Chapter 3 Problem 9

a. Produce a scatterplot matrix which includes all the variables in the data set.

>pairs(auto)

b. Compute the matrix of correlations between the variables.

> auto <- subset(auto, select = -c(name)) #exclude name
> cor(auto)

	mpg cylinders	displacement	horsepower	weight	acceleration	year
mpg 1.0000	000 -0.7762599	-0.8044430	NA	-0.8317389	0.4222974	0.5814695
cylinders -0.7762	599 1.0000000	0.9509199	NA	0.8970169	-0.5040606	-0.3467172
displacement -0.8044	430 0.9509199	1.0000000	NA	0.9331044	-0.5441618	-0.3698041
horsepower	NA NA	. NA	1	NA	NA	NA
weight -0.8317	389 0.8970169	0.9331044	NA	1.0000000	-0.4195023	-0.3079004
acceleration 0.4222	974 -0.5040606	-0.5441618	NA	-0.4195023	1.0000000	0.2829009
year 0.5814	695 -0.3467172	-0.3698041	NA	-0.3079004	0.2829009	1.0000000
origin 0.5636	979 -0.5649716	-0.6106643	NA	-0.5812652	0.2100836	0.1843141
ori	gin					
mpg 0.5636	979					
cylinders -0.5649	716					
displacement -0.6106	643					
horsepower	NA					
weight -0.5812	652					
acceleration 0.2100	836					
year 0.1843	141					
origin 1.0000	000					

c. Use the lm() function to perform a multiple linear regression with mpg as the response and all other variables except name as predictors.

```
> lm.fit=lm(mpg~.,data=auto)
> summary(lm.fit)
call:
lm(formula = mpg \sim ., data = auto)
Residuals:
            1Q Median
   Min
                           3Q
                                  Max
-9.5903 -2.1565 -0.1169 1.8690 13.0604
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.218435  4.644294 -3.707  0.00024 ***
cylinders -0.493376 0.323282 -1.526 0.12780
displacement 0.019896 0.007515 2.647 0.00844 **
horsepower -0.016951 0.013787 -1.230 0.21963
            weight
acceleration 0.080576 0.098845 0.815 0.41548
year 0.750773 0.050973 14.729 < 2e-16 ***
           1.426141 0.278136 5.127 4.67e-07 ***
origin
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.328 on 384 degrees of freedom
 (5 observations deleted due to missingness)
Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182
F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16
```

i. Is there a relationship between the predictors and the response?

Yes! Some predictors are more significant than others...

- ii. Which predictors appear to have a statistically significant relationship to the response? Displacement, weight, year, origin (low p-values)
- iii. What does the coefficient for the year variable suggest?

Since the coefficient is positive, newer cars have higher mpg.

d. Produce diagnostic plots of the linear regression fit. Comment on any problems you see with the fit. Do the residual plots suggest any unusually large outliers? Does the leverage plot identify any observations with unusually high leverage?

> plot(lm.fit)

There is a strong pattern in the Residuals vs. Fitted plot, which suggests non-linearity in the model. There are outliers, like point 323, but it's not too strong. Point 14 has very high leverage.

e. Use the * and : symbols to fit linear regression models with interaction effects. Do any interactions appear to be statistically significant?

I look at the interaction between weight~horsepower, acceleration~weight, and horsepower~acceleration.

- > lm.fit1=lm(mpg~weight*horsepower,data=auto)
- > lm.fit2=lm(mpg~weight*acceleration,data=auto)
- > lm.fit3=lm(mpg~horsepower*acceleration,data=auto)

call: lm(formula = mpg ~ weight * horsepower, data = auto) Residuals: Min 1Q Median 3Q мах -10.7725 -2.2074 -0.2708 1.9973 14.7314 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 6.356e+01 2.343e+00 27.127 < 2e-16 *** -1.077e-02 7.738e-04 -13.921 < 2e-16 *** weight -2.508e-01 2.728e-02 -9.195 < 2e-16 *** horsepower 8.054 9.93e-15 *** weight:horsepower 5.355e-05 6.649e-06 Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1 Residual standard error: 3.93 on 388 degrees of freedom (5 observations deleted due to missingness) Multiple R-squared: 0.7484, Adjusted R-squared: 0.7465 F-statistic: 384.8 on 3 and 388 DF, p-value: < 2.2e-16 > summary(lm.fit2) #Weight and acceleration call: lm(formula = mpg ~ weight * acceleration, data = auto) Residuals: Median Min 1Q 3Q Max -10.5831 -2.7125 -0.3628 2.3091 15.6577 Coefficients: Estimate Std. Error t value Pr(>|t|) 5.854 1.01e-08 *** (Intercept) 2.855e+01 4.878e+00 -3.254e-03 1.464e-03 -2.222 0.026844 * weight 1.098e+00 3.098e-01 3.544 0.000442 *** acceleration weight:acceleration -2.753e-04 9.704e-05 -2.837 0.004789 ** Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1 Residual standard error: 4.271 on 393 degrees of freedom Multiple R-squared: 0.7044, Adjusted R-squared: 0.7021 F-statistic: 312.1 on 3 and 393 DF, p-value: < 2.2e-16

> summary(lm.fit1) #Weight and horsepower

> summary(lm.fit3) #Horsepower and acceleration

Call:

lm(formula = mpg ~ horsepower * acceleration, data = auto)

Residuals:

```
Min 1Q Median 3Q Max
-13.3442 -2.7324 -0.4049 2.4210 15.8840
```

Coefficients:

coci i i ci cii co i				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	33.512440	3.420187	9.798	< 2e-16 ***
horsepower	0.017590	0.027425	0.641	0.521664
acceleration	0.800296	0.211899	3.777	0.000184 ***
horsepower:acceleration	-0.015698	0.002003	-7.838	4.45e-14 ***
cionic and a commit	0 001 644		OF 6 1	01()1

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.426 on 388 degrees of freedom (5 observations deleted due to missingness)

Multiple R-squared: 0.6809, Adjusted R-squared: 0.6784

F-statistic: 275.9 on 3 and 388 DF, p-value: < 2.2e-16

All models have statistically significant interaction terms.