SAVTEK 2018

Bir Açık Kaynak Kodlu Gerçek Zamanlı İşletim Sistemi (FreeRTOS) ile Gömülü Yazılım Geliştirme Çalışmaları

Alper Yazar

Sayısal Tasarım Uzman Mühendisi

ayazar@aselsan.com.tr

Savunma ve Sistem Teknolojileri (SST) Sektör Başkanlığı ASELSAN

Sunum İçeriği

- Sunum Kapsamı
- Sektördeki İşletim Sistemi Tercihleri
- FreeRTOS Tanıtımı
- FreeRTOS Teknik Bileşenleri
- Artılar ve Eksiler
- Tavsiyeler
- Soru ve Cevap

Çalışma (Sunum) Kapsamı

Yüksek Seviye

Karmaşık Bir İşletim Sistemi ile C/C++/Python C# …

Basit Bir İşletim Sistemi ile C/C++

BSP ve Sürücü Desteği ile C/C++

Saf C/C++

Assembly

Makine Kodu

Donanım

Düşük Seviye (Bare Metal)

Seyrek ... Sık

ASPENCORE

they are not needed.

54

Does your current embedded project use an operating system, RTOS, kernel, software executive, or scheduler of any kind?

> Fairly consistent usage of RTOS, kernels, execs, schedulers over past 5 years

■2012 (N = 1,712)

2017 Embedded Markets Study

© 2017 Copyright by AspenCore. All rights reserved.

My current embedded project uses:

My next embedded project will likely use:

2017 Embedded Markets Study

© 2017 Copyright by AspenCore. All rights reserved.

55

Please select ALL of the operating systems you are currently using.

EETimes embedded

2017 Embedded Markets Study

© 2017 Copyright by AspenCore. All rights reserved.

63

Please select ALL of the operating systems you are considering using in the next 12 months.

Base: Those who are considering an operating system in any project in the next 12 months

2017 Embedded Markets Study

© 2017 Copyright by AspenCore. All rights reserved.

FreeRTOS

FreeRTOS

- 2003 yılından itibaren geliştirilen, güncel sürümü v10 olan açık kaynak kodlu, ücretsiz bir gerçek zamanlı işletim sistemidir.
- Yakın zamanda Amazon AWS tarafından desteklenmeye başlanmış (IoT platformu için) ve «Amazon FreeRTOS» adı ile sunulmaktadır.
- MIT lisansı ile sunulmaktadır. Kaynak kodunda kapalı değişiklikler yapılabilir.
- Düşük güçlü mikrokontrolcülerden yüksek performanslı işlemcilere kadar 35'ten farklı işlemci ailesini desteklemektedir.

FreeRTOS

- 6KB 12KB arası hafıza izi, düşük hafızaya sahip platformlarda kullanımına imkan sağlamaktadır.
- FreeRTOS'un web sitesinden erişilebilen iyi hazırlanmış eğitim ve referans kaynaklar vardır. Her işlemci ailesi için örnek proje bulunmaktadır. FreeRTOS, tek başına çalışılarak 1-2 hafta içerisinde öğrenilebilir.
- Geliştiriciler ve topluluk tarafından forum üzerinden yeterli destek sağlanmaktadır. Ücretli destek için OpenRTOS düşünülebilir.

Temel İşletim Sistemi ve FreeRTOS Bileşenleri

Temel İşletim Sistemi ve FreeRTOS Bileşenleri

- Temel iki bileşen: Scheduler (Zamanlayıcı) ve IPC (Inter-Process Communication)
- Scheduler: pre-emption ve time slicing özellikleri konfigüre edilebiliyor.
- IPC: queue, mutex, semaphore yapıları sunuluyor.
- Software Timers: Periyodik veya tek seferlik zamanlı işlerin yapılması için kullanılabilir.
- Heap Management: Farklı senaryolar için optimize edilmiş 5 farklı heap yönetimi yöntemi sunulmaktadır.

Artılar ve Eksiler

Artıları

Ekip Çalışmasını Kolaylaştırması

Farklı geliştiricilerin yazdığı kodların entegrasyonu, «bare metal» yazılımlara kıyasla FreeRTOS mekanizmaları (Scheduler, IPC vb.) ile daha kolay entegre edilmiştir.

Kısıtlı Donanım Sayısı ile Geliştirme Yapmanın Kolaylaşması

Platformlar (kartlar) arasındaki kod taşımayı kolaylaştırması ve Windows'ta çalışan emülatör bulunması.

Artıları

Donanımdan Soyutlanabilme

ISR kodlarının kısmi olarak FreeRTOS tarafından sağlanması, «bare metal» yazılımcıları için «yeteri kadar» soyutlanma imkanı sunar.

Yazılımın Alt Parçalara Daha Kolay Bölünmesi

«Task» ve IPC yapıları sayesinde problem, ufak parçalara daha kolay bölünebilmektedir.

Eksileri

Hata Ayıklamanın Zorlaşması

«Bare metal» ile karşılaştırıldığı zaman standart hata ayıklama (debug) yöntemleri yetersiz kalabilmektedir. Bunun için «FreeRTOS Aware Debugger» çözümleri kullanılabilir.

Eksileri

FreeRTOS ile Çalışmanın Öğrenilmesi

- İşletim sistemi ile çalışmanın,
- Multi-tasking kodlamada dikkat edilmesi gereken noktaların (kaynak paylaşımı vb.) öğrenilmesi gerekmektedir.

```
int main(void)
{
     /* ilklendirmeler */
     while(1)
     {
          /* Tum işlemler */
     }
}
```


«Super Loop» Yaklaşımı

FreeRTOS «Task» İlişkileri

Tavsiyeler

- FreeRTOS web sitesindeki eğitici dokümanlar ve referans dokümanı geliştirmeye başlamadan önce okunmalıdır.
- Çalışılacak işlemci (platform) için hazırlanmış örnek proje FreeRTOS sitesinden indirilip, onun üzerinden gidilmelidir.
- Kodlamaya başlamadan önce problemin işletim sisteminin çalıştıracağı «task»'lara nasıl bölüneceği, IPC mekanizmaları ve «task» öncelikleri kurgulanmalıdır.
- Xilinx ürünleri için SDK'da FreeRTOS projesinin «bare metal» proje üzerine elle eklenmesini önermekteyiz.

Teşekkürler

Sorularınız

SAVTEK 2018

Bir Açık Kaynak Kodlu Gerçek Zamanlı İşletim Sistemi (FreeRTOS) ile Gömülü Yazılım Geliştirme Çalışmaları

Alper Yazar

Sayısal Tasarım Uzman Mühendisi

ayazar@aselsan.com.tr

Savunma ve Sistem Teknolojileri (SST) Sektör Başkanlığı ASELSAN

