Chapter 3

Mouvement Brownien

On rappelle que dans ce cours $I = \mathbb{R}^+$ ou [0, T] pour un T > 0.

3.1 Définitions

Définition 3.1. Mouvement Brownien Standard.

On appelle mouvement Brownien standard réel (M.B.S.) tout processus $W = (W_t)_{t \in I}$ à trajectoires continues vérifiant

- a. $W_0 = 0$ p.s.;
- b. accroissements stationnaires gaussien : $\forall 0 \leq s < t \in I$ la v.a. $W_t W_s \sim \mathcal{N}(0, t s)$;
- c. accroissements indépendants : $\forall n \geq 1$ et $0 = t_0 < t_1 < \cdots < t_n \in I$ les v.a. $(W_{t_{i+1}} W_{t_i})$ pour $0 \leq i < n$ sont indépendantes.

Remarque : On observe que $\forall t \in I$ la v.a. $W_t \sim \mathcal{N}(0,t)$. De plus $\forall 0 \leq s < t$ on a $\mathbf{Cov}(W_s, W_t) = s$. **Exercice :** prouver les affirmations de la remarque ci dessus. On peut également définir le

Définition 3.2. Mouvement Brownien issu de 0.

On appelle mouvement Brownien issu de 0 réel tout processus $B = (B_t)_{t \in I}$ à trajectoires continues vérifiant

- a. $B_0 = 0$ p.s.;
- b. accroissements stationnaires: $\forall 0 \leq s < t \in I$ la v.a. $B_t B_s$ a même loi que B_{t-s} ;
- c. accroissements indépendants : $\forall n \geq 1$ et $0 = t_0 < t_1 < \cdots < t_n \in I$ les v.a. $(B_{t_{i+1}} B_{t_i})$ pour $0 \leq i < n$ sont indépendantes.

De la même façon que la loi normale est reliée à la loi normale standard, le mouvement Brownien issu de 0 est relié au M.B.S. ce qui fait de ce dernier un processus central. Ceci est énoncé dans le résultat qui suit.

Théorème 3.3. (admis)

Si B est un mouvement Brownien issu de 0 alors il existe deux paramètres $\mu \in \mathbb{R}$ et $\sigma > 0$ tels que le processus W définit par

$$W_t = \frac{B_t - \mu t}{\sigma}, \ \forall t \in I$$

est un M.B.S.

Remarque : Ainsi si $B = (B_t)_{t \in I}$ est un mouvement Brownien issu de 0, avec $\mu := \mathbb{E}(B_1)$ et $\sigma^2 := \mathbf{Var}(B_1)$, alors on pourra toujours écrire

$$B_t = \mu t + \sigma W_t$$

avec $W = (W_t)_{t \in I}$ M.B.S. En conséquence on observe que $B_t \sim \mathcal{N}(\mu t, \sigma^2 t)$.

La définition et le résultat précédent établissent qu'un MBS est un processus centré à trajectoires continue, à accroissements stationnaires et indépendants de variance t au temps t.

La proposition qui suit établit qu'il s'agit également d'un processus gaussien centré de fonction de covariance $\Gamma(s,t) = s \wedge t$ et à trajectoires continues.

Proposition 3.4. M.B.S comme processus gaussien.

Soit $W = (W_t)_{t \in I}$ un processus à valeurs réelles. Les assertions suivantes sont équivalentes :

- 1. Le processus W est un M.B.S.
- 2. Le processus W est gaussien, centré à trajectoires continues et de fonction de covariance $\Gamma(s,t) = s \wedge t$.

Preuve. On commence à montrer que 1. implique 2.

Les accroissements $W_{t_{i+1}} - W_{t_i}$ étant indépendants pour tous choix $t_0 < t_1 < \cdots < t_n$ et respectivement de loi $\mathcal{N}(0, t_{i+1} - t_i)$ le vecteur $(W_{t_1}, W_{t_2} - W_{t_1}, \dots, W_{t_n} - W_{t_{n-1}})^T$ est gaussien centré et de matrice de covariance diagonale $diag(t_1, t_2 - t_1, \dots, t_n - t_{n-1})$. De plus comme

$$\begin{pmatrix} W_{t_1} \\ W_{t_2} \\ \vdots \\ W_{t_n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & & & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} W_{t_1} \\ W_{t_2} - W_{t_1} \\ \vdots \\ W_{t_n} - W_{t_{n-1}} \end{pmatrix}$$

donc par la Proposition 1.13 on conclu que le vecteur $(W_{t_1},...,W_{t_n})$ est gaussien centré. De plus le processus est par définition à trajectoires continue et on a pour tous $s < t \in I$, $K(s,t) = \mathbf{Cov}(W_s,W_t) = s = s \wedge t$.

A présent pour montrer que 2. implique 1.

Il suffit de montrer que $W_0 = 0$ p.s. et que W est à accroissements indépendants et stationnaires gaussiens avec la bonne variance associée.

Comme W est un processus gaussien centré on en déduit que pour tous $s < t \in I$

$$W_t - W_s \sim \mathcal{N}(0, \sigma^2)$$

avec

$$\sigma^2 = \mathbf{Var}(W_t - W_s) = \mathbf{Var}(W_t) + \mathbf{Var}(W_s) - 2\mathbf{Cov}(W_t, W_s) = t + s - 2s = t - s$$

pour l'indépendance des accroissements il suffit de calculer leurs covariances : $\forall s < t \le u < v \in I$

$$\mathbf{Cov}(W_v - W_u, W_t - W_s) = \mathbf{Cov}(W_v, W_t) - \mathbf{Cov}(W_u, W_t) - \mathbf{Cov}(W_v, W_s) + \mathbf{Cov}(W_u, W_s) = t - s - t + s = 0$$

le vecteur étant gaussien cela signifie l'indépendance de ses coordonnées.

Enfin
$$\mathbb{E}(W_0) = 0$$
 et $\mathbf{Var}(W_0) = 0$ donc $W_0 = 0$ p.s.

3.1.1 Existence du M.B.S.

On va utiliser le théorème de Kolmogorov-Centsov pour justifier l'existence d'un processus continue vérifiant bien les propriétés du M.B.S.

On prend X un processus à accroissements indépendants et stationnaire vérifiant $X_0=0$ p.s. et $X_t-X_s\sim \mathcal{N}(0,t-s)$ pour tous $s< t\in I$. (L'existence d'un tel processus est une conséquence du théorème de consistance de Kolmogorov qui montre l'existence d'un tel processus sur un espace $(\Omega,\mathcal{F},\mathbb{P})$).

On rappelle que si $Z \in \mathcal{N}(0,1)$ alors Z a des moments de tout ordre en particulier on montre que $\forall n \in \mathbb{N}$

$$\mathbb{E}(Z^{2n+1}) = 0 \text{ et } \mathbb{E}(Z^{2n}) = \frac{(2n)!}{n!2^n}$$

ce qui implique ici que

$$\mathbb{E}[(X_t - X_s)^{2n}] = |t - s|^n \frac{(2n)!}{n!2^n}$$

En utilisant le théorème de Kolmogorov-Centsov avec $\alpha=2n,\,\beta=n-1$ et $\delta=\frac{(2n)!}{n!2^n}$ on en déduit :

- 1. il existe $W = \widetilde{X}$ une version continue de X, et donc W est un M.B.S.
- 2. De plus W est localement Hölderien d'exposant $\gamma \in]0, 1/2[$.

3.2 Rappels/Compléments de théorie des probabilités

On considère $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité.

Définition 3.5. Etant donnés $(A_n)_{n\geq 0}$ une suite d'événements de \mathcal{F} on définit les deux événements $\limsup A_n$ et $\liminf A_n$ par

$$\limsup A_n = \bigcap_{n=0}^{+\infty} \bigcup_{k=n}^{+\infty} A_k \ et \ \liminf A_n = \bigcup_{n=0}^{+\infty} \bigcap_{k=n}^{+\infty} A_k$$

Exercice : décrire en terme d'événement la signification de $\limsup A_n$ et $\liminf A_n$ et montrer que $\liminf A_n \subset \limsup A_n$.

On énonce ici deux résultats célèbres de la théorie des probabilités.

Lemme 3.6. Lemmes de Borel-Cantelli

1. Soit $(A_n)_{n>0}$ une suite d'événements tels que

$$\sum_{n=0}^{+\infty} \mathbb{P}(A_n) < +\infty$$

alors $\mathbb{P}(\limsup A_n) = 0$.

2. Soit $(B_n)_{n\geq 0}$ une suite d'événements **indépendants** tels que

$$\sum_{n=0}^{+\infty} \mathbb{P}(B_n) = +\infty$$

alors $\mathbb{P}(\limsup B_n) = 1$.

Exercices

1. Soit $(X_n)_{n>0}$ une suite de v.a. montrer que si $\forall \varepsilon > 0$

$$\sum_{n=0}^{+\infty} \mathbb{P}(|X_n| > \varepsilon) < +\infty$$

alors X_n converge presque sûrement vers 0.

- 2. Soit $(X_n)_{n\geq 0}$ une suite de v.a. indépendantes de lois respectives $\mathcal{E}xp(\log(n))$.
 - [2.1] Montrer que X_n converge vers 0 en probabilité.
 - [2.2] Montrer que $\mathbb{P}(|X_n| > 1) = 1/n$ et en déduire que X_n ne converge pas p.s.

3.3 Premières propriétés du MBS

3.3.1 Principes d'invariance

Proposition 3.7. Soient $W = (W_t)_{t \in \mathbb{R}+}$ un M.B.S., s > 0 et $\lambda \neq 0$. Les processus B^s et \widetilde{B}^{λ} respectivement définis par : $\forall t \in \mathbb{R}+$

- 1. $B_t^s = W_{t+s} W_s$ (Invariance par translation du temps.)
- 2. $\widetilde{B}^{\lambda}_t = \lambda W_{\frac{t}{\lambda^2}}$ (Invariance par changement d'échelle.)

sont des M.B.S. De plus B^s est indépendant de $\sigma(W_u, u \in [0, s])$.

Preuve. Vu en exercice cf. TD2

3.3.2 Lois des grands nombres

Proposition 3.8. Une première LDGN pour le M.B.S. Soit $W = (W_t)_{t \in \mathbb{R}^+}$ un M.B.S. alors

$$\lim_{n \to +\infty} \frac{1}{n} W_n = 0, \ \mathbb{P} - p.s.$$

Preuve. Soit $\varepsilon > 0$ on a

$$\mathbb{P}\left(\left|\frac{W_n}{n}\right| > \varepsilon\right) = \mathbb{P}\left(|Z| > \varepsilon\sqrt{n}\right)$$

ou

$$\mathbb{P}\left(|Z|>\varepsilon\sqrt{n}\right)\sim\sqrt{\frac{2}{\pi}}\frac{1}{\varepsilon\sqrt{n}}\exp\left(-\frac{\varepsilon^2n}{2}\right)$$

done

$$\sum_{n=0}^{\infty} \mathbb{P}\left(\left|\frac{W_n}{n}\right| > \varepsilon\right) < +\infty$$

qui par Borel Cantelli (cf exercice) implique

$$\lim_{n \to +\infty} \frac{1}{n} W_n = 0, \ \mathbb{P} - p.s.$$

Remarques:

1. On aurait pu également montrer le résultat en utilisant la LFGN pour les v.a. i.i.d. : en posant $X_k = W_k - W_{k-1}$ on observe que

$$\frac{1}{n}W_n = \frac{1}{n}\sum_{k=1}^n X_k$$

où les X_k sont des v.a. indépendantes de moyenne 0. Cette approche justifie le nom "LDGN pour le M.B.S." employé pour décrire le résultat.

2. Pour montrer qu'on a également $\lim_{t\to+\infty}\frac{1}{t}W_t=0,\ \mathbb{P}-p.s.$ on a besoin d'un contrôle uniforme sur les trajectoires.

Pour tout t > 0 il existe $n(t) \in \mathbb{N}$ tel que $n(t) \le t < n(t) + 1$

$$\frac{W_t}{t} = \frac{W_t - W_{n(t)}}{t} + \frac{W_{n(t)}}{n(t) \left(1 + \frac{t - n(t)}{n(t)}\right)}$$

et

$$\left| \frac{W_t}{t} \right| \le \frac{\max_{u \in [n(t), n(t) + 1]} |W_u - W_{n(t)}|}{t} + \frac{1}{\left(1 + \frac{t - n(t)}{n(t)}\right)} \left| \frac{W_{n(t)}}{n(t)} \right|$$

Or comme $B_{u-n(t)} := W_u - W_{n(t)}$ est un MBS sur $u \in [n(t), n(t) + 1]$ le numérateur du premier membre de droite de l'inégalité précédente se comporte comme :

$$\max_{s \in [0,1]} |B_s|$$

qui est une v.a. finie p.s. (que nous verrons être de même loi que $|W_1|$ plus loin dans le cours) d'où

$$\lim_{t \to +\infty} \frac{\max_{u \in [n(t), n(t)+1]} |W_u - W_{n(t)}|}{t} = 0$$

et par ce qui précède on a p.s.

$$\lim_{t \to +\infty} \left(1 + \frac{t - n(t)}{n(t)} \right)^{-1} \left| \frac{W_{n(t)}}{n(t)} \right| = 0.$$

d'où la loi forte

Théorème 3.9. LFGN pour le M.B.S.

Soit W un M.B.S. Alors

$$\lim_{t \to +\infty} \frac{1}{t} W_t = 0, \ \mathbb{P} - p.s.$$

On rappelle ici le corollaire vu en TD

Corollaire 3.10. Invariance par inversion du temps. Soit $W = (W_t)_{t \in \mathbb{R}_+}$ un M.B.S. alors le processus X défini par $X_0 = 0$ et $\forall t > 0$

$$X_t = tW_{\frac{1}{t}}$$

est un M.B.S.

3.3.3 Comportement asymptotique

Le résultat le plus précis est donné par un résultat fameux (que nous ne montrerons pas ici).

Théorème 3.11. Loi du logarithme itéré (Khintchine 1924). Soit W un M.B.S. Alors \mathbb{P} -p.s. on a

$$\limsup_{t \to +\infty} \frac{W_t}{\sqrt{2t \log(\log(t))}} = 1 \ et \ \liminf_{t \to +\infty} \frac{W_t}{\sqrt{2t \log(\log(t))}} = -1$$

Remarques

1. La lim inf se déduit de la lim sup en observant que

$$\liminf_{t\to +\infty} \frac{W_t}{\sqrt{2t\log(\log(t))}} = -\limsup_{t\to +\infty} \frac{-W_t}{\sqrt{2t\log(\log(t))}}$$

et en utilisant (cf. exercices) que -W est aussi un M.B.S.

2. On peut en déduire (cf. résultat vu indépendamment en TD) que P-p.s. on a

$$\limsup_{t \to +\infty} W_t = \limsup_{t \to +\infty} \frac{W_t}{\sqrt{t}} = +\infty \text{ et } \liminf_{t \to +\infty} W_t = \liminf_{t \to +\infty} \frac{W_t}{\sqrt{t}} = -\infty$$

ainsi que la LFGN vue précédement.

3. En utilisant que le processus X, définit par $X_0=0$ et $X_t=tW_{1/t}$ pour t>0, est un M.B.S. on en déduit que \mathbb{P} -p.s. on a

$$\limsup_{s \searrow 0} \frac{W_s}{\sqrt{2s \log(\log(1/s))}} = 1 \text{ et } \liminf_{s \searrow 0} \frac{W_s}{\sqrt{2s \log(\log(1/s))}} = -1$$

3.4 Zéros et trajectoires du MBS

Une conséquence des résultats obtenus jusqu'ici est que si W est un M.B.S. alors le processus passe une infinité de fois par 0. On s'intéresse ici à ces visites en 0.

Proposition 3.12. Ensemble des zéros du M.B.S.

On note \aleph l'ensemble aléatoire des 0 de W: tel que $\forall \omega \in \Omega$

$$\aleph(\omega) = \{t > 0 : W_t(\omega) = 0\}$$

Alors avec probabilité 1 :

- 1. La mesure de Lebesgue de ℵ est nulle.
- 2. L'ensemble & est un fermé non borné.
- 3. Le point t = 0 est point d'accumulation de \aleph .

Preuve. 3. est une conséquence de la loi du logarithme itéré. Pour 1. on a par Tonnelli

$$\mathbb{E}\left[\int_{0}^{+\infty} \mathbf{1}_{\aleph}(t) \ dt\right] = \int_{0}^{+\infty} \mathbb{P}(t \in \aleph) \ dt = \int_{0}^{+\infty} \mathbb{P}(W_{t} = 0) \ dt = 0$$

Comme $\int_0^{+\infty} \mathbf{1}_{\aleph}(t) dt \ge 0$ on en déduit que cette v.a. est nulle \mathbb{P} -p.s.

Enfin pour 2. on a que pour \mathbb{P} presque tout ω la trajectoire $t \mapsto W_t$ est continue donc $\aleph(\omega) = W(\omega)^{-1}(\{0\})$ est l'image réciproque d'un fermé par une application continue donc $\aleph(\omega)$ est fermé. De plus cet ensemble n'est pas borné car

$$\lim \sup_{t \to +\infty} W_t = +\infty \text{ et } \lim \inf_{t \to +\infty} W_t = -\infty$$

et comme W est à trajectoires continues cela implique que quelque soit le temps t où l'on observe W, le niveau 0 est franchi une infinité de fois à partir de t.

Une autre conséquence est le comportement peu régulier des trajectoires du M.B.S.

Proposition 3.13. Avec probabilité 1 le M.B.S. n'est dérivable nulle part.

Eléments de preuve : Soit W un M.B.S. On commence par observer qu'en posant t=1/s on a

$$\limsup_{s \searrow 0} \frac{W_s}{s} = \limsup_{t \to +\infty} tW_{1/t}$$

Or nous avons deja vu (cf TD) que le processus X définit par $X_t = tW_{1/t}$ est un M.B.S. et par ce qui précède

$$\lim_{t \to +\infty} \sup X_t = +\infty$$

en conséquence W n'est pas dérivable (à droite) en 0.

Par la propriété d'invariance par translation on montre qu'il n'est pas dérivable (à droite) en tout point s > 0.

La loi du logarithme itéré nous donne également ce résultat (ainsi que la non dérivabilité à gauche). Ainsi on montre que pour tous $t \ge 0$ fixé l'ensemble

$$\mathcal{N}_t = \{ \omega \in \Omega : s \mapsto W_s(\omega) \text{ est dérivable en t} \}$$

est négligeable.

En revanche cela ne suffit pas pour affirmer que l'ensemble

$$\mathcal{N} = \{ \omega \in \Omega : \exists t \in \mathbb{R}^+ \text{ t.q. } s \mapsto W_s(\omega) \text{ est dérivable en t} \}$$

soit négligeable. Ce résultat plus technique, que nous admettrons est dû à Payley-Wiener & Zygmund (1933).