X

†

Simple Evaluation of RAG with Ragas

Like a toddler an LLM is taught to learn and "understand" a language during its training. But, this training is not perfect as the LLMs are trained up to a certain period of time, hence, their knowledge can prove to be outdated in many situations and they tend to hallucinate or generate gibberish if unfamiliar with a query or concept.

Tenor GIF Keyboard

To overcome these challenges, we implement RAG. RAG or Retrieval Augmented Generation is like an open book examination but for large language model. The LLM now has a book (knowledge base) to take reference from and generate answers.

The pipeline consists of mainly following steps:

- 1. Document Loading: Collecting all relevant documents from different sources to create knowledge base.
- 2. Document Chunking: Splitting large documents into smaller chunks to be able to be passed as context to an LLM.
- 3. Embedding Generation: These chunked documents are now transformed into a dense array of numbers or embeddings.

- 4. Vector Storage: These embeddings are now stored in vector storage for the ease of retrieval.
- 5. Context Retrieval: The embeddings that are relevant to the user query are now passed as context to the LLM.
- 6. Answer Generation: The LLM generates answers based on the context supplied.

One might need to perform simple prompt engineering to get the best results.

But, the real question is how does one evaluate these RAG pipelines?

Tenor GIF Keyboard

A RAG pipeline is evaluated based on ground truths. So, the evaluation dataset must contain user queries, ground truths, results generated, and context supplied. Before diving into code, we shall explore all the required metrics.

We can divide this process into two parts:

Open in app 7

Write \bigcirc

- Context Recall: The metric checks if all the relevant answers to the question are present in the context. For the user query: "Who discovered the Galapagos Islands and how?" A context with high recall will answer both the parts of question — Who and How. The answer to both of these questions is present in the ground truth. Hence, this metric utilizes context and ground truth to determine a score between 0 and 1. 1 being the highest recall.
- Context Precision: This metric determines whether context that is closest to the ground truth is given high score. The more relevant is the chunk to the ground truth the higher will be the score. Context Precision is determined by ground truth, context, and user query. Higher the score, ranging from 0 to 1, higher the context precision.
- Context Entities Recall: This recall determines whether all entities present in the ground truth are also present in the supplied context. For query: "In which countries are snow leopards found?" the ground truth mentions 12 countries. If the context contains all the names of these countries, then it would result in high context entity recall.

- 2. Generation Evaluation: This part evaluates the answer generated by the LLM.
 - Faithfulness: The metric outputs a score between 0 and 1, determining the extent to which the generated response relies solely on the provided context. The lower the score, the less trustworthy the generated answer is, the less reliance on the supplied context.
 - Answer Relevance: It measures how relevant and pertinent is the generated answer to the user query. For query: "What are the threats to penguin populations?" an irrelevant answer might focus on location of penguins while a relevant answer would mention the threats to penguins populations.
 - Answer Similarity: It calculates how semantically similar are the generated answer and the ground truth. In simple terms, how these two are similar conceptually. For query: "In which countries are snow leopards found?" the generated answer might mention only a few countries with snow leopards, but it would have a high answer similarity because the answer is conceptually similar to the ground truth. Again, 1 being the highest similarity score and 0 being the lowest.
 - Answer Correctness: This metric determines how factually correct is the generated output. It utilizes the ground truth and generated answer to determine this score. The higher the better, from 0 to 1. It is not to be confused with faithfulness as an answer can be (factually) correct but can not be faithful if it is not generated using the context.
 - Answer Harmfulness: This metric simply determines if the output is potentially offensive to an individual, group, or a society. The output is binary, 0 or 1.

We can now dive into the code to perform RAG and determine these metrics using Ragas (RAG Assessment) framework. Ragas is a simple framework that helps evaluate RAG pipelines.

We start with importing libraries.

We can also see the mean of all metrics that gives us the score for entire	
dataset.	

faithfulness 0.955000 answer_relevancy 0.923192 context_precision 0.733333 context_recall 0.916667 context_entity_recall 0.322197 answer_similarity 0.941792 answer_correctness 0.665889 harmfulness 0.000000 dtype: float64

The RAG pipeline exhibits strong performance in terms of faithfulness, answer relevancy, context recall, and answer similarity. However, there are areas for improvement, particularly in context entity recall, context precision, answer correctness, to enhance the overall quality and accuracy of the responses generated by the model.

You can also find this code, chrom_db folder, and evaluation metrics scores in my github repository: https://github.com/namratanwani/Evaluate-RAG/blob/master/RAG-evaluation.ipynb

References

<u>Introduction | Ragas</u>

Introduction | 🐍 🔗 Langchain

Hope you found this helpful! Please feel free to share your feedback:)

Tenor GIF Keyboard

Rag Llm Gpt Evaluation Al

Written by Namrata Tanwani

ML. Living to learn, learning to live. Let's connect: https://www.linkedin.com/in/namratanwani

More from Namrata Tanwani

Namrata Tanwani in Analytics Vidhya

ANACONDA 101

So anyone here who is beginning with Anaconda that too on Windows, You have go...

3 min read · Jan 7, 2021

 \bigcirc

Harikrishnan N B in Analytics Vidhya

Confusion Matrix, Accuracy, Precision, Recall, F1 Score

Binary Classification Metric

6 min read · Dec 10, 2019

 \bigcirc

Hannan Satopay in Analytics Vidhya

The Ultimate Markdown Guide (for Jupyter Notebook)

An in-depth guide for Markdown syntax usage for Jupyter Notebook

Namrata Tanwani in Analytics Vidhya

Changing Ownership of your Google Data Studio Visualization

Imagine you're working as an intern in a company, and you use your personal accoun...

See all from Namrata Tanwani

Recommended from Medium

$$sion@k = \frac{\sum precision@k}{total number of relevant items in the }$$
 $cision@k = \frac{true positives@k}{(true positives@k + false positives@k)}$

nber of chunks in contexts

Evaluation of RAG (Retrieval-Augmented Generation) using...

You've built a Retrieval-Augmented Generation (RAG) application, showcasing it...

14 min read · Feb 8, 2024

Florian June in Al Advances

Advanced RAG 10: Corrective Retrieval Augmented Generation...

Intuitive Example, Priciples, Code Explanation and Insights about CRAG

🔶 · 11 min read · 5 days ago

The New Chatbots: ChatGPT, Bard, and Beyond

12 stories · 360 saves

Natural Language Processing

1390 stories · 886 saves

Generative Al Recommended Reading

52 stories · 948 saves

What is ChatGPT?

9 stories · 338 saves

LlamaIndex Agentic RAG Multi-Document Agents

Cobus Greyling

A Practical Guide to RAG Pipeline Evaluation (part 1)

Series of blogs on how to evaluate and improve your LLM and RAG Pipelines. Deep...

11 min read · Dec 11, 2023

LLamaIndex Agentic RAG Demo

Agentic RAG is an agent based approach to perform question answering over multiple...

6 min read · Feb 1, 2024

	Repository Name	About	Stars	Forks	Contributors	Issues	Releases	Watchers	Time Since Last Commit	License	Languages
igface	transformers	 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX. 				1,032		1,086	0 days, 8 hrs, 4 mins		Python, Cuda, Shell, C++, Dockerfile, C, Makefile, Cyth Jsonnet
PTNextW	ChatGPT-Next-W eb	A cross-platform ChatGPT/Gemini UI (Web / PWA / Linux / Win / MacOS). 一键拥有你自己的跨平台 ChatGPT/Gemini 应用。	64,022	52,899	167	223	57	382	0 days, 11 hrs, 13 mins	MIT License	TypeScript, SCSS, JavaScrip Dockerfile, Rust
-ai	gpt4all	gpt4all: run open-source LLMs anywhere	62,317	6,832	88	364	10	616	0 days, 9 hrs, 34 mins	MIT License	C++, QML, Python, CMake, C#, JavaScript, C, Go, Make Shell, Qt Script, PowerShell, Batchfile, CSS
anov	llama.cpp	LLM inference in C/C++	52,671	7,411	479	1,229	1,544	493	0 days, 8 hrs, 47 mins	MIT License	C++, C, Cuda, Python, Metal Objective-C, Shell, CMake, Makefile, Nix, Dockerfile, Zig, Batchfile
nez	privateGPT	Interact with your documents using the power of GPT, 100% privately, no data leaks	48,358	6,351	62	142	6	432	0 days, 9 hrs, 7 mins	Apache License 2.0	Python, MDX, Makefile
1	ollama	Get up and running with Llama 2, Mistral, Gemma, and other large language models.	46,681	3,114	146	656	51	295	0 days, 9 hrs, 51 mins	MIT License	Go, Shell, C, TypeScript, PowerShell, C++, Dockerfile, Setup, Python, CMake, CSS, Objective-C, JavaScript, HTN
ooga	text-generation- webui	A Gradio web UI for Large Language Models. Supports transformers, GPTQ, AWQ, EXL2, Ilama.cpp (GGUP), Liama models.	34,130	4,564	299	276	34	297	0 days, 14 hrs, 8 mins	GNU Affero General Public License v3.0	Pythen, CSS, JavaScript, Sh Batchfile, Jupyter Notebook, Dockerfile
wrigley	chatbot-ui	All chat for every model.	25,201	6,829	31	62	0	231	0 days, 22 hrs, 47 mins	MIT License	TypeScript, PLpgSQL, JavaS CSS, Shell
ıb	lobe-chat	■ Lobe Chat - an open-source, modern-design LLMa/M chat framework. Supports Multi Al Provident (Open/J Claude 3 / Germin! / Perploxity / Bedrock / Acure / Mistral / Ollama), Multi-Modals (Vasion/TE) and plugn system. One-click FREE deployment of your private ChatGPT chat application.	21,931	4,502	69	208	460	118	0 days, 8 hrs, 23 mins	MIT License	TypeScript, JavaScript, Dock

50+ Open-Source Options for Running LLMs Locally

In my previous post I discussed the benefits of using locally hosted open weights LLMs,...

8 min read · Mar 12, 2024

£19 459

Q 6

fits

Query over your PDF's using Ilama index

RAG processing using Llamaindex

6 min read · Mar 15, 2024

10

 \bigcirc 1

 \Box^{\dagger}

•••

See more recommendations