Suites définies par récurrence

Résolution d'équations par itération

Rectangle d'aire = 15 cm^2

x+1

Donne une équation d'inconnue x, pour l'aire du rectangle.

$$x(x+1) = 15$$

$$x^2 + x = 15$$

Comment résoudre cette équation ?

On peut utiliser la formule quadratique avec $x^2 + x - 15 = 0$

On peut procéder par essai erreur :

$$x = 3$$
 Aire = 12 cm²

$$x = 4$$
 Aire = 20 cm²

$$x = 3.5$$
 Aire = 15.75 cm²

Rectangle d'aire = 15 cm^2

Donne une équation d'inconnue x, pour l'aire du rectangle.

$$x(x+1) = 15$$

$$x^2 + x = 15$$

Comment résoudre cette équation ?

On peut créer une équation ou l'inconnue x est fonction d'elle même

x est la valeur à tester (entrée).

$$x = \frac{15}{x+1}$$
 sortie

Il y a une valeur positive qui rend l'égalité vraie en x (les deux membres sont égaux).

Si l'entrée est **trop grande**, comment cela affecte la sortie ?

Si l'entrée est **trop petite**, comment cela affecte la sortie ?

$$x^2 + x = 15$$

$$x = \frac{15}{x+1}$$

4 + 1

15

3,75 + 1

15

3,15+1

On pouvait utiliser la formule quadratique...

Nous avons formé une nouvelle équation, et on l'utilise pour tester certaines valeurs.

Aucune de ses entrées/sorties sont ne vérifient l'équation, elles ne sont pas solution !

Entrée

$$x = 4$$

$$x = 3,75$$

$$x = 3,15$$

$$x = 3$$

Sortie

3

3,157 ...

3,607 ...

3,75 ...

Les sorties sont **inférieures** aux entrées. Pourquoi ?

Les sorties sont **supérieures** aux entrées. Pourquoi ?

Quelle valeur de *x* vérifie l'équation ?

Itération

Effectue les 3 premières étapes d'une itération :

'...la valeur actuelle de x substituée dans l'équation.'

Itération

Effectue les 3 premières étapes d'une itération :

On part d'une valeur initiale.

 x_1 ou x_0

$$x_{n+1} = \frac{15}{x_n + 1}$$

$$x_0 = 4$$

$$x_2 = \frac{15}{4+1} = 3$$

$$x_3 = \frac{15}{3+1} = 3,75$$

$$x_4 = \frac{15}{3,75+1} = 3,157...$$

$$x_{1,0} = \frac{15}{3,75+1} = 3,157...$$

Trouve les 5 premiers termes de la suite :

$$x_{n+1} = \sqrt{5x_n - 2}$$
$$x_1 = 6$$

Taper : 🔽 5 Ans 🗕 2

Taper : EXE pour faire l'itération suivante

Trouve les 5 premiers termes de la suite :

$$x_{n+1} = \sqrt{5x_n - 2}$$
$$x_1 = 6$$

$$x_2 = 5.29 \dots$$

$$x_3 = 4.94 \dots$$

$$x_4 = 4.76 \dots$$

$$x_5 = 4.67 \dots$$

Trouve les 5 premiers termes de la suite :

$$x_{n+1} = \sqrt{4x_n - 7}$$
$$x_1 = 10$$

$$x_2 = 5.74 \dots$$

$$x_3 = 3.99 \dots$$

$$x_4 = 2.99 \dots$$

$$x_5 = 2.23 \dots$$

Que ce passe-t-il si on poursuit l'itération ?

Trouve les 5 premiers termes de la suite :

$$x_{n+1} = \sqrt{5x_n - 2}$$
$$x_1 = 6$$

Trouve les 5 premiers termes de la suite :

$$x_{n+1} = \frac{4}{5 - x_n}$$

$$x_1 = 3$$

$$x_2 = 2$$

$$x_3 = 1.33 \dots$$

$$x_4 = 1.09 \dots$$

$$x_5 = 1.02 \dots$$

$$x^3 - 10x = 30$$

$$x^3 = 10 x + 30$$

$$x = \sqrt[3]{10 x + 30}$$

Entrée

$$x = 4 \sqrt[3]{10 \times 4 + 30}$$

$$x = 4.3$$

$$x = 4.3$$
 $\sqrt[3]{10 \times 4.3 + 30}$ 4.179 ...
 $x = 5$ $\sqrt[3]{10 \times 5 + 30}$ 4.308 ...

Sortie

4,121 ...

 $x = 4.1 \left| \sqrt[3]{10 \times 4.1 + 30} \right| 4.140 \dots$

Les sorties sont supérieures aux entrées. Pourquoi?

Les sorties sont inférieures aux entrées. Pourquoi?

Quelle valeur de x vérifie l'équation ?

Itération

Effectue les 3 premières étapes d'une itération :

'...la valeur actuelle de x substituée dans l'équation.'

Itération

Effectue les 3 premières étapes d'une itération :

$$x_{n+1} = \sqrt[3]{10x_n + 30}$$

On part d'une valeur initiale.

$$x_{1} = 4$$

$$x_{2} = \sqrt[3]{10 \times 4 + 30} = 4,121...$$

$$x_{3} = \sqrt[3]{10 \times 4,121 + 30} = 4,144$$

$$x_{4} = \sqrt[3]{10 \times 4,144 + 30} = 4,149$$

L'itération se rapproche de ... La valeur de x continue de croître.

Équation cubique : $x^3 - 10x = 30$

(réarrangement)

Formule de récurrence : $x_{n+1} = \sqrt[3]{10x_n + 30}$

Valeur initiale : $x_0 = 4$

x_0	4
x_1	4,121
x_2	4,144
<i>x</i> ₃	
x_4	
x_5	
x_6	
x_7	
<i>x</i> ₈	
<i>x</i> ₉	
<i>x</i> ₁₀	

Équation cubique : $x^3 - 10x = 30$

(réarrangement)

Formule de récurrence : $x_{n+1} = \sqrt[3]{10x_n + 30}$

Valeur initiale : $x_0 = 4$

x_0	4	
x_1	4,121	
x_2	4,144	
x_3	4,149	
x_4	4,150	
x_5	4,150598	
<i>x</i> ₆	4,150631	_
x_7	4,150637	
x_8	4,150639	
<i>x</i> ₉	4,150639	
<i>x</i> ₁₀		

x = 4,150Valeur approchée de la solution à 3 décimales près!

x = 4,150639Valeur approchée de la solution à 6 décimales près!

Équation cubique : $x^3 - 10x = 30$

(réarrangement)

Formule de récurrence : $x_{n+1} = \sqrt[3]{10x_n + 30}$

Valeur initiale : $x_0 = 4$

x_0	4
x_1	4,121
x_2	4,144
x_3	
x_4	
x_5	
x_6	
x_7	
x_8	
<i>x</i> ₉	
<i>x</i> ₁₀	

Résoudre des cubiques par itération

Équation cubique : $x^3 - 10x = 30$

(réarrangement)

Formule de récurrence : $x_{n+1} = \sqrt[3]{10x_n + 30}$

Valeur initiale : $x_0 = 5$

x_0	5
x_1	4,308
x_2	4,181
x_3	
x_4	
x_5	
<i>x</i> ₆	
<i>x</i> ₇	
<i>x</i> ₈	
<i>x</i> ₉	
<i>x</i> ₁₀	

Équation cubique : $x^3 - 10x = 30$

(réarrangement)

Formule de récurrence : $x_{n+1} = \sqrt[3]{10x_n + 30}$

Valeur initiale : $x_0 = 4$

x_0	4
x_1	4,121
x_2	4,144
x_3	4,149
x_4	4,150
x_5	4,150598
x_6	4,150631
x_7	4,150637
x_8	4,150639
<i>x</i> ₉	4,150639
<i>x</i> ₁₀	

x = 4,150Valeur approchée de la solution à 3 décimales près!

x = 4,150639Valeur approchée de la solution à 6 décimales près!

Résoudre des cubiques par itération

Équation cubique : $x^3 - 10x = 30$

(réarrangement)

Formule de récurrence : $x_{n+1} = \sqrt[3]{10x_n + 30}$

Valeur initiale : $x_0 = 5$

x_0	5
x_1	4,308
x_2	4,181
x_3	
x_4	
x_5	
x_6	
<i>x</i> ₇	
<i>x</i> ₈	
<i>x</i> ₉	
<i>x</i> ₁₀	

Équation cubique : $x^3 - 10x = 30$

(réarrangement)

Formule de récurrence : $x_{n+1} = \sqrt[3]{10x_n + 30}$

Valeur initiale : $x_0 = 4$

x_0	4
x_1	4,121
x_2	4,144
x_3	4,149
x_4	4,150
x_5	4,150598
x_6	4,150631
x_7	4,150637
x_8	4,150639
<i>x</i> ₉	4,150639
<i>x</i> ₁₀	

x = 4,150Valeur approchée de la solution à 3 décimales près!

x = 4,150639Valeur approchée de la solution à 6 décimales près!

 $\lim_{n\to\infty}x_n\approx 4,150639$

Résoudre des cubiques par itération

Équation cubique : $x^3 - 10x = 30$

(réarrangement)

Formule de récurrence : $x_{n+1} = \sqrt[3]{10x_n + 30}$

Valeur initiale : $x_0 = 5$

x_0	5
x_1	4,308
x_2	4,181
x_3	4,156
x_4	4,151
x_5	4,150
x_6	4,1506
x_7	4,15064
<i>x</i> ₈	4,15064
x_9	4,150639
<i>x</i> ₁₀	

x = 4,150Valeur approchée de la solution à 3 décimales près!

x = 4,150639Valeur approchée de la solution à 6 décimales près!

$$\lim_{n\to\infty} x_n \approx 4,150639$$

$$x^3 - 10x = 30$$

$$x = \sqrt{10 + \frac{30}{x}}$$

$$x(x^2 - 10) = 30$$

$$x^2 - 10 = \frac{30}{x}$$
$$x^2 = 10 + \frac{30}{x}$$

$$x^2 = 10 + \frac{30}{x}$$

Entrée

$$x = 4$$

$$x = 4,183$$

$$x = 4.143$$

$$x = 5$$

$$10 + \frac{30}{4}$$

$$\sqrt{10 + \frac{30}{4,18}}$$

$$\sqrt{10 + \frac{30}{4,143}}$$

$$x = 4,143 \left| \sqrt{10 + \frac{30}{4,143}} \right|$$

$$x = 5 \left| \sqrt{10 + \frac{30}{5}} \right|$$

Sortie

On se rapproche de la valeur solution de l'équation mais en prenant des valeurs tantôt supérieures tantôt inférieures à la solution cherchée...

 $x^3 - 10x = 30$ Équation cubique :

(réarrangement)

Formule de récurrence :
$$x^3 - 10x = 30$$

$$x_{n+1} = \sqrt{10 + \frac{30}{x_n}}$$

Valeur initiale : $x_0 = 4$

x_0	4
x_1	4,1833
x_2	4,143835
x_3	
x_4	
x_5	
x_6	
x_7	
<i>x</i> ₈	
<i>x</i> ₉	
<i>x</i> ₁₀	

Résoudre des cubiques par itération

 $x^3 - 10x = 30$ Équation cubique :

(réarrangement) Formule de récurrence :

 $x_0 = 5$ Valeur initiale :

x_0	5
x_1	4
x_2	4,183
x_3	
x_4	
x_5	
x_6	
<i>x</i> ₇	
<i>x</i> ₈	
<i>x</i> ₉	
<i>x</i> ₁₀	

Suite décalée de 1 rang

Équation cubique : $x^3 - 10x = 30$

(réarrangement)

 $x_{n+1} = \sqrt{10 + \frac{30}{x_n}}$ Formule de récurrence :

> Valeur initiale : $x_0 = 4$

x_0	4
x_1	4,1833
x_2	4,143835
x_3	4,152
x_4	4,150339
x_5	4,150701
x_6	4,150625
x_7	4,150641
x_8	4,1506382
<i>x</i> ₉	4,1506389
<i>x</i> ₁₀	

x = 4,150Valeur approchée de la solution à 3 décimales près!

x = 4,150638Valeur approchée de la solution à 6 décimales près!

 $\lim_{n\to\infty}x_n\approx 4,150639$

Résoudre des cubiques par itération

Équation cubique : $x^3 - 10x = 30$ (réarrangement)

 $x_{n+1} = \sqrt{10 + \frac{30}{x_n}}$ Formule de récurrence :

 $x_0 = 5$ Valeur initiale :

x_0	5
x_1	4
x_2	4,183
x_3	4,143835
x_4	4,152
x_5	4,150339
x_6	4,150701
x_7	4,150625
<i>x</i> ₈	4,150641
<i>x</i> ₉	4,1506382
<i>x</i> ₁₀	4,1506389

Suite décalée de 1 rang

 $\lim_{n\to\infty}x_n\approx 4,150639$

Équation cubique : $x^3 + 2x = 40$

(réarrangement)

Formule de récurrence : $x_{n+1} =$

Valeur initiale : $x_0 = 3$ ou 4

	$x_0 = 3$		$x_0 = 4$
x_1	3,239	x_1	3,17802
x_6		x_5	
x_7		x_6	
x_8		x_7	

Résoudre des cubiques par itération

Équation cubique : $x^3 + 2x = 40$

(réarrangement)

Formule de récurrence : $x_{n+1} =$

Valeur initiale : $x_0 = 3$ ou 4

$x_0 = 3$		$x_0 = 4$	
x_1	3,366	x_1	3,17802
x_5		x_5	
<i>x</i> ₁₀		x_{10}	
<i>x</i> ₁₅		<i>x</i> ₁₅	

Équation cubique : $x^3 + 2x = 40$

(réarrangement)

Formule de récurrence : $x_{n+1} = \sqrt[3]{10x_n + 30}$

Valeur initiale : $x_0 = 3$ ou 4

$x_0 = 3$		$x_0 = 4$	
x_1	3,239	x_1	3,17802
x_6	3,22524	x_5	3,22524
x_7	u	x_6	u
x_8	u	x_7	u

Converge plus rapidement vers sa limite

$$\lim_{n\to\infty}x_n\approx 3{,}22524\dots$$

Résoudre des cubiques par itération

Équation cubique : $x^3 + 2x = 40$

(réarrangement)

Formule de récurrence : $x_{n+1} = \sqrt{-2 + \frac{40}{x_n}}$

Valeur initiale : $x_0 = 3$ ou 4

$x_0 = 3$		$x_0 = 4$	
x_1	3,366	x_1	3,17802
x_5	3,24279	x_5	
<i>x</i> ₁₀	3,223923	x_{10}	3,229
<i>x</i> ₁₅		<i>x</i> ₁₅	

$$\lim_{n\to\infty}x_n\approx 3,22\dots$$

Équation cubique : $x^3 + 10x = 51$

(réarrangement)

Formule de récurrence : $x_{n+1} =$

Valeur initiale : $x_0 = 2$ ou 3

	$x_0 = 2$		$x_0 = 3$
x_1	3,141	x_1	2,758
x_7		x_6	
x_{11}		<i>x</i> ₁₀	
x ₁₇		<i>x</i> ₁₇	

Résoudre des cubiques par itération

Équation cubique : $x^3 + 10x = 51$

(réarrangement)

Formule de récurrence : $x_{n+1} =$

Valeur initiale : $x_0 = 2$ ou 3

$x_0 = 2$		$x_0 = 3$	
x_1	3,937	x_1	2,64
x_5		x_{18}	
x_6		<i>x</i> ₁₉	

 $x^3 + 10x = 51$ Équation cubique :

(réarrangement)

 $x_{n+1} = \sqrt[3]{-10x_n + 51}$ Formule de récurrence :

> $x_0 = 2 \text{ ou } 3$ Valeur initiale :

$x_0 = 2$		$x_0 = 3$	
x_1	3,141	x_1	2,758
x_7	2,83	x_6	2,83
<i>x</i> ₁₁	2,831	<i>x</i> ₁₀	2,8310
<i>x</i> ₁₇	2,831023	<i>x</i> ₁₇	2,831023

Converge lentement

$$\lim_{n\to\infty}x_n\approx 2,83102\dots$$

Résoudre des cubiques par itération

 $x^3 + 10x = 51$ Équation cubique :

(réarrangement)

Formule de récurrence :

Valeur initiale : $x_0 = 2 \text{ ou } 3$

$x_0 = 2$		$x_0 = 3$	
x_1	3,937	x_1	2,64
x_5	5,627	<i>x</i> ₁₈	5,28
x_6	NAN	<i>x</i> ₁₉	NAN

Suite non définie. L'itération ne peut se poursuivre au-delà d'un certain rang!

Équation cubique : $x^3 + 2x = 1$

(réarrangement)

Formule de récurrence : $x_{n+1} =$

Valeur initiale : $x_0 = 0$ ou 1

	$x_0 = 0$		$x_0 = 1$
x_1	1	x_1	-1
x_2		x_2	
<i>x</i> ₁₅		x_{14}	
x_{16}		<i>x</i> ₁₅	

Résoudre des cubiques par itération

Équation cubique : $x^3 + 2x = 1$

(réarrangement)

Formule de récurrence : $x_{n+1} =$

Valeur initiale : $x_0 = 0$ ou 1

$x_0 = 0$		$x_0 = 1$	
x_1		x_1	
		x_2	

Équation cubique : $x^3 + 2x = 1$

(réarrangement)

Formule de récurrence : $x_{n+1} = \sqrt[3]{-2x_n + 1}$

Valeur initiale : $x_0 = 0$ ou 1

$x_0 = 0$		$x_0 = 1$	
x_1	1	x_1	-1
x_2	-1	x_2	1,44
x ₁₅	1,1524038	x_{14}	1,1524038
<i>x</i> ₁₆	-1,269937	<i>x</i> ₁₅	-1,269937

Pas de convergence. La série alterne entre deux valeurs 1,524038 et -1,269937

Résoudre des cubiques par itération

Équation cubique : $x^3 + 2x = 1$

(réarrangement)

Formule de récurrence :

 $x_{n+1} = \sqrt{-2 + \frac{1}{x_n}}$

Valeur initiale : $x_0 = 0$ ou 1

	$x_0 = 0$		$x_0 = 1$
x_1	NAN	x_1	1
		x_2	NAN

Suite non définie. L'itération ne peut se poursuivre au-delà d'un certain rang!

Équation cubique : $x^3 + 4x = 10$

(réarrangement)

Formule de récurrence : $x_{n+1} =$

Valeur initiale : $x_0 = 1$ ou 2

	$x_0 = 1$		$x_0 = 2$
x_1	1,817	x_1	-1
x_{12}		x_{12}	
x ₁₉		x_{20}	
x ₂₄		x ₂₅	

Résoudre des cubiques par itération

Équation cubique : $x^3 + 4x = 10$

(réarrangement)

Formule de récurrence : $x_{n+1} =$

Valeur initiale : $x_0 = 1$ ou 2

	$x_0 = 1$		$x_0 = 2$
x_1		x_1	1
x_2			
x_3			
x_4		x_5	

Équation cubique : $x^3 + 4x = 10$

(réarrangement)

Formule de récurrence : $x_{n+1} = \sqrt[3]{-4x_n + 10}$

Valeur initiale : $x_0 = 1$ ou 2

	$x_0 = 1$		$x_0 = 2$
x_1	1,817	x_1	-1
x_{12}	1,556	x_{12}	
<i>x</i> ₁₉	1,1524038	x_{20}	
x_{24}	1,556773	x_{25}	1,556773

Convergente lente

Résoudre des cubiques par itération

Équation cubique : $x^3 + 4x = 10$

(réarrangement)

Formule de récurrence : $x_{n+1} = \sqrt{-4 + \frac{10}{x_n}}$

Valeur initiale : $x_0 = 1$ ou 2

	$x_0 = 1$		$x_0 = 2$
x_1	2,44	x_1	1
x_2	0,28		
x_3	5,51		
x_4	NAN	x_5	NAN

L'itération ne peut se poursuivre au-delà d'un certain rang!

Équation cubique : $x^3 + 10x = 25$

(réarrangement)

Formule de récurrence : $x_{n+1} =$

Valeur initiale : $x_0 = 1$ ou 2

	$x_0 = 1$		$x_0 = 2$
x_1	2,46	x_1	-1
x_2		x ₁₀₀	
x_{21}		x ₂₀₀	
x_{22}		x_{350}	

Résoudre des cubiques par itération

Équation cubique : $x^3 + 10x = 25$

(réarrangement)

Formule de récurrence : $x_{n+1} =$

Valeur initiale : $x_0 = 1$ ou 2

$x_0 = 1$	$x_0 = 2$
x_1	$ x_1 $
x_2	
	x_4
	x_5

Équation cubique : $x^3 + 10x = 25$

(réarrangement)

Formule de récurrence : $x_{n+1} = \sqrt[3]{-10x_n + 25}$

Valeur initiale : $x_0 = 1$ ou 2

	$x_0 = 1$		$x_0 = 2$
x_1	2,46	x_1	-1
x_2	0,69	x_{100}	
x_{21}	3,618034	x_{200}	
x_{22}	-2,236068	x_{350}	1,858289

Suite qui oscille entre 3,618034 et -2,236068...

Convergente très lente vers 1,858289...

 $\lim_{n\to\infty}x_n\approx 1,858289\dots$

Résoudre des cubiques par itération

Équation cubique : $x^3 + 10x = 25$

(réarrangement)

Formule de récurrence :

 $x_{n+1} = \sqrt{-10 + \frac{25}{x_n}}$

Valeur initiale : $x_0 = 1$ ou 2

	$x_0 = 1$		$x_0 = 2$
x_1	3,8	x_1	1,58
x_2	NAN		
		x_4	5,57
		x_5	NAN

L'itération ne peut se poursuivre au-delà d'un certain rang!

Équation cubique : $x^3 - 4x = 10$

(réarrangement)

Formule de récurrence : $x_{n+1} =$

Valeur initiale : $x_0 = 2$ ou 3

	$x_0 = 2$		$x_0 = 3$
x_1	2,627	x_1	2,802
x_2		x_2	
x_5		x_5	
x_9		x_8	

Résoudre des cubiques par itération

Équation cubique : $x^3 - 4x = 10$

(réarrangement)

Formule de récurrence : $x_{n+1} =$

Valeur initiale : $x_0 = 2$ ou 3

$x_0 = 2$		$x_0 = 3$	
x_1	3	x_1	1,58
x_2			
x_3		x_4	
x_4		x_5	

Équation cubique : $x^3 - 4x = 10$

(réarrangement)

Formule de récurrence : $x_{n+1} = \sqrt[3]{4x_n + 10}$

Valeur initiale : $x_0 = 2$ ou 3

	$x_0 = 2$		$x_0 = 3$
x_1	2,627	x_1	2,802
x_2	0,69	x_2	2,762
x_5		x_5	
x_9	2,760818	x_8	2,760818

Convergente vers 2,760818...

Résoudre des cubiques par itération

Équation cubique : $x^3 - 4x = 10$

(réarrangement)

Formule de récurrence :

 $x_{n+1} = \sqrt{4 + \frac{10}{x_n}}$

Valeur initiale : $x_0 = 2$ ou 3

	$x_0 = 2$		$x_0 = 3$
x_1	3	x_1	1,58
x_2	2,77		
x_3	2,75	x_4	
x_4	2,76	x_5	

Convergente vers 2,760818...

$$\lim_{n\to\infty} x_n \approx 2,760818\dots$$

Équation cubique : $x^3 - 3x = 2$

(réarrangement)

Formule de récurrence : $x_{n+1} = \sqrt[3]{3x_n + 2}$

Valeur initiale : $x_0 = 1$ ou 3

$x_0 = 1$		$x_0 = 3$	
x_1		x_1	

Résoudre des cubiques par itération

Équation cubique : $x^3 - 3x = 2$

(réarrangement)

Formule de récurrence :

 $x_{n+1} = 3 + \frac{2}{x_n}$

Valeur initiale : $x_0 = 1$ ou 3

$x_0 = 1$		$x_0 = 3$	
x_1		x_1	