

What is LaTeX?

 TeX is a typesetting system designed in 1978 to automate the production of high quality print using any type of computer

- LaTeX is a document markup language used to create documents in TeX.
 - Often formatted as: LATEX

Assignment overview

 Create a tutorial designed to teach a novice engineering student how to create a document in LaTeX.

 The tutorial itself should be created using LaTeX.

 You should use an IEEE formatting template (from an IEEE class file – more on that later)

Assignment requirements (1 of 2)

- Introduction
 - Why will this tutorial be helpful?
 - Why should I learn LaTeX?
- Creating a .tex file
 - Environments: \begin{ } and \end{ }
 - Reserved Characters
 - Why are these reserved?

 - What if you want to display these characters?
 - Preamble
 - \documentclass[] and class files
 - Packages
 - \begin{document} and \end{document}
 - Title and Heading Information
 - Title, Author and Date
 - \maketitle command

Assignment requirements (2 of 2)

- Sections
 - Subsections
- Body text: Paragraphs and Content
- Tables
- Figures
- Mathematical formulas
- How to: Acknowledgements
- How to: References
- Conclusion
- Acknowledgements
- References

Common problems to avoid

- Don't just present examples, explain them.
- Provide a meaningful introduction, consider your audience's perspective.
- Use your own words, do not copy from the sample template.
- Be sure to include all the requirements.
- Spellcheck! (LaTeX doesn't do that automatically)

Where do I get LaTeX?

- You will need both a LaTeX client and a LaTex Compiler
- There are many LaTeX clients, but we recommend Texmaker
- Texmaker (LaTeX editor for Windows, Mac, and Linux):
 - http://www.xmlmath.net/texmaker/download.html
 - Mac users: you may need to adjust your security preferences to allow installation
- LaTeX Compilers:
 - MiKTeX for Windows: http://miktex.org/download
 - MacTeX for Mac: http://tug.org/mactex/
 - TeX Live for Linux: https://www.tug.org/texlive/
- Web-based LaTeX editor: https://www.sharelatex.com/
- This may not support the custom class file used for this assignment.

Finding an IEEE class file

- First, what is a class file?
 - A class file is a set of document specifications such as formatting information, font styles, etc.
- For this assignment, download and unzip:
 - http://people.ucsc.edu/~gmoulds/latex_185.zip

Using the IEEE class file and template

- After you unzip "latex_185.zip", it should create the folder "latex 185"
- Contains files:
 - IEEEtran.cls (class file)
 - latex_185_moulds_g.tex (.tex starting template)
 - latex_185_moulds_g.tex (sample PDF)
 - latex_sample_packages.tex (packages .tex file)
 - slug.pdf (sample image file)
 - Titration_Plot.pdf (sample data for graph)
 - CMPE185_LaTeX_Requirements.pdf (requirement list)

Saving and Submitting

- Once you open the .tex file, rename your file:
- latex_I85_last name_first initial.tex
- Submit your .tex file and the titration image file
- To: gmoulds@soe.ucsc.edu
- Cc: rbrobins@ucsc.edu, mhovanes@ucsc.edu
- Subject: LaTeX Tutorial CMPE 185

Table Section

Explain the difference between

```
\begin{table} and \begin{tabular}
```

Explain the following characters/symbols:

```
o l, c, r, | (vertical bar), \hline, \\
```

- Explain how to enter content.
- Use an example table showing how to create a table at least 2 columns wide and 3 rows long.

Figure Section

 Create a graph using the titration lab data found in the "Titration_Plot.pdf" file from the zip folder.

- Explain how you included the graph into your tutorial.
 - You can plot the data in any medium: Microsoft Excel, MATLAB, or even LaTeX.

Figure section (continued)

• Explain \includegraphics[]{}

- Include a meaningful caption, explaining the data presented.
 - What conclusions can be made?
 - Don't state the obvious.
 - Why is the image notable?

Mathematical formulas

 Demonstrate how to create formulas, using examples such as these:

$$_{3}F_{2}\begin{bmatrix} a & b & c \\ d & e \end{bmatrix}; z \end{bmatrix}$$
 $_{3}F_{2}\begin{bmatrix} a & b & c \\ d & e \end{bmatrix}; z \end{bmatrix}$ $_{3}F_{2}\begin{bmatrix} a & b & c \\ d & e \end{bmatrix}; z \end{bmatrix}$ $\frac{n!}{k!(n-k)!} = \binom{n}{k}$

- LaTeX code for the most common formulas:
 - http://en.wikibooks.org/wiki/LaTeX/Mathematics

Mathematical formulas (continued)

- Demonstrate:
 - Equation environments (in-line vs. display)
 - \circ Symbols (example: "\delta" Δ)
 - Fractions
 - Superscript and Subscript

How to: References

- Demonstrate how to set up the thebibliography environment
 - Explain how to include each bibitem
- Explain the following commands:
 - \label
 - \ref
 - \cite
 - Note: It will be helpful to use a previous figure as an example for \label and \ref

How to: Acknowledgements

- Demonstrate how to include this section.
 - Note: this is different from including your own Acknowledgements section
- What is this section for?

Acknowledgements and References

- For acknowledgements, thank anyone who personally helped you with this assignment.
 - If you read a general tutorial or watched an instructional YouTube video on LaTeX, but didn't specifically reference it, thank the creators.
 - If you received help from a current CMPE 185 student, let us know.
- Anything you do specifically reference should, of course, be cited and included in the References section.