Satisfiability Checking Eager SMT Solving (Equality Logic, Bit-blasting)

Prof. Dr. Erika Ábrahám

RWTH Aachen University Informatik 2 LuFG Theory of Hybrid Systems

WS 16/17

Outline

- 1 Eager SMT Solving
- 2 Eager SMT Solving for Equality Logic with Uninterpreted Functions
 - Equality Logic with Uninterpreted Functions
 - Eager SMT Solving for Uninterpreted Functions
 - Ackermann's reduction
 - Bryant's reduction
 - Eager SMT Solving for Equality Logic
 - Equality Graphs
 - The Sparse Method
- 3 Eager SMT Solving for Finite-precision Bit-vector Arithmetic

Outline

- 1 Eager SMT Solving
- 2 Eager SMT Solving for Equality Logic with Uninterpreted Functions
 - Equality Logic with Uninterpreted Functions
 - Eager SMT Solving for Uninterpreted Functions
 - Ackermann's reduction
 - Bryant's reduction
 - Eager SMT Solving for Equality Logic
 - Equality Graphs
 - The Sparse Method
- 3 Eager SMT Solving for Finite-precision Bit-vector Arithmetic

SMT solving

■ We want to extend propositional logic with theories.

SMT solving

- We want to extend propositional logic with theories.
- For satisfiability checking, SAT-solving will be extended to SAT-modulo-theories (SMT) solving.

SMT solving

- We want to extend propositional logic with theories.
- For satisfiability checking, SAT-solving will be extended to SAT-modulo-theories (SMT) solving.
- SMT-LIB: language, benchmarks, tutorials, ...
- SMT-COMP: performance and capabilities of tools
- SMT Workshop: held annually

Eager SMT solving

■ How can such an extension to SMT solving look like?

Eager SMT solving

- How can such an extension to SMT solving look like?
- We will see two basically different approaches:
 - Eager SMT solving transforms logical formulas over some theories into satisfiability-equivalent propositional logic formulas and applies SAT solving. ("Eager" means theory first)
 - Lazy SMT solving uses a SAT solver to find solutions for the Boolean skeleton of the formula, and a theory solver to check satisfiability in the underlying theory. ("Lazy" means theory later)

Eager SMT solving

- How can such an extension to SMT solving look like?
- We will see two basically different approaches:
 - Eager SMT solving transforms logical formulas over some theories into satisfiability-equivalent propositional logic formulas and applies SAT solving. ("Eager" means theory first)
 - Lazy SMT solving uses a SAT solver to find solutions for the Boolean skeleton of the formula, and a theory solver to check satisfiability in the underlying theory. ("Lazy" means theory later)
- Today we will have a closer look at the eager approach.

Eager vs. lazy SMT solving

- All NP-complete problems can be transformed to equivalent propositional SAT problems (with polynomial effort).
- However, in praxis, this is not always the most effective solution.

- All NP-complete problems can be transformed to equivalent propositional SAT problems (with polynomial effort).
- However, in praxis, this is not always the most effective solution.
- Some well-suited theories for eager SMT solving:
 - Equalities and uninterpreted functions
 - Finite-precision bit-vector arithmetic
 - Quantifier-free linear integer arithemtic (QF LIA)
 - Restricted λ -calculus (e.g., arrays)
 - **.** . . .

- All NP-complete problems can be transformed to equivalent propositional SAT problems (with polynomial effort).
- However, in praxis, this is not always the most effective solution.
- Some well-suited theories for eager SMT solving:
 - Equalities and uninterpreted functions
 - Finite-precision bit-vector arithmetic
 - Quantifier-free linear integer arithemtic (QF LIA)
 - Restricted λ -calculus (e.g., arrays)
 -
 - Combinations of the above theories

Some eager SMT solver implementations

- UCLID: Proof-based abstraction-refinement [Bryant et al., TACAS'07]
- STP: Solver for linear modular arithmetic to simplify the formula [Ganesh&Dill, CAV'07]
- Spear: Automatic parameter tuning for SAT [Hutter et al., FMCAD'07]
- Boolector: Rewrites, underapproximation, efficient SAT engine [Brummayer&Biere, TACAS'09]
- Beaver: Equality/constant propagation, logic optimisation, special rules for non-linear operations [Jha et al., CAV'09]
- SONOLAR: Non-linear arithmetic [Brummayer et al., SMT'08]
- SWORD: Fixed-size bit-vectors [Jung et al, SMTCOMP'09]
- Layered eager approaches embedded in the lazy DPLL(T) framework:
 CVC3 [Barrett et al.], MathSAT [Bruttomesso et al.],
 Z3 [de Moura et al.]

Outline

- 1 Eager SMT Solving
- 2 Eager SMT Solving for Equality Logic with Uninterpreted Functions
 - Equality Logic with Uninterpreted Functions
 - Eager SMT Solving for Uninterpreted Functions
 - Ackermann's reduction
 - Bryant's reduction
 - Eager SMT Solving for Equality Logic
 - Equality Graphs
 - The Sparse Method
- 3 Eager SMT Solving for Finite-precision Bit-vector Arithmetic

We extend propositional logic with

- equalities and
- uninterpreted functions (UFs).

We extend propositional logic with

- equalities and
- uninterpreted functions (UFs).

Syntax:

- variables x over an arbitrary domain D,
- constants c from the same domain D.
- \blacksquare function symbols F for functions of the type $D^n \to D$, and
- equality as predicate symbol. = : D² → B

Here
$$\varphi := c \mid x \mid f(e_{\text{min}}e)$$
 $\Rightarrow e := c \mid x \mid f(e_{\text{min}}e)$ $\Rightarrow e := t \mid f \mid \forall x \forall | \forall y \mid \forall e \mid e \mid e$

$$= \frac{1}{2} \psi := \frac{1}{2} \left[\frac{1}{$$

We extend propositional logic with

- equalities and
- uninterpreted functions (UFs).

Syntax:

- variables x over an arbitrary domain D,
- \blacksquare constants c from the same domain D,
- function symbols F for functions of the type $D^n \to D$, and
- equality as predicate symbol.

Terms:
$$t$$
 ::= c | x | $F(t, ..., t)$
Formulas: φ ::= $t = t$ | $(\varphi \land \varphi)$ | $(\neg \varphi)$

We extend propositional logic with

- equalities and
- uninterpreted functions (UFs).

Syntax:

- \blacksquare variables x over an arbitrary domain D,
- constants c from the same domain D.
- function symbols F for functions of the type $D^n \to D$, and
- equality as predicate symbol.

Terms:
$$t$$
 ::= c | x | $F(t,...,t)$
Formulas: φ ::= $t=t$ | $(\varphi \land \varphi)$ | $(\neg \varphi)$

Semantics: straightforward

- Equality logic and propositional logic are both NP-complete.
- Thus they model the same decision problems.

- Equality logic and propositional logic are both NP-complete.
- Thus they model the same decision problems.
- Why to study both?

- Equality logic and propositional logic are both NP-complete.
- Thus they model the same decision problems.
- Why to study both?
 - Convenience of modeling
 - Efficiency

Notation and assumptions:

- Formula with equalities: φ^E
- lacksquare Formula with equalities and uninterpreted functions: $arphi^{UF}$
- Same simplifications for parentheses as for propositional logic.
- Input formulas are in NNF.
- Input formulas are checked for satisfiability.

Removing constants

Theorem

There is an algorithm that generates for an input formula φ^{UF} an equisatisfiable output formula $\varphi^{UF'}$ without constants, in polynomial time.

Algorithm: Exercise

In the following we assume that the formulas do not contain constants.

Outline

- 1 Eager SMT Solving
- 2 Eager SMT Solving for Equality Logic with Uninterpreted Functions
 - Equality Logic with Uninterpreted Functions
 - Eager SMT Solving for Uninterpreted Functions
 - Ackermann's reduction
 - Bryant's reduction
 - Eager SMT Solving for Equality Logic
 - Equality Graphs
 - The Sparse Method

3 Eager SMT Solving for Finite-precision Bit-vector Arithmetic

- Replacing functions by uninterpreted functions in a given formula is a common technique to make reasoning easier.
- \blacksquare It makes the formula weaker: $\Rightarrow \varphi^{\mathit{UF}} \to \varphi$
- Ignore the semantics of the function, but:

- Replacing functions by uninterpreted functions in a given formula is a common technique to make reasoning easier.
- It makes the formula weaker: $\models \varphi^{\mathit{UF}} \rightarrow \varphi$
- Ignore the semantics of the function, but:
- Functional congruence: Instances of the same function return the same value for equal arguments.

From uninterpreted functions to equality logic

We lead back the problems of equality logic with uninterpreted functions to those of equality logic without uninterpreted functions.

Two possible reductions:

- Ackermann's reduction
- Bryant's reduction

Outline

- 1 Eager SMT Solving
- 2 Eager SMT Solving for Equality Logic with Uninterpreted Functions
 - Equality Logic with Uninterpreted Functions
 - Eager SMT Solving for Uninterpreted Functions
 - Ackermann's reduction
 - Bryant's reduction
 - Eager SMT Solving for Equality Logic
 - Equality Graphs
 - The Sparse Method
- 3 Eager SMT Solving for Finite-precision Bit-vector Arithmetic

Ackermann's reduction

Given an input formula φ^{UF} of equality logic with uninterpreted functions, transform the formula to a satisfiability-equivalent equality logic formula φ^E of the form

$$\varphi^{\mathsf{E}} := \varphi_{\mathit{flat}} \wedge \varphi_{\mathit{cong}},$$

where φ_{flat} is a flattening of φ^{UF} , and φ_{cong} is a conjunction of constraints for functional congruence.

For validity-equivalence check

$$\varphi^{\mathsf{E}} := \varphi_{\mathsf{cong}} \to \varphi_{\mathsf{flat}}.$$

Ackermann's reduction

- Input: φ^{UF} with m instances of an uninterpreted function F.
- ullet Output: Satisfiability-equivalent φ^E without any occurrences of F.

Algorithm

Ackermann's reduction

- Input: φ^{UF} with m instances of an uninterpreted function F.
- lacksquare Output: Satisfiability-equivalent $\varphi^{\it E}$ without any occurrences of $\it F$.

Algorithm

- \blacksquare Assign indices to the F-instances.
- 2 $\varphi_{flat} := \mathcal{T}(\varphi^{UF})$ where \mathcal{T} replaces each occurrence F_i of F by a fresh theory variable f_i .
- 4 Return $\varphi_{flat} \wedge \varphi_{cong}$.

Ackermann's reduction: Example

$$\varphi^{UF} := (x_1 \neq x_2) \vee (F(x_1) = F(x_2)) \vee (F(x_1) \neq F(x_3))$$

Ackermann's reduction: Example

$$\varphi^{UF}$$
 := $(x_1 \neq x_2) \vee (F(x_1) = F(x_2)) \vee (F(x_1) \neq F(x_3))$
 φ_{flat} :=

Ackermann's reduction: Example

$$\varphi^{UF} := (x_1 \neq x_2) \vee (F(x_1) = F(x_2)) \vee (F(x_1) \neq F(x_3))$$

$$\varphi_{flat} := (x_1 \neq x_2) \vee (f_1 = f_2) \vee (f_1 \neq f_3)$$

$$\varphi^{UF} := (x_1 \neq x_2) \lor (F(x_1) = F(x_2)) \lor (F(x_1) \neq F(x_3))$$

$$\varphi_{flat} := (x_1 \neq x_2) \lor (f_1 = f_2) \lor (f_1 \neq f_3)$$

$$\varphi_{cong} :=$$

$$\varphi^{UF} := (x_1 \neq x_2) \lor (F(x_1) = F(x_2)) \lor (F(x_1) \neq F(x_3))$$

$$\varphi_{flat} := (x_1 \neq x_2) \lor (f_1 = f_2) \lor (f_1 \neq f_3)$$

$$\varphi_{cong} := ((x_1 = x_2) \to (f_1 = f_2)) \land ((x_1 = x_3) \to (f_1 = f_3)) \land ((x_2 = x_3) \to (f_2 = f_3))$$

$$\varphi^{UF} := (x_1 \neq x_2) \lor (F(x_1) = F(x_2)) \lor (F(x_1) \neq F(x_3))
\varphi_{flat} := (x_1 \neq x_2) \lor (f_1 = f_2) \lor (f_1 \neq f_3)
\varphi_{cong} := ((x_1 = x_2) \to (f_1 = f_2)) \land
((x_1 = x_3) \to (f_1 = f_3)) \land
((x_2 = x_3) \to (f_2 = f_3))$$

$$\varphi^{E} :=$$

$$\varphi^{UF} := (x_1 \neq x_2) \lor (F(x_1) = F(x_2)) \lor (F(x_1) \neq F(x_3))
\varphi_{flat} := (x_1 \neq x_2) \lor (f_1 = f_2) \lor (f_1 \neq f_3)
\varphi_{cong} := ((x_1 = x_2) \to (f_1 = f_2)) \land
((x_1 = x_3) \to (f_1 = f_3)) \land
((x_2 = x_3) \to (f_2 = f_3))$$

$$\varphi^{E} := \varphi_{flat} \land \varphi_{cong}$$

```
int power3 (int in){
   int out = in;
   for (int i=0; i<2; i++)
      out = out * in;
   return out;
}
int power3_b (int in){
   return ((in * in) * in);
}</pre>
```

```
int power3 (int in){
      int out = in;
      for (int i=0; i<2; i++)
         out = out * in:
      return out;
■ int power3 b (int in){
     return ((in * in) * in);
ullet \varphi_1 := out_0 = in \land out_1 = out_0 * in \land out_2 = out_1 * in
\blacksquare \varphi_2 := out_b = (in * in) * in
\bullet \varphi_3 := (\varphi_1 \wedge \varphi_2) \rightarrow (out_2 = out_b)
```

$$arphi_3:=ig(\mathit{out}_0 = \mathit{in} \wedge \mathit{out}_1 = \mathit{out}_0 * \mathit{in} \wedge \ \mathit{out}_2 = \mathit{out}_1 * \mathit{in} \wedge \mathit{out}_b = ig(\mathit{in} * \mathit{in} ig) * \mathit{in} ig) \rightarrow \ ig(\mathit{out}_2 = \mathit{out}_b ig)$$

$$\varphi_{3} := (out_{0} = in \wedge out_{1} = out_{0} * in \wedge out_{2} = out_{1} * in \wedge out_{b} = (in * in) * in) \rightarrow (out_{2} = out_{b})$$

$$\varphi^{UF} := (out_{0} = in \wedge out_{1} = G(out_{0}, in) \wedge out_{2} = G(out_{1}, in) \wedge out_{b} = G(G(in, in), in)) \rightarrow out_{1} = G(G(in, in), in)) \rightarrow out_{2} = G(out_{1}, in) \wedge out_{3} = G(G(in, in), in)) \rightarrow out_{4} = G(G(in, in), in))$$

 $(out_2 = out_b)$

$$\varphi^{UF} := (out_0 = in \land out_1 = G(out_0, in) \land out_2 = G(out_1, in) \land out_b = G(G(in, in), in)) \rightarrow (out_2 = out_b)$$

$$\varphi^{UF} := (out_0 = in \land out_1 = G(out_0, in) \land out_2 = G(out_1, in) \land out_b = G(G(in, in), in)) \rightarrow (out_2 = out_b)$$

$$\varphi_{flat} := (out_0 = in \land out_1 = G_1 \land out_2 = G_2 \land out_b = G_4) \rightarrow (out_2 = out_b) \text{ with}$$

$$\varphi_{cong} := ((out_0 = out_1 \land in = in) \rightarrow G_1 = G_2) \land ((out_0 = in \land in = in) \rightarrow G_1 = G_3) \land ((out_0 = G_3 \land in = in) \rightarrow G_1 = G_4) \land ((out_1 = in \land in = in \rightarrow G_2 = G_3) \land ((out_1 = in \land in = in) \rightarrow G_2 = G_3) \land ((out_1 = G_3 \land in = in) \rightarrow G_2 = G_4) \land ((in = G_3 \land in = in) \rightarrow G_3 = G_4)$$

Outline

- 1 Eager SMT Solving
- 2 Eager SMT Solving for Equality Logic with Uninterpreted Functions
 - Equality Logic with Uninterpreted Functions
 - Eager SMT Solving for Uninterpreted Functions
 - Ackermann's reduction
 - Bryant's reduction
 - Eager SMT Solving for Equality Logic
 - Equality Graphs
 - The Sparse Method
- 3 Eager SMT Solving for Finite-precision Bit-vector Arithmetic

Bryant's reduction

Case expression:

$$F_i^* = case \quad x_1 = x_i \quad : \quad f_1 \\ x_2 = x_i \quad : \quad f_2 \\ \dots \\ x_{i-1} = x_i \quad : \quad f_{i-1} \\ true \quad : \quad f_i$$

where x_i is the argument $arg(F_i)$ of F_i for all i.

Semantics:

$$\bigvee_{j=1}^{i} \left(\left(\bigwedge_{k=1}^{j-1} (x_k \neq x_i) \right) \wedge (x_j = x_i) \wedge (F_i^* = f_j) \right)$$

Bryant's reduction

- Input: φ^{UF} with m instances of an uninterpreted function F.
- ullet Output: Satisfiability-equivalent φ^E without any occurrences of F.

Algorithm

Bryant's reduction

- Input: φ^{UF} with m instances of an uninterpreted function F.
- Output: Satisfiability-equivalent φ^E without any occurrences of F.

Algorithm

- \blacksquare Assign indices to the F-instances.
- **2** Return $\mathcal{T}^*(arphi^{\mathit{UF}})$ where \mathcal{T}^* replaces each $F_i(\mathit{arg}(F_i))$ by

case
$$\mathcal{T}^*(arg(F_1)) = \mathcal{T}^*(arg(F_i))$$
 : f_1 ...
$$\mathcal{T}^*(arg(F_{i-1})) = \mathcal{T}^*(arg(F_i))$$
 : f_{i-1} true : f_i

```
int power3 (int in){
   int out = in;
   for (int i=0; i<2; i++)
      out = out * in;
   return out;
}
int power3_b (int in){
   return ((in * in) * in);
}</pre>
```

```
int power3 (int in){
      int out = in;
      for (int i=0; i<2; i++)
         out = out * in:
      return out;
■ int power3 b (int in){
     return ((in * in) * in);
ullet \varphi_1 := out_0 = in \land out_1 = out_0 * in \land out_2 = out_1 * in
\blacksquare \varphi_2 := out_b = (in * in) * in
\bullet \varphi_3 := (\varphi_1 \wedge \varphi_2) \rightarrow (out_2 = out_b)
```

$$arphi_3:=ig(\mathit{out}_0 = \mathit{in} \wedge \mathit{out}_1 = \mathit{out}_0 * \mathit{in} \wedge \ \mathit{out}_2 = \mathit{out}_1 * \mathit{in} \wedge \mathit{out}_b = ig(\mathit{in} * \mathit{in} ig) * \mathit{in} ig) \rightarrow \ ig(\mathit{out}_2 = \mathit{out}_b ig)$$

$$arphi_3:=ig(egin{array}{ll} (oldsymbol{u} t_0 = oldsymbol{in} \wedge oldsymbol{out}_1 = oldsymbol{out}_0 * oldsymbol{in} \wedge oldsymbol{out}_b = ig(oldsymbol{in} * oldsymbol{in} ig) * oldsymbol{in} ig)
ightarrow ig(oldsymbol{out}_2 = oldsymbol{out}_b ig) \end{array}$$

$$arphi^{UF}:=(out_0=in\wedge out_1=G(out_0,in)\wedge \ out_2=G(out_1,in)\wedge out_b=G(G(in,in),in))\rightarrow \ (out_2=out_b)$$

$$\varphi^{UF}$$
 := $(out_0 = in \land out_1 = G(out_0, in) \land out_2 = G(out_1, in) \land out_b = G(G(in, in), in)) \rightarrow (out_2 = out_b)$

```
\varphi^{UF} := (out_0 = in \land out_1 = G(out_0, in) \land out_2 = G(out_1, in) \land
              out_b = G(G(in, in), in)) \rightarrow (out_2 = out_b)
 \varphi^{E} := (out_0 = in \wedge out_1 = G_1^* \wedge out_2 = G_2^* \wedge
              out_b = G_1^* \rightarrow (out_2 = out_b) with
                                                         g_1
 G_2^* = case \quad out_0 = out_1 \wedge in = in : g_1
                       true
                                                      : g<sub>2</sub>
 G_3^* = case \quad out_0 = in \land in = in  : g_1
                       out_1 = in \land in = in : g_2
                       true
                                                      : g<sub>3</sub>
 G_4^* = case \quad out_0 = G_3^* \wedge in = in : g_1
                       out_1 = G_2^* \wedge in = in : g_2
                       in = G_3^* \wedge in = in
                                               : g<sub>3</sub>
                       true
                                                      : g4
```

Outline

- 1 Eager SMT Solving
- 2 Eager SMT Solving for Equality Logic with Uninterpreted Functions
 - Equality Logic with Uninterpreted Functions
 - Eager SMT Solving for Uninterpreted Functions
 - Ackermann's reduction
 - Bryant's reduction
 - Eager SMT Solving for Equality Logic
 - Equality Graphs
 - The Sparse Method
- 3 Eager SMT Solving for Finite-precision Bit-vector Arithmetic

E-graphs

$$\varphi^{\mathsf{E}}: x = y \land y = z \land z \neq x$$

- The equality predicates: $\{x = y, y = z, z \neq x\}$
- Break into two sets:

$$E_{=} = \{x = y, y = z\}, \quad E_{\neq} = \{z \neq x\}$$

■ The equality graph (E-graph) $G^E(\varphi^E) = \langle V, E_=, E_{\neq} \rangle$

The E-graph and Boolean structure in $\varphi^{\it E}$

$$\varphi_1^{\mathcal{E}}: \quad x=y \wedge y=z \wedge z \neq x$$
 unsatisfiable $\varphi_2^{\mathcal{E}}: \quad (x=y \wedge y=z) \vee z \neq x$ satisfiable!

Their E-graph is the same:

 \implies The graph $G^E(\varphi^E)$ represents an abstraction of φ^E . It ignores the Boolean structure of φ^E .

Equality and disequality paths

Definition (Equality Path)

A path that uses $E_{=}$ edges is an equality path. We write $x=^*z$.

Equality and disequality paths

Definition (Equality Path)

A path that uses $E_{=}$ edges is an equality path. We write $x=^*z$.

Definition (Disequality Path)

A path that uses edges from $E_{=}$ and exactly one edge from E_{\neq} is a disequality path. We write $x \neq^* z$.

Contradictory cycles

Definition (Contradictory Cycle)

A cycle with one disequality edge is a contradictory cycle.

Theorem

For every two nodes x, y on a contradictory cycle the following holds:

- $\mathbf{x} = \mathbf{y}$
- $x \neq^* y$

Contradictory cycles

Definition

A subgraph of E is called *satisfiable* iff the conjunction of the predicates represented by its edges is satisfiable.

Theorem

A subgraph is unsatisfiable iff it contains a contradictory cycle.

Simple cycles

Question: What is a simple cycle?

Theorem

Every contradictory cycle is either simple, or contains a simple contradictory cycle.

Simplifying the E-graph of $arphi^{\it E}$

Let S be the set of edges that are not part of any contradictory cycle.

Theorem

Replacing

- lacksquare all equations in $arphi^{ extsf{E}}$ that correspond to solid edges in S with false, and
- lacksquare all equations in $arphi^E$ that correspond to dashed edges in S with true

preserves satisfiability.

$$(x_1 = x_2 \lor x_1 = x_4) \land (x_1 \neq x_3 \lor x_2 = x_3)$$

$$(x_1 = x_2 \lor x_1 = x_4) \land (x_1 \neq x_3 \lor x_2 = x_3)$$

$$(x_1 \neq x_3 \quad \forall \quad x_2 \neq x_3)$$

$$(x_1 \neq x_3 \quad \forall \quad x_2 = x_3)$$

$$(x_1 = x_2 \lor x_1 = x_4) \land (x_1 \neq x_3 \lor x_2 = x_3)$$

$$(x_1 = x_2 \lor true) \land (x_1 \neq x_3 \lor x_2 = x_3)$$

$$(x_1 \neq x_3 \quad \lor \quad x_2 = x_3)$$

$$(x_1 = x_2 \lor x_1 = x_4) \land (x_1 \neq x_3 \lor x_2 = x_3)$$

$$(x_1 = x_2 \lor true) \land (x_1 \neq x_3 \lor x_2 = x_3)$$

$$(x_1 \neq x_3 \quad \lor \quad x_2 = x_3)$$

$$(x_1 = x_2 \lor x_1 = x_4) \land (x_1 \neq x_3 \lor x_2 = x_3)$$

$$(x_1 = x_2 \lor true) \land (x_1 \neq x_3 \lor x_2 = x_3)$$

$$(x_1 \neq x_3 \quad \lor \quad x_2 = x_3)$$

Simplifying the E-graph: Example

$$(x_1 = x_2 \lor x_1 = x_4) \land (x_1 \neq x_3 \lor x_2 = x_3)$$

$$(x_1 = x_2 \lor true) \land (x_1 \neq x_3 \lor x_2 = x_3)$$

- $(x_1 \neq x_3 \lor x_2 = x_3)$
- ¬false ∨ true

Simplifying the E-graph: Example

$$(x_1 = x_2 \lor x_1 = x_4) \land (x_1 \neq x_3 \lor x_2 = x_3)$$

$$(x_1 = x_2 \lor true) \land (x_1 \neq x_3 \lor x_2 = x_3)$$

- $(x_1 \neq x_3 \quad \lor \quad x_2 = x_3)$
- ¬false ∨ true
- \blacksquare \rightarrow Satisfiable!

Outline

- 1 Eager SMT Solving
- 2 Eager SMT Solving for Equality Logic with Uninterpreted Functions
 - Equality Logic with Uninterpreted Functions
 - Eager SMT Solving for Uninterpreted Functions
 - Ackermann's reduction
 - Bryant's reduction
 - Eager SMT Solving for Equality Logic
 - Equality Graphs
 - The Sparse Method
- 3 Eager SMT Solving for Finite-precision Bit-vector Arithmetic

Goal: Transform equality logic to propositional logic

Goal: Transform equality logic to propositional logic

Goal: Transform equality logic to propositional logic

$$\varphi^{E} \leftrightarrow x_{1} = x_{2} \land x_{2} = x_{3} \land x_{1} \neq x_{3}$$

 $\varphi_{sk} \leftrightarrow e_{1} \land e_{2} \land \neg e_{3}$

Goal: Transform equality logic to propositional logic

$$\varphi^{E} \leftrightarrow x_{1} = x_{2} \land x_{2} = x_{3} \land x_{1} \neq x_{3}$$
 $\varphi_{sk} \leftrightarrow e_{1} \land e_{2} \land \neg e_{3}$

- This is called the propositional skeleton
- This is an over-approximation

Goal: Transform equality logic to propositional logic

$$\varphi^{E} \quad \leftrightarrow \quad x_{1} = x_{2} \land x_{2} = x_{3} \land x_{1} \neq x_{3}$$

$$\varphi_{sk} \quad \leftrightarrow \quad e_{1} \quad \land \quad e_{2} \quad \land \quad \neg e_{3}$$

- This is called the propositional skeleton
- This is an over-approximation
- Transitivity of equality is lost!
- → must add transitivity constraints!

Adding transitivity constraints

$$\varphi^{E} \leftrightarrow x_{1} = x_{2} \land x_{2} = x_{3} \land x_{1} \neq x_{3}$$

$$\varphi_{sk} \leftrightarrow e_{1} \land e_{2} \land \neg e_{3}$$

Step 2: For each cycle in the equality graph: add a transitivity constraint

Adding transitivity constraints

$$\varphi^{E} \leftrightarrow x_{1} = x_{2} \land x_{2} = x_{3} \land x_{1} \neq x_{3}$$
 $\varphi_{sk} \leftrightarrow e_{1} \land e_{2} \land \neg e_{3}$

Step 2: For each cycle in the equality graph: add a transitivity constraint

$$arphi_{ extit{trans}} = egin{array}{ll} (e_1 \wedge e_2
ightarrow e_3) \wedge \ (e_1 \wedge e_3
ightarrow e_2) \wedge \ (e_3 \wedge e_2
ightarrow e_1) \end{array}$$

Step 3: Check $\varphi_{sk} \wedge \varphi_{trans}$

Adding transitivity constraints

$$\varphi^{E} \leftrightarrow x_{1} = x_{2} \land x_{2} = x_{3} \land x_{1} \neq x_{3}$$

$$\varphi_{sk} \leftrightarrow e_{1} \land e_{2} \land \neg e_{3}$$

Step 2: For each cycle in the equality graph: add a transitivity constraint

$$arphi_{ extit{trans}} = egin{array}{ll} (e_1 \wedge e_2
ightarrow e_3) \wedge \ (e_1 \wedge e_3
ightarrow e_2) \wedge \ (e_3 \wedge e_2
ightarrow e_1) \end{array}$$

Step 3: Check $\varphi_{sk} \wedge \varphi_{trans}$

Question: Complexity?

There can be an *exponential number of cycles*, so let's try to improve this idea.

Theorem

It is sufficient to constrain simple cycles only.

Only two simple cycles here.

There can be an *exponential number of cycles*, so let's try to improve this idea.

Theorem

It is sufficient to constrain simple cycles only.

Only two simple cycles here.

Question: Complexity?

Still, there may be an exponential number of simple cycles.

Theorem

It is sufficient to constrain chord-free simple cycles.

Question: How many simple cycles?

Question: How many chord-free simple cycles?

Still, there may be an exponential number of simple cycles.

Theorem

It is sufficient to constrain chord-free simple cycles.

Question: How many simple cycles?

Question: How many chord-free simple cycles?

Question: Complexity?

Still, there may be an exponential number of simple cycles.

Theorem

It is sufficient to constrain chord-free simple cycles.

Question: How many simple cycles?

Question: How many chord-free simple cycles?

Question: Complexity?

Still, there may be an exponential number of chord-free simple cycles...

Still, there may be an exponential number of chord-free simple cycles...

Still, there may be an exponential number of chord-free simple cycles...

Solution: make graph 'chordal' by adding edges!

Definition (Chordal graph)

A graph is chordal iff every cycle of length 4 or more has a chord.

Question: How to make a graph chordal?

Definition (Chordal graph)

A graph is chordal iff every cycle of length 4 or more has a chord.

Question: How to make a graph chordal?

Definition (Chordal graph)

A graph is chordal iff every cycle of length 4 or more has a chord.

Question: How to make a graph chordal?

Definition (Chordal graph)

A graph is chordal iff every cycle of length 4 or more has a chord.

Question: How to make a graph chordal?

Definition (Chordal graph)

A graph is *chordal* iff every cycle of length 4 or more has a chord.

Question: How to make a graph chordal?

Definition (Chordal graph)

A graph is *chordal* iff every cycle of length 4 or more has a chord.

Question: How to make a graph chordal?

Once the graph is chordal, we only need to constrain the triangles.

Note that this procedure adds not more than a polynomial number of edges, and results in a polynomial number of constraints.

Exploiting the polarity

■ So far we did not consider the polarity of the edges.

Exploiting the polarity

- So far we did not consider the polarity of the edges.
- Claim: in the following graph, $\varphi_{trans} = e_2 \wedge e_3 \rightarrow e_1$ is sufficient.

■ This works because of the monotonicity of NNF.

Equality logic to propositional logic

- lacksquare Input: Equality logic formula $arphi^{\it E}$
- lacktriangle Output: Satisfiability-equivalent propositional logic formula $arphi^E$

Algorithm

Equality logic to propositional logic

- Input: Equality logic formula φ^E
- ullet Output: Satisfiability-equivalent propositional logic formula $arphi^{m{\mathcal{E}}}$

Algorithm

- I Construct φ_{sk} by replacing each equality $t_i = t_j$ in φ^E by a fresh Boolean variable $e_{i,j}$.
- 2 Construct the E-graph $G^{E}(\varphi^{E})$ for φ^{E} .
- **3** Make $G^E(\varphi^E)$ chordal.
- $\varphi_{trans} = true.$
- **5** For each triangle $(e_{i,j}, e_{j,k}, e_{k,i})$ in $G^E(\varphi^E)$:

$$arphi_{\mathit{trans}} := arphi_{\mathit{trans}} \qquad \wedge \left(e_{i,j} \wedge e_{j,k} \right)
ightarrow e_{k,i} \ \wedge \left(e_{i,j} \wedge e_{i,k} \right)
ightarrow e_{j,k} \ \wedge \left(e_{i,k} \wedge e_{i,k} \right)
ightarrow e_{i,j}$$

6 Return $\varphi_{sk} \wedge \varphi_{trans}$.

" Ysk /\ Ytrans

Outline

- 1 Eager SMT Solving
- 2 Eager SMT Solving for Equality Logic with Uninterpreted Functions
 - Equality Logic with Uninterpreted Functions
 - Eager SMT Solving for Uninterpreted Functions
 - Ackermann's reduction
 - Bryant's reduction
 - Eager SMT Solving for Equality Logic
 - Equality Graphs
 - The Sparse Method
- 3 Eager SMT Solving for Finite-precision Bit-vector Arithmetic

Finite-precision bit-vector arithmetic

"Bit blasting":

- Model bit-level operations (functions and predicates) by Boolean circuits
- Use Tseitin's encoding to generate propositional SAT encoding
- Use a SAT solver to check satisfiability
- Convert back the propositional solution to the theory

Effective solution for many applications.

Example: Bounded model checking for C programs (CBMC) [Clarke, Kroening, Lerda, TACAS'04]

Slides...

...from the Decision Procedures website.