Proyecto Final de Módulo: Diseño, configuración y verificación de una red segmentada con direccionamiento IP y VLANs

1. Objetivo General

Aplicar los conocimientos fundamentales sobre direccionamiento IP, segmentación con subnetting, creación de VLANs y verificación de conectividad en un entorno de red simulado, utilizando herramientas como Cisco Packet Tracer.

2. Contexto del Proyecto

Una pequeña empresa necesita formalizar su infraestructura tecnológica. Para ello, se requiere un diseño básico de red que permita organizar la red interna por departamentos y asegurar la conectividad entre dispositivos. La empresa cuenta con tres departamentos: Administración, Ventas e Invitados.

3. Requerimientos del Proyecto

- **Direccionamiento IP y Subredes:** Utilizar el rango IP 192.168.10.0/24 y crear 3 subredes con al menos 20 hosts válidos cada una. Se deben especificar la dirección de red, rango de hosts válidos, dirección de broadcast, y máscara en formato CIDR y decimal.
- Creación de VLANs: Crear 3 VLANs en un switch: VLAN 10 (Administración), VLAN 20 (Ventas), VLAN 30 (Invitados). Asignar puertos según la distribución: Puertos 1-5 para VLAN 10, Puertos 6-10 para VLAN 20, Puertos 11-15 para VLAN 30.
- Asignación de Direcciones IP: Asignar manualmente direcciones IP estáticas a cada PC dentro de su subred correspondiente.
- Verificación de Conectividad: Probar ping entre PCs de la misma VLAN (debe funcionar) y ping entre VLANs (debe fallar si no se configura enrutamiento). Verificar la IP con ipconfig.
- **Documentación del Proyecto:** Entregar un informe que incluya: Diagrama de red, tabla con la asignación de subredes, configuración de VLANs (captura o comandos), resultados de pruebas de conectividad (pantallazos) y una reflexión final.

4. Cálculo de Subredes

Red Original: 192.168.10.0/24 **Requerimiento:** 3 subredes con al menos 20 hosts válidos cada una.

Para cumplir con el requisito de al menos 20 hosts válidos por subred, se necesitan 5 bits para la porción de host (25–2=30 hosts útiles). Esto implica tomar prestados 3 bits de la porción de host de la red /24 original.

Bits Prestados: 3 bits.

Nueva Máscara de Subred:

o CIDR: /27

Decimal: 255.255.255.224

Cantidad de Subredes Generadas: 23=8 subredes posibles.

Número de Hosts por Subred:

Total de IPs: 25=32

o Hosts Útiles: 32–2=30 (cumple con el requisito de al menos 20)

Rango de Direcciones para Cada Subred:

Subred	Dirección de Red	Primer Host (Gateway Sugerido)	Último Host	Broadcast
Administración	192.168.10.0/27	192.168.10.1	192.168.10.30	192.168.10.31
Ventas	192.168.10.32/27	192.168.10.33	192.168.10.62	192.168.10.63
Invitados	192.168.10.64/27	192.168.10.65	192.168.10.94	192.168.10.95

5. Simulación en Cisco Packet Tracer

La simulación se realizó utilizando Cisco Packet Tracer.

Arquitectura de Red: Se configuró una red simple con un único switch central (Switch 1) que conecta todas las PCs. Las PCs se agruparon lógicamente para representar los departamentos de Administración, Ventas e Invitados, con al menos dos PCs por subred.

6. Configuración de Dispositivos de Red

Configuración del Switch (Switch 1): El switch fue configurado para crear las VLANs y asignar los puertos a cada una de ellas, según la distribución especificada en los requerimientos.

Configuración de Puertos (Ejemplo de comandos CLI que reflejan la configuración gráfica):

enable configure terminal hostname Switch1 vlan 10 name administracion exit vlan 20 name ventas exit vlan 30 name invitados exit interface range FastEthernet0/1 - 5 switchport mode access switchport access vlan 10 no shutdown exit interface range FastEthernet0/6 - 10 switchport mode access switchport access vlan 20 no shutdown exit interface range FastEthernet0/11 - 15 switchport mode access switchport access vlan 30 no shutdown exit end write memory

7. Asignación de Direcciones IP (Paso 3 - PCs)

Las direcciones IP estáticas se asignaron manualmente a cada PC dentro de su subred correspondiente, utilizando las primeras IPs válidas del rango y la primera IP útil de cada subred como Default Gateway (a pesar de no haber un router configurado para inter-VLAN routing en este ejercicio, se asigna el gateway como buena práctica).

• VLAN 10 (Administración):

 PC-admin1: IP 192.168.10.2, Máscara 255.255.255.224, Gateway 192.168.10.1

- PC-admin2: IP 192.168.10.3, Máscara 255.255.255.224, Gateway 192.168.10.1
- o ... (otras PCs en Admin hasta 192.168.10.30)

VLAN 20 (Ventas):

- PC-ventas1: IP 192.168.10.34, Máscara 255.255.255.224, Gateway 192.168.10.33
- PC-ventas2: IP 192.168.10.35, Máscara 255.255.255.224, Gateway 192.168.10.33
- ... (otras PCs en Ventas hasta 192.168.10.62)

VLAN 30 (Invitados):

- PC-inv1: IP 192.168.10.66, Máscara 255.255.255.224, Gateway 192.168.10.65
- PC-inv2: IP 192.168.10.67, Máscara 255.255.255.224, Gateway 192.168.10.65
- ... (otras PCs en Invitados hasta 192.168.10.94)

7. Verificación de Conectividad

Se realizaron pruebas de ping desde las PCs para verificar la conectividad.

Comunicación dentro de la misma VLAN:

Desde PC-admin1 a PC-admin2 (VLAN 10):

```
Physical Config Desktop Programming Attributes

Simbolo del Sistema

Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.10.3

Pinging 192.168.10.3 with 32 bytes of data:

Reply from 192.168.10.3: bytes=32 time=lms TTL=128

Reply from 192.168.10.3: bytes=32 time<lms TTL=128

Reply from 192.168.10.3: bytes=32 time<lms TTL=128

Reply from 192.168.10.3: bytes=32 time<lms TTL=128

Ping statistics for 192.168.10.3:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = Oms, Maximum = Ims, Average = Oms

C:\>ping 192.168.10.34

Pinging 192.168.10.34 with 32 bytes of data:

Request timed out.
```

Desde PC-ventas2 a PC-ventas1 (VLAN 20):

Desde PC-inv1 a PC-inv2 (VLAN 30):

• Comunicación entre VLANs (sin enrutamiento):

Desde PC-ventas2 (VLAN 20) a PC-inv1 (VLAN 30):

Desde PC-inv1 (VLAN 30) a PC-admin2 (VLAN 10):

8. Reflexión Final

- ¿Qué desafíos técnicos enfrentaste al configurar las subredes y VLANs? Un desafío inicial fue asegurar que los cálculos de subnetting fueran precisos para evitar solapamientos y garantizar que cada subred tuviera suficientes hosts válidos, ajustándose a la máscara correcta para el número de hosts requeridos. Otro desafío fue la correcta asignación de puertos a las VLANs en el switch y verificar que los pings entre VLANs fallaran, lo cual confirmaba la segmentación efectiva sin enrutamiento.
- ¿Qué aprendiste sobre la importancia del diseño y segmentación en una red empresarial? Aprendí que el diseño y la segmentación son fundamentales para la eficiencia y seguridad de una red empresarial. Segmentar la red en VLANs y subredes mejora la organización, reduce los dominios de broadcast, lo que optimiza el rendimiento, y permite implementar políticas de seguridad más granulares. Esto es crucial para un entorno con diferentes departamentos y necesidades de acceso.
- ¿Cómo esta práctica refuerza tu preparación profesional en redes? Esta práctica refuerza mi preparación profesional al permitirme aplicar conocimientos teóricos de subnetting y VLANs en un escenario práctico y simulado. La experiencia de configurar dispositivos y verificar la conectividad de forma sistemática es invaluable. Además, la resolución de problemas es una habilidad esencial para un administrador de redes.
- ¿Qué errores cometiste y cómo los solucionaste? Un error común al principio podría haber sido asignar una máscara incorrecta o solapar rangos IP durante el cálculo de subredes si no se realiza con cuidado. Esto se soluciona verificando rigurosamente cada cálculo y utilizando herramientas de comprobación si es necesario. Otro posible error es la asignación de puertos en el switch; esto se corrige con el comando show vlan brief para ver las asignaciones correctas.