31 October, 2019(Gr. A)

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT)

ORGANISATION OF ISLAMIC COOPERATION (OIC)

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

FINAL SEMESTER EXAMINATION

SUMMER SEMESTER: 2018-2019

COURSE NO: Math4253

TIME: 3.0 Hours

FULL MARKS:150

COURSE TITLE: Vector Algebra, Vector Calculus and ODE

There are 4 (Four) questions. Answer any 3 (Three) questions. Programmable calculators are not allowed. Do not write on this question paper. The figures in the right margin indicate full marks. The Symbols have their usual meaning

- Define reciprocal system of vectors. Find a set of vectors reciprocal to the set (8)of vectors -i+j+k, i-j+k and i+j-k.
- A particle moves along the curve $x = t^3 + 1$, $y == t^2$, z = 2t + 5, where t is (b) (8) the time. Find the components of its velocity and acceleration at time t = 1 in the direction i + j + 3k.
- (c) If $\varphi(x, y, z) = xy^2 z$ and $\overline{F} = xzi - xyj + yz^2 k$, find $\frac{\partial^3 (\varphi F)}{\partial x^2 \partial z}$ at the point (9)
- If $r = |\vec{r}|$, where $\vec{r} = xi + yj + zk$, prove that $\nabla r^n = nr^{n-2} \vec{r}$ (8)
 - Taking $\overline{F} = x^2yi + xzj + 2yzk$, verify that div curl $\overline{F} = 0$ (9)
 - Prove that $curl \, \overline{F} = grad \, div \overline{F} \nabla^2 \overline{F}$ (8) (c)
- Define directional derivative. Find the directional derivative of the function (8) $xy^2 + yz^2 + zx^2$ along the tangent to the curve x = t, $y = t^2$, $z = t^3$ at the point (1, 1, 1).
- (b) (9) Find the constants a and bso that the surface $ax^2 - byz = (a + z)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at the point (1, -1, 2).
- Give the physical significance of Curl of a vector point function. (8)
- The acceleration of a moving particle at any time t is given by (10) $\frac{d^2r}{dt^2} = 2\cos 2t i - 8\sin 2t j + 16t k$ find the velocity $\frac{1}{v}$ and displacement $\frac{1}{r}$ any time t if at t = 0, v=0 and r=0

- (b) Evaluate $\iint_S \overline{F} \cdot \hat{n} \, dS$, where $\overline{F} = zi + xj 3y^2zk$ and S is the surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between x = 0 and z = 5.
- 5. State Gauss divergence theorem and verify for the vector function (25) $\overline{F} = 2x^2yi y^2j + 4xz^2k \text{ taken over the region in the first octant bounded by}$ $v^2 + z^2 = 9, \quad x = 2.$
- 6.(a) Find the integrating factor of differential equations $\sin x \frac{dy}{dx} + 3y = \cos x$ and hence solve it.
- (b) Solve: $\cos x \frac{dy}{dx} + \sin x \tan y = \cos^2 x \sec y$ (9)
- (c) Solve: $x^2 p^3 + y p^2 (1 + x^2 y) + y^3 p = 0$ (9)
- 7. Solve the following differential equations

(a)
$$x \frac{dy}{dx} - 3y = x^2$$
, $y(1) = 1$ (5)

(b)
$$(D^2 - 2D + 1)y = xe^x \sin x$$
 (10)

(c)
$$(x^2D^2 + xD + 1)y = \sin(\ln x^2)$$
 (10)

8 (a) Solve:
$$(D^2 + 16)y = \sec 4x$$
 (12)

(b) A circuit has in series an electromotive force given by $E = 10\sin 60t$, a (13) resistor of 0.2Ω , an inductor of 0.01 H and a capacitor of $\frac{1}{26}$ farads. If the initial current and the initial charge on the capacitor are both zero, find the charge on the capacitor at any time t > 0.