

LANGOLFF Clément

Equation Récurrente

AlgoNum - TD6 - MMSN

IMAGE

Etudiants: DANTAS Alexandre DELL'OVA Fabio

GUINES Antoine KESSLER Aymeric

Encadrant: Gleyse. B

Contents

Ι	Calcul de valeurs d'une suite	3
II	Equation de partition	5
	Equation récurrente et méthode des séries généraces	7

Part I

Calcul de valeurs d'une suite

On cherche à calculer la suite des

$$I_n = \int_{-1}^{1} x^n e^{-x} dx, \quad n = 0, ..., 20$$

Convergence de l'intégrale

$$|I_n| = \left| \int_{-1}^1 x^n e^{-x} dx \right| \le \int_{-1}^1 |x^n| e^{-x} dx$$

$$= \int_{-1}^1 |x^n| \sum_{k=0}^{+\infty} \frac{x^k}{k!} dx = 2 \int_0^1 x^n \sum_{k=0}^{+\infty} \frac{x^k}{k!} dx$$

$$\le 2 \int_0^1 x^n \sum_{k=0}^{+\infty} \frac{1}{k!} dx \le 2 \sum_{k=0}^{+\infty} \frac{1}{k!} \int_0^1 x^n dx$$

$$= 2 \sum_{k=0}^{+\infty} \frac{1}{k!} \left[\frac{x^{n+1}}{n+1} \right]_0^1 = 2 \sum_{k=0}^{+\infty} \frac{1}{k!} \times \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0$$

Relation de récurrence

$$I_0 = \int_{-1}^{1} e^{-x} dx$$
$$= \left[e^{-x} \right]_{1}^{-1} = e^{1} - e^{-1}$$
$$= e^{1} - e^{-1}$$

$$I_n = \int_{-1}^{1} x^n e^{-x} dx$$

$$= \left[-x^n e^{-x} \right]_{-1}^{1} + \int_{-1}^{1} nx^{n-1} e^{-x} dx$$

$$= -(1)^n e^{-1} + (-1)^n e^1 + n \int_{-1}^{1} x^{n-1} e^{-x} dx$$

$$= nI_{n-1} - e^{-1} + (-1)^n e^1$$

Implémentation de la suite et anomalies En implémentant le code relatif à la suite des I_n , on obtient les résultats suivants :

I_n	Val num
0	2.350402
1	-0.735759
2	0.878885
3	-0.449507
4	0.552373
5	-0.324297
6	0.404618
7	-0.253834
8	0.319730
9	-0.208594
10	0.264463

I_n	Val num
11	-0.177070
12	0.225563
13	-0.153838
14	0.196670
15	-0.136116
16	0.172550
17	-0.152810
18	-0.400178
19	-10.689550
20	-211.440600

Aux travers de ces résultats, nous pouvons remarquer qu'à partir de I_{17} , les valeurs ne cessent d'augementer et sont aussi toutes négatives. Cette erreur peut s'expliquer car dès le début, I_0 contient une erreur absolue non nulle. En effet, mathématiquement le calcul est exact mais numériquement, les valeurs de l'exponentielles possèdent une erreur de codage. Le développement infini de ce nombre intègre deux erreurs immédiatement. De plus, puisque chaque nouveau terme de la suite dépend du précédent, cette erreur se cumule et le facteur n se trouvant devant la multiplie de plus en plus à chaque étape.

Pour corriger cette erreur, nous pouvons définir la relation inverse c'est à dire :

$$I_{n-1} = \frac{I_n + e^{-1} - (-1)^n e}{n}$$

Il faudrait alors initialiser la suite avec une relativement bonne approximation de l'integrale pour pouvoir arriver à une limite.

Pour illustrer, nous initialisons l'intégrale I_{20} par une approximation en utilisant la méthode des trapèzes. Ensuite, nous calculons les termes suivants de la suite par la formule donnée ci-dessus. L'erreur est ainsi divisé de plus en plus au passage d'un calcule d'une intégrale à l'autre.

I_n	Val num
20	-0.5876015907323193
19	-0.1469001989009961
18	0.15469795109102585
17	-0.12198357978869871
16	0.17436339352010521
15	-0.1360024371104686
14	0.19667725550133458
13	-0.15383750941330487
12	0.22556336617055253
11	-0.17706991842642084
10	0.26446285010946063

I_n	Val num
9	-0.20859395371781422
8	0.3197297017680748
7	-0.253834085689941
6	0.4046181691343638
5	-0.3242973696922065
4	0.5523727799876561
3	-0.44950740182498666
2	0.8788846226018335
1	-0.7357588823428847
0	2.3504023872876028

Part II

Equation de partition

$$T(n) = aT\left(\frac{n}{b}\right) + cd(n) \ \forall n \ge b$$

Résolution de l'équation cas général En posant $n = b^k$, $u_k = T(b^k)$, $D(k) = d(b^k)$, l'équation devient

$$u_k-au_{k-1}=cD(k)\;\forall k\geq 1$$
 La solution sera de la forme :
$$u_k=\underbrace{y_k}_{Sol.\;homog\`{e}ne}+\underbrace{z_k}_{Sol.\;particuli\`{e}re}$$

Solution homogène : On résout l'équation $u_k^{(h)}-au_{k-1}^{(h)}=0$. Il s'agit d'une suite géométrique de raison a définit pour $k\geq 1$. Ainsi

$$u_k^{(h)} = u_0 \times a^k = T(1) \times a^k$$

On note $U_n=C^{(1)}U_n^{(1)}$ avec $C^{(1)}=u_0$ et $U_n^{(1)}=a^n$

Solution particulière : Posons $Z_{n+1}=a^{n+1}$, alors $Z_{n+1}^{-1}=\frac{1}{a^{n+1}}$. Soit F(k)=cD(k)

$$C_n = \sum_{k=0}^{n-1} Z_{k+1}^{-1} F(k)$$

$$= \sum_{k=0}^{n-1} \frac{1}{a^{k+1}} \times cD(k)$$

$$= \frac{c}{a} \sum_{k=0}^{n-1} \frac{1}{a^k} d(b)^k$$

$$= \frac{c}{a} \sum_{k=0}^{n-1} \left(\frac{d(b)}{a}\right)^k$$

Ainsi

$$C_n = \begin{cases} \frac{c}{a} \times \frac{1 - \left(\frac{d(b)}{a}\right)^n}{1 - \left(\frac{d(b)}{a}\right)} & si \frac{d(b)}{a} \neq 1\\ \frac{nc}{a} & sinon \end{cases}$$

La solution particulière est donnée par $z_k = C_n u_n^{(1)}$ avec $u_n^{(1)} = a$. Donc

$$z_k = \begin{cases} c \times \frac{1 - \left(\frac{d(b)}{a}\right)^n}{1 - \left(\frac{d(b)}{a}\right)} & si \ \frac{d(b)}{a} \neq 1\\ nc & sinon \end{cases}$$

Finalement

$$u_k = \begin{cases} T\left(1\right) \times a^k + c \times \frac{1 - \left(\frac{d(b)}{a}\right)^k}{1 - \left(\frac{d(b)}{a}\right)} & si \ \frac{d(b)}{a} \neq 1 \\ T\left(1\right) \times a^k + nc & sinon \end{cases}$$

• Pour le cas où $\frac{d(b)}{a} \neq 1$

On a

$$T(b^k) = T(1) \times a^k + c \times \frac{1 - \left(\frac{d(b)}{a}\right)^k}{1 - \left(\frac{d(b)}{a}\right)}$$

Or $n = b^k$, ainsi : $k = log_b(n)$. On utilise aussi $log_a(n) = \frac{log_b(n)}{log_b(a)}$

Donc

$$T(n) = T(1) \times a^{\log_b(n)} + c \times \frac{1 - \left(\frac{d(b)}{a}\right)^{\log_b(n)}}{1 - \left(\frac{d(b)}{a}\right)}$$

$$= T(1) \times a^{\log_a(n) \times \log_b(a)} + c \times \frac{1 - \left(\frac{d(b)}{a}\right)^{\log_a(n) \times \log_b(a)}}{1 - \left(\frac{d(b)}{a}\right)}$$

$$= T(1) \times n^{\log_b(a)} + c \times \frac{1 - \frac{d(b)^{\log_b(n)}}{n^{\log_b(a)}}}{1 - \left(\frac{d(b)}{a}\right)}$$

• Pour le cas où $\frac{d(b)}{a} = 1$

$$T(b^k) = T(1) \times a^k + nc$$

donc

$$T(n) = T(1) \times a^{\log_a(n) \times \log_b(a)} + nc$$
$$= T(1) \times n^{\log_b(a)} + nc$$

Résolution dans le cas $d(n) = n^{\alpha}$

Résolution dans le cas $a=4,\ b=2,\ \alpha=2$

Part III

Equation récurrente et méthode des séries génératrices

Soit l'équation récurrente suivante :

$$\begin{cases} (n+1)u_{n+1} + (n-1)u_n = u_{n-1} \\ u_0 = u_1 = 1 \end{cases}$$
 (1)

Résolution par la méthode des séries génératrices Réécrivons l'équation de la manière suivante :

$$\begin{split} nu_n &= -(n-2)u_{n-1} + u_{n-2} \\ \Leftrightarrow nu_n z^n &= -(n-2)u_{n-1}z^n + u_{n-2}z^n \\ \Leftrightarrow \sum_{n \geq 2} nu_n z^n &= \sum_{n \geq 2} -(n-2)u_{n-1}z^n + \sum_{n \geq 2} u_{n-2}z^n \\ \sum_{n \geq 2} nu_n z^n &= -\sum_{n \geq 2} (n-1)u_{n-1}z^n + \sum_{n \geq 2} u_{n-1}z^n + \sum_{n \geq 2} u_{n-2}z^n \end{split}$$

Or, si on pose $G(z) = \sum_{n \geq 0} u_n z^n$, alors $G'(z) = \sum_{n \geq 1} n u_n z^{n-1}$

$$\sum_{n\geq 2} nu_n z^n = z \sum_{n\geq 2} nu_n z^{n-1}$$
$$= z(G'(z) - u_1)$$

et

$$\begin{split} \sum_{n\geq 2} -(n-2)u_{n-1}z^n &= -\sum_{n\geq 2} (n-2)u_{n-1}z^n \\ &= -\sum_{n\geq 2} (n-1)u_{n-1}z^n + \sum_{n\geq 2} u_{n-1}z^n \\ &= -\sum_{n\geq 1} nu_nz^{n+1} + \sum_{n\geq 1} u_nz^{n+1} \\ &= -z^2 \sum_{n\geq 1} nu_nz^{n-1} + z \sum_{n\geq 1} u_nz^n \\ &= -z^2 G'(z) + z(G(z) - u_0) \end{split}$$

 et

$$\sum_{n\geq 2} u_{n-2} z^n = \sum_{n\geq 0} u_n z^{n+2}$$
$$= z^2 \sum_{n\geq 0} u_n z^n$$
$$= z^2 G(z)$$

Donc (1) devient

$$z(G'(z) - u_1) = -z^2 G'(z) + z(G(z) - u_0) + z^2 G(z)$$

$$\iff G'(z)(z^2 + z) - zu_1 = G(z)(z^2 + z) - u_0 z$$

$$z(G'(x) - u_1 - 0) = -z^2 G'(z) + z(G(z) - u_0) + z^2 G(z)$$

$$G'(z)(z^2 + z) = G(z)(z^2 + z) - u_0 z + z u_1$$

Or $u_0 = u_1 = 1$

$$\Leftrightarrow G'(z)(z^2+z) = G(z)(z^2+z)$$

$$\Leftrightarrow G'(z) = G(z)$$

$$\Leftrightarrow G(z) = \lambda e^z$$

Or

$$G(0) = \sum_{n \ge 0} u_n 0^n = u_0 = 1$$
$$= \lambda e^0 = \lambda$$

Donc $\lambda = 1$ Finalement

$$G(z) = e^z = \sum_{n \ge 0} \underbrace{\frac{1}{n!}}_{U_n} z^n$$

La suite des u_n correspond donc à la suite $\frac{1}{n!}$