Optimizers in Machine Learning

What Are Optimizers?

Optimizers are algorithms used to adjust the parameters of a machine learning model to minimize the loss function. They are essential for training, especially in deep learning, by finding the best model weights.

Why Are Optimizers Important?

- 1. Efficient Learning
- 2. Avoiding Local Minima
- 3. Stability
- 4. Performance

Common Terminology

- Loss Function: Measures prediction error
- Gradient: Direction of fastest increase in loss
- Learning Rate: Controls weight updates
- Epoch: One full pass through training data

Types of Optimizers

1. Gradient Descent (GD)

Uses the full dataset to compute gradients.

Pros: Accurate

Cons: Slow

2. Stochastic Gradient Descent (SGD)

Uses one sample at a time.

Pros: Fast

Cons: Noisy

Optimizers in Machine Learning

3. Mini-Batch Gradient Descent

Uses small data batches.

Pros: Balanced

Cons: Needs tuning

Advanced Optimizers

4. Momentum

Accelerates updates with prior gradients.

Pros: Escapes local minima

5. RMSProp

Adapts learning rate based on gradient history.

Pros: Good for non-stationary problems

6. Adam

Combines Momentum and RMSProp.

Pros: Fast, adaptive, widely used

7. Nadam

Adam with Nesterov momentum.

Pros: Smooth convergence

Choosing the Right Optimizer

Optimizers in Machine Learning

RMSProp RNNs Reduces oscillations
Adam Most use cases Default choice
Nadam Advanced Stable convergence

Challenges in Optimization

- Vanishing/Exploding Gradients
- Overfitting
- Learning Rate Tuning
- Plateaus

Best Practices

- Start with Adam
- Use schedulers
- Early stopping
- Batch norm
- Tune hyperparameters

Conclusion

Optimizers are critical for model training. Understanding different techniques helps build better-performing and faster-learning models.