GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2023 (COGC-2023) Semester-V

Course Title: Air Pollution and Control

(Course Code: 4351301)

Diploma programme in which this course is offered	Semester in which offered
Environmental Engineering	5 th Semester

1. RATIONALE

The air pollution levels in some of our cities have reached to such a level that it is causing health related problems and very poor visibility in winter months resulting in traffic accidents. It is therefore very important to monitor and control air pollution. The course will provide a detailed knowledge of air quality management with an emphasis on the sources of air pollution, including the effects on humankind, plants and animals. In depth awareness of central, state, and local regulatory requirements in respect of air pollution laws and regulations will be provided. Principles of air pollution prevention and control, equipment and technology used for the purpose will be dealt with description of control of specific gaseous emissions. This course is therefore a key course for environment engineers.

2. COMPETENCY

The course content should be taught and with the aim to develop required skills in students so that they are able to acquire following competencies.

 Measure different components of air pollution and suggest strategies to minimize them.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- a) Identify the sources, types, causes and effects of air pollution.
- b) Calculate the stack height based on the meteorological components related to air pollution.
- c) Select location and type of sampling.
- d) Select appropriate air pollution control methods based on ambient conditions with consideration of air pollution control laws.
- e) Explain control methods of specific gaseous emissions like SO2 & NO2

4. TEACHING AND EXAMINATION SCHEME

Teachi	ing Scl	heme	Total Credits	Examination Scheme						
(In	(In Hours)		(L+T/2+P/2)	Theory Marks		T/2+P/2) Theory Mark		Practical	l Marks	Total
L	Т	Р	С	CA*	ESE	CA	ESE	Marks		
3	-	2	4	30	70	25	25	150		

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken

during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the COs. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1	Sampling and Analysis of PM10 in Ambient Air	I	04
2	Sampling and Analysis of PM2.5 in Ambient Air	ı	04
3	Measurement of meteorological parameters (wind velocity, wind direction, humidity, temperature, solar insolation, rainfall) and drawing wind rose diagram.	II	04
4	Stack Emission Monitoring using Isokinetic Sampling	Ш	04
5	Indoor Air Quality Assessment using Multi Gas Monitor	Ш	02
6	Sampling and Analysis of PM10 & PM2.5 using Spectrometer	Ш	04
7	Laboratory scale study on few air pollution control devices.	IV	02
8	Sampling and Analysis of SO2 and NO2 in Ambient Air	V	04
			Total:28

Note

- i. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- ii. The following are some **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

S. No.	Sample Performance Indicators for the PrOs	Weightage in %					
	For PrOs 1 to 7						
1	Identification of Glassware and Equipment to perform various test	10					
2	Prepare experimental setup accurately	10					
3	Observe and record readings accurately	40					
4	Calculate results accurately	20					
5	Interpret results and their conclusions	10					
6	Submission for progressive assessment on time	10					
7	Viva Voce	10					
	Total	100					

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practicals in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO. No.
1	Analytical Balance	1 to 14
	High volume air sampler	
	Filter media	
	 UV Spectrophotometer 	
	Flame photometer	
	Distillation Assembly	
	Chemical testing glasswares	
	Hot air oven	

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfill the development of this competency.

- a) Work as a team member/individual.
- b) Follow ethical practices.
- c) Follow safe practice on site and in laboratory.
- d) Practice of environmental friendly methods and processes.

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)		Topics and Sub-topics
Unit – I	1a. Describe the major	1.1	Air pollution an Environmental
	atmospheric pollutants		problem.
Air Pollutants	1b. Describe different	1.2	Classification of air
	sources of		pollutants: Natural
	atmospheric		contaminants, Particulate,
	pollution.		Gases and vapors, Primary
	1c. Interpret the effects of		and secondary air pollutants
	air pollution on	1.3	Sources of Airpollution:
	humankind, plants and		Stationary sources, Mobile
	animal kingdoms.		sources.

Unit	Unit Outcomes (UOs)		Topics and Sub-topics
	1d. Describe the effects of	1.4	Effects of air pollution on: human
	air pollution on		health, animals, plants, Properties,
	society		Society
Unit – II	2a. Explain dispersion	2.1	Meteorological factors
Meteorology	phenomenon of air		influencing air pollution:
	pollutants covering		Dispersion, Temperature
	diffusion, meteorological		Lapse Rates and Stability.
	components, stability of atmosphere and	2.2	Measurement of wind
	corresponding plume		speed, direction and
	shapes.		temperature
	2b.Describe the process and	2.3	Effect of meteorological
	instruments used for		parameters on Plume behavior
	measuring of wind speed,	2.4	Regalement chart for
	direction and ambient		plume behaviour
	temperature 2c. Explain the process of	2.5	Dispersion of air pollutants
	determining the stack height		Determination of Stackheight
	2d.Describe the stability		based on these parameters
	classes and their significance	2.6	Stability classes
	2- Describe different makes d	0.4	
Unit– III	3a. Describe different method of sampling	3.1	. •
Air Pollution	3b. Select the sampling	3.2	Duration of Sampling
Sampling and	location	3.3	Ambient Sampling and its
	3c. Interpret characteristics of		location: Collection of Gaseous
Measurements	the sample measured.		Air Pollution, Collection of
	3d. Describe the criteria of	2.4	Particulate Matter
	selection of sampling location	3.4	Stack Sampling and selection of
Unit- IV	As Evaluin principles of sir	4.1	sampling location Types of collection methods.
Offic-1V	4a. Explain principles of air pollution prevention	4.2	Particulate Emissions
Air Pollution	and control measures	7.2	Control Equipments:
Control	with various control		Gravity settling, cyclones,
Methods and	equipments at source.		Fabric Filters, Electrostatic
	4b. Discuss specific		Precipitators, Wet
Equipment	features and meaning		Scrubbers
	of air pollution control	4.3	Selection of Collectors.
	laws, regulations at		Control of Gaseous Emissions:
	central, state and local		Absorption by Liquids, Adsorption
	bodies' level.		by Solids
	4c. Describe the selection	4.5	•
	criteria for collectors		laws/acts at different
	4d.Describe the control of		central, state and local levels
	different types of gaseous		and by regulatory bodies.
	emissions	1.0	Control of SCO2. Chamisture of
	4e. Describe the different		Control of SO2: Chemistry of
	4c. Describe the uniterent		SO2, Lime and Limestone

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	process for control of SO2 and NO2	Scrubbing, Wet lime scrubbing, Single Alkali scrubbing and Double Alkali scrubbing, Dry process 4.7 Control of NO2: Combustion control methods
Unit-V Sector Wise Mitigation Measures to Control Air Pollution	Identify mitigation methods for various sectors like Urbanisation, Transportation, Industrialisation, Power generation, Agricultural activities	 5.1 Mitigation measures for Urbanisation like City Planning, Clean technology interventions in rural areas like clean fuel, solar lighting, paved roads, ban on refuse burning etc. 5.2 Mitigation measures for Transportation like travel demand management, avoid-shift-improve approach, use of public transportation, encourage nonmotorized transport, fuel quality and vehicle emission norms etc. 5.3 Mitigation measures for Industrialisation like vigilance and enforcement etc. 5.4 Mitigation measures for Power generation like Improved power supply, monitoring of control equipments etc. 5.5 Mitigation measures for Agricultural activities like power generation from crop residue

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teachin	Distribution of Theory Marks				
No.		g Hours	R	U	Α	Total	
			Level	Level		Marks	
I	Air Pollutants	08	04	06	02	12	
П	Meteorology	08	04	06	02	12	
Ш	Air Pollution Sampling and	10	06	06	04	16	
	Measurements						
IV	Air Pollution Control Methods and	12	08	10	02	20	
	Equipment						
V	Sector Wise Mitigation Measures to	04	04	04	02	10	
	Control Air Pollution						
	Total	42	28	32	14	70	

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) **Note**: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary slightly from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related **co-curricular** activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Preparation of chart of various methods to analyze different forms of Nitrogen
- b) Preparation of chart of various methods to analyze Fluoride
- c) Study and List the effects of Nitrogen and Phosphorus in water and waste water
- d) Undertake micro-project.
- e) Give seminar on any relevant topic.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) 'L' in section No. 4 means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to **section No.10**, teachers need to ensure to create opportunities and provisions for **co-curricular activities**.
- f) Guide students on how to address issues on environment and sustainability

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be **individually** undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should **not exceed Six.**

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Make a report after gathering information about the values of ambient air pollution in your town or city and compare them with that of other cities
- b) Prepare chart for: Different types of Plume behaviour.
- c) Prepare working model for air control equipment
- d) Study and prepare report on effect of lockdown on Air Quality in various countries.
- e) Study and prepare report on National Clean Air program and identify its limitations
- f) Prepare a list of significant steps taken by the government to curb air pollution
- g) Study and prepare report on strategies to overcome challenges in NCAP
- h) Study and enlist various National policies and programs proposed by government to tackle air pollution
- i) Enlist major international treaties formed to tackle air pollution
- j) Study and prepare report on role of air pollution in environmental issues like ozone depletion, global warming, climate change, acid rain

13. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication with place, year and ISBN
1	Air Pollution and Control	Rao, M.N and Rao, H.N.	McGraw Hill Education; 1st edition (1 July 2017); ISBN-13: 978- 0074518717
2	Air Pollution and Control	K.V.S.G. Muralikrishna	USP,2017, ISBN-13 : 978- 9383828593
3	Air Pollution: Its Origin and Control	Wark and Warner	Pearson; 3rd edition (15 January 1998), ISBN-13: 978-0673994165
4	Textbook of Air Pollution And its Control	S.C. Bhatia	Atlantic (1 December 2021), ISBN-13 : 978-8126908257
5	Handbook of Air Pollution Analysis	Roy M. Harrison	Springer, ISBN-13: 978- 9401083119
6	IS:5182 , Methods for measurements of air pollution(Part- I,II,IV,V,X)	BIS	BIS, May 1999

14. SOFTWARE/LEARNING WEBSITES

- a) www.gpcb.gov.in
- b) https://cpcb.nic.in/about-namp/www.neeri.res.in
- c) www.Nptel.ac.in

d) https://www.indiacode.nic.in/

15. PO-COMPETENCY-CO MAPPING

	Semester II	Environmental Chemistry-II (Course Code:4341305)										
	Semester ii	POs and PSOs										
	Competency & Course Outcomes	Basic & Discipline	Proble m Analysi s	n/ devel opme	Engineering Tools, Experiment ation &Testing	PO 5 Engineering practices for society, sustainability & environment	Project	long	PSO 1 Environm ental planning & deisgn	PSO 2 Environm ental Impact Assessme nt	neede d)	
	<u>Competency</u>	i. Meas	sure diffe	rent co	omponents of	fair pollution a	nd sugge	st strate@	gies to minim	ize them.		
a)	Course Outcomes Identify the sources, types, causes and effects of air pollution.	3	3	-	-	3	-	2	3	3	-	
b)	Calculate the stack height based on the meteorological components related to air pollution.	3	3	3	-	3	-	2	3	3	,	
c)	Select location and type of sampling.	3	3	3	2	3	-	2	3	3	-	
d)	Select appropriate air pollution control methods based on ambient conditions with consideration of air pollution control laws.	3	3	3	-	3	-	2	3	3	-	
e)	Explain control methods of specific gaseous emissions like SO2 & NO2	3	3	3	-	3	-	2	3	3	-	

Legend: '3' for high, '2' for medium, '1' for low or '-' for the relevant correlation of each competency, CO, with PO/ PSO

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1	Mrs. Jini Sunil	Shri K.J. Polytechnic, Bharuch	0264-2246402	jinivt@rediffmail.com
2	Ms. Nairuti Shah	Vairagya Consultants, Bharuch	9428 443695	vairagyaconsultants@ gmail.com