CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 15 GENNAIO 2025

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Se $\varphi \to \psi$ è una tautologia e ψ è una contraddizione, cosa possiamo concludere su φ ?

Esercizio 2. Supponiamo dato un grafo (semplice) connesso G con (esattamente) 14 vertici e 16 lati.

- (i) È possibile, cancellando alcuni dei lati, ma nessun vertice, di G ottenere un albero? Se sì, quanti lati bisogna cancellare?
- (ii) Se possibile, dal grafo disegnato a destra cancellare due lati (e nessun vertice) in modo da ottenere un albero T. Sempre se possibile, rifarlo scegliendo altri due lati in modo da ottenere un albero S non isomorfo a T.

Esercizio 3. Defininamo, in $A = \mathbb{Q} \times \mathbb{Q}$, le operazioni binarie \oplus e * ponendo, per ogni $a, b, x, y \in \mathbb{Q}$: $(a, b) \oplus (x, y) = (a + x, b + y);$ (a, b) * (x, y) = (0, ax).

- (i) Verificare che $(A, \oplus, *)$ è un anello.
- (ii) Decidere se $(A, \oplus, *)$ è unitario, se è commutativo, se è booleano, se è integro.
- (iii) Di ciascuno tra (5,3) e (5,0) stabilire se è un divisore dello zero in $(A,\oplus,*)$.
- (iv) $B := \{0\} \times \mathbb{Z}$ è un sottoanello di $(A, \oplus, *)$? Nel caso, B è isomorfo all'anello $(\mathbb{Z}, +, \cdot)$ degli interi? Rispondere alle stesse domande per $C := \mathbb{Z} \times \{0\}$ al posto di B.

Esercizio 4. Siano $a = \{n \in \mathbb{N} \mid n < 10\}$ e f l'applicazione

$$x \in \mathcal{P}(a) \longmapsto \begin{cases} |x|, & \text{se } 5 \notin x \\ 1, & \text{se } 5 \in x \end{cases} \in \mathbb{N}$$

- (i) f è iniettiva? f è suriettiva?
- (ii) Determinare l'immagine im $f = \overrightarrow{f}(\mathcal{P}(a))$ di f.

Detto ρ il nucleo di equivalenza di f,

- (iii) descrivere le classi $[\{1,2\}]_{\rho}$ e $[\{5\}]_{\rho}$, indicandone il numero di elementi;
- (iv) calcolare $|\mathcal{P}(a)/\rho|$.

Esercizio 5. Per ogni $p \in P := \{2, 3, 5\}$ e $n \in \mathbb{N}^* = \mathbb{N} \setminus \{0\}$, indichiamo con $f_p(n)$ l'esponente della massima potenza di p che divide n, e sia $f(n) = \sum_{p \in P} f_p(n)$. Siano σ e ρ le relazioni binarie in \mathbb{N}^* definite da: per ogni $a, b \in \mathbb{N}^*$:

$$a \sigma b \leftrightarrow (a = b \lor \forall p \in P(p|a \to p^2|b))$$
 e $a \rho b \leftrightarrow (\forall p \in P(p^{f_p(a)}|b) \land (a = b \lor f(a) < f(b))).$

(i) Di ciascuna di σ e ρ stabilire se è una relazione d'ordine.

Per ciascuna che lo sia, detta α questa relazione e posto $X = \{3, 4, 10, 26, 49, 90, 660, 900\}$:

- (ii) determinare eventuali minimo, massimo, elementi minimali, massimali in (\mathbb{N}^*, α) ;
- (iii) stabilire se (\mathbb{N}^*, α) è un reticolo:
- (iv) disegnare un diagramma di Hasse di (X, α) ;
- (v) elencare gli elementi di X confrontabili (rispetto ad α) con 10;
- (vi) stabilire se (X,α) è un reticolo e, nel caso, se è complementato e se è distributivo.

Esercizio 6. Per ogni $m \in \mathbb{N}$ si consideri il polinomio $f_m = \bar{5}x^4 + \bar{3}x^3 + x^2 - \bar{3}x + \bar{5} \in \mathbb{Z}_m[x]$. Determinare

(i) gli $m \in \mathbb{N}$ tali che f_m sia divisibile per $x^2 - \overline{1}$ in $\mathbb{Z}_m[x]$.

Fissato un tale m maggiore di 1,

- (ii) dando per noto che f_m ammette solo due radici in \mathbb{Z}_m , decomporre f_m nel prodotto di fattori irriducibili in $\mathbb{Z}_m[x]$;
- (iii) determinare il polinomio monico associato ad f_m in $\mathbb{Z}_m[x]$;
- (iv) determinare il polinomio monico irriducibile di grado massimo che divide f_m in $\mathbb{Z}_m[x]$;
- (v) esistono tre polinomi di primo grado che dividono f_m in $\mathbb{Z}_m[x]$?
- (vi) esiste un polinomio irriducibile di grado 3 che divide f_m in $\mathbb{Z}_m[x]$?