Package 'APRScenario'

July 24, 2025
Title Structural Scenario Analysis for Bayesian Structural Vector Autoregression Models
Version 0.0.3.0
Author Giovanni Lombardo [aut, cre]
Maintainer Giovanni Lombardo <giannilmbd@gmail.com></giannilmbd@gmail.com>
Description Implements the scenario analysis proposed by Antolin-Diaz, Petrella and Rubio-Ramirez (2021) ``Structural scenario analysis with SVARs" <doi:10.1016 j.jmoneco.2020.06.001="">.</doi:10.1016>
License GPL (>= 3)
Encoding UTF-8
Depends R (>= $4.1.0$)
Imports dplyr, ggplot2, lubridate, parallel, MASS, tidyr, abind, psych, Rcpp (>= 1.0.12), RcppProgress
Suggests bsvars, bsvarSIGNs, devtools, ggfortify, gridExtra, zoo, knitr, rmarkdown, testthat (>= 3.0.0)
LinkingTo Rcpp, RcppArmadillo, RcppProgress
SystemRequirements LAPACK
RoxygenNote 7.3.2
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation yes
Repository CRAN
Date/Publication 2025-07-24 13:00:07 UTC
Contents
big_b_and_M forc_h full_scenarios_core gen_mats

big_b_and_M

Index		17
Indov		17
	simulate_conditional_forecasts	15
	SimScen	13
	scenarios	12
	plot_cond_histo	
	plot_cond_forc	
	plot_bvars	8
	NKdata	8
	mat_forc	7
	KL	6

big_b_and_M This function returns the extended b and M matrices as

Description

 $big_b_and_M$

big_b_and_M This function returns the extended b and M matrices as in APR

in APR

Usage

```
big_b_and_M(h, n_draws, n_var, n_p, data_ = NULL, matrices = NULL)
```

Arguments

h	forecast horison
n_draws	Number of draws
n_var	Number of variables
n_p	Number of lags
data_	(matrix optional) The data, stacking Y over X (data and laggs) – columns are observations (default taken from matrices Z) NB: this is not necessarily the same as the data used to estimate the model If run counterfactuals in previous historical period (ie not forecast) must pass the data up to previous period relative to counterfactual
matrices	Optional matrices object from gen_mats() (default taken from calling environment)

Value

the big_b and big_M matrices of mean and IRF

forc_h

Examples

forc_h

forc_h function

Description

forc_h function

Usage

```
forc_h(h = 1, n_sim = 200, data_ = NULL, posterior = NULL, matrices = NULL)
```

Arguments

h	forecast horizon
n_sim	length of shock simulation
data_	Optional matrix of data n_var*h+1 x T. If NULL, defaults to matrices\$Z
posterior	Optional posterior object (default taken from calling environment)
matrices	Optional matrices object from gen_mats() (default taken from calling environment)

Value

a matrix of unconditional forecasts

full_scenarios_core

Description

This function wraps the Rcpp-exported version of full_scenarios_core and allows external users to call it with correct argument checks.

Usage

```
full_scenarios_core(
  big_b,
  big_M,
  obs,
  path,
  shocks,
  h,
  n_var,
  g_ = NULL,
  Sigma_g_ = NULL
)
```

Arguments

big_b	Cube of B matrices
big_M	Cube of M matrices
obs	Indices of constrained observables
path	Flattened path for observables
shocks	Indices of shocks to be recovered
h	Forecast horizon
n_var	Number of variables
g_	Optional vector of non-driving shocks
Sigma_g_	Optional covariance matrix of non-driving shocks

Value

A list with elements depending on the input configuration. Typically includes:

mu_eps Matrix of mean structural shocks

Sigma_eps Covariance matrix of structural shocks

mu_y Matrix of conditional means of observables

Sigma_y Covariance matrix of observables

big_b Slice of B matrices used

big_M Slice of M matrices used

draws_used Indices of posterior draws used in the simulation

gen_mats 5

Examples

gen_mats

gen mats function

Description

this function returns the matrices necessary for forecasts

Usage

```
gen_mats(posterior = NULL, specification = NULL)
```

Arguments

posterior Posterior estimation results (eg from BsvarSIGNs)
specification Optional specification object (default taken from calling environment)

Value

Returns all objects necessary for scenario analysis (e.g., IRF matrix), including: M, M_inv, M_list, B, B_list, n_p, n_var, Y, X, and Z.

```
library(APRScenario)
data(NKdata)

# Minimal example with a toy specification
spec <- bsvarSIGNs::specify_bsvarSIGN$new(as.matrix(NKdata[,2:4]), p = 1)
est <- bsvars::estimate(spec, S = 10)  # Use small S for fast test
gen_mats(posterior = est, specification = spec)</pre>
```

6 KL

KL

KL function APR suggest this measure to assess the "plausibility" of the conditional forecast. It is based on the Kullback-Leibler measure of distance between the unconditional forecast and the conditional/scenario forecast.

Description

KL function APR suggest this measure to assess the "plausibility" of the conditional forecast. It is based on the Kullback-Leibler measure of distance between the unconditional forecast and the conditional/scenario forecast.

Usage

```
KL(Sigma_eps, mu_eps, h, plot_ = FALSE, max_cores = NULL)
```

Arguments

Sigma_eps variance of innovation

mu_eps mean of innovation

h forecast horizon

plot_ logical; if TRUE then a histogram of the KL measure is returned

max_cores maximum number of cores to use for parallel processing (default: NULL, uses

CRAN-compliant detection with Windows=1)

Value

Returns the APR 'q': ie distance from a fair binomial distribution

```
mat_forc

}

# Calculate KL measure
```

kl_result <- KL(Sigma_eps, mu_eps, h, plot_ = FALSE)
print(head(kl_result[[1]])) # Print first few q values</pre>

mat_forc

Description

Usage

```
mat_forc(h = 1, n_draws, n_var, n_p, data_ = NULL, matrices = NULL)
```

Arguments

(integer) forecast horison n_draws (integer) Number of draws n_var (integer) Number of variables (integer) Number of lags n_p (matrix optional) The data, stacking Y over X (data and laggs) – columns are obdata_ servations (default taken from matrices\$Z) NB: this is not necessarily the same as the data used to estimate the model If run counterfactuals in previous historical period (ie not forecast) must pass the data up to previous period relative to counterfactual matrices Optional matrices object from gen_mats() (default taken from calling environment)

Value

the big_b and big_M matrices of mean and IRF

8 plot_bvars

Examples

NKdata

Example Dataset NKdata

Description

A dataset used in the APRScenario package.

Usage

data(NKdata)

Format

A data frame with 244 rows and 4 variables:

GDP.E GDP
pi.PCE.core inflation
i interest rate
year year

plot_bvars

plot_bvars: This function plots the IRFs generated with the BVAR

Description

plot_bvars: This function plots the IRFs generated with the BVAR

plot_bvars 9

Usage

```
plot_bvars(
   M,
   significance_level = 0.05,
   central_tendency = "mean",
   variable_names = NULL,
   shock_names = NULL
)
```

Arguments

```
M IRFs produced by eg bvarSIGNs significance_level (eg 0.05) central_tendency eg 'mean' or 'median' variable_names vector of names of variables (strings) shock_names vector of names of variables (strings)
```

Value

a list of ggplot objects (plots)

```
# Example with simulated IRF data
# Create simulated IRF array (n_vars, n_shocks, n_periods, n_draws)
set.seed(123)
n_vars <- 3
n_shocks <- 3
n_periods <- 10
n_draws <- 50
# Generate IRF responses that decay over time
M <- array(0, dim = c(n_vars, n_shocks, n_periods, n_draws))</pre>
for (i in 1:n_vars) {
  for (j in 1:n_shocks) {
    for (t in 1:n_periods) {
      # Create decaying responses with some randomness
      base_response <- ifelse(i == j, 1, 0.3) * exp(-0.1 * (t-1))
      M[i, j, t, ] <- rnorm(n_draws, mean = base_response, sd = 0.1)
    }
  }
}
# Create plots
var_names <- c("GDP", "CPI", "FFR")</pre>
shock_names <- c("Supply", "Demand", "Monetary")</pre>
plots <- plot_bvars(M,</pre>
```

10 plot_cond_forc

plot_cond_forc

plot_cond_forc function; Data should conatain the variable "variable", the "hor" horizon and a "history"

Description

plot_cond_forc function; Data should conatain the variable "variable", the "hor" horizon and a "history"

Usage

```
plot_cond_forc(
  varbl2plot = NULL,
  y_h_cond = NULL,
  center = 0.5,
  lower = 0.16,
  upper = 0.84,
  T.start = NULL,
  T.end = NULL,
  before = 8,
  freq = "quarter",
  y_data = NULL
)
```

Arguments

varbl2plot	name of variable to be plotted (string)
y_h_cond	conditional forecast data frame (eg from SimScen) with names c("hor", "variable", "lower", "center", "upper hor is a Date object
center	(optional, default 0.5) quantile of the mid value
lower	(optional, default 0.16) quantile of lower range
upper	(optional, default 0.84) quantile of upper range
T.start	start date of the forecast

T. start start date of the forecast
T. end end of the forecast

before (integer: optional) periods of data in the plot: default 8 periods

freq (optional, default 'quarter') frequency of the data (eg 'quarter' or 'month')

 $\label{eq:linear_problem} \textbf{Data used in the estimation eg t(specification\$get_data_matrices()\$Y)~\%>\%~as.data.frame();}$

true_data\$hor=dates

plot_cond_histo 11

Value

list of plot and data used

Examples

plot_cond_histo

plot_cond_histo function

Description

This function uses the conditional probability calculations (eg scenarios) and plots the histogram of the selected variable

Usage

```
plot_cond_histo(
  variable = NULL,
  horizon = 1,
  threshold = NULL,
  data = NULL,
  above = TRUE,
  size = 5
)
```

Arguments

variable (character) Name of variable to be plotted horizon (numeric) At which horizon (horizon<=h)

threshold (numeric,optional) If present compute P(x>threshold)

data of conditional forecasts

above (logical,optional): if TRUE then compute probability above threshold

size (optional) size of annotation text in the plot

Value

```
ggplot object (plot)
```

12 scenarios

Examples

```
# Example with simulated conditional forecast data
# Create sample forecast data matrix
set.seed(123)
n sims <- 500
horizons <- 3
variables <- c("GDP", "CPI", "FFR")</pre>
# Create column names in the expected format (variable.horizon)
col_names <- outer(variables, 1:horizons, paste, sep = ".")</pre>
# Generate random forecast data
forecast_data <- matrix(rnorm(n_sims * length(col_names)),</pre>
                        nrow = n_sims, ncol = length(col_names))
colnames(forecast_data) <- as.vector(col_names)</pre>
# Plot histogram for GDP at horizon 2
p <- plot_cond_histo(data = t(forecast_data),</pre>
                      variable = "GDP",
                      horizon = 2,
                      threshold = 0.5,
                      above = TRUE)
```

scenarios

scenarios function (fully optimized with Rcpp) This function computes the mean and covariances to draw from the conditional forecast The actual draw is done in the simscen function

Description

scenarios function (fully optimized with Rcpp) This function computes the mean and covariances to draw from the conditional forecast The actual draw is done in the simscen function

Usage

```
scenarios(
  h = 3,
  path = NULL,
  obs = NULL,
  free_shocks = NULL,
  n_sample = NULL,
  data_ = NULL,
  g = NULL,
  Sigma_g = NULL,
  posterior = NULL,
  matrices = NULL
)
```

SimScen 13

Arguments

h	forecast horizon
path	conditional path of observables
obs	position of observable(s)
free_shocks	position of non-driving shocks (NA if all driving)
n_sample	Number of draws to sample (<= n_draws)
data_	Optional matrix of data (default taken from matrices\$Z)
g	Optional matrix of non-driving shocks
Sigma_g	Optional covariance matrix of non-driving shocks
posterior	Optional posterior object (default taken from calling environment)
matrices	Optional matrices object from gen_mats() (default taken from calling environment)

Value

list of mu_eps, Sigma_eps, mu_y, Sigma_y, big_b, big_M, draws_used

Examples

SimScen

simscen function This function takes the mean and covariance of the conditional forecast to draw from the conditional forecast distribution. The shock uncertainty is included in the simulation by default, but can be turned off.

Description

simscen function This function takes the mean and covariance of the conditional forecast to draw from the conditional forecast distribution The shock uncertainty is included in the simulation by default, but can be turned off.

SimScen

Usage

```
SimScen(
   mu_eps,
   Sigma_eps,
   mu_y,
   Sigma_y,
   big_b,
   big_M,
   n_sim,
   h,
   varbls,
   idx_sampled = 1:dim(mu_eps)[3],
   shock_uncertainty = TRUE
)
```

Arguments

mu_eps	mean innovation
Sigma_eps	variance innovation
mu_y	mean forecast
Sigma_y	variance forecast
big_b	history forecast
big_M	IRF (innovation loading)
n_sim	number of simulations
h	horizon
varbls	variable names
idx_sampled	index of random sample to use instead of full draws (from scenarios)
shock_uncertainty	
	(logical; optional) whether to include uncertainty in shocks (default is TRUE)

Value

conditional forecast path and distribution

```
## End(Not run)
```

```
simulate\_conditional\_forecasts
```

Simulate paths from conditional forecast distributions

Description

Simulate paths from conditional forecast distributions

Usage

```
simulate_conditional_forecasts(mu_y, Sigma_y, varnames, n_sim = 1000)
```

Arguments

mu_y	Array (n_state \times 1 \times n_draws): conditional forecast mean
Sigma_y	Array (n_state \times n_state \times n_draws): conditional forecast variance
varnames	Character vector of variable names (length = number of variables)
n_sim	Number of simulations per draw

Value

Array of dimensions (n_state x n_sim x n_draws) of simulated draws with named rows

Note

Users should set their own seed before calling this function if reproducible results are desired.

```
# Example with simulated data
# Create example data dimensions
n_var <- 3
h <- 2
n_draws <- 5
n_state <- n_var * h

# Simulate conditional forecast means and covariances
set.seed(123)
mu_y <- array(rnorm(n_state * 1 * n_draws), dim = c(n_state, 1, n_draws))
Sigma_y <- array(0, dim = c(n_state, n_state, n_draws))
for (d in 1:n_draws) {
   temp_cov <- matrix(rnorm(n_state^2), n_state, n_state)
   Sigma_y[,,d] <- temp_cov %*% t(temp_cov) + diag(n_state) * 0.1
}</pre>
```

```
# Variable names
varnames <- c("GDP", "CPI", "FFR")

# Simulate conditional forecasts
sims <- simulate_conditional_forecasts(mu_y, Sigma_y, varnames, n_sim = 50)
print(dim(sims))
print(rownames(sims)[1:6])</pre>
```

Index