# Online Appendix Polling Place Location and the Costs of Voting

Gaurav Bagwe Georgetown University Juan Margitic Georgetown University

Allison Stashko University of Utah

July 5, 2022

## Contents

| A            | Data Appendix                           | 3  |
|--------------|-----------------------------------------|----|
| В            | Robustness Checks                       | 4  |
| $\mathbf{C}$ | Heterogeneous Effects                   | 8  |
| D            | Nonlinear Effects                       | 11 |
| ${f E}$      | Optimal Polling Places: Logit Estimates | 12 |
| $\mathbf{F}$ | Optimal Polling Places: Model Details   | 13 |

## A Data Appendix

Table A.1: Variable Definitions, Units of Observation, and Data Sources

| Variable                        | Definition                                                                 | Unit of Observation | Source                |
|---------------------------------|----------------------------------------------------------------------------|---------------------|-----------------------|
| Turnout                         | Votes per voting age population                                            | Block               | PA Secretary of State |
| Distance to<br>Polling Place    | Miles from block interior centroid to polling place                        | Block               | Computed value        |
| Race, Ethnicity,<br>Gender, Age | Percent of population in demographic group                                 | Block               | 2010 Census           |
| Car Ownership                   | Number of cars<br>per housing units                                        | Block-group         | 2006-2010 ACS         |
| Way to Work                     | Percent of workers<br>16 and older using mode<br>of transportation to work | Block-group         | 2006-2010 ACS         |
| Time to Work                    | Time to work among<br>workers 16 and older<br>who do not work from home    | Block-group         | 2006-2010 ACS         |
| Median Income                   | Median household income for the past 12 months                             | Block-group         | 2006-2010 ACS         |
| Home Ownership                  | Percent of households owning home                                          | Block-group         | 2006-2010 ACS         |
| Education                       | Percent of population<br>older than 25 belonging<br>to education group     | Block-group         | 2006-2010 ACS         |

### B Robustness Checks

Figure B.1: Individual-level Border Fixed Effects estimates: Vary maximum distance to polling place, Pennsylvania



Figure B.2: Individual-level Border Fixed Effects estimates: Vary maximum distance to polling place, Georgia



Figure B.3: Individual-level Border Fixed Effects estimates: Vary maximum distance to border segment, Pennsylvania



Figure B.4: Individual-level Border Fixed Effects estimates: Vary maximum distance to border segment, Georgia



#### C Heterogeneous Effects



Figure C.1: Heterogeneous Effects – Poverty Rate

Note: This figure shows the marginal effect of distance to polling place on turnout at polls, turnout by absentee ballot, and total turnout at different levels of the moderating variable – poverty rate. The solid line plots the estimated marginal effect from the linear interaction model. The gray area shows the 95% confidence interval. The black circles and vertical lines represent the binning estimates and 95% confidence intervals. A histogram of the moderating variable is shown along the x-axis in gray. All regressions include border fixed effects and the following controls: percent registered Democrat, percent registered Republican, percent age 30-49, percent age 50-64, percent age 65 and up, percent female, population, voting age population, percent Black, percent Hispanic, median household income, percent without a high school diploma, percent that walk to work, percent with commute time less than 5 minutes, and percent with commute greater than 60 minutes.





Note: This figure shows the marginal effect of distance to polling place on turnout at polls, turnout by absentee ballot, and total turnout at different levels of the moderating variable – percent of workers who travel to work with a car. The solid line plots the estimated marginal effect from the linear interaction model. The gray area shows the 95% confidence interval. The black circles and vertical lines represent the binning estimates and 95% confidence intervals. A histogram of the moderating variable is shown along the x-axis in gray. All regressions include border fixed effects and the following controls: percent registered Democrat, percent registered Republican, percent age 30-49, percent age 50-64, percent age 65 and up, percent female, population, voting age population, percent Black, percent Hispanic, median household income, percent without a high school diploma, percent that walk to work, percent with commute time less than 5 minutes, and percent with commute greater than 60 minutes.

Figure C.3: Heterogeneous Effects – Transportation by Public Transit



Note: This figure shows the marginal effect of distance to polling place on turnout at polls, turnout by absentee ballot, and total turnout at different levels of the moderating variable – percent of workers who travel to work with public transportation. The solid line plots the estimated marginal effect from the linear interaction model. The gray area shows the 95% confidence interval. The black circles and vertical lines represent the binning estimates and 95% confidence intervals. A histogram of the moderating variable is shown along the x-axis in gray. All regressions include border fixed effects and the following controls: percent registered Democrat, percent registered Republican, percent age 30-49, percent age 50-64, percent age 65 and up, percent female, population, voting age population, percent Black, percent Hispanic, median household income, percent without a high school diploma, percent that walk to work, percent with commute time less than 5 minutes, and percent with commute greater than 60 minutes.

#### D Nonlinear Effects

We estimate the following specification to isolate the effect of distance to polling place across different intervals:

$$vote_i = \delta_{s(i)} + \gamma D_i + \beta D_i \cdot dist_i + \rho \mathcal{P}_i + \iota \mathcal{X}_b(i) + \epsilon_i$$
 (D.1)

The variable  $D_i$  refers to a vector of indicator variables that take value 1 when the average distance to polling place in block i is within a particular range of miles and 0 otherwise. The distance ranges are: [0.0,0.5), [0.5,1), [1,2), [2,3), and [3,10]. We report in Figure D.1 the vector of coefficients,  $\beta$  for general elections. These coefficients can be interpreted as the effect of distance to polling place on the likelihood of voting within each distance category.

Figure D.1: The effect of distance to polling place on likelihood of voting in General elections: Nonlinear effects



Note: Distance to polling place is measured in miles. The dependent variables are indicators for whether or not a registered voter has voted at the polling place, through absentee ballot, or through either voting method. All regressions include border fixed effects and additional individual-level and block-level covariates: registered Democrat indicator, registered Republican indicator, population, voting age population, percent Black, percent Hispanic, median household income, percent without a high school diploma, percent that walk to work, and indicators for whether travel time to work is less than 5 minutes or greater than 60 minutes. Standard errors clustered at the border level are reported in parentheses.

## E Optimal Polling Places: Logit Estimates

Table E.1: Logit Estimates: Likelihood of voting

|                       | ` '               | (2)        |  |
|-----------------------|-------------------|------------|--|
|                       | Urban             | Rural      |  |
| Distance (miles)      | -0.033***-0.067** |            |  |
|                       | (0.012)           | (0.020)    |  |
| Democrat              | 0.718**           | * 0.609*** |  |
|                       | (0.006)           | (0.049)    |  |
| Republican            | 0.550**           | * 0.928*** |  |
|                       | (0.008)           | (0.046)    |  |
| Age 30-49             | 0.356**           | * 0.859*** |  |
|                       | (0.008)           | (0.048)    |  |
| Age 50-64             | 0.976**           | * 1.573*** |  |
|                       | (0.008)           | (0.047)    |  |
| Age 65 and up         | 1.057**           | * 1.750*** |  |
|                       | (0.009)           | (0.053)    |  |
| Population            | 0.001**           | * 0.001    |  |
|                       | (0.000)           | (0.003)    |  |
| Voting Age Population | -0.002**          | ** -0.001  |  |
|                       | (0.000)           | (0.004)    |  |
| N                     | 1624198           | 27476      |  |

### F Optimal Polling Places: Model Details

First order conditions for  $x^p$  and  $y^p$  are:

$$\sum_{i=1}^{N} -\frac{e^{a+f(d_i)} \cdot f'(d_i) + e^{b+c(d_i)} \cdot c'(d_i)}{(1 + e^{a+f(d_i)} + e^{b+c(d_i)})^2} \left(\frac{x_i - x_p}{d_i}\right) = 0$$

$$\sum_{i=1}^{N} -\frac{e^{a+f(d_i)} \cdot f'(d_i) + e^{b+c(d_i)} \cdot c'(d_i)}{(1 + e^{a+f(d_i)} + e^{b+c(d_i)})^2} \left(\frac{y_i - y_p}{d_i}\right) = 0$$

These first order conditions simplify to:

$$\sum_{i=1}^{N} p_0(d_i)[p_1(d_i)f'(d_i) + p_2(d_i)c'(d_i)] \left(\frac{x_i - x_p}{d_i}\right) = 0$$

$$\sum_{i=1}^{N} p_0(d_i)[p_1(d_i)f'(d_i) + p_2(d_i)c'(d_i)] \left(\frac{y_i - y_p}{d_i}\right) = 0$$

The second order sufficient condition for  $x^p$  is:

$$\sum_{i=1}^{N} \left( p'_0(d_i)[p_1(d_i)f'(d_i) + p_2(d_i)c'(d_i)] + p_0(d_i)[p'_1(d_i)f'(d_i) + p_1(d_i)f''(d_i) + p'_2(d_i)c'(d_i) + p_2(d_i)c''(d_i)] \right) \left( \frac{x - x_p}{d_i} \right)^2 - p_0(d_i)[p_1(d_i)f'(d_i) + p_2(d_i)c'(d_i)] \left( \frac{(x - x_p)^2 - d_i^2}{d_i^3} \right) < 0$$

where,

$$p_0'(d_i) = p_0(d_i)[p_1(d_i)f'(d_i) + p_2(d_i)c'(d_i)]\left(\frac{x_i - x_p}{d_i}\right)$$
 (F.1)