

Functions

$$f: A \longrightarrow B$$

A - domain of the function f

B - codomain of f

To each element $a \in A$, the function assigns an element of B denoted f(a), the image of a

Example

$$A=\{a,b,c\}$$
 $B=\{0,1\}$

X	$f_1(x)$
а	0
b	0
С	1

$$f_1 = (0,0,1)$$

$$f_2 = (1,0,1)$$

$$f_3 = (1,1,1)$$

How many functions from A to B are there?

BA the set of all functions from A to B

Theorem.
$$\mid B^{A} \mid = \mid B \mid^{\mid A \mid}$$

Proof.
$$A = \{a_1, a_2, \dots, a_n\}$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$|B| |B| \cdots |B| = |B|^{|A|}$$

Surjection

Definition. A function $f: A \rightarrow B$ is a surjection if for each element $b \in B$ there is an $a \in A$ such that f(a) = b

Which of the following functions (with $B=\{0,1\}$) are surjections?

$$f_1 = (0,0,1)$$
 $f_2 = (1,0,1)$ $f_3 = (1,1,1)$

For $A=\{a,b\}$ and $B=\{0,1,2\}$, is f=(2,1) a surjection? No because for any surjection $f: A \rightarrow B$, $|A| \ge |B|$

Surjection

Definition. A function $f: A \rightarrow B$ is a surjection if for each element $b \in B$ there is an $a \in A$ such that f(a) = b

The number of all functions from A to B is $\left\|B\right\|^{|A|}$

How many of them are surjections?

The number of surjections

Theorem. The number of surjections from a set of n elements to a set of k elements is $\sum_{k=1}^{k} \binom{k}{k}$

$$\sum_{i=0}^{k} (-1)^{i} \binom{k}{i} (k-i)^{n}$$

Proof.

f:
$$A = \{1, 2, ..., n\} \rightarrow B = \{1, 2, ..., k\}$$

 A_i the set of functions from A to B that never take on the value $i \in B$

The number of surjections from A to B is $k^n - |A_1 \cup ... \cup A_k|$

$$S_i = \sum_{j_1 < j_2 < \dots < j_i} |A_{j_1} \cap A_{j_2} \cap \dots \cap A_{j_i}|$$

$$\sum_{i=0}^{k} (-1)^{i} S_{i} = S_{0} - S_{1} + S_{2} - S_{3} + \dots + (-1)^{k} S_{k}$$

4

The number of surjections

Theorem. The number of surjections from a set of n elements to a set of k elements is $\sum_{i=0}^{k} (-1)^{i} \binom{k}{i} (k-i)^{n}$

Proof.

$$|A_{j_1} \cap A_{j_2} \cap ... \cap A_{j_i}| =$$
 the number of functions from A to B- $\{j_1, j_2, ..., j_i\}$ =(k-i)ⁿ

$$S_i = \sum_{j_1 < j_2 < \dots < j_i} |A_{j_1} \cap A_{j_2} \cap \dots \cap A_{j_i}| = {k \choose i} (k-i)^n$$

$$\sum_{i=0}^{k} (-1)^{i} S_{i} = \sum_{i=0}^{k} (-1)^{i} \binom{k}{i} (k-i)^{n}$$

Partitions

- 1. How many partitions of an n-set are there?
 - B_n Bell number
- 2. How many ways to partition an n-set into k subsets are there?
 - $\binom{n}{k}$ Stirling number of the second kind
- 3. How many ordered partitions of an n-set into k subsets are there?
 - A partition $(A_1,...,A_k)$ is *ordered* if the order of the subsets matters
- 4. How many ordered partitions of an n-set into k subsets of cardinalities $n_1,...,n_k$ are there?

$$\frac{n!}{n_1!n_2!\cdots n_k!} = \binom{n}{n_1,\dots,n_k}$$

The number of ordered partitions

Theorem. The number of ordered partitions of a set of n elements into k non-empty subsets is $\sum_{i=0}^{k} (-1)^{i} \binom{k}{i} (k-i)^{n}$

Proof.

Let A be a set of n elements and $B=\{1,2,...,k\}$.

Each surjection f from A to B defines an ordered partition of A into k nonempty subsets $A_1,...,A_k$ as follows: $A_i = \{a \in A \mid f(a) = i\}$.

Conversely, each ordered partition of A into k non-empty subsets defines a surjection f: A→ B

Therefore, the number of ordered partitions of A coincides with the number of surjections from A to B.

The number of partitions

Theorem. The number of partitions of a set of n elements into k non-empty subsets is

$$\frac{1}{k!} \sum_{i=0}^{k} (-1)^{i} \binom{k}{i} (k-i)^{n}$$

Injection

Definition. A function $f: A \rightarrow B$ is a injection if for any $a,b \in A$, $a \neq b$ implies $f(a) \neq f(b)$

For $A=\{a,b,c\}$ and $B=\{0,1\}$, is f=(0,0,1) injection? No because for any injection $f: A \rightarrow B$, $|B| \ge |A|$

How many injections from A to B are there?

$$(|B|) |A|! = \frac{|B|!}{(|B|-|A|)!}$$

Bijection

Definition. A function $f: A \rightarrow B$ is a bijection if f is an injection and surjection

Example: For $A = \{a,b,c\}$ and $B = \{0,1,2\}$, f = (2,1,0) is a bijection

For any injection $f: A \rightarrow B$, $|B| \ge |A|$

For any surjection f: $A \rightarrow B$, $|A| \ge |B|$

For any bijection $f: A \rightarrow B$, |A| = |B| Does |A| = |B| imply that f is bijection?

How many bijections from A to B are there? |A|!

Bijection

For any function $f: A \rightarrow B$, any two of the following three statements imply the remaining one

- 1. f is surjection
- 2. f is injection
- 3. |A| = |B|

Proof.

 $(1,3 \rightarrow 2)$ By contradiction, assume f(a)=f(b) for some $a\neq b$. Then the number of elements of B that are images of some elements of A is strictly less than |B|=|A|, contradicting 1.

 $(2,3\rightarrow 1)$ Analogously