

**_*_*_*

Ministère de l'Enseignement Supérieur et de la Recherche et de l'Innovation

UNIVERSITE DE THIES

UFR SET

Master Science des Données et Applications Option Econométrie-Statistiques

Devoir de modèle linéaire

Auteurs:

Ousmane DIA

Abdoulaye Bara DIAW

Professeur:

Dr GNINGUE

Exercice 1

On considère le modèle linéaire $y_i=\beta+\varepsilon_i$, i = 1,, n Où ε_i idd de loi N (0, σ^2)

Proposons deux estimateurs différents du paramètre β

• Estimation par MCO On appelle estimateur des moindres carrés ordinaires de β , l'estimateur $\hat{\beta}$ obtenu par minimisation du risque quadratique

$$\hat{\beta} = \operatorname{argmin} J(\beta)$$
$$\beta \in \mathbb{R}$$

Avec $J(\beta) = \frac{1}{n} \Sigma (y_i - \beta)^2$ la fonction coût quadratique

$$J(\beta) = \frac{-2}{n} \Sigma(y_i - \beta) = 0 \implies \Sigma y_i - \Sigma \beta = 0 \implies n\beta = \Sigma y_i$$
$$\implies \hat{\beta} = \frac{1}{n} \Sigma y_i$$
$$\iff \widehat{\beta} = \overline{y}$$

• Pour pouvoir avoir la valeur prédite \hat{y}_i de y_i , il faut trouver un estimateur $\hat{\beta}$ de β c'est-à-dire $\hat{y}_i = \hat{\beta}$

$$\Leftrightarrow \widehat{\beta} = \widehat{y}_i$$

Exercice 2

On considère le modèle de régression linéaire $y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \varepsilon_i$ i = 1,, n, que l'on écrit sous la forme $Y = \beta + \varepsilon_i$.

$$X'X = \begin{pmatrix} 30 & 20 & 0 \\ 20 & 20 & 0 \\ 0 & 0 & 10 \end{pmatrix}, X'Y = \begin{pmatrix} 15 \\ 20 \\ 10 \end{pmatrix}, Y'Y = 59.5$$

1. Déterminons n , la moyenne $\overline{x}_{i,2}$ des $x_{i,2}$ et le coefficient de corrélation (r) des $x_{i,1}$ et $x_{i,2}$

On sait que par définition X'X =
$$\begin{pmatrix} n & \Sigma x_{i,1} & \Sigma x_{i,2} \\ \Sigma x_{i,1} & \Sigma x_{i,1}^2 & \Sigma x_{i,1} x_{i,2} \\ \Sigma x_{i,2} & \Sigma x_{i,1} x_{i,2} & \Sigma x_{i,2}^2 \end{pmatrix}$$

Par identification :
$$n=30$$
, $\Sigma x_{i,1}=\Sigma x_{i,1}^2=20$, $\Sigma x_{i,2}=\Sigma x_{i,1}x_{i,2}=0$, $\Sigma x_{i,2}^2=10$

Or
$$\bar{x}_{i,2} = \frac{1}{n} \Sigma x_{i,2}$$
 et $r = \frac{cov(x_{i,1}, x_{i,2})}{\sigma(x_{i,1}) * \sigma(x_{i,2})}$

Comme $\Sigma x_{i,2} = \Sigma x_{i,1} x_{i,2} = 0$,

$$=> \bar{x}_{i,2} = \frac{1}{n} \Sigma x_{i,2} = 0$$
; $cov(x_{i,1}, x_{i,2}) = \frac{1}{n} \Sigma x_{i,1} x_{i,2} - \bar{x}_{i,1} \bar{x}_{i,2} = 0$

et
$$\sigma(x_{i,1}) = \sqrt{\frac{1}{n} * \sum x_{i,1}^2 - \overline{x_{i,1}}^2} \neq 0$$
; $\sigma(x_{i,2}) = \sqrt{\frac{1}{n} * \sum x_{i,2}^2 - \overline{x_{i,2}}^2} \neq 0$

Donc
$$\boxed{n=30}$$
 $\boxed{\overline{x}_{i,2}=0}$ et $\boxed{r=0}$

Le coefficient de corrélation linéaire des $x_{i,1}$ et $x_{i,2}$ nul montre qu'il y a absence totale de colinéarité entre les variables $x_{i,1}$ et $x_{i,2}$

2. Calcul des estimateurs

• Estimateurs $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$ de β_0 , β_1 et β_2

$$\hat{\beta} = \begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix}$$

L'estimateur \hat{eta} des moindres carrés ordinaires a pour expression

$$\hat{\beta} = (X'X)^{-1}X'Y$$

Posons (X'X) = A et C la matrice des cofacteurs de A

$$A^{-1} = \frac{1}{\det A} * adjA$$

$$detA = \begin{vmatrix} 30 & 20 & 0 \\ 20 & 20 & 0 \\ 0 & 0 & 10 \end{vmatrix} = 2000 \qquad C = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}$$

$$c_{11} = + \begin{vmatrix} 20 & 0 \\ 0 & 10 \end{vmatrix} = 200$$
; $c_{12} = - \begin{vmatrix} 20 & 0 \\ 0 & 10 \end{vmatrix} = -200$;

$$c_{13} = + \begin{vmatrix} 20 & 20 \\ 0 & 0 \end{vmatrix} = 0$$
; $c_{21} = - \begin{vmatrix} 20 & 0 \\ 0 & 10 \end{vmatrix} = -200$;

$$c_{22} = + \begin{vmatrix} 30 & 0 \\ 0 & 10 \end{vmatrix} = 300; c_{23} = - \begin{vmatrix} 30 & 20 \\ 0 & 0 \end{vmatrix} = 0;$$

$$c_{31} = + \begin{vmatrix} 20 & 0 \\ 20 & 0 \end{vmatrix} = 0; c_{32} = - \begin{vmatrix} 30 & 0 \\ 20 & 0 \end{vmatrix} = 0; c_{32} = + \begin{vmatrix} 30 & 20 \\ 20 & 20 \end{vmatrix} = 200$$

$$C = \begin{pmatrix} 200 & -200 & 0 \\ -200 & 300 & 0 \\ 0 & 0 & 200 \end{pmatrix}$$

$$adjA = C^{t} = \begin{pmatrix} 200 & -200 & 0 \\ -200 & 300 & 0 \\ 0 & 0 & 200 \end{pmatrix}$$

$$A^{-1} = \frac{1}{\det A} * adjA = \frac{1}{2000} * \begin{pmatrix} 200 & -200 & 0 \\ -200 & 300 & 0 \\ 0 & 0 & 200 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 0.1 & -0.1 & 0 \\ -0.1 & 0.15 & 0 \\ 0 & 0 & 0.1 \end{pmatrix}$$

$$D'où \hat{\beta} = (X'X)^{-1}X'Y = \begin{pmatrix} 0.1 & -0.1 & 0 \\ -0.1 & 0.15 & 0 \\ 0 & 0 & 0.1 \end{pmatrix} * \begin{pmatrix} 15 \\ 20 \\ 10 \end{pmatrix}$$

$$= \begin{pmatrix} (0.1 * 15) + (-0.1 * 20) + (0 * 10) \\ (-0.1 * 15) + (0.15 * 20) + (0 * 10) \\ (0 * 15) + (0 * 20) + (0.1 * 10) \end{pmatrix}$$

$$\hat{\beta} = \begin{pmatrix} \hat{\beta}_{0} \\ \hat{\beta}_{1} \\ \hat{\beta} \end{pmatrix} = \begin{pmatrix} -0.5 \\ 1.5 \\ 1 \end{pmatrix} \Leftrightarrow \hat{\beta}_{0} = -0.5$$
; $\hat{\beta}_{1} = 1.5$; $\hat{\beta}_{2} = 1$

• Estimateur $\hat{\sigma}$ de σ

L'estimateur $\widehat{\sigma^2}$ de σ^2 des moindres carrés ordinaires a pour expression

$$\widehat{\sigma^2} = \frac{\|\hat{\varepsilon}\|^2}{n - p - 1} = \frac{\|y_i - \hat{y}\|^2}{n - p - 1} = \frac{\|y_i\|^2 - \|\hat{y}\|^2}{n - p - 1}$$

Or
$$||y_i||^2 = \sum y_i^2$$
 et $||\hat{y}||^2 = \hat{\beta}'(X'Y)$
De plus on sait que $Y'Y = \sum y_i^2$ donc $\widehat{\sigma^2} = \frac{Y'Y - \widehat{\beta}'(X'Y)}{n - p - 1}$
Avec $\hat{\beta}'(X'Y) = 32.5$; $Y'Y = 59.5$; $p = 2$; $n = 20$
On a donc $\widehat{\sigma^2} = \frac{59.5 - 32.5}{30 - 2 - 1}$ \iff $\widehat{\sigma^2} = \mathbf{1}$

3. Calcul d'intervalle et test

• Intervalle de confiance à 95% pour β_1

Par définition :
$$IC_{95}(\beta_1) = \left[\hat{\beta}_1 \mp t_{n-p-1} \left(1 - \frac{\alpha}{2}\right) \hat{\sigma} \sqrt{(X'X)_{2,2}^{-1}}\right]$$

Où $t_{n-p-1}\left(1-rac{lpha}{2}
ight)$ est le quantile de niveau $1-rac{lpha}{2}$ d'une loi de Student au_{n-p-1}

$$\hat{\beta}_1 = 1.5$$
 ; $t_{n-p-1} \left(1 - \frac{\alpha}{2} \right) = 2.052$; $\hat{\sigma} = 1$; $(X'X)_{2,2}^{-1} = 0.15$

AN:
$$IC_{95}(\beta_1) = [1.5 \mp 2.052 * 1\sqrt{0.15}] \Rightarrow IC_{95}(\beta_1) = [0.705; 2.295]$$

• Test de $\beta=0.8$ à niveau 10% Le test de significativité pour chaque coefficient est les suivant :

$$\begin{cases}
H_0: \beta = 0.8 \\
H_1: \beta \neq 0.8
\end{cases}$$

On a la statistique suivante : $T_j=rac{\widehat{eta}_j-eta_j}{\widehat{\sigma}_{\widehat{eta}_j}}{\sim} au_{n-p-1}$ avec

$$j = (0,1,2); \quad \hat{\sigma}_{\widehat{\beta}_j} = \hat{\sigma} \sqrt{(X'X)_{j+1,j+1}^{-1}}$$

Règle de décision :

Si
$$|T_j| \ge t_{n-p-1} \left(1 - \frac{\alpha}{2}\right)$$
 alors on rejette H_0

Si
$$|T_j| < t_{n-p-1} \left(1 - \frac{\alpha}{2}\right)$$
 alors on ne peut pas rejeter H_0

Application:

$$T_0 = \frac{\hat{\beta}_0 - \beta_0}{\hat{\sigma}_{\hat{\beta}_0}} = \frac{\hat{\beta}_0 - \beta_0}{\hat{\sigma}\sqrt{(X'X)_{1,1}^{-1}}} = \frac{-0.5 - 0.8}{1 * \sqrt{0.1}} = -4,111$$

$$T_{1} = \frac{\hat{\beta}_{1} - \beta_{1}}{\hat{\sigma}_{\hat{\beta}_{1}}} = \frac{\hat{\beta}_{1} - \beta_{1}}{\hat{\sigma}\sqrt{(X'X)_{2,2}^{-1}}} = \frac{1.5 - 0.8}{1 * \sqrt{0.15}} = 1,807$$

$$T_2 = \frac{\hat{\beta}_2 - \beta_2}{\hat{\sigma}_{\hat{\beta}_2}} = \frac{\hat{\beta}_2 - \beta_2}{\hat{\sigma}\sqrt{(X'X)_{3,3}^{-1}}} = \frac{1 - 0.8}{1 * \sqrt{0.1}} = 0,663$$

$$\begin{split} &t_{n-p-1}\left(1-\frac{\alpha}{2}\right)=1.703\\ &|T_0|>t_{n-p-1}\left(1-\frac{\alpha}{2}\right)\text{: On rejette }H_0\\ &|T_1|>t_{n-p-1}\left(1-\frac{\alpha}{2}\right)\text{: On rejette }H_0\\ &|T_2|< t_{n-p-1}\left(1-\frac{\alpha}{2}\right)\text{: On ne peut pas rejeter }H_0 \end{split}$$

Ainsi au seuil de 10%, on rejette l'hypothèse de nullité statistique du coefficient associé à chaque variable explicative excepté celui associé à la variable $x_{i,2}$

4. Testons $m{\beta_0} + m{\beta_1} = 3$ contre $m{\beta_0} + m{\beta_1} \neq 3$ au niveau 5% Hypothèses :

$$\begin{cases} H_0: \beta_0 + \beta_1 = 3 \\ H_1: \beta_0 + \beta_1 \neq 3 \end{cases}$$

On a la statistique suivante : $T=\frac{(\widehat{\beta}_0+\widehat{\beta}_1)-(\beta_0+\beta_1)}{\widehat{\sigma}_{(\widehat{\beta}_0+\widehat{\beta}_1)}} \sim \tau_{n-p-1} \text{ avec}$

$$\widehat{\sigma}_{(\widehat{\beta}_0 + \widehat{\beta}_1)} = \sqrt{\widehat{\sigma^2}_0 + 2cov((\widehat{\beta}_0, \widehat{\beta}_1) + \widehat{\sigma^2}_1}$$

$$= \widehat{\sigma}\sqrt{(X'X)_{1,1}^{-1} + 2 * (X'X)_{1,2}^{-1} + (X'X)_{2,2}^{-1}}$$

Règle de décision :

Si
$$|T| \ge t_{n-p-1} \left(1 - \frac{\alpha}{2}\right)$$
 alors on rejette H_0

Si
$$|T| < t_{n-p-1} \left(1 - \frac{\alpha}{2}\right)$$
 alors on ne peut pas rejeter H_0

Application:

$$t_{n-p-1}\left(1-\frac{\alpha}{2}\right) = 2.052$$

$$T = \frac{(-0.5+1.5)-3}{1*\sqrt{0.1+2(-0.1)+0.15}} = -8.944$$

 $|T| \ge t_{n-p-1} \left(1 - \frac{\alpha}{2}\right)$ Alors au niveau 5% on rejette $H_0: \beta_0 + \beta_1 = 3$ contre $\beta_0 + \beta_1 \ne 3$.

5. Calcul de \overline{y} et du coefficient de détermination ajusté

• Calculons la moyenne empirique \bar{y} des y_i

$$\bar{y} = \frac{1}{n} \sum y_i$$
 On sait que $X'Y = \begin{pmatrix} \sum y_i \\ \sum x_{i,1} y_i \\ \sum x_{i,2} y_i \end{pmatrix}$; Or $X'Y = \begin{pmatrix} 15 \\ 20 \\ 10 \end{pmatrix}$

Donc
$$\bar{y} = \frac{1}{n} \sum y_i = \frac{15}{30}$$
 $\Leftrightarrow \overline{y} = 0.5$

• Déduction du coefficient de détermination ajusté $R^2_{\ a}$

Para définition :
$$R^2{}_a = 1 - \frac{n-1}{n-p-1} \frac{SCR}{SCT} = 1 - \frac{n-1}{n-p-1} \frac{\|y_i - \hat{y}\|^2}{\|y_i - \bar{y}_i\|^2}$$

Or $\widehat{\sigma^2} = \frac{SCR}{n-p-1} = \frac{\|y_i - \hat{y}\|^2}{n-p-1}$ et
$$\|y_i - \overline{y}_i\|^2 = \|y_i\|^2 - \|\overline{y}_i\|^2 = \sum y_i^2 - \sum \overline{y}_i^2 = Y'Y - n\overline{y}^2$$

Donc
$$R_a^2 = 1 - \frac{n-1}{Y'Y - n\bar{y}^2} \widehat{\sigma^2}$$

AN:
$$R^2_a = 1 - \frac{30-1}{59.5 - (30*0.5^2)} 1 \iff \boxed{R^2_a = 0.442}$$

6. Intervalle de prévision à 95% de y_{n+1} si $x_{n+1,1}=3$ et $x_{n+1,2}=0$. 5

$$IP(y_{n+1}) = \left[x'_{n+1} \hat{\beta} \mp t_{n-p-1} \left(1 - \frac{\alpha}{2} \right) \hat{\sigma} \sqrt{1 + x'_{n+1} (X'X)^{-1} x_{n+1}} \right]$$

Notons que
$$x'_{n+1} = \begin{pmatrix} 1; & x_{n+1,1}; & x_{n+1,2} \end{pmatrix} = \begin{pmatrix} 1,3,0.5 \end{pmatrix}$$
 et $\hat{\beta} = \begin{pmatrix} -0.5 \\ 1.5 \\ 1 \end{pmatrix} \Rightarrow x'_{n+1}\hat{\beta} = \begin{pmatrix} 1,3,0.5 \end{pmatrix} * \begin{pmatrix} -0.5 \\ 1.5 \\ 1 \end{pmatrix} = 4.5;$ $t_{n-p-1} \left(1 - \frac{\alpha}{2}\right) = 2.052;$

$$x'_{n+1}(X'X)^{-1} = (1,3,0.5) * \begin{pmatrix} 0.1 & -0.1 & 0 \\ -0.1 & 0.15 & 0 \\ 0 & 0 & 0.1 \end{pmatrix}$$

$$x'_{n+1}(X'X)^{-1} = (1 * 0.1 + 3 * (-0.1) + 0, 1 * (-0.1) + 3 * 0.15 + 0, 0 + 0 + 0.5 * 0.1)$$

$$x'_{n+1}(X'X)^{-1} = (-0.2, 0.35, 0.05)$$

$$x'_{n+1}(X'X)^{-1}x_{n+1} = (-0.2, 0.35, 0.05) * \begin{pmatrix} 1 \\ 3 \\ 0.5 \end{pmatrix}$$

$$= -0.2 * 1 + 0.35 * 3 + 0.05 * 0.5$$

$$x'_{n+1}(X'X)^{-1}x_{n+1} = 0.875$$

AN:

$$IP(y_{n+1}) = [4.5 \mp 2.052 * 1 * \sqrt{1 + 0.875}]$$

$$IP(y_{n+1}) = [1.691; 7.309]$$