Homework for Section#2 (Approximate due date Aug 31st , 2020)

- 1. Pick one prime number p greater than 5
 - a. Generate the multiplication tables $\operatorname{mod} \boldsymbol{p}$

Prime Number (p): 13

13	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	1	3	5	7	9	11
3	3	6	9	12	2	5	8	11	1	4	7	10
4	4	8	12	3	7	11	2	6	10	1	5	9
5	5	10	2	7	12	4	9	1	6	11	3	8
6	6	12	5	11	4	10	3	9	2	8	1	7
7	7	1	8	2	9	3	10	4	11	5	12	6
8	8	3	11	6	1	9	4	12	7	2	10	5
9	9	5	1	10	6	2	11	7	3	12	8	4
10	10	7	4	1	11	8	5	2	12	9	6	3
11	11	9	7	5	3	1	12	10	8	6	4	2
12	12	11	10	9	8	7	6	5	4	3	2	1

b. Find the inverses mod ${\it p}$ for all numbers k \in $Z_p:$ {1, 2, ..., p-1}

N	INV
1	1
2	7
3	9
4	10
5	8
6	11
7	2
8	5
9	3
10	4
11	6
12	12

c. Validate Fermat: $5^{p-1} \equiv 1 \ mod \ p$ (using arithmetic of 2.1)

if p = 17 then,
$$5^{p-1} = 5^{12}$$

$$5^{12} \equiv 1 \mod 13$$

$$5^{12} \equiv 5^2 \times 5^2 \times 5^2 \times 5^2 \times 5^2 \times 5^2 \mod 13$$

$$\equiv$$
 (-1) x (-1) x (-1) x (-1) x (-1) x (-1) mod 13

$$\equiv 1 \mod 13$$

d. Validate Wilson: (p-1)! $\equiv -1 \mod p$

$$(12)! \equiv -1 \mod 13$$

 $(12)! \equiv 12 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \mod 13$

$$\equiv (2^2 \times 3^1) \times 11 \times (5^1 \times 2^1) \times (3^2) \times (2^3) \times (7^1) \times (3^1 \times 2^1) \times (5^1) \times (2^2) \times (3^1) \times (2^1) \mod 13$$

$$\equiv 2^{10} \times 3^5 \times 5^2 \times 11 \times 7 \mod 13$$

$$\equiv 2^{10} \times 3^5 \times 5^2 \times 12 \mod 13$$

$$\equiv 2^{12} \times 3^6 \times 5^2 \mod 13$$

$$\equiv 2^4 \times 2^4 \times 2^4 \times 3^6 \times 5^2 \mod 13$$

$$\equiv 3 \times 3 \times 3 \times 3^6 \times 5^2 \mod 13$$

$$\equiv 3^3 \times 3^3 \times 3^3 \times 5^2 \mod 13$$

$$\equiv 1 \times 1 \times 1 \times (-1) \mod 13$$

$$\equiv$$
 -1 mod 13

Hence, it is correct.

e. Check that
$$\left(\frac{p}{5}\right) \equiv 0 \ mod \ p$$

$$(13!) \ / \ (5! \times 8!) \equiv 0 \ mod \ 13$$

$$(13!) \ / \ (5! \times 8!) \equiv (13!) \ / \ (5! \times 8!) \ mod \ 13$$

$$\equiv 13 \times 12! \ / \ (5! \times 8!) \ mod \ 13$$

$$\equiv (13 \times -1) \ / \ (5! \times 8!) \ mod \ 13 \ (12! \ Mod \ 13 = 0, \ from \ previous \ question)$$

$$\equiv (13 \times -1) \ / \ (5 \times 2^3 \times 3) \times (2^7 \times 7 \times 3^2 \times 5)) \ mod \ 13$$

$$\equiv (13 \times -1) \ / \ (5^2 \times 2^{10} \times 3^3 \times 7) \ mod \ 13$$

$$\equiv (13 \times -1 \times 8^2 \times 7^{10} \times 9^3 \times 2) \ mod \ 13$$

$$\equiv (13 \times -1 \times 2^7 \times 3^9 \times 7^{10}) \ mod \ 13$$

$$\equiv (13 \times -1 \times 3^6 \times 2^3 \times -1) \ mod \ 13$$

$$\equiv (13 \times -1 \times 1 \times 1 \times 1 \times -1 \times 8) \ mod \ 13$$

$$\equiv (13 \times 8) \ mod \ 13$$

$$\equiv (0 \times 8) \ mod \ 13$$

$$\equiv 0 \ mod \ 13$$

Hence, it is correct.

Homework for Section#2 (Approximate due date Aug 31st , 2020)

- 1. Compute the Euler parameter φ_{3p}
 - a. Generate the multiplication tables mod 3p

Taking
$$p = 7$$

21	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	2	4	6	8	10	12	14	16	18	20	1	3	5	7	9	11	13	15	17	19
3	3	6	9	12	15	18	0	3	6	9	12	15	18	0	3	6	9	12	15	18
4	4	8	12	16	20	3	7	11	15	19	2	6	10	14	18	1	5	9	13	17
5	5	10	15	20	4	9	14	19	3	8	13	18	2	7	12	17	1	6	11	16
6	6	12	18	3	9	15	0	6	12	18	3	9	15	0	6	12	18	3	9	15
7	7	14	0	7	14	0	7	14	0	7	14	0	7	14	0	7	14	0	7	14
8	8	16	3	11	19	6	14	1	9	17	4	12	20	7	15	2	10	18	5	13
9	9	18	6	15	3	12	0	9	18	6	15	3	12	0	9	18	6	15	3	12
10	10	20	9	19	8	18	7	17	6	16	5	15	4	14	3	13	2	12	1	11
11	11	1	12	2	13	3	14	4	15	5	16	6	17	7	18	8	19	9	20	10
12	12	3	15	6	18	9	0	12	3	15	6	18	9	0	12	3	15	6	18	9
13	13	5	18	10	2	15	7	20	12	4	17	9	1	14	6	19	11	3	16	8
14	14	7	0	14	7	0	14	7	0	14	7	0	14	7	0	14	7	0	14	7
15	15	9	3	18	12	6	0	15	9	3	18	12	6	0	15	9	3	18	12	6
16	16	11	6	1	17	12	7	2	18	13	8	3	19	14	9	4	20	15	10	5
17	17	13	9	5	1	18	14	10	6	2	19	15	11	7	3	20	16	12	8	4
18	18	15	12	9	6	3	0	18	15	12	9	6	3	0	18	15	12	9	6	3
19	19	17	15	13	11	9	7	5	3	1	20	18	16	14	12	10	8	6	4	2
20	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

b. Find the inverses all numbers $\mathbf{k} \in {z'}_{3p}: \{a_1, \, a_2, \, ..., \, a_{\varphi_{3p}}\}$

N	INV
1	1
2	11
4	16
5	17
8	8
10	19
11	2
13	13
16	4
17	5
19	10
20	20

c. Verify Euler:
$$11^{\phi_{3p}} \equiv 1 \mod 3p$$

Here,
$$\phi_{3p} = \phi_{3x7} = \phi_{21} = (3-1)(7-1) = 2 \times 6 = 12$$

So,
$$11^{\phi_{3p}} \equiv 1 \mod 3p$$

$$\equiv 11^{12} \, \text{mod } 21$$

$$\equiv 11^2 \times 11^2 \times 11^2 \times 11^2 \times 11^2 \times 11^2 \mod 21$$

$$\equiv 1 \times 1 \times 1 \times 1 \times 1 \times 1 \mod 21$$

$$\equiv$$
 1 mod 12

Hence, it is correct.

d. Check:
$$(3p-1)! \equiv 0 \mod 3p$$

$$(3p-1)! \equiv (21 - 1)! \mod 21$$

 \equiv 20! mod 12

 \equiv 20 x 19 x 18 x 17 x 16 x 15 x 14 x 13 x 12 x 11 x 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 mod 21

 \equiv (3 x 7) x 20 x 19 x 18 x 17 x 16 x 15 x 14 x 13 x 12 x 11 x 10 x 9 x 8 x 6 x 5 x 4 x 2 x 1 mod 21

 \equiv 21 x 20 x 19 x 18 x 17 x 16 x 15 x 14 x 13 x 12 x 11 x 10 x 9 x 8 x 6 x 5 x 4 x 2 x 1 mod 21

 \equiv 0 x 20 x 19 x 18 x 17 x 16 x 15 x 14 x 13 x 12 x 11 x 10 x 9 x 8 x 6 x 5 x 4 x 2 x 1 mod 21

 $\equiv 0 \mod 21$

Hence, it is correct.

e. Check
$$(3p-1)! - (p-1)! \equiv 1 \mod 3p$$

Here,
$$p = 7$$
, $3p = 21$

$$(3p-1)! - (p-1)! \equiv (21-1)! - (7-1)! \mod 21$$

 $\equiv 20! - 6! \mod 21$

 $\equiv 0 - 6! \mod 21$

 \equiv -(6 x 5 x 4 x 3 x 2 x 1) mod 21

 \equiv -(3 x 2 x 5 x 2 x 2 x 3 x 2 x 1) mod 21

 \equiv -(3² x 2⁴ x 5) mod 21

 \equiv -(45 x 2⁴) mod 21

 \equiv -(3 x 2⁴) mod 21

 \equiv -(6) mod 21

≡ 15 mod 21

Hence, it is incorrect.