

人体姿态识别年度总结

欧阳万里

香港中文大学

What is Human Pose Estimation?

Results are generated by our proposed methods (without temporal constraints).

Video Credit: Peter Jasko solo - M-idzomer 2013

Applications

Action Recognition

HCI, Game and Animation

Clothing Parsing [Yamaguchi et al. CVPR'14]

Regression or detection?

- Output coordinates
 - To regress the body locations
- Output heatmaps
 - To detect the body locations

Limitations

- Regression
 - Low accuracy in high precision region caused by flexible body movement
 - Hard to extend when pose estimation is used for unknown number of persons
- Detection

Challenge

- Body movement
- Foreshortening
- Clothing

Dantone et al. CVPR 2013

Can you tell which part is from an image patch?

What about this patch?

Stacked hourglass network

- Hourglass
 - Subsampling: lower resolution for less computation and larger receptive field
 - ❖ => upsampling: higher resolution for more accurate localization

Newell, Alejandro, Kaiyu Yang, and Jia Deng. "Stacked hourglass networks for human pose estimation." *ECCV*, 2016. <u>@ University of Michigan</u>

Stacked hourglass network

- Hourglass, subsampling => upsampling
- Stack multiple hourglass structures

Newell, Alejandro, Kaiyu Yang, and Jia Deng. "Stacked hourglass networks for human pose estimation." *ECCV*, 2016. @ University of Michigan

How attention helps human pose estimation?

Part Attention

Structure also matters...

Structure also matters...

Deep Mixture of Parts

Structured Feature Learning (source code provided)

Wei Yang, Wanli Ouyang, Hongsheng Li and Xiaogang Wang "End-to-End Learning of Deformable Mixture of Parts and Deep Convolutional Neural Networks for Human Pose Estimation", In *Proc. CVPR* 2016 (Oral).

X. Chu, Wanli Ouyang, H. Li, and X. Wang. "Structured feature learning for pose estimation", In *Proc. CVPR* 2016.

Graph model G = (V, E)

- Vertices
- Locations and mixture types of body parts
- Modeled by a front-end CNN
- Edges <u>message passing</u>
- Pairwise spatial relationships between body parts
- Modeled by message passing layers

Wei Yang, Wanli Ouyang, Hongsheng Li and Xiaogang Wang "End-to-End Learning of Deformable Mixture of Parts and Deep Convolutional Neural Networks for Human Pose Estimation", In *Proc. CVPR* 2016 (Oral).

High responding images for channel 1 for neck

High responding images for channel 2 for left shoulder

2D pose to 3D pose (from image)

2D pose to 3D pose (from video)

Example results

Zhou, Xiaowei, et al. "Sparseness meets deepness: 3D human pose estimation from monocular video." CVPR, 2016.

2D pose to 3D pose (from video)

- Sparsity-driven 3D geometric prior
 - 3D pose can be represented as a linear combination of predefined basis poses
- Temporal smoothness
 - Poses are similar in adjacent frames

Other interesting papers

- ❖ Toshev, Alexander, and Christian Szegedy. "Deeppose: Human pose estimation via deep neural networks." CVPR 2014.
- Tompson, Jonathan J., et al. "Joint training of a convolutional network and a graphical model for human pose estimation." NIPS, 2014.
- Chen, Xianjie, and Alan L. Yuille. "Articulated pose estimation by a graphical model with image dependent pairwise relations." NIPS, 2014.
- ❖ Jain, Arjun, et al. "Learning human pose estimation features with convolutional networks." ICLR, 2014.
- ❖ Jain, Arjun, et al. "Modeep: A deep learning framework using motion features for human pose estimation." ACCV, 2014.
- Tompson, Jonathan, et al. "Efficient object localization using convolutional networks." CVPR. 2015.
- Fan, Xiaochuan, et al. "Combining local appearance and holistic view: Dual-source deep neural networks for human pose estimation." CVPR, 2015.
- Pfister, Tomas, James Charles, and Andrew Zisserman. "Flowing convnets for human pose estimation in videos." ICCV, 2015.
- Chu, Xiao, et al. "Structured feature learning for pose estimation." CVPR, 2016.
- Yang, Wei, et al. "End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation." CVPR, 2016.
- Xiao Chu, Wei Yang, W. Ouyang, Xiaogang Wang, Alan Yuille. "Multi-Context Attention for Human Pose Estimation", Proc. CVPR, 2017.
- Gkioxari, Georgia, Alexander Toshev, and Navdeep Jaitly. "Chained Predictions Using Convolutional Neural Networks." ECCV,2016.
- J. Charles, et al, Personalizing Human Video Pose Estimation, CVPR16
- Carreira, Joao, et al. "Human pose estimation with iterative error feedback." CVPR 2016.
- Insafutdinov E, Pishchulin L, Andres B, et al. DeeperCut: A Deeper, Stronger, and Faster Multi-person Pose Estimation Model. ECCV 2016.
- Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P., & Schiele, B. DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation, CVPR 2016

