EXAMINATION QUESTIONS/SOLUTIONS Solutions 2008 EEI - Maths I. EE I(I)	COURSE I (1)	1
Setters are advised that Checkers, Editors, Typists and External Examiners greatly appreciate the merits of accuracy, legibility and neatness.	SETTER Lugato/GW	
Write on one side only, between the margins, double-spaced. Not more than one question or solution per sheet, please	QUESTION NO.	
(i) f is even if $f(x) = f(-x)$ for all x .	SOLUTION NO.	
(1) f is odd if $f(x) = -f(-x)$ for all x .	MARKSCHEME	
Examples: $f(x) = x^2$ is even; $f(x) = x$ is odd	2	-
(ii) e : reitler		
(ii) e $\chi \sin x$: even	4	
2 in 16 i ordel		
$2x/(x^{2}-1)$; odd. $((g(x))) = e^{1/x^{2}} g(f(x)) = e^{-2x}$.	4	
		-
$f'(x) = lm x$, $f'(x) = x^2$.	4	
(iv) In general, we can write		
$f(x) = \frac{3}{7} (f(x) + f(-x)) + \frac{3}{7} (f(x) - f(-x))$) 2	
even odd.	.,,	
When $f(x) = \frac{2x}{x+1}$. This gives		
$\frac{2x}{x+1} = \frac{-2x^2}{1-x^2} + \frac{2x}{1-x^2}.$	4	

	EVANABLATION OF ESTIONS (COLUMN ASSESSMENT)	
	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
		EEI(1)
		2
Question Core 2		
Solution		Marks & seen/unseen
Parts		·
(1) Lim (2)(-1)(2(+3) = lim (2-1/x)(1+3/x)	6
	$1) \lim_{x \to \infty} \frac{(2x-1)(x+3)}{(x+5)(3x-2)} = \lim_{x \to \infty} \frac{(2-1/x)(1+3/x)}{(1+5/x)(3-2/x)}$	(2)
	= 2/3	(2)
	(1) x sn (cotx) < x	
	50 lin x sn (w/2) =0	4
	iii) Lim x-2 ln(cox)	
	= $\lim_{x \to 0} \frac{\ln(1-x^2/2! \dots)}{x^{+2}} = \lim_{x \to 0} \frac{-x^2/2! + holy}{x^2}$	4
	or use l'hopital's rule	(T)
	14 $\lim_{x\to\infty} x^{-9} \left\{ (x+3)^{10} - (x+1)^{10} \right\}$	
	= Lin 29 (x10 (123/x)10 - x10 (121/x)10 }	2
	= Lim x 9 \ DE (1+ 30) - x 10 (1+ 10/x)	2
	= Lui x9 30 x9 - 10x9 + hot	
	x->00	থ
	= 20	
	Setter's initials Checker's initials	Page number
	56	

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
		3 FFI(1)
Solvan C3		Marks & seen/unseen
Parts	i) Use charge of variable $\int (3-2x)^{-5} dx = \frac{(3-2x)^{-4}}{4} \times \frac{1}{(-2)} + C$	
	$= \frac{(3-2x)^{-4}}{8} + C$	3
	(i) Partial fractions	
	$\frac{5 \times +2}{(3 \times +4)(x-1)} = \frac{A}{3 \times +4} + \frac{B}{x-1}$	
	$5 \times +2 = A(x-1) + B(3 \times +4) = (A+3B) \times + (-A+4B)$	3
	So $A+3B=5$ $\Rightarrow B=1$ $-A+4B=2$ $\Rightarrow A=2$	
	$\int \frac{5x+2}{(3x+4)(x-1)} dx = \int \frac{2}{3x+4} dx + \int \frac{1}{x-1} dx$	2
	= 3 h (3x+4) + ln (x-1) + C)
	Setter's initials SL Checker's initials TAC.	Page number

	EXAMINATION Q UESTIONS /SOLUTIONS 2007-08	Course EEI(1) 3 co wt
Solvara C3 (car	,	Marks & seen/unseen
Parts .	(ii) Integrale by ports $\int x \ln x dx = \ln x \left(\frac{x^2}{2}\right) - \frac{1}{2} \int x^2 \frac{1}{x} dx$	2
	$= \frac{\chi^2 \ln x}{2} - \frac{1}{2} \int x dx$	2
	$= \frac{x^2 \ln x}{2} - \frac{1}{2} \frac{x^2}{2} + C$	
	= $\frac{\chi^2}{2} \left[\ln \chi - \frac{1}{2} \right] + C$ (v) Integraling by parts : $\int_1^2 \chi \ln \chi dx = 2 \ln 2 - \frac{3}{2}$	T
	n X T & extremely	3
	$T_0 = (x^0 e^{x} dx) = (e^{x} dx) = e^{x} + c^{\text{anyond will}} do it$	
	$T_1 = Xe^{x} - T_0 = Xe^{x} - e^{x} + C$ $T_2 = X^2e^{x} - 2[xe^{x} - e^{x}] + C$	4
	$I_2 = x^3 \times 3[x^2 e^{x} - 2xe^{x} + 2e^{x}] + C$	
	$= e^{x} \left[x^{3} - 3x^{2} + 6x - 6 \right] + C$ Afternative (more)	
	$T = \int x^3 e^{x} dx = x^3 e^{x} - \int 3x^2 e^{x} dx$ $= x^3 e^{x} - 3x^2 e^{x} + \int 6x e^{x} dx$ $= x^3 e^{x} - 3x^2 e^{x} + 6x e^{x} - \int 6e^{x} dx$	
	$= (3c^3 - 3x^2 + 6x - 6)e^x + C$	
	Setter's initials Checker's initials T. R.C.	Page number

*

	EXAMINATION Q UESTIONS /SOLUTIONS 2007-08	Course EEI(1)
Question	å.	Marks & seen/unseen
Parts	i) a) $3+i5 = \sqrt{9+25}$ (ws0+isn0) $0 = 10\pi^{1}(5/3)$ b) $r = \sqrt{6^{2}+3^{2}} = \sqrt{45}$, $0 = 10\pi^{1}(-3/6) + \pi$ c) $r = \sqrt{4^{2}+5^{2}} = \sqrt{41}$, $0 = 10\pi^{1}(5/4) + \pi$	3
*	(i) By De Moivre (ii) By De Moivre (iii) By	4
	Equating real and imagivery parts $\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$ $= \cos^3 \theta - 3\cos \theta (1 - \cos^2 \theta)$ $= \cos^3 \theta - 3\cos \theta + 3\cos^3 \theta$ other ways not named any complex of number are	4- 1 €.9. 1 € 65 30 = 65 (20+0) = 65 20 65 60 - Sn 20 Sin
	(ii) $Z+1 = (x+1)+(y)$ 10 10 10 10 10 10 10 10	3 etc.]
	$\frac{y}{x+1} = \frac{1}{3} = \sqrt{3}$ and so $y = \sqrt{3}(x+1)$ for $x > 1$.	6
	Setter's initials S L Checker's initials	Page number

EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
	EEI(I)
	5
estion	Marks & seen/unseen
$\int_{0}^{15} \int_{0}^{15} = (y-2)^{2} + 2x - 1 = 0$	2
$\frac{\partial x}{\partial t} = \frac{2x(y-2)}{2x(y-2)} = 0.$	2
$\frac{2}{2} = \frac{2}{3} = \frac{2}$	3
$P_{1}(0,1): A=2, B=-2, C=0: AC-B^{2} < 0.5 = 0$	3 3
(ii) P1 P2 CONTOUR X=0 AND (x-4-6-1)	3 4
	(20)
Setter's initials Checker's initials GRC	Page number

• • .

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
		es I(I)
		4
Question		70
C6		Marks & seen/unseen
Parts	(a) Provide that he co	
(1)	(a) egus in stord form al	
	$(3,-5,-2)$. $r=\frac{27}{\sqrt{38}}$ and $(1,1,6)$. $r=\frac{9}{\sqrt{38}}$	
	138 \square \square \frac{1}{\sqrt{38}} \sqrt{38}	2
	DISTANCES OR 2 and $\frac{9}{\sqrt{3}8}$ respectively.	2
	100	48
	(b) N, giraby $(\frac{2}{38})^{(3-5-2)} = (3, -5, -2)$.	2
		1
	N_2 gik by $\left(-\frac{9}{38}\right)\left(\frac{1}{1},\frac{6}{6}\right) = \left(-\frac{9}{38},-\frac{9}{38}\right)$.	
	NA = (-9 / -9 1) = (4 A)/20	
	$N_1N_2 = (-9-6, -9+10, -54+4)/38$ = $(-15, 1, -50)/38$	1
	(1, 1, 00) 50 (-1, 1, -50)	2
	$(3,-5,-2) + \lambda(-15,1,-50)$ (OR ALTERNATION 19 $38 - 0 < \lambda < +0$	2
110	1 STATE OF THE PARTY OF THE PAR	
(1*)	$ \underline{u} = \implies \times^2 + y^2 + z^2 = $	2
	(u-k)=1 => x2+y2+(2-1)2=1	2
	→ = 1/2.	1
	. 1	1
	$\frac{1}{4} + x + y = 1$	2
	$\Rightarrow \sqrt{x^{2}+y^{2}} = \sqrt{3} \qquad (x^{2}+y^{2}+y^{2})$	
	CIRCLE in the place t= =	1
	Centre (0,0 1) and vading 13	7
	2) 700	2
	Setter's initials Checker's initials	Page number
	9n,	

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course EFI(1)
		7
Question C7 3	whian	Marks &
Parts	$LLT = \begin{pmatrix} a & 0 & 0 \\ b & d & 0 \\ c & e & f \end{pmatrix} \begin{pmatrix} a & b & c \\ o & d & e \\ o & o & f \end{pmatrix}$	seen/unseen
	$= \begin{pmatrix} a^{2} & ab & ac \\ ab & b^{2}+d^{2} & bc+de \\ ac & bc+de & c^{2}+e^{2}+f^{2} \end{pmatrix} = A = \begin{pmatrix} 9 & 3 & -3 \\ 3 & 5 & 1 \\ -3 & 1 & 11 \end{pmatrix}$	4
	\Rightarrow a=3, b=1, c=-1, d=2, e=1 and f=3 [Note that we could also have a=-3, d=-2 = this will	2
	$\Rightarrow a=3, b=1, c=-1, d=2, e=1$ and $f=3$ [Note that we could also have $a=-3, d=-2$ - this will affect answer of $a=-3$ for $a=-3$ fo	1
	A=LLT = A = L LT = L 2 = (18)2 = 324.	3.
	$(L I) = \begin{pmatrix} 3 & 0 & 0 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 & 1 & 0 \\ -1 & 1 & 3 & 0 & 0 & 1 \end{pmatrix}$	
	$\Rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & \frac{1}{3} & 0 & 0 \\ 0 & 2 & 0 & 0 & \frac{1}{3} & 0 & 1 \end{pmatrix}$	
	$\Rightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{1}{3} & 0 & 0 \\ 0 & 1 & 0 & -\frac{1}{6} & \frac{1}{2} & 0 \\ 0 & 0 & 3 & \frac{1}{2} & -\frac{1}{2} & 1 \end{pmatrix}$	
	$\begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \end{bmatrix} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 3 & 0 \\ 1 & -1 & 2 \end{pmatrix}$	5
	$A^{-1} = (LL^{T})^{-1} = (L^{T})^{-1}L^{-1} = (L^{-1})^{T}L^{-1}$	2
	$A^{-1} = \frac{1}{36} \begin{pmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ -1 & 3 & 0 \\ 1 & -1 & 2 \end{pmatrix} = \frac{1}{36} \begin{pmatrix} 6 & -4 & 2 \\ -4 & 10 & -2 \\ 2 & -2 & 4 \end{pmatrix}$	3/20
	Setter's initials Checker's initials PRC	Page number

}

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course ANCILLARY
		MATHEMATI (5)
		EE ICI)
Question C 9		Marks & Seen/unseen
Parts	Substitute $y = xu$: $u + x du = 2 \left(\frac{2 + y/x}{2 - y/x} \right) = \frac{4 + 2u}{2 - u} (1)$	2
	$(1) \Leftrightarrow x du = \frac{4+2u}{2-u} - u = \frac{4+u^2}{2-u}$	2
	$\iff \int \frac{4-2u}{4+u^2} du = \int \frac{2}{x} dx$	
		2
	$y(1)=0 \iff 0 = 0+c : c=0$	2
	and we have $2 \tan^{-1}\left(\frac{y}{2x}\right) = \ln\left(4x^2 + y^2\right)$	
	$\frac{1}{(2x)} = \frac{1}{(2x)} = 1$	1
(ii)	dx (ln (verx + tonz)) = secx tunx + sec2x secx + tonz	
	$= \frac{\sec x \left(\tan x + \sec x \right)}{\sec x} = \sec x$	2
	cos x dy + y = 1- sinx (dy + y secx = secx-tangli)	2
	Now feeter dx = en feet + tanx + const from the above — entegrating factor feet + tano	l
	(11) \Leftrightarrow (sec x + tonx) $\frac{dq}{dz}$ + y (sec 2x + sec x $\frac{dq}{dz}$) = sx(2x + $\frac{dq}{dz}$)	2
	(y [secx + tano]) = 1	
		1
	(3) y (feex + fanz) = x+c $(3) y = x+c or equivalent$ $fecx + fanz$	2
	(In padicular, accept Getc) (1-8thx) or (x+c) cosx (esx)	
	Setter's initials Checker's initials	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
		ANCILLARY
		MATHEMATIC
Question		EFI(1)
CIO		Marks & seen/unseen
Parts	Aux. eqn $\mu^2 + 4\mu + 8 = 0 \Leftrightarrow \mu = -2 \pm i$ $(amp.fn. y = e^{-2x} (P_{cosx} + Q_{SIN}x)$	2
	Try PI $y = re^{-2x} \Rightarrow y' = -2re^{-2x} \Rightarrow y'' = 4re^{-2x}$ substituting who the ODE: $(4r - 8r + 5r)e^{-2x} = e^{-2x}$ $r = 1$	1
	general solution $y = e^{-2x} (1 + P \cos x + Q \sin x)$ whence $y' = e^{-2x} (-2 + [\overline{Q} - 2P] \cos x - [\overline{P} + 2Q] \sin x)$	1
	$y(0) = 0 \iff 1+P = 0 : P = -1$ $y'(0) = 0 \iff -2+Q-2P = 0 : Q = 0$	1 .
(ti)	solution $y = e^{-2x} \left(1 - \cos x \right)$ Aux pan $u^2 + 4u + h = 0$	1
(4)	Aux. egn $\mu^2 + 4\mu + 4 = 0 \iff \mu = -2$, repeated Comp. for. $y = e^{-2x} (Ax + B)$ Try PI $y = rx^2 e^{-2x} \Rightarrow y' = e^{-2x} (2rx - 2rx^2)$	2
	=>y"= e-2 (?r-8rx+4rx2)	2
	subshirtding who the OCT: $[(2r-8rx+4rx^2)+4(2rx-2rx^2)+4rx^2]e^{-2x}=e^{-7x}$	2
	general solution $y = e^{-2x} (h_x^2 + Ax + B)$	1
	Whence $y' = e^{-2x} ([4-28] + ([-24]x - x^2)$ $y(0) = 0 \iff 8 = 0$	1
	$y'(0) = 0 \iff A - 2B = 0 : A = 0$ solution $y = \frac{1}{2}x^2e^{-2x}$,
		1
	Setter's initials Checker's initials	Page number
	PTR PRC.	191

.,

EEI(1) 10

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
		Soluhin
Ouzation		CII
Question		Marks & seen/unseen
Parts	11	
	y'' + xy = 0; $y(0) = 1$, $y'(0) = 0$.	
	Différentiate n times using Leibnitz.	
	yln+2(2) - xy(n)(2) + nyln-1)(2) = 0.	4
	Put sizo	
	y(n+2)(0) + ny(n-1)(0)=0 (4)	2
	Put n=1 in eq? (4) y"(0) = -1	· D
	n=2 " " $y''(0)=-2y'(0)=0$	0
	from the original seq? is follow y"(0) = 0	
	- 11=3 m 29/2(4) y(5) - 34"(0) =0 : y \$ (0) = 0	€
	J' (0) + ky/(0)=0 y(6)(0)=4	2
	Clearly the only non-zeo leans are y(0), y"(0), y"/1) ok	
	$\frac{1}{3!} \frac{y(x)}{6!} = 1 - \frac{x^3}{3!} + \frac{4x^6}{6!} = \frac{1}{(3n)!} + \frac{y^{(3n)}(0)}{(3n)!} = \frac{3n}{(3n)!}$	2
	By the ratio-less $L = \lim_{n \to \infty} \left \frac{\dot{y}^{3n}(0) x^{3n}}{(3n)!} \frac{(3n-3)!}{y^{(3n-3)}(0)!} \right $	2
	$= \lim_{n\to\infty} \left \frac{(3n-2) x^3}{(3n)(3n-1)(3n-2)} \right \text{from } (*)$	3
	=0 Seres conveyes $\forall x$.	2
	Setter's initials Checker's initials SL	Page number

Question	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course EE 1 (2) Marks & seen/unseen
(1)	Nao $(\sinh(x))^2 = (\frac{e^x - e^{x}}{2})^2$ = $(\frac{e^x - e^{x}}{2})^2$ = $(\frac{e^x - e^{x}}{2})^2$	·
	So A = 112 and B = -112. To revaluate him show apply 1-10 x l'Hopital's lule as som 0 = 0:	4
	$\lim_{x\to 0} \frac{\sin x}{x} = \lim_{x\to 0} \cosh x = \cosh 0$ $= 1$	4
	Setter's initials Checker's initials G-P,	Page number

		EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
			EE] (2)
	0 .:		2
	Question Q		Marks & seen/unseen
	Parts	Conien $f(x) = \left(1 - \frac{2x}{m_1}\right)^2$; first shelph	
		Conien $f(x) = \left(1 - \frac{2x}{MT}\right)^2$; first sketch * $g(x) := \left[-\frac{2x}{MT}\right] = \frac{x\pi - 2x}{x\pi} = \frac{1-x}{1+x}.$	
	_	when sketcheng	
5		I when sketching e^{-f} , the only difficulty is at $n = -1$ but $\lim_{x \to -1} e^{f(x)} = 0$	
	÷	f(x)	6/4
		f has a min at $x=1, =7$	
		efin) has a max at n=+1.	72
5		ef(n) has a mun at n=-1	5
		Setter's initials Checker's initials G - 7.	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
		EE 1(2)
		2
Question		
2		Marks & seen/unseen
Parts		
	This uses $f(x) = g(x)^2$ and so	
	$f'(x) = 2q \cdot q'$	
	$f'' = 2(g'^2) + 2gg''$.	
	As $g' = \frac{1}{1+x} - \frac{1-x}{(1+x)^2}$	
*	$= -\frac{(1+x) - (1-x)}{(1+x)^2} = \frac{-2}{(1+x)^2}$	
	$f'=0$ if $g=0 \Rightarrow f$ has	
	extrema only when g=0 of x=1.	4
	But then g=0=) f"=2(g1)2>0	
	so f has a doeal win at x=1.	
	Then $\frac{d}{dx}(\bar{e}^{f}) = -f'\bar{e}^{f} = \bar{e}^{f} dx$	
	dx = t = t = t = 0	
0	has an extremum at $n = 1$ as $f = 0$ there	•
ß	e(d)2(=f) = dx(-f1e-f) = -(f1-f12e-f)	
	= _ e" = f if f' = 0 & (f) et ro	
	Unce $x = L$ is a local max f e^{t} . $f^{*} < 0$ Setter's initials Checker's initials	4
	Setter's initials Checker's initials Checker's initials	Page number

		T
	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
		EFI(2)
		2
Question		2
3		Marks &
Parts		seen/unseen
a)	$\frac{d}{dx}\operatorname{sic}(x) = \frac{\cos x}{x} - \frac{\sin x}{x^2} = \frac{2\cos x - \sin x}{a^2}$	
	and $\frac{d^2}{dx^2}$ sixx = $-\frac{\chi^2 \sin x - 2\chi \cos x + 2\sin x}{\chi^3}$	4
6)	(Na) = lim * cox - snx dx = 1 × 0 × 10 ×	
this is part (c)		4
	1780, lim snix = lim cox = 1 , so that	
	$\operatorname{sub}(x)\Big _{x=0} = \lim_{x\to 0} \frac{\operatorname{sux}}{x} = 1.$	4
a)	and $\left(\frac{d}{dx}\right)^2 \operatorname{sud}(x) = \lim_{x \to 0} \left(\frac{d}{dx}\right)^2 \operatorname{sud}(x)$	ü
	$=\lim_{x\to 0} -\frac{x^2\sin x - 2x\cos x + 2\sin x}{x^3}$	
	$= \lim_{x \to 0} -2 x \sin x - x^2 \cos x - 2 \cos x + 2 x \sin x + 2 \cos x$	
7	2-10 -45hx + x cox = -4 = -1	4
	Setter's initials Checker's initials	Page number
	$t = \lim_{x \to 0} -\frac{x^2 \cos x}{3x^2} = -\frac{1}{3} / . $ (Correction by AGI)	w)

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course Ef](1)
Question		
3		Marks & seen/unseen
Parts d)	Pran a) = c) we find that sinc	
	has a ilceal max at n=0	
	-TT	*
	and $\operatorname{sic}(\pi) = \frac{\sin \pi}{\pi} = 0$ phaseoner	
	sic is an even frakan as the valio	4
	Setter's initials Checker's initials C P	Page number

		EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course EE 1(1)
			4
	Question 4		Marks & seen/unseen
	Parts		
	a)		
		a prehim y is J 277 y V I ty 12 dx	4
1		2 3 4 9	! !
25		between limits a and b and wing	
		$g(x) = \sqrt{R^2 - x^2}$ we get	
		$g' = -x(R^2-x^2)^{1/2}$ and so the regid surface onea is $2x$	
		211 Sy VIty12 dx =411 \(\lambda \text{R}^2 - \text{R}^2 \) \(\lambda \text{R}^2 - \text{R}^2 \) \(\lambda \text{R}^2 - \text{R}^2 \)	
		o R	
•		$= 4\pi \int_{6}^{2} \sqrt{R^{2}-x^{2}} \left(\frac{R^{2}}{R^{2}-x^{2}}\right)^{1/2} dx = 4\pi R \int_{6}^{2} dx = 4\pi R^{2}.$	8
	6)	Nas choose $y(x) = \frac{R(h-x)}{h}$ and then $2\pi \int y\sqrt{1+y^{12}} dx = 2\pi \int \frac{R(h-x)}{h}(h-x)\sqrt{1+(-R/h)^2} dx$	2
		211 J VIty12 dx = 211 [R(h-x)/1+(R/h)2dx	
		= 2TTR S(h-x) / 1+ R2/h2 dx	
		= $\frac{2\pi R}{h} \sqrt{1+R^2/h^2} \left[hx - \frac{\eta^2}{2} \right]_0^h = \pi R \sqrt{h^2 + R^2}$	6
		Setter's initials Checker's initials	Page number
		H/ %.1.	

1		EVALUATION OFFICE (COLUTIONS OF TO	
		EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
			EE[(1)
			5
	Question		
	5		Marks & seen/unseen
	Parts		seen/ unseen
	ີເ)	I in alwerges by the integral	
		foot as like I n'12 de dierges	3
	b)	I (-1) /vanto canenges by the	*
ď		alterating series lost.	3
	e) I not diverges by componeran	
		in \mathbb{R} $\sum_{n=m}^{\infty} \frac{1}{n}$ (for large enough m) $[n^2+1 \leq 2n^2 & 80 \frac{n}{n^2+1} \geq \frac{n}{2n^2} = \frac{1}{2n} & \sum_{n=1}^{\infty} \frac{1}{2n} \text{ diveges}]$ The integral lest states that	3
	u)		
		-fei) + Ifen) 3 Iferlax & Ifen)	2
	D	and choosing $f(x) = \frac{1}{1+x^2}$ we get	
$f(i) = \frac{1}{2}?$	t	$\frac{-1}{2} + \frac{1}{1} + 1$	
		But $\int \frac{dx}{1+x^2} = dan^{-1}(T) - dan^{-1}(1)$ $\Rightarrow \int \frac{dx}{1+x^2} = \lim_{T \to \infty} dan^{-1}(T) - \overline{H} = \overline{H} - \overline{H} = T/4$	8
		Setter's initials Checker's initials C. P.	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course EE](1)
	e-	5
Question 5		Marks & seen/unseen
Parts	and so	
	\(\frac{1}{160^2} \left\) \(\frac{1}{4} \tau \) \(\frac{1}{4} \) \(\frac{1}{79} \).	}
	$\frac{8}{5} \frac{1}{1+n^2} \le \frac{17}{4} + \frac{1}{2} < 1.29$	1
	**	
3		
	Setter's initials Checker's initials Checker's initials	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course EE](2)
		6
Question		Marks & seen/unseen
Parts	The opier (melan is ODA so There are No come terms in the Forrier	
	sens. Now bno = If (x) sinxdx = If sninxdx + If (-1) sinxdx	v
	$= \frac{2}{\pi} \int_{0}^{\pi} \sin x dx = \frac{2}{\pi} \left[-\frac{\cos nx}{n} \right]_{0}^{\pi}$ $= -\frac{2}{n\pi} \left(\cos (n\pi) - 1 \right) = \frac{-2}{\pi n} \left((-1)^{n} - 1 \right)$	
	nTT (coskin) Ton Ton 4/nT ; nodel	
	Hence $f(x) = \sum_{n=1}^{\infty} \frac{4}{n\pi} \sin(nx) f(x)$	8
	at those point alere of is cont- innons. Otherwise,	
	F(x) = lim f(x+e) + f(x-e) E+0 2	
	of f is discontinuous at xo, provided these thinks exits.	2
	Setter's initials Checker's initials C. P.	Page numbe

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course EE](1
		6
Question		Marks & seen/unseen
Parts	Thus	3
	$F(\pi) = \lim_{\epsilon \to 0} f(\pi + \epsilon) + f(\pi - \epsilon)$	
	$=\frac{1}{2}(-1+1)=0$	
	but $f(\pi) = \mathcal{L} + F(\pi)$ so $x_6 = \pi$ will do.	4
ar .	Setting x = TT2 into F(x) gues	
	V	
	but si ((2m1) 11)2) = (-1)h =>	
	$\frac{11}{4} = \sum_{n=0}^{\infty} (-1)^n / (2nt).$	(-
	q = / (2nt).	P
	Setter's initials Checker's initials C. P.	Page numbe

EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
	EE [(5)
	7
Question	Marks & seen/unseen
Parts SOLUTIONS	, a
Question 7	
(i) Let $V(r) = \ln(r)$ and $r = \sqrt{x^2 + y^2}$. We have that	
$V_x = \frac{1}{r}r_x, V_{xx} = -\frac{1}{r^2}r_x^2 + \frac{1}{r}r_{xx}$	
and that $\tau_x = \frac{x}{r}, \tau_{xx} = \frac{1}{r} - \frac{x^2}{r^3}.$	E
We combine these calculations to obtain	
$\frac{\partial^2 V}{\partial x^2} = \frac{1}{r^2} - \frac{2x^2}{r^4}.$	
Similarly we have that $\frac{\partial^2 V}{\partial y^2} = \frac{1}{r^2} - \frac{2y^2}{r^4}.$	
Consequently	
$V_{xx} + V_{yy} = \frac{1}{r^2} - \frac{2y^2}{r^4} + \frac{1}{r^2} - \frac{2y^2}{r^4}$ $= \frac{2}{r^2} - 2\frac{x^2 + y^2}{r^4}$ $= \frac{2}{r^2} - \frac{2}{r^2} = 0.$	5
(ii) We have that	
$\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} + \frac{\partial w}{\partial z} \frac{dz}{dt}$ $= y(-\sin(t)) + x\cos(t) + 1 \cdot 1$ $= -\sin^2(t) + \cos^2(t) + 1$ $= 1 + \cos(2t).$	8
\$	
Setter's initials Checker's initials	Page number

EVANDATION OFFICE (COLUTIONS 2007 0	0	
EXAMINATION QUESTIONS/SOLUTIONS 2007-0	ğ	Course
		EE] (1)
		8
Question		Marks &
		seen/unseen
Parts	ěs:	
Question 8		
(i) The trapezium rule with one interval gives:		
0		4
$\int_0^1 (x\cos(x) + 1) dx \approx \frac{1}{2}(f(0) + f(1)) = 1.2713.$		/
$\int_0^1 (x\cos(x)+1) dx \approx \frac{1}{2} (f(0)+f(1)) \cong 1.2715.$ (ii) The trapezium rule gives: $ (1.2702 + 6.44 \cdot) $		
1 1 (5(2) + 25(1/2) + 5(1)) ~ 1 2545	æ	1,
$\int_0^1 (x\cos(x)+1) dx \approx \frac{1}{4} (f(0)+2f(1/2)+f(1)) = 1.3545.$		4
(iii) Simpson's rule gives:		
$\int_{-1}^{1} (\pi \cos(\pi) + 1) d\pi \approx \frac{1}{2} (f(0) + 4f(1/2) + f(1)) = 1.3826.$		4
$\int_0^1 (x\cos(x) + 1) dx \approx \frac{1}{6} (f(0) + 4f(1/2) + f(1)) = 1.3826.$ If $d\rho$		•
(iv) The correct value is		
$\int_{0}^{1} (\theta \cos(\theta) + 1) d\theta = (\theta \sin(\theta) + \cos(\theta) + \theta)^{1}$		L
$\int_0^1 (\theta \cos(\theta) + 1) d\theta = \left(\theta \sin(\theta) + \cos(\theta) + \theta\right) \Big _0^1$ $= 1.3818. \left(4 d\varphi\right)$		7
O.1116	nen	using the
The error when using the trapezium rule with 1 interval is 0.1103. The error when trapezium rule with 2 intervals is 0.0273. The error when using Simpson's rule	e is	0.0008.
Setter's initials Checker's initials		Page numbe

corrected by AGW

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
		EE](
		9
Question		
		Marks & seen/unse
Parts		
Question 9		
(i) The characte	eristic polynomial is	35
_	$p^2 - p - 2 = 0.$	0.40
I he roots ar	$p_{1,2} = -1$, 2. The solution of the homogeneous equation is	_
	$y_h(x) = c_1 e^{-x} + c_2 e^{2x}.$	3
We look for	a particular integral of the form	
	$y_p(x) = Ae^{3x}.$	
We substitut	te this into the equation to obtain	
	$4Ae^{3x} = e^{3x} \Rightarrow A = \frac{1}{4}.$. 3
The general	solution of the differential equation is	
	$y(x) = c_1 e^{-x} + c_2 e^{2x} + \frac{1}{4} e^{3x}.$	2
(ii) The equation	n is of the form	3333.547
	$N(x,y)\frac{dy}{dx}+M(x,y)=0$	
with $N(x,y)$	y^2-x^2 and $M(x,y)=2xy$. We check that	
	$rac{\partial M}{\partial y} = 2x eq rac{\partial N}{\partial x} = -2x,$	
and, hence, t	the equation is not exact. We multiply it by a function $I=I(y)$:	3
	$\hat{N}(x,y) rac{dy}{dx} + \hat{M}(x,y) = 0$	
where	$\hat{N}(x,y) = I(y)(y^2 - x^2)$	
and	$\hat{M}(x,y)=2xyI(y).$	
We want to $\hat{N}_x = -2xI$	choose $I(y)$ in such a way that the equation becomes exact. We have that and $\hat{M}_y = 2xI + 2xyI'$. We choose I so that	
	$\hat{N}_x = \hat{M}_y \Rightarrow -2xI = 2xI + 2xyI'$	
and conseque	ently $yI'=-2I$. The solution of this equation is	
	$I(y) = y^{-2}.$	5.
	Setter's initials Checker's initials	Page nun
	G.P. KB	

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course EE](1)
Question		Marks & seen/unseen
Partslive the	e equation in implicit form we look for $u(x,y)$ so that $u_x=\hat M, u_y=\hat N\ \Rightarrow u=\frac{x^2}{y}+h(y)=y+\frac{x^2}{y}+H(x),$	T.
consequently	$u = \frac{x^2}{y} + y + C.$	10
The solution	of the differential equation, in implicit form, is $\frac{x^2}{y} + y = C.$	4
	y	
	•	
5 8		
	Setter's initials Checker's initials	Page numbe

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
	*	EE] (1)
		10
Question 10		Marks & seen/unseen
Parts	het f(n) = e an (-TITT)	·
	and compute	
	Jex enx dx	¥
	het $f(n) = e^{x}$ an $(-\pi, \pi)$ and compute $\int_{-\pi}^{\pi} e^{x} e^{inx} dx$ $= \int_{-\pi}^{\pi} (in-1)^{x} dx = \int_{-\pi}^{\pi} (in-1)^{x} \int_{-\pi}^{\pi} (in-1)^{x} dx$	4
	$= \frac{(in-1)\pi}{e} - \frac{-(in-1)\pi}{e}$ $= \frac{(in-1)\pi}{e}$ $= \frac{-(in-1)\pi}{e}$ $= \frac{-(in-1)\pi}{e}$ $= \frac{-(in-1)\pi}{e}$	
	and $\Rightarrow \otimes = (-1)^n \left(\frac{-\pi}{e} - e^{\pi}\right) \frac{-in-1}{-in-1}$	
	$= (-1)^{n} (\bar{e}^{T} \underline{4} e^{T}) (-in-1) = \rangle$	
an	$=\int_{-\pi}^{\pi} e^{x} \operatorname{conxdx} = 2(-1)^{h} \frac{\operatorname{suh}(\pi)}{\operatorname{n}^{2}(-1)} $	
b _n	$=\int_{-\pi}^{\pi} e^{-x} \sin x dx = \left(-1\right)^{h} \frac{2n \sinh \pi}{h^{2}+1}$	8
	$= \int_{0}^{\pi} e^{-x} \sin x dx = \left(-1\right)^{n} \frac{2n \sinh \pi}{n^{2} + 1}$ and $C_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-x} e^{-inx} dx$ $= \frac{1}{2\pi} \frac{(-1)^{n} \left(e^{-\pi} - e^{\pi}\right) \left(in - 1\right)}{(n^{2} + 1)} = \frac{(-1)^{n} (1 - in) \sinh \pi}{n^{2} + 1}$	
	Setter's initials Checker's initials C. P.	Page number

	EVAMINATION OFFICE (SOFFICE 2007 00	
	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
		EE I(1)
		10
Question		Marks &
0)		seen/unseen
Parts	$80 Cu ^2 = (81 h T)^2 (Hu^2)$	
	-2/212	
	$= \frac{(\sin \pi)^2}{(\sin \pi)^2} \qquad c_0 = \frac{1}{2\pi} a_0$ $= \frac{1}{2\pi} 2 \sin \pi$ $= \frac{1}{2\pi} 2 \sin \pi$	
	$= (s_{n} h \pi)^{2} \qquad C_{o} = \frac{1}{2\pi} a_{o}$	
	$T^2(1 + n^2) = 128inhT$	= SinhTT
	TT TT	TT
	$\frac{1}{2}\int f^2 dx = \frac{1}{2}\int \frac{e^{2x}}{e^{2x}}$	
	$\frac{1}{2\pi} \int_{-\pi}^{\pi} f^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{2x}$	
	$= \frac{1}{2\pi} \frac{e^{2\pi} - e^{2\pi}}{e^{2\pi}} = \frac{2\pi}{2\pi} 2\pi$	
	2 211	
	6 - 0)	
	(Paseral). $= \frac{(\sinh \Pi)^2}{(\sinh \Pi)^2} + 2 \frac{2}{\pi^2} \frac{(\sinh \Pi)^2}{(\ln^2 \Pi)^2}.$	
	- (8inh TT) + 22 - 102	
	Π^2 Π^2	
	$^{\circ}C_{o}^{2}$	
	Lence	
		C
	2 - TISIAL 2TI - 1 4 (SILLIT) 2 = 2	\ \delta
	$\left(=\frac{1}{2}\left(\pi \cosh \pi - 1\right)\right)$	
	Setter's initials Checker's initials	Page number
	RB C.P.	-6

Corrected by AGW