Machine Learning - HW1 & 2

Pang Liang Student No. 201418013229033

April 28, 2015

1 Problem1 - Bayes Classifier

1. Joint Bayes Classifier The joint distribution over all feature is that

$$p(y|x_1, x_2) = \frac{p(x_1, x_2|y) * p(y)}{\sum_{y} p(x_1, x_2|y) p(y)}$$
(1)

So we need estimate these probabilities given the train data. The $p(y, x_1, x_2)$ shows in ??.

y	$p(x_1 = 0, x_2 = 0 y)$	$p(x_1 = 0, x_2 = 1 y)$	$p(x_1 = 1, x_2 = 0 y)$	$p(x_1 = 1, x_2 = 1 y)$
0	0.125	0.125	0.375	0.375
1	0.375	0.375	0.000	0.250

Table 1: Values of $p(x_1, x_2|y)$.

$$p(y=0) = 0.5, p(y=1) = 0.5$$
(2)

Then we predict the test data below:

$$p(y=1|x_1=0, x_2=1) = 0.75 (3)$$

$$p(y=1|x_1=1, x_2=0) = 0 (4)$$

$$p(y=0|x_1=1, x_2=1) = 0.6 (5)$$

2. Naive Bayes Classifier For Naive Bayes we assume that $p(x_1, x_2|y) = p(x_1|y) * p(x_2|y)$. So

$$p(y|x_1, x_2) = \frac{p(x_1|y) * p(x_2|y) * p(y)}{\sum_{y} p(x_1|y) * p(x_2|y) * p(y)}$$
(6)

Then we only need $p(x_1|y)$ and $p(x_2|y)$ below:

$$p(y=0) = 0.5, p(y=1) = 0.5$$
(7)

Then we predict the test data below:

$$p(y = 1|x_1 = 0, x_2 = 1) = \frac{0.75 * 0.625}{0.75 * 0.625 + 0.25 * 0.5}$$
$$= 0.789$$
 (8)

$$p(y = 1|x_1 = 1, x_2 = 0) = \frac{0.25 * 0.375}{0.25 * 0.375 + 0.75 * 0.5}$$
$$= 0.2$$
 (9)

$$p(y = 0|x_1 = 1, x_2 = 1) = \frac{0.75 * 0.5}{0.75 * 0.5 + 0.25 * 0.625}$$
$$= 0.706$$
 (10)

2 Problem2 - Gaussian Bayes Classifiers

See Code H1P2.m.

1. Plot the iris data X in 2-D space

y	$p(x_1 = 0 y)$	$p(x_1 = 1 y)$
0	0.25	0.75
1	0.75	0.25

Table 2: Values of $p(x_1|y)$.

y	$p(x_2 = 0 y)$	$p(x_2 = 1 y)$
0	0.5	0.5
1	0.375	0.625

Table 3: Values of $p(x_2|y)$.

Figure 1: Data distribution

2. Plot each of Gaussian Kernels on top of the data

Figure 2: Estimated Gaussian Kernels

3. Using Gaussian Bayes Classify (with free covariances)

Figure 3: Class Boundary

The shape of the boundary are the parts of a ellipse/circle.

4. Using Gaussian Bayes Classify (with equal covariances)

Figure 4: Class Boundary

The shape of the boundary are the straight lines.

5. Poly Classify (p = 2, 3, 4)

Figure 5: Different Poly Level, Draw Class Boundary

With the increasing of p, the boundary of each classes become more complex. And it's become easier to overfit on training set.

3 Problem3 - SVM

See Code $\mathbf{H1P3.m}$.

1. The optimal hyperplane is $x_1 + x_2 - 3 = 0$. And the margin is $\frac{\sqrt{2}}{2}$.

Figure 6: Class Boundary

2. The support vectors are: (2,2),(4,0),(2,0),(0,2).

4 Problem4 - Run SVMs

- 1. See Code $\mathbf{H1P4.m}$.
- 2. Use linear SVM get Accuracy of 89.3%. Use default SVM get Accuracy of 92.4%.

Figure 7: Grid Search.

In my experiments, to set $C=2^3=8$ and $gamma=2^{-7}$ is the best parameter. Cross Validation accuracy is 94.45%, and Test accuracy is 95%.