McGill University Department of Epidemiology, Biostatistics and Occupational hea	lth

BIOS 640

Introduction to Health Data Science Methods

Assessment Week 2

William Opoku-Nkoom

Exercise 2: Data import and preliminary exploration

Fig. 1: View of codes, codes, Console, Environment and directory of imported data sets

Table 1: Dimensions of the data sets

Filename	File description	Dimensions	
		Number of rows	Number of columns
demo_17_18	2017-2018 demographic data	9254	46
demo_15_16	2015-2016 demographic data	9971	47
demo_13_14	2013-2014 demographic data	10175	47
bp_17_18	2017-2018 blood pressure	8704	21
	examination data		
bp_15_16	2015-2016 blood pressure	9544	21
	examination data		
bp_13_14	2013-2014 blood pressure	9813	23
	examination data		

Types of variables present in the data sets

- 1. Continuous variable
- 2. Discrete variables
- 3. Categorical

All variables are in the right format.

Exercise 3: Merging and preparing datasets

Fig. 2: Output of selected columns of the data sets in Console and the Environment Panes of the data sets

Table 2: Dimensions of the combined demographic and blood pressure data sets

Filename	File description	Dimensions	
		Number of rows	Number of columns
data_combined	Combined demographic and	29400	20
	blood pressure data for 2013-		
	2104, 2015-2016 and 2017-		
	2018 of the NHANES data sets		
bp_combined	Combined blood pressure	28061	11
	data for 2013-2104, 2015-2016		
	and 2017-2018 of the NHANES		
	data sets		
demo_combined	Combined demographic data	29400	10
	for 2013-2104, 2015-2016 and		
	2017-2018 of the NHANES		
	data sets		

The combined data set from both the combined demographic and blood pressure data have higher dimensions, i.e. it retains all the rows of the combined demographic data set which has higher number of rows compared to the combined blood pressure data set. By this no

respondent data was lost in the combining of these two data sets. Furthermore the combined data set of both has higher number of columns, meaning it retained all columns of the two data sets but overwrote one column which had the same column name, most likely the respondent sequence number.

Exercise 3: Merging and preparing datasets

Fig. 3: Outputs of combined data sets in the Console and the Environment Panes

Exercise 4: Data cleaning and variable recoding

Fig. 4: Skim data output in the Console Pane

Skim() function observation: there were a lot of missing values for the following variables:

DMDEDUC2, INDFMIN2, DMDMARTL, SEQN.y, PEASCCT1, BPXSY1, BPXDI1, BPXSY2, BPXDI2, BPXSY3, BPXDI3, BPXSY4, BPXDI4.

```
Console Terminal × Render × Background Jobs ×
                                                                                                                                          R 4.5.1 · C:/Users/WILLIAM/OneDrive - McGill University/Health data analytics/
> # name categories into appriopriate names
> data_combined <- data_combined %>%
     mutate(DMDEDUC2 =
+ recode(DMDEDUC2, '1' = "Less than 9th grade", '2' = "9-11 grade", '3' = "High school graduate/GED or equivalent", '4' = "Some college or AA degree", '5' = "College graduate or above", '7' = "Refused", '9' = "Don't know")
                 ) %>%
      mutate(RIAGENDR =
                     recode(RIAGENDR, '1' = "Male", '2' = "Female")
+
                 ) %>%
     mutate(RIDRETH1 =
                     recode(RIDRETH1, '1' = "Mexican American", '2' = "Other Hispanic", '3' = "No
n Hispanic White", '4' = "Hispanic Black", '5' = "Other Race-Include Multirace")
                 ) %>%
      mutate(DMDMARTL =
                    recode(DMDMARTL, '1' = "Married", '2' = "Widowed", '3' = "Divorced", '4' = '5' = "Never married", '6' = "Living with partner", '77' = "Refused", '99' =
"Separated"
"Don't know")
                ) %>%
      mutate(INDFMIN2 =
+ recode(INDFMIN2, '1' = "$ 0-4,999", '2' = "$ 5,000-9,999", '3' = "$10,000-$1 4,999", '4' = "$15,000-19,999", '5' = "$20,000-24,999", '6' = "$25,000-34,999", '7' = "$3 5,000-44,999", '8' = "$45,000-54,999", '9' = "$55,000-64,999", '10' = "$65,000-$74,999", '12' = "$20,000-0ver", '13' = "Under $20,000", '14' = "$75,000-$99,999", '15' = "$100,000
-over", '77' = "Refused", '99' = "Don't know")
```

Fig. 5: Output of some recoded variables in the Console Pane

Exercise 5: Filtering and reshaping a dataset

Fig. 6: Output of filtered, selected and pivoted data in Console Pane

The resulting data sets are in the wider format because the systolic and the diastolic blood pressure values 1st, 2nd, 3rd, and 4th readings are all in different columns. The data was pivoted into the longer format as shown in Fig. 6.