

Joint ICTP-IAEA Workshop on Monte Carlo Radiation Transport and Associated Data Needs for Medical Applications

28 October – 8 November 2024 ICTP, Trieste, Italy

Lecture 15

BEAMnrc sources and component modules

Blake Walters

Metrology Research Centre National Research Council Canada

Sources

Main BEAMnrc GUI Window

Primary source collection

Primary source collection (cont.)

Primary source collection (cont.)

Primary sources

Can be monoenergetic or have an energy spectrum

The energy spectrum is a simple (x,y) text file

```
TITLE
N, EMIN, MODE
E(1), P(1)
E(2), P(2)
E(3), P(3)
E(N), P(N)
TITLE
        80-character title
Ν
        number of energy bins
EMIN
        lower energy of first bin (MeV)
MODE
        0 (counts/bin), 1 (counts/MeV)
E(i)
        upper energy of bin (MeV)
P(i)
        probability of bin (does not need to be normalized)
```

The energy spectrum is a simple (x,y) text file

Phase space source (ISOURC=21)

Tilted phase space source (ISOURC=24)

After tilting, particles must be incident within CMs that can handle internal sources: SLABS, SIDETUBE, FLATFILT, CONESTAK

This is also true for ANY phase space source using a non-planar IAEA format phase space file (i.e. particles scored with variable Z)

BEAM simulation source (ISOURC=23)

Component Modules

What are Component Modules (CMs)?

- Blocks of MORTRAN (sorry) code optimized for simulating typical accelerator components
- Stacked on top of one another to create an accelerator
- Outer boundaries always centred on beam (Z) axis

Cylindrical component modules

Square component modules

Multi-leaf collimators

Dynamic component modules

"time" varying opening coordinates

Dynamic component modules (cont.)

GUI inputs

Dynamic component modules (cont.)

Format for file of field definitions

```
Ex: 4 fields, 2 jaws, equal prob. ← title
       4 ← no. fields
      0.0 \leftarrow fractional monitor unit index (INDEX)
field 1 0.001, 0.2, 1, 1.1, -1, -1.1 \leftarrow zmin(1), zmax(1), xfp(1), xfp(1), xfn(1), xfn(1)
      0.201, 0.2, 1, 1.1, -1, -1.1 \leftarrow zmin(2), zmax(2), yfp(2), yfp(2), yfn(2), yfn(2)
      .0.33
field 2 \ 0.001, 0.2, 1, 1.1, -1, -1.1
                                            Restrictions on INDEX for field i:
      0.201, 0.2, 2, 2.1, -2, -2.1
                                                                       should be
                                             • INDEX(1) >= 0.0 ←
field 3 10.66
                                                                       0.0 unless
                                             • INDEX(i+1) >= INDEX(i)
                                                                       doing step-
      0.001, 0.2, 2, 2.1, -2, -2.1
                                             • INDEX(N) = 1.0
                                                                       and-shoot
      0.201, 0.2, 1, 1.1, -1, -1.1
field 4 \0.001, 0.2, 2, 2.1, -2, -2.1
      0.201, 0.2, 2, 2.1, -2, -2.1 !
```

Sample sequence files can be found in

\$OMEGA HOME/beamnrc/CMs/sample sequences

Dynamic component modules (cont.)

Field selection

- random fractional monitor unit (MU) ∈ [0,1) selected at the beginning of each primary history
- for field, i, where INDEX(i-1) < MU ≤ INDEX(i), dimension parameter, P (P≡ xfp, xbp,...), is chosen using:

Method	Eqn
step-and-shoot	$P = P_i$
dynamic	$P = P_{i-1} + \frac{P_i - P_{i-1}}{\text{INDEX}_i - \text{INDEX}_{i-1}} \times (\text{MU-INDEX}_{i-1})$

Synchronized component modules

Lobo & Popescu, Phys Med Biol 55:4431—4443

Synchronized component modules (cont.)

 For each particle (and its descendants) the same value of MU is used for all synchronized CMs

Step 1: Load the accelerator

Step 2: Define PEGS data (or go Pegsless)

Step 3: Edit CM

BLOCK e.g.

Top View

X-Section through Opening

If left blank

Dose deposited in the block matl. will be included in dose zone 1

Bit region:

- Particles passing through (LATCH by passage) or interacting in (LATCH by interaction) block matl. will have LATCH bit 1 set—so will all their 2nds
- 2nd particles created in block matl. will store the number,
 1, in bits 24-28 of their LATCH
- If left 0 (or blank) will be assigned bit region 23

Don't forget to save your input file!

Isotropically radiating source (ISOURC=3)

- Source volume must be completely contained within CMs that can handle internal sources: FLATFILT, SIDETUBE, CONESTAK, SLABS
- It's up to you to contain the source within a volume of the appropriate medium (e.g. CO700ICRU)

Directional source biasing (DSB)

