

上海交通大学

计算机视觉

教师: 赵旭

班级: AI4701

2024 春

6. 对极几何与基本矩阵

主要内容

- * 双目 (两视图) 问题定义
- * 对极几何
- * 基本矩阵及其计算

双目系统的几何结构

- * X, x, x'
- * X, X'是X在两幅 视图上的图像 点,如果给定 点,如果给定 其中一点,则 另外一个点在 哪里? (对极 约束)

双目系统的几何结构

- 基线 (Baseline): 两个光学中心的连线
- * 对极点(Epipole):基线与图像平面的交点
- * 对极平面(Epipolar plane):包含基线的平面(族)
- * 对极线 (Epipolar line):对极平面 与图像平面的交线
- * 所有的对极线在对极点交汇
- * 对极平面与左右图像交于左右对极线

一个自由度的对极面运动

基线与图像平面平行,两摄像机的光轴平行 对极线平行,交于无穷远处(对极点)

基本矩阵:双目系统几何结构的代数表示

从点到线的射影映射

$$\mathbf{x} \mapsto \mathbf{l}'$$

$$\mathbf{x}' = \mathbf{H}_{\boldsymbol{\pi}}\mathbf{x}$$

$$\mathbf{l}' = \mathbf{e}' \times \mathbf{x}' = [\mathbf{e}']_{\times} \mathbf{x}'$$

$$\mathbf{l}' = [\mathbf{e}']_{\times} \mathtt{H}_{\boldsymbol{\pi}} \mathbf{x} = \mathtt{F} \mathbf{x}$$

基本矩阵

$$\mathtt{F} = [\mathbf{e}']_ imes \mathtt{H}_{oldsymbol{\pi}}$$

基本矩阵:双目系统几何结构的代数表示

$$\mathbf{l}' = \mathbf{F}\mathbf{x}$$

x'在l'上

$$0 = \mathbf{x}'^\mathsf{T} \mathbf{l}' = \mathbf{x}'^\mathsf{T} \mathbf{F} \mathbf{x}$$

$$\mathbf{x}'^\mathsf{T} \mathbf{F} \mathbf{x} = 0$$

* 基本矩阵的性质

$$Fe = 0$$
.

$$\mathbf{l'} = \mathbf{F}\mathbf{x}$$

$$\mathbf{F}^{\mathsf{T}}\mathbf{e}'=\mathbf{0}$$

$$l = F^T \mathbf{x}'$$

$$\mathbf{F} = [\mathbf{e}']_{\times} \mathbf{P}' \mathbf{P}^{+}$$

 $\mathbf{e}' = \mathbf{P}' \mathbf{C}$,
 $\mathbf{P} \mathbf{C} = \mathbf{0}$

本质矩阵

$$P = K[R \mid t]$$

$$\mathbf{x} = P\mathbf{X}$$

若K已知

$$\hat{\mathbf{x}} = \mathbf{K}^{-1}\mathbf{x}$$

$$\hat{\mathbf{x}} = [R \mid \mathbf{t}]\mathbf{X}$$

$$\mathtt{K}^{-1}\mathtt{P} = [\mathtt{R} \mid \mathbf{t}]$$

$$P = [I \mid \mathbf{0}]$$
 $P' = [R \mid \mathbf{t}]$

$$\mathbf{E} = [\mathbf{t}]_{\times} \mathbf{R} = \mathbf{R} [\mathbf{R}^{\mathsf{T}} \mathbf{t}]_{\times}$$
 3×3矩阵,秩2,5个自由度

$$\hat{\mathbf{x}}'^{\mathsf{T}} \mathbf{E} \hat{\mathbf{x}} = 0$$

$$E = K'^T F K$$
.

双目系统的几何结构

- * 两个摄像机:与两个摄像机矩阵 P, P' 关联
 - * $\mathbf{x} = P\mathbf{X}, \mathbf{x}' = P'\mathbf{X}$ (X: 3-D, \mathbf{x}, \mathbf{x}' : 图像点)
- * 问题:
 - **L. 几何对应**: 给定一幅图像中的点 x, 会如何约束该点在另外一副图像中的位置x'?
 - II. **相机参数**: 给定一组图像对应点 $\mathbf{x} \leftrightarrow \mathbf{x}'$, 如何得到 P, P'
 - III.**场景集合:** 给定一组图像对应点 $\mathbf{x} \leftrightarrow \mathbf{x}'$, 以及投影矩阵 P, P', 如何得到三维场景点 \mathbf{X} ?

第1个问题: 对极几何

基础矩阵

* 摄像机内参数矩阵 K 和 K'未知

Fundamental Matrix (Faugeras and Luong, 1992)

基于运动的三维结构重建

- * 给定一组图像对应点 $x_i \leftrightarrow x_i'$,
 - * $P, P'(\mathbf{x_i} = P\mathbf{X_i}, \mathbf{x_i'} = P'\mathbf{X_i})$? 3-D $\triangle \mathbf{X_i}$?
 - * 未标定相机: K, R, t 未知
- * 步骤:
 - I. 从点对应计算基础矩阵
 - II. 从基础矩阵中计算摄像机矩阵
 - III. 对于每一个图像点对应 $\mathbf{x_i} \leftrightarrow \mathbf{x_i'}$, 计算对应的 3-D 点

基础矩阵的计算

- * 8 点法
 - * 给定8个点对应,通过SVD分解得到最小二乘解
 - * 令 det(F)=0 (对F使用SVD时)

8点法

- 1. 求解齐次线性方程组
 - (1) 系统方程

$$\mathbf{x}^T F \mathbf{x}' \square \mathbf{0}$$

$$x'xf_{11} + x'yf_{12} + x'f_{13} + y'xf_{21} + y'yf_{22} + y'f_{23} + xf_{31} + yf_{32} + f_{33} = 0.$$

$$(x'x, x'y, x', y'x, y'y, y', x, y, 1) \mathbf{f} = 0.$$

8点法

- 1. 求解齐次线性方程组
 - (1) 系统方程
 - (2) 通过SVD求解 **f**: A**f=0**

```
Matlab:
[U, S, V] = svd(A);
f = V(:, end);
F = reshape(f, [3 3])';

Python Numpy:
U, S, Vh = np.linalg.svd(A)
# V = Vh.T -> note = different from MATLAB
F = Vh[-1,:]
F = np.reshape(F, (3,3))
```

奇异性约束

非奇异基础矩阵

修正后的基础矩阵

8点法

- 1. 求解齐次线性方程组
 - (1) 系统方程
 - (2) 通过SVD求解 f: Af=0
- 2. 通过SVD加入约束 det(F) = 0

```
Matlab:
   [U, S, V] = svd(F);
   S(3,3) = 0;
   F = U*S*V';
Python Numpy:
U, S, Vh = np.linalg.svd(F)
S[-1] = 0
F = U @ np.diagflat(S) @ Vh
```

"黄金标准"法

- * 用 8 点法得到F的初值
- * 通过 F 得到相机矩阵
- * 通过最小化重投影误差,联合求解三维点 X 和 F

三角定位

- * x 和 x'存在测量误差
- * 因此,反向射线不会交于三维点 X
 - ❖ 没有一个确切点X可以满足 x = PX, x'= P'X
 - * 图像点不满足对极约束 $\mathbf{x}'^T F \mathbf{x} = 0$.
- ❖ 与图像点观测相比, P和 P′精度相对更高

Fig. 12.1. (a) Rays back-projected from imperfectly measured points \mathbf{x}, \mathbf{x}' are skew in 3-space in general. (b) The epipolar geometry for \mathbf{x}, \mathbf{x}' . The measured points do not satisfy the epipolar constraint. The epipolar line $\mathbf{l}' = \mathbf{F}\mathbf{x}$ is the image of the ray through \mathbf{x} , and $\mathbf{l} = \mathbf{F}^T\mathbf{x}'$ is the image of the ray through \mathbf{x}' . Since the rays do not intersect, \mathbf{x}' does not lie on \mathbf{l}' , and \mathbf{x} does not lie on \mathbf{l} .

Find the solution using DLT via SVD

光束法 (Bundle adjustment)

- * 非线性方法: 结构和运动的优化求解
- * 最小化重投影误差

$$E(\mathbf{M}, \mathbf{X}) = \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{D} \mathbf{x}_{ij}, \mathbf{M}_{i} \mathbf{X}_{j}^{2}$$

光束法 (Bundle adjustment)

$$E(\mathbf{M}, \mathbf{X}) = \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{D} \mathbf{X}_{ij}, \mathbf{M}_{i} \mathbf{X}_{j}$$

$$parameters$$

$$measurements$$

D is the nonlinear mapping

- Newton Method
- Levenberg-Marquardt Algorithm
 - Iterative, starts from initial solution
 - May be slow if initial solution far from real solution
 - Estimated solution may be function of the initial solution
 - Newton requires the computation of J, H
 - Levenberg-Marquardt doesn't require the computation of H