IE
303 Modeling and Optimization Project $1\,$

Hüseyin Şahan 21802932 Yağız Yaman 21702889

October 2021

1 Question 1

1.1 Model

Description of Model Respectively:

- 1. Objective function minimizes total daily cost.
- 2. Demand satisfaction
- 3. Maximum capacity of machine j restricts the electricity given
- 4. Working power generators must be able to cope with 1/5 of the demand forecast.
- 5. If machine does not stop on next period, to be able to not include startup cost new variable Z_{ij} will be 1

Parameters:

```
Shift number I = \{1,...7\}, Machine number J = \{1,...,25\}
```

 D_i : Demand in period i, $i \in I$

 CS_j : Startup cost of jth type, $j \in J$

 cap_i : max capacity of jth type, $j \in J$

 M_j : min output of jth type, $j \in J$

 CF_j : Fixed cost of jth type, $j \in J$

 CH_j : Hourly cost of jth type, $j \in J$

 A_j : Available number of jth type, $j \in J$

 T_i : Time interval in period i, $i \in I$

Decision Variables:

$$X_{ij} = \begin{cases} 1 & \text{If jth machine works in ith period,} & i \in \{2, 3, 4, 5, 6, 7\}, \quad j \in J \\ 0 & \text{otherwise} \end{cases}$$

 Y_{ij} : Additional amt. of electricity given by jth type of machine on ith period, $i \in I, j \in J$

$$Z_{ij} = \begin{cases} 1 & \text{If jth type of machine does not stop in ith period,} & i \in \{2, 3, 4, 5, 6, 7\}, \quad j \in J \\ 0 & \text{otherwise} \end{cases}$$

Model:

$$\min \sum_{i=1}^{7} \sum_{j=1}^{25} (CS_j + CF_j T_i) X_{ij} + Y_{ij} CH_j T_i - CS_j Z_{ij}$$
 (1)

subject to

$$\sum_{j=1}^{25} M_j X_{ij} + Y_{ij} \geqslant D_i, \quad i \in I$$
 (2)

$$X_{ij}M_j + Y_{ij} \leqslant cap_j, \quad i \in I, j \in J$$
 (3)

$$\sum_{i=1}^{25} cap_j X_{ij} \geqslant 1.2D_i \quad i \in I \tag{4}$$

$$X_{(i-1)_j} + X_{ij} \le 1 + Z_{ij}, \quad i \in \{2, ...7\}, j \in J$$
 (5)

$$X_{(i-1)_j} + X_{ij} \geqslant 2Z_{ij} \tag{6}$$

1.2 Solution:

The value 1319590 is the objection function value; so, it shows the minimum amount of the total daily cost.

2 Question 2

2.1 Model

Description of Model Respectively:

- 1. It is a redundant objective function which will give the total number of numbers given initially.
- 2. If there exists a number t initially corresponding Y variable must be 1 as well.
- 3. Cells in every column has different numbers.
- 4. Cells in every row has different numbers.
- 5. Every cell include a number.
- 6. Every 9 cell box given by rule include every number differently.

Parameters P_{tij} : 9x9x9 binary matrix that tells initial condition Ex: P_{611} is 1

Decision Variables:

 $Y_{tij} = \begin{cases} 1 & \text{If the number is located on ith row jth column,} \quad i \in I, j \in J, t \in T \\ 0 & Otw. \end{cases}$

Model:

$$\min \sum_{t=1}^{9} \sum_{i=1}^{9} \sum_{j=1}^{9} P_{tij} Y_{tij}$$
 (1)

$$P_{tij} \leqslant Y_{tij}, \quad t \in T, i \in I, j \in J$$
 (2)

$$\sum_{i=1}^{9} Y_{tij} = 1 \quad t \in T, j \in J$$
 (3)

$$\sum_{j=1}^{9} Y_{tij} = 1, \quad t \in T, i \in I$$
 (4)

$$\sum_{t=1}^{9} Y_{tij} = 1 \quad i \in I, j \in J$$
 (5)

$$Y_{tij} + Y_{t(i+1)j} + Y_{t(i+2)j} + Y_{(ti(j+1)} + Y_{t(i+1)(j+1)} + Y_{t(i+2)(j+1)} + Y_{ti(j+2)} + Y_{t(i+1)(j+2)} + Y_{t(i+2)(j+2)} = 1 \quad t \in T, i \in \{1, 4, 7\}, j \in \{1, 4, 7\}$$

2.2 Solution:

Here the solution of 1st puzzle:

[6	5	9	4	1	3	7	8	2
3	1	7	2	8	5	4	9	6
2	4	8	7	9	6	5	3	1
$\begin{bmatrix} 2\\9\\8 \end{bmatrix}$	6	5	1	7	2	8	4	3
8	7	2	9	3	4	1	6	5
4	3	1	5	6	8	2	7	9
7	2	6	3	4	1	9	5	8
5	8	4	6	2	9	3	1	7
1	9	3	8	5	7	6	2	2 6 1 3 5 9 8 7 4

6					3 5	7	8	
	1				5		9	
		8					3	1
			1					
		2		3			6	
					8			9
7								
			6	2	9			
1	9					6		

Since 1st puzzle is correct we can say that our model is true.