1 Fourierove rady

• Trigonometrickým radom s periódou L nazývame rad funkcií

$$\frac{a_0}{2} + \sum_{n=1}^{+\infty} \left(a_n \cos \frac{2\pi n}{L} x + b_n \sin \frac{2\pi n}{L} x \right),\tag{1}$$

kde L je kladné číslo, reálne čísla $a_0,\,a_n,\,b_n,\,n=1,2,\ldots$ nazývame koeficienty trigonometrického radu. Trigonometrický rad, v ktorom $b_n=0$ pre všetky $n=1,2,\ldots$ nazývame kosínusový trigonometrický rad, trigonometrický rad, v ktorom $a_n=0$ pre všetky $n=0,1,2,\ldots$ nazývame sínusový trigonometrický rad.

Nech f je funkcia definovaná na intervale \(\lambda ; a + L \rangle \), po čiastkach spojitá na intervale \(\lambda ; a + L \rangle \)
 (t.j. existuje najviac konečný počet bodov tohoto intervalu, kde funkcia je nespojitá). Potom trigonometrický rad (1) nazývame Fourierov rad funckie f pre interval \(\lambda ; a + L \rangle \), ak platí

$$a_n = \frac{2}{L} \int_{a}^{a+L} f(x) \cos \frac{2\pi n}{L} x \, dx, \quad b_n = \frac{2}{L} \int_{a}^{a+L} f(x) \sin \frac{2\pi n}{L} x \, dx.$$

- Hovoríme, že funkciu f možno rozvinúť do trigonometrického radu, ak existuje taký rad (1), že pre každé x je jeho súčet f(x).
- Nech f je funkcia definovaná na intervale $\langle a; a + L \rangle$. Periodickým predĺžením funkcie f pre interval $\langle a; a + L \rangle$ budeme nazývať funkciu \bar{f} , pre ktorú platí

$$\bar{f}(x) = \begin{cases} \frac{1}{2} \left(\lim_{t \to a+} f(t) + \lim_{t \to (a+L)-} f(t) \right), & \text{pre } x = a, \\ \frac{1}{2} \left(\lim_{t \to x+} f(t) + \lim_{t \to x-} f(t) \right), & \text{pre } x \in (a; a+L), \\ \bar{f}(x+L), & \text{pre v estky } x. \end{cases}$$

• Nech f je párna funkcia na intervale $\langle -\frac{L}{2}; \frac{L}{2} \rangle$ potom pre koeficienty jej Fourierovho radu pre interval $\langle -\frac{L}{2}; \frac{L}{2} \rangle$ platí

$$a_n = \frac{4}{L} \int_0^{\frac{L}{2}} f(x) \cos \frac{2\pi n}{L} x \, \mathrm{d}x, \quad b_n = 0.$$

Nech f je nepárna funkcia na intervale $\langle -\frac{L}{2}; \frac{L}{2} \rangle$ potom pre koeficienty jej Fourierovho radu pre interval $\langle -\frac{L}{2}; \frac{L}{2} \rangle$ platí

$$a_n = 0, \quad b_n = \frac{4}{L} \int_{0}^{\frac{L}{2}} f(x) \sin \frac{2\pi n}{L} x \, dx.$$

Súčtom akéhokoľvek kosínusového, resp. sínusového trigonometrického radu je funkcia párna, resp. nepárna.

• Nech f je funkcia definovaná na intervale $\langle a; a+L \rangle$ a nech f aj jej derivácia sú po čiastkach spojité na intervale $\langle a; a+L \rangle$. Potom Fourierov rad funkcie f pre interval $\langle a; a+L \rangle$ konverguje pre všetky $x \in \mathbb{R}$ a jeho súčtom je \bar{f} .

Nech f je periodická funkcia s periódou L (t.j. f(x) = f(x+L), pre všetky x z definičného oboru funkcie f) a nech f aj jej derivácia sú po čiastkach spojité na intervale $\langle a; a+L \rangle$ a pre každý bod nespojitosti c funckie f platí $f(c) = \frac{1}{2} (\lim_{t \to c+} f(t) + \lim_{t \to c-} f(t))$. Potom funkciu f možno rozvinúť do trigonometrického radu a za tento rad je možné zobrať Fourierov rad funkcie f pre interval $\langle a; a+L \rangle$.

Pre periodickú funkciu f s periódou L integrály pre výpočet koeficientov a_n , b_n môžeme počítať cez ľubovoľný interval dĺžky L. Častým prípadom je $L = 2\pi$, v tomto špeciálnom prípade máme

$$\frac{a_0}{2} + \sum_{n=1}^{+\infty} (a_n \cos nx + b_n \sin nx), \quad a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx, \quad b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx.$$

Príklad 1. Rozviňme funkciu $f(x) = e^{-x}$ na intervale $\langle 0; 2\pi \rangle$ do trigonometrického radu.

Riešenie. Najprv vypočítame koeficienty Fourierovho radu funkcie f pomocou vzorcov

$$a_n = \frac{1}{\pi} \int_{0}^{2\pi} e^{-x} \cos nx \, dx, \quad b_n = \frac{1}{\pi} \int_{0}^{2\pi} e^{-x} \sin nx \, dx.$$

Tieto integrály môžeme integrovať po častiach. Výpočtom a_n (pre všetky n, teda aj pre nulu) dostaneme

$$\int_{0}^{2\pi} e^{-x} \cos nx \, dx = \left[-e^{-x} \cos nx \right]_{0}^{2\pi} - \int_{0}^{2\pi} -e^{-x} n(-\sin nx) \, dx =$$

$$= \left(1 - e^{-2\pi} \right) - n \left[-e^{-x} \sin nx \right]_{0}^{2\pi} + n \int_{0}^{2\pi} -e^{-x} n \cos nx \, dx = \left(1 - e^{-2\pi} \right) - n^{2} \int_{0}^{2\pi} e^{-x} \cos nx \, dx,$$

z čoho

$$\int_{0}^{2\pi} e^{-x} \cos nx \, dx = \frac{1 - e^{-2\pi}}{1 + n^2}.$$

Koeficient a_n sa rovná

$$a_n = \frac{1 - e^{-2\pi}}{\pi (1 + n^2)}.$$

Podobným spôsobom vypočítame aj b_n , podrobný postup už nebudeme uvádzať:

$$b_n = \frac{n(1 - e^{-2\pi})}{\pi(1 + n^2)}.$$

Hľadaný rozvoj do trigonometrického radu zapíšeme pomocou Fourierovho radu

$$f(x) = \frac{1 - e^{-2\pi}}{\pi} \left[\frac{1}{2} + \sum_{n=1}^{+\infty} \frac{1}{\pi(1+n^2)} \cos nx + \sum_{n=1}^{+\infty} \frac{n}{\pi(1+n^2)} \sin nx \right].$$

Keďže funkcia aj jej derivácia sú na intervale $\langle 0; 2\pi \rangle$ spojité, mohli sme písať rovnosť vo vnútri tohoto intervalu a naviac vieme, že mimo intervalu rad na pravej strane rovnosti konverguje k periodickému predĺženiu funkcie f, ktoré je nakreslené na obrázku:

Príklad 2. Nájdime rozvoj funkcie f(x) do kosínusového trigonometrického radu a nakreslime graf súčtovej funkcie tohoto radu, kde

$$f(x) = \begin{cases} \frac{\pi}{2} - x, & x \in \langle 0; \frac{\pi}{2} \rangle, \\ 0, & x \in (\frac{\pi}{2}; \pi) \end{cases}$$

Riešenie. Keďže máme funkciu rozvinúť do kosínusového radu, súčtová funkcia $\bar{f}(x)$ tohoto radu bude párna, naviac, na intervale $\langle -\pi; 0 \rangle$ musí platiť

$$\bar{f}(x) = \begin{cases} \frac{\pi}{2} + x, & x \in \langle -\frac{\pi}{2}; 0 \rangle, \\ 0, & x \in \langle -\pi; -\frac{\pi}{2} \rangle. \end{cases}$$

Graf funkcie $\bar{f}(x)$, ktorá je definovaná pre všetky $x \in \mathbb{R}$, teda bude vyzerať tak, ako na obrázku:

Uvedomme si pritom, že perióda súčtovej funkcie \bar{f} je $L=2\pi$.

Poďme sa teraz venovať rozvoju a vypočítajme koeficienty $a_n, n \ge 1$ Fourierovho radu funkcie \bar{f} . Výpočtom integrovaním po častiach dostaneme

$$\int_{0}^{\frac{\pi}{2}} \left(\frac{\pi}{2} - x\right) \cos nx \, \mathrm{d}x = \left[\left(\frac{\pi}{2} - x\right) \frac{\sin nx}{n} \right]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} \frac{\sin nx}{n} \, \mathrm{d}x = -\left[\frac{\cos nx}{n^2} \right]_{0}^{\frac{\pi}{2}} = \frac{1}{n^2} \left(1 - \cos \frac{n}{2} \pi \right).$$

Pre n=0 máme

$$\int_{0}^{\frac{\pi}{2}} \left(\frac{\pi}{2} - x\right) dx = \left[\frac{\pi}{2}x - \frac{x^{2}}{2}\right]_{0}^{\frac{\pi}{2}} = \frac{\pi^{2}}{8}.$$

Koeficient a_n teda vypočítame zo vzťahu

$$a_0 = \frac{\pi}{4}, \qquad a_n = \frac{2}{\pi n^2} \left(1 - \cos \frac{n}{2} \pi \right), n \ge 1,$$

pričom výraz v zátvorke nadobúda hodnoty 0, 1 alebo 2 podľa nasledujúcej tabuľky:

n	$(1-\cos\frac{n}{2}\pi)$
4k	0
4k + 1	1
4k + 2	2
4k + 3	1

Môžeme teda písať

$$\bar{f}(x) = \frac{\pi}{8} + \sum_{n=1}^{+\infty} \frac{2\left(1 - \cos\frac{n}{2}\pi\right)}{\pi n^2} \cos nx =$$

$$= \frac{\pi}{8} + \frac{2}{\pi} \left(\cos x + \frac{1}{2}\cos 2x + \frac{1}{9}\cos 3x + \frac{1}{25}\cos 5x + \frac{1}{18}\cos 6x + \dots\right).$$

Nakoniec ešte ukážme, ako konverguje postupnosť čiastočných súčtov radu k funkcii $\bar{f}(x)$. Obrázok ukazuje súčtovú funkciu aj niektoré čiastočné súčty radu.

Úlohy

V úlohách 1. až 8. rozložte funkcie na danom intervale do trigonometrického radu.

1.
$$f(x) = \cos^4 x$$
, $x \in \langle -\pi; \pi \rangle$.

2.
$$f(x) = \cos \frac{x}{2}, \quad x \in \langle -\pi; \pi \rangle$$
.

3.
$$f(x) = x$$
, $\langle -\pi; \pi \rangle$.

4.
$$f(x) = \begin{cases} x, & x \in \langle 0; \pi \rangle \\ 0, & x \in \langle \pi; 2\pi \rangle \end{cases}$$
.

5.
$$f(x) = \begin{cases} 0, & x \in \langle -\pi; 0 \rangle \\ 1, & x \in (0; \pi) \end{cases}$$
.

6.
$$f(x) = e^x, \langle -k, k \rangle, k > 0.$$

7.
$$f(x) = \begin{cases} \sin x, & x \in \langle 0; \frac{\pi}{2} \rangle \\ 0, & x \in (\frac{\pi}{2}; \pi) \end{cases}$$
.

8.
$$f(x) = \begin{cases} \sin x, & x \in \langle 0; \pi \rangle \\ 0, & x \in \langle \pi; 2\pi \rangle \end{cases}$$
.

V úlohách 9. až 14. rozložte funkcie do kosínusového trigonometrického radu na určenom intervale.

$$\mathbf{9.} \ f\left(x\right) = \begin{cases} 1, & x \in \langle 0; \frac{\pi}{2} \rangle \\ -1, & x \in \left(\frac{\pi}{2}; \pi\right) \end{cases}.$$

10.
$$f(x) = \frac{\pi}{2} - x, \quad x \in \langle 0; \pi \rangle.$$

11.
$$f(x) = \cos x$$
, $x \in \langle 0; \frac{\pi}{2} \rangle$.

12.
$$f(x) = \sin x$$
, $x \in \langle 0; \frac{\pi}{2} \rangle$.

13.
$$f(x) = x^2, x \in (0; \pi)$$
.

14.
$$f(x) = x(\pi - x), \quad x \in (0; \frac{\pi}{2}).$$

V úlohách 15. až 20. rozložte funkcie do sínusového trigonometrického radu na určenom intervale.

15.
$$f(x) = 1, \quad x \in \langle 0; \pi \rangle$$
.

16.
$$f(x) = \frac{\pi}{2} - |x - \frac{\pi}{2}|, \quad x \in \langle 0; \pi \rangle$$
.

17.
$$f(x) = \cos x, \quad x \in (0; \frac{\pi}{2}).$$

18.
$$f(x) = \sin x, \quad x \in (0; \frac{\pi}{2}).$$

19.
$$f(x) = x^2, \quad x \in \langle 0; \pi \rangle$$
.

20.
$$f(x) = x(\pi - x), \quad x \in \langle 0; \pi \rangle$$
.

21. Pre úlohy 1. až 20. načrtnite graf periodického predĺženia funkcií f(x).

Riešenia úloh

1.
$$\frac{3}{8} + \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x$$

1.
$$\frac{3}{8} + \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x$$
 2. $\frac{4}{\pi} \left(\sum_{n=1}^{+\infty} (-1)^n \frac{1}{4n^2 - 1}\cos nx \right)$ 3. $-2\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n}\sin nx$

3.
$$-2\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} \sin nx$$

4.
$$\frac{\pi}{4} + \left(\sum_{n=1}^{+\infty} (-1)^{n-1} \frac{\sin nx}{n}\right) - \frac{2}{\pi} \left(\sum_{n=1}^{+\infty} (-1)^{n-1} \frac{\cos nx}{n^2}\right)$$

5.
$$\frac{1}{2} + \frac{2}{\pi} \sum_{n=1}^{+\infty} \frac{\sin(2n-1)x}{2n-1}$$

6.
$$\left(e^k + e^{-k}\right) \left\{ \frac{1}{2k} + \sum_{n=1}^{+\infty} \left((-1)^n \frac{k}{k^2 + n^2 \pi^2} \cos \frac{n\pi x}{k} + (-1)^{n+1} \frac{n\pi}{k^2 + n^2 \pi^2} \sin \frac{n\pi x}{k} \right) \right\}$$

7.
$$\frac{1}{2}\sin x - \frac{4}{\pi}\sum_{n=1}^{+\infty} \frac{(-1)^n}{4n^2 - 1}\sin 2nx$$

8.
$$\frac{1}{\pi} + \frac{1}{2}\sin x - \frac{2}{\pi}\sum_{n=1}^{+\infty} \frac{1}{4n^2 - 1}\cos 2nx$$

9.
$$\frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{2n-1} \cos(2n-1)$$

10.
$$\frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{1}{(2n-1)^2} \cos(2n-1)x$$

9.
$$\frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{2n-1} \cos(2n-1)x$$
 10. $\frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{1}{(2n-1)^2} \cos(2n-1)x$ 11. $\frac{2}{\pi} + \frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{4n^2-1} \cos 2nx$

12.
$$\frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{1}{4n^2 - 1} \cos 2nx$$
 13. $\frac{\pi^2}{3} + 4 \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} \cos nx$ **14.** $\frac{\pi^2}{6} - 4 \sum_{n=1}^{+\infty} \frac{1}{n^2} \cos 2nx$

13.
$$\frac{\pi^2}{3} + 4 \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} \cos nx$$

14.
$$\frac{\pi^2}{6} - 4 \sum_{n=1}^{+\infty} \frac{1}{n^2} \cos 2nx$$

15.
$$\frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{1}{2n-1} \sin(2n-1) dx$$

15.
$$\frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{1}{2n-1} \sin(2n-1)x$$
 16. $\frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{(2n-1)^2} \sin(2n-1)x$ **17.** $\frac{8}{\pi} \sum_{n=1}^{+\infty} \frac{n}{4n^2-1} \sin 2nx$

17.
$$\frac{8}{\pi} \sum_{n=1}^{+\infty} \frac{n}{4n^2 - 1} \sin 2nx$$

18.
$$\frac{8}{\pi} \sum_{n=1}^{+\infty} \frac{n(-1)^{n-1}}{4n^2 - 1} \sin 2nx$$

19.
$$\frac{2}{\pi} \sum_{n=1}^{+\infty} \frac{(n^2 \pi^2)(-1)^{n-1} - 2}{n^3} \sin nx$$

18.
$$\frac{8}{\pi} \sum_{n=1}^{+\infty} \frac{n(-1)^{n-1}}{4n^2-1} \sin 2nx$$
 19. $\frac{2}{\pi} \sum_{n=1}^{+\infty} \frac{(n^2\pi^2)(-1)^{n-1}-2}{n^3} \sin nx$ **20.** $\frac{8}{\pi} \sum_{n=1}^{+\infty} \frac{1}{(2n-1)^3} \sin(2n-1)x$