Efficient Steady-state Simulation of High-dimensional Reflected Brownian Motions

Nian Si Joint work with Jose Blanchet, Xinyun Chen, and Peter Glynn

INFORMS 2020

October 6, 2020

- Model Setup and Assumptions
 - Reflected Brownian Motion
 - Assumptions
- Multilevel Monte Carlo Algorithm
 - Algorithm Specification
 - Error Bound
- Numerical Experiments

Reflected Brownian Motion (RBM)

- RBM is the solution of a Skorokhod problem with Brownian input.
- Skorokhod problem:

$$0 \le \mathbf{Y}(t) = \mathbf{Y}(0) + \mathbf{X}(t) + R\mathbf{L}(t), \ \mathbf{L}(0) = 0$$
 (1)

where the *i*-th entry of $\mathbf{L}(\cdot)$ is non-decreasing and $\int_0^t Y_i(s) dL_i(s) = 0$.

Multi-dimensional Brownian motion X → RBM Y.

Reflected Brownian Motion (RBM)

- RBM is the solution of a Skorokhod problem with Brownian input.
- Skorokhod problem:

$$0 \le \mathbf{Y}(t) = \mathbf{Y}(0) + \mathbf{X}(t) + R\mathbf{L}(t), \ \mathbf{L}(0) = 0$$
 (1)

where the *i*-th entry of $\mathbf{L}(\cdot)$ is non-decreasing and $\int_0^t Y_i(s) dL_i(s) = 0$.

- Multi-dimensional Brownian motion X → RBM Y.
- Goal: Find an efficient simulation algorithm to estimate the steady-state expectation of certain functions $f(\cdot)$ of a general multi-dimension RBM for arbitrary dimension d.

• Uniform contraction: let $R = I - Q^T$, where Q is substochastic and satisfies

$$\left\|\mathbf{1}^T Q^n\right\|_{\infty} \leq \kappa_0 (1-\beta_0)^n, \ n \geq 1.$$

for $\beta_0 \in (0,1)$ and $\kappa_0 \in (0,\infty)$ independent of d.

• Uniform contraction: let $R = I - Q^T$, where Q is substochastic and satisfies

$$\left\|\mathbf{1}^T Q^n\right\|_{\infty} \leq \kappa_0 (1-\beta_0)^n, \ n \geq 1.$$

for $\beta_0 \in (0,1)$ and $\kappa_0 \in (0,\infty)$ independent of d.

• Uniform stability: let $\mathbf{X}(t) = \mu t + C\mathbf{B}(t)$ and assume $R^{-1}\mu < -\delta_0\mathbf{1}$ for $\delta_0 > 0$ independent of d.

• Uniform contraction: let $R = I - Q^T$, where Q is substochastic and satisfies

$$\left\|\mathbf{1}^T Q^n\right\|_{\infty} \leq \kappa_0 (1-\beta_0)^n, \ n \geq 1.$$

for $\beta_0 \in (0,1)$ and $\kappa_0 \in (0,\infty)$ independent of d.

- Uniform stability: let $\mathbf{X}(t) = \mu t + C\mathbf{B}(t)$ and assume $R^{-1}\mu < -\delta_0 \mathbf{1}$ for $\delta_0 > 0$ independent of d.
- Uniform marginal variability: let $\Sigma = CC^T$ and assume $b_0^{-1} \le \Sigma_{i,i} \le b_0$ for $b_0 > 0$ independent of d.

• Uniform contraction: let $R = I - Q^T$, where Q is substochastic and satisfies

$$\left\|\mathbf{1}^T Q^n\right\|_{\infty} \leq \kappa_0 (1-\beta_0)^n, \ n \geq 1.$$

for $\beta_0 \in (0,1)$ and $\kappa_0 \in (0,\infty)$ independent of d.

- Uniform stability: let $\mathbf{X}(t) = \mu t + C\mathbf{B}(t)$ and assume $R^{-1}\mu < -\delta_0 \mathbf{1}$ for $\delta_0 > 0$ independent of d.
- Uniform marginal variability: let $\Sigma = CC^T$ and assume $b_0^{-1} \le \Sigma_{i,i} \le b_0$ for $b_0 > 0$ independent of d.
- **Lipschitz functions:** The function to be estimated $f(\cdot)$ is Lipschitz continuous in I_{∞} norm, i.e. $|f(\mathbf{y}) f(\mathbf{y}')| \leq \mathcal{L} ||\mathbf{y} \mathbf{y}'||_{\infty}$ for $\mathcal{L} > 0$ independent of d.

Multilevel Monte Carlo Algorithm: Discretization

• Parameters: discretization granularity $\gamma \in (0,1)$; simulation horizon T > 0; the total number of levels L.

Multilevel Monte Carlo Algorithm: Discretization

- Parameters: discretization granularity $\gamma \in (0,1)$; simulation horizon T > 0; the total number of levels L.
- Linear discretization in level $m \geq 0$: denote $\mathbb{D}_m = \{0, \gamma^m, 2\gamma^m, ...\}$, let $t_m^+ = \inf\{r \in \mathbb{D}_m : r > t\}$ and $t_m^- = \sup\{r \in \mathbb{D}_m : r \leq t\}$;

$$B_i^m(t) = B_i(t_m^-) + (t - t_m^-) \frac{B_i(t_m^+) - B_i(t_m^-)}{t_m^+ - t_m^-}, \text{ for } i = 1, 2, ..., d.$$

• $X^{m}(t) = \mu t + CB^{m}(t)$.

Multilevel Monte Carlo Algorithm: Discretization

- Parameters: discretization granularity $\gamma \in (0,1)$; simulation horizon T > 0; the total number of levels L.
- Linear discretization in level $m \geq 0$: denote $\mathbb{D}_m = \{0, \gamma^m, 2\gamma^m, ...\}$, let $t_m^+ = \inf\{r \in \mathbb{D}_m : r > t\}$ and $t_m^- = \sup\{r \in \mathbb{D}_m : r \leq t\}$;

$$B_i^m(t) = B_i(t_m^-) + (t - t_m^-) \frac{B_i(t_m^+) - B_i(t_m^-)}{t_m^+ - t_m^-}, \text{ for } i = 1, 2, ..., d.$$

- $\bullet \ \mathbf{X}^m(t) = \boldsymbol{\mu}t + C\mathbf{B}^m(t).$
- RBMs driven by $\mathbf{X}_{s:t}$ ($\mathbf{X}_{s:t}^m$) for $\mathbf{X}_{s:t}(u) = \mathbf{X}(s+u) \mathbf{X}(s)$:

$$\mathbf{Y}(t+s;\mathbf{y},\mathbf{X}_{0:s+t}) = \mathbf{Y}(t;\mathbf{Y}(s;\mathbf{y},\mathbf{X}_{0:s}),\mathbf{X}_{s:s+t}),$$

$$\mathbf{Y}^{m}(t+s;\mathbf{y},\mathbf{X}_{0:s+t}^{m}) = \mathbf{Y}^{m}(t;\mathbf{Y}^{m}(s;\mathbf{y},\mathbf{X}_{0:s}^{m}),\mathbf{X}_{s:s+t}^{m}).$$
(2)

Multilevel Monte Carlo Algorithm: Estimator

Our estimator:

$$Z = \frac{1}{\rho(M)} \left(f\left(\mathbf{Y}^{M+1} \left(MT; \mathbf{Y}^{M+1} \left(T; \mathbf{y}_{0}, \mathbf{X}_{0:T}^{M+1}\right), \mathbf{X}_{T:(M+1)T}^{M+1}\right) \right) - f\left(\mathbf{Y}^{M} \left(MT; \mathbf{y}_{0}, \mathbf{X}_{T:(M+1)T}^{M}\right)\right) + f\left(\mathbf{y}_{0}\right).$$

for a random variable M following probability distribution

$$P(M = m) = p(m) = \gamma^m (1 - \gamma) / (1 - \gamma^L) \triangleq K(\gamma) \gamma^m$$
, for $0 \le m < L$.

Multilevel Monte Carlo Algorithm: Estimator

$$E[Z] = E\left[E\left[Z|M\right]\right]$$

$$= \sum_{m=0}^{L-1} \left(E\left[f\left(\mathbf{Y}^{m+1}\left(mT; \mathbf{Y}^{m+1}(T; \mathbf{y}_{0}, \mathbf{X}_{0:T}^{m+1}), \mathbf{X}_{T:(m+1)T}^{m+1}\right)\right)\right]$$

$$-E\left[f\left(\mathbf{Y}^{m}\left(mT; \mathbf{y}_{0}, \mathbf{X}_{T:(m+1)T}^{m}\right)\right)\right]\right) + f\left(\mathbf{y}_{0}\right)$$

$$= \sum_{m=0}^{L-1} \left(E\left[f\left(\mathbf{Y}^{m+1}\left((m+1)T; \mathbf{y}_{0}, \mathbf{X}_{0:(m+1)T}^{m+1}\right)\right)\right]$$

$$- E[f\left(\mathbf{Y}^{m}\left(mT; \mathbf{y}_{0}, \mathbf{X}_{0:mT}^{m}\right)\right)] + f\left(\mathbf{y}_{0}\right)$$

$$= E\left[f\left(\mathbf{Y}^{L}\left(TL; \mathbf{y}_{0}, \mathbf{X}_{0:LT}^{L}\right)\right)\right].$$
As $L \to \infty$,
$$E\left[f\left(\mathbf{Y}^{L}\left(TL; \mathbf{y}_{0}, \mathbf{X}_{0:LT}^{L}\right)\right)\right] \to E[f(\mathbf{Y}(\infty))].$$

E[Z] = E[E[Z|M]]

Multilevel Monte Carlo Algorithm: Estimator

$$= \sum_{m=0}^{L-1} \left(E\left[f\left(\mathbf{Y}^{m+1}\left(mT; \mathbf{Y}^{m+1}(T; \mathbf{y}_{0}, \mathbf{X}_{0:T}^{m+1}), \mathbf{X}_{T:(m+1)T}^{m+1} \right) \right) \right] \\ - E\left[f\left(\mathbf{Y}^{m}\left(mT; \mathbf{y}_{0}, \mathbf{X}_{T:(m+1)T}^{m} \right) \right) \right] \right) + f\left(\mathbf{y}_{0} \right) \\ = \sum_{m=0}^{L-1} \left(E\left[f\left(\mathbf{Y}^{m+1}\left((m+1)T; \mathbf{y}_{0}, \mathbf{X}_{0:(m+1)T}^{m+1} \right) \right) \right] \\ - E\left[f\left(\mathbf{Y}^{m}\left(mT; \mathbf{y}_{0}, \mathbf{X}_{0:mT}^{m} \right) \right) \right] \right) + f\left(\mathbf{y}_{0} \right) \\ = E\left[f\left(\mathbf{Y}^{L}\left(TL; \mathbf{y}_{0}, \mathbf{X}_{0:LT}^{L} \right) \right) \right] .$$
As $L \to \infty$,
$$E\left[f\left(\mathbf{Y}^{L}\left(TL; \mathbf{y}_{0}, \mathbf{X}_{0:LT}^{L} \right) \right) \right] \to E\left[f\left(\mathbf{Y}(\infty) \right) \right].$$

Error Analysis

$$E\left[f\left(\mathbf{Y}^{L}\left(TL;\mathbf{y}_{0},\mathbf{X}_{0:LT}^{L}\right)\right)\right]-E\left[f(\mathbf{Y}(\infty))\right]$$

$$=\left(E\left[f\left(\mathbf{Y}^{L}\left(TL;\mathbf{y}_{0},\mathbf{X}_{0:LT}^{L}\right)\right)\right]-E\left[f\left(\mathbf{Y}\left(TL;\mathbf{y}_{0},\mathbf{X}_{0:LT}\right)\right)\right]\right)$$

$$+\left(E\left[f\left(\mathbf{Y}\left(TL;\mathbf{y}_{0},\mathbf{X}_{0:LT}\right)\right)\right]-E\left[f(\mathbf{Y}(\infty))\right]\right)$$

$$=\text{Discretization Error}+\text{Non-stationarity Error}.$$

Error Analysis

$$E\left[f\left(\mathbf{Y}^{L}\left(TL;\mathbf{y}_{0},\mathbf{X}_{0:LT}^{L}\right)\right)\right]-E\left[f(\mathbf{Y}(\infty))\right]$$

$$=\left(E\left[f\left(\mathbf{Y}^{L}\left(TL;\mathbf{y}_{0},\mathbf{X}_{0:LT}^{L}\right)\right)\right]-E\left[f\left(\mathbf{Y}\left(TL;\mathbf{y}_{0},\mathbf{X}_{0:LT}\right)\right)\right]\right)$$

$$+\left(E\left[f\left(\mathbf{Y}\left(TL;\mathbf{y}_{0},\mathbf{X}_{0:LT}\right)\right)\right]-E\left[f(\mathbf{Y}(\infty))\right]\right)$$

$$=\text{Discretization Error}+\text{Non-stationarity Error}.$$

Error Analysis

$$E\left[f\left(\mathbf{Y}^{L}\left(TL;\mathbf{y}_{0},\mathbf{X}_{0:LT}^{L}\right)\right)\right]-E\left[f(\mathbf{Y}(\infty))\right]$$

$$=\left(E\left[f\left(\mathbf{Y}^{L}\left(TL;\mathbf{y}_{0},\mathbf{X}_{0:LT}^{L}\right)\right)\right]-E\left[f\left(\mathbf{Y}\left(TL;\mathbf{y}_{0},\mathbf{X}_{0:LT}\right)\right)\right]\right)$$

$$+\left(E\left[f\left(\mathbf{Y}\left(TL;\mathbf{y}_{0},\mathbf{X}_{0:LT}\right)\right)\right]-E\left[f(\mathbf{Y}(\infty))\right]\right)$$

$$=\text{Discretization Error}+\text{Non-stationarity Error}.$$

Error Bound

Parameter specification:

- ullet Step size: we recommend γ around 0.05;
- Path length: $T = O(\log(d)^2)$;
- Number of levels: $L = \lceil (\log(\log(d)) + 2\log(1/\varepsilon) + k_1) / \log(1/\gamma) \rceil$;
- Number of sample paths: $N = \lceil (1 \gamma^L)(1 \gamma)^{-1} \gamma^{-L} L \rceil = O(\varepsilon^2 \log(d) \log(\log(d))).$

Theorem

Suppose **Y** (indexed by the number of dimensions d) is a sequence of RBMs satisfying Assumptions 1-4. Then, the total expected cost, in terms of the number of scalar Gaussian random variables, for the Multilevel Monte Carlo Algorithm to produce an estimator of $E[f(\mathbf{Y}(\infty))]$ with mean square error (MSE) ε^2 is

$$O\left(\varepsilon^{-2}d\log(d)^3(\log(\log(d)) + \log(1/\varepsilon))^3\right)$$
.

ullet Symmetric RBMs: $oldsymbol{\mu} = -[1,1,\ldots,1]^T$

$$\Sigma = \begin{bmatrix} 1 & \rho_{\sigma} & \dots & \rho_{\sigma} \\ \rho_{\sigma} & 1 & \dots & \rho_{\sigma} \\ \vdots & & 1 & \vdots \\ \rho_{\sigma} & \dots & \rho_{\sigma} & 1 \end{bmatrix}, R = \begin{bmatrix} 1 & -r & \dots & -r \\ -r & 1 & \dots & -r \\ \vdots & & 1 & \vdots \\ -r & \dots & -r & 1 \end{bmatrix}.$$

• Symmetric RBMs: $\mu = -[1, 1, \dots, 1]^T$

$$\Sigma = \begin{bmatrix} 1 & \rho_{\sigma} & \dots & \rho_{\sigma} \\ \rho_{\sigma} & 1 & \dots & \rho_{\sigma} \\ \vdots & & 1 & \vdots \\ \rho_{\sigma} & \dots & \rho_{\sigma} & 1 \end{bmatrix}, R = \begin{bmatrix} 1 & -r & \dots & -r \\ -r & 1 & \dots & -r \\ \vdots & & 1 & \vdots \\ -r & \dots & -r & 1 \end{bmatrix}.$$

• Pick $\rho_{\sigma}=-rac{1-eta}{d-1}$ and $r=rac{1-eta}{d-1},$ and $f(Y(\infty))=Y_1(\infty).$

ullet Symmetric RBMs: $oldsymbol{\mu} = -[1,1,\ldots,1]^T$

$$\Sigma = \begin{bmatrix} 1 & \rho_{\sigma} & \dots & \rho_{\sigma} \\ \rho_{\sigma} & 1 & \dots & \rho_{\sigma} \\ \vdots & & 1 & \vdots \\ \rho_{\sigma} & \dots & \rho_{\sigma} & 1 \end{bmatrix}, R = \begin{bmatrix} 1 & -r & \dots & -r \\ -r & 1 & \dots & -r \\ \vdots & & 1 & \vdots \\ -r & \dots & -r & 1 \end{bmatrix}.$$

- Pick $\rho_{\sigma} = -\frac{1-\beta}{d-1}$ and $r = \frac{1-\beta}{d-1}$, and $f(Y(\infty)) = Y_1(\infty)$.
- Closed form solution:

$$E[Y_1(\infty)] = \frac{1 - (d-2)r + (d-1)r\rho_{\sigma}}{2(1+r)} = \frac{\beta}{2}.$$

• Symmetric RBMs: $\mu = -[1, 1, \dots, 1]^T$

$$\Sigma = \begin{bmatrix} 1 & \rho_{\sigma} & \dots & \rho_{\sigma} \\ \rho_{\sigma} & 1 & \dots & \rho_{\sigma} \\ \vdots & & 1 & \vdots \\ \rho_{\sigma} & \dots & \rho_{\sigma} & 1 \end{bmatrix}, R = \begin{bmatrix} 1 & -r & \dots & -r \\ -r & 1 & \dots & -r \\ \vdots & & 1 & \vdots \\ -r & \dots & -r & 1 \end{bmatrix}.$$

- Pick $\rho_{\sigma} = -\frac{1-\beta}{d-1}$ and $r = \frac{1-\beta}{d-1}$, and $f(Y(\infty)) = Y_1(\infty)$.
- Closed form solution:

$$E[Y_1(\infty)] = \frac{1 - (d-2)r + (d-1)r\rho_{\sigma}}{2(1+r)} = \frac{\beta}{2}.$$

• Pick $\beta = 0.8$ and $E[Y_1(\infty)] = 0.4$.

Figure 1: Simulation results for symmetric RBMs at target error level $\epsilon = 0.01$.

Figure 2: Mean square error of the estimators at target error level $\epsilon=0.05$ for $\gamma=0.05$. The shaded area represents 95% confidence band for the MSE.

Blanchent, Jose, Xinyun Chen, Peter Glynn, and **Nian Si**. "Efficient Steady-state Simulation of High-dimensional Stochastic Networks." arXiv preprint arXiv:2001.08384 (2020).

Thanks!