Maladaptive plastic responses of flowering time to geothermal heating (Cerastium 2)

Repeat and extend analyses done by Johan

Alicia Valdés

Contents

D	ata preparation	2
D	istributions	2
1.	Effect of temperature on FFD	5
	Models as fit by Johan	5
	Only linear	5
	Model diagnostics	8
	Plots	13
	Quadratic	15
	Piecewise regresssion	16
	Plot 2018	17
2.	Effect of temperature on fitness	17
	Models as fit by Johan	17
	Only linear	17
	Model diagnostics	18
	Quadratic	19
	GLMs with poisson distribution	20
	GLMs with negative binomial distribution -> Keep these?	21
	Model diagnostics	22
	Plots	23
3.	Effect of temperature on selection on FFD	25
	Models as fit by Johan	25
	Only linear	25
	Model diagnostics	26

	BCa intervals	27
	Plot 2018	28
	Quadratic	28
4. :	Effect of temperature on the relationship absolute fitness-FFD	29
	Models as fit by Johan	29
	Only linear	29
	Model diagnostics	30
	BCa intervals	31
	Plot 2018	32

Data preparation

Load data, keep variables needed and merge

```
id id_original temp    ffd nfl
                                          nseed year
                                                        ffd_std
                                                                    nfl std
## 1 2017_01
                     H1 19.4 172.0 6 269.3333 2017 -0.4912772 -0.34533654
## 4 2017_04
                     H5 31.0 163.5
                                     4 106.0000 2017 -1.5514686 -0.71175481
## 6 2017_06
                     H7 29.4 170.0
                                   4 105.0000 2017 -0.7407340 -0.71175481
## 7 2017_07
                     H8 29.0 170.0
                                     9 150.0000 2017 -0.7407340 0.02108173
## 8 2017_08
                    H12 21.7 170.0
                                    4 141.0000 2017 -0.7407340 -0.71175481
                    H13 22.6 170.0
                                     4 126.0000 2017 -0.7407340 -0.71175481
## 9 2017_09
    nseed_rel
## 1 0.4769565
## 4 0.1877131
## 6 0.1859422
## 7 0.2656317
## 8 0.2496938
## 9 0.2231307
```

Distributions

Histograms

Histograms by year

QQplots

QQplots by year

1. Effect of temperature on FFD

Models as fit by Johan

Only linear

```
FFD_2017_1<-lm(ffd~temp+log(nfl),subset(mydata,year==2017))
summ(FFD_2017_1,vif=T,scale=T) # scale=T reports standardized coefs
```

Observations	245
Dependent variable	ffd
Type	OLS linear regression

F(2,242)	44.424
\mathbb{R}^2	0.269
$Adj. R^2$	0.263

	Est.	S.E.	t val.	p	VIF
(Intercept)	175.939	0.440	399.972	0.000	NA
temp	-1.636	0.461	-3.549	0.000	1.093
'log(nfl)'	-3.371	0.461	-7.316	0.000	1.093

Standard errors: OLS; Continuous predictors are mean-centered and scaled by 1 s.d. $\,$

FFD_2018_1<-lm(ffd~temp+log(nfl),subset(mydata,year==2018))
summ(FFD_2018_1,vif=T,scale=T) # scale=T reports standardized coefs

Observations	104
Dependent variable	ffd
Type	OLS linear regression

F(2,101)	57.208
\mathbb{R}^2	0.531
$Adj. R^2$	0.522

	Est.	S.E.	t val.	p	VIF
(Intercept)	181.876	0.926	196.402	0.000	NA
$_{ m temp}$	-7.436	0.932	-7.983	0.000	1.002
$\log(nfl)$	-6.276	0.932	-6.737	0.000	1.002

Standard errors: OLS; Continuous predictors are mean-centered and scaled by 1 s.d.

Similar results. I guess it is good to include number of flowers to evaluate the effect of temperature on phenology independent of number of flowers. But we didn't do that in the GCB paper.

Questions: Try models without number of flowers? (also significant effects of temperature) Do we need to take log of number of flowers? Should we report standardized estimates (i.e. with scaled predictors)?

Models without number of flowers

FFD_2017_2<-lm(ffd~temp,subset(mydata,year==2017))
summ(FFD_2017_2,scale=T)</pre>

Observations	245
Dependent variable	ffd
Type	OLS linear regression

F(1,243)	29.049
\mathbb{R}^2	0.107
$Adj. R^2$	0.103

	Est.	S.E.	t val.	p
(Intercept)	175.939	0.485	362.693	0.000
temp	-2.620	0.486	-5.390	0.000

Standard errors: OLS; Continuous predictors are mean-centered and scaled by 1 s.d.

FFD_2018_2<-lm(ffd~temp,subset(mydata,year==2018))
summ(FFD_2018_2,scale=T)</pre>

Observations	104
Dependent variable	ffd
Type	OLS linear regression

F(1,102)	48.102
\mathbb{R}^2	0.320
$Adj. R^2$	0.314

	Est.	S.E.	t val.	р
(Intercept)	181.876	1.109	163.946	0.000
$_{\mathrm{temp}}$	-7.731	1.115	-6.936	0.000

Standard errors: OLS; Continuous predictors are mean-centered and scaled by $1~\mathrm{s.d.}$

Models with number of flowers, untransformed

FFD_2017_3<-lm(ffd~temp+nfl,subset(mydata,year==2017))
summ(FFD_2017_3,vif=T,scale=T)

Observations	245
Dependent variable	ffd
Type	OLS linear regression

F(2,242)	25.107
\mathbb{R}^2	0.172
$Adj. R^2$	0.165

	Est.	S.E.	t val.	p	VIF
(Intercept)	175.939	0.468	375.895	0.000	NA
$_{\text{temp}}$	-2.144	0.482	-4.454	0.000	1.054
nfl	-2.100	0.482	-4.360	0.000	1.054

Standard errors: OLS; Continuous predictors are mean-centered and scaled by $1\ \mathrm{s.d.}$

FFD_2018_3<-lm(ffd~temp+nfl,subset(mydata,year==2018))
summ(FFD_2018_3,vif=T,scale=T)

Observations	104
Dependent variable	ffd
Type	OLS linear regression

F(2,101)	39.717
\mathbb{R}^2	0.440
$Adj. R^2$	0.429

	Est.	S.E.	t val.	p	VIF
(Intercept)	181.876	1.012	179.749	0.000	NA
$_{ m temp}$	-7.744	1.017	-7.616	0.000	1.000
nfl	-4.727	1.017	-4.649	0.000	1.000

Standard errors: OLS; Continuous predictors are mean-centered and scaled by 1 s.d.

Model diagnostics FFD_2017_1

DHARMa residual diagnostics

Residuals against temp

Residual vs. predicted Quantile deviations detected (red curves) Combined adjusted quantile test significant

Residuals against log(nfl)

Heteroskedasticity problem: Construct heteroskedasticity consistent standard errors, or robust standard errors (White's standard errors)

##
t test of coefficients:
##

DHARMa residual diagnostics

Residuals against nfl

DHARMa residual diagnostics

2018:

DHARMa residual diagnostics

If using models nr 1 for both 2017 and 2018, calculate BCa intervals at least for 2017, where there is heterokedasticity.

BCa intervals for 2017

lower upper ## temp -0.3304317 -0.07174499 ## lognfl -4.0279429 -2.18180262

Both are "significant" according to BCa intervals.

Plots Raw data

Model predictions

 ${\bf Raw~data\,+\,model~predictions}$

Quadratic

```
FFD_2017_quad<-lm(ffd~temp+I(temp^2)+log(nfl),subset(mydata,year==2017))
summ(FFD_2017_quad)</pre>
```

Observations	245
Dependent variable	ffd
Type	OLS linear regression

F(3,241)	30.281
\mathbb{R}^2	0.274
$Adj. R^2$	0.265

	Est.	S.E.	t val.	p
(Intercept)	187.128	1.676	111.646	0.000
$_{\mathrm{temp}}$	-0.464	0.204	-2.276	0.024
$I(temp^2)$	0.007	0.005	1.314	0.190
$\log(\mathrm{nfl})$	-2.968	0.420	-7.066	0.000

Standard errors: OLS

FFD_2018_quad<-lm(ffd~temp+I(temp^2)+log(nfl),subset(mydata,year==2018))
summ(FFD_2018_quad)

Quadratic terms for temperature are not significant.

Observations	104
Dependent variable	ffd
Type	OLS linear regression

F(3,100)	39.956
\mathbb{R}^2	0.545
$Adj. R^2$	0.532

	Est.	S.E.	t val.	p
(Intercept)	211.562	4.123	51.308	0.000
$_{ m temp}$	-2.011	0.573	-3.508	0.001
$I(temp^2)$	0.030	0.017	1.757	0.082
$\log(\mathrm{nfl})$	-5.957	0.882	-6.752	0.000

Standard errors: OLS

Piecewise regression

```
FFD_2017_segm<-segmented(FFD_2017_1,seg.Z=~temp,psi=20)
slope(FFD_2017_segm)
## $temp
                             t value CI(95%).1 CI(95%).u
##
              Est.
                    St.Err.
## slope1 -0.26504 0.065508 -4.04590 -0.39408
                                                 -0.1360
## slope2 0.69607 1.085000 0.64154 -1.44120
                                                  2.8334
AIC(FFD_2017_1,FFD_2017_segm)
##
                 df
                         AIC
## FFD 2017 1
                  4 1645.654
## FFD_2017_segm 6 1645.701
```

CIs for the slope of the second segment include zero (means it is not significantly different from zero?). Very little difference in AIC (<2), so the piecewise regression is not better.

```
FFD_2018_segm<-segmented(FFD_2018_1,seg.Z=~temp,psi=15)
slope(FFD_2018_segm)

## $temp

## Est. St.Err. t value CI(95%).1 CI(95%).u

## slope1 -2.14560 0.51698 -4.1503 -3.1715 -1.119800

## slope2 -0.52127 0.28305 -1.8416 -1.0829 0.040354

AIC(FFD_2018_1,FFD_2018_segm)
```

```
## FFD_2018_1 4 767.1293
## FFD_2018_segm 6 763.0180
```

CIs for the slope of the second segment include zero (means it is not significantly different from zero?). Difference in AIC >2 so the piecewise regression seems to be better.

Plot 2018

I would probably keep the linear model, as the piecewise one does not seem to fit much better (the reduction in AIC was also small).

2. Effect of temperature on fitness

Models as fit by Johan

Only linear

```
fitness_2017<-lm(nseed~temp+log(nfl),subset(mydata,year==2017))
summ(fitness_2017,vif=T)</pre>
```

Observations	245
Dependent variable	nseed
Type	OLS linear regression

F(2,242)	99.840
\mathbb{R}^2	0.452
$Adj. R^2$	0.448

	Est.	S.E.	t val.	p	VIF
(Intercept)	-413.970	110.157	-3.758	0.000	NA
temp	-19.588	5.737	-3.415	0.001	1.093
$\log(\mathrm{nfl})$	577.419	40.918	14.112	0.000	1.093

Standard errors: OLS

fitness_2018<-lm(nseed~temp+log(nfl), subset(mydata, year==2018))
summ(fitness_2018, vif=T)</pre>

Observations	104
Dependent variable	nseed
Type	OLS linear regression

F(2,101)	64.443
\mathbb{R}^2	0.561
$Adj. R^2$	0.552

	Est.	S.E.	t val.	p	VIF
(Intercept)	-40.374	46.970	-0.860	0.392	NA
$_{ m temp}$	-8.006	2.503	-3.199	0.002	1.002
$\log(\mathrm{nfl})$	190.899	17.305	11.031	0.000	1.002

Standard errors: OLS

Model diagnostics qq-plot and plot of residuals vs. predicted: 2017:

DHARMa residual diagnostics

2018:

DHARMa residual diagnostics

Quite bad looking! We should try another distribution.

Quadratic

```
fitness_2017_quad<-lm(nseed~temp+I(temp^2)+log(nfl),subset(mydata,year==2017))
summ(fitness_2017_quad)</pre>
```

Observations	245
Dependent variable	nseed
Type	OLS linear regression

F(3,241)	67.240
\mathbb{R}^2	0.456
$Adj. R^2$	0.449

	Est.	S.E.	t val.	p
(Intercept)	-260.385	164.726	-1.581	0.115
temp	-43.628	20.026	-2.179	0.030
$I(temp^2)$	0.650	0.519	1.253	0.211
$\log(nfl)$	584.760	41.288	14.163	0.000

Standard errors: OLS

```
fitness_2018_quad<-lm(nseed~temp+I(temp^2)+log(nfl),subset(mydata,year==2018))
summ(fitness_2018_quad)</pre>
```

Observations	104
Dependent variable	nseed
Type	OLS linear regression

F(3,100)	42.951
\mathbb{R}^2	0.563
$Adj. R^2$	0.550

	Est.	S.E.	t val.	р
(Intercept)	-89.182	81.090	-1.100	0.274
temp	0.119	11.274	0.011	0.992
$I(temp^2)$	-0.249	0.337	-0.739	0.461
$\log(\mathrm{nfl})$	190.526	17.352	10.980	0.000

Standard errors: OLS

Quadratic terms for temperature are not significant.

GLMs with poisson distribution

Observations	245
Dependent variable	round(nseed)
Type	Generalized linear model
Family	poisson
Link	log

$\chi^2(2)$	148392.783
Pseudo-R ² (Cragg-Uhler)	1.000
Pseudo-R ² (McFadden)	0.710
AIC	60720.575
BIC	60731.078

	Est.	S.E.	z val.	р	VIF
(Intercept)	4.299	0.009	488.236	0.000	NA
$_{ m temp}$	-0.034	0.000	-90.878	0.000	1.080
$\log(\mathrm{nfl})$	0.922	0.002	383.357	0.000	1.080

Standard errors: MLE

fitness_2018_pois<-glm(round(nseed)~temp+log(nfl), subset(mydata, year==2018), family="poisson")
summ(fitness_2018_pois, vif=T)</pre>

Observations	104
Dependent variable	round(nseed)
Type	Generalized linear model
Family	poisson
Link	log

$\chi^2(2)$	21060.607
Pseudo-R ² (Cragg-Uhler)	1.000
Pseudo-R ² (McFadden)	0.735
AIC	7612.990
BIC	7620.923

	Est.	S.E.	z val.	р	VIF
(Intercept)	3.511	0.025	137.814	0.000	NA
$_{ m temp}$	-0.038	0.001	-34.179	0.000	1.001
$\log(\mathrm{nfl})$	0.976	0.008	129.523	0.000	1.001

Standard errors: MLE

```
overdisp_fun(fitness_2017_pois)
```

```
## chisq ratio rdf p
## 93055.8367 384.5283 242.0000 0.0000
```

```
overdisp_fun(fitness_2018_pois)
```

```
## chisq ratio rdf p
## 6128.0539 60.6738 101.0000 0.0000
```

There is significant overdispersion.

GLMs with negative binomial distribution -> Keep these?

```
fitness_2017_nb<-glm.nb(round(nseed)~temp+log(nfl), subset(mydata, year==2017))
summ(fitness_2017_nb, vif=T)</pre>
```

Observations	245
Dependent variable	round(nseed)
Type	Generalized linear model
Family	Negative $Binomial(2.0993)$
Link	log

$\chi^2()$	0.722	0.088	3273.106	3287.112
Pseudo-R ² (Cragg-Uhler)	0.722	0.088	3273.106	3287.112
Pseudo-R ² (McFadden)	0.722	0.088	3273.106	3287.112
AIC	0.722	0.088	3273.106	3287.112
BIC	0.722	0.088	3273.106	3287.112

	Est.	S.E.	z val.	p	VIF
(Intercept)	4.079	0.113	36.029	0.000	NA
$_{ m temp}$	-0.030	0.006	-5.117	0.000	1.094
$\log(\mathrm{nfl})$	0.982	0.042	23.377	0.000	1.094

Standard errors: MLE

Observations	104
Dependent variable	round(nseed)
Type	Generalized linear model
Family	Negative Binomial(1.9313)
Link	log

$\chi^2()$	0.684	0.091	1203.369	1213.947
Pseudo-R ² (Cragg-Uhler)	0.684	0.091	1203.369	1213.947
Pseudo-R ² (McFadden)	0.684	0.091	1203.369	1213.947
AIC	0.684	0.091	1203.369	1213.947
BIC	0.684	0.091	1203.369	1213.947

	Est.	S.E.	z val.	p	VIF
(Intercept)	3.543	0.188	18.878	0.000	NA
$_{\text{temp}}$	-0.042	0.010	-4.166	0.000	1.003
$\log(\mathrm{nfl})$	0.981	0.069	14.202	0.000	1.003

Standard errors: MLE

Model diagnostics

 $\operatorname{qq-plot}$ and plot of residuals vs. predicted:

2017:

2018:

DHARMa residual diagnostics

Some problems but maybe not so bad. Need to look a bit more into this later.

Plots

Graphs of raw data

Graphs of model predictions (negative binomial GLMs)

Raw data + model predictions

3. Effect of temperature on selection on FFD

Models as fit by Johan

Only linear

```
selection_2017<-lm(nseed_rel~ffd_std*temp+nfl_std,subset(mydata,year==2017))
summ(selection_2017)</pre>
```

Observations	245
Dependent variable	$nseed_rel$
Type	OLS linear regression

F(4,240)	51.549
\mathbb{R}^2	0.462
$Adj. R^2$	0.453

	Est.	S.E.	t val.	p
(Intercept)	1.408	0.166	8.460	0.000
ffd_std	0.331	0.206	1.602	0.110
temp	-0.030	0.010	-2.937	0.004
nfl_std	1.213	0.089	13.663	0.000
ffd_std:temp	-0.009	0.010	-0.848	0.397

Standard errors: OLS

selection_2018<-lm(nseed_rel~ffd_std*temp+nfl_std,subset(mydata,year==2018))
summ(selection_2018)</pre>

Observations	104
Dependent variable	$nseed_rel$
Type	OLS linear regression

F(4,99)	34.660
\mathbb{R}^2	0.583
$Adj. R^2$	0.567

	Est.	S.E.	t val.	p
(Intercept)	1.374	0.201	6.825	0.000
ffd_std	-0.293	0.205	-1.431	0.156
temp	-0.021	0.016	-1.368	0.174
nfl_std	0.976	0.101	9.679	0.000
$ffd_std:temp$	0.027	0.012	2.241	0.027

Standard errors: OLS

Model diagnostics qq-plot and plot of residuals vs. predicted: 2017:

DHARMa residual diagnostics

2018:

Quite bad looking! If we want to keep the linear model with normal distribution (i.e. a "classic" selection model), we can assess significances using BCa intervals.

BCa intervals

2017

##		lower	upper
##	ffd_std	0.02310978	0.796295977
##	temp	-0.05434295	-0.012941578
##	nfl_std	0.90978664	1.697819198
##	ffd_std:temp	-0.02558533	0.005170813

2018

##		lower	upper
##	ffd_std	-0.734812519	0.21967818
##	temp	-0.041653471	-0.00145628
##	nfl_std	0.729117585	1.25825159
##	ffd_std:temp	0.003800642	0.05221350

The significances according to the BCa intervals are similar to the ones given in the model summary.

Plot 2018

Quadratic

selection_2017_quad<-lm(nseed_rel~ffd_std*temp+ffd_std*I(temp^2)+nfl_std,subset(mydata,year==2017))
summ(selection_2017_quad)</pre>

Observations	245
Dependent variable	$nseed_rel$
Type	OLS linear regression

F(6,238)	34.508
\mathbb{R}^2	0.465
$Adj. R^2$	0.452

	Est.	S.E.	t val.	p
(Intercept)	1.642	0.299	5.490	0.000
ffd_std	0.504	0.389	1.296	0.196
temp	-0.065	0.036	-1.808	0.072
I(temp^2)	0.001	0.001	1.033	0.303
nfl_std	1.226	0.090	13.667	0.000
ffd_std:temp	-0.035 0.001	0.045 0.001	-0.770 0.627	0.442 0.531
ffd_std:I(temp^2)	0.001	0.001	0.027	0.551

Standard errors: OLS

selection_2018_quad<-lm(nseed_rel~ffd_std*temp+ffd_std*I(temp^2)+nfl_std,subset(mydata,year==2018))
summ(selection_2018_quad)</pre>

104
$nseed_rel$
OLS linear regression

F(6,97)	22.809
\mathbb{R}^2	0.585
$Adj. R^2$	0.560

	Est.	S.E.	t val.	p
(Intercept)	1.607	0.517	3.105	0.002
ffd_std	-0.455	0.499	-0.911	0.365
temp	-0.055	0.083	-0.662	0.510
$I(temp^2)$	0.001	0.003	0.369	0.713
nfl_std	0.973	0.103	9.437	0.000
$ffd_std:temp$	0.043	0.071	0.614	0.541
$ffd_std:I(temp^2)$	-0.000	0.002	-0.146	0.884

Standard errors: OLS

4. Effect of temperature on the relationship absolute fitness-FFD

Models as fit by Johan

Only linear

selection_2017_abs<-lm(nseed~ffd*temp+log(nfl),subset(mydata,year==2017))
summ(selection_2017_abs)</pre>

Observations	245
Dependent variable	nseed
Type	OLS linear regression

F(4,240)	51.549
\mathbb{R}^2	0.462
$Adj. R^2$	0.453

	Est.	S.E.	t val.	p
(Intercept)	-4647.341	2606.895	-1.783	0.076
ffd	23.284	14.531	1.602	0.110
temp	88.601	124.771	0.710	0.478
$\log(\mathrm{nfl})$	619.124	45.314	13.663	0.000
ffd:temp	-0.601	0.709	-0.848	0.397

Standard errors: OLS

selection_2018_abs<-lm(nseed~ffd*temp+log(nfl),subset(mydata,year==2018))
summ(selection_2018_abs)</pre>

Observation	ıs		104
Dependent	variable		nseed
Type		OLS linea	ar regression
	F(4,99)	34.660	
	R^2	0.583	
	$Adj. R^2$	0.567	

	Est.	S.E.	t val.	p
(Intercept)	755.873	607.739	1.244	0.217
ffd	-4.561	3.188	-1.431	0.156
temp	-81.835	33.624	-2.434	0.017
$\log(\mathrm{nfl})$	198.339	20.492	9.679	0.000
ffd:temp	0.425	0.190	2.241	0.027

Standard errors: OLS

Model diagnostics qq-plot and plot of residuals vs. predicted: 2017:

DHARMa residual diagnostics

2018:

Quite bad looking! If we want to keep the linear model with normal distribution (i.e. a "classic" selection model), we can assess significances using BCa intervals.

BCa intervals

2017

##		lower	upper
##	ffd	0.5181807	55.7937405
##	temp	-80.3479811	291.9942499
##	nfl	463.0197317	868.0871957
##	ffd:temp	-1.7758943	0.3872076

2018

```
## ffd -11.70286559 3.3960908
## temp -151.86974365 -15.0743717
## nfl 147.68108072 254.1006289
## ffd:temp 0.06974127 0.8110243
```

The significances according to the BCa intervals are similar to the ones given in the model summary, with the exception that according to the BCa intervals ffd is significant in the model for 2017.

Plot 2018

We could also try this model with other distributions (Poisson, negative binomial), but I guess that keeping the "classic" approach with a normal distribution is OK if we show BCa intervals.