In [1]: import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression,LogisticRegressio
from sklearn.model_selection import train_test_split

In [2]: df=pd.read_csv("/Users/bob/Downloads/FP1_air/csvs_per_year/csvs_per
df

Out[2]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	T
0	2015- 10-01 01:00:00	NaN	0.8	NaN	NaN	90.0	82.0	NaN	NaN	NaN	10.0	NaN	N
1	2015- 10-01 01:00:00	2.0	0.8	1.6	0.33	40.0	95.0	4.0	37.0	24.0	12.0	1.83	{
2	2015- 10-01 01:00:00	3.1	NaN	1.8	NaN	29.0	97.0	NaN	NaN	NaN	NaN	NaN	-
3	2015- 10-01 01:00:00	NaN	0.6	NaN	NaN	30.0	103.0	2.0	NaN	NaN	NaN	NaN	N
4	2015- 10-01 01:00:00	NaN	NaN	NaN	NaN	95.0	96.0	2.0	NaN	NaN	9.0	NaN	N
					•••								
210091	2015- 08-01 00:00:00	NaN	0.2	NaN	NaN	11.0	33.0	53.0	NaN	NaN	NaN	NaN	N
210092	2015- 08-01 00:00:00	NaN	0.2	NaN	NaN	1.0	5.0	NaN	26.0	NaN	10.0	NaN	N
210093	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	7.0	74.0	NaN	NaN	NaN	NaN	N
210094	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	3.0	7.0	65.0	NaN	NaN	NaN	NaN	N
210095	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	9.0	54.0	29.0	NaN	NaN	NaN	N

210096 rows × 14 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210096 entries, 0 to 210095
Data columns (total 14 columns):

Daca	co camino	(coca c I i cocamiis,	, •						
#	Column	Non-Null Count	Dtype						
0	date	210096 non-null	object						
1	BEN	51039 non-null	float64						
2	CO	86827 non-null	float64						
3	EBE	50962 non-null	float64						
4	NMHC	25756 non-null	float64						
5	NO	208805 non-null	float64						
6	N0_2	208805 non-null	float64						
7	0_3	121574 non-null	float64						
8	PM10	102745 non-null	float64						
9	PM25	48798 non-null	float64						
10	S0_2	86898 non-null	float64						
11	TCH	25756 non-null	float64						
12	T0L	50626 non-null	float64						
13	station	210096 non-null	int64						
dtype	es: float	64(12), int64(1),	object(1)						
memory usage: 22.4+ MB									

http://localhost:8888/notebooks/Downloads/madrid_data(2001_02%20(1)-Copy2.ipynb#

In [4]: df1=df.dropna()
df1

Out[4]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	0_3	PM10	PM25	SO_2	тсн	T
1	2015- 10-01 01:00:00	2.0	0.8	1.6	0.33	40.0	95.0	4.0	37.0	24.0	12.0	1.83	1
6	2015- 10-01 01:00:00	0.5	0.3	0.3	0.12	6.0	83.0	1.0	19.0	12.0	3.0	1.29	
25	2015- 10-01 02:00:00	1.6	0.7	1.3	0.38	81.0	105.0	4.0	36.0	19.0	13.0	1.93	(
30	2015- 10-01 02:00:00	0.4	0.3	0.3	0.11	5.0	72.0	2.0	16.0	10.0	2.0	1.27	
49	2015- 10-01 03:00:00	2.2	0.8	1.8	0.41	111.0	104.0	4.0	35.0	20.0	14.0	2.05	1;
•••					•••								
210030	2015- 07-31 22:00:00	0.1	0.1	0.1	0.06	1.0	10.0	69.0	10.0	3.0	2.0	1.18	(
210049	2015- 07-31 23:00:00	0.4	0.3	0.1	0.12	3.0	28.0	56.0	15.0	7.0	12.0	1.45	,
210054	2015- 07-31 23:00:00	0.1	0.1	0.1	0.06	1.0	10.0	63.0	5.0	1.0	2.0	1.18	(
210073	2015- 08-01 00:00:00	0.1	0.3	0.1	0.11	2.0	23.0	59.0	5.0	2.0	11.0	1.44	(
210078	2015- 08-01 00:00:00	0.1	0.1	0.1	0.06	1.0	8.0	65.0	7.0	1.0	2.0	1.18	(

16026 rows × 14 columns

In [5]: df1=df1.drop(["date"],axis=1)

In [6]: sns.heatmap(df1.corr())

Out[6]: <Axes: >


```
In [7]: plt.plot(df1["EBE"],df1["NMHC"],"o")
```

Out[7]: [<matplotlib.lines.Line2D at 0x7fa5001f0880>]


```
In [8]: data=df[["EBE","NMHC"]]
```

```
In [9]: x=df1.drop(["EBE"],axis=1)
y=df1["EBE"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [10]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[10]: v LinearRegression LinearRegression()

```
In [11]: prediction=li.predict(x_test)
   plt.scatter(y_test,prediction)
```

Out[11]: <matplotlib.collections.PathCollection at 0x7fa50018b8b0>


```
In [12]: lis=li.score(x_test,y_test)
```

```
In [13]: df1["TCH"].value_counts()
```

```
Out[13]: 1.20
                   905
          1.19
                   873
          1.21
                   793
          1.22
                   638
          1.18
                   465
          2.57
                     1
          2.46
                     1
          2.93
                     1
          3.00
                     1
          3.02
```

Name: TCH, Length: 184, dtype: int64

```
In [14]: df1.loc[df1["TCH"]<1.40,"TCH"]=1
    df1.loc[df1["TCH"]>1.40,"TCH"]=2
    df1["TCH"].value_counts()
```

Out[14]: 2.0 8290 1.0 7736

Name: TCH, dtype: int64

Lasso

```
In [15]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

```
In [16]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)
```

Out[16]: <matplotlib.collections.PathCollection at 0x7fa521f1e1a0>


```
In [17]: las=la.score(x_test,y_test)
```

Ridge

```
In [18]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

```
In [19]: prediction2=rr.predict(x_test)
   plt.scatter(y_test,prediction2)
```

Out[19]: <matplotlib.collections.PathCollection at 0x7fa521ea9780>


```
In [20]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [21]: en=ElasticNet()
en.fit(x_train,y_train)
Out[21]: __ElasticNet
```

Out[21]: v ElasticNet ElasticNet()

In [22]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)

Out[22]: <matplotlib.collections.PathCollection at 0x7fa521f5c9d0>

In [23]: ens=en.score(x_test,y_test)

In [24]: print(rr.score(x_test,y_test))
 rr.score(x_train,y_train)

0.7718808700233138

Out[24]: 0.7690394789280244

Logistic

```
In [25]: g={"TCH":{1.0:"Low",2.0:"High"}}
         df1=df1.replace(g)
         df1["TCH"].value_counts()
Out[25]: High
                 8290
                 7736
         Low
         Name: TCH, dtype: int64
In [26]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [27]: |lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out [27]:
          ▼ LogisticRegression
          LogisticRegression()
In [28]: prediction3=lo.predict(x_test)
         plt.scatter(y_test,prediction3)
Out[28]: <matplotlib.collections.PathCollection at 0x7fa5318dba60>
          High
                                                                       High
                 Low
In [29]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [30]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model_selection import GridSearchCV
In [31]: |q1={"TCH":{"Low":1.0,"High":2.0}}
         df1=df1.replace(g1)
In [32]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [33]: | rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[33]:
          ▼ RandomForestClassifier
          RandomForestClassifier()
In [34]: |parameter={
              'max_depth': [1,2,4,5,6],
              'min_samples_leaf':[5,10,15,20,25],
              'n_estimators': [10,20,30,40,50]
         }
In [35]: | grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,sc
         grid search.fit(x train,y train)
Out[35]:
                       GridSearchCV
           ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [36]: rfcs=grid_search.best_score_
In [37]: rfc_best=grid_search.best_estimator_
```

```
In [38]: from sklearn.tree import plot_tree
         plt.figure(figsize=(80,40))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_nam
           Text(0.13513513513513514, 0.21428571428571427, 'PM10 <= 45.5\ngin
         i = 0.095 \setminus samples = 737 \setminus samples = [1106, 58] \setminus samples = Yes'),
          Text(0.12162162162162163, 0.07142857142857142, 'gini = 0.089 \nsam
         ples = 720\nvalue = [1087, 53]\nclass = Yes'),
          Text(0.14864864864864866, 0.07142857142857142, 'gini = 0.33 \nsamp
         les = 17\nvalue = [19, 5]\nclass = Yes'),
          Text(0.1891891891891892, 0.21428571428571427, 'TOL <= 2.95 
         = 0.451\nsamples = 21\nvalue = [21, 11]\nclass = Yes'),
          Text(0.17567567567567569, 0.07142857142857142, 'gini = 0.105 \nsam
         ples = 13\nvalue = [17, 1]\nclass = Yes'),
          Text(0.20270270270270271, 0.07142857142857142, 'gini = 0.408 \nsam
         ples = 8\nvalue = [4, 10]\nclass = No'),
          Text(0.30405405405405406, 0.5, 'PM25 \le 37.5 \neq 0.33 
         s = 451 \setminus e = [566, 149] \setminus e = Yes'),
          Text(0.2702702702702703, 0.35714285714285715, 'TOL <= 3.85 
         = 0.315 \times = 440 \times = [562, 137] \times = Yes'),
          Text(0.24324324324324326, 0.21428571428571427, 'NO_2 <= 41.5\ngin
         i = 0.174 \setminus samples = 143 \setminus samples = [206, 22] \setminus samples = Yes'),
          Text(0.22972972972972974, 0.07142857142857142, 'gini = 0.076 \nsam
         ples = 79\nvalue = [122, 5]\nclass = Yes'),
In [39]:
```

In [39]: print("Linear:",lis) print("Lasso:",las) print("Ridge:",rrs) print("ElasticNet:",ens)

print("Logistic:",los)

print("Random Forest:",rfcs)

Linear: 0.7718463798012134 Lasso: 0.3625346561801054 Ridge: 0.7718808700233138 ElasticNet: 0.651846033294754 Logistic: 0.512063227953411

Random Forest: 0.9568550543768943

Best Model is Random Forest

In [40]: df2=pd.read_csv("/Users/bob/Downloads/FP1_air/csvs_per_year/csvs_pe
df2

Out [40]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	7
0	2016- 11-01 01:00:00	NaN	0.7	NaN	NaN	153.0	77.0	NaN	NaN	NaN	7.0	NaN	1
1	2016- 11-01 01:00:00	3.1	1.1	2.0	0.53	260.0	144.0	4.0	46.0	24.0	18.0	2.44	
2	2016- 11-01 01:00:00	5.9	NaN	7.5	NaN	297.0	139.0	NaN	NaN	NaN	NaN	NaN	2
3	2016- 11-01 01:00:00	NaN	1.0	NaN	NaN	154.0	113.0	2.0	NaN	NaN	NaN	NaN	1
4	2016- 11-01 01:00:00	NaN	NaN	NaN	NaN	275.0	127.0	2.0	NaN	NaN	18.0	NaN	1
209491	2016- 07-01 00:00:00	NaN	0.2	NaN	NaN	2.0	29.0	73.0	NaN	NaN	NaN	NaN	1
209492	2016- 07-01 00:00:00	NaN	0.3	NaN	NaN	1.0	29.0	NaN	36.0	NaN	5.0	NaN	1
209493	2016- 07-01 00:00:00	NaN	NaN	NaN	NaN	1.0	19.0	71.0	NaN	NaN	NaN	NaN	1
209494	2016- 07-01 00:00:00	NaN	NaN	NaN	NaN	6.0	17.0	85.0	NaN	NaN	NaN	NaN	1
209495	2016- 07-01 00:00:00	NaN	NaN	NaN	NaN	2.0	46.0	61.0	34.0	NaN	NaN	NaN	1

209496 rows × 14 columns

In [41]: df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 209496 entries, 0 to 209495
Data columns (total 14 columns):

Duca	co camins	(COCAC 14 COCAMITS	/ •			
#	Column	Non-Null Count	Dtype			
0	date	209496 non-null	object			
1	BEN	50755 non-null	float64			
2	CO	85999 non-null	float64			
3	EBE	50335 non-null	float64			
4	NMHC	25970 non-null	float64			
5	NO	208614 non-null	float64			
6	N0_2	208614 non-null	float64			
7	0_3	121197 non-null	float64			
8	PM10	102892 non-null	float64			
9	PM25	52165 non-null	float64			
10	S0_2	86023 non-null	float64			
11	TCH	25970 non-null	float64			
12	T0L	50662 non-null	float64			
13	station	209496 non-null	int64			
<pre>dtypes: float64(12), int64(1), object(1)</pre>						

In [42]: df3=df2.dropna()
df3

Out[42]:

	date	BEN	со	EBE	NMHC	NO	NO_2	0_3	PM10	PM25	SO_2	тсн	T
1	2016- 11-01 01:00:00	3.1	1.1	2.0	0.53	260.0	144.0	4.0	46.0	24.0	18.0	2.44	1,
6	2016- 11-01 01:00:00	0.7	0.8	0.4	0.13	57.0	66.0	3.0	23.0	15.0	4.0	1.35	ţ
25	2016- 11-01 02:00:00	2.7	1.0	2.1	0.40	139.0	114.0	4.0	37.0	21.0	14.0	2.30	1!
30	2016- 11-01 02:00:00	0.7	0.7	0.4	0.13	48.0	59.0	3.0	23.0	15.0	3.0	1.35	!
49	2016- 11-01 03:00:00	1.7	0.8	1.4	0.25	53.0	90.0	4.0	31.0	19.0	10.0	1.95	1(
209430	2016- 06-30 22:00:00	0.1	0.2	0.1	0.02	1.0	5.0	97.0	19.0	12.0	2.0	1.15	(
209449	2016- 06-30 23:00:00	0.6	0.4	0.3	0.15	14.0	63.0	54.0	29.0	13.0	16.0	1.48	
209454	2016- 06-30 23:00:00	0.1	0.2	0.1	0.02	1.0	7.0	91.0	16.0	9.0	2.0	1.15	(
209473	2016- 07-01 00:00:00	0.6	0.4	0.3	0.16	11.0	68.0	45.0	24.0	14.0	16.0	1.50	٠
209478	2016- 07-01 00:00:00	0.1	0.2	0.1	0.02	1.0	6.0	89.0	16.0	9.0	2.0	1.15	(

16932 rows × 14 columns

In [43]: df3=df3.drop(["date"],axis=1)

In [44]: sns.heatmap(df3.corr())

Out[44]: <Axes: >


```
In [45]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

In [46]: li=LinearRegression()
li.fit(x_train,y_train)

Out[46]: v LinearRegression LinearRegression()

```
In [47]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[47]: <matplotlib.collections.PathCollection at 0x7fa501f85330>


```
In [48]: lis=li.score(x_test,y_test)
```

```
In [49]: df3["TCH"].value_counts()
```

```
Out[49]: 1.16
                   757
          1.18
                   701
          1.17
                   683
          1.19
                   618
          1.15
                   577
          3.28
                      1
          3.96
                     1
          4.82
                     1
```

2.69

4.55 1 Name: TCH, Length: 217, dtype: int64

```
In [50]: df3.loc[df3["TCH"]<1.40,"TCH"]=1
    df3.loc[df3["TCH"]>1.40,"TCH"]=2
    df3["TCH"].value_counts()
```

Out[50]: 1.0 10002 2.0 6930

Name: TCH, dtype: int64

```
In [ ]:
```

Lasso

In [51]: la=Lasso(alpha=5)
la.fit(x_train,y_train)

Out[51]: V Lasso
Lasso(alpha=5)

In [52]: prediction1=la.predict(x_test)
 plt.scatter(y_test,prediction1)

Out[52]: <matplotlib.collections.PathCollection at 0x7fa520f1c7c0>

In [53]: las=la.score(x_test,y_test)

Ridge

```
In [54]: rr=Ridge(alpha=1)
    rr.fit(x_train,y_train)
```

In [55]: prediction2=rr.predict(x_test)
 plt.scatter(y_test,prediction2)

Out[55]: <matplotlib.collections.PathCollection at 0x7fa5143c2320>

In [56]: rrs=rr.score(x_test,y_test)

ElasticNet

```
In [57]: en=ElasticNet()
    en.fit(x_train,y_train)
```

Out[57]: ▼ ElasticNet ElasticNet()

```
In [58]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[58]: <matplotlib.collections.PathCollection at 0x7fa5143c2470>


```
In [59]: ens=en.score(x_test,y_test)
```

In [60]: print(rr.score(x_test,y_test))
 rr.score(x_train,y_train)

0.7612362215703397

Out[60]: 0.7491431239624469

Logistic

In [61]: g={"TCH":{1.0:"Low",2.0:"High"}}
 df3=df3.replace(g)
 df3["TCH"].value_counts()

Out[61]: Low 10002 High 6930

Name: TCH, dtype: int64

```
In [62]: x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [63]: |lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out [63]:
          ▼ LogisticRegression
          LogisticRegression()
In [64]: prediction3=lo.predict(x_test)
         plt.scatter(y_test,prediction3)
Out[64]: <matplotlib.collections.PathCollection at 0x7fa52275df90>
          Low
                High
                                                                       Low
```

Random Forest

In [65]: los=lo.score(x_test,y_test)

In [66]: from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV

```
In [67]: |g1={"TCH":{"Low":1.0,"High":2.0}}
         df3=df3.replace(q1)
In [68]: |x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [69]: | rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out [69]:
          ▼ RandomForestClassifier
          RandomForestClassifier()
In [70]:
         parameter={
              'max_depth': [1,2,4,5,6],
              'min_samples_leaf':[5,10,15,20,25],
              'n_estimators':[10,20,30,40,50]
In [71]: grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,sc
         grid_search.fit(x_train,y_train)
Out[71]:
                       GridSearchCV
           ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [72]: | rfcs=grid_search.best_score_
In [73]: | rfc_best=grid_search.best_estimator_
```

```
In [74]: from sklearn.tree import plot_tree
          plt.figure(figsize=(80,40))
          plot tree(rfc best.estimators [5], feature names=x.columns, class nam
Out[74]: [Text(0.49604430379746833, 0.9285714285714286, 'station <= 2807901
          6.0 \cdot 1 = 0.482 \cdot 1 = 7503 \cdot 1 = [7057, 4795] \cdot 1 = Y
           Text(0.22784810126582278, 0.7857142857142857, 'PM10 <= 13.5\ngini
          = 0.368 \times = 3763 \times = [1434, 4470] \times = No'),
           Text(0.10126582278481013, 0.6428571428571429, 'PM10 <= 6.5 
          = 0.498 \times = 1344 \times = [977, 1110] \times = No'),
           Text(0.05063291139240506, 0.5, 'SO_2 \ll 12.5  mgini = 0.46  msample
          s = 374 \setminus value = [374, 209] \setminus value = Yes'),
           Text(0.02531645569620253, 0.35714285714285715, 'NO <= 2.5 \ngini =
          0.013\nsamples = 100\nvalue = [1, 152]\nclass = No'),
           Text(0.012658227848101266, 0.21428571428571427, 'gini = 0.062\nsa
          mples = 19\nvalue = [1, 30]\nclass = No'),
           Text(0.0379746835443038, 0.21428571428571427, 'gini = 0.0\nsample
          s = 81 \setminus value = [0, 122] \setminus class = No'),
           Text(0.0759493670886076, 0.35714285714285715, 'NO_2 <= 63.5 \ngini
          = 0.23\nsamples = 274\nvalue = [373, 57]\nclass = Yes'),
           Text(0.06329113924050633, 0.21428571428571427, 'S0 2 <= 15.5 \ngin
          i = 0.19 \setminus samples = 259 \setminus samples = [361, 43] \setminus samples = Yes'),
         print("Linear:", lis)
print("Lasso:", las)
In [75]:
          print("Ridge:", rrs)
          print("ElasticNet:",ens)
          print("Logistic:",los)
          print("Random Forest:",rfcs)
```

Linear: 0.7614033018124887 Lasso: 0.2149866611637189 Ridge: 0.7612362215703397

ElasticNet: 0.5893135218045396 Logistic: 0.5923228346456693

Random Forest: 0.9214478569017888

Best model is Random Forest