waveley_attempt

Waveley Qiu (wq2162)

2022-04-30

Athletic Identity

First, let's select the variables we are interested in.

```
athletic_identity <- c("cnsdr_ath", "sprt_goals", "frnds_ath", "sprt_impt", "think_sprt", "bad_sprt", "athletic_identity_numeric <- athletes[,athletic_identity] %>% map_df(., as.numeric)
athletic_identity_matrix <- athletic_identity_numeric %>% as.matrix()
```

Polychoric Correlations

Now, let us determine the number of factors that might underlie these variables.

```
athlete_parallel <- fa.parallel(athletic_identity_matrix, cor = "poly", fa = "pc")
```

Parallel Analysis Scree Plots

Parallel analysis suggests that the number of factors = NA and the number of components = 2
athlete_parallel\$pc.values

[1] 3.1901693 1.2855443 0.8626912 0.6554703 0.4741985 0.2866577 0.2452687

PCA indicates that two factors underlie these variables.

EFA

We now want to examine which variables might load on which factors. To do so, we will perform EFA on a 2-factor model, and also on 1- and 3- factor models.

First, the 2-factor model:

```
athletic_efa2 <- fa(r = athletic_identity_matrix, nfactors = 2, cor = "poly")
fa.diagram(athletic_efa2, digits = 2, simple = TRUE)</pre>
```

Factor Analysis

Now, the 3-factor model:

```
athletic_efa3 <- fa(r = athletic_identity_matrix, nfactors = 3, cor = "poly")
fa.diagram(athletic_efa3, digits = 2, simple = TRUE)</pre>
```

Factor Analysis

Now, the 1-factor model:

```
athletic_efa1 <- fa(r = athletic_identity_matrix, nfactors = 1, cor = "poly")
fa.diagram(athletic_efa1, digits = 2, simple = TRUE)</pre>
```

Factor Analysis

Reliability

```
LV 1: External Identity
external_identity <- c("cnsdr_ath", "sprt_goals", "frnds_ath")</pre>
external_identity_numeric <- athletes[,external_identity] %>% map_df(., as.numeric)
external_identity_matrix <- external_identity_numeric %>% as.matrix()
psych::alpha(external_identity_matrix)
##
## Reliability analysis
## Call: psych::alpha(x = external_identity_matrix)
##
     raw_alpha std.alpha G6(smc) average_r S/N ase mean
##
                                                             sd median_r
         0.65
                   0.68
                                     0.42 2.1 0.032 5.7 0.89
##
                           0.62
                                                                   0.33
##
##
   lower alpha upper
                          95% confidence boundaries
## 0.59 0.65 0.72
##
## Reliability if an item is dropped:
              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
##
## cnsdr_ath
                   0.47
                             0.49
                                     0.33
                                               0.33 0.97
                                                             0.052
                                                                      NA 0.33
## sprt_goals
                   0.46
                             0.47
                                     0.31
                                                0.31 0.89
                                                             0.055
                                                                      NA 0.31
## frnds_ath
                   0.75
                             0.76
                                     0.61
                                               0.61 3.15
                                                             0.025
                                                                      NA 0.61
##
```

```
## Item statistics
##
               n raw.r std.r r.cor r.drop mean
## cnsdr ath 356 0.79 0.82 0.71
                                      0.53 5.9 1.11
                                      0.56 6.1 0.96
## sprt_goals 356 0.78 0.83 0.72
## frnds_ath 356 0.76 0.70 0.41
                                      0.35 5.2 1.38
##
## Non missing response frequency for each item
##
                 1
                      2
                           3
                               4
                                     5
                                          6
                                               7 miss
## cnsdr_ath 0.01 0.01 0.03 0.05 0.24 0.33 0.35 0.02
## sprt_goals 0.00 0.00 0.02 0.03 0.20 0.35 0.40 0.02
## frnds_ath 0.01 0.04 0.06 0.10 0.31 0.29 0.17 0.02
Chronbach's alpha suggests we should drop frnds_ath.
external_identity <- c("cnsdr_ath", "sprt_goals")</pre>
external_identity_numeric <- athletes[,external_identity] %>% map_df(., as.numeric)
external_identity_matrix <- external_identity_numeric %>% as.matrix()
psych::alpha(external_identity_matrix)
## Reliability analysis
## Call: psych::alpha(x = external_identity_matrix)
##
    raw_alpha std.alpha G6(smc) average_r S/N ase mean
                                                            sd median_r
##
         0.75
                   0.76
                           0.61
                                     0.61 3.2 0.025
                                                       6 0.93
##
  lower alpha upper
                          95% confidence boundaries
## 0.7 0.75 0.8
##
##
  Reliability if an item is dropped:
              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
##
                   0.71
                             0.61
                                     0.37
                                               0.61 1.6
                                                                     0 0.61
## cnsdr_ath
                                                              NA
                   0.53
                             0.61
## sprt_goals
                                     0.37
                                               0.61 1.6
                                                              NΑ
                                                                     0 0.61
##
##
  Item statistics
##
               n raw.r std.r r.cor r.drop mean
## cnsdr_ath 356 0.91
                          0.9
                                0.7
                                      0.61 5.9 1.11
## sprt goals 356 0.88
                          0.9
                                0.7
                                      0.61 6.1 0.96
##
## Non missing response frequency for each item
                                4
                                     5
                                          6
                 1
                      2
                           3
                                               7 miss
## cnsdr_ath 0.01 0.01 0.03 0.05 0.24 0.33 0.35 0.02
## sprt_goals 0.00 0.00 0.02 0.03 0.20 0.35 0.40 0.02
LV 2: Internal Value
internal_value <- c("sprt_impt", "think_sprt")</pre>
internal_value_numeric <- athletes[,internal_value] %>% map_df(., as.numeric)
internal_value_matrix <- internal_value_numeric %>% as.matrix()
psych::alpha(internal_value_matrix)
```

##

```
## Reliability analysis
## Call: psych::alpha(x = internal_value_matrix)
##
     raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
##
##
        0.81
                  0.81
                          0.67
                                     0.67 4.1 0.02
                                                      5 1.4
##
   lower alpha upper
                         95% confidence boundaries
## 0.77 0.81 0.85
##
##
  Reliability if an item is dropped:
             raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
                             0.67
                                               0.67 2.1
                                                                     0 0.67
                   0.67
                                     0.45
                                                              NA
## sprt_impt
                             0.67
                                               0.67 2.1
                                                                     0 0.67
## think_sprt
                   0.68
                                     0.45
                                                              NΑ
##
##
  Item statistics
##
                n raw.r std.r r.cor r.drop mean sd
## sprt_impt 356 0.91 0.91 0.75
                                      0.67 5.1 1.5
## think_sprt 356 0.92 0.91 0.75
                                      0.67 4.9 1.5
## Non missing response frequency for each item
##
                 1
                      2
                           3
                                4
                                     5
                                         6
                                               7 miss
## sprt impt 0.03 0.04 0.10 0.10 0.28 0.27 0.18 0.02
## think_sprt 0.02 0.05 0.14 0.12 0.29 0.22 0.16 0.02
LV 3: Negative Events
negative_events <- c("dprs_sprt", "bad_sprt")</pre>
negative_events_numeric <- athletes[,negative_events] %>% map_df(., as.numeric)
negative_events_matrix <- negative_events_numeric %>% as.matrix()
psych::alpha(negative events matrix)
## Reliability analysis
## Call: psych::alpha(x = negative_events_matrix)
##
    raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
##
##
        0.63
                  0.63
                           0.46
                                     0.46 1.7 0.039 5.6 1.2
##
## lower alpha upper
                         95% confidence boundaries
## 0.55 0.63 0.7
##
  Reliability if an item is dropped:
            raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
##
## dprs_sprt
                 0.40
                            0.46
                                    0.21
                                              0.46 0.85
                                                                     0 0.46
                                                              NA
## bad_sprt
                  0.53
                            0.46
                                    0.21
                                              0.46 0.85
                                                              NA
                                                                     0 0.46
##
## Item statistics
              n raw.r std.r r.cor r.drop mean sd
## dprs_sprt 356 0.83 0.85 0.58
                                     0.46 5.7 1.3
## bad_sprt 356 0.88 0.85 0.58
                                    0.46 5.5 1.4
## Non missing response frequency for each item
##
                1
                     2
                         3
                               4
                                    5
```

```
## dprs_sprt 0.01 0.02 0.02 0.06 0.30 0.29 0.29 0.02
## bad_sprt 0.02 0.04 0.04 0.08 0.24 0.29 0.28 0.02
```

Our final model is as follows:

external_identity = sprt_goals + cnsdr_ath internal_value = sprt_impt + think_sprt negative_events = dprs prt + bad prt

CFA

```
athlete model <-
'external_identity =~ sprt_goals + cnsdr_ath
internal_value =~ sprt_impt + think_sprt
negative_events =~ dprs_sprt + bad_sprt'
athlete_2CFA = cfa(athlete_model, data = athletic_identity_matrix,
                   ordered = names(athletic_identity_matrix),
                   std.lv = TRUE)
summary(athlete_2CFA, fit.measures = TRUE)
## lavaan 0.6-10 ended normally after 27 iterations
##
     Estimator
                                                        ML
##
     Optimization method
                                                    NLMINB
##
     Number of model parameters
                                                        15
```

363

```
##
##
                                                                   Total
                                                       Used
##
     Number of observations
                                                        356
##
## Model Test User Model:
##
     Test statistic
                                                      5.234
##
     Degrees of freedom
##
##
     P-value (Chi-square)
                                                      0.514
##
## Model Test Baseline Model:
##
     Test statistic
                                                    617.425
##
##
     Degrees of freedom
                                                         15
##
     P-value
                                                      0.000
## User Model versus Baseline Model:
##
##
     Comparative Fit Index (CFI)
                                                      1.000
##
     Tucker-Lewis Index (TLI)
                                                      1.003
##
## Loglikelihood and Information Criteria:
##
     Loglikelihood user model (HO)
                                                  -3255.389
##
##
     Loglikelihood unrestricted model (H1)
                                                  -3252.772
##
     Akaike (AIC)
                                                   6540.778
##
##
     Bayesian (BIC)
                                                   6598.902
##
     Sample-size adjusted Bayesian (BIC)
                                                   6551.316
##
```

```
## Root Mean Square Error of Approximation:
##
     RMSEA
                                                     0.000
##
##
     90 Percent confidence interval - lower
                                                     0.000
##
     90 Percent confidence interval - upper
                                                     0.064
##
     P-value RMSEA <= 0.05
                                                     0.872
## Standardized Root Mean Square Residual:
##
##
     SRMR
                                                     0.017
##
## Parameter Estimates:
##
##
     Standard errors
                                                  Standard
##
     Information
                                                  Expected
##
     Information saturated (h1) model
                                                Structured
##
## Latent Variables:
##
                          Estimate Std.Err z-value P(>|z|)
##
     external identity =~
##
       sprt_goals
                              0.871
                                       0.062
                                               14.013
                                                          0.000
##
       cnsdr ath
                              0.751
                                       0.066
                                               11.326
                                                          0.000
##
     internal_value =~
##
       sprt_impt
                              1.076
                                       0.083
                                               12.962
                                                          0.000
##
                              1.443
                                       0.086
                                               16.700
                                                          0.000
       think_sprt
##
     negative_events =~
##
       dprs_sprt
                             0.805
                                       0.084
                                                9.537
                                                          0.000
##
       bad_sprt
                              1.030
                                       0.101
                                               10.171
                                                          0.000
##
## Covariances:
##
                           Estimate Std.Err z-value P(>|z|)
##
     external_identity ~~
##
                              0.511
                                       0.054
                                                9.498
                                                          0.000
       internal_value
                                                          0.000
##
       negative_evnts
                             0.397
                                       0.067
                                                5.912
##
     internal value ~~
##
       negative_evnts
                             0.513
                                       0.061
                                                8.432
                                                          0.000
##
## Variances:
                      Estimate Std.Err z-value P(>|z|)
##
##
                                   0.085
                                            1.984
      .sprt_goals
                         0.169
                                                     0.047
##
      .cnsdr ath
                         0.668
                                   0.080
                                            8.347
                                                     0.000
##
      .sprt_impt
                         1.114
                                   0.130
                                            8.585
                                                     0.000
##
      .think_sprt
                         0.251
                                   0.180
                                            1.394
                                                     0.163
##
      .dprs_sprt
                                   0.119
                                            7.751
                                                     0.000
                         0.923
##
                         1.009
                                   0.176
                                            5.743
                                                     0.000
      .bad_sprt
##
       external_dntty
                         1.000
##
                         1.000
       internal_value
##
       negative_evnts
                         1.000
```