(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 29.10.2003 Bulletin 2003/44
- (21) Application number: 97954073.9
- (22) Date of filing: 12.12.1997

- (51) Int CI.7: **C12N 15/81**, C07K 14/49, C07K 14/65, C12N 1/19
- (86) International application number: **PCT/US97/22647**
- (87) International publication number: WO 98/026080 (18.06.1998 Gazette 1998/24)

(54) METHOD FOR EXPRESSION OF HETEROLOGOUS PROTEINS IN YEAST

VERFAHREN ZUR EXPRESSION VON HETEROLOGEN PROTEINEN IN HEFE PROCEDES PERMETTANT D'EXPRIMER DES PROTEINES HETEROLOGUES DANS LA LEVURE

- (84) Designated Contracting States:

 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

 NL PT SE
- (30) Priority: 13.12.1996 US 32720 P
- (43) Date of publication of application: 06.10.1999 Bulletin 1999/40
- (60) Divisional application: **03012465.5**
- (73) Proprietor: CHIRON CORPORATION Emeryville, California 94608-2916 (US)
- (72) Inventors:
 - TEKAMP-OLSON, Patricia San Anselmo, CA 94960 (US)
 - MERRYWEATHER, James, P. Berkeley, CA 94708 (US)

- (74) Representative: Goldin, Douglas Michael
 J.A. KEMP & CO.
 14 South Square
 Gray's Inn
 London WC1R 5JJ (GB)
- (56) References cited:

EP-A- 0 324 274 WO-A-95/02059 WO-A-95/35384 US-A- 5 187 263

- E.W. RAINES ET AL.: "Biologic activity of PDGF-related sequences expressed in yeast" JOURNAL OF CELLULAR BIOCHEMISTRY, SUPPL. 9A, 1985, page 136 XP002064182
- A. ÖSTMAN ET AL.: "Synthesis and assembly of a functionally active recombinant platelet-derived growth factor AB heterodimer" THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 263, 1988, pages 16202-16208, XP002064183 cited in the application

P 0 946 736 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

10

30

35

40

45

50

FIELD OF THE INVENTION

[0001] The present invention relates to the production of recombinant proteins using yeast host cells as the expression system. More particularly, it relates to compositions and methods for expression of heterologous proteins and their secretion as the biologically active mature proteins.

BACKGROUND OF THE INVENTION

[0002] Yeast host expression systems have been used to express and secrete proteins foreign to yeast. Numerous approaches have been developed in terms of the degree of expression and the yield of biologically active mature proteins.

[0003] Such approaches have involved modifications to the various molecular components that are involved in expression and secretion of proteins in yeast. These components include the translation and termination regulatory regions for gene expression; signal peptide and secretion leader peptide sequences, which direct the precursor form of the heterologous protein through the yeast secretory pathway; and processing sites, which cleave leader peptide sequences from the polypeptide sequence of the protein of interest.

[0004] Expression of the protein of interest can be enhanced with use of yeast-recognized regulatory regions. Increased yield of the heterologous protein of interest is commonly achieved with the use of yeast-derived signal and secretion leader peptide sequences. The use of native signal-leader peptide sequences is believed to improve direction of the protein of interest through the secretory pathway of the yeast host.

[0005] Previous work has demonstrated that full-length yeast α -factor signal-leader sequences can be used to drive expression and processing of heterologous proteins in yeast host cells. Substantial improvements in efficiency of expression can be accomplished with the use of truncated α -factor leader sequences, particularly for heterologous proteins that are poorly expressed by the full-length sequence or whose expression is nonresponsive to the full-length sequence.

[0006] Although the various approaches available in the art have been shown to work with some proteins, problems persist with post-translational processing. Often the amount of protein secreted is unacceptably low or incorrect processing leads to inactive forms of the protein. This is particularly true for proteins that are initially expressed as a precursor polypeptide sequence and whose assumption of a native conformation is facilitated by the presence of a native propeptide sequence in the precursor polypeptide.

[0007] Methods for expression of heterologous proteins and their secretion in a biologically active mature Form using a yeast host cell as the expression system are needed.

SUMMARY OF THE INVENTION

[0008] The present invention provides nucleotide sequences encoding a signal sequence for a yeast secreted protein, a native N-terminal or C-terminal propeptide sequence of a mature protein of interest, and a peptide sequence for the mature protein of interest. Each of these elements is associated with a processing site recognized in vivo by a yeast proteolytic enzyme. Any or all of these processing sites may be a preferred processing site that has been modified or synthetically derived for more efficient cleavage in vivo. In turn, all of these elements are operably linked to a yeast promoter and optionally other regulatory sequences.

[0009] The nucleotide coding sequences of these compositions may additionally comprise a leader peptide sequence for a yeast secreted protein. When present, this element, which is also associated with a processing site recognized in vivo by a yeast proteolytic enzyme, is positioned 3' to the yeast signal sequence and 5' to the sequence for the mature protein of interest. Thus cleavage by a yeast proteolytic enzyme removes the yeast leader sequence from the hybrid precursor molecule comprising the sequence for the mature protein of interest.

[0010] These compositions are useful in methods for expression of heterologous mammalian proteins and their secretion in the biologically active mature form. Therefore the invention also provides vectors comprising the nucleotide sequences of the invention and yeast host cells stably transformed with a nucleotide sequence of the invention. Such cells can then be cultured and screened for secretion of the biologically active mature protein of interest.

[0011] The invention also provides a method for expression of heterologous proteins and their secretion in the biologically active mature form using a yeast host cell as the expression system, said method comprising transforming said yeast cell with a vector comprising a nucleotide sequence of the invention.

[0012] The method of the present invention is particularly useful in production of mammalian proteins whose assumption of a native confirmation is facilitated by the presence of a native propeptide sequence in the precursor polypeptide.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013]

5

10

30

35

40

50

Figure 1 is a map of plasmid pAB24.

Figure 2 is a map of the rhPDGF-B expression cassette in pAGL7PB and pYAGL7PB.

Figure 3 is a map of rhPDGF-B expression plasmid pYAGL7PB.

Figure 4 is a map of the rhPDGF-B expression cassette in pL7PPB and pYL7PPB.

Figure 5 shows the final steps in the construction of the rhPDGF-B expression cassette in pL7PPB.

Figure 6 is a map of rhPDGF-B expression plasmid pYL7PPB.

DETAILED DESCRIPTION OF THE INVENTION

[0014] The present invention provides compositions and methods for expression of heterologous proteins of interest, more particularly heterologous mammalian proteins, and their secretion in a biologically active mature form using a yeast host cell as the expression system. By "biologically active mature form" is intended a protein whose conformational form is similar to the native conformation such that its biological activity is substantially the same as the biological activity of the native protein.

[0015] Compositions of the present invention are nucleotide sequences encoding hybrid precursor polypeptides that each comprise the polypeptide sequence for a mature heterologous protein of interest. Expression vectors comprising these nucleotide sequences, all under the operational control of a yeast promoter region and a yeast terminator region, are also provided. Methods of the invention comprise stably transforming a yeast host cell with said vectors, where expression of the nucleotide sequence encoding the hybrid precursor polypeptide leads to secretion of the mature heterologous protein-of interest in a biologically active form.

[0016] By "heterologous protein of interest" is intended a protein that is not expressed by the yeast host cell in nature. Preferably the heterologous protein will be a mammalian protein, including substantially homologous and functionally equivalent variants thereof. By "variant" is intended a polypeptide derived from the native polypeptide by deletion (so-called truncation) or addition of one or more amino acids to the N-terminal and/or C-terminal end of the native protein; deletion or addition of one or more amino acids at one or more sites in the native polypeptide; or substitution of one or more amino acids at one or more sites in the native polypeptide. Such variants may result from, for example, genetic polymorphism or from human manipulation. Methods for such manipulations are generally known in the art.

[0017] For example, amino acid sequence variants of the polypeptide can be prepared by mutations in the cloned DNA sequence encoding the native polypeptide of interest. Methods for mutagenesis and nucleptide sequence alterations are well known in the art. See, for example, Walker and Gaastra, eds. (1983) *Techniques in Molecular Biology* (MacMillan Publishing Company, New York); Kunkel (1985) *Proc. Natl. Acad. Sci. USA* 82:488-492; Kunkel *et al.* (1987) *Methods Enzymol.* 154:367-382; Sambrook *et al.* (1989) *Molecular Cloning: A Laboratory Manual* (Cold Spring Harbor, New York); U.S. Patent No. 4,873,192; and the references cited therein. Guidance as to appropriate amino acid substitutions that do not affect biological activity of the protein of interest may be found in the model of Dayhoff *et al.* (1978) in *Atlas of Protein Sequence and Structure* (Natl. Biomed. Res. Found., Washington, D.C.), herein incorporated by reference. Conservative substitutions, such as exchanging one amino acid with another having similar properties, may be preferred. Examples of conservative substitutions include, but are not limited to, Gly⇔Ala, Val⇔Ile⇔Leu, Asp⇔Glu, Lys⇔Arq, Asn⇔Gln, and Phe⇔Trp⇔Tyr.

[0018] In constructing variants of the protein of interest, modifications will be made such that variants continue to possess the desired activity. Obviously, any mutations made in the DNA encoding the variant protein must not place the sequence out of reading frame and preferably will not create complementary regions that could produce secondary mRNA structure. See EP Patent Application Publication No. 75,444.

[0019] Thus proteins of the invention include the naturally occurring forms as well as variants thereof. These variants will be substantially homologous and functionally equivalent to the native protein. A variant of a native protein is "substantially homologous" to the native protein when at least about 80%, more preferably at least about 90%, and most preferably at least about 95% of its amino acid sequence is identical to the amino acid sequence of the native protein. A variant may differ by as few as 1, 2, 3, or 4 amino acids. By "functionally equivalent" is intended that the sequence of the variant defines a chain that produces a protein having substantially the same biological activity as the native protein of interest. Such functionally equivalent variants that comprise substantial sequence variations are also encompassed by the invention. Thus a functionally equivalent variant of the native protein will have a sufficient biological activity to be therapeutically useful. By "therapeutically useful" is intended effective in achieving a therapeutic goal, as, for example, healing a wound.

[0020] Methods are available in the art for determining functional equivalence. Biological activity can be measured using assays specifically designed for measuring activity of the native protein, including assays described in the present

invention. Additionally, antibodies raised against the biologically active native protein can be tested for their ability to bind to the functionally equivalent variant, where effective binding is indicative of a protein having a conformation similar to that of the native protein.

[0021] The nucleotide sequences encoding the mature heterologous proteins of interest can be sequences cloned from non-yeast organisms, or they may be synthetically derived sequences, usually prepared using yeast-preferred codons. Examples of heterologous proteins suitable for the invention include, but are not limited to transforming growth factor (TGF-alpha and TGF-beta), somatostatin (as in SRIF 1), parathyroid hormone, and more particularly platelet-derived growth factor (PDGF) and insulin growth factor (IGF), all of which have a native prosequence as part of the precursor protein.

[0022] Thus compositions of the present invention are nucleotide sequences comprising in the 5' to 3' direction and operably linked (a) a yeast recognized transcription and translation initiation region, (b) a coding sequence for a hybrid precursor polypeptide, and (c) a yeast-recognized transcription and translation termination region, wherein said hybrid precursor polypeptide comprises:

$$5'-SP-(PS)_{n-1}(LP-PS)_{n-2}-(NPRO_{MHP}-PS)_{n-3}-MHP-(PS-CPRO_{MHP})_{n-4}-3'$$

wherein:

10

15

20

25

30

35

40

45

50

55

SP comprises a signal peptide sequence for a yeast secreted protein;

PS comprises a processing site cleaved in vivo by a yeast proteolytic enzyme;

LP comprises a leader peptide sequence for a yeast secreted protein;

NPRO_{MHP} comprises a native N-terminal propeptide sequence of a mature heteroiogous protein of interest;

MHP comprises a peptide sequence for said mature heterologous mammalian protein of interest;

CPRO_{MHP} comprises a native C-terminal propeptide sequence of said mature heterologous mammalian protein of interest; and

n-1, n-2, n-3, and n-4 independently = 0 or 1;

wherein said processing sites allow for proteolytic processing of said precursor polypeptide to said mature protein in vivo by a yeast host cell, and wherein at least n-3 or n-4=1.

[0023] As is the case for the heterologous protein of interest, each of the other elements present in the hybrid precursor polypeptide can be a known naturally occurring polypeptide sequence or can be synthetically derived, including any variants thereof that do not adversely affect the function of the element as described herein. By "adversely affect" is intended inclusion of the variant form of the element results in decreased yield of the secreted mature heterologous protein of interest relative to the hybrid precursor polypeptide comprising the native form of the element.

[0024] In constructing the nucleotide sequence encoding the hybrid precursor polypeptide, it is within skill in the art to employ adapters or linkers to join the nucleotide fragments encoding the various elements of the precursor polypeptide. See, for example, Sambrook *et al.* (1989) *Molecular Cloning: A Laboratory Manual* (Cold Spring Harbor, New York). Thus, the hybrid precursor polypeptide may comprise additional elements positioned 5' or 3' to any of the primary elements listed above, including the yeast leader peptide sequence and its associated yeast-recognized processing site when present.

[0025] For purposes of the present invention, SP is a presequence that is an N-terminal sequence for the precursor polypeptide of the mature form of a yeast secreted protein. When the nucleotide sequence encoding the hybrid precursor polypeptide is expressed in a transformed yeast host cell, the signal peptide sequence functions to direct the hybrid precursor polypeptide comprising the mature heterologous protein of interest into the endoplasmic reticulum (ER). Movement into the lumen of the ER represents the initial step into the secretory pathway of the yeast host cell. Although the signal peptide of the invention can be heterologous to the yeast host cell, more preferably the signal peptide will be native to the host cell.

[0026] The signal peptide sequence of the invention may be a known naturally occurring signal sequence or any variant thereof as described above that does not adversely affect the function of the signal peptide. Examples of signal peptides appropriate for the present invention include, but are not limited to, the signal peptide sequences for α-factor (see, for example, U.S. Patent No. 5,602,034; Brake *et al.* (1984) *Proc. Natl. Acad. Sci. USA* 81:4642-4646); invertase (WO 84/01153); PHO5 (DK 3614/83); YAP3 (yeast aspartic protease 3; PCT Publication No. 95/02059); and BAR1 (PCT Publication No. 87/02670). Alternatively, the signal peptide sequence may be determined from genomic or cDNA libraries using hybridization probe techniques available in the art (see Sambrook *et al.* (1989) *Molecular Cloning: A Laboratory Manual* (Cold Spring Harbor, New York), or even synthetically derived (see, for example, WO 92/11378). [0027] During entry into the ER, the signal peptide is cleaved off the precursor polypeptide at a processing site. The processing site can comprise any peptide sequence that is recognized in vivo by a yeast proteolytic enzyme. This

processing site may be the naturally occurring processing site for the signal peptide. More preferably, the naturally occurring processing site will be modified, or the processing site will be synthetically derived, so as to be a preferred processing site. By "preferred processing site" is intended a processing site that is cleaved in vivo by a yeast proteolytic enzyme more efficiently than is the naturally occurring site. Examples of preferred processing sites include, but are not limited to, dibasic peptides, particularly any combination of the two basic residues Lys and Arg, that is Lys-Lys, Lys-Arg, Arg-Lys, or Arg-Arg, most preferably Lys-Arg. These sites are cleaved by the endopeptidase encoded by the KEX2 gene of Saccharomyces cerevisiae (see Fuller et al. Microbiology 1986:273-278) or the equivalent protease of other yeast species (see Julius et al. (1983) Cell 32:839-852). In the event that the KEX2 endopeptidase would cleave a site within the peptide sequence for the mature heterologous protein of interest, other preferred processing sites could be utilized such that the peptide sequence of interest remains intact (see, for example, Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor, New York).

[0028] A functional signal peptide sequence is essential to bring about extracellular secretion of a heterolegous protein from a yeast cell. Additionally, the hybrid precursor polypeptide may comprise a secretion leader peptide sequence of a yeast secreted protein to further facilitate this secretion process. When present, the leader peptide sequence is generally positioned immediately 3' to the signal peptide sequence processing site. By "secretion leader peptide sequence" (LP) is intended a peptide that directs movement of a precursor polypeptide, which for the purposes of this invention is the hybrid precursor polypetide comprising the mature heterologous protein to be secreted, from the ER to the Golgi apparatus and from there to a secretory vesicle for secretion across the cell membrane into the cell wall area and/or the growth medium. The leader peptide sequence may be native or heterologous to the yeast host cell but more preferably is native to the host cell.

[0029] The leader peptide sequence of the present invention may be a naturally occurring sequence for the same yeast secreted protein that served as the source of the signal peptide sequence, a naturally occurring sequence for a different yeast secreted protein, or a synthetic sequence (see, for example, WO 92/11378 and WO 95/02059), or any variants thereof that do not adversely affect the function of the leader peptide.

[0030] For purposes of the invention, the leader peptide sequence when present is preferably derived from the same yeast secreted protein that served as the source of the signal peptide sequence, more preferably an α-factor protein. A number of genes encoding precursor α-factor proteins have been cloned and their combined signal-leader peptide sequences identified. See, for example, Singh *et al.* (1983) *Nucleic Acids Res.* 11:4049-4063; Kurjan *et al.*, U.S. Patent No. 4,546,082; U.S. Patent No. 5,010,182. Alpha-factor signal-leader peptide sequences have been used to express heterologous proteins in yeast. See, for example, Elliott *et al.* (1983) *Proc. Natl. Acad. Sci. USA* 80:7080-7084; Bitter *et al.* (1984) *Proc. Natl. Acad. Sci.* 81:5330-5334; Smith *et al.* (1985) *Science* 229:1219-1229; WO 95/02059; U.S. Patent Nos. 4,849,407 and 5,219,759.

30

35

40

50

[0031] Alpha-factor, an oligopeptide mating pheromone approximately 13 residues in length, is produced from a larger precursor polypeptide of between about 100 and 200 residues in length, more typically about 120-160 residues. This precursor polypeptide comprises the signal sequence, which is about 19-23 (more typically 20-22 residues), the leader sequence, which is about 60 residues, and typically 2-6 tandem repeats of the mature pheromone sequence. Although the signal psptide sequence and full-length α -factor leader peptide sequence can be used, more preferably for this invention a truncated α -factor leader peptide sequence will be used with the signal peptide when both elements are present in the hybrid precursor molecule.

[0032] By "truncated" α -factor leader peptide sequence is intended a portion of the full-length α -factor leader peptide sequence that is about 20 to about 60 amino acid residues, preferably about 25 to about 50 residues, more preferably about 30 to about 40 residues in length. Methods for using truncated α -factor leader sequences to direct secretion of heterologous proteins in yeast are known in the art. See particularly U.S. Patent No. 5,602,034. When the hybrid precursor polypeptide sequence comprises a truncated α -factor leader peptide, deletions to the full-length leader will preferably be from the C-terminal end and will be done in such a way as to retain at least one glycosylation site (-Asn-Y-Thr/Ser-, where Y is any amino acid residue) in the truncated peptide sequence. This glycosylation site, whose modification is within skill in the art, is retained to facilitate secretion (see particularly WO 89/02463).

[0033] When the hybrid precursor polypeptide sequence of the present invention comprises a leader peptide sequence, such as the α -factor leader sequence, there will be a processing site immediately adjacent to the 3' end of the leader peptide sequence. This processing site enables a proteolytic enzyme native to the yeast host cell to cleave the yeast secretion leader peptide sequence from the 5' end of the native N-terminal propeptide sequence of the mature heterologous protein of interest, when present, or from the 5' end of the peptide sequence for the mature heterologous protein of interest. The processing site can comprise any peptide sequence that is recognized in vivo by a yeast proteolytic enzyme such that the mature heterologous protein of interest can be processed correctly. The peptide sequence for this processing site may be a naturally occurring peptide sequence for the native processing site of the leader peptide sequence. More preferably, the naturally occurring processing site will be modified, or the processing site will be synthetically derived, so as to be a preferred processing site as described above.

[0034] In the present invention, the nucleotide sequence encoding the hybrid precursor polypeptide comprises a

native propeptide sequence (PRO_{MHP}) for the mature heterologous protein of interest. By "native propeptide sequence" or "native prosequence" is intended that portion of an intermediate precursor polypeptide (which is called a "pro-protein") for a mature secreted protein that remains attached to the N-terminal and/or C-terminal end of the mature protein sequence following cleavage of the native signal peptide sequence (or presequence) from the initial precursor polypeptide (or "prepro-protein"). The residues of the propeptide sequence are not contained in the mature secreted protein. Rather, such extra residues are removed at processing sites by proteolytic enzymes near the end of the secretory pathway, in the trans-Golgi network (Griffiths and Simons (1986) *Science* 234:438-443) and secretory granules (Orci *et al.* (1986) *J. Cell Biol.* 103:2273-2281).

[0035] The present invention provides for the presence of propeptide sequences that naturally occur at the N-terminal and/or C-terminal end of the native pro-protein precursor form of the mature heterologous protein of interest. Thus, a propeptide sequence may be positioned between the 3' end of the signal peptide sequence processing site, or the 3' end of the yeast-recognized processing site adjacent to the leader peptide sequence if present, and the 5' end of the peptide sequence for the mature heterologous protein of interest (an N-terminal propeptide sequence, PRO_{MHP}) or immediately adjacent to the 3' end of the peptide sequence for the mature heterologous protein of interest (a C-terminal propeptide sequence, CPRO_{MHP}), depending on its orientation within the native pro-protein. The invention also provides for inclusion of both an N-terminal and a C-terminal propeptide sequence flanking the peptide sequence for the mature heterologous protein of interest when both propeptide sequences exist in the native pro-protein. Where both an N-terminal and a C-terminal propeptide sequence exists in the native pro-protein, preference for inclusion of both propeptide sequences in the hybrid precursor polypeptide will be experimentally determined.

[0036] Methods are available in the art for determining the naturally occurring processing sites for the native signal peptide and propeptide sequences of a prepro-protein (see, for example, von Heijne (1983) *Eur. J. Biochem.* 133: 17-21, (1984) *J. Mol. Biol.* 173: 243-251, (1986) *J. Mol. Biol.* 184:99-105, and (1986) *Nucleic Acids* Res. 14:4683-4690) such that the native N-terminal and/or C-terminal propeptide sequence can be determined for use in the invention.

[0037] Immediately 3' to the native N-terminal propeptide sequence (when present) or immediately 5' to the C-terminal propeptide sequence (when present) is a processing site that is recognized in vivo by a yeast proteolytic enzyme. This processing site allows for cleavage of the propeptide sequence from the peptide sequence for the mature heterologous protein of interest (MHP). It is recognized that this processing site may be the naturally occurring processing site for the propeptide sequence if the naturally occurring site is recognized in vivo by a proteolytic enzyme of the yeast host cell. More preferably, the naturally occurring processing site will be modified, or the processing site will be synthetically derived, so as to be a preferred processing site. Examples of preferred processing sites include, but are not limited to, those discussed above for the other processing. Preferably all of these processing sites will be similar such that the same yeast proteolytic enzyme brings about cleavage of the signal and leader peptide sequences and the native propeptide sequence(s).

[0038] In accordance with the invention as stated above, the yeast signal peptide and secretion leader peptide sequences, as well as the native propeptide sequences, represent those parts of the hybrid precursor polypeptide of the invention that can direct the sequence for the mature heterologous protein of interest through the secretory pathway of a yeast host cell.

[0039] In one preferred embodiment of the present invention, the nucleotide sequence of the hybrid precursor polypeptide comprises in the 5' to 3' direction:

5'-AFSP-tAFLP-PS_I-NPRO_{PDGF}-PS_{NPRO}-M_{PDGF}-3'

wherein:

10

30

35

40

45

50

55

AFSP comprises an α -factor signal peptide sequence and a processing site;

tAFLP comprises a truncated α -factor secretion leader peptide sequence;

PS₁ comprises a preferred processing site for the leader peptide sequence;

 $NPRO_{PDGF}$ comprises the peptide sequence for a native N-terminal propeptide of a mature platelet-derived growth factor (PDGF);

 PS_{NPRO} comprises a preferred processing site for the N-terminal propeptide sequence; and M_{PDGF} comprises the sequence for said mature PDGF.

[0040] Preferably the α -factor signal peptide and truncated α -factor secretion leader peptide sequences are derived from the Mat α gene of *S. cerevisiae* as outlined in the examples. The preferred truncated α -factor leader peptide sequence will include the N-terminal portion of the full-length leader sequence; that is, the leader sequence will start with the first amino acid residue of the full-length sequence and run the length of about 20 to about 60 amino acid residues, preferably about 25 to about 50 residues, more preferably about 30 to about 40 residues. In one embodiment,

a leader of about 35 residues is used.

10

30

35

40

45

50

55

[0041] The mature protein of this preferred embodiment is human platelet-derived growth factor (PDGF). PDGF, the primary mitogen in serum for mesenchymal-derived cells, is stored in platelet alpha-granules. Injury to blood vessels activates the release of PDCF from these granules in the vicinity of the injured vessels. This mitogen acts as a potent chemoattractant for fibroblasts and smooth muscle cells, as well as monocytes and neutrophils. The mitogenic activity of the localized PDGF results in proliferation of these cells at the site of injury, contributing to the process of wound repair. [0042] Purified native platelet-derived growth factor (PDGF), a glycoprotein of about 30,000 dalions, is composed of two disulfide-linked polypeptide chains. Two forms of these chains, designated A and B, have been identified. The native protein occurs as the homodimer AA or BB or the heterodimer AB, or a mixture thereof. A partial amino acid sequence for the PDGF-A chain has been identified (Johnsson *et al.*(1984) *EMBO J.* 3:921-928) and cDNAs encoding two forms of PDGF A-chain precursors have been described (U.S. Patent No. 5,219,759). The A-chain is derived by proteolytic processing of a 211 amino acid precursor polypeptide. The cDNA encoding the PDGF-B chain has also been described (*Nature* (1985) 316:748-750). The B-chain is derived by proteolytic processing of a 241 amino acid precursor.

[0043] The mature PDGF protein of the present invention will be the biologically active dimeric form, including the homodimers PDGF-AA and PDGF-BB or the heterodimer PDGF-AB, and any substantially homologous and functionally equivalent variants thereof as defined above. For example, the native amino acid sequence for the A-chain or the B-chain may be truncated at either the N-terminal or C-terminal end. Thus removal of up to 15 or up to 10 amino acids from the N-terminal or C-terminal end, respectively, of the B-chain does not affect biological activity of the variant. Additionally, amino-acid substitutions may be made. For example, an amino acid such as serine may be substituted for any of the cysteine residues at positions 43, 52, 53, and 97 of the native human B-chain and at corresponding positions in the native A-chain to obtain substantially homologous and functionally equivalent variants of the native chain. Variants of the A-chain are known based on cloned DNA sequences, such as, for example, variants having an additional 6 or 19 amino acids at the C-terminal end. See, for example, Tong et al. (1987) Nature 328:619-621; Betsholtz et al. (1986) Nature 320:695-699. One PDGF B-chain variant may be the corresponding substantially homologous portion of the amino-acid sequence encoded by the v-sis gene of simian sarcoma virus. The homologous region of the product of this gene, p28sis, begins at amino acid 67 and continues to amino acid 175, and differs from the human B-chain by only 4 amino acid residues (see, for example, European Patent Application No. 0 487 116 A1). Functionally equivalent variants can be determined with assays for biological activity as described in the examples.

[0044] The nucleotide sequence encoding the mature PDGF protein of the present invention may be genomic, cDNA, or synthetic DNA. The genes encoding the native forms of PDGF have been sequenced, and several variants are well known in the art. Expression of PDGF homodimers and heterodimers is described in, for example, U.S. Patent Nos. 4,769,328; 4,801,542; 4,845,075; 4,849,407; 5,045,633; 5,128,321; and 5,187,263. Based on the known amino acid sequences for the A- and B-chain polypeptides, synthetic nucleotide sequences encoding PDGF A-chain and B-chain polypeptides may be made *in vitro* using methods available in the art. See particularly Sambrook *et al.* (1989) *Molecular Cloning: A Laboratory Manual* (Cold Spring Harbor, New York). Where the mature protein of interest is the heterodimer PDGF-AB, the nucleotide sequences encoding the hybrid precursor polypeptides comprising the A- and B-chain polypeptides may be assembled as part of one expression cassette or assembled into separate expression cassettes for cotransformation of a yeast host cell.

[0045] In this preferred embodiment comprising mature PDG-F, the C-terminal end of the truncated α -factor secretion leader peptide sequence and of the native N-terminal propeptide sequence will terminate in a preferred processing site, preferably a dibasic processing site that is specific for the KEX2 endopeptidase of *S. cerevisiae*. The dipeptides can be any combination of the basic residues Lys and Arg, more preferably a Lys-Arg dipeptide.

[0046] The native prepro-PDGF-B additionally comprises a 51 amino acid C-terminal propeptide. In another preferred embodiment, the nucleotide sequence encoding the hybrid precursor polypeptide comprises in the 5' to 3' direction the following modified sequence:

wherein:

CPRO_{PDGF} comprises a C-terminal propeptide sequence for said PDGF mature heterologous protein of interest; and

PS_{CPBO} comprises a preferred processing site for the C-terminal propeptide sequence.

[0047] Preferably the preferred processing site for the C-terminal propeptide sequence is similar to that of the leader peptide sequence and the N-terminal propeptide sequence, such that the same yeast proteolytic enzyme brings about

cleavage of the α -factor leader peptide sequence and the sequences for both of the native propertides. Inclusion of these two additional components is experimentally determined.

[0048] In another preferred embodiment of the invention, the nucleotide sequence of the hybrid precursor polypeptide comprises in the 5' to 3' direction:

5'-AFSP-AFLP-PS_L-M_{IGF}-PS_{CPRO}-CPRO_{IGF}-3'

wherein:

10

15

20

30

35

40

45

50

55

AFSP comprises an α -factor signal peptide sequence and a processing site;

AFLP comprises an α -factor secretion leader peptide sequence

PS₁ comprises a preferred processing site for the leader peptide sequence;

 M_{IGF} comprises the peptide sequence for a mature insulin-like growth factor (IGF);

PS_{CPRO} comprises a preferred processing site for the C-terminal propeptide sequence; and

CPRO_{IGF} comprises the peptide sequence for a native C-terminal propeptide of said mature IGF.

[0049] Preferably the α -factor signal peptide and α -factor secretion leader peptide sequences are derived from the Mat α gene of *S. cerevisiae* as outlined for the preferred embodiment for PDGF.

[0050] The mature protein of this preferred embodiment is insulin-like growth factor (IGF), more particularly IGF-I. Insulin-like growth factor (IGF-I) belongs to a family of polypeptides known as somatomedins. IGF-I stimulates growth and division of a variety of cell types, particularly during development. See, for example, European Patent Application Nos. 560,723 A and 436,469 B. Thus, processes such as skeletal growth and cell replication are affected by IGF-I levels. [0051] IGF-I is structurally and functionally similar to, but antigenically distinct from, insulin. In this regard, IGF-I is a single-chain polypeptide with three intrachain disulfide bridges and four domains known as the A, B, C, and D domains, respectively. The A and B domains are connected by the C domain, and are homologous to the corresponding domains of proinsulin. The D domain, a C-terminal prosequence, is present in IGF-I but is absent from proinsulin. IGF-I has 70 amino acid residues and a molecular mass of approximately 7.5 kDa. See Rinderknecht (1978) *J. Biol. Chem.* 253: 2769 and *FEBS Lett.* 89:283. For a review of IGF, see Humbel (1990) *Eur. J. Biochem.* 190:445-462.

[0052] The mature IGF protein of the present invention will be the biologically active form and any substantially homologous and functionally equivalent variants thereof as defined above. Functionally equivalent variants can be determined with assays for biological activity, including the assay, as described in the examples. Representative assays include known radioreceptor assays using placental membranes (see, for example, U.S. Patent No. 5,324,639; Hall et al. (1974) J. Clin. Endocrinol. and Metab. 39:973-976; and Marshall et al. (1974) J. Clin. Endocrinol. and Metab. 39: 283-292), a bioassay that measures the ability of the molecule to enhance incorporation of tritiated thymidine, in a dose-dependent manner, into the DNA of BALB/c 3T3 fibroblasts (see, for example, Tamura et al. (1989) J. Biol. Chem. 262:5616-5621), and the like; herein incorporated by reference.

[0053] The art provides substantial guidance regarding the preparation and use of IGF-I variants. For example, fragment of IGF-I will generally include at least about 10 contiguous amino acid residues of the full-length molecule, preferably about 15-25 contiguous amino acid residues of the full-length molecule, and most preferably about 20-50 or more contiguous amino acid residues of full-length IGF-I. The term "IGF-I analog" also captures peptides having one or more peptide mimics ("peptoids"), such as those described in International Publication No. WO 91/04282. Several IGF-I analogs and fragments are known in the art and include those described in, for example, *Proc. Natl. Acad. Sci. USA* (1986) 83:4904-4907; *Biochem. Biophys. Res. Commun.* (1987) 149:398-404; *J. Biol. Chem.* (1988) 263: 6233-6239; *Biochem. Biophys. Res. Commun.* (1989) 165:766-771; Forsberg *et al.* (1990) *Biochem. J.* 271:357-363; U.S. Patent Nos. 4,876,242 and 5,077,276; International Publication No. WO 87/01038 and WO 89/05822. Representative analogs include one with a deletion of Glu-3 of the mature molecule, analogs with up to five amino acids truncated from the N-terminus, an analog with a truncation of the first three N-terminal amino acids and an analog including the first 17 amino acids of the B chaim of human insulin in place of the first 16 amino acids of human IGF-I.

[0054] The nucleotide sequence encoding the mature IGF protein of the present invention may be genomic, cDNA, or synthetic DNA. The genes encoding the native forms of IGF have been sequenced, and several variants are well known in the art. IGF-I and variants thereof can be produced in any number of ways that are well known in the art. For example, the IGF-I polypeptides can be isolated directly from blood, such as from serum or plasma, by known methods. See, for example, U.S. Patent No. 4,769,361; Svoboda *et al.* (1980) *Biochemistry* 19:790-797; Cornell and Boughdady (1982) *Prep. Biochem.* 12:57 and (1984) *Prep. Biochem.* 14:123. Alternatively, IGF-I can be synthesized chemically, by any of several techniques that are known to those skilled in the art. See, for example, Stewart and Young (1984) *Solid Phase Peptide Synthesis* (Pierce Chemical Company, Rockford, Illinois) and Barany and Merrifield (1980) *The Peptides: Analysis, Synthesis, Biology* (eds. Gross and Meienhofer) pp. 3-254, Vol. 2 (Academic Press, New York), for

solid phase peptide synthesis techniques; and Bodansky (1984) *Principles of Peptide Synthesis* (Springer-Verlag, Berlin) and Gross and Meienhofer, eds. (1980) *The Peptides: Analysis, Synthesis, Biology,* Vol. 1, for classical solution synthesis. The IGF-I polypeptides of the present invention can also be chemically prepared by the method of simultaneous multiple peptide synthesis. See, for example, Houghten (1985) *Proc. Natl. Acad. Sci. USA* 82:5131-5135; U.S. Patent No. 4,631,211.

[0055] In this preferred embodiment comprising mature IGF-I, the C-terminal end of the truncated α -factor secretion leader peptide sequence and the N-terminal end of the native C-terminal propeptide sequence will terminate in a preferred processing site, preferably a dibasic processing site that is specific for the KEX2 endopeptidase of *S. cerevisiae*. The dipeptides can be any combination of the basic residues Lys and Arg, more preferably a Lys-Arg dipeptide. [0056] The nucleotide sequences of the present invention are useful for producing biologically active mature heter-

10

30

35

40

45

50

ologous proteins of interest in a yeast host cell when operably linked to a yeast promoter. In this manner, the nucleotide sequences encoding the hybrid precursor polypeptides of the invention are provided in expression cassettes for introduction into a yeast host cell. These expression cassettes will comprise a transcriptional initiation region linked to the nucleotide sequence encoding the hybrid precursor polypeptide. Such an expression cassette is provided with a plurality of restriction sites for insertion of the nucleotide sequence to be under the transcriptional regulation of the regulatory regions. The expression cassette may additionally contain selectable marker genes.

[0057] Such an expression cassette comprises in the 5' to 3' direction and operably linked a yeast-recognized transcription and translation initiation region, a nucleotide coding sequence for the hybrid precursor polypeptide comprising the sequence for the mature protein of interest, and a yeast-recognized transcription and translation termination region. By "operably linked" is intended expression of the coding sequence for the hybrid precursor polypeptide is under the regulatory control of the yeast-recognized transcription and translation initiation and termination regions.

[0058] By "yeast-recognized transcription and translation initiation and termination regions" is intended regulatory regions that flank a coding sequence, in this case the nucleotide sequence encoding the hybrid polypeptide sequence, and control transcription and translation of the coding sequence in a yeast. These regulatory regions must be functional in the yeast host. The transcription initiation region, the yeast promoter, provides a binding site for RNA polymerase to initiate downstream (3') translation of the coding sequence. The promoter may be a constitutive or inducible promoter, and may be native or analogous or foreign or heterologous to the specific yeast host. Additionally, the promoter may be the natural sequence or alternatively a synthetic sequence. By foreign is intended that the transcription initiation region is not found in the native yeast of interest into which the transcription initiation region is introduced.

[0059] Suitable native yeast promoters include, but are not limited to the wild-type α-factor promoter, as well as other yeast promoters. Preferably the promoter is selected from the list including promoters for the glycolytic enzymes phosphoglucoisomerase, phosphofructokinase, phosphotrioseisomerase, phosphoglucomutase, enolase, pyruvate kinase (PyK), glyceraldehyde-3-phosphate dehydrogenase (GAP or GAPDH), alcohol dehydrogenase (ADH) (EPO Publication No. 284,044). See, for example, EPO Publication Nos. 120,551 and 164,556.

[0060] Synthetic hybrid promoters consisting of-the upstream activator sequence of one yeast promoter, which allows for inducible expression, and the transcription activation region of another yeast promoter also serve as functional promoters in a yeast host. Examples of hybrid promoters include ADH/GAP, where the inducible region of the ADH promoter is combined with the activation region of the GAP promoter (U.S. Patent Nos. 4,876,197 and 4,880,734). Other hybrid promoters using upstream activator sequences of either the ADH2, GAL4, GAL10, or PHO5 genes combined with the transcriptional activation region of a glycolytic enzyme such as GAP or PyK are available in the art (EPO Publication No. 164,556). More preferably the yeast promoter is the inducible ADH/GAP hybrid promoter.

[0061] Yeast-recognized promoters also include naturally occurring non-yeast promoters that bind yeast RNA polymerase and initiate translation of the coding sequence. Such promoters are available in the art. See, for example, Cohen et al. (1980) Proc. Natl. Acad. Sci. USA 77:1078; Mercereau-Puigalon et al. (1980) Gene 11:163; Panthier et al. (1980) Curr. Genet. 2:109); Henikoff et al. (1981) Nature 283:835; and Hollenberg et al. (1981) Curr. Topics Microbiol. Immunol. 96:119.

[0062] The termination regulatory region of the expression cassette may be native with the transcription initiation region, or may be derived from another source, providing that it is recognized by the yeast host. The termination regions may be those of the native α -factor transcription termination sequence, or another yeast-recognized termination sequence, such as those for the glycolytic enzymes mentioned above. More preferably the transcription terminator is the Mat- $\alpha(\alpha$ -factor) transcription terminator described in U.S. Patent No. 4,870,008.

[0063] The nucleotide sequences encoding the hybrid precursor polypeptides of the invention are provided in expression cassettes for expression in a yeast host. The cassette will include 5' and 3' regulatory sequences operably linked to the nucleotide sequence encoding the hybrid precursor polypeptide of interest. The cassette may also contain at least one additional nucleotide sequence of interest to be cotransformed into the yeast host. Alternatively, the additional nucleotide sequences can be provided on another expression cassette. Where appropriate, the nucleotide sequence encoding the hybrid precursor polypeptide and any additional nucleotide sequences of interest may be optimized for increased expression in the transformed yeast. That is, these nucleotide sequences can be synthesized

using yeast-preferred codons for improved expression. Methods are available in the art for synthesizing yeast-preferred nucleotide sequences of interest (see, for example. U.S. Patent Nos. 5,219,759 and 5,602,034).

[0064] Additional sequence modifications are known to enhance expression of nucleotide coding sequences in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon-intron splice site signals, transposon-like repeats, and other such well-characterized sequences that may be deleterious to gene expression. The G-C content of the sequence may be adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. When possible, the nucleotide coding sequence is modified to avoid predicted hairpin secondary mRNA structures.

[0065] In preparing the expression cassette, the various nucleotide sequence fragments may be manipulated, so as to provide for the sequences in the proper orientation and, as appropriate, in the proper reading frame. Toward this end, adapters or linkers may be employed to join the nucleotide fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous nucleotides, removal of restriction sites, or the like. For this purpose, *in vitro* mutagenesis, primer repair, restriction, annealing, resubstitutions, *e.g.*, transitions and transversions, may be involved. See particularly Sambrook *et al.* (1989) *Molecular Cloning: A Laboratory Manual* (Cold Spring Harbor, New York).

10

30

35

40

50

[0066] The expression cassettes of the present invention can be ligated into a replicon (*e.g.*, plasmid, cosmid, virus, mini-chromosome), thus forming an expression vector that is capable of autonomous DNA replication in vivo. Preferably the replicon will be a plasmid. Such a plasmid expression vector will be maintained in one or more replication systems, preferably two replications systems, that allow for stable maintenance within a yeast host cell for expression purposes, and within a prokaryotic host for cloning purposes. Examples of such yeast-bacteria shuttle vectors include Yep24 (Botstein *et al.* (1979) *Gene* 8:17-24; pCl/l (Brake *et al.* (1984) *Proc. Natl. Acad. Sci. USA* 81:4642-4646), and Yrp17 (Stnichomb *et al.* (1982) *J. Mol. Biol.* 158:157).

[0067] Additionally, a plasmid expression vector may be a high or low copy number plasmid, the copy number generally ranging from about 1 to about 200. With high copy number yeast vectors, there will generally be at least 10, preferably at least 20, and usually not exceeding about 150 copies in a single host. Depending upon the heterologous protein selected, either a high or low copy number vector may be desirable, depending upon the effect of the vector and the foreign protein on the host. See, for example, Brake *et al.* (1984) *Proc. Natl. Acad. Sci. USA* 81:4642-4646, DNA constructs of the present invention can also be integrated into the yeast genome by an integrating vector. Examples of such vectors are known in the art. See, for example, Botstein *et al.* (1979) *Gene* 8:17-24.

[0068] The host chosen for expression of the heterologous proteins of the invention will preferably be a yeast. By "yeast" is intended ascosporogenous yeasts (Endomycetales), basidiosporogenous yeasts, and yeast belonging to the Fungi Imperfecti (Blastomycetes). The ascosporogenous yeasts are divided into two families, Spermophthoraceae and Saccharomycetaceae. The later is comprised of four subfamilies, Schizosaccharomycoideae (e.g., genus Schizosaccharomyces), Nadsonioideae, Lipomycoideae, and Saccharomycoideae (e.g., genera Pichia, Kluyveromyces, and Saccharomyces). The basidiosporogenous yeasts include the genera Leucosporidium, Rhodosporidium, Sporidiobolus, Filobasidium, and Filobasidiella. Yeast belonging to the Fungi Imperfecti are divided into two families, Sporobolomycetaceae (e.g., genera Sporobolomyces, Bullera) and Cryptococcaceae (e.g., genus Candida). Of particular interest to the present invention are species within the genera Pichia, Kluyveromyces, Saccharomyces, Schizosaccharomyces, and Candida. Of particular interest are the Saccharomyces species S. cerevisiae, S. carlsbergensis, S. diastaticus, S. douglasii, S. kluyveri, S. norbensis, and S. oviformis. Species of particular interest in the genus Kluyveromyces include K. lactis. Since the classification of yeast may change in the future, for the purposes of this invention, yeast shall be defined as described in Skinner et al., eds. 1980) Biology and Activities of Yeast (Soc. App. Bacteriol. Symp. Series No. 9). In addition to the foregoing, those of ordinary skill in the art are presumably familiar with the biology of yeast and the manipulation of yeast genetics. See, for example, Bacila et al., eds. (1978) Biochemistry and Genetics of Yeast; Rose and Harrison, eds. (1987) The Yeasts (2nd ed.); Strathern et al., eds. (1981) The Molecular Biology of the Yeast Saccharomyces.

[0069] The selection of suitable yeast and other microorganism hosts for the practice of the present invention is within the skill of the art. When selecting yeast hosts for expression, suitable hosts may include those shown to have, inter alia, good secretion capacity, low proteolytic activity, and overall vigor. Yeast and other microorganisms are generally available from a variety of sources, including the Yeast Genetic Stock Center, Department of Biophysics and Medical Physics, University of California, Berkeley, California; and the American Type Culture Collection, Rockville, Maryland.

[0070] Methods of introducing exogenous DNA into yeast hosts are well known in the art. There is a wide variety of ways to transform yeast. For example, spheroplast transformation is taught by Hinnen *et al.* (1978) *Proc. Natl. Acad. Sci. USA* 75:1919-1933 and Stinchcomb *et al.*, EPO Publication No. 45,573; herein incorporated by reference. Transformants are grown in an appropriate nutrient medium, and, where appropriate, maintained under selective pressure to insure retention of endogenous DNA. Where expression is inducible, growth can be permitted of the yeast host to yield a high density of cells, and then expression is induced. The secreted, mature heterologous protein can be har-

vested by any conventional means, and purified by chromatography, electrophoresis, dialysis, solvent-solvent extraction, and the like.

[0071] The following examples are offered by way of illustration and not by way of limitation.

EXAMPLES

10

15

30

35

40

45

50

55

[0072] The following examples further describe the construction of an expression vector comprising the nucleotide sequence encoding mature human PDGF-B in accordance with the disclosed invention. Examples demonstrating the use of this expression vector to produce biologically active mature PDGF-BB in a yeast host are also provided.

[0073] Additional examples describe an expression vector comprising the nucleotide sequence encoding mature human IGF-I in accordance with the disclosed invention and demonstrate the use of this expression vector to produce biologically active mature IGF-I in a yeast host.

Example 1: Plasmid Vector pAB24

[0074] The vector selected for expressing rhPDGF-BB, pAB24, is a yeast-bacteria shuttle vector. The plasmid is a chimera of sequences from pBR322, derived from several naturally occurring bacterial plasmids, and sequences of the endogenous S. cerevisiae 2-µ plasmid (Broach (1981) in Molecular Biology of the Yeast Saccharomyces (Cold Spring Harbor Press, New York), 1:445-470). It also encodes genes enabling selection in both E. coli and S. cerevisiae hosts. The pBR322 part of pAB24 includes the ampicillin resistance (Apr)-conferring gene encoding β-lactamase, as well as a gene conferring tetracycline resistance (Tcr). These genes allow transformation of competent E. coli and selection of plasmid-containing bacteria. A unique BamHI cloning site, present in the gene encoding tetracycline resistance, is the site utilized for insertion of an expression cassette. The pBR322 portion of the vector also includes a CoIE1-like replication origin enabling replication in E. coli. Two S. cerevisiae genes derived from YEp24 (Botstein et al. (1979) Gene 8:17-24), URA3 and leu2d, enable selection in yeast host strains lacking either or both of these genes. The latter gene, leu2d, lacks a portion of the 5'-untranslated promoter region and requires high plasmid copy number for growth in leucine-deficient medium. This is necessary to achieve sufficient LEU2 protein expression for complementation of yeast strains lacking LEU2 (Erhart and Hollenberg (1983) J. Bacteriol. 156:625-635). The 2-μ sequences of pAB24 confer replication and partitioning of the expression plasmid in S. cerevisiae. Figure 1 shows a schematic map of plasmid pAB24 with key restriction sites and genetic elements. A description of the construction of pAB24 can be found in the European Patent Application publication EPO 0324 274 B1.

[0075] Three expression plasmids containing the *PDGF-B* gene, pYAGL7PB, pYL7PPB (also known as pYAGL7PPB), and PYJST400, were used to produce PDGF-BB in a yeast host. All of these expression vectors utilize pAB24 as the plasmid into which the expression cassette comprising the *PDGF-B* gene was inserted.

Example 2: Construction of Expression Plasmid pYAGL7PB

General Description

[0076] Plasmid pYAGL7PB includes an expression cassette with the following features. Transcription is mediated by the inducible, hybrid yeast promoter ADH/GAP. This promoter includes ADR2 transcription factor responsive sequences from the *S. cerevisiae* ADH2 gene (Beier and Young (1982) Nature 300:724-728) and promoter sequences from the *S. cerevisiae* gene TDH3, encoding the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAP). The ADR2 transcription factor responsive sequences confer inducible gene transcription upon downstream sequences. Induction is achieved by glucose depletion in the growth medium. Termination of transcription is mediated by the terminator derived from the *S. cerevisiae* mating factor type alpha (Matα) gene (Brake et al. (1984) Proc. Natl. Acad. Sci. USA 81:4642-4646).

[0077] The cassette further includes an open reading frame encoding a truncated $Mat\alpha$ sequence fused to a sequence encoding the human PDGF-B gene. The truncated α -factor leader mediates secretion of in-frame protein fusions. It is a derivative of S. Cerevisiae α -factor leader, the product of the $Mat\alpha$ gene (Kurjan and Herskowitz (1982) Cell 30:933-943). A dibasic amino acid processing site is present at the truncated α -factor leader/PDGF-B junction to facilitate production of correctly processed rhPDGF-BB polypeptide by yeast. Figure 2 shows a map of the pYAGL7PB expression cassette highlighting these features and the restriction enzyme sites relevant to the construction of this expression cassette. The nucleotide sequence and predicted amino acid sequence of the open reading frame encoding the truncated α -factor leader-PDGF-B primary translation product are given in SEQ ID NO: I and SEQ ID NO: 2, respectively.

Sequential Construction of pYAGL7PB

10

35

40

50

[0078] Following is a description of the sequential steps taken to construct this expression vector.

5 Construction of PDGF-B Synthetic Gene and Cloning into a Yeast Expression Vector

[0079] The synthetic gene encoding the partial dibasic processing site and rhPDGF-B (SEQ ID NOs: 3-4) was made from 17 overlapping oligonucleotides (SEQ ID NOs: 5-21) as described in Urdea *et. al.* (*Proc. Natl. Acad Sci. USA* 80 (1983):7461-7465). Ligation of the fragments results in an Xbal-Sall fragment, which was subsequently inserted into Xbal-Sall cut pPAG/ α F vector.

[0080] Plasmid pPAG/ α F is a pBR322 derivative with an expression cassette delineated by BamHI sites. The expression cassette includes the ADH/GAP hybrid promoter, as well as the open reading frame encoding the yeast α -factor leader (BamHI-XbaI), an XbaI-Sall gene fragment, and the $Mar\alpha(\alpha$ -factor) transcription terminator (Sall-BamHI). Substitution of an XbaI-Sall gene fragment (in-frame) capable of heterologous protein expression into this plasmid allows the expression and secretion of the heterologous protein. The isolation of the yeast glyceraldehyde-3-phosphate (GAP) gene promoter, the origin of the ADH/C component of the promoter, and the construction of a hybrid ADH/GAP promoter are described in U.S. Patent Nos. 4,876,197 and 4,880,734. The isolation of the yeast α -factor gene including the transcription terminator is described in U.S. Patent No. 4,870,008.

[0081] Upon dideoxy sequencing, the synthetic gene sequence was found to have a single base pair mutation, which was repaired by standard procedures. Plasmid pPAGBB-1 is the piasmid derived from pPAG/ α F that contains the correct synthetic PDGF-B (Xbal-Sall) gene.

Construction of Synthetic Truncated α-Factor Leader Gene with Dibasic Processing Site

[0082] The truncated α-factor leader mediates secretion of in-frame hybrid polypeptides. It is a derivative of *S. cerevisiae* α-factor leader, the secretion leader for mating factor type alpha, the product of the *Mat*α gene (Kurjan and Herskowitz (1982) *Cell* 30:933-943), and consists of the first 35 amino acids of the native leader. The construction and use of a truncated α-factor leader gene to mediate secretion is described in EPO Publication No. 0324 274 B1. Synthetic oligonucleotides encoding a comparable, partial (amino acids 8-35) truncated α-factor leader (L7) and part of the dibasic processing site were made from oligonucleotides given in SEQ. ID NO: 22 and and when assembled with the complementary strand shown in SEQ ID NO: 23 resulted in a PstI-BgIII fragment with a 3' -ACGTC- and a 5'-CTAG-overhang to allow for convenient ligation into the expression cassette.

Construction of pAGL7PB

[0083] The purpose of this construction was the substitution of the synthetic, partial truncated α -factor leader Pstl-Bglll gene fragment described above for most of the full-length α -factor leader in the PDGF-B expression cassette of pPAGBB-1. A 1.9 kb Pst I fragment including pBR322 sequences, the ADH/GAP hybrid promoter (marked at the 5' end by a BamHI site) and the 5' partial α -factor leader gene sequence (encoding the first seven amino acids of the native α -factor leader) was isolated from pPAGBB-1. It was ligated to kinased, annealed synthetic oligonucleotides 1.49/3°.40. Following digestion with BamHI, a partial expression cassette 5' fragment was obtained including sequences for the ADH/GAP hybrid promoter and the 5' portion of the truncated α -factor leader.

[0084] Similarly, a BgIII fragment containing the PDGF-B synthetic gene, the α -factor terminator (marked at the 3' end by a BamHI site) and pBR322 sequences was isolated from pPAGBB-1. It was ligated to kinased, annealed synthetic oligonucleotides 2.32/4°.50. Following digestion with BamHI, a partial expression cassette 3' fragment was obtained including sequences for the 3' portion of the truncated α -factor leader, PDGF-B, and the α -factor leader transcription terminator. The complete PDGF-B expression cassette was obtained following ligation of the 5' and 3' partial expression cassette gene fragments and digestion with BamHI. The BamHI expression cassette was cloned into the BamHI site of a pBR322-derived vector (pBR Δ Eco-SaI) to give plasmid pAGL7PB. A map of the PDGF-B expression cassette in this plasmid is shown in Figure 2.

Construction of pYAGL7PB

[0085] The PDGF-B expression cassette of pAGL7PB was isolated by BamHI digestion and inserted into the BamHI site of the yeast-bacteria shuttle vector pAB24 described above. A yeast expression plasmid, pYAGL7PB, was isolated. A plasmid map of pYAGL7PB is shown in Figure 3. The nucleotide sequence of the complete expression cassette and the predicted amino acid sequence of the open reading frame (ORF) encoding the truncated α -factor leader-PDGF-B primary translation product are given in SEQ ID NO; 24 and SEQ ID NO: 25, respectively.

Expression Strain Identification: MB2-1(pYAGL7PB)

[0086] Expression plasmid pYAGL7PB was transformed into *S. cerevisiae* MB2-1 by standard procedures and prototrophic uracil colonies were selected. Individual colonies from independent transformants were screened for expression following inoculation of single colonies into medium that selects for leucine prototrophs. The medium also is high in glucose to keep expression of sequences under *ADR2* regulation (including the PDGF-B gene) repressed. Cultures were subsequently diluted and grown to confluence in low glucose medium lacking uracil. Cell-free culture supernatants were prepared and assayed for PDGF-BB by immunoactivity (ELISA) and by mitogenic activity on 3T3 cells. A high PDGF-BB expressing colony, MB2-1(pYAGL7PB #5), was identified.

Example 3: Construction of Expression Plasmid pYL7PPB

General Description

10

15

35

40

[0087] Plasmid pYL7PPB (also known as pYAGL7PPB) includes an expression cassette with the following features. Transcription initiation and termination is mediated by the inducible, hybrid yeast promoter ADH/GAP and the $\textit{Mat}\alpha$ transcriptional terminator described above. The gene further includes an open reading frame encoding a truncated yeast α -factor leader to mediate secretion of rhPDGF-BB. The propeptide sequence included in the expression construct is only the native N-terminal propeptide sequence; the native C-terminal propeptide sequence was not included in the construct. Inclusion of the N-terminal propeptide sequence resulted in enhanced expression of rhPDGF-BB, presumably because of improved folding. Dibasic processing sites at the truncated α -factor leader/N-terminal propeptide and N-terminal propeptide/PDGF-B junctions were included to facilitate production of correctly processed rhP-DGF-BB polypeptide by yeast. Figure 4 shows a map of the pYL7PPB expression cassette highlighting these features and the sites relevant to the construction of this expression cassette. The nucleotide sequence and predicted amino acid sequence of the open reading frame encoding the truncated α -factor leader-proPDGF-B primary translation product are shown in SEQ ID NO: 26 and SEQ ID NO: 27, respectively.

Sequential Construction of pYL7PPB

30 Source of rhPDGF-B cDNA

[0088] A cloned cDNA encoding native human preproPDGF-B, λhPDGFb-17, was provided by collaborators Arne Östman and Carl Heldin. Isolation of the cDNA encoding hPDGF-B was achieved using a cDNA library prepared from RNA isolated from a human clonal glioma cell line, U-343 MGa Cl 2 (Östman *et al.* (1988) *J. Biol. Chem.* 263: 16202-16208).

Construction of pSV7d-PDGF A103-B1

[0089] Plasmid pSV7d-PDGF A103-B1 was the source of the N-terminal propeptide-PDGF-B cDNA. The plasmid was constructed as described below.

[0090] The 3 kb Eco R1 PDGF-B cDNA insert from clone λ hPDGFb-17 was excised and cloned into the unique Eco R1 site of the mammalian expression vector pSV7d to give plasmid phPDGF β -1 (also known as pSV7d-PDGF-B1).

[0091] A mammalian plasmid, pSV7d-PDGF A103-β1, for the coexpression of both PDGF-A and -B chains from their respective cDNAs, was constructed as follows. Plasmid phPDGFβ-1 was digested with Pstl under conditions favoring cleavage at one of the two plasmid Pstl sites (desired single cleavage at site in ampicillin resistance gene of the pSV7d vector backbone) and ligated with Pstl-digested pSV7d-PDGF-A103(D1). This latter plasmid is strictly analogous to the PDGF-B mammalian expression plasmid phPDGFβ-1, except that it includes cDNA encoding the long, 211 amino acid form of the PDGF-A chain rather than the PDGF-B chain cDNA. This plasmid contains a single Pstl site in the ampicillin resistance gene of the pSV7d vector backbone.

[0092] Following transformation, bacterial colonies were screened for the presence of both PDGF-B and PDGF-A cDNA sequences with the respective or appropriately labeled EcoRI cDNA probes. Colonies positive for both PDGF-B and -A chain sequences were further screened by EcoRI digestion of plasmid DNA, and plasmid pSV7d-PDGF A103-B1, having a predicted EcoRI pattern, was identified.

55 Mutagenesis of hPDGF-B cDNA

[0093] The PDGF-B cDNA was mutagenized: (1) to introduce a SacI site enabling introduction of the truncated α -factor secretion leader, and (2) to change the hPDGF-B cDNA sequence encoding dibasic amino acids Arg-Arg to

encode Lys-Arg. This dibasic combination is more efficiently cleaved than Arg-Arg by the yeast dibasic processing enzyme KEX2 endopeptidase. The template for mutagenesis was prepared as follows.

[0094] The ~3kb EcoRI hPDGF-B cDNA was isolated from pSV7d-PDGF A103-B1 and inserted into the EcoRI site of pBR322 to give plasmid pPPB/6. The nucleotide sequence of the 2.7 kb PstI-EcoRI cDNA fragment was verified. The 0.9 kb PstI-NcoI cDNA fragment was inserted into the PstI-NcoI sites of M13 and the nucleotide sequence of the insert verified. A partial nucleotide sequence and the predicted amino acid sequence of the PDGF-B cDNA are given in SEQ ID NO: 28 and SEQ ID NO: 29, respectively.

[0095] A double mutagenesis of M13 PstI-Ncol PDGF-B cDNA fragment was performed by standard methods using the following primers. Primer 1 (SEQ ID NO: 30) introduces a SacI site; primer 2 (SEQ ID NO: 31) converts Arg-Arg to Lys-Arg at the propeptide/PDGF-B junction. Additional mutations are introduced to facilitate detection of mutagenized sequences by hybridization with the labeled primer. No changes resulted in the primary amino acid sequence by primer 1 mutagenesis; only the Arg⇒Lys amino acid change resulted from primer 2 mutagenesis. Mutant hPDGF-B inserts were detected by hybridization with both primer 1 and 2 radiolabeled probes. DNA sequence was verified, and RF (double-stranded) plasmid was prepared.

Construction of pL7PPB (pAGL7PPB)

10

15

30

35

40

45

50

[0096] Essentially, the steps described below result in the substitution of the Xhol-Sall portion of the PDGF-B expression cassette in pAGL7PB encoding the C-terminal portion of the truncated α -factor leader, the Lys-Arg dibasic processing site and PDGF-B (Figure 2) with an Xhol-Sall gene fragment encoding the C-terminal portion of the truncated α -factor leader, a Lys-Arg dibasic processing site, the PDGF-B N-terminal propeptide, a Lys-Arg dibasic processing site, and PDGF-B. The sequences encoding the N-terminal PDGF-B propeptide and PDGF-B were derived from cDNA as described above. A map of the resulting expression cassette is shown in Figure 4.

[0097] A 447 bp SacI-SphI fragment including most of the proPDGF-B gene was isolated from the M13 RF containing the modified preproPDGF-B cDNA. Synthetic oligonucleotides, including sequences encoding the C-terminal part of truncated α factor leader, a Lys-Arg dibasic processing site, and the N-terminal portion of the PDGF-B propeptide (SEQ ID NOs: 32-33), were joined to give a fragment with a 3' SacI overhang. Synthetic oligonucleotides, Sph-Sal I/Sph-Sal II, including sequences encoding the last 14 amino acids of PDGF-B and stop codons were joined to give a SphI-SalI fragment (SEQ ID NOs: 34-35). These two sets of annealed oligonucleotides were ligated to the 447 bp SacI-SphI proPDGF gene fragment. This resulted in a gene fragment including sequences encoding the C-terminal part of truncated α -factor leader, a Lys-Arg dibasic processing site and proPDGF-B.

[0098] Synthetic oligonucleotides, including sequences encoding the middle amino acids of the truncated α -factor leader were joined resulting in a fragment with a 5' Xhol overhang (SEQ ID NOs: 32-33). This annealed oligonucleotide was ligated with pAGL7PB that had been cut with Xhol (unique site in pAGL7PB plasmid that is in the expression cassette, see Figure 2). Following oligonucleotide annealing, the modified plasmid was digested with Sall resulting in loss of the pAGL7PB Xhol-Sall fragment and resulting in a vector/gene fragment.

[0099] The final step in the construction of the PDGF-B expression cassette was the ligation of the gene fragment into the vector/gene fragment to give plasmid pL7PPB (pAGL7PPB), as shown in Figure 5. The Pstl-BamH1 insert fragment was isolated and nucleotide sequencing confirmed that the desired construction had been obtained. A map of the PDGF-B expression cassette in pL7PPB is shown in Figure 4.

Construction of pYL7PPB (pYAGL7PPB)

[0100] The PDGF-B expression cassette of pL7PPB was isolated following BamHI digestion and inserted into the BamHI site of the yeast shuttle vector pAB24, described above, resulting in yeast expression plasmid pYL7PPB. A map of pYL7PPB is shown in Figure 6. The nucleotide sequence of the complete expression cassette and the predicted amino acid sequence of the open reading frame (ORF) encoding truncated α -factor leader-Lys-Arg-proPDGF-B are given in SEQ ID NO: 36 and SEQ ID NO: 37, respectively. The complete nucleotide sequence of yeast expression plasmid pYL7PPB has been determined.

Expression Strain Identification: MB2-1(pYL7PPB)

[0101] Expression plasmid pYL7PPB was transformed into *S. cerevisiae* MB2-1 by standard procedures and plasmid-harboring, uracil prototrophs were selected as isolated colonies. Individual colonies from independent transformants were screened for expression following inoculation of isolated colonies into growth medium that selects for leucine prototrophs. The medium also is high in glucose to keep expression of sequences under *ADR2* regulation (including the PDGF-B gene) repressed. Cultures were subsequently diluted and grown to confluence in low glucose, selective growth medium lacking uracil. Cell-free supernatants were assayed for PDGF-BB by immunoactivity (ELISA) and by

mitogenic activity on 3T3 cells. Frozen stocks were prepared of several transformants exhibiting consistently high levels of expression. Following repeated testing, the transformant exhibiting, on average, the highest expression of PDGF-BB, MB2-1 (pYL7PPB #22) was selected.

5 Example 4: Expression Plasmid pYJST400

10

40

45

50

55

[0102] The Lys-Arg dibasic processing site between the α -factor leader sequence and the N-terminal propeptide was eliminated from expression plasmid pYL7PPB by *in vitro* mutagenesis to construct expression plasmid pYJST400. Thus pYJST400 has a single dibasic processing site, which resides at the propeptide/PDGF-B junction. Elimination of this first processing site was done to determine its relative effect on secretion of rhPDGF-BB from yeast as mediated by the α -factor leader peptide.

Example 5: Expression of Recombinant Human PDGF-BB

[0103] Recombinant human PDGF-BB is produced by a strain of the yeast, *Saccharomyces cerevisiae*, genetically modified with a multicopy yeast expression plasmid that includes a gene encoding human PDGF-B. The preferred *S. cerevisiae* strain MB2-1 has the genotype: *Matα, urα3Δ, leu2-3, leu2-112, his3-11, his3-15, pep4Δ, [cir^o]*. It is auxotrophic for uracil, leucine, and histidine, requiring these nutritional supplements when grown in minimal medium. MB2-1 does not contain an endogenous 2-μ plasmid, which tends to interfere with the stability of the introduced plasmids and encourages recombination between endogenous and introduced plasmids. The strain does not express functional protease A, the product of the *PEP4* gene, which interferes with the production of heterologous proteins. MB2-1 was designed to impart these favorable characteristics, which include selection for high expression of heterologous proteins. [0104] Yeast expression plasmids pYAGL7PB, pYL7PPB, and pYJST400 were transformed into yeast strain MB2-1 as described by Hinnen *el al.* (1978) *Proc. Natl. Acad. Sci. USA* 75: 1929-1933 and plated on ura-, 8% glucose, sorbitol plates. Transformants were grown in leu-, 8% glucose liquid medium for 24 hours and then plated onto leu-, 8% glucose sorbitol plates to get individual colonies. Individual colonies were picked and grown in 3 ml of leu-, 8% glucose medium for 24 hours at 30 C, and then inoculated (1:50) into 1 liter of ura-, 1% glucose media and grown for 75 hours at 30 C. Yeast culture medium was assayed for PDGF activity by the human foreskin fibroblast mitogen assay (see Example 5 below).

[0105] As shown in Table 1, inclusion of the sequence encoding the N-terminal propeptide resulted in a mean 3,4-fold increase in secretion of rhPDGF-BB as measured by bioactivity and by ELISA. Additionally, elimination of the Lys-Arg processing site at the leader/propeptide junction resulted in a 2.8-fold decrease in rhPDGF-BB secretion (Table 1).
[0106] These results indicate that the presence of the native N-terminal propeptide enhances secretion of biologically active mature rhPDGF-BB when flanked by preferred processing sites that have been modified for improved recognition by a proteolytic enzyme of the yeast host cell. Thus, cleavage at the leader/propeptide junction, as well as at the propeptide/PDGF-B junction, apparently facilitates the proper folding and/or processing and/or transport of the pro-PDGF-B, resulting in enhanced secretion of mature rhPDGF-BB.

15

45

50

55

TAY L

Strain	Plasmid	Translation Product	N ₍₌₎	Mitogen (mean, std. dev.)	in, std. dev.)	ELJSA (me	ELJSA (mean, std. dev.)
				118/1	µg/L/OD ₆₅₀	µg/L	µg/L/OD ₆₅₀
MB2-1	pYAGL7PB	αF _{L1-35} PDGF-B	91	2,105 (375)	605 (135)	2,147 (686)	604 (166)
MB2-1	pYL7PPB	aFLI.3sproPDGF-B	22	7,163 (1,323)	1,427 (305)	4,662 (938)	907 (191)
MB2-1	pYJST400	aFLL35AKRpr0PDGF-B	10	2,584 (445)	549 (113)	2,220 (410)	472 (104)
141D2-1	00+1551d	a- IDO IOININGI (II)	1	(CLL) LOCK		(211) >12	ļ

•αF_{L1-35}PDGF-B ≈ a truncated α-factor leader consisting of the N-terminal amino acids 1-35 fissed in-frame with mature human PDGF-B. A single processing site (KEX₂) separates the leader sequence from the mature PDGF-B sequence.

mature human PDGF-B. KEX2 processing sites separate the leader sequence from the M-terminal propertide sequence (KEX1) and the M-terminal sequence from the αF_{L1.33}pro = a truncated α-factor leader consisting of the N-terminal amino acids 1-35 plus the native N-terminal propeptide for human PDGF-B fused in-frame with mature PDGF-B sequence (KEX₂).

αF_{U135}ΔKRproPDGF-B = a truncated α-factor leader consisting of the N-terminal amino acids 1-35 plus the native N-terminal propeptide for human PDGF-B fused inframe with mature human PDGF-B. The KEX, processing site was removed (AKR) from between the leader sequence and the N-terminal propeptide sequence.

Example 6: Human Foreskin Fibroblast (HFF)

Mitogen Assay for PDGF

[0107] Human foreskin fibroblast stocks were stored frozen; freezing was at passage 13. Prior to use, HFF were thawed and then grown in T75 flasks until confluent, which usually occurred at 5-7 days. Growth medium contained Dulbecco's Modified Eagles Medium (DMEM), 20% fetal bovine serum (FBS), 1 mM sodium pyruvate, 300 μg/ml L-glutamine, 100U/ml penicillin, and 100 μg/ml streptomycin. Cells were incubated at 37 C in humidified 7% CO₂, 93% air atmosphere. At confluency, cells were passaged by rinsing the monolayer with phosphate buffered saline (PBS) lacking C²⁻ and Mg²⁺, dissociating them in trypsin containing EDTA, and diluting them with growth medium. Cells were passaged no more than 8 times after thawing.

[0108] To assay for PDGF, HFFs were plated as follows. The cells were rinsed and dissociated with trypsin as above. The trypsinized cells were pelleted and resuspended to a concentration of 1×10^5 cells/ml in medium similar to growth medium, except that 5% FBS replaced 20% FBS; 100 μ l of suspension was dispensed into each well of a 96-well microtiter plate: and then the cells were incubated 5-6 days under the above described conditions.

[0109] PDGF in the sample was determined by monitoring 3 H-thymidine incorporation into HFF DNA stimulated by PDGF. Samples were added to the wells containing HFF monolayers, and the assay plates incubated as above for 18 hours. The HFF cultures were then pulsed with [Methyl- 3 H]thymidine (10 μ C/ml final concentration, 1 μ C/well) at 37 C under the above described incubation conditions for 8 hours. After incubation, the cells were rinsed with PBS and fixed. Fixing was by incubation with 5% trichloracetic acid (TCA) and then 100% methanol for 15 minutes, followed by drying in air. The cells were then solubilized with 0.3N NaOH and then counted in a liquid scintillation counter.

Control samples were treated as the samples described above and were prepared as follows. For positive controls, PDGF, purchased from PDGF, Inc., was dissolved to a final concentration of 100 ng/ml in DMEM containing 10 mg/ml BSA. A standard curve was prepared; the first point was 10 ng/ml, the remaining points were 2-fold serial dilutions.

Each dilution was tested in triplicate. Negative controls, which lacked both sample and control PDGF, were also run.

Example 7: Expression Plasmids pYLUI

[0110] Plasmid pYLUIGF24 includes an expression cassette with the hybrid yeast promoter ADH/GAP and $\textit{Mat}\alpha$ factor leader sequences fused to a sequence encoding the human IGF-I-A gene. This sequence was synthetically derived using yeast preferred codons. A dibasic amino acid processing site is present at the α -factor leader/IGF-I-A junction. The nucleotide sequence and predicted amino acid sequence of the open reading frame encoding α -factor leader/IGF-I-A primary translation product are given in SEQ ID NO: 38 and SEQ ID NO: 39, respectively.

[0111] Plasmid pYLUIGF34 differs from pYLUTGF24 only in its open reading frame. This cassette includes an open reading frame encoding a full length $Mat\alpha$ factor leader sequence fused to a sequence encoding the human IGF-I-A gene with its C-terminal prosequence. Dibasic amino acid processing sites are present at the α -factor leader/IGF-I-A and IGF-I-A/IGF-I-A prosequence junctions. The nucleotide sequence and predicted amino acid sequence of the open reading frame encoding α -factor leader-proIGF-I-A primary translation product are given in SEQ ID NO: 40 and SEQ ID NO: 41, respectively.

40 [0112] Both of these plasmids were generated by inserting the respective expression cassette into the unique BamHI cloning site of the yeast shuttle vector pAB24 as described above.

Example 8: Expression of Recombinant Human GF-I-A

[0113] Recombinant human IGF-I-A is produced by a strain of the yeast Saccaromyces cerevisiae, genetically modified with a multicopy yeast expression plasmid that includes a gene encoding human IGF-I-A. Yeast expression plasmids pYLUIGF24 and pYLUIGF34 were transformed into a yeast strain by procedures previously mentioned.

[0114] Western blot data indicated that properly processed IGF-IA protein was obtained with the prosequence, modified KEX2 processing site, and a yeast secretion leader.

[0115] All publications and patent applications mentioned in the specification are indicative of the level of those skilled in the art to which this invention pertains.

[0116] Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

55

50

30

35

SEQUENCE LISTING

[0117]

5	(1) GENERAL INFORMATION:
	(i) APPLICANT: Tekamp-Olson, Patricia
10	(ii) TITLE OF INVENTION: METHOD FOR EXPRESSION OF HETEROLOGOUS PROTEINS IN YEAST
70	(iii) NUMBER OF SEQUENCES: 41
	(iv) CORRESPONDENCE ADDRESS:
15	 (A) ADDRESSEE: Bell Seltzer IP Group of Alston & Bird, LLP (B) STREET: 3605 Glenwood Ave. Suite 310 (C) CITY: Raleigh (D) STATE: NC (E) COUNTRY: US
20	(F) ZIP: 27622
	(v) COMPUTER READABLE FORM:
25	(A) MEDIUM TYPE: Floppy disk(B) COMPUTER: IBM PC compatible(C) OPERATING SYSTEM: PC-DOS/MS-DOS(D) SOFTWARE: Patentin Release #1.0, Version #1.30
30	(vi) CURRENT APPLICATION DATA:
30	(A) APPLICATION NUMBER:(B) FILING DATE:(C) CLASSIFICATION:
35	(viii) ATTORNEY/AGENT INFORMATION:
40	(A) NAME: Spruill, W. Murray(B) REGISTRATION NUMBER: 32, 943(C) REFERENCE/DOCKET NUMBER: 5784-4
40	(ix) TELECOMMUNICATION INFORMATION:
45	(A) TELEPHONE: 919 420 2202 (B) TELEFAX: 919 881 3175
	(2) INFORMATION FOR SEQ ID NO:1:
	(i) SEQUENCE CHARACTERISTICS:
50	(A) LENGTH: 444 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear
55	(ii) MOLECULE TYPE: other nucleic acid
	(A) DESCRIPTION: /desc = "Chimeric nucleic acid"

	(vi) ORIGINAL SOURCE:
	(A) ORGANISM: Homo sapiens/Saccharomyces cerevisiae
5	(ix) FEATURE:
	(A) NAME/KEY: CDS (B) LOCATION: 1441
10	(ix) FEATURE:
15	 (A) NAME/KEY: misc_feature (B) LOCATION: 1111 (D) OTHER INFORMATION: /function= "mediates secretion of proteins" /product= "yeast alpha factor leader peptide" /scandard_name= "alpha factor signal/leader sequence"
20	(ix) FEATURE:
20	(A) NAME/KEY: mat_peptide(B) LOCATION: 112441(D) OTHER INFORMATION: /product= "rhPDGF-B protein" /standard_name= "rhPDGF-B"
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
30	
<i>35</i>	
40	
45	
45	
50	
<i>55</i>	

_		t Arg		e Pro					Ala					a Ala	G AGC F Ser	
5			ı Ala					. Th:					Glu		CAA Glm	96
10		Pro					Leu				Thr	ATC				144
15					Cys							TTC Phe				192
												GTT Val				240
20												AAC Asn 55				288
25												CAA Glπ				336
30												GCT Ala				384
								Cys				GCC (Ala /	Ala			432
35																
40		TT A		AA T * 10	AG											444
	(2)	INFOI	RMATI	ON F	OR SI	EQ ID	NO:2	:								
45		(i) SE	QUE	NCE C	HARA	ACTE	RISTI	CS:								
		(A) LEI B) TYI D) TO	PE: ar	nino a	cid	acids	1								
50		(ii) M	OLEC	ULE T	YPE:	prote	in									
		(xi) S	EQUE	NCE	DESC	RIPT	ION: S	SEQ II	ONO::	2:						

	Met -37		Phe -35		Ser	Ile	: Phe	-30		. Val	Leu	Phe	Ala -25		Ser	Ser	
5	Ala	Ъеи -20		Ala	Pro	Val	Asn -15		Thr	Thr	Glu	Asp -10	Glu	Thr	Ala	Gln	
	Ile -5	Pro	Ala	Lys	Arg	Ser 1	Leu	Gly	Ser	Leu 5	Thr	Ile	Ala	Glu	Pro 10	Ala	
10	Met	Ile	Ala	Glu 15	Cys	Lys	The	Arg	Thr 20	Glu	Val	Phe	Glu	Ile 25	Ser	Arg	
	Arg	Leu	Ile 30	Asp	Arg	Thr	Asm	Ala 35	Asn	Phe	Seu	Val	Trp	Pro	Pro	Cys	
15	Val	Glu 45	Val	Gln	Arg	Cys	Ser 50	Gly	Cys	Сув	Asn	Asn 55	Arg	.Asn	Val	Gln	
20	Cys 60	Arg	Pro	Thr	Gln	Val 65	Gln	Leu	Yza	Pro	Val 70	Gln	Val	Arg	Lys	Ile 75	
	Glu	Ile	Val	Arg	Lys 80	Lys	Pro	Ile	Phe	Lys 85	Lys	Ala	Thr	Val	Thr 90	Leu	
25	Glu	Asp .	His	Leu 95	.^.la	Cys	Lys		Glu 100	Thr	Val	Ala		Ala 105	Arg	Pro	
	Val		+ 110														
30 ((2) INFOR	MATIC	ON FC	OR SE	Q ID	NO:3:											
	(i) SEC	QUEN	CE CI	HARA	CTEF	RISTIC	S:										
35	(B (C	TYP) STR	GTH: E: nuc RANDE POLOC	cleic a EDNE	icid SS: si												
40	(ii) MC	DLECU	JLE T	YPE:	CDNA	١											
40	(vi) OF	RIGIN	AL SC	URC	E:												
	(A) ORG	SANIS	M: Ho	omo s	apiens	5										
45	(xi) SE	QUE	NCE E	DESC	RIPTI	ON: S	EQ ID) NO:3	3:								
	CTCTAG	ATAA	. AAG	ATCT	TTG	GGTT	CTTT	ga c	TATC	GCTG.	A AC	CAGC'	TATG	ATC	GCTG:	AAT	60
50	GTAAGA	CTAG	AAC'	TGAA	GTT	TTCG.	TAAA	CT C	CAGA	AGAT	r ga	rcga(CAGA	ACT	AACG	CTA	120
	ACTICT	TGGT	TTG	GCCA	CCA	TGTG'	TTGA	AG T	rcaa	AGATO	TT(CTGG:	TTGT	TGT	AACA	ACA	180
	GAAACG'	TTCA	ATG:	raga:	CCA I	ACTCI	AAGT:	rc aj	ATTG	AGACO	AGT	TCA	AGTT	AGAJ	\AGA1	rcg	240
55	AAATCG1	rtag	AAAC	GAAG	CCA A	ATCT:	TCAA	ga ac	GCT)	actgi	TAC	CTTTC	GAA	GAC	CACTI	rgg	300
	CTTGTA	AGTG	TGAJ	AACTO	GTT (SCTGC	GTGCT	ra ga	CCAC	STTAC	TTP	CATA	CGT	CG			352

	(2) INFORMATION FOR SEQ ID NO:4:	
	(i) SEQUENCE CHARACTERISTICS:	
5	(A) LENGTH: 352 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "Complementing strand to the preceding SEQ ID NO:, listed terminal overhangs produced upon assembly."	to show the
15	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
	TCGACGACGC TATTAAGTAA CTGGTCTAGC AGCAGCAACA GTTTCACACT TACAAGCCAA	60
	GTGGTCTTCC AAAGTAACAG TAGCCTTCTT GAAGATTGGC TTCTTTCTAA CGAITTCGAT	120
25	CTTTCTAACT TGAACTGGTC TCAATTGAAC TTGAGTTGGT CTACATTGAA CGTTTCTGTT	180
	GTTACAACAA CCAGAACATC TTTGAACTTC AACACATGGT GGCCAAACCA AGAAGTTAGC	240
30	GTTAGTTCTG TCGATCGAAT CTTCTGGAGA TTTCGAAAAC TTAGTTCTAG TCTTACATTC	300
	AGCGATCATA GCTGGTTCAG CGATAGTCAA AGAACCCAAA GATCTTTTAT CT	352
35	(2) INFORMATION FOR SEQ ID NO:5:	
55	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 44 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
45	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
	CTCTAGATAA AAGATCTTTG GGTTCTTTGA CTATCGCTGA ACCA	44
<i>55</i>	(2) INFORMATION FOR SEQ ID NO:6:	
55	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 45 base pairs	

	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: cDNA	
	(vi) ORIGINAL SOURCE:	
10	(A) ORGANISM: Homo saciens	
70	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
45	GCTATGATCG CTGAATGTAA GACTAGAACT GAAGTTTTCG AAATC	4 5
15	(2) INFORMATION FOR SEQ ID NO:7:	
	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 45 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: cDNA	
	(vi) ORIGINAL SOURCE:	
30	(A) ORGANISM: Homo sapiens	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
<i>35</i>	TCCAGAAGAT TGATCGACAG AACTAACGCT AACTTCTTGG TTTGG	45
	(2) INFORMATION FOR SEQ ID NO:8:	
40	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 45 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: cDNA	
	(vi) ORIGINAL SOURCE:	
50	(A) ORGANISM: Homo sapiens	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
55	CCACCATGTG TTGAAGTTCA AAGATGTTCT GGTTGTTGTA ACAAC	45
	(2) INFORMATION FOR SEQ ID NO: 9:	

	(i) SEQUENCE CHARACTERISTICS:	
5	(A) LENGTH: 45 bass pairs(B) IYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
10	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
	AGAAACGITC AATGTAGACC AACTCAAGTT CAATTGAGAC CAGTT	4.5
20	(2) INFORMATION FOR SEQ ID NO:10:	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 45 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: cDNA	
50	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
	CAAGTTAGAA AGATCGAAAT CGTTAGAAAG AAGCCAATCT TCAAG	45
40	(2) INFORMATION FOR SEQ ID NO:11:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 44 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: cDNA	
	(vi) ORIGINAL SOURCE:	
EE	(A) ORGANISM: Saccharomyces cerevisiae	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	

	AAGGCTACTG TIACTTTGGA AGACCACTTG GCTTGTAAGT GTGA	4.4
5	(2) INFORMATION FOR SEQ ID NO:12:	
	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 39 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: cDNA	
,,,	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
	AACTGTTGCT GGTGCTAGAC CAGTTACTTA ATAGCGTCG	39
25	(2) INFORMATION FOR SEQ ID NO:13:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 18 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: cDNA	
	(vi) ORIGINAL SOURCE:	
40	(A) ORGANISM: Homo sapiens	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
45	TCTATTTTCT AGAAACCC	18
	(2) INFORMATION FOR SEQ ID NO:14:	
50	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 45 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
55	(ii) MOLECULE TYPE: cDNA	
	(vi) ORIGINAL SOURCE:	

	(A) ORGANISM: Homo sapiens	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
5	AAGAAACTGA TAGCGACTTG GTOGATACTA GOGACTTACA TTCTG	45
10	(2) INFORMATION FOR SEQ ID NO:15:	
	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 45 base pairs(B) TYPE: nucleic acid(C) STRANDEDNDSS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
20	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
25	(Xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
	ATCTTGACTT CAAAAGCTTT AGAGGTCTTC TAACTAGCTG TCTTG	45
30	(2) INFORMATION FOR SEQ ID NO:16:	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 45 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: cDNA	
40	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
	ATTGCGATTG AAGAACCAAA CCGGTGGTAC ACAACTTCAA GTTTC	45
50	(2) INFORMATION FOR SEQ ID NO:17:	
	(i) SEQUENCE CHARACTERISTICS	
55	(A) LENGTH: 45 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	

	(ii) MOLECULE TYPE: cDNA	
	(vi) ORIGINAL SOURCE:	
5	(A) ORGANISM: Homo sapiens	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
10	TACAAGACCA ACAACATTGT TGTCTTTGCA AGTTACATCT GGTTG	4.5
	(2) INFORMATION FOR SEQ ID NO:18:	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 45 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: cDNA	
	(vi) ORIGINAL SOURCE:	
25	(A) ORGANISM: Homo sapiens	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
30	AGTTCAAGTT AACTCTGGTC AAGTTCAATC TTTCTAGCTT TAGCA	45
	(2) INFORMATION FOR SEQ ID NO:19:	
35	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 44 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
45	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
50	ATCTTTCTTC GGTTAGAAGT TCTTCCGATG ACAATGAAAC CTTC	4 4
55	(2) INFORMATION FOR SEQ ID NO:20:	
55	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 44 base pairs	

	(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: cDNA	
	(vi) ORIGINAL SOURCE:	
10	(A) ORGANISM: Homo sapiens	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
45	TGGTGAACCG AACATTCACA CTTTGACAAC GACGACGATC TGGT	44
15	(2) INFORMATION FOR SEQ ID NO:21:	
	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 21 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: cDNA	
	(vi) ORIGINAL SOURCE:	
30	(A) ORGANISM: Homo sapiens	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
35	CAATGAATTA TCGCAGCAGC T	21
	(2) INFORMATION FOR SEQ ID NO:22:	
40	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 81 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: other nucleic acid	
50	(A) DESCRIPTION: /desc = "Assembled synthetic oligonucleotides resulting in a truncated alpha mating pheromone leader sequence."	a factor
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Synthetic (derived from Saccharomyces cerevisiae)	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	

	TTITATTOGO AGGOTOGAGO GCATTAGOTO CTOCAGICAA CACTACAACA GAAGATGAAA	60
	CGGCACAAAT TCCGGCTAAA A	ВІ
5	(2) INFORMATION FOR SEQ ID NO:23:	
	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 90 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "This sequence is the complementing strand of SEQ ID NO:1. It is to illustrate the two terminal overhangs produced after assembly."	submitted
20	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Synthetic (derived from Saccharomyces cerevisiae)	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
	GATCTTTTAG CCGGAATTTG TGCCGTTTCA TCTTCTGTTG TAGTGTTGAC TGGAGCAGCT	60
30	ARTGCGCTCG AGGCTGCĠAA TAAAACTGCA	90
	(2) INFORMATION FOR SEQ ID NO:24:	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1845 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "Synthetic chimera"	
45	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens/Saccharomyces cerevisiae	
50	(ix) FEATURE:	
30	(A) NAME/KEY: CDS (B) LOCATION: 11151558	
<i>55</i>	(ix) FEATURE:	
55	(A) NAME/KEY: promoter(B) LOCATION: 11114(D) OTHER INFORMATION: /standard_name= "ADH/GAP promoter"	

	(ix) FEATURE:	
5	 (A) NAME/KEY: misc_feature (B) LOCATION: 11151225 (D) OTHER INFORMATION: /function= "mediates secretion of rhPDGF-B" /product= "truncated alpha factor leader/signal peptide" /standard_name= "alpha factor leader/signal sequence" 	
10	(iv) FEATURE.	
15	 (ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 12261558 (D) OTHER INFORMATION: /product= "rhPDGF-B peptide" /standard_name= "rhPDGF-B" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24: 	
20	GGATCCTTCA ATATGCGCAC ATACGCTGTT ATGTTCAAGG TCCCTTCGTT TAAGAACGAA	60
	AGCGGTCTTC CTTTTGAGGG ATGTTCAAG TTGTTCAAAT CTATCAAATT TGCAAATCCC	120
	CAGTCTCTAT CTAGCTAGAT ATACCAATGG CAAACTGAGC ACAACAATAC CAGTCCGGAT	180
25	CAACTGGCAC CATCTCTCCC GTAGTCTCAT CTAATTTTTC TTCCGGATGA GGTTCCAGAT	240
	ATACCGCAAC ACCTTTATTA TGGTTTCCCT GAGGGAATAA TAGAATGTCC CATTCGAAAT	300
30	CACCAATTCT AAACCTGGGC GAATTGTATT TCGGGTTTGT TAACTCGTTC CAGTCAGGAA	360
35		
40		
45		
50		
<i>55</i>		

	TG	TTCC	ACGT	GA.A	GCTA	TCT	TCCA	GCAA	lag 1	CTC	ACTT	C TI	CATO	'AAA'	TGI	GGGAG	AA 420
5	TA	CTCC	CAAT	GCT	CTTA	TCT	ATGG	GACT	TC C	GGGA	AACA	C AG	TACC	GATA	CTI	CCCAA	TT 480
	CG	TCTT	CAGA	GCT	CATI	GTT	TGTT	TGAA	GA G	ACTA	ATCA	a ag	AATC	GTTI	TCI	'CAAAA	AA 540
	TA	TAAT	ATCT	TAA	CTGA	TAG	TTTG	ATCA	AA G	GGGC	AAAA	c gr	AGGG	GCAA	. ACA	AACGGA	AA 600
10	AA.	ATCG	TTTC	TCA	AATT	TTC	TGAT	GCCA	AG A	ACTC	TAAC	C AG	TCTT	ATCT	AAA	AATTGO	CC 660
	TT	ATGA	TCCG	TCT	CTCC	GGT	TACA	GCCT	GT G	TAAC	TGAT'	T AA	TCCT	GCCT	TTC	TAATCA	C 720
	CA	rtct.	aatg	TTT	TAAT	TAA	ggga'	TTTT	GT C	TTCA	TTAA	C GG	CTTT	CGCT	CAT	AAAAAT	'G 780
15	TT	TGA:	CGTT	TTG	ccc _G	CAG (GCGG(GAAA	CC A	TCCA	CTTC	A CG.	AGAC'	rgat	CTC	CTCTGC	C 840
	GGA	\ACA(CCGG	GCA:	rctc	CAA (CTTA	raag:	rr go	gaga.	AATAA	A GAG	gaat"	FTCA	GAT	TGAGAG	A 900
20	ATO	JAAAJ	AAAA	AAA	ACCC	TGA J	بممم	AAAG(GT TO	GAAAG	CCAGI	r TC	CCTG	LAAT	TAT	PCCCCT.	A 960
20	CTT	GAC:	TAAT	AAG1	CATA	FAA 2	AGACO	GTAC	GG TA	ATTG	ATTGI	TAA 1	rrcro	AATE	ATC:	PATTTC	7 1020
	TAP	LACT:	CTT	AAAI	TTCT	ACT 1	TTAT	CAGTI	ra Gi	CTT	rttt:	TAC	STTTT	AAA.	ACAG	CAAGA	A 1080
25	CT:	AGT	TTCG	AATA	ኒዲዱር፤	ACA S	ia taf	JACAF	IA CF	ACC F	ATG A	GA I	TT C	CT 1	ICA A	VII	1132
											tet A -37	***	he F	ro S	Ger I	lle	
	TIT	ACI	. GCA	GTT	· TTA	. TTC	GCA	. GCC	: rce	AGC	: GCA	TTA	GCI	GCI	CCA	GTC	1130
30	Phe	Th:		Val	Leu	n Phe	Ala -25		Ser	Ser	Ala	Leu -20		. Ala	Pro	Val	
	.A.A.C	ACT	, ycy	. ACA	. GAA	GAT	GA.A	ACG	GCA	. CAA	ATT	CCG	GCT	AAA	. AGA	TCT	1228
	Asn -15		Thr	Thr	Glu	Asp -10		Thr	Ala	Gln	Ile -5		Ala	Lys	Arg	Ser 1	
35	TTG	GGT	TCT	TTG	ACT	ATC	GCT	GAA	CCA	GCT	ATG	ATC	GCT	GAA	TGT	AAG	1276
	Leu	Gly	Ser	Leu 5		Ile	Ala	Glu	Pro 10		Met	Ile	Ala	Glu 15	•	Lys	
	ACT	AGA	ACT	GAA	GTT	TTC	GAA	ATC			AGA	TTG	ATC			ACT	1324
40			Thr 20	Glu					Ser								
	AAC	GCT	AAC		ፐ ፕር	G T T	TGG			TGT	GTT.	GAA		CAA	AGA	TGT	1372
45			Asn														22.2
	m/m		TGT	TOT	220	n n 🖝		220	C T T	<i>a</i>	mcm.		CC3	» cm		com	7.430
	Ser		Cys			Asn					Cys					Val	1420
50	50					55					60					65	
			AGA Arg														1468
					70					75					80		

	CCA Pro																	1516
5	AAG (Lys (Cys (Ala A					Chr	TAA ' * 110	TAG *				1558
10	CGTC	STCGA	AC TI	TTGTT	CCCA	CTG	TACT	TTT	AGCI	CGTA	.CA I	LAAT	ACAA1	TA T	ACTT	TCAT	:	1618
	TTCTC	CCGTA	A AC	DAACA	TGTT	TTC	CCAT	GTA	ATAT	CCTT	TT C	TAT	CTTT	G TI	reeg1	TACC	!	1678
	AACTI	TACA	C AT	ACTT	TATA	TAG	CTAT	TCA	CTTC	TATA	CA C	TAAF	LAAAC	T AF	AGACA	ATTI	•	1738
15	TAATI	TTGC	T GC	CTGC	CATA	TTT	CAAT	TTG	TTAT	AAAT	TC C	TATA	ATTI	'A TC	CTAT	TAGT	· :	1798
	AGCTA	AAAA	a ag	ATGA	ATGT	GAA'	TCGA	ATC	CTAA	gaga	AT T	CGGA	rc				נ	.845
20	(2) INF	ORMA	ATION	FOR	SEQ I	D NO	:25:											
	(i)	SEQL	IENCE	E CHA	RACT	ERIS	TICS											
25		(B) 1	ENGT TYPE: TOPOI	amino	acid		ds											
	(ii)	MOLE	ECULE	E TYP	E: pro	tein												
30	(xi)) SEQ	UENC	E DE	SCRIF	NOIT	: SEG	ID N	O:25:									
35		Ме -3		g Ph		o Sei	r Ile	e Ph	= Th: -30		a Va.	l Lei	ı Pha	e Al.		a Se	r Ser	
00		Al	a Lei -20		a Ala	e Pro	o Val	L Asr		The	Th	Glu	. Asg -10		ı Thi	r Ala	e Gln	
40		Ile -9		o Ala	Lys	Arg	Ser 1		Gly	ser	Lev 5		: Ile	: Alā	Gli	Pro 10	Ala	
		Met	: Ile	e Ala	. Glu 15	_	Lys	Thr	Arg	Thr 20		. Val	Phe	Glu	Ile 25		Arg	
45		Arg	; Leu	Ile 30		Arg	Thr	Asn	Ala 35		Phe	Leu	Val	Trp		Pro	Cys	
		Val	Glu 45		Gln	Arg	Cys	Ser 50	Gly	Cys	Cys	Asn	Asn 55	Arg	Asn	Val	Gln	
50		Cys 60		Pro	Thr	Gln	Val 65	Gln	Leu	Arg	Pro	Val 70	Gln	Val	Arg	Lys	Ile 75	
		Glu	Ile	Val	Arg	Lys 80	Lys	Pro	Ile	Phe	Lys 85	Lys	Ala	Thr	Val	Thr 90	Leu	
55		Glu	Asp	His	Leu 95	Ala	Cys	Lys	Cys	Glu 100	Thr	Va1	Ala	Ala	Ala 105	Arg	Pro	

Val Thr * *

5	(2) INFORMATION FOR SEQ ID NO:26:
	(i) SEQUENCE CHARACTERISTICS:
10	(A) LENGTH: 621 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear
15	(ii) MOLECULE TYPE: other nucleic acid
	(A) DESCRIPTION: /desc = "This construct is a chimeric nucleic acid that contains a truncated yeast alpha factor leader sequence linked to the human PDGF prosequence and the human rhPDGF-B gene(cDNA)."
20	(vi) ORIGINAL SOURCE:
20	(A) ORGANISM: Saccharomyces cerevisiae/Homo sapiens
	(ix) FEATURE:
25	(A) NAME/KEY: CDS (B) LOCATION: 1621
	(ix) FEATURE:
30	(A) NAME/KEY: misc_feature(B) LOCATION: 25105(D) OTHER INFORMATION: /function= "Mediates secretion of human rhPDGF-B" /product= "Saccharomyces cerevisiae alpha-factor leader/signal sequence"
35	(ix) FEATURE:
40	(A) NAME/KEY: transit_peptide(B) LOCATION: 112288(D) OTHER INFORMATION: /function= "Mediates protein transport"/product= "human PDGF propeptide"
	(ix) FEATURE:
45	(A) NAME/KEY: mat_peptide(B) LOCATION: 289621(D) OTHER INFORMATION: /product= "human PDGF-B peptide" /standard_name= "rhPDGF-B"
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

55

_	Mec		Phe					Thr					e Ala			G AGC r Ser	4.8
5												Asp				A CAA a Gln -65	96
10																	
						g As					u Gl					G CTG t Leu 0	144
15					r Il					p Ası					u Le	G CAC	192
20				o Gl					y Ala					i Ası		G ACC Thr	240
25			r Hi					ı Lev					Arg			G AGG S Arg	288
		. Le			CTG Leu 5	Thr					Ala					-	335
30					Glu										Asp	cgc Arg	384
35				Asn	TTC				Pro								432
40			Gly		TGC Cys												4 B O
					CCT Pro												528
45					AAG Lys 85												576
50					ACA Thr								Thr	TAA + 110	TAG *		621
	(2) IN	IFOF	MATI	ON FO	R SE	QIDI	NO:27	7 :									
<i>55</i>	(i) SE	QUEN	CE CI	HARA	CTEF	RISTIC	S:									
		(E) TYP	E: am	207 a iino ac GY: lin	id	acids										

(ii) N	/IOLE	CULE	TYPE:	protein
--------	-------	------	-------	---------

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

5		_		_		_,	-1				•	7 1.	- 1		_	
		t Arg 6 -95		Pro	Ser	116	-90		. Ala	. vai	Leu	-85		, Ala	Ser	Ser
10	A1 -8	a Leu 0	Ala	Ala	Pro	Val -75		Thr	Thr	Thr	Glu -70	Asp	Glu	Thr	Ala	Gln -65
	11	e Pro	Ala	Lys	Arg -60	Asp	Pro	Ile	Pro	Glu -55	Glu	Leu	Tyr	Glu	Met -50	Leu
15	Se	r Asp	His	Ser -45	Ile	Arg	Ser	Phe	Asp -40	Asp	Leu	Gln	Arg	Leu -35	Leu	His
	Gl	/ Asp	Pro -30	Gly	G1u	Glu	Asp	Gly -25	Ala	Glu	Leu	Asp	Leu -20	Asn	Met	Thr
20	Arg	; Ser -15	His	Ser	Gly	Gly	Glu -10	Leu	Glu	Ser	Leu	Ala -5	Arg	Gly	Lys	Arg
<i>25</i>		. Leu	Gly	Ser	Leu 5	Thr	Ile	Ala	Glu	P=0 10	Ala	Met	Ile	Ala	Glu 15	Суз
	Lys	Thr	Arg	Thr 20	Glu	Val	Phe	Glu	Ile 25	Ser	Arg	Arg	Leu	Ile 30	Asp	Arg
30	The	: Asn	Ala 35	Asn	Phe	Leu	Val	Trp 40	Pro	Pro	Cys	Val	Glu 45	Val	Gin	Arg
	Cys	Ser 50	Gly	Cys	Cys	Asn	Asm 55	Arg	Asr.	Val	Gln	Cys 60	Arg	Pro	Thr	Glm
35	Val 65	Gln	Leu	Arg	Pro	Val 70	Gln	Val	Arg	Lys	Ile 75	Glu	Ile	Val	Arg	Lys 80
	Lys	Pro	Ile	Phe	Lys 35	Lys	Ala	Thr	Val	Thr 90	Leu	Glu	Asp	His	Leu 95	Ala
40	Cys	Lys	Cys	Glu 100	Thr	Val	Ala	Ala	Ala 105	Arg	Pro	Val	Thr	+ 110	*	
	(2) INFORMA	TION F	FOR S	EQ ID) NO:2	28:										
45	(i) SEQU	ENCE	CHAR	ACTE	RIST	ICS:										
	(B) T	ENGTI YPE: n	ucleic	acid												
50		OPOL			g .0											

- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "Synthetic chimera"
- (vi) ORIGINAL SOURCE:

55

(A) ORGANISM: Homo sapiens/Saccharomyces cerevisiae

	(ix) FEATURE:
5	(A) NAME/KEY: CDS (B) LOCATION: 4541179
	(ix) FEATURE:
10	(A) NAME/KEY: misc feature (B) LOCATION: 454519 (D) OTHER INFORMATION: /product= "PDGF-B prepeptide" /standard_name= "PDGF-B presequence"
	(ix) FEATURE:
15	 (A) NAME/KEY: transit_peptide (B) LOCATION: 455696 (D) OTHER INFORMATION: /function= "mediates protein transport" /product= "PDGF-B propeptide" /standard_name= "PDGF-B prosequence"
20	(ix) FEATURE:
25	(A) NAME/KEY: mat_peptide (B) LOCATION: 6971023 (D) OTHER INFORMATION: /product= "rhPDGF-B peptide" /standard_name= "rhPDGF-B"
20	(ix) FEATURE:
30	 (A) NAME/KEY: transit_peptide (B) LOCATION: 10241179 (D) OTHER INFORMATION: /function= "mediates protein transport" /product= "PDGF-B propeptide" /standard_name= "PDGF-B prosequence"
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:
40	
45	
50	
55	

	GAATTOCCAG AAAATGITGC AAAAAAGCIA AGCCGCGGG CAGAGAAAA GGCCIGTAGC	60
	CGGCGAGTGA AGACGAACCA TCGACTGCCG TGTTCCTTTT CCTCTTGGAG GTTGGAGTCC	120
5	CCTGGGCGCC CCCACACGGC TAGACGCCTC GGCTGGTTCG CGACGCAGCC CCCCGGCCGT	180
	GGATGCTGCA CTCGGGCTCG GGATCCGCCC AGGTAGCGGC CTCGGACCCA GGTCCTGCGC	240
10	CCAGGTCCTC CCCTGCCCCC CAGCGACGGA GCCGGGGCCG GGGGCGGCGG CGCCGGGGGC	300
	ATGCGGGTGA GCCGCGGCTG CAGAGGCCTG AGCGCCTGAT CGCCGCGGAC CCGAGCCGAG	360
	CCCACCCCC TCCCCAGCCC CCCACCCTGG CCGCGGGGGC GGCGCGCTCG ATCTACGCGT	420
15	TCGGGGCCCC GCGGGGCCGG GCCCGGAGTC GGC ATG AAT CGC TGC TGG GCG CTC Met Asn Arg Cys Trp Ala Leu -81 -80 -75	474
	TTC CTG TCT CTC TGC TGC TAC CTG CGT CTG GTC AGC GCC GAG GGG GAC Phe Leu Ser Leu Cys Cys Tyr Leu Arg Leu Val Ser Ala Glu Gly Asp	522
20	-70 -65 -60	
	CCC ATT CCC GAG GAG CTT TAT GAG ATG CTG AGT GAC CAC TCG ATC CGC Pro Ile Pro Glu Glu Leu Tyr Glu Met Leu Ser Asp His Ser Ile Arg -55 -50 -45	570
25		
30		
35		
40		
<i>45</i>		
50		

5				Ası					Lei					o Gly		G GAA 1 Glu	618
			/ Ala					Asn					His			GGC Gly	666
10		Leu					Arg					Leu				ACC Thr	714
15		GCT Ala			Ala					Cys					Glu	GTG Val	762
20		GAG Glu															810
		TGG Trp 40															858
25		CGC Arg															906
30		GTG Val															954
<i>35</i>		ACG Thr															1002
		GCT Ala					Thr										1050
40		GCC Ala 120				Gln					Ile						1093
45		CGG Arg			Lys					Lys					His		1146
50		ACG Thr		Leu 1					Gly		TAG +	GGGC	ATCG	GC A	GGAG	AGTGT	1199
	GTGG	GCAG	GG T	TATT:	raat:	A TGO	STAT	TGT	GTA'	TTGC	ccc (CATGO	GGC	CT TO	GGAG'	ragat	1259
	AATA	TTGT'	rr co	CTC	STCC	F TCT	GTCT	CGA	TGC	CTGA'	TTC (GGAC	GCC.	AA TO	GTG	CCTCC	1319
55																	

(2) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:

5	((B) TY	NGTH PE: ai POLC	nino a		acids	5									
	(ii) M	IOLEC	ULE -	TYPE:	prote	in										
10	(xi) S	SEQUI	ENCE	DESC	CRIPT	ION: S	SEQ II	D NO:	:29:							
		t As		g Cy	s Tr	p Al	a Le -7		e Le	eu Se	r Le	и Су -7	-	s Ty	r Le	u Arg
15	Le -6		l Se	r Al	a Gl	u Gl -6		p Pr	o Il	e Pr	o Gl -5		u Le	и Ту	r Gl	u Met -50
	Le	u Se	r Asj	p Hi	s Se:		e Arg	≆ Se	r Ph	e As -4	-	o Le	u Gl:	n Ar	g Le -3	u Leu 5
20	Hi	s Gl	/ As	P= -3		y Gla	u Glu	ı As	-3 b Gl		a Glu	ı Len	u Ası	p Lev -20		n Met
	Thi	r Arg	; Se: -15		s Ser	r Glj	y Gly	/ Glv -10		u Gl:	ı Ser	. Let	Ala :-		r Gl;	/ Arg
25	Arg	g Sez 1		. Gly	r Ser	r Let		: Ile	≥ Als	a Glu	1 Pro		. Met	: Ile	: Ala	Glu 15
30	Cys	Lys	Thr	Arg	7h= 20		val	Phe	e Glu	1 Ile 25		Arg	Ar9	Leu	11e	ga.A.
	Arg	Thr	Asn	Ala 35		Phe	Leu	Val	Trp		Pro	Cys	Val	Glu 45	Val	Gln
35	Arg	Cys	Ser 50	Gly	Cys	Cys	Asn	Asn 55	_	Asn	Val	Gln	Суз 60	Arg	Pro	Thr
	Gln	Val 65	Gln	Leu	Arg	Pro	Val 70	Gln	Val	Arg	Lys	Ile 75	Glu	Ile	Val	Arg
40	Lys 80	Lys	Pro	Ile	Phe	Lys 85	Lys	Ala	Thr	Val	Thr 90	Leu	Glu	Asp	Hıs	Leu 95
	Ala	Cys	Lys	Cys	Glu 100	Thr	Val	Ala	Ala	Ala 105	Arg	Pro	Val	Thr	Arg 110	Ser
45	Pro	Gly	Gly	Ser 115	Gln	Glu	Gln	Arg	Ala 120	Lys	Thr	Pro	Gln	Thr 125	Arg	Val
50	Thr	Ile	Arg 130	Thr	Val	Arg	Val	Arg 135	Arg	Pro	Pro	ГÀЗ	Gly 140	Lys	His	Arg
50	Lys	Phe	Lys	His	Thr	His	Asp	Lys	Thr	Ala	Leu	Lys	Glu	Thr	Leu	Gly

		145	150	155	
5	Ala 160	•			
	(2) INFORMATION FOR	SEQ ID NO:30:			
10	(i) SEQUENCE CHA	RACTERISTICS:			
15	(A) LENGTH: 34 (B) TYPE: nuclei (C) STRANDEDI (D) TOPOLOGY:	ic acid NESS: double			
	(ii) MOLECULE TYP	E: other nucleic acid			
20	(A) DESCRIPTION	ON: /desc = "Synthetic oligon	ucleotide (primer)"		
20	(vi) ORIGINAL SOUF	RCE:			
	(A) ORGANISM:	Synthetic (derived from Hon	no sapiens sequence)		
25	(xi) SEQUENCE DES	SCRIPTION: SEQ ID NO:30:			
	CATTCCCGAG GAGCTC	TACT AGATOCTGAG TGAC		34	
30	(2) INFORMATION FOR	SEQ ID NO:31:			
	(i) SEQUENCE CHA	RACTERISTICS:			
35	(A) LENGTH: 27 (B) TYPE: nuclei (C) STRANDEDI (D) TOPOLOGY:	ic acid NESS: double			
40	(ii) MOLECULE TYP	E: other nucleic acid			
40	(A) DESCRIPTION	ON: /desc = "Synthetic oligon	ucleotide (primer)"		
	(vi) ORIGINAL SOUP	RCE:			
45	(A) ORGANISM:	Synthetic (derived from Hon	no sapiens sequence)		
	(xi) SEQUENCE DES	SCRIPTION: SEQ ID NO:31:			
50	CTTGGCTCGG GGGAA	AGAGGA GCCTGGG			27
	(2) INFORMATION FOR	SEQ ID NO:32:			
55	(i) SEQUENCE CHA	RACTERISTICS:			
	(A) LENGTH: 89 (B) TYPE: nuclei (C) STRANDEDI	c acid			

	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
5	(A) DESCRIPTION: /desc = "Synthetic oligonucleotide"	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens/Saccharomyces cerevisiae derived sequence	
10	(ix) FEATURE:	
15	(A) NAME/KEY: misc_feature (B) LOCATION: 4489 (D) OTHER INFORMATION: /function= "truncated alpha factor leader/lys-arg proc./N-term.	propept
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
20	TCGAGCGCAT TAGCTGCTCC AGTCAACACT ACAACAGAAG ATGAAACGGC ACAAATTCCG	60
	GCIANANGA ACCCCATICE COACONCCT	89
25	(2) INFORMATION FOR SEQ ID NO:33:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 81 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
35	(A) DESCRIPTION: /desc = "Synthetic oligonucleotide"	
	(vi) ORIGINAL SOURCE:	
4.0	(A) ORGANISM: Homo sapiens derived sequence	
40	(ix) FEATURE:	
45	(A) NAME/KEY: misc_feature(B) LOCATION: 139(D) OTHER INFORMATION: /function= "C-term.alpha factor leader/lys-arg proc./N-term. pr	opeptide
	(xi) SEQUENCE DESCRIPTION; SEQ ID NO:33:	
50	CCTCGGGAAT GGGGTCTCTT TTAGCCGGAA TTTGTGCCGT TTCATCTTCT GTTGTAGTGT	60
	TGACTGGAGC AGCTAATGCG C	81
55	(2) INFORMATION FOR SEQ ID NO:34:	
	(i) SEQUENCE CHARACTERISTICS:	

	(A) LENGTH: 48 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc = "Synthetic oligonucleotide"	
10	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens derived sequence	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
	CAAGTGTGAG ACAGTGGCAG CTGCACGGCC TGTGACCTAA TAGCGTCG	48
20	(2) INFORMATION FOR SEQ ID NO:35:	
20	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 56 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
30	(A) DESCRIPTION: /desc = "Synthetic oligonucleotide"	
	(vi) ORIGINAL SOURCE:	
35	(A) ORGANISM: Homo sapiens derived sequence	
33	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
40	TOGACGACGO TATTAGGTCA CAGGCCGTGC AGCTGCCACT GTCTCACACT TGCATG	56
	(2) INFORMATION FOR SEQ ID NO:36:	
45	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2023 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
50		
	(ii) MOLECULE TYPE: other nucleic acid(A) DESCRIPTION: /desc = "Synthetic chimera"	
55		
55	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens/Saccharomyces cerevisiae	

	(ix) FEATURE:
5	(A) NAME/KEY: CDS (B) LOCATION: 11151735
3	(ix) FEATURE:
10	(A) NAME/KEY: promoter (B) LOCATION: 11114 (D) OTHER INFORMATION: /standard_name= "ADH/GAP promoter"
	(ix) FEATURE:
15	(A) NAME/KEY: misc_feature(B) LOCATION: 11151225(D) OTHER INFORMATION: /function= "mediates secretion of rhPDGF-B" /product= "alpha factor signal/truncated alpha factor leader peptide"
20	/standard_name= "truncated alpha factor signal/leader sequence"
	(ix) FEATURE:
25	(A) NAME/KEY: transit_peptide(B) LOCATION: 12261402(D) OTHER INFORMATION: /product= "PDGF-B propeptide" /standard_name= "PDGF-3 prosequence"
	(ix) FEATURE:
30	(A) NAME/KEY: mat_peptide(B) LOCATION: 14031735(D) OTHER INFORMATION: /product= "rhPDGF-B protein" /standard_name= "rhPDGF-B"
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:
40	
45	
50	
55	

	GGATCCTTC	A ATATGCCCA	C ATACGCTGT	T ATGTTCAAG:	G TOCCTTOGT	T TAAGAACGAA	60
5	AGCGGTCTI	CTTTTGAGG	angetteda.	G TTGTTCAAA	T CTATCAAAT	r tgcaaatccc	120
5	CAGTCTGTA	T CTAGCTAGAT	T ATACCAATG	g caaactgago	ACAACAATA	CAGTCCGGAT	180
	CAACTGGCA	CATCTCTCC	GTAGTOTCA	CTAATTITTC	TTCCGGATG	GGTTCCAGAT	240
10	ATACCGCAA	ACCTTTATTA	TGGTTTCCC	r gagggaataa	TAGAATGTCC	CATTCGAAAT	300
	CACCAATTC	AAACCTGGGC	GAATTGTATI	regeerrer	TAACTCGTTC	CAGTCAGGAA	360
	TGTTCCACGI	GAAGCTATCI	TCCAGCAAAG	: TCTCCACTTC	TTCATCAAAT	TGTGGGAGAA	420
15	TACTCCCAAT	GCTCTTATCT	ATGGGACTTC	CGGGAAACAC	AGTACCGATA	CTTCCCAATT	480
	CGTCTTCAGA	GCTCATTGTT	TGTTTGAAGA	GACTAATCAA	AGAATCGTTT	TCTCAAAAAA	540
	ATTAATATCT	TAACTGATAG	TTTGATCAAA	GGGGCAAAAC	GTAGGGGCAA	ACAAACGGAA	600
20	AAATCGTTTC	TCAAATTTTC	TGATGCCAAG	AACTCTAACC	AGTCTTATCT	AAAAATTGCC	660
	TTATGATCCG	TCTCTCCGGT	TACAGCCTGT	GTAACTGATT	AATCCTGCCT	TTCTAATCAC	720
25	CATTCTAATG	TTTTAATTAA	GGGATTTTGT	CTTCATTAAC	GGCTTTCGCT	CATAAAAATG	780
25	TTATGACGTT	TTGCCCGCAG	GCGGGAAACC	ATCCACTTCA	CGAGACTGAT	CTCCTCTGCC	840
	GGAACACCGG	GCATCTCCAA	CTTATAAGTT	GGAGAAATAA	GAGAATTTCA	GATTGAGAGA	900
30	ATGAAAAAA	AAAACCCTGA	AAAAAAAGGT	TGAAACCAGT	TCCCTGAAAT	TATTCCCCTA	960

	CTTGACT	aa taat	GTATATA	A AGAC	GGTAGG	TATTG	ATTGT A	attctgtaa	ATCTATTTCT	1020
5	TAAACTI	rctt aa	ATTCTAC	T TTTA	TAGTTA	GTCTT	TTTTT T	agttttaaa	ACACCAAGAA	1080
	CTTAGTT	ITCG AA	TAAACAC	A CATA	AACAAA	t		TTT CCT Phe Pro		1132
10			al Leu :						T CCA GTC a Pro Val -75	1180
15							lle Pr		A AGA GAC B Arg Asp -60	1228
20			u Glu I		Glu N				G ATC CGC File Arg	1276
								C CCC GGA p Pro Gly -30	A GAG GAA ⁄ Glu Glu	1324
25					Asn M			C CAC TCT r His Ser 5		1372
30			r Leu A					3 GGT TCC u Gly Ser		1420
<i>35</i>			o Ala M		Ala G			G CGC ACC r Arg Thr 20		1468
								GCC AAC 1 Ala Asn 35		1516
40								GGC TGC Gly Cys		1564
45			. Gln Cy					CTG CGA Leu Arg		1612
								ATC TTT Ile Phe		1660
50			Leu Gl		His Le			TGT GAG Cys Glu 100		1708
55	GCA GCT	GCA CGG	CCT GT	G ACC	TAA TA	G CGTC	GTCGAC '	TTTGTTCCC	A	1755

	Ala Ala	Al 10		g Pı	co Vi	al T		* 10	*									
5	CTGTACT	TTT	AGC	TCGT	TACA	AAAT	racai	ATA '	ract'	TTTC.	АТ Т	TCTC	CGTA	A AC	AACA	TGTT	. 1	1815
	TTCCCAT	GTA	ATA	TCCT	TTT	CTAT	TTT	rcg :	rtcc	GTTA	CC A	ACTT	TACA	CAT	ACTT	TATA	1	875
	TAGCTAT	rca	CTT	CTAT	ACA	CTAA	AAA	ACT I	AGA	CAAT	TT T	latt'	TTGC	r GC	CTGC	CATA	1	.935
10	TTTCAAT	TTG	TTA	TAAA	TTC	CTAI	TAA	TA 1	CCT	ATTAC	T AC	GCTA	AAAA	AGA	atgaj	ATGT	1.	995
	GAATCGAA	ATC	CTA	AGAG	AAT	TCGG	ATCO	:									2	023
15	(2) INFORI	MAT	ION F	OR S	SEQ II	O NO:	37:											
	(i) SEC	QUEI	NCE	CHAF	RACTI	ERIST	ICS:											
20	(B	TY	PE: a	mino		io acio	ls											
	(ii) MO	LEC	ULE	TYPE	: prot	ein												
25	(xi) SE	QUE	ENCE	DES	CRIP	TION:	SEQ	ID NO	D: 37 :									
<i>30</i>			: Ars		e Pr	o Se:	r Il	e Pho -90		r Al	a Val	l Lei	2 Phe -85		a Al	a Se	r Ser	
		ala -80		. Ala	a Al	a Pro	o Va. -75		n Thi	r Thi	r Thi	- Glu	~	Glu	ı Thi	r Ala	a Gln -65	
35		Ile	Pro	Ala	ı Lys	-60		o Pro) Ils	e Pro	-55		Leu	тут	Gli	. Met	Leu)	
		Ser	Asp	His	Se≍ -45		Arg	, Sez	Phe	-40	-	Leu	Gln	Arg	-35		His	
40	C	Sly	Asp	Pro -30	-	· Glu	Glu	. Asp	Gly -25		Glu	Leu	Asp	Leu -20		. Met	Thr	
	F	lrg	Ser -15	His	Ser	Gly	Gly	Glu -10	Leu	Glu	Ser	Leu	Ala -5	Arg	Gly	Lys	Arg	
45	S	Ser 1	Leu	Gly	Ser	Leu 5	Thr	Ile	Ala	Glu	Pro 10	Ala	Met	Ile	Ala	Glu 15	Cys	
	L	ys	Thr	Arg	Thr 20	Glu	Val	Phe	Glu	Ile 25	Ser	Arg	Arg	Leu	Ile 30	Asp	Arg	
50	т	hr	Asn	Ala 35	Asn	Phe	Leu	Val	Trp 40	Pro	Pro	Cys	Val	Glu 45	Val	Gln	Arg	
<i>55</i>	c	ys	Ser 50	Gly	Cys	Cys	Asn	Asn 55	Arg	Asn	Val	Gln	Cys 60	Arg	Pro	Thr	Gln	
		al (Gln	Leu	Arg	Pro	Val 70	Gln	Val	Arg	Lys	Ile 75	Glu	Ile	Val	Arg	Lys 80	

		Lys	Pro	Ile	Phe	Lys 85	Lys	Ala	Thr	Val	Thr 90	Leu	Glu	Asp	His	Leu 95	Ala
5		Cys	Lys	Cys	Glu 100	Thr	Val	Ala	Ala	Ala 105	Arg	Pro	Val	Thr	* 110	*	
10	(2) INFORM						:										
15	(B) (C)	LENG TYPE STRA	: nucle	eic aci ONES	d S: sing												
	(ii) MOL	LECUL	_E TYI	PE: ot	her nu	cleic	acid										
20	(A)	DESC	CRIPT	ION: /d	desc =	: "Chii	meric	DNA	molec	ule"							
	(vi) OR	IGINA	L SOL	JRCE:													
25	(A)	ORG	ANISM	1: Hom	no sap	iens/S	Sacch	aromy	ces c	erevis	siae						
25	(ix) FEA	ature	≣:														
30		NAME LOC <i>A</i>			1												
	(ix) FEA	ATURE	≣:														
<i>35</i>	(B) (D) /pro /sta	NAME LOCA OTHE oduct= andard quence	ATION: ER INF : "Yeas I_nam	: 125 FORM st alph	5 ATION a facto	l: /fun or lead	der pe	eptide'	•	protei	n sec	retion'					
40	(ix) FEA	A TURE	≣:														
45	(B)	NAME LOCA OTHE	ATION:	255	471		duct=	: "rhlG	F-I-A	protei	n" /sta	andarc	d_nam	e= "rh	IGF-I-	Α"	
	(xi) SEC	QUEN	CE DE	SCRI	PTIO	N: SE	Q ID I	NO:38	:								
50																	
<i>55</i>																	

	ATG . Met . -85																48
5	GCA '													Thr			96
10	ATT (144
15				a Val					Asr					ı Gly		TTG Leu	192
20			Asn					Ser					Glu			GTA Val	240
25	_						Pro				TGT Cys						288
											GGT Gly						336
30											GCT Ala						384
35	GTT Val										TTG						432
40	TAC Tyr so											TGA *	TAA "	GTCG	ACTI	<u>T</u>	430
	(2) INI	FORM	/ATIC	N FO	R SEC) ID N	O:39:										
45	(i)	SEC	UEN	CE CH	IARAC	CTERI	STIC	3:									
,0		(B)	TYPI	E: ami	157 ar no aci iY: line	d	ıcids										
50	(ii) MOI	LECU	LE TY	PE: p	rotein											
	(x	i) SE	QUEN	ICE D	ESCR	RIPTIC	N: SE	Q ID	NO:39	9:							

	Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser -85 -80 -75 -70														
5	Ala Leu Ala Ala Pro Val Asn Thr Thr Glu Asp Glu Thr Ala Gln -65 -60 -55														
	Ile Pro Ala Glu Ala Val Ile Gly Tyr Leu Asp Leu Glu Gly Asp Phe -50 -45 -40														
10	Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu -35 -30 -25														
45	Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val -20 -15 -10														
15	Gln Leu Asp Lys Arg Gly Pro Glu Thr Leu Cys Gly Ala Glu Leu Val -5 1 10														
20															
	Asp Ala Leu Gln Phe Val Cys Gly Asp Arg Gly Phe Tyr Phe Asn Lys														
25	Pro Thr Gly Tyr Gly Ser Ser Ser Arg Arg Ala Pro Gln Thr Gly Ile 30 35 40														
	Val Asp Glu Cys Cys Phe Arg Ser Cys Asp Leu Arg Arg Leu Glu Met 45 50 55														
30	Tyr Cys Ala Pro Leu Lys Pro Ala Lys Ser Ala * * 60 65 70														
<i>35</i>	(2) INFORMATION FOR SEQ ID NO:40:														
	(i) SEQUENCE CHARACTERISTICS:														
40	(A) LENGTH: 621 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear														
	(ii) MOLECULE TYPE: other nucleic acid														
45	(A) DESCRIPTION: /desc = "Chimeric DNA molecule"														
	(vi) ORIGINAL SOURCE:														
50	(A) ORGANISM: Homo sapiens/Saccharomyces cerevisiae														
	(ix) FEATURE:														
<i>55</i>	(A) NAME/KEY: CDS (B) LOCATION: 1579														
55	(ix) FEATURE:														
	(A) NAME/KEY: mise feature														

5	(B) LOCATION: 1255 (D) OTHER INFORMATION: /function= "mediates secretion of protein" /product= "3'end of yeast alpha factor leader peptide" /standard_name= "alpha factor leader/signal sequence"
	(ix) FEATURE:
10	(A) NAME/KEY: mat_peptide (B) LOCATION: 256471 (D) OTHER INFORMATION: /product= "rhIGF-I-A protein" /standard name= "rhIGF-I-A"
15	(ix) FEATURE: (A) NAME/KEY: transit_peptide (B) LOCATION: 472579
20	(D) OTHER INFORMATION: /function= "mediates protein transport/translocation" /product= "IGF-I-A propeptide" /standard_name= "IGF-I-A prosequence"
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:
25	
30	
35	
40	
45	
50	
<i>55</i>	

5		t A										ıl Le						Ser		48
3					la E							r Gl				hr 1		CAA Gln		96
10				la G							r Le					y A		TTC Phe		144
15				a V						Asr			A AA r As		n Gl			TTG Leu		192
20			e As										T AA a Ly: -1:	s Gl						240
20		Le										Суз	r GG: s Gly			a Le				288
25				ı Gl									TTC Phe			e As				336
30				/ Ty									, CCy		ı The			_		384
			Glu										AGA Arg 55	Arg				_		432
35						ı Ly							AAA Lys							480
40						: As							AAG Lys				s L			528
45	AAG Lys				Arg				la									GA *		576
	TAA *	GTC	SACT'	rtg	TTCC	CAC	TGT	ACT	TTT	AGCT	CGT	ACAA	AAT	AC					6	521
50	(2)				I FOR															
55		(1) S	(A) L (B) T	ENG [:] YPE:	E CHA TH: 19 amina LOGY	93 ar o aci	nino d													

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

5 Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser - 35 -80 Ala Leu Ala Ala Pro Val Asn Thr Thr Glu Asp Glu Thr Ala Gln -65 10 Ile Pro Ala Glu Ala Val Ile Gly Tyr Leu Asp Leu Glu Gly Asp Phe Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu 15 -30 Phe Ile Asm Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val Gla Leu Asp Lys Arg Sly Pro Glu Thr Leu Cys Gly Ala Slu Leu Val 20 Asp Ala Leu Glm Phe Val Cys Gly Asp Arg Gly Phe Tyr Phe Asm Lys 25 Pro Thr Gly Tyr Gly Ser Ser Ser Arg Arg Ala Pro Gln Thr Gly Ile Val Asp Glu Cys Cys Phe Arg Ser Cys Asp Leu Arg Arg Leu Glu Met 30 Tyr Cys Ala Pro Leu Lys Pro Ala Lys Ser Ala Lys Arg Ser Val Arg Ala Gln Arg His Thr Asp Met Pro Lys Thr Gln Lys Glu Val His Leu 80 35 Lys Asn Ala Ser Arg Gly Ser Ala Gly Asn Lys Asn Tyr Arg Met 100 95

Claims

40

45

50

55

1. A nucleotide sequence comprising in the 5' to 3' direction and operably linked (a) a yeast-recognized transcription and translation initiation region, (b) a coding sequence for a hybrid precursor polypeptide, and (c) a yeast-recognized transcription and translation termination region, wherein said hybrid precursor polypeptide comprises:

$$5'-SP-(PS)_{n-1}-(LP-PS)_{n-2}-(NPRO_{MHP}-PS)_{n-3}-MHP-(PS-CPRO_{MHP})_{n-4}-3'-(PS-CPRO_{MH$$

wherein:

SP comprises a signal peptide sequence for a yeast secreted protein;

PS comprises a preferred processing site cleaved in vivo by a yeast proteolytic enzyme;

LP comprises a leader peptide sequence for a yeast secreted protein;

NPRO_{MHP} comprises a native N-terminal propeptide sequence of a mature heterologous mammalian protein of interest;

MHP comprises a peptide sequence for said mature beterologous mammalian protein of interest; CPRO_{MHP} comprises a native C-terminal propeptide sequence of said mature heterologous mammalian protein of interest; and

5 n-1, n-2, n-3, and n-4 independently = 0 or 1;

15

20

30

40

50

55

- wherein said processing sites allow for proteolytic processing of said precursor polypeptide to said mature protein in vivo by a yeast host cell, and wherein at least n-3 or n-4=1.
- 2. The nucleotide sequence of claim 1, wherein said mammalian protein is a PDGF protein or an IGF protein, or variants thereof.
 - 3. The nucleotide sequence of claim 2, wherein said protein is a human protein.
 - 4. The nucleotide sequence of claim 3, wherein said human PDGF is PDGF-BB or variants thereof.
 - 5. The nucleotide sequence of claim 4, wherein SP is a signal peptide sequence for a Saccharomyces cerevisiae α -factor.
 - **6.** The nucleotide sequence of claim 5, wherein said α -factor is *Mat* α or variants thereof.
 - 7. The nucleotide sequence of claim 6, wherein n-2 = 1, n-3 = 1, and n-4 = 0.
 - 8. The nucleotide sequence of claim 7, wherein LP is a truncated leader peptide sequence.
- 25 9. The nucleotide sequence of claim 8, wherein said coding sequence for the hybrid precursor polypeptide has the nucleotide sequence set forth in SEQ ID NO. 26.
 - **10.** The nucleptide sequence of claim 8, wherein said hybrid precursor polypeptide has the amino acid sequence set forth in SEQ ID NO. 27.
 - 11. The nucleotide sequence of claim 3, wherein n-3 = 0 and n-4 = 1 and said human IGF protein is IGF-I-A or variants thereof.
- 12. The nucleotide sequence of claim 11, wherein SP is a signal peptide sequence for a *Saccharomyces cerevisiae* α -factor.
 - 13. The nucleotide sequence of claim 12, wherein said α -factor is *Mata* or variants thereof.
 - **14.** The nucleotide sequence of claim 13, wherein said coding sequence for said hybrid precursor polypeptide has the nucleotide sequence set forth in SEQ ID NO. 40.
 - **15.** The nucleotide sequence of claim 13, wherein said hybrid precursor polypeptide has the amino acid sequence set forth in SEQ ID NO. 41.
- 45 16. A vector comprising a nucleotide sequence that comprises in the 5' to 3' direction and operably linked (a) a yeast-recognized transcription and translation initiation region, (b) a coding sequence for a hybrid precursor polypeptide, and (c) a yeast-recognized transcription and translation termination region, wherein said hybrid precursor polypeptide comprises:

wherein:

- SP comprises a signal peptide sequence for a yeast secreted protein;
 - PS comprises a preferred processing site cleaved in vivo by a yeast proteolytic enzyme;
 - LP comprises a leader peptide sequence for a yeast secreted protein;
 - NPRO_{MHP} comprises a native N-terminal propeptide sequence of a mature heterologous mammalian protein

of interest:

MHP comprises a peptide sequence for said mature heterologous mammalian protein of interest; CPRO_{MHP} comprises a native C-terminal propeptide sequence of said mature heterologous mammalian protein of interest; and

5

15

n-1, n-2, n-3, and n-4 independently = 0 or 1;

wherein said processing sites allow for proteolytic processing of said precursor polypeptide to said mature protein in vivo by a yeast host cell, and wherein at least n-3 or n-4=1.

- 10 17. The vector of claim 16, wherein said vector is the yeast shuttle vector pAB24.
 - 18. A yeast host cell stably transformed with a nucleotide sequence comprising an expression cassette, said cassette comprising in the 5' to 3' direction and operably linked (a) a yeast-recognized transcription and translation initiation region, (b) a coding sequence for a hybrid precursor polypeptide, and (c) a yeast-recognized transcription and translation termination region, wherein said hybrid precursor polypeptide comprises:

$$5'-SP-(PS)_{n-1}-(LP-PS)_{n-2}-(NPRO_{MHP}-PS)_{n-3}-MHP-(PS-CPRO_{MHP})_{n-4}-3'$$

20 wherein:

SP comprises a signal peptide sequence for a yeast secreted protein;

PS comprises a preferred processing site cleaved in vivo by a yeast proteolytic enzyme;

LP comprises a leader peptide sequence for a yeast secreted protein;

 $NPRO_{MHP}$ comprises a native N-terminal propeptide sequence of a mature heterologous mammalian protein of interest;

MHP comprises a peptide sequence for said mature heterologous mammalian protein of interest;

CPRO_{MHP} comprises a native C-terminal propeptide sequence of said mature heterologous mammalian protein of interest; and

30

35

25

n-1, n-2, n-3, and n-4 independently = 0 or 1;

wherein said processing sites allow for proteolytic processing of said precursor polypeptide to said mature protein in vivo by a yeast host cell, and wherein at least n-3 or n-4=1.

- **19.** The cell of claim 18, wherein said processing sites are dipeptides cleaved by the KEX2 gene product of *Saccha-romyces*.
- **20.** The cell of claim 19, wherein said dipeptides are 5'-Lys-Arg-3'.
 - 21. The cell of claim 20, wherein said yeast cell is from the genus Saccharomyces.
 - 22. The cell of claim 21, wherein said yeast cell is S. cerevisiae.

45

23. A method for expression of heterologous proteins and their secretion in the biologically active mature form using a yeast host cell as the expression system, said method comprising transforming said yeast cell with a vector comprising a nucleotide sequence that comprises in the 5' to 3' direction and operably linked (a) a yeast-recognized transcription and translation initiation region, (b) a coding sequence for a hybrid precursor polypeptide, and (c) a yeast-recognized transcription and translation termination region, wherein said hybrid precursor polypeptide comprises:

55

50

wherein:

SP comprises a signal peptide sequence for a yeast secreted protein;

PS comprises a preferred processing site cleaved in vivo by a yeast proteolytic enzyme;

LP comprises a leader peptide sequence for a yeast secreted protein;

NPRO_{MHP} comprises a native N-terminal propeptide sequence of a mature heterologous mammalian protein of interest;

MHP comprises a peptide sequence for said mature heterologous mammalian protein of interest;

 $\mathsf{CPRO}_{\mathsf{MHP}}$ comprises a native C-terminal propeptide sequence of said mature heterologous mammalian protein of interest; and

n-1, n-2 n-3, and n-4 independently = 0 or 1;

wherein said processing sites allow for proteolytic processing of said precursor polypepride to said mature protein in vivo by a yeast host cell, and wherein at least n-3 or n-4=1.

Patentansprüche

5

10

15

20

25

30

35

40

55

1. Nucleotidsequenz, die in 5' → 3'-Richtung und funktionell gebunden (a) eine von Hefe erkannte Transkriptionsund Translations-Initiationsregion, (b) eine codierende Sequenz für ein Hybrid-Vorläuferpolypeptid und (c) eine von Hefe erkannte Transkriptions- und Translations-Terminationsregion umfasst, wobei das Hybrid-Vorläuferpolypeptid umfasst:

$$5 \text{ '-SP-(PS)}_{n-1}\text{-(LP-PS)}_{n-2}\text{-(NPRO}_{MHP}\text{-PS)}_{n-3}\text{-MHP-(PS-CPRO}_{MHP})_{n-4}\text{-3'}$$

worin

SP eine Signalpeptidsequenz für ein in Hefe sezerniertes Protein umfasst;

PS eine bevorzugte Bearbeitungsstelle, die in vivo durch ein proteolytisches Hefeenzym gespalten wird, umfasst:

LP eine Leader-Peptidsequenz für ein in Hefe sezerniertes Protein umfasst;

NPRO_{MHP} eine native N-terminale Propeptidsequenz eines interessierenden, reifen, heterologen Säugerproteins umfasst;

MHP eine Peptidsequenz für das interessierende, reife, heterologe Säugerprotein umfasst;

CPRO_{MHP} eine native C-terminale Propeptidsequenz des interessierenden, reifen, heterologen Säugerproteins umfasst; und

n-1, n-2, n-3 und n-4 unabhängig = 0 oder 1;

wobei die Bearbeitungsstellen eine proteolytische Verarbeitung des Vorläuferpolypeptids in vivo durch eine Hefe-Wirtszelle zu dem reifen Protein ermöglichen und wobei zumindest n-3 oder n-4 = 1.

- 2. Nucleotidsequenz nach Anspruch 1, wobei das Säugerprotein ein PDGF-Protein oder ein IGF-Protein oder Varianten davon ist.
- 45 3. Nucleotidsequenz nach Anspruch 1, wobei das Protein ein humanes Protein ist.
 - 4. Nucleotidsequenz nach Anspruch 3, wobei das humane PDGF, PDGF-BB oder Varianten davon ist.
- Nucleotidsequenz nach Anspruch 4, wobei SP eine Signalpeptidsequenz für Saccharomyces cerevisiae-α-Faktor
 ist.
 - 6. Nucleotidsequenz nach Anspruch 5, wobei der α-Faktor Mat-α oder Varianten davon ist.
 - 7. Nucleotidsequenz nach Anspruch 6, wobei n-2 = 1, n-3 = 1 und n-4 = 0.
 - 8. Nucleotidsequenz nach Anspruch 7, wobei LP eine gestutzte Lederpeptidsequenz ist.
 - 9. Nucleotidsequenz nach Anspruch 8, wobei die codierende Sequenz für das Hybrid-Vorläuferpolypeptid die Nu-

cleotidsequenz hat, die in SEQ ID NO: 26 angegeben ist.

5

15

25

30

35

40

50

55

- 10. Nucleotidsequenz nach Anspruch 8, wobei das Hybrid-Vorläuferpolypeptid die Aminosäuresequenz hat, die in SEQ ID NO: 27 angegeben ist.
- 11. Nucleotidsequenz nach Anspruch 3, wobei n-3 = 0 und n-4 = 1 und das humane IGF-Protein IGF-I-A oder Varianten davon ist.
- **12.** Nucleotidsequenz nach Anspruch 11, wobei SP eine Signalpeptidsequenz für einen *Saccharomyces cerevisiae*10 α-Faktor ist.
 - 13. Nucleotidsequenz nach Anspruch 12, wobei der α -Faktor *Mat*- α oder Varianten davon ist.
 - 14. Nucleotidsequenz nach Anspruch 13, wobei die codierende Sequenz für das Hybridvorläuferpolypeptid die Nucleotidsequenz hat, die in SEQ ID NO: 40 angegeben ist.
 - 15. Nucleotidsequenz nach Anspruch 13, wobei das Hybridvorläuferpolypeptid die Aminosäuresequenz, die in SEQ ID NO: 41 angegeben ist, hat.
- 20 16. Vektor, umfassend eine Nucleotidsequenz, die in 5' → 3'-Richtung und funktionell gebunden (a) eine von Hefe erkannte Transkriptions- und Translations-Initiationsregion, (b) eine codierende Sequenz für ein Hybrid-Vorläuferpolypeptid und (c) eine von Hefe erkannte Transkriptions- and Translations-Terminationsregion umfasst, wobei das Hybrid-Vorläuferpolypeptid umfasst:

worin SP eine Signalpeptidsequenz für ein in Hefe sezerniertes Protein umfasst;

PS eine bevorzugte Bearbeitungsstelle, die in vivo durch ein proteolytisches Hefeenzym gespalten wird, umfasst:

LP eine Leader Peptidsequenz für ein in Hefe sezerniertes Protein umfasst;

NPRO_{MHP} eine native N-terminale Propeptidsequenz eines interessierenden, reifen, heterologen Säugerproteins umfasst:

MHP eine Peptidsequenz für das interessierende, reife, heterologe Säugerprotein umfasst;

CPRO_{MHP} eine native C-terminale Propeptidsequenz des interessierenden reifen, heterologen Säugerproteins umfasst; und

n-1, n-2, n-3 und n-4 unabhängig = 0 oder 1;

- wobei die Bearbeitungsstellen eine proteolytische Verarbeitung des Vorläuferpolypeptids in vivo durch eine Hefe-Wirtszelle zu dem reifen Protein ermöglichen und wobei zumindest n-3 oder n-4 = 1.
- 17. Vektor nach Anspruch 16, wobei der Vektor der Hefe-Shuttle-Vektor pAB24 ist.
- 18. Hefe-Wirtszelle, die in stabiler Weise mit einer Nucleotidsequenz transformiert ist, die eine Expressionskassette umfasst, wobei die Expressionskassette in 5' → 3'-Richtung und funktionell gebunden (a) eine von Hefe erkannte Transkriptions- und Translations-Initiationsregion, (b) eine codierende Sequenz für ein Hybrid-Vorläuferpolypeptid und (c) eine von Hefe erkannte Transkriptions- und Translations-Terminationsregion umfasst, wobei das Hybrid-Vorläuferpolypeptid umfasst:

$$5'-SP-(PS)_{n-1}-(LP-PS)_{n-2}-(NPRO_{MHP}-PS)_{n-3}-MHP-(PS-CPRO_{MHP})_{n-4}-3'$$

worin SP eine Signalpeptidsequenz für ein in Hefe sezerniertes Protein umfasst;

PS eine bevorzugte Bearbeitungsstelle, die in vivo durch ein proteolytisches Hefeenzym gespalten wird, umfasst:

LP eine Leader Peptidsequenz für ein in Hefe sezerniertes Protein umfasst;

NPRO_{MHP} eine native N-terminale Propeptidsequenz eines interessierenden, reifen, heterologen Säugerproteins umfasst;

MHP eine Peptidsequenz für das interessierende, reife, heterologe Säugerprotein umfasst;

 $\mathsf{CPRO}_\mathsf{MHP}$ eine native C-terminale Propeptidsequenz des interessierenden reifen, heterologen Säugerproteins umfasst; und

n-1, n-2, n-3 und n-4 unabhängig = 0 oder 1;

5

10

15

35

40

45

50

55

wobei die Bearbeitungsstellen eine proteolytische Verarbeitung des Vorläuferpolypeptids in vivo durch eine Hefe-Wirtszelle zu dem reifen Protein ermöglichen und wobei zumindest n-3 oder n-4 = 1.

- **19.** Zelle nach Anspruch 18, wobei die Bearbeitungsstellen Dipeptide sind, die durch KEX2-Genprodukt von *Saccharomyces* gespalten werden.
- 20. Zelle nach Anspruch 19, wobei die Dipeptide 5'-Lys-Arg-3' sind.
- 21. Zelle nach Anspruch 20, wobei die Hefezelle zu der Gattung Saccharomyces gehört.
- 22. Zelle nach Anspruch 21, wobei die Hefezelle S. cerevisiae ist.
- 23. Verfahren zur Expression von heterologen Proteinen und zu ihrer Sekretion in biologisch aktiver reifer Form unter Verwendung einer Hefe-Wirtszelle als Expressionssystem, wobei das Verfahren umfasst: Transformieren der Hefezelle mit einem Vektor, der eine Nucleotidsequenz umfasst, die in der 5' → 3'-Richtung und funktionell gebunden (a) eine von Hefe erkannte Transkriptions- und Translations-Initiationsregion, (b) eine codierende Sequenz für ein Hybrid-Vorläuferpolypeptid und (c) eine von Hefe erkannte Transkriptions- und Translations-Terminationsregion umfasst, wobei das Hybrid-Vorläuferpolypeptid umfasst:

$$5'-SP-(PS)_{n-1}-(LP-PS)_{n-2}-(NPRO_{MHP}-PS)_{n-3}-MHP-(PS-CPRO_{MHP})_{n-4}-3'$$

30 worin SP eine Signalpeptidsequenz für ein in Hefe sezerniertes Protein umfasst;

PS eine bevorzugte Bearbeitungsstelle, die in vivo durch ein proteolytisches Hefeenzym gespalten wird, umfasst:

LP eine Leader Peptidsequenz für ein in Hefe sezerniertes Protein umfasst;

NPRO_{MHP} eine native N-terminale Propeptidsequenz eines interessierenden, reifen, heterologen Säugerproteins umfasst:

MHP eine Peptidsequenz für das interessierende, reife, heterologe Säugerprotein umfasst;

 $\mathsf{CPRO}_{\mathsf{MHP}}$ eine native C-terminale Propeptidsequenz des interessierenden reifen, heterologen Säugerproteins umfasst; und

n-1, n-2, n-3 und n-4 unabhängig = 0 oder 1;

wobei die Bearbeitungsstellen eine proteolytische Verarbeitung des Vorläuferpolypeptids in vivo durch eine Hefe-Wirtszelle zu dem reifen Protein ermöglichen und wobei zumindest n-3 oder n-4 = 1.

Revendications

1. Séquence nucléotidique comprenant dans la direction 5' -3' et liées de manière fonctionnelle (a) une région d'initiation de la transcription et de la traduction reconnue dans une levure, (b) une séquence codant pour un polypeptide précurseur hybride, et (c) une région de terminaison de la transcription et de la traduction reconnue dans une levure, dans laquelle ledit polypeptide précurseur hybride comprend :

dans laquelle:

SP comprend une séquence de peptide signal d'une protéine sécrétée par une levure ;

PS comprend un site de maturation préféré clivé in vivo par une enzyme protéolytique de levure ;

LP comprend une séquence de peptide leader d'une protéine sécrétée par une levure ;

NPRO_{MHP} comprend une séquence propeptidique N-terminale native d'une protéine de mammifère hétérologue mature d'intérêt ;

MHP comprend une séquence peptidique de ladite protéine de mammifère hétérologue mature d'intérêt ; CPRO_{MHP} comprend une séquence propeptidique C-terminale native de ladite protéine de mammifère hétérologue mature d'intérêt ; et

n-1, n-2, n-3, et n-4 indépendamment = 0 ou 1;

dans laquelle lesdits sites de maturation permettent La maturation protéolytique dudit polypeptide précurseur en ladite protéine mature in vivo par une cellule de levure hôte, et dans laquelle au moins n-3 ou n-4 = 1.

- 2. Séquence nucléotidique de la revendication 1, dans laquelle ladite protéine de mammifère est une protéine PDGF ou une protéine IGF, ou des vatiants de celles-ci.
- 3. Séquence nucléotidique de la revendication 2, dans laquelle ladite protéine est une protéine humaine.
- 4. Séquence nucléotidique de la revendication 3, dans laquelle ledit PDGF humain est PDGF-BB ou des variants de celui-ci.
- 5. Séquence nucléotidique de la revendication 4, dans laquelle SP est une séquence de peptide signal d'un facteur α de Saccharomyces cerevisiae.
- 6. Séquence nucléotidique de la revendication 5, dans laquelle ledit facteur α est Mat α ou des variants de celui-ci.
- 7. Séquence nucléotidique de la revendication 6, dans laquelle n-2=1, n-3=1, et n-4=0.
- 8. Séquence nucléotidique de la revendication 7, dans laquelle LP est une séquence de peptide leader tronquée.
- 30 9. Séquence nucléotidique de la revendication 8, dans laquelle ladite séquence codant pour le polypeptide précurseur hybride a la séquence nucléotidique indiquée en SEQ ID NO.26.
 - 10. Séquence nucléotidique de la revendication 8, dans laquelle ledit polypeptide précurseur hybride a la séquence d'acides aminés indiquée en SEQ ID NO.27.
 - 11. Séquence nucléotidique de la revendication 3, dans laquelle n-3 = 0 et n-4 = 1 et ladite protéine IGF humaine est IGF-I-A ou des variants de celle-ci.
- 12. Séquence nucléotidique de la revendication 11, dans laquelle SP est une séquence de peptide signal d'un facteur
 α de Saccharomyces cerevisiae.
 - 13. Séquence nucléotidique de la revendication 12, dans laquelle ledit facteur α est Mat α ou des variants de celui-ci.
 - 14. Séquence nucléotidique de la revendication 13, dans laquelle ladite séquence codant pour ledit polypeptide précurseur hybride a la séquence nucléotidique présentée en SEQ ID NO. 40.
 - **15.** Séquence nucléotidique de la revendication 13, dans laquelle ledit polypeptide précurseur hybride a la séquence d'acides aminés présentée en SEQ ID NO 41.
- 16. Vecteur comprenant une séquence nucléotidique qui comprend dans la direction 5' -3' et liées de manière fonctionnelle (a) une région d'initiation de la transcription et de la traduction reconnue dans une levure, (b) une séquence codant pour un polypeptide précurseur hybride, et (c) une région de terminaison de la transcription et de la traduction reconnue dans une levure, dans laquelle ledit polypeptide précurseur hybride comprend :

dans laquelle:

55

5

10

15

20

25

35

SP comprend une séquence de peptide signal d'une protéine sécrétée par une levure ;

PS comprend un site de maturation préféré clivé in vivo par une enzyme protéolytique de levure ;

LP comprend une séquence de peptide leader d'une protéine sécrétée par une levure ;

 $\mathsf{NPRO}_{\mathsf{MHP}}$ comprend une séquence propeptidique N-terminale native d'une protéine de mammifère hétérologue mature d'intérêt ;

MHP comprend une séquence peptidique de ladite protéine de mammifère hétérologue mature d'intérêt ; CPRO_{MHP} comprend une séquence propeptidique C-terminale native de ladite protéine de mammifère hétérologue mature d'intérêt ; et

n-1, n-2, n-3, et n-4 indépendamment = 0 ou 1;

dans laquelle lesdits sites de maturation permettent la maturation protéolytique dudit polypeptide précurseur en ladite protéine mature in vivo par une cellule de levure hôte, et dans laquelle au moins n-3 ou n-4 = 1.

- 17. Vecteur de la revendication 16, dans laquelle ledit vecteur est le vecteur navette de levure pAB24.
- 18. Cellule de levure hôte transformée de manière stable avec une séquence nucléotidique comprenant une cassette d'expression, ladite cassette comprenant dans la direction 5' 3' et liées de manière fonctionnelle (a) une région d'initiation de la transcription et de la traduction reconnue dans une levure, (b) une séquence codant pour un polypeptide précurseur hybride, et (c) une région de terminaison de la transcription et de la traduction reconnue dans une levure, dans laquelle ledit polypeptide précurseur hybride comprend :

$$5'-SP-(PS)_{n-1}-(LP-PS)_{n-2}-(NPRO_{MHP}-PS)_{n-3}-MHP-(PS-CPRO_{MHP})_{n-4}-3'$$

dans laquelle :

SP comprend une séquence de peptide signal d'une protéine sécrétée par une levure ;

PS comprend un site de maturation préféré clivé in vivo par une enzyme protéolytique de levure ;

LP comprend une séquence de peptide leader d'une protéine sécrétée par une levure ;

NPRO_{MHP} comprend une séquence propeptidique N-terminale native d'une protéine de mammifère hétérologue mature d'intérêt ;

MHP comprend une séquence peptidique de ladite protéine de mammifère hétérologue mature d'intérêt;

CPRO_{MHP} comprend une séquence propeptidique C-terminale native de ladite protéine de mammifère hétérologue mature d'intérêt ; et

35

5

10

15

20

30

50

55

n-1, n-2, n-3, et n-4 indépendamment = 0 ou 1;

dans laquelle lesdits sites de maturation permettent la maturation protéolytique dudit polypeptide précurseur en ladite protéine mature in vivo par une cellule de levure hôte, et dans laquelle au moins n-3 ou n-4 = 1.

- 40 19. Cellule de la revendication 18, dans laquelle lesdits sites de maturation sont des dipeptides clivés par le produit du gène KEX2 de Saccharomyces.
 - 20. Cellule de la revendication 19, dans laquelle lesdits dipeptides sont 5'-Lys-Arg-3'.
- 45 **21.** Cellule de la revendication 20, dans laquelle ladite cellule de levure est du genre Saccharomyces.
 - 22. Cellule de la revendication 21, dans laquelle ladite cellule de levure est S. cerevisiae.
 - 23. Méthode d'expression de protéines hétérologues et leur sécrétion dans la forme mature biologiquement active utilisant une cellule hôte de levure comme système d'expression, ladite méthode comprenant le fait de transformer ladite cellule de levure avec un vecteur comprenant une séquence nucléotidique qui comprend dans la direction 5' 3' et liées de manière fonctionnelle (a) une région d'initiation de la transcription et de la traduction reconnue dans une levure, (b) une séquence codant pour un polypeptide précurseur hybride, et (c) une région de terminaison de la transcription et de la traduction reconnue dans une levure, dans laquelle ledit polypeptide précurseur hybride comprend :

$${\rm 5'\text{-}SP\text{-}(PS)}_{\rm n-1}\text{-}({\rm LP\text{-}PS)}_{\rm n-2}\text{-}({\rm NPRO}_{\rm MHP}\text{-}PS)_{\rm n-1}\\ {\rm MHP\text{-}(PS\text{-}CPRO}_{\rm MHP})_{\rm n-4}\text{-}3'}$$

	dans laquelle :
5	SP comprend une séquence de peptide signal d'une protéine sécrétée par une levure ; PS comprend un site de maturation préféré clivé in vivo par une enzyme protéolytique de levure ; LP comprend une séquence de peptide leader d'une protéine sécrétée par une levure ; NPRO _{MHP} comprend une séquence propeptidique N-terminale native d'une protéine de mammifère hétérologue mature d'intérêt ;
10	MHP comprend une séquence peptidique de ladite protéine de mammifère hétérologue mature d'intérêt ; CPRO _{MHP} comprend une séquence propeptidique C-terminale native de ladite protéine de mammifère hétérologue mature d'intérêt ; et
15	n-1, n-2, n-3, et n-4 indépendamment = 0 ou 1 ; dans laquelle lesdits sites de maturation permettent la maturation protéolytique dudit polypeptide précurseur en ladite protéine mature in vivo par une cellule de levure hôte, et dans laquelle au moins n-3 ou n-4 = 1.
20	
25	
30	
35	
40	
45	
50	
55	

