Top 10 Chestii pe care orice cercetator ar trebui sa le stie despre regresie

Objective

- Prezentare generala a regresiei statistice si aplicatii
 - Detalii tehnice
 - Context istoric: cum erau rezolvate probleme statistice inainte ca statistica sa existe? Cum a aparut si s-a dezvoltat regresia?
- Citeva conceptii gresite dar raspandite despre cum functioneaza regresia

Agenda

- I. (X'X)⁻¹X'y e doar inceputul
- II. Vizualizare! Vizualizare! Vizualizare!
- III. Corelatie Nu e Cauzalitate
- IV. Regresie Catre Mediocritate
- V. Nu Cercetatorii Ti-au Creat Datele

Overview

- VI. Interpretarea Non-stiintifica a Rezultatelor
- VII. Corelatia Nu e Cauzalitate, dar Sigur e o Indicatie
- VIII. Sa Nu Incluzi Prea Putine Variabile

• IX. Sa Nu Incluzi Prea Multe Variabile

• X. Cash is King

I. $(X^TX)^{-1}X^Ty$ Este Doar Inceputul

• Sa consideram un sistem de ecuatii liniare (infinitate de solutii):

$$\sum_{j=1}^{n} X_{ij} \beta_j = y_i, \ (i = 1, 2, \dots, m),$$

• Deoarece nu exista un set unic de valori β solutii pt $X\beta = y$, putem incerca sa cautam un β care sa minimizeze distanta (sau, echivalent, patratul distantei) dintre $X\beta$ si y:

$$\sum_{i=1}^{m} \left| \sum_{j=1}^{n} X_{ij} \beta_j - y_i \right|^2 \to \min.$$

• Solutia vine in forma ecuatiei normale de la regresii statistice:

$$(\mathbf{X}^{\mathbf{T}}\mathbf{X})\hat{\boldsymbol{\beta}} = \mathbf{X}^{\mathbf{T}}\mathbf{y}.$$

This concludes today's presentation ...

I. (X^TX)⁻¹X^Ty Este Doar Inceputul

Quiz Time!

 Urmatoarea pagina contine 4 seturi de date diferite reprezentate grafic

- Care grapfic are:
 - O dreapta de regresie Y = 0.5X + 3?
 - O valoare R² de 0.667?

I. $(X^TX)^{-1}X^Ty$ Este Doar Inceputul

- Dreapta de regresie: Y = 0.5*X+3
- R²: 0.667

I. $(X^TX)^{-1}X^Ty$ Este Doar Inceputul

• Felicitari, ai castigat @!

II. Vizualizare! Vizualizare! Vizualizare!

- O imagine buna valoreaza cat 1000 de drepte de regresie
 - Mai ales cand audienta nu e formata din statisticieni
 - ... sau, istoric vorbind, cand nu exista statistica
- Sa-I cunoastem pe John Snow, MD
 - Doctor si anestezist
 - Considerat adesea primul epidemiologist modern
 - A oprit raspandirea holerei in Londra prin colectarea datelor si analiza statistica descriptive
 - A murit cu 30 de ani inainte de desenarea primei drepte de regresie

John Snow, 1813-1858

II. Vizualizare! Vizualizare! Vizualizare!

- 1854 London izbucneste holera
- Harta regiunii afecate
- Punctele indica localizarea pacientilor cunoscuti
- Snow a colectat cu rabdare informatia si a desenat harta
- A dedus ca sursa holerei trebuie sa fie in epicentrul geografic

II. Vizualizare! Vizualizare! Vizualizare!

- Concluzie: ceva pe Broad Street cauza raspandire
 - Prin investigare amanuntita, a ajuns la concluzia ca pompa de apa era cauza
 - Credea in noua teorie a germenilor si a folosit harta ca suport
 - A examinat elementele extreme si a rezultat ca si acolo tot apa de la aceeasi pompa era folosita
 - A oprit pompa de apa de pe Broad Street si a oprit epidemia

 Nota: fara ajutorul unei teorii stiintifice (germeni), rezultatele pot fi interpretate gresit si isi pierd din valoare

- Exemplu: pete solare
 - Indica furtuni pe suprafata soarelui
 - Approximativ odata la 11 ani (seasonality)
 - Maxime si minime Solare maxima and minima apar approximative odata la 11 ani, cu toate ca valorile extreme au o variatie foarte mare.
 - In cursul observarii s-au inregistrat si perioade mai lungi de 11 ani
 - Sunt legate de caldura degajata de soare
 - Regiunile cu pete sint sensibil mai reci
 - Petele acopera sufficient de multa suprafata ca sa produca reduceri semnificative in radiatia solara
 - Au potential in afectarea temperaturilor pe pamant

 Coperte TIME Magazine publicate in anii cu cele mai multe (stanga) si cele mai putine (dreapta) pete solare raportate in istoria recenta:

- Consens Stiintific atestand efectul puternic al petelor solare asupra vremii
 - Desi sunt disensiuni pe tema efectelor de alta natura decat temperature globala...
 - ... si a importantei altor factori care afecteaza temperature globala
- In trecut au existat tentative de utilizare a acestor date in alte prognoze
- Sa facem cunostinta cu William Stanley Jevons
 - Economist si Logician
 - Contributii in Utilitate Marginala, Peak Oil Theory
 - A lucrat extensiv cu ciclurile economice
 - 'celebru' pentru ca a propovaduit o legatura intre economie si ciclurile petelor solare

W.S. Jevons, 1835-1882

- Ciclul economic
- Economia se dilata si se contracta relativ predictictibil
- Pe vremea lui Jevon, maximele economice erau cam odata la 11 ani ...
- ... si economia era majoritar bazata pe agricultura ...

• O relatie e sugestiva, insa nu a rezistat unei analize formale ...

- Motivatia care a dus la definite formala a regresie
- Sa presupunem ca luam 12 masteranzi si le dam fiecaruia o moneda de 0,5RON
- Fiecare este rugat sa 'dea cu banul' de 10 ori
- Fiecare is noteaza numarul de 'steme' rezultat
- Monedele sunt ok si 60 de steme
 s-au inregistrat in total

- Sa presupunem ca masterandul A a dat 8 steme din 10 incercari (80%)
- Si masterandul B 2 steme din 10 incercari (20%)
- Ce ar trebui sa ne asteptam din partea fiecaruia daca ii lasam sa mai 'dea' de 10 ori?
- Ne asteptam ca cel mai bun scor (A) sa scada?
 Scorul mai slab (B) sa creasca?

Hint: 50%, da, si da

- Axa 0X: rezultatele primelor 10 observatii; axa 0Y: rezultatele urmatoarelor 10
- Regresie catre medie: un sir norocos urmat de un sir mai putin norocos (si vice versa)
- Dar daca procesul nu este aleator? Daca unii oameni se pricep mai bine la dat cu banul decat semenii lor? Ar fi runda a 2 –a mai asemanatoare cu prima?

- Sa-l cunoastem pe Sir Francis Galton
 - Matematician, Antropolog, Psiholog
 - Responsabil pentru dezvolatrea notiunilor de regresie si corelatie
 - Initiator al cercetarii asupra ereditatii si geneticii
 - Pionier in apilcarea statisticii pe o populatie umana
- Studii Genetice
 - Ce attribute/trasaturi pot mosteni copiii de la parinti?
 - Se pot imbunatati caracteristici exceptionale in timp?
 - Sau toate trasaturile umane vor regresa spre mediocritate?

Francis Galton, 1822-1911

- · Date de la primul studiu modern folosind regresia stastica
- Inaltimea medie a parintilor pe axa X, cea a copiilor pe Y
- Cei mai inalti parinti au copii inalti care sunt mai mici decat ei
- Cei mai scunzi parinti au copii scunzi mai inalti decat ei

V. Nu Cercetatorii Ti-au Creat Datele

- Galton nu era prea interesat de inaltime
 - Dorea imbunatatirea genetica a tuturor caracteristicilor mostenite
 - Astfel a aparut o stiinta numita Eugenics
- Cel mai de seaman printre factorii Eugenici era inteligenta
 - Se presupunea ca se mosteneste demonstrate in gluma chiar de Dalton referindu-se la arborele lui genetic (un verisor al lui era chiar Charles Darwin) si la cel al altor contemporani
 - A produs o demonstratie formala ulterior prin regresii elaborate
 - Problema: atunci, ca si acum, definitia exacta a inteligentei e eluziva
- A dorit sa culeaga date despre factorii care presupunea ca se mostenesc

V. Nu Cercetatorii Ti-au Creat

Datele

- Inteligenta Mostenita: 38% (panta dreptei negru solid)
- Linia interupta reprezinta copii la fel de inteligenti ca parintii (sub ea, copii mai putin inteligenti; deasupra copii mai inteligenti ca parintii)
- Parinti mai inteligenti au mai multi copii sub interupta

V. Nu Cercetatorii Ti-au Creat Datele

- Pentru fiecare cuplu studiat s-a calculat un scor Eugenic
 - Spera ca acel scor sa fie transmis urmasilor si tuturor generatiilor urmatoare
 - Astfel, peste cateva generatii, noua 'mediocritate' s-ar fi imbunatatit
- Componente importante ale scorului
 - Pentru tati: inteligenta (masurata relativ vag)
 - Pentru mame: frumusetea (masurata foarte vag)
 - Sanatate (lipsa in storic a bolilor)

- Desigur multe dintre caracteristici erau greu de masurat, si au recurs la surogate
 - Clasa sociala, Bogatie, Nationalitate, Religie, Rasa ...

- Solutia lui Galton: Incurajarea imperecherii intre cei cu scor Eugenic mare (e.g. Oameni de stiinta/intelectuali cu femei frumoase)
- Al doilea graphic arata cum cu 10 cupluri cu scor mare s-ar imbunatati populatia genetica pentru generatiile urmatoare (in termeni de scor Eugenic)

- Slide-ul precedent este o aplicatie de positive eugenics.
- Succesorii lui Galton au realizat rapid beneficiile unei negative eugenics – reducerea numarului de copii in zona celor cu scoruri mici

- Nebunia a continuat: cum trebuie descurajata natalitatea celor cu scor mic? La 60 de ani de la moartea lui Galton, urmatoarele au fost incercate in SUA si Europa:
 - Diseminarea teoriei Eugenice catre audiente generale
 - Facilitati fiscale claselor superioare ale societatii pentru a incuraja natalitatea
 - Legalizarea contraceptiei, raspandirea mijloacelor ieftine de contraceptie
 - Sterilizarea disgenicilor contra unor plati
 - Legalizarea avortului
 - Reguli stricte de imigrare
 - Incriminarea casatoriilor inter-rasiale pana la interzicerea lor
 - Sterilizare fortata pentru bolnavii mental si infractori incarcerati (65,000)
 - Genocid (6,000,000)

- Nu putem da vina doar pe cercetatori pentru actiunile politicienilor si afaceristilor
 - Asigurati-va ca ajutati la interpretarea datelor
 - Asigurati-va ca nu faceti presupuneri eronate sau erori fundamentale
 - Verificati modul de utilizare a rezultatelor si atrageti atentia unde este cazul
- Ca urmare: teribilul esec al Eugeniei s-a raspandit asupra tuturor aplicatiilor ale statisticii in genetica, medicina si biologie
 - Universitatile au inchis departamentele de Eugenics; a trecut o generatie pana cand programe academice legate de Genetica, Biostatistica au reaparut
 - Multe vieti ar fi putut fi salvate sau imbunatatite intre timp

VII. Corelatia Nu e Cauzalitate, dar Poate Fi o Indicatie

- Nu prea exista dubii ca fumatul are legatura cu cancerul la plamani
 - Si totus multi fumatori raman sanatosi ...
 - ... si nu putini nefumatori ajung sa aiba cancer la plamani
- Intrebare: cum demonstram o legatura cauzala intre tutun si cancer?
- Alternativ: cum putem folosi statistica sa demontam aceasta legatura sau chiar mai mult, sa promovam beneficii asupra sanatatii datorate tutunului?

• Ca si mai devreme cu petele solare, un grafic poate ilustra o stare de fapt, dar nu putem trage nici o concluzie

 O solutie – o formula pentru corelatie

- Sa-l cunoastem pe Karl Pearson
 - Statistician, Matematician, Genetician
 - Student al lui Galton
 - Autor al multor concepte din statistica moderna
 - Pentru aceasta discutie ne rezumam la Corelatia Pearson (r)

$$\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E((X - \mu_X)(Y - \mu_Y))}{\sigma_X \sigma_Y},$$

Karl Pearson, 1857-1936

 Date de la 100 de spitale sunt examinate relative la mai multi factori:

•	% pacienti cu cancer de plaman	i	Lung Cancer
•	% fumatori	Smoking	66.32%
•	Varsta medie	Age	65.07%
	% de barbati	Sex	20.67%
	Inaltime medie	Weight	-37.66%
		Diet	-29.26%
	Index de dieta	Disease	53.18%
•	Index de exercitii fizice	Alcohol	53.80%
•	Index de somn (sleep index)	Sleep	26.42%
•	Indicator al altor boli	•	

- Index de consum alcool
- Datele sugereaza un efect al fumatului dar si alte contributii

- Regresie a Cancerului pe Fumat (Smoking)
- Panta e mare, deci avem corelatie pozitiva. Dar este seminifcativa?
- Pe graf observam patratul corelatiei Pearson (43.99%)

- Cum mai putem determina daca o panta pozitiva este semnificativa?
- Sa-l cunoastem pe Sir Ronald Fisher
 - Statistician, Matematician, Genetician
 - Rival inrait al lui Pearson
 - Analiza Variantei, Maximum Likelihood, etc
 - Definitia moderna a semnificatiei statistice
- Z-statistic masura a semnificatiei
 - |β/s.e.(β)| comparatie cu distributia normala
 - <1: nu e semnificativa; >2: semnificativa, >3: foarte semnificativa
 - Se poate folosi si *t-statistic* (Gosset) care din motive tehnice e preferata uneori

R.A. Fisher, 1890-1962

- Regresie: summary statistics
- Fumatul este foarte semnificativ (considerat individual)

	Intercept	Smoking
Beta	0.094	0.444
s.e.(beta)	0.028	0.051
T-statistic	3.311	8.773
R-square	43.9	99%

VIII. Sa Nu Incluzi Prea Putine Variabile

- Si alte variabile par importante luate individual- de exemplu varsta
- Oameni in varsta sunt mai frecvent bolnavi de cancer la plamani (t=7.85)
- Cum putem lua aceata informatie in considerare?

VIII. Sa Nu Incluzi Prea Putine Variabile

• Regresie multipla – acel (X^TX)⁻¹X^Ty cu care am inceput

	Intercept	Smoking	Age
Beta	-0.058	0.274	0.0047
s.e.(Beta)	0.0483	0.0654	0.0012
T-statistic	-1.201	4.192	3.781
R-square		50.85%	

- Atat fumatul cat si varsta apar ca semnificative
 - Fumatul si varsta sunt amandoua correlate cu cancerul mai grav daca esti fumator in varsta
 - Modelarea s-a imbunatatit dupa cum indica r²
- Oare ce alte variabile/factori ar putea imbunatati modelul?

IX. Sa Nu Incluzi Prea Multe Variabile

Regresie pe toate variabilele

	Intercept	Smoke	Age	Male	Weight	Diet	Disease	Alcohol	Sleep
Beta	-0.007	-0.0204	0.00473	0.1822	-0.0025	0.0012	0.0031	0.0774	-0.0201
s.e.(beta)	0.291	0.107	0.0011	0.112	0.0007	0.0028	0.0007	0.0967	0.015
T-statistic	-0.0263	-0.19	4.163	1.626	-3.215	0.4228	4.367	0.8015	-1.336
R-square					65.03%				

- De aici se vede ca varsta (Age), greutatea(Weight) si alte boli (Diseases) sunt semnificative
- Fumatul apare ca nesemnificativ in aceasta analiza:
 - Are chiar semn negativ, putand fi interpretat chiar un beneficiu
 - Multe din studiile anilor 50 (inclusive cele ale lui Fisher) au ajuns la concluzii similare
- Ce s-a intamplat?

IX. Sa Nu Incluzi Prea Multe Variabile

Multe dintre variabile sunt intercorelate

- Prea multe variabile diminueaza efectele
 - In exemplul de mai sus: Prezenta Indicatorului de alte boli este puternic asociat cu Cancerul si intrucatva cu fumatul. Regresia surprinde aceste efecte dar nu le atribuie fumatului.

IX. Sa Nu Incluzi Prea Multe Variabile

- Cate variabile sunt prea multe?
- LASSO Regression
- Ridge Regression
 - Se cauta minimizarea

$$\sum_{i=1}^{m} \left| \sum_{j=1}^{n} X_{ij} \beta_j - y_i \right|^2 \to \min.$$

cu urmatoarele conditii: $\|\beta\|_1 = \sum_1^n |\beta_j| < s$ (LASSO)

Sau
$$\|\beta\|_2 = \sqrt{\sum_1^n {\beta_j}^2} < s$$
 (RIDGE)

LASSO si RIDGE

- RIDGE va minimiza importanta in model a variabilelor neinformative
- LASSO va elimina din model variabilele neinformative
 - Dintr-un grup de variabile corelate doar una va fi aleasa
 - Problema gasirii lui s este echivalenta cu problema de minimizare

$$\sum_{i=1}^{m} \left| \sum_{j=1}^{n} X_{ij} * \beta_j - y_i \right| + \lambda * \|\beta\|_1 \to min.$$

- In problema de mai sus λ e fix, se afla β in functie de X si λ
- Pt λ nu exista algoritm: se incearca multe valori si cea care da eroarea cea mai mica de predictive va castiga

Concluzii

- Regresia este o unealta in examinarea relatiilor din date
- Regresia poate fi o arta o aplicatie automatizata bazata pe regresie poate da gres
- Vizualizarea datelor pot rezolva probleme de business
- Inainte de rularea unei regresii, e importanta o analiza formala sau informala a corelatiilor
- Atentie cand vi se cere sa discutati cauzalitate regresia nu o poate demonstra
- Incercati o recenzie de la cineva avizat asupra analizei si intrepretarii rezultatelor
- Cand aveti variabile multiple (a.k.a. covariate), alegeti-le cu grija pe cele ce urmeaz a fi incluse in regresie
- Normalizati datele inainte de studiu

Q&A

