

CSE 4621 Machine Learning

Lecture 9

Md. Hasanul Kabir, PhD.

Professor, CSE Department
Islamic University of Technology (IUT)

Evaluating a Learning Algorithm

Machine Learning

Source & Special Thanks to (Coursera) Machine Learning / NN&DL Courses

Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict housing prices.

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{m} \theta_j^2 \right]$$

However, when you test your hypothesis on a new set of houses, you find that it makes unacceptably large errors in its predictions. What should you try next?

- Get more training examples
- Try smaller sets of features
- Try getting additional features
- Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, \text{etc.})$
- Try decreasing λ
- Try increasing λ

Machine learning diagnostic:

Diagnostic: A test that you can run to gain insight what is/isn't working with a learning algorithm, and gain guidance as to how best to improve its performance.

Diagnostics can <u>take time to implement</u>, but doing so can be a very good use of your time.

Machine Learning

Evaluating a hypothesis

Evaluating your hypothesis

Fails to generalize to new examples not in training set.

 $x_1 = \text{ size of house}$

 $x_2 = \text{ no. of bedrooms}$

 $x_3 = \text{ no. of floors}$

 $x_4 =$ age of house

 $h_{ heta}(x)= heta_0+ heta_1x+ heta_2x^2$ $x_5= ext{ age of flows} \ x_5= ext{ average income in neighborhood} \ + heta_3x^3+ heta_4x^4$ $x_6= ext{ kitchen size}$

 x_{100}

Evaluating your hypothesis

Dataset:

 Size	Price	
2104	400	$(x^{(1)}, y^{(1)})$
1600	330	$(x^{(2)}, y^{(2)})$
2400	369	: :
1416	232	
3000	540	$(x^{(m)},y^{(m)})$
1985	300	(
1534	315	
1427	199	$(x_{test}^{(1)}, y_{test}^{(1)})$
1380	212	$\xrightarrow{(x_{test}, y_{test})} (x_{test}^{(2)}, y_{test}^{(2)})$
1494	243	· · · · · · · · · · · · · · · · · · ·
		$(x_{test}^{(m_{test})}, y_{test}^{(m_{test})})$

Training/testing procedure for linear regression

 \rightarrow - Learn parameter θ from training data (minimizing training error $J(\theta)$)

- Compute test set error:

$$\frac{1}{1 + est} \left(6 \right) = \frac{1}{2m_{test}} \left(\frac{h_0(x_{test}) - y_{test}}{1} \right)^2$$

Training/testing procedure for logistic regression

- Learn parameter heta from training data
- Compute test set error:

$$J_{test}(\theta) = -\frac{1}{m_{test}} \sum_{i=1}^{m_{test}} y_{test}^{(i)} \log h_{\theta}(x_{test}^{(i)}) + (1 - y_{test}^{(i)}) \log h_{\theta}(x_{test}^{(i)})$$
 - Misclassification error (0/1 misclassification error):

Machine Learning

Model selection and training/validation/test sets

Overfitting example

Once parameters $\theta_0, \theta_1, \dots, \theta_4$ were fit to some set of data (training set), the error of the parameters as measured on that data (the training error $J(\theta)$) is likely to be lower than the actual generalization error.

Model selection

How well does the model generalize? Report test set 6., 9.... error $J_{test}(\theta^{(5)})$.

Problem: $J_{test}(\theta^{(5)})$ is likely to be an overly optimistic estimate of generalization error. I.e. our extra parameter (d = degree of polynomial) is fit to test set.

Evaluating your hypothesis

Dataset:

	Size	Price	
	2104	400	
	1600	330	
60%	2400	369 Training	
•	1416	232	
	3000	540	7
	1985	300	
20%	1534	315 7 Cross v.	akidotiun
20%	1427	199) set	(در)
	1380	212 } test set	
20 47	1494	243	

Train/validation/test error

Training error:

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cross Validation error:

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

Test error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

Model selection

3.
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$
 \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{3}x^{3}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{3}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{1}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0}$

Pick
$$\theta_0 + \theta_1 x_1 + \cdots + \theta_4 x^4 \leftarrow$$

Estimate generalization error for test set $J_{test}(\theta^{(4)})$ \longleftarrow

Machine Learning

Diagnosing bias vs. variance

Bias/variance

High bias (underfit)

"Just right"

High variance (overfit)

Bias/variance

Diagnosing bias vs. variance

Suppose your learning algorithm is performing less well than you were hoping. ($J_{cv}(\theta)$ or $J_{test}(\theta)$ is high.) Is it a bias problem or a variance problem?

Bias (underfit):

$$J_{cv}(\theta)$$
(cross validation $\rightarrow J_{train}(\theta)$ will be high error)

 $J_{cv}(\theta)$
 $J_{cv}(\theta)$
 $J_{train}(\theta)$
 $J_{train}(\theta)$

Variance (overfit):

Machine Learning

Regularization and bias/variance

Linear regression with regularization

Model:
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4} \leftarrow J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2} \leftarrow J(\theta)$$

Large λ \leftarrow

→ High bias (underfit)

$$\lambda = 10000. \ \frac{\theta_1 \approx 0, \theta_2 \approx 0, \dots}{h_{\theta}(x) \approx \theta_0}$$

Intermediate λ \leftarrow "Just right"

 \Rightarrow Small λ High variance (overfit)

$$\rightarrow \lambda = 0$$

Choosing the regularization parameter λ

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4}$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^{2}$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x^{(i)}_{test}) - y^{(i)}_{test})^{2}$$

Choosing the regularization parameter λ

Model:
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4}$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2}$$
1. Try $\lambda = 0 \leftarrow \gamma$ \longrightarrow $\min_{\theta} J(\theta) \rightarrow \theta^{(i)} \rightarrow J_{cu}(\theta^{(i)})$
2. Try $\lambda = 0.01$ \longrightarrow $\sup_{\theta} J(\theta) \rightarrow 0^{(i)} \rightarrow J_{cu}(\theta^{(i)})$
3. Try $\lambda = 0.02$ \longrightarrow $\lim_{\theta} J(\theta) \rightarrow \lim_{\theta} J(\theta) \rightarrow \lim_{\theta} J_{cu}(\theta^{(i)})$
4. Try $\lambda = 0.04$
5. Try $\lambda = 0.08$ $\lim_{\theta} J(\theta) \rightarrow \lim_{\theta} J_{cu}(\theta^{(i)})$

$$\lim_{\theta} J(\theta) \rightarrow \lim_{\theta} J_{cu}(\theta^{(i)})$$
Pick (say) $\theta^{(5)}$. Test error: $\lim_{\theta} J_{cu}(\theta^{(i)})$

Bias/variance as a function of the regularization parameter $\,\lambda$

Machine Learning

Learning curves

Learning curves

$$J_{train}(\theta) = \frac{1}{2m} \sum_{\substack{i=1\\m_{cv}}}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} \leftarrow$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^{2}$$

High bias

If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.

High variance

If a learning algorithm is suffering from high variance, getting more training data is likely to help. \leftarrow

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{100} x^{100}$$
 (and small λ)

Machine Learning

Deciding what to try next (revisited)

Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict housing prices. However, when you test your hypothesis in a new set of houses, you find that it makes unacceptably large errors in its prediction. What should you try next?

- Get more training examples -> fixe high variance
- Try smaller sets of features -> fixe high voice
- Try getting additional features -> fixes high bias
- Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, \text{etc}) \rightarrow \frac{1}{2}$
- Try decreasing \(\rightarrow \) fixes high hims
- Try increasing $\lambda \rightarrow \text{fixes}$ high variance

Neural networks and overfitting

"Small" neural network (fewer parameters; more prone to underfitting)

Computationally cheaper

"Large" neural network
(more parameters; more prone
to overfitting)

Computationally more expensive.

Use regularization (λ) to address overfitting.

Intuition about deep representation

Classification with Deep Neural Network

