APPENDIX

IN THE CLAIMS:

Please amend claims 23, 30, 35, 52, and 55, as follows:

23. (Amended) At least one chemical chosen from compounds of formula (I), and acid-addition salt thereof:

$$\begin{array}{c|c} A & & & \\ \hline \\ R_3 & & & \\ \hline \end{array} \begin{array}{c} N & N \\ \hline \\ NH_2 \end{array} \begin{array}{c} R_1 \\ \hline \\ R_2 \end{array} \hspace{1cm} (I)$$

in which:

 R_1 , R_2 and R_3 , which may be identical or different, are each chosen from a hydrogen atom; a halogen atom; a group Z; a $(C_1\text{-}C_6 \text{ alkyl})\text{carbonyl radical}$; an amino $(C_1\text{-}C_6 \text{ alkyl})\text{carbonyl radical}$; an N-Z-amino $(C_1\text{-}C_6 \text{ alkyl})\text{carbonyl radical}$; an N- $(C_1\text{-}C_6 \text{ alkyl})\text{amino}(C_1\text{-}C_6 \text{ alkyl})\text{carbonyl radical}$; an N,N-di $(C_1\text{-}C_6 \text{ alkyl})\text{amino}(C_1\text{-}C_6 \text{ alkyl})\text{carbonyl radical}$; an amino $(C_1\text{-}C_6 \text{ alkyl})\text{carbonyl}(C_1\text{-}C_6 \text{ alkyl})\text{ radical}$; an N- $(C_1\text{-}C_6 \text{ alkyl})\text{amino}(C_1\text{-}C_6 \text{ alkyl})\text{carbonyl}(C_1\text{-}C_6 \text{ alkyl})\text{ radical}$; an N,N-di $(C_1\text{-}C_6 \text{ alkyl})\text{amino}(C_1\text{-}C_6 \text{ alkyl})\text{carbonyl}(C_1\text{-}C_6 \text{ alkyl})\text{ radical}$; a $(C_1\text{-}C_6 \text{ alkyl})\text{carbonyl radical}$; a $(C_1\text{-}C_6 \text{ alkyl})\text{carbonyl radical}$; an $(C_1\text{-}$

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

alkyl)carbamyl radical; an N,N-di(C_1 - C_6 alkyl)carbamyl radical; a carbamyl(C_1 - C_6 alkyl) radical; an N-(C₁-C₆ alkyl)carbamyl(C₁-C₆ alkyl) radical; an N,N-d₁(C₁-C₆ alkyl)carbamyl(C_1 - C_6 alkyl) radical; a C_1 - C_6 alkyl radical; a hydroxyl radical; a nitro radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a C₁-C₆ (C₁-C₆ alkoxy)alkyl radical; a C₁-C₆ trifluoroalkyl radical; a cyano radical; a group OR₆; a group SR₆; an amino radical; an N-(C₁-C₆ alkyl)amino radical; an N,N-di(C₁-C₆ alkyl)amino radical, wherein the two alkyl substituents may form a ring chosen from 5and 6-membered rings; an N-hydroxy(C₁-C₆ alkyl)amino radical; an N,N-bis(hydroxy(C₁-C₆ alkyl))amino radical; an N-polyhydroxy(C₂-C₆ alkyl)amino radical; an N,Nbis(polyhydroxy(C₂-C₆ alkyl))amino radical; an amino(C₁-C₆ alkyl)amino radical, in which the terminal amino group is unsubstituted or substituted by one or two C₁-C₆ alkyl radicals, where the alkyl radicals may form a ring chosen from saturated and unsaturated 5- and 6-membered rings; an amino group protected by at least one group chosen from a $(C_1-C_6 \text{ alkyl})$ carbonyl, a trifluoro $(C_1-C_6 \text{ alkyl})$ carbonyl, an amino $(C_1-C_6 \text{ alkyl})$ alkyl)carbonyl, an N-Z-amino(C₁-C₆ alkyl)carbonyl, an N-(C₁-C₆ alkyl)amino(C₁-C₆ alkyl)carbonyl, an N,N-di(C_1 - C_6 alkyl)amino(C_1 - C_6 alkyl)carbonyl radical, an N,N-di(C_1 - C_6 alkyl)amino(C_1 - C_6 alkyl) formyl radical[;], and a group Z;

 R_6 is chosen from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a group Z; a C_1 - C_6 (C_1 - C_6 alkoxy)alkyl radical; an aryl radical; a benzyl radical; a C_1 - C_6 carboxyalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)carboxyalkyl radical; a C_1 - C_6 cyanoalkyl radical; a C_1 - C_6 carbamylalkyl radical; a C_1 - C_6 N-(C_1 - C_6 alkyl)carbamylalkyl radical; a C_1 - C_6 trifluoroalkyl radical; a C_1 - C_6 aminosulphonylalkyl radical; a C_1 - C_6 N-Z-aminosulphonyl-

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

alkyl radical; a C_1 - C_6 N-(C_1 - C_6 alkyl)aminosulphonylalkyl radical; a C_1 - C_6 N,N-di(C_1 - C_6 alkyl)aminosulphonylalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)sulphinylalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)carbonylalkyl radical; a C_1 - C_6 aminoalkyl radical; a C_1 - C_6 aminoalkyl radical whose amine is substituted by one or two radicals chosen from C_1 - C_6 alkyl, monohydroxy(C_1 - C_6 alkyl), polyhydroxy(C_2 - C_6 alkyl), (C_1 - C_6 alkyl)carbonyl, formyl, trifluoro(C_1 - C_6 alkyl)carbonyl, and (C_1 - C_6 alkyl)sulphonyl radicals, and a group Z;

A is chosen from -NR₄R₅ and a hydroxyl radical;

 R_4 and R_5 , are independently chosen from a hydrogen atom; a group Z; a C_1 - C_6 alkyl radical; a C_1 - C_6 (C_1 - C_6 alkoxy)alkyl radical; an aryl radical; a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 (C_1 - C_6 alkoxy)alkyl radical; an aryl radical; a benzyl radical; a C_1 - C_6 cyanoalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)carbamylalkyl radical; a C_1 - C_6 N_1 - N_2 -di(C_1 - C_6 alkyl)carbamylalkyl radical; a C_1 - C_6 thiocarbamylalkyl radical; a C_1 - C_6 trifluoroalkyl radical; a C_1 - C_6 sulphoalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)carboxyalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)sulphinylalkyl radical; a C_1 - C_6 aminosulphonylalkyl radical; a C_1 - C_6 N-N-N-aminosulphonylalkyl radical; a N-N-di(N-N-d

wherein one and only one of the radicals R_4 and R_5 may also be chosen from a $(C_1-C_6 \text{ alkyl})$ carbonyl radical; a formyl radical; a trifluoro $(C_1-C_6 \text{ alkyl})$ carbonyl radical; an

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

amino(C_1 - C_6 alkyl)carbonyl radical; an N-Z-amino(C_1 - C_6 alkyl)carbonyl radical; an N-(C_1 - C_6 alkyl)amino(C_1 - C_6 alkyl)carbonyl radical; and an N,N-di(C_1 - C_6 alkyl)amino(C_1 - C_6 alkyl)carbonyl radical;

Z is chosen from the unsaturated cationic groups of formulae (II) and (III) below and the saturated cationic groups of formula (IV) below:

in which:

D is a linker which is chosen from linear and branched alkyl chains and may be interrupted by at least one heteroatom atom and may be substituted by at least one of a hydroxyl and a C₁-C₆ alkoxy radical, and may carry at least one ketone function;

the ring members E, G, J, L and M, which are identical or different, are chosen from carbon, oxygen, sulphur and nitrogen atoms;

n is an integer ranging from 0 to 4;

m is an integer ranging from 0 to 5;

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

the radicals R, which are identical or different, may be chosen from a group Z; a halogen atom; a hydroxyl radical; a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a nitro radical; a cyano radical; a C_1 - C_6 cyanoalkyl radical; a C_1 - C_6 alkoxy radical; a C_1 - C_6 tri(C_1 - C_6 alkyl)silanealkyl radical; an amido radical; an aldehydo radical; a carboxyl radical; a C_1 - C_6 alkylcarbonyl radical; a thio radical; a C_1 - C_6 thioalkyl radical; a (C_1 - C_6 alkyl)thio radical; an amino radical; an amino radical protected by a group chosen from (C_1 - C_6 alkyl)carbonyl, carbamyl, and (C_1 - C_6 alkyl)sulphonyl; and groups NHR" and NR"R" in which R" and R", which are identical or different, are chosen from a C_1 - C_6 alkyl radical, a C_1 - C_6 monohydroxyalkyl radical and a C_2 - C_6 polyhydroxyalkyl radical;

 R_7 is chosen from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 cyanoalkyl radical; a C_1 - C_6 tri(C_1 - C_6 alkyl)silanealkyl radical; a C_1 - C_6 (C_1 - C_6 alkoxy)alkyl radical; a carbamyl(C_1 - C_6 alkyl) radical; a C_1 - C_6 (C_1 - C_6 alkyl)carboxyalkyl radical; a benzyl radical; and a group Z;

 R_8 , R_9 and R_{10} , which are identical or different, are chosen from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 (C_1 - C_6 alkoxy)alkyl radical; a C_1 - C_6 cyanoalkyl radical; an aryl radical; a benzyl radical; a C_1 - C_6 amidoalkyl radical; a C_1 - C_6 tri(C_1 - C_6 alkyl)silanealkyl radical; and a C_1 - C_6 aminoalkyl radical whose amine is protected by at least one of a (C_1 - C_6 alkyl)carbonyl, amido, carboxyl and (C_1 - C_6 alkyl)sulphonyl radical;

two of the radicals R_8 , R_9 and R_{10} may form, together with the nitrogen to which they are attached, a ring chosen from saturated 5- and 6-membered carbon-containing rings which may contain at least one heteroatom, wherein said rings may contain a

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

substituent chosen from a halogen atom; a hydroxyl radical; a C1-C6 alkyl radical, a C1-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a nitro radical; a cyano radical; a C₁-C₆ cyanoalkyl radical; a C₁-C₆ alkoxy radical; a C₁-C₆ tri(C₁-C₆ alkyl)silanealkyl radical; an amido radical; an aldehydo radical; a carboxyl radical; a C₁-C₆ ketoalkyl radical; a thio radical; a C₁-C₆ thioalkyl radical; a (C₁-C₆ alkyl)thio radical; an amino radical; and an amino radical protected by a group chosen from (C₁-C₆ alkyl)carbonyl; carbamyl and (C₁-C₆ alkyl)sulphonyl radical;

one of the radicals R_8 , R_9 and R_{10} may be chosen from a second group Z. identical to or different from the first group Z;

 R_{11} may be chosen from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical whose amine is protected by at least one of a (C₁-C₆ alkyl)carbonyl, a carbamyl, and a (C₁-C₆ alkyl)sulphonyl radical; a C₁-C₆ carboxyalkyl radical; a C₁-C₆ cyanoalkyl radical; a C₁-C₆ carbamylalkyl radical; a C₁-C₆ trifluoroalkyl radical; a C₁-C₆ tri(C₁-C₆ alkyl)silanealkyl radical; a C₁-C₆ sulphonamidoalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)carboxyalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)sulphinylalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)sulphonylalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)ketoalkyl radical; a C_1 - C_6 N-(C₁-C₆ alkyl)carbamylalkyl radical; and a C₁-C₆ N-(C₁-C₆ alkyl)sulphonamidoalkyl radical; a and y are integers equal to 0 or 1; with the following conditions:

- in the unsaturated cationic groups of formula (II):
 - when a = 0, the linker D is attached to the nitrogen atom,
 - when a = 1, the linker D is attached to one of the ring members E. G. J or L.

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

- y can adopt the value 1 only
 - 1) when the ring members E, G, J and L are simultaneously a carbon atom and when the radical R₇ is carried by the nitrogen atom of the unsaturated ring; or
 - 2) when at least one of the ring members E, G, J and L is [C] chosen from a nitrogen atom to which the radical R_7 is attached;
- in the unsaturated cationic groups of formula (III):
 - when a = 0, the linker D is attached to the nitrogen atom,
 - when a = 1, the linker D is attached to one of the ring members E,
 G, J, L or M,
 - y can adopt the value 1 only
 - 1) when at least one of the ring members E, G, J, L and M is chosen from a divalent atom and
 - 2) when the radical R₇ is carried by the nitrogen atom of the unsaturated ring;
- in the saturated cationic groups of formula (IV):
 - when a = 0, then the linker D is attached to the nitrogen atom which carries the radicals R_8 to R_{10} ,
 - when a = 1, then two of the radicals R₈ to R₁₀, together with the nitrogen atom to which they are attached, form a ring chosen from 5- and 6-membered saturated rings, and the linker D is carried by a carbon atom of the said ring;

X is chosen from monovalent and divalent anions;

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

with the proviso that [the number of cationic groups Z in said compound of formula (I) is at least one] at least one of R_1 , R_2 and R_3 is a group Z.

- 31. (Amended) At least one chemical according to Claim 30 chosen from:
- 3-[3-(3-amino-5-methylpyrazolo[1 ,5-a]pyrimidin-7-ylamino)propyl]-1-(2-hydroxyethyl)-3H-imidazol-1-ium chloride,
- 3-(3-amino-7-hydroxy-5-methylpyrazolo[1,5-a]pyrimidin-6-ylmethyl)-1-methylpyridinium methyl sulphate,
- 3-(3-amino-7-hydroxy-5-methylpyrazolo[1,5-a]pyrimidin-6-ylmethyl)-1-(2-hydroxyethyl)pyridinium chloride,
- [- 3-(3-amino-7-hydroxy-5-methylpyrazolo[1,5-a]pyrimidin-6-ylmethyl)-1-methylpyridinium chloride,]
- 4-[3-(3-amino-5-methyl pyrazolo[1,5-a]pyrimidin-7-ylamino)propyl]-4-methylmorpholin-4-ium chloride,
- 4-[3-(3-amino-5-methyl pyrazolo[1,5-a]pyrimidin-7-ylamino)propyl]-4-methylmorpholin-4-ium methyl sulphate,

and the acid-addition salts thereof.

35. (Amended) A composition for the oxidation dyeing of keratinous fibers, comprising, in a medium suitable for dyeing, at least one oxidation base chosen from compounds of formula (I) and acid addition salts thereof:

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

$$\begin{array}{c|c}
A & & & \\
R_3 & & & \\
\end{array}$$

$$\begin{array}{c|c}
N & N & \\
NH_2 & & \\
\end{array}$$

$$\begin{array}{c|c}
R_1 & \\
R_2 & \\
\end{array}$$

$$\begin{array}{c|c}
\end{array}$$

$$\begin{array}{c|c}
\end{array}$$

$$\begin{array}{c|c}
\end{array}$$

$$\begin{array}{c|c}
\end{array}$$

$$\begin{array}{c|c}
\end{array}$$

$$\begin{array}{c|c}
\end{array}$$

in which:

R₁, R₂ and R₃, which may be identical or different, are each chosen from a hydrogen atom; a halogen atom; a group Z; a (C₁-C₆ alkyl)carbonyl radical; an amino(C₁-C₆ alkyl)carbonyl radical; an N-Z-amino(C₁-C₆ alkyl)carbonyl radical; an N-(C₁- C_6 alkyl)amino(C_1 - C_6 alkyl)carbonyl radical; an N,N-di(C_1 - C_6 alkyl)amino(C_1 - C_6 alkyl)carbonyl radical; an amino(C_1 - C_6 alkyl)carbonyl(C_1 - C_6 alkyl) radical; an N-Zamino(C₁-C₆ alkyl)carbonyl(C₁-C₆ alkyl) radical; an N-(C₁-C₆ alkyl)amino(C₁-C₆ alkyl)carbonyl(C_1 - C_6 alkyl) radical; an N,N-di(C_1 - C_6 alkyl)amino(C_1 - C_6 alkyl)carbonyl(C_1 -C₆ alkyl) radical; a carboxyl radical; a (C₁-C₆ alkyl)carboxyl radical; a (C₁-C₆ alkyl)sulphonyl radical; an aminosulphonyl radical; an N-Z-aminosulphonyl radical; an N-(C₁-C₆ alkyl)aminosulphonyl radical; an N,N-di(C₁-C₆ alkyl)aminosulphonyl radical; an aminosulphonyl(C₁-C₆ alkyl) radical; an N-Z-aminosulphonyl(C₁-C₆ alkyl) radical; an N-(C₁-C₆ alkyl)aminosulphonyl(C₁-C₆ alkyl) radical; an N,N-di(C₁-C₆ alkyl)aminosulphonyl(C₁-C₆ alkyl) radical; a carbamyl radical; an N-(C₁-C₆ alkyl)carbamyl radical; an N,N-di(C₁-C₆ alkyl)carbamyl radical; a carbamyl(C₁-C₆ alkyl) radical; an N-(C₁-C₆ alkyl)carbamyl(C₁-C₆ alkyl) radical; an N,N-di(C₁-C₆ alkyl)carbamyl(C₁-C₆ alkyl) radical; a C₁-C₆ alkyl radical; a hydroxyl radical; a nitro radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a C₁-C₆ (C₁-C₆ alkoxy)alkyl radical; a C₁-C₆ trifluoroalkyl radical; a cyano radical; a group OR₆; a

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

group SR_6 ; an amino radical; an $N-(C_1-C_6$ alkyl)amino radical; an $N,N-di(C_1-C_6$ alkyl)amino radical, wherein the two alkyl substituents may form a ring chosen from 5-and 6-membered rings; an $N-hydroxy(C_1-C_6$ alkyl)amino radical; an $N,N-bis(hydroxy(C_1-C_6$ alkyl))amino radical; an $N-hydroxy(C_2-C_6$ alkyl)amino radical; an $N-hydroxy(C_2-C_6$ alkyl)amino radical; an $N-hydroxy(C_2-C_6$ alkyl)amino radical; an amino $(C_1-C_6$ alkyl)amino radical, in which the terminal amino group is unsubstituted or substituted by one or two C_1-C_6 alkyl radicals, where the alkyl radicals may form a ring chosen from saturated and unsaturated 5- and 6-membered rings; an amino group protected by at least one group chosen from a $(C_1-C_6$ alkyl)carbonyl, a trifluoro $(C_1-C_6$ alkyl)carbonyl, an amino $(C_1-C_6$ alkyl)carbonyl, an $N-Z-amino(C_1-C_6$ alkyl)carbonyl, an $N-(C_1-C_6$ alkyl)amino $(C_1-C_6$ alkyl)

R₆ is chosen from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a group Z; a C₁-C₆ (C₁-C₆ alkoxy)alkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ carboxyalkyl radical; a C₁-C₆ (C₁-C₆ alkyl)carboxyalkyl radical; a C₁-C₆ cyanoalkyl radical; a C₁-C₆ carbamylalkyl radical; a C₁-C₆ N-(C₁-C₆ alkyl)carbamylalkyl radical; a C₁-C₆ N,N-di(C₁-C₆ alkyl)carbamylalkyl radical; a C₁-C₆ trifluoroalkyl radical; a C₁-C₆ aminosulphonylalkyl radical; a C₁-C₆ N-Z-aminosulphonylalkyl radical; a C₁-C₆ N-C₁-C₆ alkyl)aminosulphonylalkyl radical; a C₁-C₆ N,N-di(C₁-C₆ alkyl)aminosulphonylalkyl radical; a C₁-C₆ (C₁-C₆ alkyl)sulphinylalkyl radical; a C₁-C₆ (C₁-C₆ alkyl)sulphonylalkyl radical; a C₁-C₆ (C₁-C₆ alkyl)carbonylalkyl radical; a C₁-C₆ aminoalkyl radical whose amine is substituted by one or two radicals chosen from C₁-C₆ alkyl, monohydroxy(C₁-C₆ alkyl), polyhydroxy(C₂-C₆ alkyl),

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

 $(C_1-C_6 \text{ alkyl})$ carbonyl, formyl, trifluoro $(C_1-C_6 \text{ alkyl})$ carbonyl, and $(C_1-C_6 \text{ alkyl})$ sulphonyl radicals, and a group Z;

A is chosen from -NR₄R₅ and a hydroxyl radical;

 R_4 and R_5 , are independently chosen from a hydrogen atom; a group Z; a C_1 - C_6 alkyl radical; a C_1 - C_6 (C_1 - C_6 alkoxy)alkyl radical; an aryl radical; a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 (C_1 - C_6 alkoxy)alkyl radical; an aryl radical; a benzyl radical; a C_1 - C_6 cyanoalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)carbamylalkyl radical; a C_1 - C_6 N,N-di(C_1 - C_6 alkyl)carbamylalkyl radical; a C_1 - C_6 thiocarbamylalkyl radical; a C_1 - C_6 trifluoroalkyl radical; a C_1 - C_6 sulphoalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)carboxyalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)sulphinylalkyl radical; a C_1 - C_6 aminosulphonylalkyl radical; a C_1 - C_6 N-Z-aminosulphonylalkyl radical; a C_1 - C_6 N-(C_1 - C_6 alkyl)-aminosulphonylalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)aminosulphonylalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)carbonylalkyl radical; a C_1 - C_6 aminoalkyl radical whose amine is substituted by one or two radicals chosen from C_1 - C_6 alkyl, C_1 - C_6 monohydroxyalkyl, C_2 - C_6 polyhydroxyalkyl, (C_1 - C_6 alkyl)carbonyl, (C_1 -alkyl)sulphonyl, formyl, and trifluoro(C_1 - C_6 alkyl)carbonyl radicals, and a group Z;

wherein one and only one of the radicals R_4 and R_5 may also be chosen from a $(C_1-C_6 \text{ alkyl})$ carbonyl radical; a formyl radical; a trifluoro $(C_1-C_6 \text{ alkyl})$ carbonyl radical; an amino $(C_1-C_6 \text{ alkyl})$ carbonyl radical; an N-Z-amino $(C_1-C_6 \text{ alkyl})$ carbonyl radical; an N- $(C_1-C_6 \text{ alkyl})$ amino $(C_1-C_6 \text{ alkyl})$ carbonyl radical; and an N,N-di $(C_1-C_6 \text{ alkyl})$ amino $(C_1-C_6 \text{ alkyl})$ carbonyl radical;

Z is chosen from the unsaturated cationic groups of formulae (II) and (III) below and the saturated cationic groups of formula (IV) below:

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

in which:

D is a linker which is chosen from linear and branched alkyl chains and may be interrupted by at least one heteroatom atom and may be substituted by at least one of a hydroxyl and a C₁-C₆ alkoxy radical, and may carry at least one ketone function;

the ring members E, G, J, L and M, which are identical or different, are chosen from carbon, oxygen, sulphur and nitrogen atoms;

n is an integer ranging from 0 to 4;

m is an integer ranging from 0 to 5;

the radicals R, which are identical or different, may be chosen from a group Z; a halogen atom; a hydroxyl radical; a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a nitro radical; a cyano radical; a C_1 - C_6 cyanoalkyl radical; a C_1 - C_6 alkoxy radical; a C_1 - C_6 tri(C_1 - C_6 alkyl)silanealkyl radical; an amido radical; an aldehydo radical; a carboxyl radical; a C_1 - C_6 alkylcarbonyl radical; a thio radical; a C_1 - C_6 thioalkyl radical; a (C_1 - C_6 alkyl)thio radical; an amino radical; an

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

amino radical protected by a group chosen from $(C_1-C_6 \text{ alkyl})$ carbonyl, carbamyl, and $(C_1-C_6 \text{ alkyl})$ sulphonyl; and groups NHR" and NR"R"' in which R" and R"', which are identical or different, are chosen from a $C_1-C_6 \text{ alkyl}$ radical, a $C_1-C_6 \text{ monohydroxyalkyl}$ radical and a $C_2-C_6 \text{ polyhydroxyalkyl}$ radical;

 R_7 is chosen from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 cyanoalkyl radical; a C_1 - C_6 tri(C_1 - C_6 alkyl)silanealkyl radical; a C_1 - C_6 (C_1 - C_6 alkoxy)alkyl radical; a carbamyl(C_1 - C_6 alkyl) radical; a C_1 - C_6 (C_1 - C_6 alkyl)carboxyalkyl radical; a benzyl radical; and a group Z;

 R_8 , R_9 and R_{10} , which are identical or different, are chosen from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 (C_1 - C_6 alkoxy)alkyl radical; a C_1 - C_6 cyanoalkyl radical; an aryl radical; a benzyl radical; a C_1 - C_6 amidoalkyl radical; a C_1 - C_6 tri(C_1 - C_6 alkyl)silanealkyl radical; and a C_1 - C_6 aminoalkyl radical whose amine is protected by at least one of a (C_1 - C_6 alkyl)carbonyl, amido, carboxyl and (C_1 - C_6 alkyl)sulphonyl radical;

two of the radicals R_8 , R_9 and R_{10} may form, together with the nitrogen to which they are attached, a ring chosen from saturated 5- and 6-membered carbon-containing rings which may contain at least one heteroatom, wherein said rings may contain a substituent chosen from a halogen atom; a hydroxyl radical; a C_1 - C_6 alkyl radical, a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a nitro radical; a cyano radical; a C_1 - C_6 cyanoalkyl radical; a C_1 - C_6 alkoxy radical; a C_1 - C_6 tri(C_1 - C_6 alkyl)silanealkyl radical; an amido radical; an aldehydo radical; a carboxyl radical; a C_1 - C_6 ketoalkyl radical; a thio radical; a C_1 - C_6 thioalkyl radical; a (C_1 - C_6 alkyl)thio radical; an

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

amino radical; and an amino radical protected by a group chosen from (C₁-C₆ alkyl)carbonyl; carbamyl and (C₁-C₆ alkyl)sulphonyl radical;

one of the radicals R_8 , R_9 and R_{10} may be chosen from a second group Z, identical to or different from the first group Z;

R₁₁ may be chosen from a C₁-C₆ alkyl radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C₁-C₆ aminoalkyl radical; a C₁-C₆ aminoalkyl radical whose amine is protected by at least one of a (C₁-C₆ alkyl)carbonyl, a carbamyl, and a (C₁-C₆ alkyl)sulphonyl radical; a C₁-C₆ carboxyalkyl radical; a C₁-C₆ cyanoalkyl radical; a C₁-C₆ carbamylalkyl radical; a C₁-C₆ trifluoroalkyl radical; a C₁-C₆ tri(C₁-C₆ alkyl)silanealkyl radical; a C₁-C₆ sulphonamidoalkyl radical; a C₁-C₆ (C₁-C₆ alkyl)sulphonylalkyl radical; a C₁-C₆ (C₁-C₆ alkyl)sulphonylalkyl radical; a C₁-C₆ (C₁-C₆ alkyl)sulphonylalkyl radical; a C₁-C₆ (C₁-C₆ alkyl)sulphonamidoalkyl radical; a C₁-C₆ alkyl)carbamylalkyl radical; and a C₁-C₆ N-(C₁-C₆ alkyl)sulphonamidoalkyl radical; a and y are integers equal to 0 or 1; with the following conditions:

- in the unsaturated cationic groups of formula (II):
 - when a = 0, the linker D is attached to the nitrogen atom,
 - when a = 1, the linker D is attached to one of the ring members E,
 G, J or L,
 - y can adopt the value 1 only
 - 1) when the ring members E, G, J and L are simultaneously a carbon atom and when the radical R₇ is carried by the nitrogen atom of the unsaturated ring; or

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

- 2) when at least one of the ring members E, G, J and L is [C] chosen from a nitrogen atom to which the radical R₇ is attached;
- in the unsaturated cationic groups of formula (III):
 - when a = 0, the linker D is attached to the nitrogen atom,
 - when a = 1, the linker D is attached to one of the ring members E,
 G, J, L or M,
 - y can adopt the value 1 only
 - 1) when at least one of the ring members E, G, J, L and M is chosen from a divalent atom and
 - 2) when the radical R₇ is carried by the nitrogen atom of the unsaturated ring;
- in the saturated cationic groups of formula (IV):
 - when a = 0, then the linker D is attached to the nitrogen atom which carries the radicals R_8 to R_{10} ,
 - when a = 1, then two of the radicals R₈ to R₁₀, together with the nitrogen atom to which they are attached, form a ring chosen from 5- and 6-membered saturated rings, and the linker D is carried by a carbon atom of the said ring;

X is chosen from monovalent and divalent anions; with the proviso that [the number of cationic groups Z in said compound of formula (I) is at least one] at least one of R_1 , R_2 and R_3 is a group Z.

52. (Amended) A method for dyeing keratinous fibers comprising

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

applying a dyeing composition to said keratinous fibers, and developing color with the aid of at least one oxidizing agent,

wherein said at least one oxidizing agent is added to the dyeing composition at the time of application or which is present in an oxidizing composition which is applied simultaneously with said dyeing composition, either sequentially or separately,

wherein said dyeing composition comprises, in a medium suitable for dyeing, at least one oxidation base chosen from compounds of formula (I) and acid addition salts thereof:

in which:

 R_1 , R_2 and R_3 , which may be identical or different, are each chosen from a hydrogen atom; a halogen atom; a group Z; a $(C_1\text{-}C_6 \text{ alkyl})$ carbonyl radical; an amino $(C_1\text{-}C_6 \text{ alkyl})$ carbonyl radical; an N-Z-amino $(C_1\text{-}C_6 \text{ alkyl})$ carbonyl radical; an N- $(C_1\text{-}C_6 \text{ alkyl})$ amino $(C_1\text{-}C_6 \text{ alkyl})$ carbonyl radical; an N,N-di $(C_1\text{-}C_6 \text{ alkyl})$ amino $(C_1\text{-}C_6 \text{ alkyl})$ carbonyl radical; an amino $(C_1\text{-}C_6 \text{ alkyl})$ carbonyl $(C_1\text{-}C_6 \text{ alkyl})$ radical; an N- $(C_1\text{-}C_6 \text{ alkyl})$ amino $(C_1\text{-}C_6 \text{ alkyl})$ radical; an N,N-di $(C_1\text{-}C_6 \text{ alkyl})$ amino $(C_1\text{-}C_6 \text{ alkyl})$ carbonyl $(C_1\text{-}C_6 \text{ alkyl})$ radical; an N,N-di $(C_1\text{-}C_6 \text{ alkyl})$ amino $(C_1\text{-}C_6 \text{ alkyl})$ radical; a $(C_1\text{-}C_6 \text{ alkyl})$ radical; a $(C_1\text{-}C_6 \text{ alkyl})$ radical; an N-Z-aminosulphonyl radical; an N-Z-aminosulphonyl radical; an N- $(C_1\text{-}C_6 \text{ alkyl})$ radical; an N- $(C_1\text{-}C_6 \text{ alkyl})$

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

aminosulphonyl(C₁-C₆ alkyl) radical; an N-Z-aminosulphonyl(C₁-C₆ alkyl) radical; an N-(C₁-C₆ alkyl)aminosulphonyl(C₁-C₆ alkyl) radical; an N,N-di(C₁-C₆ alkyl)aminosulphonyl(C₁-C₆ alkyl) radical; a carbamyl radical; an N-(C₁-C₆ alkyl)carbamyl radical; an N,N-di(C₁-C₆ alkyl)carbamyl radical; a carbamyl(C₁-C₆ alkyl) radical; an N-(C₁-C₆ alkyl)carbamyl(C₁-C₆ alkyl) radical; an N,N-di(C₁-C₆ alkyl)carbamyl(C₁-C₆ alkyl) radical; a C₁-C₆ alkyl radical; a hydroxyl radical; a nitro radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a C₁-C₆ (C₁-C₆ alkoxy)alkyl radical; a C₁-C₆ trifluoroalkyl radical; a cyano radical; a group OR₆; a group SR₆; an amino radical; an N-(C₁-C₆ alkyl)amino radical; an N,N-di(C₁-C₆ alkyl)amino radical, wherein the two alkyl substituents may form a ring chosen from 5and 6-membered rings; an N-hydroxy(C₁-C₆ alkyl)amino radical; an N,N-bis(hydroxy(C₁-C₆ alkyl))amino radical; an N-polyhydroxy(C₂-C₆ alkyl)amino radical; an N,Nbis(polyhydroxy(C₂-C₆ alkyl))amino radical; an amino(C₁-C₆ alkyl)amino radical, in which the terminal amino group is unsubstituted or substituted by one or two C₁-C₆ alkyl radicals, where the alkyl radicals may form a ring chosen from saturated and unsaturated 5- and 6-membered rings; an amino group protected by at least one group chosen from a (C₁-C₆ alkyl)carbonyl, a trifluoro(C₁-C₆ alkyl)carbonyl, an amino(C₁-C₆ alkyl)carbonyl, an N-Z-amino(C₁-C₆ alkyl)carbonyl, an N-(C₁-C₆ alkyl)amino(C₁-C₆ alkyl)carbonyl, an N,N-di(C₁-C₆ alkyl)amino(C₁-C₆ alkyl)carbonyl radical, an N,N-di(C₁-C₆ alkyl)amino(C_1 - C_6 alkyl) formyl radical[;], and a group Z;

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

1300 I Street, NW Washington, DC 20005 202.408.4000 Fax 202.408.4400 www.finnegan.com R_6 is chosen from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a group Z; a C_1 - C_6 (C_1 - C_6 alkoxy)alkyl radical; an aryl radical; a benzyl radical; a C_1 - C_6 carboxyalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)carboxyalkyl

radical; a C_1 - C_6 cyanoalkyl radical; a C_1 - C_6 carbamylalkyl radical; a C_1 - C_6 N-(C_1 - C_6 alkyl)carbamylalkyl radical; a C_1 - C_6 N,N-di(C_1 - C_6 alkyl)carbamylalkyl radical; a C_1 - C_6 trifluoroalkyl radical; a C_1 - C_6 aminosulphonylalkyl radical; a C_1 - C_6 N-Z-aminosulphonylalkyl radical; a C_1 - C_6 N-(C_1 - C_6 alkyl)aminosulphonylalkyl radical; a C_1 - C_6 N,N-di(C_1 - C_6 alkyl)aminosulphonylalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)sulphinylalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)carbonylalkyl radical; a C_1 - C_6 aminoalkyl radical; a C_1 - C_6 aminoalkyl radical whose amine is substituted by one or two radicals chosen from C_1 - C_6 alkyl, monohydroxy(C_1 - C_6 alkyl), polyhydroxy(C_2 - C_6 alkyl), (C_1 - C_6 alkyl)carbonyl, formyl, trifluoro(C_1 - C_6 alkyl)carbonyl, and (C_1 - C_6 alkyl)sulphonyl radicals, and a group Z;

A is chosen from -NR₄R₅ and a hydroxyl radical;

 R_4 and R_5 , are independently chosen from a hydrogen atom; a group Z; a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 (C_1 - C_6 alkoxy)alkyl radical; an aryl radical; a benzyl radical; a C_1 - C_6 cyanoalkyl radical; a C_1 - C_6 carbamylalkyl radical; a C_1 - C_6 N-(C_1 - C_6 alkyl)carbamylalkyl radical; a C_1 - C_6 N,N-di(C_1 - C_6 alkyl)carbamylalkyl radical; a C_1 - C_6 thiocarbamylalkyl radical; a C_1 - C_6 trifluoroalkyl radical; a C_1 - C_6 sulphoalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)carboxyalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)sulphinylalkyl radical; a C_1 - C_6 aminosulphonylalkyl radical; a C_1 - C_6 N-Z-aminosulphonylalkyl radical; a C_1 - C_6 N-(C_1 - C_6 alkyl)-aminosulphonylalkyl radical; a C_1 - C_6 N,N-di(C_1 - C_6 alkyl)aminosulphonylalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)carbonylalkyl radical; a C_1 - C_6 aminoalkyl radical whose amine is substituted by one or two radicals chosen from C_1 - C_6 alkyl, C_1 - C_6

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

monohydroxyalkyl, C_2 - C_6 polyhydroxyalkyl, $(C_1$ - C_6 alkyl)carbonyl, $(C_1$ -alkyl)sulphonyl, formyl, and trifluoro $(C_1$ - C_6 alkyl)carbonyl radicals, and a group Z;

wherein one and only one of the radicals R_4 and R_5 may also be chosen from a $(C_1\text{-}C_6 \text{ alkyl})$ carbonyl radical; a formyl radical; a trifluoro $(C_1\text{-}C_6 \text{ alkyl})$ carbonyl radical; an amino $(C_1\text{-}C_6 \text{ alkyl})$ carbonyl radical; an N-Z-amino $(C_1\text{-}C_6 \text{ alkyl})$ carbonyl radical; an N- $(C_1\text{-}C_6 \text{ alkyl})$ amino $(C_1\text{-}C_6 \text{ alkyl})$ carbonyl radical; and an N,N-di $(C_1\text{-}C_6 \text{ alkyl})$ amino $(C_1\text{-}C_6 \text{ alkyl})$ amino(C

Z is chosen from the unsaturated cationic groups of formulae (II) and (III) below and the saturated cationic groups of formula (IV) below:

$$-D \xrightarrow{\left(\begin{matrix} (R_{11})_a \\ V \end{matrix}\right)_a} \xrightarrow{\left(\begin{matrix} (R_7)_y \\ V \end{matrix}\right)_a} -D \xrightarrow{\left(\begin{matrix} (R_{11})_a \\ V \end{matrix}\right)_a} \xrightarrow{\left(\begin{matrix} (R_7)_y \\ V \end{matrix}\right)_a} \left(\begin{matrix} (R_7)_y \\ V \end{matrix}\right)_a}$$

$$\times \cdot$$

$$\times$$

in which:

D is a linker which is chosen from linear and branched alkyl chains and may be interrupted by at least one heteroatom atom and may be substituted by at least one of a hydroxyl and a C₁-C₆ alkoxy radical, and may carry at least one ketone function;

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

the ring members E, G, J, L and M, which are identical or different, are chosen from carbon, oxygen, sulphur and nitrogen atoms;

n is an integer ranging from 0 to 4;

m is an integer ranging from 0 to 5;

the radicals R, which are identical or different, may be chosen from a group Z; a halogen atom; a hydroxyl radical; a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a nitro radical; a cyano radical; a C_1 - C_6 cyanoalkyl radical; a C_1 - C_6 alkoxy radical; a C_1 - C_6 tri(C_1 - C_6 alkyl)silanealkyl radical; an amido radical; an aldehydo radical; a carboxyl radical; a C_1 - C_6 alkylcarbonyl radical; a thio radical; a C_1 - C_6 thioalkyl radical; a (C_1 - C_6 alkyl)thio radical; an amino radical; an amino radical protected by a group chosen from (C_1 - C_6 alkyl)carbonyl, carbamyl, and (C_1 - C_6 alkyl)sulphonyl; and groups NHR" and NR"R" in which R" and R", which are identical or different, are chosen from a C_1 - C_6 alkyl radical, a C_1 - C_6 monohydroxyalkyl radical and a C_2 - C_6 polyhydroxyalkyl radical;

 R_7 is chosen from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 cyanoalkyl radical; a C_1 - C_6 tri(C_1 - C_6 alkyl)silanealkyl radical; a C_1 - C_6 (C_1 - C_6 alkoxy)alkyl radical; a carbamyl(C_1 - C_6 alkyl) radical; a C_1 - C_6 (C_1 - C_6 alkyl)carboxyalkyl radical; a benzyl radical; and a group Z;

 R_8 , R_9 and R_{10} , which are identical or different, are chosen from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 (C_1 - C_6 alkoxy)alkyl radical; a C_1 - C_6 cyanoalkyl radical; an aryl radical; a benzyl radical; a C_1 - C_6 amidoalkyl radical; a C_1 - C_6 alkyl)silanealkyl radical; and a C_1 - C_6 aminoalkyl

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

radical whose amine is protected by at least one of a $(C_1-C_6 \text{ alkyl})$ carbonyl, amido, carboxyl and $(C_1-C_6 \text{ alkyl})$ sulphonyl radical;

two of the radicals R₈, R₉ and R₁₀ may form, together with the nitrogen to which they are attached, a ring chosen from saturated 5- and 6-membered carbon-containing rings which may contain at least one heteroatom, wherein said rings may contain a substituent chosen from a halogen atom; a hydroxyl radical; a C₁-C₆ alkyl radical, a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a nitro radical; a cyano radical; a C₁-C₆ cyanoalkyl radical; a C₁-C₆ alkoxy radical; a C₁-C₆ tri(C₁-C₆ alkyl)silanealkyl radical; an amido radical; an aldehydo radical; a carboxyl radical; a C₁-C₆ ketoalkyl radical; a thio radical; a C₁-C₆ thioalkyl radical; a (C₁-C₆ alkyl)thio radical; an amino radical; and an amino radical protected by a group chosen from (C₁-C₆ alkyl)carbonyl; carbamyl and (C₁-C₆ alkyl)sulphonyl radical;

one of the radicals R_8 , R_9 and R_{10} may be chosen from a second group Z, identical to or different from the first group Z;

 R_{11} may be chosen from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C_1 - C_6 aminoalkyl radical; a C_1 - C_6 aminoalkyl radical whose amine is protected by at least one of a $(C_1$ - C_6 alkyl)carbonyl, a carbamyl, and a $(C_1$ - C_6 alkyl)sulphonyl radical; a C_1 - C_6 carboxyalkyl radical; a C_1 - C_6 cyanoalkyl radical; a C_1 - C_6 carbamylalkyl radical; a C_1 - C_6 trifluoroalkyl radical; a C_1 - C_6 tri $(C_1$ - C_6 alkyl)silanealkyl radical; a C_1 - C_6 sulphonamidoalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)carboxyalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)sulphonylalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)sulphonylalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)sulphonylalkyl radical; and a C_1 - C_6 $(C_1$ - C_6 alkyl)sulphonamidoalkyl radical;

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

a and y are integers equal to 0 or 1; with the following conditions:

- in the unsaturated cationic groups of formula (II):
 - when a = 0, the linker D is attached to the nitrogen atom,
 - when a = 1, the linker D is attached to one of the ring members E,
 G, J or L,
 - y can adopt the value 1 only
 - 1) when the ring members E, G, J and L are simultaneously a carbon atom and when the radical R_7 is carried by the nitrogen atom of the unsaturated ring; or
 - 2) when at least one of the ring members E, G, J and L is [C] chosen from a nitrogen atom to which the radical R₇ is attached;
- in the unsaturated cationic groups of formula (III):
 - when a = 0, the linker D is attached to the nitrogen atom,
 - when a = 1, the linker D is attached to one of the ring members E,
 G, J, L or M,
 - y can adopt the value 1 only
 - 1) when at least one of the ring members E, G, J, L and M is chosen from a divalent atom and
 - 2) when the radical R_7 is carried by the nitrogen atom of the unsaturated ring;
- in the saturated cationic groups of formula (IV):
 - when a = 0, then the linker D is attached to the nitrogen atom which carries the radicals R_8 to R_{10} ,

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

when a = 1, then two of the radicals R_8 to R_{10} , together with the nitrogen atom to which they are attached, form a ring chosen from 5- and 6-membered saturated rings , and the linker D is carried by a carbon atom of the said ring;

X is chosen from monovalent and divalent anions;

with the proviso that [the number of cationic groups Z in said compound of formula (I) is at least one] at least one of R_1 , R_2 and R_3 is a group Z.

55. (Amended) A multi-compartment dyeing kit comprising at least two compartments, wherein a first compartment contains a dyeing composition and a second compartment contains an oxidizing composition,

wherein said dyeing composition comprises, in a medium suitable for dyeing, at least one oxidation base chosen from compounds of formula (I) and acid addition salts thereof:

$$\begin{array}{c|c} A & & & \\ \hline \\ R_3 & & & \\ \hline \end{array} \begin{array}{c} N & N \\ \hline \\ NH_2 \end{array} \begin{array}{c} R_1 \\ \hline \\ R_2 \end{array} \hspace{1cm} (I)$$

in which:

 R_1 , R_2 and R_3 , which may be identical or different, are each chosen from a hydrogen atom; a halogen atom; a group Z; a $(C_1-C_6$ alkyl)carbonyl radical; an amino $(C_1-C_6$ alkyl)carbonyl radical; an N-Z-amino $(C_1-C_6$ alkyl)carbonyl radical; an N- $(C_1-C_6$ alkyl)amino $(C_1-C_6$ alkyl)carbonyl radical; an N,N-di $(C_1-C_6$ alkyl)amino $(C_1-C_6$

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

alkyl)carbonyl radical; an amino(C₁-C₆ alkyl)carbonyl(C₁-C₆ alkyl) radical; an N-Zamino(C_1 - C_6 alkyl)carbonyl(C_1 - C_6 alkyl) radical; an N-(C_1 - C_6 alkyl)amino(C_1 - C_6 alkyl)carbonyl(C₁-C₆ alkyl) radical; an N,N-di(C₁-C₆ alkyl)amino(C₁-C₆ alkyl)carbonyl(C₁-C₆ alkyl) radical; a carboxyl radical; a (C₁-C₆ alkyl)carboxyl radical; a (C₁-C₆ alkyl)sulphonyl radical; an aminosulphonyl radical; an N-Z-aminosulphonyl radical; an $N-(C_1-C_6 \text{ alkyl})$ aminosulphonyl radical; an $N,N-di(C_1-C_6 \text{ alkyl})$ aminosulphonyl radical; an aminosulphonyl(C₁-C₆ alkyl) radical; an N-Z-aminosulphonyl(C₁-C₆ alkyl) radical; an N- $(C_1-C_6 \text{ alkyl})$ aminosulphonyl $(C_1-C_6 \text{ alkyl})$ radical; an N,N-di $(C_1-C_6 \text{ alkyl})$ alkyl)aminosulphonyl(C₁-C₆ alkyl) radical; a carbamyl radical; an N-(C₁-C₆ alkyl)carbamyl radical; an N,N-di(C₁-C₆ alkyl)carbamyl radical; a carbamyl(C₁-C₆ alkyl) radical; an N-(C₁-C₆ alkyl)carbamyl(C₁-C₆ alkyl) radical; an N,N-di(C₁-C₆ alkyl)carbamyl(C₁-C₆ alkyl) radical; a C₁-C₆ alkyl radical; a hydroxyl radical; a nitro radical; a C₁-C₆ monohydroxyalkyl radical; a C₂-C₆ polyhydroxyalkyl radical; a C₁-C₆ (C₁-C₆ alkoxy)alkyl radical; a C₁-C₆ trifluoroalkyl radical; a cyano radical; a group OR₆; a group SR₆; an amino radical; an N-(C₁-C₆ alkyl)amino radical; an N,N-di(C₁-C₆ alkyl)amino radical, wherein the two alkyl substituents may form a ring chosen from 5and 6-membered rings; an N-hydroxy(C₁-C₆ alkyl)amino radical; an N,N-bis(hydroxy(C₁-C₆ alkyl))amino radical; an N-polyhydroxy(C₂-C₆ alkyl)amino radical; an N,Nbis(polyhydroxy(C₂-C₆ alkyl))amino radical; an amino(C₁-C₆ alkyl)amino radical, in which the terminal amino group is unsubstituted or substituted by one or two C₁-C₆ alkyl radicals, where the alkyl radicals may form a ring chosen from saturated and unsaturated 5- and 6-membered rings; an amino group protected by at least one group chosen from a (C₁-C₆ alkyl)carbonyl, a trifluoro(C₁-C₆ alkyl)carbonyl, an amino(C₁-C₆

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

alkyl)carbonyl, an N-Z-amino(C_1 - C_6 alkyl)carbonyl, an N-(C_1 - C_6 alkyl)amino(C_1 - C_6 alkyl)carbonyl, an N,N-di(C_1 - C_6 alkyl)amino(C_1 - C_6 alkyl)amino(C_1 - C_6 alkyl) formyl radical[;], and a group Z;

 $R_6 \ is \ chosen \ from \ a \ C_1-C_6 \ alkyl \ radical; \ a \ C_1-C_6 \ monohydroxyalkyl \ radical; \ a \ C_2-C_6 \ polyhydroxyalkyl \ radical; \ a \ group \ Z; \ a \ C_1-C_6 \ (C_1-C_6 \ alkoxy)alkyl \ radical; \ an \ aryl \ radical; \ a \ benzyl \ radical; \ a \ C_1-C_6 \ carboxyalkyl \ radical; \ a \ C_1-C_6 \ alkyl) \ carboxyalkyl \ radical; \ a \ C_1-C_6 \ cyanoalkyl \ radical; \ a \ C_1-C_6 \ carbamylalkyl \ radical; \ a \ C_1-C_6 \ N-(C_1-C_6 \ alkyl) \ carbamylalkyl \ radical; \ a \ C_1-C_6 \ n-(C_1-C_6 \ alkyl) \ carbamylalkyl \ radical; \ a \ C_1-C_6 \ n-(C_1-C_6 \ alkyl) \ radical; \ a \ C_1-C_6 \ n-(C_1-C_6 \ alkyl) \ radical; \ a \ C_1-C_6 \ n-(C_1-C_6 \ alkyl) \ radical; \ a \ C_1-C_6 \ n-(C_1-C_6 \ alkyl) \ radical; \ a \ C_1-C_6 \ (C_1-C_6 \ alkyl) \ radical; \ a \ C_1-C_6 \ alkyl), \ radical; \ radicals \ chosen \ from \ C_1-C_6 \ alkyl, \ monohydroxy(C_1-C_6 \ alkyl), \ polyhydroxy(C_2-C_6 \ alkyl), \ (C_1-C_6 \ alkyl) \ carbonyl, \ formyl, \ trifluoro(C_1-C_6 \ alkyl) \ carbonyl, \ and \ (C_1-C_6 \ alkyl) \ sulphonyl \ radicals, \ and \ a \ group \ Z;$

A is chosen from -NR₄R₅ and a hydroxyl radical;

 R_4 and R_5 , are independently chosen from a hydrogen atom; a group Z; a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 (C_1 - C_6 alkoxy)alkyl radical; an aryl radical; a benzyl radical; a C_1 - C_6 cyanoalkyl radical; a C_1 - C_6 carbamylalkyl radical; a C_1 - C_6 alkyl)carbamylalkyl radical; a C_1 - C_6 hiocarbamylalkyl radical; a C_1 - C_6 trifluoroalkyl radical; a C_1 - C_6 sulphoalkyl radical; a C_1 - C_6 alkyl)carboxyalkyl

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

radical; a C_1 - C_6 (C_1 - C_6 alkyl)sulphinylalkyl radical; a C_1 - C_6 aminosulphonylalkyl radical; a C_1 - C_6 N-Z-aminosulphonylalkyl radical; a C_1 - C_6 N-(C_1 - C_6 alkyl)-aminosulphonylalkyl radical; a C_1 - C_6 N,N-di(C_1 - C_6 alkyl)aminosulphonylalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)carbonylalkyl radical; a C_1 - C_6 aminoalkyl radical; and a C_1 - C_6 aminoalkyl radical whose amine is substituted by one or two radicals chosen from C_1 - C_6 alkyl, C_1 - C_6 monohydroxyalkyl, C_2 - C_6 polyhydroxyalkyl, (C_1 - C_6 alkyl)carbonyl, (C_1 -alkyl)sulphonyl, formyl, and trifluoro(C_1 - C_6 alkyl)carbonyl radicals, and a group Z;

wherein one and only one of the radicals R_4 and R_5 may also be chosen from a $(C_1-C_6 \text{ alkyl})$ carbonyl radical; a formyl radical; a trifluoro $(C_1-C_6 \text{ alkyl})$ carbonyl radical; an amino $(C_1-C_6 \text{ alkyl})$ carbonyl radical; an N-Z-amino $(C_1-C_6 \text{ alkyl})$ carbonyl radical; an N- $(C_1-C_6 \text{ alkyl})$ amino $(C_1-C_6 \text{ alkyl})$ carbonyl radical; and an N,N-di $(C_1-C_6 \text{ alkyl})$ amino $(C_1-C_6 \text{ alkyl})$ carbonyl radical;

Z is chosen from the unsaturated cationic groups of formulae (II) and (III) below and the saturated cationic groups of formula (IV) below:

$$\begin{array}{c|c}
\hline
 & (R_{11})_a & R_8 \\
\hline
 & N & R_9 \\
\hline
 & R_{10}
\end{array}$$
(IV)

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

in which:

D is a linker which is chosen from linear and branched alkyl chains and may be interrupted by at least one heteroatom atom and may be substituted by at least one of a hydroxyl and a C₁-C₆ alkoxy radical, and may carry at least one ketone function;

the ring members E, G, J, L and M, which are identical or different, are chosen from carbon, oxygen, sulphur and nitrogen atoms;

n is an integer ranging from 0 to 4;

m is an integer ranging from 0 to 5;

the radicals R, which are identical or different, may be chosen from a group Z; a halogen atom; a hydroxyl radical; a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a nitro radical; a cyano radical; a C_1 - C_6 cyanoalkyl radical; a C_1 - C_6 alkoxy radical; a C_1 - C_6 tri(C_1 - C_6 alkyl)silanealkyl radical; an amido radical; an aldehydo radical; a carboxyl radical; a C_1 - C_6 alkylcarbonyl radical; a thio radical; a C_1 - C_6 thioalkyl radical; a (C_1 - C_6 alkyl)thio radical; an amino radical protected by a group chosen from (C_1 - C_6 alkyl)carbonyl, carbamyl, and (C_1 - C_6 alkyl)sulphonyl; and groups NHR" and NR"R"' in which R" and R"', which are identical or different, are chosen from a C_1 - C_6 alkyl radical, a C_1 - C_6 monohydroxyalkyl radical and a C_2 - C_6 polyhydroxyalkyl radical;

 R_7 is chosen from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 cyanoalkyl radical; a C_1 - C_6 tri(C_1 - C_6 alkyl)silanealkyl radical; a C_1 - C_6 (C_1 - C_6 alkoxy)alkyl radical; a carbamyl(C_1 - C_6 alkyl) radical; a C_1 - C_6 (C_1 - C_6 alkyl)carboxyalkyl radical; a benzyl radical; and a group Z;

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

 R_8 , R_9 and R_{10} , which are identical or different, are chosen from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a C_1 - C_6 (C_1 - C_6 alkoxy)alkyl radical; a C_1 - C_6 cyanoalkyl radical; an aryl radical; a benzyl radical; a C_1 - C_6 amidoalkyl radical; a C_1 - C_6 alkyl)silanealkyl radical; and a C_1 - C_6 aminoalkyl radical whose amine is protected by at least one of a (C_1 - C_6 alkyl)carbonyl, amido, carboxyl and (C_1 - C_6 alkyl)sulphonyl radical;

two of the radicals R_8 , R_9 and R_{10} may form, together with the nitrogen to which they are attached, a ring chosen from saturated 5- and 6-membered carbon-containing rings which may contain at least one heteroatom, wherein said rings may contain a substituent chosen from a halogen atom; a hydroxyl radical; a C_1 - C_6 alkyl radical, a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; a nitro radical; a cyano radical; a C_1 - C_6 cyanoalkyl radical; a C_1 - C_6 alkoxy radical; a C_1 - C_6 tri(C_1 - C_6 alkyl)silanealkyl radical; an amido radical; an aldehydo radical; a carboxyl radical; a C_1 - C_6 ketoalkyl radical; a thio radical; a C_1 - C_6 thioalkyl radical; a (C_1 - C_6 alkyl)thio radical; an amino radical; and an amino radical protected by a group chosen from (C_1 - C_6 alkyl)carbonyl; carbamyl and (C_1 - C_6 alkyl)sulphonyl radical;

one of the radicals R_8 , R_9 and R_{10} may be chosen from a second group Z, identical to or different from the first group Z;

 R_{11} may be chosen from a C_1 - C_6 alkyl radical; a C_1 - C_6 monohydroxyalkyl radical; a C_2 - C_6 polyhydroxyalkyl radical; an aryl radical; a benzyl radical; a C_1 - C_6 aminoalkyl radical; a C_1 - C_6 aminoalkyl radical whose amine is protected by at least one of a (C_1 - C_6 alkyl)carbonyl, a carbamyl, and a (C_1 - C_6 alkyl)sulphonyl radical; a C_1 - C_6 carboxyalkyl radical; a C_1 - C_6 cyanoalkyl radical; a C_1 - C_6 carbamylalkyl radical; a C_1 - C_6 trifluoroalkyl

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

radical; a C_1 - C_6 tri(C_1 - C_6 alkyl)silanealkyl radical; a C_1 - C_6 sulphonamidoalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)carboxyalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)sulphinylalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)sulphonylalkyl radical; a C_1 - C_6 (C_1 - C_6 alkyl)ketoalkyl radical; a C_1 - C_6 N-(C_1 - C_6 alkyl)carbamylalkyl radical; and a C_1 - C_6 N-(C_1 - C_6 alkyl)sulphonamidoalkyl radical; a and y are integers equal to 0 or 1; with the following conditions:

- in the unsaturated cationic groups of formula (II):
 - when a = 0, the linker D is attached to the nitrogen atom,
 - when a = 1, the linker D is attached to one of the ring members E,
 G, J or L,
 - y can adopt the value 1 only
 - 1) when the ring members E, G, J and L are simultaneously a carbon atom and when the radical R_7 is carried by the nitrogen atom of the unsaturated ring; or
 - 2) when at least one of the ring members E, G, J and L is [C] chosen from a nitrogen atom to which the radical R_7 is attached;
- in the unsaturated cationic groups of formula (III):
 - when a = 0, the linker D is attached to the nitrogen atom,
 - when a = 1, the linker D is attached to one of the ring members E,
 G, J, L or M,
 - y can adopt the value 1 only
 - 1) when at least one of the ring members E, G, J, L and M is chosen from a divalent atom and

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

- 2) when the radical R_7 is carried by the nitrogen atom of the unsaturated ring;
- in the saturated cationic groups of formula (IV):
 - when a = 0, then the linker D is attached to the nitrogen atom which carries the radicals R_8 to R_{10} ,
 - when a = 1, then two of the radicals R₈ to R₁₀, together with the nitrogen atom to which they are attached, form a ring chosen from 5- and 6-membered saturated rings, and the linker D is carried by a carbon atom of the said ring;

X is chosen from monovalent and divalent anions; with the proviso that [the number of cationic groups Z in said compound of formula (I) is at least one] at least one of R_1 , R_2 and R_3 is a group Z.

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP