

计算机组成原理实验

授课老师: 吴炜滨

实验报告

- 实验报告一提交时间
 - 提交截止时间: 11月14日凌晨0点整
 - 将实验报告一的报告文件(pdf格式)与电路源文件打包成一个zip提交
 - 实验报告 (pdf格式) 命名为: 学号_姓名_实验报告一
 - Zip文件命名为: 学号_姓名_实验报告一

■ 提交方式

- 坚果云
- 提交链接在实验报告一模板的首页

大纲

- ▶ 数据表示实验
 - 海明校验码设计实验
 - 实验目的、任务与原理
 - 理论知识准备
 - 实验步骤

大纲

- > 数据表示实验
 - 海明校验码设计实验
 - 实验目的、任务与原理

实验目的与任务

- 掌握海明校验码的设计原理,理解其检错、纠错性能
 - 设计包含16位原始数据(汉字机内码)的海明校验码
 - 实现包含16位原始数据位的海明校验码的编解码电路
 - 假设无三位错,解码电路能够检测一位错以及两位错,并纠正一位错

■ 发送方:海明编码

• 原始数据: 16位汉字机内码

• 经海明编码,得到22位海明校验码

■ 数据传输: 随机干扰模块

• 00: 不加扰 (数据不会产生错误)

• 01: 1位加扰 (数据产生随机的1位错)

• 10: 2位加扰 (数据产生随机的2位错)

• 11: 0-2位加扰 (数据产生随机的0-2位错)

- 接收方:海明解码
 - 能够检测一位错、两位错,并且能够判断是否没有错误
 - 当有一位错时,应该能够纠错,将正确的数据发送给接收方

■ 测试

• 接收方解码的数据与原始数据直接比较, 生成数据正确这个判断信号

大纲

- > 数据表示实验
 - 海明校验码设计实验
 - 理论知识准备

■ 海明码编码规则

- 原始数据信息被分成若干个校验组,每组设置一个奇/偶校验位
- 每个校验组在检错时会得到一个检错位
- 所有校验组的检错位的值组成检错码
 - 检错码值为0时,大概率无错误
 - 检错码值不为0时,指出一位出错的位置

■ 海明码需增添多少位校验位?

- 设海明码 $H_1H_2\cdots H_n$ 共n位,原始数据 $D_1D_2\cdots D_k$ 共k位,校验位 $P_1P_2\cdots P_r$ 共r位
- n = k + r
- 包含r个校验组,即r个检错位,来指出k + r + 1种状态

$$2^r \ge r + k + 1$$

■ 海明码需增添多少位校验位?

- 设海明码 $H_1H_2\cdots H_n$ 共n位,原始数据 $D_1D_2\cdots D_k$ 共k位,校验位 $P_1P_2\cdots P_r$ 共r位
- n = k + r
- 包含r个校验组,即r个检错位,来指出k+r+1种状态

$$2^r \ge r + k + 1$$

- k = 16时
 - *r* = 5

■ 海明码校验位的位置?

- 设海明码 $H_1H_2\cdots H_n$ 共n位,原始数据 $D_1D_2\cdots D_k$ 共k位,校验位 $P_1P_2\cdots P_r$ 共r位
- 检错码 $G_r \cdots G_2 G_1$ 共r位
- 校验位只对数据位进行校验 → 校验位只位于一个校验组
 - 出错时, 其检错码只有一位为1
 - 001, 010, $100 \rightarrow 2^{i}$ ($i = 0, 1, 2, \cdots$)

海明码	H_1	H_2	H_3	H_4	H_5	H_6	H_7
检错码/出错位置	001	010	011	100	101	110	111
映射关系	P_1	P_2	D_1	P_3	D_2	D_3	D_4
G_1 校验组	√						
G_2 校验组		√					
G_3 校验组				√			

■ 海明码数据位如何分组?

- *H*₃ (*D*₁) 出错:
 - 检错码为011, 应参与 G_1 , G_2 校验组
- H₅ (D₂) 出错:
 - 检错码为101, 应参与 G_1 , G_3 校验组
- 以此类推

海明码	H_1	H_2	H_3	H_4	H_5	H_6	H_7
检错码/出错位置	001	010	011	100	101	110	111
映射关系	P_1	P_2	D_1	P_3	D_2	D_3	D_4
G_1 校验组	√		√		√		√
G ₂ 校验组		√	√			√	√
G ₃ 校验组				√	√	√	√

■ 校验位的取值?

- 校验位的取值与该位所在的校验组中承担的奇/偶校验任务有关
 - 常用偶校验

$$P_1 = H_3 \oplus H_5 \oplus H_7 \cdots$$

海明码	H_1	H_2	H_3	H_4	H_5	H_6	H_7
检错码/出错位置	001	010	011	100	101	110	111
映射关系	P_1	P_2	D_1	P_3	D_2	D_3	D_4
G_1 校验组	√		√		√		√
G_2 校验组		√	√			√	√
G_3 校验组				√	√	√	√

一位纠错海明码的检错、纠错过程

■ 约定好编码规则

- 一位纠错海明码, 偶检验
- 对每一组进行校验生成检错码
 - 位数等于校验位位数,如校验位 $P_1P_2\cdots P_r$ 共r位,检错码 $G_r\cdots G_2G_1$ 也共r位
 - 发送方发送数据位为 $D_1D_2\cdots D_k$
 - 接收方收到数据位为 $D_1'D_2'\cdots D_k'$, 校验位为 $P_1'P_2'\cdots P_r'$
 - 以 k + r = 7 为例

位置	001	010	011	100	101	110	111
海明码	$H_1{}'$	$H_2{}'$	H_3	$H_4{}'$	H_5'	H_6'	H_7
映射关系	P_1'	$P_2{}'$	$D_1{}'$	P_3	D_2	$D_3{}'$	$D_4{}'$

一位纠错海明码的检错、纠错过程

位置	001	010	011	100	101	110	111
海明码	$H_1{}'$	H_2'	H_3	$H_4{}'$	${H_5}'$	H_6'	H_7
映射关系	P_1'	P_2	$D_1{}'$	P_3	$D_2{}'$	$D_3{}'$	${D_4}'$

■ 对每一组进行校验生成检错码

• 对于按 "偶校验" 配置的海明码, G_i 的取值为

$$G_1 = H_1' \oplus H_3' \oplus H_5' \oplus H_7'$$

$$G_2 = H_2' \oplus H_3' \oplus H_6' \oplus H_7'$$

$$G_3 = H_4' \oplus H_5' \oplus H_6' \oplus H_7'$$

- 检错码值为0时,大概率无错误
- 检错码值不为0时,指出一位出错的位置,可进行纠错
 - 将出错位取反即可

拓展海明码

- 当发生两位错时
 - 假如 H_3 和 H_5 同时发生错误
 - 检错码为110
 - 与H₆出错的检错码重叠,无法区分一位错还是两位错

$ H_1 H_2 H_3 H_4 H_5 H_6 H_7$	Î	H_1	H_2	H_{2}	H_{A}	H_{5}	H_{6}	H_7
---	---	-------	-------	---------	---------	---------	---------	-------

拓展海明码

- 当发生两位错时
 - 需引入总偶校验位
 - $P_{all} = H_1 \oplus H_2 \oplus H_3 \oplus \cdots \oplus H_7$
 - 总偶校验检错位 G_{all}
 - $G_{all} = P'_{all} \oplus H'_1 \oplus H'_2 \oplus H'_3 \oplus \cdots \oplus H'_7$

H_1	H_2	H_3	H_4	H_5	H_6	H_7	P_{all}
-------	-------	-------	-------	-------	-------	-------	-----------

大纲

- > 数据表示实验
 - 海明校验码设计实验
 - 实验步骤

实验准备

- 完成k = 16的拓展海明码的校验分组设计
 - 根据海明编码规则填写海明校验组分布表,得到各校验位 $(P_1, P_2, P_3, P_4, P_5)$ 逻辑表达式

	H ₁	H ₂	H ₃	H ₄	H ₅	H ₆	H ₇	H ₈	H ₉	H ₁₀	H ₁₁	H ₁₂	H ₁₃	H ₁₄	H ₁₅	H ₁₆	H ₁₇	H ₁₈	H ₁₉	H ₂₀	H ₂₁
检错码	00001	00010	00011	00100	00101	00110	00111	01000	01001	01010	01011	01100	01101	01110	01111	10000	10001	10010	10011	10100	10101
对应位	P ₁	P ₂	D ₁	P ₃	D ₂	D ₃	D ₄	P ₄	D ₅	D ₆	D ₇	D ₈	D ₉	D ₁₀	D ₁₁	P ₅	D ₁₂	D ₁₃	D ₁₄	D ₁₅	D ₁₆
G ₁ 组	√		√		√		√		√		√										
G ₂ 组		√	~			✓	~			✓	~										
G ₃ 组				✓	√	✓	√														
G ₄ 组								√	✓	✓	~										
G ₅ 组																7					

$$P_1 = H_3 \oplus H_5 \oplus H_7 \oplus \cdots$$

实验准备

- 完成k = 16的拓展海明码的校验分组设计
 - 根据海明编码规则填写海明校验组分布表,得到海明检错码 ($G: G_5G_4G_3G_2G_1$) 逻辑表达式

	H ₁	H ₂	H ₃	H ₄	H ₅	H ₆	H ₇	H ₈	H ₉	H ₁₀	H ₁₁	H ₁₂	H ₁₃	H ₁₄	H ₁₅	H ₁₆	H ₁₇	H ₁₈	H ₁₉	H ₂₀	H ₂₁
检错码	00001	00010	00011	00100	00101	00110	00111	01000	01001	01010	01011	01100	01101	01110	01111	10000	10001	10010	10011	10100	10101
对应位	P ₁	P ₂	D ₁	P ₃	D ₂	D ₃	D ₄	P ₄	D ₅	D ₆	D ₇	D ₈	D ₉	D ₁₀	D ₁₁	P ₅	D ₁₂	D ₁₃	D ₁₄	D ₁₅	D ₁₆
G ₁ 组	√		√		√		√		√		√										
G ₂ 组		√	√			~	~			✓	~										
G ₃ 组				√	√	~	√														
G ₄ 组								√	✓	✓	~										
G ₅ 组																✓					

$$G_1 = H_1' \oplus H_3' \oplus H_5' \oplus H_7' \oplus \cdots$$

实验准备

- 完成k = 16的拓展海明码的校验分组设计
 - 为区分一位错和两位错,需要额外引入总偶校验位 P_{all} (P_6)
 - $P_{all} = H_1 \oplus H_2 \oplus H_3 \oplus \cdots \oplus H_{21}$
 - 总偶校验检错位 $G_{all}(G_6)$
 - $G_{all} = P'_{all} \oplus H'_1 \oplus H'_2 \oplus H'_3 \oplus \cdots \oplus H'_{21}$

实验电路

■ 实验涉及子电路

- 海明编码 (子电路1, 需完成)
- 海明解码 (子电路2, 需完成)
- 海明传输测试1 (子电路1测试,子电路2测试)
- 海明传输测试2 (整体电路测试)
- 机内码转区位码(需完成,用于整体电路测试)

子电路1:海明编码

■ 海明编码子电路

输入: 16位原始数据

• 输出: 22位海明编码, 总偶校验位放在最后

• 请勿增改删引脚及子电路封装,使用隧道标签实现相应逻辑

电路功能:海明编码电路,可检两位错并纠一位错,输入:16位;输出:22位海明码(数据位+校验位)

请勿增改引脚,请勿修改子电路封装

请在下方利用上方输入输出引脚的隧道信号构建电路,ctrl+d复制选择部件

子电路1:海明编码

■ 实现各个校验位

• 根据校验分组规则,把相应校验组的所有原始数据进行异或

$$P_1 = H_3 \oplus H_5 \oplus H_7 \oplus \cdots$$

$$P_{all} (P_6) = H_1 \oplus H_2 \oplus H_3 \oplus \cdots \oplus H_{21}$$

电路功能:海明编码电路,可检两位错并纠一位错,输入:16位;输出:22位海明码(数据位+校验位)

请勿增改引脚,请勿修改子电路封装

请在下方利用上方输入输出引脚的隧道信号构建电路,ctrl+d复制选择部件

子电路1:海明编码

- 实现各个校验位
 - 注意异或门的行为属性

·	选区: 异或门(XOR Gate)
朝向	东
数据位宽	1
门尺寸	中等
输入引脚数量	2
输出值	0/1
标签	
标签字体	SansSerif 标准 12
多输入行为	当奇数个输入为1时输出1
反转1 (顶部)	否
反转2 (底部)	否

子电路1测试:海明传输测试1

■ 测试方法

• 输入1个16位机内码,观察并验算得到的海明编码是否正确

■ 海明解码子电路

• 输入: 22位海明编码

输出: 0位错标识、1位错标识、2位错标识(高电平有效),纠错后的16位原始数据(当发生一位错时)

• 请勿增改删引脚及子电路封装, 使用隧道标签实现相应逻辑

■ 实现各个检错位

• 根据校验分组规则, 把相应校验组的所有数据(原始数据+校验位)进行异或

$$G_1 = H_1' \oplus H_3' \oplus H_5' \oplus \cdots$$

$$G_{all} (G_6) = P'_{all} \oplus H'_1 \oplus H'_2 \oplus H'_3 \oplus \cdots \oplus H'_{21}$$

- 错误标志位的电路设计
 - 假设最多发生两位错
 - $G_{all}(G_6) = 1$
 - 发生奇数位错,即发生一位错
 - 若海明检错码G=0,表明总偶校验位 P_{all} (P_6) 发生错误
 - 若海明检错码 $G \neq 0$,表明一位纠错海明编码发生错误,可利用其检错码G进行纠错
 - $\bullet \ \ G_{all}(G_6)=0$
 - 无错误, 或发生偶数位错 (两位错)
 - 海明检错码 $G \neq 0$, 两位错
 - 海明检错码G=0, 无错误

■ 纠错电路设计

- 海明检错码G指定的出错位置的数据进行取反
- · 借鉴深度学习中训练分类模型常用的One-Hot Encoding (独热编码)
- 先得到海明检错码*G*指定的位置掩码
 - 位置掩码 (最左边为第0位) 为除指定位置外, 全0的二进制数
- 将海明检错码G指定的位置掩码(除去第0位)与海明码逐位对应进行异或
 - 位置掩码为0的位置,对应的各位海明码不变
 - 位置掩码为1的位置 , 对应的海明码的那位数据取反
- G = 00000
 - G指定的位置掩码为1000 0000 0000 0000 0000 0000 0000
 - G指定的位置掩码的第0位可用于实现G = 0的判断电路

- 纠错电路设计
 - 先得到海明检错码G指定的位置掩码
 - 解码器
 - 功能:用于地址译码,将n位的选择端输入变为对应的位置掩码 (2^n 位)输出

子电路2测试:海明传输测试1

教 住工 を SCHOOL OT WARE ENGINEER

■ 测试原理

- 加扰模式
 - 00: 不加扰 (数据不会产生错误)
 - 01: 1位加扰 (数据产生随机的1位错)
 - 10: 2位加扰 (数据产生随机的2位错)
 - 11: 0-2位加扰 (数据产生随机的0-2位错)

子电路2测试:海明传输测试1

■ 测试方法

- 输入1个16位机内码
- 时钟频率2Hz, Ctrl+k, 自动测试
- 4种加扰模式下,分别测试解码电路是否正常工作

整体电路测试:海明传输测试2

■ 测试原理

需实现机内码转区位码 子电路

整体电路测试:海明传输测试2

■ 测试原理

- 利用计数器不断从存储器中取出汉字的机内码
- 通过海明编码后变成22 位的校验码
- 通过随机干扰模块,模 拟不可靠的网络传输
- 利用海明解码电路,对 被干扰的校验码进行检 测,并纠正一位错
- 比较左侧发送端和右侧接收端的汉字显示是否一致

实验报告任务

- 使用海明传输测试2进行整体电路测试
 - 加扰模式
 - 01:1位加扰(数据产生随机的1位错)
 - 10: 2位加扰 (数据产生随机的2位错)
 - 时钟频率2Hz, Ctrl+k, 自动测试
 - 截图 (总共两张) :
 - 上述两种加扰模式下,分别从头开始测试时,出现的第X个汉字/字符(X以计数器上显示的值为准)
 - X为自己学号的最后一位

谢谢!