

Klasse: 39 B,

(5) Int.Cl?:

C 08 L 067/00

09 D 003/64

OE PATENTSCHRI

Nr. 333 035

Patentinhaber:

VIANDVA KUNSTHARZ AKTIENGESELLSCHAFT IN WIEN (ÖSTERREICH)

Gegenstand:

VERFAHREN ZUR HERSTELLUNG WÄSSERIGER DISPERSIONEN VON ALKYDHARZEN

Zusatz zu Patent Nr.

Ausscheidung aus:

1974 12 23, 10258/74

Angemeldet am: Ausstellungspriorität:

@ Beginn der Patentdauer: 1976 02 15

Längste mögliche Dauer: Ausgegeben am:

1976 10 25

Erfinder:

ZUCKERT BERTRAM DR. IN GRAZ (STEIERMARK),

SCHMUT WOLFGANG DR. IN GRAZ (STEIERMARK).

Abhängigkeit:

59 Druckschriften, die zur Abgrenzung vom Stand der Technik in Betracht gezogen wurden:

In einer noch nicht zum Stande der Technik gehörenden Patentanmeldung wird ein Verfahren beschrieben, nach dem lufttrocknende Alkydharze mit Hilfe von Emulgatorharzen, die einen hohen Prozentsatz (50 bis 70%) Polyäthylenglykol enthalten, in Wasser, das 0,5 bis 2% Ammoniak enthält, emulgiert werden können. Es gelingt nach diesem Verfahren mit relativ geringen Gehalten an Polyäthylenglykol (3 bis 8% bezogen auf 5 Gesamtbindemittel) ausreichend stabile Emulsionen herzustellen.

Die Verträglichkeit dieser Emulsionen ist jedoch begrenzt: Der Zusatz von vernetzenden Stoffen, wie Amino- oder Phenolformaldehydharzen führt nach kurzer Zeit zur Koagulation. Daher können nach diesem Verfahren nur lufttrocknende Lacke erzeugt werden, die keine Zusätze dieser Art benötigen. Außerdem sind derartige Emulsionen empfindlich gegenüber basischen Pigmenten und erfordern eine besondere Technik und 10 große Sorgfalt beim Anreiben, wenn der Ansatz nicht koagulieren soll.

Es wurde nun gefunden, daß die Verträglichkeit der Emulsionen gegonüber vernetzenden Komponenten und Pigmenten entscheidend verbessert werden kann, wodurch es möglich ist,neben lufttrocknenden auch ofentrocknende Lacke auf Emulsionsbasis herzustellen, wenn der Anteil des Emulgatorharzes von 6 bis 12% (bezogen auf Alkydharz) auf 10 bis 50% (bezogen auf Gesamtbindemittel) erhöht wird. Es entstehen Emul-15 siquen, die mit wasserverdünnbaren Amino- bzw. Phenolformaldehydharzen gut verträglich sind und sich mit allen branchenüblichen Pigmenttypen verarbeiten lassen. Zum Anreiben kann im Gegensatz zu den meisten bekannten Emulsionen auch der Dreiwalzenstuhl verwendet werden. Es entstehen je nach Formulierung luft- oder ofentrocknende Lacke, die gut verlaufen und glänzende Filme bilden.

Es hat sich als zweckmäßig erwiesen, die untere Grenze des Polyäthylenglykolgehaltes der Emulgator-20 harze auf 40% zu senken, um bei langöligen Alkydharzen die infolge mangelhafter Verträglichkeit mit Emulgatorharzen mit Polyäthylenglykolgebalten über 50% beobachtete schlechtere Glanzhaltung zu vermeiden.

Zum Einstellen der Basizität der wässerigen Phase haben sich neben Ammoniak auch organische Amine, wie Triäthylamin oder Dimethyläthanolamin bewährt. Durch Wahl von Menge und Art der Stickstoffbase kann die Viskosität der Emulsion in weiten Grenzen variiert werden.

Die Erfindung betrifft somit ein Verfahren zur Herstellung von wässerigen Emulsionen von Alkydharzen für luft- und ofentrocknende Lacke, dadurch gekennzeichnet, daß man das Alkydharz bei 80 bis 90°C, gegebenenfalls unter Druck bei Temperaturen über 100°C in Wasser, welches 0,1 bis 3% einer organischen oder anorganischen Stickstoffbase enthält, mit Hilfe von 10 bis 50% (bezogen auf Gesamtbindemittel) eines mit 40 bis 70% (bezogen auf Gesamtemulgatorharz) eines gegebenenfalls einseitig mit einer Methoxygruppe 30 blockierten Polyäthylenglykols mit 6 bis 100, vorzugsweise 10 bis 70 Äthylenoxydeinheiten pro Molekül modifizierten, aus einem dem zu dispergierenden Alkydharz ähnlichen oder gleichen Alkydharz hergestellten Emulgatorharzes dispergiert.

Als Alkydharze können alle bekannten und handelsüblichen Typen einschließlich urethan- und vinylmodifizierte Typen eingesetzt werden. Zur Herstellung der Emulgatorharze muß nicht unbedingt das zu 35 dispergierende Alkydharz herangezogen werden. Der Aufbau beider Harze soll jedoch möglichst ähnlich sein, wobei u.a. folgende Kriterien von Bedeutung sind:

Gehalt und Art der Fettsäuren,

Säurezahi, Hydroxylzahi,

Art und Gewichtsanteil der Dicarbonsäuren.

Als Polyathylenglykole können Produkte mit 6 bis 100, bevorzugt 20 bis 70 Äthylenoxyd-Einheiten pro Molekül eingesetzt werden. Bei manchen Alkydharzen werden mit Vorteil einseitig methoxyblockierte Poly-40 äthylenglykole von der gleichen Kettenlänge verwendet. Es können auch Äthoxylierungsprodukte von Polyolen, etwa Umsetzungsprodukte von Glycerin oder Pentaerythrit mit 20 bis 100 Mol Äthylenoxyd angewendet wer-

Bei der Herstellung der Emulgatorharze kann man entweder von den fertigen Alkydharzen ausgehen und diese mit dem Polyäthylenglykol umsetzen oder aber die Alkydharzkomponenten in Gegenwart des Polyäthylenglykols verestern. Im ersten Fall besteht die Reaktion vorwiegend in einer Umesterung, im zweiten Fall in einer Direktveresterung. Es gibt natürlich auch Mittelwege, indem Alkydharzvorprodukte in Gegenwart des Polyäthylenglykols fertig verestert werden. Die Reaktionen werden bei Temperaturen zwischen 180 und 50 250°C durchgeführt. Zur Beschleunigung können die üblichen Katalysatoren verwendet werden.

Welches Verfahren zu bevorzugen ist, hängt von den jeweiligen Reaktionspartnern ab. In allen Fällen muß eine möglichst klare amphipatische Konfiguration des Gesamtmoleküls angestrebt werden. Diese wird am leichtesten durch einseitige Bindung des Polyäthylenglykols erreicht. Daher führt bei difunktionellen Polyäthylenglykolen und bei polyfunktionellen Äthylenoxydaddukten das Verfahren der Umesterung eher zur: 55 Erfolg. Dabei kann die Reaktion vor Erreichen des Gleichgewichtes, das an Hand des konstant bleibender Trübungspunktes festgestellt wird, beendet werden. Der Endpunkt wird empirisch ermittelt.

Bei Monomethoxypolyäthylenglykolen ist die Direktveresterung vorzuziehen. Langkettige Polyäthylenglykole können ebenfalls durch Direktveresterung eingebaut werden, da in diesem Fall durch Faltung de: Kette die Ausbildung einer amphipatischen Molekülkonfiguration auch bei zweiseitiger Bindung des Poly

äthylenglykols möglich ist.

Daneben spielen die Säurezahl und die Hydroxylzahl eine Rolle für die Auswahl der Methode.

Bei urethan- bzw. vinylmodifizierten Alkydharzen werden zunächst die polyäthylenglykolmodifizierten Vorprodukte nach den angegebenen Verfahren durch Ver- oder Umesterung hergestellt und anschließend bei 5 Temperaturen zwischen 80 und 150°C mit Diisocyanaten bzw. Vinylmonomeren in bekannter Weise umgesetzt. Dabei kann es von Vorteil sein, geringe Mengen (bis zu 10%) von Lösungsmitteln zur Senkung der Viskosität der Harze zuzusetzen.

Die Zusatzmenge der Emulgatorharze beträgt 10 bis 50%, bezogen auf Gesamtbindemittel. Es können auch Gemische verschiedener Emulgatorharze eingesetzt werden. Es ist auch möglich, zusätzlich kleine 10 Anteile herkömmlicher Emulgatoren, sowie Schutzkolloide (Celluloseäther, Polyvinylalkohol, Polyacrylsäure bzw. Polyacrylamid) einzusetzen. Derartige Zusätze bringen jedoch meist keine Vorteile. Sie müssen in jedem Fall gesondert geprüft werden, da nicht nur die Filmbeständigkeit, sondern auch die Stabilität der Emulsion negativ beeinflußt werden kann.

Die Emulgatorharze werden mit dem Alkydharz bei Temperaturen bis maximal 200°C gut homogenisiert. 15 Dann wird das Wasser, welches 0,1 bis 3% einer organischen oder anorganischen Stickstoffbase enthält, unter starkem Rühren langsam zugegeben. In den meisten Fällen genügt zum Verdünnen ein normales Rührwerk, wie es in Alkydharz-Reaktoren üblich ist. Nur bei Ansätzen mit wenig Emulgator, welche undurchsichtige Emulsionen mit Teilchendurchmessern über 1 μ ergeben, ist die Verwendung von Hochleistungsdispergiergeräten erforderlich.

Die folgenden Beispiele erläutern die Erfindung, ohne die Anwendung des erfindungsgemäßen Verfahrens zu begrenzen. Alle Prozentangaben sind Gewichtsprozente.

Die Zusammensetzung und die Kennzahlen der Alkydharze sind in Tabelle 1 zusammengefaßt.

A. Herstellung der Emulgatorharze

250 g des Alkydharzes A.1 (100%ig) und 250 g Polyäthylenglykol (Molekulargewicht etwa 1000) werden so lange auf 220°C erhitzt, bis der Trübungspunkt in Methanol konstant ist. Das Emulgatorharz enthält 25 50 Gew. -% Polyathylenglykol.

120 g Sojaöl und 40 g Holzöl werden mit 40 g Glycerin in Gegenwart von 0,03 g Bleinaphthenat (31% 30 Metallgehalt) bei 250°C umgeestert. Dann wird nach Zusatz von 20 g Glycerin und 100 g Phthalsäureanhydrid bei 200°C unter Azeotropdestillation bis zu einer Saurezahl von 10 mg KOH/g verestert. Nun werden 380 g Polyäthylenglykol zugesetzt. Die Masse wird auf 220°C erhitzt und so lange bei dieser Temperatur gehalten. bis der Trübungspunkt in Äthanol konstant bleibt. Anschließend wird auf 140°C gekühlt und im Verlauf von 3 h eine Mischung von 100 g Styrol und 2 g Di-tert. Butylperoxyd zugetropft. Nach insgesamt 10 h Reaktions-35 dauer bei 140 bis 150°C wird die Polymerisation beendet. Auf Grund einer Festkörperbestimmung ergibt sich ein Polymerisationsumsatz von 93%. Das Emulgatorgemisch enthält 49% Polyäthylenglykol.

250 g des Alkydharzes A. 3 (100%ig) werden mit 200 g Polyäthylenglykol (Molekulargewicht etwa 600) und 385 g Polyäthylenglykol (Molekulargewicht etwa 1500), bis zur Konstanz des Trüburgspunktes in Äthanol, 40 bei 220°C gehalten. Das Emulgatorharz enthält 70 Gew. -% Polyäthylenglykol.

140 g Rizinenfettsäure, 95 g Pentaerythrit und 400 g Polyäthylenglykol (Molekulargewicht etwa 1500) werden mit 135 g Phthalsäureanhydrid im Azeotropverfahren bis zu einer Säurezahl von 25 mg KOH/g verestert. Der Polyäthylenglykolgehalt des Emulgatorharzes ist 53 Gew. -%.

E. 5

90 g Rizinenfettsäure, 90 g Trimethylolpropan, 300 g Polyäthylenglykol (Molekulargewicht etwa 1500) und 128 g Phthalsäureanhydrid werden bei 200°C im Azeotropverfahren bis zu einer Säurezahl von 40 mg KOH/g verestert. Das entstandene Emulgatorharz hat einen Polyäthylenglykolgehalt von 51, 2 Gew. -%.

200 g des Alkydharzes A.6 (100%ig) werden mit 300 g Polyäthylenglykol (Molekulargewicht etwa 2000) auf 220°C erhitzt. Ist der Trübung spunkt in Äthanol konstant, so ist die Reaktion beendet.

Der Polyäthylenglykolgehalt des Emulgatorharzes ist 60 Gew. -%.

150 g Leinölfettsäure werden mit 100 g Trimethylolpropan und 90 g Phthalsäureanhydrid bei 220°C bis 55 zu einer Säurezahl von 12 mg KOH/g verestert. Dann werden 325 g Polyäthylenglykol von einem mittleren Molekulargewicht von 1500 zugefügt. Die Masse wird bei 220°C bis zum konstanten Trübungspunkt in Äthanol umgeestert. Dann wird die Temperatur auf 90°C gesenkt. Im Verlauf von 60 min werden 30 g Toluylendiisocyanat zugetropit. Nach weiteren 4 h bei 90°C ist die Reaktion beendet, der Gehalt an freiem Isocyanat liegt unter 0,5%. Das Emulgatorharz enthält 48% Polyäthylenglykol.

Bestimmung des Trübungspunktes

Eine 20%ige Lösung des Harzes im entsprechenden Alkohol (Äthanol, Methanol) wird kurz zum Sieden erhitzt. Beim Abkühlen wird die Temperatur bestimmt, bei welcher die erste Trübung auftritt.

100 g des jeweiligen Alkydharzes (Tabelle 1) werden mit der in Tabelle 2 angegebenen Menge des Emulgatorharzes bei Temperaturen bis maximal 200°C, vorzugsweise bei mindestens 100°C innig vermischt. 5

Zu dieser Mischung wird bei 80 bis 90°C portionsweise die wässerige Lösung des Amines zugefligt und die Mischung bis zur homogenen Lösung gerührt.

Für die Herstellung der Emulsionen genügt ein normales Rührwerk, in speziellen Fällen kann aber auch 10 ein schnellaufendes Dispergiergerät (z.B. ein Ultra-Turrax) verwendet werden.

Ansatz: In dieser Spalte wird das Alkydharz (A), das Emulgatorharz (E) und dessen Menge, in Gew.-% bezogen auf Gesamtbindemittel, die Aminmenge und die Konzentration der resultierenden Emulsion angeigeben.

				 ,			
Grenzviskositiitszahl ia CIICI ₃ m1/g	12, 6	12, 2		e '9	7,0		12,4
Hydroxylzahl	53	78	06	209	140	160	89
Siurezabl DIN 53 183	6,7	6,1	19,4	25, 0	45,5	25,0	10,4
Ölgehalt %	. 51	40	26	48	36		46
qualitative Zusammensetzung	Sojaöl Trimethylolpropan Phthalsüureanhydrid	Sojuči Holzči Glycerin Phthalsiureanhydrid Styrol	Somenblumenfettsäure Trimethylolpropan Pentaerythrit Benzoesäure	Nizhenfettsüure Pontaerythrit Plithalsüureanhydrid	Rizinenfettsiiuro Trimethylolpropan Phthalsiureanbydrid	Neopentylglykol Trimethylolpropan Adipinsiiure Phthalsiiureanhydrid	Leinölfettsiiure Trimethylolpropan Toluylendiisocyanat Phthalsiiureanhydrid
Alkydharz	A. 1	A. 2	A. 3	A. 4	A. 5	A. 6	A. 7

Tabelle 2

				_
Beispiel	Ansatz	Aussehen der Emulsion	Teilchen- größe (μ)	Viskosität (Poise)/40%ige Lösung
1 A. 1 E. 1/25% 1% NH ₃ 60%		leicht opales- zierend	< 0,5	2,5
2	A. 2 E. 2/20% 1,5% Tri- äthylamin 60%	fast klar	< 0,5	2,1
3	A. 3 E. 3/17,5% 0,8% NH ₃ 60%	fast klar	< 0,5	2,0
4	A. 4 E. 4/25% 0,5% Triäthylamin 70%	opales- zierend	< 0,5	1,2
5	A. 5 E. 5/15% 1% Triäthylamin 70%	leicht opales- zierend	< 0,5	1,4
6	6 A. 6 E. 6/32% 1% NH ₃ 60% 7 A. 7 E. 7/25% 1,5% NH ₃ 70%		< 0,5	1,6
7			< 0,5	2,6

Tabelle 3

Beispiel	1	2	3	4	5	. 6	7
Harz gem. Beispiel	167	167	167	143	143	167	143
Titandioxyd 1)	70	8		15	-	-	70
Ruß 2)	-	_	4		-	- ·	-
molybdän- 3) bältiges Blei- chromat	-	•	<u>.</u>	-	. 16	5	<u>-</u>
3-Nitro-4-tohi- 4) idin + β-Naphthoi	-		<u>-</u> .	-	4	-	
2,4,5-Trichlor-5) anilin + Naph- thol AS	-	-	-	-	-	5	-
Kupferphthalo- 6) cyanin	<u>-</u>	2	-		- .	· -	· -
Bleichromat 7)	-	-	- ,	70	•	-	-
Sikkative: Co (1% Metall)	6	2,5	3	-	-	-	3
Pb (10% Metall)	8	-	-	-	· -	-	-
Zr (4% Metall)	,3	1,0	1,5	-	-	. -	-
Zn (2% Metall)	: -						3
Antihautmittel	0,7	1,0	1,0	-		-	1,5
Verlaufmittel	0,4	0,3	0,4	0,1	0,1	0,2	
Antiabsatzmittel	-	2	1			-	1,
Vernetzings- M. 1 komponente M. 2	-	<u>-</u>	-	25 -	- 25	- 17,5	-
p-Toluolsulfon- saure 10% in H ₂ O		-	-		-	2,0	-

Die Lacke werden mit dest. H_2O auf Applikationsviskosität eingestellt. Alle Lacke werden in üblicher Weise auf dem Dreiwalzenstuhl angerieben.

- 1) TiO, (Kronos Titangestellschaft Leverkusen)
- 2) a-Rus-TD (Degussa)
- 3) Renolmolybdatrot RGS (Farbwerke Hoechst AG)
- 4) Hansascharlach RN (Farbwerke Hoechst AG)
- 5) Permanentrot (Farbwerke Hoechst AG)
- 6) Hostapermblau A 2 R (Farbwerke Hoechst AG)
- 7) Chromgelb 600 L (Fa. Siegle)

Vernetzungskomponenten:

- M. 1 ist ein handelsühliches lösungsmittelfreies Hexamethoxymethylmelamin mit einem Verätherungsgrad von mehr als 95%.
- M. 2 ist ein handelsübliches lösungsmittelfreies Hexamethoxyäthoxymethyimelamin, mit einem Verätherungsgrad von mehr als 95% und einem Methoxy-Äthoxyverhältnis von etwa 1:1.

		Applikation streichen spritzen	Schichtstürke (Trockenfilm) μ	Glanz (Lange, % von Schwarz- normal)	Klebfreizoit	Griffestigkeit	Filmhürte nach einer Woche (Köbig)	Iz O-Festigkeit nach einer ⁺ Woche (Blasengrad nach DIN 53209)	Einbrenntomperatur ^o C	Binbreanzelt in Minuten	Filmhiirte nach König	Erichsentlefung in mm	H ₂ O-Festigkeit +) (Blasengrad nach DIN 53209)
			(t	1rz-			pq.	(60					(60
	1	÷ 1	50	104	1h30	6000	83.5	m1/g1	1	1	ı	ŧ	ı
8.1	2	1 +	40	112	1115	4000	102 s	m1/g1	1	1	1	ı	t
Tabelle 4	3	1 ÷	40	110	1100	3h00	105 s	m1/g1		t	l	ι	1
	4	1 ÷	30	101	:	1	ı	1	160	30	110 s	5 - 7	0g/0m
	2	ı ÷	30	117	t	ı	t		140	30	125 s	ຶ່ນ	m0/g0
•	9	l ÷	30	107	I	l	ı	1	160	30	150 8	4	08/0m
	7	∓ 1	09	102	1b30	3000	100 s	0g/0m	1	1		,	1

 $^{+)}$ prufung durch 48-stündiges Eintauchen in destilliertes $m H_2^{}$ O von 40 o C

Tabelle 4

PATENTANSPRÜCHE:

- 1. Verfahren zur Herstellung wässeriger Emulsionen von Alkydharzen für luft- und ofentrocknende Lacke, dadurch gekennzeichnet, daß man das Alkydharz bei 80 bis 90°C, gegebenenfalls unter Druck bei Temperaturen über 100°C in Wasser, welches 0,1 bis 3% einer organischen oder anorganischen Stickstoffbase enthält, mit Hilfe von 10 bis 50% (bezogen auf Gesamtbindemittel) eines mit 40 bis 70% (bezogen auf Gesamtemulgatorharz) eines gegebenenfalls einseitig mit einer Methoxygruppe blockierten Polyäthylenglykols mit 6 bis 100, vorzugsweise 10 bis 70 Äthylenoxydeinheiten pro Molekül modifizierten, aus einem dem zu dispergierenden Alkydharz ähnlichen oder gleichen Alkydharz hergestellten Emulgatorharzes dispergiert.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Alkydharz mit einem Emul10 gatorharz dispergiert wird, das Äthylenoxydketten mit verschiedener Länge enthält.
 - 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Alkydharz mit einem Emulgatorharz, welches ein Äthoxylierungsprodukt von Polyolen mit 20 bis 100 Mol Äthylenoxyd enthält, dispergiert wird.

THIS PAGE BLANK (USPTO)