Overview of Materials R&D at Oak Ridge National Laboratory

Peter F. Tortorelli

Materials Science and Technology Division

Oak Ridge National Laboratory

GSID Workshop on Materials for Ground Platforms TARDEC

August 23, 2010

Approved for public release; distribution is unlimited.

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate or mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 23 AUG 2010		2. REPORT TYPE		3. DATES COVE 00-00-2010	red to 00-00-2010	
4. TITLE AND SUBTITLE		5a. CONTRACT	NUMBER			
Overview Of Mate	ratory	5b. GRANT NUMBER				
			5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)			5d. PROJECT NUMBER			
					5e. TASK NUMBER	
			5f. WORK UNIT NUMBER			
	ZATION NAME(S) AND AD al Laboratory,Mater e, TN,37831	` '	chnology	8. PERFORMING REPORT NUMB	G ORGANIZATION ER	
9. SPONSORING/MONITO		10. SPONSOR/MONITOR'S ACRONYM(S)				
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
	otes he Ground Systems Township, MI, Aug	0		-		
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 28	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Materials Research and Development Is a Core Competency at ORNL

- Broad and deep mix of skills in materials science, physics, chemistry, and engineering
- World-leading neutron sciences capabilities (SNS and HFIR)
- Powerful scientific computing complex (LCF)
- Challenging problems in science, engineering, energy, environment, national security
- New and updated facilities, equipment
- Commitment to translational research from fundamental science to application

Spallation Neutron Source

Center for Nanophase Materials Sciences

Leadership Computing Facility

Materials Work at ORNL

- Longstanding accomplishments in
 - fundamental materials science
 - metals and alloys
 - ceramics
 - polymer matrix composites
- Present and future growth areas
 - Lightweight materials (titanium, magnesium, aluminum, carbon fibers and composites) with superior properties and performance
 - Materials for extreme environments (temperature, loading, radiation, etc.)
 - Energy storage
 - Solar energy
 - Nanoscience and Nanomanufacturing

Materials R&D Covers Breadth of DOE's Science to Energy Pathway

Discovery Research

Use-inspired Basic Research

Applied Research

Technology Maturation & Deployment

- Basic research for fundamental new understanding on materials or systems that may be only peripherally connected or even unconnected to today's problems
- Development of new tools, techniques, and facilities
- Basic research for fundamental new understanding, with the goal of addressing short-term showstoppers on realworld applications in the energy technologies
- Research with the goal of meeting <u>technical</u> <u>milestones</u>, with emphasis on the development, performance, cost reduction, and durability of materials and components or on efficient processes
- Proof of technology concepts

- Scale-up research
- At-scale demonstration
- Cost reduction
- Prototyping
- Manufacturing R&D
- Deployment support

Goal: new understanding

Mandate: open-ended

Focus: phenomena

Metric: knowledge generation

Goal: practical targets

Mandate: restricted to target

Focus: performance

Metric: milestone achievement

DAK LIDGE

Example: ORNL Industrial Technologies Program Providing integrated solutions to accelerate innovation to industrial deployment

ORNL Materials Science and Technology

Theory and Modeling

Controlled Synthesis and Processing

Structural Characterization

Bridge fundamental science and energy technology applications

Physical/Mechanical Characterization

Interaction with Extreme Environments

Applied Materials Physics

Our R&D Encompasses All Aspects of MSE: Synthesis-Characterization-Properties-Performance

Our toys are nice, but it is the people and their knowhow, and the synergies, that really make the difference

Synchrotron X-ray scattering

Sub-Angstrom aberration corrected STEM/TEM

Mechanical Testing

Fundamental Materials Science

Fundamental Materials Science Themes

Theory

Characterization

Physics of strongly correlated and complex systems

 Defects and physics of deformation and stability

> Next Generation Tools

Synthesis

Advanced Materials Processing

Goal: Enable U. S. Expansion of Energy Efficient Advanced Materials and Processing/Manufacturing by Focusing on Breakthrough Processing Technologies

Pulse Thermal Processing

- Low Cost Photovoltaics, High Temperature crystallization on polymers
- Increase magnetic media storage by 200x

Laser Processing

- Laser bio coatings
- Processing of carbon nanohorns and other nanomaterials by vaporization

Magnetic Field Processing

- Enhanced phase transformation kinetics
- Novel microstructures and superior properties
- Energy Savings: 14 trillion BTU/yr

Electron Beam Processing

- Nonthermal Processing of Large Composites
- Terahertz sensors Utilize as a free electron laser for testing THz sensors

Laser-Assisted Friction Stir Welding

- Enable Solid-State Joining of High Temperature Materials, Steel and Titanium Alloys
- Composite Joining, Casting Repair, and Surface Modification

Field Deployable FSW

- Today: A very successful "specialty" welding process
 - Cost effective and highly energy efficient
 - Materials limited to Al and other low melting materials
 - Gantry systems limited to in-house fabrication of simple geometry and thin-sectioned structures

- Industry Needs and Market Opportunities
 - Steel structures
 - Complex and thick sectioned structures
 - On-site construction capability

Field Deployable FSW

ORNL FSW R&D

ORNL Advanced Robotic R&D

- Capability for joining of highperformance materials (low-cost Ti, armored steels, etc) beyond Al alloys
- Field deployable repair and construction of large and complex structures (armored vehicles, ships)

Alloy Development of Steels at ORNL Has a Distinguished History

- Fundamental studies of defect physics and radiation damage
- Alloys designed for improvements in resistance to radiation (fission and fusion)
- Steels for hightemperature structural use (nuclear, fossil, industrial)
- Iron-based intermetallics

Super 9Cr-1Mo Steel Alloys

HT-UPS 'Lean' Austenitic Stainless Steels

CF8C-Plus - New Cast Stainless Steel for High-Temperature Performance

3Cr-3TaVW Steels

TMA 6301 and TMA 4701: Heat-Resistant Alloys

Alumina-Forming Austenitic Stainless Steels

Modern Materials Science Applied to Steels Yields Dramatic Improvements

Alloy composition is changed to produce a microstructure of fine, stable precipitates

Similar scientific microstructural design produces new austenitic stainless steels for microturbine recuperators

Low chromium steels for chemistry and energy industry applications

CF8C-Plus Cast Stainless Steel: Higher Temperature Capability and Reliability for Advanced Diesel Engines and Gas Turbines

turbo-housing

- Cast stainless upgrade for SiMo cast-iron diesel engine exhaust components
- Cast stainless upgrade for CF8C steel gas turbine structural components

exhaust manifold

C-15, HD 14.6L HD On-Highway Diesel Engine

New Modified CF3MN Steel Developed by ORNL in <1 yr for ITER-Fusion Project

- Complex geometry of the shield module would require considerable machining and heavy section welding of wrought 316SS.
- Casting methods may be viable to considerably reduce time and cost associated with fabrication.
- New cast steels show impact properties comparable to wrought steels.

Shield Module

Tailoring and Stabilizing Nanostructures for Improved Alloy Performance

Miller et al, ORNL

Nanocluster-strengthened steel

Higher energy absorption from control of cracking and strength Kimura, Inoue, Yin, Tsuzaki, Science 320 (2008)

Solid-State Consolidated Low-Cost Titanium and Ti Alloy Powder

- Ti Offers Many Attractive Properties.
 - High Specific Strength
 - Good Elevated Temperature Properties
 - Excellent Corrosion Resistance
 - Excellent Ballistic Resistance
- Cost and Availability Are a Concern
 - Lead Times 12 to 18 Months
 - Plate Prices of \$35 to \$50/lb
- Cost Limits Application to Specific Markets.
- New Low Cost Titanium Powders Could Initiate a Paradigm Shift in Titanium's Use in Industry & DOD Application

Several of the DOD Applications that Low Cost Titanium and Ti Alloy Products Would Impact

Solid State Consolidation of "Low-Cost" Titanium Powders

- Oak Ridge National Laboratory Is Collaborating with Industry to Develop the Solid State Processing Required for Consolidating New Low Cost Titanium Powders
 - Extrusion for Bar
 - Roll Compaction for Sheet
 - Hot Isostatic Forging, Press and Sinter, Vacuum Hot Pressing, and Pneumatic Isostatic Forging for Plate and Near Net Shapes
- Reduced Cost of Plate, Sheet, and Near Net Shapes by 50 to 90%
- Reduced Scrap from 50% for Conventional Material to Less Than 5% for New Low Cost Titanium
- Demonstrated and Exceeded "Wrought" Material Performance Parameters

Solid State Consolidated Plate, Bar, Sheet, and Net Shape Components Produced from New "Low Cost" Titanium Powders

Front and back of V₅₀-tested vacuum-hot-pressed Ti-6AI-4V

DOE's Leader in Carbon Fiber Research

- Develop and demonstrate affordable carbon fiber precursors
- Develop and demonstrate advanced technologies for converting conventional and alternative precursors to carbon fiber
- Advance low-cost composite design and manufacturing capabilities
- Transition technology to industry partners

Fully-carbonized fiber exiting the microwave assisted plasma carbonization unit

Carbon and Graphite Foam Materials

- Highly ordered graphitic ligaments
 - Graphite-like properties
 - As thermally conductive as aluminum, at 1/5th the weight
 - up to 180 W/mK
- Dimensionally stable: low CTE - ~2 - 4 min/in/°C
- Open porosity: Permeable to fluids
- Excellent thermal management material

- ✓ Significantly improve heat transfer
- Attenuate thermal signature
- ✓ Acoustically absorb sound (>3x)
- Reflect electromagnetic energy

Longstanding Achievements in Ceramic Science and Development

Mat'l.	Tensile Strength	Armor Mass Efficiency*
RHA Steel	1170	1.0
5083 Aluminum	350	1.0-1.2
Titanium -6AI-4V	970	1.5
Boron Carbide (B ₄ C)	350-550 (Flexural)	3.0+

*Relative weight per unit area to defeat a given ballistic threat.

Baseline Armor System

- Spall cover limits ejection of fragments from impact surface
- Ceramic deforms and fractures projectile; absorbs energy
- Backing plate captures projectile and ceramic fragments; absorbs remaining energy

Ballistic Test Results

7.62 mm Projectile

B ₄ C Ceramic	Areal Density, psf	V ₅₀ , fps	V ₅₀ Increase
Supplier 1 (baseline)	5.26	2050	
Supplier 2	5.20	2290	11.7%
ORNL High Strength	5.29	2048	0%
ORNL Fine Grain	5.20	2250	9.8%
ORNL Coarse Grain	4.96	2547	24.2%

 V_{50} is the velocity of the projectile at which 50% of the impacts are partial penetrations and 50% are complete penetrations.

Armor Configuration with Polymer Matrix Composite Facing

Nanomanufacturing

- DOE's Industrial Technologies Program and ORNL are working to transform nanoscience discoveries into real-world solutions that will lead the next industrial revolution
- Goal is to enable mass production and application of nanotechnologies that could transform industrial processes
- Manufacturing techniques for cost-competitive, large-scale production of nanomaterials and nanostructured materials
- Methods to integrate nanomaterials into intermediate and finished products

The U.S. government has invested >~\$10 billion in nanotechnology science.

Applied research in nanomanufacturing will help realize this technology's vast potential.

View down middle of a boron nitride nanotube.

It's an Exciting Time for Mat'ls R&D at ORNL

- Challenging scientific and engineering issues with strong emphasis on meeting future energy needs and other technical challenges
- Vibrant environment
 - New approaches to material design, testing, processing
 - People + Capabilities + State-of-the-art-facilities
- Opportunities all along the science-to-technology deployment pathways

Transformative materials science and translation to application