

SAMPLE COLLECTING DEVICE AND MASS
SPECTROMETRY OF DEVICE

Technical Field

The present invention is concerned with methods and devices for sample collection and simultaneous detection and/or quantitation of multiple trace elements in 5 fluid samples.

Background Art

A wide range of trace metals and other elements is necessary for good health and physical well being in humans and other animals; deficiencies in essential elements have been shown to cause general malaise and lead to the induction of specific disease, 10 commonly resulting in death. For many essential trace elements, it is not simply the absolute concentration, but also the inter-element balances that have a profound effect on health. For example, selenium deficiency is implicated in the aetiology of Iodine Deficiency Disorders amongst humans, whilst copper deficiency, associated with high levels of manganese, may be implicated as a predisposing or causative factor in 15 induction of Bovine Spongiform Encephalopathy (BSE) in cattle and, by association, New Variant Creutzfeldt-Jakob Disease (nvCJD) in humans.

Dietary forages, vegetables, grains and fruits, which fix available trace elements as metal colloids within their tissue, have long been regarded as sources of essential trace elements. Such plant-based metal colloids are about ninety-eight percent 20 absorbed and communities and animals that have a balanced range of plant products as essential components of diet may reasonably be expected to display markedly reduced incidence of specific trace element deficiency-related disease when compared with other groups lacking quality forage or a regular vegetable, fruit and grain intake.

The trace element content of vegetative material is directly related to the 25 bioavailability of essential nutrients in soils supporting the vegetation. Soils vary in their trace element content from enriched to impoverished, according to local geology, soil degradation and nutrient impoverishment and as a function of inappropriate cropping practice, which is widespread throughout the world. In addition, soils throughout the world are sustaining increasing anthropogenic chemical damage threatening the 30 existence of many plants and animals. Consequently, human health is being threatened through the food chain.

While the productivity of the soils may be maintained through the application of N-P-K fertilisers, food crops growing on these soils becomes, without the regular 35 application of biologically-available 'balanced' trace elements, progressively impoverished in essential trace elements and minerals. If not corrected, this may result in sharply increased incidences of mineral deficiency-related disease.

BEST AVAILABLE COPY

Elements may be classified as being essential or toxic to human and animal health. In the case of animals, trace metal deficiency and/or toxicity is due largely to concentration levels controlled by environmental factors, whereas for humans, both environmental and occupational factors may be important; toxic response may a function of both natural and/or anthropogenic influences.

Ignoring carbon, hydrogen and oxygen, the biologically essential major elements are calcium, chlorine, magnesium, phosphorous, potassium, sodium, nitrogen and sulphur. Essential trace elements include bromine, chromium, cobalt, copper, fluorine, iodine, iron, manganese, molybdenum, selenium, silicon and zinc. If bio-available, many of these essential trace elements induce toxic responses, at elevated levels, or if out of balance with synergistic and/or antagonistic elements. Several other elements (lithium, scandium, rubidium, lanthanum) are minor essential elements.

In addition to dietary trace metal deficiency-induced disease, other cohorts of individuals are occupationally or environmentally exposed to a range of toxic element pollutants, which similarly induce general malaise and/or specific clinical symptoms commonly resulting in complications and death. Notable amongst these are arsenic, lead and mercury, which constitute the top three most hazardous substances on the US Environmental Protection Agency's Toxic Substances and Disease Registry priority list.

The leaching of heavy metals into the aquatic environment, and uptake by wildlife in the food chain, may have a profound impact on human health. Cadmium and mercury, in particular, are strongly bio-accumulated in fish and shellfish.

Although it is not possible to quantify the hazards and deleterious effects associated with all trace elements, some elements clearly present a more serious problem than others. Respectively ranked 1, 2, 3 and 7 on the NPL, arsenic, lead, mercury and cadmium, as elemental pollutants, are considered extremely toxic and the health effects of these elements have received a great deal of attention from research workers. Other elements on the list, in alphabetical order, are aluminium, antimony, barium, beryllium, chromium, cobalt, copper, manganese, nickel, plutonium, radium, selenium, silver, thallium, thorium, tin, uranium, vanadium and zinc.

Unlike many essential trace elements, the concept of a therapeutic index cannot be applied to toxic elements such as lead, cadmium, mercury and arsenic. These toxic elements play no known role in metabolism, as no enzyme has been identified which specifically requires any of them as cofactors. They are extremely hazardous to life and, resulting from ingestion, have been involved in historic poisoning episodes of both human and animal populations. They are increasing in concentration in both aquatic

and terrestrial environments due to anthropogenic inputs, and thus will continue to be a concern to toxicologists and clinicians.

Hence, proactive intervention to identify trace metal and element aberrations within general populations, thereby enabling the early implementation of targeted 5 remedial strategies with consequent minimization of the huge social impact of trace metal-induced disease, is essential. However, mass screening of general populations for trace metal deficiencies and/or toxic metal excesses, with reference to age, sex, socio-economic status and physical geography, while acknowledged as being highly desirable in terms of preventative medicine, is presently impractical. So too, is the mass 10 screening of human food chain components, such as slaughter animals, prior to their entering the food chain.

Present test methodologies require relatively large volumes of fluid samples (for example, 5-10 ml of blood) and are commonly trace element specific, that is, simultaneous measurement of other trace elements potentially present is not possible. 15 Because of this, other relevant trace metals are either overlooked or require further fluid samples for their determination. In the case of blood, this involves invasive, often traumatic extraction, particularly for young children, babies and the elderly, using hypodermic syringes. The derivative body fluid products require stabilisation and preservation, and having regard for transmissible disease such as HIV, appropriate 20 biohazard handling and disposal. Further, the large volumes required give rise to handling and storage problems.

There is no current technology available that can conveniently be used for the collection and broad-spectrum analysis of the trace element content of large numbers of blood and other body fluid samples. Presently available testing methods are 25 cumbersome and expensive, placing the service outside the reach of the general population, particularly in underdeveloped regions where problems are often greatest. Further, there are no convenient and sensitive mass spectrometric methods for detecting pollutants or contaminants in fluids such as water or lubricants.

There is therefore a need for improved methodologies which will enable more 30 efficient and cost effective screening of trace elements in fluid samples.

It is an object of the present invention to alleviate at least some of the disadvantages of prior art methods, or to provide a useful alternative.

Summary of the Invention

According to a first aspect there is provided a sample collection device 35 comprising an inert collection matrix capable of adsorbing or absorbing a fluid sample, and a solid support, wherein the inert matrix is affixed to an area of the solid support

Particularly useful matrices may be selected from aragonite, aluminium hydroxide, titania, glucose, Starch "A", Starch "B", glucodin, cellulose powder/granules, fibrous cellulose, hydroxy butyl methyl cellulose, vegetable flour and the like, or mixtures thereof. Particularly preferred is fibrous cellulose. The fibrous cellulose matrix 5 may be modified by oxidation and/or acid hydrolysis to improve its properties and thus provide enhanced reproducibility and sensitivity.

The vegetable flour may be selected from rice, maize, wheat, soy, rye or corn flour, or mixtures thereof. Particularly preferred is rice flour.

10 The inert matrix may also contain, on or within, one or more pre-calibrated selected analytes as internal standard, to aid in the quantitation of trace elements in the sample applied to the collection device.

15 The device of the present invention may also comprise an integral lancing member, capable of piercing for example skin or tissue, to aid in the collection and application of a blood or body fluid sample to the inert matrix. The lancing member may be mounted adjacent to, within or below the area of inert matrix. There may be included a guiding channel in the inert matrix, to guide the lance should it be disposed below the inert matrix area.

20 The device may also be equipped with a laser-scannable bar code which may contain patient information or other information concerning the sample, its nature and source. The device may also include an antibiotic barrier, to prevent contamination of the sample to analytical equipment and personnel.

25 Preferably the inert matrix is applied to only one side of the support. It is also preferred that the area to which the matrix is applied is smaller than the area of the solid support and that it be in the shape of a small tablet-sized disc.

30 The inert matrix may include hydrophobic and/or hydrophilic components, depending on the nature of the sample and the analysis to be performed.

35 Preferably the solid support is made of flexible material having sufficient durability to withstand transport and handling. Of course it will be understood that the support can be made of rigid material, depending on the nature of application. It is also preferred that the device is of sufficiently small size to allow transport of the device through mail and for ease of storage. The device may have an integral or separate cover sheath, to protect the inert matrix and prevent possible contamination after collection. The cover sheath also protects the device during transport and handling.

According to a second aspect there is provided a sample collection device having 35 multi-layer construction wherein the collection matrix layer is sandwiched between two

supporting layers, one of said supporting layers having an opening, which exposes an area of the collection matrix.

Alternatively, the sample collection device may encapsulate a collection matrix tablet within the body of the support wherein the matrix is exposed flush with one surface of the support.

The collection device and methods of the present invention may be used for analysis of any fluid sample, including body fluids, oils and other lubricants, water from drinking supplies as well as waste water, and the like. Body fluids such as whole blood are particularly preferred, however, separated blood (eg. plasma or serum) and other body fluids, such as urine or sweat, can also be used with the same device.

It will be understood that a sample of body fluid, particularly blood, can be collected for analysis by conventional means, or by using for example a sample collection kit comprising a resealable, sterile sample collection device, embodying a bar coded support in which is embedded, or to which is affixed, a tablet, wafer, wad, strip or the like, of sample absorption/adsorption matrix, a sealed alcohol-saturated wipe, and a separate retractable, single use, spring-loaded lance for penetrating the skin and drawing blood. Of course a lance can be omitted from the kit if the sample to be collected is for example urine or sweat.

As indicated above, the analytical sample need not be a body fluid. Thus, the devices and methods of the present invention are equally applicable to collection and analysis of water or oil samples without significant adaptation of collection devices or analytical procedures and equipment.

The matrix of the sample collection device can include one or more matrix-matched standards either adsorbed/absorbed onto/into sample collection matrix or, alternatively, supported on an impermeable substrate. Here, the matrix may be spiked with elements, for example, Be, In and Hf and these elements will serve as internal standards that will be released simultaneously with the sample during ablation; this will facilitate matrix matching.

According to a third aspect there is provided a method of detecting simultaneously a plurality of elements in a fluid sample adsorbed onto or into an inert collection matrix, comprising:

(i) exposing the sample to high energy radiation capable of ionising at least a portion of the sample, and

(ii) detecting plurality of elements in the ionised portion of the sample by mass spectrometry.

According to a fourth aspect there is provided a method of quantifying simultaneously a plurality of elements in a fluid sample adsorbed onto or into an inert collection matrix, comprising:

- (i) exposing the sample to high energy radiation capable of ionising at least a portion of the sample;
- 5 (ii) measuring quantity of a plurality of elements in the ionised portion of the sample by mass spectrometry;
- (iii) measuring quantity of ionised portion of sample, and;
- (iv) determining quantity of the plurality of elements in the sample.

10 According to a fifth aspect there is provided a method of quantifying simultaneously a plurality of elements in a fluid sample adsorbed onto or into an inert collection matrix having an internal standard applied thereto, comprising:

- (I) exposing the sample to high energy radiation capable of ionising at least a portion of the sample and a portion of said internal standard;
- 15 (II) measuring quantity of a plurality of elements in the ionised portion of the sample by mass spectrometry;
- (III) measuring quantity of ionised internal standard in the ionised portion of the sample by mass spectrometry, and
- (IV) determining quantity of the plurality of elements in the sample with reference to quantity of ionised internal standard.

20 According to a sixth aspect there is provided a method of quantifying simultaneously a plurality of elements in a fluid sample adsorbed onto an inert collection matrix, comprising:

- (I) introducing into the fluid sample a known quantity of a measurable internal standard
- 25 (II) exposing the sample to high energy radiation capable of ionising at least a portion of the sample and the internal standard;
- (III) measuring quantity of a plurality of elements in the ionised portion of the sample by mass spectrometry;
- 30 (IV) measuring quantity of ionised internal standard in the ionised portion of the sample by mass spectrometry, and
- (V) determining quantity of the plurality of elements in the sample with reference to quantity of ionised internal standard.

35 According to a seventh aspect there is provided a method of quantifying simultaneously a plurality of elements in a fluid sample adsorbed/absorbed onto or into an inert collection matrix comprising:

- (i) exposing the sample to high energy radiation capable of ionising at least a portion of the sample;
 - (ii) measuring quantity of a plurality of elements in the ionised portion of the sample by mass spectrometry;
- 5 (iii) exposing a matrix-matched Certified Reference Material (CRM) to high energy radiation capable of ionising at least a portion of the CRM;
- (iv) measuring quantity of ionised CRM in the ionised portion of the sample by mass spectrometry, and
 - (v) determining quantity of the plurality of elements in the sample with reference
- 10 to the CRM.

According to an eighth aspect there is provided a method of quantifying simultaneously a plurality of elements in a fluid sample supported on an impermeable substrate, comprising:

- (i) exposing the sample to high energy radiation capable of ionising at least a portion of the sample;
- (ii) measuring quantity of a plurality of elements in the ionised portion of the sample by mass spectrometry;
- (iii) exposing a matrix-matched Certified Reference Material (CRM) to high energy radiation capable of ionising at least a portion of the CRM;

20 (iv) measuring quantity of ionised CRM in the ionised portion of the sample by mass spectrometry, and

- (v) determining quantity of the plurality of elements in the sample with reference to the CRM.

Details of some useful CRM's, for example, SARM 1, 3 and 48 (South African Bureau of Standards), and SY-2 (Canadian Certified Reference Material Project (CCRMP)) are given in Table 1. Other standard element cocktails may include elements such as Be, In, Hf, Bi, Th to cover the mass calibration range, but may include any element as a standard, that is not being analysed.

30 Preferably, the sample is whole blood and sample size is approximately 50 µl to 100 µl and even more preferred size of sample is 50 µl or less. Of course, separated blood may also be used, e.g. plasma or serum.

Also preferred is that the high energy radiation is UV laser radiation and that the sample is exposed to such radiation for a period of approximately 30 seconds, but may be between 10 and 120 seconds. The devices and methods of the present invention may be used in conjunction with any Inductively Coupled Plasma-Mass Spectrometer

(ICP-MS) system. Particularly preferred are quadrupole and Time-of-Flight (TOF) ICP-MS systems.

- The preferred elements to be detected and/or quantified are dietary trace elements, toxic elements and markers of pollution or wear and tear. For blood and other body fluids, these elements can include Li, Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Te, Ba, La, Ce, Eu, Dy, Yb, Hg, Tl, Pb, Th and Pb. For wear metals in lubricants such as oil, the element array may include Li, B, Mg, Al, Si, P, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Sr, Y, Zr, Mo, Ag, Cd, Sn, Sb, Ba, La, Ce, Hf, Hg, Pb, and U.
- In a preferred embodiment the matrix or the support comprise one or more wells or indentations to accommodate the fluid sample.

According to a ninth aspect there is provided a method of collecting a fluid sample for mass spectrometry analysis of multiple element content comprising the application of the sample to an inert matrix having a low background element content, wherein the matrix is selected from the group consisting of aragonite, aluminium hydroxide, titania, glucose, Starch "A", Starch "B", glucodin, cellulose powder/granules, fibrous cellulose, hydroxy butyl methyl cellulose, vegetable flour or mixtures thereof.

Description of the Preferred Embodiment

The present invention is in part based on Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry technique, which allows rapid, automated, cost effective mass screening of general populations, bloodstock, zoo animals, pets and slaughter animals to identify trace element aberrations in body fluids. This technology facilitates proactive remedial intervention to target and correct essential trace element imbalances and/or toxic heavy metal excesses and enables identification and rejection of heavy metal-contaminated slaughter animals designed for human consumption. The methods and devices of the present invention are also useful for detection and quantitation of trace elements, metals and the like in fluids such water and lubricants, as indicators of for example water pollution or mechanical wear and tear.

The present invention in its various embodiments allows the simultaneous analysis and/or quantitation of a broad spectrum of up to 50 trace elements during a primary analytical run. A secondary run, using a screened torch may include Ca, Mg, Na, K and Fe. The analytical cost of a sample is lower than that of a large number of single element analyses currently being performed, on a chemically unmodified 50-100 micro-litre volume of body fluid sample or other fluid sample (single drop) adsorbed onto an inert collection matrix. In case of blood, the sample collection device, and collection protocol, may be so configured to eliminate the use of hypodermic syringes, and hence

potential for stick injuries, is non-invasive and hence, non-traumatic, and does not involve the preservation, movement and storage of large volumes of blood and urine, or involve large biohazard disposal facilities. Indeed, in the case of humans, samples may generally be self-acquired at any geographic location through absorption/adsorption of a

5 drop of biological fluid, such as blood from a pin prick, into/onto a lightweight collection device as described herein, and dispatched to the nearest analytical facility by post or courier. Because an approximately 8000°C argon plasma is involved in ionisation of the samples, the body fluid samples are expected to be largely sterilized during analysis.

Certain embodiments of the present invention have been developed using an
10 ultraviolet laser and quadrupole inductively coupled plasma-mass spectrometer (LA-ICP-MS) with manual sample handling. However, the present methods are equally applicable to Time-of-Flight (ToF) and High Resolution mass spectrometry techniques. Further, the methods of the present invention, whether they make use of quadrupole, ToF or High Resolution mass spectrometry, can be automated to allow rapid, high
15 volume throughput screening of samples.

The methods and devices of the present invention permit cost effective, simultaneous, automated mass screening of blood, and other body fluids, for a wide range of essential and toxic trace elements on micro-litre volumes of test fluid absorbed onto inert collection matrices. In certain preferred embodiments the core of the
20 analytical system comprises a quadrupole Laser Ablation-Inductively Coupled Plasma-Mass Spectrometer. The spectrometer may be used in conjunction with an associated automated sample insertion system.

In preferred embodiments of the present invention the collection device, or kit of parts, is envisaged to consist of the following components:
25

- housing mount that forms the surround of the actual collection matrix and acts as the support of this matrix and also increases robustness of the entire device allowing for transport of the entire system;
- the collection matrix itself consisting of an absorptive pellet;
- a mechanism for puncturing skin and facilitating the collection of a single drop of blood; and
- a bar code or equivalent which ultimately will facilitate the recognition of both the sample and its association with the client.

However, the collection device, or kits of parts, may exclude certain features or include additional features.

The invention will now be described in more detail with reference to non-limiting examples.

Examples

Example 1: Sample collection and application

- 5 Samples may be collected and applied to a chosen collection matrix of the present invention in a conventional manner well known in the art.
For example, blood from a subject may be collected using a kit which comprises a shielded, retractable, spring loaded 'pricker', as part of the sample kit, which also includes a sealed, alcohol-saturated wipe, or swab, for pre-cleaning the skin area to be pricked to avoid unnecessary sample contamination.

- 10 It will be understood however that collection of samples of other body fluids, such as urine and sweat, or other fluids such as water or oil and other lubricants, will not require most of the components stipulated above for blood collection, but it will nevertheless be important to exclude contaminants. Conventional techniques for this will be known to those skilled in the art.

- 15 The fluid sample, which ever fluid may be of interest, can be applied to the collection matrix for analysis by any known means. For example, a particular quantity may be applied to the collection matrix by a pipette, a capillary tube, a dip-stick or similar device. Exact quantity applied is not important but may be controlled if desired.

- 20 Alternatively, particularly for blood sample collection, a collection device such as described in Example 2 below may be used.

Example 2: Sample Collection Device

- An example of one type of sample collection device of the present invention, particularly suitable for collection of a blood sample, incorporates an inert fluid absorption matrix, most preferably a fibrous cellulose matrix (Whatman 540, but also 25 541, 542 and other cellulose filter papers, Whatman International Ltd, Maldstone, England), typically shaped in the form of a small tablet-size disc. The matrix is affixed to or encased within a small, lightweight, disposable or re-cyclable holder (disc holder or solid support material). Ideally the holder is made of relatively rigid material (for example 30 plastic, cardboard or similar material). The device is designed so that a drop of blood or body fluid can be placed on the absorption matrix and the device sealed at the site of collection. Thus immobilized sample can be easily transported via post or courier to a sample analysis center and/or stored.

- 35 Of course the device may be used for other samples, which are not body fluids. For example water or a lubricants.

A collection device of this embodiment of the present invention, incorporating a number of features described below, is depicted in Figure 1. In plan view (A) the device is typically rectangular in shape and has an area of absorbent collection matrix (1) disposed on the surface, and may also have a bar code (2) containing relevant information about the sample and/or the subject. The collection matrix is preferably fibrous cellulose but other matrices described hereafter may also be used. The collection area shown is circular in shape but may be any other suitable shape. A cover sheath (B) may be provided, to cover the collecting matrix area after the sample has been collected. Figures 2 and 3 show the collection device in cross section, in closed and open positions respectively. The carrier or backing (support) portion (A) of the device can be suitably made of plastic or some form of card (stiff paper, cardboard and the like) material. The cover sheath (B) may be made of similar materials. Both the backing portion and the cover sheath may include a locking ridge (3), for positive engagement between the backing and cover sheath, and also to prevent the cover sheath, if used, from sliding off entirely.

Figures 2 and 3 also show the area of collection matrix (1) and a stylus or lance (5) disposed below the collection matrix and within the carrier or backing material. The lance may be guided by a channel (4) in the collection matrix, so that when the device is pressed between the thumb and a finger, the lance will be forced through the channel and into the finger, thus piercing the finger and enabling a sample of blood to be collected onto the collecting matrix. Once the sample has been taken, the cover or sheath can be slid over the collecting matrix, thus protecting the sample as well as individuals handling the used device.

Figure 4 is an enlargement of a section of figures 2 and 3, showing in more detail the preferred arrangement of the lance, collection matrix and the guiding channel.

Typically, a collection device contemplated herein, in a particular preferred configuration, will have dimensions of approximately 40x20 mm and will be about 2 mm thick. However, larger or smaller collection devices may be useful in different applications and can be designed along equivalent parameters.

The collection device is primarily designed for the collection of blood and other body fluids prior to analysis of the trace element content. However, similar design principles can be used for sample collection of other fluids, omitting the integral lance. Of course, even for blood sample collection, the device described above may be provided with a separate lance, packaged together in a kit of separate components if desired.

The design of the sample collection device provides for low manufacturing costs, a robust configuration, ease of transportation, ease of storage, and can be used to collect a drop of test sample from a remote site by an inexperienced collector.

The matrix, which forms an integral part of the device, is typically an inert material with respect to fluid interaction prior to analysis and does not interfere with the subsequent sample analysis. The sample adsorbed onto or into the matrix can be stored indefinitely, without the addition of preservatives that may add contaminants to the sample.

The preferred material suitable for the matrix is cellulose, either granular or fibrous and may be either formed or preformed. Typically, the sample of blood transferred to the blood collection device does not have a specific volume. Hence the matrix may be encoded with an internal standard to normalize the analytical data on analysis.

The matrix may also be composed of inorganic materials suitable for a matrix of the ceramic-type, for example compounds of lithium, boron, carbon, magnesium, aluminium and silicon. Although this list is not exhaustive, it does encompass the main ingredients for an appropriate robust thermo-ceramic.

Typically, a sample of blood is transferred to the collection device that has a small lance or puncturing needle incorporated into the matrix, or into the backing/support material. The patient grips the device and causes a small pinprick to be administered. The collected blood does not have to have a specific volume as the matrix can be encoded with an internal standard, which normalizes the analytical data on analysis.

The device can have a laser-scannable bar code for recognition of the patient or to include any other additional information on the sample and its source. The amount of blood required is usually less than 50 μ L. The device can also have a sealing mechanism to ensure that the device plus sample can be transported and will not be contaminated.

The matrix may be affixed to, or encapsulated within, the support material or holder by any known means and may employ adhesives. Further, an antibiotic barrier may be applied to prevent contamination of the sample or the analytical equipment and personnel.

The present invention also makes use of collection devices which do not possess a collection matrix affixed thereto. The collection matrix may be simply omitted and the sample applied directly to the support material (backing). This may be particularly useful in certain body fluid collection devices. In such devices it may be advantageous to

introduce indentations (wells) into the support material, to allow for sample immobilization or the application of multiple samples and/or standards to the same support material (device) by application to multiple indentations (wells) in the support material.

- 5 Sample of fluids applied to any of the collection devices described herein may be dried before analysis.

Example 3: Sample Analysis System

Traditionally, quantitation in LA-ICP-MS has been approached by controlling the power coupling the laser to the sample, to ensure uniform ablation characteristics and transfer of uniform amounts of solid to the analytical plasma. While this has much to recommend it when the nature of the matrix can be assured (eg. glass or similar), there are significant problems associated with standardisation of the coupling and transfer efficiency when matrices are not uniform. Furthermore, when the surface characteristics of the sample also vary it is extremely difficult to ensure uniform ablation.

15 Until the present invention laser ablation ICP-MS technology has been at best a semi-quantitative technique and more usually a comparative technique for the determination of trace element levels in any solid material. In this embodiment of the invention quantitation in LA-ICP-MS has been approached by quantitation of the amount of debris (ablated or ionised material) that is actually transported from the laser cell to the analytical plasma.

When using an infrared laser, where the particle size of ablated material is relatively large, ultra-violet spectral interference can be used to quantify the amount of particles (ablation efficiency) entering the plasma. However, in the majority of cases the techniques currently employ either UV or Excimer lasers. These lasers produce particles that are too small to have sensible UV scattering and consequently relatively inexpensive particle quantitation is not possible. However, laser interferometry can be used, as an appropriate alternative technique, to quantitate the amount of ablated material and thus the efficiency of UV lasers. Once transport efficiency is quantified, it is then possible to quantify the amount of particles that are entering the analytical plasma and hence quantify the resulting signal (ie. amount of any one element).

30 The quantification process can be further enhanced by using internal standards in the support matrix of the collection/transportation device described above, or by adding one or more standards to the sample to be analysed. A suitable internal standard can be selected from elements which are not commonly present or are below detectable levels in a particular sample. Thus, for blood samples, elements such as Hf, Ir, Ru, Rh, Ta and heavy rare earths can be used as internal standards, and

incorporated into the inert matrix by bonding to the surface of the particles used to produce the matrix, or may even be present as a natural constituent of the sample itself.

In case where the internal standard is incorporated into the matrix, when the sample is ablated, the particles of the matrix are carried into the analytical plasma along with the sample. Quantitation of the transport efficiency of all debris is achieved using laser Interferometry, or an appropriate alternative technique, and supported by normalisation to the signal from internal standards. Since the bonding characteristics of the internal standards and the efficiency of absorption of the matrix are known, as is the transport efficiency, it is possible to calculate the concentration of the element in the sample adsorbed onto the matrix, in this case blood.

In another embodiment of the present invention, quantitation by LA-ICP-MS has been approached by quantitation against matrix-matched standards.

Quantitation is achieved by using internal standards in the collection matrix, or by adding one or more standards to the sample to be analysed. A suitable internal standard can be selected from elements that are not commonly present or are below detectable levels in a particular sample. Thus, for blood samples, internal standards are incorporated into the inert matrix through solution doping, or may even be present as a natural constituent of the matrix itself. The collection matrix is doped with the relevant standards to act as mass calibration standards. These may be Be, In and Bi, or other suitable combination depending upon the analysis required. In addition any other analyte can be spiked into the matrix pad and the pads analyzed. The spiking of calibration standards onto the matrix pad allows for its analysis as a "blank". To the standard-spiked matrix pads, blood, sweat, urine or any other fluid sample may subsequently be added. The sample is dried at 105°C for 2 hours, but may be any other suitable temperature and time, and then ablated. The sample plus the 'under' matrix is ablated and carried into the plasma simultaneously. Ionization is achieved for both components and, in this way samples are calibrated. Hence, because of this, the nature of the sample is not important as the sample and the matrix containing the internal standards are introduced simultaneously to the plasma. This protocol removes the necessity for a spike as the spike is already in the matrix pad on which the sample is collected. Therefore, it does not matter what the sample is, as it will be introduced into the plasma with the standards thereby overcoming any matrix interference. In this embodiment, it is not necessary to add a range of analytes to the matrix because the Be, In and Bi act as the calibrants and can be calibrated against all other elements with respect to mass response before the samples are analyzed. Of course there are a series of matrices that are spiked (detailed in text already) with standards from which

calibration curves may be established thereby facilitating quantification of trace elements contained in the blood or other fluid.

Thus, fibrous cellulose matrix pads are prepared and doped with the set of mass calibration elements and dried. Blood, or other fluid is added, dried and ablated using a 5 10x10 matrix raster. The data are collected and read against results obtained from a concentration range (100, 200, 500ppb etc) of multi-element standards prepared and measured in the same way. Quantitation for any matrix may thus be achieved because the standard and sample are being introduced in the same way which therefore negates potential matrix problems. The data are cross-referenced to Be, In and Bi in the 10 standards and in the matrix with sample, and their relative values in each normalized.

The core components of the Sample Analysis System of this embodiment comprise a laser for producing an aerosol of the sample (Laser Ablation), an argon plasma, or 'electrical flame', operating at temperatures in excess of 7,000°C (Inductively Coupled Plasma) in which the aerosol is ionized, a mass filter (Mass Spectrometer) for 15 separating the ions into 'packets' according to their mass to charge ratio, and an ion detector (Multi-channel Analyzer or Ion Multiplier) for detecting the ions in each 'packet'. The system operates with a routine sensitivity capable of achieving parts per billion detection limits. All data can be electronically stored for future reference.

Suitable ICP-MS system utilizes a quadrupole mass filter, controlled by 20 alternating RF and DC fields in the quadrupole, to allow transmission of ions of one selected mass to charge ratio at any specific time. Cycling of the quadrupole allows passage of any selected ion with a mass to charge ratio of <250amu at specific times during the cycling program. Each naturally occurring element has a unique and simple pattern of nearly integer mass to charge ratio, corresponding to its stable isotopes, 25 thereby facilitating identification of the elemental composition of the sample being analyzed. The number of registered element ions from a specific sample is proportional to the concentration of the element isotope in the sample.

For multi-element analysis, the quadrupole is generally configured to scan at 1Hz (once per second). Under this circumstance, if, for example, 100 isotopic masses are 30 being analyzed, each isotopic mass will be collected only one hundredth of the entire scan time.

It will be understood that other configurations and types of instrumentation can be used with the devices and methods of the present invention without undue modification of protocols presented herein.

35 In one exemplary operation, the sample is introduced into a laser ablation cell and ablated, using either an Excimer or Frequency Quadrupled Nd-YAG laser, for a

period typically not exceeding 30 seconds. Debris from the ablated sample passes down an interface tube, made from Nalgene as a suitable plastic material but other material could also be used, attached to the torch of an inductively coupled plasma (ICP). The sample debris passes through a zone in this tube, adjacent to the torch, into which independent laser radiation is being passed. A concentric series of dynode detectors measures the photon flux, reflected from the sample debris particles, which facilitates quantitation of particle scattering. Knowing the amount of scattering allows linear correlation to the amount of particles doing the scattering. The Laser scattering device is calibrated using conventional smoke cells.

The level of scattering is a quantitative indication of the amount of debris passing down the tube. This debris contains the sample material (blood) in addition to particles of a pre-coded (with internal standard) carrier matrix. The particles now pass on into the inductively Coupled Plasma (ICP) where they are ionised and separated using Time of Flight (ToF) segregation. The elemental composition for the sample is established and quantified with reference to the signal obtained from each of the analyte isotopes. Quantitation of the concentration of elements present in the sample and hence the blood, is calculated with reference to the scattering signal from the Laser Interferometer. The amount of sample being analysed is normalized to the signal generation by ionisation of the components in the pre-coded matrix. In this way the amount of material ablated is used to obtain the mass component of the transported material and the elemental signature of the pre-coded matrix facilitates normalization of the response with reference to an ionisation efficiency cross comparison.

Quantitation of elements in the sample may also be achieved by incorporating standards into the sample or into/onto the collection matrix/support, or both. The pre-coded collection matrix may contain a cocktail of elements that are not naturally present in the sample such as blood or other fluid, at levels above the detection limit of the technique. These elements typically include one or more (i.e. mixture of) Beryllium, Scandium, Zirconium, Niobium, Rhodium, Ruthenium, Indium, Hafnium, Tantalum, Rhenium, Osmium and Iridium. This requires doping of appropriate analytes at levels between 1 and 10,000 ng/mL to the matrix or support. The elements are chosen to cover both mass and ionisation potential ranges present in the analytically significant analytes.

In another exemplary operation, the sample is introduced into a laser ablation cell and ablated, using a Frequency Quadrupled Nd-YAG laser operating at 266 nm, for a pre-determined time interval typically dictated by the number of analytes being assayed. Debris from the ablated sample passes down an interface tube, made from

Nalgene or suitable other plastic, attached to the torch of an inductively coupled plasma (ICP). The pre-coded matrix may contain a cocktail of elements that are not naturally present in blood, at levels above the detection limit of the technique. These elements typically include one or more (ie. mixture of) Beryllium, Scandium, Zirconium, Niobium, Rhodium, Ruthenium, Indium, Hafnium, Tantalum, Rhenium, Osmium and Iridium. This requires doping of appropriate analytes at levels between 1 and 10,000 ng/mL to the matrix. The elements are chosen to cover both mass and ionisation potential ranges present in the analytically significant analytes.

Readout from the spectrometer, for reporting purposes, is expressed in concentration units appropriate to clinically accepted protocols. In addition, the readout contains information on the acceptable ranges of analytes in normal healthy individuals and indicate whether the sample under investigation is below, above or in the accepted range.

The methods and devices of the present invention enable the mass screening of a variety of blood or other body fluid samples for a wide range of essential and toxic trace elements, or of samples of other fluids such as water or lubricants, for contaminants indicative of pollution or wear. Only a small volume of sample liquid (one or two drops) is required for multiple element analysis. Sample collection of body fluids does not require the use of a hypodermic needle and consequently is essentially non-invasive and considerably safer than existing methods. The sample is collected and stored in an inert matrix without need for addition of preservatives. The sample can be handled and transported safely and easily. The preferred method of analysis, quadrupole Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry, is very sensitive and can detect and measure trace/ultra trace amounts of an element. The methods described herein are suited to full automation and high throughput screening and analysis of samples. Further, the methods and devices of the present invention enable multi-element testing at a significantly lower cost than many current single element tests, thus making the economical mass-screening of target populations possible.

Examples of suitable internal standards which may be used for quantitation of elements, in conjunction with the devices and methods of the present invention, are detailed in Table 1 below.

Table 1:

Sample Name	SARM 1	SARM 3	SARM 48	SY-2
Alt. Name	NIM-G	NIM-L	S14	
Sample Type	Granite	Lujavrite	Stream Sediment	Syenite Rock

	ppm	ppm	ppm	ppm
Si	353848	244936		280975
Tl		2878		899
Al	63933	72190		63722
Fe 3+	4197	61410		16998
Fe 2+	10105	8784		27672
Mn	155	5963		2478
Mg	362	1869		16222
Ca	5575	23013		66889
Na	24826	82093		31974
K	41424	45741		36942
P	44	262		1877
Ag				0.029
As	19.3	1.92		17.3
Au	0.0011	0.00064		0.00052
B				88
Ba	120	450		460
Be	7.75	29.5		22
Bi	0.275	0.468		0.111
Br				
Cd	0.113	0.91		0.21
Ce	195	240		175
Cl	263	1200		140
Co	0.36	2.44	54	8.6
Cr	12	10	593	9.5
Cs	1.08	2.78		2.4
Cu	12	13	563	5.2
Dy	17	3.1		18
Er	10.5	2.6		12.4
Eu	0.35	1.2		2.42
F	4200	4400		5030
Ga	27	54		28
Gd	14	3.8		17
Ge		0.89		1.3
Hf	12.4	231		7.7
Hg	0.0189	0.0445		0.0043
Ho	3.6	0.9		3.8
In				
Ir	0.0005			0.0005
La	109	250		75
Li	12	48		95
Lu	2	0.4		2.7
Mo	2.84	1.21		0.53
N				
Nb	53	980	26	29
Nd	72	48		73
Ni	8	2.2	122	10
Os				

Pb	40	43	14000	85
Pd	0.007			0.015
Pr	19.5	18.4		18.8
Pt				
Ra				3.7
Rb	325	190	18	217
Re				
Rh				
Ru	0.01			0.002
S		650		160
Sb	1.19	0.13		0.26
Sc	0.9	0.5		7
Se	0.012	0.014		20
Sm	15.8	5		16.1
Sn	3.3	7.4		5.7
Sr	10	4600	28	271
Ta	4.9	25.2		2.01
Tb	3	0.7		2.5
Te	0.007	0.009		0.002
Th	51	66		379
Tl	0.93	0.326		1.5
Tm	2			2.1
U	15	14		284
V	2	81	195	60
W	1.45	8.28		0.76
Y	143	22		128
Yb	14.2	3		17
Zn	50	395	6200	248
Zr	300	11000	85	280

The collection matrix, if one is used, may be impregnated with a trace metal cocktail, of known concentration using purpose prepared aqueous solution standards. In certain preferred embodiments, the matrix may contain 2ppm of Be, In, Hf as internal standards to calibrate the mass response for the system in blood analysis. In other embodiments describing wear metal analysis of oil, 2ppm of Be, In and Th may be used. In yet other embodiments, different suites of elements may be used.

Separate standard matrix pads may be used to calibrate the sensitivity and these may be as follows for blood and body fluids: a single pad containing, but not restricted to, Li, Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Te, Ba, La, Ce, Eu, Dy, Yb, Hg, Tl, Pb, Bi, Th and U at 1 ppb, a second pad with all these at 2 ppb. A third pad with all of these at 5ppb a fourth pad with all of these at 10ppb a fifth pad with all of these at 20 ppb a sixth pad with all of these at 50 ppb a seventh pad with all of these at 100ppb an eight pad with all of these at 200ppb a ninth pad with all of these at 500 ppb a tenth pad with all of these at 1000ppb. An appropriate

concentration can then be used for the set of elements being determined in a particular fluid sample. In another embodiment, a suite of elements appropriate to wear metal analysis in oil, for example, Li, B, Mg, Al, Si, P, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Sr, Y, Zr, Mo, Ag, Cd, Sn, Sb, Ba, La, Ce, Hf, Hg, Pb and U may be doped into matrix pads at 1ppb through 1000ppb as above, so that when ablated, a range of elements across the mass spectrum may be used as internal standards to standardise the system. Thus, the collection matrix, when used, may contain a pre-calibrated concentration of selected analytes. Both a broad-spectrum general collection matrix/device and a test specific matrices/device/s may be employed for specific elements or suites of elements. Further, any one, or combination or range of internal standards analytes may be spiked into the collection device to ensure its broad spectrum or specific use. For example, for broad spectrum, the preferred combination is , Li, Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Te, Ba, La, Ce, Eu, Dy, Yb, Hg, Tl, Pb, Bi, Th and U and for specific applications, for example analyzing oils preferred is , Li, B, Mg, Al, Si, P, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Sr, Y, Zr, Mo, Ag, Cd, Sn, Sb, Ba, La, Ce, Hf, Hg, Pb and U and for blood the preferred combination is , Li, Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Te, Ba, La, Ce, Eu, Dy, Yb, Hg, Tl, Pb, Bi, Th and U.

A typical procedure of collecting and analyzing a sample is summarized in Figure 5. Of course, manual procedures can also be adopted, as can variations of the proposed exemplary scheme.

Example 4: Analysis of collection matrices

The purpose of the experiments described below was the definition and/or refinement of chemically and mechanically robust fluid adsorption/absorption matrix/matrices to facilitate the collection and quantitative analysis of micro-litre fluid samples by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). For purposes of this example fluids under consideration are blood, urine and oil. However it will be understood that any other fluid, biological or otherwise, may be analysed using similar matrices and techniques.

Preferably the sample collection matrices should be suitable for incorporation into a robust, transportable sample collection device. The device should have specific attributes such as but not limited to:

- be cheap and capable of precision mass production;
- be small and easily accommodated in laser cells for ablation prior to analysis;

- be able to be coded for automatic pre-analysis reading and referral of the sample back to the data, and the data to the client;
- for blood collection, contain a mechanism for penetration of individual patient's skin thereby minimising potential 'stick injuries'. There would be some form of shielding device, or mechanism, that would "shield" the puncturing mechanism such that it would not be able to penetrate the skin of another person subsequent to initial collection of blood;
- produce minimum biohazard with material after analysis and prior to disposal. This implies a small collection device and a small blood sample (less than 100µL), and a very small amount of material comprising the sampling device itself that would ultimately have to be incinerated;
- easy transportability to and from the collection site and through conventional mailing procedures. The device should be such that conventional postal systems can be used without the possibility of contamination and release of potentially bio-hazardous material; and
- be capable of being used by non-medical personnel.

MATRIX MATERIALS

The original preferred matrix material used for process testing was fibrous cellulose. Using this material, it was possible to readily form backed cardboard 'punch-outs' containing the cellulose absorptive medium. Micro-litre samples of blood, added to this material, were qualitatively analysed by LA-ICP-MS. Qualitative spectra and raw count data were generated, much of which reflected trace metals in the absorbed blood. However, it was reasoned that the cellulose, being a natural organic product, might be contributing to the analyte signal of a range of elements recorded. Hence, it was determined that cellulose, together with an array of other potential matrix materials, be further investigated, both in terms of its chemical and physical characteristics.

Some attributes of suitable sample collection matrices include but are not limited to:

- must be chemically "clean", that is, have a low concentration of analytes of interest;
- robust, that is, capable of transportation, often over long distances without fragmentation;
- have significant wettability, both by aqueous and non-aqueous (blood and oil) samples while still retaining integrity;
- capable of withstanding laser ablation removal of samples; and
- not contribute to analyte segregation during analysis.

MATRIX CHOICE

- The parameters detailed above govern the choice of matrix and, as such, preclude certain materials. A list of matrices investigated follows with indications as to their potential suitability, or otherwise, which resulted in a final short list of potentially useful material to be subsequently tested. The choice of white metal oxides as potential matrices is based on the fact that the two detailed herein are locally manufactured in bulk, are extremely cheap and, using the modern generation of UV lasers (unlike IR lasers), are customarily considered not to have variable coupling efficiencies between light and dark matrices.
- 5 Potential organic and inorganic matrix materials investigated are:
- 10
- Pig-toe mussel shell (aragonite) – sourced from the WA pearl industry
 - Aluminium hydroxide – Alcoa (WA)
 - Titania – New Millennium (WA)
 - Bacterial grade glucose – sourced by Professor Watling
- 15
- Starch "A" - BDH Analar analytical reagent
 - Starch "B" – Ajax Chemicals Univar analytical reagent
 - Glucodin – Boots Healthcare Australia
 - Cellulose – high purity powder – Sigma Chemicals Microgranular
 - Cellulose – high purity fibrous cellulose – Sigma Chemicals Medium Fibrous
- 20
- Hydroxy Butyl Methyl Cellulose – Sigma Chemicals
 - Flour – rice, maize, wheat, soy, rye and corn flour commercially available grocery lines

All of the above matrices can be used for lubricants where the levels of metals are much higher. However, the following are particularly useful choices of matrices for blood and other body fluid analysis, which can also be used for analysis of lubricants or water samples.

- 25
- 30
- Aluminium hydroxide [Al(OH)₃]:* A very high quality aluminium hydroxide is produced in Western Australia. It is analytically relatively clean and cheap, and is being considered as a matrix.
- Cellulose:* Cellulose is an excellent theoretical matrix choice in that it is typically low in heavy metal concentration. A variety of ultra-pure cellulose was tested for compactability, wettability and metal content. The physical characteristics of cellulose as such (it was the original matrix) make it important material as a potential matrix. Particularly useful is fibrous cellulose in the form of cellulose filter papers (Whatman

540, but also 541, 542 and other cellulose filter papers, Whatman International Ltd, Maldstone, England).

Flour: Newly acquired rice flour has proved exceptionally robust under wetting and drying conditions and may also be advantageously used as a matrix.

5 In addition to simply using the matrix material as supplied, relevant matrices were leached and the leached residue tested to see if significant metals could be leached, thereby reducing the metal content of the matrix and possibly rendering it more useful by lowering the level of contaminant metals, or actually reducing the level of metals in the sample to a level where previously unsuitable material would now be suitable.

10 **EXPERIMENTAL**

(I) **Chemical Characterisation**

15 *Solution ICP-MS:* In order to assess the 'purity' of the respective potential matrices, appropriate sub-samples of water-soluble materials were dissolved in Milli-Q (mQ) water and made to volume. Water-insoluble samples, (primarily the inorganic materials) were subjected to both cold and/or hot (or both) hydrochloric, nitric, aqua regia and nitric-hydrofluoric acid leaches. The leachates were recovered, made to volume, appropriately diluted and analysed by solution introduction ICP-MS. The leached residues were recovered and a selection of sub-samples subjected to total dissolution followed by solution ICP-MS analysis using a VG PlasmaQuad 3 ICP-MS
20 made by VG Elemental, Ion Path Road 3, Winsford, Cheshire CW7 3BX, United Kingdom. Further selected residue sub-samples, along with unleached equivalents, were subjected to total acid dissolution, made to volume, diluted and again analysed by solution introduction ICP-MS.

25 The solution experiments facilitated elimination of several of the potential matrix candidates, having unacceptable concentrations of analytes of interest in the raw material and analytes little, or not adequately, reduced by acid leaching. The 'solution' assessment indicated that cellulose and aluminium hydroxide were the best candidates but that both of these may contain certain analytes of interest. Because of the need to dilute the solutions for ICP-MS analysis, very low apparent concentrations in solution frequently translated to significant concentrations in the sample when corrected for mass and dilution; in many cases, these analytes may not be present or, if present, present at very much lower concentrations. To test this thesis, 'raw' sub-samples, and corresponding leached residues where applicable, were pressed into 'briquettes' (see below) and subjected to comparative qualitative UV LA-ICP-MS analysis.
30

35 *Laser Ablation ICP-MS:* It is not necessary that the sample matrix will contribute an equivalent amount of material to the analytical sample as the blood or other fluid.

The incorporation of the matrix and its ionisation will not be equal to that for the blood contained in it. Because of this, the contribution of matrix to the analytical signal will not necessarily be in proportion to its relative matrix/blood ratio. Hence, it was necessary to determine what relevant contribution the matrix has to the analytical signal during a real analysis. Laser ablation analysis of the matrix was therefore also undertaken. Because the use of argon as a carrier gas is the traditional method of transport of ablation debris to the plasma this was the initial gas used for all experimental purposes. However, helium is finding an increased following in the scientific community as a transport gas as it often gives improved sensitivity and reduced isobaric interferences. Consequently this gas was also investigated.

10 (II) Physical Characterisation

Physical characterisation of potential matrix materials included assessment of compaction integrity, both at 500 and 1000 kg/sq in, wettability to blood and aqueous solutions, integrity after sample addition, contrasting behaviour of single and multi-component matrices, and internal standard introduction. Results from some of these investigations are detailed below.

The use of an internal standard is necessitated because of the variability in ablation efficiency between samples. There is no way of controlling the "fluence" variation (variation in the efficiency of coupling and hence power transfer of the laser energy to the sample) from sample to sample. Because of this, varying amounts of analyte will reach the plasma depending on the relative fluence between samples. Consequently, it is necessary to ensure that there is a mechanism for estimating the amount of material being transported to the plasma for each sample. The method used for an infrared laser was to measure the scattering of light by the transported particles. However, this mechanism is not possible when a UV laser is used (the laser used for these experiments was a frequency quadrupled Nd-YAG UV Microprobe Laser System operating at 266nm in pulsed Q-switched mode. The Laser System was manufactured by VG Elemental, Cheshire, United Kingdom).

However, spiking a simple element cocktail into the matrix, either prior to, or concurrent with, sampling provides a useful and inexpensive internal standard for quantification experiments.

RESULTS AND DISCUSSIONS

Details of eighteen experiments completed during the period October-December 2002 are set out below. Sixteen of the experiments relate specifically to physical and chemical characteristics of the matrix, and analysis of absorbed aqueous standard, mineral CRM and blood samples. The remaining two experiments, Experiments 13 and

15, deal with the analysis of oil samples – these are reported together at the end of this section.

The resulting analytical data is presented in a series of Appendices identified by experiment number, for example, 'Appendix Experiment 12'. These appendices should 5 be viewed in conjunction with the relevant commentary on the individual experiments as contained herein. Frequently, averages of data and % standard deviations (coefficient of variations) have been computed.

In most appendices, isotopic data has been computed to 100 per cent elemental concentration using natural isotopic abundance relations. In a small number of cases, 10 data is presented solely as isotopic concentrations at the measured isotopic mass. This is clearly indicated in the respective appendices.

In an attempt to optimise signal response, peak hopping instead of normal scanning acquisition was employed. Under this analytical regime, data acquisition at each isotopic mass occurred on three channels only. Not uncommonly, transient 15 electronic spikes may be recorded on one of the three channels. The on-board computer processes the data from all three channels and reports the results as raw count 'concentrations'. Where a measurement includes a transient spike, the resulting raw counts for that analyte may be considerably elevated relative to duplicate or replicate analyses of the equivalent analyte in the same sample. This leads to often- 20 marked concentration contrasts for specific analytes in these samples. The problem may be overcome by increasing, to say seven, the number of channels over which individual isotopic mass data is collected. Under these circumstances, a normal 'smoothing' algorithm may be automatically applied across the seven channels to produce precision results for duplicate or replicate analyses. Having established this as 25 being a major cause of analyte variability, analytical protocols have been appropriately modified to allow data collection over the increased number of channels.

Another cause of analyte variability may be due to possible surface 'contamination' of the collection matrices. To minimise contamination, the top pad of a matrix wad has been removed so that there is no airborne contamination on the surface 30 to be analysed. In an embodiment of this process, the matrix pads are prepared in a sterile, dust-free clean room, enclosed in a container which may only be breached immediately prior to sample collection. Improved analytical precisions, following implementation of this protocol, are attributed to the sample preparation

35 Correction of data for identified transient spikes had led to a marked improvement in analyte reproducibility and, hence, 'precision' data.

Example 5: Matrix And Blood-Related Experiments**Experiment 1**

The aim of this experiment was to develop and test procedures to produce 3 mm diameter test tablets as a prelude to physical characterisation of sample matrices. For 5 this purpose, an XRF pressed powder vacuum press was modified, and new dies manufactured, to facilitate pellet production. Matrix materials chosen for the inaugural production tests were glucose, cellulose and a 1:1 mixture of the two; initial compaction pressure was 500kg/sq in. Initial physical and chemical investigations were undertaken concurrently until preferred matrices were identified.

10 Pelletising of glucose required the use of weighing paper between sample and metal on the press die. Absorption of liquid appears good.

Cellulose pelletised quite well, with very good strength. However, fluid absorption was slow. A 1:1 mixture of glucose and cellulose powder pelletised well without the need for weighing paper between pellet and die. Pellet strength was

15 Improved over glucose alone and fluid absorption was intermediate between rates for glucose and cellulose powder pellets compacted at equivalent pressure.

Experiment 2

The principal objective in this experiment was to assess the chemical purity of a range of potential matrix materials. Sample preparation for analysis was undertaken 20 concurrently with pelletising press modifications. Various matrices, including pig-toe mussel shell, glucodin, glucose, cellulose, hydroxy butyl methyl cellulose (HBM cellulose), TiO₂ and Al(OH)₃ were leached, dissolved or digested in preparation for solution ICP-MS purity assessment.

Method

25 Pig toe mussel (Sample A, B, C and D) - ~1.5g pearl seed taken, dissolved in 20mL 1:1 HCl:mQ water, then taken to dryness. 4mL of HNO₃:mQ 1:1 added, heated and made up to 100mL with mQ water. Diluted x20 with mQ (2ppb Ir, Rh) water for ICP-MS.

Glucodin (Sample E and F) + Glucose (Sample G) - ~1.5g Dissolved in 100mL 30 of mQ water. Diluted x5 for ICP-MS.

Cellulose (Sample H) + HBM Cellulose (Sample I) - ~0.5g digested in 20mL cHNO₃ for 36 hours, reduced to 10mL and made up to 100mL with mQ water. Diluted x5 for ICP-MS.

TiO₂ (Sample 001) + Al(OH)₃ (Sample 003) - Leached with 1:1 HCl:mQ water 35 for 36 hours, decanted and washed 3 times with mQ water (~20mL). Decanted solution (leachate) made up to 100mL with mQ water. Diluted x10 for ICP-MS.

TiO₂ (Sample 002) + Al(OH)₃ (Sample 004) - Leached with 1:1 HNO₃:mQ water for 36 hours, decanted and washed 3 times with mQ water (~20mL). Decanted solution (leachate) made up to 100mL with mQ water. Diluted x10 for ICP-MS.

Residues were dried and saved for LA-ICP-MS.

5

This experiment was concerned with the determination of the trace element concentrations in prospective matrices for blood (and other fluid) collection, together with looking at some of the results of leachates of titanium dioxide and aluminium hydroxide.

10 The results for the leachates are detailed (Appendix Experiment 2). It may be possible to indicate that aluminium is obviously leached from the aluminium hydroxide matrix, but also from the titanium dioxide matrix, and conversely titanium is leached from the titanium dioxide matrix and there is also some indication of leaching of titanium from the aluminium hydroxide matrix. In the case of titanium dioxide, HCl appears to be
15 more aggressive than HNO₃, whereas the reverse is the case for the aluminium hydroxide. Concentrations of manganese, copper, strontium, zirconium are found from the leachates of both matrices while zinc, rubidium, barium and lead appear to be quite concentrated in leachates from the titanium dioxide matrix. In the aluminium hydroxide matrix tin, gallium, zirconium, hafnium and uranium appear to be present in leachates
20 from this matrix.

25 Total digest and/or solubilization data of pig-toe mussel, glucodin, glucose, cellulose and HBM cellulose are also presented in Appendix Experiment 2. The pig-toe mussel contains significant concentrations of lithium, aluminium, titanium, manganese, copper, zinc, rubidium, strontium and barium. While this would imply that the matrix is not suitable as a blood collection matrix, because of the concentration of these elements, it is also necessary to analyse the pig-toe mussel material with sample attached under laser ablation conditions rather than solution conditions to make sure that these elements are also carried over by laser ablation and not just present in total digests. In the case of glucodin, glucose, cellulose and HBM cellulose all contain
30 significant amounts of aluminium, titanium, chromium, manganese, nickel, copper, zinc, rubidium, strontium and barium while cellulose matrix alone, in addition to containing these elements, also contains significant concentrations of lead and bismuth; both cellulose and HBM cellulose also contain concentrations of zirconium, tin, thallium and thorium not found in the glucodin and glucose.

35 Although these matrices all contain significant amounts of trace elements in the ppb range, this does not necessarily preclude them from use as a sample collection

matrix as conventional blank correction can be used to overcome problems associated with blank content. This can be further emphasised by the fact that inter-element ratios could be used to determine, and to augment, blank corrections by looking at relationships between metals and tracing these through to the final analytical protocols

5 Experiment 3

The purpose of this experiment was to further test, the pelletising and adsorption characteristics of cellulose powder, glucose, and starch, and mixtures thereof, and to check the dissolution/absorption characteristics of the pellets by SY-2 (mineral CRM, Canadian Certified Reference Material Project (CCRMP), Table 1 solution. The results of Experiment 3 are set out in Appendix Experiment 3

10 Cellulose powder alone works well. The glucose undergoes surface dissolution leaving holes on the surface. The starch absorbed water and expanded, causing the surface to bulge. Under the pelletising pressure of 500 kg/sq in, the cellulose powder is tightly compressed and it takes some 10 to 15 seconds for fluid absorption. This
15 suggests that a more fibrous cellulose with an 'open' structure may be preferable. To this end, further experimentation with fibrous cellulose is indicated. In addition, further experimentation with powdered cellulose at differing packing pressures is warranted.

Experiment 4

20 The aim of this experiment was to assess the absorptivity and mechanical stability of cellulose powder pellets compacted under differing pressures. In the first instance, powdered cellulose was suspended in mQ water and vacuum filtered. The collected filter cake was mechanically incoherent. This caused it to flake and fall apart. However the adsorption of solution was rapid.

25 Cellulose powder compacted under a pressure of 100kg/sq in, while mechanically robust, still absorbed slowly. At low compaction pressure, estimated to be about 50kg/sq in and achieved by turning the tightening screw on the press just until there was resistance, the resulting pellets illustrated rapid absorption. Furthermore, the pellet holds together well. The experiment appears to confirm that compaction destruction of porosity rises with increasing pressure thereby rendering the matrix
30 progressively less absorptive.

Experiment 5

35 The aim of this experiment was to quantitated trace elements in a blood sample using internal standards. The experiment also tested the absorption of SY-2 (mineral CRM) and blood onto cellulose pellets, robustness of the doped pellets when subjected to LA-ICP-MS analysis, assess levels of possible contaminants, evaluate results arising from the doped matrices and assess the comparability between 'wet' and 'dry' matrices.

The following instrument settings were used: Lens voltages – Lens 1, 2, 3, and 4 respectively -10.8, -22.6, 0.7 and -13.3 Volts, Collector – 4.6 Volts and Extraction, -332 Volts; Gas Flows – Cool gas 13.6 L/min, Aux gas 0.81 L/min Neb gas 0.74 L/min and Oxygen gas 0.00 L/min; Torch box positions – X, Y and Z axes respectively 932, 165 and 250 steps; Multiplier voltages – H.T. pulse count -2634 Volts and H.T. analogue) Volts; Miscellaneous settings – Pole bias -2.2 Volts, R.F. power 1500 Watts, Peri speed 0%; PlasmaScreen is OUT, S-Option pump is OFF.

Samples of blood were obtained from a subject with the aid of a SoftTouch lancet device (used for home blood glucose testing and manufactured by Boehringer Mannheim, Germany) applied to a pre-cleaned (absolute ethanol wiped) area of a fingertip. Successive drops of blood were encouraged to form through application of pressure. The drops were directly 'touch' applied to 3mm diameter by 2mm deep sample collection matrix tablets formed by pressing granular cellulose (Sigma Chemicals Microgranular powder) under a load of 500 kg/sq. In. The matrix tablets were affixed to a Perspex disc, 37.5 mm in diameter and 6mm deep, fabricated from Perspex rod, using 3M Scotch Permanent Double Stick Tape. The volume of the drops was estimated to range between 30 and 70 microlitres. No preservatives or anticoagulants were used and there was no requirement to store the blood prior to application to the collection matrix, or subsequent analysis. However, there is provision for loaded sample collection matrix tablets to be refrigerated and stored following oven drying at 60°C for one hour.

Four blood samples were prepared; two were oven dried and two were maintained "damp". Duplicate sets of equivalent SY-2 CRM-doped (Syenite, Canadian Certified Reference Material Project) matrix pellets were prepared by pipetting 50 µL of the standard solution onto the respective matrix tablets and drying thereby generating matrix matched standards. The SY-2 CRM contains calcium, iron, magnesium, potassium and so forth and this provides a high ion flux that is possibly equivalent to the ion flux expected of blood. Hence, any ion effects that were taking place would be comparable in the blood and SY-2, as compared with a straight aqueous standard solution.

The sample holder, with affixed blood- and CRM- doped matrices was placed into the laser ablation cell of the UV Microprobe Laser System attached to a VG PlasmaQuad 3 ICP-MS both manufactured by VG Elemental, United Kingdom. The laser is a frequency quadrupled Nd-YAG operating at 266 nm; 10x10 matrix raster

ablation of the samples was undertaken in pulsed Q-switched mode at a fluence of 6.2 millijoule for 60 seconds.

The output data was acquired as raw counts from on-board software and exported into Excel and manipulated. No algorithms were used for computations. The raw count data for both blood and CRM samples were matrix blank corrected by subtracting the averaged matrix blank value from the individual blood and SY-2 values. From these corrected data % Standard Deviations were computed as a measure of precision. Finally, trace element compositions for the 11 analytes examined in the exemplary run were computed with reference to matrix matched SY-2 CRM values.

10 Data obtained is set out in Appendices Experiment 5A and 5B.

As indicated above, part of the experimental design was to determine whether it was necessary to fully 'dry' the sample prior to analysis. Collection of blood onto a matrix without the drying step as detailed above, may lead to a sample being slightly damp. Hence, it was necessary to determine whether variation in the moisture content

15 of the matrix would affect the readout of concentration of elements in the matrix.

Consequently two sets of samples of cellulose were set up and, in addition to 'wet' and 'dry' blood, SY-2 certified reference material doped samples were also prepared in an attempt to quantify the concentration of metals in the blood. Blood samples and SY-2 were spiked onto cellulose in duplicate and one set of blood samples was analysed

20 'wet'. A second subset was taken and dried (as above) and the samples were analysed dry. Data from these experiments is also presented in Appendix Experiment 5A

Following analysis, results for the wet samples were blank corrected and data produced. Simple inspection of the data for the 'wet' blood samples indicates relatively high variability in analyte concentrations particularly in the case of lead and zinc where a variation of $\pm 100\%$ is recorded. The analysis of SY-2 certified reference material is far more uniform.

For the dry sample, the results are better. Reproducibility is improved and results are more uniform. From the blank corrected values for the dried blood sample it can be seen that, with the exception of barium, the results are meaningful. Barium results go negative and this is probably due to the fact that the barium signal is small relative to the blank – the blank is quite high. However, both lead and zinc are much improved and, if these are used to calculate concentrations of these elements in the blood, based on SY-2 concentrations (calculated in Appendix Experiment 5B) the blood values and expected blood values from the literature are quite close for the analytes under consideration. SY-2, a certified reference material, has been used for a number of reasons. First, use of simple aqueous solution on the collection matrix would not, on

ablation, have provided a significant ion flux. The SY-2 contains calcium, iron, magnesium, potassium etc (see Table 1) and this provides a high ion flux that is possibly equivalent to the ion flux of the blood. Hence, any ion effects that were taking place would be comparable in the blood and SY-2, as compared with a straight aqueous solution. Thus a normal CRM, that has a relatively high matrix concentration will suffice.

The above experiment, including instrument settings and internal standardisation as described, is equally applicable to simpler biological fluid samples such as components of whole blood (eg. serum or plasma), urine, sweat, tears, cerebrospinal fluid and the like. The sample collection, handling and analysis of such fluids is simpler and thus greater accuracy can be achieved.

Experiment 6

This experiment was conducted to analyse the titanium dioxide and aluminium hydroxide matrices, both before and after leaching (leached residues from Experiment 2). The data produced in this experiment ties in with the leachate data from Experiment 2. Upon total dissolution, solutions derived from titanium dioxide have very high concentrations of titanium, while those derive from digestion of aluminium hydroxide are similarly rich in aluminium. Accordingly, these two elements have not been measured.

The purpose of the experiment was to evaluate the efficacy of acid cleaning of the white oxide matrices. Hence, appropriate sub-samples of 'raw' titanium dioxide and aluminium hydroxide, together with their hydrochloric- and nitric acid-leached equivalents, were digested in a sulphuric/hydrofluoric acid, made up to volume, diluted and analysed by solution introduction ICP-MS. The leachates derive from HCl- and HNO₃-leaching of bulk titanium dioxide and aluminium hydroxide were analysed in Experiment 2 and the results reported in Appendix Experiment 2.

The comparison of the "raw" original material and the HCl- and HNO₃-leached residues show that, for titanium dioxide, its HCl-leached residue and associated leachate, weak to strong leaching of lithium, manganese, copper, zinc, gallium, rubidium, strontium, (zirconium), barium, lead, (thorium) and uranium has been achieved. Here, there is generally a good mass balance between concentration in the original versus the sum of concentrations in the leachate and leached residue. In contrast, concentrations of vanadium, chromium, nickel, germanium, yttrium, zirconium, niobium, tin, antimony, hafnium, tantalum and tungsten in the raw material are unaffected by HCl-leaching.

For titanium dioxide, its HNO₃-leached residue and associated leachate, weak to strong leaching of lithium, (chromium), manganese, copper, zinc, gallium, rubidium, strontium, (zirconium), barium, lead and (thorium) is evident. In contrast,

concentrations of vanadium, (chromium), nickel, germanium, yttrium, niobium, tin, antimony, hafnium, tantalum, tungsten, (thorium) and uranium are little or unaffected by HNO₃-leaching.

Turning to the aluminium hydroxide matrix, HCl and HNO₃ both have a similar 5 leaching response with both acids weakly to strongly leaching all elements occurring in significant concentrations in the aluminium hydroxide matrix. The elements involved are lithium, beryllium, chromium, manganese, copper, gallium, strontium, zirconium, tin, hafnium, thorium and uranium. Hence, use of these acids to pre-clean the matrices is recommended. Both can be leached quite easily in both HCl and HNO₃.

10 Of particular importance is the presence of gallium in the aluminium hydroxide matrix. A small amount is acid-leached but this does not impact its potential of being used as an internal standard; the same holds true for zirconium. Although not as high as zirconium in the titanium dioxide matrix, zirconium in aluminium hydroxide could still be used for a double internal standard based on gallium and zirconium. There is a 15 possible problem with the aluminium hydroxide matrix in that there is copper in it but the copper tends to be relatively uniform and if copper results in previous analyses are considered, reasonable results for copper are obtained by doing blank corrections. It should be remembered all the time that although these metals are present in the matrix, they may not contribute an equivalent amount to the determination of metals in blood 20 because they are not transported as much as the blood to the plasma. The blood tends to fill interstices and sit on top of the matrix; hence, these elements may not contribute a significant amount to the concentrations that are present in analysed, so-called blood.

This experiment demonstrates that it is possible to variably reduce and/or 25 eliminate a range of trace elements from titanium dioxide and aluminium hydroxide matrices. When combined with previous experiments, it would appear that possibly two matrices, aluminium hydroxide and cellulose, may constitute particularly suitable matrix materials.

Experiment 12

The purpose of this experiment was to examine the efficacy of a fibrous 30 cellulose mat (Whatman 540 filter paper, Whatman International Ltd) as a sample collection matrix. This material is an efficient absorber of fluids, but its 'coarse' fibrous texture may result in variable ablation characteristics. Six duplicate sub-samples of the cellulose mat were taken and pre-prepared as follows: Two duplicate sets were rinsed 35 for 10 minutes with 50% aqua regia and dried; a further two duplicate sets were washed overnight in aqua regia and dried while the remaining duplicate sets were left unwashed. One set each was doped with 2ppm multi-element standard and dried whilst

the second set of each was retained as blanks. It was observed that the fibrous cellulose mat, rinsed for 10 minutes with aqua regia, upon drying was rendered 'harder' than the other two (unwashed and overnight washed) mats.

The blanks and doped equivalents were analysed by LA-ICP-MS and the results of analysis are recorded in Appendix Experiment 12. Upon ablation, it was observed that for the 'hardened' rinsed matrix, the laser penetrated through the whole mat, whereas for the other two, the laser did not penetrate all the way through. This observation clearly implies that the contrasting physical characteristic of the fibrous cellulose mat impact upon laser penetration and, hence, lasing characteristics. With reference to the relevant Appendix, pages Experiment 12/3 and 12/4, it is clear that, for cerium-normalised data, data for the 'hardened' rinsed fibrous cellulose mat, which exhibited complete laser penetration, gives rise to the best overall precision data. Indeed, most analytes have precisions of less than 10% and frequently less than 5%. This outcome further emphasises the potential value of fibrous cellulose as a matrix material.

Experiment 16

The objective of this experiment was to evaluate potential sensitivity improvements for aqua regia and ammonium fluoride (NH_4F) doped 3:1 Al(OH)_3 :cellulose matrices.

From a 3:1 Al(OH)_3 :cellulose mixture, six triplicate sets of pressed pellets were prepared. These unwashed triplicate pellet sets were affixed to a Perspex disc. One set was left 'blank' and a further set was doped with 1 ppm multi-element standard; both were oven baked. Two of the remaining four triplicate sets were doped with 5 μL of 50% aqua regia and oven at 105°C for 2 hours; the remaining two triplicate sets were doped 25 with 5 μL of 1M ammonium fluoride (NH_4F) and oven baked. One set each of the aqua regia and ammonium fluoride treated pellets were further doped with 1 ppm multi-element standard and dried.

A further sample of the 3:1 Al(OH)_3 :cellulose mixture was washed with aqua regia, rinsed and dried. This material is referred to as the washed matrix. From this 30 washed matrix, equivalent triplicate sets of pellets were prepared as for the unwashed matrix described above. It was observed that the 50% aqua regia doped matrices were not as mechanically robust as other matrices prepared in this experiment. All triplicate sets were analysed by LA-ICP-MS. The results for the unwashed matrices are presented in Appendix Experiment 16A while those for the washed matrices comprise 35 Appendix Experiment 16B.

When results for unwashed material, that is, no aqua regia wash, are considered, it is apparent that the results are significantly better for unwashed, than for the washed, material. For blank corrected matrices, normalised to cerium, precisions for the unwashed material are better than those of the washed matrix. This outcome suggests that there is no fundamental need to wash 3:1 Al(OH)₃:cellulose matrix.

Disregarding, the blank corrected, cerium normalised data for the present, and considering only the 'raw' 1ppm doped matrix data, the recorded precision measurements for both unwashed and washed matrices show a general improvement in the NH₄F doped matrices. This apparent improvement in sensitivity may result from improved ablation of the matrix possibly through production of a more volatile atmosphere in the presence of NH₄F.

Experiment 18

The several previous experiments have sought to identify appropriate clean matrix materials together with preferred compaction, absorption, ablation and pre-treatment characteristics. Particularly preferred matrix and analytical conditions for most test samples, and particularly useful for blood and other body fluid samples, were identified as Whatman 540 filter paper, ablated at 10Hz at a fluence of between 4 and 9 Millijoule with a flow of argon between 900 and 1000mL per minute.

In the course of this work, consideration was given to the question as to whether it may be possible to prepare a blood sample in such a way that it was matrix supported, rather than matrix absorbed. If this could be achieved, then it may be possible to ablate blood samples free of matrix. In this way, analytes present in the analysis would be derived from the blood alone. Consideration of direct analysis of supported, rather than matrix-absorbed blood, arose from the observation that, during the experimental procedures segregation of blood serum and plasma appeared to occur. The observed probable segregation was not considered to be a significant problem; the laser ablation protocol was designed in such a way that the laser would penetrate through any dispersion front in the matrix, thereby sampling any segregated blood and consequently 're-assembling' or re-combining the analyte cocktail. Nonetheless this observation suggested that it might be possible to overcome any potential matrix interference by ablating only dried blood.

It was reasoned that if a shallow, 3mm diameter, 125 micron deep, depression was cast into the surface of the matrix pellet, then a drop of blood delivered to the depression would flow to fill the depression and present a flat surface away from the depression lip (meniscus) for subsequent lasing. A requirement would be that no chromatographic segregation of serum and plasma occurred. To this end, it was further

reasoned that if the 3:1 Al(OH)₃:cellulose powder was compacted under high pressure (at least 1 tonne/sq in), then the matrix may be rendered effectively impervious and simply support blood as it coagulated and dried.

Consequently, a new die for the vacuum press was fabricated to produce a 6mm diameter pellet into which was impressed a 3mm diameter by 125 micron deep, flat bottomed circular depression. An appropriate number of new pellets were pressed at 1 tonne/sq in pressure.

Micro-litre samples of blood were delivered to, and contained within, the surface depressions on the surfaces of ten matrix pellets; five of these pellets were air dried at ambient temperature and the remaining five oven dried at 60°C. A further two blood drops were applied to the Perspex mounting disc and dried. Here, the surface of the dried blood drops was not flat, but rather, strongly undulating.

On application, it was clear that some plasma segregation and absorption occurred, causing a volume increase and expansion in the tightly compressed cellulose powder. However, the pellets retained sufficient mechanical integrity to allow LA-ICP-MS analysis. When ablated, the 'serum' tended to fragment in 'chunks' giving rise to somewhat variable results. Notwithstanding, the counts obtained were reasonable for most elements.

For the matrix free blood drops, dried onto the Perspex support, the ablated blood was far more coherent, with nice ablation. However, as noted above, the surface was strongly undulating leading to changed laser focal conditions and, hence, non-optimal results.

Given that the aluminium hydroxide:cellulose matrix was not impervious, the matrix free approach described above can be adopted, i.e. use impervious substrate, such as Perspex, into which 3mm diameter by 125 micron deep circular impressions have been pressed, moulded or machined. Each sample collection device can contain two such depressions, one for a matrix-matched, trace metal-doped standard reference blood, and the second to contain and confine the unknown blood sample. Alternatively, a matrix-matched, trace metal-doped reference blood could be inserted into the analytical run such that each unknown had a standard immediately adjacent to it. This would lead to 33% reference samples in the analytical run as opposed to 50% if standard and unknown were applied to the same collection device.

The results from this Experiment are presented in Appendix Experiment 18. This experiment examined heat and air-dried blood partially absorbed into an aluminium hydroxide:cellulose powder matrix, and matrix-free blood dried onto an impervious Perspex substrate.

- If the corrected and normalised "no-matrix" blood is examined, the numbers are reproducible. Indeed, values are commonly comparable to the dried material. In the 'no matrix' blood, both mercury and lead are recorded and the reproducibility of lead is with a precision of 14%. Good numbers are also recorded for uranium on the dried material, but in the blood matrix alone, the numbers are considered to be 'below detection limit', consistent with a matrix uranium background and anticipated absence in the blood.
- s material, but in the blood matrix alone, the numbers are considered to be 'below detection limit', consistent with a matrix uranium background and anticipated absence in the blood.

Example 6: Wear Metal Analysis in Oils

Experiment 13

- 10 The objective of this experiment was to carry out pilot analysis of wear metals in engine oil. It is held that the technology being investigated is equally applicable to the analysis of wear metals in oils, and that wear metals analysis is a major global industry aimed at early detection and prevention of catastrophic plant failure. Such early detection is of particular importance to the military, airline, shipping and mining industries where component failure (automotive, heavy machinery, weaponry and the like) may lead to tragic loss of life and destruction of expensive plant.
- 15

Oil from the engine of a 'new' Ford Fairlane was sampled hot, with the engine still running, via the dip-stick. Oil from a single dip of the dip-stick was transferred to both an unwashed and washed 3:1 Al(OH)₃:cellulose powder matrix pellet pressed at 20 500kg/sq in. Duplicate pellets (without oil) were prepared as blanks and all four pellets analysed by UV LA-ICP-MS. Instrument settings as for Experiment 5 were used , with minor adjustments for day-to-day variations. The results of analysis are presented in Appendix Experiment 13.

When blank corrected, there is very little difference between results obtained on 25 the unwashed and washed matrices. If the two matrices are treated as a single matrix, then precisions, with the exception of Iron, are excellent, commonly being <1 for the restricted range of analytes expected in oil. Reproducibility of the data, are thus excellent and this is graphically illustrated in the X-Y log plot of 'concentration' versus elements comprising Chart Experiment 13/1. Here, consistent with the 30 precision/reproducibility data, iron excepted, the two profiles are effectively superimposed upon each other.

The experiment clearly indicates the general reproducibility of the analysis and indicates considerable promise for the technique.

Experiment 15

- 35 This experiment had as its main objective, the analysis of oil from the engines of five different cars, collected under the same conditions as described above, that is hot

With the engines running, on three consecutive days, to assess whether contrasts in wear metal content in oil from cars of contrasting age, engine capacity and, presumably oil used, could be established. For one 'old' car, which required frequent oil top-ups between services, a sample of the new top-up oil was available for comparison. The oil 5 was collected as for Experiment 13, but in duplicate on unwashed 3:1 Al(OH)₃:cellulose powder pellets pressed at 100kg/sq in pressure; new reference oil was dipped with a glass rod and applied, in duplicate, to equivalent pellets. All samples were analysed by UV LA-ICP-MS; the results of the expanded range of analytes are presented as Appendix Experiment 15.

10 During the course of the analysis, eleven glass standard measurements were made. The precisions on the raw glass data are generally in the range 10 to 20%. However, when the raw data are normalised to average cerium, precisions are generally excellent and, with the exception of selenium, cadmium and mercury, are <10; selenium and cadmium are just marginally higher and mercury sits at 24%. The cerium 15 normalised glass standard data have been plotted in a log X-Y line chart plot which comprises Chart Experiment 15/1. Here, it is clear that the several profiles essentially superimpose, consistent with the very good precisions and reproducibility. In addition to the glass standard, 10 air blank measurements were made throughout the analytical run. These have been drift corrected and the average drift corrected air blank has been 20 used to correct the reported data.

Assessment of the data clearly demonstrates significant, and often marked differences, in specific analytes between the engine oils from the different vehicles. Oil 25 from two cars, 'John' and 'Scott', were selected to demonstrate these contrasts. 'John' engine oil is plotted as a log X-Y line chart in Chart Experiment 15/2 while 'Scott' oil comprises Chart Experiment 15/3. Examination of the respective Charts illustrates that while, there is general profile superimposition for the respective replicate oil analyses, there are some clear difference in the shapes of the respective profiles as well as peak height contrasts between equivalent analytes. Chart Experiment 15/4 graphs the averaged composition of 'John' and 'Scott' oil (n=6). This latter Chart clearly 30 emphasises the marked compositional contrast between the two oils. Hence, from this experiment, it may reasonably be concluded that the technique can readily identify and measure analyte contrasts in the examined engine oils. It is clear from the pilot experiments that wear metal analysis of oils of plant in service by LA-ICP-MS techniques is feasible and useful. The experimentation into the analysis of wear metals 35 in oils indicates considerable potential economic benefits of being able to, for example, regularly monitor potential component wear, through 'dip-stick' sampling, in plant in

service, that is without the need to plant take off-line, are large. In this way plant down-time can be carefully scheduled with minimal impact upon operations.

- The use of a defocused laser to ablate sample matrices is a variation of the protocols described, which can be used to improve laser coupling to the sample. If a
- 5 laser is focused on the surface of a sample, the first crater it produces is a response to the laser focal point being on the surface of the sample. As soon as the surface material has been ablated and removed, the next ablation event (laser shot) is into the crater area from the first shot where there is no focus and, therefore, the laser coupling is diminished. If, however, the laser is focused below the surface, that is, it is
- 10 defocused at the surface, potentially it is now possible to generate a more active ablation because a large amount of material can be ejected from the middle of the sample because the focussing is below the surface. Hence, it might be expected that at least the first and second shots will produce a lot of ablation debris and therefore this may increase the sensitivity because, at this stage the ablation ejecta is a
- 15 powder/aerosol and this may be more efficiently transported to the plasma torch. For the existing equipment, laser defocusing can be fairly readily achieved manually. Modern lasers have automatic defocus capabilities where the depth for defocusing can be simply programmed.
- As a further modification of the present protocols, triple shot ablation, as compared with
- 20 double shot, at each point in a 10 point by 10 point raster grid, may be used.

Example 7: Quantitation using solution doped matrices (further experiments)

- In this example three fibrous cellulose matrices, being Whatman 541, high purity Whatman 541 and old Whatman 540 filter papers (Whatman International Ltd, Maidstone, England), were prepared as blank material by affixing to a support substrate
- 25 using a backing tape; a sample of the backing tape (3M Scotch Permanent Double Stick Tape) was also analysed. The raw count data was analysed firstly as isotopic concentrations for the designated elements and secondly as elemental abundance concentrations derived from the isotopic data using natural abundance relations. All elemental data has been air blank corrected. Air blank correction has produced
- 30 negative values for isolated analytes implying that the analyte concentrations in the average air blank are significantly higher than in the matrices for those analytes. Examination of the data illustrates generally high analyte air blank values.

- All elements have been spike corrected (ie. normalised to an average value for the spike) and 'old' refers to fibrous cellulose substrates that have previously been
- 35 opened and exposed to the laboratory environment through 'open' long-term storage. 'New' refers to sealed fibrous cellulose substrates opened for this experiment. With

respect to the single versus multiple layer substrate data, it appears probable that analysis of single layer substrates may have involved laser penetration into the backing tape. Hence, data for single layer substrates may reflect composite data whereas for the multiple layers, where the top layer was peeled off immediately prior to analysis, the data reflect only the cellulose matrix substrate.

The data illustrated lower concentrations for a significant number of analytes in multiple, relative to single, layer matrices; other analytes are essentially equivalent while some are higher. For many analytes, for example Cu, Zn, Sn, concentrations in the backing tape is very much greater than in the both the single and multi layer matrices but, here, the single layer matrices are much higher in these elements than the equivalent multi layer material. This strongly suggests that laser penetration to the backing tape has occurred and that much of the difference between single and multi layers has little to do with handling contamination.

Furthermore, the corresponding data for 'new' versus 'old' clearly demonstrates significantly lower overall concentrations in the new matrices, both single and multiple. This latter observation strongly suggests that long-term exposure of matrices to the laboratory environment has led to variable, but significant ambient laboratory contamination of exposed matrices.

Further experiments examined white and black Whatman 540 filter paper cellulose matrices (Whatman International Ltd, Maidstone, England) doped with 1ppm multi-element standard (details are provided in the table) and with blood.

The data have been matrix blank corrected. For many of the analytes the air blank is high and similar to the concentrations measured in the white and black cellulose blanks (matrices without samples applied).

The isotopic data, as obtained, was converted to elemental concentrations and the multi element standard and blood doped samples have effectively been doubly corrected. The respective white and black cellulose matrix blanks have first been air blank corrected using the average of two air blanks. Following this, the averaged data, for multi standard and blood doped white and black cellulose, have been corrected using the respective corrected air blank corrected white and black cellulose matrix blanks. There is good correlation between the averaged corrected values for white and black multi element standard doped matrix samples and white and black blood doped samples. Little difference exists between the multi element standard and the blood on white and black matrices. The data obtained in this experiment also illustrates excellent reproducibility for the vast majority of analyst across the mass spectrum in both multi element and blood doped matrices.

Comparison of the computed concentrations in the blood may now be compared with anticipated concentration ranges from the literature. Data for Fe, Cu Zn, Sn, Ba and Pb show very good agreement.

Hardware optimisation

5 This experiment was to evaluate hardware optimisation at low, medium and high mass, using respectively manganese, lanthanum and lead. The isotopic data (isotopic concentrations), as obtained, has been rearranged and treated in a manner analogous to that in Example 7. For the current data, air blank, 540 matrix blank, 1ppm multi element standard and blood doped matrices were examined during optimisation at the relevant masses. Again, the respective 540 matrix blanks have been air blank 10 corrected by subtracting the averaged values from the averaged matrix blank values. Using the corrected matrix blanks, both the 540 multi element and blood doped matrices have been matrix corrected. Again using the corrected data, concentrations in ppb in blood have been computed.

15 The current data appear to indicate that low mass optimisation may be preferable. When doubly corrected, the indications are that, both for the multi element and blood doped matrices, optimisation at the lower mass, that is manganese, appears preferable to the mid mass and to the high mass. Once again, it is clear, with respect to quantification of trace element in the blood, matrix matched standards are of particular 20 value.

Detection limits and precision

The experiment was designed to establish detection limits, precision and quantitation for solution doped cellulose matrices. A series of standards were used for these experiments. In addition a reagent blank was also used.

25 Deionised water samples were doped, using a 'stock' multi-element standard solution, to produce a series of aqueous multi-element standard solutions with element concentrations of 100, 200; 500; 1000; 2000; 5000 and 10000 ppb. 100 µL of each of these aqueous standard solutions was transferred to fibrous cellulose matrix pads, prepared from Whatman 540 filter paper (Whatman International Ltd, Maldstone, 30 England), using a pipette; the pads were affixed to Perspex supports using 3M Scotch Permanent Double Stick Tape. Deionised water matrix blanks were also prepared by pipetting 100 µL of deionised water onto the matrix pads. In addition, solutions of three Certified Reference Materials, SARM's 1, 3 and 46 (South African Bureau of Standards) 35 were diluted 250 times, and 100 µL aliquots of each were doped onto Whatman 540 matrix pads. In all, 10 matrix pads of each aqueous standard concentration and CRM were prepared along with deionised water matrix blanks. A 2ppm samarium internal

standard solution spike was added to the respective matrix pads to facilitate internal normalisation; the spike was added using a pipette. All doped matrix pads were dried at 105°C for two hours prior to ablation.

- Five of each set of ten prepared matrices were analysed on successive days.
- 5 The sample holders, with affixed matrix pads, were placed in the laser ablation cell of a UP 266 UV Laser System connected to an X Series ICP-MS with XI Cone System (Thermo Optek (Australia) Pty Ltd, Rydalmere, Australia) and ablated on a 10x10 matrix raster using a UV laser operating at 266 nm, 10Hz at a fluence of 6 Millijoule and an argon flow between 900 and 1000 mL per minute for 60 seconds.
- 10 Samples were analysed manually and results have been corrected for air blanks, facilitating cross comparison between CRM and standard matrix matched samples. The output data was acquired as raw counts from on-board software and exported into Excel and manipulated. No algorithms were used for computations. From these corrected data, Standard Deviations and Coefficients of Variation have been
- 15 computed as measures of reproducibility and precision. Finally, quantitative trace element compositions for the 44 analytes examined in the exemplary run were computed for the CRM's; sub-20ppb detection limits for most analytes were achieved.

Data obtained data is set out in Appendix Experiment M1. It is also quite apparent that data for the standards, when plotted, indicate excellent calibration can be achieved. Quantitation of data for the CRM's indicated extremely good agreement for elemental concentrations for all elements with values (for samples once diluted) in the optimum analytical range of the technique.

- There are a number of points that this data demonstrates.
- 1) It is possible to achieve sub 5% precision for a wide range of elements using the analytical protocols developed in conjunction with ICP-MS.
- 2) It is possible to achieve sub 20ppb detection limits for a wide range of elements simultaneously.
- 3) It is possible to achieve accurate quantitative data, using matrix matched certified reference materials, or other equivalent CRM's.
- 30 Examples of useful areas of application of the methods and devices of the present invention are:
- screening occupationally exposed workers for anomalous levels of a range of toxic metals;
 - monitoring environmental exposure of the general population to toxic metals;
 - 35 • screening populations for trace/ultra trace element deficiencies for preventative medicine

- screening trace/ultra trace element deficiencies, and toxic heavy metal excesses, in bloodstock, general livestock, zoo animals (including animals in endangered species breeding programs), and domestic pets for veterinary medicine; and monitoring heavy metal pollutants in slaughter animals for meat product quality control in the human food chain.
- Monitoring/detecting wear of mechanical components of plant, machinery and the like by analysing lubricating oils.

Although the Invention has been described with reference to certain preferred embodiments, variations in keeping with the broad principles and the spirit of the Invention are also contemplated as being within its scope.

APPENDIX EXPERIMENT 2

Element - ppm in original	Li	Be	Al	Tl	V	Cr	Mn	Co	Ni	Cu	Zn	Ge	As	Se	Rb
TiO ₂ HCl - 0.01 leachate	7	<1	8.340	174.555	<1	<1	435	<1	457	364	8	<1	<1	<1	76
TiO ₂ HNO ₃ - 0.02 leachate	11	<1	13.780	76.451	<1	14	538	<1	527	498	13	1	<1	<1	108
Al(OH)₂HCl - 0.03 leachate	37	4	41.530	180	<1	118	48	<1	14	<1	2,357	<1	<1	<1	<1
Al(OH)₂HNO ₃ - 0.04 leachate	45	4	48.312	1,456	<1	17	33	<1	50	<1	2,523	<1	<1	<1	5
Pg Tce A digest	63	<1	11.600	1,779	<1	<1	761.998	<1	113	817	<1	<1	<1	<1	23
Pg Tce B digest	84	<1	9.958	2,086	<1	<1	475.395	<1	138	890	<1	<1	<1	<1	42
Pg Tce C digest	109	<1	10.314	2,165	<1	<1	780.369	<1	126	922	<1	<1	<1	<1	72
Pg Tce D digest	67	<1	9.424	1,922	<1	<1	936.818	<1	170	421	<1	<1	<1	<1	58
Glucozin E solute	8	<1	2,378	91	<1	359	265	<1	107	18	149	<1	<1	<1	20
Glucozin F solute	4	1	2,218	92	<1	327	258	<1	103	29	181	<1	<1	<1	31
Glucozin G solute	9	2	1,396	83	<1	345	96	<1	110	21	131	<1	<1	<1	18
Cellulose H digest	9	7	22.353	1,391	50	738	298	<1	963	523	862	<1	<1	<1	62
Cellulose I digest	71	3	25.313	1,278	50	2,392	1,538	<1	1,282	1,671	1,413	<1	<1	<1	78
* ppm in solution for leachates															

APPENDIX EXPERIMENT 2

Element - ppb* in original	Sr	Y	Zr	Hf	Mo	Ag	Cd	Sn	Sb	Te	Cs	Ba	La	Co	Pr	Nd
TO2/HCl-001 leachate	134	<1	62	<1	69	<1	<1	<1	<1	2,808	6	8	<1	<1	<1	<1
TO2/HNO3-002 leachate	185	1	180	<1	<1	<1	<1	<1	<1	3,250	8	11	<1	<1	<1	<1
Al(OH)3/HCl-003 leachate	170	<1	1,289	<1	<1	<1	<1	168	<1	<1	<1	2	<1	<1	<1	<1
Al(OH)3/HNO3-004 leachate	189	<1	818	<1	<1	<1	<1	174	<1	<1	<1	3	<1	<1	<1	<1
Pig Toe A digest	237,704	<1	<1	<1	10	<1	<1	<1	<1	66,117	4	9	<1	<1	<1	<1
Pig Toe B digest	233,803	<1	1	<1	34	<1	<1	<1	<1	40,257	4	15	<1	<1	<1	<1
Pig Toe C digest	332,026	<1	<1	<1	41	<1	<1	<1	<1	85,251	6	16	<1	<1	<1	<1
Pig Toe D digest	303,598	<1	<1	<1	61	<1	<1	<1	<1	101,341	10	28	<1	<1	<1	<1
Glycochin E solids	183	<1	<1	7	63	<1	<1	<1	<1	<1	72	1	2	<1	<1	<1
Glycochin F solids	229	<1	<1	6	61	<1	<1	<1	<1	1	43	<1	<1	<1	<1	<1
Glycochin G solids	22	<1	<1	<1	<1	<1	<1	<1	<1	<1	6	<1	<1	<1	<1	<1
Cellulose H digest	357	<1	806	217	870	<1	<1	658	<1	<1	168	6	12	<1	<1	<1
DEMR Cellulose I digest	13,800	<1	1,351	582	524	<1	<1	557	<1	<1	480	6	11	<1	<1	<1

*ppb in solution for leachates

APPENDIX EXPERIMENT 2

Element - ppb* in original	Eu	Sr	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Hf	Ta	W	Hg	Tl	Pb	Bi	Ta	U
TiO ₂ HCl-001 leachate	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	19.04	<1	4	10	
TiO ₂ AlN03-002 leachate	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	20.39	<1	3	<1	
Al(OH)3/HCl-003 leachate	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	3	135	
Al(OH)3/HN03-004 leachate	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2	152	
Pig Toe A digest	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Pig Toe B digest	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Pig Toe C digest	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Pig Toe D digest	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
Glucodin E solids	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	5	<1		
Glucodin F solids	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	5	<1		
Glucose G solids	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	41	<1		
Cellulose H digest	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	24	186	137	55
HEM Cellulose I digest	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	25	<1	<1	32

* ppb in solution for leachates

APPENDIX EXPERIMENT 3

Sample	Sample No.	Pellets	Absorption Rate of SY-2	Dissolution	Comments
Glucose	1	POOR	Fast	Yes	Pellet dissolved, holes on surface
Cellulose	2	OK	10-15 sec	No	Solution absorbed slowly
AR Starch	3	OK	Slow	Partial	Pellet swells
UR Starch	4	OK	Slow	No	Pellet swells
Glucose + Cellulose 1:1	5	OK	Slow	Partial	Absorption OK, partial dissolution, holes on surface
Glucose + Cellulose 3:1	6	OK	Slow	Partial	Dissolution of pellet
Cellulose + Glucose 3:1	7	OK	V. Slow	Partial	Partial dissolution of pellet, holes on surface
Glucose + AR Starch 1:1	8	OK	V. Slow	Partial	Dissolution and swelling
Glucose + UR Starch 1:1	9	OK	V. Slow	Partial	Dissolution and swelling
Cellulose + AR Starch 1:1	10	OK	Slow	No	Dissolution and swelling
Cellulose + AR Starch 3:1	11	OK	Slow	No	Dissolution and swelling
AR Starch + Cellulose 3:1	12	OK	Slow	No	Swelling of surface
Cellulose + UR Starch 1:1	13	OK	Slow	No	Swelling of surface
Cellulose + UR Starch 3:1	14	OK	Slow	No	Swelling of surface
UR Starch + Cellulose 3:1	15	OK	Slow	No	Swelling of surface
Glucose + Cellulose + AR Starch 1:1:1	16	OK	V. Slow	Partial	Dissolution and swelling
Glucose + Cellulose + UR Starch 1:1:1	17	OK	Slow	Partial	Dissolution and swelling

APPENDIX EXPERIMENT 5A

Isotope - Raw Counts	Mg 26	Ca 44	Mn 55	Fe 56	Cu 65	Zn 66	As 75	Se 77	Mo 98	Ba 138	Pb 208
WET											
"02/11/07 CELLULOSE AIRBL1"	38,010	14,080	2,719	25,180	2,686	377	650	432	138	111	73
"02/11/07 CELLULOSE AIRBL2"	35,740	13,480	2,578	24,210	2,592	309	626	443	108	38	53
"02/11/07 CELLULOSE BLANK1"	60,150	24,580	7,263	69,970	15,140	8,261	671	328	1,542	5,122	9,806
"02/11/07 CELLULOSE BLANK2"	58,520	20,620	10,250	70,140	10,720	5,452	704	393	2,254	3,938	6,359
"02/11/07 CELLULOSE SY21"	75,080	31,360	24,930	375,200	2,948	1,459	649	400	2,035	7,150	8,334
"02/11/07 CELLULOSE SY22"	73,650	28,060	22,240	337,700	3,598	1,066	714	426	1,663	5,975	5,195
"02/11/07 CELLULOSE BLOOD1"	128,300	29,240	4,941	2,893,000	6,377	15,490	686	447	735	3,213	10,020
"02/11/07 CELLULOSE BLOOD2"	101,900	26,030	5,736	2,218,000	6,518	7,604	714	448	817	4,711	2,713
"02/11/07 CELLULOSE GLASSST1"	253,300	644,400	175,200	27,890	50,490	52,420	25,230	918	91,410	245,700	37,850
"02/11/07 CELLULOSE AIRBL3"	33,850	12,570	2,553	27,070	2,638	339	747	462	145	46	73
"02/11/07 CELLULOSE AIRBL4"	35,000	12,680	2,645	28,020	2,765	352	788	511	148	42	63
DRY											
"02/11/07 CELLULOSE AIRBL5"	25,860	10,520	2,391	23,630	2,197	377	680	511	145	95	74
"02/11/07 CELLULOSE AIRBL6"	26,490	10,700	2,465	24,380	2,211	338	631	532	120	41	73
"02/11/07 CELLULOSE BLANK5"	35,730	18,150	4,002	71,500	2,491	5,892	613	379	384	2,751	2,758
"02/11/07 CELLULOSE BLANK6"	39,820	18,460	4,194	78,720	2,500	5,450	882	398	348	2,447	2,319
"02/11/07 CELLULOSE SY23"	102,100	30,740	36,790	678,500	3,000	6,895	865	395	2,332	11,880	7,340
"02/11/07 CELLULOSE SY24"	117,400	35,750	43,580	791,600	3,164	5,782	948	465	2,859	14,010	8,050
"02/11/07 CELLULOSE BLOOD3"	107,400	32,000	4,320	2,838,000	8,533	8,471	929	539	392	1,056	1,126
"02/11/07 CELLULOSE BLOOD4"	106,200	33,000	4,300	2,768,000	8,308	7,468	957	540	392	1,173	3,369
"02/11/07 CELLULOSE GLASSST7"	145,100	571,300	188,600	212,500	41,650	35,320	25,530	927	102,000	298,800	61,500
"02/11/07 CELLULOSE AIRBL7"	28,040	12,350	2,988	30,210	2,224	350	962	505	112	39	79
"02/11/07 CELLULOSE AIRBL8"	28,620	12,380	2,982	30,540	2,255	364	971	555	162	33	70
As Sy2	71,975	14,940	36,137	650,940	557	673	59	62	2,248	10,836	5,167
As Blood	69,025	14,195	257	2,757,890	3,925	2,303	96	172	37	-1,332	703
Blank corrected											
"02/11/07 CELLULOSE SY23"	64,225	12,635	32,737	604,390	505	1,230	17	27	1,977	5,431	4,802
"02/11/07 CELLULOSE SY24"	79,625	17,445	39,537	717,490	619	116	100	97	2,514	11,561	5,512
% Sy4 Dev	45	24	33	12	13	117	100	79	17	14	10
"02/11/07 CELLULOSE BLOOD5"	69,625	13,895	267	2,923,880	4,038	2,805	81	171	37	-1,393	588
"02/11/07 CELLULOSE BLOOD6"	69,425	14,895	247	2,891,880	3,813	1,800	110	173	37	-1,270	831
% Sy4 Dev	1	5	6	3	4	31	21	1	0	7	24

APPENDIX EXPERIMENT 5B

	Mg 24	Ca 44	Mn 55	Fe 56	Cu 65	Zn 66	As 75	Se 77	Mo 88	Bi 138	Pb 208
Isotope - Raw Counts											
Y211M7 CELLULOSE AIRBL5	25,680	10,320	2,391	23,630	2,197	327	880	511	145	95	74
Y211M7 CELLULOSE AIRBL6	28,490	10,700	2,465	24,380	2,211	338	831	532	128	41	73
Y211M7 CELLULOSE AIRBL5'	25,680	10,320	2,391	23,630	2,197	327	880	511	145	95	74
Y211M7 CELLULOSE AIRBL5'	26,460	10,700	2,465	24,380	2,211	338	831	532	128	41	73
Y211M7 CELLULOSE BLANK5'	35,730	18,150	4,002	71,500	2,491	5,882	813	379	384	2,755	2,758
Y211M7 CELLULOSE BLANK6'	39,820	18,460	4,104	78,720	2,500	5,450	882	358	346	2,147	2,318
Y211M7 CELLULOSE SY23	102,100	30,740	38,790	678,500	3,089	6,898	885	386	2,322	11,880	7,340
Y211M7 CELLULOSE SY24'	117,400	35,760	43,589	781,500	3,104	5,732	948	465	2,869	14,010	8,050
Y211M7 CELLULOSE BLOOD*	107,400	32,900	4,320	2,859,000	6,383	8,471	928	539	392	1,053	1,126
Y211M7 CELLULOSE BLOOD*	106,200	33,000	4,300	2,769,000	6,308	7,468	967	540	392	1,179	1,369
Y211M7 CELLULOSE GLASS2*	145,100	571,300	146,800	212,500	41,680	35,320	25,530	827	102,000	289,800	61,500
Y211M7 CELLULOSE AIRBL7	28,040	12,350	2,986	30,210	2,224	356	962	505	172	39	79
Y211M7 CELLULOSE AIRBL8	28,620	12,380	2,982	30,540	2,255	394	971	585	152	33	10
Blank Control											
Y211M7 CELLULOSE SY25'	64,326	12,435	32,731	604,390	505	1,230	17	27	1,977	9,431	4,802
Y211M7 CELLULOSE SY24*	79,625	17,445	39,637	717,450	618	116	100	97	2,514	11,551	5,512
Y211M7 CELLULOSE BLOOD*	69,625	13,685	267	2,823,890	4,036	2,805	81	171	37	-1,383	588
Y211M7 CELLULOSE BLOOD*	68,425	14,635	247	2,691,890	3,813	1,800	110	173	37	-1,270	831
Conc in ppm in SY2	2.69	7.98	0.32	2.43	5.20	248.00	17.30	20.00	0.53	480.00	85.00
(MgO)	(CaO)	(MnO)	(Fe2O3+FeO)	(ZnO)	(As2O3)	(Se)	(Mo)	(Bi)	(Pb)	(Yttrium)	(Ce)
% In sample											
0.60	0.71	0.77	0.70	0.78						197.87	
% Metal in SY2											
Conc in ppm in SY2	16220	58857	2478	17010	520	248.00	17.30	20.00	0.53	480.00	85.00
Conc in ppm for SY2 in 5dmL sample	82.31	280.51	12.58	86.31	0.13	1.28	0.79	0.10	0.00	2.33	0.43
Average counts for SY2	71975	14940	38137	660940	657	673	59	62	2246	10498	5157
Conc in ppm for blood samples (avg)	78.9	274	0.099	360	0.198	4.31	0.143	0.280	0.001	40.001	0.059
Expected concentrations for blood values where found in literature	50.0	320		500-1800	0.08-18	6.00				0.06	

APPENDIX EXPERIMENT 12

Isotope - Raw Counts											
U	Th	K	238U	232Th	238Ra	No. 55	Fe	58	Cu	65	Zn
T2311221 HfH Gls STD ⁺	107,459	184,930	680,920	182,200	152,300	252,900	258,100	41,720	25,830	183,900	25,180
T2311221 HfH Gls STD ⁻	105,460	187,610	684,203	180,100	145,000	245,900	244,400	41,450	26,150	180,000	25,380
T2311221 HfH AIR BL ¹	1,919	84,140	21,220	122	1,698	10,620	50,720	1,434	1,245	231	3,055
T2311221 HfH AIR BL ²	2,014	108,100	23,080	185	1,759	3,157	50,620	1,455	1,420	254	3,671
T2311221 HfH CELL ON BL ¹	2,024	101,940	27,340	235	6,269	5,982	61,880	1,602	1,384	445	2,765
T2311221 HfH CELL ON BL ²	2,032	107,500	24,350	205	6,311	5,586	62,880	1,650	1,388	708	2,768
T2311221 HfH CELL RBL ¹	1,588	92,650	24,650	239	5,007	2,627	54,740	1,353	1,391	235	3,257
T2311221 HfH CELL RBL ²	1,578	103,400	25,040	159	6,076	3,230	50,540	1,444	1,491	307	3,480
T2311221 HfH CELL LW BL ¹	2,213	119,000	37,410	1,050	7,191	4,522	70,450	1,432	1,770	568	3,351
T2311221 HfH CELL LW BL ²	2,361	142,800	33,910	217	7,587	3,851	67,650	1,453	1,533	705	3,674
T2311221 HIGH CELL ON ME ¹	3,211	122,200	12,190	2,751	6,607	5,811	52,480	1,889	2,422	2,658	3,013
T2311221 HIGH CELL ON ME ²	4,343	122,000	33,410	4,217	10,980	18,040	77,120	2,631	2,710	4,498	9,800
T2311221 HIGH CELL RUE ¹	4,963	122,000	23,700	4,724	10,510	9,195	75,260	2,882	3,457	4,206	3,697
T2311221 HIGH CELL RUE ²	4,805	130,600	30,860	5,087	11,280	10,120	68,430	2,768	3,823	4,783	5,819
T2311221 HIGH CELL UW ME ¹	2,850	124,200	23,210	2,241	6,764	14,920	57,130	1,939	5,445	2,105	2,935
T2311221 HIGH CELL UW ME ²	3,703	131,200	32,170	3,780	10,320	13,870	73,610	4,235	6,733	3,644	4,100
T2311221 HfH Gls STD ⁵	98,400	186,700	684,000	184,900	151,500	222,400	235,800	34,300	21,590	162,200	22,770
T2311221 HfH Gls STD ⁴	92,860	188,600	644,500	177,600	147,800	243,100	257,900	36,850	26,250	182,200	24,820
T2311221 HfH AIR BL ³	2,128	120,200	26,320	182	2,625	3,701	57,110	1,508	1,904	316	4,043
T2311221 HfH AIR BL ⁴	2,051	122,100	21,910	184	3,245	3,691	57,580	1,749	3,027	3,852	6,043
Bank corrected											
T2311221 HIGH CELL ON ME ¹	1,183	17,640	-5,725	2,521	301	2,032	-8,845	410	588	2,030	237
T2311221 HIGH CELL ON ME ²	2,315	17,350	5,465	3,867	4,863	12,461	44,685	1,053	474	3,921	1,210
T2311221 HIGH CELL RUE ¹	9,177	28,455	3,295	4,528	4,803	6,167	11,570	1,454	2,001	3,985	520
T2311221 HIGH CELL RUE ²	3,019	30,058	4,635	4,861	5,673	7,082	11,740	1,250	2,467	4,472	551
T2311221 HIGH CELL UW ME ¹	6218	6,700	-12,590	1,588	-1,535	10,894	-12,420	4,88	3,525	1,558	688
T2311221 HIGH CELL UW ME ²	1,401	3,000	-1,880	3,107	3,031	9,784	80	2,763	4,877	3,007	498
Normalized to carbon											
T2311221 HfH AIR BL ¹	1,183	17,640	5,725	2,521	301	2,032	-8,845	410	588	2,030	237
T2311221 HfH AIR BL ²	1,459	10,944	3,447	2,621	2,929	7,850	9,259	694	2,939	2,613	5,455
T2311221 HfH AIR BL ³	1,863	20,635	2,011	2,767	2,967	3,818	10,354	696	1,235	2,482	198
T2311221 HfH AIR BL ⁴	1,722	17,144	2,444	2,707	3,178	4,045	9,793	6,967	1,411	2,551	642
T2311221 HfH CELL ON ME ¹	700	9,850	-16,700	2,104	-2,634	14,318	-21,763	848	4,761	2,053	685
T2311221 HfH CELL ON ME ²	1,062	227	-1,425	2,355	2,286	7,418	45	2,025	3,688	2,280	377
Element - Raw Counts											
U	Th	K	V	Cr	Mn	Fe	Ca	Cl	Zn	Ge	As
T2311221 HfH CELL ON ME ¹	1,279	22,520	-270,883	2,539	2,032	-10,738	1,359	2,100	5,465	237	5,755
T2311221 HfH CELL ON ME ²	1,678	13,853	16,727	2,529	3,508	7,850	10,048	2,155	1,072	4,115	5,634
T2311221 HfH CELL RUE ¹	1,863	20,635	9,075	2,608	3,340	5,609	11,257	2,815	4,635	5,143	6,127
T2311221 HfH CELL RUE ²	1,722	20,635	12,701	12,017	2,798	4,045	10,937	2,703	5,085	5,262	7,197
T2311221 HfH CELL UW ME ¹	757	-11,240	-78,399	2,111	-2,423	14,258	-20,732	2,080	17,050	5,457	8,347
T2311221 HfH CELL UW ME ²	1,148	234	-64,530	2,381	2,242	7,418	50	9,800	19,254	3,704	6,164
Element - Raw Counts											
T2311221 HfH CELL ON ME ¹	1,279	22,520	-270,883	2,539	2,032	-10,738	1,359	2,100	5,465	237	5,755
T2311221 HfH CELL ON ME ²	1,678	13,853	16,727	2,529	3,508	7,850	10,048	2,155	1,072	4,115	5,634
T2311221 HfH CELL RUE ¹	1,863	20,635	9,075	2,608	3,340	5,609	11,257	2,815	4,635	5,143	6,127
T2311221 HfH CELL RUE ²	1,722	20,635	12,701	12,017	2,798	4,045	10,937	2,703	5,085	5,262	7,197
T2311221 HfH CELL UW ME ¹	757	-11,240	-78,399	2,111	-2,423	14,258	-20,732	2,080	17,050	5,457	8,347
T2311221 HfH CELL UW ME ²	1,148	234	-64,530	2,381	2,242	7,418	50	9,800	19,254	3,704	6,164

Experiment 12/1

APPENDIX EXPERIMENT 12

Isotope - Raw Counts										
	Sn 120	Ba 138	La 139	Ce 140	Eu 151	Dy 162	Tb 174	Hf 178	Po 208	U 238
T21127 Hf1 Gf1 STD ¹	182,100	399,900	450,200	517,100	270,700	112,100	126,100	91,700	64,500	115,800
T21127 Hf1 Gf1 STD ²	188,400	386,000	438,100	507,500	261,900	109,500	123,400	88,500	65,100	119,100
T21127 Hf1 AIR BL ¹	141	1,144	38	13	18	13	9	4	312	21
T21127 Hf1 AIR BL ²	152	163	25	20	20	9	14	14	28	6
T21127 Hf1 CELL ON BL ¹	675	1,150	182	164	112	45	53	32	4,450	36
T21127 Hf1 CELL ON BL ²	865	1,673	142	135	52	21	23	24	4,769	63
T21127 Hf1 CELL REL ¹	528	242	52	30	64	17	12	10	893	24
T21127 Hf1 CELL REL ²	508	264	44	26	38	14	11	32	771	18
T21127 Hf1 CELL UW BL ¹	585	635	58	63	50	24	23	14	2,580	45
T21127 Hf1 CELL UW BL ²	474	947	63	118	183	22	14	10	2,739	167
T21127 Hf1 CELL ON ME ¹	3,038	6,283	7,442	4,926	1,982	2,202	1,768	4,944	1,605	
T21127 Hf1 CELL ON ME ²	4,897	9,724	12,950	11,750	6,788	9,268	5,535	9,848	5,058	2,346
T21127 Hf1 CELL RME ¹	5,747	10,896	12,480	11,850	6,827	3,112	3,407	2,525	6,512	2,376
T21127 Hf1 CELL RME ²	6,891	11,820	13,350	12,810	7,619	3,567	3,667	2,859	6,591	2,716
T21127 Hf1 CELL UW ME ¹	3,485	5,403	5,998	6,822	3,258	1,492	1,577	1,167	9,840	1,200
T21127 Hf1 CELL UW ME ²	5,174	10,469	9,893	9,717	5,374	2,845	2,912	2,111	7,563	1,633
T21127 Hf1 Gf1 STD ³	180,050	374,500	457,100	473,100	258,400	105,700	119,500	86,290	47,700	98,150
T21127 Hf1 Gf1 STD ⁴	203,100	433,000	497,200	557,500	285,800	120,200	138,200	100,200	64,190	123,100
T21127 Hf1 AIR BL ³	.776	.287	41	22	34	18	9	10	44	9
T21127 Hf1 AIR BL ⁴	.738	.463	86	17	32	13	10	12	833	8
<u>Blank corrected</u>										
T21127 Hf1 CELL ON ME ¹	2,488	4,877	7,830	7,281	4,244	1,919	2,164	1,650	340	1,546
T21127 Hf1 CELL ON ME ²	4,277	8,306	12,958	11,558	6,708	3,258	3,693	2,818	457	2,267
T21127 Hf1 CELL RME ¹	5,228	10,757	12,432	11,802	6,778	3,667	3,958	2,903	5,862	2,396
T21127 Hf1 CELL RME ²	6,473	11,567	13,882	12,782	7,588	3,562	3,976	2,897	5,981	2,686
T21127 Hf1 CELL UW ME ¹	3,851	4,912	5,941	5,501	3,452	1,489	1,558	1,155	7,168	1,634
T21127 Hf1 CELL UW ME ²	4,760	8,089	9,940	8,616	5,308	2,622	2,791	2,089	4,979	1,727
<u>Normalised to carbon</u>										
T21127 Hf1 CELL ON ME ¹	2,458	4,877	7,719	7,291	4,244	1,919	2,164	1,650	340	1,546
T21127 Hf1 CELL ON ME ²	2,698	5,240	7,920	7,291	4,730	2,041	2,203	1,651	288	1,442
T21127 Hf1 CELL RME ¹	3,230	6,633	7,980	7,291	4,198	1,919	2,098	1,647	3,519	1,455
T21127 Hf1 CELL RME ²	3,682	6,586	7,918	7,291	4,317	2,028	2,211	1,818	3,240	1,538
T21127 Hf1 CELL UW ME ¹	4,093	8,113	7,174	7,291	4,177	1,947	2,062	1,531	3,497	1,450
T21127 Hf1 CELL UW ME ²	3,903	7,354	7,538	7,291	4,070	1,968	2,118	1,502	3,699	1,509
<u>Element - Raw Counts</u>										
	Sn	Ba	La	Ce	Eu	Dy	Tb	Hf	Pb	U
T21127 Hf1 CELL ON ME ¹	7,572	6,801	7,939	3,258	8,979	7,925	6,604	6,154	649	1,525
T21127 Hf1 CELL ON ME ²	8,278	7,508	8,208	8,236	8,850	8,004	6,928	6,049	550	1,462
T21127 Hf1 CELL RME ¹	9,808	9,251	7,689	8,216	8,757	7,902	6,985	6,711	1,488	
T21127 Hf1 CELL RME ²	11,228	9,202	7,928	8,236	9,031	7,944	6,952	6,928	6,184	1,539
T21127 Hf1 CELL UW ME ¹	12,524	8,528	7,801	8,248	8,738	7,634	6,804	5,608	14,124	1,460
T21127 Hf1 CELL UW ME ²	11,070	10,257	7,754	9,238	9,514	7,758	6,954	5,830	7,059	1,319
T21127 Hf1 CELL ON ME ¹	7,572	6,801	7,936	8,236	8,770	7,625	6,604	6,154	643	1,525

APPENDIX EXPERIMENT 12

		Cr 26	Cr 44	V 51	Cr 52	Mn 55	Fe 59	Cu 65	Zn 66	Co 69	Ag 75	Si 83	Zr 90	Mo 96	Cr 114	
Isotope - Raw Counts	Li 7	1579	185,777	2,529	1,509	7,850	10,108	2,168	1,072	4,115	763	6,713	6,127	5,824	-4,133	
T211127 HIGH CELL UW ME 2'		1,579	19,853	212	12,831	7	2,228	4,121	14,733	584	727	459	372	249	870	1,019
Std dev.																
% Std Dev.	15	35	-44	9	115	83	-4,653	34	49	12	70	12	4	14	-21	
T211127 HIGH CELL UW ME 1'		2,122	20,983	96,975	2,586	3,640	3,989	11,637	2,915	4,431	4,096	189	7,197	6,115	8,582	4,089
T211127 HIGH CELL UW ME 2'		1,652	21,701	127,107	2,782	3,793	4,045	7,503	2,573	5,085	4,244	842	8,517	6,347	8,329	4,477
Std dev.																
% Std Dev.	9	3	19	0	5	4	9	10	3	85	12	3	2	6		
T211127 HIGH CELL UW ME 1'		757	-51,246	-709,379	2,111	-2,428	14,358	-23,732	2,184	17,930	3,437	-885	9,059	5,805	7,484	15,570
T211127 HIGH CELL UW ME 2'		1,148	268	-68,590	2,383	2,742	7,618	50	6,800	13,254	3,704	377	6,303	6,184	6,327	6,786
Std dev.																
% Std Dev.	29	-149	8,152	512,498	170	3,556	4,905	16,319	3,325	2,670	253	892	1,848	255	804	4,789

APPENDIX EXPERIMENT 12

Isotope - Rad Count	Sn 110	Ba 138	La 139	Ca 140	Eu 154	Dy 152	Tb 174	Hf 176	Pb 203	U 238
TZ1127 HIGH CELL LINE T'	8.276	7.318	7.828	8.289	8.650	8.004	9.928	9.049	5.591	1.452
Std dev.	493	368	7	0	21	339	88	74	70	74
% Std dev.	6	5	0	0	4	1	1	12	5	
TZ1127 HIGH CELL LINE T'	9.251	7.698	8.238	8.767	7.502	6.996	5.885	6.711	1.468	
TZ1127 HIGH CELL LINE T'	11.328	9.202	7.926	8.233	9.051	7.944	9.052	6.928	6.194	1.549
Std dev.	1.022	33	169	0	194	313	251	168	372	59
% Std dev.	9	0	2	0	2	4	4	3	6	4
TZ1127 HIGH CELL LINE T'	12.524	8.528	7.991	8.288	8.738	7.634	8.484	5.809	9.124	1.480
TZ1127 HIGH CELL LINE T'	11.970	10.257	7.544	8.238	8.514	7.798	8.654	5.830	7.059	1.519
Std dev.	1.029	1.234	239	0	159	114	120	157	1.824	100
% Std dev.	9	11	1	0	2	1	2	3	12	7

APPENDIX EXPERIMENT 16A

UNWASHED RATIONS										WASHED RATIONS									
AR and NHF Baln					Element - Raw Counts					AR and NHF Baln					Element - Raw Counts				
Li	Mg	Ca	V	Cr	Mn	Fe	Ni	Cd	Zn	As	Se	Sr	Se	Sr	Zr				
Glass Standard																			
U211269 HCH GHS STD F	189.376	178.895	54.275.269	282.339	275.236	382.091	373.770	400.083	202.827	157.819	34.725	28.845	64.426	423.431					
U211269 HCH GHS STD F	213.782	186.398	58.148.256	288.275	283.518	380.856	350.118	409.853	221.577	131.888	36.200	29.882	66.743	440.172					
Ar Blank																			
"U211269 HCH AIR BL F"	5.181	25.573	1.614.554	142	3.237	3.867	40.842	258.677	10.401	1.604	1.528	21.405	651	307					
"U211269 HCH AIR BL F"	6.571	26.489	1.730.516	147	3.48	4.216	42.989	271.177	10.805	1.824	1.683	22.334	739	363					
UN Blank																			
"U211269 HCH & UNW BL F"	9.410	65.725	1.801.033	688	9.175	9.866	252.206	260.505	14.520	5.483	1.687	23.820	3.553	9.458					
"U211269 HCH & UNW BL F"	8.882	67.228	1.820.188	725	7.705	8.676	241.588	284.748	14.206	5.784	1.915	23.867	3.245	10.630					
"U211269 HCH & UNW BL F"	6.743	71.708	1.807.465	677	8.106	8.882	214.052	284.862	13.639	5.626	1.910	24.723	2.948	19.634					
% Std Dev	4	5	1	4	10	2	8	1	3	2	1	2	10	7				
UN ARW Blank																			
"U211269 HCH & UNW ARW BL F"	5.228	34.313	1.513.146	1.273	8.851	4.883	226.215	258.142	10.977	3.317	1.810	19.707	5.839	10.496					
"U211269 HCH & UNW ARW BL F"	5.477	38.142	1.589.014	1.283	7.921	5.481	249.889	275.595	11.616	3.217	1.864	19.477	3.879	11.138					
"U211269 HCH & UNW ARW BL F"	5.191	34.517	1.534.742	1.340	7.288	5.446	240.561	262.780	11.828	3.445	1.873	19.553	3.676	12.076					
% Std Dev	3	6	2	4	7	5	5	4	3	2	1	2	1	7				
UN NHAF W Blank																			
"U211269 HCH & UNW NHAF W BL F"	4.803	36.102	1.557.277	1.037	7.911	5.174	141.978	203.891	10.426	3.580	1.754	20.667	3.485	9.294					
"U211269 HCH & UNW NHAF W BL F"	4.973	38.117	1.589.758	1.123	7.269	5.820	151.887	286.088	11.956	3.886	1.889	20.088	3.628	10.510					
"U211269 HCH & UNW NHAF W BL F"	4.861	38.059	1.541.887	1.141	7.817	5.781	157.858	278.639	10.110	3.448	1.985	19.109	3.411	9.505					
% Std Dev	2	3	1	2	4	6	5	3	9	6	8	4	3	7					
UN NH AF WE 100%																			
"U211269 HCH & UNW NH AF WE F"	7.551	72.125	1.811.269	6.278	14.004	11.730	235.463	288.047	15.623	6.448	3.355	25.438	19.622	20.563					
"U211269 HCH & UNW NH AF WE F"	7.351	77.252	1.945.540	6.899	14.316	12.580	268.171	305.178	16.114	6.203	3.201	25.858	21.572	25.118					
"U211269 HCH & UNW NH AF WE F"	7.388	78.018	1.850.141	5.847	14.589	11.280	324.856	294.918	15.455	6.403	4.183	26.428	19.932	18.221					
% Std Dev	1	4	1	8	2	6	6	13	2	2	14	3	9	14					
UN NHAF W WE 100%																			
"U211269 HCH & UNW NHAF W WE F"	5.988	38.677	1.812.223	4.321	8.712	8.003	310.424	288.059	12.882	4.775	2.840	20.254	11.268	19.218					
"U211269 HCH & UNW NHAF W WE F"	5.757	40.359	1.828.577	4.503	8.887	8.064	285.177	285.876	12.535	4.581	2.864	20.038	11.658	18.498					
"U211269 HCH & UNW NHAF W WE F"	5.858	41.374	1.808.859	4.047	8.388	8.165	289.239	288.657	11.949	4.220	2.742	20.428	10.932	18.058					
% Std Dev	2	3	1	5	1	1	5	1	2	6	2	1	3	3					
UN NHAF W WE 100%																			
"U211269 HCH & UNW NHAF W WE F"	5.522	48.185	1.817.840	2.448	8.874	8.383	168.248	278.801	11.803	4.348	2.928	21.987	11.758	20.768					
"U211269 HCH & UNW NHAF W WE F"	5.772	47.201	1.821.005	2.197	8.578	6.321	117.223	279.684	11.391	4.624	2.982	21.059	11.544	19.858					
"U211269 HCH & UNW NHAF W WE F"	5.740	47.048	1.804.225	2.615	8.852	6.131	172.531	283.830	11.456	4.476	2.438	22.157	11.385	20.151					
% Std Dev	2	1	1	6	2	2	5	1	1	1	2	1	2	2					
Results corrected																			
UN NH AF minus Ar. UW Blank																			

APPENDIX EXPERIMENT 16A

UNWASHED MATRICES												
AR and NH4F-Bale	No	Cd	Sa	Ba	La	Ce	Eb	Dy	Tb	Hg	Po	U
Element - Raw Counts												
Glass Standard												
T021209 HfH31UWGLS STD ⁵	553,331	148,498	551,101	550,980	434,868	560,157	480,287	321,167	262,733	216,884	152	56,538
T021209 HfH31UWGLS STD ⁵	689,278	154,048	589,025	685,930	442,521	585,930	487,238	333,957	272,971	213,268	149	56,243
Ar Blank												
T021209 HfH31UWGLAIR BL ⁵	1,533	248	654	221	60	31	32	65	31	58	580	33
T021209 HfH31UWGLAIR BL ⁵	1,733	167	596	188	58	33	33	39	44	28	624	36
UW Blank												
T021209 HfH31UWBL ¹	2,971	1,271	7,888	6,275	536	1,222	60	42	56	727	734	3,079
T021209 HfH31UWBL ²	2,971	750	8,285	11,414	232	384	69	41	62	841	734	3,772
T021209 HfH31UWBL ³	2,945	716	6,830	15,289	221	307	45	63	42	532	779	2,555
% Std Dev	2	34	10	41	24	40	21	24	14	23	3	53
UNWAR Blank												
T021209 HfH31UWARWB1 ¹	2,989	483	10,783	1,989	138	172	68	61	25	557	552	637
T021209 HfH31UWARWB1 ²	3,289	339	11,289	1,040	74	139	37	49	32	575	522	518
T021209 HfH31UWARWB1 ³	3,953	398	11,950	1,153	74	112	36	24	41	804	627	584
% Std Dev	6	16	3	23	39	21	36	36	24	4	9	13
UNWAR W Blank												
T021209 HfH31UWARWB1 ¹	2,923	334	7,688	1,834	219	121	40	19	39	577	604	453
T021209 HfH31UWARWB1 ²	3,128	307	8,341	2,771	167	140	38	34	32	598	645	434
T021209 HfH31UWARWB1 ³	3,419	267	23,009	1,880	163	223	51	59	21	648	855	390
% Std Dev	8	8	67	9	17	31	18	33	41	2	19	8
UNWAR W Blank												
T021209 HfH31UWARWB1 ¹	22,986	7,173	20,544	24,983	21,149	23,203	24,639	21,187	18,427	19,268	1,068	4,458
T021209 HfH31UWARWB1 ²	21,542	6,185	27,931	26,278	20,589	24,311	25,309	21,242	19,181	18,683	959	5,624
T021209 HfH31UWARWB1 ³	21,922	6,368	30,788	26,370	20,268	25,615	21,524	17,818	15,151	17,404	1,177	6,019
% Std Dev	4	9	5	3	2	3	8	10	11	6	8	5
UNWAR WB ^{1pm}												
T021209 HfH31UWARWB1 ¹	21,554	5,139	26,715	13,515	10,810	12,185	11,556	9,432	8,103	9,568	1,432	3,933
T021209 HfH31UWARWB1 ²	22,767	5,980	26,257	14,983	10,570	12,918	12,813	10,259	8,890	9,711	1,580	4,049
T021209 HfH31UWARWB1 ³	21,929	6,085	26,752	13,877	10,746	12,391	12,218	9,253	8,020	9,975	1,468	2,200
% Std Dev	3	9	1	4	2	3	5	6	6	1	3	2
UNWAR WB ^{1pm}												
T021209 HfH31UWARWB1 ¹	11,983	3,488	16,239	13,505	7,978	14,278	13,788	11,148	9,190	8,819	1,014	2,928
T021209 HfH31UWARWB1 ²	11,567	3,014	15,883	14,725	8,841	14,843	13,257	10,159	9,894	9,481	1,051	3,085
T021209 HfH31UWARWB1 ³	11,895	3,315	16,285	13,713	8,101	14,354	13,612	11,401	9,168	9,769	1,043	3,274
% Std Dev	2	7	1	5	7	2	5	6	6	2	6	5
Blank corrected												
UNWAR WB ^{1pm}												

APPENDIX EXPERIMENT 16A

	Li	Mg	Ca	V	Cr	Mn	Fe	Ni	Cu	Zn	As	Se	Sr	Zr
Element - Raw Counts														
UW AR W1	879	3,885	1,706	5,596	5,341	5,892	19,568	12,678	1,482	823	1,688	1,302	16,354	10,272
UW AR W2	678	8,012	35,978	8,019	5,652	6,742	30,267	21,904	1,973	578	1,304	1,831	18,314	14,845
UW AR W3	717	7,778	-18,421	5,257	5,926	5,432	68,052	11,544	1,513	658	2,266	2619	14,869	9,950
% Std Dev	14	39	459	7	5	11	91	37	22	20	14	35	14	27
UW AR W1 minus UW AR W Blank														
UW AR W1	685	3,020	73,758	2,898	1,359	2,781	71,538	13,923	888	1,440	988	973	7,657	7,988
UW AR W2	456	4,712	90,610	3,177	1,535	2,762	98,238	13,730	856	1,248	1,012	457	7,938	7,249
UW AR W3	517	5,117	70,692	2,722	1,534	2,859	44,350	16,512	475	894	890	847	7,250	6,978
% Std Dev	21	30	14	8	7	2	24	11	31	23	7	39	4	8
UW NHAF W1 minus UW NHAF W Blank														
UW NHAF W1	636	9,593	54,887	1,528	1,376	655	38,668	10,897	789	708	477	2,016	8,235	11,002
UW NHAF W2	686	10,528	60,051	1,640	1,260	703	28,628	10,708	647	988	501	1,108	8,043	10,228
UW NHAF W3	854	10,276	41,252	1,498	1,554	603	21,830	14,926	612	840	584	2,026	7,864	10,385
% Std Dev	17	6	19	10	10	18	30	19	17	16	11	31	2	4
Blank Corrected														
Normalized to Average Content														
UW ME1-UW BL1	673	3,859	1,695	5,550	5,308	5,853	19,431	12,588	1,472	618	1,458	1,293	16,257	10,205
UW ME2-UW BL2	703	6,281	37,091	6,195	5,827	6,951	31,205	22,079	2,854	598	1,944	1,888	18,881	15,305
UW ME3-UW BL3	701	7,950	-18,978	5,137	5,791	5,227	87,013	11,200	1,283	838	2,214	2,559	14,333	8,843
% Std Dev	13	40	429	9	5	14	73	40	24	16	28	33	14	30
UW AR W1-WAR W BL1	702	3,058	75,631	3,072	1,384	2,882	73,256	14,277	910	1,477	1,013	691	7,952	8,208
UW AR W2-WAR W BL2	441	4,558	87,654	3,074	1,484	2,872	54,404	13,202	857	1,205	978	442	7,677	7,013
UW AR W3-WAR W BL3	522	5,768	71,530	2,746	1,548	2,886	44,750	18,890	479	912	888	656	7,326	6,839
% Std Dev	24	39	11	6	5	4	25	12	31	24	6	31	4	10
UW NHAF W1-LIN NHAF W BL1	648	9,535	55,697	1,349	1,397	868	39,233	11,082	770	719	484	2,047	8,360	11,358
UW NHAF W1-LIN NHAF W BL2	865	10,178	58,564	1,681	1,249	774	25,991	10,502	554	883	488	1,982	7,850	9,884
UW NHAF W1-LIN NHAF W BL3	862	10,375	41,653	1,513	1,569	869	22,143	15,911	618	849	589	2,227	7,940	10,488
% Std Dev	16	4	17	9	11	17	31	20	19	14	11	35	3	8
Percent Standard Deviations														
Both Banks														
AU UW BL %STDDEV	4	6	1	4	10	2	8	1	3	2	1	2	10	7
AU UW AR WASH BL %STDDEV	5	6	2	4	7	5	5	4	3	2	1	2	7	7
AU UW NHAF WASH BL %STDDEV	2	3	1	2	4	6	5	3	6	6	8	4	3	7
1ppd Multi-element Standard														
AU UW ME %STDDEV	1	4	1	6	2	6	13	2	2	2	14	3	9	14
AU UW AR W ME %STDDEV	2	3	1	5	1	1	5	1	2	6	2	1	3	3
AU UW NHAF W ME %STDDEV	2	1	1	6	2	2	5	1	1	3	2	3	2	2
Matrix Blank Corrected														
AU UW ME-LIN NHAF W BL %STDDEV	14	39	458	7	5	11	81	37	22	20	31	35	11	21
AU UW AR W ME-LIN NHAF W BL %STDDEV	21	30	14	8	7	2	24	11	31	25	7	30	4	8
AU UW NHAF W ME-LIN NHAF W BL %STDDEV	17	6	19	10	10	18	30	19	17	16	11	31	2	4

APPENDIX EXPERIMENT 16A

Element - Raw Counts	No	Cd	Sn	Ba	La	Co	Eu	Dy	Tb	Hf	Hg	Pb	U
UN AR WME	20,067	6,265	20,846	14,003	20,887	24,563	21,118	18,576	18,529	339	2,569	3,043	
UN AR WBL	18,812	20,234	15,288	20,326	23,873	25,250	21,193	18,141	17,827	249	3,736	3,006	
UN AR WBL	20,462	5,454	23,088	14,380	20,024	21,977	21,589	17,570	16,107	428	4,131	2,749	
% Std Dev	5	9	7	5	2	1	4	10	11	5	26	21	5
UN AR WME minus UN AR W Blank													
UN NHAF WME	16,343	4,740	15,958	12,293	10,514	12,064	11,508	9,391	8,070	972	3,413	1,593	
UN AR WME	19,258	5,561	15,060	13,322	10,744	12,771	12,761	10,198	8,865	8,122	930	3,480	1,721
UN AR WME	18,718	4,685	15,544	12,748	10,850	12,250	12,189	9,212	7,996	8,086	838	3,576	1,707
% Std Dev	3	10	2	4	2	3	6	6	6	1	5	2	4
UN NHAF WME minus UN NHAF W Blank													
UN NHAF WME	9,666	3,179	3,200	11,534	7,767	14,115	13,745	11,112	9,153	8,042	313	2,437	1,159
UN NHAF WME	8,610	2,705	2,824	12,734	8,757	14,881	13,214	10,122	9,807	8,903	350	2,594	1,204
UN NHAF WME	8,739	3,003	3,245	11,722	8,917	14,122	13,769	11,064	9,071	9,191	341	2,783	1,215
% Std Dev	2	4	7	5	7	2	2	5	5	7	6	7	6
Blank Corrected													
Normalised to Average Continuum													
UN ME-LW BL1	19,933	6,225	20,710	13,912	20,760	24,405	20,940	18,266	18,406	337	2,552	3,024	
UN ME-LW BL2	19,188	5,439	20,880	15,761	20,855	24,405	20,032	21,849	18,702	18,481	256	3,851	1,086
UN ME-LW BL3	19,894	5,329	22,559	14,051	19,508	24,405	21,073	17,157	14,781	18,285	418	4,036	2,983
% Std Dev	2	9	5	7	4	0	11	11	11	7	24	23	7
UN AR WME-1-NHAR W BL1	19,810	4,861	15,982	12,565	10,059	12,586	11,802	9,639	8,275	8,173	835	3,500	1,639
UN AR WME-2-NHAR W BL2	19,918	5,373	14,559	12,883	10,132	12,350	12,351	9,885	8,576	8,057	853	3,369	1,670
UN AR WME-NHAR W BL3	19,887	4,738	15,984	12,837	10,746	12,386	12,279	9,255	8,088	8,168	908	3,610	1,722
% Std Dev	0	7	6	1	5	0	2	3	3	2	3	4	2
UN NHAF WME-1-NHAR W BL1	19,859	3,227	3,249	11,683	7,904	14,200	13,953	11,280	9,202	8,163	317	2,474	1,173
UN NHAF WME-2-NHAR W BL2	20,038	2,640	2,755	12,429	8,549	14,301	12,888	9,880	9,870	8,680	341	2,532	1,273
UN NHAF WME-NHAR W BL3	19,824	3,035	3,277	11,838	9,004	14,386	13,902	11,171	9,159	9,251	345	2,810	1,221
% Std Dev	6	19	9	3	7	0	4	7	3	6	4	7	4
Percent Standard Deviations													
Matrix Blank													
Av. UN BL %STDDEV	2	24	10	41	24	40	21	24	14	28	3	59	28
Av. UN AR WASH BL %STDDEV	6	16	3	23	39	21	38	24	4	9	13	12	
Av. UN NHAF WASH BL %STDDEV	8	6	67	9	17	33	18	53	41	2	19	9	6
100% Matrix-blank Standard													
Av. UN ME %STDDEV	4	0	5	3	2	3	8	10	11	5	6	15	5
Av. UN AR WME %STDDEV	3	9	1	4	2	3	6	5	6	1	3	2	3
Av. UN NHAF WME %STDDEV	2	7	1	5	7	2	2	5	5	6	2	6	5
Matrix Blank Corrected													
Av. UN ME UN BL %STDDEV	6	9	7	5	2	3	8	10	11	5	28	23	5
Av. UN AR WME UN BL %STDDEV	3	10	2	4	2	3	5	—	6	1	5	2	4
Av. UN NHAF WME UN BL %STDDEV	2	8	7	5	7	2	2	5	5	7	8	7	5

APPENDIX EXPERIMENT 16A

Element - Raw Counts	U	Yb	Cs	V	Cr	Mn	Fe	Ni	Cd	Zn	As	Sb	Sr	Zr
Match Blank Corrected														
Normalised to Average Counts														
Av.UW.ME.UW.BL.%STDDEV	13	49	428	9	5	14	79	49	24	19	28	33	14	39
Av.UW.AR.WE.UW.AR.WBL.%STDDEV	24	20	11	8	5	4	25	12	31	24	6	31	4	19
Av.UW.NH.FWE.UW.NH.FWBLS.%STDDEV	16	4	17	9	11	17	31	20	19	14	11	35	3	6

APPENDIX EXPERIMENT 16A

Element - Raw Counts	Mn	Cd	Sr	Ba	La	Co	Eu	Dy	Yb	Hf	Hg	Pb	U
Matrix Blank Corrected													
Normalised to Average Count													
Ay. UW ME-UW BL %STDDEV	2	9	5	7	4	0	11	12	13	7	24	23	7
Ay. UW AR WME-UW AR MEBL %STDDEV	0	7	5	1	5	0	0	2	3	3	2	3	4
Ay. UW NHF ME-UW NHFW BL %STDDEV	5	10	9	3	7	0	4	7	3	9	4	7	4

APPENDIX EXPERIMENT 16B

"WASHED" MATRICES											
AR and NH4F Bals	Li	Na	Ca	V	Cr	Mn	Fe	Ni	Cu	Zn	As
Glass Standard											
"201209 HH GLS STD 1"	220.284	194.784	59.436.520	314.958	298.920	401.801	405.763	231.058	156.843	38.110	28.424
"201209 HH GLS STD 2"	185.177	172.010	51.381.502	263.845	283.491	344.801	356.992	197.024	121.915	33.110	28.310
"201209 HH GLS STD 3"	202.475	179.153	54.340.745	289.957	278.558	370.025	381.388	210.348	144.055	36.573	27.894
"201209 HH GLS STD 4"	198.129	174.342	52.500.302	272.884	262.040	351.007	358.360	389.740	188.445	130.149	33.004
All Blank											
"201209 HH AIR BL 1"	5.877	18.471	2.648.357	202	2.883	5.481	49.121	247.006	11.985	1.831	1.884
"201209 HH AIR BL 2"	5.539	18.628	2.739.908	213	2.983	5.082	49.459	234.151	11.094	1.477	1.657
"201209 HH AIR BL 3"	5.784	18.270	2.617.840	184	3.170	5.056	49.307	230.876	11.478	1.827	1.588
"201209 HH AIR BL 4"	5.529	18.208	2.701.878	191	3.380	5.039	48.143	233.553	11.944	1.800	1.682
W Blank											
"201209 HH 31W BL 1"	8.847	33.351	3.534.742	859	11.022	9.277	372.705	202.251	13.260	7.105	1.477
"201209 HH 31W BL 2"	8.453	32.613	3.773.709	783	10.525	9.020	392.898	203.006	13.395	6.717	1.585
"201209 HH 31W BL 3"	8.969	34.283	2.879.243	714	9.206	9.719	243.107	213.063	12.650	6.283	1.771
% Std Dev	4	4	4	14	9	9	3	24	3	6	4
WAR W Blank											
"201209 HH 31W AR WBLT"	8.247	28.657	3.425.305	635	11.745	8.721	65.848	182.119	11.922	9.982	1.628
"201209 HH 31W AR WBLT"	8.375	29.783	3.237.089	989	11.249	8.574	674.148	201.682	11.980	6.040	1.834
"201209 HH 31W AR WBLT"	8.222	28.739	3.140.376	972	10.750	8.700	632.041	224.748	12.098	6.018	1.817
% Std Dev	3	2	4	22	4	1	2	9	1	7	6
W NH4F W Blank											
"201209 HH 31W NH4F W BLT"	5.772	32.181	2.687.138	715	10.209	7.167	457.587	197.459	11.220	4.750	1.524
"201209 HH 31W NH4F W BLT"	6.368	31.984	2.385.389	784	9.802	6.763	423.514	212.944	11.332	5.498	1.629
"201209 HH 31W NH4F W BLT"	5.754	33.035	2.640.976	799	10.777	7.180	441.880	220.031	11.744	4.888	1.702
% Std Dev	6	2	7	5	5	3	2	5	2	8	3
WINE 1 ppm											
"201209 HH 31W WINE 1"	7.407	33.219	3.415.882	618	11.687	10.338	421.705	224.702	14.384	7.901	3.857
"201209 HH 31W WINE 1"	7.317	33.076	3.384.507	626	11.531	10.109	403.051	233.219	15.283	7.527	3.040
"201209 HH 31W WINE 1"	7.158	30.751	3.530.886	639	11.309	10.870	413.926	251.651	14.932	6.948	3.273
% Std Dev	2	1	2	2	2	4	2	2	3	3	1
WAR WINE 1 ppm											
"201209 HH 31W WAR WINE 1"	6.867	30.216	3.165.726	923	11.513	9.738	700.616	215.138	13.858	7.655	2.655
"201209 HH 31W WAR WINE 1"	6.841	28.168	2.971.982	882	11.450	9.903	710.211	223.608	15.408	6.937	3.518
"201209 HH 31W WAR WINE 1"	6.770	29.931	3.153.889	921	11.995	10.125	707.124	229.478	14.908	7.057	4.058
% Std Dev	1	4	4	3	2	1	3	2	3	1	6
UFN NH4F WINE 1ppm											
"201209 HH 31W NH4F WINE 1"	6.804	37.038	2.717.840	813	11.897	9.924	484.007	219.982	15.163	5.783	2.673
"201209 HH 31W NH4F WINE 1"	6.541	40.140	2.814.654	759	11.391	9.510	472.512	223.594	14.689	5.430	2.889
"201209 HH 31W NH4F WINE 1"	6.882	32.443	2.689.531	833	12.348	10.350	508.540	222.832	16.503	5.951	2.953
% Std Dev	3	11	2	5	4	3	4	3	6	1	5
Matrix corrected											

APPENDIX EXPERIMENT 16B

WASHING MATRICES												
AR and NHAF Balo	Cd	Sn	Ba	La	Ce	Eu	Dy	Tb	Hf	Hg	Pb	U
Element - Raw Counts												
Glass Standard												
TQ1209 HNH GLS STD 1'	170,782	619,441	802,149	470,924	624,415	515,177	382,122	281,677	279,159	314	61,932	56,235
TQ1209 HNH GLS STD 2'	132,833	529,259	517,025	388,980	520,447	437,772	285,335	246,074	182,251	388	60,030	50,816
TQ1209 HNH GLS STD 3'	156,447	581,530	583,007	459,869	582,401	482,705	334,323	274,449	214,516	346	58,139	54,868
TQ1209 HNH GLS STD 4'	136,383	525,100	514,188	388,816	527,378	436,162	288,847	244,059	191,744	328	50,404	46,369
All Elements												
TQ1209 HNH AR BL 1'	272	538	249	60	44	48	63	39	35	282	98	9
TQ1209 HNH AR BL 2'	220	542	241	53	39	61	55	26	22	224	81	13
TQ1209 HNH AR BL 3'	222	526	178	45	27	39	55	27	23	233	84	9
TQ1209 HNH AR BL 4'	244	637	183	58	23	38	55	37	34	303	97	0
W Blank												
TQ1209 HNH 3:1W AR WBL 1'	1,951	7,906	3,111	231	283	73	73	58	260	394	1,049	148
TQ1209 HNH 3:1W AR WBL 2'	1,243	8,119	3,205	189	292	71	84	54	235	394	1,162	182
TQ1209 HNH 3:1W AR WBL 3'	1,117	6,846	3,184	188	228	68	61	50	269	392	1,023	149
% Std Dev	9	9	9	12	9	13	4	1	5	7	0	8
WAR W Blank												
TQ1209 HNH 3:1W AR WBL 1'	2,183	15,584	1,624	74	189	88	80	35	57	449	2,263	604
TQ1209 HNH 3:1W AR WBL 2'	1,687	15,086	1,688	82	214	84	53	44	539	459	1,869	617
TQ1209 HNH 3:1W AR WBL 3'	1,607	16,197	2,024	88	224	94	60	48	558	403	1,800	705
% Std Dev	10	4	13	7	8	10	7	15	4	6	12	9
WNHF W Blank												
TQ1209 HNH 3:1W NHMF WBL 1'	726	9,289	2,059	111	183	49	82	42	474	394	1,721	380
TQ1209 HNH 3:1W NHMF WBL 2'	653	9,311	2,173	98	174	42	81	41	451	484	1,562	353
TQ1209 HNH 3:1W NHMF WBL 3'	685	8,835	1,781	90	175	49	70	42	451	431	1,981	379
% Std Dev	10	5	11	11	3	8	9	3	5	8	12	4
WNHF W 1pm												
TQ1209 HNH 3:1W WME1'	5,072	19,911	12,832	9,703	12,082	10,690	8,655	7,582	7,553	781	3,457	1,697
TQ1209 HNH 3:1W WME2'	6,520	17,774	12,870	10,349	11,751	11,507	9,166	7,990	7,914	701	4,849	1,564
TQ1209 HNH 3:1W WME3'	4,058	17,828	12,706	10,089	11,988	9,986	8,533	7,217	7,802	853	2,809	1,551
% Std Dev	23	7	1	3	2	3	4	5	3	10	29	6
WAR WME 1pm												
TQ1209 HNH 3:1W AR WME1'	6,058	30,926	10,161	6,988	8,617	7,689	6,286	4,912	5,002	1,406	2,010	1,843
TQ1209 HNH 3:1W AR WME2'	4,823	27,577	11,256	9,313	9,906	9,110	7,081	5,983	6,500	1,233	2,943	1,847
TQ1209 HNH 3:1W AR WME3'	5,210	31,846	11,832	9,081	9,912	8,482	7,007	6,147	6,259	1,624	2,672	2,071
% Std Dev	5	5	8	8	8	8	8	10	94	8	5	7
WNHF W ME 1pm												
TQ1209 HNH 3:1W NHMF WME1'	5,817	37,458	17,893	13,202	16,704	15,016	11,921	9,988	8,840	1,983	3,038	2,688
TQ1209 HNH 3:1W NHMF WME2'	6,524	40,552	17,848	14,303	17,699	15,656	11,703	9,984	9,645	989	3,725	2,417
TQ1209 HNH 3:1W NHMF WME3'	5,770	35,951	18,987	13,882	16,984	15,887	12,956	9,903	9,050	1,085	3,205	2,713
% Std Dev	7	6	3	4	3	4	3	2	1	4	9	6
Results corrected												

APPENDIX EXPERIMENT 16B

	L	Mg	Ca	V	Cr	Mn	Fe	N	Cu	Zn	As	Se	Sr	Zr	No
Element - Row Counts															
W ME minus Av. W Blank															
W ME1	641	-200	20.031	-771	1,415	-1,325	67,182	19,841	1,276	390	2,267	1,102	9,653	21,537	12,006
W ME2	551	1,657	-21,424	-184	1,389	1,095	69,847	25,127	2,195	628	1,470	818	8,817	17,313	11,043
W ME3	590	-2,988	135,055	-150	1,068	-1,865	77,717	23,560	1,464	246	1,703	1,235	9,384	21,747	10,384
% Std Dev	26	-437	161	4	15	28	13	21	30	46	23	20	2	12	7
W AR W ME minus W AR W Blank															
W AR W ME1	365	817	-125,198	92	231	1,046	27,510	7,288	1,853	488	1,883	537	5,297	6,153	15,359
W AR W ME2	300	-1,232	318,582	30	129	1,211	37,255	15,860	3,403	650	1,824	121	6,056	6,099	15,142
W AR W ME3	428	532	-135,065	80	713	1,433	34,178	20,829	2,005	771	2,386	108	6,668	7,083	15,388
% Std Dev	16	2,444	-57	49	87	16	16	16	48	28	24	14	63	11	16
W NHF W ME minus W NHF W Blank															
W NHF W ME1	629	4,643	163,597	84	1,986	2,887	49,987	9,743	3,752	774	951	738	10,736	11,449	17,409
W NHF W ME2	568	7,47	260,250	10	1,069	3,673	37,982	13,150	3,658	411	1,251	305	11,308	11,758	16,580
W NHF W ME3	857	50	145,227	84	2,048	3,353	74,180	22,263	5,072	933	1,395	689	11,548	13,117	16,788
% Std Dev	28	93	33	73	30	10	34	48	21	38	17	43	4	7	6
Blank Corrected															
Normalised to Average Cerium															
W ME1	827	-198	19,610	-167	1,386	1,287	85,258	16,201	1,248	381	2,238	1,079	9,449	21,084	11,753
W ME2	555	1,672	-11,525	-165	1,392	1,194	67,440	25,550	2,214	631	1,483	823	8,904	17,487	11,141
W ME3	395	-2,703	136,753	-152	1,071	1,889	78,717	23,853	1,182	249	1,725	1,251	8,924	22,027	10,897
% Std Dev	23	-437	162	-5	14	29	12	22	31	45	21	20	3	12	6
W AR W ME1															
W AR W ME2	361	900	-138,025	101	235	1,154	30,506	8,036	2,043	514	2,184	372	5,839	6,762	17,692
W AR W ME3	289	-1,177	-305,459	29	123	1,158	35,611	14,889	3,253	621	1,743	118	5,788	4,861	14,474
% Std Dev	403	908	-129,019	88	881	1,389	32,651	19,708	2,775	738	2,389	104	6,270	6,787	14,703
W NHF W ME1	18	1,433	-42	61	81	10	1	1	41	23	18	13	77	5	18
W NHF W ME2	845	4,780	187,675	86	1,635	2,860	50,944	9,894	3,947	794	686	618	11,006	11,738	17,882
W NHF W ME3	647	7,492	251,889	9	1,083	3,329	38,703	12,717	3,323	397	1,210	285	10,934	11,372	16,935
% Std Dev	895	51	146,356	85	2,065	9,335	74,879	22,457	6,120	941	1,347	675	11,657	12,240	16,883
W NHF W ME %STDDEV	28	82	29	74	12	7	36	44	23	40	16	43	4	8	8
Percent Standard Deviations															
Av. W BL	4	3	14	9	3	24	3	3	9	6	6	4	3	3	9
Av. W BL %STDDEV	3	2	6	22	4	1	2	9	1	7	9	3	3	8	8
1ppm Element Standard															
Av. W ME %STDDEV	2	7	2	2	4	2	2	3	3	12	1	2	9	9	9
Av. W AR W ME %STDDEV	1	4	4	3	2	1	3	5	2	8	1	6	5	1	5
Av. W NHF W ME %STDDEV	3	11	2	5	4	3	4	3	6	3	7	1	3	4	4
Matrix Blank Corrected															
Av. W ME-W BL %STDDEV	24	-357	161	4	15	28	13	21	30	48	21	20	2	12	7
Av. W AR W ME-W BL %STDDEV	18	2,444	-47	49	87	16	15	40	29	24	14	11	18	1	1

APPENDIX EXPERIMENT 16B

	Cd	Sn	Ba	La	Ca	Eu	Dy	Tb	Yb	Hg	Pb	U
Element - Raw Counts												
W NE minus At. W Blank												
W NE1	3,835	12,301	9,292	8,494	11,814	10,819	8,814	7,286	7,253	388	2,389	1,540
W NE2	5,292	10,163	8,471	10,140	11,484	11,427	9,084	7,939	7,939	303	3,811	1,407
W NE3	2,452	10,217	9,306	9,059	11,619	10,828	8,352	7,161	7,227	470	1,721	1,369
% Std Dev	31	11	1	3	2	3	4	6	3	21	41	8
W AR WNE minus WAR WBnk												
W AR WNE1	3,105	14,881	8,319	6,887	8,428	7,538	6,237	4,870	4,447	867	623	1,201
W AR WNE2	2,671	12,251	8,231	9,697	9,049	7,924	5,941	5,945	794	885	1,209	
W AR WNE3	3,388	15,221	9,970	8,000	9,703	8,421	6,953	5,708	5,714	885	885	1,420
% Std Dev	8	11	8	9	8	9	9	10	16	12	18	10
W NHAF W NE minus W NHAF WBnk												
W NHAF W NE1	5,002	28,516	15,854	5,1402	16,527	14,838	11,744	8,767	8,888	683	1,271	2,383
W NHAF W NE2	5,713	31,410	15,807	14,203	17,922	15,618	14,530	9,952	9,053	538	1,971	2,042
W NHAF W NE3	4,834	28,709	14,888	13,753	16,787	15,840	12,889	9,881	8,578	638	1,550	2,357
% Std Dev	4	6	3	4	3	3	2	1	4	10	22	7
Blank Corrected												
Normalized to Average Capture												
W NE1	3,765	12,041	9,395	9,294	11,585	10,591	8,628	7,142	7,138	380	2,320	1,508
W NE2	5,339	10,253	9,365	10,230	11,588	11,536	9,185	8,004	7,707	310	3,845	1,422
W NE3	2,688	10,340	9,628	10,007	11,565	11,058	8,459	7,253	7,421	477	1,743	1,397
% Std Dev	31	9	3	5	0	4	4	6	4	21	41	4
W NHAF WNE1	9,172	7,593	9,270	8,421	6,978	5,988	4,902	4,902	4,902	988	1,324	
W NHAF WNE2	9,744	9,711	9,978	7,868	9,270	8,680	7,086	5,678	5,678	718	1,156	
W NHAF WNE3	9,218	14,540	9,524	7,863	9,270	8,045	6,839	5,651	5,651	941	845	1,395
% Std Dev	11	16	3	2	0	4	3	3	3	17	11	9
W NHAF WNE1	5,128	20,033	16,050	13,454	18,945	15,348	12,041	10,014	9,986	675	1,813	2,361
W NHAF WNE2	5,925	30,578	15,237	13,736	18,945	15,098	12,249	9,874	9,764	522	1,908	1,975
W NHAF WNE3	5,001	28,860	15,027	13,913	16,945	15,988	12,270	9,854	9,680	642	1,885	2,359
% Std Dev	5	6	3	2	0	3	4	2	1	13	19	10
Percent Standard Deviations												
Blank Blank												
Av. Yb1 %STDDEV	9	9	12	9	13	4	3	5	7	0	5	14
Av. WAR WBL %STDDEV	10	4	13	7	9	10	7	15	4	6	12	9
Av. W NHAF W BL %STDDEV	10	3	11	11	3	8	9	3	5	3	12	4
10 ¹⁰ Multi-element Standard												
Av. WNE %STDDEV	23	7	1	3	2	3	4	5	3	10	20	6
Av. WAR WNE %STDDEV	5	5	8	8	8	8	8	10	14	8	5	7
Av. W NHAF WNE %STDDEV	7	6	3	4	3	3	2	1	4	6	10	6
Multi Blank Corrected												
AV. W NE-WBL %STDDEV	31	11	1	3	2	3	4	6	3	21	41	6
AV. W NE-WAR WBL %STDDEV	31	11	9	9	8	8	9	10	15	22	18	10

Experiment 16B4

APPENDIX EXPERIMENT 16B

Element - Raw Counts	Li	Mg	Ca	V	Cr	Mo	Fe	Ni	Cu	Zn	Se	Sr	Zr	Rb
Ax. WHHF MEAN % STOREY	25	63	33	73	30	10	34	43	21	35	17	43	4	7
Matrix Blank Corrected														
Normalized to Average Content														
AV. WHHF % STOREY	23	537	182	5	14	28	12	22	31	46	21	20	3	12
Av. WARP MEAN % STOREY	19	1,432	52	53	53	10	8	41	23	18	13	77	5	9
Ax. WHHF MEAN % STOREY	28	62	23	74	22	7	36	44	23	40	15	45	4	8

APPENDIX EXPERIMENT 16B

Element - Raw Counts	Cd	Sn	Ba	La	Co	Eu	Dy	Tb	Hf	Hg	Pb	U
Av. W NHAF ME-W NHAF WBL %STDDEV	8	8	3	4	3	3	2	1	4	10	22	7
Std Dev. Connected												
Normalised to Average Content												
Av. W ME-W BL %STDDEV	31	9	3	5	0	4	4	6	4	21	41	4
Av. W AR WME-W AR WBL %STDDEV	11	18	3	2	0	4	3	3	3	17	11	9
Av. W NHAF ME-W NHAF WBL %STDDEV	5	6	3	2	0	3	4	2	1	13	19	10

APPENDIX EXPERIMENT 18

Isotope - Brew Comnts	Li 7	Mg 24	Ca 44	V 51	Cr 52	Urn 55	Fe 56	Co 59	Ni 60	Cu 65	Zn 68
T21213 HKH GLS STD 1"	49.170	85.700	499.600	142.700	128.200	204.100	268.500	158.700	83.060	44.880	31.300
T21213 HKH AIR BL 1"	6.097	43.050	30.380	200	9.281	4.085	92.610	4.713	57.810	2.143	1.163
T21213 HKH AIR BL 2"	6.268	43.580	29.020	211	10.420	4.539	96.000	4.908	57.100	2.142	1.053
T21213 HKH BLOOD HEAT 1"	6.158	93.280	41.530	419	14.550	11.976	3.454.000	5.171	56.330	4.807	7.888
T21213 HKH BLOOD HEAT 2"	5.708	95.200	42.130	474	17.160	12.250	3.905.000	5.220	56.360	5.313	8.333
T21213 HKH BLOOD HEAT 3"	5.975	94.600	40.830	478	19.270	14.080	3.556.000	5.234	68.080	5.950	8.359
T21213 HKH BLOOD HEAT 4"	5.460	92.710	38.150	490	18.800	11.810	3.925.000	5.356	56.250	5.163	8.481
T21213 HKH BLOOD AIR 5"	5.671	89.080	41.370	508	17.030	9.439	3.884.000	5.374	56.300	4.306	9.230
T21213 HKH BLOOD AIR 1"	5.142	104.600	43.810	475	19.060	11.200	3.502.000	5.280	58.010	5.641	9.320
T21213 HKH BLOOD AIR 2"	5.101	100.500	38.050	502	14.740	8.533	3.381.000	5.313	59.220	4.264	8.920
T21213 HKH BLOOD AIR 3"	5.384	124.420	40.050	450	18.840	9.238	3.497.000	5.362	59.480	4.139	9.310
T21213 HKH BLOOD AIR 4"	5.342	108.700	38.770	551	18.800	9.667	4.211.000	5.224	56.260	5.377	9.181
T21213 HKH BLOOD AIR 5"	5.469	111.100	38.580	628	18.710	9.405	4.763.000	5.337	59.530	4.642	8.850
T21213 HKH BLOOD AIR BL"	4.989	38.420	31.880	713	13.480	9.888	477.200	4.168	57.880	2.435	1.798
T21213 HKH BLOOD 1" no matrix	5.276	102.900	39.780	245	13.780	5.538	2.779.000	4.441	58.110	5.088	8.127
T21213 HKH BLOOD 2" no matrix	5.511	133.500	52.230	257	14.880	6.401	3.957.000	4.568	59.050	7.003	12.500
T21213 HKH AIR BL 3"	5.574	37.660	23.580	280	12.450	6.059	110.100	4.912	57.120	1.930	1.612
T21213 HKH AIR BL 4"	6.882	38.930	24.410	268	12.770	6.228	111.000	5.120	57.100	1.980	1.653
T21213 HKH GLS STD 2"	42.650	66.880	435.700	122.900	108.000	176.500	235.400	126.300	78.170	37.790	24.760
Air Blank connected											
T21213 HKH BLOOD HEAT 1"	169	52.290	14.816	179	3.115	6.672	3.360.950	251	1.220	2.746	6.535
T21213 HKH BLOOD HEAT 2"	-262	55.210	15.415	224	5.725	6.985	3.801.950	300	1.750	3.252	6.981
T21213 HKH BLOOD HEAT 3"	-15	53.610	14.215	238	7.835	8.776	3.452.950	314	970	3.888	6.988
T21213 HKH BLOOD HEAT 4"	-530	51.720	11.415	250	7.365	6.503	3.822.950	416	1.140	3.102	7.123
T21213 HKH BLOOD HEAT 5"	-379	57.690	14.655	268	5.585	4.135	3.790.950	454	1.180	2.245	7.878
Normalized to Ba											
T21213 HKH BLOOD AIR 1"	-848	63.610	17.095	236	7.625	5.898	3.398.950	360	1.900	3.560	7.868
T21213 HKH BLOOD AIR 2"	-839	59.510	11.335	263	3.305	3.229	3.867.950	393	2.110	2.203	7.588
T21213 HKH BLOOD AIR 3"	-628	63.410	13.375	220	5.405	3.034	3.393.950	442	2.370	2.078	7.958
T21213 HKH BLOOD AIR 4"	-648	67.710	12.055	311	7.465	4.363	4.107.950	304	1.150	3.116	7.823
T21213 HKH BLOOD AIR 5"	-521	70.110	11.885	368	7.275	4.101	4.659.950	417	2.520	2.581	7.588

APPENDIX EXPERIMENT 18

Sample - Raw Counts	As 75	Se 78	Mo 88	Cd 114	Sn 120	Sb 121	Ba 138	La 139	Co 140	Eu 151	Dy 162
T21213 HKH GLS STD 1"	90,680	11,340	122,300	88,000	214,900	200,200	438,300	500,900	551,600	253,000	88,710
T21213 HKH AIR BL 1"	4,150	12,590	813	517	750	92	157	88	80	28	14
T21213 HKH AIR BL 2"	4,254	12,580	858	535	689	91	163	108	85	33	21
T21213 HKH BLOOD HEAT 1"	15,560	13,380	1,520	644	2,127	321	821	223	210	41	18
T21213 HKH BLOOD HEAT 2"	16,840	13,790	2,005	631	2,142	407	964	222	144	37	10
T21213 HKH BLOOD HEAT 3"	41,150	13,920	1,801	571	2,221	281	938	217	259	31	13
T21213 HKH BLOOD HEAT 4"	22,330	13,980	2,050	561	1,915	217	914	145	108	31	22
T21213 HKH BLOOD HEAT 5"	20,750	14,360	2,160	684	2,051	341	853	162	129	47	12
T21213 HKH BLOOD AIR 1"	19,110	13,590	1,824	641	2,201	281	876	176	119	45	16
T21213 HKH BLOOD AIR 2"	19,850	13,770	1,464	618	2,032	338	808	168	157	34	14
T21213 HKH BLOOD AIR 3"	29,070	14,830	1,589	614	2,003	448	874	170	113	46	18
T21213 HKH BLOOD AIR 4"	27,000	14,470	1,585	673	2,361	335	888	242	288	37	17
T21213 HKH BLOOD AIR 5"	24,150	14,750	1,854	672	2,290	227	839	178	179	39	25
T21213 HKH MATRIX BL*	30,810	13,980	2,099	640	3,371	251	504	160	133	71	17
T21213 HKH BLOOD 4" no matrix	12,770	8,787	983	752	974	270	1,672	180	74	32	18
T21213 HKH BLOOD 2" no matrix	16,230	11,140	1,138	725	1,268	283	2,175	214	82	34	20
T21213 HKH AIR BL 3"	5,313	12,780	902	540	725	79	191	130	69	30	16
T21213 HKH AIR BL 4"	5,397	12,100	948	520	684	96	168	143	83	32	23
T21213 HKH GLS STD 2"	54,920	14,780	111,700	37,550	191,300	168,800	424,000	471,100	519,800	259,000	105,900
Air Blank corrected											
T21213 HKH BLOOD HEAT 1"	367	795	635	111	1,423	229	643	109	134	10	2
T21213 HKH BLOOD HEAT 2"	347	1,206	1,120	38	1,438	315	786	103	68	6	4
T21213 HKH BLOOD HEAT 3"	557	1,335	916	38	1,496	170	789	98	183	0	6
T21213 HKH BLOOD HEAT 4"	437	1,375	1,165	20	1,211	128	733	26	33	0	2
T21213 HKH BLOOD HEAT 5"	567	1,775	1,275	151	1,347	250	676	43	53	16	4
T21213 HKH BLOOD AIR 1"	417	1,006	739	108	1,497	170	688	57	43	14	3
T21213 HKH BLOOD AIR 2"	487	1,185	573	83	1,328	247	630	49	81	3	5
T21213 HKH BLOOD AIR 3"	377	2,245	704	81	1,299	356	698	50	97	15	1
T21213 HKH BLOOD AIR 4"	407	1,885	610	140	1,677	243	803	123	180	6	3
T21213 HKH BLOOD AIR 5"	357	2,145	969	- 139	1,586	138	761	59	103	8	6
Normalized to Ba											

APPENDIX EXPERIMENT 18

Sample - Raw Counts	Yd 174	Hg 178	Hg 262	Tl 205	Pb 208	Tl 232	U 238
"02/12/13 HKH GLS STD 1"	100,400	72,560	172	11,630	55,250	84,200	98,250
"02/12/13 HKH AIR BL 1"	14	16	108	17	267	10	14
"02/12/13 HKH AIR BL 2"	14	8	65	14	153	12	7
"02/12/13 HKH BLOOD HEAT 1"	10	31	750	15	1,415	10	203
"02/12/13 HKH BLOOD HEAT 2"	19	30	1,028	17	1,200	15	276
"02/12/13 HKH BLOOD HEAT 3"	16	32	1,138	23	1,840	25	382
"02/12/13 HKH BLOOD HEAT 4"	9	39	561	12	1,369	15	153
"02/12/13 HKH BLOOD HEAT 5"	20	53	538	16	1,391	14	219
"02/12/13 HKH BLOOD AIR 1"	11	30	854	14	1,397	15	125
"02/12/13 HKH BLOOD AIR 2"	14	53	617	15	1,259	12	211
"02/12/13 HKH BLOOD AIR 3"	19	50	832	12	1,755	18	134
"02/12/13 HKH BLOOD AIR 4"	18	67	495	15	1,735	23	407
"02/12/13 HKH BLOOD AIR 5"	22	68	483	15	1,367	18	188
"02/12/13 HKH MATRIX BL"	14	97	195	18	1,344	19	378
"02/12/13 HKH BLOOD 1" no matrix	14	17	1,010	11	1,622	9	8
"02/12/13 HKH BLOOD 2" no matrix	15	17	1,178	30	1,316	14	10
"02/12/13 HKH AIR BL 3"	14	15	232	13	157	17	5
"02/12/13 HKH AIR BL 4"	13	18	295	12	143	11	17
"02/12/13 HKH GLS STD 2"	108,300	74,610	281	6,293	47,550	87,290	98,340
Air Blank corrected							
"02/12/13 HKH BLOOD HEAT 1"	-3	15	640	2	1,280	-2	102
"02/12/13 HKH BLOOD HEAT 2"	4	14	888	4	1,045	4	265
"02/12/13 HKH BLOOD HEAT 3"	2	15	961	9	1,685	14	322
"02/12/13 HKH BLOOD HEAT 4"	-4	23	442	-2	1,235	3	153
"02/12/13 HKH BLOOD HEAT 5"	6	37	300	2	1,234	3	208
"02/12/13 HKH BLOOD AIR 1"	-2	14	708	1	1,242	3	114
"02/12/13 HKH BLOOD AIR 2"	1	37	498	2	1,114	1	200
"02/12/13 HKH BLOOD AIR 3"	6	33	674	-1	1,600	6	123
"02/12/13 HKH BLOOD AIR 4"	4	51	326	1	1,630	12	306
"02/12/13 HKH BLOOD AIR 5"	8	51	324	2	1,212	7	187
Normalized to Ba							

APPENDIX EXPERIMENT 18

Isotope - Raw Counts										
	U 7	Mg 24	Ca 44	V 51	Cr 52	Um 55	Fe 56	Co 59	Ni 60	Cu 65
"21/21/3 HCH BLOOD AIR 1"	169	52,290	14,315	179	3,115	6,672	3,350,950	251	1,220	2,748
"21/21/3 HCH BLOOD AIR 2"	-230	45,206	12,522	122	4,688	5,687	3,113,017	246	1,433	2,663
"21/21/3 HCH BLOOD AIR 3"	-12	45,360	12,003	202	6,652	7,429	2,922,945	268	821	3,282
"21/21/3 HCH BLOOD AIR 4"	-63	45,213	8,973	218	6,438	5,688	3,241,907	364	997	2,712
"21/21/3 HCH BLOOD AIR 5"	-361	54,377	13,369	253	5,229	3,639	3,610,816	432	1,133	2,138
%StDev				16	14	27	22	6	27	15
<det limit	9									11
"21/21/3 HCH BLOOD AIR 1"	-781	58,628	15,756	217	7,028	5,434	3,152,643	332	1,751	3,300
"21/21/3 HCH BLOOD AIR 2"	-807	60,737	11,969	288	3,573	3,286	3,968,120	401	2,154	2,248
"21/21/3 HCH BLOOD AIR 3"	-578	77,002	12,387	203	4,884	2,883	3,135,670	403	2,190	1,920
"21/21/3 HCH BLOOD AIR 4"	-516	53,811	9,968	248	5,944	3,474	3,210,755	242	916	2,640
"21/21/3 HCH BLOOD AIR 5"	-440	59,289	10,930	328	6,150	3,487	3,939,361	353	2,130	2,182
%StDev				14	21	19	25	27	12	9
<det limit									19	30
										22
										9
"21/21/3 HCH BLOOD 1" no matrix	5,276	102,900	39,780	245	13,720	5,586	2,779,000	4,441	58,110	5,066
"21/21/3 HCH BLOOD 2" no matrix	5,511	133,500	52,230	267	14,880	6,401	3,997,000	4,568	58,050	7,003
(Median air blank)	5,390	40,990	26,715	240	11,425	5,304	103,050	4,920	57,110	2,051
Blank corrected										1,353
<det	61,910	13,066	5	2,345	694	2,675,950	<det	1,000	3,005	6,773
<det	92,510	25,515	27	3,445	1,007	3,883,950	<det	940	4,942	11,148
Normalized to Ba	<det limit	61,910	13,065	5	2,345	694	2,675,950	<det limit	1,000	3,005
<det limit	69,211	19,989	20	2,577	821	2,913,224	<det limit	703	3,697	8,340
%StDev				8	26	84	7	12	8	15
<det limit									25	15

APPENDIX EXPERIMENT 18

Isotope - Raw Counts	As 75	Sr 76	Mo 98	Cd 114	Sr 120	Sr 121	Ba 138	La 139	Co 140	Eu 151	Dy 162
"02/12/13 HKH BLOOD HEAT 1"	367	785	635	111	1,423	233	63	103	134	10	-2
"02/12/13 HKH BLOOD HEAT 2"	284	987	917	80	1,77	288	63	84	58	5	-7
"02/12/13 HKH BLOOD HEAT 3"	471	1,130	776	32	1,268	144	63	83	155	0	-5
"02/12/13 HKH BLOOD HEAT 4"	382	1,202	1,018	25	1,058	110	63	23	29	0	2
"02/12/13 HKH BLOOD HEAT 5"	540	1,891	1,215	144	1,283	238	63	41	51	15	-7
%SDav	24	29	66	11	33	0	62	68	<det limit	<det limit	
"02/12/13 HKH BLOOD AIR 1"	384	926	681	90	1,279	155	63	53	40	13	-3
"02/12/13 HKH BLOOD AIR 2"	476	1,209	531	85	1,385	252	63	50	63	3	-5
"02/12/13 HKH BLOOD AIR 3"	348	2,074	651	75	1,200	329	63	47	89	14	-1
"02/12/13 HKH BLOOD AIR 4"	324	1,561	645	112	1,335	164	63	98	143	5	-2
"02/12/13 HKH BLOOD AIR 5"	301	1,813	619	118	1,340	115	63	50	87	7	5
%SDav	19	30	43	18	6	40	0	38	41	<det limit	<det limit
"02/12/13 HKH BLOOD 1" no matrix	12,770	8,787	939	752	974	270	1,672	190	74	32	18
"02/12/13 HKH BLOOD 2" no matrix	16,230	11,140	1,138	725	1,268	283	2,175	214	82	34	20
(Median air blank)	4,784	12,585	885	533	705	91	178	119	73	31	19
Blank corrected	-40	-115	-219	-270	-178	-1,434	-71	-45	-45	-45	-45
	-40	-253	-192	-584	-182	-1,937	-95	-45	-45	-45	-45
Normalized to Ba	<det limit	115	219	270	178	1,434	71	<det limit	<det limit	<det limit	<det limit
<det limit	<det limit	189	144	422	144	1,434	71	<det limit	<det limit	<det limit	<det limit
%SDav	<det limit	35	29	31	15	0	1	<det limit	<det limit	<det limit	<det limit

APPENDIX EXPERIMENT 18

Isotope - Raw Counts	Yb 174	Hf 178	Hg 202	Tl 205	Pb 208	Th 232	U 238
"21/21/3 HIGH BLOOD HEAT 1"	-3	15	640	2	1,230	-2	192
"21/21/3 HIGH BLOOD HEAT 2"	4	11	710	3	856	3	217
"21/21/3 HIGH BLOOD HEAT 3"	2	13	650	9	1,427	12	298
"21/21/3 HIGH BLOOD HEAT 4"	-4	20	352	-2	1,070	3	133
"21/21/3 HIGH BLOOD HEAT 5"	6	35	352	2	1,173	3	188
%StdDev	51	37	<det limit	18	<det limit	23	
"21/21/3 HIGH BLOOD AIR 1"	2	13	650	1	1,145	3	105
"21/21/3 HIGH BLOOD AIR 2"	1	37	488	2	1,137	1	204
"21/21/3 HIGH BLOOD AIR 3"	5	31	622	-1	1,478	6	114
"21/21/3 HIGH BLOOD AIR 4"	3	40	250	1	1,288	10	315
"21/21/3 HIGH BLOOD AIR 5"	7	43	274	2	1,025	6	158
%StdDev		37	41	<det limit	14	<det limit	48
"21/21/3 HIGH BLOOD 1" no matrix	14	17	1,010	11	1,622	9	9
"21/21/3 HIGH BLOOD 2" no matrix	15	17	1,178	30	1,318	14	10
(Median air blank)	14	16	158	14	155	11	11
Blank corrected	<dl	<dl	652	<dl	1,447	<dl	<dl
<dl	<dl	<dl	1,020	<dl	1,161	<dl	<dl
Normalized to Ba	<det limit	<det limit	852	<det limit	1,447	<det limit	<det limit
<det limit	<det limit	783	<det limit	889	<det limit	<det limit	<det limit
%StdDev			8	<det limit	35	<det limit	<det limit

APPENDIX EXPERIMENT 13

Element - Raw Counts	Mg 24	Ca 44	Cr 52	Mn 55	Fe 56	Cu 65	Zn 66	Sr 88	Mo 96	Sn 118	Ba 138	Pb 207
T211/29 H01 G/S STD 1"	94,550	631,500	134,200	203,300	240,500	36,830	21,800	378,700	88,200	145,300	302,700	12,200
T211/29 H01 G/S STD 2"	105,400	687,700	151,700	233,900	296,200	43,820	25,290	434,100	113,900	175,000	358,300	16,610
T211/29 HX1 AIR BL 1"	37,250	46,350	2,361	4,460	38,320	2,935	381	555	276	315	87	23
T211/29 HX1 AIR BL 2"	34,630	41,380	2,380	4,175	34,240	2,682	347	532	272	254	94	23
T211/29 H01 3:1 UW BL"	62,890	49,770	4,238	5,868	159,200	3,022	6,574	1,775	539	1,589	2,326	2,748
T211/29 H01 3:1 UW BL"	54,710	48,510	4,833	5,177	168,200	3,339	6,135	1,899	561	1,749	1,684	2,678
T211/29 HX1 3:1 UW OIL"	1,717,000	199,000	23,600	45,040	195,800	49,350	1,055,000	7,619	3,083	22,850	4,233	14,150
T211/29 HX1 3:1 UW OIL"	1,691,000	198,300	24,160	43,490	194,000	48,220	1,081,000	7,578	3,340	20,840	3,879	13,620
Matrix blank corrected												
T211/29 H01 3:1 UW OIL"	1,664,110	149,230	19,364	39,174	36,600	46,328	1,048,428	6,844	2,545	21,261	1,807	11,402
T211/29 H01 3:1 UW OIL"	1,636,290	149,790	19,327	38,313	25,800	44,881	1,074,685	5,777	2,779	19,091	2,195	10,942
Element - Raw Counts	Hg	Ca	Cr	Mn	Fe	Cu	Zn	Sr	Mo	Sn	Ba	Pb
T211/29 H01 3:1 UW OIL"	2,093,810	7,906,103	23,107	39,174	39,913	150,416	3,757,789	7,075	10,558	85,218	2,660	54,012
T211/29 H01 3:1 UW OIL"	2,071,233	7,032,394	23,063	38,313	28,135	145,718	3,852,583	6,894	11,532	58,561	3,061	51,833
% Std dev.	0.3	0.3	0.1	1.6	24.5	2.2	1.8	0.8	6.2	7.6	9.9	2.9

Chart Experiment 13/1

APPENDIX EXPERIMENT 15

Element - Raw Counts	Li	Mg	Ca	V	Cr	Mn	Fe	Ni	Cu	Zn
U21206 HKH GLS STD 1'	47,490	65,250	314,800	91,720	84,220	129,400	187,500	116,900	27,130	16,370
U21206 HKH GLS STD 2'	41,942	57,354	271,565	78,759	70,057	105,356	164,876	107,511	22,207	11,341
U21206 HKH GLS STD 3'	41,018	65,479	274,201	77,534	74,012	122,292	181,008	115,329	25,437	15,406
U21206 HKH GLS STD 4'	40,624	66,151	266,149	78,201	72,203	116,400	174,192	116,401	23,432	14,478
U21206 HKH GLS STD 5'	38,540	62,445	269,884	75,257	72,523	116,183	178,409	107,541	22,457	14,211
U21206 HKH GLS STD 6'	48,258	68,664	316,450	89,011	88,985	129,212	191,707	118,239	25,862	14,902
U21206 HKH GLS STD 7'	45,680	64,516	299,828	81,820	75,278	117,938	176,303	104,553	21,660	13,946
U21206 HKH GLS STD 8'	47,022	63,180	285,341	78,841	76,177	117,168	175,239	103,413	22,190	13,141
U21206 HKH GLS STD 9'	53,517	65,282	359,379	109,351	100,168	152,187	212,044	115,211	31,787	21,203
U21206 HKH GLS STD 10'	38,574	54,486	230,407	69,320	64,884	100,749	163,475	107,854	21,080	11,485
U21206 HKH GLS STD 11'	47,238	64,809	300,688	91,892	80,741	127,156	189,277	118,802	23,975	17,487
Average Glass Standard	44,627	63,614	290,701	83,704	77,931	121,276	181,276	111,801	24,474	14,908
% Std dev.	10	6	12	13	12	11	7	5	12	18
Centrif Normalized										
U21206 HKH GLS STD 1'	47,480	65,250	314,800	91,720	84,220	129,400	187,500	116,900	27,130	16,370
U21206 HKH GLS STD 2'	51,307	70,161	332,202	96,394	85,713	128,881	201,891	131,517	27,166	13,874
U21206 HKH GLS STD 3'	48,516	77,449	324,325	91,708	87,541	144,846	214,096	138,411	30,087	18,221
U21206 HKH GLS STD 4'	49,406	78,823	317,132	93,181	88,040	138,688	207,559	138,689	27,921	17,251
U21206 HKH GLS STD 5'	47,537	77,072	332,887	92,825	89,453	143,318	220,058	133,139	27,700	17,528
U21206 HKH GLS STD 6'	49,803	70,845	326,598	91,855	89,753	133,355	197,854	122,092	26,682	15,300
U21206 HKH GLS STD 7'	56,074	77,500	360,182	98,287	90,427	141,639	211,791	125,594	26,020	16,753
U21206 HKH GLS STD 8'	58,314	75,842	341,730	94,421	91,231	140,324	208,889	123,882	26,576	15,737
U21206 HKH GLS STD 9'	45,341	55,319	312,952	92,647	84,864	128,939	179,652	97,611	26,831	17,864
U21206 HKH GLS STD 10'	61,511	72,734	307,697	91,235	88,647	134,541	218,308	142,761	26,150	15,338
U21206 HKH GLS STD 11'	46,494	63,767	285,949	90,444	79,689	125,152	186,235	114,764	25,586	17,211
Average Glass Standard	49,880	71,320	324,222	93,157	88,851	135,354	203,152	126,949	27,267	16,512
% Std dev.	7	10	5	2	4	6	6	10	4	6
Dift corrected & blanks										
U21206 HKH AIR BL 1'	3,684	20,190	11,549	152	2,468	3,047	38,855	63,302	808	327
U21206 HKH AIR BL 2'	3,594	20,611	12,257	184	2,720	3,306	40,498	65,800	821	371
U21206 HKH AIR BL 3'	4,620	23,263	12,023	129	3,043	4,094	42,535	63,816	703	468
U21206 HKH AIR BL 4'	4,368	23,124	11,818	144	3,162	4,058	44,044	70,354	725	423
U21206 HKH AIR BL 5'	4,143	25,557	12,948	161	3,528	4,674	48,968	76,409	887	509
U21206 HKH AIR BL 6'	4,059	25,874	13,325	172	3,268	4,495	47,950	76,205	875	454
U21206 HKH AIR BL 7'	4,461	22,499	12,679	172	3,113	4,039	42,523	63,528	752	420
U21206 HKH AIR BL 8'	4,065	21,677	12,652	180	3,087	3,817	42,876	61,883	713	387
U21206 HKH AIR BL 9'	3,888	21,353	11,540	145	2,790	3,535	38,589	66,989	814	355
U21206 HKH AIR BL 10'	3,871	21,359	12,933	192	2,837	3,477	42,447	66,395	853	389
Average	4,083	22,551	12,372	162	3,010	3,854	42,730	63,034	759	408
Element - Raw Counts										

APPENDIX EXPERIMENT 15

Element - Raw Counts	Ga	As	Se	Sr	Zr	Mo	Cd	Sn	Ba	La
T211208 HKH GLS STD 1°	97,640	17,950	5,077	239,900	108,100	64,430	10,920	106,900	235,800	263,700
T211208 HKH GLS STD 2°	80,014	14,411	4,775	203,320	92,902	51,228	8,370	83,587	196,445	226,040
T211208 HKH GLS STD 3°	85,443	14,494	5,615	211,943	98,237	58,704	8,090	94,701	217,337	223,229
T211208 HKH GLS STD 4°	81,691	15,295	5,583	207,032	95,469	54,328	7,412	91,701	195,728	214,195
T211208 HKH GLS STD 5°	84,958	14,524	4,985	200,520	94,666	53,912	7,046	88,138	194,117	211,640
T211208 HKH GLS STD 6°	98,635	16,941	5,688	220,573	105,461	64,205	8,313	100,315	229,030	249,680
T211208 HKH GLS STD 7°	82,557	14,885	5,368	201,842	81,566	53,560	7,146	85,117	199,679	224,892
T211208 HKH GLS STD 8°	83,089	15,447	5,247	192,725	87,980	53,525	7,710	90,454	199,979	212,889
T211208 HKH GLS STD 9°	120,865	20,448	5,202	281,520	131,249	79,384	12,516	131,784	273,378	313,117
T211208 HKH GLS STD 10°	70,750	13,024	4,770	167,271	72,202	48,183	6,450	78,170	170,847	180,676
T211208 HKH GLS STD 11°	97,820	18,164	4,905	228,149	103,497	68,426	11,540	112,414	245,398	258,020
Average Glass Standard	83,479	15,862	5,201	213,609	98,121	69,162	8,652	98,753	214,333	235,271
% std dev.	14	13	6	13	14	16	22	18	13	15
Cerium Normalized										
T211208 HKH GLS STD 1°	97,640	17,960	5,087	233,800	108,100	64,430	10,920	106,900	235,800	263,700
T211208 HKH GLS STD 2°	97,880	17,629	5,841	248,719	113,646	62,587	10,229	102,252	240,309	276,512
T211208 HKH GLS STD 3°	101,082	17,144	6,641	250,085	116,194	63,435	9,569	112,012	267,065	284,034
T211208 HKH GLS STD 4°	97,339	18,224	6,652	246,891	113,781	64,734	8,832	109,256	233,221	255,228
T211208 HKH GLS STD 5°	104,791	17,915	6,149	247,320	116,765	66,497	9,650	108,714	239,433	261,046
T211208 HKH GLS STD 6°	101,797	17,484	5,870	221,945	108,842	68,263	8,560	103,531	226,373	257,685
T211208 HKH GLS STD 7°	99,171	17,981	6,448	242,484	109,994	64,376	6,565	102,247	239,781	270,273
T211208 HKH GLS STD 8°	100,479	18,500	6,284	232,003	105,342	64,102	9,234	108,328	239,498	254,721
T211208 HKH GLS STD 9°	102,402	17,323	4,407	238,515	111,193	68,986	10,884	111,652	221,616	265,285
T211208 HKH GLS STD 10°	94,450	17,382	6,370	223,375	98,419	64,317	8,613	105,724	228,150	241,273
T211208 HKH GLS STD 11°	96,278	17,977	4,828	224,564	101,868	67,348	11,467	110,643	241,531	263,797
Average Glass Standard	99,330	17,756	6,570	237,793	109,105	65,550	8,576	107,368	239,434	261,232
% std dev.	3	2	12	4	5	3	11	3	3	3
Drift corrected air blanks										
T211208 HKH AIR BL 1°	209	832	3,019	268	108	284	19	165	122	32
T211208 HKH AIR BL 2°	345	971	3,304	275	123	328	28	182	152	44
T211208 HKH AIR BL 3°	308	938	1,128	320	97	362	29	206	147	38
T211208 HKH AIR BL 4°	315	928	3,241	283	103	353	19	186	153	38
T211208 HKH AIR BL 5°	305	1,051	3,859	314	134	382	25	231	153	46
T211208 HKH AIR BL 6°	309	1,057	4,001	309	122	380	23	223	170	41
T211208 HKH AIR BL 7°	308	939	1,289	286	123	354	28	184	149	40
T211208 HKH AIR BL 8°	308	947	3,228	277	132	350	22	193	156	41
T211208 HKH AIR BL 9°	307	918	2,937	285	113	350	23	189	136	39
T211208 HKH AIR BL 10°	309	934	3,432	278	133	333	23	182	141	41
Average	302	939	3,346	281	120	347	23	196	148	40
Element - Raw Counts										

Experiment 15/2

APPENDIX EXPERIMENT 15

Element - Raw Counts	Ce	Eu	Dy	Yb	Hf	Hg	Pb	U
T211206 HKH GLS STD 1*	305,900	145,300	57,670	61,330	42,160	387	36,940	54,670
T211206 HKH GLS STD 2*	250,064	127,020	51,079	52,810	36,902	412	27,794	43,100
T211206 HKH GLS STD 3*	259,624	121,397	47,081	47,634	32,567	525	25,553	43,145
T211206 HKH GLS STD 4*	256,723	114,252	45,260	48,559	31,276	483	25,692	43,681
T211206 HKH GLS STD 5*	248,005	111,211	45,510	45,148	30,959	416	22,469	38,761
T211206 HKH GLS STD 6*	256,397	135,559	53,917	58,454	38,642	426	30,187	54,131
T211206 HKH GLS STD 7*	254,651	121,501	47,787	51,349	35,758	251	26,924	42,254
T211206 HKH GLS STD 8*	255,423	116,818	45,224	47,694	33,289	289	27,444	45,918
T211206 HKH GLS STD 9*	361,055	165,458	65,438	69,503	47,354	339	34,320	54,059
T211206 HKH GLS STD 10*	229,069	101,413	38,879	40,738	27,482	325	21,044	41,430
T211206 HKH GLS STD 11*	319,788	147,527	58,844	61,549	42,539	421	32,514	60,233
Average Glass Standard	275,155	127,860	50,418	52,833	38,266	387	23,291	47,419
% Std dev.	13	14	14	16	16	16	16	14
Certified Normalized								
T211206 HKH GLS STD 1*	305,900	145,300	57,670	61,330	42,160	387	36,940	54,670
T211206 HKH GLS STD 2*	305,900	155,382	62,485	64,602	45,142	504	34,001	52,724
T211206 HKH GLS STD 3*	305,900	143,588	55,687	58,341	38,520	621	30,238	51,031
T211206 HKH GLS STD 4*	305,900	136,137	53,839	56,478	37,258	576	30,852	52,287
T211206 HKH GLS STD 5*	305,900	137,172	56,134	55,688	38,188	513	27,715	47,810
T211206 HKH GLS STD 6*	305,900	138,905	55,846	58,264	38,281	439	31,155	55,886
T211206 HKH GLS STD 7*	305,900	145,953	57,405	61,884	42,982	302	32,342	50,758
T211206 HKH GLS STD 8*	305,900	140,023	54,161	57,119	39,888	347	32,888	54,922
T211206 HKH GLS STD 9*	305,900	140,182	55,440	59,225	40,120	287	29,077	45,826
T211206 HKH GLS STD 10*	305,900	135,423	52,053	54,401	36,889	434	28,103	55,325
T211206 HKH GLS STD 11*	305,900	145,202	55,751	60,579	41,888	415	32,002	59,284
Average Glass Standard	305,900	142,207	56,034	59,610	40,242	437	31,390	52,779
% Std dev.	0	4	5	5	6	24	8	7
Dose corrected air blanks								
T211206 HKH AIR BL 1*	11	21	6	9	9			
T211206 HKH AIR BL 2*	18	23	12	11	10	302	65	8
T211206 HKH AIR BL 3*	14	23	8	10	9	319	74	10
T211206 HKH AIR BL 4*	13	23	8	9	7	317	63	7
T211206 HKH AIR BL 5*	22	29	12	12	7	453	69	11
T211206 HKH AIR BL 6*	14	22	11	10	10	432	63	4
T211206 HKH AIR BL 7*	11	20	9	9	9	228	62	8
T211206 HKH AIR BL 8*	15	19	8	6	11	223	61	8
T211206 HKH AIR BL 9*	16	25	10	11	9	312	74	10
T211206 HKH AIR BL 10*	14	21	8	11	11	287	69	7
Average	15	23	9	10	9	317	67	8
Element - Raw Counts								

APPENDIX EXPERIMENT 15

Element - Raw Counts	Li	Mg	Ca	V	Cr	Mn	Fe	Ni	Cu	Zn
T211206 HIGH SVEN OIL BL 2"	3,821	235,018	41,490	687	10,980	5,443	150,553	73,186	1,183	167,148
T211206 HIGH SVEN OIL BL 3"	3,888	201,744	39,846	683	8,118	5,682	157,177	73,459	2,225	143,782
T211206 HIGH SVEN OIL WED 1"	3,742	190,075	33,354	584	8,487	9,138	361,819	71,388	4,519	137,849
T211206 HIGH SVEN OIL WED 2"	4,128	198,768	34,940	711	10,163	6,968	268,814	74,881	3,343	143,612
T211206 HIGH SVEN OIL THUR 1"	4,719	275,925	52,367	745	11,580	11,882	558,657	81,688	7,485	182,213
T211206 HIGH SVEN OIL THUR 2"	4,824	239,792	45,529	1,031	13,982	10,300	534,454	81,880	10,451	176,523
T211206 HIGH SVEN OIL FRI 1"	4,810	268,334	68,590	2,446	14,629	19,376	529,987	77,330	18,538	221,004
T211206 HIGH SVEN OIL FRI 2"	5,029	238,601	45,324	1,105	13,926	10,525	508,588	83,148	16,947	188,438
T211206 HIGH JOHN OIL WED 1"	5,385	580,487	55,967	346	13,776	19,888	234,195	82,858	20,828	304,144
T211206 HIGH JOHN OIL WED 2"	5,147	604,376	60,976	417	19,926	22,912	368,614	86,485	20,456	314,960
T211206 HIGH JOHN OIL THUR 1"	4,518	409,802	44,199	448	13,941	16,549	270,544	83,824	13,885	212,212
T211206 HIGH JOHN OIL THUR 2"	4,282	418,970	45,512	425	14,472	16,870	213,334	83,907	14,674	218,577
T211206 HIGH JOHN OIL FRI 1"	4,222	407,862	49,288	415	18,658	18,435	214,231	86,028	15,914	232,640
T211206 HIGH JOHN OIL FRI 2"	4,394	455,915	49,409	461	17,280	19,570	285,871	84,233	15,748	268,535
T211206 HIGH RYAN OIL WED 1"	5,532	409,850	60,572	619	23,880	10,525	470,647	82,108	5,760	359,710
T211206 HIGH RYAN OIL WED 2"	5,315	269,141	37,981	908	17,157	11,888	564,841	87,080	5,272	256,034
T211206 HIGH RYAN OIL THUR 1"	5,135	585,490	64,218	607	27,068	15,071	566,053	85,204	6,878	483,518
T211206 HIGH RYAN OIL THUR 2"	5,015	413,168	48,800	672	17,325	9,512	387,147	84,519	5,223	391,813
T211206 HIGH RYAN OIL FRI 1"	4,985	619,761	67,912	580	24,139	10,701	424,569	85,514	8,871	680,379
T211206 HIGH RYAN OIL FRI 2"	5,083	601,154	95,583	598	21,817	11,352	475,080	86,087	7,080	673,978
T211206 HIGH DAVE OIL WED 1"	6,284	54,719	49,159	583	14,019	18,012	485,381	82,729	4,151	188,777
T211206 HIGH DAVE OIL WED 2"	5,625	53,475	49,324	548	11,987	10,956	418,908	81,447	3,872	188,231
T211206 HIGH DAVE OIL THUR 1"	5,731	68,495	61,902	815	12,045	11,243	339,507	83,326	4,070	225,509
T211206 HIGH DAVE OIL THUR 2"	5,619	55,528	61,737	608	12,589	- 9,874	268,282	84,838	4,189	195,804
T211206 HIGH SCOTT OIL WED 1"	5,578	97,435	172,212	509	21,019	14,060	357,339	85,922	6,315	200,070
T211206 HIGH SCOTT OIL WED 2"	5,618	91,916	162,198	421	19,631	10,708	198,769	85,450	4,692	176,146
T211206 HIGH SCOTT OIL THUR 1"	7,178	359,173	78,240	921	27,782	88,903	11,859,207	119,587	9,650	1,591,134
T211206 HIGH SCOTT OIL WED 2"	6,901	218,524	52,416	820	17,884	52,411	10,702,080	104,254	5,678	1,243,243
T211206 HIGH SCOTT OIL THUR 1"	6,355	197,533	50,333	900	18,788	72,574	9,738,842	99,617	6,188	943,194
T211206 HIGH SCOTT OIL THUR 2"	6,488	241,759	64,444	1,495	23,479	86,587	13,984,018	111,528	8,980	1,683,237
T211206 HIGH SCOTT OIL FRI 1"	6,366	164,149	48,849	1,059	18,013	88,219	8,987,886	101,870	5,466	1,090,939
T211206 HIGH SCOTT OIL FRI 2"	6,365	220,839	59,311	1,015	22,930	75,388	10,140,408	109,390	7,714	1,704,582
Average Air Blank Corrected										
SVEN Reference Oil										
T211206 HIGH SVEN OIL BL 2"	-261	212,467	28,117	525	7,980	1,629	107,823	5,161	398	166,742
T211206 HIGH SVEN OIL BL 3"	-193	179,194	27,474	521	5,108	1,828	114,448	5,425	1,433	143,376
Sten Engine Oil										
T211206 HIGH SVEN OIL WED 1"	-341	167,524	20,981	432	5,458	6,284	318,880	3,324	3,728	137,443

Experiment 154

APPENDIX EXPERIMENT 15

Element - Raw Counts	Ga	As	Se	Sr	Zr	Mo	Cd	Sn	Ba	La
T011208 HIGH SVEN OIL BL 2'	24,526	1,977	4,306	1,917	9,882	897	127	919	1,035	82
T011208 HIGH SVEN OIL BL 3'	20,525	2,031	4,800	1,682	12,522	676	63	1,126	738	93
T011208 HIGH SVEN OIL WED 1'	21,985	1,928	3,601	2,130	4,661	820	56	3,242	3,040	1,147
T011208 HIGH SVEN OIL WED 2'	30,408	2,157	3,907	1,631	5,203	795	66	2,729	3,359	1,444
T011208 HIGH SVEN OIL THUR 1'	32,120	2,818	5,043	4,285	9,881	1,349	88	1,527	5,424	1,164
T011208 HIGH SVEN OIL THUR 2'	36,367	2,537	4,552	4,230	9,223	1,274	153	3,330	5,778	1,583
T011208 HIGH SVEN OIL FRI 1'	37,388	2,604	4,194	7,829	10,680	1,986	84	9,445	4,275	1,476
T011208 HIGH SVEN OIL FRI 2'	40,695	2,638	4,625	3,411	18,410	1,195	204	3,850	4,497	855
T011208 HIGH JOHN OIL WED 1'	9,870	1,773	3,957	2,911	4,180	2,368	65	11,659	1,985	149
T011208 HIGH JOHN OIL WED 2'	12,719	1,920	4,405	3,386	5,247	2,968	64	11,801	2,433	210
T011208 HIGH JOHN OIL THUR 1'	20,970	1,731	3,924	2,411	8,571	1,631	60	8,203	1,795	269
T011208 HIGH JOHN OIL THUR 2'	19,658	1,807	3,771	2,600	6,313	1,807	38	11,414	1,880	430
T011208 HIGH JOHN OIL FRI 1'	19,641	1,859	4,148	2,595	4,743	1,683	49	7,343	1,379	85
T011208 HIGH JOHN OIL FRI 2'	16,636	2,021	4,138	2,730	3,164	2,004	86	8,186	1,691	538
T011208 HIGH RYAN OIL WED 1'	24,832	1,845	4,168	5,115	1,478	1,855	425	2,205	14,046	168
T011208 HIGH RYAN OIL WED 2'	43,453	1,823	4,163	4,187	2,038	1,873	67	2,916	11,578	408
T011208 HIGH RYAN OIL THUR 1'	30,594	2,186	5,082	4,212	1,571	1,458	135	3,713	9,008	226
T011208 HIGH RYAN OIL THUR 2'	36,800	2,043	4,710	3,311	2,045	1,613	158	4,642	3,463	227
T011208 HIGH RYAN OIL FRI 1'	26,132	2,698	4,685	5,494	826	2,030	191	2,728	8,848	208
T011208 HIGH RYAN OIL FRI 2'	19,987	2,357	4,752	7,552	1,184	2,847	143	2,640	93,280	211
T011208 HIGH DAVE OIL WED 1'	39,625	1,871	3,984	2,142	4,657	1,311	66	3,028	2,242	226
T011208 HIGH DAVE OIL WED 2'	36,363	1,877	3,815	2,210	4,073	972	58	3,465	2,100	226
T011208 HIGH DAVE OIL THUR 1'	64,561	2,107	4,453	3,038	5,477	2,573	139	2,625	2,087	193
T011208 HIGH DAVE OIL THUR 2'	43,001	2,254	4,543	5,689	4,590	1,174	78	1,654	851	101
T011208 HIGH DAVE OIL FRI 1'	32,320	2,638	4,779	5,484	3,744	1,265	158	1,603	1,583	108
T011208 HIGH DAVE OIL FRI 2'	32,793	2,985	4,653	5,137	3,748	1,220	155	1,657	1,610	110
T011208 HIGH SCOTT OIL WED 1'	31,712	2,523	4,513	4,233	8,285	3,284	147	4,314	12,098	116
T011208 HIGH SCOTT OIL WED 2'	48,230	2,395	4,437	2,724	9,620	5,003	86	4,241	10,008	124
T011208 HIGH SCOTT OIL THUR 1'	48,711	2,680	4,320	2,559	8,751	2,085	88	4,173	11,778	365
T011208 HIGH SCOTT OIL THUR 2'	49,953	2,959	4,370	3,483	8,709	4,374	233	6,877	16,437	222
T011208 HIGH SCOTT OIL FRI 1'	55,986	3,051	4,616	2,685	11,979	2,139	217	4,371	11,676	260
T011208 HIGH SCOTT OIL FRI 2'	44,363	3,122	4,509	3,446	10,427	2,297	158	4,528	14,550	889
Average At Blank Corrected										
Sven Reference Oil										
T011208 HIGH SVEN OIL BL 2'	24,184	1,019	958	1,628	9,742	550	105	723	887	42
T011208 HIGH SVEN OIL BL 3'	23,183	1,072	1,255	1,370	12,402	330	40	930	589	53
Sven Engine Oil										
T011208 HIGH SVEN OIL WED 1'	25,823	970	236	1,839	4,542	473	34	3,046	2,891	1,107

Experiment 155

APPENDIX EXPERIMENT 15

Element - Raw Counts	Ce	Eu	Dy	Tb	Hf	Hg	Pb	U
U21208 HHH SVEN OIL BL 2"	120	22	13	19	103	604	440	82
U21208 HHH SVEN OIL BL 3"	65	27	15	18	33	606	438	102
U21208 HHH SVEN OIL WED 1"	314	28	15	14	97	502	41,988	155
U21208 HHH SVEN OIL WED 2"	103	28	12	19	94	498	43,195	113
U21208 HHH SVEN OIL THUR 1"	197	22	22	14	107	749	66,643	19
U21208 HHH SVEN OIL THUR 2"	673	42	24	22	234	685	65,095	138
U21208 HHH SVEN OIL FRI 1"	528	44	23	23	103	488	77,558	171
U21208 HHH SVEN OIL FRI 2"	945	46	21	25	181	508	59,084	168
U21208 HHH JOHN OIL WED 1"	61	28	10	15	32	676	21,561	53
U21208 HHH JOHN OIL WED 2"	191	39	13	16	74	633	21,248	68
U21208 HHH JOHN OIL THUR 1"	85	24	11	17	110	687	11,754	46
U21208 HHH JOHN OIL THUR 2"	139	26	16	19	122	889	13,188	80
U21208 HHH JOHN OIL FRI 1"	72	25	12	14	24	736	12,871	70
U21208 HHH JOHN OIL FRI 2"	112	23	12	10	107	601	15,171	69
U21208 HHH RYAN OIL WED 1"	300	23	12	18	44	730	13,378	158
U21208 HHH RYAN OIL WED 2"	770	31	19	21	60	778	10,142	190
U21208 HHH RYAN OIL THUR 1"	248	29	18	15	148	1,923	15,161	118
U21208 HHH RYAN OIL THUR 2"	502	40	14	23	58	1,018	10,079	155
U21208 HHH RYAN OIL FRI 1"	395	35	18	42	28	721	9,711	115
U21208 HHH RYAN OIL FRI 2"	233	26	18	21	34	742	11,887	142
U21208 HHH DAVE OIL WED 1"	195	27	15	17	93	450	34,768	189
U21208 HHH DAVE OIL WED 2"	128	25	13	28	62	480	41,522	145
U21208 HHH DAVE OIL THUR 1"	574	25	14	27	78	568	37,864	213
U21208 HHH DAVE OIL THUR 2"	98	78	14	19	33	598	35,938	144
U21208 HHH DAVE OIL FRI 1"	65	27	17	22	17	487	40,138	102
U21208 HHH DAVE OIL FRI 2"	59	27	16	21	19	455	43,944	107
U21208 HHH SCOTT OIL WED 1"	261	23	19	23	181	630	7,987	164
U21208 HHH SCOTT OIL WED 2"	139	23	17	18	44	625	8,630	164
U21208 HHH SCOTT OIL THUR 1"	108	28	16	18	107	608	8,244	189
U21208 HHH SCOTT OIL THUR 2"	95	37	26	22	64	744	7,980	173
U21208 HHH SCOTT OIL FRI 1"	108	35	18	24	114	508	5,861	189
U21208 HHH SCOTT OIL FRI 2"	152	33	18	19	114	639	6,900	151
Average Air Blank Corrected								
SVEN Reference Oil								
U21208 HHH SVEN OIL BL 2"	105	9	4	3	94	287	372	74
U21208 HHH SVEN OIL BL 3"	50	5	6	6	24	289	371	94
SVEN Engine Oil								
U21208 HHH SVEN OIL WED 1"	300	4	6	4	88	166	41,920	147

APPENDIX EXPERIMENT 15

Element - Raw Counts	Li	Mg	Ca	V	Cr	Mn	Fe	Ni	Cu	Zn
T2/12/06 HKH SVEN OIL WED 2 ¹	45	174,218	22,567	549	7,154	3,114	224,084	6,847	2,550	143,208
T2/12/06 HKH SVEN OIL THUR 1 ¹	636	254,375	49,936	583	8,541	8,038	515,927	13,632	6,892	161,807
T2/12/06 HKH SVEN OIL THUR 2 ¹	741	217,262	33,155	859	10,943	8,446	491,725	13,028	9,658	176,117
T2/12/06 HKH SVEN OIL FR1 1 ¹	727	283,784	58,218	2,884	13,820	15,522	487,257	8,296	17,745	220,598
T2/12/06 HKH SVEN OIL FR1 2 ¹	948	216,051	32,982	943	10,926	6,671	483,858	15,114	16,154	198,053
John Engine Oil										
T2/12/06 HKH JOHN OIL WED 1 ¹	1,302	557,937	43,595	184	10,768	16,102	191,465	14,824	20,035	303,738
T2/12/06 HKH JOHN OIL WED 2 ¹	1,085	581,825	48,603	256	13,828	19,058	263,884	18,451	19,663	314,554
T2/12/06 HKH JOHN OIL THUR 1 ¹	435	387,252	31,826	288	10,931	12,685	227,815	15,790	13,102	211,806
T2/12/06 HKH JOHN OIL THUR 2 ¹	189	396,420	33,159	263	11,482	13,116	170,605	15,873	13,881	216,171
T2/12/06 HKH JOHN OIL FR1 1 ¹	139	445,311	38,915	253	15,848	14,581	171,508	18,004	15,121	242,234
T2/12/06 HKH JOHN OIL FR1 2 ¹	311	433,384	37,037	299	14,281	16,715	243,141	16,288	14,855	265,129
Ryan Engine Oil										
T2/12/06 HKH RYAN OIL WED 1 ¹	1,449	387,310	38,200	457	20,670	6,671	427,918	14,074	4,987	359,104
T2/12/06 HKH RYAN OIL WED 2 ¹	1,232	246,581	25,609	743	14,147	8,105	512,112	19,026	4,479	295,623
T2/12/06 HKH RYAN OIL THUR 1 ¹	1,052	582,939	51,848	446	24,055	11,217	622,323	17,170	8,083	493,112
T2/12/06 HKH RYAN OIL THUR 2 ¹	932	399,615	38,528	510	14,315	6,658	344,417	16,485	4,532	391,207
T2/12/06 HKH RYAN OIL FR1 1 ¹	903	597,211	55,539	397	21,123	6,947	381,639	17,488	8,078	659,972
T2/12/06 HKH RYAN OIL FR1 2 ¹	980	578,604	83,221	425	24,807	7,988	432,381	18,083	6,287	673,571
Dave Engine Oil										
T2/12/06 HKH DAVE OIL WED 1 ¹	2,211	32,168	38,768	420	11,009	14,158	442,682	14,694	3,258	168,371
T2/12/06 HKH DAVE OIL WED 2 ¹	1,542	30,924	37,562	385	8,958	7,101	376,178	13,613	3,079	167,825
T2/12/06 HKH DAVE OIL THUR 1 ¹	1,648	45,946	49,530	852	9,035	7,389	286,868	15,291	3,277	235,059
T2/12/06 HKH DAVE OIL THUR 2 ¹	1,538	32,977	49,365	444	9,580	5,820	223,553	16,604	3,398	195,398
T2/12/06 HKH DAVE OIL FR1 1 ¹	1,595	74,885	153,840	345	19,009	9,205	314,809	17,897	5,522	188,672
T2/12/06 HKH DAVE OIL FR1 2 ¹	1,535	69,385	149,823	259	16,622	6,934	158,040	17,416	3,900	175,740
Scott Engine Oil										
T2/12/06 HKH SCOTT OIL WED 1 ¹	3,095	338,623	65,868	759	24,753	95,049	11,796,478	51,553	8,858	1,550,728
T2/12/06 HKH SCOTT OIL WED 2 ¹	2,818	193,974	40,044	658	14,854	48,557	10,659,351	38,220	4,885	1,242,837
T2/12/06 HKH SCOTT OIL THUR 1 ¹	2,272	174,883	37,361	738	15,778	68,720	9,594,113	31,583	5,398	942,788
T2/12/06 HKH SCOTT OIL THUR 2 ¹	2,405	218,208	52,072	1,333	20,469	92,713	13,941,289	43,494	8,187	1,682,831
T2/12/06 HKH SCOTT OIL FR1 1 ¹	2,273	145,589	38,477	897	15,004	62,385	8,945,136	33,836	1,090,532	
T2/12/06 HKH SCOTT OIL FR1 2 ¹	2,303	198,288	48,938	853	19,921	71,511	10,097,576	41,256	6,921	1,704,156
Average Engine Oil - John	575	467,018	38,519	258	12,836	15,211	211,403	16,538	16,126	259,272
Average Engine Oil - Scott	2,528	211,446	48,950	873	18,403	73,152	10,855,674	39,574	6,490	1,375,645

APPENDIX EXPERIMENT 15

Element - Raw Counts	Ga	As	Se	Sr	Zr	Mn	Cd	Sn	Ba	La
T021208 HIGH SVEN OIL WED 2'	30,524	1,188	562	1,340	5,083	448	44	2,533	3,251	1,374
T021208 HIGH SVEN OIL THUR 1'	31,778	1,633	1,638	3,994	9,761	1,002	76	1,531	5,275	1,124
T021208 HIGH SVEN OIL THUR 2'	36,225	1,579	1,237	3,946	9,108	927	130	3,134	5,629	1,543
T021208 HIGH SVEN OIL FRI 1'	37,046	1,846	849	7,538	10,581	1,840	62	9,249	4,127	1,438
T021208 HIGH SVEN OIL FRI 2'	40,353	1,680	1,281	3,119	18,291	848	181	3,654	4,348	815
John Engine Oil										
T021208 HIGH JOHN OIL WED 1'	9,528	815	622	2,620	4,060	2,022	42	11,283	1,808	108
T021208 HIGH JOHN OIL WED 2'	12,377	982	1,061	3,085	5,127	2,661	42	11,606	2,286	170
T021208 HIGH JOHN OIL THUR 1'	20,628	773	579	2,119	8,451	1,284	38	8,007	1,647	229
T021208 HIGH JOHN OIL THUR 2'	19,344	849	426	2,309	6,194	1,460	14	11,218	1,651	350
T021208 HIGH JOHN OIL FRI 1'	19,289	901	803	2,304	4,623	1,336	26	7,147	1,230	45
T021208 HIGH JOHN OIL FRI 2'	18,234	1,062	794	2,438	3,044	1,658	63	7,950	1,643	458
Ryan Engine Oil										
T021208 HIGH RYAN OIL WED 1'	34,490	886	843	4,823	1,958	1,508	402	2,009	13,638	149
T021208 HIGH RYAN OIL WED 2'	43,111	886	818	3,895	1,979	1,533	68	2,720	11,529	369
T021208 HIGH RYAN OIL THUR 1'	30,232	1,227	1,747	3,921	1,451	1,111	113	3,517	8,861	288
T021208 HIGH RYAN OIL THUR 2'	36,558	1,084	1,385	3,019	1,825	1,267	134	4,446	3,014	187
T021208 HIGH RYAN OIL FRI 1'	25,781	1,548	1,511	5,203	708	1,684	168	2,530	8,700	165
T021208 HIGH RYAN OIL FRI 2'	19,845	1,398	1,407	7,260	1,085	2,300	121	2,444	93,131	171
Dave Engine Oil										
T021208 HIGH DAVE OIL WED 1'	39,233	912	639	1,850	4,538	965	43	2,632	2,033	188
T021208 HIGH DAVE OIL WED 2'	38,511	919	470	1,824	3,953	625	36	3,269	1,951	198
T021208 HIGH DAVE OIL THUR 1'	64,219	1,148	1,088	2,747	5,367	2,228	117	2,429	1,959	153
T021208 HIGH DAVE OIL THUR 2'	42,659	1,285	1,198	2,398	4,770	827	53	1,658	703	61
T021208 HIGH DAVE OIL FRI 1'	31,978	1,680	1,374	5,173	3,624	919	134	1,407	1,414	68
T021208 HIGH DAVE OIL FRI 2'	32,461	1,907	1,308	4,846	3,628	873	132	1,461	1,461	71
Scott Engine Oil										
T021208 HIGH SCOTT OIL WED 1'	31,370	1,565	1,158	3,942	8,175	2,938	125	4,118	11,947	76
T021208 HIGH SCOTT OIL WED 2'	47,688	1,438	1,092	2,432	9,700	4,656	64	4,045	9,861	84
T021208 HIGH SCOTT OIL THUR 1'	48,369	1,701	978	2,287	8,632	1,719	65	3,977	11,629	329
T021208 HIGH SCOTT OIL THUR 2'	48,521	1,942	1,034	3,192	6,589	4,027	210	6,681	16,289	182
T021208 HIGH SCOTT OIL FRI 1'	55,344	2,072	1,271	2,385	11,959	1,793	195	4,175	11,527	220
T021208 HIGH SCOTT OIL FRI 2'	44,011	2,184	1,184	3,154	10,307	1,951	138	4,533	14,401	619
Average Engine Oil - John	16,578	883	714	2,481	5,250	1,735	37	9,539	1,634	240
Average Engine Oil - Scott	45,917	1,813	1,116	2,897	9,544	2,847	132	4,555	12,609	284

APPENDIX EXPERIMENT 15

Element - Raw Counts	C ₆	E _{II}	D _Y	Y _b	W	H _B	P _B	U
T211206 HHH SVEN OIL WED 2'	93	5	3	9	84	182	43,127	105
T211206 HHH SVEN OIL THUR 1'	182	10	13	4	98	433	68,576	11
T211206 HHH SVEN OIL THUR 2'	659	20	14	12	225	369	65,027	128
T211206 HHH SVEN OIL FR1 1'	611	22	14	19	100	172	77,482	163
T211206 HHH SVEN OIL FR1 2'	950	24	12	15	172	191	59,027	157
John Engine Oil								
T211206 HHH JOHN OIL WED 1'	68	5	0	5	23	369	21,483	45
T211206 HHH JOHN OIL WED 2'	778	7	4	7	68	516	21,181	60
T211206 HHH JOHN OIL THUR 1'	81	2	2	7	100	371	11,696	78
T211206 HHH JOHN OIL THUR 2'	124	3	7	9	112	372	13,121	72
T211206 HHH JOHN OIL FR1 1'	57	3	3	4	15	419	12,803	63
T211206 HHH JOHN OIL FR1 2'	97	1	2	0	98	284	15,103	52
Ryan Engine Oil								
T211206 HHH RYAN OIL WED 1'	285	5	3	9	35	414	13,311	148
T211206 HHH RYAN OIL WED 2'	756	9	10	11	51	483	10,075	182
T211206 HHH RYAN OIL THUR 1'	231	6	7	5	139	706	15,113	111
T211206 HHH RYAN OIL THUR 2'	467	17	5	13	48	701	19,011	147
T211206 HHH RYAN OIL FR1 1'	380	13	7	32	19	403	9,564	107
T211206 HHH RYAN OIL FR1 2'	218	4	8	11	23	428	11,458	134
Dave Engine Oil								
T211206 HHH DAVE OIL WED 1'	189	4	6	7	84	134	34,687	152
T211206 HHH DAVE OIL WED 2'	111	2	4	18	53	143	41,454	137
T211206 HHH DAVE OIL THUR 1'	569	3	5	17	89	221	37,827	205
T211206 HHH DAVE OIL THUR 2'	61	38	5	9	24	279	35,291	136
T211206 HHH DAVE OIL FR1 1'	50	5	7	12	8	170	40,070	94
T211206 HHH DAVE OIL FR1 2'	44	5	7	11	9	149	43,878	89
Scott Engine Oil								
T211206 HHH SCOTT OIL WED 1'	246	6	9	18	172	314	7,919	156
T211206 HHH SCOTT OIL WED 2'	115	6	8	8	35	208	6,563	159
T211206 HHH SCOTT OIL THUR 1'	93	6	7	8	87	282	6,177	199
T211206 HHH SCOTT OIL THUR 2'	80	14	17	12	55	427	7,912	183
T211206 HHH SCOTT OIL FR1 1'	94	12	9	14	105	191	5,894	177
T211206 HHH SCOTT OIL FR1 2'	137	11	9	9	104	322	8,832	143
Average Engine Oil - John	107	4	3	5	69	387	15,886	82
Average Engine Oil - Scott	128	9	10	11	55	282	6,883	164

Chart Experiment 151

Chart Experiment 15/2

Chart Experiment 15/3

Chart Experiment 154

APPENDIX EXPERIMENT M1

Run	Normalized Data	7U	8B6	5IV	52Cr	53Mn	58Co	60Ni	68Cu	68Zn	68Ge	75As	82Se	85Rb	88Sr	89Y	90Zr
Blank TE	15/02/2003	8	0	182	261	42	25	111	23	18	20	19	4	20	21	1	33
1		9	1	184	261	41	24	112	23	19	20	17	4	19	21	1	28
2		6	1	159	263	42	24	110	24	19	20	17	4	19	21	1	25
3		6	0	140	268	42	24	112	24	18	20	18	5	18	22	1	24
4		8	0	152	268	42	24	110	23	19	20	17	4	17	21	1	23
5		8	0.5	153.6	263.7	41.8	24.1	111.1	23.4	18.5	19.7	17.0	4.4	18.5	21.3	1.2	26.7
Mean		8.2	0.0	18.8	30	0.4	0.3	0.8	0.5	0.3	0.2	1.0	0.1	1.3	0.2	0.0	3.7
Standard Deviation		0.2	0.0	18.8	1.1	1.0	1.4	0.7	2.3	1.5	0.9	5.9	1.9	8.9	0.9	4.2	13.0
Coefficient of Variation		3.0	4.8	12.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Count Limit 3 sigma		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
16-Feb-03																	
6		8	0	128	268	43	23	111	24	19	20	16	4	16	21	1	21
7		6	0	122	264	42	23	110	23	18	20	16	5	16	22	1	20
8		8	1	117	286	42	23	110	24	18	20	16	5	15	21	1	19
9		0	0	111	267	43	23	111	23	18	20	16	5	15	21	1	18
10		7	0	108	289	42	23	110	23	19	20	15	5	15	21	1	18
Mean		7.8	0.4	119.7	289.5	42.2	23.1	110.8	23.4	18.4	20.1	15.3	4.6	15.6	21.3	1.1	21.1
Standard Deviation		0.2	0.0	7.5	1.6	0.5	0.3	0.8	0.5	0.5	0.6	0.1	0.3	0.1	0.5	0.1	1.4
Coefficient of Variation		2.8	10.4	6.4	0.8	1.3	1.4	0.7	2.0	2.4	0.6	2.2	3.2	1.7	6.7	7.1	
Count Limit 3 sigma		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
0.1ppm 15/02/2003																	
1		24	4	137	377	408	103	113	50	322	80	24	6	105	172	1.59	38
2		24	5	137	377	405	99	114	49	329	83	24	6	106	174	1.59	37
3		24	5	135	378	401	101	114	49	322	82	24	6	106	174	1.57	37
4		24	6	137	377	408	101	115	51	322	82	24	6	102	172	1.56	38
5		24	6	137	378	401	103	114	51	328	82	24	6	105	171	1.58	40
Mean		23.7	4.8	138.4	377.7	403.9	101.4	114.2	49.8	328.7	91.8	23.8	5.8	104.8	172.8	1.57.8	37.8
Standard Deviation		0.2	0.1	1.1	1.0	2.6	1.7	1.0	0.9	4.2	1.1	0.2	0.1	1.7	1.3	1.5	1.6
Coefficient of Variation		0.7	2.7	0.9	0.2	0.7	1.7	0.9	1.8	1.3	1.2	1.0	1.9	1.7	0.7	0.8	4.3
Count Limit 3 sigma		0.12	0.08	0.02	0.01	0.05	0.05	0.03	0.04	0.04	0.03	0.06	0.05	0.02	0.13		
18-Feb-03																	
6		24	5	138	380	409	101	115	50	322	90	24	6	103	175	1.58	40
7		24	5	135	377	408	100	115	49	310	92	23	6	101	173	1.53	41
8		23	4	134	371	403	99	113	73	329	91	23	6	104	174	1.57	43
9		24	5	134	373	404	101	115	49	326	90	24	6	108	173	1.56	43
10		23	5	134	373	400	98	114	48	327	91	24	6	102	171	1.60	44
Mean		23.7	4.5	134.7	374.8	405.7	100.1	114.1	63.7	328.7	90.9	23.5	5.4	103.1	173.2	1.56.4	42.2
Standard Deviation		0.5	0.1	1.2	3.6	2.8	1.0	0.9	10.8	2.3	1.0	0.6	0.2	1.5	2.5	1.9	
Coefficient of Variation		2.0	1.4	0.9	0.9	0.7	1.0	0.8	20.1	0.7	1.0	2.6	3.4	1.8	1.6	4.2	
Count Limit 3 sigma		0.06	0.04	0.05	0.03	0.02	0.03	0.02	0.05	0.02	0.05	0.06	0.05	0.05	0.05	0.13	
0.2ppm 15/02/2003																	
1		38	9	211	444	495	179	151	69	208	164	34	7	103	232	307	60
2		38	6	211	432	555	173	150	68	203	163	33	7	105	237	312	61

APPENDIX EXPERIMENT M1

Run	Normalised Data	831b	884b	111Cf	120Sb	121Sb	128Te	138Ba	140Ce	141Pr	146Nd	151Eu	157Gd	158Tb	163Dy	165Ho	
1	Barium TE 1500/2003	77	5	0	7	1	1	607	1	1	0	0	1	0	0	0	
2		62	6	0	7	1	1	822	1	1	0	0	1	0	0	0	
3		53	5	0	6	1	1	815	1	1	0	1	0	1	0	1	
4		47	5	0	6	1	1	811	1	1	0	1	0	1	0	1	
5		41	4	0	6	1	1	798	0	1	1	0	0	0	0	0	
	Mean	55.7	4.7	0.2	6.3	1.2	0.8	810.9	0.5	0.7	0.5	0.2	0.5	0.5	0.5	0.5	
	Standard Deviation	14.0	0.5	0.0	0.8	0.0	0.1	8.5	0.1	0.0	0.1	0.0	0.1	0.1	0.1	0.1	
	Coefficient of Variation	25.2	10.5	18.1	10.2	1.8	18.0	1.1	13.9	7.2	21.8	19.2	8.2	10.2	21.8	18.6	
	Count Limit 3 sigma	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
	16-Feb-03																
6		37	4	0	5	1	1	616	1	1	0	0	1	0	0	0	
7		33	4	0	5	1	1	621	0	1	0	0	1	0	0	0	
8		31	4	0	5	1	1	622	0	1	0	0	1	0	0	0	
9		28	3	0	5	1	0	625	0	0	0	0	0	0	0	0	
10		28	4	0	5	1	0	627	0	1	0	0	1	0	0	0	
	Mean	31.4	3.6	0.2	6.1	1.0	0.6	624.2	0.4	0.5	0.3	0.1	0.6	0.2	0.3	0.1	
	Standard Deviation	3.7	0.2	0.0	0.4	0.1	0.0	5.9	0.1	0.1	0.1	0.0	0.1	0.1	0.1	0.1	
	Coefficient of Variation	11.9	0.8	0.0	24.5	7.1	9.8	9.4	0.7	23.7	15.0	18.2	20.2	12.2	28.6	27.0	
	Count Limit 3 sigma	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
	0.1 ppm 1502/2003																
1		115	41	17	72	62	8	529	188	198	239	42	144	45	276	71	
2		115	39	16	71	61	6	533	189	180	239	43	142	45	271	70	
3		114	39	16	72	61	9	537	183	181	239	43	142	45	269	69	
4		116	40	17	73	61	6	574	197	195	229	43	140	46	270	71	
5		118	40	18	72	61	9	571	188	188	238	43	140	45	271	70	
	Mean	116.1	39.8	16.4	72.1	61.5	6.0	552.4	186.0	186.5	235.1	42.7	141.4	45.4	271.4	70.0	
	Standard Deviation	1.8	0.7	0.4	0.5	0.6	0.3	21.1	2.2	3.5	4.0	0.2	1.9	0.2	2.8	1.3	
	Coefficient of Variation	1.5	1.9	2.4	0.7	0.9	3.3	1.8	1.2	1.9	1.7	0.4	1.3	0.4	1.9	0.9	
	Count Limit 3 sigma	0.05	0.07	0.02	0.03	0.10	0.11	0.04	0.06	0.05	0.05	0.04	0.04	0.01	0.03	0.03	
	16-Feb-03																
6		118	39	16	72	61	8	575	195	194	237	44	144	45	267	70	
7		112	40	17	73	61	6	584	188	183	233	44	140	44	269	70	
8		114	40	16	72	60	8	573	185	188	237	42	143	44	268	67	
9		114	39	16	72	62	9	571	187	184	231	43	141	45	269	69	
10		114	40	18	73	62	9	589	184	184	230	42	142	44	268	68	
	Mean	114.3	39.4	18.2	72.4	60.8	7.8	574.0	188.0	184.5	233.7	42.9	141.9	44.0	268.2	68.9	
	Standard Deviation	2.0	0.4	0.7	1.1	0.1	6.5	1.5	1.9	3.2	1.0	1.8	0.5	0.7	1.2	3.7	
	Coefficient of Variation	1.8	1.9	2.3	0.9	1.9	1.6	1.1	0.6	1.0	1.4	2.3	1.2	1.1	0.3	1.3	
	Count Limit 3 sigma	0.05	0.03	0.07	0.03	0.05	0.05	0.03	0.03	0.04	0.07	0.03	0.03	0.01	0.05	0.04	
	0.2 ppm 1502/2003																
1		219	72	22	125	107	15	494	350	358	459	84	291	91	540	549	
2		215	70	21	134	106	18	405	371	382	456	83	291	89	525	532	

APPENDIX EXPERIMENT M1

Run	Normalized Data	1695m	1697m	1721b	1725u	176H	1811a	1821N	2051T	2095b	2095t	2221t	238U
1	Blank TE 15/02/2003	0	1	0	1	49	13	49	3	19	10	33	1
2		0	1	0	1	41	11	43	3	18	8	25	1
3		0	1	0	1	38	9	49	2	19	7	21	1
4		0	1	0	1	34	10	49	2	21	6	18	1
5		0	1	0	1	29	8	34	2	19	5	19	1
Mean		0.2	0.7	0.2	0.6	37.7	10.4	41.5	2.4	19.2	7.3	22.8	0.8
Standard Deviation		0.0	0.1	0.0	0.1	7.7	1.6	5.4	0.4	0.7	2.0	8.8	0.1
Coefficient of Variation		11.2	15.8	26.1	12.4	20.4	15.8	13.1	15.7	3.7	27.4	29.4	17.5
Count Limit 3 sigma		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
16-Feb-03													
6		0	1	0	1	27	9	32	2	19	5	14	1
7		0	1	0	1	25	7	39	2	19	4	13	1
8		0	1	0	0	23	9	39	1	19	4	12	1
9		0	0	0	0	21	7	28	2	19	4	11	1
10		0	0	0	0	21	7	27	2	18	3	11	0
Mean		0.1	0.5	0.1	0.4	23.5	7.9	28.0	1.9	19.0	4.0	12.4	0.5
Standard Deviation		0.0	0.1	0.0	0.1	2.7	1.0	2.3	0.1	0.4	0.5	1.3	0.0
Coefficient of Variation		33.1	16.9	21.9	28.2	11.4	12.8	8.1	7.9	2.0	13.0	10.8	5.8
Count Limit 3 sigma		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
0.1ppm 15/02/2003													
1		94	291	58	288	43	232	33	188	620	188	209	232
2		93	288	65	294	45	232	35	188	625	188	208	231
3		94	288	67	297	47	238	33	188	622	188	212	230
4		94	280	65	280	48	225	32	194	622	188	212	230
5		82	288	68	285	48	233	33	190	621	188	214	235
Mean		83.4	280.8	65.9	284.9	45.8	234.0	30.3	188.1	622.1	188.7	211.5	234.2
Standard Deviation		0.9	4.2	0.9	2.0	1.9	2.7	1.2	2.1	1.7	3.1	2.9	3.6
Coefficient of Variation		0.9	1.4	1.4	1.0	4.1	1.2	3.8	1.1	0.3	1.6	1.4	1.6
Count Limit 3 sigma		0.03	0.04	0.03	0.12	0.03	0.11	0.05	0.05	0.05	0.04	0.04	0.04
18-Feb-03													
6		91	288	65	288	49	231	32	188	631	184	218	236
7		93	292	67	293	50	230	32	188	623	183	213	235
8		92	288	64	289	50	228	32	183	623	187	220	227
9		93	287	64	291	52	231	31	185	627	189	216	232
10		82	282	64	291	51	229	30	182	618	181	215	230
Mean		92.2	286.9	65.1	292.3	50.4	229.7	31.4	184.2	622.3	184.7	218.5	232.3
Standard Deviation		1.2	3.5	1.5	2.6	1.4	1.5	0.7	1.7	0.8	3.1	2.8	3.6
Coefficient of Variation		1.3	1.2	2.3	0.9	2.8	0.7	2.1	0.9	1.4	1.8	1.3	1.6
Count Limit 3 sigma		0.04	0.04	0.07	0.03	0.05	0.02	0.06	0.03	0.04	0.05	0.04	0.05
0.2ppm 15/02/2003													
1		180	571	120	580	100	491	60	578	946	422	488	
2		187	588	128	591	102	493	64	587	946	428	489	

APPENDIX EXPERIMENT M1

Run	Normalized Data	7U	5V	52Cr	55Mn	58Co	60Ni	65Cu	68Zn	69Co	82Se	85Fe	86Sr	89Y	90Zr
3	Mean	38	9	212	438	561	173	190	69	205	163	33	7	195	281
4	Standard Deviation	38	8	209	437	567	177	132	70	208	161	34	7	190	285
5	Coefficient of Variation	39	6	208	420	556	176	150	72	203	162	33	7	194	283
Mean	38.2	8.4	209.3	434.1	554.8	175.4	130.4	69.8	204.9	162.4	33.6	6.8	190.6	285.3	305.5
Standard Deviation	0.3	0.4	2.2	8.1	8.7	2.2	0.9	1.5	1.3	0.4	0.3	0.2	2.2	3.6	5.0
Coefficient of Variation	0.9	4.2	1.1	2.1	1.2	1.2	0.7	2.2	0.7	0.8	1.2	4.1	1.2	1.3	2.4
Count Limit 3 sigma	0.03	0.13	0.03	0.04	0.04	0.04	0.02	0.07	0.02	0.04	0.04	0.03	0.04	0.03	0.03
18-Feb-03															
6	Mean	38	9	209	405	552	171	130	69	208	161	33	7	193	285
7	Standard Deviation	39	8	209	415	548	178	130	67	201	162	33	7	192	277
8	Coefficient of Variation	39	8	209	410	560	174	132	68	198	162	33	7	191	279
9	Count Limit 3 sigma	38	9	208	404	556	170	130	69	207	165	33	7	188	282
10	Mean	37	8	207	408	559	176	132	68	203	163	33	7	188	278
x	Standard Deviation	38.3	8.4	208.1	408.3	563.1	173.2	131.1	68.2	203.4	162.8	32.8	6.9	180.8	280.4
s	Coefficient of Variation	0.6	0.3	0.9	4.4	4.3	2.6	1.1	0.8	4.0	1.6	0.3	0.1	2.4	3.8
sx	Count Limit 3 sigma	1.6	3.3	0.4	1.1	0.8	1.5	0.8	1.2	2.0	0.9	1.0	2.1	1.2	4.0
0.05	0.90	0.01	0.03	0.02	0.04	0.02	0.03	0.08	0.03	0.03	0.08	0.04	0.03	0.12	
19-Feb-03															
1	Mean	154	99	768	873	1058	737	258	204	290	730	104	18	876	1415
2	Standard Deviation	155	38	771	858	1029	729	254	203	291	738	103	18	887	1430
3	Coefficient of Variation	155	39	757	850	1040	718	253	202	275	717	103	15	853	1228
4	Count Limit 3 sigma	151	39	754	848	1039	702	253	201	277	732	104	15	872	1413
5	Mean	154	39	759	867	1026	730	253	202	278	719	104	18	859	1245
6	Standard Deviation	152.8	38.7	759.5	859.4	1034.4	730.8	254.1	202.9	278.0	726.9	103.7	15.8	888.8	1290.5
7	Coefficient of Variation	1.7	0.6	8.5	10.9	8.3	8.0	2.4	1.2	2.4	8.4	0.7	0.2	8.3	9.8
8	Count Limit 3 sigma	1.1	1.5	0.9	1.3	0.8	1.1	0.9	0.8	0.9	1.2	0.8	1.4	1.9	0.7
0.03	0.04	0.03	0.04	0.02	0.03	0.03	0.02	0.03	0.03	0.03	0.02	0.04	0.03	0.02	0.20
18-Feb-03															
6	Mean	155	39	758	858	1037	727	258	203	274	728	104	15	871	1418
7	Standard Deviation	155	39	759	870	1018	725	254	200	282	721	104	18	872	1225
8	Coefficient of Variation	150	38	763	868	1022	718	258	201	285	714	102	18	868	1231
9	Count Limit 3 sigma	158	38	754	850	1025	720	250	209	279	722	104	18	877	1223
10	Mean	155	38	762	853	1041	727	257	201	272	734	102	16	881	1258
x	Standard Deviation	154.2	38.4	759.4	851.6	1022.3	721.1	254.5	202.0	273.9	718.7	103.3	15.8	871.9	1237.4
s	Coefficient of Variation	2.5	0.6	4.0	8.4	12.8	4.8	2.9	2.4	8.1	8.1	12	0.4	8.5	15.1
sx	Count Limit 3 sigma	1.8	1.8	0.5	1.0	1.3	0.7	1.1	1.2	2.2	1.3	12	2.7	1.0	1.2
0.05	0.05	0.02	0.03	0.04	0.02	0.03	0.04	0.04	0.07	0.04	0.04	0.03	0.04	0.03	0.07
19-Feb-03															
1	Mean	757	192	3569	3163	5035	3400	850	818	823	3685	452	59	4341	3059
2	Standard Deviation	745	189	3559	3124	5065	3568	861	815	3557	454	60	4038	3238	3231
3	Coefficient of Variation	744	185	3559	3128	4998	3119	870	821	829	3572	469	59	4277	3239
4	Count Limit 3 sigma	758	188	3604	3134	4915	3484	853	807	817	3572	458	59	4316	3230
5	Mean	759	188	3569	3134	4955	3508	856	822	3617	4583	58	4333	3233	3239

APPENDIX EXPERIMENT M1

Run	Normalized Data	858M	111Cd	120Sn	121Sb	125Te	139Ba	140Cs	141Pr	146Sm	153Eu	157Gd	159Tb	163Dy	165Ho
3	214	72	32	134	109	16	413	354	358	458	85	279	89	531	135
4	212	71	32	135	108	15	408	385	358	450	83	278	89	532	136
5	214	68	32	135	108	15	404	387	358	453	83	278	89	523	138
Mean	214.9	70.6	31.7	134.5	107.9	15.3	406.9	388.3	358.2	456.7	83.4	278.1	89.6	500.3	136.6
Standard Deviation	2.5	1.3	0.7	0.8	1.0	0.4	3.7	4.0	2.2	7.3	0.8	1.9	0.9	1.6	5.4
Coefficient of Variation	1.1	1.5	2.1	0.6	1.0	2.7	0.9	1.1	0.6	1.8	0.9	0.7	1.0	1.2	3.8
Count Limit 3 sigma	0.03	0.05	0.08	0.02	0.03	0.05	0.03	0.02	0.06	0.03	0.02	0.03	0.04	0.03	0.02
18-Feb-03															
1	212	71	31	133	109	15	409	367	352	456	85	274	88	522	138
2	214	68	31	136	103	14	404	358	359	458	85	271	87	518	138
3	217	68	31	134	107	15	410	394	358	449	82	278	86	522	136
4	212	69	31	134	108	15	421	369	353	457	84	273	89	531	137
5	212	70	31	135	107	18	424	365	353	458	85	278	88	518	137
Mean	213.4	69.5	31.2	134.5	107.5	15.1	413.6	362.6	355.9	455.2	83.8	274.0	88.9	521.6	133.4
Standard Deviation	2.0	0.7	0.3	1.2	1.0	0.5	8.3	4.1	3.3	3.7	1.5	2.4	1.0	6.1	6.0
MRSD	0.9	0.9	1.0	0.9	1.0	0.0	2.0	1.1	0.9	0.8	1.7	0.9	1.1	1.2	0.4
Coefficient of Variation	0.03	0.03	0.03	0.03	0.03	0.00	0.06	0.03	0.03	0.02	0.05	0.03	0.04	0.1	1.1
Count Limit 3 sigma	0.03	0.03	0.03	0.03	0.03	0.00	0.06	0.03	0.03	0.02	0.05	0.03	0.04	0.03	0.03
19pm 15-Mar-2003															
1	949	323	146	595	436	70	1387	1722	1881	2127	392	1220	408	2503	638
2	982	327	147	604	443	68	1404	1721	1869	2147	390	1238	418	2520	642
3	929	322	142	600	433	69	1395	1704	1860	2129	385	1207	413	2484	620
4	957	325	148	607	440	70	1420	1782	1888	2171	398	1301	412	2474	640
5	950	332	144	592	437	70	1390	1586	1629	2113	397	1288	411	2556	649
Mean	948.9	328.7	145.3	590.5	437.0	69.6	1403.2	1701.1	1837.5	2137.2	390.2	1303.9	412.6	2487.4	619.0
Standard Deviation	12.7	5.3	2.3	6.2	3.4	0.6	16.0	23.4	28.4	22.8	6.1	10.1	3.9	24.9	7.6
Coefficient of Variation	1.3	1.0	1.6	1.0	0.8	1.2	1.1	1.4	1.7	1.0	1.3	0.9	1.0	1.2	0.6
Count Limit 3 sigma	0.04	0.03	0.05	0.03	0.02	0.04	0.03	0.04	0.05	0.03	0.04	0.02	0.03	0.04	0.02
18-Feb-03															
6	935	330	142	583	430	69	1421	1698	1851	2168	390	1305	410	2494	639
7	951	326	142	588	439	69	1400	1881	1847	2124	388	1225	411	2469	637
8	951	324	143	598	433	69	1399	1725	1870	2188	391	1312	411	2494	643
9	955	328	147	600	439	69	1424	1884	1845	2147	397	1328	421	2466	643
10	942	328	147	600	435	71	1417	1701	1888	2190	389	1324	414	2512	644
Mean	946.2	328.9	144.2	588.6	434.6	69.4	1410.2	1885.4	1882.2	2183.0	391.1	1312.3	413.7	2483.5	641.1
Standard Deviation	8.2	2.4	1.6	4.7	1.0	1.0	14.8	18.5	11.8	27.7	1.3	13.1	4.5	15.6	3.2
Coefficient of Variation	0.9	0.7	1.5	0.3	0.9	1.4	1.1	1.1	0.7	1.3	0.8	1.0	1.1	0.6	0.9
Count Limit 3 sigma	0.03	0.02	0.05	0.01	0.03	0.04	0.03	0.03	0.02	0.04	0.02	0.03	0.03	0.02	0.02
19pm 15-Mar-2003															
1	1197	1581	712	3011	2175	344	7151	9768	8584	11080	1939	6521	2298	13063	3245
2	4821	1589	721	3008	2185	344	7162	8754	8287	11135	1974	6597	2291	12889	3258
3	4810	1591	710	2884	2223	398	7188	8897	8018	10318	1948	6727	2095	12895	3218
4	6758	1580	708	2890	2143	328	7041	8865	8477	11105	1958	6745	2102	13112	3221
5	6720	1577	710	2854	2182	332	7312	8884	8539	11099	1934	6638	2059	12826	3233

APPENDIX EXPERIMENT M1

Run	Normalized Data	160E	169Tm	172Tb	175LJ	170H	161Ta	182W	206Tt	208Pd	209B	232Th	233U
3		182	554	129	578	105	427	82	382	883	382	433	450
4		161	565	130	575	106	429	70	370	827	394	431	450
5		181	558	128	568	105	423	82	359	818	383	430	455
	Mean	182.3	560.7	128.9	576.1	103.5	426.7	83.6	384.3	887.2	429.0	455.9	
	Standard Deviation	2.8	12.1	0.7	5.2	2.5	3.7	3.9	5.1	11.5	6.0	4.2	6.6
	Coefficient of Variation	1.5	2.1	0.5	0.9	2.4	0.9	8.2	7.4	1.4	1.5	1.0	1.5
	Count Limit 3 sigma	0.05	0.06	0.02	0.03	0.07	0.03	0.19	0.04	0.04	0.05	0.03	0.04
	16-Feb-03												
6		183	568	127	561	108	428	69	384	822	386	424	454
7		179	560	126	570	113	425	61	359	816	387	432	457
8		179	561	129	567	112	424	61	388	824	382	430	458
9		180	564	129	570	113	540	63	388	820	378	428	454
10		177	563	130	572	117	412	62	385	841	393	431	444
x	Mean	178.7	562.8	128.3	568.2	112.3	450.0	63.1	382.6	826.0	385.4	428.2	452.9
	Standard Deviation	2.0	2.7	1.5	4.1	3.7	50.5	11	62	9.3	5.1	3.1	5.3
	%RSD	1.1	0.5	1.2	0.7	3.3	11.2	50	1.7	1.1	1.3	0.7	1.2
	Coefficient of Variation	0.63	0.01	0.04	0.02	0.10	0.34	0.15	0.06	0.03	0.04	0.02	0.03
	Count Limit 3 sigma												
	19-Jan-2003												
1		853	2720	603	2738	611	2283	303	1738	1168	1606	2080	2210
2		853	2722	613	2732	619	2225	305	1744	1178	1630	2082	2207
3		860	2688	615	2725	648	2229	308	1888	1178	1816	2112	2145
4		850	2727	618	2738	688	2315	441	1986	1191	1821	2061	2184
5		888	2704	613	2714	674	2312	404	1718	1183	1704	2089	2169
	Mean	858.3	2712.5	611.2	2735.0	641.1	2312.9	361.8	1718.7	1183.3	1811.9	2082.7	2136.1
	Standard Deviation	6.3	15.8	3.7	16.9	25.9	18.2	68.0	25.0	5.3	17.6	21.8	25.8
	Coefficient of Variation	0.7	0.8	0.6	0.6	4.0	0.9	18.8	1.5	0.4	1.0	1.0	1.2
	Count Limit 3 sigma	0.02	0.02	0.02	0.02	0.12	0.02	0.58	0.04	0.01	0.03	0.03	0.04
	19-Feb-03												
6		855	2699	611	2728	607	2284	308	1783	1208	1789	2053	2183
7		850	2691	607	2724	674	2257	305	1728	1174	1839	2075	2194
8		855	2725	607	2710	683	2271	300	1734	1172	1776	2089	2150
9		847	2677	608	2717	685	2300	345	1711	1169	1782	2078	2158
10		852	2684	602	2735	678	2283	304	1720	1178	1838	2074	2159
	Mean	854.0	2683.2	607.0	2724.8	677.7	2257.0	312.3	1731.1	1160.1	1804.0	2073.1	2163.0
	Standard Deviation	6.8	19.6	3.2	12.0	7.0	10.9	18.8	18.7	16.0	31.3	13.1	18.8
	Coefficient of Variation	0.8	0.7	0.5	0.4	1.0	0.5	6.0	1.1	1.4	1.7	0.8	0.9
	Count Limit 3 sigma	0.02	0.02	0.02	0.01	0.03	0.01	0.18	0.03	0.04	0.05	0.02	0.03
	5ppm 15-Feb-2003												
1		4352	16247	30383	149351	3580	11594	1572	8857	6221	9318	10320	11290
2		4338	16167	3050	148353	3650	11557	1504	8856	6234	9324	10328	11251
3		4379	14039	3148	14440	3723	11789	1630	6015	6020	10905	11389	
4		4377	14571	2994	14728	3689	11459	1539	8769	6824	10776	11294	
5		4379	14782	3125	15061	4051	11388	1573	8774	5586	8279	10359	10857

APPENDIX EXPERIMENT M1

Run	Normalized Data	71	98e	9IV	52C	65Rn	502D	60JII	65Cu	68Cs	75As	80Se	65Rb	68Sr	89Y	90Zr
Mean	750.4	188.1	357.8	3138.7	4885.1	3534.7	6593.8	914.3	820.9	3858.7	463.0	52.9	4544.9	6277.4	7233.4	3057.8
Standard Deviation	6.9	2.5	18.6	15.3	60.3	56.8	6.3	10.1	4.9	21.1	4.7	0.8	36.5	68.4	42.9	37.2
Coefficient of Variation	0.9	1.3	0.5	0.5	1.2	1.6	0.7	1.1	0.6	0.6	1.0	1.4	0.8	1.1	0.8	1.2
Count Limit 3 sigma	0.02	0.04	0.02	0.01	0.04	0.05	0.02	0.03	0.02	0.02	0.03	0.04	0.03	0.03	0.02	0.04
18-Feb-03																
1	757	189	3557	3096	5028	3851	656	916	829	3533	484	59	4376	6383	7238	3170
2	754	191	3594	3181	5030	3887	658	827	828	3558	492	60	4388	6388	7238	3210
3	749	185	3605	3163	5003	3523	850	824	824	3553	457	59	4275	6272	7238	3152
4	752	191	3593	3167	4971	3481	845	933	811	3565	483	60	4302	6204	7238	3147
5	748	188	3590	3180	4908	3487	859	905	812	3522	489	59	4216	6189	7116	3077
Mean	751.4	188.4	3578.8	3153.9	4938.9	3558.8	8512	8164	8207	3583.3	451.1	59.2	4330.7	6265.0	7231.1	3161.1
Standard Deviation	4.3	2.8	20.3	32.1	51.1	90.7	10.3	10.1	8.6	35.9	2.8	0.4	67.9	61.5	74.2	48.6
Coefficient of Variation	0.6	1.5	0.6	1.0	1.0	1.4	1.0	1.2	1.1	1.1	1.0	0.6	0.7	1.1	1.1	1.5
Count Limit 3 sigma	0.02	0.05	0.02	0.03	0.03	0.04	0.04	0.04	0.03	0.03	0.03	0.02	0.02	0.03	0.03	0.05
19-Feb-03																
1	1521	372	7229	6163	10880	7201	1894	4832	7371	913	111	8894	12337	15704	8840	
2	1524	374	7177	6120	11038	7218	1821	1845	1342	7259	914	109	9201	12944	15975	7238
3	1592	370	7257	6100	11047	7084	1810	1841	1352	7348	913	112	8831	12833	15740	6418
4	1514	355	7157	5991	10846	7092	1826	1888	1329	7209	858	109	8911	12898	15892	6500
5	1549	371	7202	5977	11631	7077	1822	1819	1332	7421	903	110	8829	12860	15757	8469
Mean	1524.1	370.4	7265.9	6163.0	11020.3	7150.3	1838.5	1841.3	1393.6	7321.7	808.3	110.2	8893.3	12870.1	15831.6	6537.7
Standard Deviation	17.9	3.3	37.0	82.0	63.6	73.0	11.5	10.6	5.1	81.7	7.3	7.3	70.9	134.9	133.5	352.2
Coefficient of Variation	1.2	0.9	0.5	1.4	0.5	1.0	0.7	1.0	0.4	1.2	0.8	1.3	0.9	1.0	0.9	5.3
Count Limit 3 sigma	0.04	0.03	0.02	0.04	0.01	0.03	0.02	0.03	0.01	0.04	0.02	0.04	0.03	0.03	0.03	0.16
19-Feb-03																
6	1488	378	7168	6051	11055	7054	1957	1821	1313	7101	881	109	8882	12780	15749	7108
7	1425	373	7245	5973	10973	7122	1852	1809	1318	7310	890	110	8748	12870	15598	7038
8	1493	375	7249	6100	11027	6838	1850	1794	1322	7310	859	109	9735	12868	15561	7102
9	1542	369	7167	6131	10724	7109	1813	1823	1301	7225	882	111	8720	12850	15517	8415
10	1535	369	7284	6158	10718	7150	1807	1842	1325	7343	888	110	8821	12787	15844	6321
Mean	1518.3	372.8	7222.5	6078.9	10839.4	7034.3	1887.8	1617.7	1315.8	7320.9	8920	108.8	8788.5	12728.3	15023.7	6801.8
Standard Deviation	22.5	3.4	42.4	78.2	165.4	85.0	17.7	17.8	9.3	44.6	4.1	0.9	41.8	60.5	76.5	384.6
Coefficient of Variation	1.5	0.9	0.6	1.2	1.5	0.9	1.1	1.0	0.7	0.6	0.5	0.6	0.5	0.5	0.5	5.4
Count Limit 3 sigma	0.04	0.03	0.02	0.03	0.05	0.05	0.03	0.03	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.16
SARU 1 1502/2003																
1	878	141	280	4160	63286	129	190	651	3033	11700	758	15	44267	5478	86252	104238
2	851	140	250	4113	62217	137	192	658	3051	11732	758	14	44280	55015	86103	103077
3	873	140	245	4125	61955	142	195	668	3007	11390	768	15	438428	5379	86325	102037
4	865	140	2413	4088	63185	147	189	877	2886	11452	763	15	146831	5328	82819	102667
5	867	139	2379	4176	81838	151	187	880	3031	11680	784	15	1411545	5334	84342	101882
Mean	858.4	140.1	2500.7	4132.4	625658.9	141.2	185.5	881.3	3024.1	11590.8	7681	14.8	14074.1	54040	84388.2	103047.8
Standard Deviation	6.1	0.7	172.3	356	807.2	8.8	2.8	11.5	21.0	157.5	9.8	0.5	1877.8	82.2	1373.4	981.0
Coefficient of Variation	0.7	0.5	0.8	0.9	1.1	0.9	1.4	0.7	1.5	3.2	1.2	1.5	1.5	1.5	1.5	1.0

APPENDIX EXPERIMENT M1

APPENDIX EXPERIMENT M1

Run	Normalized Data	1600 fm	17210	17510	17814	18118	18216	20511	20816	209181	222111	23811
Mean	4954.8	14377.0	3061.9	14832.1	3730.6	11565.7	1583.0	6850.3	5953.4	9294.1	10821.1	11222.3
Standard Deviation	23.5	329.6	59.3	238.1	188.6	149.8	62.0	51.7	49.5	105.4	159.6	
Coefficient of Variation	0.5	2.3	1.9	1.6	5.1	1.3	1.4	0.7	0.9	0.5	1.0	1.4
Count/Unit 3 sigma	0.02	0.07	0.08	0.05	0.15	0.04	0.04	0.02	0.03	0.02	0.03	0.04
16-Feb-03												
6	4356	34151	30205	14748	3673	11621	1800	6808	6851	10759	11474	
7	4328	14252	3068	15103	4170	11609	1828	8125	8029	9278	10370	11438
8	4410	14830	3043	14809	3753	11501	1621	8872	5911	8253	10877	11210
9	4395	14754	3303	14858	3749	11563	1600	8055	8040	8339	11043	11318
10	4357	14859	3129	14293	3758	11603	1618	8857	5862	9297	10870	11260
Mean	4370.5	14549.3	3125.2	14971.3	3822.1	13817.4	1813.2	6803.1	5948.5	8343.6	10913.5	11340.0
Standard Deviation	36.2	340.3	104.5	173.8	202.6	117.0	12.9	81.8	80.7	120.1	98.3	113.4
Coefficient of Variation	0.9	2.3	3.3	1.2	6.3	1.0	0.8	1.0	1.4	1.3	0.9	1.0
Count/Unit 3 sigma	0.02	0.07	0.10	0.04	0.16	0.03	0.02	0.03	0.04	0.04	0.03	0.03
10 ppm 15022003												
1	9721	30209	6955	30327	8454	24217	3859	18194	13261	18532	22131	23713
2	9448	28329	6825	30522	7735	24226	3816	18248	13755	19103	22222	23214
3	9554	29765	6663	30154	7610	24230	3744	18313	13578	18888	22578	23544
4	9520	29272	6722	30697	7894	24214	3768	18120	13821	19087	22688	23446
5	9420	28889	6781	30240	8370	24249	3764	18154	13610	19150	22714	23718
Mean	9449.3	28694.8	6777.2	30201.0	7972.9	24221.6	37622	18193	13568.9	18830.0	22537.7	
Standard Deviation	125.2	378.9	88.8	25.6	404.9	17.4	44.2	82.9	138.1	242.1	244.0	202.0
Coefficient of Variation	1.3	1.2	1.3	0.9	5.1	0.1	1.2	0.5	1.0	1.3	1.1	0.9
Count/Unit 3 sigma	0.04	0.04	0.04	0.02	0.15	0.00	0.04	0.01	0.03	0.04	0.03	0.05
18-Feb-03												
6	9403	28895	6712	30331	7734	24003	3849	18281	13782	18840	22553	23225
7	8704	28691	6579	30368	6396	23770	3635	18282	13405	18774	22316	23300
8	9430	30075	6734	30115	8359	23802	3705	18263	13691	18991	22046	23308
9	9407	30094	6553	30041	8274	23969	3805	18295	13248	18571	22029	23295
10	8888	30071	6736	30311	8373	23909	3579	18448	13395	18851	22481	23234
Mean	9522.2	30043.4	6863.5	30284.3	6521.8	23984.5	3688.5	16263.4	13486.0	18837.4	22334.8	23330.0
Standard Deviation	148.6	48.4	67.7	181.0	281.4	108.1	27.2	132.8	193.9	116.7	208.6	247.0
Coefficient of Variation	1.6	0.2	1.0	0.8	3.4	0.4	0.7	0.7	1.4	0.9	0.9	1.1
Count/Unit 3 sigma	0.05	0.05	0.03	0.03	0.02	0.10	0.01	0.02	0.02	0.04	0.02	0.03
SARH 1 15022003												
1	6015	28956	4425	2913	5625	7200	670	747	22058	3035	58245	21244
2	6028	2884	4425	2959	5521	7221	565	748	22048	279	58897	21419
3	5925	2827	4422	2944	5328	7286	554	757	21512	253	58824	21307
4	5895	2854	4434	2950	5229	7163	563	771	22272	251	58784	21844
5	6976	2814	4388	2839	5118	7267	562	754	21238	258	59188	21439
Mean	5974.1	28507	4420.9	2844.6	5363.7	7277.3	502.6	755.2	21624.7	270.7	58897.4	21430.8
Standard Deviation	61.3	32.1	13.7	21.4	208.5	49.8	8.0	8.6	431.6	21.5	386.3	2344
Coefficient of Variation	0.9	1.1	0.3	0.8	3.9	0.7	1.7	1.5	2.0	0.1	0.8	1.1

APPENDIX EXPERIMENT M1

Run	Normalised Data	7U	98e	5IV	52C	55M	58C0	60N	65C1	682a	683a	75A3	825g	85R0	88S7	89T
	Count Limit 3 sigma	0.02	0.01	0.20	0.03	0.18	0.04	0.04	0.02	0.04	0.04	0.04	0.04	0.04	0.04	0.04
6	18-Feb-03	671	159	2335	4131	63352	156	187	931	3072	11852	778	14	135202	53183	93272
7		872	141	2335	4113	82005	158	184	859	3010	12153	763	14	13817	54220	93853
8		872	142	2347	4177	63173	183	184	694	3043	11659	782	15	142107	5444	93807
9		871	140	2338	4138	65500	187	183	885	3045	11855	778	15	141184	54386	94071
10		883	144	2335	4307	62280	167	182	690	3043	11823	788	15	139881	5452	92523
Mean		871.0	141.2	2342.0	4171.9	82453.9	182.2	194.1	690.0	3062.7	11788.5	777.1	14.8	1401102	5226.9	93887.5
Standard Deviation		1.8	8.0	78.2	456.1	5.1	1.7	8.4	21.9	222.8	8.1	0.4	1584.4	23.5	1353.9	11882.2
Coefficient of Variation		0.2	1.3	0.3	1.9	0.7	0.1	0.9	0.9	0.7	1.8	1.2	1.1	0.4	1.4	1.2
Count Limit 3 sigma		0.01	0.04	0.01	0.08	0.02	0.08	0.03	0.03	0.02	0.06	0.03	0.07	0.03	0.01	0.04
SARM 3 15/02/2003																
1		2716	459	27906	3459	282683	786	290	950	21148	23916	521	6	61810	2208678	16576
2		2729	456	27590	3512	2616954	798	298	981	20559	22816	325	6	83744	2186570	16948
3		2784	484	28082	3632	2598870	613	284	1003	21453	23007	322	6	82043	2801883	16810
4		2778	470	26088	3501	2615826	515	285	1005	20659	23828	318	6	82151	2806053	16882
5		2761	472	27989	3557	26185720	820	295	1004	21430	23400	315	6	82470	2828658	17404
Mean		2749.6	465.1	27927.5	3527.9	26178450	808.5	293.9	884.8	21191.8	23146.8	322.4	6.0	82445.4	2821078.2	17024.2
Standard Deviation		25.3	5.1	203.6	25.3	1881.2	10.8	2.4	12.0	240.3	384.7	6.3	0.2	764.8	119181.0	223.7
Coefficient of Variation		0.9	1.1	0.7	0.7	0.7	1.3	0.6	1.3	1.1	1.6	2.0	0.9	0.7	1.3	1.1
Count Limit 3 sigma		0.03	0.03	0.02	0.02	0.02	0.04	0.03	0.04	0.03	0.05	0.06	0.08	0.03	0.02	0.04
18-Feb-03																
6		2769	483	28158	3529	289153	821	297	958	21289	23226	311	6	82343	2327075	17244
7		2768	472	27850	3643	2634594	823	282	958	2150	23118	310	6	82747	284583	17271
8		2777	473	285516	3463	2638233	620	280	1003	21548	23537	307	6	82621	2786559	16887
9		2827	477	285801	3589	2659582	825	292	863	21390	23904	308	6	82248	2770610	17084
10		2758	477	28753	3489	2625253	617	288	1011	21508	23888	302	6	82057	2827973	17390
Mean		2781.3	473.5	28245.0	3525.2	2628711.1	817.0	291.7	864.2	21452.7	2324.4	307.4	6.2	82671.2	2812886.0	17180.8
Standard Deviation		27.8	3.8	269.6	40.9	13078.5	6.7	8.1	10.3	113.7	205.2	3.4	0.3	304.1	30316.1	146.0
Coefficient of Variation		1.0	0.8	1.3	1.2	0.5	1.2	1.1	0.5	1.2	1.1	4.6	0.4	1.1	0.9	0.5
Count Limit 3 sigma		0.03	0.02	0.04	0.03	0.01	0.04	0.03	0.03	0.02	0.04	0.03	0.14	0.01	0.03	0.01
SARM 46 15/02/2003																
1		986	17	61357	144B1	4065050	21839	8216	4421	325432	5257	35395	13	9143	22351	8825
2		995	17	61426	14457	4044171	21661	8536	43410	323332	5060	35180	13	9189	21484	8388
3		977	16	60700	142017	4041842	21690	8892	42395	315942	5002	34897	13	9087	21670	8638
4		981	16	60847	139245	4055684	21747	8853	42943	322286	4888	35142	12	9358	21305	9548
5		1001	19	60818	141077	4077848	21425	8970	43359	32567	5054	35401	12	8891	21848	9734
Mean		987.9	16.4	61081.4	142287.5	405880.0	21640.4	85754	433516	322531.8	5048.0	35197.4	12.4	8055.8	21627.3	8182.1
Standard Deviation		9.8	0.7	312.0	4285.2	22851.5	124.8	501.0	888.8	40104	140.7	205.9	0.2	447.3	280.0	650.2
Coefficient of Variation		1.0	4.1	0.5	1.8	0.8	0.6	5.3	1.9	1.2	0.6	1.4	1.8	0.9	6.9	2.2
Count Limit 3 sigma		0.03	0.12	0.02	0.05	0.02	0.02	0.18	0.08	0.04	0.08	0.02	0.05	0.04	0.21	0.07

APPENDIX EXPERIMENT M1

APPENDIX EXPERIMENT M1

APPENDIX EXPERIMENT M1

Run	Normalized Data	TU	95%	61V	62C	65Mn	58Co	60Ni	65Cu	62Zn	69Cr	85S	65Nb	85T	
5	862	16	60435	135560	3984885	21239	8820	42948	316970	4953	55160	13	8762	21401	
7	1001	19	59839	138883	4015559	21423	110448	42441	321762	4886	34591	12	8630	21521	
8	851	18	60876	140598	4050970	21353	8925	42322	317054	4918	34337	12	8776	21246	
9	1000	17	60413	142670	4050885	21471	8919	42027	317268	4901	34659	12	8868	21227	
10	Mean	1008	18	61264	138859	4026459	21272	8730	42548	312219	4937	34634	12	8781	21577
Standard Deviation	998.5	16.3	60895.3	140079.5	4023520.4	21359.5	80238.8	42837.4	317574.2	48851.1	34864.1	12.0	8525.8	21338.9	
Coefficient of Variation	6.8	0.2	3727	16277	23395.9	98.8	580.4	205.5	3555.4	54.3	308.9	0.4	81.5	185.2	
Count Limit 3 sigma	0.7	1.3	0.6	1.1	0.6	0.5	6.4	0.7	1.1	1.1	0.9	3.0	0.9	1.0	
Sept check	15/02/2013														
1	794	20.0	3787	3076	4926	351.9	888	922	871	3550	492	59	4241	61.13	
2	808	20.0	3689	2883	4832	3435	863	825	860	3594	483	58	4331	61.81	
3	824	20.1	3683	3130	4914	3801	888	923	851	3573	484	57	4412	61.49	
4	808	20.2	3682	3067	4987	3491	859	937	858	3528	479	58	4347	61.14	
5	802	18.9	3624	3080	4886	3392	844	918	842	3524	479	58	4283	60.98	
Mean	807.0	20.4	3689.1	3071.1	48581.9	3470.1	858.3	927.5	860.4	3584.8	494.2	57.5	4344.8	6130.8	
Standard Deviation	11.2	1.1	50.8	54.7	59.4	69.0	9.9	7.9	10.7	22.6	5.9	1.0	43.0	50.7	
Coefficient of Variation	1.4	0.16	1.4	1.8	1.2	1.4	1.2	0.6	1.2	0.8	1.2	0.7	0.9	0.3	
Count Limit 3 sigma	0.04	0.02	0.04	0.05	0.04	0.04	0.03	0.03	0.04	0.02	0.04	0.03	0.02	0.02	
18-Feb-09															
6	802	19.5	3621	3061	4822	3449	850	912	834	3543	472	57	4220	60.97	
7	788	19	3576	2894	4839	3410	846	908	843	3430	486	57	4205	59.93	
8	810	19.7	3623	3053	4783	3444	842	818	840	3469	466	58	4227	59.97	
9	788	19.7	3554	2673	4794	3298	850	901	820	3525	488	56	4284	60.21	
10	777	19.3	3544	2889	4735	3384	839	907	828	3449	4198	55	4193	60.25	
Mean	781.0	19.7	3575.8	3010.0	4820.7	3417.1	845.4	808.7	834.9	3485.0	4883.1	56.1	4226.5	6010.7	
Standard Deviation	12.7	1.9	30.1	48.4	84.0	28.6	4.9	6.7	6.4	51.1	6.2	1.0	34.9	50.9	
Coefficient of Variation	1.6	1.0	0.8	1.5	1.3	0.8	0.6	0.8	0.6	0.8	1.3	0.6	0.6	0.6	
Count Limit 3 sigma	0.05	0.03	0.03	0.03	0.04	0.02	0.02	0.02	0.02	0.04	0.04	0.05	0.02	0.02	
Bank TE 19/02/2013															
1	8	1	68	267	45	23	108	25	28	21	16	4	14	25	
2	8	0	66	270	45	23	111	25	30	21	15	5	14	23	
3	7	0	84	269	44	23	114	25	30	21	14	4	13	25	
4	8	0	82	271	44	23	111	28	30	22	15	5	14	23	
5	7	0	90	270	45	23	112	28	30	21	15	5	13	25	
Mean	7.5	0.4	94.1	289.4	44.4	22.7	111.6	25.4	28.4	21.3	14.9	4.5	13.8	25.6	
Standard Deviation	0.2	0.1	3.3	1.9	0.6	0.2	1.7	0.8	0.8	0.3	0.5	0.2	0.3	1.0	
Coefficient of Variation	2.4	13.1	3.5	0.8	1.3	1.0	1.5	2.4	2.8	1.4	3.3	0.4	2.2	1.1	
Count Limit 3 sigma	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
18-Feb-09															
6	7	1	68	273	43	22	111	27	29	21	14	5	13	25	
7	8	1	68	272	44	23	112	28	29	21	15	6	13	25	
8	7	0	83	283	44	23	113	25	28	20	14	5	12	26	

APPENDIX EXPERIMENT M1

Run	Normalized Data	831b6	881b6	111C4	120S1	121S0	128T6	138S9	139L4	140C9	141P7	148R10	153E1	157C4	159T10	163D7	165H10
6	3222	111	3347	2378	241899	3	114377	13745	53238	4147	2688	433	677	563	771	571	
7	3252	113	3377	1743	243262	3	112385	13389	54024	4082	2848	437	660	582	768	573	
8	3131	112	3383	1739	243233	2	113492	131528	58153	4051	2819	438	669	571	767	573	
9	3070	110	3366	1753	248370	2	114849	13835	54383	4087	2845	434	663	578	780	569	
10	3033	110	3324	2344	246422	3	116205	13440	55172	4058	2859	442	873	570	770	587	
Mean	3135.4	111.1	3351.3	1891.4	244887.3	25	113801.6	13580.4	54081.9	4087.0	2851.1	436.9	688.2	569.3	770.7	571.8	
Standard Deviation	108.7	1.3	20.8	337.7	2831.7	0.2	1078.0	189.7	838.2	38.5	24.5	3.5	7.0	4.8	5.4	4.9	
Coefficient of Variation	3.3	1.2	0.8	17.0	1.1	6.2	0.9	1.4	1.5	0.9	0.8	0.8	1.0	0.8	0.7	0.8	
Count Limit 3 sigma	0.10	0.04	0.02	0.51	0.03	0.18	0.03	0.04	0.05	0.03	0.03	0.02	0.03	0.03	0.02	0.02	-0.02
Span check 15/02/2003																	
1	4656	1523	689	2889	2125	313	6868	8459	8109	10389	1905	6340	1838	1242	3142	12778	
2	5316	1520	692	2867	2117	322	6860	8536	8241	10582	1869	6459	1865	12510	3155	12874	
3	4655	1527	681	2367	2107	327	8850	8464	8284	10695	1852	6344	1865	12554	3140	13910	
4	4750	1521	688	2889	2109	322	8619	8457	8111	10582	1821	6408	2005	12897	3156	13012	
5	4668	1519	688	2854	2078	324	8465	8276	8118	10583	1869	6400	2040	12742	3155	13207	
Mean	4815.0	1518.9	685.4	2875.3	2107.3	322.5	8524	8419.9	8174	10540.2	1862.8	6370.9	2001.8	12529.2	3149.8	12875.5	
Standard Deviation	204.5	11.2	5.4	21.9	16.1	3.3	73.6	85.7	83.8	97.4	25.7	34.7	26.3	177.3	8.1	182.8	
Coefficient of Variation	5.9	0.17	0.08	0.08	0.09	0.10	0.13	0.10	0.10	0.09	0.14	0.05	0.13	1.4	0.3	1.3	
Count Limit 3 sigma	0.18	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.02	0.04	0.01	0.04	0.04	
16-Feb-03																	
6	5375	1525	875	2851	2091	319	8486	8215	8137	10778	1854	6384	1977	12310	3135	13122	
7	5334	1488	881	2537	2097	324	8418	8194	8205	10859	1870	6294	1967	12353	3119	12230	
8	4632	1503	889	2854	2059	322	8403	8284	8091	10263	1839	6318	1939	12440	3068	12715	
9	4590	1495	878	2797	2054	321	8409	8344	8032	10284	1872	6366	1972	12261	3114	12443	
10	4704	1491	872	2855	2085	313	8409	8290	8050	10450	1845	6351	1989	12455	3117	12710	
Mean	4935.1	1490.4	878.7	2850.9	2075.3	318.7	8410.8	8283.3	8088.9	10408.3	1882.0	6342.5	1978.2	12371.7	3102.8	12715	
Standard Deviation	385.9	17.1	6.5	20.8	18.3	4.4	49.2	63.8	73.2	126.0	11.6	38.4	9.3	88.3	28.0	222.4	
Coefficient of Variation	7.9	1.1	0.7	0.9	1.4	0.8	0.9	0.9	1.2	0.6	0.6	0.5	0.7	0.9	0.9	1.7	
Count Limit 3 sigma	0.23	0.03	0.03	0.02	0.03	0.04	0.02	0.02	0.03	0.04	0.02	0.02	0.01	0.02	0.03	0.05	
Blank TE 15/02/2003																	
1	21	3	0	5	1	0	855	0	0	0	0	1	0	0	0	0	
2	19	3	0	5	1	1	850	0	0	0	1	0	0	0	0	0	
3	19	3	0	5	1	0	852	0	0	0	0	0	0	0	0	0	
4	18	3	0	5	1	0	858	0	0	0	0	0	0	0	0	0	
5	18	3	0	6	1	0	861	0	0	0	0	0	0	0	0	0	
Mean	18.8	3.1	0.2	5.3	0.6	0.4	870.7	0.3	0.4	0.1	0.1	0.5	0.2	0.1	0.0	0.1	
Standard Deviation	1.9	0.1	0.0	0.2	0.1	0.1	25.5	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	
Coefficient of Variation	9.8	2.9	18.7	4.5	10.9	12.7	20.1	0.6	23.3	27.2	10.9	24.6	18.3	28.1	31.3	N/A	
Count Limit 3 sigma	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
16-Feb-03																	
6	16	3	0	6	1	0	877	0	0	0	0	0	0	0	0	0	
7	15	3	0	6	1	0	875	0	0	0	0	0	0	0	0	0	
8	15	3	0	6	1	0	869	0	0	0	0	0	0	0	0	0	

APPENDIX EXPERIMENT M1

Run	Normalized Data	168EJ	169Tm	172Tb	173Lq	176Hf	181Ta	182V	205Tt	208Ph	209Bh	232Tt	238U
6	Mean	534	215	307	199	519	403	501	221	81477891	9229	9341	1324
7	Mean	534	212	314	203	617	405	501	216	80834897	9219	9458	1322
8	Mean	532	214	308	200	576	389	578	219	80286488	8219	9238	1303
9	Mean	532	220	308	202	586	391	592	219	80305155	9160	9484	1318
10	Mean	528	212	316	200	1082	382	1084	219	81045455	9182	9555	1319
	Standard Deviation	522.0	214.8	308.7	200.9	618.0	388.0	683.8	218.9	807058328	8201.7	8491.0	1316.7
	Coefficient of Variation	0.6	1.6	2.4	1.9	212.6	6.3	207.3	1.8	61530.2	29.2	138.8	8.2
	Count Limit 3 sigma	0.01	0.05	0.13	0.03	0.94	0.05	0.94	0.02	0.02	0.05	0.14	0.08
	Span check 15Feb2003												
1	Mean	4245	13801	2589	13831	3610	11065	1631	8185	5829	9157	10719	11380
2	Mean	4211	13529	3025	14729	3811	11377	1580	8844	5921	9170	10727	11238
3	Mean	4211	13714	2589	14429	3894	11505	1540	8827	5888	9387	10570	11348
4	Mean	4239	13769	3010	13888	3577	11478	1635	8744	5918	9168	10657	11415
5	Mean	4225	13763	2587	13840	3814	11229	1554	8731	5884	8208	10505	11284
	Standard Deviation	15.7	110.4	77.1	401.0	3705.3	11358.6	1545.1	8881.2	6938.8	8213.8	10788.8	11339.0
	Coefficient of Variation	0.4	0.8	0.6	2.9	5.5	1.5	0.7	0.18	0.7	1.0	1.2	0.8
	Count Limit 3 sigma	0.01	0.02	0.02	0.09	0.10	0.06	0.02	0.02	0.02	0.03	0.04	0.02
	Span check 16Feb2003												
6	Mean	4198	13731	2860	14078	3895	11138	1542	8539	5883	9110	10813	11305
7	Mean	4118	13589	2952	13839	3868	11041	1538	8610	5249	8044	10560	11150
8	Mean	4154	13354	2538	13820	3869	11168	1541	83558	5907	9008	10531	11100
9	Mean	4125	13320	2960	13859	3598	11159	1504	8224	5732	8159	10504	11045
10	Mean	4173	13591	2853	13825	3183	10857	1488	8428	5798	8549	10428	10860
	Standard Deviation	4153.1	13392.8	2852.8	13804.0	3587.8	10958.9	1522.3	8653.3	5785.8	9001.8	10543.3	11058.0
	Coefficient of Variation	0.8	2.6	4.4	1.5	0.8	0.9	1.7	1.0	1.1	0.9	0.8	1.4
	Count Limit 3 sigma	0.02	0.08	0.04	0.05	0.02	0.03	0.05	0.03	0.03	0.03	0.02	0.04
	Span check 16Feb2003												
1	Mean	0	0	0	0	19	6	22	1	19	2	8	0
2	Mean	0	0	0	0	18	5	21	1	15	2	8	0
3	Mean	0	0	0	0	17	5	20	2	15	2	7	0
4	Mean	0	0	0	0	18	5	19	1	16	2	7	0
5	Mean	0.0	0.2	0.0	0.2	18.9	5.3	18	1	16	2	6	0
	Standard Deviation	0.0	0.0	0.0	0.0	1.5	0.2	1.6	0.1	1.58	2.1	7.2	0.3
	Coefficient of Variation	81.1	12.8	20.8	22.9	9.9	4.2	7.9	7.5	2.0	7.0	8.9	14.9
	Count Limit 3 sigma	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Span check 16Feb2003												
6	Mean	0	0	0	0	15	6	17	1	16	2	8	0
7	Mean	0	0	0	0	14	5	18	1	16	2	6	0
8	Mean	0	0	0	0	14	5	17	1	16	2	6	0

APPENDIX EXPERIMENT #1

Run	Normalized Data	7L	9B8	51V	52Cx	52Mn	60Co	60Ni	68Co	68Zn	75As	82Se	85Rb	88Sr	89Y	90Zr	
9		8	0	82	271	44	25	110	25	20	14	5	13	25	1	12	
10		8	0	80	273	44	23	113	24	28	20	14	4	13	25	1	13
Mean	SARM 1	7.8	0.5	83.8	274.4	41.9	22.8	111.7	25.3	28.4	20.4	14.3	4.6	12.7	25.1	1.0	12.9
Standard Deviation		0.2	0.4	4.7	0.4	0.3	1.2	0.8	0.7	0.7	0.6	0.2	0.1	0.4	0.1	0.4	
Coefficient of Variation		2.5	9.7	4.1	1.7	0.9	1.3	1.1	3.1	2.5	2.3	1.7	1.7	2.1	5.5	1.5	
Count Limit 3 sigma		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
SARM 1 15/02/2003																	
1		876	141	2800	4160	63038	129	190	881	3033	117070	768	15	142367	5476	96252	164526
2		861	140	2850	4113	63217	137	192	888	3051	11732	768	14	140250	5503	85103	160377
3		873	140	2881	4125	61952	142	165	869	3007	11590	768	15	138428	5378	85325	160307
4		865	140	2813	4088	63195	147	189	817	2958	11452	763	15	140351	5326	92819	162387
5		867	139	2370	4178	61938	151	187	880	3031	11680	784	15	141545	5334	84842	101882
Mean	SARM 1	140.1	140.1	2530.7	4132.4	626534.9	141.2	188.5	880.3	3024.1	11580.8	783.1	14.8	140714.1	5404.0	94368.2	103047.6
Standard Deviation		8.1	0.7	172.3	35.8	687.2	8.6	2.6	11.8	21.0	157.5	9.8	0.5	187.8	82.2	1378.4	981.0
Coefficient of Variation		0.7	0.5	8.8	0.9	1.1	6.1	1.4	1.3	0.7	1.4	1.3	3.2	1.2	1.5	1.0	
Count Limit 3 sigma		0.02	0.01	0.20	0.03	0.03	0.16	0.04	0.04	0.02	0.04	0.04	0.04	0.05	0.04	0.03	
16-Feb-03																	
6		871	139	2383	4151	62332	158	167	901	3072	11652	778	14	138202	5593	82272	102372
7		872	141	2355	4113	63205	159	184	860	3010	12153	763	14	150167	5426	93893	101867
8		872	142	2347	4171	63173	155	184	854	3043	11958	782	15	142207	5444	88907	103817
9		871	140	2359	4136	62500	157	183	855	3045	11655	776	15	141184	5456	94501	104529
10		868	144	2335	4307	62280	157	162	850	3043	11623	788	15	138189	5452	92323	102387
Mean	SARM 1	141.2	141.2	2342.0	4171.8	624653.9	162.2	184.1	880.0	3042.7	11708.5	777.1	14.8	140110.2	5428.9	93887.5	102322.6
Standard Deviation		1.8	1.8	8.0	76.2	435.1	5.1	1.7	8.4	21.9	222.8	9.1	0.4	159.44	23.3	1355.9	1169.2
Coefficient of Variation		0.2	1.3	0.3	1.9	0.7	3.1	0.9	0.9	0.7	1.9	1.2	2.5	1.1	1.4	1.2	
Count Limit 3 sigma		0.01	0.04	0.01	0.06	0.02	0.09	0.05	0.05	0.02	0.08	0.03	0.07	0.05	0.04	0.03	
Average SARM 1		870	141	2338	4152	62361	152	188	885	3033	11890	773	15	140412	5416	94183	103130
SARM 1 Counted Value		12.90	7.75	2.99	12.00	154.82	9.35	9.05	12.00	59.00	27.00	18.35	2.01	100.00	143.00	300.00	
Counts per ppm		72	18	1218	348	494	421	23	74	61	433	40	1232	432	542	659	344
Concentrations in CRMs																	
Based on SARM 1																	
SARM 3 15/02/2003		38	28	23	10	6461	2	13	349	54	8	1	191	5172	25	11352	
Repeat		38	28	23	10	6531	2	13	354	54	8	1	191	5133	23	11353	
SARM 48 15/02/2003		14	1	50	411	10971	51	403	588	5318	12	878	1	21	40	14	59
Repeat		14	1	50	405	8861	51	588	5238	11	685	1	20	39	15	58	
SARM 3 Cert Val		U	Ge	V	Cr	Mn	Hf	Cu	Zn	Ga	As	Se	Rb	Sc	Y	Zr	
SARM 48 Cert Val		46.00	20.5	81	10	5553	2.44	2.20	13	325	54.06	1.92	0.01	180	4500	22	11000
						105	553	122	583	620			18	29	95		

APPENDIX EXPERIMENT M1

APPENDIX EXPERIMENT M1

Run	Normalized Data	166E7	169E7m	172E7	175E7n	178E7	181E7a	182E7v	205E7l	208E7u	208E7v	222E7h	224E7u
9	0	0	0	0	14	5	16	1	15	2	6	0	0
10	0	0	0	0	14	5	17	1	15	2	6	0	0
Mean	0.1	0.2	0.1	0.2	14.1	4.8	16.9	1.3	15.4	2.0	6.0	0.3	
Standard Deviation	0.0	0.0	0.0	0.0	0.6	0.2	0.6	0.1	0.3	0.1	0.2	0.0	
Coefficient of Variation	23.5	12.4	35.9	15.9	4.3	5.5	3.6	7.8	1.7	4.9	4.1	12.9	
Count Limit 3 sigma	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
SARM 1 15022003													
1	6015	2898	4425	2813	6625	7239	570	747	22058	305	58245	21244	
2	6028	2884	4425	2858	5221	7221	565	748	22046	279	58257	21419	
3	5925	2827	4422	2844	5328	7286	554	757	21512	263	58224	21307	
4	5905	2854	4494	2889	5229	7183	563	771	22272	251	59704	21944	
5	5916	2814	4398	2839	5118	7287	582	754	21738	250	59188	214739	
Mean	5874.1	2890.7	4420.9	2844.9	5383.7	7227.3	562.6	755.2	21824.7	270.7	58607.4	21450.6	
Standard Deviation	61.3	32.1	13.7	21.4	208.5	49.8	6.0	8.6	431.6	21.9	398.3	234.4	
Coefficient of Variation	0.9	1.1	0.3	0.3	0.8	1.9	0.7	1.1	1.3	2.0	8.1	1.1	
Count Limit 3 sigma	0.03	0.03	0.01	0.02	0.12	0.02	0.03	0.04	0.05	0.24	0.02	0.03	
18-Feb-03													
6	5538	2829	4412	2880	5231	7228	570	754	21750	247	58618	21193	
7	5692	2835	4448	2761	5222	7147	567	749	21540	253	57688	21193	
8	5565	2805	4394	2829	5207	7175	564	757	21346	323	58343	21222	
9	6035	2778	4354	2808	5178	7205	587	741	21604	350	58839	21247	
10	6059	2882	4344	2829	5149	7234	682	751	22280	373	58887	21702	
Mean	5897.2	2824.1	4380.4	2827.3	5197.2	7248.0	580.2	750.6	21743.9	316.2	58574.5	21411.8	
Standard Deviation	59.0	27.9	48.3	39.6	31.7	67.7	3.0	6.1	352.8	67.6	697.5	20316	
Coefficient of Variation	0.8	1.0	1.1	1.2	0.8	0.9	0.5	0.6	1.6	21.4	1.2	1.0	
Count Limit 3 sigma	0.03	0.03	0.03	0.04	0.02	0.03	0.02	0.02	0.05	0.84	0.04	0.03	
Average SARM 1	56886	2837	4401	2836	5250	7222	584	753	21764	293	59881	21431	
SARM 1 Certified Value	10250	20.0	14.20	2.00	12.40	4.90	1.45	0.83	44.80	0.28	51.00	15.00	
Counts per 25m	570	1418	310	1418	428	1674	389	810	545	1057	1169	1428	
Concentrations in CRMs Based on SARM 1													
SARM 3 15022003	2	c1	3	c1	224	13	5	c1	47	1	59	14	
Repeat	2	c1	3	c1	225	12	5	c1	48	1	60	14	
SARM 48 15022003	1	c1	1	c1	1	c1	1	c1	16530	8	8	1	
Repeat	1	c1	1	c1	2	c1	2	c1	14934	8	6	1	
SARM 13 Cert Val	15	Tin	10	Lu	Hf	Ta	W	Tl	Pb	Bi	Th	U	
SARM 18 Cert Val	2.60	3.00	0.40	201.00	25.20	0.20	0.55	43	0.47	68	14		
									14000				

APPENDIX EXPERIMENT M1

Run	Normalized Data	7J	9Be	51V	82Cr	55Mn	80Co	60Ni	63Cu	66Zn	75As	82Se	75Ge	85Rb	88Sr	85Y	85Zr
Sample diluted 25x prior to analysis																	
Calculated																	
Detection Limit Data																	
Based on standards-																	
concs. in ppb	7J	9Be	51V	82Cr	55Mn	80Co	60Ni	63Cu	66Zn	75As	82Se	75Ge	85Rb	88Sr	85Y	85Zr	
	10	24	13	25	6	30	15	9	13	6	35	8	6	6	6	28	

APPENDIX EXPERIMENT H1

Run	Normalized Data	833N	838Hd	111CJ	1205Sn	1215Hd	1220Te	138Ba	139Ba	140Cs ^a	141Pr	148Sm	153Eu	157Cs	159Tb	163Dy	165Ho
	Samples diluted 25x prior to analysis																
	Calculated																
	Detection Limit Data																
	Based on standard - samples in 100	833N	838Hd	111CJ	1205Sn	1215Hd	1220Te	138Ba	139Ba	140Cs ^a	141Pr	148Sm	153Eu	157Cs	159Tb	163Dy	165Ho
		6	6	6	6	6	6	9	9	7	5	7	8	5	6	7	6

APPENDIX EXPERIMENT M1

Run	Normalized Data	168E-5	169Tm	1721b	175Lu	178Hf	181Ta	182W	205Tl	208Po	208Bi	232Th	238U
Samples diluted 250x prior to analysis													
Calibrated													
Detection Limit Data													
Based on standards -													
samples in ppb													
		8	6	5	5	24	36	75	6	6	6	5	6

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.