COURSE 1

Groups, rings and fields

Definition 1. By a binary operation on a set A we understand a map

$$\varphi:A\times A\to A\,.$$

Since all the operations considered in this section are binary operations, we briefly call them **operations**. Usually, we denote operations by symbols like *, \cdot , +, and the image of an arbitrary pair $(x,y) \in A \times A$ is denoted by x * y, $x \cdot y$ (multiplicative notation), x + y (additive notation), respectively.

Examples 2. a) The usual addition and multiplication are operations on \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , but not on the set of irrational numbers.

- b) The usual subtraction is an operation on $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} , but not on \mathbb{N} .
- c) The usual division is an operation on $\mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$, but not on $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{N}, \mathbb{Z}, \mathbb{N}^*$ or \mathbb{Z}^* .

Definitions 3. Let * be an operation on A. We say that:

i) * is associative if

$$(a_1 * a_2) * a_3 = a_1 * (a_2 * a_3), \forall a_1, a_2, a_3 \in A;$$

ii) * is commutative if

$$a_1 * a_2 = a_2 * a_1, \ \forall a_1, a_2 \in A.$$

iii) $e \in A$ is an **identity element** for * if

$$a * e = e * a = a, \forall a \in A.$$

When using the multiplicative or additive notation, an identity element e is usually denoted by 1 or 0, respectively.

Definition 4. Let A be set and let \cdot be an operation with an identity element 1. An element $a \in A$ has an inverse if there exists an element $a' \in A$ such that

$$a \cdot a' = a' \cdot a = e$$
.

We say that a' is an **inverse** for a.

When using the multiplicative notation, the inverse of a is denoted by a^{-1} . When using the or additive notation the inverse of a is denoted by -a, and it is called **the opposite of** a.

Definitions 5. A pair (A, *) is called **monoid** if * is associative and it has an **identity element**. A monoid with a commutative operation is called **commutative monoid**.

Definition 6. A pair (A, \cdot) is called **group** if it is a monoid in which every element has an inverse. If the operation is commutative as well, the structure is called **commutative** or **Abelian group**.

Examples 7. a) $(\mathbb{N}, +)$ and (\mathbb{Z}, \cdot) are commutative monoids, but they are not groups.

- b) (\mathbb{Q},\cdot) , (\mathbb{R},\cdot) , (\mathbb{C},\cdot) are commutative monoids, but they are not groups since 0 has no inverse.
- c) $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$, (\mathbb{Q}^*,\cdot) , (\mathbb{R}^*,\cdot) , (\mathbb{C}^*,\cdot) are Abelian groups.

Remark 8. The group definition can be rewritten: (A, \cdot) is a **group** if and only if it follows the following conditions:

- (i) $(a_1 \cdot a_2) \cdot a_3 = a_1 \cdot (a_2 \cdot a_3), \ \forall a_1, a_2, a_3 \in A \ (\cdot \text{ is associative});$
- (ii) $\exists 1 \in A, \ \forall a \in A : \ a \cdot 1 = 1 \cdot a = a$ (there exists an identity element for \cdot);
- (iii) $\forall a \in A, \exists a^{-1} \in A : a \cdot a^{-1} = a^{-1} \cdot a = 1$ (all the elements of A have inverses).

Definitions 9. Let φ be an operation on the set A and $B \subseteq A$. We say that B is closed under φ if

$$b_1, b_2 \in B \Rightarrow \varphi(b_1, b_2) \in B$$
.

If B is closed under φ , one can define an operation on B as follows:

$$\varphi': B \times B \to B, \ \varphi'(b_1, b_2) = \varphi(b_1, b_2).$$

We call φ' the **operation induced** by φ on B or, briefly, the **induced operation**. Most of the time, we denote it also by φ .

Remarks 10. a) Let φ be an operation on the set $A, B \subseteq A$ closed under φ and let φ' be the induced operation on B. If φ is associative or commutative, then φ' is associative or commutative, respectively.

b) Let φ_1 and φ_2 be operations on A, let $B \subseteq A$ be closed under φ_1 and φ_2 , and let φ'_1 and φ'_2 be the operations induced by φ_1 and φ_2 on B, respectively. If φ_1 is distributive with respect to φ_2 , i.e.

$$\varphi_1(a_1, \varphi_2(a_2, a_3)) = \varphi_2(\varphi_1(a_1, a_2), \varphi_1(a_1, a_3)), \forall a_1, a_2, a_3 \in A,$$

then φ'_1 is distributive with respect to φ'_2 .

c) The existence of an identity element is not always preserved by induced operations. For instance, \mathbb{N}^* is closed in $(\mathbb{N}, +)$, but $(\mathbb{N}^*, +)$ has no identity element.

Definition 11. Let (G,\cdot) be a group. A subset $H\subseteq G$ is called a subgroup of G if:

i) H is closed under the operation of (G, \cdot) , that is,

$$\forall x, y \in H, \quad x \cdot y \in H;$$

ii) H is a group with respect to the induced operation.

Examples 12. a) \mathbb{Z} , \mathbb{Q} , \mathbb{R} are subgroups of $(\mathbb{C}, +)$, \mathbb{Z} , \mathbb{Q} are subgroups of $(\mathbb{R}, +)$ and \mathbb{Z} is a subgroup of $(\mathbb{Q}, +)$.

- b) \mathbb{Q}^* , \mathbb{R}^* are subgroups of (\mathbb{C}^*,\cdot) and \mathbb{Q}^* is a subgroup of (\mathbb{R}^*,\cdot) .
- c) \mathbb{N} is closed in $(\mathbb{Z}, +)$, but it is not a subgroup.
- d) Every non-trivial group (G, \cdot) has two subgroups, namely $\{1\}$ and G. Any other subgroup of (G, \cdot) is called **proper subgroup**.

Definition 13. Let (G, *), (G', \bot) be two groups. A map $f : G \to G'$ is called **homomorphism** (or **morphism**) if

$$f(x_1 * x_2) = f(x_1) \perp f(x_2), \ \forall \ x_1, x_2 \in G.$$

A bijective homomorphism is called **isomorphism**. A homomorphism of (G, *) into itself is called **endomorphism** of (G, *). An isomorphism al lui (G, *) into itself is called **automorphism** of (G, *). If there exists an isomorphism $f: G \to G$, we say that the groups (G, *) and (G', \bot) are isomorphic and we denote this by $G \simeq G'$ or $(G, *) \simeq (G', \bot)$.

Let us come back to the multiplicative notation.

Theorem 14. Let (G, \cdot) and (G', \cdot) be groups, and let 1 and 1', respectively, be the identity element of (G, \cdot) and (G', \cdot) , respectively. If $f: G \to G'$ is a group homomorphism, then:

- (i) f(1) = 1';
- (ii) $[f(x)]^{-1} = f(x^{-1}), \forall x \in G.$

Proof.

Definition 15. Let R be a set. A structure $(R, +, \cdot)$ with two operations is called:

(1) **ring** if (R, +) is an Abelian group, \cdot is associative and the distributive laws hold (that is, \cdot is distributive with respect to +).

(2) unitary ring if $(R, +, \cdot)$ is a ring and there exists a multiplicative identity element.

Definition 16. Let $(R, +, \cdot)$ be e unital ring. An element $x \in R$ which has an inverse $x^{-1} \in R$ is called **unit**. The ring $(R, +, \cdot)$ is called **division ring** if it is a unitary ring, $|R| \ge 2$ and any $x \in R^*$ is a unit. A commutative division ring is called **field**.

Definition 17. Let $(R, +, \cdot)$ be a ring. An element $x \in R^*$ is called **zero divisor** if there exists $y \in R^*$ such that

$$x \cdot y = 0$$
 or $y \cdot x = 0$.

We say that R is an **integral domain** if $R \neq \{0\}$, R is unitary, commutative and has no zero divisors.

Remarks 18. (1) Notice that $x \in R^*$ is not a zero divisor iff

$$y \in R$$
, $x \cdot y = 0$ or $y \cdot x = 0 \implies y = 0$.

(2) A ring R has no zero divisors if and only if

$$x, y \in R$$
, $x \cdot y = 0 \Rightarrow x = 0$ or $y = 0$.

- (3) $(R, +, \cdot)$ is a division ring if and only if it satisfies the following conditions:
 - i) (R, +) is an Abelian group;
 - ii) R^* is closed in (R, \cdot) and (R^*, \cdot) is a group;
 - iii) \cdot is distributive with respect to +.
- (4) The fields have no zero divisors. Moreover, every field is an integral domain.

Examples 19. (a) $(\mathbb{Z}, +, \cdot)$ is an integral domain, but it is not a field. Its units are -1 and 1.

- (b) $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, $(\mathbb{C}, +, \cdot)$ are fields.
- (c) Let $\{0\}$ be a single element set and let both + and \cdot be the only operation on $\{0\}$, defined by 0+0=0 and $0\cdot 0=0$. Then $(\{0\},+,\cdot)$ is a commutative unitary ring, called the **trivial ring** (or **zero ring**). The multiplicative identity element is, of course, 0, hence we can write 1=0. As matter of fact, this equality characterize the trivial ring.