Definition/1

The language of first-order logic is a $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$

ordered 5-tuple, where

- LC = {¬, ⊃, ∧, ∨, ≡, =, ∀, ∃, (,)}: (the set of logical constants).
- Var (= {x_n: n = 0, 1, 2, ...}): countable infinite set of variables

Definition/2

- Con = ∪_{n=0}[∞] (F(n) ∪ P(n)) the set of non-logical constants (at best countable infinite)
 - F(0): the set of name parameters,
 - F(n): the set of n argument function parameters,
 - P(0): the set of prposition parameters,
 - P(n): the set of predicate parameters.
- 4. The sets LC, Var, $\mathcal{F}(n)$, $\mathcal{P}(n)$ are pairwise disjoint (n = 0, 1, 2, ...).

Definition/3

- The set of terms, i.e. the set Term is given by the following inductive definition:
 - (a) Var ∪ F(0) ⊆ Term
 - (b) If $f \in \mathcal{F}(n)$, (n = 1, 2, ...), s $t_1, t_2, ..., t_n \in \mathit{Term}$, then $f(t_1, t_2, ..., t_n) \in \mathit{Term}$.

Definition/4

- The set of formulas, i.e. the set Form is given by the following inductive definition:
 - (a) P(0) ⊆ Form
 - (b) If $t_1, t_2 \in \textit{Term}$, then $(t_1 = t_2) \in \textit{Form}$
 - (c) If P ∈ P(n), (n = 1,2,...), s t₁, t₂,..., t_n ∈ Term, then P(t₁, t₂,...,t_n) ∈ Form.
 - (d) If A ∈ Form, then ¬A ∈ Form.
 - (e) If A, B ∈ Form, then
 - $(A \supset B)$, $(A \land B)$, $(A \lor B)$, $(A \equiv B) \in Form$.
 - (f) If $x \in Var$, $A \in Form$, then $\forall xA$, $\exists xA \in Form$.

Definition

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula. The set of free variables of the formula A (in notation: FreeVar(A)) is given by the following inductive definition:

- If A is an atomic formula (i.e. A ∈ AtForm), then the members of the set FreeVar(A) are the variables occurring in A.
- If the formula A is ¬B, then FreeVar(A) = FreeVar(B).
- If the formula A is (B ⊃ C), (B ∧ C), (B ∨ C) or (B ≡ C), then FreeVar(A) = FreeVar(B) ∪ FreeVar(C).
- If the formula A is ∀xB or ∃xB, then FreeVar(A) = FreeVar(B) \ {x}.

Definition

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula. The set of bound variables of the formula A (in notation: BoundVar(A)) is given by the following inductive definition:

- If A is an atomic formula (i.e. A ∈ AtForm), then BoundVar(A) = ∅.
- If the formula A is ¬B, then BoundVar(A) = FreeVar(B).
- If the formula A is (B ⊃ C), (B ∧ C), (B ∨ C) or (B ≡ C), then BoundVar(A) = BoundVar(B) ∪ BoundVar(C).
- If the formula A is ∀xB or ∃xB, then BoundVar(A) = BoundVar(B) ∪ {x}.

Definition

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language, $A \in Form$ be a formula, and $x \in Var$ be a variable.

- A fixed occurrence of the variable x in the formula A is free if it is not
 in the subformulas ∀xB or ∃xB of the formula A.
- A fixed occurrence of the variable x in the formula A is bound if it is not free.

Remark

- If x is a free variable of the formula A (i.e. x ∈ FreeVar(A)), then it
 has at least one free occurence in A.
- If x is a bound variable of the formula A
 (i.e. x ∈ BoundVar(A)), then it has at least one bound occurrence in A.
- A fixed occurrence of a variable x in the formula A is free if
 - o it does not follow a universal or an existential quantifier, or
 - it is not in a scope of a ∀x or a ∃x quantification.
- A variable x may be a free and a bound variable of the formula A: (P(x) ∧ ∃xR(x))

Definition

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula.

- If FreeVar(A) ≠ ∅, then the formula A is an open formula.
- If FreeVar(A) = ∅, then the formula A is a closed formula.

Remark:

The formula A is open if there is at least one variable which has at least one free occurence in A.

The formula A is closed if there is no variable which has a free occurrence in A.

Definition (interpretation)

The ordered pair (U, ϱ) is an interpretation of the language $L^{(1)}$ if

- U ≠ ∅ (i.e. U is a nonempty set);
- $Dom(\varrho) = Con$
 - If $a \in \mathcal{F}(0)$, then $\varrho(a) \in U$;
 - If $f \in \mathcal{F}(n)$ $(n \neq 0)$, then $\varrho(f) \in U^{U^{(a)}}$
 - If $p \in \mathcal{P}(0)$, then $\varrho(p) \in \{0, 1\}$;
 - If $P \in \mathcal{P}(n)$ $(n \neq 0)$, then $\varrho(P) \subseteq U^{(n)}$ $(\varrho(P) \in \{0,1\}^{U^{(n)}})$.

Definition (assignment)

The function v is an assignment relying on the interpretation $\langle U, \varrho \rangle$ if the followings hold:

- Dom(v) = Var;
- If $x \in Var$, then $v(x) \in U$.

Definition (modified assignment)

Let v be an assignment relying on the interpretation $\langle U,\varrho\rangle$, $x\in Var$ and $u\in U.$

$$v[x:u](y) = \begin{cases} u, & \text{if } y = x; \\ v(y), & \text{otherwise.} \end{cases}$$

for all $y \in Var$.

Definition (Semantic rules/1)

Let $\langle U, \varrho \rangle$ be a given interpretation and v be an assignment relying on $\langle U, \varrho \rangle$.

- If $a \in \mathcal{F}(0)$, then $|a|_{V}^{\langle U,\varrho\rangle} = \varrho(a)$.
- If $x \in Var$, then $|x|_v^{\langle U,\varrho\rangle} = v(x)$.
- If $f \in \mathcal{F}(n)$, (n = 1, 2, ...), and $t_1, t_2, ..., t_n \in \overline{\textit{Term}}$, then $|f(t_1)(t_2)...(t_n)|_v^{\langle U,\varrho \rangle} = \varrho(f)(\langle |t_1|_v^{\langle U,\varrho \rangle}, |t_2|_v^{\langle U,\varrho \rangle}, ..., |t_n|_v^{\langle U,\varrho \rangle}))$
- If $p \in \mathcal{P}(0)$, then $|p|_{V}^{\langle U,\varrho\rangle} = \varrho(p)$
- If $t_1, t_2 \in \overline{\textit{Term}}$, then

$$|(t_1=t_2)|_{\nu}^{\langle U,\varrho\rangle}=\left\{\begin{array}{ll} 1, & \text{if } |t_1|_{\nu}^{\langle U,\varrho\rangle}=|t_2|_{\nu}^{\langle U,\varrho\rangle}\\ 0, & \text{otherwise}. \end{array}\right.$$

Definition (Semantic rules/2)

• If $P \in \mathcal{P}(n)$ $(n \neq 0)$, $t_1, \ldots, t_n \in \overline{Term}$, then

$$|P(t_1)\dots(t_n)|_{\nu}^{\langle U,\varrho\rangle}=\left\{\begin{array}{ll} 1, & \text{if } \langle |t_1|_{\nu}^{\langle U,\varrho\rangle},\dots,|t_n|_{\nu}^{\langle U,\varrho\rangle}\rangle\in\varrho(P);\\ 0, & \text{otherwise}. \end{array}\right.$$

Definition (Semantic rules/3)

- If $A \in Form$, then $|\neg A|_{v}^{\langle U,\varrho\rangle} = 1 |A|_{v}^{\langle U,\varrho\rangle}$.
- If A, B ∈ Form, then

$$|(A\supset B)|_{\nu}^{\langle U,\varrho\rangle}=\left\{\begin{array}{ll} 0 & \text{if } |A|_{\nu}^{\langle U,\varrho\rangle}=1\text{, and } |B|_{\nu}^{\langle U,\varrho\rangle}=0;\\ 1, & \text{otherwise}. \end{array}\right.$$

$$|(A \wedge B)|_{\nu}^{\langle U,\varrho\rangle} = \left\{ \begin{array}{ll} 1 & \text{if } |A|_{\nu}^{\langle U,\varrho\rangle} = 1 \text{, and } |B|_{\nu}^{\langle U,\varrho\rangle} = 1; \\ 0, & \text{otherwise.} \end{array} \right.$$

$$|(A \vee B)|_{\nu}^{\langle U,\varrho\rangle} = \left\{ \begin{array}{ll} 0 & \text{if } |A|_{\nu}^{\langle U,\varrho\rangle} = 0 \text{, and } |B|_{\nu}^{\langle U,\varrho\rangle} = 0; \\ 1, & \text{otherwise}. \end{array} \right.$$

$$|(A\equiv B)|_{\nu}^{\langle U,\varrho\rangle}=\left\{\begin{array}{ll} 1 & \text{if } |A|_{\nu}^{\langle U,\varrho\rangle}=|B|_{\nu}^{\langle U,\varrho\rangle}=0;\\ 0, & \text{otherwise}. \end{array}\right.$$

Upside down A means for all. Backwards E means there exist

Definition (Semantic rules/4)

• If $A \in Form, x \in Var$, then

$$|\forall x \mathcal{A}|_{v}^{\langle U,\varrho\rangle} = \left\{ \begin{array}{l} 0, \quad \text{if there is an } u \in U \text{ such that } |\mathcal{A}|_{v[x:u]}^{\langle U,\varrho\rangle} = 0; \\ 1, \quad \text{otherwise}. \end{array} \right.$$

$$|\exists x \mathcal{A}|_{v}^{\langle U,\varrho\rangle} = \left\{ \begin{array}{l} 1, \quad \text{if there is an } u \in U \text{ such that } |\mathcal{A}|_{v[x:u]}^{\langle U,\varrho\rangle} = 1; \\ 0, \quad \text{otherwise}. \end{array} \right.$$

Definition - satisfiable a set of formulas

The set of formulas $\Gamma \subseteq Form$ is satisfiable if it has a model. (If there is an interpretation in which all members of the set Γ are ture.)

Definition - satisfiable a formula

A formula $A \in Form$ is satisfiable, if the singleton $\{A\}$ is satisfiable.

Remark

- A satisfiable set of formulas does not involve a logical contradiction; its formulas may be true together.
- A safisfiable formula may be true.
- If a set of formulas is satisfiable, then its members are satisfiable.
- But: all members of the set {p, ¬p} are satisfiable, and the set is not satisfiable.

Definition

The formula A is valid if $\emptyset \models A$. (Notation: $\models A$)

The formulas A and B are logically equivalent if $A \models B$ and $B \models A$. (Notation: $A \Leftrightarrow B$)

Weird = is logical consequence

Theorem

If Γ is unsatisfiable, then $\Gamma \vDash A$ for all A. (All formulas are the consequences of an unsatisfiable set of formulas.)

Proof

- According to a proved theorem: If Γ is unsatisfiable, the all expansions of Γ are unsatisfiable.
- Γ ∪ {¬A} is an expansion of Γ, and so it is unsatisfiable, i.e. Γ ⊨ A.

Definition

A formula A is the logical consequence of the set of formulas Γ if the set $\Gamma \cup \{\neg A\}$ is unsatisfiable. (Notation : $\Gamma \models A$)

Definition

A disjunction of elementary conjunctions is a disjunctive normal form.

Definition

A conjunction of elementary disjunctions is a conjunctive normal form.

Theorem

There is a normal form of any formula of proposition logic, i. e. if $A \in Form$, then there is a formula B such that B is a normal form and $A \Leftrightarrow B$

Definition

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula.

The formula A is prenex if

- there is no quantifier in A or
- the formula A is in the form Q₁x₁Q₂x₂...Q_nx_nB (n = 1, 2, ...),
 - there is no quantifier in the formula B ∈ Form;
 - x₁, x₂ . . . x_n ∈ Var are diffrent variables;
 - $Q_1, Q_2, \dots, Q_n \in \{ \forall, \exists \}$ are quantifiers.

Theorem

Let $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ be a first order language and $A \in Form$ be a formula.

Then there is a formula $B \in Form$ such that

- the formula B is prenex;
- A ⇔ B.