

Lớp Giải Tích 1 Livestream

(Học phí 400k/cả kì)

HCMUT-CNCP

Cách xác định bậc và hệ số vô cùng bé dùng Casio

1. Lí thuyết

Với f(x) là vcb, khi $x \rightarrow a$ ta xác định bậc VCB và hệ số vô cùng bé như sau $f(x) \sim bx^{\alpha}$

Tính $L = \lim_{x \to a} \frac{f(x)}{x^k}$ tăng k từ 1->n khi nào $L \# \infty$. Khi L thỏa mãn điều kiện đó thì suy ra a # b = L

2. Luyện tập

2.1 Bài tập sách giáo khoa LIÊU SƯU TẬP

Bài tập 2.6.3. Tìm hàm VCB tương đương đạng Ax^{α} của các hàm sau khi $x \to 0$.

1.
$$f(x) = 3x^5 - 5x^6 - 4x^3$$
.

5.
$$f(x) = (1 + 2x^2 - 3x^3)^3 - \cos(2x + x^2)$$

2.
$$f(x) = (e^{3x} - 1)(\sin^2 2x + 3x^3)$$
.
3. $f(x) = x \cos 2x - x + 3x^3$.
6. $f(x) = \tan x - \sin x$.

6.
$$f(x) = \tan x - \sin x$$
.

3.
$$f(x) = x \cos 2x - x + 3x^3$$
.

4.
$$f(x) = \sqrt[3]{1+2x} - \cos 2x$$
. 7. $f(x) = \sqrt{1+2x+2x^2} - 1 - x$.

4.
$$f(x) = \sqrt[3]{1+2x} - \cos 2x$$
.

2.2 Đề thi

Câu 5. Khi $x \to 0$, sắp xếp các vô cùng bé sau theo thứ tự BẬC TĂNG DẪN:

$$\alpha(x) = \sqrt[3]{x^9 + 2x^7} + \sqrt[4]{x^2 + 1} - 1, \quad \beta(x) = 2^{\sqrt{x^3}} - 1, \quad \gamma(x) = \tan x - \sin x.$$

- A. β, α, γ

- Khi $x \to 0$, xét các vô cùng bé $f_1(x) = x^3 \arcsin(x-1)$, $f_2(x) = x^3 \arctan \frac{1}{x^2}$, $f_3(x) = x^2 x \sin x$, kết luận nào sau đây là đúng?
 - A f₁ và f₂ là hai vô cùng bé đồng bậc.
- (B) $f_1(x) \sim x^3 \text{ và } f_3(x) \sim -\frac{x^4}{6}$.

- C $f_2(x) \sim x^3$ và $f_3(x) \sim \frac{x^4}{6}$.
 - **Câu 4.** Khi $x \to 0$, chỉ ra vô cùng bé có bậc cao nhất trong các vô cùng bé sau:

$$\alpha(x) = x - x \tan x;$$
 $\beta(x) = 1 - \cos^3 x^2;$
 $\gamma(x) = (1 - x) \ln(1 - x) - e^x + 1;$
 $\delta(x) = x^5 \arctan \frac{1}{x^2}$

A. $\alpha(x)$ TÀI L^BI $\alpha(x)$ SƯU TÂ $\alpha(x)$

D. $\delta(x)$

BỞI HCMUT-CNCP