Proofs for Chapter 7 Integration

Constantin Filip

Definition 1 A partition P of [a,b] is given by a finite set

$$P = \{r_i : 0 \le i \le n - 1, a = r_0, b = r_n, r_i < r_{i+1}\}\$$

Definition 2 The **norm** of P is defined as

$$||P|| = \max\{r_{i+1} - r_i : 0 \le i \le n - 1\}$$

Definition 3 If P_1 and P_2 are partitions of [a,b], we say P_2 refines P_1 if $P_1 \subset P_2$

Definition 4 Given a function $f:[a,b] \to \mathbb{R}$ and a partition of [a,b] given by

$$P: \quad a = r_0 < r_1 < \dots < r_n = b$$

the lower sum L(f,P) and upper sum U(f,P) with respect to P are defined as

$$L(f, P) = \sum_{i=0}^{n-1} (r_{i+1} - r_i) \inf_{x \in [r_i, r_{i+1}]} f(x)$$

$$U(f,P) = \sum_{i=0}^{n-1} (r_{i+1} - r_i) \sup_{x \in [r_i, r_{i+1}]} f(x)$$

Definition 5 For any choice of $s_i \in [r_i, r_{i+1}]$ for $0 \le i \le n-1$, the sum

$$S(f, P, (s_i)_{0 \le i \le n-1}) = \sum_{i=0}^{n-1} (r_{i+1} - r_i) f(s_i)$$

is called a **Riemann sum** for P

Theorem 1 Given $f:[a,b] \to \mathbb{R}$, let P_1 and P_2 be partitions of [a,b] such that $P_1 \subset P_2$. Then

$$L(f, P_1) \le L(f, P_2) \le U(f, P_2) \le U(f, P_1)$$

Suppose $P_1 := a = p_0 < p_1 < \dots < p_n = b$ and $P_2 := a = q_0 < q_1 < \dots < q_m = b$. Then since $P_1 \subset P_2$, for all $q_i \in P_2$, there exists $0 \le j < n$ such that

$$p_j \le q_i \le p_{j+1}$$

We assume, without loss of generality, that there only exists one such q_i (since we can continue to refine the partition to add additional points to each interval). Since $[p_j, q_i] \subset [p_j, p_{j+1}]$ and $[q_i, p_{j+1}] \subset [p_j, p_{j+1}]$, we have

$$\inf_{x \in [p_j, p_j + 1]} f(x) \le \inf_{x \in [p_j, q_i]} f(x)$$

and

$$\inf_{x \in [p_i, p_i + 1]} f(x) \le \inf_{x \in [q_i, p_{i+1}]} f(x)$$

Therefore, setting $q_{j-1} := p_i$ and $q_{j+1} := p_{i+1}$:

$$L(f, P_1) = \sum_{i=0}^{n-1} (q_{j+1} - q_{j-1}) \inf_{x \in [q_{j-1}, q_{j+1}]} f(x)$$

$$= \sum_{i=0}^{n-1} (q_{j+1} - q_j + q_j - q_{j-1}) \inf_{x \in [q_{j-1}, q_{j+1}]} f(x)$$

$$\leq \sum_{i=0}^{n-1} \left[(q_{j+1} - q_j) \inf_{x \in [q_j, q_{j+1}]} f(x) + (q_j - q_{j-1}) \inf_{x \in [q_j, q_{j+1}]} f(x) \right]$$

$$\leq \sum_{i=0}^{m-1} (q_{j+1} - q_j) \inf_{x \in [q_j, q_{j+1}]} f(x) = L(f, P_2)$$

We can show analogously that $U(f, P_2) \leq U(f, P_1)$. Since also $L(f, P) \leq U(f, P)$ for any partition P of f, we have

$$L(f, P_1) \le L(f, P_2) \le U(f, P_2) \le U(f, P_1)$$

as required. \Box

Definition 6 The lower and upper integrals of $f : [a,b] \to \mathbb{R}$ are defined as

$$\int_a^b f(x) dx = \sup_P L(f, P) \quad \overline{\int_a^b} f(x) dx = \inf_P U(f, P)$$

respectively

Definition 7 We say f is Riemann integrable if $\underline{\int_a^b} f(x) dx = \overline{\int_a^b} f(x) dx$ and the common value is called the Riemann integral of f written as $\underline{\int_a^b} f(x) dx$

Theorem 2 A bounded function $f:[a,b]\to\mathbb{R}$ is Riemann integrable with Riemann integral $c\in\mathbb{R}$ iff for each $\epsilon>0$ there exists a partition P of [a,b] with $c-L(f,P)<\epsilon$ and $U(f,P)-c<\epsilon$

We first prove the \Rightarrow direction.

Assume that f is Riemann integrable with integral $c \in \mathbb{R}$. Then

$$\sup_{P} L(f, P) = \inf_{P} U(f, P) = c$$

by definition.

Let $\epsilon > 0$ be given. $c - \epsilon$ is not a supremum of the set of lower sums of f, so there exists some partition P_1 of [a, b] such that

$$c - \epsilon < L(f, P_1) \le c \Rightarrow c - L(f, P_1) < \epsilon$$

Likewise, $c + \epsilon$ is not an infimum of the set of upper sums of f, so there exists some partition P_2 of [a, b] such that

$$c \le U(f, P_2) < c + \epsilon \Rightarrow U(f, P) - c < \epsilon$$

as required.

Now we prove the \Leftarrow direction.

By assumption, for all $\epsilon > 0$, we have $c - L(f, P) < \epsilon$ and $U(f, P) - c < \epsilon$, where $c \in \mathbb{R}$.

Let Q be some partition of [a, b]. Since f is bounded, for any partition P of [a, b], we have

$$L(f, P) \le L(f, P \cup Q) \le U(f, P \cup Q) \le U(f, Q)$$

as shown earlier. Hence the set of all lower sums of f is upper bounded and has a supremum d by the axiom of Dedekind-completeness. By the definition of supremum,

$$L(f, P) \le d$$

for any partition P

Suppose that d < c. Then setting $\epsilon = c - d$, we have

$$c - L(f, P) < c - d \Rightarrow L(f, P) > d$$

which is a contradiction. Therefore, c is the supremum of the set of lower sums of f. It can be shown similarly, that c is the infimum of the set of upper sums of f, so we have

$$\sup_{P} L(f, P) = \inf_{P} U(f, P) = c$$

so f is integrable with integral c as required. \square

Theorem 3 Cauchy condition for Riemann integrability A bounded function $f:[a,b] \to \mathbb{R}$ is Riemann integrable if and only if for every $\epsilon > 0$ there exists a partition P of [a,b] such that

$$U(f, P) - L(f, P) < \epsilon$$

From the previous theorem, if the integral is $c \in \mathbb{R}$, then we can add the inequalities to get

$$U(f, P) - L(f, P) < \epsilon$$

To prove the \Leftarrow direction, given some partition P of [a,b], we note that the set of lower sums must have a supremum c since it is upper bounded by U(f,P). It remains to be shown that c is also the infimum of the set of upper sums of f.

Assume that the infimum of the set of upper sums is d > c. Then

$$U(f, P) \ge d$$

for any partition P.

Let $\epsilon = d - c$. Then there exists some partition Q such that

$$U(f,Q) - c \le U(f,Q) - L(f,Q) < d - c$$

But then

which is a contradiction, so d = c. Hence

$$\sup_{P} L(f, P) = \inf_{P} U(f, P) = c$$

so f is integrable over [a, b] with integral c as required. \square

Theorem 4 A bounded function $f:[a,b] \to \mathbb{R}$ is Riemann integrable with Riemann integral $c \in \mathbb{R}$ iff for each $\epsilon > 0$, there exists a $\delta > 0$ such that for all partitions P of [a,b] with $||P|| < \delta$ we have $|S(f,P,(s_i)_{0 \le i \le n-1} - c)| < \epsilon$

We first prove the \Rightarrow direction.

Let $\epsilon > 0$ be given. Then by the Cauchy condition for Riemann integrability, there exists a partition $P_{\epsilon} := a = x_1 < x_2 < \cdots < x_{n-1} < x_n = b$ such that

$$U(f, P_{\epsilon}) - L(f, P_{\epsilon}) = \sum_{i=0}^{n-1} (\sup_{x \in [i, i+1]} f(x) - \inf_{x \in [i, i+1]} f(x))(x_{i+1} - x_i) < \frac{\epsilon}{2}$$

Let N be the number of points in P. Choose $\delta = \epsilon/4KN$ where $K = \sup\{|f(x)|\}$. If P is any partition of [a,b] with $||P|| < \delta$, then we split U(f,P) - L(f,P) into two parts S_1 and S_2 . S_1 has terms with intervals which do not contain any points in P_{ϵ} and S_2 has terms with the remaining intervals (i.e. intervals that cut across the endpoints of the intervals made by P_{ϵ}).

We have

$$S_1 \le U(f, P_{\epsilon}) - L(f, P_{\epsilon}) < \frac{\epsilon}{2}$$

For S_2 , the subintervals used contain points of P_{ϵ} , but the length of each interval is less than δ by definition of P. Furthermore, the difference in the heights between any two rectangles must also be less than or equal to 2K. Hence

$$S_2 < 2KN\delta = \frac{\epsilon}{2}$$

Therefore,

$$U(f, P) - L(f, P) < \epsilon$$

for any P with $||P|| < \delta$, so by the Cauchy condition for Riemann integrability, f is integrable with integral c. But since

$$c - \epsilon < L(f, P) \le S(f, P, (s_i)_{0 \le i \le n-1}) \le U(f, P) < c + \epsilon$$

we have

$$|S(f, P, (s_i)_{0 \le i \le n-1}) - c| < \epsilon$$

Now we show the converse.

Let $\epsilon>0$ be given. Then let n be the smallest positive integer such that $\frac{b-a}{n}<\delta$. Then by assumption there exists some partition P with $||P||=\frac{b-a}{n}$ such that

$$|S(f, P, (s_i)_{0 \le i \le n-1}) - c| < \epsilon$$

Then

$$c - \epsilon < S(f, P, (s_i)_{0 \le i \le n-1}) < c + \epsilon$$

If the sequence $(s_i)_{0 \le i \le n-1}$ is taken as the infimum (equivalently minimum) of f in each interval, then we have

$$c - L(f, P) < \epsilon$$

Likewise, if $(s_i)_{0 \le i \le n-1}$ is taken as the supremum (equivalently maximum) of f in each interval, then

$$U(f, P) - c < \epsilon$$

So f is Riemann integrable with integral c, as required. \square

Theorem 5 Let $f:[a,b] \to \mathbb{R}$ be a function that is continuous on the interval [a,b]. Then the Riemann integral

$$\int_{a}^{b} f(x) \mathrm{d}x$$

exists.

Let $\epsilon > 0$ be given. By uniform continuity of f on [a,b], and using $\epsilon/2(b-a)$ in the definition of uniform continuity, there exists some $\delta > 0$ such that $|f(x) - f(y)| < \epsilon/(b-a)$ for all $x,y \in [a,b]$ with $|x-y| < \delta$. Hence, if $||P|| < \delta$ then in each given subinterval, we have $f(x_M) - f(x_m) < \epsilon/2(b-a)$, where x_M and x_m are the points of the subinterval where f attains its maximum and minimum

respectively. Then

$$U(f, P) - L(f, P) = \sum_{i=0}^{n-1} (r_{i+1} - r_i) (\sup_{x \in [r_i, r_{i+1}]} - \inf_{x \in [r_i, r_{i+1}]} f(x))$$

$$< \sum_{i=0}^{n-1} (r_{i+1} - r_i) \left(\frac{\epsilon}{2(b-a)} \right)$$

$$= (b-a) \left(\frac{\epsilon}{2(b-a)} \right)$$

$$= \frac{\epsilon}{2}$$

so by the Cauchy condition, f is Riemann integrable. \square

Theorem 6 Suppose that $f:[a,b] \to \mathbb{R}$ is bounded and integrable on [a,r] for every a < r < b. Then f is integrable on [a,b] and

$$\int_{a}^{b} f = \lim_{r \to b^{-}} \int_{a}^{r} f$$

Since f is bounded, $|f| \leq M$ for some M > 0 over [a, b]. Given $\epsilon > 0$, let

$$r = b - \frac{\epsilon}{4M}$$

where it is assumed that ϵ is sufficiently small so that r > a. Since f is integrable on [a, r], there is a partition P of [a, r] such that

$$U(f,P) - L(f,P) < \frac{\epsilon}{2}$$

Then $P'=P\cup\{b\}$ is a partition of [a,b] whose last interval is [r,b]. The boundedness of f implies that

$$\sup_{[r,b]} f - \inf_{[r,b]} f \le 2M$$

Therefore

$$U(f, P') - L(f, P') = U(f, P) - L(f, P) + \left(\sup_{[r,b]} - \inf_{[r,b]} f\right) \cdot (b - r)$$
$$< \frac{\epsilon}{2} + 2M \cdot (b - r) = \epsilon$$

so by the Cauchy condition, f is integrable on [a,b]. Using the additivity of the integral, we also get

$$\left| \int_a^b f - \int_a^r f \right| = \left| \int_r^b f \right| \le M \cdot (b - r) \to 0$$
 as $r \to b^-$

Theorem 7 If $f:[a,b] \to \mathbb{R}$ is a bounded function with finitely many discontinuities, then f is Riemann integrable.

Let the set of discontinuities be $\{c_1,c_2,\ldots,c_n\}$, where $c_i < c_{i+1}$ for all $1 \leq i < n$. f is then continuous over [a,k], for all $a < k < c_1$, so by Theorem 6, f is integrable over $[a,c_1]$. It is sufficient to show that f is Riemann integrable over $[a,c_1]$, since then we add the integrals of f over every interval $[c_i,c_{i+1}]$, where $1 \leq i < n$. \square