

Logic Synthesis & Verification, Fall 2021 Programming Assignment 2: OR Bi-Decomposition of Functions

Presenter: Yun-Rong Luo

Instructor: Jie-Hong Roland Jiang

ALCom Lab

EE Dept./ Grad. Inst. of Electronics Eng.

National Taiwan University

PA2 introduction

Overview

- Write a procedure in ABC that decides whether each circuit PO f(X) is OR bi-decomposable.
- □ Integrate this procedure into ABC, so that after reading in a circuit by the command 'read', running the command 'lsv_or_bidec' would invoke your code.

Preliminaries

- □ A function f(X) is OR bi-decomposable under a variable partition of its support $X = \{X_A | X_B | X_C\}$ if f can be written as $f(X) = f_A(X_A, X_C) \lor f_B(X_B, X_C)$
- □ A variable partition is **non-trivial** if $X_A \neq \emptyset$ and $X_B \neq \emptyset$. (In our PA, only non-trivial variable partition is of concern.)

Proposition 1

A function f(X) can be written as $f_A(X_A, X_C) \vee f_B(X_B, X_C)$ for some function f_A and f_B if and only if the Boolean formula $f(X_A, X_B, X_C) \wedge \neg f(X_A', X_B, X_C) \wedge \neg f(X_A, X_B', X_C)$ is unsatisfiable, where X_A', X_B' are renamed versions of X_A, X_B , respectively.

- Proposition 1 assumes a given variable partition of its support $X = \{X_A | X_B | X_C\}$
- ☐ How to automate the process of finding a variable partition?

Automating finding variable partition

- \square For each $x_i \in X$, introduce two controlling variables α_i , β_i .
- \square $(\alpha_i, \beta_i) = (0,0), (0,1), (1,0), (1,1)$ indicates that $x_i \in X_C$, $x_i \in X_B$, $x_i \in X_A$, and x_i can be in either of X_A and X_B , respectively.

$$f(X) \wedge \neg f(X') \wedge \bigwedge_{i} ((x_{i} \equiv x'_{i}) \vee \alpha_{i}) \wedge \neg f(X'')$$

$$\wedge \bigwedge_{i} ((x_{i} \equiv x''_{i}) \vee \beta_{i}) - (1)$$

 \square $\alpha_i = 0$ forces $x_i \equiv x_i'$, $\alpha_i = 1$ makes x_i' a free variable $\beta_i = 0$ forces $x_i \equiv x_i''$, $\beta_i = 1$ makes x_i'' a free variable

Incremental SAT solving

- Given a CNF ϕ , in incremental SAT solving, you can set unit assumptions \vec{a} for variables (e.g. assuming $\alpha_i = 0$, $\beta_i = 1$). The assumptions can be thought as level-0 decisions. The SAT solver does SAT solving on $\phi \wedge \vec{a}$.
- If you want to do SAT solving for the same CNF ϕ but under a different set of assumptions \vec{b} , just free the previous assumptions \vec{a} and set new assumptions \vec{b} . The SAT solver then solves $\phi \wedge \vec{b}$.
- The advantage of incremental SAT solving is: you can do SAT solving on the same CNF ϕ under different assumptions \vec{b} , without freeing the clauses of ϕ and the learnt clauses in previous assumptions \vec{a} .

Automating finding variable partition

$$f(X) \wedge \neg f(X') \wedge \bigwedge_{i} ((x_{i} \equiv x'_{i}) \vee \alpha_{i}) \wedge \neg f(X'')$$

$$\wedge \bigwedge_{i} ((x_{i} \equiv x''_{i}) \vee \beta_{i}) - (1)$$

- \square A set of unit assumptions on controlling variables α_i, β_i that makes formula (1) unsatisfiable corresponds to a valid variable partition.
- E.g. Assume the support of f is $X = \{x_1, x_2, x_3\}$. If setting $(\alpha_1, \beta_1) = (0,0)$, $(\alpha_2, \beta_2) = (0,1)$, $(\alpha_3, \beta_3) = (1,0)$ makes formula (1) unsatisfiable, we obtain the variable partition $x_1 \in X_C$, $x_2 \in X_B$, $x_3 \in X_A$.
- But we don't want to enumerate all possible unit assumptions on controlling variables α_i , β_i ! (Solution: **final conflict clause!**)

Final conflict clause

Under a set of assumptions that makes the CNF unsatisfiable, SAT solver is able to provide a **final conflict clause** $C = (l_1 \lor l_2 \lor \cdots l_n)$ consisting of assumption literals.

- \square Setting assumptions that falsifies each l_i in C is sufficient to make the CNF unsatisfiable.
- □ E.g. The final conflict clause $(\alpha_1 \lor \beta_1 \lor \alpha_2 \lor \beta_3)$ indicates that setting $\alpha_1 = \beta_1 = \alpha_2 = \beta_3 = 0$ is sufficient for unsatisfiability, so setting $\beta_2 = \alpha_3 = 1$ doesn't affect the unsatisfiability, which suggests the variable partition variable partition $x_1 \in X_C, x_2 \in X_B, x_3 \in X_A$.

Avoiding trivial partition: seed partition

- Initially specify two distinct variable x_a , x_b and force $x_a \in X_A$, $x_b \in X_B$, and force $x_i \in X_C$, for $i \neq a, b$. That is, set the unit assumptions $(\alpha_a, \beta_a) = (1,0), (\alpha_b, \beta_b) = (0,1)$, and $(\alpha_i, \beta_i) = (0,0)$, for $i \neq a, b$. This is called a **seed variable partition**.
- ☐ If the seed variable partition makes formula (1) unsatisfiable, the final conflict clause returned by SAT solver corresponds to a valid non-trivial variable partition.
- Every literal in the conflict clause is of positive phase because the conflict arises from a subset of the controlling variables $\alpha_i \beta_i$ set to 0.
- \square SAT solvers tend to return a conflict clause with few literals. The corresponding variable partition is desirable because $|X_C|$ tends to be small.

Avoiding trivial partition: seed partition

- ☐ If the seed partition fails, i.e. formula (1) is satisfiable under this seed partition, you should try another seed partition.
- □ For a given function f(X) with |X| = n, the existence of non-trivial OR bi-decomposition can be checked with at most $(n-1) + \cdots + 1 = n(n-1)/2$ different seed partitions.

 \square $(\alpha_i, \beta_i) = (0,0), (0,1), (1,0), (1,1)$ indicates that $x_i \in X_C$, $x_i \in X_B$, $x_i \in X_A$, and x_i can be in either of X_A and X_B , respectively.

Output format

The format of your printing message is as follows.

```
PO <po1-name> support partition: 1
210200001101
PO <po2-name> support partition: 0
PO <po3-name> support partition: 1
212111000
```

Print lines of PO <po-name>... according to the order of Abc_NtkForEachPo(). For each PO, use Abc_NtkCreateCone() to extract the cone of the PO and its support set. In each line of PO <po-name> support partition: , print the names of POs returned by function Abc_ObjName(). Print 0 after support partition: if there is no valid non-trivial partition; print 1 if there is a valid non-trivial partition, and print the partition you find in the next line.

We use an integer string to represent the variable partition. Let 0 represents $x \in XC$, 1 represents $x \in XB$, 2 represents $x \in XA$.

For example, the string 212111000 indicates that the first support variable is in XA, the second in XB, the third in XA, ..., the last in XC.

Programming tips

Programming tips

☐ See the wiki page on our GitHub:

https://github.com/NTU-ALComLab/LSV-PA/wiki/Reasoning-with-SAT-solvers

What you need to do

- ☐ For each PO, use *Abc_NtkCreateCone()* to extract the cone of the PO and its support set.
- □ Use $Abc_NtkToDar()$ to derives an equivalent Aig_Man_t from an Abc_Ntk_t network.
- ☐ Construct CNF of formula (1).
- □ Solve a non-trivial variable partition.

Constructing CNF

$$f(X) \wedge \neg f(X') \wedge \bigwedge_{i} ((x_{i} \equiv x'_{i}) \vee \alpha_{i}) \wedge \neg f(X'')$$

$$\wedge \bigwedge_{i} ((x_{i} \equiv x''_{i}) \vee \beta_{i}) - (1)$$

- \square You can derive the CNF of f(X) by $Cnf_Derive()$ and write the clauses into a SAT solver object by $Cnf_DataWriteIntoSolver$.
- □ To obtain the CNF of f(X') and f(X''), use $Cnf_DataLift()$ to obtain a copy of variable-renamed CNF of f(X). You can write the new clauses into SAT solver by $sat_solver_addclause()$.
- ☐ You have to add clauses to assert the output phase of each copy f(X), $\neg f(X')$, $\neg f(X'')$.

Constructing CNF

- You have to add the clauses that represent $\bigwedge_i ((x_i \equiv x_i') \vee \alpha_i)$ and $\bigwedge_i ((x_i \equiv x_i'') \vee \beta_i)$. Note that $((x_i \equiv x_i') \vee \alpha_i)$ is not a CNF, you have to turn it into a equivalent form $((x_i \equiv x_i') \vee \alpha_i) = ((x_i \Rightarrow x_i')(x_i' \Rightarrow x_i) \vee \alpha_i) = ((\neg x_i \vee x_i')(\neg x_i' \vee x_i) \vee \alpha_i) = (\neg x_i \vee x_i' \vee \alpha_i)(\neg x_i' \vee x_i \vee \alpha_i)$.
- To do the last two steps, you need to memorize the variable number of f(X), f(X'), f(X'') and each x_i , x_i' , x_i'' , α_i , β_i in CNF. You can just memorize the variable number for x_i and f(X) (denoted as $varnum(x_i)$, varnum(f(X)) and the VarShift that you have to add to obtain the renamed version, e.g. $varnum(x_i) + VarShift = varnum(x_i')$.

Solving a non-trivial variable partition

- Iterate over all possible seed variable partitions, set unit assumptions on controlling variables α_i , β_i , and do incremental SAT solving until an unsatisfiable instance is found.
- You have to maintain an assumpList consisting of the unit assumptions of controlling variables α_i , β_i representing a seed variable partition. Unit assumptions are expressed as literals, α_i means setting $\alpha_i = 1$, $\neg \alpha_i$ means setting $\alpha_i = 0$.
- □ Pass the *assumpList* into *sat_solver_solve()*. Set the conflict limit for *sat_solver_solve()* to 0. That is, no limit is imposed.
- □ Extract the final conflict clause by *sat_solver_final()* and report the corresponding non-trivial variable partition.

How to know the usage of a piece of code?

- ☐ Trace the code of function definition.
- □ See how it is used in other part of ABC. You can run the following in the "src" directory, it recursively searches for the pattern *Abc_NtkCreateCone* under src.

grep -r "Abc_NtkCreateCone" ./

"grep" reports

```
.//base/abci/abcDar.c: pNtkOn1 = Abc_NtkCreateCone( pNtkOn, Abc_ObjFanin0(pObj), Abc_ObjName(pObj), 1 );
.//base/abci/abcDar.c: pNtkOff1 = Abc_NtkCreateCone( pNtkOff, Abc_ObjFanin0(pObj), Abc_ObjName(pObj), 1 );
```

☐ You can see the example usage of *Abc_NtkCreateCone* in abcDar.c

```
Abc_NtkForEachCo( pNtkOn, pObj, i )
{
    pNtkOn1 = Abc_NtkCreateCone( pNtkOn, Abc_ObjFanin0(pObj), Abc_ObjName(pObj), 1 );
    if ( Abc_ObjFaninC0(pObj) )
        Abc_ObjXorFaninC( Abc_NtkPo(pNtkOn1, 0), 0 );
```

Reminder

- □ Submission period: 2021/12/24 11:00~13:00
- □ Please develop your code under **src/ext-lsv**. For those who develop your PA1 in **ext_<your_student_ID>**, please move your code to **src/ext-lsv** and remove **ext_<your_student_ID>**.
- ☐ Start and raise issues earlier!

Appendix

How to optimize the variable partition?

- \square A partition with smaller $|X_C|$ is more desirable.
- Given a final conflict clause $C = (l_1 \vee l_2 \vee \cdots \vee l_n)$, which suggests that the assumption $l_1 = \cdots = l_n = 0$ is sufficient for unsatisfiability, you can try to set some $l_i = 1$ and see whether the CNF is still unsatisfiable.
- ☐ Try different seed partitions to find a more desirable partition.

How to derive f_A , f_B ?

THEOREM 2 (CRAIG INTERPOLATION THEOREM). [5] For any two Boolean formulas ϕ_A and ϕ_B with $\phi_A \wedge \phi_B$ unsatisfiable, then there exists a Boolean formula $\phi_{A'}$ referring only to the common input variables of ϕ_A and ϕ_B such that $\phi_A \Rightarrow \phi_{A'}$ and $\phi_{A'} \wedge \phi_B$ is unsatisfiable.

- □ Interpolation is widely used in synthesis and verification, e.g. model checking, engineering change order (ECO), logic optimization and resynthesis.
- \square We will show how to derive f_A , f_B by interpolation.

A function f(X) can be written as $f_A(X_A, X_C) \vee f_B(X_B, X_C)$ for some function f_A and f_B if and only if the Boolean formula $f(X_A, X_B, X_C) \wedge \neg f(X_A', X_B, X_C) \wedge \neg f(X_A, X_B', X_C)$ is unsatisfiable, where X_A', X_B' are renamed versions of X_A , X_B , respectively.

(⇒) If
$$f(X) = f_A(X_A, X_C) \lor f_B(X_B, X_C)$$
.
Then, $f(X_A, X_B, X_C) \land \neg f(X_A', X_B, X_C) \land \neg f(X_A, X_B', X_C)$
= $(f_A(X_A, X_C) \lor f_B(X_B, X_C)) \land \neg f_A(X_A', X_C) \land \neg f_B(X_B, X_C) \land \neg f_A(X_A, X_C) \land \neg f_B(X_B', X_C) \equiv \bot$ is unsatisfiable.

- (\Leftarrow) Construct $f_A(X_A, X_C)$, $f_B(X_B, X_C)$ by interpolation.
- □ Assume $f(X_A, X_B, X_C) \land \neg f(X'_A, X_B, X_C) \land \neg f(X_A, X'_B, X_C) \equiv \bot$.
- We have $g(X_A, X'_A, X_B, X_C) \land \neg f(X_A, X'_B, X_C) \equiv \bot$. By Theorem 2, we can generate some $f_A(X_A, X_C)$, where f_A only refers to common variables of $g(X_A, X'_A, X_B, X_C)$ and $\neg f(X_A, X'_B, X_C)$ and we have

$$g(X_A, X'_A, X_B, X_C) \implies f_A(X_A, X_C) - (2)$$

$$f_A(X_A, X_C) \land \neg f(X_A, X'_B, X_C) \equiv \bot - (3)$$

THEOREM 2 (CRAIG INTERPOLATION THEOREM). [5] For any two Boolean formulas ϕ_A and ϕ_B with $\phi_A \wedge \phi_B$ unsatisfiable, then there exists a Boolean formula $\phi_{A'}$ referring only to the common input variables of ϕ_A and ϕ_B such that $\phi_A \Rightarrow \phi_{A'}$ and $\phi_{A'} \wedge \phi_B$ is unsatisfiable.

■ By Eq. (2), we also have $\neg f_A(X_A, X_C) \Rightarrow \neg g(X_A, X_A', X_B, X_C)$ and $f(X_A, X_B, X_C) \wedge \neg f_A(X_A, X_C) \wedge \neg f(X_A', X_B, X_C)$ $\Rightarrow f(X_A, X_B, X_C) \wedge \neg g(X_A, X_A', X_B, X_C) \wedge \neg f(X_A', X_B, X_C)$

 $= g(X_A, X_A', X_B, X_C) \land \neg g(X_A, X_A', X_B, X_C) \equiv \bot.$

We have $h(X_A, X_B, X_C) \land \neg f(X_A', X_B, X_C) \equiv \bot$. By Theorem 2, we can generate some $f_B(X_B, X_C)$, where f_B only refers to common variables of $h(X_A, X_B, X_C)$ and $\neg f(X_A', X_B, X_C)$ and we have

$$h(X_A, X_B, X_C) \Longrightarrow f_B(X_B, X_C) \qquad -(4)$$

$$f_B(X_B, X_C) \land \neg f(X_A', X_B, X_C) \equiv \bot \qquad -(5)$$

- Now, we claim that $f(X_A, X_B, X_C) \equiv f_A(X_A, X_C) \vee f_B(X_B, X_C)$. We prove the claim by showing bi-directional implications $f(X_A, X_B, X_C) \Leftrightarrow f_A(X_A, X_C) \vee f_B(X_B, X_C)$.
- □ The "⇒" direction: By Eq. (4), we have $f(X_A, X_B, X_C) \land \neg f_A(X_A, X_C) \Rightarrow f_B(X_B, X_C)$, which is equivalent to $f(X_A, X_B, X_C) \Rightarrow f_A(X_A, X_C) \lor f_B(X_B, X_C)$.
- \square The " \Leftarrow " direction: By Eq. (3), (5), we have

$$f_A(X_A, X_C) \Longrightarrow f(X_A, X_B', X_C) - (6)$$

 $f_B(X_B, X_C) \Longrightarrow f(X_A', X_B, X_C) - (7)$

Since f_A only refers to X_A, X_C , and X_B' is just a renamed version of X_B , we can rewrite Eq. (6), (7) into $f_A(X_A, X_C) \Rightarrow f(X_A, X_B, X_C)$ and $f_B(X_B, X_C) \Rightarrow f(X_A, X_B, X_C)$. Therefore, $f_A(X_A, X_C) \vee f_B(X_B, X_C) \Rightarrow f(X_A, X_B, X_C)$.

Reference

□ R.-R. Lee, J.-H. R. Jiang, and W.-L. Hung. Bi-decomposing large Boolean func- tions via interpolation and satisfiability solving. In ACM/IEEE Design Automation Conference, pages 636–641, 2008. https://ieeexplore.ieee.org/document/4555896

THE END