MATH 381 Section 6.3

Prof. Olivia Dumitrescu

1 April 2024

Section 6.3 Permutations

$$n \in \mathbb{N}$$

 $n! = n(n-1)(n-2)\dots 2\cdot 1$

Example $S = \{1, 2, 3\}$ The arragement $\{3, 1, 2\}$ is a premutation of S

• 2-permutation of S

$$\{1,2\}$$
 $\{2,1\}$ $\{1,3\}$ $\{3,1\}$ $\{2,3\}$ $\{3,2\}$

n = 3, r = 2

P(n,r) is the number of r-permutations of a set of order n.

Theorem 0.1 If n is a positive integer and

$$1 \le r \le n \qquad r \in \mathbb{N}$$

$$\begin{cases} P(n,r) = n(n-1)(n-2)\dots(n-r+1) \\ P(n,0) = 1 \qquad n \in \mathbb{N} \end{cases}$$

Corollary 0.2 $n \in \mathbb{N}$ $0 \le r \le n$ $r \in \mathbb{N}$

$$P(n,r) = \frac{n!}{(n-r)!} = \frac{n(n-1)\dots(n-r+1)(n-r)\dots 1}{(n-r)(n-r-1)\dots 1}$$

Example How many permutations of letters ABCDEFGH contain the string ABC?

$$ABC = X$$

of permutations = XDEFGH

i.e. # rearrangements = $6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$

Remark n! = # of arrangements of a set of order n.

Definition An r-combination of a set of order n is an unordered selection of r elements of the set. (Equivalently, it is the number of subsets of order r of a set of order n.)

Example

1.
$$P(3,2) = 6$$

2.
$$C(3,2)=3$$

Theorem 0.3 $n \in \mathbb{N}, 0 \le r \le n$

1.

$$P(n,r) = \frac{n!}{(n-r)!} = n \cdot (n-1) \dots (n-r+1)$$

2.

$$C(n,r) = \frac{n!}{r!(n-r)!} = \binom{n}{r}$$

Corollary 0.4 $n, r \in \mathbb{N}$ $0 \le r \le n$ Then C(n, r) = C(n, n - r) or

$$\binom{n}{r} = \binom{n}{n-r}$$