Raport Projekt 1 Damian Gortych 402663

Projekt wykonałem w języku Python.

Składa się on z 4 modułów, w których wykonywane są przekształcenia dla poszczególnych operacji oraz modułu main, w którym znajduje się proste menu w którym użytkownik może wybierać rodzaj operacji, typ obrazu oraz zadane parametry.

Przykład menu dla otwarcia:

Na początku chciałbym zaznaczyć, iż w całym projekcie jako wartości **True** oraz **False** (np. w przypadku obrazów logicznych) używałem wartości **0** (False) i **255** (True), ponieważ to ułatwiało mi operacje, a nie wpływało na ostateczny wynik przekształcenia.

W projekcie użyłem biblioteki **pillow** do otwarcia oraz zapisu zdjęcia oraz biblioteki **numpy** do prostych przekształceń na macierzy. Większość nawet wbudowanych już funkcji napisałem samemu. Posłużyłem się jedynie funkcją pad(), która dodaje obramowanie wokół macierzy.

1. Normalizacja wg łamanej

Dla tej operacji wybrałem obraz white_tern.bmp jako RGB oraz cameraman.png jako monochromatyczny

Opis działania:

- 1. Wczytanie obrazu
- 2. Wczytanie punktów od użytkownika
- 3. W pętli dla każdej pary punktów następuje przechodzenie po obrazie i każdy pixel jest normalizowany do danego przedziału wyjściowego jeśli znajduje się w danym przedziale wejściowym.
- 4. Zapis obrazu wyjściowego

W przypadku obrazu RGB każdy z kolorów jest normalizowany osobno tak jak dla obrazu monochromatycznego.

Przykład wyników dla 3 punktów (50,100), (100,160), (170,220)

Obraz wejściowy RGB:

Obraz wyjściowy RGB:

Obraz wejściowy monochromatyczny:

Obraz wyjściowy monochromatyczny:

2. Filtracja odchylenia standardowego

Dla tej operacji wybrałem obraz **white_tern.bmp** jako RGB oraz **cameraman.png** jako monochromatyczny.

Opis działania:

- 1. Wczytanie obrazu
- 2. Stworzenie maski wg zadanych parametrów
- 3. Filtracja polegająca na liczeniu odchylenia standardowego wg maski
- 4. Normalizacja

Przykład wyników dla maski 5x5:

Obraz wejściowy RGB:

Obraz wyjściowy RGB:

Obraz wejściowy monochromatyczny:

Obraz wyjściowy monochromatyczny:

3. Otwarcie elementem kołowym

Dla tej operacji wybrałem obraz **blobs.png** jako logiczny oraz **cameraman.png** jako monochromatyczny.

Opis działania:

- 1. Wczytanie obrazu
- 2. Stworzenie kołowego elementu strukturalnego wg zadanego promienia
- 3. Otwarcie poprzez wykonanie erozji a następnie dylacji.
- 4. Zapisanie obrazu wyjściowego

Pomiędzy obrazami w procesie główna różnica występuje w etapach erozji oraz dylacji, ponieważ dla obrazu monochromatycznego szukamy minimum lub maximum w zadanym sąsiedztwie.

Przykład wyników dla maski o promieniu 3:

Obraz wejściowy logiczny:

Obraz wejściowy monochromatyczny:

Obraz wyjściowy logiczny:

Obraz wyjściowy monochromatyczny:

4. Etykietowanie

Dla tej operacji wybrałem zbinaryzowany obraz coins.png

Opis działania:

- 1. Wczytanie obrazu
- 2. Przechodzenie w pętli po obrazie kolumnami
- 3. W przypadku znalezienia pixela z wartością 255 następuje rekonstrukcja morfologiczna w której tworzony jest marker i w nim odwzorowywany jest element
- 4. Na podstawie znalezionego elementu w markerze wykonywane jest przypisanie etykiety do obrazu wejściowego
- 5. Zwiększenie etykiety o 1, dalsze wykonywanie w pętli, aż do znalezienia wszystkich elementów.

W procesie nie jest wykonywane odejmowanie znalezionego elementu od obrazu wejściowego, ponieważ przy przechodzeniu w pętli sprawdzana jest wartość pixela 255, a pixele już zaetykietowane mają wartości 1,2,3 ...

Jednakże kod funkcji i funkcjonalność została zaimplementowana i jest dostępna do użycia w razie chęci zmian w przyszłości.

W celu lepszego pokazania działania operacji obraz wyjściowy pomnożyłem razy 20 (co oznacza etykiety 20, 40,60 ..), aby wynik był bardziej widoczny.

Obraz wejściowy:

Obraz wyjściowy:

