1 Maximum d'entropie

1.1 Exercice

Soit $n \in \mathbb{N}$. On pose $U = (\mathbb{R}_+^*)^n$. On munit $\Omega = [\![1,n]\!]$ de sa tribu discrète. On identifie une probabilité

P sur Ω à $\mathbf{p} = \begin{pmatrix} P(1) \\ \vdots \\ P(n) \end{pmatrix}$. On note \mathcal{P} l'ensemble $\{\mathbf{p}, \mathbf{p} \in U\}$. Soit φ : $[\![1, n]\!] \to \mathbb{R}$ non constante et

 $a \in]\min(\varphi), \max(\varphi)[$. Enfin on définit l'entropie :

$$H: \mathcal{P} \to \mathbb{R}$$

 $H(\mathbf{p}) = -\sum_{k=1}^{n} \mathbf{p}(k) \log(\mathbf{p}(k))$

- 1 Montrer que la fonction f définie sur \mathbb{R} par $f(x) = \sum_{k=1}^{n} (\varphi(k) a) \exp(x(\varphi(k) a))$ est bijective.
- $\mathbf{2} \quad \text{Montrer que H atteint son maximum sur $M = \left\{\mathbf{p} \in \mathcal{P}, \sum\limits_{k=1}^{n} \varphi(k)\mathbf{p}(k) = a\right\}$ en un unique point $\mathbf{p_0}$. }$ $\mathbf{Indication:} \text{ on pourra considérer } \mathcal{X} = \left\{\mathbf{x} \in \mathbb{R}^n_+, \sum\limits_{k=1}^{n} \mathbf{x}(k) = 1, \sum\limits_{k=1}^{n} \varphi(k)\mathbf{x}(k) = a\right\}.$
 - **3** Donner l'expression de $\mathbf{p_0}$ en fonction de ϕ , $f^{-1}(0)$.

1.2 Correction

- 1 On calcule la dérivée f et on obtient $\sum_{k=1}^{n} (\varphi(k)-a)^2 \exp(x(\varphi(k)-a))$. Puisque la fonction φ n'est pas constante on obtient que la dérivée est strictement positive et donc la fonction est strictement croissante. Soit k_1 tel que $\varphi(k_1)=\min(\varphi)$ et k_2 tel que $\varphi(k_2)=\max(\varphi)$. On a $f_1(x)=(\varphi(k_1)-a)\exp(x(\varphi(k_1)-a))$ qui tend vers $-\infty$ en $-\infty$. De même f_2 tend vers $+\infty$ en $+\infty$ donc la fonction est bijective.
- **2** \mathcal{X} est compacte. Donc en prolongeant $x \mapsto -x \log(x)$ par 0 en 0 on obtient un prolongement continu. On peut donc définir un prolongement continu de H sur \mathcal{X} . Ce prolongement de H admet un maximum. Montrons que ce maximum est un élément de M.

Supposons que $\phi(1) \geq a$ et $\phi(2) \leq a$. Soit $\mathbf{p_1} \in \mathcal{X}$ telle que $\mathbf{p_{1_1}}(1) = 0$. Il existe $t \in]0,1]$ tel que $t\phi(1) + (1-t)\phi(2) = 0$. On pose $\mathbf{p_2} \in \mathcal{X}$ telle que $\mathbf{p_2}(1) = t$, $\mathbf{p_2}(2) = 1 - t$ et zéro ailleurs. Toute combinaison convexe de $\mathbf{p_1}$ et $\mathbf{p_2}$ est dans \mathcal{X} . On note

$$\mathbf{p_u} = (1 - u)\mathbf{p_1} + u\mathbf{p_2}$$

En calculant la dérivée de $H(\mathbf{p_u})$ par rapport à u on obtient que H est croissante sur $[0, \epsilon]$ avec ϵ assez petit. Ainsi la distribution de probabilité d'entropie maximale n'est pas atteinte en \mathbf{p} tel que $\mathbf{p}(1) = 0$. En reprenant ce raisonnement pour chacune des composantes on obtient que le maximum est atteint pour un élément de M. Montrons maintenant son unicité.

Soit deux probabilités maximales $\mathbf{p_1}$ et $\mathbf{p_2}$. La stricte concavité de $x \mapsto -x \log(x)$ implique que $\frac{\mathbf{p_1}(k) + \mathbf{p_2}(k)}{2} \log \left(\frac{\mathbf{p_1}(k) + \mathbf{p_2}(k)}{2} \right) > \mathbf{p_1}(k) \log(\mathbf{p_1}(k)) + \mathbf{p_2}(k) \log(\mathbf{p_2}(k))$ et donc $H(\frac{\mathbf{p_1} + \mathbf{p_2}}{2}) > \frac{1}{2} \left(H(\mathbf{p_1}) + H(\mathbf{p_2}) \right)$.

3 Le théorème des extrema liés assure

$$\forall k \in \Omega, \ \log(\mathbf{p_0}(k)) + 1 = \alpha + \beta(\varphi(k) - a).$$

Donc $\forall k \in \Omega, \mathbf{p_0}(k) = \frac{\exp(\beta(\varphi(k) - a))}{\sum\limits_{k=1}^n \exp(\beta(\varphi(k) - a))}$. On a de plus,

$$\sum_{k=1}^{n} (\phi(k) - a) \exp(\beta(\phi(k) - a)) = 0.$$

Donc $\beta = f^{-1}(0)$ et on obtient l'expression de $\mathbf{p_0}$.

2 Inégalité d'Hadamard

2.1 Exercice

Soit $n \in \mathbb{N}$.

- **1** Montrer que det : $(\mathbb{R}^n)^n \to \mathbb{R}$ définie par $\det((u_1, \dots, u_n))$ atteint son maximum sur $\mathcal{M} = \{(u_1, \dots, u_n), \forall k \in [1, n], ||u_k||_2 = 1\}.$
- **2** Soit $(u_1, \ldots, u_n) \in \mathcal{M}$ tel que $\det((u_1, \ldots, u_n))$ est maximal. Montrer que $\forall (i, j) \in [1, n], i \neq j \Rightarrow \langle u_i, u_j \rangle = 0$.
 - 3 En déduire l'inégalité d'Hadamard,

$$\forall M \in \mathcal{M}_n(\mathbb{R}), |\det(M)| \leq ||u_1|| \dots ||u_n||.$$

Donner le cas d'égalité.

2.2 Correction

- 1 M est compacte et le déterminant est continu donc il atteint son maximum sur M.
- **2** Le maximum du déterminant est positif (en effet $\mathrm{Id} \in M$. Donc on peut supposer que $\det(u_1, \ldots, u_n)$) > 0. On utilise le théorème des extrema liés avec $g_k(u) = ||u_k||^2$ (gradients indépendants) et on obtient que

$$\forall k \in [1, n], \frac{\partial \det}{\partial u_k}((u_1, \dots, u_n))(h) = \det(u_1, \dots, u_{k-1}, h, u_{k+1}, \dots, u_n) = \alpha \langle u_k, h \rangle.$$

En posant $h=u_k$ on obtient que $\alpha>0$ puis en posant $h=u_l$ avec $l\neq k$ on a obtient les conditions d'orthogonalité. Dans ce cas $\det((u_1,\ldots,u_n))=1$.

3 Soit M une matrice. Si une de ses colonnes est nulle le théorème est triviale. Sinon on divise chacune des colonnes de M par la norme de cette colonne. On obtient une matrice $M' \in \mathcal{M}$ qui vérifie $\det(M') \leq 1$ avec égalité si et seulement si les colonnes de M' et donc les colonnes de M sont orthogonales, c'est-à-dire, $M \in \mathcal{O}_n(\mathbb{R})$. Pour pouvoir passer à la valeur absolue, il faut reprendre l'étude précédente pour le minimum du déterminant. On obtient les mêmes conditions et donc $\det(M') \geq -1$.

3 Semi-continuité inférieure et topologie de Sorgenfrey

3.1 Exercice

Attention! A part les deux premières questions, les questions de cet exercice sont indépendantes. Soit (X, τ) un espace topologique. On dit qu'une fonction f sur X à valeurs réelles est semi-continue inférieurement en $x_0 \in X$ si pour tout $\epsilon \in \mathbb{R}_+^*$ il existe $V \in \mathcal{V}(x_0)$ tel que $\forall x \in V, f(x) \geq f(x_0) - \epsilon$.

- 1 On définit l'épigraphe d'une fonction f, $\mathrm{Epi}(f) = \{(x, \lambda) \in X \times \mathbb{R}, \ f(x) \leq \lambda\}$. Montrer que f est semi-continue inférieurement si et seulement si son épigraphe est fermé.
- **2** En déduire que si $(f_i)_{i \in I}$ est une famille de fonctions semi-continue inférieurement alors si $\sup_{i \in I} f_i$ est bien définie c'est une fonction semi-continue inférieurement.

Sur \mathbb{R} on définit la topologie de Sorgenfrey comme étant la topologie engendrée par les ensembles]a,b] avec a < b, On note τ_S cette topologie. On définit la topologie stricte à droite comme étant la topologie engendrée par les ensembles $]a,+\infty[$, on note τ_{sd} cette topologie.

3 Montrer qu'une fonction f sur X à valeurs réelles est semi-continue inférieurement si et seulement si elle est continue pour la topologie τ_{sd} .

4 Soit $(O_n)_{n\in\mathbb{N}}$ une suite d'ouverts denses pour la topologie τ_S . Montrer que $\bigcap_{n\in\mathbb{N}} O_n$ est également dense pour la topologie τ_S .

3.2 Correction

1 On suppose que f est semi-continue inférieurement. On va montrer que $O = \{(x,\lambda) \in X \times \mathbb{R}, f(x) > \lambda\}$ est ouvert. Soit $(x_0, \lambda_0) \in O$. On a $f(x_0) = \lambda_0 + 2\epsilon$ avec $\epsilon \in \mathbb{R}_+^*$. Il existe un ouvert $V \in \mathcal{V}(x_0)$ et tel que $\forall x \in V, f(x) \geq f(x_0) - \epsilon > \lambda_0 + \epsilon$. Donc $V \times B(\lambda, \epsilon)$ est un voisinage de (x_0, λ_0) . Ainsi O est voisinage de chacun de ses points donc ouvert.

Réciproquement, on suppose que O est ouvert. Soit $x_0 \in X$ et $\epsilon \in \mathbb{R}_+^*$ alors $(x_0, f(x_0) - \frac{\epsilon}{2}) \in O$. Donc il existe un voisinage de $(x_0, f(x_0) - \epsilon)$ inclus dans O. Par définition de la topologie produit on peut choisir ce voisinage de la forme $V \times B(f(x_0) - \frac{\epsilon}{2}, \eta)$ avec $\eta \leq \frac{\epsilon}{2}$. Donc pour tout $x \in V$ on a $f(x) > f(x_0) - \frac{\epsilon}{2} - \eta \geq f(x) - \epsilon$ et donc la fonction est semi-continue inférieurement.

2 Il suffit de remarquer que l'épigraphe du sup est l'intersection des épigraphes.

3 Supposons que f est continue pour τ_S alors $]f(x_0) - \epsilon, +\infty]$ est un ouvert de τ_S et il existe un voisinage $V \in \mathcal{V}(x_0)$ tel que $f(V) \subset]f(x_0) - \epsilon, +\infty[$. Maintenant supposons que f est semi-continue inférieurement en x_0 . Tout voisinage de $f(x_0)$ contient un ensemble de la forme $]f(x_0) - \epsilon, +\infty[$. La semi-continuité inférieure assure l'existence d'un voisinage de x_0 tel que f(X) est inclus dans le voisinage de $f(x_0)$.

4 Soit $x \in \mathbb{R}$. Il existe $\epsilon \in \mathbb{R}_+^*$ tel que $]x - \epsilon, x + \epsilon] \cap O_1 \neq \emptyset$. Soit $]x_1 - 2\epsilon_1, x_1 + 2\epsilon_1] \subset]x - \epsilon, x + \epsilon] \cap O_1$ avec $\epsilon_1 < 2^{-1}$. On recommence en remplaçant O_1 par O_2 , x par x_1 et 2^{-1} par 2^{-2} . Bref, par récurrence on construit une suite de Cauchy $(x_i)_{i \in \mathbb{N}}$. Elle converge et on a que la limite $\overline{x} \in O_i$ pour tous les O_i . De plus \overline{x} est à distance ϵ ou moins de \overline{x} .

4 Opérateur proximal

4.1 Exercice

Soit f une fonction convexe définie sur \mathbb{R}^n . On suppose que la quantité

$$\inf_{x \in \mathbb{R}^n} \left(f(x) + \frac{1}{2\alpha} ||x - z||^2 \right),$$

est bien définie pour tout $z \in \mathbb{R}^n$ et $\alpha \in \mathbb{R}_+^*$.

1 Montrer que si

$$\underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \left(f(x) + \frac{1}{2\alpha} ||x - z||^2 \right),$$

existe alors il est unique. On note $\operatorname{prox}_{\alpha,f}(z)$ cet élément.

La fonction $\operatorname{prox}_{\alpha,f}$ est appelée opérateur proximal de f.

- **2** Expliciter l'opérateur proximal si f est différentiable.
- **3** Soit $\alpha \in \mathbb{R}_+^*$. Montrer que z est point fixe de $\operatorname{prox}_{\alpha,f}$ est équivalent à $f(z) = \inf_{x \in \mathbb{R}^n} f(x)$.
- 4 Montrer que l'opérateur proximal est lipschitzien.

4.2 Correction

1 L'unicité est directe car la fonction norme au carrée est strictement convexe et que la somme d'une fonction convexe et d'une strictement convexe est strictement convexe.

2
$$\operatorname{prox}_{\alpha,f}(z) = z + \nabla f(z)$$
.

3 Si z est tel que pour tout $x \in \mathbb{R}^n$, $f(z) \le f(x)$ alors $f(z) + \frac{1}{2\alpha} ||z - z||^2 + f(z) \le f(x) + \frac{1}{2\alpha} ||x - z||^2$. Donc $\text{prox}_{\alpha, f}(z) = z$.

Réciproquement, si on suppose que z est point fixe

$$\forall x \in \mathbb{R}^{n}, f(z) \leq \frac{1}{2\alpha} \|z - x\|^{2} + f(x)$$

$$\forall (u, t) \in \mathbb{R}^{n} \times [0, 1], f(z) \leq \frac{t^{2}}{2\alpha} \|u\|^{2} + f(z + tu)$$

$$\forall (u, t) \in \mathbb{R}^{n} \times [0, 1], f(z) \leq \frac{t^{2}}{2\alpha} \|u\|^{2} + tf(u) + (1 - t)f(z)$$

$$\forall (u, t) \in \mathbb{R}^{n} \times [0, 1], t(f(z) - f(u)) \leq \frac{t^{2}}{2\alpha}$$

On divise par t et on fait tendre t vers 0 pour obtenir l'inégalité voulue.

4 On note
$$Pu = \text{prox}_{\alpha, f}(u)$$
 et $Pv = \text{prox}_{\alpha, f}(v)$. On a

$$\begin{split} \forall (x,y) \in \mathbb{R}^n, \ & \begin{cases} f(Pu) + \frac{1}{2\alpha} \|u - Pu\|^2 \leq \frac{1}{2\alpha} \|u - x\|^2 + f(x) \\ f(Pv) + \frac{1}{2\alpha} \|v - Pv\|^2 \leq \frac{1}{2\alpha} \|v - y\|^2 + f(y) \end{cases} \\ & \begin{cases} f(Pu) + \frac{1}{2\alpha} \|u - Pu\|^2 \leq \frac{1}{2\alpha} \|u - tPu - (1 - t)Pv\|^2 + f(tPu + (1 - t)Pv) \\ f(Pv) + \frac{1}{2\alpha} \|v - Pv\|^2 \leq \frac{1}{2\alpha} \|v - tPu - (1 - t)Pv\|^2 + f(tPu + (1 - t)Pv) \end{cases} \\ & \begin{cases} t \left(f(Pu) + \frac{1}{2\alpha} \|u - Pu\|^2 \right) \leq \frac{t}{2\alpha} \|u - tPu - (1 - t)Pv\|^2 + tf(tPu + (1 - t)Pv) \\ (1 - t) \left(f(Pv) + \frac{1}{2\alpha} \|v - Pv\|^2 \right) \leq \frac{1 - t}{2\alpha} \|v - tPu - (1 - t)Pv\|^2 + (1 - t)f(tPu + (1 - t)Pv) \\ 0 \leq t \|u - tPu - (1 - t)Pv\|^2 + (1 - t)\|v - tPu - (1 - t)Pv\|^2 - t\|u - Pu\|^2 - (1 - t)\|v - Pv\|^2 \\ 0 \leq t \left(\|u - Pu + (1 - t)(Pu - Pv)\|^2 - \|u - Pu\|^2 \right) + (1 - t) \left(\|v - Pv + t(Pv - Pu)\|^2 - \|v - Pv\|^2 \right) \\ 0 \leq 2\langle u - Pu, Pu - Pv \rangle + (1 - t)\|Pu - Pv\|^2 + 2\langle Pv - v, Pu - Pv \rangle + t\|Pu - Pv\|^2 \\ 0 \leq \|Pu - Pv\|^2 - 2\|Pu - Pv\|^2 + 2\langle u - v, Pu - Pv \rangle \\ \|Pu - Pv\|^2 \leq 2\langle u - v, Pu - Pv \rangle \end{aligned}$$

En utilisant l'inégalité de Cauchy-Schwarz on peut conclure. On peut donner une constante de Lipschitz égale à 1 en poussant l'analyse avec les sous-gradients et la règle de Fermat on peut montrer que la constante de Lipschitz est au plus égale à 1.