Week 9

Mining Asset Detection (MAD)

Satellite images - Hopefully for the very last time

In order to increase the quality of the satellite images, I tried to download unprocessed GEE images

Result:

- Increase in quality for some
- Unexpected issues with swath of Satellites (should be harmonized?)

Fix?

 Do an on site quality assessment (fits into the squeeze phase)

Satellite images - Larger image download

In order to add minor augmentations to the image

- Rotation
- Translation
- Zoom

We need bigger images to create these augmentations, but...

GEE has max image download size of 32MB...

Satellite images - Larger image download

We can download images in parts, let's calculate (excluding metadata):

512 x 512 pixels, with 13 bands, each being a 16bit integer: 6MB for a 5km x 5km image

Increases quadratically => 10km x 10km already at 24MB

Satellite images - Larger image download

Possible quick fixes:

- Create the augmentation on site and only download final image (should be very slow for a whole dataset due to requirement to download the image)
- Download each band separately, single band ~ 0.5 MB for 5km => 40km x 40km maximally possible image

Satellite images - AWS Sentinel 2

The very surprising fix:

- Sentinel 2 data can be accessed publicly given this documentation
- Every single image is 100km x 100km
- Download speeds in the 600Mbits! (4x GEE)
- Images look fantastic

Satellite images - AWS Sentinel 2 - the caveat

Their system uses MGRS, the worst "projection" I had to work with yet FP NU PU EP LU MU FN MT EN VN UN **GN KT** FRANCE EM FM LS NS QS TM UM GM KS FL EL GL KR LR MR NR PR QR TL UL EK MQ NQ PQ UK VK

Satellite images - AWS Sentinel 2 - the caveat

Since we're not relying on GEE quality control anymore, weird things can happen

- Unexpected cloud coverage
- Glitched images (Faults happened during download or reconstruction of images)
- Lower quality than expected in images

Fix: Based on metadata (all cached on our side) poll different images with better quality metrics

Could even be automated!

After iterations of improvements we should have only quality satellite images to work with.

What now? - Dataset pipeline

What now? - Dataset pipeline - Origin data

.tif dataset is frozen for a model creation.

- Based on filtering results (such as no data due to swath) the dataset may be refined over time.
- General extent stays the same.

What now? - Dataset pipeline - Split

Split done before any filtering or expansion.

- More manageable (~5000 bare satellite images)
- Ensures no matter the expansion, that no information leaks into the test set
- Ensures comparability between models

What now? - Dataset pipeline - Filter

Filters incoming .tif images based on quality and characteristic

- Quality, to form a feedback loop with the original dataset
- Characteristic, to allow special model training like ecoregion specific models.

What now? - Dataset pipeline - Inflation

Inflates the .tif image into its .jpg variants

- Rasterizes the .tif and outputs the rasterized images (Essentially as we've done until now)
- Creates random permutations of the images, such as rotation, translation etc.
- Also has to do the labeling (as the per<u>mutations</u> make this a bit more tricky)

What now? - Dataset pipeline - Model dataset

Final dataset over which to perform the model training (either lasso or yolo)

• Must fit the model requirements for the input.

What now? - Model training

Question for later:

- How to design the exact model training (specifically yolo)
 - Choosing parameters
 - Which YOLO model to take

What now? - Model comparison

The separated dataset can be used to uniformly test the performance of all resulting models

- Allows for a final comparison
- Most cost effective:
 - Use YOLO's inbuilt metrics and prediction on a test set

