Bases de Datos

Formas normales: 3NF

3NF Motivación

R(A, B, C)

- DF1: A → B
- DF2: B, $C \rightarrow A$

Esta relación no está en BCNF. Intentemos descomponerla:

R1(A, B)

- Tenemos la DF1: A → C
 R2(A, C)
 - Sin dependencias!

Perdemos la dependencia funcional 2!!!

3NF Motivación

R(A, B, C)

- DF1: A → B
- DF2: B, $C \rightarrow A$

R1(A, B)

- Tenemos la DF1: A → B
 R2(A, C)
 - Sin dependencias!
- La transformación a BCNF no asegura que se preserven las dependencias funcionales...

Una relación \mathbf{R} está en $\mathbf{3NF}$ si para toda dependencia funcional no trivial $X \to Y$ se cumple que:

- X es una superllave o,
- Y es parte de una llave minimal para R

Z es llave minimal si no existe llave Z' tal que Z' ⊆ Z

Observaciones:

- 1. 3NF es menos restrictivo que BCNF ya que permite un poco más de redundancia
- 2. Si una relación está en BCNF, entonces también está en 3NF

3NF Ejemplo

R(A, B, C)

- DF1: A → B
- DF2: B, $C \rightarrow A$

Esta relación está en 3NF: (B, C) es llave minimal, por lo que B es parte de una llave.

Una relación **R** está en **3NF** si para toda dependencia funcional no trivial $X \rightarrow Y$ se cumple que:

- X es una superllave o,
- Y es parte de una llave minimal para R

Algoritmo para dejar una relación en 3NF

INPUT:

- el esquema de la tabla R(A)
- dependencias funcionales en un formato estandarizado
- una llave candidata para R

Algoritmo para pasar a 3NF

- Juntar todas las dependencias funcionales de la forma X→Y y X→Z en una sola X→Y,Z
- 2. Para cada dependencia funcional X→Y crear una tabla con esquema X U Y
- 3. Si al final ninguno de los esquemas resultantes contiene una llave de R, crear una relación con los atributos de una llave minimal para R
- La transformación a 3NF si asegura que se preserven las dependencias funcionales...

Ejemplo funcionamiento algoritmo

<u>Nombre</u>	<u>Región</u>	Tasa x	RUT	Nombre	Apellido	Rol Lote	M2	Avaluo
<u>Comuna</u>		m2						
Α		2	111111	Claudio	Gonzalez	34	455	960
А		2	111111	Claudio	Gonzalez	35	570	1040
Α		2	222222	Maria	Zapata	27	895	1790
В	III	1,1	111111	Claudio	Gonzalez	10	150	165
В	III	1,1	333333	Carlos	Fernandez	11	200	220
В	X	1,1	444444	Elena	Abarca	13	150	165
С	V	0,5	555555	Luisa	Muñoz	2	500	250
D	V	3,5	111111	Claudio	Gonzalez	11	100	350
	• • •			• • •			•••	•••

DF1: NombreComuna, Region -> Tasa

DF2: RUT -> Nombre, Apellido

DF3: NombreComuna, Region, Rol -> RUT, M2

Ejemplo funcionamiento algoritmo

1. Para cada DF X→Y crear una tabla con esquema X U Y

Nombre Comuna	<u>Región</u>	Tasa x m2
А		2
Α		2
В	III	1,1
В	X	1,1
С	V	0,5

NombreComuna, Region → Tasa

DF1: NombreComuna, Region -> Tasa

DF2: RUT -> Nombre, Apellido

DF3: NombreComuna, Region, Rol -> RUT, M2

Ejemplo

1. Para cada DF X→Y crear una tabla con esquema X U Y

Nombre Comuna	<u>Región</u>	Tasa x m2
Α		2
Α	I	2
В	III	1,1
В	X	1,1
С	V	0,5

<u>RUT</u>	Nombre	Apellido
111111	Claudio	Gonzalez
222222	Maria	Zapata
333333	Carlos	Fernandez
•••	• • •	

RUT → Nombre, Apellido

NombreComuna, Region → Tasa

DF1: NombreComuna, Region -> Tasa

DF2: RUT -> Nombre, Apellido

DF3: NombreComuna, Region, Rol -> RUT, M2

Ejemplo

1. Para cada DF X→Y crear una tabla con esquema X U Y

Nombre Comuna	<u>Región</u>	Tasa x m2
Α		2
А	I	2
В	III	1,1
В	X	1,1
С	V	0,5

<u>RUT</u>	Nombre	Apellido
111111	Claudio	Gonzalez
222222	Maria	Zapata
333333	Carlos	Fernandez
• • • •	•••	

RUT → Nombre, Apellido

Tasa x m2	<u>M2</u>	Avaluo
34	455	960
35	570	1040
27	895	1790
	•••	•••

Tasa, M2 → Avalúo

 $\textbf{NombreComuna, Region} \rightarrow \textbf{Tasa}$

DF1: NombreComuna, Region -> Tasa

DF2: RUT -> Nombre, Apellido

DF3: NombreComuna, Region, Rol -> RUT, M2

Ejemplo

1. Para cada DF X→Y crear una tabla con esquema X U Y

Nombre Comuna	<u>Región</u>	Tasa x m2
Α	I	2
В	Ш	1,1
В	X	1,1
С	V	0,5
	•••	

RUT	Nombre	Apellido
111111	Claudio	Gonzalez
222222	Maria	Zapata
333333	Carlos	Fernandez

RUT → Nombre, Apellido

Tasa x m2	<u>M2</u>	Avaluo
34	455	960
35	570	1040
27	895	1790
	•••	•••

Tasa, M2 → Avalúo

NombreComuna, Region \rightarrow Tasa

DF1: NombreComuna, Region -> Tasa

DF2: RUT -> Nombre, Apellido

DF3: NombreComuna, Region, Rol -> RUT, M2

DF4: Tasa, M2 -> Avaluo

<u>Nombre</u> <u>Comuna</u>	<u>Región</u>	RUT	Rol Lote	M2
Α	I	111111	34	455

NombreComuna, Region, Rol → RUT, M2

Ejemplo

3. Si al final ninguno de los esquemas resultantes contiene una llave de R, crear una relación con los atributos de una llave minimal para R

Nombre Comuna	<u>Región</u>	Tasa x m2
Α	l	2
Α		2
В	III	1,1
В	X	1,1
С	V	0,5

<u>RUT</u>	Nombre	Apellido
111111	Claudio	Gonzalez
222222	Maria	Zapata
333333	Carlos	Fernandez
	•••	

RUT → Nombre, Apellido

Tasa x m2	<u>M2</u>	Avaluo
34	455	960
35	570	1040
27	895	1790
	•••	

Tasa, M2 → Avalúo

NombreComuna, Region → Tasa

La llave de la relación era NombreComuna, Region, Rol

<u>Nombre</u> <u>Comuna</u>	<u>Región</u>	RUT	Rol Lote	M2
Α	I	111111	34	455

NombreComuna, Region, Rol → RUT, M2

Ejemplo

En este caso, existe una relación que contiene la llave de la relación original, así que no es necesario agregar una nueva!

Nombre Comuna	<u>Región</u>	Tasa x m2
Α		2
Α	I	2
В	III	1,1
В	X	1,1
С	V	0,5

<u>RUT</u>	Nombre	Apellido
111111	Claudio	Gonzalez
222222	Maria	Zapata
333333	Carlos	Fernandez
•••		

RUT	→ Nombre,	Apellido
-----	-----------	----------

Tasa x m2	<u>M2</u>	Avaluo
34	455	960
35	570	1040
27	895	1790
	•••	•••

Tasa, M2 → Avalúo

Rol

Lote

34

M2

455

NombreComuna, Region → Tasa

La llave de la relación era NombreComuna, Region, Rol

NombreComuna, Region, Rol → RUT, M2

RUT