电导率测定氯化银解离平衡反应热力学常数

薛明怡 **151250177** 化学化工学院

实验原理

摩尔电导率与 溶度积

• 电解质电导率:

$$\kappa(AgCl) = \kappa(solution) - \kappa(H_2O)$$

• 摩尔电导率:

$$\Lambda_m = \kappa V_m = \frac{\kappa}{c}$$

• 难溶盐摩尔电导率:

$$\Lambda_m(AgCl) = \frac{\kappa(AgCl)}{c(AgCl)}$$

$$c(AgCl) = \frac{\kappa(AgCl)}{\Lambda_m(AgCl)}$$

$$= \frac{\kappa(AgCl)}{\Lambda_m^\infty(AgCl)}$$

$$= \frac{\kappa(AgCl)}{\kappa(AgCl)}$$

$$= \frac{\kappa(AgCl)}{\kappa(AgCl)}$$

• 难溶盐溶度积:

$$K_{sp} = a_{Ag^+} \cdot a_{Cl^-}$$

 $= \gamma_{\pm}^2 \cdot \frac{c_{Ag^+}c_{Cl^-}}{C^{\theta 2}}$
 $\approx \frac{c_{Ag^+}c_{Cl^-}}{c_{\theta}^2}$
 $= (\frac{c_{AgCl}}{c_{\theta}})^2$

实验原理

热力学平衡

- 假设标准摩尔焓和标准摩尔熵在温度变化范围不大的情况下是常数
- ・ 溶度积与热力学常数:

$$\Delta_r G_m^{\theta} = -RT ln K_{sp}$$

$$= \Delta_r H_m^{\theta} + T \Delta_r S_m^{\theta}$$

$$ln K_{sp} = -\frac{\Delta_r H_m^{\theta}}{RT} - \frac{\Delta_r S_m^{\theta}}{R}$$

- 通过测量不同温度下的饱和氯化银溶液电导率
- →不同温度下氯化银电导率
- →不同温度下饱和氯化银溶液浓度
- →不同温度下氯化银溶度积
- →溶度积的自然对数与温度倒数按Y = AX+B拟合
- →标准摩尔生成焓 = -AR, 标准摩尔生成熵 = -BR

实验方案

氯化银制备

- 取10*mL* 0.1*mol/L AgNO*3 溶液于烧杯中, 向其中加入 10*mL* 0.1*mol/L KCl* 溶液 (边加边搅拌).
- •用吸滤瓶过滤溶液,滴加电导水抽滤3次.
- 称量制得的白色固体, 并将其保存在棕色试剂瓶中或立即使用.

实验方案

电导率测定

- •取少量新制的AgCl 固体溶解在50mL 烧杯中, 加入20mL 电导水, 搅拌, 在25℃恒温槽中静置约30min, 达到溶解平衡.
- ·测定该温度下饱和AgCl溶液和电导水的电导率.
- 重复上述步骤,继续测定30 ℃, 35 ℃, 40 ℃, 50 ℃ 下饱和*AgCl* 溶液和电导水的电导率.
- · 将电导法测量的AgCl 溶度积可与电动势测定实验中的值进行对比.

Thank you!