G VASKA

PRACOWNIA FIZYCZNA 1

Instytut Fizyki - Centrum Naukowo Dydaktyczne Politechnika Śląska

P1-F2. Badanie zjawiska Halla.

Zagadnienia

Efekt Halla. Ruch cząstki naładowanej w polu magnetycznym – siła Lorentz'a. Pole magnetyczne przewodnika z prądem. Pole magnetyczne solenoidu. Wykorzystanie efektu Halla.

1 Układ pomiarowy

Schemat układu pomiarowego przedstawia rys. 1.

Fig. 1: Schemat poglądowy układu pomiarowego badania efektu Halla

Sonda Halla umieszczona jest w solenoidzie, przez który płynie prąd o natężeniu I. Pod wpływem pola magnetycznego indukowanego wewnątrz solenoidu, w sondzie Halla, przez którą płynie prąd sterujący I_S , generuje się napięcie poprzeczne U_Y , mierzone przy pomocy miliwoltomierza cyfrowego. Jedną ze składowych napięcia poprzecznego jest napięcie Halla U_H , pojawiające się w układzie przy obecności zewnętrznego pola magnetycznego. Pomiar pierwszy polega na zmierzeniu napięcia poprzecznego pojawiającego się w próbce przy nieobecności zewnętrznego pola magnetycznego. Napięcie poprzeczne U_Y jest sumą spadków napięć, które są wywołane przez różne efekty towarzyszące zjawisku Halla:

$$U_Y = U_H + U_E + U_N + U_{RL} + U_A,$$

gdzie U_{E^-} napięcie wywołane efektem Ettingshausena, U_N – napięcie Nernsta, U_{RL} – napięcie Righi – Leduca, U_A – napięcie asymetrii, wynikające z asymetrycznego ustawienia sond napięciowych na badanej próbce.

Kolejne pomiary przeprowadza się dla niezerowego pola magnetycznego i odejmuje się wyniki pierwszego pomiaru. W wyniku odjęcia wszystkich towarzyszących napięć poprzecznych, otrzymuje się napięcie Halla U_H .

2 Pomiary

- 1. Przy zerowym prądzie I płynącym w solenoidzie, zmierzyć zależność napięcia poprzecznego U_Y od natężenia prądu sterującego, płynącego przez próbkę I_S . Natężenie prądu I_S reguluje się potencjometrem w zakresie od -6 mA do 6 mA.
- 2. Wykonać podobne charakterystyki dla innych prądów solenoidu w zakresie do 3 A.

Lp.	I_S , mA	U_Y , mV								
		I = 0 A	I =	A	I =	A	I =	A	I =	A
1.										

3 Opracowanie wyników pomiarów

- 1. Od wszystkich napięć poprzecznych odjąć napięcie występujące przy zerowym prądzie cewki, dla odpowiadającej wartości prądu I_S .
- 2. Na wspólnym wykresie przedstawić zależności napięcia Halla U_H w funkcji natężenia prądu próbki I_S , zmierzone dla różnych wartości.
- 3. Obliczyć współczynniki kierunkowe otrzymanych charakterystyk i zapisać je w prawidłowym formacie, z jednostkami.
- 4. Dla wszystkich zależności wyznaczyć stałe Halla R_H . Należy wykorzystać współczynniki kierunkowe prostych i zależność napięcia Halla od prądu próbki

$$U_H = \frac{AR_H I}{d} \cdot I_S,$$

gdzie A=0.0045 T/A - stała aparaturowa, d= 0.0815(50) mm - grubość hallotronu.

- 5. Przeprowadzić rachunek jednostek.
- 6. Korzystając z prawa przenoszenia niepewności obliczyć niepewności otrzymanych stałych Halla. Zapisać wyniki z niepewnościami w prawidłowym formacie, wraz z jednostką.
- 7. Obliczyć wartość średnią ważoną stałej Halla wraz z niepewnością. Zapisać wynik w prawidłowym formacie, z jednostką.
- 8. Dla każdej charakterystyki obliczyć czułości hallotronu

$$\gamma_0 = \frac{a}{AI}.$$

- 9. Korzystając z prawa przenoszenia niepewności obliczyć niepewności otrzymanych czułości. Zapisać wyniki z niepewnościami w prawidłowym formacie, wraz z jednostką.
- 10. Obliczyć wartość średnią ważoną czułości hallotronu wraz z niepewnością. Zapisać wynik w prawidłowym formacie, z jednostką.
- 11. Skomentować otrzymane wyniki, odpowiadając na pytanie: jakiego typu jest półprzewodnik z którego wykonano sondę Halla?