

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

PAGE BLANK (USPTO)

09 / 762045 PCT/EP+ 99 / 05467
BUNDESREPUBLIK DEUTSCHLAND

EP99/5467

4

REC'D	26 NOV 1999
WIPO	PCT

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Bescheinigung

Die BASF Aktiengesellschaft in Ludwigshafen/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"DNA-Sequenzen codierend für eine 1-Deoxy-D-Xylulose-5-Phosphat Synthase und eine Geranylgeranyl-Pyrophosphat Oxidoreduktase und deren Überproduktion in Pflanzen"

am 1. Oktober 1998 beim Deutschen Patent- und Markenamt eingereicht.

Die Anmeldung ist auf das Institut für Pflanzengenetik und Kulturpflanzenforschung in Gatersleben/Deutschland umgeschrieben worden.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole A 01 H und C 12 N der Internationalen Patentklassifikation erhalten.

München, den 18. Oktober 1999

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Aktenzeichen: 198 45 224.1

Jerofsky

Patentansprüche

1. Verwendung von DNA-Sequenzen codierend für eine 1-Deoxy-D-Xy-
5 lulose-5-Phosphat Synthase (DOXS) und codierend für eine Ge-
rananylgeranyl-Pyrophosphat Oxidoreduktase (GGPPOR) zur Her-
stellung von Pflanzen mit erhöhtem Tocopherol-, Vitamin K-,
Chlorophyll- und/oder Carotinoid-Gehalt.
- 10 2. Verwendung einer DNA-Sequenz SEQ ID No. 1 und einer DNA-Se-
quenz SEQ ID No. 3 oder mit diesen hybridisierende DNA-Se-
quenzen kodierend für eine 1-Deoxy-D-Xylulose-5-Phosphat Syn-
thase (DOXS) und eine Geranylgeranyl-Pyrophosphat Oxidoreduk-
tase (GGPPOR) zur Herstellung von Pflanzen mit erhöhtem
15 Gehalt an Tocopherolen, Vitamin K, Chlorophyllen und/oder
Carotinoiden.
- 20 3. Verfahren zur Herstellung von Pflanzen mit erhöhtem Toco-
pherol-, Vitamin K-, Chlorophyll- und/oder Carotinoid-Gehalt,
dadurch gekennzeichnet, daß eine DNA-Sequenz SEQ-ID No. 1 und
eine DNA-Sequenz SEQ-ID No. 3 oder mit diesen hybridisierende
DNA-Sequenzen in Pflanzen exprimiert werden.
- 25 4. Verfahren zur Transformation einer Pflanze dadurch gekenn-
zeichnet, daß man eine Expressionskassette enthaltend einen
Promotor und DNA-Sequenzen SEQ-ID No. 1 und 3 in eine Pflan-
zenzelle, in Kallusgewebe, eine ganze Pflanze oder Proto-
plasten von Pflanzenzellen einbringt.
- 30 5. Verfahren zur Transformation von Pflanzen gemäß Anspruch 4,
dadurch gekennzeichnet, daß die Transformation mit Hilfe des
Stammes Agrobacterium tumefaciens, der Elektroporation oder
der particle bombardment Methode erfolgt.
- 35 6. Pflanze mit erhöhtem Tocopherol-, Vitamin K-, Chlorophyll-
und/oder Carotinoid-Gehalt enthaltend eine Expressionskas-
sette gemäß Anspruch 4.
- 40 7. Pflanze nach Anspruch 6, ausgewählt aus der Gruppe Soja, Ca-
nola, Gerste, Hafer, Weizen, Raps, Mais oder Sonnenblume.

DNA-Sequenzen codierend für eine 1-Deoxy-D-Xylulose-5-Phosphat Synthase und eine Geranylgeranyl-Pyrophosphat Oxidoreduktase und deren Überproduktion in Pflanzen

5

Beschreibung

Die vorliegende Erfindung betrifft die Verwendung von DNA-Sequenzen codierend für eine 1-Deoxy-D-Xylulose-5-Phosphat Synthase 10 (DOXS) und codierend für eine Geranylgeranyl-Pyrophosphat Oxidoreduktase (GGPPOR) zur Herstellung von Pflanzen mit erhöhtem Tocopherol-, Vitamin K-, Chlorophyll- und/oder Carotinoid-Gehalt, speziell die Verwendung von DNA-Sequenzen SEQ-ID No. 1 und 3 oder mit diesen hybridisierende DNA-Sequenzen, einem Verfahren zur 15 Herstellung von Pflanzen mit erhöhtem Tocopherol-, Vitamin K-, Chlorophyll- und/oder Carotinoid-Gehalt, sowie die derart hergestellte Pflanze selbst.

Ein wichtiges Ziel pflanzenmolekulargenetischer Arbeiten ist bis- 20 her die Erzeugung von Pflanzen mit erhöhtem Gehalt an Zuckern, Enzymen und Aminosäuren. Wirtschaftlich interessant ist jedoch auch die Entwicklung von Pflanzen mit erhöhtem Gehalt an Vitaminen, wie z.B. der Erhöhung des Tocopherol-Gehaltes.

25 Die in der Natur vorkommenden acht Verbindungen mit Vitamin E-Aktivität sind Derivate des 6-Chromanols (Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 27 (1996), VCH Verlagsgesellschaft, Chapter 4., 478-488, Vitamin E). Die erste Gruppe (1a-d) stammt von Tocopherol ab, die zweite Gruppe besteht aus Derivaten 30 des Tocotrienols (2a- d):

- 1a, α -Tocopherol: $R^1 = R^2 = R^3 = \text{CH}_3$
 40 1b, β -Tocopherol [148-03-8]: $R^1 = R^3 = \text{CH}_3$, $R^2 = \text{H}$
 1c, γ -Tocopherol [54-28-4]: $R^1 = \text{H}$, $R^2 = R^3 = \text{CH}_3$
 1d, δ -Tocopherol [119-13-1]: $R^1 = R^2 = \text{H}$, $R^3 = \text{CH}_3$

- 2a, α -Tocotrienol [1721-51-3]: $R^1 = R^2 = R^3 = CH_3$
 2b, β -Tocotrienol [490-23-3]: $R^1 = R^3 = CH_3, R^2 = H$
 10 2c, γ -Tocotrienol [14101-61-2]: $R^1 = H, R^2 = R^3 = CH_3$
 2d, δ -Tocotrienol [25612-59-3]: $R^1 = R^2 = H, R^3 = CH_3$

Wirtschaftlich große Bedeutung besitzt α -Tocopherol.

- 15 Der Entwicklung von Kulturpflanzen mit erhöhtem Tocopherol-Gehalt durch Gewebekultur oder Samenmutagenese und natürliche Auswahl sind Grenzen gesetzt. So muß einerseits der Tocopherol-Gehalt bereits in Gewebekultur erfaßbar sein und andererseits können nur diejenigen Pflanzen über Gewebekulturtechniken manipuliert
 20 werden, deren Regeneration zu ganzen Pflanzen aus Zellkulturen gelingt. Außerdem können Kulturpflanzen nach Mutagenese und Selektion unerwünschte Eigenschaften zeigen, die durch teilweise mehrmalige Rückkreuzungen wieder beseitigt werden müssen. Auch wäre die Erhöhung des Tocopherol-Gehaltes durch Kreuzung auf
 25 Pflanzen der selben Art beschränkt.

Aus diesen Gründen ist das gentechnische Vorgehen, die für die Tocopherol Syntheseleistung kodierenden, essentiellen Biosynthesegene zu isolieren und in Kulturpflanzen gezielt zu übertragen,
 30 dem klassischen Züchtungsverfahren überlegen. Dieses Verfahren setzt voraus, daß die Biosynthese und deren Regulation bekannt ist und daß Gene, die die Biosyntheseleistung beeinflussen, identifiziert werden.

- 35 Isoprenoide oder Terpenoide bestehen aus verschiedenen Klassen lipidlöslicher Moleküle und werden teilweise oder vollständig aus C₅-Isopren-Einheiten gebildet. Reine Prenyllipide (z.B. Carotinoide) bestehen aus C-Gerüsten, die ausschließlich auf Isopren-Einheiten zurückgehen, während gemischte Prenyllipide (z.B.
 40 Chlorophyll) eine Isoprenoid-Seitenkette besitzen, die mit einem aromatischen Kern verbunden ist.

Ausgangspunkt der Biosynthese von Prenyllipiden sind 3 x Acetyl-CoA Einheiten, die über β -Hydroxymethylglutaryl-CoA (HMG-CoA) und
 45 Mevalonat in die Ausgangs-Isopren-Einheit (C₅), dem Isopentenylpyrophosphat (IPP), umgewandelt werden. Kürzlich wurde durch in vivo Fütterungsexperimente mit C¹³ gezeigt, daß in verschiedenen

Eubakterien, Grünalgen und pflanzlichen Chloroplasten ein Mevalonat-unabhängiger Weg zur Bildung von IPP beschritten wird:

- 35 Dabei werden Hydroxyethylthiamin, das durch Decarboxylierung von Pyruvat entsteht, und Glycerinaldehyd-3-Phosphat (3-GAP) in einer durch die 1-Deoxy-D-Xylulose-5-Phosphat Synthase vermittelten "Transketolase"-Reaktion zunächst in 1-Deoxy-D-Xylulose-5-Phosphat umgewandelt (Schwender et al., FEBS Lett. 414 (1), 129-134 (1997); Arigoni et al., Proc.Natl.Acad.Sci USA 94 (2), 10600-10605 (1997); Lange et al., Proc.Natl.Acad.Sci.USA 95(5), 2100-2104 (1998); Lichtenthaler et al., FEBS Lett. 400 (3), 271-274 (1997). Dieses wird dann durch eine intramolekulare Umordnung in IPP umgesetzt (Arigoni et al., 1997). Biochemische Daten deuten darauf hin, daß der Mevalonat-Weg im Zytosol operiert und zur Bildung von Phytosterolen führt. Das Antibiotikum Mevinolin, ein spezifischer Inhibitor der Mevalonat-Bildung,

führt lediglich zur Inhibition der Sterol-Biosynthese im Zytosoma, während die Prenyllipid-Bildung in den Plastiden unbeeinflußt ist (Bach und Lichtenthaler, Physiol. Plant 59 (1993), 50-60). Der Mevalonat-unabhängige Weg ist dagegen plastidär lokalisiert und führt vornehmlich zur Bildung von Carotinoiden und plastidären Prenyllipiden (Schwender et al., 1997; Arigoni et al., 1997).

IPP steht im Gleichgewicht mit seinem Isomer, dem Dimethylallylpyrophosphat (DMAPP). Eine Kondensation von IPP mit DMAPP in Kopf-Schwanz Anlagerung ergibt das Monoterpen (C_{10}) Geranyl-Pyrophosphat (GPP). Die Addition von weiteren IPP Einheiten führt zum Sesquiterpen (C_{15}), Farnesy-Pyrophosphat (FPP) und zum Diterpen (C_{20}) Geranyl-Geranyl-Pyrophosphat (GGPP). Die Verknüpfung zweier GGPP Moleküle führt zur Bildung der C_{40} -Vorläufer für Carotinoide. GGPP wird durch eine Prenylketten-Hydrogenase zum Phytyl-Pyrophosphat (PPP) umgeformt, dem Ausgangsstoff für die weitere Bildung von Tocopherolen.

Bei den Ringstrukturen der gemischten Prenyllipide, die zur Bildung der Vitamine E und K führen, handelt es sich um Quinone, deren Ausgangsmetabolite aus dem Shikimat-Weg stammen. Die aromatischen Aminosäuren Phenylalanin bzw. Tyrosin werden in Hydroxyphenyl-Pyruvat umgewandelt, welches durch Dioxygenierung in Homogentisinsäure überführt wird. Diese wird an PPP gebunden, um den Vorläufer von α -Tocopherol und α -Tocoquinon, das 2-Methyl-6-phytylquinol, zu bilden. Durch Methylierungsschritte mit S-Adenosylmethionin als Methyl-Gruppen-Donor entsteht zunächst 2,3-Dimethyl-6-phytylquinol, dann durch Zyklisierung γ -Tocopherol und durch nochmalige Methylierung α -Tocopherol (Richter, Biochemie der Pflanzen, Georg Thieme Verlag Stuttgart, 1996).

In der Literatur finden sich Beispiele die zeigen, daß die Manipulation eines Enzyms den Metabolit-Fluß direktonal beeinflußen kann. In Experimenten mit einer veränderten Expression der Phytoen Synthase, welche zwei GGPP-Moleküle zu 15-cis-Phytoen miteinander verknüpft, konnte ein direkter Einfluß auf die Carotinoid-Mengen dieser transgenen Tomatenpflanzen gemessen werden (Fray und Grierson, Plant Mol. Biol. 22(4), 589-602 (1993); Fray et al., Plant J., 8, 693-701 (1995)). Wie zu erwarten, zeigen transgene Tabakpflanzen mit verringerten Mengen an Phenylalanin-Ammonium Lyase reduzierte Phenylpropanoid-Mengen. Das Enzym Phenylalanin-Ammonium Lyase katalysiert den Abbau von Phenylalanin, entzieht es also der Phenylpropanoid-Biosynthese (Bate et al., Proc. Natl. Acad. Sci USA 91 (16): 7608-7612 (1994); Howles et al., Plant Physiol. 112. 1617-1624 (1996)).

Über die Erhöhung des Metabolitflusses zur Steigerung des Tocopherol-Gehaltes in Pflanzen durch Überexpression einzelner Biosynthesegene ist bisher wenig bekannt. Lediglich WO 97/27285 beschreibt eine Modifikation des Tocopherol-Gehaltes durch verstärkte Expression bzw. durch Herunterregulation des Enzyms p-Hydroxyphenylpyruvatdioxygenase (HPPD).

Aufgabe der vorliegenden Erfindung war die Entwicklung einer transgenen Pflanze mit erhöhtem Gehalt an Tocopherolen, Vita-

10 min K, Chlorophyllen und Carotinoiden.

Die Aufgabe wurden überraschenderweise gelöst durch die Überexpression eines 1-Deoxy-D-Xylulose-5-Phosphat Synthase (DOXS)-Gens und eines Geranylgeranyl-Pyrophosphat Oxidoreduktase 15 (GGPPOR)-Gens in den Pflanzen, siehe Abbildung 1.

Um den Metabolit-Fluß aus dem Primärstoffwechsel in den Isoprenoide-Stoffwechsel zu verstärken, wurde die Bildung von IPP als allgemeines Ausgangssubstrat für alle plastidären Isoprenoide 20 erhöht. Zu diesem Zweck wurde in transgenen Tabak- und Raps-pflanzen die Aktivität der DOXS durch Überexpression der DOXS aus E.coli erhöht. Dies kann durch Expression homologer oder anderer heterologer Gene erreicht werden. DOXS-Nukleotidsequenzen sind aus *Arabidopsis thaliana* (Acc. No. U 27099), Reis (Acc. No. 25 AF024512) und Pfefferminze (Acc. No. AF019383) beschrieben.

In einem Ausführungsbeispiel wird das DOXS-Gen aus E.coli (SEQ-ID No. 1; Rosa Putra et al., Tetrahedron Lett. 39(1998), 23-26; Acc. No.035440) in transgenen Pflanzen verstärkt exprimiert. Um eine 30 Plastidenlokalisierung zu gewährleisten wird der E.coli DOXS in einem weiteren Konstrukt eine Transitsignalsequenz vorangestellt. Auch geeignet als Expressionskassette ist eine DNA-Sequenz, die für ein DOXS-Gen codiert, das mit Seq-ID No. 1 hybridisiert und das aus anderen Organismen bzw. aus anderen Pflanzen stammt.

35 Um das nun vermehrt zur Verfügung stehende GGPP in Richtung Tocopherole und Carotinoide umzusetzen, wird in einem weiteren erfindungswesentlichen Schritt zusätzlich die Aktivität des Enzyms Geranylgeranyl-Pyrophosphat Oxidoreduktase durch Überexpression eines entsprechenden Gens gesteigert. Durch diese Maßnahme wird eine verstärkte Bildung von Phytylpyrophosphat durch verstärkte Umsetzung von Geranylgeranyl-Pyrophosphat zu Phytylpyrophosphat erreicht.

45 Hierzu wird beispielsweise das GGPPOR-Gen aus *Arabidopsis thaliana* (SEQ-ID No. 3) in transgenen Pflanzen verstärkt exprimiert. Um eine Plastidenlokalisierung zu gewährleisten ist der

Arabidopsis GGPPOR eine Transitsignalsequenz vorangestellt. Auch geeignet als Expressionskassette ist eine DNA-Sequenz, die für ein GGPPOR-Gen codiert, das mit SEQ-ID No. 5 hybridisiert und das aus anderen Organismen bzw. aus anderen Pflanzen stammt.

5

In Ausführungsbeispiel 4 ist die Klonierung des GGPPOR-Gens aus Arabidopsis thaliana beschrieben.

Die Erhöhung der plastidären 1-Deoxy-D-Xylulose-5-Phosphat und
10 Phytylpyrophosphat Bildung führt zur verstärkten Bildung aller
plastidären Isoprenoide, so daß genügend Substrat für die Bildung
von Tocopherolen, Chlorophyllen, Vitamin K und Phylloquinonen in
den Plastiden zur Verfügung steht.

15 Die Herstellung der transgenen Pflanzen erfolgt durch Transformation
der Pflanzen mit einem das DOXS-und das GGPPOR-Gen ent-
haltenden Konstrukt. Als Modellpflanzen für die Produktion von
Tocopherolen, Vitamin K, Chlorophyllen und Carotinoiden wurden
Tabak und Raps eingesetzt.

20

Gegenstand der Erfindung ist die Verwendung der DNA-Sequenzen
SEQ-ID No. 1 und SEQ-ID No. 3, die für eine DOXS bzw. GGPPOR oder
deren funktionelle Äquivalente kodieren, zur Herstellung einer
Pflanze mit erhöhtem Tocopherol-, Vitamin K-, Chlorophyll- und/
25 oder Carotinoid-Gehalt. Die Nukleinsäuresequenzen können dabei
z.B. DNA- oder cDNA-Sequenzen sein. Zur Insertion in eine Expressionskassette geeignete kodierende Sequenzen sind beispielsweise solche, die für eine DOXS bzw. GGPPOR kodieren und die dem Wirt die Fähigkeit zur Überproduktion von Tocopherol verleihen.

30

Die Expressionskassetten beinhalten außerdem regulative Nukleinsäuresequenzen, welche die Expression der kodierenden Sequenz in der Wirtszelle steuern. Gemäß einer bevorzugten Ausführungsform umfaßt eine Expressionskassette stromaufwärts, d.h. am 5'-Ende
35 der kodierenden Sequenz, einen Promotor und stromabwärts, d.h. am 3'-Ende, ein Polyadenylierungssignal und gegebenenfalls weitere regulatorische Elemente, welche mit der dazwischenliegenden kodierenden Sequenz für das DOXS- bzw. GGPPOR-Gen operativ verknüpft sind. Unter einer operativen Verknüpfung versteht man die
40 sequenzielle Anordnung von Promotor, kodierender Sequenz, Terminator und ggf. weiterer regulatoriver Elemente derart, daß jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann. Die zur operativen Verknüpfung bevorzugten aber nicht darauf beschränkten
45 Sequenzen sind Targeting-Sequenzen zur Gewährleistung der subzellulären Lokalisation im Apoplasten, in der Vakuole, in Plastiden, im Mitochondrium, im Endoplasmatischen Retikulum (ER), im Zell-

kern, in Ölkörperchen oder anderen Kompartimenten und Translationsverstärker wie die 5'-Führungssequenz aus dem Tabak-Mosaik-Virus (Gallie et al., Nucl. Acids Res. 15 (1987), 8693 -8711).

5 Beispielhaft kann die pflanzliche Expressionskassette in den Tabak-Transformationsvektor pBinAR-Hyg eingebaut werden. Abb. 2 zeigt die Tabaktransformationsvektoren pBinAR-Hyg mit 35S-Promotor (A) bzw. pBinAR-Hyg mit samenspezifischem Promotor Phaseolin 796 (B):

10

- HPT: Hygromycin-Phosphotransferase
- OCS: Octopin-Synthase-Terminator
- PNOS: Nopaline-Synthase-Promotor
- außerdem sind solche Restriktionsschnittstellen eingezeichnet, die nur einmal den Vektor schneiden.

15

Als Promotoren der Expressionskassette ist grundsätzlich jeder Promotor geeignet, der die Expression von Fremdgenen in Pflanzen steuern kann. Vorzugsweise verwendet man insbesondere einen

20 pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der CaMV 35S-Promotor aus dem Blumenkohl-Mosaik-Virus (Franck et al., Cell 21 (1980), 285 - 294). Dieser Promotor enthält bekanntlich unterschiedliche Erkennungssequenzen für transkriptionale Effektoren, die in ihrer 25 Gesamtheit zu einer permanenten und konstitutiven Expression des eingeführten Gens führen (Benfey et al., EMBO J. 8 (1989), 2195-2202).

Die Expressionskassette kann auch einen chemisch induzierbaren 30 Promotor enthalten, durch den die Expression des exogenen DOXS- bzw. GGPPOR-Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren wie z.B. der PRP1-Promotor (Ward et al., Plant. Mol. Biol. 22 (1993), 361-366), ein durch Salizylsäure induzierbarer Promotor 35 (WO 95/19443), ein durch Benzenesulfonamid-induzierbarer (EP-A 388186), ein durch Tetrazyklin-induzierbarer (Gatz et al., (1992) Plant J. 2, 397-404), ein durch Abscisinsäure-induzierbarer (EP-A 335528) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer (WO 93/21334) Promotor können u.a. verwendet werden.

40

Weiterhin sind insbesonders solche Promotoren bevorzugt, die die Expression in Geweben oder Pflanzenteilen sicherstellen, in denen die Biosynthese von Tocopherol bzw. dessen Vorstufen stattfindet. Insbesondere zu nennen sind Promotoren, die eine blattspezifische 45 Expression gewährleisten. Zu nennen sind der Promotor der cyto-

solischen FBPase aus Kartoffel oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al., EMBO J. 8 (1989), 2445 - 245).

- Mit Hilfe eines samenspezifischen Promotors konnte ein Fremdprotein stabil bis zu einem Anteil von 0,67 % des gesamten löslichen Samenproteins in den Samen transgener Tabakpflanzen exprimiert werden (Fiedler und Conrad, Bio/Technology 10 (1995), 1090-1094). Die Expressionskassette kann daher beispielsweise einen samenspezifischen Promotor (bevorzugt den Phaseolin-Promotor (US 5504200), den USP- (Baumlein, H. et al., Mol. Gen. Genet. (1991) 225 (3), 459 - 467) oder LEB4-Promotor (Fiedler und Conrad, 1995)), das LEB4-Signalpeptid, das zu exprimierende Gen und ein ER-Retentionssignal enthalten.
- Die Herstellung einer Expressionskassette erfolgt durch Fusion eines geeigneten Promotors mit einer geeigneten DOXS- bzw. GGPPOR-DNA Sequenz und vorzugsweise einer zwischen Promotor und DOXS- bzw. GGPPOR-DNA-Sequenz inserierten DNA, die für ein chloroplastenspezifisches Transitpeptid kodiert, sowie einem Polyadenylierungssignal nach gängigen Rekombinations- und Klonierungs-techniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987) beschrieben sind.
- Insbesondere bevorzugt sind Sequenzen, die ein Targeting in den Apoplasten, in Plastiden, in die Vakuole, in das Mitochondrium, in das Endoplasmatische Retikulum (ER) oder durch ein Fehlen entsprechender operativer Sequenzen einen Verbleib im Kompartiment des Entstehens, dem Zytosol, gewährleisten (Kermode, Crit. Rev. Plant Sci. 15, 4 (1996), 285-423). Für die Menge der Proteinakkumulation in transgenen Pflanzen besonders förderlich erwiesen hat sich eine Lokalisation im ER (Schouten et al., Plant Mol. Biol. 30 (1996), 781-792).
- Es können auch Expressionskassetten verwendet werden, deren DNA-Sequenz für ein DOXS- bzw. GGPPOR-Fusionsprotein kodiert, wobei ein Teil des Fusionsproteins ein Transitpeptid ist, das die Translokation des Polypeptides steuert. Bevorzugt sind für die Chloroplasten spezifische Transitpeptide, welche nach Translokation des DOXS- bzw. GGPPOR-Gens in die Chloroplasten vom DOXS- bzw. GGPPOR-Teil enzymatisch abgespalten werden. Insbesondere bevorzugt ist das Transitpeptid, das von der plastidären Trans-

ketolase (TK) oder einem funktionellen Äquivalent dieses Transitpeptids (z.B. dem Transitpeptid der kleinen Untereinheit der Rubisco oder der Ferredoxin NADP Oxidoreduktase) abgeleitet ist.

- 5 Besonders bevorzugt sind DNA-Sequenzen von drei Kassetten des Plastiden-Transitpeptids der plastidären Transketolase aus Kartoffel in drei Leserastern als KpnI/BamHI Fragmente mit einem ATG-Codon in der NcoI Schnittstelle:

10 pTP09

KpnI_GGTACCATGGCGTCTTCTTCTCACTCTCTCAAGCTATCCTCTCGTTCTGTC
CCTCGCCATGGCTCTGCCTCTTCTCAACTTCCCCTTCTCTCACTTTTCCGGCCTAA
ATCCAATCCAATATCACCACCTCCCGCCCGTACTCCTCCTCCGCCGCCGCCGCCGTG
15 TAAGGTACCGGCGATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAA
TCC_BamHI

pTP10

20 KpnI_GGTACCATGGCGTCTTCTTCTCACTCTCTCAAGCTATCCTCTCGTTCTGTC
CCTCGCCATGGCTCTGCCTCTTCTCAACTTCCCCTTCTCTCACTTTTCCGGCCTAA
ATCCAATCCAATATCACCACCTCCCGCCCGTACTCCTCCTCCGCCGCCGCCGCCGTG
TAAGGTACCGGCGATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAA
GATCC_BamHI

25

pTP11

KpnI_GGTACCATGGCGTCTTCTTCTCACTCTCTCAAGCTATCCTCTCGTTCTGTC
CCTCGCCATGGCTCTGCCTCTTCTCAACTTCCCCTTCTCTCACTTTTCCGGCCTAA
30 ATCCAATCCAATATCACCACCTCCCGCCCGTACTCCTCCTCCGCCGCCGCCGCCGTG
TAAGGTACCGGCGATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAA
ATCC_BamHI

Die inserierte Nukleotid-Sequenz kodierend für eine DOXS bzw.

- 35 GGPPOR kann synthetisch hergestellt oder natürlich gewonnen sein oder eine Mischung aus synthetischen und natürlichen DNA-Bestandteilen enthalten, sowie aus verschiedenen heterologen DOXS bzw. GGPPOR-Genabschnitten verschiedener Organismen bestehen. Im allgemeinen werden synthetische Nukleotid-Sequenzen mit Kodons 40 erzeugt, die von Pflanzen bevorzugt werden. Diese von Pflanzen bevorzugten Kodons können aus Kodons mit der höchsten Proteinhäufigkeit bestimmt werden, die in den meisten interessanten Pflanzenspezies exprimiert werden. Bei der Präparation einer Expressionskassette können verschiedene DNA-Fragmente manipuliert 45 werden, um eine Nukleotid-Sequenz zu erhalten, die zweckmäßigerweise in der korrekten Richtung liest und die mit einem korrekten Leseraster ausgestattet ist. Für die Verbindung der DNA-Fragmente

miteinander können an die Fragmente Adaptoren oder Linker ange-setzt werden.

Zweckmäßigerweise können die Promotor- und die Terminator-Regionen in Transkriptionsrichtung mit einem Linker oder Polylinker, der eine oder mehrere Restriktionsstellen für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 Restriktionsstellen. Im allgemeinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp. Der Promotor kann sowohl nativ bzw. homolog als auch fremdartig bzw. heterolog zur Wirtspflanze sein. Die Expressionskassette beinhaltet in der 5'-3'-Transkriptionsrichtung den Promotor, eine DNA-Sequenz die für ein DOXS- bzw. GGPPO-R-Gen codiert und eine Region für die transkriptionale Termination. Verschiedene Terminationsbereiche sind gegeneinander beliebig austauschbar.

Ferner können Manipulationen, die passende Restriktions-schnittstellen bereitstellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt werden. Wo Insertionen, Deletionen oder Substitutionen wie z.B. Transitionen und Transversionen in Frage kommen, können *in vitro*-Mutagenese, "primer-repair", Restriktion oder Ligation verwendet werden. Bei geeigneten Manipulationen, wie z.B. Restriktion, "chewing-back" oder Auffüllen von Überhängen für "bluntends", können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden.

Von Bedeutung für den erfindungsgemäßen Erfolg kann u.a. das An-hängen des spezifischen ER-Retentionssignals SEKDEL sein (Schou-ten, A. et al., Plant Mol. Biol. 30 (1996), 781 - 792), die durchschnittliche Expressionshöhe wird damit verdreifacht bis vervierfacht. Es können auch andere Retentionssignale, die natürlicherweise bei im ER lokalisierten pflanzlichen und tierischen Proteinen vorkommen, für den Aufbau der Kassette eingesetzt werden.

Bevorzugte Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA-Polyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids pTiACH5 entsprechen (Gielen et al., EMBO J. 3 (1984), 835 ff) oder funktionelle Äquivalente.

Eine Expressionskassette kann beispielsweise einen konstitutiven Promotor (bevorzugt den CaMV 35 S-Promotor), das LeB4-Signalpeptid, das zu exprimierende Gen und das ER-Retentionssignal enthalten.

ten. Als ER-Retentionssignal wird bevorzugt die Aminosäuresequenz KDEL (Lysin, Asparaginsäure, Glutaminsäure, Leucin) verwendet.

Vorzugsweise wird die fusionierte Expressionskassette, die für
5 ein DOXS-Gen bzw. ein GGPPOR-Gen kodiert, in einen Vektor,
beispielsweise pBin19, kloniert, der geeignet ist, Agrobacterium
tumefaciens zu transformieren. Mit einem solchen Vektor transfor-
mierte Agrobakterien können dann in bekannter Weise zur Transfor-
mation von Pflanzen, insbesondere von Kulturpflanzen, wie z.B.
10 von Tabakpflanzen, verwendet werden, indem beispielsweise verwun-
dete Blätter oder Blattstücke in einer Agrobakterienlösung geba-
det und anschließend in geeigneten Medien kultiviert werden. Die
Transformation von Pflanzen durch Agrobakterien ist unter anderem
bekannt aus F.F. White, Vectors for Gene Transfer in Higher
15 Plants; in Transgenic Plants, Vol. 1, Engineering and Utiliza-
tion, herausgegeben von S.D. Kung und R. Wu, Academic Press,
1993, S. 15 - 38. Aus den transformierten Zellen der verwundeten
Blätter bzw. Blattstücke können in bekannter Weise transgene
Pflanzen regeneriert werden, die ein in die Expressionskassette
20 integriertes Gen für die Expression eines DOXS-Gens bzw. eines
GGPPOR-Gens enthalten.

Zur Transformation einer Wirtspflanze mit einer für eine DOXS und
GGPPOR kodierenden DNA wird eine Expressionskassette als Inser-
25 tion in einen rekombinanten Vektor eingebaut, dessen Vektor-DNA
zusätzliche funktionelle Regulationssignale, beispielsweise
Sequenzen für Replikation oder Integration enthält. Geeignete
Vektoren sind unter anderem in "Methods in Plant Molecular
Biology and Biotechnology" (CRC Press), Kap. 6/7, S. 71 - 119
30 (1993) beschrieben.

Unter Verwendung der oben zitierten Rekombinations- und
Klonierungstechniken können die Expressionskassetten in geeignete
Vektoren kloniert werden, die ihre Vermehrung, beispielsweise in
35 E. coli, ermöglichen. Geeignete Klonierungsvektoren sind u.a.
pBR332, pUC-Serien, M13mp-Serien und pACYC184. Besonders geeignet
sind binäre Vektoren, die sowohl in E. coli als auch in Agrobak-
terien replizieren können.

40 Ein weiterer Gegenstand der Erfindung betrifft die Verwendung
einer Expressionskassette enthaltend DNA-Sequenzen SEQ ID No. 1
und SEQ ID No. 3 oder mit diesen hybridisierende DNA-Sequenzen
zur Transformation von Pflanzen, -zellen, -geweben oder Pflanzen-
teilen. Vorzugsweise ist Ziel der Verwendung die Erhöhung des
45 Tocopherol-, Vitamin K-, Chlorophyll- und Carotinoid-Gehaltes der
Pflanze.

Dabei kann je nach Wahl des Promotors die Expression spezifisch in den Blättern, in den Samen oder anderen Teilen der Pflanze erfolgen. Solche transgenen Pflanzen, deren Vermehrungsgut, sowie deren Pflanzenzellen, -gewebe oder -teile sind ein weiterer Ge-
5 genstand der vorliegenden Erfundung.

Die Expressionskassette kann darüberhinaus auch zur Transformation von Bakterien, Cyanobakterien, Hefen, filamentösen Pilzen und Algen mit dem Ziel einer Erhöhung der Tocopherol-, Vitamin
10 K-, Chlorophyll- und/oder Carotinoid-Produktion eingesetzt werden.

Die Übertragung von Fremdgenen in das Genom einer Pflanze wird als Transformation bezeichnet. Es werden dabei die beschriebenen
15 Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt. Geeignete Methoden sind die Protoplasten- transformation durch Polyethylenglykol-induzierte DNA-Aufnahme, das biolistische Verfahren mit der Genkanone - die sogenannte
20 particle bombardment Methode, die Elektroporation, die Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikroinjektion und der durch Agrobacterium vermittelte Gentransfer. Die genannten Verfahren sind beispielsweise in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering
25 and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press (1993), 128 - 143 sowie in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205 - 225) beschrieben. Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, Agrobacterium tumefaciens zu trans-
30 formieren, beispielsweise pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711).

Mit einer Expressionskassette transformierte Agrobakterien können ebenfalls in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen, wie Getreide, Mais, Hafer, Soja, Reis, Baumwolle, Zuckerrübe, Canola, Sonnenblume, Flachs, Hanf, Kartoffel, Tabak, Tomate, Raps, Alfalfa, Salat und den verschiedenen Baum-, Nuß- und Weinspezies, verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakterienlösung
40 gebadet und anschließend in geeigneten Medien kultiviert werden.

Funktionell äquivalente Sequenzen, die für ein DOXS-Gen bzw. GGPPOR-Gen kodieren, sind solche Sequenzen, welche trotz abweichender Nukleotidsequenz noch die gewünschten Funktionen
45 besitzen. Funktionelle Äquivalente umfassen somit natürlich vorkommende Varianten der hierin beschriebenen Sequenzen sowie künstliche, z.B. durch chemische Synthese erhaltene, an den

Kodon-Gebrauch einer Pflanze angepaßte, künstliche Nukleotid-Sequenzen.

Unter einem funktionellen Äquivalent versteht man insbesondere
5 auch natürliche oder künstliche Mutationen einer ursprünglich
isolierten für eine DOXS bzw. GGPPOR kodierende Sequenz, welche
weiterhin die gewünschte Funktion zeigen. Mutationen umfassen
Substitutionen, Additionen, Deletionen, Vertauschungen oder
Insertionen eines oder mehrerer Nukleotidreste. Somit werden
10 beispielsweise auch solche Nukleotidsequenzen durch die vorlie-
gende Erfindung mit umfaßt, welche man durch Modifikation der
DOXS- bzw. GGPPOR-Nukleotidsequenz erhält. Ziel einer solchen
Modifikation kann z.B. die weitere Eingrenzung der darin enthal-
tenen kodierenden Sequenz oder z.B. auch die Einfügung weiterer
15 Restriktionsenzym-Schnittstellen sein.

Funktionelle Äquivalente sind auch solche Varianten, deren
Funktion, verglichen mit dem Ausgangsgen bzw. Genfragment, ab-
geschwächt oder verstärkt ist.

20 Außerdem sind artifizielle DNA-Sequenzen geeignet, solange sie,
wie oben beschrieben, die gewünschte Eigenschaft beispielsweise
der Erhöhung des Tocopherol-Gehaltes in der Pflanze durch Über-
expression des DOXS- und des GGPPOR-Gens in Kulturpflanzen ver-
25 mitteln. Solche artifiziellen DNA-Sequenzen können beispielsweise
durch Rückübersetzung mittels Molecular Modelling konstruierter
Proteine, die DOXS- bzw. GGPPOR-Aktivität aufweisen oder durch *in*
vitro-Selektion ermittelt werden. Besonders geeignet sind kodie-
rende DNA-Sequenzen, die durch Rückübersetzung einer Polypeptid-
30 sequenz gemäß der für die Wirtspflanze spezifischen Kodon-Nutzung
erhalten wurden. Die spezifische Kodon-Nutzung kann ein mit
pflanzengenetischen Methoden vertrauter Fachmann durch Compute-
rauswertungen anderer, bekannter Gene der zu transformierenden
Pflanze leicht ermitteln.

35 Als weitere geeignete äquivalente Nukleinsäure-Sequenzen sind zu
nennen Sequenzen, welche für Fusionsproteine kodieren, wobei
Bestandteil des Fusionsproteins ein DOXS- bzw. GGPPOR-Polypeptid
oder ein funktionell äquivalenter Teil davon ist. Der zweite Teil
40 des Fusionsproteins kann z.B. ein weiteres Polypeptid mit enzyma-
tischer Aktivität sein oder eine antigene Polypeptidsequenz mit
deren Hilfe ein Nachweis auf DOXS- bzw. GGPPOR-Expression möglich
ist (z.B. myc-tag oder his-tag). Bevorzugt handelt es sich dabei
jedoch um eine regulative Proteinsequenz, wie z.B. ein Signal-
45 oder Transitpeptid, das das DOXS- bzw. GGPPOR-Protein an den
gewünschten Wirkort leitet.

Erhöhung des Tocopherol-, Vitamin K-, Chlorophyll- und/oder Carotinoid-Gehaltes bedeutet im Rahmen der vorliegenden Erfindung die künstlich erworbene Fähigkeit einer erhöhten Biosyntheseleistung dieser Verbindungen durch funktionelle Überexpression des DOXS-
5 und des GGPPOR-Gens in der Pflanze gegenüber der nicht gentechnisch modifizierten Pflanze für die Dauer mindestens einer Pflanzengeneration.

Der Biosyntheseort von Tocopherol ist im allgemeinen das Blattgewebe, so daß eine blattspezifische Expression des DOXS- und des GGPPOR-Gens sinnvoll ist. Es ist jedoch naheliegend, daß die Tocopherol-Biosynthese nicht auf das Blattgewebe beschränkt sein muß, sondern auch in allen übrigen Teilen der Pflanze - beispielsweise in fetthaltigen Samen - gewebespezifisch erfolgen kann.
15

Darüberhinaus ist eine konstitutive Expression des DOXS- und des GGPPOR-Gens von Vorteil. Andererseits kann aber auch eine induzierbare Expression wünschenswert erscheinen.

20

Die Wirksamkeit der Expression des transgen exprimierten DOXS- und GGPPOR-Gens kann beispielsweise *in vitro* durch Sproßmeristemvermehrung ermittelt werden. Zudem kann eine in Art und Höhe veränderte Expression des DOXS und des GGPPOR-Gens und deren Auswirkung auf die Tocopherol-Biosyntheseleistung an Testpflanzen in Gewächshausversuchen getestet werden.
25

Gegenstand der Erfindung sind außerdem transgene Pflanzen, transformiert mit einer Expressionskassette enthaltend die Sequenz SEQ-ID No. 1 und SEQ-ID No. 3 oder mit diesen hybridisierende DNA-Sequenzen, sowie transgene Zellen, Gewebe, Teile und Vermehrungsgut solcher Pflanzen. Besonders bevorzugt sind dabei transgene Kulturpflanzen, wie z.B. Gerste, Weizen, Roggen, Mais, Hafer, Soja, Reis, Baumwolle, Zuckerrübe, Canola, Sonnenblume, Flachs, Hanf, Kartoffel, Tabak, Tomate, Raps, Alfalfa, Salat und die verschiedenen Baum-, Nuß- und Weinspezies.
35

Pflanzen im Sinne der Erfindung sind mono- und dikotyle Pflanzen oder Algen.

40

Durch Überexpression der für eine DOXS kodierenden Gensequenz SEQ ID NO: 1 in einer Pflanze kann prinzipiell eine erhöhte Resistenz gegenüber Inhibitoren der DOXS erreicht werden. Die derart hergestellten transgenen Pflanzen sind ebenfalls Gegenstand der Erfindung.
45

Durch Überexpression der für eine GGPPOR kodierenden Gensequenz SEQ ID NO: 3 in einer Pflanze kann prinzipiell eine erhöhte Resistenz gegenüber Inhibitoren der GGPPOR erreicht werden. Die derart hergestellten transgenen Pflanzen sind ebenfalls Gegenstand der Erfindung.

Durch Überexpression der für eine DOXS kodierenden Gensequenz SEQ ID NO: 1 und einer für die GGPPOR kodierenden Gensequenz SEQ ID NO: 3 in einer Pflanze kann prinzipiell eine erhöhte Resistenz gegenüber Inhibitoren der DOXS und der GGPPOR erreicht werden. Die derart hergestellten transgenen Pflanzen sind ebenfalls Gegenstand der Erfindung.

Weitere Gegenstände der Erfindung sind:

15

- Verfahren zur Transformation einer Pflanze dadurch gekennzeichnet, daß man Expressionskassetten enthaltend eine DNA-Sequenz SEQ-ID No. 1 und eine DNA-Sequenz SEQ-ID No. 3 oder mit diesen hybridisierende DNA-Sequenzen in eine Pflanzenzelle, in Kallusgewebe, eine ganze Pflanze oder Protoplasten von Pflanzen einbringt.

20

- Verwendung der Expressionskassette enthaltend eine DNA-Sequenz SEQ-ID No. 1 und eine DNA-Sequenz SEQ-ID No. 3 oder mit diesen hybridisierende DNA-Sequenzen zur Herstellung von Pflanzen mit erhöhter Resistenz gegenüber Inhibitoren der DOXS und GGPPOR durch verstärkte Expression der DNA-Sequenzen SEQ-ID No. 1 und SEQ-ID No. 3 oder mit diesen hybridisierende DNA Sequenzen.

25

- Verwendung der DNA-Sequenz SEQ-ID No. 1 und SEQ-ID No. 3 oder mit diesen hybridisierende DNA-Sequenzen zur Herstellung von Pflanzen mit erhöhtem Tocopherol-, Vitamin K-, Chlorophyll- und/oder Carotinoid-Gehalt durch Expression einer DOXS und einer GGPPOR DNA-Sequenz in Pflanzen.

30

Die Erfindung wird durch die nun folgenden Beispiele erläutert, ist aber nicht auf diese beschränkt:

40 Allgemeine Klonierungsverfahren

Die im Rahmen der vorliegenden Erfindung durchgeföhrten Klonierungsschritte wie z.B. Restriktionsspaltungen, Agarose-Gel-elektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylonmembranen, Verknüpfen von DNA-Fragmenten, Transformation von E. coli Zellen, Anzucht von Bakterien, Vermehrung von Phagen und Sequenzanalyse rekombi-

45

nanter DNA wurden wie bei Sambrook et al. (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6 beschrieben durchgeführt.

- 5 Die im folgenden verwendeten Bakterienstämme (*E. coli*, XL-I Blue) wurden von Stratagene bezogen. Der zur Pflanzentransformation verwendete Agrobakterienstamm (*Agrobacterium tumefaciens*, C58C1 mit dem Plasmid pGV2260 oder pGV3850kann) wurde von Deblaere et al. in Nucl. Acids Res. 13 (1985), 4777 beschrieben. Alternativ 10 können auch der Agrobakterienstamm LBA4404 (Clontech) oder andere geeignete Stämme eingesetzt werden. Zur Klonierung können die Vektoren pUC19 (Yanish-Perron, Gene 33 (1985), 103 - 119) pBluescript SK- (Stratagene), pGEM-T (Promega), pZero (Invitrogen), pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 15 8711 - 8720) und pBinAR (Höfgen und Willmitzer, Plant Science 66 (1990), 221 - 230) benutzt werden.

Sequenzanalyse rekombinanter DNA

- 20 Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequenziert der Firma Licor (Vertrieb durch MWG Biotech, Ebersbach) nach der Methode von Sanger (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463 - 5467).

25 Beispiel 1

Isolierung genetischer DNA des Bakteriums *Escherichia coli* XL Blue

- 30 Eine Kultur von *Escherichia coli* XL Blue wurde in 300 ml Luria Broth-Medium für 12 Stunden bei 37°C angezogen. Aus dieser Kultur wurde die genetische DNA des Bakteriums isoliert, indem diese zunächst bei 5000 Umdrehungen in einer Sorvall RC50-Fuge pelletiert wurde. Anschliessend wurde das Pellet in 1/30 Volumen der Ur- 35 sprungskultur Lysis-Puffer (25 mM EDTA, 0,5% SDS; 50 mM Tris HCl, pH 8,0) resuspendiert. Ein gleiches Volumen Phenol/Chloroform/Isoamylalkohol (25:24:1) wurde zugegeben und bei 70 Grad 10 Minuten inkubiert. Anschliessend wurde in einer Heraeus Untertisch-Zentrifuge bei 3500 U 15 Minuten die wässrige Phase von der 40 phenolischen getrennt. Der wässrige Überstand wurde mit 2,5 Volumen Ethanol und 1/10 Volumen 8 M Lithiumchlorid versetzt und die Nukleinsäuren bei Raumtemperatur für 10 Minuten gefällt. Das Pellet wurde anschliessend in 400 µl TE/RNase aufgenommen und bei 37 Grad für 10 Minuten inkubiert. Die Lösung wurde erneut mit 45 einem Volumen Phenol/Chloroform/Isoamylalkohol (25:24:1) ausgeschüttelt und der Überstand gefällt mit 2,5 Volumen Ethanol und

1/10 Volumen 8 M Lithiumchlorid. Das Pellet wurde anschliessend mit 80% Ethanol gewaschen und in 400 µl TE/RNase aufgenommen.

Beispiel 2

5

Isolierung der DOXS aus E. coli

Von der DNA-Sequenz der DOXS (Acc. Number AF035440) wurden für eine PCR Oligonukleotide abgeleitet, denen am 5'-Ende eine BamHI 10 und am 3'-Ende eine XbaI bzw. eine weitere BamHI Restriktions- schmittstelle angefügt wurde. Das Oligonukleotid am 5' Ende umfaßt die Sequenz 5'-ATGGATCCATGAGTTT-GATATTGCCAAATAC-3' (Nukleotide 1-24 der DNA-Sequenz; kursiv geschrieben) beginnend mit dem ATG-Startcodon des Gens, das Oligonukleotid am 3'-Ende 15 umfaßt die Sequenz 5'-ATTCTAGATTATGCCAGGCCAGGCCTTG-3' bzw. 5'-ATG- GATCCTTATGCCAGCCAGGCCTTG-3' (Nukleotide 1845-1863 der revers komplementären DNA-Sequenz; kursiv geschrieben) beginnend mit dem Stop-Kodon des Gens. Die PCR-Reaktion mit den beiden BamHI enthaltenden Oligonukleotiden wurde durchgeführt mit der Pfu- 20 Polymerase (Stratagene GmbH, Heidelberg) nach Herstellerangaben. Als Template wurden 500 ng der genomischen DNA aus E. coli eingesetzt. Das PCR-Programm lautete:

5 Zyklen: 4 sec 94°C, 30 sec 52°C, 2 min 72°C;
25 5 Zyklen: 4 sec 94°C, 30 sec 48°C, 2 min 72°C;
25 Zyklen: 4 sec 94°C, 30 sec 44°C, 2 min 72°C

Das Fragment wurde mittels Gene-Clean-Kit (Dianova GmbH, Hilden) gereinigt und nach Herstellerangaben in den Vektor PCR-Script 30 (Stratagene GmbH, Heidelberg) kloniert. Die Richtigkeit der Sequenz wurde durch Sequenzierung festgestellt. Das Fragment wurde BamHI aus dem PCR-Script-Vektor isoliert und in einen entsprechend geschnittenen Bin19-Vektor ligiert, der zusätzlich das Transitpeptid der Transketolase aus Kartoffel hinter dem CaMV 35 35S Promotor enthält. Das Transitpeptid gewährleistet die plastidäre Lokalisierung. Die Konstrukte sind in Abbildung 3 und 4 dargestellt und die Fragmente haben die folgende Bedeutung:

Fragment A (529 bp) beinhaltet den 35S-Promotor des Cauliflower- 40 Mosaik-Virus (Nukleotide 6909 bis 7437 des Cauliflower-Mosaik- Virus). Fragment B (259 bp) beinhaltet das Transitpeptid der Transketolase. Fragment E beinhaltet das Gen der DOXS. Fragment D (192 bp) enthält das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTIACH5 (Gielen et al., 1984) zur Transkriptions- 45 termination.

Die PCR-Reaktion mit den 5'-BamHI und 3'-XbaI enthaltenden Oligonukleotiden wurde durchgeführt mit Taq-Polymerase (Takara, Sosei Co., Ltd.) nach Herstellerangaben. Als Template wurden 500 ng der genomischen DNA aus E. coli eingesetzt. Das PCR-Programm lautete:

- 5 5 Zyklen: 4 sec 94°C, 4 sec 50°C, 2 min 30°C
5 Zyklen: 4 sec 94°C, 30 sec 46°C, 2 min 68°C
25 Zyklen: 4 sec 94°C, 30 sec 42°C, 2 min 68°C

Das Fragment wurde mit dem Gene-Clean-Kit gereinigt und in den Vektor pGemT (Promega GmbH, Mannheim) ligiert. Es wurde als BamHI/XbaI-Fragment in einen entsprechend geschnittenen pBin19AR-Vektor hinter den CaMV 35S Promotor kloniert. Die Sequenz wurde durch Sequenzierung überprüft (SEQ-ID No. 1). Dabei wurden zwei nicht konservative Basenaustausche festgestellt, die im Vergleich zur veröffentlichten Sequenz zur Veränderung der Aminosäure 152 (Asparagin) in Valin und Aminosäure 330 (Cystein) in Tryptophan führen.

Beispiel 3

20 Klonierung des Gens einer GGPPOR aus Arabidopsis thaliana

Isolierung von Gesamt-RNA aus voll entfalteten Blättern von Arabidopsis thaliana:

25 Voll entfaltete Blätter von A. thaliana wurden geerntet und in flüssigem Stickstoff eingefroren. Das Material wurde anschließend im Mörser pulverisiert und in Z6-Puffer (8 M Guanidium-hydrochlorid, 20 mM MES, 20 mM EDTA pH 7,0) aufgenommen. Die 30 Suspension wurde in Reaktionsgefäß überführt und mit einem Volumen Phenol/Chloroform/Isoamylalkohol 25:24:1 ausgeschüttelt. Nach 10 minütiger Zentrifugation bei 15000 U/min wurde der Überstand in ein neues Reaktionsgefäß überführt und mit 1/20 Volumen 1N Essigsäure und 0,7 Volumen Ethanol (absolut) die RNA gefällt. 35 Nach erneuter Zentrifugation wurde das Pellet zunächst mit 3M Natriumacetatlösung gewaschen und nach einer weiteren Zentrifugation in 70% Ethanol. Anschließend wurde das Pellet in DEPC-Wasser gelöst und die RNA-Konzentration photometrisch bestimmt. Herstellung von cDNA aus gesamt RNA voll entfalteter Blätter von 40 A. thaliana:

20 µg Gesamt-RNA wurden zunächst mit 3,3 µl 3M Natriumacetat-Lösung und 2 µl 1M Magnesiumsulfatlösung versetzt und auf 100 µl Endvolumen mit DEPC Wasser aufgefüllt. Dazu wurde 1 µl RNase 45 freie DNase (Boehringer Mannheim) gegeben und 45 min bei 37°C inkubiert. Nach Entfernen des Enzyms durch Ausschütteln mit Phenol/Chloroform/Isoamylalkohol wurde die RNA mit Ethanol

gefällt und das Pellet in 100 µl DEPC Wasser aufgenommen. 2,5 µg RNA aus dieser Lösung wurden mittels eines cDNA-Kits (Gibco, Life Technologies) in cDNA umgeschrieben.

5 Von der DNA-Sequenz der Geranylgeranyl-Pyrophosphat Oxidoreduktase (Keller et al., Eur.J.Biochem. (1998) 251(1-2), 413-417); Accession Number Y14044) wurden für eine PCR Oligonukleotide abgeleitet, denen am 5'-Ende eine BamHI und am 3'-Ende eine SalI Restriktionsschnittstelle angefügt worden war. Das Oligonukleotid
10 am 5'-Ende umfaßt die Sequenz 5'-ATGGATCCATGGCGACGACGGTTACACTC-3' beginnend mit dem ersten Kodon der cDNA (kursiv gedruckt), das Oligonukleotid am 3'-Ende umfaßt die Sequenz 5'-ATGTCGACGTGATGA-TAGATTACTAACAGAC-3' beginnend mit dem Basenpaar 1494 der cDNA Sequenz (kursiv gedruckt).

15

Die PCR-Reaktion wurde durchgeführt mit Pfu-Polymerase von Stratagene GmbH, Heidelberg nach Herstellerangaben. Als Template wurde 1/8 Volumen der cDNA eingesetzt (entspricht 0,3 µg RNA). Das PCR-Programm lautete:

20

5 Zyklen: 94°C für 4 sec, 48°C für 30 sec, 72°C für 2 min
5 Zyklen: 94°C für 4 sec, 46°C für 30 sec, 72°C für 2 min
25 Zyklen: 94°C für 4 sec, 44°C für 30 sec, 72°C für 2 min

25 Das Fragment wurde mittels Gene-Clean-Kit (Dianova GmbH, Hilden) gereinigt und nach Herstellerangaben in den Vektor PCR-Script von Stratagene GmbH, Heidelberg kloniert. Die Richtigkeit des Fragments wurde durch Sequenzierung überprüft (SEQ ID No. 3). Mittels der durch die Primer an die Sequenz angefügten Restriktionsschnittstellen wurde das Gen als BamHI/SalI-Fragment in den entsprechend geschnittenen Vektor BinAR-Hyg kloniert. Dieser enthält den 35S-Promotor des Blumenkohlmosaikvirus und das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTIACH5 (Gielen et al., EMBO J. 3 (1984), 835-846) zur Transkriptionstermination. Das Plasmid vermittelt in Pflanzen Resistenz gegen das Antibiotikum Hygromycin und ist so geeignet, Pflanzen mit Kanamycinresistenz zu superinfizieren. Da das Plastidentransitpeptid der GGPPOR mitkloniert wurde, wird das Protein in transgenen Pflanzen in die Plastiden transportiert. Das Konstrukt ist in
30 Abbildung 5 dargestellt. Die Fragmente haben die folgende Bedeutung:
35

Fragment A (529 bp) beinhaltet den 35S-Promotor des Cauliflower-Mosaik-Virus (Nukleotide 6909 bis 7437 des Cauliflower-Mosaik-Virus). Fragment D enthält das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTIACH5 (Gielen et al., 1984) zur

Transkriptionstermination. Fragment F enthält das Gen der GGPPOR inklusive der intrinsischen Plastidentransitsequenz.

Beispiel 4

5

Herstellung von Konstrukten zur Pflanzentransformation mit DOXS und GGPPOR Sequenzen

Zur Herstellung von Pflanzen, welche transgen für die DOXS und
10 die GGPPOR sind wurde ein binärer Vektor angefertigt, der beide Gensequenzen enthält (Abbildung 6). Das GGPPOR-Gen mit der intrinsischen Plastidenlokalisationssequenz wurde (wie in Beispiel 3 beschrieben) als BamHI/SalI-Fragment in den entsprechend geschnittenen Vektor pBinAR-Hyg kloniert. Das Gen der DOXS wurde
15 als BamHI-Fragment wie in Beispiel 2 beschrieben kloniert. Der Vektor pBinAR-Hyg enthält den 35S-Promotor des Blumenkohlmosaikvirus und das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTIACH5 (Gielen et al., 1984) zur Transkriptionstermination. Dieses Plasmid vermittelt in Pflanzen Resistenz gegen
20 das Antibiotikum Hygromycin und ist so geeignet, Pflanzen mit Kanamycinresistenz zu superinfizieren.

Aus dem Plasmid pBinAR-TP-DOXS wurde der 35S-Promotor, das Transketolase-Transitpeptid, das DOXS-Gen und das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTIACH5 (Gielen et al., 1984) zur Transkriptionstermination mittels PCR isoliert. Den Oligonukleotiden für den Promotor und die Terminatorsequenz wurde jeweils eine EcoRI-Schnittstelle angefügt. Die Sequenz des Oligonukleotids, welches sich an den Promotor (kursiv geschrieben) an-
30 lagert lautet 5'-ATGAATTCCATGGAGTCAAAGATTCAAATAGA-3', die des Oligonukleotids, welches sich an die Terminatorsequenz (kursiv geschrieben) anlagert lautet 5'-ATGAATTCCGGACAATCAGTAAATTGAAACGGA-G-3'. Das Fragment wurde mittels Gene-Clean-Kit (Dianova GmbH, Hilden) gereinigt und nach Herstellerangaben in den Vektor PCR-
35 Script von Stratagene GmbH, Heidelberg kloniert. Die Richtigkeit der Sequenz wurde durch Sequenzierung überprüft. Aus dem PCR-Script Vektor wurde es als EcoRI-Fragment in den entsprechend geschnittenen Vektor pBin19 (Bevan, Nucleic Acids Res.12(1984), 8711-8721) übertragen.

40

Aus dem Plasmid pBinARHyg-GGPPOR wurde der 35S-Promotor, das GGPPOR-Gen und das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTIACH5 (Gielen et al., 1984) zur Transkriptionstermination mittels PCR isoliert. Den Oligonukleotiden für den Promotor und den Terminator wurde jeweils eine XbaI-Schnittstelle angefügt. Die Sequenz des Oligonukleotids, welches sich an den Promotor (kursiv geschrieben) anlagert lautet 5'-ATTCTAGACATG-

GAGTCAAA-GATTCAAATAGA-3', die des Oligonukleotids, welches sich an die Terminatorsequenz (Kursiv geschrieben) anlagert lautet 5'-ATTCTAGAGGACAA-TCAGTAAATTGAACGGAG-3'. Das Fragment wurde mittels Gene-Clean-Kit (Dianova GmbH, Hilden) gereinigt und nach 5 Herstellerangaben in den Vektor PCR-Script von Stratagene GmbH, Heidelberg kloniert. Die Richtigkeit der Sequenz wurde durch Sequenzierung überprüft. Aus dem PCR-Script Vektor wurde es als XbaI-Fragment in den entsprechend geschnittenen Vektor übertragen, welcher bereits wie oben beschrieben die Sequenz der DOXS 10 enthielt. Es entstand das Konstrukt pBinAR-DOXS-GGPPOR (Abbildung 6), dessen Fragmente folgende Bedeutung haben:

Fragment A (529 bp) beinhaltet den 35S-Promotor des Cauliflower-Mosaik-Virus (Nukleotide 6909 bis 7437 des Cauliflower-Mosaik-Virus). Fragment B enthält das Transitpeptid der plastidären Transketolase. Fragment E enthält das Gen der DOXS. Fragment D enthält das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTIACH5 (Gielen et al., 1984) zur Transkriptionstermination. Fragment F enthält das Gen der GGPPOR inklusive der intrinsischen Plastidentransitsequenz.

Beispiel 5

Herstellung von transgenen Tabakpflanzen

25

(*Nicotiana tabacum* L. cv. Samsun NN)

Für die Herstellung transgener Tabakpflanzen, die einen veränderten Prenyllipidgehalt aufweisen, wurden Tabakblattscheiben mit 30 Sequenzen der DOXS und der GGPPOR transformiert. Zur Transformation von Tabakpflanzen wurden 10 ml einer unter Selektion gewachsenen Übernachtkultur von *Agrobacterium tumefaciens* abzentrifugiert, der Überstand verworfen und die Bakterien in gleichem Volumen Antibiotika-freien Mediums resuspendiert. In einer sterilen Petrischale wurden Blattscheiben steriler Pflanzen (Durchmesser ca. 1 cm) in dieser Bakteriensuspension gebadet. Anschließend wurden die Blattscheiben in Petrischalen auf MS-Medium (Murashige und Skoog, Physiol. Plant (1962) 15, 473) mit 2% Saccharose und 0.8% Bacto-Agar ausgelegt. Nach 2-tägiger Inkubation im 35 Dunkeln bei 25°C wurden sie auf MS-Medium mit 100mg/l Kanamycin, 500mg/l Claforan, 1mg/l Benzylaminopurin (BAP), 0.2mg/l Naphthallessigsäure (NAA), 1.6% Glukose und 0.8% Bacto-Agar übertragen und die Kultivierung (16 Stunden Licht / 8 Stunden Dunkelheit) fortgesetzt. Wachsende Sprosse wurden auf hormonfreies MS-Medium 40 mit 2% Saccharose, 250mg/l Claforan und 0.8% Bacto-Agar überführt.

Beispiel 6

Herstellung von transgenen Rapspflanzen (*Brassica napus*)

- 5 Die Herstellung der transgenen Rapspflanzen, die einen veränderten Prenyllipidgehalt aufweisen, orientierte sich an einem Protokoll von Bade, J.B. und Damm, B. (in Gene Transfer to Plants, Potrykus, I. und Spangenberg, G., eds, Springer Lab Manual, Springer Verlag, 1995, 30-38), in welchem auch die Zusammensetzung 10 zungen der verwendeten Medien und Puffer angegeben sind.

Die Transformationen erfolgten mit dem *Agrobacterium tumefaciens* Stamm LBA4404 (Clontech GmbH, Heidelberg). Als binäre Vektoren wurden die bereits oben beschriebenen binären Konstrukte mit den 15 gesamten cDNAs der DOXS und der GGPPOR verwendet. In allen hier verwendeten binären Vektoren wurde die NOS-Terminatorsequenz durch das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTIACH5 (Gielen et al., 1984) zur Transkriptions-termination ersetzt. *Brassica napus* Samen wurden mit 70% (v/v) Ethanol 20 oberflächensteril gemacht, 10 min bei 55°C in H₂O gewaschen, in 1%iger Hypochlorit-Lösung (25% v/v Teepol, 0,1% v/v Tween 20) für 20 min inkubiert und sechsmal mit sterilem H₂O für jeweils 20 min gewaschen. Die Samen wurden drei Tage auf Filterpapier getrocknet und 10-15 Samen in einem Glasskolben mit 15 ml Keimungsmedium zur 25 Keimung gebracht. Von mehreren Keimlingen (ca. 10 cm groß) wurden die Wurzeln und Apices entfernt und die verbleibenden Hypokotyle in ca. 6 mm lange Stücke geschnitten. Die so gewonnenen ca. 600 Explante werden 30 min mit 50 ml Basalmedium gewaschen und in einen 300 ml Kolben überführt. Nach Zugabe von 100 ml Kallus- 30 Induktionsmedium wurden die Kulturen für 24 h bei 100 U/min inkubiert.

Vom *Agrobacterium*-Stamm wurde eine Übernachtkultur bei 29°C in Luria Broth-Medium mit Kanamycin (20 mg/l) angesetzt, davon 2 ml in 35 50 ml Luria Broth-Medium ohne Kanamycin für 4 h bei 29°C bis zu einer OD₆₀₀ von 0,4 - 0,5 inkubiert. Nach der Pelletierung der Kultur bei 2000 U/min für 25 min wurde das Zellpellet in 25 ml Basalmedium resuspendiert. Die Konzentration der Bakterien in der Lösung wurde durch Zugabe von weiterem Basalmedium auf eine OD₆₀₀ 40 von 0,3 eingestellt.

Aus den Raps-Explanten wurde das Kallus-Induktionsmedium mit sterilen Pipetten entfernt, 50 ml *Agrobacterium*-Lösung hinzugefügt, vorsichtig gemischt und für 20 min inkubiert. Die Agrobacterien-Suspension wurde entfernt, die Raps-Explante für 1 min mit 50 ml Kallus-Induktionsmedium gewaschen und anschließend 100 ml Kallus-Induktionsmedium hinzugefügt. Die Co-Kultivierung wurde

für 24 h auf einem Rotationsschüttler bei 100 U/min durchgeführt. Die Co-Kultivierung wurde durch Wegnahme des Kallus-Induktionsmediums gestoppt und die Explante zweimal für jeweils 1 min mit 25 ml und zweimal für 60 min mit jeweils 100 ml Waschmedium bei 100 5 U/min gewaschen. Das Waschmedium mit den Explanten wurde in 15 cm Petrischalen überführt und das Medium mit sterilen Pipetten entfernt.

Zur Regeneration wurden jeweils 20-30 Explante in 90 mm Petri- 10 schalen überführt, welche 25 ml Sproß-Induktionsmedium mit Kanamycin enthielten. Die Petrischalen wurden mit 2 Lagen Leukopor verschlossen und bei 25°C und 2000 lux bei Photoperioden von 16 Stunden Licht/8 Stunden Dunkelheit inkubiert. Alle 12 Tage wurden die sich entwickelnden Kalli auf frische Petrischalen mit Sproß- 15 Induktionsmedium überführt. Alle weiteren Schritte zur Regeneration ganzer Pflanzen wurde wie von Bade, J.B. und Damm, B. (in Gene Transfer to Plants, Potrykus, I. und Spangenberg, G., eds, Springer Lab Manual, Springer Verlag, 1995, 30-38) beschrieben durchgeführt.

20

Beispiel 7

Steigerung der Tocopherolbiosynthese in Raps

25 Die cDNA der DOXS und der GGPPOR wurde mit einem CaMV35S-Promotor versehen und in Raps unter Verwendung des 35S-Promotors überexprimiert. Parallel dazu wurde der samenspezifische Promotor des Phaseolingenes verwendet, um den Tocopherolgehalt spezifisch im Rapssamen zu erhöhen. Mit den entsprechenden Konstrukten 30 transformierte Rapspflanzen wurden im Gewächshaus angezogen. Anschließend wurde der α -Tocopherolgehalt der Gesamtpflanze bzw. der Samen der Pflanze bestimmt. In allen Fällen war die α -Tocopherolkonzentration im Vergleich zur nicht transformierten Pflanze erhöht.

35

40

45

SEQUENZPROTOKOLL

(1) ALGEMEINE INFORMATION:

(i) ANMELDER:

- (A) NAME: BASF AG
- (B) STRASSE: Carl Bosch
- (C) ORT: Ludwigshafen
- (E) LAND: Germany
- (F) POSTLEITZAHL: 067056
- (G) TELEPHON: 0621-60-52698
- (H) TELEFAX: 0621-60-48821

(ii) ANMELDETITEL: DNA-Sequenzen codierend fuer eine DOXS und eine GGPPOR und deren Ueberproduktion in Pflanzen

(iii) ANZAHL DER SEQUENZEN: 4

(iv) COMPUTER-LESBARE FORM:

- (A) DATENTRÄGER: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPA)

(2) INFORMATION ZU SEQ ID NO: 1:

(i) SEQUENZ CHARAKTERISTIKA:

- (A) LÄNGE: 1863 Basenpaare
- (B) ART: Nukleins"ure
- (C) STRANGFORM: Einzel
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: DNS (genomisch)

(iii) HYPOTHETISCH: NEIN

(iii) ANTISENSE: NEIN

(v) ART DES FRAGMENTS: N-Terminus

(vi) URSPRÜNGLICHE HERKUNFT:

- (A) ORGANISMUS: 1-Deoxy-D-Xylulose-5-Phosphat Synthase
- (B) STAMM: E.coli XL1 Blue

(ix) MERKMALE:

- (A) NAME/SCHLÜSSEL: CDS
- (B) LAGE: 1..1863

(x) VERÖFFENTLICHUNGSINFORMATION:

- (A) AUTORS: Reindl, Andreas
- (G) DATUM: 2000

(K) BELANGREICHE RESTE IN SEQ ID NO: 1: VON 1 BIS

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

ATG AGT TTT GAT ATT GCC AAA TAC CCG ACC CTG GCA CTG GTC GAC TCC
Met Ser Phe Asp Ile Ala Lys Tyr Pro Thr Leu Ala Leu Val Asp Ser

1

5

10

15

ACC CAG GAG TTA CGA CTG TTG CCG AAA GAG AGT TTA CCG AAA CTC TGC
Thr Gln Glu Leu Arg Leu Leu Pro Lys Glu Ser Leu Pro Lys Leu Cys

20

25

30

GAC GAA CTG CGC CGC TAT TTA CTC GAC AGC GTG AGC CGT TCC AGC GGG
Asp Glu Leu Arg Arg Tyr Leu Leu Asp Ser Val Ser Arg Ser Ser Gly

48

96

144

25

35

40

45

CAC TTC GCC TCC GGG CTG GGC ACG GTC GAA CTG ACC GTG GCG CTG CAC				192
His Phe Ala Ser Gly Leu Gly Thr Val Glu Leu Thr Val Ala Leu His				
50	55	60		
TAT GTC TAC AAC ACC CCG TTT GAC CAA TTG ATT TGG GAT GTG GGG CAT				240
Tyr Val Tyr Asn Thr Pro Phe Asp Gln Leu Ile Trp Asp Val Gly His				
65	70	75	80	
CAG GCT TAT CCG CAT AAA ATT TTG ACC GGA CGC CGC GAC AAA ATC GGC				288
Gln Ala Tyr Pro His Lys Ile Leu Thr Gly Arg Arg Asp Lys Ile Gly				
85	90	95		
ACC ATC CGT CAG AAA GGC GGT CTG CAC CCG TTC CCG TGG CGC GGC GAA				336
Thr Ile Arg Gln Lys Gly Leu His Pro Phe Pro Trp Arg Gly Glu				
100	105	110		
AGC GAA TAT GAC GTA TTA AGC GTC GGG CAT TCA TCA ACC TCC ATC AGT				384
Ser Glu Tyr Asp Val Leu Ser Val Gly His Ser Ser Thr Ser Ile Ser				
115	120	125		
GCC GGA ATT GGT ATT GCG GTT GCT GCC GAA AAA GAA GGC AAA AAT CGC				432
Ala Gly Ile Gly Ile Ala Val Ala Ala Glu Lys Glu Gly Lys Asn Arg				
130	135	140		
CGC ACC GTC TGT GTC ATT GGC GAT GGC GCG ATT ACC GCA GGC ATG GCG				480
Arg Thr Val Cys Val Ile Gly Asp Gly Ala Ile Thr Ala Gly Met Ala				
145	150	155	160	
TTT GAA GCG ATG AAT CAC GCG GGC GAT ATC CGT CCT GAT ATG CTG GTG				528
Phe Glu Ala Met Asn His Ala Gly Asp Ile Arg Pro Asp Met Leu Val				
165	170	175		
ATT CTC AAC GAC AAT GAA ATG TCG ATT TCC GAA AAT GTC GGC GCG CTC				576
Ile Leu Asn Asp Asn Glu Met Ser Ile Ser Glu Asn Val Gly Ala Leu				
180	185	190		
AAC AAC CAT CTG GCA CAG CTG CTT TCC GGT AAG CTT TAC TCT TCA CTG				624
Asn Asn His Leu Ala Gln Leu Leu Ser Gly Lys Leu Tyr Ser Ser Leu				
195	200	205		
CGC GAA GGC GGG AAA AAA GTT TTC TCT GGC GTG CCG CCA ATT AAA GAG				672
Arg Glu Gly Gly Lys Lys Val Phe Ser Gly Val Pro Pro Ile Lys Glu				
210	215	220		
CTG CTC AAA CGC ACC GAA GAA CAT ATT AAA GGC ATG GTA GTG CCT GGC				720
Leu Leu Lys Arg Thr Glu Glu His Ile Lys Gly Met Val Val Pro Gly				
225	230	235	240	
ACG TTG TTT GAA GAG CTG GGC TTT AAC TAC ATC GGC CCG GTG GAC GGT				768
Thr Leu Phe Glu Glu Leu Gly Phe Asn Tyr Ile Gly Pro Val Asp Gly				
245	250	255		
CAC GAT GTG CTG GGG CTT ATC ACC ACG CTA AAG AAC ATG CGC GAC CTG				816
His Asp Val Leu Gly Leu Ile Thr Thr Leu Lys Asn Met Arg Asp Leu				
260	265	270		
AAA GGC CCG CAG TTC CTG CAT ATC ATG ACC AAA AAA GGT CGT GGT TAT				864
Lys Gly Pro Gln Phe Leu His Ile Met Thr Lys Lys Gly Arg Gly Tyr				
275	280	285		
GAA CCG GCA GAA AAA GAC CCG ATC ACT TTC CAC GCC GTG CCT AAA TTT				912

Glu	Pro	Ala	Glu	Lys	Asp	Pro	Ile	Thr	Phe	His	Ala	Val	Pro	Lys	Phe	
290						295					300					
GAT	CCC	TCC	AGC	GGT	TGT	TTG	CCG	AAA	AGT	AGC	GGC	GGT	TTG	CCG	AGC	960
Asp	Pro	Ser	Ser	Gly	Cys	Leu	Pro	Lys	Ser	Ser	Gly	Gly	Leu	Pro	Ser	
305						310				315				320		
TAT	TCA	AAA	ATC	TTT	GGC	GAC	TGG	TTG	TGC	GAA	ACG	GCA	GCG	AAA	GAC	1008
Tyr	Ser	Lys	Ile	Phe	Gly	Asp	Trp	Leu	Cys	Glu	Thr	Ala	Ala	Lys	Asp	
						325			330				335			
AAC	AAG	CTG	ATG	GCG	ATT	ACT	CCG	GCG	ATG	CGT	GAA	GGT	TCC	GGC	ATG	1056
Asn	Lys	Leu	Met	Ala	Ile	Thr	Pro	Ala	Met	Arg	Glu	Gly	Ser	Gly	Met	
						340			345				350			
GTC	GAG	TTT	TCA	CGT	AAA	TTC	CCG	GAT	CGC	TAC	TTC	GAC	GTG	GCA	ATT	1104
Val	Glu	Phe	Ser	Arg	Lys	Phe	Pro	Asp	Arg	Tyr	Phe	Asp	Val	Ala	Ile	
						355			360				365			
GCC	GAG	CAA	CAC	GCG	GTG	ACC	TTT	GCT	GCG	GGT	CTG	GCG	ATT	GGT	GGG	1152
Ala	Glu	Gln	His	Ala	Val	Thr	Phe	Ala	Ala	Gly	Leu	Ala	Ile	Gly	Gly	
						370			375				380			
TAC	AAA	CCC	ATT	GTC	GCG	ATT	TAC	TCC	ACT	TTC	CTG	CAA	CGC	GCC	TAT	1200
Tyr	Lys	Pro	Ile	Val	Ala	Ile	Tyr	Ser	Thr	Phe	Leu	Gln	Arg	Ala	Tyr	
						385			390				395			400
GAT	CAG	GTG	CTG	CAT	GAC	GTG	GCG	ATT	CAA	AAG	CTT	CCG	GTC	CTG	TTC	1248
Asp	Gln	Val	Leu	His	Asp	Val	Ala	Ile	Gln	Lys	Leu	Pro	Val	Leu	Phe	
						405			410				415			
GCC	ATC	GAC	CGC	GCG	GGC	ATT	GTT	GGT	GCT	GAC	GGT	CAA	ACC	CAT	CAG	1296
Ala	Ile	Asp	Arg	Ala	Gly	Ile	Val	Gly	Ala	Asp	Gly	Gln	Thr	His	Gln	
						420			425				430			
GGT	GCT	TTT	GAT	CTC	TCT	TAC	CTG	CGC	TGC	ATA	CCG	GAA	ATG	GTC	ATT	1344
Gly	Ala	Phe	Asp	Leu	Ser	Tyr	Leu	Arg	Cys	Ile	Pro	Glu	Met	Val	Ile	
						435			440				445			
ATG	ACC	CCG	AGC	GAT	GAA	AAC	GAA	TGT	CGC	CAG	ATG	CTC	TAT	ACC	GGC	1392
Met	Thr	Pro	Ser	Asp	Glu	Asn	Glu	Cys	Arg	Gln	Met	Leu	Tyr	Thr	Gly	
						450			455				460			
TAT	CAC	TAT	AAC	GAT	GGC	CCG	TCA	GCG	GTG	CGC	TAC	CCG	CGT	GGC	AAC	1440
Tyr	His	Tyr	Asn	Asp	Gly	Pro	Ser	Ala	Val	Arg	Tyr	Pro	Arg	Gly	Asn	
						465			470				475			480
GCG	GTC	GGC	GTG	GAA	CTG	ACG	CCG	CTG	GAA	AAA	CTA	CCA	ATT	GGC	AAA	1488
Ala	Val	Gly	Val	Glu	Leu	Thr	Pro	Leu	Glu	Lys	Leu	Pro	Ile	Gly	Lys	
						485			490				495			
GGC	ATT	GTG	AAG	CGT	CGT	GGC	GAG	AAA	CTG	GCG	ATC	CTT	AAC	TTT	GGT	1536
Gly	Ile	Val	Lys	Arg	Arg	Gly	Glu	Lys	Leu	Ala	Ile	Leu	Asn	Phe	Gly	
						500			505				510			
ACG	CTG	ATG	CCA	GAA	GCG	GCG	AAA	GTC	GCC	GAA	TCG	CTG	AAC	GCC	ACG	1584
Thr	Leu	Met	Pro	Glu	Ala	Ala	Lys	Val	Ala	Glu	Ser	Leu	Asn	Ala	Thr	
						515			520				525			
CTG	GTC	GAT	ATG	CGT	TTT	GTG	AAA	CCG	CTT	GAT	GAA	GCG	TTA	ATT	CTG	1632
Leu	Val	Asp	Met	Arg	Phe	Val	Lys	Pro	Leu	Asp	Glu	Ala	Leu	Ile	Leu	
						530			535				540			

GAA ATG GCC GCC AGC CAT GAA GCG CTG GTC ACC GTA GAA GAA AAC GCC 1680
 Glu Met Ala Ala Ser His Glu Ala Leu Val Thr Val Glu Glu Asn Ala
 545 550 555 560
 ATT ATG GGC GGC GCA GGC AGC GGC GTG AAC GAA GTG CTG ATG GCC CAT 1728
 Ile Met Gly Gly Ala Gly Ser Gly Val Asn Glu Val Leu Met Ala His
 565 570 575
 CGT AAA CCA GTA CCC GTG CTG AAC ATT GGC CTG CCG GAC TTC TTT ATT 1776
 Arg Lys Pro Val Pro Val Leu Asn Ile Gly Leu Pro Asp Phe Phe Ile
 580 585 590
 CCG CAA GGA ACT CAG GAA GAA ATG CGC GCC GAA CTC GGC CTC GAT GCC 1824
 Pro Gln Gly Thr Gln Glu Glu Met Arg Ala Glu Leu Gly Leu Asp Ala
 595 600 605
 GCT GGT ATG GAA GCC AAA ATC AAG GCC TGG CTG GCA TA 1863
 Ala Gly Met Glu Ala Lys Ile Lys Ala Trp Leu Ala
 610 615 620

(2) INFORMATION ZU SEQ ID NO: 2:

- (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 620 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

Met	Ser	Phe	Asp	Ile	Ala	Lys	Tyr	Pro	Thr	Leu	Ala	Leu	Val	Asp	Ser
1		5						10						15	
Thr	Gln	Glu	Leu	Arg	Leu	Leu	Pro	Lys	Glu	Ser	Leu	Pro	Lys	Leu	Cys
	20							25					30		
Asp	Glu	Leu	Arg	Arg	Tyr	Leu	Leu	Asp	Ser	Val	Ser	Arg	Ser	Ser	Gly
	35							40				45			
His	Phe	Ala	Ser	Gly	Leu	Gly	Thr	Val	Glu	Leu	Thr	Val	Ala	Leu	His
	50							55			60				
Tyr	Val	Tyr	Asn	Thr	Pro	Phe	Asp	Gln	Leu	Ile	Trp	Asp	Val	Gly	His
	65							70			75		80		
Aln	Ala	Tyr	Pro	His	Lys	Ile	Leu	Thr	Gly	Arg	Arg	Asp	Lys	Ile	Gly
								85			90		95		
Thr	Ile	Arg	Gln	Lys	Gly	Gly	Leu	His	Pro	Phe	Pro	Trp	Arg	Gly	Glu
								100		105		110			
Ser	Glu	Tyr	Asp	Val	Leu	Ser	Val	Gly	His	Ser	Ser	Thr	Ser	Ile	Ser
								115		120		125			
Ala	Gly	Ile	Gly	Ile	Ala	Val	Ala	Ala	Glu	Lys	Glu	Gly	Lys	Asn	Arg
								130		135		140			
Arg	Thr	Val	Cys	Val	Ile	Gly	Asp	Gly	Ala	Ile	Thr	Ala	Gly	Met	Ala
	145							150			155		160		
Phe	Glu	Ala	Met	Asn	His	Ala	Gly	Asp	Ile	Arg	Pro	Asp	Met	Leu	Val
								165		170		175			
Ile	Leu	Asn	Asp	Asn	Glu	Met	Ser	Ile	Ser	Glu	Asn	Val	Gly	Ala	Leu
								180		185		190			
Asn	Asn	His	Leu	Ala	Gln	Leu	Leu	Ser	Gly	Lys	Leu	Tyr	Ser	Ser	Leu

M 20.00

195	200	205
Arg Glu Gly Gly Lys Lys Val Phe Ser Gly Val Pro Pro Ile Lys Glu		
210	215	220
Leu Leu Lys Arg Thr Glu Glu His Ile Lys Gly Met Val Val Pro Gly		
225	230	235
Thr Leu Phe Glu Glu Leu Gly Phe Asn Tyr Ile Gly Pro Val Asp Gly		
245	250	255
His Asp Val Leu Gly Leu Ile Thr Thr Leu Lys Asn Met Arg Asp Leu		
260	265	270
Lys Gly Pro Gln Phe Leu His Ile Met Thr Lys Lys Gly Arg Gly Tyr		
275	280	285
Glu Pro Ala Glu Lys Asp Pro Ile Thr Phe His Ala Val Pro Lys Phe		
290	295	300
Asp Pro Ser Ser Gly Cys Leu Pro Lys Ser Ser Gly Gly Leu Pro Ser		
305	310	315
Tyr Ser Lys Ile Phe Gly Asp Trp Leu Cys Glu Thr Ala Ala Lys Asp		
325	330	335
Asn Lys Leu Met Ala Ile Thr Pro Ala Met Arg Glu Gly Ser Gly Met		
340	345	350
Val Glu Phe Ser Arg Lys Phe Pro Asp Arg Tyr Phe Asp Val Ala Ile		
355	360	365
Ala Glu Gln His Ala Val Thr Phe Ala Ala Gly Leu Ala Ile Gly Gly		
370	375	380
Tyr Lys Pro Ile Val Ala Ile Tyr Ser Thr Phe Leu Gln Arg Ala Tyr		
385	390	395
Asp Gln Val Leu His Asp Val Ala Ile Gln Lys Leu Pro Val Leu Phe		
405	410	415
Ala Ile Asp Arg Ala Gly Ile Val Gly Ala Asp Gly Gln Thr His Gln		
420	425	430
Gly Ala Phe Asp Leu Ser Tyr Leu Arg Cys Ile Pro Glu Met Val Ile		
435	440	445
Met Thr Pro Ser Asp Glu Asn Glu Cys Arg Gln Met Leu Tyr Thr Gly		
450	455	460
Tyr His Tyr Asn Asp Gly Pro Ser Ala Val Arg Tyr Pro Arg Gly Asn		
465	470	475
Ala Val Gly Val Glu Leu Thr Pro Leu Glu Lys Leu Pro Ile Gly Lys		
485	490	495
Gly Ile Val Lys Arg Arg Gly Glu Lys Leu Ala Ile Leu Asn Phe Gly		
500	505	510
Thr Leu Met Pro Glu Ala Ala Lys Val Ala Glu Ser Leu Asn Ala Thr		
515	520	525
Leu Val Asp Met Arg Phe Val Lys Pro Leu Asp Glu Ala Leu Ile Leu		
530	535	540
Glu Met Ala Ala Ser His Glu Ala Leu Val Thr Val Glu Glu Asn Ala		
545	550	555
Ile Met Gly Gly Ala Gly Ser Gly Val Asn Glu Val Leu Met Ala His		
565	570	575

Arg Lys Pro Val Pro Val Leu Asn Ile Gly Leu Pro Asp Phe Phe Ile
 580 585 590
 Pro Gln Gly Thr Gln Glu Glu Met Arg Ala Glu Leu Gly Leu Asp Ala
 595 600 605
 Ala Gly Met Glu Ala Lys Ile Lys Ala Trp Leu Ala
 610 615 620

(2) INFORMATION ZU SEQ ID NO: 3:

(i) SEQUENZ CHARAKTERISTIKA:

- (A) LÄNGE: 1479 Basenpaare
- (B) ART: Nukleinsäure
- (C) STRANGFORM: Einzel
- (D) TOPOLOGIE: linear

(iii) HYPOTHETISCH: NEIN

(iii) ANTISENSE: NEIN

(v) ART DES FRAGMENTS: N-Terminus

(ix) MERKMALE:

- (A) NAME/SCHLÜSSEL: CDS
- (B) LAGE: 1..1401

(x) VERÖFFENTLICHUNGSDATUM:

- (A) AUTORS: 3-SEP-2000,
- (G) DATUM: 2000

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:

ATG GCG ACG ACG GTT ACA CTC AAA TCC TTC ACC GGA CTT CGT CAA TCA	48
Met Ala Thr Thr Val Thr Leu Lys Ser Phe Thr Gly Leu Arg Gln Ser	
1 5 10 15	
TCA ACG GAG CAA ACA AAC TTC GTC TCT CAT GTA CCG TCA TCA CTT TCT	96
Ser Thr Glu Gln Thr Asn Phe Val Ser His Val Pro Ser Ser Leu Ser	
20 25 30	
CTC CCT CAA CGA CGG ACC TCT CTC CGA GTA ACC GCA GCC AGG GCC ACT	144
Leu Pro Gln Arg Arg Thr Ser Leu Arg Val Thr Ala Ala Arg Ala Thr	
35 40 45	
CCC AAA CTC TCC AAC CGT AAA CTC CGT GTC GCC GTC ATC GGT GGT GGA	192
Pro Lys Leu Ser Asn Arg Lys Leu Arg Val Ala Val Ile Gly Gly Gly	
50 55 60	
CCA GCA GGC GGG GCA GCT GCA GAG ACT CTA GCA CAA GGA GGA ATC GAG	240
Pro Ala Gly Gly Ala Ala Glu Thr Leu Ala Gln Gly Ile Glu	
65 70 75 80	
ACG ATT CTC ATC GAG CGT AAG ATG GAC AAT TGC AAG CCT TGC GGT GGC	288
Thr Ile Leu Ile Glu Arg Lys Met Asp Asn Cys Lys Pro Cys Gly Gly	
85 90 95	
GCG ATT CCT CTC TGT ATG GTC GGA GAA TTC AAC TTG CCG TTG GAT ATT	336
Ala Ile Pro Leu Cys Met Val Gly Glu Phe Asn Leu Pro Leu Asp Ile	
100 105 110	
ATT GAT CGG AGA GTG ACG AAG ATG AAG ATG ATT TCG CCG TCG AAC ATT	384
Ile Asp Arg Arg Val Thr Lys Met Lys Met Ile Ser Pro Ser Asn Ile	
115 120 125	
GCT GTT GAT ATT GGT CGT ACG CTT AAG GAG CAT GAG TAT ATA GGT ATG	432

30

Ala Val Asp Ile Gly Arg Thr Leu Lys Glu His Glu Tyr Ile Gly Met			
130	135	140	
GTG AGA AGA GAA GTT CTT GAT GCT TAT CTG AGA GAG AGA GCT GAG AAG			480
Val Arg Arg Glu Val Leu Asp Ala Tyr Leu Arg Glu Arg Ala Glu Lys			
145	150	155	160
AGT GGA GCC ACT GTG ATT AAC GGT CTC TTC CTT AAG ATG GAT CAT CCG			528
Ser Gly Ala Thr Val Ile Asn Gly Leu Phe Leu Lys Met Asp His Pro			
165	170	175	
GAG AAT TGG GAC TCG CCG TAC ACT TTG CAT TAC ACT GAG TAC GAT GGT			576
Glu Asn Trp Asp Ser Pro Tyr Thr Leu His Tyr Thr Glu Tyr Asp Gly			
180	185	190	
AAA ACT GGA GCT ACA GGG ACG AAG AAA ACA ATG GAG GTT GAT GCT GTC			624
Lys Thr Gly Ala Thr Gly Thr Lys Lys Thr Met Glu Val Asp Ala Val			
195	200	205	
ATT GGA GCT GAT GGA GCT AAC TCT AGG GTT GCT AAA TCT ATT GAT GCT			672
Ile Gly Ala Asp Gly Ala Asn Ser Arg Val Ala Lys Ser Ile Asp Ala			
210	215	220	
GGT GAT TAC GAC TAC GCA ATT GCA TTT CAG GAG AGG ATT AGG ATT CCT			720
Gly Asp Tyr Asp Tyr Ala Ile Ala Phe Gln Glu Arg Ile Arg Ile Pro			
225	230	235	240
GAT GAG AAA ATG ACT TAC TAT GAG GAT TTA GCT GAG ATG TAT GTT GGA			768
Asp Glu Lys Met Thr Tyr Tyr Glu Asp Leu Ala Glu Met Tyr Val Gly			
245	250	255	
GAT GAT GTG TCG CCG GAT TTC TAT GGT TGG GTG TTC CCT AAG TGC GAC			816
Asp Asp Val Ser Pro Asp Phe Tyr Gly Trp Val Phe Pro Lys Cys Asp			
260	265	270	
CAT GTA GCT GTT GGA ACA GGT ACT GTG ACT CAC AAA GGT GAC ATC AAG			864
His Val Ala Val Gly Thr Gly Thr Val Thr His Lys Gly Asp Ile Lys			
275	280	285	
AAG TTC CAG CTC GCG ACC AGA AAC AGA GCT AAG GAC AAG ATT CTT GGA			912
Lys Phe Gln Leu Ala Thr Arg Asn Arg Ala Lys Asp Lys Ile Leu Gly			
290	295	300	
GGG AAG ATC ATC CGT GTG GAG GCT CAT CCG ATT CCT GAA CAT CCG AGA			960
Gly Lys Ile Ile Arg Val Glu Ala His Pro Ile Pro Glu His Pro Arg			
305	310	315	320
CCA CGT AGG CTC TCG AAA CGT GTG GCT CTT GTA GGT GAT GCT GCA GGG			1008
Pro Arg Arg Leu Ser Lys Arg Val Ala Leu Val Gly Asp Ala Ala Gly			
325	330	335	
TAT GTG ACT AAA TGC TCT GGT GAA GGG ATC TAC TTT GCT GCT AAG AGT			1056
Tyr Val Thr Lys Cys Ser Gly Glu Gly Ile Tyr Phe Ala Ala Lys Ser			
340	345	350	
GGA AGA ATG TGT GCT GAA GCC ATT GTC GAA GGT TCA CAG AAT GGT AAG			1104
Gly Arg Met Cys Ala Glu Ala Ile Val Glu Gly Ser Gln Asn Gly Lys			
355	360	365	
AAG ATG ATT GAC GAA GGG GAC TTG AGG AAG TAC TTG GAG AAA TGG GAT			1152
Lys Met Ile Asp Glu Gly Asp Leu Arg Lys Tyr Leu Glu Lys Trp Asp			
370	375	380	

31

AAG ACA TAC TTG CCT ACC TAC AGG GTA CTT GAT GTG TTG CAG AAA GTG Lys Thr Tyr Leu Pro Thr Tyr Arg Val Leu Asp Val Leu Gln Lys Val 385 390 395 400	1200
TTT TAC AGA TCA AAT CCG GCT AGA GAA GCG TTT GTG GAG ATG TGT AAT Phe Tyr Arg Ser Asn Pro Ala Arg Glu Ala Phe Val Glu Met Cys Asn 405 410 415	1248
GAT GAG TAT GTT CAG AAG ATG ACA TTC GAT AGC TAT CTG TAC AAG CGG Asp Glu Tyr Val Gln Lys Met Thr Phe Asp Ser Tyr Leu Tyr Lys Arg 420 425 430	1296
GTT GCG CCG GGT AGT CCT TTG GAG GAT ATC AAG TTG GCT GTG AAC ACC Val Ala Pro Gly Ser Pro Leu Glu Asp Ile Lys Leu Ala Val Asn Thr 435 440 445	1344
ATT GGA AGT TTG GTT AGG GCT AAT GCT CTA AGG AGA GAG ATT GAG AAG Ile Gly Ser Leu Val Arg Ala Asn Ala Leu Arg Arg Glu Ile Glu Lys 450 455 460	1392
CTT AGT GTT TAAGAAACAA ATAATGAGGT CTATCTCCTT TCTTCATCTC Leu Ser Val 465	1441
TATCTCTCTT TTTTGTCCTG TTAGTAATCT ATCTACAC	1479
(2) INFORMATION ZU SEQ ID NO: 4:	
(i) SEQUENZ CHARAKTERISTIKA:	
(A) LÄNGE: 467 Aminosäuren	
(B) ART: Aminosäure	
(D) TOPOLOGIE: linear	
(ii) ART DES MOLEKÜLS: Protein	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:	
Met Ala Thr Thr Val Thr Leu Lys Ser Phe Thr Gly Leu Arg Gln Ser	
1 5 10 15	
Ser Thr Glu Gln Thr Asn Phe Val Ser His Val Pro Ser Ser Leu Ser	
20 25 30	
Leu Pro Gln Arg Arg Thr Ser Leu Arg Val Thr Ala Ala Arg Ala Thr	
35 40 45	
Pro Lys Leu Ser Asn Arg Lys Leu Arg Val Ala Val Ile Gly Gly Gly	
50 55 60	
Pro Ala Gly Gly Ala Ala Ala Glu Thr Leu Ala Gln Gly Gly Ile Glu	
65 70 75 80	
Thr Ile Leu Ile Glu Arg Lys Met Asp Asn Cys Lys Pro Cys Gly Gly	
85 90 95	
Ala Ile Pro Leu Cys Met Val Gly Glu Phe Asn Leu Pro Leu Asp Ile	
100 105 110	
Ile Asp Arg Arg Val Thr Lys Met Lys Met Ile Ser Pro Ser Asn Ile	
115 120 125	
Ala Val Asp Ile Gly Arg Thr Leu Lys Glu His Glu Tyr Ile Gly Met	
130 135 140	
Val Arg Arg Glu Val Leu Asp Ala Tyr Leu Arg Glu Arg Ala Glu Lys	
145 150 155 160	
Ser Gly Ala Thr Val Ile Asn Gly Leu Phe Leu Lys Met Asp His Pro	

32

170

175

165

Glu Asn Trp Asp Ser Pro Tyr Thr Leu His Tyr Thr Glu Tyr Asp Gly
180 185 190
Lys Thr Gly Ala Thr Gly Thr Lys Lys Thr Met Glu Val Asp Ala Val
195 200 205
Ile Gly Ala Asp Gly Ala Asn Ser Arg Val Ala Lys Ser Ile Asp Ala
210 215 220
Gly Asp Tyr Asp Tyr Ala Ile Ala Phe Gln Glu Arg Ile Arg Ile Pro
225 230 235 240
Asp Glu Lys Met Thr Tyr Tyr Glu Asp Leu Ala Glu Met Tyr Val Gly
245 250 255
Asp Asp Val Ser Pro Asp Phe Tyr Gly Trp Val Phe Pro Lys Cys Asp
260 265 270
His Val Ala Val Gly Thr Gly Thr Val Thr His Lys Gly Asp Ile Lys
275 280 285
Lys Phe Gln Leu Ala Thr Arg Asn Arg Ala Lys Asp Lys Ile Leu Gly
290 295 300
Gly Lys Ile Ile Arg Val Glu Ala His Pro Ile Pro Glu His Pro Arg
305 310 315 320
Pro Arg Arg Leu Ser Lys Arg Val Ala Leu Val Gly Asp Ala Ala Gly
325 330 335
Tyr Val Thr Lys Cys Ser Gly Glu Gly Ile Tyr Phe Ala Ala Lys Ser
340 345 350
Gly Arg Met Cys Ala Glu Ala Ile Val Glu Gly Ser Gln Asn Gly Lys
355 360 365
Lys Met Ile Asp Glu Gly Asp Leu Arg Lys Tyr Leu Glu Lys Trp Asp
370 375 380
Lys Thr Tyr Leu Pro Thr Tyr Arg Val Leu Asp Val Leu Gln Lys Val
385 390 395 400
Phe Tyr Arg Ser Asn Pro Ala Arg Glu Ala Phe Val Glu Met Cys Asn
405 410 415
Asp Glu Tyr Val Gln Lys Met Thr Phe Asp Ser Tyr Leu Tyr Lys Arg
420 425 430
Val Ala Pro Gly Ser Pro Leu Glu Asp Ile Lys Leu Ala Val Asn Thr
435 440 445
Ile Gly Ser Leu Val Arg Ala Asn Ala Leu Arg Arg Glu Ile Glu Lys
450 455 460
Leu Ser Val
465

M 20000-900

Abbildung 1

Schematische Übersicht des Prenyllipidstoffwechsels

5

40

45

M 20 · 10 · 90

Abbildung 2

A

B

M 23010 · 99

Abbildung 3

Binärer Vektor zur Überexpression des DOXS-Gens aus E. coli im Zytosol transgener Pflanzen

M 20 · 10 · 99

Abbildung 4

Binärer Vektor zur Überexpression des DOXS-Gens aus E. coli im
Plastiden transgener Pflanzen

M 20000 · 99

Abbildung 5

Binärer Vektor zur Überexpression des GGPPOR-Gens aus *Arabidopsis thaliana* in Plastiden transgener Pflanzen.

Abbildung 6

Binärer Vektor zur Überexpression des GGPPOR-Gens aus *Arabidopsis thaliana* und des DOXS-Gens aus *E. coli* in Plastiden transgener Pflanzen.

25

30

35

40

45

M 23 00 · 98

DNA-Sequenzen codierend für ein 1-Deoxy-D-Xylulose-5-Phosphat Synthase-Gen und eine Geranylgeranyl-Pyrophosphat Oxidoreduktase und deren Überproduktion in Pflanzen

5

Zusammenfassung

Verfahren zur Herstellung von Pflanzen mit erhöhter Vitamin E Biosyntheseleistung durch Überexpression eines 1-Deoxy-D-Xylo-

10 lose-5-Phosphat Synthase-Gens aus *E.coli* und einer Geranylgeranyl-Pyrophosphat Oxidoreduktase aus *Arabidopsis thaliana*.

15

20

25

30

35

40

45

THIS PAGE BLANK (USPTO)