COMP30026 Models of Computation

Predicate Logic: Semantics

Harald Søndergaard

Lecture 7

Semester 2, 2018

Is this closed formula true or false?

$$\forall x, z \ (x < z \Rightarrow \exists y \ (x < y \land y < z))$$

Is this closed formula true or false?

$$\forall x, z \ (x < z \Rightarrow \exists y \ (x < y \land y < z))$$

Is this closed formula true or false?

$$\forall x, z \ (x < z \Rightarrow \exists y \ (x < y \land y < z))$$

That depends on what '<' stands for, and the domain D of interest, that is, what sort of things x, y, and z denote.

① It is false if $D = \mathbb{Z}$ and < is the usual "smaller than".

Is this closed formula true or false?

$$\forall x, z \ (x < z \Rightarrow \exists y \ (x < y \land y < z))$$

- ① It is false if $D = \mathbb{Z}$ and < is the usual "smaller than".
- ② It is true if $D = \mathbb{Z}$ and < is "smaller than or equal".

Is this closed formula true or false?

$$\forall x, z \ (x < z \Rightarrow \exists y \ (x < y \land y < z))$$

- ① It is false if $D = \mathbb{Z}$ and < is the usual "smaller than".
- ② It is true if $D = \mathbb{Z}$ and < is "smaller than or equal".
- **1** It is true if $D = \mathbb{R}$ and < is the usual "smaller than".

Is this closed formula true or false?

$$\forall x, z \ (x < z \Rightarrow \exists y \ (x < y \land y < z))$$

- ① It is false if $D = \mathbb{Z}$ and < is the usual "smaller than".
- ② It is true if $D = \mathbb{Z}$ and < is "smaller than or equal".
- 1 It is true if $D = \mathbb{R}$ and < is the usual "smaller than".
- **1** It is true if $D = \{0\}$.

The Meaning of a Formula

In some cases, the meaning of a formula is independent of what its predicate (and function) names denote, and of what sort of things the variables range over.

For example, $\forall x \ P(x) \lor \exists y \ (\neg P(y))$ is inherently true, no matter what (it is valid).

Similarly, $\forall x \ P(x) \land (\neg P(a))$ is false no matter what a and P stand for (the formula is unsatisfiable).

Interpretations (or Structures)

An interpretation (or structure) consists of

- A non-empty set D (the domain, or universe);
- ② An assignment, to each *n*-ary predicate symbol *P*, of an *n*-place function $\mathbf{p}: D^n \to \{\mathbf{f}, \mathbf{t}\};$
- **3** An assignment, to each *n*-ary function symbol g, of an *n*-place function $\mathbf{g}: D^n \to D$;
- **4** An assignment to each constant a of some fixed element of D.

Free Variables and Valuations

To give meaning to formulas that may have free variables, such as

$$\exists x \ P(f(y), x)$$

we need two things:

- A valuation $\sigma : var \rightarrow D$ for free variables;
- An interpretation as just discussed.

Connectives are always given their usual meaning.

Terms and Valuations

We just said that a valuation is a function $\sigma : var \rightarrow D$.

But, given an interpretation \mathcal{I} , we get a valuation function from terms automatically, by natural extension:

$$\sigma(a) = d$$

 $\sigma(g(t_1,...,t_n)) = \mathbf{g}(\sigma(t_1),...,\sigma(t_n))$

where d is the element of D that \mathcal{I} assigns to a, and $\mathbf{g}: D^n \to D$ is the function that \mathcal{I} assigns to g.

Example: Consider the term t = f(y, g(x, a)). Let our interpretation assign to a the value 3, to f the multiplication function, and to g addition. If $\sigma(x) = 9$ and $\sigma(y) = 5$ then $\sigma(t) = 60$.

Truth of a Formula

The truth of a closed formula should depend only on the given interpretation.

Our only interest in formulas with free variables (and hence in valuations) is that we want to define the truth of a formula compositionally, as done on the next slide.

Notation:

$$\sigma_{x \mapsto d}(y) = \begin{cases} d & \text{if } y = x \\ \sigma(y) & \text{otherwise} \end{cases}$$

Read this as "the map σ , updated to map x to d."

Making a Formula True

Given an interpretation \mathcal{I} (with domain D), and a valuation σ ,

- σ makes $P(t_1, \ldots, t_n)$ true iff $\mathbf{p}(\sigma(t_1), \ldots, \sigma(t_n)) = \mathbf{t}$, where \mathbf{p} is the meaning that \mathcal{I} gives P.
- σ makes $\neg F$ true iff σ does not make F true.
- σ makes $F_1 \wedge F_2$ true iff σ makes both of F_1 and F_2 true.
- σ makes $\forall x \ F$ true iff $\sigma_{x \mapsto d}$ makes F true for every $d \in D$.

If we now define

$$\exists x \ F \equiv \neg \forall x \ \neg F$$

then the meaning of every other formula follows from this.

Models and Validity of Formulas

A wff F is true in interpretation \mathcal{I} iff every valuation makes F true (for \mathcal{I}). If not true then it is false in interpretation \mathcal{I} .

A model for F is an interpretation \mathcal{I} such that F is true in \mathcal{I} . We write $\mathcal{I} \models F$.

A wff F is logically valid iff every interpretation is a model for F. In that case we write $\models F$.

 F_2 is a logical consequence of F_1 iff $\mathcal{I} \models F_2$ whenever $\mathcal{I} \models F_1$. We write $F_1 \models F_2$.

 F_1 and F_2 are logically equivalent iff $F_1 \models F_2$ and $F_2 \models F_1$. We write $F_1 \equiv F_2$.

Summarising: Satisfiability and Validity

A closed, well-formed formula F is

- satisfiable iff $\mathcal{I} \models F$ for some interpretation \mathcal{I} ;
- valid iff $\mathcal{I} \models F$ for every interpretation \mathcal{I} ;
- unsatisfiable iff $\mathcal{I} \not\models F$ for every interpretation \mathcal{I} ;
- non-valid iff $\mathcal{I} \not\models F$ for some interpretation \mathcal{I} .

Example of Non-Validity

Consider the formula

$$(\forall y \exists x \ P(x,y)) \Rightarrow (\exists x \forall y \ P(x,y))$$

It is not valid.

For example, consider the interpretation with $D = \mathbb{Z}$, and the predicate P meaning "less than".

Or, let $D = \{0, 1\}$ and let P mean "equals".

The formula is satisfiable, as it is true, for example, in the interpretation where $D=\{0,1\}$ and P means "less than or equal".

Example of Validity

$$F = (\exists y \forall x \ P(x, y)) \Rightarrow (\forall x \exists y \ P(x, y))$$
 is valid.

If we negate F (and rewrite it) we get

$$(\exists y \forall x \ P(x,y)) \land (\exists x \forall y \ \neg P(x,y))$$

The right conjunct is made true only if there is some $d_0 \in D$ for which $\mathbf{p}(d_0, d)$ is false for all $d \in D$.

But the left conjunct requires that $\mathbf{p}(d_0, d)$ be true for at least some d.

Since F's negation is unsatisfiable, F is valid.

Another Example of Validity

Consider

$$F = (\forall x \ P(x)) \Rightarrow P(t)$$

F is valid no matter what the term t is.

To see this, again it is easiest to consider

$$\neg F = (\forall x \ P(x)) \land \neg P(t)$$

The term t denotes some element of the domain D, so $\neg F$ cannot be satisfied.

Rules of Passage for the Quantifiers

We cannot in general "push quantifiers in".

For example, there is no immediate simplification of a formula of the form $\exists x \ (P(x) \land Q(x))$.

However, we do get, for formulas F_1 and F_2 :

$$\exists x (\neg F_1) \equiv \neg \forall x F_1 \forall x (\neg F_1) \equiv \neg \exists x F_1 \exists x (F_1 \lor F_2) \equiv (\exists x F_1) \lor (\exists x F_2) \forall x (F_1 \land F_2) \equiv (\forall x F_1) \land (\forall x F_2)$$

It follows that

$$\exists x \ (F_1 \Rightarrow F_2) \equiv (\forall x \ F_1) \Rightarrow (\exists x \ F_2)$$

More Rules of Passage for Quantifiers

If G is a formula with no free occurrences of x, then we also get

$$\exists x \ G \equiv G$$

$$\forall x \ G \equiv G$$

$$\exists x \ (F \land G) \equiv (\exists x \ F) \land G$$

$$\forall x \ (F \lor G) \equiv (\forall x \ F) \lor G$$

$$\forall x \ (F \Rightarrow G) \equiv (\exists x \ F) \Rightarrow G$$

$$\forall x \ (G \Rightarrow F) \equiv G \Rightarrow (\forall x \ F)$$

no matter what F is. In particular F may have free occurrences of x.

Footy Teams Again

In the last lecture we translated "Every Melburnian barracks for a footy team" using predicates

$$M(x)$$
 x is a Melburnian $T(x)$ x is a footy team $B(x,y)$ x barracks for y

$$\forall x \ (M(x) \Rightarrow \exists y \ (T(y) \land B(x,y)))$$

or, equivalently:

$$\forall x \; \exists y \; (M(x) \Rightarrow (T(y) \land B(x,y)))$$

Why not $\forall x \; \exists y \; ((M(x) \land T(y)) \Rightarrow B(x, y))$, some asked.

Footy Teams Again

Are

$$\forall x \; \exists y \; (M(x) \Rightarrow (T(y) \land B(x,y)))$$

and

$$\forall x \; \exists y \; ((M(x) \land T(y)) \Rightarrow B(x,y))$$

logically equivalent?

Footy Teams Again

Are

$$\forall x \; \exists y \; (M(x) \Rightarrow (T(y) \land B(x,y)))$$

and

$$\forall x \; \exists y \; ((M(x) \land T(y)) \Rightarrow B(x,y))$$

logically equivalent?

They are not. For example, consider the interpretation with domain $\{bob, eve, tigers\}$ and M(bob), M(eve), B(bob, tigers), and B(eve, tigers).

Note that in this interpretation \mathcal{T} is always false (and Melbourne's population is very small). Maybe the tigers are Bob and Eve's favourite basketball team.

Next Up

Clausal form for first-order predicate logic.

Next week: How resolution can be extended to predicate logic.