4a. Lista de Exercícios de MAT0206 e MAP0216

 1^{o} . semestre de 2021

1. Se $\lim_{n\to\infty} x_{2n} = a$ e $\lim_{n\to\infty} x_{2n-1} = a$, prove que $\lim_{n\to\infty} x_n = a$.

2. Calcule $\lim_{n\to\infty} a^n$ para os todos os valores possíveis de a (sugestão: para a>1 escreva $a=(1+h)^n$, para 0< a<1 escreva $a=1/(1+h)^n$ e use a desigualdade de Bernoulli).

3. Calcule:

- (a) $\lim_{n\to\infty} a^{1/n}$ para os todos os valores possíveis de a. (sugestão: para a>1 escreva $a=(1+h_n)^n$ e use a a expansão binomial).
- (b) Calcule $\lim_{n\to\infty} n^{1/n}$.

4. Mostre que:

- (a) $\lim_{n\to\infty} (2n)^{1/n} = 1$.
- (b) Se 0 < a < 1, $\lim_{n \to \infty} na^n = 0$.
- (c) $\lim_{n\to\infty} (n^2/n!) = 0$.
- (d) $\lim_{n\to\infty} (2^n/n!) = 0$.
- 5. Calcule, caso exista $\lim_{n\to\infty} x_n$ nos casos abaixo,

(a)
$$x_n = \frac{n^3 + 3n + 1}{4n^3 + 5}$$
,

(b)
$$x_n = \sqrt{n+1} - \sqrt{n}$$
,

(c)
$$x_n = (1 + \frac{2}{n})^n$$
 (admita que $\lim_{n \to \infty} (1 + \frac{1}{n})^n = e$),

(d)
$$x_n = (1 - \frac{2}{n})^n$$
,

(e)
$$x_n = \operatorname{sen} \frac{1}{n}$$
,

(f)
$$x_n = \frac{\text{sen n}}{n}$$
,

$$(g) x_n = n(1 - \cos \frac{1}{n}),$$

(h)
$$x_n = \frac{(-1)^n}{n}$$
,

(i)
$$x_n = \begin{cases} \frac{1}{k} & \text{se } n = 2k, \text{ para algum } k \in \mathbb{R} \\ \frac{1}{2k+1} & \text{se } n = 2k+1, \text{ para algum } k \in \mathbb{R} \end{cases}$$

- 6. Sejam a, b > 0 e considere a sequência $x_n = \sqrt[n]{a^n + b^n}$. Prove que $\lim_{n \to \infty} x_n = \max\{a, b\}$.
- 7. Mostre que toda sequência $(x_n)_{n\in\mathbb{N}}$, admite uma subsequência monótona e use este resultado para mostrar que toda sequência de Cauchy de números reais converge para um número real.
- 8. Seja $(x_n)_{n\in\mathbb{N}}$ uma sequência limitada e, para cada $n\in\mathbb{N}$ defina $s_n := \sup\{x_k : k \geq n\}$ e $t_n := \inf\{x_k : k \geq n\}$. Mostre que $(s_n)_{n\in\mathbb{N}}$ e $(t_n)_{n\in\mathbb{N}}$ são monótonas e convergentes. Mostre que se $\lim_{n\to\infty} s_n = \lim_{n\to\infty} t_n$ então $(x_n)_{n\in\mathbb{N}}$ é convergente. $(\lim_{n\to\infty} s_n)$ e $\lim_{n\to\infty} t_n$ são denominados, respectivamente o **limite superior** e **limite inferior** da sequência $(x_n)_{n\in\mathbb{N}}$).
- 9. Suponha que toda subsequência de $(x_n)_{n\in\mathbb{N}}$ tem uma subsequência que converge para 0. Mostre que $\lim_{n\to\infty} x_n = 0$.
- 10. Mostre que a sequência $x_n = \sqrt{n}$ satisfaz $\lim_{n\to\infty} |x_{n+1} x_n| = 0$, mas não é sequência de Cauchy.
- 11. Dizemos que uma sequência $(x_n)_{n\in\mathbb{N}}$ é **propriamente divergente** se $\lim_{n\to\infty} x_n = +\infty$ ou $\lim_{n\to\infty} x_n = -\infty$. Mostre que se $(x_n)_{n\in\mathbb{N}}$ é sequência não limitada, então admite uma subsequência propriamente divergente.
- 12. A sequência $\frac{\text{sen }n}{n}$ é propriamente divergente?
- 13. Seja $(x_n)_{n\in\mathbb{N}}$ sequência propriamente divergente e $(y_n)_{n\in\mathbb{N}}$ tal que $\lim_{n\to\infty} x_n y_n$ existe. Mostre que $(y_n)_{n\in\mathbb{N}}$ converge para 0.
- 14. Sejam $(x_n)_{n\in\mathbb{N}}$ e $(y_n)_{n\in\mathbb{N}}$ sequências de números positivos tais que $\lim_{n\to\infty} x_n/y_n = 0$. Mostre que
 - (a) Se $\lim x_n = +\infty$ então $\lim y_n = +\infty$

- (b) Mostre que, se $(y_n)_{n\in\mathbb{N}}$ é limitada, então $\lim_{n\to\infty}x_n=0$
- 15. Sejam $(x_n)_{n\in\mathbb{N}}$ e $(y_n)_{n\in\mathbb{N}}$ sequências de números positivos tais que $\lim_{n\to\infty} x_n/y_n = +\infty$. Mostre que
 - (a) Se $\lim y_n = +\infty$ então $\lim x_n = +\infty$
 - (b) Mostre que, se $(x_n)_{n\in\mathbb{N}}$ é limitada, então $\lim_{n\to\infty}y_n=0$
- 16. Dizemos que a sequência $(x_n)_{n \in \mathbb{N}}$ é **contrativa** se existe uma constante 0 < C < 1 talque

$$|x_{n+2} - x_{n+1}| \le C|x_{n+1} - x_n|,$$

para $n \in \mathbb{N}$

- a) Mostre que toda sequência contrativa é de Cauchy (portanto convergente).
- b) Mostre que a sequência definida por: $x_1 = 1/2$, $x_{n+1} = \frac{1}{7}(x_n^3 + 2)$ para $n \in \mathbb{N}$ é contrativa.
- c) Sendo $(x_n)_{n\in\mathbb{N}}$ a sequência definida em b), mostre que $r=\lim_{n\to\infty}x_n$ é raiz da equação: x^3-7x+3 .
- 17. Uma demonstração de que o limite $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$ existe. Para cada $n\in\mathbb{N}$, seja $a_n=\left(1+\frac{1}{n}\right)^n$.
 - a) Mostre que se $a, b \in \mathbb{R}$ e $0 \le a < b$, então

$$\frac{b^{n+1} - a^{n+1}}{b - a} < (n+1)b^n.$$

- b) Deduza que $b^n[(n+1)a nb] < a^{n+1}$, para todos $n \in \mathbb{N}$ e $a, b \in \mathbb{R}$ com $0 \le a < b$.
- c) Use a = 1 + 1/(n+1) e b = 1 + 1/n na parte b) para demonstrar que $\{a_n\}$ é crescente.
- d) Use a=1 e b=1+1/(2n) na parte b) para demonstrar que $a_{2n}<4$, para todo $n\in\mathbb{N}$.
- e) Use as partes c) e d) para concluir que $a_n < 4$ para todo $n \in \mathbb{N}$.

- 18. O método babilônico para o cálculo de raí zes. Seja a>0 e defina a sequência $(x_n)_{n\in\mathbb{N}}$ por $x_0>0$, $x_{n+1}=\frac{1}{2}(x_n+a/x_n)$.
 - a) Mostre que $x_n^2 > a$, Para $n \ge 2$.
 - b) Mostre que $(x_n)_{n\in\mathbb{N}}$ é decrescente para $n\geq 2$.
 - c) Mostre que $\lim_{n\to\infty} x_n = \sqrt{a}$.
- 19. Prove o Princípio dos Intervalos Encaixantes usando o Teorema de Bolzano-Weierstrass

Exercícios adicionais

1. Decida se cada uma das sequências abaixo é convergente ou divergente, calculando o limite no caso convergente.

1)
$$0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \dots$$

3)
$$\frac{1}{2}$$
, $-\frac{1}{2}$, $\frac{1}{4}$, $-\frac{3}{4}$, $\frac{1}{8}$, $-\frac{7}{8}$, ...

5)
$$c_k = \frac{\sqrt{k} + 1}{k - 1}, k \ge 2$$

$$7) \ a_n = \sqrt{n+1} - \sqrt{n}$$

9)
$$a_n = \frac{2n}{n+1} - \frac{n+1}{2n}$$

$$11) \ a_n = \frac{\sin n}{n}$$

13)
$$a_n = \frac{2n + \sin n}{5n + 1}$$

15)
$$a_n = \sqrt[n]{n^2 + n}$$

17)
$$a_n = \frac{3^n}{2^n + 10^n}$$

19)
$$a_n = \frac{(n+1)^n}{n!}$$

21)
$$a_n = \frac{n!}{n^n}$$

23)
$$a_n = (-1)^n + \frac{(-1)^n}{n}$$

25)
$$a_n = (1 - \frac{1}{2}) (1 - \frac{1}{3}) \dots (1 - \frac{1}{n})$$

25)
$$a_n = \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \dots \left(1 - \frac{1}{n}\right)$$

27) $a_n = \frac{1}{n} \cdot \frac{1 \cdot 3 \cdot 5 \dots (2n - 1)}{2 \cdot 4 \cdot 6 \dots (2n)}$

$$29) \ a_n = \frac{n^{\alpha}}{e^n}, \ \alpha \in \mathbb{R}$$

31)
$$a_n = \sqrt[6]{n!}$$

$$33) \ a_n = \left(\frac{n-1}{n}\right)^n$$

$$35) \ a_n = \left(\frac{n+1}{n}\right)^{\sqrt{n}}$$

35)
$$a_n = \left(\frac{n+1}{n}\right)^{\sqrt{n}}$$

37) $a_n = \left(\frac{3n+5}{5n+1}\right)^n \left(\frac{5}{3}\right)^n$

2)
$$1, \frac{1}{2}, 1, \frac{1}{4}, 1, \frac{1}{8}, 1, \frac{1}{16}, \dots$$

4)
$$a_n = \left(4 + \frac{1}{n}\right)^{\frac{1}{2}}$$

$$6) \ a_n = \frac{n^3 + 3n + 1}{4n^3 + 2}$$

8)
$$a_n = \frac{4n^3 + 2}{n + (-1)^n}$$

10)
$$a_n = n(\sqrt{n^2 + 1} - n)$$

12)
$$a_n = \sin n; b_n = \sin(n\pi); c_n = \sin(\frac{n\pi}{2})$$

14)
$$a_n = \frac{(n+3)! - n!}{(n+4)!}$$

16)
$$a_n = \frac{n\sin(n!)}{n^2 + 1}$$

18)
$$a_n = \left(\frac{n^2 + 1}{n + 1}\right)^n$$

$$20) \ a_n = na^n, \ a \in \mathbb{R}$$

$$22) \ a_n = n - n^2 \sin \frac{1}{n}$$

24)
$$a_n = \sqrt[n]{a^n + b^n}$$
 onde $0 < a < b$

26)
$$a_n = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \dots \left(1 - \frac{1}{n^2}\right)$$

28)
$$a_n = \sqrt[n]{n}$$

30)
$$a_n = \frac{\ln(n)}{n^a}, \ a > 0$$

32)
$$a_n = \sqrt[n]{a}, \ a > 0$$

$$34) \ a_n = \left(\frac{n+1}{n}\right)^{n^2}$$

$$36) \ a_n = \left(\frac{3n+5}{5n+11}\right)^n$$

$$38) \ a_n = \left(1 + \frac{1}{n^2}\right)^n$$

- 2. Sejam $(a_n)_{n\in\mathbb{N}}$ e $(b_n)_{n\in\mathbb{N}}$ sequências numéricas. Decida se cada afirmação abaixo é verdadeira ou falsa. Justifique sua resposta.
 - (1) Se $a_n \to a$ então $|a_n| \to |a|$.
 - (2) Se $|a_n| \to |a|$ então $a_n \to a$.
 - (3) Se $a_n \to a$ e $a_n \le 0$ então $a \le 0$.
 - (4) Se $a_n \to a$ e $a_n > 0$ então a > 0.
 - (5) Se $a_n \to a$ e $(b_n)_{n \in \mathbb{N}}$ não converge então $(a_n + b_n)_{n \in \mathbb{N}}$ não converge.
 - (6) Se $(a_n)_{n\in\mathbb{N}}$ e $(b_n)_{n\in\mathbb{N}}$ não convergem então $(a_n+b_n)_{n\in\mathbb{N}}$ não converge.
 - (7) Se $a_n \cdot b_n \to d$ então $(a_n)_{n \in \mathbb{N}}$ e $(b_n)_{n \in \mathbb{N}}$ convergem.
 - (8) Se $a_n \cdot b_n \to 0$ então ou $a_n \to 0$ ou $b_n \to 0$
- 3. Considere a sequência $a_1 = \sqrt{2}$, $a_2 = \sqrt{2\sqrt{2}}$, $a_3 = \sqrt{2\sqrt{2\sqrt{2}}}$, Verifique que a sequência é crescente e limitada superiormente por 2 e calcule seu limite.
- 4. Seja a sequência definida por recorrência da seguinte forma: $x_1 = \sqrt{2}$ e $x_{n+1} = \sqrt{2 + x_n}$, para $n \in \mathbb{N}$, com $n \geq 2$. Mostre que a sequência é limitada e crescente. Obtenha o seu limite.
- 5. (i) Diz-se que um ponto B de um segmento \overline{OA} divide este segmento na $raz\~ao$ áurea se $\frac{OA}{OB} = \frac{OB}{BA}$. (Diz-se também que B divide o segmento OA em m'edia e extrema $raz\~ao$) Denota-se por φ a raz $\~ao$ $\frac{OA}{OB}$. Mostre que φ é a raiz positiva da equa $\~ao$ $x^2 x 1 = 0$, chamado n'amero de ouro.
 - (ii) (Sequência de Fibonacci). Considere a sequência dada por $f_0 = f_1 = 1$ e $f_n = f_{n-2} + f_{n-1}$, para $n \ge 2$. Prove que a sequência $x_n = \frac{f_n}{f_{n+1}}$ converge e que seu limite é φ .
 - 5) Considere a sequência $(\frac{p_n}{q_n})_{n\in\mathbb{N}}$, tal que $p_1=q_1=1$ e, para $n\geq 2$, $p_n=p_{n-1}+2q_{n-1}$ e $q_n=p_{n-1}+q_{n-1}$. Prove que a sequência é convergente e que $\lim \frac{p_n}{q_n}=\sqrt{2}$.
- 6. Verifique a convergência ou divergência das seguintes sequências.

1)
$$s_n = \sum_{r=1}^n \frac{1}{r^3}$$
 2) $s_n = \sum_{r=1}^n \frac{1}{e^r}$ 3) $s_n = \sum_{r=3}^n \frac{1}{\ln r}$ 4) $a_n = \frac{2.4.6...(2n)}{1.3.5...(2n-1)}$ 5) $a_n = \frac{1.3.5...(2n-1)}{2.4.6...(2n)}$ 6) $a_n = \frac{1}{n} \cdot \frac{2.4.6...(2n)}{1.3.5...(2n-1)}$.