Лекции 8. ЭНЕРГОЭФФЕКТИВНЫЕ ТЕХНОЛОГИИ. УМНЫЕ СЕТИ (SMART GRID). КОНЦЕПЦИЯ И ПРИНЦИПЫ УМНЫХ СЕТЕЙ

- 1. Определение энергоэффективных технологий. Значение умных сетей для современного энергоснабжения
 - 2. Понятие умных сетей (Smart Grid)
 - 3. Основные компоненты умных сетей
 - 4. Принципы работы умных сетей
 - 5. Преимущества умных сетей
 - 6. Проблемы и вызовы при внедрении умных сетей

8.1. Определение энергоэффективных технологий. Значение умных сетей для современного энергоснабжения

Энергоэффективные технологии - это совокупность методов, процессов, устройств и материалов, направленных на уменьшение энергопотребления при сохранении или повышении уровня производительности и качества жизни. Эти технологии стремятся к максимальному использованию доступной энергии и минимизации её потерь.

Энергоэффективность - это отношение полезной энергии, полученной в результате выполнения определённой работы, к общей затраченной энергии. Энергоэффективность выражается в процентах и отражает эффективность преобразования энергии в полезную работу.

$$\eta = \frac{W$$
полезная $E_{\text{Затраченная}} * 100\%$

где: η - коэффициент энергоэффективности,

W полезная - полезная работа, выполненная системой,

Езатраченная - общая затраченная энергия.

Аспекты энергоэффективных технологий:

1. Технический аспект

- **Материалы и компоненты** подразумевают использование инновационных материалов (например, композиты, наноматериалы), которые обеспечивают лучшую теплоизоляцию и меньшие потери энергии;
- **Продвинутые системы управления,** внедрение интеллектуальных систем управления (например, IoT, AI), которые оптимизируют потребление энергии в реальном времени;
- **Процессы и оборудование**, использование энергоэффективного оборудования и оптимизация производственных процессов для минимизации энергопотерь.

2. Экономический аспект

- Снижение эксплуатационных затрат за счет энергоэффективных технологий, позволяющих сократить расходы на электроэнергию, отопление, охлаждение и другие энергетические ресурсы;
- **Инвестиционная привлекательность**, сокращение эксплуатационных затрат и улучшение производительности делает энергоэффективные проекты привлекательными для инвесторов;
- Увеличение рентабельности, энергоэффективные решения часто окупаются за счёт снижения затрат на энергию и повышения эффективности производства.

3. Экологический аспект

- Снижение выбросов парниковых газов, энергоэффективные технологии уменьшают выбросы CO₂ и других парниковых газов, способствуя борьбе с глобальным потеплением;
- Сохранение природных ресурсов, оптимизация использования энергии помогает сократить потребление невозобновляемых ресурсов, таких как уголь, нефть и природный газ;
- **Уменьшение загрязнения**, меньшие выбросы вредных веществ способствуют улучшению качества воздуха, воды и почвы.

4. Социальный аспект

- **Повышение качества жизни,** энергоэффективные здания и системы обеспечивают лучший комфорт и качество жизни для людей за счёт улучшенной температуры, влажности и освещения, и других составляющих;
- Создание рабочих мест, развитие и внедрение энергоэффективных технологий способствует созданию новых рабочих мест в различных отраслях экономики;
- **Образование и осведомлённость,** повышение уровня осведомлённости населения о важности энергоэффективности и обучение новым навыкам способствует устойчивому развитию общества.

5. Политический аспект

- Энергетическая безопасность, снижение зависимости от импорта энергоресурсов способствует укреплению энергетической безопасности страны;
- Государственная поддержка и стимулы, множество правительств вводят программы и субсидии для поддержки внедрения энергоэффективных технологий;
- **Международные соглашения**, сотрудничество в рамках международных соглашений (например, Парижское соглашение) способствует развитию и внедрению энергоэффективных технологий.

6. Технологический аспект

- Инновации и НИОКР (научно-исследовательские и опытно-конструкторские работы), постоянное развитие новых технологий и проведение научных исследований и опытно-конструкторских работ (НИОКР) в области энергоэффективности;
- **Цифровизация и автоматизация**, применение цифровых технологий и автоматизированных систем для повышения эффективности использования энергии;

- Синергия технологий, интеграция различных технологий (например, возобновляемых источников энергии и энергоэффективных систем) для достижения максимальной эффективности.

7. Правовой аспект

- **Регулирование и стандарты**, введение законодательных норм и стандартов, направленных на повышение энергоэффективности;
- Сертификация и аудит, проведение сертификации и аудита энергоэффективности для обеспечения соответствия установленным требованиям;
- Стимулирование энергоэффективных проектов, введение налоговых льгот и других стимулирующих мер для поддержки энергоэффективных инициатив.

8. Психологический аспект

- **Изменение поведения потребителей,** внедрение энергоэффективных технологий требует изменения привычек и поведения потребителей;
- **Осведомлённость и образование,** повышение уровня осведомлённости и образования населения о важности и преимуществах энергоэффективности;
- **Мотивация и вовлечённость**, стимулирование активного участия и заинтересованности потребителей в энергоэффективных инициативах.
- **Местные традиции и ценности,** учёт местных традиций и культурных особенностей при внедрении энергоэффективных технологий.

Примеры энергоэффективных технологий

- Пассивные дома - здания, которые требуют минимальных затрат на отопление и охлаждение за счёт использования теплоизоляции, герметичности и рекуперации тепла;

- Светодиодное освещение осветительные устройства, которые потребляют значительно меньше энергии по сравнению с традиционными лампами накаливания и люминесцентными лампами;
- **Высокоэффективные электродвигатели**, которые используют меньше электроэнергии для выполнения той же работы, что и стандартные двигатели;
- **Процессы рекуперации тепла,** технологии, которые позволяют улавливать и повторно использовать тепло, выделяемое в ходе промышленных процессов;
- Электромобили и гибридные автомобили транспортные средства, которые потребляют меньше топлива и производят меньше выбросов по сравнению с традиционными автомобилями с двигателями внутреннего сгорания;
- Системы управления движением технологии, которые оптимизируют потоки транспорта, уменьшая заторы и повышая общую эффективность транспортной системы.

Усовершенствованные технологии считывания и измерений расширят спектр предоставляемой информации операторам и диспетчерам энергетической системы, которая будет включать в себя:

- значения коэффициента мощности;
- параметры качества электроэнергии в пределах всей системы;
- WAMS (Wide Area Measurement System, *англ*) распределенная система измерений;
 - характеристику состояния оборудования;
 - манипуляции с измерениями и данными датчиков;
 - сведения о природных катаклизмах;
 - определение мест повреждений;
 - нагрузку трансформаторов и линий;
 - профили напряжения сети;

- температуру критических элементов;
- идентификацию отказов;
- профили и прогнозы потребления электроэнергии.

Новые системы программного обеспечения должны собирать, хранить, анализировать и обрабатывать большое количество данных, проходящих через современные инструменты измерения и считывания. Обработанные данные затем будут переданы в существующие и новые информационные системы обслуживающих компаний, выполняющих множество важнейших функций бизнеса (биллинг, планирование, эксплуатация, работа с клиентами, прогнозирование, статистические исследования и т. д.).

Энергоэффективные технологии играют важную В роль современном мире, способствуя экономическому росту, сохранению природных ресурсов и улучшению качества жизни. Внедрение и развитие ЭТИХ технологий требует комплексного подхода, включающего технические, экономические, экологические, социальные, политические, технологические, правовые, психологические и культурные аспекты.

8.2. Понятие умных сетей (Smart Grid)

Умные сети (Smart Grid) представляют собой эволюцию традиционной электросети, интегрирующую современные информационно-коммуникационные технологии для более создания интеллектуальной, автоматизированной и устойчивой энергетической системы. Умные сети позволяют повысить эффективность, надежность и безопасность энергоснабжения, а также способствуют интеграции возобновляемых источников энергии и активному участию потребителей в управлении энергопотреблением.

Умная сеть включает в себя такие элементы, как интеллектуальные измерительные системы, автоматизация распределительных сетей,

интеграция распределённых энергетических ресурсов, системы управления энергопотреблением и информационно-коммуникационные технологии.

Интеллектуальные измерительные системы (Smart Meters) обеспечивают точные измерения потребления электроэнергии, передачу данных в реальном времени и возможность удалённого контроля и управления. Это позволяет улучшить управление энергоресурсами, сократить потери энергии и повысить прозрачность и удобство для потребителей.

Автоматизация распределительных сетей (**Distribution Automation**) В себя автоматическое управление включает И мониторинг распределительных сетей, быстрое обнаружение И устранение неисправностей, а также оптимизацию потоков энергии, что способствует повышению надежности и устойчивости сети, снижению времени простоя и улучшению качества энергоснабжения.

Интеграция распределённых энергетических ресурсов (**DER Integration**) предполагает подключение и управление распределёнными генераторами, такими как солнечные панели, ветряные турбины и системы хранения энергии. Это позволяет увеличить долю возобновляемых источников энергии, снизить зависимость от централизованных источников и улучшить экологическую устойчивость.

энергопотреблением (Demand Системы управления Response Systems) обеспечивают мониторинг и управление потреблением энергии потребителей, уровне предоставляя стимулы ДЛЯ сокращения потребления в пиковые периоды. Это позволяет снизить пиковые улучшить баланс спроса и нагрузки, предложения повысить И эффективность использования ресурсов.

Информационно-коммуникационные технологии (ИКТ) обеспечивают двустороннюю связь между всеми компонентами сети,

обработку и анализ больших данных, использование облачных технологий и интернета вещей (IoT), что способствует улучшенной координации и управлению сетью, повышению безопасности данных и улучшению прогнозирования и планирования.

Преимущества умных сетей включают В себя повышение надежности и качества энергоснабжения, эффективное использование ресурсов, интеграцию возобновляемых источников энергии, экологическую устойчивость и активное участие потребителей. Умные сети могут автоматически обнаруживать и устранять неисправности, минимизируя время простоя и потери энергии, а также обеспечивать более стабильное качественное энергоснабжение благодаря точному И мониторингу и управлению.

Оптимизация использования энергетических ресурсов позволяет снизить затраты на производство и распределение электроэнергии, а автоматизация и цифровизация процессов управления энергией способствуют сокращению эксплуатационных затрат. Умные сети облегчают интеграцию распределённых и возобновляемых источников энергии, таких как солнечные и ветряные установки, использование систем хранения энергии позволяет сглаживать колебания в производстве энергии и обеспечивать стабильность сети.

Повышение энергоэффективности и использование возобновляемых источников энергии способствуют снижению выбросов парниковых газов, что поддерживает устойчивое развитие энергетической системы и уменьшает воздействие на окружающую среду. Умные сети предоставляют потребителям больше контроля над своим энергопотреблением и стимулируют участие в управлении энергией, предоставляя им точную информацию о своем энергопотреблении и рекомендации по его оптимизации.

Тем не менее, умные сети сталкиваются с рядом вызовов и перспектив. Технические необходимость вызовы включают модернизации существующей инфраструктуры и интеграции новых технологий, обеспечение совместимости и стандартизации различных компонентов и систем умных сетей. Важным аспектом является кибербезопасность, так как необходимо обеспечить защиту информации и данных в умных сетях от киберугроз, а также разработку и внедрение кибербезопасности эффективных мер ДЛЯ защиты энергетической системы.

Финансовые и экономические вызовы связаны с высокими первоначальными затратами на внедрение и модернизацию умных сетей, а также необходимостью создания экономических стимулов и моделей для привлечения инвестиций в развитие умных сетей. Регуляторные и правовые аспекты включают разработку и внедрение нормативноправовой базы для поддержки развития умных сетей, обеспечение защиты данных и конфиденциальности информации в умных сетях. Важным является также повышение уровня осведомлённости и образования населения о возможностях и преимуществах умных сетей, обучение новых навыков и подготовка кадров для работы в сфере умных сетей.

Умные сети являются ключевым элементом будущего энергоснабжения, предоставляя возможности ДЛЯ повышения эффективности, надежности и устойчивости энергетической системы. Они способствуют возобновляемых интеграции источников энергии, улучшению качества энергоснабжения и активному участию потребителей в управлении энергопотреблением. Внедрение умных сетей требует включающего технические, комплексного подхода, экономические, экологические и социальные аспекты, а также сотрудничество на всех уровнях - от государственных учреждений до частного сектора и населения.

Умные Grid) (Smart представляют собой высоко сети динамично развивающиеся интегрированные И системы, которые объединяют различные технологии для создания более эффективной, надежной и устойчивой энергетической инфраструктуры. Важные аспекты и направления, связанные с компонентами умных сетей, включают интеграцию с умными городами и инфраструктурой, внедрение новейших технологий, системы оценки и моделирования, этические и социальные вопросы, а также вопросы интеграции и стандартизации.

Интеграция умных сетей с концепцией умных городов представляет собой важное направление развития. В рамках умных городов умные сети взаимодействуют с системами умных зданий, которые автоматизируют управление освещением, отоплением и кондиционированием воздуха, что позволяет оптимизировать потребление энергии на уровне зданий. Кроме умные интегрируются транспортной τογο, сети c инфраструктурой, обеспечивая управление зарядкой электромобилей и транспортного движения ДЛЯ энергопотребления, и загрязнения. Умное освещение, управляемое через умные сети, может автоматически регулировать уровень освещения в зависимости от времени суток, погодных условий и плотности движения, что позволяет существенно сократить потребление энергии.

Развитие и внедрение новейших технологий также играют ключевую сетей. Блокчейн-технология роль совершенствовании умных используется обеспечения прозрачности безопасности ДЛЯ И энергетических транзакций, таких как продажа избыточной энергии от домашних солнечных панелей в сеть. Квантовые вычисления, хотя и находятся на ранних стадиях развития, имеют потенциал радикально изменить управление умными сетями за счёт анализа больших данных и Интеллектуальные решения сложных оптимизационных задач. трансформаторы, оснащённые коммуникационными датчиками И

системами, могут автоматически регулировать напряжение и улучшать эффективность распределения энергии.

Системы оценки и моделирования становятся важными для управления и оптимизации умных сетей. Использование симуляций и моделей позволяет анализировать различные сценарии работы сети, такие как изменение спроса, аварии или интеграция новых источников энергии, что помогает прогнозировать последствия и разрабатывать стратегии для оптимизации работы сети. Методы оценки устойчивости помогают оценивать способность сети противостоять внешним воздействиям, таким как экстремальные погодные условия, террористические угрозы или технологические сбои.

Этические и социальные вопросы становятся всё более актуальными в контексте умных сетей. Управление личными данными потребителей и обеспечение их конфиденциальности требуют разработки и внедрения строгих мер защиты данных, чтобы предотвратить несанкционированное использование. Также важно учитывать социальное воздействие умных сетей, включая вопросы доступа к технологии, её влияние на рабочие места и социальное неравенство.

Интеграция стандартизация играют ключевую роль И обеспечении совместимости различных компонентов умных сетей. Разработка и внедрение единых стандартов и протоколов для обеспечения устройствами совместимости между различными системами И способствуют созданию бесшовной и интегрированной сети. Обеспечение интероперабельности между различными производителями поставщиками технологий является критическим аспектом для успешного функционирования умных сетей.

Комплексный подход к умным сетям включает в себя не только рассмотрение традиционных компонентов, таких как интеллектуальные измерительные системы и автоматизация распределительных сетей, но и

новейшие технологии, связанные с умными городами, блокчейном, квантовыми вычислениями и социальными аспектами. Внедрение и развитие этих технологий требуют внимания к вопросам стандартизации, этики и интеграции, что позволит создать более эффективные, надежные и устойчивые системы управления энергией.

8.3. Принципы работы умных сетей

Принципы работы умных сетей (Smart Grid) основаны на интеграции современных информационно-коммуникационных технологий и интеллектуальных систем управления для создания более адаптивной, эффективной и надежной энергетической инфраструктуры. Эти принципы можно рассмотреть через несколько ключевых аспектов, таких как адаптивное управление, двусторонняя связь, интеграция и координация, улучшение качества обслуживания, устойчивость и гибкость, и инновационные технологии.

- **1. Адаптивное управление** в умных сетях предполагает динамическую настройку и оптимизацию работы сети в зависимости от текущих условий и потребностей. Это включает:
- Динамическое регулирование нагрузки, системы могут изменять распределение энергии в реальном времени на основе текущего спроса и предложения. Например, при увеличении потребления в определённом районе система может направить дополнительные ресурсы или временно снизить нагрузку в других зонах;
- Прогнозирование потребления и генерации, использование данных о потреблении и метеорологических условий для прогнозирования потребностей и генерации энергии. Прогнозирование помогает в планировании и управлении ресурсами, предотвращая дефицит или избыток энергии;

- **Автоматическое управление распределением**, системы могут автоматически переключаться между различными источниками энергии или маршрутами в случае сбоя или перегрузки, обеспечивая непрерывность электроснабжения.
- **2.** Двусторонняя связь представляет собой ключевой элемент умных сетей, обеспечивающий обмен информацией между различными компонентами сети:
- Сбор данных в реальном времени, интеллектуальные измерительные системы и сенсоры собирают данные о потреблении, состоянии оборудования и внешних условиях, которые передаются в управляющие центры для анализа;
- Передача команд и обновлений, управляющие центры могут отправлять команды для регулирования работы оборудования, изменения тарифов или проведения технического обслуживания. Двусторонняя связь позволяет мгновенно реагировать на изменения и управлять сетью более эффективно;
- Интерактивное взаимодействие с потребителями, потребители могут получать информацию о своём потреблении и изменениях в тарифах, а также иметь возможность участвовать в программах управления спросом, предоставляя обратную связь.
- **3. Интеграция и координация** различных элементов умных сетей обеспечивают их целостность и согласованную работу:
- Интеграция распределённых источников энергии, умные сети интегрируют различные источники энергии, включая возобновляемые, такие как солнечные и ветряные электростанции, с центральными электростанциями. Это позволяет использовать источники энергии, которые могут быть недоступны в централизованных системах;
- Системы хранения энергии, интеграция аккумуляторных систем и других технологий хранения энергии для сглаживания колебаний в

производстве и потреблении. Хранилища энергии могут заряжаться в периоды низкого спроса и разряжаться в периоды пикового потребления;

- **Координация работы различных систем**, обеспечение взаимодействия между различными компонентами сети, такими как генераторы, трансформаторы, распределительные устройства и системы управления.
- **4.** Улучшение качества обслуживания связано с повышением эффективности работы сети и уровнем обслуживания потребителей:
- Снижение времени простоя, автоматизация процессов диагностики и восстановления позволяет быстро реагировать на сбои и минимизировать время отключений. Это включает в себя использование интеллектуальных переключателей и систем самовосстановления;
- Оптимизация тарифов, реализация динамического ценообразования на основе текущего спроса и предложения. Это позволяет потребителям управлять своими расходами и стимулирует снижение потребления в пиковые часы;
- Повышение надёжности и устойчивости, постоянный мониторинг и анализ состояния сети позволяет предсказывать потенциальные проблемы и предотвращать аварии до их возникновения.
- **5. Устойчивость и гибкость** умных сетей обеспечивают их способность адаптироваться к изменениям и выдерживать внешние воздействия.
- Устойчивость к сбоям, умные сети проектируются с учётом возможности быстрого восстановления после аварий. Это включает в себя резервирование ключевых компонентов и использование распределённых источников энергии;
- **Гибкость в управлении ресурсами**, возможность легко настраивать и оптимизировать работу сети в зависимости от изменений в

спросе, генерации и внешних условиях. Это включает в себя использование адаптивных алгоритмов и машинного обучения;

- **Адаптация к изменениям**, способность сети к интеграции новых технологий и источников энергии без значительных изменений в её инфраструктуре.
- **6. Инновационные технологии** способствуют повышению эффективности и возможностей умных сетей.
- Интернет вещей (IoT) для мониторинга и управления сетевыми компонентами, что позволяет собирать и анализировать данные о состоянии сети в реальном времени;
- Искусственный интеллект (AI) для анализа больших данных, прогнозирования и автоматизации управления. АІ может использоваться для оптимизации распределения энергии, предсказания неисправностей и улучшения взаимодействия с потребителями.
- **Блокчейн** может использоваться для обеспечения прозрачности и безопасности энергетических транзакций, а также для управления дистрибуцией возобновляемых источников энергии и торговли энергией.

В результате, принципы работы умных сетей основываются на создании динамичной, интегрированной и адаптивной энергетической инфраструктуры, которая способна эффективно управлять ресурсами, повышать надёжность и устойчивость, а также интегрировать передовые технологии для улучшения качества обслуживания и взаимодействия с потребителями.

В умных сетях множество программ и систем выполняют различные функции для обеспечения эффективного управления, мониторинга и оптимизации энергетической инфраструктуры. Эти программы можно сгруппировать по нескольким ключевым областям:

1. Программы управления энергией (Energy Management Systems, EMS) - анализ потребления и генерации, управление нагрузкой.

- 2. Программы для интеллектуальных измерительных систем (Smart Metering Systems) сбор и передача данных (поддерживают различные протоколы связи, такие как Zigbee, Wi-Fi или LTE), анализ данных потребления, выявлении аномалий, таких как утечки энергии или мошенничество с показаниями.
- 3. Программы управления распределением (Distribution Management Systems, DMS) мониторинг И управление распределительными сетями (автоматического переключения нагрузки и восстановления после сбоев), моделирование И оптимизация (прогнозировать нагрузки и сбои).
- 4. Программы управления ресурсами (Resource Management Systems) интеграция распределённых энергетических ресурсов (DER): (управляют распределёнными источниками энергии, солнечные панели и ветряные турбины), управление системами хранения энергии (оптимизируют процесс зарядки и разрядки аккумуляторов).
- 5. Программы управления надежностью и безопасностью (Reliability and Security Management Systems) анализ и реагирование на сбои (мониторят состояние сети), кибербезопасность (предотвращения вторжений, шифрование данных).
- 6. Программы управления взаимодействием с потребителями (Customer Engagement Systems) динамическое ценообразование, интерактивные платформы для потребителей
- 7. Программы для анализа больших данных и искусственного интеллекта (Big Data and AI Systems) анализ данных и прогнозирование и оптимизация
- **8.** Программы для работы с блокчейном (Blockchain Systems) управление энергетическими транзакциями, обеспечение прозрачности и безопасности транзакций в умных сетях, продажа избыточной энергии или заключение контрактов на энергоснабжение.

Эти программы и системы работают в связке друг с другом, создавая интегрированную и эффективную среду управления умными сетями. Они обеспечивают мониторинг, управление и оптимизацию всех аспектов энергетической инфраструктуры, что позволяет улучшать её производительность, надёжность и устойчивость.

Таблица 8.1.

Сравнительная характеристика функциональных свойств сегодняшней энергетической системы и энергетической системы на базе концепции Smart Grid - Коммуникация, Управление и Интеграция

Энергетическая система сегодня	Энергетическая система на базе концепции Smart Grid
Односторонняя коммуникация между	Двусторонние коммуникации
элементами или её отсутствие	
Централизованная генерация —	Распределенная генерация
сложно интегрируемая	
распределенная генерация	
Топология — преимущественно	Преимущественно сетевая
радиальная	
Реакция на последствия аварии	Реакция на предотвращение аварии
Ручное и фиксированное выделение	Адаптивное выделение
сети	
Ручное восстановление	Автоматическое восстановление —
	«самолечащиеся сети»
Отсутствие инструментов для анализа	Анализ больших данных и
больших данных	прогнозирование
Ограниченные возможности по	Активное управление потреблением и
управлению потреблением	программами спроса
Невозможность интеграции новых	Легкость интеграции новых
технологий и источников энергии	технологий и источников энергии
Отсутствие интеграции с умными	Интеграция с умными устройствами и
устройствами и ІоТ	IoT
Ограниченная поддержка для	Полная поддержка для
возобновляемых источников энергии	возобновляемых источников энергии
Усложненная интеграция с системами	Прямая интеграция с системами
управления зданиями	управления зданиями и умными
	домами

Энергетическая система сегодня	Энергетическая система на базе концепции Smart Grid
Работа оборудования до отказа	Мониторинг и самодиагностика,
	продлевающие «жизнь» оборудования
Проверка оборудования по месту	Удаленный мониторинг оборудования
Ограниченный контроль перетоков	Управление перетоками мощности
мощности	
Недоступная или сильно запоздавшая	Цена в реальном времени
информация о цене для потребителя	
Отсутствие прозрачности в данных о	Прозрачность и доступность данных о
состоянии сети	состоянии сети
Ручное и медленное обновление	Автоматизированное и оперативное
данных	обновление данных
Статический контроль над качеством	Динамический контроль и
электроэнергии	регулирование качества
	электроэнергии
Нехватка механизмов для активного	Механизмы для активного участия
участия потребителей	потребителей и взаимодействия
Ручное управление и регулировка	Интеллектуальное управление и
оборудования	автоматизация процессов
Отсутствие возможности	Прогнозирование и управление
предсказания и предотвращения	спросом с помощью AI и алгоритмов
спроса	
Ограниченная безопасность и защита	Улучшенная безопасность и защита
данных	данных
Подверженность системным авариям	Предотвращение развития системных
	аварий

8.4. Оценка экологических эффектов реализации концепции Smart Grid

В условиях глобальных усилий по борьбе с загрязнением окружающей среды и увеличением объемов выбросов парниковых газов, страны по всему миру активно внедряют экологически устойчивые технологии. Согласно данным Национальной лаборатории возобновляемой энергии США (NREL), компании сталкиваются с многочисленными трудностями при адаптации к изменениям в глобальной

экологической среде. Прогнозируется, что выбросы углерода в США вырастут с 1,7 миллиарда тонн в 2025 году до 2,3 миллиарда тонн к 2030 году. Однако NREL подчеркивает, что внедрение программ энергоэффективности и использование возобновляемых источников энергии (ВИЭ) способны не только замедлить этот рост, но и сократить выброс углерода до уровня ниже 1 миллиарда тонн к 2030 году.

Экологические эффекты от внедрения технологий Smart Grid:

- **1. Уменьшение выбросов углерода -** технологии Smart Grid способствуют значительному снижению выбросов углерода. Основные механизмы достижения этого эффекта включают:
- управление спросом и нагрузкой, оптимизация использования электроэнергии и минимизация потребления дорогостоящей пиковой электроэнергии, которая вырабатывается менее эффективными энергоблоками;
- повышение энергоэффективности, реализация образовательных программ и адаптивных тарифных систем способствует более рациональному использованию энергии потребителями;
- снижение изменчивости возобновляемых источников энергии, интеграция и оптимизация источников энергии, таких как ветер и солнце, снижают колебания в их производительности;
- интеграция электромобилей и распределенных источников энергии, включение электромобилей и распределенных источников энергии в энергосистему способствует более равномерному распределению энергии и снижению зависимости от углеродоемких источников.

Согласно отчету Международного энергетического агентства (IEA), применение технологий Smart Grid может сократить выбросы углерода в среднем на 10-20% в долгосрочной перспективе благодаря улучшению

управления потреблением энергии, более эффективному использованию возобновляемых источников и снижению потерь электроэнергии.

- **2.** Снижение операционных и эксплуатационных затрат в энергетическом секторе. Основные направления экономии включают:
- снижение частоты выездов на аварии и диагностику, автоматизированные системы позволяют оперативно устранять неисправности и минимизировать расходы на аварийные вызовы и диагностику;
- переход обслуживанию ПО состоянию, использование К технологий мониторинга в реальном времени позволяет проводить техническое обслуживание фактического на основе состояния оборудования, что снижает сравнению с затраты ПО плановым обслуживанием;
- снижение риска перегрузки оборудования, оперативная информация о состоянии сетевых активов помогает предотвратить перегрузки и потенциальные поломки оборудования, особенно важных элементов, таких как трансформаторы. Использование умных датчиков может снизить затраты на обслуживание трансформаторов на 25-30%;
- оптимизация распределения электроэнергии, технологии Smart Grid могут сократить потери электроэнергии более чем на 30% за счет улучшения производительности электростанций и управления балансом энергосистемы.
- **3.** Снижение затрат промышленных потребителей, коммерческие и промышленные потребители также выигрывают от внедрения технологий Smart Grid. Примеры экономии включают:
- эффективность электродвигателей, высокоэффективные двигатели и приводы с регулированием скорости вращения могут значительно сократить потребление электроэнергии. Использование таких двигателей может сэкономить до 85 миллиардов кВтч в год;

- автоматизация ответных реакций на ценовые сигналы, приводы могут автоматически регулировать потребление энергии в ответ на ценовые сигналы, что снижает затраты на электроэнергию и оказывает положительное влияние на общественные выгоды.
- **4. Повышение качества обслуживания бизнес-клиентов,** технологии Smart Grid способствуют улучшению качества обслуживания бизнес-клиентов за счет:
- автоматический мониторинг и техническое обслуживание, возможность автоматического мониторинга и активного технического обслуживания оборудования потребителей помогает достигать целей энергосбережения и сокращения выбросов углерода;
- прозрачность данных и рекомендации, двусторонняя коммуникация и усовершенствованные системы измерения позволяют энергетическим компаниям предоставлять рекомендации по оптимизации энергопотребления. По оценкам EPRI, это может привести к ежегодной экономии энергии в диапазоне от 2,2 до 8,8 миллиардов кВтч.

5. Влияние на рабочие места и экономическое развитие:

- создание новых рабочих мест, разработка, внедрение и обслуживание технологий Smart Grid создают новые рабочие места в таких областях, как инженерия, IT, аналитика данных и обслуживание энергетических систем. Это также стимулирует развитие новых стартапов и инновационных компаний;
- экономическое развитие, внедрение умных сетей способствует росту экономики за счет повышения эффективности и конкурентоспособности энергетического сектора. Оптимизация расходов на энергию и снижение потерь способствуют более стабильным ценам на электроэнергию и повышению экономической привлекательности для инвесторов.

Цепочка создания ценностей системы Smart Grid

Цепочка	Бизнес-эффект	Получатель	Получаемая	Выгоды
создания	Визнее эффект	ценности	ценность	рыг оды
		ценности	ценноств	
ценности Конечное потребление все действия, предпринима емые потребителя ми, или место клиента	Полное удовлетворение требований каждого из отдельно взятых потребителей	Потребители электрическ ой энергии	1. Информация по индивидуаль ному спросу и потреблению. 2. Возможность повышения пропускной способности	1. Возможность оптимизации управления энергетикой. 2. Повышение доступности сети распределенного генерирующего оборудования
Диспетчерск ое управление в режиме реального времени	1. Совершенствов ание традиционных систем измерений. 2. Повышение устойчивости системы (способность принять удар и продолжать работу)	Диспетчеры	участков сети 1. Управление потерями - определение места сбоя, диагностичес кая информация по требованию. 2. Информация о состоянии оборудования , включая сведения о ремонтах в режиме реального времени. 3. Балансировка загрузки	1. Оптимизированная система административного управления (ОМS) (DA, работающий с GIS, GPS, мобильными сообщениями). 2. Диспетчеры уделяют внимание только значительным отклонениям в работе самовосстанавлива ющейся сети и тратят меньше времени на устранение проблем
Эксплуатаци я активов - ежедневные работы по обеспечению надежности работы сети	1. Снижение издержек жизненного цикла актива. 2. Получение максимальной ценности от имеющихся сетей и генерации	Менеджеры по управлению активами, операционный и ремонтный персонал	1. Устойчивая и достоверная информация о состоянии активов. 2. Сведения в режиме реального времени об	1. Фокус больше на анализе данных, нежели на их сборе. 2. Возможность утверждать эффективность программ управления активами.

Создание	Управление	Трудовые	окончании устранения неисправност ей и плановых работ Статус	3. Снижение уровня технологического риска
активов - реконструкц ия и новое строительств о активов	рабочей силой с акцентом на безопасность работников и потребителей	ресурсы (внутренние и подрядчики)	используемой конфигураци и в режиме реального времени	конструкторская эффективность за счет более простого дизайна. 2. Введение гарантий безопасности работы
Проектирова ние развития активов - определение местоположе ния, условий и требований к замене или новому строительств у активов Smart Grid	1. Достижение доступности услуг и целей доставки. 2. Снижение издержек обслуживания и снабжения. 3. Эффективность и экологичность	Проектиров щики услуг, подстанций и систем распределен ия электроэнерг ии	1. Проектирова ние на основе данных IP-протоколов, чертежи на рабочем месте. 2. Виртуальное обсуждение замыслов, проектирован ие в реальных условиях	1. Переход к plug & play. 2. Снижение потребности в рабочей силе
Производств о, передача, распределен ие и хранение электроэнерг ии, купленной у распределен ной генерации (distributed generation)	1. Снижение ограничений в выработке электроэнергии. 2. Доходность и для внешних поставщиков	Внутренние и внешние поставщики распределен ной генерации	1.	1. Возможность легко подключиться к сети доступным распределенным источникам энергии. 2. Простота и экономичность поставок электроэнергии
Стратегическ ое планировани е и развитие - долгосрочны й обзор нужд	1. Доступность и надежность за счет оптимизации инвестиций. 2. Достижение ожиданий	Инвесторы, топ- менеджмент	Информация о работе системы: необходимая в определенны й момент и	1. Смещение акцента усилий со сбора данных на их анализ. 2. Возможность введения инновационного

потребителе	акционеров	точечная	системного
й и системы	относительно	(пообъектная	моделирования,
для принятия	уровня)	проведение
инвестицион	доходности		исследования
ных решений			снижения потерь.
			3. Оптимизация
			управления
			активами

Эта таблица иллюстрирует, как внедрение концепции Smart Grid приносит конкретные преимущества на различных уровнях цепочки создания ценности, обеспечивая как оперативные, так и стратегические выгоды для различных участников процесса.

В целом эффекты и выгоды для бизнеса, полученные благодаря внедрению концепции Smart Grid, могут принимать различные формы:

- более безопасный процесс производства продукции за счет повышения надежности электроснабжения;
 - повышение степени удовлетворенности потребителей;
- рост объемов продаж вследствие повышения уровня обслуживания потребителей;
- снижение производственных затрат вследствие сокращения простоев из-за сбоев работы энергетической системы;
- снижение уровня использования невозобновляемых источников энергии;
 - создание новых рабочих мест и потенциальный рост ВВП;
- возможность модернизировать энергетическую систему на основе интеграции энергетических активов в сфере генерации, передачи и распределения и аккумулирования электроэнергии.

Исследования, проведенные за рубежом, показывают, что многогранность эффектов от реализации концепции Smart Grid для всех заинтересованных сторон достигает максимума только в случае совокупной реализации всех свойств, методологии и элементов нового

технологического базиса, отдельные компоненты, технологии и устройства рассматриваются как комплекс (система) взаимодействующих элементов, обеспечивающих требуемые функциональные свойства, выбор состава и уровня которых, в свою очередь, определяется пользователем.

8.5. Применение концепции Smart Grid в Республике Узбекистан

Республике Узбекистан также предпринимаются Grid. внедрению технологий Smart что обеннает значительные экологические и экономические преимущества. Узбекистан стремится модернизировать свою энергетическую инфраструктуру, что включает в себя внедрение сетей повышения эффективности умных ДЛЯ распределения электроэнергии и снижения потерь. Проекты по внедрению Smart Grid в Узбекистане направлены на интеграцию возобновляемых источников энергии, таких как солнечные и ветряные электростанции, что позволяет существенно сократить выбросы углерода и улучшить качество энергоснабжения. Ожидается, что применение технологий Smart Grid в Узбекистане приведет к снижению операционных затрат, улучшению качества обслуживания и созданию новых рабочих мест в сфере энергетических технологий.

Эти аспекты подчеркивают важность и потенциальные выгоды от реализации концепции Smart Grid в Республике Узбекистан. Экологические эффекты внедрения Smart Grid в Узбекистане: уменьшение выбросов углерода, повышение энергоэффективности, снижение потерь электроэнергии.

Узбекистан может черпать опыт из успешных примеров внедрения Smart Grid в других странах. Например, Германия, Япония и Южная Корея достигли значительных успехов в интеграции умных сетей и возобновляемых источников энергии, что позволило им значительно

сократить экологическое воздействие и повысить эффективность энергетических систем.

Внедрение концепции Smart Grid в Республике Узбекистан представляет собой важный шаг на пути к устойчивому развитию энергетического сектора. Технологии Smart Grid способствуют снижению экологического воздействия, повышению энергоэффективности, созданию новых рабочих мест и улучшению качества обслуживания потребителей. Узбекистан имеет потенциал для значительных экологических и экономических выгод от применения этих технологий, что подчеркивает необходимость дальнейших инвестиций и поддержки в сфере умных сетей и возобновляемых источников энергии.

Контрольные вопросы:

- 1. Что такое Smart Grid и какие ключевые компоненты включаются в эту концепцию?
- 2. Какие основные экологические преимущества можно достичь за счет внедрения технологий Smart Grid?
- 3. Как Smart Grid способствует снижению выбросов углерода и других парниковых газов?
- 4. Какие экономические выгоды получают промышленные и коммерческие потребители от внедрения Smart Grid?
- 5. Как технологии Smart Grid улучшают управление активами и снижают операционные затраты в энергетическом секторе?
- 6. Какие новые рабочие места и экономические возможности создаются благодаря внедрению Smart Grid?
- 7. Каким образом Smart Grid повышает устойчивость энергетических систем к внешним воздействиям и экстремальным условиям?
- 8. Как внедрение Smart Grid может способствовать социальному развитию и улучшению качества обслуживания энергетических компаний?

- 9. Какие современные примеры внедрения Smart Grid можно привести на международном уровне, и какие результаты они достигли?
- 10. Какие специфические преимущества и выгоды может принести внедрение концепции Smart Grid в Республике Узбекистан?