

IEL – protokol k projektu

Vojtěch Fiala xfiala61

21. prosince 2019

Obsah

1	Příklad 1	2
2	Příklad 2	5
3	Příklad 3	7
4	Příklad 4	9
5	Příklad 5	11
6	Shrnutí výsledků	12

Stanovte napětí U_{R5} a proud I_{R5} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
Α	80	120	350	650	410	130	360	750	310	190

Zjednodušování začnu sloučením zdrojů napětí U_1 a U_2 v jeden zdroj.

Obvod zjednoduším sloučením rezistorů R_4 a R_5 , které jsou zapojeny v sérii.

Dále sloučím R_7 a R_8 , které jsou zapojeny paralelně.

Z rezistorů $R_1,\,R_2$ a R_3 udělám hvězdu a vytvořím $R_A,\,R_B,\,R_C$

$$U = U_1 + U_2 = 200 V$$

$$R_{45} = R_4 + R_5 = 490 \Omega$$

$$R_{78} = \frac{R_7 \cdot R_8}{R_7 + R_8} = 117.8 \Omega$$

$$R_A = \frac{R_1 \cdot R_2}{R_1 + R_2 + R_3} \doteq 161.3475 \Omega$$

$$R_B = \frac{R_1 \cdot R_3}{R_1 + R_2 + R_3} \doteq 101.7731 \Omega$$

$$R_C = \frac{R_2 \cdot R_3}{R_1 + R_2 + R_3} \doteq 189.0071 \Omega$$

Dále spojíme sériově zapojené obvody R_B a R_{45} . Stejným způsobem spojíme také R_C a R_5 .

$$R_{B45} = R_B + R_{45} = 591.7731 \; \Omega$$

$$R_{C6} = R_C + R_6 = 939.0071 \; \Omega$$

Rezistory R_{B45} a R_{C6} jsou zapojeny paralelně a sloučím je v jeden.

$$R_{B45C6} = \frac{R_{B45} \cdot R_{C6}}{R_{B}45 + R_{C6}} \doteq 363.0039 \,\Omega$$

Rezistory $R_{B45C6},\,R_A$ a R_{78} jsou zapojeny sériově - sloučím je v celkový odpor v obvodu.

$$R_{ekv} = R_A + R_{B45C6} + R_{78} = 642.1514 \Omega$$

Na základě celkového odporu vypočítám proud v obvodu.

$$I = \frac{U}{R} = 0.3115 A$$

V sérii je proud všude stejný, což využiju k vypočítání napětí U_{RB45C6} .

$$U_{RB45C6} = I \cdot R_{B45C6} = 113.0757 V$$

Nyní chci U_{RB45C6} rozdělit zpět. Protože jsou v paralelním zapojení, proud se v nich liší, čehož využiju k výpočtu I_{RB45} .

 $I_{RB45} = \frac{U_{RB45C6}}{R_B45} = 0.1911 \ A$

Protože rezistory R_4 , R_5 a R_B jsou zapojeny sériově, proud mezi nimi je stejný. $I_5 = I_{B45}$. Z toho už můžeme vypočítat napětí U_{R5} .

$$U_{R5} = I_5 \cdot R_5 = 68.796 \ V$$

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
С	200	70	220	630	240	450	300
U	R ₁	F	R ₂	R₄ R ₅		U _{R6}	

Vypočítám si R_i odebráním rezistoru R_6 a zkratováním zdroje napětí.

$$R_i = \frac{R_5 \cdot \left(R_4 + \frac{R_{12} \cdot R_3}{R_{12} + R_3}\right)}{R_5 + \left(R_4 + \frac{R_{12} \cdot R_3}{R_{12} + R_3}\right)} \doteq 222.1101 \ \Omega$$

Vypočítám si U_i za pomoci metody smyčkových proudů.

Budu počítat proud I_B využitím maticových rovnic.

$$\begin{bmatrix} R_1 + R_2 + R_3 & -R_3 \\ -R_3 & R_3 + R_4 + R_5 \end{bmatrix} \cdot \begin{bmatrix} I_A \\ I_B \end{bmatrix} = \begin{bmatrix} U \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 920 & -630 \\ -630 & 1320 \end{bmatrix} \cdot \begin{bmatrix} I_A \\ I_B \end{bmatrix} = \begin{bmatrix} 200 \\ 0 \end{bmatrix}$$

Vypočítám si determinant původní matice a determinant matice pro hodnotu I_B .

$$\Delta = \begin{vmatrix} 920 & -630 \\ -630 & 1320 \end{vmatrix} = 817500$$

$$\Delta_{I_B} = \begin{vmatrix} 920 & 200 \\ -630 & 0 \end{vmatrix} = 126000$$

Za pomoci Cramerova pravidla vypočítám I_B :

$$I_B = \frac{\Delta_{I_B}}{\Delta} \doteq 0.1541 \ A$$

$$U_i = U_{R_5} = I_B \cdot R_5 = 69.345 \ V$$

S využitím U_i a R_i mi vznikne následující ekvivalentní obvod:

Nyní už můžu vypočítat I_{R6} a $U_{R6}\colon$

$$I_{R6} = \frac{U_i}{R_i + R_6} \doteq 0.1328 \; A$$

$$U_{R6} = I_{R6} \cdot R_6 = 39.84 \ V$$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
С	110	0.85	0.75	44	31	56	20	30

Označím si jednotlivé uzly a určím směry proudu.

Pro všechny nezávislé uzly si sestavím rovnice.

$$A: I_1 + I_{R2} - I_{R1} = 0$$

$$B: I_{R5} - I_{R2} - I_{R4} = 0$$

$$C: I_2 + I_{R4} - I_{R5} - I_{R3} = 0$$

Vyjádřím si jednotlivé proudy:

$$I_{R1} = \frac{U_A}{R_1}$$

$$I_{R2} = \frac{U_B - U_A}{R_2}$$

$$I_{R3} = \frac{U_C}{R_3}$$

$$I_{R4} = \frac{U_B - U_C}{R_4}$$

$$I_{R5} = \frac{U + U_C - U_B}{R_5}$$

Hodnoty pro jednotlivé proudy dosadím do rovnic:

$$A: I_{1} + \frac{U_{B} - U_{A}}{R_{2}} - \frac{U_{A}}{R_{1}} = 0$$

$$B: \frac{U + U_{C} - U_{B}}{R_{5}} - \frac{U_{B} - U_{A}}{R_{2}} - \frac{U_{B} - U_{C}}{R_{4}} = 0$$

$$C: I_{2} + \frac{U_{B} - U_{C}}{R_{4}} - \frac{U + U_{C} - U_{B}}{R_{5}} - \frac{U_{C}}{R_{3}} = 0$$

Do rovnic dosadím konkrétní čísla a upravím si je postupně až do následujícího tvaru:

$$-75 U_A + 44 U_B = -1159.4$$

$$60 U_A - 215 U_B + 155 U_C = -6820$$

$$70 U_B - 85 U_C = 2450$$

Tyto čísla dosadím do matice a spočítám její determinant.

$$\Delta = \begin{vmatrix} -75 & 44 & 0\\ 60 & -215 & 155\\ 0 & 70 & -85 \end{vmatrix} = -332475$$

Spočítám si determinanty matic pro hodnoty U_B a U_C

$$\Delta_{U_B} = \begin{vmatrix} -75 & -1159.4 & 0\\ 60 & -6820 & 155\\ 0 & 2450 & -85 \end{vmatrix} = -20909190$$

Cramerovým pravidlem spočítám hodnotu U_B :

$$\frac{\Delta_{U_B}}{\Delta} = 62.8895 \ V$$

Obdobně si spočítám i determinant pro hodnotu U_C :

$$\Delta_{U_C} = \begin{vmatrix} -75 & 44 & -1159.4 \\ 60 & -215 & -6820 \\ 0 & 70 & -2450 \end{vmatrix} = -7636230$$

Cramerovým pravidlem spočítám hodnotu U_C :

$$\frac{\Delta_{U_C}}{\Delta} = 22.9678 \ V$$

Nyní už mám všechny hodnoty potřebné pro výpočet U_{R4} a I_{R4} .

$$I_{R4} = \frac{U_B - U_C}{R_4} \doteq 1.9961 \ A$$

$$U_{R4} = I_{R4} \cdot R_4 = 39.922 V$$

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{C_2} = U_{C_2} \cdot \sin(2\pi f t + \varphi_{C_2})$ určete $|U_{C_2}|$ a φ_{C_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$L_1 [mH]$	$L_2 [mH]$	C_1 [μ F]	C_2 [µF]	f [Hz]
Α	35	55	12	14	120	100	200	105	70

Nejprve si spočítám úhlovou frekvenci ω :

$$\omega = 2\pi f \doteq 439.823 \; rad \cdot s^- 1$$

Určím si směry proudů ve smyčkách:

Vypočítám si impedanci kondenzátorů:

$$Z_{C1} = \frac{-i}{\omega \cdot C_1} \doteq -11.3682 \ i\Omega$$

$$Z_{C2} = \frac{-i}{\omega \cdot C_2} \doteq -21.6537 \ i\Omega$$

Vypočítám si impedanci cívek:

$$Z_{L1} = \omega \cdot L_1 \doteq 52.7788 i\Omega$$

$$Z_{L2} = \omega \cdot L_2 \doteq 43.9823 \ i\Omega$$

Vytvořím si rovnice pro jednotlivé proudy I_A , I_B a I_C .

$$I_A: I_A \cdot (Z_{C1} + R_1) = -U_2$$

$$I_B: I_B \cdot (Z_{C2} + R_2 + Z_{L2}) + I_C \cdot (-Z_{C2}) = U_2$$

$$I_C: I_B \cdot (-Z_{C2}) + I_C \cdot (Z_{L1} + Z_{C2}) = -U_1$$

Do rovnic dosadím konkrétni hodnoty a přepíšu je do maticového tvaru.

$$\begin{bmatrix} 12 - 11.3682i & 0 & 0 \\ 0 & 14 + 22.3286i & 21.6537i \\ 0 & 21.6537i & 31.1251i \end{bmatrix} \cdot \begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix} = \begin{bmatrix} -55 \\ 55 \\ -35 \end{bmatrix}$$

Vypočítám si Sarrusovým pravidlem determinant původní matice a obdobně vypočítám determinanty matic pro hodnoty I_B a I_C .

$$\Delta \doteq 2240.5426 + 7799.3348i$$

$$\Delta_{I_B} \doteq 28076.7256 + 29637.12i$$

$$\Delta_{I_C} \doteq -28303.2572 - 18099.036i$$

Cramerovým pravidlem vypočítám hodnoty I_B a I_C .

$$I_B = \frac{\Delta_{I_B}}{\Delta} \doteq 4.4656 - 2.31704i$$

$$I_C = \frac{\Delta_{I_C}}{\Delta} \doteq -3.1067 + 2.7365i$$

Vypočítám si I_{C2} .

$$I_{C2} = I_B - I_C \doteq 7.5723 - 5.0535i A$$

Dále si vypočítám U_{C2} .

$$U_{C2} = I_{C2} \cdot Z_{C2} \doteq -109.427 - 163.9683i V$$

Nakonec vypočítám $|U_{C2}|$ a φC_2 .

$$|U_{C2}| = \sqrt{Re(U_{C2})^2 + Im(U_{C2})^2} \doteq 197.1291 V$$

$$\varphi C_2 = \arctan \frac{Im(U_{C2})}{Re(U_{C2})} \doteq 0.9823 \ rad$$

V obvodu na obrázku níže v čase $t=0[\mathbf{s}]$ sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$

sk.	U [V]	C [F]	$R\left[\Omega\right]$	$u_C(0)$ [V]
С	35	5	30	14
	R		•	

Shrnutí výsledků

Příklad	Skupina	Výsledky			
1	A	$U_{R5} = 68.796V$	$I_{R5} = 0.1911A$		
2	С	$U_{R6} = 39.84V$	$I_{R6} = 0.1328A$		
3	С	$U_{R4} = 39.922V$	$I_{R4} = 1.9961A$		
4	A	$ U_{C_2} = 197.1291V$	$\varphi_{C_2} = 0.9823 rad$		
5	С	u_C	=		