

Graph Machine Learning

CGnal S.r.l – Corso Venezia 43 - Milano

26 Novembre 2021 | Milano

Machine Learning on Graphs: A Model and Comprehensive Taxonomy

Machine Learning on Graphs: A Model and Comprehensive Taxonomy

The generalized graph embedding problem – Representation Learning

Representation learning (network embedding) is the task that aims to learn a mapping function $f: G \to \mathbb{R}^d$ from a discrete graph to a continuous domain. Function will be capable of performing a low-dimensional vector representation such that the **properties (local and global) of graph are preserved**.

Shallow Embedding Methods

- •They can only return a vectorial representation of the data they learned during the fit_transform procedure.
- •They are not able to generalize the function to unseen graphs (QUESTION: inductive or transductive?)

embedding	_
embedding	_

GraphId	Dim 1	Dim 2	 Dim d
Mr. Hi	0.9	0.12	 0.32
Mr. John	0.20	0.88	 0.11
Node 1	0.25	0.76	 0.09

Machine Learning on Graphs: A Model and Comprehensive Taxonomy

Matrix Factorization

$$L = \frac{1}{2} \sum_{(i \cdot j) \in E} (A_{i,j} - Y_{i,:} Y_{j,:}^T)^2 + \frac{\lambda}{2} \sum_{i} ||Y_{i,:}||^2$$

Reconstruction error

Regularization term

Vanilla Version (Matrix Factorization)

- Reconstruction on the Adjacency Matrix only cares about first-order proximity, direct links and not quite topology
- The matrix decomposition using a single matrix $Y_{i,k}$ is only valid for symmetric matrices

Extend to Higher-Order Proximity(Neighbours of neighbours similarity)

Instead of A_{ij} we use other matrices, such as the similarity matrix $S=M_g^{-1}\cdot M_l$ or multiple step transition matrix $T_k=\prod_k D^{-1}\cdot A$

Extend to Non-Symmetric cases

Instead of symmetric decomposition use more general ones, like NMF or asymmetric decompositions:

$$L = \left\| S - Y_S \times Y_t^T \right\|_F^2$$

Matrix Factorization (Overview of algorithms)

Matrix Factorization

$$\left(A_{i,j}-Y_{i,:}Y_{j,:}^{T}\right)$$

- Only first-order proximity
- Only valid for symmetric matrices

HOPE

$$L = \|S - Y_S \times Y_t^T\|_F^2$$
$$S = M_g \cdot M_l$$

- Several kind of proximities can be integrated (Adamic-Adar, Katz Index, Rooted Page Rank and Common Neighbors
- Valid for directed graphs

GraphRep

$$L_k = \left\| X^k - Y_S^k \times Y_t^{kT} \right\|_F^2$$

$$X^k = \prod_k (D^{-1}A)$$

- Decide the order of the proximity, by tuning k
- Valid for directed graphs

Many Algorihtms, One Library

GEM: https://github.com/palash1992/GEM

Machine Learning on Graphs: A Model and Comprehensive Taxonomy

node2Vect – edge2Vect – graph2Vect overview

What can I do with embeddings?

Node classification
(Using Node Embedding)
Fraud detection

Missing link prediction (Using Edge Embedding) Reccomandation systems

Community detection (Using Node Embedding)

Graph similarity/clustering (Using Graph Embedding) 11

Skip-gram based embedding algorithms—Node2Vec, Edge2Vec, Graph2Vec

Graph2Vec

Skip-gram based embedding algorithms

- Skip-gram architecture was created for «word embedding» problem also known as Word2Vec
- For a given word we want to build a vectorial representation in a d dimensional space

Skip-gram Node2Vec use the same logic BUT instead of words we have nodes

Neural Network basic idea

Skip-gram based embedding algorithms

Corpus Train Data He pointed his finger friendly jest (He, pointed), (He, his) in and (pointed, he), (pointed, his) **Step 1. Dataset Generation** He pointed finger in friendly jest and (pointed, finger) (his, He), (his, pointed) his He pointed finger in friendly jest and (his, finger), (his, in) Used to train the probabilities (finger, pointed), (finger, his) He friendly pointed his finger in jest and (finger, in), (finger, friendly) Window size **Output Layer** (Softmax) Hidden Layer Input Prabability of word man Prabability of word finger Position of word finger **Step 2. Model Training** Prabability of word airplane Prabability of word tree 0 0 Prabability of word car m: Words in english dictionary m words d neurons *m* neurons

Skip-gram based embedding algorithms

Word	Dim 1	Dim 2	Dim 3	 Dim d
Finger	0.1	0.4	0.6	1.1

Skip-gram based embedding algorithms – Node2Vec

Step 0. Random Walk Generator

Input Graph

Random Walk Generation

Corpus Train Data 1 0 2 3 4 6 \longrightarrow (1, 0), (1, 2) 1 0 2 3 4 6 \longrightarrow (0, 1), (0, 2) (0, 3) 1 0 2 3 4 6 \longrightarrow (2, 1), (2, 0) (2, 3), (2, 4) 1 0 2 3 4 6 \longrightarrow (3, 0), (3, 2) (3, 4), (3, ...) Window size

Skip-gram based embedding algorithms – Node2Vec

import networkx as nx
from node2vec import Node2Vec
node2vec = Node2Vec(G, dimensions=d)
model = node2vec.fit(window=10)
embeddings = model.wv

Edge2Vec

import networkx as nx
from node2vec import Node2Vec
node2vec = Node2Vec(G, dimensions=d)
model = node2vec.fit(window=10)
embeddings = model.wv

from node2vec.edges import HadamardEmbedder
embedding =
HadamardEmbedder(keyed_vectors=model.wv)

Edge2Vec

AverageEmbedder

HadamardEmbedder

WeightedL1Embedder

WeightedL2Embedder

Skip-gram based embedding algorithms – Graph2Vec

Input Graphs

Training Set

Skip-gram based embedding algorithms – Graph2Vec

Skip-gram based embedding algorithms – Graph2Vec


```
from karateclub import Graph2Vec
Gs = [G1, G2, G....]
model = Graph2Vec(dimensions=2)
model.fit(Gs)
embeddings = model.get_embedding()
```


Excercise

Machine Learning on Graphs: A Model and Comprehensive Taxonomy

Supervised Graph Machine Learning at different scale

Machine Learning on Graphs: A Model and Comprehensive Taxonomy

A Straightforward Approach to apply Machine Learning on Graph

- In «classical» machine learning applications, a common way to process the input data is to build a set of features
- For a node classification task, we compute a set of metrics or known features to generate the feature vector

Nodeld	Node Degree		Age
Alice	0.9	0.12	28
	0.20	0.88	
Bob	0.25	0.76	31

- 1. Node Attributes: We know that the nodes in a graph represent entities and these entities have their own characteristic attributes (Age, Sex, Gender, Average Consumption, etc..).
- **2. Local Structural Features:** Node features like degree (count of adjacent nodes), mean of degrees of neighbor nodes, number of triangles a node forms with other nodes, etc.

A Straightforward approach to apply Machine Learning on Graph - Limitation

- 1. Node Attributes: We know that the nodes in a graph represent entities and these entities have their own characteristic attributes (Age).
- 2. Local Structural Features: Node features like degree (count of adjacent nodes), mean of degrees of neighbor nodes, number of triangles a node forms with other nodes, etc.
- **3. Embeddings:** The above-discussed features carry only node related information. They do not capture the information about the **context** of a node (the surrounding nodes).

Local Structure Features Embeddings ALEX ANDY ALEX ANDY ALEX ANDY ANDY

Machine Learning on Graphs: A Model and Comprehensive Taxonomy

- Unlabelled node
- Label 1
- Label 2

Intuition: The closer we are to nodes of a certain label, the higher the probability that the node belongs to that label

- Unlabelled node
- Label 1
- Label 2

Transition matrix: Probability of ending up in node j, given we start from node i.

$$L = D^{-1}A$$

$$L = \begin{bmatrix} 0 & 0.5 & 0.5 & 0 & 0 & 0 & 0 & 0 \\ 0.5 & 0 & 0.5 & 0 & 0 & 0 & 0 & 0 \\ 0.33 & 0.33 & 0 & 0.33 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.33 & 0 & 0.33 & 0.33 \\ 0 & 0 & 0 & 0 & 0 & 0.5 & 0 & 0.5 \\ 0 & 0 & 0 & 0 & 0 & 0.5 & 0.5 & 0 \end{bmatrix}$$

Two problems:

- Some nodes are not yet inferred (node 3 and 4)
- The known label have been reset to 0

 Solution: resetting the known values to the intial condition.

Solution: Label propagation

$$Y^{n+1} = LY^n$$
 and force resetting known values

The algorithm performs the computation until some stop conditions are satisfied:

- **Number of iterations**: computation stops when a given number of iterations has been performed.
- Solution tolerance error: computation stops when the absolute difference of the solution obtained in two consecutive iteration y^{t-1} and y^t is lower than a given threshold value.

Weaker Node Assignment

$$Y^{t} = \alpha \mathcal{L} Y^{t-1} + (1 - \alpha) Y^{0}$$
 with $\mathcal{L} = D^{-1/2} A D^{-1/2}$

We therefore mix two contribution:

- one that comes from propagating label information, assuming smoothness of the labelling
- one that comes from label assignment based on "training"

Node labelling may be affected by noise or mistakes, or just anomalies that may influence classification

This node has 50-50 chances of being of either labels

Graph regularization over labelling

Machine Learning on Graphs: A Model and Comprehensive Taxonomy

The Convolutional Kernel

Data Structures as Graphs

Regular Data Structures

Irregular Data Structures

Social Networks
World Wide Web
Telecom Networks
Supply Chains
Biological Systems
Semantic Lexicons
Chemical Models
State Machines
Call Graphs

• • •

The Convolutional Kernel

Graph Neural Network in practice

□ google / gcnn-survey-paper