# Calculate $\alpha$

2024-04-13

Bian Kaiming

## 1. The tensor and the vector space

Let  $T^{(o)}$  be the odd layer of T gates, and  $T^{(e)}$  be the even layer of T gates. Then we have the following circuits:



Now, alternately apply the odd and even layers of T gates to the  $|\gamma_1\gamma_{2n}\rangle$ 

$$T^{(\mathrm{whole})}(b_1,t) = T^{(o)}{}^{b_2} \Biggl( \prod_{i=0}^{t-b_2} T^{(e)} T^{(o)} \Biggr) T^{(e)}{}^{b_1},$$

where  $b_1,b_2\in\{0,1\}$ ,  $t+b_1$  stands for the number of layers. The output states must in the vector space spaned by the following basis

$$|Z_i\rangle\!\rangle, \quad \left|X_i\left(\prod_{k=i+1}^{j-1}Z_k\right)Y_j\right\rangle\!\rangle$$

Let  $M_i = \frac{1}{\sqrt{2}}(X_i + Y_i)$ , the space

$$V\coloneqq \operatorname{span}\!\left\{|Z_i\rangle\!\!\!\right\rangle,\; \left|M_i\!\left(\prod Z_k\right)\!M_j\!\left.\right\rangle\!\!\!\right\rangle\right\}$$

is the image subspace for all  $T^{(\text{whole})}(b_1,t)$  with  $b_1+t>0$  if the input state is limit to  $\Gamma_2$ . Thus, the action of  $T^{(\text{whole})}(b_1,t)$  could always be written in the following form

$$T^{(\text{whole})}(b_1,t)|\gamma_1\gamma_{2n}\rangle\!\!\rangle = \sum P(i,i,t)|Z_i\rangle\!\!\rangle + \sum_{i< j} P(i,j,t) \Big|M_i\Big(\prod Z_k\Big)M_j\Big\rangle\!\!\rangle.$$

The action of the tensor could be simplified by studying the coefficients P(i, j, t).

### 2. Propagator

To simplify the discussion, we start with a special case:  $b_1=1,b_2=0$ , and the number of wires is an even number 2N. In this case, the whole tensor  $T^{(\mathrm{whole})}$  could be written as

$$T^{\text{(whole)}}(1,t) = (T^{(e)}T^{(o)})^t T^{(e)}.$$

Then, we lift the V into the space of the second order 2N-dimensional polynomials

$$W \coloneqq \operatorname{span} \left\{ \sum_{i,j=1}^{2N} c_{i,j} x_i x_j \right\}$$

We can prove that the space V is isometric to the space W by  $\phi$ ,

$$\begin{split} \phi: V \to W \\ \left| M_i \Big( \prod Z_k \Big) M_j \Big\rangle \!\!\!\!\! \Big\rangle \to x_i x_j \\ |Z_i \rangle \!\!\!\!\!\! \rangle \to x_i^2. \end{split}$$

Let  $T_p^{(2N)}(t)$  be the map  $\phi T^{(\mathrm{whole})}(1,t)\phi^{-1}$ , the following diagram commutes.

$$V \xrightarrow{T^{\text{(whole)}}(1,t)} V$$

$$\downarrow^{\phi} \qquad \qquad \downarrow^{\phi}$$

$$W \xrightarrow{T_p^{(2N)}(t)} W$$

Now, let's consider the action of the tensor  $T_p^{(2N)}(t)$  on the space W. Similarly, we could write down the recursive relation of coefficients  $a_{i,j}$ .

When t=0, the transforming state  $T^{(e)}|\gamma_1\gamma_{4N}\rangle\!\!\!/$  to W, and we got  $\frac{1}{4}(x_1x_{2N}+x_1x_{2N-1}+x_2x_{2N}+x_1x_{2N-1})$ . Suppose at t, the vector in W is  $\sum c_i(t)c_j'(t)x_ix_j$ ,

$$\begin{split} T_p^{(2N)}(t+1) \bigg( \frac{1}{4} (x_1 x_{2N} + x_1 x_{2N-1} + x_2 x_{2N} + x_1 x_{2N-1}) \bigg) \\ &= T^{(e)} T^{(o)} T_p^{(2N)}(t) \bigg( \frac{1}{4} (x_1 x_{2N} + x_1 x_{2N-1} + x_2 x_{2N} + x_1 x_{2N-1}) \bigg) \\ &= T^{(e)} T^{(o)} \sum c_i(t) c_j'(t) x_i x_j \end{split}$$

Then, the action of  $\ \phi \ T^{(e)} T^{(o)} \phi^{-1}$  on this vector is

| $c_i c_j' x_i x_j$                                  | $\phi  T^{(e)} T^{(o)} \phi^{-1} \big( c_i c_j' x_i x_j \big)$                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i = j = 1                                           | $\frac{\frac{1}{6}(c_1x_1+c_1x_2)(c_2'x_1+c_2'x_2)}{(c_1'x_1+c_2'x_2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| i=1, j=2,3                                          | $ \frac{1}{8}(c_1x_1+c_1x_2)\big(\tfrac{4}{3}c_2'x_1+\tfrac{4}{3}c_2'x_2+c_2'x_3+c_2'x_4\big) $                                                                                                                                                                                                                                                                                                                                                                                                         |
| i = 1, j > 3                                        | $\begin{bmatrix} \frac{1}{8}(c_1x_1+c_1x_2)\left(c_j'x_{j-2+\eta_j}+c_j'x_{j-1+\eta_j}+c_j'x_{j+1+\eta_j}\right)\\ c_j'x_{j+\eta_j}+c_j'x_{j+1+\eta_j} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                   |
| 1 < i < 2N, $i = j$                                 | $ \begin{array}{l} \frac{1}{24} \Big( c_i x_{i-2+\eta_i} + c_i x_{i-1+\eta_i} + c_i x_{i+\eta_i} + c_i x_{i+1+\eta_i} \Big) \\ \\ \Big( c_j' x_{j-2+\eta_j} + c_j' x_{j-1+\eta_j} + c_j' x_{j+\eta_j} + c_j' x_{j+1+\eta_j} \Big) \\ \\ -\frac{1}{72} \Big( c_i x_{i-2+\eta_i} + c_i x_{i-1+\eta_i} \Big) \Big( c_j' x_{j-2+\eta_j} + c_j' x_{j-1+\eta_j} \Big) \\ \\ -\frac{1}{72} \Big( c_i x_{i+\eta_i} + c_i x_{i+1+\eta_i} \Big) \Big( c_j' x_{j+\eta_j} + c_j' x_{j+1+\eta_j} \Big) \end{array} $ |
| 1 < i < 2N, $i$ is even, $j = i + 1$                | $ \frac{\frac{1}{12} \Big( c_i x_{i-2+\eta_i} + c_i x_{i-1+\eta_i} + c_i x_{i+\eta_i} + c_i x_{i+1+\eta_i} \Big) }{ \Big( c_j' x_{j-2+\eta_j} + c_j' x_{j-1+\eta_j} + c_j' x_{j+\eta_j} + c_j' x_{j+1+\eta_j} \Big) } $ $ - \frac{1}{36} \Big( c_i x_{i-2+\eta_i} + c_i x_{i-1+\eta_i} \Big) \Big( c_j' x_{j-2+\eta_j} + c_j' x_{j-1+\eta_j} \Big) $ $ - \frac{1}{36} \Big( c_i x_{i+\eta_i} + c_i x_{i+1+\eta_i} \Big) \Big( c_j' x_{j+\eta_j} + c_j' x_{j+1+\eta_j} \Big) $                           |
| $1 < i < 2N,$ $i + \eta_i \le j \le i + \eta_i + 2$ | $\begin{split} &\frac{1}{16} \Big( c_i x_{i-2+\eta_i} + c_i x_{i-1+\eta_i} + c_i x_{i+\eta_i} + c_i x_{i+1+\eta_i} \Big) \\ & \left( c_j' x_{j-2+\eta_j} + c_j' x_{j-1+\eta_j} + c_j' x_{j+\eta_j} + c_j' x_{j+1+\eta_j} \right) \\ & + \frac{1}{48} \Big( c_i x_{i+\eta_i} + c_i x_{i+1+\eta_i} \Big) \Big( c_j' x_{j-2+\eta_j} + c_j' x_{j-1+\eta_j} \Big) \end{split}$                                                                                                                               |
| $1 < i < 2N,$ $j > i + \eta_i + 2$                  | $\frac{\frac{1}{16} \Big( c_i x_{i-2+\eta_i} + c_i x_{i-1+\eta_i} + c_i x_{i+\eta_i} + c_i x_{i+1+\eta_i} \Big)}{\Big( c_j' x_{j-2+\eta_j} + c_j' x_{j-1+\eta_j} + c_j' x_{j+\eta_j} + c_j' x_{j+1+\eta_j} \Big)}$                                                                                                                                                                                                                                                                                      |
| i = j = 2N                                          | $\tfrac{1}{6}(c_{2N}x_{2N-1}+c_{2N}x_{2N})(c_{2N}'x_{2N-1}+c_{2N}'x_{2N})$                                                                                                                                                                                                                                                                                                                                                                                                                              |

Table 1: The action of the tensor  $\phi$   $T^{(e)}T^{(o)}\phi^{-1}$  on the space of second order 2N-dimensional polynomials.

We can see that,  $c_{2i-1}$  and  $c_{2i}$  are always the same. So do  $c_{2j-1}'$  and  $c_{2j}'$ . Let  $b_i=2c_{2i-1}=2c_{2i}$  and  $b_j'=2c_{2j-1}'=2c_{2j}'$ , we could further simplify the action of the tensor in the space of second order N-dimensional polynomials  $W_N$ . For simplemess, we define a "free" recursive relation in  $W_N$ 

$$P(i,t+1) = \begin{cases} \frac{1}{4}(P(i-1,t) + 2P(i,t) + P(i+1,t)), & i \neq 1 \text{ or } N \\ \frac{1}{4}(P(i-1,t) + 2P(i,t) + P(i+1,t)) \end{cases}$$
 (1)

We call it "free" because  $b_i(t)b'_j(t)=P(i,t)P(j,t)$  if i and j are not "collide" with each other (which means |i-j|>3). And the solution of Eq. (1) is a propagating wave. Refs. [1] provide the solution of this equation,

$$P_{n_0}(n,t) = \frac{1}{N} + \frac{2}{N} \sum_{k=1}^{N-1} \cos \left( \left( n - \frac{1}{2} \right) \frac{\pi k}{N} \right) \cos \left( \left( n_0 - \frac{1}{2} \right) \frac{\pi k}{N} \right) \cos^{2t} \frac{\pi k}{2N}, \ \ (2)$$

where  $n_0$  is the initial state. The term  $P_{n_0}(n,t)$  also called the propagator.

For our case, there are 2 propagators, which are  $P_1$  and  $P_N$ . And the initial state is  $x_1x_N$ . Let  $\phi()$ 

Now, let's pluge  $b_i=2c_{2i-1}=2c_{2i}$  and  $b'_j=2c'_{2j-1}=2c'_{2j}$  into Table 1. More concretely, let  $\phi'$  be the map

$$\begin{split} \phi':W_N \to W_{2N} \\ y_i y_j &\to \frac{1}{4} (x_{2i-1} + x_{2i}) \big( x_{2j-1} + x_{2j} \big). \end{split}$$

If we consider the subspace  $W'_{2N}$  of  $W_{2N}$ , where  $W'_{2N} \coloneqq \operatorname{span} \left( (x_{2i-1} + x_{2i}) \left( x_{2j-1} + x_{2j} \right) \right)$  (it means  $c_{2i-1} = c_{2i}$  and  $c'_{2j-1} = c'_{2j}$ ), the  $\phi'$  will be the isometric between  $W_N$  and  $W'_{2N}$ . Thus, the following diagram commutes.



Then we get

#### 3. Proofs

*Proof of*: The latest layer of T gates is  $T^{(e)}$ , which behaves

$$\begin{split} & T^{(e)} \Big| M_{2i+c} \Big( \prod Z_k \Big) M_{2j+c'} \Big\rangle \\ &= \frac{1}{4} \Big( \Big| M_{2i+(-1)^{1-c}} \Big( \prod Z_k \Big) M_{2j+(-1)^{1-c'}} \Big\rangle \Big\rangle + \Big| M_{2i+(-1)^{1-c}} \Big( \prod Z_k \Big) M_{2j+c'} \Big\rangle \\ &+ \Big| M_{2i+c} \Big( \prod Z_k \Big) M_{2j+(-1)^{1-c'}} \Big\rangle \Big\rangle + \Big| M_{2i+c} \Big( \prod Z_k \Big) M_{2j+c'} \Big\rangle \Big\rangle, \end{split}$$

if 2j + c' > 2i + c + 1. c and c' are the parity of the input state, which take the value 0 or 1. Similarly, we write down the output of  $T^{(e)}$  in the other cases

$$T^{(e)}\big|M_{2i+c}M_{2i+1+c}\big\rangle = \begin{cases} \frac{1}{4}\big(\big|M_{2i}M_{2i+1}\big\rangle + \big|M_{2i-1}Z_iM_{2i+1}\big\rangle \\ \big|M_{2i}Z_{i+1}M_{2i+2}\big\rangle + \big|M_{2i-1}Z_iZ_{i+1}M_{2i+2}\big\rangle \big)\;,\;\;c=0\\ \frac{1}{3}\big|Z_{2i+1}\big\rangle + \frac{1}{3}\big|Z_{2i+2}\big\rangle + \frac{1}{3}\big|M_{2i+1}M_{2i+2}\big\rangle \end{cases}$$

## **Bibliography**

[1] L. Giuggioli, "Exact spatiotemporal dynamics of confined lattice random walks in arbitrary dimensions: A century after Smoluchowski and Pólya," *Physical Review X*, vol. 10, no. 2, p. 21045–21046, 2020.