20.1 Design Choices	Meta-analysis
We are interested in growth rates of preteen kids. Which provides smaller SE's? • Lots of kids, few time points for each, or • Fewer kids, lots of time points on each. Why? Does that reasoning extend to more levels? Like kids within schools within cities? Are group-level factors (uranium effect) measured with the same precision as individual ones (floor level effects)?	 Analysize other analyses. General plan: Locate all studies which estimated some treatment. Publication bias might make "large p-value" studies difficult to locate. Researchers adjusted for background variables in different ways. Responses might not be the same. Ask each for permission to use data. How could that be a problem? Find a common scale and combine all data together. Simple case: the ô_i from the ith study has SE_i, so do a weighted average using for weights. Increases sample size, provides broader scope of inference.
Stat 506 Gelman & Hill, Chapter 20	Stat 506 Gelman & Hill, Chapter 20
We're Never Happy	20.2 General Ideas on Power
Why are we never satisfied with sample size <i>n</i> ?	 We want a high probability of detecting a certain size effect, θ. Restatement: need a SE smaller than half the effect size. Choices: Large effect size and moderate n. Moderate effect size and large n. Gelman: "Better to get conclusive effects on a subgroup than inconclusive effects with broader scope." Power and sample size computations are inherently hypothetical.

Stat 506 Gelman & Hill, Chapter 20 Stat 506 Gelman & Hill, Chapter 20

20.3 Continuous Responses

Gelman says shift of 2.8 SE's is conservative ($\alpha=.05, 1-\beta=.80$). Due to skew caused by ncp? Four studies looking at effects of zinc supplement on diarrhea in kids (side effect).

Responses differ:

- **1** Avg count of episodes per year \pm SE.
- 2 Avg count of episodes in 100 days (95% CI).
- 3 % days with diarrhea, Prevalence rate (cases/ total) 95% CI.
- Person-Days with diarrhea / (total person days) (counts shown).

As do treatments.

Note how they compute effect sizes in days per year and SE's.

Rules of thumb

Cutoff is 1.96 SE's above p_0 to get $\alpha=.05$, and 0.84 SE's below p_a to get 80% power. We need 2.8 SE's separation.

$$n \approx p_a (1 - p_a) \left(\frac{2.8}{p_a - p_0})^2\right)^2$$

 $\mathsf{SE}(\hat{p}_1 - \hat{p}_2) \leq .5\sqrt{1/n_1 + 1/n_2} \approx 1/\sqrt{n}$ for equal sample sizes. Given a bound for $SE(\hat{p}_1 - \hat{p}_2)$ of k, $n \geq k^{-2}$.

Stat 506

Gelman & Hill, Chapter 20

Include predictors

Reduces residual variance. Little other change.

Power computation is made based on untestable (in the pilot data) assumptions.

Do not expect "small p-value" even if computations were done properly.

tat 506 Gelman & Hill, Chapter 20

Stat 506

Gelman & Hill, Chapter 20