Chapter 4

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$$

$$X(j\omega) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(\omega - k\omega_0)$$

Property	Aperiodic Signal	Fourier transform
	x(t)	$X(j\omega)$
	y(t)	$Y(j\omega)$
Linearity	$ ax(\overline{t}) + by(\overline{t})$ $-$	$ a\bar{X}(\bar{j}\bar{\omega}) + b\bar{Y}(\bar{j}\bar{\omega})$
Time Shifting	$x(t-t_0) \ e^{-j\omega t_0}x(t)$	$e^{-j\omega t_0}X(j\omega)$
Frequency Shifting		$X(j(\omega-\omega_0))$
Conjugation	$x^*(t)$	$X^*(-j\omega)$
Time Reversal	x(-t)	$X(-j\omega)$
Time and Frequency Scaling	x(at)	$\frac{X(-j\omega)}{\frac{1}{ a }X(\frac{j\omega}{a})}$
Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
Multiplication	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega)Y(j\omega) \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega)Y(j(\omega-\theta))d\theta$
Differentiation in Time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
Integration	$\int_{0}^{t} x(t) dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
Differentiation in Frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$
Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \mathfrak{Re}\{X(j\omega)\} = \mathfrak{Re}\{X(-j\omega)\} \\ \mathfrak{Im}\{X(j\omega)\} = -\mathfrak{Im}\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \\ \lhd X(j\omega) = -\lhd X(-j\omega) \end{cases}$
Symmetry for Real and Even Signals Symmetry for Real and Odd Signals	x(t) real and even $x(t)$ real and even	$X(j\omega)$ real and even $X(j\omega)$ purely imaginary and odd
Even-Odd Decomposition for Real Signals	$x_e(t) = \mathfrak{Ev}$ [$x(t)$ real] $x_o(t) = \mathfrak{Dd}$ [$x(t)$ real]	$\mathfrak{Re}\{X(j\omega)\}$ $j\mathfrak{Im}\{X(j\omega)\}$
Parseval's Relation for Aperiodic Signals $\int\limits_{-\infty}^{+\infty} x(t) ^2dt=\frac{1}{2\pi}\int_{-\infty}^{+\infty} X(j\omega) ^2d\omega$		