DEUE OPMENT OF A METHODOLOGY FOR ESTABLISHING JOINT SERVICE HEIGHT AND HE. (U) DEFENSE MANPOHER DATA CENTER ARLINGTON VA MARKET RESEARCH BRA. NOV 85 F/G 5/9 AD-A185 417 1/2 UNCLASSIFIED NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL RUREAU OF STANDARDS-1963-A

PHOTOGR	APH THIS SHEET
ta pable	INVENTORY ATION The been approved release and sales in the salimited, y.
	DISTRIBUTION STATEMENT
ACCESSION FOR NTIS GRAAI DTKC TAB UNANNOUNCED JUSTIFICATION BY DISTRIBUTION / AVAILABILITY CODES DIST AVAIL AND/OR SPECIAL DISTRIBUTION STAMP	SELECTE DOCT 2 7 1987 E DATE ACCESSIONED
7 1 1 2 0 1 1	DATE RETURNED
DATE RECEIVED IN DTIC	REGISTERED OR CERTIFIED NO.
PHOTOGRAPH THIS SHEET AND RETU DTIC FORM 70A DOCUMENT PROCESSING	

-DEFENSE-

MANPOWER DATA CENTER-

Development of a Methodology for Establishing Joint Service Height and Weight Standards for Enlistment

1600 WILSON BOULEVARD ARLINGTON, VIRGINIA 22209

unc	lassif	ied .		
ECURITY	CLASSIFICA	TION OF	THIS	PAGE

SECURITY CLASSIFICATION OF THIS PAGE					
•	REPORT DOCUM	MENTATION	PAGE		
1a. REPORT SECURITY CLASSIFICATION		16 RESTRICTIVE	MARKINGS		
2a. SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION Approved	FOY PUBLI	c rele	ose;
2b. DECLASSIFICATION / DOWNGRADING SCHEDU	LE	1 ''	non is un	•	
4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)		ORGANIZATION RE		BER(S)
			MRB/TR-		
63. NAME OF PERFORMING ORGANIZATION REFERSE Manpower Posta Center	6b OFFICE SYMBOL (If applicable) DMDC		ONITORING ORGAN		center .
6c. ADDRESS (City, State, and ZIP Code)	100	7b. ADDRESS (Cit	y, State, and ZIP C	ode)	
1600 Wilson Blvd, Si Arlunpton, VA 22209	WE 400	same			
8a. NAME OF FUNDING/SPONSORING ORGANIZATION DEPUTY ASST SEC	8b. OFFICE SYMBOL (If applicable)	9. PROTUREMENT	T INSTRUMENT IDE	TIFICATION	NUMBER
Depense: Accession Policy	OASD (AP)	MDAS	03/82	-x1-C	0443
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF I	PROJECT	TASK	WORK UNIT
The Pentagon Washington, D.C. 20	301	ELEMENT NO.	NO.	NO.	ACCESSION NO
11 TITLE (Include Security Classification)			. ·		·
Development of a meth and Weight Standard	nodology for	r Establis Storent	shing Joh	nt Ser	vice Height
12. PERSONAL AUTHOR(S)	•				
Laurence, Michael 13a. TYPE OF REPORT 13b. TIME CO		14 DATE OF REPO	PRT (Year, Month, D	Davi 15 PA	AGE COUNT
Technical Rot FROM_	то		rember		156
16. SUPPLEMENTARY NOTATION					
17 COSATI CODES	18. SUBJECT TERMS (C				
FIELD GROUP SUB-GROUP	Mulitary/1 Physical SI	tandards/	Sverweigh	dedned	10 besites
19. ABSTRACT (Continue on reverse if necessary					,
			for enlis	stment	into the
Recent analyses of the qualification rates for enlistment into the U.S. military have revealed differences between males and females. While					
96 percent of the young weight standards, only 7	males, aged l	6-24 met t	the current	t heigh	t and
qualified for military s	ervice.	the remare	es, aged it)-24 WC	1.6
_		. awamina 4	ho hoight	aw bre	iaht
The purpose of this report is to examine the height and weight standards currently in effect, explore the differences, and propose					
revisions to the height and weight standards that would mitigate the					
difference in the male and female qualification rates. The latter portion of the analysis involves the application of quantitative methods,					
consistently applied, th	at ensure equ	ıal treatme	ent of male	es and	females in
the specification of pro	-	1 h.d.h	a waight		
	posed revised	neight ar	id weight a	Scalinar	ds.
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT DUNCLASSIFIED/UNLIMITED SAME AS R	posed revised	21. ABSTRACT SE	CURITY CLASSIFICA		ds.
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT BUNCLASSIFIED/UNLIMITED SAME AS R 222. NAME OF RESPONSIBLE INDIVIDUAL CYTTOLOGYTO	posed revised	21. ABSTRACT SE		ATION	ds.

The single constraint on the present analysis was that the maximum weight standards for young males, aged 16-24, were to remain unchanged as revisions in the height and weight standards for older males and all females were proposed. However, supplemental revisions in the maximum weight standards for the young males are presented to illustrate their effect on qualification rates in the absence of this analytic constraint.

Three data sets were used in the present analysis: the National Longitudinal Survey of Youth Labor Market Experience, and the National Health and Nutrition Examination Surveys I and II.

Also included in this report are proposed revisions of maximum and minimum weight standards as well as height standards and a summary of the effects of these proposed revisions.

The report concludes with a discussion of obesity and overweightedness, which are two distinct measures. The use of overweight as the criterion for establishing maximum weight standards, as opposed to obesity, is examined and justified.

Development of a Methodology for Establishing Joint Service Height and Weight Standards for Enlistment

Michael T. Laurence

Market Research Branch Survey and Market Analysis Division

Defense Manpower Data Center
1600 Wilson Boulevard, Arlington, VA 22209

November 1985

This report has been prepared for the Directorate of Accession Policy, Office of the Deputy Assistant Secrectary of Defense (Military Manpower and Personnel Policy) ((ODASD(MM&PP)(AP)). The views, opinions, findings, and conclusions are not to be construed as offical Department of Defense policy, position, or decision, unless so designated by other official documentation.

PREFACE

This report was prepared at the request of Dr. W.S. Sellman, Director, and LTC Frank M. Terrell, USAF, Deputy Director, Directorate of Accession Policy, Office of the Deputy Assistant Secretary of Defense (Military Manpower and Personnel Policy) (ODASD(MM&PP)(AP)) by the Survey and Market Analysis Division of the Defense Manpower Data Center (DMDC), Zahava D. Doering, Chief.

Without the support of many people the preparation of this report would not have been possible. At DMDC, Dr. Doering provided overall direction and review. Elaine E. Sellman provided expert assistance in setting up the computer files and in reviewing the programming and data output. John A. Richards, Kyle Johnson, and Lee Giesecke reviewed the report and provided thoughtful editorial comments. Virginia L. Broadus provided invaluable support in producing the text of the report. Giovanni T. Kotoriy undertook the Herculean task of typing the tables that appear in this report. His diligence and persistence in completing this task are commendable. Connie Lyons of the DoD Office of the Actuary prepared the figures presented in the Appendix.

Capt Jeffrey D. Barnes, USAF, and Capt Denny Eakle-Cardinal, USAF, of the Directorate of Accession Policy, also performed a technical review of the report and provided insightful comments on methodological issues.

The Center for Human Resource Research at the Ohio State University, under contract to the U.S. Department of Labor, provided the data tapes

for the National Longitudinal Survey of Youth Labor Market Experience (NLS). The Department of Defense was a co-sponsor of the NLS and contributed funding to the project.

The National Center for Health Statistics (NCHS), Public Health Service, U.S. Department of Health and Human Services provided the data tapes containing the National Health and Nutrition Examination Survey I and II height and weight data that were assessed in this report. All analyses, interpretations, and conclusions that resulted from the use of these data are the responsibility of the author, and not NCHS.

TABLE OF CONTENTS

		<u>Page</u>
Prefa	œ	iii
List	of Tables	vii
List	of Figures	xiii
Execu	tive Summary	x-1
I.	Introduction	1
II.	The Data Sets	. 7
III.	Qualification Rates Under Current Standards	11
IV.	Explication of the Difference in Qualification Rates Between Males and Females	21
	Rates of Overweightedness Among Males and Females	22
	Comparison of AR 40-501 Maximum Weights to Mean Body Weight	26
v.	The Development of Proposed Revised Maximum Weight Standards	41
	The Body-mass Index	41
	Proposed Revised Maximum Weight Standards	50
VI.	Qualification Rates Under Proposed Revised Maximum Weight Standards	55
VII.	Examination and Proposed Revision of Minimum Weight Standards	63
VIII.	Examination and Proposed Revision of Height Standards	71
IX.	An Interim Summary	75
	The Proposed Revisions and their Effect	75
	Reconsideration of the Proposed Revision of the Maximum Weight Standards	89
Y	Alternative Maximum Weight Standards	05

		Page
XI.	Proposed Revised AR 40-501 Appendix III, Tables I and II	113
XII.	Concluding Discussion	117
Refer	ences	123
Appen	dix — Methodological Issues	A-1
	Comparison of <u>Build Study 1979</u> and NHANES I and NHANES II Data Sets	A-3
	Comparison of Actual Body Weight and Body-Mass Distributions to the Standard Normal Distribution	A-9
	The Body-Mass Index	A-31

LIST OF TABLES

	1	Page
X-1	Qualification Rates of Males and Females Under Current and Revised Standards, 16-24 Year-olds	х6
X-2	Proposed Revision of AR 40-501, Appendix III, Table I, Tables of Weight, Males	x-8
x- 3	Proposed Revision of AR 40-501, Appendix III, Table II, Tables of Weight, Females	X- 9
la	AR 40-501, Appendix III, Table I, Tables of Weight, Males	3
1b	AR 40-501, Appendix III, Table II, Tables of Weight, Females	4
2	Sample Sizes of the NLS, NHANES I, and NHANES II Data Sets	9
3a	Percentage Qualified and Not Qualified Under Current AR 40-501 Height and Weight Standards, 16-24 Year-old Males and Females	13
3b	Percentage Qualified and Not Qualified Under Current AR 40-501 Height and Weight Standards, 16-40 Year-old Males and Females	16
4	Percentage Overweight Under Current AR 40-501 Height and Weight Standards	18
5	Percentages of Males and Females with Weights 20 Percent or More in Excess of Mean Weight	23
6	Percentage of Samples with Body Weight 20 percent or More in Excess of Mean Body Weight	24
7a-1	Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Height, 16-20 Year-old Males and Females, NLS Sample	27
7a-2	Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Height, 16-20 Year-old Males and Females, NHANES I Sample	29
7 a- 3	Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Height, 16-20 Year-old Males and Females, NHANES II Sample	30
7b-1	Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Height, 21-24 Year-old Males and Females, NLS Sample	31
7b-2	Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Height, 21-24 Year-old Males and Females, NHANES I Sample	32

7b-3	Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Height, 21-24 Year-old Males and Females, NHANES II Sample	33
7c - 1	Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Height, 25-30 Year-old Males and Females, NHANES I Sample	34
7c-2	Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Height, 25-30 Year-old Males and Females, NHANES II Sample	35
7d-1	Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Height, 31-35 Year-old Males and Females, NHANES I Sample	36
7d-2	Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Height, 31-35 Year-old Males and Females, NHANES II Sample	37
7e-1	Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Height, 35-40 Year-old Males and Females, NHANES I Sample	38
7e-2	Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Height, 35-40 Year-old Males and Females, NHANES II Sample	39
8a	AR 40-501, Appendix III, Table I, Converted to BM=W/H ² , Males	43
8b	AR 40-501, Appendix III, Table II, Converted to BM=W/H ² , Females	44
8c	AR 40-501, Appendix III, Table II, Converted to BM=W/H1.5, Females	45
9a	Percentage Qualified and Not Qualified Under Current AR 40-501 Height and Weight Standards, 16-24 Year-old Males and Females	48
9 b	Percentage Qualified and Not Qualified Under Current AR 40-501 Height and Weight Standards, 16-40 Year-old Males and Females	49
10	Summary of Body-mass Values: Current Maximum Weight Standards, Mean Body-mass 135 Percent of Mean Body-mass, and Changes in Standards	52
lla	Comparison of the Percentages Qualified Under Current AR 40-501 and Revised 135 Percent of Mean Body-mass Maximum Weight Standards, 16-24 Year-old Males and Revales	56

11b	Comparison of the Percentages Qualified Under Current AR 40-501 and Revised 135 Percent of Mean Body-mass Maximum Weight Standards, 16-40 Year-old Males and Females	,
12	Percentage Overweight Under the 135 percent Mean Body-Mass Maximum Weight Standards	
13	Comparison of Percentage Overweight Under Current AR 40-501 and 135 percent Mean Body-Mass Maximum Weight Standards	
14a	Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Height, 16-20 Year-old Males and Females, NLS Sample	
14b	Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Height, 16-20 Year-old Males and Females, NHANES I Sample	
14c	Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Height, 16-20 Year-old Males and Females, NHANES II Sample	
15	Summary of Body-mass Values: Current Minimum Weight Standards, Meam Body-mass 80 Percent of Mean Body-mass, and Changes in Standards	
16	Percentage of Qualified and Not Qualified Under Revised Height and Weight Standards, 16-24 Year-old Males and Females	
17a	Summary of the Effect of Change in AR 40-501 Height and Weight Standards, 16-24 Year-old Males and Females, NLS Sample	
17b	Summary of the Effect of Change in AR 40-501 Height and Weight Standards, 16-24 Year-old Males and Females, NHANES I Sample	
17c	Summary of the Effect of Change in AR 40-501 Height and Weight Standards, 16-24 Year-old Males and Females, NHANES II Sample	
18	Percentage Qualified and Not Qualified Under Current AR 40-501 Height and Weight Standards, 16-40 Year-old Males and Females	
19a	Summary of the Effect of Changes in AR 40-501 Height and Weight Standards, 16-40 Year-old Males and Females, NHANES I Sample	
19b	Summary of the Effect of Changes in AR 40-501 Height and Weight Standards, 16-40 Year-old Males and Females, NHANES II Sample	

20a	Comparison of Current AR 40-501 and Revised Height and Weight Standards (in Pounds, with Maximum Weight Set at 135 Percent of Mean Body-Mass), Males
20b	Comparison of Current AR 40-501 and Revised Height and Weight Standards (in Pounds, with Maximum Weight Set at 135 Percent of Mean Body-Mass), Females 90
21	Percentage of Qualified but Medically Overweight Under Maximum Weight Standard of 135 percent Mean Body-Mass 93
22a	Comparison of Currnet AR 40-501 and Revised Height and Weight Standards (in Pounds, with Maximum Weight Set at 120 Percent of Mean Body-Mass), Males
22b	Comparison of Currnet AR 40-501 and Revised Height and Weight Standards (in Pounds, with Maximum Weight Set at 120 Percent of Mean Body-Mass), Females
23	Percentage of Males and Females Qualified Under 135 Percent Mean Body-Mass Standards but Not Qualified Under 120 percent Mean Body-Mass Weight Standards
24a	Percentage Qualified and Not Qualified Under Revised Height and Weight Standards (with Maximum Weight Set at 120 Percent Mean Body-Mass), 16-24 Year-old Males and Females
24b	Percentage Qualified and Not Qualified Under Revised Height and Weight Standards (with Maximum Weight Set at 120 Percent Mean Body-Mass), 16-40 Year-old Males and Females
25	Percentage Overweight Under Revised Weight Standards (with Maximum Weight Set at 120% Mean Body-Mass)
26a	Summary of the Effect of Changes in AR 40-501 Height and Weight Standards (Including the Effect of 135 percent vs. 120 percent Mean Body-Mass Maximum Weight Standards), 16-24 Year-old Males and Females, NLS Sample
2 6 b	Summary of the Effect of Changes in AR 40-501 Height and Weight Standards (Including the Effect of 135 percent vs. 120 percent Mean Body-Mass Maximum Weight Standards), 16-24 Year-old Males and Females, NEANES I Sample
26c	Summary of the Effect of Changes in AR 40-501 Height and Weight Standards (Including the Effect of 135 percent vs. 120 percent Mean Body-Mass Maximum Weight Standards), 16-24 Year-old Males and Females, NHANES II Sample

27a	Summary of the Effect of Changes in AR 40-501 Height and Weight Standards (Including the Effect of 135 percent vs. 120 percent Mean Body-Mass Maximum Weight Standards), 16-40 Year-old Males and Females, NHANES I Sample
27b	Summary of the Effect of Changes in AR 40-501 Height and Weight Standards (Including the Effect of 135 percent vs. 120 percent Mean Body-Mass Maximum Weight Standards), 16-40 Year-old Males and Females, NHANES II Sample
28a	Proposed Revision of AR 40-501, Appendix III, Table I, Tables of Weight, Males
28b	Proposed Revision of AR 40-501, Appendix III, Table II, Tables of Weight, Females
29	Percentage of NHANES I Population, Age 20-74 Years Overweight and/or Obese, 85th Percentile or More
A-1	Mean Body Weights and Standard Deviations of Build Study 1979, NHANES I, and NHANES II Data Sets, Males A-4
A- 2	Mean Body Weights and Standard Deviations of Build Study 1979, NHANES I, and NHANES II Data Sets, Females A-4
A-3	Distribution of Standard Scores of Body Weight into Ten Equal Segments of the Standard Normal Distribution A-10
A-4	Distribution of Standard Scores of Body Mass into Ten Equal Segments of the Standard Normal Distribution A-12
A- 5	Comparison of Percentages of NLS, NHANES I, and NHANES II Participants Disqualified for Overweightedness under the Standard Normal Distribution, the Actual Distribution of Standard Scores, and the Proposed Revised AR 40-501 Maximum Weight Standards, Males
A-6	Comparison of Percentages of NLS, NHANES I, and NHANES II Participants Disqualified for Overweightedness under the Standard Normal Distribution, the Actual Distribution of Standard Scores, and the Proposed Revised AR 40-501 Maximum Weight Standards, Females

LIST OF FIGURES

		Page
A-1	Comparison of the Distribution of Body Weight and Body-Mass Standard Scores to the Standard Normal Distribution, NLS Survey, Males and Females, 16-20 Years Old	, A –1 3
A-2	Comparison of the Distribution of Body Weight and Body-Mass Standard Scores to the Standard Normal Distribution, NHANES I Survey, Males and Females, 16-20 Years Old	. A-14
A-3	Comparison of the Distribution of Body Weight and Body-Mass Standard Scores to the Standard Normal Distribution, NHANES II Survey, Males and Females, 16-20 Years Old	A-15
A-4	Comparison of the Distribution of Body Weight and Body-Mass Standard Scores to the Standard Normal Distribution, NLS Survey, Males and Females, 21-24 Years Old	A-16
A-5	Comparison of the Distribution of Body Weight and Body-Mass Standard Scores to the Standard Normal Distribution, NHANES I Survey, Males and Females, 21-24 Years Old	. A-17
A-6	Comparison of the Distribution of Body Weight and Body-Mass Standard Scores to the Standard Normal Distribution, NHANES II Survey, Males and Females, 21-24 Years Old	A-18
A- 7	Comparison of the Distribution of Body Weight and Body-Mass Standard Scores to the Standard Normal Distribution, NHANES I Survey, Males and Females, 25-30 Years Old	A-19
A-8	Comparison of the Distribution of Body Weight and Body-Mass Standard Scores to the Standard Normal Distribution, NHANES II Survey, Males and Females, 25-30 Years Old	A-20
A-9	Comparison of the Distribution of Body Weight and Body-Mass Standard Scores to the Standard Normal Distribution, NHANES I Survey, Males and Females, 31-35 Years Old	A-21
A-10	Comparison of the Distribution of Body Weight and Body-Mass Standard Scores to the Standard Normal Distribution, NHANES II Survey, Males and Females, 31-35 Years Old	a22

A-11	Comparison of the Distribution of Body Weight and Body-Mass Standard Scores to the Standard Normal Distribution, NHANES I Survey, Males and		
	Females, 36-40 Years Old		
A-12	Comparison of the Distribution of Body Weight and Body-Mass Standard Scores to the Standard Normal Distribution, NHANES II Survey, Males and		
	Females, 36-40 Years Old		

Development of a Methodology for Establishing Joint Service Height and Weight Standards for Enlistment

EXECUTIVE SUPPARY

Recent analyses of the qualification rates for enlistment into the U.S. military under the current height and weight standards published in AR 40-501, Medical Services, Standards of Physical Fitness, have revealed differences between males and females. Laurence (1984) in an analysis of data from the National Longitudinal Survey of Youth Labor Market Experience (NLS) found that while 96 percent of the young males, aged 16-24 years, met the current height and weight standards, only 74 percent of the females, aged 16-24 years, were qualified for military service. In an adaptation of the distributions of weights for males and females, aged 18-24 years, from the National Health and Nutrition Examination Survey I (NEANES I), the USAF Special Study Team (1985) estimated that the percentage of males and females who were overweight, under the AR 40-501 height and weight standards, were 4 percent and 29 percent, respectively.

The purpose of this report was to (a) examine the height and weight standards currently in effect, and explore the differences described above, and (b) propose revisions to the height and weight standards that would mitigate the difference in the male and female qualification rates. This latter portion of the analysis involved the application of

quantitative methods, consistently applied, that ensured equal treatment of males and females in the specification of proposed revised height and weight standards.

The single constraint on the present analysis was that the AR 40-501 maximum weight standards for young males, aged 16-24 years, were to remain unchanged as revisions in the height and weight standards for older males and all females were proposed. However, supplemental revisions in the maximum weight standards for the young males are presented to illustrate their effect on qualification rates in the absence of this analytic constraint.

The Data Sets

Three sets of data were used in the present analysis: the National Longitudinal Survey of Youth Labor Market Experience (NLS), the National Health and Nutrition Examination Survey I (NHANES I), and the National Health and Nutrition Examination Survey II (NHANES II). The height and weight data from the NLS Survey were self-reported. The NHANES I and NHANES II height and weight data were actual measurements.

Heights and weights for 6,091 males and 6,019 females, aged 16-24 years, from the NLS were analyzed, as were data for 1,118 males and 1,855 females from the NHANES I and 1,339 males and 1,370 females from the NHANES II. In addition, data for 1,204 males and 2,889 females from NHANES I and 1,532 males and 1,691 females from NHANES II, aged 25-40 years, were analyzed.

Explication of the Difference in Qualification Rates Between Males and Females

Two explanations to account for the difference in qualification rates between males and females were examined. First, the possibility that when sex, age, and height are controlled for, females may indeed be more overweight than males was explored. Second, it may be that the structure of the current AR 40-501 standards themselves result in a disproportionately larger percentage of females being disqualified compared to males. Examination of the data indicated that both explanations are correct.

Data are presented which show that larger percentages of females are overweight, as defined by body weight 20 percent or more in excess of mean body weight, controlling for age, than are males. Among 16-24 year-olds, 7.3 percent of the NLS females, and 10.1 percent and 10.9 percent of the NHANES I and NHANES II females, respectively, were overweight under this criterion. The comparable percentages for 16-24 year-old males were 5.8 percent of the NLS sample, and 7.8 percent and 6.9 percent of the NHANES I and NHANES II samples, respectively.

Comparisons of mean body weights to the AR 40-501 maximum weight standards revealed that the body weights of females, as a percentage of AR 40-501 maximum weight standards were consistently higher than those for males. These differences account for most of the difference in the qualification rates between males and females.

Proposed Revision of Maximum Weight Standards

The analysis incorporated the body-mass index as an analytic tool, following the precedent established when the AR 40-501 standards for males were last revised in 1976. This index permits the evaluation of body weight independently of height and is highly correlated with the amount of body fat. Further following precedent, the standards were revised so that a single body-mass value was established for all heights within each age bracket for both males and females.

Analysis of the current weight standards for males, aged 16-24 years, revealed that the maximum allowable weights in AR 40-501 produce body-mass values that are 135 percent of the mean body-mass value. This standard was applied to the older male age brackets and all the female age brackets to establish quantitatively consistent maximum allowable weight standards for these groups. However, the result was maximum weight standards that included a moderately large percentage of individuals who were medically overweight defined as body weight 20 percent or more in excess of the mean weight.

Accordingly, the analytic constraint that the maximum weight standards for young males not be modified was eliminated, and maximum weight standards were proposed for all males and females that set the maximum allowable weight at 120 percent of mean body-mass.

Proposed Revision of Minimum Weight Standards

Analysis of the current AR 40-501 minimum required weight standards revealed that the current standards were methodologically consistent for both males and females. The current standards are 80 percent of mean body-mass of 16-20 year-olds. Accordingly, no major revision was required. However, these standards were revised so that, consistent with the maximum allowable weight standards, a single body-mass value was applied regardless of height.

Proposed Revision of Height Standards

In the absence of medical justification for different minimum and maximum height standards for males and females, the height standards were revised so that they were the same regardless of sex. The current standards of a minimum height of 60 inches for males and 58 inches for females, and a maximum height of 80 inches for males and 72 inches for females, were revised so that the minimum and maximum for both sexes was set at 58 and 80 inches, respectively.

Summary of the Effects of Proposed Revisions to AR 40-501

Presented in Table X-1 are the qualification rates of the males and females, aged 16-24 years, in each of the three data sets under current standards, under the revised height and weight standards with maximum allowable weights set at 135 percent of mean body-mass, and under the revised height and weight standards with the maximum allowable weights set at 120 percent of mean body-mass.

Table 1 Qualification Rates of Males and Females Under Current and Revised Standards

16-24 Year-olds

		andards	
	Current	135%	120%
	<u>Standards</u>	<u>Maximum</u>	<u>Maximum</u>
NLS			
Males	95.9	96.7	92.9
Females	74.4	94.9	90.8
NHANES I			
Males	94.4	95 . 9	90.2
Females	65.4	90 . 9	86.3
NHANES II			
Males	95.3	95.7	91.7
Females	67.8	92.9	87.2

The large difference in qualification rates between males and females is reduced when either set of revised standards are applied. However, males are still qualified at a higher rate than females due to the higher incidence of overweightedness among females in the general population. Under the revised standards with the maximum allowable weight set at 135 percent of mean body-mass, the qualification rates of males is marginally higher than under current standards. Under the 120 percent of mean body-mass maximum weight standards, the qualification rate for males is moderately lower than under current standards. For females, the qualification rates under either set of revised standards are substantially higher than under the current AR 40-501 standards.

Proposed Revised AR 40-501, Appendix III, Tables of Weight

Presented in Tables X-2 and X-3 are proposed revised AR 40-501, Appendix III, Table I and Table II, respectively, which is the net result of the analysis and revision. These tables employ maximum weight standards set at 120 percent of mean body-mass, and include the revisions to the minimum required weight and height standards, as well as other minior technical changes described more fully in the report.

Concluding Discussion

The report concludes with a discussion of obesity and overweightedness, terms often used interchangably, but which are two distinct measures. The use of overweight as the criterion for establishing maximum weight standards, as opposed to obesity, is examined and justified.

Table X-2

Proposed Revision of AR 40-501, Appendix III, Table I Tables of Weight, Males

APPENDIX III TABLES OF WEIGHT

Table I. Table of Militarily Acceptable Weight (in Pounds) as Related to Age and Height for Males--Initial Procurement

Height (inches)		Maximum							
	16-20 yrs	21-24 yrs	25-30 yrs	31-35 yrs	36-40 yrs	41 yrs and over			
58 59 60	84 87 90 93	136 141 145 150	141 146 151 156	145 151 156 161	150 155 161 166	150 155 161 166	150 • 155 161 166		
62	96	155	161	166	172	172	172		
63	99	160	166	172	177	177	177		
64	102	166	171	177	183	183	185		
65	106	171	177	183	189	189	189		
66	109	176	182	188	195	195	195		
67	112	181	188	194	201	201	201		
68	116	187	194	200	207	207	207		
69	119	192	199	206	213	213	213		
70	122	198	205	212	219	219	219		
71	126	204	211	218	225	225	225		
72	130	210	217	224	232	232	232		
73	133	216	223	231	238	238	238		
74 75 76	137 141 144 148	221 228 234 240	229 236 242 248	237 244 250 257	245 252 258 265	245 252 258 265	245 252 258 265		
78	152	246	255	263	272	272	272		
79	156	252	261	270	279	279	279		
80	160	259	268	277	286	286	286		

Table X-3

Proposed Revision of AR 40-501, Appendix III, Table II Tables of Weight, Females

APPENDIX III TABLES OF WEIGHT

Table II. Table of Militarily Acceptable Weight (in Pounds) as Related to Age and Height for Females--Initial Procurement

Minimum (regardless of age) (inches)		Maximum							
	16-20 yrs	21-24 yrs	25-30 yrs	31-35 yrs	36-40 yrs	41 yrs and over			
58 59 60	85 87 90 92	136 139 143 146	139 143 147 150	143 147 151 155	147 151 155 159	151 155 159 163	151 155 159 163		
62	94	150	154	159	163	167	144		
	96	153	158	162	167	171	171		
	99	157	162	166	171	175	175		
	101	161	166	170	175	180	180		
66	103	165	169	174	179	184	184		
	106	168	173	178	183	188	188		
	108	172	177	182	187	192	192		
	110	176	181	186	191	196	196		
70	113	180	185	190	196	201	201		
71	115	184	189	194	200	205	205		
72	118	188	193	199	204	209	209		
73	120	192	197	203	208	214	214		
74 75 76	123 125 128 130	195 199 203 208	201 205 209 214	207 211 215 220	213 217 221 226	218 223 227 232	218 223 227 232		
78	133	212	218	224	230	236	236		
79	135	216	222	228	234	241	241		
80	138	220	226	233	239	245	245		

SECTION I

Introduction

Recent analyses of the qualification rates for enlistment into the U.S. military under the current height and weight standards published in AR 40-501, Medical Services, Standards of Physical Fitness, have revealed differences between males and females. Laurence (1984) in an analysis of from the National Longitudinal Survey of Youth Labor Market Experience (NLS) found that while 96 percent of the young males, aged 16-24 years, met the current height and weight standards, only 74 percent of the females, aged 16-24 years, were qualified for military service. In terms of the percentage disqualified due to overweightedness, 3 percent of the males exceeded current standards compared to 22 percent of the females. In an adaptation of the distributions of weights for males and females, aged 18-24 years, from the National Health and Nutrition Examination Survey I (NHANES I), conducted by the National Center for Health Statistics in 1971-74, the USAF Special Study Team (1985) estimated that the percentage of males and females who are overweight, based on AR 40-501 height and weight standards, was 4 percent and 29 percent, respectively.

These data raise questions as to the reasons for the disparity in qualification rates of males compared to females. The purpose of this report was to (a) examine the height and weight standards currently in effect and explore the differences described above, and (b) propose revisions to the height and weight standards that would mitigate the difference in the male and female qualification rates. This latter

portion of the analysis involved the application of quantitative methods, consistently applied, that will ensure equal treatment of males and females in the specification of proposed revised height and weight standards.

The single constraint on the present analysis was that the AR 40-501 maximum weight standards for young males, aged 16-24 years, were to remain unchanged as revisions in the height and weight standards for older males and all females are proposed. However, supplemental revisions in the maximum weight standards for the young males are presented to illustrate their effect on qualification rates in the absence of this analytic constraint.

Presented in Tables la and lb are the two tables that comprise Appendix III of AR 40-501 that present the militarily acceptable weight (in pounds) as related to age and height at initial procurement. These tables are incorporated into the regulation as part of Section XII, Height, Weight and Body Build, Paragraphs 2-22a and 2-22b. Paragraph 2-2lb specifies the height standards for enlistment and induction. For men, the minimum acceptable height is 60 inches for enlistment and induction into the Army and Air Force, while the maximum height is 80 inches for enlistment and induction into the Army and Air Force and 78 inches for the Navy and Marine Corps. For females, the minimum acceptable height is 58 inches, and the maximum acceptable height is 72 inches for the Army. The regulation does not specify height standards for enlistment and induction of females into the Navy, Marine Corps, and Air Force.

Table 1a

AR 40-501, Appendix III, Table I Tables of Weight, Males

1 December 1983

C 34, AR 40-501

APPENDIX III TABLES OF WEIGHT

Table 1. Table of Militarily Acceptable Weight (in Pounds) as Related to Age and Height for Males-Initial Procurement

	Minimum (regardless of	*MAXIMUM					
Height (inches)	age)	16-20 years	21-30 years	31-35 years	36-40 years	41 years and	
50	100	158	163	162	157	150	
51	102	163	168	167	162	155	
2	103	168	174	173	168	160	
33	104	174	180	178	173	165	
4	105	179	185	184	179	171	
5	106	185	191	190	184	176	
6	107	191	197	196	190	182	
7	111	197	203	202	196	187	
i8	115	203	209	208	202	193	
9	119	209	215	214	208	1 9 8	
0	123	215	222	220	214	204	
1	127	221	228	227	220	210	
2	131	227	234	233	226	216	
'3	135	233	241	240	233	222	
4	139	240	248	246	239	228	
75	143	246	254	253	246	234	
6	147	253	261	260	252	241	
7	151	260	268	266	259	247	
'8	153	267	275	273	266	254	
79	159	273	282	281	273	260	
*80	166	280	289	288	279	267	

^{*}Applies only to personnel enlisted, inducted, or appointed in the Army and enlisted or inducted into the Air Force. Does not apply to Navy or Marine Corps enlistees or inductees.

Table 1b

AR 40-501, Appendix III, Table II Tables of Weight, Females

C 34, AR 40-501

1 December 1983

★Table II. Table of Militarily Acceptable Weight (in Pounds) as Related to Ageand Height for Females—Initial Procurement

Height (inches)	Minimum (regardless of age)	Maximum						
		18-20 yrs	21-24 yrs	25-30 yrs	31–35 yrs	36-40 yrs	41 yrs an	
i8	90	120	124	126	129	132	135	
59	92	122	126	128	131	134	137	
60	94	124	128	130	133	136	139	
31	. 96	127	130	132	135	139	141	
	98	128	132	134	137	140	144	
33	100	132	134	136	139	143	145	
4	102	135	136	139	143	145	149	
35	104	138	140	144	. 148	150	153	
66	106	141	145	148	151	154	157	
57	109	145	149	152	156	158	162	
38	112	15 0	15 3	156	160	162	166	
i9	115	154	157	161	164	167	170	
0	118	158	162	165	168	171	174	
1	122	162	166	169	173	175	179	
2	125	167	171	174	178	181	184	
"3	128	171	177	179	183	186	. 19 0	
······································	130	175	182	185	188	191	195	
/5	133	179	187	190	194	19 6	200	
6	136	184	1 9 2	196	199	202	205	
7	139	188	197	201	204	207	211	
· · · · · · · · · · · · · · · · · · ·	141	192	203	206	209	213	216	
79	144	196	208	211	215	218	220	
30	147	201	213	216	219	22 3	225	

★Table III. Table of Acceptable Weights for Army Aviation (Classes 1, 1A, 2, 3) (Rescinded)

See AR 600-9, The Army Weight Control Program.

★Table IV. Table of Acceptable Weight (In Pounds) as Related to Height for Diving Duty. (Rescinded)

See AR 600-9, The Army Weight Control Program.

In addition to the differential rates of disqualification between males and females described above, a review of Section XII and Appendix III of AR 40-501 suggests a number of other issues that ought to be addressed in this analysis. First, the height standards for males and females differ. There is no apparent medical justification for differential height requirements for short males and tall women. Further, it is not clear why the Navy and Marine Corps do not accept males between 78 and 80 inches in height, as do the Army and Air Force. Second, there are two age brackets for males under the age of 31 years (16-20 years and 21-30 years) while there are three for females (18-20 years, 21-24 years, and 25-30 years). Also, the minimum age for females is 18 years, while for males, the minimum age is 16 years. Third, the maximum allowable weight specified in the tables at each height increases in successive age brackets for females, while for males over the age of 30 years, it decreases. The rational for this is not apparent. Data presented in the <u>Build Study 1979</u> (1980) show that the average weight of males (and women) increases with age.

The sections of the report that follow describe the data sets used to examine the current AR 40-501 standards and test the effect of proposed revisions (Section II); present qualification rates of males and females under current height and weight standards (Section III); and explicates difference qualification in rates between males and females (Section IV). The report continues with the development of proposed revised maximum weight standards (Sections V, VI, and X) and an examination and proposed revision of minimum weight (Section VII) and height standards (Section VIII). Finally, the results

of the examination and proposals for revision of AR 40-501 height and weight standards are summarized (Sections IX and XI) and the use of overweight as the criterion for establishing maximum weight standards is discussed (Section XII).

SECTION II

The Data Sets

Three sets of data were used in the present analysis. Each set of data was collected independently of the others and is a representative national probability sample of males and females. The three data sets are: (1) the National Longitudinal Survey of Youth Labor Market Experience (NLS), sponsored by the U.S. Department of Labor; (2) the National Health and Nutrition Examination Survey I (NHANES I); and (3) the National Health and Nutrition Examination Survey II (NHANES II). The NHANES I and NHANES II were both conducted by the National Center for Health Statistics (NCHS), Public Health Service, U.S. Department of Health and Human Services.

The NLS survey is a longitudinal survey of approximately 12,700 young males and females that focused on entry into and participation in the labor force. The participants in this survey were first interviewed in 1979, when their ages ranged from 14 to 21 years, and then reinterviewed in the spring of each subsequent year. The Department of Defense participated in the NLS survey in two respects. First, since service in the military can be considered to be a form of labor force participation, as an alternative to civilian employment, questions were included in the interview that sought to assess the interest in and attitudes towards military service as well as actual participation. Second, in 1980 the NLS survey participants were administered the Armed Services Vocational Aptitude Battery (ASVAB) to determine the aptitude of a representative sample of American youth for military service.

The sampling design of the NLS survey included a supplemental sample designed to oversample civilian black, Hispanic, and economically disadvantaged white youth. This was done to ensure that members of these groups were interviewed in sufficient numbers to permit accurate statistical estimates. As part of the administration of the ASVAB, the National Opinion Research Center (NORC) at the University of Chicago performed a review of the design, selection and implementation of the NLS sample to ensure its methodological soundness. In all respects, the review found that the NLS survey sample met the highest standards of survey research. The report prepared by NORC (Frankel and Williams, 1981) contains all the details of the survey design.

As part of the 1981 NLS interview, when the respondents ranged in age from 16-24 years, the participants were asked to report their height and weight. It is these self-reported data that are used as part of the present analysis. Table 2 presents the number of NLS participants that composed the NLS sample used in the present analysis. As can be seen, 6,091 young men, and 6,019 young women, aged 16-24 years, provided height and weight data. The assignment of respondents to race/ethnic categories used the same criteria as in the <u>Profile of American You</u>th (Department of Defense, 1982). The designation "Whites" includes all non-black and non-Hispanic participants, such as Native Americans, Pacific Islanders, and persons of Asian ancestry. The Hispanic group includes the several subgroups, such as Mexican-Americans, Puerto Ricans, Cubans, etc., variously described as being of "Hispanic" origin.

Table 2

Sample Sizes of the NLS, NHANES I, and NHANES II Data Sets

		Ma	Males			Fem	Females	
NLS	White	Black	Hispanic	Total	White	Black	Hispanic	Total
16-24 year-olds 25-40 year-olds Total	4,127	1,529	355	6,091*	4,077	1,505	369	6,019*
16-24 year-olds 25-40 year-olds Total	851 958 1,809	209	58 75 133	1,118 1,204 2,322	1,338 2,183 3,521	401 531 932	116 175 291	1,855 2,889 4,744
NHANES II 16-24 year-olds 25-40 year-olds Total	1,079 1,270 2,349	172 173 345	88 89 177	1,339 1,532 2,871	1,091	193 206 399	86 102 188	1,370

*Race/ethnic subgroup sample sizes do not sum to the total due to unidentified respondents.

The NHANES I and NHANES II surveys were conducted in 1971-74 and 1976-80, respectively, as part of a related series of surveys to assess the health and nutritional status of all Americans, aged 6 months to 74 years. An integral part of these two surveys was the performance of a comprehensive physical examination, including the actual measurement of height and weight of the participants. A total of 23,808 males and females participated in the NHANES I and 20,322 people participated in the NHANES II survey. The details of the plan and operation of NHANES I and II surveys are summarized in National Center for Health Statistics (1977) and National Center for Health Statistics (1981), respectively.

Of the total NHANES I sample, 7,066 participants fell within the age range of interest to the present analysis. As shown in Table 2, 1,118 males and 1,855 females, aged 16-24 years, were included in the present analysis as well as 1,204 males and 2,889 women, aged 25-40 years. Of the total NHANES II sample, 5,932 participants fell in the age range of 16-40 years. As shown in Table 2, 1,339 males and 1,855 females, aged 16-24 years, were included in the present analysis, as well as 1,532 males and 1,691 females, aged 25-40 years. The assignment of NHANES I and NHANES II participants into race/ethnic categories shown in Table 2 are consistent with those criteria used for the NLS sample.

Throughout the entire examination of height and weight standards in this report, each analysis examines 16-24 year olds as a separate group, since it is these young people that represent the primary military manpower recruiting pool. These analyses are followed by ones that present data for 16-40 year olds.

SECTION III

Qualification Rates Under Current Standards

The first step in the examination AR 40-501 height and weight standards was to apply the current standards (shown in Tables la and lb) to the NLS, NHANES I, and NHANES II samples and determine the qualification rates for each sample. Given the variation in the application of height standards by the individual services, all analyses used those standards in effect for enlistment and induction into the Army. That is, the minimum acceptable height of 60 inches for males, and 58 inches for females, are applied, while a maximum height of 80 inches for males, and 72 inches for females, are applied.

The screening procedure for determining the qualification for enlistment under the current height and weight standards involved first comparing the height of each individual to the height standards. If the individual failed to meet the minimum standard, or exceeded the maximum standard, they were determined to be not qualified and categorized as "Underheight" "Overheight", respectively. Only if the either or individual met the prescribed height standard was his or her actual body weight compared to the weight standards, for the appropriate age bracket, and their qualification on this criterion determined. Those whose weight was less than the minimum, or greater than the maximum, prescribed weights determined qualified and categorized as either to be not "Underweight" or "Overweight", respectively.

Table 3a presents the percentage of American youth, aged 16-24

years, qualified and not qualified for enlistment under the current AR 40-501 standards for each of the three data sets. Data are presented for each race/ethnic group within each of the three data sets and for those not qualified, broken down by the reason for disqualification. Table 3b presents a similar analysis of the percentage qualified and not qualified for all males and females, aged 16-40 years, for the NHANES I NHANES II data sets. Data are not presented in Table 3b for the NLS sample since the maximum age for participation in this study at the time height and weight data were collected was 24 years.

As shown in Table 3a, 95.9 percent of the young males, aged 16-24 years, in the NLS sample were fully qualified for the enlistment under the current AR 40-501 height and weight standards, as were 94.4 percent of the males in the NHANES I sample and 95.3 percent of the males in the NHANES II sample. In contrast, only 74.4 percent of the females, ages 16-24 years in the NLS sample were fully qualified under the current AR 40-501 height and weight standards, as were 65.4 percent of the NHANES I sample and 67.8 percent of the NHANES II sample. While the percentages of qualified males are all similar in all three samples, the percentage of the NLS sample of qualified females is higher than that obtained for the females in the NHANES I and NHANES II samples.

As stated above, the data for the NLS sample are self-reported, while those for the NHANES I and NHANES II samples are actual measurements. A comparison of the frequency distributions of the heights and weights of the three samples (analysis not shown) indicated that NLS males tended to overstate their height, by about an inch, in comparison to

Table 3a

Percentage Qualified and Not Qualified
Under Current AR 40-501 Height and Weight Standards

16-24 Year-old Males and Females Males Females White Black Hispanic Total White Black Hispanic Total NLS Qualified 95.9 96.0 95.9 76.4 63.2 70.3 74.4 95.9 Not Qualified: 0.3 0.5 Underheight 0.1 0.1 0.0 0.1 1.6 0.8 0.3 0.4 Overheight 0.0 0.0 Underweight 1.3 2.8 1.9 1.3 3.0 Overweight 1.8 3.5 2.7 20.1 32.9 22.3 22,0 4.1 4.0 5.4 4.1 23.6 36.8 29.7 25.6 100.0 100.0 Total 100.0 100.0 100.0 100.0 100.0 100.0 ==== ==== ----===== ===== ===== ===== NHANES I Qualified 94.5 92.3 96.0 65.8 70.5 94.4 60.0 65.4 Not Qualified: 0.0 Underheight 0.0 0.0 0.4 0.0 0.5 4.3 0.6 Overheight 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 Underweight 3.5 0.0 2.1 5.3 Overweight 4.2 28.2 35.5 20.9 4.0 3.5 28.7 5.5 7.7 4.0 5.6 34.2 40.0 29.5 34.6 100.0 100.0 Total 100.0 100.0 100.0 100.0 100.0 100.0 *==== ===== ==== NHANES II Qualified 95.9 95.0 87.1 95.3 70.0 57.3 67.8 60.9 Not Qualified: 0.4 Underheight 0.1 0.5 0.0 0.1 0.4 3.7 0.6 Overheight 0.0 0.0 0.0 0.0 0.0 0.2 1.5 1.8 1.5 Onderweight 0.6 3.6 4.1 12.3 31.4 27.9 Overweight 25.9 38.9 4.1 5.0 12.9 4.7 30.0 42.7 39.1 32.2 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

=====

=====

=====

the actual recorded heights in the MANES I and NHANES II samples. Females in the NLS sample tended to understate their weight, by a few pounds, in comparison to the actual recorded weights in the NHANES I and NHANES II samples. This error in reporting weight probably accounts for the apparent discrepancy between the female qualification rate of the NLS sample compared to the NHANES samples. Accordingly, this should be kept in mind in evaluating the results for the NLS sample and comparing them to the NHANES I and NHANES II samples.

Examination of the qualification rates of males by race/ethnic groups in Table 3a reveals small differences between the groups and between the samples. In contrast, there are large differences among the female race/ethnic groups. Among the NLS sample of females, 76.4 percent of the whites are qualified, compared to 63.2 percent of the blacks, and 70.3 percent of the Hispanics. Among the females in the NHANES I and NHANES II samples, blacks also have the lowest percentage qualified (60.0 percent and 57.3 percent, respectively). Among white females, in the NHANES I sample, 65.8 percent were qualified as were 70.0 percent in the NHANES II sample, compared to 70.5 percent and 60.9 percent, respectively, of the Hispanic females.

The reversal of the lower qualification rate of white females in the NHANES I sample, compared to Hispanics in the NLS and NHANES II samples, is due to sampling variation. Blacks and Hispanics were oversampled in NLS thus reducing the statistical error of the estimates. In contrast, the NHANES I and NHANES II surveys did not employ such oversampling techniques. Accordingly, the data for Hispanics in these

studies must be considered carefully.

The general patterns in the qualification rates found among 16-24 year-olds (Table 3a) also are evident among 16-40 year olds as shown in Table 3b. Table 3b presents data only for the two NHANES samples since 25-40 year olds were not interviewed in the NLS. The qualification rates for all males, aged 16-40 years in the NHANES I and NHANES II samples were 92.9 percent and 93.5 percent, respectively. In contrast, the qualification rate for females in the NHANES I and NHANES II samples were substantially lower at 64.5 percent and 63.9 percent, respectively.

An examination of the qualification rates for males, aged 16-40 years, by race/ethnic group reveals only small differences among the groups in the NHANES I sample. In the NHANES II sample the qualification rates of whites (94.1 percent) and blacks (91.8 percent) are not very dissimilar while the qualification rate is somewhat lower for Hispanics (87.7 percent). Among females, aged 16-40 years, the qualification rate for whites is the highest (66.7 percent in NHANES I and 66.5 percent in NHANES II), while that for the blacks is substantially lower (49.4 percent in NHANES I and 52.5 percent in NHANES II). The rather large disparity between the qualification rate of Hispanics in the NHANES I sample (63.3 percent) compared to the NHANES II sample (52.3 percent) may be attributed to sampling error.

The examination of Tables 3a and 3b indicates that the principal cause for disqualification, regardless of age, sex, or race/ethnic group is overweightedness. Table 4 summarizes the data on disqualification

Table 3b

Percentage Qualified and Not Qualified
Under Current AR 40-501 Height and Weight Standards
:

16-40 Year-old Males and Females

			Males			F	`emales	
	White	Black	Hispanic	Total	White	Black	Hispanic	Total
NHANES I								
Qualified	93.0	90.0	97.5	92.9	66.7	49.4	63.3	64.5
Not Qualified: Underheight Overheight Underweight Overweight	0.0 0.0 1.2 5.8	0.0 0.0 2.8 7.3	0.0 0.0 0.0 2.5	0.0 0.0 1.3 5.8	0.4 0.0 3.4 29.5	0.4 0.0 3.6 46.7	3.5 0.0 2.6 30.6	0.5 0.0 3.4 31.6
	7.0	10.0	2.5	7.1	33.3	50.6	36.7	35.5
Total NHANES II	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Qualified	94.1	91.8	87.7	93.5	66.5	52.5	52.3	63.9
Not Qualified: Underheight Overheight Underweight Overweight	0.1 0.0 0.9 4.9	0.5 0.0 0.9 6.9	0.0 0.0 0.3 12.1	0.1 0.0 0.9 5.5	0.2 0.1 2.7 30.6	0.2 0.1 1.8 45.3	5.2 0.0 3.4 39.1	0.5 0.1 2.6 32.9
	5.9	8.2	12.3	6.5	33.5	47.5	47.7	36.1
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

rates for overweightedness for each data set broken down by sex, race/ethnicity, and age. Among the males there is consistency in the rates of overweightedness between the three samples and between the three race/ethnic groups for the aggregated 16-24 year-olds and 16-40 year olds. Exceptions to this consistency appear among the 16-40 year-old Hispanics in the NHANES I data set (2.5 percent) and in the NHANES II data set (12.1 percent). Noteworthy in Table 4 is the finding that the percentage of males who are overweight in the 16-20 year-old and 21-25 year-old age brackets differ little from each other, but then increases successively in the 25-30, 31-35, and 36-40 year-old brackets.

In contrast to the relatively low disqualification rates among males for overweightedness are the very high rates among females regardless of age or race/ethnicity. Among all females, aged 16-24 years, 22.0 percent of the NLS sample, 28.7 percent of the NHANES I sample, and 27.9 percent of the NHANES II sample exceeded the AR 40-501 maximum weight standards. Among black females, 32.9 percent of the NLS sample, 35.5 percent of the NHANES I sample and 38.9 percent of the NHANES II sample were overweight. While the percentages of white and Hispanic females disqualified for overweightedness were lower than those for blacks, the percentages were still very high, falling in the range of 20.9 percent to 31.4 percent.

For all females, aged 16-40 years, the percentage overweight was 31.6 percent for the NHANES I sample and 32.9 percent for the NHANES II sample. Black females were disqualified at the highest rates (46.7 percent in the NHANES I sample and 45.3 percent in the NHANES II

Table 4

Percentage Overweight Under
Current AR 40-501 Height and Weight Standards

		Current	AR 40-501 B	eight and Wei	ght Standards			
			Males			F	emales	
	White	Black	Bispanic	Total	White	Black	Hispanic	Total
NT.S								
16-20 21-24	2.6 3.0	1.8	3.5 3.5	2.5	19.2 21.5	32.1 34.2	20.3	21.1
16-24	2.8	1.8	3.5	2.7	20.1	32.9	22.3	22.0
VERANES I								
16-20 21-24	3.5 3.3	3.8 4.7	7.1	3.4	26.1	32.6 39.2	22.8	26.7 31.2
16-24	3.4	4.2	4.0	3.5	28.2	35.5	20.9	28.7
25-30 31-35 36-40	6.6 7.9 9.5	10.7 3.6 19.5	1.3 0.0 1.4	6.7 7.1 9.8	30.0 27.8 34.5	48.9 54.8 67.5	37.8 49.8 34.6	32.6 32.0 38.6
Total	5.8	7.3	2.5	5.8	29.5	46.7	30.6	31.6
HANES II								
16-20 21-24	2.4	2.9	7.9	3.2	26.7 24.8	34.5 44.7	33.2 29.7	28.1
16-24	2.5	2.7	12.3	3.1	25.9	38.9	31.4	27.9
25-30 31-35 36-40	4.6 7.4 9.9	6.2 10.1 21.5	8.5 2.5 23.4	4.9 7.4 11.9	33.6 34.8 33.7	48.0 54.7 54.1	41.0 69.0 34.3	35.9 37.8 36.4
Total	4.9	6.9	12.1	5.5	30.6	45.3	39.1	32,9

sample) with white and Hispanic females disqualified at rates ranging from 29.5 percent to 39.1 percent. As was the case with the males, the percentage of females categorized as overweight generally increased with age.

SECTION IV

Explication of the Difference in Qualification Rates Between Males and Females

There are two possible explanations that can account for the differences in disqualification rates for overweightedness of males and females under current AR 40-501 standards for enlistment. First, it may be that when sex, age, and height are controlled for, females may indeed be more overweight than males. Second, it may be that the structure of the standards themselves result in a disproportionately smaller percentage of females being qualified compared to males. We shall consider each of these two explanations in turn.

The common clinical definition of overweightedness is an excess of body weight relative to standards at each height. The most widely used set of standards used in clinical practice is the 1983 Metropolitan Height and Weight tables (Statistical Bulletin, Jan - June 1983) which are indicate the range of weights associated with lowest intended to definition of mortality. Another overweightedness is one that characterizes an individual whose weight is 20 percent or more in excess of the mean weight for their height as overweight (Society of Actuaries and Association of Life Insurance Medical Directors of America, 1980). While this method has shortcomings, in that it does not take into consideration the proportion of body weight that is fat, as opposed to bone, muscle, and soft tissue, it is useful in making basic judgments as to the likelihood of future morbidity and mortality.

Rates of Overweightedness Among Males and Females

Table 5 presents summary data reported in the Build Study 1979 (Society of Actuaries and Association of Life Insurance Medical Directors of America, 1980), showing the percentages of males and females whose body weight was 20 percent or more in excess of the mean weight among the several million life insurance policies examined in the Build Study 1979 and the 13,645 persons, aged 18-74 years, drawn from the general population in the MHANES I survey. Fxcept for the 15-19 year-old age bracket, a larger proportion of females compared to males had body weights 20 percent or more in excess of the mean weight. Overall, 4 percent of the males, aged 15-69, were reported to be overweight compared to 10 percent of the females. The NHANES I data reported in the <u>Build Study</u> 1979, and presented in Table 5, show that 11-12 percent of all males, aged 20-69 characterized as overweight compared to years, could be 15-16 percent of the females in the same age brackets.

Additional evidence of higher rates of overweightedness among females, compared to males, is found in the three data sets used in this report. Table 6 presents the percentages of males and females in the NLS, NHANES I, and NHANES II data sets whose body weight was 20 percent or more in excess of the mean for the AR 40-501 age brackets (controlling for height) in total, and broken down by race/ethnic group. Among all males, aged 16-24 years, 5.8 percent of the NLS sample, 7.8 percent of the NHANES I sample, and 6.9 percent of the NHANES II sample could be considered to be overweight. These percentages are lower than those found among females. In the NLS sample, 7.3 percent of the 16-24 year-old

Table 5

Percentages of Males and Females with Weights 20 Percent or More in Excess of Mean Weight

	Body B	uild 1979	NHA	NES II
Age	Males	Females	Males	<u>Females</u>
15-19 year-olds	8	6	-	-
20-29 year-olds	7	9	11	15
30-39 year-olds	5	10	11	15
40-49 year-olds	4	10	12	16
50-59 year-olds	4	10	12	16
60-69 year-olds	4	9	11	15
Total	4	10		

Table 6

Percentage of Samples with Body Weight 20 percent or More in Excess of Average Body Weight

			Males			F	enales	
	White	Black	Hispanic	Total	White	Black	Hispanic	Tota
L S								
16-20 21-24	5.4 6.8	3.8 5.2	7.5 5.5	5.2	6.8	10.6	7.9	6. 8.
16-24	6.0	4.3	6.8	5,8	6.8	11.5	5.7	7.
THANES I								
16-20 21-24	8.1	6.1	5.2 10.6	7.8 7.8	9.4 9.2	15.0 21.2	2.9 7.5	9. 10.
16-24	8.0	6.3	٠,9	7.8	9.3	17.7	5.0	10.
25-30 31-35 36-40	8.3 8.8 5.4	12.4 3.6 19.5	8.6 3.4 1.4	8.6 8.0 6.3	12.2 12.5 15.4	22.0 30.5 29.2	28.9 16.8 7.0	14. 14. 16.
Total	7.8	8.7	6.4	7.8	11.4	22.5	11.2	12.
HANES II								
16-20 21-24	4.8 8.0	6.6 5.5	24.2	6.1 8.0	9.3	13.5 23.4	11.3	9. 12.
16-24	6.2	6.1	18.5	6.9	9.9	17.7	9.7	10.
25-30 31-35 36-40	7.0 7.5 8.5	11.3 10.1 11.7	11.0 2.5 20.8	7.6 7.5 9.7	13.1 18.5 14.6	29.3 26.5 32.7	15.9 45.2 8.1	15. 18. 16.
Total	7.0	8.6	14.9	7.6	13.8	24.1	15.5	14.

females were overweight, compared to 10.1 percent of the NHANES I sample and 10.9 percent of the NHANES II sample.

Among all males, aged 16-40 years, the percentage of the NHANES I sample whose weight was 20 percent or more in excess of the mean was 7.8 percent while it was 7.6 percent among the NHANES II sample. In contrast, 12.8 percent of all females, aged 16-40 years, in the NHANES I sample and 14.2 percent of all females, aged 16-40 years, in the NHANES II sample weighted 20 percent or more in excess of the mean weight.

The comparison of the rates of overweightedness among males by race/ethnic group in Table 6 shows little variation except for the Hispanic males in the NHANES II sample. Among the females, however, there is a large difference between the rates of overweightedness for black females compared to white and Hispanic females. Among the 16-24 year-old black females in the NLS sample, 11.5 percent were overweight, compared to 6.8 percent of the white females, 5.7 percent of the Hispanic females. Among the 16-24 year old females in the NHANES I sample 17.7 percent were overweight, compared to 9.3 percent and 5.0 percent of the white and Hispanic females, respectively. In the NHANES II sample, 17.7 percent of the black females, aged 16-24 years, weighed 20 percent or more in excess of the mean weight, compared to 9.9 percent and 9.7 percent of the white Hispanic females, respectively. Comparison of the rates of overweightedness among black women, aged 16-40 years, to those for white and Hispanic females reveal similarly large differences.

Thus, the data presented in Tables 5 and 6 support the hypothesis

that, when sex, age, and height are controlled, females are more overweight than males. This finding leads to the conclusion that some portion, but not all, of the differences in disqualification rates for overweightedness presented in Table 4 is due to sex differences. Next, we shall pursue the second hypothesis, that the maximum weight standards for males and females published in AR 40-501 were constructed in a differential manner.

Comparison of AR 40-501 Maximum Weight Standards to Mean Body Weight

The analytic explication of this hypothesis involves a comparison of the mean body weight, at each height, of the males and females in each of the three data sets to the current AR 40-501 maximum weight standard at each height. Tables 7a-1 through 7e-2 present the AR 40-501 maximum allowable weight, NLS, NHANES I and NHANES II mean weight, and the percentage of the mean body weight of the AR 40-501 maximum for each of the five age brackets. The asterisk next to the mean body weights in these tables indicates that fewer than 25 cases were included in the calculation of the mean. These values should be carefully considered since the mean may be skewed due to exterme weights among such a small subsample.

Table 7a-1 presents data for the NLS sample of 16-20 year-old males and females. Among the males, between 62 and 77 inches tall, the mean weight at each height ranges from 73 percent to 77 percent of the maximum weight permitted under the current AR 40-501. In contrast, the mean weight of females at each height, between 59 and 71 inches, ranges from

Table 7a-1

Comparison of Current AR 40-501 Maximum Weight Standards and Hean Body Weight by Beight

16-20 Year-old Males and Females
MLS Sample

	AR 40)-501 n Weight		les	Pena	
Height (inches)		Pemales	Body Weight	Percentage of AR 40-501	Mean Body Weight	Percentage of AR 40-501
58		120			104*	87
59		122			111	91
60	158	124	147*	93	114	92
61	163	127	127*	78	116	91
62	168	128	127	76	119	95
63	174	132	131	75	123	93
64	179	135	134	75	125	93
65	185	138	139	75	128	93
66	191	141	143	75	131	93
67	197	145	145	74	136	94
68	203	150	148	73	140	93
69	209	154	153	73	147	95
70	215	158	158	73	146	92
71	221	162	161	73	146	90
72	227	167	168	74	160*	96
73	233		172	74		
74	249		179	75		
75	246		185	75		
76	253		194	77		
77	260		199	77		
78	267		186*	70		
79	273		190*	70		
80	280		234*	84		

^{*} Indicates 25 or fewer cases included in the calculation of the mean.

90 percent to 96 percent of the maximum weight permitted under the current AR 40-501. The data for the NHANES I and NHANES II samples of 16-20 year-olds are similar (Tables 7a-2 and 7a-3), showing that the mean weight of males, as a percentage of the AR 40-501 maximum, are consistently lower that for females.

For the 21-24 year-old males and females similar results were obtained. Among the males in the NLS sample, between 64 and 76 inches tall, the mean weight as a percentage of the AR 40-501 maximum ranges from 74 percent to 79 percent, while for females, between 59 and 70 inches tall, the range is 91 percent to 96 percent (Table 7b-1). The data for the NHANES I (Table 7b-2) and NHANES II (Table 7b-3) samples of 21-24 year-old males and females are similar to those for the NLS sample.

Among the 25-30 year-olds (Tables 7c-1 and 7c-2), 31-35 year-olds (Tables 7d-1 and 7c-2), and 36-40 year-olds (Tables 7e-1 and 7e-2) the percentage of mean weight of the AR 40-501 maximum weight is consistently lower among the males compared to the females.

In sum, these data show that the maximum weight permitted males under AR 40-501 is more liberal than the maximum weight permitted females. Returning to Table 7a-1 for an example, we see that a 67 inch tall male, between 16 and 20 years old, may weight up to 197 pounds and still be qualified for enlistment. Dividing the 145 pound mean weight of NLS males at this height by the 197 pound AR 40-501 maximum yields the percentage (74 percent) of the mean weight of males this height of the AR 40-501 maximum. The reciprocal of this percentage (1 divided by .74) yields the maximum percentage (136 percent) of mean body weight at this

Table 7a-2

Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Beight

16-20 Year-old Males and Females

NHANES I Sample

		0-501 m Weight		les	Pema	les
Height (inches)	Males	Pemales	Hean Body Weight	Percentage of AR 40-501	Mean Body Weight	Percentage of
58 59		120 122			115* 112*	96 92
60	158	124			117	94
61	163	127			117	92
62 63	168 174	128 132	125 * 118 *	74 68	120 129	94 98
64	179	135	147*	82	131	97
65 66	185 191	138 141	124 138	67 73	128 137	93 97
67	197	145	149	76	129	89
68 69	203 209	150 154	150 152	7 4 73	138 158*	92 103
70	215	158	161	75	136*	86
71 72	221 227	162 167	165 168	75 74	148* 140*	91 84
73	233		174	75		
74 75	240 246		178* 172*	7 4 70		
76	253		176*	70		
77 78	260 267		171*	66		
79	273					
80	280					

^{*} Indicates 25 or fewer cases included in the calculation of the mean.

Table 7a-3

Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Height

16-20 year old Males and Females ${\tt NHANES~II~Sample~,}$

		0-501 m Weight		les	Pema	
Height (inches)		Females	Mean	Percentage of AR 40-501		Percentage of
- 58 59 60	158	120 122 124	118*	75	118* 130* 113*	98 107 91
61 62 63	163 168 174	127 128 132	104* 127* 132*	64 76 76	119 126 126	98 98 95
64 65 66	179 185 191	135 138 141	129* 134 139	72 72 73	131 132 134	97 96 95
67 68 [.] 69	197 203 209	145 150 154	141 146 151	72 72 72	137 142 150*	94 95 97
70 71 72	215 221 227	158 162 167	160 158 169	74 71 74	147* 155* 252*	93 96 151
73 74 75	233 240 246		167 173 186*	72 72 76		
76 77 78	253 260 267		201* 221*	79 85		
79 80	273 280					

^{*} Indicates 25 or fewer cases included in the calculation of the mean.

Table 7b-1

Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Reight

21-24 Year-old Males and Females
NLS Sample

	AR 40	-501 Weight		les	Fema	
Height (inches)		Females	Mean Body Weight	Percentage of AR 40-501	Mean Body Weight	Percentage of AR 40-501
58		124			112*	90
59		126			120	95
60	163	128	141*	87	117	91
61	168	130	146*	87	121	93
62	174	132	147	84	125	95
63	180	134	134	74	125	93
64	185	136	142	77	129	95
65	191	140	150	79	130	93
66	197	145	148	75	137	94
67	203	149	152	75	139	93
68	209	153	157	75	145	95
69	215	157	161	75	151	96
70	222	162	164	74	146	90
71	228	166	171	75	148*	89
72	234	171	176	75	156*	91
73	241		179	74		
74	248		18 8	76		
75	254		194	76		
76	261		206	79		
77	268		208*	78		
78	275		242*	88		
79	282		213*	76		
80	289					

^{*} Indicates 25 or fewer cases included in the calculation of the mean.

Table 7b-2

Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Height

21-24 Year-old Males and Females

NHANES I Sample

		0-501 n Weight	Ma	les	Fema	
Height (inches)		Females	Body Weight	Percentage of AR 40-501	Body Weight	Percentage of AR 40-501
58		124				
59		126				
60	163	128			121	95
61	168	130	140*	83	125	96
62	174	132			121	92
63	180	134	122*	68	130	97
64	185	136	152*	82	131	96
65	191	140	136*	71	140	100
66	197	145	151	77	142	98
67	203	149	153	75	150	101
68	209	153	158	76	144	94
69	215	157	161	75	139*	89
70	222	162	170	77	143*	88
71	228	166	16 6	73	172*	104
72	234	171	182	78	175*	102
73	241		185	7 7		
74	248		188*	76		
75	254		193*	7 6		
76	261		179*	69		
77	268		214*	80		
78	275		239*	87		
79	2 82					
80	289					

ullet Indicates 25 or fewer cases included in the calculation of the mean.

Table 7b-3

Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Beight

21-24 year old Males and Females

le ارNHANES II Sam

		0-501 m Weight		les	Fema	
Reight (inches)		Pemales	Mean	Percentage of AR 40-501		Percentage of
58		124			1004	23
59		126			100 * 114 *	81 90
60	163	128			118*	90
61	168	130			***	
62	174	132	142*	22	123	95
63	180	134	144*	82 80	123 135	93 101
64	185	136	142*	77	133	98
65	191	140	143*	75	139	99
66	197	145	152	77	140	97
67	203	149	155	76	149	100
68	209	153	154	74	138	90
69	215	157	167	78	148*	94
70	222	162	162	73	138*	85
71	228	166	169	74	161*	97
72	234	171	176	75	231*	135
73	241		182	76		
74	248		182*	73		
75	254		203*	80		
76	261		216*	83		
77	268		210	03		
78	275		187*			
79	282		172*			
80	282 289		1/2*			

^{*} Indicates 25 or fewer cases included in the calculation of the mean.

 $\begin{tabular}{ll} Table $7c$-1 \\ Comparison of Current AR 40-501 Maximum Weight Standards \\ and Mean Body Weight by Height \\ \end{tabular}$

25-30 Year-old Males and Females

NHANES I Sample

		0-501 m Weight		les	Рета	les
Height (inches)	Males	Females	Mean Body Weight	Percentage of AR 40~501	Mean Body Weight	Percentage of AR 40-501
58		126				
59		128				
60	163	130	122*	75	120	92
61	168	132			130	98
62	174	134	142*	82	130	97
63	180	136	150*	83	134	99
64	185	139	149*	81	138	99
65	191	144	149*	78	141	98
66	197	148	151	77	138	93
67	203	152	162	80	153	101
68	209	156	165	79	155	99
69	215	161	169	79	149	93
70	222	165	181	82	149*	90
71	228	169	171	75	151*	89
72	234	174	193	82	145*	83
73	241		191	79		
74	248		194*	78		
75	254		204*	80		
76	261		216*	83		
77	268		187*	70		
78	275		232*	84		
79	282					
80	289					

^{*} Indicates 25 or fewer cases included in the calculation of the mean.

Table 7c-2

Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Height

25-30 Year-old Males and Females

NHANES II Sample

	AR 40-501		Ma	les	Females		
Height (inches)	Maximum Weight Males Females		Mean Body Weight	Percentage of		Percentage of	
		Females	Body Weight	AK 40-301			
					125*	99	
58		126			120*	94	
59		128			119	92	
60	163	130			119	, <u>.</u>	
-					135	102	
61	168	132	126*	75	135	101	
62	174	134	125*	72	135	99	
63	180	136	135*	75	133	,,,	
			•	77	145	104	
64	185	139	143*		138	96	
65	191	144	158	83	140	95	
66	197	148	154	78	140		
				81	152	101	
67	203	152	165	77	151	97	
68	209	156	161	79	147	91	
69	215	161	169	/ 9	24.		
			173	78	183*	111	
70	222	165	174	76	155*	92	
71	228	169	190	81			
72	234	174	190	81			
	241		187	78			
73			184*	74			
74	248		200*	79			
75	254		200	, -			
76	261		189*	72			
	268		187*	70			
77	275		196*	71			
78	2/5		170	· -			
79	28 2						
80	289						

^{*} Indicates 25 or fewer cases included in the calculation of the mean.

Table 7d-1

Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Beight

31-35 Year-old Males and Females

NHANES I Sample

	AR 40	-501		les	Females		
Reight	Maximum Weight		Mean	Percentage of		Percentage of	
inches)	Males	Females	Body Weight		Body Weight		
		129					
58							
5 9		131			140	105	
60	162	133					
					127	94	
61	167	135	1704	99	136	99	
62	173	137	172*	83	135	97	
63	178	139	148*	83	133		
				87	146	102	
64	184	143	160*		145	98	
65	190	148	157*	83	152	101	
66	196	151	164*	84	152	101	
			170	84	146	94	
67	202	156		80	161	101	
68	208	160	167	86	174*	106	
69	214	164	183	86	7.4		
	220	168	181	82	166*	99	
70		173	186	82	129*	75	
71	227		183	79	166*	93	
72	233	178	103	, ,			
73	240		203*	85			
74	246		195*	79			
	253		202*	80			
75	253		202				
76	260		234	90			
77	266						
78	273		272*				
/ 0	2/3						
79	281						
80	288		234*				

^{*} Indicates 25 or fewer cases included in the calculation of the mean.

Table 7d-2

Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Height

31-35 year old Males and Females

NHANES II Sample

	AR 40-501 Maximum Weight		Ma	les	Fema	les
Reight (inches)		Pemales	Body Weight	Percentage of AR 40~501	Mean Body Weight	Percentage of AR 40-501
58		120				22
59		129 131			128* 145*	99
60	162	133				112
60	102	133			127*	95
61	167	135	140*	84	140	105
62	173	137	166*	96	130	95
63	178	139	• • • • • • • • • • • • • • • • • • • •	20	142	102
64	184	143	141*	77	143	100
65	190	148	149	78	158	107
6 6	196	151	156	80	150	99
67	202	156	163	81	151	97
68	208	160	173	83	165	103
69	214	164	166	78	163*	99
70	220	168	183	83	167*	99
71	227	173	186	82	191*	110
72	233	178	181	78	171	110
	2.42			•		
73	240		200*	83		
74	246		199*	81		
75	253		204*	81		
76	260		206*	79		
77	266					
78	273					
79	281					
80	288					

^{*} Indicates 25 or fewer cases included in the calculation of the mean.

Table 7e-1

Comparison of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Height

35-40 Year-old Males and Females
NHANES I Sample

)-501 n Weight	Ma	les	Fema	
Height (inches)	Males	Females	Body Weight	Percentage of AR 40-501	Body Weight	Percentage of AR 40-501
58		132				
59 60	157	134 136	124*	80	144	106
61	162	139	180*	111	130	94
62 63	168 173	140 143	138* 144*	82 83	139 149	99 104
64	179	145	145*	81	142	98
65 6 6	18 4 190	150 15 4	156* 163*	85 86	149 162	99 105
67	196	158	165	€ 4	156	99
68 69	202 208	162 167	176 175	8.7 8.4	166 171*	102 102
70	214	171	175	82	163*	95
71 72	220 226	175 181	184 194	84 86	146* 166*	83 92
73	233		201 *	86		
74 75	239 246		201 * 242 *	84 98		
76	252		225*	89		
7 7 78	259 266					
79	273					
80	279					

^{*} Indicates 25 or fewer cases included in the calculation of the mean.

Table 7e-2

Comparisin of Current AR 40-501 Maximum Weight Standards and Mean Body Weight by Reight

35-40 year old Males and Females

NHANES II Sample

	AR 40)-501 h Weight		les	Fema	les
Height (inches)		Females	Mean Body Weight	Percentage of AR 40-501	Mean Body Weight	Percentage of AR 40-501
5 8 5 9		132 134			213* 143*	161 107
60	157	136	105*	67	131*	96
60	197	130	103	0,	*3*	,,
61	162	139			143	103
62	168	140	176*	105	139	99
63	173	143	134*	77	148	103
64	179	145	146*	82	145	100
65	134	150	162*	88	147	98
6 6	190	154	163*	36	152	99
67	196	158	161	82	155	98
68	202	162	171	85	159*	98
69	208	167	179	8 6	163*	98
70	214	171	189	8.8	166*	97
71	220	175	187	85		
72	226	181	190	я.4		
73	233		197 *	95		
74	239		192*	80		
75	246		195*	79		
76	252		224*	89		
77	259		186*	~2		
78	266					
79	273		194*	71		
80	279					

^{*} Indicates 25 or fewer cases included in the calculation of the mean.

height permitted under AR 40-501. In contrast, the reciprocal of the percentage of mean body weight to the AR 40-501 maximum for a 67 inch tall female, between 16 and 20 years old, is 107 percent (1/(136/145)). Thus, the methodology employed in AR 40-501 for establishing the maximum allowable weight for males differs from that used for females. The second of the two explanations is also confirmed; the current AR 40-501 weight standards are, in fact, constructed in such a way to result in a disproportionately smaller percentage of females being qualified compared to males.

SECTION V

The Development of Proposed Revised Maximum Weight Standards

Having shown that the structure of the AR 40-501 weight standards disproportionately disqualifies females (and older males) compared to males, aged 16-24 years, we shall now develop revised maximum allowable weight standards that are uniformily constructed for both sexes and for all age brackets. This portion of the analysis involves precisely defining the methodology used to establish the current maximum weight standards for the 16-20 year-old and 21 to 24 year-old males, and then applying the same methodology to the females and older males. As noted in the Introduction, we are guided by the analytic constraint that the AR 40-501 maximum weight standards for young males, aged 16-24 years, should remain unchanged.

The Body-Mass Index

The analysis at this point introduces the use of the body-mass index as an analytic tool. The establishment of maximum allowable weights must take into consideration the height, age, and sex of the individual. However, consideration of maximum weight as a function of height, age, and sex is an extremely cumbersome task given that we are dealing with heights ranging from 58 to 80 inches, five age brackets, and the two sexes. Further, simply evaluating weight as a function of height is not a particularly good measure of the degree of overweightedness. More effective is an index that is highly correlated with the amount of body fat and is independent of height (Statistical Bulletin, Jan - Mar 1984).

An index that meets these criteria is one that is expressed by the formula $BM=W/H^2$, in which body-mass (BM) is equal to weight (W) expressed in kilograms divided by height (H) expressed in meters squared.

In a validation of the use of the body-mass index as an effective quantitative method in the analysis of weights in the NHANES I sample (National Center for Health Statistics, 1983), it was determined the formula BM=W/H² was extremely effective in predicting the mean weight of males at each height from a regression equation of weight on height. However, when the formula BM=W/H² was applied to females, it was found that the predicted mean weight of short females was overestimated, compared to calculated mean weight, while the estimated mean weight of tall females was underestimated, compared to calculated mean weight. When height in the formula as applied to females was raised to the 1.5 power, rather than the 2 power, the overestimates and underestimates of mean weight for short and tall females, respectively, disappeared resulting in predictions as accurate as those for males using the BM = W/H² formula. (For a more detailed and technical discussion of the body-mass index see the Appendix, page A-31.).

Tables 8a and 8b present the current AR 40-501 height and weight tables for males and females, respectively (see Tables 1a and 1b), converted to a body-mass standard using the formula $BM = W/H^2$. Table 8c presents the converted current standards for females using the formula $BM=W/H^{1.5}$. Although the standards for females using the formula $BM=W/H^{2}$ shown in Table 8b are not used in the present analysis, they are presented to illustrate an additional point regarding the differing

Table 8a

AR 40-501, Appendix III, Table I
Converted to BM=W/H²

Males

	Minimum	Maximum							
Height (inches)	(regardless of age)	16-20 yrs	21-30 yrs	31-35 yrs	36-40 yrs	41 yrs and over			
60	20 19 19 18	31 31 31 31	32 32 32 32 32	32 32 32 32 32	31 31 31 31	29 29 29 29			
64	18 18 17 17	31 31 31 31	32 32 32 32 32	32 32 32 32 32	31 31 31 31	29 29 29 29			
68	17 18 18 18	31 31 31 31	32 32 32 32 32	32 32 32 32 32	31 31 31 31	29 29 29 29			
72 73 74 75	18 18 18 18	31 31 31 31	32 32 32 32 32	32 32 32 32 32	31 31 31 31	29 29 29 29			
76	18 18 18 18	31 31 31 31	32 32 32 32 32	32 32 32 32 32	31 31 31 31	29 29 29 29			
80	18	31	32	32	31	29			

Table 8b

AR 40-501, Appendix III, Table II

Converted to BM=W/H²

Females

	Minimum (regardless of age)	Maximum						
Height (inches)		18-20 yrs	21-24 yrs	25-30 yrs	31-35 yrs	36-40 yrs	41 yrs and over	
56 59 61	19 19 18 18	25 25 24 24	26 25 25 25	26 26 25 25	27 26 26 26	28 27 27 26	28 28 27 27	
6? 43. 64.	18 18 18 17	23 23 23 23	23 24 23 23	25 24 24 24	25 25 25 25 25	26 25 25 25	26 26 26 25	
te e7 60	1.7	23 23 23 23	23 23 23 23	24 24 24 24 24	24 24 24 24 24	25 25 25 25	25 25 25 25	
7j		23 23 23	23 23 23	24 24 24	24 24 24	25 25 25	25 25 25	

Table 8c

AR 40-501, Appendix III, Table II

Converted to BM=W/H^{1.5}

Females

	Minimum (regardless of age)	Maximum						
Height (inches)		18-20 yrs	21-24 yrs	25-30 yrs	31-35 yrs	36-40 yrs	41 yrs and over	
58	23	30 30 30 30 30	31 31 31 31	32 32 31 31	33 32 32 32 32	33 33 33 33	34 34 34 33	
62	. 22	29 30 30 30	30 30 30 30 30	31 30 30 31	31 31 31 32	32 32 32 32 32	33 32 33 33	
66	22 22 22 22 22	29 30 30 30	30 30 31 31	31 31 31 31	32 32 32 32 32	32 32 32 32 33	33 33 33 33	
70 71 72		30 30 31	31 31 31	32 32 32	32 32 33	33 33 33	33 34 34	

methodology applied to males and females.

In 1974, the Army, in concert with the other services, and in response to a request of the Office of Assistant Secretary of Defense (Manpower and Reserve Affairs) reviewed the appropriateness of the AR 40-501 height and weight standards. As part of this review, the Armed Forces Epidemiological Board provided expert consultants who recommended that a single body-mass index value be applied as the weight standard for all heights within an age bracket, and that the maximum weight in pounds at each height be derived from the index value. These recommendations were approved and resulted in adjustments to the weight standards for males in May, 1976. It is these standards which are presently in effect.

As can be seen in Table 8a, the maximum body-mass value within each age bracket is the same regardless of height. The mimimum body-mass index, which applies regardless of age, however, varies among the heights. The minimum weight standards were not the subject of the 1974 review and were not revised. In contrast to the standards for males expressed by the formula BM=W/H² are those for females, presented in Table 8b using the same formula. The standards for females were not revised in 1976, and within each age bracket and for the minimum, vary among the heights, with shorter females permitted a larger body-mass than taller women.

Another anomaly in the application of the body-mass approach to establishing minimum and maximum weight standards is that the current AR 40-501 tables specify a weight in pounds that falls in the mid-range for a particular body-mass value. For example, the tables specify that a

16 year-old male, 69 inches tall, weigh no more than 209 pounds. This height and weight converts to a body-mass value of 31. The range of weights for this height and body-mass value is 207-213 pounds. The rationale for specifying a mid-range weight maximum is not apparent. Simplicity, and the rationale of the body-mass approach, suggest that the maximum weight of the body-mass value range ought to be used in specifying the maximum allowable weight in pounds. Similarly, a mid-range value for weight in pounds is used to establish the minimum required weight, rather than the minimum weight of the body-mass value range.

The precedent established in 1976 for using a single body-mass value for all heights within an age bracket to set the maximum weight permitted males will be observed here as we propose revisions to the standards. Further, this methodology will also be applied to the minimum required weights for males, and the minimum and maximum weights for females. The minimum weight of the body-mass value weight range will be used to establish the minimum required weight, and the maximum weight of the body-mass range will be used for the maximum. This is in contrast to the use of a mid-range weight of the body-mass index as currently applied in the standards for males.

The effect of these latter adjustments is shown in Tables 9a and 9b. These tables present the percentage of Americans, aged 16-24 years and aged 16-40 years, respectively, qualified and not qualified for enlistment under current AR 40-501 standards expressed in body-mass values (see Table 8a, for males, and Table 8c, for females). A comparison of Tables 9a and 9b to Tables 3a and 3b shows only minor changes in the

Table 9a Percentage Qualified and Not Qualified Under Current AR 40-501 Beight and Weight Standards

16-24 Year-old Males and Females

	1	6-24 Year-ol	d Males and F	emales			
		Males					
White	Black	Rispanic	Total	White	Black	Hispanic	Total

96.8	96,5	96.2	96.8	78.8	66.6	75.7	77.0
C.1	C.1	0.0	0.1	0.3	1.6	0.8	0.5
1.0							0.1
2.1	1.6	2.3	2.0	18.9	30.2	21.0	20.5
3.2	3.5	8. ٦	3.2	21.2	33.4	24.3	23.0
100.0	100.0	100.0	100.0	100.0	170.0	100.0	100.0
7 2 2 7	2 2 4 = 2	====	= = = =	====	= = = ==		* = 2 2 3
96.3	93.1	96.0	95.9	70.9	62.8	77.5	.0.3
					2.5		0.6
1.5	3.2	^.ő	1.5	1.6		4.1	3.5
2.3	3.7	4.0		25.2	33.8	14.1	25.6
7.7	6.9	4.0	4.1	29.1	37.2	22.5	29.7
100.0	100.0	100.0	:00.0	100,0	101.0	110.0	130.0
7 2 2 7 2	= # = # =	2322	2072 2	== :: 4 =	22225	*==	1121
96.5	96.9	87.1	95.9	⁻ 4.8	61.2	66 .9	72.5
0.1	0.5	0.0	0.1	0.4	≎.4	3.7	0.6
				Ú.3	î. 3		r.2 1.8
2.3	2.3	12.3	2.9	22.9	36.5	26.3	24.9
3.5	3.1	12.9	4.1	25,2	38.8	33.1	27.5
100.0	100.0	100.0	100.0	100,0	300.0	100.0	100.0
	96.8 0.1 1.0 2.1 100.0 100.0 100.0 100.0 1.5 100.0 2.3 100.0 2.3 100.0 2.3 100.0	#hite Black 96.8 96.5 C.1 C.1 7.0 0.3 1.0 1.4 2.1 1.6 3.2 3.5 100.0 100.0 100.0 100.0 1.5 3.0 2.3 3.7 3.7 6.9 100.0 100.0 1.5 3.0 2.3 3.7 3.7 6.9 100.0	######################################	### White Black Hispanic Total	White Black Hispanic Total White 96.8 96.5 96.2 96.8 79.8 0.1 0.1 0.0 0.1 0.3 1.0 0.3 2.0 0.1 2.1 1.0 1.4 1.5 1.1 2.0 2.1 1.6 2.3 2.0 18.9 100.0 1.06.0 2.3 2.0 18.9 100.0 1.00.0 1.00.0 1.00.0 1.00.0 100.0 1.00.0 1.00.0 1.00.0 1.00.0 100.0 1.00.0 1.00.0 1.00.0 1.00.0 1.5 2.0 2.0 2.0 2.0 2.0 1.5 2.0 2.0 2.0 2.0 2.0 2.0 1.5 2.0 2.0 1.0 2.0 2.0 2.0 2.0 1.5 2.0 2.0 4.0 4.1 2.0 2.0 2.0 2.0 2.0 2.0	### White Slack Hispanic Total White Slack	White Black Hispanic Total White Black Hispanic 96.8 96.8 96.8 79.8 66.6 75.7 C.1 C.1 0.0 0.1 0.3 1.6 7.8 7.0 0.3 70.0 0.1 7.1 0.2 0.4 1.0 1.4 7.5 1.1 1.0 1.4 2.2 2.1 1.6 2.3 2.0 18.9 30.2 21.0 3.2 1.5 7.8 3.2 21.2 32.4 24.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2.0 0.0 0.0 0.4 0.5 4.3 2.0 0.0 0.0 0.4 0.5 4.3 2.0 0.0 0.0 0.4 0.5 4.3 2.0 0.0

Taile 9b

Percentage Qualified and Not Tralified
Under Current AP 40-521 Height and weight Standards

16-40 Year-old Males and Ferales

			Males			Į.	emales	
	White	Black	Bispanic	Total	61,14	Flank		
NHANES I					**			
Qualified	94.7	9^.5	97.5	94.4	20.5	52.5	67,7	69.2
Not Qualified: 'Inderheight Twerheight Therweight Overweight	0.0 0.0 1.0 4.4	0.0 0.0 2.5 7.0	0.0 0.0 0.0	0.0 0.0 1.1 4.5	0.4 0.0 2.3 28.9	0.4 0.0 2.5 44.7	2.5 2.3 26.5	0.5 0.0 2.3
	5.3	9.5	2.5	5.6	29.5	47.5	79.3	-1.
Total NGANES II	130.0 = = = =	100.0	100.0	100.0	130.0	100.0	110.0	
lialified	95.3	96.0	. 2 . 2	9 4 , a	70.5		4.9	67.7
Not Qualified: Onderheight Overheight Onderweight Overweight	7.: 7.: 7.: 6 4.:	0.5 1.7 1.2 4.4	1.0	0.1 0.0 0.6 4.6	7.2 7.1 1.4	0.2 0.1 0.1 43.5	5.2 0.3 3.0 36.9	0.5 0.1 1.5
	4.9	1.7	11.4	·	. 9. 5	45.3	45.1	12.3
T *al	100.0	1111		110.0	777.7 777.7	120.3	100.0	177.0

qualification rates.

Among the NLS sample of young males, aged 16-24 years, conversion to body-mass resulted in a 1.1 percentage point increase in the percentage qualified while among the NLS females, aged 16-24 years, a 2.5 percentage point increase resulted. Among the NHANES I samples of 16-24 year olds the conversion resulted in an 1.5 percentage point increase in the percentage of qualified males and a 4.9 percentage point increase in the percentage of qualified females. Among the NHANES II samples of 16-24 year-old males and females, the percentage point increases are .6 and 4.7, respectively. Among the 16-40 year old NHANES I and NHANES II samples of rales and females (Table 9b) similar percentage point increases occur, with the increase for females being larger than those for nales.

Proposed Revised Maximum Weight Standards

To establish the appropriate maximum body-mass index value for males older than 24 years, and thus adjust the current standards to reflect that the weight of males increases with age, and to establish standards for females, in all the age brackets, using the same methodology as that applied to males, we first determined the mean body-mass for participants in each of the three data sets, in each of the five age brackets. Then, using 16-20 year-old and 21-24 year-old males as the reference group, and working backwards, we determined the percentage the current standard exceeded the mean body-mass. This percentage added to 100 and applied to the mean body-mass for the age bracket yields the maximum allowable body-mass at all heights for each of the two age

brackets. This percentage was then applied to the mean body-mass of the males in the older age brackets and the mean body-mass of the females in each age bracket.

Table 10 presents the results of these calculations and shows the change in body-mass maximums for males and females in each of the data sets. For the males, the calculations yielded the same mean body-mass value, regardless of data set, in each age bracket. These data also confirm that weight, as measured by body-mass, increases with age. Among females, there was minor variation among the three data sets in the mean body-mass value in each age bracket. Among 16-20 year-old females, the NLS and NHANES II samples yielded a mean body-mass of 28 while the mean body-mass value of the NHANES I sample was 29. Among the 21-24 year-old females, a body-mass value of 29 was the mean for the NHANES I and NHANES II samples, while the mean body-mass value was 28 for the NLS sample. Among the NHANES I 31-35 year-old females, the mean body-mass value was 32, while for the comparable group of NHANES II females it was 31. For the 25-30 year-old and Lo-40 year-old females the mean body-mass value was the same for both the NHANES I and NHANES II samples, 30 and 32, respectively.

Presented beneath the mean body-mass data in Table 10 are proposed revised standards that were determined using the calculation described above. For males, aged 16-20 years and 21-24 years, the current standards, expressed in body-mass values of 31 and 32, respectively are both 135 percent of the mean body-mass values. Accordingly, this percentage was applied to the mean body-mass values to yield the maximum allowable body-mass values for the older males and for the females in each

Table 10

Summary of Body-mass Values: Current Maximum Weight Standards, Mean Body-mass 135 Percent of Mean Body-mass, and Changes in Standards

		* alp.	* 8 8°	121			Female	W=M8) Se	(H).5)	
	16-20 2007s	2 21-24 24-30 31-35 36 s years years years ye	24-30 VPAPS	31-35 years	36-49 YPATS	16-20 years	21-24 years	25-30 years	21-24 25-30 31-35 years years	36-40 years
Current Standards	**	. .	~=	<u></u>	16		30-31	30-32	31-33	
Mean Body-mass										.
HLS RHANES I NHANE II	~ · · ·	चन्त्र	*	n yej wy	I qui que Mario de	8 8 8 8	& & & &	30	33.1	32
135: Of Mean Body-mass										:
VLS NHANES I NHANES I	F () () ()		∙चूचु	li saadi a Saadi asaa	। यी प् को के	* : *	8 8 8 8 8 8	41	4 4 • w 0	1 4 4 1 E E
Change: Current Standards VS. 135 of Mean Sody-mass										
था ऽ गमें अमें अप्रति : गमें बच्चे विकास	3 to 1 1 1	€ 5 k	· • • • • • • • • • • • • • • • • • • •	1 * 20 + +	, 4 4	+7:+9 +8/+10 +7/+9	+7, +8 +8/+3 +8/+9	+9/+111 +9/+111	+9/+11 +10/+12 +10/+11 +9/+11 +9/+11 +10/+11	-10/+11 -10/+11

age bracket. (An examination of Tables 7a-1 through 7b-3, which present comparisons of AR 40-501 standards, expressed in pounds, to the mean weight at each height, shows that the reciprocal of the mean weight at each height as a percentage of the current AR 40-501 standards ranges between 130 percent and 137 percent (excluding those heights containing less than 25 cases) for 16-20 year-old males (Table 7a-1 through 7a-3) and between 127 percent and 135 percent for 21 to 24 year-old males (Tables 7b-1 through 7b-3). Thus, the calculation used here, and the determination of the applicable percentage to be applied to the mean body-mass to set the maximum allowable body-mass value is confirmed by an alternative method.)

The effect of this methodology, in terms of changes in the body-mass value to be used as the maximum allowable weight are shown in the bottom rows of Table 10. For the males, aged 16-20 years and 21-24 years, there is no change, while for the older males the increment is larger for each successive age bracket. In contrast, the increments for the females are much larger than those for the older males due to the fact that the current standards are set so low.

The last consideration was to decide which of the three sets of maximum standards, at the 135 percent of mean body-mass levels to propose as the revised maximums. Since the NLS sample did not include males and females over the age of 25 years, it was immediately excluded from consideration leaving either the NHANES I or NHANES II data sets. The NHANES II data were selected for two reasons. First, they were collected more recently, and thus better reflect any changes in mean body weight that may have

occurred between the two surveys, and second, the standards produced for the females are slightly more conservative than those obtained from the MMANES I sample.

SECTION VI

Qualification Rates Under Proposed Revised Maximum Weight Standards

Precented in Tails lla are completions of the percentages of 16-24 year cold cale. Tails leader past field for cilitary cervice under current As 40-501 pranchally, expressed in terms of techy-caps, one under one maximum west characteristic set of 135 percent of the mean mody-mass value within each are cracket. For the males, 16-24 pears-old, the qualification rates under the propered removed torsiants are exactly the same in these under partners of areas and the partners of argument to a large in the partners of areas.

removed the kerological testing of the 24 years, the application of the proposed removed the kerological testing of the 32 way as 94.4 percent are qualified as a consist a removed various of the 32 way as 94.4 percent are qualified to a consist a removed various of the 24 was a superior of a kerological testing of 16-24 years of a consist at a consist at

10: 10: 110

Comparison of the Percentages Sualified Under Current AR 40-501 and Revised 135 Percent of Mean Body-mass Maximum Weight Standards

16 24 Year-old Males and Fenales

	Σ	Males (SM W.H.)	,		females (BM-W/H ^{1.5})	· .
		Revised	etapa)	Current	Revised	Change
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;						
Man Cer	3. 23. 37.	•				
19 1 d. ft	: 1 **			76.8	94.9	+16.1
HISDANIC	7.96 2.96		T D S S	66.6 75.7	U 06	+24.3
Intal	(C)	7 2 3			5.	
2 3 Ft Q 24 Pe				1	34. 3	+17.3
• • • • • • • • • • • • • • • • • • • •						
· · · · · · · · · · · · · · · · · · ·	*	**		5 02	6.10	30
- T- 10 T- 1	*** **	1.8.	 2	िक्र (%)	7 C 48	4. 02 4
	÷	*		17.5		+12.0
# · · · · · · · · · · · · · · · · · · ·	.*	· ·		e 32	•	÷ ,
THANE : 1:			-	\$ 717.2	5 .	1.62+
\$4. 1. 2.		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		•		
* v . z	•	*		र इ.	~ . ~ .	÷ 18 ÷
Capac, A	***	1 / 1	(F)	51 66.9	30 30 4. 70	7. 4. 4.00.4 4.00.4
*seta?	7 94	**	-	ŕ	,	
			: :	-==	7.24	1 51 1

Table 11b presents the comparison of qualification rates under the current and proposed revised standards for males and females, aged 16-40 years, in the NHANES I and NHANES II samples. Overall, 96.2 percent of the males in the NHANES I sample are qualified under the revised standards, compared to 94.4 percent under the current standards. Among the NHANES II males, 96.6 percent are qualified under the revised standards compared to 94.8 percent under the current standards. The magnitude of the increases in qualification rates for the males, compared to the increases for the females, is mitigated by the fact that the standards were increased only for the older males, aged 25-40 years.

Among females, aced 16-40 years, there are substantial increases in the qualification rates under the 135 percent of mean body-mass maximum, compared to the qualification rates under current standards converted to There the proposed revised standards, 90.7 percent of all tradu-mass. MHANES : tenales, and 90.8 percent of the NHANES II females are qualified, compared • 68.2 percent and 67.7 percent, respectively, under the current Similar increases in the qualification rates for each of the et andards. race etimic subgroup also result from the application of the revised Bowever, black females continue to have the lowest overall at stokets in a As was the case for the 16-24 year old females tual fication rate. Table 11at, the females in the 16-40 year-old analysis (Table 11b) are in ified it a lower rate than are the males, but the large differences greatest under the current standards are substantially reduced.

The principal cause for the lower overall qualification rate among

Table 11b

Comparison of the Percentages Qualified Under Current AR 40-501 and Revised 135 Percent of Mean Body-mass Maximum Weight Standards

16-40 Year-old Males and Females

	×	1es (BM=W/H ²		Fema	Females $(BM=W/H^{1.5})$.5)
	Jurrent	Revised	Change	Current	Revised	Change
White Black Hispanic	94.7 90.5 97.5	96.4 93.7 97.8	+1.7	70.5 52.5 67.7	91.7 84.4 89.3	+21.2 +31.9 +21.6
Total	94.4	96.2	+1.8	68.2	90.7	+22.5
NHANES 17 White Black Hispanic	95.2 95.0 88.2	96.8 96.1 93.3	+1.6 +1.1 +5.1	70.5 55.0 54.9	92.2 84.7 85.3	+21.7 +29.7 +30.4
Total	94.8	96.6	+1,8	2.79	90.8	+23.1

females, compared to males, under the proposed revised standards is differences attributable to in the rate of disqualification for overweightedness. Table 12 presents the percentage of males and females by data set, sex, race/ethnic group, and age bracket who would be disqualified for overweightedness under standards set at 135 percent of As can be seen, the overall disqualification rate among mean body-mass. females, aged 16-24 years, in the NLS sample is 3.2 percent compared to 2.0 percent for the males. Among the NHANES I and NHANES II females, aged 16-40 years, 6.5 percent and 7.1 percent, respectively, were overweight the proposed revised standards, compared to 2.7 percent and 2.8 percent of the NHANES I and NHANES II males, respectively. Table 12 also shows that black females are disqualified at a substantially higher rate under the revised standards than are white and Hispanic females, and all the race/ethnic subgroups of males. The data presented in Table 12 also provide additional confirmation of our explanation that the percentage of females in the general population who are overweight is larger than that percentage of males.

Table 13 presents more clearly the effect on the rates of disqualification for overweightedness of the proposed revised maximum weight standards, compared to the current standards. This table presents the percentage point changes in rate of disqualification. Among young males, aged 16-24 years, no change is found since the weight standards were not revised. For the males in the older age brackets, and for all female age brackets, the proposed revised standards result in decreases in the disqualification rate for all race/ethnic sub-groups except the NHANES II 25-30 year old blacks. The decreases for all the female

Table 12

Percentage Overweight Under the 135 percent Mean Body-Mass

Maximum Weight Standards

			MAXIMUM (Weight Standa	ros			
			Males			:	emales	_
	White	Black	Hispanic	Total	White	Black	Hispanic	Total
NLS								
16-20 21-2 4	2.0	1.5	3.5	2.2	3.6	5.1 7.3	2,2 3,8	2.6
16-24	2.1	1.6	2.3	2.0	2.8	6.0	2.8	3,2
NHANES I								
16-20 21-24	2.4	3.1 4.7	1.0 7.1	2.4	4.6 5.1	11.3	0.3 4.3	5.1 5.9
16-24	2.3	3.7	4.0	2.5	4.8	11.6	2.1	5.5
25-30 31-35 36-40	4.1 2.9 1.0	6.0 1.6 3.4	1.3 0.0 0.0	4.1 2.6 1.1	5.6 6.7 7.0	10.9 17.9 13.7	7.7 9.2 6.3	6.3 8.1 7.8
Total	2.6	3.8	2.3	2.7	5.6	12.8	4.9	6.5
NHANES II								
16-20 21-24	2.1	2.9	16.3 7.9	3.0	3.7 5.3	10.2	8.3	4.8 5.8
16-24	2.3	2.3	12.3	2.9	4.4	10.2	5.7	5.2
25–30 31–35 36–40	3.0 2.5 2.1	5.4 0.8 6.7	4.1 0.0 0.0	3.2 2.2 2.4	5.9 9.4 7.3	16.6 14.8 19.6	2.1 25.4 2.1	7.1 10.5 8.5
Total	2.5	3.3	6.4	2.8	6.1	13.9	6.5	7.1

Table 13

Comparison of Percentage Overweight
Under Current AR 40-501 and 135 percent Mean Body-Mass Maximum Weight Standards

			Males			F	e	
	White	Black	Hispanic	Total	White	Black	Hispanic	Total
NLS								
16-20 21-24	0.0	0.0	0.0	0.0	-15.7 -16.8	-23.6 -25.2	-16.7 -20.6	-16.9 -18.0
23 24					-10.6	-23.2	-20.0	-10.0
16-24	0.0	0.0	0.0	0.0	-16.1	-24.2	-18.2	-17.3
NHANES I								
16-20 21-2 4	0.0	0.0	0.0	0.0 0.0	-18.0 -23.5	-19.2 -26.0	-11.8 -12.2	-17.8 -23.0
21 24					-23.5	-20.0	-12.2	-23.0
16-24	0.0	0.0	0.0	0.0	-20.4	-22.2	-12.0	-20.1
25 - 30 31-35	-2.1 -3.5	-4.7 -2.0	0.0	-2.3 -3.2	-22.2 -18.8	-35.9 -34.6	-29.5 -37.4	-24.1 -21.6
36-40	-4.4	-16.1 	-1.4	-5.2 	-25.1	-51.8	-28.3	-28.6
Total	-1.8	-3.2	-0.2	-1.8	-21.3	-31.9	-21.6	-22.5
NHANES II								
16-20 21-24	0.0	0.0	0.0	0.0 0.0	-18.8 -18.1	-21.0 -33.2	-18.4 -22.7	-19.1 -20.5
21-24					-18.1	-33.2	-22.7	-20.5
16-24	0.0	0.0	0.0	0.0	-18.5	-26.3	-20.6	-19.7
25-30 31-35	-0.9 -3.3	0.0 -3.4	-4.4 -2.5	-1.0	-24.9	-29.9	-38.9	-26.4
36 -4 0	-6.0	-5.0	-20.8	-3.3 -7.0	-22.4 -24.2	-36.3 -35.7	-43.6 -32.2	-24.4 -26.2
Mot al			<u> </u>					
Total	-1.6	-1.1	-5.2 	-1.8	-21.7 	-29.6	-30.4	-23.1

race/ethnic subgroups are substantial, compared to those for the males. These disproportionate decreases further indicate that the methodology employed in establishing the current maximum weight standards for females differs from, and is more conservative than, the methodology applied to males.

SECTION VII

Examination and Proposed Revision of Minimum Weight Standards

As shown in Section III, the current AR 40-501 minimum weight standards for enlistment converted to body-mass (Tables 8a and 8c), do not specify a single body-mass-value regardless of height. Further, when the maximum weight standards for males were revised in 1976 the minimum weight standards were not evaluated. Accordingly, in the general context of our assessment of the AR 40-501 standards, it was appropriate to examine the construction of the minimum standards, and if necessary, propose revisions. Further, our approach suggests that a single body-mass value for the minimum weight standards should be used for all heights, consistent with the methodology used for setting the maximum weight standards.

Our first step in examining the methodology used in establishing the current minimum standards was to compare the current standards to the mean body weight at each height for the individuals in each of the three data sets. This was the same procedure used to examine the maximum standards in Section IV, Tables 7a-1 through 7e-2. The only difference is that in the present case only the 16-20 year-old males and females were compared to the current standards, instead of all five of the male and female age brackets. AP 40-501 contains a ringle set of minimum weight standards that are applied regardless of age. Thus, the minimum weight standards are most likely to affect the youngest applicant: ince they are more likely than older people to be underweight, invention variability of the materiation process.

Tables 14a, 14b, and 14c present the mean body weight of the 16-20 year olds in the NLS, NHANES I, and NHANES II samples, respectively, and the mean body weight as a percentage of the current AR 40-501 standard Overall, the mean body weight as a percentage of expressed in pounds. the AR 40-501 standards is much the same for males and females. Among the MLS sample of 16-20 year-old males, between 62 and 73 inches tall, the percentages range from 123 percent to 134 percent, while the range for females, between 59 and 72 inches tall, is 121 percent to 128 percent Among the NHANES I sample (Table 14b), the mean body weight (Table 14a). as a percentage of the standard ranges from 117 percent to 134 percent for those males between 65 and 73 inches tall, while the range for females between 60 and 68 inches tall, is 118 percent to 129 percent. Among the NHANES II males, between 61 and 74 inches tall, the percentage ranges from 102 percent to 130 percent, while the range for females, between 61 and 68 inches tall, is 124 percent to 129 percent (Table 14c).

The data indicate that the variations in mean body weight as a percentage of the AL 40-501 standards between males and females are minor in magnitude suggesting that similar methodology was used to establish the minimum weight standard for both sexes. Thus, the analysis indicates that no major revisions of the current minimum weight standards are required. This leaves the task of specifying a single body-mass value for males and for females, regardless of height.

Table 8a shows that the current minimum body-mass value for males range: from 17 to 20, with most heights having a value of 18. For

Table 14a

Comparison of Current AR 40-501 Minimum Weight Standards and Mean Body Weight by Height

16-20 Year-old Males and Females

MLS Sample

		0-501 m Weight		les	Pana	les
Beight inches)		Penales	Mean		Mean Body Weight	Percentage of AR 40-501
58		90			104*	116
59		92			111	121
60	100	94	147*	147	114	121
61	102	96	127*	125	116	121
62	103	98	127	123	119	121
63	104	100	131	126	123	123
64	105	102	134	128	125	123
65	106	104	139	131	128	123
66	107	106	143	134	131	124
67	111	109	145	131	136	125
68	115	112	148	129	140	125
69	119	115	153	129	147	128
70	123	118	158	128	146	124
71	127	122	161	127	146	120
72	131	125	168	128	160*	128
73	135		172	127		
74	139		179	129		
75	143		185	129		
76	147		194	132		
77	151		199	132		
78	153		186*	122		
79	159		190*	119		
80	166		234*	141		

^{*} Indicates 25 or fewer cases included in the calculation of the mean.

Table 14b

Comparison of Current AR 40-501 Minimum Weight Standards and Mean Body Weight by Beight

16-20 year old Males and Pemales

NHANES I Sample

	AR 40	0-501 m Weight		les	Pena	les
Beight (inches)	Males	Pemales	Hean Body Weight	Percentage of AR 40-501		Percentage of
58		90			115*	128
59		92			112*	122
60	100	94			117	124
61	102	96			117	122
62	103	98	125*	121	120	122
63	104	100	118*	113	129	129
64	105	102	147*	140	131	128
65	106	104	124	117	128	123
66	107	106	138	129	137	129
67	111	109	149	134	129	118
68	115	112	150	130	138	123
69	119	115	152	127	158#	137
70	123	118	161	131	136*	115
71	127	122	165	130	148*	121
72	131	125	168	128	140*	112
73	135		174	129		
74	139		178*	128		
75	143		172*	120		
76	147		176*	120		
77	151		171 •	113		
78	153		- · -			
79	159					
80	166					

^{*} Indicates 25 or fewer cases included in the calculation of the mean.

Table 14c

Comparison of Current AR 40~501 Minimum Weight Standards and Mean Body Weight by Beight

16-20 year old Males and Females

WHANES II Sample

		0-501 m Weight		les	7en s	les
Height (inches)		Pemales	Mean Body Weight	Percentage of AR 40-501		Percentage of
58 59 60	100	90 92 94	118*	118	116* 130* 113*	131 141 120
61 62 63	102 103 104	96 98 100	104 127 132	102 123 127	119 126 126	124 129 126
64 65 66	105 106 107	102 104 106	129 134 139	123 126 130	131 132 134	128 127 126
67 68 69	111 115 119	109 112 115	141 146 151	127 127 127	137 142 150*	126 127 130
70 71 72	123 127 131	118 122 125	160 158 169	130 124 129	147* 155* 252*	125 127 202
73 74 75	135 139 143		167 173 186*	124 124 130		
76 77 78	147 151 153		201 * 221 *	137 146		
79 80	159 166					

^{*} Indicates 25 or fewer cases included in the calculation of the mean.

females, Table 8c shows a range of minimum body-mass value: of 22 to 23, with a value of 22 specified for most heights. Using methodology similar to that used to construct new maximum weight standards (See Section V) resulted in the data presented in Table 15.

An examination of the reciprocals of the percentage of body weight to AR 40-501 standards (Tables 14a through 14c) indicated that, with some variation, the current minimum weight standard for both males and females is 80 percent of the mean body-mass. Accordingly, this percentage was applied to the mean body-mass values of the 16-20 year-old males and 16-20 year-old females in each of the three data sets. This resulted in the specification of a minimum body-mass standard of 18 for males, regardless of data set, and 22 for the females in the NLS and NHANES II samples, and 23 for the females in the NHANES I sample (see Table 15). Since the results from the NHANES II sample were used to establish the revised maximum weight standards, the NHANES II sample results were also used to set the proposed revised minimum weight standards.

Application of the single body-mass value of 18 for males and 22 for females resulted in very small changes in the overall qualification rate. (These changes were so small that they do not merit detailed present thou in a table.) Among the NLS sample if who and female, coed if .4 years, the application is the excepty-mass values for all nepits which is neglected as a production profit despite and a perfection profit despite and a perfection profit despite and a superiorities of the feature of the factor of the feature of the

Table 15

Summary of Body-mass Values:
Current Minimum Weight Standards, Mean Body-mass
80 Percent of Mean Body-mass, and Changes in Standards

	16-20 Year	-olds (BM=4/m 1.5)
	/ Date My W	Column W. W.
Current Standards	17-20	22-23
Mean Body-mass		
NLS NHANES I NHANES II	23 23 23	28 29 28
80 of Mean Body-mass		
NLS NHANES I NHANES II	18 13 13	22 23 22
Change: Current Standards vs. 80 of Mean Body-mass		
MLS NHANES I NHAMES II	-2/+1 -2/+1 -2/+1	-1/0 0/+1 -1/0

decreased of .4 percentage peint and .6 percentage peint, in perturbage, in the overall qualification rate. Among females, aged 16-24 years, in the MMANES I and NHANES II complete the application of a technique value of ..., regardless of height, resulted in .5 percentage point increases in the overall qualification rate.

Among the 16-40 year old males in NHANES I and NHANES II samples, the effect of the proposed revision of the minimum standard resulted in a decrease of .2 percentage point in the overall qualification rate. For females, aged 16-40 years, this revision resulted in an increase of .5 percentage point in the NHANES I sample qualification rate and .4 percentage point increase in the NHANES II sample qualification rate.

SECTION VIII

Examination and Proposed Revision of Height Standards

Our assessment and proposed revision of weight standards have been based on applying sex neutral methodology. Thus, for both males and females, the minimum allowable weight was set at 80 percent of the mean body-mass and the maximum allowable weight was set at 135 percent of the mean body-mass. In this section we examine current height standards* and apply a similar sex neutral approach.

There does not appear to be any medically justifiable reason for considering sex in the specification of minimum and maximum height standards. However, the AR 40-501 standards currently permit feraler for 59 inches tall to enter the military but excludes males from heights. Females between 73 and 80 inches tall are excludes with in this height range are accepted. While the weight from a function of height, can be used to distinguish and the content of the content of

union de la companya del companya del la companya del companya de la companya de

4D-A185 417 DEUE OPMENT OF A METHODOLOGY FOR ESTABLISHING JOINT SERVICE HEIGHT AND HE. (U) DEFENSE MANPOHER DATA CENTER ARTINGTON VA MARKET RESEARCH BRA. NOV 85 F/G 5/9 2/2 UNCLASSIFIED NL END 12 87

MICROCOPY RESOLUTION TEST CHART NATIONAL BUPEAU OF STANDARDS 1963 A

16-24 year-old and 16-40 year old age groupings in the NHANES I and NHANES II samples was 70 inches, while for females in both age groupings and samples the modal height was 64 inches. (Among the 16-24 year old males in the NLS sample the modal height was 72 inches, while for females in this age grouping the modal height was 64 inches. However, since these are self-reported data one should treat the NLS male modal height with some caution.)

The present AR 40-501 minimum and maximum height standards of 60 and 80 inches, respectively, (ignoring service differences) are plus and minus 10 inches around the modal height of 70 inches. For females, the present AR 40-501 minimum and maximum height standards are 58 and 72 inches, respectively, and are minus 6 inches and plus 12 inches around the If one were to set standards that took into account these modal height. sex differences in modal height, one might then select some consistent range around the modal value and apply it to both males and females. For example, if it were determined that plus and minus 10 inches, the range around the modal height for males currently in effect, is indeed the appropriate range, and then applied it to females, the minimum and maximum acceptable heights for females would be set at 54 and 74 inches, Conversely, if the range around the female modal height, respectively. minus 6 and plus 12 inches, were applied to the males, then the minimum and maximum acceptable heights would be set at 64 and 82 inches, respectively. However, neither of these approaches takes into account military realities and occupational requirements.

There is no analytic basis for questioning the absolute height of 58 inches as a minimum for females or the absolute height of 80 inches as

a maximum for males. However, if a short female is suitable for military service, it is unclear why an equally short male is not also suitable. Similarly, if a tall male is suitable for military service, it is unclear why an equally tall female is not also considered suitable. Accordingly, we propose application of the same 58 inches in height as the minimum for both males and females and the same 80 inches in height as the maximum for both males and females.

When these revised minimum and maximum height standards are applied to the three data sets the effect on overall qualification rates is neglible. (The changes in qualification rates are so small that they do not merit detailed presentation in a table.) Among the males and females, aged 16-24 years, the proposed revision in height standards resulted in an increase in the overall qualification rate of 1 percentage point. Among the 16-24 years and 16-40 year old groupings of males and females in the NHANES I sample, the revision resulted in no charge in the overall qualification rates. For the NHANES II 16-24 year old sample of males, the overall qualification rate increased .1 percentage point, while the rate for the 16-24 year old females increased .2 percentage point. Among NHANES II males and females, the overall qualification rate increased .1 percentage point each when the revised height standards were applied.

SECTION IX

An Interim Summary

The Proposed Revisions and Their Effect

Thus far, our analysis has resulted in a number of proposed revisions to the current AR 40-501 height and weight standards. The proposals which have been examined in detail are:

- 1. Breaking the age bracket for 21-30 year-old males in Table I of Appendix III of AR 40-501 into two age brackets, one for 21-25 years, and another for 26-30 years.
- 2. Changing the age range for females in Table II of Appendix III of AR 40-501 from 18-20 years to 16-20 years.
- 3. Adjusting the weights in Tables I and II of Appendix III to reflect the minimum weight of the body-mass range for the minimum required weight, and to reflect the maximum weight of the body-mass range for the maximum allowable weight.
- 4. For older male and all female age brackets, establishing a single maximum body-mass value to be applied regardless of height determined by using the same methodology as currently applied to younger males. Accordingly, a body-mass value of 135 percent of the mean body-mass, for each age bracket, was applied for all males and females as the maximum allowable weight.

- 5. For males and females establishing a single minimum body-mass value to be applied regardless of height. Accordingly, a body-mass value of 80 percent of the mean body-mass of males and females, aged 16-20 years, was applied for all males and females, as the minimum required weight.
- 6. The minimum and maximum height standards for males and females should be the same, with the minimum height set at 58 inches, and the maximum height set at 80 inches.

The percentage of 16-24 year-old males and females in each of the three data sets who would be qualified under all the proposed changes to the height and weight standards are presented in Table 16. Among the males in the NLS sample, the NHANES I, and the NHANES II sample, 96.7 percent, 95.5 percent, and 95.7 percent, respectively, are For females, the comparable qualification rates are qualified. 94.9 percent, 90.9 percent, and 92.9 percent. These data indicate that even when the same methodology in establishing height and weight standards for males and females is applied, females are still, as under the current AR 40-501 standards, qualified at a lower rate. This result is due principally to the earlier reported finding that, in general, more females than males are overweight.

The qualification rates among the race/ethnic subgroups of males presented in Table 16 are similar, with the exception of the NHANES II sample of Hispanics. Among the female race/ethnic subgroups, the

Table 16

Percentage of Qualified and Not Qualified Under Revised Height and Weight Standards

16-24 Year-old Males and Females

			Males			F	emales	
	White	Black	Hispanic	Total	White	Black	Hispanic	Total
NLS								
Qualified	96.7	96.5	95.8	96.7	95.5	91.2	95.0	94.9
Not Qualified:								
Underheight	0.0	0.0	0.0	0.0	0.3	1.6	0.8	0.5
Overheight	0.0	0.3	0.0	0.1	0.0	0.0	0.0	0.0
Onderweight	1.2	1.6	1.9	1.2	1.5	1.2	1.4	1.5
Overweight	2.1	1.6	2.3	2.0	2.8	6.0	2.8	3.2
	3.3	3.5	4.2	3.3	4,5	9.8	5.0	5.1
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
NEIANES I					-			
Qualified	95.7	93.1	96.0	95.5	91.8	85.2	89.5	90.9
								-
Not Qualified:		• •						
Underheight	0.0	0.0	0.0	0.0	0.4	0.5	4.3	0.6
Overheight Underweight	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		3.2	0.0	2.0	3.0	2.6	4.1	3.0
Overweight	2.3	3.7	4.0	2.5	4.8	11.6	2.1	5.5
	4.3	6.9	4.0	4,5	8.2	4.8	10.5	9.1
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
NHANES II				• •		********		
Qualified	96.3	96.4	87.1	95.7	94.1	88.1	88.4	92.9
Not Qualified:								
Underheight	0.0	0.0	0.0	0.0	0.4	0.4	3.7	0.6
Overheight	0.0	0.0	0 .0	0.0	0.0	0.0	0.0	0.0
Onderweight	1.5	1.4	0.6	1.4	1.2	1.3	2.3	1.3
Overweight	2.3	2.3	12.3	2.9	4.4	10.2	5.7	5.2
	3.7	3.6	12.9	4.3	5.9	11.9	11.6	7.1
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

qualification rate of blacks is lower than that for whites in all three data sets. Compared to Hispanic females, black females are disqualified at a higher rate in the NLS and NHANES I samples. In the NHANES II sample, the qualification rate for black and Hispanic females are similar. This result is consistent with the earlier reported finding that more black females are overweight than white and Hispanic females (see Table 6). While females are still qualified at a lower rate than males, the very large disparity in rates under current standards (See Table 3a) is substantially reduced.

Tubles 17a, 17b, and 17c summarize the effect of the proposed revision of the standards for the NLS, NHANES I, and NHANES II 16-24 year-old samples. Table 17a shows that among the NLS sample of males, aged 16-24 years, the net effect of the revisions is an 0.8 percentage point increase in the overall qualification rate. The comparable change for NLS sample females is an increase of 20.5 percentage points. Most of this increase (17.3 percentage points) in the overall qualification rate is attributable to the revision of the maximum weight standards. Among the NHANES I and NHANES II samples of males, aged 16-24 years, the net increases in the qualification rate are 1.1 percentage point (see Table and .4 percentage point (see Table 17c), respectively. qualification rate increased 25.5 percentage points for the NHANES I females (see Table 17b) and 25.1 percentage points for the NHANES II females (see Table 17c), aged 16-24 years. Most of these increases (20.1 and 19.7 percentage points, respectively) are attributable to the revision of the weight standards.

Table 18 presents the overall qualification rates after the

Table 17a Cummary of the Effect of Changes in AF 40-501 Height and Weight Standards 16-24 Year-old Males and Females

			Z.	NLS Sample		i	1	•	:		!	
			Males						Penales		1	
	Sualified	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No	Not Qualified	P) 	Qualified		Not	Not Qualified	Pá	
	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Height	4ht	Weight	ht	1 1 1 1 1 1 1 1		Reight	lb t	Weight	ght
		Total	Under	Sver	Under	Over		Total	Under	Over	Under	Over
Current AR 40-501 Standards Conversion to Body-mass	95.9	1.5	0.1	0.1	1.3	(0.7)	2.6	25.6 (2.6)	0.5	0.1	3.0	(1.5)
Current AR 40-501 in Body-mass Revision to 135% of Mean Rody-mass	8.98 0.0	9.2	0.1	0.1	1.1	0.0	17.0	23.0 (17.3)	0.5	0,1	1.9	20.5
Revised Maximum Weight Standards Revision of Minimum Weight Standards	96.8	3.2	0.1	0.1	1.0	2,0	94.3	5.7	0.5	0.1	1.9	3.2
Revised Minimum and Maximum Weight Standards Revision of Reight Standards	96.6 0.1	3.4	(0.1)	0.0	1.2	2.0	94.8	5.2 (0.1)	0.0	(0.1)	0.0	0.0
Revised Weight and Height Standards	7.96	6 1	0.0	0 . 1	1.2	2.0	9. 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5.1	0.5	0.0	1.5	3.2
Net Effect of Ail Revisions	© # © # 0 #	(0.8)	(0.1)	0 1 1 1	(0.1)	(0.1)	20.5	(20.5)	0.0	(0.1)	(1.5)	(18.8)
	:									:		

Table 17b

Summary of the Effect of Changes in AR 40-501 Height and Weight Standards

16-24 Year-old Males and Females

	;	
Sample		
-	1	
NHANES	1	Me I e M

	1		Males						Pemales	m		
	Qualified	1 1 6 1	NON	Not Qualified	þe		Qualified	 	NON	Not Qualified	pa	
			Height	3ht	Weight	ght			Reight	jht	Weight	ght
		Total	Under	Over	Under	Over		Total	Under	Ower	Under	Over
Current AR 40-501 Standards Conversion to Body-ma·s	94.4	5.6 (1.5)	0.0	0.0	(0.5)	3.5	4.9	34.6 (4.9)	9.6	0.0	5.3	28.7
Current AR 40-501 in Body-mass Revision to 135% of Mean Body-mass	95.9	0.0	0.0	0.0	1.6	0.0	70.3	(20.1)	9.1	0.0	3.5	25.6 (20.1)
Revised Maximum Weight Standards Revision of Minimum Weight Standards	95.9 (0.4)	0.4	0.0	0.0	1.6	2.5	90.4	9.6	9.0	0.0	3.5 (0.5)	5.5
Revised Minimus and Maximum Weight Standards Revision of Reight Standards	95.5	0.0	0.0	0.0	0.0	2.5	90.0	9.1	9.0	0.0	3.0	5.5
Revised Weight and Reight Standards	95.5	4.5	0.0	0.0	2.0	2.5	90.9	9.1	9.0	0.0	3.0	5.5
Net Effect of All Revisions	1.1	(1.1)	0.0	0.0	(0.1)	(1.0)	25.5	(25.5)	0.0	0.0	(2.3)	(23.2)

Table 17c

Summary of the Effect of Changes in AR 40-501 Height and Weight Standards

16-24 Year-old Males and Pemales

			Males		1	1	İ ! !	!	Females			
	Qualified		Not	Not Qualified	P		Qualified	1	Not	Not Qualified	p e	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	Reight	ht	Weight	ght	! ! ! !	i ? ! !	Reight	jht	Weight	ht
		Total	Under	Over	Under	Over		Total	Under	Over	Under	Over
Current AR 40-501 Standards Conversion to Body-mass	95.3	(0.6)	0.1	0.0	1.5	3.1	67.8	32.2 (4.7)	9.0	0.2	3.5	(3.0)
Current AR 40-501 in Body-mass Revision to 135% of Mean Body-mass	95.9	4.1	0.1	0.0	1.0	0.0	72.5	27.5 (19.7)	9.0	0.2	1:8	24.9
Revised Maximum Weight Standards Revision of Minimum Weight Standards	95.9	0.3	0.1	0.0	0.0	2.9	92.2	7.8 (0.5)	9.6	0.2	1.8	5.2
Revised Minimum and Maximum Weight Standards Revision of Height Standards	95.6	(0.1)	(0.1)	000	0.0	0.0	92.7	(0.2)	0.0	(0.2)	0.0	5.2
Revised Weight and Reight Standards	95.7	4.3	0.0	0.0	1.4	2.9	92.9	7.1	0.6	0.0	1.3	5.2
Net Effect of All Revisions	0 " 4	(0.4)	(0.1)	0.0	(0,1)	(0.2)	25.1	(25.1)	0.0	(0.2)	(2.2)	(22.7)
		:	1			:			1	:	:	<u>;</u>

application of the proposed revisions for the 16-40 year-old NHANES I and NHANES II samples. The results are similar to those reported for the 16-24 year-old samples, with females qualified at a lower rate than males, and black females disqualified at a higher rate than white females.

Tables 19a and 19b summarize the effect of all the proposed revisions on qualification rates for the NHANES I and NHANES II, 16-40 year-old males and females. Among the NHANES I males the overall qualification rate increased 3.1 percentage points while the rate for females increased 26.7 percentage points (see Table 19a). Of the total increase in the qualification rate among NHANES I females, 22.5 percentage points is due to the revision of the maximum weight standards. The increase in qualification rates for NHANES II 16-40 year old males and females is 3.0 percentage points and 27.4 percentage points, respectively (see Table 19b). Of the total increase for the NHANES II females, 23.1 percentage points is due to revision of the maximum weight standards.

Details of the rates of overweightedness for each age and race/ethnic group presented in Tables 16 and 18 were discussed earlier in Section VI of this report and can be found in Table 12.

Presented in Tables 20a and 20b are comparisons of the current AR 40-50l height and weight (in pounds) standards and the proposed revised standards (converted to pounds from body-mass) for males and famales, respectively. These tables reflect the modification of the age brackets, and include males 58 or 59 inches tall and females 72 to 80 inches tall. For the males (Table 20a), the adjustments in the minimum weight standards

Table 18

Percentage Qualified and Not Qualified
Under Revised AR 40-501 Height and Weight Standards

16-40 Year-old Males and Females

Males Fenales White Black Black Bispanic Total White Hispanic Total RHANES I Qualified 96.2 93.7 97.8 96.0 92.2 84.6 89,4 91.2 Not Qualified: 0.4 0.0 2.3 12.8 0.0 0.0 1.2 2.6 0.0 0.0 2.5 3.8 0.0 0.0 1.3 2.7 0.4 0.0 1.8 5.6 3.5 Underheight 0.0 0.5 Overheight Underweight Overweight 0.0 0.0 2.2 0.0 2.2 6.5 3.8 6.3 2.2 4.0 7.8 15.4 10.6 8.8 100.0 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 NHANES II Qualified 96.8 96.1 93.3 96.5 92.7 85.0 85.7 91.3 Not Qualified: 0.2 0.0 0.9 13.9 0.0 0.0 0.8 0.0 0.0 0.3 0.0 0.0 0.7 0.2 0.0 1.0 6.1 5.2 0.0 2.6 6.5 0.5 0.0 1.1 7.1 Underheight 0.0 Overheight Underweight 0.0 Overweight 2.5 3.3 6.4 2.8 3.2 3.9 6.7 7.3 3.5 15.0 14.3 8.7 100.0 100.0 100.0 100.0 100.0 Total 100.0 100.0 100.0

Table 19a

Summary of the Effect of Changes in AR 40-501 Reight and Weight Standards

16-40 Year-old Males and Females

	1
41	
•	
Sampl	1
0.	
=	
×	1
æ	
	1
U,	
	!
-	1
	1
ທ	
6.5	ì
144	
z	1
-	1
NHANES	1
—	1
~	i
	i
	1

			Males				!		Females	w		
	Qualified		NO	Not Qualified	p q		Qualified		NO	Not Qualified	pa	! ! !
			Height	ght	Weight	ght			Height	ght	Weight	ght
		Total	Under	Over	Under	Over		Total	Under	Over	Under	Over
Current AR 40-501 Standards Conversion to Body-mass	92.9	7.1	0.0	0.0	1.3	5.8 (1.3)	3.7	35.5	0.5	0.0	3.4	31.6 (2.6)
Current AR 40-501 in Body-mass Revision to 135% of Mean Body-mass	1.8	5.6 (1.8)	0.0	0.0	1:1	4.5	68.2 22.5	31.8 (22.5)	0.5	0.0	2.3	29.0 (22.5)
Revised Maximum Weight Standards Revision of Minimum Weight Standards	96.2 (0.2)	3.8	0.0	0.0	1.1	2.7	90.7	9.3	0.5	0.0	2.3	6.5
Revised Minimum and Maximum Weight Standards Revision of Height Standards	0.0	0.0	0.0	0.0	1.3	2.7	91.2	9.8	0.0	0.0	0.0	6.5
Revised Weight and Height Standards	0.96	4.0	0.0	0.0	1.3	2.7	91.2	8 II 8 II 8 II	0.5	0.0	1.9	6.5
Net Effect of All Revisions	3.1	(3.1)	0.0	0.0	0.0	(3.1)	26.7	(26.7)	0.0	0.0	(1.5)	(25.1)

Table 19b Summary of the Effect of Changes in AR 40-501 Height and Weight Standards

16-40 Year-old Males and Females

e
_
а
[du
ਲ
S
H
н
S
ω
Z
×
Ξ
E

			Males				:		Pemales	m		:
			Not	Not Qualified	Pa		Qualified		Not	Not Qualified	ed	
	1		Height	jht	Weight	ght		1	Reight	jht	Weight	jht.
		Total	Under	Over	Under	Over		Total	Under	Over	Under	Over
Current AR 40-501 Standards Conversion to Body-mass	93.5	6.5	0.1	0.0	0.9	5.5 (0.9)	63.9	36.1	0.5	0.1	2.6	32.9
Current AR 40-501 in Body-mass Revision to 135% of Mean Body-mass	94.8 1.8	5.2 (1.8)	0.1	0.0	0.5	4.6	67.7	32.3 (23.1)	0.5	0,1	1.5	30.2
Revised Maximum Weight Standards Revision of Minimum Weight Standards	96.6 (0.2)	3.4	0.1	0.0	0.5	2.8	90.8	9.2 (0.4)	0.5	0.1	1.5	7.1
Revised Minimum and Maximum Weight Standards Revision of Height Standards	96.4	3.6 (0.1)	(0.1)	0.0	0.0	2.8	91.2	8.8	0.0	(0.1)	0.0	7.1
Revised Weight and Reight Standards	96.5	3.5	0.0	0.0	0.7	2.8	91.3	8.7	0.5	0.0	7 : : : : : : : : : : : : : : : : : : :	7.1
Net Effect of All Revisions	3.0	(3.0)	(0.1)	0.0	(0.2)	(2.7)	27.4	(27.4)	0.0	(0.1)	(1.5)	(25.8)
										1		:

Table 20a

Comparison of Current AR 40-501 and Revised Height and Weight Standards (in Pounds, with Maximum Weight Set at 135 Percent of Mean Body-Mass)

Males

		Minim)	Lazimus	1			
				1	6-20 3	718	2	1-24 y	18	2	5-30 y	rs
Beight Inches)	AR 40-501	80% BM	Change	AR 40-501	135% BM	Change	AR 40-501	135% BM	Change	AR 40-501	135% BM	Chang
58	-	84	_	-	150	-	_	155	-	-	165	_
59	-	87	-	-	155	· -	-	160	-	-	170	-
60	100	90	-10	158	161	+3	163	166	+3	163	176	+9
61	102	93	-9	163	166	+3	168	172	+4	168	182	+4
62	103	96	-7	168	172	+4	174	177	+3	174	188	+14
63	104	99	-5	174	177	+3	180	183	+3	180	194	+14
64	105	102	-3	179	183	+4	185	189	+4	185	200	+15
65	106	106	0	185	189	+4	191	195	+4	191	207	+16
66	107	109	+2	191	195	+4	197	201	+4	197	213	+16
67	111	112	+1	197	201	+4	203	207	+4	203	220	+17
68	115	116	+1	203	207	+4	209	213	+4	209	226	+17
69	119	119	0	209	213	+4	215	220	+5	215	233	+18
70	123	122	-1	215	219	+4	222	226	+4	222	240	+18
71	127	126	-1	221	225	+4	228	233	+5	228	247	+19
72	131	130	-1	227	232	+5	234	240	+6	234	254	+20
73	135	133	-2	233	237	+4	241	246	+5	241	261	+20
74	139	137	-2	240	245	+5	248	253	+5	248	268	+20
75	143	141	-2	246	252	+6	254	260	+6	254	276	+22
76	147	144	-3	253	258	+5	261	266	+5	261	283	+22
77	151	148	-3	260	265	+5	268	274	+6	268	290	+22
78	153	152	-1	267	272	+5	275	281	+6	275	298	+23
79	159	156	-3	273	279	+6	282	288	+6	282	306	+24
80	166	160	-6	280	286	+6	289	295	+6	289	314	+25

Table 20a (Continued)

Comparison of Current AR 40~501 and Revised Height and Weight Standards (in Pounds, with Maximum Weight Set at 135 Percent of Mean Body-Mass)

Males

3	1-35 y	IS	3	6-40 y	rs	41 yr	s and	over	
AR 40-501	135% BM	Change	AR	135% BM	Change	AR 40-501	135% BM	Change	Height (Inches
_	170	-	_	170	_	_	170	_	58
_	175	_	-	175	_	_	175	_	59
162	181	+19	157	181	+24	150	181	+31	60
167	187	+20	162	187	+25	155	187	+32	61
173	194	+21	168	194	+26	160	194	+34	62
178	200	+22	173	200	+27	165	200	+35	63
184	206	+22	179	206	+27	171	206	+35	64
190	213	+23	184	213	+29	176	213	+37	65
196	219	+23	190	219	+29	182	219	+37	6 6
202	226	+24	196	226	+30	187	226	+39	67
208	233	+25	202	233	+31	193	233	+40	68
214	240	+26	208	240	+32	198	240	+42	69
220	247	+27	214	247	+33	204	247	+43	70
227	254	+27	220	254	+34	210	254	+44	71
233	261	+28	226	261	+35	216	261	+45	72
240	269	+29	233	269	+36	222	269	+47	73
246	276	+30	239	275	+37	228	276	+48	74
253	284	+31	246	284	+38	234	284	+50	75
260	291	+31	252	291	+39	241	291	+50	76
266	299	+33	259	299	+40	247	299	+52	77
273	307	+34	266	307	+41	254	307	+53	78
281	315	+34	273	315	+42	260	315	+55	79
288	323	+35	279	323	+44	267	323	+56	80

result in small decreases in the minimum acceptable weights, except for those whose height is less than 63 inches or at 80 inches. For the males aged 16-20 years-old and 21-24 years-old, the maximum weight permitted was increased 3 to 6 pounds. These changes are due to the use of the upper limit of the body-mass value when expressed in pounds. For the males in the 25-30 year-old age bracket, the maximum allowed weight under the 135 percent of mean body-mass standard was increased by 9 to 25 pounds. For the 31-35 year-old and 36-40 year-old males, the maximum allowed weight was increased by 19 to 35 pounds and 24 to 44 pounds, respectively.

(The analysis, to this point, has not considered the weight standards for those in the 41 years and over age bracket. Since this is an open-ended age bracket it presents analytic problems in that an end-point is required to perform calculations. Following the present methodology, which includes five years in each age bracket, the mean body-mass for the age-bracket of 41-45 years and the maximum weight standard of 135 percent of mean body-mass were calculated. For the NHANES II males and females, ages 41-45 years, the mean body-masses were 26 and 32, respectively, and the maximum weight standard body-masses of 135 percent of mean body-mass were 35 and 43, respectively. These values are the same as those that apply to the 31-35 year-old and 36-40 year-old males and 36-40 year-old females.)

For the females (Table 20b), the revision of the minimum weight standards resulted in lower required weights of 3 to 9 pounds. Application of the 135 percent of mean body-mass standard resulted in increases in the maximum allowable weight of 31 to 45 pounds for the 16-20 year-old and 21-24 year-old females. For the older females, aged 25-30 years, 31-35 years, and 36-40 years, the increases in the maximum allowable weight range from 37 to 57 pounds.

Reconsideration of the Proposed Revision of the Maximum Weight Standards

The effects of these revisions are certain to result in a pause. The application of the 135 percent of mean body-mass standard, currently in effect for young males, aged 16-24 years, to the older males and all female age brackets has a dramatic effect on the maximum weight standards. A 26 year-old, 5'10" (70 inches) male who weighs 240 pounds, or a 25 year-old, 5'5" (65 inches) female who weights 194 pounds, are clearly very heavy, and probably clinically overweight, and their suitability for military service subject to question. One might suggest that even if the methodology used to construct these tables is correct, and that it should be consistently applied to both males and females in each of the five age brackets, the results are not realistic.

The discussion in Section IV of overweightedness stated that an individual whose weight is 20 percent or more in excess of the mean weight is considered to be medically overweight. Thus, ar inconsistency between medical practice and the present AR 40-501 maximum weight standards for males aged 16-24 years exists. Already, and in the absence of any revision in the AR 40-501 maximum weight standards, some percentage of young males who are fully qualified under the current AR 40-501 standards for military service are also overweight. Clearly, a standard that establishes the maximum allowable weight at 135 percent of the mean

Table 20b

Comparison of Current AR 40-50l and Revised Beight and Weight Standards (in Pounds, with Maximum Weight Set at 135 Percent of Nean Body-Mass)

(in Po	ounds, with	Marinum	Weight	Set	at	135	Percent	of	Hean	Body-M	250)
				Pena!	l es						
Minimo	39			_			M	azim	1111		

		Minim	OM					lazimus	•			
				1	6-20 3	7 2 8		1-24 y		2	5-30 y	/ 2 8
Height (Inches)	AR 40-501	80% BM	Change	AR 40-501	135% B#	Change	AR 40-501	1350 BR	Change	AR 40-501	135% B#	Change
58	90	85	-5	120	151	+31	124	155	+31	126	163	+37
59	92	87-	-5	122	155	+33	126	159	+33	128	167	+39
60	94	90	-4	124	159	+35	128	163	+35	130	172	+42
61	96	92	-4	127	163	+36	130	167	+37	132	176	+44
62	98	94	-4	128	167	+39	132	172	+40	134	180	+46
63	100	96	-4	132	171	+39	134	176	+42	136	185	+49
64	102	99	-3	135	175	+40	136	180	+44	139	189	+50
65	104	101	-3	138	180	+42	140	184	+44	144	194	+50
66	106	103	-3	141	184	+43	145	189	+44	148	198	+50
67	109	106	-3	145	188	+43	149	193	+44	152	203	+51
6 B	112	108	-4	150	192	+42	153	197	+44	156	207	+51
69	115	110	-5	154	196	+42	157	202	+45	161	212	+51
78	118	113	-5	158	201	+43	162	206	+44	165	216	+51
71	122	115	7	162	205	+43	166	210	+44	169	221	+52
72	125	118	-7	167	209	+42	171	215	+44	174	226	+52
73	128	120	-8	171	214	+43	177	219	+42	179	231	+52
74	130	123	-7	175	218	+43	182	224	+42	185	235	+50
75	133	125	-8	179	223	+44	187	228	+41	190	240	+50
76	136	128	-8	184	227	+43	192	233	+41	196	245	+49
77	139	130	-9	188	232	+44	197	238	+41	201	250	+49
76	141	133	-8	192	236	+44	203	242	+39	206	255	+49
79	144	135	-9	196	241	+45	208	247	+39	211	260	+49
80	147	138	-9	201	245	+44	213	252	+39	216	265	+49

40

Table 20b (Continued)

Comparison of Current AR 40-501 and Revised Height and Weight Standard (in Pounds, with Maximum Weight Set at 135 Percent of Mean Body-Mass)

Females

			, , , , , , , , , , , , , , , , , , ,	laximu)		_		
3	1-35 y	rs	3	6-40	yrs _	41 yr	s and	over	
AR 10-501	135% BM	Change	AR 40-501	135% BM	Change	AR 40~501	135% BM	Change	Height (Inches
129	167	+38	132	171	+39	135	171	+36	5.8
131	171	+40	134	175	+41	137	175	+38	59
133	176	+43	136	180	+44	139	180	+41	60
135	180	+45	139	184	+45	141	184	+43	61
137	185	+48	140	189	+49	144	189	+45	62
139	189	+50	143	194	+51	145	194	+49	63
143	194	+51	145	198	+53	149	198	+49	64
148	198	+50	150	203	+53	153	203	+50	6.5
151	203	+52	154	208	+54	157	208	+51	66
156	208	+52	158	212	+54	162	212	+50	67
160	212	+52	162	217	+55	166	217	+51	6.8
164	217	+53	167	222	+55	170	222	+52	69
168	222	+54	171	227	+56	174	227	+53	70
173	226	+53	175	232	+57	179	232	+53	71
178	231	+53	181	237	+56	184	237	+53	7 2
183	236	+53	186	242	+56	190	242	+52	73
188	241	+53	191	247	+56	195	247	+52	74
194	246	+52	196	252	+56	20 0	252	+52	`5
199	251	+52	202	257	+55	205	257	+52	76
204	256	+52	207	262	+55	211	262	+51	77
209	261	+52	213	267	+54	216	267	+51	78
215	266	+51	218	272	+54	220	272	+52	79
219	271	+52	223	277	+54	225	277	+52	80

body-mass is one that includes males who are overweight using 120 percent of mean body-mass as the criterion for overweightedness. When the 135 percent mean body-mass standard is applied to older males and all females in establishing the maximum weight standard, the problem is extended.

Presented in Table 21 are the percentages of males and females who would be qualified under the proposed maximum weight standards but who would also be considered medically overweight. Among the males, aged 16-40 years, 3.7 percent of the NLS sample, 5.1 percent of the NHANES I sample, and 4.8 percent of the NHANES II sample are medically overweight. Among the females, aged 16-40 years, 4.1 percent, 6.3 percent, and 7.1 percent of the NLS, NHANES I and NHANES II samples, respectively, are medically overweight.

The text of the current AF 40-501 offers one solution to this dilemma. Section XII, Paragraph 2-23d, states: "Even though the individuals weight is within the maximum shown in table I or II, as appropriate, appendix III, he will be reported an medically unacceptable when the medical examiner considers the individual's weight, in relation to the body structure and musculature, constitutes obesity of such a degree as to interfere with the satisfactory completion of prescribed training." Thus, the standards setting the maximum allowable weight at 135 percent of the mean body-mass could be implemented at that level and cases of overweightedness handled by application of Paragraph 2-23d. However, such an approach might tend to undermine the desired objectivity of the maximum weight standards in screening applicants for military

Table 21

Percentage of Qualified but Medically Overweight
Under Maximum Weight Standard of 135 percent Mean Body-Mass

			Males			F	emai es	
	White	Black	Hispanic	Total	White	Black	Hispanic	Tota
LS					*******			
16-20 21-24	3.4	3.5	5.8 2.0	3.3 4.4	3.7	5.0	1.6	3.1
16-24	3.9	2.8	4.5	3.7	3.9	5,6	3.0	4.
HANES I								
16-20 21-24	5.8 5.6	3.1	4.2 3.6	5.4	4.9	3.7 9.1	2.6	4.0
16-24	5.7	2.6	3.9	5.2	4.5	6.0	2.9	4.0
25-30 31-35 36-40	4.2 5.9 4.5	6.4 2.0 16.1	3.4 1.4	4.5 5.4 5.2	6.6 5.8 8.4	11.2 12.6 15.5	21.1 7.6 0.7	7. 6. 8.
Total	5.2	4.9	4.2	5.1	5.8	9.8	6.3	6.
PANES II								
16-20 21-24	2.6	3.6 4.2	7.9 4.3	3.1	5.6 5.5	3.2 13.1	3.0 4.9	5.2
16-24	3.9	3,9	6.2	4.0	5.6	7.5	4.0	5.7
25- 30 31-35 36-40	4.1 5.0 6.4	5.9 9.2 5.1	2.5 20.8	4.4 5.3 7.4	7.2 7.0 7.4	12.7 11.8 13.1	13.8 19.8 6.0	8.1 7.9 8.0
77.141	4.5	5,4	8.5	4.9	6.5	10.2	9.0	7.1

service. The intent of Paragraph 2-23d is to permit medical judgement in those exceptional cases where an individual meets the objective weight standard, but is still not suitable for military service. It is not unlikely that the few "exceptional" cases that arise under the current AR 40-501 maximum weight standards would become common cases under the 135 percent of mean body-mass standards.

In the next section of this report we examine an alternative that sets the maximum weight standards at 120 percent of mean body-mass and assess its effect of qualification rates.

SECTION X

Alternative Maximum Weight Standards

As an alternative to retaining the maximum weight standards for 16-24 year-old males (the initial analytic constraint), and applying the methodology used to set those standards to the older males and all females, we propose that the problem described above of qualifying overweight individuals be resolved by removing the analytic constraint. Accordingly, we examined the proposal that the maximum weight standards for all males and all females be set at 120 percent of the mean body-mass in each age bracket. This will result in the exclusion of all persons who are characterized as medically overweight and ensure that cases that fall under the provisions of AR 40-501, Paragraph 2-23d will remain exceptional.

Table 22a presents a comparison of the current AR 40-501 height and weight (in pounds) standards and revised standards using a 120 percent of mean body-mass standard (converted to pounds) for males. This table shows a reduction in the maximum allowable weight for males, aged 16-20 years and 21-25 years of 12-21 pounds, depending on height, compared to the minor increases of 3 to 6 pounds presented in Table 20a under the 135 percent mean body-mass standard. For the 26-30 year-old males, Table 26a shows a decrease of 7 to 12 pounds under the 120 percent mean body-mass standard compared to the increases of 9 to 25 pounds shown in Table 20a. While the 135 percent mean body-mass standard results presented in Table 20a showed increases of 19 to 35 and 24 to 44 pounds for males aged 31-35 and 36-40 years, respectively, Table 22a shows a

Table 22a

Comparison of Current AR 40-501 and Revised Height and Weight Standards (in Pounds, with Maximum Weight Set at 120 Percent of Hean Body-Nass)

Males

		Minimo	779				H	la zi nuz	•			
				1	6-20 y		2	1-24 y	rs	2	5-30 y	rs
Height Inches)	AR 40-501	80% BM	Change	AR 40-501	120% BM	Change	AR 40-501	120% BM	Change	AR 40-501	120% BM	Chang
58	_	84	_	_	136	_	-	141	-	_	145	_
59	-	87_	-	-	141	_	-	146	-	-	151	-
60	100	90	-10	158	145	-7	163	151	-12	163	156	-7
61	102	93	-9	163	150	-13	168	156	-12	168	161	-7
62	103	96	-7	168	155	-13	174	161	-13	174	166	-8
63	104	99	-5	174	160	-14	180	166	-14	180	172	-8
64	105	102	-3	179	166	-13	185	171	-14	185	177	-8
65	106	106	0	185	171	-14	191	177	-14	191	183	-8
66	107	109	+2	191	176	-15	197	182	-15	197	188	-9
67	111	112	+1	197	181	-16	203	188	-15	203	194	-9
68	115	116	+1	203	187	-16	209	194	-15	209	200	-9
69	119	119	0	209	192	-17	215	199	-16	215	206	-9
70	123	122	-1	215	198	-17	222	205	-17	222	212	-10
71	127	126	-1	221	204	-17	228	211	-17	228	218	-10
72	131	130	-1	227	210	-17	234	217	-17	234	224	-10
73	135	133	-2	233	216	-17	241	223	-18	241	231	-10
74	139	137	-2	240	221	-19	248	229	-19	248	237	-11
75	143	141	-2	246	228	-18	254	236	-18	254	244	-10
76	147	144	-3	253	234	-19	261	242	-19	261	250	-11
77	151	148	-3	260	240	-20	268	248	-20	268	257	-11
78	153	152	-1	267	246	-19	275	255	-20	275	263	-12
79	159	156	-3	273	252	-21	282	261	-21	282	270	-12
80	166	160	-6	280	259	-21	289	268	-21	289	277	-12

Table 22a (Continued)

Comparison of Current AR 40-501 and Revised Height and Weight Standards (in Pounds, with Maximum Weight Set at 120 Percent of Mean Body-Mass)

Males

3	1-35 y	rs	3	6-40 y	718	41 yr	s and	over	
AR 40-501	120% BM	Change	AR 40-501	120% BM	Change	AR 40-501	120% BM	Change	Beight (Inches
_	150	-	-	150	_	_	150	_	58
_	155	_	_	155	_	_	155	_	59
162	161	-1	157	161	+4	150	161	+11	60
167	166	-1	162	166	+4	155	166	+11	61
173	172	-1	168	172	+4	160	172	+12	62
178	177	-1	173	177	+4	165	177	+12	63
184	183	-1	179	183	+4	171	183	+12	64
190	189	-1	184	189	+5	176	189	+13	65
196	195	-1	190	195	+5	182	195	+13	66
202	201	-1	196	201	+5	187	201	+14	67
208	207	-1	202	207	+5	193	207	+14	68
214	213	-1	208	213	+5	198	213	+15	69
220	219	-1	214	219	+5	204	219	+15	70
227	225	-2	220	225	+5	210	225	+15	71
233	232	-1	226	232	+6	216	232	+16	72
240	238	-2	233	238	+5	222	238	+16	73
246	245	-1	239	245	+6	228	245	+17	74
253	252	-1	246	252	+6	234	252	+18	75
260	258	-2	252	258	+6	241	258	+17	76
266	265	-1	259	265	+6	247	265	+18	77
273	272	-1	266	272	+6	254	272	+18	78
281	279	-2	273	279	+6	260	279	+19	79
288	286	-2	279	286	+7	267	286	+19	80

97

decrease of 1 or 2 pounds for the 31-35 year-old males and an increase of 4 to 7 pounds for males, aged 36-40 years. (As was the case in presenting the revised standards set at 135 percent of mean body-mass coverted to pounds (Tables 20a and 20b), the standards for the 41 years and over age bracket under the 120 percent of mean body-mass standards were calculated for the NHANES II males and females, aged 41-45 years-old. The standards are the same as those for the 31-35 years-old and 36-40 years-old males and 36-40 years-old females.)

Table 22b presents the comparison of the current AR 40-501 height and weight standards and revised standards using a 120 percent mean body-mass standard for females. For those females aged 16-20 years and 21-25 years, Table 22b shows that the maximum allowable weight is increased by 13 to 26 pounds, depending on age and height. This compares to increases of 31 to 45 pounds under the 135 percent mean body-mass standard shown in Table 20b. Application of the 120 percent mean body-mass standard results in increses in the maximum allowable weight of 17 to 30 pounds for older females, 26-30 years, 31-35 years, and 36-40 years, compared to increases of 37 to 57 pounds shown in Table 20b.

Table 23 summarizes the percentages of males and females who would qualify for enlistment under the 135 percent mean body-mass standards but who would be disqualified under the 120 percent mean body-mass standard. Among 16-24 year-olds, 3.8 percent of the NLS males and 4.1 percent of the NLS females are moved from the qualified category to the overweight and not qualified category. The comparable percentages for NHANES I males and females, aged 16-24 years, are 5.3 percent and 4.6 percent, respectively,

and for the NHANES II males and females, 4.0 percent and 5.7 percent, respectively. Among all the males and females aged 16-40 years in the NHANES I sample, the percentages becoming not qualified are 5.1 percent and 6.3 percent, respectively. The comparable percentages for the NHANES II males and females are 4.8 percent and 7.1 percent, respectively.

Tables 24a and 24b present the percentages in each of the three data sets who are qualified under the 120 percent mean body-mass standard for maximum allowable weight, as well as the proposed revised minimum weight and height standards, for 16-24 year olds and 16-40 year olds, respectively. As was the case in earlier analyses, the females are qualified at a lower rate than males, and black females are qualified at a lower rate than white and Hispanic females.

A detailed analysis of the percentage of the males and females in each data set who are overweight under the 120 percent mean body-mass standard, by age bracket and race/ethnic group, is presented in Table 25. Among the males in the NHANES I and NHANES II samples, marginally larger percentages of 25-30 year-old, 31-35 year-old, and 36-40 year-old males are disqualified for overweightedness compared to the 16-24 years-old. For females, a similar contrast is evident but with moderately larger differences.

The net effect of all the proposed revisions in the height and weight standards for 16-24 year-olds are presented in Tables 26a, 26b, and 26c. These tables are similar to those presented earlier (Tables 17a

Table 22b

Comparison of Current AR 40-501 and Revised Height and Weight Standards (in Pounds, with Maximum Weight Set at 120 Percent of Rean Body-Mass)

		Minimo	1m					laximum	0			
				1	6-20 y	'IS	2	1-24 3	rs	2	5-30 5	718
Beight Inches)	AR 40-501	80% BM	Change	AR 40-501	120% BM	Change	AR 40-501	120% BM	Change	AR 40-501	120% BM	Chang
58	90	85	-5	120	136	+16	124	139	+15	126	143	+17
59	92	87	~5	122	139	+17	126	143	+17	128	147	+19
60	94	90	-4	124	143	+19	128	147	+19	130	151	+21
61	96	92	-4	·127	146	+19	130	150	+20	132	155	+23
62	98	94	-4	128	150	+22	132	154	+22	134	159	+25
63	100	96	-4	132	153	+21	134	158	+24	136	162	+26
64	102	99	-3	135	157	+22	136	162	+26	139	166	+27
65	104	101	-3	138	161	+23	140	166	+26	144	170	+26
66	106	103	-3	141	165	+24	145	169	+24	148	174	+26
67	109	106	-3	145	168	+23	149	173	+24	152	178	+26
68	112	108	-4	150	172	+22	153	177	+24	156	182	+26
69	115	110	-5	154	176	+22	157	181	+24	161	186	+25
70	118	113	-5	158	180	+22	162	185	+23	165	190	+25
71	122	115	-7	162	184	+22	166	189	+23	169	194	+25
72	125	118	-7	167	188	+21	171	193	+22	174	199	+25
73	128	120	-8	171	192	+21	177	197	+20	179	203	+24
74	130	123	-7	175	195	+20	182	201	+19	185	207	+22
75	133	125	-8	179	199	+20	187	205	+18	190	211	+21
76	136	128	-8	184	203	+19	192	209	+17	196	215	+19
7 7	139	130	-9	188	208	+20	197	214	+17	201	220	+19
78	141	133	-8	192	212	+20	203	218	+15	206	224	+18
79	144	135	-9	196	216	+20	208	222	+14	211	228	+17
80	147	138	-9	201	220	+19	213	226	+13	216	233	+17

Table 22b (Continued)

Comparison of Current AR 40-501 and Revised Height and Weight Standards (in Pounds, with Maximum Weight Set at 120 Percent of Mean Body-Mass)

Pemales

					axinum				
			41 yr		6-40 y	3	rs	1-35 y	3
Height (Inches		120% BM	AR 40~501	Change		AR 40-501		120% BM	AR 10-501
58	+16	151	135	+19	151	132	+18	147	129
	+18	155	137	+21		134	+20	151	131
60	+20	159	139	+23	159	136	+22	155	133
61	+22	163	141	+24	163	139	+24	159	135
62	+23	167	144	+27	167	140	+26	163	137
63	+26	171	145	+28	171	143	+28	167	139
64	+26	175	149	+30	175	145	+28	171	143
65	+27	180	153	+30	180	150	+27	175	148
66	+27	184	157	+30	184	154	+28	179	151
58 59 60 61 62 63 64 65 66 67 68 69	+26	188	162	+30	188	158	+27	183	156
68	+26	192	166	+30	192	162	+27	187	160
69	+26	196	170	+29	196	167	+27	191	164
70	+27	201	174	+30	201	171	+26	196	168
71	+26	205	179	+30	205	175	+27	200	173
72	+25	209	184	+28	209	181	+26	204	178
73	+24	214	190	+28	214	186	+25	208	183
74	+23	218	195	+27	218	191	+25	213	188
75	+23	223	200	+27	223	196	+23	217	194
76	+22	227	205	+25	227	202	+22	221	199
77	+21	232	211	+25	232	207	+22	226	204
78	+20	236	216	+23	236	213	+21	230	209
79	+21	241	220	+23	241	218	+19	234	215
80	+20	245	225	+22	245	223	+20	239	219

Table 23

Percentage of Males and Females Qualified
Under 135 Percent Mean Body-Mass Standards
but Not Qualified
Under 120 percent Mean Body-Mass Maximum Weight Standards

	Males	Females
NLS		
16-20 21-24	4.3	3,9 4,5
16–24	3.8	4.1
NHANES I		
16-20 21-24	5.4 5.0	4.6 4.6
16–24	5.3	4.6
25–30 31–35 36–40	4.5 5.4 5.2	7.7 6.6 8.8
Total	5.1	6.3
NHANES II		
16-20 21-24	3.1 5.3	5.1 6.4
16-24	4.0	5.7
25–30 31–35 36–40	4.7 5.3 7.3	8.3 8.0 8.0
Total	4.8	7.1

Table 24a Percentage Qualified and Not Qualified Under Revised Height and Weight Standards (with Maximum Weight Set at 120 Percent Mean Body-Mass)

Males		

		1	6-24 Year-ol	d Males and P	emales			
			Males	_		F	emales	
	White	Black	Hispanic	Total	White	Black	Hispanic	Total
NES								
Qualified	92.8	93.7	91.3	92.9	91.4	85.9	91.9	90.8
Not Qualified:								
Underheight	0.0	0.0	0.0	0.0	0,3	1.4	1.1	0.5
Overheight	0.0	0.3	0.0	0.1	0.0	0.0	0.0	0.0
Onderweight	1.2	1.6	1.9	1.2	1.4	1.3	1.4	1.
Overweight	6.0	4.3	6.8	5.8	6,8	11.5	5.7	7.3
	7.2	6.3	8.7	7.1	8,6	14.1	8.1	9.
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
NHANES I		74						-
Qualified	90.0	90.5	92.1	90.2	87.3	79.2	86.6	86.
Not Qualified:								
Underheight	0.0	0.0	0.0	0.0	0.4	0.5	4.3	0.0
Overheight	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Onderweight	2.0	3.2	0.0	2.0	3.0	2.6	4.1	3.0
Overweight	8.0	6,3	7.9	7.8	9.3	17.7	5.0	10.
	10.0	9,5	7.9	9.8	12.7	20.8	13.4	13.
Total	100.0	100.0	100.0	100.C	100.0	100.0	100.0	100.0
NETANES II						######################################	Achenter	
Qualified	92.4	92.5	80.9	91.7	88.5	80.6	84.4	97.
Not Qualified:								
Onderheight	0.0	0.0	0.0	0.0	0.4	0.4	3.7	0.0
Overheight	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Onderweight	1.5	1.4	0.6	1.4	1.2	1.3	2.3	1.
Overweight	6.2	6.1	18.5	6.9	9.9	17.7	9.7	10.
	7.6	7.5	19.1	8.3	11.5	19.4	15.6	12.
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Table 24b

Percentage Qualified and Not Qualified

Under Revised Height and Weight Standards
(with Maximum Weight Set at 120 Percent Mean Body-Mass)

16-40 Year-old Males and Females

			Males			F	emales	
	White	Black	Hispanic	Total	White	Black	Hispanic	Total
NHANES I								
Qualified	91.0	88.8	93.6	90.9	86.4	74.8	83.1	84.9
Not Qualified:								
Underheight	0.0	0.0	0.0	0.0	0.4	0.4	3.5	0.5
Overheight	0.0	0.0	0.0	0.0	0.0	0.0 2.3	0.0 2.2	0.0 1.9
Underweight Overweight	1.2 7.8	2.5 8.7	0.0 6.4	1.3	1.8 11.4	22.5	11.2	12.8
everweight								
	9.0	11.2	6.4	9.1	13.6	25.2	16.9	15.1
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
NHANES II	*****			*****	****	****	*****	
Qualified	92.3	90.7	94.8	91.7	36.2	74.8	76.7	84.2
Not Qualified:								
Inderheight	0.0	0.0	3.0	0.0	0.2	0.2	5.2	0.5
Overheight	0.0	0.0	0.0	0.0	٥.٥	2.0	0.0	0.0
Inderweight Overweight	0.8 7.0	0.7 8.6	0.3 14.9	0.7 7.6	1.0 12.6	0.9 24.1	2.6 15.5	1.1
Sverweight			14.9					
	7.7	9.3	15.2	8.3	13.8	25.2	23.3	15.6
Total	100.0	100.0	100.0	100.0	130.0	100.0	100.0	100.0
	22200	3235	****	22288	* = = = =			2 # 2 # 4

Table 25

Percentage Overweight Under Revised Weight Standards with Maximum Weight Set at 120% Mean Body-Mass)

	•		Males				ma.es	
	White	Black	Hispanic	Total	White	Black	Hispanic	Total
VLS.								
16-20 21-24	5.4 6.8	3.8	7.5	5.2	6.8	10.6	4.4 7.9	6.5 8.6
16-24	6.0	4,3	6.8	5.8	6.8	11.5	5.7	7.
NHANES I								
16-20 21-24	8.1	6.1	5.2	7.8 7.8	9.4	15.0	2.9 7.5	9.7 10.5
16-24	8.0	6.3	7.9	7.8	9.3	17.7	5.0	10.1
25-30 31-35 36-40	8.3 8.8 5.4	12.4 3.6 19.5	8.6 3.4 1.4	8.6 8.0 6.3	12.2 12.5 15.4	22.0 30.5 29.2	28.9 16.8 7.0	14.0 14.7 16.6
Total	7.8	8.7	6.4	7.8	11.4	22.5	11.2	12.8
'S'ANES II								
16-20 21-24	4.8 8.0	6.6	24.2 12.3	6.1 8.0	9.3	13.5	11.3	9. 9 12.2
16-24	6.2	6.1	19.5	6.9	9.9	17.7	9.7	10.9
25-30 31-35 36- 4 0	7.0 7.5 8.5	11.3	11.0 2.5 20.8	7.6 7.5 9.7	13.1 18.5 14.6	29.3 26.5 32.7	15.9 45.2 8.1	15.4 18.5 16.5
··ai	7.0	8.6	14.9	7.6	13.8	24.1	15.5	14.2

Tat le Cha

Summary of the Effect of Changes in AF 40 Sol Beight and Aeitht Shandaris (including the Effect of 1% per ent vs. 120 percent Mean Body-Mass Maximum Weight Shandards)

16-24 Year-old Males and Penales

ardus Sin

	1		Kales	:					Fo " A] P.	50		
	Onalified	1 1 1 1	, z	t Qualiti	eg.	; ; ; ;	Qualithed	•	10%	t Qualitie		
			T	1 Pr	15.03		•	:	1	aht	3.0	
		Total	1apu.	IHAO -	n de r	Tap.		Total	rder.	3.424	i safe of	
Current AR 40-501 Standards Conversion to Body-mass	o !	7.1)	0.1	c ;	1.3	7.7	4 (0)	25.6 (2.6)	c.	0.1		
Current AR 40-501 in Body-mass Revision to 135% of Mean Rody-mass Adjustment to 120% of Mean Body-mass	9.0 0.0 3.83	3.2 0.0 3.8	و <u>. ۲</u>	. ; ·		00°°	0.1.4	23.0 (17.3)	ر. م. ا			
Net Revision to 120% of Mean Budy-mass	- 00 : - 00 : 	. cc ;		· · · · · · · · · · · · · · · · · · ·	1 : : :	ac :	2.8:	(13.2)				·
Revised Maximum Weight Standards Revision of Minimum Weight Standards	0.3)	0 . 0	0.1	0.1		ر و ا	90.2	α (°)	<u>د</u>			·
Pevised Minimum and Maximum Weight Standards Revision of Height Standards	æ - ;	7.2 (0.1)	0.1	0.0	20	ر د . و د د .	50.1	٠ ح د			 	
Revised Weight and Height Standards	6	- h - h - n	0.0	G .	f	œ.	8.00	# C 4 G	() () ()	0°C		
Net Effect of All Pezisions	C 8	0 1	() B	0.0	·:· ·		4	(16.4)	ر ن ن			•

	1.5.				••				٠		•	
			1	•	:	:			•	:.	÷	:
		î		ř	<u>.</u>	2				ž		
crient AF 40 501 Standards Conversion to Body-bass	च ५ च d	• •		Į.		.						, 4 ·
Current AP 40-50; in Body-mass Revision to 1350 of Mean Body-mass Advanteent to 1200 or Mean Body-mass		er¢ ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	·.·	· ·	•.		6 m m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4	provide to	.		·.	
Net Revision to of mean not, taken revised maximum Welch Standards Pevision of Minnibum Welibt Standards		• • • • • • • • • • • • • • • • • • •	٠	¢ .	چ ج بارد	r.				e		
Pevised Minibum and Makibum Weilbit (Fandard) Bevistion of Helibe Standards	٠.٤ د د	ه د • د	ç ç,	c c	. C	ਭ ⊝ • ¿				e c cc		
Pevised Wellhr and Helihr Tandants	i i	r o	· e	· ·		*				c. -		
Net Effect of All Berishins	î.	(· · · · · · · · · · · · · · · · · · ·	e,	ζ.	ζ.	÷;				0		•

unders of the biles of Thropes of Ab 4 - 7) because and weight Chansario. The Chansario of Section 1985 and
ANAMA II MARAM

			:						Fortal.	16		
			è	· · · · · · · · · · · · · · · · · · ·	-		Participe .		N.	t Qualify	: : •	
			*#	* 44	č	<u>.</u>			He	iht i		net
		7. 7.	÷ .	4 2	J.4.	1.4%		e	"h.Ber		1 4 1	Acc
Unitent AP 40=501 Standards Conversion to Rody takes	# V4 W C	6. € • d	c:	e	i it		ær. • ♥	 	9 1	ç. ·	e fi	øć !
Current AP 40-501 in Prof. mass Revision to 1909 of Mean Rull, mass Adjustment to 1209 of Mean Act, mass	0 € € € € € € € € € € € € € € € € € € €	ଳ ଓ ଓ ସଂଗ୍ରେ	· ·	÷.	c ,:	# C G	5.00	υ έξε ε δ υ ε ξ	9:3	6	6	24.0
MORE MOVEMENT OF THOSE OF MORE THANKS AND THE MORE THANKS	c ·	c •				6.4	· · · ·	14.0)		1 1	1 1	14.0
Revised Maximum Weight Standards Revision of Minimum Weight Chardards	6.00	٠. 	er er	ē.	€ 4 - 6	ō	26.50 2.00	5.61	y	€4 ; • U ; • U ;	er (i) .	6
Revised Winters and Maximum Weight Trandords Revision of Helph Standards	¥.50	4.0°	- -	c	♥ 0	0 € 40 .	6.2	6 e c	400 ·	0 C	~ C	6.0 6.0
Revised Welaht and Helaht Chandario	r	۳ ع	c .	c	4 .	6 ." 'E	ru . t . a: a	6C 11	٠ د	0.0	5.	0.01
Wet Effect of All Revisions	er j	\C :	0	0.0	<u>.</u>	00 1 00 1	# 6	4.4	C 4	(0.2)	C+ :	ć , ,

through 17c) but include the adjustment for the change in the formula for determining the maximum weight standard. For the NLS males, the total qualification rate decreases from 95.9 percent under current standards to 92.9 percent, a 3.0 percentage point decrease, while for the NLS females it increases from 74.4 percent to 90.8 percent, a 16.4 percentage point increase (see Table 26a).

For the 16-24 year-old males and females in the NHANES I sample (Table 26b), the total percentage of males qualified under the 120 percent mean body-mass standard (90.2 percent) is a net decrease of 4.2 percentage points from the total under current standards, while the total percentage of qualified females (86.3 percent) increased 20.9 percentage points. Among the NHANES II participants, aged 16-24 years (Table 26c), the total qualification rate for males under the 120 percent mean body-mass standard (91.7 percent) is 3.6 percentage points lower than under current standards. For the females the qualification rate increases 19.4 percentage points under the revised standards to 87.2 percent.

The effect of all the proposed revisions in the AR 40-501 standards, including setting the maximum allowable weight at 120 percent of mean body-mass for the 16-40 year old males and females are presented in Tables 27a and 27b, respectively. The net effect on the overall qualification rate of the revisions among the NHANES I sample is a decrease of 2.0 percentage points for the males and an increase of 20.4 percentage points for the females (Table 27a). Under the 120 percent mean body-mass standards, 90.9 percent of all males and 84.9 percent of all females are qualified.

Table 27a

Summary of the Effect of Changes in AR 40-501 Height and Weight Standards (Including the Effect of 135 percent vs. 120 percent Mean Body-Mass Maximum Weight Standards)

16-40 Year-old Males and Females

NHANES I Sample

			Males					:	Females			
	Qualified		ON.	Not Qualified	ed		Qualified		Not	Not Qualified	eđ	
			Hei	Height	Wei	Weight			Reight	jht	Weight	ht
		Total	Under	Over	Under	Over		Total	Under	Over	Under	Over
Current AR 40-501 Standards Conversion to Body-mass	92.9	7.1	0.0	0.0	1.3	5.8	3.7	35.5	0.5	0.0	3.4	31.6 (2.6)
Current AR 40-501 in Body-mass Revision to 135% of Mean Body-mass Adjustment to 120% of Mean Body-mass Net Revision to 120% of Mean Body-mass	94.4 1.8 (5.1)	5.6 (1.8) 5.1	0.0	0.0	1:1	(1.8) (5.1) (5.1)	68.2 22.5 (6.3)	31.8 (22.5) 6.3 (16.2)	\$ 1 1 1 1	0	2.3	29.0 (22.5) 6.3 (16.2)
Revised Maximum Weight Standards Revision of Minimum Weight Standards	91.1	8.9	0.0	0.0	1.1	7.8	84.4	15.6 (0.5)	5.0	0.0	2.3 (0.4)	12.8
Revised Minimum and Maximum Weight Standards Revision of Beight Standards	0.0	0.0	0.0	0.0	0.0	7.8	84.9	15.1	0.0	0.0	0.0	12.8
Revised Weight and Height Standards	90.6	9.1	0.0	0.0	1.3	7.8	84.9	15.1	0.5	0.0	1.9	12.8
Net Effect of All Revisions •	(2.0)	2.0	0.0	0.0	0.0	2.0	20.4	(20.4)	0.0	0.0	(1.5)	(18.8)

Among the NHANES II males and females, aged 16-40 years (Table 27b), 91.7 percent and 84.2 percent, respectively, are qualified under the 120 percent of mean body-mass standards. These percentages represent a 1.8 percentage point decrease among males in the total percentage qualified, compared to current AR 40-501 standards, and an increase of 20.3 percentage points among the females.

In sum, the removal of the analytic constraint, that the current AR 40-501 standards for young males, aged 16-24 years, not be modified, and setting the maximum allowable weight at 120 percent of the mean body-mass for all males and females, resolves the problems described earlier. The resultant tables of acceptable heights and weights are much more reasonable and the intent of AR 40-501, Paragraph 2-23d is not violated. Accordingly, the analyses indicate that the 120 percent mean body-mass standard is more appropriate in a revision of the AR 40-501 weight standards than the 135 percent mean body-mass standard.

Table 27b

Summary of the Effect of Changes in AR 40-501 Height and Weight Standards (Including the Effect of 135 percent vs. 120 percent Mean Body-Mass Maximum Weight Standards)

16-40 Year-old Males and Females

NHANES II Sample

			Males						Females		: [[
	Qualified	,	NON	Not Qualified	P		Qualified		Not	Not Qualified	P	
			Height	ght	Weight	jht			Reight	jht.	Weight	ht
		Total	Under	Over	Under	Over		Total	Under	Over	Under	Over
Current AR 40-501 Standards Conversion to Body-mass	93.5	6.5	0.1	0.0	0.9	5.5 (0.9)	63.9	36.1	0.5	0.1	2.6 (1.1)	32.9
Current AR 40-501 in Body-mass Revision to 135% of Mean Body-mass Adjustment to 120% of Mean Body-mass	94.8	5.2 (1.8)	0.1	0.0	0.5	4.6	67.7 23.1 (7.1)	32.3 (23.1) 7.1	0.5	0.1	1.5	30.2 (23.1)
Net Revision to 120% of Mean Body-mass	(3.0)	3.0	!	1	. !	3.0	16.0	(16.0)	1	; ; ;	-	(16.0)
Revised Maximum Weight Standards Revision of Minimum Weight Standards	91.8 (0.2)	8.2	0.1	0.0	0.5	7.6	83.7	16.3	0.5	0.1	1.5	14.2
Revised Minimum and Maximum Weight Standards Revision of Height Standards	91.8	8.4 (0.1)	(0.1)	0.0	0.0	7.6	94.1	15.9	0.0	(0.1)	0.0	14.2
Revised Weight and Height Standards	91.7	8 # # # # # # # # # # # # # # # # # # #	0.0	0.0	0.7	7.6	84.2	15.8	0.5	0 0 11	1.1	14.2
Net Effect of All Revisions	(1.8)	1,8	(0.1)	0.0	(0.2)	2.1	20.3	(20.3)	0.0	(0.1)	(1.5)	(18.7)

SECTION XI

Proposed Revised AR 40-501 Appendix III, Tables I and II

The net result of our analysis and proposals for revision of AR 40-501, Appendix III, Tables I and II are summarized in revised tables of militarily acceptable weight, in pounds (Tables 28a and 28b). These tables incorporate all the changes specified in Section IX, An Interim Summary, except for Proposal 4. Proposal 4, pertaining to the body-mass percentage, is modified so that a body-mass value of 120 percent of the mean body-mass for each age bracket is to be applied for all males and females as the maximum allowable weight. Tables 28a and 28b incorporate this revised proposal.

In addition to the revision of AR 40-501, Appendix III, Tables I and II, changes in the text of AR 40-501, Section XII, Height, Weight, and Body Build, Paragraph 2-21, Height, are required to effect the proposed changes in the height standards, if the proposed revisions are implemented. Currently, the text of Paragraph 2-21 states:

2-21. Height

The causes for rejection for appointment, enlistment, and induction are--

- a. For appointment.
 - (1) Men. Height below 60 inches or over 80 inches (see administrative criteria in para 7-13).
 - (2) Women. Height below 58 inches or over 72 inches.

Table 28a

Proposed Revision of AR 40-501, Appendix III, Table I Tables of Weight, Males

APPENDIX III TABLES OF WEIGHT

Table I. Table of Militarily Acceptable Weight (in Pounds) as Related to Age and Height for Males--Initial Procurement

	Minimum	*1aximum							
Height (inches)	(regardless of age)	16-20 yrs	21-24 yrs	25-30 yrs	31-35 yrs	36-40 yrs	41 yrs and over		
58 59 60	84 87 90 93	136 141 145 150	141 146 151 156	145 151 156 161	150 155 161 166	150 155 161 166	150 155 161 166		
62	96	155	161	166	172	172	172		
	99	160	166	172	177	177	177		
	102	166	171	177	183	183	183		
	106	171	177	183	189	189	189		
66	109	176	182	188	195	195	195		
	112	181	188	194	201	201	201		
	116	187	194	200	207	207	207		
	119	192	199	206	213	213	213		
70	122	198	205	212	219	219	219		
71	126	204	211	218	225	225	225		
72	130	210	217	224	232	232	232		
73	133	216	223	231	238	238	238		
74 75 76	137 141 144 148	221 228 234 240	229 236 242 248	237 244 250 257	245 252 258 265	245 252 258 265	245 252 258 265		
78	152	246	255	263	272	272	272		
79	156	252	261	270	279	279	279		
30	160	259	268	277	286	286	286		

Table 28b

Proposed Revision of AR 40-501, Appendix III, Table II Tables of Weight, Females

APPENDIX III TABLES OF WEIGHT

Table II. Table of Militarily Acceptable Weight (in Pounds) as Related to Age and Height for Females--Initial Procurement

	Minimum	Maximum							
Height (inches)	(regardless of age)	16-20 yrs	21-24 yrs	25-30 yrs	31-35 yrs	36-40 yrs	41 yrs and over		
58	85	136	139	143	147	151	151		
	87	139	143	147	151	155	155		
	90	143	147	151	155	159	159		
	92	146	150	155	159	163	163		
62	94	150	154	159	163	167	144		
	96	153	158	162	167	171	171		
	99	157	162	166	171	175	175		
	101	161	166	170	175	180	180		
66	103	165	169	174	179	184	184		
	106	168	173	178	183	188	188		
	108	172	177	182	187	192	192		
	110	176	181	186	191	196	196		
70	113	180	185	190	196	201	201		
71	115	184	189	194	200	205	205		
72	118	188	193	199	204	209	209		
73	120	192	197	203	208	214	214		
74 75 76	123 125 128 130	195 199 203 208	201 205 209 214	207 211 215 220	213 217 221 226	218 223 227 232	218 223 227 232		
78	133	212	218	224	230	236	236		
79	135	216	222	228	234	241	241		
80	138	220	226	233	239	245	245		

- b. For enlistments and induction.
 - (1) Men. Height below 60 inches or over 80 inches for Army and Air Force.
 - (2) Men. Height below 60 inches or over 78 inches for Navy and Marine Corps.
 - (3) Women. Height below 58 inches or over 72 inches for Army.

In place of this text, the following text would be substituted:

2-21. Height

The causes for rejection for appointment, enlistment, and induction are height below 58 inches or over 80 inches (see administrative criteria in para 7-13).

The revised tables and text result in standards for males and females that are sex neutral, except for the fact that males weigh more than females when height and age are both controlled for. The methodology for establishing minimum and maximum weight standards is uniform and consistently applied regardless of sex. The minimum and maximum height standards for males and females are revised to be the same, reflecting the lack of medical justification for differentiating between very short or very tall males and females. In sum, these proposed revisions result in the elimination of the wide differences in male and female qualification rates that result when the current AR 40-501 height and weight standards are applied to nationally representative samples of Americans (see Tables 3a and 3b).

SECTION XII

Concluding Discussion

The analysis presented in this report has not directly addressed the issue of obesity in assessing and proposing revised weight standards. Commonly, obesity and overweight are considered to be the same thing, and the two terms are used interchangeably. In fact, they are two distinct measures. Overweight is simply an excess in total body weight (bone, muscle, soft tissue, and fat) relative to standards for height. Obesity, on the other hand, is an excess of body fat, expressed as a percentage of total body weight. Thus, overweight people are very frequently, but not necessarily, obese. Similarily, obese people are usually also overweight, but not necessarily so.

The assessments of the current AR 40-501 standards and revised standards at 135 percent and 120 percent of mean body-mass performed in the present analysis have all dealt with the issue of overweightedness and ignored the issue of obesity. There are several reasons for this. First, the operational realities of implementing screening procedures at Military Entrance Processing Stations (MEPSs) must be considered. In terms of expediency and efficiency, a method that objectively and reliably screens several hundreds of thousands of applicants each year must be implemented. Placing a person on a set of scales and measuring their height and then comparing the results to a table of standards meets the criteria of objectivity and efficiency.

While methods are available that permit measurement of body fat and the specification of standards in terms of obesity, these methods tend not to be reliable when applied on a large scale. One method that could be implemented as part of the screening process at the MEPSs is skin-fold measurements that are then converted into a measure of percentage of body fat to total weight. The problem with this method is that there is frequently large variation in the measures of skin fold obtained when measures of reliability are taken. Measurement of skin-fold requires precision in the specification of the measurement site and in the calibration of the calipers used to perform the measurement. Variation in an inch in the measurement site can result in large variations in the skin-fold measurement. The experience of the NHANES examination staff has been that reliable measures of skin-fold thickness are best obtained by having two independent sets of measurements taken and then comparing the Thus, to perform skin-fold screening of several hundreds of thousands of applicants each year at the MEPSs would likely be an onerous task.

The second reason for the specification of overweightedness as the screening criterion in our analysis is that, within the general population, the incidence of overweightedness is higher than that of obesity. Accordingly, overweightedness is a more stringent criterion than is obesity. In an analysis of NHANES I data, atstracted in Table 29 (National Center for Health Statistics, January, 1983) at the 85th or higher percentile, 23.2 percent of the males and 29.5 percent of the females were overweight, compared to 19.4 percent and 27.7 percent, respectively, who were obese. A cross-classification of the incidences of

Table 29

Percentage of NHANES I Population, Aged 20-74 Years Overweight and/or Obese

85th Percentile or More^a

		Males			Females	
	Obese ^b	Not Obese	Total	Obese ^b	Not Obese	Total
Overweight	12.7	10.5	23.2	21.5	8.0	29.5
Not Overweight	9.9	80.1	76.8	6.1	75.3	70.5
Total	19.4	9.06	100.0	27.7	83.3	100.0

Cell percentages may not sum to marginal totals due to rounding.

a) Adapted from Table B and Table C, National Center for Health Statistics (January 1983).

As measured by the sum of triceps and subscapular skin-fold measurements.

obesity and overweightedness (see Table 29) showed that 10.5 percent of the males and 8.0 percent of the females were overweight but not obese. In contrast, 6.6 percent of the males and 6.1 percent of the females were obese but not overweight. As is apparent, selection of either obesity or overweight as the screening criterion inevitably results is some people being accepted into the military who ought not be. However, using overweight as the screening criterion results in fewer obese people being accepted than would be the case if obesity were the screening criterion. Thus, the overweight criterion is a more conservative one than is Further, those individuals who are obese, but not overweight, obesity. result in fewer "exceptional" cases who would have to be handled by AR 40-501, Paragraph 2-23d, Obesity (see Section IX). As currently 40-501 can handle individuals who are obese but not written, overweight. If the regulation were to screen individuals using measures of obesity it would be difficult, in the absence of objective standards of individuals who were not obese but overweightedness, to handle In this respect, using overweight as the screening criterion overweight. is more parsimonious, in that only one set of standards are required.

The third, and final reason for the use of overweightedness, rather than obesity, as the screening criterion, is the existence of weight control procedures and policies applicable to those already in the military. Department of Defense Directive 1308.1, Physical Fitness and Weight Control Programs, includes weight control standards and directs the Military Services to implement weight control programs. DoD policy, under Directive 1308.1, specifies the determining factor in deciding whether a service member is overweight is the member's percent of body fat. Thus,

it is DoD's policy that the weight control program for those already in the military be aimed towards the control of obesity, an strictly defined. While an inevitable, but small, percentage of accessions into the military can be expected to be obese, despite the screening for overweightedness under AR 40-501, programs are in place to deal with this problem.

REFERENCES

R. J. (1971). Some mathematical properties of weight for height indices as measures of adiposity. <u>Brit J Prev Soc Med</u>, 25:42-50.

Department of Defense (March 1982). <u>Profile of American Youth: 1980 Administration of the Armed Services Vocational Aptitude Battery.</u> Washington, D.C.: Office of the Assistant Secretary of Defense (Manpower, Reserve Affairs, and Logistics).

Frankel, M.R. and McWilliams, H.A. (March 1981). <u>The Profile of American Youth:</u> <u>Technical Sampling Report</u>. Chicago, Ill: University of Chicago, National Opinion Research Center.

Laurence, M.T. (March 1984). <u>Physical Qualification for Enlistment: An Issue in the Development of Comprehensive QMA</u>. (Working Draft). Washington, D.C.: Defense Manpower Data Center.

National Center for Health Statistics (January 1983). Abraham, S. Obese and overweight adults in the United States. <u>Vital and Health Statistics</u>. Series 11, No. 230. DHHS Pub. No. (PHS) 83-1680. Public Health Service. Washington, D.C.: U.S. Government Printing Office.

National Center for Health Statistics (July 1981). McDowell, A. Plan and Operation of the Second National Health and Nutrition Examination Survey, 1976-1980. <u>Vital and Health Stastics</u>. Series 1, No. 15. HHS Pub. No. (PHS) 81-1317. Public Health Service. Washington, D.C.: U.S. Government Printing Office.

National Center for Health Statistics (January 1977). Miller, H.W. Plan and Operation of the Health and Nutrition Examination Survey, United States, 1971-1973. <u>Vital and Health Stastics</u>. Series 1, Nos. 10a and 10b. DHEW Pub. No. (PHS) 79-1310. Public Health Service. Washington, D.C.: U.S. Government Printing Office.

Society of Actuaries and Association of Life Insurance Medical Directors of America (March 1980). <u>Build Study 1979</u>. Recording & Statistical Corporation.

Statistical Bulletin (Jan-Mar 1984). <u>Measurment of Overweight</u>. 65:20-31. New York: Metropolitan Life Foundation.

Statistical Bulletin (Jan-Jun 1983). 1983 Metropolitan Height and Weight Tables. 64:2-9. New York: Metropolitan Life Foundation.

USAF Special Study Team (March 1985). United States Air Force Personnel Force Composition Study: An Analysis of the Effects of Varying Male and Female Force Levels, Annex Two: A Dynamic Model to Estimate Availability for Military Service of American Youth, Age 18 to 23, Through the Year 2000. Washington, D.C.: Headquarters, United States Air Force.

APPENDIX

Methodological Issues

This appendix deals with three methodological issues having implications for the veracity of the analysis presented in this report and the proposed revised standards. The first issue concerns the comparability of the data sets used in the analysis and the data reported in the <u>Build Study 1979</u>. The <u>Build Study 1979</u> is a widely recognized source of height and weight data of massive proportions, yet it was not considered suitable for use in the present analysis. The discussion below presents comparisons of <u>Build Study 1979</u> and NHANES I and NHANES II body weight data and summarizes the reason for using the later data bases, rather than the former, in this report.

The second issue concerns the distributions of body weight and body-mass in terms of the standard normal distribution, the requirements of the analysis for normalcy, and the potential effect variations away from normalcy might have on the qualification rates under the proposed revised maximum weight standards. The discussion below presents comparisons of the actual distributions of body weight and body-mass standard scores to the standard normal distribution and assesses the direction of any potential error resulting from deviations from normalcy.

The third methodological issue concerns the construction of the body-mass index and, in particular, the use of different variations of the body-mass formula for males (BM=W/H 2) and for females (BM=W/H $^1.5$).

Comparison of Build Study 1979 and NHANES I and II Data Sets

In medical practice and in the life insurance industry body weight as a function of height is most commonly assessed by use of the 1983 Metropolitan Height and Weight Tables. These tables are very familiar to the general public by their presence in vitually every general medical practitioner's office. The body weights presented in these tables are derived from height and weight data reported in the <u>Build Study 1979</u>. This report is recognized by actuaries in the insurance industry as the definitive compilation of height and weight data for insured lives, containing data collected from insurance policies issued to 3,996,650 males and 592,509 females. Given the respect accorded these data, their use in the development of the most commonly used set of weight standards, and the massive size of the data base, it was considered appropriate to compare them to those used in the present analysis.

Presented in Tables A-1 and A-2 are comparisons of the mean body weights reported in the <u>Build Study 1979</u> with those obtained from the NHANES I and NHANES II data sets. (Comparisons of data from the NLS data set are not presented since the limited age range of participants precludes a complete set of comparative data.) These tables present the mean body weight and standard deviations for males (Table A-1) and females (Table A-2) by the 17-19 year-old, 20-29 year-old, and 30-39 year-old age groupings broken down into five height categories as reported in the <u>Build Study 1979</u>. Each of the NHANES I and NHANES II means was statistically compared to the mean reported in the <u>Build Study 1979</u> by calculating the confidence interval around each mean using the Students t (a=.05, n-1)

Table A-1

Mean Body Weights and Standard Deviations of
Build Study 1979, NHANES I, and NHANES II Data Sets

Males

	Buil	d Study 1	979		NHANES 1		N	HANES II	
leight	Number	Mean	Standard Deviation	Number	Mean	Standard Deviation	Number	Mean	Standard Deviation
7-19 Year-olds:									
58-62 inches	255	130	23	1	137	-	6	122	26
63-66 inches	4,955	138	18	52	136	20	61	136	25
67-70 inches	28,521	154	20	230	154	26	262	150	26*
71-74 inches	24.842	169	23	146	169	29	140	165	25
75-79 inches	3,066	188	27	7	182	65	16	183	29
0-29 Year-olds:									
58-62 inches	2,318	144	27	4	130	38	7	133	27
63-66 inches	51,610	148	19	133	147	27	145	150	24
67-70 inches	369,601	164	20	487	164	27	633	163	26
71-74 inches	374,446	180	23	321	181	32	418	177	30
75-79 inches	48,641	200	26	39	204	39	58	2(-3	32
10-39 Year-olds:									
58-62 inches	4,598	147	26	6	15\$	51	10	162	33
63-66 inches	107,869	153	18	107	156	24	115	152	28
67-70 inches	665,790	169	20	337	176	30*	443	173	29*
71-74 inches	602,853	185	22	199	189	29	280	188	27
75-79 inches	66.546	205	24	14	219	46	23	201	27

^{*} Difference from the Build Study 1979 mean body weight is statistically significant (p <.05).

Table A-2

Mean Body Weights and Standard Deviations of
Build Study 1979, NHANES I, and NHANES II Data Sets

Females

	buil	d Study 1	979		NHANES I		N	HANES II	
eight	Number	Mean	Standard Deviation	Number	Mean	Standard Deviation	Number	Mean	Standard Deviation
7-19 Year-olds:									
58-62 inches	120	105	16	5	107	10	9	105	20
63-66 inches	3.860	116	17	91	120	26	98	124	24*
67-70 inches	10.192	128	18	271	132	28*	275	131	23
71-74 inches	3,342	141	19	65	135	29	79	142	27
75-79 inches	135	152	25	5	151	36	1	252	-
0-29 Year-olds:									
58-62 inches	495	107	19	31	113	25	19	108	29
63-66 inches	16,684	118	17	563	125	28	306	126	27
67-70 inches	50,107	129	18	1,297	135	30*	780	138	29*
71-74 inches	18,353	141	20	373	148	29*	249	147	29*
75-79 inches	1.024	161	26	15	167	38★	12	171	31*
C-39 Year-olds:									
53-62 inches	604	111	20	27	124	27*	8	134	27
63-66 inches	24,958	122	18	420	134	32*	246	136	31*
67-70 inches	69,357	133	19	961	146	35*	548	146	37 ≐
71-74 inches	24,489	145	20	267	158	39*	182	157	33*
75-79 inches	1,366	163	27	12	148	28	2	153	40

^{*} Difference from the Build Study 1979 mean body weight is statistically significant (p < .05).

NHANES II means were compared with each other to determine if any differences between these two data sets were statistically significant. All statistically significant differences are indicated by an asterisk in Tables A-1 and A-2.

with only three exceptions, the mean body weight of the males for each age and height subgrouping of the NHANES I and NHANES II data sets were not statistically different from those reported in the <u>Build Study</u> 1979 (see Table A-1). In no case were the means of the NHANES I and NHANES II data sets significantly different from each other.

For the females (see Table A-2) the mean weights of the 17-19 year-olds in the NHANES I and NHANES II data sets were similar to those reported in the <u>Build Study 1979</u>. In contrast, the mean weights for the 20-29 year-old and 30-39 year-old sub-groups in the two NHANES data sets were generally different from those reported in the <u>Build Study 1979</u>. As was the case for males, none of the NHANES I and NHANES II means were significantly different from each other.

The fact that there were no statistically significant differences in mean weights between the two NHANES data sets suggests that the two data sets reliable describe the weight of the U.S. population aged 17-39 years, which is the population of interest in this report. Statistically, it is improbable that the two independent NHANES surveys, performed at two different times, would produce data that are not statistically different, if indeed there were actual differences in the U.S. population.

In contrast, the statistically significant differences found between the NHANES I and NHANES II data and the <u>Build Study 1979</u> data, especially for females, suggests that population described by the <u>Build Study 1979</u> data is different from the two NHANES data sets. Indeed, this is the case. The NHANES surveys were national probability samples of all Americans, aged 6 months through 74 years while the <u>Build Study 1979</u> included only those people who had been issued individual insurance policies, a sample of Americans that is not statistically representative of the entire U.S. population.

Those Americans included in the Build Study 1979, commonly referred to as "insured lives", are generally older than those not included, that is, those Americans not carrying individual life insurance, are more affluent, and are predominantly male. The total number of males, aged 20-29 years, included in the Build Study 1979 was 846,931, while the total for males aged 30-39 years was 1,448,084. The comparable totals for females were 88,706 and 120,810. The difference in the number of male and female insured lives is a function of financial responsibility. Males are more frequently the head of household and thus more likely to obtain life insurance than are female non-heads of household. Among women as a group, those who are heads of households are more likely to carry individual life insurance than those who are not. Finally, most Americans are insured through employer sponsored group plans which are not included in the Build Study 1979. These plans cover the majority of all wage earners, most of whom earn less than the mean U.S. income, thus representing a less affluent group that those who carry individual life insurance.

This brief summary of who carries individual life insurance and thus is included in the <u>Build Study 1979</u> clearly suggests that these data are not necessarily representative of the entire U.S. population. While these data are extremely useful for analyses of weight in terms of morbidity and mortality and as the basis for establishing standards of weight such as the 1983 Metropolitan Life Height and Weight Tables, they are less than ideal for use in establishing standards for enlistment into the military services which require representative data of all U.S. young people.

Accordingly, the differences in mean weights presented in Tables A-1 and A-3 between the <u>Build Study 1979</u> and the two NHANES data sets are moot. The best set of data for use in the present analysis are the NHANES I and NHANES II data which are, to the best of our knowledge, the only comprehensive national probability samples of actual weight measurements available.

Comparison of Actual Body Weight and Body Mass Distributions to the Standard Normal Distribution

To assess the distribution of actual body weights and body-mass index values the data for each NLS, NHANES I and NHANES II participant was converted to standard scores using the formula $Z=(X-\bar{X})/s$. Then, the number of participants whose standard score fell within each of ten equal segments of .5 standard normal deviations around the mid-point of 0 standard deviations was determined and statistically compared to the expected distribution of cases actually falling in each segment using the Chi-Square test (a=.01, df=9). Finally, to facilitate presentation of the standard score distributions, the numerical counts falling in each of the ten segments of the standard normal distribution for each data set and age subgroup were converted to percentages. These data are presented in tabular form in Tables A-3 and A-4 and in graphic form in Figures A-1 through A-12.

As shown in Table A-3, which presents the distributions of body weights expressed in standards scores, all of the distributions were, compared to the standard normal distribution, statistically different. For both males and females in all age groupings, the actual percentages of standard scores falling between -1.96 and infinity were higher than the expected percentage of 2.50 percent. With only one exception (NHANES I males, aged 36-40 years) the actual percentages of standard scores falling between +1.50 and +1.96 and between +1.96 and infinity were lower than the expected percentages of 4.18 percent and 2.50 percent respectively.

Table A-4 presents the distributions of body-mass index values,

Table A-3

Distribution of Standard Scores of Body Weight into Ten Equal Segments of the Standard Normal Distribution

Standard Deviation	ø	>96<>00	6<>-1.50<	50<>-1.	>-1.00<>-0.	.50<>05.	0.00<>	>+0.50<>+1.00<	.00<>+1.50<>+1.96<>	50<>+1.	90<>96
Normal Distribution		2.50	4.18	9.19	14.98	19.15	19,15	14.98	9.19	4.18	2.50
NLS Survey: Males 16-20 Years Old 21-24 Years Old	7 0 °C	3.54	4.04	4.46	12.54	22.37	18.11	22.29	10.04	1.86 2.58	0.76
Pemales 16-20 Years Old 21-24 Years Old	סיטי ו	4.38 5.91	2.53	2.86	13.31	19.33	25,39 31,25	23.75	7.41	0.95	0.09
MANES I: Males 16-20 Years C 21-24 Years C 25-30 Years G			3.20 3.04 2.17	5.65 5.11 6.17	11.76	19.41 17.53 19.35	25.47 18.38 21.85	18.53 22.11 23.41	10.75 9.66 9.46	1.42 3.91 2.18	0.00
Years		4.00	2,13	4.55	16.04	22.91	21.01	16.06	8,01	4.73	0.55
remales 21-24 Years Ol 21-24 Years Ol 25-30 Years Ol 31-35 Years Ol 36-40 Years Ol	ততততত	44.19 5.14 4.52 00	2.32 2.17 3.23 2.38 4.09	444 644 111 144 144 11	7.95 9.93 8.23 8.01 8.56	23.15 22.28 15.33 16.42	28.33 25.60 29.22 30.40 27.11	21.09 23.89 24.21 27.26 24.29	8.41 7.44 7.37 5.53	0.45 0.37 0.82 0.00	000000
MANES II: Males 16-20 Years C 21-24 Years C 25-30 Years C 31-35 Years C	014 014 014	4.49 4.90 3.90 3.31	3.19 2.29 3.88 3.36	4.81 6.65 5.76 6.55	10.90 9.26 11.39 12.32	20.88 21.50 23.34 21.27 23.71	22.85 22.93 22.50 19.56	21.15 21.67 19.37 19.44	0.70 7.97 9.02 10.31 8.73	1.62 1.94 2.27 2.07 4.00	0.41 0.45 0.08 0.72
Females 16-20 Years 21-24 Years 25-30 31-35 Years 36-40 Years	01d 01d 01d 01d	4.26 3.451 5.81 7.75	2.37 3.35 3.39 2.99	6.33 6.33 7.08 7.08	8.53 10.68 8.93 7.15	19.91 18.23 16.15 14.57	30.04 27.88 28.25 31.81	20.70 24.96 26.26 22.40	6.65 6.29 6.29 8.96	1.70 0.90 0.66 0.23	0.00

expressed in standard scores. The comparison of observed frequencies to expected frequencies using the Chi-square test resulted in the finding that all subgroups of males and females were statistically different from the standard normal distribution. As was the case for body weight (Table A-3), the actual percentages of standard scores falling between -1.96 and infinity were higher than the expected percentage of 2.50 percent for males and females in all age groupings. At the other extreme standard score bracket, +1.96 to infinity, the actual percentage of standard scores for males and females in all age brackets were lower than the expected percentage of 2.50 percent. In the standard score bracket of +1.50 to +1.96, all the actual percentages for females were lower than the 4.18 percent expected, while for males four of the ten age groupings contained larger than expected percentages.

The differences in the distributions of body weights and body-masses, expressed as standard scores, compared to the standard normal distribution are graphically presented in Figures A-1 through A-12. These figures present the tabular data contained in Tables A-3 and A-4 and are presented in age grouping order.

Regardless of sex or age, these figures consistently show that the actual distributions of standards scores at the left tail is higher than expected under the standard normal distribution while at the right tail it is lower. All the distributions are skewed towards the right tail and are leptokurtic with larger percentages of the standard scores falling in the center of the scale then at the tails. These characteristics are more pronounced for the females than for the males and visually confirm the

Table A-4

Distribution of Standard Scores of Body-mass into Sen Equal Segments of the Standard Bormal Distribution

Vormal Distribution MLS Survey:										
Mey Carvey:	0 F.O.	4.18	6:16	14.98	19.15	19,15	14.98	9.19	4.18	2.50
V. 0	f	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; 1 1 1 1 1 1 1	: ; ; ; ; ; ; ;	1 1 5 1 1 1 1 1	; 1 1 1 1 1 1	i I I I I i i
STEWN OF	۲ ۵.	α	7,64	10.76	24.35	17,31	۲.	8.74	1.14	0.71
71-24 Vears 011	4.14	4.49	3.53	12.38	23.32	14.88	25.91	10.05	66.0	0.33
SA-20 Years Old	4.43	2.12	£0.4	12.87	18.51	23,64	29.19	4.32	0.87	0.02
r	4.46	r	2.94	11.40	12.88	36,32	19.51	7.29	0.80	0.12
i pahenk										
S-9. (F. 3)										
C STRAY OF	A.C. A.	۲,۰۰	19.9	8.62	21.44	27,81	ċ	6.62	0.47	00.0
	١, ٦٨	4.02	6.23	23,06	12.67	14.71	19.51	11.42	4.60	00.0
VARIES O	4.11	٠, ٤	2.42	10.06	18.74	32,68	œ	6.71	2.22	00.0
Veare of	υ΄ α,	6° C.	6.40	12,89	20.28	18,09	ď	11,36	4.52	1.09
FIV STEEN UP TO	5.35	ن د د	68.9	12,15	21.86	22.64	₹.	11.46	4.70	1.46
15 de 16 de										
VARIET)	4.	7.61	f a · c	r	17.44	9.1	0	5.78	~	00.0
	12 Y T	₹	1،٠٠١	10.10	16.57	37,90	19.43	5.22	0.28	00.0
, waste	5.44	44.	٥٩.٢	۲.	17.11	9.2	0	7.76	7.	00.0
Veates O	4.6	1.49	6.27	'n	11,35	3.4	α	2,99	٥.	00.0
PE-40 Years Old	۲4	3.60	7.02	c.	15.95	7.6	•	05.9	۲.	00.0
A STATE OF S										
S 4 (1)										
0 . K a .:	4.56	٠,٩٨	2.19	11.91	17.98	vo	e,	5.49	1,83	0
V P 2 1 C	3,5,2	4.45	6.00	14.89	14.79	3	.:	11.61	2.03	\sim
JE-30 VARES OIG	٥. د	1.28	٨.24	4.22	27.53	22,86	19.77	7.72	1.49	00.0
Ve ar	4 y . c	3,83	5,63	13.43	18.64	a	۲.	10.31	3.08	CI
36-40 Years 013	1٤.4	3.06	4.96	12.58	17.68	~	'n	11.77	4.41	SC.
ut a contract of the contract										
Veare	4.97	7.74	5.06	6.25	21,00	~	17.48	8,59	۲.	00.0
	4. K7	2.56	00.3	6.68	15,31	32,36	25.58	7.57	0.28	00.0
Vears C	4.19	7 d . F	4.53	10.16	15.64	ıΛ	24.97	6.11	٥.	00.0
المرادمة المرادم	0,5	3.74	4.28	95.6	14.41	4	24.71	4.99	۲.	00.0
Free Very Co.	. 4	, 0.8	6.15	8.03	13.71	LC.	21.34	11.10	۰,	00.00

Figure A-1

> NLS Survey Males and Females 16-20 Years Old

Figure A-2

NHANES I Survey Males and Females 16-20 Years Old

Figure A-3

NHANES II Survey Males and Females 16-20 Years Old

Figure A-4

NLS Survey Males and Females 21~24 Years Old

Figure A-5

NHANES I Survey Males and Females 21-24 Years Old

Figure A-6

NHANES II Survey Males and Females 21-24 Years Old

Figure A-7

NHANES I Survey Males and Females 25-30 Years Old

Figure A-8

NHANES II Survey Males and Females 25--30 Years Old

Figure A-9

NHANES I Survey Males and Females 31-35 Years Old

Figure A-10

NHANES II Survey Males and Females 31-35 Years Old

Figure A-11

NHANES I Survey Males and Females 36-40 Years Old

Figure A-12

NHANES II Survey Males and Females 36-40 Years Old

results of the Chi-square tests reported above.

Tables A-5 and A-6 were prepared to directly assess the effect on the rates of disqualification for overweightedness resulting from the differences between the actual distribution of body-mass standard scores standard normal distribution at the right tail of these These tables present the measured mean body-mass (Column distributions. 1) and standard deviation (Column 2) for the NLS, NHANES I and NHANES II participants; the maximum allowable weight standards at 120 percent and 135 percent of mean body-mass (Columns 3 and 4) as specified in this report and converted to standard scores (Columns 5 and 6); the percentage of participants whose body-mass standard score exceeded the maximum allowable standard score under the standard normal distribution (Columns 7 and 8) and under the actual distribution of standard scores (Columns 9 and 10) in the data sets at 120 percent and 135 percent of mean body-mass; and the percentages of participants disqualified for overweightedness under the proposed revised maximum weight standards presented in this report (Columns 11 and 12). Table A-5 presents the data for males and Table A-6 presents the data for females.

For both males and females, a smaller percentage of the participants would be disqualified for overweightedness under the actual distribution of body-mass standard scores (Columns 9 and 10) compared to the percentage expected under the standard normal distribution (Columns 7 and 8), a result which was visually presented in Figures A-1 through A-12. In other words, the percentage of participants with actual standard scores above the maximum body-mass standard score is lower than would be obtained if

Table A 5

Comparison of Percentages of NLS, NHANES I, and NHANES II Farti institutions of Standard Normal Distribution of Standard Scores, and the Proposed Revised AR 40-501 Maximum Weight Standards

Males

			Max	imum Wei	ght Star	dard		cent wit reguatov				
	Body	Mase	Body	Mass	St ar	dard re		mal butlen		u al bution	Perc Diagua	
	Mean	Std. Dev.	120%	135%	120%	1351	120%	135%	120%	135%	1202	135
Column Number	(1)	(2)	(3)	(~)	(5)	(6)	(7)	(8)	(4)	(10)	(11)	(.2)
NLS												
16-20 Years-old 21-24 Years-old	22.8 23.9	3.3 3.3	28 29	31 32	1.58	2.48 2.45	5.7 6.1	. 7	1.9	.1	5.2 6.6	1.9
NHANES I												
16-20 Years-old 21-24 Years-old 25-30 Years-old 31-35 Years-old 36-40 Years-old	22.5 24.0 24.9 25.5 26.2	3.6 3.6 4.2 4.0 4.1	28 29 30 31 31	31 32 34 35 35	1.53 1.39 1.21 1.38 1.17	2.36 2.22 2.17 2.38 2.15	6.3 8.2 11.3 8.4 12.1	.9 1.3 1.5 .9	.5 4.6 3.9 5.6 11.0	.0.0	7.8 7.8 8.6 8.0 6.3	2.4 2.6 4.1 2.6
THANES II												
16-20 Years-old 21-24 Years-old 25-30 Years-old 31-35 Years-old 36-40 Years-old	22.8 24.0 25.2 26.2 26.1	3.9 3.8 4.5 4.0 4.0	28 29 30 31 31	31 32 34 35 35	1.33 1.32 1.67 1.20 1.23	2:10 2:11 1:96 2:20 2:23	9.2 9.3 14.2 11.5 10.9	1.8 1.7 2.5 1.4 1.3	1.9 6.1 9.2 2.8 11.5	.0 .0 .0 .1	6 1 8.0 7.6 7.5 9.7	3.0 2.7 3.2 2.2 2.4

Table A-t

Comparison of Percentages of NIS, NHANES I, and NHANES II Participants Disqualified for Overweightedness under the Standard Normal Distribution, the Actual Distribution of Standard Scores, and the Proposed Revised AR 46 501 Maximum Weight Standards

Females

			Ma x	imum Wei	ght Star	dard		cent wit				
	Body	Majss	Body	Mass	Stat S.,	dard t <u>e</u>		mal bution		but ion	Pero Danque	ent alitied
	Mean	Std. Dev.	120\$	135%	120%	1352	120%	135%	1202	135%	120%	1357
Column Number	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
NLS												
16-20 Years 1d 21-24 Years 1d	27.6 28.4	4.6	34 35	38 39	1.39	2.26	R.2 8.4	1.2	1.9	.0	6.5 8.6	2.6
NHANES I								***	.,	••	0.0	
16-20 Years-old 21-24 Years-old	28.5 29.2	5.1 5.9	34 35	38 39	1.08	1.86	14.1 16.4	. 1 4 . 9	4.0	. 0 . 1	9. <i>7</i> 10.5	5.1 5.9
25-30 Years-old 31-35 Years-old	30.4 31.8	7.0 7.6	36 37	41 42	.80 .68	1.51	21.2 24.8	6.6	15.2	.7	14.0	6.3 8.1
36-40 Years-old	32.4	7.3	38	43 .	. 7 7	1.45	22.1	7.4	19.1	. 4	16.6	7.8
NHANES II												
16-20 Years-old 21-24 Years-old	28.1 29.2	5.9 6.4	34 35	38 39	1.00	1.68	15.9 18.1	4.7 6.3	9.3	.1	9.9 12.2	4.8 5.8
25-30 Years-old 31-35 Years-old	30.0 31.1	6.6	36 37	41	.91 .80	1.67	18.1	4.8	12.6	.0	15.4	7.1
36-40 Years-old	32.3	7.6	38	43	.75	1.41	22.7	7.1	17.0	1.5	16.5	10.5

the distribution of standard scores perfectly matched the standard normal distribution. This result indicates that maximum weight standards, expressed as a percentile of the actual standard scores found in the data sets, are more inclusionary than they would be if the maximum weight standards were set using a percentile score based on the normal distribution.

For both males and females, the percentage disqualified for overweightedness under the 120 percent of mean body-mass maximum weight standards, as calculated in Section X of this report (Column 11), is lower than that which would be observed if the standard scores were normally distributed around the actual mean (Column 7). When the percentage disqualified under the 120 percent maximum weight standard (Column 11) is compared to the percentage with standard scores above the maximum weight standard (Column 9), we find that for males two-thirds of the percentages are higher and one-third are lower, while for females the precentages are generally lower.

Similar comparisons for males and females under the 135 percent of hody-mass maximum weight standards reveals that the percentage disqualified for overweightedness under the standards calculated in Section VI of this report (Column 12), is consistently higher than would be obtained if the standard scores were normally distributed around the actual mean (Column 8). In contrast to the mixed results observed when the actual disqualification rate under the 120 percent standard (Column 11) was compared to the actual distribution of standard scores (Column 9), the comparisons for the 135 percent of mean body-mass standards (Column 12)

versus Column 10) show that the actual disqualification rate is higher than would be obtained if percentile standard scores based on the actual distribution of standard scores were applied.

normally distributed, then the 120 percent of mean hody-mass were indeed normally distributed, then the 120 percent of mean hody-mass maximum weight standard results in the acceptance of some percentage who ought to be disqualified. In contrast, the 135 percent of hody-mass maximum weight standard excludes some percentage who ought to be qualified. A maximum allowable weight standard based on the actual distribution of standard scores, regardless of the specified percentage of body-mass employed, results in the acceptance of some percentage who would be disqualified if the maximum standard was based on the standard normal distribution.

Oddly, the ostensibly more restrictive 120 percent of mean body-mass maximum weight standard (Column 11) is, compared to the normally distributed maximum weight standard (Column 7), more liberal, as measured by the percentage disqualified, than the ostensibly less restrictive 135 percent of mean body-mass maximum weight standard (Column 12) in that a larger percentage is disqualified than would be expected under a normal distribution (Column 8). However, such an interpretation relies on the assumption that body weight and body-mass are normally distributed.

In the analysis and determination of maximum weight standards the critical portion of the distribution of body weights and body-mass standard scores to be considered is the right tail. As has been shown, the actual distribution of values in this area of the distribution is

consistently lower than what would result if body weights and body-mass standard scores perfectly fit the standard normal distribution. The results of the analysis presented above suggest that the use of either the normal distribution or the actual distribution of standard scores, based on the assumption of normalcy, is not particularly the better or more appropriate methodology to employ in the determination of maximum allowable weight standards.

The comparison of the actual distribution of body weight standards scores to the standard normal distribution presented above implicitly suggests that body weight ought to be normally distributed and deviations from normalcy are a reason for concern. However, the data suggest that indeed body weight is not normally distributed or, if it is, the data sets employed in the analysis contain some bias resulting in a lack of normalcy in its distribution. We are satisfied, based on the consistency of the results presented in the body of this report and in the first portion of this Appendix that the second possibility, that the data sets contain bias, is not the case. Accordingly, the first possibility, that body weight is not normally distributed, is in fact nearer the truth.

The notion that all variables occurring in the natural world are, or bught to be, normally distributed should not be confused with the need for, or the assumption of, normalcy in the application of statistical tests. In contrast to some variables, such as Intelligence Quotients, which are free to vary between some infinitely low and some infinitely high value, body weight is limited in the values it may assume. When height and body build are controlled, there are biological constraints

variations in body weight and body-mass from the standard normal distribution in the three data sets (see Figures A-1 through A-12) are not variations from "normalcy" at all, as defined by nature or biology; they are only variations from the ideal of statistical normalcy. While this may preclude the proper application of some parametric tests of statistical significance, it does not preclude the establishment of maximum weight standards based on a specified percentage of body-mass as has been proposed in this report.

The Body Mass Index

In Section TV of this report is a brief description of the body-mass index as a quantitative method for the simultaneous analysis of height and body weight. In that description, reference was made to an analysis of NHANES I data (National Center for Health Statistics, 1983) indicating that a variation of the formula which raised height to the 1.5 power (RM=W/Hl.5) was more accurate in estimating the weight of women than was the formula applied to males in which height was raised to the 2 power (RM=W/Hl). Reproduced below are pages 71 through 75 of the referenced report which describes in detail the mathematical derivation of the body-mass index formula and presents data comparing the effect on females of the RM=W/Hl.5 variation of the formula compared to the RM=W/Hl.

Weight height index

The weight height mode (B. H^{\prime}) used as a measure of overweight modes report was obtained by a method suggested by Berrill Assuming the existence of a mean relationship of weight Boom, eight H of the form

where H_1 and R_2 represent some centrally cathers of weight and height and the stocking of the regression R_2 Bern R_2 was that the collection calculated as

In applying Bornson etc. In NHANI SI data esqually to off the form great of the were derived to hage groups $2 \cdot 24 \cdot 28 \cdot 34 \cdot 34 \cdot 34 \cdot 49 \cdot 34 \cdot 84 \cdot 47 \cdot 874 \cdot 47 \cdot 34 \cdot 27 \cdot 864 \cdot 874 \cdot$

The power value of p = 2 was selected as a standard for men based on ages 20.27 years, and the power value of p = 1.5 was selected as a standard for women

based on ages 20-29 years

The weight-height index described above was validated in the following manner. For a given height H in a given age and sex subgroup, a predicted weight W was calculated using the formula developed by Behnke³³

where

$$\mathbf{A} = \frac{\mathbf{B}_{n}}{H_{n}^{-1}} \tag{9}$$

 H_0 is the midirange of values of height for a given sex and age group, and W_0 is the average weight at height H_0 . For each sex age, and height group, the weight determined to single the regression equation of weight on height was compared with the weight obtained from equation (9). Table VIII shows the difference between these two values. With the exception of taket men ages 45.54 and 65.74 years, the maximum difference between these two values is 2 pounds. A similar comparison also was made for women when $n \approx 2$. There were marked differences between the two values (table IX).

Table VII. Midirenge of height in ... mear weight at height Holling regression coefficient of weight on height power of height and nearest half integer for pliby sex and age. United States 1971.74

Se : and age	Miditange of height Mi _{ch} in inches	Mean weight at height Ho (n pounds	Regression coefficient b	Power of height	p rounded to the neares 0.5 integer
Me ²			. –		_
10 24 veen	66	16 C	4 441	1 89	2 (·
534 vers	66	1.7€	4 94 1	1 98	2.0
15-44 yeers	68	174	5 2 2 7	2 06	2 0
15-54 years	68	173	4 454	1 75	15 or 20
55-64 van's	6⊱	173	5 069	1.99	20
16-74 yœns	6⊎	169	4 335	1 76	15
10-29 years	6 8	163	4 6 9 7	1 96	2 0
W ome!					
10-24 years	62.5	130 5	3 197	1 53	15
75-34 years	62.5	1375	3 587	1 63	15
15-44 years	62.5	146	2.815	1 63	1.5
15-54 years	62.5	146.5	3 85 7	1.51	15
6-64 years	62.5	151.5	3 492	1 44	1.5
16-74 years	62.5	149	3 58 3	1 50	1.5
10 29 years	62.5	132	3 167	1 62	15

..____ Table VIII. Calculated make weight from making-out weight relative to making-proup height and make weight? estimated from regression equation of weight on height by as and age. United States 1971.74

_								—				
Sex and heren!	Carcurated	Estimated moon mognific	Excess 2 over 1	Calculated mean weight	Est meted meen weight	Excess 2 over 1	Carculated mean weight	Estimated mean meight	Excess 2 over 1	Calculated mean weight	Estimated magn weight	Excess 2 over 1
		•			2		,	2		,	2	
		2										
						Weight	r pounds					
Men		20-24 veers			25-34 veers			35-44 . mrs			45 54 year	•
62 inches	133	- 134	.,		141		145	143	2	44	147	•3
63 nches	137	19	• :	- 46	145	•	149	148	ī	148	152	+4
64 orbes	142	.43	.;	144	151	• 1	154	151	1	. 53	1 56	+3
65 nches	146	148	?		146		. 44	158	•	158	160	+2
66 × Nes	151	16.3	. 1	160	160		164	16?	•	163	· 64	+ 1
61 inches	155	16.7	• :	165	1 65		. 40	168	,	. 69	169	• •
68 nches	16∂	160		. 10	• 20		1.74	• •4		٠, ٠	173	
69 inches	.65	.e.		1.14,	• •	•	. 10	• 79		1.78	• 7 7	•
*n nches	٠,٠	.64	•	Bc.	. 74	,	184	84		'83	182	1
TT IN NOS		* *4		185	-84		• 40	90	,	. 89	187	2
12 nches	1.19	1.18	•	1141	RG	•	95	194		194	191 196	3
13 nches	· R4	, 87	,	*	1.94 1.94	•	201	30% 200	,	199 20 5	200	.s 5
14 notes	. 84	· g ·	•		*	•	0			275	700	,
Women												
A TOTAL PARK	114	• • • •	2	. 200	8			. 25		1.29	' 29	
SE NO POR		6	•		121		1.11	*9	2	. 33	133	
59 notices	1.30	1.20		.₹	•		. 14	3	•	. 36	136	
64° ~ hes	. •	1			29	,	. 3.	. 3.		140	140	
61 nones	1.46	1.76		+ 11	1.12		141	141		4.3	143	
67 nches				. 16	164		44	44		147 156	147 150	
6J nomes	٠١.	1.3.		* 4.	14		46	4.9		154 1 54	154	
64 nines	3.0			4.	4. 46		. 44	46		57	158	•1
65 numer	4	18		44 44	—————————————————————————————————————	_	-58	- 1.4		6	161	-
DD N-Men 6`n≼nes	4.	7.			-		•	61	. 1	165	164	- 1
58 nches	48	-48		₩.			66	.6.	• •	'69	168	. 1
					were and							
a de en		55 64 years			61 4 - 2011			20-29 years				
								-				
62 nches	. 44	143	•	. 4	4	- 1	: 36	36				
63 notes	48	14 1	•	4*	4	• :	14.	. 40	.,			
64 nc Net	16,3	4.11		· 5 · 54	- 46		144	145 150	•			
65 nohee	158 164			15.4	-~ao 6∈		154	- 55	• 1			
66 nches	54	15.7 168		6.4	164	•	158	159	• 1			
61 niches 68 niches	198	658		154 164	16.4		163	163				
69 nomen	8	· • •		. 4	13		6.8	`68				
7) ou hers	-83	: #13					1.13	, •3				
nr nen	89	RU		84	182		Ą	. 18				
12 niches	194	+ 4.3	•	a u	86	i	18.3	182	•			
73 niches	ينو	14.5		1.34	190	4	188	٠8،	1			
14 oches	205	2573	2	,** W.	* 44	6	. 93	192	1			
Women												
5" nches	132	.12		. 3/2	130		115	113	2			
58 nches	• 34	36	• •		1.34	. •	. , 8	1 . 7	•			
59 inches	. 19	14.	• •	. 3 *	٠ ١٠		121	. 30	*			
80 inches	*42	143	• •	140	140		1.24	. 23	1			
61 oches	146	· • ·	• •	144	: 44		.2.	127				
62 nohes	150	150		14.1	141		130	130				
63 nches	. 53	- 5 ,1			151		134	134				
64 inches	15" 1 6 1	160		154	154 158		140	140				
65 inches	161 164	160	•	167	181		143	144	• 1			
86 inches 67 inches	168	16.	,	165	165		.46	147	•1			
68 inches	798	• • •	,	169	189		150	151	•1			
COD 171C7100							·					

⁶⁸ inches 172 171 1 189 189 150 151 41

Mean weight calculated from Weight in pounds) + xine and where p = 2 for man and p = 1.5 for women. K constant. Served from mean group weight relative to mean group height. Estimated from regression squations of weight in neight is for specified age groups.

Table JX. Cylculated mean weight? from group weight relative to mean group height and mean weight? estimated from regression equation of weight on height, by sex and age for women. United States, 1971.74

								· 				
Bin and height	Calculated maps weight	Esimonad maen weight	Excuss 2 over 1	Calculated maen weight	Estimated mean weight	Excess 2 over 1	Calculated mean weight	Estimated mean weight	Excess 2 over 1	Calculated mean weight	Estimated mean weight	Excess 2 over
		2		· · · · · · · · · · · · · · · · · · ·	2		,	2			2	
				w.	ight in pround	1						
Women		20-24 years	_		25-34 years			35-44 years			45-54 years	
7 inches	109	112	+3	114	118	+4	121	125	+4	124	129	+6
SB inches	112	116	•4	118	121	+3	126	129	+3	128	133	+5
i i inches	116	120	+4	123	125	+2	130	133	+3	132	136	+4
IO inches	120	123	• 3	127	128	+1	135	137	+2	137	140	+3
\$1 inches	124	1.26	•2	131	132	+ 1	139	141	+2	141	143	+2
12 inches	1 28	1.29	+1	135	136	+1	144	144		146	147	+1
3 inches	133	132	. 1	140	139	- 1	148	148		151	150	-1
4 inches	137	135	2	144	142	- 2	153	152	- 1	156	154	-2
6 inches	141	138	- 3	149	146	- 3	158	156	- 2	161	158	-3
6 inches	146	142	4	153	150	- 3	163	159	-4	166	161	-6
7 inches	150	145	5	158	153	- 5	168	163	-5	171	165	~6
III inches	154	148	6	163	157	-6	173	167	-6	176	168	-8
Women		55-84 years			85 74 years			20-29 years				
7 inches	1 26	132	+6	124	130	+6	110	113	+3			
6 inches	1.3C	136	+6	128	134	+6	114	117	+3			
e neme	135	140	+5	133	137	+4	118	120	+2			
10 inches	140	143	• 3	137	140	+3	122	123	+1			
1 inches	144	147	+3	142	144	+2	126	127	+1			
2 inches	149	150	+ 1	147	147		130	130				
3 inches	154	153	•	151	151		134	134				
d nchei	159	15.	2	156	154	- 2	138	137	-1			
6 nches	164	16C	- 4	16.	158	- 3	143	140	- 3			
6 nomes	169	164	5	166	161	- 5	148	144	-4			
7 inches	1.74	161	7	171	165	-6	152	147	-5			
Binches	1 19	171	8	176	169	- 7	156	151	-5			

1 Meen weight callulated from weight in polinits. F. R. height if where p = 2 for women. K iconstant' derived from meen group weight relative to mean group height. Et simeted from regression source onsign weight in the specified age groups.

