Analisi delle Recensioni False Mediante Machine Learning

Sviluppo di un Bot per la Rilevazione Automatica

01

Introduzione

Contesto e Obiettivi

Le recensioni dei clienti rappresentano feedback importanti forniti da coloro che hanno utilizzato o acquistato un prodotto o un servizio.

In questo ambito però, le recensioni false sono un problema crescente che induce molto spesso in errore i consumatori, effettuando un acquisto che si rivelerà diverso da come era stato descritto.

Diventa così fondamentale sviluppare strategie innovative per proteggere i consumatori rilevando e contrastando le recensioni fasulle.

Contesto e Obiettivi

Per affrontare questa sfida, abbiamo sviluppato <u>FakeReviewDetector:</u>
Un bot in grado di distinguere e individuare con precisione le recensioni false da quelle autentiche, utilizzando tecniche di Machine Learning e di NLP.

FakeReviewDetector

Approccio

01

Studio del problema e Raccolta Dati 02

Analisi e Selezione delle caratteristiche

03

Pulizia e Pre-elaborazione dei dati

04

Addestramento dei Modelli di Machine Learning 05

Test e Valutazione delle Prestazioni dei modelli 06

Implementazione di FakeReviewDetector

02 Stato dell'Arte

Fake Reviews

Esploriamo le tipologie di Fake Reviews nel dettaglio.

Recensioni Positive Falsificate	Fatte dai venditori stessi dei prodotti fingendosi dei clienti soddisfatti per aumentare la reputazione dei loro prodotti.	
Recensioni Negative Falsificate	I concorrenti possono pubblicare recensioni negative per screditare prodotti di altri marchi.	
Recensioni di Bot Automatici	Recensioni generiche che non forniscono dettagli sul prodotto e difficili da distinguere da quelle autentiche.	
Recensioni di Clienti Non Esistenti	Account falsi utilizzati per simulare recensioni in modo da aumentare la popolarità del prodotto.	
Recensioni di Acquisti Non Verificati	Recensioni effettuate senza aver acquistato effettivamente il prodotto.	

Approcci Attuali

Apprendimento Supervisionato Tradizionale

Metodo di machine learning in cui un modello viene addestrato su un insieme di dati etichettati, cioè dati in cui l'output desiderato è noto.

Approcci Basati su Reti Neurali

Ispirati alla struttura del cervello umano, sono in grado di simulare relazioni complesse tra input e output, consentendo loro di apprendere da enormi quantità di dati e di migliorare le loro prestazioni

Ensemble Learning

Approccio che mira a migliorare le prestazioni predittive combinando le previsioni di due o più modelli.

Reti Neurali Ricorrenti e Generative Adversial Networks

Due importanti sviluppi nel campo del deep learning e del machine learning che consentono di gestire dati sequenziali e di generare dati artificiali con prestazioni sempre più avanzate.

03
Tools

Tool Utilizzati

Python (3.11.4): Scelto per la sua versatilità e per la sua sintassi chiara e leggibile, che facilita la manutenzione e l'aggiornamento del codice. Librerie utilizzate:

 Pandas: Libreria utilizzata per gestire e preparare i dati prima dell'addestramento del modello, consentendo operazioni efficienti di pulizia, selezione e trasformazione dei dati.

 Scikit-learn: Libreria utilizzata per l'addestramento dei modelli di machine learning, principalmente perché offre una vasta gamma di algoritmi efficienti e facili da usare.

• **Matplotlib**: Impiegata per la creazione e la personalizzazione di grafici e visualizzazioni di dati.

Jupyter Notebook

Celle eseguibili singolarmente:

```
[4]: def text_process(review):
    nopunc = [char for char in review if char not in string.punctuation]
    nopunc = ''.join(nopunc)
    return [word for word in nopunc.split() if word.lower() not in stopwords.words('english')]
```

Combinazione di più linguaggi:

Lettura Dataset

```
[2]: raw_dataset = pd.read_csv('../data/raw_dataset.csv')
```

Visualizzazione output :

```
print("Shape of Bag of Words Transformer for the entire reviews corpus:",bow_reviews.shape)
print("Amount of non zero values in the bag of words model:",bow_reviews.nnz)

Shape of Bag of Words Transformer for the entire reviews corpus: (40431, 34489)
Amount of non zero values in the bag of words model: 1001954
```


Caratteristiche della feature "Label"

Nella prossima cella viene descritta, mediante un grafico, la distrubuzione della lunghezza della feature "label"

```
| plt.hist(raw_dataset['length'], bins=50, color='skyblue', edgecolor='black')
| plt.title('Distribuzione della Lunghezza')
| plt.xlabel('Lunghezza')
| plt.ylabel('Frequenza')
| plt.grid(True)
| plt.axvline(raw_dataset['length'].mean(), color='red', linestyle='dashed', linewidth=1)
| plt.text(raw_dataset['length'].mean()*1.1, max(plt.hist(raw_dataset['length'], bins=50)[0])/2, 'Media', color = 'red')
| plt.show()
```


04

Presentazione dei Dati

raw_dataset

Dataset grezzo ancora da processare

40 432

Numero istanze totali

4

Features

Features

Categoria

Rappresenta la macro categoria del prodotto recensito.

Rating

Valutazione numerica che va da 1 a 5 e riflette il giudizio dell'utente sul prodotto recensito.

Autenticità

Valore booleano che indica se una recensione è stata generata da un computer (CG) o e originale (OR).

Testo

Contenuto testuale della recensione.

category	rating	label	text_
Home_and_Kitchen	5.0	CG	Love this! Well made, sturdy, and very comfor
Home_and_Kitchen	5.0	CG	love it, a great upgrade from the original. I
Home_and_Kitchen	5.0	CG	This pillow saved my back. I love the look and
Home_and_Kitchen	1.0	CG	Missing information on how to use it, but it i
Home_and_Kitchen	5.0	CG	Very nice set. Good quality. We have had the s

«Text» come unica feature utilizzata, perché?

Rilevanza Informativa

Il testo delle recensioni è una miniera di informazioni linguistiche e semantiche essenziali per identificare le recensioni false.

Analisi Linguistica (NLP)

Le recensioni false tendono a presentare tratti linguistici distintivi, identificabili attraverso tecniche di Natural Language Processing (NLP).

Semplificazione del Modello

Limitarsi al testo aiuta a prevenire l'overfitting, mantenendo il modello più semplice e interpretabile. Questo approccio riduce la complessità e facilita la manutenzione del modello.

Accessibilità dei Dati

Il testo delle recensioni è facilmente reperibile e disponibile. Altre tipologie di dati, come informazioni utente o contesti di acquisto, possono essere limitati da restrizioni sulla privacy e normative

Scalabilità e Riuso

Un modello focalizzato sul testo è più facilmente adattabile a diverse piattaforme di recensioni, senza necessità di modifiche per adattarsi a set di dati non testuali.

Considerazioni etiche

L'utilizzo di dati personali degli utenti potrebbe sollevare questioni di privacy ed etica. Pertanto, l'analisi testuale rappresenta una scelta prudente e rispettosa delle normative vigenti.

05

Pre-Elaborazione dei Dati

Pre-Elaborazione dei Dati

Operazioni di base:

Conversione in Stringa: Abbiamo convertito ogni entry nella colonna «text» in stringa, un passo essenziale per gestire correttamente i dati testuali.

Conversione in Lowercase: Abbiamo trasformato ogni lettera nella colonna «text» in minuscolo. Cruciale per ridurre la varianza causata dalle differenze tra maiuscole e minuscole.

Pre-Elaborazione dei Dati

Analisi Testuale e Pulizia:

Tokenizzazione: Suddivisione del testo in singole parole o token, operazione cruciale per analizzare la struttura e i contenuti delle recensioni, consentendoci di identificare schemi linguistici o usi insoliti del linguaggio che potrebbero indicare una recensione falsa.

Rimozione delle StopWords: Abbiamo eliminato parole comuni che aggiungevano poco significato al testo. Questo ha permesso al nostro modello di concentrarsi su parole più rilevanti, fondamentali per identificare l'autenticità o la falsità delle recensioni.

Rimozione dei Numeri e della Punteggiatura: Rimozione dei numeri e dei segni di punteggiatura, poiché spesso non contribuivano al rilevamento delle recensioni false.

Addestramento

Tecniche di NLP: BoW & TF-IDF

Bag of Words (BoW)

- Trasforma il testo in vettori di frequenza di parole.
- Ignora l'ordine e il contesto delle parole.
- Utile per classificazione dei testi e analisi del sentiment.

Term Frequency-Inverse Document Frequency (TF-IDF)

- Estende il modello BoW valutando l'importanza delle parole.
- Combina la frequenza del termine (TF) con l'inverso della frequenza nei documenti (IDF).
- Evidenzia parole chiave uniche nei documenti, utile per ricerca e elaborazione di informazioni.

Partizionamento Dataset

Abbiamo diviso il dataset pre-processato in due parti:

 Train set: 80% del dataset dedicato all'addestramento

Pipeline di Scikit-learn

Integrazione della Classe Pipeline

- Semplifica elaborazione del testo e addestramento del modello.
- Definisce tre operazioni principali in ogni pipeline:
 - 1. Conversione in Bag-of-Words.
 - 2. Trasformazione TF-IDF.
 - 3. Applicazione di una specifica funzione di classificazione.

```
[16]: pipeline = Pipeline([
           ('bow', CountVectorizer(analyzer=text process)),
           ('tfidf', TfidfTransformer()),
           ('classifier', MultinomialNB())
       pipeline.fit(review_train,label_train)
[17]:
              Pipeline
[17]:
        ▶ CountVectorizer
        ▶ TfidfTransformer
         ▶ MultinomialNB
```

Algoritmi utilizzati

Random Forest

Utilizza un insieme di alberi decisionali per migliorare la precisione della classificazione.

KNeighbors Classifier

Basato sui vicini più prossimi, è particolarmente utile per identificare schemi non lineari.

Multinomial Naïve Bayes

Particolarmente adatto per la classificazione di testi, e efficace nel riconoscere schemi e tendenze nelle recensioni.

Support Vector Classifier

È rinomato per la sua efficienza nella classificazione di dati complessi. È particolarmente utile quando esistono margini sottili di differenziazione.

Decision Tree Classifier

Basato sulla costruzione di alberi decisionali, questo algoritmo è utile per visualizzare e comprendere il processo decisionale.

Logistic Regression

È particolarmente utile per la sua capacità di fornire probabilità, offrendo una misura della sicurezza con cui una recensione può essere classificata come falsa.

07

Test e Valutazione

Valutazione dei Modelli

- **Obiettivo:** Testare l'accuratezza dei modelli su dati non visti durante l'addestramento (20% del dataset).
- Metrica utilizzata per il confronto: Accuratezza... Perché?
 - Fornisce una misura immediata e comprensibile delle prestazioni.
 - Affidabile in contesti con classi bilanciate (recensioni autentiche vs false).
- **Metodologia:** Impiego del metodo «predict» su ogni istanza del Test set e comparazione dei modelli basata sull'accuratezza media (percentuale di predizioni corrette).

Confronto Accuratezza Modelli

Modello Migliore

- 1. SUPPORT VECTOR CLASSIFIER
- 2. LOGISTIC REGRESSION
- 3. MULTINOMIAL NAÏVE BAYES

08
Implementazione bot

Implementazione

Sviluppo in Telegram <

Piattaforma di messaggistica che offre la possibilità di creare un proprio bot attraverso un altro bot «BotFather» che permette di creare, gestire e personalizzare i propri bot.

TeleBot 🔑

Libreria Python che facilita lo sviluppo di bot per Telegram. Con essa, è possibile gestire le richieste degli utenti, inviare messaggi, rispondere a comandi e interagire con gli utenti attraverso il proprio bot.

BotFather

- Si digita il comando /newbot
- Si inserisce il nome che si desidera del bot
- Se non è già utilizzato, verrà creato il bot e restituito un token, fondamentale per l'autenticazione delle richieste API al bot

Sviluppo in Dettaglio

Comando Start

```
#Function that handles the response to the start command
@bot.message_handler(commands=["start"])
def start(message):
    bot.reply_to(message, "Hi! Welcome to FakeReviewDetector, send me a review to check it")
```

Funzione per gestire la risposta alla recensione

```
#Function that handles the review sent in the form of a message
gbot.message_handler()
def message(message):
    recensione = message.text
    prediction = isReviewReal(recensione)
    if prediction == True:
        bot.reply_to(message."The review you submitted is true and was therefore written by a human")
    else:
        bot.reply_to(message,"You submitted a bot—written review, which means that it is not authentic")
```


FakeReviewDetector in Dettaglio

Conclusioni

- Il modello da noi implementato, grazie all'impiego di tecniche di NLP e Machine Learning si è dimostrato abile nel distinguere accuratamente recensioni autentiche da quelle create artificialmente, esso si propone quindi, come un mezzo per filtrare le recensioni e garantire una valutazione basata esclusivamente su esperienze autentiche.
- Il modello può essere integrato come funzionalità all'interno di un e-commerce.
- Avendolo implementato in Telegram, il bot può anche essere utilizzato da chiunque e su qualsiasi dispositivo.

Sviluppi Futuri

Addestramento su ulteriori Features del Dataset

Introdurre la possibilità di addestrare il modello su più caratteristiche del dataset, come il rating e la categoria del prodotto.

Integrazione del modello all'interno di un e-commerce

Il modello può essere integrato come funzionalità all'interno di un e-commerce. Questo garantirà l'identificazione della veridicità di una recensione, rendendo le recensioni un mezzo affidabile per scegliere se acquistare un prodotto o meno.

Affinamento delle Tecniche NLP

Continuare a raffinare i modelli di NLP per migliorare la capacità di comprendere il linguaggio umano in modo più profondo.

Ospitare il Bot su una piattaforma di hosting

Questo approccio garantirà la continuità operativa assicurando l'esecuzione continua del servizio e consentendo agli utenti di accedervi in qualsiasi momento.

Grazie per l'attenzione!