lab13

Table of contents

setup	1
Read the countData and colData	2
PCA as Quality control	4
DESEQ analysis	5
Summary plot	7
Add annotations	9
Pathway analysis GO pathways	12 14 15

setup

library(DESeq2)

```
Warning: package 'DESeq2' was built under R version 4.1.1

Warning: package 'S4Vectors' was built under R version 4.1.2

Warning: package 'BiocGenerics' was built under R version 4.1.1

Warning: package 'IRanges' was built under R version 4.1.1
```

```
Warning: package 'GenomicRanges' was built under R version 4.1.2
Warning: package 'GenomeInfoDb' was built under R version 4.1.1
Warning: package 'SummarizedExperiment' was built under R version 4.1.1
Warning: package 'MatrixGenerics' was built under R version 4.1.1
Warning: package 'matrixStats' was built under R version 4.1.2
Warning: package 'Biobase' was built under R version 4.1.1
  library(ggplot2)
  library(gage)
Warning: package 'gage' was built under R version 4.1.1
  library(gageData)
  library(pathview)
Warning: package 'pathview' was built under R version 4.1.1
  theme_set(theme_bw())
Read the countData and colData
  colData <- read.csv("GSE37704_metadata.csv", row.names = 1)</pre>
```

```
countData <- read.csv("GSE37704_featurecounts.csv", sep = ",", row.names = 1)

colData <- read.csv("GSE37704_metadata.csv", row.names = 1)

Q. Do they match?

No they dont.

row.names(colData)

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"</pre>
```

head(countData)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

Need to get rid of the length column, will mess up Deseq analysis

```
countData <- countData[,- 1]
# countData[, colData$id] this is a better way
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
all(colnames(countData) == colData$id)
```

[1] TRUE

Q. Remove zero count genes

```
# rowSums(countData[]) sums each row and prints the rowname with the sum
# rowSums(countData[]) > 0 creates a logical vector with all the rownames, with TRUE if the
```

```
# wrapping in countData[logical vector,] gives the dataframe with rows that fufill the log
counts <- countData[rowSums(countData[]) >0,]
head(counts)
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Q. How many genes left?

```
nrow(counts)
```

[1] 15975

PCA as Quality control

BaseR is prcomp() function which often needs the data to be transposed and scaled.

```
pca <- prcomp(t(counts), scale = TRUE)

Plot

x <- as.data.frame(pca$x) # get in data frame format
ggplot(data = x) +
   aes(x = PC1, y = PC2, group = colData$condition, color = colData$condition) +
   geom_point() +
   labs(title = "PCA of Hoxa1 KD")</pre>
```


Q. How much variance captured in 2 PCs?

Summary of PCA

summary(pca)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 Standard deviation 87.7211 73.3196 32.89604 31.15094 29.18417 6.648e-13 Proportion of Variance 0.4817 0.3365 0.06774 0.06074 0.05332 0.000e+00 Cumulative Proportion 0.4817 0.8182 0.88594 0.94668 1.00000 1.000e+00

81.82% of variance captured by two PCs.

DESEQ analysis

```
library(DESeq2)
dds <- DESeqDataSetFromMatrix(countData = counts, colData = colData, design = ~condition)</pre>
```

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing</pre>
```

results <- results(dds)
head(results)</pre>

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215598	1.040744	2.97994e-01
	pac	lj			

pau

<numeric>

ENSG00000279457 6.86555e-01

ENSG00000187634 5.15718e-03

ENSG00000188976 1.76549e-35

ENSG00000187961 1.13413e-07

ENSG00000187583 9.19031e-01

ENSG00000187642 4.03379e-01

Summary plot

zero p-value...

```
Plot the genes
  library(EnhancedVolcano)
Warning: package 'EnhancedVolcano' was built under R version 4.1.1
Loading required package: ggrepel
Warning: package 'ggrepel' was built under R version 4.1.1
Registered S3 methods overwritten by 'ggalt':
  method
  grid.draw.absoluteGrob ggplot2
  grobHeight.absoluteGrob ggplot2
  grobWidth.absoluteGrob ggplot2
  grobX.absoluteGrob
                          ggplot2
  grobY.absoluteGrob
                          ggplot2
  results <- as.data.frame(results)</pre>
  EnhancedVolcano(results, lab = rownames(results), x = "log2FoldChange", y = "padj")
Warning: One or more p-values is 0. Converting to 10^-1 * current lowest non-
```

Volcano plot

EnhancedVolcano

in base R with colors

```
mycols <- rep("gray", nrow(results))
mycols[abs(results$log2FoldChange) > 2] <- "red"

inds <- (results$padj < 0.01) & (abs(results$log2FoldChange) > 2)
mycols[inds] <- "blue"
plot( results$log2FoldChange, -log(results$padj), col=mycols, ylab="-Log(P-value)", xlab="</pre>
```


integer(0)

Add annotations

```
library(org.Hs.eg.db)

Loading required package: AnnotationDbi

Warning: package 'AnnotationDbi' was built under R version 4.1.1

columns(org.Hs.eg.db)
```

```
"ENSEMBL"
 [1] "ACCNUM"
                    "ALIAS"
                                                  "ENSEMBLPROT"
                                                                 "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                   "EVIDENCE"
                                                  "EVIDENCEALL"
                                                                 "GENENAME"
[11] "GENETYPE"
                    "GO"
                                   "GOALL"
                                                  "IPI"
                                                                 "MAP"
[16] "OMIM"
                    "ONTOLOGY"
                                   "ONTOLOGYALL"
                                                  "PATH"
                                                                 "PFAM"
[21] "PMID"
                    "PROSITE"
                                   "REFSEQ"
                                                  "SYMBOL"
                                                                 "UCSCKG"
[26] "UNIPROT"
use mapIds to add gene symbols, entrez ID
  # add gene symbol
  results$symbol <- mapIds(org.Hs.eg.db, keys = row.names(results), column = "SYMBOL", keyty
'select()' returned 1:many mapping between keys and columns
  head(results$symbol)
[1] "WASH9P"
              "SAMD11" "NOC2L"
                                  "KLHL17" "PLEKHN1" "PERM1"
  # add entrezid
  results$entrez <- mapIds(org.Hs.eg.db, keys = row.names(results), column = "ENTREZID", key
'select()' returned 1:many mapping between keys and columns
  head(results)
                  baseMean log2FoldChange
                                               lfcSE
                                                            stat
                                                                       pvalue
ENSG00000279457
                  29.91358
                              0.17925708 0.32482157
                                                       0.5518632 5.810421e-01
ENSG00000187634 183.22965
                               0.42645712 0.14026582
                                                       3.0403495 2.363037e-03
ENSG00000188976 1651.18808
                            -0.69272046 0.05484654 -12.6301576 1.439895e-36
ENSG00000187961 209.63794
                              0.72975561 0.13185990
                                                       5.5343255 3.124282e-08
                                                       0.1492372 8.813664e-01
ENSG00000187583
                  47.25512
                               0.04057653 0.27189281
ENSG00000187642
                  11.97975
                             0.54281049 0.52155985
                                                       1.0407444 2.979942e-01
                        padj symbol
                                        entrez
ENSG00000279457 6.865548e-01 WASH9P 102723897
ENSG00000187634 5.157181e-03 SAMD11
                                        148398
ENSG00000188976 1.765489e-35
                               NOC2L
                                        26155
ENSG00000187961 1.134130e-07 KLHL17
                                        339451
```

PERM1

84069

84808

ENSG00000187583 9.190306e-01 PLEKHN1

ENSG00000187642 4.033793e-01

New volcano:

```
library(EnhancedVolcano)
results <- as.data.frame(results)
EnhancedVolcano(results, lab = results$symbol, x = "log2FoldChange", y = "padj")</pre>
```

Warning: One or more p-values is 0. Converting to 10^{-1} * current lowest non-zero p-value...

Volcano plot

EnhancedVolcano

Pathway analysis

Create the input for gage() - a vector of fold changes with entrez IDs as the names

```
foldchange <- results$log2FoldChange
names(foldchange) <- results$entrez

data(kegg.sets.hs)
keggres <- gage(foldchange, gsets = kegg.sets.hs)
head(keggres$less)</pre>
```

```
p.geomean stat.mean
                                              8.995727e-06 -4.378644
hsa04110 Cell cycle
hsa03030 DNA replication
                                              9.424076e-05 -3.951803
hsa05130 Pathogenic Escherichia coli infection 1.405864e-04 -3.765330
hsa03013 RNA transport
                                              1.246882e-03 -3.059466
hsa03013 KNA transport hsa03440 Homologous recombination
                                              3.066756e-03 -2.852899
hsa04114 Oocyte meiosis
                                              3.784520e-03 -2.698128
                                                     p.val
                                                                 q.val
hsa04110 Cell cycle
                                              8.995727e-06 0.001889103
                                              9.424076e-05 0.009841047
hsa03030 DNA replication
hsa05130 Pathogenic Escherichia coli infection 1.405864e-04 0.009841047
hsa03013 RNA transport
                                              1.246882e-03 0.065461279
hsa03440 Homologous recombination
                                              3.066756e-03 0.128803765
hsa04114 Oocyte meiosis
                                              3.784520e-03 0.132458191
                                              set.size
                                                               exp1
hsa04110 Cell cycle
                                                   121 8.995727e-06
hsa03030 DNA replication
                                                    36 9.424076e-05
hsa05130 Pathogenic Escherichia coli infection
                                                   53 1.405864e-04
hsa03013 RNA transport
                                                  144 1.246882e-03
hsa03440 Homologous recombination
                                                   28 3.066756e-03
                                                102 3.784520e-03
hsa04114 Oocyte meiosis
```

Look at the pathways:

```
pathview(gene.data = foldchange, pathway.id = "hsa04110")
```

Info: Working in directory C:/Users/lhodg/Documents/Research/BGGN213/lab13

Info: Writing image file hsa04110.pathview.png

^{&#}x27;select()' returned 1:1 mapping between keys and columns

?

GO pathways

```
data(go.sets.hs)
data(go.subs.hs)

# the biological subprocess of go is selected with go.subs.hs$BP
gobpsets = go.sets.hs[go.subs.hs$BP]
  # gene sets
gobpres = gage(foldchange, gsets=gobpsets, same.dir=TRUE)
  # results from gage changing genes overlapping with the gene sets
lapply(gobpres, head)
```

\$greater

```
p.geomean stat.mean
                                                                       p.val
                                         8.519724e-05 3.824205 8.519724e-05
GO:0007156 homophilic cell adhesion
GO:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
GO:0048729 tissue morphogenesis
                                         1.432451e-04 3.643242 1.432451e-04
GO:0007610 behavior
                                         2.195494e-04 3.530241 2.195494e-04
GO:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
GO:0035295 tube development
                                          5.953254e-04 3.253665 5.953254e-04
                                              q.val set.size
                                                                     exp1
GO:0007156 homophilic cell adhesion
                                          0.1951953
                                                        113 8.519724e-05
GO:0002009 morphogenesis of an epithelium 0.1951953
                                                        339 1.396681e-04
GO:0048729 tissue morphogenesis
                                          0.1951953
                                                        424 1.432451e-04
GO:0007610 behavior
                                                        427 2.195494e-04
                                          0.2243795
GO:0060562 epithelial tube morphogenesis 0.3711390
                                                        257 5.932837e-04
GO:0035295 tube development
                                          0.3711390
                                                        391 5.953254e-04
```

\$less

```
p.geomean stat.mean p.val
G0:0048285 organelle fission 1.536227e-15 -8.063910 1.536227e-15
G0:0000280 nuclear division 4.286961e-15 -7.939217 4.286961e-15
G0:0007067 mitosis 4.286961e-15 -7.939217 4.286961e-15
G0:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
G0:0007059 chromosome segregation 2.028624e-11 -6.878340 2.028624e-11
G0:0000236 mitotic prometaphase 1.729553e-10 -6.695966 1.729553e-10
q.val set.size exp1
```

GO:0048285	organelle fission	5.841698e-12	376	1.536227e-15
GD:0000280	nuclear division	5.841698e-12	352	4.286961e-15
GO:0007067 1	mitosis	5.841698e-12	352	4.286961e-15
GD:0000087	M phase of mitotic cell cycle	1.195672e-11	362	1.169934e-14
GD:0007059	chromosome segregation	1.658603e-08	142	2.028624e-11
GD:0000236 1	mitotic prometaphase	1.178402e-07	84	1.729553e-10

\$stats

		stat.mean	exp1
GO:0007156	homophilic cell adhesion	3.824205	3.824205
GD:0002009	${\tt morphogenesis} \ {\tt of} \ {\tt an} \ {\tt epithelium}$	3.653886	3.653886
GO:0048729	tissue morphogenesis	3.643242	3.643242
GO:0007610	behavior	3.530241	3.530241
GO:0060562	epithelial tube morphogenesis	3.261376	3.261376
GO:0035295	tube development	3.253665	3.253665

Check GO codes for how they got the annotation, is it verified by experiment or computationally inferred??

Reactome

```
sig_genes <- results[results$padj <= 0.05 & !is.na(results$padj), "symbol"]
# reactome uses gene symbol, not entrez id
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
# write out text file for reactome to take
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quo
```

From Reactome browser:

Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

Endosomal/Vacuolar pathway

Not all the pathways match. Both methods give cell cycle-related processes as a significant result. Each method uses different methods of annotating genes and verifying which gene belongs to which pathway.