Fondamenti di Informatica

Allievi Automatici A.A. 2015-16

Codifica dell'Informazione Cenni all'aritmetica del Calcolatore Prime nozioni di algebra di Boole

L'informazione

Messaggio che apporta conoscenza:

- C'è una situazione iniziale, di **ignoranza**
- C'è un evento fisico di qualche tipo
- C'è una situazione finale, in cui la conoscenza è superiore a quella iniziale
- Es: la lettura di questa slide
 - All'inizio non sapevate che cosa fosse l'informazione
 - Alcuni (molti) fotoni hanno colpito la vostra retina in un certo modo
 - Ora sapete che cosa è l'informazione!

Altri esempi di informazione

- Esempi di informazione:
 - Un suono può apportare informazione:
 - Può portare una notizia
 - Può apportare conoscenza sull'ambiente circostante (il suono del clacson di una macchina che sta arrivando)
 - L'informazione può anche semplicemente essere il fatto che si è mossa dell'aria
- Lo stesso messaggio può portare quantità di informazione diverse a seconda dello stato di chi lo riceve (ognuno lo interpreta, lo elabora)

Elaborazione

- Che cosa si può fare, con questa informazione?
 - La notizia: trascriverla, ritrasmetterla, eventualmente dopo averla modificata, tradotta, sintetizzata
 - Il segnale: registrarlo, usarlo per reagire (fare un salto all'indietro), misurarne l'intensità
 - Il suono: modificarlo, registrarlo, utilizzarlo per creare messaggi visivi, per controllare dei proiettori luminosi,

Elaborazione automatica

 I calcolatori elettronici sono in grado di compiere molto bene alcune di queste elaborazioni di informazione...

Purché:

- L'informazione sia rappresentata con una codifica opportuna (digitale, cioè codificata numericamente)
- Le elaborazioni da compiere siano descritte in modo algoritmico

Informazione numerica (digitale)

- Che cosa intendiamo per informazione?
- Informazione: in effetti, di non facile definizione
- Per i nostri fini (capire cosa può fare un calcolatore)
 possiamo considerare informazione ciò che viene
 trasmesso da un messaggio rappresentabile con un
 numero (intero)

Esempi

 Un diario contiene di certo dell'informazione. Si tratta di informazione che può essere manipolata da un calcolatore?

Informazione

 "Quello che c'è scritto" è informazione che può essere rappresentata con un numero?

• Sì:

- possiamo assegnare un numero di due cifre numero ad ogni lettera dell'alfabeto ('a'=10,'b'=11 etc), compresi gli spazi
- chiamiamo la coppia di cifre corrispondente ad una certa lettera codice della lettera (ad esempio: 10 per 'a')
- possiamo trascrivere il diario utilizzando i nostri codici, uno dietro l'altro
- Otteniamo un numero intero, molto grande, che codifica il diario
- L'informazione contenuta nella codifica è sufficiente a ricostruire "quello che c'è scritto" nel diario

Cosa ce ne facciamo, dell'informazione?

- Che cosa può fare un calcolatore con il numero che rappresenta il diario?
 - può memorizzarlo
 - può eventualmente trasmetterlo
 - può misurare la frequenza d'uso di alcune parole
 - può controllare che le parole siano scritte in italiano corretto
 - può cercare di capire la psicologia dello scrivente?

Tutta l'informazione?

- Qualcuno potrebbe obiettare che nel diario c'è molto di più di quello che c'è scritto...
- Per esempio: la *grafia* (il modo con cui chi ha scritto ha scritto quello che ha scritto)
 potrebbe contenere dell'informazione
- Possiamo tradurre l'informazione sulla grafia in un numero?

Codificare un'immagine

а

8	41	77	119	178	221	234	248
28	41	77	128	192	234	248	255
28	41	119	178	221	248	255	248
41	77	128	192	248	255	248	234
77	119	178	234	255	248	221	192
119	178	221	248	255	234	221	192
128	192	234	255	248	234	178	150
150	221	248	248	234	192	150	128

Ad ogni punto facciamo corrispondere un numero che ne codifica il livello di grigio. Mettendo di seguito tutte le cifre di tali numeri in un ordine dato, l'immagine è codificata da un solo grande numero.

100	100	0	0	0	0	255	255
50	0	50	50	50	50	255	255
50	0	50	255	255	255	255	255
50	0	50	255	255	255	255	255
50	0	50	255	255	255	255	255
50	0	50	50	50	50	255	255
100	100	0	0	0	0	255	255
100	100	50	50	50	50	255	255
(a)							

E il suono?

- E il suono? Anche tutta l'informazione contenuta in un brano musicale la posso trasformare in un numero?
- Ma che cos'è, in questo caso, l'"informazione"?
 - Ad esempio: la conoscenza che serve per "riprodurre" acusticamente il brano (cioè per riprodurne il suono)

I numeri del suono

- La percezione del suono è fisicamente causata dalla variazione, nel tempo, della pressione dell'aria in prossimità del timpano.
- La pressione si può misurare (*cioè convertire in un numero*) a intervalli di tempo piccoli (campionamento), i valori sono numeri..
- ...anche un brano musicale si può rappresentare con un numero intero

Insomma...

- ...molta dell'informazione con cui abbiamo a che fare e che può interessarci elaborare...
- ...può essere rappresentata con un numero intero
- Cosa non può esserlo?
 - Per Pitagora, niente (tutto è numero)
 - Per il pancomputazionalismo, nemmeno (tutta la realtà fisica sarebbe rappresentabile digitalmente)

In questo corso...

- Non tratteremo il problema di acquisire l'informazione che vogliamo elaborare
 - Immagineremo di averla già disponibile, in forma numerica
- Non tratteremo il problema di comunicare i risultati dell'elaborazione in modo efficacemente fruibile
 - Ci accontenteremo di «visualizzarli da qualche parte»
- Impareremo, invece, come far compiere al calcolatore le elaborazioni che desideriamo sulla nostra informazione codificata, per trasformarla:
 - Impareremo, cioè, a programmare il calcolatore

Calcolo e ambiente

Rappresentare l'informazine: associare significati e simboli

Rappresentare l'informazine: associare significati e simboli

(l'interpretazione è univoca)

(l'interpretazione **non** è univoca)

Codifica dell'informazione

- Rappresentare (codificare) le informazioni
 - con un insieme limitato di simboli (detto *alfabeto* \mathcal{A})
 - in modo non ambiguo (algoritmi di traduzione tra codifiche)
- Esempio: numeri interi
 - Codifica decimale (dec, in base dieci)
 - $-\mathcal{A} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, |\mathcal{A}| = \text{dieci}$
 - "sette" : 7_{dec}
 - "ventitre": 23_{dec}
 - "centotrentotto": 138_{dec}
 - Notazione posizionale
 - · dalla cifra più significativa a quella meno significativa
 - ogni cifra corrisponde a una diversa potenza di dieci

Numeri naturali

 Notazione posizionale: permette di rappresentare un qualsiasi numero naturale (intero non negativo) nel modo seguente:

la sequenza di **cifre c**_i:

$$\begin{array}{c} c_n \ c_{n-1} \ \dots \ c_1 \\ \text{rappresenta in } \textbf{base B} \geq 2 \ \text{il valore:} \\ c_n \times B^{n-1} + c_{n-1} \times B^{n-2} + \dots + c_1 \times B^0 \\ \text{dove:} \ c_i \in \{0, \, 1, \, 2, \, \dots, \, B-1\} \ \text{per ogni} \ 1 \leq i \leq n \end{array}$$

- La notazione decimale tradizionale è di tipo posizionale (ovviamente con B = dieci)
- Esistono notazioni non posizionali
 - Ad esempio i numeri romani: II IV VI XV XX VV

Numeri naturali in varie basi

- Base generica: B
 - $-\mathcal{A} = \{ \dots \}$, con $|\mathcal{A}| = B$, sequenze di n simboli (cifre)
 - $c_n c_{n-1} ... c_2 c_1 = c_n \times B^{n-1} + ... + c_2 \times B^1 + c_1 \times B^0$
 - Con n cifre rappresentiamo Bⁿ numeri: da 0 a Bⁿ-1
- "ventinove" in varie basi

- Codifiche notevoli
 - Esadecimale (sedici), ottale (otto), binaria (due)

Codifica binaria

- Usata dal calcolatore per tutte le informazioni
 - $B = due, A = \{ 0, 1 \}$
 - BIT (crasi di "BInary digIT"):
 - unità elementare di informazione
 - Dispositivi che assumono due stati
 - Ad esempio due valori di tensione V_A e V_B
- Numeri binari naturali:

la sequenza di **bit b**_i (cifre binarie):

$$b_n \ b_{n-1} \dots b_1 \quad con \ b_i \in \{0, 1\}$$

rappresenta in base 2 il valore:
 $b_n \times 2^{n-1} + b_{n-1} \times 2^{n-2} + \dots + b_1 \times 2^0$

Numeri binari naturali (bin)

- Con n bit codifichiamo 2ⁿ numeri: da 0 a 2ⁿ-1
- Con 1 Byte (cioè una sequenza di 8 bit):
 - $-00000000_{bin} = 0_{dec}$
 - $-00001000_{\text{bin}} = 1 \times 2^3 = 8_{\text{dec}}$
 - $-00101011_{\text{bin}} = 1 \times 2^5 + 1 \times 2^3 + 1 \times 2^1 + 1 \times 2^0 = 43_{\text{dec}}$
 - $-111111111_{\text{bin}} = \Sigma_{\text{n}=1,2,3,4,5,6,7,8} \ 1 \times 2^{\text{n}-1} = 255_{\text{dec}}$
- Conversione bin → dec e dec → bin
 - bin-dec: $11101_{bin} = \Sigma_i b_i 2^i = 2^4 + 2^3 + 2^2 + 2^0 = 29_{dec}$
 - dec→bin: metodo dei resti

Conversione dec → bin

Metodo dei resti: si calcolano i resti delle divisioni per due

In pratica basta:

- Decidere se il numero è pari (resto 0) oppure dispari (resto 1), e annotare il resto
- 2. Dimezzare il numero (trascurando il resto)
- 3. Ripartire dal punto 1. fino a quando si ottiene 0 come risultato della divisione

Ecco un esempio, per quanto modesto, di **algoritmo**

si ottiene 0: fine

19:
$$2 = 9 \rightarrow 1$$

9: $2 = 4 \rightarrow 1$
4: $2 = 2 \rightarrow 0$
2: $2 = 1 \rightarrow 0$
1: $2 = 0 \rightarrow 1$

Metodo dei resti

76:
$$2 = 38$$
 (0)
 $38: 2 = 19$ (0)
 $19: 2 = 9$ (1)
 $9: 2 = 4$ (1)
 $4: 2 = 2$ (0)
 $2: 2 = 1$ (0)
 $1: 2 = \mathbf{0}$ (1)

Del resto 76 = 19x4 = **1001100**Per raddoppiare, in base due, si aggiunge uno zero in coda, così come si fa in base dieci per decuplicare

N.B. Il metodo funziona con tutte le basi!
$$29_{10}=45_6=32_9=27_{11}=21_{14}=10_{29}$$

 $76_{dec} = 1001100_{bin}$

Ma i numeri non sono solo interi...

- Rappresentazione dei numeri interi anche negativi
 - Ci sono due diverse codifiche interessanti
 - In modulo e segno (in pratica non usata)
 - in complemento a 2 (quella usata universalmente)
- Rappresentazione dei numeri frazionari
 - Stabilendone la "precisione" (in "virgola fissa")
 - cioè stabilendo il numero di cifre dopo la virgola
- Rappresentazione dei numeri "reali"
 - In realtà, di una loro approssimazione (in "virgola mobile")
 - si rappresenta un "campionamento del continuo"

Codifica di testi, immagini, suoni, ...

- Caratteri: sequenze di bit
 - Codice ASCII: utilizza 7(8) bit: 128(256) caratteri
 - 1 Byte (l'8° bit può essere usato per la parità)
- Testi: sequenze di caratteri (cioè di bit)
- Immagini: sequenze di bit
 - bitmap: sequenze di pixel (n bit, 2ⁿ colori)
 - jpeg, gif, pcx, tiff, …
- Suoni (musica): sequenze di bit
 - wav, mid, mp3, ra, ...
- Filmati: immagini + suoni
 - sequenze di …? … "rivoluzione" digitale

Operazioni sui numeri binari

- Dove sono memorizzati i numeri, in un calcolatore?
 - Ad esempio in "registri" di memoria, cioè schiere di circuiti (hardware) che contengono sequenze di bit
 - Essendo hardware, contengono necessariamente un numero predefinito di bit (ovviamente non di più, ma neanche di meno)
 - Se il numero di bit è "cablato", un registro può contenere numeri fino a un massimo prefissato
 - Non possono esserci bit "vuoti" (la tensione è V_A o V_B)

Dentro al calcolatore... Informazione e memoria

- Una parola di memoria è in grado di contenere una sequenza di n ≥ 1 bit
- Di solito si ha: n = 8, 16, 32 o 64 bit
- Una parola di memoria può dunque contenere gli elementi d'informazione seguenti:
 - Un carattere (o anche più di uno)
 - Un numero intero in binario naturale o in C₂
 - Un numero frazionario in virgola mobile
 - Alcuni bit della parola possono essere non usati
- Lo stesso può dirsi dei registri della CPU

Ad esempio...

Algebra di Boole ed Elementi di Logica

Cenni all'algebra di Boole

- L'algebra di Boole (inventata da G. Boole, britannico, seconda metà '800), o algebra della logica, si basa su operazioni logiche
- Le operazioni logiche sono applicabili a operandi logici, cioè a operandi in grado di assumere solo i valori vero e falso
- Si può rappresentare vero con il bit 1 e falso con il bit 0 (convenzione di logica positiva)

Operazioni logiche fondamentali

- Operatori logici binari (con 2 operandi logici)
 - Operatore OR, o somma logica
 - Operatore AND, o prodotto logico
- Operatore logico unario (con 1 operando)
 - Operatore NOT, o negazione, o inversione
- Poiché gli operandi logici ammettono due soli valori, si può definire compiutamente ogni operatore logico tramite una tabella di associazione operandi-risultato

Operatori logici di base e loro tabelle di verità

A	В	A or B	_	_			
$\overline{\cap}$	0	<u> </u>	<u>A</u>	<u>B</u>	A and B		
0	1	1	0	0	0	Α	not A
1	0	1	0	1	0	0	1
1	1	1	1	0	0	U	I
ا (د	omm	na logica)	1	1	1	1	0
(5	OIIIII	ia iogica)	(p	rodo	otto logico)	(neg	azione)

Le tabelle elencano tutte le possibili combinazioni in ingresso e il risultato associato a ciascuna combinazione

Espressioni logiche (o Booleane)

- Come le espressioni algebriche, costruite con:
 - Variabili logiche (letterali): p. es. A, B, C = 0 oppure 1
 - Operatori logici: and, or, not
- Esempi:

```
A or (B and C)
(A and (not B)) or (B and C)
```

 Precedenza: l'operatore "not" precede l'operatore "and", che a sua volta precede l'operatore "or"

A and not B or B and C = (A and (not B)) or (B and C)

 Per ricordarlo, si pensi OR come "+" (più), AND come "×" (per) e NOT come "-" (cambia segno)

Tabella di verità di un'espressione logica

<u>A</u>	В	NOT ((A OR B) AND (NOT A))
0	0	1
0	1	0
1	0	1
1	1	1

Specificano i valori di verità per tutti i possibili valori delle variabili

Tabella di verità di un'espressione logica

A and B or not C

	Y	or \	X	$\mathbf{Y} = \text{not } \mathbf{C}$	X = A and B	ABC
= 1	1	or	0	not 0 = 1	0 and 0 = 0	000
= 0	0	or	0	not 1 = 0	0 and 0 = 0	0 0 1
= 1	1	or	0	not 0 = 1	0 and 1 = 0	010
= 0	0	or	0	not 1 = 0	0 and 1 = 0	011
= 1	1	or	0	not 0 = 1	1 and $0 = 0$	100
= 0	0	or	0	not 1 = 0	1 and $0 = 0$	101
= 1	1	or	1	not 0 = 1	1 and 1 = 1	110
= 1	0	or	1	not 1 = 0	1 and 1 = 1	111

A che cosa servono le espressioni logiche?

- A modellare alcune (non tutte) forme di ragionamento
 - -A = e vero che 1 è maggiore di 2 ? (sì o no, qui è no) = 0
 - B = è vero che 2 più 2 fa 4 ? (sì o no, qui è sì) = 1
 - A and B = è vero che 1 sia maggiore di 2 e che 2 più 2 faccia 4 ?
 Si ha che A and B = 0 and 1 = 0, dunque no
 - A or B = è vero che 1 sia maggiore di 2 o che 2 più 2 faccia 4 ?
 Si ha che A or B = 0 or 1 = 1, dunque sì
- OR, AND e NOT vengono anche chiamati connettivi logici, perché funzionano come le congiunzioni coordinanti "o" ed "e", e come la negazione "non", del linguaggio naturale
- Si modellano ragionamenti (o *deduzioni*) basati solo sull'uso di "o", "e" e "non" (non è molto, ma è utile)

Che cosa **non** si può modellare tramite espressioni logiche?

- Le espressioni logiche (booleane) *non modellano*:
 - Domande esistenziali: "c'è almeno un numero reale x tale che il suo quadrato valga −1 ?" (si sa bene che non c'è)
 ∃x | $x^2 = -1$ è falso
 - Domande *universali*: "*ogni* numero naturale è la somma di quattro quadrati di numeri naturali ?" (si è dimostrato *di sì*) $\forall x \mid x = a^2 + b^2 + c^2 + d^2$ è vero ("teorema dei 4 quadrati")
 Più esattamente andrebbe scritto: $\forall x \exists a,b,c,d \mid x = a^2 + b^2 + c^2 + d^2$
- ∃ e ∀ sono detti "operatori di quantificazione", o quantificatori
- La logica che usa solo or, and, not è il calcolo proposizionale
- Aggiungendo gli operatori di quantificazione si ha il calcolo dei predicati (che è una logica molto più complessa)