Acting by Separable Permutations on the Kazhdan-Lusztig Basis

Fern Gossow (with Oded Yacobi)

FPSAC 2022

Context

 \mathfrak{S}_n acts on \mathcal{S}^{λ} equipped with the Kazhdan-Lusztig basis $\mathbb{KL}_{\lambda} = \{C_T \mid T \in \mathsf{SYT}(\lambda)\}.$

Theorem (Berenstein-Zelevinksy, Stembridge, Mathas, '90s)

If $\lambda \vdash n$ *is arbitrary:*

$$w_0 \cdot C_T = \pm C_{\operatorname{ev}(T)}$$

Theorem (Rhoades, 2010)

If $\lambda \vdash n$ is rectangular:

$$c \cdot C_T = \pm C_{\operatorname{pr}(T)}$$

Non-rectangular Case

$$\mathbb{KL} \quad = \quad \left(\begin{array}{c|c} 1 & 3 & 5 \\ \hline 2 & 4 \end{array}, \quad \begin{array}{c|c} 1 & 2 & 5 \\ \hline 3 & 4 \end{array}, \quad \begin{array}{c|c} 1 & 3 & 4 \\ \hline 2 & 5 \end{array}, \quad \begin{array}{c|c} 1 & 2 & 4 \\ \hline 3 & 5 \end{array}, \quad \begin{array}{c|c} 1 & 2 & 3 \\ \hline 4 & 5 \end{array} \right)$$

$$[c]_{\mathbb{KL}} = egin{bmatrix} 0 & 0 & 0 & - & 0 \ 0 & 0 & - & 0 & 0 \ 0 & 0 & 0 & 0 & - \ + & 0 & - & 0 & - \ 0 & + & 0 & - & 0 \end{bmatrix}$$

$$[c]_{\mathbb{KL}} = \begin{bmatrix} 0 & 0 & 0 & - & 0 \\ 0 & 0 & - & 0 & 0 \\ 0 & 0 & 0 & 0 & - \\ + & 0 & - & 0 & - \\ 0 & + & 0 & - & 0 \end{bmatrix}$$
 $[pr]_{\mathbb{KL}} = \begin{bmatrix} 0 & 0 & 0 & + & 0 \\ 0 & 0 & + & 0 & 0 \\ 0 & 0 & 0 & 0 & + \\ + & 0 & 0 & 0 & 0 \\ 0 & + & 0 & 0 & 0 \end{bmatrix}$

Non-rectangular Case

$$\mathbb{KL} \quad = \quad \left(\begin{array}{c|c} 1 & 3 & 5 \\ \hline 2 & 4 \end{array}, \quad \begin{array}{c|c} 1 & 2 & 5 \\ \hline 3 & 4 \end{array}, \quad \begin{array}{c|c} 1 & 3 & 4 \\ \hline 2 & 5 \end{array}, \quad \begin{array}{c|c} 1 & 2 & 4 \\ \hline 3 & 5 \end{array}, \quad \begin{array}{c|c} 1 & 2 & 3 \\ \hline 4 & 5 \end{array} \right)$$

$$[oldsymbol{arepsilon}]_{\mathbb{KL}} = egin{bmatrix} 0 & 0 & 0 & - & 0 \ 0 & 0 & - & 0 & 0 \ 0 & 0 & 0 & 0 & - \ + & 0 & - & 0 & - \ 0 & + & 0 & - & 0 \end{bmatrix}$$

$$[c]_{\mathbb{KL}} = egin{bmatrix} 0 & 0 & 0 & - & 0 \ 0 & 0 & - & 0 & 0 \ 0 & 0 & 0 & 0 & - \ + & 0 & - & 0 & 0 \ 0 & + & 0 & - & 0 \ 0 & + & 0 & 0 & 0 \ 0 & + & 0 & 0 & 0 \ 0 & + & 0 & 0 & 0 \ 0 & + & 0 & 0 & 0 \ \end{pmatrix}$$

$$[43512]_{\mathbb{KL}} = \begin{bmatrix} 0 & 0 & + & - & + \\ 0 & 0 & 0 & 0 & + \\ 0 & 0 & 0 & - & + \\ 0 & - & 0 & 0 & + \\ + & - & 0 & 0 & 0 \end{bmatrix} \qquad [??]_{\mathbb{KL}} = \begin{bmatrix} 0 & 0 & + & 0 & 0 \\ 0 & 0 & 0 & 0 & + \\ 0 & 0 & 0 & + & 0 \\ 0 & + & 0 & 0 & 0 \\ + & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$[??]_{\mathbb{KL}} = \begin{vmatrix} 0 & 0 & + & 0 & 0 \\ 0 & 0 & 0 & 0 & + \\ 0 & 0 & 0 & + & 0 \\ 0 & + & 0 & 0 & 0 \\ + & 0 & 0 & 0 & 0 \end{vmatrix}$$

Main Result

Theorem (G., Yacobi)

Fix $\lambda \vdash n$ **arbitrary**.

$$c \cdot C_T = \operatorname{pr}(\pm C_T + \text{l.o.t})$$

where $C_R < C_T$ when $sh(\partial(R)) \prec sh(\partial(T))$

Theorem (G., Yacobi)

Fix $\lambda \vdash n$ arbitrary. Let $w \in \mathfrak{S}_n$ be any separable permutation.

$$\mathbf{w} \cdot \mathbf{C}_{T} = \varphi_{\mathbf{w}}(\pm \mathbf{C}_{T} + \text{l.o.t.})$$

for a unique bijection φ_w and some order $<_w$ on \mathbb{KL}_{λ} .

Separable Permutations

$$J = \bullet \bullet \circ \circ \bullet \circ \bullet \circ \bullet$$

 w_J longest element of \mathfrak{S}_J

The separable permutations (OEIS A006318) are equivalent to the following:

The long cycle

Set
$$\mathfrak{S}_J := \langle s_1, \dots, s_{n-2} \rangle \cong \mathfrak{S}_{n-1}$$
. Then $c = w_0 w_J$.

$$\mathbb{KL} = \begin{pmatrix} \boxed{1 & 3 & 5} \\ 2 & 4 \end{pmatrix}, \quad \boxed{1 & 2 & 5} \\ 3 & 4 \end{pmatrix}, \quad \boxed{1 & 3 & 4} \\ 2 & 5 \end{pmatrix}, \quad \boxed{1 & 2 & 4} \\ 4 & 5 \end{pmatrix}$$

$$[w_J]_{\mathbb{KL}} = \begin{bmatrix} + & 0 & - & 0 & - \\ 0 & + & 0 & - & 0 \\ 0 & 0 & 0 & 0 & - \\ 0 & 0 & 0 & - & 0 \\ 0 & 0 & - & 0 & 0 \end{bmatrix}$$

In fact, $\langle \mathbb{KL} \rangle \cong \mathcal{S}^{(2,2)}$ and $\langle \mathbb{KL} \rangle = \langle \mathbb{KL} \rangle / \langle \mathbb{KL} \rangle \cong \mathcal{S}^{(3,1)}$ as \mathfrak{S}_{n-1} representations.

The long cycle

Set
$$\mathfrak{S}_J := \langle s_1, \dots, s_{n-2} \rangle \cong \mathfrak{S}_{n-1}$$
. Then $c = w_0 w_J$.

$$\mathbb{KL} = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 \end{pmatrix}, & \begin{pmatrix} 1 & 2 & 5 \\ 3 & 4 \end{pmatrix}, & \begin{pmatrix} 1 & 3 & 4 \\ 2 & 5 \end{pmatrix}, & \begin{pmatrix} 1 & 2 & 4 \\ 3 & 5 \end{pmatrix}, & \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 \end{pmatrix}$$

$$[w_J]_{\mathbb{KL}} = \begin{bmatrix} 0 & - & 0 & - \\ 0 & + & 0 & - & 0 \\ 0 & 0 & 0 & - & 0 \\ 0 & 0 & - & 0 & 0 \end{bmatrix}$$

In fact, $\langle \mathbb{KL} \rangle \cong \mathcal{S}^{(2,2)}$ and $\langle \mathbb{KL} \rangle = \langle \mathbb{KL} \rangle / \langle \mathbb{KL} \rangle \cong \mathcal{S}^{(3,1)}$ as \mathfrak{S}_{n-1} representations.

$$\begin{split} w_J \cdot C_T &= \text{ev}_J(\pm C_T + \text{l.o.t.}) \\ \Longrightarrow c \cdot C_T &= \text{ev} \circ \text{ev}_J(\pm C_T + \text{l.o.t.}) \end{split}$$

and $ev \circ ev_I$ turns out to be pr!

Action of \mathfrak{S}_J

Suppose $\mathfrak{S}_J \cong \mathfrak{S}_3 \times \mathfrak{S}_2 \times \mathfrak{S}_4$. Write $T = [T_1 \ T_2 \ T_3]$

Theorem (G., Yacobi)

Suppose C_R appears in $\mathfrak{S}_J \cdot C_T$. Then

- $\operatorname{sh}(R_k) \leq \operatorname{sh}(T_k)$ for all k
- If all equalities, $sh(rect(R_k)) \leq sh(rect(T_k))$ for all k
- If all equalities, $R_k \approx T_k$ are dual equivalent for all k

This order gives a filtration $0 \subset \mathcal{S}_0^\lambda \subset \cdots \subset \mathcal{S}_r^\lambda = \mathcal{S}^\lambda$ over \mathbb{KL}_λ which is Jordan-Hölder for \mathfrak{S}_J .

Example

 $\lambda = (3,2,1)$ and $\mathfrak{S}_J \cong \mathfrak{S}_3 \times \mathfrak{S}_3$

Example

 $\lambda = (3,2,1)$ and $\mathfrak{S}_J \cong \mathfrak{S}_3 \times \mathfrak{S}_3$

Action of w_J

Irreps of \mathfrak{S}_J are $\mathcal{S}^{\mu_1} \otimes \cdots \otimes \mathcal{S}^{\mu_m}$, and $w_J \cdot (\mathcal{C}_{\mathcal{T}_1} \otimes \cdots \otimes \mathcal{C}_{\mathcal{T}_m}) = \pm \mathcal{C}_{\operatorname{ev}(\mathcal{T}_1)} \otimes \cdots \otimes \mathcal{C}_{\operatorname{ev}(\mathcal{T}_m)}$

Bonus: Useful Trick

$$s_{j} \cdot C_{T} = \begin{cases} -C_{T} & j \in D(T) \\ C_{T} + \sum \overline{\mu}(R, T)C_{R} & j \notin D(T) \end{cases}$$
 Fix $Q = \begin{bmatrix} 1 & 4 & 7 & 9 \\ 2 & 5 & 8 \\ \hline 3 & 6 \end{bmatrix}$

Proposition (G., Yacobi)

Take $w_R \stackrel{\mathsf{RSK}}{\longrightarrow} (R, \c Q)$ and $w_T \stackrel{\mathsf{RSK}}{\longrightarrow} (T, \c Q)$ so $\overline{\mu}(R, T) := \overline{\mu}(w_R, w_T)$

- $w_R = \operatorname{col}(R)$ and $w_T = \operatorname{col}(T)$
- $w_R \leq w_T \implies R \leq T$

Let $R = [R_1 \cdots R_m]$ and $T = [T_1 \cdots T_m]$ be the \mathfrak{S}_J decompositions

- $\operatorname{sh}(R_k) = \operatorname{sh}(T_k)$ for all $k \implies w_R \in \mathfrak{S}_J w_T$
- If $\{i \mid R_i \neq T_i\} = \{k\}$, then $\overline{\mu}(R, T) = \overline{\mu}(\operatorname{col}(R_k), \operatorname{col}(T_k))$