

IRF520 IRF520FI

N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTORS

TYPE	V _{DSS} R _{DS(on)}		Ι _D
IRF520	100 V	< 0.27 Ω	10 A
IRF520FI	100 V	< 0.27 Ω	7 A

- TYPICAL $R_{DS(on)} = 0.23 \Omega$
- AVALANCHE RUGGED TECHNOLOGY
- 100% AVALANCHE TESTED
- REPETITIVE AVALANCHE DATA AT 100°C
- LOW GATE CHARGE
- HIGH CURRENT CAPABILITY
- 175°C OPERATING TEMPERATURE

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- SOLENOID AND RELAY DRIVERS
- REGULATORS
- DC-DC & DC-AC CONVERTERS
- MOTOR CONTROL, AUDIO AMPLIFIERS
- AUTOMOTIVE ENVIRONMENT (INJECTION, ABS, AIR-BAG, LAMPDRIVERS, Etc.)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Parameter Value		Unit
		IRF520	IRF520FI	
V _{DS}	Drain-source Voltage (V _{GS} = 0)	1(00	V
V_{DGR}	Drain- gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	1(00	V
V _G s	Gate-source Voltage	± :	20	V
I _D	Drain Current (cont.) at T _c = 25 °C	10	7	А
I _D	Drain Current (cont.) at T _c = 100 °C	7 5		А
I _{DM} (•)	Drain Current (pulsed)	40	40	А
P _{tot}	Total Dissipation at T _c = 25 °C	70	35	W
	Derating Factor	0.47	0.23	W/°C
V _{ISO}	Insulation Withstand Voltage (DC)			V
T _{stg}	Storage Temperature	-65 to 175		°C
Tj	Max. Operating Junction Temperature	175		°C

(•) Pulse width limited by safe operating area

June 1993 1/9

THERMAL DATA

			TO-220	ISOWATT220	
R _{thj-case}	Thermal Resistance Junction-case	Max	2.14	4.29	°C/W
R _{thj-amb} R _{thc-s} T _I	Thermal Resistance Junction-ambient Thermal Resistance Case-sink Maximum Lead Temperature For Soldering Pu	Max Typ irpose	62.5 0.5 300		°C/W °C/W °C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max, $\delta < 1\%$)	10	А
Eas	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 25$ V)	36	mJ
E _{AR}	Repetitive Avalanche Energy (pulse width limited by T_j max, δ < 1%)	9	mJ
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive $(T_c = 100 ^{\circ}\text{C}, \text{ pulse width limited by } T_j \text{max}, \delta < 1\%)$	7	А

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ ^{o}C unless otherwise specified) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \mu\text{A}$ $V_{GS} = 0$	100			\
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating$ $V_{DS} = Max Rating x 0.8 T_c = 125 °C$			250 1000	μA μA
IGSS	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 250 \mu A$	2	2.9	4	V
R _{DS(on)}	Static Drain-source On Resistance	$V_{GS} = 10V$ $I_D = 5$ A		0.23	0.27	Ω
I _{D(on)}	On State Drain Current	$V_{DS} > I_{D(on)} \times R_{DS(on)max} V_{GS} = 10 \text{ V}$	10			Α

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_D = 5 A$	2.7	4.5		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V f = 1 MHz V _{GS} = 0		330 90 25	450 120 40	pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING RESISTIVE LOAD

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$t_{ m d(on)} \ t_{ m r} \ t_{ m d(off)} \ t_{ m f}$	Turn-on Time Rise Time Turn-off Delay Time Fall Time	$V_{DD} = 50 \text{ V}$ $I_D = 5 \text{ A}$ $R_{GS} = 4.7 \Omega$ $V_{GS} = 10 \text{ V}$ (see test circuit)		10 50 25 20	15 75 40 30	ns ns ns ns
$egin{array}{c} Q_{g} \ Q_{gs} \ Q_{gd} \end{array}$	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$I_D = 10 \text{ A}$ $V_{GS} = 10 \text{ V}$ $V_{DD} = \text{Max Rating x 0.8}$ (see test circuit)		15 7 4	25	nC nC nC

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (•)	Source-drain Current Source-drain Current (pulsed)				10 40	A A
V _{SD} (*)	Forward On Voltage	$I_{SD} = 10 \text{ A} V_{GS} = 0$			1.6	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 10 \text{ A}$		80		ns
Q _{rr}	Reverse Recovery Charge	,		0.22		μC

^(*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

Safe Operating Area for TO-220

Safe Operating Area for ISOWATT220

^(•) Pulse width limited by safe operating area

Thermal Impedance for TO-220

Derating Curve for TO-220

Output Characteristics

Thermal Impedance for ISOWATT220

Derating Curve for ISOWATT220

Transfer Characteristics

Transconductance

Maximum Drain Current vs Temperature

Capacitance Variations

Static Drain-source On Resistance

Gate Charge vs Gate-source Voltage

Normalized Breakdown Voltage vs Temperature

Normalized On Resistance vs Temperature

Unclamped Inductive Load Test Circuit

Switching Time Test Circuit

Source-drain Diode Forward Characteristics

Unclamped Inductive Waveforms

Gate Charge Test Circuit

TO-220 MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

ISOWATT220 MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
Е	0.4		0.7	0.015		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

