CS/B.TECH(EIE)/SEM-3/EC-302(EI)/07/(08)

3

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER – 2007 DIGITAL INTEGRATED CIRCUITS SEMESTER – 3

Time: 3 Hours		[Full Marks : 70

GROUP - A

		(Multiple C	Choice Type	Questions)	
• .	Cho	oose the correct alternatives for	any ten of t	he following :	10 × 1 = 10
	i)	The maxterms corresponding	15 is		
		a) ABCD	b)	$\bar{A} + \bar{B} + \bar{C} + \bar{D}$	
		c) $A+B+C+D$	d)	$\vec{A} \cdot \vec{B} \cdot \vec{C} \cdot \vec{D}$.	
	ii)	The decimal equivalent of (3	332') ₄ is		
		a) 63	b)	94	
		c) 62	d)	None of these.	
	iii)	Gray code of a binary numb	er 1011 is		
		a) 1110	b)	1100	
		c) 1101	d)	None of these.	
	iv)	The fast logic family is		And the second second	
		a) TTL	b)	ECL	
		c) CMOS	d)	DTL.	
	v)	The decimal (48) ₁₀ is repre	esented in B	CD by	
		a) 11011100	b)	01001000	
		c) 11100010	d)	00111010.	

CS/B.TECH(EIE)/SEM-3/EC-302(EI)/07/(08)

100

vi)	PROMs	are	used	primaril	y foi
-----	-------	-----	------	----------	-------

- a) data storage
- b) temporary program and data storage
- c) they are inexpensive
- d) permanent program and data storage.

vii)	$3 \times 512 + 7$	× 64	+ 5	× 8	+ 3	then	value	in	binary	form	contains	
	number of 1's	E										

a) 7

b)

c) 9

d) 8.

6

viii) The minimum number of NAND gates required to implement $A\theta B$ (XOR) is

a) 3

b) 4

c) 5

d) 6.

ix) Which of the following are correct?

- 1. A flip-flop is used to store 1-bit of information
- 2. Race around condition occurs in JK flip-flop when both the inputs are 1
- 3. Master-slave flip-flop is used to store 2 bits of information
- 4. A transparent latch consists of a D-flip-flop.
 - a) 1, 2, 3

b) 1, 3, 4

c) 1, 2, 4

d) 2, 3, 4.

x) Minimum number of 2-input NAND gates that will be required to implement the function:

$$Y = AB + CD + EF$$
 is

a) 4

b) 5

c) 6

d) 7.

xi) The octal form of (FAFAFA) $_{16}$ is

a) 76767676

b) 76575372

c) 76737672

d) 76727672.

C	H(EIE)/	SEM-3/EC-302(EI)/07/(08)	5	SIGN YOURSHOP, CHIEF WHEN	Viech
xii)	The	output of a sequential circui	t depend	s on	in in
	a)	Present input	b)	Past input	ALTE.
	c)	Both present and past	đ)	Past output.	
xiii) Ac	ode used for labelling the cell	of K-may	p is	8 0
	a)	Natural BCD	b)	Gray Code	
	c)	Hexadecimal Code	d)	Octal Code.	
xiv) Ar	ing counter consisting of 5 flip	p-flop wil	l have	
	a)	5 states	b)	10 states	
* 5 -	c)	32 states	d)	Infinite states.	
xv)	The	e total conversion time need fo	or Succes	ssive Approximation type N-b	it ADC is
	a)	($N \times 1$) clock time period	(a) (b)	$(2^{N} \times 1)$ clock time period	od
	c)	$(2^{N}-1)$ clock time period	d d)	None of these.	
		1×8 decoder and a 3×4 de	the din	onaisser als a Skylegeric w	
+ 51			OUP - B	eck dies ran soll-	
in the		Answer			$3 \times 5 = 15$
- nana	NATE NO.	Answer any three of the following terms:		Normal was it are heart	$5 \times 5 = 15$
a)		se Margin	0亿块。		5 X 1
b)	Fan			g atopti you no eston had	
c)		n-out			
d) .		ver dissipation			
e)		it TTL load.		ropuga Belay	
		5 to 32 Decoder using one 2	to 4 and	four 3 to 8 Decoder IC.	5
Use	e K-Ma	ap to simplify the following Bo	olean ex	pression:	
		$Y, Z) = \sum_{i=1}^{n} m(0, 2, 6, 8, 12,)$			T 5
De	sign a	2-input NAND gate using CM	OS inver	ter.	5
Wh	ich mi	interm is present in the functi	ion —	10-10-10-099	
F=	(A+	B)(AB+C)(B+AC)?			5

2.

3.

4.

5.

6,

CS/B.TECH(EIE)/SEM-3/EC-302(EI)/07/(08)

6

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

- 7. a) Implement a 16 to 1 multiplexer using two 8 to 1 multiplexer ICs (IC 74151)
 - b) Design a Gray code to Binary converter.
 - c) Explain differences between a DEMUX and MUX.

6 + 7 + 2

- 8. a) Discuss the difference between synchronous and asynchronous sequential circuits.
 - b) Discuss the difference between combinational and sequential circuit.
 - c) Write down the characteristic equation of J-K flip-flop.

5 + 3 + 7

9. a) What is meant by duality of Boolean algebra? Simplify the following Boolean function using K-map and realize the simplified function using NOR gates only:

$$F(A, B, C, D) = \prod_{M} (1, 2, 3, 8, 10, 11, 14) + \Sigma_{d} (7, 15).$$

- b) Construct a 5×32 decoder with four 3×8 decoder and a 2×4 decoder. Show block diagram only. 10 + 5
- 10. What do you mean by irregular sequence counter? Design the counter with the following sequence 3 → 2 → 7 → 5 → 6. Show detail state diagram, state table and design procedure. Draw the logic diagram. Use J-K all flip-flops and other necessary logic gates.
 5 + 10
- 11. Write short notes on any three:

 3×5

- a) Johnson Counter
- b) Propagation Delay
- c) Parallel-In-Serial-Out (PISO)
- d) Even Parity Generator & Checker
- e) Tri-State gates in TTL family.

END