Seminário: Categorias equivalentes à categoria de conjuntos condensados

Matheus Johnny Caetano

November 2022

1 Introdução

O objetivo deste seminário é apresentar duas categorias equivalentes à categoria de conjuntos condensados: a categoria Sh(CHTop) e a categoria Sh(EDSet), onde:

- CHTop é o site dos espaços Hausdorff compactos;
- EDSet é o site dos conjuntos extremamente desconexos;
- $Sh(\mathcal{C})$ é a categoria de feixes de \mathcal{C} .

Além disso, denotaremos por ProFinSet o site dos conjuntos profinitos e em cada site teremos como cobertura familias finitas de funções juntamente sobrejetivas.

2 Equivalência de categorias

Começaremos relembrando alguns conceitos.

Definição 3. Considere dois morfismos $f:A\to C$ e $g:B\to C$ em uma categoria \mathcal{C} . Um **pullback** de (f,g) é uma tripla (P,p_1,p_2) onde:

- 1. P é um objeto de C;
- 2. $p_1:P\to A$ e $p_2:P\to B$ são morfismos de $\mathcal C$ tais que $f\circ p_1=g\circ p_2$ e para toda tripla (Q,q_1,q_2) onde
 - (a) Q é um objeto de C;
 - (b) $q_1: Q \to A \in q_2: Q \to B$ tais que $f \circ q_1 = g \circ q_2$,

existe um único morfismo $h:Q\to P$ tal que $q_1=p_1\circ h$ e $q_2=p_2\circ h$.

Usualmente denotamos $P = A \times_C B$.

$$\begin{array}{ccc}
A \times_C B & \xrightarrow{p_1} & A \\
\downarrow^{p_2} & & \downarrow^f \\
B & \xrightarrow{q} & C
\end{array}$$

Observação. O pullback $P = A \times_C B$ é um subconjunto do produto cartesiano $A \times B$.

Definição 4. Considere duas flexas $f: A \to B$ e $g: A \to B$ em uma categoria \mathcal{C} . Um **equalizador** de f, g é um par (K, k) onde

- 1. K é um objeto de C,
- 2. $k:K\to A$ é uma flexa de $\mathcal C$ tal que $f\circ k=g\circ k$ e para todo par (M,m) onde
 - (a) M é um objeto de \mathcal{C} ,
 - (b) $m: M \to A$ é uma flexa de \mathcal{C} tal que que $f \circ m = g \circ m$,

existe um único morfismo $n: M \to K$ tal que $m = k \circ n$.

$$K \xrightarrow{k} A \xrightarrow{g} B$$

$$\exists n \mid \qquad m$$

$$M$$

Lema 5. Se $f: X \to Y$ e $g: X \to Y$ são funções contínuas e Y é Hausdorff, então $\{x \in X: f(x) = g(x)\}$ é fechado em X.

Proof. Sejam $y \in N = \{x \in X : f(x) \neq g(x)\}$ e U, V subconjuntos abertos disjuntos de Y contendo f(y) e g(y) respectivamente. Temos $f^{-1}(U) \cap g^{-1}(V)$ é uma vizinhança aberta de y e está contida em N. Portanto, N é uma união de conjuntos abertos, logo é aberto, e $\{x \in X : f(x) = g(x)\}$ é fechado.

Lema 6. Seja $f: S' \to S$ um mapa onde S' é profinito e S é Hausdorff compacto. Então $S' \times_S S' \subset S' \times S'$ é profinito.

Proof. Como S' é profinito, $S' \times S'$ também é. Assim, temos que $S' \times_S S' \subset S' \times S'$ é Hausdorff totalmente desconexo. Para mostrar compacidade, basta mostrar que o pullback é um subconjunto fechado do produto cartesiano.

Observe que $S' \times_S S'$ é o conjunto dos pares $(a, b) \in S' \times S'$ tais que $f \circ p_1 = f \circ p_2$, ou seja, f(a) = f(b). Logo, podemos escrever

$$S' \times_S S' = \{(a, b) \in S' \times S' : p_1(a, b) = p_2(a, b)\}$$

Assim, pelo Lema 5 $S' \times_S S'$ é fechado, e consequentemente compacto. Portanto, $S' \times_S S'$ é profinito.

Proposição 7. Seja S um espaço Hausdorff compacto. Então existe uma sobrejeção $S' \to S$, onde S' é profinito.

Proof. Seja S um espaço Hausdorff compacto e considere S^{dis} o conjunto S com a topologia discreta. Temos que $S'=\beta S^{dis}$ é um espaço compato Hausdorff totalmente desconexo, ou seja, S' é profinito. Considere, o mapa $f:S^{dis}\to S$ tal que f(x)=x. Observe que f é contínua e sobrejetiva. Como S é Hausdorff compacto, temos pela propriedade universal da compactificação de Stone-Cech que existe $\tilde{f}:S'\to S$ que comuta o diagrama abaixo:

$$S^{dis} \xrightarrow{b} S' = \beta S^{dis}$$

$$\downarrow \tilde{f}$$

$$S$$

Além disso, como $\tilde{f} \circ b$ é sobrejetiva, temos que \tilde{f} é uma sobrejeção.

Definição 8. Um espaço Hausdorff compacto S é **extremamente desconexo** se para toda sobrejeção $f: S' \to S$ existe $g: S \to S'$ tal que $f \circ g = 1_S$. Nestas condições, dizemos que g é uma seção de f e f é uma retração de g.

Proposição 9. Sejam S_0 um espaço topológico discreto e $S = \beta S_0$ a compactificação de Stone-Čech de S_0 . Então S é extremamente desconexo.

Proof. Temos pela proposição 7 que S é um espaço Hausdorff compacto. Seja $f:S'\to S$ uma sobrejeção contínua, onde S' é compacto Hausdorff e considere a inclusão $i:S_0\to S$. Como f é sobrejetiva e S_0 é discreto, existe $g:S_0\to S'$ que comuta o diagrama abaixo:

$$S' \xrightarrow{f} S$$

$$g \uparrow \qquad \downarrow i$$

$$S_0$$

Agora, considere $b:S_0\to S$ o mapa da compactificação de Stone-Cech. Temos que b induz o mapa $\tilde g$ que comuta o diagrama abaixo:

$$S \xrightarrow{\tilde{g}} S' \xrightarrow{f} S$$

$$\downarrow g \uparrow \qquad \downarrow i$$

$$S_0$$

Observe que $f\circ \tilde{g}\circ i=i$, logo pela unicidade da propriedade universal da compactificação de Stone-Cech, $f\circ \tilde{g}=1_S$.

Corolário 10. Seja S um espaço Hausdorff compacto. Então existe uma sobrejeção $f: \tilde{S} \to S$, onde \tilde{S} é extremamente desconexo.

Definição 11. Seja \mathcal{C} uma categoria equipada com a topologia de Grothendieck. Dizemos que uma subcategoria cheia $\mathcal{D} \subset \mathcal{C}$ é uma **base** para \mathcal{C} se para todo objeot X de \mathcal{C} , existe uma cobertura $f_i: D_i \to X_{i \in I}$, onde I é um conjunto pequeno e D_i é objeto de \mathcal{D} .

A categoria EDSet é uma subcategoria cheia de ProFinSet e, pelo corolário 10, para todo profinito existe uma sobrejeção com domínio extremamente desconexo, logo, EDSet é uma base para ProFinSet. Analogamente, ProFinSet e EDSet são bases para CHTop.

A seguir temos duas proposições que serão fundamentais para demonstração da proposição principal deste seminário.

Proposição 12. Sejam \mathcal{C} um site e $\mathcal{D} \subset \mathcal{C}$ uma base. Então, existe uma única topologia de Grothendieck na categoria \mathcal{D} tal que a coleção de morfismos $\{D_i \to D\}_{i \in I}$ em \mathcal{D} é uma cobertura se, e somente se, é uma cobertura em \mathcal{C} . Além disso, precomposição com a inclusão $\mathcal{D} \hookrightarrow \mathcal{C}$ induz uma equivalência de categorias:

$$Sh(\mathcal{C}) \to Sh(\mathcal{D}), \ F \to F|_{\mathcal{D}^{op}}.$$

Proof. Referência [3], apêndice B, proposição B.6.3.

Proposição 13. Sejam \mathcal{C} um site, $\mathcal{D} \subset \mathcal{C}$ uma base equipada com a topologia de Grothendieck da proposição 12 e $F: \mathcal{C}^{op} \to \operatorname{Set}$ um funtor. Então, F é um feixe se, e somente se, as seguintes condições são satisfeitas:

- 1. A restrição $F|_{\mathcal{D}^{op}}:\mathcal{D}^{op}\to \mathrm{Set}$ é um feixe;
- 2. O funtor F é uma extensão de Kan à direita da sua restrição $F|_{\mathcal{D}^{op}}$.

Proof. Referência [3], apêndice B, proposição B.6.4.

Observação. É importante lembrar que um **conjunto condensado** é um feixe $T: \operatorname{ProFinSet}^{op} \to \operatorname{Set}, \ S \mapsto T(S)$ tal que $T(\emptyset) = *$ e as seguintes condições são satisfeitas:

(i) Para todo par de conjuntos profinitos S_1 e S_2 , o mapa natural

$$T(S_1 \coprod S_2) \to T(S_1) \times T(S_2)$$

é uma bijeção.

(ii) Para toda sobrejeção $S' \to S$ entre profinitos com o pullback $S' \times_S S'$ e suas projeções p_1 e p_2 , o mapa

$$T(S) \to \{x \in T(S') | T(p_1)(x) = T(p_2)(x) \in T(S' \times_S S')\}$$

é uma bijeção.

Proposição 14. A categoria de conjuntos condensados é equivalente à:

1. A categoria Sh(CHTop) de feixes sobre o site CHTop com coberturas dadas por famílias finitas de mapas juntamente sobrejetivos:

$$T: \mathrm{CHTop}^{op} \to \mathrm{Set}, \ S \mapsto T(S)$$

satisfazendo $T(\emptyset) = *$ e as condições (i) e (ii) para espaços compactos Hausdorff.

2. A categoria de funtores contravariantes sobre o site EDSet com coberturas dadas por famílias finitas de mapas juntamente sobrejetivos:

$$T: \mathrm{EDSet}^{op} \to \mathrm{Set}, \ S \mapsto T(S)$$

satisfazendo $T(\emptyset)=*$ e a condição (i) para conjuntos extremamente desconexos.

Proof. A categoria EDSet é uma base para ProFinSet e CHTop, logo, pela proposição 12 obtemos uma equivalência de categoria de feixes via restrição de conjuntos profinitos. A direção inversa da equivalência é obtida pela proposição 13 tomando a extensão de Kan à direita.

Agora, veremos porque no item 2. é omitida a condição (ii) de feixe. Seja $f: S' \to S$ uma sobrejeção entre conjuntos extremamentes desconexos, então existe $g: S \to S'$ tal que $f \circ g = 1_S$. Então, aplicando um feixe T, obtemos

$$T(g) \circ T(f) = 1_{T(S)}$$

e o mapa T(f) é injetivo. Além disso,

$$Im(T(f)) \subset \{x \in T(S') | T(p_1)(x) = T(p_2)(x) \in T(S' \times_X S')\} = E$$

pois $f \circ p_1 = f \circ p_2$. Veremos que $E \subset Im(T(f))$ e todo funtor contravariante entre conjuntos extremamente desconexo satisfaz a condição (ii) automaticamente.

Seja $x \in E$ e considere o mapa $(g \circ f) \times_S 1_{S'} : S' \times_S S' \to S' \times_S S'$. Temos que

$$T((g \circ f) \times_S 1_{S'}) \circ T(p_1)(x) = T((g \circ f) \times_S 1_{S'}) \circ T(p_2)(x)$$

logo,

$$T(p_1 \circ ((g \circ f) \times_S 1_{S'}))(x) = T(p_2 \circ ((g \circ f) \times_S 1_{S'}))(x)$$

isto é,

$$T(q \circ f)(x) = T(1_{S'})(x).$$

Assim, T(f)(T(g)(x)) = x, ou seja, $x \in Im(T(f))$. Portanto T(S) está em bijeção com E.

References

- [1] P. Scholze. Lectures on Condensed Mathematics Lecture notes for a course taught at the University of Bonn. Summer term 2019.
- [2] Catrin Mair. Animated Condensed Sets and Their Homotopy Groups 2021
- [3] J. Lurie. Ultracategories Preprint version. 2018.
- [4] F. Borceux. Handbook of Categorical Algebra I Basic Category Theory Cambridge University Press. 2002.