Aula prática: Chamada de variantes. Explorando dados de NGS.

06/07/2017

Professor: Jorge Estefano Santana de Souza, jorge@imd.ufrn.br;

Monitores: Danilo Lopes Martins, danilolmartins@gmail.com;

Luan Pereira, luanpereira00@outlook.com.

Objetivos:

Utilizar ferramentas básicas de chamada de variantes e identificar bases variantes de um sequenciamento de segunda geração.

Ferramentas:

- 1- Linux.
- 2- WebServer.
- 3- bwa
- 4- samtools
- 5- mpileup
- 6- VarScan
- 7- SnpEff

Comandos Básicos:

Durante a execução dos tutoriais necessitaremos saber alguns comandos básicos do Linux. Podem procurar mais informação no site:

http://wiki.ubuntu-br.org/ComandosBasicos

Login Servidor:

Inicialmente vamos fazer o login no servidor, abra um terminal no linux e digite:

ssh -p 4422 bif@10.7.5.38

Irá pedir uma senha, digite:

bif0003

*ps. não aparece a digitação, o teclado não quebrou não!

Regras para login no servidor:

Interno à UFRN:

ssh -p 4422 bif@10.7.5.38

Senha: bif0003

Externo à UFRN:

ssh -p 4422 bif@177.20.147.141

Senha: bif0003

Dados brutos (raw data):

Durante a execução dos tutoriais necessitaremos de alguns dados iniciais, em via de regra estarão disponíveis no diretório:

/home/treinamento/NGS/

Servido WEB:

Como os trabalhos realizados no servidor são de difícil visualização, iremos necessitar de uma área web para facilitar nossa tarefa, todos os arquivos copiados para o diretório:

/home/bif/public_html/

Estarão disponíveis via navegador web em:

http://177.20.147.141/~bif/

Iniciando o Workflow:							
1) Vamos começar pelo básico, certifique-se de que a pasta atual é:							
/home/bif							
Para isso digite o comando:							
pwd							
2) Crie um diretório contendo o seu nome, digite o comando:							
mkdir SeuNome							
3) Entre no diretório criado:							
cd SeuNome							
4) Crie um diretório chamado bwa:							
mkdir bwa							
5) Entre no diretório criado:							
cd bwa							
6) certifique-se de que a pasta atual é a correta:							

O diretório atual deve ser: /home/bif/SeuNome/bwa

pwd

7) Crie links simbólicos para os arquivos:

```
ln -s /home/treinamento/NGS/NC_012967.1.fa .
ln -s /home/treinamento/NGS/SRR5714077_1_s.1.fastq .
ln -s /home/treinamento/NGS/SRR5714077_2_s.1.fastq .
```

8) Agora vamos ver como um arquivo fasta é. comando:

```
less -S NC_012967.1.fa
```

*ps. para sair digite a letra q

9) Agora vamos ver como um arquivo fasta é. comando:

```
less -S SRR5714077_1_s.1.fastq
```

*ps. para sair digite a letra q

*ps. mais informação do formato FASTQ em https://en.wikipedia.org/wiki/FASTQ_format.

Mapeamento:

10) Para realizar o mapeamento, primeiro temos que criar os indexs do genoma de referência, com os comandos:

```
bwa index -a is NC_012967.1.fa
```

```
samtools faidx NC_012967.1.fa
```

11) Agora vamos rodar BWA utilizando os arquivos gerados até aqui:

```
bwa bwasw -t 4 NC_012967.1.fa
SRR5714077_1_s.1.fastq
SRR5714077_2_s.1.fastq -f bwa.sam
```

*ps. o comando deve ser digitado em apenas uma linha

Utilizando o Samtools (analisando o alinhamento):

Agora que temos o arquivo SAM vamos converter-lo para BAM e utilizar o Samtools para manipula-lo e extrair algumas estatísticas básicas.

*ps. informação formato .bam em: http://genome.sph.umich.edu/wiki/SAM_Format

12) Convertendo de SAM para BAM:

```
samtools view -b -S bwa.sam -o bwa.bam
```

13) Visualizando um arquivo BAM:

```
samtools view bwa.bam | less -S
```

14) Visualizando apenas as sequencias não mapeadas:

```
samtools view -f 4 bwa.bam | less -S
```

15) Visualizando apenas as sequencias mapeadas:
samtools view -F 4 bwa.bam less -S
16) Quantificando as sequencias não mapeadas:
samtools view -c -f 4 bwa.bam
17) Quantificando as sequencias com qualidade MAPQ superior a 42:
samtools view -c -q 42 bwa.bam
Atividade, responda: Quantas sequencias mapeadas para a referência?
Quantas sequencias mapeadas para a referência?
Quantas sequencias mapeadas para a referência?
Quantas sequencias mapeadas para a referência? Quantas sequencias mapeadas com qualidade superior a MAPQ 30?

Em busca das variantes:

Agora vamos tentar identificar as variantes genômicas, para tanto temos que gerar o arquivo mpileup, mas antes temos que ordenar as sequencias do arquivo BAM e remover a amplificação de PCR.

18) Ordenando as sequencias do arquivo BAM:

```
samtools sort bwa.bam -o bwa.sort.bam
```

19) Removendo a amplificação de PCR:

```
samtools rmdup bwa.sort.bam bwa.rmd.bam
```

20) Gerando o arquivo mpileup:

```
samtools mpileup -f
NC_012967.1.fa bwa.rmd.bam > ecoli.mpileup
```

*ps. o comando deve ser digitado em apenas uma linha

21) Agora vamos ver como um arquivo mpileup é. comando:

```
less -S ecoli.mpileup
```

*ps. para sair digite a letra q

S			Bitvise xterm -	externo.bscp - bif@177.20.147.141:442	2 - bif@zurique:~/jorge2/bwa	- 🗆 ×
NC_012967	417	G	21		bF2 <G1C9FG1F@G7GG;F</th <th>^</th>	^
NC_012967	418	C	20		[730ACC2C7DDG85FGCGF	
NC_012967	419	C	20		8@CF<6FCFGG?GG?2GE <c< td=""><td></td></c<>	
NC_012967	420	Α	19	, . , . , . ,	QC:FFG9GCGGFC6GGGF9	
NC_012967	421	G	20	,.,.,T,,	b86GFCFBFGGG;GG2GG6;	
NC_012967	422	G	17	.A,,,,,,.,,,	i.525CF:BGCGGGGGG	
NC_012967	423	C	20		`288CC:F<:G5G1FGGGFD	
NC_012967	424	Α	15	, h95FCGG	5GFFGGCF	
NC_012967	425	G	19		c0:E5:GGG8E/FC/CGCD	
NC_012967	426	G	16	, , . , . , ,	Z/.=5GFG:8;EC@G/	
NC_012967	427	G	17	.T,.,.,,.	i2::=F>FG:;@FFG6:	
NC_012967	428	G	20		k891ECF>FGFE8@G6CCEF	
NC_012967	429	C	20		eC/7E>1GGDGC <fgcefff< td=""><td></td></fgcefff<>	
NC_012967	430	A	19	, , . , , , ^~.	g/:E:2FGGG:GG <egfc6< td=""><td></td></egfc6<>	
NC_012967	431	G	23		V2;:C2E8F5FGGF8GG3GCGEA	
NC_012967	432	G	18	\$,,.,.,	`:=CEE <dge5ggeeec8< td=""><td></td></dge5ggeeec8<>	
NC_012967	433	T	18	,.,.,.,	i95FF3GCGF8GFCFEFA	
NC_012967	434	G	21		d2EA2E<3GGE?2GG/@GEG<	
NC_012967	435	G	19	,.,.,.,	XG;C52>6EGGFGG@GGG<	
NC_012967	436	C	17	.\$T.,.,a,.	UGC80 <fcg8gg1@ged< td=""><td></td></fcg8gg1@ged<>	
NC_012967	437	C	20	GGGGGGggGGGgGGG	C7/C:;E@GGCGGG/@GE@6	
NC_012967	438	Α	17	,,.,.,.,	/85FGCG::GGGCGGCB	
NC_012967	439	C	20	,.,.,.,.,.,	7E8<>1GFE=8GEE/FGEFF	
NC_012967	440	C	19	.G,.,.,.,	7/C <f=ge>F=GCG@GCGF</f=ge>	
NC_012967	441	G	20	,.,.,.,.,.,	C9E=BEFG:B4GFD;FG;GG	~

22) Agora fazer a chamada de variantes usando o programa VarScan:

```
varscan mpileup2snp ecoli.mpileup
    --output-vcf --strand-filter 0 > ecoli.vcf
```

*ps. o comando deve ser digitado em apenas uma linha

Anotação das variantes:

O arquivo VCF (variant call format), contém todas as variantes (de base única, de inserção e de deleção), no entanto nessa versão inicial não estão anotadas todas as informações relevantes para extrair o significado biológico de cada variante, para tanto devemos executar o processo de anotação de variantes.

23) Agora fazer a anotação das variantes usando o programa SnpEff:

```
snpEff eff Escherichia_coli_B_REL606_uid58803
ecoli.vcf > ecoli.eff.vcf
```

*ps. o comando deve ser digitado em apenas uma linha

Agora temos o aquivo que contém todas as variantes e as informações relevantes para extrair o significado biológico de cada variante.

Referências:

- 1- Li H. and Durbin R. (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25:1754-60. [PMID: 19451168]
- 2- Li H. and Durbin R. (2010) Fast and accurate long-read alignment with Burrows-Wheeler Transform. Bioinformatics, Epub. [PMID: 20080505]
- 3- Li H.*, Handsaker B.*, Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. and 1000 Genome Project Data Processing Subgroup (2009) The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics, 25, 2078-9. [PMID: 19505943]
- 4- Li H A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011 Nov 1;27(21):2987-93. Epub 2011 Sep 8. [PMID: 21903627]

- 5- VarScan 1: Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, Weinstock GM, Wilson RK, & Ding L (2009). VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics (Oxford, England), 25 (17), 2283-5 PMID: 19542151
- 6- VarScan 2: Koboldt, D., Zhang, Q., Larson, D., Shen, D., McLellan, M., Lin, L., Miller, C., Mardis, E., Ding, L., & Wilson, R. (2012). VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing Genome

 Research DOI: 10.1101/gr.129684.111

 URL: http://varscan.sourceforge.net
- 7- A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3.", Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. Fly (Austin). 2012 Apr-Jun;6(2):80-92. PMID: 22728672