

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Sommersemester 2024

Peter Philip,

Paula Reichert, Lukas Emmert

Analysis 2 (Statistik) Präsenzaufgabenblatt 3

Aufgabe 1

Wir betrachten den Vektorraum $C([0,1]) = \{f : [0,1] \to \mathbb{R} : f \text{ ist stetig}\}$ mit

$$(f+g)(x) := f(x) + g(x),$$

$$(\lambda f)(x) := \lambda f(x) \quad \forall x \in [0,1] \quad \text{und} \quad \forall \lambda \in \mathbb{R}.$$

Dazu betrachten wir die Funktion $||\cdot||$ gegeben durch

$$||f|| = \max_{x \in [0,1]} |f(x)| \quad \forall f \in C([0,1]).$$
 (1)

- (a) Zeigen Sie, dass $||\cdot||$ wohldefiniert ist, mit anderen Worten, dass das Maximum in Gl. (1) immer existiert.
- (b) Zeigen Sie, dass $||\cdot||$ eine Norm auf C([0,1]) ist.
- (c) Für beliebiges $x \in [0, 1]$ betrachten wir die folgende Funktion:

$$T_x: C([0,1]) \to \mathbb{R}, \quad T_x(f) := f(x).$$

Zeigen Sie mithilfe der Definition der Stetigkeit, dass T_x stetig ist.

Aufgabe 2

Sei X der \mathbb{K} -Vektorraum der Folgen in \mathbb{K} , die schließlich konstant Null sind (siehe Beispiel 1.33b) im Skript), mit $||x|| := \sup_{n \in \mathbb{N}} \{|x_n|\}$ für $x = (x_1, x_2, ...)$. Betrachten Sie die Folge $(x^k)_{k \in \mathbb{N}}$ in X mit

$$x_n^k = \begin{cases} 1/n & \text{für } 1 \le n < k \\ 0 & \text{sonst} \end{cases}$$

- (a) Zeigen Sie, dass (x^k) eine Cauchy-Folge ist.
- (b) Zeigen Sie, dass (x^k) nicht in $(X, ||\cdot||)$ konvergiert. Damit haben wir einen normierten Vektorraum gefunden, der kein Banachraum ist.

Dieses Blatt wird im Tutorium in der Woche vom 06.05.24 – 10.05.24 besprochen.