Struhtur der symmetrischen Gruppe Sn

Definition 8

- (1) $\sigma \in Sn$ beijst Transposition, falls i.j $\in \{1, -1, n\}$ existing, so dass $\sigma(i) = j$, $\sigma(j) = i$, $\sigma(k) = k$ for all $k \neq ij$. Wir schriben $\sigma = (ij)$.
- (2) $\sigma \in S_N$ heißt Eylel der Länger, falls in,..., ir $\in \{1,...,n\}$ existien, so dass $\sigma(ij) = i_{(j+1 \bmod r)}$ und $\sigma(k) = k$ für alle $k \notin \{ii,...,ir\}$.

 Wir schniban $\sigma = (i_1,...,i_r)$.

Satz 9

Sei of Sn.

- (1) o lasst sich schniben als Produkt von Transpositionen.
- (z) o lässt sich schreiben als Produkt von elisjundhu Zyhlun. Dieses Produkt ist bis auf die Reihenfolge eindentig.
- (3) $|S_n| = n!$

Bewei's

[1] Sign ESn und $\Gamma := \Gamma(D) = \max$ $\emptyset \in \Gamma \in n \mid \forall \Lambda \leq i \leq \Gamma : \sigma(i) = i$ \mathbb{Z} . Falls $\Gamma = n_1$ dann ist $\sigma = \mathrm{id} = \mathbb{T}^2$ für alle Transpositionen $\Sigma \in Sn$. Falls $\Gamma < n_1$ dann ist $S := \sigma(\Gamma + 1) > \Gamma + 1$. Sei $\Sigma_1 := (\Gamma + 1 S)$. Dann gilt: $\Gamma(\Sigma_1 \circ \sigma) > \Gamma(\sigma)$. Inclubitiv finden wir Transpositionen $\Sigma_{\Sigma_1 = 1} \subset \Sigma_1$, sodass $\Gamma(\Sigma_1 \circ \tau_1 \circ \tau_2 \circ \tau_3) = N$.

=> Tro...o Troo = id => 0 = Tro...o Tr.

(2) Sei $\sigma \in S_n \setminus \{id\}$. Wir haben die <u>disjunkt</u> Zerlegung $\{id\}_{i=1}^n \in S_i \setminus \{id\}_{i=1}^n \in S_i \setminus \{id\}_{i=1$

Wir definieren T1,-, Tk mit

Tilkj = folkj , falls i=j

[id]kj , falls i=j

Beachte: $T_i = (i \ \sigma^{(i)}) \ \sigma^{(i)} \dots \ \sigma^{(i)}) \ far \ r = \text{ord } L_{i}! - 1$.

Wegen Lemma 7 ist $r < \infty$. Die T_i sind dijumbh Zylul.

Und es gilt $\sigma = T_n \circ \dots \circ T_n$.

(Die letzte Gleiching lesst sich beweisen durch das Stud'um von rechkr unter Linker Seite und ihar Wirhung auf $i \in S_{1}, n$. Sei $z \cdot S_i$ $i \in K_j$. Down gilt: $T_1 \circ \dots \circ T_n (i) = T_j(i) = \sigma(i)$.

(3) <u>abung</u>

Definition 10

Sei oe Sn. Das Signum von o ist definiert als

$$Sgn(\sigma) := \prod_{\substack{i-j \\ i \neq j \leq N}} \frac{\sigma(i) - \sigma(j)}{i-j}$$

Bemerhing (1) sgn(0) & \quad \quad \quad -1,1]

- (Z) Falls squio = 1. nennen wir o eine gerade Perantation, sonst ungerade.
- (3) Far den Moment ist die Definitions nicht wichtig. Sie wird späker von zentraler Bedutung sun.