COM 201 – Data Structures and Algorithms Abstract Data Types – Stack II

Assist. Prof. Özge ÖZTİMUR KARADAĞ

Department of Computer Engineering – ALKÜ

Alanya

Previously

- Stack
 - LIFO
 - Push(), pop() etc.
 - Sample applications with stack

- Evaluating an arithmetic expression in postfix notation;
 - Presedence of Binary operations:
 - Exponentiation ↑
 - Multiplication (*) and division (/)
 - Addition (+) and subtraction (-)
 - Notations for artihmetic expressions
 - Infix A + B
 - Prefix + A B
 - Postfix A B +

- Translate following infix expressions to postfix
 - (A+B) * C
 - (A+B) * C = [AB+]*C = A B+ C*
 - (A + B) / (C D)
 - (A + B) / (C D) = [AB+]/[CD-] = A B + C D-/
 - We do not need parantheses in the postfix and prefix notations.
 - Computers usually evaluate arithmetic expressions in infix notations in two steps:
 - Step 1 Convert the expression to postfix notation
 - Step 2 Evaluate the postfix expressions
 - Stack is the main tool at each step

Application: Algebraic Expressions

- When the ADT stack is used to solve a problem, the use of the ADT's operations should not depend on its implementation
- To evaluate an infix expression //infix: operator in b/w operands
 - Convert the infix expression to postfix form
 - Evaluate the postfix expression //postfix: operator after operands; similarly we have prefix: operator before operands

Infix Expression Postfix Expression Prefix Expression 5 + 2 * 3 5 * 2 + 3 5 * (2 + 3) - 4

Application: Algebraic Expressions

- Infix notation is easy to read for humans, whereas pre-/postfix notation is easier to parse for a machine. The big advantage in pre-/postfix notation is that there never arise any questions like operator precedence
- Or, to put it in more general terms: it is possible to restore the original (parse) tree from a pre-/postfix expression without any additional knowledge, but the same isn't true for infix expressions
- For example, consider the infix expression 1 # 2 \$ 3. Now, we don't know what those operators mean, so there are two possible corresponding postfix expressions: 1 2 # 3 \$ and 1 2 3 \$ #. Without knowing the rules governing the use of these operators, the infix expression is essentially worthless.

Evaluating Postfix Expressions

- When an operand is entered, the calculator
 - Pushes it onto a stack
- When an operator is entered, the calculator
 - Applies it to the top two operands of the stack
 - Pops the operands from the stack
 - Pushes the result of the operation on the stack

Evaluating Postfix Expressions: 234+*

Key entered	Calculator action			After stack operation: Stack (bottom to top)		
2	push 2		2			
3	push 3		2	3		
4	push 4		2	3	4	
+	operand2 = pop stack	(4)	2	3		
	operand1 = pop stack	(3)	2			
	result = operand1 + operand2	(7)	2			
	push result		2	7		
*	operand2 = pop stack	(7)	2			
	operand1 = pop stack	(2)				
	result = operand1 * operand2	(14)				
	push result		14			

Converting Infix Expressions to Postfix Expressions

- An infix expression can be evaluated by first being converted into an equivalent postfix expression
- Facts about converting from infix to postfix
 - Operands always stay in the same order with respect to one another
 - An operator will move only "to the right" with respect to the operands
 - All parentheses are removed

Converting Infix Expressions to Postfix Expressions

<u>ch</u>	Stack (bottom to top)	postfixExp	
а		а	
_	_	а	
(– (a	
b	– (ab	
+	-(+	ab	
С	- (+	abc	
*	- (+ *	abc	
d	- (+ *	abcd	
)	- (+	abcd* Move operators	
	– (abcd*+ from stack to	
	_	abcd*+ postfixExp un	til " ("
/	-/	abcd*+	
е	-/	abcd*+e Copy operators from	om
		abcd*+e/- stack to postfix	
a –	(b + c * d) /	e → abcd*+	e / -

Converting Infix Expr. to Postfix Expr. -Algorithm

```
for (each character ch in the infix expression) {
  switch (ch) {
   case operand: // append operand to end of postfixExpr
      postfixExpr=postfixExpr+ch; break;
   case '(': // save '(' on stack
      aStack.push(ch); break;
   case ')': // pop stack until matching '(', and remove '('
      while (top of stack is not '(') {
        postfixExpr=postfixExpr+(top of stack); aStack.pop();
      aStack.pop(); break;
```

Converting Infix Expr. to Postfix Expr. -Algorithm

```
case operator:
    aStack.push(); break;  // save new operator
} // end of switch and for

// append the operators in the stack to postfixExpr
while (!isStack.isEmpty()) {
    postfixExpr=postfixExpr+(top of stack);
    aStack(pop);
}
```

- Transforming Infix Expressions into Postfix Expressions
 - If there are no paranthesis, need to consider operator presedence

Suppose Q is an arithmetic expression written in infix notation. This algorithm finds the equivalent postfix expression P.

- 1. Push "(" onto STACK, and add ")" to the end of Q.
- Scan Q from left to right and repeat Steps 3 to 6 for each element of Q until the STACK is empty:
- 3. If an operand is encountered, add it to P.
- 4. If a left parenthesis is encountered, push it onto STACK.
- 5. If an operator \otimes is encountered, then:
 - (a) Repeatedly pop from STACK and add to P each operator (on the top of STACK) which has the same precedence as or higher precedence than \otimes .
 - (b) Add \otimes to STACK.

[End of If structure.]

- 6. If a right parenthesis is encountered, then:
 - (a) Repeatedly pop from STACK and add to P each operator (on the top of STACK) until a left parenthesis is encountered.
 - (b) Remove the left parenthesis. [Do not add the left parenthesis to P.]

[End of If structure.]
[End of Step 2 loop.]

7. Exit.

- Transforming Infix
 Expressions into Postfix

 Expressions
 - Example: A + (B * C (D / E ↑
 F) * G) * H

Symbol Scanned	STACK	Expression P
(1) A	(A
(2) +	(+	A
(3) ((+ (A
(4) B	(+ (A B
(5) *	(+(*	A B
(6) C	(+ (*	АВС
(7) –	(+ (-	A B C *
(8) ((+ (- (A B C *
(9) D	(+ (- (A B C * D
(10) /	(+ (- (/	A B C * D
(11) E	(+ (- (/	ABC*DE
(12) ↑	(+ (- (/ ↑	ABC*DE
(13) F	(+ (− (/ ↑	ABC * DEF
(14))	(+ (-	$A B C * D E F \uparrow /$
(15) *	(+ (- *	$A B C * D E F \uparrow /$
(16) G	(+ (*	$A B C * D E F \uparrow / G$
(17))	(+	A B C * D E F ↑ / G * -
(18) *	(+ *	A B C * D E F ↑ / G * -
(19) H	(+ *	$A B C * D E F \uparrow / G * - H$
(20)		A B C * D E F ↑ / G * - H * +

The Relationship Between Stacks and Recursion

• Recursion:

- P is a recursive procedure if it contains a call statement to itself or a call to a second procedure that may eventually result in a call statement back to the original procedure P.
- P must have the two properties to make sure that the program will not run indefinitely.
 - There must be a base criteria, for which the procedure does not call itself.
 - Each time the procedure does call itself (directly or indirectly) it must be closer to the base criteria.

The Relationship Between Stacks and Recursion

- A strong relationship exists between recursion and stacks
- Typically, stacks are used by compilers to implement recursive methods
 - During execution, each recursive call generates an <u>activation</u> record that is pushed onto a stack
 - That's why we can get **stack overflow** error if a function makes too many recursive calls
- Stacks can be used to implement a nonrecursive version of a recursive algorithm

An activation record (AR) is a private block of memory associated with an invocation of a procedure. It is a runtime structure used to manage a procedure call. An AR is used to map a set of arguments, or parameters, from the caller's name space to the callee's name space.

C++ Run-time Stack

- The C++ run-time system keeps track of the chain of active functions with a stack.
- When a function is called, the run-time system pushes on the stack a frame containing
 - Local variables and return value
- When a function returns, its frame is popped from the stack and control is passed to the method on top of the stack

```
main() {
 int i = 5;
                     bar
 foo(i);
                       m = 6
foo(int j) {
                     foo
 int k;
 k = j+1;
 bar(k);
                     main
                        = 5
bar(int m) {
                 Run-time Stack
```

Example: Factorial function

```
int fact(int n)
{
  if (n ==0)
    return (1);
  else
    return (n * fact(n-1));
}
```

20

Tracing the call fact (3)

N = 0if (N==0) true return (1) N = 1N = 1if (N==0) false if (N==0) false return (1*fact(0))return (1*fact(0))N = 2N = 2N = 2if (N==0) false if (N==0) false if (N==0) false return (2***fact**(**1**)) return (2*fact(1))return (2*fact(1))N = 3N = 3N = 3N = 3if (N==0) false if (N==0) false if (N==0) false if (N==0) false return (3*fact(2)) return (3*fact(2))return (3*fact(2))return (3*fact(2))After original After 2nd call After 1st call

After 3rd call

call

Tracing the call fact (3)

N = 1 if (N==0) false return (1* 1)			
N = 2 if $(N==0)$ false return $(2*fact(1))$	N = 2 if (N==0) false return (2* 1)		
N = 3 if (N==0) false return (3* fact(2))	N = 3 if (N==0) false return (3* fact(2))	N = 3 if (N==0) false return (3* 2)	
After return from 3rd call	After return from 2nd call	After return from 1st call	return 6

22

Example: Reversing a string

```
void printReverse(const char* str)
{
    ????????
}
```

Example: Reversing a string

```
void printReverse(const char* str)
{
    if (*str) {
       printReverse(str + 1)
       cout << *str << endl;
    }
}</pre>
```

Example: Reversing a string

```
void printReverseStack(const char* str)
    Stack<char> s;
    for (int i = 0; str[i] != ' \setminus 0'; ++i)
         s.push(str[i]);
    while(!s.isEmpty()) {
        char c;
         s.topAndPop(c);
        cout << c;
```

Example: Maze Solving

• Find a path on the maze represented by 2D array

Example: Maze Solving

• Find a path on the maze represented by 2D array

• Push the traced points into a stack

Example: Maze Solving

• Find a path on the maze represented by 2D array

• Move forward if possible. If not, pop until a new direction move

is possible.

- Binary to integer is easy; how about the reverse?
- What is 233 in binary?

- Binary to integer is easy; how about the reverse?
- What is 233 in binary?

```
233 // 2 = 116 rem = 1

116 // 2 = 58 rem = 0

58 // 2 = 29 rem = 0

29 // 2 = 14 rem = 1

14 // 2 = 7 rem = 0

7 // 2 = 3 rem = 1

3 // 2 = 1 rem = 1
```

- Binary to integer is easy; how about the reverse?
- What is 233 in binary?

- Binary to integer is easy; how about the reverse?
- What is 233 in binary?

```
233 // 2 = 116 rem = 1

116 // 2 = 58 rem = 0

58 // 2 = 29 rem = 0

29 // 2 = 14 rem = 1

14 // 2 = 7 rem = 0

7 // 2 = 3 rem = 1

3 // 2 = 1 rem = 1
```

```
while dec_number > 0:
    rem = dec_number % 2
    rem_stack.push(rem)
    dec_number = dec_number / 2

bin_string = ""
while not rem_stack.is_empty():
    bin_string = bin_string + str(rem_stack.pop())
```

Example: Sort a Stack

• Using no more than one additional stack

- Quicksort
 - 44, 33, 11, 55, 77, 90, 40, 60, 99, 22, 88, 66

- Quicksort
 - 35 33 42 10 14 19 27 44 26 31

```
Step 1 - Choose the highest index value has pivot
```

Step 2 – Take two variables to point left and right of the list excluding pivot

Step 3 – left points to the low index

Step 4 – right points to the high

Step 5 – while value at left is less than pivot move right

Step 6 - while value at right is greater than pivot move left

Step 7 – if both step 5 and step 6 does not match swap left and right

Step 8 – if left ≥ right, the point where they met is new pivot

Unsorted Array


```
    Quicksort
```

44 33 11 55 77 90 40 60 99 22 88 66

```
• Lower: 1 Upper: 12
```

• Lower: Empty Upper: Empty

```
• Lower: 1, 6 Upper: 4, 12 22 33 11 40 44 90 77 60 99 55 88 66
```

```
• Lower: 1 Upper: 4 22 33 11 40 44 66 77 60 88 55 90 99
```

```
• Lower: 1,6 Upper: 4, 10 22 33 11 40 44 55 60 66 70 88 90 99
```

• Lower: 1,6,9 Upper: 4,7,10

```
    Lower: Empty
    Upper: Empty
    22 33 11 40 44 55 60 66 70 88 90 99
```

Checking for Balanced Braces

- A stack can be used to verify whether a program contains balanced braces
- An example of balanced braces

```
abc{defg{ijk}{l{mn}}op}qr
```

• An example of unbalanced braces

```
abc{def}}{ghij{kl}m
```

- Requirements for balanced braces
 - Each time we encounter a "}", it matches an already encountered "{"
 - When we reach the end of the string, we have matched each "{"

Checking for Balanced Braces -- Traces

Checking for Balanced Braces -- Algorithm

```
aStack.createStack();
                           balancedSoFar = true;
                                                       i=0;
while (balancedSoFar and i < length of aString) {
   ch = character at position i in aString; i++;
   if (ch is '{')
                                   // push an open brace
     aStack.push('{');
   else if (ch is '}')
                                   // close brace
     if (!aStack.isEmpty())
        aStack.pop();
                                   // pop a matching open brace
                                   // no matching open brace
     else
        balancedSoFar = false;
   // ignore all characters other than braces
if (balancedSoFar and aStack.isEmpty())
   aString has balanced braces
else
   aString does not have balanced braces
```