ROB311 Quiz 3

Hanhee Lee

March 29, 2025

Contents

1	Zer	ero-Sum Turn-Based Games		
	1.1	α/β Pruning	2	
		1.1.1 α Cuts	2	
		1.1.2 β Cuts		
	1.2	Monte-Carlo Tree Search (MCTS) Algorithm	3	
	1.3	Examples		
		1.3.1 Zero Sum Turn-Based Games		
		1.3.2 α Cuts		
		1.3.3 β Cuts	7	
		1.3.4 Alpha Beta Pruning	8	
		1.3.5 Monte-Carlo Tree Search (MCTS) Algorithm	Ć	

Turn-Taking Multi-Agent Decision Algorithms

1 Zero-Sum Turn-Based Games

Summary: In a zero-sum turn-based games, we assume that

- Agents and Environment:
 - there are two agents, called the **maximizer** and **minimizer**
 - the environment is always in one of a discrete set of states, \mathcal{S}
 - a subset of the states, $\mathcal{T} \subseteq \mathcal{S}$, are terminal states
 - there is only one decision maker for each non-terminal state, $s \in \mathcal{S} \setminus \mathcal{T}$
 - For each non-terminal state, $s \in \mathcal{S} \setminus \mathcal{T}$, the decision-maker has a discrete set of actions, $\mathcal{A}(s)$
- **Decision Process:** At time-step t, the decision-maker will:
 - **Observe:** Observe the state s_t
 - **Select:** Select an action $a_t \in \mathcal{A}(s_t)$
 - Move: Make the move (s_t, a_t)
- State Transitions:
 - Environment transitions to a deterministic state, s_{t+1} , based on a stationary fn,

$$s_{t+1} = \operatorname{tr}(s_t, a_t)$$

- Once a terminal state is reached (if $s_{t+1} \in \mathcal{T}$), the maximizer obtains a reward for the final transition based on a reward fn, $r(\cdot, \cdot, \cdot)$:

 $r(s_t, a_t, s_{t+1}) = \text{maximizer's reward for reaching state } s_{t+1}$

 $-r(s_t, a_t, s_{t+1}) = \text{minimizer's reward for reaching state } s_{t+1}$

Warning:

- Maximizer is trying to maximize the reward of agent 1
- Minimizer is trying to minimize the reward of agent 1 (i.e. maximize the reward of agent 2)

1.1 α/β Pruning

Motivation: Don't explore the entire game tree by pruning branches that are unreachable under perfect play.

Definition: For each state s:

- α_s : Maximum value at s thus far (initially $-\infty$)
- β_s : Minimum value at s thus far (initially $+\infty$)

1.1.1 α Cuts

Definition: If the maximizer is the turn-taker at s, then α_s increases to the maximum value of s's successors as they are explored, and $\beta_s = \beta_{\text{parent}(s)}$.

• If α_s increases beyond β_s , then s unreachable under perfect play.

1.1.2 β Cuts

Definition: If the **minimizer** is the turn-taker at s, then β_s decreases to the minimum value of s's successors as they are explored, and $\alpha_s = \alpha_{\text{parent}(s)}$.

• If β_s decreases beyond α_s , then s unreachable under perfect play.

1.2 Monte-Carlo Tree Search (MCTS) Algorithm

Algorithm:

1. Selection: Traverse using an alternate policy until a node has unexplored children.

Figure 1

- Our Agent (Upper Triangle): Uses UCB to choose the next node to explore
- Other Agent (Down Triangle): Can't control their actions, so this agent picks w/ their own heuristic.
- Square Boxes: Estimated values (i.e. n and \hat{q})
- Ends when there is at least one action that hasn't been explored yet. In this case, two actions ahven't been explored.
- Can skip expansion and simulation if the most recently expanded node is a terminal state.
- 2. Expansion: Expand an unexplored child; initialize n(a) and $\hat{q}(s,a)$.

Figure 2

- $\hat{q}(s,a)$ is initialized to 0 and n(a) is initialized to 1 b/c we've visited this node once.
- Randomly pick an unexplored action unless there is only one action left.
- Can skip similuation if the most recently expanded node is a terminal state.
- 3. Simulation: Traverse using the random policy until a terminal node is reached.

Figure 3

• Using random policy to simulate the game until a terminal state is reached (i.e. reward is obtained) 4. Back-propogation: Get the reward and reverse; update n(a) and $\hat{q}(s, a)$.

Figure 4

• Go up the path in yellow and update the values of n(a) and $\hat{q}(s,a)$ for OUR agent only (i.e. the upper triangle)

Warning:

- Works for more than 2 agents.
- Don't need to know anyone else's reward function.
- Has to be turn taking but can be not alternating (i.e. immediate switch between agents)
- Can augment simultaneous actions
- Communication
- Works fo rnon-zero sum games.

1.3 Examples

1.3.1 Zero Sum Turn-Based Games

Example:

- Given: Cavemen is injured from his hunt. He has extra food, but needs medicine.
 - He meets another caveman who is willing to trade.

give 1 🥔

give 2 🥔

give 1 🦤 give 2 🐓 accept

reject

Figure 6: Actions

Figure 7: Decision Process

Figure 8: Game Tree

- States
 - * Red triangle: Maximizing agent
 - * Blue triangle: Minimizing agent
 - * White circles with #s: terminal states
 - $\ast\,$ Rewards: In red b/c it's for the maximizer. The minimizer's reward is the negative of the maximizer's reward.

- Actions: Square boxes are actions
- Solution: Backtracking through the game tree, we can find the optimal path for the maximizer and minimizer.
 - Maximizer Turn: LL: Accept to get reward of 8, L: Accept to get reward of 16, R: Accept to get reward of 2, RR: Accept to get reward of 4
 - **Minimizer Turn:** LL: 1 medicine to make maximizer get reward of 8, R: 1 medicine to make maximizer get reward of 2
 - Maximizer Turn: 1 food to make maximizer get reward of 8 b/c going right will make maximizer get reward of 2
 - Optimal Path: Therefore, the optimal path will be LLL b/c the maximizer will get a reward of 8, while the minimizer will reduce the reward from 16 to 8.
 - * Assume boths agents play optimally, this will be the path taken.

1.3.2 α Cuts

Example:

• Explored 14, 12 and now $\beta_{parent(s)} = \beta_s = 5$, so this will be compared for α_s until $\alpha_s > \beta_s$ b/c then s unreachable under perfect play.

• Iterate:

- $-\alpha_s = -\infty < \alpha_s' = 2 \rightarrow \alpha_s = 2$, but $\alpha_s = 2 < \beta_s = 5$
- $-\alpha_s = 2 < \alpha_s' = 4 \rightarrow \alpha_s = 4$, but $\alpha_s = 4 < \beta_s = 5$ $-\alpha_s = 4 < \alpha_s' = 9 \rightarrow \alpha_s = 9$, and $\alpha_s = 9 > \beta_s = 5$, therefore, prune all the other branches that haven't been explored yet in the children of s paths

Figure 9

1.3.3 β Cuts

Example:

• Explored 4,6, and now $\alpha_{\text{parent}(s)} = \alpha_s = 7$, so this will be compared for β_s until $\beta_s < \alpha_s$ b/c then s unreachable under perfect play.

• Iterate:

- $-\beta_s = +\infty > \beta_s' = 9 \rightarrow \beta_s = 9$, but $\beta_s = 9 > \alpha_s = 7$
- $-\beta_s = 9 > \beta_s' = 8 \rightarrow \beta_s = 5$, but $\beta_s = 8 > \alpha_s = 7$ $-\beta_s = 8 > \beta_s' = 3 \rightarrow \beta_s = 3$, and $\beta_s = 3 < \alpha_s = 7$, therefore, prune all the other branches that haven't been explored yet in the children of s paths

Figure 10

1.3.4 Alpha Beta Pruning

Process:

1.

Example: Alpha-Beta Pruning Practice

1.

1.3.5 Monte-Carlo Tree Search (MCTS) Algorithm

Example:

1. **Given:** Consider a simplified two-player turn-based game tree. You are currently at the root node S_0 , which has three possible actions a_1, a_2, a_3 . The current statistics of its children are as follows:

Hanhee Lee

Action	$N(s_0,a)$	$\bar{X}(s_0,a)$
a_1	10	0.6
a_2	5	0.8
a_3	0	_

• $N(s_0, a)$: Number of times action a has been selected at state s_0

• $\bar{X}(s_0, a)$: Average reward obtained from action a at state s_0

• UCB =
$$\bar{X}(s_0, a) + \sqrt{\frac{\ln(t)}{N(s_0, a)}}$$

-t: Total number of actions taken at s_0

2. Problems:

• If we were to use the UCB algorithm, which nodes get selected during the selection phase? Which node gets expanded during the expansion phase?

• Suppose from the expanded node, simulation is performed until termination. A reward of +1 is obtained. Update the statistics at s_0 accordingly.

• Then, repeat the question, assuming a reward of -1 is attained after the simulation phase.

3. Solution:

(a) **Selection 1:** s_0 since we traverse until a node has unexplored children (i.e. s_3 is unexplored)

(b) **Expansion 1:** s_3 is automatically expanded since it is the only unexplored child of s_0 w/ $N(s_0, a_3) = 1$ and $\bar{X}(s_0, a_3) = 0$

(c) Simulation 1: Get a reward of +1

(d) **Back Propogation 1:** For this edge from s_0 to s_3 , we update the statistics as follows:

• $N(s_0, a_3) = 1$

• $\bar{X}(s_0, a_3) = \frac{1}{1} = 1$

(e) **Selection 2:** s_0 and choose the action with the highest UCB value for s_1 , s_2 , and s_3 :

• $UCB(s_0, a_1) = 0.6 + \sqrt{\frac{\ln(16)}{10}} = 1.13$

• $UCB(s_0, a_2) = 0.8 + \sqrt{\frac{\ln(16)}{5}} = 1.54$

• $UCB(s_0, a_3) = 1 + \sqrt{\frac{\ln(16)}{1}} = 2.67$. Therefore, choose s_3 as part of the selection phase and assume it has unexplored children.

(f) **Expansion 2:** Not enough info but assume we expand an unexplored child.

(g) Simulation 2: Get a reward of -1

(h) Back Propogation 2: For this edge from s_0 to s_3 , we update the statistics as follows:

• $N(s_0, a_3) = 2$

• $\bar{X}(s_0, a_3) = \frac{1 + (-1)}{2} = 0$