

Progressive Growing of GANs for Improved Quality, Stability, and Variation

#### Contents

- Introduction
- Progressive Growing of GANs
- Increasing Variation using Minibatch Standard Deviation
- Normalization in Generator and Discriminator
- Multi-Scale Statistical Similarity for Assessing GAN Results
- Experiments

## Introduction

### Generative Models - overview

- Autoregressive model (e.g. PixelCNN)
  - Sharp images, slow to evaluate. No latent space
- VAEs
  - Fast to train, burry images
- GANs
  - Sharp images, low resolution, limited variation, unstable training



Blue, dashed line: discriminative distribution Black, dotted line: data distribution ( $P_{data}$ ) Green solid line: generative distribution ( $P_q$ )

#### Challenge 1

• If not much overlap between training and generated distributions then gradients can point in random directions.





#### Challenge 2

Little variation in results

Plot of 100 GAN Generated MNIST Figures After 100 Epochs

#### Challenge 3

• High resolution harder because easier to tell apart



Low Resolution



High Resolution

#### Challenge 4

• High resolution requires smaller minibatches so training less stable



High Resolution

#### PGGAN - overview

- Key insight
  - we can grow both the generator and discriminator progressively,
  - starting from easier low-resolution images,
  - and add new layers that introduce higher-resolution details as the

training progress

# Progressive Growing of GANs

# PGGAN - growing the GAN



# PGGAN - growing the GAN



## PGGAN - fading in higher resolution layers

#### Fade in smoothly



#### Loss Function

- The author's say their work is independent of loss function
- Do experiments with both WGAN-GP and LSGAN

## PGGAN - benefits

- Training avoids high resolution problem of too much divergence early on
- **Faster** training, 2-6 x faster
- Only use a single GAN instead of a hierarchy of GANs
- More stable training more steps done at lower resolution with larger minibatches



#### Minibatch standard deviation

- Minibatch discrimination (Salimans et al. 2016)
  - Compute feature statistics across the minibatch
  - Encourage the minibatches of generated and training images to show similar statistics
  - Add a minibatch layer towards the end of the discriminator

#### Minibatch standard deviation

#### Minibatch standard deviation

- Simplifies the minibatch discrimination and improves variation
- How to compute ?
  - Compute standard deviation for each feature in each spatial location
  - Then average over all features and spatial locations to get a single value
  - Replicate the value and concatenate it to all spatial locations and over the minibatch, yields one additional feature map



## Equalized Learning Rate

- Use trivial N(0, 1) weight initialization and scale weights at runtime
- $\widehat{w}_i = w_i/c$ 
  - $w_i$ : weights, c: per-layer normalization constant from He's initializer
- Adaptive SGD methods normalize a gradient update by its estimated standard deviation
- If some parameters have a larger dynamic range than others, they will take longer to adjust
- Our approach ensures that the dynamic range, and thus the learning speed, is the same for all weights

#### Pixelwise Feature Vector Normalization in Generator

- Normalize the feature vector in each pixel to unit length in the generator after each convolutional layer
- Prevent feature map magnitudes from getting too large

$$b_{x,y} = a_{x,y} / \sqrt{\frac{1}{N} \sum_{j=0}^{N-1} (a_{x,y}^j)^2 + \epsilon}$$
, where  $\epsilon = 10^{-8}$ 

#### Multi-Scale Statistical Similarity for Assessing GAN Results

- MS-SSIM: Good at identifying global mode collapse, not good for local mode collapse like on colors and textures
- Do MS-SSIM on local patches drawn from Laplacian pyramid

representations of generated and target images



Mode collapsing



#### Multi-Scale Statistical Similarity for Assessing GAN Results

- Sample 16,384 images and extract 128 descriptors from each level of the Laplacian pyramid. Each descriptor is a 7x7 pixel neighborhood with 3 color channels
- Compute sliced Wasserstein distance between samples. Smaller distance means that at that level of resolution training images and generator samples have similar variation

# Experiments

# Importance of Individual Contributions in Teams of Statistical Similarity

|                                   | CELEBA                                       |       |       |       |       |         |                                                   | LSUN BEDROOM |       |       |       |        |  |  |
|-----------------------------------|----------------------------------------------|-------|-------|-------|-------|---------|---------------------------------------------------|--------------|-------|-------|-------|--------|--|--|
| Training configuration            | Sliced Wasserstein distance ×10 <sup>3</sup> |       |       |       |       | MS-SSIM | Sliced Wasserstein distance ×10 <sup>3</sup> MS-S |              |       |       |       |        |  |  |
|                                   | 128                                          | 64    | 32    | 16    | Avg   |         | 128                                               | 64           | 32    | 16    | Avg   |        |  |  |
| (a) Gulrajani et al. (2017)       | 12.99                                        | 7.79  | 7.62  | 8.73  | 9.28  | 0.2854  | 11.97                                             | 10.51        | 8.03  | 14.48 | 11.25 | 0.0587 |  |  |
| (b) + Progressive growing         | 4.62                                         | 2.64  | 3.78  | 6.06  | 4.28  | 0.2838  | 7.09                                              | 6.27         | 7.40  | 9.64  | 7.60  | 0.0615 |  |  |
| (c) + Small minibatch             | 75.42                                        | 41.33 | 41.62 | 26.57 | 46.23 | 0.4065  | 72.73                                             | 40.16        | 42.75 | 42.46 | 49.52 | 0.1061 |  |  |
| (d) + Revised training parameters | 9.20                                         | 6.53  | 4.71  | 11.84 | 8.07  | 0.3027  | 7.39                                              | 5.51         | 3.65  | 9.63  | 6.54  | 0.0662 |  |  |
| (e*) + Minibatch discrimination   | 10.76                                        | 6.28  | 6.04  | 16.29 | 9.84  | 0.3057  | 10.29                                             | 6.22         | 5.32  | 11.88 | 8.43  | 0.0648 |  |  |
| (e) Minibatch stddev              | 13.94                                        | 5.67  | 2.82  | 5.71  | 7.04  | 0.2950  | 7.77                                              | 5.23         | 3.27  | 9.64  | 6.48  | 0.0671 |  |  |
| (f) + Equalized learning rate     | 4.42                                         | 3.28  | 2.32  | 7.52  | 4.39  | 0.2902  | 3.61                                              | 3.32         | 2.71  | 6.44  | 4.02  | 0.0668 |  |  |
| (g) + Pixelwise normalization     | 4.06                                         | 3.04  | 2.02  | 5.13  | 3.56  | 0.2845  | 3.89                                              | 3.05         | 3.24  | 5.87  | 4.01  | 0.0640 |  |  |
| (h) Converged                     | 2.42                                         | 2.17  | 2.24  | 4.99  | 2.96  | 0.2828  | 3.47                                              | 2.60         | 2.30  | 4.87  | 3.31  | 0.0636 |  |  |

# Importance of Individual Contributions in Teams of Statistical Similarity

|                                   | CELEBA |         |          |          |               |         |       | LSUN BEDROOM |       |       |       |        |  |  |
|-----------------------------------|--------|---------|----------|----------|---------------|---------|-------|--------------|-------|-------|-------|--------|--|--|
| Training configuration            | Slice  | d Wasse | rstein d | listance | $\times 10^3$ | MS-SSIM | Slice | MS-SSIM      |       |       |       |        |  |  |
|                                   | 128    | 64      | 32       | 16       | Avg           |         | 128   | 64           | 32    | 16    | Avg   |        |  |  |
| (a) Gulrajani et al. (2017)       | 12.99  | 7.79    | 7.62     | 8.73     | 9.28          | 0.2854  | 11.97 | 10.51        | 8.03  | 14.48 | 11.25 | 0.0587 |  |  |
| (b) + Progressive growing         | 4.62   | 2.64    | 3.78     | 6.06     | 4.28          | 0.2838  | 7.09  | 6.27         | 7.40  | 9.64  | 7.60  | 0.0615 |  |  |
| (c) + Small minibatch             | 75.42  | 41.33   | 41.62    | 26.57    | 46.23         | 0.4065  | 72.73 | 40.16        | 42.75 | 42.46 | 49.52 | 0.1061 |  |  |
| (d) + Revised training parameters | 9.20   | 6.53    | 4.71     | 11.84    | 8.07          | 0.3027  | 7.39  | 5.51         | 3.65  | 9.63  | 6.54  | 0.0662 |  |  |
| (e*) + Minibatch discrimination   | 10.76  | 6.28    | 6.04     | 16.29    | 9.84          | 0.3057  | 10.29 | 6.22         | 5.32  | 11.88 | 8.43  | 0.0648 |  |  |
| (e) Minibatch stddev              | 13.94  | 5.67    | 2.82     | 5.71     | 7.04          | 0.2950  | 7.77  | 5.23         | 3.27  | 9.64  | 6.48  | 0.0671 |  |  |
| (f) + Equalized learning rate     | 4.42   | 3.28    | 2.32     | 7.52     | 4.39          | 0.2902  | 3.61  | 3.32         | 2.71  | 6.44  | 4.02  | 0.0668 |  |  |
| (g) + Pixelwise normalization     | 4.06   | 3.04    | 2.02     | 5.13     | 3.56          | 0.2845  | 3.89  | 3.05         | 3.24  | 5.87  | 4.01  | 0.0640 |  |  |
| (h) Converged                     | 2.42   | 2.17    | 2.24     | 4.99     | 2.96          | 0.2828  | 3.47  | 2.60         | 2.30  | 4.87  | 3.31  | 0.0636 |  |  |



# Convergence and Training Speed



#### High-Resolution Image Generator using CelebA-HQ Dataset



#### High-Resolution Image Generator using CelebA-HQ Dataset



## LUSN Results



## LUSN Results



# Q&A