FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVOD ZA VISOKI NAPON I ENERGETIKU

Konstrukcijski zadatak iz kolegija ANALIZA ELEKTROENERGETSKOG SUSTAVA

Proračun tokova snaga i kratkog spoja u mreži

Sadržaj

1.	Sad	držajdržaj	3				
2.	Zac	datak	4				
3.	Pro	oračun tokova snaga	5				
	3.1.	Izračun Y-matrice	5				
	3.2.	Newton-Raphson metoda	7				
	3.3.	Tijek proračuna	9				
	3.4.	Rezultati proračuna tokova snage	12				
	3.4.1	1. Nulta iteracija	12				
	3.4.2	2. Prva iteracija	13				
	3.4.3	3. Druga iteracija	14				
	3.4.4	4. Treća iteracija					
	3.4.5	5. Četvrta iteracija	16				
	3.4.6	6. Peta iteracija	17				
	3.4.7	7. Šesta iteracija	18				
	3.4.8	8. Sedma iteracija	19				
	3.4.9	9. Osma iteracija	20				
	3.4.1	10. Deveta iteracija	21				
	3.5.	Tokovi snage i gubici snage po vodovima	22				
	3.5.1	1. Snaga regulacijske elektrane	23				
4.	Pro	oračun trofaznog kratkog spoja	24				
	4.1.	Naponi mreže u kratkom spoju	27				
	4.2.	Struje u granama	27				
	4.3.	Struje trošila					
	4.4.	·					
	4.5.	Bazna struja					
	46	Styarna struja kratkog spoja i struje generatora					

1. Zadatak

Za zadanu mrežu (podaci se nalaze u tablicama) potrebno je izračunati napone čvorišta i tokove snaga u granama metodom Newton-Raphson. Također, u zadanoj mreži nastane kratki spoj u čvorištu 3. Za opterećenu mrežu treba izračunati struju kratkog spoja, napone bolesne mreže, te struje u granama i generatorima primjenom matrične metode.

$$U_n = 110 \text{ kV}, S_b = 100 \text{ MVA}$$

Podaci vodova:

Vod	Z (2	2/km)	Υ (μS/km)		L (km)
1-3	0.0600	0.2990i	-	3.7900i	35
1 – 4	0.1200	0.4130i	-	2.7900i	60
1-5	0.1600	0.4250i	-	2.8000i	42
2-5	0.1200	0.4130i	-	2.7900i	33
2-6	0.1940	0.4210i	-	2.7100i	46
3 – 4	0.1940	0.4210i	-	2.7100i	54
3-5	0.0600	0.2990i	-	3.7900i	63
4-5	0.1200	0.4060i	-	2.8100i	35
4 – 6	0.1200	0.4060i	-	2.8100i	47
5 – 6	0.1600	0.4250i	-	2.8000i	39

Opterećenja sabirnica i početni naponi u čvorištima:

Čvor	Trošila		Generatori		Generatori		Naponi u čvorištu	
	P (MW)	Q (MVAr)	P (MW)	Q (MVAr)	$S_n(MVA)$	X _d (%)	(kV)	
1	24	8	-	-	-	-	110	0i
2	20	10	-	-	-	-	110	0i
3	23	8	-	-	-	-	110	0i
4	25	5	-	-	-	-	110	0i
5	-	-	/	/	120	20	111.5	0i
6	30	10	60	12	120	18	110	0i

Referentni čvor: 5

Potrebna preciznost: 0.0001

2. Proračun tokova snaga

2.1. Izračun Y-matrice

Na osnovu zadanih podataka može se nacrtati model zadane mreže:

Sljedeća stvar koja nam je potrebna za NR metodu izračun je Y matrice. Stvarne uzdužne impedancije (Z_{ij}) i poprečne admitancije (Y_{ij}), te admitancije (Y'_{ij}) za zadane vodove računaju se prema izrazima:

$$Z_{ij}(\Omega) = Z_{ij}(\Omega / km) \cdot L_{ij}(km)$$

$$Y_{ij}(\mu S) = Y_{ij}(\mu S / km) \cdot L_{ij}(km)$$

$$Y'_{ij}(S) = \frac{1}{Z_{ij}(\Omega)}.$$

Vod	$\mathrm{Z}(\Omega)$	Y(mS)	Y'(S)
1-3	2.1000 + 10.4650i	0.132650i	0.0184 + 0.0919i
1 – 4	7.2000 + 24.7800i	0.167400i	0.0108 - 0.0372i
1-5	6.7200 + 17.8500i	0.117600i	0.0185 - 0.0491i
2 - 5	3.9600 + 13.6290i	0.092070i	0.0197 – 0.0677i
2 – 6	8.9240 + 19.3660i	0.124660i	0.0196 - 0.0426i
3 – 4	10.4760 + 22.7340i	0.146340i	0.0167 - 0.0363i
3 – 5	3.7800 + 18.8370i	0.238770i	0.0102 - 0.0510i
4 – 5	4.2000 + 14.2100i	0.098350i	0.0191 - 0.0647i
4 – 6	5.6400 + 19.0820i	0.132070i	0.0142 - 0.0482i
5 – 6	6.2400 + 16.5750i	0.109200i	0.0199 - 0.0528i

Kako bi mogli formirati Y matricu i krenuti s proračunom potrebno je sve uzdužne i poprečne admitancije podijeliti s baznom admitancijom, odnosno prebaciti sve veličine u *per unit* veličine. Bazna admitancija jednaka je:

$$Y_b = \frac{S_b}{U_n^2} = 0.0082645.$$

Y-matrica za Newton-Raphson metodu formira se jednako kao i Y matrica u Gauss-Siedel metodi. Sada, kada smo podijelili sve admitancije s baznom, možemo popuniti Y matricu. Dijagonalni elementi Y matrice y_{ii} jednaki su zbroju uzdužnih admitancija vodova koji ulaze u i-to čvorište i sumom poprečnih admitancija vodova koji ulaze u i-to čvorište jer je vod predstavljen Π shemom. Vandijagonalni elementi Y matrice y_{ij} formiraju se tako da na mjesto i,j koje povezuje i-to i j-to čvorište, a koja su međusobno direktno povezana vodom dolazi negativna uzdužna admitancija tog voda, dok na mjesta koja nisu povezana vodovima dolazi nula. Matrica Y ima svojstvo dijagonalne simetričnosti. Matrica Y glasi:

$$Y = \begin{bmatrix} 5.7739 - 21.5296\mathrm{i} & 0 & -2.2304 + 11.1148\mathrm{i} & -1.3083 + 4.5028\mathrm{i} & -2.2352 + 5.9372\mathrm{i} & 0 \\ 0 & 4.7536 - 13.3276\mathrm{i} & 0 & 0 & -2.3788 + 8.1870\mathrm{i} & -2.3749 + 5.1537\mathrm{i} \\ -2.2304 + 11.1148\mathrm{i} & 0 & 5.4925 - 21.6485\mathrm{i} & -2.0230 + 4.3902\mathrm{i} & -1.2391 + 6.1749\mathrm{i} & 0 \\ -1.3083 + 4.5028\mathrm{i} & 0 & -2.0230 + 4.3902\mathrm{i} & 7.3696 - 22.5227\mathrm{i} & -2.3146 + 7.8310\mathrm{i} & -1.7236 + 5.8316\mathrm{i} \\ -2.2352 + 5.9372\mathrm{i} & -2.3788 + 8.1870\mathrm{i} & -1.2391 + 6.1749\mathrm{i} & -2.3146 + 7.8310\mathrm{i} & 10.5748 - 34.4843\mathrm{i} & -2.4071 + 6.3939\mathrm{i} \\ 0 & -2.3749 + 5.1537\mathrm{i} & 0 & -1.7236 + 5.8316\mathrm{i} & -2.4071 + 6.3939\mathrm{i} & 6.5056 - 17.3571\mathrm{i} \end{bmatrix}$$

2.2. Newton-Raphson metoda

Newton-Raphson metoda temelji se na traženju nultočke funkcije f(x) na intervalu [a,b]. Ideja metode: pomoću pretpostavke da znamo da se nultočka funkcije nalazi na intervalu [a,b], odabiremo bilo koju točku x_1 koja se nalazi unutar zadanog intervala. Jednadžba tangente u točki $(x_1, f(x_1))$ glasi:

$$y-f(x_1)=f'(x_1)(x-x_1).$$

Sjecište te tangente s x-osi označimo s x_2 . Sada nam je to nova aproksimacija nultočke. U idućem koraku tražimo jednadžbu tangente u točki (x_2 , $f(x_2)$) i gledamo sjecište tangente s osi x. To sjecište je iduća aproksimacija x_3 , itd. Postupak ponavljamo sve dok ne dobijemo:

$$|\mathbf{x}_{k+1} - \mathbf{x}_k| < \text{tol},$$

odnosno dok se ne postigne konvergencija, tj. zadovolji uvjet.

Sada ću ukratko opisati Newton – Raphson postupak po koracima koji primjenjujem u analizi elektroenergetskog sustava. Pa slijedi:

1. korak:

- učitavanje podataka o mreži (konfiguracija, admitancije grana)
- učitavanje podataka o injekcijama snage u čvorištima

2. korak:

- početne vrijednosti napona čvorišta (pretpostavljeno rješenje)
- $\overrightarrow{U}_{i}^{(0)} = 1 + j0 p.u. = 1 \angle 0^{0} p.u.$

3. korak:

• formiranje matrice Y

4. korak:

računanje snaga u čvorištima:

$$P_{ira\check{c}}^{(0)} = \sum_{j=1}^{n} U_{i}^{(0)} \cdot U_{j}^{(0)} \cdot Y_{ij} \cdot \cos(\delta_{i}^{(0)} - \delta_{j}^{(0)} - \Theta_{ij}), i = 1, 2,, n-1$$

$$Q_{irac}^{(0)} = \sum_{j=1}^{n} U_{i}^{(0)} \cdot U_{j}^{(0)} \cdot Y_{ij} \cdot \sin(\delta_{i}^{(0)} - \delta_{j}^{(0)} - \Theta_{ij}), i = 1, 2,, n - 1 - g$$

5. korak:

$$\Delta P_i^{(0)} = P_{izad} - P_{irae}^{(0)}, i = 1, 2, ..., n-1$$

$$\Delta Q_i^{(0)} = Q_{irad} - Q_{irad}^{(0)}, i = 1, 2, ..., n - 1 - g$$

- 6. korak:
 - provjera kriterija točnosti:

$$\Delta P_i^{(0)} < \varepsilon$$

$$\Delta Q_i^{(0)} < \varepsilon$$

- ako je uvjet ispunjen onda smo gotovi s proračunom
- ako uvjet nije ispunjen računamo Jakobijeve matrice J
- 7. korak:
 - računanje $\Delta \delta_i^{(0)}$, $\Delta U_i^{(0)}$ pomoću $\Delta P_i^{(0)}$, $\Delta Q_i^{(0)}$ i Jakobijeve matrice
- 8. korak:

$$U_i^{(1)} = U_i^{(0)} + \Delta U_i^{(0)}$$

$$\delta_i^{(1)} = \delta_i^{(0)} + \Delta \delta_i^{(0)}$$

- 9. korak:
 - obavljanje iteracijskog postupka ponavljanjem koraka 4,5,6,7 i 8 sve dok se ne zadovolji postavljen kriterij točnosti (ε)

Jakobijeve matrice uz zanemarenje podmatrica J2 i J3:

$$\begin{vmatrix} \Delta P \\ \Delta Q \end{vmatrix} = |J| \cdot \begin{vmatrix} \Delta \delta \\ \Delta U \end{vmatrix} = \begin{vmatrix} J_1 & J_2 \\ J_3 & J_4 \end{vmatrix} \cdot \begin{vmatrix} \Delta \delta \\ \Delta U \end{vmatrix}$$

Jakobijeva podmatrica J1:

$$J_1 = \frac{\partial P}{\partial \delta}$$

$$\left(\frac{\partial P_i}{\partial \delta_i}\right)^{(k)} = -U_i^{(k)} \cdot \sum_{\substack{j=1\\j\neq i}}^n U_j^{(k)} \cdot Y_{ij} \cdot \sin(\delta_i^{(k)} - \delta_j^{(k)} - \Theta_{ij})$$

$$\left(\frac{\partial P_i}{\partial \delta_j}\right)^{(k)} = U_i^{(k)} \cdot U_j^{(k)} \cdot Y_{ij} \cdot \sin(\delta_i^{(k)} - \delta_j^{(k)} - \Theta_{ij})$$

Jakobijeva podmatrica J4:

$$\begin{split} J_{4} &= \frac{\partial Q}{\partial U} \\ &\left(\frac{\partial Q_{i}}{\partial U_{i}}\right)^{(k)} = 2 \cdot U_{i}^{(k)} \cdot Y_{ii} \cdot \sin(-\Theta_{ii}) + \sum_{\substack{j=1 \\ j \neq i}}^{n} U_{j}^{(k)} \cdot Y_{ij} \cdot \sin(\delta_{i}^{(k)} - \delta_{j}^{(k)} - \Theta_{ij}) \\ &\left(\frac{\partial Q_{i}}{\partial U_{j}}\right)^{(k)} = U_{i}^{(k)} \cdot Y_{ij} \cdot \sin(\delta_{i}^{(k)} - \delta_{j}^{(k)} - \Theta_{ij}) \end{split}$$

2.3. Tijek proračuna

Dakle, krenuli smo s proračunom prema prethodnim koracima. Imamo ulazne podatke, pretpostavili smo početni napon za svaki vod osim referentnog, $\overrightarrow{U}_i^{(0)} = 1 + 0i$ za i=1,2,3,4,6, i formirali smo matricu Y. Slijed računanje snaga u čvorištima [4. korak], a vrijednosti koje smo dobili su:

$$\begin{split} P_{1izr}^{(0)} &= -0.030480 \quad Q_{1izr}^{(0)} = -0.106230 \\ P_{2izr}^{(0)} &= -0.032438 \quad Q_{2izr}^{(0)} = -0.124750 \\ P_{3izr}^{(0)} &= -0.016897 \quad Q_{3izr}^{(0)} = -0.115530 \,. \\ P_{4izr}^{(0)} &= -0.031563 \quad Q_{4izr}^{(0)} = -0.139710 \\ P_{6izr}^{(0)} &= -0.032824 \quad Q_{6izr}^{(0)} = -0.109330 \end{split}$$

Sada moramo za svako čvorište provjeriti kriterij točnosti [korak 6.]. Kod nas kriterij nije zadovoljen ($\Delta P_i^{(0)} < \varepsilon = 0.0001, \Delta Q_i^{(0)} < \varepsilon = 0.0001$), i moramo izračunati Jakobijevu matricu, odnosno podmatrice J1 i J4.

$$\begin{split} &\Delta P_{1}^{(0)} = P_{1zad} - P_{1izr}^{(0)} = \frac{P_{1}}{S_{b}} - P_{1izr}^{(0)} = \frac{-24MW}{100MW} - (-0.030480) = -0.20952\\ &\Delta P_{2}^{(0)} = P_{2zad} - P_{2izr}^{(0)} = \frac{P_{2}}{S_{b}} - P_{1izr}^{(0)} = \frac{-20MW}{100MW} - (-0.032438) = -0.16756\\ &\Delta P_{3}^{(0)} = P_{3zad} - P_{3izr}^{(0)} = \frac{P_{3}}{S_{b}} - P_{1izr}^{(0)} = \frac{-23MW}{100MW} - (-0.016897) = -0.21310\\ &\Delta P_{4}^{(0)} = P_{4zad} - P_{4izr}^{(0)} = \frac{P_{4}}{S_{b}} - P_{1izr}^{(0)} = \frac{-25MW}{100MW} - (-0.031563) = -0.21844\\ &\Delta P_{6}^{(0)} = P_{6zad} - P_{6izr}^{(0)} = \frac{P_{6}}{S_{b}} - P_{1izr}^{(0)} = \frac{30MW}{100MW} - (-0.032824) = 0.328200 \end{split}$$

$$\Delta Q_{1}^{(0)} = Q_{1zad} - Q_{1izr}^{(0)} = \frac{Q_{1}}{S_{b}} - Q_{1izr}^{(0)} = \frac{-8MVAr}{100MW} - (-0.106230) = 0.02623$$

$$\Delta Q_{2}^{(0)} = Q_{2zad} - Q_{2izr}^{(0)} = \frac{Q_{2}}{S_{b}} - Q_{1izr}^{(0)} = \frac{-10MVAr}{100MW} - (-0.124750) = 0.024752$$

$$\Delta Q_{3}^{(0)} = Q_{3zad} - Q_{3izr}^{(0)} = \frac{Q_{3}}{S_{b}} - Q_{1izr}^{(0)} = \frac{-8MVAr}{100MW} - (-0.115530) = 0.035527$$

$$\Delta Q_{4}^{(0)} = Q_{4zad} - Q_{4izr}^{(0)} = \frac{Q_{4}}{S_{b}} - Q_{1izr}^{(0)} = \frac{-5MVAr}{100MW} - (-0.139710) = 0.089708$$

$$\Delta Q_{6}^{(0)} = Q_{6zad} - Q_{6izr}^{(0)} = \frac{Q_{6}}{S_{b}} - Q_{1izr}^{(0)} = \frac{2MVAr}{100MW} - (-0.109330) = 0.12933$$

Budući da se najčešće zbog lakšeg proračuna zanemaruju podmatrice J2 i J3, i mi ćemo ih u proračunu zanemariti. Stoga, formiramo matricu J koja će se sastojati od podmatrica J1 i J4.

Prema formulama za 7. korak dobivamo podmatrice Jakobijeve matrice:

$$J1 = \begin{vmatrix} 21.6358 & 0 & -11.1148 & -4.5028 & 0 \\ 0 & 13.4523 & 0 & 0 & -5.1537 \\ -11.1148 & 0 & 21.7641 & -4.3902 & 0 \\ -4.5028 & 0 & -4.3902 & 22.6624 & -5.8316 \\ 0 & -5.1537 & 0 & -5.8316 & 17.4664 \end{vmatrix}$$

$$\begin{vmatrix} 21.4233 & 0 & -11.1148 & -4.5028 & 0 \\ 0 & 13.2028 & 0 & 0 & -5.1537 \\ -11.1148 & 0 & 21.5330 & -4.3902 & 0 \\ -4.5028 & 0 & -4.3902 & 22.3830 & -5.8316 \\ 0 & -5.1537 & 0 & -5.8316 & 17.2478 \end{vmatrix}$$

Uz zanemarenje J2 i J3 vrijedi:

$$\begin{vmatrix} \Delta P \\ \Delta Q \end{vmatrix} = \begin{vmatrix} J1 & 0 \\ 0 & J4 \end{vmatrix} \cdot \begin{vmatrix} \Delta \delta \\ \Delta U \end{vmatrix},$$

i iz gornje jednakosti slijedi:

$$\begin{split} \Delta U_1^{(0)} &= 0.0073159 \quad \Delta \delta_1^{(0)} = -0.0273950 \\ \Delta U_2^{(0)} &= 0.0069850 \quad \Delta \delta_2^{(0)} = -0.0083543 \\ \Delta U_3^{(0)} &= 0.0075403 \quad \Delta \delta_3^{(0)} = -0.0273370 \\ \Delta U_4^{(0)} &= 0.0103690 \quad \Delta \delta_4^{(0)} = -0.0176230 \\ \Delta U_6^{(0)} &= 0.0130910 \quad \Delta \delta_6^{(0)} = -0.0107060 \end{split}$$

Ovime je nulta (0) iteracija gotova. Krećemo u iduće iteracije i ponavljamo gore opisan postupak sve dok ne zadovoljimo početni uvjet o točnosti, tj. kriterij.

Iz jednadžbi:

$$U_i^{(1)} = U_i^{(0)} + \Delta U_i^{(0)}$$

$$\delta_i^{(1)} = \delta_i^{(0)} + \Delta \delta_i^{(0)}$$

dobivamo:

$$\begin{split} &U_1^{(1)}=1.0073 \quad \partial_1^{(1)}=-0.027395 \\ &U_2^{(1)}=1.0070 \quad \partial_2^{(1)}=-0.0083543 \\ &U_3^{(1)}=1.0075 \quad \partial_3^{(1)}=-0.027337 \\ &U_4^{(1)}=1.0104 \quad \partial_4^{(1)}=-0.017623 \\ &U_5^{(1)}=1.0136 \quad \partial_5^{(1)}=0 \\ &U_6^{(1)}=1.0131 \quad \partial_6^{(1)}=0.010706 \end{split}$$

Budući da sve ostale korake izvodimo prema, kao što sam već naveo, gore navedenim koracima, ispisat ću rezultate iteracija u tablice zbog veće preglednosti.

2.4. Rezultati proračuna tokova snage

0 4 4	NT 1	
2.4.1.	Nulta ite	raciia
	11011001101	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

i	$\mathbf{U_i}$	$\delta_{\rm i}$	P_{i}	Q_{i}	ΔP_{i}	$\Delta extbf{Q}_{ ext{i}}$
1	1,0000000	0	-0.030480	-0.106230	-0.20952	0.02623
2	1,0000000	0	-0.032438	-0.124750	-0.16756	0.024752
3	1,0000000	0	-0.016897	-0.115530	-0.21310	0.035527
4	1,0000000	0	-0.031563	-0.139710	-0.21844	0.089708
5	1,0136000	0	-	-	-	-
6	1,0000000	0	-0.032824	-0.109330	0.33282	0.12933

Jakobijeva podmatrica J1:

$$J1 = \begin{vmatrix} 21.6358 & 0 & -11.1148 & -4.5028 & 0 \\ 0 & 13.4523 & 0 & 0 & -5.1537 \\ -11.1148 & 0 & 21.7641 & -4.3902 & 0 \\ -4.5028 & 0 & -4.3902 & 22.6624 & -5.8316 \\ 0 & -5.1537 & 0 & -5.8316 & 17.4664 \end{vmatrix}$$

Jakobijeva podmatrica J4:

$$J4 = \begin{vmatrix} 21.4233 & 0 & -11.1148 & -4.5028 & 0 \\ 0 & 13.2028 & 0 & 0 & -5.1537 \\ -11.1148 & 0 & 21.5330 & -4.3902 & 0 \\ -4.5028 & 0 & -4.3902 & 22.3830 & -5.8316 \\ 0 & -5.1537 & 0 & -5.8316 & 17.2478 \end{vmatrix}$$

Promjena napona i kuta napona u čvorištima:

i	$\Delta ext{U}_{ ext{i}}$	$\Delta \delta_{ m i}$
1	0.0073159	-0.0273950
2	0.0069850	-0.0083543
3	0.0075403	-0.0273370
4	0.0103690	-0.0176230
5	-	-
6	0.0130910	-0.0107060

2.4.2. Prva iteracija

i	U_{i}	δ_{i}	P _i	\mathbf{Q}_{i}	ΔP_{i}	ΔQ_{i}
1	1,0073000	-0,0273950	-0,2293400	-0,0016500	-0,0106650	-0,0783500
2	1,0070000	-0,0083543	-0,2000300	-0,0321130	0,0000316	-0,0678870
3	1,0075000	-0,0273370	-0,2274300	-0,0226950	-0,0025686	-0,0573050
4	1,0104000	-0,0176230	-0,2235300	0,0137430	-0,0264660	-0,0637430
5	1,0136000	0,0000000	-	-	-	-
6	1,0131000	0,0107060	0,3589900	-0,0971770	-0,0589880	0,1171800

Jakobijeva podmatrica J1:

$$J1 = \begin{vmatrix} 21.8474 & 0 & -11.2804 & -4.5696 & 0 \\ 0 & 13.5465 & 0 & 0 & -5.2105 \\ -11.2806 & 0 & 21.9989 & -4.4489 & 0 \\ -4.5956 & 0 & -4.4890 & 22.9785 & -5.9168 \\ 0 & -5.3029 & 0 & -6.0168 & 17.9117 \end{vmatrix}$$

Jakobijeva podmatrica J4:

$$J4 = \begin{vmatrix} 21.6854 & 0 & -11.1960 & -4.5227 & 0 \\ 0 & 13.3888 & 0 & 0 & -5.1432 \\ -11.1987 & 0 & 21.7892 & -4.4033 & 0 \\ -4.5622 & 0 & -4.4554 & 22.7699 & -5.8404 \\ 0 & -5.2661 & 0 & -5.9550 & 17.4884 \end{vmatrix}$$

Promjena napona i kuta napona u čvorištima:

i	ΔUi	Δδί
1	-0,0090015	-0,0021129
2	-0,0035994	-0,0018942
3	-0,0083169	-0,0018484
4	-0,0052482	-0,0032051
5	-	-
6	0,0038293	-0,0049307

2.4.3. Druga iteracija

i	U_{i}	δ_{i}	P _i	\mathbf{Q}_{i}	ΔP_{i}	ΔQ_{i}
1	0,9983100	-0,0295080	-0,2641300	-0,0750520	0,0241280	-0,0049482
2	1,0034000	-0,0102490	-0,2258800	-0,1026600	0,0258780	0,0026647
3	0,9992200	-0,0291850	-0,2429100	-0,0802780	0,0129120	0,0002783
4	1,0051000	-0,0208280	-0,2667000	-0,0408520	0,0166990	-0,0091481
5	1,0136000	0,0000000	-	-	-	-
6	1,0169000	0,0057756	0,3432700	0,0422440	-0,0432670	-0,0222440

Jakobijeva podmatrica J1:

$$J1 = \begin{vmatrix} 21.5321 & 0 & -11.0867 & -4.5067 & 0 \\ 0 & 13.5206 & 0 & 0 & -5.2192 \\ -11.0881 & 0 & 21.6952 & -4.3921 & 0 \\ -4.5295 & 0 & -4.4261 & 22.7949 & -5.9117 \\ 0 & -5.2968 & 0 & -6.0054 & 17.9072 \end{vmatrix}$$

Jakobijeva podmatrica J4:

$$J4 = \begin{vmatrix} 21.4181 & 0 & -11.0953 & -4.4837 & 0 \\ 0 & 13.2704 & 0 & 0 & -5.1323 \\ -11.1069 & 0 & 21.5514 & -4.3697 & 0 \\ -4.5371 & 0 & -4.4295 & 22.5974 & -5.8133 \\ 0 & -5.2789 & 0 & -5.9748 & 17.6923 \end{vmatrix}$$

Promjena napona i kuta napona u čvorištima:

i	$\Delta \mathrm{U_{i}}$	$\Delta \delta_{ m i}$
1	-0,0007995	0,0024476
2	-0,0004925	0,0012833
3	-0,0006324	0,0020892
4	-0,0011505	0,0012009
5	-	-
6	-0,0017927	-0,0016339

2.4.4. Treća iteracija

i	U_{i}	δ_{i}	P _i	\mathbf{Q}_{i}	ΔP_{i}	ΔQ_{i}
1	0,9975100	-0,0270600	-0,2414600	-0,0884170	0,0014574	0,0084166
2	1,0029000	-0,0089652	-0,1978500	-0,1104800	-0,0021536	0,0104820
3	0,9985900	-0,0270960	-0,2291800	-0,0840240	-0,0008239	0,0040239
4	1,0040000	-0,0196270	-0,2525800	-0,0550550	0,0025773	0,0050546
5	1,0136000	0,0000000	-	-	-	-
6	1,0151000	0,0041417	0,2906600	0,0354160	0,0093443	-0,0154160

Jakobijeva podmatrica J1:

$$J1 = \begin{vmatrix} 21.5111 & 0 & -11.0716 & -4.4996 & 0 \\ 0 & 13.5153 & 0 & 0 & -5.2147 \\ -11.0715 & 0 & 21.6716 & -4.3861 & 0 \\ -4.5191 & 0 & -4.4164 & 22.7570 & -5.8999 \\ 0 & -5.2780 & 0 & -5.9834 & 17.8508 \end{vmatrix}$$

Jakobijeva podmatrica J4:

$$J4 = \begin{vmatrix} 21.3874 & 0 & -11.0872 & -4.4818 & 0 \\ 0 & 13.2559 & 0 & 0 & -5.1370 \\ -11.0990 & 0 & 21.5339 & -4.3688 & 0 \\ -4.5303 & 0 & -4.4227 & 22.5573 & -5.8120 \\ 0 & -5.2628 & 0 & -5.9597 & 17.6546 \end{vmatrix}$$

Promjena napona i kuta napona u čvorištima:

i	$\Delta \mathrm{U_{i}}$	$\Delta \delta_{ m i}$
1	0,0008317	0,0002183
2	0,0005674	0,0001006
3	0,0006923	0,0001463
4	0,0003784	0,0003597
5	-	-
6	-0,0005763	0,0006738

2.4.5. Četvrta iteracija

i	U_{i}	δ_{i}	P _i	\mathbf{Q}_{i}	ΔP_{i}	ΔQ_{i}
1	0,9983500	-0,0268420	-0,2374500	-0,0804920	-0,0025464	0,0004917
2	1,0035000	-0,0088646	-0,1959900	-0,0988190	-0,0040080	-0,0011810
3	0,9992800	-0,0269500	-0,2289900	-0,0796050	-0,0010081	-0,0003952
4	1,0043000	-0,0192670	-0,2486600	-0,0509120	-0,0013377	0,0009118
5	1,0136000	0,0000000	-	-	-	-
6	1,0146000	0,0048155	0,2940900	0,0165080	0,0059071	0,0034915

Jakobijeva podmatrica J1:

$$J1 = \begin{vmatrix} 21.5389 & 0 & -11.0887 & -4.5049 & 0 \\ 0 & 13.5188 & 0 & 0 & -5.2132 \\ -11.0882 & 0 & 21.6971 & -4.3904 & 0 \\ -4.5247 & 0 & -4.4216 & 22.7700 & -5.8982 \\ 0 & -5.2794 & 0 & -5.9828 & 17.8494 \end{vmatrix}$$

Jakobijeva podmatrica J4:

$$J4 = \begin{vmatrix} 21.4133 & 0 & -11.0966 & -4.4854 & 0 \\ 0 & 13.2752 & 0 & 0 & -5.1385 \\ -11.1066 & 0 & 21.5534 & -4.3714 & 0 \\ -4.5322 & 0 & -4.4248 & 22.5700 & -5.8136 \\ 0 & -5.2612 & 0 & -5.9569 & 17.6260 \end{vmatrix}$$

Promjena napona i kuta napona u čvorištima:

i	$\Delta \mathrm{U_{i}}$	$\Delta \delta_{ m i}$
1	0,0000725	-0,0002242
2	0,000048	-0,0002013
3	0,0000446	-0,0001759
4	0,0001261	-0,0000735
5	-	-
6	0,0002421	0,0002468

2.4.6. Peta iteracija

i	U_{i}	δ_{i}	P _i	\mathbf{Q}_{i}	ΔP_{i}	ΔQ_{i}
1	0,9984200	-0,0270660	-0,2398700	-0,0791470	-0,0001321	-0,0008534
2	1,0035000	-0,0090659	-0,2005700	-0,0983820	0,0005726	-0,0016183
3	0,9993300	-0,0271260	-0,2301900	-0,0796460	0,0001863	-0,0003543
4	1,0045000	-0,0193410	-0,2497300	-0,0496030	-0,0002665	-0,0003966
5	1,0136000	0,0000000	-	-	-	-
6	1,0148000	0,0050623	0,3014600	0,0178310	-0,0014570	0,0021693

Jakobijeva podmatrica J1:

$$J1 = \begin{vmatrix} 21.5407 & 0 & -11.0899 & -4.5056 & 0 \\ 0 & 13.515 & 0 & 0 & -5.2134 \\ -11.0896 & 0 & 21.6991 & -4.3909 & 0 \\ -4.5258 & 0 & -4.4226 & 22.7744 & -5.8997 \\ 0 & -5.2817 & 0 & -5.9855 & 17.8566 \end{vmatrix}$$

Jakobijeva podmatrica J4:

$$J4 = \begin{vmatrix} 21.4163 & 0 & -11.0973 & -4.4855 & 0 \\ 0 & 13.2757 & 0 & 0 & -5.1374 \\ -11.1072 & 0 & 21.5543 & -4.3714 & 0 \\ -4.5330 & 0 & -4.4255 & 22.5741 & -5.8137 \\ 0 & -5.2635 & 0 & -5.9588 & 17.6315 \end{vmatrix}$$

Promjena napona i kuta napona u čvorištima:

i	$\Delta \mathrm{U_{i}}$	$\Delta \delta_{ m i}$
1	-0,0000751	-0,0000202
2	-0,0000871	0,000062
3	-0,0000594	-0,0000102
4	-0,0000211	-0,0000420
5	-	-
6	0,0000899	-0,0000939

2.4.7. Šesta iteracija

i	U_{i}	δ_{i}	Pi	\mathbf{Q}_{i}	ΔP_{i}	ΔQ_{i}
1	0,9983400	-0,0270860	-0,2402500	-0,0799580	0,0002540	-0,0000418
2	1,0034000	-0,0090598	-0,2006200	-0,1002600	0,0006188	0,0002645
3	0,9992700	-0,0271360	-0,2301000	-0,0800730	0,0001016	0,0000732
4	1,0045000	-0,0193830	-0,2501000	-0,0499020	0,0001049	-0,0000982
5	1,0136000	0,0000000	-	-	-	-
6	1,0149000	0,0049684	0,3008600	0,0205480	-0,0008575	-0,0005475

Jakobijeva podmatrica J1:

$$J1 = \begin{vmatrix} 21.5383 & 0 & -11.0884 & -4.5052 & 0 \\ 0 & 13.5180 & 0 & 0 & -5.2136 \\ -11.0881 & 0 & 21.6969 & -4.3906 & 0 \\ -4.5254 & 0 & -4.4221 & 22.7737 & -5.9002 \\ 0 & -5.2815 & 0 & -5.9858 & 17.8571 \end{vmatrix}$$

Jakobijeva podmatrica J4:

$$J4 = \begin{vmatrix} 21.4138 & 0 & -11.0965 & -4.4852 & 0 \\ 0 & 13.2726 & 0 & 0 & -5.1372 \\ -11.1065 & 0 & 21.5526 & -4.3712 & 0 \\ -4.5329 & 0 & -4.4254 & 22.5734 & -5.817 \\ 0 & -5.2637 & 0 & -5.9592 & 17.6357 \end{vmatrix}$$

Promjena napona i kuta napona u čvorištima:

i	$\Delta \mathrm{U_{i}}$	$\Delta \delta_{ m i}$
1	-0,000067	0,0000200
2	0,000067	0,0000310
3	-0,0000032	0,0000152
4	-0,0000151	0,000016
5	-	-
6	-0,0000342	-0,0000383

2.4.8.	Sedma	iteracija	
--------	-------	-----------	--

i	U_{i}	δ_{i}	P_{i}	\mathbf{Q}_{i}	ΔP_{i}	ΔQ_{i}
1	0,9983400	-0,0270660	-0,2400100	-0,0800840	0,0000100	0,0000837
2	1,0034000	-0,0090288	-0,1998900	-0,1002500	-0,0001145	0,0002500
3	0,9992700	-0,0271210	-0,2299700	-0,0800390	-0,0000296	0,0000392
4	1,0044000	-0,0193810	-0,2500300	-0,0500290	0,0000293	0,0000293
5	1,0136000	0,0000000	-	-	-	-
6	1,0148000	0,0049301	0,2997700	0,0203210	0,0002270	-0,0003205

Jakobijeva podmatrica J1:

$$J1 = \begin{vmatrix} 21.5381 & 0 & -11.0883 & -4.5051 & 0 \\ 0 & 13.5182 & 0 & 0 & -5.2137 \\ -11.0880 & 0 & 21.6968 & -4.3906 & 0 \\ -4.5252 & 0 & -4.4220 & 22.7731 & -5.9000 \\ 0 & -5.2812 & 0 & -5.9854 & 17.8561 \end{vmatrix}$$

Jakobijeva podmatrica J4:

$$J4 = \begin{vmatrix} 21.4136 & 0 & -11.0964 & -4.4852 & 0 \\ 0 & 13.2728 & 0 & 0 & -5.1374 \\ -11.1065 & 0 & 21.5525 & -4.3712 & 0 \\ -4.5328 & 0 & -4.4253 & 22.5729 & -5.8137 \\ 0 & -5.2634 & 0 & -5.9590 & 17.6349 \end{vmatrix}$$

Promjena napona i kuta napona u čvorištima:

i	$\Delta ext{U}_{ ext{i}}$	$\Delta \delta_{ m i}$
1	0,000066	0,000019
2	0,0000133	-0,0000033
3	0,0000052	0,000007
4	0,0000000	0,0000053
5	-	-
6	-0,0000142	0,0000135

0 4 0	^		
2.4.9.	Osma	itera	cua
	ODILLA	100101	01,0

i	U_{i}	δ_{i}	P _i	\mathbf{Q}_{i}	ΔP_{i}	ΔQ_{i}
1	0,9983400	-0,0270650	-0,2399800	-0,0800030	-0,0000249	0,0000029
2	1,0034000	-0,0090320	-0,1999000	-0,0999500	-0,0000958	-0,0000499
3	0,9992700	-0,0271200	-0,2299900	-0,0799890	-0,0000127	-0,0000113
4	1,0044000	-0,0193760	-0,2499900	-0,0500110	-0,0000076	0,0000112
5	1,0136000	0,0000000	-	-	-	-
6	1,0148000	0,0049436	0,2998700	0,0199140	0,0001291	0,0000857

Jakobijeva podmatrica J1:

$$J1 = \begin{vmatrix} 21.5383 & 0 & -11.0884 & -4.5051 & 0 \\ 0 & 13.5182 & 0 & 0 & -5.2136 \\ -11.0882 & 0 & 21.6969 & -4.3906 & 0 \\ -4.5253 & 0 & -4.4221 & 22.7731 & -5.8999 \\ 0 & -5.2812 & 0 & -5.9854 & 17.8560 \end{vmatrix}$$

Jakobijeva podmatrica J4:

$$J4 = \begin{vmatrix} 21.4138 & 0 & -11.0965 & -4.4852 & 0 \\ 0 & 13.2732 & 0 & 0 & -5.1374 \\ -11.1065 & 0 & 21.5527 & -4.3712 & 0 \\ -4.5328 & 0 & -4.4253 & 22.5729 & -5.8137 \\ 0 & -5.2633 & 0 & -5.9589 & 17.6342 \end{vmatrix}$$

Promjena napona i kuta napona u čvorištima:

i	$\Delta \mathrm{U_{i}}$	$\Delta \delta_{ m i}$
1	0,0000007	-0,000017
2	-0,000018	-0,000048
3	0,0000002	-0,000013
4	0,0000019	0,000006
5	-	-
6	0,0000050	0,000060

2.4.10. Deveta iteracija

i	U_{i}	δ_{i}	Pi	\mathbf{Q}_{i}	ΔP_{i}	ΔQ_{i}
1	0,9983400	-0,0270660	-0,2400000	-0,0799920	-0,0000005	-0,0000081
2	1,0034000	-0,0090368	-0,2000200	-0,0999610	0,0000206	-0,0000388
3	0,9992700	-0,0271210	-0,2300000	-0,0799950	0,0000044	-0,0000051
4	1,0044000	-0,0193750	-0,2500000	-0,0499980	-0,0000034	-0,0000018
5	1,0136000	0,0000000	-	-	-	-
6	1,0148000	0,0049496	0,3000400	0,0199510	-0,0000354	0,0000488

U devetoj iteraciji smo dobili potrebnu preciznost od 0.0001. Konačni naponi čvorišta u [p.u.] i u [kV] su dani u slijedećoj tablici:

i	U [p.u.]	U [kV]
1	0.997978820310892 - 0.027018147610521i	109.78 – 2.972i
2	1.003355330334685 - 0.009067367872974i	110.37 – 0.997i
3	0.998903233289652 - 0.027098161153127i	109.88 – 2.980i
4	1.004252226640943 - 0.019459991929692i	110.47 – 2.140i
5	1.013636360000000	111.5
6	1.014827822864032 + 0.005023069634952i	111.63 + 0.552i

2.5. Tokovi snage i gubici snage po vodovima

Snage po vodovima računaju se prema sljedećim formulama:

$$\begin{split} S_{i-j} &= P_{i-j} + Q_{i-j} = U_i \Bigg[(U_i - U_j) \cdot Y_{i-j} + U_i \cdot \frac{Y'_{i-j}}{2} \Bigg]^* \\ S_{j-i} &= P_{j-i} + Q_{j-i} = U_j \Bigg[(U_j - U_i) \cdot Y_{j-i} + U_j \cdot \frac{Y'_{j-i}}{2} \Bigg]^* \\ \Delta S_{i-j} &= S_{i-j} + S_{j-i} \end{split}$$

U slijedećoj tablici su dane stvarne vrijednosti tokova snaga (tokovi radne i jalove snage) kao i gubici na tim vodovima.

Vod	P[MW]	Q[MVAr]
1-3	-0.1453	- 1.8399
3 – 1	0.1454	0.2396
1 – 4	-4.2651	-2.7275
4 – 1	4.2778	0.7398
1 – 5	-19.5896	-3.4317
5 – 1	19.8075	2.5706
2 - 5	-9.9589	-6.7524
5 – 2	10.0036	5.7732
2 – 6	-10.0431	-3.2437
6 - 2	10.1215	1.8778
3 – 4	-4.4523	-1.5661
4-3	4.4699	-0.1731
3 – 5	-18.6936	-6.6730
5 – 3	18.8114	4.3338
4 – 5	-17.5406	-3.1181
5 – 4	17.6486	2.2720
4 – 6	-16.2068	-2.4484
6 – 4	16.3294	1.2341
5 – 6	-3.5462	-0.2254
6-5	3.5526	-1.1168

ΔP [MW]	ΔQ [MW]
0.0002	- 1.6003
0.0126	- 1.9878
0.2180	- 0.8612
0.0447	- 0.9793
0.0784	- 1.3659
0.0176	- 1.7391
0.1179	- 2.3392
0.1080	- 0.8462
0.1226	- 1.2143
0.0064	- 1.3422
$\sum \Delta P = 0.7282$	$\sum \Delta Q = -14.2755$

Ukupni gubici radne snage su 0.7282 MW, a ukupni gubici jalove snage su 14.2755 MVAr. S obzirom na podatke koje smo dobili, možemo zaključiti da su vodovi podopterećeni.

2.5.1. Snaga regulacijske elektrane

$$S_i = \sum_{\substack{j=1 \ j \neq i}}^n S_{i-j}$$
 - snaga u i-tom čvorištu

$$S_j = -\sum_{\substack{j=1\\i\neq j}}^n S_i + S_{gub}$$
 - snaga regulacijske elektrane (j-to čvorište)

Čvorište
1
2
3
4
6

$S_{i}[MVA]$
-24.0000 – 7.9991i
-20.0020 – 9.9961i
-23.0005 – 7.7995i
-24.9997 – 4.9998i
30.0050 + 1.9951i

5 (regulacijsko)

62.7249	+	14.7242i	

Snage u svim čvorištima trebaju odgovarati snagama trošila (odstupanja su zbog toga što je metoda iteracijska). Vidimo da regulacijska elektrana mora pokrivati i snage trošila i gubitke u vodovima:

$$S_{regul} = P_{regul} + jQ_{regul} = 62.7249 + 14.7242i$$
 [MVA]

3. Proračun trofaznog kratkog spoja

Zadatak nam je napraviti proračun kratkog spoja. Pretpostavlja se da se kratki spoj dogodio tijekom pogonskog stanja opisanog u prvom dijelu konstrukcijskog zadatka, te da je kratki spoj trofazan (simetričan). Kratki spoj dogodio se u čvorištu tri (3), što se može vidjeti na gornjoj slici.

Za formiranje *Y* matrice za kratki spoj generatori se modeliraju s početnom admitancijom *xd''* i pretvaraju u idealne strujne izvore. Tereti se također modeliraju admitancijama. Matrica *Y* za kratki spoj je potpuno jednako građena, osim što se dijagonalnim elementima dodaju admitancije tereta i generatora. Admitancije tereta i generatora u *per unit* veličinama računaju se prema formulama:

$$Y_{Gi} = \frac{1}{X_{di}}$$

$$Y_{Ti} = \frac{S_{Ti}^*}{\left|U_{Ti}\right|^2}$$

Naponi U_{Ti} su naponi čvorišta na koji su spojeni tereti, a S_{ni} su nazivne snage generatora.

$$X_{d5} = i \cdot \frac{x_{d5\%}}{100} \cdot \frac{U_n^2}{S_n} \cdot \frac{S_B}{U_B^2} = i \cdot \frac{20}{100} \cdot \frac{111.5^2}{120} \cdot \frac{100}{110^2} = 0.17124i$$

$$X_{d6} = i \cdot \frac{x_{d6\%}}{100} \cdot \frac{U_n^2}{S_n} \cdot \frac{S_B}{U_B^2} = i \cdot \frac{18}{100} \cdot \frac{110^2}{120} \cdot \frac{100}{110^2} = 0.15i$$

Izračunate admitancije tereta i generatora iznose:

$$Y_{T1} = 0.2408 - 0.0803i$$

$$Y_{T2} = 0.1986 - 0.0993i$$

$$Y_{T3} = 0.2303 - 0.0801i$$

$$Y_{T4} = 0.2478 - 0.0496i$$

$$Y_{T6} = 0.2913 - 6.7638i$$

Matrica Y za kratki spoj dobiva se tako da sumiramo sve admitancije koje ulaze u čvorište za dijagonalne elemente, a vandijagonalni elementi su jednaki negativnoj admitanciji koja povezuje dva susjedna čvorišta. Naša matrica Y za kratki spoj glasi:

$$Y = \begin{bmatrix} 6.0147 - 21.6098i & 0 & -2.2304 + 11.1148i & -1.3083 + 4.5028i & -2.2352 + 5.9372i & 0 \\ 0 & 4.9523 - 13.4269i & 0 & 0 & -2.3788 + 8.1870i & -2.3749 + 5.1537i \\ -2.2304 + 11.1148i & 0 & 5.7229 - 21.7286i & -2.0230 + 4.3902i & -1.2391 + 6.1749i & 0 \\ -1.3083 + 4.5028i & 0 & -2.0230 + 4.3902i & 7.6174 - 22.5723i & -2.3146 + 7.8310i & -1.7236 + 5.8316i \\ -2.2352 + 5.9372i & -2.3788 + 8.1870i & -1.2391 + 6.1749i & -2.3146 + 7.8310i & 10.5748 - 40.4843i & -2.4071 + 6.3939i \\ 0 & -2.3749 + 5.1537i & 0 & -1.7236 + 5.8316i & -2.4071 + 6.3939i & 6.7969 - 24.1209i \end{bmatrix}$$

Z matrica za prilike kratkog spoja dobiva se invertiranjem dobivene Y matrice.

$$Z = \begin{bmatrix} 0.0356 + 0.1470i & 0.0117 + 0.0767i & 0.0278 + 0.1186i & 0.0190 + 0.0991i & 0.0131 + 0.0862i & 0.0058 + 0.0654i \\ 0.0117 + 0.0767i & 0.0336 + 0.1410i & 0.0117 + 0.0767i & 0.0104 + 0.0762i & 0.0103 + 0.0789i & 0.0058 + 0.0729i \\ 0.0278 + 0.1186i & 0.0117 + 0.0767i & 0.0341 + 0.1476i & 0.0179 + 0.0996i & 0.0133 + 0.0862i & 0.0056 + 0.0655i \\ 0.0190 + 0.0991i & 0.0104 + 0.0762i & 0.0179 + 0.0996i & 0.0267 + 0.1253i & 0.0109 + 0.0818i & 0.0067 + 0.0704i \\ 0.0131 + 0.0862i & 0.0103 + 0.0789i & 0.0133 + 0.0862i & 0.0109 + 0.0818i & 0.0121 + 0.0916i & 0.0030 + 0.0631i \\ 0.0058 + 0.0654i & 0.0058 + 0.0729i & 0.0056 + 0.0655i & 0.0067 + 0.0704i & 0.0030 + 0.0631i & 0.0103 + 0.0892i \end{bmatrix}$$

Kod tropolnog kratkog spoja pojavljuju se samo komponente direktnog sustava simetričnih komponenti, koje su jednake trofaznom simetričnom sustavu. U tom slučaju za rješenje je dovoljno postaviti jednadžbu:

$$\begin{bmatrix} {}^{B}U_{i} \end{bmatrix} = \begin{bmatrix} Z \end{bmatrix} \cdot \left\{ \begin{bmatrix} E_{i}Y_{i} \end{bmatrix} + \begin{bmatrix} I_{m} \end{bmatrix} \right\} = \begin{bmatrix} {}^{Z}U_{i} \end{bmatrix} + \begin{bmatrix} Z \end{bmatrix} \cdot \begin{bmatrix} I_{m} \end{bmatrix}$$

pri čemu je $\begin{bmatrix} {}^BU_i \end{bmatrix}$ vektor napona u čvorištima tog kratkog spoja (bolesna mreža), $\begin{bmatrix} {}^ZU_i \end{bmatrix}$ vektor napona mreže prije kratkog spoja (izračunati naponi u prvom dijelu konstrukcijskog zadatka), i $\begin{bmatrix} I_m \end{bmatrix}$ vektor struje kratkog spoja. U ovom slučaju kratki spoj je u čvorištu 3, pa iz toga slijedi da je tamo napon nula, a struja kratkog spoja se pojavljuje samo tamo.

$$\begin{bmatrix} U_{1} \\ U_{2} \\ 0 \\ U_{4} \\ U_{5} \\ U_{6} \end{bmatrix} = \begin{bmatrix} U_{1} \\ U_{2} \\ U_{3} \\ U_{4} \\ U_{5} \\ U_{6} \end{bmatrix} + [Z] * \begin{bmatrix} 0 \\ 0 \\ I_{m} \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

pa slijedi:

$$I_m = -\frac{{}^2U_3}{Z_{33}} = -1.3121 + 6.4655i \text{ p.u.}$$

Struja kratkog spoja je suprotnog predznaka (izlazi iz mreže) te njena stvarna vrijednost iznosi:

$$I_{KS} = -\frac{I_m \cdot S_B}{\sqrt{3} \cdot U_n} = -\frac{(-1.3121 + 6.4655i) \cdot 100MVA}{\sqrt{3} \cdot 110kV} = 688.67389 - 3393.507i [A].$$

3.1. Naponi mreže u kratkom spoju

Uvrštavanjem struje kratkog spoja i potrebnih podataka u prethodno spomenute formule dobivamo napone mreže u kratkom spoju:

$$\begin{bmatrix} U_1 \\ U_2 \\ U_3 \\ U_4 \\ U_5 \\ U_6 \end{bmatrix} = \begin{bmatrix} 0.1949 - 0.0029i \\ 0.4921 - 0.0340i \\ 0 \\ 0.3369 - 0.0343i \\ 0.4391 - 0.0268i \\ 0.5841 - 0.0449i \end{bmatrix} [p.u.]$$

Naponi bolesne mreže izraženi u [kV]:

$$\begin{bmatrix} U_1 \\ U_2 \\ U_3 \\ U_4 \\ U_5 \\ U_6 \end{bmatrix} = \begin{bmatrix} 21.4361 - 0.3211i \\ 54.1296 - 3.7380i \\ 0 \\ 37.0583 - 3.7680i \\ 48.3021 - 2.9455i \\ 64.2456 - 4.9444i \end{bmatrix} [kV]$$

3.2. **Struje u granama**

Struje u granama računaju se formulom:

$$I_{i-j} = (U_i - U_j) * Y_{ij} + U_i * \frac{Y_{ij}}{2}$$

Struje po granama dane su matrično gdje retci i stupci idu redom 1-6, npr. element s članom 4-6 predstavlja struju u grani 4-6 itd.:

$$I_{i-j} = \begin{bmatrix} 0 & 0 & 0.4022 - 2.1717i & -0.0447 + 0.6815i & -0.4042 + 1.5041i & 0 \\ 0 & 0 & 0 & 0.0671 - 0.4495i & -0.1618 + 0.5019i \\ -0.4022 + 2.1725i & 0 & 0 & -0.5312 + 1.5483i & -0.3788 + 2.7446i & 0 \\ 0.0449 - 0.6788i & 0 & 0.5313 - 1.5468i & 0 & -0.2950 + 0.7842i & -0.3635 + 1.4611i \\ 0.4044 - 1.5019i & -0.0670 + 0.4521i & 0.3789 - 2.7415i & 0.2952 - 0.7818i & 0 & -0.2326 + 0.9719i \\ 0 & 0.1621 - 0.4978i & 0 & 0.3638 - 1.4574i & 0.2329 - 0.9686i & 0 \end{bmatrix}$$

3.3. **Struje trošila**

Struje trošila računaju se po slijedećoj formuli:

$$\begin{bmatrix} I_{iT} \end{bmatrix} = \begin{bmatrix} {}^{B}U_{i} \end{bmatrix} \cdot \begin{bmatrix} Y_{Ti} \end{bmatrix}^{T}$$

te iznose:

$$I_T = \begin{bmatrix} -0.0467 + 0.0163i \\ -0.0944 + 0.0556i \\ 0 \\ -0.0818 + 0.0252i \\ 0.1607 + 2.6347i \\ -0.1658 + 0.0698i \end{bmatrix} [p.u.]$$

3.4. **Struje generatora**

Struje generatora dobijemo iz formule:

$$I_{Gi} = \sum_{j=0}^{n} (I_{i-j} + I_{Ti}) [p.u.]$$

$$I_{G5} = 0.7789 - 3.6011i[p.u.]$$

$$I_{G6} = 0.5930 - 2.8540i[p.u.]$$

3.5. Bazna struja

Bazna struja iznosi:

$$I_B = \frac{S_b}{\sqrt{3} \cdot U_n} = 524.8639[A]$$

3.6. Stvarna struja kratkog spoja i struje generatora

$$I_{Ks} = 688.68 - 3393.5i[A] = 3458.75341 \angle -78.8528^{\circ}[A]$$

$$I_{G5} = 408.84 - 1890.1i[A] = 1933.81182 \angle -77.7946^{\circ}[A]$$

$$I_{G6} = 311.22 - 1497.9i[A] = 1529.88963 \angle -78.2626^{\circ}[A]$$