

PL03 - Introdução ao Al Studio

AEC - Mestrado em Engenharia Biomédica

Plano de Aula - PL03

- Introdução ao Al Studio
- **©** Exemplo de Correlação
- Ficha Exercícios (fe02)

Introdução ao Al Studio

Al Studio

O **Al Studio** é uma ferramenta comercial para análise de dados que utiliza machine learning e pode ser considerada uma alternativa para a ferramenta Weka.

Esta ferramenta desenvolvida pela empresa com o mesmo nome, tem como principal missão acelerar o processo de criação de análises preditivas e torná-las mais fáceis para serem aplicadas em cenários práticos de negócios.

Download:

(necessidade de executar login. Fazer com o login de aluno)

https://docs.rapidminer.com/latest/studio/installation/index.html

Contexto e Perspectiva

A Sara é gerente regional de vendas de um fornecedor nacional de combustíveis fósseis para aquecimento doméstico.

A recente **volatilidade nos preços** de mercado do gasóleo para aquecimento específico, juntamente com uma grande variabilidade no tamanho de cada pedido de óleo para aquecimento doméstico, tem preocupado a Sara.

Que comportamentos e outros fatores que podem influenciar a procura por gasóleo?

Que fatores estão relacionados com uso de óleo para aquecimento e como se pode usar o conhecimento desses fatores para gerir melhor o inventário e antecipar a procura?

O Data Mining pode ajudá-la a compreender esses fatores e interações

Business Understanding

O objetivo da Sara é compreender melhor como a sua empresa pode ter sucesso no mercado de gasóleo para aquecimento doméstico

Ela reconhece que existem muitos fatores que influenciam o consumo de gasóleo para aquecimento e acredita que, ao investigar a relação entre esses vários fatores, poderá monitorizar e responder melhor à procura. A Sara decidiu selecionar a correlação como uma forma de modelar o relacionamento entre os fatores que pretende investigar.

A **correlação** é uma medida estatística que mede o quão fortes são os relacionamentos entre atributos num dataset.

Data Understanding

Usando os dados do empregador da Sara, extraídos principalmente da base de dados de cobrança da empresa, foi criado um dataset composto pelos seguintes atributos:

- **Insulation:** classificação de densidade que varia de 1 a 10 e indica a espessura do isolamento de cada casa. Uma casa com uma classificação de densidade de um é mal isolada, enquanto uma casa com uma densidade de dez possui um excelente isolamento.
- Temperature: temperatura ambiente média externa de cada casa no ano mais recente, medida em graus Fahrenheit.
- **Heating_Oil:** número total de unidades de óleo de aquecimento adquiridas pelo proprietário de cada casa no ano mais recente.
- Num_Occupants: número total de ocupantes que vivem em cada casa.
- Avg_Age: idade média dos ocupantes que vivem em cada casa.
- Home_Size: classificação, numa escala de 1 a 8, do tamanho geral da casa. Quanto maior o número, maior a casa.

Data Preparation

Download do dataset: pl03-dataset.csv

- 1. Importar o CSV para o repositório rapidminer (ImportData -> MyComputer)
- 2. Verificar a view dos resultados e inspecionar os dados CSV importados (Data, Statistics)

Modeling

- 3. Mude para a perspetiva de design e arraste o dataset para a janela do processo;
- 4. No separador Operadores (secção das ferramentas de Data Mining), no canto inferior esquerdo, use a caixa de pesquisa e escreva a palavra "correlation". A ferramenta necessária chamase "Correlation Matrix". Arraste-a para a janela do processo e solte-a.

Modeling

5. Estabeleça as ligações tal como representadas na figura. Clique em Run.

Modeling

Matriz de Correlação:

Attribut	Insulation	Temper	Heating	Num_O	Avg_Age	Home
Insulation	1	-0.794	0.736	-0.013	0.643	0.201
Tempera	-0.794	1	-0.774	0.013	-0.673	-0.214
Heating	0.736	-0.774	1	-0.042	0.848	0.381
Num_Oc	-0.013	0.013	-0.042	1	-0.048	-0.023
Avg_Age	0.643	-0.673	0.848	-0.048	1	0.307
Home_S	0.201	-0.214	0.381	-0.023	0.307	1

Evaluation

Coeficientes de correlação:

]0, 1] - Correlações Positivas

[-1, 0[- Correlações Negativas

Evaluation

Attribut	Insulation	Temper	Heating	Num_O	Avg_Age	Home
Insulation	1	-0.794	0.736	-0.013	0.643	0.201
Tempera	-0.794	1	-0.774	0.013	-0.673	-0.214
Heating	0.736	-0.774	1	-0.042	0.848	0.381
Num_Oc	-0.013	0.013	-0.042	1	-0.048	-0.023
Avg_Age	0.643	-0.673	0.848	-0.048	1	0.307
Home_S	0.201	-0.214	0.381	-0.023	0.307	1

Os atributos *heating_oil consumption* e *Insulation rating level* possuem uma correlação positiva de 0.736.

Qual o significado deste valor?

Evaluation

Correlações positivas significam, por um lado, que à medida que o valor de um atributo aumenta, o valor do outro atributo também aumenta.

Por outro lado, uma correlação positiva também pode ser encontrada quando à medida que o valor de um atributo diminui, o valor do outro atributo também diminui.

Evaluation

Quando os valores dos atributos se movem na mesma direção, a correlação é positiva.

Quando os valores dos atributos se movem em direções opostas, a correlação é negativa.

Evaluation

Os coeficientes de correlação não permitem apenas determinar a relação entre atributos, mas também nos dizem algo sobre a **força** da correlação

Quanto mais próximo um coeficiente de correlação estiver de 1 ou de -1, mais forte é a correlação dos atributos.

Evaluation

O Al Studio ajuda a reconhecer as correlações fortes através de uma codificação por cores tanto no separador Data como no separador Matrix Visualization.

Evaluation

Com este estudo foi possível perceber que os dois atributos mais fortemente correlacionados são o Heating_Oil e o Avg_Age, com um coeficiente de 0,848.

À medida que a idade média dos ocupantes de uma casa aumenta, aumenta também o uso de gasoleo de aquecimento nessa casa. Porquê?

A suposição de que uma correlação prova causalidade é perigosa e muitas vezes falsa

Evaluation

O coeficiente de correlação entre Avg_Age e Temperature é de -0.673 correlação negativa forte

"À medida que a idade dos moradores de uma casa aumenta, a temperatura externa diminui; e à medida que a temperatura aumenta, a idade dos moradores diminui."

Embora estatisticamente exista uma correlação entre estes dois atributos, não há nenhuma razão lógica para que a idade média dos ocupantes de uma casa possa ter algum efeito sobre a temperatura externa da casa e vice-versa.

A suposição de que uma correlação prova causalidade é perigosa e muitas vezes falsa

Evaluation

Outra falsa interpretação é que os coeficientes de correlação são percentagens(%).

Um coeficiente de correlação de 0,776 ≠ 77,6% de variabilidade entre esses atributos.

A fórmula matemática subjacente ao cálculo dos coeficientes de correlação mede apenas a força, como indicado pela proximidade de 1 ou -1, da interação entre os atributos.

Deployment

O conceito de deployment em Data Mining significa fazer algo com os resultados do modelo, ou seja, tomar algumas medidas com base no que o modelo aprendeu. Existem várias coisas que a Sara pode fazer para agir com base no modelo/conhecimento obtido:

Remover o atributo
Num_Occupants

Investigar o papel do isolamento da casa

Aumentar a granularidade do data set

Adicionar **atributos** ao *data set*

Deployment

Remover o atributo
Num_Occupants

O número de pessoas que vivem numa casa pode logicamente parecer uma variável que influencia o uso de gasóleo, mas este não se correlacionou de forma significativa com mais nenhum atributo.

Investigar o papel do isolamento da casa

O atributo de Isolamento foi bastante correlacionado com uma série de outros atributos. Isto significa que pode haver a oportunidade de fazer parceria com uma empresa especializada em adicionar isolamento às casas existentes ou até mesmo criar a sua própria empresa.

Deployment

Aumentar a granularidade do dataset

Este data set tem atributos de baixa granularidade como a temperatura média anual. As temperaturas flutuam ao longo do ano e, portanto, medidas mensais, ou mesmo semanais, mostrariam resultados mais detalhados e próximos da realidade.

Adicionar **atributos** ao *data set*

Por exemplo, talvez o número de instrumentos que consomem gasóleo de aquecimento em cada casa, como forno se/ou caldeiras, acrescentasse algo ao estudo da Sara.

Ficha de Exercícios 02

PL03 - Introdução ao Al Studio

AEC - Mestrado em Engenharia Biomédica