

Using R – Foundation

MING-CHANG LEE

Department of Information Management Yu Da College of Business

October 6, 2006

Email: alan9956@ydu.edu.tw

Web: http://web.ydu.edu.tw/~alan9956/

- 1. Introduction
- 2. Data Manipulation
- 3. Descriptive Statistics
- 4. Graphics

1. Introduction

- R for statistical analysis and graphics Ihaka Gentleman, 1996.
- R is similar to the S language that was developed at AT&T Bell Laboratories by Rick Becker, John Chambers and Allan Wilks.
- Versions of R are available:
 - Microsoft Windows
 - Linux
 - Unix
 - Macintosh OS X (10.4.4)

- An effective data handling and storage facility.
- A suite of operators for calculations on arrays, in particular matrices.
- A large, coherent, integrated collection of intermediate tools for data analysis.
- Graphical facilities for data analysis and display either on-screen or on hardcopy.
- A well-developed, simple and effective programming language which includes conditionals, loops, user-defined recursive functions and input and output facilities.

- An interpreted language (Not a complied language).
- An object-oriented language variables, data, functions, result are stored in the forms of objects.

R function

- Arguments: data, formulate, expressions.
- Packages of function:
 C:/Program Files/R/R-2.3.1/library
 C:/Program Files/R/R-2.3.1/library/base

R - Environment

R 2.3.1 - A Language and Environment

Examples:

```
x <- c(1:100)
y <- rnorm(100)*100
hist(y)
test.model <- lm(y ~ x)
test.model
plot(x,y)
library(help="graphics")</pre>
```

```
# On-line help:
? ...
? rnorm
? plot
#Information on package 'base'
library(help="base")
```


2. Data Manipulation

- 2.1 Data Manipulation Introduction
- 2.2 Generating Data
- 2.3 Creating Objects
- 2.4 Import/Export Data

2.1 Data Manipulation Introduction

- Objects have two intrinsic attributes:
 - mode the basic type of the elements of the object.
 - Numeric
 - 2. Character
 - 3. Logical (FALSE or TRUE).
 - 4. Complex
 - Length the number of elements of the object.

```
x <- c(1:2)
mode (x)
# [1] "numeric"
length(x)
# [1] 2
```

Name of object

- Assign operator:
- The name of an object must start with a letter (A-Z and a-z) and can include letters, digits (0-9), and dots (.).
- R discriminates for the names of the objects the uppercase letters from the lowercase ones. (i.e. x and X can name two distinct objects)

TRY!

```
A <- "WEPA"; compar <- TRUE; z <- 3+4i
mode(A); mode(compar); mode(z)
[1] "character"
[1] "logical"
[1] "complex"
```

Special number

R correctly represents non-finite numeric values:

```
+ ∞ : Inf- ∞ : -Inf
```

NaN : Not a number

```
x <- 5/0
x
[1] Inf
exp(x)
[1] Inf
exp(-x)
[1] 0
x - x
[1] NaN
```


Type of Objects

object	modes	several modes possible in the same object?
vector	numeric, character, complex or logical	No
factor	numeric or character	No
array	numeric, character, complex or logical	No
matrix	numeric, character, complex or logical	No
data.frame	numeric, character, complex or logical	Yes
ts	numeric, character, complex or logical	Yes
list	numeric, character, complex, logical, function, expression,	Yes

PS: ts – time series

2.2 Generating Data

- Regular sequences
 - **c**()
 - seq()
 - scan()
 - rep()
 - sequence()
 - gl()
 - expand.grid()
 - Constants
 - Missing values
- Random sequences
 - refer "4. Probability Distribution"

Joining (concatenating) vectors: c

c(...): Join these numbers together in to a vector.

```
x <- c(2,3,5,2,7,1)

x

[1] 2 3 5 2 7 1

y <- c(10,15,12)

y

[1] 10 15 12

z <- c(x, y)

z

[1] 2 3 5 2 7 1 10 15 12
```

Subsets of Vectors

```
# Specify the numbers of the elements that are to be extracted:
x <- c(3,11,8,15,12) \# Assign to x the values 3, 11, 8, 15, 12
x[c(2,4)] # Extract elements (rows) 2 and 4
[1] 11 15
# Use negative numbers to omit elements:
x[-c(2,3)]
[1] 3 15 12
x>10 # This generates a vector of logical (T or F)
[1] F T F T T
x[x>10]
[1] 11 15 12
# vectors have named elements:
c(ALAN=100, SERENA=2000, ANDY=300, ALPHA=400)[c("ALAN","ANDY")]
ALAN ANDY
100 300
```

Regular sequences: seq, scan

- Regular sequence of integers : seq(from, to, steps)
- Combine Values into a Vector or List function : c()

Using keyboard to input data: scan()

```
x1 <- 1:100

x2 <- 100:1

x3 <- seq(1,10, 0.5)

x4 <- seq(length=9, from=1, to=5)

x5 <- c(1,2,2.5,6,10)

x6 <- scan()

1: 1

2: 2

3: 3

4: 5

5:

Read 4 items
```

Regular sequences: rep, sequence

- creates a vector with all its elements identical: rep()
- creates a series of sequences of integers each ending by the numbers given as arguments: sequence()

Generate levels (factors): gl

- gl(): Generating regular series of factors.
- gl(n, k, length = n*k, labels = 1:n, ordered = FALSE)
 - **n**: An integer giving the number of levels(or glass).
 - **k**: An integer giving the number of replications.
 - length: An integer giving the length of the result.
 - labels: An optional vector of labels for factor levels.
 - ordered: The result is ordered or not.

Example: gl()

TRY

```
x <- gl(3, 3, label=c("優良", "普通", "加油"), length=27)
x
class(x)
```


Generate data frame: expand.grid

- expand.grid(arguments): arguments including:
 - Vectors
 - factors
 - list

Example: expand.grid()

```
x <- expand.grid(h=c(160, 165, 170), w=c(50, 60), sex=c("M", "F"))
print(x)
    h w sex
1 160 50 M
2 165 50
3 170 50
4 160 60
5 165 60
6 170 60 M
12 170 60 F
class(x)
[1] "data.frame"
```

-

Constants

- LETTERS
- letters
- month.abb
- month.name
- pi

TRY

```
x <- LETTERS
y <- x[-c(2:10)]
length(x)
length(y)
z <- month.name
z
```

Missing values - NA

 'NA' is a logical constant of length 1 which contains a missing value indicator.

```
x < -c(pi, 1, 2)
Χ
[1] 3.141593 1.000000 2.000000
x[2] < -NA
[1] 3.141593 NA 2.000000
is.na(x[2])
[1] TRUE
is.na(x[1])
[1] FALSE
# To replace all NAs by 0, use
x[is.na(x)] < -0
[1] 3.141593 0.000000 2.000000
```


2.3 Creating objects

- list
- vector
- factor
- array
- matrix
- data.frame

Creating objects: list

Function to construct, coerce and check for all kinds of R lists.

```
data() # list all available data sets
cars
  speed dist
  4 10
49
     24 120
50
     25 85
pts <- list(x=cars[,1], y=cars[,2])
plot(pts)
```


Creating objects: vector

- Vector produces a vector of the given length and mode.
- vector (mode , length)
 - mode specified as argument: numeric 0;
 logical FALSE; character " "

```
x <- vector(mode="numeric", length=1000000)
is.vector(x)
[1] TRUE
x <- c("Taiwan", "China", "USA")
is.vector(x)
[1] TRUE</pre>
```


Creating objects: factor

- A factor includes not only the values of the corresponding categorical variable, but also the different possible levels of that variable (even if they are present in the data).
- factor (x, levels = sort(unique(x), na.last = TRUE), labels = levels, exclude = NA,
 - x: a vector of data, usually taking a small number of distinct values
 - levels specifies the possible levels of the factor (by default the unique values of the vector x),
 - labels defines the names of the levels,

ordered = is.ordered(x))

- exclude the values of x to exclude from the levels,
- ordered is a logical argument specifying whether the levels of the factor are ordered.

Example: factor

```
factor(1:3)
[1] 1 2 3
Levels: 1 2 3
factor(1:3, levels=1:5)
[1] 1 2 3
Levels: 1 2 3 4 5
factor(1:3, labels=c("A", "B", "C"))
[1] A B C
Levels: A B C
x <- factor(letters[1:6], label="YDU")
Χ
[1] YDU1 YDU2 YDU3 YDU4 YDU5 YDU6
Levels: YDU1 YDU2 YDU3 YDU4 YDU5 YDU6
class(x)
[1] "factor"
```

Creating objects: arrary

- Creates or tests for arrays.
 - array(data = NA, dim = length(data), dimnames = NULL)
 - as.array(x)
 - is.array(x)

```
x <- array(letters)</li>class(x)[1] "array"dim(x)[1] 26
```

Example: array

```
x <- array(letters)</pre>
class(x)
[1] "array"
dim(x)
[1] 26
x <- array(1:3, c(2,4))
Χ
   [,1] [,2] [,3] [,4]
[1,] 1 3 2 1
[2,] 2 1 3 2
dim(x)
[1] 2 4
length(x)
[1] 8
x[1, ] # select row 1
```


Creating objects: matrix

- matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)
- as.matrix(x)
- is.matrix(x)

Example: matrix

Creating objects: data.frame

- A data frame is the type of object normally used in R to store a data matrix.
- A list of variables of the same length, but possibly of different types (numeric, factor, character, logical, . . .).
- data.frame(..., row.names = NULL, check.rows = FALSE, check.names = TRUE)

Example1: data.frame

```
x < -1:4; n < -10; M < -c(10, 35); y < -2:4
data.frame(x, n)
  x n
1 1 10
2 2 10
3 3 10
4 4 10
data.frame(x, M)
  x M
1 1 10
2 2 35
3 3 10
4 4 35
TRY!
data.frame(x, y)
z <- data.frame(var1= rnorm(5), var2=LETTERS[1:5])</pre>
```

Example2: data.frame

```
data(cars)
help(cars)
class(cars)
[1] "data.frame"
cars
 speed dist
2 4 10
# TRY! How to add row names (e.g., Row1, Row2,...)
Χ
   speed dist
Row1 4 2
Row2 4 10
```

2.4 Import/Export Data

```
# Create a data directory C:\Program Files\R\R-2.3.1\data
# Set working directory
                                                                    s.id quiz1 quiz2
                                                                    A1 60 90
workpath <- "C:/Program Files/R/R-2.3.1/data"
                                                                    A2 70 75
setwd(workpath)
                                                                    A3 80 85
# Get working directory
                                                                    A4 85 85
                                                                    A5 75 60
getwd()
                                                                    A6 90 80
# Create a text file C:\Program Files\R\R-2.3.1\data\r_input.txt
                                                                    A7 65 98
# Import dataset
score1 <- read.table(file="r_input.txt", header= TRUE)
score1
# Add new column data for mid term
mid term <- matrix(c(60,80,65,85,80,90,99), nrow=7, ncol=1, byrow=FALSE,
          dimnames = list(c(),c("mid_term")))
mid term
# Merge two data.frame( score1 and mid term)
score2 <- data.frame(score1, mid_term)</pre>
score2
# Export dataset
write.table(score2, file="r_output.txt", sep = "\t", append=FALSE, row.names=
         FALSE, col.names = TRUE, quote= FALSE)
```


3. Descriptive Statistics

- 3.1 Operators
- 3.2 Mathematical Functions
- 3.3 Accessing Data
- 3.4 Descriptive Statistics

3.1 Operators

Operators						
Arithmetic		Comparison		Logical		
+	addition	<	lesser than	! x	logical NOT	
-	subtraction	>	greater than	x & y	logical AND	
*	multiplication	<=	lesser than or equal to	х && у	id.	
/	division	>=	greater than or equal to	х у	logical OR	
^	power	==	equal	х у	id.	
%%	modulo	! =	different	xor(x, y)	exclusive OR	
%/%	integer division					

PS:The following characters are also operators for R:

- **\$**
- **[**
- [[
- **?**
- **-**<-.

3.2 Mathematical Functions

sum(x)	sum of the elements of x			
prod(x)	product of the elements of x			
max(x)	maximum of the elements of x			
min(x)	minimum of the elements of x			
which.max(x)	returns the index of the greatest element of x			
which.min(x)	returns the index of the smallest element of x			
range(x)	id. than $c(min(x), max(x))$			
length(x)	number of elements in x			
mean(x)	mean of the elements of x			
median(x)	median of the elements of x			
var(x) or cov(x)	variance of the elements of x (calculated on $n-1$)			
cor(x)	correlation matrix of x if it is a matrix or a data frame (1 if x is a vector)			
var(x, y) or cov(x, y)	covariance between x and y, or between the columns of x and those of y if they are matrices or data frames			
cor(x, y)	linear correlation between x and y, or correlation matrix if they are matrices or data frames			

Mathematical Functions (cont.)

round(x, n)	rounds the elements of x to n decimals.
ceiling(x)	returns a numeric vector containing the smallest integers not less than x.
floor(x)	returns a numeric vector containing the largest integers not greater than x.
rev(x)	reverses the elements of x.
sort(x)	sorts the elements of x in increasing order. To sort in decreasing order: rev(sort(x)).
rank(x)	ranks of the elements of x
log(x, base)	computes the logarithm of x with base "base"
choose(n, k)	computes the combinations of k events among n repetitions $= n! / [(n-k)!*k!]$
sample(x, size)	resample randomly and without replacement. The option replace = TRUE allows to resample with replacement.

3.3 Accessing Data

how many elements? ith element all but ith element first k elements last k elements specific elements. all greater than some value bigger than or less than some values which indices are largest

```
length(x) x[2] (i = 2) x[-2] (i = 2) x[1:5] (k = 5) x[(length(x)-5):length(x)] (k = 5) x[c(1,3,5)] (First, 3rd and 5th) x[x>3] (the value is 3) x[x<-2 \mid x>2] which(x == max(x))
```

3.4 Descriptive Statistics

```
summary(score2)
score2[2]
score2$Quiz1
quiz1 <- score2$Quiz1
mean(quiz1)
max(quiz1)
min(quiz1)
std(quiz1) # error function
# solution 1
sqrt( sum( (quiz1 - mean(quiz1)) ^2 /(length(quiz1)-1))) #
  std = 10.80123
# solution 2
std = function(x) sqrt(var(x))
std(quiz1) # same as solution 1 # TRY sd(quiz1)
```


4. Graphics

- 4.1 Graphical device
- 4.2 Plot
- 4.3 Bar charts
- 4.4 Pie charts
- 4.5 Box-and-whisker plot
- 4.6 Stem-and-Leaf plot

demo(graphics)

4.1 Graphical device

- The result of a graphical function is sent to a graphical device.
 - Graphical window
 - File.
- There are two kinds of graphical functions:
 - High-level plotting functions which create a new graph.
 - 2 Low-level plotting functions which add elements to an already existing graph.

Graphical devices

- Open a graphical window: x11() or windows()
- List of available graphical devices: dev.list()
- Show/Change the active device: dev.cur(), dev.set(3)
- Close the active device: dev.off(), dev.off(2)

"null device" is always device 1.

cur: current

4.2 Plot()

- plot(x, y) # Same as "plot(y ~ x)"
- type:
 - p :point,
 - I: line,
 - b: both
- pch: controls the type of symbol, either an integer between 1 and 25, or any single character within " "
- col: controls the colour of symbols. e.g., "red"
- xlab = "string"
- ylab = "string"
- main = "string"
- sub = "string"
- cex: a value controlling the size of texts and symbols with respect to the default
- Iwd: a numeric which controls the width of lines

Plot - pch

Figure 2: The plotting symbols in R (pch=1:25). The colours were obtained with the options col="blue", bg="yellow", the second option has an effect only for the symbols 21–25. Any character can be used (pch="*", "?", ".",...).

Example: plot

```
data()
data(cars) #Speed and Stopping Distances of Cars
plot(cars) # x-axis:speed; y-axis: dist
plot(cars$dist, cars$speed)
plot(cars, type="b")
```


Example: plot (cont.)

```
> cl <- colors()
> cl
 [1] "white" ...
```

```
plot(cars,
type="b",
pch=5,
col="red",
xlab="Speed(mph)",
ylab="Stop distance(ft)",
main="Speed and Stopping Distances of Cars",
```

Speed and Stopping Distances of Cars

sub= "Figure 1: Plotting demonstration")

4.3 Bar charts – barplot()

```
CarArrived <- table(NumberOfCar <- rpois(100, lambda=5))
CarArrived

0 1 2 3 4 5 6 7 8 9 10 11 13
1 4 4 10 19 21 11 16 3 3 5 2 1
barplot(CarArrived)
barplot(CarArrived, col=rainbow(14))
```


4.4 Pie charts – pie() Taipel1 Taipel3

pie.sales <- c(0.14, 0.30, 0.26, 0.15, 0.10, 0.05) # Sales ratio

names(pie.sales) <- c("Taipei1", "Taipei2", "Taipei3", "Taichung", "Kao", "Other") # Sales area

pie(pie.sales) # default colours

4.5 E

4.5 Box-and-whisker Plot – boxplot()

4.6 Stem-and-Leaf Plot – stem()

```
mat = scan()
1: 2 3 16 23 14 12 4 13 2 0 0 0 6 28 31 14 4 8 2 5
21:
Read 20 items
                                          Press 'Enter'
stem(mat)
 The decimal point is 1 digit(s) to the right of the |
    000222344568
    23446
```


References

- R. Ihaka & R. Gentleman (1996) R: a language for data analysis and graphics, Journal of Computational and Graphical Statistics 5: 299–314.
- J H Maindonald (2004) Using R for Data Analysis and Graphics Introduction, Examples and Commentary. http://cran.r-project.org/doc/contrib/usingR-2.pdf
- E. Paradis (2002) R for Beginners. http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
- W. N. Venables, D. M. Smith and the R Development Core Team (2006)
 An Introduction to R Notes on R: A Programming Environment for Data Analysis and Graphics.
 - http://cran.r-project.org/doc/manuals/R-intro.pdf
- 5. W. N. Venables and B. D. Ripley (2002) Modern Applied Statistics with S.
- 6. The R Manuals Documentation Manuals http://cran.r-project.org/

THANKS Q&A