Principles of Planetary Climate EC2213

Chirayu Gupta Spring 2021

1 MidSemester Assignment 2

1.1 Input Quantities

• Temperature of the star (T_{star})

• Amount of CO_2 present (p_{CO_2})

• Cloud Forcing(C)

Suppose minimum distance from a star is r_{min} and maximum is r_{max} .

We need:

i) For $r_{max}: T_{poles} \ge 220$ and ii) For $r_{min}: T_{equator} < 320$

1.2 The Algorithm

- 1. Choose arbitrary $220 < T_{equator} < 320$ and arbitrary $220 \le T_{poles} < T_{equator}$ and find range of average planetary temperatures.
- 2. Find average albedo.
- 3. Given amount of $CO2(p_{CO_2})$ find range of solar constants to achieve a average temperature in the range of temperatures computed above.
- 4. Find r_{min} and r_{max} using lower and upper bounds of solar constants.

1.3 Functions required

1. This can be calculated by first getting the temperature profile using get_temp_profile(equator_temperature,equator_latitudes).

Then getting a weighed average using get_weighed_average(temperature_profile, latitudes)

- 2. Use get_average_albedo() from notebook 1.
- 3. Modify the net_radiation function to take solar_constant as argument instead of co2 (which can be fixed). Apply newton's method to compute the roots of net_radiation given the range of planetary temperatures computed above and C(Cloud Forcing).
- 4. Define a function which takes solar constant as argument and outputs r according to the formula:

$$s = \frac{\sigma T_{star}^4}{4.\pi r^2}$$

Pass the lower and upper bounds of s as parameters to this function and we get r_{min} and r_{max} .