- .small-text {font-size: 0.75rem;}
- Chapter 1: Database Systems
- Why Database
- DIKW Pyramid
- Data versus Information
- Introducing the Database
- Role and Advantages of DBMS
- Types of DBMS
- Why Should We Learn Database Design
- Database System Design Process
- Database Design Process
- A Good Database Design Following Database Design Process
- Database System Environment
- DBMS Functions
- Disadvantages of DBMS
- Database Professional Career
- When Not to Use a DBMS
- Review Questions

```
marp: true theme: default class: invert size: 16:9 paginate: true footer: 國立陽明交通大學電子與光子學士學位學程 headingDivider: 1 style: | section::after { content: attr(data-marpit-pagination) '/' attr(data-marpit-pagination-total); }
.columns { display: grid; grid-template-columns: repeat(2, minmax(0, 1fr)); gap: 1rem; }
.columns img { width: 50%; } .middle-grid { display: grid; grid-template-columns: repeat(2, minmax(0, 1fr)); gap: 1rem; } .middle-grid img { width: 75%; } .grid { display: grid; grid-template-columns: 1fr 1fr; gap: 10px; } .grid img { width: 100%; } .red-text { color: red; }
.blue-text { color: blue; }
.brown-text { color: brown; }
```

# .small-text { font-size: 0.75rem; }

#### **Chapter 1: Database Systems**

- Organizations use data to keep track of their day-to-day operations. Such data is used to generate information, which in turn is the basis for good decisions.
- Data is likely to be managed most efficiently when it is stored in a database.

## Why Database

- Databases evolved from the need to manage large amounts of data in an organized and efficient manner
- Databases is everywhere by right:60% w:600 Database is everywhere

# **DIKW Pyramid**

- Data consists of raw facts
- Information is about adding context to reveal the meaning of data
- Knowledge is about how to use the information
- Wisdom is about when to take action by right:50% w:600 DIKW Pyramid

#### **Data versus Information**

- Information is the result of processing raw data to reveal the meaning of data
- **Data management** is a discipline that focuses on the proper generation, storage, and retrieval of data bg right:60% w:750 Data vs Information

## Introducing the Database

- A database is a collection of related data.
  - o represent a mini-world to reflect some aspect of the real world
  - o logically coherent collection of data with some inherent meaning
  - is designed, built, and populated with data for a specific purpose
- A database management system (DBMS) is a collection of programs that
  manages the database structure and controls access to the data stored in the
  database. Here, the database refers to a shared, integrated computer structure.

Examples of DBMS: MySQL, Microsoft SQL Server, Oracle Database, MongoDB,
 Cassandra, Neo4i, ...

## **Role and Advantages of DBMS**

- DBMS presents the end user with a single, integrated view of the data in the database
- DBMS advantages:
  - Improved data sharing
  - Improved data security
  - Better data integration
  - Minimized data inconsistency
  - Improved data access bg right:40% w:500 DBMS role

## Types of DBMS

- by # of users: single-user, multiple-user
- · by location: centralized, distributed, cloud
- by time sensitive: online transaction processing (OLTP), online analytical processing (OLAP)
- by data characteristics: SQL store structured data, NoSQL store unstructured and semi-structured data

# Why Should We Learn Database Design

- **Database design** refers to the activities that focus on the design of the database structure that will be used to store and manage end-user data
- Poorly designed databases can lead to slow performance, data integrity issues, security vulnerabilities, and challenges in scaling applications.

bg right:50% w:600 poor database design

## **Database System Design Process**

<span class="brown-text">Requirements & Analysis <span class="small-text">Discover users requirements, analyze what data should

be maintained

- <span class="brown-text">Database design

  - <span class="small-text">Choice of a DBMS
  - o <span class="small-text">Logical model
  - <span class="small-text">Physical model
- <span class="brown-text">System design: <span class="small-text">design system functionality and user interface
- <span class="brown-text">Implementation: <span class="small-text">realize physical model on running environment and optimize performance



## **Database Design Process**

bg right:60% w:90%

# A Good Database Design Following Database Design Process

pg right:50% w:600 poor database design

# **Database System Environment**

Collect, store, manage, and use of data within a database environment, including:

- <span class='small-text'>Hardware
- <span class='small-text'>Software
- <span class='small-text'>People
- <span class='small-text'>Procedures
- <span class='small-text'>Data

bg right:55% w:100% database system environment

#### **DBMS Functions**

- Data dictionary management to store definitions of data elements and their relationships
- Data storage management
- Security management
- Transaction management and concurrent control
- Backup and recovery management
- Data integrity management
- SQL languages (structured query language)

• Database communication API (application programming interfaces)



#### **Disadvantages of DBMS**

- Increased costs
- Management complexity
- Maintaining currency (operation expertise and man power)
- Vendor dependency (vendor lock-in)
- Frequent upgrade/replacement cycles

#### **Database Professional Career**

| Job Title                     | Description                                             | Sample Skills<br>Required                                                       |
|-------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------|
| Developer                     | Develop application                                     | Programming, SQL                                                                |
| DBA                           | Design, manage<br>DBMS                                  | DBMS fundamentals,<br>SQL                                                       |
| Database<br>Designer          | Design data models                                      | Domain knowledge,<br>data modeling, DBMS<br>fundamentals, SQL                   |
| Data Security Officer         | Enforce data security rules                             | DBMS fundamentals, data security                                                |
| Data Analyst / Data Scientist | Analyze varied data to generate insights and prediction | Data analysis, statistics,<br>SQL / programming, ML<br>/ Al, data visualization |

#### When Not to Use a DBMS

- When costs can not be justified: H/W, S/W, operations
- When a DBMS may be unnecessary: simple applications, limited users

- When a DBMS may be infeasible: embedded systems
- When no DBMS may suffice: real-time requests, complexity of data, special operation

## **Review Questions**

- What is a database
- What is a DBMS
- Which database professional career you are interested in?