EXECUTIVE REPORT

"Predicting the outcome of SpaceX Falcon9 first stage landing"

Juan Francisco Velázquez Vadillo

SPACE Y

Data Scientist

November 2022

Executive Summary

- ❖ The race to make space travel affordable for every one is here.
- Some providers advertise a cost upward of 165 million dollars.
- SpaceX advertises Falcon 9 rocket launches with a cost of 62 million dollars.
- This reduced cost is mainly due to the fact that SpaceX reuses the first stage of Falcon 9 rocket.

- ❖ Through the use of Data Science and Machine Learning tools we developed models that predict the outcome (success vs failure) of Falcon9 first stage landing.
- This information will allow us to estimate the cost of a Falcon9 launch.

Knowing the price of each Falcon9 launch will guide our strategies to bid against SpaceX

Table of Contents Slide 1.- Cover page 3.- Executive summary 4.- Table of contents 5.- Introduction Scenario Goal 8 Strategy 9 Falcon9 overview video 6.- Capstone project overview 10

Table of Contents	Slide
7 Methodology	
Jupyter notebooks with detailed information about this work	11
Data collection SpaceX REST API	13
Data collection from Wikipedia	13
Data cleaning and wrangling	14
Predictive Analysis	15
8 Results	
Data wrangling	17
Dataframe generated from Data wrangling	20
Data Collection from Wikipedia	21
Exploratory Data Analysis using SQL	22

Table of Contents	Slide
8 Results	
Interactive map: SpaceX launch sites	30
Falcon9 first stage landing outcome per launch site	31
Interactive Dashboard	33
Successful launch rate per launch site	37
Machine Learning model's predictive accuracy	38
9 Discussion	39
10 Conclusion	40

Introduction

Scenario

- Our company, SpaceY, wants to lead the race to make space travel affordable for every one.
- Virgin Galactic, Rocket Lab, Blue Origin and SpaceX are heavily investing in making space travel affordable for every one.
- By reusing the "first stage" of the Falcon9 rocket **SpaceX** can offer the "**cheapest**" **ticket to space**.

Introduction

Goal

Accurately predict SpaceX Falcon9 first stage landing outcome.

Strategy

Using Data Science and Machine Learning tools we developed models that accurately predict the outcome (success vs failure) of the Falcon9 first stage landing.

Falcon 9 overview / Successful first stage landing

https://www.youtube.com/watch?v=Z4TXCZG_NEY

Capstone Project overview

Methodology

Here you can find the information used to create this report:

Data Collection from SpaceX REST API

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/jupyter-labs-spacex-data-collection-api.ipynb

Data Collection from Wikipedia

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/jupyter-labs-webscraping.ipynb

Data Wrangling

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/IBM-DS0321EN-SkillsNetwork_labs_module_1_L3_labs-jupyter-spacex-data_wrangling_jupyterlite.jupyt

Exploratory Data Analysis using SQL

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/jupyter-labs-eda-sql-coursera_sqllite.ipynb

Exploring and Preparing Data for EDA viz

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/IBM-DS0321EN-SkillsNetwork_labs_module_2_jupyter-labs-eda-dataviz.ipynb.jupyterlite.ipynb

Launch Sites Locations Analysis with Folium

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/IBM-DS0321EN-SkillsNetwork_labs_module_3_lab_jupyter_launch_site_location.jupyterlite%20%281%29.ipynb

Make a Dashboard with PlotlyDash

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/spacex_dash.py

Machine Learning Prediction lab

https://nbviewer.org/github/VVJF/Coursera-IBM-Capstone-Project-2022/blob/main/IBM-DS0321EN-SkillsNetwork labs module 4 SpaceX Machine Learning Prediction Part 5.jupyterlite.ipynb

Briefly:

Data collection about SpaceX Falcon9 past launches

Open Source SpaceX REST API

(https://api.spacexdata.com/v4/launches/past)

Wikipedia

page titled "List of Falcon 9 and Falcon Heavy launches"

https://en.wikipedia.org/wiki/List_of_Falcon_9_and_Falcon_Heavy_launches

Data cleaning and wrangling

As described in the jupyter notebooks "Data Collection from SpaceX REST API", "Data Collection from Wikipedia", and "Data Wrangling":

- We went through the process of fixing or eliminating incorrect, corrupted, incorrectly formatted, duplicate, or incomplete data within the datasets downloaded from SpaceX REST API and Wikipedia page "List of Falcon 9 and Falcon Heavy launches".
- We found patterns in the data that helped determine what would be the label and relevant variables for training Machine Learning supervised models.

Predictive Analysis:

We went through the process of building a machine learning pipeline to predict if the first stage of the Falcon 9 lands successfully.

Data was standardized and split into training and testing data.

Grid Search was performed on the trained data to find the hyperparameters that allow a given Machine Learning model to perform best.

Predictive Analysis:

Machine Learning supervised learning techniques used:

Logistic Regression

Support Vector Machine

Decision Trees

K Nearest Neighbors

K nearest neighbors

We **output the confusion matrix** and determined which model best predicts the outcome of each Falcon9 launch.

RESULTS Data wrangling

Dataset was imported from

URL = 'https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/dataset_part_1.csv'.

We identified and calculated the percentage of the missing values in each attribute.

FlightNumber	0.000
Date	0.000
BoosterVersion	0.000
PayloadMass	0.000
Orbit	0.000
LaunchSite	0.000
Outcome	0.000
Flights	0.000
GridFins	0.000
Reused	0.000
Legs	0.000
LandingPad	40.625
Block	0.000
ReusedCount	0.000
Serial	0.000
Longitude	0.000
Latitude	0.000

Data wrangling

We calculated the number of launches on each site.

CCAFS SLC 40	55
KSC LC 39A	22
VAFB SLC 4E	13

We calculated the number and occurrence of each orbit.

```
Number of each orbit: GTO
                                 27
         21
ISS
VLEO
         14
LEO
550
MEO
ES-L1
HEO
50
GEO
Name: Orbit, dtype: int64
Occurrence of each orbit:
 GTO
          30.000000
         23.333333
ISS
VLEO
         15.555556
         10.000000
          7.777778
550
          5.555556
MEO
          3.333333
          1.111111
ES-L1
HEO
          1.111111
          1.111111
GEO
          1.111111
Name: Orbit, dtype: float64
```

RESULTS Data wrangling

We calculated the number and occurrence of mission outcome per orbit type.

True ASDS	41
None None	19
True RTLS	14
False ASDS	6
True Ocean	5
False Ocean	2
None ASDS	2
False RTLS	1

We created a landing outcome label from Outcome column.

Successful landing: 0

Failed landing:

Class			
0	0		
1	0		
2	0		
3	0		
4	0		
5	0		
6	1		
7	1		

We calculated the successful launch rate: 0.666

RESULTS

Dataframe generated from Data wrangling

Dataframe generated in the Data Wrangling laboratory.

Dataframe used in Machine Learning Prediction

	head(5)																	
	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longitude	Latitude	Class
0	1	2010- 06-04		6104.959412	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0003	-80.577366	28.561857	0
1	2	2012- 05-22	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0005	-80.577366	28.561857	0
2	3	2013- 03-01	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0007	-80.577366	28.561857	0
3	4	2013- 09-29	Falcon 9	500.000000	PO	VAFB SLC 4E	False Ocean	1	False	False	False	NaN	1.0	0	B1003	-120.610829	34.632093	0
4	5	2013- 12-03	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1004	-80.577366	28.561857	0

Data Collection from Wikipedia

Clean dataframe

Dataframe used in Exploratory Data Analysis using SQL

ut[20]:												
		Flight No.	Launch site	Payload	Payload mass	Orbit	Customer	Launch outcome	Version Booster	Booster landing	Date	Time
	0	1	CCAFS	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success\n	v1.0B0003.1	Failure	4 June 2010	18:45
	1	2	CCAFS	Dragon	0	LEO	NASA (COTS)\nNRO	Success	v1.0B0004.1	Failure	8 December 2010	15:43
	2	3	CCAFS	Dragon	525 kg	LEO	NASA (COTS)	Success	v1.0B0005.1	No attempt\n	22 May 2012	07:44
	3	4	CCAFS	SpaceX CRS-1	4,700 kg	LEO	NASA (CRS)	Success\n	v1.0B0006.1	No attempt	8 October 2012	00:35
	4	5	CCAFS	SpaceX CRS-2	4,877 kg	LEO	NASA (CRS)	Success\n	v1.0B0007.1	No attempt\n	1 March 2013	15:10

Examples of information gathered:

- Names of the unique launch sites in the space mission.
- Display the number of successful and failed missions.
- List the date when the first successful landing outcome in ground pad was achieved.
- Rank the count of successful landing_outcomes between the date 04-06-2010 and 20-03-2017 in descending order.

1.- Display the names of the unique launch sites in the space mission:

2.- Display the number of successful and failed missions

Number_of_successful_missions 100

Number_of_failed_missions

3.- Display the date of the first successful landing outcome in ground pad.

First_successful_landing_outcome Ground-pad 01-05-2017 Success (ground pad)

4.- Display 5 records where launch sites begin with the string 'CCA':

5.- Display the total payload mass carried by boosters launched by NASA (CRS):

PAYLOAD_MASS_KG_	Customer
500	NASA (CRS)
677	NASA (CRS)
2296	NASA (CRS)
2216	NASA (CRS)
2395	NASA (CRS)

6.- Display average payload mass carried by booster version F9 v1.1

7.- List the date when the first successful landing outcome in ground pad was achieved.

```
First_successful_landing_outcome
                                        Ground-pad
                     01-05-2017 Success (ground pad)
```

8.- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000 kg

Booster_Version	PAYLOAD_MASSKG_	Landing _Outcome
F9 FT B1022	4696	Success (drone ship)
F9 FT B1026	4600	Success (drone ship)
F9 FT B1021.2	5300	Success (drone ship)
F9 FT B1031.2	5200	Success (drone ship)

9.- List the total number of successful and failure mission outcomes.

Number_of_successful_missions 100

10.- Names of the booster_versions which have carried the maximum payload

mass.

Booster_Version	on Carrying_maximum_pa	ayload_mass_kg
F9 B5 B1048	3.4	15600
F9 B5 B1049).4	15600
F9 B5 B1051	.3	15600
F9 B5 B1056	5.4	15600
F9 B5 B1048	3.5	15600
F9 B5 B1051	.4	15600
F9 B5 B1049).5	15600
F9 B5 B1060).2	15600
F9 B5 B1058	3.3	15600
F9 B5 B1051	.6	15600
F9 B5 B1060).3	15600
F9 B5 B1049).7	15600

11.- Records which will display the month names, failure landing_outcomes in drone ship, booster versions, launch_site for the months in year 2015.

Month_of_2015	Landing _Outcome	Booster_Version	Launch_Site
01	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
04	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

12.- Rank the count of successful landing_outcomes between the date 04-06-2010 and 20-03-2017 in descending order.

Landing _Outcome	count(*)
Success	20
Success (drone ship)	8
Success (ground pad)	6

Interactive map: SpaceX launch sites

Interactive map: Falcon9 first stage landing outcome per launch site

GREEN: SUCCESSFUL Falcon9 first stage landing RED: FAILED Falcon9 first stage landing

CCAFS LC-40

CCAFS SLC-40

Interactive map: Falcon9 first stage landing outcome per launch site

GREEN: **SUCCESSFUL** Falcon9 first stage landing **RED**: **FAILED** Falcon9 first stage landing

VAFB SLC 4E

KSC LC-39A

KSC LC-39A has the highest number of successful Falcon9 first stage landings among all four launch sites: 41.7%.

FT Booster version has the highest number of successful Falcon9 first stage

KSC LC-39A launch site: 76.9% rate of successful launches (Falcon9 first stage successful landing).

KSC LC-39A launch site: relationship between Payload Mass and Booster version category with launch success/failure (Falcon9 first stage landing outcome).

Successful launch rate per launch site

* KSC LS-39A has the highest successful launch rate

	Number of launches	Successful launches	Successful launch rate
KSC LC-39A	26	20	76.9%
VAFB SLC-4E	20	8	40.0%
CCAFS LC-40	52	14	26.9%
CCAFS SLC-40	14	6	42.9%

Predictive Analysis: Machine Learning model's predictive accuracy

			TP	TN	FP	FN	Total	Accuracy	_
	Machine Lea	arning model							
	Logistic Regres	sion	3	12	3	0	18	0.833333333	
	Support Vecto 0.94444			5	12	1	0	18	
	Decision Tree		2	11	4	1	18	0.72222222	
	K Nearest Neig	ghbors	5	12	1	0	18	0.94444444	
1	Developer TP: True positives FP: False positives		TN: True negatives FN: False negatives			SKILLS NETWORK			

DISCUSSION

"Predicting the outcome of SpaceX Falcon9 first stage landing"

Scenario: Our company SpaceY wants to compete with SpaceX in the race to make space travel affordable for every one.

Goal: To accurately predict SpaceX Falcon9 first stage landing outcome.

Strategy: Develope Machine Learning models that accurately predict the **outcome** (success vs failure) of the Falcon9 first stage landing.

CONCLUSION

"Predicting the outcome of SpaceX Falcon9 first stage landing"

- > We successfully built a machine learning pipeline to predict the outcome of Falcon 9 first stage landing.
- > The Machine Learning models that performs best are:

Support Vector Machine and K Nearest Neighbor