幻灯片标题

作者姓名

作者机构

2020/01/01

Outline

- Introduction
- PILCO
- DeepPILCO
- PETS

PILCO

Motivation

model-based 方法有着较好的 efficiency, 但存在一定的局限性: model bias (对于小样本 & 无先验,这个问题更为严重),使用有 bias 的 model 去预测,进而会带来更大的误差。

Solution

学习一个 probabilistic dynamics model,这样的 model 能够 express uncertainty。在 PILCO 中,使用 GP regression 来学习这个 probabilistic dynamics model。

believe 刚才学到的 model,不做 rollout,而是直接计算

$$J^{\pi} = \mathbb{E}_{\mathbf{x}_{t}}\left[c\left(\mathbf{x}_{t}\right)\right] = \int c\left(\mathbf{x}_{t}\right) \mathcal{N}\left(\mathbf{x}_{t} \mid \mu_{t}, \Sigma_{t}\right) \mathrm{d}\mathbf{x}_{t}$$

之后采用基于梯度 $(\frac{dJ}{d\theta})$ 的 Policy Search, 找到最优参数, 使得

$$\theta^* = \arg\min_{\theta} J^{\pi_{\theta}}$$

此时得到 $\pi^* = \pi_{\theta^*}$

Algorithm 1 PILCO

- 1: init: Sample controller parameters $\theta \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. Apply random control signals and record data.
- 2: repeat
- 3: Learn probabilistic (GP) dynamics model, see Sec. 2.1, using all data.
- 4: Model-based policy search, see Sec. 2.2–2.3.
- 5: repeat
- 6: Approximate inference for policy evaluation, see Sec. 2.2: get $J^{\pi}(\theta)$, Eqs. (10)–(12), (24).
- 7: Gradient-based policy improvement, see Sec. 2.3: get $dJ^{\pi}(\theta)/d\theta$, Eqs. (26)–(30).
- 8: Update parameters θ (e.g., CG or L-BFGS).
- 9: **until** convergence; **return** θ^*
- 10: Set $\pi^* \leftarrow \pi(\theta^*)$.
- 11: Apply π^* to system (single trial/episode) and record data.
- 12: **until** task learned

Improving PILCO with Bayesian neural network dynamics models

Motivation

GP regression 不适合对复杂环境(e.g. 高维度)建模。

Solution

主要考虑是将 regression 替换为 NN (Neural Network), 但需要解决带来的两个问题: Output Uncertainty & Input Uncertainty

Output Uncertainty

将 GP regression 替换为 NN,能够进行更复杂的建模,但一般的 NN 不能 express model uncertainty,考虑使用 BNN (Bayesian Neural Network)。

Input Uncertainty

PILCO 因为使用了 GP regression,因此可以 analytically propagates state distributions through the dynamics model, i.e. 推导出分布 $p(X_0),\dots,p(X_T)$,这些分布能够表示不确定的 input X_0,\dots,X_T 。

但若使用 BNN,他的输入层只能接受确定性的 input,无法表示所需要的不确定性,因此考虑使用 particle methods:

Algorithm 2 Step 6 of Algorithm 1: *Predict* system trajectories from $p(X_0)$ to $p(X_T)$

- 1: Define time horizon T.
- 2: *Initialise* set of K particles $x_0^k \sim P(X_0)$.
- 3: for k=1 to K do
- 4: Sample BNN dynamics model weights W^k .
- 5: end for
- 6: **for** time t = 1 to T **do**
- 7: **for** each particle x_t^1 to x_t^K **do**
- 8: Evaluate BNN with weights W^k and input particle x_t^k , obtain output y_t^k .
- 9: **end for**
- 10: Calculate mean μ_t and standard deviation σ_t^2 of $\{y_t^1,...,y_t^K\}$.
- 11: Sample set of K particles $x_{t+1}^k \sim \mathcal{N}(\mu_t, \sigma_t^2)$.
- 12: end for

8/12

Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models

Motivation

和上一篇一样在解决 PILCO 的 complexity 问题

Solution

整体的核心思想和上一篇 DeepPILCO 一样: 用更复杂的 NN 来代替 GP regression,并解决所带来的 uncertainty 问题。不过这一篇的结果要比上一篇好很多。

1.PE (Probabilistic Ensemble)

aleatoric (inherent system stochasticity)

使用 probabilistic NN 来解决 aleatoric uncertainty(上一篇的 output uncertainty)

与 Bayesian NN 不同的是,这篇文章使用了 log prediction probability 来 express uncertainty:

$$\mathrm{loss_{P}}(\theta) = -\sum_{n=1}^{N} \log \tilde{f}_{\theta} \left(s_{n+1} \mid s_{n}, a_{n} \right)$$

该 NN 的 input 是 s,a,output 为 $\tilde{f}_{ heta}$,是一个 parameterized distribution。

10/12

epistemic (subjective uncertainty, due to limited data)

使用 Ensemble 来解决 epistemic uncertainty

核心思想就是对多个 Probabilistic NN 进行 ensemble: consider ensembles of B-many bootstrap models, using θ_b to refer to the parameters of our b^{th} model \tilde{f}_{θ_b} , then get $\tilde{f}_{\theta} = \frac{1}{B} \sum_{b=1}^{B} \tilde{f}_{\theta_b}$.

2.TS (trajectory sampling)

create P particles from the current state, $s_{t-0}^p = s_0 \forall p$, 每个 particle 都服从 分布进行传播: $s_{t+1}^p \sim \tilde{f}_{\theta_{b(n,t)}}(s_t^p, a_t)$, 其中 particle 的选择是基于一个 bootstrap $b(p,t) \in \{1,...,B\}$,最终将 P 组 Particles 采集到的结果进行 ensemble.

Algorithm 1 Our model-based MPC algorithm '*PETS*':

```
1: Initialize data D with a random controller for one trial.
```

- **for** Trial k=1 to K **do**
- Train a *PE* dynamics model f given \mathbb{D} . 3:
- 4: for Time t=0 to TaskHorizon do
- 5: for Actions sampled $a_{t:t+T} \sim \text{CEM}(\cdot)$, 1 to NSamples do
- Propagate state particles s_p^p using TS and $\widetilde{f}|\{\mathbb{D}, a_{t:t+T}\}$. Evaluate actions as $\sum_{\tau=t}^{t+T} \frac{1}{P} \sum_{p=1}^{P} r(s_{\tau}^p, a_{\tau})$ 6:
- 7:
- Update $CEM(\cdot)$ distribution. 8:
- 9: Execute first action a_t^* (only) from optimal actions $a_{t:t+T}^*$.
- Record outcome: $\mathbb{D} \leftarrow \mathbb{D} \cup \{s_t, a_t^*, s_{t+1}\}.$ 10: