

Agenda

- Introduction to benchmarking and profiling
- Profiling metrics and tools O/S level
- JVM primer
- Profiling metrics and tools JVM level
- JVM Benchmarking
 - pitfalls
 - · JMH

Benchmarking vs profiling

- Benchmarking
 - · measuring different solutions to the same problem, e.g. sorting
- Profiling
 - runtime program analysis that yields execution information, e.g.
 - frequency and duration of particular function calls
 - memory allocation rate
- Usually go hand in hand
 - benchmark -> profile -> make a change -> benchmark

Performance analysis - why

- expectations vs reality
- new client requirements
 - SLAs to meet, e.g. 10k ops/s
 - new features
- marketing
- gathering knowledge to make conscious decisions
- The First Rule of Program Optimization: *Don't do it.* The Second Rule of Program Optimization (for experts only!): *Don't do it yet*
 - prefer readability to complicated but more performant code in MOST of the cases
 - optimize hotspots and bottlenecks
- fun & profit

Latency numbers every programmer should know

Benchmarks amplify all the effects visible at the same scale

```
• kilo: > 1000 s, Linpack
```

- ____: 1...1000 s, SPECjvm2008, SPECjbb2013
- milli: 1...1000 ms, SPECjvm98, SPECjbb2005 not really hard
- micro: 1...1000 us, single webapp request challenging
- nano: 1...1000 ns, single operations damned beasts
- pico: 1...1000 ps, pipelining

Optimization quiz

Empty benchmark, system reports 4 online CPUs

Threads	Ops/nsec	Scale				
1	3.06 ± 0.10					
2	5.72 ± 0.10	1.87 ± 0.03				
4	5.87 ± 0.02	1.91 ± 0.03				

Software is *abstract* hardware is **real**

O/S level

http://www.brendangregg.com/Perf/linuxperftools.png

O/S level (Linux)

- top/htop/ps
 - overall state of the system:
 - list of processes and threads
 - cpu usage
 - memory/swap usage
 - ...
- vmstat
 - overall state of the system:
 - memory/swap usage
 - basic i/o information
 - interrupts/context switches
 - cpu usage system, user, idle, waiting for I/O,

pro	CS		mem	ory		SW	ар	io		-sys	tem	S.T. 73		-cpi	J	
100000000000000000000000000000000000000		swpd		The second secon			The state of the s									
3	0	3	1257	137	1390	Θ	0	Θ	0	906	2064	6	1	94	Θ	Θ
1	Θ	3	1257	137	1390	Θ	0	Θ	Θ	1074	2537	3	1	96	Θ	0

vmstat -S m

- r processes waiting for run time
- b processes blocked, waiting on resources
- swpd swapped memory
- free free memory
- buff/cache memory used as buffers/cache
- si/so swap in/swap out in pages
- bi/bo blocks received/sent from/to block device
- in interrupts
- cs context switches
- us/sy/id/wa/st CPU time

O/S level (Linux)

- iostat/iotop
 - I/O requests per second
 - I/O requests completed
 - average size of the requests
 - average wait time of requests to be completed (queue + service)
 - ...
- pidstat
 - various statistics for linux tasks
 - I/O, page faults and memory utilization, context switches
- nload/iftop
 - networking statistics

Total DISK READ : Actual DISK READ:	0.00 B/s Total DIS 0.00 B/s Actual DI		2.46 M/s 0.00 B/s
TID PRIO USER			COMMAND
4168 be/4 cassandr	0.00 B/s 143.61 K/s	0.00 % 0.24 %	java -ea -javaagent:/usr/share/cassandra/l
3973 be/4 cassandr	0.00 B/s 191.48 K/s	0.00 % 0.17 %	java -ea -javaagent:/usr/share/cassandra/l
5859 be/4 cassandr	0.00 B/s 62.60 K/s	0.00 % 0.09 %	java -ea -javaagent:/usr/share/cassandra/l
3972 be/4 cassandr	0.00 B/s 228.31 K/s	0.00 % 0.04 %	java -ea -javaagent:/usr/share/cassandra/l
3970 be/4 cassandr	0.00 B/s 301.96 K/s	0.00 % 0.00 %	java -ea -javaagent:/usr/share/cassandra/l
4165 be/4 cassandr	0.00 B/s 228.31 K/s	0.00 % 0.00 %	java -ea -javaagent:/usr/share/cassandra/l
4166 be/4 cassandr	0.00 B/s 180.44 K/s	0.00 % 0.00 %	java -ea -javaagent:/usr/share/cassandra/l
4167 be/4 cassandr	0.00 B/s 235.67 K/s	0.00 % 0.00 %	java -ea -javaagent:/usr/share/cassandra/l
5778 be/4 adebski	0.00 B/s 29.46 K/s	0.00 % 0.00 %	java -XX:+PrintGCDetails -Xloggc:gc-145997
5779 be/4 adebski	0.00 B/s 33.14 K/s	0.00 % 0.00 %	java -XX:+PrintGCDetails -Xloggc:gc-145997
5780 be/4 adebski	0.00 B/s 29.46 K/s	0.00 % 0.00 %	java -XX:+PrintGCDetails -Xloggc:gc-145997
5791 be/4 adebski	0.00 B/s 29.46 K/s	0.00 % 0.00 %	java -XX:+PrintGCDetails -Xloggc:gc-145997
5703 ho/A adoheki	A AA R/c 7 36 K/c	A AA % A AA %	iava .YY. PrintGCDetails .Ylongc.gc.145007

- iotop --only
 - SWAPIN percentage of time the thread spent while swapping in
 - · IO percentage of time the thread spent while waiting on I/O

Perf events - Linux

- lightweight profiling solution for Linux systems
- included in the kernel
- based on notion of events
 - cache misses
 - branch mispredictions
 - page faults
 - context switches
 - cpu time
 - system calls
 - ...
- disadvantage: hard to find documentation for specific events

Flamegraphs

- http://www.brendangregg.com/flamegraphs.html
- a way to visualize profiling data, not tied to perf tool
- perf record + perf script + perl script = svg image
- problem: for stacktraces to be readable requires debug symbols
- what about languages that run in VMs:
 - java https://bugs.openjdk.java.net/browse/JDK-8068945
 - ruby
 - javascript
 - ...

JVM internals - primer

JIT compiler

http://www.cs.sit.kmutt.ac.th/blog/?p=403

JIT compiler

- introduced to Sun JVM around java 1.2/1.3
- almost no optimizations during initial compilation (javac), generated bytecode mostly reflects .java code
- at the beginning bytecode is interpreted, only hot methods are compiled to native code
- advantages:
 - runtime information can lead to interesting optimizations, e.g. inlining virtual method call because only single class with given interface is currently loaded, removing null checks
 - leveraging platform specific optimizations during runtime
 - code written and compiled for java X can benefit from future performance improvements in java X + 1

JIT compiler

- disadvantages
 - initial performance is very low (JVM warmup)
 - compilation and optimization costs
 - unpredictable
 - optimistic assumptions can fail code returns to being interpreted and awaits second JIT compilation

Memory layout

http://www.oracle. com/webfolder/technetwork/tutorials/obe/java/gc01/index.html

Garbage collection

- cheap allocation, paying the price later during GC
- STW (stop the world) pause
- more than single algorithm available
 - single threaded STW
 - multi threaded STW
 - CMS only old generation, "mostly concurrent"
 - G1 both young and old generation, "mostly concurrent"
- many tuning parameters:
 - usually best to use the defaults and rely on JVM runtime analysis
 - using arcane options can lead to very fragile performance
 - single JVM single GC multiple allocation profiles and requirements

Warmup

http://shipilev.net/talks/devoxx-Nov2013-benchmarking.pdf

Profiling metrics and tools - JVM level

Command line tools

- bin directory has 49 executables, some of them are:
 - **jstat** GC and JIT statistics
 - **jstack** stack trace of all threads, deadlock detection
 - **jps** list of java processes, prints JVM options
 - jinfo more detailed information about java process
 - **jmap** heap histogram, heap dump
- available on each system with JDK

Command line options

- GC logs
 - -XX:+PrintGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX: +PrintGCDateStamps -Xloggc:<file>
 - very useful when investigating GC issues
- Peeking under the JIT hood
 - add -XX:+UnlockExperimentalVMOptions just to be on the safe side
 - -XX:+PrintCompilation -XX:+CITime basic information about compilation
 - -XX:+PrintInlining outputs information what methods were inlined and what weren't and why
 - -XX:+PrintAssembly shows what assembly code was generated by the JIT compiler

Profilers - VisualVM

- bundled with JDK, free of charge
- CPU information
- detailed memory information with VisualGC
- sampling (CPU/memory)
- profiling (CPU/memory)
- JMX browser
- thread information
- with a little effort can be used with remote JVMs

Profilers - Oracle Mission Control

- Everything available in VisualVM and more
- Free for development, have to pay when used in production
- Very low overhead (according to the Oracle) due to using internal and undocumented APIs
- Available since JDK 7u40

Eclipse memory analyzer

- analyzes full heap dump that can be obtained using jmap tool
- it can be used to obtain information like:
 - finding biggest objects on the heap
 - learning why specific objects are not removed by GC (GC roots)
 - listing dominating objects on the heap
- allows to inspect field values of specific objects
- may require significant memory during first pass through the heap dump but subsequent openings will be a lot faster

Microbenchmarking

What?

Micro + benchmark

performance measurement of a **very small** piece of code, something that might take µs or ns to run

How?

Java Microbenchmarking Harness

- benchmark code generation, driven by annotations.
- generated classes and all their dependencies get packaged in an all-in-one runnable jar
- benchmark runner supporting single threaded, multi-threaded and thread groups
- pluggable profilers
- multi-language support
- reporting formats JSON, CSV, etc.

JMH examples

```
package jmh
import org.openjdk.jmh.annotations._
  * @author nuk
@Warmup(iterations = 5)
@Measurement(iterations = 20)
@Fork(1)
@Threads(8)
class HelloWorld {
  @Benchmark
  def yo(): Unit = {
    // this method was intentionally left blank.
```


JMH examples

```
@Benchmark
@OperationsPerInvocation(OpBatch)
def setAddAndRemove(bh: Blackhole, state: BenchmarkState): Unit = {
  import state.manager.executor
  val strings = (1 to OpBatch).map(_ => nextString())
  val f1 = strings.map(state.set.add(_))
  val f2 = strings.map(state.set.remove(_))
  bh.consume(Await.result(Future.sequence(f1), timeout))
  bh.consume(Await.result(Future.sequence(f2), timeout))
```

JMH examples

```
@State(Scope.Benchmark)
class BenchmarkState {
 val manager = new WorManager(
   new Config("127.0.0.1", 6379, 1, "jmh"),
   new ActorSystemProvider {lazy val system = ActorSystem("WorOpBenchmark")}
 var wor: Wor = _
 var value: WorValue = _
 var log: WorHyperLogLog = _
 @Setup(Level.Iteration)
 def setup(): Unit = {
   Await.result(manager.executor.flushdb(), timeout)
   import manager.executor
   wor = Await.result(manager.getOrCreateWor("values"), timeout)
       wor.createValue("value", "1").map(value = _),
       wor.createSet("set", "a").map(set = _),
       wor.createHyperLogLog("log", "a").map(log = _);
       wor.createList("list", "a").map(list = _)
 @TearDown(Level.Iteration)
   Await.result(manager.executor.flushdb(), timeout)
 @TearDown
 def shutdown(): Unit = {
   manager.system.terminate()
   Await.result(manager.system.whenTerminated, timeout)
```


Result analysis

- Simple charts for JMH benchmarks http://nilskp.github. io/jmh-charts/
- GUI for comparing JMH results
 https://github.com/akarnokd/jmh-compare-gui

Java vs Scala

divided we fail

Resources

- GC
 - https://plumbr.eu/java-garbage-collection-handbook
 - http://mechanical-sympathy.blogspot.com/2013/07/java-garbage-collection-distilled.html
- Tools
 - https://github.com/AdoptOpenJDK/jitwatch
 - https://github.com/giltene/jHiccup
 - https://github.com/chewiebug/GCViewer
 - http://gceasy.io/
- Microbenchmarking
 - Nanotrusting the Nanotime
 - Scala JMH Samples
 - <u>Java JMH Samples</u>
 - https://www.youtube.com/watch?v=VaWgOCDBxYw
- Performance analysis
 - https://www.youtube.com/watch?v=dqg0R3gYGac
 - https://www.youtube.com/watch?v=nZfNehCzGdw
 - http://shipilev.net/
 - http://mechanical-sympathy.blogspot.com/

Conclusions

- intuition is almost always wrong (unless you rock)
- never trust anything (unless checked before... and after)
- challenge everything (especially these slides)
- embrace failure (especially your failures)
- grind your teeth, and redo the tests (especially yours)

