EECS 445 – Lecture 10 Decision trees + Ensembles

Professor Maggie Makar

Outline

- Recap:
 - What are decision trees?
 - How do we train DTs? (part 1)
- How do we train DTs? (part 2)
 - Measuring uncertainty
 - The algorithm
 - Bias Variance trade-offs
- Ensemble methods

$$f(\bar{x}) = \sum_{m}^{M} \mu_m [\![\bar{x} \in R_m]\!]$$

Training decision trees
$$3u_{m}3_{m=1}^{M}$$
 $2k_{m}3_{m=1}^{M}$

- No closed form solution, gradient descent does not work
- Brute-force is too computationally expensive
- Will use greedy approach:
 - Evaluate one split at a time
 - Pick splits that minimize the uncertainty in the label
 - Measure uncertainty using Shannon entropy

Entropy and conditional entropy

, Measure of Uncertaints in the value of Y

• Entropy: K $H(Y) = \sum_{k=1}^{\infty} p(Y = y_k) \log_2 p(Y = y_k)$

• The entropy of Y conditioned on X = x:

$$H(Y|X = x) = -\sum_{k=1}^{K} p(Y = y_k|X = x) \log_2 p(Y = y_k|X = x)$$

 $H(Y|X=x) = -\sum_{k=1}^{K} p(Y=y_k|X=x) \log_2 p(Y=y_k|X=x)$ How uncertain am I dowt Y if Iknow flet X=x

Conditional entropy:

$$X) = \sum_{x} p(X = x)H(Y \mid X = x)$$

 $H(Y \mid X) = \sum_{x} p(X = x)H(Y \mid X = x)$ How uncertain on I about Y when I learn the value of X

Information Gain (aka Mutual Information)

• Information gain (IG):

H(Y)-H(Y1X)=0.47=0.95=0.02

• Decrease in entropy (uncertainty) in Y after knowing the value of X

$$IG(Y,X) = H(Y) - H(Y \mid X)$$

$$TG(Y, X_1) = H(Y) = -\frac{2}{5} log_1 \frac{2}{5} - \frac{3}{5} log_2 \frac{3}{5} \approx 0.97$$

$$H(Y|X_1) = P(X_1 = Sunny) H(Y|X_1 = Sunny)$$

$$+ P(X_1 = (loudy) H(Y|X_1 = doudy)$$

$$= \frac{2}{5} (l) + \frac{3}{5} \left[-\frac{1}{3} log_2 \frac{1}{3} - \frac{2}{3} log_2 \frac{2}{3} \right] \approx 0.97$$

$$Cloudy Dry 0$$

$$Cloudy Dry 1$$

Marginal and conditional entropy

- Check your understanding:
 - When does $H(Y \mid X) = 0$?
 - When does $H(Y \mid X) = H(Y)$? X is indep to Y.
 - What is the IG if *X*, *Y* are independent?

TL;DPA:

- 1. Getting the true optimal problem is hard
- 2. Forget optimal, we'll shoot for a close-to-optimal approach that is *greedy*
- 3. Our approach evaluates splits based on measures of uncertainty

Training decision trees: the algorithm

- 1. Start with an empty tree
- 2. Split on the best feature and split value
- 3. Recurse until a stopping criterion is met

Consider all possible splits	Age	Specie	Wears Tin-	Plotting	\mathbf{W} orld
• Continuous veriable (o.g. ego)			foil Hat	Dominatio	n
• Continuous variable (e.g., age)	1	Cat	Yes	Yes ·	
	5	Dog	No	No '	
H(Y [Age <5]) = P(Age <5) H(Y Age <5)	1	Snake	Yes	Yes	
(1 p. 16 1 2 2)	2	Cat	No	Yes	
tP(Age>S) H(Y/tge>S)	4 5	Snake	Yes	Yes •	
	2	Snake	No	No	
= \frac{5}{5} \log_2 \frac{3}{5} - \frac{2}{5} \log_2 \frac{2}{5}	1	Dog	Yes	No	
	\				
+2 [] H(Y) [[Age < 47]) = H(Y) [[Age < 5]]	ر				
N/WITT TELL		4			
H(Y) [tage < 4]) = H(Y) [tage < 5])				-	
0 (3)					
ł i		+ +		+	
)	1 2	_ 3	4 5	- ,
					ما

Consider all possible splits...

• Categorical variable (e.g., Specie)

Method 1; Binary trees.

Age	Specie)	Wears Tin-	Plotting World
		foil Hat	Domination
1	Cat	Yes	Yes
5	Dog	No	No
1	Snake	Yes	Yes
2	Cat	No	Yes
make	Snake	Yes	Yes
2	Snake	No	No
14	Dog	Yes	No

Consider all possible splits...

• Categorical variable (e.g., Specie)
Method 2: Non by trees:

Age	Specie	Wears Tin- foil Hat	Plotting World Domination
1	Cat	Yes	Yes
5	Dog	No	No
1	Snake	Yes	Yes
2	Cat	No	Yes
5	Snake	Yes	Yes
2	Snake	No	No
1	Dog	Yes	No

$$H(Y \mid Specie) = P(Sp = Cot) H(Y \mid Sp = cot) + P(Sp = Dog) H(Y \mid Sp = Dog) + P(Sp = Snake)$$
.

Consider all possible splits...

• Binary variable (e.g., Tinfoil hat)

Age	Specie	Wears Tin-	Plotting World
		foil Hat	Domination
1	Cat	Yes	Yes
5	Dog	No	No
1	Snake	Yes	Yes
2	Cat	No	Yes
5	Snake	Yes	Yes
2	Snake	No	No
1	Dog	Yes	No

• Best feature that minimizes entropy vs. maximize IG

Step #3: Recurse until a stopping criteria is met

What's a good stopping criteria?

1) When all data have the same label (assuming this is possible)

Outlook	Temperature	Humidity	Wind	PlayTennis
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
				1

Learning decision trees: algorithm stopping criteria

What's a good stopping criteria?

- 1 When all data have the same label (assuming this is possible)
- (2) If all data have identical features (no further splits possible)

Outlook	Temperature	Humidity	Wind	PlayTennis
Sunny	Hot	High	Strong	No
Sunny	Hot	High	Strong	No
Sunny	Hot	High	Strong	Yes

Step # 3: Recurse until a stopping criteria is met

- 1 When all records have the same label (assumes this is possible)
- 2) If all records have identical features (no further splits possible)
- (3) If all features have zero IG

Why is it shortsighted to stop when IG = 0?

$$H(Y)=1$$
 $H(Y|X_1)=1$
 $X_2=1$
 $X_2=1$
 $X_2=1$
 $X_1=1$
 $X_1=1$

	\mathbf{x}_1	$\mathbf{x_2}$	\mathbf{y}
	1	1	0
(1	0	1
	0	1	1
	0	0	0

```
BuildTree (DS)

if (y^{(i)} == y) for all examples in DS

return y

elseif (\mathbf{x}^{(i)} == \mathbf{x}) for all examples in DS

return majority label

else

\mathbf{x}_s, \mathbf{t}_s = \operatorname{argmin}_{\mathbf{x}, \mathbf{t}} \ \mathbf{H}(\mathbf{y} | [\mathbf{x} > \mathbf{t}])

\mathbf{DS}_g = \{ \text{examples in DS where } \mathbf{x}_s \geq \mathbf{t}_s \}

BuildTree (DS<sub>g</sub>)

\mathbf{DS}_1 = \{ \text{examples in DS where } \mathbf{x}_s < \mathbf{t}_s \}

BuildTree (DS<sub>1</sub>)
```

Outlook	Temperature	Humidity	Wind	PlayTennis
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes

```
BuildTree (DS)

if (y^{(i)} == y) for all examples in DS

return y

elseif (\mathbf{x}^{(i)} == \mathbf{x}) for all examples in DS

return majority label

else

x_s, t_s = \operatorname{argmin}_{x,t} H(y|[x > t])

DS_g = \{\operatorname{examples} \text{ in DS where } x_s \ge t_s\}

BuildTree (DS<sub>g</sub>)

DS_1 = \{\operatorname{examples} \text{ in DS where } x_s < t_s\}

BuildTree (DS<sub>1</sub>)
```

Outlook	Temperature	Humidity	Wind	PlayTennis
Sunny	Hot	High	Strong	No
Sunny	Hot	High	Strong	No
Sunny	Hot	High	Strong	Yes

```
BuildTree (DS)
    if (y^{(i)} == y) for all examples in DS
                return y
    elseif (\mathbf{x}^{(i)} == \mathbf{x}) for all examples in DS
                return majority label
    else
        x_s, t_s = argmin_{x,t} H(y|[x > t])
        DS_{q} = \{examples in DS where <math>x_{s} \ge t_{s}\}
        BuildTree (DS<sub>a</sub>)
        DS_1 = \{examples in DS where x_s < t_s\}
        BuildTree (DS<sub>1</sub>)
```

Regularization

Shouldn't stop growing the tree when we stop seeing reductions in $IG \rightarrow$ prone to overfitting.

Methods to prevent overfitting

- ② Set a max depth
 - 2. Grow full tree then prune (e.g., weakest link pruning)

Example: is your roommate good or evil? (Your turn)

Find the fest first split

	Height (cm)	Mask	Cape	Evil
Batman	180	Т	Т	0
Robin	179	Т	Т	0
Alfred	175	F	F	0
Penguin	179	F	F	1
Catwoman	165	Т	F	1
Joker	180	F	F	1

Example: is your roommate good or evil? (Your turn)

$$H(Y|[Height > 165]]) = \frac{5}{6} \left(-\frac{2}{5} \log_2 \frac{2}{5} - \frac{3}{5} \log_2 \frac{3}{5} \right) + \frac{1}{6}(0)$$

$$H(Y|[Height > 175]]) = \frac{2}{3}(1) + \frac{1}{3}(1)$$

$$H(Y|[Height > 179]]) = \frac{1}{3}(1) + \frac{2}{3}(1)$$

$$H(Y|Cape) = \frac{1}{3}(0) + \frac{2}{3} \left(-\frac{1}{4} \log_2 \frac{1}{4} - \frac{3}{4} \log_2 \frac{3}{4} \right)$$

$$H(Y|Mask) = \frac{1}{2} \left(-\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3} \right) + \frac{1}{2} \left(-\frac{2}{3} \log_2 \frac{2}{3} - \frac{1}{3} \log_2 \frac{1}{3} \right)$$

	Height (cm)	Mask	Cape	Evil
Batman	180	Т	Т	0
Robin	179	Т	Т	0
Alfred	175	F	F	0
Penguin	179	F	F	1
Catwoman	165	Т	F	1
Joker	180	F	F	1

TL;DPA: We walked through the decision tree algorithm, how to make splits and the relevant stopping criteria

A problem with decision trees

	x_1	x_2	x_3	x_4	x_5	y
	1	1	0	0	0	1
	1	1	0	0	0	0
	1	0	1	1	0	1
	1	1	0	0	1	1
	0	0	1	0	1	0
	1	1	1	0	0	1
	0	0	0	1	1	1
1)	1	1	0	0	0	1
,	1	1	0	1	1	0
	0	0	0	0	1	1
	1	0	1	1	0	0
	1	1	0	0	1	1
	1	0	1	1	0	1
	1	1	0	1	1	0
	0	0	0	1	0	1
	0	1	0	0	0	0
	0	1	1	0	1	1
	1	1	0	0	0	1
	1	1	0	0	1	1
	1	1	0	0	0	1

	x_1	x_2	x_3	x_4	x_5	$y \mid$
	1	1	0	0	0	1
	1	1	0	0	0	0
	1	0	1	1	0	1
	1	1	0	0	1	1
	0	0	1	0	1	0
	1	1	1	0	0	0
	0	0	0	1	1	1
	1	1	0	0	0	1
=	1	1	0	1	1	0
	0	0	0	0	1	1
	1	0	1	1	0	0
	1	1	0	0	1	1
	1	0	1	1	0	1
	1	1	0	1	1	0
	0	0	0	1	0	1
	0	1	0	0	0	0
	0	1	1	0	1	1
	1	1	0	0	0	1
	1	1	0	0	1	1
	1	1	0	0	0	1

A problem with decision trees

	x_1	x_2	x_3	x_4	x_5	y
	1	1	0	0	0	1
	1	1	0	0	0	0
	1	0	1	1	0	1
	1	1	0	0	1	1
	0	0	1	0	1	0
	1	1	1	0	0	1
	0	0	0	1	1	1
c(1)	1	1	0	0	0	1
$S_n^{(1)} =$	1	1	0	1	1	0
	0	0	0	0	1	1
	1	0	1	1	0	0
	1	1	0	0	1	1
	1	0	1	1	0	1
	1	1	0	1	1	0
	0	0	0	1	0	1
	0	1	0	0	0	0
	0	1	1	0	1	1
	1	1	0	0	0	1
	1	1	0	0	1	1
	1	1	0	0	0	1

	x_1	x_2	x_3	x_4	x_5	$y \mid$
	1	1	0	0	0	1
	1	1	0	0	0	0
	1	0	1	1	0	1
	1	1	0	0	1	1
	0	0	1	0	1	0
	1	1	1	0	0	0 1
	0	0	0	1	1	1
	1	1	0	0	0	1
	1	1	0	1	1	0
	0	0	0	0	1	1
	1	0	1	1	0	0
	1	1	0	0	1	1
	1	0	1	1	0	1
	1	1	0	1	1	0
	0	0	0	1	0	1
	0	1	0	0	0	0
	0	1	1	0	1	1
	1	1	0	0	0	1
	1	1	0	0	1	1
	1	1	0	0	0	1

A problem with trees

Bias variance trade-off and generalization error

- Remember: our goal is to minimize generalization error
- What are sources of generalization error?
 - 1. Bias (structural error)
 - 2. Variance (estimation error)
 - 3. Irreducible noise

Bias variance trade-off and generalization error

- Remember: our goal is to minimize generalization error
- What are sources of generalization error?
 - 1. Bias (structural error)
 - 2. Variance (estimation error)
 - 3. Irreducible noise
- Two ways to understand the bias variance trade-off:
 - 1. An analogy
 - 2. Using images

Bias variance trade-off: an analogy

A modified game of Marco Polo:

- Objective: give an estimate of where your friend, Jane, is
- **Setting:** Multiple rounds
- Rules:
 - Jane can't change location
 - Player from round i can't give information to player from round j
- Data: your friend's voice
- Hypothesis space: the room
- Noise: loud dish washer, echoes

Bias variance trade-off in images

Bias variance trade-off in images

Bias variance trade-off in images

$$Rn(\overline{\Phi}) = \frac{1}{n} \sum_{i} (\overline{\Phi}_{x_{i}+b} - y_{i})^{2} + \frac{1}{2} ||\Theta||_{2}^{2}$$

Ensemble methods

- Idea: Create a set of weak/base models whose individual decisions are combined in some way
- Which models? Typically trees & more commonly classification
- Main advantage: Reduces variance without increasing bias
- Describes a set of approaches that differ in training and combination methods
- Two main types of ensembles
 - Bagging
 - "Vanilla" bagging
 - Random Forests
 - Boosting (Adaboost)

TL;DPA:

1. Review of bias variance trade-offs

- 2. Decision trees are high variance models
- 3. Ensemble methods can reduce the variance of decision trees without increasing bias (that's magical & unlike what we've seen so far)

	Day	Outlook	Temperature	Humidity	Wind	PlayTennis
1	D1	Sunny	Hot	High	Weak	No
1/2	D2	Sunny	Hot	High	Strong	No
•	D3	Overcast	Hot	High	Weak	Yes
	D4	Rain	Mild	High	Weak	Yes
	D5	Rain	Cool	Normal	Weak	Yes
c –	D6	Rain	Cool	Normal	Strong	No
S_n —	D7	Overcast	Cool	Normal	Strong	Yes
	D8	Sunny	Mild	High	Weak	No
	D9	Sunny	Cool	Normal	Weak	Yes
NV	D10	Rain	Mild	Normal	Weak	Yes
	D11	Sunny	Mild	Normal	Strong	Yes
	D12	Overcast	Mild	High	Strong	Yes
	D13	Overcast	Hot	Normal	Weak	Yes
	D14	Rain	Mild	High	Strong	No

• Bootstrap sampling: sample n data points with replacement. Do that B times

 $S_n^{(1)}$

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
_D8	Sunny	Mild	High	Weak	No
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

f(2)	(\overline{X})
------	------------------

 $S_n^{(2)}$

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D_2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
LD4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D14	Rain	Mild	High	Strong	No

ς	(\mathcal{B})	
ر ر	n	

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D14	Rain	Mild	High	Strong	No

Bagging = Bootstrap aggregating
Algorithm:

- 1. Sample n points B times with replacement
- 2. Build B decision trees using each of the B bootstrap replicates
- 3. Aggregate their prediction

$$f(\bar{x}) = \arg\max_{y} \sum_{b=1}^{B} [f^{(b)} = y]$$

• Bagging = $\underline{\mathbf{B}}$ ootstrap $\underline{\mathbf{agg}}$ regat $\underline{\mathbf{ing}}$

Assumptions:

- Each decision tree has a misclassification rate better than 50%
- Classifiers are independent create predictions that are uncorrelated.

If assumptions are satisfied:

As $B \to \infty$, misclassification rate $\to 0$

Why does bagging work?

Demo

..that you can run!

https://colab.research.google.com/drive/1xbrNNEmd9URcP6b1p FtF-iirfmH4KJXn?usp=sharing

Bagged classifiers in action Base classifier error rate = 0.4

Bagged classifiers in action Base classifier error rate = 0.4

Bagged classifiers in action Base classifier error rate = 0.4

Bagged classifiers in action Base classifier error rate = 0.6

Bagged classifiers in action Correlated base classifier with error rate = 0.3

• Bootstrap sampling: sample n data points with replacement. Do that K times

$$S_n^{(1)}$$

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

$\mathbf{c}^{(2)}$	
\mathfrak{I}_n	

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D14	Rain	Mild	High	Strong	No

$$S_n^{(k)}$$

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D14	Rain	Mild	High	Strong	No

Ensemble methods: Random Forests

Aim: decorrelate predictions from different classifiers

- 1. Bootstrap sampling
- 2. At each node, best split is chosen from random subset of m < d features

TL;DPA:

We looked at 2 kinds of bagged models:

- 1. Vanilla bagging: bootstrap sampling + fitting a different tree on each sample
- 2. Random forests: Vanilla bagging + additional shenanigans

argmax $\left(\frac{\sum(1-y)[T_i \in R_m]}{\sum y_i [T_x \in R_m]}\right)$ $u_m = \frac{1}{n_m} \frac{\sum y_i [T_x \in R_m]}{\sum y_i [T_x \in R_m]} > 0.5$

Additional slides

Regularization: Weakest link pruning

- By Breiman et. al., 1984
- Same as cost-complexity pruning
- Algorithm:
 - Start with the full tree, T_0
 - For each subtree:
 - Replace subtree with a single node to obtain new tree T_k
 - Compute

$$\alpha_k = \frac{\operatorname{Err}(T_k) - \operatorname{Err}(T_0)}{|T_0| - |T_k|}$$

• Pick T_k with the minimum α_k . In case of ties, pick T_k that prunes the least leaves (i.e., has the largest $|T_k|$)

Regularization: Weakest link pruning

Algorithm:

- Start with the full tree, T_0
- For each subtree:
 - Replace subtree with a single node to obtain new tree T_k
 - Compute

$$\alpha_k = \frac{\operatorname{Err}(T_k) - \operatorname{Err}(T_0)}{|T_0| - |T_k|}$$

• Pick T_k with the minimum α_k . In case of ties, pick T_k that prunes the least leaves (i.e., has the largest $|T_k|$)