In []:	Insurance_Linear_Regression Author ~ Saurabh Date ~ 04-Dec-21
In [1]:	<pre>#importing lib import os import numpy as np import pandas as pd</pre>
	<pre>#for ploting import matplotlib.pyplot as plt import plotly.express as px import seaborn as sns sns.set_style("darkgrid") import ipywidgets as widgets from IPython.display import display #to supress warnings</pre>
In [2]:	<pre>import warnings warnings.filterwarnings("ignore") #pandas profiling import pandas_profiling as pp</pre>
<pre>In [3]: Out[3]:</pre>	<pre>pwd 'E:\\DataScience\\MachineLearning\\Insurance_Linear_Regression'</pre>
In [4]:	os.listdir("E:\\DataScience\\MachineLearning\\Insurance_Linear_Regression") ['.ipynb_checkpoints',
In [5]:	'Insurance_Data.csv', 'Insurance_Linear_Regression.ipynb', 'Insurance_profile_report.html'] #read dataset
In [6]:	<pre>df =pd.read_csv("E:\\DataScience\\MachineLearning\\Insurance_Linear_Regression\\Insurance_Data.csv") profile =df.profile_report(title="Insurance Data Profile Report")</pre>
In [7]:	profile
	Insurance Data Profile Report Overview Variables Interactions Correlations Missing values Sample Duplicate rows
	Overview
	Overview Alerts 7 Reproduction Dataset statistics Variable types Number of variables 7 Numeric 4
	Number of variables7Numeric4Number of observations1338Categorical2Missing cells0Boolean1Missing cells (%)0.0%
	Duplicate rows 1 Duplicate rows (%) 0.1% Total size in memory 73.3 KiB
	Average record size in memory 56.1 B
	Variables
	age Real number (R≥0) Distinct 47 Distinct 3.5% Minimum 18 Maximum 64
Out[7]: In [8]:	<pre>#profile report profile.to_file(output_file="Insurance_profile_report.html")</pre>
In [9]:	<pre>#top 5 columns of data df.head()</pre>
Out[9]:	age sex bmi children smoker region charges 0 19 female 27.900 0 yes southwest 16884.92400 1 18 male 33.770 1 no southeast 1725.55230 2 28 male 33.000 3 no southeast 4449.46200
	3 33 male 22.705 0 no northwest 21984.47061 4 32 male 28.880 0 no northwest 3866.85520
In [10]:	<pre>#info df.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 1338 entries, 0 to 1337 Data columns (total 7 columns):</class></pre>
	# Column Non-Null Count Dtype 0 age 1338 non-null int64 1 sex 1338 non-null object 2 bmi 1338 non-null float64 3 children 1338 non-null int64 4 smoker 1338 non-null object
In [11]:	5 region 1338 non-null object 6 charges 1338 non-null float64 dtypes: float64(2), int64(2), object(3) memory usage: 73.3+ KB
Out[11]: In [12]:	#snape df.shape (1338, 7)
In [12]: Out[12]:	#tail of dataframe df.tail() age sex bmi children smoker region charges 1333 50 male 30.97 3 no northwest 10600.5483
	1334 18 female 31.92 0 no northeast 2205.9808 1335 18 female 36.85 0 no southeast 1629.8335 1336 21 female 25.80 0 no southwest 2007.9450
In [13]:	#count of null values df.isnull().sum()
Out[13]:	age 0 sex 0 bmi 0 children 0 smoker 0 region 0
In [14]:	charges 0 dtype: int64 #unique value per column df.nunique()
Out[14]:	sex 2 bmi 548 children 6 smoker 2
In [15]:	region 4 charges 1337 dtype: int64 # numerical data df.corr()
Out[15]:	age bmi children charges age 1.000000 0.109272 0.042469 0.299008 bmi 0.109272 1.000000 0.012759 0.198341
In [33]:	children 0.042469 0.012759 1.000000 0.067998 charges 0.299008 0.198341 0.067998 1.000000
III [33].	<pre>#categorical data catogorical= [] lst =df.columns for i in range(7): if(df[lst[i]].dtype =='object'): catogorical.append(lst[i])</pre>
In [36]:	<pre>print("catogorical columns :",catogorical) catogorical columns : ['sex', 'smoker', 'region'] #encoding</pre>
In [40]:	<pre>from sklearn.preprocessing import LabelEncoder lb_encoder=LabelEncoder() df['sex'] =lb_encoder.fit_transform(df['sex']) df['smoker']=lb_encoder.fit_transform(df['smoker'])</pre>
In [41]:	<pre>df['region'] =lb_encoder.fit_transform(df['region']) df.head()</pre>
Out[41]:	age sex bmi children smoker region charges 0 19 0 27.900 0 1 3 16884.92400 1 18 1 33.770 1 0 2 1725.55230 2 28 1 33.000 3 0 2 4449.46200
In [52]:	3 33 1 22.705 0 0 1 21984.47061 4 32 1 28.880 0 0 1 3866.85520 plt.figure(figsize=(10,8))
Out[52]: In [44]:	
In [45]:	<pre>X =df.iloc[:,:-1] y =df.iloc[:,-1] #shape</pre>
In [47]:	<pre>print("Shape of Input :", X. shape) print("Shape of Target:", y. shape) Shape of Input : (1338, 6) Shape of Target: (1338,)</pre>
In [49]:	<pre>from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=11) #shape</pre> #shape
	<pre>print("Shape X_train :", X_train.shape) print("Shape y_train :", y_train.shape) print("Shape X_test :", X_test.shape) print("Shape y_test :", y_test.shape) Shape X_train : (896, 6)</pre>
In [53]:	Shape y_train : (896,) Shape X_test : (442, 6) Shape y_test : (442,) #scaling the given data from sklearn.preprocessing import StandardScaler
	<pre>Scaler =StandardScaler() X_train_scale =Scaler.fit_transform(X_train) X_test_scale =Scaler.fit_transform(X_test)</pre>
In [54]:	#importing linear regession from sklearn.linear_model import LinearRegression
In [56]:	<pre>#fiiting the data to model model =LinearRegression() model.fit(X_train, y_train) LinearRegression()</pre>
In [57]:	<pre>#y_pred : predicted values y_pred=model.predict(X_test)</pre>
In [58]:	<pre>#Report of model print('Coefficients: \n', model.coef_) print("Mean squared error: %.2f" % np.mean((model.predict(X_test) - y_test) ** 2)) print('Variance score: %.2f' % model.score(X_test, y_test))</pre> Coefficients:
In [59]:	<pre>[262.1433078 -279.12041025 350.7461981 631.75967131 23728.48775086 -398.06450479] Mean squared error: 31843626.47 Variance score: 0.77 def accuracy(X_test, y_test, y_pred):</pre>
In [60]:	<pre>print('accuracy (R^2):\n', model.score(X_test, y_test)*100, '%') accuracy(X_test, y_test, y_pred)</pre>
	accuracy (R^2): 76.7984186524659 % Xgboost
In [63]:	<pre>import xgboost as xgb modelX = xgb.XGBRegressor(objective ='reg:squarederror', learning_rate = 0.2, max_depth = 10, n_estimators = modelX.fit(X_train, y_train)</pre>
Out[63]:	<pre>XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,</pre>
In [64]:	<pre>num_parallel_tree=1, predictor='auto', random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method='exact', validate_parameters=1, verbosity=None) y_hat =modelX.predict(X_test)</pre>
In [67]:	<pre>result = modelX.score(X_test, y_test) print("Accuracy : {}".format(result)) Accuracy : 0.8128600393963679</pre>
In [68]:	RandomForestRegressor from sklearn.ensemble import RandomForestRegressor modelR=RandomForestRegressor() modelR.fit(X train.y train)
Out[68]: In [69]:	<pre>modelR.fit(X_train,y_train) RandomForestRegressor() y1_hat =modelR.predict(X_test)</pre>
In [70]:	<pre>result = modelR.score(X_test, y_test) print("Accuracy: {}".format(result)) Accuracy: 0.8403300137546962</pre>
In [75]:	Interactive Display Widgets age_widget = widgets.IntSlider(
	<pre>value=38, min=18, max=64, step=1, description="Age:")</pre>
	<pre>bmi_widget = widgets.FloatSlider(value=30, min=15, max=54, step=0.01, description="BMI:"</pre>
	<pre>description="BMI:") children_widget = widgets.IntSlider(value=1, min=0,</pre>
	<pre>max=5, step=1, description="Children:") sex_widget = widgets.ToggleButtons(options=[('female',0),('Male',1)],</pre>
	<pre>options=[('female',0),('Male',1)], description="Sex:") smoker_widget = widgets.ToggleButtons(</pre>
	<pre>options=[('no',0),('yes',1)], description="Smoker:"</pre>
	<pre>description="Smoker:") region_widget = widgets.Dropdown(options=[('northeast',4),('Southeast',2),('Northwest',3),('Southwest',1)],</pre>
	<pre>description="Smoker:") region_widget = widgets.Dropdown(options=[('northeast', 4), ('Southeast', 2), ('Northwest', 3), ('Southwest', 1)], description="Region:") predict_btn = widgets.Button(description="Predict") prediction_out = widgets.Output() def make_prediction(btn): x = pd.DataFrame({ 'age':</pre>
	<pre>description="Smoker:") region_widget = widgets.Dropdown(options=[('northeast', 4), ('Southeast', 2), ('Northwest', 3), ('Southwest', 1)], description="Region:") predict_btn = widgets.Button(description="Predict") prediction_out = widgets.Output() def make_prediction(btn): x = pd.DataFrame({ 'age':</pre>
	<pre>description="Smoker:") region_widget = widgets.Dropdown(options=[('northeast',4),('Southeast',2),('Northwest',3),('Southwest',1)], description="Region:") predict_btn = widgets.Button(description="Predict") prediction_out = widgets.Output() def make_prediction(btn): x = pd.DataFrame({ 'age': age_widget.value, 'sex': sex_widget.value, 'bmi': bmi_widget.value, 'children': children_widget.value, 'smoker': smoker_widget.value, 'smoker': smoker_widget.value, 'region': region_widget.value</pre>
	<pre>description="Smoker:") region_widget = widgets.Dropdown(options=[('northeast',4),('Southeast',2),('Northwest',3),('Southwest',1)], description="Region:") predict_btn = widgets.Button(description="Predict") prediction_out = widgets.Output() def make_prediction(btn): x = pd.DataFrame({ 'age':</pre>