산업현장의 안전디자인 적용에 관한 기술지침

2012. 11.

한국산업안전보건공단

안전보건기술지침의 개요

- 작성자 : 한국안전진흥협회 양 동 주
- 제·개정 경과
- 2012년 월 산업안전일반분야 제정위원회 심의(제정)
- 관련 규격 및 자료
 - ASCC, Guidence on the principles of safe design for work. 2006.
- 관련법규·규칙·고시
- 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 11월 29일

제 정 자 : 한국산업안전보건공단 이사장

G - 95 - 2012

산업현장의 안전디자인 적용에 관한 기술지침

1. 목 적

이 지침은 작업장 내의 시설 혹은 작업공간을 설치할 때 안전디자인의 원리를 적용함으로써 산업재해를 근원적으로 예방하기 위한 산업안전보건상의 기술지침을 정함을 목적으로 한다.

2. 적용범위

이 지침은 작업장의 시설 혹은 작업공간의 설치와 관련된 안전보건관리에 적용하다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "안전디자인(safe design)"이라 함은 작업장의 시설, 공간 등(이하 "시설 등" 이라 한다)을 디자인 할 때 전체 생애주기를 고려하여 주 기능의 안 전달성도를 높이고, 타 기능과의 상승적 연계나 통합을 통하여 안전성, 사용편의성, 사용자 특성 등을 동시에 고려하는 디자인을 말한다.1)
 - (나) "생애주기(life cycle)"란 시설 등의 개념설계에서 부터 디자인, 건설/생산, 공급과 설치, 의뢰와 사용, 유지관리, 해체, 폐기와 재활용에 이르기 까지 제품 수명의 전 과정을 말한다.
 - (다) "사용편의성(usefulness)"이란 불편함을 제거하고 도움이 되는 정도를 증가 시키는 킨다는 사용성(usability)와 유용성(utility)를 합친 개념이다.

^{1) &}quot;안전디자인"의 개념에 대해서는 최근 안전보건공단의, 「안전디자인 인증시스템 구축을 위한 기반조사(2010)」에 서 정의하고 있고, 국회 안전디자인 포럼, 행정안전부 2010 정책방향, 호주 ASCC의 "Guidence on the principles of safe design for work"에서 유사한 정의 내리고 있다.

G - 95 - 2012

(2) 그 밖의 용어의 정의는 이 지침에 특별히 규정하는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업안전보건기준에 관한 규칙에서 정하는 바에 따른다.

4. 안전디자인과 산업안전

- (1) 시설 등에 대한 안전디자인은 내재된 위험요소를 제거하거나 최소화하기 위해 초기 계획단계에서부터 전체 생애주기에 걸친 전 과정에 걸쳐서 위험요인 파악과 관리가 이루어져야 한다.
- (2) 안전디자인을 통한 위험관리의 대상은 시설, 하드웨어(hardware), 시스템, 장비, 도구, 재료, 에너지 통제, 레이아웃(layout) 그리고 배열 같은 디자인을 모두 포함한다.
- (3) 안전디자인은 개념 설계와 계획 단계에서부터 목적물이 완성될 때까지 근로 자의 안전성과 사용편의성 및 사용자 특성을 반영하기 위하여 근로자를 안 전디자인 과정에 참여시키는 것에서부터 시작하여야 한다.
- (4) 작업장에서 근로자의 안전성과 사용편의성을 최대한 높이기 위해서는 안전 보건관리의 전반적인 측면에서 안전디자인의 원리를 적용시켜야 한다.
- (5) 안전보건관리에서 효율적으로 위험요인을 관리하기 위해서는 안전디자인 계획 초기 단계에서부터 위험을 제거하거나 최소화하여야 한다. 이는 전체 생애주기 후기 단계에서 위험을 제거하거나 최소화하기 위해 노력하는 것 보다 더 실용적이고 경제적이다.
- (6) 안전디자인 적용 시 효과
 - (가) 산업재해(사망, 부상, 질병 등)의 예방
 - (나) 시설 등의 편리성 향상
 - (다) 사용능력의 향상

- (라) 생산성 향상
- (마) 비용 감소
- (바) 법규정 준수
- (사) 새로운 아이디어와 혁신

5. 안전디자인의 5 요소

작업장에 안전디자인을 적용 시 <그림1>과 같이 안전보건관리에 5가지 요소를 고려하여야 한다.

- 1. 권한과 책임의 일치
- 2. 전체 생애주기의 고려
- 3. , 안전디자인과 위험관리시스템의 통합
 - 4. 안전디자인을 위한 지식과 능력
 - 5. 효율적인 정보전달과 피드백

<그림1> 안전디자인의 달성을 위한 5 요소

5.1 권한과 책임의 일치

- (1) 안전디자인의 기능을 관리하거나 통제하는 사람에게 안전보건관리의 권한과 그에 합당한 책임을 부여하여야 한다.
- (2) 안전디자인의 과정은 여러 단계를 거치게 되고 각 단계의 디자인 기능에 대한 통제 수준에 따라 안전보건관리에 대한 권한이 부여되어야 한다.

5.2 전체 생애주기 고려

(1) 안전디자인은 제품의 개념설계에서부터 해체 및 폐기/재활용까지 모든 단계에서 적용되어야 한다. 안전디자인은 모든 단계에서 위험을 제거하거나 감소하는 것을 목표로 한다.

<그림2> 안전디자인 라이프사이클

- (2) 생애주기는 안전디자인의 핵심 개념으로서 모든 생애주기 단계에서 관련되어 있는 제반 안전보건 상의 예상되는 문제점을 파악하고 대책을 강구해야하며 관련된 요구사항을 기능설명서에 표시하여야 한다.
- (3) 안전디자인 계획의 수립 시에는 다음 각 호의 사항을 포함하여야 한다.
 - (가) 생애주기 각 단계에서 위험성 평가
 - (나) 위험통제 옵션(option) 개발
 - (다) 실험 혹은 평가 계획 개발

G - 95 - 2012

- (라) 안전한 건설/제조, 공급/설치, 위임/사용, 유지, 해체, 폐기/재활용을 위한 지침
- (4) 각 생애주기의 다음 단계로 진행되어 나아갈 때마다 안전을 위한 고려사항 이 지침으로 마련되어야 하며, 그 지침에 따라 위험통제의 효과를 관찰하 고 필요한 통제를 실시하여야 한다(부록1 참조).
- (5) 안전디자인 계획과 연관된 위험통제의 감시와 평가는 안전보건관리시스템 과 통합되어야 한다.

5.3 안전디자인 과정과 위험관리 시스템의 통합

- 5.3.1 안전디자인 과정에서의 위험 관리는 다음 절차에 따라 진행되어야 한다.
 - (1) 안전디자인에 관한 모든 위험요소 파악
 - (2) 안전디자인 관련 위험요인에 대한 위험성 평가
 - (3) 위험요소 제거
 - (4) 위험통제 조치에 대한 감시와 모니터링
 - (5) 위험요소 평가결과 문서화 및 기록 유지
 - (6) 생애주기와 관련된 관계자들의 의견 수렴 및 상담
- 5.3.2 디자인 과정에 위험관리 시스템을 통합
 - (1) 사업장 위험요인의 효율적인 통제와 재해예방을 위하여 안전디자인 과정 각 단계별로 사업장의 위험관리시스템과 통합 운영해야 한다<그림3>.

<그림3> 안전디자인 과정과 위험관리시스템의 통합 모델

- (2) 각 단계별로 적절한 위험관리가 이루어지도록 안전디자인 과정은 위험관리 시스템과 통합하여야 한다.
- (가) 예비 디자인 단계에서 디자인 문제점 및 요구사항 분석이 이루어짐과 동시에 위험 및 위기상황에 대한 분석을 통하여 관련된 다양한 사항에 대한 책임과 역할, 위험요소 평가기준을 결정하여야 한다.
- (나) 컨셉 개발 단계에서 디자인을 위한 다양한 정보수집 과정에서 다음 사항을 고려한 예비위험분석을 실시해야 한다.
- ① 선행 유사 프로젝트에 대한 위험요소와 사고사례에 대한 조사
- ② 잠재적 위험요소 확인 및 다양한 위험성 확인 기술과 도구들의 사용
- ③ 위험성 리스트를 체계적으로 일반화하고 문서화
- (다) 디자인 옵션 단계에서 여러 가지 디자인 해결책을 만들게 되는데 이와 동시에 다음사항을 고려하여 위험을 분석하고 평가해야 한다.

G - 95 - 2012

- ① 위험과 관련된 안전기준의 확인 및 해결책의 적용
- ② 사고 발생 가능성과 예상되는 결과를 통합하여 위험요소의 수준을 분석
- ③ 인간의 능력과 기술적인 면을 동시에 고려
- ④ 안전기준에 부합하는 디자인 옵션을 개발
- (라) 디자인 통합과정을 통하여 실제 적용을 위한 디자인 옵션을 선택하게 되는데, 이 과정에서 다음 사항을 고려한 위험의 통제와 제거가 이루어져야한다.
 - ① 검토된 디자인 대안들에 수반되는 위험요소를 관련 안전기준에 따라 체계적으로 평가
 - ② 안전기준에 적합하고 위험을 최소화 할 수 있는 최선의 해결책을 선택
- (마) 디자인 완성 단계에서는 다양한 사용자와 함께 디자인 해결책에 대한 검사와 시험작동, 평가를 실시해야 하며, 유사시 잔여 위험에 대한 통제 계획을 수립해야 한다.

5.4 안전디자인을 위한 지식과 능력

- (1) 안전디자인을 계획하고 관리할 때에는 다음과 같은 지식과 기술을 갖추어야 한다.
 - (가) 산업안전보건 법규 및 관련 기준 및 다른 규제력을 가진 관련 규정 들에 대한 지식 및 요구사항에 대한 지식
 - (나) 생애주기에 대한 지식
 - (다) 위험요소의 식별, 위험요소 평가와 조절 방법에 대한 지식
 - (라) 기술적 디자인 표준에 대한 지식
 - (마) 인간의 능력과 특성, 행동에 대한 관련 지식

G - 95 - 2012

- (바) 다양한 분야의 정보나 지식 등을 새로운 해결책으로 통합하는 능력
- (2) 안전디자인은 특정한 기술과 지식, 경험을 가진 다양한 사람들로 구성되어야 한다.
 - (가) 디자인 하고자 하는 제품 등에 대한 철저한 지식 보유자
 - (나) 다양한 측면에서 위험을 평가할 수 있는 인간공학자, 관련분야 엔지니어, 재료공학자 등 다양한 분야의 전문지식 보유자

5.5 효율적인 정보 전달과 피드백

- (1) 위험에 대한 정보는 안전디자인 생애주기 단계에서 관련자들에게 정확히 알려져야 하고, 또한 모든 당사자들이 발견한 새로운 위험 관련 정보들은 체계적으로 통합 관리되어야 한다.
- (2) 디자인 계획 수립 시에 발견하지 못한 위험요인들이 생애주기진행과정에 관계된 사람들로부터 발견될 수 있도록 의사소통 통로를 항상 유지해야 하며, 발견된 위험요인에 대한 정보는 문서화되어 디자이너(designer)에게 전달되고 관리되어야 한다.
- (3) 생애주기 각 단계마다 포함되는 모든 사람들 사이에 효과적인 정보전달을 위하여 위험에 대한 정보는 문서화되어야 하며, 각종 설명서, 경고표지, 라벨 등은 쉽게 읽을 수 있고 이해할 수 있도록 제작되어야 한다.
- (4) 안전디자인 과정에서 위험정보를 효율적으로 전달하고 통제하기 위한 정보순환 및 피드백은 <그림4>와 같은 정보순환 모형에 따라 이루어져야 한다.

<그림4> 안전디자인 정보순환 모형

(5) 사업장에서 사업주와 근로자는 안전디자인과 관련한 안전과 건강의 문제를 상담 등을 통하여 해결하는데 서로 협력하여야 한다. 상담은 사업장 밖에서 또는 사업장 내에서 이루어 질 수 있다.

6. 인간공학적 원리의 적용

- (1) 안전디자인에 인간공학적 원리를 적용해야한다. 인간공학은 근로자 중심의 원리이며 안전보건관리에서 중요시 되어야 하는 규칙이다.
- (2) 인간공학적 원리의 적용은 안전디자인 과정에서 시설 등의 최종 사용자에게 영향을 줄 수 있는 인적 요소와 능력, 그리고 제한점을 광범위하게 고려하는 것을 포함한다.
- (3) 시설 등의 안전디자인 과정에서 작업을 수행하는 근로자의 신체적 특성과 인지적 특성, 심리적인 특성 등을 고려한 작업환경이 조성될 수 있도록 인간 공학적 원리를 적용 해야 한다.

- (4) 작업장에서 인간공학적 원리를 적용할 경우에는 사용자 안전과 동시에 편리 함과 효용성, 생산성, 편안함 등이 고려되어야 한다.
- (5) 디자인 된 제품이나 공간의 필요성을 분석할 때 다음과 같이 5가지 인간공학적 요소를 고려한다<표1>.

<표1> 디자인 분석에 필요한 인간공학적 요소

분석요소	내용
1. 사용자 특성	그들의 신체적, 정신적, 행위적 특성과 능력, 지식
2. 작업특성	작업자들에게 요구되는 것과 실제 하는 행동 (작업요구도, 의사결정 능력, 작업조직 요구, 작업시간)
3. 작업환경	작업지역, 공간, 조명, 소음, 온도 조건
4. 장비 디자인과 사용자 인터페이스(interface)	작업을 할 수 있게 만드는 하드웨어(hardware)와 소프트웨어 (software), 이동기구, 보호복, 공구, 도구 등
5. 작업조직	작업패턴, 작업량의 유동성, 작업시간, 다른 사람들과의 소통필 요성, 그 외 산업·경제적 영향 등

G - 95 - 2012

<부록1>. 작업장 설비 안전디자인 고려사항(예시)

1. 설비의 생애주 기 고려	작업장의 공정이나 설비의 생애주기 단계를 고려, 제조에서부터 사용, 분해와 폐기까지 안전디자인의 원리를 적용한다.
2 .안전한 설치를 위한 디자인	작업장 설비의 설치와 관련된 위험은 다음의 항목으로 제거나 감시될 수 있다:
	- 설치 전 단독으로 서 있을 때 안정적일 수 있도록 디자인 - 나사를 조이기 전, 구조적으로 안정적일 수 있도록 디자인 - 설치 전 안전에 도움이 될 수 있는 지지대 제공 - 들어 올리고 다루기 용이하게 부착점을 제공
3. 안전한 사용을 위한 디자인	다음 사항을 고려하라: - 근로자의 신체적 특징 - 조작하는 사람이 단위시간에 수행 할 수 있는 양, 복잡성, 그리고 속도 의 최대치 - 장시간 같은 자세의 육체적 활동을 최소화 시키는 일
	 공정이나 설비가 적용될 작업 환경의 배치도(layout) 기기 장치와 배치도(기기 장치의 작동상태에 대한 명확한 정보를 '정보 과부하'가 걸리지 않을 만큼 제공하고, 배치도은 작동 위치에서 정보가 잘 보일 수 있게) 작동에 있어서 틀린 작동보다 옳은 작동을 상대적으로 제어하기 쉽게 만듦 위급 상황에 있어서 근로자가 어떻게 반응하는지
4. 근로자의 신체 적 특징	- 비상 버튼의 위치와 사용편의성에 대한 안전디자인을 고려 근로자의 신체적 특징의 범위를 수용할 수 있어야 한다. 크기, 범위, 무게 와 같은 인간의 규모와 역량을 고려하여 공정과 근로자 간의 완벽한 조화 를 이루게 해야 한다. 잠재적 불편, 피로감, 오류, 그리고 부상을 줄이기 위해 근로자의 신체와 정신을 고려하여 인간공학적으로 디자인 한다.
	설비나 도구의 오용은 공장이 원래 의도대로 디자인된 의도와는 다르게 사용된다는 것을 의미한다. 설계자는 이런 경우를 대비해 위험에 노출을 알리는 경보장치를 설치해 놓을 수도 있다.
6. 안전한 정비를 위한 디자인	공장을 수리하거나 정비할 때 마주칠 수 있는 문제에 대한 고려가 필요하다. 예를 들면 - 정비할 필요를 줄인다 - 정비의 횟수가 늘어나면 그만큼 위험도 늘어난다 위험 지역 밖에서의 정비수리센타를 둔다. 예를 들어 주유구를 움직이는 기계에서 멀리 설치하고, 정비수리센타에로의 접근을 용이하게 만든다.
7.고장이 났을 때 안전 디자인	고장발생 시 문제점을 파악한 뒤, 고장이 났을 경우 안전한 형태로 고장이 나도록 디자인한다. 예를 들어, 만일 움직이는 기계가 고장이 났을 경 우, 부러진 부분(part)가 튀어나오지 않게 디자인 한다.