UTN FRBA — ANÁLISIS MATEMÁTICO II — FINAL 28/02/2023

Apellido y nombre:

Corrigió: Revisó:

T1	T2	P1	P2	Р3	P4	Califcación

Condición para aprobar con calificación mínima 6: tres ejercicios bien, uno de T1, T2 y dos de P1, P2, P3, P4.

T1. Enuncie el teorema de Stokes.

Sea $\vec{f} : \mathbb{R}^3 \to \mathbb{R}^3$, $\vec{f}(x,y,z) = (P(x,y,z), Q(x,y,z), R(x,y,z))$ un campo vectorial C^1 tal que $D\vec{f}(x,y,z) = \begin{pmatrix} P'_x & z & y \\ 1 & Q'_y & 1 \\ 0 & 2 & R'_z \end{pmatrix}$.

Calcule la circulación de \vec{f} a lo largo de la curva C definida por la intersección de la superficie $S_1: z=x^2+y^2$, y el plano $S_2: z=3$. Considere la curva orientada en sentido $(0, \sqrt{3}, 3) \rightarrow (\sqrt{3}, 0, 3) \rightarrow (0, -\sqrt{3}, 3) \rightarrow (0, \sqrt{3}, 3)$.

T2. Determine si las siguientes proposiciones son verdaderas o falsas. Justifque su respuesta.

- a) Si D, D^* son dos recintos elementales, $(x,y) = \vec{T}(u,v) = (2u+2v, 3u+v)$ transforma D^* en D y $\iint_{D^*} (2u+2v) du dv = 2$, entonces $\iint_D x \, dx y = -8$.
- b) Una ecuación de la recta normal a la superficie de ecuación $x^2+xyz-z^3=1$ en $\mathbf{x}_0=(1,-1,1)$ es $(x,y,z)=\lambda(1,1,-1)+(1,-1,1)$, $\lambda\in\mathbb{R}$.
- P1. Sea $\vec{f} \colon \mathbb{R}^3 \to \mathbb{R}^3$ un campo C^1 . Calcule el flujo de \vec{f} a través de la semiesfera $z = \sqrt{9 x^2 y^2}$ sabiendo que $\operatorname{div}(\vec{f}) = 2$ y que $\vec{f}(x,y,0) = (x,\ 0,\ 5)$. Indique claramente la orientación elegida para el cálculo.
- P2. Halle, si existe, g tal que el campo $\vec{f}(x,y)=(x^2-4yg(x),\ g'(x)-x+y)$ sea conservativo y $\vec{f}(0,1)=(0,7)$.
- P3. Verifique que la ecuación $xz+y^2+\ln(x+y+z-4)=4$ define implícitamente una función z=f(x,y) en un entorno del punto $(1,1,z_0)$. Calcule la derivada direccional mínima de dicha función f en $\mathbf{x}_0=(1,1)$ e indique en qué dirección se alcanza.
- P4. Calcule el área de la región D encerrada por la curva C (ver figura), parametrizada por $\vec{\alpha}(t)=(t-t^2,\ t-t^4)$, $0\leq t\leq 1$. (Sugerencia: aplique convenientemente el teorema de Green)

