

Time Series and Dynamic Systems Analyses in Drug Discovery

PS-BiOmics&Pathology-BEDA

Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel

Tony Kam-Thong on behalf of the Bioinformatics and Exploratory Data Analysis team

Guest Lecture Mathematical and Computational Biology in Drug Discovery University of Basel 7th of May 2021

Outline

- Time series data analysis
 - Disease progression and response to treatment
 - Mixed effects model for repeated measurements
- Dynamic systems
 - Background knowledge
 - RNA velocity estimate from Single Cell RNASeq data
 - Going beyond discrete cell types by inferring cell states and their transitions
- Disclaimer
 - Non-exhaustive list of examples
 - Many others: Stochastic processes, time to event analysis, PKPD ...

Background

Jitao David Zhang 1,2 , Lisa Sach-Peltason 1 , Christian Kramer 1 , Ken Wang 1 and Martin Ebeling 1

¹ Pharma Early Research and Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland

²University of Basel, Department of Mathematics and Computer Science, Spiegelgasse 1, 4051 Basel, Switzerland

Present along the multiscale modelling path

https://doi.org/10.1016/j.drudis.2019.12.009

Background – Time series data analysis

- Many of the data that we encounter include a temporal component and are inherently part of a dynamic system
 - Disease progression and drug response: Readout from patients over time -> Mixed effects Model for Repeated Measurements (time is treated as ordinal categorical variable)
- Simulated change from baseline

Examples of within-subject covariance

structures (between 3 time points)

Many others ...

Background-MMRM Model for clinical drug response

- Data can be noisy, sparse (low sampling rate) and missing
- Ignoring or misspecification of the covariance structure can lead to incorrect/inflated statistical significance of the fixed effects (time, treatment and time:treatment interaction)

Background – Dynamic Systems: Illustrative example

Filling a water bucket

Rate of change of volume = inflow rate

•
$$\frac{d(V(t))}{dt} = \frac{d(Ay(t))}{dt} = A \frac{d(y(t))}{dt} = Q_{in}(t)$$

•
$$y(t) = y_{t0} + \frac{G}{A} \int_0^t u(\tau) d\tau = y_{t0} + \frac{G}{A} t$$

Filling a water bucket (off switch)

$$\frac{d(V(t))}{dt} = \frac{d(Ay(t))}{dt} = A \frac{d(y(t))}{dt} = Q_{in}(t)$$

$$y(t) = y_{t0} + \frac{G}{A} \int_0^t u(\tau) - u(\tau - t_{off}) d\tau$$

$$y(t) = y_{t0} + \frac{G}{A} \left(\int_0^{t_{off}} u(\tau) - u(\tau - t_{off}) d\tau + \int_{t_{off}}^t u(\tau) - u(\tau - t_{off}) d\tau \right)$$

 $y(t) = \begin{cases} t < t_{off}: y_{t0} + \frac{G}{A}t \\ t \ge t_{off}: y_{t0} + \frac{G}{A}t_{off} \end{cases}$

- Constant rise (accumulation, no steady state) until tap switched off
- Not accounting for spills, overflow and evaporation!

Leaky bucket

Rate of change of volume = inflow rate - outflow rate

$$A \frac{d(y(t))}{dt} = Q_{in} - Q_{out} = Q_{in} - f(y(t)) = Q_{in} - a\sqrt{2g} y(t)$$

Leaky bucket

• Rate of change of volume = inflow rate - outflow rate

•
$$A\frac{d(y(t))}{dt} = Q_{in} - Q_{out} = Q_{in} - f(y(t)) = Q_{in} - a\sqrt{2g}y(t)$$

•
$$\frac{d(y(t))}{dt} = \frac{G}{A}u(t) - \frac{a\sqrt{2g}}{A}y(t) = \alpha - \beta y(t)$$

•
$$y(t) = y_0 e^{-\beta t} + \frac{\alpha}{\beta} \left(1 - e^{-\beta t} \right)$$

Leaky bucket (with off switch)

•
$$A\frac{d(y(t))}{dt} = Q_{in} - Q_{out} = Q_{in} - f(y(t)) = Q_{in} - a\sqrt{2g}y(t)$$

•
$$\frac{d(y(t))}{dt} = \frac{G}{A} \Big(u(t) - u(t - t_{off}) \Big) - \beta y(t)$$

•
$$y(t) = \begin{cases} t < t_{off} : y_0 e^{-\beta t} + \frac{\alpha}{\beta} (1 - e^{-\beta t}) \\ t \ge t_{off} : \{y_0 e^{-\beta t_{off}} + \frac{\alpha}{\beta} (1 - e^{-\beta t_{off}})\} e^{-\beta(t - t_{off})} \end{cases}$$

Leaky buckets

Sparsity (Downsampling)

Noisy (Additive Noise)

Step function responses

Square function responses

Full Report: https://github.com/tkamth/Timeresponse/blob/main/UniBasel_DynamicSystem.html

- scRNASeq is just a time snapshot but it can capture cells in different states (e.g. proliferation, differentiation)
- Can we infer "cell states" based on transcriptomic profiles?
 - Similar to morphological differences observed from a single histology slide?

RNA velocity of single cells

Gioele La Manno^{1,2}, Ruslan Soldatov³, Amit Zeisel^{1,2}, Emelie Braun^{1,2}, Hannah Hochgerner^{1,2}, Viktor Petukhov^{3,4}, Katja Lidschreiber⁵, Maria E. Kastriti⁶, Peter Lönnerberg^{1,2}, Alessandro Furlan¹, Jean Fan³, Lars E. Borm^{1,2}, Zehua Liu³, David van Bruggen¹, Jimin Guo³, Xiaoling He⁷, Roger Barker⁷, Erik Sundström⁸, Gonçalo Castelo-Branco¹, Patrick Cramer^{5,9}, Igor Adameyko⁶, Sten Linnarsson^{1,2*} & Peter V. Kharchenko^{3,10*}

- Velocyto
 - Analysis of expression dynamics in scRNASeq data.
 - Enables estimations of RNA velocities of single cells by distinguishing spliced and unspliced mRNAs
 - Spliced: polyA selection ignores noncoding RNA
 - Unspliced: artifact due to internal priming of intronic sequences

La Manno et al. Nature 2018

- Model transcription as a square wave (On/Off)
- Transcriptional induction for a gene → increase of newly transcribed precursor unspliced mRNAs (until steady state)
- Repression/absence of transcription for a gene → decrease of unspliced mRNAs

Time

Time

Spliced (s)

System of 1st order Ordinary Differential Equations per gene

$$\frac{du}{dt} = \alpha(t) - \beta(t) u(t)$$

$$\frac{ds}{dt} = \beta(t) u(t) - \gamma(t)s(t)$$

- time invariant rates
- common splicing rate across genes (normalizing/measuring rates by units of splicing rate by setting beta=1)

$$\frac{du}{dt} = \alpha - u(t)$$

$$\frac{ds}{dt} = u(t) - \gamma s(t)$$

- Assuming data has cells in steady-state ds/dt = 0, $\longrightarrow \gamma = \frac{a}{s}$
- Velocity $v = u \gamma s$ (vertical distance of the observed u from steady state slope)

Transcription $\int_{-\alpha}^{\alpha}$

Spliced RNA s

Unspliced

• Velocity (magnitude + direction) from single to multiple genes

Achieve more accurate estimation of gene-specific steady-state coefficient $\gamma \rightarrow$ regression based on the cells found in the extreme quantiles of expression

Extension

Generalizing RNA velocity to transient cell states through dynamical modeling

Volker Bergen¹², Marius Lange ⁰¹², Stefan Peidli ⁰², F. Alexander Wolf ⁰¹™ and Fabian J. Theis ⁰¹² ™

Bergen et al. Nature Biotech. 2020

scVelo: Generalizing RNA velocity to transient cell states through dynamical modeling

- Extension to estimate velocity without assuming either presence of steady states or common splicing rate across genes
- Maintains the weaker assumptions of constant gene-specific splicing
- Same transcriptional states are modeled to account for all possible configurations of gene activity
 - 2 steady states
 - 2 dynamic transient states (induction and repression)

Extension

- Dynamic model
 - Define distinct states (induction and regression → either transcription is on or off)
 - Integrating the differential equations and setting $\tau = t t_0^{(k)}$ (where k is the state when transcription is either on or off)

$$u(t) = u_0 e^{-\beta \tau} + \frac{\alpha^{(k)}}{\beta} (1 - e^{-\beta \tau}),$$

$$s(t) = s_0 e^{-\gamma \tau} + \frac{\alpha^{(k)}}{\gamma} (1 - e^{-\gamma \tau}) + \frac{\alpha^{(k)} - \beta u_0}{\gamma - \beta} (e^{-\gamma \tau} - e^{-\beta \tau})$$

o Two distinct set of steady states $\left(u_{\infty}^{(k)}, s_{\infty}^{(k)}\right) = \left(\frac{\alpha^{(k)}}{\beta}, \frac{\alpha^{(k)}}{\gamma}\right)$

Extension

Steady state not reached

Phase plot

Extension-EM

Challenge: both time and rate parameters are unknown

 E step: Assign a latent time to the observed value by minimizing the distance to the phase trajectory model

 M step: reaction rate parameters updated (updated to maximize the log-likelihood using downhill simplex method Nelder–Mead) → new trajectory phase

- Differential Kinetic Test
 - Distinct cell clusters may exhibit different kinetics regimes
 - Likelihood ratio (asymptotic chi-squared distribution) can be tested for significance.
 - Ratio of a single-kinetic and two-kinetic model (i.e.:supporting multiple clusters),

$$LR = -2 \ln \frac{\sup_{\theta} \mathcal{L}(\theta)}{\sup_{\theta'} \mathcal{L}(\theta')}$$

 Limitation: For computational reason → by default an orthogonal regression is used instead of a full phase trajectory to test whether a cluster is well explained by the overall kinetic or not

Toggling or more frequent switches of transcription input signal

Second order dynamic systems

Theory Summary-RNA Velocity

- Steady state / deterministic model (velocyto)
 - Approximated with a linear regression on the presumed steady states in the lower and upper quantiles.
 - 2 fundamental assumptions:
 - steady-state mRNA levels is captured in the data
 - a common splicing rate across genes
- Extension to a full Dynamic model (using a likelihood-based framework) (scvelo)
 - Solved by likelihood-based expectation-maximization framework

scVelo-Tutorial (Endocrine pancreas data)

 scRNA sequencing of pancreatic cells during embryonic development in mouse

- Elucidate how endocrine progenitors segregate into different endocrine subtypes during development
 - Ideal scenario with developmental data and multiple lineages

 Typically between 10%-25% of reads are unspliced molecules with intronic sequences

© 2019. Published by The Company of Biologists Ltd | Development (2019) 146, dev173849. doi:10.1242/dev.173845

RESEARCH ARTICLE

Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis

Aimée Bastidas-Ponce^{1,2,3,4,*}, Sophie Tritschler^{1,5,6,*}, Leander Dony^{5,6,7}, Katharina Scheibner^{1,2,3,4}, Marta Tarquis-Medina^{1,2,3,4}, Ciro Salinno^{1,2,3,4}, Silvia Schirge^{1,2,3}, Ingo Burtscher^{1,2,3}, Anika Böttcher^{1,2,3}, Fabian J. Theis^{5,8,‡}, Heiko Lickert^{1,2,3,4,‡} and Mostafa Bakhti^{1,2,3,‡}

doi: 10.1242/dev.173849

https://scvelo.readthedocs.io/

scVelo-Tutorial (Endocrine pancreas data)

- Cluster specific differential velocity expression in two transient clusters
 - Neurogenin 3 high endocrine progenitor cells (yellow)
 - Pre-endocrine (orange)

Can we target these driver genes to alter the terminal cell states associated with healthy controls?

CellRank

Identifying initial and terminal states

How likely each cell is to develop from each initial state(s) or towards each terminal state(s)

- Challenge: Interpretation of which genes are supporting the direction of the flow for that cell
 - biased of the umap projection to genes that are more highly abundant

Objective: Construct probabilistic fate maps

CellRank

Markov chain transition matrix

- Use each velocity vector to find likely cell transitions that are accordance with that direction
- Transition probabilities are computed using dot product projection between the potential cell-tocell transitions and the velocity vector and stored in a matrix denoted as velocity graph.

scVelo-Tutorial (Endocrine pancreas data)

Developmental processes

- Delineates cycling population of ductal cells and endocrine progenitor cells
- Illuminates endocrine cell differentiation and lineage commitment

Conclusions

Key Messages

- Time series data are fun, powerful and omnipresent
- Data can be sparse and noisy → careful modeling has be factored in
- RNASeq velocity & trajectory analyses provide novel insight into genes important for lineage transitions (continued effort and assessment by many scRNASeq squad colleagues)
- Many challenges to model the data correctly while reflecting the true biological mechanism that
 is often oversimplified
- Novel algorithms and solvers are needed to "integrate" multiscale modelling (computational time)
- Words of wisdom:
 - When you decide to embark on a project → go full speed and deep until you reach "steady state" before the system or/and input signal switch