UNCLASSIFIED

AD NUMBER AD810550 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; JAN 1967. Other requests shall be referred to Air Force Materials Laboratory, ATTN: MAAM, Wright-Patterson AFB, OH 45433. **AUTHORITY** AFML ltr dtd 12 Jan 1972

20080820 051

INTERMITTENT CREEP AND STABILITY OF MATERIALS FOR SST APPLICATIONS

Oscar N. Thompson and Richard L. Jones

General Dynamics Corporation
Fort Worth Division

TECHNICAL REPORT AFML-TR-66-407

January 1967

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Materials Application Division (MAAM), Air Force Materials Laboratory, Wright-Patterson AFB, Ohio 45433.

Federal Aviation Agency
and
Air Force Materials Laboratory
Research & Technology Division
Air Force Systems Command
Wright-Patterson Air Force Base, Ohio

NOTICES

The information contained herein is in support of a national undertaking sponsored by the Federal Aviation Agency with administrative and technical support provided by the Department of Defense, Aeronautical Systems Division, Air Force Systems Command with contributing basic research and technical support provided by the National Aeronautics and Space Administration.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned to the Research and Technology Division unless return is required by security considerations, contractural obligations, or notice on a specific document.

INTERMITTENT CREEP AND STABILITY OF MATERIALS FOR SST APPLICATIONS

Oscar N. Thompson and Richard L. Jones

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Materials Application Division (MAAM), Air Force Materials Laboratory, Wright-Patterson AFB, Ohio 45433.

FOREWORD

This report was prepared by personnel of the Structural Loads, Dynamics and Materials section of Aerospace Technology and the Metallurgical section of the Engineering Test Laboratory of General Dynamics Corporation, Fort Worth Division. The work was conducted under Air Force Contract No. AF33(657)-11687 as an extension of Contract No. AF33(657)-8907. The work was initiated under Project No. 7381, "Materials Application," Task No. 738106 "Materials Information Development." All work was administered under the direction of Mr. Clayton L. Harmsworth, Air Force Materials Laboratory, Research and Technology Division Project Engineer.

This report covers the work performed under Contract No. AF33(657)-11687 from its starting date of 1 July 1963 to its completion data of 31 December 1966. This report repeats some of the descriptive information and all of the test data and results gathered under the initial Contract No. AF33(657)-8907 and previously published as Technical Report AFML-TDR-64-138.

The authors would like to acknowledge the assistance of Chief Metallurgist F. C. Nordquist throughout the duration of the program and Engineering Metallurgist Ray J. Schiltz, Jr., for his assistance in reading creep.

This technical report has been reviewed and approved.

D. A. Shinn

Chief, Materials Information

Branch

Materials Application Division Air Force Materials Laboratory

ABSTRACT

This report covers an investigation of the creep rate and metallurgical stability of candidate materials for a supersonic transport airplane when exposed to heat alone and to creep loading at temperatures of 550° or 650°F. Specimens were exposed to intermittent heating and to creep loading for times of 1000, 5000, 10,000 and 30,000 hours and, also, to steady heating and to creep loading for 30,000 hours. The materials tested were Ti-8A1-1Mo-1V (duplex annealed) and Ti-6A1-4V (mill annealed) titanium alloys, Rene 41 (20% cold rolled + 16 hours at 1400°F) superalloy, and AM-350 SCT (825) and PH 14-8 Mo (SRH 1050) stainless steels. The 30,000 hour creep stress level for the two titaniums and Rene 41 was 40,000 psi, whereas, 67,000 psi was used for the 30,000 hour creep stress level of the two stainless steels. The creep stress levels for the 1000 hours exposures were set below the yield stress of each material at the exposure temperature and intermediate stress levels were used for the 5,000 and 10,000 hour creep loadings to give a range of creep rates. The influence of each of these conditions on the tensile, fracture toughness, and metallurgical properties of materials was determined. Plastic deformation due to creep was measured throughout the duration of the exposure.

The results indicated that all five materials would be satisfactory for use at 550°F for 30,000 hours at the 30,000 hour creep test stress levels. The creep behavior of Ti-6Al-4V titanium makes it undesirable for long time use at 650°F. Also, the AM-350 SCT (825) stainless steel is embrittled by long time exposure to 650°F. The PH 14-8 Mo stainless steel was not tested at 650°F. The exposure to creep loading at 650°F did not reveal any characteristics of the Rene 41 superalloy or the Ti-8Al-1Mo-1V titanium that would make these alloys undesirable for use in a supersonic transport airplane.

TABLE OF CONTENTS

Section		Page
I	INTRODUCTION	1
II	SUMMARY	3
III	TEST REQUIREMENTS	11
	Test Conditions Creep Stress Levels Evaluation of Material Number of Specimens Per Creep Condition Intermittent Creep Cycle	11 11 11 13
IV	TEST SPECIMENS	17
	Specimen Materials Specimen Configuration	17 17
V	CREEP TESTING	23
	Ovens Load Divider Creep Measurements	23 23 24
VI	TENSILE PROPERTIES TESTING	31
VII	FRACTURE TOUGHNESS TESTING	33
	Requirements Procedure and Instrumentation	33 33
VIII	DISCUSSION AND RESULTS	45
	Creep Testing Tensile Testing Fracture Toughness Metallographic Studies	45 49 74 120
IX	CONCLUSIONS	139

TABLE OF CONTENTS (Continued)

Section		Page
X	RECOMMENDATIONS	141
	REFERENCES	143
	BIBLIOGRAPHY	145
	APPENDIX - TABLES III THROUGH XVII	149

NOTE

The following pages in this report were intentionally left blank: iv, 10, 16, 22, 30, 32, 138, 142, 144, 148, 150, 158, 164, 168, and 174.

LIST OF ILLUSTRATIONS

Number	<u>Title</u>	Page
1	Comparison of F _{TU} /Density of Unnotched Specimens Tested at Room Temperature After Various Exposures to Intermittent Heat or Creep	5
2	Comparison of $F_{TY}/Density$ of Unnotched Specimens Tested at Room Temperature After Various Exposures to Intermittent Heat or Creep	6
3	Comparison of Percent Elongation of Unnotched Specimens Tested at Room Temperature After Various Exposures to Intermittent Heat or Creep Loading	7
4	Comparison of Gross Fracture Stress of Fatigue Cracked Notched Specimens Tested at Room Temperature After Various Exposures to Heat or Creep Loading	8
5	Comparison of Gross Fracture Stress of Fatigue Cracked Notched Specimens Tested at -65°F After Various Exposures to Heat or Creep Loading	9
6	Chart of Oven Temperature During a 550°F Intermittent Heating and Cooling Cycle	15
7	Creep Specimen for Tensile Properties Test After Creep Loading	19
8	Tandem Creep Specimens for Measuring Creep Strain During, and Tensile Properties After, Creep Exposure	19
9	Creep Specimen for Fracture Toughness Testing After Creep Loading (Specimen Notched After Creeping)	20
10	Tandem Creep Specimens for Measuring Fracture Toughness After Creep Exposure	20

Number	<u>Title</u>	Page
11	30-Inch Gage Length Creep Specimen	26
12	Diagram of 30-Inch Gage Length Creep Specimen with Reference Strip Attached	27
13	30-Inch Gage Length Creep Specimen in Holding Fixture for Measuring Creep	28
14	Compliance Gage and Fracture Toughness Specimen	36
15	Compliance Gage Attached to Fracture Toughness Specimen	37
16	Load and Compliance Gage Deflection versus Time for Center Notched (fatigue cracked) Fracture Toughness Test of AN-350 SCT (825) at Room Temperature After 30,000 Hours Exposure to Creep at 650°F	38
17	Load and Compliance Gage Deflection versus Time for Center Notched (fatigue cracked) Fracture Toughness Test of AM-350 SCT (825) at -65°F After 30,000 Hours Exposure to Creep Loading at 650°F	39
18	Load and Compliance Gage Deflection versus Time for Center Notched (fatigue cracked) Fracture Toughness Test of PH 14-8 Mo at -65°F After 25,800 Hours Exposure to Creep at 550°F	40
19	Load and Compliance Gage Deflection versus Time for Center Notched (fatigue cracked) Fracture Toughness Test of Rene' 41 at -65°F After 30,000 Hours Exposure to Heat at 650°F	41
20	Load and Compliance Gage Deflection versus Time for Center Notched (fatigue cracked) Fracture Toughness Test of Ti-6Al-4V at -65°F After 30,000 Hours Exposure to Creep at 550°F	42

Number	<u>Title</u>	Page
21	Load and Compliance Gage Deflection versus Time for Center Notched (fatigue cracked) Fracture Toughness Test of Ti-8A1-1Mo-1V at -65 F After 30,000 Hours Exposure to Creep Loading at 650°F	43
22	Average Percent Creep on AM-350 SCT (825) Stainless Steel Sheet. (Intermittent Heating and Loading Uhless Otherwise Shown).	46
23	Average Percent Creep of PH 14-8 Mo (SRH 1050) @ 550°F Stainless Steel Sheet. (Intermittent Heating and Loading Unless Otherwise Shown).	47
24	Average Percent Creep of Rene' 41 Sheet. (Intermittent Heating and Loading Unless Otherwise Shown).	48
25	Intermittent Creep of Ti-8A1-1Mo-1V Titanium	50
26	Intermittent Creep of Ti-6Al-4V Titanium	51
27	Influence of Exposure to Heat and to Creep on $F_{\mbox{TU}}$ of AM-350 SCT (825) Steel	52
28	Influence of Exposure to Heat and to Creep on $F_{\mbox{TY}}$ of AM-350 SCT (825) Steel	53
29	Influence of Exposure to Heat and to Creep on $\%$ e of AM-350 SCT (825) Steel	55
30	Influence of Exposure to Heat and to Creep on % Reduction in Area of AM-350 SCT (825) Steel	56
31	Influence of Exposure to Heat and to Creep on $F_{\hbox{\scriptsize TU}}$ of PH 14-8 Mo (SRH 1050)	57
32	Influence of Exposure to Heat and to Creep on F_{TV} of PH 14-8 Mo (SRH 1050)	58

Number	<u>Title</u>	Page
33	Influence of Exposure to Heat and to Creep on % e of PH 14-8 Mo (SRH 1050)	59
34	Influence of Exposure to Heat and to Creep on % Reduction in Area of PH 14-8 Mo (SRH 1050)	60
35	Influence of Exposure to Heat and to Creep on F_{TU} of Rene' 41 (20% C.R. + 16 Hours @ $1400^{\circ}F$)	62
36	Influence of Exposure to Heat and to Creep of F_{TY} of Rene' 41 (20% C.R. + 16 Hours @ 1400°F)	63
37	Influence of Exposure to Heat and to Creep on $\%$ e of Rene' 41 (20% C.R. + 16 Hours @ 1400° F)	64
38	Influence of Exposure to Heat and to Creep on $\%$ Reduction in Area of Rene' 41 (20% C.R. + 16 Hours @ 1400°F)	65
39	Influence of Exposure to Heat and to Creep on $F_{\hbox{\scriptsize TU}}$ of Ti-6Al-4V (Mill Annealed)	66
40	Influence of Exposure to Heat and to Creep on $F_{\mbox{\scriptsize TY}}$ of Ti-6Al-4V (Mill Annealed)	67
41	Influence of Exposure to Heat and to Creep on % e of Ti-6Al-4V (Mill Annealed)	68
42	Influence of Exposure to Heat and to Creep on % Reduction in Area of Ti-6Al-4V (Mill Annealed)	69
43	Influence of Exposure to Heat and to Creep on $F_{\hbox{\scriptsize TU}}$ of Ti-8Al-1Mo-1V (Duplex Annealed)	70
44	Influence of Exposure to Heat and to Creep on F_{TY} of Ti-8A1-1Mo-1V (Duplex Annealed)	71

Number	<u>Title</u>	Page
45	Influence of Exposure to Heat and to Creep on % e of Ti-8A1-1Mo-1V (Duplex Annealed)	72
46	Influence of Exposure to Heat and to Creep on % Reduction in Area of Ti-8Al-1Mo-1V (Duplex Annealed)	73
47	AM 350 SCT (825°) Stainless Steel Fracture Toughness Specimen Just Prior to Complete Rupture (Mag. 2.65)	76
48	PH 14-8 Mo (SRH 1050) Stainless Steel Fracture Toughness Specimen Just Prior to Complete Rupture (Mag. = 2.65)	77
49	Rene' 41 (20% C.R. + 16 Hours @ 1400°F) Superalloy Fracture Toughness Specimen Just Prior to Complete Rupture (Mag. = 2.60)	78
50	Ti 6A 1-4V (Mill Annealed) Titanium Alloy Fracture Toughness Specimen Just Prior to Complete Rupture (Mag. = 2.60)	79
51	Ti 8A1-1Mo-1V (Duplex Annealed) Titanium Alloy Fracture Toughness Specimen Just Prior to Complete Rupture (Mag. = 2.60)	80
52	AM-350 Specimen A3-5 Showing Plastic De- formation and Well Defined Slow Crack Growth After Loading to 2800 Pounds	81
53	Comparison of Effects of Loading on Crack Propagation in AM-350 STC (825) Stainless Steel	83
54	Comparison of Effects of Loading on Crack Propagation in Rene 41 (20% Cold Rolled + $16 \text{ Hours} \ @ \ 1400^{\circ}$)	84
55	Comparison of Effects of Loading on Crack Propagation in PH 14-8 Mo (SRH 1050) and PH 15-7 Mo (RH 1100) Stainless Steel	85

Number	<u>Title</u>	Page
56	Rene 41 Specimen D2-15C Showing Plastic Deformation but Poorly Defined Slow Crack Growth After Loading to 2580 Pounds	87
57	PH 14-8 Mo Specimen B5 Showing Plastic Deformation and Start of Slow Crack Growth After Loading to 2200 Pounds	88
58	AM-350 SCT (825) K _c versus Time for Center Notched (fatigue cracked) Specimens Tested at Room Temperature After Exposure as Indicated	90
59	AM-350 SCT (825) Fracture Stress versus Time for Center Notched (fatigue cracked) Specimens Tested at Room Temperature After Exposure	91
60	AM-350 SCT (825) K _c versus Time for Center Notched (fatigue cracked) Specimens Tested at -65°F After Exposure as Indicated	92
61	AM-350 SCT (825) Fracture Stress versus Time for Center Notched (fatigue cracked) Specimens Tested at -65°F After Exposure	93
62	Comparison of Mode of Failure of Fracture Toughness Specimens of AN 350 Tested at Room Temperature and -65°F.	95
63	PH 14-8 Mo (SRH 1050) K _c versus Time for Center Notched (fatigue cracked) Specimens Tested at Room Temperature After Exposure as Indicated	96
64	PH 14-8 Mo (SRH 1050) Fracture Stress versus Time for Center Notched (fatigue cracked) Specimens Tested at Room Temperature After Exposure	97
65	PH 14-8 Mo (SRH 1050) K _c versus Time for Center Notched (fatigue cracked) Specimens Tested at -65°F After Exposure as Indicated	98

Number	<u>Title</u>	Page
66	PH 14-8 Mo (SRH 1050) Fracture Stress versus Time for Center Notched (fatigue cracked) Specimens Tested at -65°F After Exposure	99
67	Rene'41 (20% C.R. + 16 Hours @ 1400°F) Kc versus Time for Center Notched (fatigue cracked) Specimens Tested at Room Temperature After Exposure as Indicated	101
68	Rene 41 (20% C.R. + 16 Hours @ 1400°F) Fracture Stress versus Time for Center Notched (fatigue cracked) Specimens Tested at Room Temperature After Exposure	102
69	Rene 41 (20% C.R. + 16 Hours @ 1400°F) Kc versus Time for Center Notched (fatigue cracked) Specimens Tested at -65°F After Exposure as Indicated	103
70	Rene 41 (20% C.R. + 16 Hours @ 1400°F) Fracture Stress versus Time for Center Notched (fatigue cracked) Specimens Tested at -65°F After Exposure	104
71	Ti-6Al-4V (Mill Annealed) $K_{\rm C}$ versus Time for Center Notched (fatigue cracked) Specimens Tested at Room Temperature After Exposure as Indicated	105
72	Ti-6Al-4V (Mill Annealed) Fracture Stress versus Time for Center Notched (fatigue cracked) Specimens Tested at Room Temperature After Exposure	106
73	Ti-6Al-4V (Mill Annealed) K_{C} versus Time for Center Notched (fatigue cracked) Specimens Tested at -65°F After Exposure as Indicated	107
74	Ti-6Al-4V (Mill Annealed) Fracture Stress versus Time for Center Notched (fatigue cracked) Specimens Tested at -65°F After Exposure	108

Numbers	<u>Title</u>	Page
75	Ti-8Al-lMo-lV (Duplex Annealed) K _C versus Time for Center Notched (fatigue cracked) Specimens Tested at Room Temperature After Exposure as Indicated	110
76	Ti-8A1-1Mo-1V (Duplex Annealed) Fracture Stress versus Time for Center Notched (fatigue cracked) Specimens Tested at Room Temperature After Exposure	111
77	Ti-8A1-lMo-1V (Duplex Annealed) $K_{\rm C}$ versus Time for Center Notched (fatigue cracked) Specimens Tested at -65°F After Exposure as Indicated	112
78	Ti-8Al-lMo-lV (Duplex Annealed) Fracture Stress versus Time for Center Notched (fatigue cracked) Specimens Tested at -65°F After Exposure	113
79	Ratio of Net Fracture Stress ($\sigma_{\rm net}$) to Ultimate Tensile Strength (F _{tu}) versus Exposure Time for Stainless Steels After Exposure Indicated and Then Tested at Room Temperature	114
80	Ratio of Net Fracture Stress (σ_{net}) to Ultimate Tensile Strength (F_{tu}) versus Exposure Time for Stainless Steels After Exposure Indicated and Then Tested at -65°F	115
81	Ratio of Net Fracture Stress ($\sigma_{\rm net}$) to Ultimate Tensile Strength (Ftu) versus Exposure Time for Rene 41 (20% C.R. + 16 Hours @ 1400°F) After Exposure Indicated and Then Tested at Room Temperature	116
82	Ratio of Net Fracture Stress ($\sigma_{\rm net}$) to Ultimate Tensile Strength (F _{tu}) versus Exposure Time for Rene 41 (20% C.R. + 16 Hours @ 1400°F) After Exposure Indicated and Then Tested at -65°F	117

Number	<u>Title</u>	Page
83	Ratio of Net Fracture Stress (σ_{net}) to Ultimate Tensile Strength (F_{tu}) versus Exposure Time for Titanium Alloys After Exposure Indicated and Then Tested at Room Temperature	118
84	Ratio of Net Fracture Stress ($\sigma_{\rm net}$) to Ultimate Tensile Strength (Ftu) versus Exposure Time for Titanium Alloys After Exposure Indicated and Then Tested at -65°F	119
85	Microstructure of AM-350 SCT (825) After Long Time Exposure to Heat Alone and Creep Loading	122
86	Electron Micrographs of AM-350 SCT (825) After Lone Time Exposure to Creep Loading	123
87	Microstructure of PH 14-8 Mo (SRH 1050) After Lone Time Exposure to Heat Along and Creep Loading	125
88	Electron Micrographs of PH 14-8 Mo (SRH 1050) After Lone Time Exposure to Creep Loading	126
89	Electron Micrograph of PH 14-8 Mo (SRH 1050) After 1000 Hours Intermittent Exposure to 120 KSI and 550°F (Major phases are identified)	127
90	A Cross Section of Half the Thickness of a Rene 41 .025" Sheet Showing Bands of Severe Carbide and Alloy Segregation	129
91	Microstructure of 20% Cold Rolled Rene 41 After Long Time Exposure to Heat Alone and Creep Loading	130
92	Electron Micrographs of 20% Cold Rolled Rene 41 After Long Time Exposure to Creep Loading	131
93	Microstructure of Mill Annealed Ti-6Al-4V After Long Time Exposure to Heat Alone and Creep Loading	133

Number	<u>Title</u>	Page
94	Electron Micrographs of Mill Annealed Ti-6Al-4V After Lone Time Exposure to Creep Loading	134
95	Microstructure of Duplex Annealed Ti-8Al-1Mo- 1V After Lone Time Exposure to Heat Alone and Creep Loading	135
96	Electron Micrographs of Duplex Annealed Ti-8A1-1Mo-1V After Lone Time Exposure to Creep Loading	136

LIST OF TABLES

Number	<u>Title</u>	Page
I	Stress Levels for Creep Loading in PSI	12
II	Specimens Per Creep Condition	14
III	AM-350 SCT (825) Tensile Properties Test Data	151
IV	PH 14-8 Mo (SRH 1050) Tensile Properties Test Data	155
V	Rene 41 (20% C.R. + 16 Hours @ 1400°F) Tensile Properties Test Data	159
VI	Ti 6Al-4V (Mill Annealed) Tensile Properties Test Data	165
VII	Ti 8Al-1Mo-1V (Duplex Annealed) Tensile Properties Test Data	169
VIII	AM-350 SCT (825) Fracture Toughness Test Data (All Tests at Room Temperature)	175
IX	PH 14-8 Mo (SRH 1050) Fracture Toughness Test Data (All Tests at Room Temperature)	179
X	Rene 41 (20% C.R. + 16 Hours @ 1400°F) Fracture Toughness Test Data (All Tests at Room Temperature)	181
XI	Ti-6Al-4V (Mill Annealed) Fracture Toughness Test Data (All Tests at Room Temperature)	185
XII	Ti-8A1-1Mo-1V (Duplex Annealed) Fracture Toughness Test Data (All Tests at Room Temperature)	187
XIII	AM-350 SCT (825) Fracture Toughness Test Data (All Tests at -65°F)	191
XIV	PH 14-8 Mo (SRH 1050) Fracture Toughness Test Data (All Tests at -65°F)	195

LIST OF TABLES (CONT'D)

Number	<u>Title</u>	Page
XV	Rene 41 (20% C.R. + 16 Hours @ 1400° F) Fracture Toughness Test Data (All Tests at -65°F)	197
XVI	Ti-6Al-4V Titanium (Mill Annealed) Fracture Toughness Test Data (All Tests at $-65^{\circ}F$)	201
XVII	Ti-8A1-1Mo-1V (Duplex Annealed) Fracture Toughness Test Data (All Tests at -65°F)	203

SECTION I

INTRODUCTION

Two factors are of concern when materials are to be used at the operating temperature and for the long life expectancy of a supersonic transport airplane. They are the amount of creep strain accumulated and the influence of the exposure on the mechanical properties of the materials. Current life expectancy of a supersonic transport airplane is in excess of 30,000 hours of flight time with skin temperatures reaching the 550° to 650°F range during cruise conditions. To further complicate the exposure, the heating and loading is intermittent following the ground-air-ground flight cycle of the airplane.

This testing program was planned to resolve these questions with regard to five candidate materials for a supersonic transport (SST) airplane. The specific questions were:

- 1. How much does the material creep?
- 2. Is the creep rate the same for intermittent heating and loading as for steady heating and loading?
- 3. What changes, if any, are produced in the mechanical properties of the materials as a result of heating and loading?
- 4. Is it the heating or the loading or both that causes the changes?

The five materials tested were:

- 1. Ti-8A1-1Mo-1V (duplex annealed) titanium alloy
- 2. Ti-6A1-4V (mill annealed) titanium alloy
- 3. AM-350 SCT (825) stainless steel
- 4. PH 14-8 Mo (SRH 1050) stainless steel
- 5. Rene' 41 (20% cold worked + 16 hours at 1400° F) superalloy.

The test was started with PH 15-7 Mo (RH 1100) stainless steel as one of the five materials but after approximately 4000 hours of creep loading the PH 15-7 Mo steel was replaced with the newer PH 14-8 Mo (SRH 1050) steel because its increased toughness made it more desirable for SST applications.

Initially, creep was of primary concern for a SST airplane. As the test progressed, other sources of data became available indicating that the magnitude of creep strain accumulated over 30,000 hours at cruise flight conditions would not be a problem with any of the candidate materials. However, the metallurgical stability of the candidate materials after 30,000 hours of exposure remained unknown and became the prime concern for this program.

SECTION II

SUMMARY

A testing program was initiated in July 1962 to determine the magnitude of creep strain accumulated on specimens of five SST candidate materials after times of 1000, 5000, 10,000 and 30,000 hours of exposure to stress at temperatures of 550° and 650°F. The creep exposure was applied intermittently by cyclicly heating the specimens to temperature in 10 minutes, applying the load and holding the load and temperature constant for 2.5 hours followed by a release of the load and then cooling the specimens to approximately room temperature in 20 minutes. Also, creep was measured during 30,000 hours of steady exposure to heat and stress to determine if there was any difference between the creep rate due to intermittent exposure and the creep rate due to steady exposure. Following the creep exposure, the effects of creep on the tensile properties and fracture toughness of the materials was determined. Soon after the start of the program the scope was enlarged to include exposure of unstressed materials so that a comparison could be made between the influence of heat alone and heat plus stress on their mechanical properties.

During the program time span, creep rate data from other sources indicated that creep would not be excessive at $550^{\circ}\mathrm{F}$, if any of the candidate materials was used for the construction of a supersonic transport, and the Ti-6Al-4V titanium was the only material, of the five being tested, that showed an excessive creep rate at $650^{\circ}\mathrm{F}$. However, the tensile strength and fracture toughness stability after exposure was a growing concern with fracture toughness occupying the major importance.

The specimens used in the program were cut from .025 inch thick sheet with the length of the specimens laid out parallel to the longitudinal grain direction. The candidate materials were selected as skin materials for use in sheet form and the .025 inch thickness was expected to be in the range of gages used.

An overall summary of the results is shown in bar graph form in Figures 1 through 5. Figure 1 shows the ratio of ultimate strength divided by density for all of the materials tested after each exposure condition. There are some small changes existing between ultimate strength of each alloy after various exposures. There are only slight trends and it is believed the differences measured are within experimental scatter.

Figure 2 shows the ratio of tensile yield strength to density. The only definite trend is a slight increase in tension yield of the AM-350 SCT (825) stainless steel after exposure to $650^{\circ}\mathrm{F}$. Figure 3 compares the percent elongation of the materials after various exposures. The exposure to $650^{\circ}\mathrm{F}$ appears to increase the percent elongation of the AM-350 SCT (825) steel. The other materials show erratic behavior with no definite trends. The maximum variation of percent elongation with exposure time, for any one material including AM 350 steel, is within 5 percent which could be attributed to experimental scatter.

The specimen size used for fracture toughness testing was within the ASTM recommended standard specimen proportions at the time the program was formulated. It has since been established that the thin gage used will show an upper limit of toughness rather than a toughness value that is a constant for the material. However, the aim in this program was to determine if changes in toughness resulted from the creep or heat exposure. For this purpose the residual gross fracture stress measured using a constant specimen size offers the best basis for comparison. Figure 4 compares the residual gross fracture stress divided by density of all of the materials tested at room temperature using center notched, fatigue cracked, specimens. Again, no significant change with respect to exposure was found. However, Figure 5 shows the residual gross fracture stress divided by density when the same materials with the same exposure conditions and specimen configuration were tested at -65°F. The AM-350 SCT (825) stainless steel shows a very definite embrittlement after 30,000 hours exposure to heat alone and after 10,000 hours to creep loading at 650°F. The creep loaded specimens showed the most embrittlement.

Throughout the testing no significant differences were observed between results obtained after steady creep loading compared to results obtained after intermittent creep loading on an equal exposure time basis. It should be noted that the intermittently exposed specimens were under heat and load for 5/6 of the test time.

Figure 1 COMPARISON OF F_{TU}/DENSITY OF UNNOTCHED SPECIMENS TESTED AT ROOM TEMPERATURE AFTER VARIOUS EXPOSURE TO INTERMITTENT HEAT OR CREEP

Figure 2 COMPARISON OF F_{TY}/DENSITY OF UNNOTCHED SPECIMENS TESTED AT ROOM TEMPERATURE AFTER VARIOUS EXPOSURES TO INTERMITTENT HEAT OR CREEP

Figure 3 COMPARISON OF PERCENT ELONGATION OF UNNOTCHED SPECIMENS
TESTED AT ROOM TEMPERATURE AFTER VARIOUS EXPOSURES TO
INTERMITTENT HEAT OR CREEP LOADING

Figure 4 COMPARISON OF GROSS FRACTURE STRESS OF FATIGUE CRACKED NOTCHED SPECIMENS TESTED AT ROOM TEMPERATURE AFTER VARIOUS EXPOSURES TO HEAT OR CREEP LOADING

Figure 5 COMPARISON OF GROSS FRACTURE STRESS OF FATIGUE CRACKED NOTCHED SPECIMENS TESTED AT -650F AFTER VARIOUS EXPOSURES TO HEAT OR CREEP LOADING

SECTION III

TEST REQUIREMENTS

Test Conditions

The program consisted of four parts:

- 1. Evaluation of the materials prior to creep straining
- 2. Measurement of creep during, and evaluation of the materials after 1000, 5000, 10,000 and 30,000 hours of intermittent creep testing
- 3. Measurement of creep during, and evaluation of the materials after 30,000 hours of steady creep
- 4. Evaluation of the materials after 1000, 5000, 10,000 and 30,000 hours of heating without loading.

Creep Stress Levels

In order that a range of creep rates be measured, a creep stress level slightly below tension yield of the material at temperature was used for the 1000 hour exposure of each material. Lesser stresses were used for the 5000 and 10,000 hour exposures and a stress level expected to be used for design at cruise flight condition was used for the 30,000 hour exposure. These stress levels are shown for the five materials in Table I.

Evaluation of Material

Unexposed control specimens, specimens exposed to heat alone and specimens exposed to creep loading were tested to determine any change in tensile properties or fracture toughness resulting from the exposure. Also, an examination was made by means of the optical and electron microscopes to determine if any metallurgical changes to the microstructure could be found.

Table 1 STRESS LEVELS FOR CREEP LOADING IN PSI

			CREEP	TIME SPAN	SPAN (HOURS)			
MATERIAL	10	1000	50	5000	10,000	00	30,000	00
Temp (^O F)	550°	650°	550 ⁰	650°	550°	650°	550°	650°
Titanium 8A1-1Mo-1V	94,000	88,600	80,000	80,000	000,09	000,09	40,000	40,000
Titanium 6Al-4V	85,000		71,500		000,09		40,000	
AM-350 SCT (825)	120,000	118,000	103,000	101,000	85,000	85,000	67,000	67,000
PH 14-8 Mo (SRH 1050)	120,000		103,000		85,000		67,000	
Rene' 41 (20%) Cold Worked +1400 F for 16 Hours)	138,500	124,000	110,000	100,000	70,000	70,000	40,000	40,000

Number of Specimens per Creep Condition

To evaluate the tensile properties and the fracture toughness after each exposure condition, different types of specimens were exposed. The number of specimens of each type exposed to creep is shown in Table II. Strips of material sufficient to make exactly the same number of specimens as exposed to creep were hung in the ovens for exposure to heat without load.

Intermittent Creep Cycle

A comparison between the influence of creep applied during steady state heating and loading with the influence of creep applied intermittently was a primary aim of this testing program. The intermittent creep would represent the exposure of a supersonic transport airplane to heat and stress during the ground-air-ground flight cycle. The intermittent creep test cycle used consisted of 10 minutes to heat the unloaded specimens to test temperature, load the specimens and hold under steady heat and stress for 2.5 hours, and then remove the load and drop the temperature to approximately room temperature in 20 minutes. A typical heating cycle as recorded by a Brown recorder is shown in Figure 6.

Table II SPECIMENS PER CREEP CONDITION

EXPOSURE HOURS		STEADY CREEP TESTS			INTERMITTENT CREEP				
		Tensile Test		Fracture Toughness		Tensile Test		Fracture Toughness	
	CREEP TEMP, (OF)	550 ⁰	650 ^o	550 ⁰	650 ⁰	550 ⁰	650 ⁰	550 ⁰	650 ⁰
-17	1000					5	5	5	5
-1Mo	5000					5	5	5	5
-8A1	10,000					5	5	5	5
Ti-	30,000	5	5	5	5	5	5	5	5
	1000					5	*	5	
-6A1-4V	5000					5		5	
i-6A	10,000					5		5	
Ti	30,000	5		5		5		5	
	1000					5	5	5	5
AM-350 SCT	5000					5	5	5	5
	10,000					5	5	5	5
	30,000			5	5	5	5	5	5
	1000					5		5	
Мо	5000					5		5	
PH 14-8	10,000					5		5	
	30,000	5		5		5		5	
41	1000					5	5	5	5
	5000					5	5	5	5
Rene	10,000					5	5	5	5
- W	30,000		5	5	5	5	5	5	5
	TOTAL	15	10	25	15	100 60 100 60		60	

Figure 6 CHART OF OVEN TEMPERATURE DURING A 550°F INTERMITTENT HEATING AND COOLING CYCLE

SECTION IV

TEST SPECIMENS

Specimen Materials

All materials for this program were procured under their trade name to vendor specifications. Each of the materials is typical of a production run with no special requirements added. The materials purchased, the vendors, and the heat numbers are shown below:

AM-350 Condition H from Allegheny-Ludlum, heat number 89324

PH 14-8 Mo (SRH 1050) from Armco, heat number 31562

Rene 41 (20% cold rolled) from Cannon Muskegon, heat number V-2146

Ti-8A1-1Mo-1V (duplex annealed) from TMCA, heat number D-1237

Ti-6A1-4V (mill annealed) from TMCA, heat number M7858. This material was supplied to the Fort Worth Division of General Dynamics for this program by courtesy of Bureau of Naval Weapons from the sheet rolling program stock.

The AM-350 stainless steel was transformed from Condition H to Condition SCT (825) at the Fort Worth Division by following Allegheny-Ludlum's published heat treat procedure. The Rene' 41 was given a 1400° F soak for 16 hours to bring it to its final condition. All other alloys were tested as received.

Specimen Configuration

All specimens were cut from 0.025-inch (nominal) thick sheet stock with the length of the specimens parallel to the longitudinal grain direction.

All of the creep specimens used for tensile properties evaluation after creep had a conventional tensile test configuration as shown in Figure 7. Each set of five specimens was machined in a

continuous sequence as shown in Figure 8. The holes were drilled and the side contours were cut on the "Fosdamatic" tape-controlled jig bore during one setup. This jig bore has a tolerance of less than 0.001 inch; therefore, the centerline through the loading pin holes should correspond to the centerline of the gage length to a high degree of accuracy.

The fracture toughness test specimens were proportioned to agree with the 1960 recommendations of the ASTM Committee on Fracture Testing of High-Strength Sheet Materials (Ref. 1). These recommendations were current when this program was planned. A view of the specimen is shown in Figure 9. The material exposed to creep, for fracture toughness evaluation, was loaded in the ovens in 1-inchwide strips as shown in Figure 10. Results in preliminary tests indicated that if the center notches were added prior to creep exposure the specimens would fail in fatigue because of the intermittent loading and unloading cycle.

Following creep exposure, the loading pin holes were drilled along the centerline of the strips on the "Fosdamatic" jig bore and then the strips were cut into 4-inch specimen lengths.

The center notch was formed by first cutting a slot 0.005 inch wide by 1/4-inch long with the "Elox" electric discharge erosion process. Care was taken to assure symmetry of the notch, with respect to the centerline through the loading pin holes, by locating the specimen on a holding fixture by pins through the loading holes. The "Elox" electrode was passed through the specimen. The specimen was then relocated on the holding fixture by rotating it about the centerline through the loading pin holes and the electrode was again passed through the specimen. Any eccentricity of the electrode with respect to the centerline through the loading pin holes was offset by the double machining. After the "Elox" notch was formed, the crack was extended to a nominal 3/8-inch length by tensiontension fatigue cracking using a minimum/maximum stress ratio of +0.5. The maximum stress used for each of the materials is shown below:

AM-350 SCT - 54,000 psi

PH 14-8 Mo - 50,900 psi

Rene' 41 - 67,800 psi

Ti-8A1-1Mo-1V - 43,500 psi

Ti-6A1-4V - 39,000 psi

CREEP SPECIMEN FOR TENSILE PROPERTIES TEST AFTER CREEP LOADING Figure 7

DURING, AND TENSILE PROPERTIES AFTER, CREEP EXPOSURE TANDEM CREEP SPECIMENS FOR MEASURING CREEP STRAIN Figure 8

Figure 9 CREEP SPECIMEN FOR FRACTURE TOUGHNESS TESTING
AFTER CREEP LOADING
(SPECIMEN NOTCHED AFTER CREEPING)

Figure 10 TANDEM CREEP SPECIMENS FOR MEASURING FRACTURE TOUGHNESS AFTER CREEP EXPOSURE

These stresses and the stress ratio were selected to propagate the crack the desired amount in 15 to 20 minutes. By trial and error it was found that the crack length could be controlled under these conditions.

After fatigue cracking, the specimens were again placed in the holding fixture on the "Elox" machine and a center hole was added for attaching the compliance gage. A 3/16-inch diameter hole was used for the control specimens, but this was changed to 1/8-inch diameter for the remainder of the specimens.

The material used for heat-soaked specimens was hung in the ovens in $1\text{-}1/2\text{-}\mathrm{inch}\text{-}\mathrm{wide}$ strips. After heat exposure this material was machined into tensile specimens and fracture toughness specimens using the same technique as that used to machine the specimens exposed to creep.

SECTION V

CREEP TESTING

0vens

To creep load the large number of specimens for such long time spans required a maximum utilization of the creep machines. was accomplished by building special ovens and adapting them to existing Arcweld Model C creep machines. The ovens were heated by circulating hot air heated in a heater box by electrical resistance heating elements. The hot air was drawn from the heater box by a blower through a connecting duct and discharged at the bottom of the oven. The air moved upward and was returned to the heater box through a duct connecting the top of the oven with the heater box. and cross section of the ovens were proportioned to accommodate four tanden sets of five specimens. Automatically controlled flapper valves in the oven air inlet and exhaust ducts isolated the heater boxes from the ovens and allowed room temperature air to circulate through the ovens during the cool-down portion of the cycle of intermittent heating and loading. The temperature during the heating portion of the cycle was sensed by a thermocouple mounted in contact with a specimen in the center of the oven and controlled by a Brown "Electronik" recorder controller. A timer and relay system provided the controls to make the heat-up, hold at temperature, cool-down cycle completely automatic. The steady creep loaded specimens were exposed in similar ovens except without flapper valves and automatic cycling controls.

A temperature survey of the ovens showed a variation of 20° from the hottest specimen to the coolest specimen. By adding deflector vanes and channeling air from hot spots to cooler regions the maximum variation between hottest and coolest specimens was reduced to 5° F.

Load Divider

Four tanden sets of specimens were loaded by each creep machine. To develop the desired stress in the specimens, the single deadweight load applied by the creep machine was distributed to each set of specimens by a whiffletree load divider. The bottom of the specimens were anchored to the creep machine by pin-ended links.

A complete description of the oven construction, temperature controls and load dividers can be found in Reference 2.

Creep Measurements

Creep strain measurements were made on the specimens used for tensile testing after creep exposure. This required measurements to be made on 10 specimens in each oven. It was considered desirable to measure creep without attaching anything to the specimens. The method selected was to indent each specimen with a pair of marks giving a 2-inch gage length. The marks were made by a Tukon microhardness machine with a 500-gram-load indenter. Creep strains were then determined by comparing the distance between indentations with the distance between similar indentations in a standard block as read with a Gaertner Scientific Dual Creep Microscope. Creep measurements were made prior to exposure; when the exposure temperature was reached; immediately after loading and then after 1 hour, 6 hours, 24 hours, every 168 hours thereafter for the first 10,000 hours and once a month until 30,000 hours was accumulated.

The creep microscope was mounted on a movable stand with sufficient vertical adjustment to allow creep reading on all five specimens through windows in the front of the ovens while the chain of five specimens was mounted in an oven. A horizontal adjustment was built into the stand to allow ease in focusing the microscope on the specimens.

All measurements reported as creep in this report were made while the specimens were stabilized at the creep exposure temperature. The magnitude of creep reported for any time is the difference between the dual microscope reading at that time and the initial dual microscope reading at the beginning of the test (after the oven temperature had stabilized and load had been applied to the specimens). Only the time-dependent strain is reported as creep.

Some difficulties were experienced in using the dual creep microscope. Since creep measurements were made while the specimens were stabilized at the creep exposure temperature, measurements had to be made while air was blowing over the specimens. The airflow produced a slight flutter which made it difficult to focus on the gage marks. Another difficulty occurred in measuring creep on the bottom specimen of the series of five specimens. When the bottom specimen was read, the lower creep microscope barrel was in contact

with or very near the insulation covering the plenum chamber at the bottom of the oven. The unequal heating produced an error in the instrument. It was, therefore, decided to omit measuring creep on the bottom specimen in each set. As time progressed, the specimens oxidized adding to the difficulty of reading creep through the windows in the ovens. The indentations are approximately .001 inch in width which is approximately the width of the crosshair in the microscope. If it is assumed that the error in aligning the top and bottom gage marks with the crosshairs in the dual instrument is one crosshair width, this would produce a possible error between individual reading in a two inch gage length of $\frac{.001}{2}$ x 100 = .05%. Such tolerance would be acceptable for usual creep measurements of .5 to 2%, but it is a large error compared to the small amount of creep found for the candidate materials under the planned test conditions.

After two of the special ovens became available, a new creep test of Ti-6A1-4V and Ti-8A1-1Mo-1V titanium specimens was started under General Dynamics Corporate sponsored research and is reported The purpose of the research was to here as related information. develop a method for more accurately measuring creep as well as to gain additional creep data on the two titanium alloys. In this test, 30 inch gage length specimens as shown in Figure 11 were used. specimen had a strip of Ti-8A1-1Mo-1V titanium attached at one end by a single rivet as shown in Figure 12. The unloaded strip served as a reference for measuring the change in the specimen length. The strip had holes at zero, 7.5, 15, 22.5, and 30 inches spacing. Again the indenter of a Tukon microhardness tester was used to indent the specimen near the center of each hole and indent the strip at each side of the hole as shown in Figure 12. Before placing the specimen in the oven, a measurement was made of the difference between the mark on the specimen and the marks at the edge of hole on the reference strip for the initial zero, 7.5, 15, 22.5, and 30 inch lengths using one element of the dual creep microscope. specimens were then exposed to intermittent creep for time intervals of one hour, increasing to time intervals of one month. At the end of each time interval the specimens were removed from the oven, clamped in a holding fixture to assure flatness of the strip, and again were measured to determine the difference in gage marks on the specimen with reference to the gage marks on the unloaded strip as shown in Figure 13.

With this system, the possibility of parallax error in the dual microscope readings is completely eliminated. Again assuming a reading error of .001-inch in 30 inches the error is only $\frac{.001}{.30}$ x 100 = .0033%. An error of this magnitude can be considered negligible.

Figure 11 30-INCH GAGE LENGTH CREEP SPECIMEN

Figure 12 DIAGRAM OF 30-INCH GAGE LENGTH CREEP SPECIMEN WITH REFERENCE STRIP ATTACHED

Figure 13 30-INCH GAGE LENGTH CREEP SPECIMEN IN HOLDING FIXTURE FOR MEASURING CREEP

The most likely error with this system is due to variations in heating over the 30-inch strip. Unequal heating can be detected by thermocouples located throughout the oven. Any effects from unequal heating will be shown by variations in creep rate between the 0 to 7.5, 7.5 to 15, 15 to 22.5, and 22.5 to 30-inch lengths. The creep measured will be an average creep for an average temperature and an average sheet thickness over the 30-inch gage length and is realistic for aircraft structural design information.

The intermittent cycle of heating to temperature, applying load, and holding load and temperature constant for 2.5 hours, and then relieving the load and cooling to approximately room temperature was the same for the 30-inch specimens as used for the 2-inch specimens.

SECTION VI

TENSILE PROPERTIES TESTING

Except for the measurement of modulus of elasticity, all tests to determine the tensile properties of the materials were performed in accordance with Federal Test Method Standard 151, Tension Test 211. The specimens were loaded in a 5000-pound capacity Baldwin Universal Test Machine at a strain rate of 0.005 inch per inch per minute to yield and at approximately 0.05 inch per inch per minute from yield to failure. The load-deformation curve was autographically recorded on a Baldwin Model MA-1B recorder; an averaging type Class B-1 extensometer was used to measure strain over a two-inch gage length.

The modulus of elasticity of the materials was determined from the slope of the load-deformation curve. It is included in the data for information only and should not be used for design. Federal Test Method Standard 151 requires a Class A-1 extensometer to be used for determining modulus of elasticity.

The reduction in area was determined by measuring the width and thickness of the necked down section. The width was measured on an optical comparitor with a 20% magnification. In those specimens failing in a line perpendicular to the load, no problem was encountered in determining the necked down area. In specimens failing at an angle to the centerline, the fractured specimens were rejoined and the minimum width of the neck was measured on a micrometer stage using a 100% magnification microscope. The thickness of the final fracture surface was measured by differentiating between the rough fracture surface and the relatively smooth necked down outer surface.

SECTION VII

FRACTURE TOUGHNESS TESTING

Requirements

The test plan required five fracture toughness specimens to be exposed for each creep loading condition and each corresponding heat soaking condition. Three of each set of five exposed specimens were to be tested to measure $K_{\mathbf{c}}$ at room temperature for comparison with K_C measured on unexposed specimens. The remaining two of each set of five specimens were spares. With the permission of the Air Force Project Engineer the two spare specimens for each exposure condition through 10,000 hours were tested at -65°F under a General Dynamics Corporate sponsored research program. The two spare specimens for each 30,000 hour exposure condition were tested at $-65^{\circ}\mathrm{F}$ as part of this program. The test set-up for testing the specimens at -65°F was the same as used during the room temperature tests except that the specimen was surrounded by a styrafoam box. Air was blown over solid carbon dioxide and then into the styrafoam box until a thermocouple attached to the specimen indicated the desired temperature had been reached. The light used to illuminate the specimen for photographing had a warming action. Therefore the temperature at the start of loading was held below -65°F so that failure would occur at the time the thermocouple indicated a specimen temperature of -65°F. A variation of +3°F resulted in trying to syncronize the failure with the -65°F temperature.

Procedure and Instrumentation

The original intent in this program was to follow the recommended procedures of the ASTM Committee on Fracture Toughness Testing of High-Strength Sheet Materials (Ref. 1) in measuring the fracture toughness of the materials. However, the ASTM recommendations have been modified since the conception of this program and several deviations exist between the current ASTM recommendations (Ref. 3) and the test procedure described in Reference 1.

At the time of the program planning, December 1961, the 1-inch wide by 0.025-inch thick specimen size was in accord with the ASTM recommendations of 1960. A small specimen size was essential to

accomplishing the simultaneous creep loading of the large number of specimens required for this program. It has since been shown that plane stress fracture toughness is a function of specimen size. Ideally, a very wide specimen width should have been used. As stated by Dr. J. M. Krafft in a report to the ASTM Committee for Fracture Testing of Metallic Materials (Ref. 4), "From the fracture mechanics viewpoint, an ideal fracture specimen is a very large one." The current recommendations are that a specimen size should be of a width and thickness such that the stress on the net section at fracture is less than 0.8 yield stress. This condition is definitely not met in this test. The materials for this program were selected for their outstanding toughness and in most cases, the net stress at fracture is greater than 0.8 yield stress. However, inasmuch as K_c is not a material property and this test program was planned to compare the toughness of each alloy before and after exposure to heat and to creep for various times, the small specimen size is entirely adequate.

Various techniques were investigated for testing this small specimen. A compliance gage technique seemed the most promising for detecting pop-in. The first attempt was to use a semicircular compliance gage attached to one side of the specimen and record load versus compliance on an x-y recorder. This approach gave very poor results with the thin specimens. The eccentricity of the compliance gage, with respect to the neutral axis of the specimen, produced slight bending in the unloaded specimen. On loading the specimen, the curvature was removed, but application of axial load resulted in a very nonlinear trace plotted by the x-y recorder. The x-y recorder itself created an objection to this method. The recorder trace lacked smoothness and it was felt that should a "pop-in" occur, it would be undetectable.

After consideration, a modified technique was devised which departed in some respects from the technique commonly used for fracture toughness testing. The first consideration was given to the design of a new compliance gage. Requirements for the gage were these:

- 1. Gage must not bend the specimen
- 2. It must have high sensitivity
- 3. It must not be damaged by the rapid fracture of the specimen
- 4. It must be capable of responding to rapid changes.

A compliance gage was built which satisfied all of these con-The gage is a 1.4-inch inside diameter ring 0.1-inch thick, machined from 7075-T6 aluminum alloy bar stock. The width is 0.25 inch to allow for strain gages to be mounted on the inside and the outside of the ring. Diametrically opposite the strain gages, a section 0.2-inch wide was removed and steel prongs were attached, as shown in Figure 14, to be inserted in the hole in the specimen as shown in Figure 15. The gage was calibrated in the Fort Worth Division of General Dynamics Standards Laboratory and was shown to have a linear response of less than 2 percent variation when prong deflection was plotted versus strain gage reading from fully closed to fully open. This gage design was selected for the following reasons: First, a single gage that loads the specimen on the neutral axis is the surest means of eliminating bending. by loading at a small center hole, the gage does not pick up the error introduced by a warped specimen being pulled straight. Third, a gage in contact with the free boundary of the crack is the most sensitive to changes in crack width. If a compliance gage extends over a length L, the response is a function of two terms, the PL/AE elongation in the gross section over the gage length and the elongation due to the distortion of the material in the neighborhood of the Only the change in compliance with respect to crack length contributes to the information desired. The elongation in the gross section away from the crack only serves to mask the information desired. It is obvious that if L becomes very large the compliance gage would have a response consisting of a negligible term due to the crack as compared to the large term due to PL/AE. reduced to zero, the entire response of the compliance gage is due to change in crack width. Therefore, the most sensitive gage for pop-in detection is one that bears on the surface of the crack along its minor axis. Fourth, since the gage bears on the crack inner surface, it will spring free of the specimen without damage when the specimen fractures. Fifth, a compliance gage using strain gages is capable of rapid response to crack growth.

Consideration was next given to the method of recording the load versus the compliance gage output. A Consolidated Engineering Co. oscillograph was selected to record load cell output and compliance gage output versus time. The oscillograph was capable of recording extremely rapid changes in load or compliance and was free of the mechanical difficulties found in the x-y plotter. Examples of the oscillograph records are shown in Figures 16 through 21. The top trace shows the load cell input; the center trace shows the compliance gage output with normal amplification; and the bottom trace shows the compliance output fed through a preamplifier with approximately a 10 factor amplification.

Figure 14 COMPLIANCE GAGE AND FRACTURE TOUGHNESS SPECIMEN

After some preliminary investigations, it was decided that photographic recording was the best method of measuring crack length at the point of slow crack growth to fast fracture transition. A 16 mm movie camera was used to photograph the crack growth at approximately 40 frames per second. With the loading rate used, each frame corresponded to a change in load of approximately 10 pounds. The maximum crack length for slow crack growth, measured from the photographs, is within one frame of failure and, therefore, was the crack length existing in the specimen when the load was within 10 pounds of maximum.

A further deviation from usual testing practice was the addition of a spring in series with the specimens. The spring was added to provide sufficient energy in the system to allow the crack to propagate without a drop in load. When a specimen was large in length and width, the strain energy stored in the specimen was large compared to the strain energy released as a result of a small increment of crack propagation. For a fixed grip system, any release in strain energy caused a drop in the load. When a small specimen was tested, the stored strain energy was small. The same increment of crack propagation as before might then require a release of a large percentage of the stored strain energy, thus causing an appreciable drop in the load. This drop in load could be sufficient to allow crack arrest. The preliminary tests without the spring showed a slow buildup in load and then a gradual drop. There was no sudden "pop-in" or fast fracture. Neither the stored energy in the specimen nor the test machine was capable of supplying energy to the crack fast enough to produce fast crack propagation. The load would build up to a maximum and then slowly drop off as slow tearing of the specimen progressed. The rate of tearing depended on the test machine head travel speed rather than an energy instability condition. When the spring was added, the load increased at a very uniform rate and then suddenly dropped to zero at the onset of fast fracture.

The spring consisted of 18 Belleville washers stacked in series, giving a spring constant of 5000 pounds per inch. The energy stored in the spring was approximately 50 times the strain energy in the specimen.

SECTION VIII

DISCUSSION AND RESULTS

Creep Testing

The average percent creep measured for the AM-350 SCT (825) stainless steel is shown in Figure 22. There is very little difference between the intermittent creep recorded for 550°F and for 650°F at the same stress levels. The creep measured by the Joliet Metallurgical Laboratory (Reference 5) up to 20,000 hours on AM-350 SCT (850) specimens exposed at 650°F and 67,000 psi steady loading is shown for comparison. There is as much as .03% variation between the Joliet curve for steady loading and the General Dynamics curve for intermittent loading. This could be attributed to differences in technique in reading creep. However, it is questionable that true creep can ever be measured on AM-350 with this degree of accuracy. This material grows approximately .47% during heat treatment from the H condition to the SCT condition. The dimensional instability of the material at 650°F may be affecting the accuracy of the measurements. Regardless of the cause, the deformation measured up to 30,000 hours is not enough to prevent the use of AM-350 in a supersonic transport design.

The average percent creep of PH 14-8Mo (SRH 1050) stainless steel is shown in Figure 23. The curves fall short of 30,000 hours since this material was added to the program after creep loading had started. There seems to be no difference between the intermittent creep and the steady creep. The magnitude of creep is approximately the same as was measured for the AM-350 SCT (825) stainless steel. The PH 14-8Mo is another precipitation hardening alloy that grows during heat treatment and the same dimensional problems exist in determining creep deformation.

The Rene' 41 (20% cold rolled + 16 hours at $1400^{\circ}F$) showed the most peculiar behavior of the five alloys tested. As shown in Figure 24, at low stress levels there was a slight shrinkage for the first 5000 to 6000 hours and thereafter some creep was measured. The shrinkage was probably due to relaxation of the cold work remaining after the 16 hours at $1400^{\circ}F$. In an alloy as complex as Rene' 41 the small amount of deformation measured as creep could easily be due to undetectable metallurgical changes rather than

Total Test Time in Thousand Hours

Figure 22 AVERAGE PERCENT CREEP OF AM-350 SCT (825) STAINLESS STEEL SHEET. (INTERMITTENT HEATING AND LOADING UNLESS OTHERWISE SHOWN).

— — — JOLIET MET. LAB. DATA

FOR AM-350 SCT (850) STEEL

AVERAGE OF FOUR SPECIMENS

REF AFML-TR-65-18

Total Test Time in Thousand Hours

Figure 23 AVERAGE PERCENT CREEP OF PH 14-8 Mo (SRH 1050) @ 550°F STAINLESS STEEL SHEET. (INTERMITTENT HEATING AND LOADING UNLESS OTHERWISE SHOWN).

Total Test Time in Thousand Hours

Figure 24 AVERAGE PERCENT CREEP OF RENE' 41 SHEET. (INTERMITTENT HEATING AND LOADING UNLESS OTHERWISE SHOWN).

plastic deformation due to load. R. Widmer, et.al. (Ref. 6) has shown that Udimet 500, which is a complex nickel base alloy similar to Rene'41, at 1200°F under no load shrinks..06% in 1800 hours due to phase changes, whereas, at 1500°F and no load, there is very little shrinkage in 2000 hours. Only by measuring changes in unloaded as well as loaded specimens can the full significance of the observed small changes in length be determined. Regardless of the cause, the deformation shown in Figure 24 should be well within design requirements for an SST.

The 30 inch gage length specimen data is shown in Figures 25 and 26 for the titanium alloys in lieu of the 2 inch gage length data since it is considered to be more precise. Neither the Ti-6A1-4V (mill annealed) or the Ti-8A1-1Mo-1V (duplex annealed) creeped appreciably at 550°F even at stresses as high as 65,000 psi. The creep of the steady loaded Ti-8AI-1Mo-1V (mill annealed) at 550°F and 67,000 psi, as measured by the Joliet Metallurgical Laboratory (Ref. 5), is shown in Figure 25 for comparison. The amount of creep of the mill annealed Ti-8A1-1Mo-1V more nearly corresponds to the creep of the mill annealed Ti-6Al-4V than it does to the duplex annealed Ti-8A1-1Mo-1V. At 650°F the Ti-6A1-4V creep rate increases rapidly whereas the duplex annealed Ti-8A1-1Mo-1V shows only a moderate increase in creep rate. At 550°F creep of either titanium alloy would be of no consequency in the design of a SST. At 650°F the Ti-8A1-1Mo-1V (duplex annealed) would be satisfactory, whereas, the use of Ti-6A1-4V (mill annealed) should be restricted to very low stresses or short exposure time.

Tensile Testing

AM-350 SCT (825) Stainless Steel

Both heat alone and creep loading at $650^{\circ}F$ has a slight tendency to raise the ultimate tensile strength. Specimens tested at room temperature after exposure showed a more definite upward trend than specimens tested at $650^{\circ}F$ after exposure as shown in Figure 27. It appears the heat is the predominant factor causing the increase rather than creep. The $550^{\circ}F$ exposure had no effect on the ultimate tensile strength.

The increase in tensile yield strength after exposure to 650° (heat or creep) was more pronounced than the increase in ultimate strength, as shown in Figure 28. Except for an increase in yield

Figure 27 INFLUENCE OF EXPOSURE TO HEAT AND TO CREEP ON F_{TU} of AM-350 SCT (825) STEEL

Figure 28 INFLUENCE OF EXPOSURE TO HEAT AND TO CREEP ON F_{TY} OF AM-350 SCT (825) STEEL

strength after 1000 hours of creep loading at 550°F, the 550° exposure had no influence on the yield strength. The stress for 1000 hours of creep loading was near the 550°F yield strength of the material. This singular increase in yield strength after 1000 hours of intermittent exposure to 550°F and 120,000 psi stress could indicate that working the material in the plastic range at 550°F would increase its yield strength.

The percent elongation of specimens tested at room temperature after exposure showed a slight tendency to increase after all exposure conditions. However, when specimens were tested at 650° F after exposure to heat or creep at 650° F, the percent elongation had a downward trend. No definite trend up or down was evident when specimens exposed at 550° F were tested at 550° F as seen in Figure 29.

The percent reduction in area of AM-350 SCT (825) specimens appears to be independent of exposure condition as shown in Figure 30. Only the percent reduction in area of specimens exposed to creep for 30,000 hours at $650^{\rm O}{\rm F}$ and then static tested at room temperature appears significantly lower with a drop from 51.3% for the unexposed control specimen to 37.6% for the creep loaded specimen.

In summary, a comparison between the tensile properties of AM- 350~SCT~(825) specimens tested with no prior exposure and the tensile properties of similar specimens tested after exposure to heat alone or to creep loading indicates the alloy is slightly affected by heating at $650^{\circ}F$. However, all of the trends are small and the actual magnitude of the change is of no design significance.

PH 14-8Mo (SRH 1050)

There is some scatter in the data but there is no definite trend in any of the tensile properties toward an increase or a decrease with exposure time. This material was only exposed at $550^{\circ}\mathrm{F}$ for 25,060 hours intermittently and 25,800 hours steady. The tensile properties measured after intermittent exposure agree with the tensile properties measured after steady exposure within experimental scatter. The comparisons in tensile properties versus exposure time are shown in Figures 31 through 34.

Rene 41 (20% cold rolled + 16 hours at 1400°F)

The tensile properties data for the Rene'41 scatters more than the data for any of the other materials due to its tendency to fail at the extensometer grips. The most definite change noticed

EXPOSURE TIME IN THOUSAND HOURS

Figure 29 INFLUENCE OF EXPOSURE TO HEAT AND TO CREEP ON % e OF AM-350 SCT (825) STEEL

Specimens Tested at Room Temperature After Exposure Shown

Specimens Tested at 550°F After Exposure at 550°F

Specimens Tested at 650°F After Exposure at 650°F

Figure 30 INFLUENCE OF EXPOSURE TO HEAT AND TO CREEP ON % REDUCTION IN AREA OF AM-350 SCT (825) STEEL

Figure 31 INFLUENCE OF EXPOSURE TO HEAT AND TO CREEP ON F_{TU} OF PH 14-8 Mo (SRH 1050)

Specimens Tested at Room Temperature After Exposure Shown

Figure 32 INFLUENCE OF EXPOSURE TO HEAT AND TO CREEP ON F_{TY} OF PH 14-8 Mo (SRH 1050)

Figure 33 INFLUENCE OF EXPOSURE TO HEAT AND TO CREEP ON % e OF PH 14-8 Mo (SRH 1050)

Specimens Tested at Room Temperature After Exposure Shown

Figure 34 INFLUENCE OF EXPOSURE TO HEAT AND TO CREEP ON % REDUCTION IN AREA OF PH 14-8 Mo (SRH 1050)

was a rise in the yield and ultimate tensile strength after 1000 hours of exposure to heat or to creep. The FTH and FTY of specimens tested at room temperature after 1000 hours of creep at 650° are low as shown in Figures 35 and 36, but it should be pointed out that two of the three specimens tested failed at the extensometer grips whereas the third specimen had a yield and ultimate tensile strength in agreement with specimens tested after the other exposure conditions. Exposure time greater than 1000 hours tends to decrease the strength below the unexposed control level. percent elongation of specimens static tested at their creep exposure temperature drops with exposure time up to 10,000 hours and back to the unexposed control percent elongation for 30,000 hours exposure as shown in Figure 37. The percent reduction in area does not appear to be influenced by exposure condition as shown in Figure There is very good agreement between the tensile properties of the steadily exposed and the intermittently exposed specimens.

Ti-6A1-4V Titanium Alloy

The yield and ultimate tensile strength of Ti-6Al-4V titanium alloy appears to be independent of exposure at 550°F as shown in Figure 39 through 40. The percent elongation shown in Figure 41 shows some variations without any definite trends and it is believed the variations are due to experimental scatter. The percent reduction in area shown in Figure 42 is exceptionally constant. The 30,000 hour steadily exposed specimen data agrees with the intermittently exposed specimen data.

Ti-8A1-1Mo-1V Titanium Alloy

The ultimate strength of the Ti-8Al-1Mo-1V appears to increase slightly up to 5000 hours of exposure to all conditions and from there on to decrease very slightly as shown in Figure 43. The variation is so slight that it could well be ignored. The tensile yield strength remains very constant as shown in Figure 44. The percent elongation has the usual scatter in data but there appears to be a slight drop in the values measured at room temperature after 5000 hours exposure as shown in Figure 45. The reduction in area shown in Figure 46 is constant within experimental error for all exposure conditions. There is very good agreement between the tensile properties measured after steady exposure and the tensile properties measured after intermittent exposure.

Figure 35 INFLUENCE OF EXPOSURE TO HEAT AND TO CREEP ON F_{TU} OF RENE' 41 (20% C.R. + 16 HRS. @ 1400°F)

Figure 36 INFLUENCE OF EXPOSURE TO HEAT AND TO CREEP OF F_{TY} OF RENE' 41 (20% C.R. + 16 HRS. AT 1400°F)

Specimens Tested at Room Temperature After Exposure Shown

Specimens Tested at $550^{\circ}F$ After Exposure at $550^{\circ}F$

Specimens Tested at 650°F After Exposure at 650°F

20

Figure 37 INFLUENCE OF EXPOSURE TO HEAT AND TO CREEP ON % e OF RENE' 41 (20% C.R. + 16 HRS. @ 1400°F)

Figure 38 INFLUENCE OF EXPOSURE TO HEAT AND TO CREEP ON % REDUCTION IN AREA OF RENE' 41 (20% C.R. + 16 HRS. @ 1400°F)

Figure 39 INFLUENCE OF EXPOSURE TO HEAT AND TO CREEP ON ${\rm F_{TU}}$ OF Ti-6A1-4V (MILL ANNEALED)

Figure 40 INFLUENCE OF EXPOSURE TO HEAT AND TO CREEP ON F_{TY} OF Ti-6A1-4V (MILL ANNEALED)

Figure 41 INFLUENCE OF EXPOSURE TO HEAT AND TO CREEP ON % e OF Ti-6A1-4V (MILL ANNEALED)

Figure 42 INFLUENCE OF EXPOSURE TO HEAT AND TO CREEP ON % REDUCTION IN AREA OF Ti-6A1-4V (MILL ANNEALED)

Figure 43 INFLUENCE OF EXPOSURE TO HEAT AND TO CREEP ON F_{TU} OF Ti-8A1-1Mo-1V (DUPLEX ANNEALED)

Figure 44 INFLUENCE OF EXPOSURE TO HEAT AND TO CREEP ON F_{TY} OF Ti-8A1-1Mo-1V (DUPLEX ANNEALED)

EXPOSURE TIME IN THOUSAND HOURS

Specimen Tested at Room Temperature After Exposure Shown

Specimen Tested at $550^{\circ}F$ After Exposure at $550^{\circ}F$

Specimen Tested at 650°F After Exposure at 650°F

Figure 45 INFLUENCE OF EXPOSURE TO HEAT AND TO CREEP ON % e OF Ti-8A1-1Mo-1V (DUPLEX ANNEALED)

Figure 46 INFLUENCE OF EXPOSURE TO HEAT AND TO CREEP ON % REDUCTION IN AREA OF Ti-8A1-1Mo-1V (DUPLEX ANNEALED)

Fracture Toughness

One requirement of this program was to compare the stress intensity factor for onset of fast crack propagation, Kc, versus time for each material after each exposure condition. At the time this program was formulated (1961), the specimen size selected was within the existing recommendations of the ASTM Special Committee on Fracture Testing of High-Strength Metallic Materials (Reference There has been considerable advancement in the field of fracture mechanics since that time. It has since been agreed that Kc is not a material property but varies with specimen geometry. Larger specimens than were tested in this program should be used for determining minimum values of Kc. Since the specimen size was kept constant throughout the program, the Kc determined is quite valid for comparison purposes within the test conditions for each alloy. However, discretion should be exercised in using the values of Kc obtained in this investigation or in comparing them with Kc values measured in other tests.

 K_{C} was calculated using Irwin's tangent formula

$$K_{\rm C} = \sigma \left[W \tan \frac{\pi a}{W} \right]^{\frac{1}{2}}$$

where

 σ = gross stress at rupture

W = specimen width

 $a = \frac{Crack\ length}{2}$ at the transition

from slow crack growth to fast fracture.

Recommended calculation of $K_{\mbox{\scriptsize C}}$ is by the modified formula

$$K_c = \sigma \left[W \tan \frac{\pi}{W} (a + r_p) \right]^{\frac{1}{2}}$$

where r_p is the plastic zone radius given by

$$r_p = \frac{1}{2\pi} \left(\frac{K_c}{\sigma_y}\right)^2$$
 in inches

and σ_y = yield stress

Irwin (Reference 7) originally proposed this plastic zone radius correction for K_{C} with the assumptions that it would be small with respect to $\frac{1}{2}x(\text{crack length})$. A test is considered valid if the net stress at fracture (σ_{N}) is equal to or less than 0.8 σ_{y} . Now assume

$$K_c = \sigma_N$$

Using 0.8 for $K_{\rm C}/\sigma_{
m V}$ then

$$r_p = \frac{1}{2\pi} (0.8)^2 = 0.102 \text{ inch}$$

The initial $\frac{1}{2}x$ (crack length) used was approximately 0.18 inch. Thus, r_p , so calculated, is not small compared to $\frac{1}{2}x$ (crack length) and it is approximately four times the 0.025 inch thickness of the specimen. Therefore, the basic assumptions for calculating r_p were exceeded and the use of r_p as the plastic zone size is not justified for this size specimen.

Each crack length, 2a, was measured from the enlarged photograph of the last frame of 16 mm movie film exposed just before catastrophic crack propagation occurred. Examples of the last two frames, photographed prior to rupture, for each material are shown in Figures 47 through 51. Measurements made of the crack length included the dimple at the end of the crack to allow for tunneling and plastic zone correction.

The reasonableness of this approach as applied to the 0.025 inch thick specimens is demonstrated in Figure 52. Measuring to the apex of the crack in Figure 52C includes the plastically deformed material along the triangular sides of the crack and should be a sufficient plastic zone correction.

In addition to $K_{\rm C}$ it was desired that $K_{\rm IC}$ be calculated if the data permitted. The compliance gage output as recorded on the oscillograph record was used to detect "pop-in" if it occurred. Only the tests performed at -65°F on the AM-350 SCT (825) steel showed any signs of "pop-in." However, all of the records showed a deviation from linearity when compliance gage deflection was plotted versus load. In the initial report on this program, AFML-TDR-64-138, the load at the point of deviation from linearity was used for calculating the stress for onset of slow crack growth. The validity of this stress was suspect and $K_{\rm IC}$ was not shown.

Figure 47 AM-350 SCT (825°) STAINLESS STEEL FRACTURE TOUGHNESS SPECIMEN JUST PRIOR TO COMPLETE RUPTURE (MAG. 2.65)

Figure 48 PH 14-8 Mo (SRH 1050) STAINLESS STEEL FRACTURE TOUGHNESS SPECIMEN JUST PRIOR TO COMPLETE RUPTURE (MAG. = 2.65)

Figure 49 RENE' 41 (20% C. R. + 16 HRS. @ 1400°F) SUPERALLOY FRACTURE TOUGHNESS SPECIMEN JUST PRIOR TO COMPLETE RUPTURE (MAG. = 2.60)

Figure 50 Ti-6A1-4V (MILL ANNEALED) TITANIUM ALLOY FRACTURE TOUGHNESS SPECIMEN JUST PRIOR TO COMPLETE RUPTURE (MAG. = 2.60)

Figure 51 Ti-8Al-1Mo-1V (DUPLEX ANNEALED) TITANIUM ALLOY FRACTURE TOUGHNESS SPECIMEN JUST PRIOR TO COMPLETE RUPTURE (MAG. = 2.60)

A. AM-350 SCT (825) UNEXPOSED SPECIMEN FATIGUE CRACKED AT 54,000 PSI (MAX.)
GROSS STRESS AND THEN LOADED TO 112,000 PSI GROSS STRESS.

B. FRACTURED SURFACE OF THE SAME SPECIMEN AFTER ADDITIONAL FATIGUE CYCLES WERE APPLIED SUBSEQUENT TO THE LOADING TO 112,000 PSI GROSS STRESS.

C. ENLARGED VIEW OF REGION OF SLOW CRACK GROWTH (25X MAG.)

LENGTH OF CRACK DUE TO SLOW CRACK GROWTH

$$2\alpha \approx \frac{3.87}{10}$$
 = .389 INCH MEASURED EXTERNALLY

$$2a \approx \frac{2.34}{6}$$
 = .387 INCH MEASURED INTERNALLY

Figure 52 AM-350 Specimen A3-5 Showing Plastic Deformation And Well Defined Slow Crack Growth After Loading To 2800 Pounds

Since that time, further investigations have been made of the significance of the deviation from linearity. This investigation consisted of preparing groups of 3 unexposed specimens exactly the same as the control fracture toughness specimens, loading one to the point of deviation from linearity, another to a load half way between the point of deviation from linearity and failure and the third to a load approximately ten percent below the expected failing load. These specimens were then returned to the fatigue machine and the fatigue crack propagated for another 30,000 cycles. Finally, the specimens were loaded to failure. (Note: This is the technique as used to produce the photographs in Figure 52.) The initial slow crack growth was isolated between two fatigue cracked regions. Oscillographic time histories of load and compliance gage deflection were made while the one high stress cycle was being applied. AM-350 SCT (825) steel and Rene 41 were tested in sets of 3. Only one PH 14-8 Mo (SRH 1050) specimen was available so two PH 15-7 Mo (RH 1100) specimens were used to make up that set of 3.

The load versus compliance gage deflection plots and photographs of the fractured surface of each of the three AM-350 specimens is shown in Figure 53. Similar plots and photographs for the Rene 41 are shown in Figure 54 and the plots and photographs for the PH 15-7 Mo and PH 14-8 Mo are shown in Figure 55. The pertinent data is as follows.

Specimen	<u>Material</u>	Initial Crack Length (inches)	Max. Load (pounds)
A1-2 A3-4 A3-5 D3-7 D3-10C D2-15C B1-13B B5 B1-13C	AM-350 SCT/825 AM-350 SCT/825 AM-350 SCT/825 Rene' 41 Rene' 41 Rene' 41 PH 15-7 Mo (RH 1100) PH 14-8 Mo (SRH 1050) PH 15-7 Mo (RH 1100) (Photograph not shown)	.365 .356 .367 ? .356 .367 .367 .372	1590 2200 2800 1780 2240 2580 1600 2200 Failed at 2310

Specimen A1-2 of the AM-350 set was loaded just beyond the point of deviation from linearity whereas specimens A3-4 and A3-5 were loaded well beyond. In every case the load-deflection diagrams indicate plastic deformation occurring. The photograph of specimen A1-2 shows a very small indication after the one time, high-load

Figure 53 Comparison of Effects of Loading on Crack Propagation in AM-350 SCT (825) Stainless Steel.

Figure 54 Comparison of Effects of Loading on Crack Propagation in Rene' 41 (20% Cold Rolled + 16 Hours @ 1400°).

Figure 55 Comparison of Effects of Loading on Crack Propagation in PH 14-8 Mo (SRH 1050) and PH 15-7 Mo (RH 1100) Stainless Steel.

cycle between the two fatigue cracked regions. Specimen A3-4 shows some slow crack growth and there is very definite slow crack growth shown in the photograph for specimen A3-5. An enlarged view of the slow crack growth (triangular, dark area) along with the permanent separation of the fatigue crack and plastic dimples at the end of the crack are shown in Figure 52. This photograph clearly shows that the deviation from the straight line is resulting from a mixed mode of crack propagation plus plastic flow.

The load-deflection diagram for the Rene 41 specimen D3-7C in Figure 54 is a straight line with no indication of inelastic behavior. The corresponding photograph of the fractured surface shows no evidence of crack growth. The load-deflection curve for specimen D3-10C shows inelastic behavior but it is not evident as slow crack growth in the photograph. There is definite inelastic behavior shown by the load deflection diagram for specimen D2-15C and some evidence of slow crack growth shown in the photograph but it does not have the usual triangular pattern as found in the AM-35O steel. A photograph in Figure 56 of specimen D2-15C taken after the application of the 2580 pound load shows plastic dimples at the end of the fatigue crack but only a slight crack separation.

The PH 15-7 Mo specimen (B1-13B) tested to 1600 pounds shows evidence of plastic dimple formation but indiscernible slow crack growth. The load-deflection curve and the photograph of the fractured surface also indicate this. The PH 14-8 Mo specimen loaded to 2200 pounds shows inelastic behavior in the load-deflection diagram as well as slow crack growth in the accompanying photograph of Figure 55. The side photograph of the specimen shown in Figure 57 definitely shows plastic deformation at the end of the fatigue cracks with only a slight separation in the crack. Specimen B1-13C failed prematurely and did not yield any information.

With this evidence at hand it was concluded that the point of deviation from linearity was more likely to be the point of onset of plastic flow than the onset of slow crack growth and $\rm K_{I\,c}$ could not be calculated using this value.

Perhaps the most meaningful and least controversial interpretation of the data can be had by comparing the residual gross fracture stress after each exposure condition. The residual gross fracture stress is the failing load divided by the unnotched cross-sectional area of the specimen. Since all specimens had nominally the same thickness and width, variations in geometry are excluded and the comparison of results after various exposure conditions is a valid one.

Figure 56 Rene' 41 Specimen D2-15C Showing Plastic Deformation But Poorly Defined Slow Crack Growth After Loading To 2580 Pounds

Figure 57 PH 14-8 Mo Specimen B5 Showing Plastic Deformation And Start Of Slow Crack Growth After Loading To 2200 Pounds

A similar method of evaluating the effects of exposure is by comparing the residual net fracture stress, (σ net). This value was calculated by

$$\sigma_{\text{net}} = \frac{\text{Failing load}}{\text{Thickness (width -2a)}}$$

where 2a is the crack length at onset of fast crack propagation. This calculation contains the uncertainty of accuracy of 2a as measured from the photographs.

The final method of evaluating the effects of exposure on the materials is by a comparison of notched to unnotched strength ratios. This ratio is determined by calculating $\sigma_{\rm net/FTU}$.

It should be noted that this ratio is calculated differently from the usual notched to unnotched strength ratio in that the net stress is based on the area at the point of maximum load rather than the unloaded net area.

AM-350 SCT (825) Stainless Steel

A comparison of the effects of exposure on K_C as shown in Figure 58 and on the residual gross and net fracture stresses as shown in Figure 59 for AM-350 SCT (825) steel indicates that the room temperature fracture toughness is unaffected by the exposure. However, an examination of Figures 60 and 61 for K_C and residual gross and net fracture stresses measured at -65°F definitely indicates a ductile to brittle transition occurring with time as the specimens are exposed to $650^{\circ}F$. The first indication occurred after 10,000 hours of creep loading at 85,000 psi. No embrittlement was noted after 10,000 hours of heat alone. After 30,000 hours the creep loaded specimens showed further embrittlement, whether exposed intermittently or steadily. Also, the specimens exposed to heat alone were embrittled but to an extent lesser than the creep loaded specimens, indicating that both heat and stress contribute to the embrittlement.

This transition to brittle fracture is also clearly shown by the oscillograph recordings of load and deflection time histories and the appearance of the specimen fracture surface. Comparing the oscillograph record of Figure 16 for specimen A2-14A, tested at room temperature after steady exposure to 67,000 psi at 650°F with the oscillograph record of Figure 17 for specimen A3-11D, tested

Figure 58 AM-350 SCT (825) $K_{\rm C}$ versus Time for Center Notched (fatigue cracked) Specimens Tested at Room Temperature After Exposure as Indicated

Figure 59 AM-350 SCT (825) Fracture Stress versus Time for Center Notched (fatigue cracked) Specimens Tested at Room Temperature After Exposure

Figure 60 AM-350 SCT (825) $K_{\rm c}$ versus Time for Center Notched (fatigue cracked) Specimens Tested at -65 $^{\rm O}$ After Exposure as Indicated

Figure 61 AM-350 SCT (825) Fracture Stress versus Time for Center Notched (fatigue cracked) Specimens Tested at -65°F After Exposure

at -65°F after a similar exposure, a drastic change in maximum load and compliance gage deflection is easily seen. At room temperature there is a large smooth deflection of the compliance gage trace, even at low magnification, except for one slight discontinuity that might be a pop-in. At -65°F failure of specimen A3-11D occurred at a very low load with only a slight deflection of the compliance gage. The high magnification compliance gage trace shows one "pop-in" followed by sudden failure with no sign of plastic flow.

The ductile to brittle transition of the AM-350 SCT (825) steel is further confirmed by examining the specimens. Figure 62 shows the mode of failure of two specimens tested at room temperature after 30,000 hours of exposure compared with the mode of failure of specimens tested at $-65^{\circ}F$ after similar exposure. The specimens tested at room temperature failed ductilly with necking both in the thickness direction and the width direction. In the descriptive terms of Srawley and Brown (Reference 8) the fracture was of the slant type. The specimens tested at $-65^{\circ}F$, failed with no signs of plastic flow with a square fracture.

In summary, it can be said that exposure to heat alone at $650^{\circ} F$ raises the ductile to brittle transition temperature of AM-350 SCT (825) stainless steel from well below to well above $-65^{\circ} F$. Stress in addition to heat augments the embrittlement mechanism causing greater loss in toughness. Steady heat produced a greater effect than intermittent heat, probably due to the increased time at temperature. (Note: The intermittent specimens were under load and elevated temperature 5/6 of the total exposure time.) There seems to be no difference between the embrittling effect of steady versus intermittent exposure to creep loading. The embrittling effects were not evident until the $650^{\circ} F$ exposure time reached 10,000 hours and it became more pronounced as time at temperature accumulated.

PH 14-8 Mo (SRH 1050) Stainless Steel

This material was only exposed at $550^{\circ}F$. At room temperature, K_{C} and the residual net fracture stress was raised by all exposures to heat or creep but the residual gross fracture stress remained almost constant as shown in Figures 63 and 64. The net fracture stress was increased by approximately 18 percent. Tests made at $-65^{\circ}F$ show a slight increase in K_{C} , residual gross and residual net fracture stress which seems to confirm that the exposure is having a slight toughening effect on the material as shown in Figures 65 and 66.

ROOM TEMPERATURE TESTS - NOTE DUCTILE FAILURES

-65° TESTS - BRITTLE FAILURES, VERY LITTLE SHEAR LIP

Figure 62 Comparison of Mode of Failure of Fracture Toughness Specimens of AM-350 Tested at Room Temperature and -65°F.

Figure 63 PH 14-8 Mo (SRH 1050) $K_{\rm C}$ versus Time for Center Notched (fatigue cracked) Specimens Tested at Room Temperature After Exposure as Indicated

Figure 64 PH 14-8 Mo (SRH 1050) Fracture Stress versus Time for Center Notched (fatigue cracked) Specimens Tested at Room Temperature After Exposure

Figure 65 PH 14-8 Mo (SRH 1050) K_c versus Time for Center Notched (fatigue cracked) Specimens Tested at -65°F After Exposure as Indicated

Figure 66 PH 14-8 Mo (SRH 1050) Fracture Stress versus Time for Center Notched (fatigue cracked) Specimens Tested at -65°F After Exposure

The oscillograph time histories of load and compliance gage deflection, as shown in Figure 18, as well as the fracture appearance of the specimens indicates a ductile failure after all exposure conditions. There were no signs of "pop-in" on the oscillograph compliance gage traces. There was no difference between the results obtained from steady and intermittent exposures.

Rene' 41 (20% cold rolled + 16 hours at 1400°F)

The Rene'41 had a slight rise in $K_{\mbox{\scriptsize c}}$ and residual net fracture stress after 1000 hours when tested at room temperature but this rise was not shown by the residual gross fracture stress. There is a sharp peak in K_c and residual net fracture stress after 5000 hours of heat alone at 650°F. This peak could easily be due to error in measuring the crack length at onset of fast fracture from the photographs. Film magazine difficulties caused the loss of one loading sequence and very poor photographs of the other two out of three 5000 hour heat soaked specimens tested at room temperature. Similiarly exposed specimens tested at -65°F did not show any such peak after 5000 hours but there was a slight decrease in $K_{\mathbf{C}}$ and residual net fracture stress after 30,000 hours of heat at 650°F and creep at both 550° and 650°F. Results from specimens exposed for 30,000 hours under steady heating or creep loading agreed quite closely with results from specimens exposed to intermittent heating or creep loading as shown in Figures 67 through 70.

The oscillograph records like shown in Figure 19 for Rene'41 indicated less plastic flow occurred during loading than was found in any of the other materials except the embrittled AM-350. The failure takes place fairly abruptly but there is no evidence of "pop-in" occurring. Examination of the failed specimens showed a slant fracture along a line normal to the center line of the specimens. The Rene'41 did not neck-down in the width direction.

Ti-6A1-4V (Mill Annealed)

Except for a slight drop after 5000 hours of exposure, the Ti-6Al-4V titanium specimens tested at room temperature showed no significant variation in K_{C} or residual gross or net fracture stress as shown in Figures 71 and 72. When similar specimens were tested at -65°F there was a slight loss in all three values with time as shown in Figures 73 and 74. The 30,000 hour intermittently exposed and steadily exposed specimen gave results in very close agreement, when specimens were tested at room temperature, and the residual gross fracture stresses were in close agreement when specimens were

Figure 67 Rene' 41 (20% C.R. + 16 Hours @ 1400°F) K_c versus
Time for Center Notched (fatigue cracked) Specimens
Tested at Room Temperature After Exposure as Indicated

Figure 68 Rene' 41 (20% C.R. + 16 Hours @ 1400°F) Fracture Stress versus Time for Center Notched (fatigue cracked) Specimens Tested at Room Temperature After Exposure

Figure 69 Rene' 41 (20% C.R. + 16 Hours @ 1400°F) K_c versus
Time for Center Notched (fatigue cracked) Specimens
Tested at -65°F After Exposure as Indicated

Figure 70 Rene' 41 (20% C.R. + 16 Hours @ 1400°F) Fracture Stress versus Time for Center Notched (fatigue cracked) Specimens Tested at -65°F After Exposure

Figure 71 Ti-6A1-4V (Mill Annealed) K_C versus Time for Center Notched (fatigue cracked) Specimens Tested at Room Temperature After Exposure as Indicated

RESIDUAL FRACTURE STRESS IN

Figure 72 Ti-6Al-4V (Mill Annealed) Fracture Stress versus Time for Center Notched (fatigue cracked) Specimens Tested at Room Temperature After Exposure

Figure 73 Ti-6A1-4V (Mill Annealed) K_C versus Time for Center Notched (fatigue cracked) Specimens Tested at -65°F After Exposure as Indicated

10

0

Figure 74 Ti-6Al-4V (Mill Annealed) Fracture Stress versus Time for Center Notched (fatigue cracked) Specimens Tested at -65° After Exposure

tested at $-65^{\circ}F$. However, the steadily exposed specimens showed a slightly greater reduction in K_{C} and residual net fracture stress when specimens were tested at $-65^{\circ}F$ after 30,000 hours of exposure. This is probably due to the greater time at temperature experienced by the steadily exposed specimens. Both the oscillograph records, as illustrated in Figure 20, and the specimens fractured surfaces indicate considerable plastic flow prior to failure. No "pop-in" was found. The specimens failed with a slant fracture with some necking in the width direction much the same as the AM-350 specimens failed at room temperature.

Ti-8A1-1Mo-1V (Duplex Annealed)

The Ti-8Al-1Mo-1V titanium produced very consistent results with no significant variations in fracture toughness at room temperature after any of the exposure conditions whether intermittent or steady as shown in Figures 75 and 76. Tests performed at -65°F show a slight decrease in toughness with time as shown in Figures 77 and 78. Apparently heat is the cause of the decrease in toughness since the residual fracture stress (net and gross) curves for creep loaded specimens lie between the curves for specimens exposed to heat alone with the curve for the 650 heat alone exposure being the lowest. The specimens exposed to steady creep for 30,000 hours gave results slightly less than was measured for the intermittently exposed specimens; however, the difference is within experimental error.

The load and deflection time histories, as recorded on the oscillograph records for Ti-8Al-1Mo-1V titanium, were very similar to the load and deflection time histories as recorded for Ti-6Al-4V as seen by comparing Figure 21 with Figure 20. Likewise, the failure mode as shown by the fractured surfaces of the specimens is very similar.

Notched Strength Ratio

A final comparison between types of materials is shown in Figures 79 through 84 for the ratio of net fracture stress divided by ultimate strength. The AM-350 SCT (825) and the PH 14-8Mo (SRH 1050) stainless steels, when tested at room temperature after exposure, are compared in Figure 79. Within experimental error, the ratios are very near 1.0 regardless of the exposure condition for both alloys. When these alloys are tested at -65°F after exposure the ratio for AM-350 remains approximately 1.0 while the ratio for the PH 14-8 Mo is slightly above 1.0 as shown in Figure 80. After creep loading AM-350 for 10,000 hours at 650°F and subsequently testing at -65°F, the notched to unnotched ratio drops

Figure 75 Ti-8Al-lMo-lV (Duplex Annealed) K_C versus Time for Center Notched (fatigue cracked) Specimens Tested at Room Temperature After Exposure as Indicated

Figure 76 Ti-8A1-1Mo-1V (Duplex Annealed) Fracture Stress versus Time for Center Notched (fatigue cracked) Specimens Tested at Room Temperature After Exposure

Figure 77 Ti-8Al-1Mo-1V (Duplex Annealed) Kc versus Time for Center Notched (fatigue cracked) Specimens Tested at -65°F After Exposure as Indicated

112

Figure 78 Ti-8A1-1Mo-1V (Duplex Annealed) Fracture Stress versus Time for Center Notched (fatigue cracked) Specimens Tested at -65° After Exposure

Figure 79 Ratio of Net Fracture Stress ($\sigma_{\rm net}$) to Ultimate Tensile Strength (F_{tu}) versus Exposure Time for Stainless Steels After Exposure Indicated and Then Tested at Room Temperature

Figure 80 Ratio of Net Fracture Stress ($\sigma_{\rm net}$) to Ultimate Tensile Strength ($F_{\rm tu}$) versus Exposure Time for Stainless Steels After Exposure Indicated and Then Tested at -65°F

Figure 81 Ratio of Net Fracture Stress ($\sigma_{\rm net}$) to Ultimate Tensile Strength ($F_{\rm tu}$) versus Exposure Time for Rene' 41 (20% C.R. + 16 Hours @ 1400°F) After Exposure Indicated and Then Tested at Room Temperature

EXPOSURE TIME IN THOUSAND HOURS

Figure 82 Ratio of Net Fracture Stress ($\sigma_{\rm net}$) to Ultimate Tensile Strength (F_{tu}) versus Exposure Time for Rene' 41 (20% C.R. + 16 Hours @ 1400°F) After Exposure Indicated and Then Tested at -65°F

Figure 83 Ratio of Net Fracture Stress ($\sigma_{\rm net}$) to Ultimate Tensile Strength ($F_{\rm tu}$) versus Exposure Time for Titanium Alloys After Exposure Indicated and Then Tested at Room Temperature

Figure 84 Ratio of Net Fracture Stress ($\sigma_{\rm net}$) to Ultimate Tensile Strength ($F_{\rm tu}$) versus Exposure Time for Titanium Alloys After Exposure Indicated and Then Tested at -65°F

rapidly. After 10,000 hours of exposure to either heat or to creep the ratio is lowered until it reaches .27 for the creep loaded specimens. There is very little difference between the notched to unnotched strength ratio of specimens tested after intermittent exposure and steady exposure.

The notched to unnotched strength ratio of Rene 41 as shown in Figures 81 and 82 is slightly less than 0.9 regardless of exposure condition or static test temperature.

The notched to unnotched strength ratio of Ti-6Al-4V and Ti-8Al-1Mo-1V is very nearly the same and only slightly affected by exposure at 550° F. The ratio starts around 1.0 and drops about 5 percent after 30,000 hours. At 650° F the Ti-8Al-1Mo-1V notched to unnotched ratio drops to approximately 0.90 after 30,000 hours indicating temperature and time are having a slight effect on the titanium, as shown in Figures 83 and 84.

Metallographic Studies

Longitudinal sections from all material exposed to both intermittent and steady heat and stress were examined on a B & L Research Metallograph. Photographs at 500 X were made of representative sections which had received the severest test conditions. That is, where a material was exposed to either 550° or 650°F, the 650°F exposure was considered to be the most likely to show microstructural changes if any existed. The creeped material was compared to the material which was exposed to temperature only.

To further amplify and clarify any structural changes which might have occurred in the five materials evaluated in this investigation, electron microscope studies were made using a JEM-6a instrument. Replication of the metal surfaces was made using nitrocellulose acetate tape softened in acetone. The replica was chromium shadowed at 45° followed by evaporated carbon backing. Electron micrographs were taken at 3500 and 11,000% magnifications of the sample of each material which was intermittently stressed at the highest exposure temperature.

AM-350 SCT (825) Stainless Steel

The microstructures of the AM-350 (SCT 825) semimartensitic stainless steel exposed to the various periods of temperature and

stress are shown by optical microscopy in Figure 85 and by electron microscopy in Figure 86. Basically, the microstructure consists of stringers of ferrite in a martensite matrix with retained austenite interspersed in the matrix. Small particles of chromium carbide have precipitated at the ferrite-martensite interface and at grain boundaries. Normally AM-350 contains approximately 10 percent ferrite, 70 percent martensite, and 20 percent retained austenite in the solution treated and aged condition. The unexposed material has a microstructure which would correspond approximately to this composition.

Referring to Figure 85, the most noticeable changes in the microstructure are to the light etching islands of ferrite and the dark etching carbide particles. After 10,000 hours of exposure at $650^{\rm O}F$, the almost continuous ferrite stringers had changed into nearly equiaxed ferrite grains. However, the stringers reappeared in the 30,000 hour exposure material. It was concluded that the equiaxed condition observed in the 10,000 hour material was a localized condition in the sheet of AM-350 rather than being an effect of time at temperature. The sections photographed for the 30,000 hour exposure contained more ferrite. However, the ferrite was not uniformly distributed across the thickness of the sheet and the photomicrographs contained the maximum density of ferrite. The material exposed to the $550^{\rm O}F$ environment showed no microstructural changes.

The basic change that occurred to the AM-350 resulted in the chromium carbide precipitation. Although an increase in the dark etching constituent is apparent in Figure 85, the increase in carbide precipitation is more evident in the electron micrographs of the 10,000 and 30,000 hour material in Figure 86. This precipitation occurred primarily at the ferrite-martensite interface. The mechanism involved was an agglomeration of small carbides already present in the material as verified by extraction replication techniques.

To summarize, the effect of the $650^{\rm O}{\rm F}$ exposure on AM-350 was to cause an agglomeration of the chromium carbides, primarily at the ferrite-martensite interface. This agglomeration became detrimental to the $-65^{\rm O}{\rm F}$ fracture toughness properties after 10,000 hours of exposure, causing a 60 percent drop in strength. After 30,000 hours of exposure, both the creeped and non-stressed AM-350 were adversely affected. In addition, the carbide agglomeration caused an increase in the yield strength and a slight decrease in $650^{\rm O}{\rm F}$ ductility.

Figure 85 MICROSTRUCTURE OF AM-350 SCT (825) AFTER LONG TIME EXPOSURE TO HEAT ALONE AND CREEP LOADING

Figure 86 ELECTRON MICROGRAPHS OF AM-350 SCT (825) AFTER LONG TIME EXPOSURE TO CREEP LOAD ING

PH 14-8 Mo (SRH 1050) Stainless Steel

The PH 14-8 Mo (SRH 1050) evaluated in this program represents an improvement by Armco Steel to increase the toughness of PH 15-7 Mo. Originally, PH 15-7 Mo was part of this investigation but specimens were changed to PH 14-8 Mo after about 4000 hours of exposure. This is the reason for the microstructural comparison being made at 1000, 6000, and 25,000 hours whereas all the other materials were compared at 5000, 10,000 and 30,000 hours. A comparison of microstructures is shown as observed on the metallograph in Figure 87 and on the electron microscope in Figure 88.

PH 14-8 Mo is quite similar in composition and microstructure to AM-350. It contains less carbon, manganese, silicon, phosphorus, sulfur and nitrogen than AM-350. These elements are considered to lower the toughness of a stainless steel. The main difference in composition is that the PH 14-8 Mo contains a nominal 1.2 percent aluminum which combines with nickel to form precipitation hardening intermetallics, Ni3Al and NiAl. In the heat treatment of the AM-350, the final heating operation consisted of tempering at 825°F which reduced the strength of the martensite. In the final heating operation of the PH 14-8 Mo at 1050°F, an increase in the strength of the semimartensitic steel resulted because of precipitation hardening. These precipitates can not be detected by observation of the etched surface even with the electron microscope, but require diffraction techniques which were beyond the scope of this program.

In the aged condition, PH 14-8 Mo nominally contains 77 percent martensite, 8 percent ferrite and 15 percent retained austenite. That this condition exists in the material evaluated in this program is shown in Figure 87. The ferrite exists mostly in small, isolated islands with occasional short stringers, surrounded by the martensitic matrix. Non-metallic inclusions were more predominant in the PH 14-8 Mo than in the AM-350. Retained austenite is difficult to discern in the optical photomicrographs but can be observed in the electron micrographs of Figure 88. The enlarged electron micrograph of Figure 89 shows the "veined" structure of the martensite phase compared to the relatively smooth appearance of the retained The ferrite phase has the same smooth texture but appears austenite. to stand out in relief due to the difference in etch rate of this constituent to the electrolytic oxalic acid etchant. No observable change in the microstructure was detected in the PH 14-8 Mo after 25.060 hours exposure to 550°F. This includes both intermittent and steady exposure to temperature and with and without creep stress.

Figure 87 MICROSTRUCTURE OF PH 14-8 Mo (SRH 1050) AFTER LONG TIME EXPOSURE TO HEAT ALONE AND CREEP LOADING

HEAT ALONE

Figure 88 ELECTRON MICROGRAPHS OF PH 14-8 Mo (SRH 1050) AFTER LONG TIME EXPOSURE TO CREEP LOADING

Figure 89 ELECTRON MICROGRAPH OF PH 14-8 Mo (SRH 1050) AFTER 1000 HOURS INTERMITTENT EXPOSURE TO 120 K\$ I AND 550°F (Major phases are identified)

Those specimens under conditions of steady exposure received a total of 25,800 hours at temperature with no cool-down to room temperature (except for a few shut-downs due to equipment repair). The intermittent specimens were exposed to maximum temperature for 2.5 out of every 3 hours of exposure. Thus, the intermittent specimens were at temperature for a total of 22,483 hours with 8,353 cool-downs to at least 125°F.

Rene' 41 (20% Cold Rolled + 16 Hours at 1400°F)

The complex microstructure of the Rene' 41 evaluated in this investigation was further compounded by the extreme amount of cold work, 20 percent reduction, put into the material by Sendzimir rolling to the 0.025-inch thickness. This severe rolling resulted in a very small grain size at the outer 1/4 thicknesses of the sheet. The center of the sheet had a larger grain size as shown in Figure 90, but was still a relatively small grain size of ASTM 6. A considerable amount of twinning is also evident in the photomicrographs of Figures 90 and 91. This cold work raised the normal ultimate strength of the 1400°F aged Rene' 41 from 185 ksi to 243 ksi.

The effect of the long time exposure at 650°F is shown in the photomicrographs of Figure 91 and the electron micrographs of Figure No significant change is readily discernable. The etchant has revealed a considerable quantity of carbide precipitation at the grain boundaries and dispersed throughout the nickel-base matrix. The large white appearing carbides are TiC and were not affected by the exposure at 650° F, both for the stressed condition as well as the heat-soaked only material. The smaller carbides are M6C. electron micrographs did not reveal any obvious embrittling films of M23C6 carbides. Generally, extraction replica procedures are necessary to detect carbide films. The electron micrographs did show the primary strengthening constituent, gamma-prime precipitate, Ni3(A1, Ti) as a fine dispersion in the matrices in Figure 92. Carbides can also be seen at the grain boundaries and within the matrix. A very slight increase (5%) in the precipitated carbides was observed in the initially (1000 hours) exposed material which did not increase with exposures up to 30,000 hours. It was also observed that randomly scattered throughout the sheets of Rene'41 were bands of severely segregated alloy concentration such as that shown in Figure 90. These bands of carbides undoubtedly accounted for the occasional extremely low ductility measured in the tensile tests.

OUTER EDGE OF SHEET AT TOP OF PHOTO HAS SMALL GRAIN SIZE AND CONSIDERABLE TWINNING ASSOCIATED WITH 20% COLD ROLLING OF MATERIAL.

Figure 90 A CROSS SECTION OF HALF THE THICKNESS OF A RENE 41 . 025" SHEET SHOWING BANDS OF SEVERE CARBIDE AND ALLOY SEGREGATION.

Figure 91 MICROSTRUCTURE OF 20% COLD ROLLED RENE 41 AFTER LONG TIME EXPOSURE TO HEAT ALONE AND CREEP LOADING

Figure 92 ELECTRON MICROGRAPHS OF 20% COLD ROLLED RENE 41 AFTER LONG TIME EXPOSURE TO CREEP LOADING

It would appear that the initial heating of the Rene 41 caused a slight secondary precipitation of carbides which resulted in some strengthening. After extended exposures to temperature and repeated cool-downs by the intermittent nature of the test, the strengthening was offset by some relaxation of the cold work.

Metallographically, no difference could be observed in the material which was exposed to steady heat as compared to that of the intermittent heat.despite the fact that the time at temperature was actually 30,000 hours instead of the 25,000 hours for the intermittently exposed Rene 41.

Ti-6Al-4V (Mill Annealed)

The microstructure of the mill annealed Ti-6Al-4V for conditions of intermittent and steady exposure with and without creep stress, are shown in Figures 93 and 94. It is evident that exposures up to 30,000 hours at 550°F with creep stresses of 40 ksi did not significantly cause any change in the alpha-beta titanium alloy. The optical micrographs show a light etching primary alpha matrix surrounding areas of stable beta. The elongated grains of alpha indicate that the annealing operation did not remove all of the effects of the sheet rolling operation. The electron micrographs of Figure 94 show the substructure of the alpha matrix and the beta particles and platelets.

This lack of microstructural change from temperature and stress exposure collaborates with the mechanical property results previously discussed.

Ti-8A1-1Mo-1V (Duplex Annealed)

The stability of the microstructure of the duplex annealed Ti-8Al-1Mo-1V is indicated in the optical and electron micrographs of Figures 95 and 96. The effect of 30,000 hours at either 550°F or 650°F for steady or intermittent exposure was nil in so far as metallographic changes were concerned. Essentially, neither the primary alpha phase (light etching) nor the transformed alpha-beta phase (dark etching - lamellar structure) were altered by the long time exposure. No transformation of beta could be detected despite the fact that the alloy contains only a small amount of beta-stabilizing elements, molybdenum and vanadium, and a relatively large amount of aluminum, an alpha-stabilizing addition. Unlike the Ti-6Al-4V, the duplex annealing operation was effective in removing the effects of

Figure 93 MICROSTRUCTURE OF MILL ANNEALED TI-6AI-4V AFTER LONG TIME EXPOSURE TO HEAT ALONE AND CREEP LOADING

HEAT ALONE

Figure 94 ELECTRON MICROGRAPHS OF MILL ANNEALED TI-6AI-4V AFTER LONG TIME EXPOSURE TO CREEP LOADING

 $10\% \text{ HNO}_3 + 1\% \text{ HF ETCH}$

11000 X MAG.

PLASTIC - Cr - C REPLICA

Figure 95 MICROSTRUCTURE OF DUPLEX ANNEALED Ti-8AI-1Mo-1V AFTER LONG TIME EXPOSURE TO HEAT ALONE AND CREEP LOADING

Figure 96 ELECTRON MICROGRAPHS OF DUPLEX ANNEALED TI-8AI-1Mo-1V AFTER LONG TIME EXPOSURE TO CREEP LOADING

the rolling operation and an equiaxed grain structure resulted. Isotropic properties would be expected from the Ti-8A1-1Mo-1V sheet.

SECTION IX

CONCLUSIONS

- 1. The magnitudes of creep deformation measured after 30,000 hours of loading at 550°F should not create a problem in the design of a supersonic transport airplane. The Ti-6A1-4V titanium alloy showed a rapid increase in creep rate as the exposure temperature increased from 550° to 650°F and, therefore, its use should be limited to low stress levels for short times at 650°F. Otherwise, the magnitude of creep measured at 650°F at the 30,000 hour creep loading stress levels on the AM-350 steel, the Rene 41 superalloy and the Ti-8A1-1Mo-1V titanium specimens should be within the allowable creep deformation for 30,000 hours of flight of a supersonic transport airplane.
- 2. Creep loading applied intermittently produces the same magnitude of plastic strain per unit of time as steadily applied creep loading when measured at 550° and 650° F on the candidate alloys.
- 3. a. Based on fracture toughness measurements, it was found that the ductile to brittle transition temperature of AM-350 SCT (825) stainless steel was raised from below -65°F to between -65°F and room temperature by exposure to creep loading at 650°F for 10,000 hours. The fracture toughness of the AM-350 stainless steel tested at -65°F continued to decrease as the creep exposure time increased to 30,000 hours. Exposure to heat alone at 650°F for 30,000 hours also raised the ductile to brittle transition temperature above the -65°F test temperature. Exposure to heat alone or to creep loading at 550°F had a negligible effect on the AM-350 steel up to 30,000 hours.
 - b. The exposure of PH 14-8 Mo (SRH 1050) stainless steel to heat alone or creep loading at 550°F did not reveal any important changes in this alloy when exposed up to 25,800 hours. There was a slight increase in toughness shown when exposed fracture toughness specimens were static tested at -65°F.
 - c. The variations in tensile and fracture toughness properties of Rene 41 with exposure at 550° and 650° F are slight and are of no design significance.

- d. Neither Ti-6Al-4V nor Ti-8Al-1Mo-1V titanium alloys are significantly affected by heat alone or creep loading as applied in the program.
- 4. The only alloy of the five tested that showed any appreciable degradation with exposure was the AM-350 SCT (825) stainless steel. This degradation was a result of applying heat alone or heat plus stress at $650^{\circ}F$. The stress added to the effect of heat in producing lower fracture toughness at an earlier exposure time than caused by heat alone.
- 5. a. Of the five materials tested, only the AM-350 showed any significant change in microstructure. After 10,000 hours exposure, a growth in carbides at the martensite-ferrite interface was noted in the creeped material only. An electron microscope study of extraction replicas revealed that an agglomeration of smaller precipitated carbides was occurring. This same condition was observed in the heat-soaked only material as well as the creeped material after 30,000 hours exposure. Primarily, the effect of the agglomerated carbides was to drastically reduce the -65°F fracture toughness strength and slightly increase the yield strength of the AM-350.
 - b. The Rene 41 (20% cold rolled + 16 hours at 1400°F) showed a very slight (5%) increase in precipitated M₆C carbides which could be metallographically detected only by careful study of the microstructure. This increase in carbide concentration occurred after the initial 1000 hours of exposure to 650°F and no further increase was observed for exposures up to 30,000 hours. Tensile properties were affected by an initial increase in yield and ultimate which gradually lessened with longer periods of exposure.
 - c. The stability of the mill annealed Ti-6Al-4V and the PH 14-8 Mo (SRH 1050) stainless steel was not affected by intermittent or steady exposures at $550^{\circ}F$ for 30,000 and 25,000 hours, respectively. Likewise, the duplex annealed Ti-8Al-1Mo-1V alloy was not affected by 30,000 hours at temperatures of $650^{\circ}F$.

SECTION X

RECOMMENDATIONS

- 1. Where small magnitudes of creep are to be measured, such as was found in this program, creep should be measured over a long gage length to minimize the error in physically making the measurement. Accompanying the specimen throughout its entire exposure duration, there should be an unloaded specimen measured precisely the same as the creep specimen to determine how much of the deformation measured was actually plastic strain and how much was growth due to metallurgical instability of the material.
- 2. AM-350 SCT (825) stainless steel should not be used above $550^{\rm o}{\rm F}$ for long periods of time until the temperature required to start embrittlement is determined and should not be used more than 5000 hours at $650^{\rm o}{\rm F}$ wherever brittle fracture would cause catastrophic failure.

REFERENCES

- 1. A report of a Special ASTM Committee, "Fracture Testing of High-Strength Sheet Materials," ASTM Bulletin No. 243, pp. 29-40 (Part I) and No. 244, pp. 18-28 (Part II), January and February 1960.
- 2. Thompson, O. N., and Jones, R. L., "Intermittent Creep and Stability of Materials for SST Applications," General Dynamics Corporation, Fort Worth Division, AFML-TDR-64-138, March 1964.
- 3. Fifth Report of a Special ASTM Committee, "Progress in Measuring Fracture Toughness and Using Fracture Mechanics," Materials Research and Standards. Vol. 4, No. 3. March 1964. pp. 107-119.
- 4. Krafft, J. M., Notes for May 24-25 Schenectady Meeting, ASTM Committee for Fracture Testing of Metallic Materials. 23 May 1961.
- 5. "Engineering Effort to Obtain Long Time Creep Data on Structural Sheet Materials for SST Applications," Joliet Metallurgical Laboratories, Incorporated, AFML-TR-65-18, January 1965.
- 6. Widmer, R., Dhosi, J. M., Mullendore, A., and Grant, N. J., "Mechanisms Associated with Long Time Creep Phenomena,"
 New England Materials Laboratory, Inc., AFML-TR-65-181,
 June 1965.
- 7. Irwin, G. R., "Fracture Testing of High-Strength Sheet Materials Under Conditions Appropriate for Stress Analysis," Naval Research Laboratory Report 5486.
- 8. Srawley, John E., and Brown, William F., Jr., "Fracture Toughness Testing," NASA Lewis Research Center, NASA TN D-2599, January 1965.

BIBLIOGRAPHY

- 1. A Report on a Special ASTM Committee, "Fracture Testing of High-Strength Sheet Materials," <u>ASTM Bulletin</u>, No. 243, pp. 29-40 (Part I), and No. 244, pp. 18-28 (Part II), January and February, 1960.
- 2. Second Report of a Special ASTM Committee, "The Slow Growth and Rapid Propagation of Cracks," <u>Materials Research and Standards</u>, Vol. 1, No. 5, May 1961, pp. 389-393.
- 3. Third Report of a Special ASTM Committee, "Fracture Testing of High-Strength Sheet Materials," <u>Materials Research and Standards</u>, Vol. 1, No. 11, November 1961, pp. 877-885.
- 4. Fifth Report of a Special ASTM Committee, "Progress in Measuring Fracture Toughness and Using Fracture Mechanics."

 Materials Research and Standards, Vol. 4, No. 3. March 1964, pp. 107-119.
- 5. Boyle, R. W., Sullivan, A. M., and Krafft, J. M., "Determination of Plane Strain Fracture Toughness with Sharply Notched Sheets," Welding Journal. Vol. 41, No. 9, Research Supplement, 1962, pp. 428S-423S.
- 6. Bueckner, H. F., "The Propagation of Cracks and the Energy of Elastic Deformation," <u>Transactions of the ASME</u>, Vol. 80, 1958.
- 7. Douglas Aircraft Company, "Notch Resistance and Fracture Toughness Characteristics of High Strength Metals." ASD-TDR-63-494.
- 8. Griffith, A. A., "The Theory of Rupture," Proceedings of the First International Congress Applied Mechanics, Delft, 1924, 55-63. Also, "The Phenomenon of Rupture and Flow in Solids," Philosophical Transactions of the Royal Society of London. Series A, Vol. 221, 1920, pp. 163-198.
- 9. Heimerl, George J., Baucom, Robert M., Manning, Charles R. Jr., and Braski, David N., "Stability of Four Titanium-Alloy and Four Stainless-Steel Sheet Materials After Exposures up to 22,000 Hours at 550°F (561° K), "NASA, Langley Research Center, February 1965.

- 10. Hudson, Michael C., "Fatigue-Crack Propagation in Several Titanium and Stainless-Steel Alloys and One Superalloy," NASA, Langley Research Center, NASA TN D-2331, October 1964.
- 11. Illg, Walter and Castle, Claude B., "Fatigue of Four Stainless Steels and Three Titanium Alloys Before and After Exposure to 550°F (561°K) Up to 8800 Hours," NASA, Langley Research Center, NASA TN D-2899, July 1965.
- 12. Inglis, C. E. "Stresses in a Plate Due to Presence of Cracks and Sharp Corners," <u>Transactions of the Institute of Naval Architects</u>, Vol. 55, Part 1, 1913, pp. 219-230.
- 13. Irwin, G. R. "Onset of Fast Crack Propagation in High Strength Steel and Aluminum Alloys." Naval Research Laboratory Report 4763, 29 May 1956.
- 14. Irwin, G. R. <u>Fracture Mechanics</u>, Proceedings of the First Symposium on Naval Structural Mechanics. Stanford University, Stanford, California, August 1958, pp. 557-594.
- 15. Irwin, G. R. "Fracture Testing of High-Strength Sheet Materials Under Conditions Appropriate for Stress Analysis", Naval Research Laboratory Report 5486, 17 July 1960.
- 16. Irwin, G. R., "Fracture Mode Transition for a Crack Traversing a Plate," <u>Transactions</u>. Am. Soc. Mechanical Engineering, Vol. 82D (Journal of Basic Engineering). No. 2, June 1960, pp. 417-425.
- 17. Irwin, G. R. and Srawley, J. E., "Progress in the Development of Crack Toughness Fracture Tests," <u>Material-prüfung</u>, Vol. 4, No. 1. January 1962, pp. 1-11.
- 18. Krafft, J. M., Sullivan, A. M., and Boyle, R. W., <u>Effect of Dimensions on Fast Fracture Instability of Notched Sheets</u>, Washington, D. C. Naval Research Laboratory. Unpublished Report.
- 19. "Engineering Effort to Obtain Long Time Creep Data on Structural Sheet Materials for SST Applications," Joliet Metallurgical Laboratories, AFML-TR-65-18, January 1965.

- 20. Krafft, J. M., Notes for May 24-25 Schenectady Meeting, ASTM Committee for Fracture Testing of Metallic Materials. Unpublished.
- 21. Krafft, J. M., and Sullivan, A. M, "Notes on Status of Fracture Mechanics Research at NRL," Prepared for the ASTM-FTHSSM Committee Meeting at Washington, 13-14 February 1962. Unpublished.
- 22. McCabe, D. E., "High Strength Sheets Test Method for Notch Sensitivity," Armco Research Report, 7 May 1963.
- 23. Perry, D. C., "ARMCO Precipitation Hardening Stainless Steels Technical Data," ARMCO Research and Technology, 11 August 1965.
- 24. Raring, Richard H., Freeman, J. W., Schultz, J. W., and Voorhees, H. R., "Progress Report of the NASA Special Committee on Materials Research for Supersonic Transports," National Aeronautics and Space Administration, Washington, NASA TN D-1798, May 1963.
- 25. Srawley, John E., and Brown, William F., Jr., "Fracture Toughness Testing," NASA, Lewis Research Center, NASA TN D-2599, January 1965.
- 26. Widmer, R., Dhosi, J. M., Mullendore, A., and Grant, N. J., "Mechanisms Associated with Long Time Creep Phenomena," New England Materials Laboratory, Inc., AFML-TR-65-181, June 1965.
- 27. Winne, D. H. and Wundt, B. M., "Applications of the Griffith-Irwin Theory of Crack Propagation to the Bursting Behavior of Disks, including Analytical and Experimental Studies,"

 Transactions of the American Society of Mechanical Engineers, Vol. 80, 1958, pp. 1643-1655.
- 28. Westergaard, H. M., "Bearing Pressures and Cracks", <u>Transactions</u> of the American Society of Mechanical Engineering, Vol. 61, 1939, pp. A-49 A-53.

APPENDIX

TABLES III THRU XVII

Table III AM-350 SCT (825)
TENSILE PROPERTIES TEST DATA

(ALLEGHE	(ALLEGHENY LUDLUM HEAT	89324,	AIR MELTED)									(SHEET	ET 1 of 4)
	STATIC				MEAS	MEASURED							
S P E CIMEN NUMBER	<u> </u>	CREEP STRESS LEVEL (PSI)	EXPOSURE TEMPERATURE (°F)	EXPOSURE TIME (HOURS)	THICKNESS (IN CHES)	WI DTH (IN CH ES)	AREA A (SQ. IN.)	LUAD AT RUPTURE (LBS)	F _{τυ} (PSI)	F _{TY} (PSI)	% G	REDUCTION IN AREA	MOULUS OF ELASTICITY PSI X 10 -6
		4											
A1-1	R.T.	(.0247	.4809	.01188	2490	209,600	178,500	5.6	51.3	
AI-2	Y C				1570.	1787	.01191	2510	210,300	120,300	0.07	50.3	
AL-3	K.I.				.0249	. 4040	00710.	0107	203,100	179,700	0.0	51.3	
A1-6	550	NL EX			.0247	13	.01516	2900	191,300	143,500	6.5	45.2	
A1-7	550				.0248	.6145	.01524	2880	189,000	146,000	6.5	8.44	
A1-9	550	-			.0249	14	.01530	2925	191,200	142,500	5.0	42.2	23.7
A2-18A	3A R.T.	4	4	4	.0248	.6268	.01554	3280	211,100	179,200	-	53.7	27.4
A2-18E					.0247	.6267	.01548	3270	211,200	179,600	10.0	52.8	27.9
AVG				-00				0	211,100	179,400	10.7	53.2	27.6
A2-18				001	.0248	.6255	.01551	2970	191,500	145,700	0.0	46.5	23.6
AZ-18C	35 50			I -	0250	6/70.	.01556	3055	199,200	149,400	7 .	0.00	24.9
AZTO)	0620.	0/70.	00070.	5	195,000	147,000	7.0	42.0	24.4
A3-19A		1			.0250	.6280	.01570	3290	209,600	182,200	11.0	47.8	27.2
	E R.T.				.0249	.6264	.01560	3300	211,500	182,200	10.0	50.0	29.2
AVG.				-0				,	210,500	182,400	10.5	48.9	28.2
			,	00	.0250	.6275	.01569	3085	196,600	146,000	4.0	41.5	25.8
A3-19C	ec 550	-	_	ς ~	.0250	.6285	.01571	3090	196,700	145,800	3.0	43.0	25.9
A3-19D AVG	<u> </u>	NLY	05	_,	.0250	.6280	.01570	3080	196,200	150,300	3.0	45.2	22.2
A1-16A	-	0	S	4	.0252	.6252	.01576	3290	208,800	176,400	13.0	50.3	27.2
A1-16B	SB R.T.	ED		(.0253	.6288	.01591	3290	206,800		12.0	50.9	26.9
AVG.		VΚ		000					207,900	177,500	12.5	9.09	27.0
A1-16C		os		o'c	.0252	.6316	.01592	3020	189,700	1	2.0	43.4	1
A1-16D	000	ΤĄ		- 1	.0252	.6335	96510.	3080	193,000	146,600	0.6	3/.5	27.5
ALTO		нЕ		-	.0232	0,000	06670.	2110	192 400	148 500	2.0	40.0	25.0
A1-18A		-			.0252	. 5850	01474	3055	207,300	179,100	12.0	53.4	27.2
A1-18B	3B R.T.			_	.0252	. 5839	.01471	3065	208,400	183,200	11.0	50.4	28.2
AVG.				00					207,800	181,100	11.5	51.9	27.7
A1-18C	3C 550			0'	.0253	.5837	.01477	2820	190,900	142,200	5.5	47.7	28.1
A1-18D				30	.0253	. 5844	.01479	2770	187,300	144,700	0.9	44.2	29.4
A1-18E	SE 550			-	.0253	.5819	.01472	2760	187,500	143,300	7.0	44.1	31.0
5 A C		•								143,400	7.0	40.0	6.67

*DETERMINED FROM SLOPE OF LOAD - STRAIN CURVE FOR INFORMATION ONLY

Table III AM-350 SCT (825)
TENSILE PROPERTIES TEST DATA

Alica Alic	Table Fight						1							(SHI	SHEET 2 of 4)
Thereformer freestieven Thereformer Th	Therefilled		STATIC			200	MEAS	URED		-					
R.T.	R. I.	S P E G M E N N U M B E R	TEMPERATURE (°F)			TIME (HOURS)	THICKNESS (INCHES)	WIDTH (INCHES)	AREA A (SQ. IN.)	AT RUPTURE (LBS)	P 7.0	RSI)	9 ₆ A	REDU CTION IN AREA	MODULUS OF ELASTICITY PSI X 10-6
National Control	No.	A1-1	R.T.	4			.0247	6087.	.01188	2490	209,600	000	9.5	513	0 %0
R.T. Color	No.	A1-2	R. T.	CD C			.0247	.4821	.01191	2505	210,300	181,800	10.0	50.3	2.60
Sign	SSO EXCEPT SSO S	AL=3	K. I.	OF S			.0249	.4845	.01206	2510	208,100	178,700	0.6	52.4	27.4
R.T.	R.T.	A1-6	550	XP(7.700	7213	2 1 2 1 0		209,300	179,700	9.5	51.3	28.5
S	Sign	A1-7	550	ON.			.0248	614	01510	2800	189,300	143,500	5.9	45.2	25.4
R.T.	R.T.	A1-9	550	ວ ດ			.0249	614	.01530	2925	191,200	142,500	0.0	20.07	26.2
Sign	No.	AVG.	ť	•							190,500	144,000	0.9	7. 77	25.1
Sign	Sign	A2-19A	X. L.	•	-	←	.0248	.6238	0154	3325	214,900	197,800	8.5	9.67	28.0
S S S S S S S S S S	Sign	AVC	N. I.	0(.0250	.6273	0156	3370	214,900	194,200	0.6	45.8	28.3
R.T.	R.T.	A7-19E	088)0		- 0	0	(214,900	196,000	8.7	47.7	28.1
R.T.	R.T.	A2-19B	550	0		000	.0250	.6245	.01561	3055	195,700	162,700	7.5	44.7	24.6
R.T.	R.T.	A2-19D	000	15		I-	.0250	0	.01564	2985	190,900	159,800	7.5	6.97	28.0
R.T.	R.T.	AVC					.0250	1979.	.01565	3025	193,300	160,700	7.0	7.77	25.0
Sign	Sign	A3-17A	E a								193,500	161,100	7.3	45.3	25.9
S50	550	A3-17F	B T			-	.0248	79	.01547	3255	210,400	83	11.0	52.2	28.7
550	550	AVG	W. L.	00			.0248	.6275	.01556	3305	212,400	187,600	10.0	53.1	28.7
R.T.	SSO	A3-17R	550	00 '	_	.00	0	(211,400	185,300	10.5	52.7	28.7
Solution	R.T.	A3-17C	000	έ(05	009	.0248	.6249	.01550	3065	197,700	151,900	5.0	43.5	24.4
R.T.	R.T.	A3-17D	000)[S	5 -	.0250	.6258	.01565	3085	197,100	156,500	7.0	45.0	28.2
R.T.	R.T.	AVC	000				.0250	.6264	.01566	3050	194,800	153,600	6.5	43.2	29.0
Secondary Seco	R.T.	A7-16A	E								196,500	154,000	5.2	43.9	27.2
550 00 00 00 0.0250 .6255 .01564 3040 194,400 185,500 183,100 0.0250 .6262 .01566 3025 194,400 149,900 149,900 1550 0.0250 .6262 .01566 3025 194,400 149,900 149,900 1550 0.0250 .6262 .01566 3025 199,200 149,900 150,400 149,600 187.T.	550	A2-16R	° F Q	<u></u>		4	.0248	.6242	.01548	3230	208,700	180,600	11.0	55.0	29.3
550	550 550 50 100 100 100 100 100 100 100 1	AVG	. 7 . 7			- (0520.	.6250	.01563	3350	214,300	185,500	11.0	48.0	28.2
S50	550	A2-16C	550	00		000	000				211,500	183,100	11.0	51.5	28.7
S50	550	A2-16D	550	0')'(0220	0770	.01564	3040	194,400	149,900	0.9	47.5	26.1
R.T. (196,500 150,400	R.T.	A2-16E	550	58		-10	0270	7070.	.01566	3025	193,200	148,500	5.5	41.5	25.6
R.T.	R.T.	AVG		>		-	6470.	6/70.	79670.	30/0	196,500	150,400	0.4	38.3	25.6
8.T. 0	F.T.	A1-17A	· ·	4		•	0	8769	01587	3205	194,/00	169,600	5.2	42.4	25.8
550	550	A1-17B		— (00	6250	01575	2220	210,000	182,100	12.0	57.2	28.1
550 55	550 5.0 100,300 11.3 54.8 550 5.0 5.0 12.8 3030 191,200 147,900 6.0 43.7 5.0 10.3 5.0 1.4 5,700 1.4 5,700 5.8 44.4 5.0 5.0 5.8 5.0 1.4 5,700 5.8 5.0 1.4 5,700 5.8 5.0 1.3 5.0 1.4 5,700 5.8 5.0 1.4 5,700 5.8 5.0 1.3 5.0 1.4 5,700 5.8 5.0 1.3 5.0 1.4 5,700 5.8 5.0 1.3 5.0	AVG。		000		- 0(1		01010.	0266	200,800	18,400	11.0	52.4	29.5
550	550	A1-17C	550)',		00	5	6263	01585	3030	101 200	100,300	11.0	24.8	28.8
550 (146,300 (146,300 (145,700	550 43.1 43.1 44.4	A1-17D	550	۷9		0	025	. 6268	01586	3005	191,200	147,900	0.0	43.7	30.2
192,000 145,700	FROM SLOPE OF LOAD - STRAIN CHRVF FOR INFORMATION ONLY	A1-17E	550			E -	025	6280	01500	3015	100,100	1,7,000	0.0	43.1	31.0
	FROM SLOPE OF LOAD - STRAIN CHRVF FOR INFORMATION ONLY	AVG.	4	•	•	•	1			0100	192,000	145,300	0 m	7.97	28.2
	FROM SLOPE OF LOAD - STRAIN CIRVE FOR INFORMATION										2006	1100/00	0.0	t. t	23.87
	FROM SLOPE OF LOAD - STRAIN CIRVE FOR INFORMATION						38		3						
	FROM SLOPE OF LOAD - STRAIN CIRVE FOR INFORMATION														
_	FROM SLOPE OF LOAD - STRAIN CIRVE FOR INFORMATION		_												

Table III AM-350 SCT (825)
TENSILE PROPERTIES TEST DATA

ET 3 of 4)		MODULUS OF ELASTIGTY PSI X 10 -6	000	20.9	27.4	28.5	27.7	23.8	28.0	27.9	28.4	25.3	24.5	24.8	24.9	28.7	27.9	28.3	24.1	7.07	25.3	27.7	27.0	27.3	23.0	22.3	22.5	20.7	30.0	31.0	31.2	2.7.2	27.0	27.4		
(SHEET		REDUCTION IN AREA	5 17	50.3	52.4	. 51.3	36.7	39.5	6 67	51.2	9.09	39.8	37.8	45.2	6.04	49.8	50.5	50.2	39.5	0.00	39.4	43.9	45.3	9.77	38.0	38.4	0.07	28.8	7.7.0	0.7	2.00	100	0	0		
		% 0	0	10.01	0.6	9.5	0.9	0.7	10.0	12.0	11.0	0.9	2.0	2.0	5.3	13.0	12.0	12.5) u	0.4	14.0	13.0	13.5	3.5	4.5	0.0	12.0	17.0	17.0	4.0	2.0	7.0	4.3	*	
		F _T (PSI)	178 500		178,700	179,700	135,000	137,900	177,700	177,800	177,700	141,700	146,800	144,900	144,500	182,400	189,600	186,000	145,600	17.5 600	145,800	189,200	187,100	188,100	159,500	148,700	149,400	106,300	198,800	197,600	151,800	154,700	156,800	154,400		
		F _{TU} (PSI)	009 600	210,300	208,100	209,300	197,600	195,300	213,500	213,100	213,300	200,200	200,000	195,500	198,600	223,400	221,700	222,500	200,800	199,200	200,400	218,300	215,500	216,800	202,500	204,300	204,000	200,000	225,000	223,100	201,500	203,900	204,200	203,200		
		LOAD AT RUPTURE (LBS)	2490	2505	2510		3015	2975	3280	3320		3095	3115	3070	00,70	24.00	3400	0110	3160	3140	0 + 1 0	3420	3425		3205	3250	2743	3775	3295	000	3000	3000	2975			
		AA (SQ. IN.)	.01188	.01191	.01206	7010	.01528	.01523	.01536	.01558		.01546	.01560	.015/0	0100	.01333	10010.	01560	01570	01576		.01571	.01589		.01583	.01591	16610.	01457	.01464		.01489	.01471	.01457			
	MEASURED	WI DTH (INCHES)	6087.	.4821	.4845	6130	.6146	.6118	.6270	.6284	0	.6283	0679.	8/79.	6063	6270	0/70.	7769	6280	6279		.6258	.6306		.6331	7959.	7000.	5852	.5857		.5841	.5838	. 5805			
	MEAS	THICKNESS (INCHES)	.0247	.0247	.0249	0.2%	.0251	.0249	.0245	.0248		0770	02/20	. 0248	37/60	0770	6470.	0250	.0250	.0251		.0251	.0252	(.0250	0220	0070.	0249	.0250		.0255	.0252	.0251			
		EXPOSURE TIME (HOURS)							4		0(001	I	1			(000) \$		•	4	—o	000	'0	ι-	-	4	_	00	00'	30		•		
		EXPOSURE TEMPERATURE (°F)							4.	-													05	9 -										•		
		CREEP STRESS LEVEL (PSI)	4	S 3D	STO ISO	XYP	CON	>	4								X".	INO) ((E)	łΨO	S	ΤΑ	НЕ										•		
	STATIC	TEST TEMPERATURE (°F)	R.T.	R.T.	R.T.	650	650	650	R.T.	R.T.	059	650	0.00	000	E	- L	• • • • • • • • • • • • • • • • • • • •	650	650	650		R.T.	R.T.	027	020	0.00		R, T,	R.T.		059	650	9			
		SPECIMEN	A1-1	A1-2	A1-3	A2-6	A3-6	A4-6 AVG.	A4-16A	A4-16E	AVG.	44-160	A4-16D	AVG	A4-19A	A4-19F	AVG	A4-19B	A4-19C	A4-19D	AVG	A3-16A	A3-16B	AVG.	A3-16C	A3-16F	AVG.	A4-17A	A4-17B	AVG。	A4-17C	A4-17D	A4-17E	AVG.		

*DETERMINED FROM SLOPE OF LOAD - STRAIN CURVE FOR INFORMATION ONLY

Table 111 AM-350 S CT (825)
TENSILE PROPERTIES TEST DATA

(SHEET 4 of 4)

	()				MEAS	EASURED						3'	MODULUS
S P E CIMEN NUMBER	TEMPERATURE (°F)	CREEP STRESS LEVEL (PSI)	EXPOSURE TEMPERATURE (°F)	EXPOSURE TIME (HOURS)	THICKNESS (INCHES)	WIDTH (INCHES)	AREA A (SQ. IN.)	LUAD AT RUPTURE (LBS)	ا (PSI)	F _T Y (PSI)	% a	REDU CTION IN AREA	OF ELASTICITY PSI X 10-6
A1-1	R.T.	4			.0247	4809	.01188	2490	209,600	178,500	9.5	51.3	28.9
A1-2	R, T,				.0249	.4845	.01206	2510	208,100	178,700	0.6	52.4	27.4
AVG.	No Lo	KOL POS			0	0012	20310	3015	209,300	179,700	0.0	51.3	28.5
A2-6	650				. 0249	6146	.01543	3035	196,700	139,300	7.0	38.0	23.6
A3-0 A4-6	650	nz nz			.0249	611	.01523	2975	195,300	137,900	7.0	39.5	23.8
AVG.	E S		4	4	.0250	.6235	.01559	3400	218,100	190,500	9.5	46.0	27.9
A3-18E	R.T.	-0			.0250	.6268	.01567	3400	217,000	194,600	200	44.3	28.1
AVG.	C	00		000	0249	6247	.01555	3120	200,600	165,900	2.0	45.3	25.1
A3-18B	650	' 8T)T -	.0249	.6255	.01575	3040	193,000	161,600	5.0	45.4	25.5
A3-18D	650	1-			.0250	.6260	.01565	3055	195,200	163,900	2.0	41.9	26.4
AVG,				H	97/00	5269	01559	3400	220,300	197,200	11.0	48.8	28.4
A4-18A	Z C	4 −0		-	.0248	.6268	.01567	3400	218,300	188,500	10.0	50.5	29.4
A4-LOE	R. I.	00		00					219,300	192,400	10.5	49.7	28.9
AVG. A4-18B	650	'1(005	.0249	.6246	.01555	3135	201,600	154,700	4.0	37.6	26.0
A4-18C	650)[.0248	.6254	.01551	3160	203,700	164,700	7.0	43.1	27.3
AD-18D	650		0		.0250	0070.	. 01703	0.14.0	202,100	158,600	4.5	38.8	26.3
AVG.	E		59.		.0250	.6245	.01561	3405	218,100	194,700	12.0	48.5	27.4
A2-17B	R.T.	— C			.0250	.6252	.01563	3420	218,800	194,800	10.5	49.8	32.4
AVG.	,	000		-00	0.251	6229	01571	3200	203,700	153,100	4.5	39.3	27.2
A2-1/C A2-17D	650	' ⊊ 8		0'(.0251	.6269	.01574	3160	200,800	149,000	5.0	42.4	24.2
A2-17E	059			1-	.0250	.6272	.01568	3120	201,200	152,400	t t	39.7	25,8
AVG.			_		.0254	.6243	.01586	3455	217,800	195,800	13.0	27.7	27.8
A1-19B	R.T.	-		0	.0254	.6248	.01587	3440	216,800	193,800	12.0	37.5	00 00
AVG.	1	000		00	10	6	01581	3140	198,600	151,500	4.0	42.6	N
A1-19C		0'2		'08	. 0252	.6259	.01577	3135	198,800	10	3.5	38.3	00
A1-19D A1-19E	650	9 -		-	10	62	.01587	3160	99	156,000	3.5	39.7	28.4
AVG.		•	•	•					130,000	174,500	1.0	1	

*DETERMINED FROM SLOPE OF LOAD - STRAIN CURVE FOR INFORMATION ONLY

Table IV PH 14-8 Mo (SRH 1050) TENSILE PROPERTIES TEST DATA

of 3)		S			-			.+ 0				.+ ~		-	+		0,		_	10	0.1	61			-	
7		MODULUS OF ELASTICITY PSI X 10 -6 *					26.4	25.4	26.2	21.5	21.7	25.4	25.2	23.9	24.4	23.0	29.5	26.4	22.0	22.5	22.6	25.2	26.3	26.4	24.2	21.4
(SHEET		REDUCTION IN AREA			×		47.1	48.4	49.1	40.1	40.3	40.3	41.5	41.9	41.8	42.0	48.5	42.4	35.9	41.9	40.4	46.5	48.9	43.1	43.5	42.2
,	/	%	7 10 5	. 9	3	• ന ന ო	0.9	7.0	6.7	2.0	2.2	7.0	6.7	4.0	3.0	3.3	7.5	7.7	3.0	2.5	3.0	8.0	0.0	3.0	3.0	3.0
		F _{TY} (PSI)	200,000 186,200 203,100	202,400	175,200	165,700		206,500	208,500	178,100	177,500	211,500	209,200	177,200	179,000	177,000	198,800	200,900	184,600	175,800	179,500	210,800	208,800	173,300	174,600	176,000
		F _{TU} (PSI)	219,200 209,800 216,500	218,800	192,000	185,500	220,100	220,000	220,100	191,500	191,700	222,700	222,200	193,200	196,400	194,000	217,200	219,700	197,900	191,400	191,900	221,500	221,300	196,900	192,300	194,400 194,500
		LUAU AT RUPTURE (LBS)					3455	3450	3	3005	2000	3535)	3025	3070		3375	3390	3055	3010	302)	3500	3515	3130	3040	3075
		AREA A (3Q. IN.)		×	ı ≽) : :	.01570	.01569		.01569	.01703	.01557		.01566	.01563		.01554	.01543	.01544	.01573	.01574	.01580	.01588	.01590	.01581	.01582
	MEASURED	WI DTH (INCHES)		р Д	, p		.6279	.6300		.6276	0/70.	.6252		.6262	.6253		.6268	7/79.	.6277	.6293	.6272	.6270	.6277	.6285	.6300	.6276
	MEA	THICKNESS (INCHES).		100) -	1	.0250	.0249		.0250	. 0243	.0249		.0250	.0250		.0248	.0246	.0246	.0250	.0251	.0252	.0253	.0253	.0251	.0252
		EXPOSURE TIME (HOURS)		E 22	, p	,	4		- 79	L-	•		00	700	•		-	-00	09	_	-	4	- 09	200	_Z —	
		EXPOSURE TEMPERATURE (°F)		0 0 0) (:	•						05	s —												-
		CREEP STRESS LEVEL (PSI)		N L	1 V	1	4				ILY	10 0	KEI	∀os	ΤA	нЕ				·						•
NO. 31562)	STATIC	TEST TEMPERATURE (°F)	R.T. R.T.	R.T.	550	550	R.T.	R.T.		550	occ	R.T.	R.T.	550	550		R.T.	R.T.	550	550	550	R.T.	R.T.	550	550	550
(ARMCO HEAT		SPECIMEN NUMBER	b 3 5 1	٠ ٧	9 /	. & 6 5	B9-A	B9-D	AVG.	89-B	AVG	B14-D 814-F	AVG.	B14-A	B14-C	AVG.	B-4A	B-4B AVG.	B-4C	B-4D	B-4E AVG.	B-6A	B-6B	B-6C	B-6D	B-6E AVG.

* DETERMINED FROM SLOPE OF LOAD - STRAIN CURVE FOR INFORMATION ONLY

Table IV PH 14-8 Mo (SRH 1050) TENSILE PROPERTIES TEST DATA

(SHEET 2 of 3)

	,											`		-							_										
	MODULUS OF ELASTICITY PSI X 10 -6						27.3	28.00	27.0	26.5	23.8	25.8	28.9	27.8	25.00	26.0	26.2	26.0	31.5	33.2	32.4	22.9	23.8	23.8	30.1	27.3	28.7	20.7	27.5	29.9	26.0
	% REDUCTION IN AREA						48.1	42.5	44.6	43.1	41.7	43.1	1	41.6	0.77	39.4	43.7	42.4	48.2	7.67	0.01	39.1	41.1	40.1	50.3	43.2	46.7	35.9	35.4	1.95	39.1
	96 O	7 10 5	9	8	7 %	m m	6.5	5.9	2.0	2.0	2.5	2.2	5.0	0.7	20.0	3.0	3.0	2.7	7.0	7.5	7.7	3.0	2.5	2.5	8.5	8.5	8.5	3.0	3.0	3.0	3.0
	F TY (PS1)	200,000	202,400	175,200	180,300	175,200	6	198,400	187,700	187,200	90	-	194,300	196,400	190,500	187,900	189,300	189,400	196,300	186,900	178 100	182,400	178,400	179,600	198,000	210,000	204,000	175,600	174,000		175,400
	F ru (PSI)	219,200 209,800 216,500	218,800	192,000	191,500	188,800	217,500	220,900	200,600	200,700	204,400	201,900	223,500	224,400	199,700	199,700	200,700	200,000	224,100	223,600	196,000	197,100	193,800	195,600	219,400	223,300	221,300	198,500	192,300	+	195,000
	LOAD AT RUPTURE (LBS)						3310	3435	3045	3055	3190		3440	3455	3065	3030	3065		3465	3445	3010	3025	3010)	3480	3530		3130	3005	3045	
	AREA A (SQ. IN.)		2	E L	A R M C O		.01522	.01555	01518	.01522	.01561		.01539	.01540	01535	.01517	.01527		.01546	.01541	01536	.01535	.01553	0	.01586	.01581		.01577	.01563	.01569	
MEASURED	WIDTH (INCHES)			N N	В Х		.6263	.6272	6271	.6288	.6296		.6255	. 6262	6267	.6270	.6282		.6260	. 6266	6270	. 6290	. 6262		.6270	.6275		.6281	.6304	.6276	
MEA	THICKNESS (INCHES)		(X O	LIED		.0243	.0248	0273	.0242	.0248		.0246	.0246	0245	.0242	.0243		.0247	.0246	5700	. 0244	0248		.0253	.0252		.0251	.0248	.0250	
	EXPOSURE TIME (HOURS)		(z	SUP		4		751			•	4		00	10		•	4		000)9		-	4	- 1	09(0'	57		
	EXPOSURE TEMPERATURE (°F)		(POSED	DATA		4													- 0	55										>
	CREEP STRESS LEVEL (PSI)		:	N N	TEST		4	- 0	00 '	٤0	τ	•	•	- 00	00	50	τ –	•	4	- 00	00'	58		- 1			00	0'	۷9		-
	STATIC TEST TEMPERATURE (°F)	R.T. R.T.	R.T.	550	550	550	R.T.	R.T.	0 8 8	550	550		R.T.	R.T.	055	550	550		R.T.	R. T.	C U	550	550		0	R		550	550	550	
	SPECIMEN	3 2 7	4 0	9	r 80	6 0	B10-A	B10-E	AVG.	B10-C	B10-D	AVG.	B1-A	81-E	AVG.	B1-C	B1-D	AVG.	B-2A	B-2B	AVG.	B-20	B-7F	AVG.	B-3A	B-3B	AVG.	B-3C	B-3D	B-3E	AVG.

* DETERMINED FROM SLOPE OF LOAD - STRAIN CURVE FOR INFORMATION ONLY

Table IV PH 14-8 Mo (SRH 1050)
TENSILE PROPERTIES TEST DATA

_			
	MODULUS OF ELASTICITY PSI X 10 -6	27.5 26.1 26.1 26.1 27.7 27.7 28.5 28.5 28.5 28.5 28.5 28.5 28.5	
	REDUCTION IN AREA	42.7 42.7 40.1 41.6 42.5 41.5 50.9 50.9 50.7 444.7 444.7 444.7 444.7	
	% 0	100 100 100 100 100 100 100 100 100 100	
	F _T Y (PSI)	200,000 185,200 203,100 202,400 175,200 180,300 165,700 165,700 175,900 177	
	P 7 (PSI)	219,200 209,800 216,500 218,800 191,500 191,500 185,500 185,500 185,500 195,100 195,100 196,600 198,700 198,700 198,700 198,700 198,700 198,700 198,700 198,600 197,400	
	LOAD AT RUPTURE (LBS)	3465 3405 3405 3065 3110 3460 3480 3145 3020 3090	
	AREA A (SQ. IN.)	I M E N R M C O .01542 .01543 .01582 .01582 .01583 .01575 .01556	
MEASURED	WI DTH (INCHES)	S P E C	
MEAS	THICKNESS (INCHES)	L I E D 1. 0246 1. 0243 1. 0243 1. 0252 1. 0253 1. 0252 1. 0252 1. 0252 1. 0254 1. 0254 1. 0254 1. 0254 1. 0254 1. 0254	
	EXPOSURE TIME (HOURS)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
2	EXPOSURE TEMPERATURE (°F)	A A A A A A A A A A A A A A A A A A A	
	CREEP STRESS LEVEL (PSI)	STEADY ONLY ONLY ONLY ONLY ONLY ONLY ONLY ONL	
STATIC	TEST TEMPERATURE (°F)	R.T. R.T. R.T. R.T. R.T. R.T. S50 550 550 550 550 550 550 550 550 550	
7	S P E CIMEN NUMBER	1 2 3 4 4 5 6 6 7 7 8 8 7 8 8-78 8-78 8-78 8-78 8-7	

 \ast DETERMINED FROM SLOPE OF LOAD - STRAIN CURVE FOR INFORMATION ONLY $\ast\ast$ EXTENSOMETER MALFUNCTIONED

Table V RENE'41 (20% C, R, + 16 HRS @ 1400 F) TENS ILE PROPERTIES TEST DATA

Table Tabl	(CANNON MUSKEGON HEAT		V-2146)										LEET (ET 1 of 5)
Second S		STATIC				MEAS	URED		IOAD	,	,		9,	SII III OM
District	S P EGMEN NUMBER	TEST TEMPERATURE (°F)		EXPOSURE TEMPERATURE (°F)	EXPOSURE TIME (HOURS)	THICKNESS (INCHES)	WI DTH (INCHES)	AREA A (SQ. IN.)	RUPTURE (LBS)	F Tu (PSI)	F _{TV} (PS1)		REDU ČTION IN AREA	ELASTICITY PSI X 10-6
D3-15E R.T. CONTRICT CONT	D3-15B	R.T.	•			.0241	.4927	.01187	2920	246,000	229,100	5.5	3	31.5
Name	D3-15C	R.T.	SI			.0239	.4929	.01178	2900	246,200	230,500	5.5	15.1	32.5
National Process National Pr	D3-15E	R.T.	ВО			.0238	.4908	.01168	2850	244,000	226,900	0.0	16.3	31.9
Marchest	D2-1/E1	R.T.	LN			.0221	.4982	10110.	2650	240,700	222,100	0.0	16.9	32.4
19-38 550 55	AVG.	K. I.	00			.0210	7964.	7/010.	0/67	243,700	225,900	6.7	15.9	31.2
10,4 10,5 10,4 10,4 10,4 10,4 10,4 10,4 10,4 10,4 10,4 10,4 10,4 10,5 10,4 10,4 10,5 10,4 10,4 10,5 10,4 10,4 10,5 10,4 10,4 10,5 10,4 10,4 10,5 10,4 10,4 10,5 10,4 10,4 10,5 10,4 10,4 10,5 10,4 10,4 10,5 10,4 10,4 10,5 10,4 10,4 10,5 10,4 10,4 10,5 10,4 10,4 10,5 10,4 10,4 10,5 10,4 10,4 10,5 10,4 10,4 10,5 10,4 10,4 10,5 10,4 10,4 10,5 10,4 10,5 10,4 10,4 10,5	D3-3B	550	ED		+	.0238	.6201	.01476	3335	225,900	208,000	**		28.5
D3-15B 550	D3-4B	550	so			.0241	.6217	.01498	3400	227,000	206,600	6.5		30.4
D2-15B 550 25	D3-6B	550	ďΧ			.0249	.6225	.01550	3415	220,300	203,900	*		28.9
No. 1	D2-15B	550	NE			.0223	.6183	.01379	2805	224,800	203,400	8.0	19.4	30.3
National Part	D2-13B AVG.	250	n-			.0229	.6193	.01418	3170	223,600	203,800	2.2	18.8	29.8
National Property Nati	D3-1AA	R.T.	•	•	4	.0225	.6290	.01415	3545	250,500	231,400	2.0	11.8	32.6
BAVG, D3-1AC 550 550 BAVG, D3-1AC 550 550 BAVG, D3-1AC 550 550 BAVG, D3-1AC 550 550 C0233 550 C0233 550 C0233 550 C0233 550 C0233 550 C0231 550 C0233 550 C0233 550 C0234 550 C0234 550 C0234 550 C0234 550 C0234 550 C0234 550 C0234 550 C0235 550 C0236 550 C0236 550 C0236 550 C0236 550 C0236 550 C0236 550 C0236 550 C0236 550 C0236 550	D3-1AE	R.T.				.0228	.6269	.01429	3575	250,200	231,900	7.0	16.7	30.9
D3-LAB 550 D3-LAC 550	AVG.				00					250,300	231,600	4.5	14.3	31.8
National Color	D3-1AB	550			100	.0230	.6280	.01444	3440	238,200	220,200	3.5	10.0	30.6
Marchest		000				.0233	1170.	.01403	3220	240,000	213,000	0.0	11.8	0.07
R.T. Solve ED		250				.0231	7879.	.01451	3420	238,900	217,800	6.0	13.8	30.9
R.T.	D3-6A	1	_		4	0241	7769	01505	5728	248 800	231 000	0 9	12.0	30.7
550 EARLY (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	D3-6B	R.T.	2			.0243	.6292	.01529	3790	247,800	227,400	2.0	10.5	31.1
Secondary Seco	AVG.		1FZ		00					248,800	229,200	5.5	11.2	30.9
S50 E	D3-6C	550	10		009	.0250	.6315	.01579	3625	229,600	212,700	3.0	12.7	27.4
R.T. Str.	D3-6D	550	d3		-	.0248	.6350	.01575	3570	226,700	212,700	2.5	12.1	32.9
R.T.	D3-6E	250	YKI	0		.0245	.6356	.01557	3555	228,300	209,600	2.0	11.5	27.9
R.T. ★ B.T. ★ B.T. ★ B.T. ★ B0243	D3-8A	R.T.	os	55	4	.0240	.6275	.01506	3715	246,700	228,500	5.5	15.2	30.5
550	D3-8B	R.T.	ΤĄ	-	— (.0243	.6328	.01538	3845	250,000	231,200	5.0	12.3	30.9
550 550 550 7. 0248	AVG.		НЕ?		000					248,400	229,900	5.3	13.8	30.7
550 550 550	D3-8C	550	Ι –)'(.0248	.6357	.01577	3500	221,900	214,600	1.0	13.3	29.8
R.T.	D3-8D	550			10	.0248	.6380	.01582	3360	212,400	210,400	,	ı	27.3
R.T.	D3-8E	550			_	.0246	.6390	.01572	3550	225,800	210,500	2.5	12.7	31.3
R.T.	AVG.				•					220,000	211,800	1.8	13.0	29.5
8.T. 8.T. 9. 0.0231 .5860 .01354 3285 242,600 222,700 5.5 20.8 550 .0230 .5858 .01347 3110 230,900 213,100 7.0 17.7 550 .0231 .5852 .01352 3095 228,900 210,400 6.5 17.7 550 .0235 .5837 .01372 3150 229,600 211,900 6.3 17.5	D1-13A	R.T.			4	.0228	.5875	.01340	3275	244,400	225,700	7.0	20.1	32.2
550 5.0230 .5858 .01347 3110 230,900 224,200 6.3 20.4 5.50 5.50	D1-13B	R.T.			- (.0231	.5860	.01354	3285	242,600	222,700	5.5	20.8	29.4
550 550 550 550 550 550 550 550	AVG.	i i			000	((,	243,500	224,200	6.3	20.4	30.8
550 550 550 5837 .01372 3150 229,600 212,100 5.5 17.1 31. 31.	D1-13C	250)'(.0230	. 5858	.01347	3110	230,900	213,100	0.7	17.7	
229,800 211,900 6.3 17.5 31.	D1-13E	550)£ -	.0235	.5837	.01372	3150	229.600	212,100	0.0	17.1	
	AVG.		-	-	-					229,800	211,900	6.3	17.5	

159

 \star DETERMINED FROM SLOPE OF LOAD - STRAIN CURVE FOR INFORMATION ONLY $\star\star$ FAILED AT EXTENSOMETER GRIPS

Table V RENE'41 (20% C. R. + 16 HRS @ 14000F)
TENSILE PROPERTIES TEST DATA

COUNTREE WIDTH AREA LESS F.u. F.u.	MEASURED
. 4927	THICKNE
. 0239 . 4929	.0241
. 0238 . 4908 . 01168 2850 244,000 . 0221 . 4982 . 01101 2650 240,700 . 0218 . 6201 . 01476 3335 225,900 . 0224 . 6221 . 01498 3400 227,000 . 0224 . 6225 . 01550 3415 226,300 . 0223 . 6183 . 01418 3170 224,800 . 0229 . 6193 . 01448 3170 224,300 . 0230 . 6292 . 01504 3765 250,300 . 0231 . 6357 . 01462 3695 251,400 . 0232 . 6386 . 01462 3695 251,400 . 0234 . 6357 . 01488 3590 241,300 . 0235 . 6295 . 01479 3645 241,000 . 0236 . 6295 . 01479 3645 241,000 . 0236 . 6311 . 01489 3445 241,000 . 0236 . 6296 . 01479 3645 225,700 . 0236 . 6298 . 01479 3645 221,400 . 0236 . 6298 . 01479 3645 221,400 . 0236 . 6298 . 01430 3530 225,700 . 0237 . 6298 . 01436 3290 226,600 . 0228 . 6298 . 01436 3285 229,700 . 0224 . 6298 . 01436 3285 229,700 . 0242 . 6298 . 01436 3285 223,300 . 0242 . 6299 . 01506 3425 231,600 . 0240 . 6275 . 01506 3425 227,400 . 0237 . 6295 . 01483 3405 227,900 . 0240 . 6275 . 01506 3425 227,900 . 0237 . 6295 . 01483 3405 222,600 . 0237 . 6295 . 01483 3405 222,900 . 0237 . 6295 . 01483 3405 222,900	.0239
.021	.0238
.0216 .4962 .01072 2570 239,700 .0238 .6201 .01476 3335 225,900 .0241 .6225 .01550 3415 222,300 .0223 .6183 .01379 2805 224,800 .0229 .6193 .01418 3170 223,600 .0232 .6303 .01462 3655 251,400 .0233 .6328 .01462 3695 221,500 .0234 .6358 .01462 3695 251,400 .0235 .6295 .01462 3695 251,400 .0236 .6358 .01462 3695 251,400 .0237 .6295 .01479 3545 241,000 .0238 .6356 .01521 3770 247,200 .0238 .6356 .01479 3645 241,000 .0238 .6298 .01452 3290 225,700 .0238 .6298 .01456 3615 246,900 .0228 .6298 .01436 3325 227,900 .0228 .6298 .01436 3325 224,600 .0228 .6298 .01436 3325 224,600 .0224 .6298 .01436 3325 231,600 .0242 .6298 .01436 3265 238,600 .0242 .6298 .01436 3265 238,600 .0242 .6298 .01452 3595 227,400 .0245 .6293 .01506 3425 227,400 .0237 .6295 .01483 3405 227,400 .0237 .6295 .01483 3405 227,400 .0237 .6295 .01483 3405 222,400	.0221
. 0238 . 6201 . 01476 3335 225,900 . 0241 . 6217 . 01498 3400 227,000 . 0229 . 6193 . 01418 3170 224,800 . 0229 . 6193 . 01418 3170 224,800 . 0229 . 6193 . 01418 3170 224,800 . 0229 . 6193 . 01418 3170 224,300 . 0239 . 6592 . 01504 3765 250,300 . 0233 . 6358 . 01462 3675 251,500 . 0234 . 6357 . 01488 3590 241,300 . 0234 . 6357 . 01488 3590 241,300 . 0235 . 6295 . 01479 3445 241,000 . 0236 . 6366 . 01521 3770 247,900 . 0236 . 6356 . 01452 3390 225,700 . 0236 . 6356 . 01452 3390 225,700 . 0238 . 6258 . 01452 3290 226,600 . 0228 . 6258 . 01430 3530 246,900 . 0228 . 6298 . 01430 3530 246,900 . 0228 . 6298 . 01430 3530 244,900 . 0228 . 6298 . 01430 3530 244,900 . 0224 . 6293 . 01430 3595 231,500 . 0242 . 6293 . 01430 3285 229,700 . 0242 . 6293 . 01523 3595 231,500 . 0242 . 6293 . 01523 3595 227,900 . 0237 . 6295 . 01483 3405 227,900 . 0237 . 6295 . 01483 3405 227,900 . 0237 . 6295 . 01483 3405 227,900 . 0237 . 6295 . 01483 3405 227,900 . 0237 . 6295 . 01483 3405 222,9300 . 0237 . 6295 . 01483 3405 222,9300	.0216
.0238 .6201 .01476 3335 225,900 .0241 .6217 .01498 3400 227,900 .0223 .6183 .01550 3415 220,300 .0223 .6183 .01418 3170 224,800 .0229 .6193 .01504 3765 224,800 .0239 .6292 .01504 3765 250,300 .0231 .6358 .01462 3675 251,400 .0232 .6358 .01462 3675 251,400 .0234 .6358 .01462 3695 251,400 .0234 .6357 .01488 3590 241,100 .0234 .6357 .01488 3590 241,300 .0235 .6236 .01479 3645 247,900 .0236 .6311 .01488 3590 224,000 .0235 .6258 .01452 3390 226,600 .0236 .6258 .01452 3390 227,900 .0237 .6258 .01430 3285 229,700 <td< td=""><td></td></td<>	
. 0241 . 6217 . 01498 3400 227,000 . 0223 . 6183 . 01379 2805 224,800 . 0229 . 6193 . 01418 3170 223,600 . 0232 . 6592 . 01504 3765 250,300 . 0232 . 6303 . 01462 3675 251,400 . 0233 . 6358 . 01462 3695 252,700 . 0234 . 6357 . 01488 3590 241,300 . 0234 . 6357 . 01479 3645 241,000 . 0235 . 6295 . 01479 3645 241,000 . 0236 . 6311 . 01489 3445 241,000 . 0236 . 6312 . 01479 3645 241,000 . 0236 . 6312 . 01479 3645 241,000 . 0236 . 6312 . 01479 3645 241,000 . 0236 . 6358 . 01479 3645 241,000 . 0236 . 6295 . 01479 3645 247,200 . 0236 . 6298 . 01436 3530 246,300 . 0226 . 6258 . 01430 3530 246,300 . 0242 . 6289 . 01436 3285 229,700 . 0245 . 6279 . 01430 3285 229,700 . 0240 . 6275 . 01506 3425 233,500 . 0240 . 6275 . 01536 3665 233,500 . 0237 . 6295 . 01483 3405 227,900 . 0237 . 6295 . 01483 3405 227,900 . 0237 . 6295 . 01483 3405 222,600	.0238
.0229 .6225 .01550 3415 220,300 .0223 .6183 .01379 2805 224,800 .0229 .6193 .01418 3170 224,300 .0232 .6303 .01462 3675 250,400 .0232 .6303 .01462 3675 251,400 .0234 .6357 .01462 3695 252,700 .0234 .6357 .01488 3590 241,300 .0234 .6357 .01471 3545 241,000 .0236 .6286 .01521 3770 247,900 .0236 .6366 .01521 3770 247,900 .0236 .6366 .01522 3290 225,700 .0238 .6250 .01479 3645 221,400 .0238 .6250 .01452 3290 225,700 .0228 .6258 .01436 3530 248,300 .0228 .6258 .01436 3530 248,300 .0226 .6328 .01436 3530 244,900 .0227 .6289 .01436 3530 244,900 .0240 .6279 .01536 3665 233,500 .0240 .6275 .01536 3425 227,900 .0237 .6295 .01483 3405 227,900 .0237 .6295 .01483 3405 227,900	.0241
.0223 .6183 .01379 2805 224,800 .0229 .6193 .01418 3170 223,600 .0232 .6292 .01504 3765 250,300 .0232 .6328 .01462 3675 251,400 .0234 .6357 .01462 3695 252,700 .0234 .6357 .01488 3590 241,300 .0234 .6357 .01488 3590 241,300 .0235 .6295 .01479 3645 246,500 .0236 .6311 .01489 3445 247,200 .0236 .6366 .01521 3770 247,900 .0236 .6258 .01452 3290 225,700 .0238 .6259 .01456 3615 248,300 .0228 .6258 .01456 3250 225,700 .0228 .6298 .01436 3325 229,700 .0245 .6298 .01436 3260 233,500 .0245 .6298 .01436 3265 233,500 .0245 .6298 .01436 3265 233,500 .0245 .6293 .01506 3425 227,400 .0240 .6275 .01506 3425 227,400 .0237 .6295 .01483 3405 225,600	.0249
.0229 .6193 .01418 3170 223,600 .0239 .6292 .01504 3765 255,300 .0232 .6303 .01462 3675 251,400 .0233 .6358 .01462 3695 251,700 .0234 .6357 .01471 3545 241,000 .0234 .6357 .01488 3590 241,300 .0235 .6295 .01479 3645 246,500 .0236 .6311 .01489 3445 246,500 .0236 .6316 .01502 3390 225,700 .0236 .6316 .01456 3645 246,500 .0238 .6250 .01456 3290 225,700 .0238 .6258 .01456 3290 225,700 .0228 .6298 .01436 3530 246,900 .0228 .6298 .01436 3260 233,500 .0245 .6279 .01436 3265 229,700 .0245 .6270 .01536 3665 233,600 .0245 .6270 .01536 3265 233,600 .0245 .6270 .01536 3265 227,400 .0247 .6293 .01506 3425 227,400 .0237 .6295 .01483 3405 225,600	.0223
. 0239 . 6292 . 01504 3765 250,300	.0229
. 0239 . 6292 . 01504 3765 250,300 . 0232 . 6303 . 01462 3675 251,400 . 0230 . 6358 . 01462 3675 251,400 . 0234 . 6357 . 01488 3590 241,300 . 0234 . 6357 . 01488 3590 241,300 . 0235 . 6295 . 01479 3645 246,500 . 0236 . 6312 . 01479 3645 246,500 . 0236 . 6312 . 01479 3445 241,000 . 0236 . 6366 . 01521 3770 247,900 . 0236 . 6366 . 01502 3390 225,700 . 0238 . 6258 . 01452 3290 225,700 . 0238 . 6258 . 01456 3530 246,300 . 0228 . 6258 . 01430 3530 246,300 . 0228 . 6289 . 01436 3530 246,300 . 0245 . 6289 . 01436 3265 223,700 . 0245 . 6279 . 01536 3655 233,500 . 0245 . 6270 . 01536 3425 223,700 . 0245 . 6293 . 01536 3425 227,900 . 0237 . 6295 . 01483 3405 225,700 . 0237 . 6295 . 01483 3405 222,900	
. 0232 . 6303 . 01462 3675 251,400 . 0230 . 6358 . 01462 3695 252,700 251,500 . 0234 . 6357 . 01488 3590 241,300 241,100 . 0242 . 6286 . 01521 3770 247,200 . 0235 . 6295 . 01479 3645 247,200 . 0236 . 6311 . 01489 3445 247,200 . 0236 . 6311 . 01489 3445 247,200 . 0236 . 6356 . 01479 3645 248,300 . 0232 . 6258 . 01452 3390 225,700 . 0238 . 6256 . 01452 3390 225,700 . 0228 . 6258 . 01436 3530 246,900 . 0228 . 6298 . 01436 3530 246,900 . 0226 . 6328 . 01430 3530 246,900 . 0226 . 6328 . 01430 3530 246,900 . 0224 . 6289 . 01436 3260 233,500 . 0242 . 6299 . 01536 3655 238,600 . 0245 . 6279 . 01536 3425 227,900 . 0237 . 6295 . 01483 3405 222,900 . 0237 . 6295 . 01483 3405 222,900 . 0233 . 6365 . 01483 3405 222,900 . 0233 . 6365 . 01483 3405 222,900	.0239
. 0233 .6358 .01462 3695 252,700 .0234 .6357 .01471 3545 241,000 .0234 .6286 .01521 3770 247,900 .0235 .6295 .01479 3645 244,500 .0236 .6311 .01489 3445 247,200 .0236 .6366 .01502 3390 225,700 .0233 .6256 .01452 3290 226,600 .0228 .6258 .01452 3290 226,600 .0228 .6298 .01456 3615 248,300 .0228 .6298 .01436 3325 229,700 .0245 .6298 .01436 3325 229,700 .0245 .6298 .01436 3260 233,500 .0245 .6298 .01436 3265 238,600 .0245 .6298 .01436 3265 238,600 .0245 .6299 .01506 3425 227,400 .0240 .6275 .01506 3425 227,400 .0237 .6295 .01483 3405 229,600	.0232
. 0233 . 6312 . 01471 3545 241,000 . 0234 .6357 . 01488 3590 241,300 241,300 . 0242 . 6286 . 01521 3770 247,900 . 0235 . 6295 . 01479 3645 247,900 . 0236 . 6386 . 01452 3290 225,700 . 0238 . 6258 . 01452 3290 225,700 . 0228 . 6258 . 01452 3290 226,600 . 0228 . 6258 . 01456 3615 248,300 . 0228 . 6298 . 01456 3615 248,300 . 0226 . 6289 . 01436 3325 229,700 . 0245 . 6298 . 01436 3325 229,700 . 0245 . 6298 . 01436 3325 231,600 . 0245 . 6298 . 01436 3325 231,600 . 0245 . 6299 . 01536 3665 233,500 . 0245 . 6293 . 01536 3265 233,000 . 0240 . 6275 . 01536 3405 227,400 . 0237 . 6295 . 01483 3405 222,000 227,900 . 0233 . 6385 . 01483 3405 2229,600	.0230
.0233 .6312 .01471 3545 241,000 .0234 .6357 .01488 3590 241,000 .0242 .6286 .01521 3770 247,900 .0235 .6295 .01479 3645 247,900 .0236 .6311 .01489 3445 247,200 .0236 .6366 .01502 3390 225,700 .0232 .6258 .01452 3290 225,700 .0233 .6256 .01452 3290 226,900 .0228 .6274 .01430 3325 227,900 .0228 .6274 .01430 3325 227,600 .0228 .6274 .01430 3325 229,700 .0224 .6289 .01436 3265 229,700 .0245 .6270 .01536 3265 238,600 .0245 .6293 .01536 3265 237,900 .0247 .6293 .01536 3265 237,400 .0237 .6295 .01492 3405 227,400 <td< td=""><td></td></td<>	
.0234 .6357 .01488 3590 241,300 .0242 .6286 .01521 3770 247,900 .0235 .6295 .01479 3645 247,900 .0236 .6311 .01489 3445 247,200 .0236 .6366 .01502 3390 225,700 .0232 .6258 .01452 3290 226,900 .0228 .6274 .01430 3530 246,900 .0228 .6274 .01430 3530 246,900 .0228 .6274 .01430 3325 227,600 .0228 .6298 .01430 3285 229,700 .0222 .6289 .01430 3285 229,700 .0245 .6270 .01536 3265 231,600 .0245 .6270 .01536 3265 237,900 .0240 .6275 .01536 3265 237,900 .0245 .6270 .01536 3265 237,000 .0247 .6293 .01492 3405 227,000 <td< td=""><td>.0233</td></td<>	.0233
. 0242 . 6286 . 01521 3770 247,900 20235 . 6295 . 01479 3645 246,500 247,900 . 0236 . 6386 . 01489 3445 247,200 . 0236 . 6366 . 01502 3290 225,700 . 0238 . 6258 . 01452 3290 225,700 . 0228 . 6258 . 01456 3615 248,300 . 0228 . 6274 . 01430 3325 227,900 . 0228 . 6298 . 01436 3325 229,700 . 02245 . 6298 . 01436 3260 233,500 . 0245 . 6298 . 01436 3265 238,600 . 0245 . 6299 . 01536 3665 238,600 . 0245 . 6293 . 01536 3665 237,400 . 0237 . 6295 . 01483 3405 222,400 . 0233 . 6365 . 01483 3405 222,600 . 0233 . 6365 . 01483 3405 222,600	.0234
.0235 .6286 .01521 3770 247,900 .0236 .6311 .01489 3445 246,500 .0236 .6311 .01489 3445 247,200 .0236 .6356 .01502 3390 225,700 .0238 .6258 .01452 3290 225,700 .0228 .6254 .01456 3615 248,300 .0228 .6274 .01430 3325 227,900 .0228 .6298 .01436 3325 229,700 .0226 .6328 .01436 3325 229,700 .0245 .6298 .01436 3260 233,500 .0245 .6270 .01536 3665 238,600 .0245 .6270 .01536 3665 238,600 .0240 .6275 .01506 3425 227,400 .0237 .6295 .01483 3405 222,600	
.0235 .6295 .01479 3645 246,500 .0236 .6311 .01489 3445 247,200 .0236 .6366 .01502 3390 225,700 .0233 .6258 .01452 3290 226,600 .0228 .6274 .01430 3530 246,900 .0228 .6298 .01436 3325 221,500 .0226 .6328 .01436 3285 229,700 .0245 .6270 .01536 3265 233,500 .0242 .6293 .01536 3265 233,600 .0240 .6275 .01506 3425 227,400 .0237 .6295 .01483 3405 222,600	.0242
.0236 .6311 .01489 3445 247,200 .0236 .6366 .01502 3390 225,700 .0232 .6258 .01452 3290 225,700 .0228 .6274 .01430 3530 246,900 .0228 .6298 .01436 3325 229,700 .0226 .6328 .01436 3285 229,700 .02245 .6279 .01536 3265 233,500 .0245 .6279 .01536 3655 238,600 .0242 .6293 .01536 3425 227,400 .0240 .6275 .01506 3425 227,400 .0237 .6295 .01483 3405 222,600 222,600	.0235
.0236 .6311 .01489 3445 231,400 .0236 .6366 .01502 3390 225,700 .0233 .6258 .01456 3615 225,700 .0228 .6274 .01430 3530 2449,300 .0228 .6298 .01436 3325 229,700 .0226 .6328 .01436 3285 229,700 .022 .6289 .01436 3285 229,700 .0245 .6270 .01536 3265 233,500 .0242 .6293 .01536 3425 227,400 .0240 .6275 .01506 3425 227,900 .0237 .6295 .01483 3405 222,600 228,300	1
. 0236 . 01502 3390 225,700 21. . 0233 . 6258 . 01452 3290 226,600 21. . 0228 . 6274 . 01430 3530 246,900 22. . 0228 . 6274 . 01430 3285 229,700 22. . 0222 . 6289 . 01436 3285 229,700 22. . 0245 . 6270 . 01536 3265 238,600 212. . 0240 . 6275 . 01506 3425 227,900 201. . 0240 . 6275 . 01506 3425 227,900 201. . 0237 . 6295 . 01483 3405 227,900 201.	.0236
.0232 .6258 .01452 3290 226,600 2100233 .6250 .01456 3615 248,300 2200228 .6274 .01436 3530 246,900 2220228 .6298 .01436 3325 231,500 2100245 .6289 .01436 3285 223,700 440245 .6270 .01536 3260 233,500 2200247 .6293 .01523 3595 238,600 2100240 .6275 .01506 3425 227,400 2080237 .6295 .01492 3405 227,900 2080233 .6365 .01483 3405 2229,600 212.	.0236
. 02336250 01456 3615 248,300 227,900 210 02286274 01430 3530 246,900 222 0228 6298 01436 3325 231,500 210 0226 6289 01436 3285 229,700 4 0245 6289 01396 3260 233,500 220 0245 6270 01536 3665 238,600 221 0240 6275 01506 3425 227,400 208 0237 6295 01483 3405 227,900 208 0233 6365 01483 3405 2229,600 212.	.0232
. 0228 .6250 .01456 3615 248,300 222	
. 0228 . 6274 . 01430 3530 246,900 22. 0228 . 6298 . 01436 3325 231,500 21. 0226 . 6328 . 01436 3285 229,700 % 0222 . 6289 . 01396 3260 233,500 220. 0245 . 6293 . 01523 3595 238,600 222. 0240 . 6275 . 01506 3425 227,400 208. 0233 . 6365 . 01483 3405 222,600 212.	.0233
	.0228
.0226 .6328 .01430 3285 229,700 ** .0222 .6289 .01396 3260 233,500 220 .0245 .6270 .01536 3665 238,600 212 .0242 .6293 .01523 3595 236,000 212 .0240 .6275 .01506 3425 227,900 208 .0237 .6295 .01492 3400 227,900 208 .0233 .6365 .01483 3405 229,600 212	.0228
.0245 .6289 .01396 3260 233,500 220 .0245 .6270 .01536 3665 238,600 212 .0242 .6293 .01523 3595 236,000 212 .0240 .6275 .01506 3425 227,400 207 .0237 .6295 .01483 3405 227,900 208	.0226
.0245 .6270 .01536 3665 238,600 212 .0242 .6293 .01523 3595 236,000 212 .0240 .6275 .01506 3425 227,400 207 .0237 .6295 .01483 3405 227,900 208 .0233 .6365 .01483 3405 229,600 212	.0222
.0245 .6270 .01536 3665 238,600 222 .0242 .6293 .01523 3595 236,000 212 .0240 .6275 .01506 3425 227,400 207 .0237 .6295 .01492 3400 227,900 208 .0233 .6365 .01483 3405 229,600 212	
.0242 .6293 .01523 3595 236,000 212 .0240 .6275 .01506 3425 227,400 208 .0237 .6295 .01492 3400 227,900 208 .0233 .6365 .01483 3405 229,600 212	.0245
.0240 .6275 .01506 3425 227,300 217 .0237 .6295 .01492 3400 227,900 208 .0233 .6365 .01483 3405 229,600 212	.0242
.0240 .6275 .01506 3425 227,400 208 .0237 .6295 .01492 3400 227,900 208 .0233 .6365 .01483 3405 229,600 212 .099	
.0237 .6295 .01492 3400 227,900 208 .0233 .6365 .01483 3405 229,600 212 .208,300 209	.0240
.0233 .6365 .01483 3405 229,600 212 228,300 209	,0237
228,300 209,	.0233
STATE OF THE PARTY AND ADDRESS OF THE PARTY AN	

* DETERMINED FROM SLOPE OF LOAD - STRAIN CURVE FOR INFORMATION ONLY ** FAILED AT EXTENSOMETER GRIPS

160

Table V RENE'41 (20% C. R. + 16 HRS @ 1400⁰F)
TENSILE PROPERTIES TEST DATA

2				-				-						7							_					-			-						_	,	-				
3 of		ELASTICITY PSI X 10 -6	31.5	32.5	31.9	32.4	31.2	31.9	28.5	28.8	79.6	31.6	28.7	29.5	31.1	31.4	32.4	31.6	29.0	29.7	29.3	30.9	30.4	30.6	31.1	30.1	30.5	30.6	30.2	31.0	30.6	27.7	31.4	29.9	29.7	33.0	35.0	34.0	31.0	29.5	33.0
(SHEET	è	REDUCTION IN AREA	13.5	15.1	16.3	16.9	17.6	15.9	12.2			,	10.4	14.6	11.2	14.7	15.7	13.9	12.4	12.3	12.3	12.3	18.1	15.2	19.2	17.2	17.4	18.6	19.1	18.9	19.0	14.7	10.5	10.4	11.9	17.9	15.7	16.8	16.4	16.3	14.7
		% 0	5.5	5.5	0.9	0.6	7.5	6.7	7.0	0.9	k k	**	2.0	0.9	3.0	5.0	3.0	3.7	4.0	3.0	3.5	0.9	0.9	0.9	3.0	5.5	3.5	4.0	7.5	4.0	2.8	1.0	2.0	1.5	1.5	0.9	7.0	6.5	5.5	0.9	0.9
		F _T (PSI)	229,100		226,900	222,100	1,	225,900	211,000	205,400	700,000	204,400	204,500	206,300	234,100	232,500	228,300	231,600	212,200	230,100	216,100	230,600	227,200	228,900	216,800	217,100	214,900	216,300	227,300	235,200	231,200	211,900	207,500	200,600	206,700	235,400	273,500	236,400	203,400	206,300	217,800 209,200
		F τυ (PSI)	246,000	246,200	244,000	240,700	239,700	243,300	229,000	223,400	710,800	217,500	222,700	220,700	247,200	252,300	245,100	248,200	227,500	240,800	234,100	248,500	246,600	247,500	231,300	235,100	230,400	232,300	245,600	251,700	243,700	219,800	223,300	214,300	219,100	252,400	254,000	253,200	224,200		232,500
		AT RUPTURE (LBS)	2920	2900	2850	2650	2570		3240	3090	3290	3300	3300		3690	3810	3720		3510	3650		3740	3765		3520	3640	3565		3730	3760		3435	3420	3300		3405	3465		3175	3165	3300
		AREA A (SQ. IN.)	.01187	.01178	.01168	.01101	.01072		.01415	.01383	19010.	.01517	.01482		.01493	.01510	.01518		.01543	.01516	,	.01505	.01527		.01522	.01548	.01547		.01519	.01494		.01563	.01532	.01540		.01349	.01364		.01416	.01420	.01419
	JRED	WIDTH (INCHES)	.4927	.4929	8067.	.4982	.4962		.6205	.6148	5779.	.6190	.6148		.6274	.6292	.6300		.6297	.6290		.6298	.6282		.6289	.6293	.6288		.6330	.6278		.6352	.6382	.6389		. 5866	.5855		. 5855	. 5844	.5841
	MEASURED	THICKNESS (IN CHES)	.0241	.0239	.0238	.0221	.0216		.0228	.0225	.0220	.0245	.0241		.0238	.0240	.0241		.0245	.0241		.0239	.0243	1	.0242	.0246	.0246		.0240	.0238		.0246	.0240	.0241		.0230	.0233		.0247	.0243	.0243
		EXPOSURE TIME (HOURS)						•							•		- 0	00	ī		•	•		_	00	05	_	•	4	- (000)'(10		•	4	- 0	000)'0	3	
		EXPOSURE TEMPERATURE (°F)													•	-					!						0	59	-												
-		EVEL D)	•	ST	08	LŁ	100) (EL	SOc	IX:	NE	n –	•	•									- 2	IFX	NO	ď	KE	AO	S	ТΑ	HE	1								
	STATIC	TEST TEMPERATURE (°F)	R.T.	R.T.	R.T.	R.T.	R.T.		650	650	000	650	059		R.T.	R.T.	R.T.		650	650		R.T.	R.T.		650	650	650		R.T.	R.T.		650	650	650		R.T.	R.T.		650	650	059
		S P E CIMEN NUMBER	D3-15B	D3-15C	D3-15E	D2-17E1	D2-17E2	AVG.	D1-13B	D3-2B	D3-/B	D3-9B	D3-10B	AVG.	D3-5AA	D3-5AB	D3-5AE	AVG.	D3-5AC	D3-5AC	AVG.	D3-7AA	D3-7E	AVG.	D3-7AB	D3-7AC	D3-7AD	AVG.	D3-3A	D3-3B	AVG.	D3-3C	D3-3D	D3-3E	AVG.	D3-4A	D3-4B	AVG.	D3-4C	D3-4D	D3-4E AVG.

^{*} DETERMINED FROM SLOPE OF LOAD - STRAIN CURVE FOR INFORMATION ONLY ** FAILED AT EXTENSOMETER GRIPS

161

Table V RENE'41 (20% C. R. + 16 HRS @ 1400⁰F) TENSILE PROPERTIES TEST DATA

TURE STRESSLEVE TWEERAURE (MOUNTS) (INCRES) (INC		MEASURED							
R.T. R.T. C. C. C. C. C. C. C.			AREA A (SQ. IN.)	LOAD AT RUPTURE (LBS)	F τυ (PSI)	F _{TV} (PSI)	96 0	REDUCTION IN AREA	MODULUS OF ELASTICITY PSI X 10 -6
R.T.	.0241	Η.	.01187	2920	246,000	229,100	5.5	3	31.5
R.T.	.0239	_	.01178	2900	246,200	230,500	5.5	15.1	32.5
R.T.	.0238	_	.01168	2850	244,000	226,900	0.9	16.3	31.9
R.T CONTROLS CON	.0221	_	.01101	2650	240,700	222,100	0.6	16.9	32.4
650 650 650 650 650 650 650 650 650 650	.0216	_	.01072	2570	239,700 243,300	221,100	6.7	17.6	31.2
650 650 650 650 650 650 650 650 650 650	.0228	ŀ.	.01415	3240	229,000	211,000	7.0	12.2	28.5
R.T.	.0225	_	.01383	3090	223,400	205,400	0.9		28.8
650 650 650 650 650 650 650 650	.0250	_	.01561	3290	210,800	206,000	k -		27.6
R.T.	.0245	_	.0151/	3300	227,500	204,400	k C	7 01	28.7
R.T. R.T. R.T. C.0238 .6246 .014487 R.T. C.0231 .6261 .01446 C.0230 .6258 .01449 C.0231 .6254 .01449 C.0232 .6244 .01449 C.0232 .6213 .01447 C.0234 .6252 .01463 R.T. R.T. C.0234 .6252 .01463 C.0236 .6231 .01447 C.0236 .6231 .01447 C.0237 .6231 .01447 C.0237 .6231 .01447 C.0238 .6333 .01444 C.0238 .6333 .01473 C.0234 .6310 .01477 C.0234 .6310 .01477 C.0234 .6310 .01473 C.0234 .6310 .01473 C.0234 .6310 .01473 C.0235 .6293 .01479 C.0237 .0237 .0238 .01479	1,70.		70410.	0000	220,700	206,300	0.9	14.6	29.5
R.T. R.T. 650 650 650 650 650 650 650 650 10449 650 10449 650 10449 650 10449 10444 101447 1000 10033 10044 101447 1000 10034 10044 10044 100444 1	-	.6246	.01487	3415	229,700	205,100	**	i .	30.2
R.T. 650 650 650 124 650 124 650 124 650 124 650 124 650 124 650 124 650 125 624 624 6252 6244 6252 6252		.6261	.01446	3640	251,700	232,700	5.5	13.2	31.2
650 650 650 8.T. R.T. 8.T. 8.T. 650 650 10000 10000 10000 100000 10000 10000 10000 10000 10000 10000 10000 10000 1000		. 6258	.01439	3285	228,300	200,500	*		31.7
650 650 650 10232 .6244 .01449 650 650 650 650 650 650 650 650					234,300	212,800	5.5	13.3	31.0
650 R.T. R.T. R.T. R.T. 650 650 650 650 650 650 650 65	.02	.6244	.01449	3450	238,100	220,800	3.5	17.2	31.8
R.T. R.T. R.T. R.T. 650 650 650 650 650 650 650 65	.02	. 6213	.01460	3345	233,600	218,200	1.0	17.2	30.6
R.T. R.T. 650 650 650 70,000 100	02	6252	01463	3565	243,700	216,300	2.0		31.5
650 650 650 650 101464 650 101464 650 101464 101464 101471 101464 101471 101469 101471	.02	.6291	.01447	3625	250,500	231,900	7.0	13.6	31.0
650 650 650 650 100 100 100 100 100 100 100 1	.02	.6333	.01444	3700	256,200	238,900	5.0		31.1
650 650 R.T. R.T. 650 650 650 650 650 650 650 650					250,100	229,000	4.7	14.2	31.2
650	.02	.6311	.01464	3460	236,300	220,600	3.5	12.6	30.4
650 650 650 650 650 650 650 650	.02	.6366	.01471	3305	224,700	215,200	2.0	11.6	30.0
650 650 650 650 650 650 650 650	-	63	01510	3730	27.7 000	225, 800	200	13 3	36.1
650 650 650 650 7 650 87.T. 8.T. 8.T.		. 63	01610	3615	246,100	226,300	0.00	17.8	33.1
650 00 650 00 650 00 650 00 650 00 7 00232 6350 001473 650 01473 8.T. 00241 6291 001516		•			246,600	226,100	7.0		34.6
650 01473 650 01473 850 01438 8.T. 0241 .6291 .01516		9.	.01477	3310	224,100	211,200	0.4	9	30.3
650 .01438 .6390 .01438 .8.T0224 .6291 .01516		9.	.01473	3350	227,400		0.4	13.6	**
R.T		9.	.01438	3295	229,100	215,000			30.3
R.T. 0241 .6291 .01516 R.T. 0235 .6293 .01479					226,900	213,100	• 1		30.3
R.T. 000 000 000000000000000000000000000		.62	.01516	3605	237,800	223,000		19.1	31.9
000		.62	.01479	3540	239,400	214,000		19.9	30.1
				0	238,600	218,500		19.5	31.0
+0+110. C120. C20.	.0235	.6313	.01484	3305	222,700	204,900	7.0	14.2	30.8
CONTIO. 1520. 000 000		_	017.69	377.5	223,300	200,000		21.3	32.0
7			001	7547	222,000	206, 300		19.4	31.6
	100	10000					1		

Table V RENE'41 (20% C. R. + 16 HRS @ 1400⁰F) TENSILE PROPERTIES TEST DATA

<u></u>			_		-		-	_						Т	-		_	-									 	-	-	 	 	 	 1
EET 5 of 5)	ii On	ELASTICITY PSI X 10-6	31.5	32.5	31.9	32.4	31.2	31.9	28.5	28.8	29.6	31.6	29.5	31.0	31.4	31.2	29.6	31.8	27.4	29.6	31.3	21.3	31.0	28.9	30.3	30.4							
(SHEET	8	REDUCTION IN AREA	13.5	15.1	16.3	16.9	17.6	15.9	12.2	21.2		1 9	10.4	24.9	16.6	20.7	15.0	19.3	1	17.1	28.1	6.17	13.7	16.4	25.1	18.4							A DATE OF THE PARTY OF THE PART
		% a	5.5	5.5	0.9	0.6	7.5	6.7	7.0	0.9	*	* *	0.0	0.8	0	8.5	3.5	6.5	**	5.0	0.0	0.7		5.5	5.5	4.8							
		F _{TY} (PSI)	229,100	230,500	226,900	222,100	221,100	225,900	211,000	205,400	206,000	204,400	204,500	222,600	225,500	224,100	215,200	212,000	**	213,600	222,100	223,500	211 700	212,700	207,100	210,500							distance of the second second second second
		F τυ (PSI)	246,000	246,200	244,000	240,700	239,700	243,300	229,000	223,400	210,800	217,500	222,700	240,500	243,000	242,200	228,800	228,700	213,000	228,700	240,500	239,400	229,900	225,300	225,000	223,800							-
		AT RUPTURE (LBS)	2920	2900	2850	2650	2570		3240	3090	3290	3300	3300	3360	3395		3190	3160	2980		3670	3610	2250	3400	3330								Section of section with the section of sections
		AREA A (SQ. IN.)	.01187	.01178	.01168	.01101	.01072		.01415	.01383	.01561	.01517	.01482	01397	01397		.01394	.01382	.01399		.01526	SUCTO.	21210	01510	.01480								The result of the second secon
	MEASURED	WI DTH (INCHES)	.4927	.4929	4908	4982	.4962		.6205	.6148	.6244	.6190	.6148	5868	2000		5834	.5831	. 5828		.6254	.6258	0000	6315	6273								
	MEAS	THI CKN ESS (IN CH ES)	.0241	.0239	0238	0221	.0216		.0228	.0225	.0250	.0245	.0241	0238	0220		0239	.0237	.0240		.0244	.0241	1760	0239	0236)							-
		EXPOSURE TIME (HOURS)												•	-				00	00 '	30												
		EXPOSURE TEMPERATURE (°F)												•	-		- 2	ID.	LE7	S	05	9-				-1							
		CREEP STRESS LEVEL (PSI)	4					ьоз			-				Œ	∀KI	X'OS	INC	E¥	H	4	_X(00 1 A :	. 0	5								
	STATIC	TEST TEMPERATURE (°F)	Ŀα	K K	° E	D. T.		0 T • W	650	650	650	650	650	E	N C	K.1.	650	650	650		R.T.	R.T.		650	650								
	5	SPECIMEN	n3-15B	D3-15C	D3-15G	D3-17E	D2-1/E1	AVG	D1-13B	D3-2B	D3-7B	D3-9B	D3-10B	AVG.	D3-2A	D3-2B	73-20	D3-20	D3-2E	AVG.	D1-7A	D1-7B	AVG.	D1-7C	D1-7E	AVC							

* DETERMINED FROM SLOPE OF LOAD - STRAIN CURVE FOR INFORMATION ONLY ** FAILED AT EXTENSOMETER GRIPS

163

Table VI Ti 6A1-4V (MILL ANNEALED) TENSILE PROPERTIES TEST DATA

(TMCA HEAT	NO. M7858)											(SHEET	T 1 of 3)
	STATIC			1	MEA	MEASURED		9					
S P E CIMEN NUMBER	TEMPERATURE (°F)	STRESS LEVEL (PSI)	EAPOSURE TEMPERATURE (°F)	EXPOSURE TIME (HOURS)	THICKNESS (INCHES)	WIDTH (INCHES)	AREA A (SQ. IN.)	AT RUPTURE (LBS)	F _{TU}	F _{T.Y} (PS1)	% O	REDUCTION IN AREA	MODULUS OF ELASTICITY PSI X 10 -6
C1-1A	R.T.	4			.0237	.4961	.01176	1570		126,700	12.5	0.74	14. 3
C1-1C	. E				.0242	.4932	.01194	1665	139,400	131,500	12.5	45.5	14.8
CI-ID	R. T.		ě		0235	.4934	.011/4	1630	138,800	129,500	12.5	44.5	15.0
C1-1E	R.T.				.0230	.4953	.01139	1535	134,900	125,900	10.5	4.4.4	14.9
AVG.	Cur								136,300	128,200	12.0	45.1	14.0
C1-15C	550) N.L.			.0224	.6212	.01391	1465	105,300	89,900	9.5	37.3	12.3
C1-15D					.0233	.6213	01448	1530	105,300	88,800	10.5	40.3	12.0
C1-15E		_			.0223	.6212	.01385	1455	105,100	89,700	. o	39.8	12.5
CI-ISF AVG.		-	14		.0253	.6208	.01570	1640	104,500	87,900	11.0	41.4	12.5
C1-10B	R.T.	4	4	•	0250	6262	01010	1000	105,200	89,000	10.0	39.9	12.4
C1-10C	R.T.		0		.0238	6261	.01490	2305	142,400	130,200	14.0	43.2	14.6
AVG				00					142,300	130,000	t d	47.6	17. 5
C1-10D	550			100	.0243	.6212	.01509	1620	107,300	89,100	8.5	45.0	12.8
	550				0230	0879.	.01476	1580	107,000	87,800	8.5	42.6	12.6
AVG.)			-1	6670.	. 0293	.01504	1580	105,000	88,300	9.5	45.3	13.3
		_		4	0260	6270	- 10	<	000	- 11	∞.∞		12.9
C2-10E	R.T.	ΓX			.0278	6257	01739 K	27.95	1 D. E. N. T. I.	FICAT	NOJ	STAMP	
C2-10D		NO		01	.0276	.6275	.01732	2495	145,300	131,700	13.5	42.0	14.6
AVG.		Œ.		009					143,900	131,800	12.0	7.1 8	14.6
C2-10B	250	УK		G -	.0275	.6259	.01721	1850	107,500	87,400	10.0	7 07	0.6
AVG.	000	70S	059		.0280		.01755	1885	107,400	89,200	10.5	47.6	13.2
C2-8B	R.T.	T	-		0260	5772	01700	21,10	107,400	88,300	10.2	44.1	11.6
C2-8C	R.T.	ЕЪ			0220	6207	.01705	2413	143,100	129,600	12.5	43.2	14.3
AVG.		н—		00		1000	(7/10.	6647	144,600	132,600	14.0	44.2	14.6
C2-8A	550			0'			.01578	1700	107,700	88 000	10.0	10.7	17.4
C2-8D	550			01	.0272	.6372	.01733	1840	106,200	88,000	10.0	40.0	13.2
CZ-8E	250			_		-	.01716	1850	107,800	88,400	0.0	47.0	13.1
AVG.	E			•					107,600	88,200	0.6	77.0	13.0
C1-14B	. L			—	.0235	. 5812	.01366	1825	133,600	127,000	**	1	14.0
AVG.	•			00	6470.	. 2828	.01428	2010	140,800	131,700	12.0	40.5	14.5
C1-14C	550				0230	5837	20210		140,800	129,300	12.0		14.2
C1-14D	550				.0240	.5839	01401	1415	101,400	85,300	0.0	46.1	13.4
C1-14E	550				.0255	5860	.01494	1585	106,100	85,700	10.5	20.3	13.8
AVG.		•	•	•					104,300	85,800	9.7	43.6	13.4
* DETER	DETERMINED FROM S	SLOPE OF LO	LOAD - DEFOR	DEFORMATION CIT	CIRVE - FOR	TNEODWA	TION ONT						

* DETERMINED FROM SLOPE OF LOAD - DEFORMATION CURVE - FOR INFORMATION ONLY ** FAILED AT EXTENSOMETER GRIP

165

Table VI Ti 6A1-4V (MILL ANNEALED) TENSILE PROPERTIES TEST DATA

			The second secon									
STAT				MEAS	MEASURED						a	
TEST TEMPERATURE (°F)	T CREEP STRESS LEVEL (PSI)	EXPOSURE TEMPERATURE (°F)	EXPOSURE TIME (HOURS)	THICKNESS (IN CHES)	WI DTH (IN CH ES)	AREA A (SQ. IN.)	AT RUPTURE (LBS)	PSI)	F _T Y (PS1)	% 0	REDUCTION IN AREA	ELASTICITY PSI X 10-6
	4			.0237	1967.	.01176	1570	133,500	126,700	12.5	1	14.3
R				.0242	00	.01194	1665	139,400	31,	7	0.	14.8
-1C R.T.				023	7	.01174	1630	138,800	. 67	7	+ .	17.0
2				.0235	7) (.01164	15/0	134,900	0 0	0 -	t <	, t -
w.				.0230	7	.01139	1333	136,300	28.20	12.0	45.1	14.8
2	ED			.0224	.6212	.01391	9+	05,	89,900	6	1	12.3
550	SO			.0244	.6207	.01515	1595	05,	88,800	11.5	0	12.0
10	ХЫ			.0233	.6213	0144	53	05,	89,400	0	0	12.5
5	NE			.0223	.6212	.01385	45	05,	89,200	∞	0	12.9
C1-15F 550	N -			.0253	.6208	.01570	79	104,500	87,900		-10	12.5
	•					- 1		105,200	000,68	0	39.9	t.7.
C2-7A R.T.	4 .	4	4	.0260	.6219	.01617	2340	144,700	134,200	12.0	43.8	1. 4. 7. × × ×
<u>~</u>	-			7	0	-		1/// 300	134,500	10	0.77	0 10
AVG.	00		()	U	7	0159	1750	109 500	92,400	1 -	0.67	- 22
Ω L	0'		00	NU	7 7	016/	1765	107,200	91,200		7.6	0.00
CC-/D 250	58		Ι.	0260	6196	01623	1720	106,000	91,700	. 0	73.7	1.00
1	-		-)	-		07/1	107,600	91,900	10.2	44.5	12.8
100		1	4	.0265	22	.01649	2375	144,000	132,200	1.	43.0	14.6
. ~				.0279	61	.01729	2475	143,100	130,100	0	43.3	14.6
E R	- 0		- ()	.0272	619	0168	2430	144,100	131,900	2	43.1	14.8
	05		00					143,700	131,400		43.1	14.7
550	'Ι		' S	.0272	.6180	.01681	1810	107,700	88,300	0	45.9	15.7
C 550				1	\sim	.01686	∞	108,200	89,000		46.6	7.61
	-		•	1	7	C	-	107,900	331,000	50	10.7	1.71
CI-1/A R.T.	•		-	0620.	.0111	07770	2107	1	133 700		1.71	1001
	00		00	1	010	7	0	17.3 900	132,400	00	41.4	1,6.0
U	00"	09	00"	1	61/1	nr.	00	107,000	87 400		73.7	12.2
1 U	09	S	01	170	617	0176	000	, _	87,800		42.1	
175 550) —		_	85.00	6170	01592	1680	. 2	86,100	0	43.4	13.4
_			-1)	1			9	87,100	0	43.1	13.4
0		1	-	25	.6230	ILO	2200	0,7	129,200	2	41.4	15.3
C1-13B R. T				.0258	.6200	.01600	2270	41,	130,000	-	43.3	14.9
	. 0		00					_	129,600	2	42.4	15.1
C1-13C 550	00		00"	.0241	.6205	.01495	1605	7	87,600	11.0	41.7	13.6
-	0		08	3	20	.01471	51	07,70	85,/00	0		13./
-13E 550	7 -		E -	024	620	.01521	61	06,20	88,400	0	44.1	11.6
		-	-					000	8/,200	5		13.0

Table VI Ti 6A1-4V (MILL ANNEALED)
TENSILE PROPERTIES TEST DATA

7							ONT V	TNEODWATTON	TOP INFO	TPATM CITDITE	TOAN - CTD	STOPE OF	MINED FROM	ANTMORTER *
		46.3	10.7	88,000	107,000					+	•	+		AVG.
	15.2	46.8	11.0	88,500	107,000	1615	.01509	.6208	.0243	-	-		550	C1-11E AVG.
	13.1	46.9	10.5	87,800	107,700	1570	.01458	.6204	.0235			†o°C	550	C1-11C C1-11D
	15.0	41.4	12.5	130,300	141,800	2215	.01562	.6200	.0252	'08 -	ZLE 22		R.T.	C1-11B AVG.
	13.2	48.8	9.7	88,000	108,800	0101	10010.	1100.		- 00		HH.	5	AVG.
	13.3	7.87	0.6	88,200	111,400	1675	.01503	. 5825	.0258			TA.	550	C2-6D
	4 6	42.5	13.0	130,100	140,600	1625	01507	5820	0259			YJV XJV	550	AVG.
	14.5		13.5	129,500	140,000	1940 2070	.01386	.5799	.0239	•	-	→ ⟨ED	R.T.	C2-6A C2-6B
0 -	12.5		10.0	87,900	104,500	1640	.015/0	. 6208	.0253			-	066	CI-ISF AVG.
	12.9		8.0	89,200	105,100	1455	.01385	.6212	0223				550	C1-15E
	12.0		11.5	88,800	105,300	1595	.01515	.6207	.0244				0000	C1-15C
	14.8		12.0	128,200	136,300							XPO		AVG.
0.0	14.9	44.4	10.5	125,900	134,900	1570	.01164	.4955	.0235				R _° T _°	C1-1D
_	15.0	44.5	12.5	129,500	138,800	1630	01174	.4934	.0238				R.T.	C1-1C
	14.3	47.0	12.5	126,700	133,500	1570	.01176	.4961	.0237			-	R.T.	C1-1A C1-1B
S-0	MODULUS OF ELASTICITY PSI X 10-6	REDUCTION IN AREA	% 0	F _τ (PSI)	F _{TU} (PSI)	LOAD AT RUPTURE (LBS)	AREA A (SQ. IN.)	WI DTH (INCHES)	THICKNESS (INCHES)	EXPOSURE TIME (HOURS)	EXPOSURE TEMPERATURE (°F)	CREEP STRESS LEVEL (PSI)	TEST TEMPERATURE (°F)	SPECIMEN
t 3)								MEASURED	MEA				STATIC	
of 3)	(SHEET 3 o	HS)												

 \ast Determined from Slope of Load - Strain curve for information only $\ast\ast$ Failed at extensometer GRIP

Table VII Ti 8A1-1Mo-1V (DUPLEX ANNEALED) TENSILE PROPERTIES TEST DATA

(TMCA HEAT N	NO. D-1237)											(SHEET	IT 1 of 5)
	STATIC				MEA	MEASURED							
S P E CIMEN NUMBER	TEST TEMPERATURE (°F)	CREEP STRESS LEVEL (PSI)	EXPOSURE TEMPERATURE (°F)	EXPOSURE TIME (HOURS)	THI CKN ESS (IN CH ES)	WI DTH (INCHES)	AREA A (SQ. IN.)	LUAD AT RUPTURE (LBS)	F τυ (PSI)	F _{TY} (PS1)	% O	REDUCTION IN AREA	MODULUS OF ELASTICITY PSI X 10 -6
E3-7B	R.T.	4-			.0264	9009.	.01322	2040	154,300	146,700	20.0	5	17.8
E3-8B	R.T.				.0268	. 5009	.01342	2095	156,100	145,300	17.0	5	17.8
E3-9B	R. T.				.0267	. 5006	.01337	2105	157,400	146,200	17.0	1	18.0
E3-10B	R.T.				.0267	7667.	.01333	2095	157,200	146,700	15.0	∞	17.4
E3-11B AVG	R. T.	SOF			.0264	. 4985	.01316	2100	159,600	148,200	15.0	37.2	18.1
E2-5A	550				.0265	.6255	.01658	2090	26.	100,700	13.5	38.1	12.0
E2-5C	550				.0272	.6242	.01698	2065	121,600	98,600	13.5	36.4	15.4
E2-6A	550				.0272	.6251	.01700	2110	124,100	99,100	13.5	37.3	15.1
EZ-6B	250				.0275	. 6253	.01720	2135	124,100	99,100	13.0	36.5	14.4
F3-19A	E		•	•	0264	6211	016/0	2570	156,000	1/5 //00	16.5	7.00	1.5.1
E3-19B	R, T,			-	.0261	.6230	.01626	2615	160,800	146,600	17.0	37.4	17.2
AVG。				- (158,700	146,000	16.7	39.1	16.8
E3-19C	550	,		000	.0265	.6263	.01660	2105	126,800	102,700	11.0	37.3	15.7
E3-19D	550			1	.0270	.6271	.01693	2130	125,800	100,600	12.0	35.5	15.1
E3-19E	550				.0266	. 6274	.01669	2120	127,000	101,200	12.0	37.7	15.5
AVG.	E	_				0100	000,00		126,600	101,500	11./	36.8	15.4
E3-20AA	K K			•	.0260	.6278	.01632	2620	160,500	145,800	14.0	37.5	17.1
AVG.	• • • • • •	_		_			00000	000	161,500	147 300	14.5	36.3	17.3
E3-20AB	550	X'	-	00	.0265	.6265	.01660	2170	130,700	102,400	12.0	38.0	16.5
E3-20AC	550	TNO		05	.0267	.6286	.01678	2160	128,700	103,400	11.5	38.6	17.5
E3-20AD	550) (.0270	.6290	.01698	2175	128,100	101,600	11.0	36.7	12.8
AVG.		(EI	_	•					129,200	102,500	11.5	37.8	15.6
E3-18A	R.T.	ЭАК	(4	.0261	. 6225	.01625	2570	158,200	146,900	16.0	38.9	17.0
E3-18B	K.I.)S) 5 9	- (.0250	. 6255	.01626	2595	159,600	147,200	15.5	36.2	17.1
AVG.	Cu	Τ	;	000	2000	1100	00000	0.00	158,900	147,000	15.7	37.5	17.0
E3-10C	000	IE7)'(. 0203	1/70.	.01003	2130	125,600	101,500	12.0	36.1	15.2
E3-10D	550	1 -		I	. 0209	. 6000	06100	2170	126,000	100,700	11.0	0.0	0.1.
AVC	2						.00100	717	126,900	100,500	11 5	37 /	15.0
#3-17A	T B	-			0267	5861	01565	2415	154 300	140,500	16.0	7.1.0	18.3
E3-17B	R, T,				.0262	. 5840	.01530	2400	156,900	145,800	16.0	34.4	10.0
AVG.				00					155,600	3	16.0	37.8	18.3
E3-17C	550			00'	.0264	.5852	.01545	1920	124,300	9	13.0	36.6	14.7
E3-17D	550			30	.0262	.5830	.01527	1910	•		12.0	35.5	**
E3-17E	550			_	.0263	.5781	.01520	1945		000,66	11.5	42.7	15.9
AVG.									125,800	9	12.2	38.3	
						100							
	DETERMINED FROM SLOPE	SLOPE OF LOAD	AD - STRAIN	CURVE	FOR INFORM	INFORMATION ONLY	Ϋ́						
** EXTENS	EXTENSOMETER MALFUNCTIONED	FUNCTIONED											

Table VII Ti 8A1-1Mo-1V (DUPLEX ANNEALED) TENSILE PROPERTIES TEST DATA

R. I. Property P					MEA	MEASURED							
1,0264 1,5006 1,0132 1,014 1,014 1,010 1,45 1,45	Ę.		EXPOSURE TEMPERATURE (°F)	EXPOSURE TIME (HOURS)	THI CKN ESS (IN CH ES)	WI DTH (INCHES)	AREA A (SQ. IN.)	LOAD AT RUPTURE (LBS)	Fru (PSI)	P _T (PSI)	% 0	REDUCTION IN AREA	MODULUS OF ELASTIGITY PSI X 10-6
1968 5009 0.1042 156 100 165 300 17 0 15 17 0 15 17 0 15 17 0 15 17 0 15 17 0 15 17 0 15 17 0 15 17 0		4 5			.0264	.5006	.01322	2040	11 4	70	0	35.0	
1,0267 1,0006 1		570			.0268	.5009	.01342	2095	156,100	,30		35.7	-
1,0267		SEC			.0267	.5006	.01337	2105	157,400		7	37.3	00
0264 .4985 .01316 2100 1159,600 1148,200 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15		LNO			.0267	7667.	.01333	2095	157,200		5	38.3	1
1.0265 .2255 .01658 2090 126,100 100,700 15.8 37.1 1.00 100,700 15.8 37.1 1.00 100,700 15.8 37.1 1.00 100,700 15.8 37.1 1.00 100,700 15.8 37.1 1.00 100,700 15.8 38.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		00			.0264	.4985	.01316	2100	159,600		5	37.2	00 1
		ED			1,000	1100	010	0000	156,900	146,600	10.0	3/./	- 1
Colored Colo		S0d			.020.	6270.	01608	2090	121, 600	100,700	13.5	38.1	U R
		XX			.0272	.0242	01700	2110	127, 100	99,000	7	37.3) W
		NE			2/20.	.0201	.01720	2135	124,100	99,100	10.0	26.5	7
. 0225		n -•			0/70.	. 0273	.02/10.	7133	124,100	99,100	13.1	37 1	t in
94,000 94,000 96,000 96,000 97,000 98,000			4	4	0270	611	6	IL	156 900	145 400	000	30.5) VC
80, 000 80, 000 100, 000	: . :				.0255	614	0	10	159,400	147,300	17.0	37.9	7
Comparison		00		- (1	158,200	146,400	17.5	38.9	. 1
10270		00 '		000	.0268	In	.06149	66	120,700	100,400	10.5	43.2	1
000 000 <td></td> <td>76</td> <td></td> <td>Ι</td> <td>.0270</td> <td>615</td> <td>.01662</td> <td>01</td> <td>120,000</td> <td>98,400</td> <td>11.5</td> <td>39.9</td> <td>5</td>		76		Ι	.0270	615	.01662	01	120,000	98,400	11.5	39.9	5
		;			.0250	615	.01538	87	121,900	103,400	11.8	39.4	5
. 0269 .6112 .01644 2615 159,100 146,300 16.0 39.2 17 . 0232 .6162 .01430 2375 166,100 153,100 11.0 25.0 17 . 0264 .6142 .01568 1985 126,600 99,800 11.0 36.9 11 . 0264 .6142 .01651 2000 123,400 96,200 8.5 42.2 12 . 0268 .6170 .01654 2065 124,800 98,200 11.0 40.8 17 . 0271 .6094 .01651 2610 158,100 144,700 10.2 40.0 18 . 0262 .6145 .01610 2560 159,000 144,700 18.0 40.2 19 . 0260 .6118 .01591 1980 124,500 99,400 11.5 39.9 18 . 0265 .6141 .01627 2035 124,500 99,400 11.5 40.5 15 . 0265 .6141 .01642 2010 124,500 99,400 11.5 40.5 15 . 0266 .6145 .01610 2560 155,000 144,200 19.0 39.9 17 . 0266 .6145 .01611 2590 124,700 19.0 39.9 17 . 0268 .6135 .01644 2565 155,000 144,200 19.0 39.9 17 . 0268 .6126 .01611 1955 121,400 98,100 10.5 42.8 17 . 0268 .6126 .01642 2005 122,100 96,800 12.0 39.8 16		•		•					121,200	100,700	11.3	40.8	5
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	°	•		4	026	.6112	.01644	51	159,100	146,300	16.0	39.2	1
	،	— (3	.6162	.01430	37	166,100	153,100	11.0	25.0	1
.0255 .6148 .01568 1985 126,600 99,800 11.0 36.9 11.0 .0264 .6142 .01654 2065 124,900 96,200 11.0 36.9 11.0 .0264 .6142 .01654 2065 124,900 98,100 10.2 40.0 13 .0271 .6094 .01651 2610 159,000 144,700 18.0 40.2 18 .0262 .6145 .01610 2560 159,000 144,700 18.0 40.2 19 .0263 .6141 .01627 2035 125,100 98,400 11.5 40.2 15 .0265 .6141 .01644 2010 124,500 98,400 11.5 40.5 15 .0265 .6141 .01644 2010 124,500 98,400 11.3 40.5 15 .0266 .6141 .01644 205 124,500 98,400 11.3 40.5 15 .0275 .6075 .01644 2565 156,000 144,700 18.3 41.4 </td <td></td> <td>000</td> <td></td> <td>- (</td> <td></td> <td></td> <td></td> <td></td> <td>162,600</td> <td>149,700</td> <td>13.5</td> <td>32.1</td> <td>1</td>		000		- (162,600	149,700	13.5	32.1	1
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	_	0'		000	.0255	.6148	.01568	1985	126,600	99,800	11.0	36.9	-
		08		05	026	.6142	.01621	2000	123,400	96,200	.0.	42.2	2
			- C		.0268	.6170	.01654	2065	124,800	98,200	11.0	8.07	1
00 00 00 00 00 00 00 00 00 00 00 00 00			150		1	1000		0 5 7 0	124,900	98,100	10.7	0.04	20
00 0.0260 .0149 .01591 1980 124,700 144,700 17.5 39.9 1890 124,500 0.00 0.0265 .6141 .01627 2035 125,100 97,700 11.5 40.5 15 15 15 15 10 124,500 99,100 11.5 40.7 15 15 15 15 15 15 15 15 15 15 15 15 15		-	_	-	700	1000.	5 6	0107	170,000	143,900	10.0	1.60	00
000 000 000 000 0000 0000 0000 0000 0000	0	- (- (7970.	.0140	01910.	0907	159,000	144,/00	10.0	700.0	20 0
0.0265 .6141 .01627 2035 125,100 97,700 11.0 40.7 15 0.0265 .6141 .01614 2010 124,500 99,100 11.5 40.7 15 0.0275 .6075 .01671 2590 155,000 144,200 19.0 39.9 17 0.0268 .6135 .01644 2565 156,000 145,100 16.5 42.8 17 0.0263 .6126 .01611 1955 121,400 98,100 10.5 43.2 15 0.0268 .6126 .01630 2000 122,700 98,500 12.0 39.8 16 0.0268 .6126 .01630 2000 122,700 98,500 12.0 39.8 16)()(000	0360	6113	01501	1000	137, 500	700 700	11.0	77.7	0 -
0 0.0262 .6161 .01614 2010 124,500 99,100 11.5 40.5 15. 15. 15. 124,700 98,400 11.5 40.5 15. 15. 124,700 98,400 11.3 40.6 15. 15. 15. 15. 15. 15. 15. 15. 15. 15.)')'(000	710	.01031	1700	125,000	70,400	11.0	100	1 1
. 0275 .6075 .01671 2590 124,700 99,100 11.3 40.5 15 .0275 .6075 .01671 2590 155,000 144,200 19.0 39.9 17 .0268 .6126 .01644 2565 155,000 144,700 18.3 41.4 17 .0268 .6126 .01641 1955 121,400 98,100 10.5 42.8 17 .0268 .6126 .01642 2005 122,100 98,500 12.0 40.3 15 .0268 .6126 .01630 2000 122,700 98,500 12.0 39.8 16		09		01	070	017	5 6	2030	12, 500	97,700	11.0	0	01
. 0275 .6075 .01671 2590 124,700 98,400 11.3 40.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 1		_		_	7970.	1919.	.01614	7010	124,500	99,100	11.5	10.0	01
					1	0100	11710	000	124,/00	38,400	10.0	0.00	10
00 0.0263 .6126 .01644 2505 150,000 145,100 16.5 42.8 17. 00 0.0263 .6126 .01611 1955 121,400 98,100 10.5 43.2 15. 00 0.0268 .6126 .01642 2005 122,100 96,800 12.0 40.3 15. 01 0.0265 .6150 .01630 2000 122,700 98,500 12.0 39.8 16.		-		-	- 1	. 50/0	.016/1	2590	155,000	+ 1	19.0	39.9	
0 0.0263 .6126 .01611 1955 121,400 10.5 41.4 17.0 1.0.5 41.4 17.0 0.0 0.0 0.0268 .6126 .01642 2005 122,100 96,800 12.0 40.3 15.0 0.0265 .6150 .01630 2000 122,700 98,500 12.0 39.8 16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	0	(0	.0133	.01044	7202	156,000	0.	10.0	47.0	. 1
7. 0268 .6126 .01642 2005 122,100 95,100 10.3 45.2 15. 9. 0268 .6126 .01642 2000 122,100 96,800 12.0 40.3 15. 9. 0265 .6150 .01630 2000 122,700 98,500 12.0 39.8 15.		000		00	V	2012	11717	0	121,000	+ 0	10.0) t	
7 .0265 .6150 .01630 2000 122,700 98,500 12.0 40.3 15.		0'		00'	070	0770	.01611	1900	1 6	n v	10.0	43.7	0 0
.0203 .0130 .0130 .0100 .020,700 .023,700 .033.8 .10.		07		08	070	0710.	.01642	2002	1 6	0 0	12.0	20.0	0
				; –	0	0010.	00000	7000	10	υ L	11 7	0.60	0 10

Table VII TI 8A1-1Mo-1V (DUPLEX ANNEALED) TENSILE PROPERTIES TEST DATA

-
145,300 17.0 35.7 146,200 17.0 37.3 146,700 15.0 38.3
200
2100 159,600 156,900 1945 121,900
.01596 1945 .01695 2050 .01674 1995
.6256 .6245 .6245 .6253
.0253
ONLKOFR
R.T. R.T. 8.T. 650
~ X X X X 0 0 0

Table VII Ti-8AI-1Mo-1V (DUPLEX ANNEALED) TENSILE PROPERTIES TEST DATA

(SHEET 4 of 5)	*e REDUCTION OF IN ELASTICITY AREA PSI X 10-6		33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	32.3 3.4 3.4 3.4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	40.1 33.6 36.9 173 39.0
	F _T , (PSI)	146,700 145,300 146,200 146,700 148,200 146,600 96,200 96,500	94,100 95,500 145,500 148,300 146,900 103,100 104,200	103,700 146,000 150,200 148,100 95,400 98,600 148,300 148,300 149,300 148,800 97,300 95,700 96,300	145,000 141,500 143,300 93,900
	F T.0 (PSI.)	154,300 156,100 157,400 157,200 159,600 126,900 121,900 120,900	118,800 119,800 158,900 164,000 161,500 127,000 126,600	22 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	156,800 152,700 154,700 119,900
	LOAD AT RUPTURE (LBS)	2040 2095 2105 2095 2100 1945 2050 1995	2000 2600 2600 2600 2015 2035 2140	00 000 mm 0000	2520
	AREA A (SQ. IN.)	.01322 .01342 .01337 .01333 .01316 .01596 .01695	. 01684 . 01685 . 01585 . 01586 . 01607	.01654 .01558 .01594 .01553 .01622 .01460 .01460 .01469	.01650
MEASURED	WI DTH (IN CHES)	. 5006 . 5009 . 5009 . 4994 . 4985 . 6258 . 6256	.6236 .6105 .6106 .6148 .6148	t t t m 5 m 2 m 2 e o	.6133
MEA	THICKNESS (IN CHES)	.0264 .0268 .0267 .0267 .0264 .0255	.0270 .0270 .0268 .0257 .0258	.0271 .0253 .0259 .0259 .0257 .0267 .0267	.0269
	EXPOSURE TIME (HOURS)		← 000° I	000,2	• 000° (
	EXPOSURE TEMPERATURE (°F)		4	055	
	CREEP STRESS LEVEL (PSI)	CONLKOTS	009'88	- 000'08 - 000'09 - >	∢ - 000°
	STATIC TEST TEMPERATURE (°F)	R.T. R.T. R.T. R.T. R.T. 650 650	8.T. R.T. 650 650	R.T. 650 650 650 650 8.T. R.T. 650 650	R. T. 550
	S P E CIMEN NUMBER	E3-7B E3-8B E3-9B E3-10B E3-11B AVG. E2-4A E2-4C	E2-55 AVG- E1-95 AVG- E1-95 E1-90	AVG. E1-10A E1-10E AVG. E1-10B E1-10C E1-10D E1-21A E3-21B AVG. E3-21C E3-21C E3-21C E3-21C E3-21C	E1-5a E1-5a A7G. E1-5C

Table VII TI-8A1-1Mo-1V (DUPLEX ANNEALED) TENSILE PROPERTIES TEST DATA

(SHEET 5 of 5)

	0.444				MEA	MEASURED							
S P E CIMEN NUMBER	TEST TEMPERATURE (°F)	CREEP STRESS LEVEL (PSI)	EXPOSURE TEMPERATURE (*F)	EXPOSURE TIME (HOURS)	THICKNESS (INCHES)	WI DTH (INCHES)	AREA A (SQ. IN.)	LOAD AT RUPTURE (LBS)	F 7.0	. (<u>R</u>	a se	REDUCTION IN AREA	MODULUS OF ELASTICITY PSI X 10-6
E3-7B E3-8B E3-9B E3-10B E3-11B		ROLS			.0264 .0268 .0267 .0267 .0264	.5006 .5009 .5006 .5006	.01322 .01342 .01337 .01333	2040 2095 2105 2095 2100	154,300 156,100 157,400 157,200 159,600	146,700 145,300 146,200 146,200 146,200	20.0 17.0 17.0 15.0	35.0 35.7 37.3 38.3	17.8 17.8 18.0 17.4 18.1
E2-54 E2-64 E2-64 E2-64 AVG. E2-48 E2-46 E2-60 AVG.	550 550 550 550 650 650 650 650	CONTR			.0265 .0272 .0272 .0275 .0275 .0275 .0268	.6255 .6242 .6251 .6253 .6258 .6245 .6245	.01638 .01698 .01700 .01720 .01596 .01695 .01674	2090 2065 2110 2135 1945 2050 2010 2000	156,900 126,100 121,600 124,100 124,000 121,900 120,900 119,200 118,200 118,800	146,600 100,700 98,600 99,100 96,200 96,500 96,500 96,500	16.8 13.5 13.5 13.0 13.0 13.0 10.5 10.5	37.7 38.1 36.4 36.4 37.3 36.2 35.2 35.3 35.3	17.8 15.6 15.1 15.1 15.1 15.7 14.5 14.5 16.3
E3-16A AVG. E3-16C E3-16C E3-16C E3-16E AVG. E3-15A AVG. E3-15C E3-15C E3-15C E3-15C E3-15C E3-15C E3-15C E3-15C	R.T. 550 550 550 550 650 650	HEAT SOAKED	STEADY STEADY	000,08 -	.0269 .0257 .0266 .0266 .0268 .0268 .0256	. 5845 . 5813 . 5817 . 5302 . 5793 . 5843 . 5840 . 5820	.01572 .01552 .01547 .01543 .01546 .01566 .01552	2440 2420 1945 1940 1915 2485 2470 1910 1890	155, 200 155, 900 155, 900 125, 700 125, 700 124, 800 125, 400 128, 700 158, 700 158, 900 126, 800 126, 800	143,800 143,000 143,000 99,200 99,100 98,400 98,400 147,800 148,000 99,100 99,100 98,300	14.5 14.5 14.5 14.5 12.5 12.5 12.5 16.7 16.7 16.7 16.7	38.00 30 30 30 30 30 30 30 30 30 30 30 30 3	18.9 18.9 10.2 10.2 10.3 16.3 16.3 17.5 16.5 16.5
E1-1A E1-1B AVG. E1-1C E1-1D E1-1E AVG.	R.T. 8.T. 550 550 550	000°	STEADY S 550		.0273 .0268 .0273 .0260	.6100 .6150 .6125 .6095	.01665 .01648 .01672 .01585	2470 2540 2040 1980 2015	148,300 154,100 151,200 122,000 124,900 123,200	143,200 144,100 143,700 97,200 99,700 98,200	17.5 17.5 17.5 12.5 10.5 11.6	39.4 44.4 31.9 42.6 39.6	17.8
E1-2A E1-2B AVG. E1-2C E1-2D E1-2E AVG			STEADY 650	•	.0275 .0269 .0266 .0260	.6055 .6120 .6095 .6048 .6128	.01665 .01646 .01621 .01572 .01624	2585 2535 1925 1850 1985	155,300 154,000 154,700 118,800 117,700 122,200 119,600	144,400 143,600 143,600 93,200 92,600 94,500	18.0 19.0 18.5 13.5 11.0 13.0	38.6 35.8 37.2 45.8 45.8 33.1	19.0 16.9 18.0 16.1 15.9 16.7

FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT ROOM TEMPERATURE)

(SHEET 1 of 4)

		11						
	Kc (PSI) V IN.	110,500 106,800 105,600 108,500 115,700	111,200 110,300 112,400 111,300	114,300 116,700 112,200 114,400	114,700 115,100 117,500 115,700	103,500 110,300 116,700 110,200	111,600 113,800 109,900 111,800	
	O NET	1.21 1.17 1.17 1.18 1.26 1.20	1.21 1.20 1.22 1.22	1.28 1.25 1.20 1.22	1.26 1.26 1.29 1.27	1.13 1.20 1.28 1.28	1.21 1.23 1.19 1.21	
	NOTCHED STRENGT ⁴ RATIO GNET F TU	1.04 1.01 1.00 1.01 1.08 1.03	1.03 1.02 1.04 1.03	1.06 1.08 1.04 1.06	1.07 1.08 1.10 1.08	.98 1.04 1.11 1.05	1.05 1.08 1.04 1.05	
!	STRESSAT RUPTURE $(\sigma_{N \in T})$	217,700 211,800 211,000 213,200 227,800 215,700	218,200 216,300 220,800 218,400	223,200 227,900 219,300 223,500	224,000 224,600 230,000 226,200	204,600 218,000 231,900 218,200	219,700 224,400 216,400 220,200	
	STRESS AT RUPTURE (C POSS) (PSI)	121,100 121,100 119,700 123,200 127,400 122,400	124,500 124,200 124,100 124,300	128,800 131,700 125,900 128,800	126,600 128,500 128,100 127,700	112,400 124,600 125,200 120,700	122,600 123,400 121,900 122,600	
	MAX. LOAD AT RUPTURE (LBS.)	2950 2960 2965 3050 3140	3090 3090 3090	3235 3310 3150	3210 3270 3235	2845 · 3140 3155	3055 3075 3030	
CRACK	LENGTH AT OWSET OF FAST FRACTURE (2a)	.441 .430 .430 .419	.428	.425	.439	.423	.440	•
	INITIAL CRACK LENGTH (2a ₀) (INCHES)	.363 .359 .368 .341	.361 .363 .356	.323	.360	.354	.370	
	GROSS AREA SQ.IN.)	.02435 .02463 .02476 .02474	.02481	.02511	.02535	.0253	.0249	
MEASURED	WIDTH (INCHES)	.9942 .9932 .9944 .9935	. 9965 . 9987 . 9990	1.0046 1.0049 1.0048	1.0100 1.0100 1.0100	.9953 .9945 .9942	.9961 .9952 .9955	
MEAS	THICKNESS (INCHES)	.0245 .0248 .0249 .0249	.0249	.0250	.0251	.0254	.0250	
	EXPOSURE TIME (HOURS)		4 1000 →	← 0005 →	- 000°01 →	- 000'0€►	4 000°0€ →	
	EXPOSURE TEMP.		4)55		≥ STEADY	
	CREEP STRESS LEVEL (KS!)	← CONTROLS →	-	Х	POPKED ONF	HEAT S	-	
	SPECIMEN	A2-1 A2-2 A2-3 A2-4 A3-1 AVG.	A3-14B A3-14C A3-14E AVG.	A2-15B A2-15C A2-15D AVG.	A1-11A A1-11B A1-11C AVG.	A1-15A A1-15B A1-15C AVG.	A4-14A A4-14B A4-14C AVG.	

Table VIII AM-350 SCT (825) FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT ROOM TEMPERATURE)

F								
(SHEET 2 OF 4		Kc.	110,500 106,800 105,600 108,500 115,700	107,300 110,400 113,000 110,200	103,200 115,200 105,200 107,900	109,800 113,400 111,700 111,600	109,000 114,700 110,500 111,400	111,600 111,900 112,600 112,000
33			1.21 1.17 1.17 1.18 1.26 1.20	1.06 1.10 1.12 1.10	1.08	1.19 1.22 1.20 1.20	1.19 1.24 1.20 1.21	1.21
	NOTCHED	RATIO	1.04 1.01 1.00 1.01 1.08 1.03	.97 1.00 1.02 1.00	.95 1.06 .97	1.03	1.02	1.04
	NET	RUBTURE (ONET) (PSI)	217,700 211,800 211,000 213,200 227,800 215,700	209,600 216,200 221,000 215,600	201,700 224,900 205,900 210,800	218,700 223,800 220,500 221,000	214,700 223,900 216,600 218,400	218,700 220,000 220,900 219,800
	GROSS	RUPTURE (GROSS) (PSI)	121,100 121,100 119,700 123,200 127,400	125,900 131,200 128,400 128,500	122,100 136,700 124,500 127,800	110,800 119,900 118,100 116,300	119,400 127,700 122,200 123,100	120,100 121,700 124,900 122,200
		LOAD AT RUPTURE (LBS.)	2950 2960 2965 3050 3140	3155 3300 3220	3060 3440 3085	2765 2965 2910	2985 3180 3055	3040 3080 3160
	CRACK	AT 0.3SET OF FAST FRACTURE (2a) (NCHES)	.441 .430 .430 .419 .419	.400	.395	.495	.443	.453
	INITIAL	CRACK LENGTH (Za _D) (INCHES)	.363 .359 .368 .341	.373	.365	.430	.362	.374
		GROSS AREA SQ.IN.	.02435 .02463 .02476 .02474 .02464	.02505	.02505	.02496	.0250	.0253
	MEASURED	WIDTH (INCHES)	.9942 .9932 .9944 .9935	1.0019 1.0014 1.0028	1.0018 1.0022 1.0015	1.0025 1.0015 1.0015	1.0024 1.0018 1.0015	1.0018 1.0015 1.0005
	MEA	THICKNESS (INCHES)	. 0245 . 0248 . 0249 . 0249	.0250	.0250	.0249	.0249	.0253
		EXPOSURE TIME (HOURS)		← 1000 I →	← 0005 →	4 000°01→	4000,0€→	4-000 '0ε→
		EXPOSURE TEMP.		4	05	S	-	STEADY
	C L L	STRESS LEVEL (KSI)	CONTROLS FUNEXPOSED →	150	- 501 →	- 58	<u> </u>	SLEVDA
		E C C C C C C C C C C C C C C C C C C C	A2-1 A2-2 A2-3 A2-4 A3-1 AVG.	A3-15B A3-15C A3-15E AVG.	A4-12A A4-12B A4-12C AVG.	A3-12A A3-12B A3-12C AVG.	A2-12A A2-12B A2-12C AVG.	A1-12A A1-12B A1-12C AVG.

Table VIII AM-350 SCT (825)
FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT ROOM TEMPERATURE)

(SHEET 3 of 4)

	K _c (PSI)VIN.	110,500 106,800 105,600 108,500 115,700	111,500 113,100 111,400 112,000	107,100 110,600 108,900 108,900	115,000 111,800 113,800 113,500	112,700 117,000 115,800 115,200	115,200 117,500 111,600 114,700	
	G NET	1.21 1.17 1.17 1.18 1.26 1.20	1.23 1.25 1.22 1.23	1.12 1.15 1.14 1.14	1.19 1.16 1.25 1.20	1.12 1.17 1.16 1.15	1.14 1.17 1.11 1.14	
NOTCHED	STRENGT ⁴ RATIO $\frac{\sigma_{\text{NET}}}{F_{\text{TU}}}$	1.04 1.01 1.00 1.01 1.08	1.02 1.04 1.02 1.03	1.04 1.07 1.06	1.03 1.00 1.08	.98 1.02 1.02 1.01	1.01 1.03 .98 1.00	
NET	STRESS AT RUPTURE (σ_{NET})	217,700 211,800 211,000 213,200 227,800 215,700	218,600 222,300 218,400 219,800	209,300 215,600 212,500 212,400	224,600 218,700 236,200 226,500	222,000 231,500 229,900 227,800	227,200 232,800 221,000 227,000	
GROSS	STRESS AT RUPTURE (OGROSS) (PSI)	121,100 121,100 119,700 123,200 127,400 122,400	125,500 125,000 125,600 125,400	120,700 128,800 125,600 125,000	126,100 121,900 124,800 124,300	120,300 122,700 121,400 121,400	122,700 125,800 118,500 122,300	
	MAX. LOAD AT RUPTURE (LBS.)	2950 2960 2965 3050 3140	3125 3110 3135	3010 3200 3145	3210 3090 3170	3020 3080 3035	3045 3120 2940	
CRACK	A CONSET OF FAST FRACTURE (2a)	.441 .430 .430 .419	.425	.425	.443	.458 .469 .469	.459	,
INITINI	CRACK LENGTH (2a ₀) (INCHES)	.363 .359 .368 .341	.357	.362	.354 .389 .376	.370	.350	
	GROSS AREA (SQ.IN.)	.02435 .02463 .02476 .02474	.02489	.02492	.02545	.0251	.0248	
MEASURED	WIDTH (INCHES)	.9942 .9932 .9944 .9935	.9996 .9992 .9978	1.0048 1.0058 1.0052	1.0100 1.0100 1.0115	.9940 .9940 .9935	.9957 .9948 .9945	
MEAS	THICKNESS (INCHES)	.0245 .0248 .0249 .0249	.0249	.0248	.0252	.0253	.0249	
	EXPOSURE TIME (HOURS)		← 1000 →	- 0009▶	← 000°01 →	∢ 000'0€→	4 000'0€ →	
	EXPOSURE TEMP. (°F)		-		- 0S9 		650 ←STEADY-	
	CREEP STRESS LEVEL (KSI)	◆ CONTROLS →	 	X	POPKED ONF	HEAT S	•	
	SPECIMEN NUMBER	A2-1 A2-2 A2-3 A2-4 A3-1 AVG.	A2-13B A2-13C A2-13D AVG.	A2-11A A2-11B A2-11C AVG.	A1-13A A1-13B A1-13C AVG.	A4-12A A4-12B A4-12C AVG.	A4-15A A4-15B A4-15C AVG.	

Table VIII AM-350 SCT (825) FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT ROOM TEMPERATURE)

(SHEET 4 of 4)

	(PSI) V (14)	110,500 106,800 105,600 108,500 115,700 109,400	101,900 104,200 106,200 104,100	103,100 108,400 109,100 106,800	113,600 113,100 115,600 114,100	112,400 113,800 111,300 112,500	111,000 111,300 109,400 110,600
	В N Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р	1.21 1.17 1.18 1.26 1.20	1.03 1.05 1.07 1.05	1.04 1.10 1.10 1.08	1.14 1.12 1.14 1.13	1.12 1.14 1.14 1.14	1.12 1.10 1.10 1.12
NOTCHED	RATIO ONET FTU	1.04 1.00 1.00 1.01 1.03	.91 .93 .95	.91.97	1.01	1.01 1.02 1.02 1.02	1.00
NET	STRESSAT RUPTURE (\$\oldsymbol{\sigma}_{N \in \text{T}}\) (PSI)	217,700 211,800 211,000 213,200 227,800 215,700	198,800 203,900 207,800 203,500	201,600 211,900 213,200 208,900	222,600 219,500 222,600 221,600	220,000 223,300 223,300 222,200	219,000 219,500 215,900 218,100
GROSS	STRESS AT RUPTURE (G _{GROSS}) (PSI)	121,100 121,100 119,700 123,200 127,400 122,400	122,400 128,100 130,600 127,100	124,300 128,400 131,400 128,000	113,600 115,600 121,000 116,700	123,600 125,200 120,200 123,000	117,400 117,700 114,400 116,500
	MAX. LOAD AT RUPTURE (LBS.)	2950 2960 2965 3050 3140	3055 3185 3250	3125 3200 3320	2845 2875 3010	3080 3105 3060	2935 2920 2850
CRACK	AT ONSET OF FAST FRACTURE (2a) (INCHES)	.441 .430 .430 .419	.386	.384	.503	.440	. 465
IVI LIVI	CRACK LENGTH (2a ₀) (INCHES)	.363 .359 .368 .341	.366	.367	.425 .412 .391	.358	. 382
	GROSS AREA (SQ.IN.)	.02435 .02463 .02476 .02474	.02495	.02514	.02504	.0249	. 0250
MEASURED	WIDTH (INCHES)	. 9942 . 9932 . 9944 . 9935	1.0019 1.0019 1.0027	1.0016 1.0005 1.0020	1.0100 1.0100 1.0115	1.0017 1.0020 1.0028	1.0025
MEAS	THICKNESS (INCHES)	.0245 .0248 .0249 .0249	.0249	.0251 .0249 .0252	.0252 .0251 .0251	.0249	. 0249
	EXPOSURE TIME (HOURS)		- 1000 →	← 0005 →	→ 000'01 →	- 000'0ε >	4 000°0€ ►
	EXPOSURE TEMP.		-	()59	-	STEADY 650
	CREEP STRESS LEVEL (KSI)	CONTROLS —	<u> </u>	101 -	- S8	L9	STEADY STEADY
	SPECIMEN	A2-1 A2-2 A2-3 A2-4 A3-1 AVG.	A4-11A A4-11D A4-11E AVG.	A4-13B A4-13C A4-13D AVG.	A3-13A A3-13B A3-13C AVG.	A3-11A A3-11B A3-11C AVG.	A2-14A A2-14B A2-14C AVG.

Table IX PH 14-8 Mo (SRH 1050)
FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT ROOM TEMPERATURE)

(SHEET 1 of 2)

	K _C (PSI) V IN.	102,900	105,900	100,000 99,600 102,200	111,100 117,900 117,800 115,600	115,300 114,700 121,900 117,300	122,400 118,000 118,100 119,500	117,500 120,400 117,000 118,300	123,500 119,000 119,700 120,700	
	D N E T		1.02	96. 96.	1.04 1.10 1.10 1.08	1.07 1.07 1.13 1.09	1.20 1.16 1.16 1.16	1.10 1.12 1.08 1.10	1.15 1.11 1.12 1.13	
NOTCHED	NOTCHED STRENGT4 RATIO GNET FTU		. 94	. 89	.99 1.04 1.04	1.01 1.00 1.07 1.03	1.10 1.06 1.10	1.04 1.06 1.03 1.04	1.08 1.04 1.05 1.06	
NET	NET STRESS AT RUPTURE (O _{NET}) (PSI)		206,900	195,100 194,600 199,600	218,700 230,500 230,200 226,500	225,100 223,900 237,900 229,000	241,200 231,900 231,800 235,000	232,100 235,900 228,400 232,100	242,200 233,500 235,200 237,000	
GROSS	STRESS AT RUPTURE (OGROSS) (PSI)	125,400	125,400	116,500 120,700 122,000	131,200 132,900 132,800 132,300	135,100 136,900 140,600 137,600	131,900 128,800 129,000 129,900	127,700 132,200 129,600 129,800	128,700 130,200 130,200 129,700	
	IMX. LOAD AT RUPTURE (LBS.)		3170	2945 3015	3320 3320 3320	3420 3505 3420	3325 3265 3270	3180 3280 3175	3270 3270 3270	
CRACK	AT ONSET OF FAST FRACTURE (2a) (INCHES)	.378	.395	.381	.396 .425 .425	.401 .390	.453	.448 .441 .436	.470	,
INITIAL	CRACK LENGTH (2a ₀) (INCHES)	.348	.334	.351	.347	.335	.374 .380 .374	.386	.362	
	GROSS AREA (SQ.IN.)	.02528	.02528	.02528	.02530	.02530 .02559 .02431	.02520	.0249	.0254	
JRED	WIDTH (INCHES)	1.0032	1.0031	1.0032	1.0008	1.0038 1.0036 1.0046	1.0000	0.9981 1.0020 1.0020	1.0025	
MEASURED	THICKNESS (INCHES)	.0252	.0252	.0252	.0251 .0249 .0249	.0252	.0252	.0250	.0253 .0251 .0251	
	EXPOSURE TIME (HOURS)				75./ →	- - 0001 - →	- 000'9 →	- 090'57 →	4 008'57 →	
	EXPOSURE TEMP.				-	0	SS		STEADY	
	CREEP STRESS LEVEL (KSI)	S ED	OF OSI	CONTR	+	YKED ONFA	— HEAT SO			
	SPECIMEN		B-6	B-7 B-12 AVG.	B-28C B-28D B-28E AVG.	B-17A B-17B B-17C AVG.	B-27A B-27B B-27C AVG.	B-23A B-23C B-23D AVG.	B-20A B-20B B-20C AVG.	

Table IX PH 14-8 Mo (SRH 1050)
FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT ROOM TEMPERATURE)

(SHEET 2 of 2)

	K _C (PSI)V(N.	102,900 102,500 105,900 100,000 99,600	121,600 115,100 114,600 117,100	113,300 118,300 114,900 115,500	125,100 120,900 119,000 121,200	114,300 113,200 124,100 117,200	117,900 121,600 116,800 118,700
	O F	. 99 . 98 . 1.02 . 96 . 96	1.22 1.16 1.15 1.18	1.13 1.18 1.15 1.15	1.28 1.23 1.21 1.24	1.09 1.16 1.20 1.15	1.16 1.18 1.13 1.15
CH	STRENGT4 RATIO ONET FTU	.92 .91 .94 .89 .89	1.08 1.02 1.02 1.04	.98 1.03 1.00 1.00	1.10 1.06 1.04 1.06	1.01 1.07 1.10 1.06	1.07
- Z	STRESS AT RUPTURE (ONET) (PSI)	201,200 200,000 206,900 195,100 194,600	237,500 225,300 224,100 229,000	221,400 231,100 224,800 225,800	246,300 237,300 232,700 238,700	224,300 238,000 245,400 235,900	235,200 239,700 230,200 235,100
0000	STRESS AT RUPTURE (Genoss) (PSI)	125,400 122,000 125,400 116,500 120,700	141,600 131,200 133,300 135,300	136,300 137,800 134,800 136,300	134,800 133,000 132,500 133,400	126,400 128,500 131,100 128,700	126,900 130,300 125,200 127,500
	MAX. LOAD AT RUPTURE (LBS.)	3170 3085 3170 2945 3015	3580 3295 3400	3400 3440 3370	3320 3270 3255	3275 3500 3265	3285 3285 3155
CRACK	LENGTH AT ONSET OF FAST FRACTURE (2a) (1NCHES)	.378 .391 .395 .405	.405	.385	.453	.437	. 456
	CRACK CRACK LENGTH (2a ₀) (INCHES)	.348 .349 .351 .353	.324	.351	.342	.356	.378
	GROSS AREA SQ.IN.)	.02528 .02527 .02528 .02528	.02528	.02494	.02462	.0259	.0252
URED	WIDTH (INCHES)	1.0032 1.0030 1.0031 1.0032 1.0032	1.0032	1.0015	1.0010 1.0025 1.0030	1.0024 1.0042 1.0015	1.0010 1.0011 1.0016
MEASURE	THICKNESS	.0252	.0252	.0249	.0246	.0258	.0252
	EXPOSURE TIME (HOURS)		→ 751 →	40001 →	← 0009 ←	-090'SZ- →	◆ 008,25 →
	EXPOSURE TEMP.		4	059	5	-	≥SO STEADY
	CREEP STRESS LEVEL (KSI)	◆ CONTROLS • UNEXPOSED	4 - £03 - ▶	150	4 - ≤8	1 € 19	STEADY S
	SPECULAR METERAL METER	B-2 B-4 B-6 B-7 B-12 AVG.	B-26C B-26D B-26E AVG.	B-21B B-21C B-21E AVG.	B-24A B-24B B-24C AVG.	B-25A B-25C B-25D AVG.	B-18A B-18B B-18C AVG.

Table X RENE 41 (20% C. R. + 16 HRS @ 1400⁰F) FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT ROOM TEMPERATURE)

(SHEET 1 of 4)

	Κ _ς (PSI) <mark>V (W.</mark>	104,200 106,000 107,400 106,400 106,600	113,500 118,800 111,800 114,700	115,900 117,400 114,900 116,000	109,800 117,400 112,000 113,000	110,000 116,200 114,500 113,500	108,000 111,000 115,700 111,600	
	D + +	. 92 . 92 . 92 . 92 . 92	.96 1.00 .94	98 1.00 .97 98	. 92	.97 1.04 1.01 1.01	.94 1.00 1.01 .98	
NOTCHED	RATIO GNET FTU	8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.	. 88 . 93 . 87	.91 .92 .90	98.6.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8	.90	. 93	
NET	RUPTURE (ONET) (PSI)	204,100 207,800 200,800 209,300 209,000	222,400 233,300 218,800 224,800	226,300 229,400 224,100 226,600	213,600 228,800 218,800 220,400	219,600 233,700 228,100 227,100	212,300 224,500 227,100 221,300	
GROSS	RUPTURE O _{GROSS} (PSI)	117,200 118,800 123,100 118,900 120,600	123,300 127,700 124,000 125,000	127,300 130,400 128,700 128,800	124,500 130,000 122,300 125,600	112,900 116,800 120,100 116,600	119,900 122,300 129,600 123,900	
	MAX. LOAD AT RUPTURE (LBS.)	2680 2745 2750 2830 2870	2790 2940 2840	3150 3225 3185	3020 3185 3030	2745 2805 2920	2675 2740 2930	
CRACK	AT ONSET OF FAST FRACTURE (2a) (INCHES)	,426 ,428 ,414 ,430	.448	.442	.422	.483	.435	,
IAITIM	CRACK LENGTH (2a ₀) (INCHES)	.354 .368 .365 .371	.357	.329	.354	.358	.380	
	GROSS AREA (SQ.IN.)	.02285 .02310 .02233 .02379	.02262	.02474	.02426	.0240	.0223	
JRED	WIDTH (INCHES)	1.0021 1.0000 1.0016 1.0004 .9990	1.0054 1.005 1 1.0042	1.0100 1.0090 1.0100	1.0110 1.0120 1.0115	.9968 .9959	9966. 0966.	
MEASURED	THICKNESS (INCHES)	.0228 .0231 .0233 .0237	.0229	.0245	.0242	.0244	.0224	
	EXPOSURE TIME (HOURS)		← 0001 →	0005	4 000°01 →	- 000°0€ -	4 -000'0€ ->	į
	EXPOSURE TEMP.		4		oss		STEADY 550	1
	STRESS LEVEL (KSI)	CONTROLS	-		VKED ONFA	HEAT SO	•	
	SPECIMEN NUMBER	D3-1C D3-2C D3-4C D3-5C D3-5C AVG.	D2-14AB D2-14AC D2-14AE AVG.	D3-10AA D3-10AB D3-10AC AVG.	D3-11AA D3-11AB D3-11AC AVG.	D3-9AA D3-9AB D3-9AC AVG.	D2-15AA D2-15AB D2-15AC AVG.	

Table X Rene'41 (20% C. R. + 16 HRS @ 1400⁰F) FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT ROOM TEMPERATURE)

(SHEET 2 of 4)

	Kc (PSI)VIN.	104,200 106,000 107,400 106,400 106,600	103,100 104,600 111,500 106,400	114,600 115,700 112,500 114,200	112,900 119,000 114,500 115,000	113,400 114,800 113,600 113,900	111,000 111,700 111,400 111,400	
	R F	. 90 . 92 . 92 . 92 . 92	. 86 . 93 . 89	1.01 1.00 .97	.97 1.02 .99	1.01 1.03 1.03	.99 1.01 1.00 1.00	
NOTCHED	STRENGTU RATIO ONET F TU	. 83 . 85 . 85 . 86 . 85	.80 .81 .86	.93 .92 .89	.89 .94 .91	. 93 . 94 . 94	.91 .92 .91	
NET	STRESSAT RUPTURE (ONET) (PSI)	204, 100 207, 800 200, 800 209, 300 209, 000 206, 200	201,600 205,400 218,600 208,500	230,700 227,900 220,400 226,300	221,300 232,800 225,300 226,500	220,800 224,800 223,800 223,100	216,500 219,800 217,800 218,000	
GROSS	STRESS AT RUPTURE (G _{GROSS}) (PSI)	117,200 118,800 123,100 118,900 120,600	120,400 113,200 121,200 118,300	126,000 121,900 123,900 123,900	124,200 132,500 130,400 129,000	128,100 126,300 120,400 124,900	121,800 121,500 122,300 121,900	
	MAX. LOAD AT RUPTURE (LBS.)	2680 2745 2750 2830 2870	2750 2660 2880	2905 2820 2865	2760 2985 2945	2960 2945 2865	2815 2880 2875	
CRACK	AT ONSET OF FAST FRACTURE (10CHES)	.426 .428 .414 .430	.403	.455	.440	.424	. 442	,
IAITIAI	CRACK LENGTH (2a ₀) (INCHES)	.354 .368 .365 .371	.358	.345	.351	.354	.346	
	GROSS AREA (SQ.IN.)	.02285 .02310 .02233 .02379	.02283 .02348 .02375	.02306	.02223	.0231 .0233 .0238	.0231 .0237 .0235	
JRED	WIDTH (INCHES)	1.0021 1.0000 1.0016 1.0004 .9990	1.0013 1.0034 1.0062	1.0025 1.0060 1.0050	1.0015 1.0055 1.0040	1.0049 1.0036 1.0053	1.0057 1.0069 1.0095	
MEASURE	THICKNESS (INCHES)	.0228 .0231 .0233 .0237 .0238	.0228	.0230	.0222	.0230	.0230	
	EXPOSURE TIME (HOURS)		← 1000 →	0005	← 000'01→	4 000'0€ →	4 000°0€ →	
	EXPOSURE TEMP.		•	OS	ς	•	STEADY 550	
	CREEP STRESS LEVEL (KSI)	CONTROLS	- 2.881 →	011	07	07	STEADY 40	
	SPECIMEN NUMBER	D3-1C D3-2C D3-4C D3-5C D3-6C AVG.	D2-9A D2-9C D2-9E AVG.	D2-8A D2-8B D2-8C AVG.	D2-12A D2-12B D2-12C AVG.	D2-5A D2-5B D2-5C AVG.	D2-1A D2-1B D2-1C AVG.	

Table X RENE 41 (20% C. R. + 16 HRS @ 1400⁰F) FRA CTURE TOUGHNESS TEST DATA (ALL TESTS AT ROOM TEMPERATURE)

\sim 1			1							
(SHEET 3 of 4		K _c (PSI) V IN.	104,200	106,600	112,800 114,800 111,800 113,100	127,500 134,200 130,900	120,000 116,400 116,900 117,700	112,500 108,400 113,500 111,400	111,700 114,500 109,100 111,800	
		P P P P P P P P P P P P P P P P P P P	.90 .92 .88	.92	.98 .98 .95	1.12 1.19 1.16	1.01 .98 .98	.94 .91 .95	.97 1.00 .96 .98	
	NOTCHED	RATIO ONET FTU	8.8.8. 2.2.4.4	. 85	.89 .91 .90	1.03 1.10 1:07	.96 .93 .94	. 88 . 85 . 89 . 87	.90 .89 .90	
	NET	STRESS AT RUPTURE (σ _{N∈T}) (PSI)	204,100 207,800 200,800	209,000	221,300 227,200 221,400 223,300	256,600 274,400 265,500	235,000 227,000 228,500 230,200	223,400 217,200 226,600 222,400	219,000 225,700 215,600 220,100	
	GROSS	(σ_{GROSS})	117,200 118,800 123,100	120,600	126,400 124,200 120,200 123,600	104,400 123,400 124,200 117,300	128,900 129,800 127,300 128,600	120,100 111,800 117,500 116,500	121,200 120,500 116,700 119,500	
	:	MAX. LOAD AT RUPTURE (LBS.)	2680 2745 2750 2830	2870	2825 2790 2700	2615 3015 3085	2890 2900 2875	2860 2650 2810	2935 2935 2825	,
	CRACK	AT ONSET OF FAST FRACTURE (2a) (INCHES)	.426 .428 .414 .430	.422	.428 .450	.522	.456	.459 .481 .479	.447	8
	INITIAL	CRACK LENGTH (2a ₀) (INCHES)	.354	.360	.359 .365	.364	.346 .354 .3 5 1	.346	.350	
		GROSS AREA (SQ.IN.)	.02285 .02310 .02233 .02233	.02378	.02234 .02246 .02246	.02503	.02242	.0238 .0237 .0239	.0242	
	MEASURED	WIDTH (INCHES)	1.0021 1.0000 1.0016 1.0004	0666.	1.0002	1.0054 1.0054 1.0051	1.0100 1.0115 1.0120	.9965 .9957 .9955	.9969 .9962 .9961	
	MEAS	THICKNESS (INCHES)	.0228 .0231 .0233	.0238	.0223	.0249	.0222	.0239	.0243	
		EXPOSURE TIME (HOURS)			← 1000 →	← 0005 →	4 000°01 →	- 000°0€ >	+ 30°000	
	EXPOSURE TEMP.				4		— 0S9 ———	•	◆STEADY ►	
	CREEP STRESS LEVEL (KSI)		LEOUS TENT		4		ОРКЕР ОИГА	HEAT SO	-	
	SPECIMEN STI		D3-1C D3-2C D3-4C D3-5C	D3-6C AVG.	D2-16AA D2-16AB D2-16AD AVG.	D3-13AB D3-13AD D3-13AE AVG.	D2-13AA D2-13AB D2-13AC AVG.	D3-14AA D3-14AB D3-14AC AVG.	D3-12AA D3-12AB D3-12AC AVG.	

Table X RENE'41 (20% C.R. + 16 HRS @ 1400⁰F) FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT ROOM TEMPERATURE)

(SHEET 4 of 4)

					-		
	Κ _C (PSI) V ΙΝ.	104,200 106,000 107,400 106,400 106,600	111,700 108,700 112,100 110,800	91,300 114,800 108,800 104,900	116,100 110,900 118,600 115,200	112,500 108,600 116,400 112,500	112,700 109,000 112,700 111,500
	Ω × ⊢ ⊥ ⊢ ⊢	. 92 . 88 . 92 . 92 . 91	1.02 .99 1.03 1.01	. 92	1.00	1.00	. 98 1. 00 . 98 . 98
NOTCHED	RATIO ONET TO	8 8 8 8 8 8 8 8 8 8 8 8 8 8	.93	. 70 89 81	. 92	.91.96.96	. 91
NET	RUPTURE (σ_{NET})	204,100 207,800 200,800 209,300 209,000	218,200 212,600 219,900 216,900	177,400 224,100 212,300 204,600	228,200 217,100 236,000 227,100	219,200 212,100 229,700 220,300	220,300 213,400 223,900 219,200
GROSS	RUPTURE (Gross) (PSI)	117,200 118,800 123,100 118,900 120,600	124,500 121,200 122,500 122,700	108,000 127,400 122,700 119,300	125,800 121,500 128,600 125,400	127,000 125,400 123,100 125,200	122,500 117,000 115,800 118,500
2	LOAD AT RUPTURE (LBS.)	2680 2745 2750 2830 2870	2855 2790 2850	2525 2990 2865	2900 2810 3000	2960 2970 2895	2930 2775 2710
CRACK	AT ONSET OF FAST FRACTURE (2a) (INCHES)	.426 .428 .414 .430	.432	.396	.450	.424	. 456
INITIAL	CRACK LENGTH (2a ₀) (INCHES)	.354 .368 .365 .371	.360	.358	.342	.338	382
	GROSS AREA SQ.:N.)	.02285 .02310 .02233 .02379	.02293 .02301 .02326	.02347	.02306	.0236	.0239
IRED	WIDTH (INCHES)	1.0021 1.0000 1.0016 1.0004 .9990	1.0058 1.0048 1.0027	1.0120 1.0075 1.0065	1.0025 1.0055 1.0050	1.0045 1.0050 1.0068	1.0053 1.0072 1.0074
MEASU	THICKNESS (INCHES)	.0228 .0231 .0233 .0237	.0228	.0233	.0230	.0232	.0238
	EXPOSURE TIME (HOURS)		4 -0001 −	0005	000'01	000'08-	4000,0€→
	EXPOSURE TEMP.		+		059		€STEADY
	CREEP STRESS LEVEL (KSI)	CONTROLS ► UNEXPOSED -►	777	100	- 04	07	SLEVDA
	SPECIMEN	D3-1C D3-2C D3-4C D3-4C D3-5C D3-6C	D2-10A D2-10B D2-10C AVG.	D2-11A D2-11B D2-11C AVG.	D2-4A D2-4B D2-4C AVG.	D2-2A D2-2B D2-2C AVG.	D2-7A D2-7B D2-7C AVG.

Table XI Ti-6A1-4V (MILL ANNEALED)
FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT ROOM TEMPERATURE)

ET 1 of 2)		Kc (PSI)VIN.	76,200 78,000 76,200 79,800 74,900	75,500 73,600 77,300 75,500	67,500 68,800 68,000 68,100	77,800 80,800 74,700 77,800	74,200 72,900 71,700 72,900	73,400 74,100 74,700 74,100	
(SHEET		P Y	1.16 1.17 1.16 1.21 1.14	1.13 1.10 1.17 1.13	1.00 1.02 1.01 1.01	1.15 1.20 1.10 1.15	1.12 1.11 1.09 1.11	1.11 1.12 1.13 1.13	
	NOTCHED	RATIO ONE T	1.09 1.10 1.09 1.14 1.07	1.03 1.01 1.07 1.03		1.05 1.09 1.00 1.05	1.03 1.02 1.00 1.02	1.02 1.03 1.05 1.03	
	NET	RUPTURE (O _{NET}) (PSI)	149,500 150,800 148,800 156,300 146,500 150,400	147,400 143,800 152,200 147,800	132,400 134,600 133,200 133,400	151,900 157,800 145,100 151,600	145,400 143,500 142,000 143,600	144,600 146,000 147,700 146,100	
	GROSS	RUPTURE (Gross) (PSI)	88,500 87,100 89,400 92,400 90,100	87,900 86,800 85,600 86,800	81,500 84,200 83,400 83,100	86,900 90,800 89,000 88,900	84,200 81,600 78,700 81,500	82,000 80,300 82,900 81,700	
	2	LOAD AT RUPTURE (LBS.)	2320 2255 2345 2415 2320	2030 1935 1890	2015 2085 2080	2085 2150 2100 ·	1920 1895 1875	2010 1855 1965	
	CRACK	AT ONSET OF FAST FRACTURE (2a) (INCHES)	.406 .421 .400 .408 .385	.405	.382	.431 .428 .390	.420	.430	
	INITIAL	CRACK LENGTH (2a ₀) (INCHES)	.358 .353 .322 .333	.352	.356	.352	.386	.366	
	-	GROSS AREA (SQ.IN.)	.02620 .02588 .02623 .02613	.02308	.02470	.02399	.0228	.0245	
	MEASURED	WIDTH (INCHES)	1.0004 1.0003 1.0013 1.0001	1.0035 1.0035 1.0045	1.0004 1.0016 1.0011	1.0080 1.0080 1.0085	.9937 .9938 .9940	.9952 .9945 .9943	
	MEAS	THICKNESS (INCHES)	.0261 .0258 .0262 .0261	.0230	.0246	.0238	.0230	.0246	
		EXPOSURE TIME (HOURS)		-1000	-0005	4 000°01 →	- 000°0€ +	000'08	
		EXPOSURE TEMP.		4		— oss —		- STEADY► 550	
		CREEP STRESS LEVEL (KSI)	← CONLKOFR —► NNEXBORED	1		KED ONFA-	HEAT SOA		
		SPECIMEN NUMBER	C3-1A C3-2A C3-1F C3-2F C3-3F AVG.	C1-6A C1-6B C1-6C AVG.	C2-4A C2-4B C2-4E AVG.	C2-3A C2-3B C2-3C AVG.	C2-2A C2-2B C2-2C AVG.	C1-8A C1-8B C1-8C	

Table XI Ti-6A1-4V (MILL ANNEALED) FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT ROOM TEMPERATURE)

7)								
(SHEET 2 of 2		A (15년) 시 (18년)	76,200 78,000 76,200 79,800 74,900	77,200 72,800 77,000 75,700	72,400 69,500 69,100 70,300	77,600 78,100 78,500 78,000	73,000 72,500 74,400 73,300	74,100 72,100 72,900 73,000
3)		л г г г	1.16 1.17 1.16 1.21 1.14 1.17	1.12 1.05 1.11 1.10	1.07	1.14 1.16 1.16 1.15	1.10	1.13 1.10 1.11 1.11
	NOTCHED	RATIO GNET F TU	1.09 1.10 1.09 1.14 1.07	1.04	988	1.05	1.01 1.00 1.03 1.01	1.03
	NET	RUPTURE (ONET) (PSI)	149,500 150,800 148,800 156,300 146,500 150,400	150,900 142,300 150,400 147,900	141,600 136,100 133,800 137,200	151,800 153,300 154,200 153,100	143,600 142,100 145,800 143,800	145,100 141,500 143,600 143,400
	GROSS	RUPTURE ($\sigma_{c Po S S}$) (PSI)	88,500 87,100 89,400 92,400 90,100	88,800 90,100 91,800 90,200	84,200 83,700 83,300 83,700	90,900 87,100 85,900 87,900	79,300 81,000 83,500 81,200	82,800 80,100 80,800 81,300
		MAX. LOAD AT RUPTURE (LBS.)	2320 2255 2345 2415 2320	2140 2220 2235	2090 2160 2145	2355 2100 2020 .	1850 1915 1960	1960 1805 1845
	CRACK	AT ONSET OF FAST FRACTURE (2a) (INCHES)	.406 .421 .400 .408 .385	.412	.405	.401	.448 .431 .428	. 437
	ATIVI	CRACK LENGTH (2a ₀) (INCHES)	.358	.347 .340 .329	.362	.336	.386	.382
		GROSS AREA SQ.Th.	.02620 .02588 .02623 .02613	.02411	.02480	.02590 .02411 .02351	.02332	.02252
	URED	INCHES)	1.0004 1.0003 1.0013 1.0001 1.0001	1.0005	.9998 1.0000 1.0210	1.0000	1.0010	1.0022 1.0011 1.0005
	MEASU	THICKNESS (INCHES)	. 0261 . 0258 . 0262 . 0261	.0241	.0258	.0259	.0233 .0236 .0234	.0223
		EXPOSURE TIME (HOURS)		1000 →	- 000°5 →	√ 000°01 →	- 000'0€ →	-000,08
		E				055		₹ SLEVDY -
		STRESS STRESS LEVEL (KSI)	CONTROLS	58	★ - 5.17 →	09	07	AGVELS 07
		SPECITIES NUMBER	C3-1A C3-2A C3-1F C3-2F C3-3F AVG.	C2-1A C2-1B C2-1C AVG.	C2-5A C2-5B C2-5D AVG.	C1-9A C1-9B C1-9C AVG.	C1-7A C1-7B C1-7E AVG.	C1-5A C1-5B C1-5C AVG.

Table XII Ti-8A1-1Mo-1V (DUPLEX ANNEALED) FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT ROOM TEMPERATURE)

(SHEET 1 of 4)

	^K c (PSI)√IN.	80,200 80,350 83,000 81,500 81,900	83,400 82,200 83,400 83,000	74,700 79,600 78,300 77,600	82,200 75,100 85,700 81,000	75,100 80,000 75,700 76,900	78,700 85,300 80,000 81,300	
	N N N N N N N N N N N N N N N N N N N	1.07 1.07 1.11 1.09 1.09	1.12 1.10 1.12 1.11	.99 1.05 1.04 1.03	1.09 1.00 1.14 1.08	1.03 1.10 1.03 1.06	1.09 1.15 1.10 1.11	
NOTCHED STRENGT4	RATIO	1.00 1.00 1.04 1.02 1.02	1.03 1.01 1.03 1.02	. 96	1.01 0.93 1.05 1.00	.95 1.01 .95	1.00 1.06 1.02 1.03	
NET	RUPTURE (σ_{NET})	157,200 157,300 163,200 160,000 160,300 159,600	163,500 160,500 163,400 162,400	146,500 156,000 153,500 152,000	161,400 148,000 168,100 159,200	148,300 158,300 148,700 151,800	156,800 165,200 158,800 160,200	
GROSS TRFCC AT	RUPTURE (σ_{GHOSS}) (PSI)	89,100 88,500 89,900 89,100 90,400 89,000	91,300 92,700 91,800 91,900	84,600 90,200 88,100 87,600	88,400 82,700 93,400 88,200	80,800 84,700 84,900 83,500	82,900 85,800 84,800 84,500	
> =	LOAD AT RUPTURE (LBS.)	2505 2440 2420 2415 2415	2365 2415 2450	2220 2450 2370	2270 2220 2520	2175 2235 2230	2245 2260 2260	
CRACK	AT ONSET OF FAST FRACTURE (2a) (INCHES)	.435 .438 .451 .445	.443	.423	.440	.453	.469	
INITIAL	CRACK LENGTH (2a ₀) (INCHES)	.366 .356 .356 .358	.354	.351	.383	.382	.343	
	GROSS AREA (SQ.IN.)	.02811 .02751 .02691 .02709	.02589	.02624	.02567	.02689	.02707	
URED	WIDTH (INCHES)	1.0038 1.0040 1.0038 1.0038	1.0035	1.0014	1.0065	.9966. 9956.	.9953	
MEASURED	THICKNESS (INCHES)	.0280 .0274 .0268 .0270	.0258	.0262	.0255	.0270	.0272	
	EXPOSURE TIME (HOURS)		- 0000 →	← 000°s →	4 -000°01 →	- 000'0ε →	◆ 000°0€ →	
	EXPOSURE TEMP. (0F)		-	9	— oss —		STEADY	
i i	STRESS LEVEL (KSI)	← CONLKOFS —▶	-	ONEX	EVI SOVKED	Н ———	-	
	SPECIMEN NUMBER	E3-1C E3-2C E3-3B E3-5B E3-5C AVG.	E3-7AA E3-7AB E3-7AC AVG.	E3-6AA E3-6AD E3-6AE AVG.	E3-8AA E3-8AB E3-8AC AVG.	E3-9AA E3-9AB E3-9AC AVG.	E3-11AA E3-11AB E3-11AC AVG.	

Table XII Ti-8A1-1Mo-1V (DUPLEX ANNEALED) FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT ROOM TEMPERATURE)

(T)									
SHEET 2 of		PSI) V 121.	80,200 80,300 83,000 81,500 81,900	83,100 83,600 81,500 82,700	79,900 82,700 81,000 81,200	82,500 82,100 82,800 82,500	79,400 78,400 77,300 78,300	82,700 79,200 79,600 80,500	
(S			1.07 1.07 1.11 1.09 1.09	1.11 1.12 1.08 1.10	1.04	1.12 1.11 1.12 1.12	1.08 1.06 1.05 1.06	1.14	
	NOTCHED	RATIO ONET TIU	1.00 1.00 1.004 1.02 1.02	1.02	96 1.00 97	1.02 1.01 1.02 1.02	1.00 99 98 99	1.08	
	STREES AT RUPTURE (\$\alpha_{NET}\$) (\$\alpha_{		157,200 157,300 163,200 160,000 160,300 159,600	163,100 163,900 159,400 162,100	156,600 162,500 159,100 159,400	161,800 161,500 162,900 162,000	156,500 154,500 152,800 154,600	163,900 155,600 156,200 158,500	
	SROSS F	RUPTURE (GROSS) (PSI)	89,100 88,600 89,900 89,100 90,400	91,600 92,000 91,500 91,700	88,700 90,300 89,900 89,700	90,900 88,400 88,500 89,300	84,000 83,400 81,300 82,900	85,300 87,000 88,600 86,900	
	MAX. LOAD AT RUPTURE LBS.)		2505 2440 2420 2415 2445	2435 2400 2385	2385 2435 2415	2415 2350 2325	2275 2240 2190	2310 2320 2350	
	CRACK LENGTH AT 0::SET OF FAST FRACTURE (23)		.435 .438 .451 .445	.439	.434	.439	.465	.481	
	1217151	CRACK LENGTH (2a ₀) NOHES	.366 .356 .356 .358	.359	.366	.349	.380	.362	
		GROSS AREA SQ.IV.	.02811 .02751 .02691 .02709	.02657	.02686	.02657	.02708	.02708	
	URED	WIDTH	1.0038 1.0040 1.0038 1.0038	1.0025 1.0030 1.0025	1.0024 1.0018 1.0014	1.0025 1.0030 1.0030	1.0032 1.0020 1.0010	1.0031	
	MEASUR	THICKNESS (INCHES)	.0280 .0274 .0268 .0270	.0260	.0268	.0265	.0270	.0270	
	CREEP STORYING STORYING STORYING CRADSING (ASI)			0001	- 6005-	-000°01	1-000'0€	← 000'0E→	
					0)55	•	OSS TEADY	
			CONTROLS UNEXPOSED	76	08	- 00	07	SLEVDA 70	
		E E E E E E E E E E E E E E E E E E E	E3-1C E3-2C E3-3B E3-5B E3-5C AVG.	E3-15A E3-15B E3-15C AVG.	E1-16C E1-16D E1-16E AVG.	E3-14A E3-14B E3-14C AVG.	E3-13A E3-13B E3-13C AVG.	E3-12A E3-12B E3-12C AVG.	

Table XII Ti-8A1-1Mo-1V (DUPLEX ANNEALED)
FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT ROOM TEMPERATURE)

<u> </u>								
(SHEET 3 of 4)	K _c (PSI)VIN.	80,200 80,300 83,000 81,500 81,900	80,500 78,600 77,800 79,000	76,900 74,400 80,100 77,100	82,900 80,900 84,300 82,700	79,800 81,100 78,500 79,800	79,000 79,800 78,900 79,300	
	D NET	1.07 1.07 1.11 1.09 1.09	1.08 1.05 1.04 1.06	1.02 1.00 1.07 1.03	1.11 1.08 1.13 1.11	1.06 1.10 1.06 1.08	1.06	
	NOTCHED STRENGT4 RATIO GNET F TU	1.00 1.00 1.04 1.02 1.02 1.02	.97 .95 .94	.92 .90 .97	1.01 0.98 1.03 1.01	.97 1.00 .96 .97	. 99 1.00 1.00 . 99	
	NET STRESS AT RUPTURE (O _{NET}) (PSI)	157, 200 157, 300 163, 200 160, 600 160, 300 159, 600	157,400 153,600 152,300 154,400	151,000 146,900 157,900 152,000	163,300 159,100 166,600 163,000	156,700 161,900 155,900 158,200	157,300 159,500 158,800 158,600	
	GROSS STRESS AT RUPTURE (OGROSS) (PSI)	89,100 88,600 89,900 89,100 90,400 89,000	90,000 87,900 87,000 88,300	89,600 86,800 89,700 88,700	88,400 87,300 87,700 87,800	83,200 82,900 82,100 82,700	81,500 81,400 78,400 80,400	
	MAX. LOAD AT RUPTURE (LBS.)	2505 2440 2420 2415 2415 2445	2440 2340 2350	2420 2365 2420	2350 2320 2330	2280 2230 2190	2175 2140 2075	
	CRACK LENGTH AT ONSET OF FAST FRACTURE (2a) (INCHES)	.435 .438 .451 .445	.430	.405	.460	.467	. 504	
	INITIAL CRACK LENGTH (2a _o) (INCHES)	.366 .356 .358 .358	.358	.350	.358	.374	.382	
	GROSS AREA (SQ.IN.)	.02811 .02751 .02691 .02709	.02711	.02699	.02658	.02739	.02668	
	MEASURED SSS WIDTH (INCHES)	1.0038 1.0040 1.0038 1.0038	1.0042 1.0046 1.0038	1.0004 1.0009 1.0006	1.0032 1.0025 1.0025	.9962 .9952 .9952	.9958 .9951 .9951	
	MEA THICKNESS (INCHES)	.0280 .0274 .0268 .0270	.0270	.0269	.0265	.0275	.0268	
	EXPOSURE TIME (HOURS)		4 -0000 →	€0005	← 000°01	4000,0€	►000°0ε →	
	EXPOSURE TEMP. (⁰ F)		4		650 − STEADY► 650 −			
	CREEP STRESS LEVEL (KSI)	← CONTROLS ←	4		WKED ONLY	HEAT SO	-	
	SPECIMEN NUMBER	E3-1C E3-2C E3-3B E3-5B E3-5C AVG.	E3-2AB E3-2AD E3-2AE AVG.	E3-5AC E3-5AD E3-5AE AVG.	E3-4AC E3-4AD E3-4AE AVG.	E3-1AA E3-1AB E3-1AC AVG.	E3-10AA E3-10AB E3-10AC AVG.	

Table XII Ti-8A1-1M0-1V (DUPLEX ANNEALED)
FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT ROOM TEMPERATURE)

(SHEET 4 of 4)

	K _C (PSI)VIN.	80,200 80,300 83,000 81,500 81,400	77,200 83,000 80,000 80,100	72,900 73,500 80,900 75,800	85,000 84,700 86,600 85,400	74,600 73,100 80,900 76,200	79,900 81,700 77,900 79,900
	G NET	1.07 1.07 1.11 1.09 1.09	1.02 1.11 1.06 1.06	.96	1.12 1.12 1.14 1.13	1.01 1.02 1.11 1.05	1.09 1.13 1.07 1.10
NOTCHED	RATIO GNET FTU	1.00 1.00 1.04 1.02 1.02	.93 1.01 .97	.88 .97 .90	1.02	.94 .95 1.02	1.01 1.05 1.02
NET	RUPTURE (ONET) (PSI)	157,200 157,300 163,200 160,000 160,300 159,600	150,700 163,300 156,800 156,900	142,500 143,800 158,600 148,300	167,100 167,300 170,700 168,400	146,100 147,400 159,200 150,900	157,500 162,500 153,900 157,900
GROSS	STRESS AT RUPTURE (Ogross) (PSI)	89,100 88,600 89,900 89,100 90,400	88,500 89,000 90,000 89,200	84,900 86,300 92,200 87,800	92,000 89,100 92,000 91,000	83,100 80,000 86,300 83,100	85,300 83,500 82,300 83,700
	MAX. LOAD AT RUPTURE (LBS.)	2505 2440 2420 2415 2415 2445	2400 2360 2430	2310 2260 2445	2480 2410 2350	2220 2200 2335	2320 2235 2095
CRACK	AT ONSET OF FAST FRACTURE (2a) (INCHES)	.438 .438 .451 .445	.414	.405 .401 .419	.450	.433	.4887 .4887
INITIA	CRACK LENGTH (2a ₀) (INCHES)	.366 .356 .356 .358	.369	.372	.354	.382	.3866.
	GROSS AREA SQ.IN.)	.02811 .02751 .02691 .02709	.02710	.02718 .02618 .02651	.02694	.02671	.02717 .02675 .02543
MEASURED	WIDTH (INCHES)	1.0038 1.0040 1.0038 1.0038 1.0048	1.0037	1.0028	1.0015	1.0042	1.0028 1.0021 1.0012
MEAS	THICKNESS	.0280 .0274 .0268 .0270	.0270	.0271	.0259	.0266	.0257
	EXPOSURE TIME (HOURS)		4 0000 →	- 0005 →	- 000'01 →	- 000'0€→	← 000′0€ ▶
	EXPOSURE TELP.		-	0	S9	•	esopy —
	CREEP STRESS LEVEL (KSI)	CONTROLS	4-9.88 →	₩ 08	₩-09-	▶ 07	₹STEADY 40
	SPECIMEN NUMBER	E3-1C E3-2C E3-3B E3-5B E3-5C AVG.	E1-19A E1-19B E1-19D AVG.	E1-24A E1-24C E1-24E AVG.	E1-17D E1-17E E1-17F AVG.	E1-22A E1-22B E1-22C AVG.	E1-20A E1-20B E1-20C AVG.

Table XIII AM-350 SCT (825) FRA CTURE TOUGHNESS TEST DATA (ALL TESTS AT -65ºF)

_			T						
(SHEET 1 of 4)		K _c (PSI) VIN.	125,800 115,300 120,600	120,500 123,700 122,100	123,400 117,700 120,500	122,600 121,000 121,800	115,000 115,100 115,100	112,900 118,900 115,900	
(3		O NET	1.26 1.15 1.20	1.20	1.22 1.15 1.18	1.24	1.13	1.11	
	NOTCHED	STRENGT4 RATIO GNET F TU	1.09	1.02	1.06	1.05	1.01	.97 1.03 1.00	
	NET	STRESS AT RUPTURE ($\sigma_{N \in T}$) (PSI)	249,600 226,900 238,300	237,000 244,300 240,700	244,100 230,800 237,400	240,000 237,400 238,700	226,300 226,600 226,400	222,000 235,000 228,500	
	GROSS	STRESS AT RUPTURE (OGROSS) (PSI)	133,200 123,300 128,200	131,600 131,300 131,500	127,500 128,600 128,000	132,700 129,600 131,100	128,400 128,000 128,200	125,100 127,400 126,200	
		MAX. LOAD AT RUPTURE (LBS.)	3295 3050	3255 3250	3215 3215	3355 3265	3230 3220	3100	
	CRACK	AT ONSET OF FAST FRACTURE (2a) (INCHES)	.463	.444	.480	.452	.430	.435	
	INITIA	CRACK LENGTH (2a ₀) (INCHES)	.322	.356	.352	.345	.362	.374	
		GROSS AREA (SQ.IN.)	.02473	.02474	.02522	.02529	.02515	.02478	
	MEASURED	WIDTH (INCHES)	.9930	.9976	1.0049	1.0115	.9943	.9955	
	MEA	THICKNESS (INCHES)	.0249	.0248	.0251	.0250	.0253	.0249	
		EXPOSURE TIME (HOURS)	SEDOLS	1000	5000	10,000	30,000	30,000	
		EXPOSURE TEMP. (⁰ F)	X P O N T R	-	059			250	
	i i	CREEP STRESS LEVEL (KSI)	U C D	-	ONTX	SOAKED	TA3H		
		SPECIMEN NUMBER	A 3-2 A 3-3 Avg.	A3-14A A3-14D Avg.	A2-15A A2-15E Avg.	A1-11D A1-11E Avg.	A1-15D A1-15E Avg.	A4-14D A4-14E Avg	

Table XIII AM-350 SCT (825) FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT -65⁰F)

(SHEET 2 of 4)

	Kc (PSH) V [1].	125,800 115,300 120,600	126,900 103,700 115,300	111,600 123,100 117,400	119,000 111,000 115,000	122,400 119,000 120,700	110,300 110,500 110,400
	ρ γ γ	1.26	1.22 0.99	1.08	1.17	1.11	1.09
NOTCHED	STRENGT PRATIO	1.09	1.06 0.86 0.96	0.95 1.04 0.99	1.02 0.93 0.97	.96 1.02 .99	766.
NET	STRESSAT RUPTURE (σ_{NET})	249,600 226,900 238,300	250,100 203,700 226,900	221,100 242,100 231,700	236,500 217,100 226,800	221,000 234,000 227,500	217,300 217,200 217,300
GROSS	STRESS AT RUPTURE (GROSS)	133,200 123,300 128,200	135,000 112,700 123,800	115,800 131,700 123,700	122,000 128,700 125,300	122,300 129,500 125,900	117,500 120,000 118,800
	MAX. LOAD AT RUPTURE ILBS.)	3295 3050	3370	2890 3265	3030	3050	3000
CRACK	AT ONSET OF FAST FRACTURE (28)	.453	.461	.458	.408	.447	044.
VI E	CRACK LENGTH (2a ₀) (NOHES)	.322	.360	.417	.416	.378	. 380
	GROSS AREA SQ.IN.)	.02473	.02495	.02495	.02484	.02493	.02553
MEASURED	WIDTH (INCHES)	.9930	1.0019	1.0021	1.0015	1.0012	1.0012
MEAS	THICKNESS	.0249	.0249	.0249	.0248	.0249	.0255
	EXPOSURE TIME (HOURS)	SED	1000	2000	10,000	30,000	30,000
	TROSUR POSURE PO	X P 0 N T R 0	•		- 055	•	STEADY
	CREEP STRESS LEVEL (KSI:	U N E	120	103	8 8 5 5	67	2. Z. E. P. D. Z. Q.
	in the second se	A3-2 A3-3 AVG.	A3-15A A3-15D AVG.	A4-12D A4-12E AVG.	A3-12D A3-12E AVG.	A2-12D A2-12E AVG.	A1-12D A1-12E AVG,

Table XIII AM-350 SCT (825) FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT -65⁰F)

(SHEET 3 of 4)

_		,						
	κ _c (PSI) V IN.	125,800 115,300 120,600	124,600 120,000 122,300	111,600 117,600 114,600	119,200 120,400 119,300	49,400 75,600 62,500	45,100 53,400 49,300	
	O NET	1.26 1.15 1.20	1.25 1.20 1.22	1.12	1.13	.45 .68 .56	.41	
	NOTCHED STRENGTY RATIO GNET FTU	1.09	1.05	0.94	0.98 1.01 0.99	.39	.36	
ţ	STRESS AT RUPTURE ($\sigma_{_{N} \in T}$) (PSI)	249,600 226,900 238,300	246,400 235,000 240,700	220,200 231,600 225,900	235,300 240,900 238,160	97,200 148,300 122,800	88,500 104,700 96,600	
	GROSS STRESS AT RUPTURE (σ_{GROSS}) (PSI)	133,200 123,300 128,200	131,700 136,700 134,200	116,800 125,100 120,900	122,800 118,600 120,700	61,000 91,900 76,400	54,700 65,000 59,800	
	MAX. LOAD AT RUPTURE (LBS.)	3295 3050	3265 3470	2910 3130	3100 2990	1535	1355	
CRACK	LENGTH AT ONSET OF FAST FRACTURE (2a) (INCHES)	.457	.465	.462	.512	.378	.380	
	INITIAL CRACK LENGTH (2a ₀) (INCHES)	.322	.326	.369	.357	.370	.380	
	GROSS AREA (SQ.IN.)	.02473	.02478	.02492	.02525	.02515	.02476	
MEASURED	WIDTH (INCHES)	.9930	. 9992	1.0048	1.0100	.9940	.9945	
MEAS	THICKNESS (INCHES)	.0249	.0248	.0248	.0250	.0253	.0249	
	EXPOSURE TIME (HOURS)	SED	1000	5000	10,000	30,000	30,000	
	EXPOSURE TEMP. (⁰ F)	X P O S N T R O	•		 059		STEADY 650	
	CREEP STRESS LEVEL (KSI)	U N E	-	ONFX	SOVKED	HEAT		
	SPECIMEN NUMBER	A3-2 A3-3 AVG.	A2-13A A2-13E AVG.	A2-11D A2-11E AVG.	A1-13D A1-13E AVG.	A4-12D A4-12E AVG.	A4-15D A4-15E AVG.	

Table XIII AM-350 SCT (825) FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT -65⁰F)

7									
SHEET 4 of		Κ _C (PSI) V (N.	125,800 115,300 120,600	127,800 116,500 122,200	123,700 129,900 126,800	58,800 69,900 64,300	36,000 27,900 31,900	32,400 34,600 33,500	
		O NET	1.26	1.20	1.16	0.54	.34	.33	
	NOTCHED	RATIO GNET FTU	1.09	1.06	1.01 1.06 1.03	0.48	.29		
	NET	RUPTURE (ON NET) (PSI)	249,600 226,900 238,300	254,000 228,300 241,200	243,700 256,500 250,100	115,600 139,400 127,500	70,400 54,800 62,600	63,300 67,700 65,500	
	GROSS	RUPTURE (σ_{GROSS}) (PSI)	133,200 123,300 128,200	130,800 131,600 131,200	132,300 132,500 132,400	63,600 73,000 68,300	44,400 35,000 39,700	39,700 43,300 41,500	
		LOAD AT RUPTURE (LBS.)	3295 3050	3260 3270	3315 3335	1595	1105	1080	
	CRACK	AT ONSET OF FAST FRACTURE (2a) (INCHES)	.463	.486	.458	.451	.362	.362	
	INITIAL	CRACK LENGTH (2a ₀) (INCHES)	.322	.355	.362	.376	.370	.374	
		GROSS AREA SQ.IN.)	.02473	.02493	.02505	.02506	.02487	.02493	
	MEASURED	WIDTH (INCHES)	. 9930	1.0014	1.0019	1.0025	1.0028	1.0013	
	MEA	THICKNESS (INCHES)	.0249	.0249	.0250	.0250	.0248	.0249	
		EXPOSURE TIME (HOURS)	SED	1000	5000	10,000	30,000	30,000	
	EXPOSURE TEMP.		E X P O N T R	4	059 -			650 STEADY	
	CREEP STRESS LEVEL (KSI)		N D	117	101	85	67	67 STEADY	
		SPECIMEN NUMBER	A3-2 A3-3 AVG.	A4-11B A4-11C AVG.	A4-13A A4-13E AVG.	A3-13D A3-13E AVG.	A3-11D A3-11E AVG.	A2-14D A2-14E AVG.	

Table XIV PH 14-8 Mo (SRH 1050) FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT -650F)

5)			1						
(SHEET 1 of		K _C (PSI)VIN.	122,000 124,300 123,100	129,800 130,200 130,000	126,100 128,300 127,200	130,000 128,000 129,000	126,000 123,100 124,000	130,300 126,200 128,200	
)		G NET	1.13 1.15 1.14	1.14	1.10	1.19	1.12 1.09 1.10	1.16	
	NOTCHED	RATIO ONET F TU	1.07	1.11	1.07	1.12 1.11 1.12	1.06	1.10	
	NET	STRESSAT RUPTURE (ONET) (PSI)	241,800 245,900 243,800	255,100 255,400 255,200	246,400 253,300 249,800	253,700 252,000 252,800	247,800 241,400 244,200	256,100 247,400 251,800	
	GROSS	STRESS AT RUPTURE (Ø _{GROSS}) (PSI)	125,800 128,800 127,300	144,500 145,200 144,800	142,900 134,400 138,600	149,100 138,400 143,700	137,500 134,400 135,900	141,300 137,500 139,400	
		MAX. LOAD AT RUPTURE (LBS.)	3180 3165	3600	3645	3735 3465	3410 3390	3525 3455	
	CRACK	AT ONSET OF FAST FRACTURE (2a) (INCHES)	.481	.432	.422	.413	.445	7777.	
	INITIA	CRACK LENGTH (2a ₀) (INCHES)	.362	.367	.345	.327	.374	.362	
		GROSS AREA (SQ.IN.)	.02527	.02491	.02551	.02503	.02479	.02494	
	MEASURED	WIDTH (INCHES)	1.0030	9966.	1.0044	1.0020	0.9999	1.00018	
	MEAS	THICKNESS (INCHES)	.0252	.0250	.0254	.0250	.0248	.0251	
	EXPOSURE TIME (HOURS)		SED	754 754	1000	0009	25060 25060	25800	
	EXPOSURE TEMP.		X P O N T R	•	055			STEADY STEADY	
	N C		N N	-	ONTX -	T SOAKE	—— нЕъ		
		SPECIMEN NUMBER	B-4 B-8 AVG.	B-28A B-28B AVG.	B-17D B-17E AVG.	B-27D B-27E AVG.	B-23B B-23E AVG.	B-20D B-20E AVG.	

Table XIV PH 14-8 Mo (SRH 1050) FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT -65⁰F)

(SHEET 2 of 2)

		T					
	K _c (PSI) V IN.	122,000 124,300 123,100	127,100 131,100 129,100	128,900 128,700 128,800	126,900 129,400 128,100	129,900 126,100 128,000	132,400 124,700 128,500
	D > L	1.13	1.20	1.21	1.20	1.17	1.23
NOTCHED	STRENGTH RATIO GNET F TU	1.07	1.09	1.09	1.07	1.09	1.14
NET	STRESSAT RUPTURE (O _{NET}) (PSI)	241,800 245,900 243,800	248,500 257,400 252,900	252,600 252,200 252,400	248,400 254,100 251,200	253,400 247,800 250,600	264,700 244,900 254,800
GROSS	STRESS AT RUPTURE (GROSS)	125,800 128,800 127,300	147,900 157,800 152,800	146,000 144,400 145,200	144,200 142,100 143,100	142,000 136,900 139,400	144,500 135,400 139,900
	MAX. LOAD AT RUPTURE (LBS.)	3180	3715 3965	3635	3610 3555	3630	3380
CRACK	AT ONSET OF FAST FRACTURE (2a)	.481	.405	.422	.420	.441	.448
MITIM	CRACK LENGTH (2a ₀) (INCHES)	.362	.346	.353	.346	.354	.374
	GROSS AREA (SQ.IN.)	.02527	.02512	.02490	.02503	.02556	.02495
JRED	WIDTH (INCHES)	1.0030	1.0008	1.0001	1.00010	1.0026	1.0018
MEASURED	THICKNESS (INCHES)	.0252	.0251	.0249	.0250	.0255	.0248
	EXPOSURE TIME (HOURS)	SED	754	1000	0009	25060	25800
	EXPOSURE TEMP. (OF)	X P O N T R O	4		055	-	STEADY
C L C	STRESS STRESS LEVEL (KSI)	U N E	103	120	8 8 5	67	STEADY 67
	SPECIMEN	B-4 B-8 AVG.	B-26A B-26B AVG.	B-21A B-21D AVG.	B-24D B-24E AVG.	B-25B B-25E AVG.	B-18B B-18E AVG.

Table XV RENE 41 (20% C.R. + 16 HRS @ 1400⁰F) FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT -65⁰F)

(SHEET 1 of 4)

	K _C (PSI)VIN.	116,500 118,300 117,400	116,900 117,400 117,200	118,600	122,000 115,400 118,700	114,900 116,600 115,800	109,000 113,000 111,000			
	P F	. 96 . 98 . 97	76. 76.	76.	.99 .91	.95 .97	. 90			
NOTCHED	RATIO GNET F TU	. 88 . 90 . 89	. 85 . 85 . 85	88.	. 90 . 83 . 86	.89	.82			
NET	SI RESSA I RUPTURE $(\sigma_{N \in T})$ (PSI)	229,200 233,900 231,600	228,400 229,300 228,900	232,000	237,700 220,000 228,800	226,100 230,500 228,300	213,600 222,000 217,000			
GROSS	STRESS AT RUPTURE (\(\sigma_{\mathcal{G}_{\mathcal{ROS}}}\) (\(\mathcal{PS}\)	125,800 124,500 125,100	132,300 133,300 132,800	130,700	137,000 132,200 134,600	126,200 124,200 125,200	127,000 126,600 126,800			
	MAX. LOAD AT RUPTURE (LBS.)	2895 2850	2970 3080	3200	3400 3210	3080	2820 2810			
CRACK	AT ONSET OF FAST FRACTURE (2a) (INCHES)	.452	.423	077.	.429	.459	.404			
IVILIA	CRACK CRACK LENGTH (2a ₀) (INCHES)	.360	.350	.354	.348	.366	.366			
	GROSS AREA (SQ.IN.)	.02302	.02244	.02448 .354	.02428	.02459	.02220			
RED	WIDTH (INCHES)	1.0010	1.0061	1.0075	1.0125 1.0125 1.0115	.9958	.9958			
MEASURED	THICKNESS	.0230	.0223	.0243		.0247	.0223			
	EXPOSURE TIME (HOURS)	SEDOLS	1000	2000	(Note: 10,000 10,000	30,000	30,000			
	EXPOSURE TEMP. (°F)	E X P O N T R C	•		- oss -		STEADY			
	CREEP STRESS LEVEL (KSI)	U N C O	•	NLY	OVKED O	- HEAT	-			
	SPECIMEN NUMBER	D2-13C D2-14C AVG.	D2-14AA D2-14AD AVG.	D3-10AE	D3-11AD D3-11AE AVG.	D3-9AD D3-9AE AVG.	D2-15AD D2-15AE AVG.			

Table XV RENE'41 (20% C.R. + 16 HRS. @ 1400^of) Fracture toughness test data (all tests at -65^of)

I 2 of 4)		Kc (PSI) V IN.	116,500 118,300 117,400	121,100 117,800 119,400	121,700 124,000 122,800	118,800 123,000 120,900	114,900 109,800 112,300	107,100 115,700 111,400
(SHEET		D Z Z	96.	66.	1.00	.97	93	0.6. 1.8. 4.6.
	NOTCHED	RATIO QNET FTU	88.	.88	.90	. 91	88.	8 8 8 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	NET	RUPTURE (ONET)	229,200 233,900 231,600	238,100 232,900 235,500	238,900 243,700 241,300	232,000 241,100 236,500	225,700 213,800 219,700	208,600 • 226,200 217,400
	GROSS	RESA A RUPTURE (G _{GPOSS}) (PSI)	125,800 124,500 125,100	129,900 122,300 126,100	130,800 132,000 131,400	136,600 132,300 134,400	122,700 127,300 125,000	123,700 127,300 125,500
		MAX. LOAD AT RUPTURE (LBS.)	2895	2970	3090	3160	2930	2855 2950
	CRACK	AT ONSET OF FAST FRACTURE (2a) (INCHES)	.452	.456	.455	.413	.459	.410
	MITIAL	CRACK LENGTH (2a ₀) (INCHES)	.360	.367	.348	.348	.362	
		GROSS AREA SQ.HL.	.02302	.02286	.02362	.02312	.02386	.02307
	MEASURED	WIDTH (INCHES)	1.0010	1.0028	1.0050	1.0050	1.0069	1.0075
	MEA	THICKNESS	.0230	.0233	.0235	.0230	.0237	. 0230
		EXPOSURE TIME (HOURS)	ROLS)	1000	5000	10,000	30,000	30,000
		EXPOSURE TEMP. (0F)	(UNEXPOSED CONTROLS	-	C)55		STEADY
	(i	STRESS LEVEL (KSI)	(UNE	138.5	110	70 70	07	SLEVDX d0
		SPECIMEN	D2-13C D2-14C AVG.	D2-9B D2-9D AVG.	D2-8D D2-8E AVG.	D2-12D D2-12E AVG.	D2-5D D2-5E AVG.	D2-1D D2-1E AVG.

Table XV RENE'41 (20% C.R. + 16 HRS. @ 1400⁰F) FRA CTURE TOUGHNESS TEST DATA (ALL TESTS AT -65⁰F)

(SHEET 3 of 4)

					-				
	K _C (PSI)VIN.	116,500 118,300 117,400	114,000 119,900 116,900	119,800 121,400 120,600	117,600 115,000 116,300	112,200 111,200 111,700	105,300 109,100 107,000		
	O NET	96. 98.	.92	86.	.93	. 93	. 90		
NOTCHED	STRENGT ^L RATIO GNET F TU	88. 06.	.84	98.	.86		.76		
NET	STRESS AT RUPTURE $(\sigma_{N \in T})$ (PSI)	229,200 233,900 231,600	223,600 235,600 229,500	235,500 237,200 236,400	228,900 223,900 226,400	222,000 221,400 221,700	206,500 213,900 210,200		
GROSS	STRESS AT RUPTURE (\(\sigma_{\mathcal{G}_{\mathcal{B}}}\)) (PSI)	125,800 124,500 125,100	128,000 130,400 129,200	128,200 137,000 132,600	132,600 133,100 132,800	119,400 114,600 117,000	126,000 124,800 125,400		
	MAX. LOAD AT RUPTURE (LBS.)	2895 2850	2930 2880	3145	3020 3070	2885	3075	,	
CRACK	AT ONSET OF FAST FRACTURE (2a) (INCHES)	.452	.427	.458	.426	.480	.388		
INITIA	CRACK LENGTH (2a ₀) (INCHES)	.360	.353	.350	.355	.380	.343		
	GROSS AREA (SQ.IN.)	.02302	.02289	.02452	.02277	.02416	.02440		
JRED	WIDTH (INCHES)	1.0010	0.9994	1.0050	1.0120	.9945	. 9960		
MEASURED	THICKNESS (INCHES)	.0230	.0229	.0244	.0225	.0243	.0245		
	EXPOSURE TIME (HOURS)	SED	1000	2000	10,000	30,000	30,000		
	EXPOSURE TEMP. (⁰ F)	X P O N T R O	•		059		8 STEADY		
	CREEP STRESS LEVEL (KSI)	UNE	•	ED ONFA-	YAOS TA		-		
	SPECIMEN NUMBER	D2-13C D2-14C AVG.	D2-16AC D2-16AE AVG.	D3-13AA D3-13AC AVG.	D2-13AD D2-13AE AVG.	D3-14AD D3-14AE AVG.	D3-12AD D3-12AE AVG.		

Table XV RENE⁴1 (20% C. R. + 16 HRS. @ 1400⁰F) Fracture toughness test data (all tests at -65⁰F)

_		П						
		PSI) VIII.	116,500 118,300 117,400	117,900 121,000 119,400	115,600 119,000 117,300	122,900 120,800 121,800	107,100 111,400 109,200	116,700 103,900 110,300
		р х т	96.	1.04	. 94 . 97	1.02	.91	.97
	NOTCHED	RATIO ONET F TO	88.	. 92	.84	.92	.83	06. 7.9 8.5 8.5
	NET	RUPTURE G N ET)	229,200 233,900 231,600	231,400 230,100 230,800	226,100 232,800 229,400	242,000 235,600 238,800	209,100 217,800 213,400	230,400 202,600 216,500
	GROSS	RUPTURE Gross)	125,800 124,500 125,100	127,400 128,600 128,000	129,800 133,000 131,400	129,600 134,800 132,200	122,200 123,400 122,800	122,100 124,100 123,100
	>	LOAD AT RUPTURE LBS.)	2895 2850	2960	2935 2985	3060	2840	2910 2960
	CRACK	AT CNSET OF FAST FRACTURE (2a)	.468	.452	.428	.432	.418	.390
	MITIAL	CRACK LENGTH (230) (INCHES)	.360	.367	.362	.344	.374	.358
	0	AREA SQ.III.	.02302	.02323	.02261	.02362	.02324	.02385
	JRED	WIDTH (INCHES)	1.0010	1.0055	1.0050	1.0050	1.0052	1.0050
	MEASURED	THIOKNESS	.0230	.0231	.0225	.0235	.0231	.0237
		EXPOSURE TIME (HOURS)	S E D L S	1000	5000	10,000	30,000	30,000
		EXPOSURE TEMP.	X P O S	 		— 0S9 —		650 STEADY
	1	CREEP STRESS LEVEL (KSI)	U N E	124	100	70	07	AGVILS 07
		SPECIMEN NUMBER	D2-13C D2-14C AVG.	D2-10D D2-10E AVG.	D2-11D D2-11E AVG.	D2-4D D2-4E AVG.	D2-2D D2-2E AVG.	D2-7D D2-7E AVG.

Table XVI TI-6AI-4V TITAN IUM (MILL ANNEALED) FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT -65⁰F)

			1							
(SHEET 1 of 2)		K _c (PSI)VIN.	84,000 83,300 83,600	82,800 80,800 81,800	80,400 80,400 80,400	78,600 79,200 78,600	77,200 76,600 76,900	75,200 73,700 74,400		
s)		Ø NET FTY	1.18 1.14 1.16	1.04	1.00	96. 86. 86.	1.03 1.03 1.03	1.02 1.01 1.01		
	NOTCHED	STRENGTY RATIO ONET FTU	1.12 1.08 1.10	1.01	.97 .98 .97	.93 .95	.95 .94 .95	.92 .90 .91		
	NET	STRESSAT RUPTURE (O _{NET}) (PSI)	171,800 165,800 168,810	162,700 158,600 160,300	157,600 159,200 158,400	152,000 154,500 153,300	152,500 151,200 151,800	148,100 144,600 146,300		
	GROSS	STRESS AT RUPTURE (G _{GROSS}) (PSI)	90,200 90,500 90,300	88,600 94,600 91,600	89,900 88,300 89,100	91,500 94,100 92,800	83,500 82,900 83,200	83,800 83,700 83,800		
		MAX. LOAD AT RUPTURE (LBS.)	2340	1985	2205	2305	2010 1985	1975 1990		
	CRACK	AT ONSET OF FAST FRACTURE (2a) (INCHES)	.455	.458	.430	.402	677.	.431		
	INITIA	CRACK LENGTH (2a ₀) (INCHES)	.365	.368	.362	.323	.366	.370		
		GROSS AREA (SQ.IN.)	.02520	.02241	.02453	.02520	.02405	.02355		
	MEASURED	WIDTH (INCHES)	1.0001	1.0050	1.0012	1.0080	.9939	.9936		
	MEA	THICKNESS (INCHES)	.0259	.0232	.0253	.0250	.0242	.0237		
		EXPOSURE TIME (HOURS)	OLS)	1000	5000	10,000	30,000	30,000		
		EXPOSURE TEMP. (°F)	(UNEXPOSED CONTROLS)		09	SS		STEADY		
		STRESS LEVEL (KSI)	(UNE)	-	ONFX —	T SOAKEI	—— НЕ∀			
		SPECIMEN	C3-2B C3-4A AVG.	C1-6D C1-6E AVG.	C2-4C C2-4D AVG.	C2-3D C2-3E AVG.	C2-2D C2-2E AVG.	C1-8D C1-8E AVG.		

(SHEET 2 of 2)

	1							
^K c (PSI) V IN.	84,000 83,300 83,600	84,600 83,100 83,800	80,800 78,600 79,700	78,300 76,900 77,600	72,100 77,600 74,800	68,900 72,700 70,800		
ш х ъ	1.18	1.03	1.01	0.97	.99 1.04 1.02	.95 1.00 .96		
NOTCHED STRENGT ⁴ RATIO GNET F _{TU}	1.12	1.02	0.98 0.95 0.96	0.94 0.92 0.93	. 88	.90		
NET STRESSAT RUPTURE (σ_{NET}) (PSI)	171,800 165,800 168,800	165,900 162,900 164,400	158,900 154,300 156,600	153,000 150,500 151,700	140,900 152,500 146,700	134,700 142,600 138,600		
STRESS AT RUPTURE (90,200 90,500 90,300	95,000 94,200 94,600	87,800 86,500 87,100	93,900 87,400 90,600	82,400 84,800 83,600	80,300 82,100 81,200		
MAX. LOAD AT RUPTURE LBS.)	2340	2210 2160	2195	2190	1975	1990 2060 .		
CRACK LENGTH AT ONSET OF FAST FRACTURE (2a)	.455	.427	.448	.387	.416	. 424		,
INITIAL CRACK LENGTH (2a ₀) (INCHES)	.365	.338	.364	.336	.382	.374		
GROSS AREA (SQ.IM.)	.02593	.02327	.02501	.02332	.02395	.02478		
WIDTH (INCHES)	1.0001	. 9985	1.0004	1.0010	1.0022	. 9995		
MEASURED THICKNESS (INCHES)	.0259	.0233	.0250	.0233	.0239	.0248		
EXPOSURE TIME (HOURS)	SED	1000	2000	10,000	30,000	30,000		
EXPOSURE TEMP.	X P O N T R O	4	055			STEAD:		
CREEP STRESS LEVEL (KSI)	U N E	85	71.5	09	0 7 7	SLEVD.		
SPECIMES NUMBER	C3-2B C3-4A AVG.	C2-1D C2-1E AVG.	C2-5C C2-5E AVG.	C1-9D C1-9E AVG.	C1-7C C1-7D AVG.	C1-5D C1-5E AVG.		

Table XVII Ti-8AI-1Mo-1V·(DUPLEX ANNEALED)
FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT -65ºF)

(SHEET 1 of 4)

	^K c (PSI)√IN.	87,900 85,900 86,900	87,500 95,000 91,200	85,800 89,300 87,500	91,900 86,500 89,200	83,900 85,000 84,400	85,500 83,100 84,300	
	δ NET → L	1.07	1.06	1.03	1.11	1.02 1.06 1.05	1.07	
	NOTCHED STRENGTY RATIO GNET FTU	.99 .96.	.98 1.07 1.02	. 94 . 97 . 95	1.03	. 95 76.	1.00	
	NET STRESSAT RUPTURE (ONET) (PSI)	173,000 168,200 170,600	172,400 188,600 180,500	168,500 174,600 171,600	180,900 169,800 175,200	165,900 168,500 167,200	170,200 171,900 171,100	
	STRESS AT RUPTURE (PS)	92,400 95,400 93,900	101,000 97,600 99,300	93,700 101,700 97,700	96,800 94,000 95,400	89,400 89,800 89,600	88,800 86,700 87,200	
	MAX. LOAD AT RUPTURE (LBS.)	2590 2625	2690	2500	2580	2360	2385	
0 4 7	LENGTH AT ONSET OF FAST FRACTURE (2a)	.468	.483	.445	.468	.459	.475	-
	INITIAL CRACK LENGTH (2a ₀) (INCHES)	.371	.328	.351	.352	.358	.358	
	GROSS AREA (SQ.IN.)	.02802	.02661	.02667	.02666	.02643	.02684	
MEASURED	WIDTH	1.0045	1.0040	1.0026	1.0060	.9957	.9940	
MFAS	THICKNESS (INCHES)	.0279	.0265	.0266	.0265	.0265	.0270	
	EXPOSURE TIME (HOURS)	STO	1000	2000	10,000	30,000	30,000	
	EXPOSURE TEMP.	UNEXPOSED	4	()55		STEADY	
	CREEP STRESS LEVEL (KSI)	UNEX	•	X	VAKED ONI	HEAT SO		
	SPECIMEN NUMBER	E3-1B E3-3C AVG.	E3-7AD E3-7AE AVG.	E3-6AB E3-6AC AVG.	E3-8AD E3-8AE AVG.	E3-9AD E3-9AE AVG.	E3-11AD E3-11AE AVG.	

Table XVII Ti-8AI-1MO-1V (DUPLEX ANNEALED) FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT -65°F)

	\$ C 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	85,900 85,900	88,100 92,000 90,000	85,900 89,300 87,600	87,800 87,300 87,500	81,400 82,400 81,900	78,400
	D 0	1.07	1.06	1.01	1.09	1.02	\$ 50.50 \$ 50.50
TO LO	84713 84713 64.54	96.	.98	98.	86.6.6.	. 92	∝ ∞ ∞ ∞ ∞ ∠
1-	100 00 00 00 00 00 00 00 00 00 00 00 00	173,000 168,200 170,600	172,700 181,300 177,000	168,500 177,300 172,900	173,400 172,400 172,900	160,500 162,200 161,400	153,500 148,400 150,900
E 038	23.82.5 10.00 10.0	92,400 95,400 93,900	98,400 98,000 98,200	94,200 91,500 92,800	92,600 92,000 92,300	87,300 88,800 88,100	91,900 88,400 90,100
	X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2590	2615	2455	2470	2375	2490
CRACK	AT 0:58 0	.435	.431	.442	797.	.456	.404.
ζι -	X 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.371	.341	.351	.364	.380	.374
	8:1: 0:0::	.02802	.02633	.02606	.02667	.02719	.02680
MEASURED	1200 1200 1200 1200 1200 1200 1200 1200	1.0045	1.0025	1.0022	1.0025	.9998	. 9998
MEAS	THICKNESS	.0279	.0263	.0260	.0265	.0272	.0268
	SOCIAL SO	SED	1000	2000	10,000	30,000	30,000
	SE COMP	UNEXPOSED CON	4	0	55	•	S S S S S S S S S S S S S S S S S S S
1.	1	N	76 76	8 80	09	07	SLEVDX 70
	in a com unit, ao	E3-1B E3-3C AVG.	E3-15D E3-15E AVG.	E1-16A E1-16B AVG.	E3-14D E3-14E AVG.	E3-13D E3-13E AVG.	E3-12D E3-12E AVG.

Table XVII Ti-8AI-1Mo-1V (DUPLEX ANNEALED) FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT -65°F)

(SHEET 3 of 4)

	K _c (PSI) V IN.	87,900 85,900 86,900	93,100 94,800 94,000	87,200 91,200 89,200	83,800 86,300 85,100	77,800 80,200 79,000	78,000 78,600 78,300		٠	
	FT	1.07	1.13	1.06	1.02	.95 .99 .79.	96. 96.			
NOTCHED	RATIO ONET F TO	96. 96. 76.	1.03	.96 1.01 .99	.91 .95 .93	.88 .88	.88. 88.			
NET	STRESS AT RUPTURE (ONET) (PSI)	173,000 168,200 170,600	185,800 191,900 188,800	174,600 183,400 178,800	164,600 170,900 167,800	153,300 159,000 156,200	155,000 156,800 155,900			
GROSS	STRESS AT RUPTURE GROSS (PSI)	92,400 95,400 93,900	93,500 90,900 92,200	87,400 91,600 89,500	90,000 89,900 89,900	84,900 84,800 84,800	81,200 80,400 80,800			
	MAX. LOAD AT RUPTURE	2590	2460	2325	2360	2280 2270	2150			
CRACK	AT ONSET OF FAST FRACTURE .2a'	.435	. 529	. 500	.455	797	.473			
INITIAL	CRACK LENGTH (2a _n) INCHESI	.371	.357	.367	.367	.374	.394			
	GROSS AREA SQ.III.	.02802	.02631	.02659	.02623	.02685	.02645			
MEASURED	AIDTH INCHES	1.0045	1.0044	1.0038	1.0022	.9947	.9945			
MEAS	THICKNESS INCHES:	.0279	.0262	.0265	.0262	.0270	.0266			
	EXPOSURE TIME HOURS	OSED CONTROLS	1000	2000	10,000	30,000	30,000			
	EXPOSURE TEMP.	UNEXPOSED	•	0	9		STEADY 650			
	CREEP STRESS LEVEL (KS)	D	•		ср оигу	EAT SOAK	н —	+		
	SPECITE:	E3-1B E3-3C AVG.	E3-2AA E3-2AC AVG.	E3-5AA E3-5AB AVG.	E3-4AA E3-4AB AVG.	E3-1AD E3-1AE AVG.	E3-10AD E3-10AE AVG.			

Table XVII TI-8AI-1Mo-1V (DUPLEX ANNEALED) FRACTURE TOUGHNESS TEST DATA (ALL TESTS AT -65⁰F)

(SHEET 4 of 4)

	Ke PSIIVIV.	87,900 85,900 86,900	89,400 87,700 88,500	84,500 91,000 87,800	84,700 86,100 85,400	84,800 81,200 83,000	79,300 81,400 80,300
	D ×	1.07 1.04 1.05	1.07	1.01	1.00	1.06	. 99 1.02 1.00
NOTCHED	STRENGT4 RATIO GNET F TU	96.	96.	.92 1.00 .96	.93	.96	.90
Luz	STRESSAT RUPTURE (PSI)	173,000 168,200 170,600	175,700 172,300 174,000	167,100 181,500 174,300	166,600 169,200 167,900	167,700 159,800 163,700	155,600 160,300 157,900
GROSS	STRESS AT RUPTURE (GROSS)	92,400 95,400 93,900	96,400 95,700 96,000	89,000 92,100 90,600	91,100 93,000 92,000	88,600 88,200 88,400	87,700 86,100 86,900
	LOAD AT LOAD AT RUPTURE LBS.)	2590	2605	2340	2375	2360	2275 2270
CRACK	AT ONSET OF FAST FRACTURE (2a)	.468	.453	.493	.455	.472	7997.
VIII.	CRACK LENGTH (28)	.371	.348	.362	.353	.366	300
	GROSS AREA SQ.III.	.02802	.02700	.02627	.02608	.02662	.02592
MEASURED	#IDTH (NOHES)	1.0045	1.0039	1.0025	1.0030	1.0008	1.0007
MEAS	THICKNESS (INCHES)	.0279	.0269	.0262	.0260	.0266	.0259
	EXPOSURE TIME (HOURS)	SOLS	1000	5000	10,000	30,000	30,000
	EXPOSURE TEMP.	UNENPOSED CONTROLS	4	0	59	-	SLEWDY 620
	STRESS LEVEL (KSI	UNEXI	88.6	80	09	07	SLEWDA 070
	SECOND SE	E3-1B E3-3C AVG.	E1-19C E1-19E AVG.	E1-24B E1-24D AVG.	E1-17B E1-17C AVG.	E1-22D E1-22E AVG.	E1-20D E1-20E AVG.

Unclassified
Security Classification

(Security classification of title, body of abstract and indexing	ITROL DATA - R&D	hen the overall report is classified)
ORIGINATING ACTIVITY (Corporate author)		PORT SECURITY CLASSIFICATION
General Dynamics Corporation		
Fort Worth Division	2 b. GF	ROUP
Fort Worth, Texas		
3. REPORT TITLE		
INTERMITTENT CREEP AND STABILI	TY OF MATERIALS	
FOR SST APPLICATIONS		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)		
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ly 1963 through	December 1966
5. AUTHOR(S) (Last name, first name, initial)	Ly 1703 Cillough	Beccine CI 1900
Thomason Oscar N and Iones	Dichard I	
Thompson, Oscar N. and Jones,	(Ichard L.	
6. REPORT DATE	74. TOTAL NO. OF PAGES	7b. NO. OF REFS
December 1966	206	8
8a. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S REPORT	NUMBER(S)
AF33(657)-11687	4 T3 G . TD	66 107
b. PROJECT NO.	AFML-TR-	66-407
9056	95 OTHER REPORT NO(S) (Any other numbers that may be assigned
Task No. 738103	this report)	· · · · · · · · · · · · · · · · · · ·
d.	None	
This document is subject to special export of	entrols and each transm	mittal to foreign govern-
ments or foregin nationals may be made only	with prior approval o	of the Materials Appli-
cation Division (MAAM), Air Force Materia	le Laboratory Wright	-Patterson AFB, Ohio 45433
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY	ACTIVITY
11. SUPPLEMENTARY NOTES		ials Laboratory
		chnology Division
	Air Force Syste	ms Command-Wright-
This report covers an inves	Patterson AFB,	Ohio
This report covers an inves	tigation of the	creep rate and metal
lurgical stability of candidate	naterials for a	supersonic transport
airplane when exposed to heat al	one and to creep	loading at tempera
tures of 550° or 650°F. Specime	ns were exposed	to intermittent
heating and to creep loading for	times of 1000,	5000, 10,000 and
30,000 hours and, also, to stead	y heating and to	creep loading for
30,000 hours. The materials tes	ted were Ti-8A1-	1Mo-1V (duplex
annealed) and Ti-6Al-4V (mill an	nealed) titanium	alloys, Rene 41
(20% cold rolled + 16 hours at 1	400 ⁰ F) superallo	oy, and AM-350 SCT
(825) and PH 14-8 Mo (SRH 1050)	stainless steels	The 30,000 hour
creep stress level for the two t	itaniums and Ren	ė 41 was 40,000 psi,
whereas, 67,000 psi was used for	the 30,000 hour	creep stress level
of the two stainless steels. Th	e creep stress 1	evels for the 1000
hours exposures were set below t	ne yield stress	of each material at
the exposure temperature and int	ermediate stress	levels were used fo
the 5,000 and 10,000 hour creep	loadings to give	e a range of creep
rates. The influence of each of		
fracture toughness, and metallur	gical properties	of materials was
determined. Plastic deformation	due to creep wa	as measured through-
out the duration of the exposure		(Continued)

DD 1 JAN 64 1473

Unclassified

	Security Classification							
14.	KEY WORDS	LINK A		LINK B		LINKC		
		ROLE	WT	ROLE	WT	ROLE	wT	
	Stainless Steel							
	Titanium							
	Super Alloy							
	Creep							
	Fracture Toughness							
	Tensile Properties							
	Material Stability							

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DAT: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

Continued from Item 13 - Document Control Data - R&D

The results indicated that all five materials would be satisfactory for use at 550°F for 30,000 hours at the 30,000 hour creep test stress levels. The creep behavior of Ti-6Al-4V titanium makes it undesirable for long time use at 650°F. Also, the AM-350 SCT (825) stainless steel is embrittled by long time exposure to 650°F. The PH 14-8 Mo stainless steel was not tested at 650°F. The exposure to creep loading at 650°F did not reveal any characteristics of the Rene 41 superalloy of the Ti-8Al-1Mo-1V titanium that would make these alloys undesirable for use in a supersonic transport airplane