CC1-S1

2020-2021

- Correction - Analyse -

EXERCICE 1

Soit n un entier naturel non nul et (H_n) définie par :

$$\forall n \in \mathbb{N}^*, \ H_n = \sum_{k=1}^n \frac{1}{k}$$

1. a. A l'aide d'une comparaison somme/intégrale, montrer que :

$$\forall n \in \mathbb{N}^*, \ \ln(n+1) \le H_n \le 1 + \ln(n)$$

La fonction inverse étant décroissante sur $]0, +\infty[$, on a, pour tout $k \in \mathbb{N}^* : \frac{1}{k+1} \le \int_{L}^{k+1} \frac{\mathrm{d}t}{t} \le \frac{1}{k}$ donc,

pour tout
$$n \in \mathbb{N}^* : \sum_{k=1}^n \frac{1}{k+1} \le \sum_{k=1}^n \int_k^{k+1} \frac{\mathrm{d}t}{t} \le \sum_{k=1}^n \frac{1}{k}$$
.

Ainsi, par la relation de Chasles, $\forall n \in \mathbb{N}^*, \ H_{n+1} - 1 \leq \int_{\cdot}^{n+1} \frac{\mathrm{d}t}{t} \leq H_n$.

On conclut que $\forall n \in \mathbb{N}^*, \ \ln(n+1) \le H_n \le 1 + \ln(n)$

En déduire un équivalent de H_n au voisinage de $+\infty$.

On déduit du résultat précédent que pour
$$n \geq 2$$
, $\frac{\ln(n+1)}{\ln(n)} \leq \frac{H_n}{\ln(n)} \leq \frac{1+\ln(n)}{\ln(n)}$. Comme $\frac{\ln(n+1)}{\ln(n)} = \frac{\ln(n) + \ln\left(1 + \frac{1}{n}\right)}{\ln(n)} = 1 + \frac{\ln\left(1 + \frac{1}{n}\right)}{\ln(n)} \xrightarrow[n \to +\infty]{} 1$ et $\frac{1+\ln(n)}{\ln(n)} = \frac{1}{\ln(n)} + 1 \xrightarrow[n \to +\infty]{} 1$, par le théorème d'encadrement, on en déduit que $\lim_{n \to +\infty} \frac{H_n}{\ln(n)} = 1$, puis que $H_n \xrightarrow[n \to +\infty]{} \ln(n)$.

2. On pose :

$$\forall n \in \mathbb{N}^*, \ u_n = \frac{1}{n} - \ln\left(1 + \frac{1}{n}\right)$$

a. Montrer que la série de terme général
$$u_n$$
 est convergente. On note γ sa somme. On a $u_n = \frac{1}{n} - \ln\left(1 + \frac{1}{n}\right) = \frac{1}{n \to +\infty} \frac{1}{n} - \left(\frac{1}{n} - \frac{1}{2n^2}\right) + o\left(\frac{1}{n^2}\right)$ et donc $u_n \sim \frac{1}{n\infty}$.

Or $\sum \frac{1}{n^2}$ est une série de Riemann convergente, donc $\sum u_n$ converge, par comparaison de séries positives.

b. En déduire que :

$$H_n = \ln(n) + \gamma + o(1)$$

On a
$$\sum_{n=1}^{+\infty} u_n = \gamma$$
, ce qu'on peut écrire $\sum_{k=1}^{n} u_k \underset{n \to +\infty}{=} \gamma + \circ (1)$.

Mais
$$\sum_{k=1}^{n} u_k = H_n - \sum_{k=1}^{n} \ln\left(\frac{k+1}{k}\right) = H_n - \ln(n+1) = H_n - \ln(n) - \ln\left(1 + \frac{1}{n}\right)$$
 et comme

$$\lim_{n \to +\infty} \ln \left(1 + \frac{1}{n} \right) = 0, \text{ on a alors } H_n - \ln(n) \underset{n \to +\infty}{=} \gamma + o(1)$$

On conclut que $H_n = \ln(n) + \gamma + o(1)$.

Spé PT Page 1 sur 3

EXERCICE 2

Soit a un réel strictement positif.

1. Montrer la convergence de l'intégrale :

$$\int_0^{+\infty} \frac{\sin(ax)}{e^x - 1} dx$$

 $x \mapsto \frac{\sin(ax)}{a^{2}}$ est continue sur $]0, +\infty[$, donc localement intégrable sur cet intervalle.

• En $0: \frac{\sin(ax)}{e^x-1} \underset{x\to 0}{\sim} \frac{ax}{x} = a$, par conséquent, $\int_0^1 \frac{\sin(ax)}{e^x-1} dx$ est faussement impropre donc converge.

• En $+\infty$: $\forall x \ge 1$, $\left| \frac{\sin(ax)}{e^x - 1} \right| \le \frac{1}{e^x - 1} = \frac{1}{\frac{1}{2}e^x + \frac{1}{2}(e^x - 2)} \le \frac{2}{e^x} = 2e^{-x}$.

Or, $\int_{1}^{+\infty} e^{-x} dx$ est une intégrale de référence convergente, donc par comparaison $\int_{1}^{+\infty} \frac{\sin(ax)}{e^{x} - 1} dx$ converge absolument, donc elle converge.

On peut alors conclure que $\int_{0}^{+\infty} \frac{\sin(ax)}{e^{x} - 1} dx$ converge.

On a même montré que cette intégrale converge absolument.

2. Soit $k \in \mathbb{N}^*$ et $J_k = \int_0^{+\infty} e^{-kx} \sin(ax) dx$.

Démontrer que cette intégrale converge, et que :

$$J_k = \frac{a}{a^2 + k^2}$$

 $x \mapsto e^{-kx} \sin(ax)$ est continue sur $[0, +\infty[$, donc localement intégrable sur cet intervalle. $\forall x \geq 0, \left| e^{-kx} \sin(ax) \right| \leq e^{-kx}$. Or, pour k > 0, $\int_0^{+\infty} e^{-kx} dx$ est une intégrale de référence convergente, donc

par comparaison $\int_{\hat{a}}^{+\infty} e^{-kx} \sin(ax) dx$ converge absolument, donc elle converge.

De plus, pour
$$t \in [0, +\infty[$$
:

$$\int_0^t e^{-kx} \sin(ax) dx = \operatorname{Im} \left(\int_0^t e^{(-k+ia)x} dx \right) = \operatorname{Im} \left(\frac{1}{-k+ia} \left(e^{(-k+ia)t} - 1 \right) \right)$$

$$= \frac{1}{k^2 + a^2} \left(e^{-kt} \left(-a \cos(at) - k \sin(at) \right) + a \right) \xrightarrow[t \to +\infty]{} \frac{a}{k^2 + a^2}$$

(produit d'une fonction de limite nulle par une fonction bornée).

On obtient $J_k = \frac{a}{k^2 + a^2}$

3. Soit $n \in \mathbb{N}^*$ et $R_n = \int_0^{+\infty} \frac{\sin(ax)}{e^x - 1} dx - \sum_{k=0}^n \frac{a}{a^2 + (k+1)^2}$.

Démontrer que :

$$\forall n \in \mathbb{N}^*, \ R_n = \int_0^{+\infty} \frac{\sin(ax)}{e^x - 1} e^{-(n+1)x} dx$$

Par linéarité des intégrales généralisées,

$$\sum_{k=0}^{n} \frac{a}{a^2 + (k+1)^2} = \sum_{k=0}^{n} J_{k+1} = \int_{0}^{+\infty} \sin(ax) \left(\sum_{k=0}^{n} e^{-(k+1)x} \right) dx.$$
Comme on a
$$\sum_{k=0}^{n} e^{-(k+1)x} = \sum_{k=0}^{n} \left(e^{-x} \right)^{k+1} = e^{-x} \frac{1 - \left(e^{-x} \right)^{n+1}}{1 - e^{-x}} = \frac{1 - \left(e^{-x} \right)^{n+1}}{e^x - 1},$$

$$R_n = \int_0^{+\infty} \sin(ax) \left(\frac{1}{e^x - 1} - \frac{1 - (e^{-x})^{n+1}}{e^x - 1} \right) dx = \int_0^{+\infty} \frac{\sin(ax)}{e^x - 1} e^{-(n+1)x} dx.$$

Spé PT Page 2 sur 3 **4.** Montrer que la fonction $x \mapsto \frac{\sin(ax)}{e^x - 1}$ est bornée sur \mathbb{R}_+^* .

Comme dit en 1., $x \mapsto \frac{\sin(ax)}{e^x - 1}$ est continue sur \mathbb{R}_+^* , et elle est prolongeable par continuité en 0 donc bornée sur]0,1]. On a aussi montré que $\forall x \geq 1$, $\left|\frac{\sin(ax)}{e^x - 1}\right| \leq 2e^{-x} \leq 2$. On peut donc conclure que la fonction $x \mapsto \frac{\sin(ax)}{e^x - 1}$ est bornée sur \mathbb{R}_+^* .

On note désormais M un majorant de la fonction $x \mapsto \left| \frac{\sin(ax)}{e^x - 1} \right|$ sur \mathbb{R}_+^* .

5. A l'aide d'une majoration de l'intégrale de la question 3., en déduire que :

$$\int_0^{+\infty} \frac{\sin(ax)}{e^x - 1} dx = \sum_{k=0}^{+\infty} \frac{a}{a^2 + (k+1)^2}$$

Tout d'abord, on a pour tout $x \ge 0$: $0 \le \left| \frac{\sin(ax)}{e^x - 1} e^{-(n+1)x} \right| \le \left| \frac{\sin(ax)}{e^x - 1} \right|$.

Par comparaison, le résultat établi à la question 1. permet d'en déduire que $\int_0^{+\infty} \frac{\sin(ax)}{e^x - 1} e^{-(n+1)x} dx$ est absolument convergente.

Comme $\int_0^{+\infty} e^{-(n+1)x} dx$ est une intégrale de référence convergente, on a de plus :

$$|R_n| \le \int_0^{+\infty} \left| \frac{\sin(ax)}{e^x - 1} e^{-(n+1)x} \right| dx \le \int_0^{+\infty} M e^{-(n+1)x} dx = M \left[\frac{-1}{n+1} e^{-(n+1)x} \right]_0^{+\infty} = \frac{M}{n+1}.$$

Par le théorème d'encadrement, $\lim_{n \to +\infty} R_n = 0$. Ce que l'on peut écrire $\lim_{n \to +\infty} \sum_{k=0}^n \frac{a}{a^2 + (k+1)^2} = \int_0^{+\infty} \frac{\sin(ax)}{e^x - 1} dx$.

On conclut que $\sum J_n$ converge (ce que l'on pouvait montrer directement à l'aide d'un équivalent) mais aussi que

$$\int_0^{+\infty} \frac{\sin(ax)}{e^x - 1} dx = \sum_{k=0}^{+\infty} \frac{a}{a^2 + (k+1)^2}$$

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 3 sur 3