12 3

통계적추론

가설검정 1

한국방송통신대학교 통계 데이터괴학과 이 긍 희 교수

학습내용

- 가설검정의 개념을 이해한다.
- 🕖 최강력 검정의 개념을 이해한다.
- <u> 네이만-피어슨 보조정리를 이해한다.</u>
- ④ 균일최강력 검정의 개념을 이해한다.

01

가설검정의 개념

- 통계적 추론: 추정과 검정
 - 가설검정 : 주어진 확률표본으로부터 모집단의 가 설에 대한 채택여부 결정
 - 칼 피어슨의 카이제곱 검정, 고셋의 t-검정, 피셔의 검정과 네이만-피어슨의 검정

가설

- 가설 : 현상이나 모집단에 대한 진술
 - 대립가설 (H_1) : 입증하고자 하는 내용의 가설
 - 귀무가설 (H_0) : 대립가설에 반대되는 가설

가설

예) 두 모집단의 평균이 차이가 있음을 알고자 한다.

 $H_0: \mu_1 = \mu_2 \ vs \ H_1: \mu_1 \neq \mu_2$

2

가설

- 단순가설과 복합가설
 - $\bullet \ \Omega = \Omega_0 \cup \Omega_1 \ \text{,} \ \Omega_0 \cap \Omega_1 = \phi \ \to \ H_0 : \theta \in \Omega_0 \ \text{,} \ H_1 : \theta \in \Omega_1$
 - 단순가설 : $\Omega_0 = \{\theta_0\}$, $\Omega_1 = \{\theta_1\}$ 인 경우
 - 복합가설 : Ω_i 가 두 개 이상의 값을 포함하는 경우

가설

예

- 단순가설 $X \sim Poisson(\lambda)$

 $H_0: \lambda = 2 \ vs \ H_1: \lambda = 8$

- 복합가설 $H_0: \theta \le 0.5 \ vs \ H_1: \theta > 0.5$

검정의 기초

○ 검정

- $H_0: \theta \in \Omega_0 \ vs \ H_1: \theta \in \Omega_1$
- $X = \{X_1, ..., X_n\} : \theta$ 포함 확률분포의 확률표본
- 검정 : 확률표본 이용, H_0 를 기각하거나 채택

$$\delta(X) = \begin{cases} 0: H_0 \text{ 채택} \\ 1: H_0 \text{ 기각} \end{cases}$$

검정의 기초

- 기각역과 채택역
 - 표본공간 $S = R \cup A$
 - 기각역 $R: H_0$ 기각하는 S 부분집합

$$R = \{X \in S \mid H_0$$
기각, $\delta(X) = 1\}$

- 채택역 $A: H_0$ 채택하는 S 부분집합

$$A = \{X \in S \mid H_0$$
채택, $\delta(X) = 0\}$

검정의 기초

<u>예</u>

$$X_1, X_2 \sim Poisson(\theta)$$

$$H_0: \theta \le 1 \ vs \ H_1: \theta > 1$$

$$S = \{(x_1, x_2) \mid x_1, x_2 \vdash 0 \text{ 이상인 정수}\}$$

$$R = \{(x_1, x_2) \in S \mid x_1 + x_2 > 2\}$$

$$A = \{(x_1, x_2) \in S \mid x_1 + x_2 \le 2\}$$

검정의 오류

● 제1종의 오류와 제2종의 오류

		검정의 결과		
		H_0 기각하지 않음	H_0 기각	
실제	H_0 참	올바른 판단	제1종 오류	
	<i>H</i> ₁ 참	제2종 오류	올바른 판단	

- 제1종 오류(type I error) : 참 귀무가설 기각 $\alpha = P(X \in R|H_0) = E(\delta(X)|H_0)$
- 제2종 오류 (type II error) : 거짓 귀무가설 채택 $\beta = P(X \notin R|H_1) = 1 P(X \in R|H_1)$

검정의 오류

- 검정력
 - 대립가설이 참일 때 귀무가설을 기각할 확률

$$P(X \in R | H_1) = 1 - \beta$$

검정의 오류

- 검정력
 - 제1종의 오류 α 와 제2종 오류 β , $R=\{2,3\}$

관측결과	0	1	2	3
$H_0: p = \frac{1}{3}$	8/27	12/27	6/27	1/27
$H_1: p = \frac{2}{3}$	1/27	6/27	12/27	8/27

- 검정의 선택
 - 제1종의 오류와 제2종의 오류를 모두 줄이는 검정
 - 제1종의 오류와 제2종의 오류 간 상충 관계
 - → 유의수준 α에서 제2종 오류를 최소로 하는 검정
 - 유의수준 : 유의확률의 허용 상한

- 검정의 수준
 - 수준 α 검정(level α test) : $E(\delta(X)|H_0) \leq \alpha$
 - 제1종의 오류를 범할 확률이 α 이하인 검정 $\delta(X)$

 $X \sim N(\mu, 1), \ H_0: \mu = 1, H_1: \mu = 4,$ $R = \{x : x \ge 3\}$ 인 검정의 제1종 오류를 범할 확률, 제2종 오류를 범할 확률, 검정력을 구하시오.

 $X \sim N(\mu, 1), \ H_0: \mu = 1, H_1: \mu = 4,$ $R = \{x : x \ge 3\}$ 인 검정의 제1종 오류를 범할 확률, 제2종 오류를 범할 확률, 검정력을 구하시오.

02

최강력 검정

최강력 검정의 정의

● 최강력 검정

- α 에서의 최강력검정 $\delta^*(X)$
 - 단순가설 : $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$
 - $E(\delta(X)|\theta_0) \le \alpha$ 의 모든 검정 $\delta(X)$ 중 다음을 만족하는 검정 $\delta^*(X)$

$$E(\delta^*(X)|\theta_0) \le \alpha$$

$$E(\delta^*(X)|\theta_1) \ge E(\delta(X)|\theta_1)$$

- 네이만-피어슨 보조정리
 - α 에서의 최강력 검정 $\delta^*(X)$
 - 단순가설 : $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$
 - $X = (X_1, ..., X_n) \sim f(x|\theta)$ 확률표본
 - 검정 δ 는 유의수준 α_0 의 최강력 검정

$$\frac{f(\mathbf{x}|\theta_1)}{f(\mathbf{x}|\theta_0)} > k, \quad (k > 0) \Rightarrow \delta(\mathbf{X}) = 1$$

$$E(\delta(X)|\theta_0) = \alpha$$

예) $X_1, \dots, X_n \sim N(\theta, 1)$ 확률표본. 최강력 검정은?

 $H_0: \theta = 0 \ vs \ H_1: \theta = 1$

예) $X_1, \dots, X_n \sim N(\theta, 1)$ 확률표본. 최강력 검정은?

 $H_0: \theta = 0 \ vs \ H_1: \theta = 1$

예) $X_1, \dots, X_n \sim N(\theta, 1)$ 확률표본. 최강력 검정은?

 $H_0: \theta = 0 \ vs \ H_1: \theta = 1$

 $-E(\delta(X)|\theta_0) = \alpha$

네이만-피어슨 보조정리

● 랜덤화 검정

• 랜덤화 검정 :
$$H_0: \theta = \theta_0 \ vs \ H_1: \theta = \theta_1$$

- $X_1, ..., X_n \sim f(x|\theta)$ 의 확률표본

- 유의수준
$$\alpha$$
의 검정 : $\delta(\textbf{\textit{X}}) = \begin{cases} 1, & \frac{f(\textbf{\textit{X}}|\theta_1)}{f(\textbf{\textit{X}}|\theta_0)} > k \\ \gamma, & \frac{f(\textbf{\textit{X}}|\theta_1)}{f(\textbf{\textit{X}}|\theta_0)} = k \\ 0, & \frac{f(\textbf{\textit{X}}|\theta_1)}{f(\textbf{\textit{X}}|\theta_0)} < k \end{cases}$

예 $X_1, \dots, X_n \sim Ber(\theta)$ 확률표본. 다음 가설에 대한 유의수준 0.05 에서의 최강력 검정은?

 $H_0: \theta = 0.5 \ vs \ H_1: \theta = 0.6$

예 $X_1, \dots, X_n \sim Ber(\theta)$ 확률표본. 다음 가설에 대한 유의수준 0.05 에서의 최강력 검정은?

 $H_0: \theta = 0.5 \ vs \ H_1: \theta = 0.6$

예 $X_1, \dots, X_n \sim Ber(\theta)$ 확률표본. 다음 가설에 대한 유의수준 0.05 에서의 최강력 검정은?

 $H_0: \theta = 0.5 \ vs \ H_1: \theta = 0.6$

03

균일최강력

검정

균일최강력 검정의 정의

- 균일최강력 검정의 정의
 - 복합가설 $H_0: \theta \in \Omega_0$ vs $H_1: \theta \in \Omega_1$
 - $\alpha(\delta) \le \alpha$ 만족하는 모든 검정 $\delta(x)$ 에 대해 다음 성립
 - $-\alpha(\delta) = \max_{\theta \in \Omega_0} E(\delta(X) | \theta)$
 - $-\alpha(\delta^*) \le \alpha$, $E(\delta^*(X)|\theta) \ge E(\delta(X)|\theta)$, $\theta \in \Omega_1$
 - \rightarrow 검정 $\delta^*(x)$ 를 유의수준 α 의 균일최강력 검정

균일최강력 검정의 정의

예 $X_1, \cdots, X_n \sim Ber(\theta)$ 확률표본. 다음 가설에 대한 균일최강력 검정은?

 $H_0: \theta = 0.5 \ vs \ H_1: \theta > 0.5$

균일최강력 검정의 정의

예 $X_1, \cdots, X_n \sim Ber(\theta)$ 확률표본. 다음 가설에 대한 균일최강력 검정은?

 $H_0: \theta = 0.5 \ vs \ H_1: \theta > 0.5$

- 단조가능도비
 - $\theta_0 < \theta_1$ 에 대하여 $\frac{f(\boldsymbol{x}|\theta_1)}{f(\boldsymbol{x}|\theta_0)}$: $T(\boldsymbol{x})$ 증가함수 $\Rightarrow f(x|\theta)$: T에 대해 단조가능도비를 가짐

● 단조가능도비

- $H_0: \theta = \theta_0 \text{ vs } H_1: \theta > \theta_0$
- $f(x|\theta)$ 가 T(x)에서 단조가능도비
- δ 는 유의수준 α 의 균일최강력 검정

$$\delta(\mathbf{X}) = \begin{cases} 1, & T(\mathbf{X}) > k \\ \gamma, & T(\mathbf{X}) = k \\ 0, & T(\mathbf{X}) < k \end{cases} \quad E(\delta(\mathbf{X}) | \theta_0) = \alpha$$

예 $X_1, \dots, X_n \sim N(\theta, 1)$ 확률표본. 다음 가설에 대한 유의수준 α 에서의 균일최강력 검정은?

예 $X_1, \dots, X_n \sim N(\theta, 1)$ 확률표본. 다음 가설에 대한 유의수준 α 에서의 균일최강력 검정은?

예 $X_1, \dots, X_n \sim N(\theta, 1)$ 확률표본. 다음 가설에 대한 유의수준 α 에서의 균일최강력 검정은?

- 지수족과 단조가능도비
 - 지수족 : 확률밀도(질량)함수가 다음과 같은 꼴

$$f(x|\theta) = \exp(Q(\theta)T(x) + S(x) + C(\theta))$$

• $X = (X_1, \dots, X_n)$ 의 확률분포가 지수족

 $Q(\theta): \theta$ 증가함수, $f(x|\theta): T(X)$ 에서 단조가능도비

- 지수족과 단조가능도비
 - X의 확률분포 : 지수족, $Q(\theta)$ 가 θ 의 증가함수
 - $\bullet H_0: \theta \leq \theta_0 \ vs \ H_1: \theta > \theta_1$
 - 검정 δ 는 유의수준 α 의 균일최강력 검정

$$\delta(\mathbf{X}) = \begin{cases} 1, & T(\mathbf{X}) > k \\ \gamma, & T(\mathbf{X}) = k, \\ 0, & T(\mathbf{X}) < k \end{cases} \quad E(\delta(\mathbf{X}) | \theta_0) = \alpha$$

예 $X_1, \dots, X_n \sim Ber(\theta)$ 확률표본. 다음 가설에 대한 유의수준 α 에서의 균일최강력 검정은?

예 $X_1, \dots, X_n \sim Ber(\theta)$ 확률표본. 다음 가설에 대한 유의수준 α 에서의 균일최강력 검정은?

정리하기

- □ 제1종 오류와 제2종 오류로 구분되는데 제1종 오류는 참인 귀무가설을 기각하는 오류이며, 제2종 오류는 거짓인 귀무가설을 채택하는 오류이다.
- □ 유의확률은 참 H_0 을 잘못 기각할 확률이며, 검정력은 거짓 H_0 을 기각할 확률이다.

정리하기

- □ 단순가설 $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$ 에 대하여 $E(\delta(X)|\theta_0) \leq \alpha$ 을 만족하는 모든 검정 중 가장 검정력이 큰 검정을 유의수준 α 에서 최강력 검정이라 한다.
- □ 네이만-피어슨 보조정리 : δ 는 $H_0: \theta = \theta_0 \ vs \ H_1: \theta = \theta_1$ 에 대한 유의수준 α 의 최강력 검정이다.

$$\frac{f(x|\theta_1)}{f(x|\theta_0)} > k, (k > 0)$$
이면 $\delta(X) = 1$
$$E(\delta(X)|\theta_0) = \alpha$$

정리하기

 \square 복합가설 $H_0: \theta \in \Omega_0$ vs $H_1: \theta \in \Omega_1$ 에 대한 $\delta^*(X)$ 를 유의수준 α 에서 균일최강력 검정이라 한다

$$\alpha(\delta) = \max_{\theta \in \Omega_0} E(\delta(X) | \theta)$$

$$\alpha(\delta) \le \alpha$$
 만족 모든 검정 $\delta(x), \alpha(\delta^*) \le \alpha$

$$E(\delta^*(X)|\theta) \ge E(\delta(X)|\theta), \ \theta \in \Omega_1$$

다음시간안내 가설검정 2