

Introducing

PIATE

Group 24

Biosignal Analysis

Microsoft how-old.net age estimation from pictures

Project Oxford

Lack of research concerning face and voice

Palpitate

heart rate from audio/video

A research project estimating heart rate from video and audio

What are we?

A product with applications in medicine, sports and television

User uploads video/audio file

Relevant features are extracted

How it works

Heart rate is estimated using machine learning on a database

Video is streamed back with superimposed heart rate values

Project Management

Group Management

Research

Results

Meetings

Scrum

Slack

Product

Deadlines

Group Management

Research:

Product:

Audio

Back-end •

Video

Front-end (

Data Preparation - HeartAV

Data Preparation

44 subjects - talking in front of a camera, with heart rate measured.

Times in video must be the same for each ML method

Spectrograms for audio

Green intensity of the face for video

Fail hard

Real Time

Smooth

Face Tracker

Machine Learning

Results: Subject Dependent Audio Models

Results: Subject Independent Audio Models

Results: Video Models

Results

model type	r	rmse
Audio: Convolutional - Recurrent network	-0.04	1.38
- subject independent		
Audio: Convolutional - Recurrent network	0.68	0.75
- subject dependent		
Audio: Recurrent network - subject inde-	0.05	1.33
pendent		
Audio: Recurrent network - subject de-	0.62	0.81
pendent		
Audio: Convolutional - Recurrent network	NaN	1.19
with data augmentation		
Video: Convolutional - Recurrent network	0.52	1.18
Video: Convolutional - Recurrent network	0.48	1.28
with data augmentation		

Architecture Superimposing, Streaming, Serving

Maximum heart rate

Medical

Use Case

Intensity

Current min/max heart rate

Require age and sex

Design

Attractive and minimal

Appendix

• Maximum Heart Rate (MHR) for men = $203.7 \div (1 + e^{(0.033 \times (Age - 104.3))})$

Maximum Heart Rate (MHR) for women = 190.2 ÷ (1 + e^{(0.0453 × (Age - 107.5))})

