REPEX: A FLEXIBLE FRAMEWORK FOR SCALABLE REPLICA EXCHANGE MOLECULAR DYNAMICS SIMULATIONS

Antons Treikalis, Andre Merzky, Haoyuan Chen, Tai-Sung Lee, Darrin M. York, Shantenu Jha

OUTLINE

- What is replica exchange?
- Why replica exchange?
- Current challenges in REMD software
- Our contribution
- RepEx design principles
- Performance characterization
- Why RepEx?
- Conclusion

WHAT IS REPLICA EXCHANGE?

- Replica Exchange Molecular Dynamics (REMD)
- Introduced by Sugita and Okamoto in 1999 [1]
- The algorithm:
 - Concurrently run multiple Molecular Dynamics (MD)
 simulations at different temperatures for N time-steps
 - Select exchange partners: neighbours, all, etc.
 - Accept exchange of temperatures according to probability given by the Metropolis criterion
 - Repeat

WHAT IS REPLICA EXCHANGE?

WHY REPLICA EXCHANGE?

- Protein structure prediction and protein design
 - understand how protein works to target it with drugs
- Role of proteins in diseases
 - HIV virus
 - Cancer
 - Alzheimer's

SYNCHRONIZATION IN REPLICA EXCHANGE

Top: Synchronous RE; Bottom: Asynchronous RE

CURRENT CHALLENGES IN REMD SOFTWARE

- REMD capability is integrated into molecular simulations software
 - advances in the RE methodology are tied to the particular MD code
 - can't take advantage of the advances in other MD simulation engines
 - high barrier for addition of different exchange parameters
 - high barrier for implementation of REMD algorithms
- Synchronization flexibility
- Fault tolerance

OUR CONTRIBUTION

- RepEx package
 - Allows to run multi-dimensional RE simulations
 - Enables implementation and testing of various RE methods
 - Can be extended to use any exchange parameter and/or MD engine
 - Supports synchronous and asynchronous RE
- "Ensemble of tasks" solution to a set of challenges associated with RE implementations

REPEX: PILOT SYSTEM

- A multi-stage mechanism for workload execution via the use of a placeholder job
- Execution and management of workloads with multiple, heterogeneous and dependent tasks
- RADICAL-Pilot
 - API in Python
 - > > 100 tasks/second
 - < 8000 concurrent tasks
 </p>
 - Portability across various HPC architectures
 - Explicit support for synchronization

REPEX: FLEXIBLE EXECUTION

Top: Execution Mode I; Bottom: Execution Mode II

TASK EXECUTION DIAGRAM

PERFORMANCE CHARACTERIZATION

Weak scaling parallel efficiency (% of linear scaling) for temperature exchange (T-REMD) salt concentration exchange umbrella (S-REMD) and exchange (U-REMD). For all simulations is used alanine dipeptide. We perform 6000 simulation timesteps between exchanges. Runs are performed SuperMIC cluster using on Amber MD engine.

WHY REPEX?

- Satisfies functional, performance and usability requirements of the REMD simulation software
- No limitation in the number and ordering of dimensions for M-REMD simulations
- Explicitly supports sync. and async. RE
- Can be extended to support other MD engines with minimal changes at the source code level

WHY REPEX?

	Amber	GROMACS	LAMMPS	VCG async	CHARMM	Charm++/ NAMD MCA	RepEx
Max replicas	~2750	~900	100	240	4096	2048	3584
Max CPU cores	~5500	~150000	76800	1920	131072	524288	13824
Fault tolerance	n/a	n/a	n/a	basic	n/a	n/a	basic
MD engines	Amber	Gromacs	LAMMPS	IMPACT	CHARMM	NAMD	Amber, NAMD
RE patterns	sync	sync	sync	sync, async	sync	sync	sync, async
Nr. Exec. Modes	1	1	1	2	1	1	2
Nr. dims	2	2	2	2	2	2	3
Exchange params	3	2	2	2	2	2	3

CONCLUSION

- Task level parallelism approach:
 - Helps to overcome challenges faced by REMD software packages
 - Lowers the barrier for development and testing of various REMD methods
- RepEx serves as an umbrella for MD engines developed by different scientific communities

REFERENCES

- 1. Sugita, Yuji, and Yuko Okamoto. "Replica-exchange molecular dynamics method for protein folding." Chemical physics letters 314.1 (1999): 141-151.
- 2. RepEx, https://github.com/radical-cybertools/radical.repex
- 3. RADICAL-Pilot, https://github.com/radical-cybertools/radical.pilot
- 4. Chodera, John D., and Michael R. Shirts. "Replica exchange and expanded ensemble simulations as gibbs sampling: Simple improvements for enhanced mixing." The Journal of chemical physics 135.19 (2011): 194110.