Arquitetura do Atari 2600

Rodrigo Junger

Sumário

1	Processador							
	1.1	Registradores						
		1.1.1 A						
		1.1.2 X e Y						
		1.1.3 S						
		1.1.4 P						
		1.1.5 PC						
	1.2	Assembly 6502						
	1.3	Modos de endereçamento						
2	TIA (ntsc)							
	2.1	Linha						
	2.2	Frame						
	2.3	Desenhando na tela						
		2.3.1 Posicionamento vertical						
		2.3.2 Posicionamento horizontal						

Introdução

Inicialmente chamado de Atari VCS, o Atari 2600 é um console 8bit lançado em setembro de 1997. Ele possui um processador 8-bit, um chip gráfico chamado de TIA (Television Interface Adapter) e um chip chamada PIA (Peripheral Interface Adaptor) com timers programáveis e 128 bytes de memória RAM mapeados nos endereços 80 até FF da memória. A memória do PIA é geralmente usada para guardar variáveis.

1 Processador

O processador do Atari 2600 é o 6507, que é basicamente uma versão menor e com menos pinos do 6502. Ele opera com uma frequência de 1.19Mhz e tem apenas 6 registradores, cinco de 8 bits e um especial de 16 bits usado para o PC.

1.1 Registradores

Bits	Nome	Uso
8	A	Acumulador
8	X	Registrador de uso geral X
8	Y	Registrador de uso geral Y
8	S	Stack pointer
8	Р	Flags (Processor Status Register)
16	PC	Program Counter

1.1.1 A

Operações aritméticas como soma e adição e algumas operações binárias como OR, AND e XOR só podem ser feitas com esse registrador, um detalhe interessante é que o 6502, assim como a maioria dos processadores dessa época, não tem operações de divisão e multiplicação, o programador tem que "emular"as duas com somas, subtrações e comparações.

1.1.2 X e Y

São registradores mais gerais, a única operação aritmética que pode ser feita diretamente nesses registradores é a adição e a subtração por 1, por isso são muito usados como contadores em loops.

1.1.3 S

Stack Pointer. Ao contrario do que normalmente acontece em computadores modernos, a stack do Atari começa de cima (normalmente do endereço FF) e cresce para baixo.

1.1.4 P

Todas as flags como overflow e zero são guardadas nesse registrador, a tabela abaixo mostra qual flag cada bit desse registrador guarda e o que ela significa.

Bit	Nome	Uso	Explicação
0	С	Carry	(0=Sem carry, 1=Carry)
1	Z	Zero	(0=Não zero, $1=$ zero $)$
2	I	IRQ Disable	(0=IRQ Habilitado, 1=IRQ Habilitado)
3	D	Modo decimal	(0=Normal, 1=Modo BCD para os opcodes ADC e SBC)
4	В	Break flag	(0=IRQ/NMI, 1=RESET ou opcode BRK/PHP)
5	-	Não utilizado	-
6	V	Overflow	(0=Sem Overflow, 1=Overflow)
7	N	Negative	(0=Positivo, 1=Negativo)

1.1.5 PC

Guarda o endereço de memória da próxima instrução que será executada, é alterado por instruções que fazem branch como JMP, JSR e BCS.

1.2 Assembly 6502

O 6502 Possui apenas 56 instruções sempre nomeadas com 3 letras e que podem receber no máximo 1 argumento, essas instruções podem ter de 1 a 3 bytes dependendo do tipo da instrução e do modo de endereçamento usado.

1.3 Modos de endereçamento

Um dos fatores que contribui para a grande flexibilidade do 6502 são os diversos modos de endereçamento existentes, um modo de endereçamento muito importante é o chamada de "Zero Page", este modo é usado para endereçar apenas os primeiros 256 bytes da memória e é importante pois economizamos memória e ciclos do processador, já que a instrução resultante usa apenas dois bytes.

2 TIA (ntsc)

O que realmente da vida aos jogos do Atari 2600 é um chip chamado de Television Interface Adaptor, esse chip cuida da imagem e do áudio que são enviados para a TV, alem de ser responsável por ler o input dos controles.

Cada frame tem 262 linhas horizontais de 228 pixels, e o Atari processa 60 frames por segundo, isso significa que o clock é de aproximadamente 3.58 MHz, ou o triplo do clock do processador principal. Temos então que cada linha dura 76 ciclos de maquina do processador principal.

2.1 Linha

Toda linha começa com 68 pixels de Blaning Horizontal seguidos por 160 pixels normais.

2.2 Frame

O frame é formado por 262 linhas nessa ordem:

- 3 Linhas de VSYNC
- 37 Linhas de VBLANK
- 192 Linhas da imagem que vai aparecer na TV
- 30 linhas de overscan

Como mostra a figura 1, boa parte da imagem é "comida". O motivo disso é compatibilidade, nessa época não existia um padrão exato para mandar imagens para a TV e os engenheiros da atari concluíram que essa era a maneira que funcionaria melhor com todas as TVs.

Figura 1: Frame do atari

2.3 Desenhando na tela

A parte mais complexa e também a mais importante é desenhar na tela, como na época memoria RAM era extremamente cara, o Atari não tinha um framebuffer, tudo era feito linha por linha e as únicas coisas (sem contar as inúmeras gambiarras) que podíamos desenhar eram 2 jogadores, 2 misseis, uma bola, um campo (playfield) e o background que é apenas a cor desenhada quando não existe nada de especial num determinado pixel. Os únicos objetos que podem se mover são os jogadores, os misseis e a bola; o playfield e o background são estáticos.

2.3.1 Posicionamento vertical de objetos

Para posicionar um objeto verticalmente, basta apenas habilitar o objeto na(s) linha(s) que você deseja que o objeto apareça, isso é feito de formas di-

ferentes para objetos diferentes, no caso dos jogadores basta setas os 8bits de informação para 0, já os misseis e a bola tem um registrador de enable que pode ser 1 ou 0.

2.3.2 Posicionamento horizontal de objetos

A posição horizontal de um objeto é um pouco mais complicada, é preciso escrever no registrador de RESET do objeto (RESP, RESM, RESBL) quando ele está no pixel desejado, isso vai setar a posição do objeto para essa posição, para movimentos pequenos é possível usar os registradores de movimentação (HMP, HMM, HMBL), o objeto pode se movimentar de -7 a +8 pixels cada vez que algo é escrito no registrador HMOVE, isso pode ser feito mais de uma vez por linha para mover mais que o limite ou para criar efeitos interessantes com repetição.