

Many of the slides in this lecture are either from or adapted from slides provided by the authors of the textbook "Computer Systems: A Programmer's Perspective." 2<sup>nd</sup> Edition and are provided from the website of Carnegie-Mellon University, course 15-213, taught by Randy Bryant and David O'Hallaron in Fall 2010. These slides are indicated "Supplied by CMU" in the notes section of the slides.









### Why Should I Use Unsigned?

- · Don't use just because number nonnegative
  - easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
    a[i] += a[i+1];
- can be very subtle
    #define DELTA sizeof(int)
int i;
```

for (i = CNT; i-DELTA >= 0; i-= DELTA)

- · Do use when using bits to represent sets
  - logical right shift, no sign extension

**CS33 Intro to Computer Systems** 

VIII-6

Supplied by CMU.

Note that "sizeof" returns an unsigned value. (Recall that, when mixing signed and unsigned items in an expression, the result will be unsigned.)

### **Combining Bytes**

- Data items of multiple sizes, usually powers of two
  - one-byte, two-byte, four-byte, eight-byte integers
  - four-byte and eight-byte floating-point numbers
- For example: four consecutive bytes interpreted as storing an integer (or a float)
  - for best performance, address of lowest byte should be a multiple of the size of the item (four in this case)

**CS33 Intro to Computer Systems** 

VIII-7

Copyright © 2019 Thomas W. Doeppner. All rights reserved.

The reason for the performance issue has to do with how the memory subsystem works, somethings that will be explained in a few weeks.

### **Word Size**

- · (Mostly) obsolete term
  - old computers had items of one size: the word size
- Now used to express the number of bits necessary to hold an address
  - 16 bits (really old computers)
  - 32 bits (old computers)
  - 64 bits (most current computers)

**CS33 Intro to Computer Systems** 

VIII-8

Copyright © 2019 Thomas W. Doeppner. All rights reserved.



Read "Gulliver's Travels" for an explanation of the egg.



Here we have a four-byte integer one. In the big-endian representation, the address of the integer is the address of the byte containing its most-significant bits (the big end), while in the little-endian representation, the address of the integer is the address of the byte containing its least-significant bits (the little end). Suppose we pass a pointer to this integer to some procedure. However, in a type-mismatch, the procedure assumes that what is passed it is a two-byte integer. On a big-endian system, it would think it was passed a zero, but on a little-endian system, it would think it was passed a one.

This is not an argument in favor of either approach, but simply an observation that behaviors could be different.

### Quiz 1

```
int main() {
  long x=1;
 func((int *)&x);
 return 0;
void func(int *arg) {
 printf("%d\n", *arg);
```

What value is printed on a big-endian 64-bit computer?

- a) 0
- b) 1
- c) 2<sup>32</sup>
- d) 2<sup>32</sup>-1

**CS33 Intro to Computer Systems** 

VIII-11 Copyright © 2019 Thomas W. Doeppner. All rights reserved.

# 

This code prints out the value of x, one byte at a time, starting with the byte at the lowest address (little end). On x86-based computers, it will print:

### 00010203

which means that the address of an int is the address of the byte containing its least significant digits (little endian).

# Fractional binary numbers

• What is 1011.101<sub>2</sub>?

CS33 Intro to Computer Systems

VIII-13



### Representable Numbers

- Limitation #1
  - can exactly represent only numbers of the form n/2k
    - » other rational numbers have repeating bit representations
  - value representation
    - » 1/3 0.01010101[01]...2
  - » 1/5 0.001100110011[0011]...2
  - » 1/10 0.0001100110011[0011]...2
- Limitation #2
  - just one setting of decimal point within the w bits
    - » limited range of numbers (very small values? very large?)

CS33 Intro to Computer Systems

VIII-15

### **IEEE Floating Point**

- IEEE Standard 754
  - established in 1985 as uniform standard for floating point arithmetic
    - » before that, many idiosyncratic formats
  - supported on all major CPUs
- · Driven by numerical concerns
  - nice standards for rounding, overflow, underflow
  - hard to make fast in hardware
    - » numerical analysts predominated over hardware designers in defining standard

**CS33 Intro to Computer Systems** 

VIII-16

# Floating-Point Representation • Numerical Form: (-1)<sup>s</sup> M 2<sup>E</sup> - sign bit s determines whether number is negative or positive - significand M normally a fractional value in range [1.0,2.0) - exponent E weights value by power of two • Encoding - MSB s is sign bit s - exp field encodes E (but is not equal to E) - frac field encodes M (but is not equal to M) s exp frac



On x86 hardware, all floating-point arithmetic is done with 80 bits, then reduced to either 32 or 64 as required.

### "Normalized" Values

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as biased value: E = Exp Bias
  - exp: unsigned value exp
  - bias = 2k-1 1, where k is number of exponent bits
    - » single precision: 127 (Exp: 1...254, E: -126...127)
    - » double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
  - xxx...x: bits of frac
  - minimum when frac=000...0 (M = 1.0)
  - maximum when frac=111...1 (M =  $2.0 \epsilon$ )
  - get extra leading bit for "free"

**CS33 Intro to Computer Systems** 

VIII-19

### Normalized Encoding Example • Value: float F = 15213.0; $-15213_{10} = 11101101101101_2$ $= 1.1101101101101_2 \times 2^{13}$ Significand $M = 1.101101101101_2$ frac = Exponent E = 13 bias = 127 exp = 140 = 10001100<sub>2</sub> Result: frac exp **CS33 Intro to Computer Systems** VIII-20

### **Denormalized Values**

- Condition: exp = 000...0
- Exponent value: E = -Bias + 1 (instead of E = 0 Bias)
- Significand coded with implied leading 0:

 $M = 0.xxx...x_2$ 

- xxx...x: bits of frac
- Cases
  - $\exp = 000...0$ , frac = 000...0
    - » represents zero value
    - » note distinct values: +0 and -0 (why?)
  - $-\exp = 000...0$ , frac  $\neq 000...0$ 
    - » numbers closest to 0.0
    - » equispaced

**CS33 Intro to Computer Systems** 

VIII-21

### **Special Values**

- Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
  - represents value ∞ (infinity)
  - operation that overflows
  - both positive and negative
  - $e.g., 1.0/0.0 = -1.0/-0.0 = +\infty, 1.0/-0.0 = -\infty$
- Case: exp = 111...1,  $frac \neq 000...0$ 
  - not-a-number (NaN)
  - represents case when no numeric value can be determined
  - e.g., sqrt(-1),  $\infty$   $\infty$ ,  $\infty \times 0$

CS33 Intro to Computer Systems

VIII-22



### **Tiny Floating-Point Example**



- · 8-bit Floating Point Representation
  - the sign bit is in the most significant bit
  - the next four bits are the exponent, with a bias of 7
  - the last three bits are the frac
- · Same general form as IEEE Format
  - normalized, denormalized
  - representation of 0, NaN, infinity

CS33 Intro to Computer Systems

VIII-24

| Dynamic Range (Positive Only) |              |         |                  |                    |  |  |
|-------------------------------|--------------|---------|------------------|--------------------|--|--|
|                               | s exp f      | frac E  | Value            |                    |  |  |
|                               | 0 0000 0     | 000 -6  | 0                |                    |  |  |
|                               | 0 0000 0     | 001 -6  | 1/8*1/64 = 1/512 | closest to zero    |  |  |
| Denormalized                  | 0 0000 0     | 010 -6  | 2/8*1/64 = 2/512 | Closest to Zelo    |  |  |
| numbers                       |              |         |                  |                    |  |  |
|                               | 0 0000 1     | L10 -6  | 6/8*1/64 = 6/512 |                    |  |  |
|                               | 0 0000 1     | L11 -6  | 7/8*1/64 = 7/512 | largest denorm     |  |  |
|                               | 0 0001 0     | 000 -6  | 8/8*1/64 = 8/512 | smallest norm      |  |  |
|                               | 0 0001 0     | 001 -6  | 9/8*1/64 = 9/512 |                    |  |  |
|                               |              |         |                  |                    |  |  |
|                               | 0 0110 1     |         | ,,-              |                    |  |  |
|                               | 0 0110 1     |         | ,,-              | closest to 1 below |  |  |
| Normalized                    | 0 0111 0     |         | 8/8*1 = 1        |                    |  |  |
| numbers                       | 0 0111 0     |         | 9/8*1 = 9/8      | closest to 1 above |  |  |
|                               | 0 0111 0     | 010 0   | 10/8*1 = 10/8    |                    |  |  |
|                               |              |         | 14/0+100 - 004   |                    |  |  |
|                               | 0 1110 1     |         | 14/8*128 = 224   |                    |  |  |
|                               | 0 1110 1     |         | 15/8*128 = 240   | largest norm       |  |  |
|                               | 0 1111 0     | 000 n/a | inf              |                    |  |  |
| CS33 Intro to (               | Computer Sys | tems    | VIII-25          |                    |  |  |







- · 6-bit IEEE-like format
  - e = 3 exponent bits
  - f = 2 fraction bits
  - bias is 3

| s | exp    | frac   |  |
|---|--------|--------|--|
| 1 | 3-bits | 2-bits |  |

- What number is represented by 0 011 10? a) 12
  - b) 1.5
  - c) .5
  - d) none of the above

**CS33 Intro to Computer Systems** 

VIII-28

Copyright © 2019 Thomas W. Doeppner. All rights reserved.

## Floating-Point Operations: Basic Idea

- $x +_f y = Round(x + y)$
- $x \times_f y = Round(x \times y)$
- · Basic idea
  - first compute exact result
  - make it fit into desired precision
    - » possibly overflow if exponent too large
    - » possibly round to fit into frac

**CS33 Intro to Computer Systems** 

VIII-29

# Rounding

· Rounding modes (illustrated with \$ rounding)

|                        | \$1.40 | \$1.60 | \$1.50 | \$2.50 | -\$1.50      |
|------------------------|--------|--------|--------|--------|--------------|
| towards zero           | \$1    | \$1    | \$1    | \$2    | <b>-</b> \$1 |
| round down (−∞)        | \$1    | \$1    | \$1    | \$2    | <b>-\$2</b>  |
| round up (+∞)          | \$2    | \$2    | \$2    | \$3    | <b>-</b> \$1 |
| nearest integer        | \$1    | \$2    | ?      | ?      | ?            |
| nearest even (default) | \$1    | \$2    | \$2    | \$2    | <b>-\$2</b>  |

CS33 Intro to Computer Systems

VIII-30







### **Postnormalize**

- Issue
  - rounding may have caused overflow
  - handle by shifting right once & incrementing exponent

| Value | Rounded | Exp | Adjusted | Result |
|-------|---------|-----|----------|--------|
| 128   | 1.000   | 7   |          | 128    |
| 13    | 1.101   | 3   |          | 13     |
| 17    | 1.000   | 4   |          | 16     |
| 19    | 1.010   | 4   |          | 20     |
| 138   | 1.001   | 7   |          | 134    |
| 63    | 10.000  | 5   | 1.000*26 | 64     |

CS33 Intro to Computer Systems VIII–34

### **Floating-Point Multiplication**

- (-1)<sup>s1</sup> M1 2<sup>E1</sup> x (-1)<sup>s2</sup> M2 2<sup>E2</sup>
- Exact result: (-1)s M 2E

sign s: s1 ^ s2
significand M: M1 x M2
exponent E: E1 + E2

- Fixing
  - if M ≥ 2, shift M right, increment E
  - if E out of range, overflow (or underflow)
  - round M to fit frac precision
- Implementation
  - biggest chore is multiplying significands

**CS33 Intro to Computer Systems** 

VIII-35

### Supplied by CMU.

Note that to compute E, one must first convert  $\exp_1$  and  $\exp_2$  to  $E_1$  and  $E_2$ , then add them them together and check for underflow or overflow (corresponding to  $-\infty$  and  $+\infty$ ), and then convert to  $\exp$ .



Note that, by default, overflow results in either  $+\infty$  or  $-\infty$ .