Pregunta: ¿Qué tipo de grafos hay?

Respuesta:

- No dirigidos
- Dirigidos
- Pesados

Pregunta: ¿Cómo se define un vecindario?

Respuesta: Como $\mathcal{N}(v_i) = \{v_j \in \mathcal{V} | \{v_i, v_j\} \in \mathcal{E}\}$ Se denota comúnmente como \mathcal{N}_{v_i}

Pregunta: ¿Cómo se define un grafo?

Respuesta: Grafo: $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ Donde $\mathcal{V} = \{v_1, v_2, ..., v_n\}$ y $\mathcal{E} \subseteq [\mathcal{V}^2]$ esto último son todas las combinaciones con 2 elementos Pregunta: ¿Qué es un camino?

Respuesta: Es una secuencia de nodos distintos tales que vértices consecutivos son adyacentes $P(v_i, v_j) = v_i v_k v_p ... v_j$

Pregunta: ¿Qué es un grafo?

Respuesta: Un par ordenando compuesto por un conjunto de vértices (o nodos) y un conjunto de aristas (o enlaces) Pregunta: ¿Cuál es la longitud del camino?

Respuesta: El número de aristas viajadas. Puede haber múltiples caminos o ninguno entre nodos

Pregunta: ¿Qué son los nodos adyacentes?

Respuesta: Nodos que tienen una arista en común se escriben como $v_1 \sim v_2$

Pregunta: ¿Cuándo está conectado un grafo no dirigido?

Respuesta: Cuando para cada par de nodos existe un camino que los conecta **Pregunta:** ¿Cuándo un grado dirigido está fuertemente conectado?

Respuesta: Cuando para cada par de nodos, existe un camino dirigido que los conecta Pregunta: ¿Qué es un árbol?

Respuesta: Un grafo conectado que no contiene ciclos

Pregunta: ¿Cuándo un grafo dirigido está débilmente conectado?

Respuesta: Cuando si el grafo obtenido al reemplazar cada arista dirigida con una no dirigida es conectado

Pregunta: ¿Cuándo un grafo contiene ciclos?

Respuesta: Si hay un sub grafo que es un ciclo

Pregunta: ¿Cuál es el grado de un nodo en un grafo no dirigido?

Respuesta: Es igual a la cardinalidad del vecindario $d_i = |\mathcal{N}(\sqsubseteq_i)|$

Pregunta: ¿Qué es un árbol de expansión de un grafo conectado?

Respuesta: Un sub grafo que es un árbol

Pregunta: ¿Cuál es el grado de un nodo en un grafo dirigido?

Respuesta: Grado de entrada: Número de aristas entrando a un nodo. Grado de salida: Número de aristas saliendo de un nodo **Pregunta:** ¿Qué son las matrices de grado y de adyacencia (en grado no dirigido)?

Respuesta: Grado: Matriz diagonal con el grado de cada nodo en la diagonal. Adyacencia: Matriz simétrica que codifica las relaciones de adyacencia entre nodos **Pregunta:** ¿Cómo se define el Laplaciano de aristas?

Respuesta: Una matriz con -1 a donde va la dirección y 1 de donde sale la flecha

Pregunta: ¿Cuál es el eigenvalor de Fiedler?

Respuesta: $traceL(\mathcal{G}) = 2|E|$

Pregunta: ¿Cómo se define el Laplaciano?

Respuesta: $L(\mathcal{G}) = \Delta(\mathcal{G}) - A(\mathcal{G}) = E(\mathcal{G})E(\mathcal{G}^T)$

Pregunta: ¿Cuándo un grafo es conectado?

Respuesta: si y solo si $\lambda_2(\mathcal{G} > 0$

Pregunta: ¿Para un grafo conectado, cuantos valores propios hay en el origen?

Respuesta: Solo uno $L(\mathcal{G}) = 1 = 0, \ 0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$

Pregunta: ¿A qué es igual el número de árboles de expansión en \mathcal{G} ?

Respuesta: $\tau(\mathcal{G}) = detL(\mathcal{G})_{ij}$ donde los subíndices significan que se remueven fila y columna asociadas a cualquier vértice

Pregunta: ¿Cuál es la conectividad algebraica de un grafo?

Respuesta: $\lambda_2(\mathcal{G})$ número de aristas

Pregunta: ¿Cómo se calcula el error de consenso individual?

Respuesta:

$$e_i(t) = \sum_{j \in N_i} a_{ij}(x_j(t) - x_i(t))$$

$$e(t) = [e_1(t), e_2(t), ..., e_N(t)]^T = -Lx(t)$$

Pregunta: ¿Cuál es el protocolo de consenso?

Respuesta: $u_i(t) = e_i(t)$

Pregunta: ¿Cuándo el protocolo de consenso lineal converge al conjunto de acuerdo?

Respuesta: sí y solo sí $\lambda_2(\mathcal{G} > 0$. Además, $\lambda_2(\mathcal{G} \text{ dicta la rapidez de convergencia. O cuando el grafo asociado contiene un árbol de expansión$

Pregunta: ¿Cuál es la dinámica de consenso?

Respuesta: $\dot{x} = e^{-Lx(t)}x(0)$

Pregunta: ¿Qué es una constante de movimiento?

Respuesta: Una cantidad que se conserva para todas las trayectorias de un sistema dinámico $\frac{d}{dt}(1^Tx(t)) = -1L(\mathcal{G})x(0) = 0$

Pregunta: ¿En un dígrafo, cuál es el valor de consenso?

Respuesta: Es el promedio de los estados iniciales porque $\lim_{t\to\infty} = \frac{1}{n} 11^T x(0)$

Pregunta: ¿Cómo se define el consenso lineal para grafos pesados y dirigidos?

Respuesta:

$$\dot{x}_i(t) = \sum_{(i,j)\in\mathcal{E}} \omega_{i,j}(x_j(t) - x_i(t))$$

Pregunta: ¿Cuál es el conjunto de consenso?

Respuesta: $A \subset \mathbb{R} \setminus$ es el subespacio $span\{1\}$, esto es $A = \{x \in \mathbb{R} | x_i = x_j, \forall i, j\}$

Pregunta: ¿Cómo se define la matriz de adyacencia pesada y grado en entrada?

Respuesta:

$$\begin{array}{ll} A(\mathcal{G}_{i}j & = \\ w_{i,j}, if(v_j, v_i \in \mathcal{E}, 0, otherwise \\ \Delta_{in}\mathcal{G}_{ii} & = \sum_{j \mid (v_j, v_i \in \mathcal{E}} \omega_{ij} \end{array}$$

Pregunta: λ que es igual el número de árboles de expansión en α ?

Respuesta: $t(\mathcal{G} = det L_v)$

Pregunta: ¿Cuál es el teorema de Gersgorin?

Respuesta: Consideremos una matriz cuadrada M. Sea $D([M]_{ii}, r_i)$ un disco cerrado en el plano complejo, centrado en $[M]_{ii}$ con radio $r_i = \sum_{i \neq j} |[M]_{ij}|$ entonces los eigenvalores de M caen en la unión de los discos.

Pregunta: ¿Qué es un árbol enraizado o arborescencia?

Respuesta: en un árbol sin ciclos dirigidos con un nodo $r \in \mathcal{V}$, llamado raíz tal que: 1.- hay un camino dirigido desde r a cada nodo $\mathcal{V}.2.$ -EL grado de entrada de r es cero, y. 3.- El grado de entrada de cada uno de los demás nodos es uno

Pregunta: ¿Hacia dónde converge un dígrafo pesado que contiene una ramificación enraizada y con condición inicial x_0 ?

Respuesta: $\lim_{t\to\infty} x(t) = (p_1q_1^T)x_0$ donde p_1 y q_1 son respectivamente los eigenvectores derecho e izquierdo asociado al eigenvalor cero de $L(\mathcal{D})$, normalizados tal que $p_1^Tq_1 = 1$

Pregunta: ¿Cuándo un dígrafo contiene una ramificación enraizada?

Respuesta: si y solo s $rankL(\mathcal{G}) = n - 1$

Pregunta: ¿Qué es un dígrafo balanceado?

Respuesta: si para cado nodo el grado de entrada y el de salida son iguales

Pregunta: Sea $v \in \mathcal{V}$ un nodo arbitrario de un grafo dirigido pesado entonces:

 $detL_v(\mathcal{G}) = \sum_{T \in \mathcal{T}_v} \prod_{e \in \mathcal{T}} W(e)$ donde \mathcal{T}_v es el conjunto de ramificaciones enraizadas con raíz v en \mathcal{G} , \prod es el producto de los pesos de las aristas de una ramificación enraizada T, y $L_v(\mathcal{G})$ es la v-esima submatriz principal de $L_v(\mathcal{G})$ **Pregunta:** ¿Cuándo el dígrafo balanceado es débilmente conectado?

Respuesta: si y solo si es fuertemente conectado

Pregunta: ¿El laplaciano de un dígrafo balanceado que contiene una ramificación enraizada qué satisface?

Respuesta: satisface $L_{in}(\mathcal{G})1 = 0 \text{ y } 1^T L_{in}(\mathcal{G}) = 0^T$ Pregunta: Teorema de invarianza de LaSalle

Sea el sistema $\dot{x} = f(x)$ y supóngase un conjunto \mathcal{D}_c compacto y + invariante con respecto al mismo. Supóngase que existe una función $V: \mathcal{D}_c \to \mathbb{R} | \dot{V} \leq 0.$ Sea $\mathcal{R} \triangleq x \in \mathcal{D}_c : \dot{V} = 0$ y \mathcal{M} el max. conj. inv. $\in \mathcal{R}$. Entonces si $x(0) \in \mathcal{D}_c \to x(t) \to \mathcal{M}$ cuando $t \to \infty$

Pregunta: ¿Cuándo el protocolo de consenso sobre dígrafos pesados converge al promedio de las condiciones iniciales?

Respuesta: si y solo si el dígrafo es balanceado y débilmente conectado

Pregunta: ¿Cuál es el protocolo distribuido para seguimiento de referencia constante?

Respuesta: $u_i = -\sum_{j=1}^n g_{ij} k_{ij} (\xi_i - \xi_j) - g_{i(n+1)} \alpha_i (\xi_i - \xi_j^r)$ Donde $g_{i(n+1)}$ es 1 si el i-esimo vehículo tiene acceso a la referencia ξ^r y 0 de lo contrario

Pregunta: ¿Cómo es el protocolo distribuido para sistemas de alto orden desacoplados?

Respuesta:

$$u_i = -\sum_{j=1}^n a_{ij}(t)(\xi_i - \xi_j),$$

 $i = 1, ..., n$

Pregunta: ¿Cuál es el protocolo distribuido para seguimiento de referencia variante en el tiempo?

Respuesta:

$$\begin{array}{lll} u_i & = & g_{i(n+1}f(t,\xi^r) & -\\ \sum_{j=1}^n g_{ij}k_{ij}(\xi_i & -& \xi_j) & -\\ g_{i(n+1)}\alpha_i(\xi_i - \xi_j^r) & & \end{array}$$

Pregunta: ¿Cómo es la dinámica completa en lazo cerrado para sistemas de alto orden desacoplados?

Respuesta:

$$\dot{\xi} = -[\mathcal{L}_n(t) \otimes I_m]\xi$$

Pregunta: ¿Cuál es el protocolo distribuido para seguimiento de referencia variante en el tiempo si y solo si el grafo tiene un árbol de expansión dirigido?

$$u_{i} = \frac{1}{\eta_{i}} \sum_{j=1}^{n} g_{ij} k_{ij} (\dot{\xi}_{j} - \gamma_{i}(\xi_{i} - \xi_{j}) + \frac{1}{\eta_{i}} g_{i(n+1)} \alpha_{i} (f(t, \xi^{r}) - \gamma_{i}(\xi_{i} - \xi^{r})), \text{ donde}$$

$$\eta_{i} = g_{i(n+1} \alpha + \sum_{j=1}^{i} g_{ij} k_{ij}$$