Optimal Additive Composition of Abstraction-based Admissible Heuristics

Michael Katz Carmel Domshlak

Technion, IE&M

ICAPS-08

introduction

Heuristics

Projections

Action-Cost Partitioning

Context

Abstraction-based Admissible Heuristics for Cost-Optimal Classical Planning

Classical Planning

Planning task is 5-tuple $\langle V, A, C, s^0, G \rangle$:

- *V*: finite set of finite-domain state variables
- A: finite set of actions of form \(\rangle \text{pre}, \text{eff} \) \(\rangle \text{preconditions/effects; partial variable assignments} \)
- $C: A \mapsto \mathbb{R}^{0+}$ captures action cost
- s^0 : initial state (variable assignment)
- G: goal description (partial variable assignment)

Introduction

Heuristics

Projections

Action-Cost Partitioning

Context

Abstraction-based Admissible Heuristics for Cost-Optimal Classical Planning

Cost-Optimal Planning

Given: planning task $\Pi = \langle V, A, s^0, G \rangle$

Find: operator sequence $a_1 \dots a_n \in A^*$

transforming s^0 into some state $s_n \supseteq G$,

while minimizing $\sum_{i=1}^{n} C(a_i)$

Approach: A* + admissible heuristic $h: S \mapsto \mathbb{R}^{0+}$

Introduction

neuristics

Projections

Action-Cost Partitioning

Context

Abstraction-based Admissible Heuristics for Cost-Optimal Classical Planning

Abstraction heuristics

Heuristic estimate is goal distance in abstracted state space S'

Examples:	h^+ (ignore-deletes)	NP-hard
	PDBs (pattern databases)[,Ed01,	
	constrained PDBs	[HBG05]
	merge-and-shrink	[HHH07]
	structural patterns	[KD08]

Examples NOT: h^m [HG00] some LP relaxations [...]

Introduction

neuristics

Projections

Action-Cost Partitioning

Composing Multiple Heuristics

"Two heads are better than one"

State of the art

Input: problem Π , admissible heuristics h_1,\ldots,h_m , state s

MAX use $\max_{i=1}^m h_i(s|\Pi)$

ADD use $\sum_{i=1}^{m} h_i(s|\Pi_i)$ for some transformations Π_1, \ldots, Π_m of Π

Introduction

Composing Heuristics

Projections

Action-Cost Partitioning

Summany

Projections

Widely-exploited idea: projections

→ map states to abstract states with perfect hash function

Definition (projection)

Projection $\Pi^{[V']}$ to variables $V' \subseteq V$: homomorphism α where $\alpha(s) = \alpha(s')$ iff s and s' agree on V'

Each $a \in A$ satisfies $\mathcal{C}(a) \ge \sum_{i=1}^{m} \mathcal{C}_i(a^{[V_i]})$

Introduction

Composing Heuristics

Projections

Action-Cost Partitioning

Action-Cost Partitioning: Back to Projections

Projections

need selecting a good action-cost partition → optimal action-cost partition?

Optimizing Action-Cost Partitioning

Pitfalls

- infinite space of choices
- © decision process should be fully unsupervised
- decision process should be state-dependent

IIILIOGUCLIOI

Composing Heuristics

Projections

Action-Cost Partitioning

Summary

"determining which abstractions [action-cost partitions] will
 produce additives that are better than max over standards is
 still a big research issue." (Yang et al., JAIR, 2008)

Composing Multiple Heuristics

"Two heads are better than one"

State of the art

Input: problem Π , admissible heuristics h_1, \ldots, h_m , state s

MAX use $\max_{i=1}^m h_i(s|\Pi)$

ADD use $\sum_{i=1}^{m} h_i(s|\Pi_i)$ for some transformations Π_1, \ldots, Π_m of Π

Introduction

Composing Heuristics

Projections

Action-Cost Partitioning

Summary

Major Question

MAX or ADD, and if ADD, then add what?

Here we aim at answering this question

Some Basic Formalism

Transition graph

TG-structure $T = (S, L, Tr, s^0, S^*)$:

- S: finite set of states
- L: finite set of transition labels
- $Tr \subseteq S \times L \times S$: labelled transitions
- $s^0 \in S$: initial state
- $S^* \subseteq S$: goal states

Transition graph $\langle \mathcal{T}, arpi angle$:

- \bullet T: TG-structure with labels L
- transition cost function $\varpi: L \mapsto \mathbb{R}^{0+}$

IIItroduction

Heuristics

Projections

Action-Cost Partitioning

Summarv

(Transition graph of planning task defined in the obvious way.

Some Basic Formalism

Transition graph

TG-structure $T = (S, L, Tr, s^0, S^*)$:

- S: finite set of states
- L: finite set of transition labels
- $Tr \subseteq S \times L \times S$: labelled transitions
- $s^0 \in S$: initial state
- $S^{\star} \subseteq S$: goal states

Transition graph $\langle T, \varpi \rangle$:

- T: TG-structure with labels L
- transition cost function $\varpi: L \mapsto \mathbb{R}^{0+}$

(Transition graph of planning task defined in the obvious way.)

Introduction

Heuristics

Projections

Action-Cost Partitioning

Additive Abstractions

Definition (additive abstractions)

Additive abstraction of transition graph $\langle \mathcal{T}, \varpi \rangle$ is $\{\langle \langle \mathcal{T}_i, \varpi_i \rangle, \alpha_i \rangle\}_{i=1}^m$ where

- $\langle \mathcal{T}_i, \varpi_i \rangle$: transition graph
- ullet α_i maps states of \mathcal{T} to states of \mathcal{T}_i such that
 - initial state maps to initial state
 - goal states map to goal states
- holds $\sum_{i=1}^m d(\alpha_i(s), \alpha_i(s')) \leq d(s, s')$

 $h(s) = \sum_{i=1}^{m} d(\alpha_i(s), S_i^{\star})$ is (trivially) admissible

IIItroductioi

Composing Heuristics

Projections

Action-Cost Partitioning

Here We Go

Main Idea

Instead of searching each abstract transition graph $\langle \mathcal{T}_i, \varpi_i \rangle$ given an action cost partition and using dynamic programming

- ① compile SSSP problem over each TG-structure \mathcal{T}_i into a linear program \mathcal{L}_i with action-costs being free variables
- **2** combine $\mathcal{L}_1, \ldots, \mathcal{L}_m$ with additivity constraints $\mathcal{C}(a) \geq \sum_{i=1}^m \mathcal{C}_i(a^{[V_i]})$
- 3 solution of the joint LP ightharpoonup h(s) under optimal action-cost partition

Introduction

Composing Heuristics

Projections

Action-Cost Partitioning

Here We Go

Main Idea

Instead of searching each abstract transition graph $\langle \mathcal{T}_i, \varpi_i \rangle$ given an action cost partition and using dynamic programming

- compile SSSP problem over each TG-structure \mathcal{T}_i into a linear program \mathcal{L}_i with action-costs being free variables
- **2** combine $\mathcal{L}_1, \ldots, \mathcal{L}_m$ with additivity constraints $\mathcal{C}(a) \geq \sum_{i=1}^m \mathcal{C}_i(a^{[V_i]})$
- **3** solution of the joint LP \sim $\sim h(s)$ under optimal action-cost partition

Introduction

Heuristics

Projections

Action-Cost Partitioning

Single-Source Shortest Paths: LP Formulation

LP formulation

Given: digraph G=(N,E), source node $v\in N$ LP variables: $d(v') \sim$ shortest-path length from v to v' LP:

$$\max_{\overrightarrow{d}} \sum_{v'} d(v')$$
 s.t. $d(v) = 0$
$$d(v'') \leq d(v') + w(v', v''), \ \forall (v', v'') \in E$$

Introduction

Heuristics

Projections

Action-Cost Partitioning

Step 1: Compile SSSP over \mathcal{T}_i into \mathscr{L}_i

LP formulation

```
Given: TG-structure \mathcal{T}_i, state s LP variables: \{d(s') \mid s' \in S_i\} \cup \{d(S_i^\star)\} \cup \{w(a,i)\} LP: \max \ d(S_i^\star) s.t. \begin{cases} d(s') \leq d(s'') + w(a,i), & \forall \langle s'', a, s' \rangle \in Tr_i \\ d(s') = 0, & s' = s^{[V_i]} \\ d(S_i^\star) \leq d(s'), & s' \in S_i^\star \end{cases}
```

Introduction

Composing Heuristics

Projections

Action-Cost Partitioning

Summarv

Step 2: Properly combine $\{\mathscr{L}_i\}_{i=1}^m$

LP formulation

Given: TG-structures $\{T_i\}_{i=1}^m$, state s

LP variables: $\bigcup_{i=1}^{m} \{d(s') \mid s' \in S_i\} \cup \{d(S_i^{\star})\} \cup \{w(a,i)\}$

LP:

$$\max \sum_{i=1}^{m} d(S_i^{\star})$$

s.t.
$$\forall i$$

$$\begin{cases}
d(s') \leq d(s'') + w(a, i), & \forall \langle s'', a, s' \rangle \in Tr_i \\
d(s') = 0, & s' = s^{[V_i]} \\
d(S_i^{\star}) \leq d(s'), & s' \in S_i^{\star}
\end{cases}$$

$$\forall a \in A: \sum_{i=1}^{m} w(a,i) \leq \mathcal{C}(a)$$

introduction

Heuristics

Projections

Action-Cost Partitioning

Optimizing Action-Cost Partitioning: Generalization

General theory of LP-optimizable ensembles of additive heuristic functions

Introduction

Composing Heuristics

Projections

Action-Cost Partitioning

Optimizing Action-Cost Partitioning: Generalization

General theory of LP-optimizable ensembles of additive heuristic functions

- Warning: Any reduction to LP is not enough
- Works as above for
 - projection and variable-domain abstraction (PDB) heuristics
 - constrained PDBs heuristics (Haslum et al., 2005)
 - merge-and-shrink abstractions (Helmert et al., 2007)

Introduction

Heuristics

Projections

Action-Cost Partitioning

Optimizing Action-Cost Partitioning: Generalization

General theory of LP-optimizable ensembles of additive heuristic functions

- Warning: Any reduction to LP is not enough
- Works as above for
 - projection and variable-domain abstraction (PDB) heuristics
 - constrained PDBs heuristics (Haslum et al., 2005)
 - merge-and-shrink abstractions (Helmert et al., 2007)
- Suitable poly-size LPs \mathscr{L}_i exist also for
 - fork-decomposition structural patterns (Katz & Domshlak, 2008)
 - tree-COP reducible fragments of tractable cost-optimal planning (Katz & Domshlak, 2007)
 - **③** ...

Introduction

Composing Heuristics

Projections

Action-Cost Partitioning

Summary

State of the art

Input: problem Π , admissible heuristics h_1, \ldots, h_m , state s

MAX use $\max_{i=1}^m h_i(s|\Pi)$

ADD use $\sum_{i=1}^{m} h_i(s|\Pi_i)$ for some transformations Π_1, \ldots, Π_m of Π

Introduction

Heuristics

Projections

Action-Cost Partitioning

Summary

Major Question

MAX or ADD, and if ADD, then add what?

For many (all ?) abstraction-based heuristics, the question is closed