Решения на задачите по геометрия

Този материал е изготвен със съдействието на школа Sicademy

G1. Даден е вписан четириъгълник ABCD с пресечна точка на диагоналите F. Нека правите AB и CD се пресичат в точка P, а точка M е от лъча PD^{\rightarrow} , такава, че $PA \cdot AB = PM \cdot CD$. Ако N е симетричната точка на M относно P, то да се докаже, че $PF \parallel AN$.

Peшение. Нека правата PF пресича правата AM в точка Q. Означаваме с h_1 и h_2 разстоянията от точка F към правите AP и DP съответно. От $\triangle DCF \sim \triangle ABF$ имаме

$$\frac{PM}{PA} = \frac{AB}{CD} = \frac{h_1}{h_2} \implies PM \cdot h_2 = PA \cdot h_1 \implies S_{PMF} = S_{PAF} \implies MQ = MA.$$

Следователно PQ е средна отсечка в $\triangle ANM$, т.е. $PF \parallel AN$.

G2. Даден е изпъкнал четириъгълник ABCD, в който $\angle DAC = \angle ABC$ и $\angle DCA = \angle ACB$. Точка N лежи на отсечката AB и е такава, че $\angle NCB = \angle ABD$. Нека M е средата на BD. Правите AM и BC се пресичат в точка P. Да се докаже, че $PN \perp AB$.

Peшение. Нека $\angle ACB = \gamma$. Означаваме с K и L средите на AD и AB съответно. Имаме, че $\triangle DAC \sim \triangle ABC$ и значи CK и CL са съответни медиани в тях. Следователно $\angle AKC = \angle BLC$, откъдето следва, че четириъгълникът AKCL е вписан. Сега от средна отсечка в $\triangle ABD$ следва, че $\angle ABD = \angle ALK = \angle ACK = \angle BCL$, т.е. $N \equiv L$.

Разглеждаме $\triangle ANM$. От една страна

$$\angle ANM = 180^{\circ} - \angle BAD = \angle ACB$$
, a от друга $-\frac{AN}{MN} = \frac{AB}{AD} = \frac{BC}{AC}$.

Следователно $\triangle ANM \sim \triangle BCA$, т.е. $\angle BAP = \angle ABC$, откъдето следва, че $\triangle ABP$ е равнобедрен. В този равнобедрен триъгълник N е средата на основата и следователно $PN \perp AB$.

G3. Даден е $\triangle ABC$, който е вписан в окръжност k с център O. Разглеждаме трите полувписани окръжности за $\triangle ABC$, т.е. окръжностите, които се допират вътрешно до k и до две от страните му. Да се докаже, че техният радикален център лежи на правата IO, където I е центърът на вписаната в $\triangle ABC$ окръжност.

Решение. Нека ω е вписаната, а ω_A , ω_B и ω_C са полувписаните окръжности за $\triangle ABC$. Ще използваме означенията за точките от фигурата по-долу.

Да разгледаме хомотетия h, която изпраща вписаната в описаната за $\triangle ABC$ окръжност. От теоремата за трите хомотетии следва, че правите AT_A , BT_B и CT_C се пресичат в центъра T на хомотетията h. Следователно T, I и O лежат на една права.

От друга страна, полярите на точките Q_A и Q_C относно k минават през точка T и следователно Q_AQ_C е полярата на точката T относно k.

Остава да съобразим, че относно k, P_C е полюс за радикалната ос $\rho(\omega_A, \omega_B)$, а P_A е полюс за радикалната ос $\rho(\omega_B, \omega_C)$. Тогава $P_A P_C$ е поляра на радикалния център P на ω_A , ω_B и ω_C относно k. Необходимо е да докажем, че $P_A P_C \parallel Q_A Q_C$. Но

$$\frac{T_B Q_A}{Q_A P_A} = \frac{T_B X_B}{X_B M_A} = \frac{T_B Y_B}{Y_B M_C} = \frac{T_B Q_C}{Q_C P_C}$$

с което доказателството е завършено.