Outlier detection - Détection de fraudes

H. Andres & M. Bouazza & M. Casanave & M. Karpe

École des Ponts ParisTech

25 mai 2018

Sommaire

Introduction

Algorithmes de détection de données aberrantes

Modélisation économique du coût de la fraude

Expérimentations et résultats

Introduction

Comment détecter les données aberrantes?
Une étude comparative des différents algorithmes d'apprentissage non supervisé

Sommaire

Introduction

Algorithmes de détection de données aberrantes

Modélisation économique du coût de la fraude

Expérimentations et résultats

Autoencoder

Principe:

- Codeur : $\psi : x \in \mathbb{R}^d \longmapsto z \in \mathbb{R}^{d'} \ (d' < d)$
- Decodeur : $\phi : z \in \mathbb{R}^{d'} \longmapsto \tilde{x} \in \mathbb{R}^{d}$
- $\psi, \phi = \underset{\psi, \phi}{\operatorname{argmin}} \|X \phi \circ \psi(X)\|_{\mathbb{R}^d}^2$ (X étant le jeu de données)

Figure – Illustration du principe de Autoencoder.

Autoencoder

- Idée : "outlier" moins bien représenté
- Conséquence : erreur d'approximation $\|x \phi \circ \psi(x)\|_{\mathbb{R}^d}^2$ plus grande
- Détection : données ayant les plus grandes erreurs

Local Outlier Factor

Idée : Comparaison de la densité avec les k voisins

Figure - Illustration de la méthode Local Outlier Factor.

Local Outlier Factor

En pratique:

- "Distance d'atteinte" $d_k(x, y)$: maximum de la vraie distance d(x, y) et de la distance entre y et son k^e voisin
- "Densité locale" de x : inverse de la moyenne des distances d'atteinte de x depuis ses k voisins

Robust Estimator of Covariance

Hypothèses : $X_i \sim N_p(\mu_i, \sigma_i)$ données générées à partir d'une densité elliptique

Robustesse : Modèle imposé par la majorité des données, donc moins influencé par les outliers

Distance de Mahalanobis :
$$D_M(x) = \sqrt{(x-\mu)^T \sum^{-1} (x-\mu)}$$

x outlier si n'appartient pas à **l'ellipsoïde de tolérance** :

$$\left\{ \ x \mid D_M(x) \leq \sqrt{\chi_{\rho,0.975}^2} \ \right\}$$

Robust Estimator of Covariance

Figure – Illustration d'une ellipsoïde de tolérance.

One-class SVM

Principe:

- Fonction de décision : hyperplan
- Applique le noyau et sépare les données
- Outliers relâchés par une variable ξ
- ν est choisi par l'utilisateur

Programme de minimisation :

$$\begin{aligned} \min_{w,\xi_{i},\rho} \frac{1}{2} \|w\|^{2} + \frac{1}{\nu n} \sum_{i=1}^{n} \xi_{i} - \rho \\ \text{s.t. } (w \cdot \phi(x_{i})) \geq \rho - \xi_{i}, \ \xi_{i} \geq 0, \ \forall i = 1, \dots, n \end{aligned}$$

Fonction à noyau :
$$K(x,x_i) = \phi(x)^T \phi(x_i)$$

Fonction de décision : $f(x) = \operatorname{sgn}((w \cdot \phi(x_i)) - \rho)$

One-class SVM

Figure - Illustration de la méthode One-class SVM.

Isolation Forest

Hypothèses principales : *outliers* = points en faible nombre et différents des autres

Conséquence : outliers faciles à isoler

Figure - Illustration de la méthode Isolation Forest.

Isolation Forest

iTree

Sommaire

Introduction

Algorithmes de détection de données aberrantes

Modélisation économique du coût de la fraude

Expérimentations et résultats

Coûts et profits pour la banque

		P	R	Е	D	I	С	Т	E	D
	"P"				"N"					
A		TRUE POSITIVE					FALSE NEGATIVE			
С	P	P Outlier detected as				Outlier detected as inlier				
Т		outlier								
บ	Profit: €160					Cost: €160				
Α		FA	LSE	POS	SITIN	Æ	TR	UE	NEG	ATIVE
A L	N		lier o		ted a			lier		cted as

Figure – Illustration des différents coûts intervenant dans la modélisation.

Stratégie de maximisation

$$\pi = 160(TPR - FNR) - FPR$$
 avec
$$TPR = \frac{\# \text{ Vrais positifs}}{\# \text{ Positifs}}$$

$$FNR = \frac{\# \text{ Faux négatifs}}{\# \text{ Positifs}}$$

$$FPR = \frac{\# \text{ Faux positifs}}{\# \text{ Négatifs}}$$

Sommaire

Introduction

Algorithmes de détection de données aberrantes

Modélisation économique du coût de la fraude

Expérimentations et résultats

Jeux de données

	Données	Dimensions	Outliers
Synthetic	1000	100	13,6 %
Creditcard	284807	29	0,17 %
KDD10	494021	38	1,77 %
SA10	100655	38	3,36 %
SF10	73237	3	4,50 %
HTTP10	58725	3	3,76 %
SMTP10	9571	3	0,03 %

Figure – Description des jeux de données utilisés dans le cadre du projet.

Optimisation des hyperparamètres

Figure – Illustration des méthodes de *Grid Search* (à gauche) et de *validation croisée* (à droite).

Description et analyse des résultats

Figure – Evolution de la fonction de profit en fonction de la valeur de l'hyperparamètre caractéristique de l'algorithme.

Combinaison des algorithmes

Figure – Evolution de la fonction de profit en fonction du seuil de décision pour la combinaison des algorithmes par *rank averaging* (à gauche) et par *bagging* (à droite).

Sommaire

Introduction

Algorithmes de détection de données aberrantes

Modélisation économique du coût de la fraude

Expérimentations et résultats

Synthèse et perspectives

Constats majeurs:

- One-class SVM semble être le plus efficace
- Combinaison des algorithmes peu efficace
- Importance de la fonction de coût / profit

Limites du projet :

- Taille des bases de données
- Temps d'exécution des algorithmes

Principales références I

Observatoire de la sécurité des moyens de paiement - Banque de France

Rapport annuel de l'Observatoire de la sécurité des moyens de paiement

```
https://www.banque-france.fr/sites/default/files/medias/documents/osmp2016_web.pdf 2016
```


Journal of Machine Learning Research Scikit-learn: Machine Learning in Python http://scikit-learn.org/stable/ 2011