

CSHL Advanced Sequencing Technologies 2023
11/15/2023

Aaron Quinlan, quinlanlab.org

Thought experiment

Mutations arise on sperm and egg prior to fertilization.

Such mutations are observed in the offspring's DNA, but not in the parent: "germline mutations"

How many should we expect in a typical child?

Finding mutations with family genome sequencing

Germline mutation rate

~1 DNM per 100 million per generation (1 x 10-8 / bp / gen)

A typical human has 70 de novo SNV mutations. However, the mutation burden is variable.

Goal: find all germline mutations in an individual's diploid genome.

Find all germline mutations by sequencing DNA from millions of cells

Each DNA cluster is amplified from a <u>single strand</u> from a <u>single haploid chromosome</u> from a <u>single cell</u>.

Scenario: An individual is heterozygous for an "alternate" allele.

Scenario 3: An individual is heterozygous for an "alternate" allele.

BY S

Why might finding heterozygous variants be harder?

Binomial random variables: adventures in coin flipping

P(heads) = 0.5

P(tails) = 0.5

Thinking about allele sampling with the binomial distribution

The **binomial distribution** with parameters n and p is the discrete probability distribution of the number of successes in a sequence of \underline{n} independent \underline{yes} (e.g., "heads" or "reference allele") or \underline{no} (e.g., "tails", or "alternate allele") experiments, each of which yields success with probability \underline{p} .

The probability of getting exactly k successes in n trials is given by the probability mass function:

$$\Pr(X=k)=inom{n}{k}p^k(1-p)^{n-k}$$

What is the probability of seeing k=1 tails in n=3 flips of a fair coin with the probability of a tail (p) = 0.5?

3 choose
$$1 = 3$$
; $0.5^1 = 0.5$; $(1-0.5)^{(3-1)} = 0.25$. So.... $3*0.5*0.25 = 0.375$

In R, the function would be: dbinom(1, size=3, prob=0.5)

What is the distribution of tails (alternate alleles) do we expect to see after 5 tosses (sequence reads)?

What is the distribution of tails (alternate alleles) do we expect to see after 5 tosses (sequence reads)?

R code:

```
barplot(table(rbinom(30, 5, 0.5)))
```

```
30 experiments (students tossing coins) 5 tosses each
```

Probability of Tails

What is the distribution of tails (alternate alleles) do we expect to see after 15 tosses (sequence reads)?

What is the distribution of tails (alternate alleles) do we expect to see after 15 tosses (sequence reads)?

R code:

```
barplot(table(rbinom(30, 15, 0.5)))
```

```
30 experiments (students tossing coins)
15 tosses each
Probability of Tails
```


What is the distribution of tails (alternate alleles) do we expect to see after 30 tosses (sequence reads)?

Record your result in the following spreadsheet:

https://docs.google.com/spreadsheets/d/1i8sA1KMeYc9UhWTnCg0tLFjCy8x5LlsBITcXrz5La94/edit?usp=sharing the following statement of the following statement of

What is the distribution of tails (alternate alleles) do we expect to see after 30 tosses (sequence reads)?

R code:

```
barplot(table(rbinom(30, 30, 0.5)))
```

```
30 experiments (students tossing coins)
30 tosses each
Probability of Tails
```


So, with 30 tosses (reads), we are much more likely to see an even mix of alternate and reference alleles at a heterozygous locus in a genome

Number of "alternate alleles"

This is why at least a "30X" (30 fold sequence coverage) genome is recommended: it confers sufficient power to find the majority of heterozygous alleles

Depth tackles the allele sampling issue <u>and</u> lower quality scores

Some real examples of SNPs in IGV: validating

variants via manual review

	~	
	BY	S/

Homozygous for the "C" allele

Heterozygous for the alternate allele

Which genotype prediction would you have more confidence in?

Sequencing errors fall out as noise (most of the time)

