Topic: Op-Amp

2. You have given a bunch of $(10 \text{ k}\Omega)$ resistors and an Op-Amp. Design a circuit that will produce the following output (V_0) . $V_0 = -2V_1 - 4V_2$ $V_0 = -2V_1 - 4V_2$

6

3. In the Op-Amp circuit shown in Fig. 2, find I_0 and I_S if V_S = 1 V and R_L = 1 k Ω . Also, plot the variation of I_0 with R_L .

Fig. 2

4. Fig. 3 show a low-pass filter Estimate the value of feedback resistor R2 such that the 'pass-band' gain of the total circuit is 100. Given that $C = 0.2 \mu F$ and $R_1 = 1 k\Omega$. Also calculate the value of resistor

5. For an Op-Amp, the differential gain (A_d) is 100. When 1 V is applied (common) to both the inputs, the output voltage measured is 0.01 V. Calculate the CMRR of the Op-Amp in dB.

Dog

Differential gain =
$$100.2 \text{ Ad}$$

Common mode gain $(Ac) = \frac{\text{Vowt}}{\text{Vin}} = \frac{0.01}{10^{-2}} = \frac{100}{10^{-2}} =$

6. Consider the circuit in Fig. 4, (a) Derive the expression for the output voltage v_0 in terms of v_{11} and v_{12} . (b) Determine v_0 for $v_{11} = +5$ mV and $v_{12} = (-25 - 50 \text{ sinot})$ mV.

7. In the circuit shown in Fig. 5, derive the expression for i_3 in terms of v_I .

8. Consider the circuit shown in Fig. 6. (a) Determine the ideal voltage gain. (b) Find the actual gain if the open-loop gain (\underline{A}_{od}) of the op-amp is $\underline{A}_{od} = 5 \times 10^3$. (c) Determine the required value of \underline{A}_{od} in order that the actual voltage gain be within 0.2 percent of the ideal value.

9. For the inverting op-amp amplifier shown in Fig. 7, determine the gain $A_v = v_{\rm O}/v_{\rm I}$.

10. The circuit shown in Fig. 8 is a first-order high-pass active filter. Determine how the gain of this 1 E - TES UPP WAY circuit $[A_v = v_0/v_1]$ is dependent on frequency i.e. find the voltage transfer function.

Fig. 8

Fig. 9

11. In Fig. 9, show that $E_0 = \frac{kT}{q} \ln(\frac{I_{IN}}{I_{ES}})$, where, I_{ES} is the reverse saturation current.

12. If an op-amp has a slew-rate of 5 $V/\mu s$, find the full-power bandwidth for a peak output voltage of (a) 5 V, (b) 1.5 V, and (c) 0.4 V

13. An amplifier system is to be designed to provide an undistorted 10 V peak sinusoidal signal at a frequency of f = 12 kHz. Determine the minimum slew rate required for the amplifier.

D

13. An amplifier system is to be designed to provide an undistorted 10 V peak sinusoidal signal at a frequency of f = 12 kHz. Determine the minimum slew rate required for the amplifier.

1

14. An audio amplifier system is to use an op-amp with an open-loop gain of $A_{Od} = 2 \times 10^5$ and a dominant-pole frequency of 10 Hz. The maximum closed-loop gain for the audio amplifier is 100. Determine the closed loop bandwidth of the amplifier.

15. For Fig. 10, neatly sketch the output voltage V_0 when V_{in} is a sine wave of amplitude 2 V (zero to peak). Consider the op-amp as ideal and zero voltage drop across the diode in forward bias.

