Contents

EVO	iutionary i ninking
	Introduction (Lecture)
Stu	dying Adaptation
	Hypothesis Testing: Oxpeckers Reconsidered
	Experimental Design
	lutionary Trees
	How to Read an Evolutionary Tree
	Inferring Phylogenetic Trees
	ndelian Genetics I
	Hardy-Weinberg Equilibrium
	Selection
	By Effect on a Trait
	By Effect on Genetic Diversity
	Mutation
Mei	ndelian Genetics II
	Migration
	Genetic Drift
	Molecular Evolution
	Nonrandom Mating
	1
	1
	1
	1
	1
	2

Cullyn Newman	Evolution	October 13, 2020
		22

1 Evolutionary Thinking

Introduction (Lecture)

- ▶ Essential questions of evolutionary biology:
 - Why do organisms look so different?
 - Why develop elaborate sexual traits?
 - Why do organisms senesce?
- ▶ Evolution is mainly an historical science and thus must relay on other methods of reconstructing the past or making inferences about evolutionary forces.
- ▶ **Proximate**: a question about a mechanistic cause; provides an immediate explanation about how a mechanistic cause functions.
- ▶ **Ultimate**: why, or the reason, a trait or organism is the way it is; an evolutionary explanation.
- ▶ Example of proximate vs ultimate in Galapagos finches:
 - Proxmate: developmental growth factor is increased/decreased in some birds.
 - Ultimate: different habits are selected on breaks that maxmize food gathering ability.
- ▷ Evolutionary biology's approach to answering questions:
 - **Empirical data**: observation studies, experiments; the *comparative method*.
 - **Theory**: predictions that use models and mathematical reasoning which can be be tested with empirical data.
- > Overview of the components of evolution by natural selection:
 - o Genetic variation exists, via mutations.
 - Mutations are heritable.
 - The is an advantage to survival and/or reproduction from the mutation.
 - o Individuals with the advantage in survival/reproduction are selected for.

10 Studying Adaptation

Hypothesis Testing: Oxpeckers Reconsidered

- ▶ **Adaption**: a trait, or a suite of traits, that increases the fitness of its possessor.
- ▶ No hypothesis for the adaptive value of a trait should be accepted simply because of its plausibility.
- ▷ Oxpeckers and impalas traditionally were thought to have a mutally beneficial existence; oxpeckers ate ticks and impalas provided a safe environment.
- ▶ Experiments on cattle were done to test whether this observation was true:
 - Results show red-billed oxpeckers have no effect tick loads of cattle.
 - Red-billeld oxpeckers maintained open wounds, even enlarging existing wounds to feed on the cattle's blood.
 - Red-billed oxpeckers removed hosts' earwax; whether this is good of bad is unclear.
 - Even these results must remain in question, as cattle are not the native host for the birds.
- ▷ Other important points to remember:
 - Differences among populations or species are not always adaptive.
 - Not every trait is adaptive.
 - Not every adaptation is perfect, often the adaption just happened to work well enough or by chance better than other adaptations.

Experimental Design

- ▷ Defining and testing effective control groups is critical.
- ▶ Treatments of controls and experimental measures must be handled as close to exactly alike as possible.
- ▶ Randomization is a key technique for equalizing miscellaneous effects and a tool to avoid bias.
- ▶ Reproduction is essential in order to help remove potential outlier effects.
 - Allows for greater understanding of precision, accuracy, and variation by providing more data for statistical tests.

4 Evolutionary Trees

How to Read an Evolutionary Tree

- ▶ **Phylogeny**: aka evolutionary tree or phylogenetic tree, is a diaggram showing the history of divergence and evolutionary change. Essentially, it's the genealogical relationships of organisms based on descent with modification.
 - **Taxa**: the units you are analyzing, e.g. certain species or DNA sequences.
 - Character: a feature or trait present among the taxa of interest, e.g. teeth of mammals or nucleotides of DNA sequences.
 - Character state(s): an alternative condition of a character, which are able to evolve one to another, e.g. pointed/flat teeth of mammals.
 - Ancestral character: a trait that was possessed by the common ancestor.
 - Derived character: a trait the was not possessed by the common ancestor and instead evolved in at least one of the descendants.
 - **Synapomorphy**: derived character state shared by two or more taxa and used to define a clade of taxa.
 - **Autapomorphy**: derived character state in only one taxon.
 - Outgroup: a taxon or taxa that are used to root the phylogeny or determine ancestral character states.
 - Ingroup: the set of taxa that are the focus of the phylogeny.
 - **Nodes**: points at which the tree splits; represents mutations, speciation events, or character changes.
 - Anagensis: descent with modification, but no speciation.
 - Cladogenesis: speciation, origin of clades.
 - Clade: also known as a monophyletic group, an ancestor and all of its descendants.
 - Paraphyletic group: a group of organisms consisting of an ancestor and some of its descendants.
 - **Sister**: a taxa or clade that are most closely related to each other; they share the most recent common ancestor.
- ▶ **Homology**: similarity due to common descent; continuity of a trait, character, or character state through time.

- Homologous trait: found in a taxa that inherited the trait from a common ancestor.
- ▶ **Homoplasy**: or analogous, similarity in the characters or traits in different taxa due to convergent evolution, parallelism, or reversal, but not due to common descent.
 - **Convergent evolution**: similar traits due to selective forces and not shared ancestry.
 - Parallelism: convergent evolution in recently diverged taxa.
 - Reversal: derived traits or character states that revert to the ancestral form.

Inferring Phylogenetic Trees

- ▶ Parsimony: relationships that require the smallest number of character changes are most likely to be correct.
 - Based on shared and derived traits(synapomorphies).
 - Reconstruction using parsimony:
 - 1. Code characters.
 - 2. Make up a taxon×character matrix.
 - 3. Search for synapomorphies, and the shortest tree.
 - Outgroups can help polarize (ancestral vs derived) the characters.
 - Treelength: a measure of evolutionary change using parsimony.
 - Shortest tree length produces most parsimonious tree.
 - Length determined by number of synapomorphies.
 - Homoplasious characters increase tree length.
- ▶ **Distance Methods**: converts a sequence alignment to genetic distances between pairs of sequences.
 - Branch length is proportional to genetic differences.
- Maximum likelihood: a method of estimating the parameters of a probability distribution by maximizing a likelihood function.
 - o One of the more dominant means of statistical inference.
 - Likelihood: measure of goodness of fit of a statistical model to a sample of data for given values of the unknown parameters.
 - \circ P(D|H); probability(P), Data(D), Hypothesis(H)

- **Bayesian**: uses the likelihood function to create a quantity called the *posterior probability* of trees using a model of evolution based on prior probabilities in order to produce the most likely tree.
- Bootstraping: creating a value that indicates how many times out of 100 (normally) that the same branch was observed when repeating the phylogenetic reconstruction on re-sampled (pseudoreplicated) set of dat.
- ▶ **Molecular clocks**: the average rate at which species' genomes accumulates mutations over time.
 - o Generally a linear rate.
 - Used to measure evolutionary divergence.

6 Mendelian Genetics I

Hardy-Weinberg Equilibrium

- Population: a group of interbreeding individuals and their offsring.
- ▶ **Gene pool**: the set of all genes, or genetic information, in any population.
- ▶ **Genotypic frequency**: number of individuals with a given genotype divided by the total number of individuals in the population.
 - The proportion (i.e., 0 < f < 1) of genotypes in a population.
- ▶ **Allele frequencies**: relative frequency of an allele at a particular locus in a population.
 - Locus: a fixed position on a chromosome where a particular gene of genetic marker is.
 - Monoploids: frequency of an allele is the result of the number of copies of the allele divided by sample size.
 - p = i/N
 - p: frequency | i: copies of alleles | N: sample size
 - Diploids: frequency of alleles within three possbile genotypes at a locus with two alleles.
 - $-p = f(AA) + \frac{1}{2}f(AB)$ frequency of A-allele
 - $-q = f(BB) + \frac{1}{2}f(AB)$ frequency of B-allele
 - Allele frequency can always be calculated from genotype frequency, whereas the reverse requires the *Hardy-Weinberg principle* of random mating apply.
- ▶ **Hardy-Weinberg principle**: allele and genotype frequencies in a population will remain constant in the absence of evolutionary influences.
 - Allele frequencies do not change from one generation to the next.
 - Genotypic frequencies after one generation of random mating: $p^2 + 2pq + q^2$
 - Evolutionary influences: genetic drift, mate choice, assortative mating, natural selection, sexual selection, mutation, gene flow, meiotic drive, genetic hitchhicking, population bottleneck, founder effect, and inbreeding.
 - Most of these influences will be discussed later.

Selection

- ▶ **Fitness**: success at which a organism produces fertile offspring.
- ▶ Competition: an interaction between organism in which the fitness of one is lowered by the presence of another.
- ▶ Selection: the act on a heritable phenotypic trait due to competition.
 - o Can be members of the same of different species.
 - Not always directional and adaptive, instead selection pressure is applied and removes the less fit variants.
 - Can be classified in different ways, such as effect on a trait, on genetic diversity, by life cycle, by unit of selection, or by the resource in competition.

By Effect on a Trait

- Stablizing selection: the simplies case in which selection acts to hold a trait at a stable optimum.
- Directional selection: favours extreme values of a trait.
- Disruptive selection: acts during transition periods when current mode is sub-optimal, but alters trait in more than one direction.
 - Univariate: when the trait is both quantitatively favoured in either direction and can lead to speciation.

By Effect on Genetic Diversity

- Purifying selection: aka negative selection; acts to remove genetic variation from the population.
- de novo mutation: introduces new variation and opposes negative selection.
- **Balancing selection**: acts to maintain genetic variation, even in absence of *de novo* mutation by frequency-dependent selection.
 - Frequency-dependent selection: fitness depends of the phenotypic or genotypic composition of a population.
 - Heterozygote advantage: when a combination of alleles confers a selective advantage over individuals with one allele; one mechanism of balacing selection.

Mutation

>

7 Mendelian Genetics II

Migration

 \triangleright

Genetic Drift

 \triangleright

Molecular Evolution

 \triangleright

Nonrandom Mating

8

9

11

12

13

14

16

Quiz 5 17

17

Quiz 5 18

18

Quiz 6 20

20

D

15