Stay Tuned with your Model

Team 1

Jashyant Sikhakolli Manikanta Chinta Pardha Pitchikala Zac Zinda Kexin Liang Yuankun Huang

MSBA 6320 & 6330 Date: 12/09/2019

TABLE OF CONTENTS

000

Motivation

What happens to a Model after deployment? How does Model performance monitoring help?

Motivation

Models start to degrade once in production

Goal

- How to detect
- Which features to look for
- What strategies to take

Concept Drift

Description & Types

Types of Drift

Sudden Drift
An abrupt change where one concept replaces another.

Gradual Drift

As time passes the probability of sampling from one concept increases while another decreases

Incremental Drift

A type of gradual drift. A stepwise transition from one concept to another.

Recurring Concepts
Previously active concepts
reappear after some time

Metrics to capture Drift

PSI

Population Stability Index

Somers' D

Measures predictive ability

Population Stability Index (PSI)

Population stability index (PSI) is a metric to measure how much a variable has shifted in distribution between two samples or over time. It is widely used for monitoring changes in the characteristics of a population and for diagnosing possible problems in model performance.

$$PSI = \sum \left((\%Actual - \%Expected) \times \ln \frac{\%Actual}{\%Expected} \right)$$

Rule of thumb:

PSI Value	Inference	Action
Less than 0.1	Insignificant change	No action required
0.1 - 0.25	Some minor change	Check other metrics (Somers' D)
Greater than 0.25	Major Shift in population	Need to delve deeper

Data and Demonstration

Brief intro to data set and Visualizations

Data

For the demonstration purpose, we selected **Cars Data set** from UCI Machine Learning Repository.

Below are the Features available in the Data

- 1) Evaluation of a Car (Target variable) unacceptable, acceptable, good, very good
- 1) Buying price Very High, High, Medium, Low
- 1) Price of Maintenance Very High, High, Medium, Low
- 1) Number of Doors 2, 3, 4, more
- 1) Number of Persons 2, 4, more
- 1) Size of luggage boot Small, Med, Big
- 1) Estimated Safety of Car High, Medium, Low

Demonstration

In order to demonstrate that PSI captures the change in Data distribution, We manually manipulated a feature each day

- Day 1 Increased % of Cars with Number of Doors = 2
- Day 2 Decreased % of Cars with Low Safety
- Day 3 Increased % of Cars with Very high buying price
- Day 4 Decreased % of Cars with Number of People = 4
- Day 5 Increased % of Cars with Very high Maintenance

Accuracy decreased with change in data distribution

Accuracy By Data Set

Quicksight dashboard to identify changed columns

Distribution of Maintenance Categories in Training Data

Distribution of Maintenance Categories by Data Set

AWS Architecture

What modules are needed? Upgrade scope?

Architecture

Future

Current architecture supports to the stage of notifying the stakeholders about the change in Data distributions. This can be extended to model retuning as per business requirements and policies.

Below is the Extended Architecture to trigger model retuning

Next Steps & Use Cases

Part 1 - Once we detect the significant change in data distributions, what should we do next?

Part 2 - Real business cases that can apply our method.

Modify Feature

Considering Feature Importance

Retune Model

- 1. Fixed Training Window
- 2. Variable Training Window

Next Steps

1. Feature Modification

Creating new features to capture the new variation in data.

2. Model Retuning

• Fixed Training Window

Use Cases

THANKS

Refer to the below github repository for technical details:

https://github.umn.edu/CHINT044/FallTrends Marketplace2019

References

- 1) http://archive.ics.uci.edu/ml/datasets/Car+Evaluation
- 2) https://www.researchgate.net/publication/270787580_A_Survey_on_Supervised_Classification_on_Data_Streams