

现代控制理论

第一章 绪论

第二章 系统的状态空间模型

第三章 状态空间方程的解

第四章 系统的稳定性

第五章 能控性与能观性

第六章 传递函数的状态空间实现

第七章 状态反馈与状态观测器

第八章 最优性原理与动态规划

第九章 极小值原理

第十章 二次型指标的线性最优控制

中国科学技术大学自动化系

2020.2.-6.

本课程的篇章结构

建模	直接获取	第2章 系统的状态空间模型
	模型转换	第2章 系统的状态空间模型 第6章 传递函数的状态空间实现
分析	定量分析	第3章 状态空间状态方程的解
	定性分析	第4章 系统的稳定性 第5章 能控性和能观性
设计	常规控制	第7章 状态反馈和状态观测器
	最优控制	第8章 最优性原理与动态规划 第9章 极小值原理 第10章 二次型指标的线性最优控制

第六章 传递函数的状态空间实现

- § 6.1 实现和最小实现
- § 6.2 传递函数的串联实现
- § 6.3 传递函数的并联实现
- § 6.4 传递向量的实现

第六章 传递函数的状态空间实现

- § 6.1 实现和最小实现
- § 6.2 传递函数的串联实现
- § 6.3 传递函数的并联实现
- § 6.4 传递向量的实现

§ 6.1 实现和最小实现

一、实现问题的提法

定义6.1 实现

传递矩阵 $\hat{G}(s)$ 称为是能实现的是指存在一个有限的维状态方程

$$\dot{x} = Ax + Bu$$

 $y = Cx + Du$
或简记为 $\{A, B, C, D\}$

使得

$$\hat{\boldsymbol{G}}(s) = \boldsymbol{C}(s\boldsymbol{I} - \boldsymbol{A})^{-1}\boldsymbol{B} + \boldsymbol{D}$$

且 $\{A, B, C, D\}$ 称作 $\hat{G}(s)$ 的实现。

注意:一个线性定常系统的分布系统可以用传递矩阵来描述,但不能描述为有限维的状态方程。所以说并非所有的 $\hat{G}(s)$ 都是能实现的。

§ 6.1 实现和最小实现

二、最小实现

定义6.2 最小实现

一传递函数(矩阵)的诸多实现中,具有最小维数的实现称为最小维实现或简称为最小实现。

定理 10.1: 实现

状态空间方程{A, B, C, D}是传递函数矩阵 $\hat{G}(s)$ 的最小实现的充要条件是{A, B, C, D}既能控又能观。

传递函数矩阵 $\hat{G}(s)$ 的所有最小实现,互相问是代数等价的。

第六章 传递函数的状态空间实现

- § 6.1 实现和最小实现
- § 6.2 传递函数的串联实现
- § 6.3 传递函数的并联实现
- § 6.4 传递向量的实现

§ 6.2 传递函数的串联实现

一、能控标准型实现

$$\hat{g}(s) = \frac{\beta_{n-1}s^{n-1} + \beta_{n-2}s^{n-2} + \dots + \beta_{1}s + \beta_{0}}{s^{n} + \alpha_{n-1}s^{n-1} + \alpha_{n-2}s^{n-2} + \dots + \alpha_{1}s + \alpha_{0}} + d$$

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \ddots & \cdots \\ 0 & 0 & 0 & \cdots & 1 \\ -\alpha_0 & -\alpha_1 & -\alpha_2 & \cdots & -\alpha_{n-1} \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \mathbf{y}$$

$$\mathbf{y} = \begin{bmatrix} \beta_0 & \beta_1 & \beta_2 & \cdots & \beta_{n-1} \end{bmatrix} \mathbf{x} + d \cdot \mathbf{u}$$

此为上传递函数的(下友型)能控标准型实现,由此易得相应的上友型能控标准型实现(略)

$$\hat{g}(s) = \frac{\hat{y}(s)}{\hat{u}(s)} = \frac{\beta_1 s^3 + \beta_2 s^2 + \beta_3 s + \beta_4}{s^4 + \alpha_1 s^3 + \alpha_2 s^2 + \alpha_3 s + \alpha_4} + \lambda$$

解:引入一个新变量v(t),它的拉氏变换式定义为

$$\hat{v}(s) = \frac{1}{s^4 + \alpha_1 s^3 + \alpha_2 s^2 + \alpha_3 s + \alpha_4} \hat{u}(s)$$

$$(s^4 + \alpha_1 s^3 + \alpha_2 s^2 + \alpha_3 s + \alpha_4) \hat{v}(s) = \hat{u}(s)$$

于是有 $\hat{y}(s) = (\beta_1 s^3 + \beta_2 s^2 + \beta_3 s + \beta_4)\hat{v}(s) + \lambda \hat{u}(s)$

定义状态变量为

即

$$\mathbf{x}(t) := \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \end{bmatrix} := \begin{bmatrix} v(t) \\ \dot{v}(t) \\ \ddot{v}(t) \end{bmatrix} \qquad \mathbb{R} \quad \hat{\mathbf{x}}(s) := \begin{bmatrix} \hat{x}_1(s) \\ \hat{x}_2(s) \\ \hat{x}_3(s) \\ \hat{x}_4(s) \end{bmatrix} = \begin{bmatrix} \hat{v}(s) \\ s\hat{v}(s) \\ s^2\hat{v}(s) \\ s^3\hat{v}(s) \end{bmatrix} = \begin{bmatrix} 1 \\ s \\ s^2 \\ s^3 \end{bmatrix} \hat{v}(s)$$

显然

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = x_3, \quad \dot{x}_3 = x_4$$

$$\hat{g}(s) = \frac{\hat{y}(s)}{\hat{u}(s)} = \frac{\beta_1 s^3 + \beta_2 s^2 + \beta_3 s + \beta_4}{s^4 + \alpha_1 s^3 + \alpha_2 s^2 + \alpha_3 s + \alpha_4} + \lambda$$

$$(s^4 + \alpha_1 s^3 + \alpha_2 s^2 + \alpha_3 s + \alpha_4)\hat{v}(s) = \hat{u}(s)$$

$$s\hat{x}_4(s) = -\alpha_1\hat{x}_4 - \alpha_2\hat{x}_3 - \alpha_3\hat{x}_2 - \alpha_4\hat{x}_1 + \hat{u}(s)$$

$$\hat{y}(s) = (\beta_1 s^3 + \beta_2 s^2 + \beta_3 s + \beta_4) \hat{v}(s) + \lambda \hat{u}(s)$$

$$\hat{y}(s) = \beta_1 \hat{x}_4(s) + \beta_2 \hat{x}_3(s) + \beta_3 \hat{x}_2(s) + \beta_4 \hat{x}_1(s) + \lambda \hat{u}(s)$$

$$\boldsymbol{x}(t) := \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \end{bmatrix} := \begin{bmatrix} v(t) \\ \dot{v}(t) \\ \ddot{v}(t) \end{bmatrix} \qquad \text{ID} \qquad \hat{\boldsymbol{x}}(s) := \begin{bmatrix} \hat{x}_1(s) \\ \hat{x}_2(s) \\ \hat{x}_3(s) \\ \hat{x}_4(s) \end{bmatrix} = \begin{bmatrix} \hat{v}(s) \\ s\hat{v}(s) \\ s^2\hat{v}(s) \\ s^3\hat{v}(s) \end{bmatrix} = \begin{bmatrix} 1 \\ s \\ s^2 \\ s^3 \end{bmatrix} \hat{v}(s)$$

$$\dot{x}_{1} = x_{2}, \quad \dot{x}_{2} = x_{3}, \quad \dot{x}_{3} = x_{4}$$

$$\dot{x}_{4}(t) = \begin{bmatrix} -\alpha_{4} & -\alpha_{3} & -\alpha_{2} & -\alpha_{1} \end{bmatrix} \mathbf{x}(t) + 1 \cdot u(t)$$

$$y(t) = \begin{bmatrix} \beta_{4} & \beta_{3} & \beta_{2} & \beta_{1} \end{bmatrix} \mathbf{x}(t) + \lambda u(t)$$

$$\hat{g}(s) = \frac{\hat{y}(s)}{\hat{u}(s)} = \frac{\beta_1 s^3 + \beta_2 s^2 + \beta_3 s + \beta_4}{s^4 + \alpha_1 s^3 + \alpha_2 s^2 + \alpha_3 s + \alpha_4} + \lambda$$

$$\dot{x}_{1} = x_{2}, \quad \dot{x}_{2} = x_{3}, \quad \dot{x}_{3} = x_{4}$$

$$\dot{x}_{4}(t) = [-\alpha_{4} - \alpha_{3} - \alpha_{2} - \alpha_{1}] \mathbf{x}(t) + 1 \cdot u(t)$$

$$y(t) = [\beta_{4} \beta_{3} \beta_{2} \beta_{1}] \mathbf{x}(t) + \lambda u(t)$$

$$\dot{\mathbf{x}} = A\mathbf{x} + \boldsymbol{b}u = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\alpha_4 & -\alpha_3 & -\alpha_2 & -\alpha_1 \end{bmatrix} \boldsymbol{x}(t) + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = cx + du = \begin{bmatrix} \beta_4 & \beta_3 & \beta_2 & \beta_1 \end{bmatrix} x(t) + \lambda \cdot u$$

$$\hat{g}(s) = \frac{\hat{y}(s)}{\hat{u}(s)} = \frac{\beta_1 s^3 + \beta_2 s^2 + \beta_3 s + \beta_4}{s^4 + \alpha_1 s^3 + \alpha_2 s^2 + \alpha_3 s + \alpha_4} + \lambda$$

注意: 在本例中, 若定义状态变量为

$$\boldsymbol{x}(t) \coloneqq \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \end{bmatrix} \coloneqq \begin{bmatrix} \ddot{\boldsymbol{v}}(t) \\ \ddot{\boldsymbol{v}}(t) \\ \dot{\boldsymbol{v}}(t) \\ v(t) \end{bmatrix} \qquad \mathbb{E} \quad \hat{\boldsymbol{x}}(s) \coloneqq \begin{bmatrix} \hat{x}_1(s) \\ \hat{x}_2(s) \\ \hat{x}_3(s) \\ \hat{x}_4(s) \end{bmatrix} \coloneqq \begin{bmatrix} s^3 \\ s^2 \\ s \\ 1 \end{bmatrix} \hat{\boldsymbol{v}}(s)$$

则易导出系统的状态空间方程是

$$\dot{\mathbf{x}} = A\mathbf{x} + \boldsymbol{b}u = \begin{bmatrix} -\alpha_1 & -\alpha_2 & -\alpha_3 & -\alpha_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \boldsymbol{x}(t) + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} u$$

$$y = \boldsymbol{c}\boldsymbol{x} + d\boldsymbol{u} = \begin{bmatrix} \beta_1 & \beta_2 & \beta_3 & \beta_4 \end{bmatrix} \boldsymbol{x}(t) + \lambda \cdot \boldsymbol{u}$$

$$\hat{g}(s) = \frac{\hat{y}(s)}{\hat{u}(s)} = \frac{\beta_1 s^3 + \beta_2 s^2 + \beta_3 s + \beta_4}{s^4 + \alpha_1 s^3 + \alpha_2 s^2 + \alpha_3 s + \alpha_4} + \lambda$$

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\alpha_4 & -\alpha_3 & -\alpha_2 & -\alpha_1 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = cx + du = [$$
 β_4 β_3 β_2 β_1 $]x(t) + \lambda \cdot u$

$$\dot{\mathbf{x}} = A\mathbf{x} + \boldsymbol{b}u = \begin{bmatrix} -\alpha_1 & -\alpha_2 & -\alpha_3 & -\alpha_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \boldsymbol{x}(t) + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} u$$

$$y = cx + du = [$$
 β_1 β_2 β_3 β_4 $]x(t) + \lambda \cdot u$

结论:同一系统因状态选择不同,状态空间方程大相径庭

§ 6.2 传递函数的串联实现

一、能控标准型实现

$$\hat{g}(s) = \frac{\beta_{n-1}s^{n-1} + \beta_{n-2}s^{n-2} + \dots + \beta_{1}s + \beta_{0}}{s^{n} + \alpha_{n-1}s^{n-1} + \alpha_{n-2}s^{n-2} + \dots + \alpha_{1}s + \alpha_{0}} + d$$

$$\dot{x} = \begin{bmatrix} 0 & 0 & \cdots & 0 & -\alpha_{0} \\ 1 & 0 & \cdots & 0 & -\alpha_{1} \\ 0 & 1 & \cdots & 0 & -\alpha_{2} \\ \cdots & \cdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1 & -\alpha_{n-1} \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} \beta_{0} & \beta_{1} & \cdots & \beta_{n-2} & \beta_{n-1} \end{bmatrix} x + d \cdot u$$

此为上传递函数的(右友型)能控标准型实现(证明过程见教材),由此易得相应的左友型能控标准型实现(状态逆序选择)

§ 6.2 传递函数的串联实现

二、能观标准型实现

$$\hat{g}(s) = \frac{\beta_{n-1}s^{n-1} + \beta_{n-2}s^{n-2} + \dots + \beta_{1}s + \beta_{0}}{s^{n} + \alpha_{n-1}s^{n-1} + \alpha_{n-2}s^{n-2} + \dots + \alpha_{1}s + \alpha_{0}} + d$$

$$\hat{x} = \begin{bmatrix} 0 & 0 & \cdots & 0 & -\alpha_{0} \\ 1 & 0 & \cdots & 0 & -\alpha_{1} \\ 0 & 1 & \cdots & 0 & -\alpha_{2} \\ \cdots & \cdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & -\alpha_{n-1} \end{bmatrix} \begin{bmatrix} \beta_{0} \\ \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n-1} \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix} x + d \cdot u$$

此为上传递函数的(右友型)能观标准型实现,由此易得相应的左友型能观标准型实现(略)

第六章 传递函数的状态空间实现

- § 6.1 实现和最小实现
- § 6.2 传递函数的串联实现
- § 6.3 传递函数的并联实现
- § 6.4 传递向量的实现

§ 6.3 传递函数的并联实现

一、无重极点系统的对角型实现

当传递函数无重极点时,可通过部分分式分解写成如下形式

$$\hat{g}(s) = \frac{\hat{y}(s)}{\hat{u}(s)} = \sum_{k=1}^{n} \frac{e_k}{s - \lambda_k} = \frac{e_1}{s - \lambda_1} + \frac{e_2}{s - \lambda_2} + \dots + \frac{e_n}{s - \lambda_n}$$

以四阶系统为例:

$$\dot{x} = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 \\ 0 & 0 & 0 & \lambda_4 \end{bmatrix} x + \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{bmatrix} u \xrightarrow{\hat{u}(s)}$$

$$y = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} x$$

一、无重极点系统的对角型实现

$$\hat{g}(s) = \frac{\hat{y}(s)}{\hat{u}(s)} = \sum_{k=1}^{n} \frac{e_k}{s - \lambda_k} = \frac{e_1}{s - \lambda_1} + \frac{e_2}{s - \lambda_2} + \dots + \frac{e_n}{s - \lambda_n}$$

其中第 个单元:

$$\hat{x}_k(s) = \frac{1}{s - \lambda_k} \hat{u}(s) \qquad \dot{x}_k(t) = \lambda_k x_k(t) + u(t)$$

以四阶系统为例绘图并写出状态空间方程:

二、重极点系统的约当型实现

当传递函数有重极点时,每个不同的极点对应一个不同的并 联支路。以某四重极点支路为例:

$$\hat{g}(s) = \frac{\hat{y}(s)}{\hat{u}(s)} = \frac{\beta_3 s^3 + \beta_2 s^2 + \beta_1 s + \beta_0}{(s - \lambda)^4}$$

$$\hat{y}(s) = \frac{f_1}{s - \lambda} \hat{u}(s) + \frac{f_2}{(s - \lambda)^2} \hat{u}(s) + \frac{f_3}{(s - \lambda)^3} \hat{u}(s) + \frac{f_4}{(s - \lambda)^4} \hat{u}(s)$$

二、重极点系统的约当型实现

$$\hat{x}_1(s) = \frac{1}{s - \lambda} \hat{x}_2(s), \quad \hat{x}_2(s) = \frac{1}{s - \lambda} \hat{x}_3(s), \quad \hat{x}_3(s) = \frac{1}{s - \lambda} \hat{x}_4(s)$$

$$\hat{x}_4(s) = \frac{1}{s - \lambda} \hat{u}(s), \quad \hat{y}(s) = f_4 \hat{x}_1(s) + f_3 \hat{x}_2(s) + f_2 \hat{x}_3(s) + f_1 \hat{x}_4(s)$$

二、重极点系统的约当型实现

$$\hat{x}_1(s) = \frac{1}{s-\lambda}\hat{x}_2(s), \quad \hat{x}_2(s) = \frac{1}{s-\lambda}\hat{x}_3(s), \quad \hat{x}_3(s) = \frac{1}{s-\lambda}\hat{x}_4(s)$$

$$\hat{x}_4(s) = \frac{1}{s - \lambda} \hat{u}(s), \quad \hat{y}(s) = f_4 \hat{x}_1(s) + f_3 \hat{x}_2(s) + f_2 \hat{x}_3(s) + f_1 \hat{x}_4(s)$$

$$\dot{x}_{1}(t) = \lambda x_{1}(t) + x_{2}(t)
\dot{x}_{2}(t) = \lambda x_{2}(t) + x_{3}(t)
\dot{x}_{3}(t) = \lambda x_{3}(t) + x_{4}(t)$$

$$\dot{x}_{4}(t) = \lambda x_{4}(t) + u(t)$$

$$y = \int_{4}^{4} x_{1} + \int_{3}^{4} x_{2} + \int_{2}^{4} x_{3} + \int_{1}^{4} x_{4}$$

$$\dot{x} = \begin{bmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} f_{4} & f_{3} & f_{2} & f_{1} \end{bmatrix} x$$

$$y = \int_{4}^{4} x_{1} + \int_{3}^{4} x_{2} + \int_{2}^{4} x_{3} + \int_{1}^{4} x_{4}$$

【例6-1】(2006年中国科学技术大学考研题)

已知某系统的传递函数如下, 试分别给出满足以下 条件的实现并分析实现的稳定性

$$g(s) = \frac{2(s+1)(s+4)}{(s+2)(s+3)}$$

- 1. 求既能控又能观的约当型实现,分析该实现的渐近稳定性;
- 2. 求一个维数尽可能低的能控但不能观、李雅普诺夫意义下稳定但非渐近稳定的实现,分析该实现的BIBO稳定性;
- 3. 求一个维数尽可能低的既不能控又不能观、且李雅普诺夫意义下不稳定的实现,分析该实现的BIBO稳定性和渐近稳定性。

习题: p211-213 (205-207)

5.1, 5.2, 5.3

题目表述的响应改动如下:

5.2 求下列传递函数的能控标准型实现(四种)、 能观标准型实现(四种)和约当标准型实现 (两种)。

5.3 求题5.1中三个传递函数的能控标准型实现、能观标准型实现,以及它们相应的最小实现

第六章 传递函数的状态空间实现

- § 6.1 实现和最小实现
- § 6.2 传递函数的串联实现
- § 6.3 传递函数的并联实现
- § 6.4 传递向量的实现

§ 6.4 传递向量的实现

一、能实现胜定理

定理6.2 能实现性定理

传递矩阵 $\hat{G}(s)$ 能实现的充要条件是: $\hat{G}(s)$ 是正则有理矩阵。

【证明】必要性是显然的。它可由

$$\hat{\boldsymbol{G}}_{sp}(s) := \boldsymbol{C}(s\boldsymbol{I} - \boldsymbol{A})^{-1}\boldsymbol{B} + \boldsymbol{D} = \frac{1}{\det(s\boldsymbol{I} - \boldsymbol{A})}\boldsymbol{C}[\operatorname{Adj}(s\boldsymbol{I} - \boldsymbol{A})]\boldsymbol{B} + \boldsymbol{D}$$

得以说明。而充分性的证明,只要验证状态空间方程……

$$\dot{\mathbf{x}} = \begin{bmatrix}
\mathbf{0} & \mathbf{I}_{p} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{I}_{p} & \cdots & \mathbf{0} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{I}_{p} \\
-\alpha_{r}\mathbf{I}_{p} & -\alpha_{r-1}\mathbf{I}_{p} & -\alpha_{r-1}\mathbf{I}_{p} & \cdots & -\alpha_{1}\mathbf{I}_{p}
\end{bmatrix} \mathbf{x} + \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \\ \mathbf{I}_{p} \end{bmatrix} \mathbf{u}$$

$$\mathbf{y} = \begin{bmatrix} \mathbf{N}_{r} & \mathbf{N}_{r-1} & \mathbf{N}_{r-2} & \cdots & \mathbf{N}_{1} &]\mathbf{x} + \mathbf{D} \cdot \mathbf{u}$$

$$\dot{\mathbf{G}}(s) = \frac{1}{d(s)} [\mathbf{N}(s)] + \mathbf{D} = \frac{1}{d(s)} [\mathbf{N}_{1}s^{r-1} + \mathbf{N}_{2}s^{r-2} + \cdots + \mathbf{N}_{r-1}s + \mathbf{N}_{r}] + \mathbf{D}$$

$$\sharp \dot{\mathbf{P}} : \qquad d(s) = s^{r} + \alpha_{1}s^{r-1} + \cdots + \alpha_{r-1}s + \alpha_{r}$$

【例6.2】求传递矩阵
$$\hat{G}(s) = \begin{bmatrix} \frac{4s-10}{2s+1} & \frac{3}{s+2} \\ \frac{1}{(2s+1)(s+2)} & \frac{s+1}{(s+2)^2} \end{bmatrix}$$
 的一个实现

解: 将传递矩阵进行一系列标准化:

$$\hat{\mathbf{G}}(s) = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} \frac{-2}{2s+1} & \frac{3}{s+2} \\ \frac{1}{(2s+1)(s+2)} & \frac{(s+1)}{(s+2)^2} \end{bmatrix} \qquad \hat{\mathbf{G}}(s) = \frac{1}{s^3 + 4.5s^2 + 6s + 2} \begin{bmatrix} -6(s+2)^2 & 3(s+2)(s+0.5) \\ 0.5(s+2) & (s+1)(s+0.5) \end{bmatrix} = \frac{1}{d(s)} \left(\begin{bmatrix} -6 & 3 \\ 0 & 1 \end{bmatrix} s^2 + \begin{bmatrix} -24 & 7.5 \\ 0.5 & 1.5 \end{bmatrix} s + \begin{bmatrix} -24 & 3 \\ 1 & 0.5 \end{bmatrix} \right)$$

$$d(s) = (s+0.5)(s+2)^2 = s^3 + 4.5s^2 + 6s + 2$$

$$\dot{x} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \hline -2 & 0 & -6 & 0 & -4.5 & 0 \\ 0 & -2 & 0 & -6 & 0 & -4.5 \end{bmatrix} x + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \hline 0 & 0 \\ \hline 1 & 0 \\ 0 & 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} -24 & 3 & -24 & 7.5 & -6 & 3 \\ 1 & 0.5 & 0.5 & 1.5 & 0 & 1 \end{bmatrix} x + \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} u$$

§ 6.4 传递向量的实现

二、列向量传递矩阵的实现

通过一个例子,说明一种方法

【例6.3】讨论一个单输入、双输出、四阶系统的实现问题

$$\hat{\boldsymbol{g}}(s) = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} + \frac{1}{s^4 + \alpha_1 s^3 + \alpha_2 s^2 + \alpha_3 s + \alpha_4} \begin{bmatrix} \beta_{11} s^3 + \beta_{12} s^2 + \beta_{13} s & + \beta_{14} \\ \beta_{21} s^3 + \beta_{22} s^2 + \beta_{23} s & + \beta_{24} \end{bmatrix}$$

可以验证,如下的多输出能控标准型系统是它的一个实现

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\alpha_4 & -\alpha_3 & -\alpha_2 & -\alpha_1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \mathbf{u}$$

$$\mathbf{y} = \begin{bmatrix} \beta_{14} & \beta_{13} & \beta_{12} & \beta_{11} \\ \beta_{24} & \beta_{23} & \beta_{22} & \beta_{21} \end{bmatrix} \mathbf{x} + \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} \mathbf{u}$$

三、行向量传递矩阵的实现

如何求取?请同学们思考,通过习题,以求掌握。【提示】考虑多输入能观标准型

四、传递矩阵的最小实现

规范分解。(我们会的) 更理论化的内容将在研究生阶段进一步学习。

习题: p211-213 (205-207)

5.1, 5.2, 5.3;

题目表述的响应改动如下:

- 5.2 求下列传递函数的能控标准型实现(四种)、 能观标准型实现(四种)和约当标准型实现 (两种)。
- 5.3 求题5.1中三个传递函数的能控标准型实现、能观标准型实现,以及它们相应的最小实现

补充: 绘4阶单输入单输出系统能观标准型实现的 动态结构图(方块图)

5.10; 5.9(a) (不要求多方法)