

# Summer of Code Artificial Intelligence (Machine Learning & Deep Learning)

Instructor **Wajahat Ullah** 

- Research Assistant (DIP Lab)

Duration **03 Months**(September – November)



# Day 01 – Exploratory Data Analysis (Introduction to NumPy)

## **Objectives:**

- What is Exploratory Data Analysis?
- Introduction to NumPy
- NumPy Arrays

# **Exploratory Data Analysis**

The process of examining datasets to summarize their main characteristics. It is a crucial step in the data analysis workflow to gain a deep understanding of the dataset before modeling.



# **Exploratory Data Analysis**

- The process of examining datasets often with visual methods – to summarize their main characteristics.
- It is a crucial step in the data analysis workflow to gain a deep understanding of the dataset before modeling.

### **Objectives:**

- Understand data structure and underlying patterns.
- Identify anomalies, missing values, and outliers.
- Detect trends and relationships between variables.
- Form hypothesis to inform further analysis or modeling.

### **Importance:**

- Provides insights for data-driven decision making.
- Improves predictive model quality by identifying issues early.
- Ensures data integrity and readiness for analysis.





# **Key Steps in EDA**

- Understanding the Data: Get familiar with the dataset, check number of rows, columns, and data types.
- Data Cleaning: Handle missing values, duplicates, and inconsistencies.
- **Statistical Analysis:** Use basic statistics (mean, median, standard deviation) to summarize each variable.
- Data Visualization: Use charts to uncover patterns, trends and outliers.
- **Data Transformation** (if needed): Normalize or standardize values, or convert data into a better format for further analysis or modeling.

#### **Exploratory Data Analysis Process**



# **Python Libraries for EDA**

- NumPy: Essential for numerical operations in Python, it provides support for multidimensional arrays, along with mathematical functions on these arrays.
- **Pandas:** Library for data manipulation and analysis. It makes it easy to clean, transform, and aggregate data.
- **Matplotlib:** A versatile plotting library used to create static, interactive, and animated visualizations in Python.
- **sklearn:** Primarily a machine learning library but includes many tools useful for data preprocessing and feature selection, which are key parts of EDA.









# **Introduction to NumPy**

**NumPy:** "Numerical Python" – The foundation of scientific computing in Python

- Initial release: As Numeric (1995); as NumPy, (2006)
- Python library for efficient array operations and mathematical computations
- Core Data Structure: N-dimensional array (ndarray)



3D array



### Why NumPy?

- **Speed:** Up to 50x faster than Python lists.
- **Memory Efficient:** Uses less memory than traditional Python data structures.
- Foundation: Backend for Pandas, SciPy, Matplotlib, and machine learning libraries
- **Versatile:** Supports 1D arrays, matrices, tensors, and higher dimensions.





# Why NumPy Arrays are Faster Than Lists

### 1. Fixed Data Type:

 NumPy arrays have a uniform data type, which eliminates the overhead of managing different data types like in Python lists.

### 2. Contiguous Memory Storage:

 Data stored in continuous memory blocks enhances cache efficiency and reduces memory consumption.

### 3. No Runtime Type Checking:

 Operations on NumPy arrays skip runtime type checks, making computations faster compared to Python lists.

### 4. Optimized Implementation:

 Core operations written in C and Fortran for maximum performance.



### **Differences Between Python Lists and NumPy Arrays:**

| Feature           | Python Lists | NumPy Arrays      |
|-------------------|--------------|-------------------|
| Data Type         | Mixed Types  | Homogeneous types |
| Memory Efficiency | Low          | High              |
| Computation Speed | Slow         | Fast              |

Thank You

