ANOVA Test

Stats Project

Purpose & Why it's needed

- ANOVA (Analysis of Variance)
- A way to find out if the results of a survey or experiment are significant
- Compare the means of two or more groups
- Helps resolve the need to reject a null hypothesis or accept an alternate hypothesis
- See whether the independent variable causes effect, or just randomness
- Form of statistical hypothesis testing

Assumptions

- Assumption #1: Continuous dependent variable
- Assumption #2: Two or more levels in the IV
- Assumption #3: Independence of Observations
- Assumption #4: No significant outliers
- Assumption #5: Dependent variable is normally distributed
- Assumption #6: Homogeneity of Variances

General Terminology

- Null Hypothesis No significant differences among groups, and changes are caused only by randomness
- Alternate Hypothesis Assumes at least one significant difference among the groups, and changes are caused by the IVs
- P value Area under bell curve that is right of the 2nd variance
- Levels Different independent variables

Conditions of Use

One Way ANOVA Test

- One independent variable
- Two levels

Two Way ANOVA Test

- Two independent variables
- Multiple levels

Manova Test

- Multiple Dependent variables
- One way vs. Two Way

Procedure & Math (Overview)

- Antidepressant efficacy
- 3 Levels (2 Experimental + Control)
- IV: Treatment Type
- DV: Beck Depression Inventory
 Score (Score ↑ = Depression ↑)
- One-Way ANOVA (1 IV, 1 DV)

Placebo	Low Dose	Moderate Dose
38	22	14
47	19	26
39	8	11
25	23	18
42	31	5

Analysis of Variance Results

F-statistic value = 11.26657

P-value = 0.00176

Critical F-Value: 6.93 $(F_{(2,12)} \text{ for p = 0.01})$

		Data	Summary	
Groups	N	Mean	Std. Dev.	Std. Error
Group 1	5	38.2	8.167	3.6524
Group 2	5	20.6	8.3247	3.7229
Group 3	5	14.8	7.8549	3.5128

	A	NOVA Summary			
Source	Degrees of Freedom	Sum of Squares	Mean Square	F-Stat	P-Value
	DF	SS	MS		
Between Groups	2	2 1484.9333	3 742.4667	4 11.2666	0.0018
Within Groups	12	2 790.7999	3 65.9		
Total:	14	1 2275.7332			

Interpret the Test

- F-statistic is calculated
- Represents ratio of SSB to SSW
- Larger the number represents more difference between groups
- Small number represents more variance in a group
- Tells you if the independent variable is causing significant change
- Significance test also needs to be conducted

How to Present

- APA format for reporting an ANOVA test
- You have to report IV, DV, degrees of freedom, F stat and P Value
- Reporting goes in Results Section
- Interpretation goes in Discussion or Conclusion
- "There was a significant (not a significant) effect of IV _____ on DV _____ at the p<.05 level for the three conditions [F(___, ___) = ___, p = ____]"
- If significant Results are found, have to conduct a post hoc test
 - o Post Hoc Explores differences between multiple group means
- Helps find where the condition had effect

Use in a Journal Article

- ANOVA Analysis of Student Daily Test Scores in Multi-Day Test Periods
- Link: https://eric.ed.gov/?id=EJ1139744

IV: Test day (Out of a 4-day exam block)

DV: Test score

Controls: Cumulative GPA # of Tests_Taken

EXHIBIT 4 MEAN TEST PERCENT SCORE ANOVA RESULTS AND BROWN FORSYTH FOR NON-HOMOGENEITY OF VARIANCE

Descriptives

D	N	N N	Mean Std. Deviation Std. Erro	C- 1 E	95% Confidence Interval for Mean		
Day	N	Mean		Mean Std. Deviation Std. Error	Std. Error	Lower Bound	Upper Bound
1	174	.851935	.1332764	.0101037	.831993	.871877	
2	207	.822888	.1571310	.0109214	.801356	.844420	
3	338	.799901	.1418721	.0077168	.784722	.815080	
4	738	.713808	.1708646	.0062896	.701460	.726155	
Total	1457	.765773	.1674227	.0043862	.757169	.774377	

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	4.354	3	1.451	57.835	.000
Within Groups	36.459	1453	.025	-11	
Total	40.812	1456		10	

Interpretation of Journal Data

"There was a significant effect of test day on test scores at the p<.05 level for the three conditions [F(3, 1453) = 113.07, p = .000]"

To Note:

- Post-hoc tests required to determine specific effect
- (p=.000) is APA format to report (p < 0.001)

Infographic

https://create.piktochart.com/o utput/42427406-stats-project

ANOVA Test (Analysis of Variance)

Conditions

Purpose & Use?

The ANOVA tests are used to analyze differences among multiple different groups. This analysis of variance between and in groups helps to determine whether the independent variable affected the different

How to Take the Test

- 1. Find Overall Variability(Sum of Square Total)
- 2. Find Variability Within a Group(SSW)
- 3. Find Variability Between Groups(SSB)
- 4. Ratio of SSW to SSB shows Significance(F Statistic)

Interpretation

F Statistic

Significant differences between groups

No Significant differences

If the F statistic is Greater than 1, then the variance between groups is larger than just the variance in groups. This number signifies that the independent variable did cause a significant change in the data.

Presentation

When the ANOVA test result is presented the degrees of freedom, F value, and significance value(p) need to be reported, with the interpretation of significance. The statistic should be presented in the results section but interpreted in the discussion or conclusions sections

Two+ Dependent Variables ANOVA MANOVA One Way ANOVA Two Way ANOVA

One Dependent

Basic Assumptions: Normal Population Distribution Same Variance in Population

Example Dataset

Control	Group 1	Group 2	
38	22	14	Ξ
47	19	26	
39	8	11	_
25	23	18	
42	31	5	_

One Way ANOVA Test SST = 2275.7332· 2 levels SSB = 1484.933 1 IV SSW = 790.799 1 DV SSB > SSW

> F stat=11.726657 F stat > 1.0 The independent variable has significant effect on the dependent variable. The null

References (1)

Dinov, I. (2019, March 25). F Distribution Tables. Retrieved November 21, 2019, from http://www.socr.ucla.edu/Applets.dir/F_Table.html.

Good Calculators. (2019). ANOVA Calculator: One-Way Analysis of Variance Calculator. Retrieved November 21, 2019, from https://goodcalculators.com/one-way-anova-calculator/.

Höner, O., Leyhr, D., & Kelava, A. (2017). The influence of speed abilities and technical skills in early adolescence on adult success in soccer: A long-term prospective analysis using ANOVA and SEM approaches. *Plos One*, *12*(8). doi: 10.1371/journal.pone.0182211

Lund Research Ltd. (2018). One-way ANOVA in SPSS Statistics. Retrieved November 21, 2019, from https://statistics.laerd.com/spss-tutorials/one-way-anova-using-spss-statistics.php.

Singh, G. (2019, March 11). A Simple Introduction to ANOVA (with applications in Excel). Retrieved November 21, 2019, from https://www.analyticsvidhya.com/blog/2018/01/anova-analysis-of-variance/.

References (2)

Woolf, L. M. (n.d.). Practice Problems: ANOVA. Retrieved November 21, 2019, from http://faculty.webster.edu/woolflm/anova.html