Matemática Financiera

Autor: José M. Martín Senmache Sarmiento

Capítulo 7: Anualidades

Solución de Ejercicio Nº36

e-financebook

- 36. Yutu Producciones SA compra un equipo de edición de producción y videos por US\$ 4,500.00. Si la casa comercial le exige una cuota inicial del 10% y el resto lo cancelará a través de un financiamiento a 4 años con el Banco del Emprendedor, el cual se oferta a una tasa efectiva semestral (TES) de 12.5% con el siguiente plan de pagos:
 - 16 cuotas ordinarias trimestrales vencidas iguales a (R)
 - 4 cuotas extraordinarias iguales, vencidas y anuales de US\$ 250.00

Se pide:

- a) Construir un gráfico con el flujo de pagos mencionado.
- b) ¿Calcular el valor de las cuotas trimestrales ordinarias vencidas (R)?
- c) Si llega el día que debe cancelar la cuota ordinaria Nº13 y decide pagar el 100% del saldo de la deuda a esa fecha. ¿Cuánto deberá entregar para conseguir ese objetivo?

Respuestas: b) US\$ 345.48, c) US\$ 1,477.34

DATOS		
Nombre	Descripcion	Valor
PV	Precio de venta de equipo de edición	4,500.00
CI	Porcentaje de cuota inicial	10%
TE	Tasa de Interés Efectiva Semestral (TES)	12.5%
Tiempo	Tiempo que dura el crédito	4 años
f	Frecuencia de pago	trimestral
CE	Cuotas extraodinarias	250.00
fe	Frecuencia de cuotas extraordinarias	anual

FÓRMULAS		
Número	Fórmula	
19	$TEP_2 = (1 + TEP_1)^{\left(\frac{N^{\circ} diasTEP2}{N^{\circ} diasTEP1}\right)} - 1$	
21	$C = \frac{S}{\left(1 + TEP\right)^{\left(\frac{N^{\circ} \text{díasTrasladar}}{N^{\circ} \text{díasdeTEP}}\right)}}$	

47	C = P V * (1 – %CI)
51	$C = R * \left(\frac{(1 + TEP)^{n} - 1}{TEP * (1 + TEP)^{n}} \right)$

SOLUCIÓN

b) Calendario ordinario:

$$C = PV - CI * PV$$

$$C = 4,500.00 - 10\% * 4,500.00$$

$$C = 4,050.00$$

$$TET = \left(1 + TES\right)^{\left(\frac{N^{0} \text{díasTET}}{N^{0} \text{díasTES}}\right)} - 1$$

TET =
$$(1+12.5\%)^{\left(\frac{90}{180}\right)} - 1$$

$$TET = 0.06066017177$$

$$TET = 6.066017177\%$$

$$TEA = (1 + TES)^{\left(\frac{N^{\circ} dias TEA}{N^{\circ} dias TES}\right)} - 1$$

TEA =
$$(1+12.5\%)^{\left(\frac{360}{180}\right)} - 1$$

$$TEA = 0.265625$$

$$TEA = 26.5625\%$$

Número de cuotas trimestrales:

 $n_1 = 16$ cuotas trimestrales R

Número de cuotas anuales:

 $n_2 = 4$ cuotas anuales de 250.00

Luego, el crédito se cancela con 2 anualidades : una trimestral y la segunda anual, entonces :

$$C = R * \left(\frac{(1+TET)^{n_1} - 1}{TET * (1+TET)^{n_1}} \right) + R'* \left(\frac{(1+TEA)^{n_2} - 1}{TEA * (1+TEA)^{n_2}} \right)$$

$$4,050.00 = R * \left(\frac{(1+6.066017177\%)^{16} - 1}{6.066017177\% * (1+6.066017177\%)^{16}} \right) +$$

$$250.00 * \left(\frac{(1+26.5625\%)^4 - 1}{26.5625\% * (1+26.5625\%)^4} \right)$$

4,050.00 = 10.06023621 * R + 574.36

10.06023621 * R = 4,050.00 - 574.36

$$R = \frac{3,475.64}{10.06023621}$$

R = 345.48

SOLUCIÓN

c) Calendario ordinario:

PP = 1,477.34

Calculamos el valor presente de las cuotas que faltan pagar :

$$PP = R + R * \left(\frac{(1 + TET)^3 - 1}{TET * (1 + TET)^3} \right) + \frac{250.00}{(1 + TET)^3}$$

$$PP = 345.48 + \frac{(1 + 6.066017177\%)^3 - 1}{6.066017177\% * (1 + 6.066017177\%)^3} + \frac{250.00}{(1 + 6.066017177\%)^3}$$

$$PP = 345.48 + 922.35 + 209.51$$