Static Network Verification

Lecture 22, Computer Networks (198:552) Fall 2019

Review: Control/data plane separation

Traditionally:

Individual routing algorithm components in each and every router interact in the control plane

Networks are complex

- Numerous control plane protocols
 - RFCs numbering in the thousands
- Protocols interact in complex ways
 - Concerns of complexity extend to SDNs as well
 - Protocols must often work across administrative boundaries
- Significant outages often due to avoidable reasons
 - Human errors cause >50% of outages
- Network is in a constant state of change

Outages happen all the time

~ 1.6K prefixes / hour

Source: https://blog.thousandeyes.com/nanog-68-decoding-performance-data-internet-outages/

Outages happen all the time

-√/ OUTAGE.REPORT

Recent Outages

Today

Destiny 2	Received 28 reports, originating from United States of America, Malaysia, Mexico, Netherlands, United Kingdom and 8 more countries	_LLMmMhnm.ll
Zerodha	Received 8 reports, mostly originating from Republic of India – Mumbai, Kashipur	■ ZERODHA
Google	Received 15 reports, originating from United States of America, Canada, Australia, United Kingdom, Republic of Indonesia and 2 more countries	madrame.non.
Spotify	Received 10 reports, originating from United States of America, United Kingdom, Czech Republic, Republic of France, Portuguese	

Republic and 2 more countries

Root causes: Physical connectivity

Cable faults

Root causes: Physical connectivity

- Single cable fault or break can take out multiple ISP paths
 - Tata, Telecon Italia
- Cascading effects due to load on other links
 - New inter-dom paths taken
 - PoPs overloaded
 - Drop traffic worldwide

Root causes: Physical connectivity

 Network interfaces can become faulty too

 Widespread intradomain, or even inter-domain outages

Root causes: Route misconfiguration

• Leaks: e.g., ISP announces more specific

routes to a destination

Prefix "hijacking"

- Flaps
- Likely to be misconfigurations
 - e.g., Youtube08
- But can also be deliberate: MITM
 - E.g., Belarus

Root causes

- Discussion so far about inter-domain failures
- But many intra-domain failures possible too
- Information leaks between tenants on a public cloud
 - e.g., HIPAA compliance
 - e.g., Banking regulations
- Loops in intra-domain routing
 - Transient loops due to convergence delay
 - Permanent loops due to misconfigurations
- Blackholes

A manifesto of operator requirements

- Know the answers to simple questions
 - Can A talk to B?
 - Reachability
 - A and B can be hosts, IP prefixes, "slices"
 - Are there loops, blackholes, ...
- Know the effects of a change, preferably before it happens
 - What-if analyses
 - Link failures, protocol messages accepted from peers, ...
- Answer these Qs fast to keep up with change in the network

An Abstract Problem Statement

Formalizing verification as a mathematical problem

Decision Procedure: An algorithm that answers yes/no

Ask the question under assumptions about network change: static, incremental, or dynamic

for all M, does N satisfy P?

Sequence of messages:

Packets,
Routing protocol
Link failures

Network representation:

Data plane
Control plane

Property of interest:

Loop freedom

Blackholes

Equivalence

Many complex props...

A simple example: Modeling firewall rules

- Assume packets just have 2 bits; there are only 2 ports
- Firewall config: 10 -> fwd(2); *1 -> fwd(1). All others dropped
- Boolean representation of the network:
 - N: (d1 & ~d0) | ((d1 | ~d1) & d0)
- Property: only the packets from 00 are dropped
 - P: (~d1 & ~d0)
- Messages (M): all combinations of Boolean variables d0, d1
- Verification question: for all d0, d1, is formula N I P valid? i.e.,
 - Is ((d1 & ~d0) | ((d1 | ~d1) & d0)) | (~d1 & ~d0) a tautology?
- Decision procedure: SAT solver

Typical considerations for verification

- Size of network representations
 - O(# rules)? # packets? Some product of these things?
- Speed of decision procedure, e.g., SAT solving
 - Typically NP-hard or worse in the worst case
 - Verification: leveraging average-case complexity
- Coverage of possible network events
 - Does property hold under firewall rule changes? New protocol messages? Link failures?
- Strength of properties and counter-examples
 - Does P hold for all packets? Are we looking for one counterexample, or the whole set of violating packets?

Verification, testing, synthesis, eq checks

- Verification: for all M, does N satisfy P?
- Testing: For the given M, does N satisfy P?
- Synthesis: Given P, can you produce an N that satisfies it
 - For a given set of M? (including for all M)
- Let N' be another network representation
- Equivalence checking: For all M, do N and N' behave in the same way with respect to P?, i.e.,
 - i.e., either both satisfy P or both violate it

Properties to verify

- Reachability, isolation, loop freedom
- Equivalence between data plane rules
 - Replicated configurations (for availability or performance)
 - Reducing to simpler configurations
- Waypoint properties
 - e.g., does traffic always go through a monitoring node?
 - Ordering constraints on processing: e.g., DPI must follow ACLs
- Temporal properties, e.g.:
 - After first message from a source, don't broadcast traffic destined to it
- Performance properties: e.g., arrival distributions & congestion

Header Space Analysis

Header Space Analysis: Discussion

- Compact Boolean representation of router: union of wildcards
- Example? (say IP router)
- Operations on header spaces
 - e.g, Why is an inverse always well-defined?
- cross-product issue and the linear fragmentation assumption
- Representation matters! difference of two unions
- Properties: reachability, generic loops, infinite loops
- Loop detection: per-port vs. per-switch, any port vs. init port
- What else could you run on the HS "propagation tree"?

Scaling challenges with verification

- Too many messages and events
 - Packet headers
 - Link failures
 - Protocol messages
- Orderings between events matters
- Too many network rules
- Too large a network

10,000 ft overview of the broad literature

- Data plane verification
 - Static: header space analysis
 - Incremental: Veriflow
 - Dynamic: NICE
- Control and data plane verification
 - Static: p4v
 - Incremental: Batfish
 - Dynamic: Minesweeper