One Fourth Labs

Multiple Paths

Can we see one more example?

1. Let's look at a different weight from the previous example, which would require multiple paths to perform the calculations

2. Here are the parameters of the network

a.
$$b = [0 \ 0]$$

b.

$$W_1 = \begin{bmatrix} 0.1 & 0.3 & 0.8 & -0.4 \\ -0.3 & -0.2 & 0.5 & 0.5 \\ -0.3 & 0 & 0.5 & 0.4 \\ 0.2 & 0.5 & -0.9 & 0.7 \end{bmatrix}$$

PadhAl: Backpropagation - the light math version

One Fourth Labs

C

- d. x = [2 5 3 3] true distribution y = [1 0]
- 3. Now, we want to find the partial derivative w.r.t w_{212} as highlighted in the figure $\frac{\partial L}{\partial w_{212}}$

$$4. \quad \frac{\partial L}{\partial w_{131}} = \left(\frac{\partial L}{\partial a_{13}}\right).\left(\frac{\partial a_{13}}{\partial w_{131}}\right) = \left(\frac{\partial L}{\partial h_{13}}\right).\left(\frac{\partial h_{13}}{\partial a_{13}}\right).\left(\frac{\partial a_{13}}{\partial w_{131}}\right) = \left(\frac{\partial L}{\partial a_{21}}.\frac{\partial a_{21}}{\partial h_{13}} + \frac{\partial L}{\partial a_{22}}.\frac{\partial a_{22}}{\partial h_{13}}\right).\left(\frac{\partial h_{13}}{\partial a_{13}}\right).\left(\frac{\partial a_{13}}{\partial w_{131}}\right) = \left(\frac{\partial L}{\partial a_{21}}.\frac{\partial a_{21}}{\partial h_{13}} + \frac{\partial L}{\partial a_{22}}.\frac{\partial a_{22}}{\partial h_{13}}\right).\left(\frac{\partial h_{13}}{\partial a_{13}}\right).\left(\frac{\partial a_{13}}{\partial w_{131}}\right) = \left(\frac{\partial L}{\partial a_{21}}.\frac{\partial a_{22}}{\partial h_{22}}.\frac{\partial a_{22}}{\partial h_{23}}\right).\left(\frac{\partial h_{23}}{\partial a_{23}}\right).\left(\frac{\partial a_{23}}{\partial a_{23}}\right).\left(\frac{\partial a_{23}}{\partial$$

- 5. The final split is $\frac{\partial L}{\partial w_{131}} = \left(\frac{\partial L}{\partial \hat{y}_1}.\frac{\partial \hat{y}_1}{\partial a_{21}}.\frac{\partial a_{21}}{\partial h_{13}} + \frac{\partial L}{\partial \hat{y}_2}.\frac{\partial \hat{y}_2}{\partial a_{22}}.\frac{\partial a_{22}}{\partial h_{13}}\right).\left(\frac{\partial h_{13}}{\partial a_{13}}\right).\left(\frac{\partial a_{13}}{\partial w_{131}}\right)$
- 6. Let us sequentially solve both splits

Let us sequentially solve both spirits	
$\frac{\partial L}{\partial \hat{y}_1} = -2(y_1 - \hat{y}_1) = -0.46$	$\frac{\partial L}{\partial \hat{y}_2} = -2(y_2 - \hat{y}_2) = 0.46$
$\frac{\partial \hat{y_1}}{\partial a_{21}} = \hat{y}_1 (1 - \hat{y}_1) = 0.1771$	$\frac{\partial \hat{y}_2}{\partial a_{22}} = \hat{y}_2 (1 - \hat{y}_2) = 0.1771$
$\frac{\partial a_{21}}{\partial h_{13}} = w_{213} = 0.2$	$\frac{\partial a_{22}}{\partial h_{13}} = w_{223} = 0.3$
$\frac{\partial h_{13}}{\partial a_{13}} = h_{13} * (1 - h_{13}) = 0.0979$	$\frac{\partial h_{13}}{\partial a_{13}} = h_{13} * (1 - h_{13}) = 0.0979$
$\frac{\partial a_{13}}{\partial w_{131}} = x_1 = 2$	$\frac{\partial a_{13}}{\partial w_{131}} = x_1 = 2$
Path1: $(-0.46 * 0.1771 * 0.2 * 0.0979 * 2) = -0.003190$	Path1: (0.46 * 0.1771 * 0.3 * 0.0979 * 2) = 0.004785
Sum of the paths is $\frac{\partial L}{\partial w_{131}} = 0.001595$	

- 7. Now we can calculate the updated value of W_{212}
- 8. $w_{131} = w_{131} \eta(\frac{\partial L}{\partial w_{131}})$

a.
$$w_{131} = -0.3 - (1) * (0.001595)$$

- b. $w_{131} = -0.301595$
- 9. We can repeat this process for each weight