ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ВЫСШЕМУ ОБРАЗОВАНИЮ

Московский государственный институт электроники и математики

Кафедра математического анализа

Задачи для экзаменов и коллоквиумов по математическому анализу для студентов 1–2 курса ФПМ (1–3 семестры)

Москва 1997

Составитель: д-р физ.-мат. наук Ю. А. Неретин

Разработка составлена из задач, использовавшихся на экзаменах и коллоквиумах по матаматическому анализу в 1991—97 гг.

УДК 517

Задачи для экзаменов и коллоквиумов по математическому анализу для студентов 1–2 курса ФПМ (1–3 семестры) / Моск. гос. ин-т электроники и математики; Сост. Ю. А. Неретин, М., 1997. 20 с.

Рецензент: доц. В. В. Заруцкая

ISBN 5-230-22241-7

Предлагаемая разработка почти полностью составлена из задач, использовавшихся в курсе анализа в МИЭМ в 1991—1997гг.

Большая часть этих задач входила в экзаменационные билеты в качестве третьего вопроса. Список экзаменационных задач сообщался студентам заблаговременно (за несколько недель до сессии). Как правило решения задач в буквальном смысле этого слова на лекциях не разбирались и на консультациях студентам не сообщались. Однако состав списка экзаменационных задач очень тесно связан с лекционным материалом и, в частности, с примерами, разбиравшимися на лекциях. Во многих случаях пригодность той или иной задачи в качестве экзаменационной зависит от деталей курса, и по этой причине составление универсального списка задач затруднительно; наш список на универсальность не претендует.

Кроме того, в сборник входит часть задач, предлагавшихся студентам на коллоквиумах. Уровень этих задач различен: от очень простых (например, 2.1, 4.8) до сравнительно сложных (4.13, 6.9).

Сюда же добавлены некоторые задачи, разбиравшиеся на лекциях и упражнениях, задачи, входившие в типовые домашние работы (например 2.13, 2.15, 2.27, 4.1, 6.15), а также несколько задач, не проходивших проверку в условиях МИЭМ. В случаях, когда возможность использования задачи вызывает сомнения, около номера задачи поставлен знак вопроса (?). Относительно сложные задачи снабжены знаком плюс (+).

І. Последовательности

1. Доказать, что C_{2n}^n — самое большое из чисел C_{2n}^k . Доказать неравенства

$$\frac{1}{2n+1}2^{2n} < C_{2n}^n < 2^{2n}.$$

- 2. На сколько частей делят плоскость n прямых общего положения (никакие две прямые не параллельны и никакие три не пересекаются в одной точке)?
- 3. Пусть а) $a_n = \frac{n^{10}}{1.01^n}$; б) $a_n = \frac{100^n}{n!}$. Найти $\lim a_n$. Найти N такое, что
- $a_n < 10^{-1}$ для всех n > N.
 4. Пусть $a_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$. Найти n такое, что $|a_n e| < 10^{-5}$.
- 5. Доказать, что последовательность $\sum_{k=0}^{n} \frac{(-1)^k k}{10^k}$ сходится. Найти ее
- сумму с точностью до 10^{-3} . 6. Пусть $a_n=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$. Найти $\lim a_n$. Найти какое-нибудь n
 - 7. Сколько нужно взять слагаемых, чтобы вычислить сумму ряда

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots$$

с точностью до 10^{-6} .

- 8. Доказать, что ряд $\sum \frac{1}{(2n)!}$ сходится. Сколько нужно взять слагаемых, чтобы вычислить его сумму с точностью до 10^{-6} ?
 - 9. Найти множество предельных точек последовательности:

$$\frac{1}{2}$$
, $\frac{1}{3}$, $\frac{2}{3}$, $\frac{1}{4}$, $\frac{2}{4}$, $\frac{3}{4}$, $\frac{1}{5}$, $\frac{2}{5}$, $\frac{3}{5}$, $\frac{4}{5}$, $\frac{1}{6}$, ...

10. Постройте, если это возможно, последовательность, множество предельных точек которой есть: а) $\{0,1\}$; б) $\{0,1,2\}$; в) \mathbb{N} ; г) $\{1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\dots\}$.

4

II. Функции одной переменной

- 1. Пусть a) $f(x) = \sqrt{x} + 1000 \sin x$; б) $f(x) = x \cdot (1.001 + \sin x)$. Указать C, такое, что f(x) > 100 при x > C.
- 2. Найти какое-нибудь C, такое, что для всех x>C выполнено неравенство

$$\frac{x^9 + 7x^8 + 1}{x^{10} - 10x^9 + 7x - 2} < \frac{1}{100}.$$

- 3. Найти такие f и g, что $\lim_{x\to +\infty} f(x)=1,\, \lim_{x\to +\infty} g(x)=+\infty,$ а f^g стремится к a) 0; б) 1; в) 17; г) $+\infty$; д) предел отсутствует.
 - 4. Найти точную верхнюю грань функции $f(x) = \sin x + \sin x^2$.
- 5. Исследовать функции $\sin x^3$, x^3 , $\sin x + \sin \sqrt{3} x$, $x^{5/7}$, $x^{7/5}$ на равномерную непрерывность на \mathbb{R} .
- 6. Исследовать форму кривой $y = x^3 + ax^2 + bx + c$ в зависимости от a, b. c.
- 7. Привести пример многочлена, имеющего три локальных максимума и два локальных минимума. Существует ли многочлен с двумя локальными минимумами и четырьмя локальными максимумами?
- 8. Привести пример многочлена, имеющего ровно 7 точек перегиба. 9. Нарисовать эскиз графика функции $y=\frac{x^2}{10\pi}+\cos x$. Сколько локальных экстремумов имеет эта функция?
- 10. Сколько корней имеет уравнение $x^3 + px + q = 0$ (в зависимости от puq).
- 11. Сколько корней имеет уравнение (исследовать зависимости от параметра α):

a)
$$e^x = \alpha x^2$$
; 6) $x^5 - \alpha x + 1 = 0$.

- 12. Изобразить кривую $y^2 = x^3 + x^2$. Что происходит вблизи точки (0,0)?
- 13. При данных (преподавателем) значениях параметров построить график, найти участки монотонности, выпуклости, асимптотику на бесконечности; исследовать поведение графика вблизи точек разрыва и вблизи точек разрыва производной:

a)
$$= x^{\alpha} \exp(Ax^{\beta}),$$

6) $y^{3} = x(x-p)(x-q) = x^{3} + Ax^{2} + Bx,$
B) $y = A(x-a)^{\mu} + B(x-b)^{\mu},$
 $y = Ax^{\alpha} + Bx^{\beta},$
 $y = x^{\alpha}(x^{h} - B)^{\beta},$
 $y = x^{\alpha}(x^{h} - B)^{\beta},$
 $y = x^{m}(x^{2} - b^{2})^{n},$
e) $y = \ln|x|(\ln|x| - p)(\ln|x| - q) = \ln^{3}|x| + A\ln^{2}|x| + B\ln|x|,$
 $y = \ln^{\alpha}|x|(\ln|x| + p),$
3) $y = \ln|x| + Ax^{2\alpha} + Bx^{\alpha}.$

14. Нарисовать эскиз графика:

a)
$$\begin{cases} x = e^t \sin t, \\ y = e^t \cos t, \end{cases}$$

$$\begin{cases} x = e^t \sin^2 t, \\ y = e^t \cos^2 t, \end{cases}$$
B)
$$\begin{cases} x = e^t \sin t, \\ y = e^{-t} \cos t, \end{cases}$$

$$\begin{cases} x = \sin 3t, \\ y = \sin 5t, \end{cases}$$

$$\begin{cases} x = \sin 3t, \\ y = \cos 5t, \end{cases}$$
e)
$$\begin{cases} x = e^t \sin t, \\ y = e^{-t} \cos t, \end{cases}$$

15. Нарисовать (дома) правдоподобную картинку:

a)
$$x = (t^2 - 1)(t^2 - 2),$$
 $y = (t^2 - 3)(t - 4),$ (1)
b) $x = t + \sin^{30} t,$ $y = t + \cos^{30} t,$ (2)
b) $x = t^3 - t,$ $y = \cos 2\pi t,$ (3)
c) $x = t^4 - t^2,$ $y = \cos 2\pi t,$ (4)
d) $x = 3\cos t + \cos 5t,$ $y = 3\sin t + \sin 5t,$ (5)
e) $x = 3\cos t + \cos(t/5),$ $y = 3\sin t + \sin(t/5),$ (6)
d) $x = \sin t(\pi + arctg t),$ $y = \cos t(\pi + arctg t),$ (7)
3) $x = \sin^{11} t,$ $y = \sin(t/6).$ (8)

16. Нарисовать заданные кривые. Что происходит вблизи точки (0,0)?

(8)

a)
$$\begin{cases} x = t^2 - 1, \\ y = t(t^2 - 1), \end{cases}$$
 6) $\begin{cases} x = t^4, \\ y = t^6 + t^7, \end{cases}$ B) $\begin{cases} x = t^3 - t^2, \\ y = t^5 - t^4, \end{cases}$ r) $\begin{cases} x = t^3 - t, \\ y = t^4 - t^2. \end{cases}$

17. Построить график. Найти точки, где касательная вертикальна (горизонтальна). Исследовать поведение вблизи особых точек:

3a)
$$x = t^3 - 3t$$
, $y = t^4 - 2t^2$,
6) $x = t + \cos t$, $y = \sin t$,
B) $x = t^4 - 2t^2$, $y = \sin \pi t$.

18. Для кривой $x = e^t \cos t, y = e^t \sin t$ найти угол между радиус-вектором (x(t), y(t)) и вектором скорости (x'(t), y'(t)).

19. Найти направление касательной к заданной кривой в момент времени t=0 и направление выпуклости кривой вблизи этой точки:

a)
$$\begin{cases} x = e^t - 1, \\ y = \sin t, \end{cases}$$
 6)
$$\begin{cases} x = \sin t - t, \\ y = \sin 2t - 2t. \end{cases}$$

20. Исследовать функцию $f(x) = \frac{\ln^2(x+\sqrt{x^2-1})}{\ln^2(x-\sqrt{x^2-1})}$ на локальный экстремум.

21. Найти a, b и c такие, что

$$\arcsin x = \frac{\pi}{2} + \frac{a}{(1-x)^{1/2}} + \frac{b}{(1-x)^{3/2}} + \frac{c}{(1-x)^{5/2}} + o(1-x)^{-5/2}, \quad x \to 1-0.$$

22. Найти a, b и c такие, что

$$arctg \ x = \frac{\pi}{2} + \frac{a}{x} + \frac{b}{x^2} + \frac{c}{x^3} + o\left(\frac{1}{x^3}\right), \qquad x \to +\infty.$$

- 23. а) Что больше $4 \ln 100001991$ или $3 \ln 100001992 + \ln 100001988$? (Если студент использует калькулятор, пусть объяснит, почему точность вычислительных средств достаточна.)
 - б) $^{+}$ Найти правдоподобную оценку для разности.

$$f(x)$$
 Найти правдоподобную оценку для разности. 24. Найти $f^{(17)}(0)$ для $f(x) = \begin{cases} e^{-x^{-2}}, & x \neq 0, \\ 0, & x = 0. \end{cases}$

- 25. Найти $f^{(43)}(0)$ для $f(x) = \sin(x^{13} + x^{15})$.
- 26. Что больше при очень малых положительных x:

a)
$$\sin \ln (1 + x)$$
 или $\ln (1 + \sin x)$?

б)
$$\sin(sh x)$$
 или $sh(\sin x)$?

в)
$$\sin(x^{15} + \sin x)$$
 или $\sin(\sin x) + \sin^{15} x$?

27. Найти первый ненулевой член тейлоровского разложения в нуле:

a)
$$\sin\left(x + \frac{x^3}{6} + \frac{3x^5}{40}\right) - x$$
,

$$\ln(e^{-x} + x^5) + x,$$

$$\ln(x + \sqrt{1 + x^2}) - \sin x,$$

r)
$$\ln(x + \sqrt{1 + x^2}) + \ln(-x + \sqrt{1 + x^2}),$$

д)
$$tg\left(x-\frac{x^3}{3}\right)-x,$$

e)
$$\ln^2\left(1+x+\frac{x^2}{2}\right)-x^2$$
,

ж)
$$\sin(x+x^3) - \sin x - \sin^3 x.$$

28⁺. Доказать, что следующая функция бесконечно дифференцируема:

$$f(x) = \begin{cases} \cos \sqrt{t}, & t \ge 0, \\ \frac{1}{2} (e^{\sqrt{-t}} + e^{-\sqrt{-t}}), & t \le 0. \end{cases}$$

- 29. Пусть $y = f(x) = x + x^3$. Доказать, что обратная к f(x) функция $\varphi(y)$ бесконечно дифференцируема. Написать разложение Тейлора функции $\varphi(y)$ с точностью до $o(y^3)$. Решить приближенно уравнение $x^3 + x = 0.1$.
- 30. Для функции $\varphi(y)$ из предыдущей задачи напишите асимптотику

$$\varphi(y) = \alpha y^a + \beta y^b + o(y^b)$$
 при $y \to +\infty$, $\alpha \neq 0$, $\beta \neq 0$, $a > b$.

- 31. Доказать, что кривая $\begin{cases} x=t+t^3,\\ y=t+t^5 \end{cases}$ является графиком некоторой функции y=f(x). Написать разложение Тейлора для f(x) в нуле с точностью до $o(x^5)$.
- 32. Сколько слагаемых формулы Тейлора нужно взять, чтобы вычислить $\sin 1$ с точностью до 10^{-6} ?
 - 33. а) Пусть $x_1=1,\; x_{n+1}=\sin x_n.\;$ Докажите, что $\lim_{n\to\infty}x_n=0.$
- б) Укажите какое-нибудь L, такое, что $x_L < 1/1000$. Покажите, что $L < 7 \cdot 10^9$. Найдите какую-нибудь нижнюю оценку для L.

III. Интеграл

- 1. Вычислив на доске неопределенный интеграл, посмотрите, совпали ли Ваш ответ с ответом из Демидовича. Если ответы выглядят совершенно различно (что случается очень часто), убедитесь в том, что ответы совпадают.
- 2. Найдите рациональную подстановку x = p(t)/q(t), сводящую любой интеграл вида $\int R(x, \sqrt{x+1}, \sqrt{x-1}) dx$, где R — рациональная функция, к интегралу от рациональной функции.
- 3^{+} . Существует ли рациональная подстановка x=p(t)/q(t), сводящая любой интеграл вида $\int R(x, \sqrt[3]{1-x^2}) dx$, где R — рациональная функция, к интегралу от рациональной функции?
 - 4. Вычислить интегралы:

$$\int_0^{\pi/2} \sin^{100} x \, dx, \quad \int_{-1}^1 (1 - x^2)^{100} dx, \quad \int_{-1}^1 (1 - x^2)^{100 + \frac{1}{2}} \, dx.$$

- 5. Оценить $\int_0^1 \sin x^2 dx$ с точностью до 10^{-2} .
- 6. Нарисовать эскиз графика:

a)
$$y = \int_0^x \sin^{101} t \, dt$$
; 6) $y = \int_0^x \sin^{100} t \cos 2t \, dt$; B) $y = \int_0^x \frac{dt}{\sqrt[3]{t^3 - t}}$.

- 7. Какой знак у $\int_{10\pi k}^{20\pi k} \frac{\sin x}{x} dx$?
 8. Найти N такое, что $\left| \int_{2\pi N}^{\infty} \frac{\sin x}{x} dx \right| < \frac{1}{1000}$.
 9. Оценить интеграл $\int_{-\infty}^{\infty} e^{-x^4} \cos 1000x dx$:
 a) с точностью до 10^{-3} ; б)+ с точностью до 10^{-15} .
 10. Тот же вопрос для $\int_{0}^{2\pi} e^{\sin x} \cos 1000x dx$.
- 11. Написать для тора уравнение вида f(x,y,z) = 0, где f(x,y,z) многочлен. Найти площадь его поверхности. Найти объем полнотория.
- 12. Вычислите силу притяжения точечного кулоновского заряда к заряду, равномерно распределенному (с данной плотностью) по прямой.
- 13 $^{?}$. Пусть $|f(x)| \to +\infty$ при $x \to +\infty$. Следует ли из этого, что интеграл $\int_0^\infty f(x) dx$ расходится?

IV. Функции нескольких переменных

 1^{+} . Пусть $\alpha\beta\gamma\delta\epsilon$ — двоичная запись номера студента в журнале. Изобразить кривую в полярных координатах

$$r = 1 + \beta + \sin^{(1+\alpha)(-1)^{\epsilon}} \frac{3+2\gamma}{1+\delta} \phi.$$

- 2. Изобразить поверхности: xy+yz+xz=0; $100(x^2+y^2+z^2)-99(xy+yz+xz)=1$; $100(x+y)^2-(x^2+y^2+z^2)=1$; $z=1000(x^2+y^2)+2001xy$; $x^{2} + y^{2} + z^{2} + 1.99(xy + yz + xz) = 1.$
- 3. Даны две скрещивающиеся прямые l_1 и l_2 . Какая поверхность получается, если вращать прямую l_1 вокруг оси l_2 ?
 - 4. Найти все прямые, лежащие на поверхности $z = x^2 y^2$.
- 5. а) Доказать, что на любом эллипсоиде лежит хотя бы одна окружность. б)⁺ Найти все окружности, лежащие на эллипсоиде $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ $(a \neq b \neq c \neq a).$
- 6[?]. Опишите, как может быть устроено семейство сечений однополостного гиперболоида пучком параллельных плоскостей.
 - 7. Изобразите тело, ограниченное восьмыю плоскостями:

$$x + y + z = \pm 1;$$
 $-x + y + z = \pm 1;$ $x - y + z = \pm 1;$ $x + y - z = \pm 1.$

8. Изобразить линии уровня функций и построить их графики:

a)
$$z = \sqrt{x^2 + y^2}$$
, 6) $z = \sqrt[3]{x^2 + y^2}$,

a)
$$z = \sqrt{x^2 + y^2}$$
,
b) $z = x^2 + y^2$,
c) $z = \sqrt{x^2 + y^2}$,
c) $z = \frac{1}{2x^2 + y^2}$,
d) $z = xy$,
e) $z = (x - y)^2$,

д)
$$z = xy$$
, e) $z = (x - y)^2$,

ж)
$$z = x - y^2$$
, з) $z = \frac{1}{x^2 + y^2 - 1}$,

и)
$$z = (x^2 + y^2 - 1)^2$$
.

9. Изобразить линии уровня функций и нарисуйте их графики:

a)
$$z = \sin x - y^2$$
; 6) $z = x^4 + x^2 - y^2$;

в)
$$z = (x - y^2)^2$$
; г) $z = \pm \sqrt{-y^2 + x^2 - x^4}$,

в)
$$z=(x-y^2)^2;$$
 г) $z=\pm\sqrt{-y^2+x^2-x^4},$ д) $z=\frac{x}{x^2+y^2};$ ж) $z=\frac{xy}{x^2+y^2}.$

- 10. Доказать, что функция, непрерывная на компакте, достигает своего наибольшего значения.
- 11. а) На плоскости дано замкнутое множество K и точка a. Доказать, что существует точка $x \in K$, такая, что |x - a| < |y - a| для всех $y \in K$.
- б) На плоскости даны замкнутые множества K и L. Докажите, что существуют точки $\tilde{x} \in K$, $\tilde{y} \in L$, такие, что $|\tilde{x} - \tilde{y}| \leq |x - y|$ для всех $x \in K$, $y \in L$.

- 12. Обозначим через $\rho(x,y)$ расстояние между точками x и y на плоскости. Пусть a_1,a_2,\ldots,a_n точки плоскости, не лежащие на одной прямой.
- а) Докажите, что функция $f(x) = \rho(a_1,x) + \cdots + \rho(a_n,x)$ имеет точку локального минимума.
- б)+ Докажите. что f(x) имеет единственную точку локального минимума.
 - в)? Пусть b точка минимума функции f. Докажите, что $\sum_j \frac{b-a_j}{|b-a_j|}=0.$
- 13. Покажите, что функция $\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)f(\sqrt{x^2+y^2})$ имеет вид $g(\sqrt{x^2+y^2}).$ Найдите g.
- 14. Бывают ли дифференцируемые функции, имеющие два максимума и ни одного минимума?
- 15. Ограничены ли кривые: а) $x^4-x^3+y^2=1$; б) $x^2-2xy^3+y^6+y=1$; в) $x^2-2xy^3+y^4=1$; г) $x^4-xy^3+y^4=1$?
 - 16. Найдите асимптоту кривой а) $x^3 + y^3 = 3xy$; б) $x^5 + y^5 = x^2y^2$.
- 17. Покажите, что при достаточно больших x уравнение (с неизвестной y) $y^7 + xy x^5 = 0$ имеет единственное решение. Получите разложение вида:

$$y(x) = Ax^{\alpha} + Bx^{\beta} + o(x^{\beta}), \quad x \to +\infty \ (A \neq 0, B \neq 0, \alpha > \beta).$$

- 18. Покажите, что кривая $y^3 + y + x^3 x^2 = 0$ является графиком некоторой функции y = f(x). Напишите разложение Тейлора f(x) в нуле с точностью до $o(x^3)$.
 - 19. Найти угол между кривыми в точке пересечения:

a)
$$x^2 - y^2 = a$$
, $xy = b$,

6)
$$x^2 + \alpha xy - y^2 = a$$
, $xy = b$.

20. Что делают преобразования плоскости (пространства), заданные матрицами:

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix},$$

$$\begin{pmatrix} 1 & & & \\ & 1 & \\ & & 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 & & \\ & -1 & \\ & & 1 \end{pmatrix}, \qquad \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \\ & & 1 \end{pmatrix},$$

$$\begin{pmatrix} 1 & & & \\ & 2 & \\ & & 3 \end{pmatrix}, \qquad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

21. Как устроены отображения:

a)
$$\begin{cases} u = \frac{x}{x^2 + y^2}, \\ v = \frac{y}{x^2 + y^2}, \end{cases}$$
 6) $\begin{cases} u = x^2 - y^2, \\ v = 2xy, \end{cases}$ B) $\begin{cases} u = x^2, \\ v = y^2 \end{cases}$

Куда они переводят координатную сетку? Примерно изобразите, куда они переводят эллипсы: $\frac{x^2}{100} + y^2 = 1$; $100x^2 + (y - \frac{1}{2})^2 = 1$ (эллипсы можно заменить на изображения человечков, кошек, крокодилов и т.д.).

- 22. Карта Москвы меньшего масштаба наложена на точно такую же карту Москвы большего масштаба (так, что меньшая целиком содержится в большей). Доказать, что существует точка, которая на обеих картах изображает одно и то же место Москвы.
 - 23. Доказать, что при достаточно малых |a|, |b| система уравнений:

$$\begin{cases} x = x^2 + y^2 + a, \\ y = xy^2 + b \end{cases}$$

имеет единственное решение в квадрате $|x| \leq \frac{1}{10}, |y| \leq \frac{1}{10}$. Как найти решение с точностью до 10^{-3} ?

- 24. Исследовать функции: а) $z=x^4+y^7$, б) $z=x^3-3xy^2$, в) $z=x^4-xy^3+y^4$, г) $z=x^2-2xy^3+y^6+y^{10}=0$ на экстремум в нуле. Изобразить примерное расположение линий уровня вблизи нуля.
- 25. При каких значениях параметра α функция $z=x^4-\alpha xy^3+y^4$ имеет локальный минимум в нуле?
- 26. Покажите, что функция $z = (x y^2)^2 y^6$ имеет в нуле минимум на любой прямой, проходящей через нуль. Имеет ли она минимум в нуле?
 - 27. Изобразите кривые:

a)
$$x^2 = y^3$$
; $x^2 = y^4$; $x^3 = y^5$;
B) $(x^2 + y^2)^2 = 2(x^2 - y^2)$;
C) $x^3 + y^3 = 3xy$;
C) $x^3 + y^3 = 3xy$;
C) $x^3 + y^3 = 3xy$;
C) $x^6 - y^4 = x^2y^2$;
C) $x^6 + y^6 = x^2y^2$;
C) $x^6 + y^6 = xy$
C) $x^6 + y^6 = xy$
C) $x^6 + y^6 = xy$

В каких точках применима (не применима) теорема о неявной функции (где можно выбрать в качестве независимой переменной x, а где y)? Как устроены особые точки?

- 28. Изобразите примерно участок кривой $(x-y^2)(x-y^3)-y^{10}=0$ вблизи нуля.
 - 29. Изобразите поверхности:

а)
$$x^2+y^2-z^2=1$$
; б) $x^2+y^2-z^2=0$; в) $xy+z^2=0$; г) $z^2=(1-x^2)(1-y^2)$; д) $z^3-z^4=x^2+4y^2$; е) $y^2z=x^3-xz^2$; ж) $y^2z=x^3+x^2z$.

В каких точках применима (не применима) теорема о неявной функции (где можно выбрать в качестве независимых переменных x,y? где x,z? где y,z?)? Как устроены особые точки?

30. Изобразите примерно участок поверхности $z(x^2+y^2)=x^2-y^2$ вблизи (0,0,1).

31. Изобразите кривые:

a)
$$\begin{cases} x^2 + y^2 = 1, \\ y^2 + z^2 = 1, \end{cases}$$
 6)
$$\begin{cases} x^2 + y^2 = 1, \\ x^2 + x + z^2 = 0, \end{cases}$$
 B)
$$\begin{cases} x^2 + y^2 = 1, \\ x^2 + z^2 = \frac{1}{4}. \end{cases}$$

В каких точках применима теорема о неявной функции? Где можно выбрать в качестве независимой переменной x, где y, где z? Как устроены особые точки?

- 32. Найти экстремум функции $x_1x_2\dots x_n$ при условии $x_1+x_2+\dots+x_n=1$. Докажите, что среднее геометрическое n положительных чисел не превосходит их среднего арифметического.
- 33. Исследовать на экстремум функцию $x_1^2+x_2^2+x_3^2$ при условии $\sum a_{ij}x_iy_j=1.$
 - 34. Сколько нормалей можно опустить на эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a > b)$:
 - а) из точки $(0,\beta)$? б) $^+$ из точки (α,β) ?
 - 35. Дана поверхность $x^4 + y^4 + z^4 = 4xyz$.
 - а) Найти ее самую высокую точку.
 - б) Найти ее проекцию на плоскость x0y.
 - в) Изобразить эту проекцию.
- 36?. Пусть X квадратная матрица размера $n \times n$. Найти дифференциалы отображений:

a)
$$X \mapsto AXB$$
, (9)

б)
$$X \mapsto X^2$$
 в точке $X = A$, (10)

в)
$$X \mapsto X^3$$
 в точке $X = A$, (11)

$$r) \quad X \mapsto X^{-1} \; \text{ в точке} \; X = E, \tag{12}$$

д)
$$X \mapsto X^{-1}$$
 в точке $X = A$, (13)

e)
$$X \mapsto det(X)$$
 в точке $X = E$. (14)

V. Числовые ряды

- 1. Исследовать ряд $\sum \frac{\sin n}{n^{\alpha}}$ на абсолютную и условную сходимость. 2. Сколько нужно взять слагаемых, чтобы вычислить сумму ряда:

a)
$$\sum \frac{n^4}{3^n}$$
, $\sum \frac{(-1)^n}{\ln n}$; 6) $\sum \frac{\sin n}{n}$

с точностью до 10^{-3} .

3. Нарисовать график функции

$$\varphi(x) = \sum_{n>0} \frac{1}{n^x}.$$

Чему равен ее предел при $x \to +\infty$?

4. Докажите, что существует конечный предел

$$\lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n \right).$$

- 5. а) Сколько нужно взять слагаемых, чтобы вычислить сумму ряда $\sum n^{-5/4}$ с точностью до 1/1000?
- б)? Предложите какой-нибудь разумный способ вычисления этой суммы на компьютере.

VI. Функциональные ряды и интегралы, зависящие от параметра

1. Оценить сверху разность

$$\ln(1+x) - \sum_{n=1}^{20} \frac{(-1)^n x^n}{n} \quad \text{при } |x| \le \frac{1}{2}.$$

2. Просуммировать ряды:

$$\sum n^2 x^n, \quad \sum \frac{x^n}{n(n+1)}, \quad \sum \frac{x^n}{n(n+1)(n+2)},$$
$$\sum (ch \, n) x^n, \quad \sum (\sin n) x^n.$$

- 3. Вычислить: а) $1-\frac12+\frac13-\frac14+\dots$; б) $1-\frac14+\frac17-\frac1{11}+\dots$. 4. Найти 99-й коэффициент Тейлора в нуле для функции:

a)
$$\frac{1}{x^2 + x + 1}$$
; 6) $\frac{x}{e^x - 1}$.

- 5. Разложить $\arcsin x$ по степеням (1-x) при $x \to 1-0$.
- 6. Разложить по степеням x^{-1} при $x \to +\infty$ функции:

a)
$$arctg x$$
; 6) $\int_{r}^{\infty} \frac{dt}{1+t^5}$.

7. Пусть f(x) — непрерывная ограниченная при $x \geq 0$ функция. Найти

$$\lim_{n \to +\infty} n \int_0^\infty f(x) e^{-nx} dx.$$

8. Пусть f(x) — кусочно-непрерывная ограниченная функция на $\mathbb R$. Вычислить

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) K_n(t-x) \, dx,$$

где

a)
$$K_n(s) = \frac{n}{2} e^{-n|s|};$$
 6) $K_n(s) = \frac{n}{1 + n^2 s^2}.$

9⁺. Пусть

$$f(x) = \begin{cases} 1, & x > 0, \\ 0, & x < 0. \end{cases}$$

Используя ядро Дирихле, нарисовать примерно поведение 1000-й суммы ряда Фурье вблизи нуля.

- 10. Пусть график 2π -периодической функции f центрально-симметричен относительно точек (0,0) и $(\pi/2,0)$. Что можно сказать о ее коэффициентах Фурье?
- 11. Найти пределы функции $f(\alpha)=\int_0^\infty \exp(-x^\alpha)\,dx$ при $\alpha\to+\infty,$ $\alpha\to0.$
 - 12. Вычислить $\int_0^1 \ln \Gamma(x) dx$.
 - 13. Доказать, что функция

$$F(k) = \int_0^{\pi/2} \sqrt{1 - k^2 \sin^2 \varphi} \, d\varphi$$

является решением уравнения

$$F''(k) + \frac{1}{k}F'(k) + \frac{1}{1 - k^2}F(k) = 0.$$

14. Доказать, что функция

$$y(x) = \int_a^b \sin|x - t| \ f(t) \ dt$$

удовлетворяет уравнению y'' + y = 2f(x).

15. Какому дифференциальному уравнению с постоянными коэффициентами вида

$$y'' + ay' + by = f(x)$$

удовлетворяет функция:

a)
$$y(x) = \int_0^1 (\max(x, t) - xt) f(t) dt$$
,

6)
$$y(x) = \int_{a}^{b} sh |x - t| f(t) dt$$
,

B)
$$y(x) = \int_{a}^{x} f(t)(x-t)e^{a(t-x)} dt$$
.

16. Вычислить:

a)
$$\left(\frac{\partial}{\partial x}\right)^k \int_0^x \frac{(x-t)^\alpha}{\Gamma(\alpha)} f(t) dt$$
,
6) $\left(x^2 \frac{\partial^2}{\partial x^2} + x \frac{\partial}{\partial x}\right) \int_0^\pi \cos(n\phi - x \sin\phi) d\phi$.

- 17. Вычислить $\int_0^\infty \frac{dx}{(x^2+a)^n}$ а) с помощью формулы понижения,
- б) с помощью дифференцирования по параметру,
- с) с помощью разложения на комплексные простые дроби.

VII. Кратные, криволинейные и поверхностные интегралы

1. Вычислить

$$\iint_G (y^2 - x^2)^{20} dx \, dy$$

по области $G: |x| + |y| \le 1$.

2. Вычислить

$$\iint_{\mathbb{D}^2} \exp(-x^2 + xy - y^2) \, dx \, dy.$$

- 3. В области, ограниченной поверхностями: $z=1-x^2, z=-1+y^2,$ расставить пределы интегрирования в порядке dz dx dy и dx dz dy.
 - 4. Переставить пределы интегрирования в

$$\int_0^{\alpha} dx \int_0^x dy \int_0^y f(z) dz$$

и свести интеграл к однократному.

5. Вычислить

$$\iiint_G x^{\alpha} y^{\beta} z^{\gamma} (1 - x - y - z)^{\beta} dx dy dz$$

- по области $G:\ x\geq 0,\ y\geq 0,\ z\geq 0,\ x+y+z\leq 1.$ 6. Найти потенциал выражения $\dfrac{y\ dx-x\ dy}{x^2+y^2}$ в плоскости \mathbb{R}^2 , из которой выкинута полуось $\{(x,0), x < 0\}$.
 - 7. Вычислить интеграл от того же выражения по контуру:

$$\begin{cases} x = \cos 3t + 2\cos 2t, \\ y = \sin 3t + 2\sin 3t, \end{cases} \qquad t \in [0, 2\pi].$$

8. Изобразить кривую и найти ее центр тяжести:

$$\begin{cases} x = (a + b\cos 3\varphi)\cos 2\varphi, \\ y = (a + b\cos 3\varphi)\sin 2\varphi, \\ z = b\sin 3\varphi \end{cases} (\varphi \in [0, 2\pi], \ a > b > 0).$$

- 9. Окружность С радиуса R катится по окружности радиуса 2R без скольжения. Изобразить траекторию точки, лежащей на С, и вычислить площадь, ограниченную этой траекторией.
 - 10. Найти центр тяжести однородной полусферы.
- 11. Найти кинетическую энергию однородного шара данной плотности, вращающегося с данной угловой скоростью вокруг одной из осей.
 - 12. Найти объем *п*-мерного шара.
 - 13⁺. Найти силу гравитационного притяжения к однородной сфере.
- 14. Найти силу притяжения кулоновского заряда к равномерно заряженной плоскости.

- 15. В соседней вселенной сила гравитационного притяжения обратно пропорциональна расстоянию. Найти силу притяжения точки к однородной сфере.
 - 16. Найти поток

$$\int \frac{x \, dy \, dz + y \, dz \, dx + z \, dx \, dy}{(x^2 + y^2 + z^2)^{3/2}}$$

через эллипсоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

17. Найти

$$\int \frac{(z-y^2)\,dx + 2xy\,dy - x\,dz}{x^2 + (z-y^2)^2}$$
 по кривой
$$\begin{cases} x = \cos\varphi, \\ y = 1 + \sin\varphi, \\ z = 2 - \cos\varphi \end{cases}$$
 и по кривой
$$\begin{cases} x = 5\cos\varphi, \\ y = 1 + 5\sin\varphi, \\ z = 2 - \cos\varphi. \end{cases}$$

18. Докажите, что центральное поле, т.е. поле вида

$$\vec{f} = \frac{\alpha(r)}{r} (x \cdot \vec{i} + y \cdot \vec{j} + z \cdot \vec{k}),$$

где $r=\sqrt{x^2+y^2+z^2},$ является потенциальным. Найти его потенциал. Для каких функций $\alpha(r)$ оно является бездивергентным?

Задачи для экзаменов и коллоквиумов по математическому анализу для студентов 1-2 курса $\Phi\Pi M$ (1-3 семестр).

Составитель: НЕРЕТИН Юрий Александрович

Редактор Технический редактор

Подписано в печать . Формат $60 \times 84/16$. Бумага типографская №2. Печать ротапринтная. Усл. печ. л. Усл. кр.-отт. Уч.-изд. л. Тираж Заказ Бесплатно. Изд. № Московский государственный институт электроники и математики. 109028 Московского государственного института электроники и математики. 113054 Москова, ул. М. Пионерская, 12.