平成 21 年度 春期 エンベデッドシステムスペシャリスト 午後 I 問題

試験時間

12:30 ~ 14:00 (1 時間 30 分)

注意事項

- 1. 試験開始及び終了は、監督員の時計が基準です。監督員の指示に従ってください。
- 2. 試験開始の合図があるまで、問題冊子を開いて中を見てはいけません。
- 3. この注意事項は、問題冊子の裏表紙に続きます。必ず読んでください。
- 4. 答案用紙への受験番号などの記入は、試験開始の合図があってから始めてください。
- 5. 問題は、次の表に従って解答してください。

問題番号	問 1	問2,問3
選択方法	必須	1 問選択

- 6. 答案用紙の記入に当たっては、次の指示に従ってください。
 - (1) B 又は HB の黒鉛筆又はシャープペンシルを使用してください。
 - (2) **受験番号欄**に, **受験番号**を記入してください。正しく記入されていない場合は, 採点されません。
 - (3) 生年月日欄に、受験票に印字されているとおりの生年月日を記入してください。 正しく記入されていない場合は、採点されないことがあります。
 - (4) 選択した問題については、次の例に従って、選択欄の問題番号を○印で囲んでください。

なお、○印がない場合は、採点の対象になりません。2問とも○印で囲んだ場合は、はじめの1問について採点します。

- (5) 解答は、問題番号ごとに指定された枠内に記入してください。
- (6) 解答は、丁寧な字ではっきりと書いてください。読みにくい場合は、減点の対象になります。

[問3を選択した場合の例]

注意事項は問題冊子の裏表紙に続きます。こちら側から裏返して、必ず読んでください。

問1 電池で動作するガスメータに関する次の記述を読んで、設問1~3に答えよ。

ガスメータの概観を図1に示す。

〔ガスメータの機能〕

ガスメータは、ガスの使用量(以下、ガス量という)を計測し、それまでに流れたガス量の累積値(以下、ガス量累積値という)を LCD 表示器に表示する。また、単位時間当たりに流れるガス量が一定量を超える状態を検出した場合には、ガス漏れと判断してガスを遮断し、LED を点灯する。

(ガスメータの構成)

ガスメータのブロック図を図2に示す。

[タイマとカウンタの動作]

- (1) タイマ 0 は常に動作しており、カウントアップして設定値に達すると、割込み要求を出力し、0からカウントアップする。
- (2) タイマ 1 は、カウントアップして最大値に達すると、最大値のまま停止する。 MPU からリスタートコマンドを受けると、0 からカウントアップを再開する。
- (3) カウンタの構造を図3に示す。カウンタの16ビットカウンタの値と16ビットレジスタの値とが一致すると、割込み要求信号を出力する。このとき、モードレジスタのbit7に1が設定されているとカウンタをクリアする。このカウンタの割込みの優先度を最も高くしている。カウンタの入力端子には、流量センサの出力が接続されており、ガスが流れ出すと流量センサからパルスが入力される。

[MPU の状態と MPU の状態遷移]

MPUの状態と動作電流を表1に、その状態遷移図を図4に示す。

なお、MPUの状態にかかわらず、タイマ0とタイマ1は、同じ周波数のクロックで動作しており、カウンタは常に動作している。

表1 MPUの状態と動作電流

MPUの状態	動作電流
通常	2ミリA
省電力	100マイクロA
待機	10マイクロA

図4 MPUの状態遷移図

〔ガスメータのソフトウェア動作〕

電源投入後の初期化の処理を行った後、MPU を待機状態にする。カウンタの割込み処理プログラムでガス量の計測やガス漏れの検出を行い、タイマ 0 の割込み処理プログラムでガス量累積値の表示とガスの遮断及び遮断の解除を行う。その詳細な動作を次に示す。

(1) カウンタの割込み処理プログラム及び割込みから復帰後の動作

割込み要求を受け付けると、ガス虽累積値をインクリメントする。さらに、タイマ 1 によってカウンタの割込み要求間隔を見て、ガス漏れと判断したときは、ガス漏れを示すフラグ(以下、ガス漏れフラグという)をセットした後に割込みから復帰し、MPU を待機状態にする。

なお, この割込み処理プログラムの実行時間は, 割込み要求の間隔よりも十分に 短い。

- (2) タイマ 0 の割込み処理プログラム及び割込みから復帰後の動作 割込み要求を受け付けると、通常動作命令を実行して通常状態になった後、次の 処理をする。
 - ① ガス量累積値を、LCD表示器に表示する。
 - ② ガス漏れフラグがセットされている場合は、割込み禁止状態にした後、ガスを 遮断して LED を点灯する。次に、省電力動作命令を実行して省電力状態になった 後、復帰ボタンの入力を待つ。復帰ボタンが押されると、ガスの遮断を解除し、 LED を消灯する。ガス漏れフラグをクリアした後、割込み許可状態にして割込み から復帰し、MPU を待機状態にする。
 - ③ ガス漏れフラグがセットされていない場合は、割込みから復帰し、MPU を待機 状態にする。

なお,ガス漏れフラグがセットされていない場合は,この割込み処理プログラム の実行時間は割込み要求の間隔よりも十分に短い。

設問1 ガスメータの動作について検討する。

- (1) ガスメータは、ガス量の計測やガス漏れの検出などの処理を、メインプログラムで行うのではなく、カウンタとタイマ 0 の割込み処理プログラムで行っているが、その理由は何か。15 字以内で述べよ。
- (2) 1時間当たりの MPU の各状態の累積動作時間例を表 2 に示す。このときの、1時間当たりの平均消費電力(ミリ W)を求めよ。答えは小数第 3 位を四捨五入して、小数第 2 位まで求めよ。ここで、MPU の動作電圧は 5 V とし、MPU の状態の切替え時間や切替え時の動作電流、及び MPU 以外の動作電流は無視するものとする。

表 2 1 時間当たりの MPU の各状態の累積動作時間例

MPU の状態	累積動作時間
通常 1	
省電力	90 秒
待機	残りの時間

設問2 図3のカウンタを使用して、ガス量の計測について検討する。

流量センサは、ガスが 0.1 ミリリットル流れるとパルスを 1 個出力するものとする。1,000 ミリリットルのガスが流れるごとに、カウンタ割込み要求を出力するようにしたい。このとき、カウンタのモードレジスタと 16 ビットレジスタに設定する値を答えよ。ここで、モードレジスタの値は 16 進数で、16 ビットレジスタの値は 10 進数で答えよ。

設問3 ガス量を計測するカウンタの割込み処理の流れ図を図5に示す。

図5 カウンタの割込み処理の流れ図

- (1) 読み込んだタイマ 1 の内容が定められた値より小さいときにガス漏れと判断 し、ガス漏れフラグをセットしているが、なぜ、定められた値より小さいとき にガス漏れと判断しているのか。50 字以内で述べよ。
- (2) カウンタの割込みの優先度を最も高くしている理由は何か。40 字以内で述べよ。

次の問2,問3については1問を選択し、答案用紙の選択欄の問題番号を○印で囲んで解答してください。

なお,2問とも○印で囲んだ場合は,問2について採点します。

問2 マイコン制御による温水洗浄機能付き便座(以下,温水便座という)に関する次の 記述を読んで、設問1~3に答えよ。

A 社では、一人暮らしの高齢者に配慮した温水便座を開発することになった。この 温水便座は、これまでの製品に、人の動作から異常状態を検出して緊急通報する機能 を追加したものである。温水便座のハードウェア構成要素の機能を表1に示す。

表 1 ハードウェア構成要素の機能

ハードウェア構成要案名	機能
マイコン	メモリ,タイマ,シリアル通信機能,A/D コンパータなどが内蔵されており,温水便座を制御する。
人検出センサ	温水便座の周囲に人がいることを検出する。人を検出すると ON, 人の未検出で OFF になる。
着座センサ	人が便座に座ると ON、便座から腰を離すと OFF になる。
水温センサ	洗浄水の温度を測定する。マイコン内蔵の A/D コンパータに接続されている。
ふた開閉検出センサ	ふたの開閉を検出する。
洗浄開始スイッチ	洗浄水の噴出開始用スイッチで、押されている間だけ ON になる。
洗浄停止スイッチ	洗浄水の噴出停止用スイッチで、押されている間だけ ON になる。
噴出力設定スイッチ	洗浄水の噴出力設定用のロータリスイッチ。
水温設定スイッチ	洗浄水の温度設定用のロータリスイッチ。
ふた開閉ステッピングモータ	便座のふたを開閉する。
ノズルステッピングモータ	洗浄ノズルの出し入れを行う。
水噴出ポンプ	洗浄ノズルの先端から洗浄水を噴出させる。
ヒータ	洗浄水を温める。
電話回線 I/F	緊急通報時に電話回線に接続する。
緊急通報有効スイッチ	ON で緊急通報を有効、OFF で緊急通報を無効にする。トグルスイッチ。
掃除スイッチ	ON で掃除モードになり、OFF で掃除モードを解除する。トグルスイッチ。

これまでふたの開状態を検出するセンサと、ふたの閉状態を検出するセンサを用いてふたの開閉を検出していたが、コストダウンの要求から一つのふた開閉検出センサで、ふたの開閉を検出することにした。ふたの開閉状態とふた開閉検出センサの関係を図1に示す。ふたは、0度のふた閉状態から最大120度のふた開状態まで動く。

なお,ふた開閉ステッピングモータは正転,逆転方向ともに 120 個の駆動パルスで 1 回転し,ふた開閉ステッピングモータが 1 回転すると,ふたは 2 度の角度分,ふた 開状態又はふた閉状態の方向へ動く。

図1 ふたの開閉状態とふた開閉検出センサの関係

温水便座の機能を表2に示す。

表 2 温水便座の機能

機能名	機能概要
ふたの自動開閉	人検出センサが ON のときふたを開け、人検出センサが OFF のときふたを閉じる。
洗浄水の温度制御	脅座センサが ON のとき、水温散定スイッチで設定された水温に、洗浄水の温度を制 御する。
洗净	舒座センサが ON の状態で、洗浄開始スイッチの ON を検出すると、洗浄水の噴出を 開始し、洗浄停止スイッチの ON 又は着座センサの OFF を検出すると、洗浄水の噴出 を停止する。
洗浄水の噴出力制御	洗浄水の噴出力を、噴出力設定スイッチで設定された噴出力に制御する。
緊急通報	緊急通報有効スイッチが ON の状態のとき、着座センサの状態と洗浄開始スイッチや 洗浄停止スイッチの操作状況から、通報の必要な状態を検出して、電話回線を介して 緊急通報する。
掃除	人検出センサが ON で、かつ、着座センサが OFF のとき、掃除スイッチの ON を検出すると、掃除可能状態となる。掃除可能状態では、ふたの自動開閉機能を無効にして、ふたを手動で開閉できるようにする。このとき、ふたは任意の位置で停止できる。

温水便座の機能を実現する温水便座の状態遷移図を図 2 に, 温水便座のタスク一覧を表 3 に示す。

図 2 温水便座の状態遷移図

表3 温水便座のタスク一覧

タスク名	主な処理内容
状態遷移条件検出	リアルタイム OS のタイマ機能を利用して 10 ミリ秒周期で起動され、状態遷移条件となるセンサとスイッチの内容を読み取り、変化したことを検出するとメインタスクへ通知する。
タイマ	ほかのタスクから依頼された時間を計測し、その依頼時間が経過すると、依頼したタス クへそのことを通知する。計測中止を受けると、時間の計測を中止する。
メイン	状態遷移条件検出タスクからの通知内容に応じて、関連するタスクへ処理を依頼し、 図2に示す温水便座の状態遷移を制御する。
ふた開閉処理	メインタスクから処理依頼を受けると、ふたの開閉処理を行う。
洗浄開始処理	メインタスクから洗浄開始依頼を受けると、洗浄ノズルを出し、洗浄水の噴出を開始して、洗浄水噴出力制御タスクへ噴出力制御開始を依頼する。
洗浄停止処理	メインタスクから洗浄停止依頼を受けると、洗浄水の噴出を停止し、洗浄ノズルを引き 込み、洗浄水噴出力制御タスクへ噴出力制御停止を依頼する。
洗浄水温度制御	メインタスクから水温制御開始依頼を受けると、タイマタスクの時間計測機能を利用して 200 ミリ秒周期で水温股定スイッチと水温センサの内容を読み取り、ヒータを制御する。その制御はメインタスクから水温制御停止依頼を受けるまで継続する。
洗浄水喷出力制御	洗浄開始処理タスクから噴出力制御開始依頼を受けると、タイマタスクの時間計測機能を利用して 100 ミリ秒周期で噴出力設定スイッチの内容を読み取り、水噴出ポンプを制御する。その制御は、洗浄停止処理タスクから噴出力制御停止依頼を受けるまで継続する。
緊急通報	緊急通報の送信依頼を受けると、電話回線を介して緊急通報を送信する。

- 図2中の a ~ f に入れる適切な字句を答えよ。
- (2) ふたの開閉制御仕様について検討する。
 - (a) ふたを開けるとき、ふた開閉検出センサが OFF から ON になってから、ふたを更に 120 度の位置まで開くには、ふた開閉ステッピングモータに幾つの 駆動パルスを与えればよいか。整数で答えよ。
 - (b) 図 2 に示す掃除可能状態からふた閉状態への状態遷移時におけるふた閉処 理において、ふた開閉検出センサが OFF のとき、ふたの開閉制御はどのよう にすべきか。45 字以内で述べよ。また、その理由を 40 字以内で述べよ。

設問2 温水便座のソフトウェア設計について検討する。

図 2 に示す温水便座の状態遷移をソフトウェアで実現するとき、 g 状態において、状態遷移条件の検出処理と洗浄水噴出力の制御処理や h の制御処理、及びタイマ処理を同時に実行する必要がある。よってリアルタイム OS を採用することにした。

- (2) タイマタスクに時間の計測依頼を行うタスクは三つある。その三つのタスク を表3中に示すタスク名で答えよ。
- (3) 洗浄状態から緊急通報状態へ遷移するとき、メインタスクが三つのタスクへ 処理依頼をする。その三つのタスクを表3中に示すタスク名で答えよ。

設問3 温水便座の仕様追加要求について検討する。

温水便座に付いている操作スイッチのほかに、リモコンによる操作を可能にする仕様追加要求が発生した。リモコンには、緊急通報有効スイッチと掃除スイッチを除き、温水便座に付いている操作スイッチと同様な操作スイッチを設ける。リモコンは操作スイッチの変化を検出すると、その操作をしたスイッチを含めてすべてのスイッチの情報を、スイッチ情報として赤外線通信で温水便座へ送信する。温水便座は、着座センサが ON のときだけリモコンのスイッチ情報を有効とする。このとき温水便座は、リモコンからのスイッチ情報を一度受信すると、温

水便座の緊急通報有効スイッチ以外のすべてのスイッチ操作を無効とする。この 無効状態は着座センサの OFF で解除される。そこで、温水便座のタスク構成とタ スク間通信の変更内容について検討した。その結果、リモコンとの通信処理を行 う赤外線通信タスクと、この赤外線通信タスクから受けたリモコンのスイッチ情 報を、着座センサが ON のときだけ該当するタスクへ通知する情報振分けタスク を追加することにした。また、メインタスクは変更しない方針とした。

- (1) 赤外線通信タスクから通知を受けた情報振分けタスクは、表 3 中に示す三つのタスクへ情報を振り分けて通知し、更にこの三つのタスクの処理内容を一部変更することにした。一つは洗浄水温度制御タスクである。ほかの二つのタスクは何か。表 3 中に示すタスク名で答えよ。
- (2) (1) における洗浄水温度制御タスクの変更内容を示す次の記述中の i ~ k に入れる適切な字句を答えよ。

リモコンから受信した設定水温を格納する変数(以下、変数 tmp という)とリモコンからの制御状態であることを示す変数(以下、変数 sts という)を追加する。洗浄水温度制御タスクは、情報振分けタスクから通知されると、変数 tmp にリモコンからの設定水温を格納して、変数 sts に 1 を格納する。洗浄水温度制御タスクは、 i タスクから通知を受けるごとに、変数 sts が 1 であれば、変数 tmp の内容で洗浄水の温度を制御する。変数 sts が 1 以外であれば、変数 tmp の内容で洗浄水の温度を制御する。変数 sts が 1 以外であれば、 j の内容を読み取り、その温度に洗浄水の温度を制御する。変数 sts は、温水便座の電源が投入されて最初に実行される初期化処理を含め、ほかの処理で初期化されていないことから、洗浄水温度制御タスクはメインタスクからの k 依頼で、変数 sts に 1 以外を格納する。

間3 ドライブレコーダに関する次の記述を読んで、設問1~3に答えよ。

交通事故が発生したときなどに、発生前後の画像などを記録する手段として、ドライブレコーダがある。B 社は、カーナビゲーションシステムから位置情報を入力し、高画質の画像を記録できるドライブレコーダを開発することになった。ドライブレコーダへの要求仕様の概要を次に示す。

[ドライプレコーダの構成]

開発中のドライブレコーダの構成図を図 1 に示す。ドライブレコーダはシリアルチャネルを介して、カーナビゲーションシステムから 0.1 秒ごとに時刻情報と 1 メートル単位の位置情報を得ることができる。

図1 ドライブレコーダの構成図

〔画像処理と RAM への記録〕

- ・CCD カメラでハイビジョン画質の画像を撮影する。
- ・撮影された画像の明るさに応じて、逆光でも夜間でも鮮明な画像が得られるように

処理する。

・得られた画像は8Mビット/秒のビットレートのMPEG4形式にエンコードして、 RAMに記録する。MPEG4形式へのエンコードは、0.5秒分の画像(以下、GOPという)ごとに行われる。

[フラッシュメモリへの記録と管理]

- ・加速度センサで異常な加速度を検出したとき、又はスイッチ部から書込み指示があったときに、フラッシュメモリに書き込むトリガが発生する。
- ・フラッシュメモリには、トリガから 14 秒分さかのぼった GOP の先頭から合計 20 秒 分の画像を一つの画像ファイルとして記録する。一つの画像ファイルのサイズは 20M バイトとなる。フラッシュメモリへの画像ファイルの記録期間を図 2 に示す。

図2 フラッシュメモリへの画像ファイルの記録期間

- ・MPU が RAM から MPEG 4 データを読み出す速度は 10 M バイト/秒で、フラッシュメモリに書き込む速度は 2.5 M バイト/秒である。MPU は、RAM からの読出し中とフラッシュメモリへの書込み中にはバスを占有してしまう。
- ・画像情報とは別に記録された管理情報で、記録された画像ファイルを管理する。
- ・管理情報は、位置情報、時刻情報、速度情報、加速度センサの値、トリガ情報及び 画像ファイルの有効/無効を示すフラグからなる。フラッシュメモリの一つのプロ ックに、複数の管理情報が記録される。

設問1 ドライブレコーダの仕様について検討する。

- (1) MPU が MPEG 4 データを RAM から読み出して、フラッシュメモリに書き込むのに必要な時間は、RAM からの読出し時間とフラッシュメモリへの書込み時間だけとする。
 - (a) RAM にある画像データから、図2の画像ファイルの記録期間のデータをフラッシュメモリに転送するのに必要な時間は何秒か。答えは小数第1位を四捨五入して、整数で求めよ。
 - (b) フラッシュメモリへの書込みを考えた場合, RAM には, 一つの画像ファイル分の容量は必要ない。図 2 に示すように, トリガからさかのぼった記録期間の画像データを RAM に記録しておくには, 何 M バイトの容量があればよいか。答えは小数第1位を四捨五入して,整数で求めよ。ここで, RAM のデータをフラッシュメモリに転送する速度は, RAM に画像データを記録する速度より高速である。
- (2) 3 軸の加速度センサを用いて異常状態を検出する。加速度センサの出力は MPU に内蔵された A/D コンバータで変換して取り込む。取り込んだ加速度センサの出力パターンを解析して異常検出を行う。運行状況下での進行方向の加速度センサの出力例を,図 3 に示す。進行方向では、+は速度を増加する方向の加速度を示す。① は自動車が動き始めたときの出力例である。

(a) ② のような出力例で、振幅が小さい場合は異常でないと判断するようにした。その理由を 20 字以内で述べよ。

- (b) 後ろから衝突され、その後、停止したと考えられる波形は、③ ~ ⑥ のうちのどれか。
- (c) 障害物を発見して、ブレーキをかけたが衝突してしまったと考えられる波形は、③~⑥のうちのどれか。

設問2 ドライブレコーダの設計について、(1)、(2) に答えよ。

- (1) 速度情報は、カーナビゲーションシステムからの 0.1 秒ごとの位置情報を利用して求めることにした。位置情報から速度情報を得る方法を、30 字以内で述べよ。
- (2) RAM に記録された画像データをフラッシュメモリに書き込む方法について検討する。

画像処理部は MPU を介さずに、画像データを RAM に直接書き込む。画像処理部から見た RAM の書込み領域はリングバッファ構成になっていて、画像データは RAM に連続して記録される。トリガが発生したときに、RAM に連続して記録されている画像データを、トリガの 14 秒前の GOP から MPU が読み出す。画像データ読出しのために、トリガが発生したときに書込みを行っているアドレス情報以外に必要な情報を、20 字以内で述べよ。

設問3 画像の証拠能力向上について検討した。

画像の差分情報を記録する MPEG 4 では、事故が発生したときの証拠として不十分であるとの指摘があった。そこで、MPEG 4 の場合と同じ解像度の 30 フレーム/秒のモーション JPEG 画像で記録することを検討したところ、MPEG 4 の場合に比べてデータ量が 5 倍に増加した。そこで、フラッシュメモリと RAM の容量を 5 倍に増やして対応することにした。その結果、画像処理部の処理速度はRAM への書込みを含めて問題がないと判断されたが、フラッシュメモリや RAMには更に変更が必要である。フラッシュメモリでは、同時にアクセスするデータ幅を 2 倍にすることにした。

- (1) フラッシュメモリにアクセスするデータ幅を 2 倍にするのは,何を考慮した からなのか。20 字以内で述べよ。
- (2) RAM の容量を 5 倍にしても、フラッシュメモリへ書き込むときにまだ問題がある。その問題とは何か。30 字以内で述べよ。

7. 途中で退室する場合には、手を挙げて監督員に合図し、答案用紙が回収されてから静かに退室してください。

退室可能時間 13:10 ~ 13:50

- 8. 問題に関する質問にはお答えできません。文意どおり解釈してください。
- 9. 問題冊子の余白などは、適宜利用して構いません。
- 10. 試験中, 机上に置けるもの及び使用できるものは, 次のものに限ります。 なお, 会場での貸出しは行っていません。

受験票, 黒鉛筆又はシャープペンシル, 鉛筆削り, 消しゴム, 定規, 時計(アラームなど時計以外の機能は使用不可), ハンカチ, ティッシュ

これら以外は机上に置けません。使用もできません。

- 11. 試験終了後, この問題冊子は持ち帰ることができます。
- 12. 答案用紙は、いかなる場合でも提出してください。回収時に提出しない場合は、採点されません。
- 13. 試験時間中にトイレへ行きたくなったり、気分が悪くなったりした場合は、手を挙げて監督員に合図してください。
- 14. 午後Ⅱの試験開始は 14:30 ですので、14:10 までに着席してください。

試験問題に記載されている会社名又は製品名は、それぞれ各社の商標又は登録商標です。 なお、試験問題では、® 及び ™ を明記していません。