CAN Bus

R. Löffler, C. Proske, M. Sharkhawy

Recap

- Feldbus
- verschiedene Längen und Bandbreiten
 - 40m bei 1 Mbit/s
 - 130m bei 500 kbits/s
 - 530m bei 125 kbit/s
- Nachrichtenadressierung (CAN ID)
- CSMA/CR mit Bitwise Arbitration
 - CAN ID ist Arbitration Field und Message Priority

Recap: Frame Format

Verwendung

- noch immer weit verbreitet in:
 - Autos
 - Industrie Automation
- Verwendung vorgeschrieben in Auto "On Board Diagnostics"
- Airbus A380
- TTCAN für sicherheitsrelevante Anwendungen
 - deterministisch

Probleme

- CAN hat alle Probleme eines Bus-Systems:
 - fehlerhafter/böswilliger Teilnehmer kann Bus monopolisieren ("Babbling Idiot")
 - beschädigte Bus-Leitung führt zu Ausfall des ganzen Bus
 - jeder bekommt jede Nachricht
- Diagnostik nur schwer möglich
 - kann Fehler nicht auf bestimmten Teilnehmer zurückführen
- nicht deterministisch

CAN over Ethernet?

- Es gibt einige fertige Produkte.
- CAN-Schnittstelle f
 ür PC
- Ethernet Bridge
- transparente Ethernet Bridge?

CAN-Ethernet Gateway

CAN-Schnittstelle

- erlaubt anderen Netzwerk-Geräten die Kommunikation mit dem CAN Bus
- Nachrichten werden konvertiert
- CAN Eigenschaften gehen verloren
 - ACK wird von Schnittstelle gesendet und nicht von PC

Ethernet Bridge

- verbindet zwei Busse über Ethernet
- Bridges verhalten sich wie CAN Teilnehmer
- CAN Eigenschaften gehen verloren
 - ACK von Bridge gesendet
 - unterschiedliches Zeitverhalten in den Bussen

Ethernet Bridge

- Entkoppelung hat auch Vorteile:
 - Fehler abfangen/begrenzen
 - Nachrichten filtern
 - Zeitverhalten der Busse kann getrennt betrachtet werden

Transparente Ethernet Bridge

Beibehalten von:

- Arbitration
- ACK
- Zeitverhalten

• Problem:

- Bits müssen sofort gesendet werden
- → 1 Ethernet Frame pro Bit, 511 Bits Overhead
- Propagation Delay muss gleich bleiben damit Sampling funktioniert.

Transparente Ethernet Bridge

- 20 kBit/s CAN-Bus, max. Länge 2500 m
- Propagation Delay für 2500 m = 12,5 us
- CAN-Bus wird in zwei Hälften geteilt, werden mit transparenter Ethernet Bridge verbunden
- min. Delivery Time für einen Frame in 100 m Fast Ethernet = 5,62 us
- neues Propagation Delay = Prop. Delay von Bus 1 + Delivery Time für Frame + Prop. Delay von Bus 2
- Damit das Propagation Delay gleich bleibt dürften die Busse nur je 700 m lang sein. → max. Länge = 1500m
- Full-Duplex, keine Kollisionen, kein IP etc. auf Ethernet Link

Transparente Ethernet Bridge

- möglich, aber:
 - reduzierte Bandbreite
 - kürzere Busse
- nutzlos weil:
 - Propagation Delay pro Meter bei CAN und Ethernet gleich
 - → Man kann den Bus nie verlängern.
- Mögliche Anwendung: Tunneln mehrerer CAN-Busse über einen Ethernet Link.

Vielen Dank!

Fragen?