Sapthagiri NPS University Department of Mathematics Question Bank Module -2

Partial Differential Equations (PDE)

Formation of PDE by eliminating arbitrary constants and arbitrary functions (5 marks)

- 1. Form the PDE by eliminating the arbitrary constants $z = xv + v\sqrt{x^2 a^2} + b$.
- 2. Form the PDE by eliminating the arbitrary constants $2z = \frac{x^2}{a^2} + \frac{y^2}{h^2}$
- 3. Form the PDE by eliminating the arbitrary functions $z = f(x^2 + y^2)$.
- 4. Form the PDE by eliminating the arbitrary constants z = x + y + f(xy)
- 5. Find the PDE of the family of all spheres whose centres lie on the plane z = 0 and have a constant value 'r'.
- 6. Form the PDE by eliminating the arbitrary functions $z = e^{y} f(x + y)$
- 7. Form the PDE by eliminating the arbitrary functions $lx + mv + nz = \emptyset(x^2 + v^2 + z^2)$.

Formation of PDE by eliminating arbitrary functions (7 marks)

8. Form the PDE by eliminating the arbitrary functions in the following:

$$\emptyset(x + y + z, x^2 + y^2 - z^2) = 0.$$

9. Form the PDE by eliminating the arbitrary functions in the following:

$$\emptyset(xy+z^2,x+y+z)=0.$$

10. Form the PDE by eliminating the arbitrary functions in the following:

$$\emptyset(x^2 + y^2 + z^2, z^2 - 2xy) = 0.$$

11. Form the PDE by eliminating the arbitrary functions in the following: z = f(y + x) + g(y + 2x).

Solution of the Lagrange's Linear PDE (5 or 7 marks)

- 12. Solve : pcotx + qcoty = cotz
- 13. Solve: $x^2p + y^2q = z$
- 14. Solve: $y^2p xyq = x(z 2y)$
- 15. Solve: $y^2 z p = x^2 (zq + y)$
- 16. Solve: $(y^2 + z^2)p + x(yq z) = 0$.
- 17. Solve: $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$.
- 18. Solve: $(mz ny)\frac{\partial z}{\partial x} + (nx lz)\frac{\partial z}{\partial y} + (mx ly) = 0.$
- 19. Solve: $(x^2 y^2 z^2)p + 2xyq = 2xz$.

Sapthagiri NPS University Department of Mathematics Question Bank

Solution of homogeneous PDE involving derivatives with respect to one independent variable only (7 marks)

20. Solve
$$\frac{\partial^2 z}{\partial x^2} + z = 0$$
 given that when $x = 0$, $z = e^y$ and $\frac{\partial z}{\partial x} = 1$.

21. Solve
$$\frac{\partial^2 z}{\partial x^2} = a^2 z$$
 given that $\frac{\partial z}{\partial x} = a \sin y$ and $z = 0$ when $x = 0$.

22. Solve
$$\frac{\partial^2 z}{\partial x^2} + 3\frac{\partial z}{\partial x} - 4z = 0$$
 given that $z = 1$ and $\frac{\partial z}{\partial x} = y$ when $x = 0$.

23. Solve
$$\frac{\partial^3 z}{\partial x^3} + 4 \frac{\partial z}{\partial x} = 0$$
 given that $z = 0$, $\frac{\partial z}{\partial x} = 0$, $\frac{\partial^2 z}{\partial x^2} = 4$ when $x = 0$.

24. Solve
$$\frac{\partial^2 z}{\partial y^2} = z$$
, given that $z = 0$ and $\frac{\partial z}{\partial y} = \sin x$ when $y = 0$.