Analiza składniowa. Translacja sterowana składnia

Języki formalne i techniki translacji - Wykład 7

Maciek Gębala

19 listopada 2019

Maciek Gebala

Analiza składniowa. Translacia sterowana składnia

Wprowadzenie

- Analiza składniowa jest drugą fazą kompilacji (po analizie leksykalnej).
- Analiza składniowa przetwarza dane w postaci symboli leksykalnych na drzewo wyprowadzenia pewnej gramatyki.
- Sprawdzanie kodu pod względem poprawności składni.
- Gromadzenie dodatkowych informacji, np. w tablicy symboli, potrzebnych dla dalszych kroków kompilacji.

Maciek Gęba

Analiza składniowa. Translacja sterowana składn

Typy analizatorów składniowych

- Zstępujące (top-down) tworzenie drzewa wyprowadzenia od góry.
- Wstępujące (bottom-up) tworzenie drzewa wyprowadzenia od liści w górę do korzenia.
- Metody te działają tylko dla pewnych podklas gramatyk bezkontekstowych (jednoznaczne, deterministyczne).

Maciek Gębala

naliza składniowa. Translacja sterowana składnią

Przykład niejednoznaczności

Rozważmy gramatykę dla prostych wyrażeń arytmetycznych

$$E \rightarrow E + E|E*E|E - E|E/E| - E|id$$

- Weźmy słowo id + id * id
- Mamy dwa różne wyprowadzenia lewostronne

$$E \Rightarrow E + E \Rightarrow id + E \Rightarrow id + E * E$$

$$\Rightarrow id + id * E \Rightarrow id + id * id$$

$$E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow id + E * E$$

$$\Rightarrow id + id * E \Rightarrow id + id * id$$

Gramatyka jest więc niejednoznaczna.

Notatki
Notatki
Notatki
Notatki Notatki

Eliminowanie niejednoznaczności Notatki Niejednoznaczność można czasami wyeliminować. Jak zmienić gramatykę if wyr then instr if wyr then instr else instr inna Gramatyka jednoznaczna $instr \rightarrow p_instr|n_instr$ → if wyr then p_instr else p_instr p_instr n_instr if wyr then instr if wyr then p_instr else instr ullet Porównaj wyprowadzenia dla if E_1 then if E_2 then I_1 else I_2 Eliminacja lewostronnej rekurencji Notatki Gramatyka jest lewostronnie rekurencyjna jeśli istnieje nieterminal A taki, że istnieje wyprowadzenie $A\Rightarrow^+A\alpha$ dla pewnego α . Metody zstępujące (up-down) nie dają się zastosować do takich gramatyk. Lewostronną rekurencję można wyeliminować. Obsługa błędów Notatki W przypadku wystąpienia błędu wypisujemy go (czytelnie z podaniem miejsca wystąpienia) i staramy się kontynuować przetwarzanie. Strategie odzyskiwania kontroli tryb paniki poziom frazy produkcje dla błędów korekta globalna Tryb paniki Notatki Sposób najprostszy w implementacji. • Po natrafieniu na błąd usuwamy kolejne symbole aż trafimy na taki który umożliwi nam ponowną synchronizację danych z

analizatorem (np. ograniczniki instrukcji).

kontynuować pracę.

Mimo ominięcia pewnej liczby symboli metoda pozwala łatwo

• Po wykryciu błędu analizator stara się zmienić lokalnie wejście aby kontynuować analizę. • Typowe zastosowania: zmiana niewłaściwego separatora, dodanie końcowego ogranicznika instrukcji. • W pewnych sytuacjach może to spowodować zapętlenie. Produkcje dla błędów Notatki • Rozszerzamy gramatykę o produkcje generujące błędne konstrukcje dla najczęstszych błędów. Generujemy komunikat o błędzie w przypadku użycia produkcji dla błędu (ale nie przerywamy analizy, jest ona poprawna względem tak poprawionej gramatyki). Korekta globalna Notatki • Staramy się znaleźć dla całego tekstu minimalną liczbę poprawek, które spowodują, że tekst stanie się poprawny gramatycznie. • Metoda czasochłonna i nie zawsze poprawiająca w kierunku o jaki chodziło w tekście wejściowym. Translacja sterowana składnią Notatki Translacja sterowana składnią to translacja języków oparta o gramatyki bezkontekstowe, w której • z konstrukcjami języka wiązana jest pewna informacja poprzez dołączenie atrybutów do symboli gramatyki reprezentujących te konstrukcje; • wartości atrybutów obliczane są przez tzw. reguły semantyczne związane z produkcjami gramatyki.

Notatki

Poziom frazy

Definicje Notatki • Definicje sterowane składnią – ukrywają wiele szczegółów implementacyjnych, nie wymagają jawnego określania kolejności obliczania reguł semantycznych. • Schematy translacji – wskazują kolejność wyliczania reguł semantycznych, pokazują więcej szczegółów implementacyjnych. Definicje sterowane składnią Notatki • Definicje sterowane składnią są uogólnieniem gramatyki bezkontekstowej przez związanie z każdym symbolem pewnego zbioru atrybutów. • Atrybuty dzielimy na syntetyzowane i dziedziczone. Wartości atrybutów w węźle drzewa wyprowadzenia są określane przez reguły semantyczne związane z produkcją przypisaną do tego węzła. Atrybuty Notatki Z każdą produkcją gramatyki $B \to X_1 X_2 \dots X_n$ wiążemy zbiór reguł semantycznych postaci $b \leftarrow f(p_1, p_2, \dots, p_k)$. • b jest atrybutem syntetyzowanym symbolu B a p_1, p_2, \ldots, p_k są atrybutami symboli X_1, X_2, \ldots, X_n . • b jest atrybutem dziedziczonym symbolu X_i a p_1, p_2, \dots, p_k są atrybutami symboli B, X_1, X_2, \dots, X_n . Definicje S-atrybutowe i L-atrybutowe Notatki Definicje S-atrybutowe Gramatyka posiada tylko atrybuty syntetyzowane. Definicje L-atrybutowe Gramatyka posiada tylko atrybuty syntetyzowane lub atrybuty dziedziczone symbolu X_i w produkcji $B \to X_1 X_2 \dots X_n$ które zależą tylko od atrybutów symboli X_1, X_2, \dots, X_{i-1} oraz atrybutu dziedziczonego symbolu B. Każda definicja S-atrybutowa jest definicją L-atrybutową.

Przykład

Produkcja	Reguly semantyczne
D o TL	$L.dz \leftarrow T.typ$
$T \rightarrow int$	T.typ ← integer
$T ightarrow \mathit{real}$	T.typ ← real
$L \rightarrow L_1$, id	$L_1.dz \leftarrow L.dz$; $id.typ \leftarrow L.dz$
	id.typ ← L.dz

Generator analizatorów wstępujących - Bison (Yacc)

- Bison dla zadanej specyfikacji generuje kod źródłowy analizatora składniowego.
- Program Bison w łatwy sposób może współpracować z generatorem analizatorów leksykalnych Flex.
- Program generuje analizator redukujący LALR.
- Nieterminal lewej strony pierwszej produkcji jest domyślnie symbolem startowym.
- W razie konfliktu redukcja/redukcja wybierana jest akcja wynikająca z kolejności zapisu.
- W razie konfliktu redukcja/przesunięcie wybierane jest przesunięcie.

Bison - plik specyfikacji

- Funkcja parsująca yyparse().
- Funkcja zwracająca błędy yyerror().
- Plik specyfikacji składa się z trzech sekcji (rozdzielonych %%):

 - sekcja definicji,sekcja reguł przetwarzania,sekcja podprogramów.
- W sekcji definicji definiujemy tokeny (terminale) używane w gramatyce.
- Reguła przetwarzania składa się z produkcji i operacji (w języku C).

Współpraca z LEX-em

- Parser korzysta z funkcji int yylex() do czytania tokenów którą można napisać samemu lub skorzystać z LEX-a.
- Tokeny użyte w parserze mogą być wyeksportowane do pliku
- Również wartość tokena może być przeniesiona do parsera zmienna globalna yylval. Domyślny typ to int ale można zmienić na kilka typów posługując się unią i deklaracjami typów.

Notatki
Natural d
Notatki
Notatki
Notatki
Notatki

Przykład

Gramatyka

 $E \rightarrow E \text{ or } T \mid T$ $T \rightarrow T \text{ and } F \mid F$

 $F \rightarrow not F \mid (E) \mid true \mid false$

Pliki

- bool-calc.y
- bool-calc.l

Maciek Gebala

naliza składniowa. Translacja sterowana składnia

Translacja sterowana składnią w BISON-ie

- Reguły semantyczne w BISON-ie są obliczane w trakcie translacji.
- Drzewo wyprowadzenia nie jest jawnie konstruowane. Porządek wyliczania atrybutów jest narzucony przez samą metodę analizy.
- Zalety: prostota i efektywność translatora.
- Wady: możliwość przetwarzania tylko L-atrybutowych definicji sterowanych składnią.
- Realizując translację sterowaną składnią w BISON-ie bezpieczniej jest korzystać z mechanizmu atrybutów wbudowanego w generator.
- Używanie zmiennych globalnych może mieć efekty uboczne i nie gwarantuje prawidłowej kolejności akcji wykonywanych przez LR-parser.

Maciek Gęba

Analiza składniowa. Translacja sterowana składn

Atrybuty - ogólne reguly

Z każdym symbolem w produkcji związany jest atrybut

- Wartość atrybutu jednostki leksykalnej jest nadawana w analizatorze leksykalnym za pomocą zmiennej yylval.
- Zmienna yylval jest domyślnie typu całkowitego (int).
- Akcje semantyczne możemy zapisać z wykorzystaniem atrybutów.

```
E : E '+' num { $$=$1+$3; }
| num { $$=$1; };
```

Maciek Gębala

Analiza składniowa. Translacja sterowana składn

Atrybuty - ogólne reguły

- Domyślny typ atrybutów można zmodyfikować za pomocą słowa kluczowego %union umieszczanego w specyfikacji parsera.
- Wewnątrz deklaracji %union można umieścić wszystkie potrzebne typy atrybutów.
- W celu zadeklarowania typów symboli należy najpierw zdefiniować typ atrybutów za pomocą %union np. %union{ char *text; int ival; } a następnie na podstawie tej definicji przypisać typ dla symboli terminalnych

%token <text> ident i dla nieterminalnych

%type <ival> A

Notatki
Newser
Notatki
Notatki
Notatki
Notatki
Notatki
Notatki

Atrybuty - ogólne reguły

 Zmiana typów w parserze wymusza zmianę typów w skanerze: dodanie definicji interfejsu #include "y.tab.h" i odpowiednie nadawanie wartości tokenom yylval.ival=atoi(yytext);

Maciek Gehala

Analiza składniowa. Translacja sterowana składnią

Przykład – Gramatyka S-atrybutowa

Maciek Gębal

Analiza składniowa. Translacja sterowana składnią

Przykład - lekser

```
%option noyywrap
%{
#include "y.tab.h"
%}
id [_a-zA-Z][_a-zA-ZO-9]*
%%
"int" { return decl_int; }
"char" { return decl_char; }
{id} { yylval.text=strdup(yytext); return id; }
";" { return ';'; }
"," { return ','; }
\n
.
%%
```

Maciek Gebala

naliza składniowa. Translacia sterowana składnia

Atrybuty dziedziczone

- W BISON-ie można korzystać z atrybutów dziedziczonych, ale definicje muszą być L-atrybutowe.
- Wszystkie akcje związane z obliczeniem atrybutów nieterminali z których korzystamy muszą być już wykonane i znajdować się na stosie.
- Atrybuty dziedziczone w BISON-ie oznaczane są niedodatnimi indeksami, w kolejności od szczytu stosu (0) w głąb.
- Typ pola unii do którego się odwołujemy powinien być wskazany (w nawiasach trójkątnych).
- Nie jest przeprowadzana kontrola poprawności sięgania po atrybuty (na stosie).

Notatki
Notatki
Notatki
Notatki Notatki

Przykład – Gramatyka L-atrybutowa

```
%union{ char *text; }
%type <text> T L
%token <text> id decl_real decl_int
%% _ _ _ _
D : T L ';' { YYACCEPT; }
T : decl_int { $$ = "int"; }
    | decl_char { $$ = "char"; }
```

Maciek Gębala Analiza składniowa. Translacja sterowana składnią

Notatki	Notatki	Notatki
Notatki	Notatki	
Notatki	Notatki	Notatki
Notatki	Notatki	Notain
Notatki	Notatki	
Notatki	Notatki	Notatki
Notatki	Notatki	Notatki
Notatki	Notatki	Notatki
Notatki	Notatki	
		Notatki
		Notatki
		Notatki