4	
<pre>2: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2000.DAT:*</pre>	
•	
18: /SIDS1/qcqdata/geneseq/geneseqp=emb1/aa1996.DAT:*	
. <	
14: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1993.DAT:*	
13: /SIDS1/gcgdata/geneseg/genesegp-emb1/AA1991.DAT:*	
٠	
8: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1987.DAT: *	
7: /SIDS1/gcqdata/geneseq/geneseqp=emb1/AA1986.DAT:*	
5: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1984.DAT:*	
: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1983.	
3: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1982.DAT: *	
gcgdata/geneseq/geneseqp-embl/AA1981.	
1: /SIDS1/g	
Database : A Geneseg 19Jun03:*	Data
Maximum Match 100% Listing first 45 summaries	
-processing: Minimum Match 0%	Post
Minimum DB seq length: 0 Maximum DB seq length: 2000000000	Mini Maxi
stal number of hits satisfying chosen parameters: 1107863	Tota
Searched: 1107863 seqs, 158726573 residues	Sear
Scoring table: BLOSUM62 Gapop 10.0 , Gapext 0.5	Scor
Title: US-10-014-269-34 Perfect score: 5279 Sequence: 1 MGEEGGSASHDEEERASVLLLKLSNNCTTYLGAEALLQAP 1007	Tit] Perf Sequ
(without alignments) 4223.507 Million cell u	
on: January 7, 2004, 20:04:17	Run
OM protein - protein search, using sw model	M WO

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

;	45	44	43	42	41	. 40		38	. (c)	30	, u	34	. ω ω	32	31	30	29	. 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	ᇣ	10	ه م	~ œ	Jσ	, σ	4. ۱	. (.	ı Ni			No.	†	
	887 5	962	962	962	1132	1165.5	1169.5	1170.5	1170.5	1170.5	1170.5	1170.5	1173	1175.5	1175.5	1175.5	1175.5	1175.5	1564	1614	1614	2087	2959	4188	4935.5	5128	5128	5155	5256	5256	5259	5264	5264	5264	5267	5267	5267	2000	1/20	5271	27.75	5272	5279	5279		Score		
	χ η	18.2	18.2	18.2	21.4	22.1	22.2	22.2	22.2	22.2	22.2	22.2	22.2	22.3	22.3	22:3	22.3	22.3	29.6	30.6	30.6	39.5	56.1	79.3	93.5	97.1	97.1	97.7	99.6	99.6	99.6	99.7	99.7	99.7	99.8	99.8	200	0 4	9 9	99.8	99.9	99.9	0	100.0		Match) ar	5
;	770	719	705	705	966	953	953	953	953	953	953	953	959	953	953	953	953	953	296	305	305	403	560	795	1009	1013	1013	1041	1040	1040	1040	1040	1040	1040	1040	1040	1040	1040	1040	1007	₩.	1038	1007	1007		Length		
1	0	22	21	21	24	0	23	24	23	22	22	21	22	24	23	23	22	20	23	23	23	23	23	23	23	23	23	22	23	23	23	23	23	23	2	2 1	2 6	3 6	2 2	23	23	23	23	23	-	H		
2010	33005610	AAG75589	AAB15562	AAB15559	ABU56300	AAY31141	ABG31076	ABU56273	AA022111	AAB20080	AAM78489	AAB15552	AAM79473	ABU56298	AA022136	ABG31080	AAB20084	AAY31145	AAU80869	ABJ04740	AAE25421	AAU80870	AAU80856	AAU80875	AAU80865	ABJ04736	AAE25417	AAG79119	ABJ04777	ABJ04775	ABJ04776	ABJ04770	ABJ04769	ABJ04768	ABJ04772	ABJ04737	27E025118	ABJ04771	ABJ04773	ABJ04767	AAE25416	ABJ04735	ABJ04766	AAE25434		5		000000000000000000000000000000000000000
numan protein sequ	CHOLL	2010		ES.	se recrui	CARD-4L	caspase rec	Caspa	in of hur	CARD-4L	teir	sis rela		Mouse Caspase recr	in of mur	caspase	CARD-4L	Murine CARD-4L pro			Nod2 pr	CARDSX	CARD3X	CARD3X		prote	Nod2	acid sequen	P268S +	P268S + G98	P268S + N85	P268S .	G908R		OF CHERT		MEGG	V793M prote	d 1556A	P2689	Human Nod2 protein	Nod2a protein wild	Nod2a protein delt	an Nod2 mut				

Search completed: January 7, 2004, 20:49:55 Job time : 41.8448 secs

OM protein	
jg.	
protein	
searo	
ų,	
using	
S.	
model	,
	·

	Run on:
	January
	7,
	2004,
	20:54:13
(without 6851.332	; Search
(without alignments) 6851.332 Million cel	January 7, 2004, 20:54:13; Search time 29.6176 Seconds
(without alignments) 6851.332 Million cell updates/sec	6 Seconds

Sequence:	Perfect score: 5279	Title:
1 MGEEGGSASHDEEERASVLLLKLSNNCITYLGAEALLQAP 1007	5279	US-10-014-269-34

Scoring table: BLOSUM62
Gapop 10.0 , Gapext 0.5

Total number of hits satisfying chosen parameters: 747907

747907 seqs, 201509753 residues

Searched:

```
Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries
                                                                                         Minimum DB seq length: 0
Maximum DB seq length: 2000000000
```

			Database :
15: /cgm2_6/ptodata/2/pubpaa/US10C_PUBCOMB.pep:* 16: /cgm2_6/ptodata/2/pubpaa/US10_NEW_PUB.pep:* 17: /cgm2_6/ptodata/2/pubpaa/US60_NEW_PUB.pep:* 18: /cgm2_6/ptodata/2/pubpaa/US60_PUBCOMB.pep:*	10: / cgn2_6/ptcodata/2/ptubpaa/US09B_PUBCOMB.pep:* 11: / cgn2_6/ptcdata/2/ptubpaa/US09C_PUBCOMB.pep:* 12: / cgn2_6/ptcdata/2/ptubpaa/US09_NEW_PUB.pep:* 13: / cgn2_6/ptcdata/2/ptubpaa/US10A_PUBCOMB.pep:* 14: / cgn2_6/ptcdata/2/ptubpaa/US10B_PUBCOMB.pep:*	<pre>c cgn2 o/ptcdata/2/pubpaa/USU/ NEW PUB.pep:* c /cgn2 6/ptcdata/2/pubpaa/PCTUS PUB.pep:* c /cgn2 6/ptcdata/2/pubpaa/USUB NEW PUB.pep:* cgn2 6/ptcdata/2/pubpaa/USUB PUBCOMB.pep:* cgn2 6/ptcdata/2/pubpaa/USUB PUBCOMB.pep:* cgn2 6/ptcdata/2/pubpaa/USUB PUBCOMB.pep:*</pre>	Published_Applications_AA:* 1: /cgm2_6/ptcdata/2/pubpaa/USO7_PUBCOMB.pep:* 2: /cgm2_6/ptcdata/2/pubpaa/USO6_NEW_PUB.pep:* 3: /cgm2_6/ptcdata/2/pubpaa/USO6_NEW_PUB.pep:* 4: /cgm2_6/ptcdata/2/pubpaa/USO6_PUBCOMB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

 No.	Result	
Score		
 Score Match Length DB	Query	•
BB		
ID		
Description		

12	Sequenc	US-10-013-477-	15	O	2	1170.5	45
œ.	eque	US-10-118-984-	14	953	22.2	1170.5	44
о С	egue ,	US-10-105-931				0	43
Φ.	⊕	US-10-183-770-				170.	42
e.	Sequen	US-10-028-374-				70.	41
æ	.0	US-09-728-721-				170.	40
0 4	Sequenc	US-10-295-981-4	15	953	22.3	Ė	39
е 43,	o,	US-10-118-984				75.	38
43, 4	Ω	US-09-728-721-4				.51	37
e 174	Œ	US-09-864-921-				110	36
e 7.	ወ	US-10-002-974				O)	35
e 7,	eque	US-10-014-269-					34
ф 7.	eque	US-10-314-506-			30.	1614	ω
17	Ø	US-09-864-921-1			39.	2087	32
83,	æ	US-09-864-921-83			56.	2959	31
e 188.	Œ	US-09-864-921-			79.	4188	30
e 107, Ap	Φ	US-09-864-921-10		8	93.	4935.5	29
e 3, Appi	Φ	US-10-002-974-		2	97.	5128	28
e 3, Appl	Ø	US-10-014-269-		1013	97.	5128	27
e 3, Appl	æ	US-10-314-506-		2	97.	5128	26
e 2, 1	Sequenc	US-10-240-046A-		Ö	97.	5155	2
æ	m	US-10-002-974-8		ő	99	5256	24
e 85,	æ	US-10-002-974-8		1040	99.	5256	2 6
e 61, App	Sequenc	US-10-314-506-6		1040	999	0220	
e 59,	Ø.	US-10-314-506-5		1040	99	5256	\
e 87,	Φ	US-10-002-974-8		1040	99.	5259	2 0
e e	ıπ.	US-10-002-974-6		1040	99.	5264	19
e 59,	œ	US-10-002-974-5		1040		5264	1 6
e 57,	OD.	US-10-002-974-5		1040	99.	5264	17
e 57, App	Ф	US-10-314-506-		1040	99.	5264	16
e 65, App	ane	US-10-002-974-6		1040	99.	5267	15
е 4.	eque	US-10-002-974-		1040	99.	5267	14
e 4, Appl	eque	US-10-014-269-		1040	99.	5267	13
e 4 .	eque	· US-10-314-506-4		1040	99.	5267	12
Ф 69.	Sequenc	US-10-002-974-6		1040	99.	5268	р.а 1-1
စ တ	Œ	US-10-002-974-6		1040	99.	5269	10
e 67,	eque	US-10-002-974-		1040	99.	5271	9
5	Sequen	US-10-002-974-5		100	99.	52/1	α
e 55,		US-10-314-506-5		1007	99.	5271	7
e 2, Appl	Sequenc	US-10-002-974-		04	99.	5272	ισ
e 2,	æ	US-10-014-269-		04	99	52/2	, u
Φ	Sequenc	US-10-314-506-	ы	4	9	5/75	ם, ו
e 34,	Seguenc	US-10-002-974-3	. ,	00	. 001	6/70	· u
ce 34, A	Sequen	US-10-014-269-	_	. C	100.	12/3) N
õ ω	Sequenc	-10-314-506-3		1007	; L	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	→
				>		n .	_

Search completed: January 7, 2004, 21:06:03 Job time: 32.6176 secs

OM protein - protein search, using sw model

Run on: January 7, 2004, 20:49:58 ; Search time 16:7833 Seconds (without alignments) 5770:121 Million cell updates/sec

Title:
Perfect score:
Sequence: US-10-014-269-34 5279

1 MGEEGGSASHDEEERASVLL.....LKLSNNCITYLGAEALLQAP 1007

Scoring table: BLOSUM62
Gapop 10.0 , Gapext 0.5

Searched: 283308 segs, 96168682 residues

Total number of hits satisfying chosen parameters: 283308

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 10% Maximum Match 100% Listing first 45 summaries

Database :

PIR_76:*
1: pir1:*
2: pir2:*
3: pir3:*
4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Watch Length DB ID 7.7 1130 2 A48843 7.4 1192 2 T17255 6.6 1111 2 A59000 4.4 456 2 A31857 4.0 466 2 A31858 4.0 506 2 A45841 4.0 506 2 A45841 4.0 1075 2 T31668 3.9 631 2 C8943 3.9 631 2 C8943 3.9 631 2 C8943 3.9 631 2 C8943
ID 117255 117255 117255 AS9000 A31857 A31858 A5841 A5841 S20597 T314602 T31468 G99243 G99243 G99243 T31471

	86891 86891 8080 8080 8080 8080 8080 8080 8080 8	5 2.3 1091 2 2 3 680 2 3 680 2 2 3 680 2 2 3 680 2 2 3 680 2 2 3 680 2 2 3 680 2 2 3 680 2 2 3 680 2 2 3 680 2 2 3 680 2 2 3 680 2 2 3 680 2 2 3 680 2 3 680 2 2 3 680 2 3 680 2 2 3 680 2 2 680	1 2.3 518 2 1 2.3 800 2 5 2.3 849 2 0 2.3 1091 2 2.3 808 2 808 2	1 2.3 518 2 096512 1 2.3 800 2 AB1129 5 2.3 869 2 C97303 6 2.3 669 2 S42799 0 2.3 1091 2 A58532 5 2.3 680 2 T19939 5 2.3 808 2 B97303	1 2.3 518 2 196512 hypothetical prot 1 2.3 800 2 AB1129 Internalin A [imp 5 2.3 849 2 C97303 hypothetical prot 6 2.3 662 2 S47303 garp precursor - 0 2.3 1091 2 A58532 glial cell membra 5 2.3 800 2 T19939 hypothetical prot 5 2.3 800 2 B97303 hypothetical prot
	484 2 5246 484 2 5256 483 2 5256 483 2 7358 483 2 7556 496 2 7526 496 2 7526 561 2 7527 561 2 7527 562 2 7527 563 2 7527 563 2 7527 564 2 7527 565 2 7527 565 2 7527 565 2 7527 566 2 7537 566 2 7537 567 2 7527 568 2	00000000000000000000000000000000000000	00000000000000000000000000000000000000	483 2 527880 483 2 527880 886 2 1736380 332 2 152648 332 2 152649 332 2 152649 332 2 152649 332 2 152649 411 2 1523427 861 2 1733427 861 2 175207 861 2 175207 861 2 175207 861 2 175207 861 2 175207 861 2 175207 861 2 175207 861 2 175207 861 2 175207 861 2 2 175207 861 2 2 175207 861 2 2 175207 861 2 2 175207 862 2 175207 863 2 175207 864 2 175207 865 2 175207 866 2 2 175207 867 2 175207 868 2 2 175207 868 2 2 175207 868 2 2 175207 868 2 2 175207 868 2 2 175207 868 2 2 175207 868 2 2 175207 868 2 2 175207 868 2 2 175207 869 2 2 175207 860 2 175207 860 2 175	143 2 527880 Nasopressin neuronal apo Nasopressin probable lar 733380 Probable lar 2332 2 752069 Probable lar 2332 2 752069 Probable lar 252069 Probable lar 252069 Probable lar 252069 Protein dise 252070 Protein dise 252070 Probable lar 252070 Pr
o o o o o o o o o compando de				142628 1736380 1736380 1736380 1752069 1752069 1752070 1736381 1752070 1736381 1752070 172500 172500 172500 172764 1752070	142028 174028 174028 174028 174028 174028 1740380 1752069 1752069 1752069 1752069 1752069 1752069 1752069 1752069 1752069 1752069 1752069 1752069 1752069 1752070 1752
	194628 1736380 1736380 1736380 1752069 1752069 1752069 1752070 1736381 1736381 1736381 1748193 174819	17.4628 17.36380 17.36380 17.36380 17.36380 17.36380 17.36239 17.36239 17.36239 17.36281 17.3	136380 136380 152069 152069 152069 152069 152070 1723427 1723427 1723427 1723427 1736381 1706300 1		neuronal apop Nasopressin : probable lar probable lar neuronal apop GFPass-activ hypothetical hypothetical protable lar probable lar Ran GFPase a myosin-I bin RNAI protein hypothetical NNAI protein hypothetical NNAI protein hypothetical reverse tran hypothetical ran GFPase a hypothetical
				neur Nase probe pr	onal apoppessin; able larrable
S 483 2 S27880 Nasopres, probable neuronal neuro	onal press conal c	onal and a control of the total	onal and a control of the total		green
5 483 2 736380 Probable larkers of the control of t	onal applyessin; abble large before a prosection on a lapo on a la	onal appressin; able lar able lar able lar able lar search with the tical the tical the tical the tical the tical the tical above the tical above the tical above lar above la la	onal appressin; able lar able lar able lar able lar search; whetical thetical thetical thetical thetical able lar able la l		

Search completed: January 7, 2004, 20:53:39 Job time : 18.7833 secs

Run on: OM protein - protein search, using sw model January 7, 2004, 20:05:32; Search time 11:1889 Seconds (without alignments) 4232.403 Million cell updates/sec

Title: Perfect score: US-10-014-269-34 5279

Sequence: 1 MGEEGGSASHDEEERASVLL.....LKLSNNCITYLGAEALLQAP 1007

Scoring table:

Searched:

BLOSUM62 Gapop 10.0 , Gapext 0.5

Total number of hits satisfying chosen parameters:

127863

127863 seqs, 47026705 residues

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Database : SwissProt_41:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

ρ	IIO TS GE	d DAATT	у апату	118	and is defived by analysis of the total score distribution.	distribution.
		de			SUMMARIES	
Result	Score	Query Match	Length	BB	ID	Description
_	5272	99.9	1040	- į	CARF HUMAN	O9hc29 homo sapien
N	4070	77.1	1020	₩,	CARF MOUSE	
ω	1178.5	22.3	953	_	CAR4 MOUSE	mus
4.	1170.5	22.2	953	1	CAR4 HUMAN	homo
ۍ.	511	9.7	1062	\vdash	PYA7 HUMAN	
ov	489.5	9.3	1033	ы	CIS1 MOUSE	
7	486.5	9.2	1034	-	CIS1 HUMAN	
ω	417.5	7.9	1155	Н	C2TA_MOUSE	
9	404	7.7	1130	μ,	C2TA HUMAN	-
10	390	7.4	1473	_	NAL1 HUMAN	
11	385.5	7.3	854	_	PYA5_RAT	
12	374.5	7.1	980	۳	PYA3 HUMAN	
13	374	7.1	994	-	NAL4 HUMAN	homo
14	372	7.0	1062	-	NAL2 HUMAN	homo
15	361.5	6. 8	892		PYA5 HUMAN	homo
16	360.5	ი ო	843	\vdash	PYA5_MOUSE	mus I
17	350.5	6.6	1111	-	MATE_MOUSE	mus

Q9r1m5 mus musculu

n T	44	ť	7 5	4	40	ي د	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	8
111	712	711	113	٠.	• •	• •	12	121	121.5	127.5	128	•	146	154.5	157.5	158	185	185.5	206.5	210	214.5	-	N	227	232.5	N	w
2.1			2.1	2.2	•	2.2	2.3	•	2.3	2.4	2.4		8,			•		٠	3.9		4.1		4.2	4.3	4.4	•	6.3
356	820	603	359	2594	4128	1037	662	800	386	603	589	587	1411	580	596	1403	1403	1447	1403	456	1402	1024	1403	460	456	1033	1200
_	-	٢	-	H	j.,.	p3	_	-		-	-	μ	ب	-		μ	\vdash	-	H	_	ja	ب	,	ப	Д	_	j
PGS2_COTJA	TRBE_AGRIU	ALS_RAT	TMO1_HUMAN	7LES_DROVI	PRKD_MOUSE	CAR6_HUMAN	GARP HUMAN	INLA_LISMO	RNA1 SCHPO	ALS_MOUSE	RGP1_MOUSE	RGP1_HUMAN	YK63_CAEEL	RGP1_XENLA	RGP1_DROME	BIR1 HUMAN	BIRE MOUSE	BIRB MOUSE	BIRA MOUSE	RINI RAT	BIRG MOUSE	CARC HUMAN	BIRF_MOUSE	RINI_HUMAN	RINI_PIG	PYA6_HUMAN	MATE_HUMAN
Q9de68 coturnix co	P54910 agrobacteri	P35859 rattus norv		P20806 drosophila	P97313 mus musculu	Q9bx69 homo sapien	2 homo sapi	25146	schi	mus			caenorha		drosc	homo	mus	mus.	mus mu	ratt	=	homo	9 mus m	9 homo	ທ	homo	P59047 homo sapien

ALI GNMENTS

CARE HUMAN CARE HUMAN TD CARE HUMAN TD CARE HUMAN TD CARE HUMAN TO CARE STANDARD; PRT; 1040 AA. AC Q9HC29; Q9GRH5; Q9GRH6; Q9GRH8; DT 28-FEB-2003 (Rel. 41, Created) DT 28-FEB-2003 (Rel. 41, Last sequence update) DT 15-SEP-2003 (Rel. 42, Last annotation update) DE Caspase recruitment domain protein 15 (Nod2 protein) (Inflammatory DE bowel disease protein 1). GN CARDIS OR NOD2 OR IBD1. RACE SERVICE S "Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB."; J. Biol. Chem. 276:4812-4818(2001). Homo sapiens (Human). Bukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. NCBI_TaxID=9606; [1] SEQUENCE FROM N.A. (ISOFORMS 1 AND 2), MUTAGENESIS OF LYS-305, AND VARIANT ARG-908.

```
MEDLINE=21279172; PubMed=11385576; Hugot J.-P., Chamaillard M., Zouali H., Lesage S., Cezard J.-P., Belaiche J., Almer S., Tysk C., O'Morain C.A., Gassull M., Binder V., Einkel Y., Cortot A., Modigliani R., Laurent-Puig P., Gower-Rousseau C., Macry J., Colombel J.-F., Sabbatou M., Thomas G.; "Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease."; Nature 411:599-603(2001).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SEQUENCE FROM N.A. (ISOFORMS 1 AND 2), VARIANTS CD THR-140; ARG-157; CYS-235; ARG-248; SER-268; SER-248; ASN-231; VAL-301; TRP-311; VAL-346; ARG-352; CYS-373; SER-441; LEU-431; VAL-432; LYS-441; VAL-542; THR-612; TRP-664; TRP-702; CYS-703; CYS-713; GLY-725; VAL-622; VAL-786; LYS-778; MET-792; CYS-703; CYS-713; GLY-725; VAL-786; LYS-778; MET-791; LYS-643; SER-653; VAL-683; ARG-908; ASP-918; ASP-924 AND ILE-955; VARIANTS ULCERATIVE COLITIS THR-140 AND THR-885, AND VARIANT MET-189.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           TISSUE=Leukocyte;
```

VARIANTS BS GIN-334, TRP-334 AND PHE-469.
MEDLINE-21419644; PubMed-1152834;
Micell-Richard C., Lesage S., Rybolad M., Prieur A.M.,
Manouvrier-Hanu S., Hafher R., Chamaillard M., Zouali H., Thomas

Hugot J.-P.;
"CARD15 mutations in Blau syndrome.";
Nat. Genet. 29:19-20(2001).

RI Nat. Genet. 29:191-20(201).

CC -! FUNCTION: Induces NF-kappaB via RICK (CARDIAK, RIP2) and IKK-CC gamma. Confers responsiveness to intracellular bacterial lipopolysaccharides (LPS).

CC -! SUBUNIT: Binds to RICK by CARD-CARD interaction.

CC -! SUBUNIT: Binds to RICK by CARD-CARD interaction.

CC -! SUBUNIT: Binds to RICK by CARD-CARD interaction.

CC -! ALTERNATIVE PRODUCTS:

CC COMMENT=2 isoforms, 1/Nod2 (shown here) and 2/Nod2b, are produced by alternative initiation. Both isoforms can activate produced by alternative initiation. Both isoforms can activate NF-kappaB. Isoform 1 is more abundant;

CC PRODUCTS:

CC PRODUCTS:

CO PRODU

is commonly classified as autoimmune disease.
-!- SIMILARITY: Contains 2 CARD domains.
-!- SIMILARITY: Contains 1 NACHT domain.
-!- SIMILARITY: Contains 6 leucine-rich (LRR) repeats.

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation the European Bioinformatics Institute. There are no restrictions on its by non-profit institutions as long as its content is in no way

```
InterPro; IPR001315; CARD.
InterPro; IPR001611; LRR.
InterPro; IPR007091; LRR RNinh.
InterPro; IPR007091; ACHT_NTPase.
InterPro; IPR00711; ACHT_NTPase.
Pfam; PF00560; LRR; 2.
SMART; SM00114; CARD; 1.
                                                                                                                                                                                                                                                                                                                                                                                                                               MIM; 186580; -.
MIM; 266600; -.
MIM; 191390; -.
                                                                                                                                                                                     REPEAT
REPEAT
REPEAT
                                                                                                                                                                                                                DOMAIN

NP_BIND

REPEAT

REPEAT

REPEAT
                                                                                                                                                                                                                                                                INIT_MET
DOMAIN
DOMAIN
    VARIANT
                                         VARIANT
                                                           VARIANT
                                                                                                VARIANT
                                                                                                                                      VARIANT
                                                                                                                                                         VARIANT
                                                                                                                                                                                                                                                                                                       CHAIN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   EMBL; AF178930; AAG33677.1; -.
EMBL; AF385089; AAK70867.1; -.
EMBL; AF385090; AAK70868.1; -.
EMBL; AJ303140; CAC42117.1; -.
Genew; HGNC:5331; CARD15.
                                                                                                                   VARIANT
                                                                                                                                                                             VARIANT
                                                                                                                                                                                                                                                                                                                                       ATP-binding; Repeat; Leucine-rich repeat; Disease mutation;
                                                                                                                                                                                                                                                                                                                                                    PROSITE; PS50209; CARD; 2. PROSITE; PS50837; NACHT; 1.
                                                                                                                                                                                                                                                                                                                                 Alternative initiation; Polymorphism.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-sib.ch/announce/or send an email to license@isb-sib.ch).
                                                                                                                                                                                                                                                                                                                                                                                                                                                          605956; -.
                                         291
                                                                                                                   235
                                                                                                                                       189
                                                                                                                                                                           28
122
218
618
618
306
812
837
865
949
977
1005
                                                                                                                                      189
/FTId=VAR_012672.
T -> S (in CD).
/FTId=VAR_012673.
A -> V (in CD).
                                                                                   /FTId=VAR_012667.
R -> C (in CD).
/FTId=VAR_012668.
L -> R (in CD).
/FTId=VAR_012669.
                                                                                                                                            /FTId=VAR_012665.
W -> R (in CD).
/FTId=VAR_012666.
                                                                                                                                                                                 NACHT.
AIP (POTENTIAL).
LRR 1.
LRR 2.
LRR 3.
LRR 5.
LRR 5.
LRR 6.
                                       /FTId=VAR_012671.
D -> N (in CD).
                                                                                                                                                                                                                                                              CARD 1.
CARD 2.
                                                                                                                                                                                                                                                                                ISOFORM 2.
FOR ISOFORM 2.
                                                               /FTId=VAR_012670
                                                                                                                                                                        A \rightarrow T (in CD and ulcerative colitis).
                                                                                                                                                                                                                                                                                                   CASPASE RECRUITMENT DOMAIN PROTEIN 15,
                                                                                                                                                                                                                                                                                                                ISOFORM 1
                                                                                                                                                                                                                                                                                                                      RECRUITMENT DOMAIN PROTEIN 15,
```

भू भू भ	n m r	F 57 '	편 명 *	মুদ্	F F F	দ দ	H H	mj mj H H	rajna ⊢aj⊢	i Hi	ri ri	i Hi	ing n	n en	# T	n in	1 F1	FI	taj ti	n m	el el	3 #J	F1	n n	9 19	H H	1 F T	т. П.	티비	F	Ħ,	n m	1 17	FT +	E FI	벽	1.3
VARIANT	VARIANT	VARIANT	VARIANT	VARIANT	VARIANT	VARIANT		VARIANT	VARIANT	VARIANT	VARIANT		VARIANT	VARIANT		VARIANT	VARIANT		VARIANT	VARIANT	VAKLANT		VARIANT	A WAY I WAY	177.01	VARIANT	VARIANT		VARIANT	VARIANT		VARTANT	VARIANT		VARIANT	VARIANT	
918	908	885	863	853	843	793		778	758	755	/25)	713	703		702	684		612	612	409	3	441	705	3	431	414	. (272	352		3 44	334		3 3 4	. 311	
918	908	885	863	853	843	793		778	758	755	/23	1 3 n	713	703		702	684		612	612	40	·	441	7.C.B.	3	431	414	ě	373	352		a A A	334		ဒ ဒ န	311	
A -> D (risk factor for CD). /FTId=VAR_012702.	G -V R (in CD). /FTrd=VAR 012701.	A -> T (ln ulcerative colitis). /FTid=VAR 012700.	M -> V (in CD). /FTId=VAR 012669.	N -> S (in CD).	E -> K (in CD). /FTId=VAR 012697.	V ~> M (in CD). /FTId=VAR 012696.	/FTId=VAR_012695.	FILCHVAK_U12694.	A -> V (in CD).	$A \rightarrow V$ (in CD and ulcerative colitis).	A -> G (in CD). /FTId=VAR_012692.	/FTId=VAR_012691.	R -> C (in CD).	$R \rightarrow C$ (in CD and ulcerative colitis).		R -> W (risk factor for CD).	R → V ₩ (in CD).	/FTId=VAR_012687.	A -> V (in CD).	A -> T (in CD).	/FTId=VAR 012685.	/FTId=VAR_012684.	E →> K (in CD).	/FTId=VAR 012683.	/FTId=VAR_012682.	S -> L (in CD).	N -> S (in CD).	/FTId=VAR 012680.	/FTIG=VAR_0126/9.	H -> R (in CD).	/FTId=VAR_012678.	/FTIC=VAK_0126//.	R +> W (in BS).	/FTId=VAR_012676.	/FTId=VAR_012675. R -> O (in BS).	R -> W (in CD and ulcerative colitis).	/FTId=VAR_012674.
Qy	Db.	Qy	ρb	ν,	מנם	γo		Db	Qy	Db	88	?	Db	Qy		Db	Qу	,	dig dig	. Qy	9	7	, QV	ţ	7	Qy	dd dd		۷٥.	: x	ш.	0	SQ	ঘ্য	শ শ	1 17	ET
66	60	60	ري د	54	46	48	;	42	42	36	30	٠ ١	30	30		24	24	2	10	16	Ė		12	,		0				Matches 10	Best Local	Ouerv Mato	SEQUENC	MUTAGEN	VARIANT		VARIANT

Qy	מם עס	aġ Vŷ	Db Db	Qy Db	D Q	Qy Db	Qy Db	 Оу	Db .	Db .	ט פט	Que Bes Mat	S T T T T T T
661 ALLQKAEPHOLQITAAFLAGLISREHWGLLAECQTSEKALLARQACARWCLARSIRKHEH 720 	601 FLHITFQCFFAAFYLALSADVPPALLRHLENOGREGNSPMARLLFTMCIQASEGKDSSVA 660 	541 RGRLPTLIHLGRLALWGLŒMCCYVFSAQQLQAAQVSPDDISLGFLVRAKGVVPGSTAPLE 600 	481 GLCHLPVFSMAVSKCHQELLLQEGGSPKTTTDMYLLILQHFLLHATPPDSASQGLGPSJL 540 	421 KVVTSRPAAVSAFLRKYIRTEENLKGESEQGIELYLRKEHBEGVADRLIRLIQETSALH 480 	361 EDIFQLLLDHPDRVLLIFDGFDEFKFRFTDRERHCSPTDPTSVQTLLENLLQGNLLKNAR 420 	301. AGSGKSTLLQRLHLLWAAGQDFQEFLFVFPFSCRQLQCMAKPLSVRTTLFEHCCWPDVGQ 360 	241 DGAETICLEDIYTENVLEVWADVGWAGPPQKSPATIGLEELFSTPGHINDDADTVLVVGE 300 	181 ARRILDIATVKANGIAAFILQHVQELPVPIAI.PLEAATCKKYMAKIRTTVSAQSRFISTY 240 	121 GCWDPHSLHPARDLOSHRPAIVRRLHSHVENWLDLAWERGEVSQYECDEIRLPIETPSOR 180 	61 LSWEVLSWEDYEGFHLLGOPLSHLARRLLDTVMNKGTWACQKLIAAAQEAQADSQSPKLH: 120 	1 MGEEGGSASHDEEERASVILGHSPGCEMCSQEAFQAQRSQLVELLVSGSLEGFESVLDWL 60 	Query Match 99.9%; Score 5272; DB 1; Length 1040; Best Local Similarity 100.0%; Pred. No. 0; Matches 1006; Conservative 0; Mismatches 0; Indels 0; Gaps 0;	VARIANT 924 924 G -> D (in CD). VARIANT 955 955 V -> I. MUTAGEN 305 305 K->R: NO ACTIVATION. SEQUENCE 1040 AA; 115282 NW; 003759ZD96D7DDFF CRC64;

	199	661 ALLQKAEPHNLQITAAFLAGLLSREHWGLLAECQTSEKALLRRQACARWCLARSLRKHFH 720
Qy	721	SIPPAAPGEAKSVHAMPGFIWLIRSLYEMQEERLARKAARGLMVGHLKLTECSVGETECA 780
Db	721	SIPPAAPGEAKSVHAMPGFIWLIRSLYENQEERLARKAARGLNVGHLKLTFCGVGPTECA 780
Qy	781	781 ALAFVIQHIRRPVALQLDYNSVGDIGVEQLLPCLGVCKALYLRDNNISDRGICKLIECAL 840
Dъ	781	ALAFVLQHLRRPVALQLDYNSVGDIGVEQLLPCLGVCKALYLRDNNISDRGICKLIECAL 840
Qy	841	HCEQLQKLALFNNKLTDGCAHSMAKLLACRQNFLALRLGNNYITAAGAQVLAEGLRGNTS 900
Db	841	HCEQLQKLALFNNKLTDGCAHSMAKILIACRQNFLALRLGNNYITAAGAQVLAEGLRGNTS 900
Qy	901	LQFLGFWGNRVGDEGAQALAEALGDHQSLRWLSLVGNNIGSVGAQALALMLAKNVMLEEL 960
Db	901	LOFLGFWGNRVGDEGAQALAEALGDHQSLRWLSLVGNNIGSVGAQALALMIAKNVMLEEL 960
Qy	961	CLEENHLQDEGVCSLAEGLKKNSSLKILKLSNNCITYLGAEALLQA 1006
Вb	961	961 CLEENHLQDEGVCSLAEGLKKNSSLKILKLSNNCITYLGAEALLQA 1006

Search completed: January 7, 2004, 20:50:47 Job time: 16.1889 secs

```
GenCore version 5:1.6
Copyright (c) 1993 - 2004 Compugen Ltd.
```

```
Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Minimum DB seq length: 0
Maximum DB seq length: 200000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Scoring table: BLOSUM62
Gapop 10.0 , Gapext 0.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Title: US-10-014-269-34
Perfect score: 5279
Sequence: 1 MGEEGGSASHDEEE
                                                                                                                                                                                                                                                                                                                                                                                                                                         Database :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Total number of hits satisfying chosen parameters:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            OM protein - protein search, using sw model
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Searched:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Run on:
Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         830525 seqs, 258052604 residues
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        January 7, 2004, 20:45:37 ; Search time 33.5667 Seconds (without alignments)
7741.578 Million cell updates/sec
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1 MGEEGGSASHDEEERASVLL.....LKLSNNCITYLGAEALLQAP 1007
                                                                                                                                                                                                                                                                                                                                                                                                                                         SPTREMBL_23:*
                                                                             sp_bhage:*
sp_bhage:*
sp_bhage:*
sp_virus:*
sp_virus:*
sp_virus:*
sp_roits:fied:*
sp_roits:fied:*
sp_archeap:*
                                                                                                                                                                                                                                                                                      sp_archea:*
sp_bacteria:*
sp_fungi:*
sp_human:*
sp_invertebrate:*
sp_manmal:*
sp_manmal:*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        830525
```

Result Query
No. Score Match Length DB ID

Description

SUMMARIES

2 953 4 QBIWF5 2 765 11 QBBUT6 2 10 QBBUT6 3 1033 11 QBBUBB 3 1033 11 QBCBBB 2 QBCBBB 1 153 7 QBCBBB 2 QBCBBB 2 QBCBBB 3 1052 7 QBCBBB 3 1052 7 QBCBBB 5 1073 7 QBCBBB 5 1073 7 QBCBBB 6 QBCBBB 6 QBCBBB 7 QBCBBB 7 QBCBBB 7 QBCBBB 7 QBCBBB 7 QBCBBB 7 QBCBBBB 7 QBCBBB 7 QBCBBB 7 QBCBBB 7 QBCBBB 7 QBCBBB 7 QBCBBB 7 QBCBBBB 7 QBCBBBB 7 QBCBBBBBB 7 QBCBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	QBTEL3 QBTEL3 QBTEL3 QBTEL3 QBTEL3 QBTEL3 QBTEL3 QBC51 QBC619 QBC629 QBC649 QBC649 QBC649 QBHW99 QBHW90 QBWW0 Q		, www.mm.door.wm.dam.mm.mm.	296.97 296.97 296.97 288 288 288 288 288 288 288 288 288 28
2.2 953 4 QBIWF5 QBIWF5 QBIWF5 QBIWF5 QBRUH4	QBITTIO QBIANTO QBTELIO QBIANTO QBTELIO QBIANTO QBTELIO QBIANTO QBTELIO QBIANTO QBC659 QBC659 QBC659 QBC669 QBC669 QBC669 QBBV66 QBC675 QBC75 QBMM99 QBMM99 QBMM99 QBMM99 QBMM00 QBMM99 QBMM00 QBMM000 QB	200000000000000000000000000000000000000		3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2.2 953 4 OBIWF5 2.3 706 11 QBAUF6 QBAUT6 QBRUET4 QBAUT6 QBAUT6 QBAUT6 ADBAUT6 QBAUT6 A	QBIT 142 QBIT 142 QBIT 142 QBIT 142 QBIT 151 QBIT 151 QBIT 151 QBIT 161 QBI		, 6 6 6 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6	222222222222222222222222222222222222222
2.2 953 4 QBIWF5 QBIWF5 QBIWF5 QBIWF5 QBIWF5 HOMO QBBUT6 Q	QBITF12 QBITF13 QBTEL3 QBTEL3 QBTEL3 QBTEL3 QBTEL3 QBTEL5 QBTEC5 QBTEC65 QBC639 QBC639 QBC639 QBC639 QBC6475 QBC6475 QBC6476 QBC6479 QBC6476 QBC659 QBHCY0 Q	H4HH44HH474		422222222222222222222222222222222222222
2.2 953 4 OBIWF5 3.5 706 11 QBAUF6 Q	QBIXT10 QBIXT10 QBIXT10 QBIXT10 QBIXT10 QBIXT10 QBIXT10 QBIXT10 QBIXT06 QBIXT06 QBIXT06 QBIXT06 QBIXT07 QBIXT0	114411474	9.400Hmmm9999	25 25 25 25 25 25 25 25 25 25 25 25 25 2
2.2 953 4 QBIWF5 QBIWF5 QBIWF5 QBRUH6	QBITT10 QBITT10 QBITT10 QBITT10 QBTTEL13 QBTTEL1	44111474	001000000	2222222222
2.2 953 4 QBIWF5 QBIWF5 QBSUT6 QBSUT7 QBSUT9 QBSUT7	QBITT12 QBITT13 QBITEL3 QBTEL3 QBTEL3 QBTEL3 QBTEL3 QBTEL3 QBTEL5 QBTEL5 QBTEL6 QBC639 QBC639 QBC639 QBC649 QBC649 QBC649 QBC65 QBC649 QBC65 QBC659 QBC650 QBC665 Q			2222222222
2.2 953 4 QBIWF5 QBIWF5 QBSUT6 11 QBBUF6 QBSUT6 MUS 9.3 1033 11 QBBUF6 QBSUT6 MUS 9.3 1033 11 QBBUF6 QBSUT6 MUS 9.1 1052 7 QSGJDB QBSTG 7.7 778 4 QBNF46 7.7 778 4 QBNF46 QBSTG 7.8 1052 7 QSGJDB QBSTG 7.9 1052 7 QSGJDB QBSTG 7.7 778 4 QBNF46 QBSTG 7.8 1052 7 QSGJDB QBSTG 7.9 1052 7 QSGJDB QBSTG 7.9 1052 7 QSGJDB QBSTG 7.2 713 6 QSSLZ7 QBSTD 7.2 713 6 QSSLZ7 QBSTD QBSTG 6.4 1056 4 QBNF42 QBSTG 6.5 4 QBNF42 QBSTG 6.6 4 QBNF40 QBSTG 6.7 982 11 QBSTG 6.8 10 QBSTG 6.9 24 QSFG 6.9 25 10 QBSTG 6.1 692 4 QSFG 6.1 692 4 QSFG 6.2 499 4 QBSTG 6.3 846 4 QBNF40 QBSTG 6.4 1056 4 QBNF40 QBSTG 6.5 693 7 QBSTG 6.6 0 QBSTG 6.7 QBSTG 6.8 7 QBSTG 6.9 0 QBSTG 6.9 0 QBSTG 6.9 0 QBSTG 6.1 QBSTG 6.1 QBSTG 6.2 4 QSFG 6.3 1 QBSTG 6.4 QBSTG 6.5 693 7 QBSTG 6.6 0 QBSTG 6.7 QBSTG 6.8 7 QBSTG 6.9	QBITEL3 QBIXTO QBIXTO QBIXTO QBTEL3 QBTEL3 QBTEL5 QBTEL6 QBC65 QBC675 QBC675 QBC675 QBC675 QBC675 QBC675 QBC676 QBC675 QBC676 QBC676 QBC676 QBC6776 QB	410 4 410		22288228
2.2 953 4 QBIWF5 QBIWF5 QBIWF5 QBOUTG	QBIET 12 QBIXT0 QBIXT0 QBIXT0 QBTEL3 QBCE13 Q96D51 Q96D51 QBNF06 Q8C659 Q8C659 Q8C675 Q29675 Q29675 Q29675 Q29675 Q29675 Q29676 Q96KM4 Q8HM99 Q9H6YO Q9H6YO Q9H6YO Q9H6YO Q9H6YO Q9H6YO	932 4 977 7 097 4	50000	28 22 23
2.2 953 4 QBIWF5 QBIWF5 QBSUT6 11 QBBUT6 QBBUT6 QBBUT6 Mus 9.3 1033 11 QBBUT6 QBSUT6 Mus 9.1 1036 11 QBBUT6 QBSUT6 Mus 9.1 153 7 Q9GJE0 7.9 1155 7 Q9GJE0 7.9 1155 7 Q9GJE0 7.7 778 4 QBNF46 7.7 778 4 QBNF46 7.7 1052 7 Q9GJD8 QBJC8 QBJC8 QBJC8 homo 7.7 1052 7 Q9GJD9 Q9JC9 Mus 7.8 1073 7 Q9GJD9 Q9JC8 Mus 7.9 1052 7 Q9GJD9 Q9JC8 Mus 7.9 1052 7 Q9GJD9 Q9JC8 Mus 7.2 713 6 Q95LZ7 Q9GJD9 Q9JC8 Mus 7.2 713 6 Q95LZ7 Q9GJD9 Q9JC8 Mus 7.2 713 6 Q95LZ7 Q9GJD9 Q9GJC8 Mus 7.2 713 6 Q95LZ7 Q9GJD9 Q9GJC8 Mus 7.2 713 6 Q95LZ7 Q9GJC9 QBT42 homo 6.7 Q9GJD1 QBT42 QBT42 QBT42 homo 6.7 Q9GJS1 QBCG9 G60 4 QBFEL3 G61 QBCG9	OBITE13 OBITE13 OBTE13 OBTE143 OPERE 13	932 4 977 7	,,,,,	8 2 2 2
2.2 953 4 QBIWF5 QBIWF5 QBIWF5 QBIWF5 HOMO 9.3 1033 11 QBRUF6 QB-468 mus 9.3 1033 11 QBRUF4 9.1 1153 7 Q9GJEC 7.9 1155 7 Q9GJEC 7.9 1155 7 Q9GJEC 7.9 1155 7 Q9GJEC 7.9 1052 7 Q9GJEC 7.5 1052 7 Q9GJEC 7.5 1052 7 Q9GJEC 7.5 1073 7 Q9GJEC 7.5 1073 7 Q9GJEC 7.5 1073 7 Q9GJEC 7.6 QBIECE 7.7 13 6 Q951Z7 7 Q9GJEC 7 10 QBIECE 7 10 QBIEC	OBITELS OBSISTOR OBITELS OBSISTOR OBSIS		· o ·	
2.2 953 4 QBIWF5 QBIWF5 QBIWF5 QBBUT6 QBBUT6 mus 9.3 1033 11 QBR4BB QB-44bB mus 9.1 1982 4 QBNEU4 QBYF6 QBYF6 QBYF6 QBYF6 QBYF6 QBYF7 QBYF	OBITATO OBITATO OBITATO OBTEL3 OBCE13 OBCE13 OBCE151 OBMETO6 OBMETO	7		
2.2 953 4 QBIWF5 QBIWF5 QBIWF5 QBIWF5 HOMO 9.3 1033 11 QBRUF6 QB-468 mus 9.3 1033 11 QBRUF4 9.1 153 7 Q9GJEC 7.9 1153 7 Q9GJEC 7.9 1153 7 Q9GJEC 7.9 1154 QBRUF4 7.7 778 4 QBNE46 7.7 778 4 QBNE46 7.7 778 4 QBNE46 7.7 778 4 QBNE46 7.7 778 4 QBLED 7.8 1052 7 Q9GJDB 7.9 1052 7 Q9GJDB 7.9 1053 7 Q9GJDB 7.9 1054 QBSLZ7 7.9 1055 2 Q9GJAB rattu 7.9 1056 4 QBIEE2 7.1 QBUF46 7.2 713 6 Q9GJZ7 7.2 QGJDB 7.3 QBUF46 7.4 QBIEE2 7.5 1073 7 Q9GJDB 7.6 QBIEE2 7.7 QBUF46 7.8 QBIEE2 7.9 QBUF46 7.9 QBIEE2 7.9 QBUF46 7.9 QBIEE2 7.9 QBUF46 7.9 QBUF47 7.9 QBUF47 7.9 QBUF47 7.9 QBUF48 7.9 Q	Q81xt0 Q81xt0 Q8tel3 Q96d51	2.4	1 c	
2.2 953 4 QBIWF5 2.2 953 4 QBIWF5 homo 3.5 706 11 QBBUF6 QBbuf6 mus 9.3 1033 11 QBBUF6 9.3 1033 11 QBBUF4 9.1 1153 7 Q9GJEC 7.9 1155 7 Q9GJEC 7.9 1155 7 Q9GJEC 7.9 1052 7 Q9GJEC 7.5 1073 7 Q9GJEC 7.5 1073 7 Q9GJEC 7.6 1074 QBIFEC 7.7 108 QBIFEC 7.8 108 4 QBIFEC 7.9 108 4 QB	Qani4Z Qaixto Oatel3	692 4	, <u>i</u>	
2.2 953 4 OBIWF5 2.2 953 4 OBIWF5 Solution may be a considered ma	25:	499 4	i v	
2.2 953 4 OBIWF5 OBIWF5 homo 8.5 706 11 QBBUF6 QBbut6 mus 9.3 1033 11 QBBUF6 QBbut6 mus 9.1 892 4 QBNEU4 QBREU4 QBneu4 homo 7.9 1153 7 QBTPP1 QStpp1 mus m 7.7 778 4 QBNE46 QBneu4 homo 7.7 798 4 QBNE46 QBneu4 homo 7.5 1052 7 QBTPP1 QStpp1 mus m 7.5 1052 7 QBGJD9 QB1648 homo 7.5 1052 7 QBGJD9 QB1649 rattu 7.5 1052 7 QBGJD9 QB127 macac 6.7 982 11 QBBU40 QBneu40 mus i		056	حأت د	ي بد
2.2 953 4 QBIWF5 QBiwf5 homo 8.5 706 11 QBBUF6 QBbuf6 mus 9.3 1033 11 QBR4BB QBr46B mus 9.1 892 4 QBUE04 QBneu4 homo 7.9 1153 7 Q9GJE0 Q9fje0 rattu 7.9 1153 7 Q9FP1 Q9ftp1 mus 7.9 1154 QBUF4B Q9ftp4 homo 7.9 1155 7 Q9GJD9 Q9fjd9 rattu 7.1 1052 7 Q9GJD9 Q9fjd9 rattu 7.2 713 6 Q9GJE7 Q9GJE7 Q9GJE7 homo 6.8 733 4 QBIEEZ QBF462 homo 6.8 733 4 QBIEEZ QBF462 homo	Q8BU40 Q8bu40	10	.7	5.4
2.2 953 4 QBIWF5 QBiwf5 homo 8.5 706 11 QBBUF6 QBbuf6 mus 9.3 1033 11 QBR4BB QBr4b6 mus 9.1 892 4 QBUF0 QBfeu4 homo 7.9 1153 7 Q9GJD9 Q9fje0 rattu 7.9 1155 7 Q9TP1 Q9TP1 Q9tp1 mus m 7.7 778 4 QBUF4B Q9T48 homo 7.5 1052 7 Q9GJD9 Q9fjd9 rattu 7.5 1053 7 Q9GJD9 Q9fjd9 rattu	Q951z7	ωι		7 '
2.2 953 4 QBIWF5 QBiwf5 homo 8.5 706 11 QBBUF6 QBbuf6 mus 9.3 1033 11 QBR4BB QBr46B mus 9.1 892 4 QBUEU4 QBneu4 homo 7.9 1153 7 Q9GJE0 Q9gje0 rattu 7.9 1153 7 Q9GJE0 Q9tpp1 Q9tpp1 mus 7.9 1052 7 Q9GJE0 Q9tjd8 rattu 7.7 778 4 QBUEU4 Q9GJG8 poptions 7.8 1052 7 Q9GJE0 Q9djd8 rattu	Q9gjd9	, ω) (Ji	26
2.2 953 4 QBIWF5 QBIWF5 homo 8.5 706 11 QBBUF6 QBBUF6 MB 9.3 1033 11 QBBUF6 QBBUF6 MB 9.1 892 4 QBNEU4 QBneu4 homo 7.9 1153 7 Q9GJE0 Q9je0 rattu 7.7 778 4 QBNE49 QBF48 homo 7.7 778 4 QBNE49 QBF48 homo	Q9gjd8	10	7.5 1	95
2.2 953 4 QBIWF5 QBiwf5 homo 8.5 706 11 QBBUF6 QBbut6 mus 9.3 1033 11 QBB4BB QBr46B mus 9.1 1035 4 QBNEU4 QBneu4 homo 7.9 1155 7 Q9FQP1 Q9fg1e0 rate from 7.9 1155 7 Q9FQP1 Q9fq1e0 rate from 7.9 1155 7 Q9FQP1 Q9	87 128 OBnf 48	ω	7.7	05
2.2 953 4 QBIWF5 QBiwf5 homo 8.5 706 11 QBBUT6 QBbut6 mus 9.3 1033 11 QBR4B8 QBr4b8 mus 9.1 892 4 QBBU4 QBrau4 homo 7 0 1153 7 QBTE0	04:551 04:551 06:552	OI (_	7.1
2.2 953 4 Q8IWF5 Q8LWF5 homo 8.5 706 11 Q8BUT6 Q8but6 mus 9.3 1033 11 Q8R4B8 Q8r4b8 mus	BNEU4 Q8neu4	3 K		410.5
2.2 953 4 Q8IWF5 Q8iwF5 homo 8.5 706 11 Q8BUT6 Q8but6 mus	Q8R4B8 Q8r4b8	ω.	9.3	
2.2 953 4 QBIWF5 QBiwf5 homo	Q8but6	μ. Ο1	8.5	· w
	Q8IWF5 Q8iwf5	ω A	2.2	
2.3 953 11 Q8BHB0 08bhb0 mus	Q8bHB0 O8hbb0	ω	2.3	1178.5

```
OM nucleic - protein search, using frame_plus_n2p model
                                                                       95
January 7, 2004, 19:23:16; Search time 110.762 Seconds (without alignments) 12857.211 Million cell updates/sec
```

```
Title:
Perfect score:
                                                       Scoring table:
                                                                                  Sequence:
Xgapop 10.0 , Xgapext
Ygapop 10.0 , Ygapext
Fgapop 6.0 , Fgapext
Delop 6.0 , Delext
                                                       BLOSUM62
                                                                                            US-10-014-269-33
8270
                                                                             1 gtagacagatccaggctcac.....ataaactgttgagtcaaaac 4486
 0.5
7.0
7.0
```

Total number of hits satisfying chosen parameters: 1107863 seqs, 158726573 residues

2215726

Result

Query Score Match Length DB

Ħ

Description

Post-processing: Minimum Match 0% Maximum Match Maximum Match 100% Listing first 150 summaries

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Command line parameters:

-DB=A_Geneseq_19Jun03 -QFMT=fastan -SUFFIX=rag -MINNATCH=0.1 -LOOPCL=0
-LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blesum62 -TRANS=human40.cdi
-LIST=150 -DCCALICN=200 -THR SCORE-pct -THR MAX=100 -THR MIN=0 -ALIGN=50
-MODE=LOCAL -OUTFMT=pcc -NORW=ext -HEAPSIZE=500-MINLEN=0 -MAXLEN=2000000000
-USER=US:10014269 @CGN 1 1_311_@runat_07012004_1752E8_24497 -NCPU=6 -ICPU=3
-NO_WAAP -LARGEQUERY -NEG_SCORES=0 -WAIT -DSPELOCK=100 -LONGLOG
-DEV_TIMEOUT=120 -WARN_INEGUERY - THEOUT=30 -THERADS=1 -XGAPDD=10 -XGAPEXT=0.5 -FGAPDP=6
-FGAPEXT=7 -YGAPDP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7 Q=/cgn2_1/USPTO_spool_p/US10014269/runat_07012004_175228_24497/app_query.fasta_1 -MODEL=frame+_n2p.model -DEV=xlp

```
Database :
          A_Geneseq_19Jun03:*

1: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1980.DAT:*

2: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1981.DAT:*

3: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1982.DAT:*

4: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1983.DAT:*

5: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1983.DAT:*

5: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1985.DAT:*

6: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1986.DAT:*

7: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1986.DAT:*

9: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1986.DAT:*

9: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1989.DAT:*

10: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1989.DAT:*
/SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1989.DAT:
```

```
1: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1990.DAT:
2: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1991.DAT:
3: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1992.DAT:
4: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1992.DAT:
5: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1992.DAT:
5: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1994.DAT:
6: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1995.DAT:
7: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1995.DAT:
8: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1997.DAT:
9: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1999.DAT:
9: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2000.DAT:
1: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2000.DAT:
2: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2000.DAT:
3: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2000.DAT:
4: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2000.DAT:
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

ယ	32	31	30	29	- CC	27	26		24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	80	7	o,	ر. د	4.	ω	N	. +
1199	1206.5	1206.5	1206.5	1206.5	1206.5	1564	1614	1614	2087	2959	4188	4981.5	5271	5279	5279	5291	5291	5318	5419	5419	5422	5427	5427	5427	5427	5430	5430	5430	5431	5432	5434	5435
14.5	14.6	14.6		14.6	14.6	18.9				35.8	50.6		63.7	63.8	63.8	64.0	64.0	64.3	65.5	65.5	65.6	65.6	65.6	65.6	65.6	65.7	65.7	65.7	65.7	65.7	65.7	65.7
959	953	953	953	953	953	296	305	305	403	560	795	1009	1007	1007	1007	1013	1013	1041	1040	1040	1040	1040	1040	1040	1038	1040	1040	1040	1040	1040	1040	1040
22	24	23	23	22	20	23	23	23	23	23	23	23	23	23	23	23	23	22	23	23	23	23	23	23	23	23	23	23	23	23	23	23
AAM79473	ABU56298	AA022136	ABG31080	AAB20084	AAY31145	AAU80869	ABJ04740	AAE25421	AAU80870	AAU80856	AAU80875	AAU80865	ABJ04767	ABJ04766	AAE25434	ABJ04736	AAE25417	AAG79119	ABJ04777	ABJ04775	ABJ04776	ABJ04770	ABJ04769	ABJ04768	ABJ04735	ABJ04772	ABJ04737	AAE25418	ABJ04774	ABJ04771	ABJ04773	AAE25416
1 1 1 1	Mouse Caspase recr		caspase	CARD-4L	Murine CARD-4L pro	n CARD3X NB-		Nod2 pr	CARD3X	CARD3X	CARD3X	CARD3X n	•	prote		prote	Nod2 p	acid sec	P268S +	P268S + G98	P268S	P268S	G908R		protei		protei	Nod2 r		V793M prote	V955I prot	Human Nod2 protein

14.5 953 22 AAMB1552 14.5 953 22 AAMB2008 14.5 953 22 AAMB2008 14.5 953 23 AAB2008 14.5 953 23 AAB2008 14.6 953 24 ABU56273 14.1 953 23 AAB31676 14.4 953 23 AAB31676 14.0 966 24 ABU56300 11.9 705 21 AAB15562 11.9 705 21 AAB15562 11.9 719 22 AAB95610 10.4 166 22 AAB95610 10.4 166 22 AAB95610 10.4 166 22 AAB95610 10.4 166 22 AAB95702 10.2 155 22 AAM67403 10.4 166 22 AAM63024 10.2 155 22 AAM67403 10.2 155 22 AAM67403 10.2 155 22 AAM67403 10.2 155 22 AAM677725 10.2 155 22 AAM67407 10.2 155 22 AAM67407 10.2 155 22 AAM67407 10.2 155 22 AAM67407 10.2 155 22 AAM677725 10.2 156 22 AAM677725 10.2 157 22 AAM677725 10.2 158 22 AAM677725 10.2 159 246 22 AAM67306 10.4 166 23 AAM68676 10.5 146 22 AAM69676 10.6 29 146 22 AAM69676 10.7 180 23 AAU808676 10.8 490 23 AAG21177 180 23 AAU808676 10.4 490 23 AAG21179 18.4 490 23 AAG21179 18.5 3 1091 23 AAU80878 18.5 1094 24 ABU68503 18.5 109																																																					
Appropriety Standard	90	68								g g	3 6	οà	77	6	75	74	73	72	71	70	69	8	67	9	5	0.0	3 8	2 t	. S	59	58	57	56	55	on ()	2 K	, i	0	49	48	47	46	45	44	4 4	2 :	4.4	1 4	3 6	ى ر د د	1 O	, G	34
Section Color	429	429	430	430	438.5	439	485	485	404	1007	0.170	22.5	522	530.5	530.5	530.5	530.5	530.5	588	593	639.5	820	820	820	820	820	820	0 0	840	840	840	840	840	840	n 0	α α α α	85.00	858	858	858	858	858	887.5	988	989	0 0	1150	1101.0	1100.0	1106.5	1196.5	1196.5	1196.5
22 AAR19952 22 AAR19952 23 AAR19952 24 AAR19952 25 AAR19952 26 AAR19953 26 AAR19953 27 AAR19953 28 AAR19953 28 AAR19953 29 AAR19953 20 AAR19953 20 AAR19953 21 AAR19953 22 AAR19953 23 AAR19953 24 AAR19953 25 AAR19953 26 AAR19953 27 AAR19953 28 AAR19953 28 AAR19953 29 AAR19953 20 AAR19953 20 AAR19953 20 AAR19953 21 AAR19953 21 AAR19953 21 AAR19953 21 AAR19953 21 AAR19953 21 AAR19953 22 AAR19953 23 AAR19953 24 AAR19953 25 AAR19953 26 AAR19953 27 AAR19953 28 AAR19953 29 AAR19953 20 AAR19953 20 AAR19953 20 AAR19953 20 AAR19953 20 AAR19953 20 AAR19953 21 AAR19953 22 AAR19953 23 AAR19953 24 AAR19953 25 AAR19953 26 AAR19953 27 AAR19953 28 AAR19953 29 AAR19953 20 AAR19953 20 AAR19953 20 AAR19953 20 AAR19953 20 AAR19953 20 AAR19953 21 AAR19953 21 AAR19953 21 AAR19953 21 AAR19953 21 AAR19953 21 AAR19953 22 AAR19953 23 AAR19953 24 AAR19953 25 AAR19953 26 AAR19953 26 AAR19953 27 AAR19953 28 AAR19953 29 AAR19953 20 AAR19953 20 AAR19953 20 AAR19953 20 AAR19953 20 AAR19953 20 AAR19953 21 AAR19953 21 AAR19953 21 AAR19953 22 AAR19953 23 AAR19953 24 AAR19953 25 AAR19953 26 AAR19953 27 AAR19953 28 AAR19953 29 AAR19953 20 AAR19953 20 AAR19953 20 AAR19953 20 AAR19953 20 AAR19953 20 AAR19953 21 AAR19953 21 AAR19953 21 AAR19953 21 AAR19953 21 AAR19953 22 AAR19953 23 AAR19953 24 AAR19953 25 AAR19953 26 AAR19953 27 AAR19953 28 AAR19953 28 AAR19953 29 AAR19953 20 AAR19953 21 AAR	5.2	5.2	5.2	5.2	5. 3	5. ω	9	ர . ம	ν c	n σ - ω	٠ . د .	ο ο ω	· ω	6.4	6.4	6.4	6.4	6.4	7.1	7.2	7.7	9.9	9.9	9.9	9.9	ه د	o 4		10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.7	11.0	11.9	11.0	7 4 7 4			14.5	14.5	14.5	14.5
AM215522 AM21522 AM215233 AM21523 AM21	1130	1106	1207	987	19938	975	94	94	1004	1034	1901	7.97	97	490	490	490	490	490	139	140	180	146	146	146	146	7 1	146	146	155	155	155	155	155	155	155	155	166	166	166	166	166	166	779	710	705	7 00	מ מ מ	07.0	200	200	953	953	953
Apoptocids related Human protectic See See See See See See See See See Se	16	19	19	19	24	22	23		-		23	23	23	24	23	23	22	20	23	23	23	23	22	22	22	1 0	2 5	3 6	2 23	22	22	22	22	22	200	3 N	22	22	22	22	23	2 1	210	0 F	2 2	3 1) A	3 6) t	2 2	22	22	21
soils related 91 429 5.2 1100 74 AMBS1559 CLIANS CARD-41 (Jan 92 429 5.2 1110 94 AMBS1559 CLIANS An of human 92 429 5.2 1110 94 AMBS156 CLIANS An of All (Jan) 95 422 5.1 120 24 AMBS136 CLIANS An of All (Jan) 95 422 5.1 862 24 AMBS136 Human CARD-41, Prot 96 418 5.0 1432 23 AMBS636 Human CARD-41, Prot 96 418 5.0 1432 23 AMBS636 Human CARD-41, Prot 90 411 5.0 1432 23 AMBS636 Human An of All (Jan) 401 402 403 404 242 2477661 Human An of All (Jan) 401 403 403 404 404 404 404 404 404 404 404 404 404 404 404 <th>AAR72452</th> <th>AAW80312</th> <th>AAW80311</th> <th>AAW57057 .</th> <th>ABP76679</th> <th>AAY72596</th> <th>ABJ04739</th> <th>AAE25420</th> <th>WHE0/314</th> <th>AAO1 /85/</th> <th>AA015590</th> <th>ABJ04738</th> <th>AAE25419</th> <th>ABU56289</th> <th>AA022127</th> <th>ABG31077</th> <th>AAB20081</th> <th>AAY31142</th> <th>AAU80878</th> <th>AAU80877</th> <th>AAU80876</th> <th>ABG46237</th> <th>AAM37369</th> <th>AAM21158</th> <th>AAM77226</th> <th>PAMA408</th> <th>ABB26//0</th> <th>ABG58853</th> <th>ABG46236</th> <th>AAM37368</th> <th>AAM21157</th> <th>AAM77225</th> <th>AAM64407</th> <th>ABB26439</th> <th>199/3/75</th> <th>ABG37074</th> <th>AAM03024</th> <th>AAM67453</th> <th>AAM55062</th> <th>ABB19702</th> <th>ABB29107</th> <th>ABG49110</th> <th>AAR95610</th> <th>22G75580</th> <th>AAB15562</th> <th>33015550</th> <th>791156200 191151191</th> <th>ABG310/6</th> <th>ABU56273</th> <th>AA022111</th> <th>AAB20080</th> <th>AAM78489</th> <th>AAB15552</th>	AAR72452	AAW80312	AAW80311	AAW57057 .	ABP76679	AAY72596	ABJ04739	AAE25420	WHE0/314	AAO1 /85/	AA015590	ABJ04738	AAE25419	ABU56289	AA022127	ABG31077	AAB20081	AAY31142	AAU80878	AAU80877	AAU80876	ABG46237	AAM37369	AAM21158	AAM77226	PAMA408	ABB26//0	ABG58853	ABG46236	AAM37368	AAM21157	AAM77225	AAM64407	ABB26439	199/3/75	ABG37074	AAM03024	AAM67453	AAM55062	ABB19702	ABB29107	ABG49110	AAR95610	22G75580	AAB15562	33015550	791156200 191151191	ABG310/6	ABU56273	AA022111	AAB20080	AAM78489	AAB15552
soils related 91 429 5.2 1100 74 AMBS1559 CLIANS CARD-41 (Jan 92 429 5.2 1110 94 AMBS1559 CLIANS An of human 92 429 5.2 1110 94 AMBS156 CLIANS An of All (Jan) 95 422 5.1 120 24 AMBS136 CLIANS An of All (Jan) 95 422 5.1 862 24 AMBS136 Human CARD-41, Prot 96 418 5.0 1432 23 AMBS636 Human CARD-41, Prot 96 418 5.0 1432 23 AMBS636 Human CARD-41, Prot 90 411 5.0 1432 23 AMBS636 Human An of All (Jan) 401 402 403 404 242 2477661 Human An of All (Jan) 401 403 403 404 404 404 404 404 404 404 404 404 404 404 404 <th></th> <th>,</th> <th></th>																												,																									
91 429 5.2 1130 17 AAR81559 92 429 5.2 1130 19 AAR81559 93 429 5.2 1130 19 AAR81559 94 425 5.1 320 23 AAR51562 95 425 5.1 320 23 AAR51562 96 418 5.1 86 22 AAR51638 97 416 5.0 896 23 AAR51656 97 417 5.0 1142 23 AAR51656 98 418 5.1 1442 23 AAR51656 98 418 5.0 1429 23 AAR51656 99 411 5.0 1142 23 AAR51656 90 411 5.0 1142 23 AAR51656 91 412 5.0 1429 23 AAR51656 91 412 5.0 1429 23 AAR51656 91 413 5.0 1429 23 AAR51656 91 414 5.0 1429 23 AAR51656 91 414 5.0 1429 23 AAR51656 91 418 5.0 1429 23 AAR51656 91 419 5.0 1429 52 AAR51656 91 419 52 AAR51666		CIITA (class II t	CIITA (class II t	Class II trans act	Streptomyces viri	Human cytokine alı	TOTO TO THE TOTOL	Human Mode protein	Human PYRIN-1 pro	Pyrin domain cont	Human PYRIN-8 pro	Nod2 caspase recr	Human Nod2 protei:	Human Caspase rec	Protein of human	Human caspase rec	Human CARD-45 (sh	Human CARD-4S par	Mouse CARD3X #2.	Mouse CARD3X #1.	Human CARD3X prot	Human peptide enc	Peptide #11406 en	Peptide #7592 enc	Human bone marrow	Frocern #0439 enc	Peptide #10982 en	Human liver pepti	Human peptide enc	Peptide #11405 en	Peptide #7591 enc	Human bone marrow	Human brain expre	Protein #8438 enc	Human liver pepti	Human peptide enc	Peptide #1706 enc	Human bone marrow	Human brain expre	Protein #1701 enc	Pentide #1758 end	Human liver penti	Himan protoir cance	ndode to tuembers	Apoptosis related	Caspase recrutume	Ruman CARD-4L pro	Human caspase rec	Human Caspase rec	Protein of human	Human CARD-4L (lc	Human protein SEC	Apoptosis related
91 429 5.2 1130 17 AAR81569 92 429 5.2 1130 19 AAR80313 93 429 5.2 1130 19 AAR80313 94 425 5.1 320 23 ABJ04763 95 421.5 5.1 880 22 AAJ613189 96 411 5.0 182 23 AAJ60368 97 416.5 5.0 189 23 AAJ60368 98 411 5.0 1142 23 AAJ603667 99 411 5.0 1142 23 AAJ603667 101 410.5 5.0 1422 23 AAJ76578 102 410.5 5.0 1422 23 AAJ76578 103 409 4.9 1422 23 AAJ76578 104 408 4.9 1429 23 AAJ76578 105 407 4.9 1429 23 AAJ767679 110 407 4.9 1429 23 AAJ767679 111 407 4.9 1429 23 AAJ767679 112 407 4.9 1429 23 AAJ767679 113 308.5 4.8 1939 24 AAJ77673 114 407 4.9 1429 25 AAJ767763 115 309.5 4.8 19318 24 AAJ77673 116 309.5 4.8 19318 24 AAJ77673 117 305.5 4.7 1851 23 AAJ019319 118 305.5 4.6 1032 24 AAJ019319 119 307 4.7 1851 23 AAJ019329 117 308.5 4.6 1032 24 AAJ019329 118 308.5 4.6 1032 24 AAJ019329 119 308.5 4.6 1032 24 AAJ019329 110 308.5 4.6 1032 24 AAJ019329 111 309.5 4.6 1032 24 AAJ019329 112 308.5 4.6 1032 24 AAJ019329 113 308.5 4.6 1032 24 AAJ019329 114 307.5 4.6 1032 24 AAJ019329 115 308.5 4.6 1032 24 AAJ019329 116 308.5 4.6 1032 24 AAJ019329 117 309.5 4.6 1032 24 AAJ019329 118 309.5 4.6 1032 24 AAJ019329 119 309.5 4.6 1032 24 AAJ019329 110 309.5 4.6 1032 24 AAJ019329 111 309.5 4.6 1032 24 AAJ019329 112 308.5 4.6 1032 24 AAJ019329 113 308.5 4.6 1032 24 AAJ019329 114 308.5 4.6 1032 24 AAJ019329 115 308.5 4.6 1032 24 AAJ019329 116 308.5 4.6 1032 24 AAJ019329 117 309.5 4.6 1032 24 AAJ019329 118 309.5 4.6 1032 24 AAJ019329 119 309.5 4.6 1032 24 AAJ019329 110 309.5 4.6 1032 24 AAJ019329 111 309.5 4.6 1032 24 AAJ019329 112 309.5 4.6 1032 24 AAJ019329 113 309.5 4.6 1032 24 AAJ019329 114 309.5 4.6 1032 24 AAJ019329 115 309.5 4.6 1032 24 AAJ019329 116 309.5 4.6 1032 24 AAJ019329 117 309.5 4.6 1032 24 AAJ019329 118 309.5 4.6 1032 24 AAJ019329 119 309.5 4.6 1032 24 AAJ019329 119 309.5 4.6 1032 24 AAJ019329 119 309.5 4.7 109.1 120 24 AAJ019329 119 309.5 4.8 109.1 120 24 AAJ019329 119 309.5 4.8 109.1 120 24 AAJ019329 119 309.5 4.8 109.1 120 24 AAJ019329																																														•				.,			
429 5.2 1130 17 AAR81569 2429 5.2 1130 19 AAW80313 Class 429 5.2 1130 19 AAW87056 Class 4215 5.1 300 23 AAU80668 Human 411 5.0 1429 23 AAU80668 Human 411 5.0 1429 23 AAU72670 Human 410 4.9 1429 23 AAU72671 Human 409 4.9 1429 23 AAU72671 Human 407 4.9 1429 23 AAU72671 Human 407 4.9 1429 23 AAU72673 Human 407 4.9 1429 23 AAU72673 Human 407 4.9 1429 23 AAU72673 Human Human 407 4.9 1429 24 AAU72673 Human Human 396 4.8 919 23 AAU72673 Human Human 395 4.8 919 23 AAU72673 Human Human 395 4.8 919 23 AAU727711 Human Human 395 4.8 919 23 AAU727713 Human Human 395 4.7 983 23 AAU727713 Human Human 395 4.7 983 23 AAU772763 Human Human 395 4.7 983 23 AAU727713 Human Human 395 4.7 983 23 AAU727713 Human Human 395 4.6 1023 23 AAU7277669 Human Strept AAU727713 Human Human 395 4.6 1023 23 AAU727869 Human Strept AAU727713 Human Human 395 4.6 1023 23 AAU727869 Human Strept AAU727869 Human Strept AAU727869 AAU727869 Human Strept AAU72869 AAU7286											•																																										
5.2 1130 17 AAR81569 5.2 1130 19 AAW87056 5.1 1130 19 AAW80313 Class 5.1 1130 19 AAW80313 Class 5.1 320 23 ABJ04763 ABJ04765 AAW180666 ABJ04 22 AAW72671 ABJ047873 ABJ0478 ABJ047873 ABJ0						c				n	•		n																	റ																							
17 AAR81569 19 AAW80313 19 AAW80313 Class 22 AAJ04763 AAJ04763 AAJ04763 AAJ04763 AAJ04763 AAJ04763 AAJ04763 AAJ04763 AAJ04763 AAJ015592 AAV72670 Human 22 AAV72673 AAJ090667 AAW80014 AAJ090667 AAJ090669 AAJ090669 AAJ090669 AAJ090669 AAJ090669 AAJ090669 AAJ09069 A	147	146	145	144				139	138		136	135	134																117	116			112	1112	110	109	108	107	106	105	102	102	101	- 100			97	96	95	94	93	92	91
17 AAR81569 19 AAW80313 19 AAW80313 Class 22 AAJ04763 AAJ04763 AAJ04763 AAJ04763 AAJ04763 AAJ04763 AAJ04763 AAJ04763 AAJ04763 AAJ015592 AAV72670 Human 22 AAV72673 AAJ090667 AAW80014 AAJ090667 AAJ090669 AAJ090669 AAJ090669 AAJ090669 AAJ090669 AAJ090669 AAJ09069 A	ω									137			134																117	116																						92 429	91 429
17 AAR81569 19 AAW80313 19 AAW80313 Class 22 AAJ04763 AAJ04763 AAJ04763 AAJ04763 AAJ04763 AAJ04763 AAJ04763 AAJ04763 AAJ04763 AAJ015592 AAV72670 Human 22 AAV72673 AAJ090667 AAW80014 AAJ090667 AAJ090669 AAJ090669 AAJ090669 AAJ090669 AAJ090669 AAJ090669 AAJ09069 A	ω									137			134																117	116																						92 429 5.2	91 429 5.2
Class Class Class Class Nool; Nool; Human Human Human Human Human Human Pyrin Human Strept Novx Strept Novx Strept Novx Strept Novx Strept Novx Strept Human	342.5 4.1	344 4 2	2.4	244	7.0	247 5 4.3	00F 4.N	352 4.3	357 4.3	137 360 4.4 19	366 4.4	366.5 4.4	134 367 4.5	374.5 4.5	374.5 4.5	379.5 4.6	382 4.6	382 4.6	382.5 4.6	382.5 4.6	382.5 4.6	384.5 4.6	225 5 4.7	387 4.7	392 4./	392 4.7	392 4.7	395.5 4.8	117 395.5 4.8	116 396 4.8	398.5 4.8	407 4.9	407 4.9	407 4.9	407 4.9	407 4.9	407 4.9	407 4.9	407 4.9	407 4.9	4.9	410.5	410.5 5.0	411 5.0 1	411 5.0 1	411 5.0 1	416.5 5.0	418 5.1	421.5 5.1	425 5.1	429 5.2	5.2	5.2
Class II transacti Class II trans cit Class II trans cott Class II trans Class II trans Class II trans Ell transcription CARD3X	342.5 4.1	344 4 2 10038	344 4.2 1000	344 4 2 1033	700 7.5	347 5 4 3 247 5 4 3	001 4.0 10000	352 4.3 2312	357 4.3 1111	137 360 4.4 19938	366 4.4 740	366.5 4.4 891	134 367 4.5 19938	374.5 4.5 980	374.5 4.5 980	379.5 4.6 1049	382 4.6 1062	382 4.6 1062	382.5 4.6 1033	382.5 4.6 1033	382.5 4.6 1033	384.5 4.6 952	1007 4.7 1002 1007 4.7 1001	387 4.7 1651	387 4./ 394	392 4.7 983	392 4.7 858	395.5 4.8 919	117 395.5 4.8 919	116 396 4.8 19938	398.5 4.8 920	407 4.9 1473	407 4 9 1473	407 4.9 1429	407 4.9 1429	407 4.9	407 4.9	407 4.9	407 4.9	407 4.9 830	#7#T A.1 A.1	410.0 5.0 1429	410.5 5.0 1429	411 5.0 1	411 5.0 1	411 5.0 1397	416.5 5.0 896	418 5.1 81	421.5 5.1 869	425 5.1 320	429 5.2 1130	5.2 1130 1	5.2
Class II transacti ClITA (class II trans acti CIITA (class II trans acti CIITA (class II trans acti CIITA (class II trans acti Nod1 protein seque Human CRDSX CARDB Human PYRIN-11 pro Human NB-ARC and CHuman NB-ARC and CHuman NB-ARC and CHuman NAC gamma or Human CARDS* CARDA CIITA (class II trans NAC Gand CHuman CARDS* Polyphuman leucine-rich repeat Human CARDS* CARDA CIITA (class II trans NAC Beta iso Human CODD STO ID Streptomyces virid Nouse MATER protein domain conta Human Gapo STO ID Streptomyces virid Nouse MATER protein domain conta Human PYRIN-5 protein Human NATER protein Human NATER protein Human NATER protein Streptomyces virid Streptomyces virid Streptomyces virid Human NATER protein Human NATER protein Human NATER protein Streptomyces virid	342.5 4.1 1200 23	344 4 2 10038 24	344 4.2 1030 23	344 4 2 1033 22	#12 TOO 21# 01/EC	347 5 4 3 661 34	051 4.2 10000 C.	352 4.3 2312 23	357 4.3 1111 23	137 360 4.4 19938 24	366 4.4 740 22	366.5 4.4 891 22	134 367 4.5 19938 24	374.5 4.5 980 23	374.5 4.5 980 23	379.5 4.6 1049 22	382 4.6 1062 23	382 4.6 1062 22	382.5 4.6 1033 24	382.5 4.6 1033 23	382.5 4.6 1033 22	384.5 4.6 952 22	285 5 4.7 1022 22	387 4.7 1651 23	387 4./ 994 23	392 4.7 983 23	392 4.7 858 23	395.5 4.8 919 24	117 395.5 4.8 919 23	116 396 4.8 19938 24	398.5 4.8 920 23	407 4.9 1473 22	407 4 9 1473 22	407 4.9 1429 24	407 4.9 1429 24	407 4.9 1429 23	407 4.9 1429 23 .	407 4.9 1429 23	407 4.9 1429 22	407 4.9 830 19	72 575 6.5	410.5 5.0 1429 23	410.5 5.0 1429 23	411 5.0 1473 22	411 5.0 1442 22	411 5.0 1397 22	416.5 5.0 896 23	418 5.1 81 23	421.5 5.1 869 22	425 5.1 320 23	429 5.2 1130 19	5.2 .1130 19	5.2 1130 17
	342.5 4.1 1200 23	344 4 2 10038 24	344 4.2 1030 23	344 4 2 1033 22	#12 TOO 21# 01/EC	347 5 4 3 661 34	051 4.2 10000 C.	352 4.3 2312 23	357 4.3 1111 23	137 360 4.4 19938 24	366 4.4 740 22	366.5 4.4 891 22	134 367 4.5 19938 24	374.5 4.5 980 23	374.5 4.5 980 23	379.5 4.6 1049 22	382 4.6 1062 23	382 4.6 1062 22	382.5 4.6 1033 24	382.5 4.6 1033 23	382.5 4.6 1033 22	384.5 4.6 952 22	285 5 4.7 1022 22	387 4.7 1651 23	387 4./ 994 23	392 4.7 983 23	392 4.7 858 23	395.5 4.8 919 24	117 395.5 4.8 919 23	116 396 4.8 19938 24	398.5 4.8 920 23	407 4.9 1473 22	407 4 9 1473 22	407 4.9 1429 24	407 4.9 1429 24	407 4.9 1429 23	407 4.9 1429 23 .	407 4.9 1429 23	407 4.9 1429 22	407 4.9 830 19	72 575 6.5	410.5 5.0 1429 23	410.5 5.0 1429 23	411 5.0 1473 22	411 5.0 1442 22	411 5.0 1397 22	416.5 5.0 896 23	418 5.1 81 23	421.5 5.1 869 22	425 5.1 320 23	429 5.2 1130 19	5.2 .1130 19	5.2 1130 17

150	149	148
341.5	342	342.5
4.1	4.1	4.1
777	1111	1200
14	24	24
AAR37740	AAE31748	AAE31749

Search completed: January 7, 2004, 19:42:16
Job time: 379.762 secs

Human MATER protei Mouse MATER protei Collagen-like poly

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Itd.

-DB=Published_Applications_AA -QFMT=fastan -SUFFIX=rapb -MINNATCH=0.1
LOOPCIA-0 -LOOPEXT=0 -UNITS=bite -START=1 -EMD=-1 -MATRIX=blosum62
-TRAWS=human40.cdi -LIST=150 -DOCALIGN=200 -THR_SCORE=pct -THR_MX=100
-THR_MIN=0 -ALIGN=50 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0
-MAXLEN=200000000 -USER=US10014269 @CGN 1 1 59 @ runat 0701204 175231 24632
-NCPU=6 -ICPU=3 -NO_WAAP -LARGEQUERY -NGG_SCORES=0 -WAIT -DSPBLOCK=100
-LONGLOG -DEV_TIMEOUT=120 -WARN_TIMEOUT=30 -THREADS=1 -XGAPDP=10 -XGAPEXT=0.5
-FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7 Post-processing: Minimum Match 0% Maximum Match 100% Listing first 150 summaries Minimum DB seq length: 0
Maximum DB seq length: 2000000000 Database : 0=/cgn2_1/USPTO_spcol_p/US10014269/runat_07012004_175231_24632/app_query.fasta_1 .9358 Command line parameters: Total number of hits satisfying chosen parameters: -MODEL=frame+_n2p.model -DEV=xlp Searched: Scoring table: BLOSUM62 Sequence: Run on: OM nucleic - protein search, using frame_plus_n2p model. Perfect score: Published Applications AA:*

1: /cgn2_6/ptodata/2/pubpaa/PCT NEW PUB.pep:*

2: /cgn2_6/ptodata/2/pubpaa/PCT NEW PUB.pep:*

3: /cgn2_6/ptodata/2/pubpaa/PCT NEW PUB.pep:*

4: /cgn2_6/ptodata/2/pubpaa/US06_PUBCOMB.pep:*

5: /cgn2_6/ptodata/2/pubpaa/US07_NEW PUB.pep:*

6: /cgn2_6/ptodata/2/pubpaa/PCTUS_PUBCOMB.pep:*

7: /cgn2_6/ptodata/2/pubpaa/PCTUS_PUBCOMB.pep:*

8: /cgn2_6/ptodata/2/pubpaa/US08_NEW_FUB.pep:*

9: /cgn2_6/ptodata/2/pubpaa/US08_PUBCOMB.pep:*

9: /cgn2_6/ptodata/2/pubpaa/US08_PUBCOMB.pep:* Xgapop 10.0 , Xgapext Ygapop 10.0 , Ygapext Fgapop 6.0 , Fgapext Delop 6.0 , Delext January 7, 2004, 19:49:02; Search time 134.015 Seconds (without alignments) 13490.627 Million cell updates/sec 747907 seqs, 201509753 residues US-10-014-269-33 8270 1 gtagacagatccaggctcac.....ataaactgttgagtcaaaac 4486 7.0 7.0 1495814

/cgn2_6/ptodata/2/pubpaa/US09B_PUBCOMB.pep:

113:113:115:116:117:117:118:118	
/ cgn2_6/ptodata//pubpaa/USU6_PUBCOMB.pep: / cgn2_6/ptodata//pubpaa/US10A_PUBCOMB.pep: / cgn2_6/ptodata/2/pubpaa/US10A_PUBCOMB.pep: / cgn2_6/ptodata/2/pubpaa/US10B_PUBCOMB.pep: / cgn2_6/ptodata/2/pubpaa/US10B_PUBCOMB.pep: / cgn2_6/ptodata/2/pubpaa/US10_RWPUB-pep: / cgn2_6/ptodata/2/pubpaa/US60_NEW_PUB.pep: / cgn2_6/ptodata/2/pubpaa/US60_NEW_PUB.pep: / cgn2_6/ptodata/2/pubpaa/US60_RUBUFUB.pep: / cgn2_6/ptodata/2/pu	ACTUAL TO COLUMN TO THE PARTY OF THE PARTY O

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

٧٤) (ى ر <u>.</u>	300	, ω , σ	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	00	7	O	5	4	ω	2		No.	Result
1206.5	TV00.0	1206.5	156	61	1614	1614	2087	95	4188	4981.5	27	27	5279	27	27	5291	5291	5291	5318	41	5419	41	41		5427	42	42	42	5430	5430	ü	43	5431	43	43	43	43	5435	Score	ı
14.6	14.0	٠	18.9	9	9	9	5	5			ω	ω	63.8	ü					64.3	•	•		•	65.6	•	•	65.6	65.6	65.7	65.7	•	65.7	65.7	65.7	65.7	65.7	65.7	65.7	Match]	Query
953	900	9 6	296	305	305	305	403	560	795	1009	1007	1007	1007	1007	1007		1013	1013	1041	1040	1040	1040	1040	1040	1040	1040	1040	1040	1040	1040	04	1040	1040	1040	1040	1040	1040	1040	Length	
5	+	٠	10	4	14	12	10	10	10	10	14	12	14		12	14	14	12	12			12	12	14	14	14	14	12	14	14			14	14	14	14	14	12	DB	
US-10-295-981-43	TU-118-	09-728-721-43	-09-864-921	-10-002-974-	US-10-014-269-7	-10-314-506-	\sim	-921-8	\mathbf{r}	64-921-1	-974-5	-10-314-506-5	-10-002-97	0-014-269-3	90	974-	8		046A-	-10-002-974-8	-10-002-974-	314-506-6	0 - 31	002-974-8	-974	US-10-002-974-59	0-002-974	-10-314-506-5	-10-002-974-	-10-002-974-	-10-014-269-	-10-314-506-4	-10-002-974-6	-10-002-97	-10-002-974-	US-10-002-974-2	US-10-014-269-2	US-10-314-506-2	I D	•
e 43,	Sequence 43, Appl	quence 43, A	Sequence 174	equence 7,	e 7, Appl	equence 7, A	e 176,	equence 83, i	equence 188,	equence 107,	equence 55,	equence 55,	quence 34,	e 34	quence 34,	quence 3,	е 3,	φ ω	e 2, 7	e 89,	e 85,	е 61,	e 59	quence 87,	equence 61,	equence 59,	e 57,	quence 57,	Ф 65.	equence 4,	quence 4.	equence 4, 1	equence 69,	equence 63,	equence 67,	equence 2, App	e 2, App	quence	Description	

95 95 96	87 88 90 91	8 8 8 8 9 7 9 8 8 8 9 8 9 8 9 8 9 8 9 8	70 70 70 70 70 70 70 70	55 55 55 55 55 55 55 55 55 55 55 55 55	4444444 0100100000000000000000000000000
00000	410.5 410.5 410.5 410	429 429 429 425 425 410.5	44044 44044 60	900 960 960 960 960 960 960 960 960 960	1196.5 1196.5 1196.5 1196.5 1196.5
2444		100000000000000000000000000000000000000	, , , , , , , , , , , , , , , , , , ,	1111 1100 1100 1100 1100 1100 1100 110	
1429 1429 1429 1429	1429 1429 1399 1443	1106 1130 1130 1130 320 320 320 320 81 1016	1034 1034 1034 1034 1034 94	7109 7199 7196 1166 1166 1180 1180 1180 1180 1197 1197 1197 1197 1107 1108 11035	179999999 5055555555555555555555555555555
100	515515	1100110	111111111111111111111111111111111111111	ов соом такомительными	12 12 14 15 15
US-09-064-199-19 US-09-064-199-19 US-09-996-617-2 US-09-931-071-2 US-10-028-374-15	US-10-028-374-3 US-10-183-770-3 US-10-183-770-3 US-09-388-221-6 US-09-388-221-6 US-09-388-221-12	US-09-064-199-17 US-09-064-199-18 US-101-104-595-6 US-10-014-256-30 US-10-014-269-30 US-10-002-974-30 US-10-002-974-30 US-99-864-921-172 US-99-864-921-179 US-09-986-521-22	US-10-028-374-18 US-10-112-967-5 US-10-128-70-18 US-10-127-516-5 US-10-027-629-5 US-10-014-269-6 US-10-014-269-6 US-10-02-774-6	US-10-106-69-6363 US-09-864-761-35000 US-09-864-761-41737 US-09-864-761-41738 US-09-864-921-191 US-09-864-921-191 US-09-864-921-193 US-09-864-921-193 US-09-864-921-193 US-10-161-927-2 US-09-728-721-26 US-10-1018-994-26 US-10-1018-994-26 US-10-1018-994-26 US-10-1018-994-26 US-10-295-991-26 US-10-002-974-5 US-10-002-974-9	9-728-721-8 10-028-374-4 10-183-770-4 10-105-931-8 10-118-984-8 10-013-477-1 10-013-477-1
e 170, e 19, e 2, , e 2, , e 15,	quence 3, A quence 3, A quence 4, A quence 6, A quence 12,	10 10 10 10 10 30 30 30 10 17	edneuce edneuce edneuce edneuce edneuce edneuce	iequence 22 iequence 350 iquence 317 iquence 417 iquence 118 iequence 19 iequence 26, iequence 26, iequence 26, iequence 26, iequence 26, iequence 26, iequence 5, iequence 20, iequence 20, iequence 21, iequence 24, iequ	uence 8 quence quence quence quence quence quence

0 0 0	0	0 0 0	
144 145 146 147 148 149	137 138 138 139 140 141 142 142	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	97 98 99 100 100 100 103 103 103 103 103 103 103
31 31 6 6 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	25 22 22 25 25	₽ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	39407 39407 39507 39607 39707
960 321 659 875 875 4123 1496	821 200 200 200 200	1143 1162 1162 655 14666 14666	1429 1454 1473 919 919 958 958 994 994 1933 1033 1033 1062 1049 980 980 980 987 772 987 987 977 987
N 010 - N N N		15 12 12 12 12 12 12 12 13	112 112 113 113 114 115 115 115 115 115 115 115 115 115
S-10-342-331-5 S-10-407-866-1 S-10-407-866-6 -09-848-035-16 S-09-986-224-1 S-10-213-5095 S-10-301-822-3	35-2 224- 221-1 21-1 931- 984- 981-	10-216-645-4 -10-216-645-2 -10-342-331-4 -10-407-866-94 -10-407-866-94 -10-177-293-68	3-10-183-770 3-10-28-392 3-09-388-221 3-09-388-221 3-09-986-224 3-09-986-224 3-09-986-224 3-09-986-224 3-10-407-866 3-10-239-663 3-10-239-663 3-10-239-663 3-10-239-663 3-10-248-035-9 3-1
equence 5, 2 equence 116, 2 equence 16, 2 quence 16, 2 equence 5, 2 equence 5, 2	Sequence 3.446, A Sequence 2, Appli Sequence 2, Appli Sequence 11, Appl Sequence 11, Appl Sequence 11, Appl Sequence 21, Appl Sequence 21, Appl	equence 4, Applequence 2, Applequence 2, Applequence 64, Applequence 13, Applequence 13, Applequence 68, Applequence 69, Apple	sequence 15 sequence 27 sequence 27 sequence 8, sequence 16 sequence 16 sequence 17 sequence 27 sequence 28 sequence 28 sequence 29 sequence 13 sequence 20 sequen

OM nucleic - protein search, using frame_plus_n2p model

-DB=PIR_76 -QFMT=fastan -SUFFIX=rpr -MINWAICH=0.1 -LOOPCL=0 -LOOPEXT=0
-WNITS+bits -START=1 -EMD=-1 -MATRIX=blosum62 -TRAWS=human40.cdi -LIST=150
-DCCALIGN=200 -THR_500RE=pot -THR_MAX=100 -THR_MIN=0 -ALIGN=50 -MODE=LOCAL
-OUTEMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000
-USER=US10014269 GCGN 1 1 224 Grunat 07012004 175229 24535 -NCPU=6 -ICPU=3
-NO_MAP -LARGEQUERY -NEG_SCORES=0 -WAIT -DSPD=10 -LONGLOG
-DEV_TIMEOUT=120 -MARN_TIMEOUT=30 -THREADS=1 -XGAPDP=10 -XGAPEXT=0.5 -FGAPOP=6
-FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7 Database : Q=/cgn2_1/USPTO_spool_p/US10014269/runat_07012004_175229_24535/app_query.fasta_1 Command line parameters:
-MODEL=frame+_n2p.model -DEV=xlp Minimum DB seq length: 0 Maximum DB seq length: 2000000000 Post-processing: Minimum Match 0% Maximum Match 100% Listing first 150 summaries Searched: Total number of hits satisfying chosen parameters: Scoring table: BLOSUM62 Sequence: Perfect score: Run on: Xgapop 10.0 , Xgapext 0
Ygapop 10.0 , Ygapext 0
Ygapop 6.0 , Fgapext 7
Delop 6.0 , Delext 7 283308 seqs, 96168682 residues US-10-014-269-33 8270 January 7, 2004, 19:24:31 ; Search time 65.5073 Seconds (Without alignments)
13171.439 Million cell updates/sec i gtagacagatccaggctcac.....ataaactgttgagtcaaaac 4486 7.0 7.0 566616

PIR_76:* 1: pir1: 2: pir2: 3: pir3: 4: pir4: pir1:*
pir2:*
pir3:*
pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Search completed: January 7, 2004, 20:54:10 Job time: 430.015 secs

	ယ	52	51	50	49	2 4		45	44	ر د د	0 42 42	40	9	c 38	c 37	c 36	<u>კ</u>	c 34	ە 3.3	3 2 2	30	c 29	c 28	27	2 2 2 3	c 24	c 23				18	17	c 16	17.4	0 13	c 12	11	c 10	φο	n ~ a	10	0	0 4	. ω	N		Z O	Result
	262.5	263	263.5	263.5	264	200	268	268	268	268	268.5	269.5	273.5	275.5	276.5	280	281	282.5	293.5	284	286.5	287	287	287	288.5	288.5	289.5	291	294.5	294.5	297.5	301.5	301.5	305	309	310	310.5	310.5	312	313.5	322.5	329.5	338	357	390	429	Score	
	3.2	3.2	3.2	ω (ى د د	ω ω	3.2	3.2	ω. Ν	 	ຸພ	ι ω	3.4	3.4	3.4	ω .	ω (• •	ى د. ت م	υω		3.5	ω 5		υ u	ω. 5	ω (()	ب م م	ى م م	. s	3.6	ა. 6	ω. 7.	ر د د د	. α	3.8	3.8	ω. 	ω. 	ა <u>დ</u>	. ω . •	4.0	· .	4.3	4.7	5.2	Match	Query
	1492	1669	1806	400	1660	1505	1843	1487	1419	1042	7091	1418	1453	1042	1419	1838	1414	1806	2944	671	1690	1690	988	988	1546	1497	2715	1414	1418	1049	1670	1691	1487	0000	1373	1464	1466	1464	784	1496	2944	1453	1466	1111	1192	1130	Match Length	
	2 A40333	1 CGMS 4B	1 CGHU1E	1 CGHION	1 CHITAL	1 522917	2 518803	2 B411	2 A41182	1 CGCH1S	2 COHULS	2 T45467	2 \$21626	1 CGCH1S	2 A41182	1 CGHUIV	1 523809	1 CGHU	2 841182	1 CGRT	T CGHU	1 CGHU1B	2 150694	2 150694	1 CGHU2E	2 149607	2 T130	1 603800	2 145467	1 CGB07S	1 CGHU3B	1 \$229	1 098060	1800 T	1 A43291	2 S59E	1 CGHU7L	1 CGHU1S	2 .10031.	1 CGHU2V	2 A54849	2 521626	1 CGHU7L	2 A59000	2 T1725	2 A486	DB ID	
,	33	4B	LE V	S 4	4 -	1	်င္	82	82	3 6	100	67	26	18	82	IV	9 6	71 6	0 2	18	B1	1B	94	2 4	2E	07	40	o L	. 67)7s	13B	17	160 V	ກູ່ ໄດ້ ກ	91	356	17L	IIS	27 5	120	349	526	J7L	00	255	343		
•																																														1		
	0	0	n o		. 5	. 0	n	0 1	0 0			0	0	0.	0	0 (^		•				.																						
	collagen		collagen		ypothetical p	ollagen			collagen	collagen	ollagen	collagen	cllagen	collagen	collagen	collagen	ioll agen		collagen	collagen	collagen	collagen alpha	collagen alpha	collagen	collagen alpha	procella	collagen	collagen	collagen	collagen alpha	collagen alpha	collagen alpha	collagen alpha	BHLF1 protein -	collagen	collagen	collagen alpha	nypouneuroar azk p	collagen alpha	collagen alpha	coĭlagen alpha	collagen alpha	collagen alpha	mater protein	hypothetical p	MHC Clas	Description	
		alpha 1	alpha 2	alpha 1	lcal pro	alpha 5	alpha 1	alpha 1	alpha 1	alpha 1	alpha 1	alpha 1	alpha 1	alpha 1		alpha 1		alpha 1	alpha 1	alpha 1		alpha 4	alpha 1	alpha 2	ollagen alpha 2(X	gen type	alpha 2	alpha 1	alpha 1	alpha 1	alpha 3	sudie endie		otein -	ollagen alpha 2(I	alpha	alpha	TCGT BZ	alpha :	alpha .	alpha	alpha			ical prote		ion	
	,	î î	₹ ₹	î î	rote	Ĥ	₹	Ĥί	3 F	i x	₹ Ĥ	Ĥ	î	Ĥ	î î	1 (V	7 5	₹ ₹	: 🛱	î	Î	î î	ìÉ	î	(×	\ \ \	5 F	î	Ē	Î.	G F	57 CF	1 7	1	1)2	î	1 (1	מי ב	1(1	2 (7 (V	1 (I	1(1	dur	rote	9 1		
	o			O	n					o						C	O			n	n		ი	0	o		o		O				Ω	a	o	(,			o.								
	c 110 2	100	107	106				102	100	99		97 . 2	96 2	95 2	0 40	0.00	9 4		89				0 88 88		N	80 00		78	c 77 2	76	75.	7/3	c 72	71	_	90) n o	9 6		c 64	-			60	ປາ ເ ເວ ຜ	57	G 0	74 n
	c 110 225.5	100 227.3	107 228	106					100	99		97 . 234.5	96 234.5	95 234.5	90 225		9 4		89 238						N	81 241		78 241.5	c 77 243.5	76 243.5	75 243 5	74 246.5	c 72 247	71	_		0 68 252			c 64 254.5	-			60 256.5	59 257	57 258	56 258.5	54 261.5
	5 2.7	7 a	228 2.8	106 228 2.8	229.5 2.8	229.5 2.8	231 2.8	231 2.8	100 232.5 2.8	99 233.5 2.8	234 2.8	. 234.5 2.8	2.8	2.		23/ 2.9	238 2.9	238 2.9	238 2.9	238.5 2.9	239 2.9	239 2 9	239.5 2.9	240 2.9	2 240.5 2.9	241 2.9	241.5 2.9	2.9	3.0	2.9	٥.	ο ω Ο Ο	3.0	71 249.5 3.0	249.5 3.0	250 3.0	252 3.0	253 3.1	254.5 3.1	254.5 3.1	255.5 3.1	255.5 3.1	255.5 3.1	256.5 3.1	ب م د.		3.1	ω • .
	5 2.7 2142	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	228 2.8 1446	106 228 2.8 825	229.5 2.8 3198	229.5 2.8 1585	231 2.8 920	231 2 8 754	100 232.5 2.8 1106	99 233.5 2.8 1669	234 2.8 1691	234.5 2.8 5262	2.8 4957	2.8 931	2.9 1707	23/ 2.9 1428	91 238 2.9 1791	238 2.9 1759	238 2.9 1758	238.5 2.9 627	239 2.9 1707	239 2 9 1460	239.5 2.9 920	240 2.9 13288	2 240.5 2.9 964	241 2.9 744	241.5 2.9 1763	2.9 1712	3.0 1549	2.9 1497	3.0 1603	3.0 920	3.0 1344	71 249.5 3.0 1759	249.5 3.0 1758	250 3.0 1486	252 3.0 660	253 3.1 1366	254.5 3.1 1843	254.5 3.1 1670	255.5 3.1 1546	255.5 3.1 1492	255.5 3.1 888	256.5 3.1 1838	7 3 1 1373	. w	3.1 1763	ω • .
	5 2.7 2142	2 7 3 260 2	228 2.8 1446 1	106 228 2.8 825 2	229.5 2.8 3198 2	229.5 2.8 1585 2	231 2.8 920	231 2 8 306 2	100 232.5 2.8 1106 2	99 233.5 2.8 1669 1	234 2.8 1691 1	234.5 2.8 5262 2	2.8 4957 2	2.8 931 2	7 201 T 6.7	23/ 2.9 1428 2	91 238 2.9 1791 2	238 2.9 1759 2	238 2.9 1758 2	238.5 2.9 627 2	239 2.9 1707 2	239 2-9 1460 1	239.5 2.9 920 2	240 2.9 13288 2	2 240.5 2.9 964 1	241 2.9 744 1	241.5 2.9 1763 2	2.9 1712 1	3.0 1549 2	2.9 1497 2	3.0 1603 2	3.0 920 2	3.0 1344 1	71 249.5 3.0 1759 2	249.5 3.0 1758 2	250 3.0 1486 1	252 3.0 660 1	253 3.1 1366 1	254.5 3.1 1843 2	254.5 3.1 1670 1	255.5 3.1 1546 1	255.5 3.1 1492 2	255.5 3.1 888 2	256.5 3.1 1838 1	7 3 1 1373 1	3.1 456 2	3.1 1763 2	3.2 1487 1
	5 2.7 2142 2	2 7 3 260 2	228 2.8 1446 1	106 228 2.8 825 2	229.5 2.8 3198 2	229.5 2.8 1585 2	231 2.8 920 2	231 2 8 306 2	100 232.5 2.8 1106	99 233.5 2.8 1669 1	234 2.8 1691 1	234.5 2.8 5262 2	2.8 4957 2	2.8 931	7 201 T 6.7	23/ 2.9 1428 2	91 238 2.9 1791 2	238 2.9 1759 2	238 2.9 1758 2	238.5 2.9 627 2	239 2.9 1707 2	239 2-9 1460 1	239.5 2.9 920	240 2.9 13288 2	2 240.5 2.9 964 1	241 2.9 744	241.5 2.9 1763 2	2.9 1712 1	3.0 1549 2	2.9 1497 2	3.0 1603	3.0 920 2	3.0 1344 1	71 249.5 3.0 1759 2	249.5 3.0 1758 2	250 3.0 1486 1	252 3.0 660	253 3.1 1366 1	254.5 3.1 1843 2	254.5 3.1 1670 1	255.5 3.1 1546 1	255.5 3.1 1492 2	255.5 3.1 888 2	256.5 3.1 1838	7 3 1 1373 1	3.1 456 2	3.1 1763	3.2 1487 1
	5 2.7 2142 2	2 7 3 260 2	228 2.8 1446 1	106 228 2.8 825 2	229.5 2.8 3198 2	229.5 2.8 1585 2	231 2.8 920 2	231 2 8 306 2	100 232.5 2.8 1106 2	99 233.5 2.8 1669 1	234 2.8 1691 1	234.5 2.8 5262 2	2.8 4957 2	2.8 931 2	2.9 1205 Z JQU405	23/ 2,9 1428 2 T08852	91 238 2.9 1791 2	238 2.9 1759 2	238 2.9 1758 2	238.5 2.9 627 2	239 2.9 1707 2	239 2-9 1460 1	239.5 2.9 920 2	240 2.9 13288 2	2 240.5 2.9 964 1	241 2.9 744 1	241.5 2.9 1763 2	2.9 1712 1	3.0 1549 2	2.9 1497 2	3.0 1603 2	3.0 920 2	3.0 1344 1	71 249.5 3.0 1759 2	249.5 3.0 1758 2	250 3.0 1486 1	252 3.0 660 1	253 3.1 1366 1	254.5 3.1 1843 2	254.5 3.1 1670 1	255.5 3.1 1546 1	255.5 3.1 1492 2	255.5 3.1 888 2	256.5 3.1 1838 1	7 3 1 1373 1	3.1 456 2	3.1 1763 2	3.2 1487 1
	5 2.7 2142 2 B35098	2.0 461 2 A31858	228 2.8 1446 1 A45344	106 228 2.8 825 2 JC4163	229.5 2.8 3198 2 A43426	229.5 2.8 1585 2 T31611	231 2.8 920 2 A45748	231 28 754 2 555267	100 232.5 2.8 1106 2 JQ0405	99 233.5 2.8 1669 1 CGMS4B	234 2.8 1691 1 CGHU6B	· 234.5 2.8 5262 2 T03454	2.8 4957 2 T03455	2.8 931 2 813580	2.9 1707 2 JOUAUS	236 5 3 6 1106 3 TODASE	91 238 2.9 1791 2 T02345	238 2.9 1759 2 T29351	238 2.9 1758 2 T29350	238.5 2.9 627 2 A44112	239 2.9 1707 2 A33526	239 2-9 1460 1 EDBRIE	239.5 2.9 920 2 A45748	240 2.9 13288 2 T03099	2 240.5 2.9 964 1 CGCH2S	241 2.9 /44 I A34246	241.5 2.9 1763 2 S16366	2.9 1712 1 CGHU2B	3.0 1549 2 I48103	2.9 1497 2 149607	3 0 1357 3 H35526F	3.0 920 2 B34493	3.0 1344 1 A35175	71 249.5 3.0 1759 2 T29351	249.5 3.0 1758 2 T29350	250 3.0 1486 1 B40333	252 3.1 1486 1 D46322	253 3.1 1366 1 CGHU2S	254.5 3.1 1843 2 \$18803	254.5 3.1 1670 1 CGHU3B	255.5 3.1 1546 1 CGHUZE	255.5 3.1 1492 2 A40333	255.5 3.1 888 2 \$28791	256.5 3.1 1838 1 COMINY	7 3 1 1373 1 1/3049	3.1 456 2 A31857	3.1 1763 2 S16366	3.2 1487 1 CGHU6C
	5 2.7 2142 2 B35098	2.0 461 2 A31858	228 2.8 1446 1 A45344	106 228 2.8 825 2 JC4163	229.5 2.8 3198 2 A43426	229.5 2.8 1585 2 T31611	231 2.8 920 2 A45748	231 28 754 2 555267	100 232.5 2.8 1106 2 JQ0405	99 233.5 2.8 1669 1 CGMS4B	234 2.8 1691 1 CGHU6B	· 234.5 2.8 5262 2 T03454	2.8 4957 2 T03455	2.8 931 2 813580	2.9 1707 2 JOUAUS	236 5 3 6 1106 3 TODASE	91 238 2.9 1791 2 T02345	238 2.9 1759 2 T29351	238 2.9 1758 2 T29350	238.5 2.9 627 2 A44112	239 2.9 1707 2 A33526	239 2-9 1460 1 EDBRIE	239.5 2.9 920 2 A45748	240 2.9 13288 2 T03099	2 240.5 2.9 964 1 CGCH2S	241 2.9 /44 I A34246	241.5 2.9 1763 2 S16366	2.9 1712 1 CGHU2B	3.0 1549 2 I48103	2.9 1497 2 149607	3 0 1357 3 H35526F	3.0 920 2 B34493	3.0 1344 1 A35175	71 249.5 3.0 1759 2 T29351	249.5 3.0 1758 2 T29350	250 3.0 1486 1 B40333	252 3.1 1486 1 D46322	253 3.1 1366 1 CGHU2S	254.5 3.1 1843 2 \$18803	254.5 3.1 1670 1 CGHU3B	255.5 3.1 1546 1 CGHUZE	255.5 3.1 1492 2 A40333	255.5 3.1 888 2 \$28791	256.5 3.1 1838 1 COMINY	7 3 1 1373 1 1/3049	3.1 456 2 A31857	3.1 1763 2 S16366	3.2 1487 1 CGHU6C
	5 2.7 2142 2 835098 MHC class III	2.0 461 2 A31858	228 2.8 1446 1 A45344	106 228 2.8 825 2 JC4163	229.5 2.8 3198 2 A43426	229.5 2.8 1585 2	231 2.8 920 2 A45748	231 28 754 2 555267	100 232.5 2.8 1106 2 JQ0405	99 233.5 2.8 1669 1 CGMS4B	234 2.8 1691 1 CGHU6B	234.5 2.8 5262 2	2.8 4957 2 T03455	2.8 931 2 813580	2.9 1707 2 JOUAUS	23/ 2.9 1428 2 T08852	91 238 2.9 1791 2 T02345	238 2.9 1759 2 T29351	238 2.9 1758 2 T29350	238.5 2.9 627 2	239 2.9 1707 2 A33526	239 2-9 1460 1 EDBRIE	239.5 2.9 920 2 A45748	240 2.9 13288 2 T03099	2 240.5 2.9 964 1 CGCH2S	241 2.9 744 1	241.5 2.9 1763 2 S16366	2.9 1712 1 CGHU2B	3.0 1549 2	2.9 1497 2 149607	3 0 1357 3 H3536F	3.0 920 2 B34493	3.0 1344 1 A35175	71 249.5 3.0 1759 2 T29351	249.5 3.0 1758 2	250 3.0 1486 1 B40333	252 3.1 1486 1 D46322	253 3.1 1366 1	254.5 3.1 1843 2 \$18803 . collagen alpha	254.5 3.1 1670 1 CGHU3B	255.5 3.1 1546 1 CGHUZE Collagen alpha	2 255.5 3.1 1492 2 A40333 collagen alpha	255.5 3.1 888 2 \$28791 collagen alpha	256.5 3.1 1838 1 COMINY	3 1 1373 1 2/329 eyelid - fruit	3.1 456 2 A31857	3.1 1763 2	3.2 1487 1 CGHU6C collagen alpha

10.5 2.5 1744	9 210.5 2.5 1027 2 5287	148 211 2.6 730 2 A3622	47 211.5 2.6 1964 2 T	212 2.6 825 1 EDBEX	145 212.5 2.6 2796 2 JC474	44 213 2.6 1460 1 EDBEI	143 213 2.6 931 2 S1358	142 213.5 2.6 920 2 B3449	141 214 2.6 1691 1 0	140 214.5 2.6 1574 2 T1395	.39 214.5 2.6 635 2 F	38 215 2.6 635 2	37 215.5 2.6 1532 2	36 215.5 2.6 921 2	35 215.5 2.6 743 1	34 216 2.6 13288 2	217.5 2.7 1872 2	32 217.5 2.6 1184 2	31 218 2.7 1870 2 S	30 218 2.6 744 2 SI	218 2.6 677 2 5	28 218.5 2.6 2232 2	219 2.7 1752 2 A	26 219 2.6 456 2 S	219.5 2.7 1712 1 0	24 220.5 2.7 1315 2 A	221.5 2.7 2321 2 S	22 221.5 2.7 964 1	121 222 2.7 5262 2	222 2.7 4957 2	222 2.7 1774 2	222 2.7 671 1 CGRT	222.5 2.7 1446 1 A45	223 2.7 1024 2 S182	5 223.5 2.7 1574 2 T139	223.5 2.7 1027 2 S2877	3 224 2.7 1184 2 S	225 2.7 1669 1 CGHU	1 225 2.7 1024 2 5
	ollagen alpha ch	e n	- mouse	mediate-early p	cid synth	mediate-early p	ollagen alpha 1	llagen alpha 1	agen alpha 6	GF6 protein -	agen alpha 2	collagen alpha 2	collagen alpha 1	collagen alpha 1	collagen alpha i	mucin, submaxilla	MHC class II	atrophin-1 - huma	MHC class III hi	collagen alpha 1	collagen alpha 2	hypothetical pro	collagen alpha	ribonuclease inh	collagen alpha 2	collagen alpha	notch3 protein -	collagen alpha	ALR protein -	ALR protein - h	collagen alpha	n alpha 1	iate-early	aqen alpha 1(orotein -	llagen alph	atrophin-1 - hum	collagen al	collagen alpha 1

Search completed: January 7, 2004, 19:54:38 Job time: 511.507 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - protein search, using frame_plus_n2p model Run on: January 7, 2004, 19:24:01; Search time 34.7539 Seconds (without alignments)
12140.333 Million cell updates/sec

Scoring table: BLOSUM62 Sequence: Perfect score: Xgapop 10.0 , Xgapext Ygapop 10.0 , Ygapext Fgapop 6.0 , Fgapext Delop 6.0 , Delext 8270 1 gtagacagatccaggctcac.....ataaactgttgagtcaaaac 4486 7.0

Title:

US-10-014-269-33

Total number of hits satisfying chosen parameters: Searched: 127863 seqs, 47026705 residues

255726

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 150 summaries

-DB=SwissProt_41 -QFMT=fastan -SUFFIX=rsp -MINNATCH=0.1 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRAUS=human40.cdi -LIST=150 -DCALICN=90 -THR_CORRE-pot -THR_MAN=100 -THR_MIN=0 -ALIGN=50 -MODE=LOCAL -COUTFMT=pto -NORM=ext -HEAPSIZE=50 -MINLEN=0 -MAXLEN=200000000 -USEE-US10014269 GCGN 1 1 97 Grunat 07012004 175229 24504 -NCPU=6 -ICPU=3 -NO_MAP -LARGEQUERY -NEG_SOORES=0 -MAIT -DSPENCK=100 -LONGLOG -DEV_TIMEOUT=120 -WARN_TIMEOUT=30 -THEADS=1 -XCAPOP=10 -LONGLOG -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -FGAPOP=6 Q=/cgn2_1/USPTO_spoo1_p/US10014269/runat_07012004_175229_24504/app_query.fasta_1 .9358 Command line parameters:
-MODEL=frame+_n2p.model -DEV=xlp

Database : SwissProt_41:+

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result Query Score Match Length DB ij

Description

n	n			O	0	o		n	ი (ם מ	5		a	Ω	o	c			o		c) (I	o		o	0			ი	ı o	O	o	Ω	n																
57	56	σ,	J (лυ	i c	50	49	48	47	4 4	7 £	٠ £	4.2	41	40	39	38	37	ω 6	(J 1	ນເ	3 L	3 2	30	29	28	27	20 0	A C	2 12	22	21	20	19	00 ·	1 TO	15	14	13	12	1 5		o	7	o	, Us	4	ω	ν,	_
268.5	268.5	268.5	070	2 CLC	27/	277.5	277.5	278.5	280	281	281 5	285.5	287	288	288	290.5	290.5	292.5	294	294.5	307 s	304.5	305	307.5	308.5	309	309	310 5	312.5	315.5	318	322.5	329.5	338	342.5	357	366	374.5	382	385 5	ລະ ວິດ ວິດ	41/.5	429	494.5	495.5	523	1196.5	1209.5	4183	ار د ۷ د
ω ω	ა. ა	ω. Ν		ى ر. د د	ω 4.	3.4	3.4	ω.	ب د د	ى ر. 4 م	ر 4. د		ω	ω	3. 5	3.5	ω. 5	ω .5	ω	ى ر م	٥ . م .	ى د - د	3.7	3.7	မ	3.8	3.7	ა ი ი ი	ა ი თ	. α	. ω	3.9	4.0	4.1	 	م. م.	4.4	4. 51	4.	4.		. 0	5.2	6.0	6.0	6.3	14.5	14.6	50.6	L L
1736	1603	1372	1124	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1453	1806	1460	1372	1450	179	1364	1690	1690	1736	1262	1366	1262	1670	779	1049	1410	1460	1049	1464	660	1372	1033	, A	1464	1496	1464	2944	1453	1466	1200	. 643	892	980	1062	2 A 2 A	14/6	1155	1130	1034	1033	1062	953	953	1020	2 2 2
1 CAZB_MOUSE	1 CA1F HUMAN	1 CAZI RAT	L CALL_MOUSE	1 CA15_HUMAN	1 CA11_CHICK	1 CALB_HUMAN	1 CA11_CANFA	1 CA21 RAT	1 Call Molise	1 CALL BOVIN	1 CA1/_HUMAN	1 CA44 HUMAN	1 CA44 HUMAN	1 CA2B_HUMAN	1 CA13_CHICK	1 CA21_HUMAN	1 CAL3_CHICK	1 CA34 HUMAN	1 CA11 BOVIN	1 CA13 BOVIN	CALZ_HUMAN	1 CA11 CANFA	1 CA13_BOVIN	1 CA13_MOUSE	1 YHL1_EBV	1 CA21 MOUSE	1 PYA6 HIMAN	1 CA13 FINAN	1 CA11_HUMAN	1 CA25_HUMAN	1 CA13_MOUSE	1 CA17_HUMAN	1 CA11 MOUSE	1 CA13 HUMAN	1 Mann HIMAN	1 PYA5_MOUSE	1 PYA5_HUMAN	1 PYA3 HUMAN	1 NALZ HUMAN	1 NAL4 HUMAN	I NALI HUMAN	1 C2TA_MOUSE	1 C2TA_HUMAN	1 CIS1_HUMAN	1 CIS1_MOUSE	1 PYA7_HUMAN	1 CAR4_HUMAN	1 CAR4 MOUSE	1 CARF MOUSE	יי באספ שוואליאוי
w i	007092 homo sapien		P11087 mus musculu	homo s	-1		09xsi7 canis famil	P02466 rattus morv		. 0	homo	0 homo	U	N	Cn	-	S.	001955 homo sanjen	POSASS FOR FRIEIR	0 0						Q01149 mus musculu	FORMS Sapten						P11087 mus musculu					Q8ww94 homo sapien			Q9c000 homo sapien			hom			hom	nthosena sna Oquqgo	O8k3zO mus musculu	
																									-					•															.,					
c 114	0 113	e 111	110	109	c 108	107	106	c 104	c 103	102	101	100	96	90	0 (0	2 () (9 49) (C	c 91	90	82	n 1	റദ			0 80	c g	n 89	œ.	7	7.	7 /	0 7	7	7.	7.	J~	·	. თ	6	0		റ	ω,	ത (,	7 (J)	
c 114 225	0 113 225 2	e 111 225.5					106 233													c 91 241.5				0 87 243.5									77 25						69 25				<u>ი</u>	on (62 263	200 200 200 200 200 200 200 200 200 200	007 007 0	58 26	
c 114 225 2.7	6 113 225 2 7		227.5 2.	228 2.	228 2	231 2	233.0 2.	233.5 2.	233.5 2.	235 2.	235.5 2.									241.5 2.						246.5	249.5 3.	249.5 3.	249.5 3.													259.5 3.	65 261.5 3.	64 262 3	263 3	263.5 3			58 268 3.	
2.7	3 Z	225.5 2.7	227.5 2.8	228 2.8	228 . 2.8	231 2.8	233.0 2.0	233.5 2.8	233.5 2.8	235 2.8	235.5 2.8	236.5 2.9	236.5 2.9	237 2 9	228 2.9	228 7 2 9	200	240.5 2.9	241 2.9	241.5 2.9	241.5 2.9	242.5 2.9	243 3.0	243.5 3.0	244.0 3.0	246.5 3.0	249.5 3.0	249.5 3.0	249.5 3.0	250 3.0	251.5 3.0	252 3.0	254 3.1	255.5 3.1	255.5 3.1	256.5 3.1	256.5 3.1	2500	258 3.1	258.5 3.1	259 3.1	259.5 3.1	65 261.5 3.2	64 262 3.2	263 3.2	263.5 3.2	. u	ى د. د د د	3.2	
2.7 1669 1	2.7 2142 1	225.5 2.7 1027 1	227.5 2.8 460 1	228 2.8 1446 1	228 2.8 825 1	231 2.8 754 1	232 2 8 1669 1	233.5 2.8 1003 1	233.5 2.8 815 1	235 2.8 1707 1	235.5 2.8 1356 1	236.5 2.9 1024 1	236.5 2.9 921 1	237 2 9 1736 1	238 2 2 1759 1	238 5 2 0 637 1 2002 4.9 2003 1	7 7 7 6.3	240.5 2.9 1355 1	241 2.9 744 1	241.5 2.9 1763 1	241.5 2.9 1712 1	242.5 2.9 1516 1	243 3.0 1356 1	243.5 3.0 1255 1	243 5 3.0 I362 I	246.5 3.0 1603 1	249.5 3.0 1804 1	249.5 3.0 1758 1	249.5 3.0 1670 1	250 3.0 747 1	251.5 3.0 1804 1	252 3 0 1366 1	254 3.1 1736 1	255.5 3.1 1366 1	255.5 3.1 1364 1	256.5 3.1 1838 1	256.5 3.1 1806 1	258 3.1 1366 1	258 3.1 456 1	258.5 3.1 1763 1	259 3.1 779 1	259.5 3.1 1362 1	65 261.5 3.2 1418 1	64 262 3.2 1685 1	263 3.2 1669 1	263.5 3.2 1496 1	3 2 1669 1	3.2 1459 1	3.2 1453 1	
2.7	2.7 2142 1	225.5 2.7 1027 1	227.5 2.8 460 1	228 2.8 1446 1 IE18	228 2.8 825 1	231 2.8	232 2 8 1669 1	233.5 2.8 1003 1	233.5 2.8 815 1	235 2.8 1707 1	235.5 2.8 1356 1	236.5 2.9 1024 1	236.5 2.9	237 2 9 1736 1	238 2 9 1759 1	238 5 2 9 627 1	7 7 7 6.3	240.5 2.9 1355 1	241 2.9 744 1	241.5 2.9	241.5 2.9 1712 1	242.5 2.9	243 3.0 1356 1	243.5 3.0 1255 1	243 5 3.0 I362 I	246.5 3.0	249.5 3.0 1804 1	249.5 3.0 1758 1	249.5 3.0 1670 1	250 3.0 747 1	251.5 3.0 1804 1	252 3 0 1366 1	254 3.1	255.5 3.1 1366 1	255.5 3.1 1364 1	256.5 3.1	256.5 3.1 1806 1	258 3.1 1366 1	258 3.1 456 1	258.5 3.1 1763 1	259 3.1 779 1 1	259.5 3.1	65 261.5 3.2 1418 1	64 262 3.2	263 3.2 1669 1	263.5 3.2	3 2 1669 1	3.2 1459 1	3.2	
2.7 1669 1	2.7 2142 1	225.5 2.7 1027 1	227.5 2.8 460 1	228 2.8 1446 1	228 2.8 825 1	231 2.8 754 1	232 2 8 1669 1	233.5 2.8 1003 1	233.5 2.8 815 1	235 2.8 1707 1	235.5 2.8 1356 1	236.5 2.9 1024 1	236.5 2.9 921 1	237 2 9 1736 1	238 2 2 1759 1	238 5 2 0 637 1 1 5007 6.3	7 7 7 6.3	240.5 2.9 1355 1	241 2.9 744 1	241.5 2.9 1763 1	241.5 2.9 1712 1	242.5 2.9 1516 1	243 3.0 1356 1	243.5 3.0 1255 1	243 5 3.0 I362 I	246.5 3.0 1603 1	249.5 3.0 1804 1	249.5 3.0 1758 1	249.5 3.0 1670 1	250 3.0 747 1	251.5 3.0 1804 1	252 3 0 1366 1	254 3.1 1736 1	255.5 3.1 1366 1	255.5 3.1 1364 1	256.5 3.1 1838 1	256.5 3.1 1806 1	258 3.1 1366 1	258 3.1 456 1	258.5 3.1 1763 1	259 3.1 779 1	259.5 3.1 1362 1	65 261.5 3.2 1418 1	64 262 3.2 1685 1	263 3.2 1669 1	263.5 3.2 1496 1	3 2 1669 1	3.2 1459 1	3.2 1453 1	
2.7 1669 1	2.7 2142 1 BAT2_HUWAN P48634	225.5 2.7 1027 1 CAFF_RIFPA P30754	227.5 2.8 460 1 RINI HUMAN P13489	228 2.8 1446 1	228 2.8 825 1 5E5 RAT 063003	231 2.8 754 1 CAS4 HUMAN Q14031	233.3 2.8 1669 1 CA14_MOUSE P02463	233.5 2.8 1003 1 MBD6_HUMAN Q96dn6	233.5 2.8 815 1 PYGO_DROME Q9v9w8	235 2.8 1707 1 CA24 MOUSE	235.5 2.8 1356 1 CA21 ONOMY 093484	236.5 2.9 1024 1 CARC HUMAN 09mm4	236.5 2.9 921 1 CA19 HIMAN BOOMS	237 2 9 1736 1 CA29 MOTION 27/140	238 2 0 1780 1 CASA CARDIT	238 5 2 637 1 SDD3 NICK_HUMAN Q99466	230 30 3003 1 VIII MOUSE	240.5 2.9 1355 1 CA21_RANCA 042350	241 2.9 744 1 CAIS_RABIT P14282	241.5 2.9 1763 1 CA24 ASCSU P27393	241.5 2.9 1712 1 CA24 HUMAN	242.5 2.9 1516 1 CAIH HUMAN pagnen	243 3.0 1356 1 CA21 ONOMY 002464	243.5 3.0 1255 1 MICH HIDANI P1504	243 5 3 0 1362 1 CA21_CHICK P02467	246.5 3.0 1603 1 CA1F_HUMAN	249.5 3.0 1804 1 CALB_MOUSE Q61245	249.5 3.0 1758 1 CA24 CAEEL	249.5 3.0 1670 1 CA34 HUMAN 001955	250 3.0 747 1 CA12 BOVIN BO2/50	251.5 3.0 1804 1 CALE WILEY 046392	252 3.0 1366 1 CAST CAMEA 0.5000 POST 81	254 3.1 1736 1 CA2B_HUMAN P13942	255.5 3.1 1366 1 CA21_CANFA 046392	255.5 3.1 1364 1 CA21_BOVIN	256.5 3.1 1838 1 CA15 HUMAN P20908	256.5 3.1 1806 1 CALL MOUSE Q01149	258 3.1 1366 1 CA21_HUMAN	258 3.1 456 1 RINI_PIG P10775	258.5 3.1 1763 1 CA24_ASCSU P27393	259 3.1 779 1 CA11 BOVIN	259.5 3.1 1362 1 CA21 CHICK P02467	65 261.5 3.2 1418 1 CA12 HUMAN BOOMES	64 262 3.2 1685 1 CASA HIMAN BOOAGO	263 3.2 1669 1 CALL MOTTER POST 20242	263.5 3.2 1496 1 CA14_HUMAN PO2462	3 2 1669 1 CALL_KANCA 042350	3.2 1459 1 CA12_MOUSE P28481 mus r	3.2 1453 1	

O	O	O			()	1	n		O	O		O			O				ი		O	O	O				O			o			O		
150	149	148	14/	, t	7 7 7	7 1	1 4 4	143	142	141	140	139	138	137	136	135	134	133	132	131	130	129	128	127	126	125	124	123	122	121	120	119	118	117	116	115
207.5	208	208.5	208.5	2000		о t о	у по п	209.5	209.5	210	212	212	212.5	213.5	214	214.5	214.5	214.5	215	215	215.5	216.5	217.5	217.5	218.5	218.5	219	219.5	219.5	219.5	220.5	221.5	222	٠	223	N
2.5																					2.6								2.7						2.7	2.7
1964	089	2167	921	5/03	1 / 0	1 1 1	3 00 0	7 .	684	684	1691	825	921	1027	1758	1324	1185	635	689	635	1402	867	2161	1516	2161	911	456	1712	744	743	1461	2321	671	1446	1527	1403
	Н	ja	-	-	۰ ⊢		٠,	٠,		_		1	-	ب	ш	⊢		Н	μ		۳	٢		μ	-	ш	Н	_	ш	ш	—	ш	_	ш	1	۲
NTC4_MOUSE	CA1A_HUMAN	SHK1_RAT	CA19_MOUSE	MU5B_HUNAN		BINA MOUSE	DIES WOIGE	WI AS HIMAN	CA39 HIMAN		CA64 HUMAN	ICPO_HSV2H	CA19 HUMAN	CAFF RIFPA	CA14_CAEEL	IRS2 HUMAN	DRPL_HUMAN	CA28_HUMAN	CA29_HUMAN	CA28_HUMAN	BIRG MOUSE	SSPO_BOVIN	SHK1 HUMAN	CA1H HUMAN	SHK1_HUMAN	CAIB_BOVIN	RINI RAT	CA24 HUMAN	CA18_HUMAN	CA18 MOUSE	IE18 PRVIF		CAll RAT	IE18_PRVKA	CA1H_MOUSE	BIRF_MOUSE
P31695 mus musculu			Q05722 mus musculu	Q9hc84 homo sapien	P17139 caenorhabdi		nome	O TOTAL		7		P28284 herpes simp				homo	homo		homo	home	sum		omod	homo	5 homo		ratt	homo		00780		7		33479 pseu	mus	Q9jib6 mus musculu

PubMed=11087742;

Chen F.F., Yamaoka S., Nunez G.; er that is restricted to monocyte

to monocytes and

_HUMAN STANDARD; PRT; 1040 AA. CARF HUMAN STANDARD; PRT; 1040 AA. Q9HC29; Q96RH5; Q96RH6; Q96RH8; 29-FEB-2003 (Rel. 41, Created)
28-FEB-2003 (Rel. 41, Last sequence update)
15-SED-2003 (Rel. 42, Last annotation update)
Caspase recruitment domain protein 15 (Nod2 protein) (Inflammatory SEQUENCE FROM N.A. (ISOFORMS 1 AND 2), MUTAGENESIS OF LYS-305, AND VARIANT ${\tt ARG-908}$. Homo sapiens (Human). Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. ALIGNMENTS 8888888888 ulcerative colitis (MIM:191390), a chronic inflammatory bowel disease. In ulcerative colitis, the inflammation is continuous and limited to rectal and colonic nucosal layers. Ulcerative colitis is commonly classified as autoimmune disease.

-!- SIMIIARITY: Contains 2 CARD domains. gastrointestinal tract, but most frequently the terminal ileum and colon. Bowel inflammation is transmural and discontinuous. Crohn's disease is commonly classified as autoimmune disease.

-I- DISEASE: Defects in CARDI5 are a cause of susceptibility to SEQUENCE FROM N.A. (ISOFORMS 1 AND 2), VARIANTS CD THR-140; ARG-157; CYS-235; ARG-248; SER-286; SER-289; ASN-291; VAL-301; TRR-311; VAL-348; ARG-252; CYS-373; SER-414; LEU-431; VAL-432; LYS-441; VAL-512; THR-612; TRR-664; TRR-702; CYS-703; CYS-713; GLY-725; VAL-758; LYS-778; MET-793; LYS-843; SER-853; VAL-863; ARG-908; ASP-918; ASP-924; AND ILE-955; VARIANTS ULCERATIVE COLITIS THR-140; AND THR-685; AND VARIANT MET-189. ++ MEDLINE=21419644; PubMed=11528384; Miceli-Richard C., Lesage S., Rybojad M., Prieur A.M., Manouvrier-Hanu S., Hafner R., Chamaillard M., Zouali H., Thomas G., Hugot J.-P., Chamaillard M., Zouali H., Lesage S., Cezard J.-P., Belaiche J., Almer S., Tysk C., O'Morain C.A., Gassull M., Binder V., Finkel Y., Cortot A., Modigliani R., Laurent-Puig P., Gower-Rousseau C., Macry J., Colombel J.-F., Sahbatou M., Thomas G., "Association of NDD2 leucine-rich repeat variants with susceptibility to Crohn's disease."; -I- FUNCTION: Induces NF-kappaB via RICK (CARDIAK, RIP2) and IKK-gamma. Confers responsiveness to intracellular bacterial lipopolysaccharides (LPS).
-I- SUBUNIT: Binds to RICK by CARD-CARD interaction. "CARD15 mutations in Blau syndrome."; Nat. Genet. 29:19-20(2001). Ogura Y., Inohara N., Benito A., Ch "Nod2, a Nodi/Apaf-1 family member activates MF-KappaB-1", J. Biol. Chem. 276:4812-4818(2001). Hugot J.-P.; Nature 411:599-603(2001). VARIANTS BS GLN-334; TRP-334 AND PHE-469. MEDLINE=21279172; PubMed=11385576; $\overline{\Sigma}$ SUBCELLULAR LOCATION: Cytoplasmic. ALTERNATIVE PRODUCTS: Event=Alternative initiation; Comment=2 isoforms, 1/Nod2 (shown here) and 2/Nod2b, are 276:4812-4818(2001).

RESULT 1
CARE HUNZ
ID CARE
AC Q9HC
AC Q9HC
AC CARE
DT 28-F
DT 15-S
DE Casp
DE Casp
DE Casp
DE CARE
GN CARE
GN

bowel disease protein 1). CARD15 OR NOD2 OR IBD1.

48 L -> R (in CD). /FIId=VAR_012669. 68 P -> S. /FIId=VAR_012670.	68 . 2	VARIANT 2	4444
/FTId= R -> C /FTId=			4444
/FTId=VAR_012665. 57 W -> R (in CD). /FTId=VAR_012666. 89 T -> M.	7 1	VARIANT 15	8 8 9 9 8 8 8 9 9 8
•		н	1 F F F
55 LRR 3.			F 1 1 1
	786 E	REPEAT 7	H H H
CARD			14 4
FOR ISOF		INIT_MET	7 7 1 1
CASPASE RECRUITMENT DOMAIN PROTEIN 15,	28 104	CHAIN	9 F F
n; Polym	initiatic	Alternative i	7 7 X
2.	7.9.5	PROSITE; PS5020 PROSITE; PS5083	
. 7	(007111); LRR;	Pfam; PF00560	3 5 5
CARD. LRR. LRR_RNinh.	001315 0001611	InterPro; IPR001315; InterPro; IPR001611; InterPro; IPR007091;	3 5 5 5
	!!	MIM; 266600; MIM; 191390;	밁
	.' .'	MIM; 605956;	믔
	90; AAK7086 10; CAC4211 5331; CARD1	₹ • • •	1 H H H
677.1;	30; AAG 99; AAK		DR DR
t removed. Usage by and for connent (See http://www.isb-sib.ch/a.lb.ch).		modified and this entities requires or send an email 1	8888
SWISS-PROT entry is copyright. It is produced through a collaboration een the Swiss Institute of Bioinformatics and the EMBL outstation tensuropean Bioinformatics Institute. There are no restrictions on its buropean Boinformatics Institute. The area of restrictions on its by non-profit institutions as long as its content is in no way	S-PROT entry is the Swiss Insti ean Bioinformat non-profit ins	This SWISS-Pl between the the European use by non-	8888
Contains 6 leucine-rich (LRR) repeats.	WITY: Con	-1- SIMILARITY:	88

H	444	1 1 1	3 H +	7 17 1	7 H	F F	H H	H	7 F	A 14	H	Π F1	E E	E I	7) 14) -] 1-]	17	키 뛰 귀 뭐	m r	7 H	H	1 H	H H	1 H	भा भ	F.	H H	F F	有用	甲丁	H H	191	g #3 ;	1 H
VARIANT	VARIANT	VARIANT	VARIANT	VARIANT	VARIANT	VARIANT	VARIANT	TATAL STATE	VARIANT	VARIANT	VARIANT	VARIANT	VARIANT	44 11 11 11 11 11	VARTANT	VARIANT	VARIANT	4 MATATA	1/2 T 2 NT	VARIANT	VARIANT	VARIANT		VARIANT	VARIANT	VARIANT	VARIANT	VARIANT		VARIANT	VARIANT	VARIANT	VARIANT
863	853	843	793	778	758	755	.725	ì	712	703	702	684	612	010	2	469	441	70.5))	431	414	373		352	348	334	334	311		301	294	291	289
863	853	843	793	778	758	755	725	713	7,	703	702	684	612	. 012	ก วั	469	441	7.5	3	431	414	373		352	348	334	334	311		301	294	291	289
	/FTId=VAR 012697. N -> S (in CD). /FTId=VAR 012608	CD).	01269	/Fiiq=VAR_U12694.	(£)	A -> V (in CD and ulcerative colitis). /FTId=VAR 012693	A -> G (in CD). /FTId=VAR 012692	K => C (in CD). /FTId=VAR 012691.		<pre>/FTId=VAR_012689. R -> C (in CD and ulcerative colitis).</pre>	R -> W (risk factor for CD).	R - V (in CD).	A -> V (in CD).	A => 1 (in CU). /FTId=VAR 012686.	/FTId=VAR_012685.	$L \rightarrow F$ (in BS).	E 1 V (in CD).	A -> V (in CD).	d=VAR_0126	/FTId=VAR_012681. S -> L (in CD).	9 8		/FTId=VAR_012679.	0126 CD)	L -> V (in CD).		R -> Q (in Bs). /FTId=VAR 012676.	27	FTId=VAR_	/FTId=VAR_012673. A -> V (in CD).	S (ir	N (in CD).	> S

	Qy	₽ ₹	? 6	ş Ş	Db	Qу	Db	Qγ	뮹	Qy .	₽	QУ	D	νQ	망	Qy	US-10-	Alignment Pred. No.: Score: Percent Si Best Local Query Matc DB:	SQ				4 H H	144
	586 T	141 I	2 1	5 6	101 G	406 C	81 L	346 0	61 T	286 0	41	226	21 6	166 0	₩	106 2	-014-269-3	Alignment Scores: Pred. No.: Score: Percent Similarity: Best Local Similarity: Query Match: DB:	MUTAGEN SEQUENCE	VARIANT	VARIANT	VARIANT	VARIANT	VARIANT
	TCGTCAGC	leValArgi	Tycys:rp.	ecrecree	lnLysLeu	AGAAGCTC	euSerHis	TCTCCCAC	euSerTrp	Terccree	 euValGlu	TEGTCGAG	llillil	GACATICI		TGGGGGAA	3 (1-448	es: hity: harity:	305 1040 AA;	955	924	918	908	885
v	CAGTATGAATO	ArgLeuHisse	ASPPROH1856	GACCCCCACTO		ATCGCGGCTG		TTGGCCAGGC	GluValLeuS	GAGGICCICI	LeuLeuVals	CIGCIGGICI	ProGlyCysG	cceserrere	GluGlyGlyS	GAGGGTGGTT	6) x CARF	3.91e-285 5435.00 99.90% 99.90% 1	305 115282	955	924	918	908	885
	TCGTCAGCCAGTATGAATGTGATGAAATCAGGTTGCCGATCTTCACACCGTCCCAGAGG 645	110 12 12 13 14 15 15 15 15 15 15 15	⊢	GGCTGCTGGGACCCCACTCGCTCCACCCAGCCCGAGACCTGCAGAGTCACCGGCCAGCC 525	GinLysLeuIleAlaAlaAlaGlnGluAlaGlnAlaAspSerGlnSerProLysLeuHis 120	GCCCAAGAAGCCCAGGCCGACAGCCAGTCCCCCAAGCTGCAT 465		CGCCTTCTGGACACCGTCTGGAATAAGGGTACTTGGGCCCTGT 405	LeuSerTrpGluValLeuSerTrpGluAspTyrGluGlyPheHisLeuLeuGlyGlnPro 80	TOCTGGGAGGACTACGAGGGCTTCCACCTCCTGGGCCAGCCT 345		TCAGGGTCCCTGGAAGGCTTCGAGAGTGTCCTGGACTGGCTG 285 '	GlyHisSerProGlyCysGluMerCysSerGlnGluAlaPheGlnAlaGlnArgSerGln 40	GAAATGTGCTCGCAGGAGGCTTTTCAGGCACAGAGGAGCCAG 225		TCAGCCTCTCACGATGAGGAGGAAAGAGCAAGTGTCCTCCTC 165	E_HUMAN (1-1040)	1040 Matches: 1040 Conservative: 0 Mismatches: 0 Indels: 1 Gaps: 0	K->R: NO ĀCTIVĀTION. K->R: NO ĀCTIVĀTION. MW; 0037592D96D7DDFF CRC64;	\ -> 1	/#IIG=VAK 012702. G -> D (in CD). /##IIG=VAK 01270.	A -> D (risk factor for CD).	/FTIG=VAR_012/00. G => R (in CD).	/FTId=VAR_012699. A -> T (in ulcerative colitis).
								1												-				

	Qy	9 1	O E	DF 89.	, Db	D Qy	Qy Qy	pb Qy	Db QY	Db Qy	db VQ	Db Qy	Db Qy	Qy Db	Db Qy	Db
	1426 GAGTTCAACCTCAACGGCTTCTCTGAACAGGGCATCCAGCTGTACCTGAGGAAGCGCCAT 1485	42	420		1246 TITGACGAGTTCAAGTTCAGGTTCACGGATCGTGAACGCCACTGCTCCCCCACCGACCG	1186 GAAGACATCTTCCAGTTACTCCTTGACCACCCTGACCGTGTCCTGTTAACCTTTGATGGC 1245 	P 0	1066 GACTICCAGGAATITCICTITGTCTTCCCATTCAGCTGCCGCAGCTGCAGTGCATGCCC 112	1006 GCGGGCAGTGGCAAGAGCACGCTCCTGCAGCGGCTGCACTTGCTGTGGGCTGCAGGGCAA 106 	946 CTCTTCAGCACCCCTGGCCACCTCAATGACGATGCGGACACTGTGCTGGTGGTGGTGGTGAG 100 	886 GCAGATGTGGGCATGGACCCCCGCAGAAAGGCCCAGCCACCCTGGGCCTGGAGGAG 945 	826 GATGGAGCAGAGACGCTCTGCCTGGAGGACATATACACAGAGAATGTCCTGGAGGTCTGG 885 	766 AAGTATATGGCCAAGCTGAGGACCACGGTGTCTGCTCAGTTCTCTCAGTACCTAT 825 	706 CAACATGITCAGGAATTACCAGTCCCAITGGCCCTGTCGCATGGAAGCTGCCACATGCAAG 765 	646 GCAAGAAGGCTGCTTGATCTTGCCACGGTGAAAGCGAATGGATTGGCTGCCTTCCTT	
• .					<u>.</u>	u,	CII	01	- či	_ <u>O</u> i						

Q	, p & 4	י עם עם עס	 Qy Db	QY	Db Qy	Db Db	DD QY	Qy Db	Db Qy
3046 AAAAATICAAGITTGAAAATCCTGAAGITGTCCAATAACTGCATCACCTACCTAGGGGCA 3105	941 986 961	LeuGlnPheLeuGlyPheTrpGlyAsnArgValGlyAspGluGlyAlaGlnAlaLeuAla GAAGCCTTGGCT GAAGCCTTGGCTGACCAAGCCTGCT LeuGlnPheLeuGlyPheTrpGlyAsnArgValGlyAspGluGlyAlaGlnAlaLeuAla GAAGCCTTGGGTGACCAAGACTTGAGGTGAGCTGGTGTGGGTGAACAACAATTGGC LILLILLILLILLILLILLILLILLILLILLILLILLIL	2686 CACTCCATGGCTAAGCTCCTTGCATGCAGGCAGAACTTCTTGGCATTGAGGCTGGGGAAT 2745 	2626 CACTGCGAGCAATTGCAGAAGTTAGCTCTATTCAAGAACAATTGACTGAC	2566 TAITTGCGCGATAACAATATCTCAGACCGAGGCATCTGCAAGCTCATTGAATGTGCTCTT 2625 	2506 TCTGTGGGTGACATTGGCGTGGAGCAGCTGCCTTGCCTT	2446 GCCCTGGCCTTTGTGCTGCAGCACCTCCGGCGGCGGCCCTGGCCCTGCACCTGGACTACAAC 2505 	2386 GGCCTGAATGTTGGGCACCTCAAGTTGACATTTTGCAGTGTGGGCCCCACTGAGTGTGCT 2445 	2326 TGGCTCATCCCGAAGCCTGTACGAGATCCAAGGAGCGGCTGGCT

	,			0 1 0 1	0 4 0 4	ς σ'≺ σ
2146 681 2206 701 2266 721	2026 641 2086 661	1906 601 1966 621	1786 561 1846 581	1666 521 1726 541	481 1606 501	441 1486 461
CTGTTGTCCCGGGAGCACTGGGGCCTGCTGGCTGAGTGCCAGACATCTGAGAAGGCCCTG	5 GCCAGGCTCCTGCCCACGATGTGCATCCAGGCCTCGGAAGGAA	TICCTICACHTACCAGTITICAGTGCTTCTTTGCGGGGTTACTGGGACTGAGTGCTGGT 		6 TTTCTGCTGCATGCCACCCCCCAGACTCAGCTTCCCAAGGTCTGGGACCCAGTCTTCTT		0 H-0 0
2205 700 2265 720 720 2325	2085 660 2145 680	1965 620 2025 640	1845 580 1905	1725 540 1785 560	1605 500 1665 520	460 1545 480

```
ALD DITTORY OF THE PROPERTY OF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      밁
                                                                                                                                                                       RA Strauberg R.L., Feingold E.A., Grouse L.H., Derge J.G.,

RA Klausner R.D., Collins F.S., Wagner L., Shenmer C.M., Schuler G.D.,

RA Altechul S.F., Zeeberg B., Buetow K.H., Schaefer C.F., Bhat N.K.,

RA Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F.,

RA Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J.,

RA Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J.,

RA Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J.,

RA Hopkins R.F., Jordan H., Koore T., Max S.I., Wang J.,

RA Stepleton M., Joeres M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E.,

RA Stepleton M., Joeres M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E.,

RA Brownstein M.J., Usdin T.B., Toshiyuki S., Carninci P., Prange C.,

RA Raha S.S., Loquellano N.A., Peters G.J., Abrason R.D., Mullahy S.J.,

RA Raha S.S., Loquellano N.A., Peters G.J., Abrason R.G., Gunaratne P.H.,

RA Raha S.A., McEwan P.J., McKernan K.J., Malek J.A., Gunaratne P.H.,

Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Gibbs R.A.,

RA Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Gibbs R.A.,

RA Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Gibbs R.A.,

RA Villalon D.K., Muzny D.M., Sodergren E.J., Dickson M.C.,

RA Whiting M., Madan A., Young A.C., Shevchenko Y., Bouffard G.G.,

RA Whiting M., Madan A., Young A.C., Shevchenko Y., Bouffard G.G.,

RA Rodiiguez A.C., Grimwood J., Schmutz J., Myers R.M.,

RA Rodriguez A.C., Grimwood J., Schmutz J., Myers R.M.,

"Generation and initial analysis of more than 15,000 full-length

Nama and mouse cDNA sequences.";

Proc. Marth Dadd Sci. 10 Co. 1000 full-length
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             В
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CYS-422; VAL-485; ALA-603; ILE-675 AND GIN-925.
STRAIN=NARI; TISSUE=Breast cancer;
MEDLINE=22388237; PubMed-12477932;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 STRAIN-BALB/c; TISSUE-Monocytes;
Iwanaga Y., Davey M.P., Martin T.M., Planck S.R., DePriest M.L.,
Baugh M.M., Suing C., Rosenbaum J.T.;
                                                                                                                                                    Proc.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CARF_MOUSE
Q8K3Z0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SEQUENCE FROM N.A. (ISOFORM 2), AND VARIANTS ALA-212; ARG-240;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                gene.";
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Submitted (JUN-2002) to the EMBL/GenBank/DDBJ databases.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SEQUENCE FROM N.A. (ISOFORM 1).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     MOUSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  "Cloning, sequencing and expression analysis of the murine Nod2/Card15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             NCBI_TaxID=10090;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Eukaryota; Metazoa;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Mus musculus (Mouse).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Caspase recruitment CARD15 OR NOD2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            15-SEP-2003 (Rel. 42, Created)
15-SEP-2003 (Rel. 42, Last sequence update)
15-SEP-2003 (Rel. 42, Last annotation update)
15-SEP-2003 (Rel. 42, Last annotation update)
Caspase recruitment domain protein 15 (Nod2 protein).
c. Natl. Acad. Sci. U.S.A. 99:16899-16903(2002).
FUNCTION: Induces NF-kappaB via RICK (CARDIAK, RIP2) and IKK-gamma. Confers responsiveness to intracellular bacterial lipopolysaccharides (LPS) (By similarity).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               3166 GAACACTITCTCCTCTAGAGGAGGTTGACAAGCTCGGCTGCAGGGACACCAGACTCTTGCT 3225
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1040 u 1040
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       3226 T 3226
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     STANDARD;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                PRT; 1020 AA
```

```
VARIANT
VARIANT
VARIANT
VARIANT
VARIANT
VARIANT
                                                                                                                                                                      DOMAIN
DOMAIN
REPEAT
REPEAT
REPEAT
REPEAT
REPEAT
                                                                                                                                                                                                                                                                                                                                                                                                           This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation the European Bioinformatics Institute. There are no restrictions on it use by non-profit institutions as long as its content is in no was modified and this statement is not removed. Usage by and for commercial
     VARIANT
                                                                                                                                                            REPEAT
                                                                                                                                                                                                                                                                                                                                                 EMBL; AF520774; AAN76073.1; -.
EMBL; BC044774; AAH44774.1; ALT_INIT.
MGD; MGI:2429397; Card15.
                                                                                                 VARSPLIC
                                                                                                                                                                                                                                                                                                                InterPro; IPR001315; CARD.
InterPro; IPR007091; LRR_RNinh.
InterPro; IPR007111; NACHT_NTPase.
                                                                                                                                                                                                                                                                                                                                                                                          entities requires a license agreement (See http://www.isb-sib.ch/announce/or send an email to license@isb-sib.ch).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         -!- SUBUNIT: Binds to RICK by CARD-CARD interaction (By similarity).
-!- SUBCELLULAR LOCATION: Cytoplasmic (By similarity).
-!- ALTERNATIVE PRODUCTS:
Event-Alternative splicing; Named isoforms=2;
                                                                                                                                         REPEAT
                                                                                                                                                    REPEAT
                                                                                                                                                                                                                                                                 Alternative spl
                                                                                                                                                                                                                                                                                     PROSITE; PS50209; CARD; 2. PROSITE; PS50837; NACHT; 1.
                                                                                                                                                                                                                                                                                                             Pfam; PF00560; LRR; 2.
                                                                                                                     /ARSPLIC
                                                                                                                                REPEAT
                                                                                                                                                                                                                                                        DOMAIN
                                                                                                                                                                                                                                                                         ATP-binding; Repeat; Leucine-rich repeat; Polymorphism;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Name=2;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IsoId=08K3Z0-2; Sequence=VSP_007069, VSP_007070;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         IsoId=Q8K3Z0-1; Sequence=Displayed;
                                                                                                                                                  106
273
685
726
766
794
822
850
906
     212
240
422
485
485
603
675
925
                                                                                                                                                                                                                                                                 icing.
                                                                                                                    1019
    212
240
422
485
603
675
925
                                                                                                                                        104
200
600
709
749
792
817
817
817
829
929
985
/FTId=VSP_007070.

T > A (in strain NMRI).
Q -> R (in strain NMRI).
L -> C (in strain NMRI).
G -> V (in strain NMRI).
V -> A (in strain NMRI).
V -> I (in strain NMRI).
E -> Q (in strain NMRI).
                                                                                                                                       NACHT.
LRR 1.
LRR 2.
LRR 2.
LRR 3.
LRR 4.
LRR 5.
LRR 6.
LRR 6.
LRR 7.
LRR 8.
                                                                                                        Missing (in isoform 2).
/FTId=VSP_007069.
                                                                                                                                                                                                                                            CARD 1.
CARD 2.
                                                                                                                             LRR 10.
                                                                                              -> EGYSTCRSRCDRGFTLICLFCIL
                                                                                                                                                                                                                                                                                                                                                                                                             Usage by and for commercial
                                                                                              (in isoform
                                                                                                                                                                                                                                                                                                                                                                                                                                                    a collaboration
```

SQ SEQUENCE 1020 AA; 113561

Percent Similarity:
Best Local Similarity:
Query Match:
DB:

Alignment Scores: Pred. No.:

US-10-014-269-33 (1-4486) x CARF

5

	781 CTGAGGACCACGGTGTCTGCTCAGTCTCAGTACCTATGATGGAGCAGAGG 840	721 TTACCAGTCCCATTGGCCCTGCCTTTGGAAGCTGCCACATGCAAGAAGTATATGGCCAAG 780	661 GATOTTGCCACGGTGAAAGCGAATGGATTGGCTGCCTTCTACAACATGTTCAGGAA 720	601 GAATGTGATGAAATCAGGTTGCCGATCTTCACACCGTCCCAGAGGCCAAGAAGGCTGCTT 660 :::	541 CACAGCCATGTGGAGAACATGCTGGACCTGGCATGGGAĆCGGGGTTTCGTCAGCCAGTAT 600 :::::: 126 TyrAsnHisValGluAlaMetLeuGluLeuAlaArgGluGlyGlyPheLeuSerGlnTyr 145	481 CACTOGCTCGACCCAGGCCAGACCTGCAGAGTCACCGGCCAGCCA	421 GCTGCCCAAGAAGCCCAGCCGACAGCCAGTCCCCCAAGCTGCATGGCTGGGACCCC 480	361 AGGCGCCTTCTGGACACCGTCTGGAATAAGGGTACTTGGGCCTGTCAGAAGCTCATCGCG 420 	301 CTCTCCTGGANGANCTACGANGGGCTTCCACCTCGGGCCAGCCTCTCCCCACTTGGCC 360	241 GTCTCAGGGTCCCTGGAAGGCTTCGAGAGTGTCCTGGACTGGCTGCTGTCCTGGGAGGTC 300 :::	181 TGTGAAATGTGCTOGCAGGAGGCTTTTCAGGCACAGAGGAGCCAGCTGGTOGACCTGCTG 240	14-269-33 (1-4486) x CARF_MOUSE (1-1020)	8.73e-218 Length: 4183.00 Matches: larity: 87.30% Conservative: imilarity: 79.13% Mismatches:	MW; 25504905ECF70FE
Qy 1681 ACCCCCCACACTCAGCTTCCCAAGGTCTGGGACCCAGTCTTCTTCGGGGGGGCCCCCCC 1740 ::::	Qy 1621 TOCCGAAAGACCACTACAGATATGTACCTGCTGATTCTGCAGCATTTTCTGCTGCATGCC 1680 :::	Qy 1561 CCTGTCTTCTCATGGATGGTGTCCAAATGCCACCAGGAACTGTTGCTGCAGGAGGGGGGG 1620	Qy 1501 GCGGACCGCCTCATCCGCCCAAGAGACCCTCAGCCCTGCACGGTTTGTGCCACCTG 1560	Qy 1441 GGCTTCTCCAACAGGCCATCGAGGAAGCGCCATCATGAGCCCGGGTG 1500	Qy 1381 CGTCCGGCGCGTGGCGGGGTCCTCAGGAAGTACATCCGCACGAGGTTCAACCTCAAG 1440	Qy 1321 CTGCTCTTCAACCTTCTGCAGGGCAACCTGCTGAAGAATGCCCGCAAGGTGGTGATGACCAGC 1380	Qy 1261 TTCAGGTTCACGGATCGTGAAGGCCACTGCTCCCGACGACCGAC	Qy 1201 TRACTCCTTGACCACCCTGACCGTGTTAACCTTTGATGGCTTTGACGAGTTCAAG 1260	QY 1141 CSGACTCTACTCTTTGAGCACTGCTGTTGGCTGATGTTGGTCAAGAAGACATCTTCCAG 1200	QY 1081 CTCTTTGTCTTCCCATTCAGCTGCCGCAGCTGCAGTGCATGGCCAAACCACTCTCTGTG 1140 :::	QY 1021 AGCACGCTCCTGCAGCGGCTGCACTTGCTGTGGGCTGCAGGGCAAGACTTCCAGGAATTT 1080	Qy 961 GGCCACTCAATGACGATGCGGACACTGTGCTGGTGGTGAGGCGGGCAAGTGGCAAG 1020	QY 901 GCTGGACCCCGCAGAAGAAGCCCAGCCACCCTGGAGCTGGAGGAGCTCTTCAGCACCCCT 960	

밁 Š δδ. 밁

₽

문 δÃ 밁 Š 문

Db Qy	å V	D dd Qy	рь	qq Vy	D QY	Db Qy	`D 49	' B &	S A S	D Qy	Db Qy	Db	DЬ	Qy Db
2521 GG 786 G1	2461 CI 11 766 Le	2401 CJ 11 746 H3	341 726	281 706	2221 To	2161 C	. 2101 G 	626	1981 C 606 L 2041 A	1921 T 1 586 P	1861 G 566 V	1801 T 546 S	26	506 S
GGCGTGGAGCAGCTG {	GCAGCACCI uGlnHisLe	.CCTCAAGT1 sLeuLysLe	GTACGAGAI uTyrGluMe	ACCGGGT@ ProGlyG	TGCCCGCTO: gAlaArgSo	CTGGGGCC - sArgAspLe)CGAGCCGC aGluProH	snLeuCysI	CAGACACC	ICCAGTGCI - - - - - -eGlnCysP	TGCGTGCCA : ArgAlaG	CAGCCCAGC	hrLeuLeuH	erProProA
51C	CTGCAGCACCTCCGGGGGCCCGGGGCCCTGCAGCTGGACTACAACTCTGTGGGTGACATT :::	CACCTCAAGTTGACATTTGCAGTGTGGGCCCCACTGAGTGTGCTGCCCTGGCCTTTGTG 	CTGTACGAGATGCAGGAGGAGCGGCTGGCTGGGAAGGCTGCACGTGGCCTGAATGTTGGG 	GCACCGGGTGAGGCCAAGAGGGTGCATGCCATGCCGGGTTCATCTGGCTCATCCGGAGC :::	TeTeCCCCTCGTGTCTGGCCCCCACCTCCGCAAGCACTTCCACTCCATCCCCCAGCT 	CACTGGGGCCTGCTGGCTGAGTGCCAGACATCTGAGAAGGCCCTGCTCCGGCGCAGGCC 	GCCGAGCCGCACACCTTCAGATCACAGCAGCCTTCCTGGCAGGCTGTTGTCCCGGAG 	Telephone	TOTRAGA/ACTOTICAATT9T666/AGSCGA/GGCAACTCACCAATGGCCA/GGCTCCTGCCC	TTOCAGTGCTTCTTTGCCGGTTCTACCTGGCACTCAGTGCTGATGTGCCACCAGCTTTG -	GTGCGTGCCAAAGGTGTCGTGCCAGGGAGTACGGCGCCCCTGGAATTCCTTCACATCACT ::: 	TCAGCCCAGCAGCTCCAGGCAGCACAGGCCAGGCCTGATGAGATTTCTCTTGGCTTCCTG 		SerProProAspSerSerProLeuG1yLeuG1yProG1yLeuLeuG1nSerArgLeuSer ACCCTCCT6CACCT6G6CAGACT6GCTCTGT6G6GCCTG6G6ATGT6CTACGT6T70
CCTTGCCTTGGTGTCTGC 	CGTGGCCCT oValAlaLe	CAGIGIGGG SArgValG1	GCGGCTGGC ::: uGlnLeuAl	CGTGCATGC ::: MetHisal	CCGCAGCCT aHisSerLe	.GTGCCAGAC aCysGlnVa	GATCACAGO	rArgVally	FTGGCAGGCC	CGITCTACCI aPheTyrLe	GCCAGGGAC	DAGCACAGG1 	 sLeuAlale	roLeuGlyL GACTGGCTCT
IGTCIGCAA(ValCysThi	GCAGCTGGA GlnLeuAsp	CCCCACTGA yProAlaGl	TCGGAAGGC ::::: aGlnGluAl	CAIGCCCGG aMetProGl	CCGCAAGCA :::: uArgGluHi	ATCTGAGAA :: SerGluAr	AGCCITCCI aAlaPheLe	sLysGlySe	AGGCAACTCAC	GGCACTCAG :::: uAlaValSe	∃TACGGCGCC rLysAlaPr	CAGCCCTGA 	euArgGlyLe	euGlyProGi
3GCTCTGTA: :AlaLeuTy:	CTACAACTC TyrAsnSe	FIGIGCIGO CYSALBAL	IGCACGIGG aValArgAr	GITCATCIG yPheIleIr	CTTCCACTC sPheHisSe	GGCCCTGCT : gValLeuLe	GGCAGGGCT MlaGlyLe	CGIGGCAGC rGluAlaAl	ACCAATGGC	TGCTGATGT rAlaAspTh	CCTGGAATT	NTGACATTTO pAspIleSe	 WAlaMetSe	.yLeuLeuG] ?GGGCATGT(
GCTCTGTATTTGCGCGATAAC 	IGIGGGIGA :ValGlyAsp	CCTGGCCTT! LeuAlaPho	CCTGAATGT ::::: gLeuAspIl	3CTCATCCG DLeuIleAr	CATCCCGCC rIleProPr	CCGGCGCCA ::: uGlnArgGl	GIIGICCCG :: uLeuSerGl	TTTGCTGCA	CAGGCTCCTGCCC	GCCACCAGC	CCTTCACAT	TCTTGGCTI rLeuGlyPh	 rCysTyrVa	nSerArgLe CTGCTACGI
raac 2580 Asn 805	CATT 2520 ::: 785	IGIG 2460 eVal 765	IGGG 2400 : eGly 745	GAGC 2340 gSer 725	AGCT 2280 705	GGCC 2220 nAla 685	GGAG 2160 :::: nGln 665	GAAG 2100 		TTTG 1980 aSer 605	CACT 1920	CCTG 1860 teLeu 565		uSer 525
						_	Ū			Ü	0	0		J

1

Search completed: January 7, 2004, 19:48:56 Job time: 435.754 secs

OM nucleic - protein search, using frame_plus_n2p model
Run on: January 7, 2004, 19:25:21; Search time 170.769 Seconds (without alignments) 13357.774 Million cell updates/sec
Title: US-10-014-269-33 Perfect score: 8270 Sequence: 1 gtagacagatocaggotcacataaactgttgagtcaaaac 4486
Scoring table: BLOSUM62 Xgapop 10.0, Xgapext 0.5 Ygapop 10.0, Xgapext 0.5 Fgapop 6.0, Fgapoxt 7.0 Delop 6.0, Delext 7.0
Searched: 830525 segs, 258052604 residues
Total number of hits satisfying chosen parameters: 1661050
Minimum DB seq length: 0 Maximum DB seq length: 2000000000
Post-processing: Minimum Match 0% Maximum Match 100% Listing first 150 summaries
<pre>Command line parameters: MODEL=frame+_n2p.model -DEV=x1p</pre>
0=/ 0=/cgn2_1/USPT0_spco1_p/US10014269/runat_07012004_175229_24521/app_query.fasta_1 .9358
-DB=SPTREMBL_23 -QFMT=fastan -SUFFIX=rspt -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRAMS=human40.cdi -LIST=150 -DCCALIGN=200 -THR_SCORE=pct -THR_MAX=100 -THR_MIN=0 -ALIGN=50 -MODE=LOCAL -OUTFMT=pto -MOR4=axt -HEAPSIZE=500 -MINLEN=0 -MAXLEN=200000000 -USER=US10014269 @CGN 1_1_482 @crumat_0701204_175229_24521 -NCPU=6 -ICPU=3 -NO_WMAP -LARGEQUERY -NEG_SCORES-0 -WAIT -DSPENDEN =100 -LONGLOG -DEV_TIMEOUT=120 -WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7
Database: SPTREXBL_23:* 1: sp_archea:* 2: sp_bacteria:* 3: sp_fungi:* 4: sp_human:* 5: sp_invertebrate:* 6: sp_mammal:* 7: sp_minc:* 8: sp_organelle:* 9: sp_organelle:* 10: sp_blage:*

17:	16:	14:	12:	₽ ₽
p_archeap: *	sp_rvirus:*	ifie	p_virus:	sp_rodent:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

e 40	c 39	0 4	, ω) ^	0 0))	ب ر ار	34	33		c 31	30		c 28		26	c 25	24	c 23	22	21	20	19	18	17	c 16	15	14	13	12	11	10	9	60	7	on.	U	4.	ω	· N	1	No.	Result	
303	303.5	303.5	304.5	000.0		•	3	307.5	308	309	310.5	312.5	31	316	316.5	317	319	320	321	•	32	332	339.5	349.5	352	352.5	354.5	357.5	380	410.5	417.5	431.5	•	431.5	483	495.5	1006	1196.5	209.	œ	Score		
3.7	3.7	3.7	3.7) (] -	J .			ა. 8	•	3.8		ω. Β	•	3.8	3.9		3.9			٠	•	4.1	4.2	4.3			4.3	4.6				•	5.2	5.8	•	12.2	14.5		50.6	Match	Query	d
774	1347	1314	1464	CFF		1 0	1 2 2 2	977	1461	1464	1637	1464	1453	4123	1787	1222	884	1464	692	660	932	846	1056	5146	5146	499	982	733	713	778	1155	1153	1073	1052	892	1033	706	. 953	S	1020	Length		
12	<i>2</i> .	11	11	4		1 1				μ,	თ		11	4.	10	11	7	1	4	4	4	44			თ	4	11	42.	σ	4		7	7	7	4	H	11	4	11	11	8		
041971	Q96QB3	QBCGA5	QBBLW4	197560	000000	000000	095777	08HW99	076045	Q8BKY2	Q9XSVB	Q8N473	Q63079	075851	Q9M4X9	Q8K173	Q29675	Q8BLW4	Q96D51	Q8NF06	Q96KL4	OTXIBO	Q8NF 42	Q8SPM4	Q8SPM4	QSTEL3	Q8BU40 -	QBTEE2	Q95LZ7	Q8NF48	Q9TPP1	O9GJE0	09GJD9	80 r960	QBNEU4	Q8R4B8	9TUE8Q	Q8IWF5	QBBHB0	Q8K3Z0	IB		
1 1 1 1 1 1	D III	mus.		093251 rana catesb	QBC6J9 mus musculu	mus	000			ב וועני	Sod		rati		chla	3 mus	omo	4 mus	homo	homo	homo	homo	homo	s od o	800	homo	40 mus	2 homo sanie	7		Ogtop) mile mileciji	79 110	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	78+	משמח	ม แบร	6 mus	homo	mus	Q8k3z0 mus musculu	ption		

223 4 Q8NIO2 1487 6 077753 608 12 Q9Q5K9	11	11	4	4	13	1449 13 091000	1682 11 090ZR9	1840 11 09.TIO3	<u> </u>	, t	1450 12 O419/3	1 L	Ω	. <i>(</i> 1	o,	4.	ຫ ເດ	11	13	10 20 11 OBDANCE TT ARET	: <u>;</u>	14E9 11 063033	1103 4 Q8N6U4	. <u></u>	4.	12	а О	7 11	1637 6 09XSV8			11	4	::	1414 5 026634	ວັບ	886 4 Q9NUB7	11	11	11	0	ני וע	1487 4 014047	C		·μ	5	11	7 1118 5 Q9VR13
Q8niO2 homo sapien 077753 canis famil Q9q5k9 herpesvirus	Q9esq2 mus musculu		OBn473 homo sanien	076045 home sabies	0910c0 oncorhinghii.	Coders musculu	Oddard mile mileoni;	Obito sapien	Qunbu4 homo sapien	09y1b4 cynops pyrr	041973 murid herpe	Q90w37 gallus gall	Q15094 homo sapien	Q26634 strongyloce	Q8hycl canis famil	QBnfwl homo sapien	017163 brugia mala	09gzs0 mus musculu	O910h9 cacoravachii	Cocost mus musculu	Cocos mus musculu	Q63123 rattus norv	Q8n6u4 homo sapien	Q8cg65 mus musculu	075851 homo sapien	041972 murid herpe	Q9h6y0 homo sapien	Q61431 mus musculu	DIACON SANGO DIACON DIACON COBOOM	Q8in94 drosophila	061603 drosophila	Q62033 mus musculu	Q15177 homo sapien	Q8blx7 mus musculu	Constant cercopitation	Q90w37 gallus gall	Q9nub7 homo sapien	Q8bjf4 mus musculu	Q9qzr9 mus musculu	063870 mus musculu	028396 equus cabal	Object from Sapten .	O1/O47 boms ramit	C77753	Q14046 homo sapien	Q9yib4 cynops pyrr	Q9bit7 nephila mad	Q8bky2 mus musculu	Q9vr13 drosophila
		12.5	0 140	14/	C 146	145	144	143	c 142	141	140	c 139	c 138	137	136	יי ער ייי	124	133	c 131	130	c 129	c 128	127	126	125	124	c 123	7 122	021	119	c 118	c 117	c 116	115	c 113	112	111	110	e 109	2 108	107	105	104	103	102	101	c 100	99	o D
	100	0 K C	20.00	NO. 0	253	254	254	255.5	255.5	255.5	256.5	256.5	256.5	257	257	257.5	эл Эл Эл Эл	3 7 7 E) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I	258.5	259	259	259	260	260.5	261	261.5	2 0	200	262.5	263	263.5	101	264.5	205.5	265.5	266	200	2000) N N O	207.0	267.5	268	268	268	268	268.5	268.5	о Д Д
		ა <i>ც</i>) (. -	ب - ب	ω.	(J)	ω . 1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	ى	ب - د	ع ر - ب	ى د - د	ω	3.1	3 2	3.2	3.1	3.1	3.1	ω.	 		ω	3.2	3.2	3.2	ייי		3.2	3.2	ω : 2	ω c	ب در ۱۰ د		ى د م د	3.2	3	3.2	3.2	3.2	ω : ω :	 	ى س
	T040	10400	, CT2	1439	566	1840	1347	1491				1691	926	1314	1258	717	2715	200	1349	1739	1835	866			1445		150	1937	195	1160	894	1491	1940	1835	1739	1487	1621	1453	1378	757	1820	1626	1459	1442	1442	866	1838	509	0 7 7 7 7
ALIGNMENTS	70000	. O CONT.	95006	097406	Q95JD1	.1 Q9JI03	1 Q96QB3	13 091718		13 Q90796	4 Q15094	11 Q9ESQ2	0 09W3G1	11 08CGA5	COINS#	COLOCA	001001 C44E61	1028BO TI	13 Q8AW17	11 Q9JLI2	13 Q9IAU4	11 Q8CFM4	01	4 Q15177	13 093251		2 K900M3	11 Q9JI04	4 Q8NI01	4 Q14046	5 Q8MW54	13 091718	11 060467	13 090700	11 Q9JLI2	4 Q14047	4 Q9H4R9	11 063079	5 097405	169167 17 59167		4 Q8NFW1	11 Q62032	11 Q62033	11 Q62031	11 Q8CFM4	11 088207	10 0937V8	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Q60467 cricetulus	Q91717 xenopus lae	Q96qc6 homo sapien	097406 haliotis di	Q95jd1 sus scrofa	Q9ji03 rattus norv	Q96qb3 homo sapien	Q91718 xenopus lae	Q9w7r9 cynops pyrr	090796 gallus gall	015094 homo sanien	O9esq2 mus musculu	C9w3g1 drosophila	Qoawii brachydanio	Quiny4 drosophila	061603 drosophila	Q9veg7 drosophila	088207 mus musculu	Q8aw17 brachydanio	Q9jli2 mus musculu	Q9iau4 gallus gall	Q8cfm4 mus musculu	O8xzn9 rajstonia s	015177 homo sanien	093251 rana catesh	Conyci canis ramii	Q8uumb oryzias lat	Q9ji04 rattus norv	Q8ni01 homo sapien	Q14046 homo sapien	OSmw54 mytilus gal	Q0046/ oricetulus	Q91au4 gallus gall	Q90yj0 brachydanio	Q9jli2 mus musculu	Q14047 homo sapien	09h4r9 homo sanies	09/405 hallotts di	09/406 haliotis di	Q9ib91 xenopus lae	Q91907 pagrus majo	Q8nfw1 homo sapien	Q62032 mus musculu	Q62033 mus musculu	Q62031 mus musculu	OBcfm4 mus musculu	OBB207 mis miscul:	028396 equus cabal	

301.5
300.5
300.5
300.5
300.5
300.5
300.5
300.5
300.5
300.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5
200.5

```
RESULT 1

QBK20

ID QBK3

AC QBK3

AC QBK3

AC QBK3

AC QBK3

DT 01--0

DT 01--0

DT 01--0

CARLI
GN C
                                        õ
                                                                                                 문
                                                                                                                                                         δ
                                                                                                                                                                                                                     8
                                                                                                                                                                                                                                                                       QΥ
                                                                                                                                                                                                                                                                                                                                     밁
                                                                                                                                                                                                                                                                                                                                                                                           Š
                                                                                                                                                                                                                                                                                                                                                                                                                                                      US-10-014-269-33 (1-4486) x Q8K3Z0 (1-1020)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Query Match:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Best Local Similarity:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Percent Similarity:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Score:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Pred. No.:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Alignment Scores:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       InterPro; IPRO0701; LRR RNInh.
InterPro; IPR007111; NAGHT NTPase.
InterPro; IPR0011130; TatD_DNase.
PR051TE; P500209; CARD; 2.
PR051TE; P500503; LRR RT; 1.
PR051TE; P500503; NAGHT; 1.
PR051TE; P500137; NAGHT; 1.
PR051TE; P500137; TATD_1; 1.
SEQUENCE 1020 AA; 113561 MW; 250
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Q8K3Z0;
Q8K3Z0;
01-0CT-2002
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Submitted (JUN-2002) to the EMBL/GenBank/DDBJ databases EMBL; AF520774; AAM76073.1; -. MGD; MGI:2429397; Card15.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Iwanaga Y., Davey M.P., Martin T.M., Planck S.R., Baugh M.M., Suing C., Rosenbaum J.T.;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Eukaryota; Metazoa;
Mammalia; Eutheria;
NCBI_TaxID=10090;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               gene."
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             STRAIN=BALB/c;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CARD15.
Mus musculus (Mouse)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     01-MAR-2003
CARD15.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  "Cloning, sequencing
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      SEQUENCE FROM N.A.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             01-OCT-2002
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           InterPro; IPR001315; CARD.
361 AGGCGCCTTCTGGACACCGTCTGGAATAAGGGTACTTGGGCCTGTCAGAAGCTCATCGCG 420
                                                                                                                                                         301
                                                                                                                                                                                                                                       241 GTCTCAGGGTCCCTGGAAGGCTTCGAGAGTGTCCTGGACTGGCTGCTGTCCTGGGAAGGTC 300
                                                                                                                                                                                                                                                                                                                                                                                       181 TGTGAAATGTGCTCGCAGGAGGCTTTTCAGGCACAGAGGAGCCCAGCTGGTCGAGCTGCTG
                                                                                                 46
                                                                                                                                                                                                                     26
                                                                                                                                                                                                                                                                                                                                        σ
                                                                                          LeuSerArgGluAspTyrGluGlyLeuSerLeuProGlyGlnProLeuSerHisSerAla
                                                                                                                       CICTCCIGGAGACTACGAGGCTICCACCICCIGGGCCAGCTCTCCCCACTIGGCC
                                                                                                                                                                                                        IleSerGlySerLeuGluGlyPheGluSerIleLeuAspTrpLeuLeuSerTrpAspVal
                                                                                                                                                                                                                                                                                                                               CysAspMetCysSerGlnGluGluPheGlnAlaGlnArgSerGlnLeuValAlaLeuLeu
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2 (TrEMBLrel. 22,
2 (TrEMBLrel. 22,
3 (TrEMBLrel. 23,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              PRELIMINARY;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1.15e-289
4183.00
87.30%
79.13%
50.58%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Chordata; Craniata; Vertebrata; Euteleostomi; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  and expression analysis of the murine Nod2/Card15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Created)
Last sequence update)
Last annotation updat
                                                                                                                                                                                                                                                                                                                                                                  25504905ECF70FBB CRC64;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Gaps:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Conservative:
Mismatches:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Indels:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1020
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              À
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       update)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1020
.804
83
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             DePriest M.L.,
                                                                                          65
                                                                                                                                                      360
                                                                                                                                                                                                              45
                                                                                                                                                                                                                                                                                                                               25
                                                                                                                                                                                                                                                                                                                                                                                       240
```

```
당
                               8
                                                                밁
                                                                                             8
                                                                                                                           망
                                                                                                                                                                                                                    8
                                                                                                                                                         8
                                                                                                                                                                                          문
                                                                                                                                                                                                                                                     문
                                                                                                                                                                                                                                                                                 8
                                                                                                                                                                                                                                                                                                                 밁
                                                                                                                                                                                                                                                                                                                                             8
                                                                                                                                                                                                                                                                                                                                                                              뮍
                                                                                                                                                                                                                                                                                                                                                                                                        8
                                                                                                                                                                                                                                                                                                                                                                                                                                           밁
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Š
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      밁
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  80
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Š
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 밁
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              片
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        밁
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Š
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     밁
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                뮹
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              õ
                                1201
                                                                                                                                                                                                                      1021
                                                                                             1141
                                                                                                                                                         1801
346 PheLeuLeuAspHisProAspArgValLeuLeuThrPheAspGlyLeuAspGluPheLys
                                                                                                                             306
                                                                                                                                                                                          286
                                                                                                                                                                                                                                             266 GlyHisieuAsnArgAspAlaAspThrIleLeuValValGlyGluAlaGlySerGlyLys 285
                                                                                                                                                                                                                                                                                   961
                                                                                                                                                                                                                                                                                                          246 AlaGlyAlaLeuGlnLysSerProAlaIleLeuGlyLeuGluAspLeuPheAspThrHis 265
                                                                                                                                                                                                                                                                                                                                              901
                                                                                                                                                                                                                                                                                                                                                                              226
                                                                                                                                                                                                                                                                                                                                                                                       841 CTCTGCCTGGAGGACATATACACAGAGAATGTCCTGGAGGTCTGGGCAGATGTGGGCATG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               781 CTGA-GGACCACGGTGTCTGCTCAGTCCTCAGTACCTATGATGAGGAGAGAGCG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 166
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             146
                                                                                                                                                                                                                                                                                                                                                                                                                                    206 LeuArgThrMetValLeuThrGlnSerArgPheLeuSerThrTyrAspGlySerGluAsn
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                721 TTACCAGTCCCATTGGCCCTGCCTTTGGAAGCTGCCACATGCAAGAAGTATATGGCCAAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        601 GAATGTGATGAAATCAGGTTGCCGATCTTCACACCGTCCCAGAGGGCAAGAAGGCTGCTT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          126
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       541
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              106 HisSerleuHisProThrArgAspLeuGlnSerHisArgProAlaIleValArgArgLeu
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              421
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  86
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             9
                                                                                                                                                  CTCTTTGTCTTCCCATTCAGCTGCCGGCAGCTGCAGTGCATGGCCAAACCACTCTCTGTG 1140
                                                                                                                                                                                                               AGCACGCTCCTGCAGCGGCTGCACTTGCTGTGGGCTGCAGGGCAAGACTTCCAGGAATTT 1080
                          TTACTCCTTGACCACCCTGACCGTGTCCTGTTAACCTTTGATGGCTTTGACGAGTTCAAG 1260
                                                                          CGGACICTACICITGAGCACIGCTGTIGGCCTGATGTTGGTCAAGAAGACATCTTCCAG 1200
                                                                                                                      LeuPheIlePheProPheSerCysArgGlnLeuGlnCysValAlaLysProLeuSerLeu 325
                                                           ArgThrLeuLeuPheGluHisCysCysTrpProAspValAlaGlnAspAspValPheGln
                                                                                                                                                                                   SerThrLeuLeuGlnArgLeuHisLeuLeuTrpAlaThrGlyArgSerPheGlnGluPhe 305
                                                                                                                                                                                                                                                                            GCTGGACCCCGCAGAAGAGCCCAGCCACCCTGGGCCTGGAGGAGCTCTTCAGCACCCCT
                                                                                                                                                                                                                                                                                                                                                                       LeuCysLeuGluAspIleTyrThrGluAsnIleLeuGluLeuGlnThrGluValGlyThr 245
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           AspLeuAlaAlaValLysAlaAsnGlyLeuAlaAlaPheLeuLeuGlnHisValArgGlu
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        GluCysGluGluIleArgLeuProIlePheThrSerSerGlnArgAlaArgArgLeuLeu
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Tyr \texttt{AsnHisValGluAlaMetLeuGluLeuAlaArgGluGlyGlyPheLeuSerGlnTyr}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CACAGCCATGTGGAGAACATGCTGGACCTGGCATGGGAGCGGGGTTTCGTCAGCCAGTAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          GCTGCCCAAGAAGCCCAGGCCGACAGCCAGTCCCCCAAGCTGCATGGCTGCTGGGACCCC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        960
                                                           345
                                                                                                                                                                                                                                                                                                                                                                                                      900
                                                                                                                                                                                                                                                                                                                                                                                                                                    225
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   840
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 205
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               780
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            185
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          720
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         165
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     660
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     145
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                125
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        85
```

365

γQ	Db	Qy	d d	Qy	Db	QУ	Db	Qy	Db	Qy	Db	Qy	da	Qy	da	Qy	Db .	, A&	dd	Qy	da	Qу	Db	Qy	ਰਹ	Qy	dם	Qy
2941 GCCTTGGCACTGATGCTGGCAAAGAACGTCATGCTAGAAGAACTCTGGCTGG		2881 CACCAGAGCTTGAGGTGGCTCAGCCTGGTGGGGAACAACATTGGCAGTGTGGGTGCCCAA 2940		2821 TTCTGGGGCAACAGAGTGGGTGACGAGGGGGCCCAGGCCCTGGCTGAAGCCTTGGGTGAT 2880		2761 GCGGGAGCCCAAGTGCTGGCCGAGGGCTCCGAGGCAACACCTCCTTGCAGTTCCTGGGA 2820	846 LeuLeuAlaHisLysGlnAsnPheLeuSerLeuArgValGlyAsnAsnHisIleThrAla 865	2701 CICCITGCATGCAGGCAGAACTICITGGCATTGAGGCTGGGGAATAACTACATCACTGCC 2760	826 GlnLysLeuAlaLeuPheAsnAsnLysLeuThrAspAlaCysAlaCysSerMetAlaLys 845	GCTGTGCACAC	806 AsmileSerAspArgGlyAlaArgThrLeuValGluCysAlaLeuArgCysGluGlnLeu 825	2581 AATATCTCAGAGCCAGCCATCTGCAAGCTCATTGAATGTGCTCTTCACTGCGAGCAATTG 2640	786 GlyValGluGlnLeuArgProCysLeuGlyValCysThrAlaLeuTyrLeuArgAspAsn 805	2521 GGOGIGGAGCAGCIGCIGCCTIGCCTIGCTGCTGCAAGGCTCTGTATTTGCGCGCGATAAC 2580	766 LeuGlnHisLeuGlnArgProValAlaLeuGlnLeuAspTyrAsnSerValGlyAspVal 785	2461 CIGCAGCACCICCGGCGGCCCGTGGCCCTGCAGCTGGACTACAACTCTGTGGGTGACATI 2520	746 HisLeuLysLeuThrPheCysArgValGlyProAlaGluCysAlaAlaLeuAlaPheVal 765	GTGTGGGCCCA	726 LeuTyrGluMetGlnGluGluClnLeuAlaGlnGluAlaValArgArgLeuAspIleGly 745	GCACGTGG	706 ValProGlyGluThrLysSerMetHisAlaMetProGlyPheIleTrpLeuIleArgSer 725	2281 GCACCGGGTGAGGCCAAGAGCGTGCATGCCATGCCGGGGTTCATCTGGCTCATCCGGAGC 2340	686 ArgAlaArgSerCysLeuAlaHisSerLeuArgGluHisPheHisSerIleProProAla 705	TGGTGTCTGGCCC	666 HishrgAspLeuLeuAlaAlaCysGlnValSerGluArgValLeuLeuGlnArgGlnAla 685	GAGTGCCAGACATCTGAGAAGGCC	646 AlaGluProHisAsnLeuGlnIleThrAlaAlaPheLeuAlaGlyLeuLeuSerGlnGln 665	2101 GCCGAGCCGCACAACCTTCAGATCACAGCAGCCTTCCTGGCAGGGCTGTTGTCCCGGGAG 2160

2041 ACGATGTGCATCCAGGCCTCGGAGGGAAAGGACAGCAGCTGGCAGCTTTGCTGCAGAAG 2100 1981 CTCAGACACCICTTCAATTGTGGCAGGCCAGGCAACTCACCAATGGCCAGGCTCCTGCCC 2040 1861 GTGCGTGCCAAAGGTGTCGTGCCAGGGAGTACGGCCCCCTGGAATTCCTTCACATCACT 1920 1741 1561 1921 TTCCAGTGCTTCTTTGCCGCGTTCTACCTGGCACTCAGTGCTGATGTGCCACCAGCTTTG 1980 1801 TCAGCCCAGCAGCCACCACACAGGTCAGCCCTGATGACATTTCTCTTGGCTTCCTG 1860 1621 TCCCCAAAGACCACTACAGATATGTACCTGCTGATTCTGCAGCATTTTCTGCTGCATGCC 1680 1381 CGTCCGGCCGCTGTGTCGGCGTTCCTCAGGAAGTACATCCGCACCGAGTTCAACCTCAAG 1440 606 LeuLysHisLeuPheSerCysGlyArgLeuGlySerSerLeuLeuGlyArgLeuLeuPro 625. 546 506 SerProProAspSerSerProLeuGlyLeuGlyProGlyLeuLeuGlnSerArgLeuSer 525 1681 486 PheProThrThrSerThrAspMetTyrLeuLeuIleLeuGlnHisPheLeuLeuHisAla 505 466 1501 GCGGACCGCCTCATCCGCCTGCTCCAAGAGACCTCAGCCCTGCACGGTTTGTGCCACCTG 1560 1321 ACCCCCAGACTCAGCTTCCCAAGGTCTGGGACCCAGTCTTCTTCGGGGGCCGCCTCCCC 1740 CCTGTCTTCTCATGGATGGTGTCCAAATGCCACCAGGAACTGTTGCTGCAGGAGGGGGGG 1620 SerAlaGlnGlnLeuGlnAlaAlaGlnValAspSerAspAspIleSerLeuGlyPheLeu ProValPheSerTrpMetValSerArgCysHisArgGluLeuLeuLeuGlnAsnArgGly 485 CTGCTCTTCAACCTTCTGCAGGGCAACCTGCTGAAGAATGCCCGCAAGGTGGTGACCAGC 1380 565 585

D Q

QΥ

84 B

8 유

₽

8 8 8

626 AsnLeuCysIieGlnGlySerArgValLysLysGlySerGluAlaAlaLeuLeuGlnLys 645

5 8 5

망

926 AlaLeuAlaLeuMetLeuGluLysA	926 AlaLeuAlaLeuMetLeuGluLysAsnLysSerLeuGluGluLeuCysLeuGluGLuAsn 945	G
3001 CATCTCCAGGATGAAGGTGTATGTT	3001 CATCTCCAGGATGAAGGTGTATGTTCTCTCGCAGAAGGACTGAAGAAAAITCAAGTTTG 3060	60
946 HislleCysAspGluGlyValTyrS		ن.
3061 AAAATCCTGAAGTTGTCCAATAACT	3061 AAAATCCTGAAGTTGTCCAATAACTGCATCACCTACCTAGGGGCAGAAGCCCTCCTGCAG 3120	20
966 LysPheLeuLysLeuSerAsnAsnG	966 LysPheLeuLysLeuSerAsnAsnGlyIleThrTyrArgGlyAlaGluAlaLeuLeuGin 985	ن.
3121 GCCCCTTGAAAGGAATGACACCATC	3121 GCCCCTTGAAAGGAATGACACCATCCTGGAAGTCTGGCTCCGAGGGAACACTTTCTCTCT 3180	80
986 Ala-LeuSerArgAsnSerAlaIle	Ala-LeuSerArgAsnSerAlaIleLeuGluValTrpLeuArgGlyAsnThrPheSerLe 1005	05
3181 AGAGGAGGTTGACAAGCTCGGCTGCAGGGACACCAGACTCTTGCTT 3226	AGGGACACCAGACTCTTGCTT 3226	
	 ArgAspAlaArgLeuLeuLeu 1020	

Search completed: January 7, 2004, 20:05:28 Job time: 592.769 secs

23: /athat/gegaar/genesed/genesedp-emat/www.occ.but:	
/SIDS1.	
/SIDS1,	
17: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1996.DAT:*	
/SIDS1	
/SIDS1	
/SIDS1,	
<pre>11: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1990.DAT:*</pre>	
`	
_	
_	
_	
_	
_	
3: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1982.DAT:+	
/SIDS1/gcgdata/geneseg/genesegp-emb1/AA19	
1: /SIDS1/	
Database : A Geneseq 19Jun03:*	Da
Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries	Po
Minimum DB seq length: 0 Maximum DB seq length: 200000000	ма
Total number of hits satisfying chosen parameters: 1107863	i o
Searched: 1107863 seqs, 158726573 residues	Se
Scoring table: BLOSUM62 Gapop 10.0 , Gapext 0.5	SO
Sequence: 1 MCSQEAFQAQRSQLVELLVSNTFSLEEVDKLGCRDTRLLL 1013	S 10
	J Ti
(Without alignments) 4223.507 Million cell updates/sec	
	R E
OM protein - protein search, using sw model	MO

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed,

24: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA2003.DAT:*

and is derived by analysis of the total score distribution.

SUMMARIES

											٠																																				
45	44	43	42	41	40	39	38	37	36	35	34	ယ	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	<u>:</u>	10	ø	œ	7	თ [.]	თ,	٥ ۵	ا دما	2	₽	No.	Result	
887.5	1001	1001	1001	1171	1204.5	1208.5	1209.5	1209.5	•	209	209.	1212	1219.5	2	2	1219.5	2	1564	. 1614	1614	2087	2945	4174	4980.5	5120	5128	5128	5288	5288	5291	5296	5296	5296	5296	5296	5299	5299	5299	5300	5301	5303	5304	5304	5304	Score		
16.7	18.9	18.9			'n	Ņ	'n	'n	'n	Ņ	'n		ω	Ψ	ω	ω	ω	9			.6	.5	78.7	ω	è	ο.	i.	٩	٩	٥	۰	·o	٥	ω.	φ.	٥	Φ.	9	9	Θ:	٥:	0 :	?	100.0		Query	p
779	719	705	705	966	953	953	953	953	953	953	953	959	953	953	953	953	953	296	305	305	403	560	795	1009	1007	1007	1007	1040	1040	1040	1041	1040	1040	1040	1038	1040	1040	1040	1040	1040	1040	1040	1013	1013	Length		
22	22	21	21	24	20	23	24	23	22	22	21	22	24	23	23	22	20	23	23	23	23	23	23	23	23	23	23	23	23	23	22	23	23	23	23	23	2	2	23	23	2 6	2	23	23	BB		
AAB95610	AAG75589	AAB15562	AAB15559	ABU56300	AAY31141	ABG31076	ABU56273	AA022111	AAB20080	AAM78489	AAB15552	AAM79473	ABU56298	AA022136	ABG31080	AAB20084	AAY31145	AAU80869	ABJ04740	AAE25421	AAU80870	AAU80856	AAU80875	AAU80865	ABJ04767	ABJ04766	AAE25434	ABJ04777	ABJ04775	ABJ04776	AAG79119	ABJ04770	ABJ04769	ABJ04768	ABJ04735	ABJ04772	ABJ04737	AAE 25418	ABJ04774	ABJ04771	0477	25.41	047	AAE25417	ID		OCHUMASIBO
Human protein sequ	Þ	Fragment of apopto	ptosis	eru	CARD-4L	caspase	Ω	Protein of human C	CARD-4L (Human protein SEQ	Apoptosis related	Human protein SEQ	Mouse Caspase recr	in of mur	Mouse caspase recr	CARD-4L	Murine CARD-4L pro	Human CARD3X NB-AR	Nod2 nucleotide bi			CARD3X	CARD3X	CARD3X F	+		Human Nod2 mutant.	Nod2a P268S + R702	Nod2a P268S + G980	Nod2a P268S + N852	Amino acid sequenc	Nod2a P268S protei	Nod2a G908R (SNP17	Nod2a R702W protei		a N852	orote:	Nod2 p	MB63V	V793M	1556A	an Nodo pro	protein	an Nod2 pro	iption		

Search completed: January 7, 2004, 20:49:51 Job time: 41.0703 secs

OM protein - protein search, using sw model

Run on: January 7, 2004, 20:54:13 ; Search time 29:7941 Seconds (without alignments) 6851.332 Million cell updates/sec

Title: Perfect score: Sequence: US-10-014-269-3 5304

1 MCSQEAFQAQRSQLVELLVS......NTFSLEEVDKLGCRDTRLLL 1013

Scoring table: BLOSUM62 Gapop 10.0 , Gapext 0.5

Total number of hits satisfying chosen parameters:

747907

747907 seqs, 201509753 residues

Searched:

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Database : Published_Applications_AA:*

1: /cgn2_6/ptodata/2/pubpaa/US07_PUBCOMB.pep:*

2: /cgn2_6/ptodata/2/pubpaa/PCT_NEW_PUB.pep:*

3: /cgn2_6/ptodata/2/pubpaa/US06_NEW_PUB.pep:*

4: /cgn2_6/ptodata/2/pubpaa/US06_PUBCOMB.pep:*

5: /cgn2_6/ptodata/2/pubpaa/US06_PUBCOMB.pep:*

6: /cgn2_6/ptodata/2/pubpaa/PCTUS_PUBCOMB.pep:*

6: /cgn2_6/ptodata/2/pubpaa/US08_NEW_PUB.pep:*

6: /cgn2_6/ptodata/2/pubpaa/US08_NEW_PUB.pep:*

6: /cgn2_6/ptodata/2/pubpaa/US08_PUBCOMB.pep:*

6: /cgn2_6/ptodata/2/pubpaa/US08_PUBCOMB.pep:*

10: 11: 12: 13: 14: /cgn2_6/ptodata/2/pubpaa/USC9A_PUBCOMB.pep: *
/cgn2_6/ptodata/2/pubpaa/USC9B_PUBCOMB.pep: *
/cgn2_6/ptodata/2/pubpaa/USC9B_PUBCOMB.pep: *
/cgn2_6/ptodata/2/pubpaa/USC9C_PUBCOMB.pep: *
/cgn2_6/ptodata/2/pubpaa/USC10A_PUBCOMB.pep: *
/cgn2_6/ptodata/2/pubpaa/USC10B_PUBCOMB.pep: *
/cgn2_6/ptodata/2/pubpaa/USC10C_PUBCOMB.pep: *
/cgn2_6/ptodata/2/pubpaa/USC10C_PUBCOMB.pep: *
/cgn2_6/ptodata/2/pubpaa/USC0_NEW_PUB.pep: *
/cgn2_6/ptodata/2/pubpaa/USC0_NEW_PUB.pep: *
/cgn2_6/ptodata/2/pubpaa/USC0_NEW_PUB.pep: *

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No. Query Score Match Length DB ID

Description

		44 12	_	2		ы	39 12	_	ь.		. ω . σ	34	. w	32	31	30	29 49	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	ω	7	·.	, U 1	. 42-	. w	N	1
	09.	0	09.	09.	09.	0		_	-		1614	1614	1614	2087	2945	4174	~	5120	5120	5128	5128	5128	5288	5288	5288	5288	5291	5296	5296	5296	5296	5296	5299	5299	5299	5299	5300	5301	5303	5304	5304	5304	5304	ω	30
	.~	:~	:~	.~	:~								30.4	·			ω	0,	o	0	0	σ	99.7	.9	۰	۰	.9	۳	9	٩	۰	œ.	ω.	φ.	φ	9	9	9	00.			0	0	0	100.0
	953	953	953	953	953	953	953	953	953	296	305	305	305	403	560	795	\circ	1007	1007	8	1007	1007	1040	1040	1040	04	1040	1041	1040	04	04	0	2	1040	04	04	1040	04	04	40	04	4	1013	₩.	\vdash
	15	14	14	12	12	9		4	9		14	14	12	10	10	10	10	14	12	14	14	12	14	14	12	12		12	14	14						12					14	12		14	
,	77-	84-	-10-105-931	-10-183-770-	-10-028-374-	8-721-	295-981-4	S-10-118-984-	1-4	-09-864-92	S-10-002-974-	-10-014-269-	-10-314-506-7	S-09-864-921-1	-09-864-921-83	-09-864-921-1	-09-864-921-10	-10-002-974-5	-10-314-506	-10-002-974-3	0-014-269-3	-10-314-506-3	-10-002-974-8	0-002-974-8	-10-314-506-6	-10-314-506-5	-10-002-97	-10-240-04	-10-002-97	-10-002-97	-10-002-97	-10-314-50	-10-002-97	-10-002-97	-10-014-2	-10-314-5	-10-002-974-	-10-002-974-6	-10-002-974-	-10-002-974-	-10-014-26	10-314-506-	-10-002-974-	-10-014-26	US-10-314-506-3
	equence 12,	Ф СВ	equence 8, Appl	quence 4,	equence 4,	quence 8, Ar	equence 43,	Sequence 43, Ap	quence 43, Appl	equence 174, Ar	equence 7,	equence 7,	equence 7,	equence 176	equence 83	equence 188	equence	equence 55,	equence 55,	equence 34,	equence 34,	equence 34,	equence 89,	equence 85,	equence	equence 59,	equence 87, Apr	equence 2, 3	equence 61,	equenc	equence 57.	equence 57	edience es	dience *	edirence 4'	equence 4	eguence 69,	equence 63	equence 67, App	equence 2,	equence 2, Appl	equence 2,	equence 3,	quence 3,	equence

Search completed: January 7, 2004, 21:06:00 Job time: 33.7941 secs

Run on: OM protein - protein search, using sw model January 7, 2004, 20:49:58; Search time 16.8833 Seconds (without alignments) 5770.121 Million cell updates/sec

Title:
Perfect score:
Sequence: US-10-014-269-3 5304

1 MCSQEAFQAQRSQLVELLVS......NTFSLEEVDKLGCRDTRLLL 1013

Scoring table: BLOSUM62 Gapop 10.0 , Gapext 0.5

Searched: 283308 seqs, 96168682 residues

Total number of hits satisfying chosen parameters:

283308

Minimum DB seq length: 0
Maximum DB seq length: 200000000

Post-processing: Minimum Match 100 Maximum Match 100% Listing first 45 summaries

PIR_76:*
1: pir1:*
2: pir2:*
3: pir3:*
4: pir4:*

Database :

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

13	12	11	10	φ	œ	7	O	U	4	ω	2	. →	No.	,
210	212.5	212.5	213	217	221	221.5	227	237.5	258.5	365.5	393.5	408	Score	
4.0	4.0	4.0	4.0	4.1	4.2	4.2	4.3	4.5	4.9	6.9	7.4	. 7.7	Match	do.
1075	631	631	506	533	789	535	456	461	456	1111	1192	1130	Query Match Length	
И	N	N	N	N	N	N	N	N	N	N	2	N	BG	
T31668	T21471	C89243	A45841	T52063	T52067	T48102	S20597	A31858	A31857	A59000	T17255	A48843	ID	
hypothetical prote	hypothetical prote	protein F28C1.3 (i	T-complex-associat	ran GTPase-activat	hypothetical prote	RAN GTPase activat	ribonuclease inhib	ribonuclease-angio	ribonuclease inhib	mater protein [imp	hypothetical prote	MHC class II trans	Description	

45	44	43	42	41	40	39	38	37	36	35	34	ၗ	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14
23.	12	24.	24.	25.	25.	26.	.7	28.	12	13		13	E)	13	43.	1.	44.	50.	53.	↔	55.	56.	57.	16	62	73	84	91	91	207	9
																														3.9	
		80	80	25	84	54	8	38	23		6							ω	\vdash	4	9	Ξ	20	N	ω	8	4	4		1004	
N	g-cont	N	N	N	N	N	2	N	N	N	2	N	N	Ν	N	N	N	N	N	2	Ν	N	Ν	2	N	N	N	N	N	N	N
1344	1233	3631	3112	3204	9730	1204	2612	3769	0532	9845	1819	9780	3698	5207	0530	4279	3638	977,	027	447	234	B22:	966	554	520	363	278	426	363	T31665	520

Search completed: January 7, 2004, 20:50:42 Job time : 16.2556 secs

insulin-like growt
hypothetical prote
hypothetical prote
hypothetical prote
Internalin A [impo
F11A6.9 protein tropomodulin - hum hypothetical prote hypothetical protein - myosin-I binding p hypothetical prote probable large ATP garp precursor - h RNAI protein homol RNAI bomolog fugl hypothetical prote protein K10D2.I [in hypothetical protein knowledge protein K10D2.I [in hypothetical protein hypothetical protein hypothetical protein hypothetical protein ran GTPase activat RAN GTPase-activat hypothetical prote probable large Arp neuronal apoptosis Nasopressin recept probable large Arp GTPase-activating GTPase-activating protein disease re

OM protein - protein search, using sw model

		Run on:
		January
		7
		2004,
		January 7, 2004, 20:45:37; Search time 33.7667 Seconds
7741.578	(without alignments)	Search
Mil	a11.	tim
lio	gran	ω
n cell	ents)	3.7667
7741.578 Million cell updates/sec		Seconds

Title: Perfect score: US-10-014-269-3

Sequence: 5304 1 MCSQEAFQAQRSQLVELLVS......NTFSLEEVDKLGCRDTRLLL 1013

Scoring table: BLOSUM62 Gapop 10.0 , Gapext 0.5

Searched: 830525 seqs, 258052604 residues

Total number of hits satisfying chosen parameters:

830525

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Database :

SPTREMBL 23:*

1: sp_acteria:*
2: sp_bacteria:*
3: sp_fungi:*
4: sp_human:
5: sp_invertebrate
6: sp_nammal:*
7: sp_mhc:*
9: sp_bhage:*
10: sp_organelle:*
11: sp_rodent:*
11: sp_vodent:*
12: sp_virus:*
13: sp_vertebrate:
14: sp_unclassifie
15: sp_rotreis:*
16: sp_acteriap:* sp_human:*
sp_invertebrate:*
sp_mammal:*
sp_mhc:*

sp_organelle:*
sp_phage:*
sp_plant:*

sp_vertebrate:*
sp_unclassified:*
sp_rvirus:*
sp_bacteriap:*
sp_archeap:*

Result No. Query Score Match Length DB ΙD

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution. SUMMARIES

Description

ţ	υ t γ t	, t	3 1	4	40	39	38	37	36	35	34	ω	32	31	30	29	82	27	26	25	24	23	22	21	20	19	18	17	16	15			2	11	5	φ	ω	7	Q	Ŋ	4	ω	Ν	щ
5.77	200	١:	۲. د	2	234.5	36.	37.	37.	23	38.		43.	45.		255	273	278	284	293	293	296.5	297	297	305	314	316.5	321	332	344.5	357.5	360.5	362.5	377.5	401		405.5	425	425	479.5	496	1019	1209.5	222.	41
	٠. د. د.	ı.	4.4	4.4	4.4	4.5	4.5	4.5	4.5	4.5	4.5	6	4.6	4.7	4. B	5.1	5.2	5.4	5. 5	5. 5	5.6	5.6	5 6	ა თ	5.9	6.0	6.1	6.3	6.5				7.1	7.6	٠,					9.4	•	22.8	ω	78.9
90		g a b E	່ດ	· N	519	O)	O)	447	1787	461	554	620	310	817	748	195	605	223	1097	312	977	932	884	397	863	660	692	846	1056	733	982	499	713	J	1050	778	1155	1153	in	1033	0	953	Ġ	Ñ
1	: =		4.	<u>+-</u> 4	11	4	Q	4	10	4	4	16	11	ζī	11	4	0			11	7	4		드		4	4	4	4	4	μ.	Δ.	σ.	٦.	1.	4	7	7	4	1	11	4	11	H
092424	١ ٥	Q9XIK2	Q969L7	QBC6M5	Q8C249	080860	m	Q96FD7	Q9M4X9	Q8IZK8	Q9H724	98XZN9	Q8BYL7	Q964V6	099MW0	CBNI 01	Q93ZV8	QBNI 02	0.49H6D	QBBV65	66MHBD	Q96KL4	Q29675·	Q8BJF4	6 r 908ð	QBNF06	Q96D51	QSIXTO	Q8NF 42	Q8TEE2	088040	OBTEL3	0951,27	04GTD9	Control	OBNE 48	S	Q9GJE0	Q8NEU4	Q8R4B8	Q8BUT6	QBIWF5	BHB BHB	Q8K3Z0
Q924p4 mus musculu	Q8ccn1 mus musculu	arab	17 homo	6m5 mus		80 homo	pan t	Q96fd7 homo sapien	9 chla	omo	nomo sapie		mus muscu	< −	mus.	sapier	arab	omo		ELLE ELLE	mus a	omo	OTTO		mus	omo	homo	homo	homo		140 mils	٠ س	מ מ	Faccus	110100 54		otool mus	ratt	neu4 homo	Br4b8 mus	Bbut6 mus musc	homo	bhb0 mus	Q8k3z0 mus musculu

ALI GUMENTS

RESULT 1
Q8K3Z0
ID Q8K3:
AC Q8K3:
DT 01-00
DT 01-00
DT 01-00 OBK320; 01-OCT-2002 (TrEMBLrel. 22, Created) 01-OCT-2002 (TrEMBLrel. 22, Last sequence update) 01-MAR-2003 (TrEMBLrel. 23, Last annotation update) Q8K3Z0 PRELIMINARY; PRT; 1020 AA.

F 427		B 64 E	
	301 VFFFSCRQLQCMAKFLSVRTLLFEHCCWPDVGQEDIFQLLLDHPDRVLLTFDGFDEFKFR :	DP OA	
F 300	241 PPQKSPATLGLEELFSTPGHLNDDADTYLVVGEAGSGKSTLLQRLHLLWAAGQDFQEFLF	β 6y	
G 240	181 VPLALPLEAATCKKYMAKLRTTVSAQSRFLSTYDGAETLCLEDIYTENVLEVWADVGWAG : :::	Db Qy	
LP 180	121 HVENMLDLAWERGEVSQYECDEIRLPIFTPSQRARRLLDLATVKANGLAAFLLQHYQELP 	Qy Db	
IS 120	61 LLDTVMNKGTWACQKLIAAAQEAQADSQSPKLHGCWDPHSLHPARDLQSHRPAIVRRLHS 	Db Qy	
RR 60	1 MCSQEAFQAQRSQLVELLVSGSLEGFESVLDWLLSWEVLSWEDYEGFHLJGQPLSHLARR	Db Qy	_
0;	Query Match 78.9%; Score 4185; DB 11; Length 1020; Best Local Similarity 79.3%; Pred. No. 0; Matches 803; Conservative 82; Mismatches 128; Indels 0; Gaps	Query M Best Lo Matches	
	IPR00709; IRR NUTD. IPR007111; NACHT NTPsse. IPR001130; TatD DNase. PS50209; CARD; 2. PS50209; CARD; 1. PS50837; NACHT; 1. PS50837; NACHT; 1. PS50137; TATD_1; 1. PS60137; TATD_1; 1. 1020 AA; 113561 MW; 2	אט אט אט או אמט או אמט אס איי אמט איי אמט איי אמט איי אמט איי איי איי איי איי איי איי איי איי אי	
	ed (JUN-2002) F520774; AAM76 I:2429397; Car o; IPR001315;		
d15			
	CARDIS. CARDIS. CARDIS. CARDIS. Mus musculus (Mouse). Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus. NCBI_TaxID=10090; [1] [1] SEQUENCE FROM N.A.		

Db 968	Qy 961	806 qq	QУ 901	Db 848	Qy 841	Db 788	Оу 781	Db 728	Qy 721	Db 668	Qy 661	Db 608	ΩУ 601	Db 548	Qy 541	Db 488	Qу 481	Db 428	47
	. н	8 NLKWLSIVGNNIGSMGAEALALMLEKNKSLEELCLEENHICDEGVYSLAEGLKRNSTLKF 967		AHKONFLSLRVGNNHI TÄÄGAEVLÄQGLKSNTSLKFLGFWGNSVGDKGTQALÄEVV	1 ACRQNELALRLGRNYITAAGAQVLAEGLRGNTSLQFLGFWGNRVGDEGAQALAEALGDHQ 900		1 EQILPCIGVCKALYLRDNNISDRGICKLIEGALHCEQLQKLALFNNKLIDGCAHSMAKLL 840	28 EMQEEQLAQEAVRRLDIGHLKLTECRVGPAECAALAFVLQHLQRPVALQLDYNSVGDVGV 787		58 DLLAACQVSERVLLQRQARARSCLAHSLREHFHSIPPAVPGETKSMHAMPGFIWLIRSLY 727	່ດ)8 HLFSCGRLGSSLLGRLLFNLCIQGSRVKKGSEAALLQKAEPHNLQITAAFLAGLLSQQHR 667		18 QQLQAAQVDSDDISLGELVRAQSSVPGSKAPLEELHITFQCFFAAFYLAVSADTSVASLK 607	_ ^	8 TSTDWYLLIUQHELLHASPPDSSPLGLGPGLLQSRLSTLLHLGHLALRGLAMSCYVFSA 547	Α.	28 SEEGIQLYLRKHHREPGVADRLIQLIQATSALHGLCHLEVFSWAVSRCHRELLLQNRGFP 487	

Search completed: January 7, 2004, 20:52:36 Job time: 37.7667 secs

Run on:	OM protein
January 7, 2004, 20:04:17 ; Search time 39:085 Seconds (without alignments) 4223.507 Million cell update	OM protein - protein search, using sw model
, 2004, 20	th, using s
:04:17 ; s (wi 422	w model
Search time 39.08 (without alignments 4223.507 Million ce	
ne 39.085 s grments) lion cell	
; Search time 39.085 Seconds (without alignments) 4223.507 Million cell updates/sec	

Scoring table: BLOSUM62	Perfect score: 5448 Sequence: 1 MGEE	Title:
BLOSUM62	5448 1 MGEEGGSASHDEEERASVLLNTFSLEEVDKLGCRDTRLLL 1040	US-10-014-269-2

Total number c	Searched:	
Total number of hits satisfying chosen parameters:	1107863 seqs, 158726573 residues	Gapop 10.0 , Gapext 0.5
1107863		

	•	
Database :	A_Geneseq_19Jun03:*	
	1: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1980.DAT:*	
	2: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1981.DAT:*	
	3: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1982.DAT:*	
	4: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1983.DAT:*	
	5: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1984.DAT:*	
	6: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1985.DAT:+	
	7: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1986.DAT:*	
	8: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1987.DAT:+	
	9: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1988.DAT:*	
	10: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1989.DAT:*	
	<pre>11: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1990.DAT:*</pre>	
	<pre>12: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1991.DAT:*</pre>	
	<pre>13: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1992.DAT:*</pre>	
	<pre>14: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1993.DAT:*</pre>	
	<pre>15: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1994.DAT:*</pre>	
	<pre>16: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1995.DAT:*</pre>	
	17: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1996.DAT:*	
	/SIDS1	
	19: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1998.DAT:*	
	<pre>20: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1999.DAT:*</pre>	
	21: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2000.DAT:*	
	<pre>22: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2001.DAT:*</pre>	
	<pre>23: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2002.DAT:*</pre>	
	24: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2003.DAT:*	

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

U.		» .c	3 12	. 41	40	39	38	37	36	35	34	<u>3</u> 3	32	31	30	29	28 !	27	<i>y</i> (J F) V	3 2	21	20	19	18	17	16	15	14	13	12	11	, , ,	- 00	7	6	ر ت	4	ω!	N	1	No.	Result	
αα/.υ	1001	1001	1001	1171	1204.5	1208.5	1209.5	1209.5	1209.5	1209.5	1209.5	1212	2	219.	219.	Θ.	r)	1564	7 T	100	2007	2000	4994.5		5272	5272	5304	5304	5331	5432	5432	5435	5440	5440	5440	5443	44	44	44	44	44	5448	Score		
16.3	, t	10.4	٠	٠.	•	5	۶,	'n	?	N	'n		٧.		2	22.4	∾ :	2 B . C	٥,	۰.	o t	- 0	٠:	0	Ġ	96.8	.7	.7	97.9	٩	99.7	9 :	6.66	9	9	٩	99.9	99.9	99.9		100.0	100.0	1	Ouerv	,
//9	1 7	200	207	966	953	953	953	953	953	953	953	959	953	953	953	953	953	N (3 C	2 6	200	n /90	1009	1007	1007	1007	1013	1013	1041	1040	1040	1040	1040	1040	1038	1040	4	1040	1040	4	4	1040	Length I		
2	2 2	3 5	2 2	24	20	23	24	23	22	22	21	22	24	23	23	22	0 0	2 5	3 5	2 0	2 5	3 6	23	23	23	23	23	23	22	23	23	23 1	3 0) (i	23	23	23	23	23	3	3	23	DB B		
MABSSEL	, 0	79C21BPV	AAB15559	130	AAY31141	ABG31076	ABU56273	AA022111	AAB20080	848	AAB15552	AAM79473	ABU56298	AA022136	ABG31080	AAB20084	AAY31145	01/4000144	1040404 1040	AAU000 /0	21100000	AAUBUB75	AAU80865	ABJ04767	ABJ04766	AAE25434	ABJ04736	AAE25417	AAG79119	ABJ04777	ABJ04775	ABJ04776	ABJ04770	ABJ04768	ABJ04735	ABJ04772	ABJ04737	AAE25418	ABJ04774	ABJ04771	0477	AAE25416	i		COLUMNITO
Human protein sequ	numan colon cancer	ent of	יט מי	ecrui	Human CARD-4L prot	caspase	Caspa	in of hu	CARD-4L	Human protein SEQ	sis rel	protein	Mouse Caspase recr	in of mur	caspase	$^{\circ}$	Murine CARD-41 pro	Action Discussion of the part				CARD3X	CARD3X	Nod2a P268S + fram	protein		prote	Nod2	acid sec	P268S +	698	P268S	NOOLOW GUODE CENTER	R702W	protei	a N852S p	protei	Nod2		MEG LA FC	V9551 7	Human Nod2 protein	Description		

Search completed: January 7, 2004, 20:49:48
Job time: 43.085 secs

	Run on:	OM protein
	January	- protein sear
	7, 2004, 20:54:	OM protein - protein search, using sw model
(without alignments) 6851.332 Million cel	13 ; Search time	del
(without alignments) 6851.332 Million cell updates/sec	January 7, 2004, 20:54:13 ; Search time 30:5882 Seconds	
/sec	-	

Title: Perfect score: US-10-014-269-2 5448

Sequence: 1 MGEEGGSASHDEEERASVLL......NTFSLEEVDKLGCRDTRLLL 1040

Scoring table: BLOSUM62 Gapop 10.0 , Gapext 0.5

747907 seqs, 201509753 residues

Total number of hits satisfying chosen parameters: 747907

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Database :

Published Applications_AA:*

1: /cgn2_6/ptodata/2/pubpaa/VST_PUBCOMB.pep:*

2: /cgn2_6/ptodata/2/pubpaa/VST_NEW_PUB.pep:*

3: /cgn2_6/ptodata/2/pubpaa/USO6_NEW_PUB.pep:*

4: /cgn2_6/ptodata/2/pubpaa/USO6_PUBCOMB.pep:*

6: /cgn2_6/ptodata/2/pubpaa/USO6_PUBCOMB.pep:*

6: /cgn2_6/ptodata/2/pubpaa/USO8_NEW_PUB.pep:*

7: /cgn2_6/ptodata/2/pubpaa/USO8_NEW_PUB.pep:*

9: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*

9: /cgn2_6/ptodata/2/pubpaa/USO9_PUBCOMB.pep:*

10: /cgn2_6/ptodata/2/pubpaa/USO9_PUBCOMB.pep:*

11: /cgn2_6/ptodata/2/pubpaa/USO9_PUBCOMB.pep:*

12: /cgn2_6/ptodata/2/pubpaa/USO9_PUBCOMB.pep:*

13: /cgn2_6/ptodata/2/pubpaa/USO9_PUBCOMB.pep:*

14: /cgn2_6/ptodata/2/pubpaa/USO9_PUBCOMB.pep:*

15: /cgn2_6/ptodata/2/pubpaa/USO0_NEW_PUB.pep:*

16: /cgn2_6/ptodata/2/pubpaa/USO0_NEW_PUB.pep:*

16: /cgn2_6/ptodata/2/pubpaa/USO0_NEW_PUB.pep:*

17: /cgn2_6/ptodata/2/pubpaa/USO0_NEW_PUB.pep:*

18: /cgn2_6/ptodata/2/pubpaa/USO0_NEW_PUB.pep:*

18: /cgn2_6/ptodata/2/pubpaa/USO0_NEW_PUB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

No.	Result
Score	
Match	Query
Length	
80	
ID	

Description

4			1		
emiance 12	S-10-013-4	953	\sim	9.	45
equence 8,	US-10-118-984-	953 :	Ņ	09.	44
equence 8,	5-931	953	·	209.	43
quence 4,	2 US-10-183-770-			209.	42
equence 4, App	US-10-028-374-			209.	41
quence 8, Ar	US-09-728-721		Ņ	209.	40
equence 43,	-10-295-981-4		Ņ	1219.5	39
equence 43,	4 US-10-118-984-		2	219.	38
quence 43,	US-09-728-721-		2	219.	37
equence 1	0 US-09-864-921-			56	36
equence 7,	US-10-002-97		9	61	ဌာ
equence 7,	4 US-10-014-269		9	61	34
nce 7, Aç	2 US-10-314-506-		9	61	ယ
nce 176,	0 US-09-864-921-1		8	80	32
equence 83, A	0 US-09-864-921-8		4	2959	31
equence 188,	0 US-09-864-921-1			B.	30
equence 107,	US-09-864-921-1	900	:	4994.5	29
e 55	4 US-10-002-974-5		9	8	28
equence 55,	2 US-10-314-506-5	007	9	26	27
equence 34,	4 US-10-002-974-3	007	9	27	26
equence 34,	-10-014-269		96.8	5272	25
equence 34,	2 US-10-314-506-3	007	9	27	24
equence 3	4 US-10-002-974-	013	7	5304	23
equence 3,	4 US-10-014-269-		.7	5304	22
equence 3,	4-506-3	013	~1	5304	21
equence 2,	2 US-10-240-046A-		.7	5331	20
quence 89	-10-002-974-8	040	9	5432	19
equence 85	4 US-10-002-974-8	040	9.	5432	18
equence 61	2 US-10-314-50	040	99.7	5432	17
equence 59	2 US-10-314-506-5	040	9	5432	16
equence 87	US-10-002-974-8	040	9	5435	15
equence 61,	4 US-10-002-974-6	040	w	5440	14
equence 59	4 US-10-002-974-5	040	e.	5440	13
equence 57.	4 US-10-002-974-5	040	9	.1.	12
equence 57	2 US-10-314-506-5	040	9	44	11
equence 65	4 US-10-002-974-6	040	φ.	5443	10
equence 4,	4 US-10-002-974-	040	٩	44	9
equence 4,	4 US-10-014-269-	040	w	5443	&
equence 4, 1	2 US-10-314-506-	040	9	44	7
equence 69,	4 US-10-002-974-6	040	9.	44	თ
equence 63	4 US-10-002-974-6	040	9	5445	رت.
equence 67,	4 US-10-002-974-	040	00	44	4.
equence	-10-002-974	040		5448	ω
nce 2,	4 US-10-014-269-	1040	100.0	44	. 2
•	2 US-10-314-506-	040	00.	44	_

Search completed: January 7, 2004, 21:05:56 Job time: 33.5882 secs

OM protein - protein search, using sw model

	Run on:
	January
	7,
,	2004,
	20:49:58
(without 5770.121	; Search
(without alignments) 5770.121 Million cell updates/sec	y 7, 2004, 20:49:58 ; Search time 17.3333 Seconds
updates/sec	Seconds

Sequence:	Perfect score: 5448	Title:
1 MGEEGGSASHDEEERASVILNTFSLEEVDKLGCRDTRLLL 1040	5448	US-10-014-269-2

Scoring table:

BLOSUM62 Gapop 10.0 , Gapext 0.5

Searched:

Total number of hits satisfying chosen parameters:

283308

283308 seqs, 96168682 residues

Minimum DB seq length: 0
Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Database : PIR_76:*
1: pir1:*
2: pir2:*
3: pir3:*
4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

The state of the s		-				
himothetical proto	T31668	N	1075	ω. 9	21.0	13
hypothetical prote	T21471	N	631	3.9	212.5	12
protein F28C1.3 [i	C89243	N	631	3.9	212.5	11.
T-complex-associat	A45841	Ν	506		213	TO
ran GTPase-activat	T52063	2	533	4.0	717	, , ,
hypothetical prote	T52067	N	789	4.1	221	οa
RAN GTPase activat	T48102	N	535	4.1	221.5	, ~1
ribonuclease inhib	S20597	2	456	4.2	227	10
ribonuclease-angio	A31858	N	461	4.4	237.5	, o
ribonuclease inhib	A31857	N	456	4.7	258.5	4
mater protein [imp	A59000	N	1111	6.7	365.5	. (.:
hypothetical prote	T17255	N	1192	7.2	393.5	. N
MHC class II trans	A48843	N	1130	7.5	408	, , <u>,</u>
Description	ID	BB	Match Length DB	Match	Score	No.
				Ouerv		Result
				dР		

	2004. 20:50:37	7	January	completed:
reverse transcript				124
tropomodulin - hum		359		12.4 12.4
6.9 protes	2 E86312	1088	ν	124.5
×				124.5
μ Ω				N
ical				12
cal				126.5
like grow				127.5
				128.5
ord Dro		232		129
<u> </u>				130
_ prot				130
thetical				134
homolog				136
protei				137
V a				143.5
precursor				144
e lar				
tical prot				
-I bindi		121		G
C29E4.3 protein -				
thetica			2.9	
hypothetical prote		119		156.5
protein disease re				
Ę				160
TPas				162.5
윤.				7
Nasopressin recept				184.5
e large AI		010		
onal apoptosi				196
othetical prot		004		207
RAN GTPase-activat				209.5

Search completed: January 7, 2004, 20:50:37 Job time : 16.5556 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

	Result Query No. Score Match Length DB ID Description
	SUMMARIES
	Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.
	17: sp_archeap:*
_	
	13: Sp_vertebrate:*
	sp_mhc: *
	6: sp_mammal:*
	g
	g
	: Sp :
	2: sp bacteria:
	SPT
	Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries
	Minimum DB seq length: 0 Maximum DB seq length: 2000000000
	Total number of hits satisfying chosen parameters: 830525
	Searched: 830525 seqs, 258052604 residues
	Scoring table: BLOSUM62 Gapop 10.0 , Gapext 0.5
•	Title: US-10-014-269-2 Perfect score: 5448 Sequence: 1 MGEEGGSASHDEEERASVLLNTFSLEEVDKLGCRDTRLLL 1040
	Run on: January 7, 2004, 20:45:37 ; Search time 34.6667 Seconds (without alignments) 7741.578 Million ceil updates/sec
	OM protein - protein search, using sw model

1 10 3 11 3 11	232 4.3 753 4 Q5	4.3	36.5 4.3 461 4 Q9BQ80	37.5 4.4 461 6 (37.5 4.4 447 4 Q96F	238 4.4 1787 10	38.5 4.4 461 4	39.5 4.4 554 4 0	43.5 4.5 620 16 0	5 4.5 310 1	20 2 4.7 217 2 02 21 21 24 1.1 C	73 5.0 195 4 9	78 5.1 605 10	84 5.2 223 4 0	93 5.4 1097 4 (93 5.4 312 11	.5 5.4 977 7 (97 5.5 932 4 (97 5.5 884 7 (05 5.6 397 11 Q8BJF	14 5.8 863 11	.5 5.8 660 4 0	21 5.9 692 4 (32 6.1 846 4 (4.5 6.3 1056 4 (57.5 6.6 733 4 OBTEE2	6.6 98	62 T 6 T 400 4 7	401 7.4 1073 7	1 7.4 1052 7	.5 7.4 778 4 <	25 7.8 1155 7 (7.8 1153 7 (.5 8.8 892 4 Q8N	96 9.1 1033 11 Q8R4B	18.7 706 11 Q8BU	9.5 22.2 953 4 Q8IWF5	22.5 22.4 953 11 Q8BHB	196 77.0 1020
Q9xik2 arabidopsis Q8ch64 mus musculu Q8ch68 mus musculu	6917 homo sap	Oaceway was mascala	9bq80 homo	hzp9 pan trogl	96fd7 homo	Q9m4x9 chlamydc	k8 homo sapi	9h724 homo sapier	3 1	TCCAOR	Q99mw0 mus muscu	01 homo	zv8 aral	02 homo	9h6y0 homo	เนร	nu St	omo	omo	มนธ	nus musc	Omo	omo sapi	omo sa	to t			/ macaca	ß	rattu	homo	mus mus	gje0 rattu	neu4 homo	mus	8but6 mus mus	homo	enw snw Oquq	Q8k3z0 mus musculu

ALIGNMENTS

Ę	Ŋ	DT	AC	ID	Q8K3Z0	RESULT
01-MAR-2003	01-OCT-2002	01-0CT-2002	Q8K3Z0;	Q8K3Z0	20	LT 1
01-MAR-2003 (TrEMBLrel. 23,	(TrEMBLrel. 22,	(TrEMBLrel. 22,		PRELIMINARY;		
Last annotation update).	Last	Created)		PRT; 1020 AA.		

β. δ.	Дy	₽ Q	. В Q	B 63	B Q	Db Qy	X B O	$ \begin{array}{c} G_{\rm N} \\ G_{\rm N} $
386 FRFTDRERHCSPTDPTSVQTLLFNLLQGNLLKNARKVVTSRPAAVSAFLRKYIRTEFNLK 445 	326 LFVFPFSCRQLQCMAKPLSVRTLLFEHCCWPDVGQEDIFQLLLDHPDRVLLTEDGFDEFK 385 :	266 AGPPQKSPATIGLEELFSTPGHINDDADTVLVVGEAGSGKSTILQRLHLIWNAGQDFQEF 325 	206 LPVPLALPLEAATCKKYMAKLRTTVSAQSRFLSTYDGAETLCLEDIYTENVLEVWADVGM 265 	146 HSHVENMIDIAWERGFVSQYECDEIRIDIFTPSQRARRIIDIATVKANGIAAFILQHVQE 205 :: : : : :	86 RRILDTVWNKGTWACQKLIAAAQEAQADSQSBKIHGCWDPHSIHPARDIQSHRPAIVRRI 145 	26 CEMCSQEAFQAQRSQIVELLVSGSLEGFESVLDWLLSWEVLSWEDYEGFHLLQQPLSHLA 85	Query Match 77.0%; Score 4196; DB 11; Length 1020; Best Local Similarity 79.2%; Pred. No. 0; Matches 804; Conservative 83; Mismatches 128; Indels 0; Gaps 0;	CARDIS. (CARDIS. Mus musculus (Mouse). Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Mus. NCBL_TaxID=10090; [1] SEQUENCE FROM N.A. SERAIN=BAID/c; Twanaga Y., Davey M.P., Martin T.M., Planck S.R., DePriest M.L., Baugh M.M., Suing C., Rosenbaum J.T.; "Cloning, Sequencing and expression analysis of the murine Nod2/Cardi5 gene:", "Cloning, Sequencing and expression analysis of the murine Nod2/Cardi5 gene:", MGD; MGI:2429397; Cardi5. InterPro; IPR007101; NACHT_NTPase. InterPro; IPR007101; NACHT_NTPase. InterPro; IPR007130; TatD_Nuse. PROSITE; PS50209; CARD; 2. PROSITE; PS50303; LRR_RI; 1. PROSITE; PS50137, TATD_1; 1.

	Db Qy	Db Qy	Qy Db	ОУ	Db Qy	Db Qy	, מט עס	Db	. Qy	Db Qy	,
LILIQNRG 485 GRICCYVF 565 ANYSCYVF 545 ANYSCYVF 545 ANTSVAS 605 ANGLISEE 685 ANTSVAS 605 ANGLISE 685 ANTSVAS 605	KILKISNNGITYLGABALLQALERNDTILEVWLRGNTFSLEBVDKLGGRDTRLLL	HQSLRWLSIVGNNIGSVGAQALAIMLAKONVMLEELCLEENHLQDEGVCSIABGLKKONSSI : : : : : : : : HQNLKWLSIVGNNIGSMGAEALAIMLEKNKSLEELCLEENHICDEGVYSLAEGLKRNSTL	LLACRONFLALRLGANYITAAGAQVLAEGLRGNTSLQFLGFWGNRVGDEGAQALAEALGD : : : : : : : : : : : :	GVEQLLPCLGVCKALYLRDNNISDRGICKLIEGALHCEQLQKLALFNNKLTDGCAHSNAK 	LYEMQEERLARKAARGLNVGHLKLTFCSVGPTECAALAFVLQHLRRPVALQLDYNSVGDI 	HWGLLAECOTSEKALLRROACARWCLARSLRKHEHSIPPAAPGEAKSVHANPGFIWLIRS	LRHLENCGREGNSPYARILPTWCIQASEGKDSSVAALLQKAEPHNLQITAAFLAGLLSRE	SAQQIQAAQVSPDDISIGELVRAKGVVPGSTAPLEFIHITEQCFFAAFYIALSADVPPAL 	506 SEKTITOMYLLILQHELLHATPPDSASQGLGPSLLRGRLFILHLGRLALMGLGNCCVVF 	446 GFSEQGIELYLRKRHEEPGVADRLIRLLQETSALHGLGHLPVFSIMVSKCHQELLLQEGG : :	

Search completed: January 7, 2004, 20:52:32 Job time: 39.6667 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - protein search, using frame_plus_n2p model January 7, 2004, 19:23:16; Search time 110.738 Seconds (without alignments) 12857.211 Million cell updates/sec

Title: Perfect score: US-10-014-269-1 8270 gtagacagatccaggctcac.....ataaactgttgagtcaaaac 4485

Scoring table: Xgapop 10.0 , Xgapext
Ygapop 10.0 , Ygapext
Fgapop 6.0 , Fgapext
Delop 6.0 , Delext BLOSUM62 7.0

Total number of hits satisfying chosen parameters:

2215726

1107863 seqs, 158726573 residues

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 150 summaries

-MODEL=frame+_n2p.model -DEV=xlp Command line parameters:

-DB=A_Geneseq_19Jun03 -QFMT=fastan -SUFFIX=rag -MINMATCH=0.1 -LOOPCL=0
-LOOPEXY=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi
-LIST=150 -DCCALLCH=200 -THR_SCORE=pot -THR_NX=100 -THR_MIN=0 -ALIGN=50
-MODE=LOCAL -OUTFMT=ptc -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=200000000
-USER=US10014269 @CGN 1 1_311 @runat_07012004 175228 24497 -NCPU=6 -ICPU=3
-NO_MAP -LARGEQUERY -NEG_SCORESO -WAIT -DSPBLOCK=100 -LONGLOG
-DEV_TIMEDUT=120 -WARN_TIMEDUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6
-FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELDP=6 -DELEXT=7 Q=/cgn2_1/USPTO_spool_p/US10014269/runat_07012004_175228_24497/app_query.fasta_1

Database : A_Geneseq_19Jun03:*

1: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1980.DAT:*

2: /SIDS1/gcgdata/geneseg/geneseqp-emb1/AA1981.DAT:*

3: /SIDS1/gcgdata/geneseg/geneseqp-emb1/AA1982.DAT:*

4: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1982.DAT:*

5: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1994.DAT:*

6: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1994.DAT:*

6: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1985.DAT:*

7: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1986.DAT:*

9: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1988.DAT:*

9: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1989.DAT:*

10: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1989.DAT:*

24:	23:	22:	21 :	20:	19:	18:	17:	16:	15:	14:	13:	12:	11:
/SIDS1/gcgdata/g	/SIDS1/gcgdata/g	/SIDS1/gcgdata/g	/SIDS1/gcgdata/g	/SIDS1/gcgdata/g	/SIDS1/gcgdata/g	/SIDS1/gcgdata/g	/SIDS1/gcgdata/g	/SIDS1/gcgdata/g	/SIDS1/gcgdata/g	/SIDS1/gcgdata/g	/SIDS1/gcgdata/g	/SIDS1/gcgdata/g	/SIDSI/gcgcata/g
eneseq/ge	eneseq/ge	eneseq/ge	eneseq/ge	eneseq/ge	reneseq/ge	eneseq/ge	eneseq/ge	jeneseq/ge	reneseq/ge	reneseq/ge	reneseq/ge	reneseq/ge	reneseq/ ge
/SIDS1/gcgdata/geneseq/geneseqp-embl/AA2003.DAT:*	/SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2002.DAT:	SIDS1/gcgdata/geneseq/geneseqp~emb1/AA2001.DAT:	'SIDS1/gcgdata/geneseq/geneseqp-embl/AA2000.DAT:*	'SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1999.DAT:	/SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1998.DAT:	/SIDS1/gcgdata/geneseq/geneseqp-embl/AA1997.DAT:+	/SIDS1/gcgdata/geneseq/geneseqp-embl/AA1996.DAT:	/SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1995.DAT:	/SIDS1/gcgdata/geneseq/geneseqp-embl/AA1994.DAT: *	/SIDS1/gcgdata/geneseq/geneseqp-embl/AA1993.DAT:*	/SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1992.DAT:*	/SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1991.DAT:	/SIDSI/gcgcata/geneseq/geneseqp-embl/AA1990.DAT:+
•	*	*	*	*	•	*	*	*	*	*	*	*	+

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

23 ABJ04769 23 ABJ04770 23 ABJ04777 23 ABJ04777 22 AAG79119 23 ABJ04777 22 AAG79119 23 ABJ04767 23 ABJ06856 24 ABJ86856 25 ABJ06856 26 ABJ06856 27 ABJ06856 28 ABJ06856 28 ABJ06856 28 ABJ06856 28 ABJ06856 28 ABJ06856 28 ABJ06856 29 ABJ06856 20 ABJ06856 20 ABJ06856 20 ABJ06856 21 ABJ06856 22 ABJ06856 23 ABJ06856 24 ABJ06856 25 ABJ06856 26 ABJ06856 27 ABJ06856 28 ABJ06856 29 ABJ06856 20 ABJ
23 ABJ04768 23 ABJ04770 23 ABJ04770 23 ABJ04777 23 ABJ04777 22 AAG79119 23 AAJ25434 23 ABJ04767 23 ABJ04767 23 ABJ04767 23 ABJ04767 23 ABJ04767 23 ABJ04767 23 AAJ26866 23 AAJ26876 23 AAJ26876 23 AAJ26876 23 AAJ26876 24 ABJ06866 25 AAJ26876 26 AAJ26876 27 AAJ26876 28 AAJ26876 29 AAJ26876 20 AAJ26876 21 ABJ0686 22 AABS0686 23 AAJ26876 24 ABJ0686
23 ABJ04768 23 ABJ04770 23 ABJ04770 23 ABJ04776 23 ABJ04777 22 AAG79119 23 AAG25417 23 AAG25417 23 AAG25434 23 AAG25434 23 AAJ04766 23 AAJ06865 23 AAJ06865 23 AAJ06866 23 AAJ06870 23 AAG25421 24 AAG31145 25 AAJ06869 26 AAY31145 27 AAG22136
23 ABJ00768 23 ABJ00776 23 ABJ00770 23 ABJ00777 23 ABJ00777 22 AAG79119 23 AALE25417 23 ABJ04767 23 AALE2643 23 ABJ04766 23 AAJ04766 23 AAJ04766 23 AAJ04767 23 AAJ08086 23 AAJ08087
23 ABJ04768 23 ABJ04770 23 ABJ04770 23 ABJ04777 23 ABJ04777 24 AAG79119 25 AAG99119 26 AAG25417 27 ABJ04736 28 ABJ04766 29 ABJ04767 20 ABJ04767 21 ABJ04767 22 AAJ04767 23 AAJ06865 23 AAJ06865 24 AAJ06866 25 AAJ06866 26 AAJ06866 27 AAJ06866 28 AAJ06866 29 AAJ06866 29 AAJ06866 20 AAJ06866 20 AAJ06866
23 ABJ04768 23 ABJ04770 23 ABJ04770 23 ABJ04776 23 ABJ04777 22 AAG79119 23 AAJ25417 23 AAJ25434 23 AAJ25434 23 AAJ26767 23 AAJ4866
23 ABJ04769 23 ABJ04776 23 ABJ04776 23 ABJ04777 23 ABJ04777 22 AAG79119 23 AAJ26477 23 ABJ04767 23 AAJ264767 23 AAJ266767 23 AAJ266767 23 AAJ26676 23 AAJ262641
23 ABJ04769 23 ABJ04776 23 ABJ04776 23 ABJ04775 23 ABJ04775 23 ABJ04777 22 AAG79119 22 AAG79119 23 ABJ04766 23 ABJ04766 23 ABJ04766 23 ABJ04767 24 ABJ04767 25 ABJ04767 26 ABJ04776 27 ABJ04776 28 ABJ04776 29 ABJ04776 20 ABJ04776 21 ABJ04776 22 ABJ04776 23 ABJ04776 24 ABJ04776 25 ABJ04776 26 ABJ04776 27 ABJ04776 28 ABJ04776 29 ABJ04776 29 ABJ04776 20 ABJ04776 20 ABJ04776 21 ABJ04776 22 ABJ04776 23 ABJ04776 23 ABJ04776 24 ABJ04776 25 ABJ04776 26 ABJ04776 27 ABJ04776 28 ABJ04776 29 ABJ04776 29 ABJ04776 20 ABJ04776 20 ABJ04776 21 ABJ04776 22 ABJ04776 23 ABJ04776 23 ABJ04776 23 ABJ04776 23 ABJ04776 23 ABJ04776 24 ABJ04776 25 ABJ04776 26 ABJ04776 27 ABJ04776 28 ABJ
23 ABJ04769 23 ABJ04770 23 ABJ04776 23 ABJ04777 23 ABJ04777 23 AABJ04777 22 AAG79119 23 AABJ25417 23 AABJ25417 23 AABJ25417 23 AABJ25417 23 AABJ264766 23 AAJJ04766 23 AAJJ04766 23 AAJJ0685 23 AAJJ0685 23 AAJJ0685 23 AAJJ06875 23 AAJJ06876
23 ABJ04769 23 ABJ04776 23 ABJ04776 23 ABJ04776 23 ABJ04777 23 ABJ04777 22 AAG79119 23 AAG25417 23 ABJ04766 23 ABJ04766 23 ABJ04766 23 AAU80656 23 AAU80656 23 AAU80675 23 AAU80676
23 ABJ04769 23 ABJ04770 23 ABJ04776 23 ABJ047776 23 ABJ04777 23 AABJ04777 23 AABJ04777 24 AAGJ0477 25 AAGJ04776 26 AAGJ04776 27 AAGJ04776 28 AAGJ04766 29 AAGJ04767 29 AAGJ04767 20 AAJ04766 20 AAJ04767 21 AAJ04767 22 AAJ04766 23 AAJ04767 23 AAJ04767 23 AAJ04767 24 AAJ04767 25 AAJ04766
23 ABJ04769 23 ABJ04770 23 ABJ04776 23 ABJ04776 23 ABJ04777 23 ABJ04777 22 AAG91119 23 AAG25417 23 AAG25417 23 AAG25417 23 AAG25417 23 AAG25467 23 AAG2665 23 AAJ04766 23 AAJ04766 23 AAJ04767 23 AAJ04767 23 AAJ04767 23 AAJ04767
23 ABJ04769 23 ABJ04776 23 ABJ04776 23 ABJ04776 23 ABJ04777 23 ABJ04777 22 AAG79119 23 AAJ25417 23 AAJ25417 23 AAJ26467 23 ABJ04766 23 ABJ04766 23 ABJ04766
23 ABJ04766 23 ABJ04770 23 ABJ04770 23 ABJ04776 23 ABJ04777 23 ABJ04777 23 ABJ04777 22 AAG79119 23 AAG25417 23 ABJ04736 23 ABJ04736 23 ABJ04736 23 ABJ04766
23 ABJ04769 23 ABJ04770 23 ABJ04770 23 ABJ04776 23 ABJ04777 23 ABJ04777 24 AAG70119 25 AAG70477 26 AAG70477 27 AAG70477 28 AAG70477 29 AAG70477 20 AAG70477 21 AAG70477 22 AAG70477 23 AAG704776 24 AAG704776 25 AAG704776 26 AAG704776 27 AAG704776 28 AAG704776 29 AAG704776
23 ABJ04768 23 ABJ04769 23 ABJ04776 23 ABJ04776 23 ABJ04775 23 ABJ04777 22 AAG79119 23 ABJ04736 23 ABJ04736 23 ABJ04736
23 ABJ04768 23 ABJ04776 23 ABJ04770 23 ABJ04776 23 ABJ04775 23 ABJ04777 22 AAG79119 23 AAG25417 23 ABJ04736
23 ABJ04768 23 ABJ04776 23 ABJ04770 23 ABJ04776 23 ABJ04775 23 ABJ04777 23 ABJ04777 22 AAG79119 23 AAG7817
23 ABJ04766 23 ABJ04769 23 ABJ04770 23 ABJ04776 23 ABJ04775 23 ABJ04777 23 ABJ04777
23 ABJ04768 23 ABJ04769 23 ABJ04770 23 ABJ04776 23 ABJ04775 23 ABJ04777
23 ABJ04768 23 ABJ04769 23 ABJ04770 23 ABJ04776 23 ABJ04775
23 ABJ04768 23 ABJ04769 23 ABJ04770 23 ABJ04776
23 ABJ04768 23 ABJ04769 23 ABJ04770
23 ABJ04768 23 ABJ04769
23 ABJ04768
11 1000
3 ABJ04735
23 ABJ04772
23 ABJ04737
1040 23 AAE25418 Human
1040 23 ABJ04774 Nod2a
1040 23 ABJ04771 Nod2a
040 23 ABJ04773
1040 23 AAE25416 Human
Length DB ID Description

V	
9888888888899447777777777998877879797979	& & & & & & & & & & & & & & & & & & &
1001 1001 87.5 87.5 85.8 85.8 85.8 86.8	1209.5 1209.5 1209.5 1209.5 1209.5 1208.5 1204.5
	114.66
775 779 779 779 779 779 779 1666 1666 1666	953 953 953 953 953
1351928282828282828282828282828282828282828	221 222 222 24 224 224 224 224 224 224 2
AAB15562 AAG73589 AAB95610 ABG9110 ABG9110 ABG9110 ABG9117 ABB19702 ABB19702 AAM55062 AAM55062 AAM55062 AAM57025 AAM62116 ABG9116 ABG91725 AAM77125 AAM62116 ABG9161 ABG91725 AAM71725	AAB15552 AAM78489 AAB20080 AAO22111 ABU56273 ABU56273 ABG31076 AAAY31141 ABU56300 AAB15559
. X พ. 5 5 5 5 6 8 8 8 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9	773
Fragma Human Human Human Human Human Human Human Peptic Protei Human Human Peptic Protei Human H	Apopt Human Human Prote Human Prote Human Human Human Homan Human
ent of approcent of approcent of approcent of approcent of approcent of approcent and approcent	protein SEQ CARD-41 (lor In of human C Caspase recr Caspase recr CARD-41 prot
poptor poptor poptor poptor serial se	EQ EQ In C C C C C C C C C C C C C C C C C C
0 0	
100 100 100 100 100 100 100 100 100 100	91 92 93 95 96 97
411.5 411.5 411.5 411.5 411.5 411.5 4110.5 4110.5 4110.5 4110.5 4110.5 4110.5 4110.5 399.5	433 433 429.5 421.5 421.5 414.5
N. A.	1130 19 1130 19 1207 19 896 23 320 23 320 23 869 22 869 22 1454 22 1429 23
AAO17855 AAB9839 AAA6581 AAA65857 AAA662571 AAB62571 AAB62571 AAB62571 AAB72670 AAB72670 AAB72670 AAB72670 AAB72670 AAB72670 AAB72663 AAA72669 AAA665894 AAA665894 AAA665894 AAA6776680 AAA678680 AAA6776680 AAA6776680 AAA6776680 AAA6776680 AAA6776680 AAA677860 AAA6776680 AAA6776679	AAW80313 AAW80313 AAW80391 AAW15592 ABJ04763 ABJ04763 AAW80868 AAW808688 AAW72673 ABG78455
007777707777777777777777777777777777777	
Pyrin Human	CIITA Class CIITA Human Human Human Human Human
Pyrin domain or Streptomyces v Streptomyces v Streptomyces v NOVX related pyrin domain or Streptomyces v Streptomyces v Streptomyces v Streptomyces v Streptomyces v NOVX related pyrin domain or Streptomyces v Streptomyces v NOVX related pyrin domain or Streptomyces v Novx related pyrin domain or Streptomyces v Streptomyces v Novx related pyrin domain or Streptomyces v Novx related pyrin domain or Streptomyces v Novx related pyrin domain or Streptomyces v Novx related prominer Streptomyces v Novx related prominer Streptomyces v Novx related promyces v Streptomyces v Streptomyces v	(clas II tr (clas PYRIN >rotei trans CARDS
In III I	CIITA (class II trans act Class II trans act CIITA (class II tr Human PYRIN-11 pro Nodl protein seque thuman transcriptio Human CARD3X CARDB Human CARD3X CARDB Human CARD3X CARDB Human CARDS CARDB Human CARDS From the Carbon CARDB CARDB Human CARDB CARDB Human CARDB CAR
	S S S S S S S S S S S S S S S S S S S

148 350.5 4.2 1111 2 c 149 348 4.2 19938 2 c 150 343.5 4.2 777 1
24 AAE31748 24 ABE98398 14 AAR37740
Mouse MATER protei Streptomyces virid Collagen-like poly

ALIGNMENTS

888888888	8 8 8 8 8 8 8	PT XXX	X P X P X P X P X P X P X P X P X P X P	S X Z X Z X Z X Z X Z X Z X Z X Z X Z X	RESULT AAE254 ID A AC A AC A C A C A C A C A C C A C C A C
polymerase chain reaction (PCR) procedures. Nod2 polymucleotides are polymerase chain reaction (PCR) procedures. Nod2 polymucleotides are also useful to either increase or decrease the level of Nod2 mRNA and/or protein in transfected cells as compared to the levels in wild-type cells and to decrease the level of Nod2 mRNA or protein in transgenic plants, plant tissues and plant cells as compared to the levels in wild-type. The invention is useful for inhibiting NF-kB activity and thus for treating Crohn's disease. Nod2 polypeptides and polymucleotides are useful in treating diseases or altering physiological states marked by	Claim 25; Fig 13; 189pp; English. The invention relates to a purified Nod2 polypeptide and its polymucleotide. The invention is useful for inhibiting Nod2 interaction with NF-kB and its associated proteins. Nod2 polymucleotides used in frame to a marker sequence is useful for purifying Nod2 polypeptide. Nod2 polymucleotides are also useful for purifying Nod2 polypeptide.	WPI; 2002-537300/57. N-PSDB; AAD41434. N-PSDB; AAD41434. Novel Nod2 polypeptides and polymucleotides useful in treating diseases or altering physiological states marked by apoptosis of cells or other nuclear factor-kappa B mediated effects	26-CCT-2001; 2001US-0244289. (UNMI) UNIV MICHIGAN. Nunez G, Inohara N, Ogura Y;	piens. 6773-} 2002. 2001;	RESULT 1 AARE25416 AARE25416 standard; Protein; 1040 AA. XX XX XX XX DT 30-OCT-2002 (first entry) DT 30-OCT-2002 protein #1. XX XX XX XX XX XX XX XX XX

V	Dь	Qy	Db	Qy	DЬ	Qy	Db	Qy	Db	Qy	Dъ	Qy	дb	Qy	DЬ	Qy	Db	Qy	망	γQ	US-10-014-	DB:	Best Local S		Alignmen Pred. No
706 CAACATGITCAGGAATIACCAGTCCCATIGGCCCTGCCTTTGGAAGCTGCCACATGCAAG		646 GCAAGAAGGCIGCIIGAICIIGCCACGGIGAAAGCGAAIGGAIIGGCIIGCCIICCII		586 TICGICAGCCAGTATGAATGTGATGAAATCAGGTTGCCGATCTTCACACCGTCCCAGAGG	141 IleValArgArgLeuHisSerHisValGluAsnWetLeuAspLeuAlaTrpGluArgGly	526 ATTGTCAGGAGGCTCCACAGCCATGTGGAACATGCTGGACCTGGCATGGGAAGCGGGGT	121 GlyCysTrpAspProHisSerLeuHisProAlaArgAspLeuGlnSerHisArgProAla	466 GGCTGCTGGGACCCCCACTCGCTCCACCCAGCCCGAGACCTGCAGAGTCACCGGCCAGCC	101 GlnLysLeulleAlaAlaAlaGlnGluAlaGlnAlaAspSerGlnSerProLysLeuHis	406 CAGAAGCTCATCGCGGGCTGCCCAAGAAAGCCCAGGCCGACAGCCCAG	81 LeuSerHisLeuAlaArgArgLeuLeuAspThrValTrpAsnLysGlyThrTrpAlaCys	346 CTCTCCCACTTGGCCAGGCGCCTTCTGGACACCGTCTGGAATAAGGGTACTTGGGCCTGT		286 CIGICCIGGGAGGICCICCIGGGAGGACIACGAGGGCITCCACCICCIGGGCCAGCCI	41 LeuValGluLeuLeuValSerGlySerLeuGluGlyPheGluSerValLeuAspTrpLeu	226 CIGGTCGAGCIGGTCTCAGGGTCCCTGGAAGGCTTCGAGAGTGTCCTGGACTGGCTG	21 GlyHisSerProGlyCysGluMetCysSerGlnGluAlaPheGlnAlaGlnArgSerGln	166 GGACATICTCCGGGTTGTGAAATGTGCTCGCAGGAGGCTTTTCAGGCACAGAGGAGCCAG	1 MetGlyGluGluGlyGlySerAlaSerHisAspGluGluArgAlaSerValLeuLeu	106 AIGGGGAAAGAGGGIGGIICAGCCICTCACGAIGAGGAAAGAAGAACAAGIGICCTCCTC	0-014-269-1 (1-4485) x AAE25416 (1-1040)	23 Gaps:	Best Local Similarity: 100.00% Mismatches: 0 0.00 Mismatches: 0 0.00 Mismatches: 0	5448.00 Matches:	No.:
AGCTGCCACATGCAAG 765		GCTGCCTTCCTA 705		CACACCGTCCCAGAGG 645	AlaTrpGluArgGly 160	GCATGGGAGCGGGGT 585	nSerHisArgProAla 140	SAGTCACCGGCCAGCC 525	nSerProLysLeuHis 120	STOCCOAAGCTGCAT 465	sGlyThrTrpAlaCys 100	GGTACTTGGGCCTGT 405		CCTCCTGGGCCAGCCT 345	rValLeuAspTrpLeu 60	TETECTEGACTEGCTG 285		GGCACAGAGGAGCCAG 225	gAlaSerValLeuLeu 20	AGCAAGTGTCCTCCTC 165					

D O E	, oy	D Qy	0y 0y 0y	D 09	ט עט פע עט	Qy	, VS dq A A A A A A A A A A A A A A A A A A A
741 TrpleuileArgSerLeuTyrGluMetGlnGluGluArgLeuAlaArgLysAlaAlaArg 760 2386 GGCCTGAATGTTGGGCACCTCAAGTTGACATTTTGCAGTGTGGGCCCCACTGAGTGTGCT 2445	TCCATCCCCCACCTGCACCGGGTGAGGCCAAGAGCGTGCATGCCCATGCCCGGGTTCATC	2146 CTGTTGTCCCGGGAGCACTGGGGCCTGCTGGCTGACTGCCAGACATCTGAGAAGGCCCTG 2205	2026 GCCAGGCTCCTGCCCACGATGTGCATCCAGGCCTCGGAAGGAA	1906 TICCTICACATCACTITCCAGIGCTICTITGCCGCGTTCTACCTGGCACTCAGTGCTGAT 1965	1786 TGCTGCTACGTGTCCCAGCCAGCAGCCAGCAGGCAGGACAGGTCAGCCCTGATGACATT 1845	1726 CGGGGCGGCTCCCCACCCTCCTGCACCTGGGCAGACTGGCTCTGTGGGGGCCTGGGCATG 1785	

1366 421 1426 441 1486 1546 481	1246 381 1306	1126 341 1186 361	1006 301 1066 321	886 261 946 281	826 241	766 221	201
			GOGGGCAGTGGCAAGAGCACCTCCTGCAGGGCTGCACTTGCTGGGGCTGCAGGCCAA 10	GCAGATGTGGGCATGGCTGGACCCCCGCAGAAGAGCCCAGCCAG	GATGGAGCAGAGACGCTCTGCCTGGAGGACATATACACAGAGAATGTCCTGGAGGTCTGG	AAGTATATGGCCAAGCTGAGGACCACGTGTCTGCTCAGTCTCCTCAGTACCTAT	GlnHisValGlnGluLeuProValProLeuAlaLeuProLeuGluAlaAlaThrCysLys
1425 1440 1485 1480 1545 1605	1305 1305 1365	1185 360 1245	1065 320 1125 340	945 280 1005 300	885. 260	825 240	220

Search completed: January 7, 2004, 19:37:47 Job time: 384.738 secs

/cgn2_6/ptodata/2/pubpaa/US09B_PUBCOMB.pep:

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

```
DB=Published_Applications_AA -QFMT=fastan -SUFFIX=rapb -MINNATCH=0.1
-DOPCLE0 -LOOPEXT=0 -UNITS=bits -START=1 -LND=-1 -MATRIX=blostm62
-TRANS=human40.cdi -LIST=150 -DOCALIGN=200 -TRH_SCORE=pct -TRH_MAX=100
-THR_MIN=0 -ALIGN=50 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HRAPSIZE=500 -MINLEN=0
-MAXLEN=200000000 -USER=USI0014269 GCGN 1 1 59 grunat 07012004 175231 24632
-NCPU=6 -LOPU=3 -NO_MAAP -LNGEGOUEN* -NEG_SCORES=0 -WAIT -DSPBLOCK=100
-LONGLOG -DEV_TIMEOUT=120 -MARN_TIMEOUT=30 -THRADSS=1 -XGAPOP=10 -XGAPEXT=0.5
-FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Q=/cgn2_1/USPTO_spool_p/US10014269/runat_07012004_175231_24632/app_query.fasta_1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 150 summaries
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Minimum DB seq length: 0
Maximum DB seq length: 200000000
                                                                                                                                                                                                                                                                                                                      Database :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Command line parameters:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Searched:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Title:
Perfect score:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Total number of hits satisfying chosen parameters:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Scoring table:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Run on:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Sequence:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       OM nucleic - protein search, using frame_plus_n2p model
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -MODEL=frame+_n2p.model -DEV=xlp
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Xgapop 10.0 , Xgapext
Ygapop 10.0 , Ygapext
Fgapop 6.0 , Fgapext
Delop 6.0 , Delext
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           January 7, 2004, 19:49:02; Search time 133.985 Seconds (without alignments)
13490.627 Million cell updates/sec
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         BLOSUM62
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             US-10-014-269-1
8270
                                                                                                                                                                                                                                                                                                               Published_Applications_AA:*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             747907 seqs, 201509753 residues
/ (gn2_6/ptodata/2/pubpaa/USO7_PUBCOMB.pep: *
/ (gn2_6/ptodata/2/pubpaa/PCT_NEW_PUB.pep: *
/ (gn2_6/ptodata/2/pubpaa/USO6_NEW_PUB.pep: *
/ (gn2_6/ptodata/2/pubpaa/USO6_PUBCOMB.pep: *
/ (gn2_6/ptodata/2/pubpaa/USO7_NEW_PUB.pep: *
/ (gn2_6/ptodata/2/pubpaa/USO7_NEW_PUB.pep: *
/ (gn2_6/ptodata/2/pubpaa/USO8_NEW_PUB.pep: *
/ (gn2_6/ptodata/2/pubpaa/USO8_NEW_PUB.pep: *
/ (gn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep: *
/ (gn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep: *
/ (gn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep: *
/ (gn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep: *
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  gtagacagatccaggctcac.....ataaactgttgagtcaaaac 4485
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0.5
7.0
7.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1495814
```

/cgn2_6/ptodata/2/pubpaa/US09C_PUBCOMB.pep:* /cgn2_6/ptodata/2/pubpaa/US09 NEW PUB.pep:* /cgn2_6/ptodata/2/pubpaa/US10A_PUBCOMB.pep:* /cgn2_6/ptodata/2/pubpaa/US10E_PUBCOMB.pep:* /cgn2_6/ptodata/2/pubpaa/US10C_PUBCOMB.pep:* /cgn2_6/ptodata/2/pubpaa/US10C_PUBCOMB.pep:* /cgn2_6/ptodata/2/pubpaa/US00_NEW_PUB.pep:* /cgn2_6/ptodata/2/pubpaa/US60_PUBCOMB.pep:*	18:	17:	16:	15:	14:	13:	12:	11:
	_6/ptodata/2/pubpaa/US60_PUBCOMB.pep:	n2_6/ptodata/2/pubpaa/US60_NEW_PUB.pep:	_6/ptodata/2/pubpaa/US10_NEW_PUB.pep:	n2_6/ptodata/2/pubpaa/US10C_PUBCOMB.pep:	_6/ptodata/2/pubpaa/US10B_PUBCOMB.	n2_6/ptodata/2/pubpaa/US10A_PUBCOMB.pep:	<pre>gn2_6/ptodata/2/pubpaa/US09_NEW_PUB.pep:</pre>	/cgn2_6/ptodata/2/pubpaa/US09C_PUBCOMB.pep:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

adressing #	CO FO FOO TOF I	y C	14./	7.7	Ų
ر م	15 [[6-10-005-001-42	Я	<u>د</u> د	o	٥
Sequence 43, Appl	4 US-10-118-984-4	(,,1	14.7	219.	á
quence 43	US-09-728-721-43) (c	14.7	1219.5	ر د د
Sequence 174	0 US-09-864-921-	296		156	ω 1 6
Θ7,	4 US-10-002-974-7	Ç	9	6	35
e 7,	US-10-014-269-	G	9	1614	34
e 7, 2	2 US-10-314-506-	Ç	19.5	1614	ၗ
e 176,	0 US-09-864-921-1		5	0	32
e 83, }	US-09-864-921-E			9	31
e 188,	0 US-09-864-921-18	795		\vdash	30
e 107,	US-09-864-921-1			4994.5	29
e 55,	4 US-10-002-974-55		ω	N	28
e 55,	-50	7	63.7	N	27
4	US-10-002-974-3		ω.	N	26
e 34,	4 US-10-014-269-3	1007	ω.	№	25
nce 34,	2 US-10-314-506-		Ψ	N	24
Φ	02-974-	1013	64.1	ω	23
e 3,	4 US-10-014-269-		64.1	w	22
Sequence 3, Appli	2 US-10-314-50	013	64.1	w	21
equence 2,	US-10-240-046A-	041	64.5	w	20
e 89,	4 US-10-002-9	040	.5	4	19
equence 85,	-10-002-974-B		.5	4	18
e 61,	.2 US-10-314-5		5	4	17
Φ	-90	1040	65.7	5432	16
e 87,	.4 US-10-002-974-8			Δ	15
e 61,	-974-	1040	5	-	14
e 59,	.4 US-10-002-974-	1040	5	4	13
e 57,	.4 US-10-002-9	1040	5	5440	12
e 57,	9	1040	65.8	Α.	11
equence 65,	4 US-10-002-	0		5443	10
04,	4 US-10-002-974	1040	5	.0	9
equence 4,	-269	0	5	4	œ
equence 4, 1	12 US-10-314-506-4	040	٠	Δ	7
equence 69,	.4 US-10-002-974	040	5	4	0
e 63,	14 US-10-002-974-63	040	5	4	ر ت
equence 67,	4 US-10-002-974-6	0	65.9	44	٠.
e 2,	4 US-10-002-974-	040	Š	5448	ω
e 2,	14 US-10-014-269-2	1040	•	44	N
equence 2,	.2 US-10-314-506-	0	65.9	44	
Description	DB ID	Length D	불	Score	No.
			Query		Result
			æ		

96	2 6	94	93	92	16	90	9	89	9	98	e	8	83	82	82	08	79	7 7	3 6	75	74	73	72	71	70	6 6	χο -	3 8	n on	70,	63	62	<u>ნ</u>	60 6	лu	0 7	5	55	5 (4.	эν	5 1	50	49	48	47	46	Ç,	4	ůί	42	4.4	5
10.		10.	41	р., Н	12		14.	14.	415	418	425	425	42	429.5	30	433	43 d 33 d	2 4	4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	485	485	497	497	497	497	49	2002	5 C C	522	30.	30.	30.	30.	530.5	ວິດ	532.5	58	593	55	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	840	858	1001	8	100		99.	9	9.	1209.5	2 G	5
•	0 0		•	5.0												5. N	5.2	л () N	•		•						•		າ ດ ພ	٠	•	•		0.0	•	•	•			1 9	•	•	•	•	12.1	14.6		14.6	14.6	14.6	ν φ • •	N
1429	1429	· N	830	1424	1443	1399	1429	1429	1454	81	320	320	320	968	1016	1207	1130	1100	1 94	94	94	1034	1034	1034	1034	1034	л О ч	0 0	97	1035	1035	490	490	490	1907	1027	139	140	1121	146	155	166	719	705	705	953	953	953	953	953	07.0) 1
12	O	10	10	10	10	10	12	12	10	10	14	4	12	15	10	10	14	5 6	14	14	12	14	14	12	12	12 5) t	- 12	12	12	1	5	14	4	U	12	10	10	2 0					15	15	15	5 .	4	14	12	J	,
US-10-028-374-15	-09-931-071-2	-09-996-617-	-09-064-199-	-09-388-221-1	-09-388-	-09-388-	10-183-	-10-028-374-3	-09-388-221-10	-09-864-921-1	-10-002	-10-014-269-3	10-314-506-3	-10-066-521-2	-09-986-224-1	-09-064-199-1	-10-104-595-6	5-09-064	-10-002-974-6	-10-014	-10-314	-10-027	-10-127-516-5	-10-183	-10-132-967-5	-10-028.	101002	-10-014	10-31	-10-407-866-2	-09-965	10-295-981-2	-10-118-984-2	105-931-2	S-10-066	S-10-407-866-6	09-864-921-	09-864-921-19	161-927-	9-864-761	S-09-864-761	S-09-864-761	S-10-106-698	S-10-013	S-10-013-47	S-10-295-981-8	S-10-013-477-	S-10-118-984-	S-10-105-93	83-770 -	-09-728-374- -09-728-374-	200
Sequence 15, Appl	equence 2	nce 2,	equence 19,	equence 12,	equence 6,	equence 4,	equence	equence 3. /	quence 10	emience 172	equence 30	equence 30.	equence 30.	equence 22	equence 19	equence 16.	Sequence 6. Appli	equence 1/,	equence 6, A	equence 6,	quence 6, Appl	equence 5,	equence 5, 2	equence 18.	equence 5.	100	equence 5,	equence 5,	equence 5,	equence 24,	equence 24,	equence 26,	Sequence 26. Appl	equence 26, F	Sequence 18,	equence 68,	equence 190) i	quence 417	equence 41737,	equence 35000,	equence 6363, A	equence 22,	equence 19	equence &	equence 12	equence 8.	. Appl	equenc	quence 8, Appli	,

0	00	000	
54446	136 137 138 139 140 142 144 144 144 144	126 127 128 129 130 131 131 132 133	97 99 99 99 99 100 100 100 100 100 100 100
321.5 319.5 319.5 318 318	33 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	339.5 339.5 339.5 339.5 339.5 339.5	410.5 410.5 410.5 99.5 396.5 396.3 3 396.3 3 396.3 3 396.3 3 396.3 3 396.3 3 396.3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
 			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
659 875 875 4123 960	584 821 200 200 200 200 321 1078	712 655 655 720 720 1466	1429 14429 14739 1
_			
US-10-407-866-91 US-09-848-035-16 US-09-986-224-16 US-10-213-509-5 US-10-342-331-5	29-386 8-035- 86-224 8-721- 05-931 18-984 95-981 07-866 42-331	-10-407-866-59 -10-407-866-89 -10-298-539-2 -10-407-856-84 -10-407-866-82 -10-407-866-94 -10-407-866-94 -10-301-82-33 -10-301-82-33	US-10-183-770-15 US-10-028-392-11 US-09-864-921-170 US-10-964-749-2718 US-09-86-021-16 US-09-86-621-16 US-09-986-224-8 US-09-986-521-24 US-10-066-521-24 US-10-066-521-24 US-10-066-521-24 US-10-066-70 US-110-039-663-42 US-10-239-663-43 US-09-986-025-13 US-09-986-025-13 US-09-986-025-13 US-09-986-0266-90 US-10-127-629-2 US-10-127-629-2 US-10-127-629-2 US-10-216-645-6 US-10-216-645-2
91, 16, 16, 5,	Sequence 32446, A Sequence 2, Appli Sequence 2, Appli Sequence 11, Appl Sequence 5, Appli Sequence 5, Appli Sequence 21, Appl	equence 59, equence 88, equence 84, equence 13, equence 4, equence 4, equence 4, equence 33, equence 4, equence 68, equence 68, equence 68, equence 68,	Sequence 15, Appl Sequence 27, Appl Sequence 270, Appl Sequence 87, Appli Sequence 88, Appli Sequence 88, Appli Sequence 88, Appli Sequence 88, Appli Sequence 16, Appl Sequence 16, Appl Sequence 70, Appl Sequence 70, Appl Sequence 70, Appl Sequence 71, Appl Sequence 70, Appl Sequence 13, Appl Sequence 13, Appl Sequence 27, Appl Sequence 27, Appli Sequence 28, Appli Sequence 18, Appli Sequence 19, Appli Sequence 57, Appli Sequence 66, Appli Sequence 66, Appli Sequence 67, Appli Sequence 67, Appli Sequence 68, Appli Sequence 68, Appli Sequence 99, Appli

ALIGNMENTS

```
₽
                                                                                               δÃ
                                                                                                                                   ₽
                                                                                                                                                                      Ş
                                                                                                                                                                                                           밁
                                                                                                                                                                                                                                            8
                                                                                                                                                                                                                                                                                 B
                                                                                                                                                                                                                                                                                                                    Ş
                                                                                                                                                                                                                                                                                                                                                                                        8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    APPLICANT: Numez, Gabriel
APPLICANT: Numez, Gabriel
APPLICANT: Inobara, Nachiro
APPLICANT: Ogura, Yasunori
ITILE OF INVENTION: Modulators of NOD2 Signaling
FILE REFERENCE: UM-06984
CURRENT APPLICATION NUMBER: US/10/314,506
CURRENT FILING DATE: 2002-12-09
PRIOR APPLICATION NUMBER: 10,014,269
PRIOR FILING DATE: 2001-10-26
PRIOR FILING DATE: 2001-10-30
NUMBER OF SEQ ID NOS: 62
                                                                                                                                                                                                                                                                                                                                                                                                                           US-10-014-269-1 (1-4485) x US-10-314-506-2 (1-1040)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ; LENGTH: 1040
; TYPE: PRT
; ORGANISM: Homo sapiens
US-10-314-506-2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Query Match:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Percent Similarity:
Best Local Similarity:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Alignment Scores: Pred. No.:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RESULT 1
US-10-314-506-2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Score:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Sequence 2, Application US/10314506
Publication No. US20030175762A1
GENERAL INFORMATION:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     SOFTWARE: PatentIn version 3.1 SEQ ID NO 2
406 CAGAAGCTCATCGCGGCTGCCCAAGAAGCCCAGGCCGACAGCCCAGGCCCAAGCTGCAT 465
                                                                         346 CTCTCCCACTTGGCCAGGGCCTTCTGGACACCGTCTGGAATAAGGGTACTTGGGCCTGT 405
                                                                                                                          286 CTGTCCTGGGAGGTCCTCTCCTGGGAGGACTACGAGGCCTTCCACCTCCTGGGCCAGCCT 345
                                                                                                                                                                                                                                                                           166 GGACATTCTCCGGGTTGTGAAATGTGCTCGCAGGAGGCTTTTCAGGCACAGAGGAGCCAG 225
                                                                                                                                                                                                                                                                                                                                                                     106 ATGGGGAAGAGGGTGGTTCAGCCTCTCACGATGAGGAGGAAAGAGCAAGTGTCCTCCTC 165
                                                                                                                                                                                                  226 CIGGTCGAGCTGCTGGTCICAGGGTCCCTGGAAGGCTTCGAGAGTGTCCTGGACTGGCTG 285
                                                            81
                                                                                                                                                                                                                                                                                                                                                   1 MetGlyGluGluGlyGlySerAlaSerHisAspGluGluGluArgAlaSerValLeuLeu 20
                                                        LeuSerHisLeuAlaArgArgLeuLeuAspThrValTrpAsnLysGlyThrTrpAlaCys 100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                100.00%
100.00%
65.88%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         5448.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                Gaps:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Conservative: Mismatches:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Indels:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Length:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                1040
1040
0
```

Db	γQ	Db	Qy	Db	Qy	da	ФУ	Db	٥٧٠	Db	Qy	Db	Qy	Db	Qy	Db	Qy	Db	Qy	Db	Qy	Db	Qy	Db	. 04	Db	. Qy
661 AlaLeuLeuGhnLyshlaGluProHisAsnLeuGlnIleThrAlaAlaPheLeuAlaGly 680	2086 GCTTTGCTGCAGAAGGCCGAGACCGCACAACCTTCAGATCAGAGCAGCCTTCCTGGCAGGG 2145		2026 GCCAGGCTCCTGCCCACGATGTGCATCCAGGCCTCGGAGGGAAAGGACAGCAGCGTGGCA 2085	621 ValProProAlaLeuLeuArgHisLeuPheAsnCysGlyArgProGlyAsnSerProNet 640	1966 GTGCCACCAGCTTTGCTCAGACACCTCTTCAATTGTGGCAGGCCAGGCAACTCACCAATG 2025	601 PheLeuHisileThrPheGlnCysPhePheAlaAlaPheTyrIeuAlaLeuSerAlaAsp 620	1906 TTCCTTCACATCACTTTCCAGTGCTTCTTTGCCGCGTTCTACCTGGCACTCAGTGCTGAT 1965	581 SerLeuGlyPheLeuValArgAlaLysGlyValValProGlySerThrAlaProLeuGlu 600	1846 TCTCTTGGCTGCCTGGCCAAAGGTGTCGTGCCAGGGAGTACGGCCCCCTGGAA 1905	561 CysCysTyrValPheSerAlaGlnGlnLeuGlnAlaAlaGlnValSerProAspAspIle 580	1786 IGCIGCTACGIGITCTCAGCCCAGCAGCAGCAGCAGAGAGCTCAGCCCTGATGACATT 1845	541 ArgGlyArgLeuProThrLeuLeuHisLeuGlyArgLeuAlaLeuTrpGlyLeuGlyMet 560	1726 CGGGCCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	521 PheLeuLeuHisAlaThrProProAspSerAlaSerGlnGlyLeuGlyProSerLeuLeu 540	1666 TITCIGCIGCAIGCCACCCCCAGACTCAGCTICCCAAGGTCIGGGACCCAGTCTTCTT 1725	501 LeuGlnGluGlyGlySerProLysThrThrThrAspMetTyrLeuLeuIleLeuGlnHis 520	1606 CTGCAGGAGGGGGGGTCCCCAAAGACCACTACAGATATGTACCTGCTGATTCTGCAGCAT 1665	481 GlyLeuCysHisLeuProValPheSerTrpMetValSerLysCysHisGlnGluLeuLeu 500	1546 GSTTTGTGCCACCTGCCTGTCTTCTCATGGATGGTGTCCAAATGCCACCAGGAACTGTTG 1605	461 HisGluProGlyValAlaAspArgLeuIleArgLeuLeuGlnGluThrSerAlaLeuHis 480	1486 CATGAGCCCGGGGTGGGGACCGCCTCATCCGCCTGCTCCAAGAGACCTCAGCCCTGCAC 1545	441 GluPheAsnLeuLysGlyPheSerGluGlnGlyIleGluLeuTyrLeuArgLysArgHis 460	1426 GAGTTCAACCTCAAGGGCTTCTCTGAACAGGGCATCGAAGCTGTACCTGAGGAAGCGCCAT 1485	421 LysValValThrSerArgProAlaAlaValSerAlaPheLeuArgLysTyrIleArgThr 440	1366 AAGGIGGTGACCAGCCGTCCGGCCGCTGTGTCGGCGTTCCTCAGGAAGTACATCCGCACC 1425	401 ThrSerValGinThrLeuLeuPheAsnLeuLeuGinGlyAsnLeuLeuLySAsnAlaArg 420	1306 ACCTCTGCCAGACCCTGCTCTCAACCTTCTGCAGGCAACCTGCTGAAGAATGCCCGC 1365

Db Qy

유 성

QΥ

dg dg	Qy	Db	Qy	Дb	Qy	Дb
1021 AsnIhrFheSerLeuGluGluValAspLysLeuGlyCysArgAspThrArgLeuLeuLeu	3166 AACACTITICTCTAGAGGAGGTTGACAAGCTCGGCTGCAGGGACACCAGACTCTTGCTT	1001 GluAlaLeuGunAlaLeuGluArgAsnAspThrIleLeuGluValTrpLeuArgGly 1020	3106 GAAGCCCTCCTGCAGGCCCTTGAAAGGAATGACACCATCCTGGAAGTCTGGCTCCGAAGGG 3165	981 LysAsnSerSerLeuLysIleLeuLysLeuSerAsnAsnCysIleThrTyrLeuGlyAla 1000	3046 AAAAATTGAAGTIIGAAAATCCIGAAGTIGTCCAATAACTGCATCACCTACCTAGGGGCA 3105	
rgAspThrArgLeuLeuLeu	GGGACACCAGACTCTTGCTT	euGluValTrpLeuArgGly	TGGAAGTCTGGCTCCGAGGG	ysIleThrTyrLeuGlyAla	GCATCACCTACCTAGGGGCA	
1040	3225	1020	3165	1000	3105	980

Search completed: January 7, 2004, 20:49:14 Job time: 432.985 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - protein search, using frame_plus_n2p model

Run on: January 7, 2004, 19:24:31 ; Search time 65.4927 Seconds (Without alignments)
13171.439 Million cell updates/sec

Sequence: Title: Perfect score: US-10-014-269-1 8270 1 gtagacagatccaggctcac.....ataaactgttgagtcaaaac 4485

Scoring table: BLOSUM62

Xgapop 10.0, Xgapext 0.5 Ygapop 10.0, Ygapext 0.5 Egapop 6.0, Egapext 7.0 Delop 6.0, Delext 7.0

Searched: 283308 seqs, 96168682 residues

Total number of hits satisfying chosen parameters: 566616

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100%
Listing first 150 summaries

Command line parameters: -MODEL=frame+_n2p.model -DEV=xlp

Q=/cgn2_1/USPTO_spool_p/US10014269/runat_07012004_175229_24535/app_query.fasta_1

-DB-PIR_76 -QFMT-fastan -SUFFIX=rpr -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0
-WNITS-bits -START=1 -END=-1 -MATRIX=blosum62 -TRAMS=human40.cdi -LIST=50
-DOCALIGN=200 -THR_SORRE-pot -THR_MSA-100 -THR_MIN-=0 -ALIGN=50 -MODE=LOCAL
-DUFFMT-ptc -MORN=akt -HEAPSIZE=500 -MINLEN=0 -KAXLEN=200000000
-USER=US10014269 @CGN 1_224 @rumat_07012004_175229_24555 -NCPU=6 -ICPU=3
-NO_MAP -LARGEQUERY -NEG_SORES=0 -MAIT -DSPELOCK=100 -LONGLOG
-DEV_TIMEOUT=120 -MARN_TICEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPEXT=7
-FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database : PIR_76:+ 1: pir1:+ 2: pir2:+ 3: pir3:+ 4: pir4:+

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

																																																		**1	
a			Ω						O	a				a	Q		O	a	•	7		C		O	Ω	Ω	'n		O	•	a c) (0		O	a		(ם מ	O		(3 (3 (0					Result	
(J)	52	51	50	49	48	47	46	45	44	ω.	42	41	40	39	38	37	36	ω G	ω .) L	ې د	2 6	2 0	3 K	2	26	25	24	23	22	21	2 4	ο α	. 17	9	15	14	3 1	3 F	. 10	w	ω,) د	5 C	n as	w	2	۳.	o.	LLt	
258.5	258.5	258.5	258.5	262	262.5	263	263	263.5	264	264.5	270	270	271	271.5	271.5	271.5	274	275	276	279.5	107 CBC	0.107	2 2 2 2	282	286.5	286,5	287	287.5	287.5	289	290	201 5	2 2	294.5	300.5	301	301.5	303	305	3 2	31	312.5	٠ د د	2 2 3 5 5	337	365.5	393.5	433	Score		
3.1	3.1	3	3.1	3.2	3.2	3.2	3.2	3.2	•	•	ω ω			ω	•	•	•	•				ں د عبد	٠					ა ა	•				ນຸດ				•			٠	•	ა. გ		•	ه د د ر		4.8	5.2		% Query	
42	1806	0	1492	4	40	99	æ	49	on .	8	യ	4.	C)	æί	-	-	9	•	1453	P +	- u) C	4 (0	1	1418	æ	J	ത	8	1690	1071	1 / / 9	1049	1049	υp	1691	σ,	0 0	ı σ	æ	1464	1464	JU	n on	 3	1192	1130	Length		
N		N	Ν	H	_	,	μ,	ш	ν,	→ 1	N	N	N	N	2	N	ν.	-	N I	٠,		۰,		, μ	· 1/2	N	N	H	ь,	N	t-	ـر د	سر د	. ,	μ.	۳		⊢ ∧	ა -		N	N 1) F	٦ ,	, ₁	N	N	Ν	B		
S18803	CGHU1E	S16366	A:40333	CGCHIS	뎚	CGMS 4B	CCHUSC	CGHU2V	T31611	CGHUIV	B41182	m, 1	A31857	B41182	A41182	T45467	I49607	CGCHIS	521626	CCHICE	GIORES	COHOTE	ASABAS	CGRT1S	T13049	T45467	I50694	сснизв	CGHU2S	I50694	CGHUIB	20009	CGB018	CGBO7S	CGB07S	CGHU2V	S22917	CGHU7L	25/8/0 20/8/10	CCHUIS	JQ0317	559856	7.00 P. P.	243201	CGHU7L	A59000	7	4884	Ω		
alpha 1 (collagen alpha 1(X		en	gen a	en alpha 1 (lagen a	ollagen alpha 1	lagen alpha 2(othetical pro	ollagen alpha 1(lagen alpha 14	llagen alpha	bonuclease inhi	lagen alpha 17	ollagen alpha id	ollagen alpha 1(ocollagen type	ollagen alpha 1	llagen alpha 1	oliamen adule o	llagen alpha	ortagen arbua i	ollagen alpha 1	ollagen alpha 1	lid - fruit fl	en alpha	ollagen alpha 1 (llagen a	llagen alpha 2(ollagen alpha	ollagen alpha 2(ollagen alpha i(llagen a	llagen alpha 1	ollagen alpha 2(llagen alph	collagen alpha 1(T	FI protein -	lagen alpha 1(pothetical 82K	collagen alpha 1(I	מוקום רו	lagen alpha 10	lagen alpha 1(otein (im	hetical prot	MHC class II trans	scription		

00 000	, იი ი იი	0 000 0	0 0	ი ი ი
98 99 100 101 102 103 104 105 106 107 108 109	91 92 93 94 95 97	77 78 79 80 81 82 83 83 85	777777777777777777777777777777777777777	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
234.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23	2 22 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	240.5 239.5 239.5 239.5 239.5 238.5 238.5 238.2 238.2 238.2 238.2 238.2 238.2 238.2	248.5 248.5 247.5 246.5 244.5 242.2 242.2 242.2 241.5	258 257 256.5 256.5 255.5 255.5 259.5 259.5 259.5 259.5
7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	× × × × × × × × × × × × × × × × × × ×			
1758 1691 1669 456 1707 754 920 1585 3198 825 825 1774	461 1344 13288 1446 1763 1106 1106 1759 1712	15467 15466 15499 1460 1460 1427 1428 1758	13573 1603 1603 1356 1357 1357 1357 1357 1357 1357	1492 1779 1843 1669 1838 888 1691 2715 2715 1486
0 N N N N N N N N N P P N		N N N N N N H N N H N		
T29350 CGHU6B CGMS4B CGMS4B S20597 \$33526 \$55267 \$31571 \$11 \$143426 \$43426 \$43426 \$43426 \$43426 \$433526	A31858 A35175 P03099 A45344 S16366 S16366 JQ00405 JQ00	CGHUZE CGHUZE A45748 I48103 EDBEIF A44112 I48103 I708852 I708852 I708852 I708853	A33291 S23810 S23810 S34493 G4U38 G4U2S T729265 T729265 T703455 T703455 A34254 A34254 C6CH2S	A40333 CGB01S S16803 CGHU4B CGHU1V 528791 713049 QQBE3 920810 940333 940333
hypothetical protecollagen alpha 6(I collagen alpha 1(I ribonuclesse inhib collagen alpha 2(I collagen alpha 5(I collagen alpha 5(I collagen alpha 1(V hypothetical protecollagen alpha 2 f DNA-binding protei collagen alpha 1(X collagen alpha 1(X collagen alpha 1(X collagen alpha 1(X collagen alpha 1(X) collagen alpha 1(X)	ribonuclease-angio mucin 1 precursor, mucin 1 precursor, mucin, submaxillar immediate-early pr collagen alpha 2 (I hypothetical 119.5 hypothetical 119.5 collagen alpha 2 (I collagen alpha 1 (I	procollagen type V collagen alpha 2(X collagen alpha 1(V type VII collagen immediate-early pr spidroin 2, dragli type VII collagen lustrin A - Califo hypothetical prote collagen alpha 2(I hypothetical prote	collagen alpha 2(I collagen alpha 1(X collagen alpha 1(I collagen alpha 1(I collagen alpha 2(I collagen alpha 2(I hypothetical prote ALR protein - huma ALR protein - huma collagen alpha 1(V collagen alpha 1(V collagen alpha 2(I	collagen alpha 1'(collagen alpha 1 (/ collagen alpha 1 (// eyelid - fruit fly BHLF1 protein - hu collagen alpha 1 (// collagen alpha 1 (// collagen alpha 1 (// collagen alpha 1 (// collagen alpha 1 (/// collagen alpha 1 (//// collagen alpha 1 (//// collagen alpha 1 (///////// collagen alpha 1 (///////////////////////////////////
	c 145 c 146 117 c 148 c 149 c 150 150 Search c	0 135 0 135 136 1 136 0 139 0 141 0 142 143	123 124 125 126 127 0 128 0 129 0 131 132	111 112 0 1114 0 1115 0 1116 0 1117 0 1119 0 1120
	c 145 212.5 2.6 1 c 146 212.5 2.6 2 147 212 2.6 c 148 211.5 2.6 1 c 149 211 2.6 3 150 211 2.6 3 Search completed: January Job time: 478.493 secs	215.5 214.5 214.5 214.5 214.5 213.5 213.5 213.5 213.5 213.5	218.5 218.5 218.5 218 218 218 218 218 217 217 217 217 217.5 216.5 215.5	226 226 223.5 223.5 222.2 222.2 222.2 222.2 222.2 222.2 222.2 222.2 222.2 222.2 222.3
	2.66 2.66 2.66 2.66 2.66 2.66 2.66	α		
	. ry 2, 1, 2, 1		211 1 2 1	

agen		3	מ	3
		30	o	211
h4 - mouse		44	.6 1	211.5
mediate-early p		25		212
/-acid synth		96	.6	212.5
otein -		74	.6 1	212.5
ical prot		3	.00	212.5
28C1.3 [3	.0	212.5
e-early p		00	.6 1	213
cal pr		75	.6 1	213
collagen alpha 1(I		3	o	213.5
lpha		20	.6	213.5
- huma		84	.6 1	214
ecurso		44	.6	214.5
lpha 2		ဌဌ	.0	214.5
lpha 2		35	Ġ	215
collagen alpha 1(I		21	'n	215.5
-		Ω.	o	215.5
tein -		21	.6	216.5
III hi		72	.6 1	216.5
III hi		70	.6 1	217
-activ		$\frac{\omega}{\omega}$	'n	217
udT	1 CGHU2B	12	2.7 17	218
lpha		44	'n	218
ılpha 2		77		218
al p		32	0	218.5
pothetical p		68	. 7	221
omplex-asso		90	.7	221
C class III		42	.7 2	221.5
alpha 2(64	.7	221.5
activ		35	.7	221.5
alpha 3(52	.7 1	222
GF6 protein - r		74	.7 1	222
agen alpha 1(71	. 7	222
diate-early		46	.7 1	222.5
ollagen alpha 1		24	.7 1	223
alpha		27	.7 1	223.5
lagen alpha 1(24	.7 1	225
thetical pro		,	.7 1	226
lagen				

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

Database: SwissProt_41:* Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.
-DB-SwissProt_41 -QFMT=fastan -SUFFIX=rsp -MINMATCH=0.1 -LOOPELT=0 -LOOPEXT=0 -NITS=bits -START=1 -END=-1 -MATRIX=bibsum62 -TRANS=human40.ddi -LISS=150 -COCALIGN=200 -THR_SCORE=pot -THR_MX=100 -THR_MIN=0 -MALIGN=50 -MODE=LOCALI -QUTFMT=ptc -NORM=ext -HBAPSIZE=500 -MINLEN=0 -MAXLEX=2000000000 -USER=US10014269 @CGN 1 1 97 @runat 07012004 175229 24504 -NCPU=6 -ICPU=3 -NO_MMAP -LARGEQUERY -NEG_SCORES=0 "MAIT -DSPELOCK=100 -LONGLOG -DEV_TIMEOUT=120 -WANY_TIMEOUT=20 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -TGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7
Command line parameters: -MODEL-frame+_n2p.model -DEV=x1p -PODEL-frame+_n2p.model -DEV=x1p -Q=/cgn2_1/USPTO_spool_p/US10014269/runat_07012004_175229_24504/app_query.fasta_1 .9358
Post-processing: Minimum Match 0% Maximum Match 100% Listing first 150 summaries
Minimum DB seq length: 0 Maximum DB seq length: 2000000000
Total number of hits satisfying chosen parameters: 255726
Searched: 127863 seqs, 47026705 residues
Scoring table: BIOSUM62 Xgappp 10.0 , Xgappaxt 0.5 Ygappp 10.0 , Ygappaxt 0.5 Fgappp 6.0 , Fgappaxt 7.0 Delop 6.0 , Delext 7.0
Title: US-10-014-269-1 Perfect score: 8270 Sequence: 1 gtagacagatccaggctcacataaactgttgagtcaaaac 4485
Run on: January 7, 2004, 19:24:01 ; Search time 34.7461 Seconds (without alignments) 12140.333 Million cell updates/sec
OM nucleic - protein search, using frame_plus_n2p model

Result Query
No. Score Match Length DB ID

Description

1946 50.9 1040 1 CARF HyMAN Q9hc29 bomo sapien
0.7 10201 CARF HUMAN 0.7 10202 CARF HUMAN 2.8 953 1 CAR4 MOUSE 2.8 1062 1 PYA7 HUMAN 2.5 11103 1 CISI MOUSE 2.8 11003 1 CISI MOUSE 2.8 11103 1 CISI MOUSE 2.9 1 PYA5 MOUSE 2.9 1 PY
0.7 10200 1 CARF HUMAN 0.7 10201 CARF MOUSE 4.6 953 1 CARF MOUSE 4.6 953 1 CARF MOUSE 6.1 10621 PYAT HUMAN 6.4 10622 1 PYAT HUMAN 6.5 11155 1 CISI HUMAN 6.6 10334 1 CISI HUMAN 6.7 11155 1 CIRM MOUSE 6.0 1034 1 CISI HUMAN 6.1 1155 1 CIRM MOUSE 6.0 10473 1 NALL HUMAN 6.1 1155 1 CIRM MOUSE 6.0 10473 1 NALL HUMAN 6.1 1155 1 CIRM MOUSE 6.0 10473 1 NALL HUMAN 6.1 1052 1 PYAS HUMAN 6.2 1 PYAS HUMAN 6.3 1062 1 NALZ HUMAN 6.4 1 PYAS HUMAN 6.5 1062 1 NALZ HUMAN 6.6 1 CALI HUMAN 6.7 864 1 PYAS HUMAN 6.8 1111 1 MATE MOUSE 6.9 1464 1 CALI HUMAN 6.9 1 PYAS H
0.7 10201 CARF HUMAN 0.7 10202 CARF MOUSE 4.6 953 1 CARF MOUSE 4.6 953 1 CARF MOUSE 6.1 1062 1 PYA7 HUMAN 6.4 1062 1 PYA7 HUMAN 6.5 11033 1 CISI MOUSE 6.0 1034 1 CISI HUMAN 6.1 1033 1 CISI MOUSE 6.0 1034 1 CISI HUMAN 6.1 1155 1 CZTA MOUSE 6.0 1034 1 CZTA MOUSE 6.0 10473 1 NALI HUMAN 6.1 1155 1 CZTA MOUSE 6.0 10473 1 NALI HUMAN 6.1 10473 1 NALI HUMAN 6.2 1 PYA5 HUMAN 6.3 1062 1 NALZ HUMAN 6.4 1 PYA5 HUMAN 6.5 1062 1 NALZ HUMAN 6.6 1 CALI HUMAN 6.7 990 1 PYA5 HUMAN 6.8 1062 1 PYA5 HUMAN 6.9 1111 1 NATE MOUSE 6.0 1062 1 PYA5 HUMAN 6.1 1063 1 PYA5 HUMAN 6.2 1 PYA5 HUMAN 6.3 1 PYA5 HUMAN 6.4 1 CALI HUMAN 6.5 1 CALI HUMAN 6.5 1 CALI HUMAN 6.6 1 CALI HUMAN 6.7 1063 1 PYA6 HUMAN 6.8 1062 1 PYA6 HUMAN 6.9 1063 1 PYA6 HUMAN 6.1 1063 1 CALI HUMAN 6.2 1 CALI HUMAN 6.3 1 PYA6 HUMAN 6.4 1 CALI HUMAN 6.5 1 CALI HUMAN 6.6 1 CALI HUMAN 6.7 1 1466 1 CALI HUMAN 6.8 1 CALI HUMAN 6.9 1 CALI HUMA
0.7 10201 CARF HUMAN 0.7 10202 CARF MOUSE 4.6 953 1 CARF MOUSE 4.6 953 1 CARF MOUSE 6.1 1062 1 PYAP HUMAN 6.4 1062 1 PYAP HUMAN 6.5 1033 1 CISI MOUSE 6.0 1034 1 CISI MUMAN 9594 1 CARF MOUSE 6.1 1033 1 CISI MOUSE 6.0 1034 1 CISI HUMAN 9594 1 PYAP HUMAN 9500 1 PYAP HUMAN 9500 1 PYAP HUMAN 93076 94.4 1 111 1 NALE HUMAN 9500 1 PYAP HUMAN 9504 1 PYAP PO1812 1
0.7 10201 CARF HUMAN 0.7 10202 CARF MOUSE 4.6 953 1 CAR4 MOUSE 6.1 10032 1 CISI MUMAN 6.4 1062 1 PYA7 HUMAN 6.5 11103 1 CISI MOUSE 6.0 1034 1 CISI MUMAN 6.1 1115 1 CZTA MOUSE 6.0 1047 1 NALI HUMAN 6.1 1055 1 NALI HUMAN 6.1 1062 1 NALI HUMAN 6.2 1062 1 NALI HUMAN 6.3 1062 1 NALI HUMAN 6.4 1062 1 NALI HUMAN 6.5 1062 1 NALI HUMAN 6.6 1062 1 NALI HUMAN 6.7 854 1 PYA5 HUMAN 6.8 1062 1 NALI HUMAN 6.9 10 PYA5 HUMAN 6.9 10 POA15 HUMAN 6.9 1
0.7 10201 CARF HUMAN 0.7 10201 CARF MOUSE 4.6 953 1 CAR4 MOUSE 4.6 953 1 CAR4 MOUSE 6.1 10621 PYA7 HUMAN 6.4 10621 PYA7 HUMAN 6.5 11033 1 CISI MOUSE 6.0 1034 1 CISI MOUSE 6.0 1034 1 CISI MOUSE 6.1 11155 1 C2TA MOUSE 6.2 1130 1 PYA5 HUMAN 6.3 1 PYA5 HUMAN 6.4 1 PYA5 RAT 6.6 1062 1 NALE HUMAN 6.6 1 VALE HUMAN 6.7 960 1 PYA5 HUMAN 6.8 1062 1 WAZE HUMAN 6.9 1 PYA5
0.7 10201 CARF HUMAN 0.7 10201 CARF MOUSE 0.8 953 1 CAR4 MOUSE 0.8 953 1 CAR4 MOUSE 0.8 953 1 CAR4 MOUSE 0.9 953 1 CAR4 MOUSE 0.1 1021 PYA7 HUMAN 0.1 1021 PYA7 HUMAN 0.1 1155 1 C2TA MOUSE 0.1 1155 1 CAL1 MOUSE 0.1 1156 1 CAL1 MOUSE 0.1 1157 1 CA
0.7 10201 CARF HUMAN 0.7 10202 CARF MOUSE 2.8 953 1 CARM MOUSE 2.8 1062 1 PYA7 HUMAN 2.8 1062 1 PYA7 HUMAN 2.8 1033 1 CISI HUMAN 2.8 1043 1 NALL HUMAN 2.8 1043 1 PYA5 HUMAN 2.8 1062 1 PYA5 HUMAN 2.8 1063
0.7 10200 1 CARF HUMAN 0.7 10200 1 CARF HUMAN 0.7 10200 1 CARF MOUSE 4.6 953 1 CAR4 MUMAN 2953 1 CAR4 HUMAN 2953 1 CAR4 HUMAN 2953 1 CAR4 HUMAN 2953 1 CAR4 HUMAN 29523 1 CONTROLLED 2953 1 CAR4 HUMAN 29523 1 CONTROLLED 2953 1 CAR4 HUMAN 29524 1 PYAF HUMAN 29524 1 PYAF HUMAN 29526 1 CAR4 HUMAN 29527 1 CAR4 HUMAN 29526 1 CAR4 HUMAN 29526 1 CAR4 HUMAN 29526 1 CAR4 HUMAN 29526 1 CAR4 HUMAN 29527 1 CAR4 HUMAN 29527 1 CAR4 HUMAN 29528 1 CAR4 HUMAN 29528 1 CAR4 HUMAN 29528 1 CAR4 HUMAN 29526
0.7 1020 1 CARF HUMAN 0.7 1020 1 CARF HUMAN 0.8 953 1 CAR4 MOUSE 0.8 953 1 CAR4 MOUSE 0.8 953 1 CAR4 MOUSE 0.9 953 1 CAR4 MUMAN 0.9 953 1 CAR4 HUMAN 0.9 953 1 CAR4 HUMAN 0.9 953 1 CAR4 HUMAN 0.9 953 1 CISI HUMAN 0.9 954 1 PYAF HUMAN 0.9 957 6 MOUSE 0.9 960 1 PYAF HUMAN 0.9 960 1 PY
0.7 1020 1 CARF HUMAN (29hc29 home) 0.7 1020 1 CARF HUMAN (29hc29 home) 4.6 953 1 CAR4 HUMAN (29c20 mus) 4.6 953 1 CAR4 HUMAN (29c23 home) 6.1 1023 1 CISI MUNAN (29c20 home) 6.2 1110 1 CZTA MUNAN (29c20 home) 6.3 1020 1 NALE HUMAN (29c20 home) 6.4 1 PYAS MUNUSE (29c40 home) 6.6 1062 1 WATE MUNAN (29c20 home) 6.7 1020 1 MATE HUMAN (29c20 home) 6.8 1012 1 PYAS MUNUSE (29c40 home) 6.9 1463 1 CALI MUNAN (29c20 home) 6.9 1463 1 CALI MUNAN (29c20 home) 6.1 1111 1 MATE HUMAN (29c20 home) 6.2 12 12 12 12 12 12 12 12 12 12 12 12 12
0.7 1020 1 CARF HUMAN (29hc29 home) 0.7 1020 1 CARF HUMAN (29hc29 home) 4.6 953 1 CAR4 HUMAN (29k230 mus) 4.6 953 1 CAR4 HUMAN (29y23) home 6.1 1023 1 CISI MOUSE 6.0 1034 1 CISI MOUSE 6.1 1033 1 CISI MOUSE 6.1 1033 1 CISI MOUSE 6.2 1110 1 CZTA HUMAN (29k26) home 5.2 1110 1 CZTA HUMAN (29k27) home 5.1 1155 1 CZTA MOUSE 6.0 1034 1 PYA5 HUMAN (29k27) home 6.1 1035 1 RATI HUMAN (29k27) home 6.2 1 NALI HUMAN (29k27) home 6.3 1062 1 NALI HUMAN (29k27) home 6.4 1 PYA5 HUMAN (29k27) home 6.5 1062 1 NALI HUMAN (29k27) home 6.6 1062 1 NALI HUMAN (29k27) home 6.6 1062 1 NALI HUMAN (29k27) home 6.7 1046 1 CALI MOUSE (29k482 mus) 6.8 10464 1 PYA5 MOUSE (29k482 mus) 6.9 10464 1 CALI MOUSE (29k482 mus) 6.1 10464 1 CALI HUMAN (29k27) home 6.1 10464 1 CALI HUMAN (29k27) home 6.2 1 RATI HUMAN (29k27) home 6.3 10464 1 CALI HUMAN (29k27) home 6.4 1 PYA5 MOUSE (29k482 mus) 6.6 1 YAUZ XANCOV (29k472 home) 6.7 1046 1 CALI HUMAN (29k27) home 6.8 10464 1 CALI HUMAN (29k27) home 6.9 10465 1 CALI HUMAN (29k27) home 6.9 10466 1 CALI HUMAN (29k27) home 6.1 1046 1 CALI HUMAN (29k27) home 6.1 1046 1 CALI HUMAN (29k27) home 6.2 1046 1 CALI HUMAN (29k27) home 6.2 1046 1 CALI HUMAN (29k27) home 6.2 1046 1 CALI HUMAN (29k27) home 6.1 1046 1 CALI HUMAN (29k27) home 6.2 1046 1 CALI HUMAN (29k27) home 6.1 1046 1 CALI HUMAN (29k27) home 6.2 1046 1 CALI HUM
5.9 1040 1 CARF HUMAN (29hc.29 home) 0.7 1020 1 CARF MOUSE 4.6 953 1 CAR4 HUMAN (29c.20 home) 4.6 953 1 CAR4 HUMAN (29c.23 home) 6.4 1062 1 PYAN HUMAN (29c.23 home) 6.1 1033 1 CISI HUMAN (29c.23 home) 6.2 1110 1 CATA HUMAN (29c.23 home) 6.3 1473 1 NALL HUMAN (29c.23 home) 6.4 894 1 PYAS HUMAN (29c.23 home) 6.5 1 1155 1 CATA HUMAN (29c.23 home) 6.6 1 1062 1 NALL HUMAN (29c.23 home) 6.7 1980 1 PYAS HUMAN (29c.23 home) 6.8 1111 1 MATE HOUSE (29c.24 home) 6.9 1 PYAS HUMAN (29c.24 home) 6.1 1031 1 CALI HUMAN (29c.24 home) 6.2 1 PYAS HUMAN (29c.24 home) 6.3 1 1260 1 MATE HUMAN (29c.24 home) 6.4 892 1 PYAS HUMAN (29c.24 home) 6.5 1 1111 1 MATE HUMAN (29c.24 home) 6.6 1 CALI HUMAN (29c.24 home) 6.7 1466 1 CALI HUMAN (29c.24 home) 6.8 1262 1 CALI HUMAN (29c.25 home) 6.9 1453 1 CALI HUMAN (29c.25 home) 6.9 1453 1 CALI HUMAN (29c.25 home) 6.9 1454 1 CALI HUMAN (29c.25 home) 6.1 1033 1 PYAS HUMAN (29c.25 home) 6.2 1418 1 CALI HUMAN (29c.25 home) 6.3 1616 1 CALI HUMAN (29c.25 home) 6.4 1262 1 CALI HUMAN (29c.25 home) 6.5 1418 1 CALI HUMAN (29c.25 home) 6.6 1 CALI HUMAN (29c.25 home) 6.5 1262 1 CALI HUMAN (29c.25 home)
0.7 1020 1 CARF HUMAN C9Hc29 home 0.7 1020 1 CARF MUMAN C9Hc29 home 0.7 1020 1 CARF MUMAN C9Hc29 home 0.7 1020 1 CARF MUMAN C9Hc29 home 0.4 6 1062 1 PYAT HUMAN P59046 home 0.4 6 1062 1 PYAT HUMAN P59046 home 0.5 2 1130 1 CISI HUMAN P59046 home 0.5 2 1130 1 PYAT HUMAN P59047 home 0.5 2 1130 1 PYAT HUMAN P59044 home 0.5 2 1130 1 PYAT HUMAN P59044 home 0.5 2 1130 1 PYAT HUMAN P59044 home 0.5 2 1130 1 PYAT HUMAN P59046 home 0.5 2 1130 1 PYAT HUMAN P59045 home 0.
0.7 10201 CARF HUMAN 0.7 10202 CART HUMAN 0.8 953 1 CAR4 HUMAN 0.8 953 1 CAR4 HUMAN 0.9 953 1 CISI HUMAN 0.9 959 1 CARA HUMAN 0.9 959 1 CARA HUMAN 0.9 959 1 CARA HUMAN 0.9 950 1 PYAS HUMAN 0.9 960 1
0.7 1020 1 CARF HUMAN (95hc29 0.7 1020 1 CARF MUMAN (98320 4.6 953 1 CAR4 HUMAN (98320 4.6 953 1 CAR4 HUMAN (98320 6.1 1033 1 CISI_MOUSE (98746 6.1 1033 1 CISI_MOUSE (98762) 6.0 1034 1 CISI_MOUSE (98762) 6.1 1155 1 CZTA_MOUSE (98762) 6.1 1155 1 CZTA_MOUSE (98762) 6.1 1155 1 CZTA_MOUSE (98762) 6.2 1 NAL1_HUMAN (996m.94 6.3 19473 1 NAL1_HUMAN (996m.94 6.4 1942 1 PYA5_HUMAN (996m.94 6.6 1062 1 NAL2_HUMAN (996m.94 6.7 960 1 NAL2_HUMAN (996m.94 6.8 1062 1 NAL2_HUMAN (996m.94 6.9 1062 1 NAL2_HUMAN (996m.94 6.1 1166 1 CAL1_HUMAN (996m.95 6.1 1166 1 CAL1_HUMAN (996m.96 6.1 1166 1 CAL1_HUMAN (996m.95 6.1 1166 1 CAL1_HUMAN (996m
0.7 1020 1 CARF HUMAN (29hc29 0.7 1020 1 CARF MOUSE (28h3) 4.6 953 1 CAR4 HUMAN (29y239 4.6 953 1 CAR4 HUMAN (29y239 4.6 953 1 CAR4 HUMAN (29y239 6.1 1033 1 CISI HUMAN (29y239 6.1 1033 1 CISI HUMAN (29h20) 6.1 1033 1 CISI HUMAN (29h20) 6.2 1135 1 CZTA HUMAN (29h20) 6.3 1473 1 NALL HUMAN (29h20) 6.4 1473 1 NALL HUMAN (29h20) 6.5 1473 1 NALL HUMAN (29h20) 6.6 1062 1 NALL HUMAN (29h20) 6.7 890 1 PYA5 HUMAN (29h20) 6.8 1473 1 NALL HUMAN (29h20) 6.9 1045 1 PYA5 HUMAN (29h20) 6.9 1045 1 CALI HUMAN (29h20) 6.9 1046 1 CALI HUMAN (29h20) 6.9 1049 1 CALI HUMAN (29h20) 6.9 1
5.5.9 1040 1 CARF HUMAN (29hc29 0.7 1020 1 CARF MOUSE (28k3) 4.6 953 1 CAR4 HUMAN (29k23) 6.4 1062 1 PYAT HUMAN (29k26) 6.1 1033 1 CISI HUMAN (29k26) 6.1 1033 1 CISI HUMAN (29k26) 6.1 1033 1 CISI HUMAN (29k26) 6.1 1155 1 CZTA HUMAN (29k26) 5.1 1155 1 CZTA HUMAN (29k26) 5.1 1155 1 CZTA HUMAN (29k26) 6.1 10473 1 NALL HUMAN (29k26) 6.1 10473 1 NALL HUMAN (29k26) 6.2 10473 1 NALL HUMAN (29k26) 6.3 10473 1 NALL HUMAN (29k26) 6.4 1062 1 NALL HUMAN (29k26) 6.5 10473 1 NALL HUMAN (29k26) 6.6 1062 1 PYAS HUMAN (29k26) 6.7 980 1 PYAS HUMAN (29k26) 6.8 2 1 PYAS HUMAN (29k26) 6.9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0.7 1020 1 CARF HUMAN (29hc29 0.7 1020 1 CARF MUMAN (29hc29 4.6 953 1 CAR4 HUMAN (29hc29 4.6 953 1 CAR4 HUMAN (29hc29 6.4 1062 1 PYAT HUMAN (29hc20 6.1 1033 1 CISI HUMAN (29hc20 6.1 1033 1 CISI HUMAN (29hc20 5.2 1130 1 CZTA HUMAN (29hc20 5.2 1130 1 CZTA HUMAN (29hc20 5.3 1473 1 NALI HUMAN (29hc20 5.4 1945 1 NALI HUMAN (29hc20 4.7 960 1 PYAS HUMAN (29hc20 4.7 980 1 PYAS HUMAN (29hc20 4.4 1111 1 MATE HUMAN (29hc20 4.5 1042 1 PYAS HUMAN (29hc20 5.0 1464 1 CAL3 HUMAN (29hc20 5.0
0.7 1020 1 CARF HUMAN (95hc29) 0.7 1020 1 CARF MUMAN (98h30) 4.6 953 1 CAR4 HUMAN (98h30) 6.4 1062 1 PYAT HUMAN (959c3) 6.6.1 1033 1 CISI_MOUSE (98r46) 6.1 1033 1 CISI_MOUSE (98r46) 6.1 1033 1 CISI_MOUSE (98r46) 6.1 1033 1 CISI_MOUSE (98r66) 6.1 1155 1 CZTA_HUMAN (996c) 6.2 1110 1 CZTA_HUMAN (996c) 6.3 1155 1 CZTA_HUMAN (996c) 6.4 1 PYA5_RAT (966) 6.6 1062 1 NAL1_HUMAN (996c) 6.7 980 1 PYA3_HUMAN (996c) 6.8 1062 1 NAL2_HUMAN (996c) 6.9 1062 1 NATE_MOUSE (996c) 6.9 1062 1 NATE_MOUSE (996c) 6.1 1063 1 CAL1_HUMAN (996c) 6.2 1 NATE_MOUSE (996c) 6.3 1066 1 YAL1_EBV (906c) 6.4 1 PYA5 NAVGV P14728 6.5 1066 1 YAL1_CANFA (906c) 6.6 1 CAL1_HUMAN (950d) 6.7 1466 1 CAL1_HUMAN (950d) 6.8 1660 1 YHL1_EBV (906c) 6.9 10660 1 YHL1_CANFA (906c) 6.9 10660 1 CAL1_CANFA (906c) 6.1 CAL1_CANFA (906c) 6.2 1 CAL1_CANFA (906c) 6.3 1 CAL1_CANFA (906c) 6.4 1003 1 CAL1_CANFA (906c) 6.5 1003 1 CAL1_CANFA (906c) 6.6 1 CAL1_CANFA (906c)
5.9 1040 1 CARF HUMAN (25hc29 0.7 1020 1 CARF MOUSE (28h3) 4.6 953 1 CAR4 HUMAN (29y239 4.6 953 1 CAR4 HUMAN (29y239 6.4 1062 1 PYAN HUMAN (29y239 6.1 1033 1 CISI HUMAN (29k466 6.1 1033 1 CISI HUMAN (29k4666) 6.1 1033 1 CZTA HUMAN (29k2666) 6.1 1033 1 PYA5 RAT (29k2666) 6.1 1033 1 PYA5 RAT (29k2666) 6.1 1033 1 PYA5 HUMAN (29k2666) 6.1 1043 1 NALL HUMAN (29k2666) 6.1 1052 1 PYA5 HUMAN (29k2666) 6.2 1044 1 PYA5 HUMAN (29k2666) 6.3 1046 1 CALI HUMAN (29k2666) 6.4 1042 1 PYA5 HUMAN (29k2666) 6.5 1046 1 CALI HUMAN (29k2666) 6.6 1046 1 CALI HUMAN (29k2666) 6.7 1046 1 CALI HUMAN (29k2666) 6.8 1046 1 YAVZ YANGV (29k2666) 6.9 1046 1 CALI HUMAN (29k2666) 6.1 1033 1 PYA6 H
5.9 1040 1 CARF HUMAN (29hc29 0.7 1020 1 CARF MOUSE (28h3) 4.6 953 1 CAR4 HUMAN (29y239 4.6 953 1 CAR4 HUMAN (29y239 6.4 1062 1 PYAN HUMAN (29y239 6.1 1033 1 CISI HUMAN (296p20 6.1 1033 1 CISI HUMAN (296p20 7.1 1155 1 CZTA MOUSE (296p20 7.1 1155 1 CZTA MOUSE (296p20 7.1 1155 1 CZTA HUMAN (296m2) 7.1 1155 1 CZTA HUMAN (296m2) 7.1 1155 1 CZTA HUMAN (296m2) 7.2 1370 1 NALI HUMAN (296m2) 7.3 1073 1 NALI HUMAN (296m2) 7.4 892 1 PYAS HUMAN (296m2) 7.5 1073 1 NALI HUMAN (296m2) 7.6 1062 1 NALI HUMAN (296m2) 7.7 990 1 PYAS HUMAN (296m2) 7.8 1111 1 MATE MOUSE (291m2) 7.8 1200 1 MATE MOUSE (291m2) 7.8 1200 1 MATE HUMAN (292m2) 7.8 1200 1 MATE HUMAN (292m2) 7.8 1200 1 MATE HUMAN (292m2) 7.9 1453 1 CALI MOUSE (291m2) 7.9 1454 1 CALI MOUSE (291m2) 7.9 14728 7.9 14728
5.9 1040 1 CARF HUMAN (29hc29 0.7 1020 1 CARF MOUSE (28h3) 4.6 953 1 CAR4 HUMAN (29h239 4.6 953 1 CAR4 HUMAN (29h239 6.4 1062 1 PYAT HUMAN (29h26) 6.1 1033 1 CISI HUMAN (29h26) 6.0 1034 1 CISI HUMAN (29h26) 5.0 1130 1 CZTA HUMAN (29h26) 5.1 1155 1 CZTA HUMAN (29h26) 5.1 1155 1 CZTA HUMAN (29h26) 5.1 1155 1 CZTA HUMAN (29h26) 6.1 1033 1 FYA5 RAT (29h26) 4.4 994 1 NALE HUMAN (29h26) 4.7 980 1 PYA5 HUMAN (29h26) 4.7 980 1 PYA5 HUMAN (29h26) 4.4 1111 1 MATE HUMAN (29h26) 4.4 1111 1 MATE HUMAN (29h26) 4.4 843 1 PYA5 HUMAN (29h26) 4.4 1111 1 MATE HUMAN (29h26) 4.4 1111 1 MATE HUMAN (29h26) 4.5 994 1 CAL1 HUMAN (29h26) 4.6 1062 1 PYA5 HUMAN (29h26) 4.7 980 1 PYA5 HUMAN (29h26) 5.0 1466 1 CAL1 HUMAN (29h26) 6.0 1472 1
0.7 1020 1 CARF HUMAN (29hc29 0.7 1020 1 CARF MUSE (08h3) 4.6 953 1 CAR4 HUMAN (29hc29 4.6 953 1 CAR4 HUMAN (29hc20 6.4 1062 1 PYA7 HUMAN (29hc20 6.1 1033 1 CISI_MOUSE (29hc20 6.1 1033 1 CISI_MOUSE (29hc20 6.1 1033 1 CISI_MOUSE (29hc20 6.1 1033 1 CISI_MOUSE (29hc20 6.1 1155 1 CZTA_HUMAN (29hc20 5.2 1110 1 CZTA_HUMAN (29hc20 5.1 1155 1 CZTA_HUMAN (29hc20 6.6 1062 1 NALE HUMAN (29hc20 6.7 854 1 PYA5_HUMAN (29hc20 6.8 1062 1 NALE HUMAN (29hc20 6.9 1062 1 PYA5_HUMAN (29hc20 6.9 1063 1 PYA5_HUMAN (29hc20 6.9 1
0.7 1020 1 CARF HUMAN 29hc29 0.7 1020 1 CARF MOUSE 28830 4.6 953 1 CAR4 HUMAN 29Y239 6.4 1062 1 PYAF HUMAN 29S046 6.1 1033 1 CISI HUMAN 28F4bc6 6.1 1033 1 CISI HUMAN 28F4bc6 6.0 1034 1 CISI HUMAN 28F4bc6 6.0 1034 1 CISI HUMAN 28F4bc6 6.1 1155 1 CZTA HUMAN 28F4bc6 6.1 1155 1 CZTA HUMAN 28F020 6.2 1130 1 CZTA HUMAN 296m2 6.3 1473 1 NALI HUMAN 296m2 6.4 1994 1 NALI HUMAN 296m2 6.5 1473 1 NALI HUMAN 296m2 6.6 1062 1 PYA5 HUMAN 296m2 6.7 980 1 PYA5 HUMAN 295044 6.8 994 1 NATE HUMAN 295044 6.9 1062 1 NATE HUMAN 295044 6.1 1062 1 NATE HUMAN 295044 6.4 1111 1 MATE MOUSE 295044 6.5 1062 1 CA13 HUMAN 295046 6.6 1 CA13 HUMAN 295046 6.7 1063 1 CA11 HUMAN 295046 6.8 1372 1 CA11 HUMAN 295046 6.9 1046 1 CA11 HUMAN 295046 6.1 1033 1 YANG MUMAN 295045 6.2 1033 1 YANG MUMAN 295045
5.9 1040 1 CARF HUMAN (29hc29 0.7 1020 1 CARF MOUSE (28h3) 4.6 953 1 CAR4 HUMAN (29y239 6.4 1062 1 PYAF HUMAN (29y239 6.4 1062 1 PYAF HUMAN (29y239 6.1 1033 1 CISI HUMAN (296p20 6.1 1033 1 CZTA HUMAN (296p20 6.1 1033 1 CZTA HUMAN (296p20 7.2 1130 1 CZTA HUMAN (296p20 7.2 1130 1 CZTA HUMAN (296p20 7.3 1073 1 NALL HUMAN (296p20 7.4 1155 1 CZTA HUMAN (296p20 7.5 1 1155 1 CZTA HUMAN (296p20 7.6 1062 1 NALL HUMAN (296p20 7.7 854 1 PYA5 RAT (2630354 7.7 990 1 PYA5 HUMAN (296p20 7.8 1111 1 MATE MOUSE (296p20 7.8 1111 1 MATE MOUSE (296p20 7.8 1111 1 MATE MOUSE (296p20 7.8 1166 1 CALI HUMAN (296p20 7.8 1453 1 CALI HUMAN (296p20 7.8 1454 1 CALI HUMAN (296p20 7.8
0.7 1020 1 CARF HUMAN (29hc29 0.7 1020 1 CARF MOUSE (28h3) 4.6 953 1 CAR4 HUMAN (29y239 4.6 953 1 CAR4 HUMAN (29y239 6.4 1062 1 PYAT HUMAN (29y239 6.1 1033 1 CISI HUMAN (296h20 6.1 1033 1 CISI HUMAN (296h20 6.1 1033 1 CISI HUMAN (296h20 6.1 1155 1 CZTA MOUSE (29600 6.1 1155 1 CZTA MOUSE (29100 6.1 1155 1 CZTA MOUSE (291000 6.1 1155 1 CZTA MOUSE (291000 6.1 1155 1 CZTA MOUSE (2910000 6.1 1111 1 MATE MOUSE (29100000 6.1 1111 1 MATE MOUSE (291000000000000000000000000000000000000
5.5 1040 CARF HUMAN Q2Hc29 Q8H29 Q8H24 Q8H
5.9 1040 1 CARF HUMAN (29hc29 0.7 1020 1 CARF MUMAN (29hc29 4.6 953 1 CAR4 HUMAN (29hc29 4.6 953 1 CAR4 HUMAN (29hc29 6.4 1062 1 PYA7 HUMAN (29hc20 6.1 1033 1 CISI_MOUSE (28+4b6 6.1 1033 1 CISI_MOUSE (29hc20 6.0 1034 1 CISI_HUMAN (29hc20 5.2 1110 1 CZTA_HUMAN (29hc20 5.1 1155 1 CZTA_HUMAN (29hc20 5.1 1155 1 CZTA_HUMAN (29hc20 6.1 1034 1 FYA5_RAI (29hc20 6.2 1 NAL1 HUMAN (29hc20 6.3 10473 1 NAL1 HUMAN (29hc20 6.4 1 PYA5_RAI (29hc20 6.7 864 1 PYA5_HUMAN (29hc20 6.8 1062 1 NAL2_HUMAN (29hc20 6.9 1062 1 PYA5_HUMAN (29hc20 6.9 1062 1 PYA5_
0.7 1020 1 CARF HUMAN (25hc29 0.7 1020 1 CARF MOUSE (28k3) 4.8 953 1 CAR4 MUUSE (28k3) 6.4 1062 1 PYAT HUMAN (25y23) 6.4 1062 1 PYAT HUMAN (25y23) 6.4 1062 1 CISI MOUSE (28r4ba) 6.1 1033 1 CISI MOUSE (28r4ba) 6.1 1033 1 CISI HUMAN (28r4ba) 6.0 1034 1 CISI HUMAN (296p20) 6.1 1103 1 CZTA HUMAN (296p20) 6.1 1130 1 CZTA HUMAN (296p20) 6.2 1130 1 CZTA HUMAN (296p20) 6.3 1130 1 CZTA HUMAN (296m2) 6.4 1131 1 PYAS HUMAN (296m2) 6.5 1 1155 1 CZTA HUMAN (296m2) 6.6 1 1033 1 NALI HUMAN (296m2) 6.7 980 1 PYAS HUMAN (298m3) 6.8 1 PYAS HUMAN (298m3) 6.9 1 PYAS HUMAN (298m3) 6.1 111 1 MATE MOUSE (291m3) 6.2 1 PYAS HUMAN (298m3) 6.3 1 PYAS HUMAN (298m3) 6.4 1 111 1 MATE MOUSE (291m3) 6.5 1 CALS HUMAN (298m3) 6.6 1 CALS HUMAN (298m3) 6.7 1 1033 1 CX 1 1034 1 1
0.7 1020 1 CARF HUMAN (25hc29 0.7 1020 1 CARF MOUSE (28k3) 4.6 953 1 CAR4 HUMAN (29y239 6.4 1062 1 PYAF HUMAN (29y239 6.4 1062 1 PYAF HUMAN (29k4) 6.1 1033 1 CISI HUMAN (29k4) 6.1 1033 1 CISI HUMAN (29k4) 6.2 1130 1 CZTA HUMAN (29k6) 5.2 1130 1 CZTA HUMAN (29k6) 5.2 1135 1 CZTA HUMAN (29k6) 5.1 1155 1 CZTA HUMAN (29k6) 6.1 1033 1 NALI HUMAN (29k6) 6.1 1034 1 PYAS HUMAN (29k6) 6.2 1135 1 CZTA HUMAN (29k6) 6.3 10473 1 NALI HUMAN (29k6) 6.4 1042 1 PYAS HUMAN (29k6) 6.6 1062 1 NALI HUMAN (29k6) 6.7 980 1 PYAS HUMAN (29k6) 6.8 1062 1 NALI HUMAN (29k6) 6.9 1062 1 PYAS HUMAN (29k6)
0.7 1020 1 CARF HUMAN Q9hc29 0.7 1020 1 CARF MUSE Q8830 4.6 953 1 CAR4 HUMAN 9526 4.6 953 1 CAR4 HUMAN 9526 6.4 1062 1 PYAT HUMAN 95906 6.1 1033 1 CISI HUMAN 95906 6.1 1033 1 CISI HUMAN 95907 6.1 1033 1 CISI HUMAN 9307 6.1 1135 1 CZTA HUMAN 9307 6.1 1155 1 CZTA HUMAN 979621 6.0 1062 1 NALI HUMAN 99000 6.1 1073 1 NALI HUMAN 99000 6.1 1073 1 NALI HUMAN 99000 6.2 1 1075 1 PYAS RAT 96000 6.3 1 PYAS HUMAN 99000 6.4 1 PYAS HUMAN 99000 6.5 1 1075 1 PYAS HUMAN 99000 6.7 1062 1 NALI HUMAN 99000 6.8 1 PYAS HUMAN 99000 6.9 1 PYAS HUMAN 99000
5.9 1040 1 CARF HUMAN Q9hc29 0.7 1020 1 CARF MOUSE Q88-30 4.6 953 1 CAR4 HUMAN 959-6 4.6 953 1 CAR4 HUMAN 959-6 6.4 1062 1 PYAN-HUMAN 959-0 6.4 1062 1 PYAN-HUMAN 959-0 6.1 1033 1 CISI HUMAN 959-0 6.1 1033 1 CISI HUMAN 959-0 6.1 1034 1 CISI HUMAN 959-0 6.1 1034 1 CISI HUMAN 959-0 6.0 1034 1 CISI HUMAN 930-0 6.0 1034 1 CZTA HUMAN 930-0 6.0 1034 1 CZTA HUMAN 930-0 6.0 10473 1 NALI HUMAN 959-0 6.1 1155 1 CZTA HUMAN 959-0 6.2 1130 1 CZTA HUMAN 959-0 6.3 10473 1 NALI HUMAN 959-0 6.4 1 PYAS RAT 950-0 6.5 1 1155 1 CZTA HUMAN 959-0 6.6 1 1052 1 NALI HUMAN 959-0 6.7 10473 1 NALI HUMAN 959-0 6.8 1 PYAS HUMAN 959-0 6.9 1 PYA
5.9 1040 1 CARF HUMAN (29hc29 0.7 1020 1 CARF MUMSE (28k320 4.6 953 1 CAR4 MUUSE (28bbb0 4.6 953 1 CAR4 HUMAN (29y239 6.4 1062 1 PYA7 HUMAN (29y239 6.4 1062 1 CISI_MOUSE (28k4b6 6.1 1033 1 CISI_MOUSE (28k4b6 6.1 1033 1 CISI_MOUSE (29k4b6 6.1 1033 1 CISI_MOUSE (29k2b6 6.0 1034 1 CISI_MOUSE (29k2b6 6.1 1033 1 CISI_MOUSE (29k2b6 6.0 1034 1 CISI_MOUSE (29k2b6 5.1 1155 1 CZTA_MOUSE (29k2b6 5.0 1473 1 NALI_HUMAN (29k2b6 6.0 1062 1 NAL2_HUMAN (29k2b6)
0.7 1020 1 CARF HUMAN Q8hc29 0.7 1020 1 CARF MUUSE Q88AD0 4.6 953 1 CAR4 MUUSE Q88Ab0 4.6 953 1 CAR4 HUMAN Q9y239 6.4 1062 1 PYAT HUMAN P59046 6.1 1034 1 CISI HUMAN Q96p20 6.1 1103 1 CZTA HUMAN Q96p20 6.0 1034 1 CZTA HUMAN P33076 6.1 1135 1 CZTA HUMAN P33076 5.2 1130 1 CZTA HUMAN P33076 5.2 1130 1 CZTA HUMAN P30076 5.1 1135 1 CZTA HUMAN Q96p20 6.0 10473 1 NALI HUMAN Q96m20 6.0 1473 1 NALI HUMAN Q96m20 6.0 1474 1474 1474 1474 1474 1474 1474 147
0.7 1020 1 CARF HUMAN Q8hc29 0.7 1020 1 CARF_MOUSE Q8k320 4.8 953 1 CAR4 MUMAN Q98c320 4.6 953 1 CAR4 HUMAN Q99c39 6.4 1062 1 PYA7_HUMAN P59046 6.1 1033 1 CISI_MOUSE Q8F4b8 6.0 1034 1 CISI_HUMAN Q96p20 6.1 1030 1 CZTA_HUMAN P33076 6.1 1135 1 CZTA_HUMAN Q96p20
5.9 1040 1 CARF HUMAN Q9hc29 0.7 1020 1 CARF MOUSE Q88A50 4.8 953 1 CAR4 HUMAN 95239 6.4 1062 1 PYAT HUMAN 959046 6.1 1063 1 CISI HUMAN 959046 6.1 1033 1 CISI HUMAN 959046 6.1 1033 1 CISI HUMAN 959020 5.2 1130 1 CZTA HUMAN 93076 5.1 1155 1 CZTA HUMAN 93076 5.1 1155 1 CZTA HUMAN 930076 5.1 1155 1 CZTA HUMAN 930076 5.1 1155 1 CZTA HUMAN 930076
5.9 1040 1 CARF HUMAN Q9hc29 0.7 1020 1 CARF WOUSE Q8K320 4.6 953 1 CAR4 HUMAN Q9y239 6.4 1062 1 PYAT HUMAN 95906 6.1 1033 1 CISI_MOUSE Q9x458 6.1 1033 1 CISI_HUMAN 959046 6.0 1034 1 CISI_HUMAN 959046 5.2 1130 1 CZTA_HUMAN 939076 5.3 1130 1 CZTA_HUMAN 939076 5.4 1155 1 CZTA_MOUSE P79621
5.9 1040 1 CARF HUMAN Q8hc29 0.7 1020 1 CARF_MOUSE Q8k320 4.8 953 1 CAR4 MOUSE Q8kbbo 4.6 953 1 CAR4_HUMAN Q9y239 6.4 1062 1 PYA7_HUMAN P59046 6.1 1033 1 CISI_MOUSE Q8r4b6 6.0 1034 1 CISI_HUMAN P33076
5.9 1040 1 CARF HUMAN Q8hc29 0.7 1020 1 CARF_MOUSE Q8k320 4.8 953 1 CAR4 MOUSE Q8kbb0 4.6 953 1 CAR4_HUMAN Q9y239 6.4 1062 1 PYA7_HUMAN P59046 6.1 1033 1 CISI_MOUSE Q8r4be 6.0 1034 1 CISI_HUMAN Q99b20
5.9 1040 1 CARF HUMAN Q2Hc29 0.7 1020 1 CARF_MOUSE Q8K3D0 4.8 953 1 CAR4 MUUSE Q8Bhb0 953 1 CAR4 HUMAN Q2Y239 4.4 953 1 CAR4 HUMAN Q2Y239 6.4 1062 1 PYA7_HUMAN P59046 6.1 1033 1 CISI MOUSE Q8R4MB G8R4MB GA
5.9 1040 1 CARF HUMAN Q9hc29 0.7 1020 1 CARF MOVISE Q8K320 4.6 953 1 CAR4 MOVISE Q88hb0 4.6 953 1 CAR4 HUMAN Q9y239 6.4 1062 1 PYA7 HUMAN 5590.46
5.9 1040 1 CARF HUMAN Q9hc29 0.7 1020 1 CARF MOUSE Q8K3z0 4.6 953 1 CAR4 MOUSE Q8b3b0 4.6 953 1 CAR4 MOUSE Q8bb0
5.9 1040 1 CARE_HUMAN Q9hc29 0.7 1020 1 CARE_MOUSE Q8k320
5.9 1040 1 CARF_HUMAN Q9hc29

0						n		O			o (0				U			•	n o)	O		O	Ω	O	()					O	O	•	ם						O		O				
114	113	112	111	110	0 0	107	106	105	104	103	102	100	99	86	97	9 4	94	93	92	9 6	ο α Ο Υ	8 8	87	98	85	84	8 6	8 8	08	79	78	77	75	74	73	72	70	69	89	67	y (y T	. S	62	61	o (J (J1	
25.	226.5	226.5	800	229	330 50	231	231	231.5	232	232	233.5	200.0	235	235.5	236	236.5	237	237.5	238	238.5	2 B E E	240.5	241	241.5	243.5	244	245.5	248	248.5	249.5	250	250	251.5	251.5	251.5	252	253	254.5	254.5	256.5	257	257.5	258.5	258.5	262	263	263.5	
2.7	2.7	2.7		•	•	0 00	•	•	•		00.0		•			2.	•	•		2 .	י ני טיני	•	•	2.9	•		ω . 0 0	ω ω Ο Ο	3.0	3.0	3.0		, ω , μ	3.1	3.0	ω . 1	ω . 1	3.1	3.1	ω.	ب ر با د	ى د 	ω.	3.1	3.2	2 .	υ ω υ 2	
1027	1707	1356	10	1527	1736	1003	754	1707	1691	456	1669	B C / T	1712	1024	1355	1763	1446	460	1758	1255	1 C Z	1804	744	1356	747	2003	1516	1360	1603	1366	1372	747	1685	1670	1364	1603	1362	1838	1366	1669	770	3 G	1763	1366	1453	1669	1496	
j ank	_	, ب	٠,				-	H	μ.	μ,			-	_	-	⊢ ⊢	, ,	H	ب	4 د	<u></u>	٠,	_	1	μ,	,		4	Н	μ.	- +	٠,	غبوه	۲	ь,		۰,	Ή.	⊢	4 مـــ	٠,	٠,		٢	μ.	٠,	- 1	
		8.5	SEN BAR	CAIH MOUSE		BD6	CA54_CANFA			RA S	CA14 MOUSE		CA24_HUMAN		- 1	CA19_HUMAN				MICH HIMAN	9 8	CA1B_MOUSE	CA18_RABIT		CA12_BOVIN	NTC4 HUMAN		CA18_HUMAN		CA21_HUMAN	CA21 MOUSE		CA54_HUMAN		CA21 BOVIN	CALF HIMAN		ı°.		ا ہے	CALL BOVIN	٠, ٥	4	ŗ	CA11 CHICK	CA14 MOUSE	A25	
54 rift	22	093484 proprhyrchu		P39061 mus musculu	mus i	6 homo	7	mus I	<u>-</u>	P29315 rattus norv	ں س	. 0	2 homo	4 homo	rana ca	P20849 homo sapten	psec		P17140 caenorhabdi	meputta ci	nomo sa			once	Sod	Q99466 homo sapien	FORMO MADIED	P12107 homo sapien	Q07092 homo sapien	home	001149 mus musqu'in	10.5	home	homo	P02465 bos taurus	007042 bomo sabien		homo		P02462 homo sapien	500		P27393 ascaris suu	92	P02457 gallus gall	TIOING	homo	

())	_	0	o,	_		0	0						0		0			a		o		0		o.					o		O		O	a	
ć	л ;	40	48	47	46	45	44	43	42	.41	40	.39	38	37	36	35	34	33	32	131	130	129	128	127	126	125	124	123	122	121	20	119	118	117	116	115	
(208.5	207 5	208	208	208	208.5	208.5	210	210	211	211.5	212	212	212.5	213	213.5	214.5	214.5	215	215	216.5	216.5	218	218	218	218.5	218.5	218.5	219.5	219.5	220.5	221.5	221.5	222	222.5	225	
				•	•		•	•						•			•	•					2.6								2.7						
, (1002	1001	371 B	1964	680	921	684	1669	684	5703	1403	1255	825	2167	1336	921	1324	635	689	635	2321	867	1758	1712	1402	2161	2161	911	744	743	1461	2142	1516	671	1446	911	
٠		٠,	_	₩.		_	ш		<u>, , , , , , , , , , , , , , , , , , , </u>	—	Н	<u>,</u>	\vdash	<u>, , , , , , , , , , , , , , , , , , , </u>	μ.	μ	٢	۲	۳.	1	-	1	۳		μ	μ	r									ш	
Out the state of	CHOT LINE	CANA HIMAN	TMAS MOIISE	NTC4 MOUSE	CALA HUMAN	CA19 MOUSE	CA39 HUMAN	CA14_HUMAN ·	CA39_HUMAN	MU5B_HUMAN	BIRA_MOUSE	MUC1_HUMAN	ICPO_HSV2H	SHK1_RAT	W146_HUMAN	CA19 HUMAN	IRS2_HUMAN	CA28_HUMAN	CA29_HUMAN	CA28 HUMAN	NTC3 HUMAN	SSPO_BOVIN	CA14_CAEEL	CA24 HUMAN	BIRG MOUSE	SHK1_HUMAN	SHK1_HUMAN	CALB_BOVIN	CA18 HUMAN	CA18 MOUSE	IE18 PRVIE	BAT2 HUMAN	CA1H HUMAN	CA11_RAT	IE18 PRVKA	CAIB BOVIN	
orthan nome sabren	tions sapt	=		95 വാപട സ	2 homo	22 mus m	homo	homo	homo	Q9hc84 homo sapien	mus muscul	∍	herpes	rattu	homo	homo	homo		homo	homo	homo		caen	home	mus m		homo	\$00d	7658 homo	_	pseud	8634 homo	9060 ho	2454 ra	79 pseu	80	

TATELLINE TO

```
SEQUENCE FROM N.A. (ISOFORMS 1 AND 2), VARIANTS CD THR-140; ARG-157; CYS-25; ARG-248; SER-268; SER-289; ASN-991; VAL-901; TRP-311; VAL-348; ARG-552; CYS-973; SER-414; LEU-431; VAL-432; LYS-441; VAL-612; THR-612; TRP-684; TRP-702; CYS-703; CYS-713; GLY-725; VAL-753; VAL-758; LYS-778; MET-792; LYS-943; SER-853; VAL-7665; ARG-908; ASP-924 AND TLR-955, VARIANTS ULCERATIVE COLITIS THR-140, AND THR-685, AND VARIANT MET-189.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      MEDLINE=21419644; PubMed=11528384;
Miceli-Richard C., Lesage S., Rybojad M., Prieur A.M.,
Manouvrier-Hanu S., Hafner R., Chamaillard M., Zouali H., Thomas
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Hugot J.-P., Chamaillard M., Zouali H., Lesage S., Cezard J.-P., Belaiche J., Almer S., Tysk C., O'Morain C.A., Gassull M., Binder V., Finkel Y., Cortot A., Modigliani R., Laurent-uig P., Gower-Rousseau C., Macry J., Colombel J.-F., Sahbatou M., Thomas G.; "Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease.";
                                                                                                                                                                                                                                                +
                                                                                                                                                                                                                                                                                                                                                                                                                             Hugot J.-P.;
"CARD15 mutations in Blau syndrome.";
Nat. Genet. 29:19-20(2001).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Nature 411:599-603(2001).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TISSUE=Leukocyte;
MEDLINE=21279172; PubMed=11385576;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            VARIANTS BS GLN-334; TRP-334 AND PHE-469.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         J. Biol.
disease is commonly classified as autoimmune disease. DISEASE: Defects in CARD15 are a cause of susceptibility to ulcerative colitis (MIMI:19130), a chronic inflammatory bowel disease. In ulcerative colitis, the inflammation is continuous and limited to rectal and colonic mucosal layers. Ulcerative colitis is commonly classified as autoimmune disease.
                                                                                                                                                                                                                                                                                                         lipopolysaccharides (LPS).
SUBUNIT: Binds to RICK by CARD-CARD interaction.
SUBCLULIAR LOCATION: Cytoplasmic.
ALTERNATIVE PRODUCTS:
Event=Alternative initiation;
                                                                                                                                                                                                                                                                                                                                                                                          FUNCTION: Induces NF-kappaB via RICK (CARDIAK, RIP2) and IKK-gamma. Confers responsiveness to intracellular bacterial
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         276:4812-4818(2001).
```

Ogura Y., Inchara N., Benito A., Ct "Nod2, a Nod1/Apaf-1 family member activates NF-kappaB.";

Chen F.F., Yamaoka S., er that is restricted to

to monocytes and Nunez G.;

entities requires a license agreement (See http://www.isb-sib.ch/announce/or send an email to license@isb-sib.ch).

use by non-profit institutions as long as its content is modified and this statement is not removed. Usage by and for

15 O T way

This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its

-!- SIMILARITY: Contains 1 NACHT domain.
-!- SIMILARITY: Contains 6 leucine-rich (LRR) repeats.

TISSUE=Breast; PubMed=11087742;

```
EMBL; AF178930; AAG33677.1; -.
EMBL; AF385089; AAK70867.1; -.
EMBL; AF385090; AAK70868.1; -.
EMBL; AJ303140; CAC42117.1; -.
Genew; HGNC:5331; CARD15.
MIM; 665956; -.
                                                                                                                                 INIT_MET
DOMAIN
DOMAIN
DOMAIN
NP_BIND
REPEAT
                                                                                              REPEAT
REPEAT
                                                                                                                    REPEAT
          VARIANT
                        VARIANT
                                        VARIANT
                                                       VARIANI
                                                                      VARIANT
                                                                                                             REPEAT
                                                                                                                            REPEAT
                                                                                                                                                                                                               ATP-binding; Repeat; Leucine-rich repeat; Disease mutation; Alternative initiation; Polymorphism.
                                                                                                                                                                                                                                             Pfam; PF00560; LRR; 2.
SMART; SM00114; CARD; 1.
                                                                                                                                                                                                                                                                                          MIM; 266600; -.
MIM; 191390; -.
                                                                                      VARIANI
                                                                                                                                                                                                                              PROSITE; PS50209; CARD; 2. PROSITE; PS50837; NACHT; 1.
                                                                                                                                                                                                                                                          InterPro; IPR001315; CARD.
InterPro; IPR001611; LRR.
InterPro; IPR007091; LRR_RNinh.
InterPro; IPR007111; NACHT_NIPase.
                                                                                                                                                                                                                                                                                                          186580; -.
                        248
                                                       189
                                                                      157
                                                                                              28
293
293
293
299
786
814
814
926
934
                                                                                                                                                                                       28
                                                                                    28
122
218
618
306
812
837
849
949
977
1005
                                                       189
                                                                                                                                                                                                              Polymorphism.
                                                           A -> T (in CD and c)/FTId=VAR_012665.

W -> R (in CD).
/FTId=VAR_012666.
                                                                                           NACHT:
AIP (POTENTIAL).
LRR 1.
LRR 2.
LRR 3.
LRR 4.
LRR 5.
LRR 5.
              /FTId=VAR_012668.
L -> R (in CD).
/FTId=VAR_012669.
                                       /FTId=VAR_012667.
R -> C (in CD).
                                                                                                                                                         CARD 2.
                                                                                                                                                                 CARD 1.
                                                                                                                                                                        FOR ISOFORM 2.
                                                                                                                                                                                       ISOFORM 1.
CASPASE RECRUITMENT DOMAIN PROTEIN 15,
                                                                                                                                                                                                      CASPASE RECRUITMENT DOMAIN PROTEIN
/FTId=VAR_012670
                                                                                                                                                                                 ISOFORM 2.
                                                       \
X
                                                                                    ulcerative colitis).
```

			853	863	VARIANT VARIANT	9 H H
		/FTIG=VAR_U12696. E -> K (in CD). /FTId=VAR 012697.	843	843	VARIANT	11 11 1 11 11 11
		2 CD).	793	793	VARIANT) i-j i-
		/FTId=VAR_012694. E -> K (in CD).	778	778	VARIANT	1 15 15 1 15 15
		$A \rightarrow V \text{ (in CD)}$.	758	758	VARIANT	H H
S	ulcerative colitis)	8,	755	755	VARIANT	F) -
		1000	725	725	VARIANT	T F :
		/FITCHWAR 013601	713	713	VARIANT	ŋ ŋ,
50	ulcerative colitis).	Ω.	703 '	703	VARIANT	ਸ ਸ ਜ ਜ
	r for CD).	/FTId=VAR 012689.	702	702	VARIANT	역 역 ? 너 너 :
		R -> W (in CD).	684	684	VARIANT	7 FJ
		A -> V (in CD). /FTId=VAR 012687.	612	612	VARIANT	F F T
		1 CD). 01268	612	612	VARIANT	F F T
		68 ~	469	469	VARIANT	F F
		01 268	441	441	VARIANT	7 T
		A -> V (in CD).	432	432	VARIANT	H +1
		S -> L (in CD).	431	431	VARIANT	H H
		/FTId=VAR_012681.	4 4 T 4	E	VARLANI	H H
		o ji	414	2	TIMETALL	1 H
		/FTId=VAR_012679. R -> C (in CD).	373	373	VARIANT	H H
		H -> R (in CD).	352	352	VARIANT	i tij ti
		L -> V (in CD).	348	348	VARIANT	1 T
		R -> W (in BS).	334	334	VARIANT	Ψ Ψ Η Η
		R -> Q (in BS). /FTId=VAR_012676.	. U.4	<u>ئ</u> 4	VARIANT	HI.
Ü	4	FTId=VAR_012675.				13:
0	illografive colifie		น 1	₹11	VARTANT	기 년 국 년
		A -> V (in CD).	301	301	VARIANT	+-] +- taj ta
		T -> S (in CD)	294	294	VARIANT	n in
			291	291	VARIANT	म म
		N -> S. /FTId=VAR 012671.	289	289	VARIANT	স স ৮

DB:	Query	Best.	Perce	Score:	Pred. No.:	Align	SQ.	H	H.	Ħ	Ħ	FT	FT	ET.	FΤ	FF	Ħ	H	T
	Query Match:	Best Local Similarity:	Percent Similarity:	••	No.:	Alignment Scores:	SEQUENCE	MUTAGEN		VARIANT		VARIANT		VARIANT		VARIANT		VARIANT	
		larity:	ity:			Ü,	1040 AA;	305		955		924		918	-	908		885	
	65.88%	100.00%	100.00%	5448.00	2.85e-287			305		955		924		918		908		885	
Gaps:	Indels:	Mismatches:	Conservative:	Matches:	Length:		115282 MW; 0037592D96D7DDFF	K->R: NO ACTIVATION.	/FTId=VAR_012704.	∨ -> I.	/FTId=VAR_012703.	G -> D (in CD).	/FTId=VAR_012702.	A -> D (risk factor for CD).	/FTId=VAR_012701.	Ġ -> R (in CD).	/FTId=VAR_012700.	A -> T (in ulcerative colitis).	/FTId=VAR_012699.
	0	0	0	1040	1040		F CRC64;	•						for CD).				ve colitis).	

US-10-014-269-1 (1-4485) x CARE_HUMAN (1-1040)

106 ATGGGGAMAGAGGTGGTTCAGCGTCTCACGATGAGGAAGCAAACGAACTGTCCTCCTC 165	Qy	Db	γQ	Db	Qy	Db	Qy	뫄	. Qy	Dъ	Qy	Db	УQ	D _o	Qy	Db	Qy
	TICGICAGCCAGIAIGAATGIGAIGAAAICAGGIIGCCGAICTICACACCGICCCAGAGG		ATTGTCAGGAGGCTCCACAGCCATGTGGAGAACATGCTGGACCTGGCATGGGAGCGGGGT	GlyCysTrpAspProHisSerLeuHisProAlaArgAspLeuGlnSerHisArgProAla	GGCTGCTGGGACCCCACTCGCTCCACCCAGCCCGAGACCTGCAGAGTCACCGGCCAGCC	GlnLysLeuileAlaAlaGlnGluAlaGlnAlaAspSerGlnSerProLysLeuHis	CAGAAGCTCATCGCGGCTGCCCAAGAAGCCCAGGCCGACAGCCAGTCCCCCAAGCTGCAT	LeuSerHisLeuAlaArgArgLeuLeuAspThrValTrpAsnLysGlyThrTrpAlaCys	CTCTCCCACTTGGCCAGGCGCCTTCTGGACACCCTCTGGAATAAGGGTACTTGGGCCTGT	LeuSerTrpGluValLeuSerTrpGluAspTyrGluGlyPheHisLeuLeuGlyGlnPro	CTGTCCTGGGAGGACTACGAGGGCTTCCACCTCCTGGGCCAGCCT	LeuValGluLeuLeuValSerGlySerLeuGluGlyPheGluSerValLeuAspTrpLeu	CTGGTCGAGCTGCTGGAGGGTCCCTGGAAGGCTTCGAGAGTGTCCTGGACTGGCTG	GlyHisSerProGlyCysGluMetCysSerGlnGluAlaPheGlnAlaGlnArgSerGln	GGACATTCTCCGGGGTTGTGAAATGTGCTCGCAGGAGGCTTTTCAGGCACAGAGGAGCCAG	MetGlyGluGluGluGlyGlySerAlaSerHisAspGluGluGluArgAlaSerValLeuLeu	ATGGGGGAAGAGGGTGGTTCAGCCTCTCACGATGAGGAAGAAGAGCAAGTGTCCTCCTC

1306 ACCTOTETCCACACCTGOTCTTCAACCTTCTGCAGGGAACCTGCTGAAGAATGCCGCC 1365	1186 GAAGACATCTTCCAGTTACTCCTTGACCACCTGACCGTGTCCTGTTAACCTTTGATGGC 1245 [1066 GACTICCAGGAAITTCTCTTTGTCTTCCCATTCAGCTGCCGCAGCTGCAGTGCATGCGC 1125	946 CTCTTCAGCACCCCTGGCCACCTCAATGACGATGCGGACACTGTGCTGGTGGTGGGTG	826 GATGGAGCAGAGACGCTCTGCCTGGAGGACATATACACAGAGAATGTCCTGGAGGTCTGG 885 [706 CAACATGTICAGGAATTACCAGTCCCATTGGCCCTTTGGAAGCTGCCACATGCAAG 765	
681 2206 701 2266 721	Db 641 AlaArgLeuLeuProThrMetCysIleGlnAlaSerGluGlyLysAspSerSerValAla Qy 2086 GCTTTGGTGGAGAAGGCGAGAACCTTCAGATCACAGGAGCAGCAGCAGGAGCAGAGCTTCTGAGAGGG	1966	. 561 1846 581	521 1726 541		Db 441 GluPheAsnLeuLysGlyPheSerGluGlnGlyIleGluLeuTyrLeuArgLysArgHis Qy 1486 CATGAGCCGGGGTGGGGACCGCCTCCAAGAGACCCTGAGCCCTGCAC

밁 Š

8 맑

밁

B δÃ 밁 20 밁 Š Ş

뭉 50 밁 80

片

Ş

밁

밁 Ó 분 ν. 뭉

3106 GAAGC	3046 AAAAA	2986 TGCCT	2926 AGTGT	2866 GAAGC	2806 TIGCA	2746 AACTA	2686 CACTO	2626 CACTG	2566 TATTI	2506 TCTGT	-2446 GCCCT	2386 GGCCI	2326 TGGCT
	981 Lysas	961 CysLe	941 SerVa	921 GluAl	901 LeuGl	881 AsnTy	861 Hisse	841 Hiscy	821 Tyrle	801 SerVa	781 Alale	761 GlyLe	741 TrpLe
CCTCCTGCAGGCCCTTGAAAGGA	TTCAAGTTTGAAAATCCTGAAGT:	ggaggagaccatctccaggatg;	GGGTGCCCAAGCCTTGGCACTGA:	CTTGGGTGATCACCAGAGCTTGA	GTTCCTGGGATTCTGGGGCAACA	CATCACTGCCGCGGGAGCCCAAG	CATGGCTAAGCTCCTTGCATGCA	CGAGCAATTGCAGAAGTTAGCTC	GCGCGATAACAATATCTCAGAĈO	GGGTGACATTGGCGTGGAGCAGC	GGCCTTTGTGCTGCAGCACCTCC	GAATGTTGGGCACCTCAAGTTGA	CATCCGGAGCCTGTACGAGATGC
	- - - - - - - - - - - - - - - - - - -		{						{				
GAAGCCTCCTGCAGGCCCTTGAAAGGAATGACACCATCCTGGAAGTCTGGCTCCGAGGG	AAAAATTCAAGTTTGAAAATOCTGAAGTTGTCCAATAACTGCATCACCTACCTAGGGGCA	TGCCTGGAGGAGAACCATCTCCAGGATGAAGGTGTATGTTCTCTCGCAGAAGGACTGAAG	AGTGTGGGTGCCCAAGCCTTGGSACTGATGCTGGCAAAGAACGTCATGCTAGAAGAACTC	GAAGCCTTGGGTGATCACCAGAGCTTGAGGTGGCTCAGCCTGGTGGGGAACAACATTGGC	TIGCAGITICCIGGGATICIGGGGCAACAGAGIGGGTGAGGAGGGGGGCCCAGGCCCTGGCT	AACTACATCACTGCGGGGGAGGCCAAGTGCTGGCGAGGGGTCCGAGGCAACACCTCC	CACTCCATGGCTAAGCTCCTTGCATGCAGGCACAACTTCTTGGCATTGAGGCTGGGGAAT	CACTGCGAGCAATTGCAGAAGITAGCTCTATTGAACAAAATTGACTGACGGCTGTGCA	TATTIGCGCGATAACAATATCTCAGAČCGAGGCATCTGCAAGCTCATTGAATGTGCTCTT	TCTGTGGGTGAGATTGGGGTGGAGCAGCTGCTGCGTTGGGTGTGGGTGTGGAAGGCTCTG	GCCCTGGCCTTGTGCTGCAGCACCTCCGGGGGGCCCGTGGCCCTGCAGCTGGACTACAAC	GGCCTGAATGITGGGCACCTCAAGTTGACATTTTGCAGTGTGGGCCCCACTGAGTGTGCT	TGGCTCATCCGGAGCCTGTACGAGATGCAGGAGGAGCGGCTGGCT
GAGGG 3165	RGGCA 3105 LyAla 1000	TGAAG 3045 euLys 980	AACTC 2985 LuLeu 960	TTGGC 2925 LeGly 940	71GGCT 2865 euAla 920	CCTCC 2805 hrser 900	3GGAAT 2745 3lyAsn 880	:GTGCA 2685 ysAla 860	3CTCTT 2625 LaLeu 840	9CTCTG 2565 	PACAAC 2505 YrAsn 800	IGTGCT 2445 YSALa 780	3CACGT 2385 AlaArg 760

8 밁 Š B Š . 20 당

> В 20

Š

문 Ş 당 8 밁

片

1001 GluAlaLeuLeuGlnAlaLeuGluArgAsnAspThrIleLeuGluValTrpLeuArgGly 1020

Š

B 5 뭉 Š 片 8 밁 S 밁 20

```
CARF_MOUSE
ID CARF MA
AC QREAGED
AC QREAGED
AC QREAGED
AC QREAGED
AC QREAGED
AC QREAGED
AC ISSEP
DT 15-SEP
AC QREACH
AC CALL
AC CARP MAMMAN
AC NORMAN
AC STRAIN
AC STR
                   RP SEQUENCE FROM N.A. (ISOFORM 2), AND VARIANTS ALA-212; ARG-240;
RP CYS-422; VAL-485; ALA-603; ILE-675 AND GLN-925.
RC STRAIN=NNRI; TISSUS-Breast cancer;
RX STRAIN=NNRI; TISSUS-Breast cancer;
RX MEDLINE-22388257; PubMed-1247932;
RX Strausberg R.L., Feingold E.A., Grouse L.H., Derge J.G.,
RA Klausmer R.D., Collins F.S., Wagner L., Sheamen C.M., Schuler G.D.,
RA Altschul S.F., Zeeberg B., Buetow K.H., Schaefer C.F., Bhat N.K.,
RA Altschul S.F., Zeeberg B., Buetow K.H., Schaefer C.F., Bhat N.K.,
RA HOPKINS R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F.,
RA Diatchenko L., Marusina K., Farmer A.A., Rubin G.M., Hong L.,
RA HOPKINS R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F.,
RA Brownstein M.J., Usdin T.B., Toshiyuki S., Carninci P., Prange C.,
RA Brownstein M.J., Usdin T.B., Toshiyuki S., Carninci P., Prange C.,
RA Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., Mullahy S.J.,
RA Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., Hulyk S.M.,
Vilialon D.K., Muzzy D.M., Sodergren E.J., Lu X., Gibbs R.A.,
RA Whiting M., Madan A., Young A.C., Shevchenko Y., Bouffard G.G.,
RA Hotsley R.M., Touchman J.W., Green E.D., Dickson M.C.,
RA Rodriguez A.C., Grimwood J., Schmutz J., Myers R.M.,
Schmerfield Y.S.N., Krzywinski M.I., Skalska U., Smailus D.E.,
Generation and initial analysis of more than 15,000 full-length
human and mouse cDNA sequences.",
RT "Generation and initial analysis of more than 15,000 full-length
Proc. Natl. Acad. Sci. U.S.A. 99:16893(2002).
C. '- FUNCTION: Induces NF-AppaB via RICK (CARDIAK, RIP2) and IKK-
Generation and initial analysis of more than 15,000 full-length
human and mouse cDNA sequences.",
RT "Generation and initial analysis of more than 15,000 full-length
Proc. Natl. Acad. Sci. U.S.A. 99:16893(2002).
C. '- FUNCTION: Induces NF-AppaB via RICK (CARDIAK, RIP2) and IKK-
Generation and initial analysis of more than 15,000 full-length
human and mouse cDNA sequences.",
RT "GENERATION CONCESTION CYCoplasmic (By Similarity).
C. -- SUBCELLURAR LOCATION: CYCoplasmic (By
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       RESULT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CARF_MOUSE
Q8K3Z0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         "Cloning, sequencing and expression analysis of the murine Nod2/Card15 gene.";
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          STRAIN=BALB/c; TISSUE=Monocytes;
Iwanaga Y., Davey M.P., Martin T.M., Planck S.R., DePriest M.L.,
Baugh M.M., Suing C., Rosenbaum J.T.;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Submitted (JUN-2002) to the EMBL/GenBank/DDBJ databases.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                15-SEP-2003 (Rel. 42, Created)
15-SEP-2003 (Rel. 42, Last sequence update)
15-SEP-2003 (Rel. 42, Last annotation update)
Caspase recruitment domain protein 15 (Nod2 protein).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CARD15 OR NOD2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 SEQUENCE FROM N.A. (ISOFORM 1).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Eukaryota; Metazoa;
Event=Alternative splicing; Named isoforms=2;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     STANDARD;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1020 AA
```

```
Alignment Scores: Pred. No.:
                                                EMEL; AF520774; AAM76073.1; -.
EMEL; BC044774; AM444774.1; ALT_INIT.
MGD; MGI:2429397; Card15.
InterPro; IFR001315; CARD.
InterPro; IFR007091; LRR_RNinh.
InterPro; IFR0070111; NACHT_NTPase.
Pfam; PF00560; LRR; 2.
PROSITE; PS50209; CARD; 2.
PROSITE; PS50837; NACHT; 1.
                                                                                                                                                                                                                                                                                                                    Alternative splicing.

DOWAIN 106 200

DOWAIN 273 600

DOWAIN 273 600

REPEAT 685 709

REPEAT 726 749

REPEAT 766 792

REPEAT 794 817

REPEAT 794 817
                                             VARIANT
                                                                                                                                                                                                                                              REPEAT
REPEAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           VARSPLIC
                                                                                                                                                                                                                                 VARSPLIC
                                                                                                                                                                                                                                                                                           REPEAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-sib.ch/ammounce/
                                                                                                                                                                                                                                                                              REPEAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            or send an email to license@isb-sib.ch).
                                                                                                                                                                                                                                                                                                                                                                                                                                                           ATP-binding; Repeat; Leucine-rich repeat; Polymorphism;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Name=1;
IsoId=Q8K3Z0-1; Sequence=Displayed;
                                             212
240
240
422
485
485
603
675
675
925
1020 AA;
                                         212. T -> A (in strain NMRI).
240 Q -> R (in strain NMRI).
422 L -> C (in strain NMRI).
485 G -> V (in strain NMRI).
603 V -> A (in strain NMRI).
675 V -> I (in strain NMRI).
925 E -> Q (in strain NMRI).
927 Y -> I (in strain NMRI).
928 E -> Q (in strain NMRI).
                                                                                                                                                                                                                                                                                                                                                                                104
200
600
709
                                                           212
240
422
485
603
675
925
                                                                                                                                                                                                                                                                                                                                                 749
                                                                                                                                                                                                                                          LRR 3.
LRR 5.
LRR 6.
LRR 7.
LRR 9.
LRR 9.
                                                                                                                                                                                                                                                                                                                                                                 CARD 1.
CARD 2.
NACHT.
LRR 1.
LRR 2.
                                                                                                                                                                                                                 Missing (in isoform 2).
/FTId=VSP_007069.
                                                                                                                                                                    /FTId=VSP_007070.
                                                                                                                                                                                               -> EGYSLCRSRCDRGFTLICLFCIL (in isoform
```

1.38e-219

Length:

1020

8

901 GCTGGACCCCGCAGAAGAGCCCAGCCACCCTGGGGCCTGGAGGAGCTCTTCAGCACCCCT

245	LeuCysLeuGluAspIleTyrThrGluAsnIleLeuGluLeuGlnThrGluValGlyThr	226	문	
900	TGGGCAGATGTGGGCATG	841	Λδ	
225		, 206	Dio	
640		781	40	
205		186	당	
780		721	QY	
185	AspLeuAlaAlaValLysAlaAsnGlyLeuAlaAlaPheLeuLeuGlnHisValArgGlu	166	Db	
720		, 661	νQ	
165	GluCysGluGluIleArgLeuProIlePheThrSerSerGlnArgAlaArgArgLeuLeu	146	Db	
660	GAATGTGATGAAATCAGGTTGCCGATCTTCACACCGTCCCAGAGGGGCAAGAAGGCTGCTT	, 601	Qγ	
145	TyrAsnHisValGluAlaMetLeuGluLeuAlaArgGluGlyGlyPheLeuSerGlnTyr	126	Db	
600	AACATGCTGGACCTGGCATGGGAGCGGGGTTTCGTCAGCCAGTAT	, 541	Qy	
125	HisSerLeuHisProThrArgAspLeuGlnSerHisArgProAlaIleValArgArgLeu	106	Db	
540	CACTOGCTCCACCCAGCCCGAGACCTGCAGAGTCACCGGCCAGCCA	, 481	Qy	
105	AlaValGlnGluAlaGlnAlaAsnSerHisThrPheGluLeuTyrGlySerTrpAspThr	86	Db	
480	GCTGCCCAAGAAGCCCAGGCCGACAGCCCAAGCTGCATGCTGCGTGCG	, 421	δō	
80	ArgArgLeuLeuAspThrValTrpAsnLysGlyValTrpGlyCysGlnLysLeuLeuGlu	66	Db	
420	AGGGGCCTTCTGGACACCGTCTGGAATAAGGGTACTTGGGGCCTGTCAGAAGCTCATCGCG	7 361	γQ	
g		46	Db	
360	CTCTCCTGGGAGGACTACGAGGGCTTCCACCTCCTGGGCCAGCCTCTCTCCCACT	7 301	ΛŌ	
45	IleSerGlySerLeuGluGlyPheGluSerIleLeuAspTrpLeuLeuSerTrpAspVal	. 26	Db	
300		241	70	
25	CysAspMetCysSerGlnGluGluPheGlnAlaGlnArgSerGlnLeuValAlaLeuLeu		Db	
240	TGTGAAATGTGCTCGCAGGAGGCTTTTCAGGCACAGAGGAGCAGCTGGTCGAG	181	S S	
	269-1 (1-4485) x CARF_MOUSE (1-1020)	US-10-014-26	Ç	
		Query Match: DB:	DB: Que	
	4196.00 Matches: 804 Similarity: 87.398 Conservative: 83 :al Similarity: 79.218 Mismatches: 128	Score: Percent Similarity: Best Local Similarity:	en de se	

O O O O O O O O O O O O O O O O O O O	0y 0y	.Qy Qy Db	0y 0y 0b	р Q р Qy	D Qy	25 A A B B A A B B B B B B B B B B B B B
2521 GGCGTGGAGCAGCTGCCTTGCCTTGCTGCTACGCTCTGTATTTGCGCGATAAC 2580	2401 CACCTCAAGITGACATITIGCAGTGIGGOCCCCACTGACTGTGCTGCCCTGGCCTTTGTG 2460	2281 GCACCGGGTGAGGCCAAGAGCGTGCATGCCATGCCGGGTTCATCTGGCTCATCCGGAGC 2340	2161 CACTGGGGCTGCTGAGTGCCAGACATCTGAGAAGGCCCTGCTCCGGGGCCAGGGC 2220	2041 ACGATGTGCATCCAGGCCTCGGAGGGAAAGGACAGCAGCGTGGCAGCTTTGCTGCAGAAG 2100 :::	1921 TICCAGIGCTICTITGCCGCGTTCTACCTGGCACTCAGIGCTGATGTGCCACCAGCTTTG 1980	526 ThrieuleuHisleuGlyHisleuAlaLeuArgGlyLeuAlaMetSerCysTyrValPhe 545 1801 TCAGCCCAGCAGCTCCAGGCAGCACAGGTCAGCCCTGATGACATTTCTCTTTGGCTTCCTG 1860

Search completed: January 7, 2004, 19:42:15 Job time: 424.746 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

-DB-SPTREMBL 23 -QFMT=fastan -SUFFIX=rspt -MINVAICH=0.1 -LOOPEL=0 -LOOPEXT=0 -UNITS-bits -START=1 -END=-1 -MATRIX-blosum62 -TRANS-human40.cdi -LIST=150 -DOCALIGN=200 -THR_SCORE-pct -THR_MAX=100 -THR_MIN-0 -ALIGN=50 -MODE-LOCAL -OUTFNT=pto -NORM-ext +HEAPSIZ=500 -TMILEN=0 -MAXLEN=2000000000 -USER=US10014269 @GGN 1 1 482 @rumat 07012004 175229 2421 -MCPU=6 -ICPU=3 -NO_MMAP -LARGEQUERY -NEG_SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV_TIMEOUT=120 -WANN_INEQUIP=30 -THREADS=1 -XCAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 Q=/cgn2_1/USPTO_spoo1_p/US10014269/runat_07012004_175229_24521/app_query.fasta_1 .9358 Command line parameters:
-MODEL=frame+_n2p.model -DEV=xlp Post-processing: Minimum Match 0% Maximum Match 100% Listing first 150 summaries Minimum DB seq length: 0
Maximum DB seq length: 2000000000 Searched: Scoring table: Sequence: OM nucleic - protein search, using frame_plus_n2p model Total number of hits satisfying chosen parameters: Perfect score: Title: Run on: Xgapop 10.0 , Xgapext (Ygapop 10.0 , Ygapext (Fgapop 6.0 , Fgapext Delop 6.0 , Delext BLOSUM62 8270 January 7, 2004, 19:25:21; Search time 170.731 Seconds (without alignments)
13557.774 Million cell updates/sec 830525 seqs, 258052604 residues 1 gtagacagatccaggctcac.....ataaactgttgagtcaaaac 4485 US-10-014-269-1 7.0 1661050

Database : -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7 SPTREMBL_23:* sp_archea:*
sp_bacteria:*
sp_fungi:*
sp_funga:*
sp_invertebrate:*
sp_manmal:* sp_mhc:*
sp_organelle:*
sp_phage:*
: sp_plant:*

17:	16:	15:	14:	13:	12:	±1:
archeap:	p_bacteria		p_unclass	vertebra		

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

150	149	: 148	147	146	145	144	143	142	141	140	139	138	137	136	135	134	133	132	131	130	129	128	127	126	125	124	123	122	121	120	: 119	118	117	116	115	114	113	112	111	110	000	107	106	105	104	103	102	c 101	100	99	98
٠.	250.5	250.5	250.5	251	251	251	251.5	252.5	252.5	252.5	253	253	253	254	255	255.5	255.5	256.5	256.5	256.5	256.5	257	257.5	257.5	258	258.5	259	25.9	259.5	260	261	261.5	262	262	262	262	263	263	220	2004.0		267	267.5	268	69.	69.	269.5	69.	~	270	270
3,0	3.0	3.1	3.1	3.1		3.0	3.1	ω -	ω 	ω -	3. ₁	ω. 1	3. ₁	3.1	3. 1	3.1	3. ₁	ω 1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.2	3.2	3.2	3.1	3.2			•	•	•				ى د د د		•	3.2	3.2		ω ω	ა ა	3.3	ა ა	ω ω	ω ω
1366	817	685	563	1258	068	771	3084	2716	2715	2703	1840	1840	566	1347	748	1739	888	1840	1838	1491	926	1258	1739	1684	1349	1621	1838	866	1491	620	1827	1449	1835	1737	1447	1445	1838	1419	200	1838	1 1 0 0	1458	1487	998	1464	1461	1453	808	1459	1442	1442
42	G	Ø	G	13	UI	4	12		σ		₩				11	11	13	11	4	Lω	Ç	13	;	Q	ω					16	13	13	13	11	13	<u>1</u> 3	1		א ע	Ĺ		ω		11	4	42	11	12	11	11	1
Q15177	Q964V6	Q9TTS5	Q9BIT5	Q8AW11	077087	Q9UJC7	08UZ11	OBIN94	061603	O9VEG7	Q60467	Q60467	Q95JD1	Q96QB3	0MM660	Q9JLI2	090796	Q9JI03	Q15094	091718	Q9W3G1	Q8AW11	09JLI2	08HYC1	Q8AW1 7	Q9H4R9	088207	QBCFM4	291718	6NZX8ð	Q8UUM5	091000	Q9IAU4	Q9JI04	Q9IB91	093251	088207	063123	OBMES 4	015094	214046	Q910B9	014047	Q8CFM4	Q8N473	076045	263079	Q9Q5K9	Q62032	062033	062031
Q15177 homo sapien	Q964v6 dictyosteli			1 brachydan		7	11 pseudora			P.,		Q60467 cricetulus	095jal sus scrofa	Q96qb3 homo sapien	Q99mw0 mus musculu	09ili2 mus musculu	090796 gallus gall	Q9ji03 rattus norv	015094 homo sapien	091718 Kenopus lae	Q9w3q1 drosophila	Q8aw11 brachydanio	091112 mus musculu	OShvcl canis famil	bra	OMO	Bums				Q8uum5 oryzias lat		gallus				088207 mus musculu	O63123 Fattus year	10110 00	Q9UYJU brachydanio	Q14046 homo sapien	Q910b9 oncorhynchu	Q14047 homo sapien				Q63079 rattus norv	herr	mus		Q62031 mus musculu

3.0 1366 4 Q15177 Q15177 homo sapien

ALI GUMENTS

0000

```
RESULT 1
QBK3Z0
ID QBK3
AC QBK3
DT 01-0
DT 01-0
DT 01-0
DT 01-0
CARD
GN CARD
G
                                      δ.
                                                                                                        밁
                                                                                                                                                                  8
                                                                                                                                                                                                                                                                                                   Ş
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Percent Similarity:
Best Local Similarity:
Query Match:
                                                                                                                                                                                                                                    片
                                                                                                                                                                                                                                                                                                                                                                        밁
                                                                                                                                                                                                                                                                                                                                                                                                                                8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          US-10-014-269-1 (1-4485) x Q8K3Z0 (1-1020)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Alignment Scores: Pred. No.:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Score:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  L Submitted (JUN-2002) to the EMEL/GenBank/DDBJ databases.

R EMBL; AF520774; AAM76073.1; -.

R MGD; MGI:2429397; Card15.

InterPro; IPR001315; CARD.

InterPro; IPR001315; CARD.

InterPro; IPR001310; TAR RWinh.

R InterPro; IPR001310; TATD DNase.

R InterPro; IPR001310; TATD DNase.

R InterPro; IPR001310; TATD DNase.

R FROSITE; PS50209; CARD; 2.

R PROSITE; PS508137; NACHT; 1.

R PROSITE; PS508137; NACHT; 1.

R PROSITE; PS508137; TATD_1; 1.

R PROSITE; PS01137; TATD_1; 1.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Mus musculus (Mouse).
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              QBK320;
01-0CT-2002 (TrEMBLrel. 22, Created)
01-0CT-2002 (TrEMBLrel. 22, Last sequence update)
01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       STRAIN=BALB/c;
IMADAGA Y., Davey M.P., Martin T.M., Planck S.R., DePriest M.L.,
Baugh M.M., Suing C., Rosenbaum J.T.;
Planck S.R., DePriest M.L.,
"Cloning, sequencing and expression analysis of the murine Nod2/Card15
gene.";
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Q8K3Z0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 NCBI_TaxID=10090;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CARD15.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CARDIS.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          SEQUENCE FROM N.A.
                                                                                                                                                                                                                          361 AGGCGCCTTCTGGACACCGTCTGGAATAAGGGTACTTGGGCCTGTCAGAAGCTCATCGCG 420
                                                                                                                                                               301 CTCTCCTGGGAGGACTACGAGGGCTTCCACCTCCTGGGCCAGCCTCTCTCCCCACTTGGCC 360
                                                                                                 46 LeuSerArgGluAspTyrGluGlyLeuSerLeuProGlyGlnProLeuSerHisSerAla 65
                                                                                                                                       =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    PRELIMINARY;
                                                                                                                                5.3e-289
4196.00
87.39%
79.21%
50.74%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    PRT; 1020 AA.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Conservative: Mismatches: Indels:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Matches:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1020
804
83
128
0
```

Db 66 ArgArgieuleuAspThrValTrpAsniysGiyValTrpGiyOysGiniyaleuLeuGiu 85 Qy 421 GCTGCCCAAGAAGCCCAAGCCAGCCGATCCCAAGTCGATCGCTGCTGCGACCCCC 400
ArgArgieuleuNapThrValTrpAsniysGlyValTrpGdyCysGlnLysLeuLeuGull GGTGGCCGAAGAGCCCAGGCCGACAGCCAGCCAGCCAAGCTGCCAAGGCTGCTGGAGCCCC HII

```
В
                              8
                                                                                      δÃ
                                                                                                                      밁
                                                                                                                                                80
                                                                                                                                                                             B
                                                                                                                                                                                                        20
                                                                                                                                                                                                                                                                 8
                                                                                                                                                                                                                                                                                              당
                                                                                                                                                                                                                                                                                                                                                                                  200
                                                                                                                                                                                                                                                                                                                                                                                                                밁
                                                                                                                                                                                                                                                                                                                                                                                                                                          20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       밁
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Ş
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         200
                                                                                                                                                                                                                                      밁
                                                                                                                                                                                                                                                                                                                         Ş
                                                                                                                                                                                                                                                                                                                                                        밁
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                밁
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       片
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                밁
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Λδ
Α
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  8
                                                     2041 ACGATGTGCATCCAGGCCTCGGAGGGAAAGGACAGCAGCGTGGCAGCTTTGCTGCAGAAG 2100
                                                                                                                               1921 TTCCAGTGCTTGTTTGCCGCGGTTCTACCTGGCACTCAGTGCTGATGTGCCACCAGCTTTG 1980
                                                                                                                                                                                       1861 GTGCGTGCCAAAGGTGTCGTGCCAGGGAGTACGGCGCCCTGGAATTCCTTCACATCACT 1920
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1501 GCGGACCGACCATCCGCCCGCTCCAAGAGACCCCAGCCCTGCACGGGTTTGTGCCACCTG 156C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 626 AsnleuCys11eGlnGlySerArgValLysLysGlySerGluAlaAlaLeuLeuGlnLys
                                                                                                                                                                                                                                                               1801 TCAGCCCAGCAGCTCCAGGCAGCACAGGTCAGCCCTGATGACATTTCTCTTGGCTTCCTG 1860
                                                                                                                                                                                                                                                                                                         1741 ACCCTOCTGCACCTGGGCAGACTGGCTCTGTGGGGCCTGGGCATGTGCTACGTGTTC 1800
                                                                                                                                                                                                                                                                                                                                                                                                                         1621 TCCCCAAAGACCACTACAGATATGTACCTGCTGATTCTGCAGCATTTTCTGCTGCATGCC 1680
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1561 CCTGTCTTCTCATGGATGGTGTCCAAATGCCACCAGGAACTGTTGCTGCAGGAGGGGGGG 1620
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1381 CGTCCGGCCGCTGTGTCGGCGTTCCTCAGGAAGTACATCCGCACCGAGTTCAACCTCAAG 1440
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1321 CTGCTCTTCAACCTTCTGCAGGGCAACCTGCTGAAGAATGCCCGCAAGGTGGTGACCAGC
                                                                                                                                                                                                                                  566 ValArgAlaGlnSerSerValProGlySerLysAlaProLeuGluPheLeuHisIleThr
                                                                                                                                                                                                                                                                                                                                                                                                          486 PheProThrThrSerThrAspMetTyrLeuLeuIleLeuGlnHisPheLeuLeuHisAla 505
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  446 AlaAspArgLeuIleGlnLeuIleGlnAlaThrSerAlaLeuHisGlyLeuCysHisLeu 465
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   386 LeuLeuPheAsnLeuLeuGlnGlyAsnLeuLeuLysAsnAlaCysLysValLeuThrSer
                                                                                                                 PheGlnCysPhePheAlaAlaPheTyrLeuAlaValSerAlaAspThrSerValAlaSer 605
                                                                                                                                                                          585
                                                                                                                                                                                                                                   565
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1320
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            425
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     405
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            385
```

밁

645

2941 GCCTTGGCACTGATGCTGGCAAAGAACGTCATGCTAGAAGAACTCTGCCTGGAGGAGAAC 3000

뮹	Qy	Db	QУ	Db	νQγ	Db	Qy	Db .
1006 GluGluIleGlnThrLeuSerSerArgAspAlaArgLeuLeu1u20	3181 GAGGAGGTTGACAAGCTCGGCTGCAGGGACACCAGACTCTTGCTT 3225	986 AlaLeuSerArgAsnSerAlaIleLeuGluValTrpLeuArgGlyAsnThrPheSerLeu 1005	3121 GCCCTTGAAAGGAATGACACCATCCTGGAAGTCTGGCTCCGAAGGGAAGACTTTCTCTCTA 3180	966 LysPheLeuLysLeuSerAsnAsnGlyIleThrTyrArgGlyAlaGluAlaLeuLeuGln 985	3061 AAAATCCTGAAGTTGTCCAATAACTGCATCACCTACCTAGGGGCAGAAGCCCTCCTGCAG 3120	946 HisileCysAspGluGlyValTyrSerLeuAlaGluGlyLeuLysArgAsnSerThrLeu 965	3001 CATCTCCAGGATGAAGGTGTATGTTCTCTCGCGAGAAGGACTGAAGAAAAATTCAAGTTTG 3060	

Search completed: January 7, 2004, 19:58:26 Job time : 560.731 secs