Chapter 7

Sang Tran

September 12, 2024

Chapter 7 problems 15, 18, 19, 20 (For 19, see page 151, just before Theorem 7.15, for the definition of "uniformly closed"), 21

7.15

Since f_n is equicontinuous on [0,1] then fix $\epsilon > 0$, $\exists \delta > 0$, such that $|x-y| < \delta$ implies $|f_n(x) - f_n(y)| < \epsilon$, $x, y \in [0,1]$ and $n \in \mathbb{N}$. Or, equivalently, $|f(nx) - f(ny)| < \epsilon$, $x, y \in [0,1]$, $|x-y| < \delta$, and $n \in \mathbb{N}$.

If n = 1, we have $|f(x) - f(y)| < \epsilon$, $x, y \in [0, 1]$, and $|x - y| < \delta$. This means, f is uniformly continuous on [0, 1].

If n=2, we have $|f(2x)-f(2y)|<\epsilon$, $x,y\in[0,1]$, and $|x-y|<\delta$. Or, equivalenty, by change of variables, we have $|f(s)-f(t)|<\epsilon$, $s,t\in[0,2]$, and $|s-t|<2\delta=\delta'$. This means, f is uniformly continuous on [0,2].

Hence, in general, f is uniformly continuous on every interval [0, n], and for each of these intervals corresponding to (n, f_n) , we have $\delta' = n\delta$.

7.18

For each n, we have $f_n \in \Re$ on [a, b] and thus by theorem 6.20, we have F_n is continuous on [a, b].

Next, we want to show $\{F_n\}$ is equicontinuous. Since $\{f_n\}$ is uniformly bounded, we have $|f_n(x)| \leq M$, for all n and $x \in [a,b]$. Then fix $\epsilon > 0$, and let $0 < \delta < \frac{\epsilon}{M}$, we have

$$|F_n(x) - F_n(y)| = \left| \int_a^x f_n(t) dt - \int_a^y f_n(t) dt \right|$$
$$= \left| \int_y^x f_n(t) dt \right|$$
$$\le M|x - y| < M\delta < \epsilon,$$

for all n and $x, y \in [a, b], |x - y| < \delta$. Hence, F_n is equicontinuous. Furthermore, we have

$$|F_n(x)| = \left| \int_a^x f_n(t) dt \right| \le M \left| \int_a^x dt \right| = M|x - a| \le M(b - a),$$

for every n and every $x \in [a, b]$. Thus, $\{F_n\}$ is uniformly bounded, which also implies that $\{F_n\}$ is pointwise bounded.

Since [a,b] is compact and $F_n \in \mathcal{C}([a,b])$ for every n, by Theorem 7.25, $\{F_n\}$ contains a uniformly convergent subsequence on [a,b].

7.19 (See page 151, just before Theorem 7.15, for the definition of "uniformly closed")

 (\Longrightarrow)

Suppose S is compact, then by Theorem 2.34, S is (uniformly) closed. Since f is bounded $\forall f \in \mathscr{C}(K)$, and $S \subset \mathscr{C}(K)$, S is pointwise bounded. Fix $\epsilon > 0$, for each $f \in S$, let $A(f, \epsilon)$ be the set of all functions $g \in S$ such that $d_{\mathscr{C}(K)}(f, g) = ||f - g|| < \epsilon$. Since S is compact, there are finitely many $f_i \in S$, $1 \le i \le n$, such that

$$S \subseteq A(f_1, \epsilon) \cup A(f_2, \epsilon) \cup \cdots \cup A(f_n, \epsilon).$$

Since each f_i , $1 \le i \le n$, is continuous, and K is compact, each f_i is uniformly continuous on K. Hence, there is a $\delta > 0$, such that $d_K(x,y) < \delta$, $x,y \in K \implies |f_i(x) - f_i(y)| < \epsilon$, for each $1 \le i \le n$.

Now, for every $f \in S$, there is an f_s , $1 \le s \le n$, such that $f \in A(f_s, \epsilon)$, or, in other words, $||f - f_s|| < \epsilon$. We then have

$$|f(x) - f(y)| \le |f(x) - f_s(x)| + |f_s(x) - f_s(y)| + |f_s(y) - f(y)|$$

$$\le ||f - f_s|| + |f_s(x) - f_s(y)| + ||f_s - f|| < 3\epsilon,$$

where $x, y \in K$ and $d(x, y) < \delta$. Since ϵ is arbitrary, this gives that S is equicontinuous by definition.

 (\Leftarrow)

Suppose S is uniformly closed, pointwise bounded, and equicontinuous. Let E be any infinite subset of S, and thus E is pointwise bounded and equicontinuous. By Theorem 7.25 part (b) of the conclusion, E contains a uniformly convergent subsequence on K. Suppose $\{f_n\} \to f$ uniformly on K, then $f \in E'$ and O.T.O.H. by Theorem 7.15, we know that $\mathscr{C}(K)$ is complete, so $f \in \mathscr{C}(K)$. By Theorem 2.27, we have $f \in E' \subset \overline{E} \subset \overline{S} = S$, since S is uniformly closed. Therefore, $f \in S$.

We showed every infinite subset of S has a limit point in S, and thus by Theorem 2.41, we have that S is compact.

7.20

Since f is continuous on [0,1], by Theorem 7.26 (Weierstrass's Theorem), $\exists \{P_n\} \to f$ uniformly on [0,1].

And also since $P_n \in \Re$ for all n, by Theorem 7.16, we have

$$\int_{0}^{1} f^{2}(x) dx = \int_{0}^{1} f(x) \left(\lim_{n \to \infty} P_{n}(x) \right) dx = \lim_{n \to \infty} \int_{0}^{1} f(x) P_{n}(x) dx.$$

Since $\int_0^1 f(x)x^n dx = 0$ for all n, and by Theorem 6.12 part (a), we thus have that

$$\int_0^1 f(x)P_n(x) dx = 0, \text{ for all } n.$$

Therefore,

$$\int_0^1 f^2(x) \, dx = 0,$$

which implies f(x) = 0 on [0, 1].

7.21

Since |z|=1, we can write $z=e^{i\theta}$ for some θ . Then functions in A then can be rewritten as

$$f(z) = \sum_{n=0}^{N} c_n z^n.$$

Clearly, A separates points on K and A vanishes at no point of K. For every $f \in A$, we have

$$\int_0^{2\pi} f(e^{i\theta})e^{i\theta} d\theta = \int_0^{2\pi} \left(\sum_{n=0}^N c_n e^{i(n+1)\theta}\right) d\theta = \sum_{n=0}^N c_n \int_0^{2\pi} e^{i(n+1)\theta} d\theta = 0.$$

And for every g in the closure of A, we have $g=\lim_{n\to\infty}f_n$, and $f_n\to g$ uniformly, $f_n\in A$. We have

$$\int_{0}^{2\pi} ge^{i\theta} d\theta = \lim_{n \to \infty} \int_{0}^{2\pi} f_n e^{i\theta} d\theta = 0.$$

If we choose $\phi(e^{i\theta})=e^{-i\theta}$, then ϕ is continuous on K but

$$\int_0^{2\pi} \phi(e^{i\theta}) e^{i\theta} d\theta = \int_0^{2\pi} e^{-i\theta} e^{i\theta} d\theta = \int_0^{2\pi} 1 d\theta = 2\pi \neq 0.$$

Thus, ϕ is not in the closure of A.