WHAT IS CLAIMED IS:

1	1/A method, comprising:
2	detecting a write command to a frame buffer;
3	determining a region in the frame buffer associated with a frame buffer address in
4	the write command; and
5	determining whether the region is the same as a last-modified region.
1	2. The method of claim 1, further comprising:
2	when the region is not the same as the last-modified region,
3	ending the region to a display device associated with the frame buffer, and
4	setting the last-modified region to be the region.
1	3. The method of claim 1, further comprising:
2	when the region is the same as the last-modified region, refraining from sending
3	the region to the display device until a different region is detected.
\	
1	4. The method of claim 1, wherein the write command is issued by a graphics engine to
2	the frame buffer.
1	5. The method of claim 1, wherein the frame buffer comprises a plurality of regions each
2	representing a plurality of pixels on a display device, and wherein the region is one of the
3	plurality of regions.
1	6. The method of claim 5, wherein the plurality of regions represent the plurality of pixels
2	in a rectangular shape on the display device.
1	7. The method of claim 6, wherein each of the plurality of regions represents a same
2	number of pixels.
	\

1	The method of claim 4, wherein the detecting is carried out by logic connected to the
2	frame buffer and the graphics engine.
1	9. An apparatus, comprising:
2	a graphics engine to:
3	generate a write command having an associated region in a frame buffer,
4	determine whether scan-out logic is accessing the associated region in the
5	frame buffer, and
6	store the write command in memory associated with the graphics engine
7	when the scan-out logic accesses the associated region in the frame buffer.
1	10. The apparatus of claim 9, wherein the graphics engine is further to:
2	send the write command to the frame buffer when the scan-out logic is not
/3	accessing the associated region in the frame buffer.
1	11. The apparatus of claim 9, wherein the frame buffer comprises a plurality of regions
2	each representing a plurality of pixels on a display device, and wherein the associated
3	region is one of the plurality of regions.
1	12. An apparatus for writing to a display device, comprising:
2	a frame buffer comprising a plurality of regions, wherein each region represents a
3	respective plurality of pixels on the display device; and
4	logic to accumulate writes by a graphics engine to one of the plurality of regions
5	in the frame buffer until the graphics engine writes to another region of the plurality of
6	regions in the frame buffer, wherein when the graphics engine writes to the another
7	region, the logic is to cause the one region to be written to the display device.
1	13. The apparatus of claim 12, wherein the logic comprises a plurality of D-type flip-
2	flops.

884.607US1 14 P12737

1	14. The apparatus of claim 13, wherein one of the plurality of D-type flip-flops is to	
2	receive input of a region number of the one region and a clock input to be active when	
3	each of the respective writes occurs.	
1	15. A signal-bearing medium comprising instructions, which when read and executed b	уа
2	processor comprise:	
3	accumulating writes by a graphics engine to one of a plurality of regions in a	
4	frame buffer, wherein the plurality of regions represent respective pixels on a display	
5	device;	
6	detecting that the graphics engine has written to another region of the plurality of	of
7	regions in the flame buffer; and	
8	in response to the detecting, causing the one region to be written to the display	
9	device.	
l		
\setminus_1	16. The signal-bearing medium of claim 15, wherein the detecting further comprises	
2	converting frame buffer addresses in the writes to region numbers.	
1	17. The signal-bearing medium of claim 15, wherein the causing further comprises:	
2	instructing scan-outlogic to copy the one region from the frame buffer to the	
3	display device asynchronously from the writes to the frame buffer.	
1	18. An apparatus, comprising:	
2	a first D-type flip-flop including	
3	a first data input to indicate a region number of a region currently being	
4	written to a frame buffer, and	
5	a first clock input to be active when a write to the frame buffer has	
6	occurred.	
1	19. The apparatus of claim 18, further comprising:	
2	a second D-type flip-flop, including	
88	34.607US1 13 13	212737

3	asecond data input coupled to a first output of the first D-type flip-flop,
4	and
5	a second clock input coupled to a compare logic output.
1	20. The apparatus of claim 19, further comprising:
2	a third D-type flip-flop, comprising:
3	a third data input coupled to a second output of the second D-type flip-flop
4	and
5	a third clock input to be active when the write to the frame buffer has
6	occurred.
	\
1	21. The apparatus of claim 20, further comprising:
2	compare logic, comprising:
$\sqrt{3}$	a first compare data input coupled to the second output of the second D-
#	type flip-flop, and
5	a second compare data input coupled to the first output of the first D-type
6	flip-flop.
1	22. The apparatus of claim 20, where the third D-type flip-flop further comprises:
2	a third output to indicate a region number of a region to be sent to a display
3	device, wherein the third output is connected to a scan-out logic, wherein the scan-out
4	logic is connected to a display device
1	23. A electronic device comprising:
2	a frame buffer comprising a plurality of regions each representing a respective
3	plurality of pixels on a display device;
4	a graphics engine to initiate writes to one of the plurality of regions in the frame
5	buffer;
6	snoop logic to cause the frame buffer to accumulate the writes; and

P12737

- scan-out logic to write the one of the plurality of regions from the frame buffer to the display device when instructed by the snoop logic.
- 1 24. The electronic device of claim 23, wherein the snoop logic comprises a plurality of D-
- 2 type flip-flops
- 1 25. The electronic device of claim 24, wherein the D-type flip-flop further comprises an
- 2 exclusive-or gate.

1

2

3

4

5

- 26. An electronic device, comprising:
 - a graphics engine to, for every respective modified region in a set of candidate regions,
 - copy the respective modified region from a frame buffer to a display,
 when the respective modified region was written to during the copy, mark
 the respective modified region as modified, and
 - when the respective modified region was not written to during the copy, mark the respective modified region as not modified.
- 1 27. The electronic device of claim 26, wherein the set of candidates comprises all regions
- 2 that have not been written to during a most recent period of time.
- 1 28. The electronic device of claim 26, wherein the set of candidates comprises all regions
- 2 except a number of most-recently written to regions.
- 1 29. The electronic device of claim 26, wherein the set of candidates comprises a number
- 2 of least-recently written to regions.
- 1 30. The electronic device of claim 26, wherein the set of candidates comprises all regions
- 2 being displaced from the frame buffer.

884.607US1 17 \ P12737