

FCC CERTIFICATION TEST REPORT

FOR FCC ID:2AM73-DM40BT IC:22826-DM40BT

Report Reference No:	17FBS07074 41
----------------------	---------------

FCC 2.948 No...... 923232

Date of issue: 2017-08-02

Testing Laboratory.....: ATT Product Service Co., Ltd.

DongGuan City, GuangDong, China.

Applicant's name: Pioneer DJ Corporation.

Address.....: 6F, Yokohama i-Mark Place, 4-4-5 Minatomirai, Nishi-ku,

Yokohama Kanagawa, JAPAN.

Manufacturer.....: Pioneer DJ Corporation.

Test specification:

Test item description.....: Active Monitor Speaker

Trade Mark: Pioneer DJ

for the surface colors)

Ratings.....: I/P:110-240Vac 50/60Hz 35W

Responsible Engineer :

Bin Jiang

Approved by:

Manying/Mang

Report No.: 17FBS07074 41 1 of 59

TABLE OF CONTENTS 1.Summary of test results......4 2.1.Description of EUT.......5 2.3.Assistant equipment used for test5 3.20dB Bandwidth &99% Bandwidth8 3.1.Test equipment......8 3.2.Block diagram of test setup8 3.3.Limits......8 3.4.Test Procedure......8 3.5.Test Result9 3.6.Original test data9 4.6.Test Result 14 5.NUMBER OF HOPPING FREQUENCY TEST......18 5.3.EUT Configuration on Measurement......18 6.6.Test Result ______21

Report No.: 17FBS07074 41 2 of 59

7.Maxmum Output Power	;
7.1.Test equipment	į
7.2.Block diagram of test setup	į
7.3.Limits	j
7.4.Test Procedure	5
7.5.Test Result	5
7.6.Original test data	7
8.Spurious Emission)
8.1.Test equipment)
8.2.Block diagram of test setup)
8.3.Limit	ļ
8.4.Test Procedure	į
8.5.Test Result	7
9.100 kHz BANDWIDTH OF FREQUENCY BAND EDGE43	;
9.1.Test Equipment	;
9.2.Limit	;
9.3.Test Procedure	;
9.4.Test result	ļ
10.Power Line Conducted Emission55	j
10.1.Test equipment55	j
10.2.Block diagram of test setup55	j
10.3.Power Line Conducted Emission Limits(Class B)55	į
10.4.Test Procedure56	į
10.5.Test Result56	į
11.Antenna Requirements59)
11.1.Limit)
11.2.EUT ANTENNA)

ATT

TEST REPORT DECLARE

Applicant	:	Pioneer DJ Corporation.	
Address	:	6F,Yokohama i-Mark Place,4-4-5 Minatomirai, Nishi-ku, Yokohama Kanagawa, JAPAN.	
Equipment under Test		Active Monitor Speaker	
Test Model No : DM-40BT		DM-40BT	
Manufacturer	:	Same as applicant	
Address	:	Same as applicant	

Test Standard Used: FCC Rules and Regulations Part 15 Subpart C .: 2015

RSS-247 ISSUE 2 February, 2017; RSS-GEN ISSUE 4 November 2014

Test procedure used: ANSI C63.4: 2014, ANSI C63.10-2013, DA 00-705.

We Declare:

Report No.: 17FBS07074 41

The equipment described above is tested by ATT Product Service Co., Ltd. and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and ATT Product Service Co., Ltd., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After test and evaluation, our opinion is that the equipment provided for test compliance with the requirement of the above FCC standards.

Report No:	17FBS07074 41		
Date of Test:	2017-06-21 To 2017-07-28	Date of Report:	2017-08-02

Note: This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of ATT Product Service Co., Ltd.

1. SUMMARY OF TEST RESULTS

The EUT have been tested according to the applicable standards as referenced below.				
Description of Test Item	Results			
Bandwidth	FCC Part 15: 15.247(a)(1) RSS 247§5.1.1	PASS		
Carrier Frequency Separation Test	FCC Part 15: 15.247(a)(1) RSS 247§5.1.2	PASS		
Number Of Hopping Frequency	FCC Part 15: 15.247(a)(1)(iii) RSS 247§5.1.4	PASS		
Dwell Time Test	FCC Part 15: 15.247(a)(1)(iii) RSS 247§5.1.4	PASS		
Maximum Output Power	FCC Part 15: 15.247(b) (1) RSS 247§5.4.b	PASS		
Band Edge Emission	FCC Part 15: 15.247(c) RSS 247§5.5	PASS		
Radiated Spurious Emissions	FCC Part 15.205 / 15.209 RSS 247§5.5	PASS		
AC Line Conducted Emissions	§15.207 (a) RSS-Gen section§ 8.8	PASS		
Antenna requirement	FCC Part 15: 15.203 RSS-Gen§8.3	PASS		

Report No.: 17FBS07074 41 5 of 59

2. GENERAL TEST INFORMATION

2.1. DESCRIPTION OF EUT

EUT* Name	:	Active Monitor Speaker
Model Number	:	DM-40BT
EUT function description	:	Please reference user manual of this device
Power supply	:	AV 120V/60Hz
Radio Technology	:	BT V4.2 (But BLE is closed)
Operation frequency		2402-2480MHz
Modulation		GFSK, π/4DQPSK,8DPSK
Antenna Type		PIFA antenna, maximum PK gain: 2.10 dBi
Date of Receipt		2017/06/25
Sample Type		Single production
Software version	:	V1.0
Hardware version	:	V1.0

2.2. ACCESSORIES OF EUT

Description of Accessories	Manufacturer	Model number or Type	Output.	
1	1	/	1	

2.3. ASSISTANT EQUIPMENT USED FOR TEST

Description of Assistant equipment	Manufacturer	Model number or Type	EMC Compliance	SN
Notebook	acer	Aspire E1-472G	FCC Doc	/

Report No.: 17FBS07074 41 6 of 59

2.4. BLOCK DIAGRAM OF EUT CONFIGURATION FOR TEST

EUT was connected to control to a special test jig provided by manufacturer which has a Micro USB connector to connect to Notebook, and the Notebook will run a special test software to control EUT work in Continuous TX mode, and select test channel, wireless mode and data rate.

Remark: GFSK,8DPSK, 11 /4DQPSK all these modulation all have been tested, GFSK is found as worst case and only reported for radiated emission.

Tested mode, channel, and data rate information						
Mode						
	(see Note)		(MHz)			
	1	Low :CH0	2402			
GFSK	1	Middle: CH39	2441			
	1	High: CH78	2480			
	2	Low :CH0	2402			
π /4DQPSK	2	Middle: CH39	2441			
	2	High: CH78	2480			
	3	Low :CH0	2402			
8DPSK	8DPSK 3		2441			
	3	High: CH78	2480			

Note: According exploratory test, EUT will have maximum output power in those data rate, so those data rate were used for all test.

2.5. TEST ENVIRONMENT CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

Temperature range:	21-25℃
Humidity range:	40-75%
Pressure range:	86-106kPa

Report No.: 17FBS07074 41 7 of 59

2.6. MEASUREMENT UNCERTAINTY

Test Item	Uncertainty
Uncertainty for Conduction emission test	2.44dB
Uncertainty for Radiation Emission test (9KHz-30MHz)	3.21dB
Uncertainty for Radiation Emission test	3.42 dB (Polarize: V)
(30MHz-200MHz)	3.52 dB (Polarize: H)
Uncertainty for Radiation Emission test	3.52 dB (Polarize: V)
(200MHz-1GHz)	3.54 dB (Polarize: H)
Uncertainty for Radiation Emission test	4.20 dB (Polarize: V)
(1GHz to 25GHz)	4.20 dB (Polarize: H)
Uncertainty for radio frequency	1×10-9
Uncertainty for conducted RF Power	0.65dB

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: 17FBS07074 41 8 of 59

3.20dB BANDWIDTH &99% BANDWIDTH

3.1. TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Due.	Cal. Interval
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2018/05/26	1 Year
2	Attenuator	Mini-Circuits	BW-S10W2	101109	2017/12/18	1 Year
3	RF Cable	Micable	C10-01-01-1	100309	2017/12/18	1 Year

3.2. BLOCK DIAGRAM OF TEST SETUP

3.3. LIMITS

No limit requirement.

3.4. TEST PROCEDURE

- Configure EUT and assistant system according clause 2.4 and 3.2. (1)
- Connect EUT's antenna output to spectrum analyzer by RF cable. (2)
- Configure EUT work in test mode as stated in clause 2.4. (3)
- (4) Set the spectrum analyzer as follows:

RBW:	30KHz
VBW:	100KHz
Detector Mode:	Peak
Sweep time:	auto
Trace mode:	Max hold

(5) Allow the trace to stabilize, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB and 99% bandwidth relative to the maximum level measured in the fundamental emission.

3.5. TEST RESULT

Report No.: 17FBS07074 41

Mode	Freq	20dB	99%OBW	Conclusion
Mode	(MHz)	(MHz)	(MHz)	Conclusion
	2402	0.913	0.848	PASS
GFSK	2441	0.882	0.838	PASS
	2480	0.884	0.843	PASS
	2402	1.202	1.141	PASS
8DPSK	2441	1.203	1.204	PASS
	2480	1.227	1.191	PASS

3.6. ORIGINAL TEST DATA

GFSK

Report No.: 17FBS07074 41 13 of 59

4. CARRIER FREQUENCY SEPARATION TEST

4.1. TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Due.	Cal. Interval
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2018/05/26	1 Year
2	Attenuator	Mini-Circuits	BW-S10W2	101109	2017/12/18	1 Year
3	RF Cable	Micable	C10-01-01-1	100309	2017/12/18	1 Year

4.2. THE REQUIREMENT FOR SECTION 15.247(A)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly

ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

4.3. EUT CONFIGURATION ON MEASUREMENT

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.4. OPERATING CONDITION OF EUT

- (1) Setup the EUT and simulator as shown as Section 6.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

4.5. TEST PROCEDURE

- (1) The transmitter output was connected to the spectrum analyzer through a low loss cable.
- (2) .Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz. Adjust Span to 3 MHz.
- (3) Set the adjacent channel of the EUT maxhold another trace.
- (4) Measurement the channel separation

Report No.: 17FBS07074 41 14 of 59

4.6. TEST RESULT

GFSK

01 011				
Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	0.996	>(25KHz or 2/3*20dB Bandwidth)	PASS
Middle	2441	1.002	>(25KHz or 2/3*20dB Bandwidth)	PASS
High	2479	1.005	>(25KHz or 2/3*20dB Bandwidth)	PASS

8DPSK

ODI OIL				
Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	1.014	>(25KHz or 2/3*20dB Bandwidth)	PASS
Middle	2441	1.020	>(25KHz or 2/3*20dB Bandwidth)	PASS
High	2479	1.011	>(25KHz or 2/3*20dB Bandwidth)	PASS

The spectrum analyzer plots are attached as below.

8DPSK Marker 1 Δ 1.014000000 MHz Avg Type: Log-Pwr Avg|Hold:>100/100 Trig: Free Run Atten: 20 dB PNO: Wide IFGain:Low ΔMkr1 1.014 MHz 3.703 dB Ref Offset 1 dB Ref 10.00 dBm 10 dB/div Center 2.402500 GHz #Res BW 30 kHz Span 3.000 MHz Sweep 3.200 ms (1001 pts) **#VBW 100 kHz** STATUS

Report No.: 17FBS07074 41 18 of 59

5. NUMBER OF HOPPING FREQUENCY TEST

5.1. TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Due.	Cal. Interval
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2018/05/26	1 Year
2	Attenuator	Mini-Circuits	BW-S10W2	101109	2017/12/18	1 Year
3	RF Cable	Micable	C10-01-01-1	100309	2017/12/18	1 Year

5.2. THE REQUIREMENT FOR SECTION 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

5.3. EUT CONFIGURATION ON MEASUREMENT

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. OPERATING CONDITION OF EUT

- (1) Setup the EUT and simulator as shown as Section 7.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in TX (Hopping on) modes measure it.

5.5. TEST PROCEDURE

- (1) The transmitter output was connected to the spectrum analyzer through a low loss cable.
- (2) Set the spectrum analyzer as Span=83.5MHz, RBW=100 kHz, VBW=300 kHz.
- (3) Max hold, view and count how many channel in the band.

5.6. TEST RESULT

Report No.: 17FBS07074 41

Total number of	Measurement result(CH)	Limit(CH)
hopping channel	79	≥15

The spectrum analyzer plots are attached as below

Report No.: 17FBS07074 41 20 of 59

6.DWELL TIME TEST

6.1. TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Due.	Cal. Interval
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2018/05/26	1 Year
2	Attenuator	Mini-Circuits	BW-S10W2	101109	2017/12/18	1 Year
3	RF Cable	Micable	C10-01-01-1	100309	2017/12/18	1 Year

6.2. THE REQUIREMENT FOR SECTION 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

6.3. EUT CONFIGURATION ON MEASUREMENT

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. OPERATING CONDITION OF EUT

- (1) Setup the EUT and simulator as shown as Section 8.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

6.5. TEST PROCEDURE

- (1) The transmitter output was connected to the spectrum analyzer through a low loss cable.
- (2) Set center frequency of spectrum analyzer = operating frequency.
- (3) Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz

A Period Time = (channel number)*0.4

DH1 Time Slot: Reading * (1600/2)*31.6/(channel number)

DH3 Time Slot: Reading * (1600/4)*31.6/(channel number)

DH5 Time Slot: Reading * (1600/6)*31.6/(channel number)

Report No.: 17FBS07074 41 21 of 59

6.6. TEST RESULT

GFSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)
DH1	2480	0.42	134.4	400
DH3	2480	1.70	272.0	400
DH5	2480	2.96	315.7	400

8DPSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)
DH1	2402	0.43	137.6	400
DH3	2402	1.70	272.0	400
DH5	2402	2.96	315.7	400

The spectrum analyzer plots are attached as below:

GFSK Mode DH1

DH3

Marker 1 Δ 2.96000 ms

Center 2.480000000 GHz Res BW 1.0 MHz

Ref Offset 1 dB Ref 10.00 dBm

Sweep 20.00 ms (1001 pts)

#VBW 3.0 MHz

DH5 Avg Type: Log-Pwr Marker 1 Δ 2.96000 ms Trig: Free Run Atten: 20 dB PNO: Fast --IFGain:Low ΔMkr1 2.960 ms 10.39 dB Ref Offset 1 dB Ref 10.00 dBm 10 dB/div 1∆2 المالية Center 2.402000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 20.00 ms (1001 pts) #VBW 3.0 MHz STATUS

Report No.: 17FBS07074 41 25 of 59

7. MAXMUM OUTPUT POWER

7.1. TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Due.	Cal. Interval
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2018/05/26	1 Year
2	Attenuator	Mini-Circuits	BW-S10W2	101109	2017/12/18	1 Year
. 3	RF Cable	Micable	C10-01-01-1	100309	2017/12/18	1 Year

7.2. BLOCK DIAGRAM OF TEST SETUP

FCC:Same with 3.2

7.3. LIMITS

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz bands: 0.125 Watt. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: 17FBS07074 41 26 of 59

7.4. TEST PROCEDURE

- (1) Configure EUT and assistant system according clause 2.4 and 3.2
- (2) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (3) Configure EUT work in test mode as stated in clause 2.4.
- (4) Set the spectrum analyzer as follows:

GFSK	RBW:	1MHz	
OI OIK	VBW:	3MHz	
π/4DQPSK	RBW:	3MHz	
	VBW:	8MHz	
8DPSK	RBW:	3MHz	
021 011	VBW:	8MHz	
Span		>1.5x 20dB bandwidth	
Detector Mode:		Peak	
Sweep time:		auto	
Trace mode		Max hold	

Allow the trace to stabilize, Use the instrument's band/channel power measurement function with the (5) band limits set equal to the DTS bandwidth edges measure out the Average and PK output power.

7.5. TEST RESULT

EUT Set Mode	Data Rate	Frequency	Result(dBm)	
EOT Set Mode	(Mbp/s)	(MHz)	Peak	
GFSK		2402	1.08	
	1	2441	1.06	
		2480	0.83	
π/4DQPSK 2	2402	-2.36		
	2	2441	-2.63	
		2480	-2.75	
	8DPSK 3	2402	-1.61	
8DPSK		2441	-1.42	
		2480	-2.13	
Limit: 21dBm		Conclusion: PASS	·	

7.6. Original test data

Report No.: 17FBS07074 41

GFSK

π/4DQPSK

8. SPURIOUS EMISSION

8.1. Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Due.	Cal. Interval
1	EMI Test Receiver	R&S	ESU8	100316	2017/12/18	1 Year
2	Spectrum analyzer	R&S	FSU	1166.1660.2 6	2017/12/18	1 Year
3	Loop antenna	TESEQ	HLA6120	20129	2017/12/18	1 Year
4	Trilog Broadband Antenna	Schwarzbeck	VULB9163	9163-462	2017/12/18	1 Year
5	Double Ridged Horn Antenna	Schwarzbeck	BBHA9120D	9120D 1065	2017/12/18	1 Year
6	Horn Antenna	Schwarzbeck	BBHA 9170	9170 1248	2017/12/18	1 Year
7	Pre-amplifier	A.H.	PAM-1840VH	562	2017/12/18	1 Year
8	Pre-amplifier	R&S	AFS33-18002 650-30-8P-44	SEL0080	2017/12/18	1 Year
9	Pre-Amplifier	HP	8449B	3274A06298	2017/12/18	1 Year
10	RF Cable	R&S	R01	10403	2017/12/18	1 Year
11	RF Cable	R&S	R02	10512	2017/12/18	1 Year

8.2. Block diagram of test setup

In 3m Anechoic Chamber Test Setup Diagram for 9KHz-30MHz

In 3m Anechoic Chamber Test Setup Diagram for 30MHz-1GHz

Report No.: 17FBS07074 41

In 3m Anechoic Chamber Test Setup Diagram for frequency above 1GHz

Note: For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP.

8.3. Limit

8.3.1 Restricted frequency band

Report No.: 17FBS07074 41

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

8.3.2. Limit.

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT	
MHz	Meters	μV/m	dB(μV)/m
0.009 ~ 0.490	300	2400/F(KHz)	67.6-20log(F)
0.490 ~ 1.705	30	24000/F(KHz)	87.6-20log(F)
1.705 ~ 30.0	30	30	29.54
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0
Above 1000	3	74.0 dB(μV)/ι 54.0 dB(μV)/m	'

Note: (1) The emission limits shown in the above table are based on measurements employing a CISPR QP detector except for the frequency bands 9-90KHz, 110-490KHz and above 1000MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector.

(2) At frequencies below 30MHz, measurement may be performed at a distance closer then that specified, and the limit at closer measurement distance can be extrapolated by below formula: $Limit_{3m}(dBuV/m) = Limit_{30m}(dBuV/m) + 40Log(30m/3m)$

8.3.3. Limit for this EUT

Report No.: 17FBS07074 41

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 30dB below the fundamental emissions, or comply with 15.209 limits.

8.4. Test Procedure

- (1) EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber.
- (2) Setup EUT and assistant system according clause 2.4 and 7.2
- (3) Test antenna was located 3m from the EUT on an adjustable mast, and the antenna used as below table.

Test frequency range	Test antenna used
9KHz-30MHz	Active Loop antenna
30MHz-1GHz	Trilog Broadband Antenna
1GHz-26.5GHz	Double Ridged Horn Antenna(1GHz-26.5GHz)

According ANSI C63.10:2013 clause 6.4.4.2 and 6,5.3, for measurements below 30 MHz, the loop antenna was positioned with its plane vertical from the EUT and rotated about its vertical axis for maximum response at each azimuth position around the EUT. And the loop antenna also be positioned with its plane horizontal at the specified distance from the EUT. The center of the loop is 1 m above the ground. for measurement above 30MHz, the Trilog Broadband Antenna or Horn Antenna was located 3m from EUT, Measurements were made with the antenna positioned in both the horizontal and vertical planes of Polarization, and the measurement antenna was varied from 1 m to 4 m. in height above the reference ground plane to obtain the maximum signal strength.

- (4) Below pre-scan procedure was first performed in order to find prominent frequency spectrum radiated emissions from 9KHz to 25GHz:
- (a) Scanning the peak frequency spectrum with the antenna specified in step (3), and the EUT was rotated 360 degree, the antenna height was varied from 1m to 4m(Except loop antenna, it's fixed 1m above ground.)
- (b) Change work frequency or channel of device if practicable.
- (c) Change modulation type of device if practicable.
- (d) new battery is used during testing
- (e) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions.

- (5) For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10 2013 on Radiated Emission test.
- (6) The emissions from 9KHz to 1GHz were measured based on CISPR QP detector except for the frequency bands 9-90KHz, 110-490KHz, for emissions from 9KHz-90KHz,110KHz-490KHz and above 1GHz were measured based on average detector, for emissions above 1GHz, peak emissions also be measured and need comply with Peak limit.
- (7) The emissions from 9KHz to 1GHz, QP or average values were measured with EMI receiver with below RBW

Frequency band	RBW
9KHz-150KHz	200Hz
150KHz-30MHz	9KHz
30MHz-1GHz	120KHz

(8) For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz for Peak measure; RBW is set at 1MHz, VBW is set at 10Hz for Average measure(according ANSI C63.10:2013 clause 4.2.3.2.3 procedure for average measure). Peak detector is used for Peak and AV measurement both.

Report No.: 17FBS07074 41 37 of 59

8.5. Test Result

Below 30M

EUT:	Active Monitor Speaker	Model No.:	DM-40BT
Temperature:	24 ℃	Relative Humidity:	55%
Distance:	3m	Test Power:	AC 120V/60Hz
Polarization:		Test Result:	Pass
Test Mode:	Keeping TX mode	Test By:	Lake

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Р
				Р

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =20 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor

Between 30M - 1000 MHz

EUT:	Active Monitor Speaker	Model No.:	DM-40BT
Temperature:	24	Relative Humidity:	55%
Distance:	3m	Test Power:	AC 120V/60Hz
Polarization:	Vertical	Test Result:	Pass
Standard:	(RE)FCC PART 15	Test By:	Lake
Test Mode:	Keeping TX mode		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	40.5591	34.97	-13.39	21.58	40.00	-18.42	QP
2	52.5752	29.59	-13.23	16.36	40.00	-23.64	QP
3	65.5726	29.49	-13.22	16.27	40.00	-23.73	QP
4	88.9637	32.71	-15.86	16.85	43.50	-26.65	QP
5	125.8863	28.45	-12.43	16.02	43.50	-27.48	QP
6	235.8163	34.54	-9.75	24.79	46.00	-21.21	QP

EUT:	Active Monitor Speaker	Model No.:	DM-40BT
Temperature:	24	Relative Humidity:	55%
Distance:	3m	Test Power:	AC 120V/60Hz
Polarization:	Horizontal	Test Result:	Pass
Standard:	(RE)FCC PART 15	Test By:	Lake
Test Mode:	Keeping TX mode		

80.0 dBuV/m Limit1: Margin: 40 0.0 30.000 40 60 70 80 (MHz) 400 500 600 700 1000.000

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	42.3022	23.26	-15.41	7.85	40.00	-32.15	QP
2	89.2764	32.50	-17.85	14.65	43.50	-28.85	QP
3	97.1148	33.19	-17.37	15.82	43.50	-27.68	QP
4	126.3286	27.52	-13.49	14.03	43.50	-29.47	QP
5	191.7450	24.98	-10.19	14.79	43.50	-28.71	QP
6	239.9874	29.22	-6.68	22.54	46.00	-23.46	QP

Remark: "1Mbps" mode (Mid CH)is the worst mode.

Between 1000M - 25000 MHz

Test Site	:	3m Chamber			
EUT		Active Monitor Speaker	Tested By	:	Lake
Power Supply	:	AC 120V/60Hz	Model Number	:	DM-40BT
Condition	:	Temp:24.5'C,Humi:55%, Press:100.1kPa	Test Mode	:	Tx mode
Memo	:	GFSK (worst case)	Antenna/Distan ce	:	VULB 9163 /3m

Frequency	Red	eiver	Rx An	tenna	Cable loss	Amplifier Gain	Corrected Amplitude	FCC 15	5.247
(MHz)	Reading (dBµV)	PK/QP/AV	Polar (H/V)	Factor (dB)	(dB)	(dB)	(dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Lo	ow Chann	el (2402)				
4804	46.84	PK	Н	32.3	5.91	31.78	53.27	74	-20.73
4804	30.02	AV	Н	32.3	5.91	31.78	36.45	54	-17.55
4804	38.33	PK	V	32.3	5.91	31.78	44.76	74	-29.24
4804	26.54	AV	V	32.3	5.91	31.78	32.97	54	-21.03
7206	32.28	PK	Н	36.3	6.34	30.97	43.95	74	-30.05
7206	19.01	AV	Н	36.3	6.34	30.97	30.68	54	-23.32
7206	30.45	PK	V	36.3	6.34	30.97	42.12	74	-31.88
7206	18.09	AV	V	36.3	6.34	30.97	29.76	54	-24.24
9608	27.34	PK	Н	37.9	8.01	30.86	42.39	74	-31.61
9608	14.25	AV	Н	37.9	8.01	30.86	29.3	54	-24.7
9608	28.11	PK	V	37.9	8.01	30.86	43.16	74	-30.84
9608	15.17	AV	V	37.9	8.01	30.86	30.22	54	-23.78
			Mic	ddle Chan	nel (2441))			
4882	44.82	PK	Н	32.9	6.34	31.78	52.28	74	-21.72
4882	28.49	AV	Н	32.9	6.34	31.78	35.95	54	-18.05
4882	36.12	PK	V	32.9	6.34	31.78	43.58	74	-30.42
4882	24.45	AV	V	32.9	6.34	31.78	31.91	54	-22.09
7323	30.09	PK	Н	37.1	6.72	30.97	42.94	74	-31.06
7323	17.53	AV	Н	37.1	6.72	30.97	30.38	54	-23.62
7323	29.93	PK	V	37.1	6.72	30.97	42.78	74	-31.22
7323	16.45	AV	V	37.1	6.72	30.97	29.3	54	-24.7
9764	25.14	PK	Н	38.6	8.43	30.86	41.31	74	-32.69
9764	12.57	AV	Н	38.6	8.43	30.86	28.74	54	-25.26
9764	25.03	PK	V	38.6	8.43	30.86	41.2	74	-32.8
9764	13.26	AV	V	38.6	8.43	30.86	29.43	54	-24.57

Report No.: 17FBS07074 41 41 of 59

	High Channel (2480)										
4960	44.02	PK	Н	33.1	6.39	31.78	51.73	74	-22.27		
4960	27.53	AV	Н	33.1	6.39	31.78	35.24	54	-18.76		
4960	35.17	PK	V	33.1	6.39	31.78	42.88	74	-31.12		
4960	22.28	AV	V	33.1	6.39	31.78	29.99	54	-24.01		
7440	30.69	PK	Н	37.2	6.77	30.97	43.69	74	-30.31		
7440	18.15	AV	Н	37.2	6.77	30.97	31.15	54	-22.85		
7440	29.04	PK	V	37.2	6.77	30.97	42.04	74	-31.96		
7440	17.98	AV	V	37.2	6.77	30.97	30.98	54	-23.02		
9920	25.13	PK	Н	38.7	8.48	30.86	41.45	74	-32.55		
9920	12.85	AV	Н	38.7	8.48	30.86	29.17	54	-24.83		
9920	25.27	PK	V	38.7	8.48	30.86	41.59	74	-32.41		
9920	14.55	AV	V	38.7	8.48	30.86	30.87	54	-23.13		

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss

Radiated band edge:

Frequency	Receiver		Rx Antenna		Cable loss	Amplifier Gain	Corrected Amplitude	FCC 15	5.247
(MHz)	Reading (dBµV)	PK/QP/AV	Polar (H/V)	Factor (dB)	(dB)	(dB)	(dBµV/m)	Limit (dBµV/m)	Margin (dB)
			L	owest Cha	nnel (GFS	K)			
2390	25.01	PK	Н	27.6	0.85	0	53.46	74	-20.54
2390	12.47	AV	Н	27.6	0.85	0	40.92	54	-13.08
2390	23.73	PK	V	27.6	0.85	0	52.18	74	-21.82
2390	12.48	AV	V	27.6	0.85	0	40.93	54	-13.07
2400	33.86	PK	Н	27.7	0.86	0	62.42	74	-11.58
2400	17.6	AV	Н	27.7	0.86	0	46.16	54	-7.84
2400	26.65	PK	V	27.7	0.86	0	55.21	74	-18.79
2400	14.64	AV	V	27.7	0.86	0	43.2	54	-10.8
			Hi	ighest Cha	nnel (GFS	SK)			
2483.5	31.11	PK	Н	27.9	0.87	0	59.88	74	-14.12
2483.5	13.18	AV	Н	27.9	0.87	0	41.95	54	-12.05
2483.5	23.82	PK	V	27.9	0.87	0	52.59	74	-21.41
2483.5	12.61	AV	V	27.9	0.87	0	41.38	54	-12.62

	Lowest Channel (8DBSK)										
2390	25.17	PK	Н	27.6	0.85	0	53.62	74	-20.38		
2390	12.49	AV	Н	27.6	0.85	0	40.94	54	-13.06		
2390	24.81	PK	V	27.6	0.85	0	53.26	74	-20.74		
2390	12.47	AV	V	27.6	0.85	0	40.92	54	-13.08		
2400	31.38	PK	Н	27.7	0.86	0	59.94	74	-14.06		
2400	14.65	AV	Н	27.7	0.86	0	43.21	54	-10.79		
2400	26.01	PK	V	27.7	0.86	0	54.57	74	-19.43		
2400	12.57	AV	V	27.7	0.86	0	41.13	54	-12.87		
			H	ighest Char	nnel (8DB	SK)					
2483.5	30.07	PK	Н	27.9	0.87	0	58.84	74	-15.16		
2483.5	12.64	AV	Н	27.9	0.87	0	41.41	54	-12.59		
2483.5	24.45	PK	V	27.9	0.87	0	53.22	74	-20.78		
2483.5	12.57	AV	V	27.9	0.87	0	41.34	54	-12.66		

Note: 1. Result Level = Read Level + Antenna Factor + Cable Loss- Amplifier Gain

^{2.} After test and evaluation hopping off mode and hopping on mode, will record worst case (hopping off mode) in this report.

100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE

9.1. Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Due.	Cal. Interval
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2018/05/26	1 Year
. 2	Attenuator	Mini-Circuits	BW-S10W2	101109	2017/12/18	1 Year
. 3	RF Cable	Micable	C10-01-01-1	100309	2017/12/18	1 Year

9.2. Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

9.3. Test Procedure

- a) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b) Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- c) Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- d) Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- e) Repeat above procedures until all measured frequencies were complete.

9.4. Test result

Report No.: 17FBS07074 41

PASS (See below detailed test result.)

Frequency Band	Delta Peak to band emission (dBc)	>Limit (dBc)	Result				
1Mbps Non-hopping							
2400	46.35	20	Pass				
2483.5	54.10	20	Pass				
	3Mbps Non-hopping						
2400	38.52	20	Pass				
2483.5	56.50	20	Pass				

Frequency Band	Delta Peak to band emission (dBc)	>Limit (dBc)	Result				
1Mbps hopping							
2400	51.55	20	Pass				
2483.5	56.73	20	Pass				
	3Mbps hopping						
2400	48.87	20	Pass				
2483.5 55.49		20	Pass				

10. POWER LINE CONDUCTED EMISSION

10.1. Test equipment

Report No.: 17FBS07074 41

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Due.	Cal. Interval
. 1	Test Receiver	R&S	ESCI	101308	2017/12/18	1 Year
. 2	LISN 1	AFJ	LS16	16011103219	2017/12/18	1 Year
. 3	LISN 2	SCHWARZBECK	NSLK 8127	8127-432	2017/12/18	1 Year
. 4	Pulse Limiter	MTS-systemtechn ik	MTS-IMP-136	261115-010-00 24	2017/12/18	1 Year
5	CABLE	R&S	EA033	JHW14012068	2017/12/18	1 Year

10.2. Block diagram of test setup

10.3. Power Line Conducted Emission Limits(Class B)

Frequency	Quasi-Peak Level dB(μV)	Average Level dB(μV)	
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*	
500kHz ~ 5MHz	56	46	
5MHz ~ 30MHz	60	50	

Note 1: * Decreasing linearly with logarithm of frequency.

Note 2: The lower limit shall apply at the transition frequencies.

Report No.: 17FBS07074 41 56 of 59

10.4. Test Procedure

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80cm above the ground plane.

Configuration EUT to simulate typical usage as described in clause 2.4 and test equipment as described in clause 10.2 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.

All support equipment power received from a second LISN.

Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in clause 2.4 were scanned during the preliminary test.

After the preliminary scan, we found the test mode producing the highest emission level.

The EUT configuration and worse cable configuration of the above highest emission levels were recorded for reference of the final test.

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Neutral and Line, recording at least the six highest emissions.

Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

The test data of the worst-case condition(s) was recorded.

The bandwidth of test receiver is set at 9 KHz.

10.5. Test Result

PASS. (See below detailed test result)

Note1: All emissions not reported below are too low against the prescribed limits.

NOTE2: "----" means peak detection; "----" mans average detection

EUT:	Active Monitor Speaker	Model No.:	DM-40BT
Temperature:	24℃	Relative Humidity:	55%
Probe:	L1	Test Power:	AC 120V/60Hz
Test Time:	2017-6-16	Test Result:	Pass
Standard:	FCC PART 15 class B	Test By:	Lake
Test Mode:	Tx mode		
Note:			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1500	38.06	11.47	49.53	65.99	-16.46	QP
2	0.1500	27.05	11.47	38.52	55.99	-17.47	AVG
3	0.1819	33.91	11.25	45.16	64.39	-19.23	QP
4	0.1819	25.74	11.25	36.99	54.39	-17.40	AVG
5	0.5460	25.11	10.17	35.28	56.00	-20.72	QP
6	0.5460	18.97	10.17	29.14	46.00	-16.86	AVG
7	0.9620	19.97	10.09	30.06	56.00	-25.94	QP
8	0.9620	14.76	10.09	24.85	46.00	-21.15	AVG
9	2.1540	23.81	10.11	33.92	56.00	-22.08	QP
10	2.1540	18.88	10.11	28.99	46.00	-17.01	AVG
11	3.4500	25.03	10.14	35.17	56.00	-20.83	QP
12	3.4500	19.95	10.14	30.09	46.00	-15.91	AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1620	35.56	11.39	46.95	65.36	-18.41	QP
2	0.1620	24.73	11.39	36.12	55.36	-19.24	AVG
3	0.1900	31.66	11.19	42.85	64.03	-21.18	QP
4	0.1900	22.63	11.19	33.82	54.03	-20.21	AVG
5	0.5420	27.54	10.17	37.71	56.00	-18.29	QP
6	0.5420	21.37	10.17	31.54	46.00	-14.46	AVG
7	2.1300	20.91	10.11	31.02	56.00	-24.98	QP
8	2.1300	14.20	10.11	24.31	46.00	-21.69	AVG
9	3.4220	20.51	10.14	30.65	56.00	-25.35	QP
10	3.4220	15.68	10.14	25.82	46.00	-20.18	AVG
11	6.0459	18.67	10.11	28.78	60.00	-31.22	QP
12	6.0459	15.16	10.11	25.27	50.00	-24.73	AVG

Report No.: 17FBS07074 41 59 of 59

11. ANTENNA REQUIREMENTS

11.1. Limit

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

11.2. EUT ANTENNA

The EUT antenna is permanent attached antenna. It comply with the standard requirement.

END OF REPORT