Falconn++: A locality-sensitive filtering approach for approximate nearest neighbor search

Ninh Pham, Tao Liu University of Auckland

Nearest neighbor search in sphere

- Nearest neighbor search (NNS) in a unit sphere:
 - Given a data set X of size n and a query q in d dimensional unit sphere, return the point $x \in X$ such that the dist(q, x) = ||x q|| is minimum.

 \mathbf{x}_1 is the top-1.

Challenges of NNS

- Curse of dimensionality:
 - Given a polynomial indexing space $\mathbf{n}^{O(1)}\mathbf{d}^{O(1)}$, existing a sublinear time algorithm to solve exact NNS refutes SETH [Wil18].
 - Indexing space or query time must be exponential in d.
- Classic solutions: KD Tree

Space: O(n)

Range query: $O(dn^{1-1/d})$

Examine nearby points first: Explore the branch of the tree that is closest to the query point first.

Challenges of NNS

- Curse of dimensionality:
 - Given a polynomial indexing space $\mathbf{n}^{O(1)}\mathbf{d}^{O(1)}$, existing a sublinear time algorithm to solve exact NNS refutes SETH [Wil18].
 - Indexing space or query time must be exponential in **d**.
- Classic solutions: Voronoi decomposition

Space: $O(n^{O(d)})$

Time: $O(d^{O(1)}log n)$

Approximate NNS

- Approximate NNS (ANNS):
 - Returns x' such that $dist(q, x') \le c \ dist(q, x)$
- Locality-sensitive hashing (LSH) [IM98]:

 Theoretical guarantee to find x'• Sublinear query time $O(n^{\rho})$, $\rho \approx 1/c^2$ Subquadratic indexing space $O(n^{1+\rho})$ But...

Approximate NNS

- Approximate NNS (ANNS):
 - Seek high empirical search recalls for top-k NNS (e.g. tiny c)
- Data-dependent approaches surpass LSH.

Voronoi Cells

Codebooks

Data

Falconn++

- A practical locality-sensitive filtering approach
 - Lower query time complexity than Falconn, an optimal LSH scheme on angular distance.
 - Empirical higher recall-speed tradeoffs than Falconn
 - Competitive with HNSW on high recall regimes

Locality-sensitive hashing (LSH)

- Definition [IM98]:
 - Given a distance function dist(.,.) and positive values $\mathbf{r}, \mathbf{c}, \mathbf{p}_1, \mathbf{p}_2$ where $\mathbf{p}_1 > \mathbf{p}_2, \mathbf{c} > 1$. A family of functions \mathbf{H} is called $(\mathbf{r}, \mathbf{cr}, \mathbf{p}_1, \mathbf{p}_2)$ -sensitive if for uniformly chosen $\mathbf{h} \in \mathbf{H}$ and all $\mathbf{x}, \mathbf{y} \in \mathbf{R}^d$:
 - o If $dist(x, y) \le r$ then $Pr[h(x) = h(y)] \ge p_1$; (close points)
 - o If $dist(x, y) \ge cr$ then $Pr[h(x) = h(y)] \le p_2$. (far away points)

Hash tables construction

Parameter settings:

$$k = \ln(n)/\ln(1/p_2)$$

$$\rho = \ln(1/p_1)/\ln(1/p_2)$$

$$L = n^{\rho}$$

$$g_{j}(q) = (h_{j}^{1}(q), h_{j}^{2}(q), ..., h_{j}^{k}(q)), h \in H$$

Space:
$$O(dn + n^{1+\rho})$$

Hash tables lookup

Time: Hashing time $+ O(dn^{\rho})$

Falconn [AIL+15]

• Construct a spherical Voronoi using \mathbf{D} random vectors $\mathbf{r}_i \sim \mathbf{N}^d(\mathbf{0}, \mathbf{1})$

• **x** and **q** collide if sharing the closest or furthest random vector.

• Assume $\mathbf{r}_1 = \arg \max_{\mathbf{r}_i} |\mathbf{q}^{\top} \mathbf{r}_i|$,

$$h(\mathbf{q}) = \begin{cases} \mathbf{r}_1 \text{ if } \operatorname{sgn}(\mathbf{q}^{\top} \mathbf{r}_1) \geq 0, \\ -\mathbf{r}_1 \text{ otherwise}. \end{cases}$$

- Example:
 - $h(x) = h(z) = h(q) = r_1$
 - $h(y) = -r_2$

Falconn's takeaways

• Given **D** random vectors, if dist(x, q) = r, then

$$\mathbf{Pr}\left[h(\mathbf{x}) = h(\mathbf{q})\right] \approx D^{-\frac{1}{4/r^2 - 1}}$$

• Given a small c, (r, cr, p_1, p_2) -sensitive Falconn has

$$\rho \approx \frac{4/c^2 r^2 - 1}{4/r^2 - 1} \approx 1/c^2$$

• Lower bound [OZW14]: $\rho \ge 1/c^2 - o(1)$ if $p_2 \ge 1/n$

Practical multi-probe Falconn

- To reduce **L**, probe the bucket of the next closest or furthest random vectors
 - Require a large qProbes
 - Compute up to **0.1n** distances to achieve recall of 90% in Glove300
- Example:
 - \mathbf{q} is next closest to $-\mathbf{r}_2$
 - The blue wedge is the next probe

Geometric intuition

• Use random projections to find x s.t. x^Tq is maximum.

Geometric intuition

• Use a large number of random projections.

CEOs [Pha21]

• Use a large number of random projections.

CEOs: Dimensionality reduction

Among 5 random vectors $\mathbf{r_i}$, we only use $\mathbf{r_1}$ to estimate dot products.

0.1

4	-2	-4	-3	-3
3	-1	-3	-4	-4
1	-3	-2	-3	-3

 \mathbf{r}_2 \mathbf{r}_3 \mathbf{r}_4 \mathbf{r}_5

9 4	-8	-3	0
-----	----	----	---

Concomitants of Extreme Order statistics

- -2
- -3

Assume $\| \mathbf{q} \| = 1$

Random projections: Using **D** random vectors $\mathbf{r}_i \sim \mathbf{N}^{\mathbf{d}}(0, 1)$, we have **D** bivariate samples (Q_i, X_i) from N(0, 0, 1, ||x||, $\mathbf{x}^{T}\mathbf{q}$) where $\mathbf{Q}_{i} = \mathbf{q}^{T}\mathbf{r}_{i}$ and $\mathbf{X}_{i} = \mathbf{x}^{T}\mathbf{r}_{i}$

Concomitants of Extreme Order statistics

Random projections: Using **D** random vectors $\mathbf{r}_i \sim N^d(0, 1)$, we have **D** bivariate samples $(\mathbf{Q}_i, \mathbf{X}_i)$ from $N(0, 0, 1, || \mathbf{x} ||, \mathbf{x}^T \mathbf{q})$ where $\mathbf{Q}_i = \mathbf{q}^T \mathbf{r}_i$ and $\mathbf{X}_i = \mathbf{x}^T \mathbf{r}_i$

Order statistics: Sort **D** pairs (Q_i, X_i) by **Q**-value, we form the order statistics where $Q_{(1)}$ is the first order statistics and $X_{[1]}$ is the concomitant of the first order statistics.

Concomitants of Extreme Order statistics

Concomitants of

Extreme Order statistics

$$X_{[2]} X_{[3]} X_{[1]} X_{[5]} X_{[4]}$$

Assume $\| \mathbf{q} \| = 1$

$$= \mathbf{q}^{\mathrm{T}}\mathbf{r}_{\mathrm{i}}$$

$$\mathbf{Q}_{i} = \mathbf{q}^{T} \mathbf{r}_{i}$$

$$\mathbf{Q}_{i} = \mathbf{q}^{T} \mathbf{r}_{i}$$

$$Q_i = q^1$$

$$Q_i = q^T r_i$$

$$Q_{(2)} Q_{(3)} Q_{(1)} Q_{(5)} Q_{(4)}$$

Extreme Order statistics

Random projections: Using **D** random vectors $\mathbf{r}_i \sim \mathbf{N}^{\mathbf{d}}(0, 1)$, we have **D** bivariate samples (Q_i, X_i) from N(0, 0, 1, ||x||, $\mathbf{x}^{T}\mathbf{q}$) where $\mathbf{Q}_{i} = \mathbf{q}^{T}\mathbf{r}_{i}$ and $\mathbf{X}_{i} = \mathbf{x}^{T}\mathbf{r}_{i}$

Order statistics: Sort D pairs (Q_i, X_i) by Qvalue, we form the order statistics where $Q_{(1)}$ is the first order statistics and $X_{[1]}$ is the concomitant of the first order statistics.

Extreme order statistics: When **D** is sufficiently large, $Q_{(1)}$ is the extreme order statistics and $X_{[1]}$ is the concomitant of the extreme order statistics.

Theory of Concomitants of Extreme Order statistics [DG74]

Concomitants of

Extreme Order statistics

$$\mathbf{x}_{i} - \mathbf{x}^{T}\mathbf{r}_{i}$$

0.1

$$\mathbf{Q}_{\mathbf{i}} = \mathbf{q}^{\mathsf{T}} \mathbf{r}_{\mathbf{i}}$$

Assume
$$|| q || = 1$$

Extreme Order statistics

Extreme order statistics: $Q_{(1)}$ is the maximum variable among **D** random variables $Q_i = q^T r_i \sim N(0, 1)$.

Extreme order statistics:

$$E[Q_{(1)}] \approx \sqrt{2ln(D)}, Var[Q_{(1)}] \approx 0$$

Concomitant of extreme order statistics:

$$X_{[1]} \sim N(x^T q \sqrt{2ln(D)}, ||x||^2 - (x^T q)^2)$$

Theory of Concomitants of Extreme Order statistics [DG74]

Concomitants of

Extreme Order statistics

Top $\mathbf{s_0}$ maximum and minimum order statistics: $\mathbf{Q_{(i)}}$ and $\mathbf{Q_{(D-i+1)}}$ where $\mathbf{i} = 1, \dots, \mathbf{s_0}$

Extreme Order statistics

Extreme order statistics:

$$\begin{split} & E\left[\frac{Q_{(i)}}{Q_{(i)}}\right] \approx \sqrt{2 ln(D)} \\ & E\left[\frac{Q_{(D-i+1)}}{Q_{(D-i+1)}}\right] \approx -\sqrt{2 ln(D)} \end{split}$$

Concomitant of extreme order statistics:

 $X_{[i]}$ and $X_{[D-i+1]}$ are independent asymptotically.

Connection to multi-probe Falconn

- Falconn: If $\mathbf{r}_1 = \arg \max_{\mathbf{r}_i} |\mathbf{q}^{\top} \mathbf{r}_i|$,
 - Use \mathbf{r}_1 corresponding to $\mathbf{Q}_{(1)}$ as hash value
 - Use $Q_{(i)}$ and $Q_{(D-i)}$ as probing buckets where $i = 1, ..., s_0$
- CEOs: If $\mathbf{r}_1 = \operatorname{arg\,max}_{\mathbf{r}_i} |\mathbf{q}^{\top} \mathbf{r}_i|$,
 - Use $\mathbf{X}_{[1]} = \mathbf{x}^{\mathrm{T}} \mathbf{r}_{1}$ to estimate $\mathbf{x}^{\mathrm{T}} \mathbf{q}$
 - Use $X_{[i]}$ and $X_{[D-i]}$ as estimators of x^Tq where $i = 1, ..., s_0$
- Falconn++=Falconn+CEOs

Partition **n** points into **2D** buckets

Scale each bucket by keeping \mathbf{x} with largest $\mathbf{x}^{\mathsf{T}}\mathbf{r}_{\mathsf{i}}$

Falconn++: A locality-sensitive filtering

- A locality-sensitive filtering (LSF) mechanism:
 - Given a distance function dist(.,.) and positive values r, c, q_1 , q_2 where $q_1 > q_2$, c > 1. For an (r, cr, p_1, p_2) -sensitive function h and x, y in h(q):
 - o If $dist(x, q) \le r$ then $Pr[x \text{ is not filtered}] \ge q_1$
 - o If $dist(y, q) \ge cr$ then $Pr[y \text{ is not filtered}] \le q_2$
- Combine LSH and LSF:
 - Pr $[h(x) = h(q), x \text{ is not filtered}] \ge p_1q_1$
 - Pr $[h(y) = h(q), y \text{ is not filtered}] \leq p_2q_2$
- We need $\ln(1/q_1) / \ln(1/q_2) \le \rho \approx 1/c^2$ to achieve a new exponent $\rho' \le \rho$

Falconn++

- Asymptotic property of CEOs:
 - $X_{[1]} \sim N(x^T q \sqrt{2 \ln(D)}, ||x||^2 (x^T q)^2)$
 - $Y_{[1]} \sim N(y^T q \sqrt{2 \ln(D)}, \| y \|^2 (y^T q)^2)$
- Filtering mechanism:
 - Define a threshold $\mathbf{t} = (1 \mathbf{r}^2/2)\sqrt{2\ln(\mathbf{D})}$. For each bucket corresponding to $\mathbf{r_i}$, keep any point \mathbf{x} if $\mathbf{x}^T\mathbf{r_i} \geq \mathbf{t}$. Otherwise, discard it.
 - Note: dist(x, q) = r, then $x^Tq = 1 r^2/2$

Falconn++'s takeaways

• For sufficiently large **D** random projections, c > 1,

• If
$$\|\mathbf{x} - \mathbf{q}\| \le r$$
, then $\Pr[\mathbf{x} \text{ is not filtered}] \ge q_1 = 1/2$;

• If
$$\|\mathbf{y} - \mathbf{q}\| \ge cr$$
, then $\Pr[\mathbf{y} \text{ is not filtered}] \le q_2 = \frac{1}{\gamma\sqrt{2\pi}} \exp(-\gamma^2/2) < q_1 \text{ where}$

$$\gamma = \frac{cr(1-1/c^2)}{\sqrt{4-c^2r^2}} \cdot \sqrt{2\ln D}.$$

• New exponent ρ $\approx 1/(2c^2-2+1/c^2)$

$$\rho' = \frac{\ln{(1/q_1p_1)}}{\ln{(1/q_2p_2)}} \approx \frac{\frac{\ln{2}}{\ln{D}} + \frac{1}{4/r^2 - 1}}{\frac{(1 - 1/c^2)^2}{4/c^2r^2 - 1} + \frac{1}{4/c^2r^2 - 1}}$$

$$\approx \frac{1}{1 + (1 - 1/c^2)^2} \cdot \frac{4/c^2r^2 - 1}{4/r^2 - 1} \leq \rho.$$

Connection to LSF framework [ALRW17]

- Asymmetric LSF frameworks:
 - Apply different filtering conditions on data and query to govern the spacetime tradeoff
 - Let $\mathbf{t_u}$ and $\mathbf{t_q}$ be two different thresholds.
 - Collision: \mathbf{x} and \mathbf{q} pass the filter \mathbf{r}_i with $\Pr[\mathbf{x}^T\mathbf{r}_i \geq \mathbf{t}_u, \mathbf{q}^T\mathbf{r}_i \geq \mathbf{t}_q]$
- Falconn++:
 - Use a sufficiently large **D** to ensure the asymptotic property of CEOs
 - $t_u = (1 r^2/2)\sqrt{2\ln(D)}$, $t_q \approx \sqrt{2\ln(D)}$
 - For $p_2q_2=1/n$, $D=O(n^{\rho'})$, Falconn++ yields $O(n^{\rho'})$ query time where $\rho'\approx 1/(2c^2-2+1/c^2)$ for $r\geq \sqrt{2}$

Practical implementations

- Data-dependent setting:
 - Select a scaling factor $0 < \alpha < 1$ to scale each bucket of size **B** to α **B**
 - o Adapt t to various density
 - o Easy to govern the memory footprint (i.e. # points in a table)
- Multi-probe indexing:
 - For each point **x**, hash it into **iProbes** buckets corresponding the **iProbes** closest or furthest random vectors
 - Scale each bucket of size B to α B/iProbes
- Other heuristics:
 - Pseudo-random rotation $HD_3HD_2HD_1$ to simulate random projections
 - Center the data point **X**
 - Limit scaling: keep $max(k, \alpha B/iProbes)$ points in a bucket

Falconn++: Scaling bucket

- Experiment on Glove 200 with 1.2M points with k = 20:
 - D = 256, 2 combined LSH functions, each table has $4D^2$ buckets
 - Falconn: $qProbes = \{1000, \dots, 20000\}$, Falconn++: $qProbes/\alpha$

Falconn++: Multi-probe indexing

• Observation:

- Overfitting: Large iProbes degrades performance
- **iProbes** = **2D** is as similar as theoretical LSF framework

Setting iProbes:

- $k \approx n \cdot iProbes/4D^2$
- Each bucket has roughly k=20 points, especially sparse buckets
- iProbes = $3:1.2M \cdot 3/2^{18}=16$

Falconn++: Centering data

- Experiment on Glove 200 with $\mathbf{k} = 20$:
 - D = 256, 2 combined LSH functions, $4D^2$ buckets/table, L = 500
 - Falconn++: $\alpha = 0.1$, iProbes = 3, qProbes/ α

Falconn++: Limit scaling & centering

Observations:

- After centering, buckets are more balanced.
- With α = 0.1, iProbes = 3,
 and keep max(k, αB/iProbes)
 points, # points/table ≈ 2.42 n
- Less **qProbes** and hash
 evaluation time than Falconn

• Future improvement:

SimHash signatures to reduce distance computation time

Falconn++ vs. Theoretical LSF

- LSF: Select $\mathbf{t_u}$ s.t. $\mathbf{Pr} \left[\mathbf{x}^{\top} \mathbf{r}_i \geq t_u \right]^2 = \alpha/4D^2$
 - Falconn++: No limit scaling, only centering
 - $iProbes = 1, D = \{128, 256\}, L = 100, 2 \text{ combined LSH/LSF functions}$

Falconn++ vs. FalconnLib

- Glove 300 and Glove 200 with k = 20 and 1 thread:
 - L = 500, D = 256, $\alpha = 0.1$, $iProbes = \{1, 3\}$, $4D^2$ buckets/table
 - Falconn: L = 50 (Glove 300), L = 1210 (Glove 200)

Falconn++ vs Hnsw

- Parameter settings:
 - Hnsw: ef-index = 200, M = 512, vary ef-query
 - Falconn++: D = 256, L = 350, $\alpha = 0.01$, iProbes = 3, vary qProbes

Indexing

Space: **5.4GB**

Hnsw: **13.7 mins**

Falconn++: 1.1 mins

Falconn++ vs Faiss

- Parameter settings:
 - Faiss: m = 256, nlist=1000, 8 bits/centroid, vary probe
 - Falconn++: D = 256, L = 350, $\alpha = 0.01$, iProbes = 3, vary qProbes

Open problem

- Practical LSH & LSF pattern:
 - Existing for Euclidean distance with $\rho = 1/c^2$
- Characterize # random projections D
- ullet Characterize the scaling factor $oldsymbol{lpha}$

