UniSpeech-SAT: Universal Speech Representation Learning with Speaker-Aware Pre-Training

https://arxiv.org/pdf/2110.05752

0. Introduction

- 기존 음성 self-supervised 모델(Wav2Vec 2.0, HuBERT 등) → 발화 내용 중심 학습
- 화자 정보(speaker identity) 손실 문제 존재
- UniSpeech-SAT → Speaker-Aware Pre-Training 도입
- Content + Speaker representation 동시 학습 목표
- 주요 기여
 - Speaker recognition objective 통합
 - Dual objective 설계로 균형 학습
 - 다양한 downstream task에서 범용 성능 확보

1. Overview

- UniSpeech의 확장 버전
- Transformer encoder 기반 self-supervised 구조
- Masked feature prediction + Speaker embedding branch 구성
- Content / Speaker 정보 동시 학습

- labeled + unlabeled 데이터 모두 사용 가능
- ASR, Speaker Verification, Emotion Recognition 등 다중 태스크 적용
- 목표: 하나의 pre-trained 모델로 범용 음성 표현 학습

2. Challenges

- 기존 모델 → content 중심 → speaker 정보 손실
- Speaker task 성능 저하 발생
- Content vs Speaker 정보 간 trade-off 존재
- Speaker label 없는 unlabeled 데이터 학습 어려움
- Multi-task 학습 시 gradient 간섭(interference) 문제
- 안정적 joint optimization 필요

3. Method

- Dual objective pre-training 구조
 - LcontentL_{content}Lcontent: masked prediction

- LspeakerL_{speaker}Lspeaker: speaker classification loss
- 입력 음성 → feature extractor → 일부 마스킹 → Transformer encoder 통과
- Speaker embedding branch 추가 → speaker identity 학습
- Adversarial training + normalization → content/speaker 간 간섭 최소화
- 최종 손실:

 $Ltotal = Lcontent + \lambda \cdot Lspeaker L_{total} = L_{content} + \lambda \cdot Lspeaker \\ L_{speaker} Ltotal = Lcontent + \lambda \cdot Lspeaker \\$

- λ로 두 목표 균형 조정
- labeled/unlabeled 음성 모두 활용 가능
- fine-tuning 시 downstream task 맞춤 조정

4. Experiments

- 데이터셋: LibriSpeech 960h, VoxCeleb 1/2, CN-Celeb, Switchboard 등
- 비교모델: Wav2Vec 2.0, HuBERT, UniSpeech
- 태스크: ASR / Speaker Verification / Emotion Recognition / Speech Translation
- 지표: WER(ASR), EER(Speaker Verification)
- fine-tuning 비율: 10%, 100%
- Ablation: λ 변화 영향, speaker objective 제거 시 효과 분석

5. Results

	#Params	Corpus	Speaker			Content					Semantics			ParaL	Overall
Method			SID ASV		SD	PR	ASR (WER)		KS	QbE	IC		F	ER	Overan
Method	***************************************	Corpus	Acc ↑	EER ↓	DER ↓	PER ↓	w/o↓	w/ LM ↓	Acc ↑	MTWV ↑	Acc ↑	F1 ↑	CER ↓	Acc ↑	Score ↑
FBANK	-	-	8.5E-4	9.56	10.05	82.01	23.18	15.21	8.63	0.0058	9.10	69.64	52.94	35.39	44.2
PASE+ [14]	7.83M	LS 50 hr	37.99	11.61	8.68	58.87	25.11	16.62	82.54	0.0072	29.82	62.14	60.17	57.86	57.5
APC [8]	4.11M	LS 360 hr	60.42	8.56	10.53	41.98	21.28	14.74	91.01	0.0310	74.69	70.46	50.89	59.33	67.6
VQ-APC [10]	4.63M	LS 360 hr	60.15	8.72	10.45	41.08	21.20	15.21	91.11	0.0251	74.48	68.53	52.91	59.66	67.2
NPC [11]	19.38M	LS 360 hr	55.92	9.40	9.34	20.20	13.91	43.81	88.96	0.0246	69.44	72.79	48.44	59.08	67.0
Mockingjay [12]	85.12M	LS 360 hr	32.29	11.66	10.54	22.82	15.48	70.19	83.67	6.6E-04	34.33	61.59	58.89	50.28	56.1
TERA [13]	21.33M	LS 360 hr	57.57	15.89	9.96	18.17	12.16	49.17	89.48	0.0013	58.42	67.50	54.17	56.27	64.2
modified CPC [2]	1.84M	LL 60k hr	39.63	12.86	10.38	42.54	20.18	13.53	91.88	0.0326	64.09	71.19	49.91	60.96	65.1
wav2vec [3]	32.54M	LS 960 hr	56.56	7.99	9.90	31.58	15.86	11.00	95.59	0.0485	84.92	76.37	43.71	59.79	71.5
vq-wav2vec [4]	34.15M	LS 960 hr	38.80	10.38	9.93	33.48	17.71	12.80	93.38	0.0410	85.68	77.68	41.54	58.24	69.3
wav2vec 2.0 Base [5]	95.04M	LS 960 hr	75.18	5.74	6.02	6.08	6.43	4.79	96.23	0.0233	92.35	88.30	24.77	63.43	80.3
HuBERT Base [6]	94.68M	LS 960 hr	81.42	5.11	5.88	5.41	6.42	4.79	96.30	0.0736	98.34	88.53	25.20	64.92	82.0
UniSpeech-SAT Base	94.68M	LS 960 hr	85.76	4.31	4.41	5.40	6.75	4.86	96.75	0.0927	98.58	88.98	23.56	66.04	83.0
 contrastive loss 	94.68M	LS 960 hr	84.74	4.61	4.72	5.22	6.80	5.17	96.79	0.0956	98.31	88.56	24.00	65.60	82.8
 utterance mixing 	94.68M	LS 960 hr	85.97	4.35	5.87	5.06	7.04	5.05	96.88	0.0866	98.10	88.50	24.52	65.97	82.7
UniSpeech-SAT Base+	94.68M	CD 94k hr	87.59	4.36	3.80	4.44	6.44	4.88	97.40	0.1125	98.84	89.76	21.75	68.48	84.0
wav2vec 2.0 Large [5]	317.38M	LL 60k hr	86.14	5.65	5.62	4.75	3.75	3.10	96.6	0.0489	95.28	87.11	27.31	65.64	82.1
HuBERT Large [6]	316.61M	LL 60k hr	90.33	5.98	5.75	3.53	3.62	2.94	95.29	0.0353	98.76	89.81	21.76	67.62	83.5
UniSpeech-SAT Large	316.61M	CD 94k hr	95.16	3.84	3.85	3.38	3.99	3.19	97.89	0.0836	99.34	92.13	18.01	70.68	85.6

- ASR: UniSpeech 대비 WER 5~10% 향상
- Speaker Verification: EER 20% 감소
- 단일 pre-trained 모델 → 다중 태스크 전이 가능
- Speaker objective 제거 시 speaker task 성능 급감
- λ 값 조정 중요 → 과도 시 content 성능 하락
- Speaker-aware 설계 → representation 범용성 강화 확인

6. Insight

- Content + Speaker 동시 학습 가능성 입증
- 범용 음성 표현(universal representation) 학습 진전
- Speaker 정보 손실 문제 구조적으로 해결
- 후속 연구 방향
 - Emotion 등 추가 화자 특성 확장
 - Cross-lingual 강건성 향상
 - Text-supervised 하이브리드 구조 탐색
- UniSpeech-SAT → speaker-aware 확장형 self-supervised 음성 모델로 평가