Lösungsstrategien für NP-schwere Probleme der Kombinatorischen Optimierung

— Übungsblatt 7 —

Walter Stieben (4stieben@inf)

Tim Reipschläger (4reipsch@inf)

Louis Kobras (4kobras@inf)

Hauke Stieler (4stieler@inf)

Abgabe am: 6. Juni 2016

Aufgabe 7.1

Algorithm 1 ApproxWightedHittingSet

```
1: procedure APPROXWIGHTEDHITTINGSET(A, B)
         R := \text{relation from } element \rightarrow quality index
         for all a_i \in A do
 3:
             n := \text{amountOfAppearances}(a_i)
 4:
             quality := weight(a_i)/n
 5:
 6:
             addToRelation(R, a_i \rightarrow quality)
 7:
        for all a_i \in R with R(a_k) \leq R(a_{k+1}) and B \neq \emptyset do
 8:
 9:
             H \leftarrow H \cup \{a_i\}
             B \leftarrow B \setminus \{\text{allSetsHitBy}(a_i)\}
10:
        end for
11:
12: end procedure
```

Beschreibung

R ist eine Relation, die jedes $a_i \in A$ auf einen Qualitätsindex abbildet. Dieser Index ist einfach das Gewicht $\frac{weight(a_i)}{n}$, wobei $weight(a_i)$ das Gewicht von a_i ist und n die Anzahl der Vorkommen angibt.

Die zweite for-Schleife (Zeile 8-11) geht alle a_i durch, wobei bei dem a_i mit den geringsten Gewicht begonnen wird, sodass $R(a_k) \leq R(a_{k+1})$ gilt. Zudem bricht die Schleife ab, sobald kein $B_j \in B$ mehr existiert (A muss dabei nicht leer sein), sprich sobald $B = \emptyset$ gilt.

In der Schleife wird nun jedes a_i in H aufgenommen und jedes getroffene B_j aus B entfernt, sodass man keine Elemente doppelt aufgenommen werden, die evtl. gar keine neuen B_j treffen.

Laufzeitanalyse

Die beiden Schleifen durchlaufen maximal |A| viele Elemente.

Der Schleifenrumpf der ersten Schleife enthält die Funktion amountOfAppearances, der die Anzahl der Vorkommen des übergebenen a_i bestimmt. Eine Brude-Force Implementation würde jedes $B_i \in B$ durchgehen in prüfen ob das a_i darin vorkommt. Es gibt potentiell $|B| \cdot |A|$ viele Elemente, die man untersuchen muss, daher ist die Laufzeit in $\mathcal{O}(|B| \cdot |A|)$.

Die Berechnung der Qualität und das einfügen in die Relation ist nicht zwangsläufig von der Eingabegröße Abhängig, daher kann man das mit einer Laufzeit in $\mathcal{O}(1)$ implementieren.

Die zweite Schleife fügt zunächst ein a_i der Menge H hinzu. Implementiert man H als verkettete Liste geht das in $\mathcal{O}(1)$.

Als nächstes wird die allSetsHitBy Funktion benutzt, welcher alle Mengen sucht in denen a_i vorkommt. Die Funktionsweise ist identisch mit der von amountOfAppearances, nur wird eine Menge von Mengen zurückgegeben, statt einer Zahl. Somit ist die Laufzeit von allSetsHitBy in $\mathcal{O}(|B| \cdot |A|)$.

Insgesamt hat man also die Laufzeit von $\mathcal{O}(|A| \cdot (|B| \cdot |A|) + |A| \cdot (|B| \cdot |A|)) = \mathcal{O}(2 \cdot |B| \cdot |A|^2) = \mathcal{O}(|B| \cdot |A|^2)$, was polynomiell in der Eingabe ist.

Beweis: ApproxWightedHittingSet ist ein b-Approximationsalgorithmus

Aufgabe 7.2