Processos ecológicos, tempo e espaço

Curso de simulações em linguagem R

Danilo G Muniz

Anteriormente, nesse curso...

Em nossos modelos tínhamos:

População constantes Indivíduos imutáveis ao longo do tempo Passo de tempo igual a uma geração

Gerações discretas

Afinal, o que são processos ecológicos?

Vamos perguntar pra quem entende

- 1. Crescimento (populacional) exponencial
- 2. Crescimento logístico de populações
- 3. Crescimento populacional estruturado
- 4. Metapopulações
- 5. Competição
- 6. Predação
- 7. Biogeografia de ilhas
- 8. Sucessão (ecológica)
- 9. Medindo a diversidade de espécies

Vamos por partes...

- 1. Crescimento (populacional) exponencial
- 2. Crescimento logístico de populações
- 3. Crescimento populacional estruturado

Crescimento populacional

População constantes

Nascimento

Morte

Crescimento populacional estruturado

Taxas de sobrevivência, mortalidade e reprodução variam com a idade

Só faz sentido se o "passo de tempo" do modelo for menor do que uma geração

Metapopulações

População de populações entre as quais existe uma dinâmica de extinção e re-colonização

Competição

"O que acontece quando não tem recursos pra todo mundo"

Competição

Redução na sobrevivência

Redução na reprodução

Mas como simular competição?

Fenomenologia ou mecanismo explícito?

- Simulação fenomenológica de competição
 - Quanto mais indivíduos, menos reprodução e/ou sobrevivência

- Simulação mecanística
 - Simular recursos e acesso a eles

Simular recursos envolve

Regras de disponibilidade ou reposição de recursos

Regras de localização desses recursos

Regras sobre os benefícios obtidos do recurso

Recursos "não vivos" são mais fáceis

 Dinâmica de ocupação (ocupado x não ocupado)

Dinâmica de busca

 Benefícios aos "donos "dos recursos

Predação (e herbivoria)

Predação e herbivoria: quando o recurso está vivo

Regras de disponibilidade ou reposição de recursos

Crescimento populacional (nascimento e morte)

Regras de localização desses recursos

Encontros e desencontros

Regras sobre os benefícios obtidos do recurso

Bichos mais ou menos alimentados

Plantas mais ou menos consumidas

Outras interações ecológicas

Encontros e desencontros

Processos ecológicos envolvem:

- Escala de tempo diferente de "uma geração"
- Dispersão ou movimentação no espaço
- Nascimentos, mortes e variação de tamanho populacional
- Encontros e desencontros
- Variação em características individuais ao longo do tempo

Biogeografia de ilhas

Biogeografia de ilhas

• Colonização e extinção de múltiplas espécies

• "meta-populações" com mais de uma espécie

Diferenças entre localidades/ilhas

Sucessão ecológica

(Gotelli)

Sucessão ecológica

Colonização/Dispersão

Nascimento, crescimento e morte

Alteração das condições abióticas

Facilitação

Se a gente excluir alterações nas condições ambientais...

Processos ecológicos envolvem:

- Escala de tempo diferente de "uma geração"
- Dispersão ou movimentação no espaço
- Nascimentos, mortes e variação de tamanho populacional
- Encontros e desencontros
- Variação em características individuais ao longo do tempo

Vamos bolar um modelo

Precisamos falar sobre o tempo

A escala do tempo

```
Comandos de preparação
for (i in 1:tempo)
     coisas acontecem...
Comandos de retorno
```

Múltiplas escalas de tempo

```
Comandos de preparação
for (i in 1:geracoes)
        mais preparação
        for (j in 1:dias)
                coisas acontecem...
        talvez tenha algo aqui, quem sabe?
Comandos de retorno
```

Dois jeitos de manejar "tempo ecológico"

 Solução clássica: as coisas acontecem em uma certa ordem

Solução alternativa: algoritmo de Gillespie

Solução clássica

- A cada passo de tempo
 - Cada indivíduo tem uma probabilidade p de morrer
 - Cada indivíduo tem uma probabilidade r de se reproduzir
 - Cada indivíduo tem uma probabilidade x de fazer
 xxxx

— ...

Vantagens e desvantagens

Supostamente mais fácil de entender

Eficiente (mais otimizável)

 Ordem das operações as vezes influencia o resultado do modelo!

Algoritmo de Gillespie

 Algoritmo projetado originalmente para simular reações químicas em baixas concentrações

 Solução para aproximar uma simulação computacional do tempo contínuo

O tempo é sempre discreto!!

```
for (i in 1:tempo)
     coisas acontecem...
```

Algoritmo de Gillespie

Nem sempre está acontecendo alguma coisa

As coisas acontecem uma de cada vez

 O tempo entre um "acontecimento" e o próximo é variável

A cada passo da simulação

Deve depender da abundância dos reagentes

Uma possível versão ecológica

DeLong, J. P., & Gibert, J. P. (2016). Gillespie eco-evolutionary models (GEM s) reveal the role of heritable trait variation in eco-evolutionary dynamics. *Ecology and evolution*, 6(4), 935-945.

Teoria neutra da biodiversidade

- A cada passo de tempo morre alguém
- Imediatamente nasce um novo indivíduo ou chega um migrante

Vamos voltar a falar de modelos?

