Homework Assignment - 3

Submitted By Fahd Humayun 168000889 (fh186)

Question - 1:

A and *B* are 8-bit two's complement integers.

$$A = C4_{16} = 1100 \ 0100_2 = -60_{10}$$

$$-A = 0011 \ 1100_2 = 60_{10}$$

$$B = 4D_{16} = 0100 \ 1101_2 = 77_{10}$$

$$A * B = EDF4_{16} = 1110 \ 1101 \ 1111 \ 0100 = -4620_{10}$$

Step	Multiplicand (8-bits)	Product Register (16-bits)	Current Bit	Previous Bit	Next Operation	
0	1100 0100	0000 0000 0100 1101	1	0 (mythical)	Subtract	
1a.	1100 0100	0011 1100 0100 1101	1	0	Shift	
1b.	1100 0100	0001 1110 0010 0110	0	1	Add	
2a.	1100 0100	1110 0010 0010 0110	0	1	Shift	
2b.	1100 0100	1111 0001 0001 0011	1	0	Subtract	
3a.	1100 0100	0010 1101 0001 0011	1	0	Shift	
3b.	1100 0100	0001 0110 1000 1001	1	1	Shift	
4.	1100 0100	0000 1011 0100 0100	0	1	Add	
5a.	1100 0100	1100 1111 0100 0100	0	1	Shift	
5b.	1100 0100	1110 0111 1010 0010	0	0	Shift	
6.	1100 0100	1111 0011 1101 0001	1	0	Subtract	
7a.	1100 0100	0010 1111 1101 0001	1	0	Shift	
7b.	1100 0100	0001 0111 1110 1000	0	1	Add	
8a.	1100 0100	1101 1011 1110 1000	0	1	Shift	
8b.	1100 0100	1110 1101 1111 0100	X	X	DONE	

- 10 Subtract in next operation is done by adding two's compliment of multiplicand to the left half of the product and then storing result in the left of product.
- 01 Add in next operation is done by just adding the multiplicand directly to the left half of the product and then storing result in the left of product.
- 00-11-(and after sub/add) Shift in next operation is done by shifting the product to right 1 bit and sign extending.

Question - 2 (a):

A and B are 8-bit unsigned number.

$$A = C4_{16} = 1100\ 0100_2 = 196_{10}$$

$$B = 4D_{16} = 0100\ 1101_2 = 77_{10}$$

$$A * B = 3AF4_{16} = 0011\ 1010\ 1111\ 0100 = 15092_{10}$$

Step	Multiplicand (16-bits)	Product Register (16-bits)	Multiplier (8-bits)	LSB of Multiplier	Next Operation
0	0000 0000 1100 0100	0000 0000 0000 0000	0100 1101	1	Add
1a.	0000 0000 1100 0100	0000 0000 1100 0100	0100 1101	1	Shift left multiplicand
1b.	0000 0001 1000 1000	0000 0000 1100 0100	0100 1101	1	Shift right multiplier
1c.	0000 0001 1000 1000	0000 0000 1100 0100	0010 0110	0	Shift left multiplicand
2a.	0000 0011 0001 0000	0000 0000 1100 0100	0010 0110	0	Shift right multiplier
2b.	0000 0011 0001 0000	0000 0000 1100 0100	0001 0011	1	Add
3a.	0000 0011 0001 0000	0000 0011 1101 0100	0001 0011	1	Shift left multiplicand
3b.	0000 0110 0010 0000	0000 0011 1101 0100	0001 0011	1	Shift right multiplier
3c.	0000 0110 0010 0000	0000 0011 1101 0100	0000 1001	1	Add
4a.	0000 0110 0010 0000	0000 1001 1111 0100	0000 1001	1	Shift left multiplicand
4b.	0000 1100 0100 0000	0000 1001 1111 0100	0000 1001	1	Shift right multiplier
4c.	0000 1100 0100 0000	0000 1001 1111 0100	0000 0100	0	Shift left multiplicand
5a.	0001 1000 1000 0000	0000 1001 1111 0100	0000 0100	0	Shift right multiplier
5b.	0001 1000 1000 0000	0000 1001 1111 0100	0000 0010	0	Shift left multiplicand
6а.	0011 0001 0000 0000	0000 1001 1111 0100	0000 0010	0	Shift right multiplier
6b.	0011 0001 0000 0000	0000 1001 1111 0100	0000 0001	1	Add
7a.	0011 0001 0000 0000	0011 1010 1111 0100	0000 0001	1	Shift left multiplicand
7b.	0110 0010 0000 0000	0011 1010 1111 0100	0000 0001	1	Shift right multiplier
7c.	0110 0010 0000 0000	0011 1010 1111 0100	0000 0000	0	Shift left multiplicand
8a.	1100 0100 0000 0000	0011 1010 1111 0100	0000 0000	0	Shift right multiplier
8b.	1100 0100 0000 0000	0011 1010 1111 0100	0000 0000	0	DONE

If LSB of multiplier is 1 then add multiplicand to product, shift multiplicand left 1 bit, and shift multiplier right 1 bit.

If LSB of multiplier is 0 then shift multiplicand left 1 bit, and shift multiplier right 1 bit.

Question - 2 (b):

Each repetition in worst case has:

1 addition operation (2ns) & 2 shift operations (2ns each)

Where, the 2 shift operations can be done simultaneously, therefore,

1 addition operation + 2 shift operations = 2ns + 2ns = 4ns/repetition

So, each repetition of worst case takes 4ns. For 8-bit numbers there will be 8 repetitions therefore,

the worst case time = 8 * 4ns = 32 ns

Question - 3:

```
# switch(s){
# case0: h = i + 3j; break;
# case1: h = j - 4i; break;
\# $s0 = s, $s1, = i, $s2 = j, $s3 = h, sequential words in memory starting at $s4
# switch (s)
           $t0, $s0, 2
                         \# t0 = 4*s
   sll
           $t1, $t0, $s4  # t1 = starting address + 4*s (i.e. address of switch(s))
   add
          $t2, 0($t1) # load word from memory (i.e. switch(s))
   lw
   jr
          $t2
                         # jump to address loaded from memory stored in $t2
case0:
   sll
          $t3, $s2, 1 # t3 = 2j
          $t3, $t3, $s2 # t3 = \frac{2}{2} + j = \frac{3}{2}
   add
   add
          $s3, $s1, $t3  #s3 = h = i + 3j
   i
          EXIT
                         # jump to EXIT
case1:
          sll
   sub
           EXIT # jump to EXIT
EXIT:
  . . .
```

Question - 4 (a):

A & *B* 4-bit unsigned numbers.

$$A = 0111_2 = 7_{10}$$
 $B = 0101_2 = 5_{10}$

$$\frac{A}{B} \rightarrow Remainder = 0010_2 = 2_{10}$$

$$\frac{A}{B} \rightarrow Quotient = 0001_2 = 1_{10}$$

Dividend is loaded into the remainder register. Shift left the remainder 1 bit, then do iterations with the beginning step of subtracting the divisor register from the left half of the remainder register and place the result in the left half of the remainder register. If the remainder is < 0 (MSB of remainder = 1) then restore the original value by adding the divisor to the left half of the remainder, and then shift the remainder register to left with setting the new LSB of remainder to 0. If the remainder >= 0 (MSB of remainder = 0) then shift the remainder to left with setting the new LSB of remainder to 1. After the iterations shift the left half of remainder to right 1 bit.

Quotient (N/A)	Divisor (4-bits)	Remainder (8-bits)	Description	Step	Time (ns)
0111	0101	0000 0111	Initial values	0	
1110	0101	0000 1110	Shift left 1 bit	0a.	2
1110	0101	1 011 1110	Rem = Rem - Div	1a.	2
1110	0101	0000 1110	Rem = Rem + Div	1b.	2
1100	0101	0001 1100	Shift left Rem, LSB = 0	1c.	2
1100	0101	1 100 1100	Rem = Rem - Div	2a.	2
1100	0101	0001 1100	Rem = Rem + Div	2b.	2
1000	0101	0011 1000	Shift left Rem, LSB = 0	2c.	2
1000	0101	1 110 1000	Rem = Rem - Div	За.	2
1000	0101	0011 1000	Rem = Rem + Div	3b.	2
0000	0101	0111 0000	Shift left Rem, LSB = 0	3c.	2
0000	0101	0 010 0000	Rem = Rem - Div	4a.	2
0001	0101	0100 0001	Shift left Rem, LSB = 1	4b.	2
0001	0101	0010 0001	Shift right (left half) Rem	Done	2
		Remainder Quotient	_		Total:
		nemamaer Quotient			26 ns

The quotient column in this algorithm is not needed (not applicable), but the values in the quotient reflects the values in the right half of the remainder.

Question - 4 (b):

Before the repetitions/iterations start there is a *shift* operation in the beginning that takes 2ns.

In the iteration process there are two possible paths that will follow:

- 1. One of the path is for remainder greater than 0 after the *subtraction* operation that takes 2ns, which is followed by a *shift* operation that also takes 2ns. So, in total this path of the iteration takes 4ns.
- 2. The second path is for remainder less than 0 after the *subtraction* operation that takes 2*ns*, which is followed by an *addition* operation that takes 2*ns*, followed by a *shift* operation that takes 2*ns*. So, in total this path of the iteration takes 6*ns*.

At the end of the iterations there is a final *shift* operation of 2*ns*.

So, for the above division, the total time necessary to perform using the given hardware is calculated in the table above i.e. **26***ns*.

Question - 5 (a) & (b):

Reg	Sign (1-bit)	Exponent (8-bits)	Fraction (23-bits)	Decimal equivalent
\$f1	1	0101 0100	1101 0101 0011 0100 0000 011	$-2.084*10^{-13}$
\$f2	1	0101 0100	1001 0110 1000 0100 0001 010	$-1.805 * 10^{-13}$
\$f3	0	0100 0010	0110 1110 1010 1110 1100 001	$6.212*10^{-19}$

The equation to convert from binary floating point representation to decimal is

$$(number)_{10} = (-1)^{sign} * (1 + fraction) * 2^{power = exponent-bias}$$

For \$*f* 1,

sign = 1

 $exponent = 2^6 + 2^4 + 2^2 = 64 + 16 + 4 = 84$

bias = 127 (single precision)

power = 84 - 127 = -43

 $fraction_2 = 0.1101\ 0101\ 0011\ 0100\ 0000\ 011$

 $1 + fraction_2 = 1.1101\ 0101\ 0011\ 0100\ 0000\ 011$

 $f1 = (-1)^{1} * (1.11010101001101000000011) * 2^{-43}$

 $fraction_{10} = 2^{-1} + 2^{-2} + 2^{-4} + 2^{-6} + 2^{-8} + 2^{-11} + 2^{-12} + 2^{-14} + 2^{-22} + 2^{-23} = 0.833$

 $1 + fraction_{10} = 1.833$

 $(number)_{10} = (-1)^1 * (1.833) * 2^{-43} = -2.084 * 10^{-13}$

Similarly for f2 & f3,

For \$f2,

sign = 1

exponent = 84

bias = 127 (single precision)

power = 84 - 127 = -43

 $fraction_2 = 0.1001\ 0110\ 1000\ 0100\ 0001\ 010$

 $1 + fraction_2 = 1.1001\ 0110\ 1000\ 0100\ 0001\ 010$

 $f^2 = (-1)^1 * (1.10010110100001000001010) * 2^{-43}$

 $fraction_{10} = 0.588$

 $1 + fraction_{10} = 1.588$

 $(number)_{10} = -1.805 * 10^{-13}$

```
For \$f3, sign = 1 exponent = 66 bias = 127 \ (single \ precision) power = 66 - 127 = -61 fraction_2 = 0.0110 \ 1110 \ 1010 \ 1110 \ 1100 \ 001 1 + fraction_2 = 1.0110 \ 1110 \ 1010 \ 1110 \ 1100 \ 001) * 2^{-61} fraction_{10} = 0.432 1 + fraction_{10} = 1.432 (number)_{10} = 6.212 * 10^{-19} Addition:
```

f1 + f2:

Step # 1: Align binary points (shift number with smaller exponent)

This step is not needed as the numbers are already aligned.

```
Step # 2: Add significands
```

```
= (-1.11010101010101000000011) * 2^{-43} + (-1.1001011010000100001010) * 2^{-43} \\ = -11.01101011101110000001101 * 2^{-43}
```

Step # 3: Normalize result & check for over/underflow

$$f_1 + f_2 = -1.10110101111011110000001101 * 2^{-42}$$

Step # 4: Round and renormalize (not needed)

Addition:

$$(\$f1 + \$f2) + \$f3$$
:

Step # 1: Align binary points (shift number with smaller exponent)

Shifting \$f3

 $f3 = 0.00000000000000000010110 * 2^{-42}$

Step # 2: Add significands

Two's compliment of \$f1 + \$f2 = 0.010010100010001111110010

$$= 0.010010100010001111111001*2^{-42} + 0.00000000000000000010110*2^{-42}$$

 $= 0.01001010001001000001111 * 2^{-42}$

Step # 3: Normalize result & check for over/underflow (not needed)

Step # 4: Round and renormalize (not needed)

$$\begin{aligned} sign &= 1 \\ exponent &= power + bias = -42 + 127 = 85_{10} = 01010101_2 \\ fraction &= .1011\ 0101\ 1101\ 1011\ 1110\ 000 \\ 1 + fraction_{10} &= 1.710 \\ (number)_{10} &= -1.710 * 2^{-42} = -3.889 * 10^{-13} \end{aligned}$$

So, the final result,

Sign (1-bit)	Exponent (8-bits)	Fraction (23-bits)	Decimal equivalent
1	0101 0101	1011 0101 1101 1011 1110 000	$-3.889*10^{-13}$

Question - 6 (a) & (b):

Multiplication:

$$\$f1 * \$f2 \\ = -1.110101010101010100000011 * 2^{-43} * -1.1001011010000100001010 * 2^{-43}$$

Step # 1: Add exponents

$$unbiased = -43 + (-43) = -86$$

Step # 2: Multiply significands

Step # 3: Normalize result & check for over/underflow

$$f1 * f2 = 1.011101001001001010101010 * 2^{-85}$$

 $exponent = -85 + 127 = 42$ (no overflow/underflow)

Step # 4: Round and renormalize (not needed)

Step # 5: Determine sign:

$$negative * negative = positive$$

$$f1 * f2 = 1.011101001001001010101010 * 2^{-85}$$

Multiplication:

$$\begin{array}{l} (\$f1*\$f2)*\$f3 \\ = 1.01110100100100101010101010 * 2^{-85}* 1.01101110101011101100001 * 2^{-61} \end{array}$$

Step # 1: Add exponents

$$unbiased = -85 + (-61) = -146$$

Step # 2: Multiply significands

- = 1.011101001000100101001010 * 1.01101110101011101100001
- $= 10.00010101100110101010111 * 2^{-146}$

Step # 3: Normalize result & check for over/underflow

$$(\$f1*\$f2)*\$f3 = 1.000010110110011010101011 * 2^{-145}$$

$$exponent = -145 + 127 = -18$$

Which means result is underflow and (\$f1*\$f2)*\$f3 cannot be calculated