Location Differential Privacy

Zhipeng Cai

Outline

- Location Privacy
 - Motivation
- Existing Notions of Privacy
- PriLocation Algorithm
- Geo-Indistinguishability
 - Definition
 - Characterization
 - Mechanism
 - Accuracy

- · Hierarchical Location Publishing - Motivation
 - Accuracy Analysis
 - Privacy Analysis

Location Privacy

- Ubiquitous Location-based Services (LBS)
 - 46% of the adult population in US own smartphones by 2012 [Pew Internet & American Life Project]
 - 74% of these owners use Location-based Services

Location Privacy

• Ubiquitous Location-based Services (LBS)

Four Square

Groupon

Location Privacy

• Privacy Issues Related to Locations

- Individuals' locations themselves are sensitive information
- Locations could be used to infer individuals' sensitive information
 - · Home location, work location
 - Sexual preferences, political views, religious inclinations
 - Etc.

Location Privacy

• Privacy Issues Related to Locations

- Monitoring and controlling of an individual's location has been considered as a form of slavery
- Even lead to security issue to individuals

Location Privacy

• Existing Notions of Privacy

- Expected Distance Error

 A natural way to quantify the accuracy by which an adversary can guess the real location

Location Privacy

• Existing Notions of Privacy

- Expected Distance Error
 - Inaccuracy estimation of adversary's side information leads to poorly designed mechanism

Location Privacy

• Existing Notions of Privacy

- k-Anonymity (Cloaking)
 - The most widely used privacy notion for location-based systems
 - ullet Protect user's identity by hiding a user among at least k-1 other users

Location Privacy

• Existing Notions of Privacy

- k-Anonymity (Cloaking)
 - · Privacy breach
 - · Performance bottleneck

Location Privacy

• Existing Notions of Privacy

- k-Anonymity (Client-based Solution)
 - ullet Generate k-1 dummy locations and inject them in the query reported to the LBS server
 - ullet No meaningful indistinguishability among k objects is provided

Location Privacy

• Existing Notions of Privacy

- Differential Privacy
 - Modifying a single user's data have a negligible effect on the outcome
 - Not suitable for scenarios where only a single object (location) is involved

Location Privacy

• Existing Notions of Privacy

- Other location-privacy metrics
 - Uncertain region: the real location is inside it, but the adversary does not know its exact position
 - · Privacy is measured by the size of uncertain region
 - The larger uncertain region, the better privacy

Location Privacy

• Existing Notions of Privacy

- Other location-privacy metrics
 - The ratio between the inference accuracy before and after the application of mechanism
 - An optimal guess: pick the location with the largest probability
 - The inference accuracy before the application of mechanism $acc = \max_{l} \Pr(l)$
 - The inference accuracy after the application of the mechanism with output \boldsymbol{r}

$$\begin{aligned} &acc &= \max_{l} \Pr(l|r) \\ &- privacy &= \frac{\max_{l \in L} \Pr(l|r)}{\max_{l \in L} \Pr(l|r)} &\longleftarrow \text{ The larger, the better} \end{aligned}$$

Location Privacy

• Existing Notions of Privacy

- Transformation-based approaches
 - · Employing cryptographic techniques to data and query
 - · Private information retrieval
 - · Difficult to implement in mobile devices
 - · Impossible to corporate with existing LBS providers

Geo-Indistinguishability [CCS 2013]

· Basic Idea

 Differential privacy guarantees that for neighboring databases D and D'

$$\frac{\Pr(\mathcal{M}(D) \in S)}{\Pr(\mathcal{M}(D') \in S)} \le e^{\varepsilon}$$

- Geo-indistinguishability (gi) provide differential privacy to locations
 - · Different locations could produce similar outputs
 - · Make different locations indistinguishable

· Basic Idea

- Can we make each pair of locations indistinguishable?

$$\frac{\Pr(\mathcal{K}(x)=z)}{\Pr(\mathcal{K}(x')=z)} \le e^{\varepsilon}$$

here x and x' are input locations, z is any output location, and ε is the privacy budget.

- Any pair of locations x and x' are indistinguishable when ε is small
- Strict privacy has been obtained
- What about location utility?

Geo-Indistinguishability

· Basic Idea

- Utility Point of View
 - Location-based services are usually used to search nearby services, points of interests and etc.
 - Suppose we are looking for a service at location *x*
 - To preserve our location privacy, we adopt a mechanism called $\mathcal K$ and report $\mathcal K(x)=z$ to the LBS provider
 - $\mathcal{K}(x) = z$, then z should not be far away from x, otherwise one can not obtain meaningful service at x

Geo-Indistinguishability

· Basic Idea

$$e^{-\varepsilon} \le \frac{\Pr(\mathcal{K}(x)=z)}{\Pr(\mathcal{K}(x')=z)} \le e^{\varepsilon}$$

- Consider two locations x and y at significant distance
 - If we have good utility at x, then $\mathcal{K}(x)$ should be nearby x (say z_1 , z_2 and z_3) with large probability p
 - Then $\mathcal{K}(y) \in \{z_1, z_2, z_3\}$ with probability no smaller than $pe^{-\varepsilon}$, and $pe^{-\varepsilon} \to p$ when ε is small
 - So we can not obtain good utility at y

Geo-Indistinguishability

· Basic Idea

y

- Geo-indistinguishability makes nearby locations hard to distinguish
- Locations faraway from each other remain easy to distinguish
- Privacy budget controls the level of privacy at each unit of distance

$$\frac{\Pr(\mathcal{K}(x) = z)}{\Pr(\mathcal{K}(x') = z)} \leq e^{\varepsilon} \implies \frac{\Pr(\mathcal{K}(x) = z)}{\Pr(\mathcal{K}(x') = z)} \leq e^{\varepsilon d(x, x')}$$

Notation

- $-\varepsilon$: privacy budget, the level of privacy at one unit of distance
- -X: the set of points of interests (locations)
- -Z: the set of possible reported locations
- $-\pi$: the prior distribution on X
- -d(x, x'): the Euclidean distance between locations x and x'

Geo-Indistinguishability

• Notation

- $-\mathcal{K}$: a mechanism \mathcal{K} is a probabilistic function for selecting a reported value
- $-\mathcal{K}(x)$: the probabilistic distribution of reported location, given x
- $-\mathcal{K}(x)(Z)$: the probability that the reporting a location belongs to set $Z \subseteq Z$, given x

Geo-Indistinguishability

Notation

- $-d_{\mathcal{P}}(\sigma_1, \sigma_2)$: the multiplicative distance between two distributions σ_1 and σ_2 on some set \mathcal{S}
 - $d_{\mathcal{P}}(\sigma_1, \sigma_2) = \max_{S \subseteq \mathcal{S}} |\ln \frac{\sigma_1(S)}{\sigma_2(S)}|$
- $Bayes(\pi, \mathcal{K}, Z)$: the posterior distribution on \mathcal{X} , given the observation Z produced by \mathcal{K}

$$\bullet \ Bayes(\pi,\mathcal{K},Z) = \frac{\mathcal{K}\left(x\right)(Z)\pi(x)}{\sum_{x' \in \mathcal{X}} \mathcal{K}\left(x'\right)(Z)\pi(x')}$$

Geo-Indistinguishability

· Original Definition of Geo-Indistinguishability

– Given privacy budget $\varepsilon \geq 0$, a mechanism \mathcal{K} satisfies ε -geo-indistinguishability if and only if for all $x, x' \in \mathcal{X}$:

$$d_{\mathcal{P}}(\mathcal{K}(x), \mathcal{K}(x')) \le \varepsilon d(x, x')$$

- Definition in dp fassion
 - Given privacy budget $\varepsilon \geq 0$, a mechanism \mathcal{K} satisfies ε -geo-indistinguishability if and only if for all $x, x' \in \mathcal{X}, Z \subseteq \mathcal{Z}$:

$$\mathcal{K}(x)(Z) \le e^{\varepsilon d(x,x')} \mathcal{K}(x')(Z)$$

- · Characterizations of Geo-Indistinguishability
 - Adversary's conclusions under hiding
 - ϕ : $X \to X$: A hiding function
 - ϕ can be applied to the actual location before \mathcal{K} - $\phi(x) = y$
 - A mechanism \mathcal{K} with hiding applied is $\mathcal{K} \circ \phi$ $-\mathcal{K} \circ \phi(x) = \mathcal{K}(\phi(x)) = \mathcal{K}(y)$
 - $d(\phi)$: the maximum distance between the real and hidden location, that is $d(\phi) = \max_{x \in Y} d(x, \phi(x))$

Can we improve the privacy of geo-indistinguishability using hiding?

Geo-Indistinguishability

- · Adversary's Conclusions Under Hiding
 - A mechanism \mathcal{K} satisfies ε -gi, if and only if for all $\phi: \mathcal{X} \to \mathcal{X}$, all priors π , and all $Z \subseteq \mathcal{Z}$, the following condition holds: $d_{\mathcal{P}}(\sigma_1, \sigma_2) \leq 2\varepsilon d(\phi)$.
 - $\sigma_1 = Bayes(\pi, \mathcal{K}, Z)$
 - $\sigma_2 = Bayes(\pi, \mathcal{K} \circ \phi, Z)$
 - $\geq d(\phi)$ should not be large due to utility consideration
 - Adversaries have similar inference no matter whether hiding is adopted
 - > Hiding does not improve the privacy of gi
 - \succ When $d(\phi)$ grows large, privacy is exchanged with utility, not improved by hiding

Geo-Indistinguishability

- Adversary's Conclusions Under Hiding
 - Proof Sketch
 - Suppose $\mathcal K$ satisfies ε -gi, for all $x \in \mathcal X$, any hiding function $\phi: \mathcal X \to \mathcal X$ and all $Z \subseteq \mathcal Z$, we analyze the ratio between $\mathcal K(x)$ and $\mathcal K(\phi(x)) \longleftarrow \mathcal K \circ \phi(x)$

Geo-Indistinguishability

- Adversary's Conclusions Under Hiding
 - Proof Sketch
 - Suppose $\mathcal K$ satisfies ε -gi, for all $x \in \mathcal X$, any hiding function ϕ : $\mathcal X \to \mathcal X$ and all $Z \subseteq \mathcal Z$, we analyze the ratio between σ_1 and σ_2

· Adversary's Conclusions Under Hiding

- Proof Sketch

 $\mathcal{K}(x)(Z) \le e^{\varepsilon d(\phi)} \mathcal{K} \circ \phi(x)(Z)$

 $\mathcal{K}\circ\phi\left(x\right)(Z)\,\leq e^{\varepsilon d(\phi)}\mathcal{K}(x)(Z)$

$$\begin{split} \bullet & \frac{\sigma_1}{\sigma_2} = \frac{\mathcal{K}(x)(Z)\pi(x)}{\mathcal{K} \circ \phi(x)(Z)\pi(x)} \times \frac{\sum_{x' \in \mathcal{X}} \mathcal{K} \circ \phi(x')(Z)\pi(x')}{\sum_{x' \in \mathcal{X}} \mathcal{K}(x')(Z)\pi(x')} \\ & \leq \frac{e^{d(\phi)}\mathcal{K} \circ \phi(x)(Z)}{\mathcal{K} \circ \phi(x)(Z)} \times \frac{\sum_{x' \in \mathcal{X}} e^{d(\phi)}\mathcal{K}(x')(Z)\pi(x')}{\sum_{x' \in \mathcal{X}} \mathcal{K}(x')(Z)\pi(x')} = e^{2d(\phi)} \end{split}$$

Similarly, we can proof $\frac{\sigma_2}{\sigma_1} \leq e^{2d(\phi)}$

Geo-Indistinguishability

· Adversary's Conclusions Under Hiding

- Proof Sketch
 - Next, we are to prove that given a mechanism \mathcal{K} , if for all $\phi: \mathcal{X} \to \mathcal{X}$, all priors π , and all $Z \subseteq \mathcal{Z}$, $d_{\mathcal{P}}(\sigma_1, \sigma_2) \le 2\varepsilon d(\phi)$ holds, then \mathcal{K} satisfies ε -gi

 $d_{\mathcal{P}}(\sigma_1, \sigma_2) \le 2\varepsilon d(\phi)$

$$\frac{\sigma_1}{\sigma_2} \le e^{2d(\phi)} \text{ for any } 2$$

- For any pair of locations $x_1, x_2 \in \mathcal{X}$, we construct a hiding function $\phi_{x_1,x_2} \colon \mathcal{X} \to \mathcal{X}$ and a prior π_{x_1,x_2}
- Then we take the constructed ϕ_{x_1,x_2} and π_{x_1,x_2} into the presentation of $d_{\mathcal{P}}(\sigma_1,\sigma_2)$

Geo-Indistinguishability

· Adversary's Conclusions Under Hiding

- Proof Sketch
 - For any pair of locations $x_1, x_2 \in \mathcal{X}$, we construct a hiding function $\phi_{x_1,x_2} \colon \mathcal{X} \to \mathcal{X}$ as follow:
 - $\, \phi_{x_1,x_2}(x_1) = x_2$
 - $-\phi_{x_1,x_2}(x_2) = x_1$
 - $-\phi_{x_1,x_2}(y)=y \text{ for any } y\in\mathcal{X}/\{x_1,x_2\}$
 - Then we have $d(\phi_{x_1,x_2}) = d(x_1,x_2)$

Geo-Indistinguishability

Adversary's Conclusions Under Hiding

- Proof Sketch
 - For any pair of locations $x_1, x_2 \in \mathcal{X}$, we construct a prior π_{x_1, x_2} on \mathcal{X} as follow:
 - $-\pi_{x_1,x_2}(x_1) = \frac{1}{n}$ where n can be any positive number that n > 1
 - $-\pi_{x_1,x_2}(x_2) = 1 \frac{1}{n}$
 - $-\pi_{x_1,x_2}(y) = 0$ for any $y \in \mathcal{X}/\{x_1,x_2\}$
 - When $n \to +\infty$
 - $-\pi_{x_1,x_2}(x_1) \rightarrow 0^+$
 - $-\pi_{x_1,x_2}(x_2) \to 1$

- · Adversary's Conclusions Under Hiding
 - Proof Sketch
 - for all $\phi: \mathcal{X} \to \mathcal{X}$, all priors π , all $Z \subseteq \mathcal{Z}$ and any $x \in \mathcal{X}$
 - \succ Take ϕ_{x_1,x_2} and π_{x_1,x_2} into the above inequation, and let $x=x_1$

$$\frac{\mathcal{K}(x)(Z)\pi(x)}{\mathcal{K}\circ\phi(x)(Z)\pi(x)}$$

$$\frac{\mathcal{K}(x_1)(Z)\pi_{x_1,x_2}(x_1)}{\mathcal{K}\circ\phi_{x_1,x_2}(x_1)(Z)\pi_{x_1,x_2}(x_1)}$$

$$\succcurlyeq \frac{\mathcal{K}\left(x_{1}\right)(Z)\pi_{x_{1},x_{2}}(x_{1})}{\mathcal{K}\circ\phi_{x_{1},x_{2}}(x_{1})(Z)\pi_{x_{1},x_{2}}(x_{1})} = \frac{\mathcal{K}\left(x_{1}\right)(Z)\pi_{x_{1},x_{2}}(x_{1})}{\mathcal{K}\left(x_{2}\right)(Z)\pi_{x_{1},x_{2}}(x_{1})} = \frac{\mathcal{K}\left(x_{1}\right)(Z)}{\mathcal{K}\left(x_{2}\right)(Z)}$$

Geo-Indistinguishability

- · Adversary's Conclusions Under Hiding
 - Proof Sketch

$$\begin{split} & \geq \frac{\sum_{x' \in \mathcal{X}} \mathcal{K} \circ \phi_{x_{1},x_{2}}(x')(Z)\pi_{x_{1},x_{2}}(x')}{\sum_{x' \in \mathcal{X}} \mathcal{K}(x')(Z)\pi_{x_{1},x_{2}}(x')} \\ & = \frac{\mathcal{K} \circ \phi_{x_{1},x_{2}}(x_{1})(Z)\pi_{x_{1},x_{2}}(x_{1}) + \mathcal{K} \circ \phi_{x_{1},x_{2}}(x_{2})(Z)\pi_{x_{1},x_{2}}(x_{2})}{\mathcal{K}(x_{1})(Z)\pi_{x_{1},x_{2}}(x_{1}) + \mathcal{K}(x_{2})(Z)\pi_{x_{1},x_{2}}(x_{2})} \\ & = \frac{\mathcal{K}(x_{2})(Z)\frac{1}{n} + \mathcal{K}(x_{1})(Z)\frac{n-1}{n}}{\mathcal{K}(x_{1})(Z)\frac{1}{n} + \mathcal{K}(x_{2})(Z)\frac{1}{n} + \mathcal{K}(x_{1})(Z)\frac{n-1}{n}} \\ & \geq \text{When } n \to +\infty, \frac{\mathcal{K}(x_{2})(Z)\frac{1}{n} + \mathcal{K}(x_{1})(Z)\frac{n-1}{n}}{\mathcal{K}(x_{1})(Z)\frac{1}{n} + \mathcal{K}(x_{2})(Z)\frac{n-1}{n}} \to \frac{\mathcal{K}(x_{1})(Z)}{\mathcal{K}(x_{2})(Z)} \end{split}$$

When
$$n \to +\infty$$
, $\frac{\mathcal{K}(x_2)(Z)\frac{1}{n} + \mathcal{K}(x_1)(Z)\frac{n-1}{n}}{\mathcal{K}(x_1)(Z)\frac{1}{n} + \mathcal{K}(x_2)(Z)\frac{n-1}{n}} \to \frac{\mathcal{K}(x_1)(Z)}{\mathcal{K}(x_2)(Z)}$

Geo-Indistinguishability

- · Adversary's Conclusions Under Hiding
 - Proof Sketch
 - Put the first term and second term together $(n \to +\infty)$

$$\begin{split} &\frac{\mathcal{K}(x_1)(Z)\pi_{x_1,x_2}(x_1)}{\mathcal{K}\circ\phi_{x_1,x_2}(x_1)(Z)\pi_{x_1,x_2}(x_1)} \frac{\sum_{x'\in\mathcal{X}}\mathcal{K}\circ\phi_{x_1,x_2}(x')(Z)\pi_{x_1,x_2}(x')}{\sum_{x'\in\mathcal{X}}\mathcal{K}(x')(Z)\pi_{x_1,x_2}(x')} \\ &= (\frac{\mathcal{K}(x_1)(Z)}{\mathcal{K}(x_2)(Z)})^2 \leq e^{2\varepsilon d(\phi)} = e^{2\varepsilon d(x_1,x_2)} \end{split}$$

Then we have $\frac{\mathcal{K}(x_1)(Z)}{\mathcal{K}(x_2)(Z)} \le e^{\varepsilon d(x_1, x_2)}$

That is for any $x_1, x_2 \in \mathcal{X}$, we get $d_{\mathcal{P}}(\mathcal{K}(x_1), \mathcal{K}(x_2)) \le \varepsilon d(x_1, x_2)$

Geo-Indistinguishability

- · Characterizations of Geo-Indistinguishability
 - Knowledge of an informed attacker
 - Suppose the adversary already knows $x \in N \subseteq X$
 - $d(N) = \max_{x,x' \in N} d(x,x')$
 - A mechanism $\mathcal K$ satisfies ε -gi if and only if for all $N \subseteq \mathcal{X}$, all priors π on \mathcal{X} , and all $Z \subseteq \mathcal{Z}$:

$$d_{\mathcal{P}}(\pi(x|N), Bayes(\pi, \mathcal{K}, Z|N)) \le d(N)$$

- · Characterizations of Geo-Indistinguishability
 - Knowledge of an informed attacker
 - The user's location remains private, regardless the adversary's prior knowledge of *N*
 - The knowledge obtained by learning the mechanism result is bounded by d(N)
 - When d(N) is small, the adversary could no longer improve the accuracy of guessing
 - When d(N) is small, the adversary could improve the accuracy of guessing, however this is due to the demand of location utility

Geo-Indistinguishability

- · Knowledge of an informed attacker
 - Proof Sketch
 - Suppose $\mathcal K$ satisfies ε -gi, lets analyze the ratio between $\pi(x|N)$ and $Bayes(\pi,\mathcal K,Z|N)$ and the vice

$$\begin{split} \frac{\pi(x|N)}{Bayes(\pi,\mathcal{K},Z|N)} &= \frac{\pi(x|N)}{\frac{\pi(x|N)\mathcal{K}(x)(Z)}{\sum_{x'\in N}\pi(x'|N)\mathcal{K}(x')(Z)}} = \\ \frac{\sum_{x'\in N}\pi(x'|N)\mathcal{K}(x')(Z)}{\mathcal{K}(x)(Z)} &\leq \frac{\sum_{x'\in N}\pi(x'|N)e^{d(x,x')}\mathcal{K}(x)(Z)}{\mathcal{K}(x)(Z)} \leq \\ \max_{x'\in N}e^{d(x,x')} &\leq e^{d(N)} \\ \frac{\pi(x')(Z)}{\mathcal{K}(x')(Z)} &\leq e^{d(x,x')}\mathcal{K}(x)(Z) \end{split}$$

Geo-Indistinguishability

- · Knowledge of an informed attacker
 - Proof Sketch

$$\bullet \frac{Bayes(\pi,\mathcal{K},Z|N)}{\pi(x|N)} = \frac{\mathcal{K}(x)(Z)}{\sum_{x' \in N} \pi(x'|N)\mathcal{K}(x')(Z)} = \frac{\sum_{x' \in N} \pi(x'|N)\mathcal{K}(x)(Z)}{\sum_{x' \in N} \pi(x'|N)\mathcal{K}(x')(Z)} \le \frac{\sum_{x' \in N} \pi(x'|N)\mathcal{K}(x')(Z)e^{d(x,x')}}{\sum_{x' \in N} \pi(x'|N)\mathcal{K}(x')(Z)} = e^{d(x,x')} \le e^{d(N)}$$

• Then we conclude that

 $d_{\mathcal{P}}(\pi(x|N), Bayes(\pi, \mathcal{K}, Z|N)) \leq d(N)$

Geo-Indistinguishability

- Knowledge of an informed attacker
 - Proof Sketch
 - Given that for all $N \subseteq \mathcal{X}$, and all $Z \subseteq \mathcal{Z}$: $d_{\mathcal{P}}(\pi(x|N), Bayes(\pi, \mathcal{K}, Z|N)) \le d(N)$
 - · We employ contradiction for the other direction of proof
 - Suppose $\mathcal K$ does not satisfy ε -gi, then there exist $x,y \in \mathcal X$ and $Z \subseteq \mathcal Z$, so that $d_{\mathcal P}(\mathcal K(x),\mathcal K(y)) > \varepsilon d(x,y)$

$$-\frac{\mathcal{K}(x)(\mathbf{Z})}{\mathcal{K}(y)(\mathbf{Z})} > e^{d(x,y)} \text{ or } \frac{\mathcal{K}(y)(\mathbf{Z})}{\mathcal{K}(x)(\mathbf{Z})} > e^{d(x,y)}$$

– With no loss of generality, let $\frac{\mathcal{K}(x)(\mathbf{Z})}{\mathcal{K}(y)(\mathbf{Z})} = r > e^{d(x,y)}$

- · Knowledge of an informed attacker
 - Proof Sketch

 $r>e^{d(x,y)}{>}1$

- Let $N = \{x, y\}$, and $\pi(x|N) < \frac{r e^{d(x,y)}}{(r-1)e^{d(x,y)}}$, then we get the following condition:
- $\bullet \frac{Bayes(\pi\mathcal{K}Z|N)}{\pi(x|N)} = \frac{\mathcal{K}(x)(z)}{\sum_{x' \in N} \pi(x'|N)\mathcal{K}(x')(z)} = \frac{r}{\pi(x|N)r + \pi(y|N)} > e^{d(x,y)} = e^{d(N)}$
- The contradiction illustrates that ${\mathcal K}$ satisfies ${\varepsilon\hbox{-}} gi$

Geo-Indistinguishability

- · Characterizations of Geo-Indistinguishability
 - Abstracting from side information
 - Prior distribution of locations are not involved in the definition of gi
 - Location is protected by gi under all prior instead of a specific prior
 - · The above two characterizations also adopt to all prior

Geo-Indistinguishability

Mechanism

- Step 1: achieving ε -gi in a continuous plane
- Step 2: achieving ε -gi in a discrete domain
- Step 3: achieving ε -gi in a truncated region

Geo-Indistinguishability

- Step 1: Achieving ε -gi in a Continuous Plane
 - Planar Laplacian centered at x₀
 - Given $\varepsilon \in \mathbb{R}^+$, and the actual location $x_0 \in \mathbb{R}^2$, the probability density function of planar Laplacian centered at x_0 , on any other point $x \in \mathbb{R}^2$, is:

$$D_{\varepsilon}(x_0)(x) = \frac{\varepsilon^2}{2\pi} e^{-\varepsilon d(x_0, x)}$$

• $\frac{\varepsilon^2}{2\pi}$ is a normalization factor

- Step 1: Achieving ε -gi in a Continuous Plane
 - Planar Laplacian centered at x_0

The pdf of two planar Laplacians, centered at (-2,-4) and (5,3) with $\varepsilon=1/5$

Geo-Indistinguishability

- Step 1: Achieving ε -gi in a Continuous Plane
 - Mechanism
 - Given the actual location $x_0 \in \mathbb{R}^2$, parameter $\varepsilon \in \mathbb{R}^+$, draw a random point x to achieve ε -gi according to the probability density function:

$$D_{\varepsilon}(x_0)(x) = \frac{\varepsilon^2}{2\pi} e^{-\varepsilon d(x_0, x)}.$$

Why does the above mechanism work?

Geo-Indistinguishability

- Step 1: Achieving ε -gi in a Continuous Plane
 - Proof of the Correctness for the Mechanism
 - For any $x, x' \in \mathcal{X}$ and $z \in \mathcal{Z}$, we have that

$$\frac{D_{\varepsilon}(x)(z)}{D_{\varepsilon}(x')(z)} = \frac{\varepsilon^2}{2\pi} e^{-\varepsilon d(x,z)} / \frac{\varepsilon^2}{2\pi} e^{-\varepsilon d(x',z)} = e^{-\varepsilon (d(x,z) - d(x',z))}$$

- Due to triangle inequality, we have that $\frac{D_{\varepsilon}(x)(z)}{D_{\varepsilon}(x')(z)} = e^{-\varepsilon(d(x,z) d(x',z))} \le e^{-\varepsilon d(x,x')}$
- That is to say the mechanism satisfies ε -gi

How to efficiently draw a random point?

Geo-Indistinguishability

- Step 1: Achieving ε -gi in a Continuous Plane
 - Calculating $D_{\varepsilon}(r,\theta)$
 - The pdf only depends on the distance from x_0
 - · Switch the Cartesian system to polar coordinates

$$D_{\varepsilon}(x_0)(x) = \frac{\varepsilon^2}{2\pi} e^{-\varepsilon d(x_0,x)} \qquad \qquad D_{\varepsilon}(r,\theta) = \frac{\varepsilon^2}{2\pi} r e^{-\varepsilon r}$$

- r is the distance of x from x_0
- θ is the angle that the line xx_0 forms with respect to the horizontal axis of the Cartesian system

The two variables r and θ are independent!

• Step 1: Achieving ε -gi in a Continuous Plane

- Calculating $D_{\varepsilon}(r,\theta)$
 - A 2-d probability density function is a cap, the volume under which is 1
 - The volume at each point is decided by the pdf (f)
 - Cartesian system: $f(x, y)\Delta x\Delta y$ Volume assigned to (x, y)
 - Polar coordinates: $f(r,\theta)\Delta r\Delta\theta$ Volume assigned to (r,θ)
 - How to calculate $D_{\varepsilon}(r,\theta)$?
 - Calculate the volume at point (r, θ)
 - Remove terms Δr and $\Delta \theta$

Geo-Indistinguishability

• Step 1: Achieving ε -gi in a Continuous Plane

- Calculating $D_{\varepsilon}(r,\theta)$
 - Calculation of the volume at point (r, θ) (take it as a bar)
 - Point (r, θ) can be taken as a rectangle with length and width as $r\Delta\theta$ and Δr approximately
 - The height of the bar is $D_{\varepsilon}(x_0)(x) = \frac{\varepsilon^2}{2\pi} e^{-\varepsilon d(x_0,x)} = \frac{\varepsilon^2}{2\pi} e^{-\varepsilon r}$
 - The volume of the bar is $r\Delta\theta \times \Delta r \times \frac{\varepsilon^2}{2\pi} e^{-\varepsilon r} = D_{\varepsilon}(r,\theta)\Delta\theta\Delta r$

Geo-Indistinguishability

• Step 1: Achieving ε -gi in a Continuous Plane

– Draw random variables r and θ according to

$$D_{\varepsilon}(r,\theta) = \frac{\varepsilon^2}{2\pi} r e^{-\varepsilon r}$$

- The two margins of r and θ are:
 - $D_{\varepsilon,R}(r) = \int_0^{2\pi} D_{\varepsilon}(r,\theta) d\theta = \varepsilon^2 r e^{-\varepsilon r}$
 - $D_{\theta,R}(\theta) = \int_0^\infty D_{\varepsilon}(r,\theta) dr = \frac{1}{2\pi}$
- $-D_{\theta,R}(\theta)$ is constant, thus draw θ from a uniform distribution with range $[0,2\pi)$

Geo-Indistinguishability

• Step 1: Achieving ε -gi in a Continuous Plane

- Draw a sample from a discrete distribution p(x)(its cumulative distribution is c(x))

- \triangleright Randomly sample a value p from [0,1] for c(x), then
- Pr[p falls into the interval of x_i] = $p(x_i)$ Randomly draw a value p from [0,1], and take $x = \min_{c(x_i) \ge p} x_i$

- Step 1: Achieving ε -gi in a Continuous Plane
 - Draw a sample from a continuous distribution f(x) (its cumulative distribution is C(x))

Geo-Indistinguishability

- Step 1: Achieving ε -gi in a Continuous Plane
 - The cumulative distribution function of $D_{\varepsilon,R}(r)$

•
$$C_{\varepsilon}(r) = \int_0^r D_{\varepsilon,R}(\rho) d\rho = 1 - (1 + \varepsilon r) e^{-\varepsilon r}$$

- Draw the value of r
 - Draw a random number p with uniform probability in range [0,1)
 - Set $r = C_{\varepsilon}^{-1}(p) = -\frac{1}{\varepsilon} \left(W_{-1}\left(\frac{p-1}{e}\right) + 1\right)$ - W_{-1} is the Lambert W function (the -1 branch)
- Build the point x with drawn θ and r

Geo-Indistinguishability

- Step 2: Achieving ε -gi in a Discrete Domain
 - Mechanism $\mathcal{K}_{\varepsilon}$: given the actual location x_0 , report the point x in a discrete domain G as follow:
 - Draw a point (r, θ) as that of Step 1 (which satisfies ε gi in continuous plane)
 - Remap (r, θ) to the closest point x in G.
 - Property of Mechanism $\mathcal{K}_{\varepsilon}$
 - Mechanism $\mathcal{K}_{\varepsilon}$ satisfies $\varepsilon\text{-}gi$ in discrete domain \mathcal{G}

Reported location
 Reported location in continuous case

Geo-Indistinguishability

- Step 2: Achieving ε -gi in a Discrete Domain
 - Proof Sketch for the Property of Mechanism $\mathcal{K}_{\varepsilon}$
 - Let $R(g) = \{z \in Z | g \text{ is the closest point to } z, g \in G\}$
 - For all $x,x'\in\mathcal{X},$ all $G\subseteq\mathcal{G},$ we analyze $\frac{\mathcal{K}_{\varepsilon}(x)(G)}{\mathcal{K}_{\varepsilon}(x')(G)}$

$$\begin{split} \frac{\mathcal{K}_{\mathcal{E}}(x)(G)}{\mathcal{K}_{\mathcal{E}}(x')(G)} &= \frac{\sum_{z \in R(g), g \in \mathcal{G}} \mathcal{K}(x)(z)}{\sum_{z \in R(g), g \in \mathcal{G}} \mathcal{K}(x')(z)} \\ &\leq \frac{\sum_{z \in R(g), g \in \mathcal{G}} \varepsilon^{\varepsilon d(x,x')} \mathcal{K}(x')(z)}{\sum_{z \in R(g), g \in \mathcal{G}} \mathcal{K}(x')(z)} \\ &= \rho^{\varepsilon d}(x,x') \end{split}$$

Similarly, we can proof $\frac{\mathcal{K}_{\mathcal{E}}(x')(G)}{\mathcal{K}_{\mathcal{E}}(x)(G)} \leq e^{\varepsilon d \left(x,x'\right)}$

• Step 3: Achieving ε -gi in a Truncated Region

- Mechanism $\mathcal{PL}_{\varepsilon}$: given the actual location x_0 , report the point x in a finite discrete set of \mathcal{G} as follow:
 - Draw a point (r, θ) as that of Step 1 (which satisfies ε -gi in continuous plane)
 - Remap (r, θ) to the closest point x in G.
- Property of Mechanism $\mathcal{PL}_{\varepsilon}$
 - Mechanism $\mathcal{PL}_{\varepsilon}$ satisfies $\varepsilon\text{-}gi$ in discrete domain $\mathcal G$

Geo-Indistinguishability

Accuracy

- Can we get all the query results?
 - $\mathcal{B}(x,r)$ be the circle with center x and radius r
 - Area of Interest (AOI): we expect results in AOI $-\mathcal{B}(x,rad_I)$, x is the actual location
 - Area of Retrieval (AOR): server returns results in AOR

 B(z, rad_R), z is the reported location

Geo-Indistinguishability

Accuracy

- Enlarging AOR to fully contain AOI may lead to privacy breach
 - The adversary is sure the true location lies in AOR
- Enlarging AOR leads to additional bandwidth consumption
 - More searching results are returned to the mobile user
- We should tolerate the incomplete results, and analyze the accuracy

Geo-Indistinguishability

Accuracy

- Abstraction of an LBS Application
 - (\mathcal{K}, rad_R) : \mathcal{K} is a mechanism satisfying ε -gi, and rad_R is the radius of AOR
 - Given the actual location x, we report z according to $\mathcal{K}(x)$. Then the LBS server searches $\mathcal{B}(z, rad_R)$
- Definition of LBS Application Accuracy
 - An LBS application (\mathcal{K}, rad_R) is (c, rad_I) -accurate iff for all locations x we have that $\mathcal{B}(x, rad_I)$ is fully contained in $\mathcal{B}(\mathcal{K}(x), rad_R)$ with probability at least c.

Accuracy

 $\mathcal{C}_{\varepsilon}(r) = \int_{0}^{r} D_{\varepsilon,R}(\rho) d\rho = 1 - (1 + \varepsilon r)e^{-\varepsilon r}$ $\mathcal{C}_{\varepsilon}(r) = c \text{ then } \mathcal{C}_{\varepsilon}^{-1}(c) = r$

- Achieving (c, rad₁)-Accurate LBS Application
 - The LBS application($\mathcal{PL}_{\varepsilon}, rad_R$) is (c, rad_I) -Accurate if $rad_R \geq rad_I + C_{\varepsilon}^{-1}(c)$.
- Proof Sketch
 - Suppose the actual location is x and $\mathcal{PL}_{\varepsilon}$ reports z
 - $\Pr[d(x,z) \le C_{\varepsilon}^{-1}(c)] = c$
 - $\Pr[rad_I + d(x, z) \le rad_I + C_{\varepsilon}^{-1}(c)] = c$
 - It suffices to set $rad_R = rad_I + C_{\varepsilon}^{-1}(c)$ for achieving (c, rad_I) -Accurate

Geo-Indistinguishability

- Achieving Geo-Indistinguishability with Optimal Utility [CCS 2014]
 - Geo-indistinguishability provides guaranteed
 - Can you find an alternative way to satisfy *gi* and optimize utility at the same time?
 - How to measure the utility?
 - The standard Planar Laplace Mechanism provides no optimization towards utility

Geo-Indistinguishability

- Achieving gi with Optimal Utility [CCS 2014]
 - How to measure the service quality in LBS
 - Service quality could be measured by the actual location x and the reported location z
 - If x is close to z, users could get good service
 - If x is far away from z, users could not get service around x at all
 - · Good service quality means good utility

Geo-Indistinguishability

- Achieving gi with Optimal Utility [CCS 2014]
 - Quality metric and privacy metric
 - Quality metric $d_Q: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, a user specified distance function of locations
 - Privacy metric $d_{\mathcal{X}} \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, a user specified distance function of locations
 - d_Q and d_X could be initialized using Euclidean distance

- Achieving gi with Optimal Utility [CCS 2014]
 - Definition of εd_{χ} -private
 - Given a location set \mathcal{X} , a privacy parameter ε and a privacy metric $d_{\mathcal{X}}$, for all $x, x', z \in \mathcal{X}$, a mechanism \mathcal{K} is $\varepsilon d_{\mathcal{X}}$ -private if and only if

$$\mathcal{K}(x)(z) \leq e^{\varepsilon d\chi(x,x')} \mathcal{K}(x')(z).$$

When $d_{\mathcal{X}}$ is restricted to the Euclidean distance, $\varepsilon d_{\mathcal{X}}$.

private reduces to ε -qi

Geo-Indistinguishability

- Achieving gi with Optimal Utility [CCS 2014]
 - Service quality of a mechanism
 - Given a prior π , a location set \mathcal{X} , a mechanism \mathcal{K} and a quality metric d_Q , the service quality of \mathcal{K} is defined as follow:

$$QL(\mathcal{K},\pi,d_Q) = \sum_{x,z\in\mathcal{X}} \pi(x) \,\mathcal{K}(x)(z) d_Q(x,z).$$

- ightharpoonup A large $QL(\mathcal{K},\pi,d_Q)$ indicates poor quality
- Expected distance in term of d_Q between the input and output of $\mathcal K$
- The minimized $QL(\mathcal{K}, \pi, d_Q)$ indicates the optimal quality

Geo-Indistinguishability

- Achieving gi with Optimal Utility [CCS 2014]
 - Problem Definition
 - Given a prior π , a privacy metric $d_{\mathcal{X}}$, a privacy parameter ε and a quality metric d_{Q} , compute a mechanism \mathcal{K} such that:
 - $\triangleright \mathcal{K}$ is $\varepsilon d_{\mathcal{X}}$ -private
 - For all $\varepsilon d_{\mathcal{X}}$ -private mechanism \mathcal{K}' , $QL(\mathcal{K}, \pi, d_Q) \leq QL(\mathcal{K}', \pi, d_Q)$

Geo-Indistinguishability

- Achieving gi with Optimal Utility [CCS 2014]
 - Solution
 - Minimize: $\sum_{x,z\in\mathcal{X}}\pi(x)\mathcal{K}(x)(z)d_Q(x,z)$
 - Sub to: $\mathcal{K}(x)(z) \leq e^{\varepsilon d(x,x')} \mathcal{K}(x')(z)$ $x,x',z \in \mathcal{X}$ $\sum_{z \in \mathcal{X}} \mathcal{K}(x)(z) = 1$ $x \in \mathcal{X}$ $\mathcal{K}(x)(z) \geq 0$ $x,z \in \mathcal{X}$

Given $\pi(x)$ and $d_0(x, z)$, solve the above LP for $\mathcal{K}(x)(z)$

• Motivation

- Location Datasets Are Valuable
 - · Travel Pattern Mining
 - · Traffic Analysis
- Release The Original Datasets? No!
 - · Re-identifying of Users and Their Sensitive Information

User	Location	Bob has visited locations including
u_1	$< x_{11}, y_{11} >, < x_{12}, y_{12} >,$	$< x_{21}, y_{21} > $ and $< x_{22}, y_{22} > $
u_2	$< x_{21}, y_{21} >, < x_{22}, y_{22} >,$	
		$\sim u_2$ is very likely to be Bob!
um	$< x_{1011}, y_{11} > < x_{1012}, y_{12} > ,$	

Hierarchical Location Publishing

• Location Dataset Representation

- In a location dataset D, the information of a user uis presented by a profile
 - $P_u = < T(u), W(u) >$
 - T(u) is the set of all locations in D
 - W(u) is the weight vector representing the frequency distribution on T(u)

$U = \{u_1, u_2, u_3\}$ $T(u) = \{l_1, l_2, l_3, l_4\}$
$W(u_1) = \{3,4,0,0\}$
$W(u_1) = \{4,4,1,0\}$
$W(u_1) = \{0.0.4.3\}$

User\Location	l_1	l_2	l_3	l_4
u_1	3	4	0	0
u_2	4	4	1	0
u_3	0	0	4	3

Hierarchical Location Publishing

Private Location Release

- "Problem Definition": Private Location Release aims to publish all users' profiles by masking exact locations and weights under the notion of differential privacy

l_1	l ₂	l_3	l_4
3	4	0	0
4	4	1	0
0	0	4	3
	4	3 4 4	3 4 0 4 4 1

Hierarchical Location Publishing

Private Location Release

- Naïve Solution
 - Add randomized noise to W(u) with standard differential privacy, and get $\widehat{W}(u)$
 - $-\Delta = 1$
 - Add $Lap(\frac{1}{c})$ on each dimension of W(u)
 - Release noisy profile $\widehat{P_u} = \langle T(u), \widehat{W}(u) \rangle$
- Disadvantages
 - |T(u)| is large and W(u) is a sparse vector
 - $\widehat{W}(u)$ will contain a large amount of noise

- PriLocation Algorithm [KAIS 2016]
 - [Step 1] Private Location Cluster
 - Group all locations into η clusters
 - Mask exact number of locations as well as the center of each cluster
 - From the cluster outputs, the adversary could not infer to which cluster a location exactly belongs
 - Aims to reduce the amount of noise added to profile

Hierarchical Location Publishing

- PriLocation Algorithm [KAIS 2016]
 - [Step 2] Cluster Weight Perturbation
 - Perturb the weight of each cluster with Laplace noise
 - Mask the weights of locations in a user's profile
 - Prevent the adversary from inferring how many locations a user has visited in a certain cluster
 - [Step 3] Private Location Selection
 - · Select new locations for original ones
 - Aims to Mask a user's profile
 - Prevent the adversary from inferring the locations visited by a user

Hierarchical Location Publishing

- Sensitivity for Location Dataset
 - The standard sensitivity of a query is calibrated by the maximal distance between locations
 - · Mask the true distance
 - · Destroy the utility of datasets

Hierarchical Location Publishing

- · Sensitivity for Location Dataset
 - Location datasets have inherent hierarchy
 - · Different semantics on each level
 - For instance, $country \rightarrow city \rightarrow street$
 - Users may have different level of privacy requirement
 Hide the street, hide the city or even hide the country

· Hierarchical Sensitivity

- For a given level L, the hierarchical sensitivity of L is $HS_L = \max_{t_i,t_j \in L} d(t_i,t_j)$, where $d(t_i,t_j)$ represents the distance between t_i and t_i .
- Privacy on city level
 - Sensitivity is measured by the maximal distance between cities
 - Hide the city rather than the country for a user

Hierarchical Location Publishing

· Hierarchical Sensitivity

- Sensitivity on different levels
 - $HS_{city} = \max\{d(C_1, C_2), d(C_2, C_3), d(C_1, C_3)\}$
 - $HS_{street} = \max\{d(S_1, S_2), d(S_2, S_3), d(S_1, S_3)\}\$

Hierarchical Location Publishing

· Private Location Cluster

- Create location clusters
 - $< T(u), W(u) > \rightarrow < T_C(u), W_C(u) >$
- Private clustering algorithm based on k-means
- Distance measure for locations

$$d(t_i, t_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

 $T(u) = \{t_1, t_2, t_3, t_4\}$ W(u) = < 3,4,0,0 $T_C(u) = \{c_1, c_2\}$ $W_C(u) = < 7,0 >$ Reduce the number of "0"

Hierarchical Location Publishing

• Private Location Cluster

- Differentially private k-means
 - · Initialize k clustering centers
 - Run in iteration:
 - Assign each location to its closest cluster
 - Calculate the clustering objective function
 - Add noise to the clustering objective function value
 - If a smaller noise value is obtained, update the clustering
 - · Output the clustering

• Private Location Cluster

- Objective function in each iteration of k-Means
 - Let c_l denote the center of cluster C_l , T is the set of location, and η is the number of cluster
 - Objective function g measures the total distance between the location and the cluster center it belongs to

$$g = \sum_{i=1}^{|T|} \sum_{l=1}^{\eta} \gamma_{il} \, d(t_i, c_l)$$

• γ_{il} is an indicator that

$$\gamma_{il} = \begin{cases} 1 & t_i \in c_l \\ 0 & t_i \notin c_l \end{cases}$$

Hierarchical Location Publishing

• Private Location Cluster

- Introduce Differential Privacy into k-Means
 - Laplace noise calibrated by hierarchical sensitivity HS of the objective function G and the privacy budget
 - Private location cluster consumes $\varepsilon/2$ privacy budget
 - Each iteration costs $\varepsilon/2p$ privacy budget
 - $\hat{G} = \sum_{i=1}^{m} \sum_{l=1}^{\eta} \gamma_{il} d(t_i, c_l) + Lap(\frac{2p \times HS}{\varepsilon})$
 - After p iterations, private location clustering outputs $\hat{C} = \{C_1, ..., C_n\}$

Hierarchical Location Publishing

Cluster Weight Perturbation

- After private location clustering, user u's weight in cluster C is denoted $W_C(u) = \sum_{t \in C} W_t(u)$
- For each user u, Laplace noise is added to mask the counts of locations in each cluster

$$\widehat{W}_c(u) = W_c(u) + (Lap\left(\frac{4}{\varepsilon}\right))^{\eta}$$

– Cluster weight perturbation consumes $\varepsilon/4$ privacy budget

Cluster Weight Perturbation

• Cluster Weight Perturbation

- The added Laplace noise could either positive or negative
 - For positive noise, add locations close to the center of the cluster
 - For negative noise, delete locations with largest distance to the cluster center
- After perturbation, we get each user u's profile as $\widetilde{P_C}(u) = <\widetilde{P_C}(u), \widehat{W_C}(u) >$

 $W(u) = < 2,3,4,1 > \rightarrow < 2,3,5,1 >$ noise 1 added $W(u) = < 2,3,4,1 > \rightarrow < 2,3,4,0 >$ noise -1 added $W(u) = < 2,3,4,1 > \rightarrow < 1,3,4,0 >$ noise -2 added

• Private Location Selection

- $-\widetilde{P_C}(u) = <\widetilde{T_C}(u), \widehat{W_C}(u) > \text{has the high}$ probability to be re-identified since $\widetilde{P_C}(u)$ contains a major part of original locations
- Private Location Selection replaces original locations with selected new locations

$$\begin{array}{c} \text{Replace } t_1 \text{ with } t_2 \\ \hline W_c(u) = <3.0,0,0> & <0.3,0,0> \\ \hline W_c(u) = <1,2,1,1> & <0.3,1,1> \\ \hline W_c(u) = <0.2,1,1> & <0.2,1,1> \end{array}$$

Hierarchical Location Publishing

• Private Location Selection

- How to select a location to replace $t \in C_1$?

 - $\begin{array}{ll} \bullet \ \ \mbox{Uniformly selecting a location} \ t' \in \mathcal{C}_l & \mbox{Poor utility} \\ \bullet \ \ \mbox{Selecting the most similar} \ t' \ \mbox{with} \ t & \mbox{Poor privacy} \\ \end{array}$
- Considerations on Selecting a New location to replace $t \in C_l$?
 - · Retain utility of locations
 - · Mask the similarity between locations

Hierarchical Location Publishing

Private Location Selection

- Exponential Mechanism based Selection
 - For a location $t \in C_l$, the candidate set $I = \widetilde{T_C}(u)$
 - · Score function is defined based on distance $q_i(I,t_i) = HS - d(t_i,t_i)$
 - · The sensitivity for score function is measured by the maximal change in distance between t_i and t_i

$$\Delta q_i = HS$$

Hierarchical Location Publishing

Private Location Selection

- Exponential Mechanism based Selection
 - Private location selection consumes $\varepsilon/4$ privacy budget
 - The probability arranged to each location t_i is

$$\Pr(t_j) = \frac{\exp(\frac{\varepsilon \times q_i(l,t_j)}{8 \times HS})}{\sum_{t_k \in I} \exp(\frac{\varepsilon \times q_i(l,t_k)}{8 \times HS})}$$

• For each C_l , replace locations in C_l and output $\widehat{T_{C_l}}(u)$

• Utility Analysis

- Distance Error: the distance between P_u and $\widehat{P_u}$ which measures for user u (t is replaced by \hat{t})

$$DE_{u} = \frac{\sum_{\widehat{t} \in \widehat{T_{C}}(u)} d(t, \widehat{t})}{HS \times |\widehat{T_{C}}(u)|}$$

- For the entire dataset, Average Distance Error is defined as

$$DE = \frac{1}{|U|} \sum_{u \in U} DE_u$$

Hierarchical Location Publishing

• Utility Analysis

– For any user $u \in U$, for all $\delta > 0$, with probability at least $1 - \beta$, the distance error of the released dataset is less than α , where

$$\alpha = \max_{u \in U} \frac{\sum_{t_i \in \widehat{T_C}(u), t_j \in C_{t_i}} {E[d(t_i, t_j)]}}{{HS \times |\widehat{T_C}(u)| \times \beta}}.$$

Hierarchical Location Publishing

• Utility Analysis

- Proof Sketch

• According to Markov inequality we have
$$\Pr(DE_u > \alpha) \leq \frac{E[DE_u]}{\alpha}$$

• That is to say

$$\Pr(DE_u \le \alpha) \le 1 - \frac{E[DE_u]}{\alpha}$$

• Let
$$\beta = \frac{E[DE_u]}{\alpha}$$
, then $\alpha = \frac{E[DE_u]}{\beta}$

• We can get
$$E[DE_u] = \frac{\sum_{t_i \in \widehat{T_C}(u), t_j \in C_{t_i}} E[d(t_i, t_j)]}{HS \times |\widehat{T_C}(u)|}$$

Hierarchical Location Publishing

• Utility Analysis

- Proof Sketch

• Thus for user u, the value of
$$\alpha$$
 should be
$$\alpha = \frac{\sum_{t_i \in \widehat{T_C}(u), t_j \in \mathcal{C}_{t_i}} {}^E[d(t_i, t_j)]}{HS \times |\widehat{T_C}(u)| \times \beta}$$
• By traversing all the users

$$\alpha = \max_{u \in U} \frac{\sum_{t_i \in \widehat{T_C}(u), t_j \in C_{t_i}} E[d(t_i, t_j)]}{HS \times |\widehat{T_C}(u)| \times \beta}$$

• Privacy Analysis

Operations	Privacy Budget
[Step 1] Private Location Cluster	$\varepsilon/2$
[Step 2] Cluster Weight Perturbation	$\varepsilon/4$
[Step 3] Private Location Selection	$\varepsilon/4$

[–] According to sequential composition theorem, PriLocation algorithm satisfies $\varepsilon\text{-}dp$