Assignment 3 & Lecture 4

Stephanie Brandl

Assignment 3 - Toy data

Perceptron Algorithm with Stochastic Gradient Descent

Nearest Centroid Classifier (NCC)

Comparison of distance to class means is equivalent to linear classification

$$\|\mathbf{x} - \mathbf{w}_{\Delta}\| < \|\mathbf{x} - \mathbf{w}_{o}\|$$
$$\Leftrightarrow 0 < \mathbf{w}^{\top} \mathbf{x} - \beta$$

where

$$\mathbf{w} = \mathbf{w}_o - \mathbf{w}_{\Delta}$$

and

$$\beta = 1/2(\mathbf{w}_o^{\top}\mathbf{w}_o - \mathbf{w}_{\Delta}^{\top}\mathbf{w}_{\Delta})$$
$$= 1/2\mathbf{w}(\mathbf{w}_o + \mathbf{w}_{\Delta})$$

This simple linear classification rule is often called **Nearest Centroid Classifier**.

Linear Discriminant Analysis (LDA)

View classification in terms of dimensionality reduction

Goal: Find a (normal vector of a linear decision boundary) **w** that Maximizes mean class difference, and Minimizes variance in each class

LDA:

$$\mathbf{w}_{LDA} = S_W^{-1}(\mathbf{w}_o - \mathbf{w}_{\Delta})$$

$$\beta_{LDA} = \frac{1}{2}\mathbf{w}_{LDA}^T(\mathbf{w}_o + \mathbf{w}_{\Delta})$$

NCC:

$$\mathbf{w}_{NCC} = (\mathbf{w}_o - \mathbf{w}_{\Delta})$$

$$\beta_{NCC} = \frac{1}{2} \mathbf{w}_{NCC}^T (\mathbf{w}_o + \mathbf{w}_{\Delta})$$

 \Rightarrow same result if

LDA:

$$\mathbf{w}_{LDA} = S_W^{-1}(\mathbf{w}_o - \mathbf{w}_{\Delta})$$

$$\beta_{LDA} = \frac{1}{2}\mathbf{w}_{LDA}^T(\mathbf{w}_o + \mathbf{w}_{\Delta})$$

NCC:

$$\mathbf{w}_{NCC} = (\mathbf{w}_o - \mathbf{w}_{\Delta})$$

$$\beta_{NCC} = \frac{1}{2} \mathbf{w}_{NCC}^T (\mathbf{w}_o + \mathbf{w}_{\Delta})$$

 \Rightarrow same result if

$$S_W = \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- Each class has the same covariance matrix
- In each class, x and y are uncorrelated
- In each class, x and y have different variance, Var(x) = 5 and Var(y) = 0.5

Uncorrelated data with the same variance in each dimension.

$$S_o = S_\Delta = \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Ridge Regression

Often it is important to control the complexity the solution of w.

This is done by constraining the norm of \mathbf{w} ,

$$\mathcal{E}_{RR}(\mathbf{w}) = ||y - \mathbf{w}^{\top} X||^2 + \lambda ||\mathbf{w}||^2$$

Toy data generated by $\sin(2\pi x)$ including random noise. Traning set with N samples:

$$\mathbf{x} = (x_1, \dots, x_N)^{\top}$$
 data points $\mathbf{y} = (y_1, \dots, y_N)^{\top}$ observations

We try to discover the underlying function $\sin(2\pi x)$ using a polynomial function

$$y(x, w) = w_0 + w_1 x ... + w_M x^M = \sum_{j=0}^M w_j x^j = w^\top X$$

	M=0	M = 1	M = 6	M = 9
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
$w_3^{\bar{\star}}$			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Increasing the size of the data set reduces the overfitting problem.

Instead of choosing M beforehand, wen can control the complexitiy by regularization:

$$\mathcal{E}_{RR}(\mathbf{w}) = ||y - \mathbf{w}^{\top} X||^2 + \lambda ||\mathbf{w}||^2$$

When adding the regularization term $\lambda ||\mathbf{w}||^2$ to the error function, we penalize large values for w and thus can control its complexity.

Applying Ridge Regression

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01