Software Library Implementation for Public Key Cryptosystems

Center for Information Security and Technologies (CIST)

Korea University

http://cist.korea.ac.kr

Tae Hyun Kim

Goals of our software library implementation

- 1. To support practical research for public key cryptosystems (PKCs)
 - Efficient implementation of RSA/ECC/XTR etc.
 - Use as tool to prove security
- 2. Application to industry of information security
 - Provision for a mandatory cryptographic modules

Contents of library

- □ Integer arithmetic module
 - PKCs based on integer arithmetic
 - □ RSA(PKCS#1) / ElGamal / DSA(FIPS 186-2)
- ☐ Finite field arithmetic module
 - PKCs based on finite field arithmetic module
 - ☐ Elliptic curve cryptosystem (ECC) / XTR
 - ANSI X9.62, ANSI X9.63, WTLS, SEC, etc.
 - Prime fields, binary fields and composite fields

Flow chart

The merits of our library

- Our library is suitable to both 32-bit and 64-bit microprocessor and can be apply to some other microprocessors.
 - Use of flexible word-size
- □ Not only is our library applicable to various platform but also optimized.
 - In the case of ECC, it was optimized against some standard curves (WTLS #3, #5, #7).

RSA: the methods for high-speed

Multiplication :

- Karatsuba-ofman method
- This method is efficient if the bit-size is larger than 512 bits.

RSA: the methods for high-speed

- ☐ *Exponentiation*:
 - Montgomery method
 - Montgomery Multiplication + Binary Exponentiation
 - No divisions
 - Sliding window method
 - □ Precomputation tables
 - Montgomery Multiplication with window method
 - No divisions
 - Precomputations tables
 - <u>By our experiment, it is optimal in the case of Montgomery method with width-4 window method.</u>

ECC: the methods for high-speed

- \square Squaring in $GF(2^n)$:
 - Table lookup method: 8-bit precomputations
 - If $a(x) = a_7x^7 + a_6x^6 ... + a_1x + a_0 = (a_7 ... a_1a_0)_2$ then $a^2(x) = a_7x^{14} + a_6x^{12} + ... + a_1x^2 + a_0$ $= (0a_70a_6 ... a_10a_0)_2$

```
Input: (a_7 . . . a_1 a_0)_2

Output: (0a_7 0a_6 . . . a_1 0a_0)_2

* Table[(a_7 . . . a_1 a_0)_2] = (0a_7 0a_6 . . . a_1 0a_0)_2
```


ECC: the methods for high-speed

- \square Multiplication in $GF(2^n)$:
 - Right-to-left comb method
 - Left-to-right comb method
 - L-R comb method with windows of size 4
 - * Algorithms of multiplication in GF(2ⁿ) are similar to those of exponentiation.

```
Algorithm 1. Right-to-left shift-and-add field multiplication

INPUT: Binary polynomials a(x) and b(x) of degree at most m-1.

OUTPUT: c(x) = a(x) \cdot b(x) \mod f(x).

1. If a_0 = 1 then c \leftarrow b; else c \leftarrow 0.

2. For i from 1 to x - 1 do

2.1 b \leftarrow b \cdot x \mod f(x).

2.2 If a_i = 1 then c \leftarrow c + b.

Multiplication

3. Return(c).
```


ECC: the methods for high-speed

- □ Example parameters are that the word-size is 32 and the field-size is 163.
 - Bit-scan order:
 - □ Right-to-left comb method : ———
 - Left-to-right comb method : ———

_				2			
_	a ₃₁		a ₂	a ₁	\mathbf{a}_0	A[0]	
П	a ₆₃	***	a ₃₄	a ₃₃	a ₃₂	A[1]	
	a ₉₅		a ₆₆	a ₆₅	a ₆₄	A[2]	
	a ₁₂₇		a ₉₈	a ₉₇	a ₉₆	(8]A	
	a ₁₅₉		a ₁₃₀	a ₁₂₉	a ₁₂₈	A[4]	
			a ₁₆₂	a ₁₆₁	a ₁₆₀	A[5]	

Improvement for ECC

- In general, if parameters are fixed then algorithms can be modified in order to enhance performance.
 - If the size of field is decided then multiplication method and modular reductions can be efficient.
- So, we implemented on Pentium IV/2.0GHz. (32-bit µP; Windows 2000, MSVC) for WTLS #3, #5, #7.

WTLS #7: Prime Field

- ☐ The modular reduction is performed by some additions and shifts.

```
2^{288} \equiv 2^{159} + 2^{128} \pmod{p}
2^{289} \equiv 2^{160} + 2^{129} \pmod{p}
\cdots
2^{319} \equiv 2^{190} + 2^{159} \pmod{p}
```

<u>Since the modular reduction is improved overall operations are also improved.</u>

WTLS #3, #5: Binary Fields

If an irreducible polynomial is trinomial or pentanomial then modular reductions are performed by one word at a time.

```
■ WTLS \#3: p(x) = x^{163} + x^7 + x^6 + x^3 + 1
x^{288} \equiv x^{132} + x^{131} + x^{128} + x^{125} \pmod{p(x)}
x^{289} \equiv x^{133} + x^{132} + x^{129} + x^{126} \pmod{p(x)}
\dots
x^{319} \equiv x^{163} + x^{162} + x^{159} + x^{156} \pmod{p(x)}
■ WTLS \#5: p(x) = x^{163} + x^8 + x^2 + x + 1
```

- ☐ Since the size of fields is 163-bits, it is implemented without loop such as "for" or "while" statements.
 - L-R comb method with windows of size 4 is simply optimized.

Experimental results (Prime Fields)

☐ In WTLS #7, comparison of *modular reductions*

1: the general modular reduction using division

2: the high-speed modular reduction using special prime

	1	2	1	2	1	2
Iterations	100,000		500,000		1,000,000	
Time (Sec)	0.18700	0.03100	0.93700	0.17100	1.87500	0.34300

We deduce that 2 method is 6 times as fast as 1 method.

Experimental results (Prime Fields)

□ In WTLS #7, comparison of <u>scalar multiplications</u>

① : scalar multiplication with the general modular reduction using division

2: scalar multiplication with the fast modular reduction

	1	2	1	2	1	2
Iterations	100		500		1,000	
Time (Sec)	0.781	0.375	3.812	1.828	7.782	3.750

* The above result shows that 2 method is twice as fast as 1 method.

Experimental results (Binary Fields)

□ In WTLS #3, #5, comparison of *modular reductions*

①: the modular reductions by one bit at a time

2: the high-speed modular reduction using trinomial and pentanomial (one word at a time)

	1	② (WTLS#3)	② (WTLS#5)	1	② (WTLS#3)	② (WTLS#5)
Iterations	erations 100,000		500,000			
Time (Sec)	1.14000	0.01500	0.01500	5.65600	0.09300	0.09300

<u>We deduce that ② method is 70 times as fast as ① method.</u>

Experimental results (Binary Fields)

☐ In binary field, comparison of *multiplications*

①: Shift-and-add ②: Right-to-left comb ③: Left-to-right comb

4: LR comb with windows of size 4

5: LR comb with windows of size 4 (optimized version of 163-bit)

		m = 163 ((WTLS #3)	m = 233	m = 283
Itera	tions	50,000	100,000	100,000	100,000
	1	0.23400	0.45300	0.76500	0.98400
Time	2	0.20300	0.40600	0.60900	0.76500
(Sec)	3	0.21800	0.43700	0.62500	0.81200
	4	0.17100	0.35900	0.45300	0.48400
	5	0.03100	0.06200		

We deduce that 5 method is 7 times as fast as 1 method.

Experimental results (Binary Fields)

□ In WTLS #3, #5, comparison of <u>scalar multiplications</u>

①: Shift-and-add ②: Right-to-left comb ③: Left-to-right comb

4: LR comb with windows of size 4

5: LR comb with windows of size 4 (optimized version of 163-bit)

Reduction (m = 163)		one word	at a time	one bit at a time		
Iterations: 1000		WTLS #3	WTLS #5	WTLS #3	WTLS #5	
	1	10.015	10.042	26.078	23.937	
	2	8.859	8.897	24.578	26.453	
Time (Sec)	3	9.250	9.273	24.969	26.890	
	4	7.203	7.225	22.765	24.657	
	5	<u>1.781</u>	<u>1.782</u>	17.500	19.438	

* The above result shows that 5 method in WTLS #3 is 6 times as fast as 1 method

Current & future research topic

- ☐ Efficient scalar multiplication for ECC
 - Generalized width-w JSF

- □ Side channel attacks on ECC
 - SPA/DPA
 - Development of efficient and secure countermeasure

Questions & Comments

