Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 2321 CALIBRATION DATE: 16-Apr-23

SBE 37 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

BATH TEMP (° C)	BATH SAL (PSU)	BATH COND (S/m)	INSTRUMENT OUTPUT (Hz)	INSTRUMENT COND (S/m)	RESIDUAL (S/m)
(0)	(1 00)	(0/111)	0011 01 (112)	00110 (0/111)	(0/111)
22.0000	0.0000	0.00000	2724.06	0.00000	0.00000
1.0000	34.6042	2.95956	5462.58	2.95958	0.00002
4.5000	34.5848	3.26503	5669.71	3.26501	-0.00002
15.0000	34.5442	4.24175	6285.49	4.24174	-0.00001
18.5000	34.5360	4.58518	6487.80	4.58517	-0.00000
24.0000	34.5272	5.14035	6801.76	5.14038	0.00002
29.0000	34.5231	5.65967	7082.44	5.65968	0.00000
32.5000	34.5204	6.03020	7275.85	6.03019	-0.00001

f = Instrument Output(Hz) * sqrt(1.0 + WBOTC * t) / 1000.0

t = temperature (°C); p = pressure (decibars); δ = CTcor; ϵ = CPcor;

Conductivity (S/m) = $(g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$

Residual (Siemens/meter) = instrument conductivity - bath conductivity

