Apellido y Nombre:	_
Carrera: DNI:	_
Llenar con letra mavúscula de imprenta GRANDE	

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática Algoritmos y Estructuras de Datos

Algoritmos y Estructuras de Datos. Recuperatorio. [30 de Junio de 2005]

[Ej. 1] [clases (20 pts)]

- a) [parcial-1 lista (20 pts)] Escribir los siguientes métodos del TAD lista: insert(p,x), erase(p), begin().
- b) [parcial-2 arbol-bin (20 pts)] Escribir los siguientes métodos del TAD árbol binario: find(x,p), insert(p,x), clear().
- c) [parcial-3 set (20 pts)] Escribir los siguientes métodos del TAD conjunto por listas ordenadas: insert(x), find(x), clear().

[Ej. 2] [programacion (50 pts)]

a) [map-pre-post (30 pts)] Escribir una función void map_pre_post(tree<int> &T,list<int> &L, int (*fpre)(int),int (*fpost)(int)) que lista los valores nodales del árbol ordenado orientado T en una mezcla de orden previo y posterior, de acuerdo a la siguiente definición

$$mpp(\Lambda, f, g) = lista vacía$$

 $mpp(n, f, g) = f(n), mpp(n_1, f, g), ..., mpp(n_m, f, g), g(n)$

donde $n_1...n_m$ son los hijos del nodo n. Por ejemplo, si T=(1 3 (5 6 7 8)), f(x) = x y g(x) = x + 1000, entonces map_pre_post(T,L,f,g) debe dar L=(1,3,1003,5,6,1006,7,1007,8,1008,1005,1001).

- b) [purge (10 pts)] Escribir una función void purge(list<int> & L) que purga elementos repetidos de una lista usando un conjunto como estructura auxiliar y con una implementación tal que sea $O(n \log n)$.
- c) [cum-sum-pila (10 pts)] Escribir una función void cum_sum_pila(stack<int>&S) que modifica a la pila S dejando la suma acumulada de sus elementos, es decir, si los elementos de S antes de llamar a cum_sum_pila (S) son $S = (a_0, a_1, \ldots, a_{n-1})$, entonces después de llamar a cum_sum_pila (S) debe quedar $S = (a_0, a_0 + a_1, \ldots, a_0 + a_1 + \ldots + a_{n-1})$. Por ejemplo, si S = (1,3,2,4,2) entonces después de hacer cum_sum_pila (S) debe quedar S = (1,4,6,10,12). Restricciones: (i) usar una pila auxiliar; (ii) NO usar más estructuras auxiliares que la indicada ni otros algoritmos de STL; y (iii) el algoritmo debe ser O(n).

[Ej. 3] [operativos (20 pts)]

• [parcial-1 color-grafo (10 pts)]

Colorear el grafo de la figura usando un algoritmo heurístico ávido para obtener el mínimo número de colores posible. ¿La coloración obtenida es óptima? Justifique.

Apellido y Nombre:	Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas
Carrera: DNI:	Departamento de Informática
[Llenar con letra mayúscula de imprenta GRANDE]	Algoritmos y Estructuras de Datos
• [parcial-1 t-exec (10 pts)] Dadas las funciones	
• $T_1(n) = 5n^3 + 2n! + \log n$, • $T_2(n) = 2^{15} + 2 \cdot 5^n + 3 \cdot n^2$	<i>'</i>
• $T_3(n) = 6! + n^2 + n^{1.7}$, • $T_4(n) = 1.3 \cdot 2^3 + 20n + \log n$	$T_{\square} < T_{\square} < T_{\square} < T_{\square}$
• [parcial-2 rec-arbol (8 pts)] Dil previo y posterior son	oujar el árbol ordenado orientado cuyos nodos, listados en orden
 ORD_PRE ={A, Z, W, D, E, X, Y ORD_POST ={E, D, W, X, Z, P, 	
• , , , , , , ,	los los caracteres siguientes con sus correspondientes
probabilidades, contruir el código l $P(C) = 0.2, P(O) = 0.1, P(N) = 0$	pinario y encodar la palabra CONEXA $1.1, P(A)=0.05, P(L)=0.05, P(X)=0.1, P(E)=0.1, P(Q)=0.3$
nodo q, es decir indique cuales son [parcial-3 heap-sort (5 pts)] Da "montículos" ("heap-sort"). Mostra	articione el árbol AOO (z (q w y 1) (r t u)) con respecto al sus antecesores y descendientes propios, derecha e izquierda. ados los enteros {21, 12, 9, 3, 5, 10, 7, 6} ordenarlos por el método de ar el montículo (minimal) antes y después de cada
- , - , -	ados los enteros $\{17, 19, 9, 6, 2, 3, 13, 18, 9, 0\}$ ordenarlos por el quick-sort"). En cada iteración indicar el pivote y mostrar el
• [parcial-3 abb (5 pts)] Dados lo	s enteros $\{10, 12, 15, 11, 7, 6, 4, 5, 8, 9\}$ insertarlos, en ese orden, en lostrar las operaciones necesarias para eliminar los elementos 7, 12
• [parcial-3 hash-dict (5 pts)] Ins	sertar los números 5, 18, 28, 11, 10, 38, 23, 7, 30 en una tabla de etas, con función de dispersión $h(x)=x\%10$ y estrategia de
Ej. 4] [preguntas (10 pts, 2.5 por pregun	[ta)]
a) ¿Cuál es el criterio para elegir una	buena función de dispersión?
Debe tratar de concentrar los	elementos en pocas cubetas.
Debe tratar de concentrar los	elementos en una sóla cubeta.
Debe tratar de concentrar los	elementos en la primera cubeta.
Debe distribuir los elementos e	en la forma más uniforme posible entre las cubetas.
b) Dado el árbol binario (x e (d f g	g)), ¿cuál de las siguientes opciones es verdadera?
Es completo y es lleno.	
Es completo pero no lleno.	
Es lleno pero no completo. Ni es completo ni es lleno.	

c) ¿Cuál es el número de niveles en un árbol binario lleno en función del número n de nodos en el árbol?

2

Recuperatorio. [30 de Junio de 2005]

	ombre: DNI:	Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática
	ra mayúscula de imprenta GRANDE]	Algoritmos y Estructuras de Datos
d)	Sea un tabla de dispersión abierta con B cubeta dispersión es lo suficientemente buena como par cubetas, el costo medio de inserción de un nuevo $O(n^2/B)$	a distribuir los elementos en forma uniforme entre las
	$ \begin{array}{c} $	