Machine Learning

Course-End Project Problem Statement

Course-End Project: Healthcare

Problem statement:

Cardiovascular diseases are the leading cause of death globally. It is therefore necessary to identify the causes and develop a system to predict heart attacks in an effective manner. The data below has the information about the factors that might have an impact on cardiovascular health.

Dataset description:

Dataset name: CEP 1_ Dataset.xlsx

<u>Variable</u>	<u>Description</u>
Age	Age in years
Sex	1 = male; 0 = female
cp	Chest pain type
trestbps	Resting blood pressure (in mm Hg on admission to the hospital)
chol	Serum cholesterol in mg/dl
fbs	Fasting blood sugar > 120 mg/dl (1 = true; 0 = false)
restecg	Resting electrocardiographic results
thalach	Maximum heart rate achieved
exang	Exercise induced angina (1 = yes; 0 = no)
oldpeak	ST depression induced by exercise relative to rest
slope	Slope of the peak exercise ST segment
ca	Number of major vessels (0-3) colored by fluoroscopy
thal	3 = normal; 6 = fixed defect; 7 = reversible defect

Target	1 or 0

Task to be performed:

- 1. Preliminary analysis:
 - a. Perform preliminary data inspection and report the findings on the structure of the data, missing values, duplicates, etc.
 - b. Based on these findings, remove duplicates (if any) and treat missing values using an appropriate strategy
- 2. Prepare a report about the data explaining the distribution of the disease and the related factors using the steps listed below:
 - a. Get a preliminary statistical summary of the data and explore the measures of central tendencies and spread of the data
 - b. Identify the data variables which are categorical and describe and explore these variables using the appropriate tools, such as count plot
 - c. Study the occurrence of CVD across the Age category
 - d. Study the composition of all patients with respect to the Sex category
 - e. Study if one can detect heart attacks based on anomalies in the resting blood pressure (trestbps) of a patient
 - f. Describe the relationship between cholesterol levels and a target variable
 - g. State what relationship exists between peak exercising and the occurrence of a heart attack
 - h. Check if thalassemia is a major cause of CVD
 - i. List how the other factors determine the occurrence of CVD
 - j. Use a pair plot to understand the relationship between all the given variables
- 3. Build a baseline model to predict the risk of a heart attack using a logistic regression and random forest and explore the results while using correlation analysis and logistic regression (leveraging standard error and p-values from statsmodels) for feature selection

Solution:

- 1. Preliminary analysis:
- a) Perform preliminary data inspection and report the findings on the structure of the data, missing values, duplicates, etc.
 - Import libraries and read file

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

import warnings
warnings.filterwarnings('ignore')

df=pd.read_excel("C:/Users/david/Desktop/personal/AI/course_3_PG
AIML - Machine
Learning/proj/healthcare/1645792390_cep1_dataset.xlsx")

df.head()

df.head()

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

df.info()

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	303 non-null	int64
1	sex	303 non-null	int64
2	ср	303 non-null	int64
3	trestbps	303 non-null	int64
4	chol	303 non-null	int64
5	fbs	303 non-null	int64
6	restecg	303 non-null	int64
7	thalach	303 non-null	int64
8	exang	303 non-null	int64
9	oldpeak	303 non-null	float64
10	slope	303 non-null	int64
11	ca	303 non-null	int64
12	thal	303 non-null	int64
13	target	303 non-null	int64

dtypes: float64(1), int64(13)

memory usage: 33.3 KB

df.shape

```
df.shape
(303, 14)
# Missing values
df.isnull().sum()
# Missing values
df.isnull().sum()
age
             0
sex
             0
ср
trestbps
             0
chol
            71
fbs
restecg
thalach
exang
oldpeak
             0
slope
             0
ca
thal
dtype: int64
```

No missing values in data set.

```
df.duplicated().sum()
```

```
: df.duplicated().sum()
: 1
```

One duplicate value present.

- b) Based on these findings, remove duplicates (if any) and treat missing values using an appropriate strategy
 - Remove the duplicates

```
df2=df[df.duplicated()]
df2
```

```
df=df.drop_duplicates()
df.duplicated().sum()
```

```
df2=df[df.duplicated()]
df2
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
164	38	1	2	138	175	0	1	173	0	0.0	2	4	2	1

```
df=df.drop_duplicates()
df.duplicated().sum()
```

е

removed duplicate value

- 2. Prepare a report about the data explaining the distribution of the disease and the related factors using the steps listed below:
 - a. Get a preliminary statistical summary of the data and explore the measures of central tendencies and spread of the data

df.describe().T

df.describe().T

	count	mean	std	min	25%	50%	75%	max
age	303.0	54.366337	9.082101	29.0	47.5	55.0	61.0	77.0
sex	303.0	0.683168	0.466011	0.0	0.0	1.0	1.0	1.0
ср	303.0	0.966997	1.032052	0.0	0.0	1.0	2.0	3.0
trestbps	303.0	131.623762	17.538143	94.0	120.0	130.0	140.0	200.0
chol	303.0	246.264026	51.830751	126.0	211.0	240.0	274.5	564.0
fbs	303.0	0.148515	0.356198	0.0	0.0	0.0	0.0	1.0
restecg	303.0	0.528053	0.525860	0.0	0.0	1.0	1.0	2.0
thalach	303.0	149.646865	22.905161	71.0	133.5	153.0	166.0	202.0
exang	303.0	0.326733	0.469794	0.0	0.0	0.0	1.0	1.0
oldpeak	303.0	1.039604	1.161075	0.0	0.0	0.8	1.6	6.2
slope	303.0	1.399340	0.616226	0.0	1.0	1.0	2.0	2.0
са	303.0	0.729373	1.022606	0.0	0.0	0.0	1.0	4.0
thal	303.0	2.313531	0.612277	0.0	2.0	2.0	3.0	3.0
target	303.0	0.544554	0.498835	0.0	0.0	1.0	1.0	1.0

so here categorical variables are sex, cp, fbs, restecg, exang, slope, ca, thal, target.

b. Identify the data variables which are categorical and describe and explore these variables using the appropriate tools, such as count plot

```
cat_df=df[['sex', 'cp', 'fbs', 'restecg','exang', 'slope', 'ca',
'thal', 'target']]
plt.figure(figsize=(5,5))
sns.countplot(data=cat_df)
plt.show()

cat_df=df[['sex', 'cp', 'fbs', 'restecg','exang', 'slope', 'ca', 'thal', 'target']]
plt.figure(figsize=(12,5))
sns.countplot(data=cat_df)
plt.show()
```


c. Study the occurrence of CVD across the Age category

```
age_df=df[['age', 'target']]
age_df.groupby(['target']).mean()

age_df=df[['age', 'target']]
age_df.groupby(['target']).mean()
```

age target 0 56.601449 1 52.496970

age has more impact target 0.

d. Study the composition of all patients with respect to the Sex category

	age	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
ex													
0	55.677083	1.041667	133.083333	261.302083	0.12500	0.572917	151.125000	0.229167	0.876042	1.427083	0.552083	2.125000	0.750000
1	53.758454	0.932367	130.946860	239.289855	0.15942	0.507246	148.961353	0.371981	1.115459	1.386473	0.811594	2.400966	0.449275

Sex has more impact on target 0.

e. Study if one can detect heart attacks based on anomalies in the resting blood pressure (trestbps) of a patient.

here occurence of outliers are at 170.

```
df[df['trestbps']>170]['target'].value_counts()
df[df['trestbps']>180]['target'].value_counts()
```

```
df[df['trestbps']>170]['target'].value_counts()

0    6
1    3
Name: target, dtype: int64

df[df['trestbps']>180]['target'].value_counts()

0    2
Name: target, dtype: int64

#it has high impact on target 0
```

f. Describe the relationship between cholesterol levels and a target variable

```
plt.figure(figsize=(11,4))
sns.scatterplot(data=df,x='chol',y='target',hue='target')
plt.show()
```



```
chol_df=df[['chol', 'target']]
chol_df.groupby(['target']).mean()
```

```
chol_df=df[['chol', 'target']]
chol_df.groupby(['target']).mean()|

chol

target

0 251.086957
1 242.230303

#chol has more impact on target 0
```

g. State what relationship exists between peak exercising and the occurrence of a heart attack

```
slope_df=df[['slope', 'target']]
slope_df.groupby(['target']).mean()
```

```
slope_df=df[['slope', 'target']]
slope_df.groupby(['target']).mean()
```

slope

target

- **0** 1.166667
- 1 1.593939

```
plt.figure(figsize=(11,4))
sns.pairplot(data=df,x_vars='slope',y_vars='target',hue='target')
plt.show()
```

```
plt.figure(figsize=(11,4))
sns.pairplot(data=df,x_vars='slope',y_vars='target',hue='target')
plt.show()
```

<Figure size 1100x400 with 0 Axes>

slope that us peak exercising has very less impact on both target 0 and 1

h. Check if thalassemia is a major cause of CVD

plt.figure(figsize = (22,10))
sns.heatmap(df.corr(),annot=True)

sns.heatmap(df.corr()[['target']], annot = True)

'thal' has less impact (-0.34), thalassemia is not a major cause of CVD.

i. List how the other factors determine the occurrence of CVD

sns.heatmap(df.corr()[['target']], annot = True)

features 'cp' and 'thalach' as major impact on target 1 and features 'exang 'and 'oldpeak ' have major impact on target 0

j. Use a pair plot to understand the relationship between all the given variables

```
plt.figure(figsize=(11,4))
sns.pairplot(data=df,hue='target')
plt.show()
```


- 3. Build a baseline model to predict the risk of a heart attack using a logistic regression and random forest and explore the results while using correlation analysis and logistic regression (leveraging standard error and p-values from statsmodels) for feature selection
 - Identify x and y

```
#splitting
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
```

Using statsmodel

model.summary()

```
import statsmodels.api as sm

c= sm.add_constant(X_train)
model = sm.Logit(y_train, X_train).fit()
model.summary()

import statsmodels.api as sm

c= sm.add_constant(X_train)
model = sm.Logit(y_train, X_train).fit()
```

```
Logit Regression Results
   Dep. Variable:
                       target No. Observations:
                                               202
        Model:
                                Df Residuals:
                       Logit
                                               195
       Method:
                        MLE
                                  Df Model:
                                                 6
         Date: Mon, 12 Jun 2023
                              Pseudo R-squ.:
         Time:
                     21:11:03
                              Log-Likelihood:
                                            -65.806
     converged:
                                   LL-Null:
                                            -139.66
                        True
Covariance Type:
                    nonrobust
                                LLR p-value: 2.363e-29
         coef std err
                        z P>|z| [0.025 0.975]
   sex -1.3318 0.514 -2.592 0.010 -2.339 -0.325
    cp 0.8178
               0.229 3.566 0.000 0.368
                                     1.267
 thalach 0.0200
              0.006 3.161 0.002 0.008
                                     0.032
  exang -1.2170
             0.482 -2.525 0.012 -2.162 -0.272
  slope 1.2692 0.380 3.340 0.001 0.524
                                     2.014
    ca -1.5515 0.329 -4.716 0.000 -2.196 -0.907
   thal -1.4290 0.365 -3.919 0.000 -2.144 -0.714
#selecting features with p value <0.05
x=['sex','cp','thalach','exang','slope','ca','thal']
X train=X train[x]
X test=X test[x]
#selecting features with p value <0.05
x=['sex','cp','thalach','exang','slope','ca','thal']
X_train=X_train[x]
X_test=X_test[x]
```

Model building – logistic regression

```
from sklearn.linear_model import LogisticRegression
logreg=LogisticRegression()
logreg.fit(X_train,y_train)
pred=logreg.predict(X_test)
logreg.score(X train,y train)
```

```
# model building

from sklearn.linear_model import LogisticRegression

logreg=LogisticRegression()

logreg.fit(X_train,y_train)

v LogisticRegression
LogisticRegression()

pred=logreg.predict(X_test)

logreg.score(X_train,y_train)
0.8613861386138614

logreg.score(X_test,y_test)
0.82
```

logreg.score(X_test,y_test)

- Model testing

```
#testing
from sklearn.metrics import confusion_matrix,
classification_report
confusion_matrix(y_test, pred)
print(classification report(y test, pred))
```

```
print(classification report())
: #testing
  from sklearn.metrics import confusion_matrix, classification_report
  confusion_matrix(y_test, pred)
: array([[35, 8],
         [10, 47]], dtype=int64)
: print(classification_report(y_test, pred))
  print(classification_report())
                precision
                             recall f1-score
                                                support
             0
                     0.77
                               0.79
                                         0.78
                                                     42
             1
                     0.84
                               0.83
                                         0.83
                                                     58
                                         0.81
                                                    100
      accuracy
     macro avg
                     0.80
                               0.81
                                         0.81
                                                    100
  weighted avg
                     0.81
                               0.81
                                         0.81
                                                    100
```

- Random forest model

```
from sklearn.ensemble import RandomForestClassifier

clf_rf = RandomForestClassifier()

clf_rf.fit(X_train, y_train)

clf rf.score(X test, y test)
```

```
clf rf.score(X train, y train)
: #random forest model
 from sklearn.ensemble import RandomForestClassifier
 clf_rf = RandomForestClassifier()
 clf_rf.fit(X_train, y_train)
  ▼ RandomForestClassifier
  RandomForestClassifier()
: clf_rf.score(X_test, y_test)
: 0.81
 clf_rf.score(X_train, y_train)
: 0.9900990099009901
     Testing the model
from sklearn.metrics import confusion matrix,
classification report
predictions = clf rf.predict(X test)
confusion matrix(y test, predictions)
```

print(classification report(y test, predictions))

predictions = clf_rf.predict(X_test)

confusion_matrix(y_test, predictions)

array([[32, 10], [10, 48]], dtype=int64)

print(classification_report(y_test, predictions))

	precision	recall	f1-score	support
0	0.76	0.76	0.76	42
1	0.83	0.83	0.83	58
accuracy			0.80	100
macro avg	0.79	0.79	0.79	100
weighted avg	0.80	0.80	0.80	100