Méthode: Utiliser la formule de Snell-Descartes pour la réfraction

<u>Rappel</u>: Formule de Snell-Descartes pour la <u>réfraction</u>:

Si je cherche un angle (angle d'incidence i₁ ou angle de réfraction i₂):

1. J'isole dans l'équation le sinus de cet angle.

Pour
$$i_1$$
: $sin(i_1) = \frac{n_2 \times sin(i_2)}{n_1}$

Pour i_2 : $sin(i_2) = \frac{n_1 \times sin(i_1)}{n_2}$

- 2. Je **calcule** $sin(i_1)$ ou $sin(i_2)$ avec les valeurs de l'énoncé.
- 3. J'applique au résultat la **fonction sin^{-1}** (ou arcsin selon les calculatrices) sur ma calculatrice afin d'obtenir i_1 ou i_2 .

<u>Pour s'entrainer</u>: Un rayon lumineux qui se propage dans l'air arrive à la surface de séparation air-verre avec un angle d'incidence $i_1 = 50^\circ$ par rapport à la normale.

Données: $n_{air} = 1,00 - n_{verre} = 1,48$

Calculer la valeur de l'angle de réfraction i2.

Si je cherche un indice optique $(n_1 ou n_2)$:

1. J'isole dans l'équation l'indice optique que je cherche.

$$\Rightarrow \text{ Pour } n_1 : n_1 = \frac{n_2 \times \sin(i_2)}{\sin(i_1)}$$

→ Pour
$$n_2$$
: n_2 =
$$\frac{n_1 \times \sin(i_1)}{\sin(i_2)}$$

2. Je calcule n₁ ou n₂ avec les valeurs de l'énoncé.

<u>Pour s'entrainer</u>: Un rayon lumineux qui se propage dans l'air arrive à la surface de séparation air-eau avec un angle d'incidence $i_1 = 50^\circ$ par rapport à la normale. L'angle de réfraction mesuré vaut $i_2 = 35^\circ$.

 $\underline{Donn\acute{e}es}$: $n_{air} = 1,00$

Calculer la valeur de l'indice optique de l'eau n ₂ .				