GEOMETRÍA Capítulo 4

1st secondary

Ángulos entre dos rectas paralelas y una recta secante

MOTIVATING | STRATEGY

ÁNGULOS ENTRE DOS RECTAS PARALELAS Y UNA SECANTE

RECTAS PARALELAS:

Dos rectas son paralelas si están contenidas en un plano y no tienen ningún punto en común.

RECTAS SECANTES:

Dos rectas son secantes si tienen un punto en común.

RECTAS PERPENDICULARES:

Son aquellas rectas secantes que forman ángulos rectos.

ÁNGULOS ALTERNOS INTERNOS

ÁNGULOS CONJUGADOS INTERNOS

α

ÁNGULOS CORRESPONDIENTES

TEOREMAS

1. Si $\overrightarrow{L_1}$ // $\overrightarrow{L_2}$, calcule x + y.

$$4y = 84^{\circ}$$

y = 21°

$$2x + 50^{\circ} = 180^{\circ}$$

 $2x = 130^{\circ}$
 $x = 65^{\circ}$

$$x + y = 65^{\circ} + 21^{\circ}$$

$$x + y = 86^{\circ}$$

2. Si $\stackrel{\longleftarrow}{L_1}$ // $\stackrel{\longleftarrow}{L_2}$, calcule $\theta + \alpha$.

Resolución

$$2\alpha + \alpha = 63^{\circ}$$
$$3\alpha = 63^{\circ}$$
$$\alpha = 21^{\circ}$$

Piden: $\theta + \alpha$

$$\theta + \alpha = 40^{\circ} + 21^{\circ}$$

$$\theta + \alpha = 61^{\circ}$$

3. Si $\stackrel{\longleftarrow}{L_1}$ // $\stackrel{\longleftarrow}{L_2}$, halle el valor de x.

$$4x + 30^{\circ} = 40^{\circ} + 3x$$

$$4x - 3x = 40^{\circ} - 30^{\circ}$$

$$x = 10^{\circ}$$

4. Si $\stackrel{\longleftarrow}{L_1}$ // $\stackrel{\longleftarrow}{L_2}$, halle el valor de β .

$$5\beta + 50^{\circ} = 180^{\circ}$$

$$5\beta = 130^{\circ}$$

$$\beta = 26^{\circ}$$

5. Si $\stackrel{\longleftarrow}{L_1}$ // $\stackrel{\longleftarrow}{L_2}$, halle el valor de x.

•
$$2\alpha = 80^{\circ}$$

$$\alpha = 40^{\circ}$$

•
$$x = 3\alpha$$

$$x = 3(40^{\circ})$$

6. En el gráfico se muestra una escalera. Halle el valor de β.

$$3\beta = 60^{\circ}$$

$$\beta = 20^{\circ}$$

HELICO | PRACTICE

7. En el gráfico se muestra el croquis de una ciudad, si las avenidas 1, 2 y 3 son paralelas, calcule x + y + z.

$$6(18^{\circ}) + z = 180^{\circ}$$

 $108^{\circ} + z = 180^{\circ}$
 $z = 72^{\circ}$

$$5x = 75^{\circ}$$
$$x = 15^{\circ}$$

$$x+y+z = 105^{\circ}$$