INTRODUCTION TO SINGLE MOLECULE FRET

Emmanuel MARGEAT

Team Integrative Biophysics of Membranes

Centre de Biochimie Structurale Montpellier

FRET: Förster Resonance Energy Transfer

$$FRET(PR) = \frac{Red\ signal}{Green\ signal\ + Red\ signal}$$

$$\tau_D = \frac{1}{k_{nr} + k_r}$$

- ✓ Informs on the distance separating two fluorescent dyes
- ✓ Ratiometric FRET efficiency (PR)
- \checkmark $\tau_{D(A)}$ decreases when FRET increases

FRET: Förster Resonance Energy Transfer

$$FRET = \frac{R_0^6}{R_0^6 + R^6}$$

- ✓ FRET can be used as a ruler
- ✓ Very sensitive to distance changes around Ro
- ✓ An accurate FRET measurement can report on distance change, down to the Angstroms and nanosecond timescales

Why do we study single molecules?

- > Looking at ensemble of molecules generally leads to average values
- > In particular, you cannot see static heterogeneities, i.e. the presence of subpopulations:

> Moreover, ensemble measurement do not allow to see the dynamics of unsynchronized molecules (dynamic heterogeneities)

Confocal and TIRF microscopies

Confocal:

- immobilized or diffusing molecules in 3D
- 1 molecule at the time
- detection sub- populations
- High temporal resolution (μs-ns)

- immobilized or diffusing molecules in 2/3D
- dozens of molecules
- follow each molecules vs.time
- lower temporal resolution (ms)

smFRET on diffusing molecules

For each molecule:

 \rightarrow resolve subpopulations

Single laser smFRET

- Not necessary to have a high yield of labeling, or to know it exactly
- Ability to recover subpopulations
- On immobilized molecules, spFRET traces = f(time)
- Acceptor photophysics: blinking, bleaching: D-only species
- Sensitive to fluorescent contamination, appears as D-only
- Unable to recover the correction factors needed to extract quantitative FRET efficiency, and thus distances
- → Addition of a second laser to directly probe the emission of the acceptor

Alternating Laser Excitation

Alternating laser excitation (ALEX) - smFRET

Identifying the species with ALEX

For each molécule

$$S = \frac{F_{\text{bex}}}{F_{\text{bex}} + F_{\text{Aex}}}$$

Structural dynamics of single metabotropic glutamate receptors

Structural dynamics of single metabotropic glutamate receptors

VFT Closure – Intrasubunit Sensor

Agonist-dependend Allosteric Effect on VFT Closure

Agonist-dependend Allosteric Effect on VFT Closure

Agonist-dependend Allosteric Effect on VFT Closure

