LISTA 3 Solução numérica de equações não-lineares

(As questões sinalizadas com (**) deverão ser entregues até o dia 6 de Outubro)

1. Use o método de bissecção para determinar a raiz da equação

$$\sqrt{x}\sin x - x^3 + 2 = 0$$

no intervalo [1 2] com um erro menor que $\frac{1}{30}$. (Se não quer fazer contas, pode fazer um programa computacional para resolver o problema)

- 2. Considere a equação $e^{-x} = x 1$. Investigue se $g(x) = e^{-x} + 1$ pode ser útil para achar a solução. Ache-a.
- 3. Determine um intervalo e uma função para poder aplicar o método de ponto fixo para equação

$$4 - x - \tan(x) = 0$$

- (a) Determinar o número de iteradas necessarias para que o erro seja menor que 10^{-5} .
- 4. Considere a equação

$$x^3 + 2x^2 + 10x - 20 = 0$$

- (a) Demostre que tem uma única raiz positiva
- (b) Determine um intervalo onde seja possivel aplicar o método de Newton e determine as primeiras 3 iteradas do método.
- (c) Escreva o método Regula-Falsi para esta equação e determine as primeiras 3 iteradas do método.
- 5. Encontre a raiz positiva da função

$$f(x) = \cos(x) - x^2,$$

pelo método de Newton inicializando-o com $x^{(0)} = 1$. Realize a iteração até obter precisão no quinto dígito significativo.

6. (**) Considere a função dada por

$$f(x) = \ln(15 - \ln(x)) - x$$

definida para $x \in (0, e^{15})$.

(a) Demonstre que se $x^{(0)}$ pertence ao intervalo [13], então a sequência dada iterativamente por

$$x^{(n+1)} = \ln(15 - \ln(x^{(n)})), \quad n \geqslant 0$$

converge à raiz x^* de f.

- (b) Determine x^* , com 5 algarismos significativos corretos.
- (c) Construa a iteração do método de Newton-Raphson para encontrar x^* , explicitando a relação de recorrência e iniciando com $x^{(0)} = 2$. Obtenha x^* (expresse a resposta com 8 dígitos significativos corretos).
- 7. Escreva uma função que, tendo como dados de entrada uma função F, a derivada de F e um intervalo $[a\ b]$, utilice o método de Newton para obter aproximações da solução do sistema F(x)=0 neste intervalo e que tenha tambem como saida a aproximação da raiz com uma presição ε .

1

(a) Para cada uma das seguintes equações encontre um intevalo $[a\ b]$ onde seja posivel utilizar o método de Newton e prove que está garantida a convergencia do método neste intervalo. Então teste seu programa para cada uma das equações

$$x^5 + 3x^2 - x + 1 = 0,$$

$$e^{-x^2} = x,$$

$$-2 + 3x = e^{-x},$$

$$\cos(x) + 0.5x = 0,$$