Notes on Matrices

Let V, W be finite-dimensional vector spaces over a field \mathbb{F} . Given a linear map $T: V \longrightarrow W$, we may decide to use a matrix to describe the map. To do this, we follow a certain convention. The purpose of these notes is to explain the convention.

Coordinates of a vector as a $n \times 1$ matrix

Choose a basis $\beta=(v_1,\ldots,v_n)$ for V Then any vector $x\in V$ can be written uniquely as $x=\sum_{i=1}^n x_iv_i$. This allows us to describe x by giving its coordinates $(x_1,\ldots,x_n)\in\mathbb{F}^n$. We define the matrix of x to be

$$[x]^{\beta} := \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

Matrix of a linear map

The linear map $T:V\longrightarrow W$ is completely determined by its values on the basis β . If we choose a basis $\gamma=(w_1,\ldots,w_k)$ for W, then the value of T on the j^{th} basis element v_j of β is

$$T(v_j) = \sum_{i=1}^k a_{ij} w_i. \tag{1}$$

This defines a $k \times n$ array of numbers $a_{ij} \in \mathbb{F}$ (i indicates the row, j indicates the column), which is defined to be the matrix of T with respect to β, γ :

$$[T]^{\gamma}_{\beta} := \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kn} \end{bmatrix}$$

Note that with this definition, the coordinates of Tv_i appear as the j^{th} column of the matrix.

Applying a matrix to a vector

A $k \times n$ matrix can be "multiplied" by or "applied" to a $n \times 1$ matrix to yield a $k \times 1$ matrix. By definition, we set

$$[T]^{\gamma}_{\beta}[x]^{\beta} := [Tx]^{\gamma},$$

in other words, the matrix of T applied to the matrix of x gives the matrix of Tx. To compute this, we use the fact

$$Tx = \sum_{j=1}^{n} x_j T(v_j) = \sum_{i=1}^{k} (\sum_{j=1}^{n} a_{ij} x_j) w_i.$$

Therefore, the i^{th} entry in the $k \times 1$ matrix $[T]_{\beta}^{\gamma}[x]^{\beta}$ is $\sum_{j=1}^{n} a_{ij}x_{j}$.

Composition as matrix multiplication

Let U be another vector space, with basis $\alpha = (u_1, \ldots, u_m)$. If $S: U \longrightarrow V$ and $T: V \longrightarrow W$ are linear maps, then they can be composed to give $TS: U \longrightarrow W$. This implies that we should be able to "multiply" the $k \times n$ matrix of T by the $n \times m$ matrix of S to give the $k \times m$ matrix of TS. We define

$$[T]^{\gamma}_{\beta}[S]^{\beta}_{\alpha} := [TS]^{\gamma}_{\alpha}.$$

Suppose that the matrix $[S]^{\beta}_{\alpha}$ has entries b_{ij} defined by $Su_j = \sum_{i=1}^n b_{ij}v_i$. Then we can compute the matrix of the composition above, using:

$$TS(u_j) = T(\sum_p b_{pj} v_p) = \sum_{i=1}^k \left(\sum_{p=1}^n a_{ip} b_{pj}\right) w_i.$$

Therefore, the ij^{th} entry in the $k \times m$ matrix $[T]_{\beta}^{\gamma}[S]_{\alpha}^{\beta}$ is $\sum_{p=1}^{n} a_{ip}b_{pj}$, which is the usual formula given for the ij^{th} entry of a matrix product. It is obvious that matrix multiplication is associative, since it is defined using composition of linear maps, and composition is always associative.

Change of basis

Suppose you know the matrix of $T:V\longrightarrow W$ with respect to bases β,γ for V,W, and someone hands you new bases β',γ' . How can you find the matrix of T in the new basis? We can use the simple fact that the identity maps \mathbf{I}_V and \mathbf{I}_W can be composed with T without changing anything, i.e.

$$T = \mathbf{I}_{W} T \mathbf{I}_{V}$$

But then we know from the definition of matrix multiplication that

$$[T]_{\beta'}^{\gamma'} = [\mathbf{I}_W T \mathbf{I}_V]_{\beta'}^{\gamma'} = [\mathbf{I}_W]_{\gamma}^{\gamma'} [T]_{\beta}^{\gamma} [\mathbf{I}_V]_{\beta'}^{\beta}.$$

The matrix $P = [\mathbf{I}_V]_{\beta'}^{\beta}$ is usually called the "change of basis matrix" and its columns are the coordinates of the β' basis when expressed in the old basis β . Setting $Q = [\mathbf{I}_W]_{\gamma'}^{\gamma}$, we see that

$$[T]_{\beta'}^{\gamma'} = Q^{-1}[T]_{\beta}^{\gamma} P.$$