Analyzing Factors of Airbnb Pricing in San Diego

By Benson Duong, Tyson Tran

Question: What spatial and non-spatial factors are most likely to influence the listings price of an Airbnb?

Data

- OpenStreetMap Tourist Attractions
 - o Tourist Attraction Point data for North America
 - Updated every 5 mins
 - Places and things of specific interest to tourist
- Inside Airbnb
 - Scraped data of all Airbnb listings in San Diego on December 24, 2022

Geo-enrichment

- Geo-enrichment to zipcodes
 - Population, and Population Density
 - Businesses:
 - Shopping, Recreation
 - Hospitality, Accomodation
 - Crime
 - Economic Data:
 - Median Household Income (And Projected Growth)
 - Median Home Values (And Projected Growth)
 - Households with Children

Part 1: Spatial Factors

Movie/Amusement Businesses vs Airbnb Listing Price

2022 Home Median Value vs Airbnb Listing Price

Part 2: Tourist Attraction Concentric Buffers

Buffers around Landmarks and Airbnb price

Concentric Buffers between specific San Diego Landmarks, specifically:

- SeaWorld
- Downtown and the Convention Center
- Balboa Park and Zoo

The Top 1000 Most Expensive Airbnbs in cyan (Others in green)

Part 3: Non Spatial Factors

Non Spatial Factors

Non Spatial Factors (continued)

We can see that there is no correlation between the experience that a host has and the price that a property is listed at

Part 4: Price Prediction Model

Linear Regression

- A prediction model for regression was done that predicts an airbnb's price (log-transformed)
 - given its airbnb data and geo-enriched data about the zipcode it resides in
- A very promising score at a corrcoef of 79%

Feature Importances

- * Most Influential Features in predicting an Airbnb's price
 - *review_sco the review score rating
 - * review_s_6 the review_scores_value
 - * **Accomodat** the amount of people it can accomodate
 - * review_s_4 the review_scores_communication
- * **Log(n34_bus)** # of Arts/Entertainment/Rec Businesses in the zipcode
 - * Log(n36_bus) # of Accommodation Businesses in the zipcode
 - * Log(S24_BUS) # of Hotel/Lodging Businesses in the zipcode
 - * **Log(emp_cy)** the employed population in the zipcode
 - * Log(S16_BUS)- # of Eating & Drinking Businesses in the zipcode

Closing Thoughts

- Modifiable Areal Unit: We have to note the potential biases in using zipcodes to geo-enrich our data, since zipcodes are unequally shaped and sized making problems like modifiable areal unit problem.
- Other biases: Spatial Autocorrelation, Population Bias, spurious correlations
- If further time and resources were available, this project can be expanded to see if Airbnb influences on housing availability or mark gentrification,
 - with data sources like percentage of household families living in apartments -
 - o and their year-to-year income growth rate with respect to apartment rent increase rates,
 - o and yearly numerical increases of airbnbs in a zipcode.
- We'd like to thank the instructors for their help in this project by providing a tourist attraction data source and overall teaching us these GIS tools this quarter.

Q & A