1 Existential quantification

[a beaniebaby stinks]

Lexical entries:

- 1. $[beaniebaby] = \lambda y [BEANIEBABY(y)]$
- 2. $[stink] = \lambda z [STINK(z)]$
- 3. $[a] = \lambda f_{\langle e,t \rangle} [\lambda g_{\langle e,t \rangle} [\exists x [f(x) \land g(x)]]]$
- ★ If you used other variables for any lexical entry, that's also right! e.g., $\lambda z[BEANIEBABY(z)] = \lambda y[BEANIEBABY(y)]$, etc.

Tree annotated with types:

- ★ Common mistake with types: be careful with how many brackets you have, and where!
 - \rightarrow $\langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle$: ill-formed! A closing bracket is missing.
 - $ightharpoonup \langle e,t,t \rangle$: ill-formed! There should be one input, one output for each pair of brackets (e.g., $\langle \langle e,t \rangle,t \rangle$).
 - \rightarrow $\langle e, \langle t, t \rangle \rangle$: not the same thing as $\langle \langle e, t \rangle, t \rangle$!
 - $\rightarrow \langle \langle \langle e, t \rangle, \langle e, t \rangle \rangle, t \rangle$: not the same thing as $\langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle$!

Step-by-step computation:

- 1. [a beaniebaby]
 - (a) = [a]([beaniebaby])
 - (b) = $\lambda f_{\langle e,t \rangle} [\lambda g_{\langle e,t \rangle} [\exists x [f(x) \land g(x)]]] ([beaniebaby])$
 - (c) = $\lambda g_{(e,t)}[\exists x[[beaniebaby](x) \land g(x)]]$
 - (d) = $\lambda g_{(e,t)}[\exists x[\lambda y[BEANIEBABY(y)](x) \land g(x)]]$
 - (e) = $\lambda g_{\langle e,t \rangle} [\exists x [BEANIEBABY(x) \land g(x)]]$
- 2. [a beaniebaby stinks]
 - (a) = [a beaniebaby stink]
 - (b) = [a beaniebaby]([stink])
 - (c) = $\lambda g_{(e,t)}[\exists x[BEANIEBABY(x) \land g(x)]]$ ([stink])
 - (d) = $\exists x [BEANIEBABY(x) \land [stink](x)]$
 - (e) = $\exists x [BEANIEBABY(x) \land \lambda z [STINK(z)](x)]$
 - (f) = T iff $\exists x[BEANIEBABY(x) \land STINK(x)]$
 - ★ Common mistake: Don't forget to state the very final step as a truth condition! Remember, what you're calculating is the denotation of a sentence, which is its truth value/condition.

2 Types summary

- 1. $\langle e, t \rangle$: type for one-place predicates
- 2. $\langle \langle e, t \rangle, t \rangle$: type for quantifiers (also sometimes called generalized quantifiers¹); e.g., every beaniebaby, everyone, a/some beaniebaby, someone, all beaniebabies, few/most beaniebabies, etc.)
- 3. $\langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle$: type for quantificational determiners; e.g., every, all, a, some, few, most, etc.
- What other types are possible? What might that kind of function do?

 $^{^{1}}$ It's called "generalized" because at a certain point in history, logicians/semanticists discovered that all quantificational phrases (e.g., many beaniebabies, two beaniebabies, few beaniebabies) are all the same thing: a relation between sets. The treatment of those quantifiers was "generalized" from the analysis of \forall and \exists , hence, "generalized".