Komponentovo orientované a udalosťami riadené programovanie Arduino zariadení

AUTOR: PATRIK PEKARČÍK

VEDÚCI: RNDR. FRANTIŠEK GALČÍK, PHD.

Motivácia

Parametre	Arduino UNO	Arduino Nano
Microcontroller	ATmega328P	Atmel ATmega168 or ATmega328
Operating Voltage	5V	5 V
Input Voltage (limit)	6-20V	6-20 V
Digital I/O Pins	14 (of which 6 provide PWM	14 (of which 6 provide PWM
	output)	output)
Analog Input Pins	6	8
Flash Memory	32 KB (ATmega328P) of which 0.5 KB used by bootloader	16 KB (ATmega168) or 32 KB
		(ATmega328) of which 2 KB used by
		bootloader
SRAM	2 KB (ATmega328P)	1 KB (ATmega168) or 2 KB
		(ATmega328)
EEPROM	1 KB (ATmega328P)	512 bytes (ATmega168) or 1 KB
		(ATmega328)
Clock Speed	16 MHz	16 MHz
Size	68.6 mm * 53.4 mm	45 mm * 18 mm
Weight	25 g	5 g
Price	\$ 2.00	\$ 2.00

Demo projekt

Demo projekt

```
const int buttonPin = 2;
const int ledPin = 13;
int buttonState = 0;
void setup () {
    pinMode (ledPin, OUTPUT);
    pinMode(buttonPin, INPUT);
void loop () {
    if (buttonState == 0) {
        digitalWrite(ledPin, HIGH);
    delay(1000);
    digitalWrite(ledPin, LOW);
    delay(1000);
    if (digitalRead(buttonPin) == HIGH) {
        buttonState = buttonState == 0 ? 1 : 0;
```

Problém?

Po stlačení tlačidla sa nič nedeje!

```
if (buttonState == 0) {
    digitalWrite(ledPin, HIGH);
}
delay(1000);
digitalWrite(ledPin, LOW);
delay(1000);
if (digitalRead(buttonPin) == HIGH) {
    buttonState = buttonState == 0 ? 1 : 0;
}
```

Problém?

Po stlačení tlačidla sa nič nedeje!

```
if (buttonState == 0) {
    digitalWrite(ledPin, HIGH);
}
delay(1000);
digitalWrite(ledPin, LOW);
delay(1000);
if (digitalRead(buttonPin) == HIGH) {
    buttonState = buttonState == 0 ? 1 : 0;
}
```

delay(1000)

program je uspatý na 1 sekundu a neprijíma žiadne stlačenia.

Po stlač Náme riešenie (millis)

de

Je uspatý na 1 sekundu a neprijíma žiadne stlačenia. pro


```
public class FooPanel extends JPanel implements
ActionListener {
    public FooPanel() {
        super();
                           Komponent
        JButton btn = new JButton("Click Me!");
        btn.addActionListener(this);
        this.add(btn);
                  Spracovanie udalosti
    @Override
    public void actionPerformed(ActionEvent ae) {
        System.out.println("Button has been
clicked!");
```

Naša vízia - komponenty

Časovač

Názov: **blinkTimer**

Interval: 1000

OnTick: changeLed()

Prepínač

Názov: led

Pin: **13**

Tlačidlo

Názov: **button**

Pin: **2**

OnClick: buttonClick()

```
boolean blika = true;
void buttonClick() {
    blika = !blika;
}
void changeLed() {
    if(blika) {
        led.revert();
    }
}
```

Čo už máme

Analýza alebo čomu sa budeme venovať

- Plánovač úloh procesora
- Kompilátor
- Analyzátor logiky programu
- Implementovať komponenty
- GUI
- Abstract syntax tree pre editor

Ciele práce

- Preskúmať, analyzovať a porovnať existujúce prístupy, softvérové aplikácie a knižnice využívané pri programovaní Arduino zariadení
- Preskúmať a analyzovať možnosti komponentového a udalosťami riadeného programovania s ohľadom na hardvérové obmedzenia Arduino zariadení

Ciele práce

- 3. Vychádzajúc z existujúcich open-source projektov a knižníc navrhnúť a implementovať uživateľsky prívetivé riešenie na jednoduché komponentovo-orientované a udalosťami riadené programovanie Arduino zariadení
- 4. Implementovať vzorové komponenty využiteľné pri návrhu a implementácii IoT riešení

Literatúra

- Doukas, C. (2012) Building Internet of Things with the Arduino.
 CreateSpace Independent Publishing Platform, ISBN: 978-1470023430
- 2. Schwartz, M. (2016) Internet of Things with Arduino Cookbook. Packt Publishing, ISBN: 978-1785286582
- 3. Waher, P. (2015) **Learning Internet of Things**. Packt Publishing, ISBN 978-1783553532.

Ďakujem za pozornosť!