1991 年全国高中数学联赛一试题

一. 选择题:
· 過升感: 1. 由一个正方体的三个顶点所能构成的正三角形的个数为()
A. 4 B. 8 C. 12 D. 24
2. 设 a 、 b 、 c 均为非零复数,且 $\frac{a}{b} = \frac{c}{c}$,则 $\frac{a+b-c}{a-b+c}$ 的值为()
A. 1 B. $\pm \omega$ C. 1, ω , ω^2 D. 1, $-\omega$, $-\omega^2$
3. 设 a 是正整数, a <100,并且 a^3 +23 能被 24 整除,那么,这样的 a 的个数为()
A. 4 B. 5 C. 9 D. 10
4. 设函数 $y=f(x)$ 对于一切实数 x 满足 $f(3+x)=f(3-x)$. 且方程 $f(x)=0$ 恰有 6 个不同
的实数根,则这 6 个实根的和为()
A. 18 B. 12 C. 9 D. 0 5. 设 $S=\{(x, y) x^2-y^2=$ 奇数, $x, y \in \mathbb{R}\}$, $T=\{(x, y) \sin(2\pi x^2) - \sin(2\pi y^2) - \cos(2\pi x^2)\}$
5. 反 $S = \{(x, y) \mid x = y = n $
A. $S \subsetneq T$ B. $T \subsetneq S$ C. $S = T$ D. $S \cap T = \emptyset$
6. 方程 $ x-y^2 =1- x $ 的图象为()
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
A. B. C. D.
二.填空题:
1. $\cos^2 10^\circ + \cos^2 50^\circ - \sin 40^\circ \sin 80^\circ = $
2. 在 $\triangle ABC$ 中,已知三个角 A 、 B 、 C 成等差数列,假设它们所对的边分别为 a , b , c ,
并且 $c-a$ 等于 AC 边上的高 h ,则 $\sin \frac{C-A}{2} =$
3. 将正奇数集合{1,3,5,…}由小到大按第 n 组有(2n-1)个奇数进行分组:{1}, {3,5,7}, {9,11,13,15,17},(第一组) (第二组) (第三组)
则 1991 位于第组.
4. 1991 ²⁰⁰⁰ 除以 10 ⁶ ,余数是
5. 设复数 z_1 , z_2 满足 $ z_1 = z_1+z_2 =3$, $ z_1-z_2 =3\sqrt{3}$, 则 $\log_3 (z_1\overline{z_2})^{2000}+(\overline{z_1})^{2000}$
$z_2)^{2000} =$
6. 设集合 $M=\{1, 2, \dots, 1000\}$, 现对 M 中的任一非空子集 X , 令 α_X 表示 X 中最大数
与最小数的和. 那么,所有这样的 α_x 的算术平均值为
三.设正三棱锥 P — ABC 的高为 PO , M 为 PO 的中点,过 AM 作与棱 BC 平行的平面,将

三棱锥截为上、下两部分,试求此两部分的体积比.

四. 设 0 为抛物线的顶点,F 为焦点,且 PQ 为过 F 的弦. 已知 |OF|=a,|PQ|=B.求 $\triangle OPQ$ 的面积.

五. 已知 0 < a < 1, $x^2 + y = 0$, 求证:

$$\log_a(a^x + a') \leq \log_a 2 + \frac{1}{8}.$$

1991 年全国高中数学联赛二试题

一.设 $S=\{1, 2, \dots, n\}$, A 为至少含有两项的公差为正的等差数列,其项都在 S 中,且添加 S 的其他元素于 A 后不能构成与 A 有相同公差的等差数列.求这种 A 的个数(这里只有两项的数列也看作等差数列).

二. 设凸四边形 ABCD 的面积为 1,求证: 在它的边上(包括顶点)或内部可以找出四个点,使得以其中任意三点为顶点所构成的四个三角形的面积大于 $\frac{1}{4}$.

三. 设 a_n 是下述自然数 N的个数: N的各位数字之和为 n 且每位数字只能取 $1 \cdot 3$ 或 $4 \cdot x$ 证: a_{2n} 是完全平方数. 这里, n=1, 2, ….

1991 年全国高中数学联赛解答

第一试

	冼 塚 聊	
-	几件浏	

1. 由一个正方体的三个顶点所能构成的正三角形的个数为(

A. 4

B. 8

C. 12

【答案】B

【解析】每个正方形的顶点对应着一个正三角形. 故选 B

2. 设 a, b, c均为非零复数,且 $\frac{a + b - c}{b + c}$,则 $\frac{a + b - c}{a - b + c}$ 的值为()

A. 1

B. $\pm \omega$

C. 1, ω , ω^2 D. 1, $-\omega$, $-\omega^2$

【答案】C

【解析】令 $\frac{a \ b \ c}{b \ c} = t$,则 $a = a \ \hat{t}$. 由 $a \neq 0$ 得 t = 1, ω , ω^2 . 且 $1 + \omega + \omega^2 = 0$. 故 $\frac{a^4 b - c}{a - b^4 c} \frac{1 + \hat{t} - t}{1 - \hat{t}^2 + t}$

=¹, 选 c.

3. 设 a是正整数, a<100, 并且 a^3 +23 能被 24 整除, 那么, 这样的 a 的个数为(

A. 4 B. 5 C. 9

D. 10

【答案】B

【解析】即 $24 \mid a^3 - 1$,而 a = 0, ± 1 , ± 2 , ± 3 , 4,则 $a^3 = 0$, ± 1 , 0, ± 3 , 0. 故 a

若 $a \equiv 0, 1, 2 \pmod{3}$, 则 $a^3 \equiv 0, 1, -1 \pmod{3}$, ∴ $a-1 \equiv 0 \pmod{3}$. 即 $a-1 \equiv 0 \pmod{3}$ 24). 选B.

4. 设函数 p=f(x)对于一切实数 x 满足

f(3+x)=f(3-x)

且方程 f(x)=0 恰有 6 个不同的实数根,则这 6 个实根的和为() A

A. 18

B. 12

C. 9

D. 0

【答案】▲

【解析】该函数图象关于 x=3 对称. 故 6 个根的和=3×2×3=18. 选 A.

5. 设 $S=\{(x,y) \mid x^2-y^2=$ 奇数, $x,y\in\mathbb{R}\}$, $T=\{(x,y) \mid \sin(2\pi x^2) - \sin(2\pi y^2) = \cos(2\pi x^2)\}$ $-\cos(2\pi y^2)$, x, y $\in \mathbb{R}$, 则(

A. *S*⊊*T*

D. *S*∩ *T=Ø*

【答案】A

【解析】若 $x^2 - y^2$ 为奇数,则 $\sin(2\pi x^2) - \sin(2\pi y^2) = \cos(2\pi x^2) - \cos(2\pi y^2)$ 成立, 即 *S*二*T*.

又若 x=y 时, $\sin(2\pi x^2) - \sin(2\pi y^2) - \cos(2\pi x^2) - \cos(2\pi y^2)$ 也成立,即得 $S\subseteq T$,选 A.

6. 方程 $|x-y^2|=1-|x|$ 的图象为()

【答案】D

【解析】 :
$$|x - y^2| = \begin{cases} x - y^2 & (x \ge y^2), \\ y^2 - x & (x \le y^2). \end{cases}$$
 故此方程等价于

$$\begin{cases} x - y^2 = 1 - x, & \exists y^2 = 2x - 1 & (x \ge y^2), \\ y^2 - x = 1 - x, & \exists y^2 = 1 & (0 \le x < y^2), \\ y^2 - x = 1 + x, & \exists y^2 = 2x + 1 (x < 0). \\ & \Rightarrow \text{ b.} \end{cases}$$

二. 填空题:

1.
$$\cos^2 10^\circ + \cos^2 50^\circ - \sin 40^\circ \sin 80^\circ =$$

【答案】 $\frac{3}{4}$

【解析】原式=
$$(\cos 10^{\circ} - \cos 50^{\circ})^{2} + \cos 10^{\circ} \cos 50^{\circ} = \sin^{2}20^{\circ} + + \cos 10^{\circ} \cos 50^{\circ} = \frac{1}{2}(1 - \cos 40^{\circ} + \cos 40^{\circ}) = \frac{3}{4}$$
.

2. 在 \triangle ABC中,已知三个角 A、B、C 成等差数列,假设它们所对的边分别为 a,b,c,并且 c-a 等于 AC边上的高 h,则 $\sin\frac{C-A}{2}=$ ______.

【答案】 $\frac{1}{2}$

$$\therefore \frac{1}{2} [\cos{(C-A)} - \cos{120^{\circ}}] = 2\sin{\frac{C-A}{2}}\cos{\frac{120^{\circ}}{2}}, \ \ \exists P \ \sin^{2}{\frac{C-A}{2}} + \sin{\frac{C-A}{2}} - \frac{3}{4} = 0$$

即
$$\sin \frac{C-A}{2} = -\frac{3}{2}$$
 (舍去), $\sin \frac{C-A}{2} = \frac{1}{2}$.

3. 将正奇数集合 $\{1, 3, 5, \cdots\}$ 由小到大按第n组有 $\{2n-1\}$ 个奇数进行分组: $\{1\}$, $\{3, 5, 7\}$, $\{9, 11, 13, 15, 17\}$, ……

则 1991 位于第 组.

【答案】32

【解析】由于 $1+3+\cdots+(2n-1)=n^2$,故第 n 组最后一数为 $2n^2-1$,于是解 $2(n-1)^2-1+2$

≤1991≤2 n^2 -1, 得 n=32. 即在第 32 组.

4. 1991 ™除以 105,余数是

【答案】880001

【解析】1991²⁰⁰⁰=(1990+1)²⁰⁰⁰=1990²⁰⁰⁰+···+C¹⁹⁹⁷×1990³+C¹⁹⁹⁸×1990⁴+C¹⁹⁹⁸×1990+1

= 1000 × 1999 × 1990 +2000 × 1990 +1 = 880001 (mod 10). 即余数为

880001.

5. 设复数 z_1 , z_2 满足 $|z_1| = |z_1 + z_2| = 3$, $|z_1 - z_2| = 3\sqrt{3}$, 则 $\log_3 |(z_1\overline{z_2})^{2000} + (\overline{z_1}z_2)^{2000} | = _____.$

【答案】4000

【解析】由 $|z_1+z_2|^2+|z_1-z_2|^2=2(|z_1|_x^2+|z_2|^2)$,得 $|z_2|=3$.由于 $|z_1|=|z_2|=|z_1+z_2|=3$,故 $argz_1-argz_2=\pm 120^\circ$.

- $: |(z_1 \overline{z_2})^{2000} + (\overline{z_1} z_2)^{2000}| = 2 \times 3^{4000} | \cos(120^\circ \times 2000)| = 3^{4000}.$ 故 $|\log_3| (z_1 \overline{z_2})^{2000} + (\overline{z_1} z_2)^{2000}| = 4000.$
- 6. 设集合 F={1, 2, ···, 1000}, 现对 F中的任一非空子集 E 令 σ_z表示 F中最大数与最小数的和. 那么,所有这样的 σ_z的算术平均值为______.

【答案】1001

【解析】对于任一整数 $n(0 \le 1000)$,以 n 为最大数的集合有 2^{-1} 个,以 n 为最小数的集合有 2^{-1} 个,以 1001-n 为最小数的集合则有 2^{-1} 个,以 1001-n 为最大数的集合则有 2^{-1} 个,以 1001-n 为最大数的集合则有 2^{-1} 个。故 n 与 1001-n 都出现 $2^{-1}+2^{-1}$ 000-n 次。

- ∴ 所有 σ_z 的和= $\frac{1}{2} \sum_{n=1}^{1000} 1001 \cdot (2^{z-1} + 2^{2000-z}) = 1001 \times (2^{1000} 1)$.
- ∴ 所求平均值=1001.

又解:对于任一组子集 $A=\{b_1, \dots, b_k\}$, $b_i < b_i < \dots < b_k (1 \le k < 1000)$,取子集 $A=\{1001-b_1, \dots, 1001-b_k\}$,若 $A \ne A$,则此二子集最大数与最小数之和 $=b_i + b_k + 1001-b_k + 1001-b_k = 2002$,平均数为 1001.若 A=A,则 A 本身的=1001.

由于每一子集均可配对。故所求算术平均数为 1001.

三. 设正三棱锥 P—ABC 的高为 PO,M为 PO 的中点,过 AM作与棱 BC平行的平面,将三棱锥截为上、下两部分,试求此两部分的体积比.

【解析】

M是 PO 中点,延长 AO与 BC交于点 D,则 D为 BC 中点,连 PD,由于 AM 在平面 PAD 内,故延长 AM与 PD 相交,设交点为 F. 题中截面与面 PBC交于过 F 的直线 GH, G、 H分别在 PB、 PC 上.由于 BC// 截面 AGH, G: GH// BC.

在面 PAD中, $\triangle POD$ 被直线 AF 截,故 $\frac{PM}{MO} \cdot \frac{OA}{AD} \cdot \frac{DF}{FP} = 1$,但 $\frac{PM}{MO} = 1$, $\frac{OA}{AD} \cdot \frac{2}{3}$, $\frac{OB}{FP} = 1$

 $\cdot \cdot \frac{PF_{-2}}{PD_{-5}}$, $\cdot \cdot \frac{S_{\Delta^{PGI}}}{S_{\Delta^{PGC}}} = \frac{4}{S_{1}}$. 而截面分此三棱锥所成两部分可看成是有顶点 A 的两个棱锥 A—PGH 及 A—HGBC. 故二者体积比=4:21.

四. 设 O 为抛物线的顶点,F 为焦点,且 PQ 为过 F 的弦. 已知 |OF|=a |PQ|=B. 求 $\triangle OPQ$ 的面积.

【解析】(用极坐标) 设抛物线方程为 $\rho = \frac{2s}{1-\cos\theta}$. 设 PQ与极径所成角为 σ ,则 $\frac{4s}{\sin^2\theta}$ =B.

所求面积
$$S=\frac{1}{2}|OF| \cdot |PQ|\sin \sigma = \frac{1}{2}ab \cdot 2\sqrt{\frac{a}{b}} = a\sqrt{ab}$$
.

五. 已知 0< 4<1, 1 + 1/2=0, 求证:

$$\log_*(\vec{s}+\vec{s}) \leq \log_* 2 + \frac{1}{8}.$$

【解析】由于 0<s<1, 即证 s+s≥2s. 由于 s+s≥2s 2. 而 x+y=x-x=x(1-x)≤1/4. 于

$$\underbrace{x^{+}y}_{a \ 2} \stackrel{1}{\geq} a_{8} \stackrel{.}{\cdot} \stackrel{.}{\cdot} a^{+}a^{\prime} \geq 2a \ 2 \geq 2a_{8} \stackrel{.}{\cdot}$$
故证.

第二试

一. 设 $S=\{1, 2, \dots, n\}$, A 为至少含有两项的公差为正的等差数列,其项都在 S 中,且添加 S 的其他元素于 A 后不能构成与 A 有相同公差的等差数列. 求这种 A 的个数(这里只有两项的数列也看作等差数列).

【解析】易知公差 1≤ 4≤1−1.

:. 这样的数列共有 $(1+2+\cdots+k)\times 2-k=k^2=\frac{1}{4}n^2$ 个.

当 n=2i+1时,这样的数列有 $(1+2+\cdots+i)\times 2=i(i+1)=\frac{1}{4}(n^2-1)$ 个.

两种情况可以合并为。这样的 4 共有 $\frac{d}{4}$ $-\frac{1+(-1)^{\frac{1}{2}-1}}{8}$ 个 (或 $[\frac{1}{4}d]$ 个).

解法二: 对于 $k=[\frac{n}{2}]$,这样的数列 A 必有连续两项,一项在 $\{1,2,\cdots,k\}$ 中,一在 $\{k+1,k+2,\cdots,n\}$ 中,反之,在此两集合中各取一数,可以其差为公差构成一个 A,于是共有这样的数列 当 n=2k 时,这样的 A 的个数为 $k^2=\frac{1}{4}n^2$ 个;当 n=2k+1 时,这样的 A 的个数为 $k(k+1)=\frac{1}{4}$ (n^2-1) 个。

∴ 这样的数列有 $\left[\frac{1}{4}n^2\right]$ 个.

解法一也可这样写: 设 A 的公差为 d_0 则 $1 \le a \le n-1$. (1) 若 n 为偶数,则

当 1≤ d≤ nH, 公差为 d的等差数列 A有 d个;

当 $\frac{n}{2}$ <d≤n-1时,公差为 d的等差数列 A有 n-d个.

故当 13为偶数时,这样的 14共有

$$(1+2+\cdots+\frac{n}{2})+[1+2+\cdots+(n-\frac{n}{2}-1)]=\frac{1}{4}n^{2}\uparrow$$
.

(2) 若 ヵ 为奇数,则

当 $1 \le d \le \frac{d-1}{2}$ 时,公差为 d的等差数列 A有 d个;

当 $\frac{n+1}{2} \le d \le n-1$ 时,公差为 d的等差数列 A有 n-d个.

故当 13为奇数时,这样的 4共有

$$(1+2+\cdots+\frac{n-1}{2})+(1+2+\cdots+\frac{n-1}{2})=\frac{1}{4}(n^2-1)\uparrow$$
.

两种情况可以合并为: 这样的 4 共有 $\frac{\vec{n'}}{4}$ - $\frac{1+(-1)^{-1}}{8}$ \wedge (或[$\frac{1}{4}\vec{n'}$] \wedge).

二. 设凸四边形 ABCD 的面积为 1,求证: 在它的边上(包括顶点)或内部可以找出四个点,使得以其中任意三点为顶点所构成的四个三角形的面积大于 $\frac{1}{4}$.

【解析】证明:考虑四边形的四个顶点 A、 B、 C、 D,者 $\triangle ABC$ 、 $\triangle BCD$ 、 $\triangle CDA$ 、 $\triangle DAB$ 的面积,设其中面积最小的三角形为 $\triangle AB$ D.

- (1) 若 $S_{\triangle ABC} > \frac{1}{4}$, 则 A、 B、 C、 D 即为所求.
- (2) 若 $S_{\triangle ABO} \setminus \frac{1}{4}$,则 $S_{\triangle BCO} \setminus \frac{3}{4}$,取 $\triangle BCD$ 的重心 G,则以 B C、 D G 这 4 点中的任意 3 点为顶点的三角形面积 $\times \frac{1}{4}$.
 - (3) 若 $S_{\triangle ABD} = \frac{1}{4}$,其余三个三角形面积均〉 $S_{\triangle ABD} = \frac{1}{4}$.

由于 $S_{\triangle ABC}+S_{\triangle ACD}=1$,而 $S_{\triangle ACD}>\frac{1}{4}$,故 $S_{\triangle ABC}<\frac{3}{4}=S_{\triangle BCD}$.

∴ 过 A 作 AE// BC 必与 CD 相交, 设交点为 E.

则: $S_{\triangle ABC} > S_{\triangle ABD}$,从而 $S_{\triangle ABE} > S_{\triangle ABD} = \frac{1}{4}$. $S_{\triangle ACC} = S_{\triangle ABE} > \frac{1}{4}$, $S_{\triangle BCC} = S_{\triangle ABC} > \frac{1}{4}$. 即 $A \setminus B \setminus C \setminus E$ 四点即为所求.

(4) 若 $S_{\triangle ABO} = \frac{1}{4}$,其余三个三角形中还有一个的面积 $= \frac{1}{4}$,这个三角形不可能 是 $\triangle BCD$,(否则 ABCD 的面积 $= \frac{1}{2}$),不妨设 $S_{\triangle ABC} = S_{\triangle ABO} = \frac{1}{4}$.则 AD//BC,四边形

ABCD 为棉形.

由于 $S_{\triangle ABD} = \frac{1}{4}$, $S_{\triangle ABC} = \frac{3}{4}$, 故若 AD = a, 则 BC = 3a, 设梯形的高 = h,

则 2ah=1. 设对角线交于 0, 过 0作 EF// BC 分别交 AB、 CD 于 E、 F.

.. AE : EB=AO : OC=AD : BC=1 : 3.

$$\therefore EF = \frac{s * 3 + 3 s * 1}{1 + 3} = \frac{3}{2} A. \quad S_{\Delta EE} = S_{\Delta EE} = \frac{1}{2} * \frac{3}{2} s * \frac{3}{4} h = \frac{9}{16} sh = \frac{9}{32} \times \frac{1}{4}.$$

Sam=Sam=2 * 3a * 3h * 9ah * 9 16 * 2. 于是 B C F E四点为所

求. 综上可知所证成立.

又证: 当 ABCD 为平行四边形时, A、B、C、D四点即为所求. 当 ABCD 不是平行四边形,则至少有一组对边的延长线必相交,设延长 AD、BC 交于 E、且设 D与 AB的距离<C与 AB的距离,

(1) 若 $ED \leq \frac{1}{2}AE$,取 AE 中点 P,则 P 在线段 AD 上,作 PQ//AB

交 BC 于 Q. 若 PQ=a P与 AB距离=h. 则 AB=2a S_a==3 S_a=3 S_a=3 A

$$\mathbb{R}P_{\frac{1}{2}}^{1}(a+2a)b^{\frac{3}{4}}, ab^{\frac{1}{2}}.$$

$$\therefore S_{\triangle avg} = S_{\triangle xeg} = \frac{1}{2}ab > \frac{1}{4}, \quad S_{\triangle xeg} = S_{\triangle geg} = ab > \frac{1}{2} > \frac{1}{4}, \quad \mathbb{P}(A \mid B \mid Q \mid P \mid F \mid F \mid F).$$

(2) 若 EDD¹₂AE, 取 AE 中点 P, 则 P在线段 DE 上, 作 PR// BC 交 CD 于 R. AR// BC, 交 CD 于 M. 由于 ZEAB+ ZEBAK N, 故 R在线段 CD 上. N

【解析】证明:设 $N=x_1x_2\cdots x_k$,其中 x_1 , x_2 ,…, $x_k \in \{1, 3, 4\}$.且 $x_1+x_2+\cdots + x_k=n$.假定 n>4. 删去 x_k 时,则当 x_k 依次取 1,3,4 时, $x_1+x_2+\cdots + x_{k-1}$ 分别等于 n-1,n-3,n-4. 散当 n>4 时,

$$a_n = a_{n-1} + a_{n-3} + a_{n-4}$$
.
 $a_1 = a_2 = 1$, $a_3 = 2$, $a_4 = 4$,

利用①及初始值可以得到下表:

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	•••••
													273 13×21		

可找到规律:

(1) 取 $f_i=1$, $f_{i=2}$, $f_{si}=f_{si}+f_{si}$. 这是菲波拉契数列相应的项。

$$\begin{cases} a_{i} = f_{n'}^{2} & \textcircled{2} \\ a_{i+1} = f_{i} f_{i+1}, & \textcircled{3} \end{cases} (n=1, 2, 3, \cdots)$$

可用数学归纳法证明②、③成立。

首先, n=1时, a=1 =f, a=1×2=f,f,.

n=2时,a=2²=f₂,a=2×3=f₂f₃,即 n=1,2时②、③成立、

设 n=k-1, k时②、③成立.则由①及归纳假设得

 $a_{2(k+1)} = a_{2k+1} + a_{2k-1} + a_{2k-2} = f_k f_{k+1} + f_{k-1} f_k + f_k \frac{2}{1} = f_k f_{k+1} + f_{k-1} (f_k + f_{k-1})$

$$= f_k f_{k+1} + f_{k-1} f_{k+1} = f_{k+1} (f_{k-1} + f_k) = f_{k+1} f_{k+1} = f_{k+1}^2$$

 $a_{2(k+1)+1} = a_{2(k+1)} + a_{2k} + a_{2k-1} = f_{k+1} + f_{k}^2 + f_{k-1} f_{k} = f_{k+1} + f_{k}(f_{k} + f_{k-1}) = f_{k+1}^2 + f_{k+1} = f_{k+1}(f_{k+1} + f_{k}) = f_{k+2}f_{k+1}.$

故 n=i+1时②、③成立、故对于一切正整数 n ②、③成立、

于是 a.=4%(z=1, 2, 3······)是完全平方数.

证明 2: (找规律)先用归纳法证明下式成立:

$$a_{i_{s+1}} = a_{i_s} + a_{i_{s+1}}$$
.

因 a=a=1, a=2, 故当 a=1 时, ④成立.

设 n=h时@成立, 即 a_H=a_H+a_H.

则由①,_{在145}=a₁₄₆+a₁₄+a₁₄₋₁=a₁₍₄₄₎+a₁₍₄₄₎₋₁. 故④式对 141 成立,即④对一切 16年时成立。

(2) 再用归纳法证明下式成立:

$$a_{1}, a_{1+1} = a_{1+1}$$
 (

因 a=1, a=2, a=4, 故当 n=1 时5成立.

设 n=k时⑤成立,即 a_a__=a_=.

则由①、④,有 amam=am(am+am+an)=anam+amam+amam

$$(\pm 5) = a_{111}^2 + a_{211} a_{212} + a_{212} a_{213} = a_{111} (a_{121} + a_{211}) + a_{121} a_{212} = a_{121} a_{212} + a_{212} a_{213} (\pm 5) = a_{212} (a_{211} + a_{212}) = a_{212}^2.$$

(本题由于与菲波拉契数列有关,故相关的规律有很多,都可以用于证明本题)证明 2: (用特征方程)由上证得①式,且有 a_1 = a_2 =1, a_3 =2, a_4 =4,

由此得差分方程: $\lambda^4 - \lambda^3 - \lambda - 1 = 0$. ⇒ $(\lambda^2 + 1)(\lambda^2 - \lambda - 1) = 0$. 此方程有根 $\lambda = \pm i$, $\lambda = \frac{1 \pm \sqrt{5}}{2}$.

$$\therefore \Leftrightarrow a_n = \alpha \ i^n + \beta \ (-1)^n + \gamma \ (\frac{1+\sqrt{5}}{2})^2 + \delta (\frac{1-\sqrt{5}}{2})^2$$

利用初值可以求出
$$a_n = \frac{2-i}{10} \cdot i^n + \frac{2+i}{10} \cdot (-i)^n + \frac{1}{5} (\frac{1+\sqrt{5}}{2})^{n+2} + \frac{1}{5} (\frac{1-\sqrt{5}}{2})^{n+2}.$$

$$\therefore a_{2n} = \left\{ \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right] \right\}^{2}.$$

用数学归纳法可以证明 $b = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{+1} \right]$ 为整数. (这是要波拉契数列的通项公式)

 $b_0=1$, $b_1=1$ 均为整数,设证《n时 $b_2=\frac{1}{\sqrt{5}}[(\frac{1+\sqrt{5}}{2})^{+1}-(\frac{1-\sqrt{5}}{2})^{+1}]$ 都为整数,则

$$b_{\scriptscriptstyle k+1} - b_{\scriptscriptstyle k} = \frac{1}{\sqrt{5}} \big[(\frac{1+\sqrt{5}}{2})^{\scriptscriptstyle k+2} - (\frac{1+\sqrt{5}}{2})^{\scriptscriptstyle k+1} + (\frac{1-\sqrt{5}}{2})^{\scriptscriptstyle k+1} - (\frac{1-\sqrt{5}}{2})^{\scriptscriptstyle k+1} \big]$$

 b_a 与 b_{-1} 均为整数,故 b_{+1} 为整数.于是可知 b_a 对于一切 b_a 三种, b_a 为整数.于是 a_a 为整数 之平方,即为完全平方数.

证明 4. (下标全部变为偶数再用特征方程)

由①得, $a_{n+1}=a_{n+2}+a_{n+1}+a_{n}=(a_{n+1}+a_{n}+a_{n+1})+a_{n+1}+a_{n}=a_{n+1}+2a_{n}+a_{n+1}-a_{n+1}$ (由 $a_{n+1}=a_{n+1}+a_{n}$)

令 b==a=。 则得 b====2b===2b=+b====0. 特征方程为 パ-2 パ-2 パ+1=0.

$$\lambda_1 = -1, \quad \lambda_{2,1} = \frac{3 \pm \sqrt{5}}{2}.$$

故 $b_z = \sigma (-1)^z + \beta (\frac{3+\sqrt{5}}{2})^z + \gamma (\frac{3-\sqrt{5}}{2})^z$. 初始值 $b_z = a_z = 1$, $b_z = a_z = 4$, $b_z = a_z = 9$. $b_z = -b_z + 2b_z + 2b_z = 1$.

代入求得
$$\sigma = \frac{2}{5}$$
, $\beta = \frac{3+\sqrt{5}}{10}$, $\gamma = \frac{3-\sqrt{5}}{10}$.

得 $a_{2n}=b_n=\frac{1}{5}\left[2\left(-1\right)^n+\left(\frac{3+\sqrt{5}}{2}\right)^{n-1}+\left(\frac{3-\sqrt{5}}{2}\right)^{n+1}\right]=\frac{1}{5}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{2(n+1)}+\left(\frac{1-\sqrt{5}}{2}\right)^{2(n+1)}-2\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right]$

$$= \left\{ \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right] \right\}^{2}.$$

记 $f_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right]$,其特征根为 μ_1 , $2 = \frac{1\pm\sqrt{5}}{2}$. 故其特征方程为 $\mu^2 - \mu - \frac{1+\sqrt{5}}{2}$

1=0. 于是其递推关系为 f_n=f_{n-1}+f_{n-2}.

而 f_0 =1, f_1 =1,均为正整数,从而对于一切正整数 n, f_n 为正整数. 从而 a_{2n} 为完全平方数.