2012-2013-第一学期 工科数学分析期中试题解答(2012.11)

-. 1. $\cos f(x) \cdot f'(x) - f'(\cos x) \sin x$

2.
$$\frac{1}{3}$$
, 5

3.
$$(\alpha + \beta)A$$

4. 82cm/sec

5.
$$\frac{7}{2}$$

$$\frac{d^2y}{dx^2} = \frac{\frac{1}{t^2}}{\frac{-t}{\sqrt{1-t^2}}} = -\frac{\sqrt{1-t^2}}{t^3}$$
 (8 $\frac{1}{2}$)

$$= e^{\lim_{x \to 0} \frac{\ln(1+x) - x}{x(e^x - 1)}}$$
(5 $\frac{1}{12}$)

$$= e^{\lim_{x \to 0} \frac{1}{1+x} - 1} = e^{\lim_{x \to 0} \frac{-1}{2(1+x)}} = e^{-\frac{1}{2}}$$
 (9 分)

$$\stackrel{\text{de}}{=} x < 0 \qquad f'(x) = \arctan \frac{1}{x^2} + x \frac{1}{1 + \frac{1}{x^4}} \cdot \frac{-2}{x^3} = \arctan \frac{1}{x^2} - \frac{2x^2}{x^4 + 1} \qquad \dots (6 \ \text{f})$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{x \arctan \frac{1}{x^{2}}}{x} = \frac{\pi}{2}$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{3x^{2} + x \tan x}{x} = 0$$

五.
$$x_2 = \sqrt{3x_1} = \sqrt{3\sqrt{3}} > \sqrt{3} = x_1$$
 设 $x_n > x_{n-1}$ 则有 $x_{n+1} = \sqrt{3x_n} > \sqrt{3x_{n-1}} = x_n$ 故 x_n 单调增加 ...(3 分) $x_1 = \sqrt{3} < 3$ 设 $x_{n-1} < 3$ 则有 $x_{n+1} = \sqrt{3x_n} < \sqrt{3 \times 3} = 3$ 故 x_n 有 上界,因此 $\{x_n\}$ 有极限, ...(6 分) 设 $\lim_{n \to \infty} x_n = A$,由 $x_n = \sqrt{3x_{n-1}}$ 两端取极限符 $A = \sqrt{3A}$,解得 $A = 0$ (含 去), $A = 3$ 故 $\lim_{n \to \infty} x_n = 3$...(9 分) 将点 A ,B 代入得 $-1 = a + b + c$ $-1 = a - b + c$ 故 $b = 0$...(2 分) 椭圆 5 程 $\frac{dy}{dx} = 2ax$...(5 分) 将点 A 代入 $y = 2x^2 + c$ 得 $\frac{dy}{dx} = 2ax$...(7 分) 将点 A 代入 $y = 2x^2 + c$ 得 $c = -3$ 故所求拋物线方程为 $y = 2x^2 - 3$...(9 分) 七. 设 $f(x) = 3x^4 - 4x^3 - 6x^2 + 12x - 20$...(1 分) $f'(x) = 12x^3 - 12x^2 - 12x + 12 = 12(x - 1)^2(x - 1)$...(2 分) $f'(x) = 0$ 符 $x = 1$ $x = -1$...(3 分) $f'(1) = -15 < 0$ $f(-1) = -31 < 0$...(5 分) $f'(x) = +\infty$...(7 分) $f'(x) = +\infty$...(8 分)

八.
$$S = 2\pi h = 4\pi \sqrt{R^2 - r^2}$$
 (3 分)
$$\frac{dS}{dr} = 4\pi \sqrt{R^2 - r^2} + 4\pi \frac{-r}{\sqrt{R^2 - r^2}} = 4\pi \frac{R^2 - 2r^2}{\sqrt{R^2 - r^2}}$$
 (5 分)
$$\Leftrightarrow \frac{dS}{dr} = 0 \quad \text{得} \quad r = \frac{R}{\sqrt{2}}$$
 (7 分)
$$h = 2\sqrt{R^2 - r^2} = \sqrt{2}R$$
 (8 分)
由何趣的实际意义、..., 故当 $h = \sqrt{2}R$, $r = \frac{R}{\sqrt{2}}$ 时侧面积最大 (9 分)

力. 设 $f(x) = (x+1)\ln\frac{x+1}{x} - 1$ (1 分)
$$f'(x) = \ln\frac{x+1}{x} + (x+1)(\frac{1}{x+1} - \frac{1}{x}) = \ln\frac{x+1}{x} - \frac{1}{x}$$
 (2 分)
$$f''(x) = \frac{1}{x+1} - \frac{1}{x} + \frac{1}{x^2} = \frac{1}{x^2(x+1)} > 0$$
 (3 分)
$$\text{故} \quad f'(x) \oplus \text{嗣增加},$$
又 $\lim_{x \to \infty} f'(x) \oplus \text{副ind}(\ln(1 + \frac{1}{x}) - \frac{1}{x}) = 0$ 故当 $x > 0$ 时, $f'(x) < 0$ (6 分)
因此 $f(x)$ 单调减少,又
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (x+1)\ln(1 + \frac{1}{x}) - 1 = \lim_{x \to \infty} (x+1)\frac{1}{x} - 1 = 1 - 1 = 0$$
 故当 $x > 0$ 时, $f(x) > 0$ 即 $f(x) + 1 \ln\frac{x+1}{x} > 1$ (9 分)

十.
$$\lim_{x \to \infty} y = \pi \oplus \text{fee} \text{fixibs}(x = 1)$$
 (1 分)
$$\lim_{x \to \infty} \frac{y}{x} = 1 \lim_{x \to \infty} (y - x) = 5 \text{ fashifield}(y = x + 5)$$
 (3 分)
$$y' = \frac{(x+1)^2(x-5)}{(x-1)^3}$$
 (4 分)
$$\Rightarrow y' = 0 \text{ fashifield}(x = 1) \text{ fashifield}(x = 1)$$

x	(-∞,-1)	-1	(-1,1)	1	(1,5)	5	(5,+∞)
<i>y</i> ′	+	0	+		_	0	+
y"	_	0	+		+		+
у		拐点 (-1,0)	<u>)</u>	间断	<u></u>	极小值 13.5	<u></u>

.....(10 分)

.....(12 分)

十一.
$$\diamondsuit$$
 $F(x) = (b-x)^a f(x)$ (2 分)

则F(x)在[a,b]上连续,在(a,b)内可导,

且由题设及
$$\lim_{x\to a} \frac{f(x)}{x-a} = 1$$
,有

$$f(a) = \lim_{x \to a} f(x) = 0,$$
(4 分)

故
$$F(a) = F(b) = 0$$
(5分)

根据罗尔定理, 在(a,b)内存在 ξ , 使得 $F'(\xi)=0$

由于
$$a \neq 0$$
,可得 $f(\xi) = \frac{b - \xi}{a} f'(\xi)$(8分)