Polarizacija fotona i kvantni bit

SI

6. listopada 2020.

Klasična fizika: polarizacija elektromagnetskog vala

U klasičnoj fizici, snop svjetlosti shvaćamo kao elektromagnetski val koji može biti polariziran na različite načine.

Prolaskom kroz polarizator, val postaje linearno polariziran:

Prolaskom kroz sljedeći polarizator (tzv. analizator):

$$\mathbf{E}' = (\mathbf{E} \cdot \hat{\mathbf{n}}) \, \hat{\mathbf{n}} = E_0(\hat{\mathbf{p}} \cdot \hat{\mathbf{n}}) \, \hat{\mathbf{n}} \, \mathrm{e}^{\mathrm{i}\omega t} = E_0 \cos[\theta - \alpha] \, \hat{\mathbf{n}} \, \mathrm{e}^{\mathrm{i}\omega t}$$

$$\implies I' = I \cos^2[\theta - \alpha] \qquad \text{(Malusov zakon)}$$

Bilo kakav snop svjetlosti moguće je rastaviti na dva linearno polarizirana snopa s međusobno okomitim smjerovima polarizacije.

Ovdje rastavljamo linearno polarizirani snop:

$$\mathbf{\hat{p}} \underbrace{\boldsymbol{\hat{p}}}_{y - 1} \underbrace{\mathbf{E}}_{l} = E_{0} \, \hat{\mathbf{p}} \, e^{i\omega t}$$

$$\mathbf{E} = E_{0} \, \hat{\mathbf{p}} \, e^{i\omega t}$$

$$\mathbf{E}^{(x)} = E_{0} \cos \theta \, \hat{\mathbf{x}} \, e^{i\omega t}, \, I^{(x)} = I \cos^{2} \theta$$

$$\mathbf{E}^{(y)} = E_{0} \sin \theta \, \hat{\mathbf{y}} \, e^{i\omega t}, \, I^{(y)} = I \sin^{2} \theta$$

Očuvanje energije:

$$I^{(x)} + I^{(y)} = I$$

Eksperiment je moguće podesiti tako da vrijedi:

$$\mathbf{E}^{(x)} + \mathbf{E}^{(y)} = E_0(\cos\theta\,\hat{\mathbf{x}} + \sin\theta\,\hat{\mathbf{y}})e^{i\omega t} = E_0\,\hat{\mathbf{p}}\,e^{i\omega t} = \mathbf{E}$$

Kvantna fizika: fotoni u različitim stanjima polarizacije

U kvantnoj fizici, snop svjetlosti shvaćamo kao niz fotona.

Detektor (brojač) može zabilježiti samo *cijeli broj* fotona \mathcal{N} :

$$\qquad \qquad \mathcal{N}=0,1,2,\dots$$

Intenzitet snopa (I) je razmjeran broju fotona (\mathcal{N}) koji u jedinici vremena prolaze nekom plohom (npr. ulaze u detektor):

$$I \propto \frac{\mathrm{d}\mathcal{N}}{\mathrm{d}t}$$

- Različitim ishodima istog eksperimenata pridružujemo vjerojatnosti.
- Postoje eksperimenti u kojima *niti u načelu* nije moguće predvidjeti putanju koju će odabrati pojedini foton.

Primjer: Polupropusno zrcalo kao generator slučajnih brojeva

Niti u načelu nije moguće predvidjeti putanju (detektor) koju će foton odabrati.

Detektori proizvode niz: 0,1,0,0,1,1,1,0,1,1,0,1,1,0,0,0,1,0,0,...

Taj niz možemo koristiti kao generator slučajnih brojeva.

Primjer: Fotoni linearno polariziranog snopa nailaze na analizator

Niti u načelu nije moguće predvidjeti hoće li foton proći kroz analizator ili će biti apsorbiran (osim ako $\theta - \alpha = 0, \pm \frac{\pi}{2}, \pm \pi, \dots$).

Na osnovi Malusova zakona zaključujemo da je vjerojatnost prolaska fotona linearno polariziranog snopa (orijentacija θ) kroz analizator (orijentacija α):

$$p(\theta \to \alpha) = \frac{I'}{I} = \frac{\cos^2[\theta - \alpha]}{\sin^2[\theta - \alpha]}$$

Primjer: Rastavljanje snopa i detekcija fotona

Niti u načelu nije moguće predvidjeti putanju (detektor) koju će foton odabrati.

Kad bismo detektirali $\mathcal{N} = \mathcal{N}_x + \mathcal{N}_v$ fotona, vrijedile bi relacije:

$$\lim_{\mathcal{N} \to \infty} \frac{\mathcal{N}_{\mathsf{x}}}{\mathcal{N}} = \frac{I^{(\mathsf{x})}}{I} = \cos^2 \theta \qquad \lim_{\mathcal{N} \to \infty} \frac{\mathcal{N}_{\mathsf{y}}}{\mathcal{N}} = \frac{I^{(\mathsf{y})}}{I} = \sin^2 \theta$$

Vjerojatnosti da foton odabere jednu ili drugu putanju:

$$p(\theta \to x) = \cos^2 \theta$$
 $p(\theta \to y) = \sin^2 \theta$

Primjer: Eksperiment s dvije putanje u kojem *niti u načelu ne možemo znati kojom je putanjom foton stigao do detektora*

Eksperiment pokazuje: $p(\theta \rightarrow \alpha) = I'/I = \cos^2[\theta - \alpha]$

VAŽNO: Jednostavnim zbrajanjem vjerojatnosti dobivamo rezultat koji *nije u skladu s eksperimentom*:

$$p(\theta \to \alpha) = p(\theta \to x \to \alpha) + p(\theta \to y \to \alpha)$$

$$= p(\theta \to x) p(x \to \alpha) + p(\theta \to y) p(y \to \alpha)$$

$$= \cos^2 \theta \cos^2 \alpha + \sin^2 \theta \sin^2 \alpha$$

Amplituda vjerojatnosti i vjerojatnost

Amplituda vjerojatnosti

U kvantnoj mehanici, "prelasku" sustava iz stanja α u stanje β odgovara amplituda vjerojatnosti

amplitduta
$$a(\alpha \rightarrow \beta)$$

koja je kompleksan broj.

Vjerojatnost

Vjerojatnost da sustav koji se nalazi u stanju α bude izmjeren (detektiran) u stanju β je kvadrat modula odgovarajuće amplitude vjerojatnosti,

$$p(\alpha \to \beta) = |a(\alpha \to \beta)|^2$$
.

Računanje amplitude vjerojatnosti:

• Amplituda vjerojatnosti prelaska $\alpha \to \beta \to \gamma$:

$$a(\alpha \to \gamma) = a(\alpha \to \beta \to \gamma) = a(\alpha \to \beta) a(\beta \to \gamma)$$

• Amplituda vjerojatnost prelaska koji se može odviti na dva načina, $\alpha \to \beta_1 \to \gamma$ i $\alpha \to \beta_2 \to \gamma$, ako *niti u načelu ne možemo znati na koji se način prelazak odvio*, jednaka je zbroju amplituda vjerojatnosti:

$$a(\alpha \to \gamma) = a(\alpha \to \beta_1 \to \gamma) + a(\alpha \to \beta_2 \to \gamma)$$

= $a(\alpha \to \beta_1) a(\beta_1 \to \gamma) + a(\alpha \to \beta_2) a(\beta_2 \to \gamma)$

Primjer: Eksperiment s dvije putanje...

Uzmemo li kao amplitude vjerojatnosti pojedinih prelaza

$$a(\theta \to x) = \cos \theta,$$
 $a(x \to \alpha) = \cos \alpha,$
 $a(\theta \to y) = \sin \theta,$ $a(y \to \alpha) = \sin \alpha,$

ukupna amplituda vjerojatnosti je

$$a(\theta \to \alpha) = a(\theta \to x) a(x \to \alpha) + a(\theta \to y) a(y \to \alpha)$$
$$= \cos \theta \cos \alpha + \sin \theta \sin \alpha$$
$$= \cos[\theta - \alpha].$$

Polarizacija fotona kao realizacija kvantnog bita

Općenito stanje polarizacije monokromatskog elektromagnetskog vala može se prikazati superpozicijom dvaju linearno polariziranih valova s okomitim smjerovima polarizacije,

$$\mathbf{E} = E_{x} \,\hat{\mathbf{x}} \,\mathrm{e}^{\mathrm{i}(\omega t + \phi_{x})} + E_{y} \,\hat{\mathbf{y}} \,\mathrm{e}^{\mathrm{i}(\omega t + \phi_{y})} = E_{0} \,(\lambda \,\hat{\mathbf{x}} + \mu \,\hat{\mathbf{y}}) \,\mathrm{e}^{\mathrm{i}\omega t},$$

gdje je $E_0 = \sqrt{(E_{\scriptscriptstyle X}^2 + E_{\scriptscriptstyle y}^2)}$, a kompleksni brojevi

$$\lambda = \frac{E_x}{E_0} e^{i\phi_x} \qquad i \qquad \mu = \frac{E_y}{E_0} e^{i\phi_y}$$

zadovoljavaju uvjet $|\lambda|^2 + |\mu|^2 = 1$.

U vektoru $\lambda \, \hat{\mathbf{x}} + \mu \, \hat{\mathbf{y}}$ nalazi se informacija o beskonačnom mnoštvu mogućih stanja polarizacije vala.

Foton može biti u bilo kojem od beskonačno mnogo različitih stanja polarizacije (linearna polarizacija različitih orijentacija ili općenito eliptična polarizacija), no mjerenjem je moguće razlučiti samo dvije različite vrijednosti (ovdje 0 ili 1).

Eksperimentalni uređaj je moguće orijentirati na različite načine što znači da samo mjerenje moguće provesti na različite načine.

Dani foton je moguće detektirati samo jednom.

Kvantni bit ili qubit

Kvantnomehanički sustav koji je mjerenjem moguće detektirati (izmjeriti) u jednom od samo dva različita stanja zovemo kvantnim bitom ili qubitom.

Općenito stanje u kojem se kvantni bit nalazi (prije mjerenja) jest tzv. superpozicija dvaju stanja koja možemo razlučiti mjerenjem i takvo stanje se smatra najmanjom jedinicom kvantne informacije.

Primjer: Stanje polarizacije fotona predstavlja moguću fizičku realizaciju kvantnog bita.

Usporedba klasičnog i kvantnog bita:

Zajedničko svojstvo klasičnog i kvantnog bita jest da mjerenjem njihovog stanja dobivamo jednu od dvije različite vrijednosti, a razlike su sljedeće:

- Klasični bit može biti u jednom od dva različita stanja.
 Kvantni bit (prije mjerenja) može biti u beskonačno mnogo različitih stanja.
- Postoji samo jedan način mjerenja stanja klasičnog bita.
 Stanje kvantnog bita može se mjeriti na različite načine.
- Stanje klasičniog bita možemo izmjeriti proizvoljno mnogo puta. Stanje kvantnog bita možemo izmjeriti samo jednom.

Bra-ket (Diracova) notacija

Pri računanju amplituda vjerojatnosti u kvantnoj mehanici praktično je koristiti tzv. bra-ket ili Diracovu notaciju.

Stanje polarizacije fotona koji je linearno polariziran u x i onog koji je linearno polariziran u y-smjeru prikazujemo tzv. ket-simbolima

$$|x\rangle$$
 i $|y\rangle$.

Općenito stanje polarizacije fotona također prikazujemo ket-simbolom, a u potpunoj analogiji s opisom polarizacije elektromagnetskog vala, možemo ga izraziti kao superpoziciju ketova $|x\rangle$ i $|y\rangle$,

$$|\Phi\rangle = \lambda |x\rangle + \mu |y\rangle, \qquad \lambda, \mu \in \mathbb{C}, \qquad |\lambda|^2 + |\mu|^2 = 1.$$

U matematičkom smislu, ket-simbole kao što su $|\Phi\rangle$ i $|\Psi\rangle$ shvaćamo kao vektore dvodimenzionalnog kompleksnog *Hilbertovog* vektorskog prostora $\mathcal{H}^{(2)}$.

Skalarni produkt vektora $|\Phi\rangle$ i $|\Psi\rangle$ u Hilbertovom prostoru ima svojstva

$$\langle \Psi | \Phi \rangle = \langle \Phi | \Psi \rangle^* \in \mathbb{C}, \qquad \langle \Phi | \Phi \rangle \ge 0.$$

Norma vektora $|\Phi\rangle$ je

$$||\Phi|| = \sqrt{\langle \Phi | \Phi \rangle}.$$

Simbol $\langle \Phi |$ zovemo *bra*-simbolom, a zapis skalarnog produkta $\langle \Psi | \Phi \rangle$ zovemo *braketom*.

Ako za vektore $|x\rangle$ i $|y\rangle$ u $\mathcal{H}^{(2)}$ vrijedi

$$\langle x|y\rangle = 0, \qquad \langle x|x\rangle = \langle y|y\rangle = 1,$$

kažemo da oni čine ortonormiranu bazu tog prostora.

Izrazimo li vektore $|\Phi\rangle$ i $|\Psi\rangle$ koristeći bazu $\{|x\rangle, |y\rangle\}$,

$$|\Phi\rangle = \frac{\lambda}{|x\rangle} + \mu |y\rangle$$
, $|\Psi\rangle = \frac{\nu}{|x\rangle} + \sigma |y\rangle$,

skalarni produkt vektora $|\Phi\rangle$ i $|\Psi\rangle$ i norma vektora $|\Phi\rangle$ su:

$$||\Phi\rangle| = \nu^* \lambda + \sigma^* \mu = \langle \Phi | \Psi \rangle^* \qquad ||\Phi||^2 = \langle \Phi | \Phi \rangle = |\lambda|^2 + |\mu|^2$$

$$\frac{\partial^2 \Phi}{\partial h^2} + \frac{\partial^2 \Phi}{\partial h^2} = |h|^2 + |\mu|^2$$

Stanja polarizacije fotona prikazujemo normiranim vektorima u $\mathcal{H}^{(2)}$. Ako vektori $|\Phi\rangle\,, |\Psi\rangle\,$ itd. predstavljaju stanja polarizacije,

$$\langle \Phi | \Phi \rangle = 1, \quad \langle \Psi | \Psi \rangle = 1, \quad \dots$$

Skalarni produkt vektora $|\Phi\rangle$ i $|\Psi\rangle$ odgovara amplitudi vjerojatnosti da foton u stanju polarizacije $|\Phi\rangle$ bude izmjeren (detektiran) u stanju polarizacije $|\Psi\rangle$.

$$a(\Phi \to \Psi) = \langle \Psi | \Phi \rangle$$
.

Odgovarajuća vjerojatnost je

$$p(\Phi \to \Psi) = |\langle \Psi | \Phi \rangle|^2$$
.

Primjer: Mjerenje stanja polarizacije linearno polariziranog fotona

Prolaskom kroz polarizator, foton je u stanju linearne polarizacije

$$|\theta\rangle = \cos\theta |x\rangle + \sin\theta |y\rangle$$
.

Vjerojatnosti da takav foton bude izmjeren u stanju polarizacije $|x\rangle$ (detektiran u D1) odnosno u stanju polarizacije $|y\rangle$ (D0):

D1:
$$p(\theta \to x) = |a(\theta \to x)|^2 = |\langle x|\theta \rangle|^2 = \cos^2 \theta$$

D0:
$$p(\theta \to y) = |a(\theta \to y)|^2 = |\langle y|\theta \rangle|^2 = \sin^2 \theta$$

Primjer: Vjerojatnost detekcije cirkularno polariziranog fotona

$$|R\rangle = \frac{1}{\sqrt{2}}(|x\rangle + \mathrm{i}\,|y\rangle)$$

u stanju linearne polarizacije ne ovisi o orijentaciji analizatora.

$$|R\rangle = \frac{1}{\sqrt{2}}(|x\rangle + i|y\rangle) \qquad \alpha \qquad |\alpha\rangle = \cos\alpha |x\rangle + \sin\alpha |y\rangle$$

$$\hat{\mathbf{n}} \qquad \text{Analizator}$$

$$p(R \to \alpha) = |\langle \alpha | R \rangle|^2 = \left| \frac{1}{\sqrt{2}} \cos \alpha + \frac{i}{\sqrt{2}} \sin \alpha \right|^2 = \dots = \frac{1}{2}$$