Dec 2021 - partial aptin	Cultre	h de travaighture	Investige et/her	benef nether
Exercice 1	Vigne	9	59€ 26€	60€ 45€
	legne	3	77€	30€
(a) Madelination de problème sons	la force	de progra-actio	· Cinonia	
2 taille des paralle en hactaire	par a i	gne ereale		
dojectif nacioniser com a behof same des benef net des differ	ice net d	e l'agriculleur	qui est donné pa	ar la
benefice >> max (60 x + 45 x + 30 x 3)				
Ortraintes: ① Temps de fravail: ② Capital: 540€ ③ superficie totale: 10 ④ non-néogrhite: taille	hedares ->	54x4+26x2+	27 ×3 < S40€ < 10 hoctores	
(ii) Madi Conti	ue amalo	The State of States	N W W J	
(i) Modification par incluse e'enhanche de personnel				
enbaucher pair opt	determo	r De nombre d'I benef		
François variable de décision "h"= nombre d'heure de travail supplémentaire ember				
mêne objectif: naciniser le benof net				
=> max (60 x4 + 45 x2 + 30 x3 \$-12h)				
@ ajout d'une contrainte	,	,		
3 Temps de travail dispos: 18h => 9x, +9xx +3xx + h (48h				
Oftagic ne souhaite enbaucher a	ucun sala	ne		
Pas de pb de capital				
On donne la solution aprimale telle que: 3 her de ligne et her de lagues.				
On nos derande d'écrise les voleire pour garder	max et n	un d'houres de	travail permis	ಖ
set eq = 3 = variable de ba	se XB=[x_4, x_3		
Set $ \alpha_1 = 3$ \Rightarrow variable de bar $ \alpha_2 = 0$ \Rightarrow variable hois $ \alpha_3 = 0$ \Rightarrow variable $ \alpha_3 = 0$	cose X _h =	(x2, h)		
Modification des contraintes: (5) Temps de travail		3 az + h < 48		
*·•	c) 27 +	$3 \times 7 + 4 \times 48$		
* * * * * * * * * * * * * * * * * * *	es 48+h) => done 0' agin	culter re ne	t ni
		le nombre comprometre	i vedice don	andage
	p -			

Exercice 2 Régardre au plus sivat min f(x,y) (x2+y2-x,y+y) wer x,y EIR sas la contrainte h(x,y)=sc+2y-1=0 QC Calcul theorique par trouver in optimum local lour résouvre ce pb =) multiplicateur de lagrange par trouver un optimen local sas contrainte donnée Minimiser: f(x,y)= x2+ y2- xy+y sous... seit le lagrangien ou problène : [[(x,y,))=(f(xy)+) h((x,y)) avec) le meti plicateur de lagrange associe a la contrainte h (24 y) les cardibians de stationnairée ser pour un optimum local son données par l'a de lagrange: (1) 0 de = 2xx x - y + x = 0 ternes dépodant de x soit L(x,y, x) = 2 + 1 1 (2). dL = 2y - oc + 1 = 21 = 0 termes départant de y (3) . dl = h(x,y) = x+2y-1=0 Resolvans as equations or multanevet pour traver x, y, x (3) -1 /= 1- x - 2y , (2) (2) -(2): 20c-y+(11-x-2y)=0 (1): 2y-8x+1+2(1-8x-2y)=0 Simplification (4): x-3y+1=0 (2): -x-4y+3=0 => système de 2 eq à 2 inconves la selution mas donnera les coordonnées de l'optimun local (x, y) (1) -> &c = + 3y -1 On chaisi de nettre (1) = (2) seit: (2)=-(3y-1)-4y+3=0 @ - 3y+1-4y+3=0 (- 7y + 4 = 0 (x) - 7y = -4 ⇒ [y = 4/7] -> x = 3y-1 = 3x 4/7-1 = 12/7-1 = [5/7] Donc Des valeus correcte de l'optimun, sont = 4/7 et = 5/7 1=1-5-2(4) (li) Afin de calculer la solution on voit amuler le gradient du lagrangien par la mothade de Newton. Si on suppose que de paint initial (xo, yo) = (1,1) et que le multiplicatour de lagrange = 1 à l'état initial (10=1), à que point (10, 14) arrive t on après la preniere itération? Sof gos/egragos de Nouton Bustinos ① Calcul des dienviers partialles (vair ci dessus) $\begin{cases} \frac{dL}{dx} = 0 \\ \frac{dL}{dy} = 2y - x + 4 + 2\lambda = 0 \end{cases}$ (4) Calcul de la matrice hossienne <math>H de L: $(4) \frac{d^2L}{dy^2} = 2y - x + 4 + 2\lambda = 0$ $(4) \frac{d^2L}{dx^2} = 2y - x + 4 + 2\lambda = 0$ (Myse 3 , 2 2 twis l'eq de de cambien il ya do y

To Co 2001
Granen d'optin sans contraintes - Dec rost
1) f(oc), x2) = x2 + x2
1. Etude analytique des points critique et de leur nature
redeur gradient de f et résoudre 0'eq VF(X) = 0, civ VF(X) est le vecteur gradient
a fanction F(X) est dance par , soit DECONSTRUCTURE
$\nabla f(X) = \left[\frac{\partial f}{\partial \alpha_1} \frac{\partial f}{\partial \alpha_2}\right]$ and $\left[\frac{\partial f}{\partial \alpha_2} = 2\alpha C + 1\right]$ et $\frac{\partial f}{\partial \alpha_2} = 2\alpha C$
Points par $\nabla f(x) = 0 \Rightarrow \left\{ 2\alpha z_1 + 1 = 0 \Leftrightarrow \left[\alpha z_1 = -\frac{1}{2} \right] \Rightarrow \text{denc so point critique} \right\}$ $\left\{ 2\alpha z_1 = 0 \Leftrightarrow \left[\alpha z_2 = 0 \right] \right\} \Rightarrow \text{denc so point critique}$
Calcul de la natrice hossienne
Rappel: Si définie positive -> point est un minimum cool si définie négative -> point ou un marine marinem cocal
SI interince - part ext in point som.
Sat $H = \begin{bmatrix} \frac{\partial^2 f}{\partial \alpha_1^2} & \frac{\partial^2 f}{\partial \alpha_2^2} \\ \frac{\partial^2 f}{\partial \alpha_2^2} & \frac{\partial^2 f}{\partial \alpha_2^2} \end{bmatrix} = \begin{bmatrix} 2 & \cos(x) \\ \frac{\partial^2 f}{\partial \alpha_2^2} & \frac{\partial^2 f}{\partial \alpha_2^2} \\ \frac{\partial^2 f}{\partial \alpha_2^2} & \frac{\partial^2 f}{\partial \alpha_2^2} \end{bmatrix} = 2$ matrice definite positive $\frac{\partial^2 f}{\partial \alpha_2^2} = (2\alpha_1 + 1)' = 2$ matrice definite positive $\frac{\partial^2 f}{\partial \alpha_2^2} = (2\alpha_1 + 1)' = 2$ optimization for $\frac{\partial^2 f}{\partial \alpha_2^2} = (2\alpha_1 + 1)' = 2$ optimization for $\frac{\partial^2 f}{\partial \alpha_2^2} = (2\alpha_1 + 1)' = 2$ optimization $\frac{\partial^2 f}{\partial \alpha_2^2} = (2\alpha_1 + 1)' = 2$ optimization $\frac{\partial^2 f}{\partial \alpha_2^2} = (2\alpha_1 + 1)' = 2$ optimization $\frac{\partial^2 f}{\partial \alpha_2^2} = (2\alpha_1 + 1)' = 2$ optimization $\frac{\partial^2 f}{\partial \alpha_2^2} = (2\alpha_1 + 1)' = 2$ optimization $\frac{\partial^2 f}{\partial \alpha_2^2} = (2\alpha_1 + 1)' = 2$ optimization $\frac{\partial^2 f}{\partial \alpha_2^2} = (2\alpha_1 + 1)' = 2$ optimization $\frac{\partial^2 f}{\partial \alpha_2^2} = (2\alpha_1 + 1)' = 2$ optimization $\frac{\partial^2 f}{\partial \alpha_2^2} = (2\alpha_1 + 1)' = 2$ optimization $\frac{\partial^2 f}{\partial \alpha_2^2} = (2\alpha_1 + 1)' = 2$ optimization $\frac{\partial^2 f}{\partial \alpha_2^2} = (2\alpha_1 + 1)' = 2$ optimization $\frac{\partial^2 f}{\partial \alpha_2^2} = (2\alpha_1 + 1)' = 2$ optimization $\frac{\partial^2 f}{\partial \alpha_2^2} = (2\alpha_1 + 1)' = 2$
an applique la méthode de Newton pour annuler le gradient de la fonction?
appel: la nothorde de Newton consiste a traver u n'in local en itérant la formele
XKM = XK-HEAT * Vf (XK) ai Heat la natrice herrier e de VF (XK) ee oradient à l'ibération K
vi au point de dépoint $X_0 = (I_A)$, le gradient $\nabla F(X_0) = [3\ 2]$ et $H = [2\ 0]$ donc le formule de Newton decient $X_A = X_0 - H^{-1} \times \nabla F(X_0)$
$= \begin{bmatrix} 1 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} - 1 \begin{bmatrix} 3 & 2 \end{bmatrix}$
on inverse les oblenent dingorals car Hook diagonale, soit HI = [ve 0] = [1] - [3/2 1]
= (-1/2 0) => en appliquant la rettede au Newto
on retamble bien our de point citique

et care les valeunde 450 propres

ners on non-ner and

nethodo a Newton onesige bion

1) En point de to(1,1), à quel point X, arrive + on si l'on applique la rétade du Gradient avec in pas de 0,5 par dercier l'opinion de la fin la néthode du gradient consiste ou suivre la direction apposée du gradient pour atteirare l'optimum de la fonction. formule: [X1 = X0- & Vf(X0) $X_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\nabla f(X_0) = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ $\alpha = 0.5$ $X_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - 0.5 \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 3/2 \\ 1 \end{pmatrix} = \begin{pmatrix} -1/2 \\ 0 \end{pmatrix} \Rightarrow$ on retrouve encore se nême point (4) Condition de Wolfe pour souvoir si la pas ack n'est pos trop petit à l'iteration le par la fonction f(x) de l'exercice. On prendra de=-DF(XK) 2 criteres /f(Xk+akdk) &f(Xk)+c, xkVf(Xk)dk (Condition Associd Armija) Vf(Xk+akdk)dh > C2 Vf(Xk)dk (Condition de carbure) avec | Xh la position actualle ak le pas et c, etce qui sont des constantes dans lok la direction de cecherche Mintervale (0,1) ici an mas impose dh = - Of (xh) et typiquement c4 = 0,1 et c2 = 0,9 seit Exercicer On connaît la position de 4 balises (Bi) dans le plan (riyi) On opératour sahaite pacerme bolise un accour R on (oe, y) de telle nanière qu'il soit à distance nin de l'onsentée des tralises @ Fenire le plo seus la terre des noinoire courre Oinécures. Tenire l'expression des 4 balise (B1, B2, B3, B4), 1 radius Ren (ac, y) Nous définissons une fonction de coût tol que qui nesure la some des ourre d distances entre le relais R et les balises. Cette fonction de coût est a ninimizer (at (a, y) - (d(b1, 84))2+(d(B2, R))2+(d(B3, R))2+(d(B4, R))2 l'objectif est /min ((aut(a,y))) la il s'agit d'un problèmes sans contraintes los révides correspondent aux termes individues du coêt (Rosido (Bi, R) = (d(Bi), R))2- ci avec ci la distance minimale entre Bi et R si rous valors que le relais il soit à distance des bolises, ci est généralement Les rémous pouvoit être villère pour formuler la fonction d'aptinisation minimiser - , AX-b avec X = (%). Seit min = ||F||2 la distance (Bi, n) pert à êvrice -> distance (Bi, n) = V(xn-xi)2+ (yr-yi)2 avec i= {1,134} la forction a minimiser est donc Fi (2,4) = \frac{1}{2} \(\begin{aligned} \distance (Bi, R) \\ \end{aligned} Il s'agit d'un pb d'apoin noi-lineaire Ti = distance (Bi, Ri) - Fi ri = 0