RM - naming - Serial position analysis (v5)

```
# do this in calling R script
# library(qqplot2)
# library(fmsb) # for TestModels
# library(lme4)
# library(kableExtra)
# library(MASS) # for dropterm
# library(tidyverse)
# library(dominanceanalysis)
# library(cowplot) # for multiple plots in one figure
# library(formatters) # to wrap strings for plot titles
# library(pals) # for continous color palettes
# load needed functions
# source(pasteO(RootDir, "/src/function_library/sp_functions.R"))
# do this in the calling R script
# for testing - set by calling script normally
# ppt_parms <- read.csv(config$patient_param_file)</pre>
# CurPat <- ppt_parms$patient</pre>
# CurTask <- ppt_parms$task</pre>
# MinLength <- ppt_parms$min_length
# MaxLength <- ppt_parms$max_length</pre>
# RemoveFinalPosition <- ppt_parms $ remove_final_position
# create patient directory if it doesn't already exist
if(!dir.exists(pasteO(RootDir,"/output/",CurPat))){
  dir.create(pasteO(RootDir, "/output/", CurPat), showWarnings = TRUE)
TablesDir <- pasteO(RootDir,"/output/",CurPat,"/tables/")</pre>
if(!dir.exists(TablesDir)){
  dir.create(TablesDir,showWarnings = TRUE)
FigDir <- pasteO(RootDir,"/output/",CurPat,"/fig/")</pre>
if(!dir.exists(FigDir)){
  dir.create(FigDir,showWarnings = TRUE)
ReportsDir <- pasteO(RootDir, "/output/", CurPat, "/reports/")</pre>
if(!dir.exists(ReportsDir)){
  dir.create(ReportsDir,showWarnings = TRUE)
}
results_report_DF <- data.frame(Description=character(), ParameterValue=double())
ModelDatFilename<-paste0(RootDir,"/data/",CurPat,"/",CurPat,"_",CurTask,"_posdat.csv")
if(!file.exists(ModelDatFilename)){
  print("**ERROR** Input data file not found")
  print(sprintf("\tfile: ",ModelDatFilename))
 print(sprintf("\troot dir: ",RootDir))
```

```
PosDat<-read.csv(ModelDatFilename)
# may already be done in datafile
# if(RemoveFinalPosition){
  PosDat <- PosDat[PosDat$pos < PosDat$stimlen,] # remove final position
# }
PosDat <- PosDat[PosDat$stimlen >= MinLength,] # include only lengths with sufficient N
PosDat <- PosDat[PosDat$stimlen <= MaxLength,]</pre>
# include only correct and nonword errors (not no response, word or w+nw errors)
PosDat <- PosDat[(PosDat\err_type == "correct") | (PosDat\err_type == "nonword"), ]
PosDat <- PosDat[(PosDat$pos) != (PosDat$stimlen), ]</pre>
# make sure final positions have been removed
PosDat$stim_number <- NumberStimuli(PosDat)</pre>
PosDat$raw_log_freq <- PosDat$log_freq</pre>
PosDat$log_freq <- PosDat$log_freq - mean(PosDat$log_freq) # centre frequency
PosDat$CumErr <- CalcCumErrFromPreserved(PosDat)</pre>
# plot distribution of complex onsets and codas
# across serial position in the stimuli -- do complexities concentrate
# on one part of the serial position curve?
# syll_component = 1 is coda
# syll_component = S is satellite
# get counts of syllable components in different serial positions
syll_comp_dist_N <- PosDat %>% mutate(pos_factor = as.factor(pos), syll_component_factor = as.factor(sy
syll_comp_dist_perc <- syll_comp_dist_N %>% ungroup() %>%
 mutate(across(0:S, ~ . / total))
kable(syll_comp_dist_N)
```

pos_factor	О	Р	V	1	S	total
1	224	15	29	NA	NA	268
2	24	NA	195	19	30	268
3	108	NA	51	105	4	268
4	138	NA	71	17	13	239
5	64	1	71	22	12	170
6	62	NA	27	31	7	127
7	51	NA	16	5	3	75
8	17	NA	11	3	1	32
9	13	NA	NA	NA	1	14

kable(syll comp dist perc)

pos_factor	O	P	V	1	S	total
1	0.8358209	0.0559701	0.1082090	NA	NA	268
2	0.0895522	NA	0.7276119	0.0708955	0.1119403	268
3	0.4029851	NA	0.1902985	0.3917910	0.0149254	268
4	0.5774059	NA	0.2970711	0.0711297	0.0543933	239
5	0.3764706	0.0058824	0.4176471	0.1294118	0.0705882	170
6	0.4881890	NA	0.2125984	0.2440945	0.0551181	127

pos_factor	O	P	V	1	S	total
7	0.6800000	NA	0.2133333	0.0666667	0.0400000	75
8	0.5312500	NA	0.3437500	0.0937500	0.0312500	32
9	0.9285714	NA	NA	NA	0.0714286	14

```
# get percentages only from summary table
syll_comp_perc <- syll_comp_dist_perc[,2:(ncol(syll_comp_dist_perc)-1)]</pre>
syll_comp_perc$pos <- as.integer(as.character(syll_comp_dist_perc$pos_factor))</pre>
syll_comp_perc <- syll_comp_perc %>% rename("Coda" ="1","Satellite"="S")
# pivot to long format for plotting
syll_comp_plot_data <- syll_comp_perc %>% pivot_longer(cols=seq(1:(ncol(syll_comp_perc)-1)),
            names_to="syll_component", values_to="percent") %>% filter(syll_component %in% c("Coda", "Sa
# plot satellite and coda occurances across position
syll_comp_plot <- ggplot(syll_comp_plot_data,</pre>
                         aes(x=pos,y=percent,group=syll_component,
                             color=syll_component,
                             linetype = syll_component,
                             shape = syll_component)) +
  geom_line() + geom_point() + scale_color_manual(name="Syllable component", values = palette_values) +
syll_comp_plot <- syll_comp_plot + scale_y_continuous(name="Percent of segment types") + scale_linetype
  scale_shape_discrete(name="Syllable component")
ggsave(paste0(FigDir,CurPat,"_",CurTask,"_pos_of_syll_complexities_in_stimuli.png"),plot=syll_comp_plot
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_line()`).
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_point()`).
syll_comp_plot
## Warning: Removed 3 rows containing missing values or values outside the scale range (`geom_line()`).
```

Removed 3 rows containing missing values or values outside the scale range (`geom_point()`).

```
0.3 -
Percent of segment types
                                                                           Syllable component
                                                                               Coda
   0.2 -
                                                                               Satellite
  0.1
  0.0
                2
                                                             8
                                                                    9
                                Word position
# len/pos table
pos_len_summary <- PosDat %>% group_by(stimlen,pos) %>% summarise(preserved = mean(preserved))
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
min_preserved_raw <- min(as.numeric(unlist(pos_len_summary$preserved)))</pre>
max_preserved_raw <- max(as.numeric(unlist(pos_len_summary$preserved)))</pre>
preserved_range <- (max_preserved_raw - min_preserved_raw)</pre>
min_preserved <- min_preserved_raw - (0.1 * preserved_range)</pre>
max_preserved <- max_preserved_raw + (0.1 * preserved_range)</pre>
pos_len_table <- pos_len_summary %>% pivot_wider(names_from = pos, values_from = preserved)
write.csv(pos_len_table,paste0(TablesDir,CurPat,"_",CurTask,"_preserved_percentages_by_len_position.csv
pos_len_table
## # A tibble: 7 x 10
## # Groups:
                stimlen [7]
                `1`
                       `2`
                                             `5`
                                                     `6`
                                                             `7`
                                                                    .8,
                                                                            `9`
##
        <int> <dbl> <dbl> <dbl>
                                   <dbl>
                                           <dbl>
                                                  <dbl>
                                                          <dbl>
                                                                  <dbl>
                                                                         <dbl>
```

0.4 -

NA

NA

0.791 NA

0.837

0.868

0.722

0.888

NA

NA

0.808 NA

pos_len_N <- PosDat %>% group_by(stimlen,pos) %>% summarise(preserved = mean(preserved), N=n()) %>% dply.

0.849

0.704

0.857

NA

NA

0.745 0.857

0.814 NA

0.75

NA

0.843 NA

NA

0.884 NA

0.814

0.849

4 0.948 0.931 0.931 NA

7 0.913 0.885 0.856 0.837

9 0.833 0.852 0.833 0.833

10 0.745 0.796 0.735 0.806

5 0.913 0.942 0.920

6 0.884 0.884 0.860

8 0.930 0.895 0.891

2

3 ## 4

6

7

len/pos table

```
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
pos_len_N_table <- pos_len_N %>% pivot_wider(names_from = pos, values_from = N)
write.csv(pos_len_N_table,paste0(TablesDir,CurPat,"_",CurTask,"_N_by_len_position.csv"))
pos_len_N_table
## # A tibble: 7 x 10
## # Groups:
              stimlen [7]
              `1`
                    `2`
                          `3`
                                `4`
                                      `5`
                                            `6`
                                                  `7`
                                                        .8.
                                                              -9-
    stimlen
##
      ## 1
          4
               29
                     29
                           29
                                 NA
                                       NA
                                             NA
                                                   NA
                                                         NA
                                                               NA
## 2
          5
               69
                     69
                           69
                                 69
                                       NA
                                             NΔ
                                                   NΑ
                                                         NΑ
                                                               NΑ
## 3
          6
               43
                     43
                           43
                                 43
                                       43
                                             NA
                                                   NA
                                                         NA
                                                               NA
## 4
          7
                                                               NA
               52
                     52
                           52
                                 52
                                       52
                                             52
                                                   NA
                                                         NA
## 5
          8
               43
                     43
                           43
                                 43
                                       43
                                             43
                                                   43
                                                         NA
                                                               NA
## 6
          9
               18
                     18
                           18
                                 18
                                             18
                                                   18
                                                         18
                                                               NA
                                       18
## 7
         10
               14
                                 14
                                             14
                                                   14
                                                         14
                                                               14
obs linetypes <- c("solid", "solid", "solid", "solid",
                     "solid", "solid", "solid", "solid")
pred_linetypes <- "dashed"</pre>
pos_len_summary$stimlen<-factor(pos_len_summary$stimlen)</pre>
pos_len_summary$pos<-factor(pos_len_summary$pos)</pre>
# len_pos_plot <- qqplot(pos_len_summary,aes(x=pos,y=preserved,qroup=stimlen,shape=stimlen,color=stimle
len_pos_plot <- plot_len_pos_obs_predicted(PosDat,</pre>
                                          pasteO(CurPat),
                                          NULL,
                                          c(min_preserved,max_preserved),
                                          palette_values,
                                          shape values,
                                          obs_linetypes,
                                          pred_linetypes)
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## Scale for y is already present. Adding another scale for y, which will replace the existing
## scale.
ggsave(paste0(FigDir,CurPat,"_",CurTask,"_percent_preserved_by_length_pos.png"),
      plot=len_pos_plot,device="png",unit="cm",width=15,height=11)
```

len_pos_plot

Length and position

```
# length and position
LPModelEquations<-c("preserved ~ 1",</pre>
            "preserved ~ stimlen",
            "preserved ~ pos",
            "preserved ~ stimlen + pos",
            "preserved ~ stimlen*pos",
            "preserved ~ I(pos^2)+pos",
            "preserved ~ stimlen + I(pos^2) + pos",
            "preserved ~ stimlen * (I(pos^2) + pos)"
)
LPRes<-TestModels(LPModelEquations,PosDat)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 5
```

```
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                   pos stimlen:pos
       4.2080
                   -0.2666
                               -0.4392
                                             0.0416
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1457 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1109 AIC: 1194
## log likelihood: -554.6168
## Nagelkerke R2: 0.0308274
## % pres/err predicted correctly: -336.2694
## % of predictable range [ (model-null)/(1-null) ]: 0.01785716
## **********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                   pos
       3.1107
                   -0.1265
                               -0.1011
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1458 Residual
## Null Deviance:
                      1134
## Residual Deviance: 1112 AIC: 1194
## log likelihood: -556.0231
## Nagelkerke R2: 0.02731663
## % pres/err predicted correctly: -336.6979
## % of predictable range [ (model-null)/(1-null) ]: 0.01660915
## *********
## model index: 7
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                              I(pos^2)
                   stimlen
                                                pos
      3.43010
                  -0.13787
                               0.01796
                                           -0.25097
## Degrees of Freedom: 1460 Total (i.e. Null); 1457 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1111 AIC: 1195
## log likelihood: -555.4764
## Nagelkerke R2: 0.02868213
## % pres/err predicted correctly: -336.5426
## % of predictable range [ (model-null)/(1-null) ]: 0.01706165
## **********
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
```

```
##
## Coefficients:
## (Intercept)
                   stimlen
         3.12
                     -0.18
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1459 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1118 AIC: 1197
## log likelihood: -559.0403
## Nagelkerke R2: 0.01976182
## % pres/err predicted correctly: -338.1971
## % of predictable range [ (model-null)/(1-null) ]: 0.01224341
## *********
## model index: 8
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
##
       (Intercept)
                            stimlen
                                             I(pos^2)
                                                                   pos stimlen:I(pos^2)
##
          4.358565
                          -0.287046
                                             0.012081
                                                              -0.535452
                                                                               -0.001544
##
       stimlen:pos
          0.054304
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1455 Residual
## Null Deviance:
                      1134
## Residual Deviance: 1109 AIC: 1198
## log likelihood: -554.6063
## Nagelkerke R2: 0.03085349
## % pres/err predicted correctly: -336.2651
## % of predictable range [ (model-null)/(1-null) ]: 0.01786947
## *********
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                       pos
       2.3864
##
                   -0.1496
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1459 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1118 AIC: 1200
## log likelihood: -559.0287
## Nagelkerke R2: 0.01979099
## % pres/err predicted correctly: -338.2881
## % of predictable range [ (model-null)/(1-null) ]: 0.01197868
## *********
## model index: 6
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
```

```
## Coefficients:
## (Intercept)
                  I(pos^2)
                                    pos
      2.507068
                  0.008543
##
                              -0.222840
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1458 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1118 AIC: 1201
## log likelihood: -558.8998
## Nagelkerke R2: 0.02011432
## % pres/err predicted correctly: -338.2814
## % of predictable range [ (model-null)/(1-null) ]: 0.01199808
## **********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
       data = PosDat)
##
## Coefficients:
## (Intercept)
##
         1.835
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1460 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1134 AIC: 1213
## log likelihood: -566.8741
## Nagelkerke R2: 0
## % pres/err predicted correctly: -342.4016
## % of predictable range [ (model-null)/(1-null) ]: 0
## **********
BestLPModel<-LPRes$ModelResult[[1]]</pre>
BestLPModelFormula<-LPRes$Model[[1]]</pre>
LPAICSummary<-data.frame(Model=LPRes$Model,</pre>
                      AIC=LPRes$AIC,
                       row.names = LPRes$Model)
LPAICSummary $DeltaAIC <- LPAICSummary $AIC - LPAICSummary $AIC [1]
LPAICSummary $AICexp <-exp(-0.5*LPAICSummary $DeltaAIC)
LPAICSummary $AICwt <-LPAICSummary $AICexp/sum(LPAICSummary $AICexp)
LPAICSummary$NagR2<-LPRes$NagR2
LPAICSummary <- merge(LPAICSummary,LPRes$CoefficientValues, by='row.names',sort=FALSE)
LPAICSummary <- subset(LPAICSummary, select = -c(Row.names))</pre>
write.csv(LPAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_len_pos_model_summary.csv"),row.names = FA
kable(LPAICSummary)
Model
                       DeltaAI@ICexpAICwt NagR2 (Interceps)imlen pos
                                                                    stimlen:plopos^2\stimlen:I(pos^2)
                 AIC
preserved \sim
                 - 0.0416016NA
                                                                                      NA
```

1194.134.615646473504**5**228116**7**302731**6**6110729

0.26659264391814

0.12654107.1011372

NA

NA

NA

stimlen * pos

stimlen + pos

preserved ~

```
+ pos
                  1197.103.5837225.166649706374630197638120125
                                                                                           NA
preserved ~
                                                                   NA
                                                                          NA
                                                                                 NA
stimlen
                                                           0.1800221
                  1197.534.0119438134529505145980308545358565
                                                                      - 0.0543040.0120810
preserved ~
                                                           0.287046 \! 0 5354516
stimlen * (I(pos^2)
                                                                                       0.0015439
+ pos
                  1199.778.2592370.043730501672920197920386369 NA
preserved \sim pos
                                                                          NA
                                                                                 NA
                                                                                           NA
                                                                  0.1495964
preserved ~
                  1201.495.9763189018533800708950201123507068 NA
                                                                          NA
                                                                                0.0085426
                                                                                          NΑ
I(pos^2) + pos
                                                                  0.2228404
                  1212.7419.222063400067000002560000000834601 NA
preserved \sim 1
                                                                   NA
                                                                          NA
                                                                                 NA
                                                                                           NA
print(BestLPModelFormula)
## [1] "preserved ~ stimlen * pos"
print(BestLPModel)
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                     stimlen
                                      pos stimlen:pos
                     -0.2666
                                  -0.4392
##
        4.2080
                                                 0.0416
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1457 Residual
## Null Deviance:
                         1134
## Residual Deviance: 1109 AIC: 1194
PosDat$LPFitted<-fitted(BestLPModel)</pre>
fitted_len_pos_plot <- plot_len_pos_obs_predicted(PosDat, PosDat$patient[1],
                           NULL,palette_values=palette_values)
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
# len/pos table
fitted_pos_len_summary <- PosDat ">" group_by(stimlen,pos) ">" summarise(fitted = mean(LPFitted))
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
fitted_pos_len_table <- fitted_pos_len_summary %>% pivot_wider(names_from = pos, values_from = fitted)
fitted_pos_len_table
## # A tibble: 7 x 10
## # Groups:
               stimlen [7]
                                                          `7`
               `1`
                     `2`
                            `3`
                                   `4`
                                           `5`
                                                  `6`
                                                                 .8.
                                                                        `9`
       <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##
                                                      <dbl>
                                                             <dbl>
                                                                     <dbl>
           4 0.946 0.931 0.911 NA
                                        NA
                                               NA
                                                      NA
                                                              NA
                                                                     NA
## 1
## 2
           5 0.934 0.918 0.899 0.875 NA
                                               NΔ
                                                      NA
                                                              NA
                                                                     NΔ
           6 0.918 0.903 0.885 0.864 0.840 NA
                                                                     NA
## 3
## 4
           7 0.900 0.886 0.870 0.852 0.832 0.811 NA
                                                                     NΑ
```

AIC DeltaAI@ICexpAICwt NagR2 (Intercept) imlen pos stimlen:pos^2; timlen:I(pos^2)

0.1378737.2509742

NA

0.0179573

1194.84B.324447**8**51570**8**219726**5**202868**2**1430105

Model

preserved ~

 $stimlen + I(pos^2)$

```
## 5
                               8 0.877 0.866 0.853 0.839 0.824
                                                                                                                                  0.808 0.791 NA
## 6
                               9 0.851 0.843 0.834 0.825
                                                                                                            0.815
                                                                                                                               0.805 0.795 0.784 NA
## 7
                            10 0.820 0.817 0.813 0.810 0.806 0.803 0.799 0.795 0.791
fitted_pos_len_summary$stimlen<-factor(fitted_pos_len_summary$stimlen)</pre>
fitted_pos_len_summary$pos<-factor(fitted_pos_len_summary$pos)</pre>
 \textit{\# fitted\_len\_pos\_plot <- ggplot(pos\_len\_summary, aes(x=pos, y=preserved, group=stimlen, shape=stimlen, color aes(x=pos, y=preserved, group=stimlen, shape=stimlen, sha
\# fitted_len_pos_plot <- fitted_len_pos_plot + geom_line(data=fitted_pos_len_summary, aes(x=pos,y=fitted_pos_len_summary)
\# geom\_point(data=fitted\_pos\_len\_summary, aes(x=pos, y=fitted, group=stimlen, shape=stimlen)) + <math>ggtitle(pas)
fitted_len_pos_plot <- plot_len_pos_obs_predicted(PosDat,</pre>
                                                                                                                       paste0(PosDat$patient[1]),
                                                                                                                        "LPFitted",
                                                                                                                       NULL,
                                                                                                                       palette_values,
                                                                                                                        shape_values,
                                                                                                                        obs_linetypes,
                                                                                                                        pred_linetypes = c("longdash")
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
```

ggsave(paste0(FigDir,CurPat,"_",CurTask,"_percent_preserved_by_length_pos_wfit.png"),plot=fitted_len_po

length and position without fragments to see if this changes position 2 influence

```
# first number responses, then count resp with fragments - below we will eliminate fragments
# and re-run models
# number responses
resp num<-0
prev_pos<-9999 # big number to initialize (so first position is smaller)
resp_num_array <- integer(length = nrow(PosDat))</pre>
for(i in seq(1,nrow(PosDat))){
  if(PosDat$pos[i] <= prev_pos){ # equal for resp length 1</pre>
    resp_num <- resp_num + 1</pre>
 resp_num_array[i] <-resp_num</pre>
  prev_pos <- PosDat$pos[i]</pre>
PosDat$resp_num <- resp_num_array
# count responses with fragments
resp_with_frag <- PosDat %>% group_by(resp_num) %>% summarise(frag = as.logical(sum(fragment)))
num_frag <- resp_with_frag %>% summarise(frag_sum = sum(frag), N=n())
num_frag
## # A tibble: 1 x 2
    frag sum
##
        <int> <int>
## 1
           20
                268
num_frag$percent_with_frag[1] <- (num_frag$frag_sum[1] / num_frag$N[1])*100
## Warning: Unknown or uninitialised column: `percent with frag`.
print(sprintf("The number of responses with fragments was %d / %d = %.2f percent",
              num_frag$frag_sum[1],num_frag$N[1],num_frag$percent_with_frag[1]))
## [1] "The number of responses with fragments was 20 / 268 = 7.46 percent"
write.csv(num_frag,paste0(TablesDir,CurPat,"_",CurTask,"_percent_fragments.csv"),row.names = FALSE)
# length and position models for data without fragments
NoFragData <- PosDat %>% filter(fragment != 1)
NoFrag_LPRes<-TestModels(LPModelEquations,NoFragData)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
       data = PosDat)
```

```
##
## Coefficients:
## (Intercept)
                   stimlen
       3.4608
                   -0.1877
##
## Degrees of Freedom: 1407 Total (i.e. Null); 1406 Residual
## Null Deviance:
                       931.9
## Residual Deviance: 918.6
                               AIC: 982.9
## log likelihood: -459.2808
## Nagelkerke R2: 0.01947209
## % pres/err predicted correctly: -263.6917
## % of predictable range [ (model-null)/(1-null) ]: 0.01100138
## *********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                    pos
##
     3.460747
                 -0.189184
                               0.003031
## Degrees of Freedom: 1407 Total (i.e. Null); 1405 Residual
## Null Deviance:
                       931.9
## Residual Deviance: 918.6
                               AIC: 984.9
## log likelihood: -459.2787
## Nagelkerke R2: 0.01947834
## % pres/err predicted correctly: -263.6905
## % of predictable range [ (model-null)/(1-null) ]: 0.01100574
## ************
## model index: 7
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                               I(pos^2)
                                                pos
##
     3.579085
                 -0.193192
                               0.007326
                                           -0.056369
## Degrees of Freedom: 1407 Total (i.e. Null); 1404 Residual
## Null Deviance:
                       931.9
## Residual Deviance: 918.4
                               AIC: 986.7
## log likelihood: -459.2095
## Nagelkerke R2: 0.01967938
## % pres/err predicted correctly: -263.6743
## % of predictable range [ (model-null)/(1-null) ]: 0.01106643
## **********
## model index: 5
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                   pos stimlen:pos
```

```
##
     3.591880
                 -0.205820
                              -0.040743
                                           0.005352
##
## Degrees of Freedom: 1407 Total (i.e. Null); 1404 Residual
## Null Deviance:
                       931.9
## Residual Deviance: 918.5
                               AIC: 986.8
## log likelihood: -459.2607
## Nagelkerke R2: 0.0195306
## % pres/err predicted correctly: -263.6851
## % of predictable range [ (model-null)/(1-null) ]: 0.01102596
## *********
## model index: 8
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
##
       (Intercept)
                                             I(pos^2)
                                                                         stimlen:I(pos^2)
                             stimlen
                                                                    pos
##
          3.438267
                           -0.174449
                                             -0.002674
                                                               0.029541
                                                                                 0.001259
       stimlen:pos
##
##
         -0.011116
##
## Degrees of Freedom: 1407 Total (i.e. Null); 1402 Residual
## Null Deviance:
                       931.9
## Residual Deviance: 918.4
                               AIC: 990.7
## log likelihood: -459.2034
## Nagelkerke R2: 0.01969719
## % pres/err predicted correctly: -263.6716
## % of predictable range [ (model-null)/(1-null) ]: 0.01107624
## *********
## model index: 1
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
##
        2.118
##
## Degrees of Freedom: 1407 Total (i.e. Null); 1407 Residual
## Null Deviance:
                       931.9
## Residual Deviance: 931.9
                               AIC: 995.3
## log likelihood: -465.9486
## Nagelkerke R2: 0
## % pres/err predicted correctly: -266.636
## % of predictable range [ (model-null)/(1-null) ]: 0
## **********
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                       pos
##
      2.34492
                  -0.06436
```

```
##
## Degrees of Freedom: 1407 Total (i.e. Null); 1406 Residual
                          931.9
## Null Deviance:
                                  AIC: 995.5
## Residual Deviance: 929.7
## log likelihood: -464.8584
## Nagelkerke R2: 0.003196444
## % pres/err predicted correctly: -266.131
## % of predictable range [ (model-null)/(1-null) ]: 0.001886894
## **********
## model index: 6
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    I(pos^2)
                                        pos
      2.272335
                   -0.005657
                                 -0.017550
##
##
## Degrees of Freedom: 1407 Total (i.e. Null); 1405 Residual
## Null Deviance:
                          931.9
## Residual Deviance: 929.6
                                  AIC: 997.4
## log likelihood: -464.8158
## Nagelkerke R2: 0.003321416
## % pres/err predicted correctly: -266.0975
## % of predictable range [ (model-null)/(1-null) ]: 0.002012095
## **********
NoFragBestLPModel<-NoFrag_LPRes$ModelResult[[1]]
NoFragBestLPModelFormula <- NoFrag_LPRes $Model[[1]]
NoFragLPAICSummary <- data.frame (Model=NoFrag_LPRes$Model,
                         AIC=NoFrag_LPRes$AIC,
                         row.names = NoFrag_LPRes$Model)
NoFragLPAICSummary $DeltaAIC <- NoFragLPAICSummary $AIC-NoFragLPAICSummary $AIC [1]
NoFragLPAICSummary$AICexp<-exp(-0.5*NoFragLPAICSummary$DeltaAIC)
NoFragLPAICSummary $AICwt <- NoFragLPAICSummary $AICexp/sum(NoFragLPAICSummary $AICexp)
NoFragLPAICSummary$NagR2<-NoFrag_LPRes$NagR2
NoFragLPAICSummary <- merge(NoFragLPAICSummary, NoFrag_LPRes CoefficientValues, by='row.names', sort=FALS
NoFragLPAICSummary <- subset(NoFragLPAICSummary, select = -c(Row.names))
write.csv(NoFragLPAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_no_fragments_len_pos_model_summary.c
kable(NoFragLPAICSummary)
Model
                        DeltaAl@ICexpAlCwt NagR2 (Interceps)imlen
                                                                     pos
                                                                          stimlen:plopos^2)stimlen:I(pos^2)
                   982.880 \\ \mathbf{5.0000000} \\ 0.00000 \\ \mathbf{005} \\ 9277 \\ \mathbf{33} \\ 01947 \\ \mathbf{21} \\ 460796
                                                                     NA
                                                                                              NA
preserved ~
                                                                             NA
                                                                                    NA
stimlen
                                                            0.1876984
                   984.852 \pm 97191 \\ \mathbf{2}.37308 \\ \mathbf{2}422115 \\ \mathbf{3}301947 \\ \mathbf{3}3460747
                                                                - 0.0030314 NA
                                                                                              NA
preserved ~
                                                                                    NA
                                                            0.1891838
stimlen + pos
preserved ~
                   986.6943.813778.148540808805060196794579085
                                                                             NA
                                                                                  0.0073261
                                                                                              NA
stimlen + I(pos^2)
                                                            0.1931920.0563685
+ pos
```

- 0.0053516 NA

0.20582040407431

NA

986.80**52**.92466**9**.14053**0**008330**2**401953**3**6591880

preserved \sim

stimlen * pos

```
preserved ~
                  990.6722.791630.020326801204920196932438267
                                                              - 0.0295411
stimlen * (I(pos^2)
                                                                        0.0111160.0026742
                                                          0.1744489
+ pos
                  995.34902.4684970019601001162500000020118497 NA
                                                                   NA
                                                                          NA
                                                                                 NA
                                                                                           NA
preserved \sim 1
preserved \sim pos
                  995.48182.60075600183560010880100319624344925 NA
                                                                          NA
                                                                                 NA
                                                                                           NA
                                                                 0.0643591
preserved \sim
                  997.38754.506996000707700041950033224272335 NA
                                                                          NA
                                                                                           NA
                                                                 0.0175497
                                                                                0.0056569
I(pos^2) + pos
# plot no fragment data
NoFragData$LPFitted<-fitted(NoFragBestLPModel)</pre>
nofrag_obs_len_pos_plot <- plot_len_pos_obs_predicted(NoFragData, NoFragData$patient[1],</pre>
                           NULL,palette_values=palette_values)
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
# len/pos table
nofrag_fitted_pos_len_summary <- NoFragData %% group_by(stimlen,pos) %% summarise(fitted = mean(LPFit
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
nofrag_fitted_pos_len_table <- nofrag_fitted_pos_len_summary %>% pivot_wider(names_from = pos, values_f.
nofrag_fitted_pos_len_table
## # A tibble: 7 x 10
## # Groups:
               stimlen [7]
##
     stimlen
                `1`
                     `2`
                            `3`
                                   `4`
                                           `5`
                                                  `6`
       <int> <dbl> <dbl> <dbl> <dbl> <dbl>
                                                <dbl>
                                                       <dbl>
                                                               <dbl>
                                                                      <dbl>
## 1
           4 0.938 0.938 0.938 NA
                                        NA
                                                      NA
                                                              NA
                                                                     NΑ
                                               NA
## 2
           5 0.926 0.926 0.926 NA
## 3
           6 0.912 0.912 0.912 0.912 0.912 NA
                                                                     NΑ
                                                              NΔ
           7 0.895 0.895 0.895 0.895 0.895 NA
                                                                     NA
## 5
           8 0.876 0.876 0.876 0.876 0.876 0.876 NA
                                                                     NΔ
## 6
           9 0.855 0.855 0.855 0.855
                                         0.855
                                                0.855 0.855 0.855 NA
## 7
          10 0.830 0.830 0.830 0.830 0.830 0.830 0.830 0.830 0.830
fitted_pos_len_summary$stimlen<-factor(nofrag_fitted_pos_len_summary$stimlen)
fitted_pos_len_summary$pos<-factor(nofrag_fitted_pos_len_summary$pos)</pre>
\# fitted_len_pos_plot <- ggplot(pos_len_summary, aes(x=pos, y=preserved, group=stimlen, shape=stimlen, color
\# fitted_len_pos_plot <- fitted_len_pos_plot + geom_line(data=fitted_pos_len_summary, aes(x=pos,y=fitted_pos_len_summary)
\# geom\_point(data=fitted\_pos\_len\_summary, aes(x=pos, y=fitted, group=stimlen, shape=stimlen)) + <math>ggtitle(pas)
nofrag fitted len pos plot <- plot len pos obs predicted(NoFragData,
                                            pasteO(NoFragData$patient[1]),
                                            "LPFitted",
                                            NULL,
                                            palette_values,
                                            shape_values,
                                            obs_linetypes,
                                            pred_linetypes = c("longdash")
```

AIC DeltaAI&ICexpAICwt NagR2 (Interceps)imlen pos stimlen:plops^2)stimlen:I(pos^2)

Model

```
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
ggsave(paste0(FigDir,CurPat,"_",CurTask,"no_fragments_percent_preserved_by_length_pos_wfit.png"),plot=n
nofrag_fitted_len_pos_plot
```

`summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.

back to full data

results_report_DF <- AddReportLine(results_report_DF, "min preserved", min_preserved)
results_report_DF <- AddReportLine(results_report_DF, "max preserved", max_preserved)
print(sprintf("Min/max preserved range: %.2f - %.2f", min_preserved, max_preserved))

```
## [1] "Min/max preserved range: 0.68 - 0.97"

# find the average difference between lengths and the average difference
# between positions taking the other factor into account

# choose fitted or raw -- we use fitted values because they are smoothed averages
# that take into account the influence of the other variable
table_to_use <- fitted_pos_len_table
# take away column with length information
table_to_use <- table_to_use[,2:ncol(table_to_use)]

# take averages for positions
# don't want downward estimates influenced by return upward of U
# therefore, for downward influence, use only the values before the min
# take the difference between each value (differences between position proportion correct) **NOTE** pro
# average the difference in probabilities</pre>
```

```
# in case min is close to the end or we are not using a min (for non-U-shaped)
# functions, we need to get differences _first_ and then average those (e.g.
# if there is an effect of length and we just average position data,
# later positions) will have a lower average (because of the length effect)
# even if all position functions go upward
table_pos_diffs <- t(diff(t(as.matrix(table_to_use))))</pre>
ncol pos diff matrix <- ncol(table pos diffs)</pre>
first col mean <- mean(as.numeric(unlist(table pos diffs[,1])))</pre>
potential_u_shape <- 0</pre>
if(first_col_mean < 0){ # downward, so potential U-shape</pre>
  # take only negative values from the table
 filtered_table_pos_diffs<-table_pos_diffs</pre>
 filtered_table_pos_diffs[table_pos_diffs >= 0] <- NA
 potential_u_shape <- 1</pre>
}else{
  # upward - use the positive values
  # take only negative values from the table
 filtered_table_pos_diffs<-table_pos_diffs
  filtered_table_pos_diffs[table_pos_diffs <= 0] <- NA
}
average_pos_diffs <- apply(filtered_table_pos_diffs,2,mean,na.rm=TRUE)
OA_mean_pos_diff <- mean(average_pos_diffs,na.rm=TRUE)</pre>
table len diffs <- diff(as.matrix(table to use))
average_len_diffs <- apply(table_len_diffs,1,mean,na.rm=TRUE)</pre>
OA_mean_len_diff <- mean(average_len_diffs,na.rm=TRUE)</pre>
CurrentLabel <- "mean change in probability for each additional length: "
print(CurrentLabel)
## [1] "mean change in probability for each additional length: "
print(OA_mean_len_diff)
## [1] -0.01305843
results_report_DF <- AddReportLine(results_report_DF, CurrentLabel,OA_mean_len_diff)
CurrentLabel <- "mean change in probability for each additional position (excluding U-shape): "
print(CurrentLabel)
## [1] "mean change in probability for each additional position (excluding U-shape): "
print(OA mean pos diff)
## [1] -0.01116671
results_report_DF <- AddReportLine(results_report_DF, CurrentLabel,OA_mean_pos_diff)
if(potential_u_shape){ # downward, so potential U-shape
  # take only positive values from the table
  filtered_pos_upward_u<-table_pos_diffs
  filtered_pos_upward_u[table_pos_diffs <= 0] <- NA
  average pos u diffs <- apply(filtered pos upward u,
                                2, mean, na.rm=TRUE)
  OA_mean_pos_u_diff <- mean(average_pos_u_diffs,na.rm=TRUE)</pre>
```

```
if(is.nan(OA_mean_pos_u_diff) | (OA_mean_pos_u_diff <= 0)){</pre>
    print("No U-shape in this participant")
    results_report_DF <- AddReportLine(results_report_DF, "U-shape", 0)
    potential_u_shape <- FALSE</pre>
  }else{
    results report DF <- AddReportLine(results report DF, "U-shape", 1)
    CurrentLabel <- "Average upward change after U minimum"
    print(CurrentLabel)
    print(OA mean pos u diff)
    results_report_DF <- AddReportLine(results_report_DF, CurrentLabel, OA_mean_pos_u_diff)
    CurrentLabel <- "Proportion of average downward change"
    prop_ave_down <- abs(OA_mean_pos_u_diff/OA_mean_pos_diff)</pre>
    results_report_DF <- AddReportLine(results_report_DF, CurrentLabel, prop_ave_down)
}else{
  print("No U-shape in this participant")
  results_report_DF <- AddReportLine(results_report_DF, "U-shape", 0)</pre>
}
## [1] "No U-shape in this participant"
if(potential_u_shape){
  n_rows<-nrow(table_to_use)</pre>
  downward_dist <- numeric(n_rows)</pre>
  upward_dist <- numeric(n_rows)</pre>
  for(i in seq(1,n_rows)){
    current_row <- as.numeric(unlist(table_to_use[i,1:9]))</pre>
    current row <- current row[!is.na(current row)]</pre>
    current_row_len <- length(current_row)</pre>
    row min <- min(current row,na.rm=TRUE)</pre>
    min_pos <- which(current_row == row_min)</pre>
    left max <- max(current row[1:min pos],na.rm=TRUE)</pre>
    right_max <- max(current_row[min_pos:current_row_len])</pre>
    left_diff <- left_max - row_min</pre>
    right_diff <- right_max - row_min</pre>
    downward_dist[i]<-left_diff</pre>
    upward_dist[i]<-right_diff
  print("differences from left max to min for each row: ")
  print(downward_dist)
  print("differences from min to right max for each row: ")
  print(upward_dist)
  # Use the max return upward (min of upward_dist) and then the
  # downward distance from the left for the same row
  print(" ")
  biggest_return_upward_row <- which(upward_dist == max(upward_dist))</pre>
  CurrentLabel <- "row with biggest return upward"</pre>
  print(CurrentLabel)
  print(biggest return upward row)
  results_report_DF <- AddReportLine(results_report_DF, CurrentLabel, biggest_return_upward_row)
```

```
print(" ")
  CurrentLabel <- "downward distance for row with the largest upward value"
  print(CurrentLabel)
  print(downward dist[biggest return upward row])
  results_report_DF <- AddReportLine(results_report_DF, CurrentLabel, downward_dist[biggest_return_upwa
  CurrentLabel<-"return upward value"
  print(upward dist[biggest return upward row])
  results_report_DF <- AddReportLine(results_report_DF,</pre>
                                       CurrentLabel,
                                       upward_dist[biggest_return_upward_row])
  print(" ")
  # percentage return upward
  percentage_return_upward <- upward_dist[biggest_return_upward_row]/downward_dist[biggest_return_upwar
  CurrentLabel <- "Return upward as a proportion of the downward distance:"
  print(CurrentLabel)
 print(percentage_return_upward)
  results_report_DF <- AddReportLine(results_report_DF, CurrentLabel,</pre>
                        percentage_return_upward)
}else{
  print("no U-shape in this participant")
## [1] "no U-shape in this participant"
FLPModelEquations<-c(
  # models with log frequency, but no three-way interactions (due to difficulty interpreting and small
            "preserved ~ stimlen*log_freq",
            "preserved ~ stimlen+log_freq",
            "preserved ~ pos*log_freq",
            "preserved ~ pos+log_freq",
            "preserved ~ stimlen*log_freq + pos*log_freq",
            "preserved ~ stimlen*log_freq + pos",
            "preserved ~ stimlen + pos*log_freq",
            "preserved ~ stimlen + pos + log_freq",
            "preserved ~ (I(pos^2)+pos)*log_freq",
            "preserved ~ stimlen*log_freq + (I(pos^2) + pos)*log_freq",
            "preserved ~ stimlen*log_freq + I(pos^2) + pos",
            "preserved ~ stimlen + (I(pos^2) + pos)*log_freq",
            "preserved ~ stimlen + I(pos^2) + pos + log_freq",
            # models without frequency
            "preserved ~ 1",
            "preserved ~ stimlen",
            "preserved ~ pos",
            "preserved ~ stimlen + pos",
            "preserved ~ stimlen*pos",
            "preserved ~ I(pos^2)+pos",
            "preserved ~ stimlen + I(pos^2) + pos",
            "preserved ~ stimlen * (I(pos^2) + pos)"
FLPRes<-TestModels(FLPModelEquations,PosDat)</pre>
```

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 11
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
##
        (Intercept)
                             stimlen
                                              log_freq
                                                                 I(pos^2)
                                                                                       pos
            2.59778
                             0.02500
                                              -0.44886
                                                                 0.02591
                                                                                  -0.32265
## stimlen:log_freq
           0.10383
##
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1455 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1070 AIC: 1157
## log likelihood: -534.9029
## Nagelkerke R2: 0.07933585
## % pres/err predicted correctly: -323.3567
## % of predictable range [ (model-null)/(1-null) ]: 0.05545946
## **********
## model index: 6
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
##
        (Intercept)
                             stimlen
                                              log_freq
                                                                     pos stimlen:log_freq
##
                             0.03726
                                              -0.41056
                                                                -0.10606
                                                                                   0.09842
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1456 Residual
## Null Deviance:
                       1134
```

```
## Residual Deviance: 1072 AIC: 1158
## log likelihood: -535.9937
## Nagelkerke R2: 0.07668583
## % pres/err predicted correctly: -323.7266
## % of predictable range [ (model-null)/(1-null) ]: 0.05438228
## **********
## model index: 5
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
       (Intercept)
                                                                    pos stimlen:log_freq
##
                             stimlen
                                             log_freq
                            0.041921
##
          2.155597
                                             -0.411130
                                                              -0.114027
                                                                                 0.103061
##
      log_freq:pos
##
          -0.008593
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1455 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1072 AIC: 1160
## log likelihood: -535.9457
## Nagelkerke R2: 0.07680241
## % pres/err predicted correctly: -323.7866
## % of predictable range [ (model-null)/(1-null) ]: 0.05420753
## **********
## model index: 10
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
##
         (Intercept)
                               stimlen
                                                 log_freq
                                                                   I(pos^2)
                                                                                           pos
##
            2.79115
                               0.01374
                                                 -0.22530
                                                                    0.04066
                                                                                      -0.42168
##
   stimlen:log_freq log_freq:I(pos^2)
                                             log_freq:pos
##
            0.09367
                               0.01387
                                                 -0.10573
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1453 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1069 AIC: 1160
## log likelihood: -534.2543
## Nagelkerke R2: 0.08090953
## % pres/err predicted correctly: -322.8127
## % of predictable range [ (model-null)/(1-null) ]: 0.05704363
## *********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
##
        (Intercept)
                                             log_freq stimlen:log_freq
                             stimlen
##
           2.17125
                            -0.01955
                                             -0.40518
                                                                0.09740
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1457 Residual
```

```
## Null Deviance:
## Residual Deviance: 1078 AIC: 1161
## log likelihood: -539.1569
## Nagelkerke R2: 0.06897868
## % pres/err predicted correctly: -325.4092
## % of predictable range [ (model-null)/(1-null) ]: 0.04948257
## **********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                       pos
                               log_freq
##
       2.3194
                                 0.3003
                   -0.1089
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1458 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1083 AIC: 1163
## log likelihood: -541.2909
## Nagelkerke R2: 0.06376036
## % pres/err predicted correctly: -327.2054
## % of predictable range [ (model-null)/(1-null) ]: 0.04425178
## **********
## model index: 9
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
##
        (Intercept)
                              I(pos^2)
                                                     pos
                                                                   log_freq I(pos^2):log_freq
##
            2.77847
                               0.04505
                                                -0.43564
                                                                    0.43661
                                                                                      0.02103
##
       pos:log_freq
##
           -0.13360
## Degrees of Freedom: 1460 Total (i.e. Null); 1455 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1076 AIC: 1164
## log likelihood: -538.2409
## Nagelkerke R2: 0.07121388
## % pres/err predicted correctly: -325.0457
## % of predictable range [ (model-null)/(1-null) ]: 0.05054091
## **********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
##
   (Intercept)
                                  log_freq pos:log_freq
                         pos
##
       2.25140
                    -0.08669
                                   0.19376
                                                0.02835
## Degrees of Freedom: 1460 Total (i.e. Null); 1457 Residual
## Null Deviance:
                       1134
```

```
## Residual Deviance: 1081 AIC: 1164
## log likelihood: -540.6546
## Nagelkerke R2: 0.06531802
## % pres/err predicted correctly: -326.4242
## % of predictable range [ (model-null)/(1-null) ]: 0.04652669
## *********
## model index: 12
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
        (Intercept)
                                                 I(pos^2)
##
                               stimlen
                                                                        pos
                                                                                      log_freq
                              -0.04350
                                                  0.04842
##
            3.07243
                                                                   -0.44774
                                                                                       0.41890
## I(pos^2):log_freq
                          pos:log_freq
##
            0.02154
                              -0.13519
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1454 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1076 AIC: 1165
## log likelihood: -537.9447
## Nagelkerke R2: 0.0719361
## % pres/err predicted correctly: -324.8106
## % of predictable range [ (model-null)/(1-null) ]: 0.05122554
## **********
## model index: 8
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                   stimlen
                                            log_freq
                                    pos
##
      2.41637
                  -0.01662
                               -0.10349
                                             0.29441
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1457 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1082 AIC: 1165
## log likelihood: -541.2456
## Nagelkerke R2: 0.06387127
## % pres/err predicted correctly: -327.1531
## % of predictable range [ (model-null)/(1-null) ]: 0.04440424
## **********
## model index: 13
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                   stimlen
                               I(pos^2)
                                                         log_freq
                                                 pos
##
      2.75861
                  -0.02831
                                0.01946
                                            -0.26592
                                                          0.29525
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1456 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1081 AIC: 1166
```

```
## log likelihood: -540.6151
## Nagelkerke R2: 0.06541457
## % pres/err predicted correctly: -326.9962
## % of predictable range [ (model-null)/(1-null) ]: 0.04486109
## **********
## model index: 7
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                     stimlen
                                      pos
                                               log_freq pos:log_freq
       2.37343
##
                    -0.02112
                                  -0.07935
                                                0.18399
                                                              0.02897
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1456 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1081 AIC: 1166
## log likelihood: -540.582
## Nagelkerke R2: 0.06549567
## % pres/err predicted correctly: -326.3419
## % of predictable range [ (model-null)/(1-null) ]: 0.0467664
## **********
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                              log_freq
      2.42832
                               0.29295
##
                  -0.07174
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1458 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1089 AIC: 1168
## log likelihood: -544.3328
## Nagelkerke R2: 0.05629565
## % pres/err predicted correctly: -328.8532
## % of predictable range [ (model-null)/(1-null) ]: 0.03945337
## **********
## model index: 18
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                   pos stimlen:pos
       4.2080
                   -0.2666
##
                               -0.4392
                                             0.0416
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1457 Residual
## Null Deviance:
                      1134
## Residual Deviance: 1109 AIC: 1194
## log likelihood: -554.6168
## Nagelkerke R2: 0.0308274
## % pres/err predicted correctly: -336.2694
```

```
## % of predictable range [ (model-null)/(1-null) ]: 0.01785716
## **********
## model index: 17
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                   pos
                  -0.1265
##
       3.1107
                               -0.1011
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1458 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1112 AIC: 1194
## log likelihood: -556.0231
## Nagelkerke R2: 0.02731663
## % pres/err predicted correctly: -336.6979
## % of predictable range [ (model-null)/(1-null) ]: 0.01660915
## **********
## model index: 20
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
## Coefficients:
## (Intercept)
                   stimlen
                              I(pos^2)
                                                pos
##
      3.43010
                  -0.13787
                               0.01796
                                           -0.25097
## Degrees of Freedom: 1460 Total (i.e. Null); 1457 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1111 AIC: 1195
## log likelihood: -555.4764
## Nagelkerke R2: 0.02868213
## % pres/err predicted correctly: -336.5426
## % of predictable range [ (model-null)/(1-null) ]: 0.01706165
## **********
## model index: 15
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
##
                     -0.18
         3.12
## Degrees of Freedom: 1460 Total (i.e. Null); 1459 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1118 AIC: 1197
## log likelihood: -559.0403
## Nagelkerke R2: 0.01976182
## % pres/err predicted correctly: -338.1971
## % of predictable range [ (model-null)/(1-null) ]: 0.01224341
## **********
## model index: 21
```

```
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
##
       (Intercept)
                                              I(pos^2)
                                                                     pos stimlen:I(pos^2)
                             stimlen
          4.358565
                           -0.287046
                                              0.012081
                                                               -0.535452
                                                                                 -0.001544
##
       stimlen:pos
##
          0.054304
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1455 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1109 AIC: 1198
## log likelihood: -554.6063
## Nagelkerke R2: 0.03085349
## % pres/err predicted correctly: -336.2651
## % of predictable range [ (model-null)/(1-null) ]: 0.01786947
## model index: 16
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                       pos
       2.3864
                   -0.1496
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1459 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1118 AIC: 1200
## log likelihood: -559.0287
## Nagelkerke R2: 0.01979099
## % pres/err predicted correctly: -338.2881
## % of predictable range [ (model-null)/(1-null) ]: 0.01197868
## **********
## model index: 19
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                    pos
     2.507068
                  0.008543
                              -0.222840
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1458 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1118 AIC: 1201
## log likelihood: -558.8998
## Nagelkerke R2: 0.02011432
## % pres/err predicted correctly: -338.2814
## % of predictable range [ (model-null)/(1-null) ]: 0.01199808
## model index: 14
##
```

```
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
               data = PosDat)
##
## Coefficients:
## (Intercept)
                   1.835
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1460 Residual
## Null Deviance:
                                                     1134
## Residual Deviance: 1134 AIC: 1213
## log likelihood: -566.8741
## Nagelkerke R2: 0
## % pres/err predicted correctly: -342.4016
## % of predictable range [ (model-null)/(1-null) ]: 0
## *********
BestFLPModel<-FLPRes$ModelResult[[1]]</pre>
BestFLPModelFormula<-FLPRes$Model[[1]]</pre>
FLPAICSummary <- data.frame (Model=FLPRes$Model,
                                                   AIC=FLPRes$AIC,row.names=FLPRes$Model)
FLPAICSummary $DeltaAIC <-FLPAICSummary $AIC-FLPAICSummary $AIC[1]
FLPAICSummary$AICexp<-exp(-0.5*FLPAICSummary$DeltaAIC)
FLPAICSummary $AICwt <-FLPAICSummary $AICexp/sum(FLPAICSummary $AICexp)
FLPAICSummary$NagR2<-FLPRes$NagR2
FLPAICSummary <- merge(FLPAICSummary,FLPRes$CoefficientValues,
                                                          by='row.names',sort=FALSE)
FLPAICSummary <- subset(FLPAICSummary, select = -c(Row.names))</pre>
write.csv(FLPAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_freq_len_pos_model_summary.csv"),row.name
kable(FLPAICSummary)
                              AIC\ Delta \textbf{AIC} explCwN agR \textbf{2} nterseipt) \\ deg\_fsteignleuplosg\_fosclologgfreid(popsdet) \\ os^2 \\ loggfreid(popsdet) \\ os^2 \\ loggfreid(
Model
preserved ~
                              stimlen *
                                                                                                0.4488618 \quad 0.3226499
\log_{\text{freq}} +
I(pos^2) +
pos
preserved ~
                              1157.(7.33968082004.23702076885880407372602 0.0984229 NA NA NA NA NA NA NA NA
stimlen *
                                                                                                0.4105598 \quad 0.1060625
\log_{freq} +
pos
preserved \sim
                              115925.23001308204450207620255597419206 0.1030614 NA - NA NA
                                                                                                                                                                           NA NA NA
stimlen *
                                                                                                0.4111302 \quad 0.1140268 \quad 0.0085933
log freq +
pos *
log_freq
preserved \sim
                              11602064189264292570037020951049137417 0.0936690 NA
                                                                                                                                              - 0.0406% 36 0.0138 718 NA
stimlen *
                                                                                                0.2253040 \quad 0.4216802 \quad 0.1057253
log freq +
(I(pos^2) +
pos) *
log_freq
```

AIC Delta AIC exp Cw ag R 2nterstiph deng_fstiqulen	ploog pfoodologfr	énde(op:opsedi£2 d)os^2	1) by og frefa	teilfubersipade n:I(po
		-((-/	, , ,	NA NA
0.019 5543 51802				
1163.645.07038470.92670.89937.690494NA 0.300299A1		NA NA	NA I	NA NA
(0.1089400			
	37.4			- 1 - 3- 1
		0.045 05 0220	3 3 4A 1	NA NA
	0.435 0 43 2 35975			
1164744110000000000000000000000000000000	0 000 0% 1 1	NTA NTA	NIA N	TA NTA
		NA NA	INA I	NA NA
	0.0000007			
116477006605050600000 070199670422 0 41200090	NΛ	0.0480000015	AGAS	NA NA
		0.040020200	30⁄2A 1	NA INA
0.0440400	0・ユユ いいいかい 1990			
1165. 7.83.97774196.48970.10683.7 41163.72 0.294. 407 3	- NA NA	NA NA	NA N	NA NA
		1111 1111	1111 1	171 1171
0.0100100	0.1001010			
1165 %2\$ 0 999 5 038 5 48 65 2 7468615 0.295 2\A 5	- NA NA	0.0194546	NA N	NA NA
		0.02020		
1166 8.78 4 087126.708148)652.9573 428 0.183 99.4 8	- 0.028 970 5	NA NA	NA N	NA NA
0.0211193	0.0793498			
1168. 29.3 50 00640.88915.16962 9 52 8323 0.292 952 8	NA NA NA	NA NA	NA N	NA NA
0.0717364				
1193 36197609090000000000082707 971 NA NA		NA NA	NA (0.0416 014 6
		NA NA	NA N	NA NA
		0.017 957 3	NA I	NA NA
0.1378737	0.2509742			
110F9M9F00000000000000000000000000000000	NTA NTA NTA	NTA NTA	NT A	та ъта
	INA INA INA	NA NA	NA ľ	NA NA
	NTA NTA	0.01900010	NIA C	0542049
		U.U12U8AU	NA (0.0543042
0.2870400	0.0004010			0.0015439
1100 /779 3 B 21000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NIA NIA	NA NA	NA N	JA NJA
		NA NA	INA I	NA INA
		0.008#M%6	NΔ	JΔ NΔ
		0.000g# A 0	IVA I	171 11/1
	0.2220404			
	1160.3050.7601646.7E96.29889.7E71.247 - 0.0973: 0.0119554351802 1163.6550.7038470.92670.8962.76349.NA 0.300.29A1 1164.7652.1637280.1980.29825.2E81.30A 0.43669.95 1164.7652.6853250.6269.4771.93672433 0.418.90A2 0.0434960 1165.7262.90771196.48670.16638.7HE6372 0.294470A3 0.01661.99 1165.7262.90771196.48670.16638.7HE6372 0.2952NA5 0.0283100 1166.8.7840.87126.70840.8652.9773428 0.183.99A8 0.0211193 1168.293.95061640.8806.1662.9928323 0.292.93A8 0.0717364 1193.361.9760300000000000000082.204971 NA NA 0.2665926 1194.363.4907247000000000000000000000000000000000	116035076016467E96298897871247	116636367000040700004000000000000000000000	1163.64.1070381709924708992761104NA 0.30029241 0.1089400

```
print(BestFLPModelFormula)
## [1] "preserved ~ stimlen * log_freq + I(pos^2) + pos"
print(BestFLPModel)
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
       data = PosDat)
##
## Coefficients:
##
        (Intercept)
                              stimlen
                                               log_freq
                                                                  I(pos^2)
                                                                                         pos
##
            2.59778
                              0.02500
                                               -0.44886
                                                                  0.02591
                                                                                   -0.32265
## stimlen:log_freq
##
            0.10383
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1455 Residual
## Null Deviance:
                        1134
## Residual Deviance: 1070 AIC: 1157
# do a median split on frequency to plot hf/ls effects (analysis is continuous)
median_freq <- median(PosDat$log_freq)</pre>
PosDat$freq_bin[PosDat$log_freq >= median_freq]<-"hf"
PosDat$freq_bin[PosDat$log_freq < median_freq] <- "lf"
PosDat$FLPFitted<-fitted(BestFLPModel)
HFDat <- PosDat[PosDat$freq_bin == "hf",]</pre>
LFDat <- PosDat[PosDat$freq_bin == "lf",]</pre>
HF_Plot <- plot_len_pos_obs_predicted(HFDat,paste0(CurPat," - High frequency"), "FLPFitted",c(min_preser</pre>
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## Scale for y is already present. Adding another scale for y, which will replace the existing
## scale.
LF_Plot <- plot_len_pos_obs_predicted(LFDat,paste0(CurPat, " - Low frequency"), "FLPFitted",c(min_preser
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## Scale for y is already present. Adding another scale for y, which will replace the existing
## scale.
library(ggpubr)
Both Plots <- ggarrange(LF Plot, HF Plot) # labels=c("LF", "HF", ncol=2)
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_line()`).
## Warning: Removed 17 rows containing missing values or values outside the scale range
## (`geom_point()`).
```

Warning: Removed 17 rows containing missing values or values outside the scale range
(`geom_line()`).

ggsave(paste0(FigDir,CurPat,"_",CurTask,"_frequency_effect_length_pos_wfit.png"),device="png",unit="cm"
print(Both_Plots)


```
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
        2.616
                    -1.432
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1459 Residual
## Null Deviance:
                       1134
## Residual Deviance: 787
                          AIC: 856.4
## log likelihood: -393.503
## Nagelkerke R2: 0.3914156
## % pres/err predicted correctly: -218.9804
## % of predictable range [ (model-null)/(1-null) ]: 0.3594076
## ***********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   CumPres
       1.1853
                    0.3776
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1459 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1072 AIC: 1151
## log likelihood: -535.8483
## Nagelkerke R2: 0.0770392
## % pres/err predicted correctly: -327.0999
## % of predictable range [ (model-null)/(1-null) ]: 0.0445591
## **********
## model index: 5
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
##
         3.12
                     -0.18
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1459 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1118 AIC: 1197
## log likelihood: -559.0403
## Nagelkerke R2: 0.01976182
## % pres/err predicted correctly: -338.1971
## % of predictable range [ (model-null)/(1-null) ]: 0.01224341
## **********
## model index: 4
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
```

```
## (Intercept)
                        pos
##
        2.3864
                    -0.1496
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1459 Residual
## Null Deviance:
                        1134
## Residual Deviance: 1118 AIC: 1200
## log likelihood: -559.0287
## Nagelkerke R2: 0.01979099
## % pres/err predicted correctly: -338.2881
## % of predictable range [ (model-null)/(1-null) ]: 0.01197868
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                   I(pos^2)
                                     pos
      2.507068
                   0.008543
                               -0.222840
##
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1458 Residual
## Null Deviance:
                        1134
## Residual Deviance: 1118 AIC: 1201
## log likelihood: -558.8998
## Nagelkerke R2: 0.02011432
## % pres/err predicted correctly: -338.2814
## % of predictable range [ (model-null)/(1-null) ]: 0.01199808
## **********
## model index: 6
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
       data = PosDat)
##
## Coefficients:
## (Intercept)
##
         1.835
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1460 Residual
## Null Deviance:
                        1134
## Residual Deviance: 1134 AIC: 1213
## log likelihood: -566.8741
## Nagelkerke R2: 0
## % pres/err predicted correctly: -342.4016
## % of predictable range [ (model-null)/(1-null) ]: 0
BestMEModel<-MERes$ModelResult[[ BestModelIndexL1 ]]</pre>
BestMEModelFormula<-MERes$Model[[BestModelIndexL1]]</pre>
MEAICSummary<-data.frame(Model=MERes$Model,</pre>
                       AIC=MERes$AIC,row.names=MERes$Model)
MEAICSummary $DeltaAIC <- MEAICSummary $AIC - MEAICSummary $AIC [1]
MEAICSummary$AICexp<-exp(-0.5*MEAICSummary$DeltaAIC)</pre>
MEAICSummary$AICwt<-MEAICSummary$AICexp/sum(MEAICSummary$AICexp)
```

Model	AIC DeltaAI	ICex	cpAIC w	tNagR2 (Intercept	CumPres	CumErı	I(pos^2)	pos	stimlen
preserved ~	856.35980.0000	1	1	0.391415 0 .615613	NA	-	NA	NA	NA
CumErr					1	1.43168	7		
preserved \sim	1151.244 2 94.8845	0	0	0.077039 2 .185251	0.3776148	5 NA	NA	NA	NA
CumPres									
preserved \sim	1197.102 5 40.7427	0	0	$0.019761 \\ 8.120125$	NA	NA	NA	NA	-
stimlen									0.180022
preserved \sim pos	1199.778 0 43.4182	0	0	$0.019791 \\ 0.386369$	NA	NA	NA	-	NA
	0.1495964								
preserved ~	$1201.495 \\ 3 45.1353$	0	0	$0.020114 \boldsymbol{2}.507068$	NA	NA	0.0085426	-	NA
$(I(pos^2) + pos)$							0	.22284	04
preserved ~ 1	$1212.740 \\ 856.3810$	0	0	0.0000000 0.834601	NA	NA	NA	NA	NA

```
if(DoSimulations){
      BestMEModelFormulaRnd <- BestMEModelFormula</pre>
    if(grepl("CumPres", BestMEModelFormulaRnd)){
      BestMEModelFormulaRnd <- gsub("CumPres", "RndCumPres", BestMEModelFormulaRnd)</pre>
    }else if(grepl("CumErr", BestMEModelFormulaRnd)){
      BestMEModelFormulaRnd <- gsub("CumErr", "RndCumErr", BestMEModelFormulaRnd)</pre>
    }
    RndModelAIC<-numeric(length=RandomSamples)</pre>
    for(rindex in seq(1,RandomSamples)){
    # Shuffle cumulative values
      PosDat$RndCumPres <- ShuffleWithinWord(PosDat,"CumPres")</pre>
      PosDat$RndCumErr <- ShuffleWithinWord(PosDat, "CumErr")</pre>
      BestModelRnd <- glm(as.formula(BestMEModelFormulaRnd),</pre>
                            family="binomial",data=PosDat)
      RndModelAIC[rindex] <- BestModelRnd$aic</pre>
    }
    ModelNames<-c(paste0("***",BestMEModelFormula),</pre>
                   rep(BestMEModelFormulaRnd,RandomSamples))
    AICValues <- c(BestMEModel$aic,RndModelAIC)
    BestMEModelRndDF <- data.frame(Name=ModelNames,AIC=AICValues)</pre>
    BestMEModelRndDF <- BestMEModelRndDF %>% arrange(AIC)
    BestMEModelRndDF <- rbind(BestMEModelRndDF,</pre>
                                data.frame(Name=c("Random average"),
                                            AIC=c(mean(RndModelAIC))))
    BestMEModelRndDF <- rbind(BestMEModelRndDF,</pre>
                                data.frame(Name=c("Random SD"),
                                            AIC=c(sd(RndModelAIC))))
    write.csv(BestMEModelRndDF,
```

syll_component	MeanPres	N
1	0.8322725	202
O	0.8517084	701
P	0.9375000	16
S	0.8873239	71
V	0.8846426	471

```
# main effects models for data without satellite positions
keep components = c("0","V","1")
OV1Data <- PosDat[PosDat$syll component %in% keep components,]
OV1Data <- OV1Data %>% select(stim_number,
                            stimlen, stim, pos,
                            preserved,syll_component)
OV1Data$CumPres <- CalcCumPres(OV1Data)</pre>
OV1Data$CumErr <- CalcCumErrFromPreserved(OV1Data)</pre>
SimpSyllMEAICSummary <- EvaluateSubsetData(OV1Data, MEModelEquations)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## ***********
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                     CumErr
         2.578
                    -1.465
##
## Degrees of Freedom: 1373 Total (i.e. Null); 1372 Residual
## Null Deviance:
                        1075
## Residual Deviance: 750.9
                                AIC: 821.7
## log likelihood: -375.4516
## Nagelkerke R2: 0.3871039
```

```
## % pres/err predicted correctly: -209.3193
## % of predictable range [ (model-null)/(1-null) ]: 0.3568041
## model index: 1
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   CumPres
##
       1.1956
                    0.3842
## Degrees of Freedom: 1373 Total (i.e. Null); 1372 Residual
## Null Deviance:
                       1075
## Residual Deviance: 1019 AIC: 1099
## log likelihood: -509.5561
## Nagelkerke R2: 0.07331687
## % pres/err predicted correctly: -312.3047
## % of predictable range [ (model-null)/(1-null) ]: 0.04185526
## **********
## model index: 5
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                   stimlen
        3.066
                   -0.175
##
##
## Degrees of Freedom: 1373 Total (i.e. Null); 1372 Residual
## Null Deviance:
                       1075
## Residual Deviance: 1061 AIC: 1139
## log likelihood: -530.4072
## Nagelkerke R2: 0.01878798
## % pres/err predicted correctly: -322.1172
## % of predictable range [ (model-null)/(1-null) ]: 0.01184689
## *************
## model index: 4
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                       pos
       2.3619
                   -0.1475
##
## Degrees of Freedom: 1373 Total (i.e. Null); 1372 Residual
## Null Deviance:
                       1075
## Residual Deviance: 1060 AIC: 1142
## log likelihood: -530.1858
## Nagelkerke R2: 0.01937553
## % pres/err predicted correctly: -322.1068
## % of predictable range [ (model-null)/(1-null) ]: 0.01187862
## **********
```

```
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                    pos
      2.43489
                   0.00516
##
                               -0.19178
##
## Degrees of Freedom: 1373 Total (i.e. Null); 1371 Residual
## Null Deviance:
                       1075
## Residual Deviance: 1060 AIC: 1144
## log likelihood: -530.1406
## Nagelkerke R2: 0.01949557
## % pres/err predicted correctly: -322.1216
## % of predictable range [ (model-null)/(1-null) ]: 0.01183346
## **********
## model index: 6
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
##
        1.816
## Degrees of Freedom: 1373 Total (i.e. Null); 1373 Residual
## Null Deviance:
                       1075
## Residual Deviance: 1075 AIC: 1153
## log likelihood: -537.4473
## Nagelkerke R2: 0
## % pres/err predicted correctly: -325.991
## % of predictable range [ (model-null)/(1-null) ]: 0
## **********
write.csv(SimpSyllMEAICSummary,
         pasteO(TablesDir,CurPat,"_",CurTask,
                "_OV1_main_effects_model_summary.csv"),row.names = FALSE)
kable(SimpSyllMEAICSummary)
```

Model	AIC DeltaAl	[Cex	pAICv	vtNagR2 (Intercept	t)CumPre€	EumEr	$rI(pos^2)$	pos	stimlen
preserved ~	821.71060.0000	1	1	0.387103 2 .577988	NA	_	NA	NA	NA
CumErr					1	.46481	=		
preserved \sim	1098.719 8 77.009	2 0	0	0.073316 9 .195571	0.384212	NA	NA	NA	NA
CumPres									
preserved \sim	1139.498 3 17.787	6 0	0	$0.018788 \\ 0.065926$	NA	NA	NA	NA	-
stimlen									0.1749745
preserved \sim pos	1141.719 3 20.008	8 0	0	$0.019375 \\ 2.361853$	NA	NA	NA	-	NA
							(0.147489	93
preserved \sim	1143.612 3 21.902	1 0	0	0.019495 6.434889	NA	NA	0.0051595	<u> </u>	NA
$(I(pos^2) + pos)$							(0.191779	92
preserved ~ 1	1153.494 3 31.783	6 0	0	0.0000000 0 .816459	NA	NA	NA	NA	NA

```
# main effects models for data without satellite or coda positions
# (tradeoff -- takes away more complex segments, in addition to satellites, but
# also reduces data)
keep components = c("0","V")
OVData <- PosDat[PosDat$syll_component %in% keep_components,]</pre>
OVData <- OVData %>% select(stim_number,
                            stimlen, stim, pos,
                            preserved,syll_component)
OVData$CumPres <- CalcCumPres(OVData)</pre>
OVData$CumErr <- CalcCumErrFromPreserved(OVData)</pre>
SimpSyllMEAICSummary2<-EvaluateSubsetData(OVData, MEModelEquations)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
       data = PosDat)
##
## Coefficients:
## (Intercept)
                     CumErr
                    -1.572
##
        2.515
##
## Degrees of Freedom: 1171 Total (i.e. Null); 1170 Residual
## Null Deviance:
                        894.6
## Residual Deviance: 665
                           AIC: 730.5
## log likelihood: -332.5095
## Nagelkerke R2: 0.3331821
## % pres/err predicted correctly: -187.2595
## % of predictable range [ (model-null)/(1-null) ]: 0.3044231
## ************
## model index: 1
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    CumPres
##
        1.3698
                     0.3502
## Degrees of Freedom: 1171 Total (i.e. Null); 1170 Residual
## Null Deviance:
                       894.6
## Residual Deviance: 864.6
                               AIC: 938.4
## log likelihood: -432.2767
## Nagelkerke R2: 0.047365
```

```
## % pres/err predicted correctly: -262.368
## % of predictable range [ (model-null)/(1-null) ]: 0.02691416
## model index: 5
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
##
       3.1197
                   -0.1775
## Degrees of Freedom: 1171 Total (i.e. Null); 1170 Residual
## Null Deviance:
                       894.6
## Residual Deviance: 882.3
                               AIC: 954.1
## log likelihood: -441.1376
## Nagelkerke R2: 0.01954776
## % pres/err predicted correctly: -266.3325
## % of predictable range [ (model-null)/(1-null) ]: 0.01226616
## **********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                       pos
        2.394
##
                    -0.147
##
## Degrees of Freedom: 1171 Total (i.e. Null); 1170 Residual
## Null Deviance:
                       894.6
## Residual Deviance: 881.7
                               AIC: 955.5
## log likelihood: -440.8443
## Nagelkerke R2: 0.0204753
## % pres/err predicted correctly: -266.2342
## % of predictable range [ (model-null)/(1-null) ]: 0.01262935
## *************
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                    pos
                  0.006414
     2.482065
                              -0.201829
##
## Degrees of Freedom: 1171 Total (i.e. Null); 1169 Residual
## Null Deviance:
                       894.6
## Residual Deviance: 881.6
                               AIC: 957.4
## log likelihood: -440.781
## Nagelkerke R2: 0.02067549
## % pres/err predicted correctly: -266.2344
## % of predictable range [ (model-null)/(1-null) ]: 0.0126288
## *************
```

```
## model index: 6
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
        1.857
##
##
## Degrees of Freedom: 1171 Total (i.e. Null); 1171 Residual
## Null Deviance:
                       894.6
## Residual Deviance: 894.6
                               AIC: 966
## log likelihood: -447.2852
## Nagelkerke R2: 4.159171e-16
## % pres/err predicted correctly: -269.6524
## % of predictable range [ (model-null)/(1-null) ]: 0
## **********
write.csv(SimpSyllMEAICSummary2,
         pasteO(TablesDir,CurPat,"_",CurTask,
                 "_OV_main_effects_model_summary.csv"),row.names = FALSE)
kable(SimpSyllMEAICSummary2)
```

Model	AIC DeltaAI	ICex	cpAIC w	rtNagR2 (Intercept	t)CumPresC	CumEr	$r I(pos^2)$	pos	stimlen
preserved ~	730.48470.0000	1	1	0.3331822.515278	NA	-	NA	NA	NA
CumErr					1	.57232	9		
preserved \sim	938.381	0	0	$0.047365 \\ 0.369776$	0.3502208	NA	NA	NA	NA
CumPres									
preserved \sim	954.0704223.5857	0	0	$0.019547 \\ 8.119703$	NA	NA	NA	NA	-
stimlen									0.177506
preserved \sim pos	955.5491225.0645	0	0	$0.020475 \\ 3.394342$	NA	NA	NA	-	NA
								0.147002	27
preserved \sim	957.396×26.9113	0	0	0.020675 3 .482065	NA	NA	0.006414	3 -	NA
$(I(pos^2) + pos)$								0.201828	85
preserved ~ 1	966.035 235.5511	0	0	0.0000000 0. 856975	NA	NA	NA	NA	NA

```
# plot prev err and prev cor plots
PrevCorPlot<-PlotObsPreviousCorrect(PosDat,palette_values,shape_values)</pre>
```

`summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
print(PrevCorPlot)

PrevErrPlot<-PlotObsPreviousError(PosDat,palette_values,shape_values)</pre>

`summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
print(PrevErrPlot)


```
PlotName<-paste0(FigDir,CurPat,"_",CurTask,"_PrevCorPlot_Obs")
ggsave(filename=paste0(PlotName,".tif"),plot=PrevCorPlot,device="tiff",compression = "lzw")

## Saving 6.5 x 4.5 in image

PlotName<-paste0(FigDir,CurPat,"_",CurTask,"_PrevErrPlot_Obs")
ggsave(filename=paste0(PlotName,".tif"),plot=PrevErrPlot,device="tiff",compression = "lzw")

## Saving 6.5 x 4.5 in image

# plot prev err and prev cor with predicted values

MEModel<-MERes$ModelResult[[ BestModelIndexL1 ]]

PosDat$MEPred<-fitted(MEModel)

PrevCorPlot<-PlotObsPredPreviousCorrect(PosDat,"preserved","MEPred",palette_values,shape_values)

## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.

## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.

print(PrevCorPlot)
```


PrevErrPlot<-PlotObsPredPreviousError(PosDat, "preserved", "MEPred", palette_values, shape_values)

```
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
print(PrevErrPlot)
```



```
ggsave(filename=paste0(PlotName,".tif"),plot=PrevCorPlot,device="tiff",compression = "lzw")
## Saving 6.5 x 4.5 in image
PlotName<-paste0(FigDir,CurPat,"_",CurTask,"PrevErrPlot_ObsPredME")
ggsave(filename=paste0(PlotName,".tif"),plot=PrevErrPlot,device="tiff",compression = "lzw")</pre>
```

Saving 6.5 x 4.5 in image

```
5
```

```
CumAICSummary <- NULL
#######
# level 2 -- Add position squared (quadratic with position)
#######
# After establishing the primary variable, see about additions
BestMEFactor <- BestMEModelFormula
OtherFactor<-"I(pos^2) + pos"
OtherFactorName<-"quadratic_by_pos"
if(!grepl("pos", BestMEFactor, fixed = TRUE)){ # if best model does not include pos
  AICSummary <- TestLevel 2 Models (PosDat, BestMEFactor, Other Factor, Other Factor Name)
 CumAICSummary <- AICSummary</pre>
 kable(AICSummary)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
## Coefficients:
## (Intercept)
                     CumErr
                               I(pos^2)
                                                  pos
     2.239260
                               0.032111
                 -1.612466
                                             0.002909
## Degrees of Freedom: 1460 Total (i.e. Null); 1457 Residual
## Null Deviance:
                       1134
## Residual Deviance: 766.8
                               AIC: 839.4
## log likelihood: -383.4047
## Nagelkerke R2: 0.4114768
## % pres/err predicted correctly: -212.1906
## % of predictable range [ (model-null)/(1-null) ]: 0.3791798
```

```
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
##
        2.616
                    -1.432
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1459 Residual
## Null Deviance:
                       1134
## Residual Deviance: 787 AIC: 856.4
## log likelihood: -393.503
## Nagelkerke R2: 0.3914156
## % pres/err predicted correctly: -218.9804
## % of predictable range [ (model-null)/(1-null) ]: 0.3594076
## **********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                   pos
##
     2.507068
                  0.008543
                              -0.222840
## Degrees of Freedom: 1460 Total (i.e. Null); 1458 Residual
## Null Deviance:
                       1134
## Residual Deviance: 1118 AIC: 1201
## log likelihood: -558.8998
## Nagelkerke R2: 0.02011432
## % pres/err predicted correctly: -338.2814
## % of predictable range [ (model-null)/(1-null) ]: 0.01199808
## *********
```

Model	AIC	DeltaAIC	AICexp	AICwt	NagR2	(Intercept)	CumErr	$I(pos^2)$	pos
$\overline{\text{preserved} \sim \text{CumErr} + \text{I}(\text{pos}^2) +}$	839.3582	0.00000	1.0000000	0.9997967	0.4114768	2.239260	-1.612466	0.0321110	0.0029094
DOS									

Model	AIC	DeltaAIC	AICexp	AICwt	NagR2	(Intercept)	CumErr	I(pos^2)	pos
preserved ~ CumErr	856.3598	17.00166	0.0002033	0.0002033	0.3914156	2.615613	-1.431687	NA	NA
$preserved \sim I(pos^2) + pos$	1201.4951	362.13691	0.0000000	0.0000000	0.0201143	2.507068	NA	0.0085426	-0.2228404

```
#######
# level 2 -- Add length
#######
BestMEFactor <- BestMEModelFormula
OtherFactor <- "stimlen"
if(!grepl(OtherFactor,BestMEFactor,fixed = TRUE)){
 AICSummary <- TestLevel 2 Models (PosDat, Best MEFactor, Other Factor)
 CumAICSummary <- ConcatAndAddMissingColumns(CumAICSummary, AICSummary)</pre>
 kable(AICSummary)
}
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## ************
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
## Coefficients:
## (Intercept)
                    CumErr
        2.616
                    -1.432
##
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1459 Residual
## Null Deviance:
                      1134
## Residual Deviance: 787
                           AIC: 856.4
## log likelihood: -393.503
## Nagelkerke R2: 0.3914156
## % pres/err predicted correctly: -218.9804
## % of predictable range [ (model-null)/(1-null) ]: 0.3594076
## *********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                  CumErr
                                stimlen
##
      2.41381
                  -1.44142
                                0.02961
## Degrees of Freedom: 1460 Total (i.e. Null); 1458 Residual
## Null Deviance:
                       1134
## Residual Deviance: 786.7
                               AIC: 858.4
## log likelihood: -393.3705
## Nagelkerke R2: 0.3916807
## % pres/err predicted correctly: -218.7445
## % of predictable range [ (model-null)/(1-null) ]: 0.3600947
## *********
## model index: 3
```

```
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
         3.12
                     -0.18
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1459 Residual
## Null Deviance:
                      1134
## Residual Deviance: 1118 AIC: 1197
## log likelihood: -559.0403
## Nagelkerke R2: 0.01976182
## % pres/err predicted correctly: -338.1971
## % of predictable range [ (model-null)/(1-null) ]: 0.01224341
## *********
```

Model	AIC	DeltaAIC	AICexp	AICwt	NagR2	(Intercept)	CumErr	stimlen
preserved \sim CumErr	856.3598	0.000000	1.0000000	0.7383196	0.3914156	2.615613	-	\overline{NA}
							1.431687	
$preserved \sim CumErr$	858.4344	2.074506	0.3544269	0.2616804	0.3916807	2.413815	-	0.0296144
+ stimlen							1.441423	
preserved \sim stimlen	1197.1025	340.742658	30.0000000	0.0000000	0.0197618	3.120125	NA	-
								0.1800221

```
#######
# level 2 -- add cumulative preserved
#######
BestMEFactor <- BestMEModelFormula
OtherFactor<-"CumPres"
if(!grepl(OtherFactor,BestMEFactor,fixed = TRUE)){
  AICSummary <- TestLevel2Models (PosDat, BestMEFactor, OtherFactor)
  CumAICSummary <- ConcatAndAddMissingColumns(CumAICSummary, AICSummary)</pre>
  kable(AICSummary)
}
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                     CumErr
                                 CumPres
##
       2.1458
                   -1.3751
                                 0.2444
##
```

Degrees of Freedom: 1460 Total (i.e. Null); 1458 Residual

```
## Null Deviance:
                        1134
## Residual Deviance: 768.3
                                AIC: 838.8
## log likelihood: -384.1719
## Nagelkerke R2: 0.4099624
## % pres/err predicted correctly: -213.2251
## % of predictable range [ (model-null)/(1-null) ]: 0.3761673
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
## Coefficients:
## (Intercept)
                     CumErr
##
         2.616
                     -1.432
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1459 Residual
## Null Deviance:
                        1134
## Residual Deviance: 787
                            AIC: 856.4
## log likelihood: -393.503
## Nagelkerke R2: 0.3914156
## % pres/err predicted correctly: -218.9804
## % of predictable range [ (model-null)/(1-null) ]: 0.3594076
## **********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    CumPres
##
        1.1853
                     0.3776
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1459 Residual
## Null Deviance:
                        1134
## Residual Deviance: 1072 AIC: 1151
## log likelihood: -535.8483
## Nagelkerke R2: 0.0770392
## % pres/err predicted correctly: -327.0999
## % of predictable range [ (model-null)/(1-null) ]: 0.0445591
## **********
Model
                        AIC
                              DeltaAIC AICexp
                                                 AICwt
                                                          NagR2 (Intercept) CumErr
                                                                                     CumPres
                     838.8179
                              0.00000
                                      1.00000000 \ 0.9998449 \ 0.4099624 \ 2.145818
                                                                                     0.2443613
preserved \sim \text{CumErr} +
CumPres
                                                                            1.375060
                     856.3598 \quad 17.54193 \quad 0.0001552 \ 0.0001551 \ 0.3914156 \quad 2.615613
preserved ~ CumErr
                                                                                         NA
                                                                            1.431687
                     1151.2444\ 312.42646\ 0.00000000\ 0.00000000\ 0.0770392\ 1.185251
preserved \sim CumPres
                                                                                NA
                                                                                     0.3776145
```

```
BestMEFactor <- BestMEModelFormula
OtherFactor<-"pos"
if(!grepl(OtherFactor,BestMEFactor,fixed = TRUE)){
 AICSummary <- TestLevel 2 Models (PosDat, Best MEFactor, Other Factor)
 CumAICSummary <- ConcatAndAddMissingColumns(CumAICSummary, AICSummary)</pre>
 kable(AICSummary)
}
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
                                    pos
##
       1.9015
                   -1.6194
                                 0.2444
## Degrees of Freedom: 1460 Total (i.e. Null); 1458 Residual
## Null Deviance:
                       1134
## Residual Deviance: 768.3
                               AIC: 838.8
## log likelihood: -384.1719
## Nagelkerke R2: 0.4099624
## % pres/err predicted correctly: -213.2251
## % of predictable range [ (model-null)/(1-null) ]: 0.3761673
## *********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    CumErr
        2.616
                    -1.432
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1459 Residual
## Null Deviance:
                       1134
## Residual Deviance: 787
                          AIC: 856.4
## log likelihood: -393.503
## Nagelkerke R2: 0.3914156
## % pres/err predicted correctly: -218.9804
## % of predictable range [ (model-null)/(1-null) ]: 0.3594076
## **********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
```

```
## Coefficients:
## (Intercept)
                      pos
       2.3864
##
                  -0.1496
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1459 Residual
## Null Deviance:
                      1134
## Residual Deviance: 1118 AIC: 1200
## log likelihood: -559.0287
## Nagelkerke R2: 0.01979099
## % pres/err predicted correctly: -338.2881
## % of predictable range [ (model-null)/(1-null) ]: 0.01197868
## ********
```

Model	AIC	DeltaAIC	AICexp	AICwt	NagR2	(Intercept)	CumErr	pos
preserved ~	838.8179	0.00000	1.0000000	0.9998449	0.4099624	1.901457	-	0.2443613
CumErr + pos							1.619421	
preserved \sim	856.3598	17.54193	0.0001552	0.0001551	0.3914156	2.615613	-	NA
CumErr							1.431687	
preserved $\sim pos$	1199.7780	360.96011	0.0000000	0.0000000	0.0197910	2.386369	NA	-
								0.1495964

CumAICSummary <- CumAICSummary %>% arrange(AIC)
BestModelFormulaL2 <- CumAICSummary\$Model[BestModelIndexL2]
write.csv(CumAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_main_effects_plus_one_model_summary.csv")
kable(CumAICSummary)</pre>

Model	AIC	DeltaAI@ICexp AICw	t NagR2	(Intercept	ÇumEri	rI(pos^2) pos	stimlen	CumPres
preserved ~	838.817	790.0000001.000000009998	844940996	24145818	-	NA	NA	NA	0.2443613
CumErr +					1.37506	0			
CumPres									
preserved \sim	838.817	790.00000001.000000009998	844940996	24901457	-	NA	0.24436	13 NA	NA
CumErr + pos					1.61942	1			
preserved \sim	839.358	820.0000001.000000009997	79 607 .41147	628 239260	-	0.03211	1000290	94 NA	NA
CumErr +					1.61246	6			
$I(pos^2) + pos$									
preserved \sim	856.359	9817.00165 9 .0002033B0002	20 3 339141	526615613	-	NA	NA	NA	NA
CumErr					1.43168	7			
preserved \sim	856.359	9 8 9.0000001.000000 0073 83	3196639141	526615613	-	NA	NA	NA	NA
CumErr					1.43168	7			
preserved \sim	856.359	9 & 17.54193 @ .00015 52 20001	550139141	526615613	-	NA	NA	NA	NA
CumErr					1.43168	7			
preserved \sim	856.359	9 & 17.54193 @ .00015 52 20001	15 501 39141	526615613	-	NA	NA	NA	NA
CumErr					1.43168	7			
preserved \sim	858.434	42.0745060.35442692616	6800439168	027. 413815	-	NA	NA	0.02961	$44\mathrm{NA}$
CumErr + stimlen					1.44142	3			
preserved \sim	1151.24	4 81 2.4264 6 00000000000000000000000000000000000	0000007703	92185251	NA	NA	NA	NA	0.3776145
CumPres									
preserved \sim	1197.10) 254 0.7426 58)000000000000	0000001976	13 8120125	NA	NA	NA	-	NA
stimlen								0.18002	21
preserved $\sim pos$	1199.77	7 8336 0.9601 0 6000000000000000000000000000000000	0000001979	120386369	NA	NA	-	NA	NA
							0.14959	64	
preserved \sim	1201.49	9 53 62.1369 03 0000000000000	0000002011	43 507068	NA	0.00854	- 26	NA	NA
$I(pos^2) + pos$							0.22284	04	

```
# explore influence of frequency and length
if(grep1("stimlen", BestModelFormulaL2)){ # if length is already in the formula
  Level3ModelEquations<-c(
     BestModelFormulaL2, # best model from level 2
    "preserved ~ 1", # null model
      paste0(BestModelFormulaL2," + log_freq")
}else if(grepl("log_freq",BestModelFormulaL2)){ # if log_freq is already in the formula
   Level3ModelEquations<-c(
      BestModelFormulaL2, # best model from level 2
    "preserved ~ 1", # null model
      paste0(BestModelFormulaL2," + stimlen")
  )
}else{
  Level3ModelEquations<-c(
      BestModelFormulaL2, # best model from level 2
    "preserved ~ 1", # null model
     paste0(BestModelFormulaL2," + log_freq"),
     paste0(BestModelFormulaL2," + stimlen"),
     paste0(BestModelFormulaL2," + stimlen + log_freq")
}
Level3Res<-TestModels(Level3ModelEquations,PosDat)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## **********
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    CumErr
                                 CumPres
                                             log_freq
##
        2.1330
                   -1.3356
                                  0.2545
                                               0.1726
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1457 Residual
## Null Deviance:
                       1134
## Residual Deviance: 760.4
                                AIC: 831.2
## log likelihood: -380.2198
## Nagelkerke R2: 0.4177467
## % pres/err predicted correctly: -211.4771
## % of predictable range [ (model-null)/(1-null) ]: 0.3812575
## model index: 5
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
```

```
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
                                CumPres
                                             stimlen
                                                         log_freq
##
     2.116583
                 -1.336364
                               0.253784
                                            0.002613
                                                         0.173613
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1456 Residual
## Null Deviance:
                       1134
## Residual Deviance: 760.4
                               AIC: 833.2
## log likelihood: -380.2189
## Nagelkerke R2: 0.4177483
## % pres/err predicted correctly: -211.472
## % of predictable range [ (model-null)/(1-null) ]: 0.3812723
## **********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
                                CumPres
       2.1458
                   -1.3751
                                 0.2444
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1458 Residual
## Null Deviance:
                       1134
## Residual Deviance: 768.3
                               AIC: 838.8
## log likelihood: -384.1719
## Nagelkerke R2: 0.4099624
## % pres/err predicted correctly: -213.2251
## % of predictable range [ (model-null)/(1-null) ]: 0.3761673
## **********
## model index: 4
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
                                CumPres
                                             stimlen
##
      2.52788
                  -1.35119
                                0.26164
                                            -0.06111
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1457 Residual
## Null Deviance:
                       1134
## Residual Deviance: 767.3
                               AIC: 839
## log likelihood: -383.6589
## Nagelkerke R2: 0.4109752
## % pres/err predicted correctly: -213.1602
## % of predictable range [ (model-null)/(1-null) ]: 0.3763564
## *********
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
```

```
## (Intercept)
##
         1.835
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1460 Residual
## Null Deviance:
                        1134
## Residual Deviance: 1134 AIC: 1213
## log likelihood: -566.8741
## Nagelkerke R2: 0
## % pres/err predicted correctly: -342.4016
## % of predictable range [ (model-null)/(1-null) ]: 0
BestModelL3<-Level3Res$ModelResult[[ BestModelIndexL3 ]]</pre>
BestModelFormulaL3<-Level3Res$Model[[BestModelIndexL3]]</pre>
AICSummary <- data.frame (Model=Level3Res$Model,
                       AIC=Level3Res$AIC,
                       row.names = Level3Res$Model)
AICSummary$DeltaAIC<-AICSummary$AIC-AICSummary$AIC[1]
AICSummary$AICexp<-exp(-0.5*AICSummary$DeltaAIC)
AICSummary$AICwt<-AICSummary$AICexp/sum(AICSummary$AICexp)
AICSummary$NagR2<-Level3Res$NagR2
AICSummary <- merge(AICSummary, Level3Res Coefficient Values,
                          by='row.names',sort=FALSE)
AICSummary <- subset(AICSummary, select = -c(Row.names))
write.csv(AICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_main_effects_plus_one_len_freq_summary.csv")
kable(AICSummary)
```

Model	${\bf AIC} {\bf Delta AICAI Cexp\ AICwt\ Nag R2\ (Intercept {\bf CumErr CumPre} {\bf kog_free} {\bf timlen} \\$					
preserved ~ CumErr +	831.20050.0000001.000000007112189941774627.132995 - 0.254460991726201 NA					
$CumPres + log_freq$	1.335608					
preserved \sim CumErr +	833.223&.0232980.36361&0258612641774&3116583 - 0.253784&1736131.0026133					
CumPres + stimlen +	1.336364					
log_freq						
preserved \sim CumErr +	838.81797.6174550.022176040157720340996224145818 - 0.2443613NA NA					
CumPres	1.375060					
preserved $\sim \text{CumErr} +$	839.00057.8000230.02024107.0143963841097522527880 - 0.2616423NA -					
CumPres + stimlen	1.351186 0.0611071					
preserved ~ 1	1212.740381.5403800000000000000000000000000000000000					

```
# BestModelIndex is set by the parameter file and is used to choose
# a model that is essentially equivalent to the lowest AIC model, but
# simpler (and with a slightly higher AIC value, so not in first position)
BestModelL3<-Level3Res$ModelResult[[ BestModelIndexL3 ]]
BestModelFormulaL3<-Level3Res$Model[BestModelIndexL3]

BestModel<-BestModelL3
BestModelL3
BestModelDeletions<-arrange(dropterm(BestModel),desc(AIC))</pre>
```

Warning in eval(family\$initialize): non-integer #successes in a binomial glm!

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
# order by terms that increase AIC the most when they are the one dropped
BestModelDeletions
## Single term deletions
## Model:
## preserved ~ CumErr + CumPres + log_freq
          Df Deviance
                           AIC
## CumErr 1 1023.99 1092.75
## CumPres 1 780.97 849.73
                768.34 837.10
## log_freq 1
## <none>
                 760.44 831.20
###################################
# Single deletions from best model
####################################
write.csv(BestModelDeletions,paste0(TablesDir,CurPat,"_",CurTask,"_best_model_single_term_deletions.csv
# plot prev err and prev cor with predicted values
PosDat$OAPred<-fitted(BestModel)</pre>
PrevCorPlot<-PlotObsPredPreviousCorrect(PosDat, "preserved", "OAPred", palette values, shape values)
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
print(PrevCorPlot)
```


PrevErrPlot<-PlotObsPredPreviousError(PosDat, "preserved", "OAPred", palette_values, shape_values)

`summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
`summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
print(PrevErrPlot)


```
PlotName<-paste0(FigDir,CurPat,"_",CurTask,"_ObsPred_BestFullModel")
ggsave(filename=paste(PlotName,"_prev_correct.tif",sep=""),plot=PrevCorPlot,device="tiff",compression =
## Saving 6.5 \times 4.5 in image
ggsave(filename=paste(PlotName,"_prev_error.tif",sep=""),plot=PrevErrPlot,device="tiff",compression = "
## Saving 6.5 \times 4.5 in image
if(DoSimulations){
  BestModelFormulaL3Rnd <- BestModelFormulaL3</pre>
  if(grepl("CumPres", BestModelFormulaL3Rnd)){
    BestModelFormulaL3Rnd <- gsub("CumPres", "RndCumPres", BestModelFormulaL3Rnd)</pre>
  if(grepl("CumErr",BestModelFormulaL3Rnd)){
    BestModelFormulaL3Rnd <- gsub("CumErr","RndCumErr",BestModelFormulaL3Rnd)</pre>
  }
  RndModelAIC<-numeric(length=RandomSamples)</pre>
  for(rindex in seq(1,RandomSamples)){
  # Shuffle cumulative values
    PosDat$RndCumPres <- ShuffleWithinWord(PosDat, "CumPres")</pre>
    PosDat$RndCumErr <- ShuffleWithinWord(PosDat, "CumErr")</pre>
    BestModelRnd <- glm(as.formula(BestModelFormulaL3Rnd),</pre>
                         family="binomial",data=PosDat)
    RndModelAIC[rindex] <- BestModelRnd$aic</pre>
  ModelNames<-c(paste0("***",BestModelFormulaL3),</pre>
```

```
rep(BestModelFormulaL3Rnd,RandomSamples))
  AICValues <- c(BestModelL3$aic,RndModelAIC)
  BestModelRndDF <- data.frame(Name=ModelNames,AIC=AICValues)</pre>
  BestModelRndDF <- BestModelRndDF %>% arrange(AIC)
  BestModelRndDF <- rbind(BestModelRndDF,</pre>
                          data.frame(Name=c("Random average"),
                                      AIC=c(mean(RndModelAIC))))
  BestModelRndDF <- rbind(BestModelRndDF,</pre>
                          data.frame(Name=c("Random SD"),
                                      AIC=c(sd(RndModelAIC))))
  write.csv(BestModelRndDF,paste0(TablesDir,CurPat,"_",CurTask,
                                   "_best_model_with_random_cum_term.csv"),
            row.names = FALSE)
}
# plot influence factors
num_models <- nrow(BestModelDeletions) - 1</pre>
# minus 1 because last
# model is always <none> and we don't want to include that
if(num_models > 4){
 last_model_num <- 4</pre>
}else{
  last_model_num <- num_models</pre>
FinalModelSet<-ModelSetFromDeletions(BestModelFormulaL3,
                                      BestModelDeletions,
                                      last_model_num)
PlotName<-pasteO(FigDir,CurPat,"_",CurTask,"_FactorPlots")</pre>
FactorPlot<-PlotModelSetWithFreq(PosDat,FinalModelSet,</pre>
                                 palette_values,FinalModelSet,PptID=CurPat)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 1
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                     CumErr
         2.616
                     -1.432
##
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1459 Residual
## Null Deviance:
                        1134
## Residual Deviance: 787 AIC: 856.4
## log likelihood: -393.503
## Nagelkerke R2: 0.3914156
```

```
## % pres/err predicted correctly: -218.9804
## % of predictable range [ (model-null)/(1-null) ]: 0.3594076
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
## Coefficients:
## (Intercept)
                     CumErr
                                  CumPres
##
        2.1458
                    -1.3751
                                   0.2444
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1458 Residual
## Null Deviance:
                         1134
## Residual Deviance: 768.3
                                 AIC: 838.8
## log likelihood: -384.1719
## Nagelkerke R2: 0.4099624
## % pres/err predicted correctly: -213.2251
## % of predictable range [ (model-null)/(1-null) ]: 0.3761673
## ************
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                                              log_freq
                     CumErr
                                  CumPres
        2.1330
                    -1.3356
                                                0.1726
##
                                   0.2545
##
## Degrees of Freedom: 1460 Total (i.e. Null); 1457 Residual
## Null Deviance:
                        1134
## Residual Deviance: 760.4
                                 AIC: 831.2
## log likelihood: -380.2198
## Nagelkerke R2: 0.4177467
## % pres/err predicted correctly: -211.4771
## % of predictable range [ (model-null)/(1-null) ]: 0.3812575
## ***********
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
```

- ## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
- ## difficult to discriminate
- ## i you have requested 7 values. Consider specifying shapes manually if you need that many have
- ## them.
- ## Warning: Removed 9 rows containing missing values or values outside the scale range
- ## (`geom_point()`).
- ## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
- ## difficult to discriminate
- ## i you have requested 8 values. Consider specifying shapes manually if you need that many have
- ## them.
- ## Warning: Removed 2 rows containing missing values or values outside the scale range
- ## (`geom_point()`).
- ## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
- ## difficult to discriminate
- ## i you have requested 7 values. Consider specifying shapes manually if you need that many have
- ## them.
- ## Warning: Removed 9 rows containing missing values or values outside the scale range (`geom_point()`)
- ## Removed 9 rows containing missing values or values outside the scale range (`geom_point()`).
- ## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
- ## difficult to discriminate
- ## i you have requested 8 values. Consider specifying shapes manually if you need that many have
- ## them.
- ## Warning: Removed 2 rows containing missing values or values outside the scale range (`geom_point()`)
- ## Removed 2 rows containing missing values or values outside the scale range (`geom_point()`).
- ## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
- ## difficult to discriminate
- ## i you have requested 7 values. Consider specifying shapes manually if you need that many have
- ## them.
- ## Warning: Removed 9 rows containing missing values or values outside the scale range (`geom_point()`)
- ## Removed 9 rows containing missing values or values outside the scale range (`geom_point()`).
- ## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
- ## difficult to discriminate
- ## i you have requested 8 values. Consider specifying shapes manually if you need that many have
- ## them.

Warning: Removed 2 rows containing missing values or values outside the scale range ('geom point()')

- ## Removed 2 rows containing missing values or values outside the scale range (`geom_point()`).
- ## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
- ## difficult to discriminate
- ## i you have requested 7 values. Consider specifying shapes manually if you need that many have
- ## them.
- ## CHEM.
- ## Removed 9 rows containing missing values or values outside the scale range (`geom_point()`).
- ## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes

Warning: Removed 9 rows containing missing values or values outside the scale range (`geom_point()`)

- ## difficult to discriminate
- ## i you have requested 8 values. Consider specifying shapes manually if you need that many have
- ## them.

Warning: Removed 2 rows containing missing values or values outside the scale range (`geom_point()`)
Removed 2 rows containing missing values or values outside the scale range (`geom_point()`).

ggsave(paste0(PlotName,".tif"),plot=FactorPlot,width = 360,height=400,units="mm",device="tiff",compress
use \blandscape and \elandscape to make markdown plots landscape if needed
FactorPlot

DA.Result<-dominanceAnalysis(BestModel)</pre>

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
```

DAContributionAverage <- ConvertDominanceResultToTable (DA.Result)

write.csv(DAContributionAverage,paste0(TablesDir,CurPat,"_",CurTask,"_dominance_analysis_table.csv"),ro

kable(DAContributionAverage)

	CumErr	CumPres	\log_{freq}
McFadden	0.2611773	0.0355996	0.0233084
SquaredCorrelation	0.1877217	0.0271510	0.0181184
Nagelkerke	0.3332024	0.0481924	0.0321599
Estrella	0.2238788	0.0301304	0.0196277

	deviance	deviance_explained
CumErr + CumPres + log_freq	760.4395	373.3087
CumErr + CumPres	768.3438	365.4044
CumErr	787.0060	346.7422
null	1133.7483	0.0000

```
deviance_differences_df<-GetDevianceSet(FinalModelSet,PosDat)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
write.csv(deviance_differences_df,paste0(TablesDir,CurPat,"_",CurTask,"_deviance_differences_table.csv"),row.names = FALSE)
deviance_differences_df
##
                                                     model deviance deviance explained
## CumErr + CumPres + log_freq CumErr + CumPres + log_freq 760.4395
                                                                                373.3087
## CumErr + CumPres
                                          CumErr + CumPres 768.3438
                                                                                365.4044
## CumErr
                                                     CumErr 787.0060
                                                                                346.7422
## null
                                                      null 1133.7483
                                                                                  0.0000
                               percent_explained percent_of_explained_deviance
## CumErr + CumPres + log_freq
                                        32.92695
                                                                      100.00000
## CumErr + CumPres
                                        32.22977
                                                                       97.88263
## CumErr
                                        30.58371
                                                                       92.88350
## null
                                         0.00000
                                                                             NA
                               increment in explained
## CumErr + CumPres + log freq
                                             2.117374
## CumErr + CumPres
                                             4.999128
## CumErr
                                            92.883498
## null
                                             0.000000
kable(deviance differences df[,2:3], format="latex", booktabs=TRUE) %%
  kable_styling(latex_options="scale_down")
kable(deviance_differences_df[,c(4:6)], format="latex", booktabs=TRUE) %>%
  kable styling(latex options="scale down")
```

	${\tt percent_explained}$	$percent_of_explained_deviance$	$increment_in_explained$
$-$ CumErr + CumPres + log_freq	32.92695	100.00000	2.117374
CumErr + CumPres	32.22977	97.88263	4.999128
CumErr	30.58371	92.88350	92.883498
null	0.00000	NA	0.000000

```
NagContributions <- t(DAContributionAverage[3,])</pre>
NagTotal<-sum(NagContributions)</pre>
NagPercents <- NagContributions / NagTotal</pre>
NagResultTable <- data.frame(NagContributions = NagContributions, NagPercents = NagPercents)
names(NagResultTable)<-c("NagContributions", "NagPercents")</pre>
write.csv(NagResultTable,paste0(TablesDir,CurPat," ",CurTask," nagelkerke contributions table.csv"),row.names = TRUE)
NagPercents
##
            Nagelkerke
## CumErr 0.80570334
## CumPres 0.11653220
## log freq 0.07776446
sse results list<-compare SS accounted for(FinalModelSet, "preserved ~ 1", PosDat, N cutoff=10)
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
```

```
## Warning in (null_cumerr_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
## Warning in (null cumcor resid^2) * (N values$len pos N): longer object length is not a
## multiple of shorter object length
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in (null_cumerr_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
## Warning in (null_cumerr_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in (null_cumerr_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
## Warning in (null_cumerr_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
sse_table<-sse_results_table(sse_results_list)</pre>
write.csv(sse_table,paste0(TablesDir,CurPat,"_",CurTask,"_sse_results_table.csv"),row.names = TRUE)
sse_table
##
                                   model p_accounted_for model_deviance diff_CumErr
## 1
                      preserved ~ CumErr
                                               0.8515390
                                                               787.0060 0.00000000
## 2
              preserved ~ CumErr+CumPres
                                               0.9033475
                                                               768.3438 0.05180856
## 3 preserved ~ CumErr+CumPres+log freq
                                               0.9046307
                                                               760.4395 0.05309172
```

model	$p_accounted_for$	${\bf model_deviance}$
preserved ~ CumErr	0.8515390	787.0060
preserved ~ CumErr+CumPres	0.9033475	768.3438
preserved ~ CumErr+CumPres+log_freq	0.9046307	760.4395

model	diff_CumErr	diff_CumErr+CumPres	diff_CumErr+CumPres+log_freq
$preserved \sim CumErr$	0.0000000	-0.0518086	-0.0530917
$preserved \sim CumErr + CumPres$	0.0518086	0.0000000	-0.0012832
$preserved \sim CumErr + CumPres + log_freq$	0.0530917	0.0012832	0.0000000