Algèbre de base

Chapitre 8

Calcul matriciel

Séquence 1 : Définition et opérations sur les matrices 3 Généralités sur les matrices - Opérations simples sur les matrices - Produit de matrices. Séquence 2 : Matrices particulières et inverse d'une matrice carrée 17 Matrices particulières - Inverse d'une matrice carrée. Séquence 3 : Déterminant d'une matrice carrée 31 Déterminants - Calcul de l'inverse d'une matrice.

Chapitre 8 - Séquence 1

Définition et opérations sur les matrices

1 Généralités sur les matrices

Notations

Dans toute la suite,

 $\triangleright \mathbb{K}$ désigne soit \mathbb{R} , soit \mathbb{C} ,

 \triangleright n et p sont deux entiers naturels non nuls.

Considérons le système

$$\begin{cases} 2x_1 + 3x_2 + 2x_3 = 1 & L_1 \\ x_1 + x_2 + x_3 = 3 & L_2 \\ 3x_1 + 8x_3 = 8 & L_3 \end{cases}$$

Les coefficients du système, suivant chaque ligne, sont

$$\triangleright L_1: 2, 3, 2,$$

$$\triangleright L_2: 1, 1, 1$$

$$\triangleright L_3:3,0,8.$$

On peut regrouper tous ces coefficients dans un tableau noté :

$$\begin{bmatrix} 2 & 3 & 2 \\ 1 & 1 & 1 \\ 3 & 0 & 8 \end{bmatrix} \quad \text{ou} \quad \begin{pmatrix} 2 & 3 & 2 \\ 1 & 1 & 1 \\ 3 & 0 & 8 \end{pmatrix}.$$

C'est ce que l'on appelle une matrice (tableau contenant des nombres réels ou complexes).

Définitions

On appelle **matrice** de **taille** $n \times p$ (ou matrice (n, p)) à coefficients dans \mathbb{K} un tableau à n lignes et p colonnes de la forme :

$$A := \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix}$$

où, pour tous $i \in [1; n]$ et $j \in [1; p]$, a_{ij} est un élément de \mathbb{K} .

- \triangleright Pour tous $i \in [1; n]$ et $j \in [1; p]$, les a_{ij} sont appelés les **coefficients de la matrice** A.
- \triangleright Pour tous $i \in [1; n]$ et $j \in [1; p]$, a_{ij} est le coefficient de A à la i-ième ligne et j-ième colonne.

3

Notations

- \triangleright On note $\mathcal{M}_{n,p}(\mathbb{K})$ l'ensemble des matrices de taille $n \times p$ à coefficients dans \mathbb{K} .
- \triangleright Une matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ peut aussi être notée $A := (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$
- \triangleright En général, dans toute la suite, les matrices sont désignées par une lettre majuscule et ses coefficients par la même lettre en minuscule. Par exemple, la matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ a pour coefficients a_{ij} , pour tous $i \in [1; n]$ et $j \in [1; p]$.
- \triangleright Dans certains cas, on notera les coefficients d'une matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$, pour tous $i \in [1; n]$ et $j \in [1; p]$, par $(A)_{ij}$.

igotimes $\mathbf{Exemples}$ - $\mathit{Quelques}$ $\mathit{exemples}$ de $\mathit{matrices}$

$$A := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & -4 \end{pmatrix} \in \mathcal{M}_{2,3}(\mathbb{R}) \qquad D := \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6i \\ 3 - 5i & 7 & 8 \end{pmatrix} \in \mathcal{M}_{3,3}(\mathbb{C})$$

$$B := \begin{pmatrix} 1 & 2 & 3 & 4i \\ 5 & 6i & 7 & 8 \\ 4 & 2 & 3 & 1 + i \end{pmatrix} \in \mathcal{M}_{3,4}(\mathbb{C}) \qquad E := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \in \mathcal{M}_{1,3}(\mathbb{R})$$

$$C := \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \in \mathcal{M}_{3,2}(\mathbb{R}) \qquad F := \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$$

- \triangleright Le coefficient de la deuxième ligne et première colonne de la matrice A est : $a_{21} := 2$.
- ightharpoonup Le coefficient de la troisième ligne et quatrième colonne de la matrice B est : $b_{34} \coloneqq 1 + i$.
- ightharpoonup De même, $c_{12} \coloneqq 2, d_{31} \coloneqq 3 5i, e_{11} \coloneqq 1, f_{21} \coloneqq 2.$

S Exercice 1.

Soient A et B les matrices définies par

$$A := \begin{pmatrix} 1 & -6 & 8 & 4 \\ 0 & 7 & 3 & 11 \\ 3 & 2 & 5 & 9 \end{pmatrix} \quad \text{et} \quad B := \begin{pmatrix} 1 & \times & 6 \\ \times & 2i & \times \\ 4+i & 3 & \times \\ 5 & 7+i & \times \end{pmatrix}.$$

- 1) Donner la taille de A et identifier les coefficients a_{23} , a_{32} , a_{14} et a_{24} .
- 2) Compléter l'écriture de $B \in \mathcal{M}_{4,3}(\mathbb{C})$ en sachant que $b_{33} \coloneqq 2, b_{23} \coloneqq 1+i, b_{12} \coloneqq 0, b_{43} \coloneqq 2+i$ et $b_{21} \coloneqq 3$.

8 Vocabulaire

- \triangleright L'ensemble $\mathcal{M}_{n,1}(\mathbb{K})$ est l'ensemble des matrices à n lignes et une colonne. Parfois on les appelle **matrices colonnes**. Il s'agit des vecteurs de \mathbb{K}^n écrits en colonne. En particulier, cela signifie qu'un vecteur est une matrice particulière.
- \triangleright L'ensemble $\mathcal{M}_{1,p}(\mathbb{K})$ est l'ensemble des matrices à une lignes et p colonnes. Parfois on les appelle **matrices lignes**. Il s'agit des vecteurs de \mathbb{K}^n écrits en ligne (sans virgule).
- $ightharpoonup \operatorname{Pour} A \in \mathcal{M}_{n,1}(\mathbb{K}) \text{ (resp. } A \in \mathcal{M}_{1,n}(\mathbb{K})) \text{ on note les coefficients, pour tout } i \in [1; n],$ a_i au lieu de a_{i1} (resp. a_{1i}).

Définitions: Matrices particulières

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$.

- \triangleright Si n=p, on dit que A est une **matrice carrée d'ordre** n et $\mathcal{M}_{n,n}(\mathbb{K})$ est noté plus simplement $\mathcal{M}_n(\mathbb{K})$. De plus, A peut être notée $A := (a_{ij})_{1 \leq i,j \leq n}$.
- \triangleright Si $n \neq p$, la matrice A est dite **rectangulaire**.
- \triangleright La matrice nulle de $\mathcal{M}_{n,p}(\mathbb{K})$, notée $0_{n,p}$ ou simplement 0, est la matrice de taille $n \times p$ dont tous les coefficients sont nuls.

Autrement dit, $A := (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in \mathcal{M}_{n,p}(\mathbb{K})$ est la matrice nulle si

$$\forall (i,j) \in \llbracket 1; n \rrbracket^2, \quad a_{ij} \coloneqq 0.$$

Exemples

De La matrice $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ ∈ $\mathcal{M}_3(\mathbb{R})$ est carrée.

De La matrice $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ ∈ $\mathcal{M}_{2,3}(\mathbb{R})$ est rectangulaire.

 \triangleright Les matrices nulles de $\mathcal{M}_{32}(\mathbb{K})$, $\mathcal{M}_{33}(\mathbb{K})$ et $\mathcal{M}_{43}(\mathbb{K})$ sont

Définition: Égalité de matrices

Soient $(q,r) \in (\mathbb{N}^*)^2$. Deux matrices $A := (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B := (b_{ij})_{\substack{1 \le i \le q \\ 1 \le j \le r}} \in \mathcal{M}_{q,r}(\mathbb{K})$ sont **égales** si elles ont la même taille et si leurs coefficients sont égaux, c'est-à-dire

$$\triangleright n = q$$
,

$$\triangleright p = r$$

$$\triangleright \forall i \in \llbracket 1; n \rrbracket, \forall j \in \llbracket 1; p \rrbracket, \quad a_{ij} = b_{ij}.$$

Dans ce cas, on note A = B.

$$\triangleright \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

S Exercice 2.

Soient les matrices
$$A := \begin{pmatrix} 2x+3 & 5 \\ 3 & -2y-4 \end{pmatrix}$$
 et $B := \begin{pmatrix} -1 & 5 \\ 3 & 5 \end{pmatrix}$.

Trouver $(x, y) \in \mathbb{R}^2$ tel que A = B.

2 Opérations simples sur les matrices

Définition: Addition de matrices

Soient $A := (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B := (b_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in \mathcal{M}_{n,p}(\mathbb{K})$. On appelle **somme** de A et B la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$, notée A + B, donnée par

$$A + B := (a_{ij} + b_{ij})_{\substack{1 \le i \le n \\ 1 < j \le p}}.$$

Attention

- ⊳ On ne peut additionner que des matrices de mêmes tailles.
- ▷ La matrice obtenue en effectuant la somme de deux matrices est de la même taille.

Exemples – Addition de matrices

$$ightharpoonup$$
 Somme de deux matrices de $\mathcal{M}_{3,2}(\mathbb{R}):$ $\begin{pmatrix} 1 & 1 \\ 2 & 3 \\ 1 & -1 \end{pmatrix} + \begin{pmatrix} -3 & 1 \\ 5 & -3 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} -2 & 2 \\ 7 & 0 \\ 1 & 1 \end{pmatrix}.$

ightharpoonup Somme de deux matrices de $\mathcal{M}_{3,4}(\mathbb{C})$:

$$\begin{pmatrix} 1 & 2+i & 5 & 9 \\ 2 & 3 & 2i+4 & 8 \\ 3 & 5 & 6 & i \end{pmatrix} + \begin{pmatrix} -1 & -2 & i & 1 \\ 3i & 3 & 4-2i & 2 \\ 2 & 1 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 0 & i & 5+i & 10 \\ 2+3i & 6 & 8 & 10 \\ 5 & 6 & 9 & 1+i \end{pmatrix}.$$

Définition: Multiplication scalaire-matrice

Soient $A := (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in \mathcal{M}_{n,p}(\mathbb{K})$ et $\lambda \in \mathbb{K}$. On appelle **produit** de A par λ la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$, notée λA , donnée par

$$\lambda A := (\lambda a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}.$$

$igoplus \mathbf{Exemples} - \mathit{Multiplication\ scalaire-matrice}$

$$ightharpoonup$$
 Soient $\lambda := -2$ et $A := \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ 1 & -1 \end{pmatrix}$. Alors, on a :

$$\lambda A = -2 \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} -2 & -2 \\ -4 & -6 \\ -2 & 2 \end{pmatrix}.$$

$$ightharpoonup$$
 Soient $\gamma\coloneqq 3i$ et $B\coloneqq \begin{pmatrix} 1 & 2+i & 3 \\ 4 & 2i & 1+2i \end{pmatrix}$. Alors, on a :

$$\gamma B = 3i \begin{pmatrix} 1 & 2+i & 3 \\ 4 & 2i & 1+2i \end{pmatrix} = \begin{pmatrix} 3i & -3+6i & 9i \\ 12i & -6 & -6+3i \end{pmatrix}.$$

Propriétés

Soient A, B et C trois matrices de $\mathcal{M}_{n,p}(\mathbb{K})$ et $\lambda, \mu \in \mathbb{K}$.

- 1. Propriétés de l'addition de matrices
 - (a) l'addition est commutative : A + B = B + A,
 - (b) l'addition est associative : A + (B + C) = (A + B) + C,
 - (c) l'addition admet $0_{n,p}$ comme élément neutre : $A + 0_{n,p} = 0_{n,p} + A = A$,
 - (d) toute matrice admet un opposé : $A + (-A) = 0_{n,p}$.
- 2. Propriétés de la multiplication par un scalaire
 - (a) la multiplication admet 1 comme élément neutre : 1A = A,
 - (b) la multiplication est associative et commutative : $\lambda (\mu A) = (\lambda \mu) A = \mu (\lambda A)$.
- 3. Distributivité entre l'addition et la multiplication

$$\lambda (A + B) = \lambda A + \lambda B$$
 et $(\lambda + \mu) A = \lambda A + \mu A$.

Exercice 3.

Dans chacun des cas suivants :

- 1) Déterminer la taille des matrices A_i et B_i pour $i \in \{1, 2\}$.
- 2) Lorsque cela est possible, calculer C_i pour $i \in \{1, 2\}$.

a)
$$A_1 := \begin{pmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \end{pmatrix}, \quad B_1 := \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$
 et $C_1 := 2A_1 + 3B_1$;

b)
$$A_2 := \begin{pmatrix} 2i & 0 \\ 1-i & 1+i \\ 1 & 1 \end{pmatrix}, \quad B_2 := \begin{pmatrix} 1 & -1 \\ 3i & 2 \\ 0 & 0 \end{pmatrix} \quad \text{et} \quad C_2 := (1+i)A_2 - 2B_2.$$

3 Produit de matrices

Définition : Produit de matrices

Soient $q \in \mathbb{N}^*$, $A := (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B := (b_{ij})_{\substack{1 \le i \le p \\ 1 \le j \le q}} \in \mathcal{M}_{p,q}(\mathbb{K})$. On appelle **produit** de A par B la matrice $C := (c_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le q}} \in \mathcal{M}_{n,q}(\mathbb{K})$ dont les coefficients, pour tous $i \in [1; n]$ et $j \in [1; q]$, sont donnés par

$$c_{ij} := a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ip}b_{pj} = \sum_{k=1}^{p} a_{ik}b_{kj}.$$

On note C = AB.

$^{ stress}$ Attention

 \triangleright Pour réaliser le produit AB, le nombre de colonnes de A doit être égal au nombre de lignes de B. On gardera en tête que l'on a :

$$\mathcal{M}_{n,p}(\mathbb{K}) \times \mathcal{M}_{p,q}(\mathbb{K}) \longrightarrow \mathcal{M}_{n,q}(\mathbb{K})$$

 $(A,B) \longmapsto AB$

 \triangleright Le produit AB peut exister sans pour autant que le produit BA existe.

Méthode – Calcul d'un produit de matrices

On donne ci-dessous une illustration du produit de deux matrices A et B de $\mathcal{M}_{2,2}(\mathbb{K})$.

On note C := AB et $C = (c_{ij})_{1 \le i,j \le 2}$.

 $\,\rhd\,$ Calcul du coefficient c_{11}

 \triangleright Calcul du coefficient c_{12} $\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix} = \begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
\times & \times
\end{pmatrix}$

 $\begin{array}{c} \triangleright \text{ Calcul du coefficient } c_{21} \\ \hline \begin{pmatrix} b_{11} \\ b_{21} \\ b_{22} \\ \end{pmatrix} \\ = \\ \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{12} \\ a_{21}b_{11} + a_{22}b_{21} & \times \\ \end{pmatrix}$

ightharpoonup Calcul du coefficient c_{22} b_{11} b_{12} b_{21} b_{22} $= \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{12} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$ **Exemples** – Produit de matrices

$$ightharpoonup$$
 Soient $A := \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ 1 & -1 \end{pmatrix}$ et $B := \begin{pmatrix} 0 & 1 \\ -3 & -2 \end{pmatrix}$. Alors, on a

$$AB = \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -3 & -2 \end{pmatrix} = \begin{pmatrix} 1 \times 0 + 1 \times (-3) & 1 \times 1 + 1 \times (-2) \\ 2 \times 0 + 3 \times (-3) & 2 \times 1 + 3 \times (-2) \\ 1 \times 0 - 1 \times (-3) & 1 \times 1 - 1 \times (-2) \end{pmatrix} = \begin{pmatrix} -3 & -1 \\ -9 & -4 \\ 3 & 3 \end{pmatrix}$$

$$ightharpoonup$$
 Soient $C := \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 9 \end{pmatrix}$ et $D := \begin{pmatrix} 0 & 1 & 2 & 4 \\ -3 & -2 & 5 & 6 \\ 1 & 1 & 1 & 1 \end{pmatrix}$. Alors, on a

$$CD = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 9 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 & 4 \\ -3 & -2 & 5 & 6 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 0 & 15 & 19 \\ -6 & 3 & 42 & 55 \end{pmatrix}$$

Par contre le produit DC n'existe pas.

Exercice 4.

Pour chacune des matrices A et B ci-dessous calculer le produit AB lorsque cela est possible.

1)
$$A := \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}$$
 et $B := \begin{pmatrix} 3 & 1 & 2 \\ 1 & 0 & 2 \end{pmatrix}$.

2)
$$A := \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 et $B := \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix}$.

Remarque

Un vecteur $x \in \mathbb{K}^p$ étant une matrice particulière de $\mathcal{M}_{p,1}(\mathbb{K})$, on peut effectuer le produit d'une matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et de x. On obtient alors :

$$\forall i \in [1; n], \qquad (Ax)_i = a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{ip}x_p = \sum_{k=1}^p a_{ik}x_k,$$

et $Ax \in \mathcal{M}_{n,1}(\mathbb{K})$

Attention

- \triangleright Le produit de matrices n'est pas commutatif. Autrement dit, en général, on a $AB \neq BA$.
- ightharpoonup AB = 0 n'implique pas A = 0 ou B = 0. Il peut arriver que le produit de deux matrices non nulles soit nul. En d'autres termes, on peut avoir $A \neq 0$ et $B \neq 0$ mais AB = 0.
- $\triangleright AB = AC$ n'implique pas B = C. On peut avoir AB = AC et $B \neq C$.

© Exemples

Soient
$$A := \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 et $B := \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.

Alors, $AB = \begin{pmatrix} 2 & 3 \\ 4 & 7 \end{pmatrix}$ et $BA = \begin{pmatrix} 3 & 4 \\ 4 & 6 \end{pmatrix}$, donc $AB \neq BA$.

Soient $A := \begin{pmatrix} 0 & -1 \\ 0 & 5 \end{pmatrix}$ et $B := \begin{pmatrix} 2 & -3 \\ 0 & 0 \end{pmatrix}$.

Alors, $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ mais $A \neq 0$ et $B \neq 0$.

Soient $A := \begin{pmatrix} 0 & -1 \\ 0 & 3 \end{pmatrix}$, $B := \begin{pmatrix} 4 & -1 \\ 5 & 4 \end{pmatrix}$ et $C := \begin{pmatrix} 2 & 5 \\ 5 & 4 \end{pmatrix}$.

Alors, $AB = \begin{pmatrix} -5 & -4 \\ 15 & 12 \end{pmatrix} = AC$ mais $B \neq C$.

Malgré les difficultés soulevées au-dessus, le produit vérifie les propriétés suivantes :

Proposition

Soient $(q,r) \in (\mathbb{N}^*)^2$, $(A, A_1, A_2) \in \mathcal{M}_{n,p}(\mathbb{K})^3$, $(B, B_1, B_2) \in \mathcal{M}_{p,q}(\mathbb{K})^3$, $C \in \mathcal{M}_{q,r}(\mathbb{K})$ et $\lambda \in \mathbb{K}$.

1. Le produit de matrices est associatif :

$$(AB)C = A(BC).$$

2. Le produit et l'addition de matrices sont distributifs :

$$(A_1 + A_2)B = A_1B + A_2B$$
 et $A(B_1 + B_2) = AB_1 + AB_2$.

3. Le produit de matrices et la multiplication par un scalaire sont distributifs :

$$(\lambda A)B = A(\lambda B) = \lambda(AB).$$

Remarque – Distributivité

Montrons la propriété de distributivité $(A_1 + A_2)B = A_1B + A_2B$. On note :

- $\,\rhd\, a_{ij}$ (resp. $\alpha_{ij})$ les coefficients de A_1 (resp. $A_2),$
- $\triangleright b_{ij}$ les coefficients de B,
- $\triangleright d_{ij}$ les coefficients de $(A_1 + A_2)B$.

Alors, la somme et le produit étant distributifs dans \mathbb{K} , on obtient

$$d_{ij} = \sum_{k=1}^{p} (a_{ik} + \alpha_{ik})b_{kj} = \sum_{k=1}^{p} a_{ik}b_{kj} + \sum_{k=1}^{p} \alpha_{ik}b_{kj} = (A_1B)_{ij} + (A_2B)_{ij},$$

ce qui donne le résultat.

Exercice 5.

Montrer la propriété de distributivité $A(B_1 + B_2) = AB_1 + AB_2$.

Correction des exercices

Correction de l'Exercice 1.

1) $A \in \mathcal{M}_{3,4}(\mathbb{R})$, $a_{23} = 3$, $a_{32} = 2$, $a_{14} = 4$ et $a_{24} = 11$.

2)
$$B = \begin{pmatrix} 1 & 0s & 6 \\ 3 & 2i & 1+i \\ 4+i & 3 & 2 \\ 5 & 7+i & 2+i \end{pmatrix}.$$

S Correction de l'Exercice 2.

$$A = B \quad \Longleftrightarrow \quad \begin{cases} 2x + 3 = -1 \\ -2y - 4 = 5 \end{cases} \qquad \Longleftrightarrow \quad (x, y) = \left(-2, -\frac{9}{2}\right).$$

Correction de l'Exercice 3.

1) Impossible car $A_1 \in \mathcal{M}_{2,3}$ et $B_1 \in \mathcal{M}_2$;

2)
$$(1+i)A_2 - 2B_2 = \begin{pmatrix} -2+2i & 0 \\ 2 & 2i \\ 1+i & 1+i \end{pmatrix} + \begin{pmatrix} -2 & 2 \\ -6i & -4 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -4+2i & 2 \\ 2-6i & -4+2i \\ 1+i & 1+i \end{pmatrix}.$$

Correction de l'Exercice 4.

1)
$$A \in \mathcal{M}_{2,2}(\mathbb{R})$$
 et $B \in \mathcal{M}_{2,3}(\mathbb{R})$ donc $AB \in \mathcal{M}_{2,3}(\mathbb{R})$ et $AB = \begin{pmatrix} 3 & 2 & -2 \\ -1 & -1 & 2 \end{pmatrix}$.

2) Produit impossible car A a 3 colonnes alors que B a 4 lignes.

Correction de l'Exercice 5.

$$\sum_{k=1}^{p} a_{ik}(b1_{kj} + b2_{kj}) = \sum_{k=1}^{p} a_{ik}b1_{kj} + a_{ik}b2_{kj} = \sum_{k=1}^{p} a_{ik}b1_{kj} + \sum_{k=1}^{p} a_{ik}b2_{kj}.$$

Feuille d'exercices : Séquence 1

S Exercice 1.

Soient A et B les matrices définies par

$$A := \begin{pmatrix} 1 & -6 & 8 & 4 \\ 0 & 7 & 3 & 11 \\ 3 & 2 & 5 & 9 \end{pmatrix} \quad \text{et} \quad B := \begin{pmatrix} 1 & \times & 6 \\ \times & 2i & \times \\ 4+i & 3 & \times \\ 5 & 7+i & \times \end{pmatrix}.$$

- 1) Donner la taille de A et identifier les coefficients a_{23} , a_{32} , a_{14} et a_{24} .
- 2) Compléter l'écriture de $B \in \mathcal{M}_{4,3}(\mathbb{C})$ avec $b_{33} := 2$, $b_{23} := 1 + i$, $b_{12} := 0$, $b_{43} := 2 + i$ et $b_{21} := 3$.

S Exercice 2.

1) Donner la matrice A de taille 3×3 dont les coefficients a_{ij} sont donnés, pour tout $(i,j) \in \{1,2,3\}^2$, par

$$a_{ij} \coloneqq 2i - j$$
.

2) Donner la matrice B de taille 4×4 dont les coefficients b_{ij} sont donnés, pour tout $(i,j) \in \{1,2,3,4\}^2$, par

$$b_{ij} \coloneqq (-1)^{i+j}$$
.

S Exercice 3.

1) Soient

$$A := \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & -6 \end{pmatrix}$$
 et $B := \begin{pmatrix} 3 & 0 & 2 \\ -7 & 1 & 8 \end{pmatrix}$.

Calculer A + B et 2A - 3B.

2) Soient

$$A := \begin{pmatrix} -4 & 1 & 3 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 1 & -2 & 6 & 5 \end{pmatrix} \qquad \text{et} \qquad B := \begin{pmatrix} 5 & -1 & -3 & 0 \\ -1 & 1 & 0 & -1 \\ 0 & 0 & 3 & 0 \\ -1 & 2 & -6 & 6 \end{pmatrix}.$$

13

Calculer A + B.

Exercice 4.

Soient $A := \begin{pmatrix} x & 5 \\ 0 & 2x \end{pmatrix}$ et $B := \begin{pmatrix} y & 7 \\ -1 & 3y \end{pmatrix}$.

- 1) Trouver $(x,y) \in \mathbb{R}^2$ tel que $A + B = \begin{pmatrix} 4 & 12 \\ -1 & 16 \end{pmatrix}$.
- 2) Trouver $(x,y) \in \mathbb{R}^2$ tel que $2A 4B = \begin{pmatrix} -5 & -18 \\ 4 & -16 \end{pmatrix}$.

Exercice 5.

Soient

ient
$$A := \begin{pmatrix} 2 & 5 \\ 3 & 6 \\ 4 & 7 \end{pmatrix}$$

$$B := \begin{pmatrix} 2 & 5+i \\ 4-2i & 6 \end{pmatrix}$$

$$C := \begin{pmatrix} 0 & -1 & 6 \\ 2 & 4 & -2 \\ 3 & 5 & 3 \end{pmatrix}$$

$$D := \begin{pmatrix} 2 & 5 & 0 \\ 3 & 6 & 3-2i \\ 4 & 1+3i & 2 \end{pmatrix}$$

$$F := \begin{pmatrix} 1-i \\ 1+i \end{pmatrix}$$

$$G := \begin{pmatrix} 2 & 5 & 0 & 3 \\ 3 & 6 & 3 & 5 \end{pmatrix}$$

$$H := \begin{pmatrix} 2 & 5 & 0 \\ 3 & 6 & 3 \\ 2 & 5 & 0 \\ 3 & 6 & 3 \end{pmatrix}$$

$$I := \begin{pmatrix} -1 & 4 & 5 \end{pmatrix}.$$

Déterminer tous les produits matriciels possibles pour les matrices ci-dessus, puis les calculer.

S Exercice 6.

Pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$, on définit la **trace** de A, notée $\operatorname{tr}(A)$, comme étant la somme des éléments diagonaux de A.

- 1) Redonner la définition de la trace d'une matrice en utilisant le symbole Σ .
- 2) Montrer que, pour tous $A \in \mathcal{M}_n(\mathbb{K})$, $B \in \mathcal{M}_n(\mathbb{K})$ et pour tout $\lambda \in \mathbb{K}$,

$$\operatorname{tr}(\lambda A) = \lambda \operatorname{tr}(A)$$
 et $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$.

Exercice 7.

- 1) Soient $A := \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$ et $B := \begin{pmatrix} 2 & 3 \\ 2 & 3 \end{pmatrix}$. Calculer AB.
- 2) Que peut-on en déduire sur le produit de matrices?

Exercice 8.

Soient $A := \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ et $B := \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, où $(a, b, c, d) \in \mathbb{R}^4$.

- 1) Déterminer a, b, c et d tels que $AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **2)** Montrer que la matrice B obtenue vérifie $BA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Exercice 9.

Soient $(q,r) \in (\mathbb{N}^*)^2$, $A \in \mathcal{M}_{n,p}(\mathbb{K})$, $(B,B_1,B_2) \in \mathcal{M}_{p,q}(\mathbb{K})^3$, $C \in \mathcal{M}_{q,r}(\mathbb{K})$ et $\lambda \in \mathbb{K}$. Montrer les propriétés suivantes :

- 1) $A(B_1 + B_2) = AB_1 + AB_2$;
- **2)** $(\lambda A)B = A(\lambda B) = \lambda(AB)$;
- **3)** (AB)C = A(BC).

Exercice 10.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Montrer que

$$F \coloneqq \{x \in \mathbb{K}^n \mid Ax = 0_{\mathbb{K}^n}\}$$

est un sous-espace vectoriel de \mathbb{K}^n .

Chapitre 8 - Séquence 2

Matrices particulières et inverse d'une matrice carrée

Matrices particulières 4

Définitions : Matrices diagonales et matrices identités

Soit $A := (a_{ij})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K})$.

- \triangleright Les coefficients de la diagonale de la matrice A sont les coefficients a_{ii} , pour tout $i \in [1; n]$.
- \triangleright La matrice A est dite **diagonale** si, pour tout $(i,j) \in [1;n]^2$ tels que $i \neq j$, $a_{ij} = 0$. Autrement dit, une matrice carrée est diagonale si tous ses coefficients en dehors de la diagonale sont nuls.
- \triangleright On appelle **matrice identité** de $\mathcal{M}_n(\mathbb{K})$, notée I_n , la matrice diagonale de $\mathcal{M}_n(\mathbb{K})$ qui n'a que des 1 sur la diagonale.

🔼 Attention

Les notions de matrices diagonales et matrice identité n'ont de sens que dans le cadre des matrices carrées.

$igoplus \mathbf{Exemples} - \mathit{Matrices}\ \mathit{diagonales}\ \mathit{et}\ \mathit{matrices}\ \mathit{identit\'es}$

 \triangleright Les matrices D_1 et D_2 ci-dessous sont des matrices diagonales :

$$D_1 := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}, \quad D_2 := \begin{pmatrix} 3i & 0 \\ 0 & 8 \end{pmatrix}.$$

▶ La matrice

$$D := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

est diagonale (une matrice diagonale peut aussi avoir des coefficients diagonaux nuls).

 \triangleright La matrice identité est la même dans $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{M}_n(\mathbb{C})$. Voici par exemple les matrices identités de $\mathcal{M}_1(\mathbb{R}), \mathcal{M}_2(\mathbb{R}), \mathcal{M}_3(\mathbb{R})$ et $\mathcal{M}_4(\mathbb{R})$:

17

$$I_1 := (1), \quad I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad I_3 := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{et} \quad I_4 := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

0 Remarques

Pour deux entiers i et j, on définit le **symbole de Kronecker** par

$$\delta_{ij} := \begin{cases} 1 & \text{si } i = j, \\ 0 & \text{sinon.} \end{cases}$$

Alors,

ightharpoonup la matrice identité de $\mathcal{M}_n(\mathbb{K})$ a pour coefficients $\delta_{ij}: I_n = (\delta_{ij})_{1 \leq i,j \leq n}$. ightharpoonup si $D := (d_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{K})$ est une matrice diagonale alors ses coefficients vérifient $d_{ij} = d_i \, \delta_{ij}$,

$$d_{ij} = d_i \, \delta_{ij}$$

où, pour tout $i \in [1; n]$, $d_i \in \mathbb{K}$ est le *i*ème terme de la diagonale de D.

Proposition

1. Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$. Alors $AI_p = A$ et $I_nA = A$.

2. Si $B \in \mathcal{M}_n(\mathbb{K})$ est telle que, pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$, AB = BA, alors $B = I_n$.

🔥 Remarque

La proposition précédente signifie que la matrice \mathcal{I}_n est l'unique élément neutre pour la multiplication de matrices de $\mathcal{M}_n(\mathbb{K})$.

Définition : Puissance d'une matrice

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On définit la **puissance** d'une matrice par

$$A^0 := I_n$$
 et $A^p := AA^{p-1}$, pour tout $p \in \mathbb{N}^*$.

Autrement dit, pour tout $p \in \mathbb{N}$, $A^p = \underbrace{AA \dots A}_{p \text{ fois}}$.

$$ightharpoonup Pour A := \begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix}$$
, on a

Pour tout
$$p \in \mathbb{N}$$
, $(I_n)^p = I_n$.

Pour $A := \begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix}$, on a
$$A^2 = \begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ -3 & 1 \end{pmatrix} \quad \text{et} \quad A^3 = AA^2 = \begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ -7 & 1 \end{pmatrix}.$$

Exercice 1.

Soit $A := \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$. Calculer A^k pour k = 2, 3, 4.

Définitions: Matrice transposée et matrice adjointe

Soit $A := (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in \mathcal{M}_{n,p}(\mathbb{K}).$

1. On appelle matrice transposée de A la matrice de $\mathcal{M}_{p,n}(\mathbb{K})$, notée A^t , telle que pour tous $i \in [1; p]$ et $j \in [1; n]$,

$$(A^t)_{ij} \coloneqq a_{ji}.$$

2. On appelle matrice adjointe de A la matrice de $\mathcal{M}_{p,n}(\mathbb{K})$, notée A^* , telle que pour tous $i \in [1; p]$ et $j \in [1; n]$,

$$(A^*)_{ij} := \overline{a_{ji}}.$$

🔥 Remarque

Dans le cas où $\mathbb{K} := \mathbb{R}$, la matrice adjointe est simplement la matrice transposée.

🔼 Attention

Si la taille de A est $n \times p$, la taille de A^t et de A^* est $p \times n$.

Exemples

$$ightharpoonup ext{Pour } A := \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, ext{ on a } A^t = A^* = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}.$$

$$ightharpoonup ext{Pour } A := \begin{pmatrix} 1+2i & 3 & 5 & 7 \\ 6 & 4 & 3+i & 2 \\ 0 & i & 8 & 2+3i \end{pmatrix}, ext{ on a}$$

$$A^{t} = \begin{pmatrix} 1+2i & 6 & 0 \\ 3 & 4 & i \\ 5 & 3+i & 8 \\ 7 & 2 & 2+3i \end{pmatrix} \quad \text{et} \quad A^{*} = \begin{pmatrix} 1-2i & 6 & 0 \\ 3 & 4 & -i \\ 5 & 3-i & 8 \\ 7 & 2 & 2-3i \end{pmatrix}.$$

$$ightharpoonup$$
 Pour $A := \begin{pmatrix} 1 & 2+3i & i \\ 2-i & 3 & -2i \end{pmatrix}$, on a

$$A^{t} = \begin{pmatrix} 1 & 2-i \\ 2+3i & 3 \\ i & -2i \end{pmatrix} \quad \text{et} \quad A^{*} = \begin{pmatrix} 1 & 2+i \\ 2-3i & 3 \\ -i & 2i \end{pmatrix}.$$

S Exercice 2.

1) Donner les transposées des matrices suivantes :

$$A \coloneqq \left(\begin{array}{cc} 1 & 2 \\ -3 & -4 \end{array}\right), \quad B \coloneqq \left(\begin{array}{cc} 1 \\ 2 \\ 1 \end{array}\right), \quad C \coloneqq \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 3 & -4 \end{array}\right), \quad D \coloneqq \left(\begin{array}{ccc} 1 & 0 & 0 & 0 \\ 8 & 3 & 0 & 0 \\ 5 & 2 & 4 & 0 \\ 2 & 3 & 0 & 1 \end{array}\right).$$

2) Déterminer la matrice adjointe pour chacune des matrices suivantes :

$$A \coloneqq \begin{pmatrix} i & \sqrt{3}i & 1 \\ 0 & 0 & 1 - \frac{2}{3}i \\ 8 - 6i & 0 & 5 \end{pmatrix}, \qquad B \coloneqq \begin{pmatrix} i & -2 & 4 - \sqrt{7}i \end{pmatrix}, \qquad C \coloneqq \begin{pmatrix} \frac{i}{2} & 1 \\ 0 & i^3 \\ 4 & 0 \\ i^2 & 3 \end{pmatrix}.$$

Proposition

Soient $q \in \mathbb{N}^*$, $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,q}(\mathbb{K})$. Alors,

$$\triangleright (A^*)^* = A,$$

$$\triangleright (A^t)^t = A,$$

$$\triangleright (AB)^* = B^*A^*$$

$$(AB)^t = B^t A^t$$
.

5 Inverse d'une matrice carrée

Remarque

Pour tout $a \in \mathbb{K}^*$, il existe un inverse $\frac{1}{a}$, noté aussi a^{-1} , qui vérifie

$$aa^{-1} = a^{-1}a = 1.$$

L'équivalent du nombre 1 de \mathbb{K} (l'élément neutre pour la multiplication) pour $\mathcal{M}_n(\mathbb{K})$ est la matrice identité I_n .

L'équivalent dans $\mathcal{M}_n(\mathbb{K})$ de la notion d'inverse dans \mathbb{K} est donné par la définition ci-dessous.

Définitions: Matrice inversible et matrice inverse

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On dit que A est **inversible** s'il existe $B \in \mathcal{M}_n(\mathbb{K})$ telle que

$$AB = BA = I_n$$
.

Si B existe, elle est unique, on l'appelle l'**inverse** de A, et on la note A^{-1} .

L'ensemble des matrices inversibles est noté $\mathcal{GL}_n(\mathbb{K})$ et est appelé le **groupe linéaire** de $\mathcal{M}_n(\mathbb{K})$.

\triangle Attention

 $\,\rhd\,$ La notion de matrice inversible n'existe que pour des matrices $\mathit{carr\'ees}.$

De Toutes les matrices carrées n'admettent pas forcément de matrice inverse.

Exemples − Matrice inversible et matrice inverse

 $\,\rhd\,$ La matrice identité est inversible et son inverse est elle-même :

$$I_n \in \mathcal{GL}_n(\mathbb{K})$$
 et $I_n^{-1} = I_n$.

$$ightharpoonup$$
 Soient $A:=\begin{pmatrix}1&2\\3&4\end{pmatrix}$ et $B:=\frac{1}{2}\begin{pmatrix}-4&2\\3&-1\end{pmatrix}$. On a

$$AB = \frac{1}{2} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -4 & 2 \\ 3 & -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = I_n,$$

et

$$BA = \frac{1}{2} \begin{pmatrix} -4 & 2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = I_n,$$

donc A est inversible et $B = A^{-1}$.

Définition

Soient $n \in \mathbb{N}^*$, $p \in \mathbb{N}$ et soit $P \in \mathbb{K}[X]$ donné par

$$P(X) := \sum_{k=0}^{p} a_k X^k,$$

où, pour tout $k \in [0; p], a_k \in \mathbb{K}$.

Pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$, on définit P(A) par

$$P(A) := \sum_{k=0}^{p} a_k A^k = a_0 I_n + a_1 A + a_2 A^2 + \dots + a_p A^p.$$

Exemple

Soient $P(X):=X^3-X^2+2X+1\in\mathbb{K}[X]$ et $A:=\begin{pmatrix}2&0\\-1&1\end{pmatrix}$. On a vu précédemment que l'on a $A^2=\begin{pmatrix}4&0\\-3&1\end{pmatrix}\quad\text{et}\quad A^3=\begin{pmatrix}8&0\\-7&1\end{pmatrix},$ donc

$$A^2 = \begin{pmatrix} 4 & 0 \\ -3 & 1 \end{pmatrix} \quad \text{et} \quad A^3 = \begin{pmatrix} 8 & 0 \\ -7 & 1 \end{pmatrix},$$

onc
$$P(A) = A^{3} - A^{2} + 2A + I_{2} = \begin{pmatrix} 8 & 0 \\ -7 & 1 \end{pmatrix} - \begin{pmatrix} 4 & 0 \\ -3 & 1 \end{pmatrix} + \begin{pmatrix} 4 & 0 \\ -2 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 9 & 0 \\ -6 & 3 \end{pmatrix}.$$

S Exercice 3.

Soit $A := \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

- 1) Soit $P(X) := X^2 2X + 1$. Calculer P(A) et en déduire l'égalité : $-A^2 + 2A = I_3$.
- 2) Calculer $B := -A + 2I_3$.
- 3) En déduire que B est l'inverse de A.

Remarque

Si A est inversible, alors A^{-1} est inversible et $(A^{-1})^{-1} = A$.

Proposition

Si A et B sont deux matrices de $\mathcal{GL}_n(\mathbb{K})$, alors $AB \in \mathcal{GL}_n(\mathbb{K})$ et $(AB)^{-1} = B^{-1}A^{-1}$. Autrement dit, le produit de matrices inversibles est inversible.

Remarques

Soient A, B et C trois matrices de $\mathcal{GL}_n(\mathbb{K})$. D'après la proposition précédente et les propriétés du produit matriciel :

- $\triangleright \mathcal{GL}_n(\mathbb{K})$ est *stable* pour le produit matriciel : $AB \in \mathcal{GL}_n(\mathbb{K})$;
- \triangleright le produit matriciel est associatif: (AB)C = A(BC);
- \triangleright le produit matriciel admet I_n comme élément neutre : $I_nA = AI_n = A$;
- \triangleright tout élément de $\mathcal{GL}_n(\mathbb{K})$ admet un *inverse* pour le produit matriciel :

$$AA^{-1} = A^{-1}A = I_n.$$

Ces propriétés font de $\mathcal{GL}_n(\mathbb{K})$ muni du produit matriciel, un **groupe** (d'où l'appellation de groupe linéaire). Cette notion sera abordée plus en détail en deuxième année.

Proposition

Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est inversible si et seulement s'il existe $B \in \mathcal{M}_n(\mathbb{K})$ telle que $AB = I_n$ ou $BA = I_n$ et, dans ce cas, $B = A^{-1}$.

🔴 Remarque

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $B \in \mathcal{M}_n(\mathbb{K})$. Si $AB = I_n$ on dit que A est l'inverse à gauche de B et que B est l'inverse à droite de A.

La proposition précédente signifie que pour montrer que A est inversible, il suffit de montrer qu'elle admet un inverse à gauche B ou bien un inverse à droite B. De plus, dans ce cas, $B = A^{-1}$.

Exemple

Soient
$$A := \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 et $B := \begin{pmatrix} 1 & 0 & -1 \\ -2 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Alors,

$$AB = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ -2 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_n.$$

Donc B est l'inverse à droite de A, d'où A est inversible et $B = A^{-1}$.

S Exercice 4.

Soient
$$A := \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 et $B := \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$.

- 1) Calculer AB.
- 2) En déduire que A est inversible et donner A^{-1} .

\bigcirc Remarque — Système linéaire et matrice

Considérons le système

$$\begin{cases} 2x_1 + 3x_2 + 2x_3 = 1 \\ x_1 + x_2 + x_3 = 3 \\ 3x_1 + 8x_3 = 8 \end{cases}$$

On a vu au début de la première séquence que la matrice contenant les coefficients de ce

$$A := \begin{pmatrix} 2 & 3 & 2 \\ 1 & 1 & 1 \\ 3 & 0 & 8 \end{pmatrix}.$$

On pose $x := \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ et $b := \begin{pmatrix} 1 \\ 3 \\ 8 \end{pmatrix}$. Alors, x et b sont des vecteurs de \mathbb{R}^3 (ou encore des

En utilisant le produit de matrices, le système précédent peut alors s'écrire plus simplement :

Plus généralement, un système linéaire de n équation et p inconnues peut s'écrire sous la

$$Ax = b$$
,

où $A \in \mathcal{M}_{n,p}(\mathbb{K})$, $x \in \mathcal{M}_{p,1}(\mathbb{K})$ et $b \in \mathcal{M}_{n,1}(\mathbb{K})$. Dans le cas où n = p, si A est inversible, on obtient

$$x = I_n x = A^{-1} A x = A^{-1} b$$

Ainsi, si l'on connaît A^{-1} , on obtient la solution x en calculant $A^{-1}b$.

Exemple

Le système linéaire

$$\begin{cases} x_1 & + x_3 = 1 \\ 2x_1 + x_2 + x_3 = 0 \\ x_3 = 2 \end{cases}$$

$$A := \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad x := \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad \text{et} \quad b := \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}.$$

On remarque que la matrice A est celle de l'exemple précédent, on a

$$A^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ -2 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{donc} \quad x = A^{-1}b = \begin{pmatrix} 1 & 0 & -1 \\ -2 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix},$$

d'où $x_1 = -1$, $x_2 = 0$ et $x_3 = 2$.

Exercice 5.

On rappelle que la matrice $A := \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ vue précédemment a pour inverse

$$A^{-1} = \begin{pmatrix} -1 & -2 & 2\\ 1 & 2 & -1\\ -1 & -1 & 2 \end{pmatrix}.$$

En déduire les solutions du système linéaire

$$\begin{cases} 3x_1 + 2x_2 - 2x_3 = 1 \\ -x_1 + x_3 = 2 \\ x_1 + x_2 = 3 \end{cases}$$

Correction des exercices

Correction de l'Exercice 1.

On obtient

$$A^{2} = \begin{pmatrix} 1 & 3 \\ 0 & 4 \end{pmatrix}, \quad A^{3} = \begin{pmatrix} 1 & 7 \\ 0 & 8 \end{pmatrix}, \quad A^{4} = \begin{pmatrix} 1 & 15 \\ 0 & 16 \end{pmatrix}.$$

Scorrection de l'Exercice 2.

⊳ On a

$$A^{t} = \begin{pmatrix} 1 & -3 \\ 2 & -4 \end{pmatrix}, \quad B^{t} = \begin{pmatrix} 1 & 2 & 1 \end{pmatrix}, \quad C^{t} = \begin{pmatrix} 1 & 2 \\ 2 & 3 \\ 3 & -4 \end{pmatrix}, \quad D^{t} = \begin{pmatrix} 1 & 8 & 5 & 2 \\ 0 & 3 & 2 & 3 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

⊳ On a

$$A^* = \begin{pmatrix} -i & 0 & 8+6i \\ -\sqrt{3}i & 0 & 0 \\ 1 & 1+\frac{2}{3}i & 5 \end{pmatrix}, \qquad B^* = \begin{pmatrix} -i \\ -2 \\ 4+\sqrt{7}i \end{pmatrix}, \qquad C^* = \begin{pmatrix} -\frac{i}{2} & 0 & 4 & -1 \\ 1 & i & 0 & 3 \end{pmatrix}.$$

Correction de l'Exercice 3.

1) $P(A) = A^2 - 2A + I_3 = 0$ car:

$$A^{2} = AA = \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 5 & 4 & -4 \\ -2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$
$$-2A = \begin{pmatrix} -6 & -4 & 4 \\ 2 & -2 \\ -2 & -2 & 0 \end{pmatrix}$$

D'où

$$A^{2} - 2A + I_{3} = \begin{pmatrix} 5 & 4 & -4 \\ -2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix} + \begin{pmatrix} -6 & -4 & 4 \\ 2 & 0 & -2 \\ -2 & -2 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $Donc -A^2 + 2A = I_3.$

2)
$$B = -A + 2I_3 = \begin{pmatrix} -1 & -2 & 2 \\ 1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
.

3) Comme $A^2-2A+I_3=0$, alors $-A^2+2A=I_3$ et donc $A(-A+2I_3)=I_3$. Or $B=-A+2I_3$. D'où $AB=I_3$ et B est l'inverse de A.

S Correction de l'Exercice 4.

On a

$$AB = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = I_3.$$

Alors, A est inversible et $A^{-1} = B$.

Correction de l'Exercice 5.

Le système s'écrit : Ax = b où :

$$A = \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad \text{et} \quad b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

On a donc
$$Ax = b \Rightarrow x = A^{-1}b = \begin{pmatrix} -1 & -2 & 2 \\ 1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

La solution du système est donc :

$$(x_1, x_2, x_3) = (1, 2, 3).$$

Feuille d'exercices : Séquence 2

S Exercice 1.

Pour chacune des matrices A_k , $k \in \{1, 2, 3\}$, ci-dessous, calculer

- 1) la transposée A_k^t ,
- 2) l'adjointe A_k^* .

$$A_1 := \begin{pmatrix} 2 & -3i \\ i+4 & 2 \end{pmatrix}, \qquad A_2 := \begin{pmatrix} -2 & 0 & 3 \\ 0 & 4 & -1 \\ 2 & -1 & 2 \end{pmatrix}, \qquad A_3 := \begin{pmatrix} i & 5 & 2+3i & 1/5 \\ \sqrt{3} & 0 & 8i+2/3 & \pi i \\ 2 & -i & 2 & i-6\sqrt{3} \\ 0 & 3 & 8i & -1 \end{pmatrix}.$$

Exercice 2.

- 1) Trouver une matrice de $\mathcal{M}_2(\mathbb{R})$ dont la transposée soit son opposée.
- 2) Donner la matrice A (resp. B) de taille 2×3 dont les coefficients a_{ij} (resp. b_{ij}) sont donnés, pour tous $i \in \{1, 2\}$ et $j \in \{1, 2, 3\}$, par

$$a_{ij} := i + j + \delta_{ij}$$
 et $b_{ij} := i + j - \delta_{ij}$.

Exercice 3.

- 1) Soient $(A, B) \in (\mathcal{M}_{n,p}(\mathbb{K}))^2$. Montrer que $(A + B)^* = A^* + B^*$.
- 2) Soient $q \in \mathbb{N}^*$, $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,q}(\mathbb{K})$. Montrer les propriétés suivantes :

a)
$$(A^*)^* = A$$
,

c)
$$(A^t)^t = A$$
,

b)
$$(AB)^* = B^*A^*,$$

$$\mathbf{d)} \ (AB)^t = B^t A^t.$$

Exercice 4.

- 1) Soient $A := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $B := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.
 - a) Calculer $(A+B)^2$ et $A^2+2AB+B^2$. Que peut-on en déduire?
 - b) Calculer $(AB)^2$ et A^2B^2 . Que peut-on en déduire?
- 2) Soit $n \in \mathbb{N}^*$ et soient A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$ telles que AB = BA (on dit alors que A et B commutent). Montrer que $(A + B)^2 = A^2 + 2AB + B^2$ et $(AB)^2 = A^2B^2$.

👸 Remarque

Plus généralement, on peut montrer que si deux matrices A et B de $\mathcal{M}_n(\mathbb{K})$ commutent, alors la formule du binôme de Newton est vérifiée :

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^{n-k} B^k.$$

27

Exercice 5.

Soit $A := \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$.

- 1) Calculer A^2 , A^3 et A^4 .
- 2) En déduire A^k pour tout $k \in \mathbb{N}$.

Exercice 6.

Soit $A := \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$. Montrer, par récurrence, que pour tout $n \in \mathbb{N}$, $A^n = \begin{pmatrix} 2^n & 0 \\ 2^n - 1 & 1 \end{pmatrix}$.

S Exercice 7.

Soit $A := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

- 1) Montrer, par récurrence, que pour tout $n \in \mathbb{N}$, $A^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$.
- 2) Peut-on utiliser la formule du binôme de Newton pour développer l'expression $(A + I_2)^n$ pour n un entier naturel non-nul? Justifier votre réponse.
- 3) Déterminer $(A + I_2)^5$.

Exercice 8.

Soient

$$A := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \text{et} \qquad C := \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- 1) Montrer que $C^n = 0$ pour tout $n \ge 4$.
- 2) Montrer par récurrence que pour tout entier $n \geq 1$, on a

S Exercice 9.

Soit
$$A := \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
.

- 1) Montrer que $A^3 = I_3$.
- 2) Déterminer A^n pour tout $n \in \mathbb{N}$.

Exercice 10.

Soit $A := \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$. Calculer A^3 . En déduire que A est inversible et donner A^{-1} .

S Exercice 11.

Soit $A := \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Soit $P := X^3 - 3X^2 + 3X - 1$ un polynôme de $\mathbb{K}[X]$.

- 1) Montrer que P(A) = 0.
- 2) En déduire que A est inversible et déterminer A^{-1} .

Exercice 12.

Soit $A := \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix}$. Soit $P := X^2 - 3X + 2$ un polynôme de $\mathbb{K}[X]$.

- 1) Calculer P(A). En déduire que A est inversible et calculer son inverse.
- 2) a) Factoriser le polynôme P.
 - **b)** Pour $n \geq 2$, trouver a et b deux réels tels que

$$X^{n} = (X^{2} - 3X + 2)Q(X) + aX + b,$$

où Q est un polynôme que l'on ne cherchera pas à déterminer.

3) En déduire l'expression de la matrice A^n .

S Exercice 13.

Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle qu'il existe $B \in \mathcal{M}_n(\mathbb{K})$ vérifiant

$$AB = I_n + A + A^2.$$

- 1) Montrer que A est inversible et déterminer A^{-1} .
- 2) Montrer que A et B commutent.

S Exercice 14.

1) Montrer que les deux matrices

$$A \coloneqq \begin{pmatrix} 1 & -3 & -2 \\ -1 & 1 & 1 \\ -2 & -1 & 0 \end{pmatrix} \quad \text{et} \quad B \coloneqq \begin{pmatrix} 1 & 2 & -1 \\ -2 & -4 & 1 \\ 3 & 7 & -2 \end{pmatrix}$$

sont deux matrices inverses l'une de l'autre.

2) En déduire les solutions des deux systèmes linéaires suivants :

$$\begin{cases} x_1 - 3x_2 - 2x_3 = 1 \\ -x_1 + x_2 + x_3 = 0 \\ -2x_1 - x_2 = 3 \end{cases}$$
 et
$$\begin{cases} x_1 + 2x_2 - x_3 = 2 \\ -2x_1 - 4x_2 + x_3 = 1 \\ 3x_1 + 7x_2 - 2x_3 = 1. \end{cases}$$

S Exercice 15.

Soit $\theta \in]-\pi;\pi]$. On appelle **matrice de rotation d'angle** θ , la matrice $R_{\theta} \in \mathcal{M}_2(\mathbb{R})$ définie par

$$R_{\theta} := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

- 1) Donner les matrices de rotation d'angle $0, \frac{\pi}{2}, \frac{\pi}{3}$ et $\frac{\pi}{4}$.
- 2) Vérifier que $R_{\theta}^t = R_{-\theta}$.
- 3) Soit $\theta' \in [-\pi; \pi]$. Calculer $R_{\theta}R_{\theta'}$.
- 4) En déduire que R_{θ} est inversible et donner R_{θ}^{-1} .

S Exercice 16.

Soient $A \in \mathcal{GL}_n(\mathbb{K})$ et $B \in \mathcal{GL}_n(\mathbb{K})$. Montrer que $AB \in \mathcal{GL}_n(\mathbb{K})$ et que $(AB)^{-1} = B^{-1}A^{-1}$.

S Exercice 17.

On pose

$$A := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix} \quad \text{et} \quad P := \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix}.$$

- 1) Calculer $P^3 P^2 + P$.
- 2) En déduire P^{-1} .
- 3) Calculer $D := P^{-1}AP$.

Exercice 18.

Déterminer à quelle condition une matrice diagonale est inversible et, dans ce cas, déterminer son inverse.

Exercice 19.

Soit $A \in \mathcal{M}_n(\mathbb{K})$ inversible. Montrer que A^* est inversible et $(A^*)^{-1} = (A^{-1})^*$.

S Exercice 20.

Soient $P \in \mathcal{M}_n(\mathbb{K})$ une matrice inversible et $D \in \mathcal{M}_n(\mathbb{K})$ une matrice diagonale.

- 1) Déterminer D^k , pour tout $k \in \mathbb{N}$.
- **2)** Soient $A := PDP^{-1}$ et $k \in \mathbb{N}$. Donner A^k en fonction de D et P.

Chapitre 8 - Séquence 3

Déterminant d'une matrice carrée

6 Déterminants

Définition : Déterminant d'une matrice de $\mathcal{M}_2(\mathbb{K})$.

Soit $A := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$. On appelle **déterminant** de A, l'élément de \mathbb{K} , noté det A défini par :

$$\det A := \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - cb.$$

Exemple

Pour $A := \begin{pmatrix} 1 & 5 \\ 2 & 3 \end{pmatrix}$, on a det $A = 1 \times 3 - 2 \times 5 = -7$.

Exercice 1.

Soit $A \in \mathcal{M}_2(\mathbb{K})$. Montrer que det $A = \det A^t$.

Définition : Déterminant d'un élément de $\mathcal{M}_n(\mathbb{K})$.

Soit $A := (a_{ij})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K})$ avec $n \ge 3$. On appelle **déterminant** de A, noté det A ou

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

l'élément de K défini de la manière suivante :

$$ightharpoonup \grave{a} \ i_0 \in [\![1;n]\!] \ \text{fix\'e}, \qquad \det A \coloneqq \sum_{j=1}^n (-1)^{i_0+j} a_{i_0j} \det A_{i_0j}$$
 (1)

ou

$$\triangleright \ \text{à} \ j_0 \in [1; n] \ \text{fix\'e}, \qquad \det A := \sum_{i=1}^n (-1)^{i+j_0} a_{ij_0} \det A_{ij_0}$$
 (2)

où, pour tous $(i, j) \in [1; n]^2$, $A_{ij} \in \mathcal{M}_{n-1}(\mathbb{K})$ est la matrice carrée déduite de A en supprimant la i-ième ligne et la j-ième colonne.

% Vocabulaire

- \triangleright Utiliser la première formule (1) pour calculer le déterminant de A se dit **développer** le déterminant de A selon la i-ième ligne.
- \triangleright Utiliser la deuxième formule (2) se dit **développer le déterminant de** A **selon** la j-ième colonne.

Exemple

On veut calculer le déterminant de $A := \begin{pmatrix} 1 & -2 & 4 \\ 3 & 5 & -1 \\ 2 & 6 & -3 \end{pmatrix}$.

⊳ Si on développe selon la première ligne, on obtient :

$$\det A = \begin{vmatrix} 1 & -2 & 4 \\ 3 & 5 & -1 \\ 2 & 6 & -3 \end{vmatrix} =$$

$$= (1)(-1)^{1+1} \begin{vmatrix} 5 & -1 \\ 6 & -3 \end{vmatrix} + (-2)(-1)^{1+2} \begin{vmatrix} 3 & -1 \\ 2 & -3 \end{vmatrix} + 4(-1)^{1+3} \begin{vmatrix} 3 & 5 \\ 2 & 6 \end{vmatrix}$$

$$= (-15+6) + 2(-9+2) + 4(18-10) = -9 + 2(-7) + 4(8) = 9.$$

⊳ Si on développe selon la deuxième colonne, on obtient :

$$\det A = \begin{vmatrix} 1 & -2 & 4 \\ 3 & 5 & -1 \\ 2 & 6 & -3 \end{vmatrix} =$$

$$= (-2)(-1)^{1+2} \begin{vmatrix} 3 & -1 \\ 2 & -3 \end{vmatrix} + 5(-1)^{2+2} \begin{vmatrix} 1 & 4 \\ 2 & -3 \end{vmatrix} + 6(-1)^{3+2} \begin{vmatrix} 1 & 4 \\ 3 & -1 \end{vmatrix}$$

$$= 2(-9+2) + 5(-3-8) - 6(-1-12) = 2(-7) + 5(-11) - 6(-13) = 9.$$

Si on développe selon la troisième colonne, on obtient :

$$\det A = \begin{vmatrix} 1 & -2 & 4 \\ 3 & 5 & -1 \\ 2 & 6 & -3 \end{vmatrix} =$$

$$= (4)(-1)^{1+3} \begin{vmatrix} 3 & 5 \\ 2 & 6 \end{vmatrix} + (-1)(-1)^{2+3} \begin{vmatrix} 1 & -2 \\ 2 & 6 \end{vmatrix} + (-3)(-1)^{3+3} \begin{vmatrix} 1 & -2 \\ 3 & 5 \end{vmatrix}$$

$$= 4(18 - 10) + (6 + 4) - 3(5 + 6) = 4(8) + 10 - 3(11) = 9.$$

On peut voir que, en développant selon n'importe quelle ligne ou colonne, on trouvera toujours la même valeur, c'est-à-dire 9.

Exercice 2.

Calculer les déterminants des matrices suivantes :

$$A \coloneqq \begin{pmatrix} 3 & 2 \\ -1 & 4 \end{pmatrix}, \quad B \coloneqq \begin{pmatrix} 2 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 4 & 1 \end{pmatrix}, \quad C \coloneqq \begin{pmatrix} 0 & -2 & 1 & 0 \\ 3 & 0 & 2 & 0 \\ 2 & 1 & 5 & -4 \\ 1 & 5 & 0 & 2 \end{pmatrix}.$$

Propriétés

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors:

- 1. Si une ligne (resp. une colonne) de A n'est constituée que de zéros, $\det A = 0$.
- 2. Si deux lignes (resp. deux colonnes) de A sont égales, $\det A = 0$.
- 3. Si l'on permute les lignes et les colonnes d'une matrice, la valeur du déterminant reste $inchang\acute{e}e: \det A^t = \det A.$
- 4. $\det A^* = \overline{\det A}$.

Exemples

$$ightharpoonup$$
 Soient $A := \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$ et $B := \begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix}$. Alors, on a :

$$\det A = 1 \times 0 - 2 \times 0 = 0$$
 et $\det B = 3 \times 4 - 4 \times 3 = 12 - 12 = 0$.

$$ightharpoonup$$
 Soient $A \coloneqq \begin{pmatrix} 1 & 2i \\ 3 & 4 \end{pmatrix}$ et $B \coloneqq \begin{pmatrix} 1 & 3 \\ -2i & 4 \end{pmatrix} = A^*$.

$$\det A = 1 \times 4 - 2i \times 3 = 4 - 6i \qquad \text{et} \qquad \det B = 1 \times 4 - 3 \times (-2i) = 4 + 6i = \overline{\det A},$$

$$\operatorname{donc} \det A^* = \overline{\det A}.$$

Proposition: Déterminants et opérations élémentaires

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors:

- 1. Si dans A, on échange deux lignes $L_i \leftrightarrow L_j$ (resp. deux colonnes $C_i \leftrightarrow C_j$), le déterminant de la matrice obtenue est égal à $-\det A$.
- 2. Si on multiplie par un réel λ tous les coefficients d'une ligne $L_i \leftarrow \lambda L_i$ (resp. d'une colonne $C_i \leftarrow \lambda C_i$), le déterminant de la matrice obtenue est égal à $\lambda \det A$.
- 3. On ne change pas la valeur du déterminant si à une ligne (resp. une colonne) de A, on ajoute une combinaison linéaire des autres lignes (resp. des autres colonnes) de A: $L_i \leftarrow L_i + \lambda L_j \text{ ou } C_i \leftarrow C_i + \lambda C_j$.

(iii) Remarque

Le dernier point de la proposition précédente montre que les opérations de la méthode de Gauss appliquées au calcul du déterminant ne changent pas celui-ci.

Exemples

$$ightharpoonup$$
 Soient $A := \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ et $B := \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix}$.

ightharpoonup Soient $A := \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ et $B := \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix}$. On remarque que pour obtenir B on a permuté les deux lignes de A. On a :

$$\det A = 1 \times 4 - 2 \times 3 = 4 - 6 = -2 \qquad \text{et} \qquad \det B = 3 \times 2 - 4 \times 1 = 6 - 4 = 2,$$

 $\operatorname{donc} \det B = -\det A.$

$$ightharpoonup$$
 Soient $A := \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ et $B := \begin{pmatrix} 2 & 4 \\ 3 & 4 \end{pmatrix}$.

On remarque que pour obtenir B on a multiplié par 2 la première ligne de A. On a :

$$\det A = 1 \times 4 - 2 \times 3 = 4 - 6 = -2$$
 et $\det B = 2 \times 4 - 4 \times 3 = 8 - 12 = -4 = 2(-2)$,

donc $\det B = 2 \det A$.

$$ightharpoonup$$
 Soient $A := \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ et $B := \begin{pmatrix} 1 & 2 \\ 0 & -2 \end{pmatrix}$.

On remarque que pour obtenir B on a fait l'opération élémentaire suivante sur les lignes de $A: L_2 \leftarrow L_2 - 3L_1$. On a :

$$\det A = 1 \times 4 - 2 \times 3 = 4 - 6 = -2$$
 et $\det B = 1(-2) - 2$,

donc $\det B = \det A$. On utilise souvent ce type d'opérations élémentaires (qui sont similaires à celles de la méthode de Gauss) pour faire apparaître des zéros sur une ligne (ou colonne).

Méthode

Pour calculer un déterminant :

- > choisir une ligne (ou une colonne) qui a le plus de 0,
- ⊳ si cela est possible, augmenter le nombre de ces 0 par combinaisons linéaires sur les colonnes (ou sur les lignes),

 $oldsymbol{\textcircled{F}} \mathbf{Exemples} - \textit{D\'eterminant et combinaisons lin\'eaires}$

$$A \coloneqq \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ -1 & 0 & 4 \end{pmatrix}$$

Des combinaisons linéaires permettent d'introduire des zéros pour obtenir une ligne ou une colonne ayant un unique coefficient non nul.

La propriété précédente assure que le déterminant de A est le même que celui de la matrice obtenue en effectuant la combinaison linéaire $C_3 \leftarrow C_3 + 4C_1$, On a donc :

$$\det(A) = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ -1 & 0 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 7 \\ 2 & 5 & 8 \\ -1 & 0 & 0 \end{vmatrix}.$$

Le calcul du déterminant peut s'effectuer suivant la dernière ligne :

$$\det(A) = (-1)^{3+1}(-1) \begin{vmatrix} 2 & 7 \\ 5 & 8 \end{vmatrix} = -(16 - 35) = 19.$$

34

$$\triangleright \text{ Soit } A := \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ 2 & 0 & 3 & 5 \\ 3 & 6 & 1 & 2 \end{pmatrix}.$$

En effectuant les opérations

$$\begin{array}{cccc} L_2 &\longleftarrow & L_2 - L_1 \\ L_3 &\longleftarrow & L_3 - 2L_1 \\ L_4 &\longleftarrow & L_4 - 3L_1, \end{array}$$

puis en développant suivant la première colonne, on obtient

$$\det(A) = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ 2 & 0 & 3 & 5 \\ 3 & 6 & 1 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & -2 & -3 \\ 0 & -4 & -3 & -3 \\ 0 & 0 & -8 & -10 \end{vmatrix} = 1 \begin{vmatrix} -1 & -2 & -3 \\ -4 & -3 & -3 \\ 0 & -8 & -10 \end{vmatrix}.$$

Il ne reste donc plus qu'un déterminant 3×3 à calculer.

De la même façon, on peut simplifier le calcul en faisant apparaître des zéros.

Pour cela on effectue l'opération $L_2 \leftarrow L_2 - 4L_1$, ce qui donne :

$$\det(A) = \begin{vmatrix} -1 & -2 & -3 \\ -4 & -3 & -3 \\ 0 & -8 & -10 \end{vmatrix} = \begin{vmatrix} -1 & -2 & -3 \\ 0 & 5 & 9 \\ 0 & -8 & -10 \end{vmatrix} = - \begin{vmatrix} 5 & 9 \\ -8 & -10 \end{vmatrix} = -(-50 + 72) = -22.$$

Finalement, le calcul du déterminant de la matrice 4×4 s'est ramené à celui d'une matrice 2×2 .

On pourra écrire le calcul de manière abrégée de la façon suivante :

$$\det(A) = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ 2 & 0 & 3 & 5 \\ 3 & 6 & 1 & 2 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & -2 & -3 \\ 0 & -4 & -3 & -3 \\ 0 & 0 & -8 & -10 \end{vmatrix} = \begin{vmatrix} -1 & -2 & -3 \\ -4 & -3 & -3 \\ 0 & -8 & -10 \end{vmatrix}$$

$$= \begin{vmatrix} -1 & -2 & -3 \\ 0 & 5 & 9 \\ 0 & -8 & -10 \end{vmatrix} = -\begin{vmatrix} 5 & 9 \\ -8 & -10 \end{vmatrix} = -22$$

Proposition: Propriétés du déterminant

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $B \in \mathcal{M}_n(\mathbb{K})$. Alors,

$$ightharpoonup \det(AB) = \det(A)\det(B),$$

$$ightharpoonup \det(I_n) = 1,$$

 \triangleright A est inversible si et seulement si $\det(A) \neq 0$. De plus, si A est inversible, alors

$$\det(A^{-1}) = \frac{1}{\det(A)}.$$

Exercice 3.

Les matrices suivantes sont-elles inversibles?

$$A \coloneqq \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{pmatrix}, \quad B \coloneqq \begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix}, \quad C \coloneqq \begin{pmatrix} 1 & 0 & 2 & 3 \\ 2 & i & 3 & 6 \\ 3 & 1 - i & 6i & 8 \\ 2i & -1 & 3i & 6i \end{pmatrix}.$$

7 Calcul de l'inverse d'une matrice

Définition : Comatrice - Matrice de cofacteurs

Soit $A \in \mathcal{M}_n(\mathbb{K})$ avec $n \geq 2$. On appelle **comatrice** de A, ou **matrice des cofacteurs** de A, l'élément de $\mathcal{M}_n(\mathbb{K})$, noté com(A) de coefficients

$$(\operatorname{com}(A))_{ij} := (-1)^{i+j} \det(A_{ij}),$$

où, pour tout $(i, j) \in [1; n]^2$, $A_{ij} \in \mathcal{M}_{n-1}(\mathbb{K})$ est la matrice carrée déduite de A en supprimant la i-ième ligne et la j-ième colonne.

Exemples

$$ightharpoonup$$
 Soit $A := \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Alors,

$$A_{11} = (4), \quad A_{12} = (3), \quad A_{21} = (2), \quad \text{et} \quad A_{22} = (1).$$

On en déduit
$$com(A) = \begin{pmatrix} 4 & -3 \\ -2 & 1 \end{pmatrix}$$

 \triangleright Plus généralement, pour toute matrice $A \in \mathcal{M}_2(\mathbb{K})$, on a

$$A := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \implies \operatorname{com}(A) = \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}.$$

$$ightharpoonup ext{Soit } A \coloneqq \begin{pmatrix} 1 & 0 & 1 \\ 1 & -i & 1 \\ 1 & 3 & -2 \end{pmatrix}. ext{ On a}$$

$$com(A) = \begin{pmatrix} \det(A_{11}) & -\det(A_{12}) & \det(A_{13}) \\ -\det(A_{21}) & \det(A_{22}) & -\det(A_{23}) \\ \det(A_{31}) & -\det(A_{32}) & \det(A_{33}) \end{pmatrix}.$$

Or (à vérifier en exercice)

$$\begin{aligned} \det(A_{11}) &= -3 + 2i, & \det(A_{12}) &= -3, & \det(A_{13}) &= 3 + i, \\ \det(A_{21}) &= -3, & \det(A_{22}) &= -3, & \det(A_{23}) &= 3, \\ \det(A_{31}) &= i, & \det(A_{32}) &= 0, & \det(A_{33}) &= -i \end{aligned}$$

d'où

$$com(A) = \begin{pmatrix} -3 + 2i & 3 & 3 + i \\ 3 & -3 & 3 \\ i & 0 & -i \end{pmatrix}.$$

Proposition

Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que $det(A) \neq 0$. Alors,

$$A^{-1} = \frac{1}{\det(A)} \left(com(A) \right)^t.$$

ightharpoonup Soit $A\in\mathcal{M}_2(\mathbb{K})$ donnée par $A:=\begin{pmatrix}a&b\\c&d\end{pmatrix}$ et vérifiant $\det(A)\neq 0,$ alors

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}.$$

 $> \text{Soit } A \in \mathcal{M}_3(\mathbb{K}) \text{ donn\'ee par } A \coloneqq \begin{pmatrix} 1 & 0 & 1 \\ 1 & -i & 1 \\ 1 & 3 & -2 \end{pmatrix}.$ On a (à vérifier or a).

On a (à vérifier en exercice) $det(A) = 3i \neq 0$, donc A est inversible et

$$A^{-1} = \frac{1}{\det(A)} \left(\operatorname{com}(A) \right)^t = \frac{1}{3i} \begin{pmatrix} -3+2i & 3 & i \\ 3 & -3 & 0 \\ 3+i & 3 & -i \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2+3i & -3i & 1 \\ -3i & 3i & 0 \\ 1-3i & -3i & -1 \end{pmatrix}.$$

Exercice 4.

Les matrices suivantes sont-elles inversibles? Si oui, calculer leurs inverses.

$$A \coloneqq \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}, \quad B \coloneqq \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 2 \\ 1 & 1 & 1 \end{pmatrix}, \quad C \coloneqq \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$D := \begin{pmatrix} 1 & 2 & 2 \\ 3 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}, \quad E := \begin{pmatrix} 1 & 0 & 2 & 3 & 1 \\ 0 & 3 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 & -3 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & -1 & 0 & 0 & -2 \end{pmatrix}.$$

Correction des exercices

S Correction de l'Exercice 1.

On a

$$\det A = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - cb \quad \text{et} \quad \det A^t = \begin{vmatrix} a & c \\ b & d \end{vmatrix} = ad - bc.$$

D'où le résultat.

Correction de l'Exercice 2.

1)
$$\begin{vmatrix} 3 & 2 \\ -1 & 4 \end{vmatrix} = 3 \times 4 - (-1) \times 2 = 12 + 2 = 14$$

2)

$$\begin{vmatrix} 2 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 4 & 1 \end{vmatrix} = 2 \begin{vmatrix} 0 & 1 \\ 4 & 1 \end{vmatrix} - 1 \begin{vmatrix} -1 & 1 \\ 0 & 1 \end{vmatrix} + 1 \begin{vmatrix} -1 & 0 \\ 0 & 4 \end{vmatrix}$$
$$= 2 \times (0 - 4) - 1 \times (-1 - 0) + 1 \times (-4 - 0) = -8 + 1 - 4 = -11$$

3)

$$\begin{vmatrix} 0 & -2 & 1 & 0 \\ 3 & 0 & 2 & 0 \\ 2 & 1 & 5 & -4 \\ 1 & 5 & 0 & 2 \end{vmatrix} = 0 \times \begin{vmatrix} 0 & 2 & 0 \\ 1 & 5 & -4 \\ 5 & 0 & 2 \end{vmatrix} - (-2) \times \begin{vmatrix} 3 & 2 & 0 \\ 2 & 5 & -4 \\ 1 & 0 & 2 \end{vmatrix} + 1 \times \begin{vmatrix} 3 & 0 & 0 \\ 2 & 1 & -4 \\ 1 & 5 & 2 \end{vmatrix} - 0 \times \begin{vmatrix} 3 & 0 & 2 \\ 2 & 1 & 5 \\ 1 & 5 & 0 \end{vmatrix}$$

$$= 2 \times \begin{vmatrix} 3 & 2 & 0 \\ 2 & 5 & -4 \\ 1 & 0 & 2 \end{vmatrix} + 1 \times \begin{vmatrix} 3 & 0 & 0 \\ 2 & 1 & -4 \\ 1 & 5 & 2 \end{vmatrix}$$

$$= 2 \times \left(3 \times \begin{vmatrix} 5 & -4 \\ 0 & 2 \end{vmatrix} - 2 \times \begin{vmatrix} 2 & -4 \\ 1 & 2 \end{vmatrix} \right) + 1 \times 3 \times \begin{vmatrix} 1 & -4 \\ 5 & 2 \end{vmatrix}$$

$$= 28 + 66 = 94.$$

S Correction de l'Exercice 3.

$$\det(A) = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{vmatrix} = -7 \neq 0$$

Donc A est inversible.

 \triangleright

$$\det(B) = \begin{vmatrix} i & -1 \\ 1 & i \end{vmatrix} = i^2 - (-1) = -1 + 1 = 0$$

Donc B n'est pas inversible.

 \triangleright

$$\det(C) = \begin{vmatrix} 1 & 0 & 2 & 3 \\ 2 & i & 3 & 6 \\ 3 & 1 - i & 6i & 8 \\ 2i & -1 & 3i & 6i \end{vmatrix} \xrightarrow{C4 \leftarrow C4 - 3C1} \begin{vmatrix} 1 & 0 & 2 & 0 \\ 2 & i & 3 & 0 \\ 3 & 1 - i & 6i & -1 \\ 2i & -1 & 3i & 0 \end{vmatrix} = (-1)^{3+4}(-1) \begin{vmatrix} 1 & 0 & 2 \\ 2 & i & 3 \\ 2i & -1 & 3i \end{vmatrix}$$

$$\det(C) = \begin{vmatrix} 1 & 0 & 2 \\ 2 & i & 3 \\ 2i & -1 & 3i \end{vmatrix} \stackrel{C3 \leftarrow C3 - \frac{3}{2}C1}{=} \begin{vmatrix} 1 & 0 & \frac{1}{2} \\ 2 & i & 0 \\ 2i & -1 & 0 \end{vmatrix} = (-1)^{1+3} \frac{1}{2} \begin{vmatrix} 2 & i \\ 2i & -1 \end{vmatrix} = \frac{1}{2}(-2+2) = 0$$

Donc C n'est pas inversible.

S Correction de l'Exercice 4.

 $\triangleright \det(A) = 2 - 0 = 2 \neq 0 \text{ donc } A \text{ est inversible.}$

$$A^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}^t = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$$

 $ightharpoonup \det(B) = 2 \neq 0$ donc B est inversible.

$$B^{-1} = \frac{1}{2} \begin{pmatrix} 0 & -1 & 2 \\ 2 & 2 & -4 \\ -2 & -1 & 4 \end{pmatrix}$$

 $ightharpoonup \det(C) = 1$ (matrice triangulaire) donc C est inversible.

$$C^{-1} = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $ightharpoonup \det(D) = -1 \ (L1 \leftarrow L1 - 2L3) \ \text{donc} \ D \ \text{est inversible}.$

$$D^{-1} = \begin{pmatrix} -1 & 0 & 2\\ 3 & 1 & -6\\ -2 & 1 & 5 \end{pmatrix}$$

 \triangleright det(E) = 0 donc E n'est pas inversible.

Chapitre 8

Feuille d'exercices : Séquence 3

S Exercice 1.

Calculer les déterminants suivants :

$$D_1 = \begin{vmatrix} 3 & 2 \\ -1 & 4 \end{vmatrix}, \quad D_2 = \begin{vmatrix} 2 & 0 \\ -1 & 1 \end{vmatrix}, \quad D_3 = \begin{vmatrix} 2 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 4 & 1 \end{vmatrix}, \quad D_4 = \begin{vmatrix} 1 & 2 & 1 \\ -1 & 3 & 1 \\ 2 & 4 & 1 \end{vmatrix}, \quad D_5 = \begin{vmatrix} 0 & -2 & 1 & 0 \\ 3 & 0 & 2 & 0 \\ 2 & 1 & 5 & -4 \\ 1 & 5 & 0 & 2 \end{vmatrix}$$

S Exercice 2.

- 1) Calculer le déterminant de $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \end{pmatrix}.$
- **2)** Calculer $\begin{vmatrix} 2 & 3 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & -2 \end{vmatrix}$.

Exercice 3.

- 1) Que vaut le déterminant d'une matrice diagonale?
- 2) On dit qu'une matrice $T \in \mathcal{M}_n(\mathbb{K})$ est **triangulaire supérieure** si ses coefficients vérifient $t_{ij} = 0$ si i > j. Que vaut le déterminant d'une matrice triangulaire supérieure?
- 3) On dit qu'une matrice $T \in \mathcal{M}_n(\mathbb{K})$ est **triangulaire inférieure** si ses coefficients vérifient $t_{ij} = 0$ si i < j. Que vaut le déterminant d'une matrice triangulaire inférieure?
- 4) En déduire les déterminants des matrices suivantes :

$$A \coloneqq \begin{pmatrix} 2 & 3 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & -2 \end{pmatrix}, \quad B \coloneqq \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ i & 6 & 3 - i & 0 \\ 4 & 5 & 7 & i \end{pmatrix}, \quad C \coloneqq \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 2 & 0 & \cdots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & \cdots & 0 & n - 1 & 0 \\ 0 & \cdots & \cdots & 0 & n \end{pmatrix}.$$

41

Exercice 4.

Soient $A := \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ et $B := \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$.

- 1) Calculer det(A+B).
- 2) Calculer det(A) + det(B).
- 3) Que peut-on en déduire?

Exercice 5.

Les matrices suivantes sont-elles inversibles? Si oui, calculer leurs inverses.

$$A \coloneqq \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad B \coloneqq \begin{pmatrix} 1 & 2 & 2 \\ 3 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}, \quad C \coloneqq \begin{pmatrix} 1 & 0 & 2 & 3 & 1 \\ 0 & 3 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 & -3 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & -1 & 0 & 0 & -2 \end{pmatrix}$$

Exercice 6.

On dit qu'une matrice $U \in \mathcal{M}_n(\mathbb{K})$ est **unitaire** (ou **orthogonale** si $\mathbb{K} = \mathbb{R}$) si U est inversible et $U^{-1} = U^*$. Montrer que toute matrice unitaire U vérifie $|\det(U)| = 1$.

Exercice 7.

Soit $m \in \mathbb{R}$. Déterminer pour quelles valeurs de m les matrices ci-dessous sont inversibles :

$$A(m) := \begin{pmatrix} 1 & m & m^2 \\ m & m^2 & m \\ 1 & 0 & m \end{pmatrix} \quad \text{et} \quad B(m) := \begin{pmatrix} m & 0 & 1 & 2m \\ 1 & m & 0 & 0 \\ 0 & 2m + 2 & m & 1 \\ m & 0 & 0 & m \end{pmatrix}.$$

Exercice 8.

Soient
$$A := \begin{pmatrix} 1 & 2i & 3 \\ 0 & 1-i & 4 \\ 0 & 0 & 1+i \end{pmatrix}$$
 et $P := \begin{pmatrix} 1 & -2 & 7 \\ 0 & 1 & 2 \\ 0 & 0 & i \end{pmatrix}$.

- 1) Donner $\det(A)$ et $\det(P)$, puis justifier que P est inversible.
- 2) Calculer P^{-1} , puis $P^{-1}AP$.
- 3) En déduire A^n pour tout $n \in \mathbb{N}$.

S Exercice 9.

On considère le système

$$(S) \begin{cases} 3x + y + z = 1 \\ x + 3y + 2z = 5 \\ -x + 2y - 4z = 0 \end{cases}$$

- 1) Écrire le système (S) sous forme matricielle AX = B.
- 2) Montrer que A est inversible et calculer A^{-1} .
- 3) En déduire les solutions de (S).

S Exercice 10.

Résoudre les systèmes linéaires suivants :

$$\begin{cases} 3x + 2y + z = 1 \\ x + 3y + 2z = 0 \\ 2x + y + 3z = 1 \end{cases}$$
 et
$$\begin{cases} x + 3y - z = 1 \\ 2x + 6y - 3z = -6 \\ x - y + 2z = 5. \end{cases}$$

Exercice 11.

Pour toute $A \in \mathcal{M}_n(\mathbb{K})$, le polynôme P_A de $\mathbb{K}[X]$ défini par

$$P_A(X) := \det(A - XI_n),$$

est appelé polynôme caractéristique de A.

Soit
$$A := \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
.

- 1) Déterminer $P_A(X)$ et vérifier que l'on a $P_A(A) = 0$.
- 2) Décomposer $P_A(X)$ en produit de facteurs irréductibles.
- 3) En déduire le polynôme unitaire $P_{A,m}$, appelé **polynôme minimal** de A, de plus petit degré tel que $P_{A,m}(A) = 0$.
- 4) Reprendre les questions précédentes avec $A \coloneqq \begin{pmatrix} -2 & -2 & 1 \\ -2 & 1 & -2 \\ 1 & -2 & -2 \end{pmatrix}$.