Séries

1 Définitions et premières propriétés

1.1 Séries numériques, nature d'une série

Définition 1 (Série numérique)

Soit $(u_n)_{n\geqslant n_0}$ une suite de nombres réels (en pratique on aura souvent $n_0=0$ ou 1)

On appelle

et note

la suite $(S_N)_{N \geqslant n_0}$ définie par :

$$\forall N \geqslant n_0, \ S_N =$$

Pour $N \ge n_0$ fixé, le réel S_N est appelé

Remarque 1

Dans la notation $\sum u_n$, on ne précise pas l'indice de départ de la somme $n_0...$

En général il n'y a pas d'ambiguïté : on choisit pour n_0 le plus petit indice à n partir duquel le terme général u_n est bien défini!

Exemples

• La série de terme général $\frac{1}{2^n}$, que l'on note $\sum \frac{1}{2^n}$, est la suite $(S_N)_{N\geqslant 0}$ définie par

$$\forall n \in \mathbb{N}, \ S_N =$$

• La série de terme général $\frac{1}{n^2}$, que l'on note $\sum \frac{1}{n^2}$, est la suite $(S_N)_{N\geqslant 1}$ définie par :

$$\forall n \geqslant 1, \ S_N =$$

■ Définition 2 (Nature d'une série)

Une série $\sum u_n$ peut être de deux **natures** :

- Si la suite $(S_N)_{N \geqslant n_0}$ converge, c'est à dire s'il existe $S \in \mathbb{R}$ tel que $S_N = \sum_{n=n_0}^N u_n \xrightarrow[N \to +\infty]{} S$, on dit que **la série est convergente** (ou qu'elle converge). Dans ce cas :
 - La limite $S = \lim_{N \to +\infty} \sum_{n=n_0}^{N} u_n$ est appelée

Elle est naturellement notée

ou encore

- Pour tout $N \ge n_0$, on appelle

le réel
$$R_N =$$

Il est également noté $R_N =$

Par définition on a $\lim_{N\to+\infty} R_N =$

• Si la suite $(S_N)_{N\geqslant n_0}$ diverge, on dit que la série est divergente (ou qu'elle diverge).

Exemples

• La série $\sum \frac{1}{2^n}$ est convergente, puisque : $\sum_{n=0}^{N} \frac{1}{2^n} =$

La somme de cette série est donc :

- La série $\sum n$ est divergente, puisque : $\sum_{n=0}^{N} n =$
- La série $\sum (-1)^n$ est divergente, puisque : $\sum_{n=0}^N (-1)^n =$ n'a pas de limite quand $N \to +\infty$.

A Attention!

Ne pas confondre les différentes notations :

- $\sum u_n$ désigne la série de terme général u_n , c'est à dire la suite : $\left(\sum_{n=n_0}^N u_n\right)_{N\geq n_0}$
- Pour $N \ge n_0$ fixé, le réel $\sum_{n=n_0}^N u_n$ est la somme partielle d'ordre N de la série.
- Le réel $\sum_{n=n_0}^{+\infty} u_n$ est la somme (i.e la limite) de la série $\sum u_n$ (pour une <u>série convergente uniquement</u>)
- Pour $N \ge n_0$ fixé, le réel $\sum_{n=N+1}^{+\infty} u_n$ est le reste d'ordre N de la série (pour une série convergente uniquement)

Notons que la nature d'une série (c'est à dire le fait qu'elle converge ou qu'elle diverge) est en fait indépendante de l'indice de départ de la somme!

Proposition 1 (Changer l'indice de départ)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle et deux entiers $n_0, n_1 \in \mathbb{N}$ (avec, disons $n_0 \leqslant n_1$).

- Les séries $\left(\sum_{n=n_0}^N u_n\right)_{N\geqslant n_0}$ et $\left(\sum_{n=n_1}^N u_n\right)_{N\geqslant n_1}$ sont de même nature.
- De plus, lorsqu'elles convergent, on a l'égalité :

$$\sum_{n=n_0}^{+\infty} u_n =$$
 (Relation de Chasles pour des sommes infinies)

Preuve:

Pour tout $N \ge n_1$, on peut écrire : $\sum_{n=n_0}^{N} u_n =$

Quand $N \to +\infty$, on voit donc que $\sum_{n=n_0}^N u_n$ converge si et seulement si $\sum_{n=n_1}^N u_n$ converge.

Dans le cas où on a convergence, en passant à la limite dans l'égalité, on obtient la relation voulue. \Box

Remarque 2

Si l'on s'intéresse uniquement à la nature d'une série, cela justifie la notation minimaliste " $\sum u_n$ ": inutile de préciser l'indice de départ n_0 puisque la nature de la série ne dépend pas de celui-ci!

Attention!

- La nature de la série est indépendante de l'indice de départ.
- Mais en cas de convergence, <u>la valeur de la somme</u> $\sum_{n=n}^{+\infty} u_n$ dépend de l'indice de départ n_0 !

Exemple

La série $\left(\sum_{n=1}^{N} \frac{1}{2^n}\right)_{N\geqslant 1}$ est convergente, car de même nature que la série $\left(\sum_{n=0}^{N} \frac{1}{2^n}\right)_{N\geqslant 0}$.

En revanche, on n'a pas $\sum_{n=1}^{+\infty} \frac{1}{2^n} = \sum_{n=0}^{+\infty} \frac{1}{2^n}!$ Précisément : $\sum_{n=1}^{+\infty} \frac{1}{2^n} = \sum_{n=0}^{+\infty} \frac{1}{2^n}$

1.2 Condition nécessaire pour la convergence d'une série

★ Théorème 1 (Divergence grossière)

Si la série $\sum u_n$ converge, alors on a nécessairement $\lim_{n \to +\infty} u_n =$

Contraposée : Si la suite $(u_n)_{n \ge n_0}$ ne tend pas vers , alors la série $\sum u_n$ On dit en fait d'une telle série qu'elle

Preuve:

Exemples

- La série $\sum 1$ diverge puisque $\lim_{n\to +\infty} 1 \neq 0$. La série $\sum \frac{n^2}{1+2n^2}$ diverge, car $\lim_{n\to +\infty} \frac{n^2}{1+2n^2} =$

Attention!

La réciproque de la Proposition 2 est (très!) fausse :

<u>Contre-Exemple</u>: Posons $\forall n \ge 1, \ u_n = \frac{1}{n}$. On a bien $\lim_{n \to +\infty} u_n = 0$.

Mais on a déjà étudié la série harmonique et vu que : $S_N = \sum_{n=1}^N \frac{1}{n} \underset{N \to +\infty}{\sim} \ln(N) \xrightarrow[N \to +\infty]{} +\infty.$

Ainsi, la série $\sum \frac{1}{n}$ diverge!

Remarque 3

Pour que la série $\sum u_n$ converge, il faut en fait que u_n converge vers 0 <u>"suffisamment rapidement"</u>...

Nous allons clarifier cette affirmation (peu précise pour l'instant!) un peu plus tard dans ce chapitre.

1.3 Manipulation de sommes infinies

Proposition 2 (Multiplication par une constante)

Soit $(u_n)_{n\geqslant n_0}$ une suite réelle et $\lambda\in\mathbb{R}^*$. Les séries $\sum \lambda u_n$ et $\sum u_n$ sont de même nature. De plus, lorsqu'elles convergent, on a l'égalité :

$$\sum_{k=n_0}^{+\infty} \lambda u_k =$$
 (Factorisation dans une somme infinie)

Preuve rapide:

Pour tout $N \ge n_0$: $\sum_{n=n_0}^{N} \lambda u_n = \lambda \sum_{n=n_0}^{N} u_n$. On passe ensuite à la limite quand $N \to +\infty$...

Proposition 3 (Somme de deux séries)

Soit $(u_n)_{n \geqslant n_0}$ et $(v_n)_{n \geqslant n_0}$ deux suites réelles.

I Si les séries $\sum u_n$ et $\sum v_n$ convergent, alors la série $\sum (u_n + v_n)$ et on a l'égalité : $\sum_{n=n_0}^{+\infty} (u_n + v_n) =$ ("Séparation" des sommes pour une somme infinie)

2 Si $\sum u_n$ converge et $\sum v_n$ diverge, alors la série $\sum (u_n + v_n)$

3 Si $\sum u_n$ et $\sum v_n$ divergent, on ne peut rien dire en général sur la nature de $\sum (u_n + v_n)...$

Preuve rapide:

Pour tout $N \ge n_0$: $\sum_{n=n_0}^{N} (u_n + v_n) = \sum_{n=n_0}^{N} u_n + \sum_{n=n_0}^{N} v_n$.

I Supposons que $\sum u_n$ et $\sum v_n$ convergent : les deux sommes à droite convergent quand $N \to +\infty$. C'est donc également le cas de la somme à gauche. On passe à la limite pour avoir l'égalité voulue.

2 Supposons que $\sum_{n=n_0}^{N} u_n$ converge et $\sum_{n=n_0}^{N} v_n$ diverge. Si jamais la série $\sum_{n=n_0}^{N} (u_n + v_n)$ était convergente, alors avec $\sum_{n=n_0}^{N} v_n = \sum_{n=n_0}^{N} (u_n + v_n) - \sum_{n=n_0}^{N} u_n$ on obtiendrait la convergence de $\sum_{n=n_0}^{N} v_n$: absurde!

3 • Posons $u_n = 1$ et $v_n = 1$: $\sum u_n$ et $\sum v_n$ divergent, et la série $\sum (u_n + v_n)$ également. Posons $u_n = 1$ et $v_n = -1$: $\sum u_n$ et $\sum v_n$ divergent, mais la série $\sum (u_n + v_n) = 0$ converge!

A Attention!

Pour séparer une somme infinie : $\sum_{n=n_0}^{+\infty}(u_n+v_n)=\sum_{n=n_0}^{+\infty}u_n+\sum_{n=n_0}^{+\infty}v_n$

il faut absolument que les séries $\sum u_n$ et $\sum v_n$ convergent, sinon le membre de droite n'a aucun sens!

Exemple : La série $\sum \left(\frac{1}{n} - \frac{1}{n+1}\right)$ est convergente car :

$$\sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{n+1} \right) =$$
 Ainsi :
$$\sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) =$$

Mais on ne peut pas écrire $\sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = \sum_{n=1}^{+\infty} \frac{1}{n} - \sum_{n=1}^{+\infty} \frac{1}{n+1} \quad \dots$

cela n'a pas de sens car les séries $\sum \frac{1}{n}$ et $\sum \frac{1}{n+1}$ divergent!

Ainsi on fera particulièrement attention, en manipulant des sommes infinies, à toujours justifier la convergence de toutes les séries mises en jeu...

Il est souvent préférable de faire les calculs à N fixé, puis passer à la limite quand $N \to +\infty$

Remarque 4

En combinant les Propositions 2 et 3, on obtient la "linéarité de la somme infinie" :

Si les séries $\sum u_n$ et $\sum v_n$ convergent, pour tous $\lambda, \mu \in \mathbb{R}$, la série $\sum (\lambda u_n + \mu v_n)$ converge et :

$$\sum_{n=n_0}^{+\infty} (\lambda u_n + \mu v_n) =$$

A Attention !

Les résultats connus pour les sommes finies ne sont pas automatiquement valable pour des sommes infinies! En particulier :

$$\frac{d}{dx}\sum_{n=n_0}^{+\infty}u_n(x)\neq\sum_{n=n_0}^{+\infty}u_n'(x),\qquad \int_a^b\left(\sum_{n=n_0}^{+\infty}u_n(x)\right)dx\neq\sum_{n=n_0}^{+\infty}\int_a^bu_n(x)dx\quad \text{ en général.}$$

Bien-sûr c'est parfois vrai, mais il faut alors justifier rigoureusement l'"interversion"! Cela peut typiquement faire l'objet d'un exercice...

2 Séries usuelles

2.1 Séries géométriques

"Rappel": Si $q \in]-1,1[$, pour tout $\alpha > 0$,

En effet : On peut écrire $|q^n|=|q|^n=e^{n\ln(|q|)}=e^{-cn}$ où $c=-\ln(|q|)>0$ puisque |q|<1.

$$\text{Ainsi :} \left| \frac{q^n}{\frac{1}{n^\alpha}} \right| = n^\alpha |q|^n = n^\alpha e^{-cn} \xrightarrow[n \to +\infty]{} 0 \quad \text{donc } \lim_{n \to +\infty} \frac{q^n}{\frac{1}{n^\alpha}} = 0 \quad \text{c'est à dire } \ q^n \underset{n \to +\infty}{=} o \left(\frac{1}{n^\alpha} \right).$$

★ Théorème 2 (Séries géométriques (dérivées))

Soit $x \in \mathbb{R}$. Les séries $\sum x^n, \sum nx^{n-1}$ et $\sum n(n-1)x^{n-2}$ convergent si et seulement si $x \in]-1,1[$.

Dans ce cas, on a:

- $\sum_{n=0}^{+\infty} x^n =$ (Somme d'une série géométrique)
- $\sum_{n=1}^{+\infty} nx^{n-1} =$ (Somme d'une série géométrique dérivée)
- $\sum_{n=2}^{+\infty} n(n-1)x^{n-2} =$ (Somme d'une série géométrique dérivée seconde)

Remarques 5

- ullet Notons que les sommes des deux derniers points pourraient également démarrer à l'indice n=0...
- Si on retient l'expression de la première somme, les autres sont facile à retrouver : ce sont les dérivées (première et seconde) de cette expression! On est ici dans un cadre où $\sum_{n=0}^{+\infty} \frac{d}{dx} x^n = \frac{d}{dx} \sum_{n=0}^{+\infty} x^n \dots$

Preuve du Théorème 2:

 $\bullet\,$ Rapidement : on dérive f_N à nouveau sur] - 1,1[pour obtenir, après calcul :

$$f_N''(x) = \sum_{n=2}^N n(n-1)x^{n-2} = \frac{-(N-1)Nx^{N+1} + 2(N^2 - 1)x^N - N(N+1)x^{N-1} + 2}{(1-x)^3} \xrightarrow[N \to +\infty]{} \frac{2}{(1-x)^3}$$

car, puisque
$$x \in]-1,1[, \quad x^N \underset{N \to +\infty}{=} o\left(\frac{1}{N^2}\right)...$$

Exercice 1

Soit
$$q \in]-1,1[$$
.

Justifier que les séries $\sum nq^n$ et $\sum n^2q^n$ convergent et calculer leurs sommes : $\sum_{n=1}^{+\infty}nq^n$ et $\sum_{n=1}^{+\infty}n^2q^n$.

2.2 Séries de Riemann

Avant d'annoncer les résultats de cette section, donnons un aperçu de la méthode générale de **comparaison série-intégrale** (à savoir reproduire / adapter au cas voulu) :

Soit f une fonction continue, positive, <u>décroissante</u> sur $[1, +\infty[$.

On s'intéresse à la série $\sum f(n)$: $\forall N \ge 1$, $S_N = \sum_{n=1}^N f(n)$, que l'on va "comparer" à $\int_1^N f(t)dt$.

Pour tout $n \ge 2$, on a l'encadrement :

$$\leqslant \int_{n-1}^{n} f(t)dt \leqslant$$

En sommant ces inégalités pour n = 2, ..., N:

$$\sum_{n=2}^{N} f(n) \leqslant \sum_{n=2}^{N} \int_{n-1}^{n} f(t)dt \leqslant \sum_{n=2}^{N} f(n-1)$$

c'est à dire:

$$S_N - f(1) \leqslant \int_1^N f(t)dt \leqslant S_N - f(N)$$

✓ Dessin :

On obtient ainsi un encadrement de S_N : $\int_1^N f(t)dt + f(N) \leqslant S_N \leqslant \int_1^N f(t)dt + f(1).$

(Il y a d'autres variantes possibles, en encadrant plutôt $\int_n^{n+1} f(t)dt$ par exemple...)

À partir d'un tel encadrement, on peut souvent :

- Déterminer la nature de la série.
- Si la série diverge : déterminer un équivalent de S_N quand $N \to +\infty$.
- Si la série converge : déterminer un équivalent du reste $R_N = \sum_{n=N+1}^{+\infty} f(n)$ quand $N \to +\infty$.

★ Théorème 3 (Séries de Riemann)

Soit $\alpha \in \mathbb{R}$. La série $\sum \frac{1}{n^{\alpha}}$ converge si et seulement si

Ces séries (pour $\alpha \in \mathbb{R}$) sont appelées séries de Riemann.

Preuve:

Remarques 6

- Dans le cas "limite" $\alpha = 1$, on obtient la **série harmonique** $\sum \frac{1}{n}$ qui est divergente.
- On sait que la série converge pour $\alpha > 1$, mais on ne connait pas la valeur de $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$ en général! Il est possible (mais difficile!) de calculer cette valeur lorsque α est un entier pair.

Par exemple: On peut montrer que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

2.3 Série exponentielle

Rappel: La fonction exponentielle est définie comme l'unique fonction $f \in D(\mathbb{R}, \mathbb{R})$ satisfaisant:

$$f' = f \text{ et } f(0) = 1 \ (\star)$$

L'existence d'une telle fonction est admise. L'unicité peut être démontrée facilement en exercice :

- (a) Soit $f \in D(\mathbb{R}, \mathbb{R})$ satisfaisant (\star) . Montrer que la fonction $x \mapsto f(x)f(-x)$ est constante. En déduire que f ne s'annule pas sur \mathbb{R} .
- (b) Soit $g \in D(\mathbb{R}, \mathbb{R})$ une autre fonction satisfaisant (\star) . Montrer que la fonction $\frac{g}{f}$ est constante. En déduire que g = f.

★ Théorème 4 (Série exponentielle (admis pour l'instant))

Pour tout $x \in \mathbb{R}$, la série $\sum \frac{x^n}{n!}$ est convergente et :

Ceci donne une définition alternative de la fonction exponentielle comme une somme infinie :

$$\forall x \in \mathbb{R}, \quad e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \dots + \frac{x^n}{n!} + \dots$$

"Justification" non-rigoureuse: Admettons que ces séries convergent et posons $\forall x \in \mathbb{R}, \ f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$.

On a bien f(0) = 1, et en admettant que l'on puisse inverser somme et dérivée :

$$\forall x \in \mathbb{R}, \ f'(x) =$$

On reviendra plus tard, rigoureusement, sur la preuve de ce théorème.

Exercice 2

Montrer que les séries $\sum \frac{(-1)^n}{n!}$ et $\sum \frac{1}{(n+1)!}$ convergent et calculer leurs sommes.

3 Séries à termes positifs

Nous allons à présent énoncer des résultats permettant de déterminer "à l'oeil" la nature d'une série à termes positifs (i.e une série $\sum u_n$ avec $u_n \geqslant 0$ (au moins à partir d'un certain rang)).

3.1 Critère de convergence pour une série à termes positifs

★ Théorème 5 (Nature d'une série à termes positifs)

Soit $(u_n)_{n\geqslant n_0}$ une suite de réels <u>positifs</u>. Pour tout $N\geqslant n_0$, soit $S_N=\sum_{n=n_0}^N u_n$.

Alors la suite $(S_N)_{N \geqslant n_0}$ est croissante. En conséquence :

- \bullet Si la suite $(S_N)_{N\geqslant n_0}$ est majorée, alors la série $\sum u_n$
- Sinon, on a $\lim_{N \to +\infty} S_N =$ et la série $\sum u_n$

Preuve:

Pour tout $N \geqslant n_0$, $S_{N+1} - S_N =$

donc $(S_N)_{N \geqslant n_0}$ est croissante.

On conclut avec le théorème de la limite monotone pour les suites réelles.

Remarque 7

On a utilisé ce résultat dans la preuve de la convergence des séries de Riemann (Théorème 3) :

Pour tout $\alpha > 1$, on a la majoration : $\forall N \ge 1$, $\sum_{n=1}^{N} \frac{1}{n^{\alpha}} \le \frac{1}{1-\alpha} + 1$.

La suite des sommes partielles est majorée (par $\frac{1}{1-\alpha}+1$), donc la série $\sum \frac{1}{n^{\alpha}}$ converge!

3.2 Théorèmes de comparaison pour des séries à termes positifs

Les théorèmes de comparaison suivants permettent de déterminer la nature d'une série à termes positifs en la comparant à une série dont la nature est connue (série géométrique, série de Riemann, série exponentielle...)

★ Théorème 6 (Comparaison : Inégalités et nature des séries)

Soient $(u_n)_{n\geqslant n_0}$ et $(v_n)_{n\geqslant n_0}$ deux suites positives (à partir d'un certain rang).

On suppose qu'elles satisfont : $u_n \leq v_n$ (à partir d'un certain rang).

- Si la série $\sum v_n$, alors la série $\sum u_n$
- Si la série $\sum u_n$, alors la série $\sum v_n$

Preuve:

Supposons que l'inégalité $0 \le u_n \le v_n$ est valable pour tout $n \ge n_0$.

(Quitte à augmenter n_0 : de toute façon, la nature des séries ne dépend par de l'indice de départ!)

Posons, pour tout $N \geqslant n_0$, $S_N = \sum_{n=n_0}^N u_n$ et $T_N = \sum_{n=n_0}^N v_n$.

Les suites $(S_N)_{N\geqslant n_0}$ et $(T_N)_{N\geqslant n_0}$ sont croissantes, et pour tout $N\geqslant n_0$: $S_N\leqslant T_N$.

- \bullet Si (T_N) converge alors (T_N) est majorée et donc (S_N) est majorée : (S_N) converge.
- Si (S_N) diverge alors $\lim_{n \to +\infty} S_N = +\infty$ et donc $\lim_{n \to +\infty} T_N = +\infty$: (T_N) diverge.

Exercice 3

Déterminer la nature des séries $\sum \frac{\ln(n)}{n}$ et $\sum \frac{1}{n^2 \ln(n)}$.

En fait, on a non seulement $\frac{1}{n^2\ln(n)} \leqslant \frac{1}{n^2}$ à partir d'un certain rang, mais carrément $\frac{1}{n^2\ln(n)} \underset{n \to +\infty}{=} o\left(\frac{1}{n^2}\right)$.

Le théorème de comparaison précédent est en fait aussi valable avec des " $o(\)$ " :

★ Théorème 7 (Comparaison : Négligeabilité et nature des séries)

Soient $(u_n)_{n \ge n_0}$ et $(v_n)_{n \ge n_0}$ deux suites positives (à partir d'un certain rang).

On suppose qu'elles satisfont : $u_n = o(v_n)$

- Si la série $\sum v_n$
- , alors la série $\sum u_n$
- \bullet Si la série $\sum u_n$
- , alors la série $\sum v_n$

Preuve:

Puisque $u_n = 0$ $u_n = 0$ $u_n = 0$, on peut écrire (à partir d'un certain rang) $u_n = v_n \times \varepsilon_n$ avec $\lim_{n \to +\infty} \varepsilon_n = 0$.

À partir d'un certain rang, on aura $u_n \geqslant 0, \, v_n \geqslant 0$ et $\varepsilon_n \leqslant 1, \, \mathrm{donc}: \ u_n \leqslant v_n.$

On peut donc appliquer le Théorème 6 précédent pour obtenir les conclusions voulue. $\hfill\Box$

Exercice 4

Montrer que la série $\sum \frac{\ln(n)}{n^2}$ converge.

Énonçons un dernier théorème de comparaison très utile :

★ Théorème 8 (Comparaison : Équivalent et nature des séries)

Soient $(u_n)_{n\geqslant n_0}$ et $(v_n)_{n\geqslant n_0}$ deux suites positives (à partir d'un certain rang).

On suppose qu'elles satisfont : $u_n \sim v_n \over n \to +\infty v_n$

Alors les séries $\sum u_n$ et $\sum v_n$

Preuve:

Puisque $u_n \underset{n \to +\infty}{\sim} v_n$, on peut écrire (à partir d'un certain rang) $u_n = v_n \times \lambda_n$ avec $\lim_{n \to +\infty} \lambda_n = 1$.

À partir d'un certain rang on a ainsi : $u_n \geqslant 0, \ v_n \geqslant 0, \ \text{et } \frac{1}{2} \leqslant \lambda_n \leqslant 2 \ \text{donc} : \qquad \frac{1}{2} v_n \leqslant u_n \leqslant 2 v_n.$

On peut alors appliquer le Théorème 6 (inégalité et nature des séries) :

- Si $\sum v_n$ converge, alors $\sum 2v_n$ converge, et donc $\sum u_n$ converge.
- Si $\sum v_n$ diverge, alors $\sum \frac{1}{2}v_n$ diverge, et donc $\sum u_n$ diverge.

Les séries $\sum u_n$ et $\sum v_n$ sont donc bien de même nature.

ℰ Exercice 5

Déterminer la nature des séries $\sum \ln \left(1 + \frac{1}{n}\right)$ et $\sum \ln \left(1 + \frac{2}{n^2}\right)$.

Remarque 8

Ces théorèmes permettent de comparer la nature de deux séries $\sum u_n$ et $\sum v_n$ à termes positifs.

Cependant, ils ne font aucun lien entre les valeurs des sommes $\sum_{n=n_0}^{+\infty} u_n$ et $\sum_{n=n_0}^{+\infty} v_n$!

Attention!

Pour appliquer les 3 théorèmes de comparaisons précédents (inégalité, négligeabilité, équivalent), il est impératif de travailler avec des séries à termes **positifs**! (éventuellement à partir d'un certain rang)

Remarque 9

Bien-sûr, si les termes généraux u_n et v_n sont <u>tous négatifs</u> à partir d'un certain rang, on se ramenera au cas positif en considérant les séries de termes généraux $-u_n$ et $-v_n$. (En se rappelant que multiplier par -1 ne change pas la nature d'une série!)

Exemple

La série $\sum \ln \left(1 - \frac{1}{n^2}\right)$ est à termes négatifs! (pour tout $n \geqslant 1$, $1 - \frac{1}{n^2} < 1$ donc $\ln(1 - \frac{1}{n^2}) < 0$).

Ainsi la série $\sum -\ln\left(1-\frac{1}{n^2}\right)$ est à termes positifs, on peut utiliser les théorèmes de comparaison :

$$-\ln\left(1-\frac{1}{n^2}\right) \underset{n \to +\infty}{\sim} \frac{1}{n^2} \text{ et la série } \sum \frac{1}{n^2} \text{ converge donc la série } \sum -\ln\left(1-\frac{1}{n^2}\right) \text{ converge.}$$

On en déduit que la série $\sum \ln \left(1 - \frac{1}{n^2}\right)$ converge.

4 Convergence absolue

On vient de voir comment on pouvait déterminer, par comparaison, la nature d'une série $\sum u_n$ à termes positifs ($u_n \ge 0$ à partir d'un certain rang) ou bien à termes négatifs ($u_n \le 0$ à partir d'un certain rang).

Mais que dire d'une série dont le terme général u_n n'est pas de signe constant partir d'un certain rang?

Exemples:
$$\sum \frac{(-1)^n}{n^2}$$
, $\sum \frac{\cos(n)}{1+n^2}$...

Définition 3 (Convergence absolue)

On dit qu'une série $\sum u_n$ converge absolument (CVA), ou bien est absolument convergente, lorsque

Exemples

- La série $\sum \frac{(-2)^n}{3^n}$ converge absolument car
- La série $\sum \frac{(-1)^n}{n}$ ne converge pas absolument car

Remarque 10

Bien-sûr, si la série $\sum u_n$ est à termes positifs, $\sum |u_n| = \sum u_n$, donc la convergence absolue revient à la convergence "tout court"!

L'intérêt de cette notion de convergence absolue est le suivant :

★ Théorème 9 (Convergence absolue implique convergence)

Si une série $\sum u_n$ converge absolument,

On a de plus :

(Inégalité triangulaire pour une somme infinie)

Ce résultat, très fort, permet dans de nombreux cas de restreindre l'étude de la convergence des séries uniquement aux séries à termes positifs.

Pour étudier la nature d'une série $\sum u_n$ dont le terme général u_n n'est pas de signe constant, on commencera par s'intéresser à $\sum |u_n|$: si $\sum |u_n|$ est convergente, alors on peut affirmer que $\sum u_n$ l'est également!

Preuve du Théorème 9:

A Attention!

La réciproque du Théorème 4 est fausse :

Une série qui ne converge pas absolument peut tout de même être convergente!

 $\underline{\text{Exemple}:} \quad \sum \frac{(-1)^n}{n} \text{ ne converge pas absolument (puisque } \sum \frac{1}{n} \text{ diverge), mais est convergente.}$ (cf. Feuille d'exercices).

Ainsi, si la série $\sum |u_n|$ diverge, on ne peut rien conclure sur la nature de la série $\sum u_n...$

Exercice 6

Déterminer la nature des séries $\sum \frac{(-1)^n}{n(n+1)}$ et $\sum \frac{\sin(n)}{n^3}$.

Remarque 11

On peut à présent justifier la convergence de la série exponentielle $\sum \frac{x^n}{n!}$ du Théorème 4 :

Pour tout
$$x \in \mathbb{R}$$
, on a : $\left| \frac{x^n}{n!} \right| = \frac{|x|^n}{n!}$

(par exemple!)

$$(\operatorname{car} \lim_{n \to +\infty} \frac{2^n |x|^n}{n!} = \lim_{n \to +\infty} \frac{(2|x|)^n}{n!} = 0)$$

Comme la série géométrique $\sum \frac{1}{2^n}$ est convergente, on en déduit que $\sum \left|\frac{x^n}{n!}\right|$ est convergente, donc que la série exponentielle $\sum \frac{x^n}{n!}$ est convergente.

Résumé des méthodes standards pour l'étude des séries

Ξ Méthode : Déterminer la nature d'une série $\sum u_n$

- $\boxed{1}$ Vérifier avant toute chose si $\lim_{n\to+\infty}u_n=0$ (au moins "à l'oeil")
 - Si jamais $\lim_{n\to+\infty}u_n\neq 0$, on sait tout de suite que la série diverge!
 - Si $\lim_{n\to+\infty}u_n=0$, cela ne signifie pas pour autant que la série converge : on poursuit la méthode.
- $\boxed{2}$ Si la série est à termes positifs $(u_n \ge 0$, éventuellement à partir d'un certain rang)

Comparer le terme général u_n à celui d'une série classique (souvent Riemann, parfois géométrique ou exponentielle) et utiliser un théorème de comparaison.

En pratique: Pour montrer que la série converge, on pourra souvent comparer à $\sum \frac{1}{n^2}$

en montrant : $u_n \leqslant \frac{\lambda}{n^2}$ ou $u_n \underset{n \to +\infty}{\sim} \frac{\lambda}{n^2}$ (pour un certain $\lambda > 0$) ou $u_n \underset{n \to +\infty}{=} o\left(\frac{1}{n^2}\right)$.

Si cela ne marche pas, tenter de montrer que $u_n = o\left(\frac{1}{n^{\alpha}}\right)$ pour un certain $1 < \alpha < 2...$ (Tester $\alpha = \frac{3}{2}$ par exemple)

- Si la série est à termes négatifs $(u_n \leq 0$, éventuellement à partir d'un certain rang) Se ramener à 2 en considérant la série $-\sum u_n = \sum (-u_n)$.
- $\boxed{4}$ Si le terme général u_n n'est pas de signe constant

Considérer la série à termes positifs $\sum |u_n|$ (méthode du $\boxed{2}$).

- Si $\sum |u_n|$ converge, alors $\sum u_n$ converge absolument, donc converge.
- Si $\sum |u_n|$ diverge, on ne peut rien dire de la nature de $\sum u_n...$ Se laisser guider par l'énoncé.

Ξ Méthode : Calculer la somme d'une série convergente

On souhaite montrer qu'une série $\sum u_n$ converge et calculer la somme $\sum_{n=n_0}^{+\infty} u_n$.

À N fixé, transformer la somme partielle $\sum_{n=n_0}^{N} u_n$ pour faire apparaître une série usuelle (géométrique, géométrique dérivée, exponentielle), puis passer à la limite quand $N \to +\infty$.

Attention!

Quelques erreurs de rédaction à éviter :

- Ne jamais dire " $\lim_{n\to+\infty}u_n=0$ donc la série $\sum u_n$ converge ": c'est archi-faux! (exemple : $u_n=\frac{1}{n}$)
- Pour les théorèmes de comparaison : effectuer les comparaisons sur les termes généraux u_n et v_n et non pas directement sur les séries $\sum u_n$ et $\sum v_n$.
- igwedge Ne pas écrire : " $\sum u_n \underset{n \to +\infty}{\sim} \sum v_n$ " ni même " $u_n \underset{n \to +\infty}{\sim} v_n$ donc $\sum u_n \underset{n \to +\infty}{\sim} \sum v_n$ "
- \checkmark Écrire : " $u_n \underset{n \to +\infty}{\sim} v_n$ donc les séries $\sum u_n$ et $\sum v_n$ sont de même nature. "
- $\pmb{\times}$ Ne pas écrire : " $\sum u_n \leqslant \sum v_n$ " ni même " $u_n \leqslant v_n$ donc $\sum u_n \leqslant \sum v_n$ "
- \checkmark Écrire (par exemple) : " $u_n \leqslant v_n$ et $\sum v_n$ converge, donc $\sum u_n$ converge également "

De même avec $u_n = o(v_n)...$

Une série $\sum (u_n - u_{n-1})$ (ou $\sum (u_{n+1} - u_n)$...) converge <u>si et seulement si</u> la suite $(u_n)_{n \geqslant n_0}$ converge.

En effet, par "télescopage", pour tout $N \ge n_0$, $\sum_{n=n_0}^{N} (u_n - u_{n-1}) =$

Ainsi:

- Si une série $\sum v_n$ peut se mettre sous la forme $\sum (u_n u_{n-1})$ (ou bien $\sum (u_{n+1} u_n)$), on peut déduire sa nature et éventuellement la valeur de la somme $\sum_{n=n_0}^{+\infty} v_n$.
- Inversement, pour établir la convergence d'une suite (u_n) , il est parfois utile de s'intéresser à la série $\sum (u_{n+1} u_n)!$

Exercice 7

Calculer la valeur de $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}.$

Exercice 8

Pour tout $N \ge 1$, on pose $S_N = \sum_{n=1}^N \frac{1}{n}$ (série harmonique).

On a déjà vu que : $S_N \underset{N \to +\infty}{\sim} \ln(N)$. Pour tout $n \ge 1$, on pose $u_n = S_n - \ln(n)$.

1. Montrer que $(u_n)_{n\geqslant 1}$ converge vers un certain $\gamma\in\mathbb{R}$.

Indication : étudier la série $\sum (u_n - u_{n-1})$.

On admettra (pour l'instant) le développement suivant : $\ln(1+x) = x - \frac{x^2}{2} + o(x^2)$.

2. En déduire le développement asymptotique : $S_N = \gamma + \ln(N) + o(1)$.

Le réel $\gamma \simeq 0,577$ est appelé "constante gamma d'Euler".

À savoir faire à l'issue de ce chapitre : -

Au minimum

- Maitriser et ne pas confondre les différentes notations liées aux séries (Série: $\sum u_n$, Somme partielle: $\sum_{n=n_0}^N u_n$, Somme (limite): $\sum_{n=n_0}^{+\infty} u_n$)

 • Savoir que $\sum u_n$ converge $\Longrightarrow \lim_{n \to +\infty} u_n = 0$.

 (et donc, en pratique: $\lim_{n \to +\infty} u_n \neq 0 \Longrightarrow \sum u_n$ diverge!)

 - Connaître les résultats de convergence et les sommes des séries usuelles.
 - Comparer une série à termes positifs à une série usuelle pour déduire sa nature.
 - Calculer la somme de séries "proches" des séries usuelles.
 - Exploiter la notion de convergence absolue.

- Bien maîtriser la méthode standard pour la nature d'une série (page 16).
- \bullet Définir et manipuler le reste R_N d'une série convergente.
- Exploiter le fait qu'une série à termes positifs converge SSI elle est majorée.
- Exploiter les séries télescopiques.

- Appliquer spontanément la méthode de comparaison série-intégrale.
- Maitriser les exercices classiques (notamment le "critère des séries alternées").

Pour les ambitieux