

SEQUENCE LISTING

<110> Stashenko, Philip
Okamatsu, Yoshimura
Sasaki, Hajime
Battaglino, Richard
Spaete, Ulrike

<120> Expressed Genes that Define the Osteoclast Phenotype

<130> 25669-003

<140> 10/734,692

<141> 2003-12-11

<150> 60/432,700

<151> 2002-12-11

<160> 49

<170> PatentIn version 3.2

<210> 1
<211> 22
<212> DNA
<213> Mus musculus

<400> 1
gtgttcatca ttggagtggt gg 22

<210> 2
<211> 23
<212> DNA
<213> Mus musculus

<400> 2
ggttgaacag gtagatgctg gtc 23

<210> 3
<211> 1118
<212> DNA
<213> Mus musculus

<400> 3
gggccagctg ggtctgcccc ctaagaagat gaagcctttt catactgccc ttccttcct 60
cattcttaca actgctcttg gaatctgggc ccagatcaca catgcaacag agacaaaaga 120
agtccagagc agtctgaagg cacagcaagg gcttggaaatt gaaatgttc acatggcctt 180
tcaagactct tcagattgct gcctgtccta taactcacgg attcagtgtt caagatttat 240
aggttatttt cccaccagtg gtgggtgtac caggccggc atcatcttta tcagcaagag 300
ggggttccag gtctgtgcca accccagtga tcggagagtt cagagatgca ttgaaagatt 360

ggagaaaaac tcacaaccac ggacctacaa acaataacat ttgctttaga gaagggtgtg	420
aactgccagc tactttctt ggtctccccc agtgaccacc taagtggctc taagtgttta	480
tttttatagg tatataaaaca tttttttttt ctgttccac tttaaagtgg catatctggc	540
tttgcacag agggaaaact tgtctgtgcc aaccccagtc atctgaaaac tcagatgcct	600
gggaaggctct gaagctgacc tcaatgacta cacataatat ttgattgaga taaatggca	660
aggtctggag agatggcttg gtggtaaga gcacctgctg ctcttccaga ggacctgggt	720
tcaattccca cttagatggc agctcaaact atctataatt ccaattccaa agaaaactga	780
tgccctattt tgcccttta gttagtagta tttacagtat tctttataaa ttcaccttga	840
catgaccatc ttgagctaca gccatcctaa ctgcctcaga atcactcaag ttcttccact	900
cggtttccca gcggatttta agtggataaa ctgtgagagt ggtctgtggg actttggaat	960
gtgtctgggt ctgatagtca cttatggcaa cccaggtaca ttcaactagg atgaaataaa	1020
ttctgcctta gcccagtagt atgtctgtgt ttgtaaggac ccagctgatt ttcccaccac	1080
ccctccatca gtccgccact aataaagtgc atctatgc	1118

<210> 4
 <211> 122
 <212> PRT
 <213> Mus musculus

<400> 4

Met Lys Pro Phe His Thr Ala Leu Ser Phe Leu Ile Leu Thr Thr Ala
 1 5 10 15

Leu Gly Ile Trp Ala Gln Ile Thr His Ala Thr Glu Thr Lys Glu Val
 20 25 30

Gln Ser Ser Leu Lys Ala Gln Gln Gly Leu Glu Ile Glu Met Phe His
 35 40 45

Met Gly Phe Gln Asp Ser Ser Asp Cys Cys Leu Ser Tyr Asn Ser Arg
 50 55 60

Ile Gln Cys Ser Arg Phe Ile Gly Tyr Phe Pro Thr Ser Gly Gly Cys
 65 70 75 80

Thr Arg Pro Gly Ile Ile Phe Ile Ser Lys Arg Gly Phe Gln Val Cys
 85 90 95

Ala Asn Pro Ser Asp Arg Arg Val Gln Arg Cys Ile Glu Arg Leu Glu
100 105 110

Lys Asn Ser Gln Pro Arg Thr Tyr Lys Gln
115 120

<210> 5
<211> 2156
<212> DNA
<213> Homo sapiens

<400> 5
ggcacgagcc cagaaacaaa gacttcacgg acaaagtccc ttggaaccag agagaagccg 60
ggatggaaac tccaaacacc acagaggact atgacacgac cacagagtt gactatgggg 120
atgcaactcc gtgccagaag gtgaacgaga gggccttgg ggcccaactg ctgccccctc 180
tgtactcctt ggtatttgc attggcctgg ttggaaacat cctggtggtc ctggtccttg 240
tgcaatacaa gaggctaaaa aacatgacca gcatctacct cctgaacctg gccattctg 300
acctgctctt cctgttcacg cttcccttct ggatcgacta caagttgaag gatgactggg 360
tttttgtga tgccatgtgt aagatcctct ctgggttta ttacacaggc ttgtacagcg 420
agatctttt catcatcctg ctgacgattt acaggtaacctt ggccatcgac cacggcgtgt 480
ttgccttgcg ggcacggacc gtcacttttgcgttcatcac cagcatcatc atttggggccc 540
tggccatctt ggcttccatg ccaggcttat actttccaa gacccaatgg gaattcactc 600
accacacctg cagccttcac tttcctcactt aaaggctacg agagtggaaag ctgtttcagg 660
ctctgaaactt gaaacctttt gggctggat tgcctttgtt ggtcatgatc atctgctaca 720
cagggattat aaagattctg ctaagacgac caaatgagaa gaaatccaaa gctgtccgtt 780
tgattttgtt catcatgatc atcttttttc tctttggac cccctacaat ttgactatac 840
ttatttctgtt tttccaagac ttcctgttca cccatgagtg tgagcagagc agacatttgg 900
acctggctgt gcaagtgacg gaggtgatcg cctacacgca ctgctgtgtc aacccagtga 960
tctacgcctt cggttgtgag aggttccggaa agtacctgacg gcagttgttc cacaggcgtg 1020
tggctgtgca cctggtaaaa tggctccctt tcctctccgt ggacaggctg gagagggtca 1080
gctccacatc tccctccaca ggggagcatg aactctctgc tgggttctga ctcagaccat 1140
aggaggccaa cccaaaataa gcaggcgtga cctgccaggc acactgagcc agcagcctgg 1200
ctctcccagc caggttctga ctcttggcac agcatggagt cacagccact tggatagag 1260

aggaaatgta atggtggcct	ggggcttctg	aggcttctgg	ggcttcagtc	ttttccatga	1320	
acttctcccc	tggtagaaag	aagatgaatg	agcaaaaacca	aatattccag	agactggac	1380
taagtgtacc	agagaaggc	ttggactcaa	gcaagattc	agatttgta	ccattagcat	1440
ttgtcaacaa	agtcacccac	ttcccactat	tgcttgcaca	aaccaattaa	acccagtagt	1500
ggtgactgtg	ggctccattc	aaagtgagct	cctaagccat	gggagacact	gatgtatgag	1560
gaatttctgt	tcttccatca	cctccccccc	cccgccaccc	tcccactgcc	aagaacttgg	1620
aaatagtat	ttccacagtg	actccactct	gagtcccaga	gccaatcagt	agccagcattc	1680
tgccctccct	tcactccac	cgcaggattt	gggctttgg	aatcctgggg	aacatagaac	1740
tcatgacgga	agagttgaga	cctaacgaga	aatagaaatg	ggggaaactac	tgctggcagt	1800
ggaactaaga	aagcccttag	gaagaatttt	tatatccact	aaaatcaaac	aattcaggga	1860
gtgggctaag	cacggccat	atgaataaca	tggtgtgctt	cttaaaatag	ccataaaggg	1920
gagggactca	tcatttccat	ttacccttct	tttctgacta	ttttcagaa	tctctttct	1980
tttcaagttg	ggtgatatgt	tggttagattc	taatggcttt	attgcagcga	ttaataacag	2040
gcaaaaggaa	gcagggttgg	tttcccttct	ttttgttctt	catctaagcc	ttctggtttt	2100
atgggtcaga	gttccgactg	ccatcttgg	cttgcagca	aaaaaaaaaa	aaaaaa	2156

<210> 6
 <211> 355
 <212> PRT
 <213> Homo sapiens

<400> 6

Met	Glu	Thr	Pro	Asn	Thr	Thr	Glu	Asp	Tyr	Asp	Thr	Thr	Thr	Glu	Phe
1							5			10				15	

Asp	Tyr	Gly	Asp	Ala	Thr	Pro	Cys	Gln	Lys	Val	Asn	Glu	Arg	Ala	Phe
								20		25			30		

Gly	Ala	Gln	Leu	Leu	Pro	Pro	Leu	Tyr	Ser	Leu	Val	Phe	Val	Ile	Gly
									35	40		45			

Leu	Val	Gly	Asn	Ile	Leu	Val	Val	Leu	Val	Leu	Val	Gln	Tyr	Lys	Arg
								50	55	60					

Leu	Lys	Asn	Met	Thr	Ser	Ile	Tyr	Leu	Leu	Asn	Leu	Ala	Ile	Ser	Asp
			65				70			75			80		

Leu Leu Phe Leu Phe Thr Leu Pro Phe Trp Ile Asp Tyr Lys Leu Lys
85 90 95

Asp Asp Trp Val Phe Gly Asp Ala Met Cys Lys Ile Leu Ser Gly Phe
100 105 110

Tyr Tyr Thr Gly Leu Tyr Ser Glu Ile Phe Phe Ile Ile Leu Leu Thr
115 120 125

Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Phe Ala Leu Arg Ala
130 135 140

Arg Thr Val Thr Phe Gly Val Ile Thr Ser Ile Ile Ile Trp Ala Leu
145 150 155 160

Ala Ile Leu Ala Ser Met Pro Gly Leu Tyr Phe Ser Lys Thr Gln Trp
165 170 175

Glu Phe Thr His His Thr Cys Ser Leu His Phe Pro His Glu Ser Leu
180 185 190

Arg Glu Trp Lys Leu Phe Gln Ala Leu Lys Leu Asn Leu Phe Gly Leu
195 200 205

Val Leu Pro Leu Leu Val Met Ile Ile Cys Tyr Thr Gly Ile Ile Lys
210 215 220

Ile Leu Leu Arg Arg Pro Asn Glu Lys Lys Ser Lys Ala Val Arg Leu
225 230 235 240

Ile Phe Val Ile Met Ile Ile Phe Phe Leu Phe Trp Thr Pro Tyr Asn
245 250 255

Leu Thr Ile Leu Ile Ser Val Phe Gln Asp Phe Leu Phe Thr His Glu
260 265 270

Cys Glu Gln Ser Arg His Leu Asp Leu Ala Val Gln Val Thr Glu Val
275 280 285

Ile Ala Tyr Thr His Cys Cys Val Asn Pro Val Ile Tyr Ala Phe Val
290 295 300

Gly Glu Arg Phe Arg Lys Tyr Leu Arg Gln Leu Phe His Arg Arg Val
305 310 315 320

Ala Val His Leu Val Lys Trp Leu Pro Phe Leu Ser Val Asp Arg Leu
325 330 335

Glu Arg Val Ser Ser Thr Ser Pro Ser Thr Gly Glu His Glu Leu Ser
340 345 350

Ala Gly Phe
355

<210> 7
<211> 2156
<212> DNA
<213> Homo sapiens

<400> 7
ggcacgagcc cagaaacaaa gacttcacgg acaaagtccc ttggaaccag agagaagccg 60
ggatggaaac tccaaacacc acagaggact atgacacgac cacagagttt gactatgggg 120
atgcaactcc gtgccagaag gtgaacgaga gggccttgg ggcccaactg ctgccccctc 180
tgtactcctt ggtatttgc attggcctgg ttggaaacat cctggtggtc ctggtccttg 240
tgcaatacaa gaggctaaaa aacatgacca gcatctaccc cctgaacctg gccattctg 300
acctgctctt cctgttcacg cttcccttct ggatcgacta caagttgaag gatgactggg 360
tttttgtga tgccatgtgt aagatcctct ctgggttta ttacacaggc ttgtacagcg 420
agatctttt catcatcctg ctgacgattt acaggtaccc ggccatcgac cacggcgtgt 480
ttgccttgcg ggcacggacc gtcacttttgcgtgtcatcac cagcatcatc atttggggcc 540
tgcccatctt ggcttccatg ccaggcttat actttccaa gacccaatgg gaattcactc 600
accacacctg cagccttcac tttcctcacg aaagcctacg agagtggaaag ctgtttcagg 660
ctctgaaact gaacctctt gggctggat tgcctttgtt ggtcatgatc atctgctaca 720
cagggattat aaagattctg ctaagacgac caaatgagaa gaaatccaaa gctgtccgtt 780
tgattttgtt catcatgatc atctttttc tctttggac cccctacaat ttgactatac 840
ttatctgtt tttccaagac ttccctgttca cccatgagtg tgagcagagc agacatttg 900
acctggctgt gcaagtgacg gaggtgatcg cctacacgca ctgctgtgtc aacccagtga 960
tctacgcctt cgttggtgag aggttccgga agtacctgcg gcagttgttc cacaggcgtt 1020

tggctgtgca	cctggtaaaa	tggctcccct	tcctctccgt	ggacaggctg	gagagggtca	1080
gctccacatc	tccctccaca	ggggagcatg	aactctctgc	tggttctga	ctcagaccat	1140
aggaggccaa	cccaaataaa	gcaggcgtga	cctgccaggc	acactgagcc	agcagcctgg	1200
ctctcccagc	caggttctga	ctcttggcac	agcatggagt	cacagccact	tggatagag	1260
aggaaatgta	atggtggcct	ggggcttctg	aggcttctgg	ggcttcagtc	ttttccatga	1320
acttctcccc	tggtagaaag	aagatgaatg	agcaaaacca	aatattccag	agactggac	1380
taagtgtacc	agagaaggc	ttggactcaa	gcaagattc	agatttgcata	ccattagcat	1440
ttgtcaacaa	agtcacccac	ttcccactat	tgcttgcaca	aaccaattaa	acccagtagt	1500
ggtgactgtg	ggctccattc	aaagtgagct	cctaagccat	gggagacact	gatgtatgag	1560
gaatttctgt	tcttccatca	cctccccccc	cccgccaccc	tcccactgcc	aagaacttgg	1620
aaatagtgtat	ttccacagtg	actccactct	gagtcccaga	gccaatcagt	agccagcatc	1680
tgcctcccct	tcactcccac	cgcaggattt	gggcttctgg	aatcctgggg	aacatagaac	1740
tcatgacgga	agagttgaga	cctaacgaga	aatagaaatg	gggaaactac	tgctggcagt	1800
ggaactaaga	aagcccttag	gaagaatttt	tatatccact	aaaatcaaac	aattcaggga	1860
gtgggctaag	cacggccat	atgaataaca	tggtgtgctt	ctaaaaatag	ccataaaggg	1920
gagggactca	tcatttccat	ttacccttct	tttctgacta	ttttcagaa	tctctttct	1980
tttcaagttg	ggtgatatgt	tggtagattc	taatggcttt	attgcagcga	ttaataacag	2040
gcaaaaggaa	gcagggttgg	ttcccttct	ttttgttctt	catctaagcc	ttctggtttt	2100
atgggtcaga	gttccgactg	ccatcttggaa	cttgcagca	aaaaaaaaaa	aaaaaaaa	2156

<210> 8
 <211> 355
 <212> PRT
 <213> Homo sapiens

 <400> 8

Met Glu Thr Pro Asn Thr Thr Glu Asp Tyr Asp Thr Thr Thr Glu Phe
 1 5 10 15

Asp Tyr Gly Asp Ala Thr Pro Cys Gln Lys Val Asn Glu Arg Ala Phe
 20 25 30

Gly Ala Gln Leu Leu Pro Pro Leu Tyr Ser Leu Val Phe Val Ile Gly
 35 40 45

Leu Val Gly Asn Ile Leu Val Val Leu Val Leu Val Gln Tyr Lys Arg
50 55 60

Leu Lys Asn Met Thr Ser Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp
65 70 75 80

Leu Leu Phe Leu Phe Thr Leu Pro Phe Trp Ile Asp Tyr Lys Leu Lys
85 90 95

Asp Asp Trp Val Phe Gly Asp Ala Met Cys Lys Ile Leu Ser Gly Phe
100 105 110

Tyr Tyr Thr Gly Leu Tyr Ser Glu Ile Phe Phe Ile Ile Leu Leu Thr
115 120 125

Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Phe Ala Leu Arg Ala
130 135 140

Arg Thr Val Thr Phe Gly Val Ile Thr Ser Ile Ile Ile Trp Ala Leu
145 150 155 160

Ala Ile Leu Ala Ser Met Pro Gly Leu Tyr Phe Ser Lys Thr Gln Trp
165 170 175

Glu Phe Thr His His Thr Cys Ser Leu His Phe Pro His Glu Ser Leu
180 185 190

Arg Glu Trp Lys Leu Phe Gln Ala Leu Lys Leu Asn Leu Phe Gly Leu
195 200 205

Val Leu Pro Leu Leu Val Met Ile Ile Cys Tyr Thr Gly Ile Ile Lys
210 215 220

Ile Leu Leu Arg Arg Pro Asn Glu Lys Lys Ser Lys Ala Val Arg Leu
225 230 235 240

Ile Phe Val Ile Met Ile Ile Phe Phe Leu Phe Trp Thr Pro Tyr Asn
245 250 255

Leu Thr Ile Leu Ile Ser Val Phe Gln Asp Phe Leu Phe Thr His Glu
260 265 270

Cys Glu Gln Ser Arg His Leu Asp Leu Ala Val Gln Val Thr Glu Val
275 280 285

Ile Ala Tyr Thr His Cys Cys Val Asn Pro Val Ile Tyr Ala Phe Val
290 295 300

Gly Glu Arg Phe Arg Lys Tyr Leu Arg Gln Leu Phe His Arg Arg Val
305 310 315 320

Ala Val His Leu Val Lys Trp Leu Pro Phe Leu Ser Val Asp Arg Leu
325 330 335

Glu Arg Val Ser Ser Thr Ser Pro Ser Thr Gly Glu His Glu Leu Ser
340 345 350

Ala Gly Phe
355

<210> 9
<211> 309
<212> DNA
<213> Homo sapiens

<400> 9
accatgaagg tctccgcggc agccctcgct gtcatcctca ttgctactgc cctctgcgct 60
cctgcatctg cctcccccata ttcctcggac accacaccct gctgctttgc ctacattgcc 120
cgccccactgc cccgtgcccc catcaaggag tatttctaca ccagtggcaa gtgctccaac 180
ccagcagtcg tctttgtcac ccgaaagaac cgccaaagtgt gtgccaaccc agagaagaaa 240
tgggttcggg agtacatcaa ctcttggag atgagctagg atggagagtc cttgaacctg 300
aacttacac 309

<210> 10
<211> 91
<212> PRT
<213> Homo sapiens

<400> 10

Met Lys Val Ser Ala Ala Ala Leu Ala Val Ile Leu Ile Ala Thr Ala
1 5 10 15

Leu Cys Ala Pro Ala Ser Ala Ser Pro Tyr Ser Ser Asp Thr Thr Pro
20 25 30

Cys Cys Phe Ala Tyr Ile Ala Arg Pro Leu Pro Arg Ala His Ile Lys
35 40 45

Glu Tyr Phe Tyr Thr Ser Gly Lys Cys Ser Asn Pro Ala Val Val Phe
50 55 60

Val Thr Arg Lys Asn Arg Gln Val Cys Ala Asn Pro Glu Lys Lys Trp
65 70 75 80

Val Arg Glu Tyr Ile Asn Ser Leu Glu Met Ser
85 90

<210> 11
<211> 10
<212> DNA
<213> Homo sapiens

<400> 11
actcattaaat 10

<210> 12
<211> 10
<212> DNA
<213> Homo sapiens

<400> 12
actcattaaac 10

<210> 13
<211> 10
<212> DNA
<213> Homo sapiens

<400> 13
gctcattaaat 10

<210> 14
<211> 10
<212> DNA
<213> Homo sapiens

<400> 14
gctcattaaac 10

<210> 15
<211> 0
<212> DNA
<213> No Sequence Data

<400> 15	
000	
<210> 16	
<211> 18	
<212> DNA	
<213> Homo sapiens	
<400> 16	
cacagctcat taacgcgc	18
<210> 17	
<211> 18	
<212> DNA	
<213> Homo sapiens	
<400> 17	
gtgtcgagta attgcgcg	18
<210> 18	
<211> 22	
<212> DNA	
<213> Homo sapiens	
<400> 18	
gccaacctca agatccggg cg	22
<210> 19	
<211> 22	
<212> DNA	
<213> Homo sapiens	
<400> 19	
ccagttctc ggcgatggcg gc	22
<210> 20	
<211> 20	
<212> DNA	
<213> Homo sapiens	
<400> 20	
cacgggtgtc tccactccgg	20
<210> 21	
<211> 20	
<212> DNA	
<213> Homo sapiens	
<400> 21	
ccgcgatctt ctccgaggag	20

<210> 22		
<211> 28		
<212> DNA		
<213> Homo sapiens		
<400> 22		
ggccatgaac gccaaaggc ctttcggc		28
<210> 23		
<211> 28		
<212> DNA		
<213> Homo sapiens		
<400> 23		
gcgccatgtat gatgcgggtg gatctgct		28
<210> 24		
<211> 21		
<212> DNA		
<213> Homo sapiens		
<400> 24		
gaccgcttct ccaaggcacga c		21
<210> 25		
<211> 20		
<212> DNA		
<213> Homo sapiens		
<400> 25		
ctgcgcgggt gctgtttag		20
<210> 26		
<211> 18		
<212> DNA		
<213> Homo sapiens		
<400> 26		
cacagctcat taacgcgc		18
<210> 27		
<211> 18		
<212> DNA		
<213> Homo sapiens		
<400> 27		
gcgcgtaat gagctgtg		18
<210> 28		
<211> 18		

```

<212> DNA
<213> Artificial

<220>
<223> Primer to Generate Mutated Sequence

<400> 28
gcgcgttgct gagctctg 18

<210> 29
<211> 18
<212> DNA
<213> Artificial

<220>
<223> Primer to Generate Mutated Sequence

<400> 29
cagagctcag caacgcgc 18

<210> 30
<211> 2160
<212> DNA
<213> Mus sp.

<400> 30
gagcagtgcg agcgagcgca cgctcgggac ggaggccggg cgagccggcg tgcgcactt 60
gccgcggact ttgcgagtgt tttgtggatt tttacatgcc aaggcgccaa gatgatgtcc 120
atgaacagca agcagcctca ctttgccatg catcccaccc tccctgagca caagtacccg 180
tcgctgcact ccagctccga gccatccgg cgggcctgcc tgcccacgcc gccggtaagc 240
gccccacgcc gcggcccccgg tcccggcccg cgcgctcgcc ccctcccgcg tccgcgggtg 300
gccccacgcc gcggcccccgg tcccggcccg ctcgcggcg ggactgctct tagagggatc 360
ccgctgccag gcacgcgtgg cccggggccg ctggaggccc gggtcccatt cgcctgtgcc 420
tctgtccagg gcctgccatc cgcggggagc tctcgcccg cggctgtcga cttggctcca 480
ctttgtcggt taattttacg cctgcacaag gcgatctctg ctcgctcgct cgctcgctcg 540
ctcgctcgct cgcttcctcg ttcgggtgtg tggcacgggt ccttagcttc gagtgacatc 600
tccatttctt ctttttcttc ttctttcgc tctttttgt cgtctccac tgtttcccc 660
ggaatgtgtt tccgtgtgcg tccccttcta ccctccctg gcccgtgcc tctcccttc 720
tatttcccc accccggcat gttctcaaatt cgtccccgg tcctccgttg accctgctct 780
tcccccccccc cggtgttatt ttggtcgctt tgggtttgc ctttgcccg tgcttcctg 840
cttgcgtgtt tggtttgtgg tttctttgtt gtttgcccc cctttttct tttttttct 900

```

ttttctttct	tcttttttt	ttctttcctt	ttcttttgg	tttggttgt	gtgcctgca	960
gctgcagagc	aacctttcg	ccagcctgga	cgagacgctg	ctggcgccgg	ccgaggcgct	1020
ggcgccgtg	gacatcgccg	tgtcccagg	caagagccac	ccttcaagc	cgacgcccac	1080
gtaccacacg	atgaatagcg	tgcctgcac	gtccacgtcc	accgtgccgc	tggcgacca	1140
ccaccaccac	caccaccacc	accaggcgct	cgagcccggt	gacctgctgg	accacatctc	1200
gtcgccgtcg	ctcgcgctca	tggccggcgc	agggggcgca	ggcgccggcgg	gaggccggcgg	1260
cggcgccac	gacggccccc	ggggcggagg	cgacccgggg	ggcgccgggtg	gcccggccgg	1320
cggcggccccc	gggggtggcg	gcggcggcgg	cggcccgggg	ggcgccggcgg	gcgccccggg	1380
cggcgggctc	ttggggcggct	cgcgcatcc	gcacccgcac	atgcacggcc	tggccacct	1440
gtcgaccccc	gcggcggcgg	cggccatgaa	catggcgatcc	gggctgcccgc	atcccggtct	1500
cgtggccgcg	gcggcgcacc	acggcgcggc	ggcggcagcg	gcggcggcgg	cggcggggca	1560
ggtggcggcg	gcgtcgcccg	cggcggcggt	ggtgggcccgc	gcgggcctgg	cgtccatctg	1620
cgactcggac	acggacccgc	gcgagctcg	ggcggtcgcc	gagcgcttca	agcagcggcg	1680
catcaagctg	ggcgtgacgc	aggccgacgt	gggctcgccg	ctggccaacc	tcaagatccc	1740
gggcgtgggc	tcgctcagcc	agagcaccat	ctgcaggttc	gagtcgctca	cgctctcgca	1800
caacaacatg	atcgcgctca	agcccatcct	gcaggcgtgg	ctggaggagg	ccgaggccgc	1860
gcagcgtgag	aaaatgaaca	agccggagct	cttcaacggc	ggcgagaaga	agcgcaagcg	1920
gacttccatc	gccgcgcccc	agaagcgctc	cctcgaggcc	tatttgccc	tacaaccccg	1980
gccctcgct	gagaagatcg	ccgccatcgc	cgagaaactg	gaccta	aaaagaacgtgg	2040
gcgggtgtgg	tttgcaacc	agagacagaa	gcagaagcgg	atgaaattct	ctgccactta	2100
ctgaggaggg	tgtgagacgc	cgggtggggc	acactggga	gctgaggggt	gcgtttctgg	2160

<210> 31
 <211> 421
 <212> PRT
 <213> Mus sp.

<400> 31

Met	Met	Ser	Met	Asn	Ser	Lys	Gln	Pro	His	Phe	Ala	Met	His	Pro	Thr
1															

Leu	Pro	Glu	His	Lys	Tyr	Pro	Ser	Leu	His	Ser	Ser	Ser	Glu	Ala	Ile
20															

Arg Arg Ala Cys Leu Pro Thr Pro Pro Leu Gln Ser Asn Leu Phe Ala
35 40 45

Ser Leu Asp Glu Thr Leu Leu Ala Arg Ala Glu Ala Leu Ala Ala Val
50 55 60

Asp Ile Ala Val Ser Gln Gly Lys Ser His Pro Phe Lys Pro Asp Ala
65 70 75 80

Thr Tyr His Thr Met Asn Ser Val Pro Cys Thr Ser Thr Ser Thr Val
85 90 95

Pro Leu Ala His His His His His His His Gln Ala Leu Glu
100 105 110

Pro Gly Asp Leu Leu Asp His Ile Ser Ser Pro Ser Leu Ala Leu Met
115 120 125

Ala Gly Ala Gly Gly Ala Gly Ala Ala Gly Gly Gly Gly Ala His
130 135 140

Asp Gly Pro Gly Gly Gly Gly Pro Gly Gly Gly Gly Pro Gly
145 150 155 160

Gly Gly Gly Pro Gly Gly Gly Gly Gly Gly Pro Gly Gly Gly
165 170 175

Gly Gly Ala Pro Gly Gly Leu Leu Gly Gly Ser Ala His Pro His
180 185 190

Pro His Met His Gly Leu Gly His Leu Ser His Pro Ala Ala Ala
195 200 205

Ala Met Asn Met Pro Ser Gly Leu Pro His Pro Gly Leu Val Ala Ala
210 215 220

Ala Ala His His Gly Ala Ala Ala Ala Ala Ala Ala Ala Ala Gly
225 230 235 240

Gln Val Ala Ala Ala Ser Ala Ala Ala Val Val Gly Ala Ala Gly
245 250 255

Leu Ala Ser Ile Cys Asp Ser Asp Thr Asp Pro Arg Glu Leu Glu Ala
260 265 270

Phe Ala Glu Arg Phe Lys Gln Arg Arg Ile Lys Leu Gly Val Thr Gln
275 280 285

Ala Asp Val Gly Ser Ala Leu Ala Asn Leu Lys Ile Pro Gly Val Gly
290 295 300

Ser Leu Ser Gln Ser Thr Ile Cys Arg Phe Glu Ser Leu Thr Leu Ser
305 310 315 320

His Asn Asn Met Ile Ala Leu Lys Pro Ile Leu Gln Ala Trp Leu Glu
325 330 335

Glu Ala Glu Gly Ala Gln Arg Glu Lys Met Asn Lys Pro Glu Leu Phe
340 345 350

Asn Gly Gly Glu Lys Lys Arg Lys Arg Thr Ser Ile Ala Ala Pro Glu
355 360 365

Lys Arg Ser Leu Glu Ala Tyr Phe Ala Val Gln Pro Arg Pro Ser Ser
370 375 380

Glu Lys Ile Ala Ala Ile Ala Glu Lys Leu Asp Leu Lys Lys Asn Val
385 390 395 400

Val Arg Val Trp Phe Cys Asn Gln Arg Gln Lys Gln Lys Arg Met Lys
405 410 415

Phe Ser Ala Thr Tyr
420

<210> 32
<211> 123
<212> DNA
<213> Homo sapiens

<400> 32
atgatgtcca tgaacagcaa gcagcctcac tttgccatgc atccccacct ccctgagcac 60
aagtacccgt cgctgactc cagctccgag gccatccggc gggcctgcct gcccacgccc 120
ccg 123

<210> 33

<211> 1149

<212> DNA

<213> Homo sapiens

<400> 33

ctgcagagca acctttcgc cagcctggac gagacgctgc tggcgcgcc cgaggcgctg	60
gcggccgtgg acatcgccgt gtcccaggc aagagccatc ctttcaagcc ggacgccacg	120
taccacacga tgaacacgcgt gccgtgcacg tccacttcca cgggcctct gcggcaccac	180
caccaccacc accaccacca ccaggcgctc gaacccggcg atctgcttga ccacatctcc	240
tcgcccgtcgc tcgcgtcat gcgcggcgcg ggccggcgcc gcggcgccgg cgccggcgcc	300
ggccggcgccg gcccacga cggcccgggg ggccgtggcg gcccggcgcc cggccggcgcc	360
ccggggcgccg gggccccggg gggaggcgcc ggtggcgcc cggggggcgcc cggccggcgcc	420
ccgggcggcg ggctcttggg cggctcccg cacccttacc cgcataatgca cagccttggc	480
cacctgtcgc accccgcggc ggccggccgc atgaacatgc cgtccgggct gcccaccccc	540
gggcgtggcggc gcaccacggc gcggcagcgg cagcggcgcc ggccggcgcc	600
ggcaggtgg cagcggcatc ggccggcgcc gccgtggcgg ggcagcggg cctggcgcc	660
atctgcgact cggacacgga cccgcgcgag ctcgaggcgt tcgcggagcg cttcaagcag	720
cggcgcacatca agctggcggt gacgcaggcc gacgtggct cggcgtggc caacctaag	780
atcccgcccg tggctcaact cagccagagc accatctgca gttcgagtc gtcacgctc	840
tcgcacaaca acatgatcgc gctcaagccc atcctgcagg cgtggctcga ggaggccgag	900
ggcgcccagc gcgagaaaat gaacaagcct gagctttca acggcgccga gaagaagcgc	960
aagcggactt ccacgcgcgc gcccggaaag cgctccctcg aggccctactt cggcgtgcag	1020
ccccggccct cgtccgagaa gatcgccgcc atcgccgaga aactggacct caaaaagaac	1080
gtggcgggg tgtggtttg caaccagaga cagaagcaga agcggatgaa attctctgcc	1140
acttactga	1149

<210> 34

<211> 423

<212> PRT

<213> Homo sapiens

<400> 34

Met Met Ser Met Asn Ser Lys Gln Pro His Phe Ala Met His Pro Thr			
1	5	10	15

Leu Pro Glu His Lys Tyr Pro Ser Leu His Ser Ser Ser Glu Ala Ile
20 25 30

Arg Arg Ala Cys Leu Pro Thr Pro Pro Leu Gln Ser Asn Leu Phe Ala
35 40 45

Ser Leu Asp Glu Thr Leu Leu Ala Arg Ala Glu Ala Leu Ala Ala Val
50 55 60

Asp Ile Ala Val Ser Gln Gly Lys Ser His Pro Phe Lys Pro Asp Ala
65 70 75 80

Thr Tyr His Thr Met Asn Ser Val Pro Cys Thr Ser Thr Ser Thr Val
85 90 95

Pro Leu Arg His His His His His His His Gln Ala Leu Glu
100 105 110

Pro Gly Asp Leu Leu Asp His Ile Ser Ser Pro Ser Leu Ala Leu Met
115 120 125

Ala Gly Ala Gly Gly Ala Gly Gly Ala Gly Ala Ala Ala Gly Gly Gly
130 135 140

Gly Ala His Asp Gly Pro Gly Gly Gly Gly Pro Gly Gly Gly Gly
145 150 155 160

Gly Pro Gly Gly Gly Pro Gly Gly Gly Gly Gly Gly Pro Gly
165 170 175

Gly Gly Gly Gly Pro Gly Gly Gly Leu Leu Gly Gly Ser Ala His
180 185 190

Pro His Pro His Met His Ser Leu Gly His Leu Ser His Pro Ala Ala
195 200 205

Ala Ala Ala Met Asn Met Pro Ser Gly Leu Pro His Pro Gly Leu Val
210 215 220

Ala Ala Ala Ala His His Gly Ala Ala Ala Ala Ala Ala Ala Ala
225 230 235 240

Ala Gly Gln Val Ala Ala Ala Ser Ala Ala Ala Ala Val Val Gly Ala
245 250 255

Ala Gly Leu Ala Ser Ile Cys Asp Ser Asp Thr Asp Pro Arg Glu Leu
260 265 270

Glu Ala Phe Ala Glu Arg Phe Lys Gln Arg Arg Ile Lys Leu Gly Val
275 280 285

Thr Gln Ala Asp Val Gly Ser Ala Leu Ala Asn Leu Lys Ile Pro Gly
290 295 300

Val Gly Ser Leu Ser Gln Ser Thr Ile Cys Arg Phe Glu Ser Leu Thr
305 310 315 320

Leu Ser His Asn Asn Met Ile Ala Leu Lys Pro Ile Leu Gln Ala Trp
325 330 335

Leu Glu Glu Ala Glu Gly Ala Gln Arg Glu Lys Met Asn Lys Pro Glu
340 345 350

Leu Phe Asn Gly Gly Glu Lys Lys Arg Lys Arg Thr Ser Ile Ala Ala
355 360 365

Pro Glu Lys Arg Ser Leu Glu Ala Tyr Phe Ala Val Gln Pro Arg Pro
370 375 380

Ser Ser Glu Lys Ile Ala Ala Ile Ala Glu Lys Leu Asp Leu Lys Lys
385 390 395 400

Asn Val Val Arg Val Trp Phe Cys Asn Gln Arg Gln Lys Gln Lys Arg
405 410 415

Met Lys Phe Ser Ala Thr Tyr
420

<210> 35
<211> 1091
<212> DNA
<213> Mus musculus

<400> 35
tttcaggatc actgtcatta ttattattt aacgttctgg gaatgctgta ggcacgggtgg 60

cggtgtggcag	ccctgggccg	ggggcttccg	gagagagcgc	tcacaattcc	ctgctgagcg	120
taatgtgtgc	cttctactta	caattgcaga	gcaatatatt	cgccgggctg	gatgagagtc	180
tgctggcccg	tgccgaggct	ctggccgccg	tggacatcgt	ctcccagagt	aagagccacc	240
accaccatcc	gccccaccac	agcccctca	agccggacgc	cacttaccac	accatgaaca	300
ccatcccg	cacgtcggca	gcctcctt	cttctgtgcc	catctcgac	ccgtccgctc	360
tggctggcac	ccatcaccac	caccaccacc	accatcacca	ccatcaccag	ccgcaccagg	420
cgctggaggg	cgagctgctt	gagcacctaa	gccccggct	ggccctggga	gctatggcgg	480
gccccgacgg	cacggtgtg	tccactccgg	ctcacgcacc	acacatggcc	accatgaacc	540
ccatgcacca	agcagccctg	agcatggccc	acgcacatgg	gctgcctca	cacatggct	600
gcatgagcga	cgtggatgca	gaccgcggg	acctggaggc	gttcgcccag	cgtttcaagc	660
agcgacgcat	caagctggga	gtgaccagg	cagatgtggg	ctcggcgctg	gccaacctca	720
agatcccg	cgtgggctcg	ctcagccaga	gcaccatctg	caggttgag	tctctcacgc	780
tgtcacacaa	caacatgatc	gcgctcaagc	ccatcctgca	ggcgtggctg	gaggaagctg	840
agaaatccca	ccgcgagaag	ctcactaagc	cgagctctt	caatggcg	gagaagaagc	900
gcaagcgcac	gtccatcg	gcccggaga	agcgctct	ggaagcctac	ttcgccatcc	960
agccaaggcc	ctcctcg	aagatcg	ccatcg	aaagctggat	ctcaagaaaa	1020
atgtggtg	cgtctgg	tgcaacc	ggcaga	aaaca	gaagaagg	1080
ccggcattta	g					1091

<210> 36
 <211> 322
 <212> PRT
 <213> Mus musculus

<400> 36

Met Cys Ala Phe Tyr Leu Gln Leu Gln Ser Asn Ile Phe Gly Gly Leu
 1 5 10 15

Asp Glu Ser Leu Leu Ala Arg Ala Glu Ala Leu Ala Ala Val Asp Ile
 20 25 30

Val Ser Gln Ser Lys Ser His His His His Pro Pro His His Ser Pro
 35 40 45

Phe Lys Pro Asp Ala Thr Tyr His Thr Met Asn Thr Ile Pro Cys Thr

50

55

60

Ser Ala Ala Ser Ser Ser Val Pro Ile Ser His Pro Ser Ala Leu
65 70 75 80

Ala Gly Thr His Gln
85 90 95

Pro His Gln Ala Leu Glu Gly Glu Leu Leu Glu His Leu Ser Pro Gly
100 105 110

Leu Ala Leu Gly Ala Met Ala Gly Pro Asp Gly Thr Val Val Ser Thr
115 120 125

Pro Ala His Ala Pro His Met Ala Thr Met Asn Pro Met His Gln Ala
130 135 140

Ala Leu Ser Met Ala His Ala His Gly Leu Pro Ser His Met Gly Cys
145 150 155 160

Met Ser Asp Val Asp Ala Asp Pro Arg Asp Leu Glu Ala Phe Ala Glu
165 170 175

Arg Phe Lys Gln Arg Arg Ile Lys Leu Gly Val Thr Gln Ala Asp Val
180 185 190

Gly Ser Ala Leu Ala Asn Leu Lys Ile Pro Gly Val Gly Ser Leu Ser
195 200 205

Gln Ser Thr Ile Cys Arg Phe Glu Ser Leu Thr Leu Ser His Asn Asn
210 215 220

Met Ile Ala Leu Lys Pro Ile Leu Gln Ala Trp Leu Glu Glu Ala Glu
225 230 235 240

Lys Ser His Arg Glu Lys Leu Thr Lys Pro Glu Leu Phe Asn Gly Ala
245 250 255

Glu Lys Lys Arg Lys Arg Thr Ser Ile Ala Ala Pro Glu Lys Arg Ser
260 265 270

Leu Glu Ala Tyr Phe Ala Ile Gln Pro Arg Pro Ser Ser Glu Lys Ile
275 280 285

Ala Ala Ile Ala Glu Lys Leu Asp Leu Lys Lys Asn Val Val Val Arg Val
290 295 300

Trp Phe Cys Asn Gln Arg Gln Lys Lys Lys Val Lys Tyr Ser Ala
305 310 315 320

Gly Ile

<210> 37
<211> 3110
<212> DNA
<213> Homo sapiens

<400> 37
agacctcgcc acccggttcag actgacagca gaggcggcga aggagcgcgt agccgagatc 60
aggcgtacag agtccggagg cggcggcggg tgagctcaac ttgcacacgc cttcccagc 120
tccagccccg gctggcccg cacttctcg 180
ctctacggac cagcggcccg gcgggcggga agatgatgat gatgtccctg aacagcaagc 240
aggcgtagttag catgcccac ggcggcagcc tgcacgtgga gcccaagtac tcggcactgc 300
acagcacctc gccgggctcc tcggctccca tcgcccctc ggccagctcc cccagcagct 360
cgagcaacgc tggtggtggc ggcggcggcg gcggcggcgg cggcggcggc ggcggaggcc 420
gaagcagcag ctccagcagc agtggcagca gcggcggcgg gggctcgag qctatgcgg 480
gagcctgtct tccaacccca ccgagcaata tattcggcgg gctggatgag agtctgctgg 540
cccgccgcca ggctctggca gccgtggaca tcgtctccca gagcaagagc caccaccacc 600
atccacccca ccacagcccc ttcaaaccgg acgccaccta ccacactatg aataccatcc 660
cgtcacgtc ggccgcctct tttcatcg tgcccatctc gcacccttgc gcgttggcgg 720
gcacgcacca ccaccaccac catcaccacc accaccacca ccaaccgcac caggcgctgg 780
aggcgagct gctggagcac ctgagtcgg ggctggccct gggcgctatg gcgggccccg 840
acggcgctgt ggtgtccacg ccggctcagc cgccgcacat ggccaccatg aacccatgc 900
accaaggcagc gctcagcatg gcccacgcgc acgggctgcc gtcgcacatg ggctgcata 960
gacgtgga cgccgacccg cgggacctgg aggcattcgc cgagcgcttc aagcagcagc 1020
gcatcaagct ggggtgacc caggcagatg tgggctccgc gctggccaac ctcaagatcc 1080
ccggcggtggg ctgcgttagc cagagcacca tctgcaggtt cgagtccttc acactgtccc 1140

acaataatat gatcgcgctc aaacccatcc tgcaggcatg gctcgaggag gccgagaagt	1200
cccaccgcga gaagctcacc aagcctgaac tcttcaatgg cgccgagaag aagcgcaagc	1260
gcacgtccat cgctgcgcca gagaagcgct cgctcgaagc ctactttgcc attcagcctc	1320
ggccctcctc tgaaaagatc gccgccatcg cggagaagct ggacctgaag aaaaacgtgg	1380
tgcgctctg gttctgcaac cagaggcaga aacagaaaag aatgaaatat tccgcccggca	1440
tttagaagac tcttggcctc tccagagacg ccccttcct cgtccgctct tttctctcct	1500
ctcttctgcc tctttcact tttggcgact agaaacaatt ccagtaaatg tgaatctcga	1560
caaatcgagg actgaagagg gagcgaacga gcgaacaact gagcccaagc cggtgagaat	1620
gtgaaacagt ttctcaaagg aaagaataac aaaagatggt atttgtctgt tgttagcaaag	1680
ttgtccctt gaaccccacc tcggcttctt cagaggaagt gtggagatgg ctgtttgcag	1740
gaaggcagac gagacagtgt taaaaagtc cacaagaatg atcaagtaag attttttttt	1800
attcttacag acatcacccg tggtaagtt taaaagtaca ctttgcact atttttcaga	1860
aatagaaatt gattcaggac taaaactta aactagagtt gatgcttaat gtgatagaga	1920
catctctaaa gtattttgaa ttttaaaaaa agatggcaga ttttctgcat ttacactgta	1980
tattatataat atattttat tgggttctt accccctttt ctttctctga agtgttaatg	2040
cttaagaaaa gagttgcgcc tgctgtgtc actgatctt aaagctatta ttagattatt	2100
gcagaacaac cctctgtaaa ttattaattt atctctctag caacttaatt ttgtgcacat	2160
tctaattaat taaacttctt ccgtctaaaa aaagtggggg aaatgtatag ctagtaacgt	2220
tcaaaaaatt ttgtttgatg agtttaccga atttttacag ctttcctcct atactgtgtt	2280
ccttttgacc catttgtata ttctcaactt aatgaagatt gttttttct ttgtttttac	2340
tggtagtgtt ctgatttgtg agtcgacact cagtaatgga tgtcttaatc gtgtagacct	2400
gattcaactgt ctgaagtatt gtttacttcg ttacatattt aatggggatt cccacattgt	2460
ccccatgaca catgagcgct ctcacttacc cttacacaca cacacacaca cacacacaca	2520
cctcttaacag aagggaaagaa gcagttggaa gcatgaccga tgcaccattt tctagttta	2580
ggtgcatttg ccacttggtg tttggcccttc agattttaga tttcaccaag gtatttcagt	2640
cttccagttt tcaattgctt tgggttgcac atgttaatat ttataggaat acttcagttt	2700
ttcctttgg aggtttgttt gtagaaaaac taatttgaac tataagaaag acagtgcact	2760
gcttgtaaat tcacattgtt tggaaaaatt ctttggaaac aaaaattag gtacatgata	2820

actggcacct tatctactgt aaatatttca ttaaaaatga tgcacacata gatatattct	2880
tacaaattt gctgtattgc tggtctctt gaggctctcc aaagtcttga gttctgtata	2940
tggcctggtt tcttggttt attaatagat ggtttattta ctatggtaat gtattaattt	3000
attttggtg ttgttcgatt gtcttcatt gaagagataa ttttaatgtt ttattggcaa	3060
cgtatgctgc ttttcatta aaatatgcta ttaaaaattaa atggctttta	3110

<210> 38
 <211> 410
 <212> PRT
 <213> Homo sapiens

 <400> 38

Met Met Met Met Ser Leu Asn Ser Lys Gln Ala Phe Ser Met Pro His			
1	5	10	15

Gly Gly Ser Leu His Val Glu Pro Lys Tyr Ser Ala Leu His Ser Thr		
20	25	30

Ser Pro Gly Ser Ser Ala Pro Ile Ala Pro Ser Ala Ser Ser Pro Ser		
35	40	45

Ser Ser Ser Asn Ala Gly		
50	55	60

Gly Gly Gly Gly Gly Arg Ser Ser Ser Ser Ser Ser Gly Ser Ser			
65	70	75	80

Gly Gly Gly Ser Glu Ala Met Arg Arg Ala Cys Leu Pro Thr Pro		
85	90	95

Pro Ser Asn Ile Phe Gly Gly Leu Asp Glu Ser Leu Leu Ala Arg Ala		
100	105	110

Glu Ala Leu Ala Ala Val Asp Ile Val Ser Gln Ser Lys Ser His His		
115	120	125

His His Pro Pro His His Ser Pro Phe Lys Pro Asp Ala Thr Tyr His		
130	135	140

Thr Met Asn Thr Ile Pro Cys Thr Ser Ala Ala Ser Ser Ser Val			
145	150	155	160

Pro Ile Ser His Pro Cys Ala Leu Ala Gly Thr His His His His His
165 170 175

His His His His His His Gln Pro His Gln Ala Leu Glu Gly Glu
180 185 190

Leu Leu Glu His Leu Ser Pro Gly Leu Ala Leu Gly Ala Met Ala Gly
195 200 205

Pro Asp Gly Ala Val Val Ser Thr Pro Ala His Ala Pro His Met Ala
210 215 220

Thr Met Asn Pro Met His Gln Ala Ala Leu Ser Met Ala His Ala His
225 230 235 240

Gly Leu Pro Ser His Met Gly Cys Met Ser Asp Val Asp Ala Asp Pro
245 250 255

Arg Asp Leu Glu Ala Phe Ala Glu Arg Phe Lys Gln Arg Arg Ile Lys
260 265 270

Leu Gly Val Thr Gln Ala Asp Val Gly Ser Ala Leu Ala Asn Leu Lys
275 280 285

Ile Pro Gly Val Gly Ser Leu Ser Gln Ser Thr Ile Cys Arg Phe Glu
290 295 300

Ser Leu Thr Leu Ser His Asn Asn Met Ile Ala Leu Lys Pro Ile Leu
305 310 315 320

Gln Ala Trp Leu Glu Glu Ala Glu Lys Ser His Arg Glu Lys Leu Thr
325 330 335

Lys Pro Glu Leu Phe Asn Gly Ala Glu Lys Lys Arg Lys Arg Thr Ser
340 345 350

Ile Ala Ala Pro Glu Lys Arg Ser Leu Glu Ala Tyr Phe Ala Ile Gln
355 360 365

Pro Arg Pro Ser Ser Glu Lys Ile Ala Ala Ile Ala Glu Lys Leu Asp
370 375 380

Leu Lys Lys Asn Val Val Arg Val Trp Phe Cys Asn Gln Arg Gln Lys
385 390 395 400

Gln Lys Arg Met Lys Tyr Ser Ala Gly Ile
405 410

<210> 39
<211> 1594
<212> DNA
<213> Mus musculus

<400> 39
caagcgagag ggcgagggga gcgctggcgc tgagcggcgc tcacttggag cgccggagagc 60
tagcaagacg agcttgattc catgtccccc gctgcctccc tgccagactc ccgaagatga
tggccatgaa cgccaagcac cgtttcggca tgcaccccggt actgcaagaa cccaaattct 120
ccagcctaca ctccggctct gaggccatgc gccgagtttgc tctcccgagcc ccgcaggtac
gtagcggacg ataattaccg ctctaaggca catttttga cagggacttag cttcatgttt 180
ttttcatgtc gcccagaaca atcgccgctg tctgaacccc tcgccttgc tcccccgcc 240
tctctcgccg ctctctctct ctctctctct ctctctctct ctctcattca
tgtctctgtat ccacacgtct gttccaacacg agaggctgcc tccgtattaa tttttatgac 300
ctgggctttg aggagaggca tctcggttgc ttgaaaatgt gtttaatcc tgagttgaca
gtattccccca ctgaccgtgc tgtgcgcctt ctcgccttgc gctgcagggt aatataatttg 360
gaagctttga tgagagcctg ctggcacgcg ccgaagctct ggcggcggtg gatatcgtct
cccacggcaa gaaccatccg ttcaagcccc acgcccaccta ccataccatg agcagcgtgc 420
cctgcacttc tacctcgccc acggtgccca tctctcaccc ggctgcactc acctcgacc
cgcatcacgc ggtacatcag ggcctcgagg gcgacttact tgagcacatc tcgcccacgc 480
tgagcgttag gggcttaggg gccccggagc actcggtat gcccggcag atccacccgc 540
atcatctagg cgccatgggc cacttgcacatc aggccatggg catgagtcac ccgcacatggc
tagcaccgca cagtgcacatc cccgcgtgtc tcagcgatgt ggagtcagac cctcgagagc 600
tggaagcggtt cgccgagcgc ttcaagcaga ggcgcacatc gttgggggtc acccaggcgg 660
acgtggcgcg ggcttttagcc aatcttaaga tccccgggtt gggctcgctc agccagagca
ccatctgcag gttcgagtct cttactctgt cgcacacacaa catgatcgct ctcaagccgg 720
tcctccaggc ctggctggag gaggccgagg ccgcctaccg agagaagaac agcaagccag
agctcttcaa cggcagttag ggtaaagcgc aacgcacatc catgcggcgc ccagagaagc 780
1020
1080
1140
1200
1260
1320

gctcaactcgaa	agcctattc	gccatccagc	cacgtccttc	atccgagaag	atcgcgccca	1380
tcgcggagaa	actggacctt	aaaaagaatg	tggtgagggt	ctggttctgt	aaccagagac	1440
agaaaacagaa	acgaatgaaa	tactctgctg	tggactgatt	gcggcgggtg	ctgcgtccgg	1500
aggagcctgg	agagccta	gatcgcccc	cttccgatgg	gaggggagct	tacgggacac	1560
tccagggtgt	ttcctggcag	gtcaggttct	ttcc			1594

<210> 40
 <211> 338
 <212> PRT
 <213> Mus musculus

 <400> 40

Met	Met	Ala	Met	Asn	Ala	Lys	His	Arg	Phe	Gly	Met	His	Pro	Val	Leu
1															15

Gln	Glu	Pro	Lys	Phe	Ser	Ser	Leu	His	Ser	Gly	Ser	Glu	Ala	Met	Arg
															30
															20
															25

Arg	Val	Cys	Leu	Pro	Ala	Pro	Gln	Leu	Gln	Gly	Asn	Ile	Phe	Gly	Ser
															45
															35
															40

Phe	Asp	Glu	Ser	Leu	Leu	Ala	Arg	Ala	Glu	Ala	Leu	Ala	Ala	Val	Asp
															50
															55
															60

Ile	Val	Ser	His	Gly	Lys	Asn	His	Pro	Phe	Lys	Pro	Asp	Ala	Thr	Tyr
															65
															70
															75
															80

His	Thr	Met	Ser	Ser	Val	Pro	Cys	Thr	Ser	Thr	Ser	Pro	Thr	Val	Pro
															85
															90
															95

Ile	Ser	His	Pro	Ala	Ala	Leu	Thr	Ser	His	Pro	His	His	Ala	Val	His
															100
															105
															110

Gln	Gly	Leu	Glu	Gly	Asp	Leu	Leu	Glu	His	Ile	Ser	Pro	Thr	Leu	Ser
															115
															120
															125

Val	Ser	Gly	Leu	Gly	Ala	Pro	Glu	His	Ser	Val	Met	Pro	Ala	Gln	Ile
															130
															135
															140

His	Pro	His	His	Leu	Gly	Ala	Met	Gly	His	Leu	His	Gln	Ala	Met	Gly
															145
															150
															155
															160

Met Ser His Pro His Ala Val Ala Pro His Ser Ala Met Pro Ala Cys
165 170 175

Leu Ser Asp Val Glu Ser Asp Pro Arg Glu Leu Glu Ala Phe Ala Glu
180 185 190

Arg Phe Lys Gln Arg Arg Ile Lys Leu Gly Val Thr Gln Ala Asp Val
195 200 205

Gly Ala Ala Leu Ala Asn Leu Lys Ile Pro Gly Val Gly Ser Leu Ser
210 215 220

Gln Ser Thr Ile Cys Arg Phe Glu Ser Leu Thr Leu Ser His Asn Asn
225 230 235 240

Met Ile Ala Leu Lys Pro Val Leu Gln Ala Trp Leu Glu Glu Ala Glu
245 250 255

Ala Ala Tyr Arg Glu Lys Asn Ser Lys Pro Glu Leu Phe Asn Gly Ser
260 265 270

Glu Arg Lys Arg Lys Arg Thr Ser Ile Ala Ala Pro Glu Lys Arg Ser
275 280 285

Leu Glu Ala Tyr Phe Ala Ile Gln Pro Arg Pro Ser Ser Glu Lys Ile
290 295 300

Ala Ala Ile Ala Glu Lys Leu Asp Leu Lys Lys Asn Val Val Arg Val
305 310 315 320

Trp Phe Cys Asn Gln Arg Gln Lys Gln Lys Arg Met Lys Tyr Ser Ala
325 330 335

Val Asp

<210> 41
<211> 120
<212> DNA
<213> Homo sapiens

<400> 41
atgatggcca tgaactccaa gcagctttc ggcattgcacc cggtgctgca agaacccaa 60

ttctccagtc tgcactctgg ctccgaggct atgcgccgag tctgtctccc agccccgcag 120

<210> 42

<211> 897

<212> DNA

<213> Homo sapiens

<400> 42

ctgcaggta atatatttgg aagctttgat gagagcctgc tggcacgcgc cgaagctctg 60

gcggcggtgg atatcgctc ccacggcaag aaccatccgt tcaagcccga cgccacctac 120

cataccatga gcagcgtgcc ctgcacgtcc acttcgtcca ccgtgcccat ctcccaccca 180

gctgcgctca cctcacaccc tcaccacgcc gtgcaccagg gcctcgaagg cgacctgctg 240

gagcacatct cgcccacgct gagtgtgagc ggcctggcg ctccggaaca ctcggtgatg 300

cccgacacaga tccatccaca ccacctgggc gccatgggcc acctgcacca ggccatgggc 360

atgagtcacc cgcacaccgt ggcccctcat agcgccatgc ctgcatgcct cagcgacgtg 420

gagtcagacc cgcgcgagct ggaagccttc gcccagcgct tcaagcagcg ggcgcataag 480

ctgggggtga cccaggcgga cgtggcgcg gctctggcta atctcaagat ccccgccgtg 540

ggctcgctga gccaaagcac catctgcagg ttcgagtctc tcactctctc gcacaacaac 600

atgatcgctc tcaagccggt gctccaggcc tggttggagg aggccgagggc cgccctaccga 660

gagaagaaca gcaagccaga gctttcaac ggcagcgaac ggaagcgcaa acgcacgtcc 720

atcgccggcgc cggagaagcg ttcactcgag gcctatttcg ctatccagcc acgtccttca 780

tctgagaaga tcgcggccat cgctgagaaa ctggacctta aaaagaacgt ggtgagagtc 840

tggttctgca accagagaca gaaacagaaa cgaatgaagt attcggctgt ccactga 897

<210> 43

<211> 338

<212> PRT

<213> Homo sapiens

<400> 43

Met Met Ala Met Asn Ser Lys Gln Pro Phe Gly Met His Pro Val Leu
1 5 10 15

Gln Glu Pro Lys Phe Ser Ser Leu His Ser Gly Ser Glu Ala Met Arg
20 25 30

Arg Val Cys Leu Pro Ala Pro Gln Leu Gln Gly Asn Ile Phe Gly Ser

35

40

45

Phe Asp Glu Ser Leu Leu Ala Arg Ala Glu Ala Leu Ala Ala Val Asp
50 55 60

Ile Val Ser His Gly Lys Asn His Pro Phe Lys Pro Asp Ala Thr Tyr
65 70 75 80

His Thr Met Ser Ser Val Pro Cys Thr Ser Thr Ser Ser Thr Val Pro
85 90 95

Ile Ser His Pro Ala Ala Leu Thr Ser His Pro His His Ala Val His
100 105 110

Gln Gly Leu Glu Gly Asp Leu Leu Glu His Ile Ser Pro Thr Leu Ser
115 120 125

Val Ser Gly Leu Gly Ala Pro Glu His Ser Val Met Pro Ala Gln Ile
130 135 140

His Pro His His Leu Gly Ala Met Gly His Leu His Gln Ala Met Gly
145 150 155 160

Met Ser His Pro His Thr Val Ala Pro His Ser Ala Met Pro Ala Cys
165 170 175

Leu Ser Asp Val Glu Ser Asp Pro Arg Glu Leu Glu Ala Phe Ala Glu
180 185 190

Arg Phe Lys Gln Arg Arg Ile Lys Leu Gly Val Thr Gln Ala Asp Val
195 200 205

Gly Ala Ala Leu Ala Asn Leu Lys Ile Pro Gly Val Gly Ser Leu Ser
210 215 220

Gln Ser Thr Ile Cys Arg Phe Glu Ser Leu Thr Leu Ser His Asn Asn
225 230 235 240

Met Ile Ala Leu Lys Pro Val Leu Gln Ala Trp Leu Glu Glu Ala Glu
245 250 255

Ala Ala Tyr Arg Glu Lys Asn Ser Lys Pro Glu Leu Phe Asn Gly Ser
260 265 270

Glu Arg Lys Arg Lys Arg Thr Ser Ile Ala Ala Pro Glu Lys Arg Ser
275 280 285

Leu Glu Ala Tyr Phe Ala Ile Gln Pro Arg Pro Ser Ser Glu Lys Ile
290 295 300

Ala Ala Ile Ala Glu Lys Leu Asp Leu Lys Lys Asn Val Val Arg Val
305 310 315 320

Trp Phe Cys Asn Gln Arg Gln Lys Gln Lys Arg Met Lys Tyr Ser Ala
325 330 335

Val His

<210> 44
<211> 18
<212> DNA
<213> Homo sapiens

<400> 44
cacagctcat taacgcgc 18

<210> 45
<211> 18
<212> DNA
<213> Homo sapiens

<400> 45
cactcctcat taacgcgc 18

<210> 46
<211> 18
<212> DNA
<213> Homo sapiens

<400> 46
cacagctcat taagtcgc 18

<210> 47
<211> 18
<212> DNA
<213> Homo sapiens

<400> 47
cacgcacatgcg taatgcgc 18

<210> 48
<211> 11
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<222> (5)..(7)
<223> wherein n is a, c, g, or t

<400> 48
gcatnnntaa t

11

<210> 49
<211> 11
<212> DNA
<213> *Rattus norvegicus*

<400> 49
gcataaataaa t

11