Ruch planet naszego układu słonecznego i ich księżyców

- 1. Borowy Szymon
- 2. Kołodziej Dominik
- 3. Kozak Marcin

Publikacje:

- 1. https://medium.com/@m_vezina/building-jsorrery-a-javascript-webgl-solar-system-73 30e71d64d5
- 2. https://arxiv.org/pdf/1607.06298.pdf
- 3. https://arxiv.org/pdf/0707.3992.pdf
- 4. https://arxiv.org/pdf/1407.3545.pdf
- 5. https://arxiv.org/pdf/1402.2931.pdf
- 6. https://www.researchgate.net/publication/31718048_Solar_System_Dynamics_CD_Murray_SF_Dermott -- jak się uda uzyskać dostęp
- 7. https://www-n.oca.eu/morby/celmech.pdf
- 8. https://css-tricks.com/creating-vour-own-gravity-and-space-simulator/

Symulacje:

- 1. https://www.solarsystemscope.com
- 2. https://theskylive.com/
- 3. http://www.faustweb.net/solaris/
- 4. https://github.com/mgvez/jsorrery projekt na GitHubie
- 5. https://mgvez.github.io/jsorrery/ i jego symulacja
- 6. http://solarsystem.appzend.net/?q=solarsimulator1

Technologia:

Zdecydowaliśmy się na język programowania JavaScript z kilku przyczyn:

- każdy z członków zespołu opanował jego podstawy
- jest popularnym językiem programowania i istnieje wiele przydatnych bibliotek napisanych przez użytkowników
- jest szybkim ponieważ uruchamia się bezpośrednio w przeglądarce klienta
- działa na każdej nowej przeglądarce, więc będzie działać jednakowo na każdym systemie operacyjnym

Założenia, które chcemy zrealizować:

- 1) Obowiązkowe:
 - symulacja układu słonecznego wraz z wszystkimi planetami i księżycami w widoku 2D
 - podgląd daty, w którym jest obecny układ
 - manipulacja szybkością płynięcia czasu
 - możliwy skok do dowolnego momentu w przyszłości

2) Dodatkowo:

- symulacja układu słonecznego wraz z wszystkimi planetami i księżycami w widoku 3D
- swobodna kamera
- możliwość przeskoku na dowolny układ obiektów (np. cały układ słoneczny, ziemia wraz z księżycem, Mars i jego księżyce itd.)
- możliwość płynięcia czasu "do tyłu"
- możliwy skok do dowolnego momentu także w przeszłości
- manipulacja masą planet, Słońca i księżyców
- manipulacja nachyleniem płaszczyzny obiegu planety wokół Słońca