Multi-stage Robust Reactive Power Optimization in ADNs with Renewables Considering Discrete Intertemporal Constraints

ONLINE APPENDIX

Zhongjie Guo

June 12, 2024

This is the online appendix of our submitted manuscript entitled Multi-stage Robust Reactive Power Optimization in ADNs with Renewables Considering Discrete Intertemporal Constraints. In this appendix, the proof of **Claim 1** is given in detail. It should be noted that the notations and symbols in this appendix follow the main manuscript.

1 Preliminaries

1.1 The P3

$$\max_{\xi_1 \in \Xi_1} \min_{x_1 \in \mathcal{F}_1(\xi_1) \bigcap \mathcal{F}_1^{\star}(\alpha_1)} c_1^{\top} x_1 + \max_{\xi_2 \in \Xi_2} \min_{x_2 \in \mathcal{F}_2(\xi_2) \bigcap \mathcal{F}_2^{\star}(\alpha_2)} c_2^{\top} x_2 \\ + \dots + \max_{\xi_T \in \Xi_T \bigcap \Xi_T'(\xi_{[T-1]})} \min_{x_T \in \mathcal{F}_T(\xi_T) \bigcap \mathcal{F}_T^{\star}(\alpha_T)} c_T^{\top} x_T$$

$$(\mathbf{P3})$$

1.2 The Claim 1

Claim 1: P3 is equivalent to

$$\max_{\forall \xi \in \Xi \bigcap \Xi'} \min_{x_t \in \mathcal{F}_t(\xi_t) \bigcap \mathcal{F}_t^*(\alpha_t), \forall t \in \mathbb{T}} \sum_{t=1}^T c_t^\top x_t$$
 (1)

2 Proof of Claim 1

Proof: Consider periods T-1 and T in **P3**:

$$\begin{aligned}
& \underset{\xi_{T-1} \in \Xi_{T-1}}{\text{max}} \min_{x_{T-1} \in \mathcal{F}_{T-1}(\xi_{T-1}) \cap \mathcal{F}_{T-1}^{\star}(\alpha_{T-1})} c_{T-1}^{\top} x_{T-1} \\
&+ \max_{\xi_{T} \in \Xi_{T} \cap \Xi_{T}^{\prime}(\xi_{[T-1]})} \min_{x_{T} \in \mathcal{F}_{T}(\xi_{T}) \cap \mathcal{F}_{T}^{\star}(\alpha_{T})} c_{T}^{\top} x_{T}
\end{aligned} (2)$$

Since the minimization over x_{T-1} is independent from the following two stages over Ξ_T and x_T , we can change the position of inner minimization and maximization operators; as a result, problem (2) is equivalent to

$$\begin{aligned}
& \max_{\xi_{T-1} \in \Xi_{T-1}} \max_{\xi_T \in \Xi_T \cap \Xi_T'(\xi_{[T-1]})} \begin{cases} \min_{x_{T-1} \in \mathcal{F}_{T-1}(\xi_{T-1}) \cap \mathcal{F}_{T-1}^*(\alpha_{T-1})} c_{T-1}^\top x_{T-1} \\ \min_{x_T \in \mathcal{F}_T(\xi_T) \cap \mathcal{F}_T^*(\alpha_T)} c_{T}^\top x_T \end{aligned} (3)$$

Taking one more step by combining adjacent two maximization/minization operators, problem (3) is equivalent to

$$\begin{aligned}
& \dots \max_{\substack{\xi_{T-1} \in \Xi_{T-1} \\ \xi_T \in \Xi_T \\ \xi_{(T-1)} \in \Xi_T'(\xi_{[T-2]})}} \left\{ \min_{\substack{x_{T-1} \in \mathcal{F}_{T-1}(\xi_{T-1}) \cap \mathcal{F}_{T-1}^{\star}(\alpha_{T-1}) \\ x_T \in \mathcal{F}_{T}(\xi_T) \cap \mathcal{F}_{T}^{\star}(\alpha_T)}} \sum_{t=T-1}^{T} c_t^{\top} x_t \right\} (4)
\end{aligned}$$

It is not hard to find that the max-min problem in period T-2 and problem (4) constitute a max-min-max-min sequence that is similar with (3), which thus

can be reformulated into a max-min problem like what we have done above. By a backward induction towards period 1, we can obtain

$$\max_{\substack{\xi_1 \in \Xi_1 \\ \xi_2 \in \Xi_2 \\ \vdots \\ \xi_T \in \Xi_T \\ \xi \in \Xi'}} \left\{ \min_{\substack{x_1 \in \mathcal{F}_1(\xi_1) \bigcap \mathcal{F}_1^{\star}(\alpha_1) \\ x_2 \in \mathcal{F}_2(\xi_2) \bigcap \mathcal{F}_2^{\star}(\alpha_2) \\ \vdots \\ x_T \in \mathcal{F}_T(\xi_T) \bigcap \mathcal{F}_T^{\star}(\alpha_T)} \right\}$$
(5)

It is obvious that problem (5) is equivalent to problem (1), which completes the proof. \blacksquare