Categories for Cryptographic Composability

Riley Shahar

Advised by Angélica and Adam

Cryptography

In the *simulation paradigm*, the idea is to ask whether adversaries against an ideal functionality can "simulate" adversaries against a real protocol.

In the *simulation paradigm*, the idea is to ask whether adversaries against an ideal functionality can "simulate" adversaries against a real protocol.

In the *simulation paradigm*, the idea is to ask whether adversaries against an ideal functionality can "simulate" adversaries against a real protocol.

We need roughly four things:

1. An ideal functionality we want to implement

In the *simulation paradigm*, the idea is to ask whether adversaries against an ideal functionality can "simulate" adversaries against a real protocol.

- 1. An ideal functionality we want to implement
- 2. A real protocol to analyze

In the *simulation paradigm*, the idea is to ask whether adversaries against an ideal functionality can "simulate" adversaries against a real protocol.

- 1. An ideal functionality we want to implement
- 2. A real protocol to analyze
- 3. A bound on adversarial strength

In the *simulation paradigm*, the idea is to ask whether adversaries against an ideal functionality can "simulate" adversaries against a real protocol.

- 1. An ideal functionality we want to implement
- 2. A real protocol to analyze
- 3. A bound on adversarial strength
- 4. A tool for comparing outcomes

In the *simulation paradigm*, the idea is to ask whether adversaries against an ideal functionality can "simulate" adversaries against a real protocol.

We need roughly four things:

- 1. An ideal functionality we want to implement
- 2. A real protocol to analyze
- 3. A bound on adversarial strength
- 4. A tool for comparing outcomes

We will treat the more limited setting of N-party computation.

An ideal functionality is a function

$$f: \mathcal{X}_1, \dots, \mathcal{X}_N \to \mathcal{Y}_1, \dots, \mathcal{Y}_N.$$

An ideal functionality is a function

$$f: \mathcal{X}_1, \ldots, \mathcal{X}_N \to \mathcal{Y}_1, \ldots, \mathcal{Y}_N.$$

This is a "trusted third party."

An ideal functionality is a function

$$f: \mathcal{X}_1, \ldots, \mathcal{X}_N \to \mathcal{Y}_1, \ldots, \mathcal{Y}_N.$$

This is a "trusted third party." We can draw it as a gate:

An ideal functionality is a function

$$f: \mathcal{X}_1, \ldots, \mathcal{X}_N \to \mathcal{Y}_1, \ldots, \mathcal{Y}_N.$$

This is a "trusted third party." We can draw it as a gate:

$$y_1 \cdots y_N$$
 f
 $\chi_1 \cdots \chi_N$

Running example: f(x, y) = (*, xy).

Real Protocols

A $real\ protocol$ is a list of N (interactive) algorithms.

Real Protocols

A $real\ protocol$ is a list of N (interactive) algorithms.

\mathcal{A}	\mathcal{B}
Gets x	Gets y
X	→
Output *	Output xy

Real Protocols

A real protocol is a list of N (interactive) algorithms.

Adversarial Behavior

We will treat *honest* adversaries. Usually you want to quantify over adversarial machines \mathcal{A}' .

Computational Indistinguishability

Computational Indistinguishability

Definition

Two probability ensembles $\{X_n\}$ and $\{Y_n\}$ (over the set A) are computationally indistinguishable if for any distinguisher \mathcal{D} ,

$$\big| \Pr[\mathcal{D}(X_n) = 1] - \Pr[\mathcal{D}(Y_n) = 1] \big| = \operatorname{negl}(n).$$

We write $\{X_n\} \stackrel{\mathsf{c}}{\equiv} \{Y_n\}$.

Definition

A protocol $\langle A_1, \dots, A_N \rangle$ is *secure* if for each choice of inputs x_1, \dots, x_N and each party i, there exists a simulator S such that

$$S(x_i, f_i(x_1, ..., x_N)) \stackrel{c}{\equiv} \text{view}_i^{\langle A_1, ..., A_N \rangle}(x_1, ..., x_N).$$

Definition

A protocol $\langle A_1, \dots, A_N \rangle$ is *secure* if for each choice of inputs x_1, \dots, x_N and each party i, there exists a simulator S such that

$$S(x_i, f_i(x_1, ..., x_N)) \stackrel{c}{\equiv} \text{view}_i^{\langle A_1, ..., A_N \rangle}(x_1, ..., x_N).$$

We need a grading on inputs: this is the security parameter.

Definition

A protocol $\langle A_1, \dots, A_N \rangle$ is *secure* if for each choice of inputs x_1, \dots, x_N and each party i, there exists a simulator S such that

$$S(x_i, f_i(x_1, ..., x_N)) \stackrel{c}{\equiv} \text{view}_i^{\langle A_1, ..., A_N \rangle}(x_1, ..., x_N).$$

We need a grading on inputs: this is the security parameter.

Our running example is secure: the simulator can compute xy/y.

At least two ways to compose ideal functionalities:

sequential composition

At least two ways to compose ideal functionalities:

sequential composition

parallel composition

At least two ways to compose ideal functionalities:

sequential composition

parallel composition

Many more things to consider.

The protocol is talking to an *environment*.

The protocol is talking to an environment.

Complexity costs:

• Low-level machine details

The protocol is talking to an environment.

Complexity costs:

- Low-level machine details
- Many technical conditions on the composition theorem

The protocol is talking to an environment.

Complexity costs:

- Low-level machine details
- Many technical conditions on the composition theorem
- High proof burdens

Why is this Hard?

Why is this Hard?

• Arbitrary adversarial behavior

Why is this Hard?

- Arbitrary adversarial behavior
- Asymptotic and polynomial bounds

Why is this Hard?

- Arbitrary adversarial behavior
- Asymptotic and polynomial bounds
- Very general composition operations

Category Theory

- objects *x*, *y*, *z*, . . . ;
- morphisms $x \xrightarrow{f} y, \dots$;
- identities $x \xrightarrow{1_x} x$;
- composition $x \xrightarrow{f} y \xrightarrow{g} z$.

- objects *x*, *y*, *z*, . . . ;
- morphisms $x \xrightarrow{f} y, \dots$;
- identities $x \xrightarrow{1_x} x$;
- composition $x \xrightarrow{f} y \xrightarrow{g} z$.

- objects *x*, *y*, *z*, . . . ;
- morphisms $x \xrightarrow{f} y, \dots$;
- identities $x \xrightarrow{1_x} x$;
- composition $x \xrightarrow{f} y \xrightarrow{g} z$.

Examples:

- objects *x*, *y*, *z*, . . . ;
- morphisms $x \xrightarrow{f} y, \dots$;
- identities $x \xrightarrow{1_x} x$;
- composition $x \xrightarrow{f} y \xrightarrow{g} z$.

Examples:

• SET: sets and functions;

- objects *x*, *y*, *z*, . . . ;
- morphisms $x \xrightarrow{f} y, \dots$;
- identities $x \xrightarrow{1_x} x$;
- composition $x \xrightarrow{f} y \xrightarrow{g} z$.

A category has:

- objects *x*, *y*, *z*, . . . ;
- morphisms $x \xrightarrow{f} y, \dots$;
- identities $x \xrightarrow{1_x} x$;
- composition $x \xrightarrow{f} y \xrightarrow{g} z$.

- Set: sets and functions;
- Grp, Top, Vect $_{\mathbb{k}}$, ...;

A category has:

- objects *x*, *y*, *z*, . . . ;
- morphisms $x \xrightarrow{f} y, \dots$;
- identities $x \xrightarrow{1_x} x$;
- composition $x \xrightarrow{f} y \xrightarrow{g} z$.

- Set: sets and functions;
- Grp, Top, Vect $_{\mathbb{k}}$, ...;
- every poset;

A category has:

- objects *x*, *y*, *z*, . . . ;
- morphisms $x \xrightarrow{f} y, \dots$;
- identities $x \xrightarrow{1_x} x$;
- composition $x \xrightarrow{f} y \xrightarrow{g} z$.

- Set: sets and functions;
- Grp, Top, Vect_k, ...;
- every poset;
- CHEM: multisets of chemicals and reactions (Baez-Pollard 2017);

A category has:

- objects *x*, *y*, *z*, . . . ;
- morphisms $x \xrightarrow{f} y, \dots$;
- identities $x \xrightarrow{1_x} x$;
- composition $x \xrightarrow{f} y \xrightarrow{g} z$.

- Set: sets and functions;
- Grp, Top, Vect_k, ...;
- every poset;
- CHEM: multisets of chemicals and reactions (Baez-Pollard 2017);
- functional programming languages & logics.

A functor $F: \mathcal{C} \to \mathcal{D}$ assigns:

- to each $x \in \mathcal{C}$, an $Fx \in \mathcal{D}$;
- to each $x \xrightarrow{f} y \in \mathcal{C}$, an $Fx \xrightarrow{Ff} Fy \in \mathcal{D}$;
- preserving identities and composition.

A functor $F: \mathcal{C} \to \mathcal{D}$ assigns: Examples:

- to each $x \in \mathcal{C}$, an $Fx \in \mathcal{D}$;
- to each $x \xrightarrow{f} y \in \mathcal{C}$, an $Fx \xrightarrow{Ff} Fy \in \mathcal{D}$;
- preserving identities and composition.

A functor $F:\mathcal{C}\to\mathcal{D}$ assigns:

- to each $x \in \mathcal{C}$, an $Fx \in \mathcal{D}$;
- to each $x \xrightarrow{f} y \in \mathcal{C}$, an $Fx \xrightarrow{Ff} Fy \in \mathcal{D}$;
- preserving identities and composition.

Examples:

• the identity functor 1_C ;

A functor $F:\mathcal{C}\to\mathcal{D}$ assigns:

- to each $x \in \mathcal{C}$, an $Fx \in \mathcal{D}$;
- to each $x \xrightarrow{f} y \in \mathcal{C}$, an $Fx \xrightarrow{Ff} Fy \in \mathcal{D}$;
- preserving identities and composition.

- the identity functor $1_{\mathcal{C}}$;
- the power set (twice!);

A functor $F:\mathcal{C}\to\mathcal{D}$ assigns:

- to each $x \in \mathcal{C}$, an $Fx \in \mathcal{D}$;
- to each $x \xrightarrow{f} y \in \mathcal{C}$, an $Fx \xrightarrow{Ff} Fy \in \mathcal{D}$;
- preserving identities and composition.

- the identity functor $1_{\mathcal{C}}$;
- the power set (twice!);
- forgetful functors;

A functor $F:\mathcal{C}\to\mathcal{D}$ assigns:

- to each $x \in \mathcal{C}$, an $Fx \in \mathcal{D}$;
- to each $x \xrightarrow{f} y \in \mathcal{C}$, an $Fx \xrightarrow{Ff} Fy \in \mathcal{D}$;
- preserving identities and composition.

- the identity functor $1_{\mathcal{C}}$;
- the power set (twice!);
- forgetful functors;
- List, Maybe, etc.;

A functor $F: \mathcal{C} \to \mathcal{D}$ assigns:

- to each $x \in \mathcal{C}$, an $Fx \in \mathcal{D}$;
- to each $x \xrightarrow{f} y \in \mathcal{C}$, an $Fx \xrightarrow{Ff} Fy \in \mathcal{D}$;
- preserving identities and composition.

- the identity functor $1_{\mathcal{C}}$;
- the power set (twice!);
- forgetful functors;
- List, Maybe, etc.;
- the free group, vector space, etc.

A symmetric monoidal category has:

- a product functor ⊗;
- a unit object *I*;
- "weak" associativity, unitality, and commutativity.

Examples:

A symmetric monoidal category has:

- a product functor ⊗;
- a unit object *I*;
- "weak" associativity, unitality, and commutativity.

A symmetric monoidal category has:

- a product functor ⊗;
- a unit object *I*;
- "weak" associativity, unitality, and commutativity.

Examples:

• SET with \times and $\{*\}$;

A symmetric monoidal category has:

- a product functor ⊗;
- a unit object I;
- "weak" associativity, unitality, and commutativity.

- SET with \times and $\{*\}$;
- V_{ECT_k} with \otimes and k;

A symmetric monoidal category has:

- a product functor ⊗;
- a unit object *I*;
- "weak" associativity, unitality, and commutativity.

- SET with \times and $\{*\}$;
- $VECT_{\mathbb{k}}$ with \otimes and \mathbb{k} ;
- CHEM with the union of multisets of molecules;

A symmetric monoidal category has:

- a product functor ⊗;
- a unit object I;
- "weak" associativity, unitality, and commutativity.

- SET with \times and $\{*\}$;
- V_{ECT_k} with \otimes and k;
- CHEM with the union of multisets of molecules;
- Concurrent languages with concurrent joining and the do-nothing program.

String Diagrams

Given $f: x \to y$, $g: w \to z$, and $h: y \otimes z \to u$, interpret

as $h(f \otimes g)$.

Categorical Cryptography

 $\bullet \ \ \text{An underlying symmetric monoidal category of computations};$

- An underlying symmetric monoidal category of computations;
- A functorial construction of a SMC of protocols;

- An underlying symmetric monoidal category of computations;
- A functorial construction of a SMC of protocols;
- A security definition which works over any SMC.

First try: ${\rm FINSET}$ (finite sets and functions).

First try: FINSET (finite sets and functions).

Second try: sets and computable functions.

First try: FINSET (finite sets and functions).

Second try: sets and computable functions.

Third try: BINCOMP (sets of finite binary strings and computable

functions).

Deterministic Computation

First try: FINSET (finite sets and functions).

Second try: sets and computable functions.

Third try: BINCOMP (sets of finite binary strings and computable functions).

Final try (Pavlovic 2014): ${
m COMP}$ (binary-encoded sets and lifts of computable functions).

Efficient and Effectful Computation

New to us is a framework for categorically combining computational bounds and (monadic) effects.

Efficient and Effectful Computation

New to us is a framework for categorically combining computational bounds and (monadic) effects.

Name	Computational Bound	Effect
Enc	none	none
Сомр	computability	none
СомрЅтосн	computability	probability
Poly	poly-time computability	none
PPT	poly-time computability	probability

Non-interactive "Protocols"

The category $\mathcal{C} \times \mathcal{D}$ has:

- for objects, pairs (c, d) from C and D;
- for morphisms, pairs (f,g) from \mathcal{C} and \mathcal{D} ;
- composition and identities componentwise.

States

States

The category $\operatorname{st}(\mathcal{C} \xrightarrow{F} \mathcal{D})$ has:

- for objects, maps $I \to Fx$ in \mathcal{D} ;
- for morphisms $(I \xrightarrow{s} Fx) \rightarrow (I \xrightarrow{t} Fy)$, maps $x \xrightarrow{f} y$ in C such that (Ff)s = t;
- ullet composition and identities as in \mathcal{C} .

States

The category $\operatorname{st}(\mathcal{C} \xrightarrow{F} \mathcal{D})$ has:

- for objects, maps $I \to Fx$ in \mathcal{D} ;
- for morphisms $(I \xrightarrow{s} Fx) \rightarrow (I \xrightarrow{t} Fy)$, maps $x \xrightarrow{f} y$ in C such that (Ff)s = t;
- ullet composition and identities as in \mathcal{C} .

We think of $\mathcal C$ as "free" processes in $\mathcal D$.

Combs

Objects: finite multisets of pairs of objects in \mathcal{C} .

Combs

Objects: finite multisets of pairs of objects

in C.

Goal: states are multisets of morphisms.

Combs

Objects: finite multisets of pairs of objects in \mathcal{C} .

Goal: states are multisets of morphisms.

Assigning Resources

In n-comb(\mathcal{C}), there are two ways we control the assignment of resources:

- a function α assigns each pair in the codomain some resources from the domain:
- ullet a permutation σ orders the resources assigned to each comb.

Let's play with this!

The category of protocols

The category

$$\mathsf{prot}_{\mathcal{N}}(\mathcal{C}) := \mathsf{st}(\mathsf{n\text{-}comb}(\mathcal{C}^{\mathcal{N}}) \xrightarrow{\mathsf{n\text{-}comb}(\otimes^{\mathcal{N}-1})} \mathsf{n\text{-}comb}(\mathcal{C}))$$

has:

- for objects, objects maps $(X_1 \otimes \cdots \otimes X_N) \to (Y_1 \otimes \cdots \otimes Y_N)$ in C;
- \bullet for morphisms, combs drawn from $\mathcal{C}^{\textit{N}}$ which preserve the chosen maps.

The One-Time Pad

Take an object with maps $, \blacklozenge, , \blacklozenge, \lor$, and ? forming a *Hopf* object, and a map \checkmark forming an *integral*.

The One-Time Pad

Take an object with maps $, \blacklozenge, , \blacklozenge, \lor$, and ? forming a *Hopf object*, and a map \checkmark forming an *integral*.

Adversarial Behavior

Adversarial Behavior

Definition

An attack model $\mathbb A$ consists of, for each morphism f in $\mathcal C$, a collection of morphisms $\mathbb A f$ such that:

Adversarial Behavior

Definition

An attack model $\mathbb A$ consists of, for each morphism f in $\mathcal C$, a collection of morphisms $\mathbb A f$ such that:

1-4) · · ·

5) If $h \in \mathbb{A}(f \otimes g)$ such that $\operatorname{dom} h = x \otimes y$ for some objects x and y, then there is some $h' \in \mathbb{A}1_{\operatorname{cod} f \otimes \operatorname{cod} g}$, $f' \in \mathbb{A}f$, and $g' \in \mathbb{A}g$ such that $\operatorname{dom} f' = x$, $\operatorname{dom} g' = y$, and $h = h' \circ (f' \otimes g')$.

The Security Definition

Definition

Let $\mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow{G} \mathcal{E}$ be a string of symmetric monoidal functors so that F is strong monoidal. Let \mathbb{A} be an attack model on \mathcal{D} . Let $f: (x,s) \to (y,t)$ be a map in $\mathrm{st}(GF)$ and let a be a map in \mathcal{D} with dom a=Fx.

The Security Definition

Definition

Let $\mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow{G} \mathcal{E}$ be a string of symmetric monoidal functors so that F is strong monoidal. Let \mathbb{A} be an attack model on \mathcal{D} . Let $f: (x,s) \to (y,t)$ be a map in $\mathrm{st}(GF)$ and let a be a map in \mathcal{D} with dom a=Fx. Then f is secure against the attack a if there is an attack $a' \in \mathbb{A}(1_{Fy})$ such that dom a'=Fy, $\mathrm{cod}\ a=\mathrm{cod}\ a'$, and the following diagram commutes in \mathcal{E} :

The Security Definition

Definition

Let $\mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow{G} \mathcal{E}$ be a string of symmetric monoidal functors so that F is strong monoidal. Let \mathbb{A} be an attack model on \mathcal{D} . Let $f: (x,s) \to (y,t)$ be a map in $\mathrm{st}(GF)$ and let a be a map in \mathcal{D} with dom a=Fx. Then f is secure against the attack a if there is an attack $a' \in \mathbb{A}(1_{Fy})$ such that dom a'=Fy, $\mathrm{cod}\, a=\mathrm{cod}\, a'$, and the following diagram commutes in \mathcal{E} :

Further, f is \mathbb{A} -secure if it is secure against all attacks in $\mathbb{A}Ff$ with domain Fx.

The Composition Theorem

Let $\mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow{G} \mathcal{E}$ be a string of symmetric monoidal functors so that F is strong monoidal. Let \mathbb{A} be an attack model on \mathcal{D} . Then the class of \mathbb{A} -secure maps is closed under monoidal product and sequential composition.

A 2-Categorical Generalization

We usually want security up to some reduction relation, e.g. computational indistinguishability.

A 2-Categorical Generalization

We usually want security up to some reduction relation, e.g. computational indistinguishability.

A 2-Categorical Generalization

We usually want security up to some reduction relation, e.g. computational indistinguishability.

$$\begin{array}{ccc}
I & \xrightarrow{s} & GFx \\
\downarrow t & & \downarrow Ga \\
GFy & \xrightarrow{Ga'} & G \text{ cod } a.
\end{array}$$

What about bicategories?

Some concerns:

• Limitations of attack models and the security definition

Some concerns:

- Limitations of attack models and the security definition
- Limited forms of composition

Some concerns:

- Limitations of attack models and the security definition
- Limited forms of composition
- Many-round composition, dynamic linking, etc

Some concerns:

- Limitations of attack models and the security definition
- Limited forms of composition
- Many-round composition, dynamic linking, etc

Thanks for your time!