Problem: $X_{k+1} = f(X_k)$, k = 0, 1, 2... where f(x) is a continuously differentiale function at $x = x_{eq}$, (x_{eq} : equilibrium point). Given $f(x_{eq}) = x_{eq}$, and $|f'(x_{eq})| < 1$. Prove that X_k is stable around x_{eq}

Solution:

Let $E_k = X_k - x_{eq}$, we will show that for values of E_k near 0, E_k is bounded as $k \to \infty$

Since $f'(x_{eq}) < 1$, we can always find $\varepsilon > 0$, small enough, such that $f'(x_{eq}) + \varepsilon < 1$

Moreover, by definition, $\lim_{x\to x_{eq}} \frac{f(x)-f(x_{eq})}{x-x_{eq}} = f'(x_{eq})$. $\forall \varepsilon$, we can $\delta > 0$, small enough, such that $\forall x$ near x_{eq} , $|x-x_{eq}| < \delta$:

$$\left| \frac{f(x) - f(x_{eq})}{x - x_{eq}} - f'(x_{eq}) \right| < \varepsilon$$

$$\left| \frac{f(x) - x_{eq}}{x - x_{eq}} \right| < f'(x_{eq}) + \varepsilon$$

$$\left| \frac{f(x) - x_{eq}}{x - x_{eq}} \right| < 1$$

For values of X_k that near to x_{eq} , $|X_k - x_{eq}| < \delta$, we have

$$\left| \frac{f(X_k) - x_{eq}}{X_k - x_{eq}} \right| < 1$$

$$\frac{|X_{k+1} - x_{eq}|}{|X_k - x_{eq}|} < 1$$

$$\frac{|E_{k+1}|}{|E_k|} < 1$$

Therefore, when $k \to \infty$

$$|E_k| > |E_{k+1}| > |E_{k+2}| > \dots$$

 E_k is bounded around 0.