LOW TEMPERATURE FLUORINATION OF AEROSOL SUSPENSIONS OF HYDROCARBONS UTILI..(U) TENNESSEE UNIV KNOXVILLE DEPT OF CHEMISTRY J L ADCOCK ET AL. 30 DEC 83 TR-9 N00014-77-C-0685 F/G 7/4 AD-A139 166 1/1 UNCLASSIFIED NL END 4=R4

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU DF STANDARDS-1963-A

OFFICE OF NAVAL RESEARCH

Contract No. N00014-77-C-0685

Task No. NR 053-669

TECHNICAL Report No. 9

AEROSOL DIRECT FLUORINATION "INDIRECT SYNTHESES OF PERFLUOROCYCLOKETONES"

by

James L. Adcock and Mark L. Robin

Department of Chemistry University of Tennessee Knoxville, Tennessee 37996-1600

December 30, 1983

Prepared for Publication in the Journal of Organic Chemistry (MS 3-154-S REVISED)

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM				
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER				
Technical Report No. 9 AD-A139166	Local Street, and a second				
4. TITLE (and Substitie) Low Temperature Fluorination of	5. TYPE OF REPORT & PERIOD COVERED				
Aerosol Suspensions of Hydrocarbons Utilizing					
Elemental Fluorine-"Aerosol Direct Fluorination-	Interim				
Indirect Syntheses of Perfluorocycloketones"	6. PERFORMING ORG. REPORT NUMBER				
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(*)				
James L. Adcock and Mark L. Robin					
James B. Accock and hard 21 moon	NOO014-77-C-0685				
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS				
Department of Chemistry	VID 052 660				
University of Tennessee-Knoxville	NR 053-669				
Knoxville, Tennessee 37996-1600	12. REPORT DATE				
Office of Naval Research	December 30, 1983				
Department of the Navy	13. NUMBER OF PAGES				
Arlington, VA 22217	20				
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	IS. SECURITY CLASS. (of this report)				
	Unclassified				
	154. DECLASSIFICATION DOWNGRADING				
	SCHEDULE				
16. DISTRIBUTION STATEMENT (of this Report)					
This document has been approved for public releas	se and sale; its distribution				
is unlimited.					
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different tro	m Report)				
18. SUPPLEMENTARY NOTES					
18. SUPPLEMENTARY NOTES					
19. KEY WORDS (Continue on reverse side if necessary and identity by block number)					
Aerosol, Direct Fluorination, Elemental Fluorine	, Ketones, Perfluorocyclo-				
alkane Ethers, Perfluorocycloketones.					
	atkane benets, retriuotocyctokecones.				
20. ARSTRACT (Continue on reverse elde il necessary and identity by block number)					
Ring opening during the aerosol direct fluorinat	ion of cyclic ketones can be				
Ring opening during the aerosol direct fluorinate circumvented by the aerosol direct fluorination	of the appropriate				
Ring opening during the aerosol direct fluorination circumvented by the aerosol direct fluorination methoxycycloalkanes or the ethylene glycol ketal	of the appropriate s of the cyclic ketones				
Ring opening during the aerosol direct fluorination circumvented by the aerosol direct fluorination methoxycycloalkanes or the ethylene glycol ketals followed by sulfuric acid hydrolyses of the perf	of the appropriate s of the cyclic ketones luorinated analogs. Aerosol				
Ring opening during the aerosol direct fluorination circumvented by the aerosol direct fluorination methoxycycloalkanes or the ethylene glycol ketal followed by sulfuric acid hydrolyses of the perfect fluorinations of methoxycyclopentane and	of the appropriate s of the cyclic ketones luorinated analogs. Aerosol methoxycyclohexane produce				
Ring opening during the aerosol direct fluorination circumvented by the aerosol direct fluorination methoxycycloalkanes or the ethylene glycol ketal followed by sulfuric acid hydrolyses of the perf direct fluorinations of methoxycyclopentane and their respective perfluoroanalogs in effluent con	of the appropriate s of the cyclic ketones luorinated analogs. Aerosol methoxycyclohexane produce ncentrations of 57% and 90%				
Ring opening during the aerosol direct fluorination circumvented by the aerosol direct fluorination methoxycycloalkanes or the ethylene glycol ketal followed by sulfuric acid hydrolyses of the perfect fluorinations of methoxycyclopentane and	of the appropriate s of the cyclic ketones luorinated analogs. Aerosol methoxycyclohexane produce ncentrations of 57% and 90%				

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS QBSOLETE S/N 0102- LF- 014- 6601

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dere Entered)

hydrolyses at 340° to 360°C of the F-methoxycycloalkanes produced F-cyclopentanone (89% yield, 61% conversion) and F-cyclohexanone (82% yield, 28% conversion) respectively. The aerosol fluorinations of the ethylene glycol ketals of cyclopentanone and cyclohexanone produce F-dioxaspiro [4.4] nonane and F-dioxaspiro [4.5] decane in effluent concentrations of 74% and 76% by weight and in 14% and 12% isolated yields respectively. Sulfuric acid hydrolyses at 500°C produced F-cyclopentanone (45% yield, 23% conversion) and F-cyclohexanone (100% yield, 36% conversion) respectively. Physical loss of starting material caused by condensation within the aerosol fluorinator is the major reason for reduced yields. Hydrolysis yields are based on starting materials consumed and not recovered.

10000	ion For	/
NIIS	GRALI	K
DTIC	TAB onneed	
Justi	fication	
74		
By	ibution,	
	lability	Codes
Dist	Avail a	nd/or

MS 3-154-S REVISED

Aerosol Direct Fluorination - Indirect Syntheses of Perfluorocycloketones

James L. Adcock* and Mark L. Robin Department of Chemistry University of Tennessee Knoxville, Tennessee 37996-1600

Submitted to

Journal of Organic Chemistry

Ring opening during the aerosol direct fluorination of cyclic ketones can be circumvented by the aerosol direct fluorination of the appropriate methoxycycloalkanes or the ethylene glycol ketals of the cyclic ketones followed by sulfuric acid hydrolyses of the perfluorinated analogs. Aerosol direct fluorinations of methoxycyclopentane and methoxycyclohexane produce their respective perfluoroanalogs in effluent concentrations of 57% and 90% by weight and in 22% and 32% isolated yields respectively. Sulfuric Acid hydrolyses at 340% to 360%C of the <u>F</u>-methoxycycloalkanes produced <u>F</u>-cyclopentanone (89% yield, 61% conversion) and F-cyclohexanone (82% yield, 28% conversion) respectively. The aerosol fluorinations of the ethylene glycol ketals of cyclopentanone and cyclohexanone produce F-dioxaspiro[4.4] nonane and F-dioxaspiro[4.5] decane in effluent concentrations of 74% and 76% by weight and in 14% and 12% isolated yields respectively. Sulfuric acid hydrolyses at 500°C produced F-cyclopentanone (45% yield, 23% conversion) and F-cyclohexanone (100% yield, 36% conversion) respectively. Physical loss of starting material caused by condensation within the aerosol fluorinator is the major reason for reduced yields. Hydrolysis yields are based on starting materials consumed and not recovered

Aerosol Direct Fluorination - Indirect Syntheses of Perfluorocycloketones

by

James L. Adcock* and Mark L. Robin Department of Chemistry University of Tennessee Knoxville, Tennessee 37996-1600

The aerosol direct fluorination method provides a continuous process for the production of perfluorocarbons from hydrocarbons with efficient fluorine utilization and minimal fragmentation. The application of this process to alkanes, ethers, cycloalkanes, ketals and ketones has been demonstrated. 1-3 Whereas the aerosol direct fluorination of alicyclic ketones yields the corresponding perfluoroketone as the majority product, 2 aerosol fluorination of cyclic ketones has produced none of the perfluorinated analogs. In the case of cyclopentanone, the major product was F-pentanoyl fluoride, resulting from the opening of the cyclopentyl ring2; aerosol direct fluorination of cyclohexanone produced only non-volatile products; no evidence for the formation of F-cyclohexanone was found. However, employing a two-step process perfluorocyclopentanone and perfluorocyclohexanone have been synthesized. Sulfuric acid hydrolysis of the appropriate perfluorinated ketal or ether, formed via aerosol fluorination of the corresponding ketal or ether, produced the corresponding perfluorocycloketone in high yields.

Previous preparations of <u>F</u>-cyclopentanone and <u>F</u>-cyclohexanone are relatively few in number; the only synthesis involving direct fluorination is that reported by Holub and Bigelow wherein <u>F</u>-cyclopentanone was formed in trace amounts from the direct fluorination of cyclopentanone. <u>F</u>-cyclopentanone and <u>F</u>-cyclohexanone have been prepared via the treatment of the corresponding 2,2-dichloroperfluoro cyclic ketones or 1,2-dichloroperfluorocycloalkene epoxides with potassium fluoride in tetramethylene sulfone , and

by the contact of Lewis acids or bases with the appropriate perfluoro olefin epoxides. In addition to the above methods, Tatlow, et al., prepared F-cyclopentanone by the cleavage of methyl nonafluorocyclopentyl ether with sulfuric acid, and F-cyclohexanone by the cleavage of methyl or fluoromethyl undecafluorocyclohexyl ether with sulfuric acid.

Discussion

The syntheses of F-cyclopentanone and F-cyclohexanone were effected via two separate two-step reaction sequences. Scheme I outlines the syntheses of the perfluorocycloketones in a two-step process from the corresponding methyl ethers. F-Methoxycyclopentane (IIa) and F-methoxycyclohexane (IIb) obtained from the aerosol direct fluorination of the corresponding hydrocarbon ethers (Ia,Ib) in 22% and 32% yields respectively, were converted to F-cyclopentanone (IIIa) and F-cyclohexanone (IIIb) by hydrolysis with 100% sulfuric acid at 340°-360°C in 89% and 82% yields respectively. F-methoxy-cyclopentane and F-methoxycyclohexane comprised 57% and 90% respectively of the total products collected by weight from the aerosol reactor. Physical losses due to unfluorinated starting materials "freezing out" in the first reaction zone reduce overall yields to the values cited. F-methoxycyclopentane and F-methoxycyclohexane have been previously prepared by the

Scheme 1

photochemical reaction of trifluoromethyl hypofluorite and the corresponding perfluorocycloalkene. 10,11

The perfluoroethers IIa and IIb are stable compounds: after 16 hours at 200°C in the presence of 100% sulfuric acid, F-methoxycyclopentane showed no signs of reaction. At 340-360°C in the presence of 100% sulfuric acid both perfluoroethers form their respective perfluoroketones (IIIa,IIIb) in high yields. In each case only the perfluoroketone and unreacted perfluoroether were found in the reaction mixture. Any other products were present only in trace amounts.

Both perfluoroketones are extremely hygroscopic and react readily with water to form the much less volatile monohydrates^{6a}. This suggests that in the aerosol direct fluorinations of cyclopentanone² and cyclohexanone⁴ any perfluoroketone formed might have become hydrated due to reaction with residual water inside the reactor, explaining the fact that no perfluoroketones could be isolated from those reactions.

Scheme 2 outlines the syntheses of \underline{F} -cyclopentanone and \underline{F} -cyclohexanone in a two-step process from the appropriate ketals. Aerosol direct

Scheme 2

fluorinations of 1,4-dioxaspiro[4.4] nonane (IVa) and 1,4-dioxaspiro[4.5]-decane (IVb) produce the previously unknown \underline{F} -1,4-dioxaspiro[4.4] nonane (Va) and \underline{F} -1,4-dioxaspiro[4.5] decane (Vb) (74% and 76% respectively of the total product collected by weight) in percent yields based on throughput of 14% and 12%, respectively. As previously mentioned, low yields are mostly due to physical losses in the reactor. 9

Both perfluoroketals are extremely stable compounds: <u>F-1,4-dioxaspiro-[4.5]decane</u> showed no signs of reaction after 26 hours at 350°C in the presence of 100 % sulfuric acid. <u>F-1,4-Dioxaspiro[4,4]nonane</u> (Va) and <u>F-1,4-dioxaspiro[4,5]decane</u> (Vb) were, however, converted to <u>F-cyclopen-tanone</u> and <u>F-cyclohexanone</u> via hydrolysis with 100% sulfuric acid at 500°C in 45% and in 100% yield respectively. In the case of <u>F-cyclopentanone</u>, the lower yield is believed to be due to more extensive hydration of the perfluoroketone at the higher temperature. <u>F-cyclopentanone</u> is more affected because more ring-strain would be relieved upon hydrate formation than in the case of <u>F-cyclohexanone</u>, and hence one would predict <u>F-cyclopen-tanone</u> to be more hygroscopic than <u>F-cyclohexanone</u>.

Experimental

The basic aerosol fluorinator design and a basic description of the process are presented elsewhere¹; a modified aerosol generator was adapted to a flash evaporator fed by a syringe pump (Sage Model 341a) driving a 5.000 ml Precision Sampling Corp. "Pressure-lok" syringe.³ Workup of products following removal of hydrogen fluoride consisted of vacuum line fractionation, infrared assay of fractions, gas chromatographic separation of components using either a 7 meter x 3/8" 13 % Fluorosilicone QF-1 (Analabs) stationary phase on 60-80 mesh, acid washed Chromosorb P conditioned at 225°C (12 hours), or a 4 meter x 3/8" 10 % SE-52 phenyl-methyl silicone rubber on acid washed 60-80 mesh Chromosorb P conditioned at 250°C (12 hours). Following gas chromatographic separation (Bendix Model 2300, sub-ambient multi-controller) all products of significance were collected, transferred to the vacuum line, assayed and characterized by vapor phase infrared spectrophotometry (Perkin Elmer 1330), electron impact (70 eV) and chemical ionization (CH4 plasma) mass spectrometry (Hewlett Packard GC/MS,

5710A GC, 5980A MS, 5934A computer), and ¹⁹F nuclear magnetic resonance (JEOL FX90Q, omniprobe) in CDCl₃ with 1 % CFCl₃ internal standard. Elemental analyses were performed by Schwarzkopf Microanalytical Laboratory, Woodside, N.Y. The above characterizations and detailed aerosol reaction parameters (6 pages) are available as <u>Supplementary Material</u>, ordering information is given on any current masthead page.

Aerosol Fluorination of Methoxycyclopentane. Methoxycyclopentane was prepared by the method of Vogel from cyclopentanol. 11 A pump speed corresponding to 3.7 mmol per hour was established and 2.40 ml (2.05g, 20.5 mmol) methoxycyclopentane was delivered over a 5.5 hour period. Details of the aerosol parameters are available as Supplementary Materials. For the photochemically finished reaction 2.42g of crude product was isolated; separation on the QF-1 column (temperature program: 20°C, 10 min; 5°C/min to 100°C; 100°C, 1 min; 50°C/min to 180°C) yielded 1.39g (57 %) pure F-methoxycyclopentane, corresponding to a yield of 22 % based on total methoxycyclopentane injected. The 19 F nmr spectrum of F-methoxycyclopentane agreed with that appearing in the literature, 11

Hydrolysis of F-methoxycyclopentane. 0.321g of F-methoxycyclopentane was condensed onto an approximately equal volume of fuming sulfuric acid (30 % SO₃) which had been degassed and vacuum-stripped to remove the SO₃; the reaction tube was then sealed under vacuum and heated in a tube furnace at 360° for 24 hours. The tube was then opened on the vacuum line and the reaction mixture fractionated through -131°C and -196°C cold traps, most of the material collected in the -131°C trap. Products from the -131°C fraction were separated on the SE-52 column (temperature program: -10°C, 5 min; 0.5°C/min to 20°C) and identified as F-cyclopentanone 11 (.140g) and unreacted F-methoxycyclopentane (.103g). Percent yield of F-cyclopentanone

based on F-methoxycyclopentane reacted was thus 89%, the percent conversion for the reaction was 61%.

Aerosol Fluorination of methoxycyclohexane. Methoxycyclohexane was prepared by the method of Vogel from cyclohexanol. ¹² A pump speed corresponding to 3.8 mmol per hour was established and 3.30 ml (2.89g, 25.3 mmol) of methoxycyclohexane delivered over a 6.75 hour period. From the 3.32g of crude product collected 2.99g (90%) of pure F-methoxycyclohexane was isolated (QF-1 program: 35°C, 10 m; 4°C/m to 100°C, 100°C/m; 50°C/m to 180°C) which corresponded to a yield of 32% based on total methoxycyclohexane injected. The ¹⁹F nmr spectrum of F-methoxycyclohexane was in agreement with that appearing in the literature. ¹¹

Hydrolysis of F-methoxycyclohexane. 0.308g of F-methoxycyclohexane was treated with 100% sulfuric acid as described above and heated for 14 hours at 340°C. After workup of the reaction mixture as for F-methoxycyclopentane, separation on the SE 52 column (0°C, 10 m; 1°C/m to 100°C) yielded F-cyclohexanone 11 (0.066g) and unreacted F-methoxycyclohexane (.202g). The percent yield of F-cyclohexanone based on the amount of F-methoxycyclohexane reacted was 82%, the percent conversion to product for the reaction was 28%.

Aerosol Fluorination of 1,4-Dioxaspiro[4.4]nonane. 1,4-Dioxaspiro-[4,4]nonane was prepared by the method of Daignault and Eliel from cyclopentanone. A pump speed corresponding to 4.2 mmol per hour was established, and 3.0 ml (3.21g, 25.1 mmol) of 1,4-dioxaspiro[4.4]nonane was delivered over a 6 hour period. Details of the aerosol fluorination parameters are available as <u>Supplementary Materials</u>. The crude product (1.65g) was separated on the QF-1 column (30°C, 5 m; 5°C/m to 100°C; 100°C,

1 m; 50°C/m to 180°C) and yielded 1.22g (74%) pure <u>F</u>-1,4-dioxaspiro[4.4]nonane, corresponding to a 14% yield based on total 1,4-dioxaspiro[4.4]nonane injected. The ¹⁹ NMR consists of three singlets of equal intensity at $\phi = -85.32$ ppm; -130.36 ppm and -131.69 ppm. Elemental Analysis: Calculated for C₇F₁₂O₂: C 24.44%, F 66.26%; Found C 24.22%, F 66.25%.

Hydrolysis of F-1,4-Dioxaspiro[4.4]nonane. 0.156g F-1,4-Dioxaspiro-[4.4]nonane was treated with 100% sulfuric acid (as prepared previously) and was heated for 24 hours at 450°C. Separation of the products on the SE-52 column (-10°C, 5 min; 0.5°C/min to 50°C) yielded 0.024g F-cyclopentanone (isolated as the monohydrate) and 0.076g unreacted F-1,4-dioxaspiro-[4.4]nonane. The percent yield of F-cyclopentanone based on the amount of F-1,4-dioxaspiro[4.4]nonane reacted was 45%, the percent conversion to product for the reaction was 23%.

Aerosol Fluorination of 1,4-Dioxaspiro[4.5]decane. 1,4-Dioxaspiro[4.5]decane was prepared by the method of Daignault and Eliel from cyclohexanone. A pump speed corresponding to 4.3 mmol per hour was established
and 3.0 ml (3.1g, 21.5 mmol) of 1,4-dioxaspiro[4.5]decane was delivered over
a 5 hour period. The crude products (1.28g) were separated on the QF-1
column (50°C, 5 m; 2°C/m to 100°C; 100°C, 1 m; 50°C/m to 180°C) and yielded
0.97g (76 %) pure F-1,4-dioxaspiro[4.5]decane, corresponding to a percent
yield of 12 % based on total 1,4-dioxaspiro[4.5]decane injected. F-1,4Dioxaspiro[4.5]decane 19F NMR consisted of a singlet at \$\phi = -83.22\$ ppm and a
broad multiplet at \$\phi = -132.02\$ ppm of 4:10 relative intensity. Elemental
Analyses: Calculated for C8F14O2 C 24.38%, F 67.49%; found C 23.85%, F
66.78%.

Hydrolysis of F-1,4-dioxaspiro[4.5]decane. 0.198g F-1,4-Dioxaspiro-[4.5]decane was treated with 100% sulfuric acid (as prepared previously)

and was heated for 18 hours at 500° C. Separation of the products on the SE-52 column (0°C, 10 m; 1°C/m to 100° C) yielded 0.050g F-cyclohexanone and 0.127g unreacted F-1,4-dioxaspiro[4.5]decane, both identified from their infrared spectra. The percent yield of F-cyclohexanone based on F-1,4-dioxaspiro[4.5]decane reacted was 100 %, the percent conversion to products for the reaction was 36%.

Acknowledgement. This work was supported in part by the Office of Naval Research whose support is gratefully acknowledged.

Supplementary Material Available: Characterization data for products (IR, MS, ¹⁹F NMR, Aerosol Parameters; 6 pages). Ordering information is given on any current masthead page.

References

- (a) J. L. Adcock, K. Horita and E. B. Renk, <u>J. Amer. Chem. Soc.</u>, 1981, 103, 6937.
 (b) J. L. Adcock and E. B. Renk, U.S. Patent 4,330,475; May 1982.
- 2 J. L. Adcock and M. L. Robin, J. Org. Chem. (in press).
- 3 J. L. Adcock and M. L. Robin, Ibid., (in press).
- 4 M. L. Robin, unpublished results.
- 5 F. F. Holub and L. A. Bigelow, <u>J. Amer. Chem. Soc.</u>, 1950, <u>72</u>, 4879.
- 6 (a) L. G. Anello, A. K. Price and R. F. Sweeney, J. Org. Chem., 1968, 33, 2692. (b) A. K. Price and R. F. Sweeney (Allied), U.S. Patent 3,350,457 (1967). (c) L. G. Anello and R. F. Sweeney (Allied), U.S. Patent 3,379,765 (1968).
- 7 (a) P.L. Coe, J. H. Sleigh and J. C. Tatlow, <u>J. Fluor. Chem.</u>, 1980, <u>15</u>,
 239. (b) E. P. Moore and S. Milan, Jr., (E.I. duPont de Nemours & Co.), Brit. Fat. 1,019,788 (1966) (c) E.I. duPont de Nemours & Co.,
 Fr. Pat. 1,416,013 (1965) (d) E. P. Moore and A. C. Milan (E.I. duPont de Nemours & Co.), U.S. Patent 3,321,515 (1970).
- 8 A. B. Clayton, R. Stephens and J. C. Tatlow, J. Chem. Soc., 1965, 7373.
- The aerosol system is dependent on the generation of a particulate aerosol which is ideally crystalline, of uniform size and with little tendency to aggregate. If the conditions for producing the aerosol are ideal, percent yields based on throughputs and product percent distributions will differ by only a few percent; as molecules deviate from this ideality, the percent yields based on throughput fall, due to physical losses within the aerosol generator and initial reaction stage (see reference 1).
- 10 R. S. Porter and G. H. Cady, J. Amer. Chem. Soc., 1957, 79, 5625. (b)
- 11 M. S. Toy and R. S. Stringham, J. Fluor. Chem., 1975, 5, 481.
- 12 A. I. Vogel, J. Chem. Soc., 1948, 1809.
- 13 R. A. Daignault and E. L. Eliel, Org. Syn., 1967, 47, 37.

APPENDIX I

 ${\bf Supplementary\ Material}$ Characterization of Intermediate Products

TABLE I

TYPICAL AEROSOL FLUORINATION REACTION PARAMETERS

Starting Compound	Fluorine (mL/m)		10w 2 Mod 3	Helf. main	fellum Flow (mI/m) main 1° 2° Mod 1	E Q.	(mI/m) Mod 1 Mod 2 Mod	d 2 ₹	- P	Reaction T(°C) Evap Mod 1 Mod 2 Mod	on T((C)	Mod 3	Hydrocarbon throughput mmole/hr	Produced distribution % collected	Product Yield % Theoretical
Methoxycyclopentane Methoxycyclohexane 1,4-110xasplro[4.4]nonane 1,4-Dioxasplro[4.5]decane	20 20 20 20 20	20 20 20 20 20 20 20 20 20 20 20 20 20 2	30 40 40	500 800 700 750	400 750 650 650	8888	50 1	50 05 1	150	150 160 175 225	-20 -20 -20	1070	RT RT RT	3.7 4.2 4.3	57.4 90.0 74.0 76.1	21.5 32.3 14.2 11.5

TABLE 2

CHARACTERIZATION OF PRODUCTS

F-Methoxycyclopentane

IR: 1320 m, 1280 vs, 1235 vs, 1215 s, 1190 s, 1150 m, 995 s, 985 s, 890 w, 855 w, 730 w, 660 w cm⁻¹

19F nmr:a

Chemical Shift, \$ (ppm	$\frac{1}{3}$ Int.	coupling constants, Hz	assignment
-55.42	3	$J_{16} = 10.0$ $J_{12} = 6.0$	1
-124.68		$J_{13} = 3.9$	2a
	4	$J_{2a,3b} = 259.4$	
-135.68			3b
-129.34			4a
	4	$J_{4a,5b} = 254.8$	
-132.86		14,55	5b
-137.96	1	Complex multiplet	6

Mass Spectraa, b

EI(70eV): 297 (1) $C_6F_{11}O$, M-F; 231 (8) C_5F_9 , M-OCF₃; 181 (13) C_4F_7 ; 131 (51) C_3F_5 ; 100 (16) C_2F_4 ; 69 (100) CF_3 .

 $\begin{array}{c} \underline{\text{CI(CH}_4)} \colon & 297 \text{ (1) } C_6F_{11}O, \text{ M-F; } 183 \text{ (35) } C_4F_7H_2; \\ \underline{\text{175 (48) } C_5F_6H; } 153 \\ \underline{\text{(23) } C_5F_4O; } \underline{132 \text{ (100) } C_3F_5H; } 101 \text{ (29) } C_2F_4H; \\ \underline{\text{100 (13) } C_2F_4; } \\ \underline{\text{69 (34) } CF_3} \\ \end{array}$

aSee ref. 11

bsee ref. 10

TABLE 2a

 $\begin{array}{c|c}
 & F^{11} \\
\hline
 & F^{10} \\
\hline
 & F^{10}
\end{array}$

F-Methoxycyclohexane

IR: 1300 s, 1270 vs, 1250 vs, 1230 s, 1195 vs, 1150 s, 1055 w, 995 s, 980 vs, 880 w, 850 m, 755 m, 730 m, 690 w, 660 w, 630 m, 610 m cm $^{-1}$

19 F nmr:a

 $F_{12}(CF_3)$ $\phi = -53.83$ ppm, mult.

 $F_{11}(-F)$ $\phi = -142.77$ ppm, mult.

 F_1-F_{10} : three overlapping AB quartets $\phi = -122.79$ to -134.63 ppm matching literature spectrum^a

Mass Spectra

EI(70eV): 281 (4) C_6F_{11} , M-OCF₃; 259 (1) C_6F_{90} ; 231 (7) C_5F_{9} ; 181 (7) C_4F_{7} ; 131 (52) C_3F_{5} ; 100 (6) C_2F_{4} ; 69 (100) CF_{3} .

 $CI(CH_4)$: 161 (23) C_7F_4H ; 131 (100) C_3F_5 ; 100 (17) C_2F_4 ; 69 (65) CF_3 .

aSee ref. 11

TABLE 2b

F-Cyclopentanone

<u>IR</u>: a,b 1830 (vw), 1810 w, 1345 m, 1300 m, 1200 vs, 1145 w, 1115 w, 1010 m, 965 s, 725 m cm⁻¹

19 F nmr:a

 $\phi = -126.52 \text{ ppm, m } [4]$ $\phi = -136.76 \text{ ppm, m } [4]$

Mass Spectra:a

EI(70eV): 228 (1) C_5F_80 , M; 200 (2) C_4F_8 ; 181 (2) C_4F_7 ; 131 (78) C_3F_5 ; 100 (100) C_2F_4 ; 69 (11) CF_3 .

CI(CH₄): 209 (1), C_5F_7O , M-F; 182 (32) C_4F_7H ; 132 (100) C_3F_5H ; 101 (70) C_2F_4H .

^aSee ref. 8 ^bSee ref. 6a

F-Cyclohexanone

a,b IR 1795 m, 1300 s, 1255 s, 1185 vs, 1220 m, 1080 m, 1025 w, 990 s, 960 vs, 805 w, 725 w, 615 w cm⁻¹

 $\phi = -125.15 \text{ ppm, s [4]}$ $\phi = -133.23 \text{ ppm, m broad [6]}$

Mass Spectra

EI(70eV): 278 (2) $C_6F_{10}O$, M; 231 (1) C_5F_9 ; 181 (12) C_4F_7 ; 131 (100) C_3F_5 ; 100 (23) C_2F_4 ; 93 (5) C_3F_3 ; 81 (3) C_2F_3 ; 69 (10) CF_3 .

aSee ref. 8

bSee ref. 6a

TABLE 2c

<u>IR</u>: a,b 1405 w, 1310 s, 1275 s, 1245 s, 1210 vs, 1160 vs, 1080 m, 1060 m, 1035 m, 980 vs, 810 m, 725 m, 655 w, 595 m, 520 m cm⁻¹.

19 F nmr:a

 $\phi = -85.32$, s [4] CF_{2a} $\phi = -130.36$ ppm, s [4] CF_{2b}

 $\phi = -131.69 \text{ ppm}, \text{ s}$ [4] CF_{2c}

Mass Spectra:

EI(70eV): 325 (4) $C_7F_{11}O_2$, M-F; 225 (5) $C_5F_7O_2$; 209 (6) C_5F_7O ; 194 (48) $C_4F_6O_2$; 131 (100) C_3F_5 ; 100 (60) C_2F_4 ; 69 (19) CF_3 .

CI(CH₄): 325 (100) $C_7F_{11}O_2$, M-F; 117 (98) C_5F_3 ; 97 (19) $C_2F_3O_4$.

Elemental Analysis %C %F %H

Calc. for C₇F₁₂O₂ 24.44 66.26 0.00

Found 24.22 66.25 0.00

TABLE 2d

IR 1400 w, 1310 m, 1280 s, 1250 vs, 1220 s, 1190 vs, 1160 vs, 1050 w, 980 vs, 970 vs, 820 w, 730 w, 625 w, 600 w cm⁻¹.

 $\phi = -83.22 \text{ ppm, s}$ [4]

 $\phi = -132.02$ ppm, m broad [10]

Mass Spectraa

EI(70eV): 375 (1) $C_8F_{13}O_2$, M-F; 259 (3) $C_6F_{9}O$; 244 (4) $C_5F_{8}O_2$; 181 (8) C_4F_7 ; 131 (100) C_3F_5 ; 100 (20) C_2F_4 ; 97 (13) C_2F_3O ; 69 (31) CF_3 .

 $\frac{\text{CI(CH_4)}}{\text{C_4F_8O_2}}$: 414 (11) $\text{C_8F_{15}O_2H}$, M+HF; 348 (4) $\text{C_7F_{13}OH}$; 232 (5) $\frac{\text{C_4F_8O_2}}{\text{C_4F_8O_2}}$; 182 (12) C_3F_6O_2 ; 172 (24) C_8F_4 ; 151 (18) C_3F_6H ; 143 (13) C_4F_5 ; $\frac{131 (100) \text{C_3F_5}}{\text{C_5F_0}}$; 117 (66) C_5F_3 ; 100 (19) C_2F_4 ; 97 (71) C_2F_3O ; 95 (42) C_5F_0 ; 69 (1) CF_3 .

Elemental Analysis %C %F %H

Calc. for C₈F₁₄O₂: 24.38 67.49 0.00

Found 23.85 66.78 0.00

APPENDIX II

Distribution List

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	No. Copies		No. Copies
Office of Naval Research		U.S. Army Research Office	
Attn: Code 472		Attn: CRD-AA-IP	
800 North Quincy Street		P.O. Box 1211	
Arlington, Virginia 22217	2	Research Triangle Park, N.C. 27709	1
ONR Western Regional Office		Naval Ocean Systems Center	
Attn: Dr. R. J. Marcus		Attn: Mr. Joe McCartney	
1030 East Green Street		San Diego, California 92152	1
Pasadena, California 91106	1		
		Naval Weapons Center	
ONR Eastern Regional Office		Attn: Dr. A. B. Amster,	
Attn: Dr. L. H. Peebles		Chemistry Division	
Building 114, Section D		China Lake, California 93555	1
666 Summer Street			
Boston, Massachusetts 02210	1	Naval Civil Engineering Laboratory	
		Attn: Dr. R. W. Drisko	
Director, Naval Research Laboratory Attn: Code 6100		Port Hueneme, California 93401	1
Washington, D.C. 20390	1	Department of Physics & Chemistry	
mashington, brot 20070		Naval Postgraduate School	
The Assistant Secretary		Monterey, California 93940	1
of the Navy (RE&S)		nonterey, salitarina 757.0	•
Department of the Navy		Scientific Advisor	
Room 4E736, Pentagon		Commandant of the Marine Corps	
Washington, D.C. 20350	1	(Code RD-1)	
additing to the second	•	Washington, D.C. 20380	1
Commander, Naval Air Systems Command		nashington, biol 20300	250
Attn: Code 310C (H. Rosenwasser)		Naval Ship Research and Development	
Department of the Navy		Center	
Washington, D.C. 20360	1	Attn: Dr. G. Bosmajian, Applied	
2000		Chemistry Division	
Defense Technical Information Center		Annapolis, Maryland 21401	1
Building 5, Cameron Station		Annapolis, Laiyland 21401	
Alexandria, Virginia 22314	12	Naval Ocean Systems Center	
	• •	Attn: Dr. S. Yamamoto, Marine	
Dr. Fred Saalfeld		Sciences Division	
Chemistry Division, Code 6100		San Diego, California 91232	1
Naval Research Laboratory		ban biego, callioinia biese	
Washington, D.C. 20375	1	Mr. John Boyle	
	-	Materials Branch	
		Naval Ship Engineering Center	
		Philadelphia, Pennsylvania 19112	1
			1
		Mr. A. M. Anzalone	
		Administrative Librarian	
		PLASTEC/ARRADCOM	
		Bidg 3401	
		Dover, New Jersey 07801	1

