2 Liouville's theorem: If is a bounded entire function, then f is constant. Proof: By lauchy's estimate, $|f(t)| \leq 1$. My bound on |f| for any R,

So |f(t)| = 0 = 7 is constant.

Fundamental, theorem of algebra: |f| p(t) is a non-constant polynomial, then (f) = 0. Proof: Suppose that $p(z) \neq 0$ for all $z \in C$. Then [p(z)] is entire. But $[\rho(z)]^{-1}$ is bounded (why?), so $\rho(z) = constant$ Corollary: $\exists f \rho(z)$ is a polynomial of degree n,

then $\rho(z) = c(z-a_1)$, $(z-a_m)^n$, $w \mid K_1 t_1 ... + K_m = n$ By above given a non-constant polynomial p(z) & be (f(z) + p(a) = b. This idea has limitations. For example, e=0 never holds! What is going on?

Theorem: Let 6 be a connected subset (open) and let S: 6→C Be an analytic function. TFAE a) $\{ = 0 \ 6 \} \exists a \in 6 \exists f^{(n)}(a) = 0 \ \forall n \geq 0$ c) $\{ \neq \in 6 : f(\neq) = 0 \} \text{ has a limit point in 6.}$ Proof: a = 76, a = 76 ©

Suppose that $c \in R$ holds. Let $a \in G$ limit point of $g \in R$ $g \in G$ $g \in R$ $g \in G$ $g \in R$ $g \in R$ Since f is continuous, f(a)=0. Suppose that there is an integer $f(a)=f(a)=\dots=f(a)=0$ g

We have $f(\xi)=\sum_{k=0}^{\infty}q_k(\xi-a)^k$ for $|\xi-a|< R$ Let $g(\xi)=\sum_{k=0}^{\infty}q_k(\xi-a)^k=0$ g analytic in $g(\xi)=\sum_{k=0}^{\infty}q_k(\xi-a)^k=0$ $\beta(a,R),$ $\beta(z) = (z-a) g(z),$ $\alpha_n = g(a) \neq 0$ By continuity, \exists $O \angle P \angle R \Rightarrow g(\xi) \neq O$ in B(a, r).

But ... since a is a limit point of Z, \exists b w/g(b)=O and $|a-b| \angle P = > O = (b-a)g(b) = > g(b) = O$!

Contradiction! Therefore c)=76).

Let's now assume b). Let $A = \begin{cases} 2e6 : f^{(n)}(z) = 0 \text{ Vn} \end{cases}$ A is closed by continuity.

Now suppose that $a \in A$? $B(a,R) \subset G$, Then $f(z) = \sum_{i=1}^{n} a_i(z-a)^i$ $i = a \mid \angle R$ $a_i = -\frac{1}{2} f^{(n)}(a) = 0$ $\forall n \geq 0$ $= 7 \beta(e) = 0 \quad \forall e \in \beta(a,R)$ $= 7 \beta(a,R) \subset A$ We conclude that A = G of the proof is complete.

Corollary: If $f \circ g$ are analytic on a region G, then f = g iff $\begin{cases} z \circ G : g(z) = g(z) \end{cases}$ has a limit point in G.

Corollary: If f is analytic on G open, $f \not\equiv 0$, then for each $f \circ G$ of $f(a) \not\equiv 0$, $f \circ G$ open, $f \not\equiv 0$, then for each $f \circ G$ of $f(a) \not\equiv 0$, $f \circ G$ open, $f \not\equiv 0$, then for each $f \circ G$ of $f(a) \not\equiv 0$, $f(a) \not\equiv 0$, $f(a) \not\equiv 0$.

Oroof: Let $f \circ G$ be the largest integer $f \circ G$ f(a) = 0, $f(a) \not\equiv 0$.

Oroof: $f \circ G$ of $f(a) \not\equiv 0$, $f(a) \not\equiv 0$, $f(a) \not\equiv 0$, $f(a) \not\equiv 0$. Then q is analytic in $6-\{a\}$. To see that q is analytic in the neighborhood of a, sust use the proof f(c)=76) above.

$$g'(t) = \chi'(t) \qquad 0 \le t \le 1$$

$$\chi(t) = \chi'(t) \qquad 0 \le t \le 1$$

$$Then \quad d = g(x-a) = e^{-g} \chi' - g'e^{-g}(x-a)$$

$$= e^{-g}(\chi' - \chi'(x-a)^{-1}(x-a))$$

$$= 0 = \sum e^{-g}(\chi' - a) = const.$$

$$= g(a)(\chi(a) - a) = \chi(a) - a = e^{-g(a)}(\chi(a) - a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = g(a) = 2\pi i \chi$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a)$$

$$= \sum e^{-g(a)}(\chi(a) - a) = 2\pi i \chi(a)$$

$$= \sum e^{-g(a)}(\chi(a) - a)$$

$$= \sum e^{-g(a)}(\chi($$