```
In [2]:
             import numpy as np
             import pandas as pd
             import matplotlib.pyplot as plt
             import seaborn as sns
In [88]:
             df = pd.read_csv("skoda.csv")
            print(df)
             #print first 5
            print(df.head())
                     model year price transmission mileage fuelType mpg \
        0
                   Octavia 2017 10550
                                           Manual 25250 Petrol 54.3
        1
                   Citigo 2018
                                 8200
                                           Manual
                                                     1264
                                                            Petrol 67.3
                                                     6825 Diesel 67.3
                   Octavia 2019 15650
                                        Automatic
              Yeti Outdoor 2015 14000
                                       Automatic
                                                    28431
                                                          Diesel 51.4
                                       Manual
                   Superb 2019 18350
                                                    10912 Petrol 40.9
        4
                      . . .
                            . . .
                                             . . . .
                                                              . . .
                      Yeti 2014 11440
                                       Semi-Auto
                                                           Petrol 44.8
                                                    14569
        6262
        6263
                   Octavia 2014 10990 Semi-Auto
                                                    49999 Petrol 56.5
                                                          Petrol 61.4
                    Fabia 2017 9500 Semi-Auto
                                                    17131
        6264
        6265
                    Citigo 2016
                                 5999
                                         Manual
                                                    21747
                                                            Petrol 62.8
                    Fabia 2017 9232
                                        Semi-Auto
                                                    42530 Petrol 60.1
        6266
             engineSize
        0
                   1.4
                    1.0
        1
                    2.0
                    2.0
        3
        4
                    1.5
                    . . .
        6262
                   1.2
        6263
                   1.4
        6264
                    1.0
        6265
                    1.0
        6266
                    1.2
        [6267 rows x 8 columns]
                 model year price transmission mileage fuelType mpg engineSize
                                    Manual 25250 Petrol 54.3
        0
                Octavia 2017 10550
                                                                      1.4
                 Citigo 2018
                              8200
                                                  1264
                                                         Petrol 67.3
                                                                            1.0
                                        Manual
        1
        2
                Octavia 2019
                              15650
                                      Automatic
                                                   6825
                                                        Diesel 67.3
                                                                            2.0
                                                        Diesel 51.4
           Yeti Outdoor 2015 14000
                                     Automatic
        3
                                                  28431
                                                                            2.0
        4
                 Superb 2019 18350
                                        Manual
                                                  10912 Petrol 40.9
                                                                            1.5
In [89]:
             # Display First 5 and Last 5
```

Display First 5 and Last 5
display(df)

Display First 10
display(df.head(10))

	model	year	price	transmission	mileage	fuelType	mpg	engineSize
0	Octavia	2017	10550	Manual	25250	Petrol	54.3	1.4
1	Citigo	2018	8200	Manual	1264	Petrol	67.3	1.0
2	Octavia	2019	15650	Automatic	6825	Diesel	67.3	2.0
3	Yeti Outdoor	2015	14000	Automatic	28431	Diesel	51.4	2.0
4	Superb	2019	18350	Manual	10912	Petrol	40.9	1.5
6262	Yeti	2014	11440	Semi-Auto	14569	Petrol	44.8	1.2
6263	Octavia	2014	10990	Semi-Auto	49999	Petrol	56.5	1.4
6264	Fabia	2017	9500	Semi-Auto	17131	Petrol	61.4	1.0
6265	Citigo	2016	5999	Manual	21747	Petrol	62.8	1.0
6266	Fabia	2017	9232	Semi-Auto	42530	Petrol	60.1	1.2

6267 rows × 8 columns

	model	year	price	transmission	mileage	fuelType	mpg	engineSize
0	Octavia	2017	10550	Manual	25250	Petrol	54.3	1.4
1	Citigo	2018	8200	Manual	1264	Petrol	67.3	1.0
2	Octavia	2019	15650	Automatic	6825	Diesel	67.3	2.0
3	Yeti Outdoor	2015	14000	Automatic	28431	Diesel	51.4	2.0

```
Superb 2019 18350
                                            10912
                                                      Petrol 40.9
                                  Manual
                                                                          1.5
5 Yeti Outdoor 2017 13250
                                Automatic
                                            47005
                                                     Diesel 51.4
                                                                         2.0
6
       Superb 2019 15250
                                            14850
                                                      Petrol 40.9
                                                                          1.5
                                  Manual
       Octavia 2019 18950
                                            5850
                                                     Diesel 50.4
                                                                         2.0
                                Automatic
8
       Kodiaq 2019 29900
                                Automatic
                                             2633
                                                      Petrol 31.4
                                                                         2.0
       Octavia 2017 18990
                                            20000
                                                      Petrol 43.5
                                                                          2.0
                                  Manual
```

```
In [16]:
```

Check missing value, data type of columns
display(df.info())

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6267 entries, 0 to 6266
Data columns (total 8 columns):
# Column
                Non-Null Count Dtype
0
    model
                 6267 non-null
                                 object
 1
                  6267 non-null
                                 int64
    year
                 6267 non-null
2
                                 int64
    price
3
    transmission 6267 non-null
                                 object
4
              6267 non-null
    mileage
                                 int64
5
    fuelType
                  6267 non-null
                                 object
                  6267 non-null
6
                                 float64
    mpg
7
    engineSize
                 6267 non-null
                                 float64
dtypes: float64(2), int64(3), object(3)
memory usage: 391.8+ KB
None
```

```
In [18]:
```

```
#Number of unique value in column year
year_count = df['year'].value_counts()
display(year_count)
```

```
2019
         2114
2017
         1539
2018
          874
2016
          840
2015
          285
2020
          276
2014
          183
2013
           93
2012
           17
2011
           14
2010
           10
2009
            6
2008
            6
2007
            4
2006
            3
2005
            2
2004
            1
```

Name: year, dtype: int64

```
In [22]:
```

```
#Number of unique value in fuel type
fuel_type = df['fuelType'].value_counts()
display(fuel_type)
```

Petrol 4171 Diesel 2069 Hybrid 18 Other 9

Name: fuelType, dtype: int64

```
In [23]:
```

```
#Number of unique value in transmission
transmission_count = df['transmission'].value_counts()
display(transmission_count)
```

Manual 3754 Semi-Auto 1408 Automatic 1104 0ther

Name: transmission, dtype: int64

```
In [38]:
              #Percentage of unique values present in the fuelType column
              #Number of unique value in transmission
              fuelType count = df['fuelType'].value counts()
              #Taking into Dataframe
              fuelType_count = pd.DataFrame(fuelType_count)
              #Resettng index
              fuelType count = fuelType count.reset index()
              #Renaming columns
              fuelType_count = fuelType_count.rename(columns={'index':'fuel_type','fuelType':'No_of_cars'})
              #Introducing new column for %
              fuelType_count['% of cars'] = np.round((fuelType_count['No_of_cars']/fuelType_count['No_of_cars'].sum()*100)
              #display(fuelType count)
              #display(fuelType count['No of cars'].sum())
              display(fuelType_count)
```

fuel_type No_of_cars % of cars 0 Petrol 4171 66.55 Diesel 2069 33.01 Hybrid 18 0.29 3 Other 9 0.14

```
In [47]:
              # Barplot using seaborn for fuleType column
              sns.barplot(x='fuel type', y = 'No of cars', data = fuelType count, color = 'blue', alpha = .75)
              #title of the figure
              plt.title("Number of Cars for each fuel type")
              # X-axis and Y-axis label
              plt.xlabel("Type of fuel")
              plt.ylabel("Number of cars")
              #showing on grid
              plt.grid()
              # to remove the top writings
              #plt.show()
```



```
In [50]:
                #Percentage of unique values present in the transmission column
                #Number of unique value in transmission
transmission_count = df['transmission'].value_counts()
                #Taking into Dataframe
                transmission_count = pd.DataFrame(transmission_count)
                #Resettng index
                transmission_count = transmission_count.reset_index()
```

```
#Renaming columns
transmission_count = transmission_count.rename(columns={'index':'transmission','transmission':'No_of_cars'})
#Introducing new column for %
transmission_count['% of cars'] = np.round((transmission_count['No_of_cars']/transmission_count['No_of_cars']
#display(model_count)
#display(model_count['No_of_cars'].sum())
display(transmission_count)
```

transmission No_of_cars % of cars 0 Manual 3754 59.90 1 Semi-Auto 1408 22.47 2 Automatic 1104 17.62 3 Other 1 0.02

```
# Barplot using seaborn for transmission column
sns.barplot(x='transmission', y = 'No_of_cars', data = transmission_count, color ='blue', alpha = .75)

#title of the figure
plt.title("Number of Cars for each transmission type")

# X-axis and Y-axis label
plt.xlabel("Type of transmission")
plt.ylabel("Number of cars")

# plt.grid()
# to remove the top writings
plt.show()
```



```
#Percentage of unique values present in the model column

#Number of unique value in transmission
model_count = df['model'].value_counts()

#Taking into Dataframe
model_count = pd.DataFrame(model_count)

#Resetting index
model_count = model_count.reset_index()

#Renaming columns
model_count = model_count.rename(columns={'index':'model','model':'No_of_cars'})

#Introducing new column for %
model_count['% of cars'] = np.round((model_count['No_of_cars']/model_count['No_of_cars'].sum()*100),2)

#display(model_count)
#display(model_count['No_of_cars'].sum())
display(model_count)
```

	model	No_of_cars	% of cars
0	Fabia	1571	25.07
1	Octavia	1477	23.57
2	Superb	791	12.62
3	Kodiaq	472	7.53
4	Citigo	470	7.50

Yeti Outdoor	458	7.31
Karoq	390	6.22
Scala	192	3.06
Rapid	152	2.43
Kamiq	141	2.25
Yeti	136	2.17
Roomster	17	0.27
	Karoq Scala Rapid Kamiq Yeti	Karoq 390 Scala 192 Rapid 152 Kamiq 141 Yeti 136

```
# Barplot using seaborn for model column
sns.barplot(x='model', y = 'No_of_cars', data = model_count, color ='blue', alpha = .75)
#title of the figure
plt.title("Number of Cars for each model type")

# X-axis and Y-axis label
plt.xlabel("Type of model")
plt.ylabel("Number of cars")

# the rotation of xticks
plt.xticks(rotation = 90)

#plt.grid()
# to remove the top writings
plt.show()
```



```
In [74]:
              sns.set_context('paper')
              #subplot using matplotlib and presenting all chart in one figure
              plt.figure(figsize=(15,5))
              #(1,1)
              plt.subplot(1,3,1)
              sns.barplot(x='model', y ='% of cars', data = model_count, color ='blue', alpha = 0.75)
              #title of the plot
              plt.title("Number of Cars for each model type")
              # X-axis and Y-axis label
              plt.xlabel("Type of model") plt.ylabel("% of cars")
              # rotation the xticks
              plt.xticks(rotation = 90)
              # range for the yticks
              plt.yticks(np.arange(0,101,10).tolist())
              #(1,2)
              plt.subplot(1,3,2)
              sns.barplot(x='transmission', y='% of cars', data = transmission_count, color ='orange', alpha = 0.75)
              #title of the plot
              plt.title("Number of Cars for each transmission type")
              # X-axis and Y-axis label
              plt.xlabel("Type of transmission") plt.ylabel("% of cars")
              # range for the yticks
              plt.yticks(np.arange(0,101,10).tolist())
              #(1,3)
```

```
plt.subplot(1,3,3)
sns.barplot(x='fuel_type', y ='% of cars', data = fuelType_count, color ='green', alpha = 0.75)
#title of the plot
plt.title("Number of Cars for each fuel type")
# X-axis and Y-axis label
plt.xlabel("Type of fuel") plt.ylabel("% of cars")
# range for the yticks
plt.yticks(np.arange(0,101,10).tolist())

#overall title of all plot
plt.suptitle("Categorical variables in skoda used cars")

#Keeping plots separated
plt.tight_layout()

#shoing the figure
plt.show()
```



```
In [84]:
          def unique_val_count(data, column):
               #counting the unique falue
               df_count = data[column].value_counts()
               #Taking into dataframe
               df_count = pd.DataFrame(df_count)
               #Resettng index
               df count = df count.reset index()
               #Renaming columns
               df_count = df_count.rename(columns={'index':column, column:'No_of_cars'})
               #Introducing new column for %
               df count['% of cars'] = np.round((df count['No of cars']/df count['No of cars'].sum()*100), 2)
               return df_count
In [79]:
               model_count = unique_val_count(df, 'model')
year_count = unique_val_count(df, 'year')
               transmission_count = unique_val_count(df, 'transmission')
               fuelType count = unique val count(df, 'fuelType')
In [80]:
               # sort the year_count DataFrame based on year
               year_count = year_count.sort_values(by='year')
In [81]:
```

```
def barplot(data, column_x, color, rotation, yticks):
    # barplot using seaborn
    sns.barplot(x=column_x, y='% of cars', data=data, color=color, alpha=0.75)
# title of plot
    plt.title("Number of cars present for each " + column_x)
# lebel for the x and y axis
    plt.xlabel(column_x)
    plt.ylabel("Percent of cars (%)")
# rotation the xticks
    plt.xticks(rotation=rotation)
# range for the yticks
```

```
plt.yticks(yticks)
```

In [87]:

```
sns.set_context('paper')
plt.figure(figsize=(15,10))
#(1,1)
plt.subplot(2,2,1)
barplot(model_count, 'model', 'blue', 90, np.arange(0,51,10))
#(1,2)
plt.subplot(2,2,2)
barplot(year_count, 'year', 'orange', 90, np.arange(0,51,10))
plt.subplot(2,2,3)
barplot(transmission_count, 'transmission', 'green', 0, np.arange(0,71,10))
plt.subplot(2,2,4)
barplot(fuelType_count, 'fuelType', 'red', 0, np.arange(0,71,10))
#title for all the plots
plt.suptitle("Categorical variables in the SKODA used cars dataset")
# individual plots are separated
plt.tight_layout()
# display all the plots
plt.show()
```

