NAVORD REPORT 6812

cy 21:2-

SUPERSONIC AERODYNAMIC HEATING OF A YAWED SPHERE-CONE
WIND-TUNNEL MODEL (U)

MIPR 9030 4/22-14-00265

28 JUNE 1960

U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND

Enclosure (2)

Acordinate 20120-Recommendation of the state of

SUPERSONIC AERODYNAMIC HEATING OF A YAWED SPHERE-CONE WIND-TUNNEL MODEL

Prepared by:

S. M. Hastings and A. J. Chones

ABSTRACT: The steady-state pressure and heat-transfer distributions on a sphere-cone configuration with laminar boundary layer have been determined in a wind tunnel at yaw angles, 0° and 6°, and at nominal Mach numbers, 3 and 5. Comparison of the 0° yaw local heat-transfer rates with those of the windward body streamline at 6° yaw show a maximum increase for corresponding body stations of approximately 100 percent. The 0° yaw heat-transfer results show good agreement with the recent theory of Powers and Krahn.

PUBLISHED NOVEMBER 1960

U. S. NAVAL ORDNANCE LABORATORY WHITE OAK, MARYLAND

Presented in this report are the results of an experimental investigation of the heat transfer to a sphere-cone model at 0° and 6° yaw in supersonic flow obtained in the NOL Supersonic Tunnel No. 2 during the calendar years 1957 and 1958. The bulk of the data has been reported previously in periodic Progress Reports.

This investigation was sponsored by the Army Ballistic Missile Agency under Task Number NOL-300.

The authors wish to specifically recognize the material contributions made by the following individuals to the successful conclusion of this investigation: Mr. J. Iandolo, for the mechanical design of the model and the roll support device; Mr. H. McDonald, for his conception and use of original manufacturing procedures during the model construction; Mr. R. Sullivan, for his excellent instrumentation of the model; Dr. W. Menzel, for providing the special analog to digital data handling system; Mr. W. Glowacki, for smoothing the angle of yaw data on the IBM 653; and Mr. T. Orlow, for solving the Four'er Heat Equation in three dimensions on the IBM 704.

W. D. COLEMAN Captain, USN Commander

R. KENNETH LOBB
By direction

CONTENTS

					Page
Introduction	•	•	•	•	1
Model, Equipment, and Test Facilities					
Results and Discussions	•	•	•	•	5
Pressure-Distribution Data	•	•	•	•	5
Temperature-Distribution Data	•	•		•	5
Heat-Transfer Data	•	•	•	•	6
Concluding Remarks	•	•	•	•	9
References	•	•	•	•	10
Appendix A	•	•	•	•	12

ILLUSTRATIONS

Figure	1	Drawing of the Sphere-Cone Model
Figure	2	Photograph of the Sphere-Cone Configuration
Figure	3	Calibration of Stainless Steel Type 347 Constantan Thermocouples
Figure	4	Photograph of the Disassembled Sphere-Cone Configuration, Sting, and Sector
Figure	5	Schematic Diagram of the Setup of the Experiment
Figure	6	Local Static-Pressure Distribution Over the Sphere-Cone Model at $M_1 = 3.24$ and $\alpha = 0^{\circ}$
Figure	7	Local Static-Pressure Distribution Over the Sphere-Cone Model at M_1 = 4.84 and α = 0°
Figure	8	Local Static-Pressure Distribution Over the Sphere-Cone Model at $M_1 = 3.24$ and $\alpha = 6^{\circ}$
Figure	9	Local Static-Pressure Distribution Over the Sphere-Cone Model at M_1 = 4.84 and α = 6°
Figure	10	Surface-Temperature Distribution Over the Sphere-Cone Model at M_1 = 3.24 and α = 0°
Figure	11	Surface-Temperature Distribution Over the Sphere-Cone Model at M_1 = 4.84 and α = 0°
Figure	12	Local Eeat-Flux Distribution Over the Sphere-Cone Model at $M_1 = 3.24$ and $\alpha = 0^{\circ}$
Figure	13	Local Heat-Flux Distribution Over the Sphere- Cone Model at M_1 = 4.84 and α = 0°
Figure	14	A Comparison of the Experimental and Theoretical Absolute Local Heat Flux Over the Sphere-Cone Model at $M_1 = 3.24$ and $\alpha = 0^{\circ}$
Figure	15	A Comparison of the Experimental and Theoretical Absolute Local Heat Flux Over the Sphere-Cone Model at M_1 = 4.84 and α = 00
Figure	16	Dimensionless Heat-Transfer Parameter Over the Sphere-Cone Model at $\alpha = 0^{\circ}$

ILLUSTRATIONS

Figure 17	Local Temperature Distribution Along the Outside Surface of the Sphere-Cone Model at M_1 = 4.84 and α = 60
Figure 18	Local Heat-Flux Distribution Over the Sphere-Cone Model at M_1 = 4.84 and α = 6°
Figure 19	Dimensionless Heat-Transfer Distribution Over the Sphere-Cone Model at M ₁ =4.84 and α = 0° and 6° (β = 0° and 180°)

Figure 20 Dimensionless Heat-Transfer Parameter Over Two Sphere-Cone Models at $\alpha = 5^{\circ}$ and 6° (8 = 0° and 180°)

TARLES

		IABLES
Table	I	Thermojunction Locations
Table	II	Pressure Orifice Locations
Table	III	Local Pressure Ratios on the Sphere-Cone Model at M ₁ = 3.24
Table	IV	Local Pressure Ratios on the Sphere-Cone Model at M ₁ = 4.84
Table	v	Local Temperature Distribution on the Sphere- Cone Model at M ₁ = 3.24
Table	VI	Local Temperature Distribution on the Sphere- Cone Model at M ₁ = 4.84
Table	VII	Local Heat-Transfer Ratios on the Sphere-Cone Model at M_1 = 3.24 and M_1 = 4.84, α = 00
Table	VIII	Local Heat-Transfer Ratios on the Sphere-Cone Model at M_1 = 4.84 and α = 60

SYMBOLS

h - heat-transfer coefficient

1 = a characteristic length

M - Mach number

Nu - Nusselt number

 Nu/\sqrt{Re} = dimensionless heat-transfer parameter =

$$\frac{h \ell}{k} \sqrt{\frac{\mu}{\rho}} \frac{(\frac{\partial u}{\partial s})_{s}}{\ell^{2}} = 0$$

p = local static pressure

P - total pressure

P' - Pitot pressure

Q = local heat flux

Q' = stagnat'on point heat flux

R - radius of the base of the model - 4.017 inches

Re = Reynolds number

S = model contour length measured from the point of intersection of the spherical nose and the axis of symmetry. This point corresponds to the aerodynamic stagnation point at $\alpha = 0^{\circ}$

S' = model contour length measured from the aerodynamic stagnation point

T - temperature OK

u - velocity

α = angle of yaw in degrees

B = roll angle in degrees ($\beta = 0^{\circ}$ is windward and $\beta = 180^{\circ}$ is leeward)

Positive B

Flow directed into the paper

 ΔT = difference between calculated and measured temperatures

angular distance on spherical nose measured from the axis of symmetry

 μ - viscosity

ρ = density

 $\partial T/\partial B$ = rate of change of temperature with roll angle

du/ dS = local velocity gradient outside the boundary layer

Subscripts

o = supply conditions

- conditions upstream of shock wave

c - calculated values

e - adiabatic wall conditions

m - measured values

w - wall conditions

INTRODUCTION

l. Challenging problems stem from the severe thermal environment to which re-entry vehicles are subjected. Since the aerodynamic heating, caused by fluid friction, is one of the principal considerations in the design of re-entry vehicles, great effort has been devoted to the study of these heating effects. For several years, the blunting of noses of re-entry vehicles has been used as a means of alleviating the attendant aerodynamic heating. Since theory does not predict adequately the heat transfer to blunt bodies at angle of yaw, experimental data are needed. The purpose of this report is to present local heat-transfer measurements along a spherecone configuration with laminar boundary layer at nominal Mach numbers of 3 and 5, including the effects of yaw.

MODEL, EQUIPMENT, AND TEST FACILITIES

- 2. Prior to embarking on this investigation, much thought was given to the choice of an experimental technique. After lengthy consideration, a steady-state technique was chosen, as opposed to a transient technique. Some of the factors which prompted this decision are enumerated hereafter.
- a. There is ample time available to make careful measurements.
- b. A range of model coolant temperature to tunnel stagnation temperature ratios can be obtained easily and can be repeated.
- c. The steady-state models are more difficult to build and instrument than are the transient models. However, this additional effort is more than compensated for by the relative ease of data reduction.
- d. The transient models are fragile as compared to the steady-state models.
- e. The presence of the thermojunction does not alter the temperature field of the model wall nearly so much in the steady-state case as in the transient case.
- f. Regardless of the magnitude of the heat-transfer rate, the data may be obtained in digital form in the steady-state case. Such data may be completely reduced by high-speed computing machines. High heat-transfer rates imply rapid

response time in the transient case. Most digital data handling systems are not fast enough to be used in obtaining rapidly changing transient data. Consequently, analogue recorders, with their inherent time-response difficulties, are generally used in this application. In any event, the transient technique requires the determination of the slope of an experimentally determined curve. Such slopes are difficult to determine with any degree of precision.

- g. There are no physical assumptions made in solving the steady-state conduction problem. For solving the transient problem, the assumption is made that the body is isothermal at time zero which is difficult to achieve experimentally for the angle-of-yaw case. Admittedly, the transient data may be corrected for conduction other than that normal to the body. However, the corrections sometimes exceed in magnitude the value of the desired quantity. Such a situation is most undesirable, for obvious reasons.
- h. In summary, it appears that the steady-state technique yields very precise results. The outstanding attributes of the transient technique are the simplicity of model design and instrumentation and the rapidity with which data may be obtained. If extreme precision is not required, the use of the steady-state technique is not justified because of the greater expense and time requirements.
- The axisymmetric sphere-cone configuration (Figures 1 and 3. 2) was constructed of type 347 stainless steel. Reduction of the data obtained from this model was somewhat simplified because the thermal conductivity of the steel varies linearly with temperature over the entire range considered during this investigation. Further, the coefficient of thermal conductivity is small, insuring a sufficiently large temperature difference ($\Delta T > 1^{O}K$) across the model wall. Determination of the thermal conductivity as a function of temperature of the stainless steel used in the fabrication of the model was made by the National Bureau of Standards; the method and results are presented in reference (a). The sphere-cone model had a half-cone angle of 13°20', a one-half inch wall thickness, a base diameter of 8.034 inches, a carefully machined shape, and a fine surface finish. It was instrumented with 64 thermojunctions along a meridian line (body streamline) on both the inside and outside walls. lists these locations. Each of the thermojunctions were formed by welding a 0.005-inch diameter constantan wire onto the model surface. The stainless steel of the model then

formed one side of all the thermojunctions. Three precisely machined stainless steel plugs, each instrumented with five thermojunctions, equally spaced, were placed into holes provided for them in the model wall. Plugs were located at the base of the cone, at the tangency point of the cone and sphere, and midway between the model stagnation point and the tangency point. Each of the model thermocouples was calibrated over the desired temperature range. Standard copper-constantan thermocouples, which had been calibrated for NOL by the National Bureau of Standards, were used as the reference. The entire model calibration was conducted in a large temperature controlled bath of silicone oil. Results of the calibration are presented in Figure 3. The model was also instrumented with eleven pressure orifices 0.025 inches in diameter, the locations of which are listed in Table II.

- 4. Figure 4 is a photograph of the disassembled model, sting, and sector. When assembled, the inner body was inserted into the nose of the model. The function of the inner body was to distribute coolant fluid onto the inside surface of the model in an attempt to achieve an isothermal outer wall. Figure 5 is a schematic diagram of the setup of the experiment. In addition to upstream and downstream movements, the sting and sector support system allowed the yaw and roll angle to be controlled and determined from outside the tunnel while the tunnel was in operation. The model was cooled internally by flowing DC 200 silicone oil through the sting and model at approximately fifty gallons per minute. The oil was cooled in a heat exchanger designed to maintain the coolant at 215°K. A mixture of solid carbon dioxide and alcohol was used to achieve this temperature.
- 5. The investigation was carried out in the NOL Supersonic Tunnel No. 2 which is described in reference (b). The nominal operating conditions were:

M ₁	mm Ag abs.	T oK	Re ₁ /meter	(V P)
3.24 4.84	1214_ 2220	335. 320	9.0×10^{6} 8.5×10^{6}	

6. Since the phenomenon under investigation was steady-state heat conduction, the tunnel supply conditions and the temperature difference through the model wall had to be maintained constant with time. Both temperature and pressure distributions on the model were measured concurrently to eliminate any error introduced by small non-steady-state conditions.

- 7. The pressure measurements were made on the sphere and cone of the model using Kendall precision mercury and oil manometers (reference (c)). The local flow conditions along the outer edge of the boundary layer were calculated, using the flow tables of reference (d), from the pressure distributions with the assumption of an isentropic flow from the model stagnation point.
- Temperatures were measured both on the inner and outer surfaces of the sphere, cone, and base of the model using the analog to digital converters, PADRE (reference (e)), and SADIC (reference (f)). The temperature measuring system was accurate to \pm 0.03°C. In addition to the wall surface measurements, temperatures were read through the model wall at the three plug locations. At 60 yaw angle, the model was rolled 1800 in 150 increments and measurements were taken at each roll increment. Unfortunately, the tunnel supply temperature and model coolant temperature could not be kent absolutely constant for the eight to ten hours required to complete the measurements at all the roll angles. In order to normalize the data with respect to the tunnel supply temperature and model coolant temperature, two requirements had to be fulfilled. First, essentially steady-state conditions must prevail while the measurements for one roll angle are being made. Second, the difference between the tunnel supply temperature and the model coolant temperature must not vary more than 1.0 or 1.5 percent during the time required to make the measurements at all of the roll angles. Both the Mach 3.24 and 4.84 data met the first requirement. However, the Mach 3.24 case did not meet the second requirement. Unfortunately, the difference between tunnel supply temperature and model coolant temperature varied as much as 4 percent, a fact which made it impractical to normalize the data. However, it must be emphasized that the Mach 3.24 data did meet requirement one, namely, that essentially steadystate conditions did prevail while measurements of each individual roll angle were being made.
- 9. The procedure used for normalizing and smoothing the $M_1 = 4.84$ data is described in Appendix A. It resulted in a smoothed temperature distribution having a maximum deviation of the order of 1 percent from any of the experimental values. The steady-state heat flux was then calculated on an IBM 704 using the Liebmann method for solving the partial differential equations associated with the problem of steady-state heat conduction in shells composed of a spherical nose on a conical body. This is discussed quite thoroughly in reference (g).

RESULTS AND DISCUSSIONS

Pressure-Distribution Data

- 10. The pressure distribution over the sphere-cone model at $M_1 = 3.24$ and zero yaw is presented in Figure 6. For comparison, a Newtonian distribution has been included. The experimental points agree quite favorably with the Newtonian distribution both on the spherical and conical portions of the body.
- 11. Figure 7 presents the pressure distribution over the sphere-cone model at $M_1 = 4.84$ and zero yaw. In addition to the Newtonian curve, experimental data at $M_1 = 5.4$ (reference (h)) has been included for comparisons. The experimental results from both investigations agree quite well with the Newtonian distribution on the sphere except at the point of tangency where they depart abruptly. On the cone the experimental data agree fairly well with the Newtonian calculations.
- 12. Figures 8 and 9 show the 6° yaw pressure distributions at $M_1 = 3.24$ and $M_1 = 4.84$, respectively. The data were measured over a roll angle range of 0° to 180° . A casual comparison of the experimental data with the theoretical curves indicates that the agreement is good. However, the Newtonian distributions calculated for $B = 0^{\circ}$ and $B = 180^{\circ}$ are up to 16 percent higher than the experimental points on the spherical portion of the body. Further, the experimental data deviate from the Newtonian in the region of the tangency point, then approach the Newtonian prediction on the cone.
- 13. Tables III and IV are tabulations of the pressure ratio (p/P_0^*) for each measuring station at $M_1 = 3.24$ and $M_1 = 4.84$, respectively. Both tabulations present data at 0° and 6° yaw. The angle-of-yaw data include measurements at roll angles from 0° to 180° in 15° intervals.

Temperature-Distribution Data

14. Typical zero yaw-temperature distributions at $M_1 = 3.24$ and $M_1 = 4.84$ are presented in Figures 10 and 11, respectively. These plots are representative of the zero-yaw data included in Tables V and VI and of the type of temperature distributions obtained on the sphere-cone model. These data, as well as other sets of the tabulated data, were used to calculate the heat flux to the sphere-cone body. It should be pointed out that none of the experimental results presented in this report are an average. Each distribution represents data from one wind-tunnel run.

- 15. Table V presents 0° and 6° yaw temperature measurements at $M_1 = 3.24$. Only the experimentally determined temperatures have been tabulated for this Mach number since, as previously pointed out in Paragraph 3, it was not feasible to normalize the angle-of-yaw data. The table includes outside surface temperatures, plug temperatures, inside surface temperatures, S/R, yaw angle, and roll angle.
- 16. Temperatures at $M_1 = 4.84$ are presented in Table VI. Along with 0° yaw data, temperatures at 6° yaw and 0° to 180° roll are tabulated. Included in the tabulation of the 6° yaw data are the following quantities; S/R, calculated and measured outside, inside, and plug temperatures, and ΔT (difference between smoothed and measured temperatures).

Heat-Transfer Data

- 17. Figure 12 presents the heat-flux distribution at M_1 = 3.24. The local heat-flux Q has been made dimensionless with respect to Q', the heat flux at the model aerodynamic stagnation point. It is interesting to note that the heat flux reaches a maximum at S/R = 0.0818. Local maxima are also evident along the downstream portion of the conical body. is presently no suitable explanation for the presence of these maxima. The phenomenon of the maximum heat transfer occurring away from the aerodynamic stagnation point was also detected at M₁ = 4.84 and is presented in Figure 13. Similar observations have been reported by a number of people. Winkler and Danberg (reference (i)) measured the phenomenon at S/R = 0.0975, while Stine and Wanlass (reference (j)), Cresci and MacKenzie (reference (k)), and Crawford and McCauley (reference (1)) measured it at $S/R \simeq 0.2$, 0.2, and 0.03, respectively. Only one of the above mentioned references discusses the phenomenon at all. Winkler and Danberg state that at S/R = 0.0975 the temperature difference $(T_e - T_w)$ is a maximum causing maximum heating in that region. Kuethe, et al., in reference (m), have made hot-wire measurements in the stagnation point region of blunt bodies in supersonic flow. These measurements indicate that the stagnation point moves around in a random fashion which is somewhat analogous to the phenomenon reported herein.
- 18. Both Figures 12 and 13 include base heat-transfer data. Several assumptions were necessary in order to determine the local heat flux from the temperature-distribution data. The afterbody was assumed to be a spherical section of uniform wall thickness. This is the "so-called" "assumed afterbody" of Figure 1. The actual afterbody is a spherical section.

but does not have constant wall thickness. The IBM machine program for determining the local heat-flux ratios from a solution of the Fourier equation for steady-state conduction was restricted to a spherical section of constant wall thickness. Further, the extrapolated temperature distribution through the wall was obtained by assuming that the isotherms in the downstream portion of the conical forebody were parallel to the inner and outer walls. That section of the afterbody occupied by the sting was assumed to be at the temperature of the model coolant. Consequently, the subject base heat-transfer data should be viewed with caution because of the assumptions made and because the effectively large diameter sting undoubtedtly affected the wake flow and altered its characteristics.

- Experimental zero yaw heat-transfer data are compared (Figures 14 and 15) with the values obtained using the theory of Powers and Krahn, which was developed primarily for high-temperature laminar flows (reference (n)). The theory determines the heat transfer associated with a laminar boundary layer by the simultaneous solution of the momentum and energy integral equations using a two boundary-layer thickness approach (i.e., thermal and viscous). For the specific results shown herein, the thermodynamic and transport properties incorporated in the procedure were represented by curve fits to data presented in NBS Circular 564 (reference (o)). heat-transfer data are presented in the form of absolute heat flux, and the theoretical curve agrees quite well with the experimental results except in the stagnation point region where the deviation is up to 20 percent. At $M_1 = 3.24$ (Figure 14), the theoretical and experimental values agree from S/R = 0.1358 to the base of the model; while the $M_1 =$ 4.84 case (Figure 15) does not show agreement until an \$/R value of 0.3054. The agreement in the stagnation point region could be greatly improved by a better determination of $(\partial u/\partial B)_{S=0}$ (the dimensionless velocity gradient at the model stagnation point). Since the heat transfer is dependent on $(\partial u/\partial S)_{S=0}$, accurate velocity measurements are needed for good stagnation point agreement. This is demonstrated by the fact that away from the stagnation point, where the percentage of error in velocity measurements is lower because of increased local velocity, the theoretical and experimental results agree quite well.
- 20. Figure 16 compares two sets of experimental data and the theoretical curve of Powers and Krahn. The heat-transfer data is presented as the dimensionless heat-transfer coefficient

- (Nu/ $\sqrt{\text{Re}}$). The model used to measure the data presented in reference (p) is similar to the sphere-cone model used in the present investigation. It consisted of a one-inch diameter spherical nose, a cone half angle of 20 degrees, a base diameter of 3.75 inches, and a wall thickness of 0.050 inches. The heat transfer was determined by the transient technique. Both sets of experimental data show excellent agreement with each other and with the theoretical curve, except in the region of the stagnation point. This again brings up the problem of measuring the velocity gradient $\begin{pmatrix} \delta & u \\ \delta & S \end{pmatrix} S = 0$ term as well as in the theory.
- 21. The outside surface temperature distributions at 6° yaw and 0° to 180° roll are presented in Figure 17. These data have been normalized and were used to calculate the local heat-flux distribution. The procedure used to normalize the data is described in Appendix A. Only the results at $M_1 = 4.84$ are presented because the $M_1 = 3.24$ data could not be normalized (see Paragraph 8). However, steady-state conditions did exist for the measurements made at $M_1 = 3.24$ for each β position.
- 22. Figure 18 presents the local heat-flux distribution over the sphere-cone model at 6° yaw and 0° to 180° roll. These data are compiled in Table VIII. The local heat-flux ratio at 6° yaw shows the same trend as the 0° yaw distribution; however, the effect of yaw is clearly shown. The Q/Q_0° decreases fairly uniformly as the measuring station moves from windward to leeward (from $\beta = 0^{\circ}$ to 180°).
- 23. Figure 19 compares the 0° yaw data with the data for 6° yaw in terms of Nu/ $\sqrt{\text{Re}}$. The effect of yaw is most pronounced on the conical portion of the body. On the windward streamline there is a maximum increase of approximately 100 percent as compared to the $\alpha=0^{\circ}$ data in the local heating rate. The zero-yaw data nearly coincide with that for $\alpha=6^{\circ}$, $\beta=90^{\circ}$ which substantiates the results of reference (p), namely, that there is neglible angle-of-attack effect on the heat transfer in the $\beta=90^{\circ}$ plane for small α 's.
- 24. The angle-of-yaw data of the present investigation are compared with those of reference (p) in Figure 20. The data of reference (p) were obtained with a slightly different model configuration (see Paragraph 20) at $\alpha = 5^{\circ}$ and $M_1 = 6.0$ as compared to $\alpha = 6^{\circ}$ and $M_1 = 4.8$ for the present investigation.

These things being considered, the results are in substantial agreement.

CONCLUDING REMARKS

- 25. Pressure and heat-transfer distributions were obtained on a sphere-cone configuration at Mach numbers of 3.24 and 4.84 at $\alpha = 0^{\circ}$ and 6° . From this investigation, the following conclusions may be drawn.
- a. The method presented herein to determine the heat transfer to a body at angle of yaw yielded very good results over the range of parameters considered for this investigation. Consistent and reliable results are obtained because the present method eliminates several of the troublesome inherent difficulties of the transient type methods, namely, the assumptions of only normal heat flow and infinitely fast temperature recorder response as well as the troubles associated with the determination of slopes of experimental data curves.
- b. The newly developed theory of Powers and Krahn can be used to predict heat transfer to blunt bodies if one has an accurate determination of the velocity gradient.
- c. The existence of maximum heat flux in a region away from the stagnation point has been detected and should not be ignored. Further investigation of this phenomenon, in view of these results, is certainly warranted.
- d. The small angle of yaw considered, 6°, resulted in an increase of approximately 100 percent in the local heat-transfer rate on the windward streamline on the cone as compared to the zero-yaw case.
- e. The pressure distribution along the sphere-cone model at zero angle of yaw can be adequately predicted by the Newtonian method. However, this same method yields results as much as 16 percent higher than experiment on the spherical portion of the body at 6° angle of yaw.
- f. Both the pressure-distribution data and the heat-transfer data are in substantial agreement with other experimental results.

REFERENCES

- (a) Robinson, H. E. and Watson, T. W., "Thermal Conductivity at Low Temperatures of Types 316 and 347 Stainless Steels," NBS Report 5748, January 1958
- (b) Meek, P. P., "Aeroballistic Research Facilities," NOLR 1233, May 1959
- (c) Kendall, J. M., "Equipment and Techniques for Making Pressure Measurements in Supersonic Wind Tunnels at Mach Numbers up to 5," NAVORD Report 2580, 11 August 1952
- (d) Ames Research Staff, "Equations, Tables, and Charts for Compressible Flow," NACA Report 1135, 1953
- (e) Kendall, J. M., "Portable Automatic Data Recording Equipment (PADRE)," NAVORD Report 4207, 24 August 1959
- (f) Sink, R. and Slocomb, G., "The SADIC, A Precision Analogue to Digital Converter," Consolidated Electro-dynamics Corporation, Pasadena, California, 1951
- (g) Orlow, T. A., "Numerical Solution of LaPlace's Equation for Various Three-Dimensional Regions with Axial Symmetry," NAVORD Report 6038, 22 January 1958
- (h) Redman, E. J. and Pasiuk, L., "Pressure Distributions on an ABMA Jupiter Nose Cone (13.3 Degrees Semi-Vertex Angle) at Nominal Mach Numbers 5, 6, 7, and 8,"
 NAVORD Report 4486, 27 September 1957
- (1) Winkler, E. M. and Danberg, J. E., "Heat-Transfer Characteristics of a Hemisphere Cylinder at Hypersonic Mach Numbers," NAVORD Report 4259, 11 April 1957
- (j) Stine, H. A. and Wanlass, K., "Theoretical and Experimental Investigation of Aerodynamic-Heating and Isothermal Heat-Transfer Parameters on a Hemispherical Nose with Laminar Boundary Layer at Supersonic Mach Numbers," NACA TN 3344, December 1954
- (k) Cresci, R. J., MacKenzie, D. A., and Libby, P. A., "An Investigation of Laminar, Transitional and Turbulent Heat Transfer on Blunt-Nosed Bodies in Hypersonic Flow," WADC TN 59-119, ASTIA Document No. AD 214617, April 1959

- (1) Crawford, D. H. and McCauley, W. D., "Investigation of the Laminar Aerodynamic Heat-Transfer Characteristics of a Hemisphere-Cylinder in the Langely 11-Inch Hypersonic Tunnel at a Mach Number of 6.8," NACA TN 3706, July 1956
- (m) Kuethe, A. M., Willmarth, W. W., and Crocker, G. H., "Stagnation Point Fluctuations on a Body of Revolution," The Physics of Fluids, Vol. 2, Number 6, Letters to the Editor, November-December 1959
- (n) Powers, J. O. and Krahn, E., "Heat-Transfer in Dissociated Air by a Two-Thickness Integral Method. Part I: Stagnation Point Heat Transfer," NAVORD Report 6673, 24 September 1959
- (o) Hilsenrath, J., et al., "Tables of Thermal Properties of Gases," NBS CIRCULAR 564, November 1955
- (p) Zakkay, Y., "Pressure and Laminar Heat-Transfer Results in Three-Dimensional Hypersonic Flow," WADC TN 58-182, ASTIA Document No. 155 679, September 1958

APPENDIX A

Data Normalization

- 1. The procedure used for normalizing is as follows:
- a. A plot of inside and outside wall temperature versus roll angle was made for each thermojunction location.
- b. These data were fitted with various curves, i.e., straight line, cubic, etc.

After inspection of these fits, it was decided to use a least square straight line to the test data for roll angles from 15° to 165° , i.e., to all data except the end points 0° and 180° . The β = 0° and 180° data were omitted from the least squares straight line computation because, with the assumption of axisymmetric heat flow, the slope of the T_w versus β curve must equal zero at β = 0° and 180°. To achieve this rounding off, the values of T_w at $\beta = 0^{\circ}$ and 180° were assumed to be equal to those computed for 8 = 5°and 1750 from the least squares straight line fit. The temperatures for $\beta = 90^{\circ}$ obtained from the straight line fits were plotted as T versus S/R. After careful inspection, these temperatures were shifted up or down the minimum amount necessary to achieve a smooth curve. The corresponding β = 00 and 1300 data were shifted exactly as were the $\beta = 90^{\circ}$ data. Then the shifted $\beta = 00$ and 1800 data were also plotted as i versus S/R. Further, a plot was made of the straight line slopes versus S/R. By inspection of these three plots, the β = 0° and 180° data and the straight line slopes, all versus S/R, a minimum change was made in the appropriate slopes in order to achieve a smooth curve. This smooth curve provided all the information necessary for obtaining the smoothed temperature data used in the heat-transfer determination.

FIG. I DRAWING OF THE SPHERE-CONE MODEL

NAVORD REPORT 6812

NAVORD REPORT 6812

NAVORD REPORT 6812

6 LOCAL STATIC -PRESSURE DISTRIBUTION OVER THE SPHERE-CONE MODEL AT $M_1=3.24$ AND $\alpha=0^\circ$

FIG. 7 LOCAL STATIC-PRESSURE DISTRIBUTION OVER THE M1=4.84 AND \a=0. AT SPHERE-CONE MODEL

FIG. 8 LOCAL STATIC - PRESSURE DISTRIBUTION THE SPHERE-CONE MODEL AT M. 3.24 AND \$\alpha = 6.

DIMENSIONLESS CONTOUR LENGTH S/R

SPHERE-CONE MODEL AT M1=4.84 AND Q=6°

FIG. 10 SURFACE TEMPERATURE DISTRIBUTION OVER THE SPHERE-CONE MODEL AT $M_1 = 3.24$ AND $\alpha = 0^{\circ}$

FIG. II SURFACE TEMPERATURE DISTRIBUTION OVER THE SPHERE-CONE MODEL AT M_1 = 4.84 AND α = 0°

FIG. 12 LOCAL HEAT-FLUX DISTRIBUTION OVER THE SPHERE-CONE MODEL AT M. = 3 94 AND ----

NAVORD REPORT 6812

FIG. 15 A COMPARISON OF THE EXPERIMENTAL AND THEORETICAL ABSOLUTE LOCAL HEAT-FLUX OVER THE SPHERE-CONE MODEL AT M₁ = 4.84 AND a =0°

FIG. 17 LICAL TEMPERATURE DISTRIBUTION ALONG THE OUTSIDE SURFACE OF THE SPHERE-CONE MODEL AT $\rm M_I$ = 4.84 AND α = 6°

FIG. 18 LOCAL HEAT-FLUX DISTRIBUTION OVER THE SPHERE-CONE MODEL AT M, = 4.84 AND α = 6°

Nu/ VRB

OVER TWO SPHERE-CONE MODELS AT a = 5° AND 6° (\$ = 0° AND 180°) 20 DIMENSIONLESS HEAT - TRANSFER DISTRIBUTION

NAVORD Report 6812

Thermojunction Locations

Table I

A. Spherical Nose

		_	. Spherica	I NOBe		
Outside Thermo- junction	s(in.)	S/R	A.	Inside Thermo- Junction	S/R	A•
1 1A	0 0.273	0.068	0 10°	2	0	0
	0.545	0.136	20°	4	0.136	50•
3 3 A 5 5 A	1.227	0.305	45° 52°30'	6(ABC)	6. 305	45.
7 ~ 7▲	1.635	0.407	60° 6 7°	8	0.407	60•
9	2.090	0.520	760401	10(ABC)	0.520	76•40•
		<u>B.</u>	Conical Se	ction		
11 13 15 17 19 21 23 25 27 29 31 33 37 39 43 45 49 8ase	2.590 3.090 3.590 4.590 5.090 5.590 6.090 6.590 7.090 7.590 8.590 9.090 10.590 11.590 12.880	0.645 0.769 0.894 1.018 1.143 1.267 1.392 1.516 1.640 1.765 1.890 2.138 2.263 2.387 2.512 2.636 2.761 2.885 3.010 3.206		12 14 16 18 20 24 26 28 30 33,4 36 38 40 44 46 48 50(ABC)	0.645 0.769 0.894 1.018 1.267 1.392 1.516 1.640 1.765 1.890 2.138 2.263 2.387 2.512 2.636 2.636 2.885	
		c. s	pherical Af	terbody		
51 53 55 57 59 61	15.696 15.196 14.696 14.196 13.696	3.907 3.783 3.658 3.534 3.410 3.285	14°45° 19°24° 24°3° 28°42° 33°21°	52 54 56 58	3.907 3.783 3.658 3.534	14°45° 19°24° 24°3° 28°42°

^{*} Angular position on the spherical surface measured from the axis of symmetry.

^{** (}ABC) These are the three thermojunctions located through th wall at the specified values of S/R. The inner and outer wall thermojunctions plus the three through the wall make a total of rive which are equally spaced at 0.125" intervals through the wall.

NAVORD Report 6812

Table II

Pressure Orifice Locations

Orifice Number	S/R	<u>o</u>
1	.068	100
2	.136	20°
3	.258	380
4	.407	60°
5	.520*	76 ⁰ 40'
6	.769	
7	1.112	
8	1.454	
9	1.796	
10	2.138	
11	2.481	٠

the l

^{*}Tangency of sphere and cone.

2.4807	2.1384	1.7961	1.4538	1.1115	0.7692	0.5203	0.4071	0.2579	0.1358	0.0679	S/R	Yaw Angle,	Roll Angle,	
0	0	0	0	0	0	0	()	0	0	0	v	Ð	B	
.122	.122	.122	.122	.128	.131	.135	.204	594	.872	967	.કે.	0	0	
0.175	0.171	0.169	0.169	0.168	0.178	0.180	0.34	0.68	·	0.9n	P/P	6	0	(F ₀
0.172	0.172	0.168	0.167	0.169	0.178	0.180	0.351	.682	.924	0.997	P/P.	6	15	- 1214
0.166	0.166	0.165	0.161	0.169	0.173	0.177	0.314	0.675	0.917	1.000	P/P°	6	30	. mm Hg.
0.157	0.156	0.156	0.153	0.161	0.165	0.171	0.334	0.670	0.914	0.993	P/P°	6	45	abs.,
0.148	0.147	0.149	0.146	0.150	0.15	0.161	0.321	0.653	0.908	0.990	P .	6	60	T _o = 33
0.136	0.136	0.135	0.137	0.139	0.145	0.149	0.306	0.640	0.894	0.981	P/P°	6	75	5°K, Re
0.127	0.126	0.129	0.128	0.131	0.135	0.137	0.289	0.616	0.876	0.973	P/P°	6	90	335°K, Rel/meter
0.116	0.116	0.116	0.119	0.121	0.127	0.130	0.271	0.583	0.855	0.961	P/P.	6	105	×
0.108	0.107	0.109	0.112	0.114	0.118	0.123	0.257	0.556	0.833	0.944	P/P.	6	120	$10^{-6} - 9.0$
0.103	0.103	0.106	o.105	0.110	0.113	0.115	0.246	0.542	0.812	0.929	P 79.	ø.	135	
0.100	0.100	0.102	0.101	0.103	0.107	0.108	0.317	0.532	0.796	0.919	P/P	O	150	
0.098	0.097	0.097	0.097	0.101	0.105	0.106	0.225	0.528	0.793	0.914	P/Po	თ	165	
0.096	0.097	0.097	0.096	0.099	0.104	0.104	0.222	0.525	0.792	0.915	P/Po	6	180	

LOCAL PRESSURE RATIOS ON THE SPHERE-CONE MODEL AT M₁ = 3.24

Table III

2.4807	2.1384	1.7961	1.4538	1.1115	0.7692	0.5203	0.4071	0.2579	0.1358	0.0679	S/R	Yaw Angle,	Roll Angle,	
												R	0	
0.082	0.080	0.081	0.086	680.0	0.102	0.123	0.259	0.568	0.854	0.939	P/P0	0	0	
0.127	0.124	0.122	0.123	0.125	0.141	0.158	0.328	0.667	0.907	0.968	P/P°	œ	•	(P
0.125	0.122	0.120	0.121	0.123	0.138	0.155	0.325	0.663	0.905	0.965	P/P.	6	15	- 2010
0.120	0.117	0.115	0.116	0.119	0.134	0.150	0.316	0.652	0.898	0.960	P/P.	•	30	an Eg.
0.111	0.110	0.109	0.111	0.114	0.128	0.143	0.305	0.636	0.888	0.954	P/P	0.	\$ 5	abs., 7
0.109	0.101	0.100	0.103	0.104	0.104	0.120	0.134	0.606	0.870	0.946	P/Po	0.	60	0 = 322
0.098	0.095	0.096	0.095	0.098	0.112	0.125	0.274	0.587	0.856	0.940	P/Po	۵	75	To = 322°K, Rol/meter
0.081	0.079	0.080	0.085	0.089	0.102	0.114	0.256	0.562	0.845	0.929	P/P.	6	90	/motor
0.073	0.072	0.079	0.079	0.081	0.093	0.106	0.239	0.538	0.827	0.920	P/Po	•	105	x 10 ⁻⁶
0.066	0.065	0.074	0.073	0.076	0.086	0.098	0.225	0.517	0.813	0.912	P/20	00	120	7. 6)
0.061	0.061	0.063	0.068	0.071	0.081	0.093	0.213	0.498	0.835	0.904	P/Po	۵	135	
0.037	0.056	0.039	0.064	0.086	0.075	0.086	0.203	0.518	0.753	0.827	P/Po	o	150	
0.057	0.00	0.057	0.063	0.065	0.074	0.084	0.199	0.511	0.783	0.895	8	۵	165	
0.056	0.00	0.062	0.062	0.064	0.072	0.083	0.195	0.471	0.779	0.893	\$/ P .	۵	180	

LOCAL PRESSURE RATIOS ON THE SPHERE-CONE MODEL AT M₁ = 4.94

Table IV

TABLE V

LOCAL TEMPERATURE DISTRIBUTION ON THE SPHERE-CONE MODEL AT M, = 3.24

 $(P_0 = 1398 \text{ MM HG. ABS.}, T_0 = 325.4 \text{ K}, RE_1/METER X <math>10^{-6} = 10.61$ $\alpha = 0^{\circ}$

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	\$/R	T *K		T *K		T *K
	0.000	248+2				218.7
S	0.068 0.136	251.7 246.2				224.2
н	0.204	248.2				
E	0.305	239.2	236.2	231.7	227.2	223.2
R	0.356	236.2				
E	0-407	232.2				221.7
	0.455 0.520	230•2 226•2	225.7	223.7	221.7	220.7
	V•720	22002	22701	24301	3	22007
	0.520	226.2	225.7	223.7	221.7	220.7
	0.645 0.769	226.2				219.2 219.2
	0.109	22 5.2 22 5. 2				219.7
C	1.018	225.7				220.2
Ò	1.143	226.2		. •		220.7
N	1.267	226.7				221.7
3	1.392	227.2				222.2
	1.516	227.2				221.2
	1.640	227.7				221.7
	1.765	228 • 2				229.2
	1.890	228•2 228•7				224.2 224.7
	2.138	227.2				225.2
	2.263	227.2				225.2
	2.387	227.7				229.2
	2.512	227.7				225.2
	2.636	227.2				223.2
	2.761	227.2				225.2
	2.885	226.7				224.2
	3.010	228•2	226.7	225.7	225.2	220.7
	3.285	228.2				
8	3.410	225.7				
A	3.534	223.7				218.2
5	3.659	223.2				218.2
Ε	3.783 3.907	223 • 2				218.2 217.2
	3.707	223.7				41104

TABLE V (CONT.)

(P₀ = 1458 MM HG. ABS... T₀ = 324.7 °K. RE, /METER X 10⁻⁶ = 11.3)
α=0°

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	3/R	T %		T *K		T *K
-21	0.000	272.3				263.7
S	0.068 0.136	271.6 271.3				264.7
H	0.204	270.3	267.5	266.5	265.0	264.1
E R	0.305 0.356	268•5 267•2	20107	20005	20900	20401
Ε	0.407	266.4				263.4
	0.455	265 • 5 264 • 5	264.1	263.9	263.5	263.1
		244	244.3	242.0	249.8	. 240 3
	0.520	264.5 263.7	264.1	263.9	263.5	263.1 262.2
	0.769	263.2				262.1
	0.894	263.0				262.0
C	1.018	262.8				262.1
0	1.143	262.8				242.2
M	1.267	262.8			•	262.2
Ε	1.392	262.8				262.3
	1.516	262 • 8 262 • 8				262.3 262.3
	1.765	262.7				262.4
	1.890	262.7				262.4
	2.014	262.7	•			262.3
	2.138	262.6				262.3
	2.263	262.5				262.3
	2.387	262.5				262.3
	2.512	262.3				262.1
	2.636	262.2				261.9
	2.761 2.885	261.9 261.6				261.6 261.2
	3.010	261.6	261.4	261.3	261.2	260.6
В	3.285 3.410	241.4 360.5				
Ā	3.534	259.7				258.9
ŝ	3.659	259.4				258.8
Ĕ	3.783	259.4				258.6
	3.907	259.1				258.4

TABLE V (CONT.)

(Po = 1458 MM HG. ABS.. To = 325.2 %, RE, /METER x 10-6 = 11.3)

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	S/R	T *K		7 °K		1 "K
	4 / A	• •				' `
	0.000	271.8				263.4
\$ P	0.068 0.136	271•1 270•9				264.3
H	0.204	270.0				
£	0.305	268 • 2	267.3	266.1	265.0	263.7
R	0.356	266.9				
E	T04.0	266.0				263.1
	0-455	265.2	12.7			
	0.520	264.4	264.1	263.6	263.5	262.6
	0.520	264.4	264.1	263.6	263.5	262.6
	0.645	263.2				262.1
	0.769	262.7				261.9
_	0.894	262.4				261.8
Ç	1.018	262.4				261.8
0	1.143	262.4		•		261.9
N	1.267	262.5		•		262.0
E	1.392	262.5				262.0
	1.516	262.5				262 • 0 262 • 0
	1.765	262.5				262.0
	1.890	262.5				262.0
	2.014	262.4				261.9
	2.138	262.4				261.9
	2.263	262.3				261.8
	2.387	262.1				261.7
	2.512	262.0				261.6
	2.636	261.8				261.5
	2.761	261.6				261.3
	2.055	261.4				261.0
	3.610	261.3	261.1	261.1	260.8	260.6
	3.285	261.2				
8	3.410	260.0				
A	3.534	259.3				258.5
5	3.439	259.0				258.2
E	3.763	259.1				258.3
	3090F	258.9				258.1

TABLE V (CONT.)

 $(P_0 = 1214 \text{ MM HG. ABS.}, T_0 = 336.3 \text{ K}, RE, /METER X <math>10^{-6} = 6.9)$ $\alpha = 0^{\circ}$

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	S/R	r °K		T °K		T °K
	0.000	268 • 8				239.3
S	0.068	268.9				23703
P	0.136	267.9				246.3
H	0.204	266.2				21013
Ε	0. 5	262.3	259.5	255.9	252.0	247.9
R	. 7	259.7				
Ε	0	256.6				247.7
	4 4 3 0	254.9				
	ii. 520	251.8	251.0	249.5	247.9	246.2
	0.520	251.8	251.0	249.5	247.9	246.2
	0.645	249.2				245.1
	0.769	248.1				245.3
_	0.894	246.9				244.0
C	1.018	245.6				242.7
0	1.143	245.2				242.1
N E	1.267				. •	242.0
E	1.392 1.516	245.3				242.3
	1.640	245.3				242.3
	1.765	246 • 0 246 • 7				242.7
	1.890	245.6				242.7
	2.014	245.8				243.3
	2.138	245.9	•			243.3
	2.263	245.8				243.7
	2.378	246.6				243.7
	2.512	246.1				243.6
	2.636	246.1				243.4
	2.761	246.1				243.4 243.7
	2.885	246.1				243.8
	3.010	246.4	245.7	245.0	244.2	243.4
	3.285	246.4				
В	3.410	244.5				
A	3.534	242.9				238.5
S	3.659	242.4				238.0
E	3.783	242.4				237.9
	3.907	247.3				236.2

TABLE V (CONT.)

(P₀ = 1210 MM HG. ABS., T₀ = 336.3 °K, RE, /METER X 10⁻⁶ = 8.8)
α=0°

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
				- 10		-
	S/R	T °K		T °K		T °K
	0.000	264.7				233.6
S	0.068	265.7				
Ρ	0.136	264.6				241.7
Ħ	0.204	263.0	255 0	252.0	24.0	24.0
E R	0.305 0.356	259 • 2 2 5 6 • 7	255.9	252.0	248.0	243.8
Ê	0.407	254.5				243.6
	0.455	252.1				
	0.520	249.2	247.9	246.4	244.7	242.7
	0.520	249•2	247.9	4	244.7	242.7
	0.645	247.3	24107	•	24401	242.4
	0.769	247.1				243.9
	0.894	246.2				243.3
C	1.018	245.0				242.0
0	1.143	244.3		, •		241.0
N	1.267	244.0		•		240.6
Ε	1.392	243.2				240.3
	1.516	243.0				240.0
	1.640 1.765	243.5				240.2 239.9
	1.890	243.6 243.7				240.0
	2.014	242.5				240.0
	2.138	242.3				240.3
	2.263	242.2				240.0
	2.378	243.1				239.9
	2.512	242.5				239.9
	2.636	242.6				240.2
	2.761	242.9				240.4
	2.885	243.0				240.9
	3.010	243.4	242.4	242.0	241.5	240.9
	3.285	243.3				
В	3.410	241.0				1200
A	3.534	239.3				236.1
S	3.659	238.5				235.4
Ε	3.783 3.907	238 • 4 238 • 8				235.0 233.1
	3.70	2 30 1 0				47714

MAYORD REPORT 6812

TABLE V (CONT.)

(P₀ = 1461 MM HG. ABS... T₀ = 327.3 °K. RE, /METER x 10⁻⁶ = 11.2)
α=6° β=0°

		OUTS I DE		THROUGH THE WALL		INSIDE SURFACE
	\$/R	T *K		T *K		7 %
\$	0.000	270.3				261.5
į	0.136	270 • 2 269 • 9				
H	0.204	269.3				262.6
E	0.705	267.5	266.2	264.7	263.2	262.1
R	0.356	266.0				
E	0.407	265.3				261.6
	0.455	264.3	2.2			
	0.520	263.3	262.6	262.1	261.6	261.0
	0.520	263.3	262.6	262.1	261.6	261.0
	0.645	262.0				260.7
	0.769	261.5				260.4
C	0.894	261.5				260.5
0	1.143	261.2 261.4				260.6
N	1.267	261.8				260.6
E	1.392	261.8				261.0
	1.516	261.6				260.9
	1.640	261.8				260.9 261.0
	1.765	261.9				240.9
	1.890	261.7				260.9
	2.014	261.8				261.0
	2.138	261.5				261.0
	2•263 2•387	261.6				241.0
	2.512	261.7 261.7				260.9
	2.636	261.4				261.0
	2.761	261.2				260.7
	2.885	261.0				260.3
	3.010	260.6	260.7	240.4	260.0	260.0 259.6
	3.285	260.5				
8	3.410	259.2				•
A	3.534	257.9				257.1
S	3.459	257.5				256.8
E	3.783	257.5				256.7
	3.907	257.2				254.4

TABLE V (CONT.)

 $(P_0 = 1407 \text{ MM HG. ABS...} T_0 = 329.5 \text{ K. RE, /METER X } 10^{-6} = 10.7)$ $\alpha = 6^{\circ} \qquad \beta = 0^{\circ}$

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	\$/R	T *K		T *K		T *K
	0.000	272.0		•		262.1
S	0.068 0.136	272 7 271•6				264.2
Н	0.204	270.7				•
E R	0.305	269.0	267.4	266.3	265.1	263.4
Ē	0.356 0.4 0 7	268•1 26 6 •6				262.9
_	0.455	265.8				
	0.120	264.5	264.0	263.4	262.7	262.4
	0.520	264.5	264.0	263.4	262.7	262.4
	0.645	263.2				262.0
	0.769	262·4 262·3				261.7 261.6
C	1.018	262.6				261.9
0	1.143	262.7				261.9
N	1.267	262.9				262.3
E	1.392	262.9				262.5
	1.516	262•9 263•2				262•2 262•5
	1.765	263.4				262.4
	1.890	263.3				262.4
	2.014	263.4				262.4
	2.138	263.2				262.5
	2.263	263.2				262.6
	2.387	263.6				262.6
	2.512 2.636	263 . 2 263.0				262 • 2 262 • 1
	2.761	262.8				262.0
	2.885	262.9				261.2
	3.010	262.8	262.9	262.9	262.3	261.1
	3.285	263.0				•
8	3.410	261.7				•
Ä	3.534	260.7				258.9
S E	3.659 3.783	260• 2 259•9				258.6 258.5
_	3.907	259.6				258.0

TABLE V (CONT.)

 $(P_0 = 1460 \text{ MM HG. ABS...} T_0 = 327.2 \text{ K. RE, /METER X } 10^{-6} = 11.2)$ $\alpha = 6^{\circ} \qquad \beta = 15^{\circ}$

		OUTSIDE SURFACE		THROUGH THE WALL		inside Surface
	S/R	T *K		T *K		t %
	0.000	270.1	•			261.2
\$	0.068	270.0				•
P	0.136	269.9				262.5
H	0.204	269•2 267•5	266.2	264.5	262.9	262.1
R	0.356	265.7		40417	20207	
Ë	0.407	265.2				261.3
_	0.455	263.8				•
	0.520	263.0	261.5	261.4	261.4	260.9
	0.520	263.0	261.5	261.4	261.4	260.9
	0.645	261.8				260.2
	0.769	260.9				260.1
	0.894	261.2				260.1
C	1.018	260.9				260.1
0	1.143	261.0				260.3
N E	1.267	261.2				. 260•9 260•5
E	1.392 1.516	261.4 261.3				260.5
	1.640	261.3				260.6
	1.765	261.4				260.6
	1.890	261.4				260.€
	2.014	261.3				260.9
	2.138	261.3	•			261.0
	2.263	261.2				260.8
	2.387	261.2				260.5
	2.512	261.3				260.7
	2.636	260.8				260.5
	2.761	260.5				260.1
	2.885	260•3 260•2	261.4	261.4	261.4	259•4 259•3
	3.010	20002	24144	4447	20117	6,793
	3.285	260.1				•
В	3.410	258 • 6				284.4
À	3.534	258.0				256.6
S E	3.659 3.783	257•1 256•9				256.6 256.4
C	3.703					256.0
	30701	256.7				430.0

TABLE V (CONT.)

(P₀ = 1497 MM HG. ABS... T₀ = 329.6 °K. RE, /METER × 10⁻⁶ = 10.6)
α=6° β=15°

		OUTSIDE		THROUGH THE WALL		INSIDE SURFACE
	\$/R	T *K		T *K		T *K
	0.000	272.4				261.3
•	0.065 0.136	272•7 271•9				263.5
H	0.204	271.0				
Ë	0.305	269.1	267.1	266.0	264.4	262.9
Ř	0.356	267.5		2000		•
E	0.407	266.6				262.1
	0.455	265.3				•
	0.520	264.7	263.4	262.8	262.2	261.6
	0.520	264.7	263.4	262.8	262.2	261.6
	0.645	263.5				261.1
	0.769	263.0				260.8
_	0.894	262.7				261.1
Ç	1.018	262.7				261.5
0	1.143	262.7				261.4
N E	1.392	263·3 263·3				241.8
E	1.516	263.2		•		258.7
	1.640	263.3				201.9
	1.765	263.3				232.0
	1.890	263.3				231.6
	2.014	263.2				231.0
	2.138	263.3				262.1
	2.263	263.2				252.1
	2.387	245.3				262.1
	2.512	263.4				251.8
	2.636	243.1				261.8
	2.761	262.9				261.7
	2.885	262.7				261.4
	3.016	263.0	262.9	262.4	261.8	261.3
	3.285	262.9				•
8	3.410	261.3				•
Š	3.534	260.0				258.7
•	3.659	259.5				258.7
•	3.783 3.807	259•2 2 56• 7				258.4 2 97.6

TABLE V (CONT.)

 $(P_0 = 1458 \text{ MM HG} \cdot ABS \cdot \cdot \cdot T_0 = 327.2 \text{ K} \cdot \text{ RE, /METER X } 10^{-6} = 11.2)$ $\alpha = 6^{\circ} \quad \beta = 30^{\circ}$

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	S/R	T *K		T *K		7 %
_	0.000	270.2				261.7
S	0.068 0.136	270 • 6 269 • 8				263.2
H	0.204 0.305	269•7 267•2	266.9	265.2	263.8	262.4
R E	0.356	266.3 264.9			23773	•
•	0.495	264.2				261.9
	0.520	262.5	263.0	262.5	261.9	261.3
	0.520	262.5	263.0	262.5	261.9	261.3
	0.645	261.7 261.3				260•7 260•7
	0.894	261.4				240.6
C	1.018	261.3				0 • 9
0 N	1.143	261.7 261.8				260.8
E	1.392	261.7				. 260.8 261.0
-	1.516	261.8				260.9
	1.640	261.9				260.9
	1.765	261.9				261.1
	1.890	262.0				260.9
	2.014 2.138	261.8 262.0	•			261.0
	2.263	261.9				261.1 261.3
	2.387	261.7				261.0
	2.512	261.5				261.0
	2.636	261.3				261.0
	2.761	261.3				260.8
	3.010	260•7 260•8	241.0	260.8	240.2	259.9
	3.010	4000	40100	4000	260.2	259.8
	3.285	260.9				•
B A	3.410 3.534	259.5 258.5				337
ŝ	3.659	257.8				257.4 257.3
Ĕ	3.783	257.9				257.3
	3.907	257.7				256.8

TABLE V (CONT.)

(P₀ = 1407 MM HG. ABS... T₀ = 329.6°K. RE₁/METER X 10⁻⁶ = 10.6)
α =6° β=30°

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	S/R	T *K		7 *K		T *K
1	0.000	272.1				261.7
S	0.068	272•8 271•9				264.2
н	0.204	271.5				
Ε	0.305	269.2	267.8	266.5	264.6	263.4
R	0.356	268.2				•
E	0.497	267.1				262.7
	0.455	266.0	244	242	242.0	•
	0.520	264.5	263.8	263.4	262.9	262.2
	0.520	264.5	263.8	263.4	262.9	262.2
	0.645	262.9				262.0
	0.769	262.4				261.4
C	0.894 1.018	262 .3 262 .3				261.5 261.6
0	1.143	262.7				262.2
N	1.267	263.0		•		262.1
E	1.392	262.8				262.1
	1.516	263.0				262.2
	1.640	263.2				262.4
	1.765	263.2				262.5
	1.890	263.1				262.7
	2.014	263.1				262.5
	2.138	263.3				262.5
	2.263	263.4				262.7
	2.387 2.512	263•7 264•3				262.8 263.4
	2.636	264.7				263.3
	2.761	265.2				263.4
	2.645	265.5				263.2
	3.010	266.4	265.5	264.9	264.0	263.3
	3.285	265.0				•
8	3.410	262.4				•
A	3.534	261.2				259.5
5	3.659	260.1				259.1
E	3.783	259.7				259.0
	3.907	257.3				258.1

MAYORD REPORT 6812

TABLE V (CONT.)

 $IP_0 = 1458 \text{ MM HG. ABS.}, T_0 = 327.2 \text{ K. RE}_1/\text{METER X } 10^{-6} = 11.23$ $\alpha = 6^{\circ} \qquad \beta = 45^{\circ}$

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURPACE
	\$/R	т *к		1 %		1 %
4	0.000	270.7				261.8
S	0.068 0.136	270.6				240 4
P	0.204	270 -3 269 -4				263.4
E	0.305	267.8	266.4	245.0	263.7	262.5
R	0.356	265.9	2000			
Ε	0.487	265.2				261.7
	0.455	264.0				•
	0.520	263.2	262.9	262.4	262.0	261.2
	0.520	263.2	262.9	262.4	262.0	261.2
	0.645	262.0				260.8
	0.769	261.6				260.3
	0.894	261.3				260.3
Ç	1.018	261.6				. 260.6
0 N	1.143	261.8 261.8			•	260.7
Ē	1.392	261.8				260.8 260.8
	1.516	262.0				260.8
	1.640	262.0				261.0
	1.765	261.8				261.0
	1.890	261.7	•			261.0
	2.014	261.7				241.0
	2.138	261.5				261.0
	2.263	241.5				261.0
	2.387	261.4				261.0
	2.512	261.6				261.0
	2.636	261.2				260.8
	2.761	261.1				260.7
			240.0	240.7	940.4	260.0
	3.010	260.7	260.9	249.7	260.5	259.8
	3.285	261.1				•
ŀ	3.410	259.8				•
A	3.534	259.0				257.7
\$	3.659	258.4				257.5
E	D 783	258.6				257.4
	34567	250.1				257.0

TABLE V (CONT.)

(P₀ = 1407 MM HG. ABS... T₀ = 329.5°K. RE₁/METER X 16⁻⁶ = 10.7)
α=6° β=45°

	SURFACI	E E	THROUGH THE WALL		INSIDE
\$/(R T *K		T %		T *K
0.00					261.7
5 0.00					-0.07
P 0.11					263.7
E 0.30		246.9	244 0		•
R 0.35		20007	265.2	264.1	263.0
E 0.40					343.4
0.45	5 265.1				262.4
0.52	264.0	263.7	263.1	262.2	261.7
. 0.52		263.7	263.1	262.2	261.7
0.64					261.4
0.76 0.89					261.3
c 1.01					261.1
0 1.14					261.4
N 1.26			• • •		261.5
E 1.39					261.7 261.7
1.51					262.0
1.64					262.0
1.76					262.0
2401					261.9
2.13					261.9
2.26					262.1
2.38					262.1
2.51	263.2				262.1 262.5
2.63					262.8
2.76					262.9
2.889 3.01					262.5
31076	265.9	265.8	265.2	264.4	263.1
3.265					•
B 3.410					, i
3.659					259.6
E 3.783					259.2
3.907					259.0 258.4

MAYORD REPORT 6812

TABLE V (CONT.)

 $(P_0 = 1458 \text{ HM HG. ABS...} T_0 = 927.2 \text{ K. RE, /METER X } 10^{-6} = 11.2)$ $\alpha = 6^{\circ} \qquad \beta = 60^{\circ}$

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	\$/R	T *K		τ * K		T *K
	0.000	270.5				262.0
S	0.068	270.4 270.1				263.2
H	0.136 0.204	269.3				20302
Ë	0.305	267.2	266.3	264.9	263.4	262.4
R	0.356	245.6				•
E	0.407	264 . 8				261.7
	0.455	263.9				
	0.520	263.0	262.6	262.1	261.7	261.1
	0.520	263.0	262.6	262.1	261.7	261.1
	0.645	261.8				260.5
	0.769 0.894	261.3 261.1				260.4 260.5
C	1.018	261.1				260.6
ŏ	1.143	261.4				260.5
N	1.267	261.3			•	260.7
E	1.392	261.2				260.7
	1.516	261.3				260.7
	1.640	261.5				260.7
	1.765	261.5 261.4				260. 8 260. 8
	2.014	261.3	•			260.7
	2.138	261.3				260.7
	2.263	261.2				260.7
	2.387	261.3				260.7
	2.512	261.5				261.1
	2.636	261.4				261.0
	2.761	261.2				260.8
	2.885 3.010	261.0 261.3	261.4	261.1	260.5	260.2
	30010	20103	20107	20141	20019	14411
	3.285	261.4				•
8	3.410	259.7				247
A	3.534	258.9				257.7
S	3.659 3.783	258•7 258•6				257.7 257.5
•	3.703	258.5				257.1
	34741					

NAVGED REPORT 4812

TABLE V (CONT.)

 $(P_0 = 1407 \text{ MM HG. ABS...} T_0 = 329.5 \text{ K. RE}_1/\text{METER X } 10^{-6} = 10.7)$ $\alpha = 6^{\circ} \qquad \beta = 60^{\circ}$

		OUTSIDE SURFACE		THROUGH THE WALL		INS IDE SURFACE
	\$/R	T *K		T *K		T *K
	0.000	271.5				260.8
S	0.068	272.2				24.0
P	0.136 0.204	271.4 270.5				263.1
Ë	0.305	268.6	266.6	265.4	263.4	262.3
Ř	0.356	266.6	20000			•
E	0.407	265.9				261.3
	0.455	264.3				•
	0.520	263.7	262.6	261.9	261.5	260.9
•	0.520	263.7	262.6	261.9	261.5	260.9
	0.645	262.4				260.4
	0.769	261.7				260.1
C	0.894 1.018	261.6 261.5				260.1 260.3
ò	1.143	261.8				260.3
N	1.267	261.7		• 1		260.5
E	1.392	261.6				260.4
	1.516	261.8				260.6
	1.640	261.8				260.6
	1.765	261.9				260.7
	1.890	261.7				260.7
	2.014	261.7				260.7
	2.138 2.263	261.8 262.0				260.9
	2.387	262.3				261.1 261.2
	2.512	262.9	•			261.8
	2.636	263.3				262.0
	2.761	264.2				262.6
	2.885	265.1				262.4
	3.010	264.4	265.8	265.0	263.8	262.8
	3.285	264.1				•
8	3.410	262.5				•
A	3.534	260.8				258.7
8	3.459	260.0				258.3
E	3.783	259.6				258.7
	3.907	259.4				257.4

TABLE V (CONT.)

(P₀ = 1456 MM HG. ABS... T_Q = 327.2 %. RE, /METER X 10-6 = 11.2)
α-6 β-75

	×	OUTS I DE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	8/R	T *K		T *K		T *K
1	0.000	270-5				262.2
5	0.068	270.5				242
P	0.136 0.204	270.2 269.0				262.9
Ĕ	0.305	267.0	266.2	265.0	263.5	262.4
E R E	0.356	265.6				•
E	0.407	264.9				261.8
	0.455	263.8				•
	0.520	262.8	262.8	261.9	261.5	261.0
	0.520	262.8	262.8	261.9	261.5	261.0
	0.645	261.8				260.7
	0.769	261.2				260.4
	0.894	261.0				260.3
0	1.018	260.9 261.0			-	- 260.3 260.4
X	1.267	261.1				260.7
Î	1.392	261.0				260.5
•	1.516	261.1				260.7
	1.640	261.1				261.0
	1 . 765	261.2	•			260.8
	1.890	261.2				260.8
	2.014	261.2				260.7
	2.138	261.1				260.7
	2.263	261.1				260.6
	2.387	261.3				260.7
	2.512 2.636	261.4 261.7				261.0 261.0
	2.761	261.8				260.9
	2.885	262.0				240.7
	3.010	262.8	262.4	262.1	261.3	260.9
	3.285	261.8				•
8	3.410	260.1				•
A	3.534	258.9				257.7
5	3.659	258.5				257.6
E	3.783	258.2				257.7
	3.907	256.2				257.2

TABLE V (CONT.)

(P₀ = 1406 MM HG. ABS... T₀ = 329.5°K. RE, /METER X 10⁻⁶ = 10.6)
α =6° β=75°

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	S/R	T *K		T *K		T *K
	0.000	271.9				261.2
S	0.068	272.0 271.8				263.3
н	0.204	270.7				•
E	0.305	268.6	266.9	265.3	263.6	262.6
R	0.354	266-8				•
E	0.407	266 • 0 264 • 5		٠.		261.8
	0.520	263.8	263.0	262.1	261.5	261.3
	0.520	263.8	263.0	262.1	261.5	261.3
	0.645	262.4				260.8
	0.769	261.7 261.4		• • •		260.6 260.5
C	1.018	261.3				260.7
0	1.143	261.7				260.9
N	1.267	261.8				260.5
E	1.392	262.0 261.9				260.4 260.5
	1.640	262.0				260.5
	1.765	262.1				260.7
	1.890	261.9		•		260.9
	2.014	261.7				260.9
	2.138	261.8				261.2
	2.263 2.387	261.9 262.9				261.2 261.9
	2.512	263.9				262.6
	2.636	264.7				263.2
	2.761	265.7				263.7
	2.885	266.6	244 6	245 0		263.5
	3.010	267.4	266.9	265.8	264.6	263.5
	3.285	265.7				•
B	3.410 3.534	262.9 261.0				259.1
A S	3.659	260.2				258.6
E	3.783	260.0				258.5
	3.907	259.7				257.7

TABLE V (CONT.)

 $(P_0 = 1463 \text{ MM Hg. ABS.}) T_0 = 327.3 \%, RE, /METER X <math>10^{-6} = 11.2)$ $\alpha = 6^{\circ} \beta = 90^{\circ}$

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	S/R	T *K		T *K		T *K
_	0.000	271.1				261.5
S	0.068 0.136	270•8 270•3				262.5
H	0.204	269.3		•		
Ε	0.305	267.3	266.0	264.9	263.1	261.8
R	0.356	265.7				•
E	0.407	265.0				261.2
	0.455	263.7	242 2	241 0	243 4	240
	0.520	263.0	262.3	261.9	261.4	260.8
	0.520	263.0	262.3	261.9	261.4	260.8
	0.645	262.1				260.3
	0.769 0.894	261•4 261•4				259.9 259.7
C	1.018	261.3				259.9
ò	1.143	261.5				260.2
N	1.267	261.4				260.5
Ε	1.392	261.3				260.5
	1.516	261.1				260.4
	1.640	261.2				260.7
	1.765	261.0 261.3				260.9
	2.014	261.2				261.1 260.9
	2.138	261.2				260.8
	2.263	26161				260.9
	2.387	261.4				260.8
	2.512	261.6			•	261.0
	2.636	261.8				260.8
	2.761	262.1				261.3
	2.885 3.010	262•3 263•6	263.4	262.9	262.0	261.1 261.4
	34010	203.0	60317	202 4 7	20210	20114
_	3.285	263.0				•
В	3.410	260.7				
A	3.534	259 • 4				258.1
S	3.659 3.783	258•9 258•8				257.9 258.0
_	3.907	258.4				257.4
	24701					90107

TABLE V (CONT.)

 $(P_0 = 1406 \text{ MM HG. ABS...} T_0 = 329.5 \text{ K.} RE_1 / \text{METER X } 10^{-6} = 10.6)$ $\alpha = 6^{\circ} \beta = 90^{\circ}$

		OUTSIDE SURFACE		THROUGH THE WALL		INS IDE SURFACE
·	S/R	T *K		т %		T *K
	0.000	272.1				261.6
S P	0.068 0.136	272•3 271•7				266.9
H	0.204	270.8				2000,
E	0.305	268.7	266.3	265.1	263.8	262.1
R	0.356	266.6				•
Ε	0.407	265.7				261.3
	0.455	264.3				•
	0.520	263.5	262.5	261.7	26%.6	260.8
	0.520	263.5	262.5	261•7	261.6	260.8
	0.645	262.3	,			260.2
	0.769	261.7				259.9
_	0.894	261.5				260.0 260.1
0	1.018	261.6 261.6				260.4
Ň	1.267	261.7		•		260.2
Ë	1.392	261.8				260.4
_	1.516	261.8				260.2
	1.640	261.6				260.2
	1.765	261.8				260.7
	1.890	261.9				260.6
	2.014	262.0				260.5
	2.138	262.2				261.1
	2.263	261.6				261.3 261.7
	2•387 2•512	263 • 8 265 • 0				262.7
	2.636	266.0				263.5
	2.761	267.0				263.9
	2.885	267.0				263.2
	3.010	267.3	266.2	265.6	264.2	263.2
	3.285	265.7				•
8	3.410	262.8				•
A	3.534	260.9				258.7
S	3.659	260.1				258.4
E	3.783	259.9				258.3
	3.907	259.5				257.4

TABLE V (CONT.)

 $(P_0 = 1464 \text{ MM HG. ABS...} T_0 = 327.5^{\circ}\text{K.} RE, /METER X <math>10^{-6} = 11.2$) $\alpha = 6^{\circ} \beta = 105^{\circ}$

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	S/R	T *K		T *K	,	T *K
	0.000	270.7				262.5
5	0.068	270.3				242
P H	0.136 0.204	270•1 268•6				263.3
E	0.305	266•7	266.0	264.9	263.7	262.5
R	0.356	265.0	20010		20301	
Ε	0.407	264.3				261.7
	0.455	263.2				•
	0.520	262.4	262.7	262.0	261.4	261.3
	0.520	262•4	262.7	262.0	261.4	261.3
	0.645	261.3				260.6
	0.769 0.894	260•8 260•6				. 260.4 260.4
C	1.018	260.5				260.4
ò	1.143	260.7				260.4
Ň	1.267	260.8				260.5
Ε	1.392	260.9			•	260.5
	1.516	260.9				260.4
	1.640	261.1				260.5
	1.765	260.9				260.6
	1.890	260.6				260.6
	2.014 2.138	260•4				260•5 260•5
	2.263	260.7				260.5
	2.387	260.9				260.5
	2.512	260.9				260.5
	2.636	261.3			•	260.7
	2.761	261.7				260.9
	2.885	262.4				260.7
	3.010	263.3	263.2	262.5	261.8	261.1
	3.285	262.7				•
8	3.410	260.6				•
Å	3.534	259.3				257.9
S	3.659	258 • 8				257.7
Ε	3.783 3.907	258 • 7. 258 • 4				257.7 257.1
	30701	67017				43101

TABLE V (CONT.)

 $(P_0 = 1406 \text{ MM HG. ABS.}, T_0 = 329.5 \text{ K}, RE, /METER X <math>10^{-6} = 10.6)$ $\alpha = 6^{\circ} \quad \beta = 105^{\circ}$

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	S/R	T *K		T *K		T *K
	0.000	271.9				261.6
S	0.068	271.7				242
P H	0.136 0.204	271•2 270•1				263.3
E	0.305	267.9	266.6	265.2	263.8	262.3
Ř	0.356	266.4	20000		20300	-
Ε	0.407	265.5				261.7
_	0.455	264.3				•
	0.520	263.5	262.6	262.3	261.7	261.0
	0.520	263.5	262.6	262.3	261.7	261.0
	0.645	262.1				260.5
	0.769	261.3				260.2
	0.894	261.2				260.2
C	1.018	261.2				260.1
0	1.143	261.3		•		260 -3 260 -5
N E	1.267 1.392	261•4 261•4				260.4
E	1.516	261.3				260.4
	1.640	261.2				260.8
	1.765	261.5				260.8
	1.890	261.4				260.8
	2.014	261.4				260.7
	2.138	261.7				260.9
	2.263	261.8				261.3
	2.387	263.0				261.7
	2.512	264.4				262.8
	2.636	265.5				263.3
	2.761	266.6				264.0
	2.885	266.7	244	245 2	244 2	263.2
	3.010	266•8	266.4	265.2	264.2	263.6
	3.285	265.2				•
В	3.410	262.6				•
A	3.534	260.7				259.0
S	3.659	260.0				258.7
Ε	3.783	259.8			•	258.6
	3.907	259.6				257.9

TABLE V (CONT.)

 $(P_0 = 1464 \text{ MM HG. ABS.}, T_0 = 327.5 \text{ K}, RE, /METER \times 10^6 = 11.2)$ $\alpha = 6^{\circ} \quad \beta = 120^{\circ}$

		OUTSIDE SURFACE		THROUGH THE WALL		INS IDE
	S/R	T *K		T *K		† *K
	0.000	271.0				262.3
5	0.068 0.136	270 .6 269 .8				263.2
H	0.204	268.8				4
Ε	0.305	266.9	265.8	264.8	263.5	262.2
R	0.356	265.4				•
E	0.407	264.6				261.5
	0.455	263.3				•
	0.520	262.7	262.5	262.2	261.5	261.1
	0.520	262.7	262.5	262.2	261.5	261.1
	0.645	261.7				260.5
	0.769	261•1 260•9				260• 4 260• 3
C	0.894 1.018	260.8				260.5
ò	1.143	260.8				260.5
N	1.267	260.9				260.7
Ε	1.392	260.9				260.5
	1.516	260.9				260.5
	1.640	260.9				260.4
	1.765	260.9				260.5
	1.890	260.7				260.4
	2.014 2.138	260 •6 2 60•5				260.4 260.3
	2.263	260.2				260.3
	2.387	260.6				260.3
	2.512	260.5				260.3
	2.636	260.5				260.2
	2.761	260.9				260.4
	2.885	261.2				260.2
	3.010	262•1	262.2	261.8	261.2	260.4
	3.285	262.3				•
B	3.410	260.3				• • •
A	3.534	259.1				257.7
5	3.659	258.7				257.6
E	3.783 3.907	258•7 258•2				257.5 2 5 7.0
	30741	47416				27/10

(P₀ = 1405 MM HG. ABS., T₀ = 329.5°K, RE, /METER × 10⁻⁶ = 10.6)
α=6° β=120°

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	S/R	T *K		T *K		T *K
	0.000	271.9				261.4
5 P	0.068 0.136	271.3 271.0				263.0
H	0.204	269.7				
E	0.305	267.8	266.2	265.0	263.6	262.0
R	0.356	266.2				•
Ε	0.407	265.3				261.3
	0.455	264.3	0.0		04.9.4	2400
	0.520	. 263.5	262.4	261.8	261.6	260.8
	0.520	263.5	262.4	261.8	261.6	260.8
	0.645	262.0				260.5
	0.769 0.894	261•5 261•2				260•2 260•1
C	1.018	260.8				260.3
ò	1.143	261.1		. • •	•	260.3
N	1.267	261.2				260.5
E	1.392	261.0				260.4
	1.516	261.1				260.5
	1.640	261.3				260.5
	1.765	261.4				260.5
	1.890	261.4				260.7
	2.014	261.3				260•6 260•6
	2.138 2.263	261.3 261.5				260.8
	2.387	262.1				260.9
	2.512	263.1				261.7
	2.636	264.0				262.5
	2.761	265.2				263.2
	2.885	265.9				262.7
	3.010	266•5	266.1	264.9	263.7	263.0
	3.285	264.8				•
В	3.410	262.2				•
A	3.534	260.5				258.4
5	3.659	259.9				258 • 2
Ε	3.783	259.6				258•1 257•4
	3.907	259.2				23104

 $(P_0 = 1464 \text{ MM HG. ABS.}, T_0 = 327.5^{\circ}\text{K. RE}_1/\text{METER X } 10^{-6} = 11.2)$ $\alpha = 6^{\circ} \quad \beta = 135^{\circ}$

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	S/R	T *K		T *K		T *K
	0.000	270.8				262.0
5	0.068	270.0				263.0
P H	0.136 0.204	269•7 268•2				20300
Ë	0.305	266.3	265.2	264.3	262.9	262.2
Ř	0.356	265.0	20002			•
E	0.407	264.5				261.6
	0.455	263.0				•
	0.520	262.4	262.1	261.6	261.3	260.8
	0.520	262.4	262.1	261.6	241.3	260.8
	0.645	261.2				260.5
	0.769	260.5				260.2
_	0.894 1.018	260•3 260•3				260•1 . 260•2
0	1.143	260.3			•	260.2
N	1.267	260.3				260.4
Ë	1.392	260.5				260.2
_	1.516	260.3				260.1
	1.640	260.2				260.4
	1.765	260.2				260.2
	1.890	260.2				260.2
	2.014	260.0			-	260.1
	2.138	259.8				260.0
	2.263 2.387	259• 8 260•0				260•1 259•9
	2.512	260.0				259.9
	2.636	259.7				259.7
	2.761	260.0				259.8
	2.885	260.0				259.5
	3.010	260.5	260.9	260.5	260.2	259.5
	3.285	261.1				•
В	3.410	259.8				•
A	3.534	258.7				257.7
S	3.659	258.2				257.5
E	3.783	258.0				257.3
	3.907	258.0				256.9

 $(P_0 = 1405 \text{ MM HG. ABS.}, T_0 = 329.4 \text{ K. RE}_1/\text{METER X } 10^{-6} = 10.6)$ $\alpha = 6^{\circ} \beta = 135^{\circ}$

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	\$/R	T *K		7 ℃		7 °K
	0.000	272.7				261.5
S	0.068 0.136	271•4 271•2				263.4
H	0.204	269.6				•
E	0.305	267.8	266.1	265.3	263.6	262.5
R	0.356	265.9				• ′
£	0.407	265.2				261.7
	0.455	263.9	242.4	242.2	941.4	261.0
	0.520	263.3	262.6	262.2	261.6	201.0
	0.520	263.3	262.6	262.2	261.6	261.0
	0.645	262.1		٠		260.7
	0.769	261.4				260.5 260.5
C	0.894 1.018	260.9 260.8				260.6
ò	1.143	260.9		. •		260.5
Ň	1.267	260.9				260.8
Ε	1.392	260.8				260.3
	1.516	260.8				260.5
	1.640	260.9				260.9
	1.765	260.8				260.5
	1.890	260.8				260.5
	2.014 2.138	260.7 260.7				260•8 260•7
	2.263	261.1				260.9
	2.387	261.2				261.0
	2.512	261.7				261.3
	2.636	262.3				261.5
	2.761	263.4				262.1
	2.885	264.4	2.620.2	NICE OF		261.8
	3.010	265.5	265.1	264.3	263.3	262.5
	3.285	264.5				•
B	3.410	262.0				•
A	3.534	260.5				258.6
S	3.659	259.7				258.3
E	3.783	259.3				258.0
	3.907	258.9				257.5

 $(P_0 = 1404 \text{ MM HG. ABS.}, T_0 = 328.4 \text{ K. RE, /METER X } 10^{-6} = 10.7)$ $\alpha = 6^{\circ} \quad \beta = 150^{\circ}$

		OUTSIDE SURFACE		THROUGH THE WALL		inside Surface
	S/R	T *K		T *K		T *K
	0.000	272.3				261.7
S	0.068 0.136	271.5 271.1				263.7
н	0.204	269.8				
Ε	0.305	267.8	266.6	265.4	263.9	262.8
R	0.356	265.9				242
E	0.407 0.455	265.4 264.2				262.2
	0.520	263.4	262.9	262.3	261.9	261.2
	0.520	263.4	262.9	262.3	261.9	261.2
	0.645	262.1				260.8
	0.769 0.894	261.6 261.3				260•8 260•7
C	1.018	261.3				260.8
0	1.143	261.2			. * *	260.8
N	1.267	261.3				261.0
Ε	1.514	261.2				260.9
	1.516 1.640	261.0 261.1				260.7 260.8
	1.765	261.0				260.8
	1.890	261.0				260.8
	2.014	260.9				260.9
	2.138	260.9				260.8
	2.263 2.387	260.9 261.2				260•8 260•9
	2.512	261.3				261.2
	2.636	261.5				261.3
	2.761	262.4				261.5
	2.885	263.2	244	040		261.5
	3.010	264.2	264.2	263.5	262.7	262.0
	3.285	263.8				•
B	3.410 3.534	261•7 260•4				258.5
ŝ	3.659	259.7				258.4
Ě	3.783	259.5				258.3
	3.907	259.2				257.9

TABLE V (CONT.)

 $(P_0 = 1405 \text{ MM HG. ABS.}, T_0 = 329.2 \text{ K}, RE_1/METER X <math>10^{-6} = 10.7)$ $\alpha = 6^{\circ} \beta = 150^{\circ}$

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	S/R	т *к		T *K		T *K
S P	0.000 0.068 0.136	272•7 271•6 271•5				262.0 263.7
H E R E	0.204 0.305 0.356 0.407	269.9 268.0 266.1 265.4	266•4	265•4	264•1	262.7
	0.455 0.520	263•9 263•3	263.2	262.7	262.5	261.3
CONE	0.520 0.645 0.769 0.894 1.018 1.143 1.267 1.392 1.516 1.640 1.765 1.890 2.014 2.138 2.263 2.387 2.512 2.636	263 • 3 262 • 1 261 • 8 261 • 6 261 • 4 261 • 4 261 • 1 261 • 3 261 • 3 261 • 5 261 • 7	263•2	262.7	262.5	261.3 260.9 260.5 260.6 260.6 260.8 260.7 260.7 260.7 260.6 260.7 260.6 260.7 260.6
	2.761 2.885 3.010	262 • 6 263 • 5 264 • 7	264•7	263.9	263.0	261.6 261.5 262.2
B A S E	3.285 3.410 3.534 3.659 3.783 3.907	264 • 4 262 • 1 260 • 7 260 • 1 259 • 9 259 • 6				259.1 258.9 258.9 258.0

 $(P_0 = 1404 \text{ MM HG. ABS...} T_0 = 328.8 \text{ K. RE, /METER X } 10^{-6} = 10.7)$ $\alpha = 6^{\circ} \beta = 165^{\circ}$

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	S/R	T °K		T *K		T *K
	0.000	272.4				261.4
S	0.068 0.136	271.4 270.8				263.6
н	0.204	269.5				
Ε	0.305	267.2	266.6	265.4	264.1	262.8
R	0.356	266.2				•
Ε	0.407	264.9				261.7
	0.455	263.9				•
	0.520	263.1	263.1	262.5	262.1	261.0
	0.520	263.1	263.1	262.5	262.1	261.0
	0.645	261.9				260.6
	0.769	261.4				260.5
_	0.894	261.3				260.5
0	1.018 1.143	260.8				260.5
N	1.267	260.9 261.0				260.5
Ë	1.392	261.0				260•7 260•6
•	1.516	260.9				260.5
	1.640	260.8				260.8
	1.765	260.7				260.7
	1.890	260.6				260.8
	2.014	260.6				260.5
	2.138	260.5				260.6
	2.263	260.3				260.6
	2.387	260.4				260.6
	2.512	260.5				260.7
	2.636	260.5				260.7
	2.761	260.6				260.7
	2.885	260.8				260.7
	3.010	261.7	262•1	261.9	261.2	260.8
	3.285	262.4				•
8	3.410	261.1				•
A	3.534	260.0				258.5
S	3.659	259.7				258.5
Ε	3.783	259.5				258.5
	3.907	259.6				258.1

 $(P_0 = 1404 \text{ MM HG. ABS.}, T_0 = 329.2 \text{ K}, RE_1 / \text{METER X } 10^{-6} = 10.7)$ $\alpha = 6^{\circ} \quad \beta = 165^{\circ}$

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	S/R	T *K		T *K		T *K
s	0.000 0.068	272 • 4 271 • 4				260.9
P	0.136	270.7				263.0
н	0.204	269.2				20300
	0.305	267.6	266.2	265.2	263.4	261.9
E R E	0.356	265.8				•
E	0.407	265.1				261.2
	0.455	263.6	242 4	242.1	241.0	240.0
	0.520	263.0	262.6	262.1	261.8	260.8
	0.520	263.0	262.6	262.1	261.8	260.8
	0.645	262 • 1		•		260.3
	0.769 0.894	261•5 261•3				260.6
C	1.018	260.9				260•6 260•9
Ö	1.143	260.9		. · •		261.0
N	1.267	260.9				261.1
E	1.392	260.8				260.9
	1.516	260.7				261.2
	1.640	260.7				261.3
	1.765	260.7				261.2
	1.890	260.5				261.2
	2.014 2.138	260•3 260•2				261.0 261.0
	2.263	259.9				260.9
	2.387	260.4				260.9
	2.512	260.6				260.9
	2.636	260.4				260.9
	2.761	260.7				260.9
	2.885	260.9				260.9
	3.010	262•0	262•2	262•0	261.6	261.2
	3.285	262•9				•
В	3.410	261.3				•
A S	3.534	260.3				258.7
E	3.659	260.0				258.7
_	3.783 3.907	259•9 259•6				258 • 8
	30701	67700				258.3

 $(P_0 = 1404 \text{ MM HG. ABS.}, T_0 = 328.9 \text{ K. RE, /METER X } 10^{-6} = 10.7)$ $\alpha = 6^{\circ} \quad \beta = 180^{\circ}$

S/R T *K T *K T *K T *K 0.0000 272.5 \$ 0.008 271.5 P 0.136 271.0 H 0.204 269.5 E 0.305 267.3 266.7 265.2 263.8 262.7 R 0.356 265.8 E 0.407 264.9 0.455 263.9 0.520 262.9 262.7 262.3 261.8 261.3 0.645 261.8 0.769 261.2 0.0694 261.0 C 1.018 260.8 O 1.143 260.9 M 1.267 261.0 E 1.392 260.7 1.516 260.6 1.765 260.6 1.765 260.6 1.765 260.6 1.765 260.6 1.765 260.6 260.8 1.516 260.6 1.765 260.6 260.8 2		•	OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
\$ 0.068 271.5		S/R	T *K		T *K		T *K
P 0.136 271.0	c						
H 0.204 269.5							
R 0.356 265.8	Н						
E 0.407 264.9 262.0 260.0 260.				266.7	265.2	263.8	262.7
0.455 263.9 262.7 262.3 261.8 261.3 260.9 262.7 262.3 261.8 261.3 260.9 0.769 261.2 260.8							
0.520 262.9 262.7 262.3 261.8 261.3 0.520 262.9 262.7 262.3 261.8 261.3 0.645 261.8 260.9 0.769 261.2 260.6 0.894 261.0 260.8 0 1.143 260.9 260.8 1.267 261.0 260.8 1.392 260.7 260.6 1.516 260.6 1.640 260.6 1.765 260.6 1.765 260.6 1.890 260.4 2.014 260.3 2.138 260.2 2.138 260.2 2.263 260.0 2.387 260.1 2.512 259.9 2.60.3 2.60.5 2.387 260.1 2.60.5 2.387 260.1 2.60.5 2.387 260.1 2.60.5 2.387 260.1 2.60.5 2.387 260.1 2.60.5 2.387 260.1 2.60.5 2.387 260.1 2.60.5 2.387 260.1 2.60.3 2.60.3 2.60.3 2.60.3 2.60.3 2.60.3 2.60.3 2.60.3 2.60.3 2.60.3 2.60.5 2.885 260.2 3.010 260.6 261.1 260.9 260.5 2.58.5 3.559 259.6 E 3.783 259.6	E						
0.645 261.8 260.9 260.6 0.769 261.2 260.6 0.894 261.0 260.8 260.6 260.6 260.6 260.6 260.6 260.7 260.8 260.7 260.8 260.7 260.8 260.7 260.8 260.7 260.8 260.7 260.8 260.7 260.8 260.7 260.8 260.7 260.8 260.7 260.8 260.7 260.8 260.7 260.8 260.7 260.8 260.7 260.8 260.7 260.8 260.7 260.8 260.7 260.5 260.8 260.5 260.8 260.5 260.5 260.8 260.5 260.5 260.8 260.5 260.8 260.5 260.8 260.5 260.8 260.5 260.8 260.8 260.5 260.8				262.7	262.3	261.8	
0.645 261.8 260.9 260.6 260.8 260.6 260.6 260.6 260.6 260.6 260.6 260.6 260.7 2.014 260.3 260.5 2.138 260.2 260.5 2.263 260.0 260.5 2.387 260.1 260.5 2.387 260.1 260.3 2.60.5 2.636 260.1 260.3 2.761 260.1 260.3 2.761 260.1 260.3 2.761 260.1 260.3 2.885 260.2 260.5 260.3 260.5 260.5 260.3 260.5		0.520	262•9	262.7	262.3	261.8	261.3
C 1.018 260.8 . 260.6 . 260.6 . 260.6 . 260.6 . 260.6 . 260.6 . 260.6 . 260.6 . 260.7 . 2.014 . 260.3 260.7 . 2.014 . 260.3 260.5 . 2.138 . 260.2 . 260.5 . 2.263 . 260.0 . 260.5 . 2.387 . 260.1 260.3 . 260.4 . 260.3 . 260.5 . 2.387 . 260.1 260.3 . 260.3 . 260.2 . 260.3 . 260.2 . 260.3 . 260.3 . 260.3 . 260.2 . 260.3 . 260.2		0.645					260.9
C 1.018 260.8							
O 1.143 260.9 260.8 260.8 M 1.267 261.0 260.8 E 1.392 260.7 260.6 260.8 1.516 260.6 1.516 260.6 1.765 260.6 1.765 260.6 260.7 1.890 260.4 260.7 2.014 260.3 260.5 2.138 260.2 260.5 2.263 260.0 260.5 2.387 260.1 260.5 2.387 260.1 260.3 2.636 260.1 260.3 2.761 260.1 260.3 2.761 260.1 260.3 2.885 260.2 3.010 260.6 261.1 260.9 260.5 260.3 2.885 260.2 3.010 260.6 261.1 260.9 260.5 260.3 2.885 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 260.1							
M 1.267 261.0 260.8 260.8 1.392 260.7 260.8 1.516 260.6 260.6 260.6 260.6 260.6 260.6 260.6 260.7 1.890 260.4 260.3 260.5 2.138 260.2 260.5 2.387 260.1 260.5 2.387 260.1 260.3 2.60.5 2.387 260.1 260.3 2.60.3 2.761 260.1 260.3 2.761 260.1 260.3 2.761 260.1 260.3 2.885 260.2 3.010 260.6 261.1 260.9 260.5 260.3 2.885 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 260.2 260.3 260.2 260.3 260.2 260.3 26							
E 1.392 260.7 260.8 1.516 260.6 260.6 260.6 1.640 260.6 260.6 260.7 1.890 260.4 260.5 260.5 2.138 260.2 260.5 2.263 260.0 260.5 2.387 260.1 260.5 2.512 259.9 260.3 2.636 260.1 260.3 2.636 260.1 260.3 2.636 260.1 260.3 2.636 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3 260.2 3.010 260.6 261.1 260.9 260.5 260.3							
1.516 260.6 1.640 260.6 1.765 260.6 1.765 260.6 1.890 260.4 2.014 260.3 2.138 260.2 2.138 260.0 2.263 260.0 2.263 260.1 2.512 259.9 2.636 260.1 2.60.3 2.761 260.1 2.885 260.2 3.010 260.6 261.1 260.9 260.5 3.285 261.8 8 3.410 260.7 A 3.534 259.8 5 3.659 259.6 E 3.783 259.6							
1.640 260.6 1.765 260.6 1.890 260.4 2.014 260.3 2.138 260.2 2.263 260.0 2.387 260.1 2.512 259.9 2.636 260.1 2.60.3 2.761 260.1 2.885 260.2 3.010 260.6 261.1 260.9 260.5 2.885 260.2 3.010 260.6 261.1 260.9 3.285 261.8 8 3.410 260.7 A 3.534 259.8 5 3.659 259.6 E 3.783 259.6	•						
1.890 260.4 260.3 260.5 2.014 260.3 260.5 2.138 260.2 260.5 2.263 260.0 260.5 2.387 260.1 260.4 2.512 259.9 260.3 2.636 260.1 260.3 2.761 260.1 260.3 2.885 260.2 260.2 3.010 260.6 261.1 260.9 260.5 8 3.410 260.7 A 3.534 259.8 258.5 5 3.659 259.6 258.4 E 3.783 259.6							
2.014 260.3 260.5 2.138 260.2 260.5 2.263 260.0 260.5 2.387 260.1 260.4 2.512 259.9 260.3 2.636 260.1 260.3 2.761 260.1 260.3 2.885 260.2 260.2 3.010 260.6 261.1 260.9 260.5 B 3.410 260.7 A 3.534 259.8 258.5 S 3.659 259.6 258.4 E 3.783 259.6							
2.138 260.2 260.5 2.263 260.0 260.5 2.387 260.1 260.4 2.512 259.9 260.3 2.636 260.1 260.3 2.761 260.1 260.3 2.885 260.2 260.2 3.010 260.6 261.1 260.9 260.5 8 3.410 260.7 A 3.534 259.8 S 3.659 259.6 E 3.783 259.6							
2.263 260.0 260.5 2.387 260.1 260.4 2.512 259.9 260.3 2.636 260.1 260.3 2.761 260.1 260.3 2.885 260.2 260.2 3.010 260.6 261.1 260.9 260.5 260.3 3.285 261.8 8 3.410 260.7 A 3.534 259.8 5 3.659 259.6 E 3.783 259.6							
2.387 260.1 2.512 259.9 2.636 260.1 2.761 260.1 2.885 260.2 3.010 260.6 261.1 260.9 260.5 260.3 8 3.410 260.7 A 3.534 259.8 S 3.659 259.6 E 3.783 259.6							
2.512 259.9 260.3 2.636 260.1 260.3 2.761 260.1 260.3 2.885 260.2 3.010 260.6 261.1 260.9 260.5 260.3 B 3.410 260.7 A 3.534 259.8 259.6 S 3.659 259.6 258.4 E 3.783 259.6							
2.636 260.1 2.761 260.1 2.885 260.2 3.010 260.6 261.1 260.9 260.5 260.3 3.285 261.8 B 3.410 260.7 A 3.534 259.8 S 3.659 259.6 E 3.783 259.6							
2.761 260.1 2.885 260.2 3.010 260.6 261.1 260.9 260.5 260.3 3.285 261.8 B 3.410 260.7 A 3.534 259.8 S 3.659 259.6 E 3.783 259.6							
3.010 260.6 261.1 260.9 260.5 260.3 3.285 261.8 8 3.410 260.7 A 3.534 259.8 S 3.659 259.6 E 3.783 259.6							
3.285 261.8 B 3.410 260.7 A 3.534 259.8 258.5 S 3.659 259.6 258.4 E 3.783 259.6			260.2				
B 3.410 260.7 A 3.534 259.8 258.5 S 3.659 259.6 258.4 E 3.783 259.6 258.4		3.010	260•6	261.1	260.9	260.5	260.3
A 3.534 259.8 258.5 S 3.659 259.6 258.4 E 3.783 259.6 258.4							•
S 3.659 259.6 258.4 E 3.783 259.6 258.4							
E 3.783 259.6 258.4							
	C						

 $(P_0 = 1404 \text{ MM HG} \cdot ABS \cdot \cdot \cdot T_0 = 329 \cdot 2 \text{ K} \cdot RE_1 / METER \times 10^{-6} = 10 \cdot 7)$ $\alpha = 6 \quad \beta = 180 \quad \beta$

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	S/R	T *K		T *K		T *K
	0.000	272.3				261.3
S	0.068 0.136	271•5 270•9				263.4
H	0.204	269.4				•
Ε	0.305	267.5	266.0	265.2	263.8	262.4
R	0.356	266.1				•
E	0.407	264.8				262.1
	0.455	263•9 262•9	262.6	262.3	261.9	261.8
	0.520	262•9	262.6	262.3	261.9	261.8
	0.645	261.9				261.3
	0.769	261.5				261.0
_	0.894	261.3				260.9
0	1.018 1.143	261.3				260.9
	1.267	261·3 260·9		•		261.1 261.0
E	1.392	261.0				260.9
•	1.516	261.0				260.9
	1.640	261.0				261.0
	1.765	260.9				261.0
	1.890	260.8				261.0
	2.014	260.5				260.8
	2.138	260.6				260.9
	2.263	260.3				260.6
	2.387 2.512	260•5 260•5				260•6 260•6
	2.636	260.5				260.6
	2.761	260.5				260.7
	2.885	260.6				260.3
	3.010	261.0	261.1	261.0	260.8	260.5
	3.285	262.2				•
В	3.410	261.1				•
Ā	3.534	260.3				258.7
S E	3.659	259.9				258 • 8
E	3.783 3.907	259•9 259•8				258·9 258·3

TABLE VI

I TEMPERATURE DISTRIBUTION ON THE SPHERE-COME MODI

LOCAL TEMPERATURE DISTRIBUTION ON THE SPHERE-CONE MODEL AT M, = 4.84

 $(P_0 = 2213 \text{ MM HG. ABS...} T_0 = 320.0 \text{ K.} RE, /METER X <math>10^{-6} = 8.4$) $\alpha = 0^{\circ}$

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	S/R	т ° қ		T *K		T *K
s	0.000 0.068	247•5 247•4				232.2
P	0.136	246.0				232.4
H E	0.204 0.305	244•3 240•9	238.5	236•3	233•4	230.9
R	0.356	238 • 7	23003	23003	23344	23007
E	0.407	236 • 6				230.1
	0.455 0.520	234•9 233•1	232.3	231.3	230.4	229.2
	0.520	233•1	232.3	231.3	230.4	229.2
	0.645 0.769	231•3 230•7				228•5 228•4
	0.894	230•3			١	. 228.4
C	1.018	230 • 2			•	228.5
0	1.143	230 • 3				228.6
N E	1.267 1.392	230•4 230•5				228•9 229•1
_	1.516	230 • 8				229.4
	1.640	231.1				229.7
	1.765	231.3				230.1
	1.890	231.4				230.4
	2.014	231.5				230.5
	2.138	231.7				230.8
	2.263 2.387	231•7 232•0				230•7 230•9
	2.512	231.7				230.6
	2.636	231.8				230.9
	2.761	231.7				230.8
	2.885	231.5				230.6
	3.010	231.3		230.7	230•5	230•2
	3.285	230.5				
В	3.410	229.9				
A	3.534	229 • 2				228.5
S	3.659	228 • 8				228.5
Ε	3.783	245.5				228.0
	3.907					227.6

(P₀ = 2228 MM HG. ABS., T₀ = 320.0 °K, RE, /METER X 10-6 = 8.5)

Qt = 0°

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	S/R	т *к		T *K		T *K
5	0.000 0.068	247•2 247•4				232.4
P	0.136	245.7				232.5
H	0•204 0•305	244•7 240•5	238.8	236.5	233.9	231.0
R E	0.356 0.407	239·2 236·3				
L	0.455	235.4				230.1
	0.520	232•8	232.2	231.3	230•2	229.1
	0.520	232.8	232.2	231.3	230•2	229.1
	0.645 0.769	231.0 230.5			•	228•3 228•0
	0.894	230.2				228.2
C	1.018	230.0			_	228.3
0	1.143	230.1		• •		228.2
N	1.267	230.2				228.6
Ε	1.392	230.4				228.5
	1.516 1.640	230•5 231•0				228.9
	1.765	231.1				229•2 229•8
	1.890	231.3				230.1
	2.014.	231.2				230.3
	2.138	231.7				230.5
	2.263	231.6				230.6
	2.387	231.9				230.7
	2.512	231.7				230.8
	2.636	231.8				230.6
	2.761 2.885	231.6 231.4				230.6
	3.010	231.3		230.6	230.3	230.5
	31010	£ 3 & ¶ 3		23010	63013	230.0
•	3.285	230.4				
В	3.410	229.8				1222 -
A S	3.534 3.659	229•1				228.4
E	3.783	228.5				228•4 227•7
•	3.907	22017				227.3

(P₀ = 2222 MM HG. ABS... T₀ = 320.0 °K, RE, /METER X 10-6 = 8.4)
α=0°

		OUTSIDE SURFACE		THROUGH THE WALL		INSIDE SURFACE
	S/R	T *K		T *K		T *K
S	0.000 0.068	247•2 247•5				232.4
P	0.136	245.8				232.5
H	0 • 204 0 • 305	244•5 240•6	238.5	236.2	233.6	231.0
R	0.356	238.8				
E	0.407 0.455	236 • 4 235 • 1				230.1
	0.520	233.0	232.3	231.5	230.5	229•2
	0.520 0.645	233 • 0 231 • 2	232•3	231.5	230•5	229•2 228•5
	0•769 0•894	230•4 230•2				228• 2 228• 5
0	1.018 1.143	230•1 230•2				228.6
N	1.267	230•2			,	228.7
Ε	1.392	230 • 4				229.0
	1.516 1.640	230•5 231•0				229•4 229•6
	1.765	231.2				229.9
	1.890 2.014	231•3 231•4				230 • 4
	2.138	231.6				230•5 230•8
	2.263	231.7				230.7
	2.387	231.9				230.8
	2•512 2•636	231•6 231•7				230.7
	2.761	231.6				230•8 230•8
	2.885	231.5				230.5
	010 د	231.3		230.7	230.6	230.2
	3.285	230•2				
В	3.410	229.8				220
A S	3.534 3.659	229.3				228.5 228.4
Ε	3.783	228.5				227.8
	3.907	-				227.6

(P₀ = 2004 MM HG. ABS... T₀ = 321.0 °K. RE, /METER X 10-6 = 7.6)
α = 0°

		OUTSIDE SURFACE		THROUGH THE WALL		INS'DE SURFACE
	S/R	т •к		T *K		T *K
s	0.000	236 • 6 235 • 7				219.0
P	0.136	235.1				219.6
E	0 • 204 0 • 305	233•2 230•0	226.8	224.3	221.3	218.9
R	0.356	227.3				
Ε	0.407 0.455	225•4 223•2				217.7
	0.520	221.2	219.1	218.1	217.1	216.0
	0.520	221.2	219.1	218.1	217.1	216.0
	0.645	218.8				214.9
	0.769 0.894	218•0 217•6				214.8 214.8
C	1.018	217.5				214.9
0	1.143	217.6		•		215.0
N	1.267	217.8				215.2
Ε	1.392	217.9				215.4 215.5
	1.516	218•1 218•2				215.6
	1.765	218.3				215.7
	1.890	218.3				215.9
	2.014	218.4				216.0
	2.138	218.3				216.0
	2•263 2•387	218.3 218.2				216 • 1 216 • 1
	2.512	218.1				216.1
	2.636	217.9				216.0
	2.761	217.8				215.9
	2.885	217.6	216.0	214.2	216.0	215.6
	3.010	217.4	216.9	216.3	215.8	215.2
В	3.285 3.410	217.8				
	3.534	213.5				212.1
A S E	3.659	212.6				211.2
E	3.783	211.8				210.7
	3.907	211.4				210.0

TABLE VI (CONT.)

a =6° . FIRST SET

(Po = 2233 MM HG. ABS.. To = 320.0 K. RE, /METER X 10-4 = 8.5)

		ou	TSIDE SU	INSIDE SURFACE			
S/R	β*	T _c *K	T _m *K	∆ T ° K	T _C ° K	T _m K	∆T°K
0.000	0	245.1	245.0	1.0 -1	228.3	227.8	4.2 -1
	15	245.1	245.0	1.2 -1	228.3	227.8	4.2 -1
	30	245.1	244.4	6.6 -1	228.3	228.3	3.0 -3
	45	245.1	245.2	-7.2 -2	228.3	228.4	-7.7 -2
	60	245.1	244.7	4.2 -1	228.3	228.1	1.7 -1
	75	245.1			228.3		
	90	245.1	245.2	-8.2 -2	228.3	228.5	-2.3 -1
	105	245.1	245.3	-2.6 -1	228.3	228.6	-3.0 -1
	120	245.1	245.8	-6.9 -1	228.3	228.8	-5.2 -1
	135	245.1	245.7	-5.7 -1	228.3	228.6	-3.6 -1
	150	245.1	245.0	3.6 -2	228.3	227.5	7.8 -1
	165	245.1	244.6	4.4 -1	228.3	228.2	1.2 -1
	180	245.1	244.8	3.0 -1	228.3	227.9	3.5 -1
0.068	0	245.1	245.3	-2.3 -1			
	15	245.1	244.9	2.2 -1			
	30	245.0	244.9	1.0 -1			
	45	245.0	244.9	1.0 -1			
	60	244.9	245.0	-5.9 -2		. •	
	75	244.8				•	
	90	244.8	244.7	4.3 -2			
	105	244.7	245.1	-3.3 -1			
	120	244.7	245.1	-4.7 -1			
	135	244.6	245.5	-8.7 - 1			
	150	244.5	243.8	7.0 -1			
	165		243.9	5.6 -1			
	180	244.4	. 244.3	1.8 -1			
0.136	0	244.7	244.8	-1.4 -1	229.5	229.6	-1.3 -1
	15	244.6	244.7	-1.5 -1	229.4	229.4	7.2 -2
	30	244.4	244.1	3.1 -1	229.4	229.4	-2.3 -2
	45	244.2	244.3	-7.6 -2	229.3	229.5	$-1 \cdot 1 -1$
	60	244.0	243.8	1.5 -1	229.3	229.1	1.9 -1
	75	243.8			229.2		
	90	243.6	243.6	-1.5 -2	229.2	229.1	6.6 -2
	105	243.4	243.4	-7.6 -3	229.2	229.1	5.5 -2
	120	243.2	243.6	-3.7 -1	229.1	229.5	-3.6 -1
	135	243.0	243.4	-4.1 -1	229.1	229.3	-2.7 -1
	150	242.8	242.5	3.1 -1	229.0	228.9	1.5 -1
	165	242.6	242.4	2.5 -1	229.0	226.7	2.3 -1
	180	242.5	242.4	5.7 -2	228.9	228.4	5.4 -1

NAVORD REPORT 6812 TABLE VI (CONT.)

a =6° , FIRST SET

		ou	TSIDE SU	RFACE	INSIDE SURFACE		
S/R	β*	T _C *K	T _m *K	∆ T ° K	T _c *K	T _m *K	ΔT %
0.204	0	243.6	243.1	5.1 -1			
	15	243.4	244.0	-5.2 -1			
	30	243.1	242.7	3.6 -1			
	45	242.8	242.4	4.3 -1			
	60	242.5	242.3	1.3 -1			
	75	242.2					
	90	241.8	241.7	1.0 -1			
	105 120	241.5	241.8 241.5	-2.6 -1			
	135	241.2 240.9	241.7	-3.0 -1 -7.7 -1			
	150	240.6	240.0	5.3 -1			
	165	240.2	239.9	2.9 -1			
	180	240.0	240.4	-3.7 -1			
	100	24000	24014	-341 -1			
0.305	0	239.9	239.9	7.0 -2	228.6	228.5	1.1 -1
	15	239.7	239.7	9.3 -3	228.5	228.5	5.8 -3
	30	239.3	239.2	1.6 -1	228.4	228.5	-1.0 -1
	45	238.9	239.2	-2.0 -1	228.3	228.2	1.4 -1
	60	238.6	238.4	1.3 -1	228.2	228.1	8.1 -2
	75	238 • 2	227 0		228.1	222.0	• • •
	90	237.8	237.8	1.9 -2	228.0	227.9	7.0 -2
	105 120	237.5	237.4	7.2 -2	227.9	227.9	2.2 -2
	135	237•1 236•7	237.4 237.0	-2.9 -1 -2.7 -1	227.8 227.7	228.1	-3.1 -1
	150	236.4	236.2	1.8 -1	227.6	228.0	-2.6 -1 1.4 -1
•	165	236.0	235.8	1.9 -1	227.5	227.5 227.3	2.0 -1
	180	235.7	235.8	9.8 -2	227.4	227.2	2.0 -1
			23340	,,,,	22704		200 -2
0.356	0	237.6	237.5	9.8 -2			
	15	237.3	237.2	1.8 -1			
	30	237.0	237.0	-4.9 -2			
	45	236.6	236.6	5.7 -2			
	60	236.2	236.3	-8.2 -2			
	75	235.9	225 4				
	90	235.5	235.4	1.2 -1			
	105	235.2	235.3	-1.3 -1			
	120	234.8	235.0	-1.9 -1			
	135 150	234.4 234.1	235.0	-5.9 -1 4.4 -1			
	165	233.7	233.6 233.4	2.5 -1			
	180	233.5	233.7	-2.4 -1			
	700	63343	63301	-204 -1			

TABLE VI (CONT.)

a =6° . FIRST SET

		001	TSIDE SU	RFACE	INSIDE SURFACE		
S/R	β•	T _C *K	T _m *K	∆ T * K	T _c *K	T _m *K	∆T ⁴ K
0.407	0 15	235.0 234.8	235.2 235.0	-1.7 -1 -2.1 -1	227•3 227•2	227.5 227.2	-1.5 -1 3.5 -2
	30	234.5	234.0	5.0 -1	227.1	227.3	-2.4 -1
	45	234.2	234.4 234.0	-1.7 -1	227.0	226.9	1.2 -1
	60 75	233.9 233.5	2 440	-9.8 -2	226•8 226•7	226.8	6.8 -2
	90	233.2	233.1	8.8 -2	226.6	226.6	5.8 -3
	105	232.9	232.8	8.8 -2	226.5	226.4	3.3 -2
	120	232.6	232.8	-2.6 -1	226.4	226.6	-2.0 -1
	135	232.3	232.5	-2.3 -1	226.2	226.5	-2.3 -1
	150 165	231.9	231.8 231.4	1.2 -1 1.7 -1	226•1 226•0	226.2 225.9	-1.0 -1 6.0 -2
	180	231.4	231.4	2.1 -2	225.9	225.9	1.1 -2
0.455	0	233.3	233.4	-6.2 -2		`,	
	15	233.1	232.8	3.4 -1			
	30 45	232.8 232.5	233.0 232.5	-2.0 -1 3.2 -2			
	60	232.2	232.3	-1.3 -1			
	75	231.9					
	90	231.6	231.4	1.9 -1			
	105	231.3	231.4	-1.1 -1		•	
	120	230.9	231.2	-2.6 -1 -5.3 -1			
	135 150	230.6 230.3	231•2 229•9	-5.2 -1 3.8 -1			
	165	230.0	229.7	2.8 -1			
	180	229.8	230.0	1.9 -1			
0.520	0	231.1	231.2	-6.1 -2	226.3	226.4	-8.9 -3
	15	230.9		2.4 -2	226.3		1.2 -2
	30 45	230.6	230.8	-1.5 -1 -2.0 -2	226.1		-1.1 -1
	45 60	230.3 230.0	230•4 229•9	-2.0 -2 8.2 -2	226.0 225.8	226.0 225.8	8 • 4 - 3 1 • 5 - 2
	75	229.7		002	225.7		207
	90	229.4	229.3	1.7 -1	225.5	225.6	-5.6 -2
	105	229.1	228.9	1.7 -1	225.4	225.5	-1.1 -1
_	120 135	228.8 228.5	229•0 228•7	-1.6 -1 -1.9 -1	225.2 225.1	225.5	-2.9 -1 -4.0 -1
•	150	228.2	228.1	8.0 -2	224.9	225.5 225.0	-9.7 -2
	165	227.9	227.9	-1.5 -3	224.8	224.8	-4.0 -2
	180	227.7	227.8	-8.4 -2	224.7	224.9	-2.3 -1

TABLE VI (CONT.)

α =6° , FIRST SET

		٥u.	TSIDE SU	INSIDE SURFACE			
S/R	$oldsymbol{eta^{ullet}}$	T _C *K	T _m °K	∆T °K	T _C *K	T _m *K	ΔT •K
0.645	0	229.0	228.9	8.4 -2	225.7	225.7	-1.0 -2
	15	228.8	229.1	-3.1 -1	225.6	225.6	2.1 -2
	30	228.5	228.4	5.9 -2	225.4	225.5	-3.2 -2
	45	228.2	228.2	5.8 -2	225.3	225.3	2.1 -2
	60	227.9	227.8	1.5 -1	225.1	225.1	-4.4 -3
	75	227.6			225.0		
	90	227.3	227.1	2.4 -1	224.8	224.8	2.3 -2
	105	227.1	227.0	5.3 -2	224.7	224.7	-8.1 -2
	120	226.8	226.9	-1.3 -1	224.5	224.6	$-1 \cdot 1 -1$
	135	226.5	226.4	3.3 -2	224.3	224.1	2.6 -1
	150	226.2	226.3	-6.9 -2	224.2	224.2	-3.9 -2
	165	225.9	226.0	-8.7 -2	224.0	224.1	-5.9 -2
	180	225.7	226.2	-4.6 -1	223.9	224.2	-2.6 -1
0.769	0	228.0	228.1	-6.3 -2	225.4	225.3	6.6 -2
	15	227.9	227.9	-2.6 -2	225.3	225.1	1.3 -1
	30	227.6	227.6	-3.9 -2	225.1	225.0	1.0 -1
	45	227.4	227.5	-9.5 -2	225.0	225.0	2.7 -2
	60	227.1	227.0	1.2 -1	224.8	224.5	3.0 -1
	75	226.9			224.7		
	90	226.6	226.4	1.9 -1	224.5	224.3	2.5 -1
	105	226.4	226.3	3.3 -2	. 224.4	224.3	1.1 -1
	120	226.1	226.2	-6.3 -2	224.2	224.1	1.4 -1
	135	225.9	226.1	-2.1 -1	224.1	224.2	-8.4 -2
_	150	225.6	225.6	1.3 -2	223.9	223.7	2.2 -1
	165	225.4	225.3	6.8 -2	223.8	223.6	1.7 -1
	180	225.2	225.2	3•7 - 3	223.7	223.4	2.6 -1
0.894	0	227.5	227.7	-1.9 -1	225.3	225.4	-5.2 -2
	15	227.3	227.3	3.0 -2	225.2	225.2	7.9 -3
	30	227.1	227.2	-7.2 -2	225.1	225.1	-5.3 -2
	45	226.8	227.0	-1.0 -1	224.9	225.0	-4.6 -2
	60	226.6	226.5	7.7 -2	224.7	224.6	9.3 -2
	75	226.4			224.6		
	90	226.1	225.9	1.7 -1	224.4	224.3	1.5 -1
	105	225.9	225.8	3.9 -2	224.3	224.3	-2.3 -2
	120	225.6	225.7	-1.2 -2	224.1	224.1	-5.1 -2
	135	225.4	225.6	-1.8 -1	223.9	224.2	-2.6 -1
	150	225.2	225.1	3.5 -2	223.8	223.6	1.1 -1
	165	224.9	224.9	1.7 -2	223.6	223.5	6.8 -2
	180	224.8	224.7	6.1 -2	223.5	223.4	1.2 -1

TABLE VI (CONT.)

a =6° . FIRST SET

		001	SIDE SU	RFACE	INSIDE SURFACE		
S/R	β•	T _c *K	T _m °K	ΔT *K	T _C *K	T _m K	∆T •K
1.018	0	227.4	227.5	-1.4 -1	225.4	225.4	-8.3 -2
	15	227.2	227.2	-1.8 -2	225.2	225.3	-1.5 -2
	30	226.9	227.0	-7.6 -2	225.1	225.0	2.8 -2
	45	226.7	226.7	1.1 -2 9.7 -3	224.9	225.0	-6.3 -2
	60	226.4	226.4	9.7 -3	224.7	224.7	4.6 -2
	75	226.1	226 7	1 0 -1	224.5	224.2	1.41
	90	225.9	225.7	1.9 -1	224.4	224.2	1.6 -1
	105	225.6	225.6	3.7 -2	224.2	224.2	-4.4 -2
	120	225.4	225.4	-2.0 -2	224.0	224.1	-8.5 -2
	135	225.1	225.3	-2.1 -1	223.8	224.0 223.6	-1.9 -1 6.8 -2
	150 165	224.8 224.6	224.8 224.6	6.5 - 2 7.5 - 3	223.6 223.5	223.4	9.4 -2
	180	224.4	224.3	7.0 -2	223.4	223.3	9.4 -2
	100	24444	22403	780 -2	22304	22303	704 -2
1.143	0	227.3	227.4	-1.5 -1	225.4	225.4	-2.1 -2
	15	227.1	227.2	-8.8 -2	225.3	225.3	3.7 -2
	30	226.8	226.9	-1.6 -1	225.1	225.1	-1.3 -3
	45	226.5	226.6	-4.7 -2	224.9	225.0	-3.9 -2
	60	226.2	226.4	-1.3 -1	224.7	224.7	-2.8 -2
	75	225.9			224.5		
	90	225.7	225.5	1.3 -1	224.3	224.2	1.3 -1
	105	225.4	225.4	-4.3 -2	224.1	224.2	-9.7 -3
	120	225.1	225.2	-1.0 -1	224.0	224.0	-4.8 -2
	135	224.8	225.1	-2.8 -1	223.8	224.0	-2.2 -1
	150	224.5	224.5	4.7 -2	223.6	223.4	1.2 -1
	165	224.3	224.3	-1.3 -2	223.4	223.3	5.4 -2
	180	224.1	224.1	-3.0 -2	223•3	223.5	-2.7 -1
1.267	0	227.2	227.3	-9.0 -2	225.5	225.4	1.4 -1
	15	227.0	226.9	5.6 -2	225.4	225.3	1.2 -1
	30	226.7	226.7	-4.5 -2	225.2	225.2	1.5 -2
	45	226.4	226.4	4.5 -2	225.0	224.8	2.0 -1
	60	226.1	226.2	-1.3 -1	224.7	224.7	3.4 -2
	75	225.8			224.5		
	90	225.5	225.4	1.5 -1	224.3	224.1	2.7 -1
	105	225.2	225.3	-4.6 -2	224.1	224.0	1.3 -1
	120	225.0	225.0	-1.2 -2	223.9	223.8	8.9 -2
	135	224.7	224.8	-1.4 -1	223.7	223.8	-1.0 -1
	150	224.4	224.2	1.3 -1	223.5	223.3	2.2 -1
	165	224.1	224.1	-1.3 -2	223.3	223.2	1.1 -1
	180	223.9	223.9	-2.1 -3	223.1	223.0	1.8 -1

TABLE VI (CONT.)

a =6° , FIRST SET

		001	SIDE SU	In	INSIDE SURFACE		
S/R	$\boldsymbol{\beta}^{ullet}$	ζ°K	T _m °K	∆ T •K	τ _с •κ	Tm*K	∆T °K
1.392	0	227.1	227.0	1.3 -1	225.7	224.2	1.4 0
	15	227.0	226.6	3.0 -1	225.5	224.1	1.4 0
	30	226.7	226.5	1.3 -1	225.3	224.2	1.1 0
	45	226.4	226.2	2.1 -1	225.1	223.8	1.3 0
	60	226•1 225•8	226.0	9.2 -2	224.8	224.0	8.5 -1
	75 90	225.5	225.1	4.3 -1	224.6 224.4	223.3	1.0 0
	105	225.2	225.0	1.9 -1	224.1	223.2	9.1 -1
	120	224.9	224.7	2.2 -1	223.9	223.1	7.9 -1
	135	224.6	224.6	1.2 -3	223.7	223.2	4.6 -1
	150	224.3	223.9	4.0 -1	223.4	222.5	9.0 -1
	165	224.0	223.9	1.7 -1	223.2	222.5	6.8 -1
	180	223.8	223.6	2.5 -1	223.0	222.3	7.5 -1
1.516	0	227.4	227.1	2.5 -1	225.9	224.7	1.1 0
	15	227.1	226.8	3.1 -1	225.7	224.6	1.0 0
	30	226.8	226.6	2.1 -1	225.4	224.6	8.7 -1
	45	226.5	226.2	3.6 -1	225.2	224.3	9.3 -1
	60	226.2	226.1	1.4 -1	224.9	224.2	7.3 -1
	75	225.9			224.7		
	90	225.6	225.1	4.8 -1	224.4	223.4	9.8 -1
	105	225.3	225.0	2.8 -1	224.2	223.4	7.2 -1
	120	224.9	224.6	3.0 -1	223.9	223.2	6.5 -1
	135	224.6	224.5	1.2 -1	223.6	223.3	3.4 -1
-	150	224.3	223.9	4.0 -1	223.4	222.7	7.1 -1
	165	224.0	223.7	2.4 -1	223.1	222.6	5.3 -1
	180	223.8	223.5	3.0 -1	223.0	222.4	5.7 -1
1.640	0	227.8	227.9	-8 • 2 -2	226.1	225.8	3.4 -1
	15	227.5	227.5	5.2 -2	225.9	225.6	3.4 -1
	30	227.2	227.2	-4.9 -2	225.6	225.5	1.5 -1
	. 45	226.8	226.9	-1.9 -2	225.4	225.2	2.1 -1
	60	226.5	226.6	-8.5 -2	225.1	225.1	-1.8 -3
	75 90	226.1	225.5	7 2 -1	224.8	224 1	. 2 - 1
	90	225.8 225.4	225.5	2.3 -1	224.5	224.1	4.3 -1
	105	225.4	225.4	-2·0 -2	224.2	224.1	1.2 -1
	120 135	225.0 224.7	225.1	-2.1 -2 -2.4 -1	224.0	223.9	6.4 -2
	150	224.7	224.9 2 24.2	1.4 -1	223.7 223.4	223.8 223.1	-1.1 -1 3.5 -1
	165	224.0	224.0	8.9 -3	223.1	223.0	1.0 -1
	180	223.7	223.7	8.2 -3	222.9	222.8	1.5 -1
				542 -3	-2607	46510	*** - 7

TABLE VI (CONT.)

a =6° . FIRST SET

		ou:	TSIDE SU	RFACE	INSIDE SURFACE			
S/R	β°	T _c *K	T _m *K	∆T °K	T _C *K	T _m *K	∆T °K	
1.765	0 15	228•2 228•0	228·3 228·0	-4.0 -2 -3.5 -2	226•5 226•3	22 6.3 226.3	1.5 -1 2.9 -2	
	30	227.6	227.6	-4.4 -2	226.0	226.0	-6.9 -3	
	45	227.2	227.1	1.1 -1	225.7	225.6	1.1 -1	
	60	226.8	226.9	-1.1 -1	225.4	225.6	-2.1 -1	
	.75	226.4			225.1			
	90	226.0	225.8	1.5 -1	224.7	224.5	2.1 -1	
	105	225.6	225.6	-4.1 -2	224.4	224.5	-1.0 -1	
	120	225.2	225.3	-8.4 -2	224.1	224.2	-2.5 -2	
	135	224.8	225.0	-2.2 -1	223.8	224.1	-2.4 -1	
	150 165	224 • 4 224 • 0	224.2 224.0	1.5 =1 =6.2 =2	223.5 223.2	223.3 223.2	2.3 -1 -9.7 -4	
	180	223.7	223.7	2.7 -2	223.0	222.9	8.1 -2	
	200	22361			22300		002	
1.890	0	228.7	228.6	9.9 -2	227.0	226.7	2.5 -1	
	15	228 • 4	228.3	4.4 -2	226.8	226.6	1.3 -1	
	30	227.9	228.1	-1.3 -1	226.4	226.4	-2.1 -2	
	45	227.5	227.5	3.9 -2	226.1	226.0	1.2 -1	
	60	227.1	227.2	-1.5 -1	225.7	225.9	-1.9 -1	
	75 90	226.6 226.2	226.0	2.0 -1	225.4 225.1	224.9	1.8 -1	
	105	225.7	225.7	8.8 -3	224.7	224.8	-6.9 -2	
	120	225.3	225.3	2.8 -2	224.4	224.4	-5.5 -2	
	135	224.9	225.1	-1.8 -1	224.0	224.3	-2.6 -1	
	150	224.4	224.2	2.1 -1	223.7	223.5	2.1 -1	
	165	224.0	224.1	-6.5 -2	223.3	223.4	-6.3 -2	
	180	223.7	223.7	-1.9 -2	223.1	223.1	4.7 -2	
2.014	0	229•1	228.8	2.9 -1	227.4	227.1	2.9 -1	
	15	228.7	228.6	1.8 -1	227.2	227.0	1.8 -1	
	30	228.3	228.3	-3.5 -4	226.8	226.8	2.4 -2	
	45	227.8	227.7	1.4 -1	226.4	226.6	-1.3 -1	
	60	227.3	227.4	-8.1 -2	226.1	226.3	-2.1 -1	
	75	226.9			225.7			
	90	226.4	226.0	3.6 -1	225.3	225.2	1.6 -1	
	105	225.9	225.8	1.1 -1	224.9	225.0	-1.5 -3	
	120 135	225 • 4 225 • 0	225·3 225·1	1.2 -1	224.6	224.6 224.5	-3.0 -2 -2.4 -1	
	150	224.5	224.2	3.0 -1	224.2 223.8	223.6	2.5 -1	
	165	224.0	224.0	1.7 -2	223.5	223.5	1.3 -3	
	180	223.7	223.7	2.3 -2	223.2	223.2	4.4 -2	

TABLE VI (CONT.)

a =6° , FIRST SET

		out	TSIDE SU	RFACE	INSIDE SURFACE		
S/R	$oldsymbol{eta}^ullet$	T _C °K	ζ'nκ	Δτ ° κ	T _c °K	T _m *K	∆ T ° K
2.138	0	229.4	229.3	1.4 -1	227.8	227.7	1.1 -1
	15	229.1	229.0	8.1 -2	227.5	227.4	1.0 -1
	30	228.6	228.6	4.4 -2	227.2	227.2	-6.9 -2
	45	228.1	228.2	-5.6 -2	226.8	227.0	-1.9 -1
	60	227.6	227.8	-1.6 -1	226.4	226.5	-1.8 -1
	75 90	227•1 226•6	226.3	2.5 -1	226.0 225.6	225.4	1.7 -1
	105	226.1	226.1	-1.3 -2	225.2	225.2	-3.4 -2
	120	225.6	225.6	2.6 -2	224.8	224.7	1.1 -1
	135	225.1	225.3	-2.0 -1	224.4	224.6	-2.3 -1
	150	224.6	224.4	2.0 -1	224.0	223.7	3.0 -1
	165	224.1	224.2	-7.1 -2	223.6	223.5	4.0 -2
	180	223.7	223.8	-3.3 -2	223.3	223.1	1.8 -1
2.263	0	229.8	229.4	3.8 -1	228.1	228.0	1.0 -1
	15	229.5	229.1	3.7 -1	227.8	227.8	5.8 -2
	30	228.9	228.7	1.8 -1	227.4	227.4	-3.9 -2
	45	228.4	228.2	2.4 -1	227.0	227.0	2.9 -2
	60	227.9	228.2	-3.3 -1	226.6	226.7	-1.6 -1
	75	227.3			226.1		
	90	226.8	226.3	4.8 -1	. 225.7	225.5	2.2 -1
	105	226.3	226.1	2.0 -1	225.3	225.3	-2.4 -2
	120	225.7	225.5	2.6 -1	224.9	224.8	2.9 -2
-	135	225.2	225.3	-5.8 -2	224.5	224.8	-3.3 -1
	150	224.7	224.2	4.6 -1	224.0	223.8	2.7 -1
	165	224.2	224.1	8.3 -2	223.6	223.7	-4.5 -2
*1	180	223.8	223.7	1.0 -1	223.3	223.2	1.3 -1
2.387	0	230.2	230.1	7.0 -2	228+3	228.2	1.5 -1
	15	229.8	229.8	-3.5 -2	228.0		5.2 -2
	30	229.2	227.7	1.4 0	227.6	229.2	-1.5 0
	45	228.6	228.7		227.1	227.2	-8.9 -3
	60 75	228.1 227.5	228.4	-2.7 -1	226.7	226.9	-2.1 -1
	90	227.0	226.7	2.0 -1	226.3 225.8	225.7	1.1 -1
	105	226.4	226.5	-7.2 -2	225.4	225.5	-8.6 -2
	120	225.8	226.0	-1.7 -1	225.0	225.0	-1.6 -4
	135	225.3	225.7	-4.3 -1	224.5	224.9	-3.7 -1
	150	224.7	224.6	7.8 -2	224.1	223.8	2.7 -1
	165	224.1	224.4	-2.4 -1	223.6	223.7	-4.4 -2
	180	. 223.8	224.0	-2.1 -1	223.3	223.2	1.2 -1

TABLE VI (CONT.)

a =6° . FIRST SET

		OU.	TEIDE SU	RFACE	INSIDE SURFACE		
S/R	β°	T _C "K	T _m *K	∆ T ° K	T _c *K	T _m *K	∆T °K
2.512	0	230.3	230.0	3.4 -1	228.4	228.3	1.0 -1
	15	229.9	229.8	1.6 -1	228.1	227.7	4.1 -1
	30	229.3	229.3	6.0 -2	227.7	227.8	-1.1 -1
	45 60	228.8 228.2	229•2 228•2	-3.9 -1 1.5 -2	227.2 226.8	227.2 226.9	6.9 -2
	75	227.6	22002	105 -2	226.3	440.7	-104 -1
	90	227.0	226.5	4.7 -1	225.9	225.6	2.4 -1
	105	226.4	226.3	1.1 -1	225.4	225.4	-1.1 -2
	120	225.8	225.7	6.2 -2	225.0	224.9	1.1 -1
	135	225.2	225.4	-2.0 -1	224.5	224.8	-2.9 -1
	150	224.6	224.3	3.7 -1	224.1	223.7	3.4 -1
	165	224.0	224.0	3.8 -2	223.6	223.6	7.9 -2
	180	223.6	223.6	1.3 -3	223.3	223.2	1.8 -1
2.436	0	230.4	229.9	4.0 -1	228.4	228.4	1.7 -2
	15	230.0	229.8	2.0 -1	228.1	227.8	3.7 -1
	30	229.3	229.2	1.4 -1	227.7	228.0	-2.9 -1
	45	228.7	229.1	-3.1 -1	.227.2	227.2	8.8 -2
	60	228.1	228.2	-3.2 -2	226.8	227.1	-2.7 -1
	75	227.5			226.3		
	90	226.9	226.5	4.1 -1	225.9	225.8	1.2 -1
	105	226.3	226.2	9.8 -2		. 225.5	-5.4 -2
	120	225.7	225.6	1.3 -1	225.0	225.0	1.9 -2
	135	225.1	225.4	-2.9 -1	224.5	224.9	-3.4 -1
	150	224.5	224.2	2.9 -1	224.1	223.7	3.3 -1
	-165 180	223.9 223.5	223.9 223.6	-2.8 -3 -1.0 -1	223.6 223.3	223.6 223.9	2.3 -2 -5.3 -1
2.761	0	230.2	229.8	3.9 -1	228.3	228.4	1.0 -1
	15	229.8	229.7	8.6 -2	228.0		2.7 -1
	30	229.2	229.1	8.6 -2	227.5	228.0	-4.7 -1
	45	228.6	229.0	-3.6 -1	227.1	227.2	-6.7 -2
	60	228.0	228.0	-4.9 -2	226.6	226.9	-2.5 -1
	75	227.4			226.2		
	90	226.8	226.4	4.0 -1	225.8	225.7	7.5 -2
	105	226.2	226.1	5.9 -2	225.3	225.4	-9.6 -2
	120	225.6	225.6	-5.0 -2	224.9	224.9	-4.7 -2
	135	225.0	225.3	-3.6 -1	224.4	224.8	-4.2 -1
	150	224.4	224.1	2.5 -1	224.0	223.7	3.0 -1
	165	223.8	223.8	-6.0 -2	223.5	223.5	4.6 -2
	180	223.4	223.5	-1.3 -1	223.2	223.2	3.9 -2

TABLE VI (CONT.)

a =6° . FIRST SET

		OUTSIDE SURFACE			INSIDE SURFACE			
S/R	$oldsymbol{eta^{ullet}}$	£°K	T _m °K	∆3 * K	T _C *K	T _m °K	∆T °K	
2.885	0	229.6	229•2	4.2 -1	227.7	227.5	2.7 -1	
	15	229.2	229.2	7.5 -2	227.5	227.2	2.6 -1	
	30	228.7	228.7	-8.3 -3	227.0	227.1	-7.0 -2	
	45	228.1	228.2	-2.8 -2	226.6	226.8	-1.4 -1	
	60	227.6	227.7	-1.3 -1	226.2	226.4	-1.8 -1	
	75	227.0			225.8			
	90	226.4	226.2	2.4 -1	225.3	225.1	2.2 -1	
	105	225.9	225.9	-2.4 -2	224.9	225.0	-2.8 -2	
	120	225.3	225.4	-6.1 -2	224.5	224.5	-1.0 -2	
	135	224.8	225.1	-3.6 -1	224.1	224.5	-4.3 -1	
	150	224.2	223.9	2.5 -1	223.7	223.4	2.8 -1	
	165	223.6	223.6	4.7 -2	223.2	223.1	9.6 -2	
	180	223.3	223.3	-2.2 -2	223.0	222.9	3.5 -2	
3.010	0	229.1	228.8	2.4 -1	227.3	226.9	3.5 -1	
	15	228.7	228.6	1.4 -1	227.0	226.9	1.4 -1	
	30	228.2	228.4	-1.5 -1	226.6	226.7	-3.1 -2	
	45	227.7	227.7	9.8 -2	226.2	226.3	-3.3 -3	
	60	227.3	227.4	-1.5 -1	225.9	226.0	-1.3 -1	
	75	226.8			225.5			
	90	226.3	226.0	2.2 -1	225.1	224.9	1.6 -1	
	105	225.8	225.8	-5.6 -2	- 224.7	224.7	-3.3 -2	
	120	225.3	225.3	-1.2 -2	224.3	224.4	-4.4 -2	
	135	224.8	225.2	-4.5 -1	223.9	224.5	-5.1 -1	
	150	224.3	223.9	3.6 -1	223.6	223.3	2.5 -1	
-	165	223.8	223.8	1.6 -2	223.2	223.0	1.9 -1	
	180	223.4	223.2	2.1 -1	222.9	222.8	1.7 -1	

TABLE VI (CONT.)

a =6° , SECOND SET

(Po = 2010 MM HG. ABS.. To = 322.0 K. RE, /METER X 10-6 = 7.5)

		OU'	TSIDE SU	RFACE	IN	SIDE SUR	FACE
S/R	β*	τ _° κ	T _m *K	∆ T * K	₽.*K	Ţ <mark>m</mark> °K	∆ T •K
0.000	0	239.0	239.1	-5.4 -2	220.9	220.3	6.2 -1
	15	239.0			220.9		
	30	239.0			220.9		
	45	239.0	239.0	6.8 -2	220.9	220.6	3.1 -1
	60	239.0	238.5	5.3 -1	220.9	220.6	2.8 -1
	75	239.0	238.5	5.6 -1	220.9	220.9	6.8 -3
	90	239.0	239.0	6.8 -2	220.9	221.3	-3.9 -1
	105	239.0	239.1	-2.3 -2	220.9	221.1	-2.3 -1
	120	239.0	239.1	-1.1 -1 -7.2 -1	220.9	221.1	-2.3 -1
	135 150	239.0 239.0	239.8 239.1	-7.3 -1 -8.5 -2	220.9 220.9	220.8 220.9	1.3 -1
	165	239.0	239.3	-2.7 -1	220.9	220.7	1.6 -1
	180	239.0	239.4	-3.9 -1	220.9	221.0	-8.5 -2
0.068	0	238.9	239.6	-7.3 -1	•		
	15	238.9					
	30	238.8					
	45	238.7	239.4	-6.1 -1		•	
	60	238.7	238.2	4.7 -1			
	75	238.6	238.1	5.3 -1			
	90	238.6	238.7	-1.6 -1			
	105	238.5	238.7	-1.6 -1			
	120	238.5	238.7	-2.1 -1			
	135	238.4	238.1	2.8 -1			
	150	238.4	238.4	-5.3 -2			
	165	238.3	238.4	-7.8 -2			
	180	238.3	238.5	-2.7 -1			
0.136	0	238.5	239.1	-6.2 -1	225.1	222.3	2.8 0
	15	238.4			224.7		
	30	238.2	220 5		224.2	222.2	1 2 0
	45	238.0	238.5	-4.9 -1 4.3 -1	223.7	222.3 221.9	1.3 0
	60 75	237•9 237•7	237·4 237·3	4.2 -1 4.2 -1	223.1 222.6	221.9	1.2 °C 7.6 -1
	90	237.6	237.8	-2.6 -1	222.1	222.5	-4.7 -1
	105	237.4	237.5	-1.1 -1	221.5	222.2	-6.9 -1
	120	237.2	237.4	-1.4 -1	221.0	222.3	-1.2 0
	135	237.1	236.8	3.0 -1	220.5	221.6	-1.1 0
	150	236.9	236.9	2.5 -2	220.0	221.7	-1.7 0
	165	236.8	236.9	-1.6 -1	219.4	221.8	-2.3 0
	180	236.7	237.1	-4.5 -1	219.1	222.1	-3.0 0

TABLE VI (CONT.)

a =6° , SECOND SET

		on,	TSIDE SU	RFACE	INSIDE SURFACE		
S/R	β•	T _C *K	T _m ·K	∆T °K	T _C *K	T _m *K	∆T °K
0.204	0 15 30	237.5 237.3 237.0	237.8	-3.5 -1			
	45	236.7	237.4	-6.0 -1			
	60	236.5	236 • 1	3.8 -1			
	75 90	236.2 235.9	235•7 236•1	5.1 -1 -1.7 -1			
	105	235.7	235 • 8	-7.8 -2			
	120	235.4	235.5	-1.3 -1			
	135	235.1	234.8	3.0 -1			
	150	234.9	234.9	9.0 -3			
	165 180	234.6 234.4	234.8	-2.2 -1 -5.9 -1			
0.305	0 15	234.3 234.0	234.5	-1.7 -1	222.2 222.1	221.9	2.6 -1
	30 45	233.7 233.3	233.8	-4.7 -1	221.9 221.8	221.7	9.7 -2
	60	233.0	232.5	4.6 -1	221.7	221.3	3.9 -1
	75	232.6	232.3	3.5 -1	221.5	221.1	4.1 -1
	90	232.3	232.6	-2.7 -1	221.4	222.2	-8.2 -1
	105	231.9	232.0	-1.0 -1	221.3	221.7	-4.6 -1
	120 135	231.6 231.2	231•7 230•9	-1.8 -1 3.2 -1	221.1 221.0	221.6 220.5	-4.1 -1 4.6 -1
	150	230.9	230.7	1.2 -1	220.9		2.4 -1
-	165	230.5	230.7	-2.2 -1	220.7	220.7	8.0 -2
	180	230.3	231.0	-7.4 -1	220.7	221.4	-7.4 -1
0.356	0	232.0	232•3	-2.2 -1			
	15 30	231.8 231.5					,
	45	231.1	231.5	-3.7 -1			
	60	230.7	230.5	2.8 -1			
	75 90	230•4 230•0	230.0 230.3	4.1 -1 -3.1 -1			
	105	229.7	229.8	-1.4 -1			
	120	229.3	229.3	-3.8 -2			
	135	229.0	228.6	3.7 -1			
	150 165	228.6 228.2	228•5 228•5	4.7 -2 -2.4 -1			
	180	228.0	228.6	-5.7 -1			

TABLE VI (CONT.)

a =6° . SECOND SET

		ou	TSIDE SU	RFACE	INSIDE SURFACE			
S/R	$oldsymbol{eta^{ullet}}$	T _c *K	T _m *K	∆t °k	T_c* K	T _m *K	∆T °K	
0.407	0	229.9	229.7	1.1 -1	221.0	220.7	3.1 -1	
	15 30	229 • 6 229 • 3			220•9 220•7			
	45	228.9	229.8	-8.6 -1	220.5	220.4	1.5 -1	
	60	228.6	228.1	4.7 -1	220.4	220.0	3.7 -1	
	75	228.2	227.7	4.5 -1	220.2	220.5	-2.9 -1	
	90	227.8	228.0	-1.7 -1	220.0	220.4	-4.4 -1	
	105	. 227.5	227.5	-3.8 -2	219.8	219.9	-9.5 -2	
	120	227.1	227.1	5.9 -3	219.6	219.8	-1.5 -1	
	135	226.8	226.4	4.2 -1	219.5	219.1	4.1 -1	
	150	226.4	226.3	1.5 -1	219.3	219.2	1.4 -1	
	165	226.1	226.2	-1.0 -1	219.1	219.2	-9.7 -2	
	180	225.8	226.5	-6.8 0	219.0	219.7	-6.7 -1	
0.455	. 0	227.8	227.9	-1.4 -1		•		
	15	227.5	0					
	30	227.2						
	45	225.9	227.1	-2.6 -1				
	60	226.5	226.3	2.0 -1				
	75	226.2	225.8	3.6 -1				
	90 105	225.9 225.5	226•2 225•6	-3.0 -1 -8.5 -2		. • •		
	120	225.2	225.4	-1.7 -1				
	135	224.9	224.4	4.1 -1				
	150	224.5	224.5	5.6 -2				
	165	224.2	224.4	-2.1 -1				
	180	224.0	224.5	-4.9 -1				
0.520	0	225•2	225•3	-4.4 -2	219.5	219•2	3.6 -1	
	15	225.0			219.4			
	30	224.7			219.2			
	45	224 • 4	224.8	-3.2 -1	219.1	218.9	1.7 -1	
	60	224.1	223.9	2.7 -1	218.9	218.5	3.3 -1	
	75	223 • 8	223.4	4.6 -1	218.7	219.1	-3.7 -1	
	90	223.5	223.9	-3.5 -1	218.5	218.9	-3.7 -1	
	105 120	223•2 222•9	223•4 223•1	-1.6 -1 -1.2 -1	218.3 218.1	218.3 218.3	-1.0 -2 -1.3 -1	
	135	222.6	222.4	2.8 -1	217.9	217.6	3.5 -1	
	150	222.3	222.2	1.0 -1	217.8	217.6	1.4 -1	
	165	222.0	227.2	-1.6 -1	217.6	217.7	-1.0 -1	
	180	221.8	222.5	-6.6 -1	217.4	218.1	-6.9 -1	

TABLE VI (CONT.)

a =6° , SECOND SET

		001	SIDE SU	RFACE	INSIDE SURFACE		
S/R	β•	ъ %	τ _m •κ	∆ T *K	T _C *K	ľ, K	∆ T * K
0.645	0 15	222.6 222.4	222.7	-1.6 -1	218.2 218.1	218.1	1.3 -1
	30 45	222.1 221.9	222.1	-2.7 -1	217.9 217.7	217.6	1.0 -1
	60 75	221.6 221.3	221.3 220.9	2.9 -1 4.6 -1	217.6 217.4	217.5 217.3	1.1 -1 9.8 -2
	90	221.1	221.5	-4.4 -1	217.2	217.7	-4.7 -1
	105	220.8	221.0	-1.5 -1	217.1	217.1	-6.1 -2
	120	220.6	220.7	-1.3 -1 2.7 -1	216.9	217.0	-8.0 -2 2.4 -1
	135 150	220.3 220.0	220.0 220.0	7.5 -2	216.7 216.5	216.5 216.4	1.2 -1
	165	219.8	219.9	-9.4 -2	216.4	216.4	-7.3 -2
	180	219.6	220.4	-8.5 -1	216.3	217.0	-7.7 -1
0.769	0	221.9	222.0	-1.1 -1	218.2	217.9	3.6 -1
	15 30	221.7 221.4			218•1 217•9		
	45	221.1	221.4	-2.3 -1	217.7	217.8	-1.0 -1
	60	220.9	220.7	1.6 -1	217.4	217.2	2.0 -1
	75	220.6	220.2	3.8 -1	217.2	217.0	2.3 -
	90 105	220.3 220.0	220.7 220.2	-3.4 -1 -1.3 -1	217.0 216.8	217.4 216.9	-4.0 -1 -9.5 -2
	120	219.8	219.9	-1.3 -1 -1.2 -1	216.6	216.7	-1.2 -1
	135	219.5	219.2	3.3 -1	216.4	216.0	3.4 -1
•	150	219.2	219.1	1.5 -1	216.2	216.0	1.2 -1
	165 180	218.9 218.8	219•1 219•5	-1.2 -1 -7.0 -1	216.0 215.8	216.1 216.6	-1.7 -1 -7.7 -1
	100	210.0	21963	-760 -1	217.0	210.0	-101 -1
0.894	0	221.6	221.6	3.0 -2	218.5	219.3	2.1 -1
	15	221.4			218.3		
	30 45	221.1 220.8	221.2	m2.4 m1	218.1 217.9	217.9	-1.2 -3
	60	220.5	220.2	-3.6 -1 3.8 -1	217.6	217.5	9.7 -2
	75	220.2	220.0	2.6 -1	217.4	217.3	1.1 -1
	90	219.9	220.3	-3.7 -1	217.1	217.5	-4.0 -1
	105 120	219.7	219.7	-5.4 -2	216.9	217.0	-6.0 -2 -1.4 -1
	135	219.4 219.1	219•3 218•8	1.5 - 2 3.0 - 1	216.7 216.4	216.8 216.2	-1.4 -1 2.5 -1
	150	218.8	218.7	9.4 -2	216.2	216.2	-1.1 -2
	165	218.5	218.7	-2.6 -1	215.9	216.2	-2.5 -1
	180	218.3	219.0	-7.7 -1	215.8	216.7	-9.3 -1

TABLE VI (CONT.)

a =6" . SECOND SET

		OU.	TSIDE SU	RFACE	INSIDE SURFACE			
S/R	β •	T_c* K	T _m *K	∆t °k	T_c *K	TmK	∆T °K	
1.018	0	221.7	221.7	-6.2 -3	218.8	218.7	1.6 -1	
	15	221.5			218.6			
	30	221.2		12 12 - 1	218.4			
	45	220.9	221.2	-3.8 -1	218.1	218.2	-1.1 -1	
	60	220.5	220.2	2.9 -1	217.8	217.8	5.0 -3	
	75	220.2	219.8	3.7 -1	217.6	217.3	2.7 -1	
	90	219.9	220.3 219.6	-4.1 -1 -2.9 -2	217.3	217.6 217.1	-2.6 -1 -5.1 -3	
	105 120	219.6 219.2	219.2	7.5 -2	217.1 216.8	216.8	-5.4 -2	
	135	218.9	218.6	2.7 -1	216.5	216.2	3.5 -1	
	150	218.6	218.5	3.7 -2	216.3	216.3	2.6 -4	
	165	218.2	218.4	-1.9 -1	216.0	216.2	-2.0 -1	
	180	218.0	218.8	-8.1 -1	215.8	216.7	-8.2 -1	
				•••				
1.143	0	222.0	221.9	9.0 -2	219.1	218.8	3.9 -1	
	15	221.7			218.9			
	30	221.4			218.7			
	45	221.0	221.5	-4.1 -1	218.4	218.6	-2.2 -1	
	60 75	220.7	220.4	2.7 -1	218.1	218.6	-4.9 -1	
	90	220.3 220.0	220.0 220.4	3.8 -1 -4.3 -1	217.8	217.6 ,217.8	1.5 -1 -3.2 -1	
	105	219.6	219.6	-1.3 -2	217.5 217.2 ·	217.2	3.5 -2	
	120	219.3	219.3	3.4 -3	216.9	217.0	-6.8 -2	
	135	218.9	218.6	3.2 -1	216.6	216.3	2.8 -1	
	150	218.6	218.5	3.7 -2	216.3	216.3	6.2 -2	
	165	218.2	218.4	-2.2 -1	216.1	216.3	-2.8 -1	
	180	218.0	218.9	-8.8 -1	215.9	216.8	-9.4 -1	
1.267	0	222.2	222.2	-5.2 -3	219.5	219.5	3.8 -2	
	15	222.0			219.2			
	30	221.6	221		218.9			
	45	221.2	221.4	-2.1 -1	218.6	218.7	-5.3 -2	
	60	220.8	220.6	2.7 -1	218.3	218.3	4.1 -2	
	75	220.5	220.2	2.9 -1	218.0	218.0	6.5 -2	
	90	220.1 219.7	220.5 219.6	-4.5 -1 4.2 -2	217.7	217.9	-1.8 -1	
	105 120	219.7	219.4	6.2 - 2 - 3.9 - 2	217•4 217•1	217.4 217.1	-1.4 -2 1.8 -2	
	135	219.0	218.7	2.6 -1	216.8	216.5	2.9 -1	
	150	218.6	218.5	3.7 -2	216.5	216.4	8.3 -2	
	165	218.2	218.4	-2.4 -1	216.2	216.4	-2.5 -1	
	180	217.9	218.8	-9.0 -1	216.0	217.0	-9.8 -1	
	700	/ - 7		-,00 -1	-1010		-,,0 -1	

TABLE VI (CONT.)

a =6° . SECOND SET

		001	SIDE SU	RFACE	INSIDE SURFACE		
S/R	β^{\bullet}	₹°K	T _m °K	∆ T * K	T _c °K	T _m °K	∆T °K
1.392	0	222.5	222.7	-1.8 -1	219.8	219.9	-9.0 -3
	15	222.2			219.6		
	30	221.8	221 =	2.4.	219.2	210.0	• , ,
	45	221.4	221.7	-2.4 -1	218.9	218.9	-7.6 -4
	60 75	221.0 220.6	220•7 220•3	3.0 -1 3.0 -1	218.6 218.3	218.6 218.2	1.3 -2 5.8 -2
	90	220.2	220.8	-5.3 -1	217.9	218.2	-2.6 -1
	105	219.8	219.9	-1.0 -1	217.6	217.6	2.5 -2
	120	219.4	219.5	-4.9 -2	217.3	217.3	-5.2 -2
	135	219.0	218.7	3.1 -1	217.0	216.7	2.7 -1
	150	218.6	218.6	3.7 -3	216.6	216.5	9.9 -2
	165	218.2	218.5	-3.0 -1	216.3	216.5	-2.2 -1
	180	217.9	218.8	-8.8 -1	216.1	217.0	-8.7 -1
1.516	0	222.8	223.0	-1.7 -1	220.1	220.2	-1.0 -1
	15	222.5			219.9		
	30	222.1			219.5	p. 1124 - 4	
	45	221.7	221.9	-2.6 -1	219.2	219.2	-2.1 -2
	60	221.2	221.0	2.3 -1	218.8	218.6	2.4 -1
	75	220.8	220.4	3.6 -1	218.5	218.5	-4.0 -2
	90	220.4	220.8	-4.1 -1	218.1	218.4	-2.3 -1
	105	219.9	219.9	5.0 -2	217.8	218.0	-2.4 -1
	120	219.5	219.4	1.4 -1	217.5	217.5	-5.7 -3
	135 150	219•1 218•6	218.7 218.5	3.5 -1 1.0 -1	217.1 216.8	216.7 216.6	3.5 -1 1.2 -1
-	165	218.2	218.4	-1.7 -1	216.4	216.6	-1.8 -1
	180	217.9	218.8	-8.2 -1	216.2	217.0	-8.5 -1
•	100			••••			
1.640	0	223.2	223.5	-2.7 -1	220.6	220.9	-3.3 -1
	15	222.9			220.3		
	30	222.4	222		219.9	210 /	
	45	221.9	222.2	-2.5 -1	219.5	219.6	-1.1 -1
	60 75	221.5 221.0	221•2 220•8	3.1 -1 1.8 -1	219•1 218•8	219.2 218.7	-4.1 -2 9.4 -2
	90	220.5	221.0	-4.9 -1	218.4	218.7	-3.2 -1
	105	220.1	220.1	-7.1 -2	218.0	218.3	-3.7 -1
	120	219.6	219.6	-1.6 -2	217.6	217.6	-5.2 -2
	135	219.1	218.9	2.5 -1	217.2	216.9	2.9 -1
	150	218.7	218.7	-1.0 -4	216.8	216.7	9.5 -2
	165	218.2	218.5	-3.1 -1	216.4	216.6	-1.9 -1
	180	217.9	218.9	-9.9 -1	216.2	217.1	-9.2 -1

TABLE VI (CONT.)

a .6 . SECOND SET

		OU1	RFACE	INSIDE SURFACE			
S/R	β•	T _C *K	T _m °K	∆T °K	T _c °K	T _m *K	∆T °K
1.765	0 15 30	223.6 223.2 222.7	223.7	-1.3 -1	221.0 220.7 220.3	221.3	-3.0 -1
	45 60	222.2 221.7	222.4	-2.2 -1 9.3 -2	219.9 219.4	219.9	-2.1 -2 1.4 -2
	75 90	221•2 220•7	221.0	1.6 -1 -4.3 -1	219.0 218.6	218.9 218.8	1.4 -1 -2.2 -1
	105 120 135	220.2 219.7 219.2	220.1 219.6 218.9	4.3 -2 2.6 -2 2.8 -1	218.2 217.7 217.3	218.3 217.7 216.9	-1.3 -1 4.0 -3 4.0 -1
	150 165 180	218.7 218.1 217.8	218.6 218.4 218.7	8.5 -2 -2.3 -1 9.1 -1	216.9 216.5 216.2	216.7 216.7 217.1	1.6 -1 -2.2 -1 -9.4 -1
1.890	0 15 30	223.9 223.6	223•9	-4.0 -3	221.4 221.1	221.4	4.7 -2
	45 60	223.0 222.5 221.9	222.6	-1.3 -1 1.4 -1	220.7 220.2 219.7	220.2 219.7	1.0 -2 7.7 -3
	75 90	221.4	221.2	2.1 -1 -2.6 -1	219.3 218.8	219.3	5.1 -3 -2.4 -1
	105 120	220.3 219.7	220.2	8 • 1 - 2 1 • 2 - 1	218.3 217.9	218.3	6.1 -2
	135 150 165	219.2 218.6 218.1	218.8 218.5 218.4	3.4 -1 1.3 -1 -2.8 -1	217.4 217.0 216.5	217.0 216.8 216.8	3.9 -1 1.1 -1 -3.1 -1
	180	217.7	218.7	-9.2 -1	216.2	217.2	-1.0 0
2.014	0 15 30	224•2 223•9 223•3	224•2	1.3 -2	221.9 221.6 221.0	221.9	3.6 -2
	45 60	222.7 222.1	222.8	-1.5 -1 1.9 -1	220.5 220.0	220.6 220.2	-5.3 -2 -1.2 -1
	75 90	221.5 221.0 220.4	221.3 221.3 220.3	2.5 -1 -3.5 -1 8.1 -2	219.5 219.0	219.4	1.1 -1 -2.6 -1
	105 120 135	219.8 219.2	219.7 218.8	1.1 -1 3.6 -1	218.5 218.0 217.5	218.5 218.0 217.2	2.8 -2 -1.2 -2 2.8 -1
	150 165 180	218.6	218.5 218.3 218.7	1 · 2 -1 -2 · 7 -1 -1 · 0 0	217.0 216.5 216.2	217.0 216.8 217.3	2 · 8 - 2 - 3 · 2 - 1 - 1 · 1 0

TABLE VI (CONT.)

a =6° , SECOND SET

		OU'	TSIDE SU	RFACE	INSIDE SURFACE			
S/R	$oldsymbol{eta^{ullet}}$	T _c °K	T _m *K	Δτ * κ	T _c *K	T _m *K	∇1 •k	
2.138	0 15 30	224.6 224.1 223.5	224.6	-4.7 -2	222.3 221.9 221.4	222.2	5.1 -2	
	45 60 75	222.9 222.3 221.7	223.2 222.1 221.4	-2.3 -1 1.9 -1 2.8 -1	220.8 220.3 219.8	220.9 220.4 219.6	-6.2 -2 -1.4 -1 1.8 -1	
	90 105 120	221.1 220.5 219.8	221.6 220.5 219.9	-4.8 -1 -1.8 -2 -4.7 -2	219.2 218.7 218.1	219.4 218.6 218.1	-2.0 -1 8.9 -2 4.2 -2	
	135 150 165	219.2 218.6 218.0	219.0 218.5 218.4	2.3 -1 1.2 -1 -4.4 -1	217.6 217.1 216.5	217.2 217.0 216.9	4.2 -1 7.2 -2 -4.0 -1	
	180	217.6	218.7	-1.0 0	216.2	217.3	-1.1 0	
2.263	0 15 30	224.9 224.4 223.8	224.8	1.9 -2	222.6 222.2 221.6	222.4	1.4 -1	
	45 60 75	223 • 1 222 • 5 221 • 8	223•2 222•1 221•6	-1.0 -1 3.7 -1 2.4 -1	221.0 220.5 219.9	221.0 220.4 219.6	6.5 -2 1.6 -2 3.0 -1	
-	90 105 120	221.2 220.5 219.9	221.8 220.5 219.8	-6.6 -1 3.2 -2 8.0 -2	219.3 219.7 218.2	219.5 218.6 218.1	-1.4 -1 1.4 -1 9.8 -2	
	135 150 165 180	219.2 218.6 217.9 217.5	219.1 218.3 218.3 218.7	1.4 -1 2.9 -1 -3.7 -1 -1.2 0	217.6 217.0 216.5 216.1	217.2 216.9 216.8 217.1	3.8 -1 9.3 -2 -3.5 -1 -9.8 -1	
2 22								
2.387	0 15 30	225.0 224.6 223.9	225•0	4.0 -2	222.7 222.3 221.7	222.6	1.6 -1	
	45 60 75 90	223.2 222.5 221.9	223.4 222.4 221.7	-2.1 -1 8.7 -2 1.9 -1	221.1 220.5 219.9	221.3 220.5 219.7	-1.7 -1 -7.5 -4 1.9 -1	
	105 120 135	221.2 220.5 219.8 219.2	221.8 220.5 219.9 219.1	-6.0 -1 3.4 -2 -5.9 -2 5.4 -2	219.3 218.7 218.1 217.5	219.5 218.6 218.2 217.2	-1.8 -1 1.6 -1 -3.8 -2 3.5 -1	
	150 165 180	218.5 217.8 217.4	218.3 218.2 218.5	1.8 -1 -3.5 -1 -1.0 0	216.9 216.3 215.9	216.9 216.8 217.1	3.2 -2 -4.4 -1 -1.1 0	

TABLE VI (CONT.)

a =6 . SECOND SET

		OUTSIDE SURFACE		RFACE	INSIDE SURFACE			
S/R _	$oldsymbol{eta^{ullet}}$	T _c *K	TmK	ΔT *K	T _c *K	T _m °K	ΔT *K	
2.512	0 15 30	225 • 0 224 • 5 223 • 8	224.9	5.4 -2	222.7 222.3 221.7	222.6	1.3 -1	
	45	223.2	223.3	-1.8 -1	221.1	221.3	-1.7 -1	
	60	222.5	222.4	1.2 -1	220.5	220.5	-1.5 -2	
	75	221.8	221.5	2.7 -1	219.9	219.8	1.1 -1	
	90	221.1	221.5	-3.7 -1	219.3	219.4	-1.6 -1	
	105	220.4	220.4	2.3 -2	218.7	218.5	1.8 -1	
	120	219.8	219.7	2.2 -2	218.0	218.0	6.2 -2	
	135	219•1	218.8	2.9 -1	217.4	217.1	3.4 -1	
	150	218•4	218.3	1.1 -1	216.8	216.8	3.9 -2	
	165	217•7	218.0	-2.9 -1	216.2	216.6	-3.8 -1	
	180	217.3	218.2	-9.2 -1	215.8	217.0	-1.1 0	
2.636	0 15 30	224.8 224.3 223.6	224.7	3.9 -2	222.5 222.1 221.5	222.6	-8.8 -2	
	45	223.0	223.1	-1.2 -1	220.9	221.0	-8.7 -2	
	60	222.3	222.2	1.3 -1	220.3	220.4	-4.0 -2	
	75	221.6	221.3	3.2 -1	219.7	219.6	1.2 -1	
	90	221.0	221.3	-3.2 -1	219.1	219.4	-2.8 -1	
	105	220.3	220.3	-7.0 -3	218.5	·218.4	9.9 -2	
	120	219.6	219.6	-2.2 -2	217.9	217.8	1.4 -1	
	135	218.9	218.6	3.1 -1	217.3	217.0	3.4 -1	
	150	218.3	218.1	1.3 -1	216.7	216.6	1.1 -1	
	165	217.6	217.9	-2.9 -1	216.1	216.5	-4.2 -1	
	180	217.1	218.1	-9.2 -1	215.7	216.9	-1.1 0	
0.741								
2.761	0 15 30	224.5 224.0 223.4	224.6	-1.2 -1	222.1 221.8 221.2	222.4	-2.5 -1	
	45	222.7	223.0	-2.6 -1	220.6	220.8	-1.5 -1	
	60	222.1	221.8	2.5 -1	220.0	219.8	2.6 -1	
	75	221.4	221.2	2.4 -1	219.5	219.4	9.8 -2	
	90	220.8	221.2	-3.9 -1	218.9	219.3	-4.1 -1	
	105	220.1	220.2	-1.0 -1	218.3	218.3	3.2 -2	
	120	219.5	219.6	-1.7 -1	217.7	217.8	-4.6 -2	
	135	218.8	218.5	2.8 -1	217.2	216.8	3.6 -1	
	150	218.2	218.0	1.2 -1	216.6	216.5	1.3 -1	
	165	217.5	217.8	-2.4 -1	216.0	216.3	-2.8 -1	
	180	217.1	218.0	-9.3 -1	215.7	216.7	-1.0 0	

TABLE VI (CONT.)

a =6" . SECOND SET

		ou	OUTSIDE SURFACE			INSIDE SURFACE			
S/R	$oldsymbol{eta^{ullet}}$	Tc*K	Tm°K	∆t °k	₹°K	T _m °K	∆T °K		
2.885	0	224.0	224.2	-1.9 -1	221.6	221.8	-1.9 -1		
	15	223.6			221.2				
	30	223.0			220.7				
	45	222.4	222.7	-2.6 -1	220.2	220.4	-1.6 -1		
	60	221.8	221.3	4.7 -1	219.7	219.3	3.2 -1		
	75	221.2	220.9	2.6 -1	219.1	219.0	1.1 -1		
	90	220.6	221.1	-5.3 -1	218.6	219.1	-4.3 -1		
	105	219.9	220.1	-1.3 -1	218.1	218.1	-3.5 -2		
	120	219.3	219.5	-1.3 -1	217.6	217.6	-2.4 -2		
	135	218.7	218.3	3.5 -1	217.1	216.7	3.0 -1		
	150	218.1	217.9	1.4 -1	216.5	216.4	1.5 -1		
	165	217.5	217.6	-1.6 -1	216.0	216.3	$-2 \cdot 4 - 1$		
	180	217.1	217.9	-8.1 -1	215.7	216.6	-9.2 -1		
3.010	0	223.9	224.1	-1.6 -1	221.1	221.3	-1.6 -1		
	15	223.5			220.8				
	30	222.9			220.4				
	45	222.3	222.6	-2.8 -1	219.9	220.1	-1.5 -1		
	60	221.8	271.2	5.4 -1	219.5	219.1	3.6 -1		
	75	221.2	220.9	2.7 -1	219.0	218.9	5.7 -2		
	90	220.6	221.2	-6.2 -1	-218.5	218.9	-4.0 -1		
	105	220.0	220.3	-2.8 -1	218.1	218.1	-6.4 -2		
	120	219.4	219.4	2.5 -2	217.6	217.5	5.8 -2		
	135	218.8	218.4	4.1 -1	217.1	216.9	2.1 -1		
-	150	218.3	218.1	1.1 -1	216.7	216.6	5.9 -2		
	165	217.7	217.9	-1.8 -1	216.2	216.3	-1.2 -1		
	180	217.3	218.1	-7.9 -1	215.9	216.7	-7.7 -1		

TABLE VI (CONT.)

a =6° , FIRST SET

S/R = 0.305

CALCULATED TEMPERATURES. T _c 0 239.9 237.6 234.8 231.7 228.6 15 239.7 237.4 234.6 231.4 228.5 30 239.3 237.2 234.4 231.3 228.4 45 238.9 236.6 234.1 231.2 228.3 60 238.6 236.5 233.9 230.8 228.2 75 238.2 236.1 233.5 230.3 228.1 90 237.8 235.8 233.4 230.4 228.0 105 237.5 235.5 239.1 230.3 227.9 120 237.1 228.4 228.2 228.0 227.8 135 236.7 234.8 232.6 230.0 227.8 135 236.7 234.8 232.6 230.0 227.8 135 236.0 234.5 232.4 229.9 227.6 165 236.0 234.2 232.2 229.6 227.5 180 235.7 234.1 232.0 229.6 227.4 MEASURED TEMPERATURES. T _m MEASURED TEMPERATURES. T _m MEASURED TEMPERATURES. T _m 0 239.9 237.5 234.7 231.6 228.5 15 239.7 237.4 234.6 231.3 228.5 235.7 234.1 232.0 229.6 227.4 DIFFERENCE (T _C - T _m) 0 7.0 2 27.8 235.5 233.1 230.4 227.9 135 237.0 235.1 232.9 230.2 229.5 150 235.8 234.0 232.2 229.4 227.5 165 235.8 234.0 232.9 230.2 228.0 105 237.4 235.5 233.1 230.4 227.9 120 237.4 235.5 233.1 230.4 227.9 120 237.8 235.8 233.3 230.4 227.9 120 237.8 235.8 233.3 230.4 227.9 120 237.8 235.8 233.3 230.4 227.9 120 237.8 235.8 233.9 230.4 227.9 120 237.8 235.8 233.9 230.4 227.9 120 237.8 235.8 233.9 230.4 227.9 120 237.8 235.8 233.9 230.4 227.9 120 237.8 235.8 233.9 230.4 227.9 120 237.8 235.8 233.9 230.4 227.9 120 237.8 235.8 233.9 230.4 227.9 120 237.8 235.8 233.9 230.4 227.9 120 237.8 235.8 233.9 230.4 227.9 120 237.8 235.8 233.9 230.4 227.9 120 237.8 235.8 234.9 239.9 230.2 228.0 120 239.2 236.8 234.0 232.0 229.4 227.5 165 235.8 234.0 232.0 229.5 227.2 DIFFERENCE (T _C - T _m) 0 7.0 -2 7.8 -2 8.8 -2 1.0 -1 1.1 -1 1.1 -1 4.4 -2 -3.4 -2 -1.0 -1 1.5 9.3 -3 8.6 -3 7.7 -3 6.7 -3 5.8 -3 30 1.6 -1 1.1 -1 4.4 -2 -3.4 -2 -1.0 -1 15 9.3 -3 8.6 -3 7.7 -3 6.7 -3 5.8 -3 30 1.6 -1 1.1 -1 1.1 -1 9.5 -2 8.1 -2 1.5 1.8 -1 1.7 -1 1.1 -1 9.5 -2 8.1 -2 1.5 1.8 -1 1.7 -1 1.6 -1 1.5 -1 1.4 -1 1.6 1.9 -1 2.0 -1 2.0 -1 2.0 -1 1.8 9.8 -2 3.6 -2 3.8 -2 1.0 -1 2.0 -1	$oldsymbol{eta}^{ullet}$	OUTSIDE	THR	OUGH THE WA	LL	INSIDE
15			CALCULAT	ED TEMPERAT	URES. Tc	
30			237.6	234.8	231.7	228.6
45						
60						
75						
90						
105						
120						
135						
150						
MEASURED TEMPERATURES Tm						
MEASURED TEMPERATURES, T _m 0 239.9 237.5 234.7 231.6 228.5 15 239.7 237.4 234.6 231.3 228.5 30 239.2 237.1 234.4 231.3 228.5 45 239.2 236.8 234.2 231.2 228.2 60 238.4 236.3 233.8 230.7 228.1 75 90 237.8 235.8 233.3 230.4 227.9 105 237.4 235.4 233.1 230.3 227.9 120 337.4 235.5 233.1 230.4 228.1 135 237.0 235.1 232.9 230.2 228.0 150 236.2 234.3 232.2 229.7 227.5 165 235.8 234.0 232.0 229.4 227.3 180 235.8 234.1 232.0 229.5 227.2 DIFFERENCE (T _C -T _m)						
0 239.9 237.5 234.7 231.6 228.5 15 239.7 237.4 234.6 231.3 228.5 30 239.2 237.1 234.4 231.3 228.5 45 239.2 236.8 234.2 231.2 228.2 60 238.4 236.3 233.8 230.7 228.1 75 90 237.8 235.8 233.3 230.4 227.9 105 237.4 235.4 233.1 230.4 227.9 120 337.4 235.5 233.1 230.4 228.1 135 237.0 235.1 232.9 230.2 228.0 150 236.2 234.3 232.2 229.7 227.5 165 235.8 234.0 232.0 229.4 227.3 180 235.8 234.1 232.0 229.5 227.2 DIFFERENCE (T _c -T _m) DIFFERENCE (T _c -T _m) O 7.0 -2 7.8 -2 8.8 -2 1.0 -1 1.1 -1 15 9.3 -3 8.6 -3 7.7 -3 6.7 -3 5.8 -3 30 1.6 -1 1.1 -1 4.4 -2 -3.4 -2 -1.0 -1 45 -2.0 -1 -1.2 -1 -4.4 -2 5.1 -2 1.4 -1 60 1.3 -1 1.2 -1 1.1 -1 9.5 -2 8.1 -2 75 90 1.9 -2 3.0 -2 4.2 -2 5.8 -2 7.0 -2 105 7.2 -2 6.2 -2 4.9 -2 3.5 -2 2.2 -2 120 -2.9 -1 -7.1 0 -4.9 0 -2.4 0 -3.1 -1 135 -2.7 -1 -2.8 -2 -2.7 -1 -2.6 -1 155 1.8 -1 1.7 -1 1.6 -1 1.5 -1 1.4 -1 165 1.9 -1 2.0 -1 2.0 -1 2.0 -1	180	235.7	234.1	232.0		227.4
15			MEASURE	D TEMPERATUR	RES. Tm	
15	0	239.9	237.5	234.7	231.6	228.5
30						
45						
75 90						
90	60	238.4	236.3	233.8	230.7	. 228.1
105						
120						
135						
150						
165 235.8 234.0 232.0 229.4 227.3 180 235.8 234.1 232.0 229.5 227.2 DIFFERENCE $(T_c - T_m)$ 0 7.0 -2 7.8 -2 8.8 -2 1.0 -1 1.1 -1 1.5 9.3 -3 8.6 -3 7.7 -3 6.7 -3 5.8 -3 3.0 1.6 -1 1.1 -1 4.4 -2 -3.4 -2 -1.0 -1 4.5 -2.0 -1 -1.2 -1 -4.4 -2 5.1 -2 1.4 -1 6.0 1.3 -1 1.2 -1 1.1 -1 9.5 -2 8.1 -2 7.5 90 1.9 -2 3.0 -2 4.2 -2 5.8 -2 7.0 -2 1.0 5 7.2 -2 6.2 -2 4.9 -2 3.5 -2 2.2 -2 1.20 -2.9 -1 -7.1 0 -4.9 0 -2.4 0 -3.1 -1 1.35 -2.7 -1 -2.8 -2 -2.7 -1 -2.6 -1 1.5 1.8 -1 1.7 -1 1.6 -1 1.5 -1 1.4 -1 1.5 -1 1.4 -1 1.5 -1 1.9 -1 2.0 -1 2.0 -1 2.0 -1						
DIFFERENCE ($T_c - T_m$) 0 7.0 -2 7.8 -2 8.8 -2 1.0 -1 1.1 -1 15 9.3 -3 8.6 -3 7.7 -3 6.7 -3 5.8 -3 30 1.6 -1 1.1 -1 4.4 -2 -3.4 -2 -1.0 -1 45 -2.0 -1 -1.2 -1 -4.4 -2 5.1 -2 1.4 -1 60 1.3 -1 1.2 -1 1.1 -1 9.5 -2 8.1 -2 75 90 1.9 -2 3.0 -2 4.2 -2 5.8 -2 7.0 -2 105 7.2 -2 6.2 -2 4.9 -2 3.5 -2 2.2 -2 120 -2.9 -1 -7.1 0 -4.9 0 -2.4 0 -3.1 -1 135 -2.7 -1 -2.8 -2 -2.7 -1 -2.6 -1 150 1.8 -1 1.7 -1 1.6 -1 1.5 -1 1.4 -1 165 1.9 -1 2.0 -1 2.0 -1						
DIFFERENCE $(T_c - T_m)$ 0 7.0 -2 7.8 -2 8.8 -2 1.0 -1 1.1 -1 15 9.3 -3 8.6 -3 7.7 -3 6.7 -3 5.8 -3 30 1.6 -1 1.1 -1 4.4 -2 -3.4 -2 -1.0 -1 45 -2.0 -1 -1.2 -1 -4.4 -2 5.1 -2 1.4 -1 60 1.3 -1 1.2 -1 1.1 -1 9.5 -2 8.1 -2 75 90 1.9 -2 3.0 -2 4.2 -2 5.8 -2 7.0 -2 105 7.2 -2 6.2 -2 4.9 -2 3.5 -2 2.2 -2 120 -2.9 -1 -7.1 0 -4.9 0 -2.4 0 -3.1 -1 135 -2.7 -1 -2.8 -2 -2.7 -1 -2.6 -1 150 1.8 -1 1.7 -1 1.6 -1 1.5 -1 1.4 -1 165 1.9 -1 2.0 -1 2.0 -1						
0 7.0 -2 7.8 -2 8.8 -2 1.0 -1 1.1 -1 15 9.3 -3 8.6 -3 7.7 -3 6.7 -3 5.8 -3 30 1.6 -1 1.1 -1 4.4 -2 -3.4 -2 -1.0 -1 45 -2.0 -1 -1.2 -1 -4.4 -2 5.1 -2 1.4 -1 60 1.3 -1 1.2 -1 1.1 -1 9.5 -2 8.1 -2 75 90 1.9 -2 3.0 -2 4.2 -2 5.8 -2 7.0 -2 105 7.2 -2 6.2 -2 4.9 -2 3.5 -2 2.2 -2 120 -2.9 -1 -7.1 0 -4.9 0 -2.4 0 -3.1 -1 135 -2.7 -1 -2.8 -2 -2.7 -1 -2.6 -1 -2.6 -1 150 1.8 -1 1.7 -1 1.6 -1 1.5 -1 1.4 -1 165 1.9 -1 2.0 -1 2.0 -1 2.0 -1	200	23740	23442			
15			DIF	FERENCE (Te	-T _m)	
30	0		7.8 -2	8.8 -2	1.0 -1	1.1 -1
45 -2.0 -1 -1.2 -1 -4.4 -2 5.1 -2 1.4 -1 60 1.3 -1 1.2 -1 1.1 -1 9.5 -2 8.1 -2 75 90 1.9 -2 3.0 -2 4.2 -2 5.8 -2 7.0 -2 105 7.2 -2 6.2 -2 4.9 -2 3.5 -2 2.2 -2 120 -2.9 -1 -7.1 0 -4.9 0 -2.4 0 -3.1 -1 135 -2.7 -1 -2.8 -2 -2.7 -1 -2.6 -1 -2.6 -1 150 1.8 -1 1.7 -1 1.6 -1 1.5 -1 1.4 -1 165 1.9 -1 2.0 -1 2.0 -1 2.0 -1						
60 1.3 -1 1.2 -1 1.1 -1 9.5 -2 8.1 -2 75 90 1.9 -2 3.0 -2 4.2 -2 5.8 -2 7.0 -2 105 7.2 -2 6.2 -2 4.9 -2 3.5 -2 2.2 -2 120 -2.9 -1 -7.1 0 -4.9 0 -2.4 0 -3.1 -1 135 -2.7 -1 -2.8 -2 -2.7 -1 -2.6 -1 -2.6 -1 150 1.8 -1 1.7 -1 1.6 -1 1.5 -1 1.4 -1 165 1.9 -1 2.0 -1 2.0 -1 2.0 -1						
75 90 1.9 -2 3.0 -2 4.2 -2 5.8 -2 7.0 -2 105 7.2 -2 6.2 -2 4.9 -2 3.5 -2 2.2 -2 120 -2.9 -1 -7.1 0 -4.9 0 -2.4 0 -3.1 -1 135 -2.7 -1 -2.8 -2 -2.7 -1 -2.6 -1 150 1.8 -1 1.7 -1 1.6 -1 1.5 -1 1.4 -1 165 1.9 -1 2.0 -1 2.0 -1 2.0 -1						
90 1.9 -2 3.0 -2 4.2 -2 5.8 -2 7.0 -2 105 7.2 -2 6.2 -2 4.9 -2 3.5 -2 2.2 -2 120 -2.9 -1 -7.1 0 -4.9 0 -2.4 0 -3.1 -1 135 -2.7 -1 -2.8 -2 -2.7 -1 -2.6 -1 -2.6 -1 150 1.8 -1 1.7 -1 1.6 -1 1.5 -1 1.4 -1 165 1.9 -1 2.0 -1 2.0 -1 2.0 -1		1.3 -1	1.2 -1	1.1 -1	9.5 -2	8.1 -2
105 7.2 -2 6.2 -2 4.9 -2 3.5 -2 2.2 -2 120 -2.9 -1 -7.1 0 -4.9 0 -2.4 0 -3.1 -1 135 -2.7 -1 -2.8 -2 -2.7 -1 -2.6 -1 -2.6 -1 150 1.8 -1 1.7 -1 1.6 -1 1.5 -1 1.4 -1 165 1.9 -1 2.0 -1 2.0 -1 2.0 -1			2 0 2	4 2 2	6 0 - 2	7 4 . 2
120 -2.9 -1 -7.1 0 -4.9 0 -2.4 0 -3.1 -1 135 -2.7 -1 -2.8 -2 -2.7 -1 -2.6 -1 -2.6 -1 150 1.8 -1 1.7 -1 1.6 -1 1.5 -1 1.4 -1 165 1.9 -1 2.0 -1 2.0 -1 2.0 -1						
135 -2.7 -1 -2.8 -2 -2.7 -1 -2.6 -1 -2.6 -1 150 1.8 -1 1.7 -1 1.6 -1 1.5 -1 1.4 -1 165 1.9 -1 2.0 -1 2.0 -1 2.0 -1		_			-	
150 1.8 -1 1.7 -1 1.6 -1 1.5 -1 1.4 -1 1.5 1.9 -1 2.0 -1 2.0 -1 2.0 -1						
165 1.9 -1 2.0 -1 2.0 -1 2.0 -1 2.0 -1						
		9.8 -2	-3.6 -2		1.2 -1	2.0 -1

TABLE VI (CONT.)

a =6° , FIRST SET

S/R = 0.520

β°	OUTSIDE	THROUGH THE WALL	INSIDE
		CALCULATED TEMPERATURES, T	
0 15	231.1 230.9	230•3 229•1 227•8 230•2 229•0 227•	
30	230.6	229.8 228.7 227.	
45 60	230.3 230.0	229.5 228.6 227.6 229.4 228.4 227.6	
75	229.7	229.2 228.1 226.0	
90	229.4	228.8 227.9 226.0	
105	229.1	228.6 227.7 226.	
120	228.8	228.1 227.4 226.1	
135 150	228.5 228.2	228•0 226•7 226• 227•6 226•8 225•	
165	227.9	227.3 226.7 226.	
180	227.7	227.2 226.4 225.	
		MEASURED TEMPERATURES. Tm	
0	231.2	230.4 229.2 227.	8 226.4
15	230.9	230•1 229•0 227•	7 226.2
30	230.8	229.9 228.8 227.	
45	230•4 229•9	229.6 228.7 227.6 229.3 228.4 227.6	
60 75	22707	22903 22004 22100	2 2 2 3 6 6
90	229.3	228.7 227.8 226.6	6 225.6
105	228.9	228.5 227.7 226.	
120	229.0	228.3 227.6 226.	
135 150	228•7 228•1	228•2 227•0 226•4 227•6 226•8 225•	
165	227.9	227.3 226.7 226.	
180	227.8	227.3 226.6 225.9	
		DIFFERENCE (Tc -Tm)	
0	-6.1 -2	-5.3 -2 -4.0 -2 -2.5	-2 -8.9 -3
15		2.3 -2 1.9 -2 1.6	-2 1.2 -2
30	-1.5 -2	-1.5 -1 -1.4 -1 -1.2	
45 60		-1.6 -2 -9.2 -3 -1.0 · 7.2 -2 5.7 -2 3.4 ·	
75	0 • 2 -2	102 -2 301 -2 304	-6 109 -2
90	1.7 -1	1.3 -1 8.4 -2 7.8	-5 -5 -2
105	1.7 -1	1.3 -1 6.7 -2 -3.0	
120		-1.8 -1 -2.1 -1 -2.6	
135 150		-2.2 -1 -3.0 -1 -3.4 - 4.9 -2 3.5 -3 -4.9	
165		-A·8 -3 -1·7 -2 -1·6	-2 -4.0 -2
180		-1.1 -1 -1.5 -1 -1.8	

TABLE VI (CONT.)

α =6° + FIRST SET

S/R = 3.010

β^{\bullet}	OUTSIDE	THR	OUGH THE WA	LL	INSIDE
		CALCULAT	ED TEMPERAT	URES. Te	
0	229.1	228.9	228.3	227.7	227.3
15	228.7	228.7	228.0	227.5	227.0
30	228.2	228.1	227.6	227.1	226.6
45	227.7	227.4	227.1	226.7	226.2
60	227.3	227.2	226.6	226.3	225.9
75	226.8	226.7	226.2	225.9	225.5
90	226.3	226.2	225.8	225.5	225.1
105	225.8	225.5	225.2	224.9	224.7
120	225.3	225.2	224.9	224.6	224.3
135	224.8	224.7	224.4	224.2	223.9
150 165	224.3	224•1 223•6	223.9 223.4	223.8 223.3	223.6 223.2
180	223.4	223.3	223.2	223.0	222.9
100	22364	22343	22302	22300	244.7
		MEASURE	D TEMPERATU	RES. Tm	
٥	228.8	228.6	228.0	227.4	226.9
15	228.6	228.5	227.8	227.4	226.9
30	228.4	228.3	227.7	227.2	226.7
45	227.7	227.4	227.1	226.7	226.3
60	227.4	227.3	226.8	226.4	226.0
75					. • •
90	226.0	226.0	225.6	225.3	224.9
105	225.8	225.6	225•3	225.0	224.7
120	225•3	225•2	224.9	224.7	224 • 4
135	225•2	225•2	224.9	224.7	224.5
150 165	223·9 223·8	223 • 8 223 • 5	223•6 223•3	223.5 223.2	223·3 223·0
180	223.2	223.1	223.0	222.9	222.8
100	22302	22301	22300	22247	22200
		DIF	FERENCE (Tg	-T _m)	
0	2.4 -1	2.6 -1	2.9 -1	3.2 -1	2.7 -1
15	1.4 -1	1.4 -1	1.4 -1	1.4 -1	2.6 -1
30	-1.5 -1	-1.4 -1	-1.0 -1	-6.7 -2	-7.0 -2
45	9.8 -2	7.6 -2	5.4 -2	2.5 -2	-1.4 -1
60	-1.5 -1	-1.5 -1	-1.4 -1	-1.4 -1	-1.8 -1
75					
90	2.2 -1	2.2 -1	1.9 -1	1.8 -1	2.2 -1
105	-5.6 -2	-5.2 -2	-4.5 -2	-3.8 -2	-2.8 -2
120	-1.2 -2	-1.5 -2	-2.7 -2	-3.4 -2	-1.0 -2
135	-4.5 -1	-4.6 -1	~4.8 -1	-4.9 -1	-4.3 -1
150	3.6 -1	3.4 -1	7.9 -1	2.8 -1	2.8 -1
165	1.6 -1	7.5 -2	1.1 -1	1.5 -1	9.6 -2
180	2.1 -1	2.0 -1	1.9 -1	1.8 -1	3.5 -2

TABLE VI (CONT.)

a =6°, SECOND SET

S/R = 0.305

β*	OUTSIDE	THR	OUGH THE WA	LL	INSIDE
		CALCULAT	ED TEMPERAT	URES. Tc	
0 15 30 45 60 75 90 105 120 135 150	223.9 223.5 222.9 222.3 221.8 221.2 220.6 220.0 219.4 218.8 218.3 217.7	223.0 222.2 221.8 221.5 221.1 220.6 219.8 219.5 218.9 218.2 217.8 217.3	222.4 221.6 221.2 221.0 220.7 220.0 219.3 219.0 218.4 217.8 217.4 216.9	221.8 221.1 220.9 220.5 220.2 219.4 218.9 218.5 217.9 217.5 217.0	221.1 220.8 220.4 219.9 219.5 219.0 218.5 218.1 217.6 217.1 216.7
180	217.3	216.9	216.6	216.2	215.9
		MEASURE	D TEMPERATU	RES. Tm	
0 15 30	224•1	223•2	222.6	222.0	221.3
45	222.6	221.7	221.3	220.7	220.1
60 75	221•2 220•9	220•6 2 20 •4	220•2 219•9	219.8 219.3	219•1 218•9
90	221.2	220.3	219.8	219.4	218.9
105	220.3	219.8	219.2	218.6	218.1
120	219.4	218.8	218.4	217.9	217.5
135 150	218•4 218•1	217.9 217.7	217.6 217.3	217.2 217.0	216.9 216.6
165	217.9	217.5	217.0	216.6	216.3
180	218.1	217.7	217.4	217.0	216.7
		DIF	FERENCE (T _C	- T _m)	
0 15	-1.6 -1	-1.6 -1	-1.6 -1	-1.6 -1	-1.6 -1
30 45	-2.8 -1	-2.3 -1	-2.0 -1	-1.8 -1	-1.5 -1
60	5.4 -1	4.9 -1	4.6 -1	4.3 -1	3.6 -1
75	2.7 -1	2.1 -1	1.5 -1	1.0 -1	5.7 -2
90	-6.2 -1	-5.4 -1	-4.8 -1	-4.4 -1	-4.0 -1
105 12 0	-2.8 -1 2.5 -2	-2•2 -1 3•6 -2	-1.7 -1 4.4 -2	-1.0 -1 5.3 -2	-6.4 -2 5.8 -2
135	4.1 -1	3.3 -1	2.9 -1	2.5 -1	2.1 -1
150	1.1 -1	1.0 -1	8.7 -2	7.3 -2	5.9 -2
165 180	-1.8 -1 -7.9 -1	-1.7 -1 -7.9 -1	-1.5 -1 -7.8 -1	-1.3 -1 $-7.7 -1$	-1 · 2 ~ 1 -7 · 7 -1

TABLE VI (CONT.)

a =6° , SECOND SET

S/R = 0.520

$oldsymbol{eta^{ullet}}$	OUTSIDE	THROUGH THE WALL	INSIDE
		CALCULATED TEMPERATURES	• T _C
0	225.2	223.5 222.5 2	21.2 219.5
15	225.0		20.3 219.4
30	224.7		21.2 219.2
45	224•4 224•1		20.5 219.1 20.5 218.9
60 75	223.8		19.8 218.7
90	223.5		19.7 218.5
105	223.2		19.6 218.3
120	222.9	221.5 220.2 2	19.1 218.1
135	222.6		19.1 217.9
150	222.3		18.9 217.8
165	222.0		18.6 217.6 18.3 217.4
180	221.8	220•6 219•4 2	21704
		MEASURED TEMPERATURES,	T _m
0	225.3	223.4 222.3 2	20.9 219.2
15			
30	224 0	222 2 22 2	20.6
45 60	224•8 223•9		20.5 218.9 20.1 218.5
75	223.4		20.0 219.1
90	223.9		20.0 218.9
105	223.4		19.6 218.3
120	223.1		19.2 218.3
135	222.4		18.8 217.6
150	222 • 2		18.8 217.6
165	222•2		18.8 217.7 19.0 218.1
180	222.5	221.2 220.1 2	19.0 218.1
		DIFFERENCE (Tc -Tm)	
0	-4.4 -2	8.2 -2 1.5 -1 2	.5 -1 3.6 -1
15			
30			
45	-3.2 -1		.3 -1 1.7 -1
60	2.7 -1		•1 -1 3•3 -1 • • • • • • • • • • • • • • • • • • •
75 90	4.6 -1 -3.5 -1		•0 -1 -3•7 -1 •7 -1 -3•7 -1
105	-1.6 -1		0 -2 -1.0 -2
120	-1.2 -1		3 -1 -1.3 -1
135	2.8 -1		.3 -1 3.5 -1
150	1.0 -1		.3 -1 1.4 -1
165	-1.6 -1	-1.5 -1 -1.3 -1 -1.	
180	-6.6 -1	-6.8 -1 -6.8 -1 -6	·8 -1 -6·9 -1

α =6° • SECOND SET

S/R = 3.010

β•	OUTSIDE	THR	OUGH THE WA	LL	INSIDE
		CALCULAT	ED TEMPERAT	URES. Tc	
0	234.3	231.4	228.5	225.1	222.2
15	234.0	230.4	227.6	224.2	222.1
30	233.7	230.6	228.0	224.8	221.9
45	233.3	230.6	227.8	224.6	221.8
60	233.0	230.7	228.0	224.8	221.7
75	232.6	230.0	227.5	224.4	221.5
90	232.3	229.0	226.8	223.6	221.4
105	231.9	229.1	226.6	223.6	221.3
120	231.6 231.2	228.7	226.3	223.3	221.1
135 150	230.9	228 ₄ 5 228 _• 3	226•2 226•0	223.5 223.4	221•0 220•9
165	230.5	228.0	225.8	223.2	220.7
180	230.3	227.5	225.3	222.6	220.7
		MEASURE	D TEMPERATU	RES. Tm	
0	234.5	231.5	228.5	225.0	221.9
15					
30					
45	233.8	230.9	228.0	224.6	221.7
60	232.5	230.2	227.6	224.4	221.3
75	232.3	229.7	227.1	- 224.0	221.1
90	232.6	229.4	227.3	224.4	222.2
105	232.0	229.3	226.9	224.0	221.7
120	231.7	228.9	226.6	223.6	221.6
135	230.9	228 • 1	225.8	223.1	220.5
150 165	230•7 23 0• 7	228•2 228•1	225•9 225•9	223•2 223•2	220•6 220•7
180	231.0	228.3	226.1	223.3	221.4
•00	23140	22003	22001		22344
		DIF	FERENCE ITe	-T _m)	
0	-1.7 -1	7.2 -2	-3.2 -2	-1.5 -1	2.6 -1
15					
30 45	-4.7 -1	3.4 -1	2.0 -1	4.0 =2	9.7 -2
60	4.6 -1	-4.5 -1	-4.3 -1		
75	3.5 -1	-3.7 -1	-3.8 -1	-4.0 -1	4.1 -1
90	-2.7 -1	4.4 -1	5.5 -1	7.1 -1	-8.2 -1
105	-1.0 -1	2.0 -1	2.8 -1	3.8 -1	-4.6 -1
120	-1.8 -1	2.4 -1	2.9 -1	3.6 -1	
135	3.2 -1	-3.6 -1	4.0 -1	-4.3 -1	4.6 -1
150	1.2 -1	-1.5 -1	-1.8 -1		2.4 -1
165	-2.2 -1	1.4 -1	8.1 -1	-4.0 -3	8.0 -2
180	-7.4 -1	7.4 -1	7.5 -1	7.5 -1	-7.4 -1

NAVORD Report 6812

Table VII

Local Heat-Transfer Ratios on the Sphere-Cone Model, $\alpha = 0^{\circ}$

	$M_1 = 3.24$ $P_0 = 1210 \text{ mm Hg abs.}$ $T_0 = 363.3^{\circ}\text{K}$ $Re_1/m \times 10^{-6} = 8.8$	$H_1 = 4.84$ $P_0 = 2213 \text{ mm}$ $T_0 = 32000 \text{ K}$ $Re_1/m \times 10^{-6}$
S/R	Q/Q°	٩/٩ <mark>٥</mark>
0 0.027 0.082 0.136 0.193 0.249 0.304 0.356 0.407 0.464 0.520 0.645 0.769 0.894 1.018 1.143 1.267 1.392 1.516 1.641 1.765 1.890	Q/Q _o 1.000 1.181 1.238 1.152 1.016 0.925 0.787 0.681 0.532 0.371 0.522 0.265 0.237 0.269 0.188 0.220 0.227 0.182 0.182 0.241 0.250	1.000 1.001 1.039 0.900 0.837 0.757 0.690 0.486 0.364 0.226 0.231 0.160 0.153 0.126 0.116 0.120 0.109 0.096 0.102 0.092 0.092
2.014 2.138 2.263	0.161 0.129 0.136	0.071 0.071 0.076
2.387 2.51 2 2.686 2.761	0.126 0.174 0.137 0.150	0.090 0.077 0.070 0.073 0.071
2.885 3.010	0.137 0.345	0.089

BLANK PAGE

B\S/R	o	.027	.082	.136	.193	.249	.304	.356	.407	.464	•6
		kana sanan menindikan			Sph	, U					•
0 15 30 45 60 75	1.020	1.004 1.001 .999 .999 1.003 1.006 1.011	.985 .975 .968 .968 .973 .978	1.003 .978 .957 .945 .938 .932	.988 .953 .921 .899 .881 .864	.895 .860 .828 .805 .705 .767	.745 .714 .604 .603 .644 .625	.588 .500 .535 .515 .498 .481	.416 .397 .382 .370 .350 .348	.327 .312 .310 .204 .278 .265	.1 .1 .1 .1
105 120 135 150 165 180		1.015 1.019 1.020 1.022 1.020 1.017	.992 .998 1.002 1.003 .906	.922 .916 .009 .800 .876 .851	.830 .813 .703 .774 .741	.729 .710 .601 .609 .606	.589 .571 .552 .531 .501	.447 .431 .415 .305 .368 .340	.330 .324 .310 .304 .204	.250 .257 .246 .239 .233	.1 .1 .0 .0

VIII-1

Table VIII

al Heat-Transfer Ratios on the Sphere-Cone Model at $N_1 = 4.84$ and $\alpha = 6^{\circ}$

3 in Eg abs., $T_0 = 320^{\circ}$ i, $Re_1/istor = 10^{-6} = 8.5$)

,645 .769 .894 1.018 1.143 1.267 1.302 1.516 1.641 1.765 1.890 2.01/ 2.JS

Q/Q - Local Heat Flux Ratio Cono .134 .119 .104 .103 .122 .131 .123 .143 .1.23 .125 197 .173 .143 .153 , 113 .134 .110 .000 •0fG .113 .119 .116 .116 .161 .194 **,17**9 .113 .102 .030 .002 .104 .110 .103 . J.O.1 .104 ,170 .152 .125 .125 .003 .003 .037 .119 .108 .007 .104 .102 .093 .093 ,158 .146 .122 .113 .116 .140 .102 .000 .084 .084 .003 .096 .092 .000 .090 ,146 .096 .004 .078 .031 .000 .090 .194 .100 .087 .084 .031 ,184 .113 .037 .081 .075 .078 .084 .004 .081 .075 .075 , 123 .128 .103 .102 .072 .078 .072 .OGG .081 .075 .072 .078 .069 ,116 .122 .104 .093 .036 .000 CCO. .000 .() .075 .075 .072 .000 .000 .11G .000 ,110 .001 .003 .030 .000 .003 .00G .030 .000 .053 .051 ,102 .110 .006 .000 .000 .073 .003 .033 .003 .080 .051 .04.5 .045 092 .104 .090 .054 .051 .054 .054 .050 .057 .051 .042 .003 078 .092 .004 .069 ,060 .031 .057 .042 .039 .0.15 .0∴8 .045 .039 .030 .024 .021 .002

Table VIII

Local Hent-Transfer Ratios on the Sphere-Cone Model at $H_1 = 4.84$ and $\alpha = 6^{\circ}$

 $(P_o = 2233 \text{ m} \text{ Hg abs.}, T_o = 320^{\circ} \text{H}, \text{Re}_1/\text{notor} \approx 10^{-6}$

.193	.249	.304	.356	.407	.464	.645	.769	.894	1.018	1.143	1.267	1.303	1.
							Q/	Q' - 1	oceJ. E	leat Fl	ux Ra	ito	
 Spho	, U								A 4 44	-			
.9 83	.895	.745	.588	.416	.327	.197	.173	.143	.143	.134	.119	.104	.10
.953	.860	.714	.5GO	.397	.312	.179	.161	.194	.134	.163	.110	.093	• 0 (
.921	.828	.684	.535	.382	.310	.170	.152	.125	.125	.113	.102	.000	•0
663	.805	.663	.515	.370	.294	.158	.146	.122	.119	.108	.003	.007	.00
.881	.785	644	.498	.358	.278	.146	.140	.116	.113	.102	.000	.034	.08
.864	.767	.625	.481	.348	.235	.134	.184	.113	.100	.096	.004	.078	•00
.847	.748	.607	.464	.340	.202	.128	.128	.103	.102	.087	.081	.075	.07
.830	.729	.589	.417	.330	.250	.116	.122	.104	.093	.081	.075	.072	.07
.813	.710	.571	.4.1	.324	.257	.110	.110	.003	.C.J	.075	.000	.C 00	.00
.793	.601	.51.3	.415	.310	246	.102	.110	.003	.004	.069	.003	.003	.00
774	.009	.531	.395	304	239	.092	104	.000	.078	.003	.030	.000	.00
.741	633	.501	.363	204	223	.078	.002	.004	.069	.054	.051	.052	.08
707	.601	470	.340	237	.209	.060	.031	002	.057	.042	.039	.0.15	.0.
	# O O X		0		4 1.2 0 0	•000				_	•	•	_

1.516 1.641 1.765 1.890 2.014 2.138 2.263 2.387 2.512 2.636 2.761 2.885

				Cono _					 -		
108	.122	.131	.123	.128	.125	.134	.146	.152	.155	.1.61	.140
0 00	.113	.119	.116	.116	, 113	.122	.134	.137	.140	.146	.125
092	.104	.110	.108	.104	.104	.110	.122	.125	.125	.131	.113
037	.000	.104	.102	.098	.096	.102	.110	.113	.113	.119	.103
084	.003	.093	.092	.090	.090	.096	.102	.104	.102	.103	.000
00%	.000	.090	.087	.084	.081	.087	.092	.092	.090	.092	.078
078	.084	.004	.081	.075	.075	.081	.084	.084	.078	.081	.039
072	.078	.078	.072	.069	. 0 66	.072	.075	.072	.066	.069	.003
000	.075	.072	.036	.060	.000	.003	.006	.063	.054	.057	.018
006	.000	.030	.000	.054	.051	.057	.057	.051	.045	.045	.003
003	E^ 1.	.030	.051	.045	.045	.048	.015	.042	.033	.030	.030
057	.054	.051	.042	.036	.033	.039	.033	.027	.018	.018	.021
31.0	.045	.039	.030	.024	.021	.027	.031	.015	.003	.003	.003

P_o = 2010 : 1

E /1.	0	.027	.082	.136	.193	.249	.304	.3 56	.407	.404	. G 45 ,
\	# 1				Spl. r	Ú -					The second constitution of the second constituti
0	1.034	1,001	.919	.998	.895	.840	.766	.638	.552	.450	. 2 48 .
15	1	1.001	.973	.977	.878	.818	.686	.613	.537	.474	.248
•)		.996	.970	.958	.865	.799	.671	.584	.501	.600	.733
		.999	892.	.947	.800	.788	.633	.565	.487	.301	.216 .
()	j	1.001	.938	.938	.858	.780	.657	.548	.471	.309	.21.0
75		1.003	.970	.931	.856	,771	.652	.533	.464	.305	.213
8.9		1.007	.973	.925	.855	.764	.646	.510	.451	.301	.210 .
960		1.016	.976	.918	.854	.755	.611	.501	.437	.30)	.204
1.1.4		1.013	.978	.911	.852	.747	.636	.484	.423	.201	.199 .
1 12		1.015	.979	.903	.850	.738	.630	.466	.405	.2: 3	.190 .
) 53		1.014	.976	.891	.845	.728	.622	.449	.391	.360.	.1.87
) 65		1.012	.968	.872	.832	.709	.007	.423	.570	.203	.178 .
100	1	1.009	.957	.852	.816	.687	.588	.397	.350	.200	.167 .

VIII-2

Table VIII (con't)

 $E_1 = 4.84 \text{ and } \alpha = 60$

i hg abs., To = 3220%, Per Mater x 10-6 = 7.0)

.769 .894 1.018 1.143 1.267 1.302 1.516 1.611 1.765 1.659 5.017 2.136 2.

Ç/	Co	Local	Hant I	luz Er	tio —	•	- Con	ر السمار . در السمار .				
.230	.207	.199	.199	.103	.193	.190	.127	.184	.179	.3.73	.3.70	•
.219	.196	.164	.184	.131	.170	.178	.176	.173	.16.	. 101	. 3.55	•
.207	.187	.176	.178	.173	.170	.167	.107	.194	.158	.113	. 1.47	•
.204	.181	.173	.175	.167	.1.64	.100	.161	.188	.153	. 3 . 7	.14.1	•
.201	.178	.167	.167	.161	.161	.158	.155	.153	.147	. 1.11	.150	•
.196	.176	.164	.164	.158	.155	.153	.150	.147	.141	$\mathbf{M} \cup \mathbf{M}$.132	•
.193	.170	.161	.158	.153	.150	.147	.143	.141	.141	. n. s	.152	• :
,190	.167	.155	.155	.150	.144	.141	.138	.135	.130	.130	.121	. ?
.187	.164	.153	.153	.144	.138	.135	.132	.130	.124	.138	.115	. ?
.181	.158	.147	.147	.138	.135	.130	.130	.124	.10.8	.115	.3.3.2	.)
.178	.155	.14/	.141	.135	.130	.127	.124	.118	.11.2	. 1.	.367	.)
.170	.147	.135	.135	.127	.121	.118	.115	,1.00	.10:	.167	100	.(
.158	.135	.124	.121	.115	.107	.104	.101	.095	.092	.0.3	.005	.(

NAVORD Report 6312

Table VIII (con't)

 $N_1 = 4.84 \text{ and } \alpha = 6^{\circ}$

 $P_0 = 2010$ km Hg abs., $T_0 = 3220$ K, P_{11} /inter x 10^{-6} .

49	.304	.3 56	.407	.464	.640	.769	.894	1.018	1.143	1.267	1.803	1.51
					Ann a second -	Ç/	'Co' -	Local	I! at	Flux R	atio —	
40	.706	.638	.552	.450	.248	.230	.207	.199	.199	.193	.193	.19
18	.626	.613	.537	.474	.248	.219	.196	.104	.184		.170	.17
99	.671	.584	.501	.400	.222	.207	.187	.176	.178		.170	.16
83	.663	.565	.487	.391	.216	.204	.181	.173	.173	.167	.1.64	.16
03	.657	.548	.471	.309	.210	.201	.178	.167	.167	.164	.163	.15
71	.652	. 533	.464	.385	.213	.196	.176	.164	.164	.158	.155	.15
64	.646	.517	.451	.301	.210	.193	.170	.161	.158	.153	.150	.14
55	.611	.501	.437	.500	.204	.190	.167	.155	.155	.150	.144	.14
47	.C35	.484	.423	.351	.199	.187	.164	.153	.152	.144	.138	.13
38	.630	.466	.405	.323	.190	.181	.158	.147	.147	.138	.135	.13
28	.622	.448	.391	.331.	.187	.178	.155	.144	.141	.135	.130	.12
09	.607	.423	.370	.333	.178	.170	.147	.1.35	.135	.127	.121	.11
37	.588	.397	.350	.200	.167	.158	.135	.124	.121	.115	.107	.10

 $0^{-6} - 7.6$)

1.516 1.611 1.765 1.890 2.014 2.138 2.263 2.387 2.512 2.636 2.761 2.885

	- Con	e									
.190	.187	.184	.178	.173	.170	.176	.173	.173	.170	.176	.178
.178	.176	.173	.167	.161	.155	.161	.161	.161	.158	.167	.181
.167	.167	.164	.158	.153	.147	.153	.159	.153	.150	.158	.167
.164	.161	.158	.153	.147	.141	.147	.147	.147	.144	.150	.153
.158	.155	.153	.147	.141	.138	.141	.141	.141	.138	.144	.141
.153	.150	.147	.141	.133	.132	.135	.135	.135	.135	.138	.135
.147	.144	.141	.141	.133	.132	.130	.130	.130	.130	.132	.135
.141	.138	.135	.130	.130	.121	.124	.124	.124	.124	.124	.121
.135	.132	.130	.124	.118	.115	.118	.118	.118	.118	.113	.118
.130	.130	.124	.118	.115	.112	.112	.112	.115	.112	.112	.112
.127	.124	.118	.112	.109	.107	.107	.107	.109	.107	.107	.101
.118	.115	.109	.104	.101	.098	.098	.098	.101	.098	.098	.093
.104	.101	.095	.092	.086	.086	.086	.086	.039	.086	.086	.003

AERODYNAMICS DEPARTMENT EXTERNAL DISTRIBUTION LIST (A1)

No. Copi		No. o	
			3
	Chief, Bureau of Naval Weapon	5	NASA
	Department of the Navy		Langley Aeronautical Laboratory
	Washington 25, D. C.		Langley Field, Virginia
1	Attn: DLI-30	3	Attn: Librarian
1	Attn: R-14	ì	Attn: C. H. McLellan
1	Attn: RRRE-7	ī	Attn: J. J. Stack
ī	Attn: RMGA-53	ī	Attn: Adolf Busemann
_		ī	Attn: Comp. Res. Div.
	Office of Naval Research	ī	Attn: Theoretical
	Room 2709, T-3	•	Aerodynamics Div.
	Washington 25, D. C.		nor odynamics Div.
1	Attn: Head, Mechanics Br.		NASA
•	Actual Boad, Locality Div		
	Director, DTMB		Lewis Flight Propulsion Lab.
	Aerodynamics Laboratory		21000 Brookpark Road
	Washington 7, D. C.	,	Cleveland 11, Ohio
1		1	Attn: Librarian
•	Accu. Divisity	1	Attn: Chief, Propulsion
	Officer in Change NDC		Aerodynamics Div.
	Officer in Charge, NPG		****
	Dahlgren, Virginia		NASA
1	Attn: Library		1520 H Street, N. W.
			Washington 25, D. C.
	Commander, U. S. NOTS	1	Attn: Chief, Division of
_	China Lake, California		Research Information
1			
1			Office of the Assistant
1	Attn: Code 406		Secretary of Defense (R & D)
			Room 3E1065, The Pentagon
	Director, NRL		Washington 25, D. C.
	Washington 25, D. C.	1	Attn: Technical Library
1	Attn: Code 2027		
			Research and Development Board
1	Commanding Officer		Room 3D1041, The Pentagon
	Office of Naval Research		Washington 25, D. C.
	Branch Office	1	Attn: Library
	Box 39, Navy 100		•
	Fleet Post Office	10	ASTIA
	New York, N. Y.		Arlington Hall Station
			Arlington 12, Virginia
	NASA		Attn: TIPDR
	High Speed Flight Station		
	Box 273		Commander, NAMTC
	Edwards Air Force Base,		Point Mugu, California
	California	1	Attn: Technical Library
1	Attn: W. C. Williams	_	Acti. Identical Biblary
_			Commanding General
	NASA		Aberdeen Proving Ground, Md.
	Ames Research Center	1	Attn: Technical Info. Br.
	Moffett Field, California	î	Attn: Ballistics Res. Lab.
1	Attn: Librarian	-	SELLEGICO NOD. DEV.

AERODYNAMICS DEPARTMENT EXTERNAL DISTRIBUTION LIST (A1)

W •			
No.	-	No. o	
Copie		Copie	<u> </u>
	Director, Special Projects		Commanding General
	Department of the Navy		Army Ballistic Missile Agency
	Washington 25, D. C.		Huntsville, Alabama
1	Attn: SP-2722	1	Attn: ORDAB-DA
•		î	Attn: Dr. E. Geissler
	Director of Intelligence	î	Attn: Mr. T. Reed
	Headquarters, USAF	î	Attn: Mr. H. Paul
	Washington 25, D. C.	ī	Attn: Mr. W. Dahm
1	Attn: AFOIN-3B	-	Market Comments
-			Commanding General
	Commander, WADC		Redstone Arsenal
	Wright-Patterson AF Base		Huntsville, Alabama
	Obio	1	Attn: Mr. N. Shapiro
2	Attn: WCOSI-3	_	ORDDWMRF
ī	Attn: WCLSW-5		
3	Attn: WCRRD		Office, Chief Of Ordnance
			Department of the Army
	ARDC Regional Office		Washington 25, D. C.
	Room 4549 Munitions Bldg.	1	Attn: ORDTU
	c/o Dept. of the Navy	_	
	Washington 25, D. C.		APL/JHU (C/NOw 7386)
1	Attn: Maj. T. J. Borgstron	9	8621 Georgia Avenue
_			Silver Spring, Maryland
	Air Force Ballistic Missile I	Div.	
	HQ Air Research & Development	t 2	Attn: Tech. Reports Group
	Command	1	Attn: Mr. D. Fox
	P. O. Box 262	1	Attn: Dr. F. Hill
	Inglewood, California		Via: INSORD
	Attn: WDTLAR		
	Chief, AFSWP		
	Washington 25, D. C.		
1	Attn: Document Library		
	Commanding General		
	Arnold Engineering Developmen	t	
	Center		
	Tullahoma, Tennessee		
1	Attn: Technical Library		
5	Attn: AEKS		
	Commanding Officer, DOFL		
	Washington 25, D. C.		
1	Attn: Library		
	Room 211, Bldg. 92		

AERODYNAMICS DEPARTMENT EXTERNAL DISTRIBUTION LIST (A2)

No. Copie		No. of Copies	
COPI	_	COPIC.	<u> </u>
	Case Institute of Technology		Princeton University
	Cleveland 6, Ohio		James Forrestal Research Center
1	Atta: G. Kuerti		Gas Dynamics Laboratory
•			Princeton, New Jersey
1	Mr. J. Lukasiewicz	1	Attn: Prof. S. Bogdonoff
•	Chief, Gas Dynamics Facility	-	netin. 1101, 5, Boguonoli
	ARO, Incorporated		Institute for Fluid Dynamics
			and Applied Mathematics
	Tullahoma, Tennessee		University of Maryland
	Managahugatta Ingtituta of		
	Massachusetts Institute of	2	College Park, Maryland
	Technology	2 1	Attn: Director
_	Cambridge 39, Massachusetts	1	Attn: Dr. J. Burgers
1 1	Attn: Prof. J. Kaye		
1	Attn: Prof. M. Finston		University of Michigan
1	Attn: Mr. J. Baron	-	Ann Arbor, Michigan
1	Attn: Mr. M. Sweeney, Jr.	1	Attn: Dr. A. Kuethe
	New York University	1	Applied Mathematics and
	45 Fourth Avenue		Statistics Laboratory
	New York 3, New York		Stanford University
1	Attn: Prof. R. Courant		Stanford, California
1	Attn: Prof. H. Ludloff		
_			Cornell University
	Polytechnic Institute of		Graduate School of Aero. Engr.
	Brooklyn		Ithaca, New York
	527 Atlantic Avenue	1	Attn: Prof. W. R. Sears
	Freeport, New York	_	
1	Attn: Dr. A. Ferri		The Johns Hopkins University
î	Attn: Dr. M. Bloom		Charles and 34th Streets
î	Attn: Dr. P. Libby		Baltimore, Maryland
. *	accu. Dr. P. Dibby	1	Attn: Dr. F. H. Clauser
	Brown University		
	Division of Engineering		University of California
	Providence, Rhode Island		Berkeley 4, California
1	· · · · · · · · · · · · · · · · · · ·	1	Attn: G. Maslach
ī	Attn: Prof. C. Lin	1	Attn: Dr. S. Schaaf
•			
	University of Minnesota	1	Air Ballistics Laboratory
	Minneapolis 14, Minnesota		Army Ballistic Missile Agency
1	Attn: Dr. E. R. G. Eckert		Huntsville, Alabama
1	Attn: Dr. J. Hartnett		
ī	Attn: Heat Transfer Lab.	1	Mr. Rex Monaghan
ī	Attn: Tech. Library		RAE, Farnsborough, England
•			c/o British Joint Services
	Rensselaer Polytechnic		Mission
	Institute		Attn: Aircraft Branch
	Troy, New York		P. O. Box 680
1	Attn: Dept. of Aeronautics	1	Benjamin Franklin
•	Engineering	-	Stations
	wwP macr vnP		Washington, D. C.
			" gonang ton, D, C,

AERODYNAMICS DEPARTMENT EXTERNAL DISTRIBUTION LIST (A2)

No. o Copie	•	No. c	
Øi.			-
	Superintendent		General Applied Science
	U. S. Naval Postgraduate		Laboratories, Inc. Merrick and Stewart Avenues
	School Monterey, California		Westbury, L. I., New York
1	Attn: Tech. Rpts. Section	1	Attn: Mr. Walter Daskin
•	Library	î	Attn: Mr. R. W. Byrne
	National Bureau of Standards	1	CONVAIR
	Washington 25, D. C.		A Division of Feneral Dynamics
1	Attn: Chief, Fluid Mechan	ics	Corporation
	Section		Fort Worth, Texas
	University of Minnesota	422	United Aircraft Corporation
	Rosemount Research Laborator	168	400 Main Street
1	Rosemount, Minnesota Attn: Technical Library	1	East Hartford 8, Connecticut Attn: Chief Librarian
•	Attn: Technical Dibrary	2	Attn: Mr. W. Kuhrt,
ī	Director	_	Research Dept.
•	Air University Library	1	Attn: Mr. J. G. Lee
	Maxwell AF Base, Alabama	_	
			Hughes Aircraft Company
	Douglas Aircraft Company, In	c.	Florence Avenue at Teale St.
	Santa Monica Division		Culver City, California
	3000 Ocean Park Boulevard	1	Attn: Mr. D. H. Johnson
	Santa Monica, California		R & D Tech. Library
1	Attn: Chief Missiles Engi		
1	Attn: Aerodynamics Section	n 1	McDonnell Aircraft Corporation P. O. Box 516
1	CONVAIR		St. Louis 3, Missouri
	A Division of General Dynami	CS	,
	Corporation		Lockheed Aircraft Corporation
	Daingerfield, Texas		Lockheed Missiles and Space Div.
		_	Sunnyvale, California
	CONVAIR	1	Attn: Dr. L. H. Wilson
	Scientific Research Laborato	<u> </u>	Attn: Mr. W. E. Brandt
	5001 Kearney Villa Road	1	Attn: Mr. M. Tucker
1	San Diego 11, California	1	Attn: Mr. B. W. March
1	Attn: Mr. M. Sibulkin Attn: Asst. to the Dir. o	_	Attn: Mr. W. J. Fleming, Jr.
•	Scientific Research		The Martin Company
	SCIONITIC RESERVED		Baltimore 3, Maryland
	Republic Aviation Corporatio	n l	Attn: Library
	Farmingdale, New York	- î	Attn: Chief Aerodynamicist
1	Attn: Technical Library	-	nota. Calca not day amazozot
•			North American Aviation, Inc.
			Aerophysics Laboratory
			Downing, California
		1	Attn: Dr. E. R. Van Driest

AERODYNAMICS DEPARTMENT EXTERNAL DISTRIBUTION LIST (A2)

No. C		No. C				
1	Ruweps Representative	1	AER, Incorporated			
_	Aerojet-General Corporation	_	871 East Washington Street			
	6352 N. Irwindale Avenue		Pasadena, California			
	Azusa, California					
			Armour Research Foundation			
1	Boeing Airplane Company		10 West 35th Street			
_	Seattle, Washington		Chicago 16, Illinois			
		2	Attn: Dept. M			
	RAND Corporation					
	1700 Main Street		Chance-Vought Aircraft, Inc.			
	Santa Monica, California		Dallas, Texas			
1	Attn: Lib., USAF Project RAND	2	Attn: Librarian			
	181112		Cornell Aeronautical Lab., Inc.			
	Arnold Research Organization		4455 Genesee Street			
	Inc.	•	Buffalo 21, New York			
	Tullahoma, Tennessee	1	Attn: Librarian			
1	Attn: Tech. Library	ī	Attn: Dr. Franklin Moore			
ī	Attn: Chief, Propulsion	_				
_	Wind Tunnel		Defense Research Laboratory			
1	Attn: Dr. J. L. Potter		The University of Texas			
_			P. O. Box 8029			
	General Electric Company		Austin 12, Texas			
	Missile and Space Vehicle De	pt.1	Attn: Assistant Director			
	3198 Chestnut Street	•				
	Philadelphia, Pennsylvania		Ohio State University			
2	Attn: Larry Chasen		Columbus 10, Ohio			
	Mgr. Library	1	Attn: Security Officer			
1	Attn: Mr. R. Kirby	1	Attn: Aerodynamics Lab.			
1	Attn: Dr. J. Farber	1	Attn: Mr. J. Lee			
1	Attn: Dr. G. Sutton	1	Attn: Chairman, Dept. of			
1	Attn: Dr. J. D. Stewart		Aeronautical Engin'ing			
1	Attn: Dr. S. M. Scala					
1	Attn: Dr. H. Lew		CIT			
			Pasadena, California			
	Eastman Kodak Company	1	Attn: Guggenheim Aeronautical			
	Navy Ordnance Division		Lab., Aeronautics			
	50 West Main Street		Library			
	Rochester 14, New York	1	Attn: Jet Propulsion Lab.			
2	Attn: W. B. Forman	1	Attn: Dr. H. Liepmann			
		1	Attn: Dr. L. Lees			
	Reports Distribution Office	1	Attn: Dr. D. Coles			
	AVCO-EVERETT Research Lab.	1	Attn: Mr. A. Roshko			
	2385 Revere Beach Parkway					
	Everett 49, Massachusetts					
3	Attn: Dr. J. Ekerman					
1	The Director	1	Applied Mechanics Reviews			
-	National Aeronautical		Southwest Research Institut			
			8500 Culebra Road			
	Establishment					
	National Research Council	•	San Antonio 6, Texas			
	Montreal Road					
	Ottawa, Canada					

oorresponding body stations of approximately 100 percent. The O yaw heat-transfer reand 6°, and at nominal Mach numbers, 3 and 5. Comparison of the 0° yaw local heat-transfer rates with those of the windward body stream-line at 6° yaw show a maximum increase for port 91). Project NOL-370. Naval Ordnance Laboratory, White Oak, Md. sults show good agreement with the recent with laminar boundary layer have been dedistributions on a sphere-cone configuration (NAVORD report 6812)
SUPERSONIC AERODINAMIC HEATING OF A YAWED
SPHERE-CONE WIND-TURNEL MODEL, by S.M. corresponding body stations of approximately 100 percent. The 0° yaw heat-transfer reline at 5° yaw show a maximum increase for theory of Powers and Krahn. termined in a wind tunnel at yaw angles, 0° Hastings and A.J. Chones. 28 June 1960. and 6°, and at nominal Mach numbers, 3 and 5. Comparison of the 0° yaw local heat-transfer with laminar boundary layer have been dedistributions on a sphere-cone configuration SPHERE—CONE WIND-TUNNEL MODEL, by S.M.
Hastings and A.J. Chones. 28 June 1960.
12p. tables. (Aeroballistic research re-Naval Ordnance Laboratory, White Oak, Md. theory of Powers and Krahn. sults show good agreement with the recent termined in a wind tunnel at yaw angles, 0 port 91). Project NOL-300. The steady-state pressure and heat-transfer The steady-state pressure and heat-transfer (NAVORD report 6812)
SUPERSONIC AERODYNAMIC HEATING OF A YAWED tables. (Aeroballistic research re-UNCLASSIFIED UNCLASSIFIED ₹. 2 3 Series Series Anthanasius Chones, Hastings, Bodies - Wind Chones, Hastings, roject Aerodynamio heating tunnel tests Project heating tunnel tests Bodies -Title herodynami o Bodies nthanasius Samuel M. Heating, Heating, Jt. author Aerodynamio ., jt. author Title erodynamio Bodies - Wind armuel M. and 6°, and at nominal Mach numbers, 3 and 5. Comparison of the 0° yaw local heat-transfer rates with those of the windward body streamline at 6° yaw show a maximum increase for corresponding body stations of approximately SPHERE—CONE WIND-TUNNEL MODEL, by S.M. Hastings and A.J. Chones. 28 June 1960. 12p. tables. (Aeroballistic research report 91). Project NOL-300. UNCLASSIFIED termined in a wind tunnel at yaw angles, 0° and 6°, and at nominal Mach numbers, 3 and 5. Comparison of the 0° yaw local heat-transfer rates with those of the windward body streamline at 6° yaw show a maximum increase for 12p. tables. (Aeroballistic research report 91). Project NOL-300. UNCLASSIFIE SPHERE-CONE WIND-TUNNEL MODEL, by S.M. Hastings and A.J. Chones. 28 June 1960. Naval Ordnance Laboratory, White Oak, Md. distributions on a sphere-cone configuration 100 percent. The 0° yaw heat-transfer retermined in a wind tunnel at yaw angles, 0° with laminar boundary layer have been de-Naval Ordnance Laboratory, White Oak, Md. distributions on a sphere-cone configuration theory of Powers and Krahn. sults show good agreement with the recent oorresponding body stations of approximately 100 percent. The O yaw heat-transfer results show good agreement with the recent with laminar boundary layer have been detheory of Powers and Krahn. The steady-state pressure and heat-transfer SUPERSONIC AERODYNAMIC HEATING OF A YAWED The steady-state pressure and heat-transfer (NAVORD report 6812)
SUPERSONIC AEROJYNAITIC HEATING OF A YAWED UNCLASSIFIED <u>र</u>म् 3 L'1 III. Hastings, Samuel M. Series Samuel M. Project Anthanasius Chones, Hastings, Heating, tunnel Bodies - Wind Aerodynamio heating Bodies -Series nthanasius Chones, tunnel tests Bodies - Wind J., jt. author Title herodynamic roject tle crodynamio Heating, heating herodynami o Bodies -, jt. author tests

termined in a wind tunnel at yaw angles, 0° and 6°, and at nominal Mach numbers, 3 and 5. Comparison of the 0° yaw local heat-transfer rates with those of the windward body streamline at 6° yaw show a maximum increase for corresponding body stations of approximately 100 percent. The 0° yaw heat-transfer re-12p. tables. (Aeroballistic research report 91). Project NOL-300. UNCLASSIFIED The steady-state pressure and heat-transfer distributions on a sphere-cone configuration with laminar boundary layer have been de-Naval Ordnance Laboratory, White Oak, Md.

(NAVO'D report 6812)

SUPERSONIC AERODYNAMIC HEATING OF A YAWED SPHERE—CONE WIND-TUNNEL MODEL, by S.M.

Hastings and A.J. Chones. 28 June 1960.

12p. tables. (Aeroballistic research report 91). Project NOL-300. UNCLASSIFIED sults show good agreement with the recent theory of Powers and Krahn. Title

Anthanasius
J., jt. author
Series
Project Hastings, Samuel M. heating. Chones, tunnel tests Bodies -Aerodynamio Aerodynami o Bodies - Wind

BLANK PAGE