# Life Cycle Assessment - Report Circularity Assessment

Material: Aluminium Scrap Process Stage: Manufacturing Technology: Emerging

| Report Generated: | 2025-10-20 15:33:50  |
|-------------------|----------------------|
| Location:         | Asia                 |
| Functional Unit:  | 1 kg Aluminium Sheet |
| Time Period:      | 2020-2025            |

This report is generated using Al/ML models for LCA estimation. Results should be validated with actual measurement where possible.

## **Input Parameters**

| Raw Material Quantity | 100.0             |
|-----------------------|-------------------|
| Energy Input          | 250.0 Electricity |
| Processing Method     | Advanced          |
| Transport             | Truck / 300.0 km  |

## **Energy Efficiency Analysis**

The emerging technology used in the manufacturing stage consumes approximately 250.0 MJ of energy. Energy efficiency improvements, such as heat recovery or renewable electricity sourcing, could reduce the footprint.

## **Executive Summary**

This Life Cycle Assessment evaluates the environmental and circularity performance of Aluminium Scrap. The analysis indicates a Circularity Score of 44.7951545715332%, supported by 70.25933837890625% recycled content, a reuse potential of 27.105358123779297%, and a recovery rate of 87.98226165771484%. Circularity Assessment: The material demonstrates moderate circular potential, with strong reuse and recycled input levels but room for improvement in end-of-life recovery. Recommendations: 1. Increase post-use collection and recovery efficiency. 2. Integrate more secondary materials in production. 3. Implement design-for-reuse and modular strategies.

| Overall Circularity Score: | 44.8% |
|----------------------------|-------|
| Recycled Content:          | 70.3% |
| Reuse Potential:           | 27.1% |
| Recovery Rate:             | 88.0% |

## **Circularity Assessment**

Material Flow: Approximately 70.25933837890625% of Aluminium Scrap comes from recycled inputs, reducing reliance on virgin extraction. The reuse potential of 27.105358123779297% helps extend product lifecycles, while 87.98226165771484% of materials are currently recovered at end-of-life. Circular Economy Indicators: The Circularity Score of 44.7951545715332% indicates a balanced performance across recycling, reuse, and recovery dimensions, though system inefficiencies still limit overall retention. Opportunities for Improvement: - Increase use of recycled feedstock and expand take-back systems. - Improve recovery processes through better sorting and reprocessing. - Promote product design strategies that facilitate disassembly and reuse.

#### Statistical Distribution of Emissions Data



The histogram shows GHG emissions are mostly below 5000 kg CO■-eq, with fewer high-emission observations. The mean (5269.52) is higher than the median (4002.43), indicating a right-skewed distribution due to high-emission outliers.

## **Environmental Impact Interpretation**

The manufacturing stage for aluminium scrap shows moderate emissions. CO■ is the dominant contributor, followed by SOx and NOx, which may originate from energy or fuel combustion. Water emissions such as heavy metals and BOD indicate minor wastewater impact.

## **Our LCA Prediction Accuracy**

| Target                                     | R <sup>2</sup> (score) |
|--------------------------------------------|------------------------|
| Raw Material Quantity (kg or unit)         | Not provided           |
| Energy Input Quantity (MJ)                 | Not provided           |
| Transport Distance (km)                    | Not provided           |
| Material Cost (USD)                        | Not provided           |
| Processing Cost (USD)                      | Not provided           |
| Emissions to Air CO2 (kg)                  | Not provided           |
| Emissions to Air SOx (kg)                  | Not provided           |
| Emissions to Air NOx (kg)                  | Not provided           |
| Emissions to Air Particulate Matter (kg)   | Not provided           |
| Emissions to Water Acid Mine Drainage (kg) | Not provided           |
| Emissions to Water Heavy Metals (kg)       | Not provided           |
| Emissions to Water BOD (kg)                | Not provided           |
| Greenhouse Gas Emissions (kg CO2-eq)       | Not provided           |
| Scope 1 Emissions (kg CO2-eq)              | Not provided           |
| Scope 2 Emissions (kg CO2-eq)              | Not provided           |
| Scope 3 Emissions (kg CO2-eq)              | Not provided           |
| Environmental Impact Score                 | Not provided           |
| Metal Recyclability Factor                 | Not provided           |
| Energy_per_Material                        | Not provided           |
| Total_Air_Emissions                        | Not provided           |
| Total_Water_Emissions                      | Not provided           |
| Transport_Intensity                        | Not provided           |
| GHG_per_Material                           | Not provided           |
| Time_Period_Numeric                        | Not provided           |
| Total_Cost                                 | Not provided           |
| Circular_Economy_Index                     | Not provided           |
| Recycled Content (%)                       | Not provided           |
| Resource Efficiency (%)                    | Not provided           |
| Extended Product Life (years)              | Not provided           |
| Recovery Rate (%)                          | Not provided           |
| Reuse Potential (%)                        | Not provided           |

## **Circularity Analysis**

Material Flow: Approximately 70.25933837890625% of Aluminium Scrap comes from recycled inputs, reducing reliance on virgin extraction. The reuse potential of 27.105358123779297% helps extend product lifecycles, while 87.98226165771484% of materials are currently recovered at end-of-life. Circular Economy Indicators: The Circularity Score of 44.7951545715332% indicates a balanced performance across recycling, reuse, and recovery dimensions, though system inefficiencies still limit overall retention. Opportunities for Improvement: - Increase use of recycled feedstock and expand take-back systems. - Improve recovery processes through better sorting and reprocessing. - Promote product design strategies that facilitate disassembly and reuse.

## **Benchmark Comparison**

With a circularity score of 44.8%, aluminium scrap performs moderately compared to industry averages. Recycled content (70.3%) and recovery rate (88.0%) suggest partial circular adoption.

#### **Material Flow**

Recycled Inputs: 70.3% of Aluminium Scrap comes from recycled sources  $\rightarrow$  less virgin mining needed.

Reuse Potential: 27.1% of products/components can be reused  $\rightarrow$  longer product life.

Recovery Rate: 88.0% of materials recovered at end-of-life → but more than half still lost.

| Material Retention: | 53.4%                                                     |
|---------------------|-----------------------------------------------------------|
| Circularity Index:  | 44.8%                                                     |
| Pathways:           | Circular model (reuse + recycle) outperforms linear model |

#### Al Recommendations

To enhance sustainability of aluminium scrap in the manufacturing stage, consider: - Upgrading emerging processes to lower GHG emissions (5035.4 kg CO■-eq) - Boosting recycled content (currently 70.3%) to cut material intensity - Improving reuse potential and recovery beyond 27.1% and 88.0% - Targeting energy efficiency gains from the current 250.0 MJ per functional unit.

# **Appendix**

This enhanced report was auto-generated using your RAG-based multi-agent pipeline. Please validate metrics and predictions with domain experts and measured data when possible.