BRAC UNIVERSITY

Department of Computer Science Engineering Quiz 1

CSE 481: Quantum Computing 1 Faculty: Jishnu Mahmud [JMD]

Total Marks: 20 Time: 30 minutes

Name:	ID:	Section: 1

Question

Consider the following quantum states:

$$|\psi_{a}\rangle = \frac{2}{3}|0\rangle + \frac{1-2i}{3}|1\rangle$$

$$|\psi_{\rm b}\rangle = \frac{4+4i\sqrt{3}}{3}|0\rangle + \frac{8-4i}{3}|1\rangle$$

- (i) Examine the quantum states $|\psi_a\rangle$ & $|\psi_b\rangle$ to determine whether they are normalized. If not, provide the necessary steps to normalize them and write down their normalized forms. [2]
- (ii) $|\psi_a\rangle$ is measured in the basis:

$$|+\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle, \qquad |-\rangle = \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle$$

Find the probability of getting a |1). [8]

- (iii) If the subsequent measurement is performed using the same basis as in question (ii), what is the probability of obtaining outcome |1) again? [1]
- (iv) Determine the inner product $\langle 0|\psi_a\rangle$. Additionally, state the probability of getting a $|0\rangle$ when we measure $|\psi_a\rangle$. [3]
- (v) Express the relationship between the inner product and the probability found in question (iv) in one sentence. [1]
- (vi) Compute the inner product $\langle \psi_b | \psi_a \rangle$. Provide a brief explanation of what the result signifies. [5+1bonus]