2210: Assignment 1 - Allison So

1. a) We need to prove that $\frac{1}{2n-1}$ is $O(\frac{1}{n})$. We must find constants c > 0 and integer $n_0 \ge 1$ such that

$$\frac{1}{2n-1} \le c(\frac{1}{n})$$
 for all $n \ge n_0$

b) Simplify the inequality. Multiply both sides by n.

$$\frac{n}{2n-1} \le c \text{ for all } n \ge n_0$$

c)
$$c = 1$$

$$2n - 1 \le n$$

 $1 \le n = n$ for all $n \ge n_0$, the inequality is valid for all values of n larger than or equal to 1, therefore n_0 can be 1 ($n_0 = 1$). Since we have found c and n_0 values that are true for this inequality, then we have proven that $\frac{1}{2n-1}$ is $O(\frac{1}{n})$.

- 2. a) We need to prove that f(n) + k is O(g(n)). We must find constants c and k such that $f(n) \le c' \cdot g(n)$ for all $n \ge n_0$
 - b) Simplify.

$$c \bullet g(n) + k \le c \bullet g(n) + k$$

$$c \bullet g(n) \leq c \bullet g(n)$$

c)
$$c = 3$$
, $k = 4$, $c' = 4$, $n_0 = 1$

- $3 \bullet g(n) \le 4 \bullet g(n)$ for all $n \ge 1$. Therefore, the inequality is valid for all values of n larger than or equal to 1. Since we have found c, c', k and n_0 values that are true for this inequality, then we have proven that f(n) + k is O(g(n)).
- 3. We will assume that $\frac{1}{n}$ is $O(\frac{1}{n^2})$ for all $n \ge n_0$ is a true claim.

$$\frac{1}{n} \le c \cdot \frac{1}{n^2}$$
 for all $n \ge n_0$

$$n \leq c \cdot n^2$$

$$n \leq \frac{1}{c}$$

This simplified inequality is valid only for values of n that are at most $\frac{1}{c}$, thus providing a contradiction to the claim that says, for all $n \geq n_0$. So, with no constant values such that $n \leq \frac{1}{c}$ for all $n \geq n_0$, $\frac{1}{n}$ is not $O(\frac{1}{n^2})$.

- 4. The algorithm does not terminate. For example, given array A { 1,2,3,4,5,6,7,8,9,10 }, first = 0, last = 9, x = 12. numValues = 10, third = 3, twoThird = 6. Else return, numValues = Å, third = 8, twoThird = 9. Else return, numValues = 2, third = 9, twoThird = 10. After searching the values the program still does not terminate, because there is no system in place in case there is no match found.
- 5.
 The output of this algorithm is incorrect because using this algorithm, if the value of x is found in the array at index 0, it will be counted twice.

For example, given array A $\{3,9,2,6,1,5,4,8\}$, first = 0, last = 7, x = 3. Just by skimming we see that there are no other copies of the value 3, so using these values and the given algorithm, I would get c = 1. Then in the loop, an extra 1 is added to the value of c as the loop begins from index 0, but it should only do so if the value of index 0 is not equal to the value of x. And so it follows that, if the value of index 0 is equal to the value of x, then the loop should not begin at 0, but at index 1.

6.

```
duplicateFound ← true
                                                // 1
                                                // 1
i ← 0
while duplicateFound = true do {
                                                // 4n
        if L[i] = L[i + 1] then return true
        else duplicateFound ← false
                                                // 1
        if i < n - 1 then i \leftarrow i + 1
                                                // 3
}
return duplicateFound
                                                // 1
f(n) = (4n + 4) + 3
                                The order of this complexity is O(n).
```

I computed the time complexity by going through the code, counting the number of primitive operations on every line. Ensuring that when a loop was indicated, the order was increased by one and all loop operations were kept separate from those outside.

7.

n	Linear Search	n	Quadratic Search	n	Factorial Search
5	113 ns	5	352 ns	7	2560944 ns
10	169 ns	10	550 ns	8	14402615 ns
100	1293 ns	100	11787 ns	9	75897496 ns
1000	6177 ns	1000	129602 ns	10	603844635 ns
10000	12773 ns	10000	9940241 ns	11	6742303785 ns
100000	29772 ns			12	84701679657 ns