Математический анализ-3

Лектор: проф. Подольский Владимир Евгеньевич 5 сентября 2025 г.

Конспект: Кирилл Яковлев, 208 группа

Контакты: Telegram, GitHub

Содержание

1	Ряды		
	1.1	Определение ряда и простейшие свойства	3
	1.2	Знакопостоянные ряды	4

1 Ряды

1.1 Определение ряда и простейшие свойства

Определение. Пара последовательностей

$$a_n, S_n = \sum_{k=1}^n a_k$$

называется числовым рядом и обозначается

$$\sum_{n=1}^{\infty} a_n$$

 a_n называется общим членом ряда, S_n называется частичной суммой ряда.

Определение. Если существует предел

$$\lim_{n \to \infty} S_n = S$$

TO

$$\sum_{n=1}^{\infty} a_n$$

называется сходящимся, а S суммой ряда.

Определение. Рассмотрим ряд

$$\sum_{n=1}^{\infty} a_n$$

тогда ряд

$$r_k = \sum_{n=k}^{\infty} a_n$$

называется остаточным рядом.

Теорема. (Критерий Коши сходимости ряда) Ряд

$$\sum_{n=1}^{\infty} a_n$$

сходится тогда и только тогда, когда

$$\forall \varepsilon > 0 \; \exists \; N_{\varepsilon} \in \mathbb{N}, \; \forall k, m > N_{\varepsilon} : \left| \sum_{n=k}^{m} a_{n} \right| < \varepsilon$$

Доказательство. Очевидно по критерию коши для последовательности

$$\sum_{n=k}^{m} a_n = S_m - S_{k-1}$$

Теорема. Пусть даны ряды

$$\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$$

и они сходятся, тогда $\forall c, \alpha, \beta \in \mathbb{R}$ ряды

1.

$$\sum_{n=1}^{\infty} c \cdot a_n = c \cdot \sum_{n=1}^{\infty} a_n$$

2.

$$\sum_{n=1}^{\infty} (\alpha \cdot a_n + \beta \cdot b_n) = \alpha \cdot \sum_{n=1}^{\infty} a_n + \beta \cdot \sum_{n=1}^{\infty} b_n$$

также сходятся.

Доказательство. Очев.

Теорема. (Необходимое условие сходимости ряда)

Если

$$\sum_{n=1}^{\infty} a_n$$

сходится, то $a_n \to 0$.

Доказательство.

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = 0$$

1.2 Знакопостоянные ряды

В этом разделе считаем, что $\forall n \in \mathbb{N} : a_n \geq 0$ или $a_n \leq 0$.

Теорема. Рассмотрим ряд

$$\sum_{n=1}^{\infty} a_n, \ a_n \ge 0$$

Если последовательность S_n ограничена, то этот ряд сходится.

Доказательство. По теореме Вейерштрасса для последовательности S_n .

Теорема. (Признак сравнения)

Пусть даны два ряда

$$\sum_{n=1}^{\infty} a_n \ (a_n \ge 0), \ \sum_{n=1}^{\infty} b_n \ (b_n \ge 0)$$

и $0 \le a_n \le b_n$. Тогда если

$$\sum_{n=1}^{\infty} b_n$$

сходится, то

$$\sum_{n=1}^{\infty} a_n$$

сходится. Если

$$\sum_{n=1}^{\infty} a_n$$

расходится, то

$$\sum_{n=1}^{\infty} b_n$$

расходится.

Доказательство. Очевидно из неравенства

$$\sum_{n=1}^{N} a_n \le \sum_{n=1}^{N} b_n$$

Теорема. (Признак сравнения в предельной форме) Пусть даны два ряда

$$\sum_{n=1}^{\infty} a_n \ (a_n \ge 0), \ \sum_{n=1}^{\infty} b_n \ (b_n > 0)$$

Если существует предел

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0$$

то ряды сходятся или расходятся одновременно.

Доказательство.

$$0 < c - \varepsilon < \frac{a_n}{b_n} < c + \varepsilon$$
$$(c - \varepsilon) \cdot b_n < a_n < (c + \varepsilon) \cdot b_n$$

Пример. Ряд

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

расходится по Критерию Коши.

Пример.

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$

при $\alpha < 1$ расходится по признаку сравнения с рядом из предыдущего примера.

Пример. Ряд

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)n} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

сходится.

Пример. Ряж

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$$

сходится по признаку сравнения с рядом из предыдущего примера.

Пример. Упражнение: доказать, что при $\alpha > 1$ ряд

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$

6

сходится.