

name: mainlog log: C:\Users\Conor\Documents\Conor\Grad School\TA Work\Econ 103 - Econometric > s\STATA Work\Week 10\wk10_section_log.smcl log type: smcl opened on: 12 Mar 2018, 20:13:16 2 . // Demonstration STATA code for week 10 3 . // Principles of Econometrics 4th Edition 4 . // Covered Problems: 8.22 6 . set more off 7 . clear all 8 . use lasvegas.dta, clear 12. *Part A: Estimate the linear probability model (regression) using the model 13. * explaining DELINQUENT as a function of the remaining variables. Use the White 14. * test with cross-product terms included to test for heteroskedasticity. Why did 15. * we include the cross-product terms? 16. ******** 17. 18. // Run OLS 19. qui reg delinquent lvr ref insur rate amount credit term arm 21. // For the White test, we can use the command: estat imtest, white 22. // We are interested in the output before the table with a longer decomposition 23. estat imtest, white White's test for Ho: homoskedasticity against Ha: unrestricted heteroskedasticity 219.97 chi2(**40**) Prob > chi2 = 0.0000

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	р
Heteroskedasticity Skewness Kurtosis	219.97 164.83 45.66	40 8 1	0.0000 0.0000 0.0000
Total	430.46	49	0.0000

```
26. *Part B: Use the estimates from (a) to estimate the error variances for each
27. * observation. How many of these estimates are at least one? How many are at
```

```
28. * most zero? How many are less than 0.01?
**********
30.
31. // Generate regression fitted values
32. predict yHat, xb
33.
34. // Generate variance using yHat*(1-yHat)
35. // Note, this variance comes from our model, and is different from eHat^2
36. gen varHat = yHat*(1-yHat)
38. // Generate varHat_tab for easy presentation of the three conditions described 39. gen varHat_tab = "(3) other" // default value = "other"
40. replace varHat tab = "(1) Less than zero" if varHat < 0
  variable varHat_tab was str9 now str18
  (135 real changes made)
41. replace varHat tab = "(4) Greater than 1" if varHat >= 1
  (0 real changes made)
42. replace varHat_tab = "(2) Between 0 and 0.01" if varHat <= 0.01 & varHat >= 0 variable varHat_tab was str18 now str22 (23 real changes made)
44. // Tabulate results
45. tab varHat tab
               varHat tab
                                   Freq.
                                               Percent
                                                               Cum.
       (1) Less than zero
                                      135
                                                 13.50
                                                               13.50
  (2) Between 0 and 0.01
                                                              15.80
                                      23
                                                  2.30
                                      842
                 (3) other
                                                 84.20
                                                             100.00
                                   1,000
                                                100.00
                     Total
```

10001	
46.	
47. ************************************	***
48. *Part C: Prepare a table containing estimates and standard errors from	
49. * estimating the linear probability model in each of the following ways:	
50. *	
51. * (i) Least squares with conventional standard errors	
52. * (ii) Least squares with heteroskedasticity-robust standard errors.	
53. * (iii) Generalized least squares omitting observations with variance less that $54. * 0.01$	ın
55. * (iv) Generalized least squares with variances less than 0.01 changed to 0.0	٦1
56. * (v) Generalized least squares with variances less than 0.00001 changed to) 1
57. * 0.00001	
58. *	
59. * Discuss and compare the results.	
60. **************************	+ * *
61.	
62. // Construct weights for the GLS in 4-5	
63. gen $wgt_4 = 1/varHat$	
64. replace wgt $4 = 1/0.01$ if varHat < 0.01	
(158 real changes made)	

- 65. gen wgt 5 = 1/varHat
- 66. replace wgt_5 = 1/0.00001 if varHat < 0.00001
 (135 real changes made)</pre>
- 68. // Run the regressions separately, and store results using eststo 69. qui reg delinquent lvr ref insur rate amount credit term arm
- 70. eststo ols
- 71.
- 72. qui reg delinquent lvr ref insur rate amount credit term arm, robust
- 73. eststo ols RSE
- 74.
- 75. qui reg delinquent lvr ref insur rate amount credit term arm [aweight = 1/varHat] if > varHat > 0.01
- 76. eststo gls omit
- 78. qui reg delinquent lvr ref insur rate amount credit term arm [aweight = wgt 4]
- 79. eststo gls t01
- 80.
- 81. qui reg delinquent lvr ref insur rate amount credit term arm [aweight = wgt_5]
- 82. eststo gls t0001
- 83.
- 84. // Prepare table for results from the 5 models 85. esttab, b(%7.4f) se(%7.4f) stats(F N) star compress mtitles

	(1) ols	(2) ols_RSE	(3) gls_omit	(4) gls_t01	(5) gls_t0001
lvr			0.0016 (0.0008)	0.0009* (0.0004)	
ref			-0.0571** (0.0211)		
insur			-0.5016*** (0.0292)		
rate			0.0413*** (0.0082)		
amount		0.0238 (0.0145)		0.0187 (0.0099)	
credit			-0.0004* (0.0002)		-0.0000 (0.0001)
term			-0.0190*** (0.0041)		
arm	0.1283*** (0.0319)		0.2089*** (0.0407)		

```
Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001
```

86. eststo clear

89. *Part D: Using the results from (iv), interpret each of the coefficients.

90. * Mention whether the signs are reasonable and whether they are significantly

91. * different from zero. ************** 92. ************

93. 94. req delinquent lvr ref insur rate amount credit term arm [aweight = wgt_4] (sum of wgt is 2.6470e+04)

Source	SS	df	MS	Number of obs	=	1,000
Model	12.6316713	8	1.57895891	F(8, 991) Prob > F	=	44 .92 0.0000
Residual	34.8377088	991	.035154096	R-squared Adj R-squared	=	0.2661 0.2602
Total	47.46938	999	.047516897	Root MSE	=	.18749

delinquent	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lvr	.0008577	.000379	2.26	0.024	.0001139	.0016015
ref	0326787	.0146471	-2.23	0.026	0614216	0039357
insur	4769852	.0296842	-16.07	0.000	5352363	4187342
rate	.0203535	.0056992	3.57	0.000	.0091697	.0315374
amount	.0187387	.009943	1.88	0.060	000773	.0382504
credit	0001617	.0001183	-1.37	0.172	0003939	.0000705
term	0065417	.0020826	-3.14	0.002	0106284	0024549
arm	.041931	.0139866	3.00	0.003	.0144843	.0693777
_cons	.5586635	.1316754	4.24	0.000	.300269	.8170581

```
95.
97. *Appendix A - Construct test stat for White test "by hand"
98. ***********************
99.
100 // In Part A above, we just used estat imtest to calculate the test statistic
101 // for the White test of homoskedasticity of the error term. Here, I walk
102 // through conducting the test by estimating a secondary regression and then
103 // using the N*R^2 formula given in the textbook in Section 8.2.2
104
105 // use the describe command to collect names of all original variables in the
106 // dataset (i.e. lvr to delinquent)
107 qui describe lvr-delinquent, varlist
108 local origVars = r(varlist)
```

109 // make a local (excl) that holds name: delinquent

110 local excl delinquent

```
111 // generate a local that includes all the origVars, excluding delinquent. These
112 // are the RHS varibles for our main regression
113 local meanRHS : list origVars -excl
114
115 // Use the following loop to make variables for the square and interaction of
116 // all the RHS variables from the main regression. A squared value is call var_2 117 // and an interaction is called int_var1_var2, where var, var1, var2 are the
118 // names of the original variables.
119 local varCount : word count `meanRHS'
120 forvalues x = 1/=`varCount'' {
                forvalues y = `x'/`=`varCount'' {
                      // if `x' == `y' then we have a squared term if `x' == `y' {
121
122
    4.
123
                                // meanRHS is a list of variable names
124
                                // use local xvar : word `x' of `meanRHS' to extract the xth
    name
125
                                // of the list
                               local xvar : word `x' of `meanRHS'
  gen `xvar'_2 = `xvar'^2
126
    5.
    6.
                                label variable `xvar' 2 "`xvar' Squared"
127
128
    8.
                          // otherwise, we have an interaction term
129
                      else {
    9.
                               local xvar : word `x' of `meanRHS'
  local yvar : word `y' of `meanRHS'
  gen int_`xvar'_`yvar' = `xvar'*`yvar'
130
   10.
   11.
   12.
                                label variable int_`xvar'_`yvar' "int `xvar' `yvar'"
131
   13.
132
                      } // end if x == y ... else ...
                 } // end forvalues y
   14.
   15. \} // end forvalues x
134 // Re-run regression of delinquent on original variables
135 qui reg delinquent `meanRHS'
137 // Quietly calculate the white test value using estat imtest
138 qui estat imtest, white
139 scalar whiteTestVal STATA = r(chi2)
141 // Generate residuals and square of residuals
142 predict eHat, residual
143 gen eHatSqr = eHat^2
145 // regress eHatSqr on level, interactions, and squares of all variables
146 // Given the names for the variables we built in the loop earlier, we can refer
147 // to all these variables using the wildcard * to get all the squared (2) and
```

148 // interaction (int_) terms.
149 reg eHatSqr `meanRHS' * 2 int_*
note: arm omitted because of collinearity
note: ref_2 omitted because of collinearity
note: insur_2 omitted because of collinearity
note: arm_2 omitted because of collinearity

Source	SS	df	MS
Model Residual	7.51367293 26.6434732	40 959	.187841823 .027782558
Total	34.1571461	999	.034191337

Number of obs	=	1,000
F(40, 959)	=	6.76
Prob > F	=	0.0000
R-squared	=	0.2200
Adj R-squared	=	0.1874
Root MSE	=	.16668

			t	P> t	[55% CONT.	Interval]
lvr	0042071	.0082748	-0.51	0.611	0204459	.0120317
ref	1426573	.2561221	-0.56	0.578	6452819	. 3599672
insur	2074383	.2466591	-0.84	0.401	6914922	.2766157
rate	0921778	.0986614	-0.93	0.350	2857949	.1014393
amount	.1578815	.1651618	0.96	0.339	1662386	.4820017
credit	.0010925	.0025459	0.43	0.668	0039037	.0060886
term	0118508	.0394968	-0.30	0.764	089361	.0656593
arm	0	(omitted)				
lvr 2	0000269	.000024	-1.12	0.263	000074	.0000202
ref_2	0	(omitted)				
insur 2	0	(omitted)				
rate ²	.0023687	.0022496	1.05	0.293	002046	.0067834
amount_2	.0031948	.0032302	0.99	0.323	0031442	.0095338
credit_2	-1.85e-07	1.41e-06	-0.13	0.896	-2.94e-06	2.57e-06
term ²	.000088	.0004571	0.19	0.847	000809	.0009851
arm 2	0	(omitted)				
int lvr ref	.0015055	.0011384	1.32	0.186	0007286	.0037396
int lvr insur	.0006097	.000968	0.63	0.529	00129	.0025094
int lvr rate	.0001351	.000391	0.35	0.730	0006321	.0009024
int lvr amount	0000102	.0005779	-0.02	0.986	0011443	.001124
int lvr credit	-7.10e-06	8.37e-06	-0.85	0.396	0000235	9.33e-06
$\overline{n}t\ l\overline{v}r\ term$.000346	.0001296	2.67	0.008	.0000917	.0006003
int lvr arm	0002256	.0014284	-0.16	0.875	0030288	.0025777
int ref insur	0152041	.0279869	-0.54	0.587	0701268	.0397186
in t re f rate	.0128034	.0103218	1.24	0.215	0074526	.0330594
int_ref_amount	.0147192	.0156202	0.94	0.346	0159346	.0453729
int ref credit	.0000464	.0002568	0.18	0.857	0004576	.0005504
int_ref_term	0045631	.0053209	-0.86	0.391	015005	.0058788
int_ref_arm	.0173632	.0379412	0.46	0.647	0570941	.0918206
int_insur_rate	.0175694	.0102066	1.72	0.086	0024604	.0375991
int_insur_amount	.0070806	.0155683	0.45	0.649	0234711	.0376324
int_insur_credit	.0000168	.0002321	0.07	0.942	0004388	.0004724
int_insur_term	0046649	.004191	-1.11	0.266	0128894	.0035596
int_insur_arm	0203728	.0402332	-0.51	0.613	099328	.0585823
int_rate_amount	008355	.0061225	-1.36	0.173	0203701	.0036601
int_rate_credit	-9.72e-06	.0000896	-0.11	0.914	0001856	.0001662
int_rate_term	.0014639	.0016591	0.88	0.378	0017919	.0047197
int_rate_arm	.0287677	.0162178	1.77	0.076	0030588	.0605941
int_amount_credit	.000168	.0001258	1.34	0.182	0000788	.0004148
int_amount_term	0076087	.004146	-1.84	0.067	015745	.0005275
int_amount_arm	.0059363	.0302796	0.20	0.845	0534857	.0653582
int_credit_term	0000199	.000035	-0.57	0.569	0000887	.0000488
int_credit_arm	0000659	.0003403	-0.19	0.846	0007338	.000602
int_term_arm	0040533	.0101548	-0.40	0.690	0239815	.0158749
_cons	.4868574	1.408049	0.35	0.730	-2.276356	3.250071

```
150
151 // Note that ref_2, insur_2, and arm_2, along with arm, are all dropped due to
152 // collinearity. This reduces our 44 RHS terms (not including the constant)
153 // down to 40 RHS terms. This matches the "model degrees of freedom" in STATA, 154 // stored as e(df_m)
155
156 // Calculate white test statistic as R^2 * N
157 scalar whiteTestVal hand = e(r2)*e(N)
158
159 // Compare the "hand" calculated whiteTestVal to that given by STATA:
160 disp "Hand calculated White test statistic: " whiteTestVal hand
  Hand calculated White test statistic: 219.97367
161 disp "STATA-calculated White test statistic: " whiteTestVal STATA
  STATA-calculated White test statistic: 219.97368
163 // Calculate the 99.5% critical value for the White test
164 \text{ scalar alpha} = 0.005
165 disp "White Test " (1-alpha) *100 "% critical value: " invchi2(e(df_m),1-alpha)
  White Test 99.5% critical value: 66.765962
167 // Can also use STATA's built in Breusch-Pagan test to run the White Test when
168 // using some extra options (i.e. feeding in the RHS variables and specifying 169 // the iid option)
170 qui reg delinquent `meanRHS'
171 estat hettest `meanRHS' * 2 int *, iid
  Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
            Ho: Constant variance
            Variables: lvr ref insur rate amount credit term arm lvr 2 ref 2 insur 2
                        rate 2 amount 2 credit 2 term 2 arm 2 int lvr ref int lvr insur
                        int_lvr_rate int_lvr_amount int_lvr_credit int_lvr_term int_lvr_arm int_ref_insur int_ref_rate int_ref_amount int_ref_credit int_ref_term int_ref_arm int_insur_rate
                        int_insur_amount int_insur credit int insur_term int insur arm
                        int_rate_amount int_rate_credit int_rate_term int_rate_arm
int_amount_credit int_amount_term int_amount_arm int_credit_term
                        int credit arm int term arm
            chi2(40)
                              219.97
            Prob > chi2 = 0.0000
174 *Appendix B - Weighted regression as OLS of transformed variables
        175 ***
176
177 // Another way to calculate the values from GLS (weighted regression) is to run
178 // an unweighted regression on a set of transformed variables.
179 // Specifically, whatever you assign as the aweight in the reg command we are
180 // multiplying both the left- and right-hand side variables by the square root
181 // of that variable and dividing by the square root of the average of that
182 // variable, one observation at a time.
183 //
184 // Below, we walk through implementing the regression with "transformed" values
```

```
185 // and compare the result to running the weighted regression.
187 // Generate the "transformed" variables by multiplying by sqrt(wgt_4) and
188 // dividing by sqrt(avg\_wgt\_4). We call these values var\_adju. In addition, we 189 // try the variables without dividing through by sqrt(avg\_wgt\_4), which we will
190 // compare below. The variables without dividing by sqrt(\overline{avg},\overline{wgt},4) are called
191 // var_adju2
192 qui sum wgt 4
193 scalar avg_wgt_4 = r(mean)
194 foreach x of local origVars {
                gen `x'_adju = `x'*sqrt(wgt_4)/sqrt(avg_wgt_4)
gen `x'_adju2 = `x'*sqrt(wgt_4)
    3.
    4. }
195
196 // In addition, we need to calculate the "transformed" constant (which is no
197 // longer constant)
198 gen cnst adju = sqrt(wgt 4)/sqrt(avg wgt 4)
199 gen cnst_adju2 = sqrt(wgt 4)
200
201 // Construct a varlist of "adjusted" variables, and then remove
202 // delinquent adju from the list, giving us the RHS variables meanRHS adju
203 qui desc * adju, varlist
204 local adjuVars = r(varlist)
205 local excl delinguent adju
206 local meanRHS adju : list adjuVars -excl
208 // Do the same thing, but this time collecting the adju2 variables
209 qui desc * adju2, varlist
210 local adju2Vars = r(varlist)
211 local excl delinguent adju2
212 local meanRHS adju2: list adju2Vars -excl
214 // Run OLS for delinquent adju on the adjusted RHS values
215 // Be sure to not let STATA include a constant in the regression! We already
216 // have the "transformed constant" included in the list meanRHS adju
217 reg delinquent_adju `meanRHS_adju', noconstant
                         SS
                                        df
                                                           Number of obs
                                                                                   1,000
        Source
                                                 MS
                                                           F(9, 991)
                                                                            =
                                                                                   47.82
                                                           Prob > F
         Model
                    15.1282702
                                            1.68091891
                                                                            =
                                                                                  0.0000
                    34.8377089
      Residual
                                       991
                                            .035154096
                                                                                  0.3028
                                                           R-squared
                                                                            =
                                                           Adj R-squared
                                                                            =
                                                                                  0.2964
          Total
                    49.9659791
                                    1,000
                                            .049965979
                                                          Root MSE
                                                                                  .18749
  delinquent~u
                                 Std. Err.
                                                                  [95% Conf. Interval]
                        Coef.
                                                  +
                                                       P>|t|
    lvr_adju
ref_adju
insur_adju
                     .0008577
                                  .000379
                                               2.26
                                                       0.024
                                                                  .0001139
                                                                                .0016015
                    -.0326787
                                 .0146471
                                              -2.23
                                                       0.026
                                                                 -.0614216
                                                                               -.0039357
                    -.4769852
                                                                 -.5352363
                                                                               -.4187342
                                 .0296842
                                             -16.07
                                                       0.000
                                                       0.000
                                 .0056992
                                               3.57
                                                                  .0091697
                                                                                .0315374
                     .0203535
     rate_adju
   amount_adju credit_adju
                                                                                .0382504
                     .0187387
                                  .009943
                                               1.88
                                                       0.060
                                                                   -.000773
                    -.0001617
                                 .0001183
                                              -1.37
                                                       0.172
                                                                 -.0003939
                                                                                .0000705
     term adju
                    -.0065417
                                 .0020826
                                              -3.14
                                                       0.002
                                                                 -.0106284
                                                                               -.0024549
     arm_adju
cnst_adju
                      .041931
                                 .0139866
                                               3.00
                                                       0.003
                                                                   .0144843
                                                                                .0693777
                     .5586635
                                 .1316754
                                               4.24
                                                       0.000
                                                                   .3002689
                                                                                .8170581
```

```
218
219 // Collect RMSE and SSE to compare to the adju2 regression below
220 scalar rmse_adju = e(rmse)
221 scalar sse_adju = e(rss)
223 // Do the F-test that the all terms besides beta for cnst adju are zero:
224 local excl cnst adju
225 local meanRHS adju nocnst : list meanRHS adju -excl
226 test `meanRHS adju nocnst'
   (1)
        lvr adju = 0
   ( 2) ref_adju = 0
   __uuju = 0
( 3) insur_adju = 0
( 4) rate ---
   (5) amount adju = 0
   ( 6) credit_adju = 0
   (7) term_adju = 0
(8) arm_adju = 0
                 991) =
         F(8,
                            44.92
              Prob > F =
                             0.0000
227
228 // Compare the OLS of the x*sqrt(wgt 4)/sqrt(avg wgt 4) values to weighted
229 // regression with weights of wgt 4
230 reg delinquent `meanRHS' [aweight = wgt 4]
  (sum of wgt is
                  2.6470e+04)
        Source
                        SS
                                      df
                                               MS
                                                        Number of obs
                                                                         =
                                                                               1,000
                                                        F(8, 991)
                                                                               44.92
                                          1.57895891
                                                        Prob > F
         Model
                   12.6316713
                                                                              0.0000
                                       R
                                                                         =
                   34.8377088
                                          .035154096
                                                                         =
                                                                              0.2661
      Residual
                                     991
                                                        R-squared
                                                        Adj R-squared
                                                                              0.2602
                                                                        =
         Total
                     47.46938
                                     999
                                          .047516897
                                                        Root MSE
                                                                              .18749
    delinguent
                       Coef.
                               Std. Err.
                                               t
                                                    P>|t|
                                                               [95% Conf. Interval]
           lvr
                    .0008577
                                .000379
                                             2.26
                                                     0.024
                                                               .0001139
                                                                            .0016015
                   -.0326787
                                .0146471
                                            -2.23
                                                     0.026
                                                              -.0614216
                                                                           -.0039357
           ref
         insur
                   -.4769852
                                .0296842
                                           -16.07
                                                     0.000
                                                              -.5352363
                                                                           -.4187342
          rate
                    .0203535
                               .0056992
                                             3.57
                                                     0.000
                                                               .0091697
                                                                            .0315374
                                                     0.060
                                                               -.000773
                    .0187387
                                 .009943
        amount
                                             1.88
                                                                            .0382504
                                                                            .0000705
        credit
                   -.0001617
                                .0001183
                                            -1.37
                                                     0.172
                                                              -.0003939
                   -.0065417
                                                     0.002
                               .0020826
                                            -3.14
                                                              -.0106284
                                                                           -.0024549
          term
           arm
                     .041931
                                .0139866
                                             3.00
                                                     0.003
                                                               .0144843
                                                                            .0693777
         _cons
                    .5586635
                               .1316754
                                             4.24
                                                     0.000
                                                                .300269
                                                                            .8170581
231
232 gen del wt = delinquent*wgt 4
234 // Quirk (1) - the "F-test of the regression" differs because the "transformed"
235 // \widetilde{\text{OLS}} also tests the cnst_adju term, while the weighted regression does not.
236 // Instead, compare the "F-test" reported by the weighted regression to the
```

```
237 // test of the non-constant terms from the "transformed" OLS.
238 //
239 // Quirk (2) - the "Adjusted-R2" is different because of how STATA calculates
240 // the adjustment when the noconstant option is used. In STATA, adjusted R2 uses 241 // Adju R^2 = 1 - (SSE/(N-K))/(SST/(N-C)) where C = 1 if there is a constant in
242 // the regression and C=0 otherwise.
243
244 // Finally, lets look at what happens when we use OLS on the "adju2" variables
245 // i.e. x*sqrt(wgt_4) instead of x*sqrt(wgt_4)/sqrt(avg_wgt_4)
246 reg delinquent_adju2 `meanRHS_adju2', noconstant
        Source
                        SS
                                                       Number of obs =
                                                                              1,000
                                                        F(9, 991)
                                                                        =
                                                                              47.82
         Model
                   400.450981
                                     9 44.4945534
                                                                        =
                                                                              0.0000
                                                        Prob > F
      Residual
                  922.167194
                                         .930542072
                                    991
                                                       R-squared
                                                                        =
                                                                              0.3028
                                                        Adj R-squared =
                                                                              0.2964
         Total
                 1322.61817
                                  1,000 1.32261817
                                                       Root MSE
                                                                              .96465
                                                              [95% Conf. Interval]
                      Coef. Std. Err.
                                              t P>|t|
  delinguent~2
                                                              .0001139
     lvr adju2
                  .0008577
                                .000379
                                           2.26 0.024
                                                                           .0016015
     ref adju2
                  -.0326787
                              .0146471
                                           -2.23
                                                   0.026
                                                              -.0614216
                                                                          -.0039357
  insur_adju2
rate_adju2
                  -.4769852
                               .0296842
                                           -16.07
                                                   0.000
                                                             -.5352363
                                                                          -.4187342
                               .0056992
                                                              .0091697
                   .0203535
                                             3.57
                                                   0.000
                                                                           .0315374
  amount adju2
                   .0187387
                               .009943
                                            1.88
                                                   0.060
                                                               -.000773
                                                                           .0382504
                              .0001183
                                                                           .0000705
                  -.0001617
                                                    0.172
                                                              -.0003939
  credit_adju2
                                            -1.37
    term adju2
                  -.0065417
                               .0020826
                                            -3.14
                                                   0.002
                                                              -.0106284
                                                                           -.0024549
                                                                           .0693777
    arm adju2
                    .041931
                               .0139866
                                             3.00
                                                    0.003
                                                              .0144843
                    .5586635
                                                                .300269
                              .1316754
                                             4.24
                                                   0.000
                                                                          .8170581
   cnst adju2
2.47
248 // Collect the RMSE and SSE values
249 scalar rmse adju2 = e(rmse)
250 scalar sse adju2 = e(rss)
252 // The ratio of sse_adju2 to see_adju matches avg_wgt_4, and the ratio of
253 // rmse_adju2 to rmse_adju matches sqrt(avg_wgt_4)
254 disp "SSE ratio: " sse_adju2/sse_adju " v.s. Average of wgt_4: " avg_wgt_4
  SSE ratio: 26.470374 v.s. Average of wgt 4: 26.470374
255 disp "RMSE ratio: " rmse adju2/rmse adju " v.s. Sqrt of Average of wgt 4: " sqrt(
  > avg_wgt_4)
 RMSE ratio: 5.1449368 v.s. Sqrt of Average of wgt 4: 5.1449368
257 *****************************
258 *Appendix C - Relationship between variance estimate and eHatSqr
259 ***
260
261 \text{ gen val} 001 = 0.01
262 \text{ gen val} 000001 = 0.00001
264 label variable varHat "Estimated Variance"
```