

Review Test Submission: Quiz 9.2

User	David Kirby
Course	Intro to Control Systems - Fall 2020 Section Group I67
Test	Quiz 9.2
Started	11/17/20 9:22 AM
Submitted	11/17/20 9:24 AM
Status	Completed
Attempt Score	4 out of 4 points
Time Elapsed	1 minute
	d All Answers, Submitted Answers, Incorrectly Answered Questions

Question 1 1 out of 1 points

A Bode plot of a second order system $G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ has a phase loss of how many degrees as phase increases from 0 to ∞ ?

Selected Answer:

180°

Answers:

270°

180°

0°

90°

Question 2 1 out of 1 points

The magnitude of the frequency response of a second-order system with no zeros has which of the following characteristics? (More than one response may be correct.)

Selected Answers:

Magnitude decreasing at -40 dB/decade at high frequencies

Constant magnitude at low frequencies

Answers:

Magnitude decreasing at -40 dB/decade at high frequencies

Constant magnitude at high frequencies

Increasing magnitude at +20 dB/decade a low frequencies

Magnitude decreasing at -20 dB/decade at high frequencies

Constant magnitude at low frequencies

Question 3 1 out of 1 points

The magnitude of the frequency response of a first-order system has which of the following characteristics? (More than one response may be correct.)

Selected Answers:

Magnitude decreasing at -20 dB/decade at high frequencies

Constant magnitude at low frequencies

Answers: Increasing magnitude at +20 dB/decade a low frequencies

Magnitude decreasing at -40 dB/decade at high frequencies

Magnitude decreasing at -20 dB/decade at high frequencies

Constant magnitude at low frequencies Constant magnitude at high frequencies

Question 4 1 out of 1 points

True or false? A Bode plot of a system can have non-constant gain at low frequencies if the system contains at least one pole at the origin.

Selected Answer: True

True Answers:

False

Tuesday, November 17, 2020 9:24:04 AM MST