

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS

CTR06 – Laboratório de Controle Automático III Prof. Murillo Ferreira dos Santos, D. Eng.

PRÁTICA DE LABORATÓRIO 03 – Série de Fourier para sinais periódicos discretos e teorema da amostragem

Objetivo: Analisar sinais periódicos discretos no domínio da frequência com o uso da Transformada Discreta de Fourier (DFT – *Discrete Fourier Transform*).

Parte 1. A série de Fourier para sinais periódicos discretos é denominada Transformada Discreta de Fourier. Para um sinal com período igual a N amostra, pode-se calcular a DFT através de,

$$X_{k} = \sum_{m=0}^{N-1} x_{m} e^{-j2k\pi m/N}$$

Onde:

• *k* é a ordem da componente.

No MATLAB®, a função **fft** realiza a operação da equação anterior para determinar a TDF. O processamento digital de sinais é realizado tendo em vista o Teorema da Amostragem de Nyquist (*Nyquist Sampling Theorem*):

"Seja um sinal x(t), de banda limitada e cuja componente de máxima frequência é f_M Hertz. Se um sinal discreto x[k] for obtido de x(t), com frequência de amostragem $f_S > 2$ f_M , então x(t) pode ser obtido a partir de sua versão discreta x[k]."

Em outras palavras, pode-se afirmar que, se não obedecido o disposto no teorema ($f_S > 2 f_M$), a representação discreta x[k] de x(t) não é fidedigna. Isto se deve ao fenômeno de sobreposição de espectros, conhecido como *aliasing*.

<u> I^a Análise</u>: Determinar o espectro do sinal x(t) determinado a seguir, amostrado com N=1000 pontos por ciclo.

$$x(t) = 1.0\sin(2\pi t) + 0.2\sin(6\pi t) + 0.05\sin(20\pi t)$$

1.	Qual a frequência fundamental deste sinal? (Hz).
2.	Gere o gráfico com o sinal em função do tempo e seu espectro. Qual a componente CC deste
	sinal? O resultado da fft, Xjw(1), condiz com o esperado?
3.	Qual o módulo das componentes Xjw(2), Xjw(4) e Xjw(11)? Esses valores são
	correspondentes às amplitudes das componentes senoidais do sinal?
4.	Existe defasagem entre Xjw(2), Xjw(4) e Xjw(11)? Mostre justificativa:
compl valor '	<u>álise:</u> Determinar o espectro de um sinal quadrado com 100 amostras em 1 (um) ciclo eto (as cinquenta primeiras amostras possuem valor "1" e as cinquenta seguintes possuem "0") e Δt =0.01 segundos. Qual a frequência fundamental deste sinal? (Hz).

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS

CTR06 – Laboratório de Controle Automático III Prof. Murillo Ferreira dos Santos, D. Eng.

3.	Qual o módulo dos componentes Xjw(2), Xjw(4) e Xjw(6)? Esses valores sã
	correspondentes às amplitudes das componentes senoidais do sinal?
4.	Existe defasagem entre Xjw(2), Xjw(4) e Xjw(6)? Mostre justificativa:

Considerações Finais: Discorra as conclusões que a atividade prática 3 proporcionou quanto aos aspectos de análise no domínio da frequência de sinais discretos e o fenômeno de *aliasing*.