Aula 03 - Introdução à Física Computacional I

Lyliana Myllena Santos de Sousa - 11223740 Lyliana.sousa@usp.br

1.

Dadas as matrizes A e B a seguir, expresse-as como uma lista de listas, determine o produto matricial AB e exiba o resultado na forma matricial:

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 3 \end{pmatrix}, B = \begin{pmatrix} 2 & -1 & 4 \\ 1 & 0 & -2 \\ 0 & 3 & 1 \end{pmatrix}$$

(Resposta:
$$AB = \begin{pmatrix} 2 & -4 & 3 \\ 2 & 9 & -1 \end{pmatrix}$$

Out[12]=
$$\{\{1, 0, -1\}, \{0, 2, 3\}\}$$

$$B = \{\{2, -1, 4\}, \{1, 0, -2\}, \{0, 3, 1\}\}\$$

Out[13]=
$$\{\{2, -1, 4\}, \{1, 0, -2\}, \{0, 3, 1\}\}$$

In[14]:= A.B // MatrixForm

forma de matriz

Out[14]//MatrixForm=

$$\begin{pmatrix} 2 & -4 & 3 \\ 2 & 9 & -1 \end{pmatrix}$$

2.

Em um planeta distante, astronautas lançam uma pedra no ar. Com a ajuda de uma câmera que tira fotos a intervalos de tempo regulares, eles registram a altura da pedra como função do tempo, obtendo os dados mostrados na tabela abaixo.

Height of a Rock versus Time	Height	of	a	Rock	versus	Time
------------------------------	--------	----	---	------	--------	------

Time (s)	Height (m)	Time (s)	Height (m)
0	5.	2.75	7.62
0.25	5.75	3.	7.25
0.5	6.4	3.25	6.77
0.75	6.94	3.5	6.2
1.	7.38	3.75	5.52
1.25	7.72	4.	4.73
1.5	7.96	4.25	3.85
1.75	8.1	4.5	2.86
2.	8.13	4.75	1.77
2.25	8.07	5.	0.58
2.5	7.9		

• Com a função Table, ou seja, sem digitar diretamente os valores, faça uma lista dos tempos t_i associados a cada medida..

$$ln[20]:= t = Table \left[N \left[\frac{n-1}{m} \right], \{n, 21\} \right]$$

$$\left[tabela \mid valor4numérico \right]$$

• Defina uma lista simples com os dados da altura y_i da pedra nos diversos instantes.

$$\begin{aligned} & \text{In}[28] = \text{ y = \{5, 5.75, 6.4, 6.94, 7.38, 7.72, 7.96, 8.1, 8.13, 8.07,} \\ & \text{ 7.9, 7.62, 7.25, 6.77, 6.2, 5.52, 4.73, 3.85, 2.86, 1.77, 0.58\}} \\ & \text{Out}[28] = \text{ \{5, 5.75, 6.4, 6.94, 7.38, 7.72, 7.96, 8.1, 8.13, 8.07,} \\ & \text{ 7.9, 7.62, 7.25, 6.77, 6.2, 5.52, 4.73, 3.85, 2.86, 1.77, 0.58} \end{aligned}$$

• Com a função Transpose, faça uma lista de pares ordenados $\{t_i, y_i\}$.

 $\{1.75, 8.1\}, \{2., 8.13\}, \{2.25, 8.07\}, \{2.5, 7.9\}, \{2.75, 7.62\}, \{3., 7.25\}, \{3.25, 6.77\},$ $\{3.5, 6.2\}, \{3.75, 5.52\}, \{4., 4.73\}, \{4.25, 3.85\}, \{4.5, 2.86\}, \{4.75, 1.77\}, \{5., 0.58\}\}$

• Com a função ListPlot, faça o gráfico da altura em função do tempo.

In[30]:= ListPlot[yt]

gráfico de uma lista de valores

