452

- 1.1 Consider $y \in R \setminus F$, and the function $f: R \to R$ given by $x \mapsto yx$. Note that since $deg_F(R) = n$ then this implies that f is a linear operator. Therefore by rank nullity rank(f) + 0 = rank(f) + nullity(f) = n. Thus f is surjective. Therefore there exists $x' \in R$ such that f(x') = 1. Thus y has an inverse, making every element in R a unit, thus R is a field.
- 2.1 Let $f(x) = x^3 3x + 4$ and let $\alpha \in \mathbb{C}$ satisfy $f(\alpha) = 0$. Note that $a^3 = 3\alpha 4$, $\alpha^4 = 3\alpha^2 4\alpha$, therefore to find an inverse $a\alpha^2 + b\alpha + c \in \mathbb{Q}(\alpha)$, we simply have to define a matrix which encodes $(a\alpha^2 + b\alpha + c)(\alpha^2 + \alpha + 1) = 1$. Note that since $\alpha(\alpha^2 + \alpha + 1) = \alpha^2 + 4\alpha 4$ and $\alpha^2(\alpha^2 + \alpha + 1) = 3\alpha^2 4\alpha + 3\alpha 4 + \alpha^2 = 4\alpha^2 \alpha 4$, then by the linearity of multiplying by $(\alpha^2 + \alpha + 1)$ we have the matrix equation to solve

$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 & 1 & 1 \\ -1 & 4 & 1 \\ -4 & -4 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

With the resulting solution being $a = \frac{-3}{49}, b = \frac{-5}{49}, c = \frac{17}{49}$

- 2.3 Note that the minimal polynomial for $\beta = \sqrt[3]{2}e^{\frac{2\pi i}{3}}$ is $x^3 2$. Note by theorem 15.2.8 there is an isomorphism between \mathbb{Q} adjoined roots of an irreducible polynomial which fix \mathbb{Q} . Therefore since $\sqrt[3]{2}$ is another root of $x^3 2$ then there exists an isomorphism $\phi\mathbb{Q}(\beta) \to \mathbb{Q}(\sqrt[3]{2})$ in which $\phi(\mathbb{Q}) = \mathbb{Q}$. Therefore for the equation $x_1^2 + \cdots + x_k^2 = -1$, by applying ϕ to it we get $\phi(x_1)^2 + \cdots + \phi(x_k)^2 = -1$. Note that $\phi(x_i) \in \mathbb{Q}(\sqrt[3]{2}) \subset \mathbb{R}$, meaning that $\phi(x_1)^2 + \cdots + \phi(x_k)^2 > 0 > -1$. Therefore in $\mathbb{Q}(\beta)$ this equation is impossible.
- 3.1 Let F be a field and let α be an algebraic element over F such that $[F(\alpha):F]=5$. Since the degree of α over F is prime, and since $\alpha^2 \notin F$ then by corollary 15.3.7 $F(\alpha^2)=F(\alpha)$.
- 3.9 Let α be a complex root of f(x), β be is a complex root of g(x), f(x), g(x) are both irreducible over \mathbb{Q} , and let $K = \mathbb{Q}(\alpha)$, $L = \mathbb{Q}(\beta)$. (\Rightarrow) Suppose f(x) is irreducible over L, then deg(f) = [K:Q] must be equivalent to $[\mathbb{Q}(\alpha,\beta):L]$ since f is irreducible over L by theorem 15.2.7. Therefore since $[\mathbb{Q}(\alpha,\beta):\mathbb{Q}] = [\mathbb{Q}(\alpha,\beta):K][K:\mathbb{Q}] = [\mathbb{Q}(\alpha,\beta):L][L:\mathbb{Q}]$ then you can divide out by $[K:\mathbb{Q}]$ and get $[\mathbb{Q}(\alpha,\beta):K] = [L:\mathbb{Q}]$. Thus g is irreducible over K. The converse is trivial.