Nur die Aufgaben mit einem \star werden korrigiert.

- 7.1. MC Fragen: Häufungspunkte, Grenzwerte von Funktionen. Wählen Sie die einzige richtige Antwort.
- (a) Sei $D \subset \mathbb{R}$ eine Teilmenge. Welche der folgenden Bedingungen besagt, dass $x_0 \in \mathbb{R}$ ein Häufungspunkt von D ist?
 - $\bigcap x_0 \in D$
 - \bigcirc für jedes $\delta > 0$ gilt $((x_0 \delta, x_0 + \delta) \setminus \{x_0\}) \cap D \neq \emptyset$
 - \bigcirc für jedes $\delta > 0$ gilt $(x_0 \delta, x_0 + \delta) \cap D \neq \emptyset$
 - \bigcirc es gibt eine Folge $(a_n)_{n\geq 1}$ in D mit $\lim_{n\to\infty} a_n = x_0$
- (b) Sei $D \subset \mathbb{R}$ eine Teilmenge. Welche der folgenden Bedingungen besagt *nicht*, dass ∞ ein Häufungspunkt von D ist?
 - \bigcirc für jedes $\varepsilon > 0$ gibt es ein $x \in D$ mit $x^2 > \frac{1}{\varepsilon}$
 - \bigcirc für jedes $M \in \mathbb{N}$ gilt $(M, \infty) \cap D \neq \emptyset$
 - $\bigcirc \sup(D) = \infty$
 - \bigcirc es gibt eine Folge $(a_n)_{n\geq 1}$ in D mit $\lim_{n\to\infty}a_n=\infty$
- (c) Sei $f(x) = \cos(\frac{1}{x})$ für $x \neq 0$. Wählen Sie die richtige Antwort.
 - $\bigcap_{x \to \infty} \lim_{x \to \infty} f(x) = 0$
 - $\bigcap \lim_{x \to \infty} f(x) = 1$
 - $\bigcap \lim_{x \to \infty} f(x) = \infty$
 - $\bigcap_{x\to\infty} f(x)$ existiert nicht
- (d) Sei $g(x) = \frac{\cos(x)-1}{x}$ für $x \neq 0$. Wählen Sie die richtige Antwort.
 - $\bigcap_{x\to 0} \lim_{x\to 0} g(x) = 0$
 - $\bigcirc \lim_{x \to 0} g(x) = 1$
 - $\bigcirc \lim_{x\to 0} g(x) = \infty$
 - $\bigcap_{x\to 0} \lim_{x\to 0} g(x)$ existiert nicht

- 7.2. * Gleichmässige Konvergenz von Potenzreihen I. Sei $\sum_{k\geq 0} c_k x^k$ eine Potenzreihe, die gleichmässig in \mathbb{R} konvergiert. Beweisen Sie, dass ein $N\in\mathbb{N}$ existiert, so dass $c_n=0$ für alle $n\geq N$ ist.
- 7.3. Gleichmässige Konvergenz von Potenzreihen II. Geben Sie je ein Beispiel für eine Potenzreihe $\sum_{k>0} c_k x^k$ mit Konvergenzradius 1 an (mit Beweis), so dass
- \star (a) die Potenzreihe nicht gleichmässig in (-1,1) konvergiert
- (b) die Potenzreihe gleichmässig in (-1,1) konvergiert

Hinweis: Betrachten Sie für (a) eine Potenzreihe, die eine unbeschränkte Funktion darstellt.

7.4. Spezielle Werte von Cosinus und Sinus. Berechnen Sie $\cos(x)$ und $\sin(x)$ für:

(a)
$$x = \frac{\pi}{4}$$

$$\star(\mathbf{b}) \ x = \frac{\pi}{3}$$

(c)
$$x = \frac{\pi}{6}$$

Hinweis: Finden Sie für (b) ein Polynom, das e^{ix} als Nullstelle hat, und bestimmen Sie alle (komplexen) Nullstellen dieses Polynoms.

7.5. Trigonometrische Funktionen I.

- \star (a) Schreiben Sie $\cos(5x)$ als Linearkombination von Produkten von Potenzen von $\sin(x)$ und $\cos(x)$.
- (b) Schreiben Sie $\sin(x)^5$ als Linearkombination von $\sin(kx)$ und $\cos(kx)$, wobei $0 \le k \le 5$ natürliche Zahlen sind.

7.6. Trigonometrische Funktionen II.

(a) Zeigen Sie, dass für alle $z, w \in \mathbb{C}$

$$\sin z - \sin w = 2\sin\left(\frac{z-w}{2}\right)\cos\left(\frac{z+w}{2}\right)$$
$$\cos z - \cos w = -2\sin\left(\frac{z-w}{2}\right)\sin\left(\frac{z+w}{2}\right)$$

- (b) Zeigen Sie, dass sin: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \left[-1, 1\right]$ streng monoton steigend und bijektiv ist.
- (c) Zeigen Sie, dass cos: $[0,\pi] \to [-1,1]$ streng monoton fallend und bijektiv ist.

7.7. Polarkoordinaten in komplexer Form.

- (a) Sei $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ der komplexe Einheitskreis. Beweisen Sie, dass die Funktion cis: $[0, 2\pi) \to S^1$, $x \mapsto e^{ix}$ bijektiv ist.
- (b) Zeigen Sie, dass es für jedes $z \in \mathbb{C}$ mit $z \neq 0$ eindeutige reelle Zahlen r > 0 und $\varphi \in [0, 2\pi)$ gibt, so dass $z = re^{i\varphi}$.
- **7.8. Bogenmass.** Es seien $x \in \mathbb{R}$, $n \in \mathbb{N}^*$ und $z_{n,k} := e^{ikx/n} \in S^1$ für $k = 0, 1, \dots, n$. Ferner sei

$$L_n := \sum_{k=1}^{n} |z_{n,k} - z_{n,k-1}|$$

die Länge des Polygonzuges $z_{n,0}, z_{n,1}, \ldots, z_{n,n}$. Man zeige:

$$L_n = 2n \cdot \left| \sin \left(\frac{x}{2n} \right) \right|$$
 und $\lim_{n \to \infty} L_n = |x|$.

Bemerkung: Für grosse $n \in \mathbb{N}^*$ und für $x \in [0, 2\pi]$ wird das Bild von [0, x] unter der Abbildung eis durch den Polygonzug $z_{n,0}, z_{n,1}, \ldots, z_{n,n}$ approximiert. Also kann L_n als Näherungswert für die Länge des im Gegenuhrzeigersinn durchlaufenen Kreisbogens von 1 nach $\operatorname{cis}(x) = e^{ix}$ verstanden werden. Folglich zeigt diese Aufgabe, dass durch die Abbildung $\operatorname{cis}: \mathbb{R} \to S^1$ die Gerade \mathbb{R} längentreu auf S^1 "aufgewickelt" wird.

15. April 2024