9.3 Autocorrelation

MBC 638

Data Analysis and Decision Making

2 of 26

Regression on Time Series Data

3 of 26

Regression on Time Series Data

Modeling trend and seasonal components may not generate random residuals

4 of 26

Regression on Time Series Data

- Modeling trend and seasonal components may not generate random residuals
- Residual plots help assess the fit of a regression line

5 of 26

Autocorrelation: Definition

6 of 26

Autocorrelation: Definition

Relationships between neighboring points

Autocorrelation: Definition

- Relationships between neighboring points
 - E.g., January data affects February, February affects March, etc.

8 of 26

Autocorrelation: Definition

- Relationships between neighboring points
 - E.g., January data affects February, February affects March, etc.
 - Can cause lack of randomness in data

9 of 26

Autocorrelation: Definition

- Relationships between neighboring points
 - E.g., January data affects February, February affects March, etc.
 - Can cause lack of randomness in data
- Autocorrelation: correlation between successive values

10 of 26

Autocorrelation: Why Do We Care?

11 of 26

Autocorrelation: Why Do We Care?

Can't use regression model if data violates assumption of independent residuals

Autocorrelation: Why Do We Care?

- Can't use regression model if data violates assumption of independent residuals
- Autocorrelation in residuals indicates opportunity to improve fit

13 of 26

Autocorrelation: Why Do We Care?

- Can't use regression model if data violates assumption of independent residuals
- Autocorrelation in residuals indicates opportunity to improve fit
 - Add elements to model to increase predictive power

14 of 26

Autocorrelation: How Can We Tell?

15 of 26

Autocorrelation: How Can We Tell?

- Test residuals by lagging, moving one time period
 - Residual = $e = y_{actual} y_{predicted}$

Autocorrelation: How Can We Tell?

- Test residuals by lagging, moving one time period
 - Residual = $e = y_{actual} y_{predicted}$
 - Lagged residual plot = (e_1, e_2) , (e_2, e_3) , (e_3, e_4) ... (e_{n-1}, e_n)

17 of 26

Autocorrelation: How Can We Tell?

- Test residuals by lagging, moving one time period
 - Residual = $e = y_{actual} y_{predicted}$
 - Lagged residual plot = (e_1, e_2) , (e_2, e_3) , (e_3, e_4) ... (e_{n-1}, e_n)
- Plot residuals, look for pattern

19 of 26

Autocorrelation: How Do We Improve

Our Model?

20 of 26

Autocorrelation: How Do We Improve Our Model?

• Add other x inputs to model

21 of 26

Autocorrelation: How Do We Improve Our Model?

- Add other *x* inputs to model
 - Past values of time series

22 of 26

Autocorrelation: How Do We Improve Our Model?

- Add other x inputs to model
 - Past values of time series
 - Lagged values of residuals

23 of 26

Summary

• We manipulate the y as input variable

Summary

- We manipulate the *y* as input variable
- Work with limited existing data to better predict future through manipulation

25 of 26

Summary

- We manipulate the y as input variable
- Work with limited existing data to better predict future through manipulation
- Look for autocorrelation, which indicates manipulation is required

26 of 26

Summary

- We manipulate the y as input variable
- Work with limited existing data to better predict future through manipulation
- Look for autocorrelation, which indicates manipulation is required
 - Autocorrelation: relationship between neighboring points