Facial Emotion Detection With Deep learning

Carson Humulock

Problem Definition

- Bridging the Communication gap between humans and computers / Al
- Human facial expressions are a key component in how we communicate
- The global artificial intelligence market size valued at USD 136.55 Billion & Projected to expand at a compound annual growth rate (CAGR) of 37.3% from 2023 to 2030
- Use cases in medical field, Education, online therapy, security, aiding autistic people, and much more.

Solution approach

- What model architecture would be able to accurately categorize the human facial emotions?
- Dataset of 15,000 pictures categorized by emotion FER-2013
 - Model focuses on Happy, Sad, Neutral, and Surprised
- Convolutional Neural network (CNN) vs
 Transfer learning (Pre-trained weights)

Proposed Solution

- Resnet architecture with retrained weights
 - Outperformed other CNNs in training and testing
 - Reached 80% accuracy when predicting categories
- Transfer learning models only reached 35% accuracy
 - Pre-Trained on data sets of random image for object detection

Re-trained Resnet Model Result's

- 25

- 20

- 15

- 10

Recommendations & Next steps

- Adding more emotions to training data before finalizing model
- Create a front end for live facial emotion recognition
- Test in live scenarios
 - Customer service Chatbots
 - Security cameras
 - Augmented reality
- Attempt using VGG face transfer learning model

Executive Summary

- Re-Trained Resnet model can accurately predict emotions on the human face with few hiccups
 - ▶ 80% testing accuracy
- Facial Emotional recognition is a multifaceted sector of deep learning that can save many companies money and time
- Can be used in
 - Classrooms for personalized education
 - Online therapy
 - Customer service
 - ▶ Used in hand with AI chatbots as well as customer service reps
 - ▶ Aid Autistic people in determining emotions of those around them.
 - Overall improvement of human interaction with technology

Thank You

Work Cited

Artificial Intelligence Market Size & Share Analysis Report 2030,
https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-intelligence-ai-intelligence%20market,37.3%25%20from%202023%20to%202030.

- Faresse, Marc, et al. "What Is Facial Recognition and How Does It Work?" *EN Dormakaba Blog*, 8 Apr. 2020, https://blog.dormakaba.com/what-is-facial-recognition-and-how-does-it-work/.
- Matthew Hutson | McGovern Institute for Brain Research. "Artificial Neural Networks Model Face Processing in Autism." MIT News | Massachusetts Institute of Technology, https://news.mit.edu/2022/artificial-neural-networks-model-face-processing-in-autism-0616.

APPENDIX

CNN MODEL 3 RESULTS

	precision	recall	f1-score	support
0 1 2 3	0.88 0.59 0.64 0.93	0.72 0.72 0.66 0.88	0.79 0.65 0.65 0.90	32 32 32 32
accuracy macro avg weighted avg	0.76 0.76	0.74 0.74	0.74 0.75 0.75	128 128 128

MORE RESULTS FOR RE-TRAINED RESNET MODEL

4/4 [=======] - 2s 16ms/step					
	precision	recall	f1-score	support	
0	0.93	0.81	0.87	32	
1	0.79	0.69	0.73	32	
2	0.65	0.81	0.72	32	
3	0.91	0.91	0.91	32	
accuracy			0.80	128	
macro avg	0.82	0.80	0.81	128	
weighted avg	0.82	0.80	0.81	128	

