Uma metodologia para a detecção de parâmetros de linhas espectrais

Através de Machine Learning

Objetivo

Estimar parâmetros de linhas espectrais através de aprendizado de máquina

- Quais parâmetros?
 - Perfil da linha espectral:
 - Gauss
 - Lorentz
 - Voigt

Largura das linhas espectrais

Motivação: Adversidades enfrentadas no TCC

- Dificuldade em selecionar o perfil de linha correto.
 - Força bruta: Ajustar todos os perfis e analisar qual se ajusta melhor às linhas através do erro. Consome muito tempo!

- Ajuste em massa pode apresentar problemas.
 - Algumas linhas podem apresentar problemas durante o ajuste. Necessidade de intervenção manual. Também demanda tempo!

Possíveis soluções:

- Metodologias estatísticas (apenas para seleção do perfil de linha)
 - o Q-Q plot
 - Teste de hipótese (Kolmogorov-Smirnov)

- Aprendizado de máquina (perfil e largura)
 - o Algoritmos de classificação e regressão
 - Regressão logística e linear
 - K- vizinhos mais próximos
 - Árvore de decisão
 - Floresta aleatória
 - Modelos ensemble

- Aprendizado profundo (perfil e largura)
 - o Redes Neurais

Q-Q plot

KS

Solução proposta: Rede neural

Treinamento e validação

- Linhas espectrais geradas artificialmente com parâmetros e ruídos aleatórios
 - 120 mil linhas para treino (40 mil para cada perfil)
 - o 1500 linhas para validação (500 para cada perfil)

- Input da Rede
 - Linha espectral
 - Primeira derivada
 - Segunda derivada

- Output da Rede
 - o Probabilidade de ser Gauss
 - o Probabilidade de ser Lorentz
 - Probabilidade de ser Voigt
 - Largura da linha (full width at half maximum)

Resultados para a classificação do perfil

Taxa de acerto:

94%

Resultados para a estimativa de largura

Resultados para a estimativa de largura

Erro médio absoluto -> 0.075

Raiz do erro médio quadrático -> 0.109

Erro Percentual -> 11.84%

Próximos passos

Validar o modelo em espectros simulados pelo Hitran

Validar o modelo em espectros reais: HCl

Testar novas metodologias

Aprimorar o modelo

