

CSC380: Principles of Data Science

Linear Models 4

Xinchen Yu

- Linear Regression
- Least Squares Estimation
- Regularized Least Squares
- Logistic Regression

Classification as Regression

Suppose our response variables are binary y={-1,1}. How can we use linear regression ideas to solve this classification problem?

Classification as Regression

Idea Fit a regression function (red) to the data. Classify points based on whether they are *above* or *below* the (green).

predict 1 if $w^T x \ge 0$ 0 if $w^T x < 0$

Classification as Regression

Idea Fit a regression function (red) to the data. Classify points based on whether they are *above* or *below* the (green).

predict 1 if
$$w^T x \ge 0$$

0 if $w^T x < 0$

Recall:

$$w^{L2} = \arg\min_{w} \sum_{i=1}^{m} (y^{(i)} - w^{T} x^{(i)})^{2}$$

Turns out, this is not a desirable approach. Any guess?

Classification as Regression is Not Desirable

Probability Assumptions

Recall the probabilistic motivation for linear regression:

Assume $x \sim \mathcal{D}_X$ from some distribution. We then assume that $y = w^T x + \epsilon$ where $\epsilon \sim \mathcal{N}(0, \sigma^2)$

Equivalently,

$$p(y|x;w) = \mathcal{N}(w^T x, \sigma^2)$$

Probability Assumptions

Q: What would be a reasonable alternative?

$$y \sim Bernoulli(p = w^T x)$$

Probability Assumptions

Q: Once we compute the estimate \widehat{w} , how do we make prediction for x^*

$$y^* = \arg \max_{y' \in \{0,1\}} p(y = y' \mid x^*; \widehat{w})$$

Making Predictions

$$p = 0.4$$
 $P(x = 1) = 0.4^{1} \times 0.6^{0} = 0.4$ $p^{x} \cdot (1 - p)^{1 - x}$ $P(x = 0) = 0.4^{0} \times 0.6^{1} = 0.6$ Prediction: 0

Let's assume we have already learned the estimator: $\widehat{w} = 0.2$

$$\mathbf{y} \sim \text{Bernoulli}(\mathbf{p} = \mathbf{w}^{\mathsf{T}} \mathbf{x}) \quad (\widehat{w} \mathbf{x})^{y} \cdot (1 - \widehat{w} \mathbf{x})^{1-y}$$

When
$$x = 2$$

$$y_{predict} = 0$$
: $(0.2 \times 2)^0 \times (1 - 0.2 \times 2)^1 = 0.6$ Prediction: 0

$$y_{predict} = 1: (0.2 \times 2)^1 \times (1 - 0.2 \times 2)^0 = 0.4$$

When
$$x=4$$

$$y_{predict} = 0: (0.2 \times 4)^0 \times (1 - 0.2 \times 4)^1 = 0.2$$

$$y_{predict} = 1$$
: $(0.2 \times 4)^1 \times (1 - 0.2 \times 4)^0 = 0.8$ Prediction: 1

Making Predictions

Let's assume we have already learned the estimator: $\widehat{w} = 0.2$

When
$$x = 2$$
 Prediction: 0

$$y_{predict} = 0$$
: $(0.2 \times 2)^0 \times (1 - 0.2 \times 2)^1 = 0.6$

$$y_{predict} = 1: (0.2 \times 2)^1 \times (1 - 0.2 \times 2)^0 = 0.4$$

When
$$x = 4$$
 Prediction: 1

$$y_{predict} = 0: (0.2 \times 4)^0 \times (1 - 0.2 \times 4)^1 = 0.2$$

$$y_{predict} = 1: (0.2 \times 4)^1 \times (1 - 0.2 \times 4)^0 = 0.8$$

Q: what if x = 8?

$$p = \widehat{w}x = 0.2 \times 8 = 1.6$$

Sigmoid Function

$$S(x)=rac{1}{1+e^{-x}}$$

Logistic Regression

<u>Idea</u> Distort the prediction w^Tx in some way to map to [0,1] so that it is always a probability.

$$\sigma(w^{\top}x)$$
 instead of $w^{\top}x$

where

$$\sigma(w^T x) = \frac{\exp(w^T x)}{1 + \exp(w^T x)}$$

That is, assume

$$y \sim Bernoulli(p = \sigma(w^Tx))$$

- <u>Logistic function</u> is a type of *sigmoid function*, since it maps any value to the range [0,1]
- Logistic also widely used in Neural Networks for classification last layer is typically just a logistic regression

Logistic Regression

<u>Model</u>:

$$y \sim Bernoulli(p = \sigma(w^T x))$$

Train: compute the MLE \widehat{w}

<u>Test</u>: Given test point x^* compute $y^* = \arg \max_{v \in \{-1,1\}} p(y = v \mid x^*; \widehat{w})$

• Equivalent to $y^* = \mathbf{I}\{\widehat{w}^{\top}x^* \ge 0\}$

Least Squares vs. Logistic Regression

- Both models learn a linear decision boundary
- Convex objective
- Least squares is sensitive to outliers

[Source: Bishop "PRML"]

Least Squares vs. Logistic Regression

Similar results in 1-dimension

Fitting Logistic Regression

Fit by maximizing likelihood—start with the binary case

Posterior probability of class assignment is Bernoulli,

$$p(y \mid x; w) = p(y = 1 \mid x; w)^{y} (1 - p(y = 1 \mid x; w))^{(1-y)}$$

Given N iid training data pairs the log-likelihood function is,

$$\mathcal{L}_{m}(w) = \sum_{i=1}^{m} \log p(y_{i} \mid x_{i}; w)$$

$$= \sum_{i=1}^{m} \{y_{i} \log p(y_{i} = 1 \mid x_{i}; w) + (1 - y_{i}) \log p(y_{i} = 0 \mid x_{i}; w)\}$$

(algebra)
$$= \sum_{i} \left\{ y_i w^T x_i - \log \left(1 + e^{w^T x_i} \right) \right\}$$

Fitting Logistic Regression

$$w^{\text{MLE}} = \arg\max_{w} \sum_{i} \left\{ y^{(i)} w^{T} x^{(i)} - \log \left(1 + e^{w^{T} x^{(i)}} \right) \right\}$$

Computing the derivatives with respect to each element w_d ,

$$\frac{\partial \mathcal{L}}{\partial w_d} = \sum_{i} x_d^{(i)} \left(y^{(i)} - \frac{e^{w^T x^{(i)}}}{1 + e^{w^T x^{(i)}}} \right) = 0$$

- Does not give a closed-form solution.
- Need to use iterative methods to solve it
- The objective function is concave => global solution can be found!

Regularization also works:

$$w^{L2} = \arg\max_{w} \sum_{i} \left\{ y^{(i)} w^{T} x^{(i)} - \log\left(1 + e^{w^{T} x^{(i)}}\right) \right\} - \lambda ||w||^{2}$$
$$= \arg\min_{w} \sum_{i}^{i} \left\{ -y^{(i)} w^{T} x^{(i)} + \log\left(1 + e^{w^{T} x^{(i)}}\right) \right\} + \lambda ||w||^{2}$$

L1 regularization also possible

Shares the same 'feature selection' property!

$$w^{L1} = \arg\min_{w} \sum_{i} \left\{ -y^{(i)} w^{T} x^{(i)} + \log \left(1 + e^{w^{T} x^{(i)}} \right) \right\} + \lambda \|w\|_{1}$$

Extension: Multiclass

- What if we have more than 2 classes?
- For C classes,

$$y \mid x \sim \text{Categorical}(\pi) \quad \text{with} \quad \pi_j = \frac{\exp(w^{(j)^{\top}}x)}{\sum_{c=1}^{C} \exp(w^{(c)^{\top}}x)}$$

Alternatively, one can use

$$\pi_{j} = \frac{\exp\left(w^{(j)^{\top}}x\right)}{1 + \sum_{c=1}^{C-1} \exp\left(w^{(c)^{\top}}x\right)} \text{ for } j = 1, \dots, C-1, \text{ and then define } \pi_{C} = \frac{1}{1 + \sum_{c=1}^{C-1} \exp\left(w^{(c)^{\top}}x\right)}$$
 (C-1)D

Q: Number of parameters for the top one and the bottom one (say D features)?

sklearn.linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, $fit_intercept=True$, $intercept_scaling=1$, $class_weight=None$, $random_state=None$, solver='lbfgs', $max_iter=100$, $multi_class='auto'$, verbose=0, $warm_start=False$, $n_jobs=None$, $l1_ratio=None$) ¶

penalty: {'l1', 'l2', 'elasticnet', 'none'}, default='l2'

Specify the norm of the penalty:

- 'none': no penalty is added;
- '12': add a L2 penalty term and it is the default choice;
- '11': add a L1 penalty term;
- 'elasticnet': both L1 and L2 penalty terms are added.

tol: float, default=1e-4

Tolerance for stopping criteria.

C: float, default=1.0 $C = 1/\lambda$

Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization.

Scikit-Learn Logistic Regression

log_regression = sklearn.linear_model.LogisticRegression()

```
= log regression.fit(pd.DataFrame(x), y)
y pred = log regression.predict proba(pd.DataFrame(x))
log y pred 1 = [item[1] for item in y pred]
fig = plt.figure(figsize=(10,5))
xlabel = 'Age'
ylabel = 'Purchased'
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.grid(color='k', linestyle=':', linewidth=1)
plt.plot(x, y, 'xb')
plt.plot(x, log y pred 1, '-r')
                                                                10.0
                                                                      12.5
                                                                            15.0
                                                                                  17.5
                                                                                        20.0
                                                                                              22.5
                                                                                                          27.5
 = plt.plot(x, line point 5,'-g')
```

Function predict_proba(X) returns prediction of class assignment probabilities for each class. It returns n by C matrix if n data points were provided as argument.

Using Logistic Regression

The role of Logistic Regression differs in ML and Data Science,

- In Machine Learning we use Logistic Regression for building predictive classification models
- In Data Science we often use it for <u>understanding</u> how features relate to data classes / categories

Example South African Heart Disease (Hastie et al. 2001)
Data result from Coronary Risk-Factor Study in 3 rural areas of South Africa.
Data are from white men 15-64yrs. Response is presence/absence of myocardial infraction (MI). How predictive are each of the features?

	sbp	tobacco	ldl	famhist	obesity	alcohol	age	chd
0	160	12.00	5.73	1	25.30	97.20	52	1
1	144	0.01	4.41	0	28.87	2.06	63	1
2	118	0.08	3.48	1	29.14	3.81	46	0
3	170	7.50	6.41	1	31.99	24.26	58	1
4	134	13.60	3.50	1	25.99	57.34	49	1

Features

- Systolic blood pressure
- Tobacco use
- Low density lipoprotein (ldl)
- Family history (discrete)
- Obesity
- Alcohol use
- Age

Looking at Data
Each scatterplot shows
pair of risk factors.
Cases with MI (red) and
without (cyan)

Features

- Systolic blood pressure
- Tobacco use
- Low density lipoprotein (ldl)
- Family history (discrete)
- Obesity
- Alcohol use
- Age

[Source: Hastie et al. (2001)]

	Coefficient	Std. Error	Z Score
(Intercept)	-4.130	0.964	-4.285
sbp	0.006	0.006	1.023
tobacco	0.080	0.026	3.034
ldl	0.185	0.057	3.219
famhist	0.939	0.225	4.178
obesity	-0.035	0.029	-1.187
alcohol	0.001	0.004	0.136
age	0.043	0.010	4.184

Goal: hypothesis testing on whether the coefficient is 0 or not (hope to reject the hypothesis that the coefficient is 0)

Fit logistic regression to the data using MLE estimate

Standard error: estimated standard deviation of the learned coefficients

Z-score of coefficients is a random variable from standard Normal,

$$w_d \div SE(w_d) \sim \mathcal{N}(0,1)$$

	Coefficient	Std. Error	Z Score	
(Intercept)	-4.130	0.964	-4.285	-
sbp	0.006	0.006	1.023	4
tobacco	0.080	0.026	3.034	°
ldl	0.185	0.057	3.219	- 0.3
famhist	0.939	0.225	4.178	7 34.1% 34.1
obesity	-0.035	0.029	-1.187	0.1
alcohol	0.001	0.004	0.136	0.1% 2.1% 13.6%
age	0.043	0.010	4.184	-3σ -2σ -1σ 0

Z-score of coefficients is a random variable from standard Normal,

$$w_d \div SE(w_d) \sim \mathcal{N}(0,1)$$

Thus, anything with Z-score > 2 is significant with 95% confidence.

	Coefficient	Std. Error	Z Score
(Intercept)	-4.130	0.964	-4.285
sbp	0.006	0.006	1.023
tobacco	0.080	0.026	3.034
ldl	0.185	0.057	3.219
famhist	0.939	0.225	4.178
obesity	-0.035	0.029	-1.187
alcohol	0.001	0.004	0.136
age	0.043	0.010	4.184

Finding Systolic blood pressure (sbp) and alcohol are not significant predictors

Obesity is not significant and negatively correlated with heart disease in the model

Remember All correlations / significance of features are based on presence of *other features*. We must always consider that features are strongly correlated.

DO NOT INTERPRET IT AS CAUSALITY!

L1 regularized logistic regression coefficients

