- 1. Multiple choice. Clearly mark your answers. No justification is required but may result in partial credit if provided.
  - (a) [3 pts] If  $\mathbf{F}$  and  $\mathbf{G}$  are two vector fields which have the same divergence, then  $\mathbf{F} \mathbf{G}$  is a constant vector field.
    - (a) True.
    - (b) False.
    - (c) Indeterminable.
  - (b) [3 pts] Every vector field  $\mathbf{F}(x, y, z)$  which satisfies the equation  $\operatorname{curl} \mathbf{F}(x, y, z) = \vec{0}$  on all of  $\mathbb{R}^3$  can be written as  $\mathbf{F} = \nabla f$  for some scalar function f.
    - (a) True.
    - (b) False.
    - (c) Indeterminable.
  - (c) [3 pts] If  $\operatorname{\sf div} \mathbf{F}(x,y,z) = 0$  for all (x,y,z) then  $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$  for any closed curve C.
    - (a) True.
    - (b) False.
    - (c) Indeterminable.
  - (d) [3 pts] There is a non-constant function f(x, y, z) such that  $\nabla f = \text{curl}(\nabla f)$  everywhere.
    - (a) True.
    - (b) False.
    - (c) Indeterminable.
  - (e) [3 pts] The vector field  $\mathbf{F}(x,y,z) = \langle x^5, x^6, x^7 \rangle$  is the curl of another vector field defined on all of  $\mathbb{R}^3$ .
    - (a) True.
    - (b) False.
    - (c) Indeterminable.
  - (f) [3 pts] If  $\mathbf{F}(x, y, z) = \langle \sin(z), \cos(z), 0 \rangle$ , then  $\operatorname{curl}(\operatorname{curl}(\operatorname{curl}(\mathbf{F}))) = \mathbf{F}$ .
    - (a) True.
    - (b) False.
    - (c) Indeterminable.

2. Consider the double integral

$$\mathbf{I} = \int_{1}^{2} \int_{0}^{\sqrt{2-y}} \frac{\sin(\pi x)}{1 - x^{2}} dx dy$$

(a) [4 pts] Sketch the region of integration for I.

(b) [4 pts] Express the integral  $\mathbf{I}$  as an iterated integral with the reversed order of integration.

(c) [4 pts] Determine the value of I.

3. [8 pts] Evaluate the triple integral

$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} \frac{1}{x^2+y^2+z^2} dz dy dx$$

- 4. Let E be the solid which lies inside both the sphere  $x^2+y^2+z^2=4$  and the cylinder  $(x-1)^2+y^2=1$ . (a) [5 pts] Sketch a picture of the solid E.

(b) [5 pts] Express the volume of E as a triple integral. Do not evaluate your expression.

5. Consider the integral

$$\mathbf{I} = \iint_R \frac{dxdy}{x+y},$$

where R is the region bounded by x = 0, y = 0, x + y = 1, and x + y = 4.

(a) [6 pts] Define T to be the transformation

$$\mathbf{T} = \begin{cases} x = u - uv \\ y = uv \end{cases}$$

Sketch the region S in the uv-plane which maps onto the region R under the transformation  $\mathbf{T}$ .

(b) [4 pts] Compute the Jacobian of the transformation T.

(c) [4 pts] Set up, but do not evaluate an expression for **I** as an iterated integral in terms of the variables u and v.

- 6. Let  $\mathbf{F}(x,y) = (xy^2 + 2y)\mathbf{i} + (x^2y + 2x + 2)\mathbf{j}$  be a vector field.
  - (a) [5 pts] Carefully explain why **F** is a conservative vector field.

(b) [5 pts] Find a potential function f such that  $\nabla f = \mathbf{F}$ .

(c) [4 pts] Evaluate  $\int_C \mathbf{F} \cdot d\mathbf{r}$  where C is the path parametrized by  $\mathbf{r}(t) = \langle e^t, 1+t \rangle$  for  $0 \le t \le 1$ .

(d) [4 pts] Evaluate  $\int_C \mathbf{F} \cdot d\mathbf{r}$  where C is a closed curve  $\mathbf{r}(t) = \langle 2\sin(t), 2\cos(t) \rangle$  for  $0 \le t \le 2\pi$ .

7. [10 pts] Evaluate the line integral

$$\int_{C} (e^{x} + y^{2})dx + (e^{y} + x^{2})dy$$

where C is the positively oriented boundary of the region in the first quadrant bounded by  $y = x^2$  and y = 4.

- 8. (a) [8 pts] On the coordinate axes below, sketch a smooth vector field  $\mathbf{F}(x, y)$  which satisfies the following properties (Note: answers may vary):
  - At the point (3,3), the divergence of **F** is positive.
  - Let C be the path from the point A to the point B drawn below. Then the integral  $\int_C \mathbf{F} \cdot d\mathbf{r}$  is positive.
  - If  $\mathbf{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$ , and if R is the triangle region drawn in the fourth quadrant below, then the value of the integral  $\iint_R \left( \frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right)$  is non-zero.
  - At the point (-3, -3), the curl of **F** is non-zero.
  - Along the y-axis, the vector field vanishes, i.e.  $\mathbf{F}(0,y) = \langle 0,0 \rangle$  for all y.

**Hint:** To sketch a vector field, you need only draw several representative vectors in the plane. However, the vector field should be *smooth* in that the vectors vary smoothly in the domain.



(b) [2 pts] Comment on whether the vector field  $\mathbf{F}$  is conservative or not.