NE 774 100 G

0 061 761

A₁

(12)

EUROPEAN PATENT APPLICATION

... Co72 21/22 G

(3) Application number: 82102642.4

② Date of filing: 29.03.82

(9) Int. Cl.²: C 07 H 19/04 //G01N33/48, C07H21/00

BEST AVAILABLE COPY

30 Priority: 30.03.81 US 248688

43 Date of publication of application: 06.10.82 Bulletin 82/40

Designated Contracting States:

AT BE CH DE FR GB IT LI LU NL SE

71) Applicant: Baker Instruments Corporation 2196 Avenue C. P.O. Box 2168 Bethlehem Pennsylvania 18001(US)

12) Inventor: Kang, Jemo 22 Nassau Court Skillman New Jersey 08558(US)

Representative: Vossius Vossius Tauchner Heunemann Rauh Siebertstrasse 4 P.O. Box 86 07 67

D-8000 München 86(DE)

DOC

- A method for preparing a mononucleotide-3'-phosphodiester-based substrate.
- (3) A method for preparing a substrate capable of undergoing catalytic-induced hydrolysis of the phosphate ester at the 3'-position to yield a species capable of being monitored spectrophotometrically or fluorometrically, comprises

(a) blocking a mononucleoside of the formula:

wherein 8 is a nucleotide base, and wherein the CH₂OH group at the 4'-position is either cis or trans to said base, with a silyl blocking member at both the 2'-and 5'-hydroxyls of said m nonucleoside to form a 2'-, 5'-diblocked m n nucleoside; and

(b) f rming a 2'-, 5'-dibl cked mononucle tide 3'ph sphodiester by b nding said 2'-, 5'-diblocked mon nucleoside with a milety selected from the group consisting of a chromiphore in fluorophor:

said silyl blocking member at the 2'-hydr xyl being capabl of at least essentially blocking medium-induced hydrolysis of the phosphodiester at the 3'-position, and said silyl blocking member at least at th 2'-hydroxyl being capable f being rem ved to provide a substrate characte-

rized by the ability to undergo catalytic-induced hydrolysis of the phosphate ester at the 3'-position to yield a species capable of being monitored spectrophotometrically r fluorometrically. The silyl blocking member at least at the 2'-hydroxyl is removed so as to provide a substrate characterized by the ability to undergo catalytic induced hydrolysis of said phosphodiester to yield a species capable of being monitored spectrophotometrically or fluorometrically.

Our Ref.: R 1857 Case: BIC-1

BAKER INSTRUMENTS CORPORATION Bethlehem, PA 18001 / USA

A Method for Preparing a Mononucleotide-3'-phosphodiester-based Substrate

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to chromogenic and/or fluorogenic mononucleotide 1'-phosphodiesters, and, more particularly, to a novel method for synthesizing such mononucleotide phosphodiesters. These materials may be used, for example, in carrying out various non-isotopic immunoassays.

2. Description of the Prior Art

For a variety of clinical purposes such as, for example, monitoring dosage schedules, monitoring hormone levels, checking for recent ingestion or following pharmacological dynamics of bioavailability, absorption, degradation or excretion, it is a great advantage to measure the concentration of various drugs or the like to the nanomolar or even picomolar level. As is known, radioimmunoassay can accomplish analyses of this type. To carry out an analysis, an acceptable kit or system must include an antiserum, a standard of the compound (i.e., - analyte) to be measured, the radiolabeled derivative of the compound to be measured, a buffaring agent or agents and, often, a displacing agent. The antiserum is produced by bleeding animals which have been immunized by innoculation, for example, with the hapten - protein conjugate (immunogen) corresponding to the compound to be measured.

As is well known, in general, the technique of radioimmunoassay measures the competition between radioactively
labeled analyte and unlabeled analyte for binding sites on the
antibody in the antiserum. By adding to the antiserum known
amounts of the analytes to be assayed and a radiolabeled analog,
a dose - response curve for bound or free analyte versus
concentration of analyte is constructed. After this immunocalibration has been carried out, unknown concentrations can then

30

20

10

be compared to the standard dose-response curve for assay.

Crucial to this type of assay is the existence of radioactive analytes which compete effectively with non-radioactive analytes. Accordingly, in order to obtain the maximum precision, accuracy, sensitivity, specificity and reproducibility of the assay, purified, well-characterized synthetic radioactive analytes are required.

16

20

30

Several deficiencies in radioimmunoassay methodology have been identified. First of all, it is necessary to make a physical separation of the antibody bound radiolabeled analyte from the free radiolabeled analyte. Further, the methodology is considered rather labor intensive, and the equipment required is likewise relatively expensive, is not uniformly available, and further requires the use of highly trained and skilled technicians to accurately carry out such assays. Likewise, the radioisotopically-labeled analytes are relatively unstable and expensive and pose an increasingly severe waste disposal problem owing to radiation exposure hazards associated with the commonly used radioisotopic labels. Despite these shortcomings, the use of radioismunoassay has grown considerably.

The substantial recent growth in the use of radioimmunoassay in clinical laboratories has, however, spurred the
development of variants which overcome the deficiencies of the
radioimmunoassay methodology as described herein. The approaches
which have been developed to overcome these deficiencies primarily involve the use of enzyme or fluorescent labels instead
of radioisotopic labels, preferably coupled with conditions
allowing for measuring a chemical distinction between bound
and free fractions of labeled analyte which leads to the
elimination of the requirement for physical separation.
Immunoassays having the latter simplifying and advantageous

feature are referred to as homogeneous immunoassays as opposed to heterogeneous immunoassays where physical separation is required.

Thus, homogeneous immunoassay systems have been developed which are based on the use of an enzyme-labeled analyte where the enzymatic activity of the label is decreased when complexation with the antibody occurs. Unlabeled analyte whose concentration is to be determined displaces the enzymelabeled analyte bound to the antibody, thus causing an increase in enzymatic activity. Standard displacement or dose-response curves are constructed where increased enzymatic activity (monitored spectophotometrically using what has been termed a "substrate" which ultimately produces a unique chromophore as a consequence of erzyme action) is plotted against increased analyte concentration. These are then used for determining unknown analyte concentrations. The following United States patents have been issued in the field of homogeneous enzyme immunoassay: 3,817,837; 3,852,157; 3,875,011; 3,965,536; 3,905,871; 4,065,354; 4,042,872; 4,040,907; 4,039,385; 4,046,636; 4,067,774; 4,191,513; and 4,171,244. In these patents, the label for the analyte is described as an enzyme having a molecular weight substantially greater than 5,000. Also, commercialization of this technology has been limited so far to applications where the analytes are relatively small in molecular size at fluid concentrations of the analyte greater than 10 -10 M.

10

20

As a consequence of the limitations of the homogeneous enzyme immunoassay technique described above, considerable effort has been devoted towards developing more sensitive
homogeneous immunoassays using fluorescence. These have been
primarily directed at assays for the larger sized molecules

such as immunoglobulins or polypeptide hormones such as insulin. The following United States patents have been issued for this type of assay: 3,998,943; 3,996,345; 4,174,334; 4,161,515; 4,203,479 and 4,160,016. The label in most of these patents involves an aromatic fluorescent molecule, bound either to the analyte or to the antibody. All likewise involve various methods of quenching fluorescence through antibodies or other fluorescent quenchers so that the extent of quenching is related to the amount of analyte present in the sample.

10

A further type of methodology which may be described as a reactant-labeled fluorescent immunoassay involves the use of a fluorescent-labeled analyte designed so that a fluorescent product is released when it is enzymatically hydrolayed. Antibody to the analyte portion of the molecule, however, inhibits enzymatic hydrolysis. Consequently, by the law of mass action, fluorescence is enhanced in the presence of increased analyte due to enzymatic hydrolysis of the displaced, fluorescent labeled analyte. As an example, a labeled analyte is β - galactosyl-umbelliferone-sisomicin. The enzyme & -galactosidase cleaves the sugar from the umbelliferone moiety which can then fluoresce. Publications which describe this methodology include: J.F. Burd, R.C. Wong, J.E. Feeney, R.J. Carrico and R.C. Boguolaski, Clin. Chem., 23, 1402(1977); Burd, Carrico, M.C. Fetter, et al., Anal. Blochem., 77, 56 (1977) and F. Rohen, Z. Hollander and Boguolaski, Jour. of Staroid Biochem., 11, 161 (1979).

The co-pending U.S. Farina et al. application, USSN 248,689, filed March 30, 1981, provides methodology for carrying out n n-isotopic immunoassays which obviates the deficiencies of prior assays

of this general type. In an illustrative embodiment, this methodology utilizes a labeled analyte-polypeptide complex which expresses ribonuclease-type activity to catalytically convert a substrate to a chromogenic or fluorogenic reporter molecule.

Many organic compounds have been utilized heretofore for monitoring the catalytic activity of ribonuclease. Such organic compounds, or substrates, as they are commonly referred to, include ribonucleic acid itself, cyclic phosphate diesters, and monoribonucleotide compounds which exhibit the same or similar structural constraints as those expressed by the natural substrate.

Thus, for example, one method for monitoring the catalytic activity of ribonclease involves the use of a ribonucleic acid solution. That method involves monitoring a decrease in absorbance at 300 nm of a ribonucleic acid solution as a function of time, M. Kunitz, J. Biol. Chem., 154, 363 (1946). Although that method@is relatively simple to conduct, it has several deficiencies; specifically, the rate of decrease of absorption is not linear, calibration of each substate solution is required, and direct monitoring of absorbance decreases at 300 nm is impractical with clinical samples.

Another method utilized for monitoring ribonuclease activity is an end-point variant of the procedure described above. In the end point variant procedura, yeast ribonucleic acid is incubated with the enzyme sample for a fixed period of time. The remaining RNA is precipitated with perchloric acid or uranyl acetate/trifluoroacetic acid, and the absorbance of the supernatant is measured after centrifugation. S.B. Anfinsen, R.R. Redfield, W.L. Choate, A. Page, and W.R. Carroll,

30

much too cumbersome for homogeneous immunoassays of the type described in the co-pending farina et al. application primarily due to the precipitation step involved.

Yet another variation of the above procedures has been reported by R.C. Kamm, A.G. Smith, and H. Lyons, Analyt.

Biochem., 17, 333 (1970). The method described therein is based on the formation of a fluorescent reaction product resulting from the reaction of the dye ethidium bromide with intact yeast ribonucleic acid, but not with the hydrolysis products. In that method, a fluorescent signal, which is monitored, decreases with time. However, monitoring a fluorescent signal which decreases with time is disadvantageous, as the method may result in a lack of sensitivity when only modest differences in enzyme concentration are encountered. In addition, other disadvantages are that the rate of decrease of absorption is not linear, and calibration of each substrate solution is required.

10

20

30

Another known substrate for monitoring ribonuclease activity is a mononucleotide substrate, cytidine 2', 3'-phosphate diester, E.M. Crook, A.P. Mathias, and 3.R. Rabin,

<u>Biochem. J., 74</u>, 234 (1960). In that method, an increase of absorbance at 286 nm, corresponding to the hydrolysis of the cyclic phosphate ring, is monitored over a two-hour period to measure the ribonuclease activity of the sample. This method, however, cannot be used in homogeneous immunoassay methods of above-mentioned the type described in the/Farina et al. copending application because there are analyte sample interferences which occur at 286 nm. Furthermore, the distinction between the substrate and product absorbance spectra is small, with the ratio of extinction coefficients being only 1.495 at 266 nm.

Further, certain mononucleotide-3'-phosphodiesters. including, 1-naphthyl esters of 3'-uridylic, 3'-inosonic and 3'-adenylic acids have been utilized as ribonuclease substrates. These napthyl esters have been used to differentiate substrate specificities of ribonucleases from various sources. H. Sierakowska, M. Zan-Kowalczewska, and D. Shugar, Biochem. Biophys. Res. Comm., 19, 138 (1965); M. Zan-Kowalczewska, A. Sierakowska, and D. Shugar, Acta. Biochem. Polon., 13, 237 (1966); E. Sierakowska and D. Shugar, Acta. Biochem. Polon., 18, 143 (1971); H. Sierakowska, H. Szemplinska, D. Shuçar, Biochem. Biophys. Res. Comm. 11, 70 (1963). As a result of ribonuclease-induced hydrolysis, the use of such substances results in the liberation of 1-naphthol which is allowed to react with a diazonium salt to form an azo compound having strong visible absorbance. This approach requires that the assay kit include a separately packaged dye former (vir. - a diamonium salt). Also, this substrate cannot be employed in a fluorometric mode.

Various syntheses have been developed heretofore for the preparation of mononucleotide-3'-phosphodiesters.

One such method for the preparation of unidine-3'-(1-naphthyl) phosphate is that disclosed in R. Kole and E.

Sienakowska, Acta Biochim. Polon, 18, 187 (1971). In accordance with the method shown therein, unidine is acetylated at the 3'-nydroxyl position:

Next the 2'- and 5'-hydroxyl groups of 3'-G-acetyl uridine are blocked with dihydropyman; and sequentially, the

30

20

10

ij

3'-O-acetyl undergoes hydrolysis so that 2', 5'-bis-O-(tetrahydropyranyl) uridine is formed:

Condensation of 2', 5'-bis-O-(tetrahydropyranyl) uridine with naphthyl phosphate/dicyclonexylcarbodiimide or naphthyl phosphoryldichloride then results in 1-naphthyl phosphorylation of the 3'-hydroxyl to form the blocked form of the substrate 2', 5'-di-O-(tetrahydropyranyl) uridine-3'-(1-naphthyl) phosphate:

20

10

The tetrahydropyramyl blocking groups are acid labile and may be removed without competitive phosphate hydrolysis to form the substrate, unidine-3'-(1-naphthyl) phosphate:

A variation of the synthesis described in Sierakowska and Shuqar discussed above, is the method described in Rubsamen, Rhandler and Witzel (Hoppe-Seyler's) Z.Physiol.Chem., 355, 637 (1974). There, 2', 5'-bis-O-(tetrahydropyranyl)-3'-uridine phosphate is prepared by the reaction of dihydropyran with uridine-3'-phosphate. Dephosphorylation of the 2', 5'-bis-O-(tetrahydropyranyl)-3'-uridine phosphate with, for example, phosphatase or lead (II) hydroxide, forms 2', 5'-di-O-(tetrahydropyranyl) uridine. The 3'-hydroxyl of that compound may then be phosphorylated in the fashion disclosed in Sierakowska and Shuqar to form the desired mononucleotide-3'-phosphodiester, such as, for example, uridine-3'-(1-naphthyl) phosphate.

The synthesis schemes described by Sierakowska et al., and Rubsamen et al., suffer, however, from several major deficiencies. For example, in each synthesis method, the preparation of the key intermediate, 2', 5'-bis-0-(tetrahy-dropyranyl) unidine, involves an undesirable, lengthy chronotagraphy. Further, the resulting product is a mixture of diastereometric pairs in low yields; and this complicates subsequent synthetic steps. Finally, the overall synthesis is labor-intensive.

Closely similar schemes to those of Sierakowska et al. and Rubsamen et al. are disclosed in Polish Patent No. 81969. In one synthesis described therein, uridine 2', 5'-di-O-tetrahydropyrano-3'-(1-naphthyl) phosphate is formed in dicyclohexylcarbodiimide and pyridine by the reaction of a salt of 1-naphthylphosphoric acid, (e.g., the pyridine, aniline, lutidine or tri-n-buytlamine salt of the acid) with 2', 5'-di-O-(tetrahydropyranyl)uridine. In another synthesis described therein, uridine 2'-O-tetrahydropyranyl-5'-O-methyl-3'-(1-naphthyl) phosphate is formed in pyridine by the reaction

10

20

30

of a salt of 1-naphthylphosphoric acid and 5'-0-methyl-2'-0-(tetrahydropyranyl)uridine. These schemes likewise suffer from the deficiencies of the Sierakowska et al. and Rubsamen et al. methods.

In addition, methods are known for preparing oligoribonucleotides which incorporate the synthesis of 2', 5'-diblocked
nucleotides as intermediates. Thus, in J. Smrt and 7. Sorm,
Collection Crechoslov. Chem. Commun. 27, 73 (1962), uridylic
acid is converted into 5'-0-acetyluridine 2', 3'-cyclic
phosphate which, after enzymatic cleavage of the cyclic phosphate by pancreatic ribonuclease, results in 5'-0-acetyluridine 3'-phosphate, which is then transformed into 2'-0-tetrahydropyramy1-5'-0-acetyluridine 3'-phosphate by the reaction
with dihydropyram.

10

20

30

In this method, acetylation at the S'-hydroxyl of the cyclic phosphate is utilized as a synthetic convenience for preparing intermediates in the synthesis of oligoribon-ucleotides. Deblocking of the S'-acetyl is ultimately carried out in the formation of the desired oligoribonucleotide.

This, however, does not describe a suitable method for synthesizing a chromogenic and/or fluorogenic mononucleotide-3'-phosphodiester.

Further, in K.K. Ogilvie, S.L. Bezucage, A.L. Schifman, N.Y. Theriault and K.L. Sadana, Can.J.Chem., 56 2763 (1978), 2', 5'-di-t-butyldimethylsilyl blocked unidime and adenosine nucleosides are prepared by the reaction of t-butyl-dimethylsilyl chloride in pyridime or imidazole with a unidime or adenosine nucleoside. The resulting silylated nucleosides are then c upled to one another by phosphorylation to form oligonucleotides.

M recver, insofar as is known, the Smrt et al. and Ogilivie et al. methods have not heretofore been utilized in

preparing such chromogenic and/or fluorogenic mononucleotide 3'-phosphodiesters, despite the deficiencies of prior methods.

Thus, despite the considerable number of methods that have been developed and utilized for synthesizing various substrates suitable for use for monitoring enzymatic or catalytic activity, there remains the need for further development which can overcome the various shortcomings of the presently known synthetic methods. None of the synthesis schemes described heretofore are currently being used commercially for the manufacture of mononucleotide-3'-phosphodiesters insofar as is known.

10

20

It is, accordingly, an object of the present invention to provide a novel method for synthesizing mononucleotide—

3'-phosphodiesters having a chromogenic and/or fluorogenic in the furanoside ring/
functional group at the 3' phosphate moiety/in a more direct

manner involving fewer synthetic steps than required in prior methods.

Another object of this invention is to provide a nevel method for synthesizing chromogenic and/or fluorogenic /for use in monitoring catalytic or enzymatic activity/ mononucleotide 3'-phosphodiesters/, which is less labor intensive than previous syntheses heretofore known.

Yet another object of this invention is to provide a novel synthesis of chromogenic and/or fluorogenic mononucleotide 3'-phosphodiesters which results in improved overall yields of desired substrate.

Still another object is to provide a novel synthesis of chromogenic and/or fluorogenic mononucleotide-3'-phosphodiesters, which may be carried out on a multigram scale sufficient for commercial use.

A further object of the present invention is to provide a product capable of being stored for extended periods

of time and then, when needed, may be converted to an active form for use.

These and other objects and advantages of the present invention will become apparent from the following detailed description.

while the invention is susceptible to various modifications and alternative forms, there will herein be described in detail the preferred embodiments. It is to be understood, however, that it is not intended to limit the invention to the specific forms disclosed. On the contrary, it is intended to cover all modifications and alternative forms falling within the spirit and scope of the invention as expressed in the appended claims. For example, while the present invention will be primarily described in conjunction with the formation of a uridine-3'-phosphodiester, it should be appreciated that bases other than uracil may be employed, as will be described herein.

10

ed in the second of the second

SUMMARY OF THE INVENTION

In general, the present invention is predicated on the discovery that mononucleotide-3'-phosphodiester substrates having a chromogenic and/or fluorogenic functional group at the 3'-phosphate moiety may be readily synthesized in as few as three steps by simultaneously blocking the 2'-, 5'-hydroxyls of a mononucleoside with a selected common blocking group and thereafter converting the diblocked species to incorporate the desired chromogenic and/or fluorogenic moiety at the 3'-position. The resulting product is provided in a form capable of being stored for extended periods of time without adverse affects and may then be converted to a useful form by removing the blocking group at least at the 2'-position. The necessary

synthetic steps may be accomplished in a variety of schemes, providing sufficient versatility to allow a synthesis tailored to the desired diester substrate.

The resulting chromogenic and/or fluorogenic mononucleotide-3'-phosphodiester substrates may be utilized for monitoring the catalytic activity of a variety of enzymes, such as, for example, ribonuclease A, T₂, and the like; and/or polypeptide pairs having the catalytic activity of such enzymes. The chromogenic and/or fluorogenic mononucleotide substrates formed by the method of this invention are useful in the immunoassay methodology disclosed in the praviously identified copending Farina et al. application.

· DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In accordance with one embodiment of the present invention, suitable starting materials comprise mononculeosides having the following structural formula:

In this structure, there appear to be certain steric constraints which must be met in order to ultimately provide a substrate suitable for monitoring the catalytic activity of, for example, ribonuclease A-induced hydrolysis. Thus, the trans, cis orientation of the base 3 and substituents at positions 1'- and 2'-, 3'-, respectively, appear to have rigid structural constraints to provide a suitable substrate. However, the substituents at the 4'-position, that is, CH2OH, may apparently have a configuration where the

20

30

10

CH2OH group is <u>cis</u> to both the 2'- and 3'- functional groups, without affecting the desirable attributes of the substrate.

A. Holy and F. Sorn, <u>Biochemica</u>. <u>Biophysica</u>. <u>Acta.</u>, <u>161</u>, 26 (1962). Accordingly, while the method of the present invention will be described in conjunction with the preparation of a substrate wherein the 4'-CH2OH substituent is <u>trans</u> to the 2'-, 3'-substituents, it should be appreciated that the method is likewise equally applicable to the preparation of a substrate wherein the 4'-CH2OH substituent is <u>cis</u> to the 2'-, 3'-substituents.

From the functional standpoint, the selection of the base should take into account the following factors, in addition to, of course, its effect on product stability: (1) any modulation (increase or decrease) of catalytic activity, (2) the difficulty of synthesis, (3) the effect on endogenous enzymatic activity and (4) the solubility in aqueous or other mediums of interest should not be adversely affected to any significant extent. Other factors to consider include possible effects on hydrolysis and non-specific medium induced hydrolysis.

A wide variety of pyrimidine analogs are useful bases, including uracil, dihydrouracil, cytosine, dihydrocytosine and halogenated uracils. Additionally, based on data extrapolated from results on the ribonuclease-induced hydrolysis of both the natural substrate, RNA, as well as various synthetic substrates, such as, for example, nucleotide homopolymers, F.M. Richards and W.W. Wykoff in The Enzymes, (P.D. Boyer, Ed.), Academic Press, 3d Edition, Volume 4, pages

647-806; London and New York (1973), the following pyrimidine analogs should be suitable bases:

while the use of purine analogs as bases, such as, for example, adenosine and guanosine, will not provide active substrates for monitoring the catalytic activity of ribonuclease A, these bases should prove useful when ribonuclease T₂ activity is involved. Further, any other pyrimidine, purine or the like analogs may be used consistent with the functional considerations set forth herein.

In carrying out the first step of the method, the mononucleoside is reacted with a silylating reagent to form a 2'-, 5'-disilylblocked mononucleoside of the general formula:

20

30 Suitable blocking groups R should meet the following criteria: (1) readily introduced without affecting the other key functionalities, (2) compatible with the subsequent phosphodiester formation step, and more particularly, should minimize or eliminate undesired side reactions in such step, (3) sufficiently stable to allow long-term storage without any adverse deleterious affects and (4) easily removed without disruption of the phosphodiester bond. These criteria are satisfied by various silyl derivatives including triisopropyl-silyl, tert-butyltetramethylenesilyl and tert-butyldimethyl silyl. The tert-butyldimethyl silyl moiety is preferred.

10

20

In carrying out the silylation step, the resulting products comprise, in addition to the desired 2'-, 5'-diblocked species, a series of isomers including the 3'-, 5'-; 2'-, 3'-, 5'-and 2'-, 3'-diblocked specie. The principal isomers provided will typically be the desired 2'-, 5'-diblocked species and the 3'-, 5'-diblocked product. The product mixture obtained will depend upon the particular process parameters employed, and selectivity to the desired species may be enhanced by appropriate selection of such process parameters. Regardless, the separation of the various isomers to provide the desired diblocked species is relatively simple (e.g. - carried out by straightforward known chromatographic methods) and is not unduly complicated even where selectivity is considerably less than optimum, as might occur when the reaction time is relatively short.

may be carried out by using a relative molar ratio of unidine to silylation reagent of about 1:3 to about 1:4 in pyridine, which serves both as a solvent and as a base for catalyzing the reaction. The reaction proceeds satisfactorily at ambient temperatures and will provide high selectivity and conversion for the desired species after a reaction time of 60 hours or so.

The particular process parameters can be varied within wide limits, as may be desired. A variety of solvents are useful, including dimethylf mamide, dimethylsulfoxide, tetrahydrofuran, dioxane and the like. Other useful catalysts include imidazole, 2, 6-lutidine, triethylamine or the like. Useful temperatures range from about 10°C, to about 50°C, with reaction times ranging from no more than 20 minutes or so to as much as 100 hours or so.

The second step of the procedure in accordance with

the present invention involves the formation of 2'-, 5'-diblocked
chromogenic and/or fluorogenic unidine-3'-phosphodiester by
the reaction of the 2'-, 5'-diblocked mononucleoside with a

suitable derivative form of the chromophore and/or fluorophore,
as depicted below:

The mononuclectide-3'-phosphodiesters so formed may be readily handled and chromatographed due to their enhanced solubility in organic solvents, if desired.

20

Functionally, R' can be defined as any functional group which will provide the substrate with fluorogenic and/or chromogenic properties. The R' group may be an aryl, araalkyl, heteroaryl or heterocyclic compound. In the preferred embodiment, R' is umbelliferonyl, 4-methylumbelliferonyl and 3-flavonyl. Other suitable R' groups include

aryls such as, for example, 1-napthyl. Further, other R groups which are suitable are aryl groups which incorporate electron withdrawing and conjugating substituents which increase the acidity of ortho and para benzoic acids. Such groups include, ortho, meta and para nitrophenyl, dinitrophenyl, cyanophenyl, acylphenyl, carboxyphenyl, phenylsulfonate, phenylsulfomyl and phenylsulfoxide. In general, mixtures of mono and bi-substituted derivatives may likewise be suitable.

10

The formation of the desired phosphodiester should be conducted, of course, in a fashion adequate to insure that no or only a minimum disruption of the key functionalities occurs. Desirably, the formation should likewise allow use of relatively mild reaction conditions to provide a product capable of being readily isolated in high yields. These general objectives may be suitably accomplished by, in general, either reacting the wridine directly with a phosphorylated derivative of the desired chromophora and/or fluorophore or by first converting wridine to a 3'-phosphorylated derivative and then reaction with an alcoholic derivative of the chromophora and/or fluorophore.

20

36

The first approach can be carried out by two synthetic schemes. One scheme involves reaction of the phosphate derivative of the chromophore/fluorophore with the 2'-, 5'-diblocked mononucleoside in the presence of a suitable condensation agent. Importantly, the reagent selected should provide a high yield of ester product at mild reaction conditions. Toluenesulforyl chloride, mesitylenesulforyl imidazonide, p-t luenesulforyl imidazolide, 2, 4, 6-triisopropylben-tenesulforyl chloride, mesitylen sulforyl chloride, picryl-sulforyl chloride, M. M'-dicyclohexylcarbodiimide, 1-(2-di-methylaminopropyl)-3-ethylcarbodiimide hydrochloride, and

other carbodismide analogs with or without additives such as, N-hydroxy-succinimide, and N-hydroxyphthalimide are illustrative examples. The use of 2, 4, 6-triisopropylbenzenesulfonyl chloride and N, N'-dicyclohexylcarbodismide have been found to be satisfactory.

The relative ratio of 2'-, 5'-diblocked mononucleoside to the phosphorylated chromogenic and/or fluorogenic derivative should be in the molar range of at least 1 to 1, desirably employing an excess of such derivative. A ratio of 1:2 has been found satisfactory for the amount of the nucleoside to that of the condensation agent, but excesses up to perhaps 1:5 or so may likewise be perhaps useful.

1,

10

20

3 G

The reaction may be carried out in an aprotic polar solvent such as N, N-dimethylformanide, diceane or tetrahydrofuran and the like, in the presence of a base such as pyridine, triethylamine and the like. Suitably, dry pyridine base as a solvent may be used at a temperature in the range of from about -20°C, to about 25°C, with a reaction time of 5 to 18 hours. A reaction temperature range of from about -20°C, to about 50°C, and a time period of about 2 to 72 hours should likewise be satisfactory.

The second synthetic scheme involves starting with a chromogenic and/or fluorogenic alcohol. The alcohol may first be phosphorylated in situ to form a reactive intermediate which is then reacted with the 2'-, 5'-disilylated blocked mononucleoside to form the phosphodiester. The phosphorylation reaction may be carried out by employing any of the numerous phosphorylation reagents known in the art, such as, for example, phosphorous exychloride, 2, 2, 2-trichloroethyl phosphorodichloridite, or the like. The phosphorylation is carried out, typically utilizing an excess of the

phosphorylation reagent, in an aprotic solvent such as N, N-dimethylformamide, dioxane, tetrahydrofuran or the like, in the presence of a base, such as, pyridine or triethylamine. Pyridine may be used as the solvent and base. The excess phosphorylating reagent may then be removed from the reactive intermediate before further reaction to form the 2', 5'-disilylblocked mononucleoside phosphodiester.

Suitable reaction conditions include employing dry pyridine base at a temperature in the range of from about -10°C. to about 30°C. and a reaction time of about 1 to about 3 hours. A temperature range of about -78°C. to about 80°C. and reaction times of from about 5 minutes to about 5 hours should likewise be suitable.

In a first alternative, but related aspect of the invention, the 2', 5'-disilylated blocked mononucleoside may be phosphorylated to form a diblocked mononucleotide intermediate, which may then be reacted with a chromogenic and/or fluoregenic alcohol to form the 2', 5'-disilylated blocked mononucleotide phosphodiester.

20

10

In the second approach, the 2', 5'-diblocked nucleoside derivative is first phosphorylated to form a reactive intermediate which is then reacted with the chromophore and/or fluorophore alcohol. The phosphorylation and subsequent ester forming reactions may suitably be carried out as previously described in conjunction with the first approach. The phosphorylated nucleoside derivative can be either the acid chloride or the acid itself. In the latter instance, a condensation reagent should be employed, as has been previously described in conjunction with the first approach.

30

In accordance with yet another embodiment of the present invention, a 2', 5'-disilylblocked mononucleotide is

first prepared by the reaction of a 3'-mononucleotide and a silylating reagent, as shown schematically below:

10

20

wherein R is a silyl blocking group, and B is a base, as previously defined herein. The 2', 5'-disilylblocked uridine monophosphate may then be condensed with the chronogenic and/or fluorogenic alcohol to form the 2', 5'-disilyl-blocked mononucleotide 1'-phosphodiester. The silyation and condensation reactions may be carried out utilizing the process parameters previously discussed in the first approach.

The 2', 5'-disilylblocked substrate is a stable compound which may be stored for extended periods of time. However, deblocking is necessary to provide a suitable substrate for use in monitoring the enzymatic or catalytic activity in applications such as non-isotopic immunoassays.

Deblocking of the substrate may be readily carried out with the use of several different reagents without significant deleterious hydrolytic cleavage of the deblocked substrate.

The reagents should, of course, be mild enough so that the phosphate diester bond is not cleaved during the deblocking step. Also, and importantly, the reagent should be capable of being readily separated from the phosphodiester substrate and should not inhibit or otherwise interfere with the subsequent intended application. Suitable reagents include acids, ammonium halide salts, inorganic halide salts and the like. Generally, tatrabutylammonium fluoride, trityl-fluoroborate, lithium tetrafluoroborate, hydrogen fluoride, acetic acid, and hydrochloric acid may be used. Tetrabutylammonium fluoride has been found suitable.

The deblocking reaction is generally carried out in a protic or aprotic polar solvent such as tetrahydrofuran, acetonitrile, dioxane, pyridine or water using an excess of the deblocking reagent. As an example, a 1M solution of tetrahydrofuran may be employed at a temperature of about 15°C, to about 30°C, for a period of from about 20 minutes to about 50 minutes. The temperature range may suitably extend from about 0°C, to about 50°C, with reaction times of as little as about 10 minutes up to perhaps 120 minutes or so.

The following Examples are merely illustrative of the present invention and are not intended as a limitation on the scope thereof.

EXAMPLE I

This Example illustrates the preparation of 2', 5'-bis-1-butyldimethylsilyluridime.

In the preparation of 2', 5'-bis-t-butyldimethylsil-yl-uridine, 11.39 g, 0.0466 mole, of uridine was dissolved in 30 00 al of pyridine by stirring at room temperature for about

5 min. Then 21.09 g, 0.140 mole, <u>t</u>-butyldimethylsilyl chloride was added to the pyridine solution and the mixture was stirred at room temperature for about 62 hours in a flask fitted with a drying tube. The reaction mixture was diluted with 150 ml other and then filtered to remove pyridine- ECl. The ether-pyridine filtrate was concentrated on a rotary evaporator and then in high vacuum using a liquid nitrogen trap.

Thin layer chromatography of an aliquot of the 10 reaction product mixture on silica gel plate, with a solvent of, by volume, two parts ether and one part hexane showed three components, respectively, at R, 0.65, 0.5 and 0.3.

The remainder of the oily reaction product mixture was chromatographed on a 4.2 x 44 cm silica gel column comprising Silica gel 60 (EM Reagent, Lot No. 7953179), of particle size 0.063 - 0.2 mm and 70 - 230 mesh (ASTM) with a solvent of, by volume, two parts hexane and one part ethyl acetate, to separate the three components of the reaction product mixture. The fractions having R_g of 0.5, identified by thin layer chromatography at the conditions given above, were combined. Additionally, fractions containing the R_g 0.3 and 0.65 components were rechromatographed to isolate additional R_g 0.5 product. The R_g 0.5 fractions were combined to give a yield of 3.961 g, that is 40.5%. The melting point (123-125°C.) and n.a.r. spectrum (CDCl₃) of the product confirmed the product as 2', 5'-bis-t-butylmethylsilyluridine.

EXAMPLE II

This Example illustrates the preparation of 2', 5'-bis-<u>t</u>-butyldimethylsilyl-3'-uridime 1-naphthyl phosphate.

The disodium salt of 1-naphthyl phosphate, 1.814 g, 6.77 mmoles, was converted into the pyridinium salt using a

30

Bio-Rad λG^R 50 W-X8 cation exchange column. The resulting pyridinium salt solution was concentrated at room temperature in vacuum.

A solution of 3.197 g, 6.77 mmoles of 2', S'-bist-butyldimethylsilyluridine, prepared in Example I, in 50 ml
of dry pyridine was added to a solution of the concentrated
pyridinium salt in 50 ml dry pyridine. The mixture was dried
twice by stripping pyridine off, using 50 ml of dry pyridine
for each drying operation. The resulting glassy residue was
redissolved in 10 ml of dry pyridine and 2.6 g of Z, 4,
6-triisopropylbenzenesulfonyl chloride was added to the
solution. The reaction mixture was stirred in the dark at
room temperature for 20 hours and then concentrated to dryness in vacuo at room temperature.

10

20

30

Thin layer chromatography of a portion of the crude product on silica gel using a solvent system comprised of hexane, methanol, methylene chloride and triethylamine in the ratio, by volume, of 5:2:2:0.5, showed one major spot at R_g 0.5 and minor spots at the origin, R_g 0.81 and R_g 0.75. Under these conditions, the starting material had an R_g of 0.75, and the diester had an R_g of 0.5.

The crude mixture was then chromatographed on a 23 x 2.5 cm Silica Gel G column to separate the components. The column was eluted sequentially with 100 ml of chloroform, 100 ml of 5% methanol in chloroform, and 80% methanol in chloroform until the eluant showed product. Eluant fractions of twenty ml each were collected. Fractions 10 to 13 were identified by thin layer chromatography at the conditions given above, as containing the phosphodiester product (R₂ 0.5). These fractions were combined and concentrated to give 4.721 g of tan colored product. The melting point, 83-86°C.,

and infrared spectrum (in KBr) and n.m.r. spectrum (CDCl₃) of the product confirmed the product as 2', 5'-bis-t-butyldi- methylsilyl-3'-uridine l-naphthyl phosphate.

EXAMPLE III

This Example illustrates the preparation of 3'-uri-dine-(1-naphthy1) phosphate.

The 2', 5'-bis-t-butyldimethylsilyl-3'-uridine(1-naphthyl) phosphate prepared in Example II, 75 mg, was
treated with 3.2 ml of 1 M solution of tetrabutylanmonium
fluoride in tetrahydrofuran. The mixture was stirred at room
temperature for 40 minutes, and then the solvent was removed
by evaporation in vacuo to leave the crude product residue.
The residue was dissolved in 2 ml of water, and extracted 3
times with 5 ml portions each of ether to remove unwanted
byproducts. The aqueous solution was blown by a stream of
nitrogen to remove any residual ether to thus obtain 3'-uridine-(1-naphthyl) phosphate solution, essentially free of
byproducts.

10

The 3'-wridine 1-naphthyl phosphate solution was buffered with 0.1 M sodium acetate buffer of about pH 5 and used in the thyroxine assays set forth in Examples XVII, XVIII and XXIX in the previously identified copending Farina et al. application.

EXAMPLE IV

This Example illustrates the preparation of 2', 5'-<u>ois-tert</u>-butyldimethylsilyl-3'-uridine (4-methylumbelii-ferone-7-yl) phosphate.

In this Example, 2', 5'-bis-tert-butyldimethylsilyl-uridine is phosphorylated to form a reactive intermediate which is reacted with 4-methylumbelliferone.

In a round bottom flask, 0.2386 g of 2', 5'-bistert-butyldimethylsilyluridine, prepared in Example I, was
dissolved in 5 ml of dry pyridine. The solution was evaporated to dryness in vacue. The solid residue was redissolved
in 7 ml of dry tetrahydrofuran and 4 ml of pyridine, and
cooled with stirring in an ice-water bath under exclusion of
atmospheric moisture. To the stirred cold solution there was
added 0.5 ml of phosphorus exychloride, using an air tight
syringe. The mixture was allowed to stir for 5 minutes in a
cooling bath, and then at room temperature for 1.5 hours.
Pyridine EC1 salt was deposited in the bottom of the flask.

An aliquot of the reaction mixture was analyzed by thin layer chromatography to monitor the formation of the intermediate. The chromatography was carried out on a silica gel plate with a solvent system comprising ethyl acetate, chloroform and hexane in the ratio, by volume, of 5:2:3. The analysis showed a component with R_g near the origin. However, there was no component with R_g 0.55 thereby indicating that the unidine starting material had been completely consumed.

The remainder of the reaction mixture was concentrated in vacuo using a liquid nitrogen trap to remove unreacted phosphorus oxychloride. To the residue there was added 0.107 g of 4-methylumbelliferone, and the mixture was cooled in an ice-water bath under nitrogen atmosphere to exclude atmospheric moisture. To the mixture there was added 4 ml of dry pyridine, and the resulting solution was stirred at room temperature for 40 minutes.

An aliquot of the resulting light yellow solution was analyzed by thin layer chromatography, at the same conditions as given above. A new fluorescent spot, believed to be 2', 5'-bis-tert-butyldimethylsilyl 3'-uridime (4-methylumbel-liferone-7-yl) phosphate, was found.

10

20

30

The remainder of the solution was concentrated in vacuo to a glassy oil. The oil was suspended in 5 ml of tetrahydrofuran (THF). To the THF suspension, there was added 20 ml of ether and the mixture was stored in a cold room, about 4 to 8°C., to precipitate product. The product as obtained in this fasion was collected by filtration and dried over P_2O_5 in vacuo to yield 0.572 g of light gray powder. The product was confirmed by n.m.r. to contain 2', 5'-bis-text-butyldimethylsilyluridine 3'-(4-mathylumbelliferone-7-yl) phosphate.

10

The 2', 5'-bis-tert-butyldimethylsilyl-uridine-3'(4-methylumbelliferone-7-yl) phosphate was deblocked following the same procedure as set forth in Example III, to form
3'-uridine-(4-methylumbelliferone-7-yl) phosphate, which was
identified by enzyme assay. In an assay with RNase enzyme,
the assay mixture was excited at 325 nm and emission was
monitored at 450 nm corresponding to the fluorogenic 4-methylumbelliferone, resulting from catalytic hydrolysis of 3'-

uridine-(4-methylumbelliferone-7-yl) phosphate.

WHAT IS CLAIMED IS:

- 1. A method for preparing a mononucleotide-3'-phosphodietser-based substrate capable of undergoing catalytic-induced hydrolysis of the phosphate ester at the 3'-position to yield a species capable of being monitored spectrophotometrically or fluorometrically, comprising
 - (a) blocking a mononucleoside of the formula:

wherein 3 is a nucleotide base, and wherein the CH2OH group at the 4'-position is either <u>cis</u> or <u>trans</u> to said base, with a silyl blocking member at both the 2'-and 5'-hydroxyls of said mononucleoside to form a 2', 5'-diblocked mononucleoside; and

(b) forming a 2', 5'-diblocked mononucleotide
3'-phosphodiester by bonding said 2', 5'-diblocked mononucleoside with a molety selected from the group consisting of a
chromophore and fluorophore;

said silyl blocking member at the 2'-hydroxyl being capable of at least essentially blocking medium-induced hydrolysis of the phosphate ester at the 3'-position, and said silyl blocking member at least at the 2'-hydroxyl being capable of being removed to provide a substrate characterized by the ability to undergo catalytic-induced hydrolysis of the phosphate ester at the 3'-position to yield a species capable of being monitored spectrophotometrically or fluorometrically.

2. The method of claim 1 wherein the silyl blocking member at least at the 2'-hydroxyl is removed so as to provide a substrate characterized by the ability to undergo catalytic-induced hydrolysis of said phosphodiester to yield a species

capable of being monitored spectrophotometrically or fluorometrically.

- . 3. The method of claim 1 wherein said base is a pyrimidine analog.
- 4. The method of claim I wherein said base is a purine analog.
- 5. The method of claim 1 wherein said base is a member selected from the group consisting of uracil, diMyrouracil, cytosine, diMydrocytosine and halogenated upacils.
 - 6. A method of claim 1 wherein said base is uracil.
 - 7. The method of claim 1, wherein said sily! blocking member is a member selected from the group consisting of triisopropylsily1, tert-butyltetramethylenesily1 and tert-butyldimethylsily1.
 - 3. The method of claim 1 wherein said moiety is a member selected from the group consisting of aryl, arealkyl, heteroaryl or heterocyclic compound.
 - 9. The method of claim 3 wherein said moiety is a member selected from the group consisting of unbelliferonyl, 4-methyumbelliferonyl, 3-flavonyl, 1-maphthyl, c-mitrophenyl, m-nitrophenyl, p-nitrophenyl, 2,4-dimitrophenyl, cyanophenyl, acylphenyl, carboxyphenyl, phenylsulfonate phenylsulfonyl and phenylsulfoxide.

- 10. The method of claim 9 wherein said moiety is 1-naphthyl.
- 11. The method of claim 9 wherein said moiety is 4-methylumbelliferonyl.
- 12. The method of claim 9 wherein said moiety is 3-flavonyl.
- 13. The method of claim 1 wherein said 2'-,5'diblocked mononucleotide 3'-phosphodiester is formed by the
 reaction of said 2', 5'-diblocked mononucleoside and a phosphoylated derivative of said moiety.
- 14. The method of claim 13 wherein said reaction is carried out in a condensation reagent selected from the group consisting of toluenesulfonyl chloride, mesitylenesulfonyl imidazolide, p-toluenesulfonyl imidazolide, 2,4,6-trii-sopropylbenzenesulfonyl chloride, mesitylenesulfonyl chloride, picrylsulfonyl chloride, N, N-dicyclohexylcarbodiimide, and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide, hydrochloride.
- 15. The method of claim 14 wherein said reaction is carried out in the presence of an additive selected from the group consisting of N-hydroxysuccinimide, N-hydroxyphthalimide, 2,4,6-triisopropylhenzenesulfonyl chloride and N,N'-dicyclohexylcarbodiimide.
 - 16. The method of claim 14 wherein the molar ratio of said mononucleoside and said phosphorylated molety is at least 1 to 1.

- 17. The method of claim 16 wherein said reaction is carried out in an aprotic polar solvent selected from the group consisting of N,N-dimethylformamide, dickane and tetrahydrofuran.
- ... 18. The method of claim 17 wherein said reaction is carried out in the presence of a base selected from the group consisting of pyridine and triethylamine.
- 19. The method of claim 18 wherein said base is pyridine.
- 20. The method of claim 19 wherein said reaction is carried out at a temperature in the range of from about -20°C. to about 25°C.
 - 21. The method of claim 20 wherein said reaction is carried out for a period of from about 5 to about 18 hours.
- 22. The method of claim 1 wherein said molety is an alcohol, the alcohol being phosphorlated <u>in situ</u> to form a reactive intermediate, and said reactive intermediate being reacted with said 2'-,5'-diblocked mononucleoside to form said phosphodiester.
- 23. The method of claim 1 wherein said 2', 5'diblocked mononucleoside is phosphorylated to form a 2', 5'diblocked mononucleotide reactive intermediate, and reacting
 said mononucleotide reactive intermediate with said moiety to
 form said phosph diester.

- 24. The method of claim 22 or 23, wherein said phosphorylation reaction is carried out in the presence of a phosphorylation reagent selected from the group consisting of phosphorous exychloride and 2,2,2-trichloroethyl phosphorodichloridite.
- 25. The method of claim 23 or 24 wherein said phosphorylation is carried out in the presence of an aprotic solvent selected from the group consisting of N,N-dimethyl-formamide, dioxane and tetrahydrofuran.
- 26. The method of claim 25 wherein said phosphorylation reaction is carried out in the presence of a base selected from the group consisting of pyridine and triethylamine.
- 27. The method of claim 26 wherein said phosphorylation reaction is carried out in the presence of pyridine.
- 28. The method of claim 27 wherein said phosphorylation reaction is carried out at a temperature in the range of from about -10°C. to about 30°C.
- 29. The method of claim 28 wherein said phosphorylation reaction is carried out for a time of from about 1 hour to about 3 hours.
- 30. The meth d f claim 23 wherein said moiety is an alcohol.

- 31. A method according to claim 1, comprising
- (a) blocking a mononucleotide of the formula:

wherein B is a nucleotide base, and wherein the CH₂OH group at the 4'-position is either <u>cis</u> or <u>trans</u> to said base, with a silyl blocking member at both the 2'- and 5'-nydroxyls of said mononucleotide to form a 2', 5'-diblocked mononucleotide;

(b) forming a 2', 5'-diblocked mononucleotide
3'-phosphodiester by bonding said 2', 5'-diblocked mononucleotide with a molety selected from the group consisting of
a chromophore and fluorophore;

said silyl blocking member at the 2'-hydroxyl being capable of at least essentially blocking medium-induced hydrolysis of the phosphodiester at the 3'-position, and said silyl blocking member at least at the 2'-hydroxyl being capable of being removed to provide a substrate characterized by the ability to undergo catalytic-induced hydrolysis of the phosphate ester at the 3'-position to yield a species capable of being monitored spectrophotometrically or fluorometrically.

32. The method of claim 1 wherein the silv1 block-ing member at least at the 2'-hydroxyl is removed so as to

provide a substrate characterized by the ability to undergo catalytic-induced hydrolysis of said phosphodiester to yield a species capable of being monitored spectrophotometrically or fluorometrically.

- 33. The method of claim 2 or 32 wherein said removal of said sily! blocking member is carried out in the presence of a deblocking reagent selected from the group consisting of tetrabuty!ammonium fluoride, trity!tetrafluoroborate, lithium tetrafluoroborate, hydrogen fluoride, acetic acid and hydrochloric acid.
- 34. The method of claim 33 wherein said removal of said silyl blocking member is carried out in the solvent selected from the group consisting of tetrahydrofuran, acetonitrile, dioxane and water.
- 35. The method of claim 34 wherein said blocking reagent is tetrabutylammonium fluoride, said solvent is tetrabydrofizan and the concentration of tetrabytylammonium fluoride is 1M in said tetrabydrofuran.
- 36. The method of claim 35 wherein said reaction is carried out at a temperature of from about 15°C. to about 30°C.
- 37. The method of claim 36 wherein said reaction is carried out for a period of from about 20 minutes to about 50 minutes.

EUROPEAN SEARCH REPORT

EP 82 10 2642

		IDERED TO BE RELEVAN	T	
Category		h indication, where appropriate, ant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CI. 7)
х	silyl groups i hydroxyl f	(GB) al.: "The use of n protecting the	1-37	C 07 H 19/04 G 01 N 33/48 C 07 H 21/00
x	sis of olig II.The use of groups in nucleotide che Can. J. Chem.	1979, page 679, 25x, Columbus, al.: "The synthe- oribonucleotides. silyl protecting	1-37	•
	abstract *			TECHNICAL FIELDS SEARCHED (Int. Cl. ²)
Y	uses of t substrates for 5'-(venom) a	et al.: properties, and wo fluorogenic the detection of and 3'-(spleen) phodiesterases" & 1981, 117(1),	1-37	С 07 Н 19/00 С 07 Н 21/00
-		·/·		
	The present search report has t	peen drawn up for all claims		
	Place of search THE HAGUE Oate of completion of the search 30-06-1982		VERHU	LST W.
Y: pa do A: ted O: n	CATEGORY OF CITED DOCL inticularly relevant if taken alone inticularly relevant if combined wo coum nt if the sam category chnol gical backgr und n-written disci sur termediate document	E: earlier pai atter the fi with another D: document L: d cument	ent document ling date t cited in the ap t cited f r othe of the sam pat	