Tugas Mandiri - 7

Pengantar Sistem Digital Semester Ganjil 2022/2023 Revisi 1.1

Petunjuk pengerjaan:

- Kerjakan dengan tulisan tangan atau diketik.
- Tuliskan Nama, Kelas, dan NPM pada setiap lembar jawaban.
- Tuliskan penjelasan dari cara mendapatkan jawaban tersebut.
- Apabila ditulis tangan, hasil pekerjaan di scan / foto dan dimasukan ke dalam satu file berformat .pdf.
- Format nama file (tanpa tanda kurung) : [KodeAsdos]_TM7_[Nama]_[NPM].pdf.
- Tugas mandiri dikumpulkan Jumat, 25 November 2022 pukul 17.00 pada slot yang sudah disediakan di SCELE.
- Jika mengumpulkan telat lebih dari 10 menit dan sebelum pukul 23:59 pada hari yang sama, akan dikenakan penalti sebesar 50 poin. Terlebih dari waktu tersebut, tugas mandiri tidak akan dinilai
- 1. (20 poin) Jawablah pertanyaan-pertanyaan berikut:
 - a. (2.5 poin) Apa yang dimaksud dengan register?

 Posister adalah rangkaian lagika sakuansial yang
 - **Register** adalah rangkaian logika sekuensial yang dapat didefinisikan oleh state table yang berfungsi sebagai penyimpanan data sederhana dan pemindahan data serta operasi pemrosesan.
 - b. (5 poin) Apa perbedaan antara flip-flop dengan register?
 - **Flip-flop** adalah sebuah rangkaian terkecil dari *memory* yang mempertahankan suatu *state* sampai terdapat *input* yang membuat *state* tersebut berubah.
 - **Register** adalah rangkaian kombinasi dari beberapa *flip-flop* yang dapat menyimpan data lebih dari 1 bit karena setiap bit memiliki *input* sendiri. Data yang disimpan nantinya dapat dilakukan berbagai operasi.

- c. (2.5 poin) Apa yang dimaksud dengan micro-operation?
 Micro-operation adalah operasi mikro adalah operasi dasar yang dilakukan pada data yang disimpan dalam register atau dalam memori.
- d. Micro-operation dapat dibagi menjadi 4 tipe, jelaskan apa yang dilakukan oleh masing-masing tipe berikut:
 - I. (2.5 poin) Register transfer
 Transfer binary data dari satu register ke register lainnya.
 - II. (2.5 poin) ArithmeticMelakukan operasi aritmatika pada data dalam register.
 - III. (2.5 poin) LogicMelakukan manipulasi bit pada data dalam register.
 - IV. (2.5 poin) ShiftMenggeser data dalam register.
- 2. (30 poin) Misal diberikan 3 register 8-bit dengan keadaan awal sebagai berikut:

• Ra: 1100 1100

• Rb: 1010 1010

• Rc: 0101 0101

Selanjutnya akan dilakukan secara berurutan 6 micro-operation sebagai berikut:

a. (5 poin) Ra
$$\leftarrow \overline{Ra} + 1$$

b. (5 poin) Rb
$$\leftarrow$$
 Rb + \overline{Ra} + 1

c. (5 poin)
$$Rc \leftarrow \overline{Rc}$$

e. (5 poin)
$$Rb \leftarrow Rb \oplus Rc$$

f. (5 poin)
$$Rc \leftarrow Rc + Rb$$

Tuliskanlah isi dari register setelah dilakukan masing-masing micro-operation tersebut beserta cara mendapatkannya secara singkat.

Keterangan: Apabila terdapat overflow atau carry out setelah arithmetic micro-operation, asumsikan register tetap hanya akan menyimpan 8-bit dan mengabaikan overflow atau carry out bit tersebut.

a. Ra
$$\leftarrow \overline{Ra} + 1$$

$$\overline{\it Ra}$$
: 0011 0011

1

-----+

Ra: **0011 0100**

b.
$$Rb \leftarrow Rb + \overline{Ra} + 1$$

Rb: 1010 1010

 \overline{Ra} : 1100 1011

1

-----+

Rb: **0111 0110**

c.
$$Rc \leftarrow \overline{Rc}$$

Rc: 1010 1010

Rc: 1010 1010

1

Ra: 1010 1001

e.
$$Rb \leftarrow Rb \oplus Rc$$

Rb: 0111 0110

Rc: 1010 1010

----- ⊕

Rb: 1101 1100

AKMAL RAMADHAN - PSD B - 2206081534

f.
$$Rc \leftarrow Rc + Rb$$

3. (30 poin) Diberikan suatu register A dengan input B dan control input Cx dan Cy. Buatlah state table 1 dimensi dengan register transfer berikut:

•
$$Cx \cdot Cy : A \leftarrow A \wedge B$$

•
$$\overline{Cx}$$
. Cy: A $\leftarrow \overline{A}$ v B

•
$$\operatorname{Cx} \cdot \overline{\operatorname{Cy}} : \operatorname{A} \leftarrow \overline{A \oplus B}$$

•
$$\overline{Cx} \cdot \overline{Cy} : A \leftarrow \overline{A}$$

Anda juga dapat menggunakan tabel berikut sebagai template:

(Catatan: lanjutkan tabel sesuai kebutuhan)

Control Input		Present State	Input	Next State
Cx	Су	A(t)	B(t)	A(t+1)
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

4. (20 poin) Diberikan shift left register 4-bit dengan mode input-output SISO (Serial Input Serial Output) dengan isi awal register 1011. Lengkapi tabel di bawah:

Shift ke-	Input	Register
0 (initial)	-	1011
1	1	0111
2	0	1110
3	0	1100
4	1	1001
5	1	0011
6	0	0110
7	1	1101
8	0	1010
9	1	0101
10	0	1010
11	0	0100