Machine Learning Learning with Regression and Trees

Satishkumar L. Varma

Department of Information Technology SVKM's Dwarkadas J. Sanghvi College of Engineering, Vile Parle, Mumbai. ORCID | Scopus | Google Scholar | Google Site | Website

Outline

- Learning with Regression and Trees
 - Learning with Regression
 - Simple Linear Regression
 - Multiple Linear Regression
 - Logistic Regression
 - Learning with Trees
 - Decision Trees
 - Constructing Decision Trees using Gini Index
 - Classification and Regression Trees (CART)

Types of Regression

- Regression models used to find the relationship between a DV and IV.
- Simple linear regression
 - To models the relationship between a DV and a single IV.
- Multiple linear regression
 - o If you have more than one independent variable.
- Multiple Regression vs. Multivariate Regression
- Multiple Regression:
 - The influence of several IVs on a DV is examined.
 - One DV is taken into account to analyzed.
- Multivariate Regression:
 - Several regression models are calculated to allow conclusions to be drawn about several DV.
 - Several dependent variables are analyzed.

Simple Linear Regression

 $\hat{y} = b \cdot x + a$

Multiple Linear Regression

 $\hat{y} = b_1 \cdot x_1 + b_2 \cdot x_2 + \ldots + b_k \cdot x_k + a$

- Types of Logistic Regression
- Binomial Logistic Regression:
 - There can be only two possible types of the DVs, such as 0 or 1, Pass or Fail, etc.
- Multinomial Logistic regression:
 - There can be 3 or more possible unordered types of the DV, such as "cat", "dogs", or "sheep"
- Ordinal Logistic regression:
 - There can be 3 or more possible ordered types of DVs, such as "low", "Medium", or "High".

- Logistic Regression
- Logistic regression is a supervised machine learning algorithm.
- It is extensively used in predictive modeling.
- It helps to predict the probability of an outcome, event, or observation.
- It is to predict the probability that an instance belongs to a given class or not.
- The model delivers a binary outcome limited to two possible outcomes: yes/no, 0/1, or true/false.
- It analyzes the relationship between one or more IVs and classifies data into discrete classes.
- It is used for binary classification tasks using sigmoid function.
- Sigmoid function takes input as IVs and produces a probability value between 0 and 1.
- Example
 - For two classes Class 0 and Class 1
 - o if the value of the logistic function for an input > 0.5 (threshold value)
 - then it belongs to Class 1 otherwise it belongs to Class 0.
 - o It is referred to as regression because it is the extension of linear regression
 - but is mainly used for classification problems.

5

- Logistic regression is commonly used in binary classification.
- In statistics, the logistic model (or logit model) is a statistical model.
- It models the log odds of an event as a linear combination of one or more IVs.
- In regression analysis,
 - o logistic regression (or logit regression) estimates
 - the parameters of a logistic model (the coefficients in the linear or non linear combinations).
- In binary logistic regression
 - there is a single binary DV, coded by an indicator variable,
 - o where the two values are labeled "0" and "1".
 - o while the IVs can each be a binary variable (two classes) or a continuous variable (any real value).
- The function that converts log odds to probability is the logistic function, hence the name.
- The unit of measurement for the log odds scale is called a logit (logistic unit), hence the alternative names.

6

Satishkumar L. Varma www.sites.google.com/view/vsat2k

- Logistic regression predicts the output of a categorical dependent variable.
- Therefore, the outcome must be a categorical or discrete value.
- It can be either Yes or No, O or 1, true or False, etc.
 - But instead of giving the exact value as 0 and 1, it gives the probabilistic values which lie bet. 0 and 1.
- In Logistic regression, instead of fitting a regression line, we fit an "S" shaped logistic function,
 - which predicts two maximum values (0 or 1).

Satishkumar L. Varma www.sites.google.com/view/vsat2k

- Assumptions of Logistic Regression
- Independent observations:
 - Each observation is independent of the other. meaning there is no correlation between any input variables.
- Binary dependent variables:
 - It takes the assumption that the DV must be binary or dichotomous, meaning it can take only two values.
 - o For more than two categories SoftMax functions are used.
- Linearity relationship between independent variables and log odds:
 - The relationship between the IVs and the log odds of the DV should be linear.
- No outliers:
 - There should be no outliers in the dataset.
- Large sample size:
 - The sample size is sufficiently large.

- Understanding Sigmoid Function (the core of logistic regression)
- The sigmoid function is a mathematical function used to map the predicted values to probabilities.
- It maps any real value into another value within a range of 0 and 1.
- The value of the logistic regression must be between 0 and 1,
 - o which cannot go beyond this limit, so it forms a curve like the "S" form.
 - The S-form curve is called the Sigmoid function or the logistic function.
- In logistic regression, we use the concept of the threshold value,
 - which defines the probability of either 0 or 1.
 - o Such as values above the threshold value tends to 1, and a value below the threshold values tends to 0.
- Standard logistic function where; L = 1; k = 1; x0 = 0

- Understanding Sigmoid Function (the core of logistic regression)
- The Figure sigmoid function converts the continuous variable data into the probability i.e. between 0 and 1.

$$\sigma = \frac{1}{1+e^{-x}}$$

• In linear regression

- $o = \frac{1}{1 + e^{-x}}$
- o IVs (e.g., age and gender) are used to estimate the specific value of the DV (e.g., body weight).
- In logistic regression
 - DV is dichotomous variables (0 or 1) and
 - the probability of the occurrence of value 1 (characteristic present) is estimated.
- Perform logistic regression:
 - To find out which variables have an influence on a disease.
 - o To examine effect of age, gender and smoking or not for detecting a particular disease.
 - In this case, 0 could stand for not diseased and 1 for diseased.
 - To estimate the probability of occurrence and not the value of the variable itself.
 - To do this, it is necessary to restrict the value range for the prediction to the range bet. 0 and 1 (see figure).
 - To ensure that only values between 0 and 1 are possible, the logistic function f is used:
 - $f(x) = 1 / (1 + e^{-x})$

- Logistic function
- The logistic model is based on the logical function.
- The special thing about the logistic function is that for values between minus and plus infinity,
 - o it always assumes only values between 0 and 1.
- To ensure that only values between 0 and 1 are possible, the logistic function f is used: $f(z) = 1 / (1 + e^{-z})$

 $\sigma = \frac{1}{1+e^{-x}}$

- To ensure that only values between 0 and 1 are possible, the logistic function f is used: $f(z) = 1 / (1 + e^{-z})$
- Diseased = Yes = 1 i.e P(y=1)
- Diseased = No = 0 i.e P(y=0)
- The probability that for given values of the independent variable the dichotomous dependent variable y is 0 or 1 is given by:

$$P(y=1|x_1,\ldots,x_n) = rac{1}{1+e^{-(b_1\cdot x_1+\ldots+b_k\cdot x_k+a)}} \ P(y=0|x_1,\ldots,x_n) = 1 - rac{1}{1+e^{-(b_1\cdot x_1+\ldots+b_k\cdot x_k+a)}}$$

- To calculate the probability of a person being sick or not using the logistic regression:
 - The model parameters b1, b2, b3 and a must first be determined.
 - Once these have been determined, the equation for the example above is:

$$P(ext{Diseased}) = rac{1}{1 + e^{-(b_1 ext{Age} + b_2 ext{Gender} + b_3 ext{Smoking status} + a)}}$$

$$\sigma = \frac{1}{1+e^{-x}}$$

- Example 1
 - Use a logistic regression with one explanatory variable and two categories to answer the question:
 - Dataset: A group of 5 person with disease yes/no for age, gender and smoking status.
 - Question: How does the age, gender and smoking status affect the probability of having a particular disease?

Sr No	Age	Gender	Smoking	Disease
1	25	0	1	1
2	37	1	0	0
3	40	0	0	0
4	49	0	1	1
5	55	1	1	1

- Answer:
 - Disease = Yes = 1 i.e P(y=1) and Disease = No = 0 i.e P(y=0)
 - $f(z) = P(Disease) = 1 / (1 + e^{-(b0+b1*Age+b2*Gender+b3*Smoking)})$
 - Logistic Regression Solved Example 1 [PDF]

Logistic Regression Solved Example 1 [PDF]

Aliswei.		iv is indepen	ident variable	and DV is De	pendent variab	ic			
	x1	x2	x3	у	e = 2.71828				
Sr No	Age (x1)	Gender (x2)	Smoking (x3)	Disease (y)	Calcuated Y (Fitted Value)	Prediction			
1	25	0	1	1	0.9947	1.			
2	37	1	0	0	0.0034	0			
3	40	0	0	0	0.0184	0			
4	49	0	1	1	0.9263	1			
5	55	1	1	1	0.4518	0			

IV is Independent variable and DV is Dependent variable

Determine Predicted value of y:

Ancwar

Disease = Yes = 1 i.e
$$P(y=1)$$
 and Disease = No = 0 i.e $P(y=0)$ $f(z) = P(Disease) = 1 / (1 + e^{-(bO+b)^*Age+b2^*Gender+b3^*Smoking})$

C' Matrix	Predicted 1	Predicted 0
Actual 1	TP	FN
Actual 0	FP	TN

' Matrix	Predicted 1	Predicted 0	Total (N)
Actual 1	2	1	3
Actual 0	0	2	2
Total (N)	2	3	5

P. Precision or PPV = TP / (TP+FP)= 1.000 NPV = TN / (TN+FN)= 0.667 False Omission Rate (FOR) = 1 - NPV= 0.333 R, Recall (Sensitivity) or TPR = TP / (TP+FN)= 0.667 Specificity or NPV or TNR = TN / (TN+FP)= 1.000 False Positive Rate (FPR) = FP / (FP+TN)= 0.000 FN / (FN+TP)= 0.333 False Negative Rate (FNR) = Accuracy = (TP+TN)/(TP+TN+FP+FN)= 0.800 F1 score = 2 * P * R / (P + R)= 0.8

- Example 2
 - Use a logistic regression with one explanatory variable and two categories to answer the question:
 - Dataset: A group of 20 students spends between 0 and 6 hours studying for an exam.
 - Question: How does the # hours spent studying affect the probability of the student passing the exam?
 - O Answer:
 - Result = Pass = 1 i.e P(y=1) and Result = Fail = 0 i.e P(y=0)
 - $f(z) = P(Result) = 1 / (1 + e^{-(b0+b1*Slept+b2*Study)})$
 - Logistic Regression Solved Example 2 [PDF]

Hours (x _k)	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	4.00	4.25	4.50	4.75	5.00	5.50
Pass (y _k)	0	0	0	0	0	0	0	1	0	1	0	1	0	1	1	1	1	1	1

• Logistic Regression Solved Example 2 [PDF]

Sr No	Slept (x1)	Study (x2)	Result (y)	Calcuated Y (Fitted Value)	Prediction
	IV	IV	DV		2.71828
Answer:	IV is Indepe	ndent variab	le and DV is	Dependent var	riable

Sr No	Slept (x1)	Study (x2)	Result (y)	Calcuated Y (Fitted Value)	Prediction
1	7.23	5.55	0	0.0101	0
2	8.12	5.12	1	0.0023	0
3	9.23	6.23	0	0.0018	0
4	5.12	8.12	1	0.6342	1
5	9.23	6.23	0	0.0018	0
6	3.55	9.55	1	0.9798	1
7	4.32	8.32	1	0.8472	1

Determine Predicted value of y: Result = Pass = 1 i.e P(y=1) and Result = Fail = 0 i.e P(y=0) $f(z) = P(Result) = 1 / (1 + e^{-(b0+b1*Slept+b2*Study)})$

C' Matrix	Predicted 1	Predicted 0
Actual 1	TP	FN
Actual 0	FP	TN

C' Matrix	Predicted 1	Predicted 0	Total (N
Actual 1	3	1	4
Actual 0	0	3	3
Total (N)	3	4	7

P. Precision or PPV = TP / (TP+FP)= 1.000

> NPV = TN / (TN+FN)= 0.750

False Omission Rate (FOR) = 1 - NPV= 0.250

R, Recall (Sensitivity) or TPR = TP / (TP+FN)= 0.750

Specificity or NPV or TNR = TN / (TN+FP)= 1.000

False Positive Rate (FPR) = FP / (FP+TN)= 0.000

False Negative Rate (FNR) = FN / (FN+TP)= 0.250

Accuracy = (TP+TN)/(TP+TN+FP+FN)= 0.857

F1 score = 2 * P * R / (P + R)= 0.8571428571

References

Text books:

- 1. Ethem Alpaydin, "Introduction to Machine Learning, 4th Edition, The MIT Press, 2020.
- 2. Peter Harrington, "Machine Learning in Action", 1st Edition, Dreamtech Press, 2012."
- 3. Tom Mitchell, "Machine Learning", 1st Edition, McGraw Hill, 2017.
- 4. Andreas C, Müller and Sarah Guido, "Introduction to Machine Learning with Python: A Guide for Data Scientists", 1ed, O'reilly, 2016.
- 5. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", 1st Edition, MIT Press, 2012."

Reference Books:

- 6. Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow", 2nd Edition, Shroff/O'Reilly, 2019.
- 7. Witten Ian H., Eibe Frank, Mark A. Hall, and Christopher J. Pal., "Data Mining: Practical machine learning tools and techniques", 1st Edition, Morgan Kaufmann, 2016.
- 8. Han, Kamber, "Data Mining Concepts and Techniques", 3rd Edition, Morgan Kaufmann, 2012.
- 9. Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar, "Foundations of Machine Learning", 1ed, MIT Press, 2012.
- 10. H. Dunham, "Data Mining: Introductory and Advanced Topics", 1st Edition, Pearson Education, 2006.

Thank You.

