AIRS Derived CO2 Zonal Anomalies over Ocean

AIRS Science Team Meeting

L. Larrabee Strow^{1,2} and Sergio De Souza-Machado, UMBC^{1,2}

September 26, 2019

¹ UMBC Physics Dept.

²UMBC JCET

Introduction

- How to AIRS growth rate anomalies compare to OCO
- OCO is column, AIRS is broad kernel around 400 mbar, little surface contribution
- OCO is quite heavily constrained over ocean in the S. Hemisphere
- Why: AIRS S. Hemisphere anomalies grew during 2015 ENSO before the N. Hemisphere anomalies. Doesn't seem right?
- Either very interesting, or, more likely, good way to investigate ultimate accuracy of AIRS CO₂ anomalies.

1

CO₂ Anomaly Fit for 20° N. (MLO)

Fitting Trick

Fitted CO₂ Anomalies

- ERA simulations done per footprint
- Fit ERA simulation for CO₂
- · Removes co-linearity? and lowers "noise"
- Possible approach for Level 2 CO₂ retrievals?

CO₂ Anomaly Converted to B(T) Trends

- Mean AIRS-ESRL CO₂ = 0.035 \pm 0.032 pppm (1 σ standard error)
- Mean AIRS-ESRL in BT Units = +0.0026K ± 0.0023 K (1 σ standard error)
- Sampling and ESRL errors hard to characterize

CO2 Trends and Growth Anomalies

Growth Rates

Zonal Anomalies

Growth Rate Anomaly

- Growth rate anomaly accuracy very encouraging.
- AIRS Avg(MLO + CGRIM) growth rate difference: -0.0056K/year in BT units
- MLO, CGRIM growth rate uncertainty from ESRL ~0.0051K/year

Zonal CO₂ Growth Anomalies

- Growth rate anomaly = $(CO_2 \text{ anomaly } CO_2 \text{ average growth rate})$
- Magenta are ESRL MLO and Cape Grim CO₂ growth rate anomalies
- \bullet CO₂ color scale is equivalent to max \pm 0.09K in BT units
- What is real? Smoothing may be an issue.
- 2015 ENSO effects very clear

Global Trend Anomalies: ESRL, AIRS, OCO-2 (ocean)

- At this level AIRS and OCO agree better than ESRL for 2015 ENSO
- · OCO smaller ENSO shift than ESRL
- Still very clear AIRS has a Nov. 2003 shutdown problem

OCO Zonal Growth Anomaies

OCO Anomalies

Adjust OCO to AIRS Anomaly Start

 Need to convert OCO anomalies to zero in Sept. 2002 for comparison to AIRS

Intercompare AIRS and OCO Anomalies

AIRS Growth Anomalies, OCO Time Frame OCO Growth Anomalies

- Notice high OCO at lowest latitudes
- Why is AIRS ENSO higher in tropics? Transport from N.H.?
- More work needed to understand -40 deg. lat timing of CO₂ anomaly
- Compare to OCO Anomaly on previous slide

OCO A-Priori for Ocean, 400 mbar

OCO CO₂ A-Priori Std

OCO 400 mbar (and much of ocean profile) a-priori uncertainty is ~1 ppm

Conclusions

- Need to develop a gridded clear AIRS L1c subset
- Present subset is highly non-uniform spatially
 - However, fairly uniform near Cape-Grim at -40 deg
- Use these results to further understand ultimate accuracy of AIRS CO₂ retrievals