

CSc 28 Discrete Structures

Chapter 3 Set Theory

Herbert G. Mayer, CSU CSc Status 2/1/2021

Syllabus

- Set Theory
- Examples of Sets
- Subsets
- Power Set
- Cartesian Product
- Set Operations
- Functions
- References

- Set theory: Branch of mathematical logic that studies sets
- Informally: Set is a collection of distinct objects
- Almost any type of object can be collected into a set, including sets
- Set theory is frequently applied to objects relevant to mathematics
- Modern set theory pioneered by Georg Cantor and Richard Dedekind
- After discovery of paradoxes in set theory, such as Russell's Paradox, numerous axiom systems were proposed early twentieth century; common: ZFC
- ZFC for Zermelo-Fraenkel with Axiom of Choice

Georg Cantor 1845 - 1918

Richard Dedekind 1831 - 1916

- Set theory is commonly employed as a foundational system for mathematics, particularly in the form of Zermelo–Fraenkel set theory [2] with the axiom of choice; see [5]
- Contemporary research into set theory includes structure of the real number line, up to consistency of Large Cardinals, a special Math branch, not detailed here; see [4]
- Set theory founded via a single paper in 1874 by Georg Cantor: "On a Property of the Collection of All Real Algebraic Numbers"
- A bit more formally: . . .

Axiom of Choice

- Formulated 1904 by Ernst Zermelo et al.
- To formalize proof of the Well-Ordering Theorem
- Detail see again [5]
- Axiom of choice, or AC, is an axiom of set theory that a Cartesian product of a collection of non-empty sets is non-empty
- I.e. a choice can be made, even if the set is infinite!
- See example:

Axiom of Choice, Cont'd

- Easy example: Sets picked from natural numbers
- From such sets, one may always select "largest" or "smallest" element
- E.g. in { { 4, 5, 6 }, { 13, 10 }, { 44, 1, 617, 80000 } }
 the set of smallest elements is: { 4, 10, 1 }
- In this case, "select the smallest number" is a Choice Function
- Even if infinitely many sets were collected from natural numbers, it is always possible to choose the smallest unique element from each set

Axiom of Choice, Cont'd

- That is, the choice function provides the set of chosen elements
- However, no choice function is known for the collection of all non-empty subsets of the real numbers
- ... as there are so called non-constructible reals
- In that case the Choice Function has to be invoked
- Not discussed here

Ernst Zermelo 1871 - 1953

Non-constructible numbers:

- Origin of constructible numbers inextricably linked with the history of the three impossible compass and straightedge constructions:
 - Duplicating the cube
 - Trisecting an angle
 - Squaring the circle
- The restriction of using only compass and straightedge in geometric constructions is often credited to philosopher Plato
- See: https://en.wikipedia.org/wiki/ Constructible_number

Set: Collection of objects, these are called elements

```
a ∈ A "a is an element of set A"
"a is a member of set A"
```

- a ∉ A "a is not an element of A"
- $A = \{ a_1, a_2, ..., a_n \}$ "A contains $a_1, ..., a_n$ "
- Order of elements is insignificant
- It does not matter how often the same element is listed, i.e. repetition doesn't count, thus does not contribute to, or change the set
- Conventional (and efficient) to list each distinct member just once

Set Definition

- Set Theory is a branch of mathematical logic that studies sets
- Set is a well-defined collection of distinct elements
- Elements of sets are AKA members
- Elements can be anything clearly identifiable: such as people, letters of the alphabet, numbers, points in space, etc. and even sets
- It is common for sets to have a name
- Two sets are equal if they contain exactly the same elements
- A set that has no elements is called an empty set

Set Equality

Set Equality

Sets A and B are equal if and only if they contain exactly the same elements

Examples:

- $A = \{ 9, 2, 7, -3 \},$
- $B = \{ 7, 9, -3, 2 \}$:

A = B

- C = { dog, cat, horse },
- D = { cat, horse, squirrel, dog } :

 $C \neq D$

- E = { dog, cat, horse },
- F = { cat, dog, horse, dog } :

Examples of Sets

Examples of Mathematical Sets

"Standard" Sets, AKA classes of numbers:

- Natural Numbers N = { 0, 1, 2, 3, ... }
 Integer Numbers Z = { ..., -2, -1, 0, 1, 2, ... }
 Positive Integers Z⁺ = { 1, 2, 3, 4, ... }
 Real Numbers R = { 47.3, -12, π, ... }
- Rational Numbers Q = { 1.5, 2.6, -3.8, 15, ... }
- Irrational Numbers I = e.g. π , or square root of 2: $\sqrt{2}$ Real numbers: Combination of Rational and Irrationals

Rational number: Can be written as ratio of 2 integers; can locate them as points on the "number line"

Irrational number: Cannot be expressed as the ratio of 2 integer numbers

Examples of Sets

```
• A = Ø
                              empty set AKA null set, is a set!
A = { z }
                              Note: z \in A, but z \neq \{z\}
A = { { b,c }, { c,x,d } } set of sets
A = { { x, y } }
                     Note: \{x, y\} \in A
                    Set of all x such that P(x) is true
 \cdot A = \{ x \mid P(x) \} 
      P(x) is the membership function of set A
      \forall x (P(x) \rightarrow x \in A)
• B = \{ x \mid x \in \mathbb{N} \land x > 7 \} = \{ 8, 9, 10, \dots \}
      "set builder notation"
      Is set B finite or infinite?
```

Examples of Sets

- We are now able to define the set of rational numbers Q constructed from integers:
- $Q = \{ a/b \mid a \in Z \land b \in Z^+ \}$, or
- $Q = \{ a/b \mid a \in Z \land b \in Z \land b \neq 0 \}$

- But how about the set of Real Numbers R?
- R = { r | r is a real number }

That is the best we can do. The set of **R** can hardly be defined by enumeration, nor by some **builder** function

Subsets

 $A \subseteq B$ A is a subset of B

 $A \subseteq B$ if and only if every element of A is also an element of B

We can completely formalize this:

$$A \subseteq B \Leftrightarrow \forall x (x \in A \rightarrow x \in B)$$
 -note the A, B order!

Examples:

$$A = \{ 3, 9 \}, B = \{ 5, 9, 1, 3 \}$$

$$A \subseteq B$$
? true

$$A = \{ 3, 3, 3, 9 \}, B = \{ 5, 9, 1, 3 \}$$

$$A \subseteq B$$
? true

$$A = \{ 1, 2, 3 \}, B = \{ 2, 3, 4 \}$$

$$A \subseteq B$$
? false

Subsets

Useful rules:

- $A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$
- $(A \subseteq B) \land (B \subseteq C) \Rightarrow A \subseteq C$ (see below Venn Diagram)

Subsets

Useful rules:

 $\emptyset \subseteq A$ for any set A

 $A \subseteq A$ for any set A

Proper subsets:

 $A \subset B$ A is a proper subset of B

$$A \subset B \Leftrightarrow \forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A)$$

or

$$A \subset B \Leftrightarrow \forall x (x \in A \rightarrow x \in B) \land \neg \forall x (x \in B \rightarrow x \in A)$$

Cardinality of Sets

If a set S contains n distinct elements, with $n \in N$, we call S a finite set with cardinality n

Examples below:

A = { Mercedes, BMW, Porsche } IAI = 3

B = { { 1 }, { 2, 3 }, { 4, 5 }, { 6 } } IBI = 4

C =
$$\emptyset$$
 ICI = 0

D = { x \in N I x \leq 7000 } IDI = 7001

E = { x \in N I x \geq 7000 } IEI = ∞ AKA: infinite

Power Set Review

P(A) define P, the Power Set of set A, as follows:

 $P(A) = \{ B \mid B \subseteq A \}$ all possible subsets of set A

Examples:

 $A = \{ x, y, z \}$ then the Power Set P of A, AKA P(A) is:

$$P(A) = { \emptyset, { x }, { y }, { z }, { x,y }, { x,z }, { y,z }, { x,y,z } }$$

If: $A = \emptyset$

Then: $P(A) = {\emptyset}$

Note: |A| = 0, |P(A)| = 1

Power Set Review

Cardinality of power sets: $IP(A)I = 2^{|A|}$

- Imagine each element in A has an "on/off" switch
- Each possible switch configuration in A corresponds to one subset of A, thus to one element in P(A)

Α	1	2	3	4	5	6	7	8
X:	X	X	X	X	X	X	X	X
Y:	У	У	у	у	у	У	у	у
Z:	Z	Z	Z	Z	Z	Z	Z	Z

• With 3 elements X, Y, Z in set A, then there must be $2 \times 2 \times 2 = 2^3 = 8$ elements in the power set P(A)

Cartesian Product of Sets

Cartesian Product of Two Sets.

- The ordered n-tuple (a_1 , a_2 , a_3 , ..., a_n): a systematically arranged collection of n objects into one element
- Careful tuples are not sets, never mind the multiple elements!
- Two ordered n-tuples (a_1 , a_2 , a_3 , ..., a_n) and then also (b_1 , b_2 , b_3 , ..., b_n) are equal if and only if they contain exactly the same elements and in the same order, i.e. $a_i = b_i$ for $1 \le i \le n$
- Cartesian product of two sets A × B is defined as:
- $A \times B = \{ (a, b) | a \in A \land b \in B \}$

Example:

```
A = { good, bad }, B = { student, prof }
A \times B = \{ (good, student), (good, prof), (bad, student), (bad, prof) \}
\mathbf{B} \times \mathbf{A} = \{ \text{ (student, good)}, \text{ (prof, good)}, \text{ (student, bad)}, \text{ (prof, bad)} \}
 Example: A = \{ x, y \}, B = \{ a, b, c \}
 A \times B = \{ (x, a), (x, b), (x, c), (y, a), (y, b), (y, c) \}  Set of tuples
```

- Aר = Ø
- Ø×A = Ø
- For non-empty sets A and B: A≠B ⇔ A×B ≠ B×A
- IA×BI = IAI·IBI for any number of sets!
- The Cartesian product of n sets X_i (i = 1..n) is defined as the *n*-ary Cartesian Product C_n over these n sets X₁, ..., X_n as:

$$C_n = X_1 \times X_2 \times X_3 \dots \times X_n$$

- Union: $A \cup B = \{ x \mid x \in A \lor x \in B \}$
- Example: A = { a, b }, B = { b, c, d }
 A∪B = { a, b, c, d }

- Intersection: $A \cap B = \{ x \mid x \in A \land x \in B \}$
- Example: A = { a, b }, B = { b, c, d }
 A∩B = { b }

Cardinality: IA∪BI = IAI + IBI - IA∩BI = 4

 Two sets are called disjoint if their intersection is empty, that is, they share no elements:

$$A \cap B = \emptyset$$

 Difference between two sets A and B contains exactly those elements of A that are not in B:

$$A-B = \{ x \mid x \in A \land x \notin B \}$$

- Example: A = { a, b }, B = { b, c, d }, A B = { a }
- Cardinality: IA-BI = IAI IA∩BI

- The complement of a set A contains exactly those elements under consideration that are not in A
- Complement denoted as: A^c
- Or \overline{A} in some text books; also shown as $\neg A$

$$A^c = U - A$$

Logical Equivalence

Equivalence Law Refresh:

- Identity lawP ∧ T ≡ P
- Domination law
 P ∧ F ≡ F
- Idempotent law $P \wedge P \equiv P$
- Double negation law $\neg(\neg P) \equiv P$
- Commutative law $P \wedge Q \equiv Q \wedge P$
- Associative law $P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$
- Distributive law $P \wedge (Q \vee R) = (P \wedge Q) \vee (P \wedge R)$
- De Morgan's law $\neg (P \land Q) \equiv (\neg P) \lor (\neg Q)$
- Implication law $P \rightarrow Q \equiv \neg P \lor Q$

Set Identity

Key equations

- Identity law $A \cup \emptyset = A, A \cap U = A$
- Domination law $A \cup U = U, A \cap \emptyset = \emptyset$
- Idempotent law $A \cup A = A$
- Double Complement (A^c)^c = A
- Commutative law $A \cup B = B \cup A, A \cap B = B \cap A$
- Associative law $A \cup (B \cup C) = (A \cup B) \cup C, ...$
- Distributive law $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- De Morgan's law (A∪B)^c = A^c∩B^{c,}
- Or De Morgan (A∩B)^c = A^c∪B^c
 - Absorption law $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$
- Complement law $A \cup A^c = U$, $A \cap A^c = \emptyset$

Set Identity

How to prove $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$?

Method I: logical equivalent

$$x \in A \cup (B \cap C)$$

Set

- \Leftrightarrow x \in A \vee x \in (B \cap C)
- \Leftrightarrow x \in A \vee (x \in B \wedge x \in C)
- \Leftrightarrow (x \in A \lor x \in B) \land (x \in A \lor x \in C) Logic
- \Leftrightarrow x \in (A \cup B) \land x \in (A \cup C)
- \Leftrightarrow x \in (A \cup B) \cap (A \cup C)

Set again

Every logical expression can be transformed into an equivalent expression in set theory and vice versa

Set Identity

Method II: Membership table

1 means "x is an element of this set" 0 means "x is not an element of this set"

Α	В	С	B∩C	A∪(B∩C)	A∪B	A ∪ C	(A∪B) ∩(A∪C)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

Geometric Functions

Sample Geometric Functions, Our Focus: Logic Functions

- A function f from set A (which includes a) to set B (which includes b) is an assignment of exactly one element of B to each element of A (e.g. value "a")
- We write: **f(a) = b**
- With b being some unique element of B assigned by function f to the element a of A
- And with f being a function from A to B; we can also write f: A→B

- With notation f: A→B, we say that "A is the domain of f and B is the codomain of f"
- With notation f(a) = b, we say that "b is the image of a, and a is the pre-image of b"
- The range of f: A→B is the set of all images of all elements of A
- We say that f: A→B maps A to B

Let us view function f, with f: $P \rightarrow C$:

- P = { Linda, Max, Kathy, Peter }
- C = { Boston, New York, Hong Kong, Moscow }
- f(Linda) = Moscow
- f(Max) = Boston
- f(Kathy) = Hong Kong
- f(Peter) = New York
- Here, the range of f is C

Let us re-specify f as follows:

- f(Linda) = Moscow
- f(Max) = Boston
- f(Kathy) = Hong Kong
- f(Peter) = Boston
- Is f still a function? Yes!

What is its range of f? { Moscow, Boston, Hong Kong }

Other ways to represent f:

X	f(x)	
Linda	Moscow	
Max	Boston	
Kathy	Hong Kong	
Peter	Boston	

If the domain of function f is large, it is convenient to specify f with a formula, e.g.:

```
f: R→R
```

$$f(x) = 2 x for example$$

This leads to:

$$f(1) = 2$$

$$f(3) = 6$$

$$f(-3) = -6$$

- - -

- Let f₁ and f₂ be functions from A to R
- Then the sum and the product of f₁ and f₂ are also functions from A to R defined by:
- $(f_1 + f_2)(x) = f_1(x) + f_2(x)$ function addition
- $(f_1 f_2)(x) = f_1(x) f_2(x)$ function product

Example:

- $f_1(x) = 3x$, $f_2(x) = x + 5$
- $(f_1 + f_2)(x) = f_1(x) + f_2(x) = 3x + x + 5 = 4x + 5$
- $(f_1 f_2)(x) = f_1(x) f_2(x) = 3x (x + 5) = 3x^2 + 15x$

- We know the range of a function f: A→B is the set of all images of elements a ∈ A
- If we only regard a subset S ⊆ A, the set of all images of elements s ∈ S is called the image of S

We denote the image of S by f(S):

$$f(S) = \{ f(s) \mid s \in S \}$$

Now let's view the following functions:

- f(Linda) = Moscowf(Max) = Boston
- f(Kathy) = Hong Kong
- f(Peter) = Boston

What is the image of S = { Linda, Max } ?

f(S) = { Moscow, Boston }

What is the image of S = { Max, Peter } ?

• f(S) = { Boston }

Which Function?

That Function!

$$f(x, y) = \sin(x^2) * \cos(y^2)$$

For Math Majors

A function f: A→B is said to be one-to-one (or injective), if and only if

$$\forall x, y \in A (f(x) = f(y) \rightarrow x = y)$$

In other words: f is one-to-one if and only if it does not map 2 distinct elements of A onto the same element of B

And again...

- f(Linda) = Moscow
- f(Max) = Boston
- f(Kathy) = Hong Kong
- f(Peter) = Boston

Is f one-to-one?

No, Max and Peter are mapped onto the same element of the image

- g(Linda) = Moscow
- g(Max) = Boston
- g(Kathy) = Hong Kong
- g(Peter) = New York

Is g one-to-one?

Yes, each element is assigned a unique element of the image

How can we prove that a function f is one-to-one?

To prove something, look at the relevant definition:

$$\forall x, y \in A (f(x) = f(y) \rightarrow x = y)$$

Example:

$$f(x) = x^2$$

Disproof by counterexample:

$$f(3) = f(-3)$$
, but $3 \neq -3$, so f is not one-to-one

Another example:

$$f(x) = 3x$$

One-to-one:
$$\forall x, y \in A (f(x) = f(y) \rightarrow x = y)$$

To show: $f(x) \neq f(y)$ whenever $x \neq y$ (indirect proof)

$$X \neq y$$

$$\Leftrightarrow$$
 3x \neq 3y

$$\Leftrightarrow f(x) \neq f(y),$$

so if $x \neq y$, then $f(x) \neq f(y)$, that is, f is one-to-one

Function f: $A \rightarrow B$ with A, B \subseteq R is strictly increasing, if

$$\forall x, y \in A (x < y \rightarrow f(x) < f(y))$$

and strictly decreasing, if

$$\forall x, y \in A (x < y \rightarrow f(x) > f(y))$$

Clearly, a function that is either strictly increasing or strictly decreasing is one-to-one

- A function f: A→B is called onto, or surjective, if and only if for every element b ∈ B there is an element a ∈ A with f(a) = b
- In other words, f is onto if and only if its range is its entire codomain
- A function f: A→B is a one-to-one correspondence, or a bijection, if and only if it is both one-to-one and onto
- Obviously, if f is a bijection and A and B are finite sets, then IAI = IBI

Another definition:

In Mathematics a function f from a set X to a set Y is surjective, if for every element y in the codomain Y of f, there is at least one element x in the domain X of f such that f(x) = y.

It is not necessary that x be unique; function f may map one or more elements of X to the same element of Y

Examples:

In the following examples, we use the arrow to represent function mappings $f: A \rightarrow B$

Function is a special relation in which each element of the domain A is paired with (mapped onto) exactly one element in the range B. The mapping shows how elements are paired

Is f injective?

No! f is not even a function!

Inversion

- An interesting property of bijections is that they have an inverse function
- The inverse function of the bijection f: A→B is the function f¹: B→A with

$$f^{-1}(b) = a$$
 whenever $f(a) = b$

Inversion

Example:

Inverse function f⁻¹:

```
f(Linda) = Moscow f^{-1}(Moscow) = Linda

f(Max) = Boston f^{-1}(Boston) = Max

f(Kathy) = Hong Kong f^{-1}(Hong Kong) = Kathy

f(Peter) = Lübeck f^{-1}(Lübeck) = Peter

f(Helena) = New York f^{-1}(New York) = Helena
```

Clearly, f is bijective.

Inversion is only possible for bijections = invertible functions

Inversion

f⁻¹:C→P is no function, because it is not defined for all elements of C and assigns two images to pre-image New York

Composition

The composition of two functions $g:A\rightarrow B$ and $f:B\rightarrow C$, denoted by $f^{\circ}g$, is defined by

$$(f^{\circ}g)(a) = f(g(a))$$

This means that

- first, function g is applied to element a∈A, mapping it onto an element of B
- then, function f is applied to this element of B, mapping it onto an element of C
- therefore, the composite function maps from A to C

Composition

Example:

$$f(x) = 7x - 4$$
, $g(x) = 3x$,
 $f: R \rightarrow R$, $g: R \rightarrow R$
 $(f^{\circ}g)(5) = f(g(5)) = f(15) = 105 - 4 = 101$
 $(f^{\circ}g)(x) = f(g(x)) = f(3x) = 21x - 4$

Composition

- Composition of a function and its inverse:
- $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$
- The composition of a function and its inverse is the identity function i(x) = x

Graphs

- The graph of a function f:A→B is the set of ordered pairs { (a, b) I a∈A and f(a) = b }
- The graph is a subset of A×B that can be used to visualize f in a two-dimensional coordinate system

Floor and Ceiling Functions

- The floor and ceiling functions map the real numbers onto the integers (R→Z)
- Floor function assigns to r ∈ R the largest z ∈ Z with z
 ≤ r, denoted by [r]
- Examples: $\lfloor 2.3 \rfloor = 2$, $\lfloor 2 \rfloor = 2$, $\lfloor 0.5 \rfloor = 0$, $\lfloor -3.5 \rfloor = -4$
- Ceiling function assigns to r ∈ R the smallest z ∈ Z with z ≥ r, denoted by [r]
- Examples: [2.3] = 3, [2] = 2, [0.5] = 1, [-3.5] = -3

Boolean Algebra, Again!

Boolean Algebra

- Boolean algebra provides the operations and the rules for working with the set { 0, 1 }
- These are rules underlying electronic circuits, and methods fundamental to VLSI design
- We are going to focus on the following operations:
 - Boolean complementation
 - Boolean sum
 - Boolean product

Boolean Operations

Note, the Boolean complement is often denoted by a bar -. On the following slides, we'll use that minus bar. Caveat: the -0 is not a "minus zero" ©

$$-0 = 1$$
 and $-1 = 0$

The Boolean sum, denoted by + or by OR, has the following values:

$$1+1=1$$
, $1+0=1$, $0+1=1$, $0+0=0$

The Boolean product, denoted by · or also sometimes by AND, has the following values:

$$1 \cdot 1 = 1$$
, $1 \cdot 0 = 0$, $0 \cdot 1 = 0$, $0 \cdot 0 = 0$

- Definition: Let $B = \{ 0, 1 \}$. The variable x is called a Boolean variable if it assumes values only from B
- A function from Bⁿ, the set { (x₁, x₂, ..., x_n) | x_i∈ B,
 1 ≤ i ≤ n }, to B is called a Boolean function of degree n
- Boolean functions can be represented using expressions made up from variables and Boolean operations

The Boolean expressions using variables $x_1, x_2, ..., x_n$ are defined recursively as follows:

- 0, 1, x₁, x₂, ..., x_n are Boolean expressions.
- If E_1 and E_2 are Boolean expressions, then (- E_1), (E_1E_2), and (E_1+E_2) are Boolean expressions

Each Boolean expression represents a Boolean function. The values of this function are obtained by substituting 0 and 1 for the variables in the expression

- For example, we can create Boolean expression in the variables x, y, and z using the "building blocks" 0, 1, x, y, and z, and the construction rules:
- Since x and y are Boolean expressions, so is xy
- Since z is a Boolean expression, so is -z, AKA not z
- Since xy and (-z) are expressions, so is xy + (-z)
 - ... and so on...

Example: Give a Boolean expression for the Boolean function F(x, y) as defined by the following table:

X	У	F(x, y)
0	0	0
0	1	1
1	0	0
1	1	0

Possible solution: F(x, y) = (-x) y

Another Example:

X	У	Z	F(x, y, z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Possible solution I:

$$F(x, y, z) = -(xz + y)$$

Possible solution II:

$$F(x, y, z) = (-(xz)) (-y)$$

- There is a simple method for deriving a Boolean Expression for a function defined by a table
- This method is based on co-called minterms
- Definition: A literal is some fixed Boolean value or its complement
- A minterm of the Boolean variables $x_1, x_2, ..., x_n$ is a Boolean product $y_1y_2...y_n$, where $y_i = x_i$ or $y_i = -x_i$
- Hence, a minterm is a product of n literals, with one literal for each variable

Consider F(x, y, z) again:

X	у	Z	F(x, y, z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

$$F(x, y, z) = 1$$
 if and only if:
 $x = y = z = 0$ or

$$x = y = 0, z = 1 \text{ or }$$

$$x = 1, y = z = 0$$

Therefore,

- Definition: The Boolean functions F and G of n variables are equal (trivially visible) if and only if F(b₁, b₂, ..., b_n) = G(b₁, b₂, ..., b_n) for all b_i
- Two different Boolean expressions that represent the same function are called equivalent
- For example, the Boolean expressions xy, xy + 0, and xy·1 are equivalent

- The complement of Boolean function F is the function –F, where –F(b₁, b₂, ..., b_n) = (F(b₁, b₂, ..., b_n))
- Let F and G be Boolean functions of degree n
- The Boolean sum F+G and Boolean product FG are then defined by

$$(F + G)(b_1, b_2, ..., b_n) = F(b_1, b_2, ..., b_n) + G(b_1, b_2, ..., b_n)$$

$$(FG)(b_1, b_2, ..., b_n) = F(b_1, b_2, ..., b_n) G(b_1, b_2, ..., b_n)$$

- Question: How many different Boolean functions of degree 1 are there?
- Solution: There are four of them, F₁, F₂, F₃, and F₄:

X	F ₁	F ₂	F ₃	F ₄
0	0	0	1	1
1	0	1	0	1

- Question: How many different Boolean functions of degree 2 are there?
- Solution: There are 16 of them, F₁, F₂, ..., F₁₆:

X	у	F ₁	F ₂	F_3	F_4	F ₅	F_6	F ₇	F ₈	F_9	F۱	F ₁₁	F ₁₂	F ₁	F ₁	F ₁	F ₁₆
0	0	0	0	0	0	0	0	0	0	1	9	1	1	3 1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

- Question: How many different Boolean functions of degree n are there?
- There are 2ⁿ different n-tuples of 0s and 1s
- A Boolean function is an assignment of 0 or 1 to each of these 2ⁿ different n-tuples
- Therefore, there are 2^{2ⁿ} different Boolean functions

Duality

- There are useful identities of Boolean expressions that can help us to transform an expression A into an equivalent expression B
- We can derive additional identities with the help of the dual of a Boolean expression
- The dual of a Boolean expression is obtained by interchanging Boolean sums and Boolean products and interchanging 0s and 1s

Duality

Examples:

```
Dual(x(y+z)) = -x + (-y-z) AKA x' + y'z'
Dual(-x + -y + z) = xy-z AKA x y z'
```

- The dual d() of a Boolean function f() represented by a Boolean expression is the function represented by the dual of this expression
- This dual function, denoted by f()^d, does not depend on the particular Boolean expression used to represent f()
- To generate: exchange or with and, and with or, and true with false and false with true, or negated boolean variable

Duality

- Therefore, an identity between functions represented by Boolean expressions remains valid when the duals of both sides of the identity are taken
- We can use this fact, called the duality principle, to derive new identities
- For example, consider the absorption law x(x + y) = x
- By taking the duals of both sides of this identity, we obtain the equation x + xy = x, also called Absorption Law

A Boolean Algebra

- All the properties of Boolean functions and expressions that we have discovered also apply to other mathematical structures such as propositions and sets and the operations defined on them
- If we can show that a particular structure is a Boolean algebra, then we know that all results established about Boolean algebras apply to this structure
- For this purpose, we need an abstract definition of a Boolean algebra

A Boolean Algebra

Definition: A Boolean algebra is a set B with two binary operations \vee and \wedge , elements 0 and 1, and a unary operation – such that the following properties hold for all x, y, and z in B:

•
$$x \lor 0 = x$$
 and $x \land 1 = x$ identity law

•
$$x \vee (-x) = 1$$
 and $x \wedge (-x) = 0$ domination laws

•
$$(x \lor y) \lor z = x \lor (y \lor z)$$
 and $(x \land y) \land z = x \land (y \land z)$ associative laws

•
$$x \lor y = y \lor x$$
 and $x \land y = y \land x$ commutative laws

•
$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$
 and
 $x \land (y \lor z) = (x \land y) \lor (x \land z)$ distributive laws

Logic Gates

Electronic circuits consist of so-called gates. There are three basic types of gates:

Logic Gates

Example: How can we build a circuit that computes the function xy + (-x)y?

Logic, Sets, and Boolean Algebra

LogicSetBoolean AlgebraFalse \varnothing 0TrueU1 $A \wedge B$ $A \cap B$ $A \cdot B$ $A \vee B$ $A \cup B$ A + B $\neg A$ A^{c} not A

Summary

- Set Theory branch of mathematics founded by Georg Cantor
- Is a branch of mathematical logic that studies sets
- Sets are are collections of objects
- Mathematical Logic, Set Theory, Boolean Algebra are equivalent
- Duality in Logic Expression often helps in actual circuits to implement by using gates currently at hand

References

- Cartesian product: https://en.wikipedia.org/wiki/ Cartesian_product
- 2. Zermelo-Fraenkel set Theory: https://plato.stanford.edu/entries/set-theory/ZF.html
- 3. Wiki on Set Theory: https://en.wikipedia.org/wiki/Set_theory
- 4. On large Cardinals: https://en.wikipedia.org/wiki/Large_cardinal
- 5. Axiom of Choice: https://en.wikipedia.org/wiki/ Axiom_of_choice