CSCI 576 HW3

DCT Coding

• Using the 2D DCT formula, compute the 64 DCT values. Assume that you quantize your DCT coefficients using the luminance quantization table K1 on page 143 of the uploaded ITU-T JPEG standard. What does your table look like after quantization?

2D DCT Formula:

Discrete Cosine Transform $F(u,v) = \left(\frac{1}{4}C(u)C(v)\right) \left[\sum_{x=0}^{x=7} \sum_{y=0}^{y=7} f(x,y) \times \cos\frac{(2x+1)u\pi}{16} \cos\frac{(2y+1)v\pi}{16}\right]$

64 DCT Value Table:

1016.25	215.975	-6.823	-27.171	29.25	-20.757	-11.245	7.951
136.146	52.632	-93.463	-7.274	34.007	-18.821	-11.256	10.64
-45.859	-49.209	13.925	53.763	11.096	-24.672	-0.146	8.412
8.844	38.067	47.949	15.613	-17.873	-10.855	4.172	3.684
-1.25	-5.916	-1.241	-4.717	0.75	6.6	4.844	0.242
-4.471	-1.202	3.348	8.12	7.01	6.124	-0.152	1.186
-2.923	-2.118	0.854	-1.456	0.004	-3.357	-0.925	-1.215
-0.824	-3.385	-0.586	-1.797	-4.205	-1.256	2.318	1.631

After rounding:

1016	216	-7	-27	29	-21	-11	8
136	53	-7	34	-19	-19	-11	11
-46	-49	54	11	-25	-25	0	8
9	38	48	-16	-18	-11	4	4
-1	-6	-1	-5	1	7	5	0
-4	-1	3	8	7	6	0	1
-3	-2	1	-1	0	-3	-1	-1
-1	-3	-1	-2	-4	-1	2	2

The table after quantization is:

64	20	-1	-2	1	-1	0	0
11	4	-7	0	1	0	0	0
-3	-4	1	2	0	0	0	0
1	2	2	1	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

[•] In the JPEG pipeline, the quantized DCT values are then further scanned in a zigzag order. Ignoring your DC value, show the resulting zigzag scan AC values.

AC: 20, 11, -3, 4, -1, -2, -7, -4, 1, 0, 2, 1, 0, 1, -1, 1, 2, 2, 0, 0, 0, 0, 0, 1, (followed by 39 0's)

• For this zigzag AC sequence, write down the intermediary notation.

AC:

- <0, 5> <20>
- <0, 4><11>
- <0, 2> <-3>
- <0, 3> < 4>
- <0, 1><-1>
- <0, 2> <-2>
- <0, 3> <-7>
- <0, 3> <-4>
- <0, 1><1>
- <1, 2> < 2>
- <0, 1> < 1>
- <1, 1> < 1>
- <0, 1><-1>
- <0, 1><1>
- <0, 2> < 2>
- <0, 2> < 2>
- <5, 1> < 1>
- EOB < 0, 0>

• For these are luminance values, write down the resulting JPEG bit stream. You will need to consult standard luminance code tables on page 150 of the ITU-T JPEG standard.

Elementary bitstream:

• What compression ratio do you get for this luminance block?

Bits = 91 bits from elementary bitstream for 63 pixels

Bits before compression: 8*8*8 = 512 bits for 64 pixels, and therefore 504 bits for 63 pixels.

Compression Ratio => 504/91 = 5.538:1