- GRADUAÇÃO

DATA SCIENCE: BIG DATA, BI & DATA ENGINEERING BUILDING RELATIONAL DATABASE

PROF. TADEU KANASHIRO proftadeu.kanashiro@fiap.com.br PROFa. RITA DE CÁSSIA rita@fiap.com.br

PROFESSOR: PERÍODO NOTURNO

- EXPERIÊNCIA PROFISSIONAL: Mais de 15 anos atuando na área de tecnologia, focado em análise e estruturação de dados;
- ÁREAS DE ATUAÇÃO: Big Data, Analytics Engineering,
 Business Intelligence e Database Marketing;
- INDÚSTRIAS: Saúde, setor imobiliário farmacêutica, fintech, financeiro, Internet, telecomunicações, educação e filantropia.
- MBA: Big Data (Data Science);
- GRADUAÇÃO: Sistemas de Informações e Gestão Financeira.

Professor: Tadeu Kanashiro

AGENDA

- Desafio da Aula Anterior
- Introdução a Modelagem de Dados
- Modelo Conceitual, Físico e Lógico
- Modelagem Entidade Relacionamento

DESAFIO ANTERIOR

	Α	В	С	D
1	PK			
2	NÚMERO	TEXTO	TEXTO	DATA
3	CODIGO	NOME	E_MAIL	DATA_CADASTRO
4	1010	Novak Djokovic	NovakDjokovic@email.com	2017-08-06
5	1011	Rafael Nadal	RafaelNadal@email.com	2012-02-25
6	1012	Daniil Medvedev	DaniilMedvedev@email.com	2018-02-14
7	1013	Dominic Thiem	DominicThiem@email.com	2019-10-20
8	1014	Stefanos Tsitsipas	StefanosTsitsipas@email.com	2019-12-11
9	1015	Roger Federer	RogerFederer@email.com	2020-07-06
10	1016	Alexander Zverev	AlexanderZverev@email.com	2017-04-01
11	1017	Andrey Rublev	AndreyRublev@email.com	2020-10-29
12	1018	Diego Schwartzman	DiegoSchwartzman@email.com	2015-04-30
13	1019	Matteo Berrettini	MatteoBerrettini@email.com	2014-09-15

	А	В	С
1		PK	
2	NÚMERO	NÚMERO	TEXTO
3	COD_CLIENTE	COD_TELEFONE	NUMERO
4	1010	1	+1-202-555-0167
5	1011	2	+1-202-555-0158
6	1012	3	+1-202-555-0111
7	1013	4	+1-202-555-0190
8	1014	5	+1-202-555-0161
9	1015	6	+1-202-555-0172
10	1016	7	+1-202-555-0190
11	1017	8	+1-202-555-0321
12	1018	9	+1-202-555-0432
13	1019	10	+1-202-555-0897
14	1010	11	+1-202-555-3472

INTRODUÇÃO A MODELAGEM DE DADOS

CONCEITOS-CHAVE

- Modelo: é uma representação, conforme o nível de abstração conveniente, de algo. Através de um modelo, pode-se explicar, descrever, analisar, prever e testar funcionamentos.
- Modelagem: é o processo de elaboração dos modelos. A atividade de criação, ajuste, validação e refinamento dos modelos.
- Abstração: é o processo mental de simplificação de um objeto de estudo, enfatizando os aspectos relevantes e ocultando detalhes desnecessários, visando facilitar a análise.

■ DEFINIÇÃO DE MODELAGEM DE DADOS

- A modelagem de dados é um método de análise que, a partir de fatos relevantes a um contexto de negócio, determina a perspectiva dos dados, permitindo organizá-los em estruturas bem definidas e estabelecer regras de dependência entre eles, além de produzir um modelo expresso por uma representação descritiva e gráfica;
- É utilizada para:
 - Conhecer melhor o contexto de negócio;
 - Retratar os dados que suportam esse contexto de negócio;
 - Projetar o banco de dados;
 - Promover o compartilhamento dos dados e a integração dos sistemas por meio da reutilização de estruturas de dados comuns;
 - Contribuir par que a perspectiva da organização a respeito dos seus dados seja unificada.

MODELAGEM DE DADOS

- O ponto de partida para a modelagem de dados é o entendimento do negócio que representa o contexto do problema;
- A partir da perspectiva do negócio é possível reconhecer processos e informações relevantes sobre a realidade a ser modelada;
- Portanto, uma boa prática para iniciar a modelagem de dados é compreender, de forma aprofundada, a realidade do negócio e, a partir dessa análise, elaborar os modelos conceitual, lógico e físico do banco de dados.

MODELAGEM ENTIDADE RELACIONAMENTO

I NÍVEIS DE MODELAGEM DE DADOS

- Especificamente, para o projeto de base de dados de um sistema aplicativo, uma elaboração completa baseia-se em três níveis de modelagem:
 - Modelo Conceitual;
 - Modelo Lógico;
 - Modelo Físico.

ETAPAS DA MODELAGEM DE DADOS

MODELO CONCEITUAL DE DADOS

- O modelo conceitual de dados representa as informações que existem no contexto do negócio, com maior foco nos processos. Esse modelo utiliza termos e linguagem próprios do negócio, sendo mais adequados ao dia a dia do segmento ou área de negócio envolvidas no projeto;
- O modelo conceitual de dados tem as seguintes funções:
 - Entender o funcionamento de processos e regras do negócios;
 - Expressar as necessidades de informações da empresa como um todo;
 - Facilitar a comunicação entre áreas usuárias e de tecnologia da informação;
 - Definir abrangência do sistema, delimitando o escopo do sistema e estimando custos e prazos para elaboração do projeto;
 - Avaliar soluções de software, no momento de aquisição, por meio da comparação entre o que a solução pode oferecer e a visão do modelo de dados conceitual;
 - Permitir estruturar os dados com flexibilidade.
- É o modelo de mais alto nível de abstração. Não deve haver preocupação com a tecnologia.

MODELO LÓGICO DE DADOS

- O modelo lógico de dados representa a versão do modelo conceitual de dados, que pode ser apresentada ao SGBD, que também pode ser hierárquico, em rede, relacional ou orientado a objeto;
- O modelo lógico de dados reflete as propriedades necessárias para a tradução do modelo conceitual, de maneira que seja possível a descrição dos elementos capazes de serem interpretados por SGBD, tais como o detalhamento dos atributos, chaves de acesso, integridade referencial e normalização.

MODELO FÍSICO DE DADOS

- O modelo físico de dados representa a estrutura para armazenamento físico dos dados, expressando a forma como as informações serão armazenadas fisicamente, em termos computacionais;
- Pode-se, ainda, representar o modelo externo, isto é, as aplicações ou sistemas que utilizam o banco dados, no qual são expressas as diversas formas particulares como os dados da organização são visualizados e manipulados pelos sistemas;
- Nesta etapa, os formalismos aplicados ao tipo de banco de dados escolhido são considerados, tais como a definição do tipo de dado, do tamanho do campo, regras para manutenção de integridade dos dados, normalização das tabelas, entre outros;
- Deve ser considerado os aspectos relacionados ao SGBD.

MODELAGEM ENTIDADE RELACIONAMENTO

INTRODUÇÃO AO MODELO ER

- O conceito do Modelo Entidade Relacionamento (MER) foi proposto por Peter Chen e tem como base a perspectiva do mundo real como constituído por um conjunto de objetos, chamados de entidades e relacionamentos. Além disso, esse modelo se vale de uma técnica de diagramação capaz de representar o modelo de dados de forma abrangente por meio do Diagrama Entidade Relacionamento (DER) (Chen, 1976). Essa proposta se mostrou tão eficiente, simples e completa, que, ainda hoje, é muito utilizada para formalizar o conhecimento de negócio e facilitar o projeto do banco de dados;
- O MER é um dos modelos de maior capacidade semântica os aspectos semânticos se referem à tentativa de representar o significa dos dados;
- Permite representar e pensar nos dados da maneira como eles existem e são utilizados no mundo real.

SIMBOLOGIA DO MODELO ER

A simbologia apresentada é uma notação de Peter Chen, bastante conhecida e utilizada, sendo interessante para fins didáticos e para modelos conceituais de dados.

I SIMBOLOGIA BÁSICA DO MODELO ER

ENTIDADE

RELACIONAMENTO

O

ATRIBUTO

MODELO ER: ENTIDADE

- Representa seres ou objetos do mesmo tipo (uma classe, ou um conjunto) sobre os quais necessita-se registrar informação;
- É identificada por um substantivo.

MODELO ER: RELACIONAMENTO

- É um fato ou ato que liga entidades;
- Em geral, é identificado por um verbo (para dar maior valor semântico, em modelos conceituais).

MODELO ER: ATRIBUITO

- É um item de informação, um dado, pertence a uma entidade ou relacionamento;
- Um objeto ou uma entidade é descrito e caracterizado por um conjunto de atributos. São identificados por substantivos.

RELACIONAMENTO

- Um relacionamento, basicamente, pode ser qualificado conforme:
 - Grau;
 - Cardinalidade.

RELACIONAMENTO: GRAU

- Refere-se à quantidade de entidades envolvidas no relacionamento.
- Grau = 2
 - Relacionamento Binário

GRAU: AUTO-RELACIONAMENTO

- Há ainda um caso especial: relacionamento de uma entidade com ela mesma: chamados de "relacionamentos recursivos";
- Ou "auto-relacionamentos";
- Nestes casos, o grau é igual a 1.

■ GRAU RELACIONAMENTO: OBSERVAÇÕES

- Como veremos nos exercícios de modelagem, não é recomendável utilizar relacionamentos de grau maior que 2 (ou seja, ternários, quaternários, etc.), pois estes dificultam o entendimento, tornando a representação confusa;
- Normalmente um relacionamento de "grau > 2" pode ser dividido em dois ou mais relacionamentos binários.

RELACIONAMENTO: CARDINALIDADE

- Indica a reciprocidade de ligação entre elementos de entidades relacionadas;
- Com até quantos elementos (ocorrências), de uma entidade, um elemento (ocorrência) pode se relacionar, e vice-versa;
- Isto indica a "cardinalidade máxima" (também chamada, por alguns autores, de "classe de relacionamento"), que é o conceito predominante.

CARDINALIDADE

- Basicamente, as cardinalidades dos relacionamentos podem ser:
 - Um para um;
 - Um para muitos;
 - Muitos para muitos.

CARDINALIDADE (1 PARA 1)

- É um item de informação, um dado, pertence a uma entidade ou relacionamento;
- Um elemento da entidade "A" relaciona-se com somente um elemento da entidade "B" e vice-versa.

CARDINALIDADE (1 PARA N)

- Um elemento da entidade "A" pode se relacionar com vários elementos da entidade "B", porém um elemento da entidade "B" relaciona-se com somente um elemento da entidade "A";
- Obs.: "1:n" ou "n:1" têm o mesmo significado.

CARDINALIDADE (N PARA N)

• Um elemento da entidade "A" pode se relacionar com vários elementos da entidade "B" e um elemento da entidade "B" também pode se relacionar com vários elementos da entidade "A".

■ CARDINALIDADE: ATENÇÃO

- Cardinalidade = n
 - "n" inclui, implicitamente, a ideia de zero, um ou muitos.
- Cardinalidade = 1
 - define exatamente o número "1".

CARDINALIDADE: MÍNIMA

- Foi apresentado o conceito primordial de cardinalidade, que refere-se à "cardinalidade máxima" (que sempre irá aparecer indicado nos modelos);
- Porém há um conceito complementar: cardinalidade mínima;
- A cardinalidade mínima, basicamente, representa "obrigatoriedade" ou "opcionalidade" do relacionamento.

EXEMPLO DE CARDINALIDADE MÍNIMA

- Uma ocorrência da entidade "A" pode estar relacionada a 1 da entidade "B" (no máximo), mas pode não estar relacionada (cardinalidade mínima = zero)
- Uma ocorrência da entidade "B" pode estar relacionada a vários (n) da entidade "A" (no máximo), mas deve estar relacionada a 1, pelo menos (cardinalidade mínima = 1)

DESAFIO

- Continuando o exercício da aula anterior (criação de uma "tabela" de cadastro de clientes no Excel), desenvolva o modelo conceitual;
- Levar em consideração que um cliente pode ter mais de um tipo de telefone e mais de um endereço;
- Para fazer a modelagem conceitual, utilizar o software:
 - brModelo

BRMODELO

BrModelo 3.2 (Desktop)

Download: http://www.sis4.com/brModelo/download.html

BrModelo (Web)

App: https://www.brmodeloweb.com/lang/pt-br/index.html

Copyright © 2024 Prof. Tadeu Kanashiro e Prof. André Santos

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proibido sem o consentimento formal, por escrito, do Professor (autor).