20250515 Dust and Lee et al. 2025

Dust

As mentioned yesterday, the dust parameters actually converge to $A_V=0.897$ and $\delta=-1.089$. Now I explore how dust attenuation curves vary with δ :

Here, all gray curves are dust attenuation curves with δ from -1.2 to 0.2 (steeper \rightarrow smaller δ), the black curve is $\delta=-1.089$, the blue curve is $\delta=0$, and cyan one is from Calzetti et al. 2000 ($\delta=0$ but no bump at $2175 \mbox{\normalfont\AA}$). Clearly, since we are only interested in optical band so there is no significant difference for choosing difference . Hence, for simplicity, from now on I will fix $\delta=0$ (main-sequence galaxy).

Compare stellar mass with Lee et al. 2025

In Figure 13 of Lee et al. 2025, they compare stellar masses obtained from PPXF with best-fit models with linear combinations of specific luminosity (at $1.63\mu m$, one of the channels in simulated SPHEREx data) and SDSS g-r color for different SPS templates:

However, in legacy data, I only have h-band $(1.66\mu m)$ from 2MASS, so I take it as the λ here. By running my previous pipeline, I get $\log L_h/L_\odot=9.43$ (h-band magnitude is 11.427, which is the same as the data in NED). Now with g-r=12.658-11.958=0.7, I can estimate the stellar mass by model 2 and compare with those obtained by PPXF:

	MODEL 2	PPXF
E-MILES	9.269 ± 0.132	9.355
BC03 (GALAXEV)	9.015 ± 0.126	9.314
FSPS	9.267 ± 0.121	9.385

As mentioned in Lee et al. 2025 that "BC03 and CB19 yield mass-to-light ratios on average ~ 0.2 –0.3 dex lower than those from E-MILES and FSPS", we do observe that BC03 is ~ 0.25 dex lower than E-MILES and FSPS with my legacy data using model 2. On the other hand, we can see that results using E-MILES and FSPS obtained from ppxF are still within uncertainty ranges of those from model 2. Again, BC03 systematically underestimates M_*/L than E-MILES and FSPS, especially using M_*/L vs color relation.