Trabajo de Control de Análisis Matemático I. Tema II Curso 2009-2010

Batería A

- 1) Dada la función $f(x) = (1+x)\arctan\left(\frac{1}{1-x^2}\right)$
 - a) Halle el dominio de f(x).
 - b) Determine los puntos de discontinuidad de la función y clasifique el tipo de discontinuidad. Justifique su respuesta.
 - c) Determine si la función puede ser definida en los puntos de discontinuidad de forma tal que sea continua. Justifique su respuesta.
- 2) Pruebe que la ecuación $2^x = \frac{1}{x}$ tiene una solución en el intervalo (0,1).
- 3) Determine si las funciones $f(x) = \ln \sqrt{\frac{1+x}{1-x}}$ y g(x) = x son equivalentes o no, cuando $x \to 0$. Justifique su respuesta.
- 4) Pruebe que existe N > 0 tal que la designaldad $\frac{1 xsen \frac{2}{x}}{1 + xsen \frac{3}{x}} < 0$ es cierta para todo $x \in [N, +\infty)$.

<u>Trabajo de Control de Análisis Matemático I. Tema II Curso 2009-2010</u>

Batería B

- 1) Dada la función $f(x) = \begin{cases} \left(\cos^2 2x\right)^{1/x^2} & \text{si } x > 0\\ \frac{2}{1-2^x} + (2^x 1)sen\frac{1}{x} & \text{si } x < 0 \end{cases}$
- a) Determina los puntos de continuidad de f. Justifique.
- b) ¿Será posible definir f(0) tal que la función sea continua en $x_0 = 0$? .Justifique.
- 2) Demuestra que la ecuación $\frac{senx}{\cos x} = x^n$ tiene solución en cada intervalo de la forma $((2n-1)\pi/2; (2n+1)\pi/2), n=1,2,3,...$
- 3) Diga si las siguientes proposiciones son verdaderas o falsas y justifica.
- 3.1) f está definida en [a;b] (cerrado y acotado), f alcanza sus valores máximo y mínimo en [a;b] entonces:
 - a) $\underline{\hspace{1cm}}$ f es continua en [a;b].
 - b) _____ f es discontinua en [a;b].
 - c) _____ f es acotada en [a;b].
- 3.2) f es una función continua en x_0 , g es una función definida en una vecindad de x_0 y discontinua en x_0 , entonces la función $(1+f^2(x))/g(x)$:
 - a)____ es continua en x_0 .
 - b)____ es discontinua en x_0 .
 - c)____ es acotada en una vecindad en x_0 .

Trabajo de Control de Análisis Matemático I. Tema II Curso 2009-2010

Batería C

1) Dada la función
$$f(x) = \begin{cases} \frac{\cos 3x^3 - 1}{sen^6 2x + x^8} & \text{si } x > 0\\ \frac{e^{x^2} - \cos x}{senx + x^3} & \text{si } x < 0 \end{cases}$$

- a) Determina el conjunto de puntos donde f es continua. Justifica.
- b) Si existen puntos de discontinuidad diga si es evitable o no y justifica.
- 2) Diga si son verdaderas o falsas las siguientes proposiciones y justifica.
 - a) f es una función continua en [a;b] (cerrado y acotado), entonces alcanza sus valores máximo y mínimo en $(c;d) \subset [a;b]$.
 - b) f está definida en [a;b] (cerrado y acotado), f(a) > 0, f(b) < 0 entonces la ecuación $xf^2(x) + f(x) = 0$ tiene solución en (a,b).
- 3) a) Sea f continua en $[0;+\infty)$ y $\lim_{x\to+\infty} f(x) = 2$. Pruebe que f es acotada en $[0;+\infty)$.
 - b) Si extendemos f a todo IR de forma tal que la función extendida es par o impar. ¿Será la función extendida acotada en IR ? Justifique.