

Numerische Simulation

Sándor Vörös

Einschränkungen des Standard-GUM-Verfahrens

- 1) Die Funktion *f* sollte keine wesentliche Nichtlinearität aufweisen.
- 2) Der zentrale Grenzwertsatz sollte anwendbar sein, sodass *Y* normal- oder *t*-verteilt ist.
- 3) Die Welch-Satterthwaite Formel für v_{eff} sollte anwendbar sein.
- 4) Die Eingangsvariablen X_i sollten nicht korreliert sein, wenn die v_i endlich sind.

GUM Ergänzung 2 behandelt den Fall von mehrfachen Messgrössen.

Unsicherheits- und Verteilungs- Fortpflanzung

Unsicherheitsfortpflanzung nach Standard-GUM:

Keine Information über g(y) \rightarrow Näherung (t- oder

Normal-Verteilung)

$$x_1, u(x_1) \longrightarrow X_2, u(x_2) \longrightarrow Y = f(X_1, \dots, X_N) \longrightarrow y, u_c(y)$$

$$x_3, u(x_3) \longrightarrow Y = f(X_1, \dots, X_N) \longrightarrow y, u_c(y)$$

Fortpflanzung der Verteilungen:

g(y) explizit konstruiert aus $g_i(x_i)$ und f

Alle Charakteristiken von Y berechenbar: y , $u_c(y)$, U_p , p , ohne zusätzliche Näherung

Die Fortpflanzung von Verteilungen

- Nur in einfachen Fällen analytisch durchführbar
- Monte Carlo numerische Methode gut geeignet

Die Monte Carlo Simulationstechnik entspricht einem virtuell durchgeführten Experiment, bei dem in grosser Zahl die Einflussparameter entsprechend ihrem zugrunde liegenden Verteilungsmodell variieren.

Die Monte Carlo Methode

Die Monte Carlo Methode...

- Die Monte Carlo Methode ist ein statistisches Stichprobenverfahren, dass Näherungslösungen für quantitative Problemstellungen liefert.
- Sie beruht auf die Erzeugung von Zufallszahlen.
- Diese Methode ist sowohl für Problemstellungen mit intrinsisch stochastischer Struktur anwendbar, als für solche ohne probabilistische Struktur.

Die Monte Carlo Methode...

 Die Monte Carlo Methode wurde von Stanislaw Marcin Ulam, John von Neumann und Nicholas Metropolis im Rahmen des Manhattan-Projekts (amerikanische Atombombenentwicklung während des 2. Weltkrieges) systematisch untersucht.

 Das Ziel war, die Streuung der Neutronen in der Materie zu simulieren.

Zufallsgeneratoren

Stehen im Herzen der Monte Carlo Methode.

Zwei Möglichkeiten zur Erzeugung von Zufallszahlen:

- Physikalisches Experiment, z.B. Verarbeitung eines geeigneten elektromagnetischen Signals, oder Zerfallszeiten der einzelnen Atome einer radioaktiven Quelle.
- Deterministischer Algorithmus, der eine Folge von Zahlen erzeugt, die "ähnlich wie Zufallszahlen aussehen": <u>Pseudo-Zufallsgenerator</u>

Pseudo-Zufallsgeneratoren

- Werden auf Computern implementiert
- Erzeugen grundsätzlich ganze Zahlen n_i auf einem endlichen Abschnitt: $n_i \in \{0, 1, 2, ..., N\}$
- Kann nur endlich viele unterschiedliche Zahlen erzeugen (endliche Periode) und dann werden die Zahlen wiederholt
- Reelle Zufallszahlen u_i auf dem Intervall [0,1] ergeben sich durch dividieren der erzeugten ganzen Zahlen durch N: $u_i = n_i / N$

Standardmässig liefern Pseudo-Zufallsgeneratoren

- stochastisch unabhängige
- auf dem Intervall [0,1] gleichverteilte (rechteckverteilte)

Zufallszahlen.

Der lineare Kongruenz-Generator (LKG)

$$n_{i+1} = (a \cdot n_i + c) \bmod m$$

- Die Modulo Funktion gibt das Rest der ganzzahligen Division durch m Beispiel: $7 \mod 3 = 1$, da $7 = 2 \cdot 3 + 1$
- Alle Parameter a, c und m sind positive ganze Zahlen, und müssen sorgfältig gewählt werden
- Ein Startwert *n*₀ wird benötigt (English: *Seed*)
- Die erzeugten Zahlen sind $0 \le n_i \le m-1$.
- Die maximale Periodenlänge ist m.
- Zufallszahlen auf [0,1] werden durch $u_i = n_i/m$ erhalten.

LKG Beispiel 1

$$n_{i+1} = (2 \cdot n_i + 1) \mod 9$$

۱۸/	/ <u></u>				1	_
1/1/)	סוו	1/1	_		-
VV	aı	ПC	n_0	_	1	
	•••	•••	()		_	-

i	n_i
1	3
2	7
3	6
4	4
5	0
6	1
7	3
•••	

Periode
$$= 6$$

Wähle $n_0 = 2$:

i	n_i
1	5
2	2
3	5
4	2
5	5
6	2
7	5
•••	•••

Periode
$$= 2$$

Wähle $n_0 = 8$:

i	n_i
1	8
2	8
3	8
4	8
5	8
6	8
7	8
•••	•••

LKG Beispiel 3 (Park-Miller)

$n_{i+1} = (16'807 \cdot n_i) \mod 2'147'483'647$

Wähle $n_0 = 12^{\circ}345$:

i	n_i	$u_i = n_i/m$
1	207'482'415	0.096616528
2	1'790'989'824	0.833994627
3	2'035'175'616	0.947702497
4	77'048'696	0.035878594
5	24'794'531	0.011545853
6	109'854'999	0.051155220
7	1'644'515'420	0.765787167
8	1'256'127'050	0.584929739
9	1'963'079'340	0.914130052
10	1'683'198'519	0.783800389
11	715'426'902	0.333146612
		• • •

10⁶ Zahlen

Erzeugung von beliebigen Verteilungen

Um andere Verteilungen als Rechteckverteilungen $g_u(u)$ auf dem Intervall [0,1] zu erzeugen werden diese Zahlen $u_i \in [0,1]$ durch ein geeignetes Verfahren in Zahlen $x_i = f(u_i)$, die die gewünschte Verteilung g(x) haben umgerechnet.

Wir werden 2 Beispiele sehen:

- Allgemeine Rechteckverteilung
- Box-Müller Transformation

Allgemeine Rechteckverteilung

- 1) Erzeuge zunächst 1 rechteckverteilte Zufallszahl $u_i \in [0,1]$ mit Mittelwert 0.5 und totale Breite 1.0.
- 2) Um Rechteckverteilte x_i mit Mittelwert x_0 und totale Breite 2a zu erhalten, berechne

$$x_i = (u_i - 0.5) \cdot 2a + x_0$$

3) Wiederhole 1) - 2) so oft wie nötig.

Box-Müller Transformation

Speziell wenn g(x) eine Normalverteilung ist.

- 1) Erzeuge zunächst 2 rechteckverteilte Zufallszahlen $u_1 \in (0,1]$, $u_2 \in [0,1)$ mit Mittelwert 0.5 und totale Breite 1.0.
- 2) Berechne $z_1 = \sqrt{-2 \cdot \ln(u_1)} \cdot \cos(2\pi u_2)$ $z_2 = \sqrt{-2 \cdot \ln(u_1)} \cdot \sin(2\pi u_2)$ z_1 , z_2 sind 2 unabhängige normalverteilte Zahlen N(0,1).
- 3) Berechne $x_1 = \mu + \sigma \cdot z_1$ und $x_2 = \mu + \sigma \cdot z_2$ x_1 , x_2 sind 2 unabhängige normalverteilte Zahlen $N(\mu, \sigma^2)$.

Die Fortpflanzung von Verteilungen

Die Fortpflanzung von Verteilungen

Die erste Etappe des Messprozesses ist wie beim GUM-Standard-Verfahren:

1)
$$Y, X_i, f \longrightarrow Y = f(X_1, \dots, X_N)$$

- 2) Ordne jedem X_i eine Verteilung $g_i(x_i)$ zu.
- 3) Fortpflanze $g_i(x_i)$ durch die Modellfunktion f, um die Verteilung g(y) der Werte der Ausgangsgrösse Y zu erhalten (hier sind Zufallszahlgeneratoren nötig).
- 4) Aus g(y) berechne y , $u_c(y)$, U_p , p.

Computeralgorithmus

- 1) Erzeuge für jede Eingangsgrösse X_i einen Wert x_i gemäss ihrer Verteilung $g_i(x_i) \Rightarrow$ erhalte x_1, \ldots, x_N .
- 2) Setze die Werte x_1, \dots, x_N in der Funktion f ein um einen Wert $y = f(x_1, \dots, x_N)$ zu erhalten.
- 3) Wiederhole 1) 2) M-Mal, um eine grössere Anzahl y-Werte zu erhalten: $\{y_1, \dots, y_M\}$ (typischerweise ~10⁶ Werte).

Computeralgorithmus

4) Berechne *y* durch Mittelwertbildung:

$$\overline{y} = \frac{1}{M} \sum_{j=1}^{M} y_j$$

5) Berechne die Standardunsicherheit u(y):

$$u^{2}(y) = \frac{1}{M-1} \sum_{j=1}^{M} (y_{j} - \overline{y})^{2}$$

6) Ordne die M y_j -Werte in aufsteigender Reihenfolge: die geordnete Liste $\{y'_1, \dots, y'_M\}$ wird konstruiert.

$$\{y_1, y_2, ..., y_M\} \rightarrow \{y'_1, y'_2, ..., y'_M\} \quad (y'_i \le y'_{i+1}, \forall j)$$

Computeralgorithmus

- 6) Bestimme ein p-erweitertes Unsicherheitsintervall $[y'_{q1}, y'_{q2}]$:
 - a) $q_1 = M \cdot (1-p)/2$ und $q_2 = M \cdot p + q_1$ (symmetrisches Intervall) oder
 - b) $q_1=1,...,M\cdot(1-p)$ und $q_2=M\cdot p+q_1$ mit kleinstem $\Delta y=(y'_{q^2}-y'_{q^1})$ (kürzeste Intervall).

Beispiel: p = 95% $\{y'_1, y'_2, ..., y'_{q_1-1}, y'_{q_1}, ..., y'_{M/2}, ..., y'_{q_2}, y'_{q_2+1}, ..., y'_{M-1}, y'_{M}\}$ 2.5% der Werte $\{0.6\%$ der Werte $\{0.6\%$ der Werte $\{0.5\%$ der Werte

Als einfaches Anwendungsbeispiel betrachten wir das Messmodell

$$Y = f(X) = X^2$$

- Nur eine einzige Eingangsgrösse X
- Nicht-lineare Funktion *f*
- Mittelwert *x* = 0.5
- Standardunsicherheit u(x) = 0.2

Gesucht:

• Messresultat y mit einer erweiterten Unsicherheit mit p = 95%

Bemerkungen:

- *u(x)* absichtlich gross gewählt sodass Nicht-Linearität bedeutend
- Wir werden zunächst das Standard-GUM-Resultat berechnen

Standard-GUM-Rechnung:

$$y = f(x) = (0.5)^2 = 0.2500$$

$$u_c(y) = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 \cdot u^2(x)} = \sqrt{(2 \cdot 0.5)^2 \cdot (0.2)^2} = \sqrt{0.0400} = 0.2000$$

$$(\partial f/\partial x) = 2x$$

Annahme: Normalverteilung für Y mit $p = 95\% \iff k = 1.96$

$$U_{95} = k_{95} \cdot u_c(y) = 1.96 \cdot 0.2000 = 0.3920$$

⇒ 95% Vertrauensintervall ist

$$[y - U_{95}, y + U_{95}] = [-0.1420, 0.6420]$$

Monte Carlo Rechnung mit Normalverteilten X:

$$\overline{y} = \frac{1}{M} \sum_{r=1}^{M} y_r = 0.2900$$

$$u_c(y) = \sqrt{\frac{1}{M-1} \sum_{r=1}^{M} (y_r - \overline{y})^2} = 0.2078$$

95% Vertrauensintervall mit der kleinsten Breite ist [0.0000, 0.6870]

$$Y = X^2$$

Monte Carlo Rechnung mit Rechteckverteilten X:

$$\overline{y} = \frac{1}{M} \sum_{r=1}^{M} y_r = 0.2900$$

$$u_c(y) = \sqrt{\frac{1}{M-1} \sum_{r=1}^{M} (y_r - \overline{y})^2} = 0.2032$$

95% Vertrauensintervall mit der kleinsten Breite ist [0.0236, 0.6589]

	GUM 1. Ordnung	GUM 2. Ordnung	Monte Carlo Gauss	Monte Carlo Rechteck
x	0.5	0.5	0.5	0.5
u(x)	0.2	0.2	0.2	0.2
у	0.2500	0.2900	0.2900	0.2900
$u_c(y)$	0.2000	0.2078	0.2078	0.2032
Y _{unten} (95%)	-0.1420	-0.1173	0.0000	0.0236
Y _{oben} (95%)	0.6420	0.6973	0.6870	0.6589

Schlussbemerkungen

- Standard-GUM-Verfahren (SG) und Monte Carlo Simulation (MC) sind 2
 Näherungsmethoden zur Messunsicherheitsabschätzung
- SG in wenigen aber wichtigen Situationen exakt, hingegen MC nie exakt
- MC in einem breiteren Spektrum von Problemen gültig
- MC Resultate gehen proportional zu $1/\sqrt{M}$ gegen die richtige Erwartungswert y und Standardunsicherheit $u_c(y)$
- Beim MC werden Empfindlichkeitskoeffizienten c_i und Freiheitsgraden v_i nicht mehr benötigt
- MC kann unsymmetrische $g_i(x_i)$, nicht-lineare f und korrelierte X_i gleichzeitig behandeln
- GUM-Ergänzung 1 empfiehlt, MC zur Validierung von Resultaten anzuwenden, in Fällen wo die Gültigkeit des SG unsicher ist