Магістерська дисертація на тему «Автоматична посадка безпілотного літального апарату на основі системи технічного зору»

Виконав студент 6 курсу групи ВЛ-61M, ФАКС Котвицький Р.С.

Науковий керівник професор, д.т.н. Збруцький О.В.

- Актуальність теми. Дослідження в напрямку системи технічного зору (СТЗ) та її інтегрування в систему керування безпілотного літального апарату (БПЛА) спрямовані на вирішення декількох найважливіших задач – стеження БПЛА за ціллю та його автоматична посадка на спеціальне підготовлене місце.
- СТЗ в даний час є одним з головних засобів розвитку автоматичних систем керування рухом в умовах, коли обсяг апріорної інформації не достатній і для вирішення завдань керування необхідний аналіз зовнішньої обстановки в режимі реального часу.
- ▶ Мета дисертаційної роботи полягає в розробці системи автоматичного керування безпілотного літального апарату за допомогою системи технічного зору для вирішення задачі його автоматичної посадки на спеціально підготовлену площадку в реальному масштабі часу з заданою точністю.

# Публікації

За результатами досліджень опубліковано 7 друковані роботи, з яких 3 статті в фахових журналах, 4 - тези доповідей на конференціях.

Метод визначення координат рухомого об`єкту з використанням системи технічного зору /Котвицький Р.С., Збруцький О.В., Сарибога Г.В. // Інформаційні системи, механіка та керування.-2017.-№16. С. 71-78

Автоматичне керування оптичною віссю камери на основі системи технічного зору з використанням методу ідентифікації об'єктів за кольором/Котвицький Р.С., Збруцький О.В., Сарибога Г.В. // Інформаційні системи, механіка та керування.-2015.-№13. С. 111-115

Назва заходу XI Международная научно-техническая конференция «Гиротехнологии, навигация, герування движением и конструирование авиационно-космической техники»; Назва доповіді - Метод визначення координат рухомого об'єкту за допомогою системи технічного зору; Автори - КОТВИЦЬКИЙ Р.С., САРИБОГА Г.В., ЗБРУЦЬКИЙ О.В.; Місце проведення - Київ, КПИ им. Игоря Сикорского; Дата проведення: 13.04.2017

## Постановка задачі



На вхід подається зображення сцени із камери і зображення цільового плоского об'єкта (наприклад символ «Н»). Завдання - знайти цільовий об'єкт на зображенні сцени, його точні координати відносно вертикальної осі БПЛА типу квадрокоптер, і видати значення цих координат на систему керування для здійснення наведення даного БПЛА на ціль для стабілізації та посадки.

# Огляд літератури

Аналіз існуючих інерційних навігаційних систем (ІНС) показує, що застосування подібних систем має ряд обмежень для забезпечення необхідної точності визначення місцеположення при відсутності сигналу GPS. У цьому випадку актуальним і ефективним може бути застосування системи технічного зору (СТЗ) для підвищення точності ІНС безпілотного літального апарату (БПЛА).

За результатами дослідження маємо наступні нерозв'язані задачі по даній темі:

- оптимізація зображення місцевості, оскільки на СТЗ дуже суттєво впливає зміна стану навколишнього середовища;
- використання одного методу ідентифікації цілі є не завжди надійним, тому краще комбінувати різні методи, особливо різні за їх природою розпізнавання;
- невирішена задача посадки БПЛА на малій висоті на основі СТЗ без використання інерційних датчиків/висотомірів;
- підбір відповідного алгоритму ідентифікації цілі та саму ціль (його параметри та особливості), виходячи з поставлених задач, оскільки вони не є універсальні для кожного БПЛА та характеристик місцевості.

#### Алгоритм ідентифікації об'єкта за особливими точками





Posniзнавання об'єкту за особливими точками (Python)

#### Алгоритм ідентифікації об'єкта за кольором



Розпізнавання об'єкту за помаранчевім кольором: а) оригінал б) маска



Розпізнавання об'єкту за особливими точками (Средовище MatLAB)

## Фільтр Калмана в задачі ідентифікації орієнтира



Втрата орієнтира



Структурна схема роботи фільтру Калмана



Результат роботи фільтру Калмана в СТЗ

# Алгоритм роботи ф. Калмана в СТЗ



### Система керування квадрокоптера

Для тестування алгоритмів СТЗ та здатність здійснити посадку на основі СТЗ було проведено полунатурне моделювання в середовищі Matlab розробленої системи керування квадрокоптера на базі рівнянь Пуассона.

Реакція системи на одиничний вхід по трьом осям Z\_desired X\_desired Theta Z desired Theta out p desired p desired Theta X desired 1.5 Theta Desired Y desired Theta desired q desired q desired Y desired Phi desired X\_out z, [m] Phi Desired Y\_desired r desired Translational Position Y out 0 PID Controller Angular Rate PID Controller Quadrotor System PID Controller -0.5 Psi desired -1 -0.5 0.5 y, [m] x, [m]

# Траєкторія посадки квадрокоптера

- Форма траєкторії еліпс.
- Дискретизація траєкторії за наступними значеннями:  $\varphi = \frac{\pi}{2}; \frac{\pi}{3}; \frac{\pi}{6}; 0$ . В результаті отримуємо 4 точки траєкторії:



Траєкторія шляху по еліпсу



Кут огляду оптичного датчика

Алгоритм посадки квадрокоптера на основі СТЗ



# Результат роботи комплексної системи

$$\frac{H}{GSD} = \frac{F \times B}{b}$$
, [піксель]

■ 
$$GSD = \frac{R}{R_{\Pi \mathsf{HKC}}}$$
, [м/піксель]

де H – висота, F – фокусна відстань камери, B – розмір кадру в пікселях для меншої сторони, b – розмір матриці камери.

$$F = b \times K$$

К – оптичне збільшення об'єктива камери.



## Симуляція посадки квадрокоптера



- 1 початкові координати БПЛА;
- 2,3 точки шляху траєкторії посадки;
- 4 точка шляху траєкторії, в якій висота БПЛА відносно орієнтира досягла помітки в 2 метра;
- 5 кінцева посадка БПЛА.

#### Хід симуляції:

- Стабілізація БПЛА з початковими координатами (0;0;20м).
- Пошук орієнтиру оптичним датчиком.
- Розпізнавання орієнтиру та визначення його координат.
- Побудова траєкторії до орієнтиру.
- Стабілізація БПЛА на висоті 2 м.
- Виконання алгоритму «target in target».
- Автоматична посадка БПЛА на орієнтир.

Симуляція проходить в режимі реального масштабу часу (червона лінія — політ по 3 осям; синя — проекція червоної лінії на площину XY — горизонт).

#### Висновки

- В магістерській дисертації було розроблено систему автоматичного керування безпілотного літального апарату за допомогою системи технічного зору для вирішення задачі його автоматичної посадки на спеціально підготовлену площадку в реальному масштабі часу з заданою точністю.
- Розроблено новий авто масштабований алгоритм розпізнавання орієнтира «target in target» для вирішення задачі посадки БПЛА на малих висотах; працездатність даного алгоритму підтверджено симуляцією засобами Matlab.
- За результатами проведеної симуляції розроблений алгоритм здійснює посадку БПЛА з похибкою в планарних координатах не більше 5см. На такий показник впливає не досліджені поки що похибки інерціально вимірювальних модулів ІНС.
- Вдосконалено метод комплексування алгоритмів ідентифікації орієнтира, які мають різні принципи роботи.
- Розвинено метод використання нових фільтрів з максимальним видаленням шумів для оптимізації зображення місцевості з використанням фільтру Калмана.