Table A.2 - References used in the database by type of reactor operating regime: continuous

Number	Reference	Author(s)	Title
1	Ind. Eng. Chem. Des. Dev. 23,	Beaumont, O., Schwob, Y.	Influence of physical and chemical parameters on
	637 – 641 (1984)		wood pyrolysis
2	Ind. Eng. Chem. Process Des.	Gray, M.R.; Corcoran, W.H.; Gavalas,	Pyrolysis of a Wood-Derived Material. Effects of
	Dev. 24, 646–651 (1985)	G.R.	Moisture and Ash Content
3	Ind. Eng. Chem. Process Des.	Scott, D.S.; Plskorz, J.; Radleln, D.	Liquid Products from the Continuous Flash Pyrolysis
	Dev. 24, 581–588 (1985)		of Biomass
4	Ind. Eng. Chem. Res. 27, 8–15	Scott, D.S.; Piskorz, J.; Bergougnou,	The Role of Temperature in the Fast Pyrolysis of
	(1988)	M.A.; Graham, R.; Overend, R.P.	Cellulose and Wood
5	Energy and Fuels. 9, 635-640	Agblevor, F.A.; Besler, S.; Wiselogel,	Fast Pyrolysis of Stored Biomass Feedstocks
	(1995)	A.E.	
6	Fuel. 75, 1051–1059 (1996)	Horne, P.A.; Williams, P.T.	Influence of temperature on the products from the
			flash pyrolysis of biomass
7	Fuel. 75, 545–550 (1996)	Zanzi, R.; Sjöström, K.; Björnbom, E.	Rapid high-temperature pyrolysis of biomass in a
			free-fall reactor
8	J. Anal. Appl. Pyrolysis. 40–41,	Yu, Q.; Brage, C.; Chen, G.; Sjöström, K.	Temperature impact on the formation of tar from
	481–489 (1997)		biomass pyrolysis in a free-fall reactor
9	Org. Geochem. 30, 1479–1493	Bridgwater, A.V.; Meier, D.; Radlein, D.	An overview of fast pyrolysis of biomass
	(1999)		
10	Renew. Energy. 17, 73–84	Islam, M.N.; Zailani, R.; Ani, F.N.	Pyrolytic oil from fluidized bed pyrolysis of oil palm
	(1999)		shell and its characterization
11	Ind. Eng. Chem. Res. 39, 1925–	Aguado, R.; Olazar, M.; San José, M.J.;	Pyrolysis of sawdust in a conical spouted bed reactor.
	1933 (2000)	Aguirre, G.; Bilbao, J.	Yields and product composition
12	Energy. 25, 493–513 (2000)	Williams, P.T.; Nugranad, N.	Comparison of products from the pyrolysis and
			catalytic pyrolysis of rice husks

13	Biomass and Bioenergy. 23, 357–366 (2002)	Zanzi, R.; Sjöström, K.; Björnbom, E.	Rapid pyrolysis of agricultural residues at high
14	Renew. Energy. 28, 2417–2433 (2003)	Onay, O.; Kockar, O.M.	Slow, fast, and flash pyrolysis of rapeseed
15	Fuel Process. Technol. 85, 1201–1211 (2004)	Li, S.; Xu, S.; Liu, S.; Yang, C.; Lu, Q.	Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas
16	J. Biotechnol. 110, 85–93 (2004)	Miao, X.; Wu, Q.	High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides
17	J. Anal. Appl. Pyrolysis. 71, 855–863 (2004)	Miao, X.; Wu, Q.; Yang, C.	Fast pyrolysis of microalgae to produce renewable fuels
18	J. Anal. Appl. Pyrolysis. 76, 32–37 (2006)	Kang, B.S.; Lee, K.H.; Park, H.J.; Park, Y.K.; Kim, J.S.	Fast pyrolysis of radiata pine in a bench-scale plant with a fluidized bed: Influence of a char separation system and reaction conditions on the production of bio-oil
19	Waste Manag. 26, 1430–1435 (2006)	Zheng, J. L.; Zhu, X. F.; Guo, Q. X.; Zhu, Q. S.	Thermal conversion of rice husks and sawdust to liquid fuel
20	Ind. Eng. Chem. Res. 46, 1891–1897 (2007)	Boateng, A.A.; Daugaard, D.E.; Goldberg, N.M.; Hicks, K.B.	Bench-scale fluidized-bed pyrolysis of switchgrass for bio-oil production
21	Fuel Process. Technol. 88, 942–947 (2007)	Yanik, J.; Kornmayer, C.; Saglam, M.; Yüksel, M.	Fast pyrolysis of agricultural wastes: Characterization of pyrolysis products
22	J. Anal. Appl. Pyrolysis. 80, 30–35 (2007)	Zheng, J.	Bio-oil from fast pyrolysis of rice husk: Yields and related properties and improvement of the pyrolysis system
23	Fuel. 87, 2606–2613 (2008)	Abdullah, N.; Gerhauser, H.	Bio-oil derived from empty fruit bunches
24	Fuel. 87, 2493–2501 (2008)	Aho, A.; Kumar, N.; Eränen, K.; Salmi, T.; Hupa, M.; Murzin, D.Y.	Catalytic pyrolysis of woody biomass in a fluidized bed reactor: Influence of the zeolite structure
25	Fuel. 87, 1230–1240 (2008)	Fahmi, R.; Bridgwater, A.V.; Donnison, I.; Yates, N.; Jones, J.M.	The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality, and stability

26	Ind. Eng. Chem. Res. 47, 1846–1854 (2008)	Garcia-Perez, M.; Wang, X.S.; Shen, J.; Rhodes, M.J.; Tian, F.; Lee, W.J.; Wu, H.;	Fast pyrolysis of oil mallee woody biomass: Effect of temperature on the yield and quality of pyrolysis products
27	Energy and Fuels. 22, 614–625 (2008)	Li, C.Z. Ingram, L.; Mohan, D.; Bricka, M.; Steele, P.; Strobel, D.; Crocker, D.; Mitchell, B.; Mohammad, J.; Cantrell, K.; Pittman, C.U.	Pyrolysis of wood and bark in an auger reactor: Physical properties and chemical analysis of the produced bio-oils
28	J. Anal. Appl. Pyrolysis. 82, 240–247 (2008)	Jung, S.H.; Kang, B.S.; Kim, J.S.	Production of bio-oil from rice straw and bamboo sawdust under various reaction conditions in a fast pyrolysis plant equipped with a fluidized bed and a char separation system
29	J. Anal. Appl. Pyrolysis. 82, 191–198 (2008)	Lu, Q.; Yang, X.L.; Zhu, X.F.	Analysis of chemical and physical properties of bio- oil pyrolyzed from rice husk
30	Energy & Fuels. 22, 2104–2109 (2008)	Mullen, C.A.; Boateng, A.A.	Chemical Composition of Bio-oils Produced by Fast Pyrolysis of Two Energy Crops
31	Energy Convers. Manag. 49, 1724–1730 (2008)	Zheng, J. L.; Yi, W. M.; Wang, N. N.	Bio-oil production from cotton stalk
32	J. Anal. Appl. Pyrolysis. 85, 184–191 (2009)	Fonts, I.; Azuara, M.; Gea, G.; Murillo, M.B.	Study of the pyrolysis liquids obtained from different sewage sludge
33	Food Bioprod. Process. 87, 187–196 (2009)	Manurung, R.; Wever, D.A.Z.; Wildschut, J.; Venderbosch, R.H.; Hidayat, H.; Dam, J.E.G. van; Leijenhorst, E.J.; Broekhuis, A.A.; Heeres, H.J.	Valorization of Jatropha curcas L. plant parts: Nutshell conversion to fast pyrolysis oil
34	Fuel. 88, 1810–1817 (2009)	Shen, J.; Wang, X.S.; Garcia-Perez, M.; Mourant, D.; Rhodes, M.J.; Li, C.Z.	Effects of particle size on the fast pyrolysis of oil mallee woody biomass
35	J. Anal. Appl. Pyrolysis. 86, 58–65 (2009)	Xu, R.; Ferrante, L.; Briens, C.; Berruti, F.	Flash pyrolysis of grape residues into biofuel in a bubbling fluid bed

36	Bioresour. Technol. 100, 1428–1434 (2009)	Zhang, H.; Xiao, R.; Huang, H.; Xiao, G.	Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor
37	Fuel Process. Technol. 91, 25–32 (2010)	French, R.; Czernik, S.	Catalytic pyrolysis of biomass for biofuels production
38	J. Ind. Eng. Chem. 16, 27–31 (2010)	Heo, H.S.; Park, H.J.; Dong, J.I.; Park, S.H.; Kim, S.; Suh, D.J.; Suh, Y.W.; Kim, S.S.; Park, Y.K.	Fast pyrolysis of rice husk under different reaction conditions
39	Bioresour. Technol. 101, 591–596 (2010)	Heo, H.S.; Park, H.J.; Park, Y.K.; Ryu, C.; Suh, D.J.; Suh, Y.W.; Yim, J.H.; Kim, S.S.	Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed
40	Bioresour. Technol. 101, 9294–9300 (2010)	Kim, S.J.; Jung, S.H.; Kim, J.S.	Fast pyrolysis of palm kernel shells: Influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds
41	Biomass and Bioenergy. 34, 67–74 (2010)	Mullen, C.A.; Boateng, A.A.; Goldberg, N.M.; Lima, I.M.; Laird, D.A.; Hicks, K.B.	Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis
42	Energy and Fuels. 24, 1380–1388 (2010)	Oasmaa, A.; Solantausta, Y.; Arpiainen, V.; Kuoppala, E.; Sipilä, K.	Fast pyrolysis bio-oils from wood and agricultural residues
43	Energy. 35, 2819–2823 (2010)	Raja, S.A.; Kennedy, Z.R.; Pillai, B.C.; Lee, C.L.R.	Flash pyrolysis of jatropha oil cake in electrically heated fluidized bed reactor
44	Bioresour. Technol. 102, 1869–1878 (2011)	Duman, G.; Okutucu, C.; Ucar, S.; Stahl, R.; Yanik, J.	The slow and fast pyrolysis of cherry seed
45	Chinese J. Chem. Eng. 19, 116–121 (2011)	Guo, X.; Wang, S.; Wang, Q.; Guo, Z.; Luo, Z.	Properties of bio-oil from fast pyrolysis of rice husk
46	J. Anal. Appl. Pyrolysis. 92, 2–9 (2011)	Kim, K.H.; Eom, I.Y.; Lee, S.M.; Choi, D.; Yeo, H.; Choi, I.G.; Choi, J.W.	Investigation of physicochemical properties of bio- oils produced from yellow poplar wood (Liriodendron tulipifera) at various temperatures and residence times

47	Bioresour. Technol. 102, 1959-	Pattiya, A.	Bio-oil production via fast pyrolysis of biomass
	1967 (2011)		residues from cassava plants in a fluidized-bed
			reactor
48	Energy. 36, 2352–2359 (2011)	Sulaiman, F.; Abdullah, N.	Optimum conditions for maximizing pyrolysis
			liquids of oil palm empty fruit bunches
49	J. Anal. Appl. Pyrolysis. 91,	Xu, R.; Ferrante, L.; Briens, C.; Berruti,	Bio-oil production by flash pyrolysis of sugarcane
	263–272 (2011)	F.	residues and post-treatments of the aqueous phase
50	Resour. Conserv. Recycl. 59,	Amutio, M.; Lopez, G.; Artetxe, M.;	Influence of temperature on biomass pyrolysis in a
	23–31 (2012)	Elordi, G.; Olazar, M.; Bilbao, J.	conical spouted bed reactor
51	Bioresour. Technol. 103, 374	Ellens, C.J.; Brown, R.C.	Optimization of a free-fall reactor for the production
	380 (2012)		of fast pyrolysis bio-oil
52	Bioresour. Technol. 118, 158–	Kim, K.H.; Kim, J.Y.; Cho, T.S.; Choi,	Influence of pyrolysis temperature on
	162 (2012)	J.W.	physicochemical properties of biochar obtained from
			the fast pyrolysis of pitch pine (Pinus rigida)
53	Energy. 44, 1067–1077 (2012)	Pattiya, A.; Sukkasi, S.; Goodwin, V.	Fast pyrolysis of sugarcane and cassava residues in a
			free-fall reactor
54	J. Anal. Appl. Pyrolysis. 95,	Pattiya, A.; Suttibak, S.	Production of bio-oil via fast pyrolysis of agricultural
	227–235 (2012)		residues from cassava plantations in a fluidized-bed
			reactor with a hot vapor filtration unit
55	Energy Procedia. 14, 668–673	Suttibak, S.; Sriprateep, K.; Pattiya, A.	Production of bio-oil via fast pyrolysis of cassava
	(2012)		rhizome in a fluidized-bed reactor
56	Biomass and Bioenergy. 59,	Asadullah, M.; Ab Rasid, N.S.; Kadir,	Production and detailed characterization of bio-oil
	316–324 (2013)	S.A.S.A.; Azdarpour, A.	from fast pyrolysis of palm kernel shell
57	Fuel Process. Technol. 108,	Kim, S.W.; Koo, B.S.; Ryu, J.W.; Lee,	Bio-oil from the pyrolysis of palm and Jatropha
	118–124 (2013)	J.S.; Kim, C.J.; Lee, D.H.; Kim, G.R.;	wastes in a fluidized bed
		Choi, S.	
58	Fuel. 112, 96–104 (2013)	Yin, R.; Liu, R.; Mei, Y.; Fei, W.; Sun, X.	Characterization of bio-oil and bio-char obtained
			from sweet sorghum bagasse fast pyrolysis with
			fractional condensers

59	Life Sci. J. 11, 203 (2014)	Ali, N.; Saleem, M.; Shahzad, K.;	Fast Pyrolysis Of Pakistani Cotton Stalks In Fluidized
		Chughtai, A.; Khan, W.A.	Bed Reactor: Design And Preliminary Results
60	J. Pakistan Inst. Chem. Eng. 42,	Ali, N.; Saleem, M.; Shahzad, K.;	Effect of Temperature on the Bio-Oil Yield from
	79–86 (2014)	Saleem, R.M.; Chughtai, A.	Pyrolysis of Maize Stalks in Fluidized Bed Reactor
61	Fuel. 128, 162–169 (2014)	Alvarez, J.; Lopez, G.; Amutio, M.;	Bio-oil production from rice husk fast pyrolysis in a
		Bilbao, J.; Olazar, M.	conical spouted bed reactor
62	Fuel. 119, 81–89 (2014)	Biradar, C.H.; Subramanian, K.A.;	Production and fuel quality up-gradation of pyrolytic
		Dastidar, M.G.	bio-oil from Jatropha Curcas de-oiled seed cake
63	J. Ind. Eng. Chem. 20, 2594–	Heidari, A.; Stahl, R.; Younesi, H.;	Effect of process conditions on product yield and
	2602 (2014)	Rashidi, A.; Troeger, N.; Ghoreyshi, A.A.	composition of fast pyrolysis of Eucalyptus grandis
			in fluidized bed reactor
64	J. Anal. Appl. Pyrolysis. 110,	Huang, X.; Cao, J.P.; Shi, P.; Zhao, X.Y.;	Influences of pyrolysis conditions in the production
	353–362 (2014)	Feng, X.B.; Zhao, Y.P.; Fan, X.; Wei,	and chemical composition of the bio-oils from fast
		X.Y.; Takarada, T.	pyrolysis of sewage sludge
65	Chem. Eng. J. 273, 173–183	Alvarez, J.; Amutio, M.; Lopez, G.;	Sewage sludge valorization by flash pyrolysis in a
	(2015)	Barbarias, I.; Bilbao, J.; Olazar, M.	conical spouted bed reactor
66	Fuel. 159, 810–818 (2015)	Alvarez, J.; Amutio, M.; Lopez, G.;	Fast co-pyrolysis of sewage sludge and
		Bilbao, J.; Olazar, M.	lignocellulosic biomass in a conical spouted bed
			reactor
67	Bioresour. Technol. 194, 225-	Amutio, M.; Lopez, G.; Alvarez, J.;	Fast pyrolysis of eucalyptus waste in a conical
	232 (2015)	Olazar, M.; Bilbao, J.	spouted bed reactor
68	Procedia Eng. 102, 1183–1186	Hsu, C.P.; Huang, A.N.; Kuo, H.P.	Analysis of the rice husk pyrolysis products from a
	(2015)		fluidized bed reactor
69	Energy. 93, 1436–1446 (2015)	Ly, H.V.; Kim, S.S.; Woo, H.C.; Choi,	Fast pyrolysis of macroalga Saccharina japonica in a
		J.H.; Suh, D.J.; Kim, J.	bubbling fluidized-bed reactor for bio-oil production
70	Fuel Process. Technol. 137,	Makibar, J.; Fernandez-Akarregi, A.R.;	Performance of a conical spouted bed pilot plant for
	283–289 (2015)	Amutio, M.; Lopez, G.; Olazar, M.	bio-oil production by poplar flash pyrolysis

71	Powder Technol. 323, 588–593 (2016)	Huang, A.N.; Hsu, C.P.; Hou, B.R.; Kuo, H.P.	Production and separation of rice husk pyrolysis bio- oils from a fractional distillation column connected fluidized bed reactor
72	J. Anal. Appl. Pyrolysis. 117, 220–227 (2016)	Kim, S.W.	Pyrolysis conditions of biomass in fluidized beds for production of bio-oil compatible with petroleum refinery
73	Biomass and Bioenergy. 89, 78–90 (2016)	Oudenhoven, S.R.G.; Lievens, C.; Westerhof, R.J.M.; Kersten, S.R.A.	Effect of temperature on the fast pyrolysis of organicacid leached pinewood; the potential of low-temperature pyrolysis
74	J. Anal. Appl. Pyrolysis. 119, 40–51 (2016)	Paenpong, C.; Pattiya, A.	Effect of pyrolysis and moving-bed granular filter temperatures on the yield and properties of bio-oil from fast pyrolysis of biomass
75	Fuel. 175, 57–63 (2016)	Wu, S.R.; Chang, C.C.; Chang, Y.H.; Wan, H.P.	Comparison of oil-tea shell and Douglas-fir sawdust for the production of bio-oils and chars in a fluidized-bed fast pyrolysis system
76	Sustain. Environ. Res. 27, 7–14 (2017)	Arazo, R.O.; Genuino, D.A.D.; de Luna, M.D.G.; Capareda, S.C.	Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically heated fluidized bed reactor