Mining the potential relationship between cancer cases and industrial pollution based on high influence ordered-pair patterns

Abstract This supplementary document presents the proofs and the detail of the function "searchRI".

1. The influence index does not meet the downward closure property.

Proof. We use an example to illustrate the problem. For example, there are three patterns $pc_1 = \langle \{a,b\}, \{B,C\} \rangle$, $pc_2 = \langle \{b\}, \{B,C\} \rangle$, $pc_3 = \langle \{a\}, \{B\} \rangle$ in Figure 1, and table 1 show the table instances of three patterns.

(1)
$$FIR(B, pc_1) = \sum_{B,t \in \pi_{c_1}(TI(pc_1))} SII(B,t) / FIS(B) = (SII(B,1) + SII(B,2)) / FIS(B)$$

$$FIR(B, pc_2) = \sum_{B.t \in \pi_{c_1}(TI(pc_2))} SII(B.t) / FIS(B) = \left(SII(B.1) + SII(B.2)\right) / FIS(B)$$

In the pattern pc_1 , B.1 is affected by a.1 and b.1; in the pattern pc_2 , B.1 is affected by b.1. Based on the definition of superimposed influence, the superimposed influence of B.1 in the pattern pc_1 is bigger than that of B.1 in the pattern pc_2 . The same true for the instance B.2, so $FIR(B,pc_1) > FIR(B,pc_2)$. The same can be obtained, $FIR(C,pc_1) > FIR(C,pc_2)$,

 $\mathbf{SO} \quad PII(pc_1) = min(FIR(B,pc_1),FIR(C,pc_1)) \\ > min(FIR(B,pc_2),FIR(C,pc_2)) \\ = PII(pc_2)$

Figure 1 an example of a spatial dataset

Table 1 table instances of the two patterns in Figure 1

a b B C b B C a B a.1 b.1 B.1 C.1 b.1 B.1 C.1 a.1 B.1 a.2 b.2 B.2 C.2 b.2 B.2 C.2 a.2 B.2 a.4 b.2 B.2 C.4 b.2 B.2 C.4 a.4 B.2 a.3 B.4 a.3 B.3								
а	b	В	С	b	В	С	а	В
a.1	b.1	B.1	C.1	b.1	B.1	C.1	a.1	B.1
a.2	b.2	B.2	C.2	b.2	B.2	C.2	a.2	B.2
a.4	b.2	B.2	C.4	b.2	B.2	C.4	a.4	B.2
							a.3	B.4
							a.3	B.3

(2)
$$FIR(B, pc_1) = (SII(B.1) + SII(B.2)) / FIS(B) = (0.595 + 0.522) / (0.595 + 0.523 + 0.413 + 0.555) = 0.536$$

 $PII(pc_3) = (SII(B.1) + SII(B.2) + SII(B.3) + SII(B.4)) / FIS(B) = (0.414 + 0.308 + 0.413 + 0.555) / 2.086 = 0.81$
 $PII(pc_1) \le FIR(B, pc_1) < PII(pc_3)$

To sum up, $PII(pc_2) \le PII(pc_1) < PII(pc_3)$, so the influence index does not meet the downward closure property.

Lemma 1 (Conditional Monotonicity) If influence ordered-pair patterns have the same influence features, the influence index is anti-monotone as the size of patterns increase.

Proof. Given two influence ordered-pair patterns $pc = \langle \mathit{IFS}_{pc}, \mathit{RFS}_{pc} \rangle$, $pc' = \langle \mathit{IFS}_{pc}, \mathit{RFS}_{pc'} \rangle$ where $\mathit{RFS}_{pc'} \subseteq \mathit{RFS}_{pc}$.

For a reference feature $c_j \in (RFS_{pc} \cap RFS_{pc'})$, any instance of c_j participating in a row instance of the pattern pc also certainly participates in a row instance of the pattern pc', so $FIR(c_j, pc) \leq FIR(c_j, pc')$, that is, the influence ratio of the feature is antimonotone. The influence index of the pattern is also antimonotonic because:

$$PII(pc) = min_{c_j \in RFS_{pc}}(FIR(c_j, pc)) \leq min_{c_j \in RFS_{pc}}(FIR(c_j, pc')) \leq min_{c_j \in RFS_{pc}}(FIR(c_j, pc')) = PII(pc').$$

Lemma 2 The limit influence index of a pattern is an upper bound of the influence index of the pattern.

Proof. The maximum of the superimposed influence of $c_j t$ is **max superimposed** influence of $c_j t$, so $SII(c_j t) \le MSII(c_j t)$.

$$\begin{split} FIR(c_j,pc) &= \sum_{c_j,l \in \pi_{c_j}(TI(pc))} SII(c_j,t) / FIS(c_j) \leq \sum_{c_j,l \in \pi_{c_j}(TI(pc))} SII(c_j,t) / FIS(c_j) = LIR(c_j,pc) \\ PII(pc) &= min_{c_j \in R}(FIR(c_j,pc)) \leq min_{c_j \in R}(LIR(c_j,pc)) = LII(pc) \ . \end{split}$$

Lemma 3 The limit influence index is anti-monotone as the size of patterns increase.

Proof. Given two influence ordered-pair patterns $C = \langle I, R \rangle$, $C' = \langle I', R' \rangle$ and a feature f_k where $C' \subseteq C$, $I' \cup R' \cup \{f_k\} = I \cup R$.

- (1) For an influence feature $c_j \in (I \cap I')$, any instance of c_j that participates in a row instance of the pattern C also certainly participates in a row instance of the pattern C', so $LIR(c_j,C) \leq LIR(c_j,C')$, that is, the limit influence ratio is antimonotone.
- (2) 1) if f_k is a reference feature, $\langle I',R' \cup \{f_k\}\rangle = \langle I,R\rangle = C$ From lemma 1, it can be known that $LIR(f_i,\langle I',R' \cup \{f_k\}\rangle) \leq LIR(f_i,\langle I',R'\rangle)$ $LII(C) = LII(\langle I',R' \cup \{f_k\}\rangle) = \min_{f_i \in R' \cup \{f_k\}} (LIR(f_i,\langle I',R' \cup \{f_k\}\rangle))$ $= \min(LIR(f_i,\langle I',R' \cup \{f_k\}\rangle), LIR(f_k,\langle I',R' \cup \{f_k\}\rangle))$ $\leq \min_{f_i \in R'} (LIR(f_i,\langle I',R' \cup \{f_k\}\rangle))$ $\leq \min_{f_i \in R'} (LIR(f_i,\langle I',R'\rangle)) = LII(C')$

2) if f_k is an influence feature, $\langle I' \cup \{f_k\}, R' \rangle = \langle I, R \rangle = C$ and it can be seen from 1 that $LIR(c_j, C) \leq LIR(c_j, C')$.

$$LII(C) = \min_{f_i \in R}(LIR(f_i, C)) = \min_{f_i \in R'}(LIR(f_i, C)) \leq \min_{f_i \in R'}(LIR(f_i, C')) = LII(C')$$

so limit influence index is antimonotone.

Lemma 4 The participating instances of f_i in an influence ordered-pair pattern pc must be included in $CPIS(f_i, pc)$, i.e., $PIS(f_i, pc) \subseteq CPIS(f_i, pc)$.

Proof. $\forall f_i.j \in PIS(f_i,pc)$, there must be a row instance containing $f_i.j$. According to the join method, if $f_i.j$ participate in the row instance of pc, then $f_i.j$ must participate in row instance of pc_1 and row instance of pc_2 at the same time, i.e.,

$$f_i.j \in \{PIS(f_i, pc_1) \cap PIS(f_i, pc_2)\}$$
, so $PIS(f_i, pc) \subseteq CPIS(f_i, pc)$.

Lemma 5 For an influence ordered-pair pattern pc and the corresponding feature f_i , $CFIR(f_i,pc) = \sum_{f_i,j \in CFIR(f_i,pc)} SII(f_i,j) / FIS(f_i) \quad \text{is an upper bound of the influence ratio of} \\ f_i \text{ in } pc \ .$

Proof. From Theorem 4, it can be known that $PIS(f_i, pc) \subseteq CPIS(f_i, pc)$

$$\therefore CFIR(f_i, pc) = \sum_{f_i.j \in CFIR(f_i, pc)} SII(f_i.j) / FIS(f_i) \geq \sum_{f_i.j \in PIS(f_i, pc)} SII(f_i.j) / FIS(f_i) = FIR(f_i, pc)$$

Algorithm 3: $RI = \text{searchRI}(f_i \cdot j, pc)$

- 1) k = pc. length()
- 2) RI .resize(k) //The capacity of RI is set to k
- 3) $OssArr = \emptyset$
- 4) for $f_p \in \{pc \{f_i\}\}$ do:
- 5) get $Oss(f_i.j, f_p, pc)$ and $OssArr[f_p] = Oss(f_i.j, f_p, pc)$
- 6) end for
- 7) featurePos = 0
- 8) $f_p = pc[featurePos]$
- 7) **for** instancePos = 0; instancePos < Oss. size(); instancePos + +
- 8) RI[0] = particiInstanceArr[instancePos] //Select this instance, and search for the next feature
- 9) $gen_RI_recursion(RI, OssArr, k, featurePos+1, 0, k-1)$
- 10) if(verifyRowInstance((RI)) return RI
- 11) gen_RI_recursion(RI, OssArr, k, featurePos, instancePos + 1, <math>k) //Do not select this instance, and search the next instance of the feature
- 12) if(verifyRowInstance((RI)) return RI
- 13) return \varnothing

Algorithm 4: gen_Rl_recursion(RI, OssArr, k, featurePos, instancePos, remainder)

- 1) if remainder == 0: return // The remaining position is 0, exit the recursion
- 2) $f_p = pc[featurePos]$
- 3) $Oss = OssArr[f_p]$
- 4) if instancePos+1>Oss .size() return // instancePos starts from 0; exceed the size of the search space Oss, then exit the recursion
- 5) RI[featurePos] = Oss[instancePos] //Select the instance, search the next feature, and instancePos is set to 0, and subtract 1 from remainder.
- 6) gen_Rl_recursion(RI, OssArr, k, featurePos+1, 0, remainder-1);
- 7) $gen_RI_recursion(RI, OssArr, k, featurePos, instancePos+1, remainder);//Do not select this instance, and search the next instance for the feature$