Prediction of Growth after Thinning in Old-Field Slash Pine Plantations

by

Jerome L. Clutter and Earle P. Jones, Jr.

Cooperators for this study are:

Brunswick Pulp Land Company
Buckeye Cellulose Corporation
Container Corporation of America
Continental Forest Industries
Georgia Kraft Company
International Paper Company
ITT Rayonier, Incorporated
Owens-Illinois, Forest Products Division
St. Regis Paper Company
Sullivan Lumber Company

Union Camp Corporation
Division of Forestry, Florida Department of Agriculture and Consumer Services
U.S. Forest Service, National Forests in Florida
O. F. McEachin Estate, McRae, Georgia
Mr. Jesse Newsom, Davisboro, Georgia
(Deceased)
Mr. W. C. Peterson, Soperton, Georgia
Mr. Joe Prescott, Lumber City, Georgia
H. E. Walton Estate, Cordele, Georgia

August 1980
Southeastern Forest Experiment Station
Asheville, North Carolina

Prediction of Growth after Thinning in Old-Field Slash Pine Plantations

by

Jerome L. Clutter, Union Camp Professor of Forest Resources School of Forest Resources, University of Georgia Athens, Georgia and Earle P. Jones, Jr., Silviculturist

Earle P. Jones, Jr., Silviculturist Southeastern Forest Experiment Station Macon, Georgia

ABSTRACT.—An algorithm is given for projecting stand structure in old-field slash pine plantations from current stand statistics that represent conditions after thinning from below, or without thinning. The algorithm is based on data collected from 212 quarter-acre plots in slash pine's range in Georgia, Florida, Alabama, and Mississippi. Plots represented ages from 9 to 32 years, basal areas from 25 to 150 square feet, and site indexes (at base age 25) of 47 to 80 feet. Projections for selected combinations of age, site index, and density are evaluated for total cubic-foot and board-foot volume production after thinning of 20, 25, 33, and 50 percent of volume and without thinning.

Keywords: Pinus elliottii, yield, mensuration.

Foresters have long recognized the mensurational and economic complexities involved in analyzing the effects of thinning. Valuable data on responses of thinned southern pine stands can be found in the reports of case histories and locally replicated studies (e.g., Dell and Collicott 1968; Keister, Crow and Burns 1968; Enghardt and Mann 1972), but no results from regional studies have been published.

This report presents initial results from a cooperative regional thinning study organized by the Southeastern Forest Experiment Station. Results include:

- A series of mathematical equations for predicting the subsequent development of thinned (or unthinned) old-field slash pine plantations.
- A comparison of predicted growth with actual growth for the plots that were used to develop the prediction equations.
- An analysis of the effects of thinning under a wide variety of situations.

A FORTRAN subroutine for computer implementation of the prediction equations is given in the Appendix.

THE DATA BASE

In 1958, the Southeastern Forest Experiment Station and a number of cooperators began a large

slash pine plantation density study. The principal objective was to determine the effects of different residual stand densities upon the cubic-foot volume growth and total yield of planted slash pine over a broad range of ages and sites. Eighteen industry, government, and nonindustrial private landowners cooperated in providing old-field slash pine plantations for sampling. Sample plots were widely scattered over the Coastal Plain of southern Georgia and northern Florida, and along the Gulf Coast of Alabama and Mississippi. Slash pine plantations were selected for sampling to provide a broad representation of plantation ages and site indexes (based on a 25year index age). Residual stand densities were in 25-square-foot basal-area classes with midpoints of 40, 65, 90, 115, 140, and 165, Plantations were not chosen if they had a history of naval stores operations, frequent or damaging fires, or heavy rust infection; nor were those that had been interplanted or thinned. Plots were placed in portions of the plantation that had rather uniform planted pine stocking. No more than six merchantable-

¹Ages at the beginning of the growth period ranged from 9 to 32 years. Minimum and maximum site-index values (calculated using Equation 3 in table 1) were 47 feet and 80 feet, respectively. Basal areas at the beginning of the growth period varied from 25 square feet per acre to 150 square feet per acre.

size wild pines or hardwoods were allowed. Greater numbers of unmerchantable wildlings were permitted.

In all, 296 monumented plots were established. Most were four-sided, as nearly square as plantation row alignment would allow, and close to one-quarter acre in size. Also included were some circular quarter-acre plots which were part of a similar study started in 1955.

The number of sample plots installed in each selected plantation depended on the highest density available. Except for those with a uniquely high basal area, plots in a plantation were randomly assigned for thinning to a basalarea class. Thinnings reduced basal area as nearly as practicable to the midpoint of the density class; plots with existing basal areas near the midpoint of their assigned class were left unthinned. Thinnings generally consisted of improvement cuts from below. Thus, most cut trees were in the lower merchantable and submerchantable diameter classes, but larger trees were taken if they were badly diseased or deformed. Due regard was given to the spacing of residuals to avoid "holes" in the residual stand.

Initial plot measurements included a 100percent diameter tally of pine and hardwood trees more than 6 feet tall and a classification as to sawtimber or pulpwood. In each diameter class, the first and every following eighth tree were designated for measurements of total height, height to green crown, and crown class. Trees with a broken top, a low fork, or some other deformity that obviously affected height were passed over, and the next acceptable tree in the diameter class was measured.

The plots were remeasured in a similar way at the end of the growth period 5 years later. Trees in

the original height sample were remeasured, and additional trees were measured to give at least the one-in-eight sample according to the new diameter distribution. Thinning treatments and remeasurements have continued beyond the first growth period, but the results are not reported here.

First and second measurements were compared for each plot and tree. Obvious errors were corrected, but plots for which data could not be reconciled were left out of the growth analysis. Of the original 296 plots installed, 212 were used in the present analysis.

THE STAND-STRUCTURE PROJECTION ALGORITHM

Analysis of the data base just described has produced a computerized algorithm for predicting the future stand structure of old-field slash pine plantations. To make predictions, the following information about the residual stand is necessary:

- Age of the stand.
- Site index (25-year index age).
- A current stand table that shows the number of trees per acre by 1-inch diameter class together with the average diameter and average height of the trees in each class.

Diameter distributions after thinning may be measured or they may be calculated by the method of Bennett and Clutter (1968) and Bennett (1970). When diameter distributions are calculated, diameter class midpoints will generally serve as the initial average diameters. When the stand table is based on field measurements, the average diameters can be calculated as mean d.b.h. values by diameter class.

The equations for the stand-structure projection algorithm are listed below:

$$N_2 = [N_1^{-0.870841} + 0.0000146437 (A_2^{1.37454} - A_1^{1.37454})]^{[(-0.870841)^{-1}]}$$
 (1)

$$\ln(B_2) = (A_1/A_2)^{0.659976} \ln(B_1) + 5.74478[1 - (A_1/A_2)^{0.659976}]$$
 (2)

$$\ln(S) = 3.75044 + 1.4488e^{-9.26795/A} [\ln(H) + 17.6098/A - 4.45483]$$
(3)

$$\ln(H) = 0.69024e^{9.26795/A} [\ln(S) - 3.75044] - 17.60980/A + 4.45483 \tag{4}$$

$$n_{2i} = [n_{li}p_i/(\sum_{i} n_{1i}p_i)]N_2$$
 (5)

where probit(p_i) = 6.76748 + 1.00456 ln(b_{1i}/b_1) (see footnote 2)

$$\begin{aligned} d_{2i} &= [\overline{b}_2 K(b_{1i}/\overline{b}_1) U/0.005454]^{0.5} \\ &\quad \text{where } K = N_2/\sum_i n_{2i} (b_{1i}/\overline{b}_1) U \\ &\quad \text{and} \quad U = (A_1/A_2)^{0.0578109} \\ h_{2i} &= H_2(h_{1i}/H_1) [(A_1/A_2)^{-0.224491}] \end{aligned} \tag{7}$$

Definitions for symbols in the equations are:

 A_1 = plantation age at the beginning of the growth period (years)

 A_2 = plantation age at the end of the growth period (years)

 N_1 = number of surviving stems per acre at the beginning of the growth period

 N_2 = number of surviving stems per acre at the end of the growth period

 B_1 = basal area per acre at the beginning of the growth period (square feet)

 B_2 = basal area per acre at the end of the growth period (square feet)

H₁ = average height of dominant and codominant trees at the beginning of the growth period (feet)

H₂ = average height of dominant and codominant trees at the end of the growth period (feet)

S =site index at index age of 25 years (feet)

n_{1i} = number of surviving stems per acre in diameter class "i" at the beginning of the growth period

n_{2i} = number of surviving stems per acre in diameter class "i" at the end of the growth period

b_{1i} = average basal area per tree for diameter class "i" at the beginning of the growth period (square feet)

 \overline{b}_1 = average basal area per tree for the entire stand at the beginning of the growth period (square feet)

d_{1i} = average d.b.h. for diameter class "i" at the beginning of the growth period (inches)

 d_{2i} = average d.b.h. for diameter class "i" at the end of the growth period (inches)

 \overline{b}_2 = average basal area per tree for the entire stand at the end of the growth period (square feet)

h_{1i} = average height of trees in diameter class "i" at the beginning of the growth period (feet)

h_{2i} = average height of trees in diameter class "i" at the end of the growth period (feet)

e = 2.71828, ..., the base of natural logarithms

In denotes a natural logarithm

 Σ denotes a summation over all occupied diameter classes

The following operations are required to apply the equations:

- 1. Determine the appropriate values for A_1 , A_2 , N_1 , B_1 , H_1 , and S. N_1 and B_1 can be calculated from the after-thinning stand table. If H_1 is known, S can be calculated from equation (3). If S is known, H_1 can be calculated by solving equation (4) with $A = A_1$.
 - 2. Compute $\overline{b}_1 = B_1/N_1$ and the b_1 values.
- 3. Calculate N_2 and B_2 with equations (1) and (2), and compute $\overline{b}_2 = B_2/N_2$.
- 4. Compute H_2 by solving equation (4) with $A = A_2$.
- 5. Calculate the p_i value for each diameter class, and then solve equation (5) for each diameter class to give the n_{2i} values.

6. Solve equations (6) and (7) for each diameter class to give the d_{2i} and h_{2i} values.

These computations produce a stand table showing numbers of trees, average diameters, and average heights by diameter classes at the end of the projection period. The total number of trees per acre in the stand table will be N_2 as calculated from equation (1) in step 3. If basal area per acre is computed from n_{2i} and d_{2i} values, the result will be B_2 as calculated with equation (2) in step 3.

This projection algorithm differs from conventional stand table projection methods in that it does not move trees from one class to another. Instead, the class statistics change. For example, diameter class i begins the growth period containing n_{1i} trees, which are treated as all having

Probit(x) = $5.0 + Z_x$ (0 $\leq x \leq 1$)

²The probit transformation is defined as follows:

d.b.h. values equal to d_{1i} and total heights equal to h_{1i} . At the end of the growth period, n_{2i} of the original n_{1i} trees are still alive with d.b.h. values equal to d_{2i} and total heights equal to h_{2i} . This overall projection procedure is similar to the method developed by Clutter and Allison (1974) for *Pinus radiata* in New Zealand.

A COMPARISON OF OBSERVED AND PREDICTED VALUES

Data from the same 212 growth-period observations that were used to develop the prediction equations were analyzed with the stand structure projection algorithm to generate comparisons of observed growth statistics with corresponding predicted values. On each plot, the observed after-thinning diameter distribution and average heights, by d.b.h. class, were used as input to the algorithm. Predicted end-of-period statistics calculated by the algorithm were compared with corresponding end-of-period observed values.

A summary of these comparisons is shown in table 1. For each stand variable, the average of the observed values and the average of the values predicted by the model are shown together with

Table 1.—Comparison of observed and predicted values, per acre

Stand characteristic	Average observed value	Average predicted value	Percent of variation explained
ALL PLO	OTS $(n = 212)$		•
Number of trees at age A ₂	298.6	299.5	98.7
Basal area at age A ₂ (ft²)	100.4	100.5	96.7
Cubic-foot volume at age A ₂	2,598	2,620	93.6
Board-foot volume at age A ₂	1,010	1,031	94.0
Mortality during period (number of stems)	18.7	19.6	42.1
Basal-area growth during period (ft²)	19.6	19.7	59.9
Cubic-foot growth during period	1,000	1,022	81.5
Board-foot growth during period	589	610	85.8
THINNED	PLOTS ($n = 153$)		
Number of trees at age A ₂	271.4	274.1*	98.8
Basal area at age A ₂ (ft²)	91.9	92.5	96.5
Cubic-foot volume at age A ₂	2,359	2,398	93.0
Board-foot volume at age A ₂	822	844	92.3
Mortality during period (number of stems)	17.9	20.7*	54.0
Basal-area growth during period (ft²)	19.2	19.8	60.8
Cubic-foot growth during period	919	957	65.1
Board-foot growth during period	472	494	73.8
UNTHINNE	O PLOTS (n = 59)		
Number of trees at age A ₂	369.2	365.2	98.0
Basal area at age A ₂ (ft²)	122.6	121.3	93.7
Cubic-foot volume at age A ₂	3,217	3,195	91.6
Board-foot volume at age A ₂	1,497	1,515	95.1
Mortality during period (number of stems)	20.7	16.7	17.6
Basal-area growth during period (ft²)	20.8	19.4	56.9
Cubic-foot growth during period	1,210	1,188	90.3
Board-foot growth during period	894	912	91.7

All cubic-foot volume and growth figures are outside-bark merchantable volumes to a 4.0-inch (o.b.) top diameter and include all stems with d.b.h. greater than 4.5 inches. The volume table used was developed by Bennett and others (1959).

All board-foot volume and growth figures are International 1/4-inch scale and are based on a volume equation developed by Bennett (1959).

^{*}Average predicted value differs significantly at the 5-percent level from the corresponding average observed value.

the percent of variation explained by the model. For a given stand variable Y, the percent of variation explained was calculated as:

$$PVE = 100 \left\{ 1 - \left[\sum (Y_i - \hat{Y}_i)^2 \right] / \left[\sum (Y_i - \tilde{Y})^2 \right] \right\}$$

where:

PVE = percent of variation explained.

Y_i = observed value of Y for observation i.

 \hat{Y}_i = predicted value of Y for observation i,

 $\bar{Y} = \Sigma Y_i/n$, and

the summations are made over the n observations involved.

These statistics are tabulated for all 212 plots, and for the 153 thinned plots and the 59 unthinned plots. Agreement between observed and predicted values is generally quite close. In two of the 24 comparisons that are tabulated, average observed values differ significantly from the average predicted values. However, in neither of these cases is the magnitude of the difference sufficiently large to be of practical concern. The percentages of variation explained by the projection equations indicate good performance in most prediction situations.

As is common, mortality is predicted with less precision than any of the other dependent variables considered. For the unthinned plots, only 17.6 percent of the variation in observed mortality is explained by the model. Because the comparable figure is 54.0 percent in thinned stands, much of the unexplained mortality variation in unthinned stands is probably occurring in trees that would have been removed if a thinning had been performed (i.e., small trees and diseased trees). The fact that the model explains 90.3 percent of the variation in cubic-foot growth variability while accounting for only 17.6 percent of the variation in mortality seems to confirm this conjecture.

EFFECTS OF THINNING

Calculations were performed to evaluate the effect of thinning on cubic-foot and board-foot production in a large number of representative thinning situations. Evaluations were carried out for various combinations of site index, thinning age, rotation age, stems per acre before thinning, and thinning intensity expressed as a percentage of merchantable cubic-foot volume removed. For each combination, stand structure at thinning age was calculated using techniques described by Bennett (1970) and Burkhart (1971). Yield without thinning was estimated with the stand structure projection algorithm to project this stand structure forward to rotation age. Comparable yield with thinning was obtained by removing sufficient stems from the diameter distribution at the age of thinning (beginning with the 5-inch class and moving upward) to provide the required percentage of volume removal. Projection of this residual stand to rotation age provided a yield estimate for the thinned stand at maturity, and a combination of this figure with the thinning yield gave an estimate of the total yield with thinning. The results of these computations are summarized in table 2.

Table 2 shows that thinning decreased cubicfoot volume production over the entire rotation in all of the cases considered, but the percentage of reduction was relatively small in many instances. Thinning generally increased board-foot volume production over the life of the stand and, in many cases, the percentage of increase was quite large.

Identification of situations where thinning is or is not advantageous requires economic analysis which is not attempted here. A growth-projection algorithm such as we present is required for such analysis, however. Because the algorithm that is presented here can be used for such purposes, a FORTRAN computer subroutine and related instructions for implementing the algorithm are given in the Appendix.

LITERATURE CITED

Bennett, F. A.

1959. International ¼-inch board foot volume tables for old-field slash pine plantations in the middle coastal plain of Georgia. USDA For. Serv., Res. Notes 126, 2 p. Southeast. For. Exp. Stn., Asheville, N. C.

Bennett, F. A.

1970. Yields and stand structural patterns for old-field plantations of slash pine. USDA For. Serv., Res. Pap. SE-60, 81 p. Southeast. For. Exp. Stn., Asheville, N. C.

Bennett, F. A., and J. L. Clutter

1968. Multiple-product yield estimates for unthinned slash pine plantations—pulpwood, sawtimber, gum. USDA For. Serv., Res. Pap. SE-35, 21 p. Southeast. For. Exp. Stn., Asheville, N. C.

Bennett, F. A., C. E. McGee, and J. L. Clutter

1959. Yield of old-field slash pine plantations. USDA For. Serv., Stn. Pap. 107, 19 p. Southeast. For. Exp. Stn., Asheville, N. C. Burkhart, H. E.

1971. Slash pine plantation yield estimates based on diameter distribution: an evaluation. For. Sci. 17: 452-453.

Clutter, J. L., and B. J. Allison

1974. A growth and yield model for *Pinus radiata* in New Zealand. *In Growth models for tree and stand simulation*. R. Coll. For. Res. Note 30, p. 136–160. Stockholm, Sweden.

Dell, T. R., and L. V. Collicott

1968. Growth in relation to density for slash pine plantations after first thinning. For. Sci. 14:7-12.

Enghardt, H. G., and W. F. Mann, Jr.

1972. Ten-year growth of planted slash pine after early thinnings. USDA For. Serv., Res. Pap. SO-82, 11 p. South. For. Exp. Stn., New Orleans, La.

Keister, T. D., A. B. Crow, and P. Y. Burns

1968. Results of a test of classical thinning methods in a slash pine plantation. J. For. 66:409-411.

The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture of any product or service to the exclusion of others which may be suitable.

APPENDIX

Computer Subroutine to Implement the Stand-Structure Projection Algorithm

The computer listing shown in this Appendix is a FORTRAN subroutine designed to carry out the computations in the algorithm that is presented in the text. Arguments that are provided to the subroutine are:

A1 = age of the stand at the beginning of the projection period.

A2 = age of the stand at the end of the projection period.

BA1 = basal area per acre at the beginning of the projection period.

SPA1 = number of stems per acre at the beginning of the projection period.

ginning of the projection period.

SI = site index (index age of 25 years).

F

= site index (index age of 25 years).

= a 20-element array containing initial numbers of stems per acre by d.b.h. classes, where F(I) is the initial number of stems per acre in diameter class I (I = 1, 2, ..., 20).

D = a 20-element array containing initial average (midpoint) diameters by d.b.h. classes, where D(I) is the initial average diameter in diameter class I (I = 1, 2, ..., 20).

H = a 20-element array containing initial average heights by d.b.h. classes, where H(I) is the initial average height for diameter class I (I = 1, 2, ..., 20).

DL = a 20-element array containing initial lower limits for the d.b.h. classes, where DL(I) is the initial lower class limit for diameter class I (I = 1, 2, ..., 20).

DU = a 20-element array containing initial upper limits for the d.b.h. classes, where DU(I) is the initial upper class limit for diameter class I (I = 1, 2, ..., 20).

When the subroutine returns to the calling program, F, D, H, DL, and DU will contain values as of the end of the projection period. Other values returned are:

CFV = the per acre cubic-foot volume to a 4.0-inch top (o.b.) for all trees with d.b.h. 4.5 inches and larger.

BFV = the per acre board-foot volume (International ¼-inch scale) to a 6.0-inch top (o.b.) for all trees with d.b.h. 9.5 inches and larger.

This subroutine has been tested on IBM 370/158 equipment with a System/370 FORTRAN IV compiler. The subroutine makes use of the mathematical error function³ (ERF), which is a FORTRAN-supplied procedure with System/370 FORTRAN. Users wishing to implement the subroutine with a FORTRAN compiler that lacks the ERF function will have to include their own function subprograms to evaluate the error function.

The error function (ERF) is defined as $ERF(x) = (2/\sqrt{\pi}) \int_{0}^{x} e^{-u^{2}} du$

TABLE 2.-PER ACRE YIELD ESTIMATES FOR OLD-FIELD SLASH PINE PLANTATIONS WITH AND WITHOUT THINNING

	SITE INDEX:	SITE INDEX: 50 THINNING AGE: 15		ROTATION AGE: 25							
1 1	STEMS/ALRE BEFORE THINNING	STEMS/ACRE AFTER THINNING	* CU. FT. VOL.	* FEMOVED IN Cu. FT. *	YISLD WITH THINNING * Bu. FT. *	THINNING FOTAL CU. FT.	YIELC *	WITHOUT	ELD * THINNING * BD. FT. *	PFRCENT C A RESULT C CU. FT. *	F THINNING*
	400 400 400 400	278 261 234 179	20 25 33 50	142 177 236 354	0 0 0 0 0	1952 1902 1815 1619	601 615 652 1848	2168 2168 2168 2168	473 473 473 473	-10.0 -12.3 -16.3 -25.3	27.0 30.5 37.9 290.7
	500 500 500 500	36 / 345 319 267	20 25 33 50	140 175 234 351	0	1974 1869 1781 1581	177 205 214 1022	2154 2154 2154 2154	158 158 158	-10.7 -13.2 -17.3 -26.6	11.8 29.2 35.2 545.0
	600 600 600 600	474 443 409 358	20 22 33 50	159 174 232 348	0000	1900 1836 1739 1539	56 57 67 74	2132 2132 2132 2132	51 51 51	-10-9 -13-6 -18-4 -27-8	10.1 13.3 32.9 45.9
	700 700 700 700	580 550 502 453	20 25 33 50	139 173 231 347	000	1890 1816 1706 1505	20 21 27 27	2113 2113 2113 2113	19 19 19 19	-11.0 -14.1 -19.3 -28.6	6.8 11.5 16.6 41.9
	800 500 800	684 655 607 550	20 25 33 50	140 175 233 349	0	1672 1807 1695 1485	11 11 11 11	2107 2107 2107 2107	10 10 10	-11.2 -14.2 -19.6 -29.5	7.8 10.2 14.7 38.7

TABLE 2. PER ACRE YIELD ESTIMATES FOR OLD-FIELD SLASH PINE PLANTATIONS WITH AND WITHOUT THINNING-CONTINUED

SITE INDEX. 50	THINNIN	G AGE: 15	ROTATION AGE: 30					******	*****	
* #********** * S1:M3/AUKE * * BEFUR: * * THINNING *	STEMS/ACFE AFTER THINNING	PERCENT CU. FT. VOL. KEMCVEO	* REMOVED IN * CU. FI. *	YJELC WITH THINNING * BU. FT. *	THINNING TOTAL CU. FT.	YIELD BD. FT.	WITHOUT CU. FT.	LD THINNING BD. FT.	PERCENT CH A RESULT OF CU. FT. *	ANGE AS * THINNING* BD. FT. *
400 400 406 400	278 261 234 179	20 25 33 50	142 177 236 354	0	2539 2472 2354 2085	3530 3695 3942 5023	2822 2822 2822 2822 2822	2620 2620 2620 2620	-10.0 -12.4 -16.6 -26.1	34.7 41.1 50.5 91.7
500 500 500	367 345 319 267	20 25 33 50	140 175 234 351	0000	2491 2416 2295 2017	2311 2507 2686 3401	2795 2795 2795 2795	1755 1755 1755 1755	-10.9 -13.5 -17.9 -27.8	31.7 42.9 53.1 93.9
600 600 600	474 443 404 358	20 25 33 50	139 174 232 348	0000	2447 2361 7277 1946	1627 1756 1928 2414	2757 2757 2757 2757	1266 1266 1266 1266	-11.2 -14.4 -19.2 -29.4	28.5 38.7 52.3 90.7
700 700 700 700	580 550 502 453	20 25 33 50	139 173 231 347	0	2411 2324 2171 1889	1243 1329 1482 1636	2726 2726 2726 2726	991 991 991	-11.5 -14.7 -20.4 -30.7	25.3 34.1 49.5 65.0
500 500 800 800	654 655 607 550	20 25 33 50	140 175 233 349	0000	2390 2302 2145 1851	1028 1091 1216 1337	270 9 2709 2709 2709	838 638 638	-11.6 -15.0 -20.8 -31.7	22.6 30.1 45.1 59.5

TABLE 2.-PER ACRE YIELD ESTIMATES FOR OLD-FIELD SLASH PINE PLANTATIONS WITH AND WITHOUT THINNING-CONTINUED

SITE INDEX:	50 THINN	HNG AGE: 20	ROTATION AGE	E: 25						
************ STEMS/ACRE * BEFURE * THINNING *	STEMS/ACRE AFTER THINNING	PERCENT CU. FT. VOL. REMOVED	REMOVED IN CU. FT. +	YIELD WITH THINNING * BD. FT. *	THINNING TOTAL CU. FT.	YIELD * BD. FT. *	WITHOUT CU. FT.	********** ELD * Thinning * * BD FT *	PERCENT CI A RESULT DI CU. FT. *	HANGE AS OF THINNING BD. FT. *
400 400 406 406	266 242 211 160	20 25 33 50	274 343 457 686	0 0 0	1993 1968 1927 1835	381 390 409 439	2091 2091 2091 2091 2091	349 349 349 349	-4.7 -5.9 -7.9 -12.2	9.2 11.6 17.2 25.8
506 500 506	349 324 283 224	20 25 33 50	283 354 472 709	0000	2058 2033 1988 1892	102 104 107 122	2162 2162 2162 2162	97 97 97 97	-4.8 -6.0 -8.0 -12.5	5.1 7.2 10.7 25.6
004 006 006 006	433 408 368 294	20 25 33 50	290 362 483 724	000	2101 2075 2029 1927	16 16 17 19	2211 2211 2211 2211	15 15 15	-5.0 -6.2 -8.2 -12.8	2.2 4.4 8.5 21.4
700 700 700 700 700	520 495 455 375	20 25 33 50	295 369 491 737	0	2134 2107 2059 1953	1	2250 2250 2250 2250		-5.1 -6.4 -6.5 -13.2	0.1 2.4 7.0 20.2
800 800	619 585 545 466	20 25 33 50	300 374 499 749	0	2164 2134 2085 1975	0000	2283 2283 2283 2283	0	-5.2 -6.5 -8.7 -13.5	0.0 0.0 0.0 0.0

TABLE 2.-PER ACRE YIELD ESTIMATES FOR OLD-FIELD SLASH PINE PLANTATIONS WITH AND WITHOUT THINNING-CONTINUED

SITE INDEX: 50	SITE INDEX: 50 THINNING AGE: 20		ROTATION AGE	: 30						
* STEMS/ACRE * * BEFURE * * THINNING *	STEMS/ACRE AFTER THINNING	PERCENT Cu. FT. VOL. KEMOVED	REMOVEO IN CU. FT.	YIELD WITH THINNING * 90. FT. *	THINNING TOTAL CU. FT.	YIELD BD. FT.	VI WITHOUT CU. FT.	ELD THINNING 80 FT	PERCENT CHE A RESULT OF CU. FT. *	ANGE AS * THINNING* BD. FT. *
400	266	20	274	0	2575	2154	2743	1658	-6.1	15.9
460	242	25	343		2532	2247	2743	1858	-7.7	21.0
400	211	33	457		2458	2443	2743	1858	-10.4	31.5
400	160	50	686		2293	2994	2743	1858	-16.4	61.1
500	349	20	283	0	2648	1299	2827	1151	-6.3	12.8
500	324	25	354		2604	1358	2827	1151	-7.9	18.0
500	283	33	472		2525	1471	2827	1151	-10.7	27.7
500	224	50	709		2351	1847	2827	1151	-16.8	60.4
600	433	20	290	0000	2695	817	2885	750	-6.6	9.0
600	408	25	362		2648	856	2885	750	-6.2	14.2
600	368	33	483		2566	933	2885	750	-11.1	24.4
600	294	50	724		2381	1166	2885	750	-17.5	55.5
700	520	20	295	0	2727	551	7929	521	-6.9	5.7
700	495	25	369		2679	577	2929	521	-8.5	10.7
700	455	33	491		2593	630	2929	521	-11.5	20.8
700	375	50	737		2399	782	2929	521	-18.1	50.1
500 500 600 800	615 585 545 466	20 25 33 50	300 374 499 749	n 0 0	2757 2703 2615 2414	399 411 448 553	2967 2967 2967 2967	381 381 361 381	-7.1 -8.9 -11.9 -18.6	4.7 8.1 17.7 45.3

TABLE 2 - PER ACRE YIELD ESTIMATES FOR OLD-FIELD SLASH PINE PLANTATIONS WITH AND WITHOUT THINNING-CONTINUED

	SITE INDEX	: 60 THIN	NING AGE: 15	ROTATION AGE:	25						
* * * * *	EEFERE	* SIEMS/ACFE * AFTER * THINNING	* CU. FT. VOL.	* REMOVED IN * CU. FT. *	YIELD WITH THINNING * BD. FT. *	THINNING TOTAL CU. FT.	¥ BĎ. FT. *	YIE WITHOUT CU. FT. *	THINNING	* A RESULT OF	ANGE AS * THINNING* BD. FT. *
	400 460 460 460	264 239 206 155	20 25 33 50	261 327 436 653	0	2952 2896 2798 2579	3037 3171 3344 4135	3169 3169 3169 3169	2551 2551 2551 2551	-6.8 -8.6 -11.7 -18.6	19.0 24.3 31.1 62.1
	500 500 500 500	344 316 277 215	20 25 33 50	274 343 457 685	000	3062 3003 2899 2667	2062 2121 2246 2809	3293 3293 3293 3293	1661 1661 1661	-7.0 -8.8 -12.0 -19.0	24.1 27.7 35.2 69.1
	600 600 600	425 400 358 280	20 25 33 50	285 357 476 713	0	3150 3088 2979 2731	1403 1491 1583 1780	3395 3395 3395 3395	1152 1152 1152 1152	-7.2 -9.0 -12.3 -19.6	21.8 29.4 37.4 54.5
	700 700 700 700	509 484 441 356	20 25 33 50	246 370 494 740	0000	3229 3165 3050 2788	1027 1091 1202 1340	3490 3490 3490 3490	866 866 866	-7.5 -9.3 -12.6 -20.1	18.6 25.9 38.8 54.7
	000 000 000 800	502 570 527 442	20 25 33 50	308 364 513 769	0000	3312 3242 3123 2850	8 Z Z 8 6 B 9 6 3 1 0 8 B	3586 3586 3586 3586	707 707 707 707	-7.7 -9.6 -12.9 -20.5	16.2 22.7 36.2 53.8

TABLE 2.-PER ACRE YIELD ESTIMATES FOR OLD-FIELD SLASH PINE PLANTATIONS WITH AND WITHOUT THINNING -CONTINUED

	SITE INDEX:	: 60 THIN	NING AGE: 15	ROTATION AGE:	30						*****
***	BEFUKE 1			* KFMUVED IV * CU. FT. *	YI'LC WITH THINNING * IC FI *	TOTAL	YIELD * * 'D. FT. *	YIF WITHOUT Cu. FT. *	THINNING :	PERCENT CI A RESULT OF CU. FT. *	F THINNING●
•	+06 +03 +04	204 217 206 Lib	2¢ 25 25 50	361 327 436 653	CCC	3600 3608 34 1 314?	7303 7776 8233 8207	3649 3649 3949 3949	5647 5667 5887 5887	-6.8 -6.6 -11.8 -19.2	24.0 32.1 35.6 39.4
	200 200 203 500	318 277 215	20 32 50	274 343 457 685	6000	3795 3720 3555 3276	5761 6063 6788 7610	4094 4054 4084 4084	4604 4604 4604 4604	-7.1 -8.9 -12.2 -19.8	2 3.8 3 1.7 4 7.5 6 5.3
	ACU 000 600 600	445 400 356 836	27 25 80	235 27 476 713	ž 00	3884 5974 36,7 3331	4004 4904 5449 4625	4194 4194 4194 4194	3762 3762 3762 3762	-7.4 -4.3 -12.7 -20.6	22.4 31.4 46.2 61.4
	750 755 765 765	509 434 441 316	20 25 33 20	294 370 434 740	0000	3943 3879 3729 3376	3893 4149 4657 6136	4294 4294 4294 4294	3239 3239 3239 3239	-7.7 -9.7 -13.2 -21.3	20.2 28.1 43.6 85.5
	890 600 600	604 576 527 444	20 25 33 50	308 354 513 769	600	40-7 5956 3 7 98 3430	3466 3631 4127 5410	4397 4397 4397 4397	7932 2932 2932 2937	-8.0 -10.0 -13.6 -22.0	16.2 2.5 40.7 84.5

TABLE 2 -PER ACRE YIELD ESTIMATES FOR OLD-FIELD SLASH PINE PLANTATIONS WITH AND WITHOUT THINNING-CONTINUED

SITE INDEX	. 60 THINI	NING AGE: 20	ROTATION AGE:	25						
# _BEFURE		PERCENT CL. FT. VOL.	* REMOVED IN CU. FT. *	YIELD WITH THINNING * BD. FT. *	THINNING TOTAL CU. FT.	YIELD *	WITHOUT CU. FT.	LD THINNING	PERCENT CH A RESULT OF CU. FT. *	*********** ANGE AS * THINNING* BD. FT. *
400 400 400 400	255 234 198 143	20 25 33 50	458 573 763 1145	0000	3097 3070 3022 2914	2400 2461 2572 2871	3200 3200 3200 3200 3200	2167 2167 2167 2167 2167	-3.2 -4.1 -5.6 -8.9	10.8 13.6 18.7 32.5
500 500 500 500	323 297 260 168	26 25 33 50	493 616 821 1232	0000	3314 3286 3237 3124	1458 1490 1552 1694	3422 3422 3422 3422	1370 1370 1370 1370	-3.2 -4.0 -5.4 -8.7	6.4 8.8 13.3 23.7
600 600 600	404 300 244 46	20 25 33 50	522 653 870 1305	0000	3499 3470 3419 3300	902 908 938 1029	3611 3611 3611 3611	884 884 884	-3.1 -3.9 -5.3 -8.6	2.0 2.7 6.2 16.4
700 700 700 700 700	437 450 390 311	20 25 33 50	549 666 914 1371	000	3645 3635 3581 3456	508 590 593 665	3782 3782 3782 3782	597 597 597 597	-3.1 -3.9 -5.3 -8.6	-1.6 -1.2 -0.6 11.3
60f. 600 600 600	533 570 579	20 25 35 50	573 716 955 1433	000	3618 3757 3731 3600	405 407 409 455	3941 3941 3941 3941	423 423 423 423	-3.1 -3.9 -5.3 -8.6	-4.4 -3.9 -3.3 7.6

TABLE 2. -PER ACRE YIELD ESTIMATES FOR OLD-FIELD SLASH PINE PLANTATIONS WITH AND WITHOUT THINNING -CONTINUED

SITE INDEX	C: 60 THINN	VING AGE: 20	ROTATION AGE	: 30						
* STEMS/ALRE * BEFURE * 1HINNING	* STEMS/ACKE * AFTER * THINNING	PERCENT CU. FT. VOL. REMOVED	* REMOVED IN CU. FT. *	YIELD WITH THINNING * BD. FT. *	THINNING TOTAL CU. FT.	YIELD . ED. FT.	WITHOUT CU. FT.	ELD THINNING ED. FT.	* A RESULT ÓI	HANGE AS F THINNING BD FT F
400 400 400 400	255 234 196 143	20 25 33 50	458 573 763 1145	0000	3825 3780 3700 3510	6043 6256 6663 6572	3991 3991 3991 3991	5359 5359 5359 5359	-4.2 -5.3 -7.3 -12.1	12.8 16.7 24.3 22.6
500 500 500	222 297 260 160	20 25 33 50	493 616 821 1232	0000	4069 4022 3938 3742	4579 4741 5063 5718	4242 4242 4242 4242	2760 2760 2760 2760	-4.1 -5.2 -7.2 -11.8	65.9 71.8 83.5 107.2
60G 60U 60U	404 365 324 246	20 25 33 50	522 653 870 1305	000	4275 4227 4139 3933	3522 3613 3652 4562	4457 4457 4457 4457	3295 3295 3295 3295	-4.1 -5.2 -7.1 -11.8	6.9 9.7 16.9 38.5
700 700 700 700	467 450 340 311	20 25 33 50	549 686 914 1371	0000	4459 4408 4316 4099	1345 1369 2999 3630	4649 4649 4649	2708 2708 2708 2708	-4.1 -5.2 -7.2 -11.8	-50.3 -49.5 10.8 34.1
800 500 500 500	571 533 470 379	20 25 33 50	573 716 955 1433	0000	4627 4574 4478 4250	947 963 994 2994	4828 4828 4828 4828	2315 2315 2315 2315	-4.2 -5.3 -7.3 -12.0	-59.1 -58.4 -57.1 29.3

TABLE 2.-PER ACRE YIELD ESTIMATES FOR OLD-FIELD SLASH PINE PLANTATIONS WITH AND WITHOUT THINNING-CONTINUED

SITE INDEX	: 70 THIN	NING AGE: 15	ROTATION AGE:	25						
* STEMS/ACRE * STEMS/ACRE * EFFCRE * THINNING	* AFICK	* PIFCLAT CU. FT. VIL. KEMIVE:	* * Co. FT. *	PARKERBARA VIELE WITH EMINNING P ED. FT. *	THIMNING FOTAL CU. FT.	*********** * YIELU * * ED. FT. * *********	**************************************	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	* A RESULT UI	ANGE AS * THI MING* LD. FT. *
400 400 400 400	2:4 237 200 141	25	41 2 515 525 1729	0	4057 2909 3996 3454	6915 7293 7781 8016	4267 4267 4267 4267	5671 5671 5671 5671	-4.9 -6.3 -6.7 -14.4	21.9 25.6 37.2 41.2
500 500 500	326 294 256 187	100 100 100	745 1115	6	4321 4261 4153 3901	5267 5582 6158 7316	4540 4540 4540 4540	4368 4368 4368 4369	-4.b -6.1 -8.5 -14.1	21.0 27.6 41.0 67.5
600 600 600	405 370 319 645	20 20 20 20	677 555 755 1193	r 0	4565 4360 4115	41.53 43.74 46.14 60.02	4783 4783 4783 4783	3494 3494 3494	-4.5 -6.1 -6.5 -14.0	18.9 25.7 37.6 71.8
700 700 700 700	435 449 369 366	25 33 50	500 633 644 1206	0	4772 4707 4590 4310	3401 3577 3517 5010	5011 5011 5011	2929 2929 2925 2929	-4.8 -6.1 -8.4 -14.0	16.1 22.1 33.7 71.0
800 800	557 556 469 372	26 25 33 50	5.6 670 893 13.9	0	4984 4916 4793 4498	2019 3067 3356 4278	5234 5234 5234 5234	75.60 25.80 25.80 25.60	-4.8 -6.1 -6.4 -14.1	13.1 18.9 30.1 65.8

TABLE 2.-PER ACRE YIELD ESTIMATES FOR OLD-FIELD SLASH PINE PLANTATIONS WITH AND WITHOUT THINNING-CONTINUED

SITE INDEX:	70 THINK	NING AGE: 15	ROTATION AGE	: 30						
* STEMS/ACKE * BEFURE * THINNING *	AFTER	**************************************	* REMOVED IN * CU. FT. *	YIELD WITH THINNING * BD. FT. *	THINNING TOTAL CU. FT.	YIELD BD. FT.	WITHOUT CU. FT.	LD THINNING BD. FT.	PERCENT C A RESULT O CU. FT. *	HANGE AS * F THINNING* BD. FT. *
400 400 400	254 234 266 141	20 25 33 50	412 515 686 1029	0000	4899 4827 4698 4388	12289 12501 12726 12099	5149 5149 5149 5149	9528 9528 9528 9528	-4.8 -6.2 -8.8 -14.8	29.0 31.2 33.6 27.0
500 500 500	376 294 258 167	20 25 33 50	446 558 743 1115	0 0 0	5185 5112 4976 4653	8919 9216 11509 11830	5444 5444 5444	7376 7376 7376 7376	-4.8 -6.1 -8.6 -14.5	20.9 24.9 56.0 60.4
600 600 600 600	405 570 319 265	20 25 33 50	477 596 795 1193	0	5435 5359 5219 4877	7532 7772 8223 10944	5706 5706 5706 5706	6201 6201 6201 6201	-4.8 -6.1 -8.5 -14.5	21.5 25.3 32.6 76.5
706 706 700 700	449 369 306	20 25 33 50	506 633 844 1266	0000	5667 5586 5440 5078	6548 6746 7126 10260	5952 5952 5952 5952	5382 5382 5382 5382	-4.8 -6.1 -8.6 -14.7	21.7 25.3 32.4 90.6
500 500 500 500	567 530 469 472	20 25 33 50	536 670 893 1339	0000	5893 5808 5652 5271	5886 6055 6380 97 66	6193 6193 6193 6193	4841 4841 4841 4841	-4.9 -6.2 -8.7 -14.9	21.6 25.1 31.8 101.8

TABLE 2.-PER ACRE YIELD ESTIMATES FOR OLD-FIELD SLASH PINE PLANTATIONS WITH AND WITHOUT THINNING-CONTINUED

SITE INDEX	:70 THIN	NING AGE: 20	ROTATION AGE	: 25						
* STEMS/AURE * EEFONE * THINNING	* STEME/ACHF * AFTER * THINNANE	PERCENT CU. FT. VOL. HEMOVED	* REMOVED IN * CU. FT. *	YIELD WITH THINNING * BD. FT. *	THINNING TOTAL CU. FT.	YIFLD *	YI: WITHOUT CU. FT.	ELD THINNING BD. FT.	PERCENT CH A RESULT OF CU. FT. +	ANGE AS * THINNING* BD. FT. *
400 400 400 400 400	252 227 145 155	20 25 33 50	684 855 1140 1710	0	4405 4377 4325 4203	6328 6474 6741 7046	4506 4506 4506 4506	5762 5762 5762 5762	-2.3 -2.9 -4.0 -6.7	9.4 12.0 16.6 21.9
500 500 500 500	319 290 245 176	20 25 33 50	753 941 1255 1883	0	4810 4781 4729 4603	4881 4977 5158 5650	4912 4912 4912 4912	45 26 45 26 45 26 45 26	-2.1 -2.7 -3.7 -6.3	7.8 10.0 14.0 24.8
600 606 606 606	385 355 504 222	20 25 33 50	815 1018 1358 2037	0	5173 5144 5091 4961	3744 3806 3912 4234	5276 5276 5276 5276	3581 3581 3581 3581	-2.5 -2.5 -3.5 -6.0	4.6 6.3 9.2 18.2
700 700 760 766	456 420 367 269	20 25 33 50	871 1089 1452 2179	0000	5509 5480 5425 5292	2906 2939 3008 3181	5613 5613 5613	2899 2899 2899 2899	-1.9 -2.4 -3.4 -5.7	0.2 1.4 3.7 9.7
003 048 003 008	536 467 432 322	20 25 33 50	925 1157 1542 2313	0	5878 5798 5742 5605	2334 2318 2367 2453	5934 5934 5934 5934	2416 2416 2416 2416	-1.8 -2.3 -3.2 -5.5	-3.4 -4.1 -2.1 1.5

TABLE 2.-PER ACRE YIELD ESTIMATES FOR OLD-FIELD SLASH PINE PLANTATIONS WITH AND WITHOUT THINNING.-CONTINUED

	SITE INDEX:	X: 70 THINNING AGE: 20		ROTATION AGE: 30							
* * *		STEMS/ACRE AFTER THINNING	CU. FT. VOL.	REMOVED IN CU. FT.	YIELD WITH THINNING * BD. FT. *	THINNING TOTAL CU. FT.	YIELD * * PP. FT. *	WITHOUT	LD THINNING BD. FT.	* A RESULT C	HANGE AS F THINNING BD. FT. *
	400 400 400 400	252 227 195 135	20 25 33 20	684 855 1140 1710	000	5271 5226 5141 4934	10310 12065 12019 11214	5425 5425 5425 5425	9130 9130 9130 9130	-2.8 -3.7 -5.2 -9.0	12.9 32.2 31.6 22.8
	506 500 500 500	514 290 245 176	20 25 33 50	753 941 1255 1883	0 0	5712 5667 5582 5370	8585 8746 9049 10715	5866 5666 5866 5866	7514 7514 7514 7514	-2.6 -3.4 -4.8 -8.5	1 4.2 1 6.4 2 0.4 4 2.6
	600 600 600 600	385 355 304 224	20 25 33 50	815 1018 1358 2037	0	6108 6061 5976 5758	6585 7263 7507 9760	6262 6262 6262	6193 6193 6193 6193	-2.5 -3.2 -4.6 -8.1	6.3 17.3 21.2 57.6
	700 706 700 700	456 420 367 609	20 25 33 50	871 1089 1452 2179	0 0 0	6473 6426 6337 6115	5474 5570 5751 6802	6629 6629 6629	5166 5166 5166 5166	-2 · 4 -3 · 1 -4 · 4 -7 · 8	6.0 7.8 11.3 31.7
	506 500 500 500	536 487 432 322	20 25 33 50	925 1157 1542 2313	0	6818 6771 6679 6450	4638 4714 4863 5776	6977 6977 6 9 77 6 9 77	4389 4389 4389 4389	-2.3 -3.0 -4.3 -7.5	5.7 7.4 10.8 31.6