

Indoor Localization Systems (ILSs)

- Son esenciales en:
 - Escenarios de Ambient Assisted Living (AAL)
 - Aplicaciones robóticas
 - Navegación en grandes superficies como aeropuertos, centros comerciales o campus

Indoor Localization Systems (ILSs)

- En los últimos años se han desarrollado sistemas ILS basadas en tecnologías como:
 - Infrarojos
 - Banda ancha
 - Zigbee
 - Visión por computador...

Los dispositivos inteligentes como ILS

- · Los dispositivos inteligentes están omnipresentes
- Disponen de una gran cantidad de sensores

Objetivo

• Mediante un dataset disponible en el repositorio de la <u>Universidad de California en Irvine (UCI)</u> y técnicas de *machine learning* se pretende predecir el posicionamiento en un recinto interior basándose en la huella de WLAN y ondas geomagnéticas

Los datos

- Se trata de 36795 muestras continuas recogidas en una superficie interior de 185 m² recogidas en dos mediciones
- Las muestras se han recogido durante 1 hora a una frecuencia de 10 Hz
- Se han utilizado dos dispositivos móviles, un teléfono y un reloj inteligentes

El lugar de ensayo

Los datos del teléfono

- Dos ficheros:
 - Los datos de los sensores con 18354 entradas
 - · Los datos de los puntos de acceso WIFI con 324 entradas

Los datos del teléfono

- Se tienen tres valores de:
 - Aceleración
 - Campo magnético
 - Ángulo (azimut, cabeceo, balanceo)
 - Giroscopio
- Timestamp

Campo geomagnético

Número de SSID únicas por punto

El resto de archivos

- Cada medida se acompaña con unos intervalos de tiempo en los que se identifica el punto en el que se encuentra el sujeto
- Se adjunto un archivo con las coordenadas x e y de cada uno de los puntos

Los puntos del ensayo

El tratamiento de los datos

- Fuerza de la señal de los **WLAN está identificada** con los puntos
- · Por el contrario los datos de los sensores no

El tratamiento de los datos

- En el archivo de *timestamps* se dispone del instante en el que se llega a cada punto y el instante en el que se parte
- Se hace una unión de este fichero con el de los sensores

Datos tratados resultantes

- Muestra 1 con un total de 18354 registros de sensores
- 11455 están localizados en algún punto
- Las características elegidas son la señal de cada una de las SSID y los valores geomagnéticos del teléfono
- El resultado son 5070 registros únicos

Entrenamiento de modelos de machine learning

- 2 variables de salida a predecir, modelo de regresión con salidas múltiples
- No todos los algoritmos de regresión soportan la regresión de salida múltiple de forma inherente
- Utilización de MultiOutputRegressor para estos modelos

Modelos

- Se entrenan 12 modelos de machine learning
- 6 ensambles
- 1 red neuronal de 3 capas

Resultados

Modelo	MSE
Extra Tree	-0,00985
Decision Tree	-0,03843
KNeighbors	-0,03987
Random Forest	-0,04754
CatBoost	-0,07247
XGB wrapped	-0,08080
LGBM wrapped	-0,09455
NN	-0,44071
Gradient Boosting wrap.	-1,32836
Ridge	-5,73119
Linear Regression	-5,74162
LASSO	-16,10310

Conclusiones

- Modelo k-nearest neighbor con unos resultados muy buenos
- Error cuadrático medio cercano al 0
- · Pocos datos de entrenamiento

Referencias

- P. Barsocchi, A. Crivello, D. La Rosa and F. Palumbo, "A multisource and multivariate dataset for indoor localization methods based on WLAN and geo-magnetic field fingerprinting," 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2016, pp. 1-8, doi: 10.1109/IPIN.2016.7743678.
- How to Develop Multi-Output Regression Models with Python

Gracias por vuestra atención