Discrete Mathematics

Part 3, GRAPH THEORY AND APPLICATIONS (outline)

- -- Chapter 11: An Introduction to Graph Theory
- -- Chapter 12: Trees
- -- Chapter 13: Optimization and Matching

Hung-Yu Kao (高宏宇)

Department of Computer Science and Information Engineering, National Cheng Kung University

Subgraph, complements and graph isomorphism

Figure 11 14

Figure 11.19

Subgraph, complements and graph isomorphism

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two undirected graphs. A function $f: V_1 \to V_2$ is called a *graph isomorphism* if (a) f is one-to-one and onto, and (b) for all $a, b \in V_1$, $\{a, b\} \in E_1$ if and only if $\{f(a), f(b)\} \in E_2$. When such a function exists, G_1 and G_2 are called *isomorphic graphs*.

Figure 11.24

Figure 11.26

Figure 11.25

If G = (V, E) is an undirected graph or multigraph, then $\sum_{v \in V} \deg(v) = 2|E|$.

Hypercube

Euler Trails and Circuits

Let G = (V, E) be an undirected graph or multigraph with no isolated vertices. Then G is said to have an *Euler circuit* if there is a circuit in G that traverses every edge of the graph exactly once. If there is an open trail from G to G and this trail traverses each edge in G exactly once, the trail is called an *Euler trail*.

Figure 11.37

Let G = (V, E) be an undirected graph or multigraph with no isolated vertices. Then G has an Euler circuit if and only if G is connected and every vertex in G has even degree.

If G is an undirected graph or multigraph with no isolated vertices, then we can construct an Euler trail in G if and only if G is connected and has exactly two vertices of odd degree.

Planar Graphs

A graph (or multigraph) G is called *planar* if G can be drawn in the plane with its edges intersecting only at vertices of G. Such a drawing of G is called an *embedding* of G in the plane.

Figure 11.47

Figure 11.48

Figure 11.50

Kuratowski's Theorem. A graph is nonplanar if and only if it contains a subgraph that is homeomorphic to either K_5 or $K_{3,3}$.

Let G = (V, E) be a connected planar graph or multigraph with |V| = v and |E| = e. Let r be the number of regions in the plane determined by a planar embedding (or, depiction) of G; one of these regions has infinite area and is called *the infinite region*. Then v - e + r = 2.

Proof: The proof is by induction on e. If e = 0 or 1, then G is isomorphic to one of the graphs in Fig. 11.56. The graph in part (a) has v = 1, e = 0, and r = 1; so, v - e + r = 1 - 0 + 1 = 2. For graph (b), v = 1, e = 1, and r = 2. Graph (c) has v = 2, e = 1, and r = 1. In both cases,

v - e + r = 2.

Q: Show that every planar graph has a node of degree at most 5.

(Ex11.4-21, 2008nthu)

Figure 11.56

Loop-free planar graph $\rightarrow e \le 3v-6$

Sol:

 $deg(v) \ge 6$ then $2e = \Sigma deg(v) \ge 6v$, so $e \ge 3v$, contradiction

11.5 Hamilton Paths and Cycles

Figure 11.77

Let G = (V, E) be a loop-free graph with $|V| = n \ge 2$. If $\deg(x) + \deg(y) \ge n - 1$ for all $x, y \in V, x \ne y$, then G has a Hamilton path.

If G = (V, E) is a loop-free undirected graph with $|V| = n \ge 3$, and if $\deg(v) \ge n/2$ for all $v \in V$, then G has a Hamilton cycle.

THEOREM 11.9

Let G = (V, E) be a loop-free undirected graph with $|V| = n \ge 3$. If $\deg(x) + \deg(y) \ge n$ for all nonadjacent $x, y \in V$, then G contains a Hamilton cycle.

12. Trees

Let G = (V, E) be a loop-free undirected graph. The graph G is called a $tree^{\dagger}$ if G is connected and contains no cycles.

If G is a directed graph, then G is called a *directed tree* if the undirected graph associated with G is a tree. When G is a directed tree, G is called a *rooted tree* if there is a unique vertex r, called the *root*, in G with the in degree of r = id(r) = 0, and for all other vertices v, the in degree of v = id(v) = 1.

Figure 12.1

Figure 12.10

Others in Algorithm

- DFS, BFS
- MergeSort
- Huffman code

 $a_n = 2a_{n/2} + n$

13. Optimization

- Single-Source Shortest Paths (algorithm ch24)
 - The Bellman-Ford algorithm
 - Dijkstra's shortest-path algorithm
- All-Pairs Shortest Paths (algorithm ch25)
 - The Floyd-Warshall algorithm
- Minimum Spanning Trees (algorithm ch23)
 - The algorithm of Kruskal and Prim (Greedy)
- Transport Networks (Maximum Flow) (algorithm ch26)
 - The Edmonds-Karp algorithm
 - The Ford-Fulkerson method

14. Ring

- A long story!
- ...
- ...