данной линейной комбинации.

Докажем теперь, что при $\det A = 0$ неоднородная система (65) будет разрешима не при любой правой части. Так как строки матрицы A линейно зависимы, то можно составить их линейную комбинацию, которая обращается в нуль. Составив такую же линейную комбинацию уравнений системы (65), мы получим слева нуль, справа — линейную комбинацию правых частей b_i . Поскольку линейная комбинация b_i не обязательно обращается в нуль, то и система (65) будет разрешима не при любой правой части.

1.7 Метод Гаусса

Решение систем линейных уравнений

Метод Гаусса – это метод последовательного исключения неизвестных в системе линейных уравнений. Он позволяет привести матрицу системы к трапециевидной форме :

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1m} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2m} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3m} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a_{mm} & \dots & a_{mn} \\ 0 & 0 & 0 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 &$$

Решим систему линейных уравнений.

Запишем её в матричном виде:

$$A \cdot X = B. \tag{71}$$

Здесь
$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad B = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}.$$

Напишем расширенную матрицу системы:

$$\tilde{A} = \left(\begin{array}{ccc|c} a_{11} & \dots & a_n & b_1 \\ \dots & \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} & b_m \end{array}\right).$$

Опишем процедуру преобразования системы уравнений

$$\begin{cases}
 a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
 a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
 \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n
\end{cases} (72)$$

Пусть $a_{11} \neq 0$. Если это не так, ставим на первое место строку, в которой первый коэффициент не равен нулю (если такого нет, то система не содержит x_1).

Домножим первое уравнение системы (72) на $(\frac{-a_{21}}{a_{11}})$ и прибавим его ко второму уравнению. Результат запишем во вторую строку. Аналогично для остальных уровней системы. Тогда система уравнений примет следующий вид:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ \tilde{a}_{22}x_2 + \dots + \tilde{a}_{2n}x_n = \tilde{b}_2, \\ \tilde{a}_{32}x_2 + \dots + \tilde{a}_{3n}x_n = \tilde{b}_3, \\ \dots \\ \tilde{a}_{m2}x_2 + \dots + \tilde{a}_{mn}x_n = \tilde{b}_m. \end{cases}$$
(73)

Здесь $\tilde{a}_{22}=a_{22}-a_{12}\cdot\frac{a_{21}}{a_{11}},\ \ldots,\ \tilde{a}_{2n}=a_{2n}-\frac{a_{21}}{a_{11}}\cdot a_{1n},\ \tilde{b}_2=b_2-\frac{a_{21}}{a_{11}}\cdot b_1.$ И так далее для всех остальных коэффициентов.

Повторим процедуру для 2-го, 3-го, , m-го уравнений, исключая переменную x_2 . На каждом новом шаге мы будем получать на одну неизвестную меньше в оставшихся уравнениях. В результате придём

к одному из следующих исходов:

1) Матрица системы привелась к треугольному виду:

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\
\tilde{a}_{22}x_2 + \dots + \tilde{a}_{2n}x_n = \tilde{b}_2, \\
\dots \\
a_{nn}^*x_n = b_n^*,
\end{cases} (74)$$

где $a_{nn}^* \neq 0$. В этом случае $rank\tilde{A} = rankA = n$ и система имеет единственное решение. Находим x_n из последнего уравнения. Подставляем его в предыдущие уравнение и находим x_{n-1} и так далее до x_1 .

2) Матрица системы привелась к трапециевидной форме. Однако количество уравнений оказалось меньше числа ненулевых свободных членов.

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\
\tilde{a}_{22}x_2 + \dots + \tilde{a}_{2n}x_n = \tilde{b}_2, \\
\dots \\
a_{lk}^*x_k + \dots + a_{ln}^*x_n = b_l, \\
0 + \dots + 0 = b_{l+1} \neq 0, \\
\dots \\
0 + \dots + 0 = b_m \neq 0.
\end{cases}$$
(75)

Здесь $rank\tilde{A}>rankA$. Система (75) содержит неверные равенства. Следовательно, она несовместна.

3) Матрица системы привелась к трапециевидной форме. Количество уравнений (k) оказалось меньше числа неизвестных (n). В этом случае (n-k) неизвестных мы переносим в правые части уравнений и выбираем

их в качестве свободных параметров.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1k}x_k = b_1 - a_{1,k+1}x_{k+1} - \dots - a_{1n}x_n \\ \tilde{a}_{12}x_2 + \dots + \tilde{a}_{2k}x_k = \tilde{b}_2 - \tilde{a}_{2,k+1}x_{k+1} - \dots - \tilde{a}_{2n}x_n \\ \dots & \dots & \dots \\ a_{kk}^*x_k = b_k^* - a_{k,k+1}^*x_{k+1} - \dots - \tilde{a}_{kn}x_n \end{cases}$$
(76)

где x_{k+1}, \ldots, x_n – любые числа (свободные параметры). Здесь $rank \tilde{A} = rank A < n$. Система неопределённая: имеет бесконечно много решений.

Пример 1.

Решим систему уравнений:

$$\begin{cases} x_1 + 2x_2 + x_3 - x_4 = 1, \\ x_1 + 3x_2 - x_3 + 2x_4 = -4, \\ 2x_1 + x_2 - x_3 + x_4 = -1. \end{cases}$$

$$(77)$$

Во избежание постоянного переписывания системы после каждого действия с ней мы будем выписывать только коэффициенты расширенной матрицы системы. После операции с уравнениями результат записывается строчкой ниже, а одно из уравнений вычеркивается.

Мы получили 3 уравнения и 4 неизвестных. Это означает, что одну из неизвестных следует выбрать в качестве свободного параметра:

$$-9x_3 + 12x_4 = -18 \iff 3x_3 - 4x_4 = 6.$$

Пусть $x_4 = t \in \mathbb{R}$ — свободный параметр. Тогда $x_3 = 2 + \frac{4}{3}t$.

$$x_2 - 2x_3 + 3x_4 = -5 \Leftrightarrow x_2 - 2(2 + \frac{4}{3}t) + 3t = -5 \Leftrightarrow x_2 = -\frac{1}{3}t - 1.$$

 $x_1 + 2x_2 + x_3 - x_4 = 1 \Leftrightarrow x_1 - \frac{2}{3}t - 2 + 2 + \frac{4}{3}t - t = 1 \Leftrightarrow x_1 = \frac{1}{3}t + 1.$

Итак, решением системы уравнений (77) является следующий вектор:

$$X = t \begin{pmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ \frac{4}{3} \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix}. \tag{78}$$

Пример 2.

$$\begin{cases} x_1 - x_2 + x_3 + 2x_4 - x_5 = 0, \\ x_1 + x_2 + 2x_3 - x_4 + x_5 = 2, \\ x_1 - x_2 - x_3 + x_4 + 2x_5 = -1, \\ 3x_1 + x_2 + 3x_3 - x_4 + 4x_5 = 1. \end{cases}$$

Мы получили неверное равенство: 0 = -2. Следовательно, система несовместна.

Замечание

Процедуру получения нулей в методе Гаусса можно продолжить, сделав

матрицу системы диагональной и даже единичной. Тогда в столбце $\{b_i\}$ мы получим решения системы :

$$\begin{pmatrix} 1 & 0 & 0 & b_1^* \\ 0 & 1 & 0 & b_2^* \\ 0 & 0 & 1 & b_3^* \end{pmatrix} \Leftrightarrow \begin{cases} 1 \cdot x_1 - 0 \cdot x_2 + 0 \cdot x_3 = b_1^* \\ 0 \cdot x_1 + 1 \cdot x_2 + 0 \cdot x_3 = b_2^* \\ 0 \cdot x_1 - 0 \cdot x_2 - 1 \cdot x_3 = b_3^* \end{cases} \Leftrightarrow \begin{cases} x_1 = b_1^* \\ x_2 = b_2^* \\ x_3 = b_3^* \end{cases}$$

Построение обратной матрицы методом Гаусса.

Схема метода.

- **1)** Справа от матрицы A приписываем единичную матрицу того же размера.
- **2)** С помощью элементарных преобразований со строками расширенной матрицы на месте исходной матрицы A мы должны получить единичную матрицу I.
- **3)** Тогда на месте приписанной матрицы мы получим обратную матрицу A^{-1} .

Можно использовать следующие элементарные преобразования:

- 1) Перестановка строк.
- 2) Умножение строки на число, не равное нулю.
- **3)** Прибавление к одной строке другой строки умноженной на произвольное число.

Пример

Найдём обратную матрицу к матрице:
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & -1 & 1 \\ 2 & 0 & -1 \end{pmatrix}$$
 .

$$\sim \begin{pmatrix} 1 & 0 & 0 & \frac{1}{3} & \frac{2}{3} & \frac{1}{3} \\ 0 & 1 & 0 & \frac{2}{3} & \frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 1 & \frac{2}{3} & \frac{4}{3} & -\frac{1}{3} \end{pmatrix}$$

В исходной матрице мы последовательно получили нули. Сначала – в первом столбце матрицы, затем – во втором, потом – в третьем. Итак,

$$A^{-1} = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{1}{3} \\ \frac{2}{3} & \frac{4}{3} & -\frac{1}{3} \end{pmatrix}.$$

Обоснование метода Гаусса для поиска обратной матрицы.

Обратную матрицу можно найти, решив следующее матричное уравнение:

$$\underbrace{\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}}_{B} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{I}.$$

Здесь A – исходная матрица , B – искомая обратная матрица.

$$A \cdot B = I \Leftrightarrow \begin{cases} AB_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} & (I) \\ AB_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} & (II) \\ AB_3 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} & (III) \end{cases}$$

где
$$B_1 = \begin{pmatrix} b_{11} \\ b_{21} \\ b_{31} \end{pmatrix}$$
, $B_2 = \begin{pmatrix} b_{12} \\ b_{22} \\ b_{32} \end{pmatrix}$, $B_3 = \begin{pmatrix} b_{13} \\ b_{23} \\ b_{33} \end{pmatrix}$.

Поскольку у систем (I), (II), (III) одинаковые матрицы A, то приводя матрицу A к единичной, мы будем делать одинаковые элементарные преобразования. Чтобы не переписывать три раза одинаковые преобразования, мы напишем матрицу A один раз, а столбцы правых частей (которыми и отличаются системы (I), (II), (III)) припишем справа. Тогда после преобразования, приводящего матрицу A к единичной, справа в первом столбце мы получим вектор B_1 , во втором — B_2 , в третьем — B_3 , но это и есть столбцы обратной матрицы (объяснение того факта, что после приведения матрицы A к единичной в столбце B_1 мы получим решение системы (I), можно посмотреть в замечании к примеру 2 на страницах 44–45).

2. Пространства

2.1 Метрическое пространство

Понятие пространства используется в математике для объединения объектов по определенным признакам. Если нас интересует только расстояние между объектами, то достаточно ввести только одну характеристику – метрику (расстояние), которая позволит объединить наши элементы в метрическое пространство.

Определение

Пусть M — произвольное множество, и пусть каждой паре его элементов x,y сопоставлено неотрицательное число $\rho(x,y)$ так, что для всех $x,y,z\in M$ выполнено:

- 1) $\rho(x,y) = 0$ тогда и только тогда, когда x = y;
- 2) $\rho(x,y) = \rho(y,x)$ симметрия;
- 3) $\rho(x,z) \le \rho(x,y) + \rho(y,z)$ неравенство треугольника.

Функция ρ называется метрикой (расстоянием), а само множество M, снабженное метрикой — метрическим пространством.

Примеры

- 1) Множество вещественных чисел с расстоянием $\rho(x,y) = |x-y|$ образует метрическое пространство \mathbb{R}^1 .
- 2) Множество C[a,b] всех непрерывных функций, определенных на отрезке [a,b] с расстоянием (смотри рис. 1):

$$\rho(f,g) = \max_{t \in [a,b]} |g(t) - f(t)|.$$

3) Множество точек на сфере:

Расстояние между двумя точками – длина дуги большого круга (наименьшая из двух дуг), проходящего через эти точки (смотри рис. 2).

Замечание

Большой круг – это сечение шара плоскостью, проходящее через центр шара.

Рис. 1: Расстояние между функциями на множестве C[a,b]

Рис. 2: Расстояние между точками на сфере

2.2 Линейное пространство. Определение. Примеры. Основные свойства

Определение

Пусть \mathcal{L} — множество элементов произвольной природы, для которых определены операции сложения и умножения на вещественное (либо комплексное) число:

- а) паре элементов множества $x \in \mathcal{L}, y \in \mathcal{L}$ отвечает элемент $x + y \in \mathcal{L}$ (сумма x и y);
- b) паре $x \in \mathcal{L}$, $\alpha \in \mathbb{R}(\mathbb{C})$ отвечает элемент $\alpha x \in \mathcal{L}$ (произведение числа α и элемента x).

Множество \mathcal{L} называется линейным (вещественным или комплексным) пространством, если для всех его элементов определены операции сложения и умножения на вещественное (комплексное) число и для любых элементов $x,y,z\in\mathcal{L}$ и чисел $\alpha,\beta\in\mathbb{R}(\mathbb{C})$ выполнено:

- 1) x + y = y + x коммутативность;
- 2) x + (y + z) = (x + y) + z ассоциативность;
- 3) $x + \mathbb{O} = x \quad \forall x \in \mathcal{L}$ существование нулевого элемента;
- 4) $x + (-x) = \mathbb{O}$ $\forall x \in \mathcal{L}$ существование противоположного элемента;

- 5) $\alpha(\beta x) = (\alpha \beta)x$ ассоциативность умножения на число;
- 6) $1 \cdot x = x$ согласование масштабов чисел и векторов;
- 7) $\alpha(x+y) = \alpha x + \alpha y$ дистрибутивность умножения на число относительно сложения элементов;
- 8) $(\alpha + \beta)x = \alpha x + \beta x$ дистрибутивность умножения вектора на число относительно сложения чисел.

Примеры линейных пространств

- 1) Множество векторов в пространстве (V_3) или на плоскости (V_2) с обычными правилами действий.
- **2)** M_{mn} пространство матриц размером $m \times n$.
- **3)** P^n пространство полиномов степени $\leq n$.

Замечание

Множество полиномов степени строго равной n не образуют пространство, так как сумма полиномов может оказаться полиномом меньшей степени.

4) Действия в линейном пространстве могут быть определены весьма необычным образом. Важно лишь, чтобы они удовлетворяли аксиомам линейного пространства. Например, в множестве положительных вещественных чисел \mathbb{R}^+ можно ввести сложение † и умножение \odot следующим образом:

$$x \dagger y = x \cdot y, \quad \alpha \odot x = x^{\alpha}, \quad \alpha \in \mathbb{R}.$$

Нетрудно убедиться, что все аксиомы будут выполнены. Роль $\mathbb O$ здесь играет элемент x=1, противоположный к x элемент – это $\frac{1}{x}$.

5) Пространство $\mathbb{R}^n(\mathbb{C}^n)$. Его элементы:

$$x = (\xi_1, \xi_2, \ldots, \xi_n),$$
 где $\xi_i \in \mathbb{R}(\mathbb{C})$

Правила действий:

$$x + y = (\xi_1 + \eta_1, \xi_2 + \eta_2, \dots, \xi_n + \eta_n)$$

 $\alpha x = (\alpha \xi_1, \alpha \xi_2, \dots, \alpha \xi_n),$ где $\alpha \in \mathbb{R}(\mathbb{C})$

6) Множество решений (x_1, x_2, \ldots, x_n) линейной однородной системы

уравнений:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

образует линейное пространство.

Как известно, однородная система имеет либо одно решение (нулевое), либо бесконечно много решений. Возьмем два решения (x_1, x_2, \ldots, x_n) и (y_1, y_2, \ldots, y_n) и определим правила действий с ними:

$$(x_1, x_2, \ldots, x_n) + (y_1, y_2, \ldots, y_n) = (x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n);$$

 $\alpha(x_1, \ldots, x_n) = (\alpha x_1, \ldots, \alpha x_n).$

Нетрудно убедиться, что введённые действия не выводят из множества. Сделаем проверку для операции сложения. Подставим $(x_1 + y_1, \ldots, x_n + y_n)$ в i-ое уравнение системы:

$$\alpha_{i1}(x_1 + y_1) + \dots + \alpha_{in}(x_n + y_n) =$$

$$= (\alpha_{i1}x_1 + \dots + \alpha_{in}x_n) + (\alpha_{i1}y_1 + \dots + \alpha_{in}y_n) = 0, \quad i = 1, 2, \dots, m.$$

Нулевой элемент: $\mathbb{O}=(0,0,\ldots,0)$ является решением однородной системы. Противоположный к (x_1,x_2,\ldots,x_n) элемент — это $(-x_1,-x_2,\ldots,-x_n)$. Он также является решением системы.

Основные свойства линейных пространств.

Теорема 1

В линейном пространстве существует только один нулевой элемент.

Доказательство:

От противного. Пусть есть два нулевых элемента: \mathbb{O}_1 и \mathbb{O}_2 . Тогда:

$$\mathbb{O}_2 \underset{\text{akcuoma } 3}{=} \mathbb{O}_2 + \mathbb{O}_1 \underset{\text{akcuoma } 1}{=} \mathbb{O}_1 + \mathbb{O}_2 \underset{\text{akcuoma } 3}{=} \mathbb{O}_1,$$

то есть нулевые элементы совпали.

Теорема 2

Для любого элемента x существует только один противоположный элемент.

Доказательство:

От противного.

Пусть есть два противоположных к x элемента : y_1 и y_2 .

Тогда:

$$y_2 = y_2 + \mathbb{O} = y_2 + (x + y_1) = (y_2 + x) + y_1 = x$$
аксиома 3 аксиома 4 аксиома 2 аксиома 4 $= \mathbb{O} + y_1 = y_1 + \mathbb{O} = y_1,$
аксиома 1 аксиома 3

то есть противоположные элементы совпали.

Теорема 3

$$\forall x \in \mathcal{L}: \qquad 0 \cdot x = \mathbb{O}. \tag{79}$$

Доказательство:

$$x + 0 \cdot x = 1 \cdot x + 0 \cdot x = (1 + 0) \cdot x = 1 \cdot x = x.$$
 (80) аксиома 6

Согласно аксиоме 3: $x+\mathbb{O}=x$, где \mathbb{O} никак не связан с x. У нас в формуле (80) эта связь есть: $x+0\cdot x=x$, то есть теорема ещё не доказана. Покажем, что элемент $\mathbb{O}=0\cdot x$.

Пусть элемент y является противоположным к x. Тогда:

Теорема 4

Для противоположного к x элемента y выполнено:

$$y = (-1) \cdot x. \tag{82}$$

Доказательство:

Проверим, что так определенный элемент y является противоположным для x.

$$x + (-1) \cdot x = 1 \cdot x + (-1) \cdot x = (1 + (-1)) \cdot x = 0 \cdot x = 0$$
 формула (79) (83)

Теорема 5

$$\alpha \cdot \mathbb{O} = \mathbb{O}, \quad \forall \alpha \in \mathbb{R}(\mathbb{C}).$$
 (84)

Доказательство:

$$lpha\cdot\mathbb{O}=lpha\cdot\mathbb{O}=lpha(x+(-1)\cdot x)=lpha x+(-lpha)x=lpha x+(-lpha)x=lpha$$

2.3 Линейная независимость векторов. Базис и размерность линейного пространства.

Определение

Система x_1, x_2, \ldots, x_n векторов линейного пространства $\mathcal L$ называется

линейно независимой, если из равенства $\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n$ следует равенство нулю всех коэффициентов $\alpha_1 = 0, \alpha_2 = 0, \ldots, \alpha_n = 0$. В противном случае система называется линейно зависимой.

Теорема 6

Набор ненулевых векторов $\{x_i\}_{i=1}^n$ линейно зависим тогда и только тогда, когда среди векторов набора существует по крайней мере один вектор, представленый в виде линейной комбинации предыдущих.

Доказательство:

Необходимость.

Пусть набор $\{x_i\}_{i=1}^n$ линейно зависим. Тогда найдётся такой номер j, $1 \le j < n$, что набор x_1, \ldots, x_j будет линейно независимым, а набор $x_1, \ldots, x_j, x_{j+1}$ – линейно зависимым.

Следовательно, найдётся такой ненулевой набор коэффициентов $\{\alpha_i\}$ что выполнено:

$$\sum_{i=1}^{J} \alpha_i x_i + \alpha_{j+1} x_{j+1} = 0, \tag{85}$$

где $\alpha_{j+1} \neq 0$ (иначе набор x_1, \ldots, x_j будет линейно зависимым). Выразим x_{j+1} из формулы (85) :

$$x_{j+1} = -\frac{1}{\alpha_{j+1}} \cdot \sum_{i=1}^{j} \alpha_i x_i.$$
 (86)

Таким образом, мы представили вектор x_{j+1} в виде линейной комбинации векторов с меньшими номерами.

Достаточность.

Пусть x_{j+1} есть линейная комбинация векторов x_1, \ldots, x_j . Это означает, что векторы x_1, \ldots, x_{j+1} линейно зависимы. Следовательно, векторы $x_1, \ldots, x_{j+1}, \ldots, x_n$ также линейно зависимы.

Определение

Набор векторов $\{e_i\}_{i=1}^n \in \mathcal{L}$ называется полным в линейном пространстве \mathcal{L} , если любой вектор $x \in \mathcal{L}$ может быть представлен линейной комбинацией векторов e_i с коэффициентами $\xi_i \in \mathbb{R}(\mathbb{C})$:

$$x = \sum_{i=1}^{n} \xi_i e_i. \tag{87}$$

Очевидно, что если из полного набора вычеркнуть векторы, которые линейно выражается через предшествующие векторы этого набора, то получившийся набор останется полным.

Определение

Пространство \mathcal{L} называется конечномерным если в нём существует конечный полный набор векторов. В противном случае пространство называется бесконечномерным.

Onpeделение

Полный линейно независимый набор векторов пространства называется базисом.

Замечания

- 1) Базис является максимальным линейно независимым набором векторов: любой набор, содержащий его как собственную часть, (то есть не совпадающий со всем набором), линейно зависим.
- 2) Базис является минимальным полным набором: любая его собственная часть не является полным набором.

Утверждение.

Вектор можно разложить по базису $\{e_i\}_{i=1}^n$ единственным образом.

Доказательство:

От противного.

Пусть
$$x=\xi_1e_1+\xi_2e_2+\ldots+\xi_ne_n$$
, а также выполнено: $x=\eta_1e_1+\eta_2e_2+\ldots+\eta_ne_n$. Вычтем равенства друг из друга. Получим:

 $0 = (\xi_1 - \eta_1)e_1 + \ldots + (\xi_n - \eta_n)e_n \Rightarrow \xi_1 = \eta_1, \ldots, \xi_n = \eta_n$ (в силу линейной независимости $\{e_i\}_{i=1}^n$).

Теорема 7

Любое конечномерное линейное пространство имеет базис.

Доказательство:

Пусть $\{e_i\}_{i=1}^n$ — конечный полный набор векторов \mathcal{L} . Если он линейно независим, то он по определению является базисом. Если линейно зависим, то существует вектор e_k который выражается через линейную комбинацию предыдущих векторов по (теореме 6). Вычеркнем этот вектор. Оставшийся набор будет по-прежнему полным. Если он линейно независимым, то это базис. Если нет, то повторяем процедуру. Через конечное число шагов мы получим полный линейно независимый набор (базис).

Теорема 8

Любой линейно независимый набор векторов конечномерного пространства можно дополнить до базиса.

Доказательство:

Пусть $\{g_i\}_{i=1}^l$ — линейно независимый набор векторов. Пусть набор $\{e_i\}_{i=1}^n$ образует базис. Объединим эти два набора в следующем порядке: $g_1, g_2, \ldots, g_l, e_1, \ldots, e_n$. Так как в новом наборе содержится базис $\{e_i\}_{i=1}^n$, то это полный набор. Проредим его, вычеркивая элементы, представимые в виде линейной комбинации предыдущих. Получим базис.

Замечание

Этот прием носит название "прополки", ибо похож на соответствующую

сельскохозяйственную операцию, поскольку служит последовательному удалению "сорняков", портящих линейную независимость векторов набора (Булдырев В.С., Павлов Б.С. Линейная алгебра и функции многих переменных. Л.: Изд-во Ленинградского ун-та, 1985, 496 с.).

Теорема 9

Пусть набор векторов x_1, x_2, \ldots, x_m — линейно независимый, а y_1, y_2, \ldots, y_n — полный в \mathcal{L} . Тогда $m \leq n$. Таким образом, линейно независимый набор не может содержать больше векторов, чем полный набор.

Доказательство:

От противного.

Пусть m>n. Составим набор векторов $x_m, y_1, y_2, \ldots, y_n$. Он полный, так как y_1, y_2, \ldots, y_n — полный набор. Он линейно зависимый, так как x_m можно выразить через y_1, y_2, \ldots, y_n . Тогда найдётся элемент y_{s_1} , который линейно выражается через предыдущие $x_m, y_1, \ldots, y_{s_1-1}$ (по теореме 6). После его вычеркивания набор останется полным. Допишем к нему слева элемент x_{m-1} и получим: $x_{m-1}, x_m, y_1, \ldots, y_{s_1-1}, y_{s_1+1}, \ldots, y_n$. Этот набор будет полным и линейно зависимым. Следовательно, в нем найдется вектор, который линейно выражается через предыдущие. Этим вектором не может быть x_m или x_{m-1} , так как они линейно независимы. Следовательно, это некоторый вектор y_{s_2} . Вычеркивая его, снова получим полный линейно зависимый набор

$$x_{m-1}, x_m, y_1, \ldots, y_{s_1-1}, y_{s_1+1}, \ldots, y_{s_2-1}, y_{s_2+1}, \ldots, y_n.$$

И так далее. На n-ом шаге мы вычеркнем последний из векторов $\{y_i\}_{i=1}^n$ и получим всё ещё полный набор $x_{1+m-n}, x_{2+m-n}, \ldots, x_m$. Так как по предположению m > n, то 1+m-n > 1. Следовательно, имеется еще по крайней мере один вектор x_{m-n} , который в виду полноты x_{1+m-n}, \ldots, x_m линейно выражается через них, что противоречит

линейной независимости $\{x_i\}_{i=1}^m$. Противоречие.

Теорема 10

Все базисы конечномерного линейного пространства содержат одинаковое число векторов.

Доказательство:

Пусть $\{e_i\}_{i=1}^n$, $\{g_i\}_{i=1}^n$ – два базиса , то есть полные линейно независимые наборы векторов.

Посмотрим на эти два набора с разных сторон и применим теорему 9.

$$\{e_i\}_{i=1}^n$$
 — линейно независимый набор $g_i\}_{i=1}^m$ — полный в \mathcal{L} набор $\{g_i\}_{i=1}^m$ — линейно независимый набор $\{e_i\}_{i=1}^n$ — полный в \mathcal{L} набор $e_i\}_{i=1}^n$ — полный в \mathcal{L} набор

Таким образом, m = n.

Определение

Число векторов в базисе конечномерное линейного пространства $\mathcal L$ называется размерностью пространства.

Обозначение: $dim \mathcal{L}$.

Утверждение 1

Набор мономов 1, t, t^2, \ldots, t^n является базисом в P^n (пространстве полиномов в степени $\leq n$).

Доказательство:

Базис — это полный линейно независимый набор. Полнота очевидна, так как любой полином степени $\leq n$ можно представить в виде линейной комбинации $1,\ t,\ t^2,\ \ldots,\ t^n$. Линейная независимость $1,\ t,\ t^2,\ \ldots,\ t^n$ означает, что: $\alpha_0\cdot 1+\alpha_1\cdot t+\ldots +\alpha_n\cdot t^n=0$. По

следствию из основной теоремы алгебры полином n-ой степени имеет не более n корней. Если он обращается в нуль более чем в n точках, то все его коэффициенты равны нулю.

В нашем случае полином обращается в нуль при любом t, то есть в бесконечном числе точек $\Rightarrow \alpha_0 = \alpha_1 = \ldots = \alpha_n = 0$.

Следствие

$$dim P^n = n + 1. (88)$$

Утверждение 2

Набор векторов

$$e_{1} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_{2} = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_{n} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$
(89)

образует базис в пространстве \mathbb{R}^n .

Доказательство:

Проверим полноту. Любой вектор $x=\begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix}$ можно представить в виде линейной комбинации $e_1,\ \ldots, e_n$: $x=\xi_1e_1+\xi_2e_2+\ldots +\xi_ne_n$ Проверим линейную независимость.

$$\sum_{i=1}^{n} \alpha_{i} e_{i} = \mathbb{O} \Leftrightarrow \begin{cases} \alpha_{1} \cdot 1 + \alpha_{2} \cdot 0 + \dots + \alpha_{n} \cdot 0 = 0 \\ \alpha_{1} \cdot 0 + \alpha_{2} \cdot 1 + \dots + \alpha_{n} \cdot 0 = 0 \\ \dots \\ \alpha_{1} \cdot 0 + \alpha_{2} \cdot 0 + \dots + \alpha_{n} \cdot 1 = 0 \end{cases}$$
(90)

Решение системы (90): $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$, что означает линейную независимость векторов e_1, e_2, \ldots, e_n .

Следствие

$$dim\mathbb{R}^n = n. \tag{91}$$

Изоморфизм линейных пространств

Необъятность множества n-мерных пространств кажущаяся. В некотором смысле существует только одно n-мерное вещественное пространство \mathbb{R}^n . И одно n-мерное комплексное пространство \mathbb{C}^n . Поясним это.

Определение

Два линейных пространства \mathcal{L} и $\tilde{\mathcal{L}}$ называются изоморфными, если между их элементами можно установить взаимно-однозначное соответствие $x \leftrightarrow \tilde{x}$ такое, что :

- 1) $\alpha x \longleftrightarrow \alpha \tilde{x}, \quad \alpha \in \mathbb{R}(\mathbb{C})$
- 2) $x + y \longleftrightarrow \tilde{x} + \tilde{y}$

Это взаимно-однозначное соответствие называется изоморфизмом линейных пространств \mathcal{L} и $\tilde{\mathcal{L}}$.

Теорема 11

Любое вещественное (комплексное) линейное пространство $\mathcal L$ размерности n изоморфно $\mathbb R^n(\mathbb C^n)$.

Доказательство:

Пусть $e_1,\ e_2,\ \ldots,\ e_n$ – некоторый базис в пространстве $\mathcal L$,

 $\xi_1,\ \xi_2,\ \ldots$, ξ_n – координаты вектора x в этом базисе. Каждому

элементу $x \in \mathcal{L}$ поставим в соответствие элемент $\begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix} \in \mathbb{R}^n(\mathbb{C}^n)$. Это

соответствие сохраняет алгебраическую структуру: при сложении векторов соответствующие координаты складываются, а при умножении вектора на число все координаты умножаются на это число. Таким образом, выполнены условия изоморфизма.

Пример бесконечномерного пространства

C[a,b] — пространство непрерывных функций на отрезке [a,b]. В нём будут линейно независимы следующие функции: $1,\ t,\ t^2,\ \ldots,\ t^n,\ \ldots$ $\forall n.$

2.4 Подпространства

Определение

Подпространством линейного пространства \mathcal{L} называется подмножества \mathcal{N} из \mathcal{L} , замкнутое относительно законов композиции в \mathcal{L} , то есть такое что $\forall x,y\in \mathcal{N}$ и $\alpha\in \mathbb{R}(\mathbb{C})$ выполнено: $x+y\in \mathcal{N},\, \alpha x\in \mathcal{N}$.

Теорема 12

Пространство $\mathscr N$ линейного пространства $\mathcal L$ само будет являться линейным пространством, если действия с элементами в $\mathscr N$ введены также как в $\mathcal L$ (в этом случае говорят, действия в $\mathscr N$ индуцированны из $\mathcal L$).

Доказательство:

Действия в \mathcal{L} удовлетворяют аксиомам линейного пространства \Rightarrow действия в \mathcal{N} также удовлетворяют аксиомам линейного пространства(так как они были индуцированы из \mathcal{L}).

Проверим, что нулевой и противоположный элементы принадлежат \mathcal{N} . Действительно, рассмотрим произвольный элемент $x \in \mathcal{N}$. Тогда $0 \cdot x \in \mathcal{N}$.

/ По определению подпространства $\alpha \cdot x \in \mathcal{N}$, где $\alpha \in \mathbb{R}(\mathbb{C})$ / По теореме 3 (формула (79)): $\mathbb{O} = 0 \cdot x$, то есть $\mathbb{O} \in \mathcal{N}$.

Рассмотрим противоположный к x элемент (-x). Согласно теореме 4 (формула (82)): $-x=(-1)\cdot x$, то есть $-x\in \mathcal{N}$.

Определение

Тривиальным подпространством называют подпространство, состоящее из одного нулевого элемента и подпространство, совпадающие со всем