

SC4024/CZ4124 Data Visualization

Assistant Professor WANG Yong

yong-wang@ntu.edu.sg
CCDS, Nanyang Technological University

1

Chapter 11.2 Graph Visualization

Outline

- What is a graph/network?
 - Real world networks
 - Common graph vocabulary
- Graph Visualization Methods
 - Node-link diagram
 - Adjacency matrix
 - Others
- Packages and tools for graph visualization

3

What is a Graph?

Graphs

Common charts that represent data are often referred to as "graphs", or "graph visualizations"

- Bar charts
- Line charts
- Pie charts
- Etc.

Clarification: for this lecture, when I refer to graphs, I do *not* mean the type of charts shown on the left.

What is a Graph?

Graphs

Let's instead talk about graphs, networks, & trees in the mathematical sense: a model for representing items and the relationships between those items

- Social / friendship networks
- Computer networks
 Energy or transportation grids
 Organizational structures
- Etc.

Why do we care about visualizing graphs?

5

Networks in Real World

• Telecommunication network

Outline

- What is a graph/network?
 - Real world networks
 - Common graph vocabulary
- Graph Visualization Methods
 - Node-link diagram
 - Adjacency matrix
 - Others
- Packages and tools for graph visualization

23

23

Graph Visualization Methods

- Graph visualization (a.k.a, network visualization) is concerned with <u>visual representations of graph or</u> <u>network data</u>
- Effective graph visualization reveals graph structures and help users understand and analyze the network data

Enron Email Network

https://cambridge-intelligence.com/using-social-network-analysis-measures/

Node-link diagram:
Force-Directed Layout

• What about graphs without an intrinsic order?

• Physical model:
- edge → spring
- node → mass point

Node-link diagram: Force-Directed Layout

• It assumes that there is a spring between each pair of nodes, which leads to attractive force and repulsive force as follows:

$$f_a(d) = d^2/k$$

$$f_c(d) = -k^2/d$$

where d is the distance between the two nodes and k is a constant.

• With the effects of **attractive force and repulsive force**, nodes far away will be dragged near and nodes that are overlapped will be pushed away, and finally reach a stable balance after **iterations**.

T. M. Fruchterman and E. M. Reingold. Graph drawing by force-directed placement. Software: Practice and Experience, 21(11):1129–1164, 1991.

27

27

Node-link diagram: Force-Directed Layout

- Starting positions: random or initial configuration
- Loop:
 - Compute the attractive and repulsive forces for every pair of nodes
 - Accumulate the **force** (vector) for every node
 - Update the position of each node step by step according to their forces
- The loop stops until the layout is "good enough"

Pros and Cons of Force-directed Lay

- Pros
- Very flexible for any type of graphs
- Forces can be customized
- Easy to implement
- Cons
 - Local optimal
 - Initial configuration is important
 - Computation complexity of iterative algorithm
- Extensions
 - Barnes-Hut quadtree decomposition
 - FADE, GRIP, FMS, FM³, GVA

try it interactively at https://observablehq.com/@d3/force-directed-graph

31

Graph Visualization Methods

- Node-link diagram
 - Force-directed layout
 - MDS layout
- Adjacency matrix
- Others
 - Hybrid layout
 - Graph simplification methods

Node-link diagram: MDS (Multidimensional Scaling) Layout

- Focus on addressing the limitations of force-directed layout
- Dimension reduction
 - Keep the consistency of relative distance between nodes
- MDS is a global optimal method
- Optimal function $||x_i x_j|| \approx d_{ij}$, where d_{ij} is the graph-theoretical distance between Node i and j, and x_i and x_j correspond to their coordinates in the 2D plane

33

Solving Optimal Function

- Stress majorization
 - Stress(X) = $\sum_{i,j} w_{ij} (d_{ij} ||x_i x_j||)^2$
 - d_{ij} is the graph-theoretical distance between the $\emph{i-}$ th node and the $\emph{j-}$ th node
 - $w_{ij} = d_{ij}^q$, usually q = -2

Other Presentations of Node-link Diagram Orthogonal Diagram UML diagram Nested ordered Recursively applying nested layout For intrinsic ordered topology Arc Diagram

35

Node-Link Diagram Summary

- Pros:
 - Intuitive visual interpretation
 - Good representation of topology, clusters and paths
 - Flexible, many variants

- Cons:
 - Almost for all algorithms, time complexity is a bit high $\sim O(n^2)$
- Not so good for dense graphs (especially edge cluttered graphs)

37

Graph Visualization Methods

- Node-link diagram
 - Force-directed layout
 - MDS layout
- Adjacency matrix
- Others
 - Hybrid layout

Adjacency Matrix

- $N \times N$ matrix, representing relations among N objects
- Position (*i,j*) represents the relation between the *i*-th object and the *j*-th object
 - Weight
 - Direction
- Related issues
 - Ordering
 - Path finding

39

Adjacency Matrix Summary

- Pros:
 - No edge crossing, good for edge cluttered graph
 - Good visual scalability
 - Good presentation of graph pattern
- Cons:
 - Visualization is abstract to understand
 - Difficult to follow a transitive relation path

43

Graph Visualization Methods

- Node-link diagram
 - Force-directed layout
 - MDS layout
- Adjacency matrix
- Others
 - Hybrid layout
 - Graph simplification methods

Hybrid Layout

- Adjacency matrix can handle complex and dense edge relations, but suffers from insufficient space usage when there are many nodes
- Node-link diagram can handle relatively more nodes, but can suffer from serious visual clutters when there are dense edge relations
- What if there are a large number of nodes, and some of them have dense edge relations?

-- Combine node-link diagram with matrix

Fig. 1: NodeTrix Representation of the largest component of the Info-Vis Co-authorship Network

Nathalie Henry, et al. NodeTrix: A Hybrid Visualization of Social Networks, TVCG 2007

45

Graph Simplification Methods:

- Edge Bundling

• Edge bundling approaches are designed to handle the dense edges between nodes, reducing visual clutters and helping users identify the overall links between nodes

Graph Simplification Methods:

- Network Motifs

• Network motifs aims to represent representative subgraphs of a large graph as a series of meaningful motifs to simplify the visualization of large graphs

47

Graph Simplification Methods:

- Network Motifs

• Network motifs aims to represent representative subgraphs of a large graph as a series of meaningful motifs to simplify the visualization of large graphs

Dunne and Shneiderman, Motif Simplification: Improving Network Visualization Readability with Fan, Connector, and Clique Glyphs. CHI2013 4

Summary

- Graph visualizations are widely used
- Graph visualization methods
 - Node-link diagram
 - Familiar, but problematic for dense graphs
 - Matrix
 - Abstract, hard to follow paths
 - Graph simplification can help
 - Not always possible, and not always appropriate
- Take-home message: no best solution; graph visualization is still under active research!!!

