

Kaer Huang¹, Kanokphan Lertniphonphan¹, Feng Chen¹, Tao Zhang², Jun Xie¹, Huabing Liu³, Qigang Wang¹, Zhepeng Wang¹

¹Lenovo Research ²Tsinghua University ³ LCFC (Hefei) Electronics Technology Co., Ltd.

lenow

23/10/2022

Vehicle Computing In Lenovo Research

Lenovo aims to become the leader and enabler of Intelligent Transformation

Lenovo has been a recognized leader in standardized mass computing devices/units...

The next opportunity to win big

CES 2022 Demo

Contributors & Speakers

Competition Track	Authors	Affiliations		
MOT	Kanokphan Lertniphonphan, Kaer Huang, Feng Chen, Jun Xie, Qigang Wang, Zhepeng Wang	Lenovo Research		
MOTS	Kaer Huang, Kanokphan Lertniphonphan, Feng Chen, Jun Xie, Zhepeng Wang	Lenovo Research		
SSMOT	Feng Chen ¹ , Kaer Huang ¹ , Huabing Liu ² , Kanokphan Lertniphonphan ¹ , Jun Xie ¹ , Zhepeng Wang ¹	¹ Lenovo Research, ² LCFC (Hefei) Electronics Technology Co., Ltd.		
SSMOTS	Zhepeng Wang ¹ , Kaer Huang ¹ , Feng Chen ¹ , Kanokphan Lertniphonphan ¹ , Jun Xie ¹ , Tao Zhang ²	¹ Lenovo Research, ² Tsinghua University		

Framework

segmented area and class label

Object Detection

Detector

- CBNetV2
- Experimental setting:
 - Backbone Swin-L Transformer
 - Neck FPN
 - Detection Head HTC
 - Bbox_loss GloU Loss
 - Multi-threshold NMS

Backbone Pretrain: ImageNet22K

CBNetV2

Tingting Liang et al "CBNetV2: A Composite Backbone Network Architecture for Object Detection", arXiv:2107.00420, 2021

Tracking

Tracker

- ByteTrack: Multi-Object Tracking by Associating Every Detection Box
- Tracking feature are combined by a detection score weighted sum

$$\hat{e}_j = \frac{\sum_{t=1}^T e_j^t \times s_j^t}{\sum_{t=1}^T s_j^t}$$

Similarity#1	Similarity#2	Similarity#3
High score detection box	Low score detection box	Tentative box

Similarity distance is based on ReID

(a) detection boxes

(b) tracklets by associating high score detection boxes

(c) tracklets by associating every detection box

ByteTrack method which associates every detected box

MOT → MOTS

MOT (Kanokphan Lertniphonphan)

MOTS (Carl Huang)

MOTS Solution

Detector With Mask(Frozen others & training mask)

0

Training Detector with Mask (from frozen to fine tuning)

Data Distribution Change

Normal weather(cloudy)

Snowy Nighty

154/32/37

Association(MOTS)

Lenovo

MOT/MOTS -> SSMOT/SSMOTS

MOT/MOTS (Kanokphan, Carl)

SSMOT/SSMOTS (Feng Chen)

Re-Identification

- UniTrack: Do Different Tracking Tasks Require Different Appearance Models?
 - Appearance model
 - SimCLR-v2: Big Self-Supervised Models are Strong Semi-Supervised Learners
 - Association algorithm
 - By Class Hungarian Matching

Pretrain: ImageNet1K

SimCLR-v2 performance on five tracking tasks

UniTrack Framework

Wang, Zhongdao et al "Do different tracking tasks require different appearance models?", NeruIPS 2021

Challenges Of RelD Model

- **Domain discrepancy** between BDD100K and ImageNet:
 - Night, diverse weather conditions
 - Small objects (~100 pixels)
- Teaser Track Self-Supervised Tracking: no tracking annotations

Small objects

Self-Supervised Learning For RelD Model

MoCo v2: Momentum Contrastive Learning

Backbone: Resnet50

MoCo v2

- · Kaiming He, et al. "Momentum contrast for unsupervised visual representation learning", CVPR 2020
- Xinlei Chen, et al. "Improved baselines with momentum contrastive learning", arXiv:2003.04297, 2020

Contrastive learning dataset generation:

- BDD100K images have multiple instances
- Crop object-wise images according to bounding box labels & pseudo labels.

Ablation Test

Ablation test on MOT validation dataset, and then applied the same configuration to SSMOT, MOTS and SSMOTS

Configuration	mHOTA	mMOTA
Baseline (CBNetV2+ ByteTrack + ReID)	48.8	45.0
+ Weighted ReID features	49.2 (+0.4)	45.3 (+0.4)
+ Contrastive Learning ReID Model	50.0 (+0.7)	45.8 (+0.5)
+ Tuning Matching Threshold	50.0	45.9 (+0.1)

Results

MOT and SSMOT

Split	mHOTA	mMOTA	mIDF1	mDetA	mAssA	mMOTP
Val	50.0	45.9	60.5	45.1	56.6	82.9
Test	49.2	43.0	59.5	43.9	56.4	81.4

MOTS and SSMOTS

Split	mHOTA	mMOTA	mIDF1	mDetA	mAssA	mMOTP
Val	38.2	37.8	47.0	35.6	42.8	70.5
Test	44.0	41.1	54.9	39.3	50.8	69.7

Summary

- · Our framework is based on tracking by detection which consists of
 - Detector: CBNetV2
 - Re-ID: Unitrack (MoCo-v2)
 - Self-supervised learning on BDD dataset
 - Tracker: ByteTrack (all ReID)
 - Multi-class NMS
 - Weighted ReID features
 - Mask head

References

- Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., Madhavan, V., & Darrell, T. (2020). BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2633-2642.
- Liang, T., Chu, X., Liu, Y., Wang, Y., Tang, Z., Chu, W., Chen, J., & Ling, H. (2021). CBNetV2: A Composite Backbone Network Architecture for Object Detection. ArXiv, abs/2107.00420.
- Ge, Z., Liu, S., Wang, F., Li, Z., & Sun, J. (2021). YOLOX: Exceeding YOLO Series in 2021. ArXiv, abs/2107.08430.
- Zhang, Y., Sun, P., Jiang, Y., Yu, D., Yuan, Z., Luo, P., Liu, W., & Wang, X. (2021). ByteTrack: Multi-Object Tracking by Associating Every Detection Box. *ArXiv*, *abs/2110.06864*.
- Wang, Z., Zhao, H., Li, Y., Wang, S., Torr, P.H., & Bertinetto, L. (2021). Do Different Tracking Tasks Require Different Appearance Models? NeurIPS.
- Chen, T., Kornblith, S., Swersky, K., Norouzi, M., & Hinton, G.E. (2020). Big Self-Supervised Models are Strong Semi-Supervised Learners. ArXiv, abs/2006.10029.
- Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021). Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 9992-10002.
- Kuhn, H.W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2, 83-97.
- He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Momentum contrast for unsupervised visual representation learning. CVPR 2020.
- Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297
- MMTracking: OpenMMLab video perception toolbox and benchmark, https://github.com/open-mmlab/mmtracking
- MMSelfsup: OpenMMLab self-supervised representation learning toolbox, https://github.com/open-mmlab/mmselfsup

Different is better

Contact information: Carl Huang 黄卡尔 huangke1@lenovo.com