GATE ASSIGNMENT 2

Sachin Karumanchi - AI20BTECH11013

Download all latex codes from

https://github.com/sachinkarumanchi/EE3900/tree/ main/Gateassignment2/Gateassignment2.tex

GATE EC 2008 Q.84

The impulse response h(t) of linear time - invariant continuous time system is given by $h(t) = e^{-2t}u(t)$, where u(t) denotes the unit step function.

The frequency response $H(\omega)$ of this system in terms of angular frequency ω , is given by $H(\omega)$

(a)
$$\frac{1}{1+f2\omega}$$

(b) $\frac{\sin(\omega)}{\omega}$
(c) $\frac{1}{2+j\omega}$
(d) $\frac{j\omega}{2+j\omega}$

$$(b)\frac{\sin(\omega)}{\omega}$$

$$(c)\frac{\omega}{1}$$

$$(d)\frac{j\omega}{2+i\omega}$$

Solution

Given,

$$h(t) = e^{-2t}u(t) (0.0.1)$$

Taking Fourier Transform

$$H(j\omega) = \int_{-\infty}^{\infty} h(t)e^{-j\omega t}dt \qquad (0.0.2)$$

$$= \int_0^\infty e^{-2t} e^{-j\omega t} dt \qquad (0.0.3)$$

$$= \int_{0}^{\infty} e^{-(2+j\omega)t} dt$$
 (0.0.4)
= $\frac{1}{2+j\omega}$ (0.0.5)

$$=\frac{1}{2+j\omega}\tag{0.0.5}$$

Therefore, frequency response $H(\omega) = \frac{1}{2+j\omega}$ Hence, option (c) is correct answer