Общее понятие топологического векторного пространства и несколько более специальное понятие локально выпуклого пространства были введены А.Н. Колмогоровым, А.Н. Тихоновым и Дж. фон Нейманом в 1934-1935 гг., к этому же времени относятся первые результаты о свойствах таких пространств. Наиболее интенсивное развитие теории топологических векторных пространств началось в конце 1940 - начале 1950 годов и во многом было связано с созданием Л. Шварцем теории распределений (обобщенных функций), в рамках которой был выделен широкий спектр важных для приложений функциональных пространств, являющихся общими топологическими векторными пространствами.

Излагаемый здесь материал призван помочь студентам-математикам в изучении элементов теории топологических векторных пространств - одного из важнейших разделов функционального анализа и состоит из заданий, упражнений и методических указаний по их исполнению. Задания и упражнения приводятся в порядке, позволяющем без особых затруднений выполнять последующие на основе предыдущих. Настоящее издание является продолжением методических указаний автора "Элементы общей топологии" и "Векторные пространства", поэтому желательно знакомство читателя с их содержанием. Если при выполнении заданий и упражнений возникнут трудности, то следует обратиться к литературе, список которой указан на с.41. Для удобства ссылок этот список открывают вышеупомянутые методические указания.

1 Топологические векторные пространства

Пусть X - векторное пространство над полем $\mathbb K$ вещественных или комплексных чисел. В дальнейшем предполагается, что $\mathbb K$ наделено естественной топологией. Топология τ на X согласована с линейной (векторной) структурой X, если непрерывны линейные операции, т.е. операции сложения векторов и умножения векторов на скаляры:

$$(+): X \times X \ni (x,y) \longmapsto x+y \in X,$$

 $(\cdot): \mathbb{K} \times X \ni (\lambda, x) \longmapsto \lambda x \in X.$

Согласованная с линейной структурой топология на X называется линейной топологией. Векторное пространство X с заданной на нем линейной топологией называется топологическим векторным пространством (ТВП). Наравне с этим термином бытует также термин "линейное топологическое пространство" (ЛТП).

Через \mathcal{O}_x^X , \mathcal{O}_x^{τ} или \mathcal{O}_x обозначаем множество всех окрестностей точки х в топологическом (векторном) пространстве (X,τ) . Если x=0, то пишем просто \mathcal{O}^X , \mathcal{O}^{τ} или \mathcal{O} . Через int A и cl A обозначаем соответственно внутренность и замыкание множества $A\subset X$.

В дальнейшем неоднократно будет использоваться понятие (пред) фильтра, поэтому напомним его. Непустое множество $\mathcal U$ подмножеств X называется предфильтром в X, если $\varnothing \in \mathcal U$ и для любых $A, B \in \mathcal U$ существует такое $C \in \mathcal U$, что $C \in A \cap B$. Предфильтр $\mathcal F$ называется фильтром, если $B \in \mathcal F$, как только $B \supset A \in \mathcal F$. Предфильтр $\mathcal U$ является базой (базисом) фильтра $\mathcal F$, если $\mathcal F$, если $\mathcal U \subset \mathcal F$ и $\forall B \; \exists A \in \mathcal U: \; A \subset B$. Каждый предфильтр $\mathcal U$ является базой порожденного им фильтра $\overline{\mathcal U} = \{B \subset X \mid \exists A \in \mathcal U: \; A \subset B\}$. Наиболее распространенным примером фильтра является фильтр $\mathcal O_x^X$ окрестностей точки x в топологическом пространстве X.

Упражнение 1.1. Сформулировать условия линейности топологии на векторном пространстве в терминах окрестностей.

Упражнение 1.2. Исследовать на линейность дискретную и антидискретную топологии на векторном пространстве.

Упражнение 1.3. Доказать, что векторное пространство \mathbb{K}^n с естественной топологией, т.е. топологией, определяемой окрестностями

$$V_r(x) = \{ y \in \mathbb{K}^n : (y_1 - x_1)^2 + \dots + (y_n - x_n)^2 < r^2 \}, \ r > 0, \ x \in \mathbb{K}^n,$$

является топологическим векторным пространством. В дальнейшем \mathbb{K}^n всегда предполагается наделенным этой топологией.

Упражнение 1.4. В векторном пространстве $C(\mathbb{R})$ каждой функции $x \in C(\mathbb{R})$ сопоставим семейство ее окрестностей:

$$V_r(x) = \{ y \in C(\mathbb{R}) : \sup_{t \in \mathbb{R}} |y(t) - x(t)| < r \}, \ r > 0.$$

Доказать, что базы окрестностей $\{V_r(x) \mid r > 0\}$ $(x \in C(\mathbb{R}))$ определяют на $C(\mathbb{R})$ топологию (см. I.I.13[I]), при которой операция сложения непрерывна, а операция умножения на скаляры разрывна в каждой точке $(\lambda, x) \in \mathbb{K} \times C(\mathbb{R})$, где x - неограниченная функция. Таким образом, указанная топология не является линейной на $C(\mathbb{R})$

Упражнение 1.5. Привести пример линейной топологии на $C(\mathbb{R})$.

Упражнение 1.6. На пространстве C[a,b] топологию введем с помощью окрестностей

$$V_r(x) = \{ y \in C[a, b] : \sup_{a < t < b} |y(t) - x(t)| < r \}, r > 0.$$

Доказать, что эта топология - линейная.

Упражнение 1.7. На пространстве l^p (0 < $p < \infty$) топологию зададим посредством окрестностей

$$V_r(x) = \{y = \{y_n\} \in l^p : \sum_{n=1}^{\infty} |y_n - x_n|^p < r\}, r > 0.$$

Доказать, что эта топология - линейная.

Упражнение 1.8. Топология на $\mathcal{L}^p(0,1)$ (0 определяется окрестностями

$$V_r(x) = \{ y \in \mathcal{L}^p : \int_0^1 |y(t) - x(t)|^p dt < r \}, r > 0.$$

Доказать, что эта топология - линейная.

Упражнение 1.9. На пространстве $C(\mathbb{R})$ топологию определим с помощью окрестностей

$$V_{K,r}(x) = \{ y \in C(\mathbb{R}) : \sup_{t \in K} |y(t) - x(t)| < r \},$$

где r > 0. K - компакт в \mathbb{R} . Доказать, что эта топология - линейная.

Замечание. Всюду, где не оговорено, пространства $C[a,b], l^p, \mathcal{L}^p(0 предполагаются наделенными указанными выше линейными топологиями.$

Упражнение 1.10. Пусть X - ТВП. Тогда:

1. для любых $x \in X, \lambda \in \mathbb{K} \setminus \{0\}$ отображение $y \longmapsto \lambda y + x$ является гомеоморфизмом X на себя;

- 2. $\forall \lambda \in \mathbb{K} \setminus \{0\} \ (V \in \mathcal{O} \implies \lambda V \in \mathcal{O});$
- 3. $\forall x \in X \mathcal{O}_x = \{x + V \mid V \in \mathcal{O}\}, \quad \mathcal{O} = \{x V \mid V \in \mathcal{O}_x\}.$

Упражнение 1.11. Пусть X - ТВП. Тогда:

- 1. $\forall V \in \mathcal{O} \exists U \in \mathcal{O} : U + U \subset V$:
- 2. $\forall V \in \mathcal{O} \ \forall \ n \in \mathbb{N} \ \exists \ U \in \mathcal{O} \ : \ \underbrace{U + \dots + U}_{n} \subset V;$
- 3. О состоит из поглощающих множеств, в частности,

$$\forall V \in \mathcal{O} \ \forall \{r_n\} \subset (0, +\infty) : \lim_{n \to \infty} r_n = +\infty \quad X = \bigcup_{n \ge 1} r_n V;$$

4. в каждой окрестности нуля содержится уравновешенная окрестность нуля.

Указание. Для доказательства в) (соответственно г)) воспользуйтесь непрерывностью произведения на скаляры в точках $(0, x) \in \mathbb{K} \times X$ (соотв. в точке (0, 0)).

Говорят, что топология на векторном пространстве X инвариантна относительно сдвигов, если все сдвиги на X суть гомеоморфизмы.

Упражнение 1.12. Для линейности топологии τ на X необходимо и достаточно, чтобы она она была инвариантна относительно сдвигов и имела базис окрестностей нуля \mathcal{U} , удовлетворяющий условиям:

- 1. $\forall V \in \mathcal{U} \exists U \in \mathcal{U} : U + U \subset V$:
- 2. \mathcal{U} состоит из поглощающих уравновешенных множеств.

Указание. При доказательстве непрерывности произведения на скаляры удобно воспользоваться представлением

$$\lambda x = \lambda_0 x_0 + (\lambda - \lambda_0) x_0 + \lambda (x - x_0).$$

Упражнение 1.13. Если предфильтр \mathcal{U} на векторном пространстве X удовлетворяет условиям:

- 1. $\forall V \in \mathcal{U} \exists U \in \mathcal{U} : U + U \subset V$:
- 2. U состоит из поглощающих уравновешенных множеств,

то на X существует единственная линейная топология τ , для которой \mathcal{U} - база окрестностей нуля. Указание. Положите $\tau = \{V \subset X \mid \forall \ x \in V \ \exists \ U \in \mathcal{U} \ : \ x + U \subset V\}.$

Докажите, что $\forall W \in \mathcal{U} \ W_0 := \{x \in W \mid \exists V \in \mathcal{U} : x + V \subset W\} \in \tau$, для чего проверьте, что если $x \in W_0, \ x \in V \subset W, \ U + U \subset V \ (U, V \in \mathcal{U})$, то $x + U \subset W_0$. Покажите, что \mathcal{U} - база \mathcal{O}^{τ} и топология τ инвариантна относительно сдвигов.

Упражнение 1.14. Каждая окрестность нуля в ТВН содержит некоторую замкнутую уравновешенную окрестность нуля. В частности, каждое ТВП является T_3 -пространством (см. I.3.3[I]).

Указание. Воспользуйтесь свойствами а), б) из І.12 и тем, что $(x-U) \cap U \neq \emptyset$ при $U \in \mathcal{U}, x \in \mathrm{cl}\, U$.

Упражнение 1.15. Пусть X - ТВП. $A, B \subset X$. Тогда:

1. если A открыто, то $\lambda A + B$ открыто для любого $\lambda \in \mathbb{K} \setminus \{0\}$;

- 2. cl $A = \bigcap \{A + V \mid V \in \mathcal{U}\}$ для любой базы \mathcal{U} фильтра \mathcal{O} ;
- 3. $\operatorname{cl} A + \operatorname{cl} B \subset \operatorname{cl}(A + B)$;
- 4. $\operatorname{int} A + \operatorname{int} B \subset \operatorname{int}(A + B)$;
- 5. если A уравновешено (соотв., является подпространством X), то cl A, а если $oldsymbol{o} \in int A$, то и int A уравновешено (соотв., является подпространством X);
- 6. если A выпукло, то cl A и int A выпуклы;
- 7. если A выпукло и int $A \neq \emptyset$, то:

$$\operatorname{cl}(\operatorname{int} A) = \operatorname{cl} A, \quad \operatorname{int}(\operatorname{cl} A) = \operatorname{int} A;$$

8. если A - подпространство X и int $A \neq \emptyset$, то A = X.

Указание. а) вытекает из 1.10; доказательства остальных утверждений основаны на том, что замыкание $\operatorname{cl} A$ множества A есть наименьшее замкнутое множество, содержащее, а его внутренность int A - наибольшее открытое подмножество A.

Пример. Множество $A = \{(x,y) \in \mathbb{R}^2 : |x| \le |y|\}$ уравновешено в ТВП \mathbb{R}^2 , то его внутренность не является уравновешенным множеством.

Вопрос: справедливы ли утверждения д)-ж) для произвольного Γ -множества A (см. [2, с.26]) ?

Топологическое векторное пространство называется локально (полу)выпуклым, если в нем каждая окрестность нуля содержит (полу)выпуклую окрестность нуля или, что то же самое, существует база окрестностей нуля, состоящая из полу(выпуклых) множеств. Его топология называется локально (полу)выпуклой. Напомним, что множество V полувыпукло, если $V+V \subset \lambda V$ для некоторого $\lambda>0$. Локально выпуклое топологическое векторное пространство обычно называют просто локально выпуклым пространством (ЛВП).

Упражнение 1.16. Какие пространства из упражнений 1.3, 1.6 - 1.9 являются локально выпуклыми?

Пример 1. При $0 в пространстве <math>\mathcal{L}^p(0,1)$ нет выпуклых открытых множеств, отличных от \varnothing и $\mathcal{L}^p(0,1)$. В частности, $\mathcal{L}^p(0,1)(0 не является локально выпуклым пространством.$

Действительно, пусть V - непустое выпуклое открытое множество в \mathcal{L}^p . Можно считать, что $\mathfrak{o} \in V$. Тогда $V \supset V_r(\mathfrak{o})$ для некоторого r > 0. Взяв $x \in \mathcal{L}^p$, найдем $n \in \mathbb{N}$ такое, что $n^{p-1}N(x) < r$, где $N(x) = \int_0^1 |x(t)| dt$. Положим $x_i(t) = nx(t)$ при $t_{i-1} < t \le t_i$ и $x_i(t) = 0$ в противном случае, где точки $0 = t_0 < t_1 < \dots < t_n = 1$ таковы, что

$$\int_{t_{i-1}}^{t_i} |x(t)|^p dt = n^{-1} N(x) \quad (1 \le i \le n).$$

Так как $N(x_i) < r$, то $x_i \in V(1 \le i \le n)$ и $x = \frac{1}{n}(x_1 + \dots + x_n) \in V$. Таким образом, $V = \mathcal{L}^p$

Упражнение 1.17. Если множество V в ТВП X открыто или замкнуто, то для его выпуклости достаточно выполнения равенства V+V=2V.

Указание. Согласно условию, множество V вместе с каждыми двумя своими точками содержит середину соединяющего их отрезка. В случае, тогда V открыто, удобно воспользоваться 1.20.

Упражнение 1.18. Пусть A и B - подмножества ТВП. Тогда:

1. Если A и B бикомпактны, то $\lambda A + \mu B$ бикомпактно для $\lambda, \mu \in \mathbb{K}$;

- 2. если A бикомпактно, а Λ компакт в \mathbb{K} , то $\Lambda \cdot A = \{\lambda x | \lambda \in \Lambda, x \in A\}$ бикомпактно в X;
- 3. если A замкнуто, а B бикомпактно, то A + B замкнуто.

Указание. в) Покажите, что $\forall \notin A + B \exists V \in \mathcal{O} : (x+V) \cap (A+b) \notin \emptyset$. Предположение противного приводит к тому, что $\forall V \in (x-B) \cap (A-V) \notin \emptyset$. Остается воспользоваться критерием бикомпактности в терминах направленностей (см., например, I.7.3.[I]).

Упражнение 1.19. Выпуклая оболочка конечного множества и, в частности, отрезок, соединящий любые две точки в ТВП, бикомпактны.

Указание. Воспользуйтесь непрерывностью отображения

$$\mathbb{K}^n \ni (\lambda_1, \dots, \lambda_n) \mapsto \lambda_1 x_1 + \dots + \lambda_n x_n \in X$$

и равенством

$$co\{x_1,\ldots,x_n\} = \{\sum_{i=1}^n \lambda_k x_k | \lambda_k \ge 0, \lambda_1 + \cdots + \lambda_n = 1\}.$$

Пример 2. Примеры замкнутых пространств, сумма которых не замкнута:

1.

$$X = \mathbb{R}, \quad A = -\mathbb{N}, \quad B = \{n + \frac{1}{n} \mid n \in \mathbb{N}\};$$

2.

$$X = \mathbb{R}^2$$
, $A = \{(s, t) \in \mathbb{R}^n \mid s > 0, s \cdot t = 1\}, B = \{0\} \times \mathbb{R}$,

при этом $A + B = \mathbb{R}^+ \times \mathbb{R}$ открыто.

Пример 3. Пример ТВП и его замкнутых подпространств, сумма которых не замкнута.

Пусть $X = l^2$ (см I.2) и последовательность $\{l_n\}_{n \in \mathbb{N}}$ элементов X определяется соотношениями: $l_n(n) = 1, l_n(k) = 0$ при $k \neq n$. Положим $x_n = l_{2n}, \ y_n = e_{2n} + \frac{1}{n}l_{2n-1}, (n \in \mathbb{N})$ и A (соотв. B) – замкнутая линейная оболочка множества $\{x_n | n \in \mathbb{N}\}$ (соотв., $\{y_n | n \in \mathbb{N}\}$).

Упражнение 1.20. Доказать, что

- 1. $A \cap B = \{0\}$;
- 2. подпространство A + B плотно, но не замкнуто в X.

Указание. б) покажите что $\lim_{n\to\infty} \sum_{k=1}^n (y_k - x_k) \in X \setminus (A+B)$.

Упражнение 1.21. В топологическом векторном пространстве

- 1. уравновешенная оболочка бикомпакта бикомпактна;
- 2. выпуклая и уравновешенная оболочки открытого множества открыты. Указание. Для доказательства б) удобно воспользоваться структурой выпуклой оболочки (см. 7.22[2]).

Замечание. Выпуклая оболочка бикомпакта может не быть бикомпактом (см. 2.7).

Пример 4. Пример замкнутого множества, уравновешенная и выпуклая оболочки которого не замкнуты:

$$X = \mathbb{R}^2, \quad A = \{(s,t) \in \mathbb{R}^2 | s > 0, s \cdot t = 1\} \cap \{(0,0)\}.$$

Упражнение 1.22. Пусть A - замкнутое и B - бикомпактное подмножества ТВП X. Если $A \cap B = \emptyset$, то существует $V \in \mathcal{O}^X$: $(A + V) \cap (B + V) = \emptyset$.

Указание. Каждому $x \in B$ можно сопоставить такую уравновешенную окрестность $V_x \in \mathcal{O}^X$, что $(x + V_x + V_x) \cap (A + V_x) = \varnothing$.

Упражнение 1.23. Доказать, что отделимость ТВП равносильна выполнению в нем равенства $\cap \{V|V \in \mathcal{O}\} = \{\emptyset\}$, т.е. замкнутости множества $\{\emptyset\}$.

Упражнение 1.24. Доказать, что в ТВП условия отделимост и хаусдорфовости равносильны.

Упражнение 1.25. Пример неотделимого ТВП.

Докажите, что множества вида $V_r = \{(s,t) \in \mathbb{R}^2 : |t-s| < r\}, r > 0$, образуют базу окрестностей нуля неотделимой линейной топологии на $X = \mathbb{R}^2$.

Упражнение 1.26. Докажите, что ТВП $\mathcal{L}^p(0,1)(0 не отделимы. Какие пространства из упражнений 1.3, 1.5-1.9 являются отделимыми?$

Напомним, что топологическое пространство X линейно связно, если любые две его точки x и y можно соединить непрерывной кривой, т.е. существует непрерывное отображение $\phi:[0,1]\to X$ такое, что $\phi(0)=x,\,\phi(1)=y$. Нетрудно проверить (сделайте это), что линейно связное топологическое пространство связно, т.е. не представимо в виде объединения двух непустых непересекающихся открытых множеств. Докажите, что каждое ТВП линейно связно.

2 Ограниченные множества

Подмножество B топологического векторного пространства X называется ограниченным, если оно поглощается каждой окрестностью нуля, т.е. $\forall V \in \mathcal{O}^X \ \exists \epsilon > 0 : \ |\lambda| < \epsilon \implies \lambda B \subset V$. Последнее, как нетрудно заметить, равносильно тому, что $\forall V \in \mathcal{O}^X \ \exists \epsilon > 0 : \epsilon B \subset V$. Множество всех ограниченных подмножеств ТВП X обозначается $\mathcal{B}(X)$ и называется канонической борнологией или борнологией фон Неймана. Пусть $B \subset X, V \in \mathcal{O}^X$. Говорят, что множество $M \subset X$ является V-сетью для B, если $B \subset M + V$. Множество $B \subset X$ называется вполне ограниченным или предкомпактным, если для любой окрестности $V \in \mathcal{O}^X$ оно имеет конечную V-сеть.

Упражнение 2.1. В топологическом векторном пространстве

- 1. вполне ограниченное множество ограничено;
- 2. подмножество (вполне) ограниченного множества (вполне) ограничено;
- 3. конечное объединение (вполне) ограниченных множеств (вполне) ограничено;
- 4. если A и B (вполне) ограничены, $\lambda, \mu \in \mathbb{K}$, то $\lambda A + \mu B$ (вполне) ограничено;
- 5. бикомпактное и, в частности, конечное множество вполне ограничены;
- 6. если последовательность векторов $\{x_n\}$ сходится к x, то множество $\{x_n \mid n \in \mathbb{N}\}$ вполне ограничено, а множество $\{x_n \mid n \in \mathbb{N}\} \cup \{x\}$ бикомпактно.

Упражнение 2.2. Множество B в ТВП X вполне ограничено тогда и только тогда, когда для любой окрестности $V \in \mathcal{O}^X$ оно имеет вполне ограниченную V-сеть.

Упражнение 2.3. Если множество $B \subset X$ вполне ограничено, то для любой окрестности $V \in \mathcal{O}^X$ существует конечная V-сеть $K \subset B$ для cl B. В частности, cl B вполне ограничено.

Указание. Для любой окрестности $V \in \mathcal{O}^X$ существует такая уравновешенная окрестность $U \in \mathcal{O}^X$, что $U+U+U \subset V$. Пусть $\{y_1,\ldots,y_n\}$ - некоторая U-сеть для $B, x_k \in B \cap (y_k+U), 1 \leq k \leq n$. Покажите, что $K = \{x_1,\ldots,x_n\}$ – искомая V-сеть.

Упражнение 2.4. Подмножество A ТВП X мало порядка $V \in \mathcal{O}^X$, если $A - A \subset V$.

Доказать, подмножество ТВП вполне ограничено тогда и только тогда, когда для любой окрестности нуля V оно может быть покрыто конечным числом множеств, малых порядка V.

Замечание. Вполне ограниченные множества могут быть охарактеризованы в терминах направленностей и фильтров Коши (см. 3.6 и 3.7).

Упражнение 2.5. В (локально выпуклом) ТВП замкнутая (выпуклая) уравновещенная оболочка ограниченного множества ограничена, а вполне ограниченного - вполне ограничена.

Указание. В случае вполне ограниченности воспользуйтесь 2.3, I.23(a), 2.I(д), 2.2 и включением $co(A+B) \subset co(A) + co(B)$.

Упражнение 2.6. Доказать, что если A - компактное выпуклое, а B - замкнутое ограниченное выпуклое множества в отделимом ТВП X, то выпуклая оболочка C объединения $A \cup B$ замкнута. Указание. Так как A и B выпуклы, то $C = \{tx + (1-t)y \mid x \in A, y \in B, 0 \le t \le 1\}$. Пусть $z \in \operatorname{cl} C \setminus A$. Учитывая возможность сдвига, достаточно рассмотреть случай $z = \emptyset$. В силу I.25 $\exists V \in \mathcal{O}^X : V \cap (A+V) = \emptyset$. Методом от противного докажите существование числа $\alpha < 1$ такого, что из $0 \le t \le 1, x \in A, y \in B, tx + (1-t)y \in V$ следует $t \le \alpha$.