

アジェンダ

- 昨年2012年のSDN関連キーワードを振り返る
- SDN Japan2012で話した事を検証する
- SDNスイッチのプロダクト開発例と、実用性(効用)
- DC屋と、NWインフラ屋で異なるOpenFlowの使い方?
- 徹底的なコスト削減と、NWaaS実現に必要なこと
- SDN/OpenFlowの管理・監視で必要な知識
- SDN運用の課題
- SDNの先の課題

昨年2012年のSDNキーワードを振り返る

【キーワード】

• SDN詐欺

【効用】

- SDNを導入すれば、導入コストは格段に下がり、 運用が楽になる
- クラウドサービスを作れる

【理由】

- 効用根拠が曖昧で、バズワードによりレバレッジを 効かせ過ぎて破綻した、金融工学的営業に似ていた?
 - C/Dプレーン分割により、装置コストは低減
 - インテリジェントノードがすべてを解決
- 効用と課題が明確ではなかった
 - SDN関連のプロダクト開発、システム開発者ですら、良く判っていなかった

BOSCO Technologies

SDN Japan2012で話したこと

- ・ タイトル「SDNの実運用を前提にした場合の 運用管理技術の課題」
- SDNで変えて行く事、期待する事
- 注意1. ネットワークを低コストで運用できる
 - ネットワーク運用に人をかけない
 - 複雑になってきたネットワーク機能や情報を容易に管理
 - ベンダ・ロックインからの解放と、インフラの低コスト化
 - 利用者専用のネットワークを即座に構成できる
 - NetWork as a Service (NWaaS)を実現できる
 - 3. ネットワーク利用市場の規模拡大
 - ネットワーク運用や利用に新たなプレーヤが参入
 - 4. パラダイムシフトの予感
 - インターネットの世界で作る制御された世界

SDNスイッチの プロダクト開発例と、実用性

開発プロダクト例1/2

- お客様向けに開発した自社資産(ネットワーク装置): OpenFlow Switch
- 【写真: Interop Japan2013@幕張メッセ】

開発プロダクト例2/2

- RYUコントローラ(OFC)にてフローの制御
- マルチレイヤプロトコルを利用したフローのグループ化処理

制御例:ヘッダスワッピング

- Pop VLAN
- Push double LSP

SDNを用いた重要なユースケースの 実現性、運用容易性

- ① 故障発生時のネットワーク運用コスト最小化
 - 複数フローの一括切替
 - 論理的複数のフローグループ制御
 - ハードウェア装置による切替速度検証
 - 器機復旧時のFast Failover機能
- ②プロビジョニング・保守作業の容易化
 - OpenFlowで規定しているREST IFを利用したハードウェア 装置制御の機能性、容易性、拡張性の評価
 - 設計•設定作業: PUSH/POP
 - SDNによる集中制御であるがゆえの多量フロー処理の検証
 - 保守作業: Get_flow, Stats, mod

BOSCOTechnologies

活かすべきOpenFlowの特徴機能

- フロー処理機能
 - Push/Pop
 - Header Operation & Packet Action
- フローの状態取得機能
 - get-flow-stats
- Meter機能(帯域制御/優先制御機能)
 - mod-flow
- Group機能
 - Fast Failover等によるネットワーク復旧
- ・ ハードウェア装置への多量フロー書込高速処理
 - Push flows

DC屋と、NWインフラ屋で異なる OpenFlowの使い方?

Dプレーンのマッチングフィールド

• DC屋(APLサービス・プロバイダ屋)

- L1:inPort
- L2:sMAC, dMAC, eType, vID, vPriority
- L3:sIP, dIP, IP protocol
- L4:sPort, dPort

• NWインフラ屋

- L1:(inPort)
- L2: dMAC, eType, vID, vPriority
- L2.5: LSP label
- L3:sIP, dIP, IP protocol
- L4: (disuse)

Dプレーンのアクション

- DC屋(APLサービス・プロバイダ屋)
 - Forward
 - Drop
 - Set-Queue (En queue)
 - Modify Field
 - フィールド書換
 - VLAN追加
- ・ NWインフラ屋
 - Forward
 - Drop
 - Set-Queue (En queue)
 - Modify Field
 - フィールド書換
 - VLAN-MPLSスワッピング
 - Double LSP(VLAN)ラベリング

徹底的なコスト削減と、 NWaaS実現に必要なこと

ネットワーク運用プロセスとSDNの適用先

【重要なポイント】

ただ、SDNを導入するだけではなく、前後の処理との連携が重要 →自動化、低コスト運用を実現する全システム作り、システム運用が重要

→これが運用できて、始めNWaaSが実現できる

2013/09/19 SDN Japan 2013

15

SDN/OpenFlowの管理・監視で必要な知識

管理・監視の基本項目

- 状態、障害の管理・監視に分けて整理する
- 定性、定量の管理・監視に分けて整理する

			管理·監視対象						
			コンピュート ノード	VM	VNI	Software Switch	Tunnel		
							VxLAN/OVS	STT/OVS	備考
管理·監視項目	状態	定性管理	CN名	VM名	IF名	SW名	ID管理	ID管理	
			up/down	up/down	up/down	up/down	TEP情報 (s,d-port 情報)	TEP情報 (s,d-port 情報)	
					IP address	attached VNI名	VLAN/Tunnel	VLAN/Tunnel	
					VLAN ID				
		定量管理	インスタンス数	CPU利用率	データ送信量	VNI数	対地Tunnel数	対地Tunnel数	
				メモリ利用率	データ受信量		データ送信量	データ送信量	
					Drop量(送信)		データ受信量	データ受信量	
					Drop量(受信)		Drop量(送信)	Drop量(送信)	
							Drop量(受信)	Drop量(受信)	
	障害	定性	down	down	down	down	down	down	- - 監視では、通知機能が必須 (SNMP trap)
							Tunnel/VNI/IF	Tunnel/VNI/IF	
							Backup Tunnel	Backup Tunnel	
		定量							

SDN運用における基本知識

- ・ 物理、論理(仮想)の統合管理・監視
 - 「何をどのように監視するのか?」
- クラウドサービス前提で捉える管理・監視システムの 特徴の比較
 - 「クラウド前提で比較!OSS統合監視3大ツール」

SDN Japan 2013

- 「小さく始めて大きく育てるクラウド監視」

管理対象のモデルはこれまでと変更なし

■物理収容、論理収容情報を管理、監視できる事

SDN Japan 2013

SDN運用の課題

課題1/3

- 既存のルータ・スイッチが提供している機能を併用できない
- OpenFlow用のMIBが定義されていない、実装されていない
- 登録できるフロー数が少なすぎる
 - Broadcom系LSIを利用したスイッチでは、最大2,000エントリという例あり→VLAN数よりも少ないフロー数
- 意に反して高いコスト
 - OFS(SDNスイッチ):100~400万円を超えるのもが多い
 - OFC(SDNコントローラ): 一声、1,000万円
 - OPEX:SDN運用に増員
- まだまだ不安なソフトウェア処理
 - ハードウェアのネットワーク装置で実現してきた機能や、性能を置き換えられない
 - 特にユーザデータ転送処理(Dプレーン処理)

課題2/3

- 課題となるフロー更新処理
 - 2,000フロー/秒の更新処理を実現しないOFSは実運用では厳しい
 - グループ機能を利用して、複数のフローを一括変更する などの手段も組合せる必要あり
- BGPなどのネットワーク管理機能を自前で実現する必要あり
 - SDNコントローラにそのような機能はない
 - 開発コスト、運用コストは上る可能性が大きい
 - 大手ベンダのホールインワン・ソリューションを利用すると、オペレーションシステム含めて全てをロックインされる
- OpenFlow仕様の全てを、ハードウェアで実現するのは難しい
 - 3段、4段、それ以上のマルチテーブルは必要か?
 - フロー単位のMETER機能は必要か?
- いよいよ問題になってきたSDNコントローラの集中制御
 - 分散処理をどのように実現するか?

課題3/3

- 既存のスイッチを併用で出来ない
 - Etherへッダ、IPヘッダを、SDN内で特殊な使い方をするため
 - 5~30万円の廉価L2スイッチは使えないため、高価なSDN スイッチを買い続けることに。。。。

SDNの先の課題

SDNの先の課題

- SDN含むネットワーク管理の自動化、サービス提供の自動化が実現でき、
 - SDNによりNaaSが実現できた後の課題は、

ストレージの管理

- 数百GB~数TBのストレージは、簡単に移動できない
- DBミラーリングは長距離(200Km以上)では難しい

本日、お話したこと

- 昨年2012年のSDN関連キーワードを振り返る
- SDN Japan2012で話した事を検証する
- SDNスイッチのプロダクト開発例と、実用性(効用)
- DC屋と、NWインフラ屋で異なるOpenFlowの使い方?
- 徹底的なコスト削減と、NWaaS実現に必要なこと
- SDN/OpenFlowの管理・監視で必要な知識
- SDN運用の課題
- SDNの先の課題

