Homework 23 - MATH 791

Will Thomas

Problem 1:

Show that $p(x) = x^3 + x^2 + 2x + 1$ is irreducible over \mathbb{Z}_3 .

Solution:

Let us assume for contradiction that we could factor out some $(x - \alpha)$ for $\alpha \in \mathbb{Z}$.

Then we know that $x^3 + x^2 + 2x + 1 = (x - \alpha)(\beta_2 x^2 + \beta_1 x + \beta_0)$. Let us just destruct on possible values of α

 $\alpha = 0$:

Then clearly this will not work as $(x)(\beta_2 x^2 + \beta_1 x + \beta_0)$ will have no constant term, but one is required.

 $\alpha = 1$:

Then we will have $(x-1)(\beta_2 x^2 + \beta_1 x + \beta_0)$ and the constant term will force $\beta_0 = -1 \equiv 2$. We will also know that $\beta_2 = 1$ (from monic polynomial). This forces

$$(x-1)(x^{2} + \beta_{1}x + 2) = x^{3} + (2 + \beta_{1}x^{2}) + (-\beta_{1}x) + 1$$
$$= x^{3} + x^{2} + 2x + 1$$

This equality is irreconcilable for any possible β_1 $\alpha = 2$:

Then we will have $(x-2)(\beta_2 x^2 + \beta_1 x + \beta_0)$ and the constant term will force $\beta_0 = -2 \equiv 1$. We will also know that $\beta_2 = 1$ (from monic polynomial). This forces

$$(x-2)(x^2 + \beta_1 x + 1) = x^3 + (1 + \beta_1 x^2) + (-2 * \beta_1 x) + 1$$
$$= x^3 + x^2 + 2x + 1$$

This equality is irreconcilable for any possible β_1

p(x) is irreducible over \mathbb{Z}_3

Problem 2:

For p(x) as in the previous problem, from class we know that there is a field K containing \mathbb{Z}_3 and $\alpha \in K$ such that $p(\alpha) = 0$.

- (i) How many elements are in the field $\mathbb{Z}_3(\alpha)$?
- (ii) In the field $\mathbb{Z}_3(\alpha)$ calculate $A \cdot B$ and A^{-1} for $A := 1 + 2\alpha + \alpha^2$ and $B := 2 + \alpha + 2\alpha^2$

Solution:

Admitted

Problem 3:

Give an example of a field with 125 elements.

Solution:

Admitted

Problem 4:

Fix a prime p. Assume that for all $n \geq 1$, there exists an irreducible polynomial in $\mathbb{Z}_p[x]$ having degree n. Show that for all primes p and $n \geq 1$, there exists a field with p^n elements.

Solution:

Admitted

Problem 5:

Let $\alpha \in K \supseteq \mathbb{Z}_2$ be a root of $x^2 + x + 1$. Show that $\mathbb{Z}_2(\alpha)$ is the splitting field for $x^2 + x + 1$.

Solution:

Admitted