This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

IN THE CLAIMS:

Please substitute the attached claims for the claims on file. Claim 1 has been amended and claims 6, 27 and 28 have been deleted. In addition, please add the attached new claims 41, 42 and 43, which have been added in substitution for the deleted claims 6, 27 and 28 respectively.

FEB 1 7 2004 SHADE

CLAIMS

- 1. (currently amended) A magnesium based <u>die-casting</u> alloy <u>having</u> <u>high strength creep resistance and high tensile yield strength at elevated temperatures of at least up to 175°C consisting essentially of:</u>
 - i) at least 85.4 Wt% Mg,
 - ii) 4.7 to 7.3 wt% aluminum,
 - iii) 0.17 to 0.60 wt% manganese,
 - iv) 0.0 to 0.8 wt% zinc,
 - v) 1.8 to 3.2 wt% calcium,
 - vi) 0.3 to 2.2 wt% tin, and
 - vii) 0.0 to 0.5 wt% strontium

and having minor amounts of other elements with each additional other element not exceeding 0.03 wt%.

- 2. (original) An alloy according to claim 1, comprising up to 0.0004 wt% iron, up to 0.001 wt% nickel, up to 0.003 wt% copper, or up to 0.03 wt% silicon.
 - 3-20. (canceled)
- 21. (previously added) An alloy according to claim 1, comprising up to 0.001 wt% beryllium.
- 22. (previously added) An alloy according to claim 2, comprising up to 0.001 wt% beryllium.

- 23. (previously added) An alloy according to claim 1, further comprising incidental impurities.
- 24. (previously added) An alloy according to claim 1, which contains 5.9 to 7.2 wt% aluminum, 0.9 to 2.1 wt% tin, 2.1 to 3.1 wt% calcium, and 0.2 to 0.35 wt% manganese.
- 25. (previously added) An alloy according to claim 2, which contains 5.9 to 7.2 wt% aluminum, 0.9 to 2.1 wt% tin, 2.1 to 3.1 wt% calcium, and 0.2 to 0.35 wt% manganese.
- 26. (previously added) An alloy according to claim 21, which contains 5.9 to 7.2 wt% aluminum, 0.9 to 2.1 wt% tin, 2.1 to 3.1 wt% calcium, and 0.2 to 0.35 wt% manganese.

27 - 28. (canceled)

- 29. (previously added) An alloy according to claim 1 exhibiting a marked response to aging at 250°C, wherein tensile yield strength, compressive yield strength, and creep resistance increase.
- 30. (previously added) An alloy according to claim 1 which is beryllium free.
- 31. (previously added) An alloy according to claim 1, which exhibits tensile yield strength at ambient temperature higher than 170 Mpa and tensile yield strength at 175°C higher than 150 Mpa.
- 32. (previously added) An alloy according to claim 1, which exhibits minimum creep rate (MCR) less than 1.7x10⁻⁹/s at 150°C under stress of 100 Mpa.
- 33. (previously added) An alloy according to claim 1, which exhibits minimum creep rate less than 4.9x10⁻⁹/s at 200°C under stress of 55 Mpa.

- 34. (previously added) An alloy according to claim 1, which exhibits improvements of its strength in course of temperature aging at 250°C for 1 hour.
- 35. (previously added) An article which is a casting of a magnesium alloy of claim 1.
- 36. (previously added) An article of claim 35, wherein the casting is chosen from the group consisting of high-pressure die-casting, sand casting, permanent mold casting, squeeze casting, semi-solid casting, thixocasting and thixomolding.
- 37. (previously added) An article according to claim 35 which exhibits tensile yield strength at ambient temperature higher than 170 Mpa and tensile yield strength at 175°C higher than 150 Mpa.
- 38. (previously added) An article according to claim 35 which exhibits minimum creep rate (MCR) less than 1.7x10-9/s at 150°C under stress of 100 Mpa.
- 39. (previously added) An article according to claim 35 which exhibits minimum creep rate less than 4.9x10⁻⁹/s at 200°C under stress of 55 Mpa.
- 40. (previously added) An article according to claim 35 which was subjected to temperature aging at 250°C for 1 hour.
- 41. (New) An alloy according to claim 1, comprising in its structure grains of Mg-Al solid solution or Mg-Al-Sn solid solution, and an intermetallic compound chosen from Al₂Ca, Al₂(Ca,Sr), Al_xMn_y, Al₂(Ca,Sn) and Al₂(Ca,Sn,Sr), wherein said intermetallic compounds are located at grain boundaries of said Mg-Al solid solution or Mg-Al-Sn solid solution.
- 42. (New) An alloy according to claim 1 having tensile yield strength (TYS) higher than 140 Mpa at 200°C.

43. (New) An alloy according to claim 1 having compressive yield strength (CYS) higher than 140 Mpa at 200°C.