5.1.6 Summary of the Relational Algebra Operations

The relational algebra operations are summarized in Table 5.1.

TABLE 5.1 Operations in the relational algebra.

OPERATION	NOTATION	FUNCTION
Selection	$\sigma_{ extit{predicate}}(R)$	Produces a relation that contains only those tuples of R that satisfy the specified <i>predicate</i> .
Projection	$\Pi_{a_1,\ldots,a_n}(R)$	Produces a relation that contains a vertical subset of R, extracting the values of specified attributes and eliminating duplicates.
Union	RUS	Produces a relation that contains all the tuples of R, or S, or both R and S, duplicate tuples being eliminated. R and S must be union-compatible.
Set difference	R - S	Produces a relation that contains all the tuples in R that are not in S. R and S must be union-compatible.
Intersection	$R \cap S$	Produces a relation that contains all the tuples in both R and S. R and S must be union-compatible.
Cartesian product	$R \times S$	Produces a relation that is the concatenation of every tuple of relation R with every tuple of relation S.
Theta join	$R\bowtie_{_F}S$	Produces a relation that contains tuples satisfying the predicate <i>F</i> from the Cartesian product of R and S.
Equijoin	$R\bowtie_{F}S$	Produces a relation that contains tuples satisfying the predicate F (which contains only equality comparisons) from the Cartesian product of R and S.
Natural join	R⋈S	An Equijoin of the two relations R and S over all common attributes x. One occurrence of each common attribute is eliminated.
(Left) Outer join	$R > \!\!\! \triangleleft S$	A join in which tuples from R that do not have matching values in the common attributes of S are also included in the result relation.
Semijoin	$R \triangleright_F S$	Produces a relation that contains the tuples of R that participate in the join of R with S satisfying the predicate F .
Division	R ÷ S	Produces a relation that consists of the set of tuples from R defined over the attributes C that match the combination of every tuple in S, where C is the set of attributes that are in R but not in S.
Aggregate	$_{AL}(R)$	Applies the aggregate function list, AL, to the relation R to define a relation over the aggregate list. AL contains one or more (<aggregate_function>, <attribute>) pairs.</attribute></aggregate_function>
Grouping	ga al(R)	Groups the tuples of relation R by the grouping attributes, GA, and then applies the aggregate function list AL to define a new relation. AL contains one or more (<aggregate_function>, <attribute>) pairs. The resulting relation contains the grouping attributes, GA, along with the results of each of the aggregate functions.</attribute></aggregate_function>