Experiment Log 10.11~

1 Overall plan

1.1 Current stage

- Choose a well studied downstream task (mortality prediction, length-of-stay prediction), select features, form a sub-dataset by joining tables and filtering (refer to <u>MIMIC docs</u>)
- Build an NN for it (better easy to perform DD on, e.g. temporal convolutional network)
- Get a distilled dataset that has the same structure as the original selected sub-dataset
- Evaluate the DD on traditional classifiers as well as NN on the same objective

1.2 Future work

- Try different DD strategies
- Explore how to perform DD with traditional classifiers

2 Preliminary verification

2.1 Problem setup

- **Objective**: In-hospital mortality prediction based on the first 48hr of an ICU stay
- Data: ~20 selected features (variables), all in tabular format, from MIMIC (III or IV)
- Motivation:
 - Mainly inspired by the foundamental benchmark study on MIMIC-III: <u>H. Harutyunyan</u> et al. - Multitask learning and benchmarking with clinical time series data (2019)
 - Mortality is a primary outcome of interest in acute care: ICU mortality rates are the highest among hospital units (10% to 29% depending on age and illness), and early detection of at-risk patients is key to improving outcomes
 - The study selected out only **17** variables for all the 4 tasks, including mortality prediction, which is a relatively simple selected sub-dataset

Variable	MIMIC-III table	Impute value	Modeled as
Capillary refill rate	chartevents	0.0	categorical
Diastolic blood pressure	chartevents	59.0	continuous
Fraction inspired oxygen	chartevents	0.21	continuous
Glascow coma scale eye opening	chartevents	4 spontaneously	categorical
Glascow coma scale motor response	chartevents	6 obeys commands	categorical
Glascow coma scale total	chartevents	15	categorical
Glascow coma scale verbal response	chartevents	5 oriented	categorical
Glucose	chartevents, labevents	128.0	continuous
Heart Rate	chartevents	86	continuous
Height	chartevents	170.0	continuous
Mean blood pressure	chartevents	77.0	continuous
Oxygen saturation	chartevents, labevents	98.0	continuous
Respiratory rate	chartevents	19	continuous
Systolic blood pressure	chartevents	118.0	continuous
Temperature	chartevents	36.6	continuous
Weight	chartevents	81.0	continuous
pH	chartevents, labevents	7.4	continuous

• For MIMIC-III, H. Harutyunyan et al. provided the code base; doing the similar thing on MIMIC-IV should not be too hard

2.2 Data processing

2.2.1 Feature selection

Useing the exact same pipeline of H. Harutyunyan et al., we have:

Size

- ~18k training subjects / stays
- ~3k evaluating subjects / stays

• Format

• Episodes (ICU stays) of **time series** of 48hr events, without a fixed sample rate (new timestamp is added each time a new lab/chart event happens)

	iastolic blocFrac	tion insp Glaso	ow con Glascow con Glasco	w con Glascow con Gl	ucose	Heart Rate	Height	Mean blood Oxy	ygen satui Res		tolic bloo Ten	nperature Weight	pH
0.901388888888889										18			
1.31805555555555	126	0.5						138		0	177		
1.334722222222221									100				
1.351388888888888						107				19			
1.451388888888888		1								0			
1.4847222222222					196								
1.7847222222222						113				16	35.7	77777777777778	
1.901388888888888	89					108		102	98	14	154		
2.08472222222222		To Pa	n Localizes Pain	No Response-ET	П								
2.20138888888889													7.
2.90138888888889	94					98		108	98	20	147		
3.15138888888889						98			97	19	36.1	11111111111111	
3.26805555555555	108							118			152		
3.36805555555556								127					
3.384722222222224	108										154		
3.40138888888889	110					98		127	94	18	155 36.3	11111111111111	
3.70138888888889													7
3.90138888888889	119	To Pa	n Flex-withdraws	No Response-ET	п	99		135		18	160 36.2	2222222222222	
3.918055555555556									94				
4.11805555555555		0.5								22			
4.65138888888889	104					88		118	100	22	141 36.1	11111111111111	
4.90138888888889	100					87		89		22		33333333333333	
5.451388888888888									96				
5.73472222222222													7
5.90138888888889	109					86		98	100	22	153 36	16666666666664	
6.901388888888889	111					78		127	100	22	158	2000000000000	
7.901388888888889	120	0.5 To Pa	n Flex-withdraws	No Response	135	85		133	100	22		1444444444444	
8.90138889	106		aneous Obeys Commands	No Response-ET		78		129	100	22	169		
9.63472222222223	200	эропс	ancous oscys communus	esponse-E		,,,		123	200	22	203		7
9.90138889	101					67		123	100	22	159		- '
10.90138888888889	101					70		123	100	18		555555555556	
11.90138888888889	92	To Pa	n Localizes Pain	No Response-ET	гт	66		115	100	18	158	36.5	
12.08472222222222	32	IOFa	ii Localizes Falli	ino nesponse-E		00		113	100	10	136	30.3	7
12.9013888888889	98					67		124	100	18	165		- '
13.40138888888889	30	0.5				- 07		124	100	16	103		
13.90138888888889	103	0.3			175	78		130	100	16	170	37.5	
14.4847222222222	103				1/5	/8		130	100	10	1/0	37.3	7
14.4847222222222	00					74		108	100	16	150		/
15.90138888888889	89 92		ech Obeys Commands			74		108	100	16	150		

• Episode-level information (patient age, gender, ethnicity, height, weight) and outcomes (mortality, length of stay, diagnoses) are also available

• Balance

- ~86% negative (safe)
- ~14\$ positive (mortality)

2.2.2 Preprocess

- 1. Resample: just like in the original paper, **resample** the timeseries to a fixed sample rate (1h), so that the length is unified
- 2. Recover missing variables: recover by **imputation** (forward filling), add mask columns for each feature column, representing whether the datapoint is imputed or real
- 3. Normilize each column using **Z-score normalization**
- 4. Each tensor is sized 48 (time steps) * 59 (num features, mask columns included)

2.3 Model

Mainly 2 types models to do the binary classification:

- IDCNN: 1-D CNN, with 2 conv layers and 2 fc layers (given that the temporal data has 1-D translational invariance)
- MLP: 3 fc layers

2.4 Experiments

2.4.1 Model capacity verification

This stage is to verify whether the dataset is good, and whether the model trained on train set can generalize onto test set.

Training setup:

- lr = 0.001
- Optimizer = Adam
- Epoch = 100
- Data = unbalanced

On both models, test loss stops to decrease within 3 epochs, and then rise all the way up, which points to **severe overfitting**.

Pick the best performing epoch (overall acc ~90%), generate a classification report, on a **balanced test set**:

1DCNN:

MLP:

Further moves

- After configuring weight_decay to Adam (which allows L2 regularization), the overfitting is postponed, but not improving the best performance on test set (loss ~0.27)
- After taking out mask columns from training data, performance is slightly better (loss ~0.26)
- Also tried training on balanced training set and evaluating on balanced test set (by under-sampling)
 - Test acc is up to ~72%, which better than random guess for binary classification, but not impressive
 - Still suffer from overfitting: test loss starts to rise at around epoch 3

Observation summary

- Models generally suffer from overfitting
- Maybe the data itself just isn't good enough

2.4.2 Synthetic dataset distillation

Distilled dataset using Matching Gradients, 100 iterations.

Evaluate by:

- Train 2 models simultaneously, syn model trained on synthetic dataset, and real model trained on real dataset (balanced)
- Both models are evaluated (computing loss and accuracy) on real dataset after each epoch
- Compare both models' performance
- Result: syn model isn't learning anything, acc near 0.5 (random guess)

Next move

Vanilla dataset distillation ("train on synth, val on real, backward loss all the way to the synth data"): working on this