PATCHWORK COMBINATOIRE DE COURBES ALGÉBRIQUES

Mémoire de L3

Raphaël Alexandre, Thomas Mordant

15 février 2016 École Normale Supérieure

Encadré par : Ilia Itenberg

Sommaire

Introduction du problème		ij	
	1	Le seizième problème de Hilbert	i
1	Géométrie des courbes algébriques		
	1	Lemme de Morse	1
	2	Théorème des petites perturbations	2

Introduction du problème

Avant le propos central de ce texte, nous allons essayer d'exposer le problème étudié ainsi que de poser les premières notations utilisées.

1 LE SEIZIÈME PROBLÈME DE HILBERT

Le problème est le suivant. Étant donné une polynôme homogène $F(x_0, x_1, x_2)$ à coefficients réels et de degré d, quelles sont les qualités topologiques de ses zéros dans le plan projectif réel, $\mathbf{P}^2(\mathbf{R})$?

Par la suite, nous supposerons toujours que les zéros de F sont non-singuliers.

Nous désignerons par $\mathbf{R}F$ l'ensemble des zéros de F, qui a alors naturellement une structure de variété lisse. Une variété lisse fermée de dimension 1 dans un espace compact est une union de cercles. Ainsi, $\mathbf{R}F$ sera une collection de cercles.

Pour d = 1. Nous observons que

$$F(x_0, x_1, x_2) = ax_0 + bx_1 + cx_2$$

avec $a,b,c\in\mathbf{R}$. Ainsi, $\mathbf{R}F$ est une droite de \mathbf{R}^2 . Son plongement dans $\mathbf{P}^2(\mathbf{R})$ est un grand cercle.

Plongements de R² dans P²(R)

Il est utile de garder à l'esprit que deux plongements possibles dans $\mathbf{P}^2(\mathbf{R})$ donnent lieu à un cercle :

- le plongement d'une droite de \mathbb{R}^2 (qui donne un grand cercle qui intersecte la droite à l'infini en un point);
- le plongement d'une conique de ${f R}^2$ (que nous appellerons ovale). ${}^{\S 1}$

Le plongement d'un ovale divise ${f P}^2({f R})$ en deux régions non connectées : une boule et un ruban de MÖBIUS. \S^2

Classification en petits degrés

Pour d=2. Si nous revenons au problème initial, pour d=2 nous avons F qui décrit une conique de $\mathbf{P}^2(\mathbf{R})$, c'est donc ou bien un ovale ou bien l'ensemble vide (ce qui se produit lorsque F est définie).

Lemme 1.1

Nous montrerons que :

- lorsque d est pair, $\mathbf{R}F$ est une réunion d'ovales;
- §1. Quelques doutes dessus, il faudrait vérifier si c'est le plongement d'une conique ou d'autre chose ...
- §2. Est-ce que c'est aussi vrai pour les grands cercles?

• lorsque d est impair, $\mathbf{R}F$ est la réunion d'une droite et d'ovales.

Pour d=4. La classification pour d=4 nous donne la distinction de cas suivante sur la composition de $\mathbf{R}F$:

- cela peut être l'ensemble vide;
- un, ou deux, ou trois, ou quatre ovales;
- un ovale dans un autre tel que dans la figure qui suit.

FIGURE 1 – Lorsque d=4, un ovale peut être dans un autre

Mais le cas suivant est impossible :

Figure 2 – Ceci est impossible

En effet, si nous traçons une droite qui coupe chacun des ovales en deux points, nous obtenons 6 points d'intersections alors que le degré de l'équation sous-jacente est de 4.

Figure 3 – Les six points d'intersections contredisent d=4

Nous procédons de même avec le cas où nous aurions 5 ovales. Par leurs 5 centres passe une conique et l'intersection est de 10 points alors qu'il devrait y en avoir au plus $4\times 2=8.$ §3

Il est utile de mentionner le résultat suivant qui donne la classification topologique (mais ne donne pas de classification sur le plongement).

LEMME 1.2 (HARNACLE - 1876)

Soit l le nombre de composantes connexes, alors

$$1 \le l \le \frac{(d-1)(d-2)}{2} + 1^{\S 4}$$

et les deux bornes sont atteintes pour tout degré d.

Pour d=6. C'est ici qu'apparaissent les premières difficultés. Le lemme précédent nous donne $l \leq 11$, lorsque cette borne est atteinte nous dirons que la courbe est maximale. Supposons l=11, on a les trois possibilités suivantes, regroupées dans la figure suivante \S^5 .

Figure 4 – Classification lorsque d=6 avec 11 composantes connexes

Les autres configurations sont difficiles à écarter.

En plus haut degré. Lorsque d=7 la classification est connue. Lorsque d=8 le problème reste ouvert.

Patchwork

La technique du patchwork combinatoire permet d'établir des configurations par un procédé simple et ne dépendant pas du degré. §6

^{§3.} Introduction à compléter

^{§4.} Le quotient est le genre (en tant que surface) des zéros de F dans \mathbb{C} .

^{§5.} La première configuration est la courbe de Harnack.

^{§6.} Ce serait bien de mettre un premier exemple.

Chapitre 1

Géométrie des courbes algébriques

1 Lemme de Morse

D'après []. Par la suite, on considère f à valeurs dans \mathbf{R} définie dans un voisinage de $p \in \mathbf{R}^n$ telle que f est lisse et admet un point critique en p. Un point critique de f est non dégénéré si la forme quadratique définie par $\Delta f(p)$ est non dégénérée. L'index de p pour f est le nombre de - qui apparaissent dans la réduction de GAUSS de la forme quadratique précédemment évoquée.

Lemme 1.1 (Morse)

Soit p un point critique non dégénéré de f. Alors il existe un système de coordonnées locales (y^1, \ldots, y^n) dans un voisinage U de p tel que $y^i(p) = 0$ pour tout i et aussi :

$$f = f(p) - (y^1)^2 - \dots - (y^{\lambda})^2 + (y^{\lambda+1})^2 + \dots + (y^n)^2$$

avec λ l'index de f en p.

Nous commençons par se donner un lemme préliminaire :

Lemme 1.2

Si f est lisse dans un voisinage V de $0 \in \mathbf{R}^n$ avec f(0) = 0 alors

$$f(x^1, \dots, x^n) = \sum_{i=1}^n x^i g_i(x^1, \dots, x^n)$$

avec des fonctions g_i lisse sur V et telles que

$$g_i(0) = \frac{\partial f}{\partial x^i}(0).$$

PREUVE

Nous avons l'égalité

$$f(x) = \int_0^1 \frac{\mathrm{d}f(tx)}{\mathrm{d}t} \, \mathrm{d}t = \int_0^1 \sum_{i=1}^n \frac{\partial f}{\partial x^i}(tx) \cdot x^i \, \mathrm{d}t$$

et nous définissons alors

$$g_i(x) = \int_0^1 \frac{\partial f}{\partial x^i}(tx) dt.$$

Preuve (Lemme de Morse)

Nous commençons par montrer que si f a une telle expression alors λ est l'index de f en p. Supposons ainsi pour un systèmes de coordonnées (z^1, \ldots, z^n) que

$$f(q) = f(p) - (z^{1}(q))^{2} - \dots - (z^{\lambda}(q))^{2} + (z^{\lambda+1}(q))^{2} + \dots + (z^{n}(\lambda))^{2}.$$

Alors

$$\frac{\partial^2 f}{\partial z^i \partial z^j}(p) = \begin{cases} -2 & \text{si } i = j \le \lambda \\ 2 & \text{si } i = j > \lambda \\ 0 & \text{sinon.} \end{cases}$$

Cela montre que la matrice de Δf selon la base $\left. \frac{\partial}{\partial z^1} \right|_p, \dots, \left. \frac{\partial}{\partial z^n} \right|_p$ est diagonale avec λ fois -2, $(n-\lambda)$ fois 2 sur la diagonale et dans cet ordre.

Ainsi, il existe un sous-espace de TM_p de dimension λ où Δf est définie négative et un sous-espace de dimension $n-\lambda$ où Δf est définie positive. Cela montre que λ est l'index de f en p.

Il nous reste à montrer qu'un tel système de coordonnées existe. Pour cela, nous commençons par supposer que p=0 et f(0)=0, par le lemme précédent nous obtenons des g_i telles que

$$f(x) = \sum_{i=1}^{n} x^{i} g_{i}(x).$$

Comme 0 est un point critique, $g_i(0) = 0$ pour tout i et donc il existe des $h_{i,j}$ telles que

$$f(x) = \sum_{i,j=1}^{n} x^{i} x^{j} h_{i,j}(x).$$

Nous pouvons supposer (quitte à moyenner) que $h_{i,j} = h_{j,i}$.

Pour obtenir le système de coordonnées, nous allons imiter la preuve de diagonalisation des formes quadratiques. Procédons par récurrence, supposons qu'il existe u^1, \ldots, u^n définies dans un voisinage U_1 de 0 telles que

$$f = \pm (u^1)^2 \pm \ldots \pm (u^{r-1})^2 + \sum_{i,j \ge r} u^i u^j H_{i,j}(u^1,\ldots,u^n)$$

sur U_1 et où la matrice décrite par $H_{i,j}(u^1,\ldots,u^n)$ (de taille $(n-r+1)\times (n-r+1)$) est symétrique. Après un changement linéaire sur la dernière coordonnée, on peut faire en sorte que $H_{r,r}(0) \neq 0$. Désignons par $g(u^1,\ldots,u^n)$ la racine carrée de $|H_{r,r}(u^1,\ldots,u^n)|$. Comme g est non nulle en 0 et est lisse, il existe un voisinage $U_2 \subset U_1$ de 0 où g est non nulle. On pose $v^i = u^i$ pour $i \neq r$ et

$$v^{r}(u^{1},...,u^{n}) = g(u^{1},...,u^{n}) \left(u^{r} + \sum_{i>r} u^{i} \frac{H_{i,r}(u^{1},...,u^{n})}{H_{r,r}(u^{1},...,u^{n})}\right).$$

Par le théorème d'inversion locale, (v^1, \ldots, v^n) sera un système de coordonnées dans un voisinage $U_3 \subset U_2$ de 0. Cela complète la récurrence puisque sur U_3 :

$$f = \pm (v^1)^2 \pm \ldots \pm (v^r)^2 + \sum_{i,j>r} v^i v^j H_{i,j}(v^1,\ldots,v^n).$$

2 Théorème des petites perturbations

Définition 2.1

Nous dirons que $\xi = (\xi_1, \xi_2, \xi_3)$ est un *croisement* si $\Delta P(\xi)$ a une valeur propre strictement positive et une strictement négative.

De manière équivalente, ξ est un croisement si ξ est un point critique non dégénéré et d'index 1 pour les applications :

$$\varphi_i$$
: $\left\{ (x_0 : x_1 : x_2) \in \mathbf{P}^2(\mathbf{R}) \, \middle| \, x_i \neq 0 \right\} \to \mathbf{R}$

$$x \mapsto \frac{P(x)}{x_i} \deg P$$

$$\tilde{P}(x_1, x_2) = P(1, x_1, x_2)$$

pour i tel que $\xi_i \neq 0$.

Le lemme de MORSE implique qu'au voisinage de ξ , $\mathbf{R}P$ est la réunion de deux droites réelles.

Réciproquement, si $\mathbf{R}A_1, \dots, \mathbf{R}A_k$ sont non singulières, mutuellement transverse et si 3 d'entre-elles ne se croisent jamais, alors les points critiques de $\mathbf{R}A_1 \cup \dots \cup \mathbf{R}A_k$ sont des croisements.

Le théorème des petites perturbations s'énonce de la manière suivante :

Théorème 2.2 (Petites perturbations)

Soit P un polynôme de degré d dont les points critiques sont des croisements. Soit Q un polynôme de degré d dont la courbe algébrique ne passe pas par les points critiques de P. Soit U un voisinage régulier de $\mathbb{R}P$ dans $\mathbb{P}^2(\mathbb{R})$ tel que U se décompose selon :

$$U = U_0 \cup U_1$$

où U_0 est voisinage des points critiques et U_1 est un voisinage tubulaire de la sousvariété $\mathbf{R}P - U_0$ dans $\mathbf{P}^2(\mathbf{R}) - U_0$.

Alors il existe X de degré d tel que :

- 1. la courbe $\mathbf{R}X$ est partie de U;
- 2. pour chaque composante V de U_0 , il existe un homéomorphisme $h: V \to D^1 \times D^1$ (avec D^1 le disque unité de dimension 1) tel que :

$$h(\mathbf{R}P \cap V) = D^1 \times \{0\} \cup \{0\} \times D^1,$$

$$h(\mathbf{R}X \cap V) = \{(x, y) \in D^1 \times D^1 \mid xy = 1/2\}$$
;

- 3. $\mathbf{R}X U_0$ est une section du fibré tubulaire $U_1 \to \mathbf{R}P U_0$;
- 4. $\mathbf{R}X \subset \{(x_0: x_1: x_2) \in \mathbf{P}^2(\mathbf{R}) \mid P(x_0, x_1, x_2)Q(x_0, x_1, x_2) \leq 0\};$
- 5. $\mathbf{R}X \cap \mathbf{R}P = \mathbf{R}X \cap \mathbf{R}Q = \mathbf{R}P \cap \mathbf{R}Q$;
- 6. si $p \in \mathbb{R}P \cap \mathbb{R}Q$ est non singulier de Q et si $\mathbb{R}Q$ est transverse à $\mathbb{R}P$ en p alors $\mathbb{R}X$ est aussi transverse à $\mathbb{R}P$ en p.

Il existe aussi $\varepsilon > 0$ tel que pour tout $t \in]0, \varepsilon], X = P + tQ$ convienne.