UNIVERSIDAD PERUANA DE CIENCIAS APLICADAS TRABAJO FINAL BUSINESS PREDICTIVE ANALYTICS GRUPO 2

INTEGRANTES:

- ANDRÉ NICOLAS VÁSQUEZ CASTRO (U20211B559).
- VALERIA MILAGROS CAQUI PIZARRO (U20211C241).
- LUIS ÁNGEL BENDEZÚ JIMENEZ (U202022364).
- NEIL EDUARDO TRUJILLO NEYRA (U202020118).
- GIANELLA LUCÍA SILVINA GONZALES (U202019652).

SECCIÓN: SS92

INTRODUCCIÓN

La Clínica Mayo, reconocida por su excelencia en el cuidado de la salud y la investigación médica, se enfrenta a un desafío crítico en el ámbito de la detección y manejo de las enfermedades cardiovasculares (ECV). Con el contexto global de las ECV como principal causa de mortalidad, cobrando 17,9 millones de vidas cada año y representando el 31% de todas las muertes en todo el mundo, surge una necesidad urgente de abordar la detección y el manejo temprano de estas enfermedades.

CAPÍTULO 1: ENTENDIMIENTO DEL NEGOCIO 1.1. DEFINIR EL PROBLEMA

El principal desafío de negocio para la Clínica Mayo se centra en la necesidad de mejorar la detección y el manejo temprano de las enfermedades cardiovasculares (ECV). A pesar de su reconocida reputación en el cuidado de la salud cardiovascular, la clínica enfrenta dificultades para identificar de manera precoz los factores de riesgo y adoptar medidas preventivas efectivas contra las ECV.

1.2. EVALUAR Y ANALIZAR ESCENARIOS

El principal desafío de negocio para la Clínica Mayo se centra en la necesidad de mejorar la detección y el manejo temprano de las enfermedades cardiovasculares (ECV). A pesar de su reconocida reputación en el cuidado de la salud cardiovascular, la clínica enfrenta dificultades para identificar de manera precoz los factores de riesgo y adoptar medidas preventivas efectivas contra las ECV.

Desarrollar un modelo predictivo que pueda identificar tempranamente la probabilidad de desarrollo de enfermedades cardiovasculares en pacientes, utilizando datos clínicos y biomédicos relevantes

Diseñar algoritmos capaces de predecir la progresión de las enfermedades cardiovasculares en pacientes a lo largo del tiempo, considerando factores de riesgo y variables clínicas.

Facilitar a los profesionales de la salud en la Clínica Mayo la identificación de patrones y correlaciones significativas entre las variables clínicas y biomédicas, para mejorar la toma de decisiones clínicas y el diseño de intervenciones preventivas.

Desarrollar herramientas de apoyo a la toma de decisiones que permitan personalizar el manejo y tratamiento de los pacientes con riesgo de enfermedades cardiovasculares, optimizando así los recursos y mejorando los resultados clínicos.

1.4. PLAN DE PROYECTO

1.4. PLAN DE PROYECTO

	EDT	Nombre de tarea	Duración	Comienzo	Fin	Nombre de los recursos
1	1	Trabajo Final	48 horas	Viernes 22/03/2024	Jueves 27/06/2024	Grupo 02
2	1.1	Capítulo 1: Entendimiento del negocio	dimiento		Jueves 27/06/2024	
3	1.1.1	Definir el problema	2 horas	Viernes 22/03/2024	Jueves 27/06/2024	André/Valeria/Luis/Gianell a/Neil
4	1.2	Evaluar y analizar escenarios	1 hora y 30 minutos	Viernes 22/03/2024	Jueves 27/06/2024	André/Valeria/Luis/Gianell a/Neil
5	1.3	Definir los objetivos de ML		Viernes 22/03/2024	Jueves 27/06/2024	André/Valeria/Luis/Gianell a/Neil
6	1.4	Plan de proyecto	2 horas	Viernes 22/03/2024	Jueves 27/06/2024	André/Valeria/Luis/Gianell a/Neil

7	2	Capítulo 2: Pre- Procesamiento de los Datos	16 horas	Miércoles 10/04/2024	Jueves 27/06/2024	
8	2.1	Colocar los datos	2 horas	Miércoles 10/04/2024	Jueves 27/06/2024	André Nicolas Vásquez Castro
9	2.2	Calidad y Limpieza de datos	6 horas	Miércoles 10/04/2024	Jueves 27/06/2024	André Nicolas Vásquez Castro
10	2.3	EDA	4 horas	Sábado 20/04/2024	Jueves 27/06/2024	Luis Bendezú/Neil Trujillo
11	2.4	Transformació n de los datos	4 horas	Viernes 03/05/2024	Jueves 27/06/2024	Luis Bendezú/Neil Trujillo
12	3	Capítulo 3: Resultados sobre análisis de datos	4 horas	Sábado 20/04/2024	Jueves 27/06/2024	
13	3.1	Insights	4 horas	Sábado 20/04/2024	Jueves 27/06/2024	Valeria Caqui/Gianella Silvina/Neil Trujillo/Luis Bendezú

1.4. PLAN DE PROYECTO

14	4	Capítulo 4: Modelización y Optimización	15 horas	Sábado 11/05/2024	Jueves 27/06/2024	
15	4.1	Modelización	8 horas	Sábado 11/05/2024	Jueves 27/06/2024	André Nicolas Vásquez Castro
16	4.2	Optimización	7 horas	Viernes 17/05/2024	Jueves 27/06/2024	Valeria Milagros Caqui Pizarro/Gianella Silvina
17	5	Capítulo 5: Resultados de modelización	6 horas	10/06/2024	Jueves 27/06/2024	
18	5.1	Presentación de resultados finales	6 horas	10/06/2024	Jueves 27/06/2024	Luis Ángel Bendezú Jimenez
19	6	Aportes	2 horas	15/06/2024	Jueves 27/06/2024	André Nicolas Vásquez Castro
20	7	Conclusiones	2 horas	18/06/2024	Jueves 27/06/2024	Valeria Milagros Caqui Pizarro

21	8	Recomendacio nes	2 horas	23/06/2024	Jueves 27/06/2024	Neil Trujillo
22	9	Glosario	1 hora	24/06/2024	Jueves 27/06/2024	Luis Ángel Bendezú Jimenez
23	10	Bibliografía	2 horas	25/06/2024	Jueves 27/06/2024	Gianella Silvina

PRE-PROCESAMIENTO DE LOS DATOS (DATA QUALITY & CLEANING)

Carga de datos

```
import pandas as pd
import pickle
import matplotlib.pyplot as plt
import seaborn as sns

Xmatplotlib inline

#Automcompletar rapido
Xconfig IPCompleter.greedy=True
#Desactivar la notación científica
pd.options.display.float_format = '{:.3f}'.form
from IPython.display import display
[2] #Google Drive
from google.colab import drive
drive.mount('/content/drive')
```

Mounted at /content/drive

```
[14] a Corpor of Detarrage deale of problem CSV.
     of heart disease dirty5 - phread tay("/toment/Arise/by Drise/MA/M/Neart disease dirty5.tow", encoding-"ND-MES-1", delimiter-";")
     of heart disease dirtys - of heart disease dirtys, sort index[axis-0], sort index[axis-1]
    of heart disease dirty5.head(5)
          BMS BYWeds Gender Heart_stroke
                                                                                               education glucose heartHate prevalenthyp prevalentStroke
     0 26.97
                                                                                                                      80,000
                                       NuN
                                                                                                                                                                      Non
     2 2534
                                        No. 48,000
                                                                                                                      25,000
                                                                                                                                                       no 127,500
     3 28.58
                                        Ves: 61.000
                                                                       1.000 95.000
                                                                                                                      65,000
                                                                                                                                                       no 150,000
     4 23.1
                                        No. 46.005
                                                                       1,000 84,000
                                                                                                                      85,000
                                                                                                                                                      co 130.000
```

Corrección de cabeceras o headers

u	t_neart_disease_di	rty5.rename(columns = column	as_renom	brar, inplace =	True)							
	f heart disease di	etys head/a)								↑ ¥ © [] 🗊 :
·	I_lieal t_uisease_ui	rty3.neau(3)										
	body_mass_index	blood_pressure_medications	gender	heart_disease	age	cigarettes_per_day	is_current_smoker	diastolic_blood_pressure	diabetes	s education	glucose	heartRa
	0 26.97		Male	No	39.000		0.000	70.000	0.000) postgraduate	77	80.0
	1 NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	l NaN	NaN	Na
	2 25.34		Male	No	48.000	20	1.000	80.000	0.000) uneducated	70	75.00

Verificación de inconsistencias textuales

Verificación de Inconsistencias Textuales:

```
# Verificar inconsistencias textuales en datos de tipo string
def verificar_textos(df):
    for column in df.select_dtypes(include=['object']).columns:
        print(f"\nVerificación en columna '{column}':")
        print(f"Valores en mayúsculas: {df[column][df[column].str.isupper()].unique()}")
        print(f"Valores en minúsculas: {df[column][df[column].str.islower()].unique()}")

# Llamar a la función de verificación de textos
verificar_textos(df_cat)
```

Verificación de inconsistencias textuales

```
Valores en mayúsculas: []
Valores en minúsculas: []
Verificación en columna 'blood pressure medications':
Valores en mavúsculas: []
Valores en minúsculas: []
Verificación en columna 'gender':
Valores en mayúsculas: ['FEMALE' 'MALE']
Valores en minúsculas: ['male' 'female']
Verificación en columna 'heart disease':
Valores en mayúsculas: ['YES' 'NO']
Valores en minúsculas: ['ves' 'no']
Verificación en columna 'cigarettes per day':
Valores en mayúsculas: []
Valores en minúsculas: []
Verificación en columna 'education':
Valores en mayúsculas: ['PRIMARYSCHOOL' 'UNEDUCATED' 'GRADUATE' POSTGRADUATE']
Valores en minúsculas: ['postgraduate' 'uneducated' 'graduate' 'primaryschool']
Verificación en columna 'glucose':
Valores en mayúsculas: []
Valores en minúsculas: []
Verificación en columna 'has prevalent stroke':
Valores en mayúsculas: ['NO' 'YES']
Valores en minúsculas: ['no' 'yes']
Verificación en columna 'total cholesterol':
Valores en mayúsculas: []
Valores en minúsculas: []
```

Correcciones de inconsistencias textuales

Corrección de Inconsistencias Textuales:

```
[ ] # Corregir inconsistencias textuales en datos de tipo string
    def corregir_textos(df):
        for column in df.select_dtypes(include=['object']).columns:
            df[column] = df[column].str.title() # Convertir a formato Título para uniformidad

# Llamar a la función de corrección de textos
    corregir_textos(df_cat)
```

Correcciones de inconsistencias textuales

```
Verificación en columna 'body mass index':
Valores en mayúsculas: []
Valores en minúsculas: []
Verificación en columna 'blood pressure medications':
Valores en mayúsculas: []
Valores en minúsculas: []
Verificación en columna 'gender':
Valores en mayúsculas: []
Valores en minúsculas: []
Verificación en columna 'heart disease':
Valores en mayúsculas: []
Valores en minúsculas: []
Verificación en columna 'cigarettes per day':
Valores en mayúsculas: []
Valores en minúsculas: []
Verificación en columna 'education':
Valores en mayúsculas: []
Valores en minúsculas: []
Verificación en columna 'glucose':
Valores en mayúsculas: []
Valores en minúsculas: []
Verificación en columna 'has prevalent stroke':
Valores en mayúsculas: []
Valores en minúsculas: []
Verificación en columna 'total cholesterol':
Valores en mayúsculas: []
Valores en minúsculas: []
```

Identificación de celdas duplicadas

```
DUPLICADOS
      df heart disease dirty5.duplicated().sum()
      363
      # Identificar filas duplicadas en el DataFrame
[18]
      filas duplicadas = df heart disease dirty5[df heart disease dirty5.duplicated()]
      # Mostrar las filas duplicadas
      print(filas duplicadas)
           body mass index blood pressure medications
                                                          gender heart disease
                                                                                   age
      15
                                                                                   NaN
                        NaN
                                                     NaN
                                                             NaN
                                                                            NaN
                        NaN
                                                             NaN
                                                                                   NaN
      34
                                                    NaN
                                                                            NaN
     43
                        NaN
                                                    NaN
                                                             NaN
                                                                            NaN
                                                                                   NaN
                        NaN
                                                    NaN
                                                             NaN
                                                                            NaN
                                                                                   NaN
      180
      184
                        NaN
                                                    NaN
                                                             NaN
                                                                            NaN
                                                                                   NaN
      ...
                        . . .
                                                             . . .
                                                                                    . . .
     4410
                      29.48
                                                      0
                                                            MALE
                                                                             NO 43.000
                       NaN
                                                             NaN
      4411
                                                    NaN
                                                                            NaN
                                                                                   NaN
      4412
                      25.63
                                                       0
                                                            Male
                                                                             No 41.000
                                                          Female
      4413
                      25.46
                                                                             No 46.000
                                                            Male
      4414
                      24.01
                                                      0
                                                                             No 39.000
```

Eliminar celdas duplicadas

```
#Corrección: Eliminar las filas duplicadas
df_heart_disease_dirty5.drop_duplicates(inplace=True)
df_heart_disease_dirty5.shape

(4052, 16)
```

Verificación de valores nulos - categóricas

VERIFICACIÓN DE VALORES NULOS EN DATASET

[22] df_cat = df_heart_disease_dirty5.select_dtypes(include=['object']).copy()
 df_cat

	body_mass_index	blood_pressure_medications	gender	heart_disease	cigarettes_per_day	education	glucose	has_prevalent_stroke	total_cholesterol	田
0	26.97	0	Male	No	0	postgraduate	77	по	195	118
1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1
2	25.34	0	Male	No	20	uneducated	70	по	245	
3	28.58	0	Female	yes	30	graduate	103	по	225	
4	23.1	0	Female	No	23	graduate	85	по	285	
4200	25.97	0	Male	yes	1	uneducated	86	no	313	
4201	19.71	0	MALE	NO	43	GRADUATE	68	NO	207	
4202	22	NaN	Female	No	20	primaryschool	86	по	248	
4203	19.16	0	Female	No	15	uneducated	NaN	по	210	
4204	21.47	0	Female	No	0	primaryschool	107	по	269	

Verificación de valores nulos - categóricas

```
#df cat.isna().sum().sort values(ascending=False)
df cat.isnull().sum().sort values(ascending=False)
glucose
                               381
education
                              127
blood pressure medications
                               82
total cholesterol
                               82
cigarettes per day
                               60
body mass index
heart disease
has prevalent stroke
gender
dtype: int64
df_cat.isnull().sum().sort_values(ascending=False) * 100 / len(df_cat)
glucose
                             9.403
education
                             3.134
blood pressure medications 2.024
total cholesterol
                             2.024
cigarettes per day
                             1.481
body mass index
                             1.308
heart disease
                             0.913
has prevalent stroke
                             0.913
gender
                             0.025
dtype: float64
```

Eliminar valores nulos - categóricas

```
[34] # Eliminar filas que contienen valores nulos
     df cat.dropna(inplace=True)
     # Verificar si quedan valores nulos después de la eliminación
     df cat.isnull().sum().sort values(ascending=False) * 100 / len(df cat)
    BMI
                      0.000
                      0.000
     RPMeds
     Gender
                      0.000
    Heart stroke
                      0.000
    cigsPerDay
                      0.000
    education
                      0.000
    glucose
                      0.000
    prevalentStroke 0.000
     totchol
                      0.000
     dtype: float64
[43] # Verificar si quedan valores nulos después de la eliminación
     df cat.isnull().sum().sort values(ascending=False) * 100 / len(df cat)
    BMI
                      0.000
    BPMeds
                      0.000
    Gender
                      0.000
    Heart stroke
                      0.000
    cigsPerDay
                      0.000
    education
                      0.000
    glucose
                      0.000
                      0.000
     prevalentStroke
     totChol
                      0.000
     dtype: float64
```

Verificar valores nulos - numéricas

```
df num = df heart disease dirty5.select dtypes(include='number').copy()
print(df num.shape)
df num.isna().sum().sort values(ascending=False)
(4052, 7)
heartRate
                             38
                             37
age
is current smoker
                             37
diastolic blood pressure
                             37
diabetes
                             37
hypertension
                             37
systolic blood pressure
                             37
dtype: int64
```

Verificar valores nulos - numéricas

```
df num['heartRate'] = df num['heartRate'].fillna(valor heartRate)
     df num['age'] = df num['age'].fillna(valor age)
     df num['is current smoker'] = df num['is current smoker'].fillna(valor is current smoker)
     df num['hypertension'] = df num['hypertension'].fillna(valor hypertension)
     df num['diabetes'] = df num['diabetes'].fillna(valor diabetes)
    df num['systolic blood pressure'] = df num['systolic blood pressure'].fillna(valor systolic blood pressure)
     df num['diastolic blood pressure'] = df num['diastolic blood pressure'].fillna(valor diastolic blood pressure)
[42] df num.isna().sum().sort values(ascending=False)
     age
    is current smoker
    hypertension
    diabetes
    systolic blood pressure
    diastolic blood pressure
                                0
     heartRate
                                0
    dtype: int64
```

Grabar fin de fase - Data Quality & Cleaning

GRABAR FIN DE FASE

```
[ ] df_cat.to_pickle('/content/drive/My Drive/BPA/TP/df_heart_disease_cat_fin_quality_cleaning.pickle')
    df_num.to_pickle('/content/drive/My Drive/BPA/TP/df_heart_disease_num_fin_quality_cleaning.pickle')
    df_cat_num.to_pickle('/content/drive/My Drive/BPA/TP/df_heart_disease_cat_num_fin_quality_cleaning.pickle')
```

EDA

(Análisis exploratorio de datos)

1. ¿Cuál es la distribución de la edad de los pacientes en el conjunto de datos?

2. ¿Cuál es la distribución del índice de masa corporal (BMI) en la población?

3. ¿Cómo se distribuyen los niveles de presión arterial sistólica y diastólica?

```
import matplotlib.pyplot as plt
presion sistolica - df numf systolic blood pressure'l
presion diastolica - of numl'diastolic blood pressure'l
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.hist(presion_sistolica, bins=20, color="skyblue", edgecolor="black")
plt.title('Distribución de Presión Arterial Sistólica')
plt.xlabel( Presion Arterial Sistolica)
plt.vlabel('Frequencia')
plt.grid(True)
plt.subplot(1, 2, 2)
plt.hist(presion_diastolica, bins=20, color='salmon', edgecolor='black')
plt.title('Distribución de Presión Arterial Diastólica')
plt.xlabel("Presion Arterial Diastolica")
plt.ylabel('Frequencia')
plt.grid(True)
plt.tight_layout()
plt.show()
```


4. ¿Hay alguna correlación entre el género de los pacientes y la prevalencia de enfermedades cardiovasculares?

```
RELACIÓN ENTRE PRESIÓN ARTERIAL SISTÓLICA Y DIASTÓLICA EN HOMBRES Y MILJERES
import mutplotlib.pyplot as pit
    # filtrer dates nor elsera
    of male - of cat num[of cut num | gender | ] -- "Male"]
    df female = df cat num(df cat num) greater ] -- [female ]
    sit.figure(figuize=012, 613
    elf. unbelieffi, 2, 1)
    pit.scatter[df male] "swatning blood pressure"], df male] "stattning blood pressure"], color-"skoblog", label-"swatner", almbe-0.71
   plt.title('Nelection entre Presido deteria) Sistilica y Diantilica en Hombres')
   plt.slabel('Freilin Arterial Sistillica')
    plt. clabelf Preside Arterial Mastelles 5
    sit.lepend()
   mit.orid(True)
   sit.satslet(1, 2, 2)
   plt.scatter[df female] systolic blood pressure ], of female] disstalic blood pressure ], color-"selson", label="byleres", alpha=0.7]
    alt.title('Relación entre Presión Arterial Sistólica y Biastólica en Buseres')
   plt.slabel("Fresion Actorial Significa")
    alt, place1("Frentin Arterial Dischilling")
    nit.ireend()
   elt.grid(True)
    plt.tight layout()
    glt.show()
```


5. ¿Qué género tiene mayores niveles de glucosa en la sangre?

```
DESTRIBUCIÓN DE LOS NIVELES DE GLUCOSA
f I deport numby as no
    pit. #igure(#igsize=(%, 61)
    # Crear of biolograms to his civiles or glasses
    ult.hist(df.cut['glucose'), biss-100, color='thyblue', edgecolor='bluck')
    mix.grad(1--)
    # Agregar etimetas y titulo at gráfico
    git wisbel( Wiveley de Glumnsa')
    nit visbel/ Frequencia')
    pit title('Distribution on Miveley or Mintone')
    plt.xticksinp.arange(50, 600, 50))
    mit.show()
                                 Distribución de Niveles de Glucosa
        300
        250
        200
                                            Niveles de Glucosa
```

6. ¿Cuántos cigarrillos consumidos por día afectan el nivel acelerado del ritmo cardíaco?

```
DISTRIBUCIÓN DE RITMOS CARDÍACOS
[ ] # Eliminar files con valores faltantes en la columna 'heartRate' y convertir a tipo numerico
    df cleaned = df num.dropna(subset=['heartRate'])
    df cleaned['heartRate'] = pd.to mameric(df cleaned|'heartRate'], errors "coerce')
     # Configurar el tamaño del gráfico
     plt.figure(figsize=(8, 6))
     # Crear el histograma de los ritmos cardiacos
     plt.hist(df_cleaned['heartHate'], bins=20, color='skyblue', edgecolor='black')
     # Agregan cuadriculas al gráfico
     plt.grid(True)
     # Agregar etiquetas y título al gráfico
     plt.xlabel('Ritmo Cardiaco')
    plt.ylabel('Frequencia')
    plt_title('Distribución de Ritmos Cardiacos')
     # Mostran el gráfico
     plt.show()
```


RITMO CARDÍACO SEGÚN INTERVALOS DE CIGARRILLOS POR

```
I I deport names as no
    of cleaned - of cat num.dropna(subsets) heartfale', 'ciparatte per day'))
    of sleared['heartfate'] = pd.to numeric(of cleared['heartfate'], errors-'correr')
    of cleaned disposition for dor'l - od to numerical cleaned disposition per dor'l, errors uncreal
    hins - sp.armage(b, of cleared) algorithm per day'l mas() - bb, 18) of Debrooking as 0 a minima - bb, amin in algorithm
    pit figure(figure-(12, 10)
    alt.Mat(df.cleaced frontfate), bles-20, alaba-0.5, latel- Noton les mitted) à Histograms sons tuons les datons
    For 1 In reserve (lexibles) + 100
        lower bound - birstill
        upper_hound = hint[1 + 1]
        subset_data + of_classed((of_classed('signetics' per_day') >= lower_board) & (of_classed('signetics' per_day') < upper_board)]
        # Crear Histograms pure et automblette de datos
        plt.hist(subset data('hearthists'), bins-20, alpha-0.5, label-' (lower bound) (upper bound) tignies')
    mit.grieffmin
    mit.wiseeff'85000 Cardiam'd
    pit ylabel('Frequencia')
    plt-title(Witho Carolaco pagin Intervalor de Claurvillos por Sia')
    ult.legend()
    mit.show()
```


MATRIZ DE CORRELACIÓN

TRANSFORMACIÓN DE LOS DATOS

Transformación de los datos

TRANSFORMACIÓN DE LOS DATOS

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import scipy as scipy
import seaborn as sns
%matplotlib inline
#Automcompletar rápido
%config IPCompleter.greedy=True
#Desactivar la notación científica
pd.options.display.float format = '{:.3f}'.format
pd.options.display.max columns = None
df heart disease cleaned = pd.read pickle('/content/drive/MyDrive/BPA/TP/df heart cat num fin EDA.pickle')
df heart disease cleaned.reset index(inplace = True)
df heart disease cleaned.head(3)
```

Transformación de los datos a oneHotEncoder - categóricas

```
df_cat = df_heart_disease_cleaned.select_dtypes(exclude='number').copy()
df_num = df_heart_disease_cleaned.select_dtypes(include='number').copy()
```

	blood_pressure_medications	gender	heart_disease	cigarettes_per_day	education	glucose	has_prevalent_stroke	total_cholesterol
0	0	Male	No	0	Postgraduate	77	No	195
1	0	Male	No	20	Uneducated	70	No	245
2	0	Female	Yes	30	Graduate	103	No	225
3	0	Female	No	23	Graduate	85	No	285
4	0	Female	No	0	Primaryschool	99	No	228

3456	0	Male	No	0	Graduate	81	No	187
3457	Ö	Male	Yes	0	Uneducated	79	No	176
3458	0	Male	Yes	1	Uneducated	86	No	313
3459	0	Male	No	43	Graduate	68	No	207
3460	0	Female	No	0	Primaryschool	107	No	269
3461 rd	ws × 8 columns							

Transformación de los datos a oneHotEncoder - categóricas gender

```
from sklearn.preprocessing import OneHotEncoder
#sparse=True, la salida será una matriz / drop='first: Elimina la primera columna / dtype='int64': Asignamos el tipo de dato entero
oneHE = OneHotEncoder(sparse = False, drop='first', dtype='int64')
df oneHE = oneHE.fit transform(df heart disease cleaned[columnas])
df oneHE = pd.DataFrame(data = df oneHE , columns=oneHE.get feature names out()) #input features=cat))
df oneHE
/usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_encoders.py:868: FutureWarning: `sparse` was renamed to `sparse_output
  warnings.warn(
       gender Male
  0
 3456
 3457
 3458
 3459
 3460
3461 rows x 1 columns
```

Transformación de los datos a MinMaxScaler - numéricas

df num

	index	body_mass_index	age	is_current_smoker	diastolic_blood_pressure	diabetes	heartRate	hypertension	systolic_blood_pressure
0	0	26.970	39.000	0.000	70.000	0.000	80.000	0.000	106,000
1	2	25.340	48.000	1.000	80.000	0.000	75.000	0.000	127.500
2	3	28.580	61.000	1.000	95.000	0.000	65.000	1.000	150.000
3	4	23.100	46.000	1.000	84.000	0.000	85.000	0.000	130.000
4	5	30.300	43.000	0.000	110.000	0.000	77.000	1.000	180.000
3456	4198	24.960	58.000	0.000	81.000	0.000	80.000	1.000	141.000
3457	4199	23.140	68.000	0.000	97.000	0.000	60.000	1.000	168.000
3458	4200	25.970	50.000	1.000	92.000	0.000	66.000	1.000	179.000
3459	4201	19.710	51.000	1.000	80.000	0.000	65.000	0.000	126.500
3460	4204	21.470	52.000	0.000	83.000	0.000	80.000	0.000	133.500

3461 rows × 9 columns

Transformación de los datos a MinMaxScaler - numéricas todas las variables

```
from sklearn.preprocessing import MinMaxScaler
columnas = ['age', blood pressure medications', body mass index', cigarettes per day',
             'diabetes', diastolic blood pressure', glucose', heartRate', 'hypertension', is current smoker', systolic blood pressure', total cholesterol'
mms = MinMaxScaler()
mms.fit(df heart disease cleaned[columnas])
df mms = mms.transform(df heart disease cleaned|columnas|)
df mms = pd.DataFrame(data=df mms, columns=columnas)
df mas
        age blood pressure medications body mass index cigarettes per day diabetes diastolic blood pressure glucose heartRate hypertension is current smoker systolic blood pressure total cholesterol
                                   0.000
                                                                         0.000
                                                                                                                                                0.000
                                                                                                                                                                                             0.106
                                                                                                                                                                                                                 0.158
  0 0.184
                                                                                   0.000
                                                                                                              0.233
                                                                                                                       0.105
                                                                                                                                  0.364
                                                                                                                                                                    0.000
  1 0.421
                                   0.000
                                                     0.238
                                                                         0.286
                                                                                   0.000
                                                                                                                       0.085
                                                                                                                                  0.313
                                                                                                                                                0:000
                                                                                                                                                                    1.000
                                                                                                                                                                                              0.208
                                                                                                                                                                                                                 0.262
                                                                                                              0.339
                                   0.000
                                                                         0.429
                                                                                   0.000
                                                                                                              0.497
                                                                                                                                                1.000
                                                                                                                                                                    1.000
                                                                                                                                                                                             0.314
  3 0.368
                                   0.000
                                                     0.183
                                                                         0.329
                                                                                   0.000
                                                                                                              0.381
                                                                                                                       0.127
                                                                                                                                  0.414
                                                                                                                                                0.000
                                                                                                                                                                    1.000
                                                                                                                                                                                              0.220
                                                                                                                                                                                                                 0.345
  4 0.289
                                   0.000
                                                     0.358
                                                                         0.000
                                                                                   0.000
                                                                                                              0.656
                                                                                                                                  0.333
                                                                                                                                                1.000
                                                                                                                                                                    0.000
                                                                                                                                                                                             0.456
                                                                                                                                                                                                                 0.227
                                   0.000
                                                     0.228
                                                                         0.000
                                                                                                                                  0.364
                                                                                                                                                 1.000
                                                                                                                                                                    0.000
3456 0.684
                                                                                   0.000
                                                                                                              0.349
                                   0.000
                                                     0.184
                                                                         0.000
                                                                                   0.000
                                                                                                                                                1.000
                                                                                                                                                                    0.000
                                                                                                                                                                                             0.400
3457 0.947
                                                                                                              0.519
3458 0.474
                                   0.000
                                                                                   0.000
                                                                                                              0.466
                                                                                                                                                1.000
                                                                                                                                                                    1.000
                                                                                                                                                                                             0.452
                                                                                                                                                                                                                 0.403
                                    0.000
                                                                         0.614
                                                                                   0.000
                                                                                                                       0.079
                                                                                                                                                0.000
                                                                                                                                                                    1.000
                                                                                                                                                                                              0.203
                                                                                                                                                                                                                 0.183
3459 0.500
                                                                                                              0.339
3460 0.526
                                   0.000
                                                     0.144
                                                                         0.000
                                                                                   0.000
                                                                                                              0.370
                                                                                                                                  0.364
                                                                                                                                                0.000
                                                                                                                                                                    0.000
                                                                                                                                                                                             0.236
3461 rows x 12 columns
```

Transformación de los datos - dataframe final

df_transformationdata = pd.concat([df_oneHE,df_mms],axis=1)

and the second	TO MILL LOTTON CO.												
(()	neart_disease_Yes	age	blood_pressure_medications	body_mass_index	cigarettes_per_day	diabetes	diastolic_blood_pressure	glucose	heartRate	hypertension	is_current_smoker	systolic_blood_pressure	total_cholesterol
0	0	0.184	0.000	0.277	0.000	0.000	0.233	0.105	0.364	0.000	0.000	0.106	0.158
1	0	0.421	0.000	0.238	0.286	0.000	0.339	0.085	0.313	0.000	1.000	0.208	0.262
2	1	0.763	0.000	0.316	0.429	0.000	0.497	0.178	0.212	1.000	1.000	0.314	0.220
3	0	0.368	0.000	0.183	0.329	0.000	0.381	0.127	0.414	0.000	1.000	0.220	0.345
4	0	0.289	0.000	0.358	0.000	0.000	0.656	0.167	0.333	1.000	0.000	0.456	0.227
3456	0	0.684	0.000	0.228	0.000	0.000	0.349	0.116	0.364	1.000	0.000	0.272	0.141
3457		0.947	0.000	0.184	0.000	0.000	0.519	0.110	0.162	1.000	0.000	0.400	0.119
3458		0.474	0.000	0.253	0.014	0.000	0.466	0.130	0.222	1.000	1.000	0.452	0.403
3459	0	0.500	0.000	0.101	0.614	0.000	0.339	0.079	0.212	0.000	1.000	0.203	0.183
3460	0	0.526	0.000	0.144	0.000	0.000	0.370	0.189	0.364	0.000	0.000	0.236	0.312
3461 row	s × 13 columns												

Transformación de los datos - guardar fin de fase

df_transformationdata.to_pickle('/content/drive/My Drive/BPA/TP/df_transformationdata_transformacionheart.pickle')

INSIGHTS

1. Relación de tendencia de la cantidad de cigarrillos consumidos por día y ritmo cardíaco

```
leport pandas as pd
Convertir la columna "cignrettes per day" a numérica, tratando errores
df heart disease cleaned['cigarettes per day'] = pd.to numeric(df heart disease cleaned['cigarettes per day'], errors='coerce'
E Verificar les nueves tipos de dates
print(df heart disease cleaned 'cigarettes per day' | dtype)
f Abora puedes Intentar crear el gráfico de muevo, acegurándote que no hay valores MaN que puedan afectar la regresión
import watplotlib.pyplot as plt
# Crear un gréfico de tendencia entre "cigarettes per day" y "heartHate"
sns.lmplot(x-'cigarettes per day', y-'heartNate', data-df heart disease cleaned, scatter-false)
# Aladir titulo y etiquetas de ajes
plt.title('Relación de Cantidad de Cigarrillos por Día y Ritmo Cordiaco')
plt.xlabel('Cigarrillos por Ofa')
plt.ylabel('Ritmo Cardiaco')
# Agregar condriculus al gráfico
plt.grid(Trum)
# Mostrar #1 grafico
plt.show()
```


2. Distribución de las edades de las personas afectadas por enfermedades cardiovasculares

3. Relación de los tipos de presiones arteriales y el Índice de Masa

4. Relación entre Enfermedad Cardíaca y Ritmo Cardíaco

```
4) Relación entre Enfermedad Cardiaca y Ritmo Cardiaco
[ ] # Crear un gráfico de dispersión con histogramas utilizando ana jointplot sons jointplot(data-df heart disease cleaned, x='systolic_blood_pressure', y='heartRate', kind='scatter', height=6) plt.xlabel('Enfermedad Cardiaca') plt.ylabel('Ritmo Cardiaca') plt.suptitle('Relación entre Enfermedad Cardiaca y Ritmo Cardiaco', y=1.02) plt.show()
```


MODELIZACIÓN

Modelización Random Forest con todas las variables

```
import pandas as pd
     import numpy as np
     import seaborn as sas
     import matplotlib.pyplot as plt
     *matplotlib inline
     #Autoecompletar rapido
    Mconfig IPCompleter.greedy=True
    #Desactiver is notación científica
    pd.options.display.float format = "(::3f)".format
[ ] df_heart_modelizacion = pd.read_pickle('/content/drive/My_Drive/BPA/TP/df_transformationdata_transformacionheart.pickle')
    of heart modelizacion
=
                              age blood pressure medications body mass index cigarettes per day diabetes diastolic blood pressure glucose heartRate hypertension is current smoker systolic blood pressure total cholesterol
                           0 0.184
                                                          0.000
                                                                                               0.000
                                                                                                         0.000
                                                                                                                                           0.105
                                                                                                                                                      0.364
                                                                                                                                                                    0.000
                                                                                                                                                                                       0.000
                                                                                                                                                                                                                0.706
                           0 0.421
                                                          0.000
                                                                                               0.286
                                                                                                         0.000
                                                                                                                                   0.339
                                                                                                                                           0.085
                                                                                                                                                                    0.000
                                                                                                                                                                                       1.000
                                                                                                                                                                                                                0.208
                           1 0.763
                                                          0.000
                                                                                               0.429
                                                                                                         0.000
                                                                                                                                   0.497
                                                                                                                                                                                       1.000
                                                                                                                                                                                                                                   0.220
                           0 0.368
                                                          0.000
                                                                                               0.329
                                                                                                         0.000
                                                                                                                                   0.381
                                                                                                                                                      0.414
                                                                                                                                                                    0.000
                                                                                                                                                                                       1.000
                                                                                                                                                                                                                                   0.345
                           0 0.289
                                                          0.000
                                                                           0.358
                                                                                               0.000
                                                                                                         0.000
                                                                                                                                   0.656
                                                                                                                                                                    1.000
                                                                                                                                                                                       0.000
                                                                                                                                                                                                                0.456
     3456
                           0 0.684
                                                          0.000
                                                                                               0.000
                                                                                                         0.000
                                                                                                                                   0.349
                                                                                                                                                                                       0.000
     3457
                           1 0.947
                                                          0.000
                                                                           0.184
                                                                                               0.000
                                                                                                         0.000
                                                                                                                                   0.519
                                                                                                                                                                                       0.000
                                                                                                                                                                                                                0.400
                                                                                                                                                      0.162
                                                                                                                                                                    1.000
     3458
                           1 0.474
                                                                                                                                   0.466
                                                                                                                                                                    1.000
                                                                                                                                                                                                                0.452
                                                                                                                                                                                                                                   0.403
                           0 0.500
                                                                                                                                                                                                                                   0.183
     3459
                                                          0.000
                                                                           0.101
                                                                                               0.614
                                                                                                         0.000
                                                                                                                                   0.339
                                                                                                                                           0.079
                                                                                                                                                                    0.000
                                                                                                                                                                                       1.000
     3460
                           0 0.526
                                                          0.000
                                                                                               0.000
                                                                                                         0.000
                                                                                                                                           0.189
                                                                                                                                                      0.364
                                                                                                                                                                    0.000
                                                                                                                                                                                       0.000
    3461 rows x 13 columns
```

Modelización Random Forest con todas las variables - matriz de confusión

```
#Predecimos usando los datos de test
    v pred RandomForest = modelo RandomForest.predict(X test)
    y pred RandomForest proba = modelo RandomForest.predict proba(X test)
    #y pred RandomForest probaf: .1][:10]
    #Importamos las métricas
    from sklearn.metrics import roc auc score, confusion matrix, f1 score, classification report,\
                                accuracy score, precision score, recall score
    confusion matrix RandomForest = confusion matrix(y test,y pred RandomForest)
    #Mostrar el confusion matrix como dataframe
    pd.DataFrame(confusion matrix RandomForest,columns = ['Prediccion NO', 'Prediccion SI'], index = ['Real NO', 'Real SI'])
Ŧ
                                            屇
             Prediccion NO Prediccion SI
     Real NO
                       591
                                            ıl.
     Real SI
                        92
                                        5
```

Modelización Random Forest con todas las variables - métricas


```
age <= 0.434

gini = 0.258

samples = 3461

value = [2935, 526]

class = No tiene enfermedad cardiaca
```

```
gini = 0.14
samples = 1711
value = [1581, 130]
class = No tiene enfermedad cardiaca
```

gini = 0.35 samples = 1750 value = [1354, 396] class = No tiene enfermedad cardiaca

Modelización Random Forest con todas las variables - final


```
## Obtener la máscara de booleanos que indica qué características han sido seleccionadas
     sel.get_support()
array([ True, False, True, False, False, True, True, True, False,
           False, True, True])
[ ] #columnas seleccionadas por el modelo
     selected feat= X train.columns[(sel.get support())]
     selected_feat
Fr Index(['age', 'body mass index', 'diastolic blood pressure', 'glucose',
           'heartRate', 'systolic blood pressure', 'total cholesterol'],
          dtype='object')
[ ] print(len(selected_feat))
37 7
    # Obtener la importancia de las características del estimador
     sel.estimator .feature importances
array([0.1341079 , 0.00761535, 0.13870092, 0.05384373, 0.00401657,
           0.12408011, 0.12746353, 0.10291791, 0.01887345, 0.0119778 ,
           0.14450614, 0.13189658])
[ ] # Calculamos el promedio de los scores
     # proporciona una visión general del nivel promedio de importancia de las características en el conjunto de datos según el clasificador subyacente
     sel.estimator .feature importances .mean()
→ 0.08333333333333336
```

MODELIZACIÓN RANDOM FOREST CON FEATURE SELECTION - TÉCNICA DE RANDOM FOREST [] Import pandas as pd import numpy as no Import seaborn as sas import matplotlib.pyplot as plt Mwatplotlib inline #Automcompletar rapido *Config IPCompleter.greedy=True #Desactivar la notación cientifica pd.options.display.float_format = "(1.3f)".format [] df_heart_modelizacion = pd.read_pickle('/content/drive/My Drive/BPA/TP/df_transformationdata_transformacionheart.pickle') df heart modelizacion 3 heart disease Yes age blood pressure medications body mass index cigarettes per day diabetes diastolic blood pressure glucose heartRate hypertension is current smoker systolic blood pressure total cholesterol 0 0.184 0.000 0.000 0.000 0.000 0.000 0 0.421 0.000 0.238 0.286 0.000 0.085 0.000 1.000 1 0.763 0.000 0.429 0.000 0.497 0 0.368 0.000 0.183 0.329 0.000 0.381 0.414 0.000 1.000 0.220 0.345 0 0.289 0.000 0.000 0.656 0.456 3456 0 0.684 0.000 0.000 0.000 0.349 1.000 3457 1 0.947 0.000 0.184 0.000 0.000 1.000 0.000 0.400 3458 1 0 474 0.000 0.000 0.466 0.452 0.403 0 0.500 0.000 0.614 0.000 0.339 0.000 1.000 0.203 0.183 3459 3460 0 0.526 0.000 0.000 0.000 0.000 3461 rows x 13 columns

qini = 0.14samples = 1711value = [1581, 130]class = No tiene enfermedad cardiaca | class = No tiene enfermedad cardiaca

qini = 0.35samples = 1750value = [1354, 396]

Comparación entre los dos modelos vistos anteriormente

Grabar Fin de Fase del modelo ganador

OPTIMIZACIÓN DEL MODELO GANADOR

Optimización del modelo ganador - Random Forest con Feature Selection – Técnica de Random Forest

Optimización del modelo ganador - Random Forest con Feature Selection – Técnica de Random Forest (GRID SEARCH)

```
GRID SEARCH
    grid parameters =
                                             : ['giny', 'entropy'], # Gini y entropy sirven medir la impureza de un nodo aleatoriamente
                        { criterion
                           'max depth'
                                             : [10, 14, 20], #profundidad del arbol
                          'max features'
                                             : [10,20], #cantidad máxima de características que se consideran para dividir un nodo en un árbol de decisión
                          'min samples leaf' : [2, 4], #número mínimo de muestras requeridas para formar una hoja
                           'min_samples_split': [5, 10], #número mínimo de muestras requeridas para realizar una división en un nodo interno
                          'n estimators'
                                           : [100, 500], #Crear un clasificador de bosque aleatorio con N# estimadores
                          'n jobs'
                                             : [-1]) #(n jobs) -1 para usar todos los núcleos disponibles
   from sklearn.model_selection import GridSearchCV
    grid search rf = GridSearchCV(
                                          estimator
                                                              = algoritmo rf.
                                          param grid
                                                              = grid parameters,
                                          scoring
                                                              = 'roc auc'.
                                          n jobs
                                                              = -1,
                                                              = 3,
                                                              = 0
                                          verbose
    mejor_modelo_rf = grid_search_rf.fit(X_train,y_train)
```

Optimización del modelo ganador - Random Forest con Feature Selection — Técnica de Random Forest (GRID SEARCH) - Mejores parámetros

```
print('Configuración de los mejores parámetros:')
 mejor modelo rf.best params
 Configuración de los mejores parámetros:
 {'criterion': 'entropy',
  'max depth': 10,
  'max features': 20,
  'min samples leaf': 2,
  'min samples split': 10,
  'n estimators': 500.
  'n jobs': -1}
```

Optimización del modelo ganador - Random Forest con Feature Selection — Técnica de Random Forest (GRID SEARCH) - Mejores parámetros

```
[ ] print(f'Resultado de la métrica {mejor_modelo_rf.scoring} de la mejor configuración de parámetros:')
mejor_modelo_rf.best_score_
```

Resultado de la métrica roc_auc de la mejor configuración de parámetros: 0.6651980761193755

PRESENTACIÓN DE RESULTADOS FINALES DESPUÉS DE OPTIMIZAR EL MODELO GANADOR

```
[ ] y_pred_rf_hy = algoritmo_rf.predict(X_test)
    y_pred_rf_proba_hy = algoritmo_rf.predict_proba(X_test)
    y_pred_rf_proba_hy[:,1][:10]
```

array([0.14432537, 0.15713656, 0.2240986 , 0.06649744, 0.13366875, 0.06578384, 0.47359307, 0.24350122, 0.2232925 , 0.02463556])

Resultados finales del modelo ganador Random Forest con Feature Selection – Técnica de Random Forest - métricas

INTERPRETACIÓN Y CONCLUSIONES DE LOS RESULTADOS FINALES

CONCLUSIONES

RECOMENDACIONES

RECOMENDACIONES

EXPLICACIÓN DEL DASHBOARD DE HEART DISEASE POWER BI

GRACIAS!