

A propagating terrace of two traveling waves in a toy model of Incompressible Porous Medium (IPM) eq

Yulia Petrova

PUC-Rio, Rio de Janeiro, Brazil

yulia-petrova.github.io

21 June 2024

Based on joint work:

- "Propagating terrace in a two-tubes model of gravitational fingering" 2024 (with S. Tikhomirov, Ya. Efendiev) Submitted. ArXiv: 2401.05981
- 2. "Velocity of viscous fingers in miscible displacement: Intermediate concentration" 2024
- 3. "Velocity of viscous fingers in miscible displacement: Comparison with analytical models" 2022 (with F. Bakharev, A. Enin, S.Matveenko, D.Pavlov, N.Rastegaev, I. Starkov, S.Tikhomirov) JCAM

Outline

- 1. Motivation
 - Miscible displacement in porous media
 - viscous fingering
 - gravitational fingering

2. Problem statement

- Two-tubes model
- Main theorem
- Sketch of proof:
 - traveling waves
 - slow-fast systems

"Miscible displacement in porous media" Credit: Pavlov Dmitrii, St. Petersburg State University

Homsy, 1987 "Viscous Fingering in Porous Media"

Viscous fingering phenomenon (blue color) water polymerized water (red color)

Incompressible Porous Medium eq – IPM, 2D (Two formulations)

$c_t + div(uc) = \varepsilon \cdot \Delta c$ div(u) = 0 (viscosity) $u = -m(c) \ K \ \nabla p$ (gravity) $u = -\nabla p - (0,c)$

$$c = c(t, x, y)$$
 – concentration
 $u = u(t, x, y)$ – velocity
 $p = p(t, x, y)$ – pressure

$$\varepsilon \ge 0$$
 – diffusion $m(c)$ – mobility K – permeability

many laboratory and numerical experiments show linear growth of the mixing zone [1], [2]

Question: how to find speeds v^b and v^f of propagation?

[1] Nijjer J., Hewitt D., and Neufeld J. The dynamics of miscible viscous fingering from onset to shutdown. Journal of Fluid Mechanics, 2018.

[2] Bakharev, F., Enin, A., Groman, A., Kalyuzhnyuk, A., Matveenko, S., **Petrova, Y.**, Starkov, I. and Tikhomirov, S., Velocity of viscous fingers in miscible displacement: Comparison with analytical models. Journal of Computational and Applied Mathematics, 2022.

IPM: $\varepsilon = 0$ (without diffusion)

Active scalar:

$$c_t + u \cdot \nabla c = 0$$
$$u = A(c)$$

$$u = \nabla^{\perp} (-\Delta)^{-1} \partial_1 c$$
 (Biot-Savart law)

<u>Discontinuous initial data</u>: free boundary problem (Muskat problem) – ill-posed for unstable stratification

2011 - A. Córdoba, D. Córdoba, F. Gancedo (Annals of Mathematics) "Interface evolution: the Hele-Shaw and Muskat problems"

Existence: smooth initial data

2007 – D. Cordoba, F. Gancedo, R. Orive (JMP): local well-posedness for initial data H^S

global solution vs finite-time blow-up?

open

2017 – T. Elgindi (ARMA): global solution for small perturbations of c=-y

2023 – S. Kiselev, Y. Yao (ARMA): if solutions stay "smooth" for all times, then there is blow-up at $t=+\infty$

<u>Uniqueness</u>: non-uniqueness of weak solutions – by convex integration

2011 – D. Córdoba, D. Faraco, F. Gancedo (ARMA)

2012 – L. Szekelyhidi Jr.

...and many others...

IPM: $\varepsilon > 0$ (with diffusion)

Estimates on the growth:

2005 – F. Otto, G. Menon. Proved estimates

- Full model (IPM)
- $v^f \leq 2$
- Simplified model (TFE) $v^f \leq 1$

$$v^f \leq 1$$

Transverse Flow Equilibrium = TFE
$$p(t, x, y) \approx p(t, y)$$

$$c_t + u \cdot \nabla c = \varepsilon \Delta c$$
$$div(u) = 0$$
$$u = (u^1, u^2), \ u^2 = \overline{c} - c$$

Why fingers appear?

It is a hair-trigger effect!

$$\frac{u^2 = 0}{u^2 = 0}$$

Velocity u changes due to concentration *c*

Concentration *c* changes due to velocity u

IPM: $\varepsilon > 0$ (with diffusion)

Estimates on the growth:

2005 – F. Otto, G. Menon. Proved estimates

- Full model (IPM)
- $v^f \leq 2$
- Simplified model (TFE) $v^f \leq 1$

Transverse Flow Equilibrium = TFE
$$p(t, x, y) \approx p(t, y)$$

$$c_t + u \cdot \nabla c = \varepsilon \Delta c$$
$$div(u) = 0$$
$$u = (u^1, u^2), \ u^2 = \bar{c} - c$$

<u>Idea of proof</u> (TFE): comparison to 1D Burgers eq $(\bar{c} \le 1 \text{ then } u^2 \le 1 - c)$

$$c_t^{\max} + (1 - c^{\max}) \cdot \partial_y c^{\max} = \varepsilon c_{yy}^{\max}$$

Theorem (Otto, Menon): If $c(0, x, y) \le c^{\max}(0, y)$, then $c(t, x, y) \le c^{\max}(t, y)$ for any t > 0.

Question: Are those estimates sharp?

Viscosity-driven fingers

TFE estimates are too pessimistic!

$$c_t + div(uc) = \varepsilon \cdot \Delta c$$
$$div(u) = 0$$
$$u = -m(c) \nabla p = -1/\mu(c) \nabla p$$

Ratio of viscosities

$$M = \frac{\mu(1)}{\mu(0)}$$

Empirical models of velocities:

- Koval (1963):

- Todd-Longstaff (1972):

$$v^f = (0.22 \cdot M^{0.25} + 0.78)^4$$

 $v^f = M^{2/3}$

Transverse Flow Equilibrium = TFE
$$p(t, x, y) \approx p(t, y)$$

$$u = (u^1, u^2), \quad u^1 = \frac{m(c)}{avg(m(c))}$$

TFE estimate:

$$v^f \le \frac{\int_0^1 m(c)}{m(1)}$$

<u>Idea of proof</u> (TFE estimates): comparison to 1D Burgers-type eq $(c \le 1)$ then $u^1 \le \frac{m(c)}{m(1)}$)

$$c_t^{\max} + \frac{m(c^{\max})}{m(1)} \cdot \partial_{\chi} c^{\max} = \varepsilon c_{\chi\chi}^{\max}$$

<u>Theorem</u> (Yortsos, Salin, 2006):

If
$$c(0, x, y) \le c^{\max}(0, x)$$
,
then $c(t, x, y) \le c^{\max}(t, x)$ for any $t > 0$.

Question: Are those estimates sharp?

SLOW-DOWN of fingers... Why?

Questions?

Naïve idea:

- (1) flow in the transverse direction?
- (2) Intermediate concentration?

$$c_t + div(uc) = \varepsilon \cdot \Delta c$$
$$div(u) = 0$$
$$u = -m(c) \nabla p = -1/\mu(c) \nabla p$$

A more careful look at simulations.... Intermediate concentration appears!

Improved TFE estimate

$$v^{TFE}(C) = \frac{\frac{1}{1-C} \int_C^1 m(c)}{m(1)}$$

$$X^{f}(t,C) = \max_{\mathbf{x}} \{\exists y : c(t,x,y) \le C\}$$
$$X^{f}(t,C) \sim v^{f}(C) \cdot t$$

Theorem TFE, viscosity (with many colleagues from St. Petersburg, JCAM, 2024, arXiv:2401.05981)

 $X^f(t, C_1) \leq v^{TFE}(C_1) \cdot t + l_1$ If there exists $C_1 \in [0,1]$ and $l_1 \in \mathbb{R}$:

 $X^f(t, C_2) \leq v^{TFE}(C_1) \cdot t + l_2$ Then for any $C_2 > C_1$ there exists l_2 :

IDEA: semi-discrete model of gravitational fingering

- Discretize in horizontal direction
- Take n tubes, n = 2,3,4,...

Limit of numerical scheme

- Finite volume
- Upwind

• For simplicity, n=2

We observe two traveling waves:

$$c(y,t) = c(y - vt)$$

Tubes (layer, lane,...) models:

2019 — A. Armiti-Juber, C. Rohde "On Darcy- and Brinkman-type models for two-phase flow in asympt. flat domains"

2006 — J.C. Da Mota, S. Schecter "Combustion fronts in a porous medium with two layers"

2019 — H. Holden, N. Risebro "Models for dense multilane vehicular traffic"

Two-tubes model

1. Original equation on *c*: Two-tubes equations on *c*:

$$c_t + div(uc) - \Delta c = 0$$

$$\partial_t c_1 + \partial_y (u_1 c_1) - \partial_{yy} c_1 = -B$$

$$\partial_t c_2 + \partial_y (u_2 c_2) - \partial_{yy} c_2 = +B$$

 $u_1(y,t) \qquad w(y,t) \qquad u_2(y,t)$ $p_1(y,t) \qquad p_2(y,t)$

2. Original equation on p: Two-tubes equations on p:

$$u = -\nabla p - (0, c)$$

$$u_1 = -\partial_y p_1 - c_1$$

$$u_2 = -\partial_y p_2 - c_2$$

$$w = -\frac{p_2 - p_1}{l}$$

l - parameter

3. Original equation on u: Two-tubes equations on u:

$$div(u) = 0$$

$$\partial_y u_1 + \frac{w}{l} = 0$$

$$B = \begin{cases} \frac{w}{l} \cdot c_1, & w > 0, \\ \frac{w}{l} \cdot c_2, & w < 0 \end{cases}$$

Two-tubes model

1. Original equation on *c*: Two-tubes equations on c:

$$c_t + div(uc) - \Delta c = 0$$

$$\partial_t c_1 + \partial_y (u_1 c_1) - \partial_{yy} c_1 = -B$$

$$\partial_t c_2 + \partial_y (u_2 c_2) - \partial_{yy} c_2 = +B$$

Original equation on p: Two-tubes equations on p:

$$u = -\nabla p - (0, c)$$

$$u_{1} = -\partial_{y} p_{1} - c_{1}$$

$$u_{2} = -\partial_{y} p_{2} - c_{2}$$

$$\frac{w}{1} = -\frac{p_{2} - p_{1}}{12}$$

Original equation on u: Two-tubes equations on u:

$$div(u) = 0$$

$$\theta_y u_1 + \frac{w}{l} = 0$$

- parameter

$$B = \begin{cases} \frac{w}{l} \cdot c_1, & w > 0, \\ \frac{w}{l} \cdot c_2, & w < 0 \end{cases}$$

Main result

Questions?

$$\begin{cases} \partial_t c_1 + \partial_y (u_1 c_1) - \partial_{yy} c_1 = -B \\ \partial_t c_2 + \partial_y (u_2 c_2) - \partial_{yy} c_2 = B \end{cases}$$

$$(*) \begin{cases} u_1 = -\partial_y p_1 - c_1 \\ u_2 = -\partial_y p_2 - c_2 \end{cases}$$

$$\partial_y u_1 = -\partial_y u_2 = \frac{p_2 - p_1}{l^2}$$

$$B = \begin{cases} -\partial_y u_1 \cdot c_1, & \partial_y u_1 < 0, \\ +\partial_y u_2 \cdot c_2, & \partial_y u_1 > 0 \end{cases}$$

Remark: $\lim_{l \to 0} c_1^*(l) = -0.5$ $\lim_{l \to 0} v^b(l) = -0.25$ $\lim_{l \to 0} c_2^*(l) = +0.5$ $\lim_{l \to 0} v^f(l) = +0.25$

As $t \to \infty$ we observe:

Theorem (Efendiev, P., Tikhomirov, 2024, arXiv: 2401.05981)

Consider a two-tube model with gravity (*).

Then for all l > 0 sufficiently small there exists $c_1^*(l)$, $c_2^*(l)$ such that there exist two traveling waves (TW):

TW1 with speed $v^b(l)$: $(-1,-1) \rightarrow (c_1^*,(l) c_2^*(l))$ TW2 with speed $v^f(l)$: $(c_1^*,(l) c_2^*(l)) \rightarrow (1,1)$.

Many tubes: numerics

Questions: (open)

- (1) explain the structure of "asymptotic solutions" for n tubes and study their stability
- (2) find speed of growth of the mixing zone
- (3) understand the behaviour as $n \to \infty$. Do we approximate 2-dim IPM?
- (4) can we repeat this story for the many tubes viscous fingering model?

Scheme of proof: step 1

Travelling wave (TW) ansatz with fixed v:

$$c_{1}(t, y) = c_{1}(y - vt)$$

$$c_{2}(t, y) = c_{2}(y - vt)$$

$$u_{1}(t, y) = u_{1}(y - vt)$$

$$u_{2}(t, y) = u_{2}(y - vt)$$

$$p_{1}(t, y) = p_{1}(y - vt)$$

$$p_{2}(t, y) = p_{2}(y - ct)$$

With condition at $+\infty$:

$$c_1(+\infty) = 1$$

$$c_2(+\infty) = 1$$

$$u_1(+\infty) = 0$$

$$u_2(+\infty) = 0$$

$$(p_1 - p_2)(+\infty) = 0$$

System of ODEs in \mathbb{R}^6 :

$$\begin{cases} \dot{X} = F_{v}(X, Y) \\ l \cdot \dot{Y} = AY - BX \end{cases}$$

Here:

•
$$X = \begin{pmatrix} c_1 \\ c_2 \\ \partial_{\xi} c_1 \\ \partial_{\xi} c_2 \end{pmatrix} \in \mathbb{R}^4, \quad Y = \begin{pmatrix} u_1 \\ p_1 - p_2 \end{pmatrix} \in \mathbb{R}^2$$

•
$$A = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$
, $B \in M^{2 \times 4}$, $l \ll 1$

Aim: $\forall v \exists TW$

find a heteroclinic orbit $(X(\xi), Y(\xi)), \xi \in \mathbb{R}$ such that $(X(+\infty), Y(+\infty)) =$ given point.

Scheme of proof: step 1

Travelling wave (TW) ansatz with fixed v:

$$c_{1}(t, y) = c_{1}(y - vt)$$

$$c_{2}(t, y) = c_{2}(y - vt)$$

$$u_{1}(t, y) = u_{1}(y - vt)$$

$$u_{2}(t, y) = u_{2}(y - vt)$$

$$p_{1}(t, y) = p_{1}(y - vt)$$

$$p_{2}(t, y) = p_{2}(y - ct)$$

With condition at $+\infty$:

$$c_1(+\infty) = 1$$

$$c_2(+\infty) = 1$$

$$u_1(+\infty) = 0$$

$$u_2(+\infty) = 0$$

$$(p_1 - p_2)(+\infty) = 0$$

System of ODEs in \mathbb{R}^6 :

$$\begin{cases} \dot{X} = F_{v}(X, Y) \\ l \cdot \dot{Y} = AY - BX \end{cases}$$

Here:

•
$$X = \begin{pmatrix} c_1 \\ c_2 \\ \partial_{\xi} c_1 \\ \partial_{\xi} c_2 \end{pmatrix} \in \mathbb{R}^4$$
, $Y = \begin{pmatrix} u_1 \\ p_1 - p_2 \end{pmatrix} \in \mathbb{R}^2$

•
$$A = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$
, $B \in M^{2 \times 4}$, $l \ll 1$

Observation:

for $l \rightarrow 0$ this system has a special "slow-fast" structure. Key tool: geometric singular perturbation theory (GSPT) by Fenichel (JDE, 1979)

Scheme of proof: step 2

1) For each $v^f \in \mathbb{R}$ we find all points s.t. there exists a TW:

$$(c_1,c_2) \rightarrow (1,1)$$

2) For each $v^b \in \mathbb{R}$ we find all points s.t. there exists a TW:

$$(-1,-1) \to (c_1,c_2)$$

3) Cross fingers distance that these two curves intersect

 $0 < l \ll 1$ – perturbation argument

But what is a singular limit l = 0?...

$$\begin{cases} \partial_{t}c_{1} + \partial_{y}(u_{1}c_{1}) - \partial_{yy}c_{1} = -B \\ \partial_{t}c_{2} + \partial_{y}(u_{2}c_{2}) - \partial_{yy}c_{2} = B \end{cases}$$

$$(**) \begin{cases} u_{1} = \frac{c_{2} + c_{1}}{2} - c_{1} = \bar{c} - c_{1} \\ B = \begin{cases} -\partial_{y}u_{1} \cdot c_{1}, & \partial_{y}u_{1} < 0, \\ +\partial_{y}u_{2} \cdot c_{2}, & \partial_{y}u_{1} > 0 \end{cases}$$

l=0 corresponds to the two-tubes TFE equations (**) !!!

(at closer inspection, no surprise at all)

Question: (open)

TFE as a limit of IPM when $\frac{k_y}{k_x} \to \infty$?

Can we use the connection to prove the linear growth in 2D IPM?

2D IPM model

$$\begin{aligned} c_t + u \cdot \nabla c &= \varepsilon \, \Delta c \\ div \, u &= 0 \end{aligned}$$

$$u = -\begin{pmatrix} k_x & 0 \\ 0 & k_y \end{pmatrix} \nabla p - (0, c)$$

2D TFE model

$$c_t + u \cdot \nabla c = \varepsilon \Delta c$$
$$div u = 0$$
$$u = (u^x, u^y)$$
$$u^y = \bar{c} - c$$

Thanks to my collaborators!

Sergey Tikhomirov

Yalchin Efendiev

Dmitry Pavlov

Nikita Rastegaev

Fedor Bakharev

Aleksandr Enin

Sergey Matveenko

Ivan Starkov

Thank you for your attention!

yu.pe.petrova@gmail.com

https://yulia-petrova.github.io/

For more details see arXiv:2401.05981

arXiv:2310.14260

arXiv:2012.02849

(two-tubes model)

(numerics of viscous fingering)

(numerics of viscous fingering)

Any questions, comments and ideas are very welcome!

References

Muito obrigada pela atenção!

Own works on the topic of the talk:

- **1. Yu. Petrova**, S. Tikhomirov, Ya. Efendiev, "Propagating terrace in a two-tubes model of gravitational fingering" Submitted. ArXiv: 2401.05981; 2024.
- 2. Bakharev, F., Enin, A., Groman, A., Kalyuzhnyuk, A., Matveenko, S., **Petrova, Yu.**, Starkov, I. and Tikhomirov, S., "Velocity of viscous fingers in miscible displacement: Comparison with analytical models".

 Journal of Computational and Applied Mathematics, 402, p.113808; 2022.
- 3. Bakharev, F., Pavlov D., Enin, A., Matveenko, S., **Petrova, Yu.**, Rastegaev N., and Tikhomirov, S., "Velocity of viscous fingers in miscible displacement: Intermediate concentration"

 To appear in Journal of Computational and Applied Mathematics, 2024.

Other references:

Dynamics of viscous fingering:

- 1. Nijjer J., Hewitt D., and Neufeld J. The dynamics of miscible viscous fingering from onset to shutdown. Journal of Fluid Mechanics 837 (2018): 520-545.
- 2. Menon, G. and Otto, F., 2006. Diffusive slowdown in miscible viscous fingering. Communications in Mathematical Sciences, 4(1), pp.267-273.
- 3. Menon, G. and Otto, F., 2005. Dynamic scaling in miscible viscous fingering. Communications in mathematical physics, 257, pp.303-317.
- 4. Homsy, G.M., 1987. Viscous fingering in porous media. Annual review of fluid mechanics, 19(1), pp.271-311.

References

Muito obrigada pela atenção!

Geometric singular perturbation theory (GSPT):

- 1. Fenichel, N., 1979. Geometric singular perturbation theory for ordinary differential equations. Journal of differential equations, 31(1), pp.53-98.
- 2. Wechselberger, M., 2020. Geometric singular perturbation theory beyond the standard form (Vol. 6). New York: Springer.
- 3. Kuehn, C., 2015. Multiple time scale dynamics (Vol. 191). Berlin: Springer.

Well-posedness for IPM:

- 1. Kiselev, A. and Yao, Y., 2023. Small scale formations in the incompressible porous media equation. Archive for Rational Mechanics and Analysis (ARMA), 247(1), p.1.
- 2. A. Castro, D. Cordoba and D. Lear, Global existence of quasi-stratified solutions for the confined IPM equation, Archive for Rational Mechanics and Analysis (ARMA), 232 (2019), no. 1, 437–471.
- 3. T. Elgindi, On the asymptotic stability of stationary solutions of the inviscid incompressible porous medium equation, Archive for Rational Mechanics and Analysis (ARMA), 225 (2017), no. 2, 573–599.

Non-uniqueness for IPM:

- 1. D. Cordoba, D. Faraco and F. Gancedo, Lack of uniqueness for weak solutions of the incompressible porous media equation, Archive for Rational Mechanics and Analysis (ARMA) 200 (2011), no. 3, 725–746.
- 2. Shvydkoy, R.: Convex integration for a class of active scalar equations. J. Am. Math. Soc. 24(4), 1159–1174 (2011).
- 3. L. Szekelyhidi, Jr. Relaxation of the incompressible porous media equation, Ann. Sci. de l'Ecole Norm. Superieure (4) 45 (2012), no. 3, 491–509.

24