Module Interface Specification for OAR

Hunter Ceranic

March~8,~2024

1 Revision History

Date	Version	Notes
March 8, 2024	1.0	Initial Revision

2 Symbols, Abbreviations and Acronyms

See SRS Documentation (Ceranic, 2024) at https://github.com/cer-hunter/OAR-CAS741/blob/main/docs/SRS/SRS.pdf

Contents

1	Rev	ision l	History							
2	Symbols, Abbreviations and Acronyms									
3	Introduction									
4	Not	ation								
5	Mo	dule D	Decomposition							
6	MIS	MIS of Application Control Module								
	6.1	Modu	le							
	6.2	Uses								
	6.3	Syntax	x							
		6.3.1	Exported Constants							
		6.3.2	Exported Access Programs							
	6.4	Semar	ntics							
		6.4.1	State Variables							
		6.4.2	Environment Variables							
		6.4.3	Assumptions							
		6.4.4	Access Routine Semantics							
		6.4.5	Local Functions							
7	MIS	S of O	utput Module							
	7.1	Modu	le							
	7.2	Uses								
	7.3	Syntax	x							
		7.3.1	Exported Constants							
		7.3.2	Exported Access Programs							
	7.4	Semar	ntics							
		7.4.1	State Variables							
		7.4.2	Environment Variables							
		7.4.3	Assumptions							
		7.4.4	Access Routine Semantics							
		7.4.5	Local Functions							
3	MIS	S of In	put Data Read Module							
	8.1		le							
	8.2									
	8.3		x							
		8.3.1	Exported Constants							
		8.3.2	Exported Access Programs							

	8.4	Seman	ntics	. 5
		8.4.1	State Variables	. 5
		8.4.2	Environment Variables	. 5
		8.4.3	Assumptions	
		8.4.4	Access Routine Semantics	. 6
		8.4.5	Local Functions	
9	MIS	of In	put Classifier Module	6
	9.1	Modul	le	. 6
	9.2	Uses		. 6
	9.3	Syntax	X	. 6
		9.3.1	Exported Constants	. 6
		9.3.2	Exported Access Programs	. 6
	9.4	Seman	ntics	
		9.4.1	State Variables	
		9.4.2	Environment Variables	. 7
		9.4.3	Assumptions	. 7
		9.4.4	Access Routine Semantics	
		9.4.5	Local Functions	
10	MIS	of OA	AR Model Data Module	7
			le	. 7
			X	
			Exported Constants	
			Exported Access Programs	
	10.4		ntics	
	10.1		State Variables	
			Environment Variables	
			Assumptions	
			Access Routine Semantics	
			Local Functions	
11	МТ	s of O	AR Model Equations Module	8
11			le	
	11.5		Exported Constants	
			•	
	11 /		Exported Access Programs	
	11.4			
			State Variables	
			Environment Variables	. 9
		11/12	Aggumentions	()

11.4.5 Local Functions	 10
12 MIS of OAR Model Training Module	10
12.1 Module	10
12.2 Uses	10
12.3 Syntax	10
12.3.1 Exported Constants	10
12.3.2 Exported Access Programs	11
12.4 Semantics	11
12.4.1 State Variables	11
12.4.2 Environment Variables	11
12.4.3 Assumptions	11
12.4.4 Access Routine Semantics	11
12.4.5 Local Functions	11
12.4.5 Local Pulicifolis	 11
13 MIS of OAR Model Testing Module	11
13.1 Module	 11
13.2 Uses	12
13.3 Syntax	12
13.3.1 Exported Constants	12
13.3.2 Exported Access Programs	12
13.4 Semantics	12
13.4.1 State Variables	12
13.4.2 Environment Variables	12
13.4.3 Assumptions	13
13.4.4 Access Routine Semantics	13
13.4.5 Local Functions	13
14 MIS of Confusion Matrix Module	13
14.1 Module	 13
14.2 Uses	 13
14.3 Syntax	 14
14.3.1 Exported Constants	 14
14.3.2 Exported Access Programs	 14
14.4 Semantics	 14
14.4.1 State Variables	 14
14.4.2 Environment Variables	14
14.4.3 Assumptions	 14
14.4.4 Access Routine Semantics	14
14.4.5 Local Functions	14

15 MIS	S of Input Processing Module
15.1	Module
15.2	Uses
15.3	Syntax
	15.3.1 Exported Constants
	15.3.2 Exported Access Programs
15.4	Semantics
	15.4.1 State Variables
	15.4.2 Environment Variables
	15.4.3 Assumptions
	15.4.4 Access Routine Semantics
	15.4.5 Local Functions
16 MIS	S of Graphical User Interface
16.1	Module
	Uses
16.3	Syntax
	16.3.1 Exported Constants
	16.3.2 Exported Access Programs
16.4	Semantics
	16.4.1 State Variables
	16.4.2 Environment Variables
	16.4.3 Assumptions
	16.4.4 Access Routine Semantics
	16.4.5 Local Functions

3 Introduction

The following document details the Module Interface Specifications for the OAR (Optical Alphabet Recognition) program. This document specifies how each module interfaces with other parts of the program.

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at https://github.com/cer-hunter/OAR-CAS741.

4 Notation

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1|c_2 \Rightarrow r_2|...|c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by OAR.

Data Type	Notation	Description
character	char	a single symbol or digit
integer	Z	a number without a fractional component in $(-\infty, \infty)$
positive integer	\mathbf{Z}_{+}	a positive integer (Z) in $(0, \infty)$
unsigned 8-bit integer	U	a number without a fractional component in $(0, 255)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbf{R}	any number in $(-\infty, \infty)$
positive real	${f R}_+$	any real number (R) in $(0, \infty)$
image data	$\mathbf{I}_{x,y}$	data: a one-dimensional array of unsigned 8-bit integers in order from the top-left pixel of the image to the bottom-right pixel. Has a width: \mathbf{Z}_+ width of x and height: \mathbf{Z}_+ height of y .
matrix	$\mathbf{M}_{x,y}$	data: a one-dimensional array of real numbers, with a width: \mathbf{Z}_+ width of x and height: \mathbf{Z}_+ height of y .

The specification of OAR uses some derived data types: sequences, strings, tuples, and booleans. Sequences are lists filled with elements of the same data type. Strings are sequences

of characters. Tuples contain a list of values, potentially of different types. Booleans can be represented in different ways but only have two possible values: true or false. In addition, OAR uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding Module	
Behaviour-Hiding Module	Application Control Output Module Input Data Read Module Input Classifier Module OAR Model Data Module OAR Model Equations Module OAR Model Training Module OAR Model Testing Module
Software Decision Module	Confusion Matrix Module Input Processing Module Graphical User Interface

Table 1: Module Hierarchy

6 MIS of Application Control Module

6.1 Module

main

6.2 Uses

• Graphical User Interface (GUI) Module Specification (16)

6.3 Syntax

6.3.1 Exported Constants

None.

6.3.2 Exported Access Programs

Name	In	Out	Exceptions
main	-	-	=

6.4 Semantics

6.4.1 State Variables

None.

6.4.2 Environment Variables

None.

6.4.3 Assumptions

The GUI is running and displayed without issue.

6.4.4 Access Routine Semantics

main():

• transition: Initializes the program and the GUI module 16

6.4.5 Local Functions

7 MIS of Output Module

7.1 Module

output

7.2 Uses

- Input Data Read Module Specification (8)
- Input Classifier Module Specification (9)

7.3 Syntax

7.3.1 Exported Constants

• DEC_FIXED: Used for fixed decimal number length rounding (ex. "5.8923" at fixed length "2" results in "5.89")

7.3.2 Exported Access Programs

Name	In	Out	Exceptions
output	-	inputImage $(\mathbf{I}_{x,y}),$ resultLabel	_
		(String), resultConf $(String)$	

7.4 Semantics

7.4.1 State Variables

None.

7.4.2 Environment Variables

None.

7.4.3 Assumptions

The input image is valid.

7.4.4 Access Routine Semantics

output():

- transition: Calls Input Data Read module 8 to take an input image to be classified.
- output: The inputImage as $(I_{x,y})$ and the predicted label resultLabel and confidence in the classification resultConf as strings, to be used by the GUI module 16.

7.4.5 Local Functions

None.

8 MIS of Input Data Read Module

8.1 Module

input

8.2 Uses

• Input Processing Module Specification (15)

8.3 Syntax

8.3.1 Exported Constants

- MAX_SIZE: A value (\mathbf{Z}_+) describing both width and height (in pixels) for maximum acceptable size of the input image (currently a square).
- MIN_SIZE: A value (\mathbf{Z}_+) describing both width and height (in pixels) for minimum acceptable size of the input image (currently a square).
- MODEL_IMG_SIZE: The required size of the input image matrix to be used by the classification model $I_{x,y}$.

8.3.2 Exported Access Programs

Name	In	Out	Exceptions
input	inputPath (String)	$\texttt{inputImage}\;(\mathbf{I}_{x,y})$	InvalidSize,
			InvalidFormat

8.4 Semantics

8.4.1 State Variables

None.

8.4.2 Environment Variables

• inputPath: the File System path or location as a string pointing to where the base input image is located.

8.4.3 Assumptions

The input path location is valid, readable and accessible.

8.4.4 Access Routine Semantics

input(inputPath):

- output: Pre-processed inputImage as $I_{x,y}$ ready for classification.
- exception: InvalidSize if the size of the base image is outside of the range of MIN_SIZE to MAX_SIZE, InvalidFormat if the file type at the inputPath is not supported by the OAR Program (according to R1)

8.4.5 Local Functions

None.

9 MIS of Input Classifier Module

9.1 Module

classify

9.2 Uses

- OAR Model Data Module Specification (10)
- OAR Model Equations Module Specification (11)

9.3 Syntax

9.3.1 Exported Constants

None.

9.3.2 Exported Access Programs

\mathbf{Name}	${f In}$	\mathbf{Out}	Exceptions
classify	$ ext{inputImage} \qquad (\mathbf{I}_{x,y}),$	resultLabel	_
	oarModel $(\mathbf{M}_{x,y})$	(String),	
		${\tt confPercent} \; \mathbf{R}_+$	

9.4 Semantics

9.4.1 State Variables

None.

9.4.2 Environment Variables

None.

9.4.3 Assumptions

The input image is valid.

9.4.4 Access Routine Semantics

classify(inputImage):

• output: The predicted label of the input image resultLabel as a String and the associated confidence level in the prediction as a \mathbb{R}_{+} .

9.4.5 Local Functions

None.

10 MIS of OAR Model Data Module

10.1 Module

model

10.2 Uses

• OAR Model Testing Module Specification (13)

10.3 Syntax

10.3.1 Exported Constants

None.

10.3.2 Exported Access Programs

Name	In	Out	Exceptions
model	=	-	-

10.4 Semantics

10.4.1 State Variables

- oarModel: Data structure designed to store the matrix of weights and biases associated with the trained OAR classification model as a tuple of $\mathbf{M}_{x,y}$ and \mathbf{R} .
- performance: Data structure designed to store the matrix of performance values associated with each label of the trained OAR classification model as a $\mathbf{M}_{x,y}$.

10.4.2 Environment Variables

None.

10.4.3 Assumptions

None.

10.4.4 Access Routine Semantics

model():

• transition: This module is a simple tuple $(\mathbf{M}_{x,y} \text{ and } \mathbf{R})$ data structure for storing the OAR classification model weights and biases and corresponding performance matrix.

10.4.5 Local Functions

None.

11 MIS of OAR Model Equations Module

11.1 Module

oarUtils

11.2 Uses

None.

11.3 Syntax

11.3.1 Exported Constants

11.3.2 Exported Access Programs

Name	In	Out	Exceptions
sigmoid	extstyle ext	${ t sigOut}\;({f R})$	_
logLossFunc	${ t trueVal} \ ({f R}), { t predVal} \ ({f R})$	${ t logLoss}\;({f R})$	-
predict	inputImage $(\mathbf{I}_{x,y}),$ weight	${ t predVal}\;({f R})$	-
	$(\mathbf{M}_{x,y}),$ bias (\mathbf{R})		
${ t gradient W}$	inputImage $(\mathbf{I}_{x,y}),$ trueVal	${ t gradW}\left({{f R}} ight)$	-
	$(\mathbf{R}), \qquad \mathtt{weight} \qquad (\mathbf{M}_{x,y}),$		
	bias (\mathbf{R}) , regParam (\mathbf{R}) ,		
	$\mathtt{trainSize}\;(\mathbf{Z}_+)$		
gradientB	inputImage $(\mathbf{I}_{x,y}),$ trueVal	$ exttt{gradB}\left(\mathbf{R} ight)$	-
	$(\mathbf{R}),$ weight $(\mathbf{M}_{x,y}),$ bias		
	(\mathbf{R})		
gradientDescent	t inputImage $(\mathbf{I}_{x,y}),$ trueVal	weight $(\mathbf{M}_{x,y}),$	-
	$(\mathbf{R}), \qquad \mathtt{weight} \qquad (\mathbf{M}_{x,y}),$	$\mathtt{bias}\;(\mathbf{R})$	
	bias $(\mathbf{R}),$ regParam		
	$(\mathbf{R}_{+}),$ learnRate $(\mathbf{R}_{+}),$		
	$\mathtt{trainSize}\;(\mathbf{Z}_{+})$		

11.4 Semantics

11.4.1 State Variables

None.

11.4.2 Environment Variables

None.

11.4.3 Assumptions

The input image is valid.

11.4.4 Access Routine Semantics

sigmoid(sigIn):

• output: Computes the sigmoid function of sigIn according to TM1 and returns the value sigOut as R.

logLossFunc(trueVal, predVal):

• output: Computes the value of the log loss function using trueVal and predVal according to TM2 and returns the value logLoss as R.

predict(inputImage, weight, bias):

• output: Calls sigmoid to calculate the predicted label of the inputImage using weight and bias from the model according to GD1.

gradientW(inputImage, trueVal, weight, bias, regParam, trainSize):

• output: Calculates the gradient of the log loss function using all the input variables with respect to the weights according to according to GD2.

gradientB(inputImage, trueVal, weight, bias):

• output: Calculates the gradient of the log loss function using all the input variables with respect to the bias according to according to GD3.

gradientDescent(inputImage, trueVal, weight, bias, regParam, learnRate, trainSize):

• output: Calls gradientW and gradientB to execute the algorithm to update the weights and biases using all the input variables for one epoch according to IM1.

11.4.5 Local Functions

None.

12 MIS of OAR Model Training Module

12.1 Module

train

12.2 Uses

• OAR Model Equations Module Specification (11)

12.3 Syntax

12.3.1 Exported Constants

- LAMBDA: The regularization parameter used during model training as \mathbf{R}_{+} .
- ALPHA: The learning rate parameter used during model training as \mathbf{R}_{+} .

12.3.2 Exported Access Programs

Name	In	Out	Exceptions
train	trainSet	weightBiasMatrix	_
	$(\mathbf{M}_{x,y}),$ train $ exttt{Vals}$	(tuple of $\mathbf{M}_{x,y}$ and \mathbf{R})	
	$(\mathbf{M}_{x,y}),$		
	${\tt weightBiasMatrix}$		
	(tuple of $\mathbf{M}_{x,y}$ and		
	$({f R}), { t trainSize} ({f Z}_+)$		

12.4 Semantics

12.4.1 State Variables

- ullet weight: the weight portion of the weightBiasMatrix input as $\mathbf{M}_{x,y}$ for each label.
- ullet bias: the bias portion of the weightBiasMatrix input as ${f R}$ for each label.

12.4.2 Environment Variables

None.

12.4.3 Assumptions

None.

12.4.4 Access Routine Semantics

train(trainSet, trainVals, weightBiasMatrix, trainSize):

• output: Executes the algorithm for training the weights and biases of the model given the training dataset information and functions from the OAR Model Equations Module (11), and returns the updated version of the weightBiasMatrix as a tuple of $\mathbf{M}_{x,y}$ and \mathbf{R} .

12.4.5 Local Functions

None.

13 MIS of OAR Model Testing Module

13.1 Module

test

13.2 Uses

- OAR Model Data Module Specification (11)
- OAR Model Equations Module Specification (11)
- OAR Model Training Module Specification (12)
- Confusion Matrix Module Specification (14)

13.3 Syntax

13.3.1 Exported Constants

- EPOCHS: The the number of times the model training regression algorithm is ran as \mathbf{Z}_{+} .
- TRAIN_SIZE: The size of the training data used during model training as \mathbf{Z}_{+} .
- TEST_SIZE: The size of the testing data used during model training as \mathbf{Z}_{+} .
- DATA_IMG_SIZE: The size of the input image matrix used during model training as $I_{x,y}$.
- LABELS: The set of possible labels for the classification model as a tuple of Strings.

13.3.2 Exported Access Programs

Name	In	Out	Exceptions
test	-	oarModel (tuple	-
		of $\mathbf{M}_{x,y}$ and \mathbf{R}),	
		$\mathtt{performance}\;(\mathbf{M}_{x,y})$	

13.4 Semantics

13.4.1 State Variables

- dataSet: The set of pre-processed images and their associated labels that will be used for training the classification model as a tuple of $\mathbf{I}_{x,y}$ and \mathbf{Z}_{+} .
- ullet weight: the weight portion of the weightBiasMatrix input as $\mathbf{M}_{x,y}$ for each label.
- bias: the bias portion of the weightBiasMatrix input as R for each label.
- predictionData: matrix which tracks the number predictions made for each test image as $\mathbf{M}_{x,y}$.

13.4.2 Environment Variables

• dataSetPath: the File System path or location as a string pointing to where the data set is located.

13.4.3 Assumptions

The dataSetPath is valid, readible and accessible.

13.4.4 Access Routine Semantics

test():

- transition: Calls routine to train and test a model of weights and biases.
- output: The matrix of weights and biases representing the oarModel as a tuple of $\mathbf{M}_{x,y}$ and \mathbf{R} , and the associated performance of the model as $\mathbf{M}_{x,y}$.

13.4.5 Local Functions

- splitDataSet(dataSet):
 - output: Takes the dataSet as an input and splits it into distinct parts for training and testing the classification model. The following values are output:
 - * trainData: The part of the dataSet used to train the model as $\mathbf{M}_{x,y}$.
 - * trainVals: The part of the dataSet corresponding to the true labels of the trainData as $\mathbf{M}_{x,y}$.
 - * testData: The part of the dataSet used to test the model as $\mathbf{M}_{x,y}$.
 - * testVals: The part of the dataSet corresponding to the true labels of the testData as $\mathbf{M}_{x,y}$.
- evalModelData(oarModel, confusionMatrix):
 - output: Evaluates the performance of the oarModel based on the confusionMatrix and returns the performance matrix that will be written to the OAR Model Data Module 10.

14 MIS of Confusion Matrix Module

14.1 Module

confMatrix

14.2 Uses

14.3 Syntax

14.3.1 Exported Constants

None.

14.3.2 Exported Access Programs

Name	In	Out	Exceptions
confMatrix	predictionData	confusionMatrix	
	$(\mathbf{M}_{x,y})$	$(\mathbf{M}_{x,y})$	
printConfMatrix	confusionMatrix	confusionMatrix	
	$(\mathbf{M}_{x,y})$	$(\mathbf{I}_{x,y})$	

14.4 Semantics

14.4.1 State Variables

None.

14.4.2 Environment Variables

None.

14.4.3 Assumptions

None.

14.4.4 Access Routine Semantics

confMatrix(predictionData):

• output: Outputs the confusion matrix representing the performance of the model based on the predictionData as $\mathbf{M}_{x,y}$.

printConfMatrix(confusionMatrix):

• output: Outputs the confusion matrix representing the performance of the model based on the predictionData as a graphical image $(\mathbf{I}_{x,y})$.

14.4.5 Local Functions

15 MIS of Input Processing Module

15.1 Module

preprocess

15.2 Uses

None.

15.3 Syntax

15.3.1 Exported Constants

None.

15.3.2 Exported Access Programs

Name	In	Out	Exceptions
preprocess	$\texttt{baseImage}\;(\mathbf{I}_{x,y})$	$\verb"inputImage" (\mathbf{I}_{x,y})$	_

15.4 Semantics

15.4.1 State Variables

None.

15.4.2 Environment Variables

None.

15.4.3 Assumptions

The format and parameters of the base image was already verified to be within the requirements.

15.4.4 Access Routine Semantics

preprocess(baseImage):

• output: Performs transformations on the baseImage such that the resulting inputImage as $I_{x,y}$, is normalized to be able to be used by the classification model.

15.4.5 Local Functions

16 MIS of Graphical User Interface

16.1 Module

gui

16.2 Uses

- Hardware-Hiding Module
- Output Module (7)

16.3 Syntax

16.3.1 Exported Constants

• GUI_BOXSIZE: A value (\mathbb{Z}_+) describing both width and height (in pixels) used for the image display "box" (currently always a square)

16.3.2 Exported Access Programs

Name	In	Out	Exceptions
gui	- 0 (,3 / .	displayWindow, event	-
	${\tt resultLabel}$	handlers	
	(String), resultConf		
	(String)		

16.4 Semantics

16.4.1 State Variables

- inputImage: The processed input image and given by the Output Module 7 as $I_{x,y}$
- resultLabel: The label output as given by the Output Module 7 as a string.
- resultConf: The confidence probability output as given by the Output Module 7 as a string.

16.4.2 Environment Variables

- Keyboard (**Z**₊ for keycodes describing the key pressed)
- Mouse (Boolean for click state and \mathbf{Z}_+ for cursor position)
- Screen (**Z**₊ for width and height in pixels)
- Button (String for a file location) to provide an input image from the file system

16.4.3 Assumptions

- The file system is able to read and provide the image file as specified by the user through an OS file-open dialog. Otherwise if the file is not found, denied access or cancelled, no changes should occur.
- The OS is able to provide basic text or number input user controls with some basic built-in validation, and is able to handle events from Human Interface Devices (HIDs such as mouse, keyboard or touchscreen).

16.4.4 Access Routine Semantics

gui():

• transition: Sets up user control event handlers (i.e., mouse clicks or drag, button presses, text input change, ...) as needed for the user input. Calls the Output Module 7 to classify the input image. The input image and output results are then pushed to the displayWindow.

16.4.5 Local Functions

References

- Hunter Ceranic. System requirements specification. https://github.com/cer-hunter/OAR-CAS741/blob/main/docs/SRS/SRS.pdf, 2024.
- Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.
- Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.