









# Multi-Branch Deep Learning model for detection of settlements without electricity

Thomas Di Martino, Maxime Lenormand, Élise Colin Koeniquer





**2021 IEEE GRSS Data Fusion Contest Detection of Settlements without Electricity** 







### **Data – Satellite Imagery**



S1 (VV, VH, VV-VH)



S2 (B08-B04)/(B08+B04) "RdYlGn" Color Scale



S2 (B04, B03, B02)



VIIRS (DNB)



Prediction Map
(Red: Human settlements without electricity,
Blue: No human settlements without
electricity)

60 images of 800x800 pixels combining multimodality & multi-temporality:

- Sentinel 1: 4 acquisitions with 2 bands each, resolution ~10m (GRD product)
- Sentinel 2: 4 acquisitions with 12 bands each, resolution of 10m, 20m & 60m
- Landsat 8: 3 acquisitions with 11 bands each, resolution of 15m, 30m, & 100m
- VIIRS: VNP46A1 product, for 9 acquisitions, with the Day-Night Band only, resolution of 750m resampled to 500m











### Our perception of the dataset





- Each label image consists of a 16x16
   matrix of classes upsampled to match
   the original dataset resolution of
   800x800 pixels.
- We split the initial 800x800 images into 256 50x50 patches, each having a single class value.
- We transform a segmentation task into a classification one.
- We split the new dataset of 15 360 images into 3 folds for cross-validation.











#### **Data – Ground Truth Labels**

|                     | With <b>electricity</b> | Without electricity |      |
|---------------------|-------------------------|---------------------|------|
| With settlements    | 676                     | 6318 (ROI)          | 6994 |
| Without settlements | 211                     | 8155                | 8366 |
|                     | 887                     | 14473               |      |

#### Classes distribution



- No settlements with electricity (4)
- Settlements with electricity (3)
- No settlements without electricity(2)
- Settlements without electricity (1)











#### **Model Architecture**













## Model Architecture: Day-Night Band processing branch













#### **Model Architecture: Multimodal Branch**



 89 channels is a lot and can be detrimental to convergence

 Adding channel dropout with a rate of 25% helps for that matter











#### Model Architecture: MultiUnimodal branch













## Model Architecture: Temporal-Merged branch



- Separate temporal processing but merged texture feature extraction
- Mix between the Multimodal and the Multi-Unimodal branches











#### **Training setup: Loss calculation**













### **Training setup: Soft-F1 Loss**

We define the equations for our Soft-F1 Loss as the following:

$$Soft-precision(y, \hat{y}) = \frac{\sum \hat{y}_1 * y_1}{\sum \hat{y}_1 + \epsilon}$$

$$Soft-recall(y, \hat{y}) = \frac{\sum \hat{y}_1 * y_1}{\sum y_1 + \epsilon}$$

$$Soft-recall(y, \hat{y}) = \frac{\sum \hat{y}_1 * y_1}{\sum y_1 + \epsilon}$$

The two added hyperparameters are the following:

- $\epsilon$  is a term used to prevent any divisor by zero, resulting in a Loss value equal to Nan. It is set to 1e-5.
- λ is a term used to smoothen the Soft-F1 loss value. It is set to 0.1.

Inspired by: <a href="https://www.kaggle.com/c/planet-understanding-the-amazon-from-space/discussion/34484#191547">https://www.kaggle.com/c/planet-understanding-the-amazon-from-space/discussion/34484#191547</a>











## **Data Augmentation**









Noisy Labels (random offset in cropping)













## **Test-Time Augmentation & Ensembling**

# **INFERENCE Test-Time Augmentation** No augmentation **Horizontal Flip Vertical Flip Horizontal + Vertical Flip 3-Folds Prediction Ensembling**



$$pred(X) = \begin{cases} 1, \sum_{aug=1}^{4} \sum_{m=1}^{3} model_{m} (f_{aug}(X))_{1} > thresh \\ 0, else \end{cases}$$











#### **Final results**

| Fold 1 Val | Fold 2 Val | Fold 3 Val | Dev Phase    | Test Phase   |
|------------|------------|------------|--------------|--------------|
| 0.8547     | 0.8533     | 0.8722     | 0.8877 (1st) | 0.8798 (3rd) |

Winning model submission F1 score











### Assessing VIIRS ability to detect electrification

- Using a binary version of the dataset with the classes: electrified, not electrified
- Isolation of the DNB-specific branch to train as a separate classifier of electrification

| With <b>electricity</b> | Without electricity |  |  |
|-------------------------|---------------------|--|--|
| 887                     | 14473               |  |  |

| Subset | Fold 1 |       | Fold 2 |       | Fold 3 |      |
|--------|--------|-------|--------|-------|--------|------|
| Subset | Train  | Val   | Train  | Val   | Train  | Val  |
| VIIRS  | 0.712  | 0.718 | 0.765  | 0.462 | 0.674  | 0.75 |

#### Spatial Average

Conv1D 16 Filters, Kernel size 3

BathNorm1D

ELU

Conv1D 32 Filters, Kernel size 5

BathNorm1D

**ELU** 

FC Layers

VIIRS TempCNN model











### Assessing each sensor ability to detect the class of interest

Using combinations of VIIRS and each sensor to assess and study their ability to detect settlements
without electricity

| Sensor<br>Subset      | Fold 1 |       | Fold 2 |       | Fold 3 |       |
|-----------------------|--------|-------|--------|-------|--------|-------|
|                       | Train  | Val   | Train  | Val   | Train  | Val   |
| S1, VIIRS             | 0.681  | 0.653 | 0.657  | 0.665 | 0.677  | 0.672 |
| LC8, VIIRS            | 0.766  | 0.758 | 0.750  | 0.745 | 0.768  | 0.776 |
| S2, VIIRS             | 0.834  | 0.817 | 0.822  | 0.824 | 0.850  | 0.859 |
| S1, S2, LC8,<br>VIIRS | 0.893  | 0.854 | 0.900  | 0.853 | 0.878  | 0.872 |











#### **General Conclusion**

- Development of a multi-branch architecture, acknowledging the multimodal and multitemporal structure of the data
- Design of a custom training & testing environment (custom loss, data augmentation, TTA & ensembling)
- Experimentations displaying the contribution of each sensor to the final prediction (S2 > LC8 > S1)
- Potential axis of improvements: reflect regarding the type of data to be aggregated & how to combine them in a physically meaningful way (e.g., SAR Time Series & Interferometric products could be of interest)











### **Acknowledgements**

- Thank you to the IEEE GRSS IADF Technical Committee, Hewlett Packard Enterprise, SolarAid & Data Science Experts for organizing this Data Fusion Contest.
- Congrats to all participants for their results and thank you for the exciting *Development phase* and the thrilling and positively stressful *Test Phase*. ©
- Many thanks to our colleagues at ONERA for their support during the challenge, especially Adrien Chan Hon Tong, Aurélien Plyer and Guy Le Besnerais.
- And many thanks to you for attending this presentation!











### **Bibliography**

[1] Naoto Yokoya, Pedram Ghamisi, Ronny Hansch, Colin Prieur, Hana Malha, Jocelyn Chanussot, Caleb Robinson, Kolya Malkin, and Nebojsa Jojic, "2021 data fusion contest: Geospatial artificial intelligence for social good [technical committees]," *IEEE Geoscience and Remote Sensing Magazine*, vol. 9, no. 1, pp. 287–C3, 2021.

[2] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo, "CutMix: Regularization strategy to train strong classifiers with localizable features," 2019.









