MA 51002: Measure Theory and Integration Assignment - 2 (Spring 2022) Lebesgue integration

Note: Unless otherwise stated, $\int f$ will denote the Lebesgue integral of a measurable function f.

- 1. (i) Show that Monotone Convergence Theorem and Fatou's Lemma imply each other.
 - (ii) Give an example when the inequality is strict in Fatou's Lemma.
 - (iii) Show that Fatou's Lemma is not true for any sequence of measurable functions.
 - (iv) Deduce Bounded Convergence Theorem from Fatou's Lemma.
- 2. (i) Let $f:[0,1] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 1, & \text{if } x \text{ is a Cantor point} \\ 0, & \text{otherwise} \end{cases}$$

Then show that f is Riemann integrable on [0,1] and hence find the Riemann integral $\int_{[0,1]}^{\mathcal{R}} f(x) dx$.

- (ii) Show that $\int_1^\infty dx/x = \infty$ (don't use the log function).
- 3. Let $f:[0,1] \to \mathbb{R}$ be defined as: f(x) = 0 for $x \in \mathbb{Q}$ and f(x) = n if $x \in \mathbb{Q}^c$ and n is the number of zeros immediately after the decimal point in the decimal representation of x. Show that f is measurable and find $\int_0^1 f \, dx$.
- 4. Let $f:[0,1] \to \mathbb{R}$ be defined as: f(x) = 0 if x is a Cantor point and f(x) = p if x belongs to any one of the 2^{p-1} many complementary open intervals each of length 3^{-p} deleted at the stage p in order to construct Cantor set. Show that f is measurable and find $\int_0^1 f \, dx$.
- 5. The function f is defined on (0,1) by

$$f(x) = \begin{cases} 0, & x \in \mathbb{Q} \cap (0, 1) \\ [1/x]^{-1}, & x \in \mathbb{Q}^c \cap (0, 1), \end{cases}$$

where [x] denotes the 'box' function. Show that $\int_0^1 f dx = \infty$.

- 6. Let $f_n(x) = \min(f(x), n)$, where $f \ge 0$. Show that $\int f_n dx \uparrow \int f dx$.
- 7. (i) Let E_1, E_2, \cdots be a sequence of measurable sets. Show that if $m(E_n) < 2^{-n}$ for all n, then $\chi_{E_n} \to 0$ a.e. Show that $m(E_n) \to 0$ is not sufficient to ensure that $\chi_{E_n} \to 0$ a.e.
 - (ii) Let f be an integrable function over a set S. Show that for every $\epsilon > 0$ there exists $\delta > 0$ such that $\int_E f < \epsilon$ whenever $E \subset S$ is a measurable set and $m(E) < \delta$.
- 8. (i) Show that Dominated Convergence Theorem implies Bounded Convergence Theorem.
 - (ii) Give an example of a sequence $\{f_n\}$ which satisfies the conditions of the Dominated Convergence Theorem but does not satisfy the conditions of Bounded Convergence Theorem.
 - (iii) Show that without the domination condition, the conclusion of Dominated Convergence Theorem may not hold good.
 - (iv) Does there exist a sequence of Lebesgue integrable functions which converges pointwise to a measurable non-Lebesgue integrable function?
- 9. Let $f_n(x) = \frac{n^{3/2}x}{1+n^2x^2}$ for $x \in [0,1]$.
 - (i) Show that $f_n(x) \to 0$ for all $x \in [0, 1]$.
 - (ii) Show that the sequence $\{f_n\}$ is not uniformly bounded.
 - (iii) Show that $f_n(x) \leq \frac{1}{\sqrt{x}}$.
 - (iv) Explain why the conditions of the Dominated Convergence Theorem are satisfied and make a conclusion concerning the limit of $\int f_n$.