16.3: Path Independence, Conservative Fields, Potential Functions

Definitions

Let \vec{F} be a vector field defined on open region D in space.

Suppose that for any two points A and B in D, $\int_C \vec{F} \cdot d\vec{r}$ along path C from A to B is the same over all paths from A to B.

The integral is path independent and the field is conservative on D.

If \vec{F} is a vector field on D and $F = \nabla f$ for some scalar function f on D, f is called a **potential** function for F.

Example

Find a potential function f for $\vec{F} = (y \sin z)\mathbf{i} + (x \sin z)\mathbf{j} + (xy \cos z)\mathbf{k}$.

Let
$$ec{F} = f_x \mathbf{i} + f_y \mathbf{j} + f_z \mathbf{k}$$
.

$$egin{aligned} rac{\partial f}{\partial x} &= y \sin z \ f &= \int y \sin z \, dx = xy \sin z + \overbrace{g(y,z)}^{ ext{remember}} \ rac{\partial f}{\partial y} &= x \sin z + rac{\partial g}{\partial y} \ rac{\partial f}{\partial z} &= xy \cos z + rac{\partial g}{\partial z} \end{aligned}$$

So,

$$x\sin z + rac{\partial g}{\partial y} = x\sin z \Longrightarrow rac{\partial g}{\partial y} = 0$$

 $xy\cos z + rac{\partial g}{\partial z} = xy\cos z \Longrightarrow rac{\partial g}{\partial z} = 0$

Therefore,

$$f(x, y, z) = xy\sin z + C$$

Conservative Fields & Gradient Fields

Theorem

Let $\vec{F} = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ (and M, N, P are continuous throughout open connected region D). F is conservative iff \vec{F} is a gradient field ∇f for a differentiable function f.

Component Test for Conservative Fields

Let $\vec{F} = X(x,y,z)\mathbf{i} + Y(x,y,z)\mathbf{j} + Z(x,y,z)\mathbf{k}$ on open simply connected domain (X,Y,Z) have continuous first partial derivatives).

then \vec{F} is conservative iff:

$$\frac{\partial X}{\partial y} = \frac{\partial Y}{\partial x}$$
$$\frac{\partial X}{\partial z} = \frac{\partial Z}{\partial x}$$
$$\frac{\partial Y}{\partial z} = \frac{\partial Z}{\partial y}$$

If $ec{F}$ is a gradient field for f, then $F =
abla f = f_x \mathbf{i} + f_y \mathbf{j} + f_z \mathbf{k}$.

Then, second mixed partials need to be equivalent ($f_{xy}=f_{yx}, f_{xz}=f_{zx}, f_{yz}=f_{zy}$) for this to be true.

Fundamental Theorem of Line Integrals

Let C be a smooth curve joining points A and B, parametrized by $\vec{r}(t)$. Let f be a differentiable function with continuous gradient vector $\vec{F} = \nabla f$ on domain D containing C.

$$\int_C ec{F} \cdot dec{r} = f(B) - f(A)$$

Loop Property of Conservative Fields

Equivalent statements

- 1. $\oint_C F \cdot d\vec{r} = 0$ around every loop (every closed curve ${\it C}$) in ${\it D}$.
- 2. The field F is conservative on D.

Exactness

Differential form: Expression of the form M(x, y, z) dx + N(x, y, z) dy + P(x, y, z) dz. A differential form is **exact** on domain D if:

$$M\,dx+N\,dy+P\,dz=rac{\partial f}{\partial x}\,dx+rac{\partial f}{\partial y}\,dy+rac{\partial f}{\partial z}\,dz=df$$

for some scalar function f throughout D.

In other words, a differential form is exact iff $\langle M,N,P\rangle=\nabla f$ (iff $\vec{F}=\langle M,N,P\rangle$ is conservative).

#week10