Naïve Semantic Text Similarity Model

Zachary Parent

UPC

December 2, 2024

Outline

- Introduction
- Methodology
 - Approach
 - Feature Extraction
 - Model Training
 - Feature Selection
 - Model Evaluation
- Results
- Conclusions

Introduction

- Semantic Text Similarity (STS) is crucial for many NLP tasks
- Challenge: Which features best capture semantic similarity?
- Our approach: Unbiased feature analysis using process pipeline permutations and Random Forests for feature analysis

Methodology

- Approach
- Feature extraction
- Feature selection
- Model training
- Model evaluation

Approach

- Naïve approach which requires no knowledge of the corpus
- Use categorized steps to process sentences in every permutation
 - 520 permutations
 - e.g. sentence_to_doc \to chunk_NEs \to remove_stopwords \to lemmatize_tokens \to get_characters \to get_2grams
- Apply 4 similarity metrics to each permutation
 - Jaccard, Cosine, Euclidean, Manhattan
- Used Random Forest's feature importance capabilities
- Let the data guide feature selection

Feature Extraction

generate_valid_permutations()

```
# Generate all valid permutations of sentence processing steps
def generate valid permutations (
    functions: List[Callable] = all_functions,
) -> List[Tuple[Callable, ...]]:
    valid_permutations = []
    for n in range(1, len(functions) + 1):
        for perm in itertools.permutations(functions, n):
            if _is_valid_permutation(perm):
                valid permutations.append(perm)
    # Add sentence_to_doc to the beginning of each permutation
    valid permutations = (
        [tuple([sentence_to_doc]) + perm for perm in valid_permutations])
    # Add final step to each permutation (e.g. get_2grams)
    valid_permutations = (
        [new_perm for perm in valid_permutations for new_perm in add_final_step(perm)])
    return valid_permutations
```

```
# Dictionary to hold function names and their input/output types
function_input_output_types: Dict[str, Tuple[Tuple[type, ...], type]] = {}
# Extract the input and output types of a function
def extract input output types(func: Callable) -> Tuple[type, type]:
    signature = inspect.signature(func)
    param types = [param.annotation for param in signature.parameters.values()]
   return_type = signature.return_annotation
   return param_types[0], return_type
# Populate the dictionary with function names and their input/output types
for func in all functions:
    input_types, output_type = _extract_input_output_types(func)
    function input output types[func. name ] = (input types, output type)
# Function to check if a permutation is valid based on input/output types
def is valid permutation(perm: Tuple[Callable]) -> bool:
    if function_input_output_types[perm[0].__name__][0] != spacy.tokens.doc.Doc:
        return False
    if function_input_output_types[perm[-1].__name__][1] not in [
        Tuple[Word, ...],
        Tuple[PosTag, ...],
        Tuple[Character. ...].
   1:
       return False
    for i in range(len(perm) - 1):
        _, current_func_output_type = function_input_output_types[perm[i].__name__]
        next_func_input_type, _ = function_input_output_types[perm[i + 1].__name__]
        if current func output type != next func input type:
            return False
    return True
```

```
class PosTag(str): pass
class Word(str): pass
class Character(str): pass
class Ngram(Tuple[Word | Character | PosTag, ...]): pass
class WordPair(Tuple[Word, Word]): pass
def get_characters(words: Tuple[Word, ...]) -> Tuple[Character, ...]:
def get_word_pairs(words: Tuple[Word, ...]) -> Tuple[WordPair, ...]:
def sentence to doc(sentence: str) -> spacv.tokens.doc.Doc:
def get tokens(doc: spacv.tokens.doc.Doc) -> Tuple[spacv.tokens.token.Token...]:
def get_pos_tags(tokens: Tuple[spacy.tokens.token.Token, ...]) -> Tuple[PosTag, ...]:
def lemmatize_tokens(tokens: Tuple[spacy.tokens.token.Token, ...]) -> Tuple[Word, ...]:
def get token text(tokens: Tuple[spacv.tokens.token.Token....]) -> Tuple[Word....]:
def get_2grams(words: Tuple[Word | Character | PosTag, ...]) -> Tuple[Ngram, ...]:
def get 3grams(words: Tuple[Word | Character | PosTag. ...]) -> Tuple[Ngram. ...]:
def get 4grams(words: Tuple[Word | Character | PosTag. ...]) -> Tuple[Ngram. ...]:
def chunk_NEs(doc: spacy.tokens.doc.Doc) -> Tuple[spacy.tokens.token.Token, ...]:
def get_synsets(tokens: Tuple[spacy.tokens.token.Token, ...]) -> Tuple[Word, ...]:
def remove non alnum(words: Tuple[Word, ...]) -> Tuple[Word, ...]:
def remove_stopwords(tokens: Tuple[spacy.tokens.token.Token, ...])
    -> Tuple[spacy.tokens.token.Token, ...]:
def get_stopwords(tokens: Tuple[spacy.tokens.token.Token, ...])
    -> Tuple[spacy.tokens.token.Token, ...]:
```

```
lexical functions = [
    get characters.
                        # Character-level patterns
   get_tokens,
                        # Word tokenization
                      # Raw word forms
   get token text.
   remove non alnum.
                      # Character filtering
    get_word_pairs,
                        # Word co-occurrences
semantic_functions = [
   lemmatize_tokens,  # Normalize to base meaning
   get_synsets,
                        # Word meanings/concepts
    chunk NEs.
                        # Named entity grouping
                        # Part of speech (bridges lexical/semantic)
    get_pos_tags,
ngram_functions = [
   get_2grams,
                        # Bigrams
   get_3grams,
                        # Trigrams
    get_4grams,
                        # 4-grams
preprocessing functions = \Gamma
   remove_stopwords, # Filter non-content words
    get stopwords.
                        # Identify non-content words
all_functions = lexical_functions + semantic_functions + preprocessing_functions
```

Cache is king { \$, € }

```
@cache
def get_tokens(doc: spacy.tokens.doc.Doc) -> Tuple[spacy.tokens.token.Token, ...]:
    return tuple(token for token in doc)
```

- Many variations in ordering result in same output
- This is a prime candidate for dynamic programming
- Caching significantly speeds up feature extraction
- 520 processes x 4 metrics = 2080 features
 - across all ~5000 sentence pairs takes ~15 minutes

Model Training

- Random Forest
 - Built-in feature importance analysis
 - Bagging allows discovery of local patterns
 - Handles high-dimensional feature spaces well (2080 features)
 - Resistant to overfitting
- Model Configuration
 - 100 trees in ensemble
 - No max depth, since we are interested in identifying fine-grained feature importances

Feature Selection

- 520 permutations x 4 metrics = 2080 features
- The random forest model allows us to inspect feature importances
- We used this to identify how important the top features are to the model
- We trained and validated models with different subsets of the top features

Model Evaluation

- Multi-level evaluation strategy
 - Initial 5-fold cross-validation on training set
 - 80/20 train/validation split for comparing feature sets
 - Held-out test set for final evaluation
- Custom Pearson correlation scorer
 - Measures linear correlation with gold standard
 - Implemented as sklearn-compatible scoring function
 - Allows direct comparison with published results

Results

Feature Importance

- Top 10 features account for ~50% of total importance
- 60% of features (1,248) have non-zero importance
- Reducing to 500 features shows slight performance loss

Feature Type Comparison

- Combined features perform best (r = 0.735 on test)
- Lexical features alone achieve strong performance (r = 0.718)
- Semantic features show lower generalization (r = 0.640)
- N-grams important for generalization

Dataset-Specific Performance

- MSRvid highest performance (r > 0.80)
- SMTnews and SMTeuroparl lower performance (r < 0.52)
- Performance varies across datasets

Top Features

- Jaccard similarity dominates (6 of top 10)
- Common steps: sentence_to_doc, lemmatize_tokens, get_characters
- N-grams frequently appear, especially 2-grams

Feature	Processing Steps	Importance
score_jaccard_165	doc o tokens o stopwords o lemma o chars o 2gram	0.197
score_cosine_257	doc o NEs o stopwords o lemma o chars o 2gram	0.089
score_cosine_165	doc o tokens o stopwords o lemma o chars o 2gram	0.069
score_jaccard_258	doc o NEs o stopwords o lemma o chars o 3gram	0.033
score_cosine_258	doc o NEs o stopwords o lemma o chars o 3gram	0.022
score_jaccard_256	doc o NEs o stopwords o lemma o chars	0.021
score_jaccard_257	doc o NEs o stopwords o lemma o chars o 2gram	0.021
score_cosine_166	doc o tokens o stopwords o lemma o chars o 3gram	0.021
score_jaccard_97	doc o NEs o lemma o chars o 2gram	0.019
score_jaccard_41	doc o tokens o lemma o chars o 2gram	0.019

Dataset-Specific Performance

Dataset	Without	Without	Without	All
	Semantic	Lexical	N-grams	Features
MSRpar	0.646	0.533	0.577	0.643
MSRvid	0.813	0.811	0.807	0.839
SMTeuroparl	0.521	0.437	0.475	0.495
OnWN	0.671	0.470	0.623	0.647
SMTnews	0.451	0.367	0.438	0.420
All	0.718	0.639	0.686	0.734

• Key Observations:

- ullet MSRvid shows consistently high performance (r > 0.80)
- ullet SMTnews and SMTeuroparl show lower performance (r < 0.52)
- Performance varies significantly by dataset
- Lexical features most important across all datasets

Conclusions

Comprehensive Feature Analysis

- Generated and analyzed 2080 features across lexical, semantic, and n-gram types
- Random Forests effectively identified key features

Key Findings

- Lexical features alone provide strong performance
- N-grams enhance generalization to unseen data
- Semantic features contribute less to generalization

Dataset Variability

- Performance varies significantly by dataset
- MSRvid consistently high, SMTnews and SMTeuroparl lower

Future Directions

- Explore more advanced processing steps
- Explore limitations of the approach on new domains
- Investigate feature importances on restricted feature sets (e.g. without lexical or without semantic)
- Investigate domain-specific feature engineering

Thank You

Thank you for your attention!

Questions?

