Задача 4 (6 баллов)

В электромагнитном поле с достаточно большими частотой или волновым вектором оказываются возможными процессы рождения реальных или виртуальных электронпозитронных пар. Поляризуемость вакуума $\chi(\omega, \mathbf{k})$, обусловленная с этим эффектом, имеет одновременно временную и пространственную дисперсию, но в силу релятивистской инвариантности зависит лишь от параметра $t = \hbar^2(\omega^2 - c^2\mathbf{k}^2)$. Расчеты методами квантовой электродинамики позволяют найти мнимую часть поляризуемости (см., например, В.Б. Берестецкий, Е.М. Лифшиц, Л.П. Питаевский, Теоретическая физика, т. IV, Квантовая электродинамика, §113, М.: Наука, 1989):

Im
$$\chi(t) = \frac{\alpha}{12\pi} \sqrt{\frac{t - 4m^2c^4}{t}} \frac{t + 2m^2c^4}{t} \theta(t - 4m^2c^4),$$

где $\alpha=e^2/(\hbar c)=1/137$ — постоянная тонкой структуры, e — заряд электрона, m — его масса, θ — функция Хевисайда. Функция $\chi(t)$ является аналитической в верхней полуплоскости, ${\rm Im}\, t>0$, а также известно, что $\chi(0)=0$.

Воспользуйтесь соотношениям Крамерса-Кронига для величины $\chi(t)/t$ и найдите $\chi(t)$ при малых $t\ll m^2c^4$ с точностью до членов $\propto t$. Используя полученное выражение, найдите линейную по α поправку к потенциалу точечного заряда, обусловленную поляризацией вакуума.