1 Distributions

Binominale Distribution mit zurücklegen

<u>∧</u> Mit zurücklegen <u>∧</u> ∧

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

Beispiel: Wir haben 7 Weiße Bälle und 3 Rote Bälle: Wie Wie groß ist die Wahrscheinlichkeit, dass wir in n=5 Zügen k=2 rote Bälle ziehen? p ist 7/10

$$P(X=2) = {5 \choose 2} \left(\frac{3}{10}\right)^2 \left(\frac{7}{10}\right)^3.$$

1 dbinom(x = 2, size = 5, prob = 3/10)
2 #0.1029193

x: Wie viele Rote Bälle wir bekommen wollen,

size: Wie Oft wir ziehen,

prob: Die prob einen Roten Ball zu ziehen

Hypergemoetric Distribution ohne zurücklegen

$$P(X = k) = \frac{\binom{M}{k} \binom{N - M}{n - k}}{\binom{N}{n}}$$

N: Gesamtanzahl aller Elemente(z.B alle Kugeln),

M: Anzahl der Roten Kugeln gesamt,

n: Wie oft wir Ziehen,

k: Wie viele Roten wir Ziehen

x: wie viele von den gezogenen Bällen Rot sein sollen,

M: wie viele Rote Bälle,

n: wie viele nicht Rote,

k: wie viele Bälle wir ziehen

Multinomial Distribution mit zurücklegen

Beispiel: Angenommen, wir haben n=5 Versuche. drei mögliche Ergebnisse (z.B. rot, blau, schwarz) mit $Rot=\frac{15}{20},\ Gr\ddot{\mathbf{u}}n=\frac{4}{20},\ Blau=\frac{1}{20}.$ Wir fragen: Wie groß ist die Wahrscheinlichkeit, dass genau $Rot=2,\ Gr\ddot{\mathbf{u}}n=2,\ Blau=1$ auftritt?

Formel:
$$\frac{n!}{x_1! x_2! \cdots x_k!} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}$$
,

$$\frac{5!}{2!2!1!} \left(\frac{15}{20}\right)^2 \left(\frac{4}{20}\right)^2 \left(\frac{1}{20}\right)^1 = 0.3375.$$

1 (factorial(5) / (factorial(2) * factorial(1))) *
2 ((15/20)^2 * (4/20)^2 * (1/20)^1)

#0.03375

Multivariate Hypergeometric Distribution

OHNE zurücklegen

Mie Binomial aber mit mehr als zwei Optionen. ∧ ∧

Beispiel:

Angenommen, wir haben n=5 Versuche. drei mögliche Ergebnisse (z.B. rot, blau, schwarz) mit $Rot = \frac{15}{20}$, $Gr\ddot{u}n = \frac{4}{20}$, $Blau = \frac{1}{20}$. Wir fragen: Wie groß ist die Wahrscheinlichkeit, dass genau Rot=2, $Gr\ddot{u}n=2$, Blau=1 auftritt?

Formel:
$$P(X_1 = k_1, X_2 = k_2, ..., X_r = k_r) = \frac{\binom{K_1}{k_1} \binom{K_2}{k_2} ... \binom{K_r}{k_r}}{\binom{N}{k_1}}$$

$$\frac{\binom{15}{2}\binom{4}{2}\binom{1}{1}}{\binom{20}{5}} \approx 0.04063467.$$

(choose(15,2) * choose(4,2) * choose(1,1)) /
 choose(20,5)
#0.04063467

Sequentielle Ziehung mit Zurücklegen

<u>∧</u> M mit Zurücklegen <u>∧</u> ∧

Wir haben insgesamt 20 Bälle, davon sind 15 Bälle nicht rot und 5 Bälle sind rot. Wir wollen die Wahrscheinlichkeit erst 4 nicht rote Bälle zu ziehen und dann ein roten Ball zu ziehen.

P(Keinen roten Ball) = $\frac{15}{20}$ P(Einen roten Ball) = $\frac{5}{20}$

$$P(X=5) = \left(1 - \frac{15}{20}\right)^4 \cdot \frac{4}{15}$$

$(1 - (5 / 20))^4 * 5 / 20$

Sequentielle Ziehung <mark>Ohne</mark> Zurücklegen

↑ ↑ Ohne Zurücklegen ↑ ↑

Wir haben insgesamt 20 Bälle, davon sind 15 Bälle nicht rot und 5 Bälle sind rot. Wir wollen die Wahrscheinlichkeit erst 4 nicht rote Bälle zu ziehen und dann ein roten Ball zu ziehen.

P(Keinen roten Ball) = $\frac{15}{20}$ P(Einen roten Ball) = $\frac{5}{20}$ P(einen roten Ball nach 4 Zügen) = $\frac{5}{16}$

$$P(X=5) = \frac{\binom{15}{4}\binom{5}{0}}{\binom{20}{5}} \cdot \frac{5}{16}$$

Wir berechnen die Wahrscheinlichkeit 4 nicht rote Bälle zu ziehen Multipliziert mit der Wahrscheinlichkeit einen roten aus den verbleibenden Bällen zu Ziehen.

$$((choose(15,4)*choose(5,0))/choose(20,4))$$

+ 5/16

2 Type I and II Errors

	True state of H_0	
Statistical decision	H ₀ True	H₀ False
Reject H_0	Type I Error	Correct
Do not reject H_0	Correct	Type II Error

Definitions:

- α : Probability of rejecting H_0 given that H_0 is true.
- β : Probability of not rejecting H_0 given that H_0 is false.

3 Relevante Übersetzungen

- 1. Dispersion: Streuung (vermutlich SD gemeint)
- 2. Scatter: Streuung (vermutlich SD gemeint)

4 P-Value

Hypothese	Test-Typ	p-Wert Berechnung
$H_0: \mu \geq \mu_0$	Einseitig (links)	p = pnorm(z)
$H_0: \mu \leq \mu_0$	Einseitig (rechts)	p = 1 - pnorm(z)
H_0 : $\mu = \mu_0$	Zweiseitig	$p = 2 \cdot pnorm(- z)$

5 Library

library(TeachingDemos)

- Der Index 0 z.b. μ_0 bedeutet, dass es sich um einen gegebenen Wert, und nicht um einen geschätzten Wert handelt.

I) Gauß Test:

Hauptziel: Hier wird die Hypothese über den Mittelwert (μ) getestet

Mean μ ist unbekannt, wir kennen SD σ

Gegeben muss sein:

$$H_0: \mu = \mu_0, \quad H_0: \mu \le \mu_0, \quad H_0: \mu \ge \mu_0$$

Symbol	Bedeutung
n	Stichprobengröße
σ_0	Standardabweichung der gesamtheit
$\overline{X}_{(n)}$	Sample Mean

Decision Rule R:

$$T = \frac{\overline{X} - \mu_0}{\frac{\sigma_0}{\sqrt{n}}} \in R \implies \text{reject } H_0$$

Rejection Region *R*:

H_0	rejection region R
$\mu = \mu_0$	$(-\infty, -u_{1-\frac{\alpha}{2}}) \cup (u_{1-\frac{\alpha}{2}}, \infty)$
$\mu \leq \mu_0$	$(u_{1-\alpha},\infty)$
$\mu \geq \mu_0$	$(-\infty, -u_{1-\alpha})$

$$u_{1-\frac{\alpha}{2}} = \text{qnorm}(1 - (\text{alpha} / 2))$$

Beispiel:

```
1 n <- 100
 2 sd <- 0.3
 3
   sample mean <- 10.1
 4 alpha <- 0.1
   #HO: mu = 10, H1: mu != 10
 5
 6 mu<sup>0</sup> <- 10
 7
   #Rejection region
 8 \text{ ru } \leftarrow \text{qnorm}(1 - (\text{alpha} / 2))
    rl \leftarrow -qnorm(1 - (alpha / 2))
 9
10 | #[-1.644854, 1.644854]
11
    #teststatistic
                                                   13
    t <- (sample mean - mu0) /(sd / sqrt(n))
    #3.333333
13
14
    t > ru
15
    #True
    #we reject h0 because we are in the
        rejection region
    p_value <- 2* pnorm(-abs(t))</pre>
17
18 #0.0008581207
    p_value < alpha</pre>
19
20
    #True we reject HO
```

hier vielleichtg noch z test einfpgen

II) t-Test:

Hauptziel: Hier wird die Hypothese über den Mittelwert (μ) getestet.

Mean μ und SD σ_0 sind unbekannt

 \wedge Mean μ_0 wird durch H_0 gegeben \wedge

Gegeben muss sein:

$$H_0: \mu = \mu_0, \quad H_0: \mu \le \mu_0, \quad H_0: \mu \ge \mu_0$$

S	ymbol	Bedeutung
	n	Stichprobengröße
	$S_{(n)}$	Sample SD
	$\overline{X}_{(n)}$	Sample Mean

Decision Rule:

$$T = \frac{\overline{X} - \mu_0}{\frac{s_{(n)}}{\sqrt{n}}} \in R \implies \text{reject } H_0$$

Rejection Region *R*:

H_0	Rejection Region R
$\mu = \mu_0$	$(-\infty, -t_{n-1,1-\frac{\alpha}{2}}) \cup (t_{n-1,1-\frac{\alpha}{2}}, \infty)$
$\mu \leq \mu_0$	$(t_{n-1,1-lpha},\infty)$
$\mu \geq \mu_0$	$(-\infty, -t_{n-1,1-\alpha})$

$$t_{n-1,1-\frac{\alpha}{2}} = \text{qt}(1\text{-alpha}, \text{n-1})$$

Beispiel:

```
1 | #H0: mu >= 250, h1: < 250
 2 n <- 82
3
   sample mu <- 248
   sample_sd <- 5
4
   alpha <- 0.05
6 mu0 <- 250
   R \leftarrow -qt(1-alpha, n-1)
   #[ , -1.663884]
8
   t <- (sample_mu - mu0) / ((sample_sd) /
       sqrt(n))
10
   #-3.622154
11
   t < r
12
   #We reject the HO
   p_value \leftarrow pt(t, n - 1)
   #0.0002540167
14
15
   p_value < alpha</pre>
   #True We reject the HO
```

III) Test für Varianz σ_0^2 :

Hauptziel: Hier wird die Hypothese über die Varianz (σ_0^2) getestet.

Mean μ und SD σ sind unbekannt

Λ Kein $σ_0$ da σ gegeben durch H_0 Λ Also kein Schätzwert Λ

Gegeben muss sein:

$$H_0: \sigma^2 = \sigma_0^2$$
, $H_0: \sigma^2 \le \sigma_0^2$, $H_0: \sigma^2 \ge \sigma_0^2$

Symbol	Bedeutung
$S_{(n)}^2$	Sample SD
$\overline{X}_{(n)}$	Sample Mean

Decision Rule:

$$T = \frac{(n-1) S_{(n)}^2}{\sigma_0^2} \in R \implies \text{reject } H_0.$$

Rejection Region R:

H_0	rejection region <i>R</i>
$\sigma^2 = \sigma_0^2$	$(0, \chi^2_{n-1, \frac{\alpha}{2}}) \cup (\chi^2_{n-1, 1-\frac{\alpha}{2}}, \infty)$
$\sigma^2 \leq \sigma_0^2$	$\left(\chi^2_{n-1,1-lpha},\infty\right)$
$\sigma^2 \ge \sigma_0^2$	$\left(0,\chi^2_{n-1,\alpha}\right)$

Beispiel:

```
\#h0: sd >= 7, h1: sd < 7
 2 n <- 82
   sample_mu <- 248
   sample sd <-5
 5 alpha <- 0.05
   sd0 <- 7
 7
   #Rejection region
   R <- qchisq(alpha, n-1)</pre>
   #[, 61.26148
 9
10 #Teststatistics
   t \leftarrow ((n - 1) * sample sd)/sd0
11
12
   #57.85714
   t < r
13
14 | #We reject HO, in R area
   p value <- pchisq(t, n-1)
16 #0.02419782
17
   p_value < alpha</pre>
   #we reject HO
```

IIII) Bernoulli Test für Probability p_0 :

Hauptziel: Zu prüfen, ob die beobachtete Erfolgsrate \hat{p} signifikant von der vorgegebenen Wahrscheinlichkeit p_0 abweicht

Probability p_0 ist unbekannt

Number of successes:
$$X = \sum_{i=1}^{n} X_i \sim B(n, p)$$
, d.h. $\mathbb{E}(X) = np$
 $Var(X) = np(1-p)$.

Gegeben muss sein:

$$H_0: p = p_0, \quad H_0: p \le p_0, \quad H_0: p \ge p_0$$

Symbol	Bedeutung
n	Stichprobengröße
X	Number of successes
\hat{p}	$\frac{X}{n}$ Example Probabilitz

Teststatistic

$$T = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}, \quad \text{mit } \hat{p} = \frac{X}{n}.$$

Rejection Region R

H_0	Rejection Area R
$p = p_0$	$(-\infty, -u_{1-\frac{\alpha}{2}}) \cup (u_{1-\frac{\alpha}{2}}, \infty)$
$p \leq p_0$	$(u_{1-\alpha},\infty)$
$p \ge p_0$	$(-\infty, -u_{1-\alpha})$

Normal Approximation:

```
1 | #a) 80% immunity rate
   #b) H0: p <= 80, H1: p > 80
   p0 <- 0.8; n <- 200; x <- 172
   alpha <- 0.05
   phut <- x / n
   #Rejection region
   R \leftarrow pnorm(1 - alpha)
   #r <- [0.8289439, ]
   #teststatistic
   t \leftarrow (phut-p0)/sqrt((p0 * (1 - p0)) / n)
10
11
   #2.12132
12
   t > R
13
   #We reject HO
14
   p_value <- 1 - pnorm(t)</pre>
15
   #0.01694743
16
   p value < alpha
   #We reject HO
17
```

Exact test:

I) 2-Sample Gauss Test:

Hauptziel: Hier wird die Hypothese über die Mittelwerte (μ_1, μ_2) getestet

Means sind unbekannt, wir kennen σ_1 , σ_2

Gegeben muss sein:

$$H_0: \mu_1 = \mu_2, \quad H_0: \mu_1 \le \mu_2, \quad H_0: \mu_1 \ge \mu_2$$

Symbol	Bedeutung
n_1, n_2	Stichprobengrößen
σ_1, σ_2	SD der gesamtheiten
$\overline{X}_{(n_1)}$, $\overline{Y}_{(n_2)}$	Sample Means

Teststatistik:

$$T = \frac{\overline{X}_{(n_1)} - \overline{Y}_{(n_2)}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

Decision Rule *R*:

$$T \in R \implies \text{reject } H_0$$

Rejection Region *R*:

H_0	Rejection Region R
$\mu_1 = \mu_2$	$(-\infty, -u_{1-\frac{\alpha}{2}}) \cup (u_{1-\frac{\alpha}{2}}, \infty)$
$\mu_1 \leq \mu_2$	$(u_{1-\alpha},\infty)$
$\mu_1 \ge \mu_2$	$(-\infty, u_{\alpha})$

Beispiel:

```
1 \mid m1 \leftarrow c(5.46, 5.34, ..., 5.82)
 2 m2 \leftarrow c(5.45, 5.31, 4.11, ..., 4.09)
 3 sd1 <- 0.5
 4 sd2 <- 0.6
 5 | n1 <- length(m1)
 6 \mid n2 \mid - length(m2)
 7
   #test the HO: mu1 >= mu2
 8
   alpha <- 0.05
 9 #rejection Region
10 r <- qnorm(alpha)</pre>
11 | #[ , -1.644854]
12 | #teststistic
13 t \leftarrow (mean(m1) - mean(m2)) /
     sqrt((sd1^2 / n1) + (sd2^2 / n2))
14
15 | #1.027782
16 | p_value <- pnorm(t)
17 #0.8479739
18 | #we fail to reject HO since we are
       outside of the rejection area
```

II) 2-Sample t-Test (Varianzen gleich und unbekannt):

Hauptziel: Hier wird die Hypothese über die Mittelwerte (μ_1, μ_2) getestet

Means μ_1 , μ_2 sind unbekannt und $\sigma_1 = \sigma_2$

Gegeben muss sein:

 $H_0: \mu_1 = \mu_2, \quad H_0: \mu_1 \le \mu_2, \quad H_0: \mu_1 \ge \mu_2$

★ Es muss für x und y ein Sample gegeben sein ★ Beispiel:

III) Welch test (Varianzen ungleich, aber unbekannt):

Hauptziel: Hier wird die Hypothese über die Mittelwerte (μ_1, μ_2) getestet

Means μ_1, μ_2 sind unbekannt und $\sigma_1 \neq \sigma_2$

Gegeben muss sein:

 $H_0: \mu_1 = \mu_2, \quad H_0: \mu_1 \le \mu_2, \quad H_0: \mu_1 \ge \mu_2$

⚠ Es muss für x und y ein Sample gegeben sein ⚠ **Beispiel:**

 \bigwedge Das einzige was sich ändert ist: var.equal = $F \bigwedge$

IV) Two Paired Sample t-Test

σ ist unbekannt

Gegeben muss sein:

 $H_0: \mu_1 = 0$, $H_0: \mu_1 \le 0$, $H_0: \mu_1 \ge 0$

★ Es muss für x und y ein Sample gegeben sein ★ Beispiel:

```
#H0: mu = 0, H1: mu != 0

x <- c(16, 15, 11, 20, ..., 15, 14, 16)

y <- c(13, 13, 10,..., 10, 15, 11, 16)

t.test(x = x, y = y, alternative = 'two.
    sided', paired = T, var.equal = T,
    conf.level = 0.95, mu = 0)

#0.0007205
```

↑ Das einzige was sich ändert ist: paired = T↑

V) Testing two Variances - F Test

Hauptziel: Wir vergleichen die beiden sample Varianzen.

σ ist unbekannt

Gegeben muss sein:

 $H_0: \sigma_1 = \sigma_2$, $H_0: \sigma_1 \leq \sigma_2$, $H_0: \sigma_1 \geq \sigma_2$

★ Es muss für x und y ein Sample gegeben sein ★ Beispiel:

```
x <- c(102.4, 101.3, ..., 100.1)
y <- c(98.4, 101.7, ..., 101.0)
#H0: sd_x <= sd_y, H1: sd_x > sd_y
alpha <- 0.05
var.test(x = x, y = y, alternative = '
    greater', conf.level = 1-alpha)
#p-value = 0.03404</pre>
```

Beispiel: Erst H0 dass vars gleich sind. Wenn nicht reject, dann müssten wir mein Mean test, var.equal auf True

Wenn

10