Sampling Techniques

COMPCSI 753: Algorithms for Massive Data

Instructor: Ninh Pham

University of Auckland

Parts of this material are modifications of the lecture slides from

http://mmds.org

Designed for the textbook Mining of Massive Datasets

by Jure Leskovec, Anand Rajaraman, and Jeff Ullman.

Outline

- Sampling from a data stream
 - Sampling a fixed proportion
 - Sampling a fixed-size (reservoir sampling)

Uniformly sampling from a stream

• Motivation:

• Since we cannot store the entire stream, we store a uniform sample of the stream to answer queries.

• Goal:

- Out of the large number of elements a_1, \ldots, a_m , we choose a small number of elements to keep in memory.
- Sample from the stream $\mathbf{a_1}, \dots, \mathbf{a_m}$ a single element \mathbf{x} uniformly at random, i.e. the probability of being the sample for each element is the same:

$$Pr [a_i \text{ is the sample } x] = 1/m$$

ullet We draw a uniform sample over the stream, not over the universe ${f U}.$

Two different problems

- Problem 1 (easy):
 - Sample a fixed proportion of elements in the stream (1/10).
 - The sample size is **m/10** given the stream of **m** elements.
- Problem 2 (hard):
 - Maintain a random sample of fixed size over an infinite stream.
 - The sample size is fixed, i.e. s for at any time k.
- Both problems: $Pr[a_i \text{ is sampled }] = 1/m$

Sampling a fixed proportion

- Scenario:
 - Search engine receives a stream of tuples (user, query, time).
 - Query: How many users run the same query in a single day?
 - Memory: We have enough space to store 1/10 of the stream.
- Naïve solution to keep 1/10 stream by:
 - Generate a random integer in $[0, \ldots, 9]$ for each query.
 - Store the query if the integer is **0**; otherwise, discard.
- Can we approximately answer the query?
 - Yes

Problem with naïve approach

- Scenario:
 - Search engine receives a stream of tuples (user, query, time).
 - Each user sends \mathbf{x} queries once and \mathbf{d} queries twice (total of $\mathbf{x} + 2\mathbf{d}$).
 - Query: What fraction of queries by an average user are duplicates?
 - Memory: We have enough space to store 1/10 of the stream.
- Solution: d/(x + d)
- Can we approximately answer the query using previous approach?
 - No

Problem with naïve approach

- Naïve solution to keep 1/10 stream for each query:
 - Sample contains $\mathbf{x}/10$ singleton queries and $2\mathbf{d}/10$ duplicate queries at least once.
 - Sample contains only **d/100** pairs of duplicates.
 - o A query is sampled once with prob. 1/10.
 - o A query is sampled twice with prob. 1/10*1/10 = 1/100.
 - Of d duplicates, 18d/100 appear exactly once in the sample.
 - o A query is sampled at the first time with prob. 1/10.
 - o A query is not sampled at the second time with prob. 9/10.

• Solution:
$$\frac{\frac{d}{100}}{\frac{x}{10} + \frac{d}{100} + \frac{18d}{100}} = \frac{d}{10x + 19d}$$

Fix

- Scenario:
 - Search engine receives a stream of tuples (user, query, time).
 - Each user sends \mathbf{x} queries once and \mathbf{d} queries twice (total of $\mathbf{x} + 2\mathbf{d}$).
 - Query: What fraction of queries by an average user are duplicates?
- Solution:
 - Pick 1/10 of users (not queries) and take all their searches in the sample.
 - Use a hash function to hash the user ID uniformly into 10 buckets and pick user IDs on the first bucket.

Generalized solution

- Stream of tuples with keys:
 - Key is some subset of each tuple's components.
 - E.g. tuple(user, query, time) with user as a key.
 - Choice of key depends on application.
- To get a sample of **a/b** fraction of the stream:
 - Hash each tuple's key uniformly into b buckets.
 - Pick the tuples that hashed into the first **a** buckets.

Sampling vs. hashing

• Sampling:

• Hashing:

Outline

- Sampling from a data stream
 - Sampling a fixed proportion
 - Sampling a fixed-size (reservoir sampling)

Sample a fixed size

- Challenge:
 - ullet The sample set $oldsymbol{S}$ has fixed size $oldsymbol{s}$ regardless the length of the stream.
 - Uniformly sampling element from the stream
- Reservoir Sampling (s = 1) [Vitter'85]:
 - \bullet s = a_1
 - a_2 is picked as s with prob. 1/2
 - a_3 is picked as s with prob. 1/3
 - •
 - $\mathbf{a_n}$ is picked as \mathbf{s} with prob. $1/\mathbf{n}$
 - ...

Decision tree of reservoir sampling

Reservoir sampling a stream a₁, a₂, a₃, a₄

Proof

- For a stream $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_L}, \mathbf{a_{L+1}}, \dots, \mathbf{a_m}$, we need to prove • Pr [$\mathbf{a_L}$ is sampled] = 1/m
- Proof:
 - What is the probability that some a_L is the final s for $1 \le L \le m$?
 - This happen if a_L is chosen as s and the rest a_{L+1}, \ldots, a_m are not.

$$Pr[a_{\ell} \text{ is the final } s] = Pr[a_{\ell} \text{ is chosen as } s] \cdot \prod_{i=\ell+1}^{m} Pr[a_{i} \text{ does not replace } a_{\ell} \text{ as } s]$$

$$= \frac{1}{\ell} \cdot \prod_{i=\ell+1}^{m} \left(1 - \frac{1}{i}\right)$$

$$= \frac{1}{\ell} \cdot \prod_{i=\ell+1}^{m} \frac{i-1}{i}$$

$$= \frac{1}{m}$$

Generalized solution

- Reservoir Sampling (s > 1) [Vitter'85]:
 - Store all the first **s** elements of the stream to **S**.
 - Suppose we have seen m-1 elements, and now the m^{th} element arrives (m > s).
 - o With prob. s/m, keep mth element, else discard it.
 - o If we keep \mathbf{m}^{th} element, then it replaces one of the \mathbf{s} elements in \mathbf{S} , picked uniformly at random.
- Theorem:
 - After \mathbf{m} elements, the sample \mathbf{S} contains each element seen so far with the same probability $\mathbf{s/m}$.

Proof by induction

- Proof:
 - Assume that after **m** elements: $Pr[a_L \text{ is sampled }] = s/m, 1 \le L \le m.$
 - When the (m+1)th element arrives, we need to show

Pr [
$$a_L$$
 is sampled] = $s/(m+1)$, $1 \le L \le m+1$.

- Base case:
 - When we see the first **s** elements, $\Pr[a_L \text{ is sampled }] = 1, 1 \le L \le s$.
- $(m+1)^{th}$ element a_{m+1} arrives:
 - Pr [a_L is sampled] = s/m, $1 \le L \le m$ (hypothesis)
 - For $\mathbf{a_L}$ already in \mathbf{S} , the probability that $\mathbf{a_L}$ is still in \mathbf{S} is:

 - Pr [a_L is sampled] = $(s/m)*(m/m+1) = s/m+1, 1 \le L \le m$.
 - The new element a_{m+1} is sampled with prob. s/(m+1)

Homework

- Implement the uniformly sampling algorithms on the dataset from Assignment 1:
 - Consider each line of data as a streaming transaction in e-commerce
 - o doc ID is a user ID
 - o word ID is an item ID
 - Queries:
 - o What is the most frequent items has been bought?
 - o What is an average number of items bought by a user?