Practice Exercise: Queue

5 กุมภาพันธ์ 2568

เรียงลำดับคำขอ (Request Handle)

เรามี Request เข้ามาเรื่อย ๆ โดยไม่รู้จบ ซึ่งแต่ละ Request จะใช้เวลาในการทำงานจำนวน x ms และ แต่ละ Request จะเข้ามาที่เวลา t_i ตัวอย่างเช่น

- x=7 หมายความว่าทุก Request จะใช้เวลา 7 ms เท่า ๆ กัน
- $t_1=0$ หมายความว่า มี Request เข้ามาที่เวลา 0 ms ดังนั้น ที่เวลา 0 จะมีจำนวน Request เท่ากับ 1 Request
 - Request นี้ จะอยู่ในการทำงานตั้งแต่ช่วงเวลาเริ่ม ms ที่ 0 ไปจนถึงจบ ms ที่ 6
 - เมื่อจบช่วงเวลา ms ที่ 6: Request นี้จะเสร็จการทำงานและออกจากโปรแกรมไป
 - เมื่อเริ่ม ms ที่ 7 จะไม่มี Request ดังกล่าวนี้อยู่ในคิวแล้ว
- $t_2=7$ หมายความว่า มี Request เข้ามาที่เวลา 7 ms ดังนั้น ที่เวลา ms = 7 จะมีจำนวน Request เท่ากับ 1 Request (จากเหตุผลในข้อด้านบน)
- $t_2=9$ หมายความว่า มี Request เข้ามาที่เวลา $9~{
 m ms}$ ดังนั้น ที่เวลา ${
 m ms}=9$ จะมีจำนวน Request เท่ากับ $2~{
 m Request}$
- $t_3=13$ หมายความว่า มี Request เข้ามาที่เวลา $13~{
 m ms}$ ดังนั้น ที่เวลา ${
 m ms}=13~{
 m 3}$ จะมีจำนวน Request เท่ากับ $3~{
 m Request}$
- $t_4=14$ หมายความว่า มี Request เข้ามาที่เวลา $14~{
 m ms}$ ดังนั้น ที่เวลา ${
 m ms}=14$ จะมีจำนวน Request เท่ากับ $3~{
 m Request}$
- $t_5=21$ หมายความว่า มี Request เข้ามาที่เวลา $21~{
 m ms}$ ดังนั้น ที่เวลา ${
 m ms}=21~{
 m 3}$ รมีจำนวน Request เท่ากับ $1~{
 m Request}$

เราจะรับค่าไปเรื่อย ๆ จนกว่ารับค่า -1 เป็นรหัสของการจบโปรแกรม

ให้นักศึกษาใช้โครงสร้างข้อมูลแบบ Queue เพื่อเก็บข้อมูลของลำดับเวลาที่ Request เข้ามา และทุกครั้ง ที่มี Request ตัวใหม่เพิ่มเข้ามา ให้นักศึกษาพิมพ์จำนวน Request ที่กำลังทำงานอยู่

ข้อมูลนำเข้า (Input)

บรรทัดที่ 1	จำนวนเต็ม x บอกเวลาทำงานของแต่ละ Reqeust โดยที่ $1 \leq x \leq 100$
บรรทัดที่ 2 เป็นต้นไป	จำนวนเต็ม t_i บอกเวลาที่เข้ามาของแต่ละ Reqeust โดยที่ $t_i < t_j$ เสมอ
	เมื่อ $i < j$
บรรทัดสุดท้าย	ตัวเลข -1 เพื่อจบการรับค่า

ข้อมูลส่งออก (Output)

N O C. W N .	
0 10000000 1 1000 100 100	จำนวนของ Request ที่กำลังทำงานอย่
🗆 บรรทัดที่ 1 เป็นตนไป	า ขาน เนขยง Reduest ที่กาดงทาง เนยย
	• · · · · · · · · · · · · · · · · · ·

KM COC

ตัวอย่างข้อมูลนำเข้า ส่งออก (Examples of Input & Output)

Input	Output
7	1
0	1
7	2
9	3
13	3
14	1
21	
-1	
10	1
1	2
2	3
3	4
4	5
8	6
9	7
10	7
11	1
30	
-1	

แจกของ (Giveaway)

ในวันที่ 10 กุมภาพันธ์ 2568 มีกิจกรรม CPE Games 2025 ซึ่งช่วงค่ำของกิจกรรมก็จะมีปาร์ตี้กินเลี้ยง, แข่งวงตรี, สอยดาว และกิจกรรมต่าง ๆ อีกมากมาย และกิจกรรมพิเศษสำหรับน้อง ๆ CPE38 ก็คือการแจกของ ขวัญจากอาจารย์ผู้สอนวิชา CPE112 นั่นเอง

มีนักศึกษาต่อแถวในคิวจำนวน n คน และมีของให้จำนวน n ชิ้น ซึ่งแต่ละชิ้นเป็นไปได้อยู่สองอย่างคือ

- 1 คือของขวัญสุดพิเศษจากอาจารย์เตย
- 2 คือของขวัญสุดพิเศษจากอาจารย์วี

โดยของจะวางเรียงจากหน้าไปหลัง โดยคนที่อยู่ลำดับหน้าสุดจะได้เห็นของที่วางอยู่หน้าสุดแต่เพียงอันเดียว เท่านั้น นักศึกษาแต่ละคนมีของอยู่ในใจที่ต้องการ (เป็นไปได้สองแบบคือ 1 หรือ 2) โดยให้คนที่อยู่แถวหน้าสุด มีสิทธิได้เห็นของก่อน โดยมีเงื่อนไขดังต่อไปนี้

- หากนักศึกษาอยากได้ของที่ตรงกับของที่อยู่ตรงหน้าสุด นักศึกษาจะหยิบของชิ้นนั้นไป แล้วออกไปจาก คิว
- หากของที่อยู่ตรงหน้าสุด ไม่ตรงกับสิ่งที่นักศึกษาอยากได้ นักศึกษาจะไม่หยิบของชิ้นนั้น แล้วออกจาก คิวเพื่อไปต่อแถวใหม่ด้านหลังสุด

เรามาดูตัวอย่างเหตุการณ์สมมติกัน

- ให้มีจำนวนนักศึกษาและจำนวนของขวัญ n=6 ชิ้น
- ให้คิวของนักศึกษาเป็น {2, 2, 1, 2, 1, 2} และของขวัญคือ {2, 1, 1, 2, 2, 1} (ให้<mark>ตัวอักษรสีแดงคือลำดับหน้าสุดของคิ</mark>ว)
- นักศึกษาคนแรกได้ของที่อยากได้ ทำให้เขาหยิบของแล้วออกไปจากคิว คิวของนักศึกษากลายเป็น
 1, 2, 1, 2 และของขวัญเป็น (1, 1, 2, 2, 1)
- นักศึกษาคนต่อมาไม่ได้ของที่อยากได้ ทำให้เขาออกจากคิวแล้วไปต่อแถวหลังสุด คิวของนักศึกษากลาย เป็น {1, 2, 1, 2, 2} และของขวัญเป็น {1, 1, 2, 2, 1}
- นักศึกษาคนต่อมาได้ของที่อยากได้ ทำให้เขาหยิบของแล้วออกไปจากคิว คิวของนักศึกษากลายเป็น
 1, 2, 2} และของขวัญเป็น {1, 2, 2, 1}
- นักศึกษาคนต่อมาไม่ได้ของที่อยากได้ ทำให้เขาออกจากคิวแล้วไปต่อแถวหลังสุด คิวของนักศึกษากลาย
 เป็น {1, 2, 2, 2} และของขวัญเป็น {1, 2, 2, 1}
- ทำเช่นนี้เรื่อย ๆ กับนักศึกษาทั้งสามคนด้านหน้านี้ ทั้ง 3 คนหยิบของแล้วออกไปจากคิว จนทำให้คิวของ นักศึกษาเหลือเพียง {2} และของขวัญเป็น {1}
- เราจะได้ข้อสรุปว่า จะมีนักศึกษาจำนวน 1 คนที่จะไม่ได้ของขวัญไป

ให้นักศึกษาเขียนโปรแกรมภาษาซี เพื่อหาว่าจะมีนักศึกษากี่คนที่จะไม่ได้ของขวัญ

ข้อมูลนำเข้า (Input)

บรรทัดที่ 1	จำนวนเต็ม n แทนจำนวนนักศึกษาและของขวัญ โดนที่ $1 \leq n \leq 10,000$
บรรทัดที่ 2	จำนวนเต็ม n จำนวนแทนของที่นักศึกษาอยากได้ โดยมีแค่ 2 ค่าที่เป็นไปได้คือ ${f 1}$ หรือ ${f 2}$
บรรทัดที่ 3	จำนวนเต็ม n จำนวนแทนของขวัญที่วางอยู่ โดยมีแค่ 2 ค่าที่เป็นไปได้คือ ${f 1}$ หรือ ${f 2}$

KM COG

ข้อมูลส่งออก (Output)

o, a	ର ହଙ୍କ ଲାମ । ଏହା ହ
บรรทัดที่ 1	จำนวนนักศึกษาที่ไม่ได้รับของขวัญ
O 9 9 N I N I N I T	A IR 9 R R I L II I G I M PM PM 9 M 9 M 0 9 P P

ตัวอย่างข้อมูลนำเข้า ส่งออก (Examples of Input & Output)

Input	Output
6	1
2 2 1 2 1 2	
2 1 1 2 2 1	
6	3
2 2 2 1 1 2	
2 1 1 1 2 2	
4	0
2 2 1 1	
1 2 1 2	

จัดการหน่วยความจำ (Memory Management)

ในระบบคอมพิวเตอร์ RAM เป็นหน่วยความจำที่จัดการกับ Process ที่ทำงานในระบบ ซึ่งควรจะมีให้เพียง พอต่อการใช้งาน

หากว่าเรามี Process มากมายที่จะทำงานซึ่งมากเกินไปกว่าหน่วยความจำของ RAM โปรแกรมเหล่านี้จะ ต่อแถวอยู่ใน Waiting Queue เพื่อให้ Process ที่มาก่อนสามารถเข้าไปทำงานได้ก่อน แล้วจึงสามารถเข้าไป ทำงานได้เมื่อมีพื้นที่ว่าง (ที่จริงแล้วเรายังมีหน่วยความจำอื่นที่สามารถถูกเอามาใช้ให้คล้าย ๆ กับ RAM และยัง มีเทคนิคการสลับ Process ทำงานด้วย แต่เรื่องพวกนั้นเอาให้น้อง ๆ เรียนตอนปี 3 แล้วกันนะ)

ยกตัวอย่างสถานการณ์เช่น ในคอมพิวเตอร์เรามีหน่วยความจำ RAM จำนวน $16~{\rm GB}$ เรามี Process ่ที่รอ คิวดังนี้ $\{{f 12,\ 3,\ 2,\ 8,\ 6,\ 1}\}$ ให้เลขในคิวหมายถึงพื้นที่ที่ Process นั้น ๆ ต้องการในหน่วย GB และ ให้สมมติว่าทุก Process ใช้เวลาทำงานเท่ากัน ในที่นี้ให้ t=4 แทนเวลาที่แต่ละ Process ต้องการทำงานใน หน่วยวินาที เราจะได้ผลดังนี้

- Process **{12, 3}** จะได้เข้าไปทำงานพร้อมกัน เพราะว่าใช้พื้นที่รวมเป็น 15 GB (ไม่เกิน 16 GB) ซึ่ง ใช้เวลา 4 วินาทีในการทำงาน
- เมื่อเวลาผ่านไป 4 วินาที ทั้งสอง Process ด้านบนทำงานเสร็จ จะคืนพื้นที่ว่างให้ ทำให้ Process **{2, 8, 6}** ได้เข้าไปทำงาน ใช้เวลา 4 วินาที
- หลังจากนั้นก็จะคืนพื้นที่ให้ ให้ Process **{1}** ได้เข้าไปทำงาน ใช้เวลาอีก 4 วินาที จึงจะจบการทำงาน ทั้งหมด
- สังเกตได้ว่ากระบวนการทั้งหมดใช้เวลา 12 วินาทีจึงเสร็จสิ้น

จากตัวอย่างด้านบน หากว่าเรากำหนดให้มีเวลาทำงานทั้งหมด 12 วินาที คอมพิวเตอร์สามารถประมวลผล ได้ครบทั้ง 6 Process

แต่หากว่าเรากำหนดให้คอมพิวเตอร์ทำงาน 10 วินาที Process **{1}** จะไม่สามารถทำงานเสร็จสิ้นได้ ทำให้ จำนวน Process ที่ทำงานเสร็จมีเพียง 5 Process นั่นเอง

เมื่อเราให้พื้นที่แรมมา r GB ให้เวลาในการทำงานของแต่ละ Process เป็น t วินาที และให้คอมพิวเตอร์ ทำงานเป็นเวลา n วินาที ให้นักศึกษาเขียนโปรแกรมหาว่าคอมพิวเตอร์สามารถประมวลผล Process ได้สำเร็จ จำนวนกี่ Process

ข้อมูลนำเข้า (Input)

บรรทัดที่ 1	จำนวนเต็ม r,t และ n แทนพื้นที่แรม, เวลาของแต่ละ Process และเวลา ที่ให้คอมพิวเตอร์ทำงาน ตามลำดับ โดยที่ $t< n$ เสมอ
บรรทัดที่ 2 เป็นต้นไป	
บรรทัดสุดท้าย	ค่า –1 แทนการจบการรับค่า

ข้อมูลส่งออก (Output)

บรรทัดที่ 1	จำนวน Process ที่ทำงานได้สำเร็จ
-------------	---------------------------------

KM COC

ตัวอย่างข้อมูลนำเข้า ส่งออก (Examples of Input & Output)

Input	Output
16 4 10	5
12	
3	
2	
8	
6	
1	
-1	
8 3 11	2
6	
2	
10	
1	
4	
2	
-1	

หมายเหตุ: ในตัวอย่างที่สอง พบว่ามี Process ที่มีขนาดใหญ่กว่า RAM ทำให้คิวที่เหลือติดขัดจนหมดเวลา ทำให้มีแค่ 2 Process แรกที่รันได้สำเร็จ

อูยองอู (Extraordinary Attorney Woo)

"ชื่อของฉัน ไม่ว่าอ่านตามตรง หรืออ่านกลับด้านก็เป็นอูยองอูค่ะ กนก บวบ นลิน ยาย วาดดาว อูยองอู"

วันนี้เราจะมาตรวจสอบกันว่าคำที่ให้ไปนี้ อ่านกลับหลังไปหน้าก็ยังเป็นเหมือนเดิมหรือเปล่า สิ่งนี้เรียกว่า พาลินโดรม (Palindrome) คือสายอัชระที่ไม่ว่าสะกดไปข้างหน้าหรือย้อนกลับก็จะได้ดังเดิม

เช่นคำว่า NOON ก็นับเป็นพาลินโดรม เพราะสะกดจากหน้าไปหลังหรือหลังไปหน้า ก็ได้ NOON เหมือนกัน

ง่าย ๆ เลย ให้นักศึกษานำหลักการของ Deque (Double-ended queue) มาตรวจสอบว่า String ที่ให้ มานี้เป็น Palindrome หรือไม่

ข้อมูลนำเข้า (Input)

ା ବ୍ୟ .	નાં પાય થ થ ૧ ૧ ૧ ૧ માં પાર્ગ
บรรทัดที่ 1	String ที่ประกอบไปด้วยตัวอักษรอังกฤษพิมพ์ใหญ่เท่านั้น ไม่จำกัดความ
0 8 8 7 17 17 1	
	0.00 시설 사내 :
	ยาว ไม่มี Whitespace
	5 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·

ข้อมูลส่งออก (Output)

บรรทัดที่ 1	หาก String ที่ใส่มาเป็นพาลินโดรมให้พิมพ์ YES หากไม่เป็นให้พิมพ์ NO
-------------	--

ตัวอย่างข้อมูลนำเข้า ส่งออก (Examples of Input & Output)

Input	Output
NOON	YES
CPETHREEEIGHTYOUSOCUTE	NO

KM COE

รหัสลับ (Secret code for you & me)

เราจะมาแปลงข้อความให้เป็นรหัสลับที่เราสองคนรู้กันเท่านั้น ... ด้วยการใช้ Priority Queue นั่นเองงงง โดยมีกฎการแปลงแบบแสนจะง่ายว่า:

- พยัญชนะภาษาอังกฤษทั้งหมดจะถูกให้ค่า Priority เป็น 1
- สระภาษาอังกฤษทั้งหมดจะถูกให้ค่า Priority เป็น 3
- ตัวอักษรที่เหลือที่ไม่ใช่ตัวอักษรภาษาอังกฤษ (เช่น สัญลักษณ์ หรือตัวเลข) จะถูกให้ค่า Priority เป็น 2
- ค่า Priority ที่มากที่สุดคือมีความสำคัญสูงที่สุด รองลงมาเรื่อย ๆ
- สำหรับตัวอักษรที่มีค่า Priority เท่ากัน ให้ใช้หลักการของ "First come, first serve"

เช่นคำว่า I love You! เราจะได้ค่า Priority ของแต่ละตัวอักษรว่า

ตัวอักษร	1	'whitespace'	l	0	V	е	'whitespace'	Υ	0	u	!
ค่า Priority	3	2	1	3	1	3	2	1	3	3	2

ผลลัพธ์ที่ได้คือ Ioeou !1VY

ให้นักศึกษาแปลง String ที่รับเข้ามาให้เข้าตามเงื่อนไขด้านบน

ข้อมูลนำเข้า (Input)

บรรทัดที่ 1	String ที่เราต้องการแปลง	
-------------	--------------------------	--

ข้อมูลส่งออก (Output)

บรรทัดที่ 1	String ที่ถกแปลงตามเงื่อนไขด้านบน

ตัวอย่างข้อมูลนำเข้า ส่งออก (Examples of Input & Output)

Input	Output
I loVe You!	Ioeou !lVY
error	eorrr

KM COG