Математический анализ

2023

Расчётно-графическая работа № 2

«Предел и непрерывность функции»

Студенты: Данько Савелий Р3112 Фан Нгок Туан Р3121 Фам Данг Чунг Нгиа Р3121

Номер потока: 13.1

Преподаватель: Правдин Константин

Дата: 13.10.2023

Место: НИУ ИТМО

Задание 1: Предел последовательности

а) При помощи частичных пределов:

Рассматриваем последовательность $x_n = \cos(\frac{5\pi}{6} - \frac{n\pi}{2})$

Тогда из неё можно выделить такие подпоследовательности:

 $\exists k \in \mathbb{N}$

• При n=4k:

$$\lim_{k \to \infty} x_{4k} = \lim_{k \to \infty} \cos(\frac{5\pi}{6} - 2k\pi) = \cos(\frac{5\pi}{6}) = -\frac{\sqrt{3}}{2}$$

• При n = 4k + 1:

$$\lim_{k \to \infty} x_{4k+1} = \lim_{k \to \infty} \cos(\frac{5\pi}{6} - 2k\pi - \frac{\pi}{2}) = \sin(\frac{5\pi}{6}) = \frac{1}{2}$$

• При n = 4k + 2:

$$\lim_{k \to \infty} x_{4k+2} = \lim_{k \to \infty} \cos(\frac{5\pi}{6} - 2k\pi - \pi) = -\cos(\frac{5\pi}{6}) = \frac{\sqrt{3}}{2}$$

• При n = 4k + 3:

$$\lim_{k \to \infty} x_{4k+3} = \lim_{k \to \infty} \cos(\frac{5\pi}{6} - 2k\pi - \frac{\pi}{2} - \pi) = -\sin(\frac{5\pi}{6}) = -\frac{1}{2}$$

Множество частичных пределов последовательности x_n :

$$E = \{-\frac{\sqrt{3}}{2}; -\frac{1}{2}; \frac{1}{2}; \frac{\sqrt{3}}{2}\}$$

Верхний и нижний пределы последовательности x_n :

$$\overline{\lim}_{n \to \infty} x_n = \frac{\sqrt{3}}{2} \& \underline{\lim}_{n \to \infty} x_n = -\frac{\sqrt{3}}{2}$$

2

Так как:

$$\overline{\lim}_{n\to\infty} x_n \neq \underline{\lim}_{n\to\infty} x_n,$$

то последовательность x_n не имеет предел:

$$\neg \exists \lim_{n \to \infty} x_n \Leftrightarrow \neg \exists \lim_{n \to \infty} \cos(\frac{5\pi}{6} - \frac{n\pi}{2})$$

б) При помощи критерия Коши:

Рассматриваем последовательность $x_n = 1 - (\cos n)^2 = \sin^2 n$

Предположим противное, пусть $\lim_{n \to \infty} \sin^2 n = A \in \mathbb{R}$. Так как

$$|(1 - \cos^2(n+2)) - (1 - \cos^2 n)| = |\sin^2(n+2) - \sin^2 n|$$

$$= |(\sin(n+2) - \sin n)(\sin(n+2) + \sin n)|$$

$$= |4 \cdot \cos(n+1) \cdot \sin(1) \cdot \sin(n+1) \cos(1)|$$

$$= |\sin(2n+2) \cdot \sin 2|$$

и, $\lim_{n\to\infty}\sin^2{(n+2)}=A$, а также так как $\sin{2}\neq0$, то, переходя к пределу в полученном равенстве получаем, что $\lim_{n\to\infty}\sin{(2n+2)}=0$. Значит, аналогично,

$$\lim_{n \to \infty} \sin 2n = \lim_{n \to \infty} \sin (2n + 4) = 0.$$

Так как

$$|\sin(2n+4) - \sin 2n| = 2|\cos(2n+2)\sin 2|$$
.

то, аналогично, $\lim_{n\to\infty}\cos{(2n+2)}=0$, а значит

$$\lim_{n \to \infty} \cos(2n + 2) = \lim_{n \to \infty} \sin(2n + 2) = 0.$$

Но это невозможно, ведь

$$\sin^2(2n+2) + \cos^2(2n+2) = 1$$

То есть это противоречит предположению. Тогда последовательность x_n не имеет предел:

$$\neg \exists \lim_{n \to \infty} \sin^2 n \Leftrightarrow \neg \exists \lim_{n \to \infty} (1 - (\cos n)^2)$$

Задание 2. Исследование сходимости функции.

Дана функция f(x). Исследуйте её поведение при $x \to \pm \infty$

План:

- 1) Вычислить функции $A_+ \in \overline{\mathbb{R}}$ при $x \to +\infty$ и $A_- \in \overline{\mathbb{R}}$ при $x \to -\infty$.
- 2) Построить график функции в зависимости от х.
- 3) Проиллюстрируйте сходимость (расходимость) функции на бесконечностях для A_+ и A_- :
- а. сформулируйте определение конечного предела и бесконечных пределов $(\pm \infty)$ функции через ϵ - δ в терминах неравенств;
- b. выберите три различных положительных числа $\epsilon_1 > \epsilon_2 > \epsilon_3$;
- с. для каждого такого числа изобразите на графике соответствующую ϵ -окрестность пределов A_+ и A_- ;
- d. для A_+ и A_- по отдельности и каждого выбранного ϵ найдите на графике наибольшую δ -окрестность переменных x, в которой все значения функции f(x) попадают в ϵ -окрестность, или установите, что такой окрестности нет.

$$f(x) = \left(\frac{5-3x}{1-2x}\right)^{0.3x-3}$$

Решение:

1)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{5-3x}{1-2x}\right)^{0.3x-3} = \frac{3}{2}^{+\infty} = +\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{5-3x}{1-2x} \right)^{0.3x-3} = \frac{3}{2}^{-\infty} = \frac{1}{\frac{3}{2}^{+\infty}} = 0$$

2) График функции в зависимости от х.

Рис. 1: График в desmos

3) Иллюстрирование сходимости и расходимости функции на бесконечностях.

а. Определение через $\varepsilon\text{-}\delta$ неравенства:

$$\forall \varepsilon > 0 \exists \delta(\varepsilon) > 0 : \forall x \in E : x > \frac{1}{\delta} \to f(x) > \frac{1}{\varepsilon}$$

$$\forall \varepsilon > 0 \exists \delta(\varepsilon) > 0 : \forall x \in E : x < \frac{1}{-\delta} \to |f(x)| < \varepsilon$$

b. Пусть
$$\varepsilon_1 = \frac{1}{10}, \ \varepsilon_2 = \frac{1}{100}, \ \varepsilon_3 = \frac{1}{1000}$$

с. Отображение ε -окрестностей:

Отображение для A_{+} :

Рис. 2: График в desmos

Отображение для $A_{\underline{}}$:

Рис. 3: График в desmos

d. δ - ε окрестность

Положив t = -x:

$$\left| \left(\frac{5-3x}{1-2x} \right)^{0.3x-3} \right| = \left| \left(\frac{3t+5}{2t+1} \right)^{-0.3t-3} \right| = \left| \frac{1}{\left(\frac{3t+5}{2t+1} \right)^{0.3t+3}} \right|$$

Так как:

$$\frac{3t+5}{2t+1} = \frac{3}{2} + \frac{\frac{7}{2}}{2t+1} > \frac{3}{2}$$
 при $t \to +\infty$

$$\Rightarrow (\frac{3t+5}{2t+1})^{0.3t+3} > (\frac{3}{2})^{0.3t+3}$$
 при $t \to +\infty$

$$\Rightarrow rac{1}{(rac{3t+5}{2t+1})^{0.3t+3}} < rac{1}{(rac{3}{2})^{0.3t+3}}$$
 при $t o +\infty$

$$\Rightarrow |f(x)| < (\frac{2}{3})^{0.3t+3} < \varepsilon$$

$$\Rightarrow 0.3t + 3 > \log_{\frac{2}{3}} \varepsilon \Leftrightarrow t > \frac{10}{3} (\log_{\frac{2}{3}} \varepsilon - 3)$$

$$\Rightarrow x < -\frac{10}{3}(\log_{\frac{2}{3}}\varepsilon - 3)$$

Положив
$$\delta = \frac{1}{\frac{10}{3}(\log_{\frac{2}{3}}\varepsilon - 3)}: \forall x \in E: x < \frac{1}{-\delta} \to |f(x)| < \varepsilon$$

Рис. 4: $\varepsilon = 0.353$

Рис. 5: $\varepsilon=0.18$

Рис. 6: $\varepsilon = 0.053$

Задание 3: Приближённые вычисления

Докажите эквивалентность функций, затем обоснуйте соответствующее приближённое равенство, и с его помощью вычислите приближённо число:

План:

- 1) Докажим эквивалентность функций $ln(1-x) \sim -x$.
- 2) Докажим соответствующее приближённое равенство $ln(1-x) \approx -x$.
- 3) С помощью приближённого равенства вычислим число ln(0.98).
- 4) Проиллюстрируем ответ графически (построим графики функций, равных приближённо, отметим точное и приближённое значения).

Решение:

Рассмотрим:

$$\lim_{x \to 0} \frac{\ln(1-x)}{-x} = \lim_{x \to 0} \ln((1-x)^{\frac{-1}{x}}) = \ln(\lim_{x \to 0} (1-x)^{\frac{-1}{x}})$$

Положив $t = \frac{-1}{x}$, по определению второго замечательного предела:

$$\lim_{x \to 0} (1 - x)^{\frac{-1}{x}} = \lim_{|t| \to +\infty} (1 + \frac{1}{t})^t = e$$

$$\Rightarrow \ln(\lim_{x \to 0} (1 - x)^{\frac{-1}{x}}) = \ln(e) = 1$$

$$\Rightarrow \lim_{x \to 0} \frac{\ln(1 - x)}{-x} = 1$$

По определениям для сравнения функций:

$$ln(1-x) \sim -x$$

$$\Rightarrow ln(1-x) = -x + o(x)$$

$$\Rightarrow \lim_{x \to 0} (ln(1-x) - (-x)) = \lim_{x \to 0} (-x + o(x) - (-x)) = \lim_{x \to 0} o(x) = 0$$

$$\Rightarrow ln(1-x) \approx -x$$

С помощью приближённого равенства вычислим приближённо число:

$$ln(0.98) = ln(1 - 0.02) \approx -0.02$$

Графики функций $y = \ln(1-x)$ и y = -x:

Рис. 7: График в Desmos

Графики функций $y = \ln(1-x)$ и y = -x при $x \to 0$:

Рис. 8: График в Desmos

Точное и приближённое значения $\ln(0.98)$

Рис. 9: График в Desmos

Задание 4: Бесконечно малые функции

Найдите значения параметров $\alpha, \beta \in \mathbb{R}$, при которых функции f(x) и g(x) являются бесконечно малыми при $x \to x_0 \in \bar{\mathbb{R}}$

$$f(x) = \frac{xe^x}{e^x - 1} - \alpha x - \beta, x \to -\infty$$
$$g(x) = (1 - x^{\alpha})^{x^{\beta}}, x \to +0$$

План:

- 1) Исследуем графически поведение функции при $x \to x_0$ при различных значениях параметров α и β . Продемонстрируем графики в окрестности x_0 для нескольких, на наш взгляд, характерных случаев.
- 2) Найдём аналитически значения параметров α и β , при которых функции f(x) и g(x) будут являются бесконечно малыми при $x \to x_0$.
 - 3) Продемонстрируем полученные значения параметров на графике.

Решение:

1)
$$f(x) = \frac{xe^x}{e^x - 1} - \alpha x - \beta, x \to -\infty$$

Рассмотрим:

$$\lim_{x \to -\infty} x e^x$$

Положив t = -x:

$$\lim_{x \to -\infty} (e^x - 1) = \lim_{t \to +\infty} (\frac{1}{e^t} - 1) = -1$$
$$\lim_{x \to -\infty} x e^x = \lim_{t \to +\infty} \frac{-t}{e^t}$$

Так как любая степенная функция растет медленнее, чем любая растущая по-казательная.

$$\lim_{t \to +\infty} \frac{-t}{e^t} = 0 \Rightarrow \lim_{x \to -\infty} x e^x = 0$$

$$\Rightarrow \lim_{x \to -\infty} \frac{x e^x}{e^x - 1} = \frac{\lim_{x \to -\infty} (x e^x)}{\lim_{x \to -\infty} (e^x - 1)} = \frac{0}{-1} = 0$$

$$\Rightarrow \lim_{x \to -\infty} (\frac{x e^x}{e^x - 1} - \alpha x - \beta) = \lim_{x \to -\infty} \frac{x e^x}{e^x - 1} + \lim_{x \to -\infty} (-ax) + \lim_{x \to -\infty} -\beta$$

$$= 0 + (\lim_{x \to -\infty} -ax) - \beta$$

$$\Rightarrow \lim_{x \to -\infty} (\frac{x e^x}{e^x - 1} - \alpha x - \beta) = (\lim_{x \to -\infty} -ax) - \beta$$

Пусть $\alpha=2$ и $\beta=3$:

$$\lim_{x \to -\infty} (\frac{xe^x}{e^x - 1} - 2x - 3) = (\lim_{x \to -\infty} -2x) - 3 = +\infty - 3 = +\infty$$

График функции $y = \frac{xe^x}{e^x - 1} - 2x - 3$ при $x \to -\infty$:

Рис. 10: График в Desmos

Пусть $\alpha = -3$ и $\beta = -1$:

$$\lim_{x \to -\infty} \left(\frac{xe^x}{e^x - 1} + 3x + 1 \right) = \left(\lim_{x \to -\infty} 3x \right) + 1 = -\infty + 1 = -\infty$$

График функции $y = \frac{xe^x}{e^x - 1} + 3x + 1$ при $x \to -\infty$:

Рис. 11: График в Desmos

Функция f(x) является бесконечно малой при $x \to -\infty$ тогда и только тогда, когда:

$$\lim_{x \to -\infty} f(x) = 0$$

$$\Rightarrow \lim_{x \to -\infty} \left(\frac{xe^x}{e^x - 1} - \alpha x - \beta \right) = 0$$

$$\Rightarrow \left(\lim_{x \to -\infty} (-ax) \right) - \beta = 0$$

$$\Rightarrow \begin{cases} \alpha = 0 \\ \beta = 0 \end{cases}$$

График функции $y=\frac{xe^x}{e^x-1}-\alpha x-\beta$ при $\alpha=0,\beta=0,x\to-\infty$:

Рис. 12: График в Desmos

Ответ: $\alpha=0$ и $\beta=0$

2)
$$g(x) = (1 - x^{\alpha)^{x^{\beta}}}, x \to +0$$

Функция g(x) является бесконечно малой при $x \to +0$ тогда и только тогда, когда:

$$\lim_{x \to +0} g(x) = 0$$

Так как $x^{\beta}>0$ при $x\to +0,$ то функция g(x) определена при $1-x^{\alpha}\geq 0\Rightarrow \alpha\geq 0$ при $x\to +0$

При $\alpha = 0$:

$$\lim_{x \to +0} (1 - x^0)^{x^{\beta}} = \lim_{x \to +0} (1 - 1)^{x^{\beta}} = 0$$

При $\alpha > 0$:

Рассмотрим:

$$\lim_{x \to +0} (1 - x^{\alpha})^{x^{\beta}} = \lim_{x \to +0} (1 - x^{\alpha})^{\frac{-1}{x^{\alpha}} \cdot (-x^{\alpha} \cdot x^{\beta})} = \lim_{x \to +0} (1 - x^{\alpha})^{\frac{-1}{x^{\alpha}} \cdot (-x^{\alpha+\beta})} = e^{\lim_{x \to +0} (-x^{\alpha+\beta})}$$

Функция g(x) является бесконечно малой при $x \to +0$ тогда и только тогда, когда:

$$\lim_{x \to +0} g(x) = 0$$

$$\Rightarrow \lim_{x \to +0} (1 - x^{\alpha)^{x^{\beta}}} = e^{\lim_{x \to +0} (-x^{\alpha+\beta})} = 0$$

$$\Rightarrow \lim_{x \to +0} (-x^{\alpha+\beta}) = -\infty$$

$$\Rightarrow \lim_{x \to +0} (x^{\alpha+\beta}) = +\infty$$

$$\Rightarrow \alpha + \beta < 0$$

Пусть $\alpha = 0$ и $\beta = 5$: График функции $y = (1 - x^0)^{x^5}$ при $x \to +0$:

Рис. 13: График в Desmos

Пусть $\alpha = 3$ и $\beta = -6$: График функции $y = (1-x^3)^{x^{-6}}$ при $x \to +0$:

Рис. 14: График в Desmos

Ответ: $\alpha>0, \beta<0, \alpha+\beta<0$ или $\alpha=0$

Задание 5:

1) Сделайте геометрическую иллюстрацию к задаче.

Правильный тетраэдр SABC имеет вершины S, A, B, C, середину H отрезки AB и центр G тяжести треугольника ABC.

2) Составьте математическую модель: введите обозначения, составьте формулу.

Пусть:

V - Объём тетраэдра

S - Площадь базовой поверхности тетраэдра

h - Высота тетраэдра

а - Длина ребр тетраэдра

Треугольник АВС является равносторонним. Мы можем рассчитать:

$$BH = HC = \frac{BC}{2} = \frac{a}{2}$$

$$AG = \frac{2}{3}AH$$

$$AH \perp BC$$

Треугольник АВН перпендикулярен в точке Н. Согласно теореме Пифагора к прямоугольному треугольнику АВН:

$$AB^{2} = AH^{2} + BH^{2} \Rightarrow AH = \sqrt{AB^{2} - BH^{2}}$$

$$\Leftrightarrow AH = \sqrt{a^{2} - \left(\frac{a}{2}\right)^{2}} = \frac{a\sqrt{3}}{2}$$

$$\Rightarrow AG = \frac{2}{3}AH = \frac{2}{3} \cdot \frac{a\sqrt{3}}{2} = \frac{a\sqrt{3}}{3}$$

Площадь треугольника ABC: $S = S_{\Delta ABC} = \frac{1}{2}.AH.BC = \frac{1}{2}.\frac{a\sqrt{3}}{2}.a = \frac{a^2\sqrt{3}}{4}$

Высота SG перпендикулярна базовой плоскости, то есть SG \perp AH.

Треугольник SAG перпендикулярен в точке G. Согласно теореме Пифагора к прямоугольному треугольнику SAG:

$$SA^{2} = SG^{2} + AG^{2} \Rightarrow SG = \sqrt{SA^{2} - AG^{2}}$$
$$\Rightarrow h = SG = \sqrt{a^{2} - (\frac{a}{\sqrt{3}})^{2}} = \frac{a\sqrt{6}}{3}$$

Считаем объём тетраэдра S.ABC:

$$V = \frac{1}{3}.h.S = \frac{1}{3}.\frac{a\sqrt{6}}{3}.\frac{a^2\sqrt{3}}{4} = \frac{a^3\sqrt{2}}{12}$$

Мы получаем $V_{(a)}=rac{\sqrt{2}}{12}a^3$

3) Решите задачу аналитически.

Пусть:

 ΔV - Приращение объема правильного тетраэдра S.ABC

 Δa - Приращение длины ребер правильного тетраэдра S.ABC

Объем правильного тетраэдра S.ABC после приращения длины его ребер:

$$V + \Delta V = \frac{\sqrt{2}}{12} \cdot (a + \Delta a)^3 =$$

$$= \frac{\sqrt{2}}{12} \cdot [a^3 + 3 \cdot a^2 \cdot \Delta a + 3 \cdot a \cdot (\Delta a)^2 + (\Delta a)^3]$$

$$\Rightarrow \Delta V = \frac{\sqrt{2}}{12} \cdot [3 \cdot a^2 \cdot \Delta a + 3 \cdot a \cdot (\Delta a)^2 + (\Delta a)^3]$$

Рассмотрим по определению для сравнения функций:

$$\lim_{\Delta a \to 0} \frac{\Delta V_{(a)}}{\Delta a} = \lim_{\Delta a \to 0}$$
 $\frac{\sqrt{2}}{12}.[3.a^2 + 3.a.(\Delta a) + (\Delta a)^2] = \frac{\sqrt{2}}{12}.[3.a^2 + 0 + 0] = \frac{\sqrt{2}}{4}.a^2$ То есть: $\Delta V_{(a)} = \frac{\sqrt{2}}{4}.a^2.\Delta a + o(\Delta a)$ Или: $\Delta V_{(a)} \approx \frac{\sqrt{2}}{4}.a^2.\Delta a$ при $\Delta a \to 0$

Когда $\Delta a \to 0$, мы увидим, что график $\Delta V = f(\Delta a)$ представляет собой прямую линию с коэффициентом наклона: $\frac{\sqrt{2}}{4}.a^2 = const$

Приращение объема правильного тетраэдра по отношению к бесконечно малому приращению его ребра будет иметь порядок - 1

Оценочный лист

Вклад каждого исполнителя:

Данько Савелий Р3112 - $\frac{1}{3}$

Фан Нгок Туан Р
3121 - $\frac{1}{3}$

Фам Данг Чунг Нгиа Р
3121 - $\frac{1}{3}$