A Randomized Algorithm for Approximating the Log Determinant of a Symmetric Positive Definite Matrix

Eugenia-Maria Kontopoulou

in collaboration with

C. Boutsidis, P. Drineas, P. Kambadur & A. Zouzias

Department of Computer Science
Purdue University

CSESC 2017 Conference

Purdue, April 2017

The problem of $\log \det(\mathbf{A})$

Definition

Given a Symmetric Positive Definite matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, compute (exactly or approximately) the log det (\mathbf{A}) .

Application: Maximum likelihood estimations, Gaussian processes prediction, log det-divergence metric, barrier functions in interior point methods . . .

Straightforward Computation

- Ompute the Cholesky Factorization of A, and let L be the Cholesky factor.
- 2 Compute the log-determinant of A using L:

$$\log \det(\mathbf{A}) = \log \det(\mathbf{L})^2 = 2 \log \prod_{i=1}^n L_{ii}.$$

Time Complexity: $\mathcal{O}(n^3)$.

Prohibitive for Large Data!!!!

Lemma

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an SPD matrix. For any α with $\lambda_1(\mathbf{A}) < \alpha$, define $\mathbf{B} = \mathbf{A}/\alpha$ and $\mathbf{C} = \mathbf{I}_0 - B$. Then,

$$\log \det(\mathbf{A}) = \underbrace{n \log(\alpha)}_{\Delta_1} - \underbrace{\sum_{k=1}^{\infty} \frac{\operatorname{Tr}\left(\log\left(\mathbf{C}^k\right)\right)}{k}}_{\Delta_2}.$$

Algorithm 1

Input: $\mathbf{A} \in \mathbb{R}^{n \times n}$, accuracy parameter $\epsilon > 0$, integer m > 0.

Output: $\widehat{\log \det(A)}$, the approximation to the $\log \det(A)$.

- ① Compute an estimate to the largest eigenvalue of \mathbf{A} , $\tilde{\lambda}_1(\mathbf{A})$, using the Power Method.
- 3 Create $p = \lceil 20 \log(2/\delta)/\epsilon^2 \rceil$ i.i.d random Gaussian vectors, $\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_p$.
- 4 Estimate Δ_2 with a truncated Taylor Series type randomized trace estimator that computes:

$$\Delta_2 pprox \sum_{k=1}^m \left(rac{1}{p} \sum_{i=1}^p \mathbf{g}_i^{ op} \mathbf{C}^k \mathbf{g}_i
ight).$$

Additive Error Approximation II

Bounding the Error & Running Time

Lemma

Let $\log \det(\mathbf{A})$ be the log det approximation of the above procedure. Then, we **prove** that with probability at least $1-2\delta$,

$$|\widehat{\log \det(\mathbf{A})} - \log \det(\mathbf{A})| \leq 2\epsilon \Gamma$$

where
$$\Gamma = \sum_{i=1}^n \log\left(7 \cdot \frac{\lambda_1(\mathbf{A})}{\lambda_i(\mathbf{A})}\right)$$
 and $m \geq \lceil 7\kappa(\mathbf{A})\log(\frac{1}{\epsilon}) \rceil$.

Running Time

$$\mathcal{O}\left(\mathsf{nnz}(\mathbf{A})\cdot\left(\frac{m}{\epsilon^2}+\log n\right)\cdot\log\left(\frac{1}{\delta}\right)
ight).$$

Relative Error Approximation

The Algorithm

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an SPD matrix whose eigenvalues lie in the interval $(\theta_1, 1)$, for some $0 < \theta_1 < 1$. Let $\mathbf{C} = \mathbf{I}_n - A$. Then,

$$\log\det(A) = -\underbrace{\sum_{k=1}^{\infty} \frac{\operatorname{Tr}\left(\log\left(\mathbf{C}^{k}
ight)
ight)}{k}}_{\Delta}.$$

Algorithm 2

Input: $\mathbf{A} \in \mathbb{R}^{n \times n}$, accuracy parameter $\epsilon > 0$, integer m > 0.

Output: $\widehat{\log \det(\mathbf{A})}$, the approximation to the $\log \det(\mathbf{A})$.

- $0 \ C = I_n A$
- 2 Create $p = \lceil 20 \log(2/\delta)/\epsilon^2 \rceil$ i.i.d random Gaussian vectors, $\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_p$.
- 3 Estimate Δ with a truncated Taylor Series type randomized trace estimator as:

$$\Delta pprox \sum_{k=1}^m \left(rac{1}{
ho} \sum_{i=1}^
ho \mathbf{g}_i^ op \mathbf{C}^k \mathbf{g}_i
ight).$$

Relative Error Approximation II

Bounding the Error & Running Time

Lemma

Let $\widehat{\log}\det(\mathbf{A})$ be the log det approximation of the above procedure on inputs \mathbf{A} and ϵ . Then, we **prove** that with probability at least $1-\delta$,

$$|\widehat{\log \det(\mathbf{A})} - \log \det(\mathbf{A})| \leq 2\epsilon \cdot |\log \det(\mathbf{A})|$$

and
$$m \geq \lceil \frac{1}{\theta_1} \cdot \log(\frac{1}{\epsilon}) \rceil$$
.

Running Time

$$\mathcal{O}\left(rac{\log(1/\epsilon)\log(1/\delta)}{\epsilon^2 heta_1}\cdot \mathsf{nnz}(\mathbf{A})
ight).$$

Experiments I

Dense Random Matrices

n	ļ	log det(A)	time (secs)			
	exact	mean	std	exact	mean	std
5000	-3717.89	-3546.920	8.10	2.56	1.15	0.0005
7500	-5474.49	-5225.152	8.73	7.98	2.53	0.0015
10000	-7347.33	-7003.086	7.79	18.07	4.47	0.0006
12500	-9167.47	-8734.956	17.43	34.39	7.00	0.0030
15000	-11100.9	-10575.16	15.09	58.28	10.39	0.0102

Table: Parameters: p=60, m=4, $t=\log(\sqrt{4n})$. Ground truth computed via Cholesky. Mean and standard deviation reported over 10 repetitions.

Experiments I

Dense Random Matrices Relative Error and Taylor Terms

Figure: Parameters: p=60 and $t=2\log\sqrt{4n}$. Ground truth computed using Cholesky.

Experiments II

Real Sparse Matrices
University of Florida Sparse Matrix Collection

	n	nnz	log det A			time (sec)		
name			exact	approx		exact	approx	m
				mean	std	exaci	mean	
thermal2	1228045	8580313	1.3869e6	1.3928e6	964.79	31.28	31.24	149
ecology2	999999	4995991	3.3943e6	3.403e6	1212.8	18.5	10.47	125
Idoor	952203	42493817	1.4429e7	1.4445e7	1683.5	117.91	17.60	33
thermomech_TC	102158	711558	-546787	-546829.4	553.12	57.84	2.58	77
boneS01	127224	5516602	1.1093e6	1.106e6	247.14	130.4	8.48	125

Table: Parameters: p=5, m=1:5:150 and select the one with best avg, t=5). Ground truth computed via Cholesky. Mean reported over 10 repetitions.

Thank you!

Questions?

Bibliography

C. Boutsidis, P. Drineas, P. Kambadur, E. Kontopoulou, A. Zouzias (2016), ``A Randomized Algorithm for Approximating the Log Determinant of a Symmetric Positive Definite Matrix'', submitted to LAA

ArXiv: https://arxiv.org/pdf/1503.00374.pdf