$$\frac{x}{6} = 1024(150,000) \rightarrow x = 6.1024.150000$$

4.)

· DIELL SPINS @ 5400 RPM

3.) . Time to move n tracks = 1+.0002n ms

Assuming we are not moving between cylinders and storting of the description innermost track, moving cutward

2) Cylinder time reg time finished > Elevator
1000 0 131.8367 Starting of 75,000 C
44,000 19 46.1156 Avg Seek C
Avg latercy C 5.5 ms 1000 0 20.4789 * Colculate transfer time 8000 11 50.0367 Avg transfer Q To colculate time finished.
Aug Latency + Aug Transfer + Seek time
(5.5) + (.1784) + (1+.0002n) = time completed
1789 where n= # of Rhade We'll assume a block is 4096 by ter one one only reading
Gops = S6 of Arc
Sectors: 324° of Arc
$36 \times 3 + 324 \times 4 = 3545605 \text{ of Are for 1}$ $1024 1024 5.8 \text{Sector + gap}$

-> Track with 4000 sectors with 1024 byte

Outermost sector = laboras of disk

C= M/ 4 (21/1)

277(25) -> 57Tin

1 sector has 1024 bytes. 8 521.52 bits/in

3.) a) Disks 1: 10111011 2: 11000011 3: 010101010 4 11101100110 001011011

> b.) Disks 1: 10000011 2: 10010011 4: 0011001