CHARACTER TABLE FOR \mathbf{S}_n POINT GROUP

Character table for S_4 point group

	E	S ₄	C ₂	$(S_4)^3$	Linear Functions, Rotations	Quadratic
A	1	1	1	1	R_z	x^2+y^2, z^2
В	1	-1	1	-1	Z	x^2-y^2 , xy
E	1	i	-1	-i	$x+iy; R_x+iR_y$	
	1	-i	-1	i	x-iy; R _x -iR _y	(xz, yz)

Character table for S_6 point group

	E	C ₃ (z)	$(C_3)^2$	i	$(S_6)^5$	S ₆	Linear Functions, Rotations	Quadratic
$\mathbf{A}_{\mathbf{g}}$	1	1	1	1	1	1	R_z	x^2+y^2, z^2
$\mathbf{E_g}$	1	e	e*	1	e	e*	R_x+iR_y	
Lig	1	e*	e	1	e*	e	R_x - iR_y	$(x^2-y^2, xy) (xz, yz)$
$\mathbf{A}_{\mathbf{u}}$	1	1	1	-1	-1	-1	Z	
$\mathbf{E_u}$	1	e	e*	-1	-e	-e*	x+iy	
	1	e*	e	-1	-e*	-е	x-iy	

 $e = \exp(2\pi i/3)$

Character table for S_8 point group

	E	S_8	C ₄ (z)	$(S_8)^3$	C ₂	$(S_8)^5$	$(C_4)^3$	$(S_8)^7$	Linear Functions, Rotations	Quadratic
A	1	1	1	1	1	1	1	1	R_z	x^2+y^2, z^2
В	1	-1	1	-1	1	-1	1	-1	Z	
$\mathbf{E_1}$	1	e	i	-e*	-1	-е	-i	e*	x+iy	
121	1	e*	-i	-е	-1	-e*	i	e	x-iy	
IF	1	i	-1	-i	1	i	-1	-i	-	
$\mathbf{E_2}$	1	-i	-1	i	1	-i	-1	i		(x^2-y^2, xy)
\mathbf{E}_3	1	-е	i	e*	-1	e	-i	-e*	$R_x + iR_y$	
	1	-e*	-i	e	-1	e*	i	-е	R_x - iR_y	(xz, yz)

 $e = \exp(\pi i/4)$