18.745 Introduction to Lie Algebras

Fall 2004

Lecture 19 — November 16, 2004

Prof. Victor Kač Scribe: Patrick Lam

We have been proving the following,

Theorem 1 (Classification theorem) Let \mathfrak{g} be a finite-dimensional semisimple Lie algebra over an algebraically closed field of characteristic 0. Then \mathfrak{g} is isomorphic to a direct sum of simple Lie algebras, and a complete and non-redundant list of the latter is as follows:

$$\mathfrak{sl}_n(\mathbb{F}) \ (n \geq 2), \mathfrak{so}_n(\mathbb{F}) \ (n \geq 7), \mathfrak{sp}_n(\mathbb{F}) \ (n \geq 4, even), E_6, E_7, E_8, F_4, G_2.$$

The strategy of the proof is given in the following diagram.

$$\mathfrak{g} \xrightarrow{\text{choose } \mathfrak{h}} \underbrace{\Delta}_{\text{root system}} = \underset{\text{root system}}{\text{abstract}} \xrightarrow{\text{choose } f \in V^*} \Pi \longrightarrow \underbrace{A}_{\text{Cartan matrix}} = \underset{\text{matrix } A}{\text{abstract}}$$

First construct the following set of generators E_i, F_i, H_i $(i = 1, ..., r = \dim \mathfrak{h} = \operatorname{rank}(\mathfrak{g}))$ as follows: let α_i be a simple root, and choose $E_i \in \mathfrak{g}_{\alpha_i}, F_i \in \mathfrak{g}_{-\alpha_i}$ such that $[E_i, F_i] = \frac{2\nu^{-1}(\alpha_i)}{K(\alpha_i, \alpha_j)}$ (recall that $[\mathfrak{g}_{\alpha_i}, \mathfrak{g}_{-\alpha_i}] = \mathbb{F}\nu^{-1}(\alpha_i), \mathfrak{g}_{\alpha_i} = \mathbb{F}E_i, \mathfrak{g}_{-\alpha_i} = \mathbb{F}F_i$.) Then we have:

$$[H_i, H_j] = 0, [H_i, E_j] = a_{ij}E_j, [H_i, F_j] = -a_{ij}F_j, [E_i, F_j] = \delta_{ij}H_i$$
 (*)

where $a_{ij} := \frac{2K(\alpha_i, \alpha_j)}{K(\alpha_i, \alpha_i)}$ are the entries of the Cartan matrix $A = (a_{ij})$.

To check these: $[H_i, E_j] = \alpha_j(H_i)E_j = \frac{2\alpha_j(\nu^{-1}(\alpha_i))}{K(\alpha_i, \alpha_i)} = \frac{2K(\alpha_j, \alpha_i)}{K(\alpha_i, \alpha_i)} = a_{ij}$; $[H_i, F_j] = -a_{ij}F_j$ is clear; $[E_i, F_i]$ has been checked. $[E_i, F_j] = 0$ because it belongs to $\mathfrak{g}_{\alpha_i - \alpha_j}$, so it is not a root by part (a) of the Theorem in Lecture 17.

Next, we denote by \mathfrak{n}_+ (respectively \mathfrak{n}_-) the subalgebra of \mathfrak{g} generated by all E_i s (respectively F_i s). Then

$$\mathfrak{n}_+ = \bigoplus_{lpha \in \Delta_+} \mathfrak{g}_lpha, \quad \mathfrak{n}_- = \bigoplus_{lpha \in -\Delta_+} \mathfrak{g}_lpha.$$

Indeed, let $\alpha \in \Delta_+ \setminus \Pi$. Then by part (c) of the Theorem from Lecture 17, $\alpha - \alpha_i \in \Delta_+$ for some simple root α_i , hence $\mathfrak{g}_{\alpha} = [\mathfrak{g}_{\alpha-\alpha_i}, E_i]$ since dim $\mathfrak{g}_{\alpha} = 1$. $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] = \mathfrak{g}_{\alpha+\beta}$ if $\alpha, \beta, \alpha + \beta \in \Delta$ by part (d) of Theorem 3 from Lecture 13.

This proves that all \mathfrak{g}_{α} , with $\alpha \in \Delta_{+}$, are in \mathfrak{n}_{+} . Likewise all $\mathfrak{g}_{-\alpha}(\alpha \in \Delta_{+})$ are in \mathfrak{n}_{-} . Note that we have the so-called triangular decomposition $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ (a direct sum as vector spaces).

Exercise 19.1. (a) Show that for \mathfrak{sl}_n , $\mathfrak{n}_{\pm} = \text{strictly } \underset{\text{lower}}{\text{upper}}$ triangular matrices, if $\mathfrak{h} = \text{diagonal}$

matrices, and if f chosen as we did. (b) Find the triangular decompositions for \mathfrak{so}_n and \mathfrak{sp}_n .

Solution. (a) In Lecture 14, we noted that

$$\mathfrak{sl}_n(\mathbb{F})=\mathfrak{h}\oplus\left(igoplus_{i,\,j\,=\,1top i\,
eq j}^n\,\mathbb{F}E_{ij}
ight),$$

where \mathfrak{h} was the diagonal matrices, and $\mathbb{F}E_{ij}$ is the root space attached to the root $\varepsilon_i - \varepsilon_j$. We need to distinguish the positive roots from the negative roots; the f we have chosen gives positive roots for each E_{ij} where i > j. The direct sum of the spaces $\mathbb{F}E_{ij}$ where i > j is indeed the desired space \mathfrak{n}_+ of strictly upper triangular matrices, and \mathfrak{n}_- is the space of strictly lower triangular matrices, showing the triangular decomposition.

(b) For $\mathfrak{so}_n(\mathbb{F})$, we have

$$\mathfrak{h} = \left\{ \left(\begin{array}{cccc} a_1 & & & & 0 \\ & a_2 & & & \\ & & \ddots & & \\ & & & -a_2 & \\ 0 & & & -a_1 \end{array} \right) \right\}.$$

and $\mathfrak{so}_n(\mathbb{F}) = \mathfrak{h} \oplus \left(\bigoplus_{i,j} \mathbb{F}F_{ij}\right)$, where $F_{ij} = E_{ij} - E_{n+1-j,n+1-i}$. Then the positive roots are $\varepsilon_i \pm \varepsilon_j (i < j), \varepsilon_i$. Hence the space \mathfrak{n}_+ is the set of matrices A such that A' = -A which are strictly upper-triangular, while the \mathfrak{n}_- is the set of matrices A such that A' = -A which are strictly lower-triangular.

For $\mathfrak{sp}_n(\mathbb{F})$, we have the same Cartan subalgebra \mathfrak{h} ; this time, the $F_{ij} = E_{ij} - E_{n+1-j,n+1-i}$ for $1 \leq i, j \leq r (i \neq j)$ and $F_{ij} = E_{ij} + E_{n+1-j,n+1-i}$ $(1 \leq i \leq r, r+1 \leq j \leq n)$. The corresponding root vectors are $\Delta_{\mathfrak{sp}_{2r}} = \{\varepsilon_i - \varepsilon_j (i, j = 1, \dots, r, i \neq j), \varepsilon_i + \varepsilon_j, -\varepsilon_i - \varepsilon_j (i, j = 1, \dots, r)\}$; the positive roots are now $\varepsilon_i \pm \varepsilon_j (i < j)$ and $2\varepsilon_i$ if n is even. Finally, \mathfrak{n}_+ is the set of upper triangular matrices (in block form) $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that d = -a', b = b', c = c', where ' denotes transposition with respect to the antidiagonal, and \mathfrak{n}_- is the set of lower triangular matrices which satisfy this condition.

Remark 1 Any non-zero ideal of \mathfrak{g} has a non-zero intersection with \mathfrak{h} .

Lemma 1 Let \mathfrak{h} be a finite-dimensional abelian Lie algebra, and let π be a diagonalizable representation of \mathfrak{h} in a vector space V (not necessarily finite-dimensional), i.e. $V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\alpha}$, where $V_{\lambda} = \{v \in V \mid \pi(h)v = \lambda(h)v, h \in \mathfrak{h}\}$. Then for any $\pi(\mathfrak{h})$ -invariant subspace $U \subset V$, we have $U = \bigoplus_{\lambda \in \mathfrak{h}^*} (U \cap V_{\lambda})$.

Proof. Take $u \in U$ and write $u = \sum_{\lambda} v_{\lambda}$, where $v_{\lambda} \in V_{\lambda}$. Take $h \in \mathfrak{h}$ such that $\lambda_1(h) \neq \lambda_2(h)$ (scale so that $\lambda_1(h) = 1$.) Then $U \ni \pi(h) = \lambda_1(h)v_{\lambda_1} + \lambda_2(h)v_{\lambda_2} + \cdots$. Hence

$$U - \pi(h)u = (1 - \lambda_2(h))v_{\lambda_2} + (1 - \lambda_3(h))v_{\lambda_3} + \cdots,$$

and we may apply induction on the number of summands in u. \square

Proof of the Remark. If I is a non-zero ideal of \mathfrak{g} which intersects \mathfrak{h} trivially, then by the lemma, $\mathfrak{g}_{\alpha} \subset I$ for some root α . But then $[\mathfrak{g}_{\alpha}, g_{-\alpha}] = \mathbb{F}\nu^{-1}(\alpha) \subset I$, a contradiction. \square Let $\tilde{\mathfrak{g}}(A)$ be the Lie algebra on generators E_i, F_i, H_i (i = 1, ..., r) subject to relations (*).

Exercise 19.2. Show that $\tilde{\mathfrak{g}}((2)) = \mathfrak{sl}_2(\mathbb{F})$ but $\tilde{\mathfrak{g}}\left(\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}\right)$ is infinite dimensional. Find the elements of $\mathcal{J}\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$.

Solution. For the case $\tilde{\mathfrak{g}}((2)) = \mathfrak{sl}_2(\mathbb{F})$, we have r = 1, giving the generators E_1, F_1, H_1 with the relationships $[E_1, F_1] = H_1$; $[H_1, H_1] = 0$; $[H_1, E_1] = 2E_1$; $[H_1, F_1] = -2F_1$. Let

$$H_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; E_1 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; F_1 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix};$$

simple calculations show that these relationships are satisfied, and these matrices generate $\mathfrak{sl}_2(\mathbb{F})$.

To show that $\tilde{\mathfrak{g}}\left(\begin{pmatrix}2&-1\\-1&2\end{pmatrix}\right)$ is infinite-dimensional, we note that $\tilde{\mathfrak{n}}_+$ and $\tilde{\mathfrak{n}}_-$ are freely generated over the generators E_1, E_2 , which is an infinite-dimensional space. Since $\tilde{\mathfrak{g}} = \tilde{\mathfrak{n}}_+ \oplus \tilde{\mathfrak{h}} \oplus \tilde{\mathfrak{n}}_-$, it is also infinite-dimensional.

The maximal ideal $\mathcal{J}\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ is the ideal containing the inverse images of the triple commutators $E_1E_2E_1$ and $E_2E_1E_2$, as well as $F_1F_2F_1$ and $F_2F_1F_2$. \square

Lemma 2 (a) $\tilde{\mathfrak{g}}(A) = \tilde{\mathfrak{n}}_- \oplus \mathfrak{h} \oplus \tilde{\mathfrak{n}}_+$, where $\tilde{\mathfrak{n}}_+$ (resp. $\tilde{\mathfrak{n}}_-$) is generated by the E_is (resp. F_is) and $\mathfrak{h} = span$ of H_is . (b) $\tilde{\mathfrak{g}}(A)$ has a maximal ideal $\mathcal{J}(A)$ among ideals intersecting \mathfrak{h} trivially.

Proof. (Exercise 19.3.) First we show by induction on n that any commutator of length n:

$$[[b_{i_1}, b_{i_2}], \dots, b_{i_n}]$$
 (where $b_{i_k} \in \{E_i, F_i, H_i\}$),

lie in either \mathfrak{n}_+ or in \mathfrak{n}_- or in \mathfrak{h} .

Solution. The base case is obvious. Now assume $b = [[b_{i_1}, b_{i_2}], \ldots, b_{i_n}]$ is in \mathfrak{n}_+ , \mathfrak{n}_- or \mathfrak{h} ; we show that $b' = [[[b_{i_1}, b_{i_2}], \ldots, b_{i_n}], b_{i_{n+1}}]$ is in \mathfrak{n}_+ , \mathfrak{n}_- or \mathfrak{h} . The following table summarizes the possible values of the n+1-length commutator b', ignoring irrelevant constant factors in front of the b.

Recalling that \mathfrak{n}_+ is defined to be the subalgebra generated by the E_i , that \mathfrak{n}_- is generated by the F_i and that \mathfrak{h} is generated by the H_i , we observe that b', the n+1-length commutator, always belongs to one of $\mathfrak{n}_+,\mathfrak{n}_-$ or \mathfrak{h} if all the b_{i_k} s are E_i,F_i or H_i . \square

Hence $\tilde{\mathfrak{g}}(A) = \tilde{\mathfrak{n}}_- + \mathfrak{h} + \tilde{\mathfrak{n}}_+$. This sum is direct since $\tilde{\mathfrak{n}}_+ = \bigoplus \tilde{\mathfrak{g}}(A)_{\alpha}$, $\alpha = \sum_{i=1}^n k_i \alpha_{ij}$, $k_i \in \mathbb{Z}_i$, not all 0, and similarly for $\tilde{\mathfrak{n}}_-$, but $\mathfrak{h} = \tilde{\mathfrak{g}}(A)_0$. (This proves (a).)

But by Lemma 1, any ideal I of $\tilde{\mathfrak{g}}(A)$ is of the form $I = I_- \oplus I_0 \oplus I_+$, where $I_\pm \subset \tilde{\mathfrak{n}}_\pm$, $I_0 \subset \mathfrak{h}$. So if $I \cap \mathfrak{h} = 0$, then $I = I_- \oplus I_+, I_\pm \subset \tilde{\mathfrak{n}}_\pm$. Hence (b) follows, since $\mathcal{J}(A)$, as a sum of all ideals intersecting \mathfrak{h} trivally, is a proper maximal ideal. We let $\mathfrak{g}(A) = \tilde{\mathfrak{g}}(A)/\mathcal{J}(A)$. Now consider the surjective homomorphism $\tilde{\mathfrak{g}}(A) \stackrel{\varphi}{\to} \mathfrak{g}$ defined by $\varphi(E_i) = E_i, \varphi(F_i) = F_i, \varphi(H_i) = H_i$ (which generate \mathfrak{g}). Moreover, $\mathcal{J}(A) \subset \ker \varphi$, otherwise $\varphi(\mathcal{J}(A))$ contradicts Remark 1, and furthermore, $\mathcal{J}(A) = \ker \varphi$ since $\mathcal{J}(A)$ is maximal. Hence we have an isomorphism $\mathfrak{g}(A) \stackrel{\sim}{\to} \mathfrak{g}$. (Note that φ is mapping the infinite-dimensional \mathfrak{n}_+ and \mathfrak{n}_- to finite-dimensional $\tilde{\mathfrak{n}}_+$ and $\tilde{\mathfrak{n}}_-$). \square

So, if we know that \mathfrak{g} with a given root system exists, like $\mathfrak{g} = \mathfrak{sl}_n, \mathfrak{so}_n$, or \mathfrak{sp}_n , then $\mathfrak{g}(A) = \mathfrak{g}$ is the Lie algebra with this root system. We have proved that any simple Lie algebra over \mathbb{F} is isomorphic to $\mathfrak{sl}_n(\mathbb{F}), \mathfrak{so}_n(\mathbb{F}), \mathfrak{sp}_n(\mathbb{F})$, or possibly the simple Lie algebras whose root systems are $\Delta_{E_i}, i = 6, 7, 8, \Delta_{F_4}, \Delta_{G_2}$, called the exceptional Lie algebras. So it remains to prove the existence of the latter. Note that we have the same Cartan matrices in the following cases:

$$A_1 = B_1 = C_1$$
 (1-d root systems are identical)
 $B_2 = C_2$ \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc
 $D_3 = A_3$ \bigcirc \longrightarrow \bigcirc \bigcirc \bigcirc \bigcirc
 $D_2 = A_1 \oplus A_1$

or, on the level of Lie algebras, $\mathfrak{sl}_2(\mathbb{F}) \simeq \mathfrak{so}_3(\mathbb{F}) \simeq \mathfrak{sp}_2(\mathbb{F}); \mathfrak{so}_5(\mathbb{F}) \simeq \mathfrak{sp}_4(\mathbb{F}); \mathfrak{so}_6(\mathbb{F}) \simeq \mathfrak{sl}_4(\mathbb{F}); \mathfrak{so}_4 \simeq \mathfrak{sl}_2(\mathbb{F}) \oplus \mathfrak{sl}_2(\mathbb{F}).$

Now we want to construct the simple Lie algebras from their root systems. (We will carry out an explicit construction; this construction doesn't show uniqueness.)

First we consider the simply-laced case $A = A^T$, i.e. all roots have the same length. Let (V, Δ) be a simply-laced root system, with (\cdot, \cdot) such that $(\alpha, \alpha) = 2$ for any root α , and let $Q = \mathbb{Z}\Delta$ be the root lattice. Then $\Delta = \{\alpha \in Q \mid (\alpha, \alpha) = 2\}$, in all examples A_r, D_r, E_6, E_7, E_8 ; the first two are known to exist, whereas the last three are new.

Consider the following space over \mathbb{F} : $\mathfrak{g} = \mathfrak{h} \oplus (\bigoplus_{\alpha \in \Delta} \mathbb{F} E_{\alpha})$, where $\mathfrak{h} = \mathbb{F} \otimes_{\mathbb{Q}} (\mathbb{Q}\Delta)$ and E_{α} are some non-zero vectors. Extend the bilinear form from (\cdot, \cdot) on V to \mathfrak{h} by bilinearity. Define brackets on \mathfrak{g} as follows:

- (i) [h, h'] = 0 for $h, h' \in \mathfrak{h}$.
- (ii) $[h, E_{\alpha}] = (h, \alpha)E_{\alpha}$
- (iii) $[E_{\alpha}, E_{-\alpha}] = -\alpha$ (for convenience)
- (iv) $[E_{\alpha}, E_{\beta}] = 0$ if $\alpha + \beta \notin \Delta \cup \{0\}$
- (v) $[E_{\alpha}, E_{\beta}] = \varepsilon(\alpha, \beta) E_{\alpha+\beta}$ if $\alpha + \beta \in \Delta$.

Next time, we will study how to construct ε so that the Jacobi identity holds. To do this, we have to check the Jacobi identities of any triple of distinct basis elements of \mathfrak{g} :

- (i) If this triple is $h, h', h'' \in \mathfrak{h}$, the identity is obvious.
- (ii) If h, h', E_{α} or h, E_{α}, E_{β} , the Jacobi identity holds for any choice of $\varepsilon(\alpha, \beta)$ (Exercise 19.4).
- (iii) (next time) If $E_{\alpha}, E_{\beta}, E_{\gamma}$, we will have to choose ε appropriately.

Solution. A straightforward calculation shows the Jacobi identity:

$$[h, [h', E_{\alpha}]] + [h', [E_{\alpha}, h]] + [E_{\alpha}, [h, h']] = [h, [h', E_{\alpha}]] + [h', [E_{\alpha}, h]]$$

$$= [h, (h', \alpha)E_{\alpha}] + [h', -(h, \alpha)E_{\alpha}]$$

$$= (h', \alpha)[h, E_{\alpha}] - (h, \alpha)[h', E_{\alpha}]$$

$$= (h', \alpha)(h, \alpha)E_{\alpha} - (h, \alpha)(h', \alpha)E_{\alpha}$$

$$= 0$$

and

$$\begin{split} & [h, [E_{\alpha}, E_{\beta}]] + [E_{\alpha}, [E_{\beta}, h]] + [E_{\beta}, [h, E_{\alpha}]] \\ = & (\alpha + \beta, h) [E_{\alpha}, E_{\beta}] - (\beta, h) [E_{\alpha}, E_{\beta}] + (\alpha, h) [E_{\beta}, E_{\alpha}] \\ = & (\alpha + \beta, h) [E_{\alpha}, E_{\beta}] - (\beta, h) [E_{\alpha}, E_{\beta}] - (\alpha, h) [E_{\alpha}, E_{\beta}] \\ = & 0. \end{split}$$