1. Уравнение Бюргерса. Преобразование Хопфа-Коула. Решение задачи Коши для уравнения Бюргерса.

Уравнение Бюргерса. Описывает нелинейность и диффузию (вязкость).

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = D \frac{\partial^2 u}{\partial x^2}$$

Рассмотрим задачу $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0$ - описывает движение жидкости $\frac{\partial u}{\partial t} = 0$ - несжимаемая жидкость; $\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} \frac{\partial x}{\partial t} = 0$

Запишем уравнения характеристик:

$$\frac{\partial t}{1} = \frac{\partial x}{u}; \ \partial x = u \, \partial t \ \Rightarrow \ x - ut = C$$

$$u(x,t) = f(x-ut)$$

Проиллюстрируем u(x,t) = f(x-at). Чем выше амплитуда, тем больше скорость распространения.

Здесь возникает явление опрокидывания.

 $D\frac{\partial^2 u}{\partial x^2}$ - учитывание вязкости.

Уравнение можно решить аналитически. Проведем преобразование Хопфа-Коула: $u=\psi_x=\frac{\partial \psi}{\partial x}$

Тогда:
$$\frac{\partial^2 \psi}{\partial x \partial t} + \frac{\partial}{\partial x} \left(\frac{1}{2} \left(\frac{\partial \psi}{\partial x} \right)^2 \right) = D \frac{\partial^3 \psi}{\partial x^3}$$

Проинтегрируем по
$$x$$
: $\frac{\partial \psi}{\partial t} + \frac{1}{2} \left(\frac{\partial \psi}{\partial x} \right)^2 = D \frac{\partial^2 \psi}{\partial x^2} + C$

Пусть
$$C=0$$
. Замена $\psi(x,t)=-2D\ln v$. Тогда $\frac{\partial \psi}{\partial t}=-2D\frac{v_t}{v}; \frac{\partial \psi}{\partial x}=-2D\frac{v_x}{v}; \frac{\partial^2 \psi}{\partial x^2}=-2D\frac{v_{xx}v-v_x^2}{v^2}$ Подставим: $-2D\frac{v_t}{v}+2D^2\frac{v_x^2}{v^2}=-2D\frac{v_{xx}v-v_x^2}{v^2}$. Тогда $2D^2\frac{v_x^2}{v^2}$ сокращается.

Подставим:
$$-2D\frac{v_t}{v} + 2D^2\frac{v_x^2}{v^2} = -2D\frac{v_{xx}v - v_x^2}{v^2}$$
. Тогда $2D^2\frac{v_x^2}{v^2}$ сокращается

 $v_t = Dv_{xx}$ - получили линейное уравнение вместо нелинейного.

Теперь рассмотрим **задачу Коши** для этого уравнения.
$$\begin{cases} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = D \frac{\partial^2 u}{\partial x^2}; -\infty < x < +\infty; 0 < t; \\ u(x,0) = \varphi(x) \end{cases}$$

$$u(x,0) = \varphi(x)$$

Замена
$$u = -2D(\ln v)_x$$
:

$$\int \frac{\partial v}{\partial t} = D \frac{\partial^2 v}{\partial x^2}$$

$$\begin{cases} \frac{\partial v}{\partial t} = D \frac{\partial^2 v}{\partial x^2} \\ v(x,0) = \Phi(x) \end{cases}$$

При
$$t=0$$
 получим $-2D(\ln v)_x=\varphi(x)\Leftrightarrow (\ln v)_x=-\frac{\varphi(x)}{2D}$ и $\ln v=\int\limits_0^x-\frac{\varphi(\xi)}{2D}\,d\xi$

$$v(x,0) = \Phi(x) = exp(-\frac{1}{2D} \int_{0}^{x} \varphi(\xi) d\xi)$$

$$v(x,t) = \frac{1}{2\pi\sqrt{Dt}}\int\limits_0^t exp(-\frac{(x-\mu)^2}{4Dt})\,\Phi(\mu)\,d\mu$$

2. Формула среднего значения для гармонической функции.

Гармоническая функция - функция, определенная в плоскости или в пространстве и имеющая непрерывные частные производные 2 порядка и удовлетворяющая уравнению Лапласа:

 $\Delta u = u_{xx} + u_{yy} = 0$ или $\Delta u = u_{xx} + u_{yy} + u_{zz} = 0$ для плоскости и пространства соответственно.

Или, что то же самое:

Функция u называется гармонической в области Ω , если $u \in C^2(\Omega)$ и $\Delta u = 0$ в Ω .

Теорема о среднем значении

Для u(M) гармоничной в области D функции для любой сферы V радиуса а с центром в точке M_0 , целиком лежащей в области D, верно следующее:

$$u(M_0) = \frac{1}{4\pi a^2} \oint_V u(M) \, dS$$