INF623

2024/1

Inteligência Artificial

A17: Raciocínio Probabilístico IV

Plano de aula

- ► Modelos Ocultos de Markov
- Inferência
 - Filtragem
 - Previsão
 - Suavização
 - Explicação mais provável

Processos (ou cadeias) de Markov

Um **processo de Markov** é uma sequência de variáveis aleatórias onde a distribuição de cada variável depende apenas de um número fixo k de variáveis anteriores $X_{t-1}, X_{t-2}, \ldots, X_{t-k}$:

Suposição de Markov

Para k=1, dizemos que o modelo é de primeira ordem:

$$P(X_t \mid X_{t-1}) \qquad (X_1) \longrightarrow (X_2) \longrightarrow (X_3) \longrightarrow (X_4) \cdots >$$

Para k=2, dizemos que o modelo é de segunda ordem:

e assim por diante para k = 3,4,...

Estados ocultos

Processos de Markov são úteis em situações onde queremos prever estados futuros a partir de um estado inicial:

$$P(X_2 = |X_1 =)$$

- No entanto, na prática, frequentemente não observamos os estados $X_1=\ensuremath{\not{\Rightarrow}}$ diretamente, mas temos um "sensor" que nos dá informações sobre eles:
 - Reconhecimento de voz
 - Rastreamento de robôs
 - Atenção do usuário

Modelos ocultos de Markov (HMM)

Modelos ocultos de Markov são processos de Markov com estados ocultos $X_{t'}$ onde cada estado produz uma observação E_t .

Um modelo oculto de Markov é definido por:

- ightharpoonup Distribuição inicial $-P(X_1)$
- Modelo de transições $-P(X_t | X_{t-1})$
- lacktriangle Modelo de sensor $-P(E_t | X_t)$

Exemplos reais de HMMs

▶ Reconhecimento de voz

- ▶ Observações são sinais de aúdio
- ▶ Estados são as palavras ditas em cada posição da frase

▶ Traduação de texto

- ▶ Observações são palavras
- ▶ Estados são opções de tradução

▶ Rastreamento de robôs

- Dbservações são leituras de sensores de navegação
- ▶ Estados são as posições no mapa

Modelo de sensor

Além do estado inicial e do modelo de transição, um HMM possui um **modelo de sensor** $P(E_t|X_t)$ que especifica a distribuição de probabilidade do estado X_t produzir uma observação E_t .

Suposição de sensores de Markov

A probabilidade do evento E_t depende apenas do estado X_t

X_{t-1}	X_t	$P(X_t X_{t-1})$
→		0,9
→		0,1
		0,3
	000	0,7

X_{t}	E_t	$P(E_t X_t)$
		0,2
		0,8
	1	0,9
	7	0,1

Distribuição conjunta de HMMs

▶ Para 4 estados:

$$P(X_1, E_1, X_2, E_2, X_3, E_3, X_4, E_4) = P(X_1)P(E_1 | X_1)P(X_2 | X_1)P(E_2 | X_2)P(E_3 | X_2)P(E_3 | X_3)P(X_4 | X_3)P(E_4 | X_4)$$

lacktriangle De uma maneira geral, para T estados:

$$P(X_1, E_1, X_2, E_2, \dots, X_T, E_T) = P(X_1)P(E_1 | X_1) \prod_{t=2}^{I} P(X_t | X_{t-1})P(E_t | X_t)$$

Inferência

Um HMM pode ser utilizado para diferentes tarefas de inferência:

Filtragem: $P(X_t | e_1, \dots, e_t)$?

A probabilidade de chover hoje, dado todas as observações de guarda-chuva até o momento

▶ Previsão: $P(X_{t+k} | e_1, \dots, e_t)$?

A probabilidade de chover depois de amanhã, dado todas as observações de guarda-chuva até o momento

• Suavização: $P(X_k | e_1, \dots, e_t)$?

A probabilidade de que choveu na última quarta-feira, dado todas as observações de guarda-chuva até o momento

Explicação mais provável: $argmax_{x_{1:t}} P(x_{1:t} | e_1, \dots, e_t)$

A sequência de estados mais provável de ter gerado as observações obtidas.

Filtragem

Qual a probabilidade $B_t(X) = P(X_t | e_1, \dots, e_t)$, dado todas as observações até o momento?

Queremos: $P(X_t | e_1, \dots, e_t) = B_t(X)$

Observamos

- Começar $B_1(X) = P(X_1 | e_1)$, normalmente uniforme
- lacksquare Atualizamos $B_t(X)$ a cada nova evidência e_t
- ▶ O **filtro de Kalman** foi inventado na década de 60 e implementado pela primeira vez como método de estimativa de trajetória para o programa Apollo.

Explicação mais provável

Qual é a sequência de estados mais provável de ter gerado as observações obtidas?

Próxima aula

A18: Processos de decisão de Markov I

Formalização matemática, exemplos, política, utilidade, descontos

