Example of written examination

(Questions will be provided also in German)

Question	1	2	3	4	5	6	7	8	9	10
Max points	4	6	8	4	9	6	6	6	6	5

X-ray based imaging

Question 1 - Image characteristics (4 points)

1) Sketch the Fourier representation of the following image, explaining the plot (4 points)

(it should take 2 minutes)

Question 2 - Image characteristics (6 points)

Define

- 1) what is the contrast in an image (2 points),
- 2) how it can be improved or deteriorated (2 points)
- 3) and how it is measured in a CT scanner (2 points)

(it should take 5 minutes)

Question 3 - X-ray production (8 points)

Sketch and comment the Energy spectrum of X-ray production in the following cases:

- 1) Source power = 120KV, no filtration, 5 mA current, Tungsten (2 points)
- 2) Source power = 120KV, with filtration, 5 mA current, Tungsten (2 points)
- 3) Source power = 80KV, with filtration, 5 mA current, Tungsten (2 points)
- 4) Source power = 80KV, with filtration, 5 mA current, Molybdenum (2 points)

(it should take 4 minutes)

Question 4 – Image formation (4 points)

Two X-ray images are shown below. One corresponds to an X-ray beam with 140 kVp and the other to X-ray beam with 70 kVp. Explain which is which, and the reasons for the differences in

image contrast and signal intensity (4 points).

(it should take 2 minutes)

Question 5 – Instrumentation (9 points)

In an X-ray imaging device,

- a) where is the anti-scatter grid positioned and what is its role (2 points).
- b) Has the anti-scatter grid the same function as the filter? (Motivate your answer) (2 points)
- c) Let's consider 2 anti-scattering grids, A and B, with the following geometry

 $h_a = 5 \text{ mm } h_b = 5 \text{ mm}$

 $d_a=2 \text{ mm } d_b=3 \text{ mm}$

 t_a = 0.1 mm t_b = 0.2 mm

- c.1) What can you say about the final image and dose to the patient? (3 points)
- c.2) Which grid would you choose for your system and why? (2 points)

(it should take 8 minutes)

Question 6 - Instrumentation (7 points)

As a clinical engineer, you must decide about new equipment in the radiology department. Two vendors propone their own systems:

- 1) Mobile C-Arm, with Image Intensifier, 30cmx30cm FOV, pixel matrix 512x512, 60 Hz acquisition rate
- 2) Fixed C-Arm, with Flat panel, 40cmx50cm FOV, pixel matrix 512x512,50 Hz acquisition rate

Write a short report where you compare the 2 systems (7 points)

(it should take 5 minutes)

Question 7 – Image reconstruction (6 points)

State the Central slice theorem and explain how it's used for CT image reconstruction (6 points)

(it should take 5 minutes)

Ultrasounds (US)

Question 8 – Basic principles (6 points)

- a. Write the relationship between the reflection coefficient R and the acoustic impedance Z in case of perpendicular reflection (1 point)
- b. Compute R at the interface Z_{muscle} - Z_{fat} knowing that the density (ρ) and US speeds are: (3 points)
 - $\Box \rho_{\text{muscle}} = 1.07 \text{ g} \cdot \text{cm}^{-3}$ $\Box \rho_{\text{fat}} = 0.92 \text{ g} \cdot \text{cm}^{-3}$
 - \Box c_{muscle}=1600 m·s⁻¹
 - \Box c_{fat}=1450 m·s⁻¹
- c. How does US intensity decrease in depth? Explain it by writing the equation and explaining all variables/constants involved (2 points)

(it should take 4 minutes)

Question 9 – Instrumentation (6 points)

- a. Which kind of "special" amplifier is used in US instrumentation and how does it work? (1 point)
- b. How can the piezoelectric elements be arranged on the probe and how is the field of view affected? (4 points)
- c. An US devise has two transducers with different frequencies:
 - □ Transducer 1, f_1 = 4 Mhz □ Transducer 2, f_2 = 24 Mhz

Which transducer is ideal to perform measurement on the derma layer and why? (1 point) (it should take 5 minutes)

Question 10 – Image formation (5 points)

- a. Explain why pulsed US waves (PW) are preferred to continuous US waves (PW) to build an image and describe the most important parameters (4 points)
- b. Compute the near field depth of an US beam generated by (f=frequency, D=piezoelement diameter) assuming an average speed in soft tissues of 1540 m/s for
 - 1. f=2MHz, D= 10 mm
 - 2. f=2MHz, D= 5 mm
 - 3. f=4MHz, D=10 mm
 - 4. f=4MHz, D= 5 mm

Comment on the results (1 point)

(it should take 5 minutes)