

TD NSI -Machine de Turing

1 Machine de Turing

Exercice 1

On donne une fonction de transition et trois rubans. C'est la tête de lecture qui se déplace.

Etat	Lecture	Ecriture	Deplacement	Etat suivant
A	blanc	blanc	gauche	В
	0	1	gauche	(Fin)
В	1	0	gauche	В
	blanc	1	gauche	(Fin)

- 1. Représenter les états finaux de ces trois rubans.
- 2. Que fait cette machine?
- 3. Faites une machine programmée en python sur le modéle du cours et tester les trois rubans.

Exercice 1.2

Si sur un ruban la téte de lecture est à gauche d'une suite continue de 0 ou 1, une machine de Turing passe la tête de lecture à droite de la suite.

Par exemple: ... devient ... devient ... devient ...

Écrire la table de transition de cette machine puis un code python correspondant.

www.math93.com - J. Courtois

La machine de Turing est donnée par le tableau suivant. C'est la tête de lecture qui se déplace :

Etat	Lecture	Ecriture	Deplacement	Etat suivant
A	blanc	blanc	droite	В
В	0	0	droite	В
	1	1	droite	В
	blanc	blanc	gauche	С
С	0	1	gauche	(Fin)
	1	0	gauche	С
	blanc	1	gauche	(Fin)

1. La machine est dans l'état A et la position initiale de la tête de lecture est la suivante :

Quel le résultat quand on lance la machine s'il est écrit 10011 sur le ruban?

2. A quel autre machine vous fait pensez cette machine? Quel est son avantage?

Exercice 1.4

Une machine de Turing effectue la soustraction de 1. Le nombre initiale est supposé supérieur à 1.

- 1. Décrire les différentes étapes pour cette soustraction.
 - (a) s'il est écrit 101 sur le ruban.
 - (b) s'il est écrit 1010 sur le ruban.
 - (c) s'il est écrit 100 sur le ruban.
- 2. Écrire la table de transition de cette machine.

Exercice 1.5

Ecrire la table de transition et coder en python une machine de Turing qui fait la negation bit à bit d'un nombre en binaire.

Exercice 1.6

Ecrire la table de transition d'une machine de Turing et le code python la simulant pour décaler d'une case vers la droite une suite de 0 et de 1 contigus.

On peut utiliser 5 états dont un initial et un final.

www.math93.com - J. Courtois