Use of "Regulated Variables" to Eliminate Right Half Plane (RHP) Zeros Near Origin


```
>> sys=ss(a,b,c,d);
>> sys=minreal(sys);
10 states removed.
>> [a,b,c,d]=ssdata(sys);
>> [num,den]=ss2tf(a,b,c,d);
>> g=tf(num,den)

Transfer function:
61.33 s^3 + 136 s^2 - 0.05548 s - 2.776e-017

s^4 + 3.711 s^3 - 77.17 s^2 + 0.003764 s - 0.1648

>> zpk(g)

Zero/pole/gain:
61.33 s (s+2.218) (s-0.0004078)

(s+10.83) (s-7.123) (s^2 + 5.391e-005s + 0.002135)
```

9 dc

(19-,0005u) regulated variable


```
>> sys=ss(a,b,c,d);

>> sys=minreal(sys);

10 states removed.

>> [a,b,c,d]=ssdata(sys);

>> [num,den]=ss2tf(a,b,c,d);

>> g=tf(num,den);

>> zpk(g)

Zero/pole/gain:

61.3295 (s+2.219) (s^2 + 0.005935s + 0.01609)

(s+10.83) (s-7.123) (s^2 + 5.391e-005s + 0.002135)
```

```
>> sys=ss(a,b,c,d);

>> sys=minreal(sys);

10 states removed.

>> [a,b,c,d]=ssdata(sys);

>> [num,den]=ss2tf(a,b,c,d);

>> g=tf(num,den);

>> zpk(g)

Zero/pole/gain:

3.5527e-015 (s+5.629e011) (s+10.94) (s+2.04)

(s+10.94) (s+2.04) (s+1) (s-0.0004078)
```


x = Ax+Bu y = Cx+Du falled x-30

$$G_{cu} = 158,49$$
 $q - \delta_{c}$

Bode Diagram 30 20 Magnifude (dB) 10 -10 -20 -90 Phase (deg) -150 L 10⁻¹ 10⁰ Frequency (rad/sec)

MAE-275 Design Example

WBy & & rad/sec

TABLE A-5

A. GEOMETRICAL AND INERTIAL PARAMETERS FOR THE DC-8

Note: Data are for body-fixed stability axes

$$s = 2600 \text{ ft}^2$$
 , $b = 142.3 \text{ ft}$, $c = 23 \text{ ft}$, $\gamma_0 = 0 \text{ deg}$

·	FLIGHT CONDITION			
25.	8001 APPROACH	8602 HOLDING	8003 CRUISE	8004 V _{NE}
h (ft)	0	15,000	33,000	33,000
M (-)	0.219	0.443	0.84	0.88
a (ft/sec)	1117	1058	982	982 .
ρ (slugs/ft ³)	0.002378	0.001496	0.000795	0.000795
VT _O (ft/sec)	243.5	¥68 . 2	824.2	863.46
$\bar{q} = _0V^2/2 \ (1b/ft^2)$	71.02	163.97	270.0	296.36
W (1b)	190,000	190,000	230,000	230,000
m (slugs)	5900	5900	7143	7143
I _x (slug-ft ²)	3,090,000	3,110,000	3,770,000	3,770,000
Iy (slug-ft ²)	2,940,000	2,940,000	3,560,000	3,560,000
I _z (slug-ft ²)	5,580,000	5,880,000	7,130,000	7,130,000
I _{XZ} (slug-ft ²)	28,000	-64,500	45,000	53,700
xc.g./c	0.15	0.15	0.15	0.15
θ _O (deg)	0	0	0	0
U _o (ft/sec)	243.5	468.2	824.2	863.46
Wo (ft/sec)	0	0	0	0
$\delta_{ m F}$ (deg)	. 35	, O	0 .	0

D. LATERAL DIMENSIONAL DERIVATIVES FOR THE DC-8

Note: Data are for body-fixed stability axes

8)	FLIGHT CONDITION			
	8001	8002	8003	8004
h (ft)	0	15,000	33,000	33,000
M (-)	0.219	0.445	0.84	0.88
Y _V (1/sec)	-0.1113	-0.1008	-0.0868	-0.0931
Y _β [(ft/sec ²)/rad]	-27.1	-47.2	-71.5	-80.4
Yoa [(ft/sec2)/rad]	0	0	0	0
Υδ# [(1/sec)/rad]	0	0	0	0
Y_{δ_r} [(ft/sec ²)/rad]	5.79	13.48	18.33	20.12
Yor [(1/sec)/rad]	0.0238	0.0288	0.0822	0.0233
L _β (1/sec ²)	-1.335	-2.68	-4.43	-5.05
Lp (1/sec)	-0.95	-1.233	-1.18	-1.289
Lr (1/sec)	0.612	0.391	0.336	0.35
Lδa (1/sec ²)	-0.726	-1.62	-2.11	-2.3
L_{δ_r} (1/sec ²)	0.1848	0.374	0.559	0.63
Lg (1/sec ²)	-1.328	-2.71	-4.41	-5.02
L'p (1/sec)	-0.951	-1.232	-1.181	-1.29
Lr (1/sec)	0.509	0.397	0.334	0.346
Log (1/sec ²)	-0.726	-1.62	-2.11	-2.3
$L_{\delta_r^i}$ (1/sec ²)	0.1813	0.392	0.549	0.612
N _β (1/sec ²)	0.763	1.271	2.17	2.47
Np (1/sec)	-0.1192	-0.048	-0.01294	-0.00744
N _r (1/sec)	-0.268	-0.252	-0.23	-0.252
N _{δa} (1/sec ²)	-0.0496	-0.0365	-0.0519	-0.0615
N _{δr} (1/sec ²)	-0.39	-0.86	-1.168	-1.282
N _β (1/sec ²)	0.757	1.301	2.14	2.43
N' _p (1/sec)	-0.124	-0.0346	-0.0204	-0.01715
Nr (1/sec)	0.265	-0.257	-0.228	-0.25
N_{δ_a} (1/sec ²)	-0.0532	-0.01875	-0.0652	-0.0788
N _δ ; (1/sec ²)	-0.389	-0.864	-0.01164	-1.277

	-
44	79

0	32.2000	-468.2000	0	-0.1000
0	0	0.3970	-1.2320	-0.0058
0	0	-0.2570	-0.0346	0.0028
0	0	0	1.0000	0
0	0	1.0000	0	0

» B

				•
>	В			
3	=		n	(ALT)
	0	13.4800	<u> </u>	140
	-1.6200	0.3920		700)
	-0.0187	-0.8640		(16)
	0	0		Υ Υ
	0	0	4=	1 sal
	C			1244

» D

0 0 0 0 0 0

p de

>> zpk(phi_phie)

Zero/pole/gain:

8.5265e-014 (s+8.391e005) (s+1) (s^2 + 0.3615s + 1.359) (s^2 - 8.391e005s + 7.04e011)

(s+20) (s+1.329) (s+0.006784) (s^2 + 0.2533s + 1.433) (s^2 + 28.28s + 400)

$$m = 0$$

Bode Diagram

Bode Dlagram

1 of 1

>> zpk(r_re)

Zero/pole/gain:

$$(s^2 + 7.924s + 93.43) (s^2 + 40.64s + 563.7)$$
 $(s+0.9442) (s+0.5) (s^2 + 0.3768s + 1.39) (s^2 + 7.955s + 92.87)$
 $(s^2 + 40.59s + 562.4) (s^2 + 28.28s + 400)$
 $0 = 5$

$$p = 1$$

r-loop with 4-loop closed

I: from Bode

$$N=2-P$$

$$P=0$$

>> zpk(gfinal)

Zero/pole/gain:

5.6843e-014 (s+9.605e005) (s+1.71) (s+1) (s² + 0.797s + 0.4449)

$$(s^2 + 26.63s + 357.3)$$
 $(s^2 - 9.605e005s + 9.225e011)$

(s+20) (s+1.713) (s+1.364) (s+0.005584) (s² + 0.6389s + 0.5537)

$$(s^2 + 26.65s + 357.6)$$
 $(s^2 + 28.28s + 400)$

r-Sn

5/2/11 1:07 PM

MATLAB Command Window

1 of 1

>> zpk(phi_phie)

Zero/pole/gain:

- not real

8.5265e-014 (s+8.391e005) (s+1) (s^2 + 0.3615s + 1.359) (s^2 - 8.391e005s + 7.04e011)

(s+20) (s+1.329) (s+0.006784) (s² + 0.2533s + 1.433) (s² + 28.28s + 400)

 $\frac{\phi}{\phi_{e}}$

$$m = 0$$

Bode Diagram

p-loop gain margin = 8,5 dB

4-100p phase-margin = 180-130 = 500

r-loop gain-margin = 26.8dB

r-loop Phase margin = 111°

