Пусть u и v — дважды дифференцируемые функции от переменной x. Найти d^2y , если:

1134.
$$y = uv$$
. 1135. $y = \frac{u}{v}$.

1136.
$$y = u^m v^n$$
 (*m* и *n*—постоянные).

1137.
$$y = a^u$$
 $(a > 0)$. 1138. $y = \ln \sqrt{u^2 + v^2}$.

1139.
$$y = \arctan \frac{u}{n}$$
.

Найти производные y_x' , y_{x^2}' , y_{x^3}'' от функции y=y(x), заданной параметрически, если:

1140.
$$x = 2t - t^3$$
, $y = 3t - t^3$.

1141.
$$x = a \cos t$$
, $y = a \sin t$.

1142.
$$x = a(t - \sin t), y = a(1 - \cos t).$$

1143.
$$x = e^t \cos t$$
, $y = e^t \sin t$.

1144.
$$x = f'(t)$$
, $y = tf'(t) - f(t)$.

1145. Пусть функция y = f(x) дифференцируема достаточное число раз. Найти производные x', x'', x''', x^{IV} обратной функции $x = f^{-1}(y)$, предполагая, что эти производные существуют.

Найти y_x' , $y_{x'}'$, и $y_x^{(i)}$ от функции u=y(x), заданной неявно:

1146. $x^2 + y^2 = 25$. Чему равны y', y'' и y''' в точке M (3, 4)?

1147.
$$y^2 = 2px$$
. 1148. $x^2 - xy + y^2 = 1$.

Найти y'_x и y''_x , если:

1149.
$$y^2 + 2 \ln y = x^4$$
.

1150.
$$\sqrt{x^2 + y^2} = ae^{\operatorname{arctg} y/x}$$
 (a>0).

1151. Пусть функция f(x) определена и дважды дифференцируема при $x \le x_0$. Как следует подобрать коэффициенты a, b и c, чтобы функция

$$F(x) = \begin{cases} f(x), & \text{если } x \leq x_0; \\ a(x-x_0)^2 + b(x-x_0) + c, & \text{если } x > x_0 \end{cases}$$

была дважды дифференцируема.