Task 1
Using the diagrams given in the presentation calculate how much (%) is the effect of applying different modifications (changing the gas, adding an extra pane, using a low emissivity coating) on the U value with respect to a benchmark case of double layer with air and no coating? (keep in mind the gap thickness to be 13 mm)

2 parallel planes	<u>u- value</u>	<u>Difference</u>	percentage			
	<u>(W/m2)</u>	<u>(W/m2)</u>				
w/air	2.8	0	0%			
w/argon	2.65	0.15	5.36%			
w/krypton	2.6	0.20	7.14%			

3 parallel planes	<u>u- value</u> (W/m2)	Difference (W/m2)	<u>percentage</u>
w/air	1.8	1	35.7%
w/argon	1.7	1.1	39.2%
w/krypton	1.6	1.20	42.8

Task 2

Considering the house that we analyzed in the last two examples, calculate the heating and cooling load of the other windows which are fixed 14.4 sqm on the west, fixed 3.6 sqm on the south and an operable 3.6 sqm on the south (the same window and frame type). How much does the total value change if I change the frame of the window from wooden one to aluminum?

		PIACENZA, Italy											WMO#:	160840		
Lat:	44.92N	Long:	9.73E	Elev:	138	StdP:	99.68		Time Zone:	1.00 (EU)	W)	Period:	89-10	WBAN:	99999	
Annual Heating and Humidification Design Conditions																
Coldest Heating DB	n DB		Humidification DP/MCDB and HR				Coldest month WS/MCDB			MCWS/PCWD						
	3		DD.	99.6%	MODE	- DD - I	99%	MODE		4%		%		6% DB		
	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD		
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)		
1	-6.2	-4.8	-11.6	1.4	3.1	-8.8	1.8	1.8	8.8	5.6	7.7	6.2	2.1	250		(1)
Annual Co	Annual Cooling, Dehumidification, and Enthalpy Design Conditions															
Hottest Cooling DB/MCWB Evaporation WB/MCDB MCWS/PCWD																
Hottest			4%	19		2%		0.4% 1%			2%			to 0.4% DB		
Month	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
8	11.9	33.1	22.7	31.9	22.4	30.3	21.8	24.6	30.2	23.7	29.2	22.9	28.3	2.4	90	(2)

DTcooling=31.9-24=7.9 C

DTheating = 20 + 4.8 = 24.8 C

DR=11.9C

• WEST WINDOW: FIXED

• COOLING LOAD: WOOD FRAME:

Qwindoww= A*CFwindoww

A=14m2

CFwindoww=CFwindowwheattransfer +CFwindowwirradiation CFwindoww= U(DT – 0.46DR)+ PXI*SHGC*IAC*FFs

CFwindowwht=2.84(7.9-(0.46*11.9)=6.89 w/m2

CFwindowwir=PXI*SHGC*IAC*FFs
PXI=ED- Ed=559+188=747
CFwindowwir=747*0.54*1*0.56=225.89w/m2

CFwindoww=CF windowht + CF windowir =6.89+225.89=232.78 w/m2 Qwindow= A*CF=3352.07W

• COOLING LOAD: AMLUMINUM FRAME

CFwindowwht= 3.61(7.9-(0.46*11.9)=8.76w/m2 CFwindowir=747*0.56.1.0.56=2334.26w/m2 CFwindoww=8.76+234.26=243.02W/m2 qwindoww=A*CFwindow= 3499.7W

• HEATING LOAD: WOOD FRAME

HFwindoww=Uwindoww*DTheating =2.84*24.8=70.43W/m2 q=14.4*70.43=1.14.22W

• HEATING LOAD: ALUMINUM FRAME

HF=3.61*24.8=89.53 W/m2 q=14.4*89.53=1289.20W

Difference: the cooling load=147.4W the heating load= 274.98 W

• SOUTH WINDOW: FIXED

• COOLING: WOOD

CFws-ht=2.84(7.9-(0.46*11.9)=6.89 w/m2 CFws-ir=557*0.54*0.47=141.37 w/m2 CFws=6.89+141.37=148.26 w/m2 q=3.6*148.26=533.75 w

• COOLING ALUMINUM FRAME:

CFws-ht=3.61(7.9-(0.46*11.9)=8.76w/m2 CFws-ir=557*0.56*1*0.4=146.60 w/m2 CFws=8.76+146.60+155.36 w/m2 qws=3.6*155.36=559w

• HEATING WOOD FRAME

HFws=2.84*24.8=70.43w/m2 qws=3.6*70.43=253w

• HEATING ALUMINUM FRAME:

HFws=3.61*24.8=89.53 w/m2 qws=3.6*89.53=322.31