GUARDED RECURSIVE TYPE THEORY VIA SIZED TYPES

ABSTRACT. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent convallis orci arcu, eu mollis dolor. Aliquam eleifend suscipit lacinia. Maecenas quam mi, porta ut lacinia sed, convallis ac dui. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse potenti.

1. Introduction

[?]

2. Preliminaries

```
\mathsf{uip} : \forall \{\ell\} \ \{A : \mathsf{Set} \ \ell\} \rightarrow \{a \ a' \colon A\}
   \rightarrow \{p \ p' : a \equiv a'\} \rightarrow p \equiv p'
\mathsf{uip}\ \{p = \mathsf{refl}\}\ \{\mathsf{refl}\} = \mathsf{refl}
data tag: Set where
   set : tag
   tot : tag
\Sigma \equiv : \{A : \mathsf{Set}\}\{P : A \to \mathsf{Set}\}
   \rightarrow \{a \ a': A\} \{p: P \ a\} \{p': P \ a'\}

ightarrow (e: a \equiv a') 
ightarrow 	ext{subst } P \ e \ p \equiv p' 
ightarrow (a , p) \equiv (a', p')
\Sigma \equiv \text{refl refl} = \text{refl}
\mathsf{isProp}:\mathsf{Set}\to\mathsf{Set}
\mathsf{isProp}\ P = \{x\ y:\ P\} \to x \equiv y
\Sigma \equiv -\mathsf{uip} : \{A : \mathsf{Set}\}\{P : A \to \mathsf{Set}\}
   \rightarrow (\{a: A\} \rightarrow \mathsf{isProp}(P a))
   \rightarrow \{a \ a': A\} \{p: P \ a\} \{p': P \ a'\}
   \rightarrow (e: a \equiv a') \rightarrow (a, p) \equiv (a', p')
\Sigma \equiv -\text{uip } q \text{ refl} = \text{cong } (, ) q
    Dependent functions preserve equality
\mathsf{cong\text{-}dep}: \{A : \mathsf{Set}\} \{P : A \to \mathsf{Set}\}
   \rightarrow (f: (a: A) \rightarrow P a)
   \rightarrow \{x \ y : A\}
   \rightarrow (e: x \equiv y) \rightarrow \mathsf{subst} \ P \ e \ (f \ x) \equiv f \ y
cong-dep f refl = refl
```

Functions with two arguments preserve equality

```
cong_2-dep : \{A \ B : \mathsf{Set}\}\{P : A \to \mathsf{Set}\}
  \rightarrow (f: (a: A) (p: P a) \rightarrow B)
  \rightarrow \{a \ a' : A\} \{p : P \ a\} \{p' : P \ a'\}
  \rightarrow (e: a \equiv a') \rightarrow \mathsf{subst} \ P \ e \ p \equiv p' \rightarrow f \ a \ p \equiv f \ a' \ p'
cong_2-dep f refl refl = refl
   Transport of a composition
subst-trans : \{A : \mathsf{Set}\}\{P : A \to \mathsf{Set}\}
   \rightarrow \{x \ y \ z : A\}(e : x \equiv y)(e' : y \equiv z)
  \rightarrow \{p: Px\}
   \rightarrow subst P \ e' (subst P \ e \ p) \equiv subst P (trans e \ e') p
subst-trans refl refl = refl
record PSh: Set<sub>1</sub> where
  field
      Obj: Size \rightarrow Set
     Mor: (i : Size) (j : Size < (\uparrow i))
        \rightarrow Obj i \rightarrow Obj j
      Morld : \{i : \mathsf{Size}\}\ \{x : \mathsf{Obj}\ i\}
        \rightarrow Mor i i x \equiv x
      \mathsf{MorComp}: \{i : \mathsf{Size}\} \ \{j : \mathsf{Size} < (\uparrow i)\} \ \{k : \mathsf{Size} < (\uparrow j)\}
        \rightarrow \{x : \mathsf{Obj}\ i\}
        \rightarrow Mor i k x \equiv Mor j k (Mor i j x)
ConstObj : Size \rightarrow Set
ConstObj = A
ConstMor : (i : Size) (j : Size < (\uparrow i))

ightarrow ConstObj i 
ightarrow ConstObj j
ConstMor x = x
ConstMorld : \{i : Size\} \{x : A\}
   \rightarrow ConstMor i i x \equiv x
ConstMorId = refl
ConstMorComp : \{i : Size\} \{j : Size < (\uparrow i)\} \{k : Size < (\uparrow j)\}
  \rightarrow \{x : \mathsf{ConstObj}\ i\}
  \rightarrow ConstMor i k x \equiv ConstMor j k (ConstMor i j x)
ConstMorComp = refl
Const: PSh
Const = record
  { Obj = ConstObj
  ; Mor = ConstMor
  : Morld = ConstMorld
```

```
; MorComp = ConstMorComp
  }
Terminal: PSh
Terminal = Const \top
ProdObj : Size \rightarrow Set
ProdObj i = P.Obj i \times Q.Obj i
ProdMor : (i : Size) (j : Size < (\uparrow i))

ightarrow ProdObj i 
ightarrow ProdObj j
ProdMor i j = map (P.Mor i j) (Q.Mor i j)
ProdMorld : \{i : Size\} \{x : ProdObj i\}
   \rightarrow ProdMor i i x \equiv x
ProdMorld \{i\}\ \{x\} =
  begin
      (P.Mor \ i \ i \ (proj_1 \ x), \ Q.Mor \ i \ i \ (proj_2 \ x))
  \equiv \langle \mathsf{cong} \; (\lambda \; z \to (z \; , \; \mathsf{Q.Mor} \; i \; i \; (\mathsf{proj}_2 \; x))) \; \mathsf{P.Morld} \; \rangle
      (\operatorname{proj}_1 x, \operatorname{Q.Mor} i i (\operatorname{proj}_2 x))
  \equiv \langle \mathsf{cong} (\lambda z \to (\mathsf{proj}_1 x, z)) \mathsf{Q}.\mathsf{Morld} \rangle
      \boldsymbol{x}
ProdMorComp : \{i : Size\} \{j : Size < (\uparrow i)\} \{k : Size < (\uparrow j)\}
   \rightarrow \{x : \mathsf{ProdObj}\ i\}
  \rightarrow ProdMor i k x \equiv ProdMor j k (ProdMor i j x)
ProdMorComp \{i\}\ \{j\}\ \{k\}\ \{x\} =
      (P.Mor \ i \ k \ (proj_1 \ x), \ Q.Mor \ i \ k \ (proj_2 \ x))
  \equiv \langle \text{ cong } (\lambda z \rightarrow (z, \text{ Q.Mor } i \text{ } k \text{ (proj}_2 \text{ } x))) \text{ P.MorComp } \rangle
        (P.Mor \ j \ k \ (P.Mor \ i \ j \ (proj_1 \ x)), \ Q.Mor \ i \ k \ (proj_2 \ x))
  \equiv \langle \text{ cong } (\lambda z \rightarrow (P.Mor j k (P.Mor i j (proj_1 x)), z)) Q.MorComp \rangle
      (P.Mor \ j \ k \ (P.Mor \ i \ j \ (proj_1 \ x)), \ Q.Mor \ j \ k \ (Q.Mor \ i \ j \ (proj_2 \ x)))
Prod: PSh
Prod = record
  \{ Obj = ProdObj \}
  ; Mor = ProdMor
  ; Morld = ProdMorld
  ; MorComp = ProdMorComp
  }
\mathsf{SumObj}: \mathsf{Size} \to \mathsf{Set}
SumObj i = P.Obj i \uplus Q.Obj i
```

```
SumMor : (i : Size) (j : Size < (\uparrow i))

ightarrow SumObj i 
ightarrow SumObj j
SumMor i j = map (P.Mor i j) (Q.Mor i j)
SumMorld : \{i : Size\} \{x : SumObj i\}
  \rightarrow SumMor i i x \equiv x
SumMorld \{i\} \{inj_1 p\} =
  begin
     inj_1 (P.Mor i i p)
  \equiv \langle \text{ cong inj}_1 \text{ P.Morld } \rangle
     inj_1 p
SumMorld \{i\} \{inj_2 q\} =
  begin
     inj_2 (Q.Mor i i q)
  \equiv \langle \text{ cong inj}_2 \text{ Q.Morld } \rangle
     inj_2 q
SumMorComp : \{i : Size\} \{j : Size < (\uparrow i)\} \{k : Size < (\uparrow j)\}
  \rightarrow \{x : \mathsf{SumObj}\ i\}
  \rightarrow SumMor i \ k \ x \equiv SumMor j \ k \ (SumMor \ i \ j \ x)
SumMorComp \{i\} \{j\} \{k\} \{inj_1 p\} =
  begin
     inj_1 (P.Mor i k p)
  \equiv \langle \text{ cong inj}_1 \text{ P.MorComp } \rangle
     inj_1 (P.Mor j k (P.Mor i j p))
\mathsf{SumMorComp}\ \{\mathit{i}\}\ \{\mathit{j}\}\ \{\mathit{k}\}\ \{\mathsf{inj}_2\ \mathit{q}\} =
  begin
     inj_2 (Q.Mor i k q)
  \equiv \langle \text{ cong inj}_2 \text{ Q.MorComp } \rangle
     inj_2 (Q.Mor j k (Q.Mor i j q))
Sum: PSh
Sum = record
  { Obj = SumObj
  ; Mor = SumMor
  ; Morld = SumMorld
  ; MorComp = \lambda \{\}\{\}\{\}\{x\} \rightarrow SumMorComp \{x = x\}
\mathsf{ExpObj} : \mathsf{Size} \to \mathsf{Set}
ExpObj i =
  \Sigma ((j: Size< (\uparrow i)) \rightarrow P.Obj j \rightarrow Q.Obj j)
```

```
(\lambda f \rightarrow (j : \mathsf{Size} < (\uparrow i)) (k : \mathsf{Size} < (\uparrow j))
                 (x : P.Obj j)
                    \rightarrow Q.Mor j k (f j x)
                         f k (P.Mor j k x)
ExpMor: (i : Size) (j : Size < (\uparrow i))

ightarrow \mathsf{ExpObj}\; i 
ightarrow \mathsf{ExpObj}\; j
ExpMor i j (f, p) = (\lambda \rightarrow f) , (\lambda \rightarrow p)
ExpMorld : \{i : Size\} \{x : ExpObj i\}
  \to \mathsf{ExpMor}\ i\ i\ x \equiv x
ExpMorId = refl
ExpMorComp : \{i : \mathsf{Size}\}\ \{j : \mathsf{Size} < (\uparrow i)\}\ \{k : \mathsf{Size} < (\uparrow j)\}
  \rightarrow \{x : \mathsf{ExpObj}\ i\}
  \rightarrow ExpMor i k x \equiv ExpMor j k (ExpMor i j x)
ExpMorComp = refl
Exp: PSh
Exp = record
  { Obj = ExpObj
  ; Mor = ExpMor
  ; Morld = ExpMorld
  ; MorComp = ExpMorComp
  }
\mathsf{Ctx} : \mathsf{tag} \to \mathsf{Set}_1
Ctx set = Set
Ctx tot = PSh
\mathsf{Ty}:\,\mathsf{tag}\to\mathsf{Set}_1
Ty set = Set
Ty tot = PSh
\mathsf{Tm} : (b : \mathsf{tag}) \ (: \mathsf{Ctx} \ b) \ (A : \mathsf{Ty} \ b) \to \mathsf{Set}
Tm set A = \rightarrow A
Tm tot A =
  \Sigma ((i: Size) \rightarrow PSh.Obj i \rightarrow PSh.Obj A i)
      (\lambda f \rightarrow (i : Size) (j : Size < (\uparrow i)) (x : PSh.Obj i)
             \rightarrow PSh.Mor A \ i \ j \ (f \ i \ x) \equiv f \ j \ (PSh.Mor \ i \ j \ x))
• : (b : \mathsf{tag}) \to \mathsf{Ctx}\ b
• set = \top
• tot = Terminal
```

```
" : \{b: \mathsf{tag}\} \to \mathsf{Ctx}\ b \to \mathsf{Ty}\ b \to \mathsf{Ctx}\ b
", \{set\} A = \times A
", \{tot\} A = Prod A
\mathsf{var}: \{b : \mathsf{tag}\} \ (: \mathsf{Ctx}\ b) \ (A : \mathsf{Ty}\ b) \to \mathsf{Tm}\ b \ (\ ,,\ A) \ A
var {set} A = proj_2
\operatorname{\mathsf{proj}}_1 (var {tot} A) i(y, x) = x
proj_2 (var {tot} A) i j (y, x) = refl
weaken : \{b : \mathsf{tag}\}\ (: \mathsf{Ctx}\ b)\ (A\ B : \mathsf{Ty}\ b)

ightarrow Tm b B 
ightarrow Tm b ( ,, A) B
weaken \{ set \} A B t (x, ) = t x
proj_1 (weaken {tot} A B (t, p)) i (x_1, x_2) = t i x_1
\mathsf{proj}_2 \; (\mathsf{weaken} \; \{\mathsf{tot}\} \; \; A \; B \; (t \; , \; p)) \; i \; j \; (x_1 \; , \; x_2) = p \; i \; j \; x_1
subst-Tm : \{b : \mathsf{tag}\}\ \{ : \mathsf{Ctx}\ b\}\ \{A\ B : \mathsf{Ty}\ b\}
   \rightarrow (t: \mathsf{Tm}\ b\ (\ ,,\ A)\ B)\ (x: \mathsf{Tm}\ b\ A)
   \rightarrow Tm b B
subst-Tm {set} t x y = t (y, (x y))
\mathsf{proj}_1 \; (\mathsf{subst-Tm} \; \{\mathsf{tot}\} \; (t \; , \; p) \; (x \; , \; q)) \; i \; y = t \; i \; (y \; , \; x \; i \; y)
proj_2 (subst-Tm {tot} {} {A} {B} (t, p) (x, q)) i j y =
   begin
      PSh.Mor B i j (t i (y, x i y))
   \equiv \langle p i j (y, x i y) \rangle
       t j (PSh.Mor ( ,, A) i j (y , x i y))
   \equiv \langle \text{ cong } (\lambda z \rightarrow t j (, z)) (q i j y) \rangle
       t j (PSh.Mor i j y, x j (PSh.Mor i j y))
Unit : (b : \mathsf{tag}) \to \mathsf{Ty}\ b
Unit set = \top
Unit tot = Terminal
\otimes : \{b : \mathsf{tag}\}\ (A\ B : \mathsf{Ty}\ b) \to \mathsf{Ty}\ b
\otimes {set} A B = A \times B
\otimes {tot} A B = \text{Prod } A B
pair : \{b : \mathsf{tag}\}\ (: \mathsf{Ctx}\ b)\ (A\ B : \mathsf{Ty}\ b)\ (x : \mathsf{Tm}\ b\ A)\ (y : \mathsf{Tm}\ b\ B)
   \rightarrow \mathsf{Tm}\ b\ (A\otimes B)
pair \{set\} A B x y t = x t, y t
proj_1 (pair {tot} A B(x, p)(y, q)) i t = (x i t), (y i t)
proj_2 (pair {tot} A B(x, p)(y, q)) i j t =
   begin
       (PSh.Mor\ A\ i\ j\ (x\ i\ t)\ ,\ PSh.Mor\ B\ i\ j\ (y\ i\ t))
   \equiv \langle \text{ cong } (\lambda z \rightarrow (z, )) (p i j t) \rangle
       (x j (PSh.Mor i j t), PSh.Mor B i j (y i t))
   \equiv \langle \mathsf{cong} (\lambda z \rightarrow (, z)) (q i j t) \rangle
```

```
(x j (PSh.Mor i j t), y j (PSh.Mor i j t))
\mathsf{pr}_1: \{b: \mathsf{tag}\} \; (\; : \; \mathsf{Ctx} \; b) \; (A \; B: \mathsf{Ty} \; b) 	o \mathsf{Tm} \; b \; \; (A \otimes B) 	o \mathsf{Tm} \; b \; \; A
pr_1 \{ set \} A B x t = proj_1 (x t)
\operatorname{proj}_{1}\left(\operatorname{pr}_{1}\left\{\operatorname{tot}\right\}\right. A B\left(x, p\right)\right) i t = \operatorname{proj}_{1}\left(x i t\right)
\operatorname{\mathsf{proj}}_2(\operatorname{\mathsf{pr}}_1 \{ \operatorname{\mathsf{tot}} \} \ A \ B (x, p)) \ i \ j \ t = \operatorname{\mathsf{cong}} \ \operatorname{\mathsf{proj}}_1(p \ i \ j \ t)
\mathsf{pr}_2: \{b: \mathsf{tag}\} \; (: \mathsf{Ctx}\; b) \; (A\; B: \mathsf{Ty}\; b) 	o \mathsf{Tm}\; b \;\; (A \otimes B) 	o \mathsf{Tm}\; b \;\; B
\operatorname{\mathsf{pr}}_2 \left\{ \operatorname{\mathsf{set}} \right\} \ A \ B \ x \ t = \operatorname{\mathsf{proj}}_2 \left( x \ t \right)
\operatorname{\mathsf{proj}}_1(\operatorname{\mathsf{pr}}_2 \{ \operatorname{\mathsf{tot}} \} \ A \ B (x, p)) \ i \ t = \operatorname{\mathsf{proj}}_2(x \ i \ t)
\operatorname{\mathsf{proj}}_2(\operatorname{\mathsf{pr}}_2\{\operatorname{\mathsf{tot}}\}\ A\ B\ (x\ ,\ p))\ i\ j\ t = \operatorname{\mathsf{cong}}\ \operatorname{\mathsf{proj}}_2(p\ i\ j\ t)
pr_1-pair : \{b : tag\} ( : Ctx b) (A B : Ty b) (x : Tm b A) (y : Tm b B)
   \rightarrow def-eq A
                    (pr_1 \ A \ B \ (pair \ A \ B \ x \ y))
pr_1-pair {set} A B x y t = refl
pr_1-pair {tot} A B x y i t = refl
pr_2-pair : \{b : tag\} ( : Ctx b) (A B : Ty b) (x : Tm b A) (y : Tm b B)

ightarrow \mathsf{def}	ext{-eq}\ B
                    (pr_2 \ A \ B \ (pair \ A \ B \ x \ y))
                    y
pr_2-pair {set} A B x y t = refl
pr_2-pair \{tot\} A B x y i t = refl
prod-eta : \{b : \mathsf{tag}\}\ (: \mathsf{Ctx}\ b)\ (A\ B : \mathsf{Ty}\ b)\ (x : \mathsf{Tm}\ b\ (A\otimes B))
   \rightarrow def-eq (A \otimes B)
                    (pair A B (pr_1 A B x) (pr_2 A B x))
prod-eta {set} A B x t = refl
prod-eta \{tot\} A B x i t = refl
\Rightarrow : \{b: \mathsf{tag}\}\ (A\ B: \mathsf{Ty}\ b) 	o \mathsf{Ty}\ b
\Rightarrow {set} A B = A \rightarrow B
\Rightarrow {tot} A B = \text{Exp } A B
lambda : \{b : \mathsf{tag}\}\ (: \mathsf{Ctx}\ b)\ (A\ B : \mathsf{Ty}\ b)\ (t : \mathsf{Tm}\ b\ (,,A)\ B) \to \mathsf{Tm}\ b\ (A \Rightarrow B)
lambda {set} A B t x y = t (x, y)
proj_1 (proj_1 (lambda {tot}) A B (t, p) i x) <math>j z = t j (Mor i j x, z)
   where open PSh renaming (Mor to Mor; MorComp to MorComp)
proj_2 (proj_1 (lambda {tot}) A B (t, p) i x) j k y =
   begin
       PSh.Mor B j k (t j (Mor i j x, y))
   \equiv \langle p j k (\mathsf{Mor} \ i \ j \ x , \ y) \rangle
       t k (PSh.Mor (,, A) j k (Mor i j x, y))
```

```
\equiv \langle \text{ cong } (\lambda z \rightarrow t \ k \ (z \ , \ )) \ (\text{sym MorComp}) \ \rangle
      t k (Mor i k x, PSh.Mor A j k y)
   where open PSh renaming (Mor to Mor; MorComp to MorComp)
proj_2 (lambda {tot} A B (t, p)) i j x =
   \Sigma \equiv -\text{uip} (\text{funext} (\lambda \rightarrow \text{funext} (\lambda \rightarrow \text{funext} (\lambda \rightarrow \text{uip}))))
                (funext (\lambda k \rightarrow (funext (\lambda z \rightarrow cong (\lambda z \rightarrow t k (z, )) MorComp))))
   where open PSh renaming (Mor to Mor; MorComp to MorComp)
\mathsf{app}:\, \{b: \mathsf{tag}\} \; \{\, : \; \mathsf{Ctx} \; b\} \; \{A \; B: \mathsf{Ty} \; b\} \; (f\colon \mathsf{Tm} \; b \; \; (A \Rightarrow B)) \; (t\colon \mathsf{Tm} \; b \; \; A) \to \mathsf{Tm} \; b \; \; B
\mathsf{app} \left\{ \mathsf{set} \right\} f t \ x = f x \left( t \ x \right)
proj_1 (app \{tot\} \{\} (f, p) (t, q)) i x = let (f', ) = f i x in f' (t i x)
proj_2 (app \{tot\} \{\} \{A\} \{B\} (f, p) (t, q)) i j x =
   let (f', p') = f i x in
   begin
      PSh.Mor B i j (proj_1 (f i x) (t i x))
   \equiv \langle p'ij(tix) \rangle
      proj_1 (fix) j (PSh.Mor Aij(tix))
   \equiv \langle \mathsf{cong}_2 (\lambda \ z \ g \to \mathsf{proj}_1 \ g \ z) (q \ i \ j \ x) (p \ i \ j \ x) \rangle
      proj_1 (f j (PSh.Mor i j x)) (t j (PSh.Mor i j x))
beta : \{b : \mathsf{tag}\}\ \{: \mathsf{Ctx}\ b\}\ \{A\ B : \mathsf{Ty}\ b\}\ (t : \mathsf{Tm}\ b\ (,,A)\ B)\ (x : \mathsf{Tm}\ b\ A)
        \rightarrow def-eq B (app \{b\} \{A\} \{B\} (lambda A B t) x) (subst-Tm \{\} \{A\} \{B\} t x)
beta \{ set \} t x = refl
beta \{\text{tot}\}\ \{\}\ (t, p)\ (x, q)\ z = \text{cong}\ (\lambda\ z \to t\ (z, ))\ \mathsf{Morld}
   where open PSh renaming (MorId to MorId)
eta : \{b : \mathsf{tag}\}\ \{: \mathsf{Ctx}\ b\}\ \{A\ B : \mathsf{Ty}\ b\}\ (t : \mathsf{Tm}\ b\ (A \Rightarrow B))
   \rightarrow def-eq (A \Rightarrow B)
                  (lambda A B (app \{\} \{ ,, A\} \{A\} \{B\} (weaken A (A \Rightarrow B) t) (var A)))
eta \{ set \} \ t \ x = refl
eta \{tot\} (t, p) x =
   \Sigma \equiv -\text{uip} \text{ (funext } (\lambda \rightarrow \text{funext } (\lambda \rightarrow \text{funext } (\lambda \rightarrow \text{uip}))))
                (funext (\lambda ' \rightarrow funext (\lambda z \rightarrow sym (cong (\lambda h \rightarrow proj<sub>1</sub> h z) (p 'x)))))
\mathsf{id}\mathsf{-tm}: \{b: \mathsf{tag}\}\ (: \mathsf{Ctx}\ b)\ (A: \mathsf{Ty}\ b) 	o \mathsf{Tm}\ b\ (A \Rightarrow A)
id-tm A = lambda A A (var A)
comp-tm : \{b : \mathsf{tag}\}\ (: \mathsf{Ctx}\ b)\ (A\ B\ C : \mathsf{Ty}\ b)
   \rightarrow Tm b ((B \Rightarrow C) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)))
comp-tm A B C = lambda (B \Rightarrow C) ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))
                                            (lambda ( ,, (B \Rightarrow C)) (A \Rightarrow B) (A \Rightarrow C)
                                                          (lambda (( " (B \Rightarrow C)) " (A \Rightarrow B)) A C (app
                                                                            (weaken (( ,, (B \Rightarrow C)) ,, (A \Rightarrow B)) A (B \Rightarrow C) (weaken ( ,, (B \Rightarrow C))
```

(app (weaken ((,, $(B \Rightarrow C)$) ,, $(A \Rightarrow B)$) $A (A \Rightarrow B)$ (var (,, $(B \Rightarrow C)$)

```
(\text{var}(((,,(B\Rightarrow C)),(A\Rightarrow B)))))))
\square: Ty tot \rightarrow Ty set
\square A =
        \Sigma ((i: Size) \rightarrow PSh.Obj A i)
            (\lambda \ x \rightarrow (i : \mathsf{Size}) \ (j : \mathsf{Size} < (\uparrow i))
               \rightarrow PSh.Mor A \ i \ j \ (x \ i) \equiv x \ j)
data SizeLt (i : Size) : Set where
   []: (j: \mathsf{Size} < i) \to \mathsf{SizeLt}\ i
\mathsf{size}:\,\forall\;\{i\}\to\mathsf{SizeLt}\;i\to\mathsf{Size}
size [j] = j
\mathsf{elimLt} : \forall \{\ell\} \ \{A : \mathsf{Size} \to \mathsf{Set} \ \ell\} \ \{i : \mathsf{Size}\} \ (j : \mathsf{SizeLt} \ i)
   \rightarrow ((j: \mathsf{Size} < i) \rightarrow A \ j) \rightarrow A \ (\mathsf{size} \ j)
\mathsf{elimLt} [j] f = fj
Later : (Size \rightarrow Set) \rightarrow Size \rightarrow Set
Later A \ i = (j : \mathsf{SizeLt} \ i) \to A \ (\mathsf{size} \ j)
module (A:\mathsf{Size}\to\mathsf{Set})\ (m:(i:\mathsf{Size})\ (j:\mathsf{Size}<(\uparrow i))\to A\ i\to A\ j) where
   \mathsf{LaterLim} : (i : \mathsf{Size}) \ (x : \mathsf{Later} \ A \ i) \to \mathsf{Set}
   LaterLim i x = (j : SizeLt i)
       \rightarrow elimLt j (\lambda { j' \rightarrow (k : SizeLt (\uparrow j'))
            \rightarrow elimLt k (\lambda k' \rightarrow m j' k' (x [j']) \equiv x [k']) \})
   LaterLimMor : (i : Size) (j : Size < (\uparrow i)) (x : Later A i)

ightarrow LaterLim i \ x 
ightarrow LaterLim j \ x
   LaterLimMor i j x p [k][l] = p [k][l]
module (A : \mathsf{Ty} \mathsf{tot}) where
   -- 3. Object part
   \triangleright \mathsf{Obj} : (i : \mathsf{Size}) \rightarrow \mathsf{Set}
   \trianglerightObj i = \Sigma (Later (PSh.Obj A) i) (LaterLim (PSh.Obj A) (PSh.Mor A) i)
   -- 4. Morphism part
   \triangleright Mor : (i : Size) (j : Size < (\uparrow i))
        \rightarrow \rhd \mathsf{Obj}\ i \rightarrow \rhd \mathsf{Obj}\ j
   \triangleright Mor i j (x, p) = x, LaterLimMor (PSh.Obj A) (PSh.Mor A) i j x p
            p': LaterLim (PSh.Obj A) (PSh.Mor A) j x
            p'[j][k] = p[j][k]
```

```
-- 5. Preservation of identity
    \triangleright Morld : \{i : \mathsf{Size}\}\ \{x : \triangleright \mathsf{Obj}\ i\}
                              \rightarrow \triangleright \mathsf{Mor} \ i \ i \ x \equiv x
    \triangleright Morld = \Sigma \equiv-uip (funext (\lambda \in [j] \rightarrow \text{funext} (\lambda \in [k] \rightarrow \text{uip}))) refl
    -- 6. Preservation of composition
    \triangleright MorComp : \{i : \text{Size}\}\ \{j : \text{Size} < (\uparrow i)\}\ \{k : \text{Size} < (\uparrow j)\}\ \{x : \triangleright \text{Obj } i\}
                                      \rightarrow \triangleright \mathsf{Mor}\ i\ k\ x \equiv \triangleright \mathsf{Mor}\ j\ k\ (\triangleright \mathsf{Mor}\ i\ j\ x)
    \triangleright \mathsf{MorComp} = \Sigma \equiv \mathsf{-uip} \; (\mathsf{funext} \; (\lambda \; \{ \; [ \; j \; ] \to \mathsf{funext} \; (\lambda \; \{ \; [ \; k \; ] \to \mathsf{uip} \; \}) \; \})) \; \mathsf{refl}

⇒ : Ty tot

    \triangleright = record
         \{ Obj = \triangleright Obj \}
         ; Mor = \triangleright Mor
         ; Morld = \triangleright Morld
         ; MorComp = \triangleright MorComp
          }
pure : ( : Ctx tot) (A : Ty tot) (t : Tm tot A) \rightarrow Tm tot (\triangleright A)
\operatorname{proj}_{1}(\operatorname{proj}_{1}(\operatorname{pure} A(t, )) i x) [j] = t j (\operatorname{PSh.Mor} i j x)
\operatorname{\mathsf{proj}}_2(\operatorname{\mathsf{proj}}_1(\operatorname{\mathsf{pure}}\ A\ (t\,,\,p))\ i\ x)\ [\,j\,]\ [\,k\,] =
    begin
        PSh.Mor A j k (t j (PSh.Mor i j x))
    \equiv \langle p j k (PSh.Mor \ i j x) \rangle
        t k (PSh.Mor j k (PSh.Mor i j x))
    \equiv \langle \text{ cong } (t \ k) \text{ (sym (PSh.MorComp )) } \rangle
        t k (PSh.Mor i k x)
proj_2 (pure A(t, p)) ijx =
    \Sigma \equiv -\mathsf{uip} \; (\mathsf{funext} \; (\lambda \; \{ \; [ \; ] \to \mathsf{funext} \; (\lambda \; \{ \; [ \; ] \to \mathsf{uip} \; \}) \; \}))
                     (funext (\lambda \in [k] \rightarrow cong(t k) (PSh.MorComp))))
fmap: (: Ctx tot) (A B : Ty tot)
                   \rightarrow (f: \mathsf{Tm} \; \mathsf{tot} \; (\triangleright (A \Rightarrow B))) \; (t: \mathsf{Tm} \; \mathsf{tot} \; (\triangleright A))
                  \rightarrow Tm tot (\triangleright B)
\mathsf{proj}_1 \left(\mathsf{proj}_1 \left(\mathsf{fmap} \ A \ B \left(f_{\,{}^{\,\prime}}\right) \left(t_{\,{}^{\,\prime}}\right)\right) i \ x\right) \left[\ j\ \right] = \mathsf{proj}_1 \left(\mathsf{proj}_1 \left(f \ i \ x\right) \left[\ j\ \right]\right) j \left(\mathsf{proj}_1 \left(t \ i \ x\right) \left[\ j\ \right]\right)
\operatorname{\mathsf{proj}}_2(\operatorname{\mathsf{proj}}_1(\operatorname{\mathsf{fmap}}\ A\ B\ (f,\, p)\ (t\,,\, q))\ i\ x)\ [\,j\,]\ [\,k\,] =
    begin
        PSh.Mor B j k (proj_1 (proj_1 (f i x) [j]) j (proj_1 (t i x) [j]))
    \equiv \langle \operatorname{proj}_2 (\operatorname{proj}_1 (f i x) [j]) j k (\operatorname{proj}_1 (t i x) [j]) \rangle
        \operatorname{\mathsf{proj}}_1 (\operatorname{\mathsf{proj}}_1 (f i x) [j]) k (\operatorname{\mathsf{PSh.Mor}} A j k (\operatorname{\mathsf{proj}}_1 (t i x) [j]))
    \equiv \langle \mathsf{cong} (\mathsf{proj}_1 (\mathsf{f} i x) [j]) k) (\mathsf{proj}_2 (t i x) [j] [k]) \rangle
        \operatorname{\mathsf{proj}}_1 \left( \operatorname{\mathsf{proj}}_1 \left( f \ i \ x \right) \ [ \ j \ ] \right) \ k \left( \operatorname{\mathsf{proj}}_1 \left( t \ i \ x \right) \ [ \ k \ ] \right)
    \equiv \langle \mathsf{cong} (\lambda z \to \mathsf{proj}_1 z k (\mathsf{proj}_1 (t i x) [k])) (\mathsf{sym} (\mathsf{proj}_2 (f i x) [j] [j])) \rangle
```

```
\operatorname{\mathsf{proj}}_1 (\operatorname{\mathsf{PSh.Mor}} (A \Rightarrow B) \ j \ j \ (\operatorname{\mathsf{proj}}_1 \ (f \ i \ x) \ [\ j \ ])) \ k \ (\operatorname{\mathsf{proj}}_1 \ (t \ i \ x) \ [\ k \ ])
   \equiv \langle \mathsf{cong} (\lambda z \to \mathsf{proj}_1 z k (\mathsf{proj}_1 (t i x) [k])) (\mathsf{proj}_2 (f i x) [j] [k]) \rangle
      \operatorname{\mathsf{proj}}_1 (\operatorname{\mathsf{proj}}_1 (f i x) [ k ]) k (\operatorname{\mathsf{proj}}_1 (t i x) [ k ])
proj_2 (fmap A B (f, p) (e, q)) <math>i j x =
   \Sigma \equiv -\text{uip (funext } (\lambda \in [ ] \rightarrow \text{funext } (\lambda \in [ ] \rightarrow \text{uip } )))))
                 (\mathsf{funext}\ (\lambda\ \{\ [\ k\ ]\to\mathsf{cong}_2\ (\lambda\ a\ b\to\mathsf{proj}_1\ (\mathsf{proj}_1\ a\ [\ k\ ])\ k\ (\mathsf{proj}_1\ b\ [\ k\ ]))\ (p\ i\ j\ x)\ (q\ i\ j\ x)\ \}))
pure-fmap-pure : ( : Ctx tot) (A B : Ty tot)
   \rightarrow (f: Tm tot (A \Rightarrow B)) (t: Tm tot A)
   \rightarrow def-eq (\triangleright B) (fmap A B (pure (A \Rightarrow B) f) (pure A t)) (pure B (app \{tot\}\{\}\{A\}\{B\}\ f t))
pure-fmap-pure A B (f, p) (t, q) i x =
   \Sigma \equiv -\mathsf{uip} \ (\mathsf{funext} \ (\lambda \ \{ \ [ \ ] \to \mathsf{funext} \ (\lambda \ \{ \ [ \ ] \to \mathsf{uip} \ \})\}))
                 (funext (\lambda \{ [j] \rightarrow refl \}))
pure-id-fmap : ( : Ctx tot) (A B : Ty tot) (t : Tm tot (\triangleright A))
                 \rightarrow def-eq (\triangleright A) (fmap A A (pure (A \Rightarrow A) (id-tm A)) t) t
pure-id-fmap A B (t, p) i y =
   (funext (\lambda \{ [j] \rightarrow refl \}))
pure-comp-fmap : ( : Ctx tot) (A B C : Ty tot)
                 \rightarrow (g: \mathsf{Tm} \ \mathsf{tot} \ (\triangleright (B \Rightarrow C))) (f: \mathsf{Tm} \ \mathsf{tot} \ (\triangleright (A \Rightarrow B))) (t: \mathsf{Tm} \ \mathsf{tot} \ (\triangleright A))
                 \rightarrow def-eq
                                 (fmap A \ C \ (fmap \ (A \Rightarrow B) \ (A \Rightarrow C) \ (fmap \ (B \Rightarrow C) \ ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)) \ (pure \ ((B \Rightarrow C) \ (A \Rightarrow C) \ (A \Rightarrow C)))
                                 (fmap \ B \ C \ g \ (fmap \ A \ B \ f \ t))
pure-comp-fmap A B C g f t i \gamma =
   \Sigma \equiv -\text{uip (funext } (\lambda \in [ ] \rightarrow \text{funext } (\lambda \in [ ] \rightarrow \text{uip } )))))
                 (funext (\lambda \in [j] \rightarrow refl))
fmap-pure-fun : (: Ctx tot) (A B : Ty tot)
   \rightarrow (f: Tm tot (\triangleright (A \Rightarrow B))) (t: Tm tot A)
   \rightarrow def-eq
                    (\triangleright B)
                    (fmap \ A \ B \ f \ (pure \ A \ t))
                    (fmap (A \Rightarrow B) B (pure ((A \Rightarrow B) \Rightarrow B) (lambda (A \Rightarrow B) B (app \{\} \{ , (A \Rightarrow B)\} \{A\} \{B\} (var
fmap-pure-fun A B (f, p) (t, q) i y =
   \Sigma \equiv -\text{uip (funext } (\lambda \in [] \rightarrow \text{funext } (\lambda \in [] \rightarrow \text{uip }))))
                 (\text{funext } (\lambda \in [j] \to \text{cong } (\lambda a \to \text{proj}_1 (\text{proj}_1 (f i \chi) \in [j]) j (t j a)) (\text{sym } (\text{PSh.Morld })))))
WCObj : Size \rightarrow Set
WCObj = A
WCMor : (i : Size) (j : Size < (\uparrow i))

ightarrow \mathsf{WCObj}\ i 
ightarrow \mathsf{WCObj}\ j
WCMor x = x
```

```
WCMorld : \{i : Size\} \{x : WCObj i\}
    \rightarrow WCMor i i x \equiv x
WCMorld = refl
WCMorComp : \{i : \text{Size}\}\ \{j : \text{Size} < (\uparrow i)\}\ \{k : \text{Size} < (\uparrow j)\}\
    \{x : \mathsf{WCObj}\ i\}
    \rightarrow WCMor i k x \equiv WCMor j k (WCMor i j x)
WCMorComp = refl
WC: Ty tot
WC = record
    { Obj = WCObj
    ; Mor = WCMor
    ; Morld = WCMorld
    ; MorComp = WCMorComp
\mathsf{WC}	ext{-fun}: (:\mathsf{Ctx}\;\mathsf{set})\;(A:\mathsf{Ty}\;\mathsf{set}) 	o \mathsf{Tm}\;\mathsf{set}\;\;A 	o \mathsf{Tm}\;\mathsf{tot}\;(\mathsf{WC}\;)\;(\mathsf{WC}\;A)
proj_1 (WC-fun A t) = t
proj_2 (WC-fun A t) = refl
\mathsf{WC}	ext{-unfun}: (:\mathsf{Ctx}\;\mathsf{set})\;(A:\mathsf{Ty}\;\mathsf{set}) 	o \mathsf{Tm}\;\mathsf{tot}\;(\mathsf{WC}\;)\;(\mathsf{WC}\;A) 	o \mathsf{Tm}\;\mathsf{set}\;\;A
WC-unfun A(t, p) = t \infty
\mathsf{dfix}_1 : (A : \mathsf{Ty} \mathsf{tot}) \ (i : \mathsf{Size}) \to \mathsf{ExpObj} \ (\triangleright A) \ A \ i \to \triangleright \mathsf{Obj} \ A \ i
\operatorname{\mathsf{proj}}_{1}\left(\operatorname{\mathsf{dfix}}_{1} A \ i \ (f, \ p)\right) \left[ \ j \ \right] = f \ j \ (\operatorname{\mathsf{dfix}}_{1} A \ j \ (f, \ p))
\operatorname{proj}_{2}\left(\operatorname{dfix}_{1} A \ i \left(f, p\right)\right) \left[j\right] \left[k\right] =
    begin
        PSh.Mor A j k (f j (dfix_1 A j (f, p)))
    \equiv \langle p j k (\mathsf{dfix}_1 \ A \ j \ (f, p)) \rangle
       f k ( \triangleright \mathsf{Mor} \ A \ j \ k (\mathsf{dfix}_1 \ A \ j \ (f, \ p)))
    \equiv \langle \mathsf{\ cong\ } (f\ k)\ (\Sigma \equiv \mathsf{-uip\ } (\mathsf{funext\ } (\lambda\ \{\ [\ j\ ] \to \mathsf{\ funext\ } (\lambda\ \{\ [\ k\ ] \to \mathsf{\ uip\ }\})\ \}))\ (\mathsf{funext\ } (\lambda\ \{\ [\ ]\ \to \mathsf{\ refl}\})))\ \rangle
       f k \left( \mathsf{dfix}_1 \ A \ k \left( f, \ p \right) \right)
\mathsf{dfix} : (: \mathsf{Ctx} \; \mathsf{tot}) \; (A : \mathsf{Ty} \; \mathsf{tot}) \; (f : \; \mathsf{Tm} \; \mathsf{tot} \; \; (\triangleright A \Rightarrow A)) \to \mathsf{Tm} \; \mathsf{tot} \; \; (\triangleright A)
proj_1 (dfix A(f,)) iy = dfix_1 A i(fiy)
proj_2 (dfix A(f, p)) i j y =
    \Sigma \equiv -\text{uip } (\text{funext } (\lambda \in [j] \rightarrow \text{funext } (\lambda \in [k] \rightarrow \text{uip }))))
                   (\mathsf{funext}\ (\lambda\ \{\ [\ k\ ]\to\mathsf{cong}\ (\lambda\ a\to\mathsf{proj}_1\ a\ k\ (\mathsf{dfix}_1\ A\ k\ (\mathsf{proj}_1\ a\ ,\ \mathsf{proj}_2\ a)))\ (p\ i\ j\ y)\ \}))
fix : ( : Ctx tot) (A : \mathsf{Ty} \mathsf{ tot}) (f : \mathsf{Tm} \mathsf{ tot} (\triangleright A \Rightarrow A)) \to \mathsf{Tm} \mathsf{ tot} A
fix A f = app \{tot\} \{\} \{ \triangleright A \} \{A \} f (dfix A f)
dfix-eq : ( : Ctx tot) (A : Ty tot) (f : Tm tot (\triangleright A \Rightarrow A))
    \rightarrow def-eq {tot} (\triangleright A) (dfix A f) (pure A (fix A f))
\mathsf{dfix\text{-}eq}\ A\ (f\ ,\ p)\ i\ \gamma =
```

```
\begin{split} \Sigma &= \text{-uip } \left( \text{funext } \left( \lambda \; \left\{ \; \left[ \; j \; \right] \to \text{funext } \left( \lambda \; \left\{ \; \left[ \; k \; \right] \to \text{uip } \; \right\} \right) \; \right) \right) \\ & \left( \text{funext } \left( \lambda \; \left\{ \; \left[ \; j \; \right] \to \text{cong } \left( \lambda \; a \to \text{proj}_1 \; a \; j \; \left( \text{dfix}_1 \; A \; j \; \left( \text{proj}_1 \; a \; , \; \text{proj}_2 \; a \right) \right) \right) \; (p \; i \; j \; y) \; \right) \right) \\ & \text{fix-eq } : \left( \; : \; \text{Ctx tot} \right) \; (A \; : \; \text{Ty tot}) \; (f \colon \text{Tm tot } \; \left( \rhd \; A \to A \right) \right) \\ & \to \text{ def-eq } \left\{ \text{tot} \right\} \; A \; \left( \text{fix} \; A \; f \right) \; \left( \text{app } \left\{ \text{tot} \right\} \; \left\{ \right\} \; \left\{ A \right\} \; f \; \left( \text{pure } \; A \; \left( \text{fix } \; A \; f \right) \right) \right) \\ & \text{fix-eq } \; A \; f \; i \; x = \; \text{cong } \left( \text{proj}_1 \; \left( \text{proj}_1 \; f \; i \; x \right) \; i \right) \; \left( \text{dfix-eq } \; A \; f \; i \; x \right) \\ & \text{force-tm } : \left( \; : \; \text{Ctx set} \right) \; \left( A \colon \text{Ty tot} \right) \; \left( t \colon \text{Tm set } \; \left( \Box \; \left( \rhd \; A \right) \right) \right) \to \text{Tm set } \; \left( \Box \; A \right) \\ & \text{proj}_1 \; \left( \text{force-tm } \; A \; t \; x \right) \; j = \; \text{proj}_1 \; \left( \text{proj}_1 \; \left( t \; x \right) \; \infty \right) \; \left[ \; i \; \right] \right) \\ & \equiv \left\langle \; \text{proj}_2 \; \left( \text{proj}_1 \; \left( t \; x \right) \; \infty \right) \; \left[ \; i \; \right] \; \right] \\ & \Rightarrow \left\langle \; \text{proj}_2 \; \left( \text{proj}_1 \; \left( t \; x \right) \; \infty \right) \; \left[ \; j \; \right] \right\rangle \\ & \Rightarrow \left\langle \; \text{proj}_1 \; \left( \text{proj}_1 \; \left( t \; x \right) \; \infty \right) \; \left[ \; j \; \right] \right\rangle \\ & \Rightarrow \left\langle \; \text{proj}_1 \; \left( \text{proj}_1 \; \left( t \; x \right) \; \infty \right) \; \left[ \; j \; \right] \right\rangle \\ & \Rightarrow \left\langle \; \text{proj}_1 \; \left( \text{proj}_1 \; \left( t \; x \right) \; \infty \right) \; \left[ \; j \; \right] \right\rangle \\ & \Rightarrow \left\langle \; \text{proj}_1 \; \left( t \; x \right) \; \infty \right) \; \left[ \; j \; \right] \right\rangle \\ & \Rightarrow \left\langle \; \text{proj}_1 \; \left( t \; x \right) \; \infty \right) \; \left[ \; j \; \right] \right\rangle \\ & \Rightarrow \left\langle \; \text{proj}_1 \; \left( t \; x \right) \; \infty \right) \; \left[ \; j \; \right] \right\rangle \\ & \Rightarrow \left\langle \; \text{proj}_1 \; \left( t \; x \right) \; \infty \right) \; \left[ \; j \; \right] \right\rangle \\ & \Rightarrow \left\langle \; \text{proj}_1 \; \left( t \; x \right) \; \infty \right) \; \left[ \; j \; \right] \right\rangle \\ & \Rightarrow \left\langle \; \text{proj}_1 \; \left( t \; x \right) \; \infty \right) \; \left[ \; j \; \right] \\ & \Rightarrow \left\langle \; \text{proj}_1 \; \left( t \; x \right) \; \infty \right) \; \left[ \; j \; \right] \right\rangle
```

- 2.1. Sized Types.
- 2.2. Guarded Recursive Type Theory.
 - 3. The Model
- 3.1. Clock Contexts.
- 3.2. Presheaves.
- 4. The Interpretation
- 4.1. Types, Contexts, Terms.
- 4.2. Operations on Contexts.
- 4.3. Substitution.
- 4.4. Simple Types.
- 4.5. **Later.**
- 4.6. Clock Quantification.
- 4.7. **Fix.**
- 4.8. Inductive Types.

5. Conclusion

APPENDIX A. OMITTED PROOFS

References

[1] Robert Atkey and Conor McBride. Productive coprogramming with guarded recursion. In *ACM SIGPLAN Notices*, volume 48, pages 197–208. ACM, 2013.