Lecture 9: Hypothesis Testing

STATS 101: Foundations of Statistics

Linh Tran

linh@thetahat.ai

January 29, 2019

Announcements

- ► Next 'assignment' is posted (due 1/29 @ 9:00am)
- ► A *Colab* script is available for today's class.

Outline

Hypothesis testing

- Review
- Hypothesis tests
- ► The power function
- ► Two-sided test & p-values
- Common statistical tests
 - t-test
 - ▶ F-test
 - ► Likelihood ratio test

Recall

Given $X_n, \ldots, X_n \stackrel{iid}{\sim} P_0$, we can form an estimator

$$\hat{\theta}_n = \omega(X_1, \dots, X_n) \tag{1}$$

of some underlying parameter on P_0 .

- $ightharpoonup \hat{ heta}$ has a sampling distribution
- ▶ We can try to find estimators that reach the CRLB
- ▶ We can opt for estimators that are ranges (i.e. Cl's)

Hypothesis testing

We sometimes want to make claims about our parameter space Θ .

Example: Are male and female births are equally likely?

Hypothesis testing

We sometimes want to make claims about our parameter space Θ .

Example: Are male and female births are equally likely?

The common way of making statistical claims:

- 1. Separate our parameter space Θ into subsets, Θ_0 and Θ_1 , where $\Theta_1 = \Theta \setminus \Theta_0$.
- 2. Pick a rule for choosing between Θ_0 and Θ_1 .
- 3. Apply that rule on the realized data, i.e. $X_1 = x_1, ..., X_n = x_n$.

Note: A typical formulation of a hypothesis test is

$$H_0: \theta \in \Theta_0 \text{ vs } H_1: \theta \in \Theta_1$$
 (2)

Let
$$X_1,...,X_n \stackrel{\textit{iid}}{\sim} \textit{N}(\mu,1) : \mu \geq 0$$
.

Let
$$X_1,...,X_n \stackrel{iid}{\sim} N(\mu,1) : \mu \geq 0$$
.

Our claim: $\mu \neq 0$.

We can separate Θ in two ways:

- 1. $H_0: \mu = 0$ vs. $H_1: \mu > 0$
- 2. $H_0: \mu > 0$ vs. $H_1: \mu = 0$

Question: which way should we choose?

Picking a rule

Let $X_1, ..., X_n \stackrel{iid}{\sim} P_{\theta}$ where θ is unknown.

Suppose our hypothesis is set up such that

$$H_0: \theta \in \Theta_0 \text{ vs. } H_1: \theta \in \Theta_1$$
 (3)

A *testing procedure* is a rule for choosing between H_0 vs H_1 .

Picking a rule

Let $X_1, ..., X_n \stackrel{iid}{\sim} P_{\theta}$ where θ is unknown.

Suppose our hypothesis is set up such that

$$H_0: \theta \in \Theta_0 \text{ vs. } H_1: \theta \in \Theta_1$$
 (3)

A testing procedure is a rule for choosing between H_0 vs H_1 .

Common approach: define a *critical region* **C**, where we "reject" H_0 if $X_1, ..., X_n \in \mathbf{C}$.

Let $X_1,...,X_n \stackrel{\textit{iid}}{\sim} N(\mu,1) : \mu \geq 0$.

Our hypothesis: $H_0: \mu = 0$ vs. $H_1: \mu > 0$

Let $X_1,...,X_n \stackrel{iid}{\sim} N(\mu,1) : \mu \geq 0$.

Our hypothesis: $H_0: \mu = 0$ vs. $H_1: \mu > 0$

An adhoc rule: reject H_0 if \bar{X}_n is far away 'enough' from 0 (e.g. at least 2).

Our critical region is therefore

$$\mathbf{C} = \left\{ (X_1, ..., X_n) : \frac{\sum_{i=1}^n X_i}{n} > 2 \right\}$$
 (4)

Some notes:

- $ightharpoonup \frac{\sum_{i=1}^{n} X_i}{n}$ is referred to as the *test-statistic*
- ► The value 2 is referred to as the *critical value* (or threshold)
- We typically write hypothesis tests δ as $T(X_1,...,X_n) > c$

Types of error

In truth:

- ▶ Our data will either come from Θ_0 or Θ_1 .
- Our test will either pass or fail.

This gives us four possible realizations for δ :

	Retain H_0	Reject <i>H</i> ₀
H ₀ true	Correct	Type I error
H_1 true	Type II error	Correct

Colab link

Let
$$X_1,...,X_n \stackrel{\textit{iid}}{\sim} N(\mu,1) : \mu \geq 0$$
.

Our hypothesis: $H_0: \mu = 0$ vs. $H_1: \mu > 0$

Let
$$X_1,...,X_n \stackrel{iid}{\sim} N(\mu,1) : \mu \geq 0$$
.

Our hypothesis: $H_0: \mu = 0$ vs. $H_1: \mu > 0$

- ▶ If we reject H_0 when (in reality) $\mu = 0$, then we've committed a Type I error.
- ▶ If we accept H_0 when (in reality) $\mu > 0$, then we've committed a Type II error.

Common approach: Select a critical value *c* such that

$$\sup_{\theta \in \Theta_0} P_{\theta}(\mathsf{Type} \; \mathsf{I} \; \mathsf{Error}) \le 0.05 \tag{5}$$

Colab link

The Power Function

Given a hypothesis test δ with critical region **C**, the *power function* $\pi(\theta|\delta):\Theta\to [0,1]$ is

$$\pi(\theta|\delta) = P\left((X_1, ..., X_n) \in \mathbf{C}\right) = P_{\theta}(\text{reject } H_0) : \theta \in \Theta \tag{6}$$

n.b. $\pi(\theta|\delta)$ summarizes both Type I and II errors, e.g.

- $P_{\theta}(\mathsf{Type} \; \mathsf{I} \; \mathsf{Error}) = \pi(\theta|\delta) : \theta \in \Theta_0$
- ▶ P_{θ} (Type II Error) = $1 \pi(\theta|\delta)$: $\theta \in \Theta_1$

Remark: The ideal $\pi(\theta|\delta)$ will have

- $\pi(\theta|\delta) = 0 \,\forall \, \theta \in \Theta_0$
- $\pi(\theta|\delta) = 1 \,\forall \, \theta \in \Theta_1$

Let
$$X_1,...,X_n \stackrel{iid}{\sim} N(\mu,1) : \mu \geq 0$$
.

Our hypothesis: $H_0: \mu = 0$ vs. $H_1: \mu > 0$ Our hypothesis test: reject H_0 if $\bar{X} \geq 2$

Let
$$X_1,...,X_n \stackrel{iid}{\sim} N(\mu,1) : \mu \geq 0$$
.

Our hypothesis: $H_0: \mu = 0$ vs. $H_1: \mu > 0$ Our hypothesis test: reject H_0 if $\bar{X} \ge 2$

Since $\bar{X} \sim N\left(\mu, \frac{1}{n}\right)$, we have that

$$\pi(\theta|\delta) = P_{\mu}(\text{reject } H_0) \tag{7}$$

$$= P_{\mu} \left(\bar{X} > 2 \right) \tag{8}$$

$$= 1 - P_{\mu} \left(\bar{X} \le 2 \right) \tag{9}$$

$$= 1 - F_{\bar{X},\mu}(2) \tag{10}$$

$$= 1 - \Phi\left(\frac{2-\mu}{\sqrt{1/n}}\right) \tag{11}$$

Colab link

Let $X_1,...,X_n \stackrel{\textit{iid}}{\sim} N(\mu,1) : \mu \geq 0$.

Our hypothesis: $H_0: \mu = 0$ vs. $H_1: \mu > 0$

Our hypothesis test: reject H_0 if $\bar{X} \ge 2$

Our power function: $1 - \Phi\left(\frac{2-\mu}{\sqrt{1/n}}\right)$

Two sided tests

Our working example is a *one-sided* hypothesis

$$H_0: \mu = 0 \text{ vs. } H_1: \mu > 0$$
 (12)

Problem: Many times, we don't have enough information to restrict our parameter space.

Two sided tests

Our working example is a *one-sided* hypothesis

$$H_0: \mu = 0 \text{ vs. } H_1: \mu > 0$$
 (12)

Problem: Many times, we don't have enough information to restrict our parameter space.

Approach: Construct hypotheses only against specific values in Θ , e.g.

$$H_0: \mu = \mu_0 \text{ vs. } H_1: \mu \neq \mu_0$$
 (13)

The p-value

Recall: hypothesis tests δ can be written as $T(X_1,...,X_n) > c$

- $ightharpoonup T(X_1,...,X_n)$ is random and has a sampling distribution.
- ▶ We can restrict calculation of T to $\theta \in \Theta_0$.
- ▶ The resulting statistic has pdf $f_{T,\theta}$.
- ▶ Let $t = T(X_1 = x_1, ..., X_n = x_n)$. The *p-value* is

$$P(|T(X_1,...,X_n)| \ge |t|)$$
 (14)

Example of a p-value for a 2-sided test.

Let
$$X_1,...,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$$
.

Our hypothesis: $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$

Let $X_1,...,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$.

Our hypothesis: $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$ We can form a test statistic

$$U = n^{1/2} \frac{\bar{X}_n - \mu_0}{\sigma_n'} \tag{15}$$

where
$$\sigma'_{n} = \left(\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X}_{n})^{2}\right)^{1/2}$$
.

- ▶ When $\mu = \mu_0$, then $U \sim t(n-1)$.
- ▶ We therefore set up δ such that we reject H_0 if $|U| \ge T_{n-1}^{-1}(1 \alpha_0/2)$

n.b. T is the quantile function of the t-distribution with n-1 degrees of freedom. *Colab link*

Many variations exist for the t-test, e.g.

- ► Two sample t-tests: two different samples are drawn and we want to compare them to each other
- ▶ Paired t-tests: Matched units are compared (e.g. a before and after study on the same patients)

Many variations exist for the t-test, e.g.

- ► Two sample t-tests: two different samples are drawn and we want to compare them to each other
- Paired t-tests: Matched units are compared (e.g. a before and after study on the same patients)

Many variations exist within each type of t-test as well, e.g. for the two sample t-test we have

- ► Equal sample sizes, equal variances
- Unequal sample sizes, equal variance
- Unequal sample sizes, unequal variances

The F-test

Commonly used for (i) testing variances of normal distributions, and (ii) testing means of more than two distributions.

The F-test

Commonly used for (i) testing variances of normal distributions, and (ii) testing means of more than two distributions.

Let $W \sim \chi^2(n)$ and $Y \sim \chi^2(m)$. Then

$$X = \frac{Y/m}{W/n} = \frac{nY}{mW} \sim F(m, n) \tag{16}$$

follows a *F-distribution* with m and n degrees of freedom.

Some notes:

- $ightharpoonup F(m,n) \neq F(n,m)$
- ▶ If $X \sim F(m, n)$, then $1/X \sim F(n, m)$
- ▶ If $X \sim t(n)$, then $X^2 \sim F(1, n)$

The F-test

Let $X_1, ..., X_m \stackrel{iid}{\sim} N(\mu_1, \sigma_1^2)$ and $Y_1, ..., Y_n \stackrel{iid}{\sim} N(\mu_1, \sigma_2^2)$.

Suppose we want to test: $H_0: \sigma_1^2 = \sigma_2^2$ vs $H_1: \sigma_1^2 \neq \sigma_2^2$.

We can form a test statistic

$$V = \frac{S_X^2/(m-1)}{S_Y^2/(n-1)} \tag{17}$$

where $S_X^2/(m-1)$ and $S_Y^2/(n-1)$ are estimators of σ_1^2 and σ_2^2 , respectively.

$$ightharpoonup V \sim F(m-1,n-1)$$
 when $\sigma_1^2 = \sigma_2^2$

Colab link

The Likelihood ratio test

Let $X_1,...,X_n \stackrel{iid}{\sim} P_\theta$

Suppose we want to test: $H_0: \theta \in \Theta_0$ vs $H_1: \theta \in \Theta_1$.

Recall that the likelihood of our data is

$$L(\theta|x_1,...,x_n) = \prod_{i=1}^n f(x_i|\theta)$$
 (18)

We can use this to form a "likelihood ratio" statistic, i.e.

$$\Gamma(x) = -2\log\left[\frac{\sup_{\theta\in\Theta_0} L(\theta|x_1,...,x_n)}{\sup_{\theta\in\Theta} L(\theta|x_1,...,x_n)}\right]$$

$$= 2\left[\ell(\hat{\theta}_{MLE}|x_1,...,x_n) - \sup_{\theta\in\Theta_0} \ell(\theta|x_1,...,x_n)\right]$$
(20)

It can be shown that $\Gamma(x) \sim \chi^2(p)$. Colab link

References

▶ DeGroot & Schervish Chapters 9.1, 9.2, 9.4-9.7