Some of these problems are from the book. The letters correspond to the section of the book: the [H]omeworks starting page 301, and [M]iscellaneous [E]xercises starting page 315. For example, H1.2 denotes Homework 1, problem 2.

- 1. Problems completed on Automata Tutor
- 2. Product construction H1.2

		a	b
	11	21	32
	21	31	12
(a)	31	11	22
	12	21	32
	22	31	12
	32 F	11	22
		a	b
	11	a 21	32
	11 21		
(b)		21	32
(b)	21	21 31	32 12
(b)	21 31 F	21 31 11	32 12 22

3. Induction on strings

H1.3

Let $M = (Q, \Sigma, \delta, s, F)$ be an arbitrary DFA. Prove by induction on |y| that for all strings $x, y \in \Sigma^*$ and $q \in Q$,

$$\hat{\delta}(q, xy) = \hat{\delta}(\hat{\delta}(q, x), y),$$

where $\hat{\delta}$ is the extended version of δ defined on all strings described in Lecture 3.

Base Case:

Consider the case where |y| = 0. This is equivalent to $y = \epsilon$. By definition, the null string ϵ serves as an identity for string concatenation.

$\hat{\delta}(q, xy) = \hat{\delta}(q, x\epsilon)$	by substituting ϵ in for y
$= \hat{\delta}(q, x)$	by definition of ϵ
$= \hat{\delta}(\hat{\delta}(q, x), \epsilon)$	by definition of $\hat{\delta}$ in lecture 3 (3.1)
$= \hat{\delta}(\hat{\delta}(q, x), y)$	by substituting y in for ϵ

Inductive Hypothesis:

Assume that for |y| = k, where $k \ge 1$, $\hat{\delta}(q, xy) = \hat{\delta}(\hat{\delta}(q, x), y)$.

Inductive Step:

Let |y| = k + 1, so $y \neq \epsilon$. Therefore, y can be represented as the concatenation za where $z \in \Sigma^*$ and $a \in \Sigma$.

$\hat{\delta}(q, xy) = \hat{\delta}(q, xza)$	by substituting za in for y
$= \hat{\delta}(\hat{\delta}(q, xz), a)$	by definition of $\hat{\delta}$ in lecture 3 (3.2, page 16)
$= \hat{\delta}(\hat{\delta}(\hat{\delta}(q,x),z),a)$	by Inductive Hypothesis
$= \hat{\delta}(\hat{\delta}(q,x),za)$	by definition of $\hat{\delta}$ in lecture 3 (3.2, page 16)
$= \hat{\delta}(\hat{\delta}(q, x), y)$	by substituting y in for za

- $\begin{array}{ccc} 4. & \text{Subset construction} \\ & \text{ME.3} \end{array}$
 - (a) abbbb

	state	a	b
(b)	Ø	Ø	Ø
	$\{s\}$	$\{s,t,u,v\}$	Ø
	$\{s,t\}$	$\{s\}$	$\{s\}$
	$\{s,t,u\}$	$\{s\}$	$\{s,t\}$
	$\{s,t,u,v\}$	$\{s\}$	$\{s,t,u\}$

5. Novel construction, proof H2.2

Construction:

For the construction of the DFA/NFA accepting rev(A), let us start with the DFA/NFA accepting A, called M_1 . We will first switch the start and final states, then we will reverse the direction of the edges (effectively reversing each transition $a\rightarrow b$ to become $b\rightarrow a$). Let us call this new DFA/NFA M_2 . For the desired proof, we will induct on the length of an arbitrary string $x \in A$ from the original language A.

Base Case:

Let |x| = 1. If such a string were to be accepted by M_1 , there would be a one-step path from a start state to an end state $(q_1 \to f_1)$. In the creation of M_2 , this path would still exist, but be pointing in the opposite direction $(q_2 \to f_2)$. The reverse of a string of length one is simply that same string, so it would be accepted by M_2 .

Inductive Hypothesis:

Assume that for |x| = k, where $k \ge 1$, if x is accepted by M_1 , rev(x) is accepted by M_2 .

Inductive Step:

Let |x| = k + 1. x can therefore be seen as za, where $z \in \Sigma^*$ and $a \in \Sigma$. By the definition of rev() on strings, rev(x) = rev(za) = az. We need to show that if za is accepted by M_1 , az is accepted by M_2 .

By our inductive hypothesis, if z is accepted by M_1 , rev(z) is accepted by M_2 . So, we must inspect the relation between the acceptance of a as the last character of za, and a as the first character of az.

In M_1 , the acceptance of a can be represented by the edge between $\delta(q_1, z)$ and f_1 (note: $q_1, f_1 = f_2, q_2$, as defined in the **Construction** step). In the creation of M_2 , this edge is reversed, now spanning from q_2 to $\hat{\delta}(q_1, z)$ (this specific node is effectively the same in M_1 and M_2 , simply changing from being connected to an accept state in M_1 to being connected to a start state in M_2). In this 'final' edge's existence in M_1 , a guarantee is established that the equivalent reversed edge will exist in M_2 . This reversed edge means that the acceptance of a as the last character of za guarantees the acceptance of a as the first character of az.

Therefore, if if za is accepted by M_1 , az is accepted by M_2 . If A is regular, rev(A) must also be regular.