STAT 35000 Introduction to Statistics

NAME: **Results of Project 4**

h) Repeat a)-g) above for n = 32, 64, 128, and $\lambda = 0.05, 0.1, 0.2, 0.5, 1, and summarize$ the result in the table below.

Sampling Distribution of \bar{x}_n when sampling from the Exponential Distribution $Exp(\lambda)$

$\lambda =$	$\mu =$	$\sigma =$	n =	$\mu_{\overline{x}} =$	$\sigma_{\overline{x}} =$
0.05	20	20	32	19,79432	3.472136
			64	20.16791	2,481169
			128	19,97461	1.733989
0.1	10	10	32	10.0282	1.737558
			64	10.03/61	1.268634
			128	10.0133	0.9160128
0.5	2	2	32	1. 99981	0.363771
			64	1.985944	0.245357
			128	1.99346	0.17/7648
1	1	1	32	0-9969126	0.173031
			64	0.9975464	0.1242684
		•	128	1,002001	0.0925792

B. Repeat all the steps in 1) above, but now simulate the sampling distribution of the statistic \overline{x}_n when sampling from the <u>Normal Distribution</u> $N(\mu, \sigma^2)$. You need only to replace rexp (n, rate=??) with rnorm(n, mean=??, sd=??) in step b) above.

Sampling Distribution of \overline{x}_n when sampling from the Normal Distribution $N(\mu, \sigma^2)$

$\mu =$	$\sigma =$	n	$\mu_{\overline{x}} =$	$\sigma_{\overline{x}} =$
10	1	16	10.00350	0.2538686
		25	10.00576	0.2012591
		36	9.999759	0.163 8586
10	3	16	9.943951	A. 3653/3
		25	10,06328	1.801519
		36	10.00814	1.475/87
20	1	16	20.01679	0.2469165
		25	19.99982	0.2001644
		36	19.9884	0.1632168
20	3	16	19.90346	2.2116 35
		25	19.99872	1,795335
		36	19.94894	1.546872