22. L'hyperbole rapportée à ses axes de symétrie, passant par le point $P(-2\sqrt{2}; 1)$ et admettant la droite x - 2y = 0 comme asymptote, a pour

équation:
1.
$$x^2 - y^2/4 - 1 = 0$$
 3. $x^2/4 - y^2 - 1 = 0$ 5. $x^2/4 - y^2 + 1 = 0$
2. $x^2 + y^2/4 - 1 = 0$ 4. $x^2/4 + y^2 - 1 = 0$ (B.-78)

- 23. Le lieu des points de rencontre des coniques $\Gamma \equiv x^2 xy + k = 0$ (k un paramètre réel) avec les polaires issues du point P(2; 5) par rapport à Γ
- 1. $x^2 xy 3x y = 0$ 3. $12x^2 12xy 7x + 6y = 0$ 5. $x^2 xy = 0$ 2. $2x^2 - 2xy + 9x - 2y = 0$ 4. $2x^2 - 2xy + 2y + x = 0$ (M.-77)24. La tangente à la courbe $y = -4x^2 - 4x + 3$ au point d'abscisse 1/2 passe
- par le point 1.(1;-1) 2. (0;4) 3. (1/2;1/2) 4. (0;2) 5. (1;4) (M.-79) 25. Le point de contact de la tangente parallèle à la droite y = 2x à la parabole $x^2 = 2y$, a pour coordonnées : 1. (2; 2) 2. (1/2; 1) 3. (-1/2; -1) 4. (1; 3) 5. (-2; -2) (B.-79)
- 26. Soit la parabole $y^2 = 4x$ rapportée à des axes orthonormés. Le lieu du symétrique du point (1; 0) par rapport à une tangente variable a pour équation : 1. $2y^2 = x$ 3. $x^2 - y^2 + 2y - 1 = 0$ 5. $y^2 = 2(x + 1)$ (M.-79)
- 2. $x^2 + y^2 + 2x = 0$ 4. x = -127. Les propositions suivantes caractérisent l'hyperbole équilatère

d'équation
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 sauf: www.ecoles-rdc.net

- I.a = b
- 2. $e = \sqrt{2}$ (e excentricité)

forment un carré.

- 3. les asymptotes sont perpendiculaires 4. les axes de symétrie sont bissectrices des asymptotes
- 5. les sommets et ceux de la conjuguée d'équation $\frac{x^2}{a^2} \frac{y^2}{b^2} = -1$