Modelling the influence of rhizodeposits on root water uptake: Supplementary Material

Andrew Mair*, Lionel X Dupuy[†], Mariya Ptashnyk[‡], Emma Gomez Peral[§]

^{*}Department of Conservation of Natural Resources, NEIKER, Derio, Basque Country, Spain (amair@neiker.eus, ORCID: 0000-0003-3847-5215)

 $^{^\}dagger Department$ of Conservation of Natural Resources, NEIKER & IKERBASQUE, Derio, Basque Country, Spain (ldupuy@neiker.eus, ORCID: 0000-0001-5221-9037)

[‡]Department of Mathematics, School of Mathematical and Computer Sciences, Heriot-Watt University, Scotland, United Kingdom (m.ptashnyk@hw.ac.uk, ORCID: 0000-0003-4091-5080)

[§]Department of Conservation of Natural Resources, NEIKER, Derio, Basque Country, Spain (egomez@neiker.eus)

Parameter	Description	Value	Source
ρ	Soil bulk density	$1650 \mathrm{mgcm}^{-3}$	Morris and Lowery (1988)
$\theta_{r,0}$	Residual water content	$0.065 \text{cm}^3 \text{cm}^{-3}$	Carsel and Parrish (1988)
$\theta_{s,0}$	Saturated water content	$0.41 \text{cm}^3 \text{cm}^{-3}$	Carsel and Parrish (1988)
$\frac{\theta_{s,0}}{\alpha_{\theta,0}^W}$	Wetting inverse air-entry pressure with-	$0.0521 \text{cm}^3 \text{cm}^{-3}$	Kool and Parker (1987)
	out rhizodeposits		
$\alpha_{\theta,0}^D$	Drying inverse air-entry pressure with-	$0.0114 \text{cm}^3 \text{cm}^{-3}$	Kool and Parker (1987)
,	out rhizodeposits		
n_{θ}	Pore size parameter	1.89	Carsel and Parrish (1988)
$K_{s,0}^W$	Wetting saturated hydraulic conductiv-	72cmd ⁻¹	Vogel et al. (1996)
,	ity without rhizodeposits		
$K_{s,0}^D$	Drying saturated hydraulic conductiv-	120cmd ⁻¹	Vogel et al. (1996)
	ity without rhizodeposits		
D_W	Diffusion coefficient of rhizodeposits in	$0.65 \text{cm}^2 \text{d}^{-1}$	Scott et al. (1995)
	solution		
ET_0	Reference evapotranspiration	0.1 cmd $^{-1}$	Allen et al. (1998)
\mathcal{T}_{p}	Potential plant transpiration	0.1 cmd $^{-1}$	Allen et al. (1998)
$\mathcal{T}_{ m p}$	Potential plant transpiration	0.1 cmd $^{-1}$	Allen et al. (1998)

Table 1: Literature parameters employed in models

References

- Allen, R. G., L. S. Pereira, D. Raes, M. Smith, et al. (1998). Crop evapotranspiration-guidelines for computing crop water requirements-fao irrigation and drainage paper 56. Fao, Rome 300(9), D05109.
- Carsel, R. F. and R. S. Parrish (1988). Developing joint probability distributions of soil water retention characteristics. *Water resources research* 24(5), 755–769.
- Kool, J. and J. C. Parker (1987). Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties. *Water Resources Research* 23(1), 105–114.
- Morris, L. A. and R. F. Lowery (1988). Influence of site preparation on soil conditions affecting stand establishment and tree growth. *Southern Journal of Applied Forestry* 12(3), 170–178.
- Scott, E. M., E. A. Rattray, J. I. Prosser, K. Killham, L. A. Glover, J. Lynch, and M. Bazin (1995). A mathematical model for dispersal of bacterial inoculants colonizing the wheat rhizosphere. *Soil Biology and Biochemistry* 27(10), 1307–1318.
- Vogel, T., K. Huang, R. Zhang, and M. T. Van Genuchten (1996). The hydrus code for simulating one-dimensional water flow, solute transport, and heat movement in variably-saturated media. *US Salinity Lab, Riverside, CA*.