# Escuela Superior de Física y Matemáticas

# ECONOMETRÍA

Alumno: Roberto Carlos Santos Alonzo

Actividad 2

# contenido

| 1. | Gen  | nerar muestra                                                                             | <b>2</b> |
|----|------|-------------------------------------------------------------------------------------------|----------|
|    | 1.1. | Diagrama de dispersión                                                                    | 2        |
|    | 1.2. | Calcular de forma manual                                                                  | 2        |
|    |      | 1.2.1. calcular $\beta$                                                                   | 2        |
|    |      | 1.2.2. Calcular $\alpha$                                                                  | 2        |
|    |      | 1.2.3. Coeficiente de ajuste                                                              | 3        |
|    |      | 1.2.4. Valores estimados                                                                  | 3        |
|    |      | 1.2.5. Residuos del modelo                                                                | 3        |
|    |      | 1.2.6. Presentacion de los datos                                                          | 3        |
|    | 1.3  | Cálculo con linea de comando                                                              | 7        |
|    |      | 1.3.1. Estimar con MCO                                                                    | 7        |
|    |      | 1.3.2. Calcular residuales                                                                | 8        |
|    |      | 1.3.3. ESR y el $\mathbb{R}^2$                                                            | 8        |
| 2. | Util | izando la base de datos cps08.Rdata                                                       | 8        |
|    |      | Graficar la dispersión de las variables age y ahe                                         | 8        |
|    |      | 2.1.1. Estimar $\hat{\alpha}$ y $\hat{\beta}$                                             | 8        |
|    |      | 2.1.2. Gráfico 4.2                                                                        | 9        |
|    | 2.2. | Estimar regresión entre los ingresos medios por hora (ahe) contra la edad (age), cuanto   | _        |
|    |      | aumentará el ingreso si los trabajadores tienen un año más de vida                        | 10       |
|    | 2.3. | ¿ Cuál es la diferencia salarial entrre un inidividuo de 26 años y uno de 30?             | 11       |
|    | 2.4. | Calcular $R^2$                                                                            | 11       |
|    | 2.5. | Realizar nuevamente la regresión del inciso 2.2 utilizar solo los datos de los gradudados |          |
|    |      | de escuela secundaria                                                                     | 11       |
|    | 2.6. | Repetir la regresión entre ingresos medios por hora (ahe) contra la edad (age) considerar |          |
|    |      | solo los datos de los graduados universitarios                                            | 12       |
|    | 2.7. | Es distinto el efecto de la variable age sobre los ingresos salariales para los graduados |          |
|    |      | de secundaria quer para los ingresos universitarios. Explicar                             | 13       |
|    |      | 1 1 0                                                                                     |          |

### 1. Generar muestra

```
y <- c(rnorm(200,2,1))
x <- c(rexp(200,1))
b <- sum((x-mean(x))*(y-mean(y)))/sum((x-mean(x))^2); b

[1] -0.004027821
a <- mean(y)-b*mean(x);a

[1] 1.776251</pre>
```

### 1.1. Diagrama de dispersión

```
plot(x, y , pch=10, main = "Diagrama de dispersión", xlab = "x", ylab = "y")
abline(a, b, col = "steelblue", lwd = 2 )
```

# Diagrama de dispersión



#### 1.2. Calcular de forma manual

#### 1.2.1. calcular $\beta$

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
(1)

#### 1.2.2. Calcular $\alpha$

 $\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x} \tag{2}$ 

```
a <- mean(y)-b*mean(x);a
## [1] 1.776251
```

#### 1.2.3. Coeficiente de ajuste

$$R^2 = 1 - \frac{SRC}{STC} \tag{3}$$

```
y.hat <- a+b*x
e <- y - y.hat
STC <- sum((y - mean(y))^2)
SEC <- sum((y.hat - mean(y))^2)
SRC <- sum(e^2)
R.2 <- 1-(SRC/STC); R.2</pre>
## [1] 1.97724e-05
```

#### 1.2.4. Valores estimados

$$\hat{y}_i = \hat{\alpha} + \hat{\beta}x_i \tag{4}$$

```
y_i <- a + b*x
```

# 1.2.5. Residuos del modelo

$$e_i = y_i - \hat{y}_i \tag{5}$$

```
e_i <- y-y_i
```

#### 1.2.6. Presentacion de los datos

```
data.frame(x, y, y_i, e_i)
##
                        y y_i
## 1
      1.985512054 1.63018976 1.768253 -0.138063533
      3.615863448 2.58182671 1.761687 0.820140190
## 3
      2.197981152 2.55370121 1.767398 0.786303707
## 4
## 5
     0.434323003 2.63048495 1.774501 0.855983750
     1.139757707 3.09483428 1.771660 1.323174440
## 6
## 7
     0.492669037 2.53387397 1.774266 0.759607774
      3.966891443 1.60558789 1.760273 -0.154684755
## 8
## 9 1.817033408 0.36845854 1.768932 -1.400473349
## 10 0.559316525 2.11106399 1.773998 0.337066235
```

```
## 11 0.530442875 1.78354953 1.774114 0.009435479
## 12 1.752548403 1.55686788 1.769192 -0.212323750
## 13 1.406058427 2.63481909 1.770587 0.864231865
## 14 0.169328024 0.91373483 1.775569 -0.861833725
## 15 0.589453124 3.13044085 1.773876 1.356564482
## 16 1.252804692 0.10093031 1.771205 -1.670274198
## 17
      1.518476693 2.43438121 1.770134 0.664246785
## 18 1.112490754 1.76665620 1.771770 -0.005113461
      1.090469846 2.71629192 1.771858 0.944433558
## 19
## 20 0.711909483 1.40017939 1.773383 -0.373203743
## 21 0.250237063 1.18696003 1.775243 -0.588282634
## 22 0.074307370 1.80172355 1.775951 0.025772272
## 23 0.142813419 0.48780058 1.775675 -1.287874768
## 24
      0.106550164 2.56123052 1.775821 0.785409103
## 25
     ## 26 0.239719477 -0.24690586 1.775285 -2.022190893
## 27
     0.036144074 0.59390864 1.776105 -1.182196353
## 28 0.526727420 1.65421070 1.774129 -0.119918310
## 29
      0.181129176 1.95973801 1.775521 0.184216988
## 30
     0.637475942 2.01162314 1.773683 0.237940206
## 31
      1.808828876 2.27930371 1.768965 0.510338774
## 32 2.641141577 1.47846000 1.765613 -0.287152526
## 33 0.578427660 1.14115510 1.773921 -0.632765677
## 34
     0.136049909 1.94850333 1.775703 0.172800733
## 35 0.164837028 2.42277762 1.775587 0.647190978
## 36
     0.423588575 2.71730368 1.774544 0.942759245
## 37 0.351760359 2.54889368 1.774834 0.774059928
## 38 1.147935644 2.67208448 1.771627 0.900457580
## 39
     3.315243818 2.32052276 1.762897 0.557625393
## 40 0.001884350 1.37291343 1.776243 -0.403329559
## 41
      0.229559726 2.32086996 1.775326 0.545544011
## 42 0.350733281 1.83758295 1.774838 0.062745065
## 43 0.364096458 2.10134332 1.774784 0.326559258
## 44
     0.669867170 2.36246877 1.773552 0.588916301
## 45 2.009884696 3.26060469 1.768155 1.492449566
## 46 0.810369980 2.45034575 1.772987 0.677359201
## 47
     0.277891963 -0.48665543 1.775131 -2.261786710
     ## 48
## 49 0.629738412 1.53053281 1.773714 -0.243181289
## 50 0.313940411 1.18852150 1.774986 -0.586464580
## 51 0.450073819 1.70458262 1.774438 -0.069855141
## 52 0.493407912 0.85878303 1.774263 -0.915480192
## 53
      1.914897833 1.20121509 1.768538 -0.567322619
## 54 0.965762402 2.65114575 1.772361 0.878785096
## 55 0.484049492 1.60306017 1.774301 -0.171240739
## 56
     0.688593670 -0.26129793 1.773477 -2.034774978
## 57
      0.260159082 2.83063980 1.775203 1.055437102
## 58
      0.922970436  0.73345081  1.772533  -1.039082211
## 59
      0.454817207 3.40303206 1.774419 1.628613409
## 60
      1.665363917 2.04541723 1.769543 0.275874443
     2.751276700 1.20898514 1.765169 -0.556183784
## 61
## 62 0.081221708 1.29673987 1.775923 -0.479183558
## 63
     0.352823296 1.85539725 1.774829 0.080567786
## 64 0.174055371 0.25601096 1.775550 -1.519538556
```

```
## 65 0.321269964 1.20878255 1.774957 -0.566174008
## 66
      0.930911480 2.42694682 1.772501 0.654445791
## 67
      1.731667073 1.84466109 1.769276 0.075385362
      2.931283094 0.92076541 1.764444 -0.843678486
## 68
## 69
      0.722072754 1.85750091 1.773342 0.084158717
      ## 70
## 71
      1.176571930 0.34095827 1.771512 -1.430553282
      1.967507886 1.10088180 1.768326 -0.667444011
## 72
      1.036746480 2.20283211 1.772075 0.430757359
## 73
      0.383261232 1.08933232 1.774707 -0.685374553
## 74
## 75 2.166112089 2.32948837 1.767526 0.561962503
## 76
      ## 77
      0.354826598 1.80197670 1.774821 0.027155305
## 78
      5.561196670 1.44484030 1.753851 -0.309010765
## 79
      4.168568359 1.95009328 1.759460 0.190632956
## 80 0.235842722 1.40299230 1.775301 -0.372308345
## 81
      1.716022259 1.47901871 1.769339 -0.290320037
## 82 0.594549804 0.16036104 1.773856 -1.613494799
## 83
      0.003205046 1.94471086 1.776238 0.168473192
## 84
      1.190987674 1.39741330 1.771453 -0.374040190
## 85 0.773586571 2.52009100 1.773135 0.746956293
## 86
     0.659529446 2.14431063 1.773594 0.370716517
## 87
      0.971397449 1.68296231 1.772338 -0.089375651
## 88
      0.016092932 1.42929050 1.776186 -0.346895256
## 89
      0.429067851 1.25387931 1.774522 -0.520643060
## 90
      0.314140054 3.82763405 1.774985 2.052648772
## 91 0.044198761 1.06631444 1.776073 -0.709758117
## 92 0.135039915 1.04122697 1.775707 -0.734479695
## 93
     0.140335455 4.70408699 1.775685 2.928401655
## 94 0.194833400 -0.38550769 1.775466 -2.160973513
## 95
      0.523679267 1.23545458 1.774141 -0.538686708
## 96 0.390242743 0.28159865 1.774679 -1.493080096
      0.865954794 2.32739230 1.772763 0.554629634
## 97
## 98 0.471451542 1.40789505 1.774352 -0.366456609
## 99 3.011535048 2.73176258 1.764121 0.967641931
## 100 1.825370947 2.21054665 1.768898 0.441648339
## 101 1.553889712 2.19241201 1.769992 0.422420224
## 102 0.004750060 2.66161613 1.776231 0.885384683
## 103 0.097637286 2.29650884 1.775857 0.520651533
## 104 1.024036810 3.85716965 1.772126 2.085043713
## 105 0.114759833 2.54488798 1.775788 0.769099631
## 106 0.376229675 1.96874525 1.774735 0.194010056
## 107 0.835105472 2.07247527 1.772887 0.299588351
## 108 0.370835714 2.47587212 1.774757 0.701115202
## 109 2.645955613 3.12111711 1.765593 1.355523965
## 110 0.072901180 0.70894798 1.775957 -1.067008961
## 111 0.541458100 2.39014655 1.774070 0.616076873
## 112 1.519276915 1.57531199 1.770131 -0.194819215
## 113 1.004456599 2.89372450 1.772205 1.121519693
## 114 3.511279693 2.01749542 1.762108 0.255387648
## 115 2.228061067 1.39657743 1.767276 -0.370698918
## 116 0.098438616 2.18845883 1.775854 0.412604745
## 117 1.480911190 1.07056279 1.770286 -0.699722946
## 118 0.866840203 1.14458720 1.772759 -0.628171904
```

```
## 119 0.486286422 1.64505217 1.774292 -0.129239734
## 120 1.168213228 3.15268746 1.771545 1.381142240
## 121 3.603833025 2.05461167 1.761735 0.292876684
## 122 0.005053505 2.82594940 1.776230 1.049719181
## 123 0.286263536 0.79567151 1.775098 -0.979426050
## 124 0.577752403 1.96656812 1.773923 0.192644625
## 125 1.611265849 2.71154491 1.769761 0.941784228
## 126 4.359826096 2.28496538 1.758690 0.526275409
## 127 0.294039531 2.47887664 1.775066 0.703810402
## 128 0.862076912 1.68499187 1.772778 -0.087786413
## 129 1.946029130 1.83511363 1.768412 0.066701308
## 130 0.868088598 2.13307091 1.772754 0.360316843
## 131 1.358695650 0.44038222 1.770778 -1.330395771
## 132 2.119452932 2.11097397 1.767714 0.343260169
## 133 0.441454146 2.71435344 1.774472 0.939880958
## 134 3.316379249 1.87406520 1.762893 0.111172401
## 135 1.713410382 0.25317693 1.769349 -1.516172335
## 136 0.984219737 2.30993193 1.772286 0.537645611
## 137 0.698252522 2.38008200 1.773438 0.606643863
## 138 1.985865578 0.94537168 1.768252 -0.822880189
## 139 0.866799742 0.54927236 1.772759 -1.223486900
## 140 0.267731160 2.52658239 1.775172 0.751410191
## 141 0.873335531 -0.08383649 1.772733 -1.856569424
## 142 0.720510079 1.88867939 1.773348 0.115330901
## 143 0.139141227 2.58785831 1.775690 0.812168170
## 144 0.007918572 2.48388231 1.776219 0.707663629
## 145 2.260106785 2.01388761 1.767147 0.246740340
## 146 0.030570421 2.45439667 1.776127 0.678269220
## 147 2.731861947 0.96926182 1.765247 -0.795985305
## 148 0.219148207 2.90472895 1.775368 1.129361060
## 149 0.179487543 2.73588628 1.775528 0.960358642
## 150 1.019207586 0.70871275 1.772145 -1.063432644
## 151 0.337565952 1.04089420 1.774891 -0.733996720
## 152 1.092760553 1.60597873 1.771849 -0.165870399
## 153 1.380087834 1.09824253 1.770692 -0.672449302
## 154 1.956996022 2.25875678 1.768368 0.490388629
## 155 0.316089543 0.70075440 1.774977 -1.074223027
## 156 1.202429014 0.07671183 1.771407 -1.694695583
## 157 0.051946527 2.80140402 1.776041 1.025362670
## 158 2.320439893 2.13417529 1.766904 0.367271035
## 159 1.498786473 1.12009311 1.770214 -0.650120623
## 160 0.834096014 1.84483135 1.772891 0.071940359
## 161 0.212480741 2.10762217 1.775395 0.332227428
## 162 2.182527823 1.60773071 1.767460 -0.159729036
## 163 0.117100049 1.85583021 1.775779 0.080051289
## 164 0.418047879 1.30348792 1.774567 -0.471078830
## 165 0.167750178 1.90190700 1.775575 0.126332092
## 166 1.004238288 2.86366657 1.772206 1.091460881
## 167 2.038024980 4.62920986 1.768042 2.861168082
## 168 1.381656093 0.74125165 1.770686 -1.029433862
## 169 0.505317018 2.69429025 1.774215 0.920074998
## 170 0.026808808 0.93384513 1.776143 -0.842297463
## 171 0.986753783 0.95268243 1.772276 -0.819593681
## 172 3.361984826 3.38035019 1.762709 1.617641086
```

```
## 173 0.505029801 2.94121177 1.774216 1.166995358
## 174 1.459024424 1.79152350 1.770374 0.021149617
## 175 0.778040925 2.08725219 1.773117 0.314135423
## 176 1.913635923 1.97246745 1.768543 0.203924654
## 177 0.671307162 1.30985562 1.773547 -0.463691050
## 178 0.341895869 0.82503014 1.774873 -0.949843338
## 179 0.027800013 2.38963945 1.776139 0.613500842
## 180 1.033641012 2.63798119 1.772087 0.865893935
## 181 2.386156184 0.76179861 1.766640 -1.004840958
## 182 1.186290581 1.58609350 1.771472 -0.185378915
## 183 1.894025706 1.93300876 1.768622 0.164386976
## 184 1.574890513 3.02217532 1.769907 1.252268120
## 185 0.821464386 2.35293631 1.772942 0.579994443
## 186 4.168340436 0.18586083 1.759461 -1.573600419
## 187 0.893982317 1.70779283 1.772650 -0.064856944
## 188 1.437397713 0.38564101 1.770461 -1.384819987
## 189 1.192609814 1.88869784 1.771447 0.117250886
## 190 1.952581379 -0.16612295 1.768386 -1.934508875
## 191 2.029331064 0.81985922 1.768077 -0.948217578
## 192 1.036680535 2.04456458 1.772075 0.272489565
## 193 0.739474274 0.84950261 1.773272 -0.923769501
## 194 0.609385159 1.79427843 1.773796 0.020482350
## 195 0.103740800 2.13709102 1.775833 0.361258289
## 196 0.707361936 1.93395269 1.773401 0.160551236
## 197 1.301686444 2.19287990 1.771008 0.421872288
## 198 0.929247833 1.65341170 1.772508 -0.119096029
## 199 0.172358404 1.82405412 1.775556 0.048497774
## 200 0.286840000 2.21649561 1.775095 0.441400370
```

#### 1.3. Cálculo con linea de comando

#### 1.3.1. Estimar con MCO

```
reg <- lm(x \sim y, data = data.frame(x, y))
summary(reg)
##
## Call:
## lm(formula = x ~ y, data = data.frame(x, y))
## Residuals:
   Min 1Q Median
                              3Q
## -1.0577 -0.7348 -0.2792 0.4615 4.5019
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.066341 0.155985 6.836 9.84e-11 ***
             -0.004909 0.078455 -0.063 0.95
## y
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1 on 198 degrees of freedom
## Multiple R-squared: 1.977e-05, Adjusted R-squared: -0.005031
## F-statistic: 0.003915 on 1 and 198 DF, p-value: 0.9502
```

#### 1.3.2. Calcular residuales

```
res <- residuals(reg)
est <- fitted.values(reg)</pre>
```

### 1.3.3. ESR y el $R^2$

```
summary(reg)$sigma

## [1] 1.000417

summary(reg)$r.squared

## [1] 1.97724e-05
```

# 2. Utilizando la base de datos cps08.Rdata

```
load("C:/Users/81799/Downloads/cps08.RData")
```

### Replicando la tabla

```
media_age <- mean(cps08$age)</pre>
media_ahe <- mean(cps08$ahe)</pre>
es_age <- sd(cps08$age)
es_ahe <- sd(cps08$ahe)
quantiles \leftarrow c(0.1, 0.25, 0.40, 0.50, 0.60, 0.75, 0.90)
quantil_age <- quantile(cps08$age, quantiles)</pre>
quantil_ahe <- quantile(cps08$ahe, quantiles)</pre>
data.frame(media = c(media_age, media_ahe), error_standar=c(es_age, es_ahe),
           percentil=rbind(quantil_age, quantil_ahe))
                  media error_standar percentil.10. percentil.25. percentil.40.
##
## quantil_age 29.57723
                            2.855258
                                         26.000000
                                                          27.00000
                                                                         29.00000
## quantil_ahe 18.97609 10.139439
                                       8.653846
                                                          12.01923
                                                                         14.66346
##
               percentil.50. percentil.60. percentil.75. percentil.90.
## quantil_age
                    30.00000
                                  31.00000
                                                 32.00000
                                                               34.00000
## quantil_ahe
                    16.82692
                                  19.23077
                                                 23.55769
                                                               32.45192
```

# 2.1. Graficar la dispersión de las variables age y ahe

# **2.1.1.** Estimar $\hat{\alpha}$ y $\hat{\beta}$

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
 (6)

b <- sum((cps08\$age-mean(cps08\$age))\*(cps08\$ahe-mean(cps08\$ahe)))/sum((cps08\$age-mean(cps08\$age))
## [1] 0.6049863

$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x} \tag{7}$$

```
a <- mean(cps08$ahe)-b*mean(cps08$age); a ## [1] 1.082275
```

#### 2.1.2. Gráfico 4.2

```
plot( cps08$age,cps08$ahe, pch=20, ylim = c(min(cps08$ahe), max(cps08$ahe)), xlim = c(min(cps08$ahe))
    ylab = "ahe")
abline(a,b, col = "steelblue", lwd = 2 )
```



# 2.2. Estimar regresión entre los ingresos medios por hora (ahe) contra la edad (age), cuanto aumentará el ingreso si los trabajadores tienen un año más de vida

```
be <- sum(((cps08$age+1)-mean(cps08$age+1))*(cps08$ahe-mean(cps08$ahe)))/sum((cps08$age+1-mean(cps08$age+1))*(cps08$ahe-mean(cps08$ahe)))/sum((cps08$age+1-mean(cps08$age+1))*(cps08$ahe-mean(cps08$ahe)))/sum((cps08$age+1-mean(cps08$age+1))*(cps08$ahe-mean(cps08$ahe)))/sum((cps08$age+1-mean(cps08$age+1))*(cps08$ahe-mean(cps08$ahe)))/sum((cps08$age+1-mean(cps08$age+1))*(cps08$ahe-mean(cps08$ahe)))/sum((cps08$age+1-mean(cps08$age+1-mean(cps08$ahe)))/sum((cps08$age+1-mean(cps08$age+1-mean(cps08$ahe)))/sum((cps08$age+1-mean(cps08$age+1-mean(cps08$ahe)))/sum((cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$ahe)))/sum((cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$age+1-mean(cps08$a
```

```
al <- mean(cps08$ahe)-b*mean(cps08$age+1); al ## [1] 0.4772889
```

```
plot( cps08$age+1,cps08$ahe, pch=20, ylim = c(min(cps08$ahe), max(cps08$ahe)), xlim = c(min(cps08$ahe)), xlim = c(min
```



### 2.3. ¿ Cuál es la diferencia salarial entrre un inidividuo de 26 años y uno de 30?

```
y=(a+(b*26))-(a+(b*30));y
## [1] -2.419945
```

# 2.4. Calcular $R^2$

$$R^2 = 1 - \frac{SRC}{STC} \tag{8}$$

```
ahe.hat <- a+b*cps08$ahe
e <- cps08$ahe - ahe.hat
STC <- sum((cps08$ahe - mean(cps08$ahe))^2)
SEC <- sum((ahe.hat - mean(cps08$ahe))^2)
SRC <- sum(e^2)
R.2 <- 1-(SRC/STC); R.2
## [1] 0.4438129
```

# 2.5. Realizar nuevamente la regresión del inciso 2.2 utilizar solo los datos de los gradudados de escuela secundaria

```
x \leftarrow cps08[cps08$bachelor == 0, 5]+1
y <- cps08[cps08$bachelor == 0, 1]
graddo <- data.frame(x,y)</pre>
reg <-lm(x ~ y, graddo)
summary(reg)
##
## Call:
## lm(formula = x ~ y, data = graddo)
##
## Residuals:
## Min 1Q Median
                             3Q
                                    Max
## -6.0834 -2.4015 0.0291 2.4534 4.9439
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29.959313  0.099143 302.182  < 2e-16 ***
## y
     0.040269 0.005779 6.969 3.73e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.815 on 4000 degrees of freedom
## Multiple R-squared: 0.01199, Adjusted R-squared: 0.01175
## F-statistic: 48.56 on 1 and 4000 DF, p-value: 3.727e-12
```

```
res <- residuals(reg)
est <- fitted.values(reg)
summary(reg)$sigma

## [1] 2.814879

summary(reg)$r.squared

## [1] 0.01199473</pre>
```

# 2.6. Repetir la regresión entre ingresos medios por hora (ahe) contra la edad (age) considerar solo los datos de los graduados universitarios

```
x \leftarrow cps08[cps08$bachelor == 1, 5]+1
y <- cps08[cps08$bachelor == 1, 1]
graddo <- data.frame(x,y)</pre>
reg \leftarrow lm(x \sim y, graddo)
summary(reg)
##
## Call:
## lm(formula = x ~ y, data = graddo)
## Residuals:
## Min 1Q Median 3Q
                                    Max
## -7.4178 -2.3425 0.0424 2.3220 5.6825
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
<2e-16 ***
             0.06396 0.00419 15.27
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.795 on 3707 degrees of freedom
## Multiple R-squared: 0.05914, Adjusted R-squared: 0.05889
## F-statistic: 233 on 1 and 3707 DF, p-value: < 2.2e-16
res <- residuals(reg)
est <- fitted.values(reg)</pre>
summary(reg)$sigma
## [1] 2.794876
summary(reg)$r.squared
## [1] 0.05914197
```

# 2.7. Es distinto el efecto de la variable age sobre los ingresos salariales para los graduados de secundaria quer para los ingresos universitarios. Explicar

Si, porque en el inciso 2.5 sòlo consideramos a las personas graduadas y en el inciso 2.6 consideramos a las personas que sòlo tienen secundaria. Son personas totalmente diferentes, por eso el efecto es diferente.