Lecture 10: The Structure of Borel Sets

In this lecture we further investigate the structure of Borel sets. We will use the results of the previous lecture to derive various closure properties and other structural results. As an application, we see that the Borel hierarchy is indeed proper.

Notation

Before we go on, we have to address some notational issues. So far we have used notation quite liberally, especially when it came to product sets. We will continue to do so, but we want to put this on a firmer footing.

Using coding, we can identify any product space $\mathbb{N}^m \times (\mathbb{N}^{\mathbb{N}})^n$ with $\mathbb{N}^{\mathbb{N}}$. One way to do this is to fix, for each $n \geq 1$, an effective homeomorphism $\theta_n : (\mathbb{N}^{\mathbb{N}})^n \to \mathbb{N}^{\mathbb{N}}$ and map

$$(k_1,\ldots,k_m,\alpha_1,\ldots,\alpha_n)\mapsto (k_1,\ldots,k_m,\theta_n(\alpha_1,\ldots,\alpha_n)).$$

Here $(k_1, \ldots, k_m, \theta_n(\alpha_1, \ldots, \alpha_n))$ is just a suggestive way of writing the concatenation

$$\langle k_1 \rangle^{\frown} \cdots^{\frown} \langle k_m \rangle^{\frown} \theta_n(\alpha_1, \ldots, \alpha_n).$$

We have already used this notation in the previous lecture. In the following, we will continue to switch freely between product sets and their coded counterparts, as subsets of $\mathbb{N}^{\mathbb{N}}$.

Another notation identifies sets and relations. We will identify sets $A \subseteq \mathbb{N}^m \times (\mathbb{N}^{\mathbb{N}})^n$ with the relation they induce and write $A(k_1,\ldots,k_m,\alpha_1,\ldots,\alpha_n)$ instead of $(k_1,\ldots,k_m,\alpha_1,\ldots,\alpha_n) \in A$. Conversely, we will identify relations with the set they induce.

Normal forms

Theorem 9.9 tells us that a set $A \subseteq \mathbb{N}^{\mathbb{N}}$ is Σ_n^0 if and only if it is definable by a Σ_n^0 formulas over \mathcal{A}^2 , relative to some parameter. That means that there exists a bounded formula $\varphi(x_1, \ldots, x_n, \alpha, \gamma)$ (i.e. all quantifiers are bounded) such that

$$A(\alpha) \iff \exists x_1 \dots Qx_n \ \varphi(x_1, \dots, x_n, \alpha, \gamma) \text{ holds (in the standard model)}.$$

Here γ is the parameter, and Q is " \exists " if n is odd, and " \forall " if n is even.

Similarly, $A \subseteq \mathbb{N}^{\mathbb{N}}$ is Π_n^0 if and only if it is definable as

$$A(\alpha) \iff \forall x_1 \dots Qx_n \ \varphi(x_1, \dots, x_n, \alpha, \gamma) \text{ holds (in the standard model)}.$$

where $\varphi(x_1,...,x_n,\alpha,\underline{\gamma})$ is bounded, and Q is "\forall" if n is odd, and "\exists" if n is even.

What do sets defined by bounded formulas look like? An atomic formula (without parameters) either contains no function variable at all, or it is of the form $\alpha(t_1)=t_2$. This implies that the truth of an atomic formula is determined by *finitely many positions* in α . This remains true if we consider logical combinations of atomic formulas, or even bounded quantification. Hence a bounded formula defines an open subset of $\mathbb{N}^{\mathbb{N}}$. On the other hand, the reals for which a bounded formula does not hold are definable by a bounded formula, too, since the negation of a bounded formula is again a bounded formula. We conclude that **bounded formulas define clopen subsets of** $\mathbb{N}^{\mathbb{N}}$. On the other hand, if we have Σ_1^0 -code for a set A and its complement, we can decide the relation $A(\alpha \upharpoonright_n)$ recursively in the code.

Hence we can formulate the Normal Form above as follows. $A \subseteq \mathbb{N}^{\mathbb{N}}$ is Σ_n^0 if and only if there exists a clopen set $R \subseteq \mathbb{N}^n \times \mathbb{N}^{\mathbb{N}}$

$$A(\alpha) \iff \exists x_1 \dots Q x_n R(x_1, \dots, x_n, \alpha),$$

and similarly for Π_n^0 sets.

Closure properties

We can use the Normal Form to derive several closure properties of Σ_n^0 (Π_n^0).

If $P \subseteq \mathbb{N} \times \mathbb{N}^{\mathbb{N}}$, we define the **projection of** P **along** $\mathbb{N} \exists^{\mathbb{N}} P$ as

$$\exists^{\mathbb{N}} P = \{\alpha \colon \exists n \, P(n, \alpha)\}.$$

The dual operation is

$$\forall^{\mathbb{N}} P = \{\alpha \colon \forall n \, P(n, \alpha)\}.$$

Proposition 10.1: For each $n \ge 1$, Σ_n^0 is closed under $\exists^{\mathbb{N}}$, and Π_n^0 is closed under $\forall^{\mathbb{N}}$.

Proof. We prove the result for Σ_n^0 (lightface). The boldface case follows by relativization, and the proof for Π_n^0 is completely dual.

Let $\varphi(x_1,\ldots,x_n,z,\alpha)$ be a bounded formula such that

$$A(z,\alpha) \iff \exists x_1 \dots Qx_n \varphi(x_1,\dots,x_n,z,\alpha) \text{ holds.}$$

Then

$$\exists^{\mathbb{N}} A(\alpha) \iff \exists x_0 \exists x_1 \dots Q x_n \varphi(x_1, \dots, x_n, x_0, \alpha)$$

We can collect two existential number quantifiers into one by using the pairing function $\langle .,. \rangle$, or rather, its inverses, which we will denote by $(.)_0$ and $(.)_1$. (Recall that the pairing function is definable by a bounded formula.) Then

$$\exists^{\mathbb{N}} A(\alpha) \iff \exists z_1 \dots Q z_n \varphi((z_1)_1, \dots, z_n, (z_1)_0, \alpha),$$

as desired.
$$\Box$$

One can use similar applications of coding and quantifier manipulation to prove a number of other closure properties, Often they follow also directly from the topological definitions, but it is good to have several techniques at hand.

Proposition 10.2:

- (a) For all $n \ge 1$, Σ_n^0 is closed under countable unions and finite intersections.
- (b) For all $n \ge 1$, Π_n^0 is closed under finite unions and countable intersections.
- (c) For all $n \geq 1$, Δ_n^0 is closed under finite unions, finite intersections, and complements.

Proof. One can prove this by induction along the hierarchy. To obtain the closure under finite unions and intersections, one can use the following logical equivalences.

$$\exists x P(x) \land \exists y R(y) \iff \exists x \exists y (P(x) \land R(y))$$
$$\forall x P(x) \lor \forall y R(y) \iff \forall x \forall y (P(x) \lor R(y))$$

Given $P \subseteq \mathbb{N} \times \mathbb{N}^{\mathbb{N}}$, the **bounded projection** along \mathbb{N} is defined as

$$\exists^{\leq} P = \{(n, \alpha) \colon \exists m \leq n \ P(m, \alpha)\}.$$

and the dual is

$$\forall^{\leq} P = \{(n, \alpha) \colon \forall m \leq n \, P(m, \alpha)\}.$$

Proposition 10.3: For all $n \ge 1$, Σ_n^0 , Π_n^0 , and Δ_n^0 are closed under \exists^{\le} and \forall^{\le} .

Proof. In this case we use the coding function $\pi: \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}$. We can define a partial inverse

$$(k)_i = \begin{cases} \sigma_i & \text{if } k = \pi(\sigma) \text{ for a finite sequence } \sigma = (\sigma_0, \dots, \sigma_{n-1}) \\ & \text{and } i < n \\ 0 & \text{otherwise.} \end{cases}$$

Using this decoding, we have the following equivalence, which immediately imply the closure properties for Σ_n^0 and Π_n^0 , respectively, and hence also for Δ_n^0 .

$$\forall m \le n \, \exists k \, P(m,k) \iff \exists k \, \forall m \le n \, P(m,(k)_m)$$

 $\exists m \le n \, \forall k \, P(m,k) \iff \forall k \, \exists m \le n \, P(m,(k)_m)$

Finally, the levels of the Borel hierarchy are closed under continuous preimages.

Proposition 10.4: For all $n \geq 1$, for any $A \subseteq \mathbb{N}^{\mathbb{N}}$, and for any continuous $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$, if A is Σ_n^0 (Π_n^0, Δ_n^0) then $f^{-1}(A)$ is Σ_n^0 (Π_n^0, Δ_n^0).

Proof. This follows easily by induction on n, since open and closed sets are closed under continuous preimages.

However, we can also argue via definability, since by Proposition 4.7 one can represent a continuous function through a monotone mapping ψ from finite strings to finite strings. We have

$$f^{-1}(A) = \{\alpha : A(f(\alpha))\}.$$

Let *R* be clopen such that

$$A(\alpha) \iff \exists x_1 \dots Qx_n R(x_1, \dots, x_n, \alpha).$$

Since clopen predicates depend only on a finite initial segment of α , we can substitute $f(\alpha)$ for α . The resulting formula defines $f^{-1}(A)$, and is equivalent to a Σ_n^0 -formula relative to a parameter coding the mapping ψ .

Universal sets

Let Γ be a family of subsets defined in various Polish spaces. Of course we have in mind the classes Σ_n^0 or Π_n^0 , but the concept of a *universal set* can be defined quite generally.

Definition 10.5: Let *Y* be a set. A set $U \subseteq X \times Y$ is *Y*-universal for Γ if $Uin\Gamma$, and for every set *A* in Γ , there exists a $y \in Y$ such that

$$A = \{x : (x, y) \in U\}.$$

A universal set for Γ can be thought of as a **parametrization** of Γ , the second component providing a *code* or *parameter* for each set in Γ .

A well-known example of a universal set is the generalized halting problem,

$$K_0 = \{(x, e): \text{ the } e\text{-th Turing machine halts on input } x\}.$$

In the sense of the above definition, K_0 is \mathbb{N} -universal for the family of recursively enumerable sets.

We have seen in the previous lecture that there is a strong connection between r.e. sets and Σ_1^0 sets. The relation is based on the fact that each Σ_1^0 set in $\mathbb{N}^{\mathbb{N}}$ has a *code* that is r.e. We can use the code to obtain a universal set for Σ_1^0 .

Proposition 10.6: For any $n \geq 1$, there exists a set $U \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ that is $\mathbb{N}^{\mathbb{N}}$ -universal for Σ_n^0 (Π_n^0).

Proof. We can use the Borel codes defined in the previous lecture.

First of all, notice that for each $n \geq 1$, the set of all Σ_1^0 -codes or Π_1^0 -codes is homeomorphic to $\mathbb{N}^{\mathbb{N}}$. This follows easily from the definition of the Borel codes. Hence, if we fix n, every $\gamma \in \mathbb{N}$ represents a Σ_n^0 (Π_n^0)-code of a Σ_n^0 (Π_n^0) set, and every such set in turn has a code $\gamma \in \mathbb{N}$.

Now we let, for fixed n,

$$U = \{(\alpha, \gamma) : \alpha \text{ is in the } \Sigma_n^0 (\Pi_n^0) \text{ set coded by } \gamma \}.$$

It follows easily from Theorem 9.9 that U is Σ_n^0 (Π_n^0), too, and it is clear from the definition of U that it parametrizes Σ_n^0 (Π_n^0).

The result can be generalized to hold for arbitrary Polish spaces X, i.e. for any $n \ge 1$, there exists a set $U \subseteq \mathbb{N}^{\mathbb{N}} \times X$ that is $\mathbb{N}^{\mathbb{N}}$ -universal for $\Sigma_n^0(X)$ ($\Pi_n^0(X)$). To

achieve this, one has to define Borel codes for X. This can be done by fixing a countable basis (V_n) of the topology of X, and assign a sequence $\gamma \in \mathbb{N}^{\mathbb{N}}$ the open set

$$U_{\gamma} = \bigcup_{n \in \mathbb{N}} V_{\gamma(n)}.$$

The definition of codes for higher levels is then similar to Definition 9.1.

As in the case of the halting problem, we can use the existence of universal sets to show that the levels of the Borel hierarchy are proper. The crucial point is that we can use universal sets to *diagonalize*.

Theorem 10.7: For any $n \ge 1$, $\Sigma_n^0 \ne \Pi_n^0$.

Proof. Let U be an $\mathbb{N}^{\mathbb{N}}$ -universal set for Σ_n^0 . Put

$$D = \{\alpha \colon (\alpha, \alpha) \in U\}.$$

Since U is Σ_n^0 , D is Σ_n^0 , too. Then $\neg D$ is Π_n^0 , but cannot be Σ_n^0 , for then there would exist β such that

$$\neg D = \{\alpha \colon (\alpha, \beta) \in U\},\$$

and thus

$$\beta \in D \iff (\beta, \beta) \in U \iff \beta \in \neg D,$$

a contradiction.

The diagonal set D can obviously be defined for any universal set U, and hence the same proof yields a Π_n^0 set that is not Σ_n^0 .

Corollary 10.8: *For any* $n \ge 1$ *,*

$$\Delta_n^0 \subsetneq \Sigma_n^0 \subsetneq \Delta_{n+1}^0$$
$$\Delta_n^0 \subsetneq \Pi_n^0 \subsetneq \Delta_{n+1}^0.$$

Proof. Since $\Sigma_n^0 \subsetneq \Pi_n^0$ and $\Pi_n^0 \subsetneq \Sigma_n^0$, $\Delta_n^0 \subsetneq \Sigma_n^0$, Π_n^0 . On the other hand if $\Sigma_n^0 = \Delta_{n+1}^0$, then Σ_n^0 would be closed under complements, and hence $\Sigma_n^0 = \Pi_n^0$, contradicting Theorem 10.7.

Borel sets of transfinite order

We saw that the Borel sets of finite order

$$Borel_{\omega} = \bigcup_{n < \omega} \Sigma_n^0$$

form a proper hierarchy. This fact also implies that Borel_{ω} does not exhaust all Borel sets.

Proposition 10.9: There exists a Borel set B that is not Σ_n^0 for any $n \in \mathbb{N}$.

Proof. For every $n \in \mathbb{N}$, pick a set B_n in $\Pi_n^0 \setminus \Sigma_n^0$. Put

$$B=\bigcup_{n\in\mathbb{N}}\{(n,\alpha)\colon \alpha\in B_n\}.$$

Each of the sets in the union is Borel and hence B is Borel. If B were of finite order, it would be Σ_k^0 for some $k \geq 1$. Since each Σ_n^0 is closed under finite intersections, it follows that for all $m \geq 1$,

$$B \cap N_{\langle m \rangle}$$

is Σ_k^0 . But $B \cap N_{\langle m \rangle}$ is homeomorphic to B_m , hence B_m in Σ_k^0 for all $m \geq 1$, contradiction.

We can extend the Borel hierarchy to arbitrary ordinals.

Definition 10.10: Let X be a Polish space. Given an ordinal ξ , we define

$$\begin{split} & \boldsymbol{\Sigma}^0_{\boldsymbol{\xi}}(X) = \{ \bigcup_k A_k \colon A_k \in \boldsymbol{\Pi}^0_{\boldsymbol{\zeta}_k}(X), \ \boldsymbol{\zeta}_k < \boldsymbol{\xi} \}, \\ & \boldsymbol{\Pi}^0_{\boldsymbol{\xi}}(X) = \{ \neg A \colon A \in \boldsymbol{\Sigma}^0_{\boldsymbol{\xi}}(X) \} = \neg \boldsymbol{\Sigma}^0_n(X), \\ & \boldsymbol{\Delta}^0_{\boldsymbol{\xi}}(X) = \boldsymbol{\Sigma}^0_{\boldsymbol{\xi}}(X) \cap \boldsymbol{\Pi}^0_{\boldsymbol{\xi}}. \end{split}$$

It actually suffices to consider ordinals up to ω_1 , the first uncountable ordinal.

Proposition 10.11: For every Borel set B there exists $\xi < \omega_1$ such that $B \in \Sigma_{\xi}^0$.

Proof. If *B* is open, this is clear. It is also clear if *B* is the complement of a Borel for which the statement has been verified.

Assume finally that

$$B = \bigcup_{n} B_n$$
, where each B_n is Borel,

and assume the statement holds for each B_n . For each n, let ξ_n be a countable ordinal such that

$$B_n \in \Pi^0_{\xi_n}$$
.

Then

$$B \in \Sigma_{\xi}^{0}$$
, where $\xi = \sup\{\xi_{n} + 1 : n \in \mathbb{N}\}.$

Since each ξ_n is countable, ξ is countable.

Borel sets of infinite order have the same closure properties as their counterparts of finite order. The proofs, however have to proceed by induction using the topological properties of Σ^0_ξ and Π^0_ξ , since the characterization via definability in arithmetic is no longer available – the arithmetical hierarchy reaches only to ω .

Similarly, the Hierarchy Theorem 10.7 extends to the transfinite levels. For the finite levels, this followed from the existence of universal sets for each level.

Proposition 10.12: For each $\xi < \omega_1$, there exists a $\mathbb{N}^{\mathbb{N}}$ -universal set for Σ_{ξ}^0 (Π_{ξ}^0).

Proof. If U is $\mathbb{N}^{\mathbb{N}}$ -universal for $\Sigma^0_{\mathcal{F}}$, then

$$\neg U = \{(\alpha, \gamma) : (\alpha, \gamma) \notin U\}$$

is $\mathbb{N}^{\mathbb{N}}$ -universal for Π_{ξ}^{0} , since for any Π_{ξ}^{0} set A, $B = \neg A$ is Σ_{ξ}^{0} and hence there exists a γ such that

$$B = \{\beta : (\beta, \gamma) \in U\}$$

and hence

$$A = \{\alpha : (\alpha, \gamma) \notin U\}.$$

It remains to show that each Σ^0_ξ has an $\mathbb{N}^\mathbb{N}$ -universal set. By induction hypothesis, for every $\eta < \xi$ exists a $\mathbb{N}^\mathbb{N}$ -universal set U_η for Π^0_η . Since ξ is countable, we can pick a monotone sequence of ordinals (ξ_n) such that $\xi = \sup\{\xi_n + 1 \colon n < \omega\}$. Define

$$U_{\xi} = \{(\alpha, \gamma) : \exists n(\alpha, (\gamma)_n) \in U_{\xi_n}\},$$

where $(\gamma)_n$ denotes the nth column of γ . It is straightforward to check that U_{ξ} is $\mathbb{N}^{\mathbb{N}}$ -universal for Σ^0_{ξ} . (Note that any set A in Σ^0_{ξ} can be represented as $\bigcup_n A_n$ with $A_n \in \Pi^0_{\xi_n}$, since $(\xi_n + 1)$ is cofinal in ξ .)

This general proof of existence of universal sets does not use Borel codes, since those were defined only for Borel sets of finite order. The proof of Proposition 10.12 provides an idea how we could extend the definition of a code to transfinite orders: Take unions of codes along a cofinal sequence. However, we would like to this in an effective way, and it is not clear how to do this for infinite ordinals in general.

We will later return to this question, when we introduce *computable ordinals*.