Chapitre 10

Somme de variables aléatoires

I. Somme de deux variables aléatoires

1) Variable aléatoire

Définitions:

- L'ensemble des issues d'une expérience aléatoire s'appelle l'univers de l'expérience.
 On le note Ω.
- Une variable aléatoire réelle est une fonction définie sur Ω et à valeurs dans ℝ.
 On la note X.

On a donc $X:\Omega\to\mathbb{R}$

 $\omega \mapsto X(\omega)$

Exemple:

On lance une pièce de monnaie. Si on obtient pile, on gagne 5 € et si on obtient face, on gagne 2 €.

On peut alors définir une variable aléatoire X correspondant au gain obtenu en euro.

X est défini sur l'univers $\Omega = \{\text{pile, face}\}.$

On a alors X(pile) = 5 et X(face) = 2.

X peut prendre deux valeurs : 5 et 2.

2) Transformation affine

Définition:

Soit X une variable aléatoire définie sur l'univers Ω et a et b deux nombres réels.

On peut définir une variable aléatoire réelle Y telle que, pour tout élément $\omega \in \Omega$,

$$Y(\omega) = aX(\omega) + b$$

On note Y = aX + b.

Exemple:

• On lance un dé équilibré à six faces et on joue au jeu suivant : le nombre de points obtenus est le résultat du dé multiplié par 5 auquel on ajoute 3.

En notant respectivement X et Y les variables aléatoires correspondant au résultat du dé et aux points obtenus, on a alors Y = 5X + 3.

• X est une variable aléatoire qui suit la loi binomiale de paramètres n = 2 et p = 0,2.

Y = 4X - 0.6 est une variable aléatoire dont les valeurs possibles sont $\{-0.6, 3.4, 7.4\}$.

3) Somme

Définition:

Soient X et Y, deux variables aléatoires définies sur l'univers Ω .

On peut définir une variable aléatoire Z sur Ω telle que, pour tout élément $\omega \in \Omega$,

$$Z(\omega) = X(\omega) + Y(\omega)$$
.

Cette variable aléatoire est appelée somme des variables aléatoires X et Y.

On note Z = X + Y.

Exemples:

• On lance cinq dés équilibrés et on compte la somme des nombres obtenus.

Soit X la variable aléatoire correspondant à cette somme.

Alors on peut écrire X sous la forme $X = X_1 + X_2 + ... + X_5$ où,

pour tout $k \in \{1; 2; 3; 4; 5\}$, X_k correspond au résultat du dé numéro k.

L'ensemble des valeurs prises par X est {5 ; 6 ; 7 ; 8 ; 9 ; ... ; 30}.

On remarque que $X \neq 5X_1$.

• X est une variable aléatoire qui suit la loi binomiale de paramètres n = 200 et p = 0,2 et Y une variable aléatoire qui suit la loi binomiale de paramètres n = 100 et p = 0,5.

X + Y est une variable aléatoire dont les valeurs possibles sont {0; 1; 2; ...; 300}.

• On lance 20 fois une pièce de monnaie et on note X la variable aléatoire comptant le nombre de pile obtenu.

On peut écrire la variable aléatoire X sous la forme $X = X_1 + X_2 + ... + X_{20}$ où,

pour tout $k \in \{1; 2; ...; 20\}$, $X_k = 1$ si on a obtenu pile au k^e lancer et $X_k = 0$ si on a obtenu face au k^e lancer.

II. Caractéristiques des variables aléatoires

Dans cette partie, on considère une variable aléatoire X définie sur $\Omega = \{\omega_1; \omega_2; ...; \omega_r\}$ et on note $\{x_1; x_2; ...; x_s\}$ l'ensemble des valeurs prises par X où r et s sont des entiers naturels non nuls.

$$E(X) = \sum_{i=1}^{s} x_i \times p(X = x_i)$$
 et $V(X) = \sum_{i=1}^{s} (x_i - E(X))^2 \times p(X = x_i)$

1) Espérance

Propriété:

En reprenant les notations précédentes, on a $E(X) = \sum_{j=1}^{r} X(\omega_j) p(\{\omega_j\})$.

Remarque:

Dans cette propriété, l'espérance s'écrit en fonction des issues ω_i de l'expérience aléatoire et non en fonctions des valeurs x_i .

Exemple:

On jette un dé cubique équilibré, on gagne $2 \in si$ on obtient un nombre pair et on perd $6 \in si$ on obtient un nombre impair.

L'espérance de la variable aléatoire X correspondant au gain remporté s'élève à :

$$E(X)=X(1)\times p(\{1\})+...+X(6)\times p(\{6\})=(-6)\times \frac{1}{6}+...+2\times \frac{1}{6}=-2$$

Propriété:

Soit X et Y deux variables aléatoires définies sur le même univers Ω . Alors :

$$E(X + Y) = E(X) + E(Y)$$

Démonstration:

Soient X et Y deux variables aléatoires définies sur Ω . Soit Z la variable aléatoire définie sur Ω par Z = X + Y.

On a alors
$$E(X + Y) = E(Z) = \sum_{j=1}^{r} Z(\omega_j) p(\{\omega_j\})$$
 et donc $E(X + Y) = \sum_{j=1}^{r} (X + Y)(\omega_j) p(\{\omega_j\})$.

On a, par ailleurs, $(X + Y)(\omega_j) = X(\omega_j) + Y(\omega_j)$.

$$\operatorname{Donc} \operatorname{E}(\operatorname{X} + \operatorname{Y}) = \sum_{j=1}^{r} X(\omega_{j}) p(\{\omega_{j}\}) + \sum_{j=1}^{r} Y(\omega_{j}) p(\{\omega_{j}\}) \quad \text{. D'où } \operatorname{E}(\operatorname{X} + \operatorname{Y}) = \operatorname{E}(\operatorname{X}) + \operatorname{E}(\operatorname{Y}).$$

Remarque:

Cette propriété permet de déterminer l'espérance de X + Y simplement à l'aide de celles de X et Y (donc sans la connaissance de la loi de probabilité de X + Y).

Exemple:

X est une variable aléatoire qui suit la loi binomiale de paramètres n = 200 et p = 0,2 et Y une variable aléatoire qui suit la loi binomiale de paramètres n = 100 et p = 0,5.

$$E(X + Y) = E(X) + E(Y) = 200 \times 0.2 + 100 \times 0.5 = 90$$

Propriété:

Soit X une variable aléatoire et Y la variable aléatoire définie par Y = aX + b, où a et b sont deux réels. Alors :

$$E(Y) = E(aX + b) = aE(X) + b$$

<u>Démonstration</u>:

Si a = 0, on a E(0X + b) = E(b) = b (car Y prend la valeur b et p(X = b) = 1) et $0 \times E(X) + b = b$ Si $a \ne 0$, en notant x_1 ; x_2 ; ...; x_s les valeurs prises par X, alors aX + b prend les valeurs $ax_1 + b$; $ax_2 + b$; ...; $ax_s + b$.

Par définition, $E(aX + b) = \sum_{i=1}^{s} (ax_i + b) p(aX + b = ax_i + b)$.

Or $aX + b = ax_i + b$, si et seulement si, $X = x_i$, donc $p(aX + b = ax_i + b) = p(X = x_i)$.

Ainsi E
$$(aX + b) = \sum_{i=1}^{s} (ax_i + b) p(X = x_i) = \sum_{i=1}^{s} ax_i p(X = x_i) + \sum_{i=1}^{s} b p(X = x_i)$$

$$E(aX + b) = a \times \sum_{i=1}^{s} x_i p(X = x_i) + b \times \sum_{i=1}^{s} p(X = x_i) = aE(X) + b$$

Exemple:

X est une variable aléatoire qui suit la loi binomiale de paramètres n = 2 et p = 0,2 et soit Y = 4X - 0,6.

$$E(Y) = E(4X - 0.6) = 4 E(X) - 0.6 = 4 \times (2 \times 0.2) - 0.6 = 1$$

2) Variance

Propriété:

Soit X une variable aléatoire et Y la variable aléatoire définie par Y = aX + b, où a et b sont deux réels. Alors :

$$V(Y) = V(aX + b) = V(aX) = a^2 V(X)$$

Démonstration:

Si a = 0, on a V(0X + b) = V(b) = b (car Y prend la valeur b et E(Y) = b donc V(Y) = 0) et $0^2 \times V(Y) = b$

Si $a \neq 0$, en notant x_1 ; x_2 ; ...; x_s les valeurs prises par X, alors aX + b prend les valeurs $ax_1 + b$; $ax_2 + b$; ...; $ax_s + b$.

Par définition, $V(aX + b) = \sum_{i=1}^{s} (ax_i + b - E(aX + b))^2 p(aX + b = ax_i + b)$.

Or $aX + b = ax_i + b$, si et seulement si, $X = x_i$, donc $p(aX + b = ax_i + b) = p(X = x_i)$.

Ainsi
$$V(aX + b) = \sum_{i=1}^{s} (ax_i + b - aE(X) + b)^2 p(X = x_i) = \sum_{i=1}^{s} (ax_i - aE(X))^2 p(X = x_i)$$

$$V(aX + b) = \sum_{i=1}^{s} a^{2}(x_{i} - E(X))^{2} p(X = x_{i}) = a^{2} \times \sum_{i=1}^{s} (x_{i} - E(X))^{2} p(X = x_{i}) = a^{2}V(X)$$

Remarque:

L'écart type $\sigma(aX + b)$ vérifie $\sigma(aX + b) = |a|\sigma(X)$.

Exemple:

X est une variable aléatoire qui suit la loi binomiale de paramètres n = 2 et p = 0,2 et soit Y = 4X - 0.6.

$$V(Y) = V(4X - 0.6) = V(4X) = 4^2 \times V(X) = 16 \times (2 \times 0.2 \times 0.8) = 5.12$$

Définitions:

Soient $X_1, X_2, \dots X_n$, n variables aléatoires à valeurs respectivement dans $E_1, E_2, \dots E_n$.

On dit que $X_1, X_2, ..., X_n$ sont **indépendantes** lorsque, pour tout $x_1 \in E_1, x_2 \in E_2, ..., x_n \in E_n$:

$$p(X_1 = x_1 \cap X_2 = x_2 \cap ... \cap X_n = x_n) = p(X_1 = x_1) \times p(X_2 = x_2) \times ... \times p(X_n = x_n)$$

Remarque:

Si les variables $X_1, X_2, ... X_n$ sont deux à deux indépendantes, on ne peut pas en conclure que $X_1, X_2, ... X_n$ sont mutuellement indépendantes.

Propriété:

Si X et Y sont deux variables aléatoires **indépendantes** définies sur Ω , alors :

$$V(X + Y) = V(X) + V(Y)$$

Remarques:

• Dans le cas où les expériences ne sont pas indépendantes, il se peut que :

$$V(X + Y) \neq V(X) + V(Y).$$

• Si $X_1, X_2, ... X_n$ sont n variables aléatoires indépendantes définies sur Ω , alors :

$$V(X_1 + X_2 + ... + X_n) = V(X_1) + V(X_2) + ... + V(X_n)$$

III. Applications

1) Application à la loi binomiale

Dans cette partie, n désigne un entier naturel supérieur ou égal à 1 et p un nombre réel appartenant à l'intervalle [0; 1].

Définition:

Deux variables aléatoires sont dites **identiquement distribuées** lorsqu'elles ont la même loi de probabilité.

Remarque:

Deux variables aléatoires identiquement distribuées peuvent être ou ne pas être indépendantes.

Propriété:

Toute variable aléatoire suivant une loi binomiale peut s'écrire comme une somme de variables aléatoires de Bernoulli indépendantes et identiquement distribuées.

Propriétés:

Si X suit la loi binomiale de paramètres n et p, alors :

- E(X) = np
- V(X) = np(1-p)
- $\sigma(X) = \sqrt{np(1-p)}$

Démonstrations :

• Soit X une variable aléatoire suivant la loi binomiale de paramètres *n* et *p*.

Alors, il existe n variables aléatoires de Bernoulli de paramètre p telles que :

$$X = X_1 + X_2 + ... + X_n$$
.

Ainsi pour tout $k \in \{1; 2; ...; n\}$, $E(X_k) = p$ et $V(X_k) = p(1-p)$.

Or,
$$E(X) = E(X_1 + X_2 + ... + X_n) = E(X_1) + E(X_2) + ... + E(X_n) = p + p + ... + p = np$$
.

• Les variables aléatoires $X_1, X_2, ... X_n$ étant indépendantes, par définition de schéma de Bernoulli, on a :

$$V(X) = V(X_1) + V(X_2) + ... + V(X_n) = p(1-p) + p(1-p) + ... + p(1-p) = np(1-p).$$

• $\sigma(X) = \sqrt{V(x)} = \sqrt{np(1-p)}$.

Exemple:

Soit X une variable aléatoire suivant une loi binomiale de paramètres n = 20 et p = 0,2.

On a
$$E(X) = np = 20 \times 0.2 = 4$$
.

De plus
$$V(X) = np(1-p) = 20 \times 0.2 \times 0.8 = 3.2$$
.

Donc
$$\sigma(X) = \sqrt{V(x)} = \sqrt{3.2} \approx 1,789$$

2) <u>Échantillons de *n* variables aléatoires identiques et indépendantes</u>

On considère un entier naturel $n \ge 1$ et $X_1, X_2, ... X_n$, n variables aléatoires définies sur Ω supposées indépendantes et identiquement distribuées.

On note $S_n = X_1 + X_2 + ... + X_n$ la somme de ces n variables aléatoires et $M_n = \frac{X_1 + X_2 + ... + X_n}{n}$ la moyenne de ces n variables aléatoires.

Propriété:

Pour tout $k \in \{1; 2; ...; n\}$, on a:

- $E(S_n) = nE(X_k)$
- $V(S_n) = nV(X_k)$ et $\sigma(S_n) = \sqrt{n} \sigma(X_k)$.

<u>Démonstrations</u>:

- La linéarité de l'espérance donne $E(S_n) = E(X_1) + E(X_2) + ... + E(X_n)$. Or ces variables aléatoires suivent la même loi. Elles ont donc la même espérance.
 - D'où, pour tout $k \in \{1; 2; ...; n\}$, $E(S_n) = nE(X_k)$.
- De la même manière, les variables aléatoires $X_1, X_2, ... X_n$ étant supposées indépendantes, on obtient, pour tout $k \in \{1; 2; ...; n\}$, $V(S_n) = V(X_1) + V(X_2) + ... + V(X_n) = nV(X_k)$.

Enfin, on a
$$\sigma(S_n) = \sqrt{n} \sigma(X_k)$$
.

Remarque:

Cette propriété généralise les résultats obtenus sur la loi binomiale en considérant, dans ce cas, la variable aléatoire X comme somme de variables aléatoires de Bernoulli indépendantes de paramètres p.

Propriété:

Pour tout $k \in \{1; 2; ...; n\}$, on a:

- $E(M_n) = E(X_k)$
- $V(M_n) = \frac{V(X_k)}{n}$ et $\sigma(M_n) = \frac{\sigma(X_k)}{\sqrt{n}}$.

Démonstrations:

- Soit $k \in \{1; 2; ...; n\}$, la linéarité de l'espérance et la propriété précédente donnent $E(M_n) = E\left(\frac{X_1 + X_2 + ... + X_n}{n}\right) = E\left(\frac{S_n}{n}\right) = \frac{1}{n}E\left(S_n\right) = \frac{1}{n}\times nE\left(X_k\right) = E(X_k)$.
- Par ailleurs, pour tout $a \in \mathbb{R}$, $V(aS_n) = a^2V(S_n)$.

En combinant cette égalité au résultat de la propriété précédente,

$$V(M_n) = V\left(\frac{S_n}{n}\right) = \frac{1}{n^2}V(S_n) = \frac{1}{n^2}nV(X_k) = \frac{V(X_k)}{n} \quad \text{On obtient ensuite } \sigma(M_n) = \frac{\sigma(X_k)}{\sqrt{n}} \quad .$$

Remarques:

• $E(M_n)$ peut s'interpréter comme ceci : en prenant un grand nombre de fois des échantillons de taille n et en calculant, à chaque fois la moyenne de l'échantillon obtenu, la moyenne théorique de ces résultats est égale à $E(X_k)$.

• $V(M_n) = \frac{V(X_k)}{n}$ montre que la variance diminue quand la taille de l'échantillon augmente. Elle quantifie la fluctuation d'échantillonnage, c'est-à-dire l'écart moyen entre les valeurs prises par la variable aléatoire et son espérance.

Exemple:

Soit X la variable aléatoire qui, à chaque paquet de chips issue d'une chaîne de production, associe sa masse en grammes. On note X_i la variable aléatoire qui, à chaque lot de 3 paquets de chips, associe la masse du i-ème paquet.

Les variables aléatoires X_1 , X_2 et X_3 sont indépendantes et suivent la même loi que X, donc (X_1, X_2, X_3) est un échantillon de taille 3 de la loi de X.

La variable aléatoire somme $S_3 = X_1 + X_2 + X_3$ associe, à chaque lot sa masse en grammes.

La variable aléatoire moyenne $M_3 = \frac{X_1 + X_2 + X_3}{3}$ associe, à chaque lot de 3 paquets, la masse moyenne d'un paquet.

$$E(M_3) = E(X)$$
 et $V(M_3) = \frac{1}{3}V(X)$.