N^o 1 NP-Complétude

Diviser pour mieus régner : Diviser \to Régner \to Combiner Théorème Maître:

- Si $f(n) = O(n^{\log_b a \varepsilon})$ ($\varepsilon > 0$) alors $T(n) \in O(n^{\log_b a})$
- Si $f(n) = \theta(n^{\log_b a})$ alors $T(n) = O(n^{\log_b a} \ln n)$
- Si $f(n) = \Omega(n^{\log_b a + \varepsilon})$ $(\varepsilon > 0)$ et $\exists c < 1$ tel que $cf(n) > af(\frac{n}{b})$. Alors $T(n) \in O(f(n))$

Programmation dynamique : Mémoriser les solutions aux sous problèmes pour pouvoir les réutiliser dans le calcul de la solution.

Th: T(n) = aT(n-b) + f(n), avec $a \ge 2, b \ge 1, f(n) \in \Omega(1)$. Alors $\exists c = {}^b\sqrt{a} > 1 \mid T(n) \in \Omega(c^n)$

BackTrack : progresse vers une solution en faisant des choix plus ou moins arbitraires et qui revient en arrière lorsqu'il est bloqué

Red. Poly.: $R: I_1 \to I_2, P_1(I_1) = P_2(I_2), P_1 \leq_p P_2$

Th: P_2 poly $\Rightarrow P_1$ poly. P_1 non poly $\Rightarrow P_2$ non poly.

 $\mathbf{NP\text{-}Complétude}$ (\mathbf{coNP}): Un problème P_0 est $\mathbf{NP\text{-}Complet}$ si:

- $P_0 \in NP \ (\exists algo de vérification poly)$
- P_0 est NP-Difficile (pour tout problème $P_1 \in \text{NP}$, on a $P_1 \leq_p P_0$)

Théorème de Cook : SAT est NP-Complet

 N^o 2 Problèmes

Découpe de barres Distance de Levenstein Impression équilibrée Clique : \exists une clique de taille k dans G?

Ensembles indépendants : \exists dans G un ensemble de k sommets sans arête commune?

Couverture des arêtes : \exists dans G un ensemble de k sommets tel que toute arête soit adjacente à un sommet de cet ensemble ?

Cycle Hamiltonnien: \exists un cycle qui passe une et une seule fois par chaque arête.

Problème du voyageur de commerce : \exists un chemin de taille $\leq k$ passant par tous les sommets ? Sudoku de taille N: Grille de N^2 lignes, N^2 colonnes, N^2 blocs de taille N^2 . Complétez la grille avec des nombres de 1 à N^2 .

Couverture exacte : Etant donnée une matrice binaire M sélectionner k lignes de manière à avoir une et une seule occurence de 1 sur chaque colonne.

Solution X de type BackTrack : Pour une colonne donnée, supprimer les lignes contenant 1 sauf une, puis si X(M) alors vrai, sinon annuler la suppression et recommencer.

SAT, 3SAT, CSAT: Trouver une affectation pour une conjonction de clauses.

Indé \leq_p Clique : Graphe complémentaire Clique \leq_p Indé : Graphe complémentaire

 $\mathbf{CA} \leq_p \mathbf{Ind\acute{e}} : k \to n-k \ \mathbf{Ind\acute{e}} \leq_p \mathbf{Couv} : k \to n-k$

Cycle Hamiltonnien \leq_p Voyageur : Arête \rightarrow poids 1 ; PasArête \rightarrow poids 2 ; k = nb sommets.

Sudoku \leq_p CE: M matrice de N^6 lignes et $4N^4$ colonnes

