tournant qui entraîne le rotor à la même vitesse que le celle du champ tournant.

2

BTS ATI / A2

III.2. Schémas électriques équivalents

Une phase du stator peut être représentée par :

On note juste une inversion du sens de I par rapport à l'alternateur.

IV. Aspect énergétique

3

