Package 'queueing'

November 9, 2015

Version 0.2.6
Date 2015-11-08
Title Analysis of Queueing Networks and Models
Author Pedro Canadilla
Maintainer Pedro Canadilla <pedro.canadilla@gmail.com></pedro.canadilla@gmail.com>
Depends R (>= 2.11.1)
Suggests
Description It provides versatile tools for analysis of birth and death based Markovian Queueing Models and Single and Multiclass Product-Form Queueing Networks. It implements M/M/1, M/M/c, M/M/Infinite, M/M/1/K, M/M/c/K, M/M/c/c, M/M/1/K/K, M/M/c/K/K, M/M/c/K/m, M/M/Infinite/Multiple Channel Open Jackson Networks, Multiple Channel Closed Jackson Networks, Single Channel Multiple Class Open Networks, Single Channel Multiple Class Open Networks, Single Channel Multiple Class Closed Networks and Single Channel Multiple Class Mixed Networks. Also it provides a B-Erlang, C-Erlang and Engset calculators. This work is dedicated to the memory of D. Sixto Rios Insua.
License GPL-2
Copyright Pedro Canadilla
URL http://www.r-project.org
NeedsCompilation no
Repository CRAN
Date/Publication 2015-11-09 15:01:31
R topics documented:
queueing-package 8 B_erlang 9 CheckInput 10 CheckInput.i_CJN 11 CheckInput.i_MCCN 12

CheckInput.i_MCMN	 13
CheckInput.i_MCON	 14
CheckInput.i_MM1	 15
CheckInput.i_MM1K	 16
CheckInput.i_MM1KK	 17
CheckInput.i_MMC	 18
CheckInput.i_MMCC	 19
CheckInput.i_MMCK	 20
CheckInput.i_MMCKK	 21
CheckInput.i_MMCKM	 22
CheckInput.i_MMInf	 23
CheckInput.i_MMInfKK	 24
CheckInput.i_OJN	25
CompareQueueingModels	 26
C_erlang	27
Engset	28
Inputs	28
Inputs.o_CJN	29
Inputs.o_MCCN	31
Inputs.o_MCMN	32
Inputs.o_MCON	 33
Inputs.o_MM1	34
Inputs.o_MM1K	 35
Inputs.o MM1KK	36
Inputs.o_MMC	 37
Inputs.o_MMCC	38
Inputs.o_MMCK	 39
Inputs.o_MMCKK	40
Inputs.o_MMCKM	41
Inputs.o_MMInf	42
Inputs.o_MMInfKK	43
Inputs.o_OJN	44
L	
L.o_CJN	 46
L.o MCCN	
L.o MCMN	 48
L.o MCON	
 L.o MM1	51
L.o MM1K	 52
L.o MM1KK	 53
L.o MMC	54
L.o MMCC	55
L.o MMCK	56
L.o MMCKK	57
L.o MMCKM	58
L.o_MMInf	59
L.o MMInfKK	60
Lo OIN	 61

Lc					
Lc.o_MCCN					
Lc.o_MCMN	 	 	 	 	 64
Lc.o_MCON	 	 	 	 	 65
Lck	 	 	 	 	 66
Lck.o_MCCN	 	 	 	 	 68
Lck.o_MCMN	 	 	 	 	 69
Lck.o MCON					
_ Lk	 	 	 	 	 71
Lk.o_CJN					
Lk.o MCCN					
Lk.o MCMN					
Lk.o MCON					
Lk.o OJN					
Lq					
Lq.o_MM1					
Lq.o_MM1K					
Lq.o_MM1KK					
Lq.o_MMC					
Lq.o_MMCC					
Lq.o_MMCK					
Lq.o_MMCKK					
Lq.o_MMCKM					
Lq.o_MMInf					
Lq.o_MMInfKK					
Lqq					
Lqq.o_MM1					
** =					
Lqq.o_MM1K					
Lqq.o_MM1KK					
Lqq.o_MMC					
Lqq.o_MMCC					
Lqq.o_MMCK					
Lqq.o_MMCKK					
Lqq.o_MMCKM					
Lqq.o_MMInf					
Lqq.o_MMInfKK					
NewInput.CJN					
NewInput.MCCN					
NewInput.MCMN					
NewInput.MCON					
NewInput.MM1					
NewInput.MM1K					
NewInput.MM1KK					
NewInput.MMC					
NewInput.MMCC					
NewInput.MMCK					
NewInput.MMCKK	 	 	 	 	
NewInnut MMCKM					113

NewInput.MMInf	114
NewInput.MMInfKK	115
NewInput.OJN	116
Pn	
Pn.o_MM1	
Pn.o_MM1K	
Pn.o_MM1KK	
Pn.o_MMC	
Pn.o_MMCC	
Pn.o_MMCK	
Pn.o_MMCKK	
Pn.o_MMCKM	
Pn.o_MMInf	
Pn.o_MMInfKK	
Pn.o_OJN	
QueueingModel	
QueueingModel.i_CJN	
QueueingModel.i MCCN	
QueueingModel.i_MCMN	
QueueingModel.i_MCON	
QueueingModel.i_MM1	
QueueingModel.i MM1K	
QueueingModel.i_MM1KK	
QueueingModel.i_MMC	
QueueingModel.i_MMCC	
QueueingModel.i_MMCK	
QueueingModel.i_MMCKK	
QueueingModel.i_MMCKM	
QueueingModel.i_MMInf	
QueueingModel.i_MMInfKK	
QueueingModel.i_OJN	
RO	
RO.o_MM1	
RO.o_MM1K	
RO.o_MM1KK	
RO.o_MMC	
RO.o_MMCC	
RO.o_MMCK	
RO.o_MMCKK	
RO.o_MMCKM	
RO.o_MMInf	
RO.o_MMInfKK	
ROck	
ROck.o_MCCN	
ROck.o_MCMN	
ROck.o_MCON	
ROk	
ROk.o CJN	164

ROk.o_MCCN	
ROk.o_MCMN	. 166
ROk.o_MCON	
ROk.o_OJN	. 168
SP	. 169
SP.o_MM1KK	. 170
summary.o_CJN	. 171
summary.o_MCCN	. 172
summary.o_MCMN	. 174
summary.o_MCON	. 175
summary.o_MM1	. 176
$summary.o_MM1K \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
summary.o_MM1KK	
summary.o_MMC	
summary.o_MMCC	. 180
summary.o_MMCK	. 181
summary.o_MMCKK	. 182
summary.o_MMCKM	
summary.o_MMInf	. 184
summary.o_MMInfKK	. 185
summary.o_OJN	. 186
Throughput	. 187
Throughput.o_CJN	. 188
Throughput.o_MCCN	. 189
Throughput.o_MCMN	. 190
Throughput.o_MCON	. 191
Throughput.o_MM1	. 192
Throughput.o_MM1K	. 193
Throughput.o_MM1KK	. 194
Throughput.o_MMC	. 195
Throughput.o_MMCC	. 196
Throughput.o_MMCK	. 197
Throughput.o_MMCKK	. 198
Throughput.o_MMCKM	. 199
Throughput.o_MMInf	. 200
Throughput.o_MMInfKK	. 201
Throughput.o_OJN	
Throughputc	. 203
Throughputc.o_MCCN	. 204
Throughputc.o_MCMN	. 205
Throughputc.o_MCON	. 207
Throughputck	. 208
Throughputck.o_MCCN	. 209
Throughputck.o_MCMN	. 210
Throughputck.o_MCON	. 211
Throughputen	. 213
Throughputen.o_MCCN	
Throughputk	. 215

Throughputk.o_CJN	
Throughputk.o_MCCN	217
Throughputk.o_MCMN	219
Throughputk.o_MCON	220
Throughputk.o_OJN	221
Throughputn	222
Throughputn.o_CJN	223
VN	
VN.o_MM1	
VN.o_MM1K	
VN.o_MM1KK	
VN.o_MMC	
VN.o_MMCC	
VN.o_MMCK	
VN.o_MMCKK	
VN.o MMCKM	
VN.o MMInf	
VN.o MMInfKK	
VNq	
VNq.o_MM1	
VNq.o_MM1K	
VNq.o_MM1KK	
VNq.o MMC	
VNq.o_MMCC	
VNq.o_MMCK	
VNq.o_MMCKK	
VNq.o_MMCKM	
VNq.o_MMInf	245
VNq.o MMInfKK	
VT	
VT.o MM1	
VT.o_MM1K	
VT.o MM1KK	
VT.o MMC	
VT.o MMCC	
VT.o MMInf	
VT.o MMInfKK	
VTq	
VTq.o_MM1	
VTq.o MM1K	
VTq.o MM1KK	
VTq.o_MMC	
VTq.o_MMCC	
VTq.o_MMCK	
VTq.o_MMCKK	
VTq.o_MMInf	
VTq.o_MMInfKK	
W	265
	40.)

W.o_CJN					
W.o_MCCN	 	 	 	267	1
W.o MCMN	 	 	 	268	,
W.o MCON					
W.o MM1					
W.o_MM1K					
_					
W.o_MM1KK					
W.o_MMC					
W.o_MMCC					
W.o_MMCK					
W.o_MMCKK	 	 	 	276)
W.o_MMCKM	 	 	 	277	1
W.o MMInf	 	 	 	278	,
W.o MMInfKK	 	 	 	279)
W.o OJN					
Wc					
Wc.o_MCCN					
Wc.o_MCCN Wc.o MCMN					
-					
Wc.o_MCON					
Wck					
Wck.o_MCCN					
Wck.o_MCMN					
Wck.o_MCON	 	 	 	289)
Wk	 	 	 	290)
Wk.o_CJN	 	 	 	291	
Wk.o_MCCN					
Wk.o_MCMN					
Wk.o_MCON					
Wk.o OJN					
Wq					
Wq.o_MM1					
. —					
Wq.o_MM1K					
Wq.o_MM1KK					
Wq.o_MMC					
Wq.o_MMCC					
Wq.o_MMCK	 	 	 	303	i
Wq.o_MMCKK	 	 	 	304	Ļ
Wq.o_MMCKM .	 	 	 	305	j
Wq.o MMInf	 	 	 	306)
Wq.o_MMInfKK .					
Wqq					
Wqq.o_MM1					
Wqq.o_MM1K					
Wqq.o_MM1KK .					
Wqq.o_MMC					
Wqq.o_MMCC					
Wqq.o_MMCK					
Wgg.o MMCKK.	 	 	 	315	í

8 queueing-package

	Wqq.o_MMCKM																						. 316
	Wqq.o_MMInf .																						. 317
	Wqq.o_MMInfKK																						. 318
	WWs																						. 319
	WWs.o_MM1KK																						. 320
Index																							322
queu	eing-package	A	nal _:	ysis	s of	Qi	uei	ıein	g l	Vei	twe	ork	s c	ınc	l N	100	dei	s.					

Description

It provides a versatile tool for analysis of birth and death based Markovian Queueing Models and Single and Multiclass Product-Form Queueing Networks.

It implements the following basic markovian models:

M/M/1,	M/M/c,		M/M/Infinite,
M/M/1/K,	M/M/c/K,	M/M/c/c,	
M/M/1/K/K	M/M/c/K/K	M/M/c/K/m,	M/M/Infinite/K/K

It also solves the following types of networks:

- Multiple Channel Open Jackson Networks.
- Multiple Channel Closed Jackson Networks.
- Single Channel Multiple Class Open Networks.
- Single Channel Multiple Class Closed Networks
- Single Channel Multiple Class Mixed Networks

Also it provides B-Erlang, C-Erlang and Engset calculators.

This work is dedicated to the memory of D. Sixto Rios Insua.

Details

All models are used in the same way:

1. Create inputs calling the appropriate *NewInput.model*. For example, x <- NewInput.MM1(lambda=0.25, mu=1, n=10) for a M/M/1 model. To know the exact acronymn model to use for *NewInput* function, you can search the html help or write help.search("NewInput") at the command line.

B_erlang 9

- 2. Optionally, as a help for creating the inputs, the CheckInput(x) function can be called
- 3. Solve the model calling y <- QueueingModel(x). In this step, the CheckInput(x) will be called. That is the reason that the previous step is optional
- 4. Finally, you can get a performance value as W(y), Wq(y) or a report of the principals performace values calling summary(y)

See the examples for more detailed information of the use.

Author(s)

Author, Maintainer and Copyright: Pedro Canadilla <pedro.canadilla@gmail.com>

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

Examples

```
## M/M/1 model
summary(QueueingModel(NewInput.MM1(lambda=1/4, mu=1/3, n=0)))
## M/M/1/K model
summary(QueueingModel(NewInput.MM1K(lambda=1/4, mu=1/3, k=3)))
```

B_erlang

Returns the probability that all servers are busy

Description

Returns the probability that all servers are busy

Usage

```
B_erlang(c=1, u=0)
```

Arguments

c numbers of servers

u lambda/mu, that is, ratio of rate of arrivals and rate of service

Details

Returns the probability that all servers are busy

10 CheckInput

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
C_erlang
```

Examples

```
## two servers
B_erlang(2, 0.5/0.7)
```

CheckInput

Generic S3 method to check the params of a queueing model (or network)

Description

Generic S3 method to check the params of a queueing model (or network)

Usage

```
CheckInput(x, ...)
```

Arguments

```
x a object of class i_MM1, i_MMC, i_MM1K, i_MMCK, i_MM1KK, i_MMCKK, i_MMCC, i_MMCKM, i_MMInf, i_OJN
... aditional arguments
```

Details

Generic S3 method to check the params of a queueing model (or network)

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

CheckInput.i_CJN 11

See Also

```
CheckInput.i_MM1
CheckInput.i_MMC
CheckInput.i_MM1K
CheckInput.i_MMCK
CheckInput.i_MM1KK
CheckInput.i_MMCKK
CheckInput.i_MMCCK
CheckInput.i_MMCCM
CheckInput.i_MMInfKK
CheckInput.i_MMInfKK
CheckInput.i_MMInf
CheckInput.i_OJN
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Check the inputs
CheckInput(i_mm1)</pre>
```

CheckInput.i_CJN

Check the input params of a Closed Jackson Network

Description

Check the input params of a Closed Jackson Network

Usage

```
## S3 method for class 'i_CJN' CheckInput(x, ...)
```

Arguments

```
x a object of class i_CJN
... aditional arguments
```

Details

Check the input params of a Closed Jackson Network. The inputs params are created calling previously the NewInput.CJN

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos. Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.CJN
```

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)

# think time = 0
z <- 0

# operational value
operational <- FALSE

# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)

cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)

CheckInput(cjn1)</pre>
```

CheckInput.i_MCCN

Check the input params of a MultiClass Closed Network

Description

Check the input params of a MultiClass Closed Network

Usage

```
## S3 method for class 'i_MCCN'
CheckInput(x, ...)
```

```
x a object of class i_MCCN
... aditional arguments
```

CheckInput.i_MCMN

Details

Check the input params of a MultiClass Closed Network. The inputs params are created calling previously the NewInput.MCCN

13

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCCN
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

CheckInput(i_MCCN1)</pre>
```

 ${\tt CheckInput.i_MCMN}$

Check the input params of a MultiClass Mixed Network

Description

Check the input params of a MultiClass Mixed Network

Usage

```
## S3 method for class 'i_MCMN' CheckInput(x, ...)
```

```
x a object of class i_MCMN
... aditional arguments
```

Details

Check the input params of a MultiClass Mixed Network. The inputs params are created calling previously the NewInput.MCMN

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCMN
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
CheckInput(i_mcmn1)</pre>
```

 ${\tt CheckInput.i_MCON}$

Check the input params of a MultiClass Open Network

Description

Check the input params of a MultiClass Open Network

Usage

```
## S3 method for class 'i_MCON'
CheckInput(x, ...)
```

```
x a object of class i_MCON
... aditional arguments
```

CheckInput.i_MM1

Details

Check the input params of a MultiClass Open Network. The inputs params are created calling previously the NewInput.MCON

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCON
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
CheckInput(i_mcon1)</pre>
```

CheckInput.i_MM1

Checks the input params of a M/M/1 queueing model

Description

Checks the input params of a M/M/1 queueing model

Usage

```
## S3 method for class 'i_MM1'
CheckInput(x, ...)
```

```
x a object of class i_MM1
... aditional arguments
```

Details

Checks the input params of a M/M/1 queueing model. The inputs params are created calling previously the NewInput.MM1

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MM1.
```

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Check the inputs
CheckInput(i_mm1)</pre>
```

CheckInput.i_MM1K

Checks the input params of a M/M/1/K queueing model

Description

Checks the input params of a M/M/1/K queueing model

Usage

```
## S3 method for class 'i_MM1K'
CheckInput(x, ...)
```

Arguments

```
x a object of class i_MM1K ... aditional arguments
```

Details

Checks the input params of a M/M/1/K queueing model. The inputs params are created calling previously the NewInput.MM1K

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MM1K.
```

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)</pre>
## check the parameters
CheckInput(i_mm1k)
```

CheckInput.i_MM1KK

Checks the input params of a M/M/1/K/K queueing model

Description

Checks the input params of a M/M/1/K/K queueing model

Usage

```
## S3 method for class 'i_MM1KK'
CheckInput(x, ...)
```

Arguments

. . .

a object of class i_MM1KK Х aditional arguments

Details

Checks the input params of a M/M/1/K/K queueing model. The inputs params are created calling previously the NewInput.MM1KK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MM1KK.
```

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## check the parameters
CheckInput(i_mm1kk)</pre>
```

CheckInput.i_MMC

Checks the input params of a M/M/c queueing model

Description

Checks the input params of a M/M/c queueing model

Usage

```
## S3 method for class 'i_MMC'
CheckInput(x, ...)
```

Arguments

x a object of class i_MMC ... aditional arguments

Details

Checks the input params of a M/M/c queueing model. The inputs params are created calling previously the NewInput.MMC

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

NewInput.MMC.

CheckInput.i_MMCC 19

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## check the parameters
CheckInput(i_mmc)</pre>
```

CheckInput.i_MMCC

Checks the input params of a M/M/c/c queueing model

Description

Checks the input params of a M/M/c/c queueing model

Usage

```
## S3 method for class 'i_MMCC'
CheckInput(x, ...)
```

Arguments

```
x a object of class i_MMCC
... aditional arguments
```

Details

Checks the input params of a M/M/c/c queueing model. The inputs params are created calling previously the NewInput.MMCC

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMCC.
```

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## check the parameters
CheckInput(i_mmcc)</pre>
```

CheckInput.i_MMCK

Checks the input params of a M/M/c/K queueing model

Description

Checks the input params of a M/M/c/K queueing model

Usage

```
## S3 method for class 'i_MMCK'
CheckInput(x, ...)
```

Arguments

x a object of class i_MMCK
... aditional arguments

Details

Checks the input params of a M/M/c/K queueing model. The inputs params are created calling previously the NewInput.MMCK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

NewInput.MMCK.

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Check the inputs
CheckInput(i_mmck)</pre>
```

CheckInput.i_MMCKK

Checks the input params of a M/M/c/K/K queueing model

Description

Checks the input params of a M/M/c/K/K queueing model

Usage

```
## S3 method for class 'i_MMCKK'
CheckInput(x, ...)
```

Arguments

x a object of class i_MMCKK
... aditional arguments

Details

Checks the input params of a M/M/c/K/K queueing model. The inputs params are created calling previously the NewInput.MMCKK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

NewInput.MMCKK.

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## check the parameters
CheckInput(i_mmckk)</pre>
```

CheckInput.i_MMCKM

Checks the input params of a M/M/c/K/m queueing model

Description

Checks the input params of a M/M/c/K/m queueing model

Usage

```
## S3 method for class 'i\_MMCKM' CheckInput(x, ...)
```

Arguments

```
x a object of class i_MMCKM
```

... aditional arguments

Details

Checks the input params of a M/M/c/K/m queueing model. The inputs params are created calling previously the NewInput.MMCKM

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMCKM.
```

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## check the parameters
CheckInput(i_mmckm)</pre>
```

CheckInput.i_MMInf

Checks the input params of a M/M/Infinite queueing model

Description

Checks the input params of a M/M/Infinite queueing model

Usage

```
## S3 method for class 'i_MMInf'
CheckInput(x, ...)
```

Arguments

```
x a object of class i_MMInf
```

... aditional arguments

Details

Checks the input params of a M/M/Infinite queueing model. The inputs params are created calling previously the NewInput.MMInf

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMInf.
```

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Check the parameters
CheckInput(i_mminf)</pre>
```

CheckInput.i_MMInfKK Checks the input params of a M/M/Infinite/K/K queueing model

Description

Checks the input params of a M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'i_MMInfKK'
CheckInput(x, ...)
```

Arguments

- x a object of class i_MMInfKK
- ... aditional arguments

Details

Checks the input params of a M/M/Infinite/K/K queueing model. The inputs params are created calling previously the NewInput.MMInfKK

References

```
[Kleinrock 1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

See Also

```
NewInput.MMInfKK.
```

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## check the parameters
CheckInput(i_MMInfKK)</pre>
```

CheckInput.i_OJN 25

CheckInput.i_OJN

Check the input params of an Open Jackson Network

Description

Check the input params of an Open Jackson Network

Usage

```
## S3 method for class 'i_OJN'
CheckInput(x, ...)
```

Arguments

```
x a object of class i_OJN aditional arguments
```

Details

Check the input params of an Open Jackson Network. The inputs params are created calling previously the NewInput.OJN

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.OJN
```

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)

ojn1 <- NewInput.OJN(prob, n1, n2, n3, n4)
CheckInput(ojn1)</pre>
```

CompareQueueingModels Compare several queueing models in a tabulated format

Description

Compare several queueing models in a tabulated format

Usage

```
CompareQueueingModels(model, ...)
CompareQueueingModels2(models)
```

Arguments

model	A Queueing Model obtained calling QueueingModel from classes described in the details section
• • •	a separated by comma list of queueing models obtained calling QueueingModel from classes described in the details section
models	A list of queueing models obtained calling QueueingModel from classes described in the details section

Details

Compare several queueing models in a tabulated format. By now, only o_MM1, o_MMC, o_MMInf, o_MM1K, o_MMCK, o_MMCK, o_MMCKK, o_MMCKM, o_MMInfKK classes can be compared

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

QueueingModel

```
q1 <- QueueingModel(NewInput.MM1(lambda=5, mu=7))
q2 <- QueueingModel(NewInput.MMC(lambda=5, mu=3, c=4))
q3 <- QueueingModel(NewInput.MMInf(lambda=3, mu=4))
q4 <- QueueingModel(NewInput.MMCC(lambda=5, mu=3, c=4))
CompareQueueingModels(q1, q2, q3)
CompareQueueingModels2(list(q1, q2, q3, q4))
```

C_erlang 27

C_erlang

Returns the probability to wait in queue because all servers are busy

Description

Returns the probability to wait in queue because all servers are busy

Usage

```
C_erlang(c=1, r=0)
```

Arguments

c numbers of servers

r lambda/mu, that is, ratio of rate of arrivals and rate of service

Details

Returns the probability to wait in queue because all servers are busy

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
B_erlang
```

```
## two servers
C_erlang(2, 0.5/0.7)
```

28 Inputs

Engset

Returns the probability that all servers are busy

Description

Returns the probability that all servers are busy

Usage

```
Engset(k=1, c=0, r=0)
```

Arguments

k numbers of users c numbers of servers

r lambda/mu, that is, ratio of rate of arrivals and rate of service

Details

Returns the probability of blocking in a finite source model

See Also

```
B_erlang
```

Examples

```
## three users, two servers
Engset(3, 2, 0.5/0.7)
```

Inputs

Returns the input parameters of a queueing model (or network)

Description

Returns the inputs parameters of a already built queueing model (or network)

Usage

```
Inputs(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf, o_OJN, o_MCON, o_MCCN, o_MCMN
```

... aditional arguments

Inputs.o_CJN 29

Details

Returns the input parameters of a queueing model (or network)

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
Inputs.o_MM1
Inputs.o_MMC
Inputs.o_MMCK
Inputs.o_MMCK
Inputs.o_MMCK
Inputs.o_MMCKK
Inputs.o_MMCCK
Inputs.o_MMCC
Inputs.o_MMCKM
Inputs.o_MMInfKK
Inputs.o_MMInf
Inputs.o_OJN
Inputs.o_CJN
Inputs.o_MCON
Inputs.o_MCCN
Inputs.o_MCCN
Inputs.o_MCCN
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Inputs
Inputs(o_mm1)</pre>
```

Inputs.o_CJN

Returns the input params of a Closed Jackson Network

Description

Returns the input params of a Closed Jackson Network

30 Inputs.o_CJN

Usage

```
## S3 method for class 'o_CJN'
Inputs(x, ...)
```

Arguments

```
x a object of class o_CJN
... aditional arguments
```

Details

Returns the input params of a Closed Jackson Network. The inputs parameters are created calling previously the NewInput.CJN

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.CJN.
```

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)</pre>
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)</pre>
Inputs(m_cjn1)
```

Inputs.o_MCCN 31

Inputs.o_MCCN

Returns the input params of a MultiClass Closed Network

Description

Returns the input params of a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN'
Inputs(x, ...)
```

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Details

Returns the input params of a MultiClass Closed Network. The inputs parameters are created calling previously the NewInput.MCCN

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCCN.
```

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)</pre>
```

32 Inputs.o_MCMN

```
Inputs(o_MCCN1)
```

Inputs.o_MCMN

Returns the input params of a MultiClass Mixed Network

Description

Returns the input params of a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN'
Inputs(x, ...)
```

Arguments

x a object of class o_MCMN
... aditional arguments

Details

Returns the input params of a MultiClass Mixed Network. The inputs parameters are created calling previously the NewInput.MCMN

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCMN.
```

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)</pre>
```

Inputs.o_MCON 33

```
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Inputs(o_mcmn1)</pre>
```

Inputs.o_MCON

Returns the input params of a MultiClass Open Network

Description

Returns the input params of a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON' Inputs(x, ...)
```

Arguments

x a object of class o_MCON
... aditional arguments

Details

Returns the input params of a MultiClass Open Network. The inputs parameters are created calling previously the NewInput.MCON

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

NewInput.MCON.

Inputs.o_MM1

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Inputs(o_mcon1)</pre>
```

Inputs.o_MM1

Returns the input parameters of a M/M/1 queueing model

Description

Returns the inputs parameters of a already built M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1'
Inputs(x, ...)
```

Arguments

```
x a object of class o_MM1
... aditional arguments
```

Details

Returns the input parameters of a M/M/1 queueing model. The inputs parameters are created calling previously the NewInput.MM1

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

Inputs.o_MM1K 35

See Also

```
NewInput.MM1.
```

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Inputs
Inputs(o_mm1)</pre>
```

Inputs.o_MM1K

Returns the input parameters of a M/M/1/K queueing model

Description

Returns the inputs parameters of a already built M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K'
Inputs(x, ...)
```

Arguments

x a object of class o_MM1K
... aditional arguments

Details

Returns the input parameters of a M/M/1/K queueing model. The inputs parameters are created calling previously the NewInput.MM1K

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos. Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MM1K.
```

36 Inputs.o_MM1KK

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Retunns the Inputs
Inputs(o_mm1k)</pre>
```

Inputs.o_MM1KK

Returns the input parameters of a M/M/1/K/K queueing model

Description

Returns the inputs parameters of a already built M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK'
Inputs(x, ...)
```

Arguments

x a object of class o_MM1KK
... aditional arguments

Details

Returns the input parameters of a M/M/1/K/K queueing model. The inputs parameters are created calling previously the NewInput.MM1KK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

NewInput.MM1KK.

Inputs.o_MMC 37

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Retunns the Inputs
Inputs(o_mm1kk)</pre>
```

Inputs.o_MMC

Returns the input parameters of a M/M/c queueing model

Description

Returns the inputs parameters of a already built M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC'
Inputs(x, ...)
```

Arguments

x a object of class o_MMC
... aditional arguments

Details

Returns the input parameters of a M/M/c queueing model. The inputs parameters are created calling previously the NewInput.MMC

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMC.
```

38 Inputs.o_MMCC

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the Inputs
Inputs(o_mmc)</pre>
```

Inputs.o_MMCC

Returns the input parameters of a M/M/c/c queueing model

Description

Returns the inputs parameters of a already built M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC'
Inputs(x, ...)
```

Arguments

x a object of class o_MMCC
... aditional arguments

Details

Returns the input parameters of a M/M/c/c queueing model. The inputs parameters are created calling previously the NewInput.MMCC

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigación Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

NewInput.MMCC.

Inputs.o_MMCK 39

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Returns the Inputs
Inputs(o_mmcc)</pre>
```

Inputs.o_MMCK

Returns the input parameters of a M/M/c/K queueing model

Description

Returns the inputs parameters of a already built M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK'
Inputs(x, ...)
```

Arguments

x a object of class o_MMCK

... aditional arguments

Details

Returns the input parameters of a M/M/c/K queueing model. The inputs parameters are created calling previously the NewInput.MMCK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

NewInput.MMCK.

40 Inputs.o_MMCKK

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the Inputs
Inputs(o_mmck)</pre>
```

Inputs.o_MMCKK

Returns the input parameters of a M/M/c/K/K queueing model

Description

Returns the inputs parameters of a already built M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK'
Inputs(x, ...)
```

Arguments

x a object of class o_MMCKK
... aditional arguments

Details

Returns the input parameters of a M/M/c/K/K queueing model. The inputs parameters are created calling previously the NewInput.MMCKK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 ${\it Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.}$

Editorial Centro de Estudios Ramon Areces.

See Also

NewInput.MMCKK.

Inputs.o_MMCKM 41

Examples

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the Inputs
Inputs(o_mmckk)</pre>
```

Inputs.o_MMCKM

Returns the input parameters of a M/M/c/K/m queueing model

Description

Returns the inputs parameters of a already built M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM'
Inputs(x, ...)
```

Arguments

x a object of class o_MMCKM
... aditional arguments

Details

Returns the input parameters of a M/M/c/K/m queueing model. The inputs parameters are created calling previously the NewInput.MMCKM

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

NewInput.MMCKM.

42 Inputs.o_MMInf

Examples

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the Inputs
Inputs(o_mmckm)</pre>
```

Inputs.o_MMInf

Returns the input parameters of a M/M/Infinite queueing model

Description

Returns the inputs parameters of a already built M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf'
Inputs(x, ...)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Returns the input parameters of a M/M/Infinite queueing model. The inputs parameters are created calling previously the NewInput.MMInf

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

NewInput.MMInf.

Inputs.o_MMInfKK 43

Examples

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the Inputs
Inputs(o_mminf)</pre>
```

Inputs.o_MMInfKK

Returns the input parameters of a M/M/Infinite/K/K queueing model

Description

Returns the inputs parameters of a already built M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK'
Inputs(x, ...)
```

Arguments

```
x a object of class o_MMInfKK
... aditional arguments
```

Details

Returns the input parameters of a M/M/Infinite/K/K queueing model. The inputs parameters are created calling previously the NewInput.MMInfKK

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

See Also

```
NewInput.MMInfKK.
```

Inputs.o_OJN

Examples

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the Inputs
Inputs(o_MMInfKK)</pre>
```

Inputs.o_OJN

Returns the input params of an Open Jackson Network

Description

Returns the input params of an Open Jackson Network

Usage

```
## S3 method for class 'o_OJN'
Inputs(x, ...)
```

Arguments

x a object of class o_OJN
... aditional arguments

Details

Returns the input params of an Open Jackson Network. The inputs parameters are created calling previously the NewInput.OJN

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

NewInput.OJN.

L 45

Examples

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m < -c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)</pre>
i_ojn1 <- NewInput.OJN(prob, n1, n2, n3, n4)</pre>
# Build the model
o_ojn1 <- QueueingModel(i_ojn1)</pre>
Inputs(o_ojn1)
```

L

Returns the mean number of customers in a queueing model (or network)

Description

Returns the mean number of customers in a queueing model (or network)

Usage

```
L(x, \ldots)
```

Arguments

```
a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK,
Χ
               o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf, o_OJN, o_MCON, o_MCCN,
               o MCMN
               aditional arguments
```

. . .

Details

Returns the mean number of customers in a queueing model (or network)

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

L.o_CJN

See Also

```
L.o_MM1
L.o_MMC
L.o_MMCK
L.o_MM1KK
L.o_MMCKK
L.o_MMCCC
L.o_MMCKM
L.o_MMInfKK
L.o_MMInf
L.o_OJN
L.o_CJN
L.o_CJN
L.o_MCON
L.o_MCCN
L.o_MCCN
L.o_MCCN
L.o_MCMN
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the L
L(o_mm1)</pre>
```

L.o_CJN

Returns the mean number of customers of a Closed Jackson Network

Description

Returns the mean number of customers of a Closed Jackson Network

Usage

```
## S3 method for class 'o_CJN' L(x, ...)
```

Arguments

```
x a object of class o_CJN ... aditional arguments
```

Details

Returns the mean number of customers of a Closed Jackson Network

L.o_MCCN 47

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_CJN.
```

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)

# think time = 0
z <- 0

# operational value
operational <- FALSE

# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)

# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)

# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)

L(m_cjn1)</pre>
```

L.o_MCCN

Returns the mean number of customers of a MultiClass Closed Network

Description

Returns the mean number of customers of a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN' L(x, ...)
```

L.o_MCMN

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Details

Returns the mean number of customers of a MultiClass Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCCN.
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
L(o_MCCN1)</pre>
```

L.o_MCMN

Returns the mean number of customers of a MultiClass Mixed Network

Description

Returns the mean number of customers of a MultiClass Mixed Network

L.o_MCMN 49

Usage

```
## S3 method for class 'o_MCMN' L(x, ...)
```

Arguments

```
x a object of class o_MCMN
... aditional arguments
```

Details

Returns the mean number of customers of a MultiClass Mixed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCMN.
```

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
L(o_mcmn1)</pre>
```

L.o_MCON

L.o_MCON

Returns the mean number of customers of a MultiClass Open Network

Description

Returns the mean number of customers of a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON' L(x, ...)
```

Arguments

```
x a object of class o_MCON
... aditional arguments
```

Details

Returns the mean number of customers of a MultiClass Open Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCON.
```

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

L(o_mcon1)</pre>
```

L.o_MM1 51

L.o_MM1

Returns the mean number of customers in the M/M/1 queueing model

Description

Returns the mean number of customers in the M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' L(x, \ldots)
```

Arguments

```
x a object of class o_MM1
... aditional arguments
```

Details

Returns the mean number of customers in the M/M/1 queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1.
```

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the L
L(o_mm1)</pre>
```

52 L.o_MM1K

 $L.o_MM1K$

Returns the mean number of customers in the M/M/1/K queueing model

Description

Returns the mean number of customers in the M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' L(x, ...)
```

Arguments

x a object of class o_MM1K
... aditional arguments

Details

Returns the mean number of customers in the M/M/1/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1K.
```

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Returns the L
L(o_mm1k)</pre>
```

L.o_MM1KK 53

L.o_MM1KK	Returns the mean number of customers in the M/M/1/K/K queueing model

Description

Returns the mean number of customers in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' L(x, ...)
```

Arguments

```
x a object of class o_MM1KK
... aditional arguments
```

Details

Returns the mean number of customers in the M/M/1/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1K.
```

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Returns the L
L(o_mm1kk)</pre>
```

L.o_MMC

L.o_MMC

Returns the mean number of customers in the M/M/c queueing model

Description

Returns the mean number of customers in the M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' L(x, \ldots)
```

Arguments

```
x a object of class o_MMC
... aditional arguments
```

Details

Returns the mean number of customers in the M/M/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMC.
```

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the L
L(o_mmc)</pre>
```

L.o_MMCC 55

L.o_MMCC

Returns the mean number of customers in the M/M/c/c queueing model

Description

Returns the mean number of customers in the M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' L(x, \ldots)
```

Arguments

```
x a object of class o_MMCC
```

... aditional arguments

Details

Returns the mean number of customers in the M/M/c/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCC.
```

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Returns the L
L(o_mmcc)</pre>
```

L.o_MMCK

 $L.o_MMCK$

Returns the mean number of customers in the M/M/c/K queueing model

Description

Returns the mean number of customers in the M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' L(x, ...)
```

Arguments

x a object of class o_MMCK
... aditional arguments

Details

Returns the mean number of customers in the M/M/c/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCK.
```

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the L
L(o_mmck)</pre>
```

L.o_MMCKK 57

	Returns the mean number of customers in the M/M/c/K/K queueing model
--	--

Description

Returns the mean number of customers in the M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK' L(x, \ldots)
```

Arguments

```
x a object of class o_MMCKK
... aditional arguments
```

Details

Returns the mean number of customers in the M/M/c/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCKK.
```

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the L
L(o_mmckk)</pre>
```

58 L.o_MMCKM

L.o_MMCKM

Returns the mean number of customers in the M/M/c/K/m queueing model

Description

Returns the mean number of customers in the M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM' L(x, ...)
```

Arguments

x a object of class o_MMCKM

... aditional arguments

Details

Returns the mean number of customers in the M/M/c/K/m queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCKM.
```

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the L
L(o_mmckm)</pre>
```

L.o_MMInf

L.o_MMInf	Returns the mean number of customers in the M/M/Infinite queueing model
	model

Description

Returns the mean number of customers in the M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' L(x, ...)
```

Arguments

```
x a object of class o_MMInf
... aditional arguments
```

Details

Returns the mean number of customers in the M/M/Infinite queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMInf.
```

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the L
L(o_mminf)</pre>
```

60 L.o_MMInfKK

L.o_MMInfKK

Returns the mean number of customers in the M/M/Infinite/K/K queueing model

Description

Returns the mean number of customers in the M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' L(x, ...)
```

Arguments

x a object of class o_MMInfKK

... aditional arguments

Details

Returns the mean number of customers in the M/M/Infinite/K/K queueing model

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

See Also

```
QueueingModel.i_MMInfKK.
```

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the L
L(o_MMInfKK)</pre>
```

L.o_OJN 61

L.o_OJN

Returns the mean number of customers of an Open Jackson Network

Description

Returns the mean number of customers of an Open Jackson Network

Usage

```
## S3 method for class 'o_OJN'
L(x, ...)
```

Arguments

```
x a object of class o_OJN
... aditional arguments
```

Details

Returns the mean number of customers of an Open Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_OJN.
```

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)

i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the model
o_ojn <- QueueingModel(i_ojn)</pre>
```

62 Lc

L(o_ojn)

Lc

Returns the vector with the mean number of customers of each class in a multiclass queueing network

Description

Returns the vector with the mean number of customers of each class in a multiclass queueing network

Usage

```
Lc(x, ...)
```

Arguments

x a object of class o_MCON, o_MCCN, o_MCMN
... aditional arguments

Details

Returns the vector with the mean number of customers of each class in a multiclass queueing network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

Lc.o_MCON Lc.o_MCCN Lc.o_MCMN Lc.o_MCCN 63

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Lc(o_mcon1)</pre>
```

Lc.o_MCCN

Returns the vector with the mean number of customers of each class in a MultiClass Closed Network

Description

Returns the vector with the mean number of customers of each class in a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN' Lc(x, ...)
```

Arguments

x a object of class o_MCCN
... aditional arguments

Details

Returns the vector with the mean number of customers of each class in a MultiClass Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

Lc.o_MCMN

See Also

```
QueueingModel.i_MCCN.
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

Lc(o_MCCN1)</pre>
```

Lc.o_MCMN

Returns the vector with the mean number of customers of each class in a MultiClass Mixed Network

Description

Returns the vector with the mean number of customers of each class in a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN' Lc(x, ...)
```

Arguments

```
x a object of class o_MCMN
... aditional arguments
```

Details

Returns the vector with the mean number of customers of each class in a MultiClass Mixed Network

Lc.o_MCON 65

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCMN.
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)

Lc(o_mcmn1)</pre>
```

Lc.o_MCON

Returns the vector with the mean number of customers of each class in a MultiClass Open Network

Description

Returns the vector with the mean number of customers of each class in a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON' Lc(x, ...)
```

Arguments

```
x a object of class o_MCON
... aditional arguments
```

66 Lck

Details

Returns the vector with the mean number of customers of each class in a MultiClass Open Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCON.
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Lc(o_mcon1)</pre>
```

Lck

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Network

Description

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Network

Usage

```
Lck(x, ...)
```

Lck 67

Arguments

```
x a object of class o_MCON, o_MCCN, o_MCMN
... aditional arguments
```

Details

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
Lck.o_MCON
Lck.o_MCCN
Lck.o_MCMN
```

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Lck(o_mcon1)</pre>
```

Lck.o_MCCN

Lck.o_MCCN

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Closed Network

Description

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN'
Lck(x, ...)
```

Arguments

x a object of class o_MCCN
... aditional arguments

Details

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCCN.
```

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)</pre>
```

Lck.o_MCMN 69

```
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Lck(o_MCCN1)</pre>
```

Lck.o_MCMN

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Mixed Network

Description

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN' Lck(x, ...)
```

Arguments

x a object of class o_MCMN

... aditional arguments

Details

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Mixed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCMN.
```

70 Lck.o_MCON

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)

Lck(o_mcmn1)</pre>
```

Lck.o_MCON

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Open Network

Description

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON'
Lck(x, ...)
```

Arguments

x a object of class o_MCON
... aditional arguments

Details

Reports a matrix with the mean number of customers of class i in each node (server) j in a MultiClass Open Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

Lk 71

See Also

```
QueueingModel.i_MCON.
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Lck(o_mcon1)</pre>
```

Lk

Returns the vector with the mean number of customers in each node (server) of a queueing network

Description

Returns the vector with the mean number of customers in each node (server) of a queueing network

Usage

```
Lk(x, ...)
```

Arguments

```
x a object of class o_OJN, o_CJN, o_MCON, o_MCCN, o_MCMN
... aditional arguments
```

Details

Returns the vector with the mean number of customers in each node (server) of a queueing network

T2 Lk.o_CJN

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
Lk.o_OJN
Lk.o_CJN
Lk.o_MCON
Lk.o_MCCN
Lk.o_MCMN
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Lk(o_mcon1)</pre>
```

Lk.o_CJN

Returns the vector with the mean number of customers in each node (server) of a Closed Jackson Network

Description

Returns the vector with the mean number of customers in each node (server) of a Closed Jackson Network

Lk.o_CJN 73

Usage

```
## S3 method for class 'o_CJN' Lk(x, ...)
```

Arguments

```
x a object of class o_CJN
... aditional arguments
```

Details

Returns the vector with the mean number of customers in each node (server) of a Closed Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_CJN.
```

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)</pre>
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)</pre>
Lk(m_cjn1)
```

Zk.o_MCCN

Lk.o_MCCN

Returns a vector with the mean number of customers in each node (server) of a MultiClass Closed Network

Description

Returns a vector with the mean number of customers in each node (server) of a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN' Lk(x, ...)
```

Arguments

x a object of class o_MCCN
... aditional arguments

Details

Returns a vector with the mean number of customers in each node (server) of a MultiClass Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCCN.
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)</pre>
```

Lk.o_MCMN 75

```
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Lk(o_MCCN1)</pre>
```

Lk.o_MCMN

Returns a vector with the mean number of customers in each node (server) of a MultiClass Mixed Network

Description

Returns a vector with the mean number of customers in each node (server) of a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN' Lk(x, ...)
```

Arguments

x a object of class o_MCMN

... aditional arguments

Details

Returns a vector with the mean number of customers in each node (server) of a MultiClass Mixed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

```
QueueingModel.i_MCMN.
```

76 Lk.o_MCON

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)

Lk(o_mcmn1)</pre>
```

Lk.o_MCON

Returns a vector with the mean number of customers in each node (server) of a MultiClass Open Network

Description

Returns a vector with the mean number of customers in each node (server) of a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON' Lk(x, ...)
```

Arguments

x a object of class o_MCON
... aditional arguments

Details

Returns a vector with the mean number of customers in each node (server) of a MultiClass Open Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

Lk.o_OJN 77

See Also

```
QueueingModel.i_MCON.
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Lk(o_mcon1)</pre>
```

Lk.o_OJN

Returns the vector with the mean number of customers in each node (server) of an Open Jackson Network

Description

Returns the vector with the mean number of customers in each node (server) of an Open Jackson Network

Usage

```
## S3 method for class 'o_OJN' Lk(x, ...)
```

Arguments

```
x a object of class o_OJN
... aditional arguments
```

Details

Returns the vector with the mean number of customers in each node (server) of an Open Jackson Network

78 Lq

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_OJN.
```

Examples

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the model
o_ojn <- QueueingModel(i_ojn)
Lk(o_ojn)</pre>
```

Lq

Returns the mean number of customers in the queue in a queueing model

Description

Returns the mean number of customers in the queue in a queueing model

Usage

```
Lq(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf
```

... aditional arguments

Lq.o_MM1 79

Details

Returns the mean number of customers in the queue in a queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
Lq.o_MM1
Lq.o_MMC
Lq.o_MM1K
Lq.o_MMCK
Lq.o_MM1KK
Lq.o_MMCKK
Lq.o_MMCKK
Lq.o_MMCKK
Lq.o_MMCK
Lq.o_MMCKM
Lq.o_MMInfKK
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Lq
Lq(o_mm1)</pre>
```

Lq.o_MM1

Returns the mean number of customers in the queue in the M/M/I queueing model

Description

Returns the mean number of customers in the queue in the M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' Lq(x, ...)
```

 $Lq.o_MM1K$

Arguments

```
x a object of class o_MM1 ... aditional arguments
```

Details

Returns the mean number of customers in the queue in the M/M/1 queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1.
```

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Lq
Lq(o_mm1)</pre>
```

Lq.o_MM1K

Returns the mean number of customers in the queue in the M/M/1/K queueing model

Description

Returns the mean number of customers in the queue in the M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' Lq(x, ...)
```

Arguments

```
x a object of class o_MM1K
```

... aditional arguments

Lq.o_MM1KK 81

Details

Returns the mean number of customers in the queue in the M/M/1/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1K.
```

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Returns the Lq
Lq(o_mm1k)</pre>
```

Lq.o_MM1KK

Returns the mean number of customers in the queue in the M/M/1/K/K queueing model

Description

Returns the mean number of customers in the queue in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' Lq(x, ...)
```

Arguments

```
x a object of class o_MM1KK
... aditional arguments
```

Details

Returns the mean number of customers in the queue in the M/M/1/K/K queueing model

Lq.o_MMC

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1KK.
```

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Returns the Lq
Lq(o_mm1kk)</pre>
```

Lq.o_MMC

Returns the mean number of customers in the queue in the M/M/c queueing model

Description

Returns the mean number of customers in the queue in the M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' Lq(x, ...)
```

Arguments

```
x a object of class o_MMC
... aditional arguments
```

Details

Returns the mean number of customers in the queue in the M/M/c queueing model

Lq.o_MMCC 83

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMC.
```

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the Lq
Lq(o_mmc)</pre>
```

Lq.o_MMCC

Returns the mean number of customers in the queue in the M/M/c/c queueing model

Description

Returns the mean number of customers in the queue in the M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' Lq(x, ...)
```

Arguments

```
x a object of class o_MMCC
... aditional arguments
```

Details

Returns the mean number of customers in the queue in the M/M/c/c queueing model

Lq.o_MMCK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCC.
```

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Returns the Lq
Lq(o_mmcc)</pre>
```

Lq.o_MMCK

Returns the mean number of customers in the queue in the M/M/c/K queueing model

Description

Returns the mean number of customers in the queue in the M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' Lq(x, ...)
```

Arguments

```
x a object of class o_MMCK
... aditional arguments
```

Details

Returns the mean number of customers in the queue in the M/M/c/K queueing model

Lq.o_MMCKK 85

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCK.
```

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)

## Build the model
o_mmck <- QueueingModel(i_mmck)

## Returns the Lq
Lq(o_mmck)</pre>
```

Lq.o_MMCKK

Returns the mean number of customers in the queue in the M/M/c/K/K queueing model

Description

Returns the mean number of customers in the queue in the M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK' Lq(x, ...)
```

Arguments

```
x a object of class o_MMCKK
... aditional arguments
```

Details

Returns the mean number of customers in the queue in the M/M/c/K/K queueing model

Lq.o_MMCKM

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCKK.
```

Examples

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the Lq
Lq(o_mmckk)</pre>
```

Lq.o_MMCKM

Returns the mean number of customers in the queue in the M/M/c/K/m queueing model

Description

Returns the mean number of customers in the queue in the M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM' Lq(x, ...)
```

Arguments

x a object of class o_MMCKM
... aditional arguments

Details

Returns the mean number of customers in the queue in the M/M/c/K/m queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

Lq.o_MMInf

See Also

```
QueueingModel.i_MMCKM.
```

Examples

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the Lq
Lq(o_mmckm)</pre>
```

Lq.o_MMInf

Returns the mean number of customers in the queue in the M/M/Infinite queueing model

Description

Returns the mean number of customers in the queue in the M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' Lq(x, ...)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Returns the mean number of customers in the queue in the M/M/Infinite queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 $Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.$

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMInf.
```

88 Lq.o_MMInfKK

Examples

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the Lq
Lq(o_mminf)</pre>
```

Lq.o_MMInfKK

Returns the mean number of customers in the queue in the M/M/Infinite/K/K queueing model

Description

Returns the mean number of customers in the queue in the M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' Lq(x, ...)
```

Arguments

x a object of class o_MMInfKK
... aditional arguments

Details

Returns the mean number of customers in the queue in the M/M/Infinite/K/K queueing model

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

```
QueueingModel.i_MMInfKK.
```

Lqq 89

Examples

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the Lq
Lq(o_MMInfKK)</pre>
```

Lqq

Returns the mean number of customers in queue when there is queue in a queueing model

Description

Returns the mean number of customers in queue when there is queue in a queueing model

Usage

```
Lqq(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf
. . . . aditional arguments
```

Details

Returns the mean number of customers in queue when there is queue in a queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
Lqq.o_MM1
Lqq.o_MMC
Lqq.o_MM1K
Lqq.o_MMCK
Lqq.o_MM1KK
Lqq.o_MMCKK
Lqq.o_MMCCK
```

90 Lqq.o_MM1

```
Lqq.o_MMCKM
Lqq.o_MMInfKK
Lqq.o_MMInf
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Lqq
Lqq(o_mm1)</pre>
```

Lqq.o_MM1

Returns the mean number of customers in queue when there is queue in the M/M/1 queueing model

Description

Returns the mean number of customers in queue when there is queue in the M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' Lqq(x, ...)
```

Arguments

x a object of class o_MM1
... aditional arguments

Details

Returns the mean number of customers in queue when there is queue in the M/M/1 queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MM1.
```

Lqq.o_MM1K 91

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Lqq
Lqq(o_mm1)</pre>
```

Lqq.o_MM1K

Returns the mean number of customers in queue when there is queue in the M/M/1/K queueing model

Description

Returns the mean number of customers in queue when there is queue in the M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' Lqq(x, ...)
```

Arguments

x a object of class o_MM1K
... aditional arguments

Details

Returns the mean number of customers in queue when there is queue in the M/M/1/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MM1K.
```

92 Lqq.o_MM1KK

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Returns the Lq
Lqq(o_mm1k)</pre>
```

Lqq.o_MM1KK

Returns the mean number of customers in queue when there is queue in the M/M/1/K/K queueing model

Description

Returns the mean number of customers in queue when there is queue in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' Lqq(x, ...)
```

Arguments

x a object of class o_MM1KK
... aditional arguments

Details

Returns the mean number of customers in queue when there is queue in the M/M/1/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
{\tt Queueing Model.i\_MM1KK}.
```

Lqq.o_MMC 93

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)</pre>
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the Lqq
Lqq(o_mm1kk)
```

Lqq.o_MMC

Returns the mean number of customers in queue when there is queue in the M/M/c queueing model

Description

Returns the mean number of customers in queue when there is queue in the M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC'
Lqq(x, ...)
```

Arguments

. . .

Χ a object of class o_MMC aditional arguments

Details

Returns the mean number of customers in queue when there is queue in the M/M/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMC.
```

94 Lqq.o_MMCC

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the Lqq
Lqq(o_mmc)</pre>
```

Lqq.o_MMCC

Returns the mean number of customers in queue when there is queue in the M/M/c/c queueing model

Description

Returns the mean number of customers in queue when there is queue in the M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' Lqq(x, ...)
```

Arguments

x a object of class o_MMCC
... aditional arguments

Details

Returns the mean number of customers in queue when there is queue in the M/M/c/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCC.
```

Lqq.o_MMCK 95

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Returns the Lqq
Lqq(o_mmcc)</pre>
```

Lqq.o_MMCK

Returns the mean number of customers in queue when there is queue in the M/M/c/K queueing model

Description

Returns the mean number of customers in queue when there is queue in the M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' Lqq(x, ...)
```

Arguments

x a object of class o_MMCK
... aditional arguments

Details

Returns the mean number of customers in queue when there is queue in the M/M/c/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCK.
```

96 Lqq.o_MMCKK

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the Lqq
Lqq(o_mmck)</pre>
```

Lqq.o_MMCKK

Returns the mean number of customers in queue when there is queue in the M/M/c/K/K queueing model

Description

Returns the mean number of customers in queue when there is queue in the M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK' Lqq(x, ...)
```

Arguments

x a object of class o_MMCKK
... aditional arguments

Details

Returns the mean number of customers in queue when there is queue in the M/M/c/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKK.
```

Lqq.o_MMCKM 97

Examples

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the Lqq
Lqq(o_mmckk)</pre>
```

Lqq.o_MMCKM

Returns the mean number of customers in queue when there is queue in the M/M/c/K/m queueing model

Description

Returns the mean number of customers in queue when there is queue in the M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM' Lqq(x, ...)
```

Arguments

x a object of class o_MMCKM
... aditional arguments

Details

Returns the mean number of customers in the queue in the M/M/c/K/m queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKM.
```

98 Lqq.o_MMInf

Examples

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the Lqq
Lqq(o_mmckm)</pre>
```

Lqq.o_MMInf

Returns the mean number of customers in queue when there is queue in the M/M/Infinite queueing model

Description

Returns the mean number of customers in queue when there is queue in the M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf'
Lqq(x, ...)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Returns the mean number of customers in queue when there is queue in the M/M/Infinite queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 $Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.$

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMInf.
```

Lqq.o_MMInfKK 99

Examples

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the Lqq
Lqq(o_mminf)</pre>
```

Lqq.o_MMInfKK

Returns the mean number of customers in queue when there is queue in the M/M/Infinite/K/K queueing model

Description

Returns the mean number of customers in queue when there is queue in the M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' Lqq(x, ...)
```

Arguments

x a object of class o_MMInfKK
... aditional arguments

Details

Returns the mean number of customers in queue when there is queue in the M/M/Infinite/K/K queueing model

References

```
[Kleinrock 1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

```
QueueingModel.i_MMInfKK.
```

NewInput.CJN

Examples

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the Lqq
Lqq(o_MMInfKK)</pre>
```

NewInput.CJN

Define the inputs of a Closed Jackson Network

Description

Define the inputs of a Closed Jackson Network

Usage

```
NewInput.CJN(prob=NULL, n=0, z=0, operational=FALSE, method=0, tol=0.001, ...) 
NewInput2.CJN(prob=NULL, n=0, z=0, operational=FALSE, method=0, tol=0.001, nodes) 
NewInput3.CJN(n, z, numNodes, vType, vVisit, vService, vChannel, method=0, tol=0.001)
```

Arguments

prob	It is probability transition matrix or visit ratio vector. That is, the prob[i, j] is the transition probability of node i to node j, or prob[i] is the visit ratio (a probability, that is, a value between 0 and 1) to node i. Also, the visit ratio can express the number of times that a client visits the queueing center, in a more operational point of view. See the parameter operational
n	number of customers in the Network
z	think time of the client
operational	If prob is a vector with the visit ratios, operational equal to FALSE gives to the visit ratio a probability meaning, that is, as the stacionary values of the imbedded markov chain. If operational is equal to TRUE, the operational point of view is used: it is the number of visits that the same client makes to a node.
method	If method is 0, the exact MVA algorith is used. If method is 1, the Bard-Schweitzer approximation algorithm is used.
tol	If the parameter method is 1, this is the tolerance parameter of the algorithm.
	a separated by comma list of nodes of i_MM1, i_MMC or i_MMInf class
nodes	A list of nodes of i_MM1, i_MMC or i_MMInf class
numNodes	The number of nodes of the network
vType	A vector with the type of server: "Q" for a queueing node, "D" for a delay node
vVisit	A vector with the visit ratios. It represent visit counts to a center as if the parameter operational were TRUE

NewInput.CJN 101

vService A vector with the services time of each node

vChannel A vector with the number of channels of the node. The type of the server has to

be "Q" to be inspected

Details

Define the inputs of a Closed Jackson Network. For a operational use, NewInput3.CJN is recommended. For a more academic use, NewInput.CJN or NewInput2.CJN is recommended. Please, note that the different ways to create the inputs for a Closed Jackson Network are equivalent to each other, and no validation is done at this stage. The validation is done calling CheckInput function.

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_CJN
```

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)

## think time = 0
z <- 0

## operational value
operational <- FALSE

## definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)

cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)

## Not run:
  cjn1 <- NewInput2.CJN(prob, n, z, operational, 0, 0.001, list(n1, n2))

## End(Not run)</pre>
```

102 NewInput.MCCN

```
## using visit ratios and service demands. See [Lazowska84] pag 117.
## E[S] cpu = 0.005, Visit cpu = 121, D cpu = E[S] cpu * Visit cpu = 0.605
cpu <- NewInput.MM1(mu=1/0.005)</pre>
## E[S] disk1 = 0.030, Visit disk1 = 70, D disk1 = E[S] disk1 * Visit disk1 = 2.1
disk1 \leftarrow NewInput.MM1(mu=1/0.030)
## E[S] disk2 = 0.027, Visit disk2 = 50, D disk2 = E[S] disk2 * Visit disk2 = 1.35
disk2 <- NewInput.MM1(mu=1/0.027)</pre>
## The visit ratios.
vVisit <- c(121, 70, 50)
operational <- TRUE
net <- NewInput.CJN(prob=vVisit, n=3, z=15, operational, 0, 0.001, cpu, disk1, disk2)</pre>
## Using the operational creation function
n <- 3
think <- 15
numNodes <- 3
vType <- c("Q", "Q", "Q")
vService <- c(0.005, 0.030, 0.027)
vChannel <- c(1, 1, 1)
net2 <- NewInput3.CJN(n, think, numNodes, vType, vVisit, vService, vChannel, method=0, tol=0.001)</pre>
```

NewInput.MCCN

Define the inputs of a MultiClass Closed Network

Description

Define the inputs of a MultiClass Closed Network

Usage

```
NewInput.MCCN(
   classes, vNumber, vThink, nodes, vType, vVisit, vService, method=1, tol=0.01
)
```

Arguments

classes The number of classes

vNumber A vector with the number of customers of each class

vThink A vector with the think time of each class nodes The number of nodes in the network

NewInput.MCMN 103

vType	A vector with the type of node: "Q" for queueing nodes or "D" for delay nodes
vVisit	A matrix[i, j]. The rows represents the different visit count for each class i to each node j $% \left\{ 1,2,\ldots,n\right\}$
vService	A matrix[i, j]. The rows represents the different service time for each class i in each node j $% \left\{ 1,2,\ldots,n\right\}$
method	If method is 0, the exact MVA algorith is used. If method is 1, the Bard-Schweitzer approximation algorithm is used
tol	If the parameter method is 1, this is the tolerance parameter of the algorithm

Details

Define the inputs of a MultiClass Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCCN
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)</pre>
```

NewInput.MCMN

Define the inputs of a MultiClass Mixed Network

Description

Define the inputs of a MultiClass Mixed Network

NewInput.MCMN

Usage

```
NewInput.MCMN(
  classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService, method=0, tol=0.01
)
```

Arguments

classes	The number of classes
vLambda	It is a vector with the rate of arrivals of each class
vNumber	A vector with the number of customers of each class
vThink	A vector with the think time of each class
nodes	The number of nodes in the network
vType	A vector with the type of node: "Q" for queueing nodes or "D" for delay nodes
vVisit	A matrix[i, j]. The rows represents the different visit count for each class i to each node j. Take caution about the orden: open classes are defined first and closed classes are defined second
vService	A matrix[i, j]. The rows represents the different service times for each class i in each node j. Take caution about the orden: open classes are defined first and closed classes are defined second.
method	If method is 0, the exact MVA algorith is used. If method is 1, the Bard-Schweitzer approximation algorithm is used

Details

tol

Define the inputs of a MultiClass Mixed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

If the parameter method is 1, this is the tolerance parameter of the algorithm

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCMN
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details. classes <- 4 # A and B are open classes and C and D are closed classes. vLambda <- c(1,\ 1/2) vNumber <- c(1,\ 1) vThink <- c(0,\ 0) nodes <- 2
```

NewInput.MCON 105

```
vType <- c("Q", "Q")

# When the visit ratios and vService are set,

# be sure that the open classes are in the first positions

# and the closed classes after the open classes.
vVisit <- matrix(data=1, nrow=4, ncol=2)

# A and B are open clasess:

# with demand service of 1/4 and 1/2 at the node 1 and 1/2 and 1 at the node 2

# C and D are open clasess:

# with demand service of 1/4 and 1/2 at the node 1 and 1/2 and 1 at the node 2

vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)</pre>
```

NewInput.MCON

Define the inputs of a MultiClass Open Network

Description

Define the inputs of a MultiClass Open Network

Usage

NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

Arguments

classes	The number of classes
vLambda	It is a vector with the rate of arrivals of each class
nodes	The number of nodes in the network
vType	A vector with the type of node: "Q" for queueing nodes or "D" for delay nodes
vVisit	A matrix[i, j]. The rows represents the different visit count for each class i to each node j $% \left\{ 1,,n\right\}$
vService	A matrix[i, j]. The rows represents the different service times for each class i in each node j $% \left\{ 1,2,\ldots,n\right\}$

Details

Define the inputs of a MultiClass Open Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

NewInput.MM1

See Also

```
QueueingModel.i_MCON
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)</pre>
```

NewInput.MM1

Define the inputs of a new M/M/1 queueing model

Description

Define the inputs of a new M/M/1 queueing model

Usage

```
NewInput.MM1(lambda=0, mu=0, n=0)
```

Arguments

lambda arrival rate

mu server service rate

n number of customers in the system. Put n=0 for a idle probability. With n=-1,

no probabilities are computed

Details

Define the inputs of a new M/M/1 queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

NewInput.MM1K 107

See Also

```
CheckInput.i_MM1
```

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)</pre>
```

NewInput.MM1K

Define the inputs of a new M/M/1/K queueing model

Description

Define the inputs of a new M/M/1/K queueing model

Usage

```
NewInput.MM1K(lambda=0, mu=0, k=1)
```

Arguments

lambda arrival rate

mu server service rate k system capacity

Details

Define the inputs of a new M/M/1/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigación Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MM1K
```

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)</pre>
```

108 NewInput.MM1KK

NewInput.MM1KK

Define the inputs of a new M/M/1/K/K queueing model

Description

Define the inputs of a new M/M/1/K/K queueing model

Usage

NewInput.MM1KK(lambda=0, mu=0, k=1, method=3)

Arguments

lambda arrival rate

mu server service rate k system capacity

method method of computation of the probabilities of k (system capacity) customers

down. With method=0, the exact results are calculated using the formal definition. With method=1, aproximate results are calculated using Stirling aproximation of factorials and logaritms. With method=2, Jain's Method [Jain2007], pag. 26 is used. With method=3, the result that K-n customers up has a truncated

poisson distribution is used [Kobayashi2012] pag. 709

Details

Define the inputs of a new M/M/1/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Jain2007] Joti Lal Jain, Sri Gopal Mohanty, Walter Bohm (2007).

A course on Queueing Models.

Chapman-Hall.

[Kobayashi2012] Hisashi Kobayashi, Brian L. Mark, William Turin (2012).

Probability, Random Processes, and Statistical Analysis: Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance.

Cambridge University Press.

See Also

CheckInput.i_MM1KK

NewInput.MMC 109

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)</pre>
```

NewInput.MMC

Define the inputs of a new M/M/c queueing model

Description

Define the inputs of a new M/M/c queueing model

Usage

```
NewInput.MMC(lambda=0, mu=0, c=1, n=0, method=0)
```

Arguments

lambda	arrival rate
mu	server service rate
С	number of servers
n	number of customers in the system. Put n=0 for a idle probability. With n=-1, no probabilities are computed
method	method of computation of the probabilities of n number of customers in the system. With method=0, the exact results are calculated using the formal definition. With method=1, approximate results are calculated using Stirling approximation of factorials and logaritms.

Details

Define the inputs of a new M/M/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MMC
```

NewInput.MMCC

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)</pre>
```

NewInput.MMCC

Define the inputs of a new M/M/c/c queueing model

Description

Define the inputs of a new M/M/c/c queueing model

Usage

```
NewInput.MMCC(lambda=0, mu=0, c=1, method=1)
```

Arguments

lambda arrival rate

mu server service rate
c number of servers

method with method = 0, the state probabilities are calculated using the formal definition

(with overflow problems with factorials; with method = 1 (default), the truncated

poisson distribution is used (recomended for professional use)

Details

Define the inputs of a new M/M/c/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Kobayashi2012] Hisashi Kobayashi, Brian L. Mark, William Turin (2012).

Probability, Random Processes, and Statistical Analysis: Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance.

Cambridge University Press.

See Also

```
CheckInput.i_MMCC
```

NewInput.MMCK 111

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)</pre>
```

NewInput.MMCK

Define the inputs of a new M/M/c/K queueing model

Description

Define the inputs of a new M/M/c/K queueing model

Usage

```
NewInput.MMCK(lambda=0, mu=0, c=1, k=1)
```

Arguments

lambda	arrival rate
mu	server service rate
С	number of servers
k	system capacity

Details

Define the inputs of a new M/M/c/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MMCK
```

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)</pre>
```

NewInput.MMCKK

NewInput.MMCKK

Define the inputs of a new M/M/c/K/K queueing model

Description

Define the inputs of a new M/M/c/K/K queueing model

Usage

```
NewInput.MMCKK(lambda=0, mu=0, c=1, k=1, method=0)
```

Arguments

lambda arrival rate

mu server service rate
c number of servers
k system capacity

method method of computation of the probabilities of k (system capacity) customers

down. With method=0, the exact results are calculated using the formal definition. With method=1, approximate results are calculated using Stirling approximation of factorials and logaritms. With method=2, Jain's Method [Jain2007], pag.

26 is used

Details

Define the inputs of a new M/M/c/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Jain2007] Joti Lal Jain, Sri Gopal Mohanty, Walter Bohm (2007).

A course on Queueing Models.

Chapman-Hall.

See Also

```
CheckInput.i_MMCKK
```

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)</pre>
```

NewInput.MMCKM 113

NewInput.MMCKM	Define the inputs of a new M/M/c/K/m queueing model	

Description

Define the inputs of a new M/M/c/K/m queueing model

Usage

```
NewInput.MMCKM(lambda=0, mu=0, c=1, k=1, m=1, method=0)
```

Arguments

lambda	arrival rate
mu	server service rate
С	number of servers
k	system capacity
m	poblation size. Please, observe that should be m >= k
method	method of computation of the probabilities of k (system capacity) customers down. With method=0, the exact results are calculated using the formal definition. With method=1, aproximate results are calculated using Stirling aproximation of factorials and logaritms.

Details

Define the inputs of a new M/M/c/K/m queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 $Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.$

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MMCKM
```

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)</pre>
```

NewInput.MMInf

NewInput.MMInf

Define the inputs of a new M/M/Infinite queueing model

Description

Define the inputs of a new M/M/Infinite queueing model

Usage

```
NewInput.MMInf(lambda=0, mu=0, n=0)
```

Arguments

lambda arrival rate

mu server service rate

n number of customers in the system. Put n=0 for a standard model

Details

Define the inputs of a new M/M/Infinite queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MMInf
```

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)</pre>
```

NewInput.MMInfKK 115

NewInput.MMInfKK

Define the inputs of a new M/M/Infinite/K/K queueing model

Description

Define the inputs of a new M/M/Infinite/K/K queueing model

Usage

```
NewInput.MMInfKK(lambda=0, mu=0, k=1)
```

Arguments

lambda arrival rate

mu server service rate

k system capacity

Details

Define the inputs of a new M/M/Infinite/K/K queueing model

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

See Also

```
CheckInput.i_MMInfKK
```

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)</pre>
```

NewInput.OJN

NewInput.OJN	Define the inputs of an Open Jackson Network	
--------------	--	--

Description

Define the inputs of an Open Jackson Network

Usage

```
NewInput.OJN(prob=NULL, ...)
NewInput2.OJN(prob=NULL, nodes)
NewInput3.OJN(vLambda, numNodes, vType, vVisit, vService, vChannel)
```

Arguments

prob	It is probability transition matrix or visit ratio vector. That is, the prob[i, j] is the transition probability of node i to node j, or prob[i] is the visit ratio to node i (the visit ratio values doesn't need to be probabilities, that is, a value greater than 1 can be used here. See the examples)
	a separated by comma list of nodes of i_MM1, i_MMC or i_MMInf class
nodes	A list of nodes of i_MM1, i_MMC or i_MMInf class
vLambda	Vector with the arrivals rates to each node
numNodes	Number of nodes
vType	A vector with the type of server: "Q" for a queueing node, "D" for a delay node
vVisit	A vector with the visit ratios
vService	A vector with the services time of each node
vChannel	A vector with the number of channels of the node. The type of the server has to be "Q" to be inspected

Details

Define the inputs of an Open Jackson Network. For a operational use, NewInput3.OJN is recommended. For a more academic use, NewInput.OJN or NewInput2.OJN is recommended. Please, note that the different ways to create the inputs for a Open Jackson Network are equivalent to each other, and no validation is done at this stage. The validation is done calling CheckInput function.

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

NewInput.OJN 117

See Also

```
QueueingModel.i_OJN
```

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m < -c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)</pre>
ojn1 <- NewInput.OJN(prob, n1, n2, n3, n4)
## Using function NewInput2
## Not run:
  ojn1 <- NewInput2.OJN(prob, list(n1, n2, n3, n4))
## End(Not run)
## Using visit ratios. Values taken from [Lazowska84], pag. 113.
## E[S] cpu = 0.005, Visit cpu = 121, D cpu = E[S] cpu * Visit cpu = 0.605
cpu <- NewInput.MM1(lambda=0.2, mu=1/0.005)</pre>
## E[S] disk1 = 0.030, Visit disk1 = 70, D disk1 = E[S] disk1 * Visit disk1 = 2.1
disk1 <- NewInput.MM1(lambda=0.2, mu=1/0.030)</pre>
## E[S] disk2 = 0.027, Visit disk2 = 50, D disk2 = E[S] disk2 * Visit disk2 = 1.35
disk2 <- NewInput.MM1(lambda=0.2, mu=1/0.027)</pre>
## In this example, to have the throughput per node, the visit ratios has to be given in this form.
## Please, don't use in the closed Jackson Network
visit <- c(121, 70, 50)
net <- NewInput.OJN(visit, cpu, disk1, disk2)</pre>
## Using NewInput3
vLambda <- c(0.2, 0.2, 0.2)
vService <- c(0.005, 0.030, 0.027)
numNodes <- 3
vType <- c("Q", "Q", "Q")
vChannel <- c(1, 1, 1)
net2 <- NewInput3.0JN(vLambda, numNodes, vType, visit, vService, vChannel)</pre>
```

118 Pn

Pn

Returns the probabilities of a queueing model (or network)

Description

Pn returns the probabilities that a queueing model (or network) has n customers. On returns the probabilities that an arrival that enter the system see n customers in it

Usage

```
Pn(x, ...)

Qn(x, ...)
```

Arguments

For Pn, an object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf, o_OJN. For Qn, an object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf

... aditional arguments

Details

Pn returns the system probabilities of a queueing model (or network). Qn returns the probability that an effective arrival see n customers in the system

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

Pn.o_MM1 Qn.o_MM1 Pn.o_MMC Qn.o_MMC Pn.o_MM1K Qn.o_MM1K Pn.o_MMCK Qn.o_MMCK Pn.o_MM1KK Pn.o_MM1KK

Qn.o_MMCKK

Pn.o_MM1

```
Pn.o_MMCC
Qn.o_MMCCM
Pn.o_MMCKM
Qn.o_MMInfKK
Qn.o_MMInfKK
Pn.o_MMInf
Qn.o_MMInf
Pn.o_OJN
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the probabilities
Pn(o_mm1)</pre>
```

Pn.o_MM1

Returns the probabilities of a M/M/1 queueing model

Description

Pn returns the probabilities that a M/M/1 queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers in it.

Usage

```
## S3 method for class 'o_MM1' Pn(x, ...) ## S3 method for class 'o_MM1' Qn(x, ...)
```

Arguments

```
x a object of class o_MM1
... aditional arguments
```

Details

Pn returns the probabilities that a M/M/1/K queueing model has n customers.

Qn returns the probabilities that an arrival that enter the system see n customers. By the PASTA property, both probabilities has to be the same.

120 Pn.o_MM1K

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1.
```

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)

## Build the model
o_mm1 <- QueueingModel(i_mm1)

## Returns the probabilities
Pn(o_mm1)
Qn(o_mm1)</pre>
```

Pn.o_MM1K

Returns the probabilities of a M/M/1/K queueing model

Description

Pn returns the probabilities that a M/M/1/K queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers in it.

Usage

```
## S3 method for class 'o_MM1K' Pn(x, ...) ## S3 method for class 'o_MM1K' Qn(x, ...)
```

Arguments

```
x a object of class o_MM1K ... aditional arguments
```

Details

Pn returns the probabilities that a M/M/1/K queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers. Pn.o_MM1KK 121

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1K.
```

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Returns the probabilities
Pn(o_mm1k)
Qn(o_mm1k)</pre>
```

Pn.o_MM1KK

Returns the probabilities of a M/M/1/K/K queueing model

Description

Pn eeturns the probabilities of a M/M/1/K/K queueing model Qn returns the probabilities that an arrival that enter the system see n customers in it.

Usage

```
## S3 method for class 'o_MM1KK' Pn(x, ...) ## S3 method for class 'o_MM1KK' Qn(x, ...)
```

Arguments

```
x a object of class o_MM1KK ... aditional arguments
```

Details

Pn returns the probabilities that a M/M/1/K/K queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers.

Pn.o_MMC

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1KK.
```

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Returns the probabilities
Pn(o_mm1kk)
Qn(o_mm1kk)</pre>
```

Pn.o_MMC

Returns the probabilities of a M/M/c queueing model

Description

Pn returns the probabilities that a M/M/c queueing model has n customers.

On returns the probabilities that an arrival that enter the system see n customers in it.

Usage

```
## S3 method for class 'o_MMC' Pn(x, ...) ## S3 method for class 'o_MMC' Qn(x, ...)
```

Arguments

```
x a object of class o_MMC ... aditional arguments
```

Details

Pn returns the probabilities that a M/M/c queueing model has n customers.

Qn returns the probabilities that an arrival that enter the system see n customers. By the PASTA property, both probabilities has to be the same.

Pn.o_MMCC 123

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMC.
```

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)

## Build the model
o_mmc <- QueueingModel(i_mmc)

## Returns the probabilities
Pn(o_mmc)
Qn(o_mmc)</pre>
```

Pn.o_MMCC

Returns the probabilities of a M/M/c/c queueing model

Description

Pn returns the probabilities that a M/M/c/c queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers in it.

Usage

```
## S3 method for class 'o_MMCC' Pn(x, ...) ## S3 method for class 'o_MMCC' Qn(x, ...)
```

Arguments

```
x a object of class o_MMCC
... aditional arguments
```

Details

Pn returns the probabilities that a M/M/c/c queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers. Pn.o_MMCK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCC.
```

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Returns the probabilities
Pn(o_mmcc)
Qn(o_mmcc)</pre>
```

Pn.o_MMCK

Returns the probabilities of a M/M/c/K queueing model

Description

Pn returns the probabilities that a M/M/c/K queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers in it.

Usage

```
## S3 method for class 'o_MMCK' Pn(x, ...) ## S3 method for class 'o_MMCK' Qn(x, ...)
```

Arguments

```
x a object of class o_MMCK
... aditional arguments
```

Details

Pn returns the probabilities that a M/M/c/K queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers. Pn.o_MMCKK 125

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCK.
```

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)

## Build the model
o_mmck <- QueueingModel(i_mmck)

## Returns the probabilities
Pn(o_mmck)
Qn(o_mmck)</pre>
```

Pn.o_MMCKK

Returns the probabilities of a M/M/c/K/K queueing model

Description

Pn returns the probabilities that a M/M/c/K/K queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers in it.

Usage

```
## S3 method for class 'o_MMCKK' Pn(x, ...) ## S3 method for class 'o_MMCKK' Qn(x, ...)
```

Arguments

```
x a object of class o_MMCKK
... aditional arguments
```

Details

Pn returns the probabilities that a M/M/c/K/K queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers.

Pn.o_MMCKM

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCKK.
```

Examples

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the parameters
Pn(o_mmckk)
Qn(o_mmckk)</pre>
```

Pn.o_MMCKM

Returns the probabilities of a M/M/c/K/m queueing model

Description

Pn returns the probabilities that a M/M/c/K/m queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers in it.

Usage

```
## S3 method for class 'o_MMCKM' Pn(x, ...) ## S3 method for class 'o_MMCKM' Qn(x, ...)
```

Arguments

```
x a object of class o_MMCKM
... aditional arguments
```

Details

Pn returns the probabilities that a M/M/c/K/m queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers.

Pn.o_MMInf

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCKM.
```

Examples

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the probabilities
Pn(o_mmckm)
Qn(o_mmckm)</pre>
```

Pn.o_MMInf

Returns the probabilities of a M/M/Infinite queueing model

Description

Pn returns the probabilities that a M/M/Infinite queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers in it.

Usage

```
## S3 method for class 'o_MMInf' Pn(x, ...) ## S3 method for class 'o_MMInf' Qn(x, ...)
```

Arguments

```
x a object of class o_MMInf
... aditional arguments
```

Details

Pn returns the probabilities that a M/M/Infinite queueing model has n customers.

Qn returns the probabilities that an arrival that enter the system see n customers. By the PASTA property, both probabilities has to be the same.

Pn.o_MMInfKK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMInf.
```

Examples

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the probabilities
Pn(o_mminf)
Qn(o_mminf)</pre>
```

Pn.o_MMInfKK

Returns the probabilities of a M/M/Infinite/K/K queueing model

Description

Pn returns the probabilities that a M/M/Infinite/K/K queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers in it.

Usage

```
## S3 method for class 'o_MMInfKK' Pn(x, ...) ## S3 method for class 'o_MMInfKK' Qn(x, ...)
```

Arguments

```
x a object of class o_MMInfKK
... aditional arguments
```

Details

Pn returns the probabilities that a M/M/Infinite/K/K queueing model has n customers. Qn returns the probabilities that an arrival that enter the system see n customers.

Pn.o_OJN 129

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

See Also

```
{\tt QueueingModel.i\_MMInfKK}.
```

Examples

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the probabilities
Pn(o_MMInfKK)
Qn(o_MMInfKK)</pre>
```

Pn.o_OJN

Returns vector of the probabilities of each node (server) of an Open Jackson Network

Description

Returns vector of the probabilities of each node (server) of an Open Jackson Network

Usage

```
## S3 method for class 'o_0JN' Pn(x, ...)
```

Arguments

```
x a object of class o_OJN aditional arguments
```

Details

Returns vector of the probabilities of each node (server) of an Open Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

130 QueueingModel

See Also

```
QueueingModel.i_OJN.
```

Examples

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
# Deinition of the new input
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the models
o_ojn <- QueueingModel(i_ojn)
Pn(o_ojn)</pre>
```

QueueingModel

Generic S3 method to build a queueing model (or network)

Description

Generic S3 method to build a queueing model (or network)

Usage

```
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_MM1, i_MMC, i_MM1K, i_MMCK, i_MM1KK, i_MMCKK, i_MMCC, i_MMCKM, i_MMInf, o_OJN, o_MCON
... aditional arguments
```

Details

Generic S3 method to build a queueing model (or network)

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1
QueueingModel.i_MMC
QueueingModel.i_MMCK
QueueingModel.i_MMCK
QueueingModel.i_MMCKK
QueueingModel.i_MMCCK
QueueingModel.i_MMCCC
QueueingModel.i_MMInfKK
QueueingModel.i_MMInfKK
QueueingModel.i_MMInf
QueueingModel.i_OJN
QueueingModel.i_MCON
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
QueueingModel(i_mm1)</pre>
```

QueueingModel.i_CJN Builds one Closed Jackson Network

Description

Builds one Closed Jackson Network

Usage

```
## S3 method for class 'i_CJN'
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_CJN
... aditional arguments
```

Details

Build one Closed Jackson Network. It also checks the input params calling the CheckInput.i_CJN

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

 $Investigacion\ Operativa.\ Modelos\ deterministicos\ y\ estocasticos.$

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_CJN
```

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)

# think time = 0
z <- 0

# operational value
operational <- FALSE

# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)

# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)

# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)

m_cjn1</pre>
```

QueueingModel.i_MCCN Builds one MultiClass Closed Network

Description

Builds one MultiClass Closed Network

Usage

```
## S3 method for class 'i_MCCN'
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_MCCN
... aditional arguments
```

Details

Build one MultiClass Closed Network. It also checks the input params calling the CheckInput.i_MCCN

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
CheckInput.i_MCCN
```

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
o_MCCN1</pre>
```

QueueingModel.i_MCMN Builds one MultiClass Mixed Network

Description

Builds one MultiClass Mixed Network

Usage

```
## S3 method for class 'i_MCMN'
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_MCMN
... aditional arguments
```

Details

Build one MultiClass Mixed Network. It also checks the input params calling the CheckInput.i_MCMN

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
CheckInput.i_MCMN
```

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)</pre>
```

o_mcmn1

QueueingModel.i_MCON Builds one MultiClass Open Network

Description

Builds one MultiClass Open Network

Usage

```
## S3 method for class 'i_MCON'
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_MCON
... aditional arguments
```

Details

Build one MultiClass Open Network. It also checks the input params calling the CheckInput.i_MCON

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
CheckInput.i_MCON
```

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)</pre>
```

```
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
o_mcon1</pre>
```

 ${\tt QueueingModel.i_MM1}$

Builds a M/M/1 queueing model

Description

Builds a M/M/1 queueing model

Usage

```
## S3 method for class 'i_MM1'
QueueingModel(x, ...)
```

Arguments

x a object of class i_MM1
... aditional arguments

Details

Build a M/M/1 queueing model. It also checks the input params calling the CheckInput.i_MM1

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MM1
```

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
QueueingModel(i_mm1)</pre>
```

QueueingModel.i_MM1K Builds a M/M/1/K queueing model

Description

Builds a M/M/1/K queueing model

Usage

```
## S3 method for class 'i_MM1K'
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_MM1K
```

... aditional arguments

Details

Build a M/M/1/K queueing model. It also checks the input params calling the CheckInput.i_MM1K

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MM1K.
```

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
QueueingModel(i_mm1k)</pre>
```

QueueingModel.i_MM1KK Builds a M/M/1/K/K queueing model

Description

Builds a M/M/1/K/K queueing model

Usage

```
## S3 method for class 'i_MM1KK'
QueueingModel(x, ...)
```

Arguments

x a object of class i_MM1KK

... aditional arguments

Details

Build a M/M/1/K/K queueing model. It also checks the input params calling the CheckInput.i_MM1KK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MM1KK.
```

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
QueueingModel(i_mm1kk)</pre>
```

QueueingModel.i_MMC

Builds a M/M/c queueing model

Description

Builds a M/M/c queueing model

Usage

```
## S3 method for class 'i_MMC'
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_MMC
```

... aditional arguments

Details

Build a M/M/c/ queueing model. It also checks the input params calling the CheckInput.i_MMC

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MMC
```

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
QueueingModel(i_mmc)</pre>
```

QueueingModel.i_MMCC Builds a M/M/c/c queueing model

Description

Builds a M/M/c/c queueing model

Usage

```
## S3 method for class 'i_MMCC'
QueueingModel(x, ...)
```

Arguments

x a object of class i_MMCC

... aditional arguments

Details

Build a M/M/c/c queueing model. It also checks the input params calling the CheckInput.i_MMCC

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MMCC.
```

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
QueueingModel(i_mmcc)</pre>
```

QueueingModel.i_MMCK Builds a M/M/c/K queueing model

Description

Builds a M/M/c/K queueing model

Usage

```
## S3 method for class 'i_MMCK'
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_MMCK
```

... aditional arguments

Details

Build a M/M/c/K queueing model. It also checks the input params calling the CheckInput.i_MMCK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MMCK.
```

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
QueueingModel(i_mmck)</pre>
```

QueueingModel.i_MMCKK Builds a M/M/c/K/K queueing model

Description

Builds a M/M/c/K/K queueing model

Usage

```
## S3 method for class 'i_MMCKK'
QueueingModel(x, ...)
```

Arguments

x a object of class i_MMCKK

... aditional arguments

Details

Build a M/M/c/K/K queueing model. It also checks the input params calling the CheckInput.i_MMCKK

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
{\tt CheckInput.i\_MMCKK}.
```

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
QueueingModel(i_mmckk)</pre>
```

QueueingModel.i_MMCKM Builds a M/M/c/K/m queueing model

Description

Builds a M/M/c/K/m queueing model

Usage

```
## S3 method for class 'i_MMCKM'
QueueingModel(x, ...)
```

Arguments

x a object of class i_MMCKM

... aditional arguments

Details

Build a M/M/c/K/m queueing model. It also checks the input params calling the CheckInput.i_MMCKM

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MMCKM
```

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
QueueingModel(i_mmckm)</pre>
```

QueueingModel.i_MMInf Builds a M/M/Infinite queue model

Description

Builds a M/M/Infinite queue model

Usage

```
## S3 method for class 'i_MMInf'
QueueingModel(x, ...)
```

Arguments

x a object of class i_MMInf

... aditional arguments

Details

Build a M/M/Infinite model. It also checks the input params calling the CheckInput.i_MMInf

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_MMInf
```

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
QueueingModel(i_mminf)</pre>
```

```
QueueingModel.i_MMInfKK
```

Builds a M/M/Infinite/K/K queueing model

Description

Builds a M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'i_MMInfKK'
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_MMInfKK
```

... aditional arguments

Details

Build a M/M/Infinite/K/K queueing model. It also checks the input params calling the CheckInput.i $_$ MMInfKK

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

See Also

```
CheckInput.i_MMInfKK
```

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
QueueingModel(i_MMInfKK)</pre>
```

QueueingModel.i_OJN Builds one Open Jackson Network

Description

Builds one Open Jackson Network

Usage

```
## S3 method for class 'i_OJN'
QueueingModel(x, ...)
```

Arguments

```
x a object of class i_OJN
... aditional arguments
```

Details

Build one Open Jackson Network. It also checks the input params calling the CheckInput.i_OJN

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
CheckInput.i_OJN
```

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)

ojn1 <- NewInput.OJN(prob, n1, n2, n3, n4)
m_ojn1 <- QueueingModel(ojn1)</pre>
```

RO 147

m_ojn1

RO

Reports the server use of a queueing model

Description

Reports the server use of a queueing model)

Usage

```
RO(x, \ldots)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf
... aditional arguments
```

Details

Reports the server use of a queueing model (or network)

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
RO.o_MM1
RO.o_MMC
RO.o_MM1K
RO.o_MMCK
RO.o_MM1KK
RO.o_MMCKK
RO.o_MMCKK
RO.o_MMCK
RO.o_MMCK
RO.o_MMCK
RO.o_MMCKM
RO.o_MMInfKK
RO.o_MMInf
```

148 RO.o_MM1

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Report the use of the server
RO(o_mm1)</pre>
```

 $R0.o_MM1$

Reports the server use of a M/M/1 queueing model

Description

Reports the server use of a M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' RO(x, \ldots)
```

Arguments

x a object of class o_MM1
... aditional arguments

Details

Reports the server use of a M/M/1 queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MM1.
```

RO.o_MM1K

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)

## Build the model
o_mm1 <- QueueingModel(i_mm1)

## Report the use of the server
RO(o_mm1)</pre>
```

RO.o_MM1K

Reports the server use of a M/M/1/K queueing model

Description

Reports the server use of a M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' RO(x, \ldots)
```

Arguments

x a object of class o_MM1K
... aditional arguments

Details

Reports the server use of a M/M/1/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MM1K.
```

150 RO.o_MM1KK

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Report the use of the server
RO(o_mm1k)</pre>
```

RO.o_MM1KK

Reports the server use of a M/M/1/K/K queueing model

Description

Reports the server use of a M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' RO(x, ...)
```

Arguments

x a object of class o_MM1KK
... aditional arguments

Details

Reports the server use of a M/M/1/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

QueueingModel.i_MM1KK.

RO.o_MMC 151

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Report the use of the server
RO(o_mm1kk)</pre>
```

RO.o_MMC

Reports the server use of a M/M/c queueing model

Description

Reports the server use of a M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' RO(x, \ldots)
```

Arguments

x a object of class o_MMC
... aditional arguments

Details

Reports the server use of a M/M/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMC.
```

RO.o_MMCC

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Report the use of the server
RO(o_mmc)</pre>
```

RO.o_MMCC

Reports the server use of a M/M/c/c queueing model

Description

Reports the server use of a M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' RO(x, \ldots)
```

Arguments

x a object of class o_MMCC
... aditional arguments

Details

Reports the server use of a M/M/c/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCC.
```

RO.o_MMCK

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Report the use of the server
RO(o_mmcc)</pre>
```

RO.o_MMCK

Reports the server use of a M/M/c/K queueing model

Description

Reports the server use of a M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' RO(x, \ldots)
```

Arguments

x a object of class o_MMCK
... aditional arguments

Details

Reports the server use of a M/M/c/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCK.
```

154 RO.o_MMCKK

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Report the use of the server
RO(o_mmck)</pre>
```

RO.o_MMCKK

Reports the server use of a M/M/c/K/K queueing model

Description

Reports the server use of a M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK' RO(x, ...)
```

Arguments

x a object of class o_MMCKK
... aditional arguments

Details

Reports the server use of a M/M/c/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKK.
```

RO.o_MMCKM

Examples

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Report the use of the server
RO(o_mmckk)</pre>
```

 $R0.o_MMCKM$

Reports the server use of a M/M/c/K/m queueing model

Description

Reports the server use of a M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM' RO(x, ...)
```

Arguments

x a object of class o_MMCKM
... aditional arguments

Details

Reports the server use of a M/M/c/K/m queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKM.
```

156 RO.o_MMInf

Examples

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Report the use of the server
RO(o_mmckm)</pre>
```

RO.o_MMInf

Reports the server use of a M/M/Infinite queueing model

Description

Reports the server use of a M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' RO(x, ...)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Reports the server use of a M/M/Infinite queueing model. It should be noted that in this model, the RO parameter has a different meaning, its the traffic intensity and it coincides exactly with the average number of customers in the system (L)

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos. Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMInf
L.o_MMInf
```

RO.o_MMInfKK

Examples

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Report the use of the server
RO(o_mminf)</pre>
```

RO.o_MMInfKK

Reports the server use of a M/M/Infinite/K/K queueing model

Description

Reports the server use of a M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' RO(x, ...)
```

Arguments

- x a object of class o_MMInfKK
- ... aditional arguments

Details

Reports the server use of a M/M/Infinite/K/K queueing model

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

```
QueueingModel.i_MMInfKK.
```

158 ROck

Examples

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Report the use of the server
RO(o_MMInfKK)</pre>
```

R0ck

Reports a matrix with the use of class i in each node (server) j in a MultiClass Queueing Network

Description

Reports a matrix with the use of class i in each node (server) j in a MultiClass Queueing Network

Usage

```
ROck(x, ...)
```

Arguments

```
x a object of class o_MCON, o_MCCN, o_MCMN
... aditional arguments
```

Details

Reports a matrix with the use of class i in each node (server) j in a MultiClass Queueing Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos CaballeROk, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial CentROk de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

ROck.o_MCCN 159

See Also

```
ROck.o_MCON
ROck.o_MCCN
ROck.o_MCMN
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

ROck(o_MCCN1)</pre>
```

ROck.o_MCCN

Reports a matrix with the use of class i in each node (server) j in a MultiClass Closed Network

Description

Reports a matrix with the use of class i in each node (server) j in a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN' ROck(x, ...)
```

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Details

Reports a matrix with the use of class i in each node (server) j in a MultiClass Closed Network

160 ROck.o_MCMN

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCCN.
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

ROck(o_MCCN1)</pre>
```

ROck.o_MCMN

Reports a matrix with the use of class i in each node (server) j in a MultiClass Mixed Network

Description

Reports a matrix with the use of class i in each node (server) j in a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN' ROck(x, ...)
```

Arguments

```
x a object of class o_MCMN
... aditional arguments
```

ROck.o_MCON 161

Details

Reports a matrix with the use of class i in each node (server) j in a

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCMN.
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)

ROck(o_mcmn1)</pre>
```

ROck.o_MCON

Reports a matrix with the use of class i in each node (server) j in a MultiClass Open Network

Description

Reports a matrix with the use of class i in each node (server) j in a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON' ROck(x, ...)
```

162 ROk

Arguments

```
x a object of class o_MCON
... aditional arguments
```

Details

Reports a matrix with the use of class i in each node (server) j in a

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCON.
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

ROck(o_mcon1)</pre>
```

ROk

Reports a vector with each node (server) use of a queueing network

Description

Reports a vector with each node (server) use of a queueing network

Usage

```
R0k(x, ...)
```

ROk 163

Arguments

```
x a object of class o_OJN, o_CJN, o_MCON, o_MCCN, o_MCMN
... aditional arguments
```

Details

Reports a vector with each node (server) use of a queueing network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos CaballeROk, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial CentROk de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
ROk.o_OJN
ROk.o_CJN
ROk.o_MCON
ROk.o_MCCN
ROk.o_MCCN
```

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

ROk(o_MCCN1)</pre>
```

164 ROk.o_CJN

ROk.o_CJN	Reports a vector with each node (server) use of a Closed Jackson Network

Description

Reports a vector with each node (server) use of a Closed Jackson Network

Usage

```
## S3 method for class 'o_CJN'
ROk(x, ...)
```

Arguments

```
x a object of class o_CJN
... aditional arguments
```

Details

Reports a vector with each node (server) use of a Closed Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_CJN.
```

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)

# think time = 0
z <- 0

# operational value
operational <- FALSE

# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)</pre>
```

ROk.o_MCCN 165

```
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)
ROk(m_cjn1)</pre>
```

ROk.o_MCCN

Reports a vector with each node (server) use of a MultiClass Closed Network

Description

Reports a vector with each node (server) use of a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN' ROk(x, ...)
```

Arguments

x a object of class o_MCCN
... aditional arguments

Details

Reports a vector with each node (server) use of a MultiClass Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

```
QueueingModel.i_MCCN.
```

166 ROk.o_MCMN

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

ROk(o_MCCN1)</pre>
```

ROk.o_MCMN

Reports a vector with each node (server) use of a MultiClass Mixed Network

Description

Reports a vector with each node (server) use of a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN' ROk(x, ...)
```

Arguments

x a object of class o_MCMN
... aditional arguments

Details

Reports a vector with each node (server) use of a MultiClass Mixed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

ROk.o_MCON

See Also

```
{\tt QueueingModel.i\_MCMN.}
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)

ROk(o_mcmn1)</pre>
```

ROk.o_MCON

Reports a vector with each node (server) use of a MultiClass Open Network

Description

Reports a vector with each node (server) use of a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON' ROk(x, ...)
```

Arguments

```
x a object of class o_MCON
... aditional arguments
```

Details

Reports a vector with each node (server) use of a MultiClass Open Network

168 ROk.o_OJN

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCON.
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

ROk(o_mcon1)</pre>
```

ROk.o_OJN

Reports a vector with each node (server) use of an Open Jackson Network

Description

Reports a vector with each node (server) use of an Open Jackson Network

Usage

```
## S3 method for class 'o_OJN' ROk(x, ...)
```

Arguments

```
x a object of class o_OJN
... aditional arguments
```

SP 169

Details

Reports a vector with each node (server) use of an Open Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_OJN.
```

Examples

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
# Deinition of the new input
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the models
o_ojn <- QueueingModel(i_ojn)
ROk(o_ojn)</pre>
```

SP

Returns the saturation point of a queueing model

Description

Returns the saturation point of a queueing model

Usage

```
SP(x, ...)
```

SP.o_MM1KK

Arguments

```
x a object of class o_MM1KK ... aditional arguments
```

Details

Returns the saturation point of a queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
SP.o_MM1KK
```

Examples

```
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=4, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the saturation point
SP(o_mm1kk)</pre>
```

SP.o_MM1KK

Returns the saturation point of a M/M/1/K/K queueing model

Description

Returns the saturation point, or the maximum number of customers that the M/M/1/K/K queueing model can support with no interference or syncronization between themselves

Usage

```
## S3 method for class 'o_MM1KK' SP(x, ...)
```

Arguments

```
a object of class o_MM1KK
```

... aditional arguments

summary.o_CJN 171

Details

The value returned is the optimal number of customers of a M/M/1/K/K queueing model. It coincides with the inverse of the serialization parameter of Amdahl's Law. That is, the value which converges the speedup func(k) = k/(1 + ser * (k-1)). It makes sense, because the saturation point is the maximum value in which no syncronization happens.

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1KK
```

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=4, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Returns the saturation point
SP(o_mm1kk)</pre>
```

summary.o_CJN

Reports the results of a Closed Jackson Network

Description

Reports the results of a Closed Jackson Network

Usage

```
## S3 method for class 'o_CJN'
summary(object, ...)
```

Arguments

```
object a object of class o_CJN
... aditional arguments
```

172 summary.o_MCCN

Details

generates a report of the queueing network received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_CJN.
```

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)</pre>
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)</pre>
summary(m_cjn1)
```

summary.o_MCCN

Reports the results of a MultiClass Closed Network

Description

Reports the results of a MultiClass Closed Network

summary.o_MCCN 173

Usage

```
## S3 method for class 'o_MCCN'
summary(object, ...)
```

Arguments

```
object a object of class o_MCCN
... aditional arguments
```

Details

generates a report of the queueing network received as parameter

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCCN.
```

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
summary(o_MCCN1)</pre>
```

174 summary.o_MCMN

summary.o_MCMN

Reports the results of a MultiClass Mixed Network

Description

Reports the results of a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN'
summary(object, ...)
```

Arguments

```
object a object of class o_MCMN
... aditional arguments
```

Details

generates a report of the queueing network received as parameter

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCMN.
```

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)</pre>
```

summary.o_MCON 175

```
summary(o_mcmn1)
```

summary.o_MCON

Reports the results of a MultiClass Open Network

Description

Reports the results of a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON'
summary(object, ...)
```

Arguments

```
object a object of class o_MCON
... aditional arguments
```

Details

generates a report of the queueing network received as parameter

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCON.
```

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)</pre>
```

176 summary.o_MM1

```
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
summary(o_mcon1)</pre>
```

summary.o_MM1

Reports the results of a M/M/1 queueing model

Description

Reports the results of a M/M/1 queueing model.

Usage

```
## S3 method for class 'o_MM1'
summary(object, ...)
```

Arguments

```
object a object of class o_MM1 aditional arguments
```

Details

generates a report of the queueing model received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1.
```

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)

## Build the model
o_mm1 <- QueueingModel(i_mm1)

## Report the results
summary(o_mm1)</pre>
```

summary.o_MM1K 177

summary.o_MM1K

Reports the results of a M/M/1/K queueing model

Description

Reports the results of a M/M/1/K queueing model.

Usage

```
## S3 method for class 'o_MM1K'
summary(object, ...)
```

Arguments

```
object a object of class o_MM1K
... aditional arguments
```

Details

generates a report of the queueing model received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1K.
```

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Report the results
summary(o_mm1k)</pre>
```

178 summary.o_MM1KK

summary.o_MM1KK

Reports the results of a M/M/1/K/K queueing model

Description

Reports the results of a M/M/1/K/K queueing model.

Usage

```
## S3 method for class 'o_MM1KK'
summary(object, ...)
```

Arguments

```
object a object of class o_MM1KK
... aditional arguments
```

Details

generates a report of the queueing model received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1KK.
```

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Report the results
summary(o_mm1kk)</pre>
```

summary.o_MMC 179

summary.o_MMC

Reports the results of a M/M/c queueing model

Description

Reports the results of a M/M/c queueing model.

Usage

```
## S3 method for class 'o_MMC'
summary(object, ...)
```

Arguments

```
object a object of class o_MMC ... aditional arguments
```

Details

generates a report of the queueing model received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMC.
```

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Report the results
summary(o_mmc)</pre>
```

180 summary.o_MMCC

summary.o_MMCC

Reports the results of a M/M/c/c queueing model

Description

Reports the results of a M/M/c/c queueing model.

Usage

```
## S3 method for class 'o_MMCC'
summary(object, ...)
```

Arguments

```
object a object of class o_MMCC aditional arguments
```

Details

generates a report of the queueing model received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCC.
```

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Report the results
summary(o_mmcc)</pre>
```

summary.o_MMCK 181

summary.o_MMCK

Reports the results of a M/M/c/K queueing model

Description

Reports the results of a M/M/c/K queueing model.

Usage

```
## S3 method for class 'o_MMCK'
summary(object, ...)
```

Arguments

```
object a object of class o_MMCK
... aditional arguments
```

Details

generates a report of the queueing model received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCK.
```

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Report the results
summary(o_mmck)</pre>
```

summary.o_MMCKK

Reports the results of a M/M/c/K/K queueing model

Description

Reports the results of a M/M/c/K/K queueing model.

Usage

```
## S3 method for class 'o_MMCKK'
summary(object, ...)
```

Arguments

```
object a object of class o_MMCKK
... aditional arguments
```

Details

generates a report of the queueing model received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCKK.
```

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Report the results
summary(o_mmckk)</pre>
```

summary.o_MMCKM 183

summary.o_MMCKM

Reports the results of a M/M/c/K/m queueing model

Description

Reports the results of a M/M/c/K/m queueing model.

Usage

```
## S3 method for class 'o_MMCKM'
summary(object, ...)
```

Arguments

```
object a object of class o_MMCKM
... aditional arguments
```

Details

generates a report of the queueing model received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMCKM.
```

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Report the results
summary(o_mmckm)</pre>
```

184 summary.o_MMInf

summary.o_MMInf

Reports the results of a M/M/Infinite queueing model

Description

Reports the results of a M/M/Infinite queueing model.

Usage

```
## S3 method for class 'o_MMInf'
summary(object, ...)
```

Arguments

```
object a object of class o_MMInf
... aditional arguments
```

Details

generates a report of the queueing model received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MMInf.
```

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Report the results
summary(o_mminf)</pre>
```

summary.o_MMInfKK

Reports the results of a M/M/Infinite/K/K queueing model

Description

Reports the results of a M/M/Infinite/K/K queueing model.

Usage

```
## S3 method for class 'o_MMInfKK'
summary(object, ...)
```

Arguments

```
object a object of class o_MMInfKK
... aditional arguments
```

Details

generates a report of the queueing model received as parameter

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

See Also

```
QueueingModel.i_MMInfKK.
```

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Report the results
summary(o_MMInfKK)</pre>
```

186 summary.o_OJN

summary.o_OJN

Reports the results of an Open Jackson Network

Description

Reports the results of an Open Jackson Network

Usage

```
## S3 method for class 'o_OJN'
summary(object, ...)
```

Arguments

```
object a object of class o_OJN aditional arguments
```

Details

generates a report of the queueing network received as parameter

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_OJN.
```

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
o_ojn <- QueueingModel(i_ojn)</pre>
```

Throughput 187

```
summary(o_ojn)
```

Throughput

Throughput of a queueing model (or network)

Description

Returns the throughput of a queueing model (or network)

Usage

```
Throughput(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf, o_OJN, o_CJN, o_MCON, o_MCCN, o_MCMN
```

... aditional arguments

Details

Returns the throughput of a queueing model (or network)

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

```
Throughput.o_MM1
Throughput.o_MMC
Throughput.o_MMCK
Throughput.o_MMCK
Throughput.o_MMCK
Throughput.o_MMCKK
Throughput.o_MMCCK
Throughput.o_MMCCC
Throughput.o_MMCKM
Throughput.o_MMInfKK
```

Throughput.o_CJN

```
Throughput.o_MMInf
Throughput.o_OJN
Throughput.o_CJN
Throughput.o_MCON
Throughput.o_MCCN
Throughput.o_MCMN
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Throughput
Throughput(o_mm1)</pre>
```

Throughput.o_CJN

Reports the network throughput of a Closed Jackson Network

Description

Reports the network throughput of a Closed Jackson Network

Usage

```
## S3 method for class 'o_CJN'
Throughput(x, ...)
```

Arguments

```
x a object of class o_CJN
... aditional arguments
```

Details

Reports the network throughput of a Closed Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.OJN, CheckInput.i_CJN, QueueingModel.i_CJN
```

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)

# think time = 0
z <- 0

# operational value
operational <- FALSE

# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)

# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)

# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)

Throughput(m_cjn1)</pre>
```

Throughput.o_MCCN

Reports the throughput of a MultiClass Closed Network

Description

Reports the throughput of a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN'
Throughput(x, ...)
```

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Details

Reports the throughput of a MultiClass Closed Network

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCCN, CheckInput.i_MCCN, QueueingModel.i_MCCN
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

Throughput(o_MCCN1)</pre>
```

Throughput.o_MCMN

Reports the throughput of a MultiClass Mixed Network

Description

Reports the throughput of a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN'
Throughput(x, ...)
```

Arguments

```
x a object of class o_MCMN
... aditional arguments
```

Details

Reports the throughput of a MultiClass Mixed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCMN, CheckInput.i_MCMN, QueueingModel.i_MCMN
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)

Throughput(o_mcmn1)</pre>
```

Throughput.o_MCON

Reports the throughput of a MultiClass Open Network

Description

Reports the throughput of a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON'
Throughput(x, ...)
```

Throughput.o_MM1

Arguments

```
x a object of class o_MCON
... aditional arguments
```

Details

Reports the throughput of a MultiClass Open Network

References

```
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
```

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCON, CheckInput.i_MCON, QueueingModel.i_MCON
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Throughput(o_mcon1)</pre>
```

Throughput.o_MM1

Throughput of a M/M/1 queueing model

Description

Returns the throughput of a M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' Throughput(x, ...)
```

Throughput.o_MM1K

Arguments

```
x a object of class o_MM1 ... aditional arguments
```

Details

Returns the throughput of a M/M/1 queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

193

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MM1, CheckInput.i_MM1, QueueingModel.i_MM1
```

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Throughput
Throughput(o_mm1)</pre>
```

Throughput.o_MM1K

Throughput of a M/M/1/K queueing model

Description

Returns the throughput of a M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' Throughput(x, ...)
```

Arguments

```
x a object of class o_MM1K
```

... aditional arguments

Details

Returns the throughput of a M/M/1/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MM1K, CheckInput.i_MM1K, QueueingModel.i_MM1K
```

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mmck <- QueueingModel(i_mm1k)

## Throughput
Throughput(o_mmck)</pre>
```

Throughput.o_MM1KK

Throughput of a M/M/1/K/K queueing model

Description

Returns the throughput of a M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK'
Throughput(x, ...)
```

Arguments

```
x a object of class o_MM1KK
... aditional arguments
```

Details

Returns the throughput of a M/M/1/K/K queueing model

Throughput.o_MMC 195

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MM1KK, CheckInput.i_MM1KK, QueueingModel.i_MM1KK
```

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_MM1KKk <- QueueingModel(i_mm1kk)
## Throughput
Throughput(o_MM1KKk)</pre>
```

Throughput.o_MMC

Throughput of a M/M/c queueing model

Description

Returns the throughput of a M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' Throughput(x, \ldots)
```

Arguments

```
x a object of class o_MMC
... aditional arguments
```

Details

Returns the throughput of a M/M/c queueing model

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMC, CheckInput.i_MMC, QueueingModel.i_MMC
```

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Throughput
Throughput(o_mmc)</pre>
```

Throughput.o_MMCC

Throughput of a M/M/c/c queueing model

Description

Returns the throughput of a M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' Throughput(x, ...)
```

Arguments

```
x a object of class o_MMCC
... aditional arguments
```

Details

Returns the throughput of a M/M/c/c queueing model

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMCC, CheckInput.i_MMCC, QueueingModel.i_MMCC
```

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Throughput
Throughput(o_mmcc)</pre>
```

Throughput.o_MMCK

Throughput of a M/M/c/K queueing model

Description

Returns the throughput of a M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' Throughput(x, ...)
```

Arguments

```
x a object of class o_MMCK
... aditional arguments
```

Details

Returns the throughput of a M/M/c/K queueing model

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMCK, CheckInput.i_MMCK, QueueingModel.i_MMCK
```

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Throughput
Throughput(o_mmck)</pre>
```

Throughput.o_MMCKK

Throughput of a M/M/c/K/K queueing model

Description

Returns the throughput of a M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK' Throughput(x, ...)
```

Arguments

```
x a object of class o_MMCKK
... aditional arguments
```

Details

Returns the throughput of a M/M/c/K/K queueing model

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMCKK, CheckInput.i_MMCKK, QueueingModel.i_MMCKK
```

Examples

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## build the model
o_mmckk <- QueueingModel(i_mmckk)
## Throughput
Throughput(o_mmckk)</pre>
```

Throughput.o_MMCKM

Throughput of a M/M/c/K/m queueing model

Description

Returns the throughput of a M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM'
Throughput(x, ...)
```

Arguments

```
x a object of class o_MMCKM
... aditional arguments
```

Details

Returns the throughput of a M/M/c/K/m queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.MMCKM, CheckInput.i_MMCKM, QueueingModel.i_MMCKM
```

Examples

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Throughput
Throughput(o_mmckm)</pre>
```

Throughput.o_MMInf

Throughput of a M/M/Infinite queueing model

Description

Returns the throughput of a M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf'
Throughput(x, ...)
```

Arguments

```
x a object of class o_MMInf
... aditional arguments
```

Details

Returns the throughput of a M/M/Infinite queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
NewInput.MMInf, CheckInput.i\_MMInf, QueueingModel.i\_MMInf
```

Examples

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Throughput
Throughput(o_mminf)</pre>
```

Throughput.o_MMInfKK Throughput of a M/M/Infinite/K/K queueing model

Description

Returns the throughput of a M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK'
Throughput(x, ...)
```

Arguments

```
x a object of class o_MMInfKK
... aditional arguments
```

Details

Returns the throughput of a M/M/Infinite/K/K queueing model

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

```
NewInput.MMInfKK, CheckInput.i_MMInfKK, QueueingModel.i_MMInfKK
```

202 Throughput.o_OJN

Examples

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Throughput
Throughput(o_MMInfKK)</pre>
```

Throughput.o_OJN

Reports the throughput of an Open Jackson Network

Description

Reports the throughput of an Open Jackson Network

Usage

```
## S3 method for class 'o_0JN' Throughput(x, ...)
```

Arguments

x a object of class o_OJN
... aditional arguments

Details

Reports the throughput of an Open Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
NewInput.OJN, CheckInput.i_OJN, QueueingModel.i_OJN
```

Throughputc 203

Examples

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
# Deinition of the new input
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the models
o_ojn <- QueueingModel(i_ojn)
Throughput(o_ojn)</pre>
```

Throughputc

Reports a vector with each class throughput in a multiclass queueing network

Description

Reports a vector with each class throughput in a multiclass queueing network

Usage

```
Throughputc(x, ...)
```

Arguments

```
x a object of class o_MCON, o_MCCN, o_MCMN
... aditional arguments
```

Details

Reports a vector with each class throughput in a multiclass queueing network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
Throughputc.o_MCCN
Throughputc.o_MCCN
Throughputc.o_MCCN
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Throughputc(o_mcon1)</pre>
```

Throughputc.o_MCCN

Reports a vector with each class throughput in a MultiClass Closed Network

Description

Reports a vector with each class throughput in a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN' Throughputc(x, ...)
```

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Details

Reports a vector with each class throughput in a MultiClass Closed Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCCN, CheckInput.i_MCCN, QueueingModel.i_MCCN
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

Throughputc(o_MCCN1)</pre>
```

Throughputc.o_MCMN

Reports a vector with each class throughput in a MultiClass Mixed Network

Description

Reports a vector with each class throughput in a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN'
Throughputc(x, ...)
```

Arguments

```
x a object of class o_MCMN
... aditional arguments
```

Details

Reports a vector with each class throughput in a MultiClass Mixed Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCMN, CheckInput.i_MCMN, QueueingModel.i_MCMN
```

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Throughputc(o_mcmn1)</pre>
```

 ${\it Throughputc.o_MCON} \qquad {\it Reports~a~vector~with~each~class~throughput~in~a~MultiClass~Open} \\ {\it Network}$

Description

Reports a vector with each class throughput in a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON'
Throughputc(x, ...)
```

Arguments

x a object of class o_MCON
... aditional arguments

Details

Reports a vector with each class throughput in a MultiClass Open Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCON, CheckInput.i_MCON, QueueingModel.i_MCON
```

```
## See example in pag 138 in reference [Lazowska84] for more details. classes <- 2 vLambda <- c(3/19,\ 2/19) nodes <- 2 vType <- c("Q",\ "Q") vVisit <- matrix(data=c(10,\ 9,\ 5,\ 4), nrow=2, ncol=2, byrow=TRUE) vService <- matrix(data=c(1/10,\ 1/3,\ 2/5,\ 1), nrow=2, ncol=2, byrow=TRUE)
```

208 Throughputck

```
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Throughputc(o_mcon1)</pre>
```

Throughputck

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Network

Description

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Network

Usage

```
Throughputck(x, ...)
```

Arguments

```
x a object of class o_MCON, o_MCCN
... aditional arguments
```

Details

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

```
Throughputck.o_MCCN
Throughputck.o_MCCN
Throughputck.o_MCMN
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Throughputck(o_mcon1)</pre>
```

Throughputck.o_MCCN

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Closed Network

Description

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN'
Throughputck(x, ...)
```

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Details

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Closed Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCCN, CheckInput.i_MCCN, QueueingModel.i_MCCN
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

Throughputck(o_MCCN1)</pre>
```

Throughputck.o_MCMN

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Mixed Network

Description

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN'
Throughputck(x, ...)
```

Arguments

```
x a object of class o_MCMN
... aditional arguments
```

Details

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Mixed Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCMN, CheckInput.i_MCMN, QueueingModel.i_MCMN
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)

Throughputck(o_mcmn1)</pre>
```

Throughputck.o_MCON

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Open Network

Description

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON'
Throughputck(x, ...)
```

Arguments

```
x a object of class o_MCON
... aditional arguments
```

Details

Reports a matrix with the throughput of class i in each node (server) j in a MultiClass Open Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCON, CheckInput.i_MCON, QueueingModel.i_MCON
```

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Throughputck(o_mcon1)</pre>
```

Throughputen 213

Throughputcn	Returns a matrix with the Throughput from each class and every pop-
	ulation of a Multi Class Closed Network

Description

Returns a matrix with the Throughput from each class and every population of a Multi Class Closed Network

Usage

```
Throughputcn(x, ...)
```

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Details

Returns a matrix with the Throughput from each class and every population of a Multi Class Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984)

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
Throughputcn.o_MCCN
```

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)</pre>
```

```
# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)
Throughputcn(o_MCCN1)</pre>
```

 ${\tt Throughputcn.o_MCCN}$

Returns a matrix with the Throughput from each class and every population of a Multi Class Closed Network

Description

Returns a matrix with the Throughput from each class and every population of a Multi Class Closed Network

Usage

```
## S3 method for class 'o_MCCN'
Throughputcn(x, ...)
```

Arguments

x a object of class o_MCCN
... aditional arguments

Details

Returns a matrix with the Throughput from each class and every population of a Multi Class Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

```
NewInput.MCCN, CheckInput.i_MCCN, QueueingModel.i_MCCN
```

Throughputk 215

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

Throughputcn(o_MCCN1)</pre>
```

Throughputk

Reports a vector with each node (server) throughput of a queueing network

Description

Reports a vector with each node (server) throughput of a queueing network

Usage

```
Throughputk(x, ...)
```

Arguments

```
x a object of class o_OJN, o_CJN, o_MCON, o_MCCN, o_MCMN aditional arguments
```

Details

Reports a vector with each node (server) throughput of a queueing network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigación Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik

216 Throughputk.o_CJN

```
(1984).
```

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
Throughputk.o_OJN
Throughputk.o_CJN
Throughputk.o_MCON
Throughputk.o_MCCN
Throughputk.o_MCMN
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Throughputk(o_mcon1)</pre>
```

Throughputk.o_CJN

Reports a vector with each node (server) throughput of a Closed Jackson Network

Description

Reports a vector with each node (server) throughput of a Closed Jackson Network

Usage

```
## S3 method for class 'o_CJN' Throughputk(x, ...)
```

Arguments

```
x a object of class o_CJN
... aditional arguments
```

Details

Reports a vector with each node (server) throughput of a Closed Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.CJN, CheckInput.i_CJN, QueueingModel.i_CJN
```

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)</pre>
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)</pre>
Throughputk(m_cjn1)
```

 ${\tt Throughputk.o_MCCN}$

Reports a vector with each node (server) throughput of a MultiClass Closed Network

Description

Reports a vector with each node (server) throughput of a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN'
Throughputk(x, ...)
```

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Details

Reports a vector with each node (server) throughput of a MultiClass Closed Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCCN, CheckInput.i_MCCN, QueueingModel.i_MCCN
```

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

Throughputk(o_MCCN1)</pre>
```

Throughputk.o_MCMN Reports a vector with each node (server) throughput of a MultiClass Mixed Network

Description

Reports a vector with each node (server) throughput of a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN'
Throughputk(x, ...)
```

Arguments

x a object of class o_MCMN
... aditional arguments

Details

Reports a vector with each node (server) throughput of a MultiClass Mixed Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCMN, CheckInput.i_MCMN, QueueingModel.i_MCMN
```

```
## See example in pag 147 in reference [Lazowska84] for more details. classes <- 4  
vLambda <- c(1, 1/2)  
vNumber <- c(1, 1)  
vThink <- c(0, 0)  
nodes <- 2  
vType <- c("Q", "Q")
```

```
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Throughputk(o_mcmn1)</pre>
```

Throughputk.o_MCON

Reports a vector with each node (server) throughput of a MultiClass Open Network

Description

Reports a vector with each node (server) throughput of a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON'
Throughputk(x, ...)
```

Arguments

x a object of class o_MCON
... aditional arguments

Details

Reports a vector with each node (server) throughput of a MultiClass Open Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
NewInput.MCON, CheckInput.i_MCON, QueueingModel.i_MCON
```

Throughputk.o_OJN 221

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Throughputk(o_mcon1)</pre>
```

Throughputk.o_OJN

Reports a vector with each node (server) throughput of an Open Jackson Network

Description

Reports a vector with each node (server) throughput of an Open Jackson Network

Usage

```
## S3 method for class 'o_OJN'
Throughputk(x, ...)
```

Arguments

x a object of class o_OJN
... aditional arguments

Details

Reports a vector with each node (server) throughput of an Open Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

222 Throughputn

See Also

```
NewInput.OJN, CheckInput.i_OJN, QueueingModel.i_OJN
```

Examples

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
# Deinition of the new input
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the models
o_ojn <- QueueingModel(i_ojn)
Throughputk(o_ojn)</pre>
```

Throughputn

Returns a vector with the each Throughput from 1 to the parameter n (population passed as input) of a Closed Network

Description

Returns a vector with the each Throughput from 1 to the parameter n (population passed as input) of a Closed Network

Usage

```
Throughputn(x, ...)
```

Arguments

```
x a object of class o_CJN
... aditional arguments
```

Details

Returns a vector with the each Throughput from 1 to the parameter n (population passed as input) of a Closed Network

Throughputn.o_CJN 223

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
Throughputn.o_CJN
```

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)

# think time = 0
z <- 0

# operational value
operational <- FALSE

# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)

# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)

# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)

Throughputn(m_cjn1)</pre>
```

Throughputn.o_CJN

Returns a vector with the each Throughput from 1 to the parameter n (population passed as input) of a Closed Jackson Network

Description

Returns a vector with the each Throughput from 1 to the parameter n (population passed as input) of a Closed Jackson Network

Usage

```
## S3 method for class 'o_CJN' Throughputn(x, ...)
```

224 Throughputn.o_CJN

Arguments

```
x a object of class o_CJN
... aditional arguments
```

Details

Returns a vector with the each Throughput from 1 to the parameter n (population passed as input) of a Closed Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
NewInput.CJN, CheckInput.i_CJN, QueueingModel.i_CJN
```

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 \leftarrow NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 \leftarrow NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)</pre>
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)</pre>
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)</pre>
Throughputn(m_cjn1)
```

VN 225

۷N

Returns the variance of the number of customers in a queueing model (or network)

Description

Returns the variance of the number of customers in a queueing model (or network)

Usage

```
VN(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInf
... aditional arguments
```

Details

Returns the variance of the number of customers in a queueing model (or network)

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
VN.o_MM1
VN.o_MMC
VN.o_MMCC
VN.o_MMInf
VN.o_MMInfKK
VN.o_MM1K
VN.o_MMCK
VN.o_MM1KK
VN.o_MMCKK
VN.o_MMCKK
```

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)</pre>
```

226 VN.o_MM1

```
## Returns the variance
VN(o_mm1)
```

VN.o_MM1

Returns the variance of the number of customers in the M/M/1 queueing model

Description

Returns the variance of the number of customers in the M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' VN(x, \ldots)
```

Arguments

```
x a object of class o_MM1
... aditional arguments
```

Details

Returns the variance of the number of customers in the M/M/1 queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1.
```

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the variance
VN(o_mm1)</pre>
```

VN.o_MM1K 227

VN.o_MM1K

Returns the variance of the number of customers in the M/M/1/K queueing model

Description

Returns the variance of the number of customers in the M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' VN(x, \ldots)
```

Arguments

x a object of class o_MM1K
... aditional arguments

Details

Returns the variance of the number of customers in the M/M/1/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1K.
```

```
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Returns the variance
VN(o_mm1k)</pre>
```

228 VN.o_MM1KK

VN.o_MM1KK

Returns the variance of the number of customers in the M/M/1/K/K queueing model

Description

Returns the variance of the number of customers in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' VN(x, ...)
```

Arguments

x a object of class o_MM1KK
... aditional arguments

Returns the variance of the number of customers in the M/M/1/K/K queueing model

References

Details

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1K.
```

```
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the variance
VN(o_mm1kk)</pre>
```

VN.o_MMC 229

 ${\sf VN.o_MMC}$

Returns the variance of the number of customers in the M/M/c queueing model

Description

Returns the variance of the number of customers in the M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' VN(x, \ldots)
```

Arguments

x a object of class o_MMC aditional arguments

Details

Returns the variance of the number of customers in the M/M/c queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMC.
```

```
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the variance
VN(o_mmc)</pre>
```

VN.o_MMCC

 ${\sf VN.o_MMCC}$

Returns the variance of the number of customers in the M/M/c/c queueing model

Description

Returns the variance of the number of customers in the M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' VN(x, \ldots)
```

Arguments

x a object of class o_MMCC
... aditional arguments

Details

Returns the variance of the number of customers in the M/M/c/c queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
{\tt Queueing Model.i\_MMCC.}
```

```
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Returns the variance
VN(o_mmcc)</pre>
```

VN.o_MMCK 231

 ${\sf VN.o_MMCK}$

Returns the variance of the number of customers in the M/M/c/K queueing model

Description

Returns the variance of the number of customers in the M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' VN(x, \ldots)
```

Arguments

x a object of class o_MMCK

... aditional arguments

Details

Returns the variance of the number of customers in the M/M/c/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
{\tt QueueingModel.i\_MMCK.}
```

```
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the variance
VN(o_mmck)</pre>
```

VN.o_MMCKK

VN.o_MMCKK

Returns the variance of the number of customers in the M/M/c/K/K queueing model

Description

Returns the variance of the number of customers in the M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK' VN(x, ...)
```

Arguments

x a object of class o_MMCKK
... aditional arguments

Details

Returns the variance of the number of customers in the M/M/c/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMCKK.
```

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the variance
VN(o_mmckk)</pre>
```

VN.o_MMCKM 233

VN.o_MMCKM

Returns the variance of the number of customers in the M/M/c/K/m queueing model

Description

Returns the variance of the number of customers in the M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM' VN(x, ...)
```

Arguments

x a object of class o_MMCKM
... aditional arguments

Details

Returns the variance of the number of customers in the M/M/c/K/m queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMCKM.
```

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the variance
VN(o_mmckm)</pre>
```

VN.o_MMInf

VN.o_MMInf

Returns the variance of the number of customers in the M/M/Infinite queueing model

Description

Returns the variance of the number of customers in the M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' VN(x, ...)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Returns the variance of the number of customers in the M/M/Infinite queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMInf.
```

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the variance
VN(o_mminf)</pre>
```

VN.o_MMInfKK 235

VN.o_MMInfKK Returns the variance of the number of customers in the M/M/Infinite/K/K queueing model

Description

Returns the variance of the number of customers in the M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' VN(x, ...)
```

Arguments

x a object of class o_MMInfKK
... aditional arguments

Details

Returns the variance of the number of customers in the M/M/Infinite/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMInfKK.
```

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the variance
VN(o_MMInfKK)</pre>
```

236 VNq

VNq Returns the variance of the number of customers in the queue in a queueing model

Description

Returns the variance of the number of customers in the queue in a queueing model

Usage

```
VNq(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf
... aditional arguments
```

Details

Returns the variance of the number of customers in the queue in a queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
VNq.o_MM1
VNq.o_MM1
VNq.o_MMCC
VNq.o_MMInf
VNq.o_MMInfKK
VNq.o_MM1K
VNq.o_MMCK
VNq.o_MM1KK
VNq.o_MMCKK
VNq.o_MMCKK
```

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)</pre>
```

VNq.o_MM1 237

```
## Returns the variance
VNq(o_mm1)
```

VNq.o_MM1

Returns the variance of the number of customers in the queue in the M/M/1 queueing model

Description

Returns the variance of the number of customers in the queue in the M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' VNq(x, ...)
```

Arguments

x a object of class o_MM1
... aditional arguments

Details

Returns the variance of the number of customers in the queue in the M/M/1 queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1.
```

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the variance
VNq(o_mm1)</pre>
```

VNq.o_MM1K

VNq.o_MM1K

Returns the variance of the number of customers in the queue in the M/M/1/K queueing model

Description

Returns the variance of the number of customers in the queue in the M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' VNq(x, ...)
```

Arguments

x a object of class o_MM1K
... aditional arguments

Details

Returns the variance of the number of customers in the queue in the M/M/1/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1K.
```

```
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Returns the variance
VNq(o_mm1k)</pre>
```

VNq.o_MM1KK 239

VNq.o_MM1KK	Returns the variance of the number of customers in the queue in the M/M/1/K/K queueing model

Description

Returns the variance of the number of customers in the queue in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' VNq(x, ...)
```

Arguments

```
x a object of class o_MM1KK
... aditional arguments
```

Details

Returns the variance of the number of customers in the queue in the M/M/1/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1KK.
```

```
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the variance
VNq(o_mm1kk)</pre>
```

VNq.o_MMC

VNq.o_MMC

Returns the variance of the number of customers in the queue in the M/M/c queueing model

Description

Returns the variance of the number of customers in the queue in the M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' VNq(x, ...)
```

Arguments

x a object of class o_MMC aditional arguments

Details

Returns the variance of the number of customers in the queue in the M/M/c queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMC.
```

```
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the variance
VNq(o_mmc)</pre>
```

VNq.o_MMCC 241

VNq.o_MMCC

Returns the variance of the number of customers in the queue in the M/M/c/c queueing model

Description

Returns the variance of the number of customers in the queue in the M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' VNq(x, ...)
```

Arguments

x a object of class o_MMCC

... aditional arguments

Details

Returns the variance of the number of customers in the queue in the M/M/c/c queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMCC.
```

```
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Returns the variance
VNq(o_mmcc)</pre>
```

VNq.o_MMCK

VNq.o_MMCK

Returns the variance of the number of customers in the queue in the M/M/c/K queueing model

Description

Returns the variance of the number of customers in the queue in the M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' VNq(x, ...)
```

Arguments

x a object of class o_MMCK

... aditional arguments

Details

Returns the variance of the number of customers in the queue in the M/M/c/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMCK.
```

```
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the variance
VNq(o_mmck)</pre>
```

VNq.o_MMCKK 243

VNq.o_MMCKK	Returns the variance of the number of customers in the queue in the M/M/c/K/K queueing model

Description

Returns the variance of the number of customers in the queue in the M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK'
VNq(x, ...)
```

Arguments

```
x a object of class o_MMCKK
... aditional arguments
```

Details

Returns the variance of the number of customers in the queue in the M/M/c/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMCKK.
```

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the variance
VNq(o_mmckk)</pre>
```

244 VNq.o_MMCKM

VNq.o_MMCKM

Returns the variance of the number of customers in the queue in the M/M/c/K/m queueing model

Description

Returns the variance of the number of customers in the queue in the M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM' VNq(x, ...)
```

Arguments

x a object of class o_MMCKM

... aditional arguments

Details

Returns the variance of the number of customers in the queue in the M/M/c/K/m queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMCKM.
```

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the variance
VNq(o_mmckm)</pre>
```

VNq.o_MMInf 245

VNq.o_MMInf	Returns the variance of the number of customers in the queue in the M/M/Infinite queueing model

Description

Returns the variance of the number of customers in the queue in the M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' VNq(x, ...)
```

Arguments

```
x a object of class o_MMInf
... aditional arguments
```

Details

Returns the variance of the number of customers in the queue in the M/M/Infinite queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMInf.
```

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the variance
VNq(o_mminf)</pre>
```

246 VNq.o_MMInfKK

VNq.o_MMInfKK	Returns the variance of the number of customers in the queue in the M/M/Infinite/K/K queueing model

Description

Returns the variance of the number of customers in the queue in the M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' VNq(x, ...)
```

Arguments

```
x a object of class o_MMInfKK
... aditional arguments
```

Details

Returns the variance of the number of customers in the queue in the M/M/Infinite/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMInfKK.
```

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the VNq
VNq(o_MMInfKK)</pre>
```

VT 247

VT Returns the variance of the time spend in a queueing model (or network)

Description

Returns the variance of the time spend in a queueing model (or network)

Usage

```
VT(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf
... aditional arguments
```

Details

Returns the variance of the time spend in a queueing model (or network)

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
VT.o_MM1
VT.o_MMC
VT.o_MMCC
VT.o_MMInf
VT.o_MMInfKK
VT.o_MM1K
VT.o_MM1KK
```

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the variance of the time spend in the system
VT(o_mm1)</pre>
```

248 VT.o_MM1

VT.o_MM1

Returns the variance of the time spend in the M/M/1 queueing model

Description

Returns the variance of the time spend in the M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' VT(x, \ldots)
```

Arguments

```
x a object of class o_MM1
... aditional arguments
```

Details

Returns the variance of the time spend in the M/M/1 queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1.
```

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the variance of the time spend in the system
VT(o_mm1)</pre>
```

VT.o_MM1K 249

VT.o_MM1K

Returns the variance of the time spend in the M/M/1/K queueing model

Description

Returns the variance of the time spend in the M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' VT(x, ...)
```

Arguments

x a object of class o_MM1K
... aditional arguments

Details

Returns the variance of the time spend in the M/M/1/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1K.
```

```
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Returns the variance
VT(o_mm1k)</pre>
```

VT.o_MM1KK

VT.o_MM1KK

Returns the variance of the time spend in the M/M/1/K/K queueing model

Description

Returns the variance of the time spend in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' VT(x, ...)
```

Arguments

x a object of class o_MM1KK

... aditional arguments

Details

Returns the variance of the time spend in the M/M/1/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
{\tt Queueing Model.i\_MM1KK}.
```

```
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the variance
VT(o_mm1kk)</pre>
```

VT.o_MMC 251

VT.o_MMC

Returns the variance of the time spend in the M/M/c queueing model

Description

Returns the variance of the time spend in the M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' VT(x, \ldots)
```

Arguments

x a object of class o_MMC ... aditional arguments

Details

Returns the variance of the time spend in the M/M/c queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
{\tt Queueing Model.i\_MMC}.
```

```
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the variance of the time spend in the system
VT(o_mmc)</pre>
```

VT.o_MMCC

VT.o_MMCC

Returns the variance of the time spend in the M/M/c/c queueing model

Description

Returns the variance of the time spend in the M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' VT(x, ...)
```

Arguments

x a object of class o_MMCC
... aditional arguments

Details

Returns the variance of the time spend in the M/M/c/c queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMCC.
```

```
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Returns the variance
VT(o_mmcc)</pre>
```

VT.o_MMInf 253

VT.o_MMInf	Returns the variance of the time spend in the M/M/Infinite queueing
	model

Description

Returns the variance of the time spend in the M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' VT(x, ...)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Returns the the variance of the time spend in the M/M/Infinite queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMInf.
```

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the variance
VT(o_mminf)</pre>
```

254 VT.o_MMInfKK

VT.o_MMInfKK

Returns the variance of the time spend in the M/M/Infinite/K/K queue-ing model

Description

Returns the variance of the time spend in the M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' VT(x, ...)
```

Arguments

x a object of class o_MMInfKK

... aditional arguments

Details

Returns the variance of the time spend in the M/M/Infinite/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMInfKK.
```

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the variance
VT(o_MMInfKK)</pre>
```

VTq 255

VTq

Returns the variance of the time spend in queue in a queueing model

Description

Returns the variance of the time spend in queue in a queueing model

Usage

```
VTq(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInf
... aditional arguments
```

Details

Returns the variance of the time spend in queue in a queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
VTq.o_MM1
VTq.o_MMC
VTq.o_MMCC
VTq.o_MMInf
VTq.o_MMInfKK
VTq.o_MM1K
VTq.o_MMCK
VTq.o_MM1KK
VTq.o_MM1KK
```

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the variance of the time spend in queue
VTq(o_mm1)</pre>
```

256 VTq.o_MM1

VTq.o_MM1

Returns the variance of the time spend in queue in the M/M/1 queueing model

Description

Returns the variance of the time spend in queue in the M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' VTq(x, ...)
```

Arguments

x a object of class o_MM1
... aditional arguments

Details

Returns the variance of the time spend in queue in the M/M/1 queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1.
```

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the variance of the time spend in queue
VTq(o_mm1)</pre>
```

VTq.o_MM1K 257

VTq.o_MM1K

Returns the variance of the time spend in queue in the M/M/1/K queue-ing model

Description

Returns the variance of the time spend in queue in the M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' VTq(x, ...)
```

Arguments

x a object of class o_MM1K

... aditional arguments

Details

Returns the variance of the time spend in queue in the M/M/1/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1K.
```

```
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)
## Build the model
o_mm1k <- QueueingModel(i_mm1k)
## Returns the variance
VTq(o_mm1k)</pre>
```

258 VTq.o_MM1KK

VTq.o_MM1KK

Returns the variance of the time spend in queue in the M/M/1/K/K queueing model

Description

Returns the variance of the time spend in queue in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' VTq(x, ...)
```

Arguments

x a object of class o_MM1KK
... aditional arguments

Details

Returns the variance of the time spend in queue in the M/M/1/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MM1KK.
```

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the VTq
VTq(o_mm1kk)</pre>
```

VTq.o_MMC 259

Returns the variance of the time spend in queue in the M/M/c queueing model

Description

Returns the variance of the time spend in queue in the M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' VTq(x, ...)
```

Arguments

```
x a object of class o_MMC
... aditional arguments
```

Details

Returns the variance of the time spend in queue in the M/M/c queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
{\tt Queueing Model.i\_MMC.}
```

```
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the variance of the time spend in queue
VTq(o_mmc)</pre>
```

VTq.o_MMCC

VTq.o_MMCC

Returns the variance of the time spend in queue in the M/M/c/c queueing model

Description

Returns the variance of the time spend in queue in the M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' VTq(x, ...)
```

Arguments

x a object of class o_MMCC
... aditional arguments

Details

Returns the variance of the time spend in queue in the M/M/c/c queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
{\tt Queueing Model.i\_MMCC.}
```

```
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)
## Build the model
o_mmcc <- QueueingModel(i_mmcc)
## Returns the variance
VTq(o_mmcc)</pre>
```

VTq.o_MMCK 261

VTq.o_MMCK

Returns the variance of the time spend in queue in the M/M/c/K queueing model

Description

Returns the variance of the time spend in queue in the M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' VTq(x, ...)
```

Arguments

x a object of class o_MMCK
... aditional arguments

Details

Returns the variance of the time spend in queue in the M/M/c/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
{\tt QueueingModel.i\_MMCK.}
```

```
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the variance
VTq(o_mmck)</pre>
```

262 VTq.o_MMCKK

VTq.o_MMCKK

Returns the variance of the time spend in queue in the M/M/c/K/K queueing model

Description

Returns the variance of the time spend in queue in the M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK' VTq(x, ...)
```

Arguments

x a object of class o_MMCKK
... aditional arguments

Details

Returns the variance of the time spend in queue in the M/M/c/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMCKK.
```

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the variance
VTq(o_mmckk)</pre>
```

VTq.o_MMInf 263

VTq.o_MMInf

Returns the variance of the time spend in queue in the M/M/Infinite queueing model

Description

Returns the variance of the time spend in queue in the M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' VTq(x, ...)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Returns the variance of the time spend in queue in the M/M/Infinite queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). 
Basic Queueing Theory. 
University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMInf.
```

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the variance
VTq(o_mminf)</pre>
```

264 VTq.o_MMInfKK

VTq.o_MMInfKK	Returns	the	variance	of	the	time	spend	in	queue	in	the
	M/M/Infinite/K/K queueing model										

Description

Returns the variance of the time spend in queue in the M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' VTq(x, ...)
```

Arguments

x a object of class o_MMInfKK
... aditional arguments

Details

Returns the variance of the time spend in queue in the M/M/Infinite/K/K queueing model

References

```
[Sztrik2012] Dr. Janos Sztrik (2012). Basic Queueing Theory. University of Debrecen, Faculty of Informatics.
```

See Also

```
QueueingModel.i_MMInfKK.
```

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the variance
VTq(o_MMInfKK)</pre>
```

W 265

W

Returns the mean time spend in a queueing model (or network)

Description

Returns the mean time spend in a queueing model (or network)

Usage

```
W(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInf, o_OJN, o_MCON, o_MCCN, o_MCMN
... aditional arguments
```

Details

Returns the mean time spend in a queueing model (or network)

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
W.o_MM1
W.o_MMC
W.o_MM1K
W.o_MMCK
W.o_MM1KK
W.o_MMCKK
W.o_MMCC
W.o_MMCC
W.o_MMInfKK
W.o_MMInf
W.o_OJN
W.o_MCON
W.o_MCCN
W.o_MCCN
W.o_MCCN
```

266 W.o_CJN

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the W
W(o_mm1)</pre>
```

W.o_CJN

Returns the mean time spend in a Closed Jackson Network

Description

Returns the mean time spend in a Closed Jackson Network

Usage

```
## S3 method for class 'o_CJN' W(x, \ldots)
```

Arguments

```
x a object of class o_CJN
... aditional arguments
```

Details

Returns the mean time spend in a Closed Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_CJN.
```

W.o_MCCN 267

Examples

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)</pre>
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)</pre>
W(m_cjn1)
```

W.o_MCCN

Returns the mean time spend in a MultiClass Closed Network

Description

Returns the mean time spend in a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN' W(x, \ldots)
```

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Details

Returns the mean time spend in a MultiClass Closed Network

268 W.o_MCMN

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCCN.
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

W(o_MCCN1)</pre>
```

W.o_MCMN

Returns the mean time spend in a MultiClass Mixed Network

Description

Returns the mean time spend in a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN' W(x, \ldots)
```

Arguments

```
x a object of class o_MCMN
... aditional arguments
```

W.o_MCON 269

Details

Returns the mean time spend in a MultiClass Mixed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCMN.
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)

W(o_mcmn1)</pre>
```

 $W.o_MCON$

Returns the mean time spend in a MultiClass Open Network

Description

Returns the mean time spend in a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON' W(x, \ldots)
```

270 W.o_MM1

Arguments

```
x a object of class o_MCON
... aditional arguments
```

Details

Returns the mean time spend in a MultiClass Open Network

References

```
[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).
```

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
{\tt Queueing Model.i\_MCON}.
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
W(o_mcon1)</pre>
```

W.o_MM1

Returns the mean time spend in the M/M/1 queueing model

Description

Returns the mean time spend in the M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' W(x, \ldots)
```

W.o_MM1K 271

Arguments

```
x a object of class o_MM1
... aditional arguments
```

Details

Returns the mean time spend in the M/M/1 queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1.
```

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the W
W(o_mm1)</pre>
```

W.o_MM1K

Returns the mean time spend in the M/M/1/K queueing model

Description

Returns the mean time spend in the M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' W(x, \ldots)
```

Arguments

```
x a object of class o_MM1K
```

... aditional arguments

272 W.o_MM1KK

Details

Returns the mean time spend in the M/M/1/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1K.
```

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Returns the W
W(o_mm1k)</pre>
```

 $W.o_MM1KK$

Returns the mean time spend in the M/M/1/K/K queueing model

Description

Returns the mean time spend in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' W(x, ...)
```

Arguments

```
x a object of class o_MM1KK
... aditional arguments
```

Details

Returns the mean time spend in the M/M/1/K/K queueing model

W.o_MMC 273

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1KK.
```

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Returns the W
W(o_mm1kk)</pre>
```

W.o_MMC

Returns the mean time spend in the M/M/c queueing model

Description

Returns the mean time spend in the M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' W(x, \ldots)
```

Arguments

```
x a object of class o_MMC ... aditional arguments
```

Details

Returns the mean time spend in the M/M/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

274 W.o_MMCC

See Also

```
QueueingModel.i_MMC.
```

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the W
W(o_mmc)</pre>
```

W.o_MMCC

Returns the mean time spend in the M/M/c/c queueing model

Description

Returns the mean time spend in the M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' W(x, \ldots)
```

Arguments

x a object of class o_MMCC
... aditional arguments

Details

Returns the mean time spend in the M/M/c/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCC.
```

W.o_MMCK 275

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Returns the W
W(o_mmcc)</pre>
```

W.o_MMCK

Returns the mean time spend in the M/M/c/K queueing model

Description

Returns the mean time spend in the M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' W(x, \ldots)
```

Arguments

x a object of class o_MMCK
... aditional arguments

Details

Returns the mean time spend in the M/M/c/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCK.
```

276 W.o_MMCKK

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the W
W(o_mmck)</pre>
```

W.o_MMCKK

Returns the mean time spend in the M/M/c/K/K queueing model

Description

Returns the mean time spend in the M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK' W(x, \ldots)
```

Arguments

x a object of class o_MMCKK
... aditional arguments

Details

Returns the mean time spend in the M/M/c/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKK.
```

W.o_MMCKM 277

Examples

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the W
W(o_mmckk)</pre>
```

 $W.o_MMCKM$

Returns the mean time spend in the M/M/c/K/m queueing model

Description

Returns the mean time spend in the M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM' W(x, \ldots)
```

Arguments

x a object of class o_MMCKM
... aditional arguments

Details

Returns the mean time spend in the M/M/c/K/m queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKM.
```

W.o_MMInf

Examples

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the W
W(o_mmckm)</pre>
```

W.o_MMInf

Returns the time spend in the M/M/Infinite queueing model

Description

Returns the mean time spend in the M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' W(x, ...)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Returns the mean time spend in the M/M/Infinite queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMInf.
```

W.o_MMInfKK 279

Examples

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the W
W(o_mminf)</pre>
```

W.o_MMInfKK

Returns the mean time spend in the M/M/Infinite/K/K queueing model

Description

Returns the mean time spend in the M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' W(x, ...)
```

Arguments

- x a object of class o_MMInfKK
 ... aditional arguments
- **Details**

Returns the mean time spend in the M/M/Infinite/K/K queueing model

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

```
QueueingModel.i_MMInfKK.
```

280 W.o_OJN

Examples

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the W
W(o_MMInfKK)</pre>
```

W.o_OJN

Returns the mean time spend in an Open Jackson Network

Description

Returns the mean time spend in an Open Jackson Network

Usage

```
## S3 method for class 'o_OJN' W(x, \ldots)
```

Arguments

```
x a object of class o_OJN
... aditional arguments
```

Details

Returns the mean time spend in an Open Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_OJN.
```

Wc 281

Examples

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)
# Deinition of the new input
i_ojn <- NewInput.OJN(prob, n1, n2, n3, n4)
# Build the models
o_ojn <- QueueingModel(i_ojn)
W(o_ojn)</pre>
```

Wc

Returns the vector with each class mean time spend on a multiclass queueing network

Description

Returns the vector with each class mean time spend on a multiclass queueing network

Usage

```
Wc(x, ...)
```

Arguments

```
x a object of class o_MCON, o_MCCN, o_MCMN
... aditional arguments
```

Details

Returns the vector with each class mean time spend on a multiclass queueing network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

Wc.o_MCCN

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
Wc.o_MCON
Wc.o_MCCN
Wc.o_MCMN
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Wc(o_mcon1)</pre>
```

Wc.o_MCCN

Returns the vector with each class mean time spend on a MultiClass Closed Network

Description

Returns the vector with each class mean time spend on a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN' Wc(x, ...)
```

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Wc.o_MCMN 283

Details

Returns the vector with each class mean time spend on a MultiClass Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCCN.
```

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

Wc(o_MCCN1)</pre>
```

Wc.o_MCMN

Returns the vector with each class mean time spend on a MultiClass Mixed Network

Description

Returns the vector with each class mean time spend on a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN' Wc(x, ...)
```

284 Wc.o_MCON

Arguments

```
x a object of class o_MCMN
... aditional arguments
```

Details

Returns the vector with each class mean time spend on a MultiClass Mixed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCMN.
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)

Wc(o_mcmn1)</pre>
```

Wc.o_MCON

Returns the vector with each class mean time spend on a MultiClass Open Network

Description

Returns the vector with each class mean time spend on a MultiClass Open Network

Wc.o_MCON 285

Usage

```
## S3 method for class 'o_MCON' Wc(x, ...)
```

Arguments

```
x a object of class o_MCON
```

... aditional arguments

Details

Returns the vector with each class mean time spend on a MultiClass Open Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCON.
```

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Wc(o_mcon1)</pre>
```

286 Wck

Wck

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Queueing Network

Description

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Queueing Network

Usage

```
Wck(x, ...)
```

Arguments

```
x a object of class o_MCON, o_MCCN, o_MCMN
... aditional arguments
```

Details

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Queueing Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
Wck.o_MCON
Wck.o_MCCN
Wck.o_MCMN
```

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")</pre>
```

Wck.o_MCCN 287

```
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)
# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Wck(o_mcon1)</pre>
```

Wck.o_MCCN

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Closed Network

Description

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN' Wck(x, ...)
```

Arguments

x a object of class o_MCCN
... aditional arguments

Details

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

```
QueueingModel.i_MCCN.
```

288 Wck.o_MCMN

Examples

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)

Wck(o_MCCN1)</pre>
```

Wck.o_MCMN

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Mixed Network

Description

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Mixed Network

Usage

```
## S3 method for class 'o_MCMN' Wck(x, ...)
```

Arguments

x a object of class o_MCMN
... aditional arguments

Details

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Mixed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

Wck.o_MCON 289

See Also

```
QueueingModel.i_MCMN.
```

Examples

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)

i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)

Wck(o_mcmn1)</pre>
```

Wck.o_MCON

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Open Network

Description

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON' Wck(x, ...)
```

Arguments

```
x a object of class o_MCON
... aditional arguments
```

Details

Reports a matrix with the mean time of class i in each node (server) j in a MultiClass Open Network

290 Wk

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
{\tt Queueing Model.i\_MCON}.
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Wck(o_mcon1)</pre>
```

Wk

Generic S3 method to return the mean time spend in each node (or server) of a network

Description

Generic S3 method to return the mean time spend in each node (or server) of a network

Usage

```
Wk(x, ...)
```

Arguments

```
x a object of class o_OJN, o_CJN, o_MCON, o_MCCN, o_MCMN aditional arguments
```

Details

Generic S3 method to return the mean time spend in each node (or server) of a network

Wk.o_CJN 291

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
Wk.o_OJN
Wk.o_CJN
Wk.o_MCON
Wk.o_MCCN
Wk.o_MCMN
```

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)

Wk(o_mcon1)</pre>
```

Wk.o_CJN

Returns the vector with the mean time spend in each node (server) of a Closed Jackson Network

Description

Returns the vector with the mean time spend in each node (server) of a Closed Jackson Network

Usage

```
## S3 method for class 'o_CJN' Wk(x, ...)
```

292 Wk.o_CJN

Arguments

```
x a object of class o_CJN
... aditional arguments
```

Details

Returns the vector with the mean time spend in each node (server) of a Closed Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_CJN.
```

```
## See example 11.13 in reference [Sixto2004] for more details.
## create the nodes
n <- 2
n1 <- NewInput.MM1(lambda=0, mu=1/0.2, n=0)
n2 <- NewInput.MM1(lambda=0, mu=1/0.4, n=0)
# think time = 0
z <- 0
# operational value
operational <- FALSE
# definition of the transition probabilities
prob <- matrix(data=c(0.5, 0.5, 0.5, 0.5), nrow=2, ncol=2, byrow=TRUE)</pre>
# Define a new input
cjn1 <- NewInput.CJN(prob, n, z, operational, 0, 0.001, n1, n2)</pre>
# Check the inputs and build the model
m_cjn1 <- QueueingModel(cjn1)</pre>
Wk(m_cjn1)
```

Wk.o_MCCN 293

Wk.o MCCN	Returns a vector with the mean time spend in each node (server) of a
WK.O_PICCIN	Returns a vector with the mean time spena in each hode (server) of a
	MultiClass Closed Network

Description

Returns a vector with the mean time spend in each node (server) of a MultiClass Closed Network

Usage

```
## S3 method for class 'o_MCCN'
Wk(x, ...)
```

Arguments

```
x a object of class o_MCCN
... aditional arguments
```

Details

Returns a vector with the mean time spend in each node (server) of a MultiClass Closed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCCN.
```

```
## See example in pag 142 in reference [Lazowska84] for more details.

classes <- 2
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)

i_MCCN1 <- NewInput.MCCN(classes, vNumber, vThink, nodes, vType, vVisit, vService)

# Build the model
o_MCCN1 <- QueueingModel(i_MCCN1)</pre>
```

294 Wk.o_MCMN

```
Wk(o_MCCN1)
```

Wk.o_MCMN

Returns a matrix with the mean time spend in each node (server) of a MultiClass Mixed Network

Description

Returns a matrix with the mean time spend in each node (server) of a MultiClass Mixed Network

Usage

```
## S3 method for class 'o\_MCMN' Wk(x, ...)
```

Arguments

x a object of class o_MCMN
... aditional arguments

Details

Returns a matrix with the mean time spend in each node (server) of a MultiClass Mixed Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

See Also

```
QueueingModel.i_MCMN.
```

```
## See example in pag 147 in reference [Lazowska84] for more details.

classes <- 4
vLambda <- c(1, 1/2)
vNumber <- c(1, 1)
vThink <- c(0, 0)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=1, nrow=4, ncol=2)
vService <- matrix(data=c(1/4, 1/2, 1/2, 1, 1/6, 1, 1, 4/3), nrow=4, ncol=2)</pre>
```

Wk.o_MCON 295

```
i_mcmn1 <- NewInput.MCMN(classes, vLambda, vNumber, vThink, nodes, vType, vVisit, vService)
# Build the model
o_mcmn1 <- QueueingModel(i_mcmn1)
Wk(o_mcmn1)</pre>
```

Wk.o_MCON

Returns a matrix with the mean time spend in each node (server) of a MultiClass Open Network

Description

Returns a matrix with the mean time spend in each node (server) of a MultiClass Open Network

Usage

```
## S3 method for class 'o_MCON' Wk(x, ...)
```

Arguments

x a object of class o_MCON

... aditional arguments

Details

Returns a matrix with the mean time spend in each node (server) of a MultiClass Open Network

References

[Lazowska84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik (1984).

Quantitative System Performance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

```
QueueingModel.i_MCON.
```

296 Wk.o_OJN

Examples

```
## See example in pag 138 in reference [Lazowska84] for more details.

classes <- 2
vLambda <- c(3/19, 2/19)
nodes <- 2
vType <- c("Q", "Q")
vVisit <- matrix(data=c(10, 9, 5, 4), nrow=2, ncol=2, byrow=TRUE)
vService <- matrix(data=c(1/10, 1/3, 2/5, 1), nrow=2, ncol=2, byrow=TRUE)
i_mcon1 <- NewInput.MCON(classes, vLambda, nodes, vType, vVisit, vService)

# Build the model
o_mcon1 <- QueueingModel(i_mcon1)
Wk(o_mcon1)</pre>
```

Wk.o_OJN

Returns the vector with the mean time spend in each node (server) of an Open Jackson Network

Description

Returns the vector with the mean time spend in each node (server) of an Open Jackson Network

Usage

```
## S3 method for class 'o_OJN' Wk(x, ...)
```

Arguments

x a object of class o_OJN
... aditional arguments

Details

Returns the vector with the mean time spend in each node (server) of an Open Jackson Network

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

Wq 297

See Also

```
QueueingModel.i_OJN.
```

Examples

```
## See example 11.11 in reference [Sixto2004] for more details.
## create the nodes
n1 <- NewInput.MM1(lambda=8, mu=14, n=0)
n2 <- NewInput.MM1(lambda=0, mu=9, n=0)
n3 <- NewInput.MM1(lambda=6, mu=17, n=0)
n4 <- NewInput.MM1(lambda=0, mu=7, n=0)
m <- c(0, 0.2, 0.56, 0.24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
# definition of the transition probabilities
prob <- matrix(data=m, nrow=4, ncol=4, byrow=TRUE)

ojn1 <- NewInput.OJN(prob, n1, n2, n3, n4)

m_ojn1 <- QueueingModel(ojn1)

Wk(m_ojn1)</pre>
```

Wq

Returns the mean time spend in queue in a queueing model

Description

Returns the mean time spend in queue in a queueing model

Usage

```
Wq(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf
... aditional arguments
```

Details

Returns the mean time spend in queue in a queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

298 Wq.o_MM1

See Also

```
Wq.o_MM1
Wq.o_MMC
Wq.o_MM1K
Wq.o_MMCK
Wq.o_MM1KK
Wq.o_MMCKK
Wq.o_MMCCK
Wq.o_MMCCK
Wq.o_MMCKM
Wq.o_MMInfKK
Wq.o_MMInf
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Wq
Wq(o_mm1)</pre>
```

Wq.o_MM1

Returns the mean time spend in queue in the M/M/1 queueing model

Description

Returns the mean time spend in queue in the M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' Wq(x, \ldots)
```

Arguments

```
x a object of class o_MM1
... aditional arguments
```

Details

Returns the mean time spend in queue in the M/M/1 queueing model

Wq.o_MM1K 299

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

See Also

```
QueueingModel.i_MM1.
```

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Wq
Wq(o_mm1)</pre>
```

Wq.o_MM1K

Returns the mean time spend in queue in the M/M/1/K queueing model

Description

Returns the mean time spend in queue in the M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' Wq(x, ...)
```

Arguments

```
x a object of class o_MM1K ... aditional arguments
```

Details

Returns the mean time spend in queue in the M/M/1/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

300 Wq.o_MM1KK

See Also

```
QueueingModel.i_MM1K.
```

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Returns the Wq
Wq(o_mm1k)</pre>
```

Wq.o_MM1KK

Returns the mean time spend in queue in the M/M/1/K/K queueing model

Description

Returns the mean time spend in queue in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' Wq(x, ...)
```

Arguments

x a object of class o_MM1KK
... aditional arguments

Details

Returns the mean time spend in queue in the M/M/1/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MM1KK.
```

Wq.o_MMC 301

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Returns the Wq
Wq(o_mm1kk)</pre>
```

Wq.o_MMC

Returns the mean time spend in queue in the M/M/c queueing model

Description

Returns the mean time spend in queue in the M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' Wq(x, ...)
```

Arguments

x a object of class o_MMC
... aditional arguments

Details

Returns the mean time spend in queue in the M/M/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMC.
```

302 Wq.o_MMCC

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the Wq
Wq(o_mmc)</pre>
```

Wq.o_MMCC

Returns the mean time spend in queue in the M/M/c/c queueing model

Description

Returns the mean time spend in queue in the M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' Wq(x, \ldots)
```

Arguments

x a object of class o_MMCC
... aditional arguments

Details

Returns the mean time spend in queue in the M/M/c/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCC.
```

Wq.o_MMCK

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Returns the Wq
Wq(o_mmcc)</pre>
```

Wq.o_MMCK

Returns the mean time spend in queue in the M/M/c/K queueing model

Description

Returns the mean time spend in queue in the M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' Wq(x, ...)
```

Arguments

x a object of class o_MMCK
... aditional arguments

Details

Returns the mean time spend in queue in the M/M/c/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCK.
```

304 Wq.o_MMCKK

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the Wq
Wq(o_mmck)</pre>
```

Wq.o_MMCKK

Returns the mean time spend in queue in the M/M/c/K/K queueing model

Description

Returns the mean time spend in queue in the M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK' Wq(x, ...)
```

Arguments

x a object of class o_MMCKK
... aditional arguments

Details

Returns the mean time spend in queue in the M/M/c/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKK.
```

Wq.o_MMCKM 305

Examples

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the Wq
Wq(o_mmckk)</pre>
```

Wq.o_MMCKM

Returns the mean time spend in queue in the M/M/c/K/m queueing model

Description

Returns the mean time spend in queue in the M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM' Wq(x, ...)
```

Arguments

x a object of class o_MMCKM
... aditional arguments

Details

Returns the mean time spend in queue in the M/M/c/K/m queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKM.
```

306 Wq.o_MMInf

Examples

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the Wq
Wq(o_mmckm)</pre>
```

Wq.o_MMInf

Returns the mean time spend in queue in the M/M/Infinite queueing model

Description

Returns the mean time spend in queue in the M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' Wq(x, ...)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Returns the mean time spend in queue in the M/M/Infinite queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMInf.
```

Wq.o_MMInfKK 307

Examples

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the Wq
Wq(o_mminf)</pre>
```

Wq.o_MMInfKK

Returns the mean time spend in queue in the M/M/Infinite/K/K queue-ing model

Description

Returns the mean time spend in queue in the M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' Wq(x, ...)
```

Arguments

x a object of class o_MMInfKK
... aditional arguments

Details

Returns the mean time spend in queue in the M/M/Infinite/K/K queueing model

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

```
QueueingModel.i_MMInfKK.
```

Wqq

Examples

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the Wq
Wq(o_MMInfKK)</pre>
```

Wqq

Returns the mean time spend in queue when there is queue in a queueing model

Description

Returns the mean time spend in queue when there is queue in a queueing model

Usage

```
Wqq(x, ...)
```

Arguments

```
x a object of class o_MM1, o_MMC, o_MM1K, o_MMCK, o_MM1KK, o_MMCKK, o_MMCC, o_MMCKM, o_MMInfKK, o_MMInf
. . . . aditional arguments
```

Details

Returns the mean time spend in queue when there is queue in a queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
Wqq.o_MM1
Wqq.o_MMC
Wqq.o_MM1K
Wqq.o_MMCK
Wqq.o_MM1KK
Wqq.o_MMCKK
Wqq.o_MMCCK
```

Wqq.o_MM1 309

```
Wqq.o_MMCKM
Wqq.o_MMInfKK
Wqq.o_MMInf
```

Examples

```
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Wqq
Wqq(o_mm1)</pre>
```

Wqq.o_MM1

Returns the mean time spend in queue when there is queue in the M/M/1 queueing model

Description

Returns the mean time spend in queue when there is queue in the M/M/1 queueing model

Usage

```
## S3 method for class 'o_MM1' Wqq(x, ...)
```

Arguments

x a object of class o_MM1
... aditional arguments

Details

Returns the mean time spend in queue when there is queue in the M/M/1 queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MM1.
```

310 Wqq.o_MM1K

Examples

```
## See example 10.3 in reference [Sixto2004] for more details.
## create input parameters
i_mm1 <- NewInput.MM1(lambda=1/4, mu=1/3, n=0)
## Build the model
o_mm1 <- QueueingModel(i_mm1)
## Returns the Wqq
Wqq(o_mm1)</pre>
```

Wqq.o_MM1K

Returns the mean time spend in queue when there is queue in the M/M/1/K queueing model

Description

Returns the mean time spend in queue when there is queue in the M/M/1/K queueing model

Usage

```
## S3 method for class 'o_MM1K' Wqq(x, ...)
```

Arguments

x a object of class o_MM1K
... aditional arguments

Details

Returns the mean time spend in queue when there is queue in the M/M/1/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MM1K.
```

Wqq.o_MM1KK 311

Examples

```
## See example 10.7 in reference [Sixto2004] for more details.
## create input parameters
i_mm1k <- NewInput.MM1K(lambda=5, mu=5.714, k=15)

## Build the model
o_mm1k <- QueueingModel(i_mm1k)

## Returns the Wqq
Wqq(o_mm1k)</pre>
```

Wqq.o_MM1KK

Returns the mean time spend in queue when there is queue in the M/M/1/K/K queueing model

Description

Returns the mean time spend in queue when there is queue in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' Wqq(x, ...)
```

Arguments

x a object of class o_MM1KK
... aditional arguments

Details

Returns the mean time spend in queue when there is queue in the M/M/1/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigación Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MM1KK.
```

312 Wqq.o_MMC

Examples

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Returns the Wqq
Wqq(o_mm1kk)</pre>
```

Wqq.o_MMC

Returns the mean time spend in queue when there is queue in the M/M/c queueing model

Description

Returns the mean time spend in queue when there is queue in the M/M/c queueing model

Usage

```
## S3 method for class 'o_MMC' Wqq(x, ...)
```

Arguments

x a object of class o_MMC
... aditional arguments

Details

Returns the mean time spend in queue when there is queue in the M/M/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMC.
```

Wqq.o_MMCC 313

Examples

```
## See example 10.9 in reference [Sixto2004] for more details.
## create input parameters
i_mmc <- NewInput.MMC(lambda=5, mu=10, c=2, n=0, method=0)
## Build the model
o_mmc <- QueueingModel(i_mmc)
## Returns the Wqq
Wqq(o_mmc)</pre>
```

Wqq.o_MMCC

Returns the mean time spend in queue when there is queue in the M/M/c/c queueing model

Description

Returns the mean time spend in queue when there is queue in the M/M/c/c queueing model

Usage

```
## S3 method for class 'o_MMCC' Wqq(x, ...)
```

Arguments

x a object of class o_MMCC
... aditional arguments

Details

Returns the mean time spend in queue when there is queue in the M/M/c/c queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigación Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCC.
```

314 Wqq.o_MMCK

Examples

```
## See example 10.12 in reference [Sixto2004] for more details.
## create input parameters
i_mmcc <- NewInput.MMCC(lambda=3, mu=0.25, c=15)

## Build the model
o_mmcc <- QueueingModel(i_mmcc)

## Returns the Wqq
Wqq(o_mmcc)</pre>
```

Wqq.o_MMCK

Returns the mean time spend in queue when there is queue in the M/M/c/K queueing model

Description

Returns the mean time spend in queue when there is queue in the M/M/c/K queueing model

Usage

```
## S3 method for class 'o_MMCK' Wqq(x, ...)
```

Arguments

x a object of class o_MMCK

... aditional arguments

Details

Returns the mean time spend in queue when there is queue in the M/M/c/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCK.
```

Wqq.o_MMCKK 315

Examples

```
## See example 10.11 in reference [Sixto2004] for more details.
## create input parameters
i_mmck <- NewInput.MMCK(lambda=8, mu=4, c=5, k=12)
## Build the model
o_mmck <- QueueingModel(i_mmck)
## Returns the Wqq
Wqq(o_mmck)</pre>
```

Wqq.o_MMCKK

Returns the mean time spend in queue when there is queue in the M/M/c/K/K queueing model

Description

Returns the mean time spend in queue when there is queue in the M/M/c/K/K queueing model

Usage

```
## S3 method for class 'o_MMCKK' Wqq(x, ...)
```

Arguments

x a object of class o_MMCKK
... aditional arguments

Details

Returns the mean time spend in queue when there is queue in the M/M/c/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigación Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKK.
```

316 Wqq.o_MMCKM

Examples

```
## create input parameters
i_mmckk <- NewInput.MMCKK(lambda=8, mu=2, c=5, k=12, method=0)
## Build the model
o_mmckk <- QueueingModel(i_mmckk)
## Returns the Wqq
Wqq(o_mmckk)</pre>
```

Wqq.o_MMCKM

Returns the mean time spend in queue when there is queue in the M/M/c/K/m queueing model

Description

Returns the mean time spend in queue when there is queue in the M/M/c/K/m queueing model

Usage

```
## S3 method for class 'o_MMCKM' Wqq(x, ...)
```

Arguments

x a object of class o_MMCKM
... aditional arguments

Details

Returns the mean time spend in queue when there is queue in the M/M/c/K/m queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMCKM.
```

Wqq.o_MMInf

Examples

```
## create input parameters
i_mmckm <- NewInput.MMCKM(lambda=0.25, mu=4, c=2, k=4, m=8, method=0)
## Build the model
o_mmckm <- QueueingModel(i_mmckm)
## Returns the Wqq
Wqq(o_mmckm)</pre>
```

Wqq.o_MMInf

Returns the mean time spend in queue when there is queue in the M/M/Infinite queueing model

Description

Returns the mean time spend in queue when there is queue in the M/M/Infinite queueing model

Usage

```
## S3 method for class 'o_MMInf' Wqq(x, ...)
```

Arguments

x a object of class o_MMInf
... aditional arguments

Details

Returns the mean time spend in queue when there is queue in the M/M/Infinite queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MMInf.
```

318 Wqq.o_MMInfKK

Examples

```
## create input parameters
i_mminf <- NewInput.MMInf(lambda=0.25, mu=4, n=0)
## Build the model
o_mminf <- QueueingModel(i_mminf)
## Returns the Wqq
Wqq(o_mminf)</pre>
```

Wqq.o_MMInfKK

Returns the mean time spend in queue when there is queue in the M/M/Infinite/K/K queueing model

Description

Returns the mean time spend in queue when there is queue in the M/M/Infinite/K/K queueing model

Usage

```
## S3 method for class 'o_MMInfKK' Wqq(x, ...)
```

Arguments

x a object of class o_MMInfKK
... aditional arguments

Details

Returns the mean time spend in queue when there is queue in the M/M/Infinite/K/K queueing model

References

```
[Kleinrock1975] Leonard Kleinrock (1975). Queueing Systems Vol 1: Theory. John Wiley & Sons.
```

```
QueueingModel.i_MMInfKK.
```

WWs 319

Examples

```
## create input parameters
i_MMInfKK <- NewInput.MMInfKK(lambda=0.25, mu=4, k=4)
## Build the model
o_MMInfKK <- QueueingModel(i_MMInfKK)
## Returns the Wqq
Wqq(o_MMInfKK)</pre>
```

WWs

Returns the normalized mean response time in a queueing model

Description

Returns the normalized mean response time in a queueing model

Usage

```
WWs(x, ...)
```

Arguments

x a object of class o_MM1KK
... aditional arguments

Details

Returns the normalized mean response time in a queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
WWs.o_MM1KK.
```

320 WWs.o_MM1KK

Examples

```
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)
## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)
## Returns the WWs
WWs(o_mm1kk)</pre>
```

WWs.o_MM1KK

Returns the normalized mean response time in the M/M/1/K/K queueing model

Description

Returns the normalized mean response time in the M/M/1/K/K queueing model

Usage

```
## S3 method for class 'o_MM1KK' WWs(x, ...)
```

Arguments

x a object of class o_MM1KK
... aditional arguments

Details

Returns the normalized mean response time in the M/M/1/K/K queueing model

References

[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).

Investigacion Operativa. Modelos deterministicos y estocasticos.

Editorial Centro de Estudios Ramon Areces.

```
QueueingModel.i_MM1KK.
```

WWs.o_MM1KK 321

```
## See example 10.13 in reference [Sixto2004] for more details.
## create input parameters
i_mm1kk <- NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)

## Build the model
o_mm1kk <- QueueingModel(i_mm1kk)

## Returns the WWs
WWs(o_mm1kk)</pre>
```

Index

*Topic B_erlang	VTq.o_MM1KK, 258
B_erlang,9	W.o_MM1KK, 272
*Topic C_erlang	Wq.o_MM1KK, 300
C_erlang, 27	Wqq.o_MM1KK, 311
*Topic Closed Jackson Network	WWs, 319
CheckInput.i_CJN, 11	WWs.o_MM1KK, 320
Inputs.o_CJN, 29	*Topic M/M/1/K
L.o_CJN, 46	CheckInput.i_MM1K, 16
Lk.o_CJN, 72	Inputs.o_MM1K,35
NewInput.CJN, 100	L.o_MM1K, 52
QueueingModel.i_CJN, 131	Lq.o_MM1K, 80
ROk.o_CJN, 164	Lqq.o_MM1K,91
summary.o_CJN, 171	NewInput.MM1K, 107
Throughput.o_CJN, 188	Pn.o_MM1K, 120
Throughputk.o_CJN, 216	QueueingModel.i_MM1K, 137
Throughputn.o_CJN, 223	RO.o_MM1K, 149
W.o_CJN, 266	summary.o_MM1K, 177
Wk.o_CJN, 291	Throughput.o_MM1K, 193
*Topic CompareQueueingModels	VN.o_MM1K, 227
CompareQueueingModels, 26	VNq.o_MM1K, 238
*Topic Engset	VT.o_MM1K, 249
Engset, 28	VTq.o_MM1K, 257
*Topic M/M/1/K/K	W.o_MM1K, 271
CheckInput.i_MM1KK, 17	Wq.o_MM1K, 299
Inputs.o_MM1KK,36	Wqq.o_MM1K, 310
L.o_MM1KK, 53	*Topic M/M/1
Lq.o_MM1KK, 81	CheckInput.i_MM1, 15
Lqq.o_MM1KK, 92	Inputs.o_MM1,34
NewInput.MM1KK, 108	L.o_MM1, 51
Pn.o_MM1KK, 121	Lq, 78
QueueingModel.i_MM1KK, 138	Lq.o_MM1, 79
RO.o_MM1KK, 150	Lqq, 89
SP, 169	Lqq.o_MM1, 90
SP.o_MM1KK, 170	NewInput.MM1, 106
summary.o_MM1KK, 178	Pn.o_MM1, 119
Throughput.o_MM1KK, 194	QueueingModel.i_MM1,136
VN.o_MM1KK, 228	RO.o_MM1, 148
VNq.o_MM1KK, 239	summary.o_MM1, 176
VT.o_MM1KK, 250	Throughput.o_MM1, 192

VN.o_MM1, 226	Wqq.o_MMInf, 317
VNq, 236	*Topic M/M/c/K/K
VNq.o_MM1, 237	CheckInput.i_MMCKK, 21
VT.o_MM1, 248	Inputs.o_MMCKK,40
VTq, 255	L.o_MMCKK, 57
VTq.o_MM1, 256	Lq.o_MMCKK, 85
W.o_MM1, 270	Lqq.o_MMCKK, 96
Wq, 297	NewInput.MMCKK, 112
Wq.o_MM1, 298	Pn.o_MMCKK, 125
Wqq, 308	QueueingModel.i_MMCKK, 142
Wqq.o_MM1, 309	RO.o_MMCKK, 154
Topic M/M/Infinite/K/K	summary.o_MMCKK, 182
<pre>CheckInput.i_MMInfKK, 24</pre>	Throughput.o_MMCKK, 198
Inputs.o_MMInfKK,43	VN.o_MMCKK, 232
L.o_MMInfKK, 60	VNq.o_MMCKK, 243
Lq.o_MMInfKK,88	VTq.o_MMCKK, 262
Lqq.o_MMInfKK,99	W.o_MMCKK, 276
NewInput.MMInfKK, 115	Wq.o_MMCKK, 304
Pn.o_MMInfKK, 128	Wqq.o_MMCKK, 315
QueueingModel.i_MMInfKK, 145	*Topic M/M/c/K/m
RO.o_MMInfKK, 157	CheckInput.i_MMCKM, 22
summary.o_MMInfKK, 185	Inputs.o_MMCKM, 41
Throughput.o_MMInfKK,201	L.o_MMCKM, 58
VN.o_MMInfKK, 235	Lq.o_MMCKM, 86
VNq.o_MMInfKK, 246	Lqq.o_MMCKM, 97
VT.o_MMInfKK, 254	NewInput.MMCKM, 113
VTq.o_MMInfKK, 264	Pn.o_MMCKM, 126
W.o_MMInfKK, 279	QueueingModel.i_MMCKM, 143
Wq.o_MMInfKK, 307	RO.o_MMCKM, 155
Wqq.o_MMInfKK, 318	summary.o_MMCKM, 183
Topic M/M/Infinite	Throughput.o_MMCKM, 199
<pre>CheckInput.i_MMInf, 23</pre>	VN.o_MMCKM, 233
Inputs.o_MMInf,42	VNq.o_MMCKM, 244
L.o_MMInf, 59	W.o_MMCKM, 277
Lq.o_MMInf,87	Wq.o_MMCKM, 305
Lqq.o_MMInf, 98	Wqq.o_MMCKM, 316
NewInput.MMInf, 114	*Topic M/M/c/K
Pn.o_MMInf, 127	CheckInput.i_MMCK, 20
QueueingModel.i_MMInf, 144	Inputs.o_MMCK, 39
RO.o_MMInf, 156	L.o_MMCK, 56
summary.o_MMInf, 184	Lq.o_MMCK, 84
Throughput.o_MMInf, 200	Lqq.o_MMCK, 95
VN.o_MMInf, 234	NewInput.MMCK, 111
VNq.o_MMInf, 245	Pn.o_MMCK, 124
VT.o_MMInf, 253	QueueingModel.i_MMCK, 141
VTq.o_MMInf, 263	RO.o_MMCK, 153
W.o_MMInf, 278	summary.o_MMCK, 181
Wq.o_MMInf, 306	Throughput.o_MMCK, 197

VN.o_MMCK, 231	Lc.o_MCCN, 63
VNq.o_MMCK, 242	Lck.o_MCCN, 68
VTq.o_MMCK, 261	Lk.o_MCCN, 74
W.o_MMCK, 275	NewInput.MCCN, 102
Wq.o_MMCK, 303	QueueingModel.i_MCCN, 132
Wqq.o_MMCK, 314	ROck.o_MCCN, 159
*Topic M/M/c/c	ROk.o_MCCN, 165
CheckInput.i_MMCC, 19	summary.o_MCCN, 172
Inputs.o_MMCC, 38	Throughput.o_MCCN, 189
L.o_MMCC, 55	Throughputc.o_MCCN, 204
Lq.o_MMCC, 83	Throughputck.o_MCCN, 209
Lqq.o_MMCC, 94	Throughputcn, 213
NewInput.MMCC, 110	Throughputcn.o_MCCN, 214
Pn.o_MMCC, 123	Throughputk.o_MCCN, 217
QueueingModel.i_MMCC, 140	W.o_MCCN, 267
RO.o_MMCC, 152	Wc.o_MCCN, 282
summary.o_MMCC, 180	Wck.o_MCCN, 287
Throughput.o_MMCC, 196	Wk.o_MCCN, 293
VN.o_MMCC, 230	*Topic MultiClass Mixed Network
VNq.o_MMCC, 241	CheckInput.i_MCMN, 13
VT.o_MMCC, 252	Inputs.o_MCMN, 32
VTq.o_MMCC, 260	L.o_MCMN, 48
W.o_MMCC, 274	Lc.o_MCMN, 64
Wq.o_MMCC, 302	Lck.o_MCMN, 69
Wqq.o_MMCC, 313	Lk.o_MCMN, 75
*Topic M/M/c	NewInput.MCMN, 103
CheckInput.i_MMC, 18	QueueingModel.i_MCMN, 134
Inputs.o_MMC, 37	ROck.o_MCMN, 160
L.o_MMC, 54	ROk.o_MCMN, 166
Lq.o_MMC, 82	summary.o_MCMN, 174
Lqq.o_MMC, 93	Throughput.o_MCMN, 190
NewInput.MMC, 109	Throughputc.o_MCMN, 205
Pn.o_MMC, 122	Throughputck.o_MCMN,210
QueueingModel.i_MMC, 139	Throughputk.o_MCMN, 219
RO.o_MMC, 151	W.o_MCMN, 268
summary.o_MMC, 179	Wc.o_MCMN, 283
Throughput.o_MMC, 195	Wck.o_MCMN, 288
VN.o_MMC, 229	Wk.o_MCMN, 294
VNq.o_MMC, 240	*Topic MultiClass Open Network
VT.o_MMC, 251	CheckInput.i_MCON, 14
VTq.o_MMC, 259	Inputs.o_MCON, 33
W.o_MMC, 273	$L.o_MCON, 50$
Wq.o_MMC, 301	Lc.o_MCON, 65
Wqq.o_MMC, 312	Lck.o_MCON, 70
*Topic MultiClass Closed Network	Lk.o_MCON, 76
CheckInput.i_MCCN, 12	NewInput.MCON, 105
Inputs.o_MCCN, 31	QueueingModel.i_MCON, 135
L.o_MCCN, 47	ROck.o_MCON, 161

ROk.o_MCON, 167	ROk, 162
summary.o_MCON, 175	*Topic Queueing Network
Throughput.o_MCON, 191	Throughputk, 215
Throughputc.o_MCON, 207	Throughputn, 222
Throughputck.o_MCON, 211	Wk, 290
Throughputk.o_MCON, 220	*Topic queueing
W.o_MCON, 269	queueing-package, 8
Wc.o_MCON, 284	queuerng package, o
Wck.o_MCON, 289	B_erlang, 9, 27, 28
WK. 0_MCON, 289	
*Topic MultiClass Queueing Models	C_erlang, <i>10</i> , 27
Lck, 66	CheckInput, 10
*Topic MultiClass Queueing	CheckInput.i_CJN, 11, 132, 189, 217, 224
* Topic With Class Queueing Networks	CheckInput.i_MCCN, 12, 133, 190, 205, 210,
	214, 218
ROck, 158 The Multi-Class Oneveing Nativents	CheckInput.i_MCMN, 13, 134, 191, 206, 211,
*Topic MultiClass Queueing Network	219
Lc, 62	CheckInput.i_MCON, 14, 135, 192, 207, 212,
Throughputc, 203	220
Throughputck, 208	CheckInput.i_MM1, 11, 15, 107, 136, 193
Wc, 281	CheckInput.i_MM1K, 11, 16, 107, 137, 194
Wck, 286	CheckInput.i_MM1KK, 11, 17, 108, 138, 195
*Topic Open Jackson Network	CheckInput.i_MMC, 11, 18, 109, 139, 196
CheckInput.i_OJN, 25	CheckInput.i_MMCC, 11, 19, 110, 140, 197
Inputs.o_OJN, 44	CheckInput.i_MMCK, 11, 20, 111, 141, 198
L.o_OJN, 61	CheckInput.i_MMCKK, 11, 21, 112, 142, 199
Lk.o_OJN, 77	CheckInput.i_MMCKM, 11, 22, 113, 143, 200
NewInput.OJN, 116	CheckInput.i_MMInf, 11, 23, 114, 144, 200
Pn.o_OJN, 129	CheckInput.i_MMInfKK, 11, 24, 115, 145, 201
QueueingModel.i_OJN, 146	CheckInput.i_OJN, 11, 25, 146, 202, 222
ROk.o_OJN, 168	CompareQueueingModels, 26
summary.o_OJN, <u>186</u>	CompareQueueingModels2
Throughput.o_OJN, 202	(CompareQueueingModels), 26
Throughputk.o_OJN, 221	(
W.o_OJN, 280	Engset, 28
Wk.o_OJN, 296	•
*Topic Queueing Models	Inputs, 28
CheckInput, 10	Inputs.o_CJN, 29, 29
Inputs, 28	Inputs.o_MCCN, 29, 31
L, 45	Inputs.o_MCMN, 29, 32
Lk, 71	Inputs.o_MCON, 29, 33
Pn, 118	Inputs.o_MM1, 29, 34
QueueingModel, 130	Inputs.o_MM1K, 29, 35
RO, 147	Inputs.o_MM1KK, 29, 36
Throughput, 187	Inputs.o_MMC, 29, 37
VN, 225	Inputs.o_MMCC, 29, 38
VT, 247	Inputs.o_MMCK, 29, 39
W, 265	Inputs.o_MMCKK, 29, 40
*Topic Queueing Networks	Inputs.o_MMCKM, 29, 41

Inputs.o_MMInf, 29, 42	Lqq.o_MMC, 89, 93
Inputs.o_MMInfKK, 29, 43	Lqq.o_MMCC, 89, 94
Inputs.o_OJN, 29, 44	Lqq.o_MMCK, 89, 95
, , ,	Lqq.o_MMCKK, 89, 96
L, 45	Lqq.o_MMCKM, 90, 97
L.o_CJN, <i>46</i> , 46	Lqq.o_MMInf, 90, 98
L.o_MCCN, 46, 47	Lqq.o_MMInfKK, 90, 99
L.o_MCMN, 46, 48	, ,
L.o_MCON, 46, 50	NewInput.CJN, 11, 12, 30, 100, 217, 224
L.o_MM1, <i>46</i> , 51	NewInput.MCCN, 13, 31, 102, 190, 205, 210,
L.o_MM1K, <i>46</i> , <i>5</i> 2	214, 218
L.o_MM1KK, <i>46</i> , 53	NewInput.MCMN, 14, 32, 103, 191, 206, 211,
L.o_MMC, 46, 54	219
L.o_MMCC, 46, 55	NewInput.MCON, 15, 33, 105, 192, 207, 212,
L.o_MMCK, <i>46</i> , <i>56</i>	220
L.o_MMCKK, <i>46</i> , <i>57</i>	NewInput.MM1, 16, 34, 35, 106, 193
L.o_MMCKM, <i>46</i> , 58	NewInput.MM1K, 16, 17, 35, 107, 194
L.o_MMInf, <i>46</i> , 59, <i>156</i>	NewInput.MM1KK, 17, 18, 36, 108, 195
L.o_MMInfKK, <i>46</i> , 60	NewInput.MMC, 18, 37, 109, 196
L.o_OJN, <i>46</i> , 61	NewInput.MMCC, 19, 38, 110, 197
Lc, 62	NewInput.MMCK, 20, 39, 111, 198
Lc.o_MCCN, 62, 63	NewInput.MMCKK, 21, 40, 112, 199
Lc.o_MCMN, 62, 64	NewInput.MMCKM, 22, 41, 113, 200
Lc.o_MCON, 62, 65	NewInput.MMInf, 23, 42, 114, 200
Lck, 66	NewInput.MMInfKK, 24, 43, 115, 201
Lck.o_MCCN, 67, 68	NewInput.OJN, 25, 44, 116, 189, 202, 222
Lck.o_MCMN, 67, 69	NewInput2.CJN (NewInput.CJN), 100
Lck.o_MCON, 67, 70	NewInput2.OJN (NewInput.OJN), 116
Lk, 71	NewInput3.CJN (NewInput.CJN), 100
Lk.o_CJN, 72, 72	NewInput3.OJN (NewInput.OJN), 116
Lk.o_MCCN, 72, 74	
Lk.o_MCMN, 72, 75	Pn, 118
Lk.o_MCON, 72, 76	Pn.o_MM1, <i>118</i> , 119
Lk.o_0JN, 72, 77	Pn.o_MM1K, <i>118</i> , 120
Lq, 78	Pn.o_MM1KK, <i>118</i> , 121
Lq.o_MM1, 79, 79	Pn.o_MMC, <i>118</i> , 122
Lq.o_MM1K, <i>79</i> , 80	Pn.o_MMCC, <i>119</i> , 123
Lq.o_MM1KK, 79, 81	Pn.o_MMCK, <i>118</i> , 124
Lq.o_MMC, 79, 82	Pn.o_MMCKK, <i>118</i> , 125
Lq.o_MMCC, 79, 83	Pn.o_MMCKM, <i>119</i> , 126
Lq.o_MMCK, 79, 84	Pn.o_MMInf, <i>119</i> , 127
Lq.o_MMCKK, 79, 85	Pn.o_MMInfKK, <i>119</i> , 128
Lq.o_MMCKM, 79, 86	Pn.o_OJN, <i>119</i> , 129
Lq.o_MMInf, <i>79</i> , 87	
Lq.o_MMInfKK, 79,88	Qn (Pn), 118
Lqq, 89	Qn.o_MM1, <i>118</i>
Lqq.o_MM1, 89, 90	Qn.o_MM1 (Pn.o_MM1), 119
Lqq.o_MM1K, 89, 91	Qn.o_MM1K, 118
Lqq.o_MM1KK, 89, 92	Qn.o_MM1K (Pn.o_MM1K), 120

Qn.o_MM1KK, 118	QueueingModel.i_MMCKK, 57, 86, 96, 126,	
Qn.o_MM1KK (Pn.o_MM1KK), 121	131, 142, 154, 182, 199, 232, 243,	
Qn.o_MMC, 118	262, 276, 304, 315	
Qn.o_MMC (Pn.o_MMC), 122	QueueingModel.i_MMCKM, 58, 87, 97, 127,	
Qn.o_MMCC, 119	131, 143, 155, 183, 200, 233, 244,	
Qn.o_MMCC (Pn.o_MMCC), 123	277, 305, 316	
Qn.o_MMCK, 118	QueueingModel.i_MMInf, 59, 87, 98, 128,	
Qn.o_MMCK (Pn.o_MMCK), 124	131, 144, 156, 184, 200, 234, 245,	
Qn.o_MMCKK, 118	253, 263, 278, 306, 317	
Qn.o_MMCKK (Pn.o_MMCKK), 125	QueueingModel.i_MMInfKK, 60, 88, 99, 129,	
Qn.o_MMCKM, 119	131, 145, 157, 185, 201, 235, 246,	
Qn.o_MMCKM (Pn.o_MMCKM), 126	254, 264, 279, 307, 318	
	QueueingModel.i_OJN, 61, 78, 117, 130, 131,	
Qn.o_MMInf, 119	146, 169, 186, 202, 222, 280, 297	
Qn.o_MMInf (Pn.o_MMInf), 127	, , , , , ,	
Qn.o_MMInfKK, 119	RO, 147	
Qn.o_MMInfKK (Pn.o_MMInfKK), 128	RO.o_MM1, <i>147</i> , 148	
queueing (queueing-package), 8	RO.o_MM1K, <i>147</i> , 149	
queueing-package, 8	RO.o_MM1KK, <i>147</i> , 150	
QueueingModel, 26, 130	RO.o_MMC, <i>147</i> , 151	
QueueingModel.i_CJN, 47, 73, 101, 131, 164,	RO. o_MMCC, <i>147</i> , 152	
172, 189, 217, 224, 266, 292	RO.o_MMCK, <i>147</i> , 153	
QueueingModel.i_MCCN, 48, 64, 68, 74, 103,	RO. o_MMCKK, <i>147</i> , 154	
132, 160, 165, 173, 190, 205, 210,	RO. o_MMCKM, <i>147</i> , 155	
214, 218, 268, 283, 287, 293	RO. o_MMInf, 147, 156	
QueueingModel.i_MCMN, 49, 65, 69, 75, 104,	RO.o_MMInfKK, <i>147</i> , 157	
134, 161, 167, 174, 191, 206, 211,	ROck, 158	
219, 269, 284, 289, 294	ROCK. o_MCCN, <i>159</i> , 159	
QueueingModel.i_MCON, 50, 66, 71, 77, 106,	ROck.o_MCMN, <i>159</i> , 160	
131, 135, 162, 168, 175, 192, 207,	ROCK. 0_MCON, 159, 161	
212, 220, 270, 285, 290, 295	ROK, 162	
QueueingModel.i_MM1, 51, 80, 90, 120, 131,	ROK, 102 ROK. o_CJN, 163, 164	
136, 148, 176, 193, 226, 237, 248,	ROK. O_CSN, 103, 104 ROK. O_MCCN, 163, 165	
256, 271, 299, 309		
QueueingModel.i_MM1K, <i>52</i> , <i>53</i> , <i>81</i> , <i>91</i> , <i>121</i> ,	ROK. o_MCMN, 163, 166	
131, 137, 149, 177, 194, 227, 228,	ROK. o_MCON, 163, 167	
238, 249, 257, 272, 300, 310	ROk.o_OJN, <i>163</i> , 168	
QueueingModel.i_MM1KK, 82, 92, 122, 131,	SP, 169	
138, 150, 171, 178, 195, 239, 250,	SP.o_MM1KK, <i>170</i> , 170	
258, 273, 300, 311, 320	summary.o_CJN, 170	
QueueingModel.i_MMC, 54, 83, 93, 123, 131,	summary.o_CSN, 171 summary.o_MCCN, 172	
139, 151, 179, 196, 229, 240, 251,	summary.o_MCMN, 174	
259, 274, 301, 312	·	
	summary.o_MCON, 175	
QueueingModel.i_MMCC, 55, 84, 94, 124, 131,	summary.o_MM1, 176	
140, <i>152</i> , <i>180</i> , <i>197</i> , <i>230</i> , <i>241</i> , <i>252</i> ,	summary.o_MM1K, 177	
260, 274, 302, 313	summary.o_MM1KK, 178	
QueueingModel.i_MMCK, 56, 85, 95, 125, 131,	summary.o_MMC, 179	
141, 153, 181, 198, 231, 242, 261,	summary.o_MMCC, 180	
275, 303, 314	summary.o_MMCK, 181	

summary.o_MMCKK, 182	VN.o_MMCKM, 225, 233
summary.o_MMCKM, 183	VN.o_MMInf, 225, 234
summary.o_MMInf, 184	VN.o_MMInfKK, <i>225</i> , 235
summary.o_MMInfKK, 185	VNq, 236
summary.o_OJN, 186	VNq.o_MM1, <i>236</i> , 237
	VNq.o_MM1K, <i>236</i> , 238
Throughput, 187	VNq.o_MM1KK, <i>236</i> , 239
Throughput.o_CJN, <i>188</i> , 188	$VNq.o_MMC, 240$
Throughput.o_MCCN, <i>188</i> , 189	VNq.o_MMCC, 236, 241
Throughput.o_MCMN, <i>188</i> , 190	VNq.o_MMCK, 236, 242
Throughput.o_MCON, <i>188</i> , 191	VNq.o_MMCKK, 236, 243
Throughput.o_MM1, <i>187</i> , 192	VNq.o_MMCKM, 236, 244
Throughput.o_MM1K, <i>187</i> , 193	VNq.o_MMInf, 236, 245
Throughput.o_MM1KK, <i>187</i> , 194	VNq.o_MMInfKK, 236, 246
Throughput.o_MMC, <i>187</i> , 195	VT, 247
Throughput.o_MMCC, 187, 196	VT.o_MM1, 247, 248
Throughput.o_MMCK, <i>187</i> , 197	VT.o_MM1K, 247, 249
Throughput.o_MMCKK, <i>187</i> , 198	VT.o_MM1KK, 247, 250
Throughput.o_MMCKM, <i>187</i> , 199	VT.o_MMC, 247, 251
Throughput.o_MMInf, 188, 200	VT.o_MMCC, 247, 252
Throughput.o_MMInfKK, 187, 201	VT.o_MMInf, 247, 253
Throughput.o_OJN, 188, 202	VT.o_MMInfKK, 247, 254
Throughputc, 203	VTq, 255
Throughputc.o_MCCN, 204, 204	VTq.o_MM1, 255, 256
Throughputc.o_MCMN, 205	VTq.o_MM1K, 255, 257
Throughputc.o_MCON, 204, 207	VTq.o_MM1KK, 255, 258
Throughputck, 208	VTq.o_MMC, 255, 259
Throughputck.o_MCCN, 208, 209	VTq.o_MMCC, 255, 260
Throughputck.o_MCMN, 208, 210	VTq.o_MMCK, 255, 261
Throughputck.o_MCON, 208, 211	VTq.o_MMCKK, 255, 262
Throughputcn, 213	VTq.o_MMInf, 255, 263
Throughputcn.o_MCCN, 213, 214	VTq.o_MMInfKK, 255, 264
Throughputk, 215	719.0_111111111, 255, 261
Throughputk.o_CJN, 216, 216	W, 265
Throughputk.o_MCCN, 216, 217	W.o_CJN, 266
Throughputk.o_MCMN, <i>216</i> , 219	W.o_MCCN, 265, 267
Throughputk.o_MCON, 216, 220	W.o_MCMN, 265, 268
Throughputk.o_OJN, 216, 221	W.o_MCON, 265, 269
Throughputn, 222	W.o_MM1, 265, 270
Throughputn.o_CJN, 223, 223	W.o_MM1K, 265, 271
771 oughpuen o_0071, 220, 220	W.o_MM1KK, 265, 272
VN, 225	W.o_MMC, 265, 273
VN.o_MM1, 225, 226	W.o_MMCC, 265, 274
VN.o_MM1K, 225, 227	W.o_MMCK, 265, 275
VN.o_MM1KK, 225, 228	W.o_MMCKK, 265, 276
VN.o_MMC, 225, 229	W.o_MMCKM, 265, 277
VN.o_MMCC, 225, 230	W.o_MMInf, 265, 278
VN.o_MMCK, 225, 231	W.o_MMInfKK, 265, 279
VN.o_MMCKK, 225, 232	W.o_OJN, 265, 280
	, ===, ===

```
Wc, 281
Wc.o_MCCN, 282, 282
Wc.o_MCMN, 282, 283
Wc.o_MCON, 282, 284
Wck, 286
Wck.o_MCCN, 286, 287
Wck.o_MCMN, 286, 288
Wck.o_MCON, 286, 289
Wk, 290
Wk.o_CJN, 291, 291
Wk.o_MCCN, 291, 293
Wk.o_MCMN, 291, 294
Wk.o_MCON, 291, 295
Wk.o_OJN, 291, 296
Wq, 297
Wq.o_MM1, 298, 298
Wq.o_MM1K, 298, 299
Wq.o_MM1KK, 298, 300
Wq.o_MMC, 298, 301
Wq.o_MMCC, 298, 302
Wq.o_MMCK, 298, 303
Wq.o_MMCKK, 298, 304
\mathsf{Wq.o\_MMCKM}, 298, 305
Wq.o_MMInf, 298, 306
Wq.o_MMInfKK, 298, 307
Wqq, 308
Wqq.o_MM1, 308, 309
Wqq.o_MM1K, 308, 310
Wqq.o_MM1KK, 308, 311
Wqq.o_MMC, 308, 312
Wqq.o_MMCC, 308, 313
Wqq.o_MMCK, 308, 314
Wqq.o_MMCKK, 308, 315
Wqq.o_MMCKM, 309, 316
Wqq.o_MMInf, 309, 317
Wqq.o_MMInfKK, 309, 318
WWs, 319
WWs.o_MM1KK, 319, 320
```