1. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$\frac{-10}{2} - \frac{3}{7}x \le \frac{8}{5}x + \frac{5}{9}$$

- A. $[a, \infty)$, where $a \in [-2.74, 1.26]$
- B. $(-\infty, a]$, where $a \in [0.74, 3.74]$
- C. $(-\infty, a]$, where $a \in [-3.74, -1.74]$
- D. $[a, \infty)$, where $a \in [1.74, 5.74]$
- E. None of the above.
- 2. Using an interval or intervals, describe all the x-values within or including a distance of the given values.

More than 5 units from the number -8.

- A. [-13, -3]
- B. $(-\infty, -13] \cup [-3, \infty)$
- C. $(-\infty, -13) \cup (-3, \infty)$
- D. (-13, -3)
- E. None of the above
- 3. Using an interval or intervals, describe all the x-values within or including a distance of the given values.

No less than 5 units from the number -10.

- A. $(-\infty, -15) \cup (-5, \infty)$
- B. $(-\infty, -15] \cup [-5, \infty)$
- C. (-15, -5)
- D. [-15, -5]

E. None of the above

4. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$\frac{-6}{2} - \frac{7}{9}x < \frac{-3}{3}x + \frac{9}{8}$$

- A. $(-\infty, a)$, where $a \in [15.56, 24.56]$
- B. $(-\infty, a)$, where $a \in [-20.56, -15.56]$
- C. (a, ∞) , where $a \in [13.56, 21.56]$
- D. (a, ∞) , where $a \in [-19.56, -15.56]$
- E. None of the above.
- 5. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-3 + 6x < \frac{29x - 7}{4} \le 8 + 4x$$

- A. $(-\infty, a) \cup [b, \infty)$, where $a \in [-0.2, 2.1]$ and $b \in [-6, -2]$
- B. (a, b], where $a \in [0, 4]$ and $b \in [-5, -2]$
- C. [a, b), where $a \in [0.7, 2.2]$ and $b \in [-8, 0]$
- D. $(-\infty, a] \cup (b, \infty)$, where $a \in [0.6, 2.5]$ and $b \in [-9, 0]$
- E. None of the above.
- 6. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-9 + 6x > 8x$$
 or $-3 + 3x < 4x$

- A. $(-\infty, a) \cup (b, \infty)$, where $a \in [-5.5, -1.5]$ and $b \in [-6, -1]$
- B. $(-\infty, a] \cup [b, \infty)$, where $a \in [-4.5, -1.5]$ and $b \in [-6, 0]$

C.
$$(-\infty, a) \cup (b, \infty)$$
, where $a \in [-1, 5]$ and $b \in [2.5, 6.5]$

D.
$$(-\infty, a] \cup [b, \infty)$$
, where $a \in [0, 8]$ and $b \in [-0.5, 5.5]$

E.
$$(-\infty, \infty)$$

7. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-10x - 3 \le 8x + 10$$

A.
$$(-\infty, a]$$
, where $a \in [-1.05, 0.66]$

B.
$$(-\infty, a]$$
, where $a \in [0.02, 1.01]$

C.
$$[a, \infty)$$
, where $a \in [-1.14, 0.02]$

D.
$$[a, \infty)$$
, where $a \in [0.57, 2.51]$

- E. None of the above.
- 8. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-9 + 8x < \frac{44x - 6}{5} \le 5 + 4x$$

A.
$$(-\infty, a) \cup [b, \infty)$$
, where $a \in [-12.75, -5.75]$ and $b \in [1.29, 4.29]$

B.
$$(-\infty, a] \cup (b, \infty)$$
, where $a \in [-12.75, -8.75]$ and $b \in [-0.71, 2.29]$

C.
$$(a, b]$$
, where $a \in [-11.75, -5.75]$ and $b \in [0, 3]$

D.
$$[a, b)$$
, where $a \in [-11.75, -6.75]$ and $b \in [0.29, 4.29]$

- E. None of the above.
- 9. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-6 + 7x > 8x$$
 or $8 + 8x < 11x$

- A. $(-\infty, a) \cup (b, \infty)$, where $a \in [-3.67, -0.67]$ and $b \in [6, 9]$
- B. $(-\infty, a] \cup [b, \infty)$, where $a \in [-2.67, 3.33]$ and $b \in [4, 8]$
- C. $(-\infty, a) \cup (b, \infty)$, where $a \in [-8, -4]$ and $b \in [0.67, 3.67]$
- D. $(-\infty, a] \cup [b, \infty)$, where $a \in [-8, -4]$ and $b \in [-1.33, 3.67]$
- E. $(-\infty, \infty)$
- 10. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$4x - 10 \ge 10x - 5$$

- A. $[a, \infty)$, where $a \in [-0.5, 2.7]$
- B. $[a, \infty)$, where $a \in [-2.7, 0.4]$
- C. $(-\infty, a]$, where $a \in [0.7, 2.2]$
- D. $(-\infty, a]$, where $a \in [-2.2, 0.8]$
- E. None of the above.