Algorithms for Big Data

Fall Semester 2019 Exercise Set 10

Below we assume that $k \ll m \ll n$ to avoid annoying border-cases.

Exercise 1:

Show that any k-disjoint set family separates I_1 , I_2 such that $I_1 \neq I_2$ and I_2 can be arbitrarily large, while $|I_1| \leq k$.

Exercise 2:

Describe a decoding procedure for k-disjoint set family: given $\bigcup_{i \in I} F_i$, output I if $|I| \leq k$, and otherwise outputs that its not the case.

Exercise 3:

Let A be a k-disjoint matrix. Show a decoding procedure, that given Ax outputs x if x is k-sparse, and otherwise outputs that its not the case. Assume $x \ge 0$.

Exercise 4: (2 pts)

Assume k-disjoint family which has slow decoding. Show that it can be transformed into (suboptimal) k-separable family with $m' = \mathcal{O}(m \log n)$, and decoding time $\operatorname{poly}(m, k, \log n)$. (You might want to expand the universe over which we define our family.)