Methods of Applied Math: Assignment 4

Due Date: November 13, 2019

Read 7.1 and 7.2, 9.1 to 9.5 in the textbook "Advanced Mathematical Methods for Scientists and Engineers"; read 2.2 to 2.4, and problem 2.12 about van Dyke's rule in section 2.2 in Holmes' book.

(Exercise 1)

1. Compute the first four coefficients in the perturbation series (i.e., O(1), $O(\epsilon)$, $O(\epsilon^2)$, and $O(\epsilon^3)$ terms) to the initial-value problem

$$y' = \frac{3}{2}y + 3\epsilon xy$$
, $y(0) = 1$.

- 2. Find the exact solution.
- 3. Use some software, e.g., MATLAB, to plot and compare the exact solution and the n-term perturbation expansion for the solution, n = 1, 2, 3, 4 (i.e., $y_0, y_0 + \epsilon y_1, y_0 + \epsilon y_1 + \epsilon^2 y_2$ and $y_0 + \epsilon y_1 + \epsilon^2 y_2 + \epsilon^3 y_3$) on $x \in [0,3]$ when $\epsilon = 0.1$.
- (Exercise 2) Consider the equation:

$$\begin{cases} \epsilon y'' + (\frac{x}{9} - \frac{2}{3})y' + \frac{1}{9}y = 0, & 0 \le x \le 3, \\ y(0) = 3, y(3) = 2. \end{cases}$$

Assume it is a boundary layer problem. The boundary layer is at x = 3, and the boundary layer thickness is ϵ .

- 1. Find the outer limit, inner limit and the intermediate limit of the solution.
- 2. Write down a uniform leading order approximation of the solution.

(Exercise 3) Consider the equation:

$$\begin{cases} \epsilon y'' + (1+x)^2 y' + y = 0, & 0 \le x \le 1, \\ y(0) = 1, y(1) = 1. \end{cases}$$

- 1. Determine the thickness and location of the boundary layer.
- 2. Obtain a uniform approximation accurate to order ϵ as $\epsilon \to 0$. Please use three methods to do matching:
 - a) The textbook method suggests keeping O(1), $O(\epsilon)$ and O(x) terms;
 - b) The van Dyke's matching rule;
 - c) The method of intermediate variable $x_{\eta} = \frac{x}{\eta(\varepsilon)}$.
- (Exercise 4) Find the leading order approximation to the solution of the problem:

$$\begin{cases} \epsilon y'' + x^{\frac{1}{3}} y' - y = 0, & 0 \le x \le 1, \\ y(0) = 0, y(1) = e^{\frac{3}{2}}. \end{cases}$$

(Exercise 5) Find the leading term of the asymptotic solution of the interior Dirichlet problem

$$\epsilon(\frac{\partial^2 u}{\partial x^2} + \frac{\partial u^2}{\partial y^2}) + \frac{\partial u}{\partial y} = 0$$

with u = y on the boundary $C: (x-1)^2 + y^2 = 1$.