Objetivos

Ingeniería de la Salud

- Formar ingenieros con conocimientos de:
 - biología celular, bioquímica, genética, fisiología, fisiopatología etc
- Formar profesionales con conocimientos no solo tecnológicos sino científicos y sanitarios capaces de: desarrollar e implantar soluciones de basadas en las ingenierías informática y electromecánica en las distintas etapas de la práctica clínica y la investigación médica.

Objetivos

Ingeniería de la Salud

Los titulados de este grado serán capaces de:

- Planificar, diseñar e implantar nuevos proyectos o servicios destinados tanto al diagnóstico y tratamiento de pacientes como a su monitorización para la prevención de enfermedades.
- Llevar a cabo trabajos de investigación en tecnología sanitaria y de asesoría en el mantenimiento y la mejora continua de sistemas de información, plataformas y equipos ya implantados y en explotación.

Revolucionando la salud

Ingeniería de la Salud

En los próximos años la salud será más:

- Más partir de todo tipo de datos genéticos, moleculares, tisulares etc
- Usando telemedicina, instrumental, dispositivos, equipos y robots para el diagnóstico y tratamiento de enfermedades.
- Para actuar antes de la aparición de la enfermedad en lugar de cuando la enfermedad ya tiene consecuencias sobre el paciente.

Medicina de precisión

Más personalizada

¿Qué hará un ingeniero de la Salud?

- Crear sistemas para analizar la información genética, molecular, tisular de los pacientes y acceder a bases de datos biológicas.
- Diseñar sistemas inteligentes de apoyo al diagnóstico.
- Algunas asignaturas
 - Sistemas inteligentes aplicados a la salud.
 - Bioinformática

Minería de datos clinicos y biológicos

Big Data Biomédica, ...

Producto sanitario

¿Qué hará un ingeniero de la Salud?

- La sociedad será más envejecida y diversa. Se necesitarán tecnologías para hacer la sanidad accesible a todo el mundo: telemedicina, asistentes virtuales móviles, nuevos sensores o biomateriales etc
- Un Ingeniero de la salud será capaz de asesorar, implantar, mantener y mejorar sistemas donde intervengan productos sanitarios.
- Ejemplos de asignaturas:
 - Telemedicina
 - Instrumental y Señales biomédicas
 - Sistemas electrónicos de ayuda a la discapacidad
 - Robótica médica.
 - Ingeniería del Software, programación

Medicina preventiva

¿Qué hará un ingeniero de la Salud?

- Crear sistemas para la recogida de datos utilizando sensores, wearables y aplicaciones móviles etc
- Crear sistemas para analizar estos datos usando técnicas de minería de datos e inteligencia artificial.

Las malas noticias

¿Qué puede hacer un ingeniero de la Salud?

- Para el 2050 el número de personas mayores de 65 años se doblará.
- La edad es el factor de riesgo de enfermedades cardíacas, neurodegenerativas, cáncer, diabetes etc
- El coste del sistema de salud también se doblará.

¿Qué puede hacer un ingeniero de la Salud?

Las buenas noticias

- El coste de secuenciamiento del genoma ha disminuido 100,000 veces desde 2001
- 3 millones de cirugias han sido realizadas con robots como Da Vinci.
- IBM Watson analiza 40 millones de documentos, 27,000 nuevos cada día en busca de pistas para nuevos tratamientos.
- En 2018 se vendieron 125 millones de wearables capaces de capturar signos vitales.

Estructura del título

¿Qué se estudia?

Tipo de materia	Créditos ECTS
Formación Básica	60
Obligatoria	150
Prácticas obligatorias en Hospital / Empresa	6
Optatividad / Ampliación de prácticas	9
Trabajo Fin de Grado	15
ECTS Totales	240

Estructura del título

https://www.ubu.es/grado-en-ingenieriade-la-salud/informacion-basica/plan-deestudios

Materias:

Ciencias de la vida, Matemáticas, Física, Bioética y legislación, Fundamentos de informática, Genética y Salud, Medicina de precisión I, Equipos electrónicos, Mecánica y robótica, Programación, Ingeniería del Software, Sistemas de Información aplicados a la gestión clínica, Sistemas inteligentes, Bioinformática, Comunicaciones, Análisis clínicos, Aplicaciones de la inteligencia artificial, Biomecánica, Necesidades del paciente, Medicina de precisión II, Prácticas en hospital / empresas

Ejemplos de proyectos realizados en la UBU por alumnos.

¿Puede un programa diagnosticar como un médico?

- La Inteligencia artificial es la ciencia que desarrolla sistemas que tienen un comportamiento inteligente.
- La minería de datos estudia el desarrollo de sistemas que aprenden a partir de los datos.
- La idea no es sustituir a los médicos, sino ayudarles y suplir la falta de especialistas donde no los haya.

- Vamos a crear un árbol de decisión a partir de unos datos.
 - Los datos serán reales, datos para determinar si los datos de una mamografía indican un tumor maligno o no.
- Un árbol de decisión es una forma muy sencilla de crear un mini sistema experto.

 Hay algoritmos que crean árboles a partir de los datos

Respira aire	Pone huevos	Patas	Plumas	Pelo	Nombre	Tipo
Si	No	0	No	No	Delfín	Mamífero
Si	No	4	No	Si	Perro	Mamífero
Si	No	2	No	Si	Murcielago	Mamífero
Si	Si	2	Si	No	Avestruz	Ave
Si	Si	2	Si	No	Gallina	Ave
Si	Si	2	Si	No	Loro	Ave
No	Si	0	No	No	Atún	Pez
No	Si	0	No	No	Salmón	Pez
No	No	0	No	No	Tiburon	Pez

 Hay algoritmos que crean árboles a partir de los datos

- El conjunto de datos: Mamografía.
- La mamografía es el método más efectivo que tenemos hoy en día. Sin embargo:
 - Su interpretación lleva a muchas biopsias innecesarias.
 - No hay especialistas en todos los lugares o hay muy pocos.

		_					
No.						6: Severity	
	Numeric	Numeric	Numeric	Numeric	Numeric	Nominal	
1	5.0	67.0	3.0	5.0	3.0	maligno	
2	5.0	58.0	4.0	5.0	3.0	maligno	
3	4.0	28.0	1.0	1.0	3.0	beningno	
4	5.0	57.0	1.0	5.0	3.0	maligno	
5	5.0	76.0	1.0	4.0	3.0	maligno	
6	3.0	42.0	2.0	1.0	3.0	maligno	
7	4.0	36.0	3.0	1.0	2.0	beningno	
8	4.0	60.0	2.0	1.0	2.0	beningno	
9	4.0	54.0	1.0	1.0	3.0	beningno	
10	3.0	52.0	3.0	4.0	3.0	beningno	
11	4.0	59.0	2.0	1.0	3.0	maligno	
12	4.0	54.0	1.0	1.0	3.0	maligno	
13	5.0	56.0	4.0	3.0	1.0	maligno	
14	5.0	42.0	4.0	4.0	3.0	maligno	
15	4.0	59.0	2.0	4.0	3.0	maligno	

- El conjunto de datos: Mamografía.
- Atributos:
 - BI-RADS: Una intepretación subjetiva del especialista. Vale desde 0 (ni idea), 1 negativo, 2 beningno, 3 probablemente beningo, 4 sospechoso, 5 muy sospechoso, 6 maligno.
 - Edad.
 - Shape (forma)
 - Margin (Margen)
 - Densidad 1 (alta) 4 (baja)
 - Severidad: Maligno o beningno.

La herramienta:

 Weka. Una herramienta de minería de datos que hace árboles de decisión (y otras muchas

cosas).

Explorer.

 Permite cargar conjuntos de datos y hacer cosas sencillas (por ejemplo: quitar atributos)

 Damos a "Open file" y cargamos el fichero de las mamografías.

- Elimiminamos atributos: Dejamos solo la severidad y BI-RADS (la estimación del especialista).
 - Seleccionar atributos
 - Remove

- Vamos a ver que acierto tienen los especialistas.
 - Classify
 - Choose → trees → DecisionStump
 - Tiene un 82%

 Volvemos a preprocess y cargamos los datos de nuevo, esta vez, quitamos BI-RADS (vamos a clasificar sin especialista).

- Vamos a classify.
- Choose → trees → j48
- Start
- Nos sale 79%.

Luego, botón
derecho sobre
tree.j48 y
"visualize tree"

Usa el árbol para diagnosticar a estos pacientes:

Age	Shape	Margin	Density	Severity
38	2	3	3	?
57	1	1	3	?
65	4	5	3	?

Usa el árbol para diagnosticar a estos pacientes:

Age	Shape	Margin	Density	Severity
38	2	3	3	beningno
57	1	1	3	beningno
65	4	5	3	maligno