Machine Learning Homework 3 Report

R06221012 數學所 李岳洲

April 31, 2020

1. 請說明你實作的 CNN 模型,其模型架構、訓練參數量和準確率為何?

optimizer: Adam, learning rate: 0.0001, batchsize: 512, epoch: 300, early stopping patient: 30

	Training accuracy	Training loss	Validation accuracy	Validation loss	Test accuracy
CNN	0.971923	0.000707	0.829697	0.001128	0.85475

Table 1: CNN results

Layer (type)	Output Shape	Param #
Conv2d-1	[-1, 64, 128, 128]	1,792
BatchNorm2d-2	[-1, 64, 128, 128]	128 0
ReLU-3	[-1, 64, 128, 128]	
Conv2d-4	[-1, 64, 128, 128]	36,928
BatchNorm2d-5	[-1, 64, 128, 128]	128
ReLU-6 MaxPool2d-7	[-1, 64, 128, 128]	9 9
MaxP0012d-7 Conv2d-8	[-1, 64, 64, 64] [-1, 128, 64, 64]	
BatchNorm2d-9	[-1, 128, 64, 64] [-1, 128, 64, 64]	73,856 256
ReLU-10	[-1, 128, 64, 64]	250
Conv2d-11	[-1, 128, 64, 64]	147,584
BatchNorm2d-12	[-1, 128, 64, 64]	256
ReLU-13	[-1, 128, 64, 64]	250
MaxPool2d-14	[-1, 128, 32, 32]	0
Conv2d-15	[-1, 256, 32, 32]	295,168
BatchNorm2d-16	[-1, 256, 32, 32]	512
ReLU-17	[-1, 256, 32, 32]	0
Conv2d-18	[-1, 256, 32, 32]	590,080
BatchNorm2d-19	[-1, 256, 32, 32]	512
ReLU-20	[-1, 256, 32, 32]	0
Conv2d-21	[-1, 256, 32, 32]	590,080
BatchNorm2d-22	[-1, 256, 32, 32]	512
ReLU-23	[-1, 256, 32, 32]	0
MaxPool2d-24	[-1, 256, 16, 16]	0
Conv2d-25	[-1, 512, 16, 16]	1,180,160
BatchNorm2d-26	[-1, 512, 16, 16]	1,024
ReLU-27	[-1, 512, 16, 16]	-,
Conv2d-28	[-1, 512, 16, 16]	2,359,808
BatchNorm2d-29	[-1, 512, 16, 16]	1,024
ReLU-30	[-1, 512, 16, 16]	0
Conv2d-31	[-1, 512, 16, 16]	2,359,808
BatchNorm2d-32	[-1, 512, 16, 16]	1,024
ReLU-33	[-1, 512, 16, 16]	. 0
MaxPool2d-34	[-1, 512, 8, 8]	0
Conv2d-35	[-1, 512, 8, 8]	2,359,808
BatchNorm2d-36	[-1, 512, 8, 8]	1,024
ReLU-37	[-1, 512, 8, 8]	0
Conv2d-38	[-1, 512, 8, 8]	2,359,808
BatchNorm2d-39	[-1, 512, 8, 8]	1,024
ReLU-40	[-1, 512, 8, 8]	0
Conv2d-41	[-1, 512, 8, 8]	2,359,808
BatchNorm2d-42	[-1, 512, 8, 8]	1,024
ReLU-43	[-1, 512, 8, 8]	0
MaxPool2d-44	[-1, 512, 4, 4]	0
Linear-45	[-1, 4096]	33,558,528
Dropout-46	[-1, 4096]	0
ReLU-47	[-1, 4096]	0
Linear-48	[-1, 4096]	16,781,312
Dropout-49	[-1, 4096]	0
ReLU-50	[-1, 4096]	0
Linear-51	[-1, 1000]	4,097,000
Dropout-52	[-1, 1000]	0
ReLU-53	[-1, 1000]	0
Linear-54	[-1, 11]	11,011

Total params: 69,170,987
Trainable params: 69,170,987
Non-trainable params: 0
Input size (MB): 0.19
Forward/backward pass size (MB): 105.27

Figure 1: CNN model architecture

2. 請實作與第一題接近的參數量,但 *CNN* 深度 (*CNN* 層數) 減半的模型,並說明其模型架構、訓練參數量和準確率為何?

optimizer: Adam, learning rate: 0.0001, batchsize: 512, epoch: 300, early stopping patient: 30

	Training accuracy	Training loss	Validation accuracy	Validation loss	Test accuracy
CNN (half layers)	0.758362	0.001420	0.662767	0.002215	_

Table 2: CNN (half layers) results

Layer (type)	Output Shape	Param #
Conv2d-1 BatchNorm2d-2 ReLU-3 Conv2d-4 BatchNorm2d-5 ReLU-6 MaxPool2d-7 Conv2d-8 BatchNorm2d-9 ReLU-10 Conv2d-11 BatchNorm2d-12 ReLU-13 MaxPool2d-14 Conv2d-15 BatchNorm2d-16 ReLU-17 Conv2d-18 BatchNorm2d-19 ReLU-20 MaxPool2d-21 Linear-22 Dropout-23 ReLU-24 Linear-25 Dropout-26 ReLU-27 Linear-28	[-1, 16, 128, 128] [-1, 16, 128, 128] [-1, 16, 128, 128] [-1, 16, 128, 128] [-1, 16, 128, 128] [-1, 16, 128, 128] [-1, 16, 128, 128] [-1, 16, 64, 64] [-1, 32, 64, 64] [-1, 32, 64, 64] [-1, 32, 64, 64] [-1, 32, 64, 64] [-1, 32, 64, 64] [-1, 32, 64, 64] [-1, 32, 64, 64] [-1, 32, 64, 64] [-1, 32, 64, 64] [-1, 32, 32, 32] [-1, 64, 32, 32] [-1, 64, 32, 32] [-1, 64, 32, 32] [-1, 64, 32, 32] [-1, 64, 32, 32] [-1, 64, 32, 32] [-1, 64, 32, 32] [-1, 64, 32, 32] [-1, 64, 32, 32] [-1, 64, 16, 16] [-1, 4096]	448 32 0 2,320 32 0 4,640 64 0 9,248 64 0 18,496 128 0 36,928 128 0 67,112,960 0 16,781,312 0 4,097,000
Dropout-29 ReLU-30 Linear-31	[-1, 1000] [-1, 1000] [-1, 11]	0 0 11,011

Total params: 88,074,811 Trainable params: 88,074,811 Non-trainable params: 0

Input size (MB): 0.19

Forward/backward pass size (MB): 22.09

Params size (MB): 335.98

Estimated Total Size (MB): 358.25

Figure 2: CNN model architecture (half layers)

3. 請實作與第一題接近的參數量,簡單的 *DNN* 模型,同時也說明其模型架構、訓練參數和準確 率為何?

optimizer: Adam, learning rate: 0.0001, batchsize: 256, epoch: 300, early stopping patient: 30

	Training accuracy	Training loss	Validation accuracy	Validation loss	Test accuracy
DNN	0.417784	0.006590	0.390837	0.007002	_

Table 3: DNN results

Layer (type)	Output Shape	Param #
Linear-1	[-1, 3, 128, 256]	33,024
Dropout-2	[-1, 3, 128, 256]	Θ
ReLU-3	[-1, 3, 128, 256]	Θ
Linear-4	[-1, 3, 128, 512]	131,584
Dropout-5	[-1, 3, 128, 512]	0
ReLU-6	[-1, 3, 128, 512]	0
Linear-7	[-1, 3, 128, 1024] [-1, 3, 128, 1024]	525,312 0
Dropout-8 ReLU-9	[-1, 3, 128, 1024] [-1, 3, 128, 1024]	9
Linear-10	[-1, 3, 128, 1024]	2,099,200
Dropout-11	[-1, 3, 128, 2048]	0
ReLU-12	[-1, 3, 128, 2048]	Θ
Linear-13	[-1, 3, 128, 4096]	8,392,704
Dropout-14	[-1, 3, 128, 4096]	0
ReLU-15	[-1, 3, 128, 4096]	Θ
Linear-16	[-1, 3, 128, 6120]	25,073,640
Dropout-17	[-1, 3, 128, 6120]	Θ
ReLU-18	[-1, 3, 128, 6120]	0
Linear-19	[-1, 3, 128, 3072]	18,803,712
Dropout-20 ReLU-21	[-1, 3, 128, 3072] [-1, 3, 128, 3072]	Θ Θ
Linear-22	[-1, 3, 128, 3072]	6,293,504
Dropout-23	[-1, 3, 128, 2048]	0,233,304
ReLU-24	[-1, 3, 128, 2048]	Ō
Linear-25	[-1, 3, 128, 1024]	2,098,176
Dropout-26	[-1, 3, 128, 1024]	Θ
ReLU-27	[-1, 3, 128, 1024]	Θ
Linear-28	[-1, 3, 128, 512]	524,800
Dropout-29	[-1, 3, 128, 512]	9
ReLU-30	[-1, 3, 128, 512]	121 220
Linear-31 Dropout-32	[-1, 3, 128, 256] [-1, 3, 128, 256]	131,328 0
ReLU-33	[-1, 3, 128, 256]	0
Linear-34	[-1, 3, 128, 128]	32,896
Dropout-35	[-1, 3, 128, 128]	0
ReLU-36	[-1, 3, 128, 128]	Θ
Linear-37	[-1, 3, 128, 64]	8,256
Dropout-38	[-1, 3, 128, 64]	Θ
ReLU-39	[-1, 3, 128, 64]	- 0
Linear-40	[-1, 3, 128, 32]	2,080
Dropout-41	[-1, 3, 128, 32]	9 9
ReLU-42 Linear-43	[-1, 3, 128, 32] [-1, 3, 128, 16]	528
Dropout-44	[-1, 3, 128, 16]	928
ReLU-45	[-1, 3, 128, 16]	Θ
Linear-46	[-1, 3, 128, 8]	136
Dropout-47	[-1, 3, 128, 8]	Θ
ReLU-48	[-1, 3, 128, 8]	Θ
Flatten-49	[-1, 3072]	Θ
Linear-50	[-1, 384]	1,180,032
Dropout-51	[-1, 384]	0
ReLU-52 Linear-53	[-1, 384] [-1, 48]	0 18,480
Dropout-54	[-1, 46] [-1, 48]	10,460
ReLU-55	[-1, 48]	0
Linear-56	[-1, 11]	539

Total params: 65,349,931 Trainable params: 65,349,931 Non-trainable params: 0

Figure 3: DNN model architecture $\,$

4. 請說明由 1~3 題的實驗中你觀察到了什麼?

We use data normalization, data augmentation and early stopping in the above $1 \sim 3$. All of them are stopped before 300 epochs.

- 5. 請嘗試 data normalization 及 data augmentation, 說明實作方法並且說明實行前後對準確率有什麼樣的影響?
 - (a) Data normalizatin:

Calculate the batch mean and standard deviation of training set, then apply this mean and standard deviation to validation set and testing set.

Usage:

torchvision.transforms.Normalize(mean, std)

(b) Data augmentation:

Input size: $3 \times 128 \times 128$

- (i) We resized to the size $3 \times 150 \times 150$, then randomly crop center by the size $3 \times 128 \times 128$.
- (ii) Randomly horizontal flip.
- (iii) Randomly rotation by degree 15.
- (iv) Double the original dataset by augmentation.

Usage:

(i) torchvision.transforms.Resize(150),

torchvision.transforms.RandomResizedCrop (128)

- (ii) torchvision.transforms.RandomHorizontalFlip()
- (iii) transforms.RandomRotation(15)

(c) Comparison table:

	Training accuracy	Training loss	Validation accuracy	Validation loss	Test accuracy
original cnn	0.995231	0.000439	0.761623	_	0.78720
augmentation	0.928874	0.000812	0.776205	_	0.79438
augmentation + normalization	0.971923	0.000707	0.829697	0.001128	0.85475

Table 4: Results comparison table

6. 觀察答錯的圖片中,哪些 class 彼此間容易用混?

Figure 4: Confusion matrix

Figure 5: Confused classes