Kholle 12 filière MP* Planche 1

- 1. Énoncer et démontrer le Lemme d'Abel.
- 2. Déterminer le rayon de convergence de la série entière $\sum \frac{x^n}{2n+1}$ et exprimer sa somme pour x strictement positif.
- 3. On note $f: x \mapsto (\arcsin(x))^2$. Produire un développement en série entière de f.

Kholle 12 filière MP* Planche 2

- 1. On se donne une série entière $\sum a_n z^n$ de rayon de convergence R. Quels sont les modes de convergence de cette série sur différentes parties du plan?
- 2. On se donne deux séries entières $\sum a_n z^n$, $\sum b_n z^n$ de rayons de convergence respectifs R_a et R_b . Démontrer que le rayon de convergence R de la série entière $\sum a_n b_n z^n$ vérifie $R \geqslant R_a R_b$. A-t-on égalité en toute généralité?
- 3. Soit α un rationnel. Pour tout entier n, on note a_n sa n-ième décimale. Montrer que la somme f de la série entière $\sum a_n x^n$ est une fonction rationnelle. Quel est son rayon de convergence?

Kholle 12 filière MP* Planche 3

- 1. Démontrer que la somme d'une série entière de la variable réelle est de classe C^{∞} sur son intervalle ouvert de convergence.
- 2. Déterminer le rayon de convergence de la série entière $\sum_{n\geqslant 1}\frac{x^n}{n(n+2)}$ et exprimer sa somme pour tout réel x.
- 3. (a) Montrer que la fonction sinus cardinal $x \mapsto \sin(x)/x$ si $x \neq 0$, 1 si x = 0 est de classe C^{∞} .
 - (b) Soit A > 0. Montrer que

$$\int_0^A \frac{\sin(t)}{t} dt = \frac{\pi}{2} - \Re \left[\int_0^{\pi/2} \exp(-Ae^{-it}) dt \right]$$

En déduire la valeur de l'intégrale convergente $\int_0^{+\infty} \sin(t)/t dt$.

Kholle 12 filière MP* Planche 4

- 1. Démontrer que la fonction exponentielle de la variable complexe est un morphisme continu de groupes de $(\mathbb{C},+)$ dans (\mathbb{C}^*,\times) .
- 2. On se donne une série entière $\sum a_n z^n$ de rayon de convergence non nul R. Quel est le rayon de convergence de la série entière

$$\sum \frac{a_n}{n!} z^n?$$

3. Soit p un entier naturel non nul et $A \in M_p(\mathbb{C})$. Que vaut le rayon de convergence de la série entière $\sum \operatorname{Tr}(A^k)z^k$? Exprimer sa somme à l'aide du polynôme caractéristique de A.

