Speech Command Model

Pradeep Moturi (es
16btech
11016) May 2020

Contents Introduction $\mathbf{2}$ Create Data **Loading Data** Split dataset Augment data $\mathbf{2}$ $\mathbf{2}$ Feature Extraction **Building Model** 3 3 3 Hyper parameters 3 3 **Training** 4 Testing 4 10 Visualize Attention 4 11 Observations 4 12 Files $\mathbf{5}$ 13 Further 5

1 Introduction

This is the report of my work done under Dr. G V V Sharma on building a speech command recognition model for a voice bot. The model used is based on concepts of Convolution, LSTM and Attention and is derived from [1].

2 Create Data

- 1. Set $16 \mathrm{KHz}$ as sampling rate
- 2. Record 80 utterances of each command.
- 3. Trim each utterance to one second.
- 4. Save samples of each command in different folders

Dataset/forward

Dataset/back

Dataset/left

Dataset/right

Dataset/stop

Used Audacity to do this.

3 Loading Data

- I've used soundfile package to read the .wav. You may choose to use any other package like wavefile,
- 2 librosa etc to do the same job.
- As this is one of the slowest part, I've stored the loaded data as a numpy file for ease and speed of
- access. Now, I can load the data from npy file if repeating the experiment.

4 Split dataset

Do a stratified split of the dataset into train and test set with 20% as test samples.

Set a random seed for reproducing the split.

5 Augment data

Augment each audio sample by time shifting in 25000 length vectors filled with zeros.

Take steps of 500 to create 18 files per sample

6 Feature Extraction

MFCCs are most prominent features used in audio processing. Normalizing the MFCCs over the frequency axis is found to reduce effect of noise.

Kapre is a python package that provides layers for audio processing that are compatible with keras and utilize GPU for faster processing. Kapre provides us with a layer basically

Melspectrogram (padding='same', sr=16000, $n_mels=39$, $n_dft=1024$, $power_melgram=2.0$, $return_decibel_melgram=True$, $trainable_fb=False$, $trainable_kernel=False$, $name='mel_stft'$)

Arguments to the layer

padding: Padding when convolutingsr: Sampling rate of audio provided

n_mels: number of coefficients to return

 $\mathbf{n}_{-}\mathbf{dft}$: width

power_melgram: exponent to raise log-melamplitudes before taking DCT. Using power 2 is shown to increase performance by reducing effect of poise

return_decibel_melgram: If to return log over val-

ues

trainable_fb: If filter bank trainable

trainable_kernel: If the kernel is trainable

7 Building Model

7.1 Concept

- 1. Using Convolutional layers ahead of LSTM is shown to improve performance in several research papers.
- 2. BatchNormalization layers are added to improve convergence rate.
- 3. Using Bidirectional LSTM is optimal when complete input is available. But this increases the runtime two-fold.
- 4. Final output sequence of LSTM layer is used to calculate importance of units in LSTM using a FC layer.
- 5. Then take the dot product of unit importance and output sequences of LSTM to get Attention scores of each time step.
- 6. Take the dot product of Attention scores and the output sequences of LSTM to get attention vector.
- 7. Add an additional FC Layer and then to output Layer with SoftMax Activation.

7.2 Hyper parameters

- sparse_categorical_crossentropy is used as Loss because only output which should be 1 is given instead of One Hot Encoding.
- sparse_categorical_accuracy is used as performance Metric for the above reason.
- Adam is used as Optimizer. Adam is adaptive learning rate optimization algorithm. This is shown to achieve a faster convergence because of having all the features of other optimization algorithms.

7.3 Notations

Operators:

- × indicate matrix multiplication
- * denote convolution (0 padding to same size)
- . denote dot product
- +,- can expand dimensions of their arguments

Format:

Layer Name (Layer Type) (Output Size).

Parameters

Equations

Output

= equation

Layer name indicates output of the corresponding layer.

Let us understand the maths behind the model.

7.4 Math

You can have a overall look at the architecture of the model in Fig [5]. Lets observe the math in each layer below.

- 0. Input (InputLayer) (49, 39, 1)
- 1. Conv1 (Conv2D) (49, 39, 10)

Parameters:

Kernel = (5, 1, 1, 10), Bias = (10)

Conv1[:,:,i]

= Kernel[:,:,:,i] * Input + Bias[i]

2. BN1 (BatchNormalization) (49, 39, 10)

Parameters:

Trainable: $\gamma = (10), \beta = (10),$

Non-Trainable: Mean = (10), Std = (10)

Equations:

Mean[i] = mean(Conv1[:,:,i])

Std[i] = std(Conv1[:,:,i])

BN1[i]

= $(Conv1[:,:,i] - Mean[i])\frac{\gamma[i]}{Std[i]} + \beta[i]$

3. Conv2 (Conv2D) (49, 39, 1)

Parameters:

Kernel = (5, 1, 10, 1), Bias = (1)

Conv2[:,:,1]

= Kernel[:,:,:,1] * BN1 + Bias

4. BN2 (BatchNormalization) (49, 39, 1)

Parameters:

Trainable: $\gamma = (1), \beta = (1),$

Non-Trainable: Mean = (1), Std = (1)

Equations:

Mean[i] = mean(Conv2[:,:,i])

Std[i] = std(Conv2[:,:,i])

BN2[i]

 $= (Conv2[:,:,i] - Mean[i]) \frac{\gamma[i]}{Std[i]} + \beta[i]$

5. Squeeze (Reshape) (49, 39)

Squeeze

=BN2.reshape(49,39)

6. LSTM_Sequences (LSTM) (49, 64)

Parameters:

$$U^i = U^f = U^o = U^g = (39, 64),$$

 $W^i = W^f = W^o = W^g = (64, 64),$

$$B^{i} = B^{f} = B^{o} = B^{g} = (64)$$

Equations:

 $i_t = \sigma(Squeeze[:,t] \times U^i + h_{t-1} \times W^i + B^i)$

 $f_t = \sigma(Squeeze[:,t] \times U^f + h_{t-1} \times W^f + B^f)$

 $o_t = \sigma(Squeeze[:,t] \times U^o + h_{t-1} \times W^o + B^o)$

$$\begin{split} \widetilde{C}_t &= tanh(Squeeze[:,t] \times U^g + h_{t-1} \times W^g + B^g) \\ C_t &= \sigma(f_t * C_{t-1} + i_t * \widetilde{C}_t) \\ h_t &= tanh(C_t) * o_t \\ \mathbf{LSTM_Sequences[t]} \\ &= h_t \end{split}$$

- 7. FinalSequence (Lambda) (64)
 FinalSequence
 = LSTM_Sequences[-1,:]
- 8. UnitImportance (Dense) (64)
 Parameters:
 Weights = (64,64), Bias = (64)

 $\begin{array}{l} \textbf{UnitImportance} \\ = Weights \times FinalSequence + Bias \end{array}$

- 9. AttentionScores (Dot) (49)
 AttentionScores[i]
 = UnitImportance.LSTM_Sequences[i,:]
- 11. AttentionVector (Dot) (64)

 AttentionVector[i]

 = AttentionSoftmax.LSTM_Sequences[:, i]
- 12. FC (Dense) (32)
 Parameters:
 Weights = (64,64), Bias = (64)
 FC
 = Weights × AttentionVector + Bias
- 13. Output (Dense) (5)
 Parameters:
 Weights = (32,5), Bias = (5)
 Output
 = SoftMax(Weights × FC + Bias)

After an input passes through the layers, the training happens by principle of Back Propagating Loss or Gradients calculated by Sparse Categorical Cross-Entropy and updating weights using the Adam Optimizer update equations.

8 Training

- Batch size around 15 is found optimal.
- Often convergence is achieved in less than 5 epochs.

9 Testing

- 1. Augment the test set same as training set.
- 2. Extract MFCCs using same method as training set

- 3. Test set is passed as validation set to fit method of model.
- 4. The performance of model on test set is calculated after every epoch.

10 Visualize Attention

- 1. Now build a sub model from the trained model. Take same input layer but add 'AttentionSoftmax' layer as additional output layer.
- 2. Pass MFCCs of test samples to predict method.
- 3. Now plot log of Attention Scores and corresponding input vector before taking MFCCs on different axes.
- 4. By looking at Fig [1] and Fig [2], We observe that Attention Scores are high on informative part.

Figure 1: Attention Scores

Figure 2: Raw sample

11 Observations

• Smaller batch size is prefferable

• Setting power_melgram=2 of Melspectogram gave faster convergence.

12 Files

- Src/DataGenerator.py: Augments the data
- Src/FeatureExtractor.py: Extracts MFCC coefficients
- Src/TrainModel.py: Trains model and saves it in h5 file
- ColabNotebook.ipynb: Use this for experimental purpose

13 Further

- Different augmentation techniques like adding noise, changing pitch, speed etc. [https://medium.com/@makcedward/data-augmentation-for-audio-76912b01fdf6]
- Given the low complexity of our dataset, We can replace LSTM with GRU which is little less complex but shown to outperform LSTM in many scenarios.
- We can change the arguments to Melspectrogram
- Changing the model architecture like layers and units in layers.
- Further the scope of project to check performance on Google's Speech Command Datasets (v1 and v2) and participate in Kaggle challenge by google [https://www.kaggle.com/c/tensorflow-speech-recognition-challenge/]

References

[1] Douglas Coimbra de Andrade, Sabato Leo, Martin Loesener Da Silva Viana, Christoph Bernkopf.

A neural attention model for speech command recognition.

Figure 3: Data Flow Diagram

Figure 4: Model Diagram

Model: "Attention"

Layer (type)	Output Shape	Param #	Connected to
Input (InputLayer)	[(None, 49, 39, 1)]	0	
Conv1 (Conv2D)	(None, 49, 39, 10)	60	Input[0][0]
BN1 (BatchNormalization)	(None, 49, 39, 10)	40	Conv1[0][0]
Conv2 (Conv2D)	(None, 49, 39, 1)	51	BN1[0][0]
BN2 (BatchNormalization)	(None, 49, 39, 1)	4	Conv2[0][0]
Squeeze (Reshape)	(None, 49, 39)	0	BN2[0][0]
LSTM_Sequences (LSTM)	(None, 49, 64)	26624	Squeeze[0][0]
FinalSequence (Lambda)	(None, 64)	0	LSTM_Sequences[0][0]
UnitImportance (Dense)	(None, 64)	4160	FinalSequence[0][0]
AttentionScores (Dot)	(None, 49)	0	UnitImportance[0][0] LSTM_Sequences[0][0]
AttentionSoftmax (Softmax)	(None, 49)	0	AttentionScores[0][0]
AttentionVector (Dot)	(None, 64)	0	AttentionSoftmax[0][0] LSTM_Sequences[0][0]
FC (Dense)	(None, 32)	2080	AttentionVector[0][0]
Output (Dense)	(None, 5)	165	FC[0][0]
Total params: 33,184 Trainable params: 33,162		:======	

Trainable params: 33,162 Non-trainable params: 22

Figure 5: Model Architecture