GANPAT UNIVERSITY										
FACULTY OF ENGINEERING & TECHNOLOGY										
Programme		Bachelor of Technology				Branch/Spe	Computer Science & Engineering			
						c.	(CBA/CS/BDA)			
Semester		II				Version	1.0.0.0			
Effective from	demic Year 2020-21				Effective for the batch Admitted in June 2020					
Subject code		2HS102		Subject Name		Linear Algebra				
Teaching scheme						Examination scheme (Marks)				
(Per week)	Lectu	ecture(DT) Practi		ical(Lab.)	Total		CE	SEE	Total	
	L	TU	Р	TW						
Credit	3	1	0	0	4	Theory	40	60	100	
Hours	3	1	0	0	4	Practical	0	0	0	

Pre-requisites:

Simple arithmetic skills

Learning Outcome:

Upon completion of this course, students will be able to:

- Understand all basic fundamentals of Matrices and Vectors.
- Prepare him/herself for solving a Linear equation.
- Prepare him/herself for Learning Advance Mathematics in coming semester.
- Apply knowledge of matrices and vectors in various applications of his/her branch

 Apply knowledge of matrices and vectors in various applications of his/her branch. 						
Theory syllabus						
Unit	Content	Hrs				
1	Matrix Algebra:	22				
	Review of algebra of matrices & elementary transformations, Rank of a matrix, inverse of a					
	matrix by Gauss-Jordan method, normal form of a matrix, Solution of system of algebraic					
	simultaneous equations, Linear dependent and Linear independent vectors. Eigen values and					
	Eigen vectors, Eigen values and Eigen vectors of: Symmetric, Skewsymmetric, Hermitian,					
	Skewhermitian, Unitary and Normal matrix, Algebraic and Geometric multiplicity,					
	Diagonalization, Spectral theorem for real symmetric matrices, Application of Quadratic forms.					
2	Vector Space :	5				
	Vectors in R ⁿ and its properties, Dot product, Norm and Distance properties in R ⁿ , Pythagorean					
	theorem in R ⁿ ,Definition and Examples of vector spaces, Vectorsubspace, Linear Independence					
	and dependence ,Linear span of set of vectors, Basis of subspaces, Extension to basis.					
3	Linear Transformation :	4				
	Definition and basic properties, Types of linear					
	transformation(Rotation,reflection,expansion,contraction,shear,projection),Matrix of linear					
	transformations, Change of basis and similarity, Rank nullity theorem					
4	Infinite Series :	14				
	Definition, Comparison test, Cauchy's integral test, ratio test, root test, Leibniz's rule for					
	alternating series, power series, range of convergence, uniform convergence.					
Practical content						
Not Applicable						
Mooc Course						

Course Name: Introduction to Abstract and Linear Algebra

Link: https://onlinecourses.nptel.ac.in/noc18_ma16

Text Books

1	Higher Engineering Mathematics by Dr. B. S. Grewal			
2	Vector Calculus and Linear Algebra by Dr. A.R.Patel&Dr.H.C.Patel			
Reference Books				
1	Higher Engineering Mathematics Vol. I & II by Dr. K. R. Kachot.			
2	Advanced Engineering Mathematics (Fifth Edition), Erwin Kreyszig.			
3	Applied mathematics for engineering by Dr. R. C. Shah.			