Métodos Matemáticos da Física

2014/15

Teste 1 28-03-2015

1.a) Considere a equação de Schrödinger no intervalo $x \in [0, \ell]$,

$$i\frac{\partial u}{\partial t} = -\frac{\hbar}{2m}\frac{\partial^2 u}{\partial x^2}.$$

Encontre pelo método de separação de variáveis a solução geral da equação, u(t, x), que satisfaz as condições fronteira: u(t, 0) = 0, $u(t, \ell) = 0$.

b) Determine a solução da equação de Schrödinger no intervalo $x \in [0, \pi]$ sujeita à condição inicial,

$$u(0,x) = \sin x + 3\sin 3x .$$

- **2.** Considere as funções $y_n(x) = e^{i n \pi x/\ell}$, $n \in \mathbb{Z}$, no intervalo $-\ell \le x \le \ell$, onde está definido o produto interno de função peso $\rho(x) = 1$.
- a) Mostre que as funções $y_n(x)$ são ortogonais entre si e calcule o produto interno $\langle y_n|y_n\rangle$.
- **b)** Seja uma função u(x) expandida numa série de funções, $u(x) = \sum_n c_n y_n(x)$. Demonstre como se podem calcular os coeficientes c_n dessa série.
- c) Determine o integral

$$\int_{-\ell}^{\ell} |u(x)|^2 dx$$

em termos dos coeficientes c_n definidos na alínea anterior.

3. Seja a função definida no intervalo $x \in [-\ell, \ell]$ como

$$u(x) = \Theta(x - a) = \begin{cases} 0, & -\ell \le x < a \\ 1, & a < x \le \ell \end{cases}.$$

a) Utilizando os resultados do exercício 2. calcule os coeficientes c_n da série de Fourier de u(x):

$$u(x) = \sum_{n} c_n e^{i n \pi x/\ell}.$$

b) Diga justificando quais os valores da série de Fourier nos pontos $x=-\ell,\,x=a,\,x=\ell.$