CLAIMS

What is claimed is:

1	1.	A method for manufacturing a magnetoresistive sensor comprising:
2		providing a substrate:
3		forming a photoresist mask over a desired sensor area
4		depositing a magnetic hard bias material;
5		removing said photoresist mask;
6		depositing a plurality of sensor layers as full film layers; and
7		chemical mechanical polishing sufficiently to remove portions of said sensor
8		layers formed outside said sensor area.
1	2.	A method as in claim 1 wherein said plurality of sensor layers includes a free
2	layer, said method further comprising:	
3		before forming said photoresist mask and before depositing said hard bias
4		material, depositing a dielectric material of such a thickness that said hard bias
5		material will align with said free layer.

1	3.	A method as in claim 2 further comprising, after removing said photoresist mask,	
2	perfoming a material removal process to remove portions of said dielectric material not		
3	covered by said hard magnetic material.		
1	4.	A method as in claim 2 further comprising, after removing said photoresist mask,	
2	performing a reactive ion etch (RIE).		
1	5	A mode do in this 2 and and a sid distantia metantial commission SiO	
1	5.	A method as in claim 2, wherein said dielectric material comprises SiO ₂ .	
1	6.	A method as in claim 1, wherein said substrate is a magnetic, electrically	
2	conduc	ctive material.	
1	7.	A method as in claim 1, further comprising, after depositing said hard magnetic	
2	materia	al, depositing an electrically insulating material.	
1	8.	A method as in claim 1, further comprising, after removing said photoresist mask,	
2	depositing a dielectric material, and then performing a reactive ion etch to remove		
3	horizontally disposed portions of said dielectric material.		

A method as in claim 8 wherein said dielectric material comprises SiO_2 .

1 9.

1 10. A method of manufacturing a current perpendicular to plane (CPP) 2 magnetoresistive sensor, comprising: 3 forming a first electrode; depositing a first full film layer of electrically insulating material onto said first 5 electrode; 6 forming a photoresist mask over a desired sensor area; 7 depositing an electrically conductive seed layer; 8 electroplating a magnetic, high coercivity hard bias material onto said seed laeyr; 9 depositing a second electrically insulating layer; 10 removing said photoresist mask; 11 depositing SiO2, conformally to cover horizontal and non-horizontal surfaces; 12 perform a reactive ion etch (RIE). 13 depositing a plurality of full film sensor layers; 14 performing a chemical mechanical polishing (CMP) process; and 15 depositing a second electrode 11. 1 A method of manufacturing a magnetoresistive sensor, comprising: 2 providing a substrate; 3 forming a photoresist mask in a sensor area, said mask having first and second 4 laterally opposed sides; 5 depositing a magnetic material, at least a portion of said magnetic material 6 defining first and second magnetic layers extending from said laterally opposed 7 sides of said mask;

- 8 removing said photoresist mask to define a trench between said first and second
- 9 magnetic layers; and
- depositing sensor material layers, at least a portion of said sensor material layers
- being deposited in said trench.
- 1 12. A method as in claim 11 further comprising, after depositing said sensor material
- 2 layers, performing a chemical mechanical polishing process to removed portions
- 3 of said sensor material disposed outside of said trench.
- 1 13. A method as in claim 12 further comprising, after depositing said magnetic
- 2 material, depositing a physically hard insulating material layer.
- 1 14. A method as in claim 13 wherein said physically hard insulating material layer is
- 2 alumina (Al₂O₃).
- 1 15. A method as in claim 13 wherein said physically hard insulating material layer is
- 2 diamond like carbon (DLC).
- 1 16. A method as in claim 13, wherein said physically hard insulating material layer is
- $2 SiO_2$.
- 1 17. A method for manufacturing a magnetoresistive sensor, comprising:
- 2 providing a first electrode having an upper surface;

3		depositing a layer first layer of SiO ₂ onto said upper surface of said electrode;
4		forming a photoresist mask on said first layer of SiO2;
5		depositing an electrically conductive seed layer;
6		depositing a high coercivity magnetic material onto said seed layer;
7		depositing a physically hard insulating material;
8		depositing a second layer of SiO2;
9		performing a reactive ion etch process;
10		depositing sensor material layers;
11		perform a chemical mechanical polishing process; and
12		depositing an electrically conductive material to form a second electrode.
1	18.	A magnetic head comprising:
2		a first electrode;
3		a magnetoresistive sensor having first and second laterally opposed sides
4		a and formed upon said first electrode'
5		first and second electrically insulating walls formed at said first and second sides
6		of said sensor;
7		first and magnetic hard bias layers extending laterally outward from said first and
8		second walls;
9		first and second physically hard electrically insulating layers formed over said
10		first and second hard bias layers; and

11		a second electrode formed over said sensor and said physically hard electrically
12		insulating layers.
1	19.	A magnetic head as in claim 18, wherein said physically hard electrically
2	insula	ating layers comprise alumina (Al ₂ O ₃).
1	20.	A magnetic data memory system, comprising:
2		magnetic disk;
3		a motor connected with said disk rotating said disk;
4		a slider;
5		an actuator connected with said slider to position said slider adjacent said disk;
6		a magnetic sensor connected with said slider, said sensor comprising:
7		a first electrode;
8		a magnetoresistive sensor having first and second laterally opposed sides
9		a and formed upon said first electrode'
10		first and second electrically insulating walls formed at said first and
11		second sides of said sensor;
12		first and magnetic hard bias layers extending laterally outward from said
13		first and second walls;
14		first and second physically hard electrically insulating layers formed over
15		said first and second hard bias layers; and
16		a second electrode formed over said sensor and said physically hard
17		electrically insulating layers.