Modern Optimal Control

Matthew M. Peet Arizona State University

Lecture 12: Small Gain Theorem

Algebra

Banach Algebra

A algebra is a vector space with a distributive multiplication operator.

Definition 1.

A Banach Algebra, X, is a Banach space with an associated mapping $(\cdot): X \times X \to X$ such that

1. **Identity:** There exists some $I \in X$ such that

$$F\cdot I=I\cdot F=F$$

for all $F \in X$.

- **2.** Distributivity: $F \cdot (G \cdot H) = (F \cdot G) \cdot H$ for all $F, G, H \in X$
- 3. Associativity: $F \cdot (G + H) = F \cdot G + F \cdot H$ for all $F, G, H \in X$.
- **4.** $F \cdot (\alpha G) = (\alpha F) \cdot G$ for all $F, G \in X$ and $\alpha \in \mathbb{R}$.
- 5. Submultiplicative Inequality:

$$\|F\cdot G\|\leq \|F\|\|G\|$$

Banach Algebras

Examples

Some algebras have extra properties

• Inverse Property (Group): For any $F \in X$, there exists a $F^{-1} \in X$ such that

$$F \cdot F^{-1} = F^{-1} \cdot F = I$$

• Commutative Algebra, Abelian Group: $F \cdot G = G \cdot F$

Square Matrices:

• Matrix multiplication using the $\bar{\sigma}$ norm.

Vectors:

• Pointwise addition/multiplication only.

Linear Operators: $\mathcal{L}(X)$

• Using the composition operation and induced norm.

Banach Algebras

Inverse

Some elements of a Banach Algebra may have an inverse.

Definition 2.

For $J \in X$, where X is a Banach Algebra, we say K is the **inverse** of J if $K \in X$ and

$$J \cdot K = K \cdot J = I$$

If such a K exists, we say J is **invertible**.

Note that if the inverse exists, it is unique

Observation: The feedback interconnection yields

$$y = (I + GK)^{-1}Gu$$

Question: Given G and K, how to tell whether (I + GK) is invertible?

How to tell whether anything is invertible?

Answer: Spectral Theory

• When is $\lambda I - A$ invertible?

The simplest form of spectral theory.

Theorem 3 (Small Gain Theorem).

Suppose B is a Banach Algebra and $Q \in B$. If $\|Q\| < 1$, then $(I - Q)^{-1}$ exists and furthermore

$$(I-Q)^{-1} = \sum_{k=0}^{\infty} Q^k$$

Clearly holds for $B = \mathbb{R}$ since

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r} = (1-r)^{-1}$$

Proof.

Relatively Simple: Show $\sum_{k=0}^{\infty} Q^k$ converges and that it is the inverse.

- To show that the sequence $T_i = \sum_{k=0}^i Q^k$ converges, we show it is Cauchy.
- Suppose m > n. Then

$$\begin{split} \|T_m - T_n\| &= \left\|\sum_{k=n+1}^m Q^k\right\| \leq \sum_{k=n+1}^m \|Q^k\| \quad \text{Triangle Inequality} \\ &\leq \sum_{k=n+1}^m \|Q\|^k \quad \text{Submultiplicative Inequality} \\ &= \|Q\|^{n+1} \sum_{k=0}^{m-n-1} \|Q\|^k \\ &\leq \|Q\|^{n+1} \sum_{k=0}^\infty \|Q\|^k \\ &= \|Q\|^{n+1} \frac{1}{1 - \|Q\|} \quad \text{Scalar Power Series} \end{split}$$

Proof.

• Thus for m > n

$$\lim_{n\to\infty} \|T_m - T_n\| = \lim_{n\to\infty} \|Q\|^{n+1} \frac{1}{1 - \|Q\|} = 0$$
 since $\|Q\| < 1$.

 \bullet Since the sequence is Cauchy and the space Banach, $\sum_{k=0}^{\infty}Q^k\in B$

We have shown that $\sum_{k=0}^{\infty} Q^k \in B$. Now we show that it is the inverse.

• Start by showing it is a right inverse

$$(I - Q) \sum_{k=0}^{\infty} Q^k = \sum_{k=0}^{\infty} Q^k - \sum_{k=1}^{\infty} Q^k$$
$$= Q^0 + \sum_{k=1}^{\infty} Q^k - \sum_{k=1}^{\infty} Q^k = I$$

- Showing $\sum_{k=0}^{\infty} Q^k(I-Q) = I$ is identical.
- Thus $(I-Q)^{-1}$ exists, so (I-Q) is invertible.

Recall the feedback interconnection:

$$y = (I + GK)^{-1}Gu$$

Question: When is $(I + GK)^{-1}G \in \mathcal{L}(L_{\infty})$?

Answer: When ||GK|| < 1.

• Using Banach Algebra of Composition

$$||GK|| \le ||G|| ||K||$$

- We can require $\|K\| < \frac{1}{\|G\|}$ or $\|K\| < 1$ and $\|G\| \le 1$.
- Can also express as $\int_0^\infty ||Ce^{As}B|| ds \le 1$

Note: Small Gain Theorem works for ANY Banach space (unusual).

• For most results we need a Hilbert space.

Example

Take the Banach Algebra of square matrices. $(\mathbb{R}^{n \times n}, \|\cdot\| = \bar{\sigma}(\cdot))$.

- Let $Q = \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix}$, with norm $\bar{\sigma}(Q) = \frac{1}{2}$.
- By small gain $(I-Q)^{-1}$ exists. Further

$$(I-Q)^{-1} = \begin{bmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{bmatrix}^{-1} = \sum_{k=0}^{\infty} Q^k$$

Now

$$Q = \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix}, \quad Q^2 = \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}, \quad Q^3 = \begin{bmatrix} 0 & \frac{1}{8} \\ \frac{1}{8} & 0 \end{bmatrix}, \quad Q^4 = \begin{bmatrix} \frac{1}{16} & 0 \\ 0 & \frac{1}{16} \end{bmatrix}$$

• We conclude that

$$Q^{k_{\text{even}}} = \begin{bmatrix} \frac{1}{4^k} & 0 \\ 0 & \frac{1}{4^k} \end{bmatrix} = \frac{1}{4^k} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad Q^{k_{\text{odd}}} = \begin{bmatrix} 0 & \frac{1}{2} \frac{1}{4^k} \\ \frac{1}{2} \frac{1}{4^k} & 0 \end{bmatrix} = \frac{1}{4^k} \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix}$$

Thus

$$\sum_{k=0}^{\infty} Q^k = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix} \sum_{k=0}^{\infty} \frac{1}{4^k} = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix} \frac{1}{1 - \frac{1}{4}} = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix} \frac{4}{3} = \begin{bmatrix} \frac{4}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{4}{3} \end{bmatrix}$$

Example

Unfortunately, the small gain theorem is conservative.

Let

$$Q = \begin{bmatrix} 0 & 10 \\ 0 & 0 \end{bmatrix}$$

• Then $\bar{\sigma}(Q) = 10$, yet

$$(I-Q)^{-1} = \begin{bmatrix} 1 & -10 \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 10 \\ 0 & 1 \end{bmatrix}^{-1}$$

• Furthermore, $(I-Q)^{-1} = \sum_{k=0}^{\infty} Q^k$.

An extension of the concept of eigenvalues.

• with important differences.

Definition 4.

Let B be a Banach Space and $M \in \mathcal{L}(B)$. The **Spectrum** of M is:

$$\sigma(M):=\{\lambda\in\mathbb{C}\ :\ (\lambda I-M)\ \text{is not invertible in}\ \mathcal{L}(B)\}$$

The Spectral Radius is

$$\rho(M) := \max\{|\lambda| : \lambda \in \sigma(M)\}$$

Fact: $\sigma(M)$ is non-empty and closed.

• all you can say.

M. Peet Lecture 12: 11 / 18

Example

Consider a multiplication operator.

$$M: u(t) \mapsto e^{-t}u(t)$$

Theorem 5.

$$M \in \mathcal{L}(L_{\infty}[0,\infty))$$
 and $\sigma(M) = [0,1]$.

Proof.

First we show that $[0,1] \subset \sigma(M)$.

• Since $((\lambda I - M)u)(t) = (\lambda - e^{-t})u(t)$, we can construct the inverse

$$\left(\left(\lambda I - M \right)^{-1} u \right) (t) = \frac{1}{\lambda - e^{-t}} u(t)$$

- If $\lambda \in [0,1]$, then $\lim_{t \to -\log(\lambda)} \frac{1}{\lambda e^{-t}} = \infty$.
- Therefore, $(\lambda I M)^{-1}$ is unbounded.
- Thus $[0,1] \subset \sigma(M)$.

Proof.

Now we show that if $\lambda \notin [0,1]$, then $\lambda \notin \sigma(M)$.

• If $\lambda < 0$, then

$$\left|\left((\lambda I-M)^{-1}u\right)(t)\right|=\frac{1}{\lambda-e^{-t}}u(t)\leq\frac{1}{|\lambda|}|u(t)|$$

• If $\lambda > 1$, then

$$\left| \left((\lambda I - M)^{-1} u \right) (t) \right| = \frac{1}{\lambda - e^{-t}} u(t) \le \frac{1}{|\lambda + 1|} |u(t)|$$

• Thus $[0,1] = \sigma(M)$.

However, M has no eigenvalues. If $Mx = \lambda x$, then

$$e^{-t}x(t) = \lambda x(t)$$
 $\forall t$

which implies that x(t) = 0.

ullet Thus M has no eigenvalues

Don't assume eigenvalues exist.

M. Peet

Lecture 12:

However, some properties still hold.

Theorem 6.

For any $M \in \mathcal{L}(B)$, $\rho(M) \leq ||M||$.

Proof.

We will show that if $|\lambda| > ||M||$, then $\lambda \notin \sigma(M)$.

• Suppose $|\lambda| > \|M\|$. Define $Q = \frac{M}{\lambda}$. Then

$$||Q|| = \frac{1}{|\lambda|} ||M|| < 1$$

• Then by the small-gain theorem, (I-Q) is invertible with

$$(I-Q)^{-1} = \left(I - \frac{M}{\lambda}\right)^{-1} = \sum_{k=0}^{\infty} \frac{M^k}{\lambda^k}$$

- Thus $(\lambda I M)^{-1} = \lambda^{-1} \left(I \frac{M}{\lambda} \right)^{-1}$ exists.
- Thus $\lambda \notin \sigma(M)$.
- Therefore, if $\lambda \in \sigma(M)$, $|\lambda| \leq ||M||$.
- Thus $\rho(M) \leq ||M||$.

M. Peet Lecture 12: 14 / 18

Theorem 7.

If $M \in \mathcal{L}(B)$, then $\rho(M) = \lim_{k \to \infty} ||M^k||^{1/k}$.

No Proof

For the Banach Algebra of linear operators, order of operations doesn't matter.

Lemma 8.

For $M \in \mathcal{L}(U,V)$ and $Q \in \mathcal{L}(V,U)$, the following are equivalent.

- 1. $I_V MQ$ is invertible.
- 2. $I_U QM$ is invertible.

Proof.

Start with $1\Rightarrow 2$. Suppose $(I-MQ)^{-1}$ exists. Then we propose the inverse $(I-QM)^{-1}=(I+Q(I-MQ)^{-1}M.$ Then

$$\begin{split} (I + Q(I - MQ)^{-1}M)(I - QM) \\ &= I(I - QM) + Q(I - MQ)^{-1}M(I - QM) \\ &= I - QM + Q(I - MQ)^{-1}M - Q(I - MQ)^{-1}MQM \\ &= I + Q\left[-I + (I - MQ)^{-1} - (I - MQ)^{-1}MQ\right]M \\ &= I + Q\left[-I + (I - MQ)^{-1}(I - MQ)\right]M \\ &= I + Q\left[-I + I\right]M = I \end{split}$$

M. Peet Lecture 12: 16 / 18

continued.

$$(I + Q(I - MQ)^{-1}M)(I - QM) = I$$

• Thus
$$(I - QM)^{-1} = I + Q(I - MQ)^{-1}M$$

We can show in a similar way that $(I - MQ)^{-1} = I + M(I - QM)^{-1}Q$.

Lecture 12:

This leads directly to

Proposition 1.

For
$$M \in \mathcal{L}(U, V)$$
, $Q \in \mathcal{L}(V, U)$, $\sigma(MQ) \cup \{0\} = \sigma(QM) \cup \{0\}$.

Proof.

Suppose $\lambda \neq 0$. Then

$$\begin{array}{ll} \lambda \in \sigma(MQ) \Leftrightarrow & \lambda I - MQ \quad \text{is invertible} \\ \Leftrightarrow & I - \frac{MQ}{\lambda} \quad \text{is invertible} \\ \Leftrightarrow & I - \frac{QM}{\lambda} \quad \text{is invertible by previous lemma} \\ \Leftrightarrow & \lambda I - QM \quad \text{is invertible} \\ \Leftrightarrow & \lambda \in \sigma(QM) \end{array}$$

M. Peet Lecture 12: 18 /