Hands-on Workshop: Exploring TMS Data

Welcome

This short tutorial will guide you through exploring Transcranial Magnetic Stimulation (TMS) study data using R. You don't need any prior coding or statistics experience, we'll go step by step.

Setup

Before we start, we need a few tools (called packages). These are small add-ons that make R more powerful.

Step 1 — Install the required packages

Run this code once on your computer to install what we'll use today.

```
# Install the required packages if not already installed
install.packages("dplyr")
install.packages("ggplot2")
install.packages("tableone")
install.packages("lme4")
```

Step 2 — Load the packages

You'll need to load these every time you open a new R session.

```
# Load the required packages
library(dplyr)
library(ggplot2)
library(tableone)
library(lme4)
```

Load and peek at the data

Let's start by reading our dataset into R.

What does this mean?

- read.csv() tells R to open a spreadsheet file that's in CSV format.
- The result is stored in something called a data frame, a bit like an Excel sheet.

```
# Path to your CSV file
path <- "data.csv"

# Read the CSV
data <- read.csv(path)</pre>
```

Take a quick look at the first few rows using head(), so you can confirm the data looks right.

```
# Peek at the first few rows
head(data)
```

```
##
     subject_id age gender medication coil_intensity treatment site session_count
## 1
               1
                 33 female
                                      0
                                               74.30402
                                                            active
                                                                      В
## 2
               1
                  33 female
                                      0
                                               74.30402
                                                            active
                                                                      В
                                                                                    28
## 3
                                      0
                                               74.30402
               1
                  33 female
                                                            active
                                                                      В
                                                                                    28
## 4
               2
                  37 female
                                      0
                                               70.46629
                                                                      C
                                                                                    20
                                                            active
## 5
               2
                  37 female
                                      0
                                               70.46629
                                                            active
                                                                      C
                                                                                    20
## 6
               2
                 37 female
                                      0
                                               70.46629
                                                                      C
                                                                                    20
                                                            active
##
     MEP_amplitude EEG_theta
                                 EEG_alpha
                                             EEG_beta
                                                           time delta symptom_score
## 1
          2.167524 -0.5158105
                                 0.8567855
                                             0.628965
                                                                    0
                                                                            8.009644
                                                           pre
## 2
          2.167524 -0.5158105
                                 0.8567855
                                             0.628965
                                                                   -6
                                                                            4.492344
                                                           post
## 3
          2.167524 -0.5158105
                                0.8567855
                                            0.628965 followup
                                                                   -5
                                                                            8.681195
## 4
          1.681755 0.4457241 -1.1037521 -1.262195
                                                                    0
                                                                            7.937556
                                                           pre
## 5
          1.681755 0.4457241 -1.1037521 -1.262195
                                                                   -6
                                                           post
                                                                           -0.888527
## 6
          1.681755 0.4457241 -1.1037521 -1.262195 followup
                                                                   -5
                                                                           -2.433257
##
     symptom_baseline delta_from_baseline
## 1
             8.009644
                                  0.0000000
## 2
             8.009644
                                  3.5173002
## 3
             8.009644
                                 -0.6715508
## 4
             7.937556
                                  0.000000
## 5
             7.937556
                                  8.8260830
## 6
             7.937556
                                 10.3708134
```

Then, see the structure (column names and data types) using str(). This is useful to check that, for example, numbers are numeric and not text. This command shows:

- Each column name
- The type of data (numbers, text, etc.)
- A few example values from each column

Think of this like "What kind of information do I have in each column?"

str(data)

```
'data.frame':
                    450 obs. of
                                17 variables:
##
   $ subject_id
                                1 1 1 2 2 2 3 3 3 4 ...
   $ age
                                33 33 33 37 37 37 59 59 59 41 ...
##
                         : int
##
   $ gender
                                "female" "female" "female" ...
                         : chr
                                0 0 0 0 0 0 0 0 0 0 ...
##
   $ medication
                         : int
##
   $ coil_intensity
                         : num
                                74.3 74.3 74.3 70.5 70.5 ...
##
   $ treatment
                                "active" "active" "active" ...
                         : chr
                                "B" "B" "B" "C" ...
##
   $ site
                           chr
                                28 28 28 20 20 20 19 19 19 22 ...
##
   $ session_count
                         : int
##
   $ MEP amplitude
                                2.17 2.17 2.17 1.68 1.68 ...
                         : num
                                -0.516 -0.516 -0.516 0.446 0.446 ...
   $ EEG_theta
##
                         : num
##
   $ EEG_alpha
                                0.857 0.857 0.857 -1.104 -1.104 ...
                         : num
##
   $ EEG_beta
                                0.629 0.629 0.629 -1.262 -1.262 ...
                         : num
##
   $ time
                         : chr
                                "pre" "post" "followup" "pre" ...
```

```
## $ delta : int 0 -6 -5 0 -6 -5 0 -2 -1 0 ...
## $ symptom_score : num 8.01 4.492 8.681 7.938 -0.889 ...
## $ symptom_baseline : num 8.01 8.01 8.01 7.94 7.94 ...
## $ delta_from_baseline: num 0 3.517 -0.672 0 8.826 ...
```

Finally, summary() provides summary statistics for each column. This gives quick numerical summaries:

- For numbers: minimum, mean, median, maximum
- For text or categories: how many of each type

At this point, you should have a good sense of what's inside your dataset.

```
# Quick summary of each column
summary(data)
```

```
##
                                                            medication
      subject_id
                          age
                                         gender
          : 1.0
##
                             :12.00
                                      Length: 450
                                                          Min.
                                                                  :0.0
    Min.
                     Min.
##
    1st Qu.: 38.0
                     1st Qu.:32.00
                                      Class : character
                                                          1st Qu.:0.0
##
    Median : 75.5
                     Median :39.00
                                                          Median:0.0
                                      Mode :character
                             :39.67
    Mean
          : 75.5
                     Mean
                                                          Mean
                                                                  :0.4
##
    3rd Qu.:113.0
                     3rd Qu.:47.00
                                                          3rd Qu.:1.0
                             :66.00
##
    Max.
           :150.0
                     Max.
                                                          Max.
                                                                  :1.0
##
##
    coil_intensity
                      treatment
                                             site
                                                              session_count
##
    Min.
           :31.90
                     Length: 450
                                         Length: 450
                                                              Min.
                                                                     :10.00
##
    1st Qu.:54.43
                     Class : character
                                         Class : character
                                                              1st Qu.:18.00
##
   Median :60.90
                     Mode :character
                                         Mode : character
                                                              Median :21.00
##
    Mean
           :60.64
                                                              Mean
                                                                     :20.36
##
    3rd Qu.:67.41
                                                              3rd Qu.:23.00
##
    Max.
           :84.30
                                                              Max.
                                                                     :31.00
##
##
    MEP_amplitude
                          EEG_theta
                                               EEG_alpha
                                                                     EEG_beta
                                                    :-2.313736
           :-0.04048
                                :-2.38319
                                                                         :-2.69533
##
    Min.
                        Min.
                                            Min.
                                                                  Min.
##
    1st Qu.: 0.84058
                        1st Qu.:-0.76843
                                            1st Qu.:-0.701804
                                                                  1st Qu.:-0.56611
##
    Median: 1.24759
                        Median :-0.11979
                                            Median : -0.005609
                                                                  Median: 0.24571
           : 1.24166
                                :-0.07554
                                                                         : 0.07721
##
    Mean
                        Mean
                                            Mean
                                                    : 0.019734
                                                                  Mean
##
    3rd Qu.: 1.60023
                        3rd Qu.: 0.55262
                                            3rd Qu.: 0.681830
                                                                  3rd Qu.: 0.72468
           : 2.61846
##
    Max.
                        Max.
                                : 3.28690
                                            Max.
                                                    : 3.390371
                                                                  Max.
                                                                         : 2.28412
##
##
                                                            symptom_baseline
        time
                            delta
                                          symptom_score
##
    Length: 450
                        Min.
                                :-6.000
                                          Min.
                                                  :-9.751
                                                            Min.
                                                                    :-3.36
##
    Class : character
                        1st Qu.:-5.000
                                          1st Qu.: 8.612
                                                            1st Qu.:12.00
    Mode :character
                        Median :-2.000
                                          Median :15.300
                                                            Median :18.98
##
                                :-2.404
                        Mean
                                          Mean
                                                  :15.289
                                                            Mean
                                                                    :18.67
                                                            3rd Qu.:25.14
##
                        3rd Qu.: 0.000
                                          3rd Qu.:22.225
##
                        Max.
                                : 0.000
                                          Max.
                                                  :41.800
                                                            Max.
                                                                    :41.80
##
                                          NA's
                                                  :39
##
    delta_from_baseline
##
    Min.
           :-8.4326
    1st Qu.: 0.0000
   Median: 0.3445
##
##
    Mean
           : 3.0684
##
    3rd Qu.: 6.0255
   Max.
           :21.1646
##
   NA's
           :39
```

Exploratory analysis

Now the fun part, visualizing what's happening in the data.

Before plotting, let's make sure the time variable appears in the correct order (pre > post > follow-up):

```
data <- data %>%
  mutate(time = factor(time, levels = c("pre", "post", "followup")))
```

Plot 1 - Symptom change over time by treatment

In TMS research, we often want to know: Do patients receiving active TMS improve more than those in the sham (placebo) group?

This plot shows average symptom scores at each stage of the study:

- Pre: before any treatment
- Post: immediately after treatment
- Follow-up: some time later

We'll add:

- **Dots** for mean symptom scores
- Lines connecting them over time
- Error bars showing uncertainty (standard error)

```
ggplot(data, aes(x = time, y = symptom_score, color = treatment, group = treatment)) +
    stat_summary(fun = mean, geom = "line", linewidth = 1) +
    stat_summary(fun = mean, geom = "point", size = 3) +
    stat_summary(fun.data = mean_se, geom = "errorbar", width = 0.1) +
    labs(
        title = "Symptom Change Over Time by Treatment",
        x = "Session Time",
        y = "Mean Symptom Score",
        color = "Treatment"
    ) +
    theme_minimal(base_size = 14)
```


How to read this

- The y-axis shows average symptom severity.
- The x-axis shows time: pre \rightarrow post \rightarrow follow-up.
- Two lines: one for each treatment type (active vs sham).
- If the active line goes down more steeply, patients improved more with active TMS.
- If both lines look similar, the sham effect may be similar (placebo or no effect).

Clinically speaking

This is your first visual check: is there an apparent treatment benefit? Don't jump to conclusions yet, but you'll see whether the trend looks promising.

Plot 2 - Change from baseline

Absolute scores are useful, but clinicians often care more about change from baseline: How much did the patient improve compared to where they started?

In the data, this is already computed in the column delta_from_baseline (baseline - follow-up). A high value means improvement (symptoms decreased).

We'll plot these changes for each group and time point.

```
labs(
   title = "Change from Baseline by Time and Treatment",
   x = "Session Time",
   y = "Symptom Score (from baseline)",
   fill = "Treatment"
) +
theme_minimal(base_size = 14)
```

Change from Baseline by Time and Treatment

How to read this

- Each bar shows the average change from baseline.
- High values indicate improvement.
- Compare active vs sham at post and follow-up.
- Look at the height difference: larger drops mean more improvement.

Clinically speaking

This plot gives a quick sense of treatment effect size, how much better the active group got relative to the sham group.

Your turn

Now that you've made two fundamental plots, try adding or changing things to dig deeper. Below are a few extra plots to explore, each demonstrating a different concept.

- Check whether brain response (MEP amplitude) is related to symptom improvement.
- Compare EEG signals between groups.

Table one

A common clinical research step is to create a Table One summarizing baseline characteristics of your groups. This helps ensure groups are comparable before treatment. Let's create one using the tableone package.

```
# Define variables for Table One
vars <- c(
    "age", "gender", "medication", "site", "coil_intensity",
    "MEP_amplitude", "EEG_theta", "EEG_alpha", "EEG_beta", "symptom_score"
    )
catVars <- c("gender", "site") # Categorical variables
strataVar <- "treatment" # Grouping variable

# Adjust variable type to properly represent it in the table
data$medication <- as.logical(data$medication)

# Create Table One with baseline data
data_baseline <- data %>% filter(time == "pre")
tableOne <- CreateTableOne(vars = vars, data = data_baseline, factorVars = catVars, strata = strataVar)
print(tableOne)</pre>
```

```
##
                                Stratified by treatment
##
                                 active
                                                                      test
##
                                    79
                                                   71
##
     age (mean (SD))
                                 40.13 (12.02) 39.15 (10.72)
                                                               0.604
##
     gender = male (%)
                                    42 (53.2)
                                                   43 (60.6)
                                                                0.454
##
     medication = TRUE (%)
                                    32 (40.5)
                                                   28 (39.4)
                                                                1.000
##
     site (%)
                                                                0.978
##
        Α
                                    28 (35.4)
                                                   24 (33.8)
        В
##
                                    24 (30.4)
                                                   22 (31.0)
##
                                    27 (34.2)
                                                   25 (35.2)
##
     coil_intensity (mean (SD)) 60.69 (9.60)
                                                60.59 (9.34)
                                                               0.953
     MEP amplitude (mean (SD))
                                                 1.21 (0.55)
                                                                0.468
##
                                  1.27 (0.59)
     EEG_theta (mean (SD))
                                 -0.19(1.04)
                                                 0.06 (0.97)
##
                                                                0.128
     EEG_alpha (mean (SD))
                                 -0.02(1.03)
##
                                                 0.06 (0.91)
                                                                0.612
##
     EEG_beta (mean (SD))
                                  0.10 (1.00)
                                                 0.05 (0.87)
                                                                0.757
     symptom_score (mean (SD)) 18.76 (9.64)
                                               18.57 (9.57)
                                                                0.902
```

Now, it is your turn! Modify the variables in vars and catVars to include other baseline characteristics relevant to your study. Run the code to see how the groups compare before treatment.

Regression model

Simple linear regression

First, we'll fit a simple linear regression model to see how treatment affects symptom scores at follow-up, controlling for baseline scores.

```
data_followup <- data %>% filter(time == "followup")
model <- lm(symptom_score ~ treatment + symptom_baseline, data = data_followup)
summary(model)</pre>
```

```
##
## Call:
## lm(formula = symptom score ~ treatment + symptom baseline, data = data followup)
##
## Residuals:
##
       Min
                  1Q
                     Median
                                    30
                                            Max
  -11.9312 -2.8261
                       0.1856
                                2.9218
                                         8.0640
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     -5.5539
                                 0.9226 -6.020 2.44e-08 ***
                      6.5159
                                 0.7873
                                         8.277 3.66e-13 ***
## treatmentsham
## symptom_baseline
                      0.8896
                                 0.0425 20.932 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.124 on 108 degrees of freedom
     (39 observations deleted due to missingness)
## Multiple R-squared: 0.821, Adjusted R-squared: 0.8177
## F-statistic: 247.6 on 2 and 108 DF, p-value: < 2.2e-16
```

This first model helps us understand whether treatment type (active vs. sham) has an effect on symptom scores at follow-up, while controlling for baseline severity.

Key takeaways

The treatmentsham estimate (\sim 6.52, p < 0.001) suggests that participants in the sham group had, on average, higher symptom scores at follow-up compared to those in the active TMS group.

The baseline severity coefficient (\sim 0.89, p < 0.001) shows a strong positive association: participants starting with more severe symptoms tended to remain more severe at follow-up.

The model explains a substantial portion of the variability in follow-up symptoms ($R^2 = 0.82$), suggesting that treatment type and baseline severity together are strong predictors of outcome.

Clinically speaking

This model indicates a clear benefit of active TMS compared to sham stimulation when adjusting for initial severity. While individual responses may vary, the overall trend strongly supports a meaningful treatment effect.

Your turn

Now, also add more predictors like age, gender and more to see if they influence outcomes.

Formula: symptom_score ~ treatment * time + (1 | subject_id)

Mixed effects model

In this section, we'll fit a mixed effects model to account for repeated measures over time within subjects, which is common in clinical trials where we have multiple observations per patient (at pre, post, and follow-up).

```
model_mixed <- lmer(symptom_score ~ treatment * time + (1 | subject_id), data = data)
summary(model_mixed)
## Linear mixed model fit by REML ['lmerMod']</pre>
```

```
##
      Data: data
##
## REML criterion at convergence: 2567.6
##
## Scaled residuals:
                                     3Q
##
       Min
                  1Q
                       Median
                                             Max
  -1.96817 -0.58003 -0.03979 0.59277
##
## Random effects:
##
   Groups
                           Variance Std.Dev.
   subject_id (Intercept) 82.726
                                     9.095
                            9.786
   Residual
                                     3.128
## Number of obs: 411, groups: subject_id, 150
##
## Fixed effects:
##
                              Estimate Std. Error t value
## (Intercept)
                                18.7618
                                            1.0821 17.338
## treatmentsham
                               -0.1942
                                            1.5729 -0.123
                               -7.5280
## timepost
                                            0.4977 - 15.124
## timefollowup
                                -7.5994
                                            0.5491 - 13.839
## treatmentsham:timepost
                                5.2583
                                            0.7235
                                                     7.268
## treatmentsham:timefollowup
                                6.6932
                                            0.8139
##
## Correlation of Fixed Effects:
##
                 (Intr) trtmnt timpst tmfllw trtmntshm:tmp
## treatmntshm
                 -0.688
                 -0.230
                         0.158
## timepost
                 -0.208 0.143 0.453
## timefollowp
## trtmntshm:tmp 0.158 -0.230 -0.688 -0.312
## trtmntshm:tmf 0.141 -0.204 -0.306 -0.675 0.444
```

This second model accounts for repeated measures—each participant was assessed multiple times (pre, post, follow-up)—and thus includes a random intercept for each subject to capture individual differences.

What the model includes

Fixed effects: treatment, time, and their interaction (treatment \times time).

Random effects: subject-level intercepts, allowing each participant to have their own baseline level of symptoms.

Key results

Time effects: Both timepost (-7.53) and timefollowup (-7.60) show large, negative coefficients (t = -15 and -14), meaning that symptom severity decreased significantly over time compared to the pre-treatment phase.

Treatment main effect: The treatmentsham term alone (-0.19) was small and not significant, indicating no overall difference between groups at baseline.

Interaction effects: Both treatmentsham:timepost (5.26) and treatmentsham:timefollowup (6.69) were large and significant, showing that sham participants improved less over time than those receiving active TMS.

Random effects interpretation

The subject-level variance (82.7) shows there are meaningful individual differences in baseline symptom levels.

The residual variance (9.8) reflects remaining within-person variability not explained by the model.

Clinically speaking

This mixed-effects approach confirms the pattern seen earlier: active TMS produced greater improvement over time. The strong time effects indicate that participants generally improved with treatment, but the interaction shows that the active group's improvement was significantly larger and more sustained at follow-up. This supports the idea that active stimulation drives the observed changes.