Contents

1	Hasse-Weil Theorem	1
	1.1 Definition: Isogeny	. 1
	1.2 Example: Frobenius	. 1
	1.3 Isogeny $\alpha: E \to E$ is an endomorphism	. 1
	1.4 Example	
	1.5 Recall:	. 2
	1.6 Def	. 2
	1.7 Prop	. 2
	1.7.1 Observe $\#E(\mathbb{F}_q) = \#\ker(\alpha)$. 2
	1.8 Proof	. 3
	1.9 Exercise: Show the prop on surjectivity generalizes to the case of $E \to E'$. 3
2	Weil Pairing	4
	2.1 $e_n(\alpha(P), \alpha(Q)) = e_n(P, Q)^{\deg \alpha}$. 4

1 Hasse-Weil Theorem

p prime, $q = p^n$

$$\Phi:\bar{\mathbb{F}}_q\to\bar{\mathbb{F}}_q=\bar{\mathbb{F}}_p=\bigcup_n\mathbb{F}_{p^n}$$

$$\Phi(x) = x^q$$

it is a field homomorphism. Induces a map for E/\mathbb{F}_q

$$\Phi: E(\bar{\mathbb{F}}_q) \to E(\bar{\mathbb{F}}_q)$$

$$\Phi(x,y) = (x^q, y^q)$$

Frobenius is compatible win group structure on $E(\bar{\mathbb{F}}_q)$.

1.1 Definition: Isogeny

E, E' are EC on K. An isogeny $\alpha: E \to E'$ is a rational map such that the induced map

$$E(\bar{K}) - > E'(\bar{K})$$

is a group homomorphism

1.2 Example: Frobenius

1.3 Isogeny $\alpha: E \to E$ is an endomorphism.

If $\alpha: E/K \to E'/K$ is an isogeny then

$$\alpha: E(L) \to E'(L)$$

for $K \subseteq L \subseteq \bar{K}$ is an isogeny.

$$E(L) \subseteq E(\bar{K})$$

1.4 Example

Let E/K be any EC, for all n multiplication by n is an endomorphism.

$$[n]:E\to E$$

$$P \rightarrow nP$$

Everything we do is polynomials and it preserves group structure.

1.5 Recall:

An isogeny $\alpha: E \to E'$ viewed as a rational map, has a canonical form.

$$\alpha(x,y) = (r_1(x), yr_2(x))$$

where $r_1(x)=rac{p(x)}{q(x)}, r_2(x)=rac{u(x)}{v(x)}$ and each quotient is reduced, so no common factors over \bar{K} .

If q(x)=0 for some $x,y\in E(\bar{K})$, then we set $\alpha(x,y)=0_{E'}$ and otherwise we showed $v(x)\neq 0$ and hence α is well defined.

1.6 Def

Let $\alpha: E/K \to E'/K$ be an isogeny.

- 1. The degree of α is $\deg(\alpha) = \max\{\deg(p), \deg(q)\}.$
- 2. α is called separable if the formal derivative $r_1'(x)$ is not identically zero $p(x)q'(x) p'(x)q(x) \neq 0$

$$\begin{split} \Phi_q &= \alpha : E(\bar{\mathbb{F}}_q) \to E(\bar{\mathbb{F}}_q) \\ & \infty \to \infty \\ (x,y) &\to (x^q,y^q) \in E(\bar{\mathbb{F}}_q) \\ (y^q)^2 &= (x^q)^3 + Ax^q + B \\ (y^2)^q &= (x^3 + Ax + B)^q \end{split}$$

Is Φ_q separable?

$$(x^q)'=qx^{q-1}=0 \text{ in } \mathbb{F}_q$$

so it is not separable.

1.7 Prop

Let $\alpha: E \to E'$ be a nonzero isogeny. If α is separable then

$$\#\mathrm{ker}(\alpha:E(\bar{K})\to E'(\bar{K}))=\deg(\alpha)$$

and otherwise $\#\ker(\alpha) < \deg(\alpha)$

1.7.1 Observe $\#E(\mathbb{F}_q) = \#\ker(\alpha)$

For E/\mathbb{F}_q

$$\begin{split} \alpha: \Phi_q^n - \mathrm{id}: E \to E \\ P \to \Phi_q^n(P) - P \\ \ker(\alpha: E(\bar{\mathbb{F}}_q) \to E(\bar{\mathbb{F}}_q)) = \#E(\mathbb{F}_{q^n}) \end{split}$$

(or without n easier)

For E/\mathbb{F}_q

$$\begin{split} \alpha: \Phi_q - \mathrm{id}: E \to E \\ P \to \Phi_q(P) - P \\ \ker(\alpha: E(\bar{\mathbb{F}}_q) \to E(\bar{\mathbb{F}}_q)) = \#E(\mathbb{F}_q) \\ P \in \ker(\alpha) \Leftrightarrow \Phi_q(P) - P = \infty \\ \Leftrightarrow \Phi_q(P) = P \end{split}$$

we saw that these points P are exactly $E(\mathbb{F}_q)$

The only points frobenius acts as identity is those in \mathbb{F}_q , so only unchanged points are in the kernel. In higher extensions, frobenius doesn't act as the identity.

1.8 Proof

Since $\alpha \neq 0$ and is a group homomorphism on $E(\bar{K}) \to E'(\bar{K})$ it is non-constant.

Thus $\alpha: E(\bar{K}) \to E'(\bar{K})$ is surjective. Let $Q=(a,b) \in E'(\bar{K})$ and $P=(x_0,y_0) \in E(\bar{K})$.

1.9 Exercise: Show the prop on surjectivity generalizes to the case of $E \to E'$

Since $E'(\bar{K})$ is infinite we can choose Q st

- 1. $a, b \neq 0$
- 2. $deg(p qa) = max\{deg(p), deg(q)\} = deg(\alpha)$

the only case in which $\deg(p-qa) < \deg(\alpha)$ is when $\deg(p) = \deg(q)$ and their leading coefficients λ, δ respectively satisfy

$$\lambda - a\delta = 0 \Leftrightarrow a = \frac{\lambda}{\delta}$$

so we choose Q such that $a \neq \frac{\lambda}{\delta}$.

Since $\deg(p-aq) = \deg(\alpha), p(x) - aq(x)$ has exactly $\deg(\alpha)$ roots over \bar{K} (possibly repeated roots).

We claim that the number of distinct roots of p-aq is exactly the number of sources P of Q (under α).

Since $(a,b) \neq (\infty,\infty)$, then

$$r_1(x_0) \neq 0 \Leftrightarrow q(x_0) \neq 0$$

since $b \neq 0$ and we have

$$y_0 r_2(x) = b$$

we have $y_0 = b/r_2(x_0)$, so y_0 is completely determined by x_0 .

So it is enough to count the x_0 's which in turn must satisfy $\frac{p(x_0)}{a(x_0)} = a$

$$\Leftrightarrow p(x_0) - aq(x_0) = 0$$

i.e the roots of p - aq

Since α is a group homomorphism on $E(\bar{K}) \to E'(\bar{K})$, then $\# \ker(\alpha)$ is the same as the number of sources of any given point $Q \in E'(\bar{K})$

Which is enough to analyze the number of distinct roots x_0 of p - aq.

 x_0 is a repeated root of $p - aq \Leftrightarrow p(x_0) - aq(x_0) = 0$ and also $p'(x_0) - aq'(x_0) = 0$. Multiply both equations to get

$$ap(x_0)q'(x_0)=ap'(x_0)q(x_0)$$

Since $a \neq 0$

$$p(x_0)q'(x_0) - p'(x_0)q(x_0) = 0$$

$$r'_1(x_0) = 0$$

by the quotient rule applied to r'_1 .

If α is not separable

$$r_1'(x) = 0$$

which means p - aq has repeated roots and $\# \ker(\alpha) < \deg(\alpha)$.

If α is separable

$$r_1'(x) \neq 0$$

and hence has a finite number of roots S. We may add a constraint on the choice of Q saying that $a \notin r_1(S)$. Then since $r_1(x_0) = a$

$$x_0 \notin S$$

so p - aq will not have repeated roots, i.e. $\# \ker(\alpha) \deg(\alpha)$.

2 Weil Pairing

 $\text{Recall } \gcd(n, \operatorname{char} K) = 1. \text{ For } Q \in E[n] \text{ take } f_Q \in K(E) : \operatorname{div}(f_Q) = n[Q] - n[\infty], \text{ there exists } g_Q \in K(E) : \operatorname{div}(g_Q^n) = \operatorname{div}(f_Q \circ [n]).$

For arbitrary $S \in E(K), P \in E[n]$

$$e_n(P,Q) = \frac{g_Q(S+P)}{g_O(S)}$$

(this does not depend on the choice of S)

$$e_n: E[n] \times E[n] \to \mu_n(K)$$

2.1
$$e_n(\alpha(P), \alpha(Q)) = e_n(P, Q)^{\deg \alpha}$$

Let $\alpha: E \to E$ be a separable endomorphism.

Observe that $\alpha(P), \alpha(Q) \in E[n]$ since

$$n\alpha(P) = \alpha(nP) = \alpha(\infty) = \infty$$

Let $\{T_1,...,T_k\} = \ker(\alpha)$. Since α is separable, $k = \deg(\alpha)$.

$$\begin{split} \operatorname{div}(f_Q) &= n[Q] - n[\infty] \\ \operatorname{div}(f_{\alpha(Q)}) &= n[\alpha(Q)] - n[\infty] \\ g_Q^n &= f_Q \circ [n] \\ g_{\alpha(Q)}^n &= f_{\alpha(Q)} \circ [n] \end{split}$$

Let $\tau_T: E \to E$ be $X \to X + T$ translation by T.

Then $\operatorname{div}(f_Q \circ \tau_{-T_i}) = n[Q + T_i] - n[T_i].$

Now notice that $\operatorname{div}(f_{\alpha(Q)}) = n[\alpha(Q)] - n[\infty]$ and so

$$\begin{split} \operatorname{div}(f_{\alpha(Q)} \circ \alpha) &= n \sum_{Q'': \alpha(Q'') = \alpha(Q)} [Q''] - n \sum_{T: \alpha(T) = \infty} [T] \\ &= n \sum_{i=1}^k ([Q + T_i] + [T_i]) \\ &= \operatorname{div}(\prod_{i=1}^k f_Q \circ \tau_{-T_i}) \end{split}$$

For $1 \le i \le k$ choose $T_i' \in E[n^2] : nT_i' = T_i$ then

$$\begin{split} g_Q(S-T_i')^n &= f_Q \circ [n](S-T_i') \\ &= f_Q(nS-T_i) \end{split}$$

by the definition of g_Q .

Now using this identity, we can see that

$$\begin{split} \operatorname{div}(\prod_{i=1}^k (g_Q \circ \tau_{-T_i'})^n) &= \operatorname{div}(\prod_{i=1}^k f_Q \circ \tau_{-T_i} \circ [n]) \\ &= \operatorname{div}(f_{\alpha(Q)} \circ \alpha \circ [n]) \end{split}$$

where we use the expression from above for $\operatorname{div}(f_{\alpha(Q)} \circ \alpha)$.

Notice $\alpha \circ [n] = [n] \circ \alpha$ because $n\alpha(P) = \alpha(nP)$, so multiplication by n commutes with endormorphisms.

$$\begin{split} \operatorname{div}(f_{\alpha(Q)} \circ \alpha \circ [n]) &= \operatorname{div}(f_{\alpha(Q)} \circ [n] \circ \alpha) \\ &= \operatorname{div}((g^n_{\alpha(Q)}) \circ \alpha) \\ &= \operatorname{div}((g_{\alpha(Q)} \circ \alpha)^n) \end{split}$$

Finally we get

$$\prod_{i=1}^k (g_Q \circ \tau_{-T_i'}) = g_{\alpha(Q)} \circ \alpha$$

$$\begin{split} e_n(\alpha(P),\alpha(Q)) &= \frac{g_{\alpha(Q)}(\alpha(P) + \alpha(S))}{g_{\alpha(Q)}(\alpha(S))} \\ &= \prod_{i=1}^k \frac{g_Q(P+S-T_i')}{g_Q(S-T_i')} \\ &= \prod_{i=1}^k e_n(P,Q) = e_n(P,Q)^k \\ &= e_n(P,Q)^{\deg \alpha} \end{split}$$