Lekcja 2: Architektura sieci neuronowych

S. Hoa Nguyen

1 Model neuronu

a) Najważniejsze elementy:

Rysunek 1: Model neuronu

- Wejścia + element przetwarzający + wyjście
- Wagi
- Odchylenie b (bias, offset)
- \bullet Funkcja aktywacji f

b) Wyznaczanie sygnału wyjściowego

- Łączny sygnał pobudzenia $net = x_1w_1 + ... + x_nw_n + b$
- Sygnał wyjściowy y = f(net)

c) Funkcje aktywacji

Własności: Funkcje aktywacje są funkcjami niemalejącymi.

- Funkcje dyskretne:
 - a) Funkcja binarna unipolarna: $f(n) = \begin{cases} 1 & \text{jeśli } n \geq 0 \\ 0 & \text{wpp.} \end{cases}$
 - b) Funkcja binarna bipolarna : $f(n) = \begin{cases} 1 & \text{jeśli } n \geq 0 \\ -1 & \text{wpp.} \end{cases}$

- Funkcje ciagłe
 - a) Funkcja sigmoidalna unipolarna

$$f(n) = \frac{1}{1 + e^{-\lambda n}}$$

b) Funkcja sigmoidalna bipolarna

$$f(n) = \frac{2}{1 + e^{-\lambda n}} - 1$$

2 Zadania podstawowe

Zadanie 1.

- Wyznaczyć sygnał wyjściowy z dwu-wejściowego neuronu zakładając, że wektor sygnałów wejściowych $X = [-2,3]^T$, wektor wag W = [2,-1], odchylenie b = 5, funkcja aktywacji jest dyskretna bipolarna.
- Prosta o równaniu $x_1w_1 + x_2w_2 + ...x_nw_n + b = 0(*)$ nazywa się prostą decyzyjną, a równianie (*) równaniem perceptronowym. Narysować prostą decyzyjną zdefiniowaną przez podany model neuronu.
- Zakładając, że sygnały wejściowe reprezentuje współrzędne punktów na płaszczyźnie, wyznaczyć zbiór punktów, które dają sygnały wyjściowe równe -1

Zadanie 2 Zaprojektować perceptron, który oblicza następującą funkcję logiczną:

- $f(x,y) = \neg(x \land y)$
- $f(x,y) = x \rightarrow y$
- $f(x,y) = (x \land y) \lor (\neg x \land \neg y).$

Czy perceptron może obliczyć każda dwuargumentowa funkcję logiczna?

Zadanie 3 Zbuduj trzy niezależne *dychotomizatory* (klasyfikatory dzielące zbiór danych na dwie klasy), które umożliwiają poprawną klasyfikację wszystkich punktów na płaszczyźnie zgodnie z przedstawionymi na Rysunku 2 szkicami. Wymagane jest to, że dla "zielonego obszaru" perceptron zwraca wartość 1.

Zadanie 4. Zbuduj sieć neuronową o dyskretnej unipolarnej funkcji aktywacji, która umożliwi poprawną klasyfikację wszystkich przedstawionych punktów podanych na Rysunku 3. Dodatkowo uwzględnij założenie, że dla punktów oznaczonych trójkątami na wyjściu oczekujemy wartości 0.

Zadanie 5. Rozpatrzmy dwu-wejściowy neuron z wektorem wejściowym $X=[-5,7]^T$ i wektorem wag W=[3,2]. Chcemy otrzymać sygnał wyjściowy równy 0.5.

Rysunek 2: Zbiór punktów do zadania 3

Rysunek 3: Zbiór punktów do zadania 4

- a) Czy istnieje funkcja aktywacji, która daje wymaganą wartość przy odchleniu b=0?
- b) Czy istnieje odchylenie b przy którym funkcja dyskretna daje wartość 0.5 na wyjście?
- c) Czy istnieje odchylenie b przy którym funkcja $sigmoidalna\ unipolarna$ daje wartość 0.5 na wyjście?
- d) Czy istnieje odchylenie b przy którym funkcja sigmoidalna bipolarna (tangensoidalna) daje wartość 0.5 na wyjście?

Zadanie 6. Zbadać każdą z podanych niżej funkcji

a)
$$f(x) = \frac{1}{1 + e^{-\lambda x}}$$

b)
$$f(x) = \frac{2}{1 + e^{-\lambda x}} - 1$$

dla $\lambda = 1$:

- Podać dziedzinę i zbiór wartości funkcji.
- Zbadać jej monotoniczność.

W jednym układzie współrzędnych sporządzić wykres funkcji dla $\lambda=1,2,3.$ Jaka jest obserwacja?

Praca domowa (3 punktów).

Zadanie 7. Analiza zdolności neuronu do podziału płaszczyzny

Napisz program obliczający sygnał wyjściowy z neuronu o dwóch wejściach Implementować dwie funkcje aktywacji:

- progowa bipolarna i
- $sigmoidalna\ bipolarna\ (\lambda = 1).$

Plan eksperymentu:

- a) Wylosuj dwie wartości będące wagami synaptyczne neuronu w_1, w_2 i jedną wartość progową b.
- b) Wylosuj 100 punktów z kwadratu $[-5, 5] \times [-5, 5]$.
- c) Dla każdego punktu wyznaczyć sygnał wyjściowy.
- d) W przypadku funkcji progowej bipolarnej:
 - jeśli sygnał wyjściowy y = -1 to pomaluj wybrany punkt na żółto, wpp. czerwony.
- e) A w przypadku funkcji sigmoidalnej bipolarnej:
 - Jeśli sygnał wyjściowy $y \in (-1.0, -0.5)$, pomaluj punkt na żółto.
 - Jeśli sygnał wyjściowy $y \in [-0.5, 0.0)$, pomaluj punkt na zielono.
 - Jeśli sygnał wyjściowy $y \in [0.0, 0.5)$, pomaluj punkt na *niebiesko*.
 - Jeśli sygnał wyjściowy $y \in [0.5, 1.0)$, pomaluj punkt na czerwono.

Jaka jest obserwacja?