

Asocijacija za napredak nauke i tehnologije

Science@Home Challenge

Zadatak 3

Konveksna optimizacija

Kako bi namirili velike potrebe tržišta u doba koronavirusa, uprava ANNT d.o.o. želi maximizirati produktivnost svojih proizvodnih linija. Nakon višednevne analize, stručnjaci ANNT-a su zaključili da je potrebno maksimizirati sljedeću funkciju:

$$J(x) = 20 \ln(x_1 + 2x_2 + 3x_3) - 5 \ln(e^{x_2} + e^{x_5}) - (x_1 - 6)^2 - (x_2 - 5)^2 - (x_3 - 4)^2 - (x_4 - 3)^2 - (x_5 - 6)^2$$

gdje je x_1 broj proizvedenih maski po satu, x_2 broj proizvedenih rukavica po satu, x_3 litara proizvedenih sredstva za dezinfekciju po satu, x_4 broj proizvedenih zaštitnika za lice po satu i x_5 broj proizvedenih zaštitnih odijela po satu.

Vaš zadatak jeste da razvijete i implementirate računarski algoritam baziran na nekoj optimizacijskoj metodi koja se može koristiti za ovaj problem kako bi našli (x_1 , x_2 , x_3 , x_4 , x_5) koji odgovara maksimalnoj vrijednosti J(x). Predlažemo da koristite tzv. "Gradient descent" koji se koristi za *minimizaciju* funkcija. Metoda iterativno implementira sljedeću jednačinu:

$$x_{k+1} = x_k - s \nabla J(x_k)$$

gdje je s pozitivan realan broj koji predstavlja veličinu koraka algoritma, a ∇J predstavlja gradijent funkcije J koja se minimizira.

Za računanje analitičkog izraza gradijenta, možete koristiti online alate i taj dio vam se neće bodovati. Algoritmi će se bodovati prema brzini rješavanja, tj. algoritmi koji se najviše približe optimalnom rješenju u 10 iteracija će se bodovati sa više bodova. Kao rješenje nam trebate poslati korišteni kod kao i vrijednost dobivenog rješenja (x_i vrijednosti kao i J(x)) nakon 10 iteracija algoritma. Za početnu tačku uzeti (x_1 , x_2 , x_3 , x_4 , x_5) =(500, 500, 500, 500, 500).

Sretno!