Lab. di Sistemi Operativi, Gruppo I: M. Faella

Anno Acc. 2006-2007

Esame del 4 maggio 2007

Università di Napoli "Federico II"

Nome e Cognome:

Matricola:

1	2	3	4	tot
/36	/27	/22	/15	/100

1. $6*6 = 36 \ punti$

Si supponga che l'output tipico del comando "ls -al" sia:

```
drwx----
           2 utente staff
                              4096 2007-02-10 14:28 .
drwx----
           2 utente staff
                              4096 2007-02-10 14:28 ...
                               102 2007-01-11 02:05 new.gif -> /pics/new.gif
lrwxrwxrwx 1 utente staff
                            319045 2007-01-16 01:48 reti8.pdf
-rw-r--r-- 1 utente staff
lrwxrwxrwx 1 utente staff
                                11 2007-05-02 12:10 .bashrc -> /etc/bashrc
--w---- 1 utente staff
                               268 2007-04-26 10:37 .screenrc
drwxr-xr-x 4 utente staff
                              4096 2006-08-28 19:29 .xmms
```

Si scriva un comando di shell UNIX per ciascuno dei seguenti compiti¹:

- (a) Elencare i file per i quali né il gruppo di appartenenza né gli altri utenti hanno alcun permesso.
- (b) Elencare i file regolari il cui nome comincia con ".x" o con ".s".
- (c) Elencare i link simbolici contenuti nella directory corrente, specificando per ognuno di essi il file di destinazione, ed i file regolari a cui l'utente proprietario ha accesso in lettura. Esempio di output del comando:

```
new.gif è un link simbolico che punta a /pics/new.gif reti8.pdf è un file regfolare a cui il proprietario puo' accedere in lettura .bashrc è un link simbolico che punta a /etc/bashrc
```

(d) Elencare tutti i file di proprietà di "utente" la cui data di ultima modifica è compresa tra il primo giugno 2007 e il 30 settembre 2007.

Supponendo che la directory corrente contenga esattamente i file mostrati sopra, si determini l'output dei seguenti comandi:

```
(e) ls | sed 's/old/new/g' | grep 'e.*[[:digit:]]'
(f) ls -al | awk '{ print $6 }' | sed 's/-.*-..//' | sort | uniq
```

2. 27 punti

Si realizzi un script "rimuovi" che accetta come argomento un'estensione di file ed effettui le seguenti operazioni:

- conti il numero di file che hanno questa estensione;
- calcoli la dimensione totale dei file con questa estensione;
- elenchi all'utente i nomi dei file (privati dell'estensione) la cui dimensione è maggiore di 1000 byte;
- chieda all'utente conferma per la rimozione dei file di dimensione maggiore;
- cancelli tutti i file se l'utente risponde affermativamente.

Esempio di output dello script:

¹Per "comando", si intende qualunque istruzione impartita al prompt della shell, che non contenga strutture di controllo, uso di variabili, o l'operatore ";".

```
\  \  \, ./rimuovi pdf I 30 file pdf occupano in totale 789345 byte I seguenti file pdf hanno dimensione maggiore di 1000: uno due tre quattro cinque Vuoi che li cancelli? (s/N) s Ho cancellato 5 file
```

3. 22 punti

Usando soltanto le system call di I/O di basso livello, si implementi un programma C chiamato "split", che prende come argomento il nome di un file x ed un numero intero n, e divide il file x in due file chiamati "part1" e "part2" che contengono rispettivamente i primi n caratteri del file x e i restanti caratteri.

Ad esempio, il comando "split pippo 1500" crea il file part1 in cui inserisce i primi 1500 caratteri del file pippo, e il file part2 in cui inserisce i restanti caratteri del file pippo. Se pippo contiene meno di 1500 caratteri, il file part1 conterrà tutto il contenuto di pippo, mentre il file part2 non verrà nemmeno creato.

4. 15 punti

La system call raise manda un segnale al processo corrente. Ovvero, raise(SIGINT) è equivalente a kill(getpid(), SIGINT).

Determinare il contenuto del file prova.txt dopo l'esecuzione del seguente programma, supponendo che il file non esistesse prima dell'esecuzione. Ignorare la mancanza delle direttive #include.

```
void foo(int s) {
  lseek(4, -2, SEEK_CUR);
  write(4, "aaa\n", 4);
  close(4);
}

int main(void) {
  int fd = open("prova.txt", O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
  dup2(fd, 4);
  signal(SIGUSR1, foo);

  write(STDOUT_FILENO, "inizio", 6);
  write(fd, "bbbb", 4);
  raise(SIGUSR1);
  write(fd, "ccc\n", 4);
  write(fd, "ccc\n", 4);
  write(STDOUT_FILENO, "fine\n", 5);
  return 0;
}
```