Neural Networks

Lecture 10: Training Neural Networks

http://www.informatik.uni-hamburg.de/WTM/

Motivation

Deep Learning in practice:

- Implementing a neural network
 - GPU Computing and Computational Graphs
 - Symbolic programming
 - Deep Learning Frameworks
- Best practices for successful training
 - Combat overfitting
 - Hyperparameter Optimization
- MNIST example in Tensorflow and Keras

GPU Computing 2008 vs 2015

10x growth in GPU computing

GPU vs CPU

Peak Double Precision FLOPS

Peak Memory Bandwidth

Massively Distributed Gradient Descent

"Federated Learning" (Google 2017)

B.

Batches in Gradient Descent

3 possibilities on when to update the weights:

- Stochastic gradient descent (incremental/online training):
 - After each training sample
 - batch_size = 1
- Batch gradient descent (batch training):
 - After seeing all training samples
 - batch_size = $|D_{tr}|$
- Mini-batch gradient descent (mini-batch training):
 - After seeing a subset of the training data
 - 1 < batch_size < |D_{tr}|

In GPU: We use mini-batches, split them into smaller mini-batches, run them in parallel. Generally: Compute gradient parallel for each sample in batch, then sum + average.

(Automatic Differentiation)

- Forward pass: Set input values,
 e.g. a = 2, b = 1
- We want to express:How does a different value a affect c?

Partial derivatives:

With sum and product rule:

$$\frac{\partial c}{\partial a} = \frac{\partial}{\partial a}(a+b) = \frac{\partial a}{\partial a} + \frac{\partial b}{\partial a} = 1$$

$$\frac{\partial}{\partial u}uv = u\frac{\partial v}{\partial u} + v\frac{\partial u}{\partial u} = v$$

But how do inputs a and b affect e?

 ∂e

 ∂c

(Automatic Differentiation)

Partial derivatives:

With sum and product rule:

$$\frac{\partial c}{\partial a} = \frac{\partial}{\partial a} (a+b) = \frac{\partial a}{\partial a} + \frac{\partial b}{\partial a} = 1$$

$$\frac{\partial}{\partial u} uv = u \frac{\partial v}{\partial u} + v \frac{\partial u}{\partial u} = v$$

But how do inputs affect e,

i.e. what is $\frac{\partial e}{\partial a}$, $\frac{\partial e}{\partial b}$?

Chain rule!

$$\frac{\partial c}{\partial a} = 1$$

$$\frac{\partial e}{\partial a} = 2$$

$$= 2*1$$

Reverse-Mode Differentiation:

Factor the paths backwards starting at *e*. Gives derivative of *e* with respect to *every* node!

 ∂e

 ∂e

 ∂e

 ∂e

 ∂d

 $\overline{\partial b}$

Why use computational graphs?

- Gradients "for free"
- Easy parallelization: Computation naturally segmented
- Computational model (computational graph) very close to conceptual model (neural network)

Problem:

 Symbolic programming requires rethinking

Deep Learning Frameworks

Advantages:

- Easily build big computational graphs
- Automatically compute all gradients
- Run it efficiently on GPU

```
Apache Singa, Azure, BidMach, Brainstorm, Caffe, Caffe 21, CNTK, Chainer,
```

Deeplearning4j, Dlib, Dynet, Kaldi, Keras*, Leaf, MatConvNet, MaxDNN,

minpy, MXNet³, Neural Designer, OpenNN, Paddle, PyTorch¹, Torch¹,

TensorFlow² (TF-Slim^{2*}, TFLearn^{2*}, Pretty Tensor², Sonnet⁴),

Theano (Lasagne, Blocks, rllab)

Current Framework Landscape

Comparison: Keras and Tensorflow

General:

- Tensorflow offers both high- and low-level abstraction
- Keras is a high-level wrapper for Tensorflow (and Theano, CNTK, MXnet)
 - Abstraction: Define models layer-by-layer

Documentation:

- Keras has many diverse examples
- Tensorflow has some beginner tutorials

Speed:

- No actually reliable (up-to-date) benchmarks exist
- The differences are usually not massive (only in some "advanced" models)

Debugging:

- Everything symbolic: can't use traditional debuggers
- Tensorflow offers Tensorboard
- Keras debugging difficult (due to abstraction)

Numpy

```
import numpy as np
np.random.seed(0)

N, D = 3, 4

x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)

a = x * y
b = a + z
c = np.sum(b)
```


Numpy

```
import numpy as np
np.random.seed(0)
N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)
a = x * y
b = a + z
c = np.sum(b)
grad c = 1.0
grad b = grad c * np.ones((N, D))
grad a = grad b.copy()
grad_z = grad_b.copy()
grad_x = grad_a * y
grad y = grad a * x
```


Drawbacks:

- Have to compute gradients yourself
- Can't run directly on GPU

Numpy

TensorFlow

```
import numpy as np
np.random.seed(0)
N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)
a = x * y
b = a + z
c = np.sum(b)
grad c = 1.0
grad b = grad c * np.ones((N, D))
grad a = grad b.copy()
grad_z = grad_b.copy()
grad x = grad a * y
grad y = grad a * x
```



```
import numpy as np
np.random.seed(0)
import tensorflow as tf
N, D = 3, 4
with tf.device('/qpu:0'):
    x = tf.placeholder(tf.float32)
    y = tf.placeholder(tf.float32)
    z = tf.placeholder(tf.float32)
    a = x * y
    b = a + z
    c = tf.reduce_sum(b)
grad_x, grad_y, grad_z = tf.gradients(c, [x, y, z])
with tf.Session() as sess:
    values = {
        x: np.random.randn(N, D),
        y: np.random.randn(N, D),
        z: np.random.randn(N, D),
    out = sess.run([c, grad_x, grad_y, grad_z],
                   feed dict=values)
    c val, grad x val, grad y val, grad z val = out
```

TensorFlow

tf.placeholder: tensor-object that can hold a value during runtime **tf.Session:** environment in which operations are executed (nothing is actually computed outside of it!)

Main parts of any neural network implementation

Workers can be distributed in parallel on different instances

Example: MNIST with 1-layer NN

- MNIST: Dataset for classification of handwritten digits
- We start with a single-layer network

```
# input X: 28x28 grayscale images, the first dimension (None)
will index the images in the mini-batch
X = tf.placeholder(tf.float32, [None, 28, 28, 1])
# correct answers will go here
Y = tf.placeholder(tf.float32, [None, 10])
# weights W[784, 10] 784=28*28
W = tf.Variable(tf.zeros([784, 10]))
# biases b[10]
b = tf.Variable(tf.zeros([10]))
# flatten the images into a single line of pixels
# -1 in the shape definition means "the only possible
dimension that will preserve the number of elements"
XX = tf.reshape(X, [-1, 784])
Y = tf.nn.softmax(tf.matmul(XX, W) + b) # the model
```


Example: MNIST with 1-layer NN

```
# log takes the log of each element, * multiplies the tensors element by element
# reduce mean will add all the components in the tensor
# so here we end up with the total cross-entropy for all images in the batch
cross entropy = -tf.reduce mean(Y * tf.log(Y)) * 1000.0
# normalized for batches of 100 images,
# *10 because "mean" included an unwanted division by 10
# accuracy of the trained model, between 0 (worst) and 1 (best)
correct prediction = tf.equal(tf.argmax(Y, 1), tf.argmax(Y, 1))
accuracy = tf.reduce mean(tf.cast(correct prediction, tf.float32))
# training, learning rate = 0.005
train step = tf.train.GradientDescentOptimizer(0.005).minimize(cross entropy)
init = tf.global variables initializer()
sess = tf.Session()
sess.run(init)
```

Optimizers

```
momentum
step actual step
```

Momentum update

gradient step

```
# vanilla update:
x += -learning_rate * dx
# momentum update:
v = mu * v - learning_rate * dx
x += v
```

Optimizers with adaptive learning rates for each parameter:

- Adagrad: Maintains per-parameter learning rate.
 Good with sparse gradients.
- RMSprop: Like Adagrad but exponentially decaying mean of grad.
 Good with noisy gradients.
- Adam: Combines both by looking at the decaying mean and also variance of the gradients.
- All of these use a running average of past gradients

Optimizers

train_step = tf.train.AdamOptimizer().minimize(cross_entropy)

- Using Adam yields same loss as before but with smoother convergence
- But can we trust the accuracy on test data?

2000

Picking test data

- Basic assumption: Training/test data from same distribution
- Covariate shift:
 - Training and test input distributions are different but target function remains unchanged → weak extrapolation

 Possible solution: Assign weights to data based on "importance", rebalance distributions in training and test data

Overfitting

- We can get to 0% training error by memorization
- Memorization ≠ Generalisation
- All noise is captured, no learning
- Typically occurs when:
 - Training too long
 - Too few data
 - Too many parameters

- Potential Solutions:
 - More training data, data augmentation
 - Reducing architecture complexity (parameters)
 - Cross Validation, early stopping

Regularization

Note: These are only best-practices, not hard guarantees!

Cross Validation

To avoid overfitting we should use three different sets:

- Training set:
 - To train the model (weights with backprop)
- Validation set:
 - To find the right hyperparameters (by observation)
 - So the model doesn't overfit weights on the training set
- Test set:
 - To test generalization error on best chosen model
 - So you don't overfit hyperparams on the validation set
- It's even possible for a community to methodically overfit:
 e.g. best accuracy on MNIST in 2013: 0.979
 - → Any data collection merely models the ground truth

Holdout Cross Validation

- Independent sets. Watch variance + label distributions!
- Careful sampling is a prerequisite for CV to work:
 If there isn't enough data, it isn't helpful.
- Common splits:
 - 50%-25%-25%
 - 80%-10%-10% (Pareto Principle)

K-Fold Cross Validation

(Example: k=3)

- Resample validation data iteratively for each fold
- Larger k = less bias, more variance
- All data used for training and testing but requires k runs (average error).

Early Stopping

Regularization

- Goal: Tuning model complexity to prevent overfitting
- Main idea: Penalize large weights, forcing e.g. smoothness.
- Regularization term R(W) added to loss function (λ : regulariz. strength): $L(f(x), t) + \lambda R(W)$
- L1 Regularization: $R(f) = \lambda \sum_{k} \sum_{l} |W_{k,l}|$
 - Leads to sparse weight vectors (many zero), ignoring noisy inputs
 - Has built-in feature selection (each $w_{k,l} = 0$ discards an input x_k)
- **L2 Regularization:** $R(f) = \lambda \sum_{k} \sum_{l} W_{k,l}^2$ ("weight decay")
 - Penalizes "peaky" weight vectors (many close to zero)
 - Optimum if all $w_{k,l} = 0$ but that leads to bad loss (R and L antagonistic)

```
regularizer = tf.nn.12_loss(weights) # computes sum(x ** 2) / 2
loss = tf.reduce_mean(loss + lambda * regularizer)
optimizer = tf.train.AdamOptimizer().minimize(loss)
```

L2 Regularization: Example

Given:

$$x = [1, 1, 1, 1]$$

$$W_1 = [1, 0, 0, 0]$$

$$w_2 = [0.25, 0.25, 0.25, 0.25]$$

Linear loss: $w_1^T x = w_2^T x = 1$

- L1: $R(f) = \lambda \sum_{k} \sum_{l} |W_{k,l}|$ L2: $R(f) = \lambda \sum_{k} \sum_{l} W_{k,l}^2$

L2 regularization:

- Favors w_2 and "vectors with most non-zero entries"
- Wants to spread out the information over all dimensions
- This works because we then use more features
- It does however prevent specialization of neurons (like dropout)
- Specialization is a nice property (visualisation!) but can lead to complex co-adaptations between neurons (overfitting)

Demo: Regularization

- Go to http://playground.tensorflow.org
- Make a large neural net (many layers, units, use all input features)
- Use the Gaussian dataset with noise=50
- Compare L1 vs L2 regularization with different rates (0.003-0.3) until you stop overfitting
- Hover over the weights to understand the results, especially the L1 feature selection

Deep Learning techniques

- Dropout: (Regularization)
 - Mostly for deep neural networks (CNNs)
 - During training each neuron has probability p of being active or being set to zero otherwise
 - Can only be used during training

Normalize activations to zero mean and unit variance

- Solution to "internal covariate shift":
 - All input distributions will change drastically over time.
 - Influenced by: parameter initialization, learning rate, activation function
- Advantages:
 - Reduced int. cov. shift
 - Reduced dependence of gradients on weight init and scale
 - Allows nonlinearities, higher learning rates
- $p = 0.3 \dots 0.5$ for Dropout in CNNs.
- BatchNorm after fully connected or convolutional layers (but before nonlinearity)

Hyperparameter Optimization

Why being an expert takes time and practice

- With introduced complexity comes an increase in hyperparameters:
 - regularization, learning rate, hidden units, number of layers, convolution (stride/filters), epochs, momentum
- We optimize these by monitoring the validation loss
- Systematic procedures:
 - Intuition + Grid Search (most common)
 - Random Search
 - Bayesian Optimization (best in theory)
 - Evolutionary Algorithms, Gradient-based, ...

Try out heuristics from literature but never fully rely on them!

In practice: Intuition first. Then informed Random Search or Bayesian Opt. with *hyperopt*. Start with a coarse search, then run it for more epochs and initializations.

Grid Search vs Random Search

Random Layout

Important parameter

Random seach better than naive grid search [Bergstra12] (not all hyperparameters are significant)

- Asynchronous and stoppable/pausable at any given time
- But non-adaptive: Still beaten by decisions of a real expert
- Bayesian approaches are more intelligent (but hard to parallelize & have own hyperparameters)

Observations:

- "Wobbly", oscillations
- Spikes somewhat periodic
- Converges but each wrong decision takes a short time to correct

Possible explanation:

- Online learning with unshuffled training data, possibly imbalanced
 Things to try:
- Shuffle training samples, vary batch_size, lower learning rate (decay)

Possible explanation:

- Stuck between local minima, numerical instability through large gradients
 Things to try:
- Shuffle training samples, try online learning,
- Batch Normalization, activation function (range)
- Lower learning rate (decay)

Possible explanation:

- Stuck in local minimum early on
- Overfitting near end?

Things to try:

- Decaying learning rate (needs to be higher at start)
- Test different wheigth initializations

Possible explanation:

Bad initialization (plateaus at start)

Things to try:

- More robust initialization schema
- Input normalization, batch normalization
- Check slightly larger learning rate

Observations:

- 3 runs with different initializations
- Converges well over time but initial performance very different

Debugging Neural Networks

- Most frameworks are symbolic with static graphs: We can't actually debug the networks during training!
- We can plot the Computation Graph ("Tensorboard")
- Check edge cases for hyperparameters
- Log everything and start data mining (visualizations!)
- If all else fails: pen + pencil
- Most importantly: Make sure you start simple and gradually increase complexity. Otherwise...
 - Reduce number of techniques and "tricks"
 - Simplify pre-/postprocessing methods
 - Simplify network architecture and complexity

Simplifying our implementation for MNIST (1)

We will use Keras for convenience:

- Import preimplemented layers and optimizers
- Define Hyperparameters

- Prepare data:
 - Reshape 2D images tor 1D-layer input
 - Normalize to [0,1]
 - Make 1-hot vectors for target labels

```
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import Adam
batch size = 128;
num classes = 10;
epochs = 20
# the data, shuffled and split between train and
test sets
(x train, y train), (x test, y test) =
         = mnist.load data()
x train = x train.reshape(60000, 784)
x \text{ test} = x \text{ test.reshape}(10000, 784)
x train = x train.astype('float32')
x test = x test.astype('float32')
x train /= 255
x test /= 255
# convert class vectors to binary class matrices
y train = keras.utils.to categorical(y train,
         num classes)
y test = keras.utils.to categorical(y test,
         num classes)
```

Simplifying our implementation for MNIST (2)

We will use Keras for convenience:

 Define our model layer by layer

- Compile instruction: loss, optimizer, metric
- model.fit: Run a session and train the network
- Evaluate (98.40% accuracy after 20 epochs)

```
model = Sequential()
model.add(Dense(512, activation='relu',
        input shape=(784,))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))
model.summary()
model.compile(loss='categorical crossentropy',
        optimizer=Adam(),
        metrics=['accuracy'])
history = model.fit(x train, y train,
        batch size=batch size,
        epochs=epochs, verbose=1,
        validation data=(x test, y test))
score = model.evaluate(x test,
                        y test,
                        verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
                                               42
```

Improving our implementation for MNIST

Using a convolutional neural network (CNN) instead of an MLP:

 Conv2D and MaxPooling2D: input can stay 2D, doesn't need reshape

 Flatten into 1D before fully connected layers

Improves results from 98.40% to 99.25%+

```
model = Sequential()
model.add(Conv2D(32, kernel size=(3, 3),
       activation='relu',
       input shape=input shape))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Conv2D(64, (3, 3),
       activation='relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num classes,
       activation='softmax'))
(...)
```

Further improvements of our CNN

- Data augmentation
 - Rotate and shift images, zero-center normalization
- Weight initialization
 - Xavier initialization, bias to 0
- Batch Normalization
 - For all convolutional/fully connected layers
- Exponential decay of learning rate
- Using ensembles
- Proper hyperparameter optimization

Further Reading

- Andrew Ng: <u>Machine Learning Yearning</u> (unfinished)
- LeCun: Efficient Backprop
- Computational Graphs:

http://colah.github.io/posts/2015-08-Backprop/

Keras MNIST CNN example:

https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py

Tensorflow MNIST examples:

https://www.tensorflow.org/get_started/

Check CommSy for more material

Exams

Next week: Deep Reinforcement Learning

Exam Dates (register @ Studienbüro 27.06.-04.07.):

- Prof. Wermter:
 - 09.08.18, 10.08.18
 - 26.09.18
- Dr. Weber:
 - 08.08.18, 10.08.18
 - 27.09.18