SONiC + ホワイトボックススイッチで実現する EVPN/VXLANロスレスイーサ

APRESIA Systems株式会社

大渕 光希(koki.obuchi.tc@apresiasystems.co.jp)

2023.11.10

- ◆氏名
 - ◇ 大渕 光希(おおぶち こうき)
- ◆経歴
 - ◇ 2015年 日立金属株式会社※に入社
 - ◇ 2015年-2021年 APRESIAシリーズの製品ソフトウェア開発を担当
 - ◇ 2021年-現在 オープンネットワーキング(SONiCなど)の業務を担当

※2016年にAPRESIA Systems株式会社として通信機器事業をカーブアウト

- ◆ 大規模AI/ML基盤の構築
 - ◇ 2023/6/16 さくらインターネット、生成AI向けクラウドサービス開始へ
 - ~NVIDIA H100 GPUを搭載した2EFの大規模クラウドインフラを石狩データセンターに整備~
 - https://www.sakura.ad.jp/corporate/information/newsreleases/2023/06/16/1968211860/
 - ◆ 2023/7/7 経済産業省による「クラウドプログラム」の 供給確保計画の認定について(ソフトバンク株式会社)
 - https://www.softbank.jp/corp/news/press/sbkk/2023/20230707_01/
- ◆ AI/MLのネットワークの関連プレゼン
 - ◇ 2023/7/7 JANOG52 AI/ML基盤の400G DCネットワークを構築した話(株式会社サイバーエージェント)
 - https://www.janog.gr.jp/meeting/janog52/aiml400/
 - ◇ 2023/10/26 MPLS Japan 2023 LLM と GPU とネットワーク(ソフトバンク株式会社)
 - https://mpls.jp/2023/presentations/mpls2023-yuyarin.pdf
- ◆AI/ML基盤のネットワーク構築の事例が出てきている

- ◆ RDMA(Remote Direct Memory Access)
 - ◇ リモートデバイスのメモリに対してCPUを介さずデータを書き込む技術
 - 低レイテンシ、高スループット、CPU負荷の削減
 - ◇ RDMAのデータ転送技術: Infiniband, RoCEv2
- Infiniband
 - ◇ クレジットベース(ロスレス保証)のフロー制御が特徴
 - ◇ Infiniband対応のスイッチベンダーは少ない
- ◆ RoCEv2(RDMA over Converged Ethernet version2) ※本講演のテーマ
 - ◇ RDMAの通信をL3プロトコルで中継(Ethernet/IP/UDP)
 - ◇ Ethernet自体はロスレスの保証がないため
 - ◇ 別途PFC/ECN/ETSなどによりロスレスイーサネットの実現が必要
 - ◇ Ethernetスイッチベンダーを採用することが可能

◆AI/ML基盤のネットワークに必要な技術と検証結果の紹介

課題	解決策
ロスレスイーサネットの実現	PFC/ECN/ETS
マルチテナント可能な ファブリックネットワークの構築	IP CLOS Fabric + EVPN/VXLANを併用
オープン技術による実現	SONiCとホワイトボックススイッチの 組み合わせ

- ◆ホワイトボックススイッチ対応OSSベースNOS
- ◆Microsoft公開のソースコードが母体
 - ◇ OCP内のプロジェクトから
 Linux Foundationに移行(2022/4)
- ◆マルチスイッチベンダ対応を実現
- ◆BGPベースのIP CLOS Fabricを構築可能

- ◆本検証では、以下を使用
 - Enterprise SONiC Distribution by Edgecore
 - (以降、Edgecore SONiCと記載)

SONiC (イメージ図)

ホワイトボックススイッチ (OCP Certified hardware)

		400G			100G		
		AS9736-64D	AS9726-32DB	AS9716-32D	AS7816-64X	AS7726-32X	AS7712-32X
製品写真							- B
ポート構成		64x QSFP-DD	32x QSFP-DD, 6x10G SFP+	32 x QSFP56-DD	64 x QSFP28	32 x QSFP28	32 x QSFP28
SoC		Tomahawk IV	Trident IV	Tomahawk Ⅲ	Tomahawk I I	Trident Ⅲ	Tomahawk
CPU		Intel® Xeon® Processor D- 1548 8 cores 2.0 GHz	Intel® Pentium® Processor D1519 4–cores 1.5 GHz	Intel Xeon D– 1518 quad– core 2.2 GHz	Intel Xeon D- 1518 quad-core 2.4 GHz	Intel Xeon D- 1518 quad- core 2.2 GHz	Intel Atom C2538 quad- core 2.4 GHz
メモリ		32GB	16GB	16GB	16GB	B 16GB 16GE	
スイッチ容量 (全二重)		51.2Tbps	25.6Tbps	25.6Tbps	12.8 Tbps	6.4 Tbps	6.4 Tbps
パケットバッファ		113.66MB	132MB	64MB	42MB	32MB	16MB
電源	AC	0	0	0	0	0	0
	DC	_	_		_	0	0

現在検証中

本講演対象

- ◆ポーズフレームを使ったリンクレベルでのキュー単位の輻輳制御機能
- ◆ロスレス対象のトラフィックをCoSまたはDSCPで分類し 対象のキューでPFCが動作することでパケットロスを防止

◆送信側に輻輳を通知し、送信レートを抑制することでパケットロスを防止

- ◆プライオリティグループ毎にキューの優先順位を定義
- ◆WRR(Weighted Round Robin)やSTRICT(絶対優先)でキューの優先制御

Traffic Class	キュー	優先制御
0	0	WRR:30%
1	1	
2	2	
3	3	WRR:70%
4	4	STRICT
5	5	
6	6	
7	7	

- ◆L3ネットワークの上にオーバーレイネットワーク(L2VPN,L3VPN)を構築する技術
- ◆マルチテナントに対応

今回はEVPN/VXLANとPFC/ECN/ETSでロスレスイーサネットの動作を確認

◆VXLANでカプセル化する場合

- PFC Storm
 - ◇ 大量のPFCポーズフレームが送出される(PFC Storm)と

トラフィックの一部もしくは全てが流れなくなる

- PFC Watchdog
 - ◇ PFC Stormを検知して緩和する機能
 - ◇ Edgecore SONiCはBroadcom ASICの場合 緩和機能はforward(PFCポーズフレームを無視)を選択可能

https://github.com/sonic-net/SONiC/wiki/PFC-Watchdog

https://github.com/sonic-net/sonic-mgmt/tree/master/docs/testplan/pfcwd

◆測定器から通常フロー、サーバからRoCEv2データを流した際の動作確認

トラフィック	Loss-less	DSCP	Priority Group	キュー	優先制御
通常フロー	×	0,63	0	0	WRR:30%
RoCEv2(データ)	0	26	3	3	WRR:70%
RoCEv2(CNP)	0	48	4	4	STRICT

EVPN/VXLAN RoCEv2検証結果(ロスレスイーサネット無効)

ONIC Japan 2023

EVPN/VXLAN RoCEv2検証結果(ロスレスイーサネット有効)

ONIC Japan 2023

- ◆ロスレスイーサネットの技術であるPFC/ECN/ETSの紹介
- ◆PFC Watchdogの紹介
- ◆SONiC+ホワイトボックススイッチで PFC/ECN/ETSとEVPN/VXLANとの併用で検証

- ◆今後の予定
 - ◇EVPN/VXLAN Multihomingの検証
 - ◇400Gスイッチ(AS9726-32DB)の検証
 - ◇PFC Watchdogの検証