

In [73]: In [77]:	ACcuracies=cross_val_score(clf,X_train_new,y_train, cv=5, scoring="accuracy") np.mean(Accuracies) 0.9016581750810561 ADAPTIVE BOOSTING WITH RANDOM FOREST - UPSAMPLED
In [79]:	from chicken meremic report indeportionations: ### Additional Control and Con
In [81]:	Tree should note that the proposed beginning to the proposed proposed by the proposed proposed by the proposed
In [82]: Out[92]: In [94]:	parametric control (1) model - Descinptional (1) model - Descinptional (1) parametric condition (1) parametric condition (1) mag acceptance (
Out[89]: In []: In [93]:	FINDING THE TOP THREE CLASSIFIERS FOR HARD AND SOFT VOTING
In []: In [95]:	<pre>HARD VOTING from sklearn.ensemble import VotingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import accuracy_score rf = RandomForestClassifier(bootstrap = True, max_depth=17, min_samples_split=9 , n_estimators = 64, random_xbg = xgbcost.XcBcClassifier(learning_rate=1, n_estimators=219, max_depth = 129, random_state = 42) adaptive_boosting = AdaBoostClassifier(RandomForestClassifier(random_state=42), algorithm = 'SAMME.R', learn hard_voting = VotingClassifier(estimators=[('random_forest', rf), ('xbg', xbg),</pre>
In []: In []:	<pre>from sklearn.ensemble import VotingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import accuracy_score from sklearn.metrics import accuracy_score rf = RandomForestClassifier(bootstrap = True, max_depth=17, min_samples_split=9 , n_estimators = 64, random_</pre>
In [98]:	from sklearm.enemble import EngiptClassifier from sklearm.enemble import BaggingClassifier from sklearm.enemble import AdahonatClassifier from sklearm.enemble import AdahonatClassifier from sklearm.enemble import AdahonatClassifier from sklearm.enemble import DecisionTreeClassifier from sklearm.enemble import AdahonatClassifier from sklearm.enemble import Fibeline knn = KNeighborsClassifier(na /ephborsel, metric='euclidean') avm = Pipeline(("avm_clf".SVC.Ketopl="poly", degree=2, cesf0=2, Ce8, random_state=42))] di = DecisionTreeClassifier(nax /epht=1), min_samples_leaf=0, min_samples_split=0, random_state = 42) di = DecisionTreeClassifier(text) = True, max depth=1, min_samples_split=0, restinator=2, adaptive_bocating = AdaBosatClassifier(text) = True, max depth=1, min_samples_split=0, restinator=2, adaptive_bocating = AdaBosatClassifier(text) = True, max depth=1, min_samples_split=0, restinator=2, random_state=42), adaptive_bocating = AdaBosatClassifier(text) = Adaptive_bocating = True, max_depth=1, min_samples_split=0, restinator=2, random_state=42), adaptive_bocating = AdaBosatClassifier(text) = Adaptive_bocating; adaptive_bocating; next_not_adaptive_bocating = 12, adaptive_bocating; next_not_adaptive_bocating; n
In []: In [99]:	
In []: In [102	DOING THE SAME FOR UPSAMPLED DATA from sklearn.eneighbors import RkeighborsClearSifier from sklearn.enemble import RandomForestClearSifier from sklearn.enemble import RandomForestClearSifier from sklearn.enemble import RandomForestClearSifier from sklearn.enemble import AndomForestClearSifier from sklearn.enemble import AndomForestClearSifier from sklearn.sym import SVC from scipy.stats import randint from sklearn.pipeline import Pipeline knn_upsampled = KNeighborsClearSifier knn_upsampled = KNeighborsClearSifier(n_neighbors=i, metric='euclidear') swm_upsampled = Fipeline([("sww_cle*n_el**poly", degreem\$, confor*2, Ce53, random state=42))]) dt_upsampled = DecisionTomcclearSifier(mas depth=9), min_comples_lear=3, min_samples_sglit=3, random_state = fr_upsampled = RandomForestClearSifier(mas depth=9), min_comples_lear=3, min_samples_sglit=3, random_state = fr_upsampled = RandomForestClearSifier(clearIng_rate=1), mestimator=42, min_samples_sglit=3, random_state=42) adaptive_bocating_upsampled = BaggingClearSifier(RandomForestClearSifier(random_state=42), algorithm = "SameD bagging_random_forest_upsampled = BaggingClearSifier(RandomForestClearSifier(random_state=42), n_estimators=22, clf=['X_neighbour:', 'Poly SVC:', "Decision_tree:', 'Random_forest:', 'Xbg:', 'Adaptive_bocsting:', "agging_random_forest:') i=0 clf=['X_neighbour:', 'Poly SVC:', "becision_tree:', 'Random_forest:', 'Xbg:', 'Adaptive_bocsting:', "agging_random_forest:') spr_encourage_source(y_train_up_smpled, d_upsampled, f_upsampled, xbg_upsampled, adaptive_bocsting_upsampled_begging_random_forest_upsampled, adaptive_bocsting_upsampled_begging_random_forest_upsampled, adaptive_bocsting_upsampled_begging_random_forest_upsampled, adaptive_bocsting_upsampled_begging_random_forest_upsampled, adaptive_bocsting_upsampled_begging_random_forest_upsampled, adaptive_bocsting_upsampled_begging_random_forest_upsampled_begging_random_forest_upsampled_begging_begging_begging_begging_begging_begging_begging_begging_begging
In []:	Bagging_random_forest: 0.8127562642369022 Here we see that Adaptive_boosting, Random_Forest, and Xbg HARD VOTING
In []:	<pre>from sklearn.ensemble import VotingClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import cross_val_score rf_upsampled = RandomForestClassifier(bootstrap = False, max_depth=49, min_samples_split=2 , n_estimators = xbg_upsampled = xgboost.XGBClassifier(learning_rate=1, n_estimators=248, max_depth = 474, random_state = 42) adaptive_boosting_upsampled = AdaBoostClassifier(RandomForestClassifier(random_state=42), algorithm = 'SAMME soft_voting = VotingClassifier(estimators=[('random_forest', rf_upsampled), ('xbg', xbg_upsampled), ('adaptive_boosting', adaptive_boosting_upsampled)],voting='soft' soft_voting.fit(X_train_Std_up, y_train_up) clf=['Random_forest:', 'Xbg:', 'Adaptive_boosting:', 'Soft Voting:'] i=0 for clfier in (rf_upsampled,xbg_upsampled,adaptive_boosting_upsampled, soft_voting): clfier.fit(X_train_Std_up, y_train_up) Accuracies=cross_val_score(clfier,X_train_Std_up, y_train_up, cv=5, scoring="accuracy") print(clf[i], np.mean(Accuracies)) i+=1 Random_forest: 0.9735763097949887 Xbg: 0.961731207289294 Adaptive_boosting: 0.9612756264236901</pre>
In []: In [110	Adaptive_boosting: 0.9612756264236901 Soft Voting: 0.966742596810934 MAKING PLOT FOR UPSAMPLED DATA
In [111	i+=1 K_neighbour: 0.9480637813211846 Poly_SVC: 0.9334851936218678 Decision_tree: 0.9266514806378131 Random_Forest: 0.9735763097949887 Xbg: 0.961731207289294 Adaptive_boosting: 0.9612756264236901 Bagging_random_forest: 0.8127562642369022 Soft_voting: 0.966742596810934 Hard_voting: 0.9699316628701595
In []: In []: In [112	Random_Forest and Hard_voting are the best performer in upsampled training data. TESTING test_set_strat

