ELSEVIER

Contents lists available at ScienceDirect

Journal of the Taiwan Institute of Chemical Engineers

journal homepage: www.elsevier.com/locate/jtice

ρ –T–P prediction for ionic liquids using neural networks

Juan A. Lazzús*

Departamento de Física, Universidad de La Serena, Casilla 554, La Serena, Chile

ARTICLE INFO

Article history: Received 5 July 2008 Received in revised form 31 July 2008 Accepted 4 August 2008

Keywords: lonic liquids Liquid density Artificial neural networks Group contribution method

ABSTRACT

Densities of ionic liquids have been estimated using a combined method that includes an artificial neural network and a simple group contribution method. A total of 2410 data points of density at several temperatures and pressures (ρ –T–P), corresponding to 250 ionic liquids, have been used to train this network, developed using Matlab. To discriminate between the different substances, the molecular mass and the structure of the molecule, were given as input variables. Then, the ρ –T–P values of 72 other ionic liquids (773 data points) were predicted and results compared to experimental data from the literature. The study shows that the chosen artificial neural network and the group contribution method represent an excellent alternative for the estimation of densities of ionic liquids with acceptable accuracy.

© 2008 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

Ionic liquids (IL's) have been the object of increasing attention due to their unique physicochemical properties, such as high thermal stability, large liquidus range, high ionic conductivity, high solvating capacity, negligible vapor pressure, and nonflammability which make them ideal solvents for green chemistry and clean synthesis (Gardas *et al.*, 2007a).

Liquid density (ρ) of IL is a physical property required in several design problems and in liquid metering calculations (Gardas and Coutinho, 2008). The design of equipment such as condensers, reboilers, liquid/liquid two phase mixer–settler units, sizing of storage vessels, calculation of tower heights, material and energy balances involving liquids, vapor–liquid and liquid–liquid separation processes, all require accurate values of liquid density (Valderrama $et\ al.$, in press).

Density is probably the most measured property of IL's. One reason is that its determination is straightforward and can be very accurate if the appropriate equipment, usually a pycnometer or densimeter, is used (Esperança *et al.*, 2006a; Mantz and Trulove, 2002). Since many of the IL's have heavy anions, one should expect that their density would be relatively higher than common industrial solvents. The reported densities of IL's vary between 1.12 and 2.4 g/cm³ (Mantz and Trulove, 2002).

There exist a great variety of analytical expressions that allow one to correlate and predict the density of liquid fluids. Such

Abbreviations: ANN, artificial neural network; GCM, group contribution method; IL's, ionic liquids; *PTV*, pressure–temperature–volume; ρ –T–P, liquid density–temperature–pressure.

expressions are usually based on the use of adjustable parameters for each fluid (correlations), on the corresponding state principle, and on semi-empirical and predictive methods with the group contribution method (GCM).

Among the classical proposals presented in the literature, the approach developed by Lydersen (1955) is perhaps the most widely used GCM to estimate critical properties. Later, Joback and Reid (1987) developed a method that is frequently mentioned in the literature and used in several applications. In all these methods, the property of a compound is calculated by summing up the contributions of certain defined groups of atoms, at the same time considering the number frequency of each group occurring in the molecule.

Several authors use these concepts of GCM to calculate the density of diverse substances (Ammon and Mitchell, 1998; Ammon, 2001; Elbro *et al.*, 1991; Ihmels and Gmehling, 2003; Stefanis *et al.*, 2005; Tarver, 1979); however, in these works, the authors do not incorporate IL's. Recently, Ye and Shreeve (2007) proposed of group activity method for the estimation of densities of room-temperature ionic liquids and salts. They estimated the density of a small range of ionic liquids with a good accuracy, but the application of their method is restricted to 298.15 K and atmospheric pressure. Gardas and Coutinho (2008), proposed an extension of the Ye and Shreeve group contribution method (Ye and Shreeve, 2007) for the estimation of densities of IL's. The new version allows the estimation of densities in wide ranges of temperature and pressure, but for too small a range of IL's.

Another recent method for estimating the density of IL's is presented by Jacquemin *et al.* (2007), which uses a GCM to predict volumetric properties of ionic liquids as a function of temperature and pressure.

^{*} Tel.: +56 51 204128; fax: +56 51 206658. E-mail address: jlazzus@dfuls.cl.

Nomenclature

b bias of the neurons

f(N) transfer function of the neural network

M molecular weight

N inputs of the neural network

P pressure (kPa)

T absolute temperature (K)

w weight of the connection among the neurons with

the hidden layers

y output of the neural network

Greek symbols

 $\begin{array}{ll} \rho & \quad \text{liquid density (g/cm}^3) \\ \rho^{\text{lit}} & \quad \text{liquid density experimental} \\ \rho^{\text{calc}} & \quad \text{liquid density calculated} \end{array}$

 Δ deviations

The aforementioned group contribution methods use linear and nonlinear regression techniques to represent the relations among the variables of a given system. The relationship between the physical and thermodynamic properties is highly non-linear, and consequently an artificial neural network (ANN) can be a suitable alternative to model the underlying thermodynamic properties. ANN is an especially efficient algorithm to approximate any function with a finite number of discontinuities by learning the relationships between input and output vectors (Hagan *et al.*, 1996). Thus, an ANN is an appropriate technique to model the nonlinear behavior of chemical properties.

Taskinen and Yliruusi (2003) presented a complete list of properties that have been analyzed in the literature using different approaches to artificial neural networks. Properties such as boiling point, critical temperature, critical pressure, vapor pressure, heat capacity, enthalpy of sublimation, heat of vaporization, density, surface tension, viscosity, thermal conductivity, and acentric factor, among others, were thoroughly reviewed. Applications of neural networks to mixture properties (PTV properties, vapor liquid equilibrium, activity coefficients) have been also presented in other publications (Ganguly, 2003; Laugier and Richon, 2003; Piotrowski *et al.*, 2003; Sözen *et al.*, 2004). To the best of the author knowledge there is no application for liquid density–temperature–pressure (ρ –T–P) prediction, such as the one presented here, and certainly there is no publication on the prediction of these properties for IL's using ANN.

2. The neural network used

Many models of neural networks have been used to estimate of thermodynamic properties (Espinosa $et\ al.$, 2001; Yaffe and Cohen, 2001). In this work a feedforward backpropagation neural network was used, which is one that is very effective in representing nonlineal relationships among variables. The network, programmed with the software Matlab, consists of a multilayer network, in which the flow of information spreads forward through the layers while the propagation of the error is back. In this process, the network uses some factors called "weights" (w_i) to quantify the influence of each fact and each variable. There are two main states in the operation of a neural network: learning and validation. The learning or training is the process by which a neural network modifies the weights in answer to initial information.

The most basic architecture normally used for this type of application involves a feed-forward backpropagation neural network

consisting of three layers (Taskinen and Yliruusi, 2003). With a specific approach to determine the number of neurons of the hidden layer not existing, many alternative combinations are possible. In this research, the optimum number of neurons was determined by adding neurons in systematic form during the learning process.

This program considers the reading of the necessary data organized in an Excel file: ρ –T–P experimental data for each of the 272 IL's are used to train the network. To distinguish between the different physical and chemical properties of the substances considered in this study, so the network can discriminate and learn in the optimal form, the following properties are considered: the molecular mass M (size) and the structure of the molecules, represented by the number of well defined groups forming the molecule, are provided as variables.

The steps to calculate the output parameter (density), using the input parameters, are the following ones:

The net inputs are calculated (N) for the hidden neurons coming from the inputs neurons. For a hidden neuron:

$$N_j^h = \sum_{i}^n w_{ij}^h p_i + b_j^h \tag{1}$$

where p corresponds to the vector of the inputs of the training, j is the hidden neuron, w_{ij} is the weight of the connection among the input neurons with the hidden layer, and the term b_j corresponds to the bias of the neuron j of the hidden layer, reached in its activation. Starting from these inputs, the outputs of the hidden neurons are calculated (y) using a transfer function f^h associated with the neurons of this layer.

$$y_{j}^{h} = f_{j}^{h} \left(\sum_{i}^{n} w_{ij}^{h} p_{i} + b_{j}^{h} \right)$$
 (2)

Similar calculations are carried out to obtain the results of each neuron of the following layer until the output layer.

To minimize the error, the transfer function f should be differentiable. In the net two types of transfer function were used: the lineal function $f(N_{jk}) = (N_{jk})$ and the hyperbolic tangent function (tansig) defined by the equation:

$$f(N_{jk}) = \frac{e^{N_{jk}} - e^{-N_{jk}}}{e^{N_{jk}} + e^{-N_{jk}}}$$
(3)

All the neurons of the network have an associate activation value for a given input pattern. The algorithm continues finding the error that is presented for each neuron, except those of the input layer. After finding the value of the gradient of the error, the weights of the network are actualized, for all layers.

This process repeats for the total number of patterns be trained. For a successful process the objective of the algorithm is to modernize all the weight and bias of the neural network minimizing the total mean squared error. Fig. 1 presents a block diagram of the program developed.

3. Data used and training

In this study, 2410 experimental data points of 250 IL's were used to train the ANN, introducing as entrance parameters: temperature (T), pressure (P), molecular mass (M), and the structural groups that form the molecules. The output parameter was ρ . Table 1 shows the 45 groups used as entrance variables. The value associated with the structural group was defined as 0 when the group does not appear in the substance and n, when the group appears n times in the substance. For instance, for 1-propyl-3-methylimidazolium hexafluorophosphate, besides the data points (T, P), the property data are: M = 270.2 (kg/kmol), and the structure of the molecule $[-CH_3] = 2$, $[-CH_2-] = 2$, [-CH-(ring)] = 3, [-N-(ring)] = 1, [-N-(ring)] = 1, [-P] = 1 and [-F] = 6. Table 2 shows the properties for all IL's considered in the study.

Fig. 1. Flow diagram for the ANN program developed for this work.

From the literature, data of density at several temperatures and pressures were collected. All data chosen correspond to those claimed by the authors as being experimentally determined. Data available in the literature obtained from theoretical methods, correlations, or extrapolations of any kind were not considered. Also, data for which the authors themselves indicate that accuracy is not guaranteed for any reason (presence of impurities, instability of the fluid, or problems with the equipment) were not considered.

As seen in Table 2, ρ –T–P properties cover wide ranges: 273–393 K for the temperature, 99–206940 kPa for the pressure, and 0.87–2.4 g/cm 3 for the liquid density. In addition, the IL's included in the study have very different physical and chemical characteristics. Low molecular weight substances, such as 2-hydroxyethylammonium formate (M = 104), to high molecular weight substances, such as 1-dodecyl-di(3-benzil)imidazolium bis[(trifluoromethyl)sulfonyl]imide (M = 1045) were included. Thus, the problem is not straightforward and is probably one of the reasons why the liquid density for IL's has not previously been treated using neural networks, as proposed in this paper.

This work used a leave-20%-out cross-validation method in order to estimate the predictive capabilities of the model. Training and prediction sets were selected randomly, with the consideration that in the group contribution methods, the molecules are

Table 1Groups considered in the ANN method for ionic liquids.

Structural groups	
Non ring	-В
-CH ₃	-S- [S-] ⁺ [S] ⁺
-CH ₂ -	-SO ₂ -
CH-	Inorganics
c [c-]-	-BH
≕CH ₂	-Al
=CH-	–Ga
=<	–In
-OH	-W
-0- [-0]-	-Sb
C=0	–Fe
-coo-	-Nb
=0	-Ta
-NH ₂	-As With ring
	_
[-N-] ⁻ N- [N] ⁺	-CH ₂ -
<u></u> N-	=CH−
-CN	
-NO ₂	=<
-F [-F] ⁻	-0-
-CI [-CI] ⁻	C=0
-Br	-NH-
-DI -Ĭ	-1VII-
-1	N- [N-
-P [P-]+ [P]+	-N= [N=]+

decomposed into fragments and that all fragments are present with adequate frequency in the training database.

Once the training was successfully done and the optimal network architecture was determined, input data (T, P, M) and structural groups) of 72 ionic liquids (773 data points) not used in the training process were fed to the ANN and the liquid density was predicted at several temperatures and pressures.

Several network architectures were tested to select the most accurate scheme. Since no additional information about the recommended number of neurons has been found for the calculation of properties for any type of substances, the optimal number of neurons was determined by trial and error. Fig. 2 shows the average absolute deviation found in correlating the density of all IL's as function of the number of neurons in the hidden layer. As observed in the figure, the optimal number of neurons in the hidden layer is between 5 and 8. The network that gave the lowest deviation during training was one with 48 parameters in the input layer, 6 neurons in the hidden layer, and one neuron in the output layer. For this architecture the average deviation during training is 0.57% and during prediction is 0.48%.

The accuracy of the model was checked using the mean percent deviation $\%\Delta\rho$ and absolute percent deviation $|\%\Delta\rho|$ between the calculated value of ρ and the data from the literature. The deviations were calculated as:

$$\%\Delta\rho = \frac{100}{N} \sum_{i=1}^{N} \left[\frac{\rho^{\text{calc}} - \rho^{\text{lit}}}{\rho^{\text{lit}}} \right]_{i}$$
 (4)

$$\left| \% \Delta \rho \right| = \frac{100}{N} \sum_{i=1}^{N} \left| \frac{\rho^{\text{calc}} - \rho^{\text{lit}}}{\rho^{\text{lit}}} \right|_{i} \tag{5}$$

 Table 2

 Ionic Liquids and properties used in the Neural Network model and deviations during training and prediction.

Formula	IUPAC name	Abbreviation	M	P (kPa)	T (K)	ρ (g/cm ³)	$\%\Delta ho$	$ \%\Delta ho $	Reference
Training set									
$C_3H_9NO_3$	2-Hydroxyethylammonium formate	[OHea] [f]	104.2	101.3	291-304	1.18-1.17	0.1	0.1	Valderrama et al., in press
$C_3H_9SAl_2Br_7$	Trimethylsulfonium heptabromodialuminate	[S111] [Al2Br7]	690.5	101.3	298.15	2.4000	0.0	0.0	Mantz and Trulove, 2002
C ₃ H ₉ SAl ₂ Cl ₆ Br	Trimethylsulfonium hexachlorobromodialuminate	[S111] [Al2Cl6Br]	423.8	101.3	298.15	1.5900	0.2	0.2	Mantz and Trulove, 2002
C ₃ H ₉ SAl ₂ Cl ₇	Trimethylsulfonium heptachlorodialuminate	[S111] [Al2Cl7]	379.3	101.3	298.15	1.4000	-0.2	0.2	Mantz and Trulove, 2002
C ₄ H ₇ N ₂ Cl	1-Methylimidazolium chloride	[mim] [Cl]	118.6	101.3	353.15	1.1832	0.0	0.0	Valderrama et al., 2008
$C_4H_8N_2SO_4$	1-Methylimidazolium hydrogen sulfate	[mim] [HSO4]	179.3	101.3	298.15	1.4835	0.0	0.0	Valderrama et al., 2008
C ₅ H ₉ N ₂ AlCl ₄	1-Methyl-3-methylimidazolium tetrachloroaluminate	[mmim] [AlCl4]	265.9	101.3	298.15	1.3289	-0.5	0.5	Zang et al., 2005
C ₅ H ₉ N ₂ Cl	1-Methyl-3-methylimidazolium chloride	[mmim] [Cl]	132.6	101.3	298.15	1.1399	3.1	3.1	Zhang et al., 2006
$C_5H_9NF_6S_3O_4$	Trimethylsulfonium bis[(trifluoromethyl)sulfonyl]imide	[S111] [bti]	357.3	101.3	318.15	1.5800	0.0	0.0	Zhang et al., 2006
$C_6H_{11}CIN_2$	1-Ethyl-3-methylimidazolium chloride	[emim] [Cl]	146.6	101.3	294.65	1.1860	-3.0	3.0	Valderrama et al., 2008
$C_6H_{11}N_2AlCl_4$	1-Ethyl-3-methylimidazolium tetrachloroaluminate	[emim] [AlCl4]	280.0	101.3	298.15	1.2940	-0.1	0.1	Valderrama et al., in press
C ₆ H ₁₁ N ₂ GaCl ₄	1-Ethyl-3-methylimidazolium chlorogallate	[emim] [GaCl4]	322.7	101.3	288-343	1.47-1.43	-0.1	0.1	Valderrama et al., in press
$C_6H_{11}N_2NbF_6$	1-Ethyl-3-methylimidazolium hexafluoroniobium	[emim] [NbF6]	318.1	101.3	298.15	1.6700	0.0	0.0	Matsumoto and Hagiwara, 2005
C ₆ H ₁₁ N ₂ OBF ₄	Methyloxymethyl-3-methylimidazolium tetrafluoroborate		214.0	101.3	298.15	1.3300	-2.3	2.3	Zhang <i>et al.</i> , 2006
$C_6H_{11}N_2OPF_6$	Methyloxymethyl-3-methylimidazolium	[mommim] [PF6]	272.1	101.3	298.15	1.4800	0.0	0.0	Zhang et al., 2006
	hexafluorophosphate								
$C_6H_{11}N_2SbF_6$	1-Ethyl-3-methylimidazolium hexafluoroantimonate	[emim] [SbF6]	346.9	101.3	298.15	1.8500	0.0	0.0	Matsumoto and Hagiwara, 2005
$C_6H_{11}N_2TaF_6$	1-Ethyl-3-methylimidazolium hexafluorotantalum	[emim] [TaF6]	406.1	101.3	298.15	2.1700	0.0	0.0	Matsumoto and Hagiwara, 2005
C ₆ H ₁₁ N ₂ WOF ₅	1-Ethyl-3-methylimidazolium oxypentafluorotungstate	[emim] [WOF5]	406.0	101.3	298.15	2.2500	0.0	0.0	Matsumoto and Hagiwara, 2005
$C_6H_{12}N_2O_4S$	1,3-Dimethylimidazolium methyl sulfate	[dmim] [MSO4]	208.2	101.3	283-343	1.33-1.29	-0.2	0.2	Pereiro et al., 2006a
-0122-4-	-,,	[101.0	293-303	1.33-1.32	-0.2	0.2	Pereiro and Rodríguez, 2007a
C ₆ H ₁₄ ON ₂ BF ₄	[C2OHmim] tetrafluoroborate	[C2OHmim] [BF4]	213.1	101.3	298.15	1.3300	-0.2	0.2	Branco et al., 2002
$C_6H_{14}ON_2PF_6$	[C2OHmim] hexafluorophosphate	[C2OHmim] [PF6]	271.3	101.3	298.15	1.4800	0.0	0.0	Branco et al., 2002
$C_7H_6N_3O_4S_2F_9$	1-Trifluoroethyl-3-methylimidazolium	[C2F3mim] [bti]	431.3	101.3	293.15	1.6600	0.0	0.0	Carda-Broch et al., 2003
C/116113045219	bis[(trifluoromethyl)sulfonyl]imide	[C213IIIIII] [Dti]	151.5	101.5	233.13	1.0000	0.0	0.0	carda Broch et al., 2003
$C_7H_9N_3F_6S_2O_4$	1,3-Dimethylimidazolium bis[(trifluoromethyl)	[dmim] [bti]	377.3	101.3	298-353	1.57-1.51	-0.3	0.3	Valderrama et al., in press
C/11g1131 65204	sulfonyl]imide	[diffiling [bti]	311.5	101.5	230 333	1.57 1.51	-0.5	0.5	valuerrama et ut., m press
C ₇ H ₁₀ NBF ₄	1-Ethylpyridinium tetrafluoroborate	[N-epy] [BF4]	195.0	101.3	293.10	1.3020	0.7	0.7	Valderrama et al., 2008
$C_7H_{11}N_2F_3SO_3$	1-Ethyl-3-methylimidazolium trifluoromethanesulfonate	[emim] [TfO]	260.2	101.3	295.15	1.3900	0.7	0.7	Wypych, 2001
C711111121 3503	1-Ethyl-3-methyllimdazondin trindoromethanesunonate	[Cililii] [TiO]	200.2	101.5	298.15	1.3851	0.7	0.9	Arce et al., 2006
$C_7H_{13}F_6N_2P$	1-Propyl-3-methylimidazolium hexafluorophosphate	[prmim] [PF6]	270.2	101.3	293.00	1.3330	0.3	0.4	Mantz and Trulove, 2002
C ₇ H ₁₃ H ₆ N ₂ F C ₇ H ₁₃ N ₂ AlCl ₄	1-Propyl-3-methylimidazolium tetrachloroaluminate	[prmim] [AlCl4]	270.2	101.3	298.15	1.2624	0.4	0.2	Zang et al., 2005
	10	,. ,			298.15	1.2624	-0.3	0.2	
C ₇ H ₁₃ N ₂ BF ₄	1-Propyl-3-methylimidazolium tetrafluoroborate Ethyloxymethyl-3-methylimidazolium tetrafluoroborate	[prmim] [BF4]	212.0	101.3			-0.3 -0.5		Zhang et al., 2006
C ₇ H ₁₃ N ₂ OBF ₄		[moemim] [BF4]	228.0	101.3	298.15	1.2600		0.5	Zhang et al., 2006
C ₇ H ₁₃ N ₂ OPF ₆	Ethoxymethyl-3-methylimidazolium hexafluorophosphate		286.2	101.3	298.15	1.4000	0.5	0.5	Zhang et al., 2006
$C_7H_{13}NO_4S_3F_6$	Diethylmethylsulfonium bis[(trifluoromethyl) sulfonyl]imide	[S221] [bti]	385.4	101.3	298.15	1.4300	-1.4	1.4	Fang <i>et al.</i> , 2007
CH NOSE	Dimethylpropylsulfonium bis[(trifluoromethyl)	[C112] [b+i]	385.4	101.3	298.15	1.3900	1.4	1.4	Fang et al., 2007
$C_7H_{13}NO_4S_3F_6$	sulfonyl]imide	[S113] [bti]	363.4	101.5	250.15	1.5500	1.4	1.4	I ally et ul., 2007
C H ON DE		[C2Omim1 [DE41	228.0	101.3	298.15	1.2600	-0.5	0.5	Branco et al., 2002
C ₇ H ₁₃ ON ₂ BF ₄	[C3Omim] tetrafluoroborate	[C30mim] [BF4]							· · · · · · · · · · · · · · · · · · ·
C ₇ H ₁₃ ON ₂ PF ₆	[C30mim] hexafluorophosphate	[C30mim] [PF6]	286.2	101.3	298.15	1.4000	0.5	0.5	Branco et al., 2002
$C_7H_{14}N_2F_6S_2O_5$	Trimethylmethoxymethylaufonyllimida	[N111C2O] [bti]	384.3	101.3	298.15	1.5100	1.5	1.5	Zhang et al., 2006
CHNOC	bis[(trifluoromethyl)sulfonyl]imide	[MANANADZ] [MACCA]	222.2	101.2	252.45	1 2500	1.0	1.0	Waldamana at al. 2000
C ₇ H ₁₄ N ₂ O ₄ S	1,2,4-Trimethylpyrazolium methylsulfate	[MMMPZ] [MSO4]	222.3	101.3	353.15	1.2500	-1.9	1.9	Valderrama et al., 2008
$C_7H_{14}N_2O_4S_2F_6$	Dimethylisopropyl(quaternary)ammonium	[NH11(i-3)] [bti]	368.3	101.3	298.15	1.4200	0.4	0.4	Valderrama et al., 2008
C II N SO	bis[(trifluoromethyl)sulfonyl]imide	[omim] [McO]	206.2	101.2	200 15	1 2/27	0.0	0.0	Area at al. 2006
C ₇ H ₁₄ N ₂ SO ₃	1-Ethyl-3-methylimidazolium methylsulfonate	[emim] [MsO]	206.3	101.3	298.15	1.2437	0.9	0.9	Arce et al., 2006
C ₇ H ₁₅ N ₂ O ₄ P	1,3-Dimethylimidazolium dimethylphosphate	[dmim] [DMPO4]	222.2	101.3	303.15	1.2530	-0.4	0.4	Valderrama et al., 2008
$C_7H_{17}B_{11}Cl_6N_2$	1-Ethyl-3-methylimidazolium hexachloride-1-carbon	[emim] [CB11Cl]	460.9	101.3	298.15	1.4310	0.8	0.8	Larsen et al., 2000
CILDY	icosahedral	familia Dr. CD4 11	256.2	101.2	200.15	1.0200	0.0	0.0	Lauren et al. 2000
C ₇ H ₂₅ B ₁₁ N ₂	1-Ethyl-3-methylimidazolium methylcarbonicosahedral	[emim] [MeCB11]	256.2	101.3	298.15	1.0360	0.6	0.6	Larsen et al., 2000
$C_7H_{27}B_{11}N_2$	1-Ethyl-3-methylimidazolium ethylcarbonicosahedral	[emim] [EtCB11]	270.2	101.3	298.15	1.0500	-0.6	0.6	Larsen <i>et al.</i> , 2000
$C_8H_{11}N_3F_6S_2O_4$	1-Ethyl-3-methylimidazolium bis[(trifluoromethyl)	[emim] [bti]	391.0	100	293–393	1.52-1.42	0.1	0.1	Gardas et al., 2007b
	sulfonyl]imide								
				1000	293-393	1.52-1.42	0.1	0.1	

				2000	293-393	1.52-1.42	0.1	0.1	
				3000	293-393	1.52-1.42	0.1	0.1	
				4000	293-393	1.52-1.42	0.1	0.1	
				5000	293-393	1.52-1.43	0.1	0.1	
				7500	293-393	1.53-1.43	0.0	0.0	
				10000	293-393	1.53-1.43	0.0	0.0	
				15000	293-393	1.53-1.44	0.0	0.0	
				20000	293-393	1.54-1.44	-0.1	0.1	
				25000	293-393	1.54-1.45	-0.2	0.2	
				30000	293-393	1.55-1.45	-0.2	0.2	
C ₈ H ₁₁ N ₅	1-Ethyl-3-methylimidazolium dicyanamide	[emim] [dca]	177.2	101.3	298.15	1.0600	0.0	0.0	Valderrama et al., in press
C ₈ H ₁₂ N ₂ O ₃ SF ₄	1-Ethyl-3-methylimidazolium	[emim] [TFES]	292.3	101.3	301.45	1.5020	0.0	0.0	Shiflett et al., 2006a
C81112112O3314	1,1,2,2-tetrafluoroethanesulfonate	[emmi] [TrE3]	232.3	101.5	301.43	1.5020	0.0	0.0	Similett et ui., 2000a
CHNOSE	1-Methyl-3-ethyl-4-methylimidazolium	[momim] [hti]	202.2	101.2	202.15	1 4700	1.4	1.4	Carda Proch et al. 2002
$C_8H_{12}N_3O_4S_2F_6$		[memim] [bti]	392.3	101.3	293.15	1.4700	1.4	1.4	Carda-Broch et al., 2003
CH NECO	bis[(trifluoromethyl)sulfonyl]imide	[4-11 [770]	2742	101.2	205.15	1 2200	0.6	0.0	M/
C ₈ H ₁₃ N ₂ F ₃ SO ₃	1,3-Diethylimidazolium trifluoromethanesulfonate	[deim] [TfO]	274.3	101.3	295.15	1.3300	-0.6	0.6	Wypych, 2001
$C_8H_{13}N_2F_3SO_3$	1-Ethyl-3,5-dimethylimidazolium	[edmim] [TfO]	274.3	101.3	295.15	1.3340	-1.5	1.5	Wypych, 2001
	trifluoromethanesulfonate								
$C_8H_{14}F_6N_2O_3S$	Trimethylethylammonium	[TMEA] [tsac]	332.3	101.3	298.15	1.4000	-0.3	0.3	Matsumoto et al., 2002
	(2,2,2-trifluoro- <i>n</i> -(trifluoro-methylsulfonyl)acetamide								
$C_8H_{14}N_2O_2$	1-Ethyl-3-methylimidazolium acetate	[emim] [Ac]	170.2	101.3	298.15	1.0270	5.6	5.6	Valderrama et al., 2008
C ₈ H ₁₅ AlCl ₄ N ₂	1-Butyl-3-methylimidazolium tetrachloroaluminate	[bmim] [AlCl4]	308.0	101.3	298.15	1.2430	-0.4	0.4	Valderrama et al., in press
C ₈ H ₁₅ BrN ₂	1-Butyl-3-methylimidazolium bromide	[bmim] [Br]	219.1	101.3	298-323	1.29-1.28	0.0	0.0	Valderrama et al., in press
$C_8H_{15}N_2BF_4$	1-Butyl-3-methylimidazolium tetrafluoroborate	[bmim] [BF4]	226.0	100	293-393	1.20-1.13	0.3	0.3	Gardas et al., 2007a
				1000	293-393	1.20-1.14	0.3	0.3	
				2000	293-393	1.20-1.14	0.3	0.3	
				3000	293-393	1.20-1.14	0.3	0.3	
				4000	298-333	1.20-1.14	0.3	0.3	
				5000	298-333	1.20-1.14	0.2	0.2	
				10000	298-333	1.21-1.14	0.2	0.2	
				10000	293-323	1.20-1.18	0.2	0.2	Sanmamed et al., 2007
				101	298-308	1.20-1.18	0.1	0.1	Navia et al., 2007
				100					· · · · · · · · · · · · · · · · · · ·
					278-303	1.21-1.20	-0.1	0.1	Rebelo et al., 2004
				100	298-333	1.20-1.18	-0.1	0.1	
				10000	298-333	1.20-1.18	-0.2	0.2	
				30000	298-333	1.21-1.19	-0.3	0.3	
				60000	298-333	1.23-1.20	-0.5	0.5	
C ₈ H ₁₅ N ₂ Cl	1-Butyl-3-methylimidazolium Chloride	[bmim] [Cl]	174.7	101.3	298.15	1.0800	1.5	1.5	Zhang et al., 2006
C ₈ H ₁₅ N ₂ FeCl ₄	1-Butyl-3-methylimidazolium iron chloride	[bmim] [F3Cl4]	336.9	101.3	283-343	1.37-1.34	0.0	0.0	Valderrama et al., in press
$C_8H_{15}N_2I$	1-Butyl-3-methylimidazolium Iodide	[bmim] [I]	266.1	101.3	298.15	1.4400	0.0	0.0	Zhang et al., 2006
C ₈ H ₁₅ N ₂ InCl ₄	1-Butyl-3-methylimidazolium indium choride	[bmim] [InCl4]	395.9	101.3	298.15	1.5557	0.0	0.0	Tong et al., 2007a
$C_8H_{15}N_2PF_6$	1-Butyl-3-methylimidazolium hexafluorophosphate	[bmim] [PF6]	284.2	101	293-303	1.37-1.36	-0.2	0.2	Pereiro and Rodríguez, 2007a
				99	298-323	1.36-1.34	0.3	0.3	Gu and Brennecke, 2002
				23540	298.20	1.3712	-0.2	0.2	
				35950	298.20	1.3833	-0.2	0.2	
				69050	323.20	1.3753	-0.4	0.4	
				69390	298.20	1.3914	-0.4	0.4	
				102830	323.20	1.3938	-0.5	0.5	
				104210	298.20	1.4081	-0.3	0.3	
				137990	323.20	1.4021	-0.3	0.3	
				138680	298.20	1.4187	-0.3	0.3	
				171090	323.20	1.4171	-0.3 -0.3	0.3	
								0.3	
				172470	298.20	1.4317	-0.1		
				200740	323.20	1.4214	0.1	0.1	
				202110	298.20	1.4382	0.3	0.3	
				101.3	313-333	1.34–1.33	0.4	0.4	Blanchard et al., 2001
					298-323	1.36-1.33	0.0	0.0	Dzyuba and Bartsch, 2002
					278-343	1.38-1.32	-0.2	0.2	Pereiro et al., 2007a
					283-323	1.37-1.34	-0.1	0.1	Troncoso et al., 2006

Table 2 (Continued)

ormula	IUPAC name	Abbreviation	М	P (kPa)	T (K)	ρ (g/cm ³)	$%\Delta ho$	$ \%\Delta ho $	Reference
C ₈ H ₁₅ N ₃ O ₂	1-Butyl-3-methylimidazolium nitrate	[bmim] [NO3]	201.2	101.3	313-333	1.14-1.13	0.2	0.2	Blanchard et al., 2001
C ₈ H ₁₅ NO ₄ S ₃ F ₆	Methylethylpropylsulfonium bis[(trifluoromethyl)sulfonyl]imide	[S123] [bti]	399.4	101.3	298.15	1.3400	0.2	0.2	Fang et al., 2007
C ₈ H ₁₆ N ₂ F ₆ S ₂ O ₄	Trimethylpropylammonium	[tmpa] [bti]	382.4	101.3	298.15	1.4400	-1.6	1.6	Zhang et al., 2006
C ₈ H ₁₆ N ₂ O ₄ S	bis[(trifluoromethyl)sulfonyl]imide 1-Butyl-3-methylimidazolium hydrogen sulfate	[bmim] [HSO4]	235.4	101.3	298.15	1.2770	0.0	0.0	Valderrama et al., 2008
C ₈ H ₁₆ N ₂ O ₄ S ₂ F ₆	Dimethylbutyl(quaternary)ammonium bis[(trifluoromethyl)sulfonyllimide	[NH114] [bti]	382.4	101.3	298.15	1.3900	-1.1	1.1	Valderrama et al., 2008
$C_8H_{16}N_2O_4S_2F_6$	Triethyl(quaternary)amonium bis[(trifluoromethyl)sulfonyllimide	[NH222] [bti]	382.4	101.3	298.15	1.3600	1.1	1.1	Valderrama et al., 2008
C ₈ H ₁₆ N ₂ O ₅ S	1,3-Dimethylimidazolium methoxyethylsulfate	[dmim] [MOESO4]	252.3	101.3	298.15	1.3140	-3.3	3.3	Valderrama et al., 2008
C ₈ H ₁₆ N ₂ SO ₄	1-Ethyl-3-methylimidazolium ethylsulfate	[emim] [SE]	236.3	101.3	313-333	1.22-1.21	0.9	0.9	Blanchard et al., 2001
					288-343	1.24-1.20	0.7	0.7	Gómez et al., 2006a
				101	278-348	1.25-1.20	0.7	0.7	Pereiro et al., 2007b
C ₈ H ₁₉ B ₁₁ Cl ₆ N ₂	1-Ethyl-2,3-dimethylimidazolium hexachloride-1-carbon icosahedral	[edmim] [CB11Cl]	474.9	101.3	298.15	1.4390	-1.7	1.7	Larsen et al., 2000
C ₈ H ₁₉ N ₃ O ₃	1,1,3,3-Tetramethylguanidine lactate	[TMG] [Lac]	204.4	101.3	298.15	1.2220	0.0	0.0	Valderrama et al., 2008
C ₈ H ₂₀ NOBF ₄	N,N-Diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate	[DEME] [BF4]	233.1	101.3	293.15	1.1800	-2.4	2.4	Sato et al., 2004
C ₈ H ₂₀ NOF ₄ B	[Bis(bis-hexyl-amino)methylene]-dimethylammonium tetrafluoroborate	[C23guan] [BF4]	455.5	101.3	298.15	0.9700	-0.3	0.3	Zhang et al., 2006
C ₈ H ₂₁ NO ₇ S	Tris(2-hydroxyethyl)methylammonium methylsulphate	[MTEOA] [MSO4]	272.7	101.3	353.15	1.3100	0.0	0.0	Valderrama et al., 2008
C ₈ H ₂₅ B ₁₁ N ₂	1-Ethyl-2,3-dimethylimidazolium 1-carbon icosahedral	[edmim] [CB11H12]	268.2	101.3	298.15	1.0720	0.0	0.0	Larsen et al., 2000
C ₉ H ₁₀ F ₃ NO ₂	1-Ethylpyridinium trifluoroacetate	[N-epy] [ta]	221.2	101.3	293.10	1.2730	0.2	0.2	Valderrama et al., 2008
$C_9H_{13}N_3F_6S_2O_4$	1-Ethyl-2,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]imide	[edmim] [bti]	405.3	101.3	295.15	1.4950	-0.3	0.3	Wypych, 2001
C ₉ H ₁₃ N ₃ F ₆ S ₂ O ₄	1,3-Diethylimidazolium bis[(trifluoromethyl)sulfonyl]imide	[deim] [bti]	405.3	101.3	295.15	1.4520	-2.1	2.1	Wypych, 2001
$C_9H_{13}N_3F_6S_2O_4$	1-Ethyl-3,5-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]imide	[eDmim] [bti]	405.3	101.3	295.15	1.4700	1.3	1.3	Wypych, 2001
C ₉ H ₁₃ N ₃ F ₆ S ₂ O ₄	1-Propyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide	[prmim] [bti]	405.3	101.3	298.15	1.4750	-3.9	3.9	Zhang et al., 2006
C ₉ H ₁₃ N ₃ F ₆ S ₂ O ₅	Ethoxymethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide	[eomim] [bti]	421.3	101.3	298.15	1.4960	-0.3	0.3	Zhang et al., 2006
C ₉ H ₁₄ F ₆ N ₂ O ₃ S	1,1-Dimethylpirrolidinium (2,2,2-trifluoro-n-(trifluoro methylsulfonyl)acetamide	[P11] [tsac]	344.3	101.3	298.15	1.4300	0.0	0.0	Matsumoto et al., 2002
C ₉ H ₁₄ F ₆ N ₂ O ₃ S	Trimethylalylammonium (2,2,2-trifluoro-n-(trifluoro methylsulfonyl)acetamide	[TMAIA] [tsac]	344.3	101.3	298.15	1.3800	0.0	0.0	Matsumoto et al., 2002
C ₉ H ₁₄ N ₂ O ₄ S ₂ F	Diethylmethyl(quaternary)ammonium bis(pentafluoroethylsulfonyl)imide	[NH221] [BEI]	468.3	101.3	298.15	1.5100	0.7	0.7	Valderrama et al., 2008
C ₉ H ₁₄ N ₂ O ₄ S ₂ F	Dimethylisopropyl(quaternary)ammonium bis(pentafluoroethylsulfonyl)imide	[NH11(i-3)] [BEI]	468.3	101.3	298.15	1.5300	-0.7	0.7	Valderrama et al., 2008
C ₉ H ₁₅ N ₃ S	1-Butyl-3-methylimidazolium thiocyanate	[bmim] [tca]	197.3	100	293-393	1.05-0.98	0.2	0.2	Gardas et al., 2007b
5 .5 5				1000	293-393	1.05-0.99	0.2	0.2	
				2000	293-393	1.05-0.99	0.2	0.2	
				3000	293-393	1.05-0.99	0.1	0.1	
				4000	293-393	1.05-0.99	0.1	0.1	
				5000	293-393	1.05-0.98	0.1	0.1	
				7500	293-393	1.05-0.99	0.1	0.1	
				10000	293-393	1.06-0.99	0.0	0.0	
				15000	293-393	1.06-0.99	-0.1	0.1	
				20000	293-393	1.06-0.99	-0.1	0.1	
				25000	293-393	1.06-0.99	-0.2 -0.3	0.2	
				30000	293-393	1.06-1.00	-0.5 -0.4	0.3	
C ₉ H ₁₆ N ₃ F ₆ S ₂ O ₄	1,2-Dimethyl-3-ethylimidazolium	[dmeim] [bti]	392.3	101.3	293-393	1.5100	-0.4 -1.3	1.3	Carda-Broch et al., 2003
.91116113163204	bis[(trifluoromethyl)sulfonyl]imide	[differinj [bti]	332,3	101.5	233,13	1.5100	-1.5	1,5	Carda-Droch et ul., 2003

$C_9H_{16}N_3F_6S_2O_4$	Dimethyl-3-ethylimidazolium bis[(trifluoromethyl) sulfonyl limide	[DEMEi] [bti]	405.3	101.3	298.15	1.4802	0.5	0.5	Valderrama et al., 2008
C ₉ H ₁₇ F ₆ N ₂ P	1-Methyl-3-pentylimidazolium hexafluorophosphate	[mpim] [PF6]	298.2	101.3	294.10	1.3330	-0.5	0.5	Valderrama et al., 2008
C ₉ H ₁₇ N ₂ BF ₄	1-Butyl-2,3-dimethylimidazolium tetrafluoroborate	[bdmim] [BF4]	240.1	101.3	300.15	1.0935	6.1	6.1	Valderrama et al., 2008
	1-Pentyl-3-methylimidazolium bromide	[pmim] [Br]	233.2	101.3	298.15	1.2620	-0.5	0.5	Valderrama et al., in press
C ₉ H ₁₇ N ₂ Br									
C ₉ H ₁₇ N ₂ InCl ₄	1-Pentyl-3-methylimidazolium chloroindium	[pmim] [InCl4]	409.9	101.3	273-343	1.53-1.46	-0.1	0.1	Tong et al., 2006
$C_9H_{17}N_2O_2BF_4$	1-[2-(2-Methoxyethoxy)ethyl]-3-methylimidazolium tetrafluoroborate	[moeoemim] [BF4]	272.1	101.3	298.15	1.2200	0.2	0.2	Zhang et al., 2006
C ₉ H ₁₇ N ₂ O ₂ Cl	1-[2-(2-Methoxyethoxy)ethyl]-3-methylimidazolium	[moeemim] [Cl]	220.7	101.3	298.15	1.1400	-1.6	1.6	Zhang et al., 2006
2911/11/20201	chloride	[mocemmi] [er]	22017	101.5	200.10	100	1.0	1.0	Zhang et an, 2000
$C_9H_{17}N_2O_2PF_6$	1-[2-(2-Methoxyethoxy)ethyl]-3-methylimidazolium	[moeemim] [PF6]	330.2	101.3	298.15	1.3200	-1.4	1.4	Zhang et al., 2006
	hexafluorophosphate								
$C_9H_{17}NO_4S_3F_6$	Diethylpropylsulfonium	[S223] [bti]	413.4	101.3	298.15	1.3400	-2.2	2.2	Fang <i>et al.</i> , 2007
	bis[(trifluoromethyl)sulfonyl]imide								
$C_9H_{17}NO_4S_3F_6$	Dimethylpentylsulfonium	[S115] [bti]	413.4	101.3	298.15	1.3500	-2.9	2.9	Fang et al., 2007
	bis[(trifluoromethyl)sulfonyl]imide	forest first							
$C_9H_{17}NO_4S_3F_6$	Methylethylbutylsulfonium bis[(trifluoromethyl) sulfonyl]imide	[S124] [bti]	413.4	101.3	298.15	1.2600	4.0	4.0	Fang <i>et al.</i> , 2007
CH NECO	Dimethylethylpropylammonium bis[(trifluoromethyl)	[N1123] [bti]	396.4	101.3	293.15	1.4100	0.0	0.0	Zhang et al., 2006
$C_9H_{18}N_2F_6S_2O_4$	sulfonyl]imide	[11123] [111]	390.4	101.5	293.13	1.4100	0.0	0.0	Zhang et ut., 2000
C-H - N-E-S-O	Trimethylbutylammonium	[N1114] [bti]	396.4	101.3	288-313	1.40-1.37	0.2	0.2	Tokuda et al., 2006
$C_9H_{18}N_2F_6S_2O_4$	bis[(trifluoromethyl)sulfonyl]imide	[141114] [141]	390.4	101.5	200-313	1.40-1.57	0.2	0.2	Tokuda et ut., 2000
C ₉ H ₁₈ N ₂ O ₄ S	1-Ethyl-2,3-dimethylimidazolium ethyl sulfate	[edmim] [ESO4]	250.3	101.3	353.15	1.1970	-2.0	2.0	Valderrama et al., 2008
C ₉ H ₁₈ N ₂ O ₄ S	1-Butyl-3-methylimidazolium methylsulfate	[bmim] [MSO4]	250.3	101.3	298.15	1.1970	0.6	0.6	Valderrama et al., 2008
$C_9H_{18}O_5N_2F_6S_2$	N-Ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis[(trifluoromethyl)sulfonyl]imide	[MOENM2E] [bti]	412.4	101.3	298.15	1.4500	0.7	0.7	Siqueira and Ribeiro, 2007
C ₉ H ₂₃ B ₁₁ N ₂	1-Ethyl-3-methylimidazolium 1-carbon icosahedral	[emim] [CB11H12]	254.2	101.3	298.15	1.0670	0.0	0.0	Larsen et al., 2000
C ₉ H ₂₇ ON ₂ BF ₄	[C5O2mim] tetrafluoroborate	[C502mim] [BF4]	272.1	101.3	298.15	1.2200	0.2	0.2	Branco et al., 2002
C ₉ H ₂₇ ON ₂ Cl	[C502mim] chloride	[C5O2mim] [C1]	220.7	101.3	298.15	1.1400	-1.6	1.6	Branco et al., 2002
$C_9H_{27}ON_2PF_6$	[C5O2mim] hexafluorophosphate	[C5O2mim] [PF6]	330.2	101.3	298.15	1.3200	-1.4	1.4	Branco et al., 2002
$C_{10}H_{11}N_3F_{10}S_2O_4$	1-Methyl-3-ethylimidazolium	[emim] [BEI]	491.3	101.3	283-348	1.60-1.53	0.1	0.1	Shiflett et al., 2006b
C 11 N F C	bis(pentafluoroethylsulfonyl)imide	(1 1 1 1 1	2522	404.0	205.45	4 2000	0.0	0.0	111 1 2004
$C_{10}H_{15}N_2F_3O_2$	1-Butyl-3-methylimidazolium trifluoroacetate	[bmim] [ta]	252.2	101.3	295.15	1.2090	0.0	0.0	Wypych, 2001
$C_{10}H_{15}N_3F_6S_2O_4$	1-Butyl-3-methylimidazolium	[bmim] [bti]	419.4	100	298-328	1.43-1.40	-4.1	4.1	Gomes de Azevedo et al., 2005
	bis[(trifluoromethyl)sulfonyl]imide			5000	298-328	1.44-1.41	-3.2	3.2	
				7460	298-328	1.44-1.41	-2.7	2.7	
				9920	298-328	1.44-1.41	-2.3	2.3	
				12380	298-328	1.45-1.41	-1.9	1.9	
				14840	298-328	1.45-1.42	-1.5	1.5	
				17300	298-328	1.45-1.42	-1.2	1.2	
				19760	298-328	1.45-1.42	-0.9	0.9	
				22210	298-328	1.45-1.42	-0.7	0.7	
				24670	298-328	1.45-1.43	-0.5	0.5	
				27130	298-328	1.45-1.43	-0.3	0.3	
				29590	298-328	1.45–1.43	-0.2	0.2	
				32050	298-328	1.45-1.43	-0.1	0.1	
				34510	298-328	1.45-1.43	0.0	0.0	
				36970	298-328	1.46-1.43	0.0	0.0	
				39430	298-328	1.46-1.43	0.1	0.1	
				41880	298-328	1.46-1.44	0.2	0.2	
				44340	298-328	1.46-1.44	0.2	0.2	
				46800	298-328 298-328	1.46-1.44	0.3	0.3	
				49260	298-328 298-328	1.45-1.44	0.3	0.3	
				51720	298-328	1.47-1.44	0.4	0.4	
				54180	298-328	1.47-1.45	0.4	0.4	
				56640	298-328	1.47-1.45	0.4	0.4	
				59100	298-328	1.47-1.45	0.4	0.4	
				100	293-393	1.30-1.22	3.3	3.3	Gardas et al., 2007a
				1000	293-393	1.30-1.22	3.5	3.5	

Table 2 (Continued)

ormula	IUPAC name	Abbreviation	М	P (kPa)	T (K)	ρ (g/cm ³)	$\%\Delta ho$	$ \%\Delta ho $	Reference
				2000	293-393	1.30-1.22	3.6	3.6	
				3000	293-393	1.30-1.22	3.8	3.8	
				4000	293-393	1.30-1.23	3.9	3.9	
				5000	293-393	1.30-1.23	4.1	4.1	
				10000	293-393	1.31-1.23	5.0	5.0	
				101.3	295-343	1.31-1.23	5.3	5.3	Fredlake et al., 2004
				101.3	295-343 298-323			5.5 3.5	· · · · · · · · · · · · · · · · · · ·
						1.43-1.40	-3.5		Dzyuba and Bartsch, 2002
		fm. 03.643 ft			278-333	1.45-1.40	-3.3	3.3	Troncoso et al., 2006
C ₁₀ H ₁₅ N ₃ F ₆ S ₂ O ₄	1,3-Diethyl-4-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide	[E1,3M4I] [bti]	419.4	101.3	295.15	1.4320	1.6	1.6	Zhang et al., 2006
C ₁₀ H ₁₅ N ₃ F ₆ S ₂ O ₄	1-Propyl-2,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]imide	[pdmim] [bti]	419.4	101.3	295.15	1.4567	-0.1	0.1	Fredlake et al., 2004
C ₁₀ H ₁₅ N ₅	1-Butyl-3-methylimidazolium dicyanamide	[bmim] [dca]	205.3	101.3	297-356	1.05-1.03	0.2	0.2	Fredlake et al., 2004
$C_{10}H_{16}N_2F_6S_2O_4$	1-Propyl-2-methylpyrrolimnimu	[MP3] [bti]	407.4	101.3	293.15	1.4600	0.1	0.1	Zhang <i>et al.</i> , 2006
	bis[(trifluoromethyl)sulfonyl]imide								
C ₁₀ H ₁₆ N ₂ O ₃ SF ₄	1-Butyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate	[bmim] [TFES]	320.3	101.3	301.45	1.3240	1.1	1.1	Shiflett et al., 2006b
C ₁₀ H ₁₆ NBF ₄	4-Methyl-n-butylpiridinium tetrafluoroborate	[mbupy] [BF4]	237.0	101.3	298.15	1.1842	-0.9	0.9	Heintz et al., 2002a
C ₁₀ H ₁₆ NO ₉ B	[MOMNM2E] bis(oxalato)borate		305.1	101.3	298.15	1.3036	0.1	0.1	Xu et al., 2003
C ₁₀ H ₁₇ N ₂ F ₃ SO ₃	1-Butyl-3-ethylimidazolium trifluoromethanesulfonate	[beim] [TfO]	302.3	101.3	295.15	1.2700	-0.8	0.8	Wypych, 2001
C ₁₀ H ₁₉ N ₂ BF ₄	1-Hexyl-3-methylimidazolium tetrafluoroborate	[hmim] [BF4]	254.1	101.3	288-323	1.15-1.12	0.5	0.5	Sanmamed et al., 2007
C ₁₀ H ₁₉ N ₂ GaCl ₄	1-Hexyl-3-methylimidazolium chlorogallate	[hmim] [GaCl4]	378.8	101.3	283-338	1.35-1.31	0.1	0.1	Tong <i>et al.</i> , 2007b
$C_{10}H_{19}NO_4S_3F_6$	Diethylbutylsulfonium bis[(trifluoromethyl)sulfonyl]imide		427.5	101.3	298.15	1.3100	-2.0	2.0	Fang <i>et al.</i> , 2007
$C_{10}H_{19}NO_4S_3F_6$	Methylethylpentylsulfonium bisl(trifluoromethyl)sulfonyl imide	[S125] [bti]	427.5	101.3	298.15	1.2600	1.9	1.9	Fang et al., 2007
$C_{10}H_{20}N_2O_5S_2F_6$	hsi((trilluoromethyl)-N-(2-methoxyethyl)ammonium bis((trifluoromethyl)sulfonyllimide	[DEME] [bti]	426.4	101.3	293.15	1.4200	0.5	0.5	Sato et al., 2004
C ₁₀ H ₂₀ N ₂ SO ₃	1-Butyl-3-ethylimidazolium methylsulfonate	[beim] [MsO]	248.3	101.3	298.15	1.1400	2.4	2.4	Wypych, 2001
$C_{10}H_{20}N_{2}SO_{3}$ $C_{10}H_{20}NO_{5}S_{2}F_{6}$	Triethyl(methoxymethyl)phosphonium	[P222(101)] [bti]	443.4	101.3	298.15	1.4200	0.4	0.4	Tsunashima and Sugiya, 2007
C ₁₀ H ₂₃ B ₆ N ₂ Cl	bis[(trifluoromethyl)sulfonyl]imide 1-Butyl-2,3-dimethylimidazolium hexachloride-1-carbon	[bdmim] [CB11Cl]	502.9	101.3	298.15	1.3670	1.0	1.0	Larsen et al., 2000
	icosahedral								
$C_{11}H_{12}N_2Cl_2$	1-p-Chlorobenzyl-3-methylimidazolium chloride	[ClBenmim] [Cl]	243.1	101.3	298.15	1.2670	1.0	1.0	Valderrama et al., 2008
C ₁₁ H ₁₂ N ₂ ClF	1-p-Fluorobenzyl-3-methylimidazolium chloride	[FBenMim] [Cl]	226.7	101.3	298.15	1.2830	-1.1	1.1	Valderrama et al., 2008
$C_{11}H_{13}CIN_2$	1-Benzyl-3-methylimidazolium chloride	[Bemim] [Cl]	208.7	101.3	298.15	1.1930	0.0	0.0	Valderrama et al., 2008
$C_{11}H_{14}N_2F_6S_2O_4$	3-Methyl-1-propylpyridinium bis[(trifluoromethyl)sulfonyl]imide	[pmpy] [bti]	416.4	101.3	298.15	1.4440	-2.3	2.3	Shiflett et al., 2006b
C ₁₁ H ₁₄ N ₂ F ₆ S ₂ O ₄	N-Butylpyridinium bis[(trifluoromethyl)sulfonyl]imide	[N-bupy] [bti]	416.4	101.3	288-313	1.45-1.43	-0.6	0.6	Tokuda et al., 2006
211114112162204	Sucy.py.ramam sus[(crimaoromethy.)samony.jimae	[5493] [541]		99	298-323	1.21-1.19	0.0	0.0	Gu and Brennecke, 2002
				23540	298.20	1.2224	0.1	0.1	Gu and Bremiecke, 2002
				36640	298.20	1.2314	-0.3	0.1	
				70430	298.20	1.2405	-0.3 -0.1	0.3	
				71460	323.20	1.2286	-0.4	0.4	
				103520	298-323	1.25.1.23	-0.2	0.2	
				137990	298-323	1.26-1.24	0.1	0.1	
				172470	298-323	1.27-1.25	0.1	0.1	
				202810	298.20	1.2764	0.6	0.6	
				204180	323.20	1.2657	0.3	0.3	
C ₁₁ H ₁₆ N ₂ F ₆ SO ₄	1-Butyl-3-methylimidazolium 1,1,2-trifluoro-2-(trifluoro-methoxy)ethanesulfonate	[bmim] [TTES]	386.3	101.3	283-348	1.40-1.34	1.2	1.2	Shiflett et al., 2006b
C ₁₁ H ₁₆ NO ₃ F ₃	1-Butyl-4-methylpyridinium trifluoromethanesulfonate	[mbpyr] [TfO]	299.3	101.3	298.15	1.1700	7.7	7.7	Papaiconomou et al., 2006
$C_{11}H_{17}N_2F_3O_2$	1-Butyl-3-ethylimidazolium trifluoroacetate	[beim] [ta]	266.3	101.3	295.15	1.1830	0.4	0.4	Wypych, 2001
$C_{11}H_{17}N_3F_6S_2O_4$	1-Butyl-3-ethylimidazolium bis[(trifluoromethyl) sulfonyl]imide	[beim] [bti]	433.4	101.3	295.15	1.4040	0.0	0.0	Wypych, 2001
	SUITOTIVITITITUE								

$C_{11}H_{17}N_3F_6S_2O_4$	1-Pentyl-3-methylimidazolium bis[(trifluoromethyl)	[pmim] [bti]	433.4	100	298-333	1.40-1.37	-0.3	0.3	Esperança et al., 2006b
, 302 .	sulfonyl]imide			1830	298-333	1.40-1.37	-0.3	0.3	* *
				10020	298-333	1.41-1.37	-0.3	0.3	
				14980	298-333	1.41-1.38	-0.3 -0.3	0.3	
				19750	298-333	1.41-1.37	-0.3	0.3	
				25860	298-333	1.42 - 1.39	-0.3	0.3	
				31480	298-333	1.42 - 1.40	-0.3	0.3	
				37770	298-333	1.43-1.40	-0.3	0.3	
				44170	298-333	1.43-1.40	-0.3	0.3	
				50750	298-333	1.43-1.41	-0.3	0.3	
		(2 cm 4) (1 - 1)		59590	298-333	1.44-1.41	-0.2	0.2	m
$C_{11}H_{18}N_2F_6S_2O_4$	1-Butyl-2-methylpyrrolimnimum bis[(trifluoromethyl) sulfonyl]imide	[MP4] [bti]	421.4	101.3	293.15	1.4300	-0.1	0.1	Zhang et al., 2006
$C_{11}H_{18}NO_9B$	N-Ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(oxalato)borate	[MOENM2E] [BOB]	319.1	101.3	298.15	1.2971	-1.4	1.4	Xu et al., 2003
$C_{11}H_{20}F_6N_2O_3S$	Tetraethylammonium (2,2,2-trifluoro- <i>n</i> -(trifluoro- methylsulfonyl)acetamida	[TEA] [tsac]	374.4	101.3	298.15	1.3700	0.0	0.0	Matsumoto et al., 2002
C ₁₁ H ₂₁ N ₂ AlCl ₄	1,3-Dibutylimidazolium tetrachloroaluminate	[C4C4I] [AlCl4]	350.1	101.3	298.15	1.1643	0.2	0.2	Zang <i>et al.</i> , 2005
$C_{11}H_{21}N_2Cl$	1,3-Dibutylimidazolium chloride	[dbim] [Cl]	216.8	101.3	298.15	1.0082	1.5	1.5	Zhang et al., 2006
$C_{11}H_{21}N_2PF_6$	1-Hexyl-3-ethylimidazolium hexafluorophosphate	[C2C6I] [PF6]	326.3	101.3	298.15	1.2622	0.1	0.1	Zhang <i>et al.</i> , 2006
$C_{11}H_{21}N_2PF_6$	1-Heptyl-3-methylimidazolium hexafluorophosphate	[hpmim] [PF6]	326.3	101.3	298.15	1.2620	0.1	0.1	Zhang et al., 2006
$C_{11}H_{21}NO_4S_3F_6$	Diethylpentylsulfonium bis[(trifluoromethyl)	[S225] [bti]	441.5	101.3	298.15	1.3000	0.0	0.0	Fang et al., 2007
	sulfonyl]imide								
$C_{11}H_{22}N_2F_6S_2O_4$	Dimethylpropylbutylammonium bis[(trifluoromethyl) sulfonyl]imide	[N1134] [bti]	424.4	101.3	293.15	1.3400	1.7	1.7	Zhang et al., 2006
$C_{11}H_{22}N_2F_6S_2O_4$	Trimethylhexylammonium bis[(trifluoromethyl)	[N6111] [bti]	424.4	101.3	293.15	1.3300	2.5	2.5	Zhang et al., 2006
	sulfonyl]imide				298.15	1.4400	-5.7	5.7	Mantz and Trulove, 2002
$C_{11}H_{22}N_2O_5S_2F_6$	Triethyl(2-methoxyethyl)ammonium	[N222(201)] [bti]	440.4	101.3	298.15	1.4000	-0.3	0.3	Tsunashima and Sugiya, 2007
	bis[(trifluoromethyl)sulfonyl]imide								
$C_{11}H_{22}N_2O_6S$	1-Ethyl-3-methylimidazolium	[emim]	310.4	101.3	298-313	1.23-1.22	-1.3	1.3	Valderrama et al., in press
	diethylenglycolmonomethylethersulphate	[DEGlyMSO4]							
$C_{11}H_{22}N_2O_6S$	Ethoxymethyl(2-hydroxyethyl)-dimethylammonium	[eom(2H)DMA]	309.5	101.3	298.15	1.2770	0.0	0.0	Pernak et al., 2007
-11222-0-	acesulfamate	[Ace]							
C - H - N-E-SO -	1-(4-Methoxyphenyl)-3-methylimidazolium	[mpmi] [TfO]	338.3	101.3	323.15	1.3200	-0.5	0.5	Zhang et al., 2006
$C_{12}H_{13}N_2F_3SO_4$		[IIIpIIII] [IIO]	336.3	101.5	323.13	1.5200	-0.5	0.5	Zhang et al., 2006
	trifluoromethanesulfonate								
$C_{12}H_{13}N_2O_3SF_3$	1-Benzyl-3-methylimidazolium	[Bemim] [TfO]	322.3	101.3	303.15	1.3000	0.6	0.6	Anderson and Armstrong, 2003
	trifluoromethanesulfonate								
$C_{12}H_{15}F_{10}N_3O_4S_2$	1-Butyl-3-methylimidazolium	[bmim] [BEI]	505.4	101.3	288-313	1.52 - 1.50	0.0	0.0	Tokuda et al., 2006
	bis(pentafluoroethylsulfonyl)imide								
$C_{12}H_{15}N_2F_7O_2$	1-Butyl-3-methylimidazolium heptafluorobutanoate	[bmim] [hb]	352.3	101.3	295.15	1.3330	0.0	0.0	Wypych, 2001
	1-Ethyl-3-methylimidazolium heptafluorobutanoate		324.2				0.0		Wypych, 2001 Wypych, 2001
C ₁₂ H ₁₅ N ₂ F ₇ O ₂		[emim] [hb]		101.3	295.15	1.4500		0.0	
$C_{12}H_{15}N_2F_9SO_3$	1-Ethyl-3-methylimidazolium nonafluorobutanesulfonate	[emim] [NfO]	439.3	101.3	295.15	1.4730	0.1	0.1	Wypych, 2001
$C_{12}H_{15}N_2O_8B$	1-Butyl-3-methylimidazolium bis(oxalato)borate	[bmim] [BOB]	326.1	101.3	298.15	1.2837	-0.1	0.1	Xu et al., 2003
$C_{12}H_{16}N_2F_6S_2O_4$	1-Butyl-3-methylpyridinium bis[(trifluoromethyl) sulfonyl]imide	[bmpy] [bti]	430.4	101.3	298.15	1.4120	-1.0	1.0	Shiflett et al., 2006b
C ₁₂ H ₁₆ N ₂ F ₈ SO ₄	1-Butyl-3-methylimidazolium	[bmim] [FS]	436.3	101.3	283-348	1.46-1.40	-0.9	0.9	Shiflett et al., 2006b
C1211161421 83-04	2-(1,2,2,2-tetrafluoroethoxy)-1,1,2,2-	[511111] [13]	450.5	101.5	203 340	1.40 1.40	-0.5	0.5	Similar et al., 2000b
0 11 11 7 2 2	tetrafluoroethanesulfonate	[1	40.00	404.0	202 212	4 40 4 0=	1.0	1.0	clid I pood
$C_{12}H_{16}N_2F_8SO_4$	1-Butyl-3-methylimidazolium 1,1,2-trifluoro-2-	[bmim] [TPES]	436.3	101.3	283-348	1.43-1.37	1.0	1.0	Shiflett et al., 2006b
	(perfluoroethoxy)-ethanesulfonate								
$C_{12}H_{16}N_2O_4S_2F_6$	1-Butyl-4-methylpyridinium bis[(trifluoromethyl) sulfonyl]imide	[mbpyr] [bti]	430.4	101.3	298.15	1.3500	3.6	3.6	Papaiconomou et al., 2006
C ₁₂ H ₁₉ N ₃ F ₆ S ₂ O ₄	1-Hexyl-3-methylimidazolium bis[(trifluoromethyl)	[hmim] [bti]	447.4	100	298-333	1.37-1.33	0.2	0.2	Gomes de Azevedo et al., 2005
C1211191131 652U4		נווווווון [טנו]	77/.7						Goines de Azevedo et al., 2003
	sulfonyl]imide			1830	298-333	1.37-1.34	0.2	0.2	
				10020	298-333	1.37-1.35	0.1	0.1	
				14980	298-333	1.38-1.35	0.1	0.1	
				19750	298-333	1.38-1.35	0.1	0.1	
				25860	298-333	1.38-1.36	0.1	0.1	
						,			

Table 2 (Continued)

ormula	IUPAC name	Abbreviation	М	P (kPa)	T (K)	ρ (g/cm ³)	$\%\Delta ho$	$ \%\Delta ho $	Reference
				31480	298-333	1.39-1.36	0.1	0.1	
				37770	298-333	1.39-1.37	0.1	0.1	
				44170	298-333	1.40-1.37	0.1	0.1	
				50750	298-333	1.40-1.37	0.2	0.2	
				59590	298-333	1.40-1.38	0.2	0.2	
				101.3	290-307	1.37-1.36	0.1	0.1	Kumełan et al., 2006
					293-358	1.37-1.32	0.2	0.2	Kato and Gmehling, 2005
₂ H ₁₉ NO ₄	Choline salicylate	[Ch] [Sa]	239.5	101.3	353.15	1.1467	0.0	0.0	Valderrama et al., 2008
$_2H_{20}NO_8B$	[BNM2E] bis(oxalato)borate	[BNM2E] [BOB]	317.1	101.3	298.15	1.2150	0.2	0.2	Xu et al., 2003
$_2H_{20}NO_9B$	[EOENM2E] bis(oxalato)borate	[EOENM2E] [BOB]	333.1	101.3	298.15	1.2476	0.6	0.6	Xu et al., 2003
$_{12}H_{21}N_{2}F_{3}SO_{3}$	1,3-Dibutylimidazolium trifluoromethanesulfonate	[dbim] [TfO]	330.4	101.3	303.15	1.3000	-7.3	7.3	Zhang et al., 2006
₂ H ₂₂ N ₂ O ₄ S ₂ F ₆	N-Butyl-N-methylpiperidinium bis[(trifluoromethyl) sulfonyl]imide	[BMP] [bti]	436.4	101.3	298.15	1.3800	0.0	0.0	Bazito et al., 2007
₂ H ₂₃ N ₂ BF ₄	1-Octyl-3-methylimidazolium tetrafluoroborate	[omim] [BF4]	282.1	99	298-323	1.09-1.07	0.6	0.6	Gu and Brennecke, 2002
				21820	298.20	1.1040	0.1	0.1	
				35610	323.20	1.0938	0.0	0.0	
				35950	298.20	1.1089	0.1	0.1	
				69050	298.20	1.1238	-0.2	0.2	
				69390	323.20	1.1099	-0.4	0.4	
				103520	298-323	1.1312	0.0	0.0	
				137990	298-323	1.14-1.13	0.1	0.1	
				172470	298-323	1.15-1.14	0.2	0.2	
				202810	298.20	1.1621	0.6	0.6	
				206940	323.20	1.1489	0.4	0.4	
				101.3	313–333	1.08-1.07	0.8	0.8	Blanchard et al., 2001
					288-323	1.11-1.07	-0.5	0.5	Sanmamed et al., 2007
				100	293-393	1.10-1.04	-0.3	0.3	Gardas et al., 2007a
				1000	293-393	1.10-1.04	-0.3	0.3	
				2000	293-393	1.10-1.04	-0.4	0.4	
				3000	293-393	1.11-1.04	-0.4	0.4	
				4000	293-393	1.11-1.04	-0.4	0.4	
				5000	293-393	1.11-1.04	-0.4	0.4	
				10000	293-393	1.11-1.05	-0.5	0.5	
₂ H ₂₃ N ₂ Cl	1-Octyl-3-methylimidazolium chloride	[omim] [Cl]	230.8	101.3	298-343	1.00-0.98	-0.8	0.8	Gómez et al., 2006b
$_2H_{23}N_2PF_6$	1-Octyl-3-methylimidazolium hexafluorophosphate	[omim] [PF6]	340.3	99	298-323	1.22-1.20	0.8	0.8	Gu and Brennecke, 2002
				21470	298.20	1.2358	0.7	0.7	
				36300	298.20	1.2431	0.5	0.5	
				69050	323.20	1.2422	0.1	0.1	
				69730	298.20	1.2560	0.6	0.6	
				103520	298-323	1.27-1.25	0.1	0.1	
				137990	298-323	1.28-1.27	0.2	0.2	
				172470	323.20	1.2820	0.2	0.2	
				173160	298.20	1.2924	0.9	0.9	
				202810	323.20	1.2958	0.0	0.0	
				204180	298.20	1.3043	0.9	0.9	
				101.3	278-343	1.25-1.20	0.0	0.0	Pereiro et al., 2007a
					293-303	1.24-1.23	0.0	0.0	Pereiro and Rodríguez, 2007
				101.3	298.15	1.2357	0.0	0.0	Pereiro and Rodríguez, 2007
				100	293-393	1.24-1.17	0.0	0.0	Gardas et al., 2007a
				1000	293-393	1.24-1.17	-0.1	0.1	
				2000	293-393	1.24-1.17	-0.1	0.1	
				3000	293-393	1.24-1.17	-0.1	0.1	
				4000	293-393	1.24-1.17	-0.1	0.1	
				5000	293-393	1.24-1.17	-0.2	0.2	
				10000	293-393	1.241.17	-0.3	0.3	
₁₂ H ₂₄ N ₂ F ₆ S ₂ O ₄	Trimethylheptylammonium bis[(trifluoromethyl)	[N7111] [bti]	438.5	101.3	293.15	1.2800	4.6	4.6	Zhang et al., 2006

$C_{12}H_{24}N_2O_6S$	Propyloxymethyl(2-hydroxyethyl)-dimethylammonium acesulfamate	[prom(2H)DMA] [Ace]	323.5	101.3	298.15	1.2520	1.2	1.2	Pernak et al., 2007
$C_{13}H_{13}N_3O_4S_2F_6$	1-(1-Phenylalkyl)-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide	[Ph(CH2)mim] [bti]	453.4	101.3	298-323	1.49-1.46	0.0	0.0	Dzyuba and Bartsch, 2002
$C_{13}H_{14}NO_8B$ $C_{13}H_{21}N_3F_6S_2O_4$	n-Butylpyridinium bis(oxalato)borate 1,3-Dibutylimidazolium bis[(trifluoromethyl) sulfonyllimide	[bpy] [BOB] [dbim] [bti]	323.1 461.5	101.3 101.3	298.15 298.15	1.3080 1.4910	0.0 -9.6	0.0 9.6	Xu et al., 2003 Zhang et al., 2006
$C_{13}H_{21}N_3F_6S_2O_4$	1-Heptyl-3-methylimidazolium bis[(trifluoromethyl)	[hpmim] [bti]	461.5	100	293-393	1.35-1.26	0.1	0.1	Gardas et al., 2007b
	sulfonyl]imide			1000	293–393 293–393	1.35-1.26	0.1	0.1	
				2000 3000	293-393	1.35-1.26 1.35-1.26	0.1 0.1	0.1 0.1	
				4000	293-393	1.35-1.26	0.1	0.1	
				5000	293-393	1.35-1.27	0.1	0.1	
				7500 10000	293–393 293–393	1.35–1.27 1.35–1.27	0.1 0.0	0.1 0.0	
				15000	293-393	1.36-1.28	0.0	0.0	
				20000	293-393	1.36-1.28	-0.1	0.1	
				25000	293-393	1.37-1.29	-0.1	0.1	
C ₁₃ H ₂₂ N ₂ SF ₄	1-Heptyl-3-methylimidazolium 1,1,2,2-	[hpmim] [TFES]	362.4	30000 101.3	293–393 301.15	1.37-1.29 1.2740	−0.1 −0.9	0.1 0.9	Shiflett et al., 2006b
C131122112514	tetrafluoroethanesulfonate	[iipiiiiii] [ii E5]	302.1	101.5	301.13	1.27 10	0.5	0.5	Simett et u., 2000b
C ₁₃ H ₂₅ N ₂ F ₆ P	1-Octyl-3-ethylimidazolium hexafluorophosphate	[C2C8I] [PF6]	354.3	101.3	298.15	1.2118	-0.3	0.3	Zhang et al., 2006
$C_{13}H_{26}N_2F_6S_2O_4$	Trimethyloctylammonium bis[(trifluoromethyl) sulfonyllimide	[N8111] [bti]	452.5	101.3	293.15	1.2700	3.7	3.7	Zhang et al., 2006
$C_{13}H_{26}N_2O_4S_2F_6$	Triethylpentylammonium bis[(trifluoromethyl) sulfonyl imide	[N2225] [bti]	452.5	101.3	298.15	1.3300	-1.4	1.4	Tsunashima and Sugiya, 2007
$C_{13}H_{26}N_2O_6S$	Butoxymethyl(2-hydroxyethyl)-dimethylammonium acesulfamate	[bom(2H)DMA] [Ace]	337.5	101.3	298.15	1.2250	1.3	1.3	Pernak et al., 2007
$C_{13}H_{26}NO_4S_2F_6$	Triethylpentylphosphonium bis[(trifluoromethyl) sulfonyl]imide	[P2225] [bti]	469.5	101.3	298.15	1.3200	2.0	2.0	Tsunashima and Sugiya, 2007
$C_{13}H_{28}B_{11}Cl_6N_2$	1-Octyl-3-methylimidazolium hexachloride-1-carbon icosahedral	[omim] [CB11Cl]	545.0	101.3	298.15	1.3410	0.0	0.0	Larsen et al., 2000
C ₁₄ H ₁₅ N ₃ O ₄ S ₂ F ₆	1-(2-Phenylalkyl)-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide	[Ph(CH2)2mim] [bti]	467.4	101.3	298.15	1.4700	-0.1	0.1	Dzyuba and Bartsch, 2002
C ₁₄ H ₁₉ N ₂ O ₈ B	1-Butyl-3-methylimidazolium bis(malonato)borate	[bmim] [BMB]	354.1	101.3	298.15	1.2382	0.0	0.0	Xu et al., 2003
C ₁₄ H ₁₉ N ₇ C ₁₄ H ₂₄ BF ₄ N	1-(<i>n</i> -Butyl)-1,3'-dimethyl-2,2'-biimidazolium dicyanamide 4-Methyl- <i>n</i> -octylpiridinium tetrafluoroborate	[BM2I] [dca] [4MOPY] [BF4]	285.4 293.2	101.3 101.3	298.15 298.15	1.0550 1.0800	0.1 -0.9	0.1 0.9	Valderrama <i>et al.</i> , in press Papaiconomou <i>et al.</i> , 2007
C ₁₄ H ₂₄ NAsF ₆	4-Methyl- <i>n</i> -octylpiridinium hexafluoroarsenic	[4MOPY] [AsF6]	395.3	101.3	298.15	1.3300	0.0	0.0	Papaiconomou et al., 2007
$C_{14}H_{27}N_2BF_4$	1-Decyl-3-methylimidazolium tetrafluoroborate	[demim] [BF4]	310.2	101.3	293.15	1.0723	-2.0	2.0	Glasser, 2004
C II N DE	1 Oatul 2 manulimidanalium hauafuanahaanhaa	Inmaine LIDECI	368.3	101.3	298.15 298.15	1.0400 1.1182	0.8	0.8 5.7	Zhang <i>et al.</i> , 2006 Zhang <i>et al.</i> , 2006
$C_{14}H_{27}N_2PF_6$ $C_{14}H_{27}NF_6S_3O_4$	1-Octyl-3-propylimidazolium hexafluorophosphate Tributhylsulfonium bis[(trifluoromethyl)sulfonyl]imide	[oprim] [PF6] [S444] [bti]	483.6	101.3	298.15	1.1102	5.7 1.7	1.7	Zhang et al., 2006 Zhang et al., 2006
$C_{14}H_{28}N_2O_6S$	Pentoxymethyl(2-hydroxyethyl)-dimethylammonium acesulfamate	[pom(2H)DMA] [Ace]	351.6	101.3	298.15	1.2110	0.4	0.4	Pernak et al., 2007
$C_{15}H_{17}N_3O_4S_2F_6$	1-(3-Phenylalkyl)-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide	[Ph(CH2)3mim] [bti]	481.4	101.3	298.15	1.4550	0.1	0.1	Dzyuba and Bartsch, 2002
C ₁₅ H ₁₈ N ₆ O ₈ S ₄ F ₁₂	[C3(mim)2] bis[(trifluoromethyl)sulfonyl]imide	[C3(mim)2] [bti]	766.6	101.3	298.15	1.6100	0.0	0.0	Anderson et al., 2005
C ₁₅ H ₂₄ NO ₃ SF ₃ C ₁₅ H ₂₅ N ₃ F ₆ S ₂ O ₄	4-Methyl-n-octylpiridinium trifluoromethanesulfonate 1-Nonyl-3-methylimidazolium bis[(trifluoromethyl)	[4MOPY] [TfO] [nmim] [bti]	355.4 489.5	101.3 101.3	298.15 298.15	1.1700 1.2990	-1.1 0.0	1.1 0.0	Papaiconomou et al., 2007 Zhang et al., 2006
21311231131 63204	sulfonyl]imide								
C ₁₆ H ₃₂ N ₂ O ₄ S	1-Butyl-3-methylimidazolium octyl sulfate	[bmim] [C8S]	348.5	101.3	278-328	1.00-0.98	4.4	4.4	Orchillés et al., 2006
C ₁₆ H ₃₂ N ₂ O ₆ S	Heptyloxymethyl(2-hydroxyethyl)-dimethylammonium acesulfamate	[hpom(2H)DMA] [Ace]	379.6	101.3	298.15	1.1810	-1.1	1.1	Pernak <i>et al.</i> , 2007
C ₁₆ H ₃₂ NO ₄ S ₂ F ₆	Triethyloctylphosphonium bis[(trifluoromethyl) sulfonyl]imide	[P2228] [bti]	511.5	101.3	298.15	1.2600	0.4	0.4	Tsunashima and Sugiya, 2007
C ₁₇ H ₃₀ N ₄ Br ₂	[C9(mim)2] bromide	[C9(mim)2] [Br]	450.3	101.3	298.15	1.4100	-1.4	1.4	Anderson et al., 2005
$C_{17}H_{34}N_2O_6S$	Octyloxymethyl(2-hydroxyethyl)-dimethylammonium acesulfamate	[oom(2H)DMA] [Ace]	393.7	101.3	298.15	1.1600	-1.3	1.3	Pernak et al., 2007
C ₁₇ H ₃₄ N ₄ F ₆ S ₂ O ₄	[Bis(butyl-ethyl-amino)methylene]-dymethylammonium bis[(trifluoromethyl)sulfonyl]imide	[C15guan] [bti]	536.6	101.3	298.15	1.3600	0.0	0.0	Mateus et al., 2003

Table 2 (Continued)

Formula	IUPAC name	Abbreviation	М	P (kPa)	T (K)	ρ (g/cm ³)	$\%\Delta ho$	$ \%\Delta ho $	Reference
C ₁₈ H ₂₄ N ₂ O ₄ S ₂ F	4-Methyl- <i>n</i> -octylpiridinium bis(pentafluoroethylsulfonyl)imide	[4MOPY] [BEI]	586.5	101.3	298.15	1.3900	0.1	0.1	Papaiconomou et al., 2007
C ₁₈ H ₂₄ N ₆ O ₈ S ₄ F ₁₂	[C6(mim)2] bis[(trifluoromethyl)sulfonyl]imide	[C6(mim)2] [bti]	808.7	101.3	298.15	1.5200	1.1	1.1	Anderson et al., 2005
	1-Dodecyl-3-ethylimidazolium trifluoromethanesulfonate	[doeim] [TfO]	414.5	101.3	298.15	1.1000	0.0	0.0	Wypych, 2001
C ₁₈ H ₃₁ N ₂ F ₃ SO ₃	1-Dodecyl-3-methylimidazolium bis[(trifluoromethyl)		531.6	101.3	293.15	1.2460	-0.9	0.0	Glasser, 2004
$C_{18}H_{31}N_3O_4S_2F_6$	sulfonyl]imide	[C12mim] [bti]		101.5		1.2400			Glasser, 2004
$C_{18}H_{36}N_2O_6S$	Nonyloxymethyl(2-hydroxyethyl)-dimethylammonium acesulfamate	[nom(2H)DMA] [Ace]	407.7	101.3	298.15	1.1340	-0.9	0.9	Pernak et al., 2007
$C_{19}H_{36}N_2O_6S_2F_6$	(2-Decanoyloxyethyl)- dimethylethyloxymethylammonium bis[(trifluoromethyl) sulfonyl]imide	[(2D)dmeoma] [bti]	566.6	101.3	298.15	1.2260	-1.8	1.8	Pernak et al., 2007
$C_{19}H_{38}N_2O_6S$	(2-Hydroxyethyl)-dimethylundecyloxymethylammonium acesulfamate	[dom(2H)DMA] [Ace]	421.7	101.3	298.15	1.1030	0.0	0.0	Pernak et al., 2007
C ₂₀ H ₃₆ N ₄ F ₁₂ P ₂	[C12(mim)2] hexafluorophosphate	[C12(mim)2] [PF6]	622.5	101.3	298.15	1.3600	-1.0	1.0	Anderson et al., 2005
C ₂₀ H ₃₆ N ₄ F ₈ B ₂	[C12(mim)2] tetrafluoroborate	[C12(mim)2] [BF4]	506.1	101.3	298.15	1.2600	-0.1	0.1	Anderson et al., 2005
C ₂₀ H ₃₇ O ₃ PS	Triisobutylmethylphosphonium <i>p</i> -toluenesulfonate	[tibmp] [pTSO3]	388.6	101.3	298-355	1.06-1.03	0.3	0.3	Anthony et al., 2005
$C_{20}H_{38}N_2O_6S_2F_6$	(2-Decanoyloxyethyl)-	[(2D)dmproma]	580.7	101.3	298.15	1.2110	-1.3	1.3	Pernak et al., 2007
	dimethylpropyloxymethylammonium bis[(trifluoromethyl)sulfonyl]imide	[bti]							
$C_{20}H_{40}F_6N_2O_4S_2$	Tributylhexylammonium bis[(trifluoromethyl) sulfonyl]imide	[N6444] [bti]	550.7	101.3	293.15	1.1500	2.9	2.9	Zhang et al., 2006
$C_{20}H_{40}N_2O_4S_2F_6$	Triethyldodecylammonium bis[(trifluoromethyl) sulfonyl]imide	[N222(12)] [bti]	550.7	101.3	298.15	1.2200	-3.3	3.3	Tsunashima and Sugiya, 2007
$C_{21}H_{30}N_6O_8S_4F_{12}$	[C9(mim)2] bis[(trifluoromethyl)sulfonyl]imide	[C9(mim)2] [bti]	850.8	101.3	298.15	1.4700	-0.4	0.4	Anderson et al., 2005
$C_{21}H_{40}N_2O_6S_2F_6$	(2-Decanoyloxyethyl)-	[(2D)dmboma]	594.7	101.3	298.15	1.1980	-0.8	0.8	Pernak <i>et al.</i> , 2007
2114012060216	dimethylbutyloxymethylammonium bis[(trifluoromethyl) sulfonyllimide	[bti]	55 117	101,5	200,10	111000	0.0	0.0	1 C. Mark et al., 2007
$C_{21}H_{42}F_6N_2O_4S_2$	Tributylheptylammonium bis[(trifluoromethyl) sulfonyl]imide	[N7444] [bti]	564.7	101.3	293.15	1.1700	-0.1	0.1	Zhang et al., 2006
$C_{21}H_{44}NF_3SO_3$	Tributyloctylammonium trifluoromethanesulfonate	[N8444] [TfO]	447.7	101.3	293.15	1.0200	5.2	5.2	Zhang et al., 2006
$C_{22}H_{23}N_2O_6B$	1-Butyl-3-methylimidazolium bis(salicylato)borate	[bmim] [BScB]	422.2	101.3	298.15	1.3113	0.0	0.0	Xu et al., 2003
$C_{22}H_{42}N_2O_6S_2F_6$	(2-Decanoyloxyethyl)-	[(2D)dmpoma]	608.7	101.3	298.15	1.1860	-0.4	0.4	Pernak et al., 2007
-22422-0	dimethylpentyloxymethylammonium bis[(trifluoromethyl)sulfonyl]imide	[bti]							
$C_{22}H_{44}F_6N_2O_4S_2$	Tributyloctylammonium bis[(trifluoromethyl)	[N8444] [bti]	578.7	101.3	293.15	1.1200	3.2	3.2	Zhang <i>et al.</i> , 2006
C2211441 6112 C452	sulfonyl]imide	[110 111] [511]	370.7	101.5	298.15	1.1200	2.9	2.9	Mantz and Trulove, 2002
C ₂₂ H ₄₄ N ₂ F ₆ S ₂ O ₄	Tetramylammonium bis[(trifluoromethyl)sulfonyl]imide	[tpa] [bti]	578.7	101.3	298.15	1.1600	-0.7	0.7	Zhang <i>et al.</i> , 2006
$C_{23}H_{36}N_6O_8S_4F_{12}$	[C9(m2im)2] bis[(trifluoromethyl)sulfonyl]imide	[C9(m2im)2] [bti]	880.8	101.3	298.15	1.4700	-0.7 -0.4	0.7	Anderson <i>et al.</i> , 2005
			534.4	101.3	298.15	1.2700	-0.4 -2.0	2.0	Anderson et al., 2005
C ₂₃ H ₄₂ N ₄ Br ₂	[C9(bim)2] bromide	[C9(bim)2] [Br]							· · · · · · · · · · · · · · · · · · ·
C ₂₃ H ₄₂ N ₄ F ₁₂ P ₂	[C9(bim)2] hexafluorophosphate	[C9(bim)2] [PF6]	664.5	101.3	298.15	1.3000	1.2	1.2	Anderson et al., 2005
$C_{23}H_{42}N_6F_8B_2$	[C9(bim)2] tetrafluoroborate	[C9(bim)2] [BF4]	548.2	101.3	298.15	1.2000	-0.1	0.1	Anderson et al., 2005
C ₂₃ H ₄₄ N ₂ O ₆ S ₂ F ₆	(2-Decanoyloxyethyl)- dimethylhexyloxymethylammonium	[(2D)dmhoma] [bti]	622.7	101.3	298.15	1.1790	-0.2	0.2	Pernak <i>et al.</i> , 2007
C ₂₃ H ₅₀ N ₃ Cl	bis[(trifluoromethyl)sulfonyl]imide [Bis(bis-hexyl-amino)methylene]-dimethylammonium	[C23guan] [Cl]	404.1	101.3	298.15	0.9000	3.3	3.3	Zhang et al., 2006
C H NOSE	chloride [C12(mim)2] his[(trifluoromothyl)sulfonyllimide	[C12(mim)2] [bt:]	902.9	101.2	200 15	1 4000	0.1	0.1	Anderson et al. 2005
C ₂₄ H ₃₆ N ₆ O ₈ S ₄ F ₁₂	[C12(mim)2] bis[(trifluoromethyl)sulfonyl]imide	[C12(mim)2] [bti]	892.8	101.3	298.15	1.4000	0.1	0.1	Anderson et al., 2005
$C_{24}H_{46}N_2O_6S_2F_6$	(2-Decanoyloxyethyl)- dimethylheptyloxymethylammonium bis[(trifluoromethyl)sulfonyl]imide	[(2D)dmhpoma] [bti]	636.8	101.3	298.15	1.1740	-0.2	0.2	Pernak <i>et al.</i> , 2007
CH. NOSE	[C9(mpy)2] bis[(trifluoromethyl)sulfonyl]imide	[C9(mpy)2] [bti]	884.9	101.3	298.15	1.4100	0.0	0.0	Anderson et al., 2005
C ₂₅ H ₄₄ N ₄ O ₈ S ₄ F ₁₂									
C ₂₅ H ₄₈ N ₂ O ₆ S ₂ F ₆	(2-Decanoyloxyethyl)- dimethyloctyloxymethylammonium bis[(trifluoromethyl) sulfonyllimide	[(2D)dmooma] [bti]	650.8	101.3	298.15	1.1670	0.1	0.1	Pernak et al., 2007
$C_{25}H_{50}N_4O_4S_2F_6$	Sundryffinde [Bis(bis-hexyl-amino)methylene]-dimethylammonium bis[(trifluoromethyl)sulfonyl imide	[C23guan] [bti]	648.8	101.3	298.15	1.2000	-0.7	0.7	Zhang et al., 2006

$C_{26}H_{50}N_2O_6S_2F_6$	(2-Decanoyloxyethyl)-	[(2D)dmnoma]	664.8	101.3	298.15	1.1650	0.1	0.1	Pernak et al., 2007
	dimethylnonyloxymethylammonium	[bti]							
CHNOCE	bis[(trifluoromethyl)sulfonyl]imide	[C9(bim)2] [bti]	0240	101.2	200.15	1 2500	0.1	0.1	Andaman at al. 2005
$C_{27}H_{42}N_6O_8S_4F_{12}$ $C_{27}H_{52}N_2O_6S_2F_6$	[C9(bim)2] bis[(trifluoromethyl)sulfonyl]imide (2-Decanoyloxyethyl)-dimethyldecyloxymethylammo-	[(2D)dmdoma]	934.9 678.8	101.3 101.3	298.15 298.15	1.3500 1.1560	-0.1 0.7	0.1 0.7	Anderson et al., 2005 Pernak et al., 2007
C271152112O63216	nium bis[(trifluoromethyl)sulfonyl]imide	[bti]	078.8	101.5	230.13	1.1500	0.7	0.7	1 CHak et ut., 2007
C ₂₇ H ₅₈ N ₃ Cl	[Bis(bis-hexyl-amino)methylene]-dymethylammonium	[C27guan] [C1]	460.2	101.3	298.15	0.9000	3.0	3.0	Mateus et al., 2003
-27383	chloride	[][]							
$C_{28}H_{54}N_2O_6S_2F_6$	(2-Decanoyloxyethyl)-	[(2D)dmuoma]	692.9	101.3	298.15	1.1490	1.2	1.2	Pernak et al., 2007
	dimethylundecyloxymethylammonium	[bti]							
	bis[(trifluoromethyl)sulfonyl]imide								
$C_{29}H_{56}N_2O_6S_2F_6$	(2-Decanoyloxyethyl)-	[(2D)dmddoma]	706.9	101.3	298.15	1.1460	1.5	1.5	Pernak et al., 2007
	dodecyloxymethyldimethylammonium	[bti]							
C ₂₉ H ₅₇ O ₃ SF ₆	bis[(trifluoromethyl)sulfonyl]imide Tributyl(tetradecyl)phosphonium	[4,4,4,14-P] [HFPS]	630.8	101.3	283-348	1.08-1.03	0.1	0.1	Shiflett et al., 2006b
C ₂₉ 11 ₅₇ O ₃ 31' ₆	1,1,2,3,3,3-hexafluoropropanesulfonate	[4,4,4,14-1] [11173]	030.8	101.5	203-340	1.00-1.03	0.1	0.1	Similett et al., 2000b
C ₂₉ H ₅₈ N ₄ F ₆ S ₂ O ₄	[Bis(bis-hexyl-amino)methylene]-dymethylammonium	[C27guan] [bti]	704.9	101.3	298.15	1.2000	0.6	0.6	Mateus et al., 2003
02911381141 60204	bis[(trifluoromethyl)sulfonyl]imide	[ez/gaan] [sti]	701.0	101.5	200.10	1.2000	0.0	0.0	mateus of any 2003
$C_{30}H_{60}N_2F_6S_2O_4$	Tetraheptylammonium bis[(trifluoromethyl)	[thpa] [bti]	690.9	101.3	298.15	1.1000	-1.8	1.8	Zhang et al., 2006
	sulfonyl]imide								
$C_{32}H_{44}F_{12}P_2$	[C12(benzim)2] hexafluorophosphate	[C12(benzim)2]	774.7	101.3	298.15	1.2700	0.0	0.0	Anderson et al., 2005
		[PF6]							
$C_{34}H_{68}O_5PF_6S_2$	Trihexyl(tetradecyl)phosphonium	[6,6,6,14-P] [bti]	764.0	210	298-333	1.06-1.04	0.1	0.1	Esperança et al., 2006a
	bis[(trifluoromethyl)sulfonyl]imide			25010	298-333	1.08-1.06	-0.1	0.1	
				29990	298-333	1.08-1.06	-0.1	0.1	
				35010 40000	298-333 298-333	1.08-1.06 1.08-1.07	−0.1 −0.1	0.1 0.1	
				45010	298-333	1.08-1.07	-0.1 0.0	0.0	
				50000	298-333	1.09-1.07	0.0	0.0	
				55000	298-333	1.09-1.07	0.0	0.0	
				59990	298-333	1.09-1.08	0.0	0.0	
				65010	298-333	1.10-1.08	0.1	0.1	
				540	298-333	1.06-1.04	0.1	0.1	
				1000	298-333	1.06-1.04	0.1		
				3000	298-333	1.06-1.04	0.1	0.1	
				5010	298-333	1.06-1.04	0.0	0.0	
				7500	298-333	1.07-1.05	0.0	0.0	
				9990	298-333	1.07-1.05	0.0	0.0	
				15010	298-333	1.07-1.05	0.0	0.0	
C II O DC	Toller and the transfer of the contract of the	[C C C 14 D] [A -]	5.42.0	19990	298-333	1.07-1.05	-0.1	0.1	F
$C_{34}H_{71}O_2PS_2$	Trihexyl(tetradecyl)phosphonium acetate	[6,6,6,14–P] [Ac]	542.9	210	298-334	0.89-0.87	0.0	0.0	Esperança et al., 2006a
				540 1000	298-334 298-334	0.89-0.87 0.89-0.87	0.0 0.0	0.0 0.0	
				3000	298-334	0.89-0.87	0.0	0.0	
				5010	298-334	0.89-0.87	0.0	0.0	
				7500	298-334	0.89-0.87	0.0	0.0	
				35010	298-334	0.90-0.89	-0.1	0.1	
				40020	298-334	0.90-0.89	0.0	0.0	
				45010	298-334	0.91-0.89	0.0	0.0	
				49990	298-334	0.91-0.89	0.0	0.0	
				55000	298-334	0.91-0.90	0.1	0.1	
				59990	298-334	0.91-0.90	0.1	0.1	
				65010	298-334	0.91-0.90	0.2	0.2	
				9990	298-334	0.89-0.87	-0.1	0.1	
				15010	298-334	0.89-0.88	-0.1	0.1	
				19990	298-334	0.90-0.88	-0.1	0.1	
				25010 29990	298-334 298-334	0.90-0.88	-0.1	0.1	
C ₃₆ H ₄₄ N ₆ F ₂ S ₄ O ₈	[C12(benzim)2] bis[(trifluoromethyl)sulfonyl]imide	[C12(benzim)2]	1045.0	101.3	298-334	0.90-0.89 1.3700	-0.1 0.0	0.1 0.0	Anderson et al., 2005
C3611441161 254U8	[C12(benzim)2] bis[(trinuorometriyi)sunonyi]iinide	[bti]	1045.0	101.5	230,13	1.5700	0.0	0.0	/ HIGGISOH Et al., 2005
		[Ju]							

Table 2 (Continued)

ormula	IUPAC name	Abbreviation	М	P (kPa)	T (K)	ρ (g/cm ³)	$\%\Delta ho$	$ \%\Delta ho $	Reference
C ₄₂ H ₈₄ N ₂ F ₆ S ₂ O ₄	Tetradecylammonium bis[(trifluoromethyl)sulfonyl]imide	[tda] [bti]	859.3	101.3	298.15	1.0400	-0.2	0.2	Zhang et al., 2006
rediction set									
$C_6H_{11}N_2BF_4$	1-Ethyl-3-methylimidazolium tetrafluoroborate	[emim] [BF4]	198.0	100	293-393	1.30-1.23	-0.1	1.0	Gardas et al., 2007b
				1000	293-393	1.30-1.23	0.0	0.0	
				2000	293-393	1.30-1.23	0.2	0.2	
				3000	293-393	1.30-1.23	0.2	0.2	
				4000	293-393	1.30-1.23	0.2	0.2	
				5000	293-393	1.30-1.23	0.2	0.2	
				7500	293-393	1.30-1.23	0.1	0.1	
				10000	293-393	1.30-1.24	0.1	0.1	
				15000	293-393	1.31-1.24	0.0	0.0	
				20000	293-393	1.31-1.24	-0.1	0.1	
				25000	293-393	1.31-1.24	-0.2	0.2	
				30000	293-393	1.31-1.25	-0.3	0.3	
				101	298-308	1.28-1.27	-0.2	0.2	Navia et al., 2007
C ₆ H ₁₁ N ₂ InCl ₄	1-Ethyl-3-methylimidazolium indium choride	[emim] [InCl4]	367.8	101.3	293-343	1.64-1.59	0.0	0.0	Zang et al., 2005
$C_6H_{11}N_2WF_7$	1-Ethyl-3-methylimidazolium heptafluorotungstate	[emim] [WF7]	428.0	101.3	298.15	2.2700	0.0	0.0	Matsumoto and Hagiwara, 2005
$C_6H_{12}N_2O_4S$	1-Ethyl-3-methylimidazolium hydrogen sulfate	[emim] [HSO4]	207.4	101.3	298.15	1.3673	0.1	0.1	Valderrama et al., 2008
$C_7H_{14}N_2O_4S_2F_6$	Diethylmethyl(quaternary)ammonium	[NH221] [bti]	368.3	101.3	298.15	1.4300	-0.3	0.3	Valderrama et al., 2008
	bis[(trifluoromethyl)sulfonyl]imide								
$C_7H_{17}B_{11}Br_6N_2$	1-Ethyl-3-methylimidazolium hexabromide-1-carbon icosahedral	[emim] [CB11Br]	727.6	101.3	298.15	2.1510	0.0	0.0	Larsen et al., 2000
$C_8H_8N_3F_9S_2O_4$	1-Trifluoroethyl-3-methylimidazolium	[tfemim] [bti]	445.3	101.3	293.15	1.6600	0.3	0.3	Carda-Broch et al., 2003
	bis[(trifluoromethyl)sulfonyl]imide				295.15	1.6560	0.4	0.4	Wypych, 2001
$C_8H_{11}N_2F_3O_2$	1-Ethyl-3-methylimidazolium trifluoroacetate	[emim] [ta]	224.2	101.3	295.15	1.2850	3.6	3.6	Wypych, 2001
$C_9H_{10}F_6N_2O_4S_2$	1-Ethylpyridinium bis[(trifluoromethyl)sulfonyl]imide	[N-epy] [bti]	388.3	101.3	298-333	1.53-1.50	0.1	0.1	Kato and Gmehling, 2004
$C_9H_{11}F_6N_3O_3S$	1-Ethyl-3-methylimidazolium (2,2,2-trifluoro- <i>n</i> -(trifluoro methylsulfonyl)acetamide	[emim] [tsac]	355.3	101.3	298.15	1.4600	-0.5	0.5	Matsumoto et al., 2002
C ₈ H ₁₅ N ₂ GaCl ₄	1-Butyl-3-methylimidazolium chlorogallate	[bmim] [GaCl4]	350.8	101.3	298.15	1.4174	0.0	0.0	Valderrama et al., in press
	1,3-Diethylimidazolium trifluoroacetate	. ,. ,	238.2	101.3	295.15	1.2500	-0.4	0.0	Wypych, 2001
C ₉ H ₁₃ N ₂ F ₃ O ₂		[deim] [ta]							Glasser, 2004
$C_9H_{13}N_3F_6S_2O_4$	1-Metoxyethyl-3-methylimidazolium	[moemim] [bti]	421.3	101.3	293.15	1.5000	0.1	0.1	· · · · · · · · · · · · · · · · · · ·
C II NDE	bis[(trifluoromethyl)sulfonyl]imide	(N. 1 1 (DE 4)	222.0	1010	295.15	1.4960	0.1	0.1	Wypych, 2001
C ₉ H ₁₄ NBF ₄	N-Butylpiridinium tetrafluoroborate	[N-bupy] [BF4]	223.0	101.3	313-333	1.20-1.19	0.2	0.2	Blanchard et al., 2001
					298-343	1.21-1.19	0.0	0.0	Gu and Brennecke, 2002
C ₉ H ₁₄ NPF ₆	N-Butylpiridinium hexafluorophosphate	[N-bupy] [PF6]	281.2	101.3	298.15	1.2144	1.9	1.9	Zhang et al., 2006
$C_9H_{15}N_2F_3SO_3$	1-Butyl-3-methylimidazolium trifluoromethanesulfonate	[bmim] [TfO]	288.3	101.3	295-343	1.30-1.27	-1.1	1.1	Fredlake et al., 2004
$C_9H_{15}NO_5S$	Pyridinium ethoxyethylsulfate	[py] [EOESO4]	248.3	101.3	293-333	1.28-1.26	-0.1	0.1	Kato and Gmehling, 2004
C ₉ H ₁₆ F ₆ N ₂ O ₃ S	Trimethylisopropylammonium (2,2,2-trifluoro- <i>n</i> -(trifluoromethylsulfonyl)acetamide	[TMiPA] [tsac]	346.3	101.3	298.15	1.4100	0.0	0.0	Matsumoto et al., 2002
$C_9H_{16}F_6N_2O_3S$	Trimethylpropylammonium (2,2,2-trifluoro- <i>n</i> -(trifluoromethylsulfonyl)acetamide	[TMPA] [tsac]	346.3	101.3	298.15	1.3800	0.6	0.6	Matsumoto et al., 2002
C ₉ H ₁₇ N ₂ AlCl ₄	1-Pentyl-3-methylimidazolium tetrachloroaluminate	[pmim] [AlCl4]	322.0	101.3	273-343	1.23-1.18	0.0	0.0	Tong et al., 2006
C ₉ H ₁₇ N ₂ GaCl ₄	1-Pentyl-3-methylimidazolium chlorogallate	[pmim] [GaCl4]	364.8	101.3	308-343	1.36-1.34	0.0	0.0	Tong et al., 2006
					295-323		1.3		
$C_9H_{17}N_2PF_6$	1-Butyl-2,3-dimethylimidazolium hexafluorophosphate	[bdmim] [PF6]	298.2	101.3		1.24-1.21		1.3	Fredlake et al., 2004
				100	313-393	1.33-1.28	-4.1	4.1	Gardas et al., 2007a
				1000	313-393	1.34-1.28	-0.9	0.9	
				2000	313-393	1.34-1.28	0.1	0.1	
				3000	313-393	1.34-1.28	0.2	0.2	
				4000	313-393	1.34-1.28	0.2	0.2	
				5000	313–393	1.34-1.28	0.2	0.2	
				10000	313393	1.34-1.28	0.1	0.1	
$C_9H_{18}N_2O_3S$	1-Butyl-3-methylimidazolium methanesulfonate	[bmim] [mesy]	234.3	101.3	278-343	1.22-1.18	-1.6	1.6	Pereiro et al., 2007b
				101	298-308	1.21-1.20	-0.3	0.3	Navia et al., 2007
$C_{10}H_{15}F_6N_3O_4S_2$	1,2-Dimethyl-3-propylimidazolium bis[(trifluoromethyl) sulfonyl]imide	[dmprim] [bti]	419.4	101.3	295-344	1.45-1.42	-0.6	0.6	Fredlake et al., 2004

$C_{10}H_{15}N_3F_6S_2O_4$	1-Isobutyl-3-methylimidazolium bis[(trifluoromethyl)sul-	[i-bmim] [bti]	419.4	101.3	293.15	1.4300	-0.1	0.1	Carda-Broch et al., 2003
	fonyl]imide				295.15	1.4280	0.1	0.1	Wypych, 2001
$C_{10}H_{15}N_3F_6S_2O_4$	5-Methyl-1,3-diethylimidazolium bis[(trifluoromethyl)-	[mdeim] [bti]	419.4	101.3	295.15	1.4320	1.6	1.6	Wypych, 2001
	sulfonyl]imide								
$C_{10}H_{16}NBF_4$	1-Butyl-4-methylpyridinium tetrafluoroborate	[mbpyr] [BF4]	237.0	101.3	298-323	1.18-1.16	-0.7	0.7	Heintz et al., 2002b
$C_{11}H_{18}NO_9B$	[EOMNM2E] bis(oxalato)borate	[EOMNM2E] [BOB]	319.1	101.3	298.15	1.2712	0.6	0.6	Xu et al., 2003
$C_{10}H_{18}N_2F_6S_2O_4$	N-Methyl-N-propyl-pyrrolidinium bis[(trifluoromethyl)-	[prmpyr] [bti]	408.4	101.3	293.15	1.4590	0.0	0.0	Mantz and Trulove, 2002
	sulfonyl]imide				298.15	1.4500	-0.1	0.1	Zhang et al., 2006
$C_{10}H_{18}N_2O_2$	1-Butyl-3-methylimidazolium acetate	[bmim] [Ac]	198.3	101.3	298.15	1.0550	-2.1	2.1	Valderrama et al., 2008
$C_{10}H_{18}N_4$	n-Methyl-n-propylpyrrolidinium dicyanoamides	[mppyr] [dca]	194.3	101.3	298.15	0.9200	0.0	0.0	Zhang et al., 2006
$C_{10}H_{19}N_2Cl$	1-Hexyl-3-methylimidazolium chloride	[hmim] [Cl]	202.7	101.3	298-343	1.03-1.01	0.6	0.6	Gómez et al., 2006b
$C_{10}H_{19}N_2InCl_4$	1-Hexyl-3-methylimidazolium indium choride	[hmim] [InCl4]	423.9	101.3	283-338	1.49-1.43	0.1	0.1	Tong et al., 2007a
$C_{10}H_{19}N_2PF_6$	1-Hexyl-3-methylimidazolium hexafluorophosphate	[hmim] [PF6]	312.2	101.3	293-303	1.29-1.28	-0.1	0.1	Pereiro and Rodríguez, 2007a
					278-318	1.31-1.27	-0.1	0.1	Pereiro et al., 2006b
				100	293-393	1.29-1.21	-0.1	0.1	Gardas et al., 2007a
				3000	293-393	1.30-1.22	-0.1	0.1	
				4000	293-393	1.30-1.22	-0.1	0.1	
				5000	293-393	1.30-1.22	-0.2	0.2	
				10000	293-393	1.30-1.22	-0.2	0.2	
				1000	293-393	1.30-1.22	-0.1	0.1	
				2000	293-393	1.30-1.22	-0.1	0.1	
$C_{10}H_{20}N_2F_6S_2O_4$	Dimethylethylbutylammonium bis[(trifluoromethyl)	[BNM2E] [bti]	410.4	101.3	293.15	1.3700	1.5	1.5	Zhang et al., 2006
	sulfonyl]imide								
$C_{11}H_{16}N_2F_6SO_3$	1-Butyl-3-methylimidazolium 1,1,2,3,3,3-	[bmim] [HFPS]	370.3	101.3	283-348	1.42-1.36	-0.7	0.7	Shiflett et al., 2006b
	hexafluoropropanesulfonate								
$C_{11}H_{20}F_6N_2O_4S_2$	1-Butyl-1-methylpyrrolidinium bis[(trifluoromethyl)	[mbpyr] [bti]	422.4	101.3	298-348	1.39-1.37	-0.5	0.5	Kato and Gmehling, 2005
	sulfonyl]imide								
$C_{11}H_{20}N_4$	n-Methyl-n-butylpyrrolidinium dicyanoamides	[mbpyr] [dca]	208.3	101.3	298.15	0.9500	0.4	0.4	Zhang et al., 2006
$C_{11}H_{22}N_2O_5S_2F_6$	Triethyl(methoxymethyl)ammonium bis[[N222(101)] [bti]	426.4	101.3	298.15	1.4400	-1.2	1.2	Tsunashima and Sugiya, 2007
	(trifluoromethyl)sulfonyl]imide								
$C_{11}H_{22}NO_5S_2F_6$	Triethyl(2-methoxyethyl)phosphonium	[P222(2O1)] [bti]	457.4	101.3	298.15	1.3900	0.9	0.9	Tsunashima and Sugiya, 2007
	bis[(trifluoromethyl)sulfonyl]imide								
$C_{12}H_{15}F_9N_2O_6S_3$	1-Butyl-3-methylimidazolium tris	[bmim] [TMEM]	550.4	101.3	297-333	1.56-1.53	-0.1	0.1	Shiflett et al., 2006b
	(trifluoromethylsulfonyl)methide								
$C_{12}H_{15}F_9N_2O_6S_3$	1,2-Dimethyl-3-propylimidazolium	[dmpim] [TMEM]	550.4	101.3	283-348	1.61-1.57	0.3	0.3	Shiflett et al., 2006b
	tris(trifluoromethylsulfonyl)methide								
$C_{12}H_{15}N_2F_9SO_3$	1-Butyl-3-methylimidazolium nonafluorobutanesulfonate	[bmim] [NfO]	438.3	101.3	295.15	1.4730	-0.1	0.1	Zhang et al., 2006
$C_{13}H_{17}N_2F_6P$	1-(3-Phenylalkyl)-3-methylimidazolium	[Ph(CH2)3mim]	346.3	101.3	298.15	1.4070	0.1	0.1	Dzyuba and Bartsch, 2002
	hexafluorophosphate	[PF6]							
$C_{13}H_{17}N_2F_9SO_3$	1-Butyl-3-ethylimidazolium nonafluorobutanesulfonate	[beim] [NfO]	452.3	101.3	295.15	1.4270	-0.1	0.1	Wypych, 2001
$C_{13}H_{20}NO_8B$	N-Methyl-N-butylpyrrolidinium bis(oxalato)borate	[P14] [BOB]	329.1	101.3	298.15	1.2419	0.0	0.0	Xu et al., 2003
$C_{13}H_{23}F_3N_2O_3S$	1-Octyl-3-methylimidazolium trifluoromethanesulfonate	[omim] [TfO]	344.4	101.3	298.15	1.1200	5.5	5.5	Papaiconomou et al., 2006
$C_{13}H_{24}N_4$	n-Methyl-n-hexylpyrrolidinium dicyanoamides	[mhpyr] [dca]	236.4	101.3	298.15	0.9200	-0.3	0.3	Zhang et al., 2006
$C_{13}H_{25}N_2PF_6$	1-Nonyl-3-methylimidazolium hexafluorophosphate	[nmim] [PF6]	354.3	101.3	298.15	1.2120	-0.3	0.3	Zhang et al., 2006
$C_{14}H_{23}N_3F_6S_2O_4$	1-Octyl-3-methylimidazolium bis[(trifluoromethyl)	[omim] [bti]	475.5	101.3	298-343	1.32-1.29	-0.1	0.1	Kato and Gmehling, 2005
	sulfonyl]imide			100	293-393	1.32-1.24	0.3	0.3	Gardas et al., 2007b
				1000	293-393	1.32-1.24	0.3	0.3	
				2000	293-393	1.32-1.24	0.3	0.3	
				15000	293-393	1.33-1.25	0.1	0.1	
				20000	293-393	1.34-1.26	0.1	0.1	
				25000	293-393	1.34-1.26	0.0	0.0	
				30000	293-393	1.34-1.27	0.0	0.0	
				3000	293-393	1.33-1.24	0.3	0.3	
				4000	293-393	1.33-1.24	0.3	0.3	
				5000	293-393	1.33-1.24	0.2	0.2	
				7500	293-393	1.33-1.24	0.2	0.2	
				10000	293-393	1.33-1.25	0.2	0.2	
$C_{14}H_{23}N_5$	1-Octyl-3-methylimidazolium dicyanamide	[omim] [dca]	261.4	101.3	298.15	1.0000	-1.8	1.8	Papaiconomou et al., 2006

Table 2 (Continued)

Formula	IUPAC name	Abbreviation	М	P (kPa)	T (K)	ρ (g/cm ³)	$\%\Delta ho$	$ \%\Delta ho $	Reference
C ₁₄ H ₂₈ N ₂ F ₆ S ₂ O ₄	Triethylhexylammonium bis[(trifluoromethyl)sulfonyl]i-	[N6222] [bti]	466.5	101.3	293.15 298.15	1.2700 1.2700	1.9 1.6	1.9	Zhang et al., 2006
$C_{15}H_{30}F_6N_2O_4S_2$	mide Tributylmethylammonium bis[(trifluoromethyl)sulfonyl]i- mide	[N1444] [bti]	480.5	101.3	296.90	1.2660	0.3	1.6 0.3	Mantz and Trulove, 2002 Zhang <i>et al.</i> , 2006
$C_{15}H_{30}N_2F_6S_2O_4$	Triethylheptylammonium bis[(trifluoromethyl)sulfonyl]i- mide	[N7222] [bti]	480.5	101.3	293.15	1.2600	1.1	1.1	Zhang et al., 2006
$C_{15}H_{30}N_2O_6S$	Hexyloxymethyl(2-hydroxyethyl)-dimethylammonium acesulfamate	[hom(2H)DMA] [Ace]	365.6	101.3	298.15	1.1940	-0.2	0.2	Pernak et al., 2007
$C_{15}H_{34}N_3BF_4$	[Bis(butyl-ethyl-amino)methylene]-dymethylammonium tetrafluoroborate	[C15guan] [BF4]	343.3	101.3	298.15	1.0500	0.0	0.0	Mateus et al., 2003
C ₁₆ H ₂₃ N ₂ O ₃ SF ₉	1-Octyl-3-methylimidazolium nonafluorobutanesulfonate	[omim] [NfO]	494.4	101.3	298.15	1.3300	0.0	0.0	Papaiconomou et al., 2006
$C_{16}H_{24}N_2O_4S_2F_6$	4-Methyl-n-octylpiridinium bis[(trifluoromethyl) sulfonyl]imide	[4MOPY] [bti]	486.5	101.3	298.15	1.2900	0.0	0.0	Papaiconomou et al., 2007
$C_{16}H_{24}N_4$	4-Methyl- <i>n</i> -octylpiridinium dicyanamide	[4MOPY] [dca]	272.4	101.3	298.15	0.9800	0.0	0.0	Papaiconomou et al., 2007
C ₁₆ H ₂₇ N ₂ O ₆ B	1-Butyl-3-methylimidazolium bis(2-methyllactato)borate	[bmim] [BMLB]	354.2	101.3	298.15	1.1426	0.0	0.0	Xu et al., 2003
C ₁₆ H ₂₇ N ₃ F ₆ S ₂ O ₄	1-Decyl-3-methylimidazolium bis[(trifluoromethyl)	[decmim] [bti]	503.5	101.3	293.15	1.2792	0.1	0.1	Glasser, 2004
	sulfonyl]imide				298.15	1.2710	0.4	0.4	Zhang et al., 2006
$C_{16}H_{32}N_2F_6S_2O_4$	Triethyloctylammonium bis[(trifluoromethyl)	[N8222] [bti]	494.6	101.3	293.15	1.2500	0.3	0.3	Zhang et al., 2006
	sulfonyl]imide				298.15	1.2500	-0.1	0.1	Mantz and Trulove, 2002
C ₁₇ H ₃₄ N ₂ F ₆ S ₂ O ₄	Di(iso)propylethylheptylammonium bis[(trifluoromethyl) sulfonyl imide	[N723'3'] [bti]	508.6	101.3	293.15	1.2700	-0.9	0.9	Zhang et al., 2006
C ₁₈ H ₃₂ N ₂ O ₃ SF ₄	1-Dodecyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanesulfonate	[dmim] [TFES]	432.5	101.3	301.35	1.1360	0.2	0.2	Shiflett et al., 2006b
$C_{20}H_{36}N_4Br_2$	[C12(mim)2] bromide	[C12(mim)2] [Br]	492.3	101.3	298.15	1.2700	3.5	3.5	Anderson et al., 2005
$C_{20}H_{40}NO_4S_2F_6$	Triethyldodecylphosphonium bis[(trifluoromethyl) sulfonyl]imide	[P222(12)] [bti]	567.6	101.3	298.15	1.2100	-4.1	4.1	Tsunashima and Sugiya, 2007
$C_{26}H_{52}N_2F_6S_2O_4$	Tetrahexylammonium bis[(trifluoromethyl)sulfonyl]imide	[tha] [bti]	634.8	101.3	298.15	1.1100	-0.1	0.1	Zhang et al., 2006
C ₂₇ H ₅₈ N ₃ BF ₄	[Bis(bis-hexyl-amino)methylene]-dymethylammonium tetrafluoroborate	[C27guan] [BF4]	511.6	101.3	298.15	0.9700	-1.1	1.1	Mateus et al., 2003
C ₃₂ H ₆₈ ClP	Trihexyl(tetradecyl)phosphonium chloride	[6,6,6,14-P] [Cl]	519.3	190	298-333	0.89-0.87	0.5	0.5	Esperança et al., 2006a
				1000	298-333	0.89-0.87	0.4	0.4	
				3000	298-333	0.89-0.87	0.4	0.4	
				5010	298-333	0.89-0.87	0.3	0.3	
				7500	298-333	0.89-0.88	0.2	0.2	
				10000	298-333	0.89 - 0.88	0.2	0.2	
				15010	298-333	0.89-0.88	0.0	0.0	
				19990	298-333	0.90-0.88	-0.1	0.1	
				25010	298-333	0.90-0.88	-0.2	0.2	
				29990	298-333	0.90-0.89	-0.3	0.3	
				35010	298-333	0.90-0.89	-0.4	0.4	
				39990	298-333	0.91-0.89	-0.4	0.4	
				45010	298-333	0.91-0.89	-0.4	0.4	
				50000	298-333	0.91-0.89	-0.4	0.4	
				55000	298-333	0.91-0.90	-0.2	0.2	
				59990	298-333	0.91-0.90	0.0	0.0	
				65000	298-333	0.91-0.90	0.4	0.4	
$C_{34}H_{68}N_2F_6S_2O_4$	Tetraoctylammonium bis[(trifluoromethyl)sulfonyl]imide	[toa] [bti]	747.1	101.3	298.15	1.0600	0.1	0.1	Zhang et al., 2006
C ₃₅ H ₇₄ N ₃ Cl	[Bis(bis-octyl-amino)methylene]-dymethylammonium chloride	[C35guan] [C1]	572.5	101.3	298.15	0.9600	-4.1	4.1	Mateus et al., 2003
C ₃₆ H ₆₉ O ₄ SF ₈	Tetradecyl(trihexyl)phosphonium 1,1,2-trifluoro-2- (perfluoro-ethoxy)ethanesulfonate	[6,6,6,14-P] [TPES]	750.0	101.3	283–348	1.07-1.03	-0.3	0.3	Shiflett et al., 2006b

Fig. 2. Average absolute deviation found in correlating the liquid density of all ILs as function of the number of neurons in hidden layer: (\diamondsuit) during the training, and (\blacksquare) during the prediction.

Table 3Overall minimum, maximum, and average deviations for the calculated liquid density for all the ionic liquids using the Artificial Neural Network Model.

ANN model	Training set	Prediction set	Total set
Experimental data			
No. of ionic liquids	250	72	322
No. of data points	2410	773	3183
Deviations			
$\%\Delta ho_{ m min}$	0.00	0.00	0.00
$\%\Delta ho_{ ext{max}}$	-9.58	8.21	-9.58
$\%\Delta ho$	0.03	-0.04	0.02
$ \%\Delta ho $	0.57	0.48	0.55
No. of $ \%\Delta\rho < 5$	2358	764	3122
No. of $ \%\Delta\rho >10$	0	0	0

Table 4Optimum weight and bias for the artificial neural network 48-6-1.

w_{ij}	T (K)	P (kPa)	М	-CH ₃	-CF	I ₂ -	CH-	X	\equiv CH ₂	<u></u> СН−
	1	2	3	4	5		6	7	8	9
1	0.8118	99.1050	22.3070	-2.395	53 34	1.6360	-7.6127	-3.5624	-4.8948	-4.2670
2	0.0942	-0.0883	-1.4098	0.306	63 1	.8684	-0.1118	0.1163	-0.8155	-0.7180
3	0.0098	0.0252	0.6688	-3.720)1 –(0.1390	2.3714	-2.3900	0.1180	0.0851
4	0.0958	0.1935	10.5790	4.113		2.4800	-2.6782	-5.1770	0.1936	-0.1194
5	1.1417	-4.6350	-27.1700	22.843		5.9820	-0.5378	-17.6960	2.0352	2.3176
6	0.0138	0.0148	-2.4071	-2.995		.4973	2.3704	-2.0347	0.0841	-0.0127
	=c′	≕ ОН	-0-	C=0	-COO-	<u>=</u> 0	-NH ₂	-NH-	N-	<u></u> —N−
	=C 10	11	12	13	14	15	16	17	N- 18	19
1	-4.7503	-0.7226	5.1968	2.7989	3.1530	-3.3739	-5.9975	-3.1452	-4.7954	-4.7222
2	-0.0762	-0.1533	-0.0347	-0.6078	0.2186	-0.7558	0.1074	0.3750	0.8921	2.2897
3	0.3535	-0.5003	0.3061	0.9117	-0.7850	-0.3162	0.0072	0.0728	0.1573	0.0982
4	-1.9393	0.2911	0.1492	4.1564	1.1989	-0.5102 -0.6895	1.1150	-1.0725	-7.0744	-1.2451
5	-0.8517	-6.4453	-3.6423	7.6255	29.9150	2.7815	2.8594	1.5179	-7.0744 -37.5690	-0.3968
6	0.3421	-0.4455 -0.4863	-3.6423 0.4957	2.0776	-0.6387	0.0077	-0.2379	0.0452	0.2126	0.1397
	-CN	-NO ₂	-F	-Cl	-Br	-I	-P	-В	-S-	-SO ₂ -
	20	21	22	23	24	25	26	27	28	29
1	-4.1520	-5.2981	-17.0470	-3.1447	-6.2398	-5.6419	-1.5149	-2.2257	-3.3228	6.2987
2	-0.0897	0.0423	-0.0349	0.0794	-0.9363	-0.2558	0.2031	-0.1060	0.1711	-0.1860
3	-0.6857	0.0457	-0.2970	-1.7508	-1.9010	0.0955	-1.5804	2.3861	0.3501	-0.2214
4	4.3691	0.7452	2.6928	23.4560	2.3753	0.1081	-3.2667	0.9124	-1.5085	3.3360
5	6.1876	2.0440	4.5837	-20.6740	1.1128	2.9424	26.9100	1.7497	-4.9479	22.8920
6	-0.5229	-0.1857	0.4012	-0.8653	-0.1402	0.1752	-1.3690	0.7427	0.4152	0.6102
	-CH ₂ -	≕CH-	32	=c′	-0-)c <u></u> =0	-NH-	N-	<u></u> N−	-BH
	30	31	32	33	34	35	36	N- 37	38	39
1	-8.4080	7.3121	-2.1077	-3.5277	-2.7968	-4.9786	-7.5715	-3.2817	-6.7073	-3.7545
2	0.8610	0.2827	1.1482	0.1964	-0.2975	0.5114	0.0690	0.0671	0.5039	2.3962
3	1.6662	-2.1519	-0.1539	1.4151	-0.1068	-1.4355	0.0911	-0.7653	0.0338	-1.8195
4	-4.0056	2.9144	0.6670	2.8412	-2.5188	2.8454	0.2025	-0.4442	-3.6647	2.0052
5	-10.4340	-20.7670	2.2818	-12.7700	-9.4468	-8.8173	1.7653	-6.0686	1.7317	3.3870
6	1.8178	-1.1329	-0.2486	1.3884	0.4452	-1.0526	-0.3602	-0.5883	0.0246	-1.3847
	-Al	-Ga	–In	-W	-Sb	-Fe	-Nb	–Ta	-As	b_j
	40	41	42	43	44	45	46	47	48	
1	-3.1984	-9.8392	-7.0823	-2.6762	-5.0433	-6.1091	-5.0321	-3.0149	-5.2864	7.0685
2	0.6522	0.2573	0.2183	-2.0641	-1.7512	0.6072	-1.5178	-2.3391	-0.1678	-0.8047
3	0.4371	1.7252	-0.2857	0.1726	-0.0412	-0.1935	0.4813	0.2776	0.0771	-0.1223
4	-8.9325	-14.7720	-15.0320	0.1841	0.1789	-7.1529	-0.3696	-0.3611	0.0298	-0.9817
5	13.7780	5.7965	2.2765	2.1443	2.0435	0.6502	2.8946	2.9445	2.6518	-3.6407
6	0.2955	0.3866	0.0621	-0.3104	-0.3299	-0.0703	-0.2681	-0.2786	-0.1013	1.6647
w_{kj}	1	1 2 3		4		5	6	6		
1	0.12	160	-0.5509	10.0680	-	-0.1379	-0.0888	-10	0.3000	-0.2903

Fig. 3. Comparison between experimental and calculated values of liquid density of ILs: (a) during training and (b) during prediction.

4. Results and discussion

Table 2 presents the results of the method for each ionic liquid used in this study. The eighth and ninth columns in the Table show these deviations. The results were calculated using (Eqs. (4) and (5)), and presented as the relative deviation $|\Delta\rho\rangle$, the absolute deviation $|\Delta\rho\rangle$, the minimum deviation, $|\Delta\rho\rangle$ and the maximum deviation $|\Delta\rho\rangle$, the minimum deviation, and the maximum deviation for the 72 substances used to check the prediction capabilities of the trained network. As observed in the Table, the minimum, maximum, average and absolute average deviations for these substances are within the same ranges found during training.

Table 3 shows the overall minimum, maximum, and average deviations for all the substances using the proposed network 48-6-1. The results show that the ANN can be accurately trained and that the chosen topology can estimate the liquid density of ILs at several temperatures and pressures with enough accuracy, along with giving lower deviations than any other model currently available in the literature ($|\%\Delta\rho|$ less than 0.6% for the 2410 data points used in the training and $|\%\Delta\rho|$ less than 0.5% for the 773 data points in the prediction step).

Once the best architecture was determined, the optimum weights required to carry out the estimate of ρ –T–P for any ionic liquids, were obtained. Table 4 shows the optimal weight and bias for the artificial neural network 48-6-1.

Fig. 3 shows a comparison between experimental (solid line) and calculated values (circles) of ρ for IL's. Fig. 3(a) shows a comparison during training between correlated and literature values of the liquid density. The correlation coefficient R^2 is 0.9972 and the slope of the curve (expected to be 1.0) is 0.9952. Fig. 3(b) shows a comparison during prediction between predicted and literature values of ρ for ionic liquids. In this case, the correlation coefficient R^2 is 0.9957 and the slope of the curve (also expected to be 1.0) is 0.9996.

5. Conclusions

Based on the results and discussion presented in this study, the following main conclusions are obtained: (i) The great differences in structural, chemical, and physical properties of the IL's considered in the study impose additional difficulties to the problem that the proposed ANN has been able to consider; and (ii) the results show that the ANN can properly be trained and that the chosen topology (48-6-1) can estimate the liquid density for IL's at several temperatures and pressures accurately enough, with deviations within experimental errors.

Acknowledgement

The author thank the Department of Physics of the University of La Serena-Chile for special support that made possible the preparation of this paper.

References

Ammon, H. L. and S. Mitchell, "A New Atom/Functional Group Volume Additivity Data Base for the Calculation of the Crystal Densities of C, H, N, O and F-Containing Compounds," *Propellants, Explosives, Pyrotechnics*, **23**, 260 (1998). Ammon, H. L., "New Atom/Functional Group Volume Additivity Data Bases for the

Ammon, H. L., "New Atom/Functional Group Volume Additivity Data Bases for the Calculation of the Crystal Densities of C-, H-, N-, O-, F-, S-, P-, Cl-, and Br-Containing Compounds," *Struct. Chem.*, **12**, 205 (2001).

Anderson, J. L. and D. W. Armstrong, "High-Stability Ionic Liquids. A New Class of Stationary Phases for Gas Chromatography," *Anal. Chem.*, **75**, 4851 (2003).

Anderson, J. L., R. Ding, A. Ellern, and D. W. Armstrong, "Structure and Properties of High Stability Geminal Dicationic Ionic Liquids," J. Am. Chem. Soc., 127, 593 (2005).
Anthony, J. L., J. L. Anderson, E. J. Maginn, and J. F. Brennecke, "Anion Effects on Gas Solubility in Ionic Liquids," J. Phys. Chem. B, 109, 6366 (2005).

Arce, A., E. Rodríguez, and A. Soto, "Effect of Anion Fluorination in 1-Ethyl-3-methylimidazolium as Solvent for the Liquid Extraction of Ethanol from Ethyl *tert*-Butyl Ether," *Fluid Phase Equilib.*, **242**, 164 (2006).

Bazito, F. C., Y. Kawano, and R. M. Torresi, "Synthesis and Characterization of Two Ionic Liquids with Emphasis on their Chemical Stability towards Metallic Lithium," *Electrochim. Acta*, **52**, 6427 (2007).

Blanchard, L. A., Z. Gu, and J. F. Brennecke, "High-Pressure Phase Behavior of Ionic Liquid/CO₂ Systems," *J. Phys. Chem. B*, **105**, 2437 (2001).

Branco, L. C., J. N. Rosa, J. J. Moura Ramos, and C. A. M. Alfonso, "Preparation and Characterization of New Room Temperature Ionic Liquids," *Chem. Eur. J.*, 8, 3671 (2002).

Carda-Broch, S., A. Berthod, and D. W. Armstrong, "Solvent Properties of the 1-Butyl-3-methylimidazolium Hexafluorophosphate Ionic Liquid," *Anal. Bioanal. Chem.*, 375, 191 (2003).

Dzyuba, S. V. and R. A. Bartsch, "Influence of Structural Variations in 1-Alkyl(aralkyl)-3-methylimidazolium Hexafluorophosphates and Bis(trifluoromethyl-sulfonyl)-imides on Physical Properties of the Ionic Liquids," *Chem. Phys. Chem.*, **3**, 161 (2002).

Elbro, H. S., A. Fredenslund, and P. Rasmussen, "Group Contribution Method for the Prediction of Liquid Densities as a Function of Temperature for Solvents, Oligomers, and Polymers," *Ind. Eng. Chem. Res.*, 30, 2576 (1991).

- Esperança, J. M. S. S., H. J. R. Guedes, M. Blesic, and L. P. N. Rebelo, "Densities and Derived Thermodynamic Properties of Ionic Liquids. 3. Phosphonium-based Ionic Liquids over an Extended Pressure Range," J. Chem. Eng. Data, 51, 237 (2006a).
- Esperança, J. M. S. S., Z. P. Visak, N. V. Plechkova, K. R. Seddon, H. J. R. Guedes, and L. P. N. Rebelo, "Density, Speed of Sound, and Derived Thermodynamic Properties of Ionic Liquids over an Extended Pressure Range. 4. [C3mim][NTf2] and [C5mim][NTf2]," J. Chem. Eng. Data, 51, 2009 (2006b).
- Espinosa, G., D. Yaffe, A. Arenas, Y. Cohen, and F. Giralt, "A fuzzy ARTMAP-Based Quantitative Structure-Property Relationship (QSPR) for Predicting Physical Properties of Organic Compounds," *Ind. Eng. Chem. Res.*, 40, 2757 (2001).
- Fang, S., L. Yang, C. Wei, C. Peng, K. Tachibana, and K. Kamijima, "Low-Viscosity and Low-Melting Point Asymmetric Trialkylsulfonium Based Ionic Liquids as Potential Electrolytes," *Electrochem. Comm.*, 9, 2696 (2007).
- Fredlake, C. P., J. M. Crosthwaite, D. G. Hert, S. N. V. Aki, and J. F. Brennecke, "Thermophysical Properties of Imidazolium-based Ionic Liquids," J. Chem. Eng. Data. 49, 954 (2004).
- Gardas, R. L., M. G. Freire, P. J. Carvalho, I. M. Marrucho, I. M. A. Fonseca, A. G. M. Ferreira, and J. A. P. Coutinho, "High-Pressure Densities and Derived Thermodynamic Properties of Imidazolium-based Ionic Liquids," J. Chem. Eng. Data, 52, 80 (2007a).
- Gardas, R. L., M. G. Freire, P. J. Carvalho, I. M. Marrucho, I. M. A. Fonseca, A. G. M. Ferreira, and J. A. P. Coutinho, "PρT Measurements of Imidazolium-based Ionic Liquids," J. Chem. Eng. Data, 51, 1881 (2007b).
- Gardas, R. L. and J. A. P. Coutinho, "Extension of the Ye and Shreeve Group Contribution Method for Density Estimation of Ionic Liquids in a Wide Range of Temperatures and Pressures," Fluid Phase Equilib., 263, 26 (2008).
- Ganguly, S., "Prediction of VLE Data Using Radial Basis Function Network," Comput. Chem. Eng., 27, 1445 (2003).
- Glasser, L., "Lattice and Phase Transition Thermodynamics of Ionic Liquids," Thermochim. Acta, 421, 87 (2004).
- Gomes de Azevedo, R., J. M. S. Esperança, J. Szydlowski, Z. P. Visak, P. F. Pires, H. J. R. Guedes, and L. P. N. Rebelo, "Thermophysical and Thermodynamic Properties of Ionic Liquids over an Extended Pressure Range: [bmim][NTf2] and [hmim][NTf2]," J. Chem. Thermodyn., 37, 888 (2005).
- Gómez, E., B. González, N. Calvar, E. Tojo, and A. Domínguez, "Physical Properties of Pure 1-Ethyl-3-methylimidazolium Ethylsulfate and Its Binary Mixtures with Ethanol and Water at Several Temperatures," J. Chem. Eng. Data, **51**, 2096 (2006a).
- Gómez, E., B. González, A. Domínguez, E. Tojo, and J. Tojo, "Dynamic Viscosities of a Series of 1-Alkyl-3-methylimidazolium Chloride Ionic Liquids and Their Binary Mixtures with Water at Several Temperatures," J. Chem. Eng. Data, **51**, 696 (2006b).
- Gu, Z. and J. F. Brennecke, "Volume Expansivities and Isothermal Compressibilities of Imidazolium and Pyridinium-based Ionic Liquids," J. Chem. Eng. Data, 47, 339 (2002).
 Hagan, M. T., H. B. Demuth, and M. Beal, Neural Network Design, PWS Publishing
- Hagan, M. T., H. B. Demuth, and M. Beal, Neural Network Design, PWS Publishing Company, Boston, U.S.A. (1996).
- Heintz, A., D. V. Kulikov, and S. P. Verevkin, "Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients at Infinite Dilution of Polar Solutes in 4-Methyl-N-Butyl-Pyridinium Tetrafluoroborate Using Gas Liquid Chromatography." J. Chem. Thermodyn... 34, 1341 (2002a).
- Chromatography," *J. Chem. Thermodyn.*, **34**, 1341 (2002a).

 Heintz, A., D. Klasen, and J. K. Lehmann, "Excess Molar Volumes and Viscosities of Binary Mixtures of Methanol and the Ionic Liquid 4-Methyl-N-Butylpyridinium Tetrafluoroborate at 25, 40, and 50 deg C," *J. Solution Chem.*, **31**, 467 (2002b).
- Ihmels, E. C. and J. Gmehling, "Extension and Revision of the Group Contribution Method GCVOL for the Prediction of Pure Compound Liquid Densities," *Ind. Eng. Chem. Res.*, 42, 408 (2003).
- Jacquemin, J., P. Nancarrow, R. Ge, C. Hardacre, P. Husson, M. F. Costa Gomes, and A. A. H Pádua, "A Group-Contribution Model to Predict Volumetric Properties of Ionic Liquids as a Function of Temperature and Pressure," 2nd International Congress on Ionic Liquids (COIL-2), Yokohama, Japan (2007).
 Joback, K. and R. Reid, "Estimation of Pure Component Properties from Group
- Joback, K. and R. Reid, "Estimation of Pure Component Properties from Group Contributions," Chem. Eng. Commun., 57, 233 (1987).
- Kato, R. and J. Gmehling, "Activity Coefficients at Infinite Dilution of Various Solutes in the Ionic Liquids [MMIM]*[CH₃SO₄]-, [MMIM]*[CH₃OC₂H₄SO₄]-, [MMIM]* [(CH₃)₂PO₄]-,[C₅H₅NC₂H₅]*[(CF₃SO₂)₂N]- and [C₅H₅NH]*[C₂H₅OC₂H₄OSO₃]-," Fluid Phase Equilib., **226**, 37 (2004).
- Kato, R. and J. Gmehling, "Systems with Ionic Liquids: Measurement of VLE and γ^{∞} Prediction of Their Thermodynamic Behavior Using Original UNIFAC, mod. UNI-FAC(Do) and COSMO-RS(OI)," *J. Chem. Thermodyn.*, **37**, 603 (2005).
- Kumełan, J., A. Pérez-Salado, D. Tuma, and G. Maurer, "Solubility of CO₂ in the Ionic Liquid [hmim][Tf2N]," J. Chem. Thermodyn., 38, 1396 (2006).
- Larsen, A. S., J. D. Holbrey, F. S. Tham, and C. A. Reed, "Designing Ionic Liquids: Imidazolium Melts with Inert Carborane Anions," J. Am. Chem. Soc., 122, 7264 (2000)
- Laugier, S. and D. Richon, "Use of Artificial Neural Networks for Calculating Derived Thermodynamic Quantities from Volumetric Property Data," Fluid Phase Equilib., 210, 247 (2003).
- Lydersen, A. L., "Estimation of Critical Properties of Organic Compounds," Univ. Wisconsin Coll. Eng., Eng. Exp. Stn. Rep. 3, Madison, Wisconsin (1955).
- Mantz, R. A. and P. C. Trulove, "Viscosity and Density of Ionic Liquids," Ionic Liquids in Synthesis, p. 56–126, Wasserscheid P. and T. Welton (Eds.), Wiley-VCH Verlag GmbH and Co. KGaA, Germany (2002)
- Mateus, N. M. M., L. C. Branco, N. M. T. Lourenço, and C. A. M. Afonso, "Synthesis and Properties of Tetra-Alkyl-Dimethylguanidinium Salts as a Potential New Generation of Ionic Liquids," Green Chem., 5, 347 (2003).
- Matsumoto, H., H. Kageyama, and Y. Miyazaki, "Room Temperature Ionic Liquids Based on Small Aliphatic Ammonium Cations and Asymmetric Amide Anions," *Chem. Commun.*, **16**, 1726 (2002).

- Matsumoto, K. and R. Hagiwara, "A New Room Temperature Ionic Liquid of Oxyfluorometallate Anion: 1-Ethyl-3-Methylimidazolium Oxypentafluorotungstate (EMImWOF5)," J. Fluorine Chem., 126, 1095 (2005).
- Navia, P., J. Troncoso, and L. Romani, "Excess Magnitudes for Ionic Liquid Binary Mixtures with a Common Ion," J. Chem. Eng. Data, 52, 1369 (2007).
- Orchillés, A. V., V. González-Alfaro, P. J. Miguel, E. Vercher, and A. Martínez-Andreu, "Volumetric Properties of Binary Mixtures of Ionic Liquid 1-Butyl-3-methylimidazolium Octylsulfate with Water or Propanol in the Temperature Range of 278.15 K to 328.15 K," J. Chem. Thermodyn., 38, 1124 (2006).
- Papaiconomou, N., N. Yakelis, J. Salminen, R. Bergman, and J. M. Prausnitz, "Synthesis and Properties of Seven Ionic Liquids Containing 1-Methyl-3-octylimidazolium or 1-Butyl-4-methylpyridinium Cations," J. Chem. Eng. Data, 51, 1389 (2006).
- Papaiconomou, N., J. J. Salminen, M. Lee, and J. M. Prausnitz, "Physicochemical Properties of Hydrophobic Ionic Liquids Containing 1-Octylpyridinium, 1-Octyl-2-methylpyridinium, or 1-Octyl-4-methylpyridinium Cations," *J. Chem. Eng. Data*, 52, 833 (2007).
- Pereiro, A. B., F. P. Santamarta, E. Tojo, A. Rodríguez, and J. Tojo, "Temperature Dependence of Physical Properties of Ionic Liquid 1,3-Dimethylimidazolium Methyl Sulfate," *J. Chem. Eng. Data*, **51**, 952 (2006a).
- Pereiro, A. B., E. Tojo, A. Rodríguez, J. Canosa, and J. Tojo, "Properties of Ionic Liquid HMIMPF6 with Carbonates, Ketones and Alkyl Acetates," *J. Chem. Thermodyn.*, **38**, 651 (2006b).
- Pereiro, A. B. and A. Rodríguez, "Study on the Phase Behaviour and Thermodynamic Properties of Ionic Liquids Containing Imidazolium Cation with Ethanol at Several Temperatures," *J. Chem. Thermodyn.*, **39**, 978 (2007a).
- Pereiro, A. B. and A. Rodríguez, "Experimental Liquid-Liquid Equilibria of 1-Alkyl-3-methylimidazolium Hexafluorophosphate with 1-Alcohols," J. Chem. Eng. Data, 52, 1408 (2007b).
- Pereiro, A. B., J. L. Legido, and A. Rodríguez, "Physical Properties of Ionic Liquids Based on 1-Alkyl-3-Methylimidazolium Cation and Hexafluorophosphate as Anion and Temperature Dependence," *J. Chem. Thermodyn.*, **39**, 1168 (2007a).
- Pereiro, A. B., P. Verdía, E. Tojo, and A. Rodríguez, "Physical Properties of 1-Butyl-3-methylimidazolium Methyl Sulfate as a Function of Temperature," J. Chem. Eng. Data, 52, 377 (2007b).
- Pernak, J., A. Syguda, I. Mirska, A. Pernak, J. Nawrot, A. Pradzyńska, S. T. Griffin, and R. D.
- Rogers, "Choline Derivative-Based Ionic Liquids," *Chem. Eur. J.*, **13**, 6817 (2007). Piotrowski, K., J. Piotrowski, and J. Schlesinger, "Modelling of Complex Liquid Vapour Equilibria in the Urea Synthesis Process with the Use of Artificial Neural Network," *Chem. Eng. Process.*, **42**, 285 (2003).
- Rebelo, L. P. N., V. Najdanovic-Visak, Z. P. Visak, M. Nunes da Ponte, J. Szydlowski, C. A. Cerdeiriña, J. Troncoso, L. Romaní, J. M. S. . Esperança, H. J. R. Guedes, and H. C. de Sousa, "A Detailed Thermodynamic Analysis of [C4mim][BF4] + Water as a Case Study to Model Ionic Liquid Aqueous Solutions," Green Chem., 6, 396 (2004).
- Sanmamed, Y. A., D. González-Salgado, J. Troncoso, C. A. Cerdeiriña, and L. Romaní, "Viscosity-Induced Errors in the Density Determination of Room Temperature Ionic Liquids Using Vibrating Tube Densitometry," Fluid Phase Equilib., 252, 96 (2007)
- Sato, T., G. Masuda, and K. Takagi, "Electrochemical Properties of Novel Ionic Liquids for Electric Double Layer Capacitor Applications," *Electrochim. Acta*, 49, 3603 (2004).
- Shiflett, M. B., M. A. Harmer, C. P. Junk, and A. Yokozeki, "Solubility and Diffusivity of Difluoromethane in Room-Temperature Ionic Liquids," J. Chem. Eng. Data, 51, 483 (2006a).
- Shiflett, M. B., M. A. Harmer, C. P. Junk, and A. Yokozeki, "Solubility and Diffusivity of 1,1,1,2-Tetrafluoroethane in Room-Temperature Ionic Liquids," Fluid Phase Equilib., 242, 220 (2006b).
- Siqueira, L. J. A. and M. C. C. Ribeiro, "Molecular Dynamics Simulation of the Ionic Liquid N-Ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium Bis(trifluoromethanesulfonyl)imide," J. Phys. Chem. B, 111, 11776 (2007).
 Sözen, A., M. Özalp, and E. Arcaklio, "Investigation of Thermodynamic Properties of
- Sözen, A., M. Özalp, and E. Arcaklio, "Investigation of Thermodynamic Properties of Refrigerant/Absorbent Couples Using Artificial Neural Networks," *Chem. Eng. Process.*, 43, 1253 (2004).
- Stefanis, E., L. Constantinou, I. Tsivintzelis, and C. Panayiotou, "New Group-Contribution Method for Predicting Temperature-dependent Properties of Pure Organic Compounds," *Int. J. Thermophys.*, 26, 1369 (2005).
- Taskinen, J. and J. Yliruusi, "Prediction of Physicochemical Properties Based on Neural Networtk Modeling," Adv. Drug Deliv. Rev., 55, 1163 (2003).
- Tarver, G. M., "Density Estimations for Explosives and Related Compounds Using the Group Additivity Approach," J. Chem. Eng. Data, 24, 136 (1979).
- Tokuda, H., S. Tsuzuki, M. A. B. . Susan, K. Hayamizu, and M. Watanabe, "How lonic Are Room-Temperature Ionic Liquids? An Indicator of the Physicochemical Properties," J. Phys. Chem. B, 110, 19593 (2006).
- Tong, J., M. Hong, W. J. Guan, B. J. Li, and Z. Yang, "Studies on the Thermodynamic Properties of New Ionic Liquids: 1-Methyl-3-pentylimidazolium Salts Containing Metal of Group III," J. Chem. Thermodyn., 38, 1416 (2006).
- Tong, J., Q.-S. Liu, P. J. Zhang, and Z. Yang, "Surface Tension and Density of 1-Methyl-3-hexylimidazolium Chloroindium," *J. Chem. Eng. Data*, **52**, 1497 (2007a).
- Tong, J., Q.-S. Liu, W. Guan, and J.-Z. Yang, "Estimation of Physicochemical Properties of Ionic Liquid C6MIGaCl4 Using Surface Tension and Density," J. Phys. Chem. B, 111, 3197 (2007b).
- Troncoso, J., C. A. Cerdeiriña, Y. A. Sanmamed, L. Romaní, and L. P. N. Rebelo, "Thermodynamic Properties of Imidazolium-based Ionic Liquids Densities, Heat

- Capacities, and Enthalpies of Fusion of [bmim][PF6] and [bmim][NTf2]," J. Chem. Eng. Data, 51, 1856 (2006).
- Tsunashima, K. and M. Sugiya, "Physical and Electrochemical Properties of Lowviscosity Phosphonium Ionic Liquids as Potential Electrolytes," Electrochem. Comm., 9, 2353 (2007).
- Valderrama, J. O., W. W. Sanga, and J. A. Lazzús, "Critical Properties, Normal Boiling Temperatures, and Acentric Factors of Another 200 Ionic Liquids," Ind. Eng. Chem. Res., 47, 1318 (2008).
- Valderrama, J. O., J. A. Lazzú s, and K. Zarricueta, "Density of Ionic liquids: A Simple, Generalized, Accurate and Predictive Model," J. Chem. Eng. Data (in press).
- Wypych, G., Handbook of Solvents, ChemTec Publishing, New York, U.S.A. (2001).
- Xu, W., L.-M. Wang, R. A. Nieman, and C. A. Angell, "Ionic Liquids of Chelated Orthoborates as Model Ionic Glassformers," J. Phys. Chem. B, 107, 11749 (2003).
- Yaffe, D. and Y. Cohen, "Neural Network Based Temperature-dependent Quantitative Structure-Property Relations (QSPRs) for Predicting Vapor Pressure of Hydrocarbons," J. Chem. Inf. Comput. Sci., 41, 463 (2001).
- Ye, C. and J. M. Shreeve, "Rapid and Accurate Estimation of Densities of Room-Temperature Ionic Liquids and Salts," J. Phys. Chem. A, 111, 1456 (2007).
- Zang, S.-L., Q.-G. Zhang, M. Huang, B. Wang, and J.-Z. Yang, "Studies on the Properties of lonic liquid EMIInCl₄," *Fluid Phase Equilib.*, **230**, 192 (2005). Zhang, S., N. Sun, X. He, X. Lu, and X. Zhang, "Physical Properties of Ionic Liquids:
- Database and Evaluation," J. Phys. Chem. Ref. Data, 35, 1475 (2006).