Department of Electronic and Telecommunication Engineering

University of Moratuwa

EN3021 – Digital System Design

RISC-V Pipelined Processor Report

Team Leftovers

Gunawardena M.N. 200201V Kavinda W.M.C. 200301D Kishokkumar R. 200306X

31st of December 2023

Design

This is an extension to the non-pipelined RISC V processor that was designed for the individual project. Here, we have designed a 5-stage pipelined RISC V processor with basic support against data and control hazards.

Given below is a diagram with the proposed microarchitecture.

Design decisions

Hazard detection unit

To prevent true data dependencies that occur during RAW, we have implemented control logic for data forwarding.

However, since stalling cannot be completely eliminated, we have implemented control logic for stalling as well.

Branch Prediction

Initially, we tried using a 2-bit branch predictor, but we could not successfully integrate it with the rest of the design. Therefore, we have used static branch prediction, and we assume branches will not be taken. We have implemented flush control logic to flush the pipeline in the case of a taken branch.

Implementation

Netlist

Resource Utilization

1. Slice Logic

+	-+-		+		+		+-	+
Site Type						Available		•
Slice LUTs*		1532		0	Ċ			8.70
LUT as Logic	I	1532		0	1	17600	I	8.70
LUT as Memory	I	0	I	0	Ī	6000	I	0.00
Slice Registers	I	1742	I	0	I	35200	I	4.95
Register as Flip Flop	I	1598	I	0	Ī	35200	I	4.54
Register as Latch	I	144		0	1	35200	I	0.41
F7 Muxes	I	416	I	0	I	8800	I	4.73
F8 Muxes	I	64	I	0	1	4400	I	1.45
+	-+-		+		+		+-	+

1.1 Summary of Registers by Type

+	·	+	++
Total			Asynchronous
			,
0	_	-	-
0	_	-	Set
0	_	-	Reset
0		Set	- 1
0	_	Reset	- 1
0	Yes	-	- 1
0	Yes	-	Set
158	Yes	-	Reset
0	Yes	Set	- 1
1584	Yes	Reset	- 1
+	+	+	++

Memory

+-		+-		+-		+		+		+
1	Site Type	I	Used	I	Fixed	I	Available	Ī	Util%	I
+-		+		+-		+		+		+
1	Block RAM Tile	Ī	0	Ī	0	Ī	60	Ī	0.00	I
1	RAMB36/FIFO*	Ī	0	l	0	I	60	Ī	0.00	I
1	RAMB18	Ī	0	l	0	I	120	Ī	0.00	I
4.		4.		+.		+		4		+

3. DSP

Site Type Used Fixed Available Util		+
DSPs	00	I

4. IO and GT Specific

+	-+-		+-		+		+-		-+
Site Type	1	Used	ī	Fixed	ī	Available	ĺ	Util%	Ī
+	-+-		+		+		+-		+
Bonded IOB	I	132	Ī	0	1	100	I	132.00	1
Bonded IPADs	I	0	Ī	0	1	2	I	0.00	1
Bonded IOPADs	I	0	I	0	1	130	I	0.00	1
PHY_CONTROL	I	0	I	0	1	2	I	0.00	1
PHASER_REF	I	0	I	0	1	2	I	0.00	1
OUT_FIFO	I	0	I	0	1	8	I	0.00	1
IN_FIFO	I	0	Ī	0	1	8	I	0.00	1
IDELAYCTRL	I	0	I	0	1	2	I	0.00	1
IBUFDS	I	0	Ī	0	1	96	I	0.00	1
PHASER_OUT/PHASER_OUT_PHY	I	0	Ī	0	1	8	I	0.00	1
PHASER_IN/PHASER_IN_PHY	I	0	Ī	0	1	8	I	0.00	1
IDELAYE2/IDELAYE2_FINEDELAY	I	0	Ī	0	1	100	I	0.00	1
ILOGIC	I	0	Ī	0	1	100	I	0.00	1
OLOGIC	I	0	Ī	0	1	100	I	0.00	1
+	-+-		+		+		+-		-+

5. Clocking

+-		+		+-		+		+	+
I	Site Type						Available	ľ	
	BUFGCTRL	i	3		0	Ì	32		
I	BUFIO	Ī	0	I	0	I	8		0.00
I	MMCME2_ADV	Ī	0	I	0	I	2		0.00
I	PLLE2_ADV	Ī	0	I	0	I	2	I	0.00
I	BUFMRCE	Ī	0	I	0	I	4	I	0.00
I	BUFHCE	Ī	0	I	0	I	48	I	0.00
I	BUFR	Ī	0		0	I	8	I	0.00
+-		+		٠.		+		+	+

6. Specific Feature

Site Type					•	Available		
BSCANE2	ı		ı	0	Ì	4	Ī	
CAPTUREE2	I	0	I	0	I	1	I	0.00
DNA_PORT	I	0	I	0	I	1	I	0.00
EFUSE_USR	I	0	I	0	I	1	I	0.00
FRAME_ECCE2	I	0	I	0	I	1	I	0.00
ICAPE2	I	0	I	0	I	2	I	0.00
STARTUPE2	I	0	I	0	I	1	I	0.00
XADC	I	0	I	0	I	1	I	0.00
+	+-		+-		+		+	+

7. Primitives

+-		+-		+-	+
I	Ref Name	I	Used	Ī	Functional Category
+-		+-		+-	+
I	FDRE	I	1584	1	Flop & Latch
I	LUT6	I	1214	1	LUT
I	MUXF7	I	416	1	MuxFx
I	LUT5	I	184	1	LUT
I	LUT3	I	148	1	LUT
I	LDCE	I	144	1	Flop & Latch
I	OBUF	I	130	1	IO
I	LUT4	I	81	1	LUT
I	MUXF8	I	64	1	MuxFx
I	LUT2	I	38	1	LUT
I	CARRY4	I	25	1	CarryLogic
I	FDCE	I	14	1	Flop & Latch
I	BUFG	I	3	1	Clock
I	LUT1	I	2	Ī	LUT
I	IBUF	I	2	1	IO

Contribution

Gunawardena M.N. 200201V	Data Hazards (Hazard detection, Forwarding, Flushing)
Kavinda W.M.C. 200301D	Pipeline Registers (IFID, IDEX, EXMEM, MEMWB)
Kishokkumar R.	Branch Prediction
200306X	