PART IV.
High-level awareness
of broader landscape
in causal reasoning

Outline

- Discovery of causal relationships from data
- Heterogeneous treatment effects
- Machine learning, representations and causal inference
- Reinforcement learning and causal inference
- "Automated" causal inference

Causal discovery

Effects of causes and causes of effects

- We discussed causal inference: effects of causes
- But a complementary question is causal discovery
 - [Local] Causes of effects
 - [Global] Mapping out causal mechanisms
- In general, a harder problem.
- See Causation [Spirtes (2000)] and Elements of Causal Inference (Scholkopf et al. 2017).

Heterogenous treatment effects

Average causal effect does not capture individual-level variations

- Stratification is one of the simplest methods for heterogenous treatment by strata
- Typical strata are demographics.
- Need more data to statistically detect differences

 For high-dimensions, can use machine learning methods like random forests [Athey and Wager, 2015]

Machine learning and causal inference

Causal inference as a (counterfactual) prediction problem

Causal inference \Leftrightarrow robust prediction

(Supervised) ML

training distribution P(X,y).

Causal inference

Predicted value under the Predicted value under the counterfactual distribution P'(X,y).

$$P(X, y): y = k(X) + \epsilon P'(X, y): y = ?$$

Causal inference: A special kind of domain adaptation

Predicting the counterfactual ⇔ Causal Inference

Predicting Individual treatment effects can be considered as domain adaptation

--Use regularization and transformation of input features [Johansson 2016]

Generalizing prediction to new domains

- -- Selection bias or covariate shift [Barenboim and Pearl 2013]
- -- If predictive model generalizes to new domains, can be considered "causal" [Peters et al. 2015]

Causal inference and machine learning

Machine learning

Use causal inference methods for robust, generalizable prediction.

Causal inference

Use ML algorithms to better model the non-linear effect of confounders, or find low-dimensional representations.

In general, be wary of methods that have not been empirically tested, especially ones that you do not understand.

Reinforcement learning and causal inference

Generalizing a randomized experiment

Efficient randomized experiment: Multi-armed bandits

Two goals:

- Show the best known algorithm to most users.
- Keep randomizing to update knowledge about competing algorithms.

"Explore and Exploit" strategy

Algorithm: ε-greedy multi-armed bandits

Repeat:

(Explore) With low probability ε, choose an output item randomly.

(Exploit) Otherwise, show the current-best algorithm.

Use CTR results for Random output items to train new algorithms offline.

Practical Example: Contextual bandits on Yahoo! News

Actions: Different news articles to display

A/B tests using all articles inefficient.

Randomize the articles shown using ϵ -greedy policy.

Better: Use context of visit (user, browser, time, etc.) to have different current-best algorithms for different contexts.

Many of these techniques can be combined

Remember, we are always looking for the ideal experiment with multiple worlds

Example: Randomization + Instrumental Variable

Treatment example: You cannot randomize who exercises, but maybe can provide incentives to join the gym.

Algorithm example: You cannot remove recommendations at random, but could advertise a focal product to a random subset of people on the homepage.

Conclusions

Causal inference is tricky

Correlations are seldom enough. And sometimes horribly misleading.

Total revenue generated by arcades

correlates with

Computer science doctorates awarded in the US

Always be skeptical of causal claims from observational any data. More data does not automatically lead to better causal estimates.

Causal inference: Best practices

Always follow the four steps: Model, Identify, Estimate, Refute.

--Refute is the most important step.

Aim for simplicity.

-- If your analysis is too complicated, it is most likely wrong.

Try at least two methods with different assumptions.

--Higher confidence in estimate if both methods agree.

Thank you!

Emre Kiciman, Amit Sharma (Microsoft)

@emrek, @amt_shrma

Tutorial and other resources will be posted at: http://causalinference.gitlab.io

DoWhy library can be accessed at http://causalinference.gitlab.io/dowhy