Name of the Student: __

There are 3 questions in the exam. You have 30 minutes to finish the exam.

Question 1 (20%)

State true or false:

- (a) ___For any sets *A* and *B*, if $A \subseteq B$, then $A \subset B$.
- (b) ___For any sets A, B and C, if $A \subseteq B$ and $B \subset C$, then $A \subseteq C$.
- (c) ___For any sets A, B and C, if $A \subseteq B$ and $C \subseteq B$, then $A \cap C \neq \emptyset$.

Question 2 (30%)

Remember that for a set of sets A,

$$\bigcup A = \{ a \mid a \in B \text{ for some } B \in A \}$$
$$\bigcap A = \{ a \mid a \in B \text{ for each } B \in A \}$$

State whether true or false:

- (a) __Given any set K, $\bigcup \{X \mid X \subseteq K\} \subseteq K$
- (b) __Given any set K, $\bigcap \{X \mid X \subseteq K \text{ and } |X| < 3\} = \emptyset$

Question 3 (50%)

Given a set A and a relation $R \subseteq A \times A$. We say that R is *connected* if and only if for every *distinct* x and y in A, (x, y) or (y, x) or both are in R.

Given $A = \{1, 2, 3, 4\}$, what is the smallest number of elements a connected relation R on A can have. Give an example for such a relation.