

7	1977	7100.126170
8	1978	7247.967035
9	1979	7602.912681
10	1980	8355.968120
11	1981	9434.390652
12	1982	9619.438377
13	1983	10416.536590
14	1984	10790.328720
15	1985	11018.955850
16	1986	11482.891530
17	1987	12974.806620
18	1988	15080.283450
19	1989	16426.725480
20	1990	16838.673200
21	1991	17266.097690
22	1992	16412.083090
23	1993	15875.586730
24	1994	15755.820270
25	1995	16369.317250
26	1996	16699.826680
27	1997	17310.757750
28	1998	16622.671870
29	1999	17581.024140
30	2000	18987.382410
31	2001	18601.397240
32	2002	19232.175560
33	2003	22739.426280
34	2004	25719.147150
35	2005	29198.055690
36	2006	32738.262900

38 2008 37446.486090 39 2009 32755.176820 40 2010 38420.522890 41 2011 42334.711210 42 2012 42665.255970 43 2013 42676.468370			
39 2009 32755.176820 40 2010 38420.522890 41 2011 42334.711210 42 2012 42665.255970 43 2013 42676.468370 44 2014 41039.893600	37	2007	36144.481220
40 2010 38420.522890 41 2011 42334.711210 42 2012 42665.255970 43 2013 42676.468370 44 2014 41039.893600	38	2008	37446.486090
41 2011 42334.711210 42 2012 42665.255970 43 2013 42676.468370 44 2014 41039.893600	39	2009	32755.176820
42 2012 42665.255970 43 2013 42676.468370 44 2014 41039.893600	40	2010	38420.522890
43 2013 42676.468370 44 2014 41039.893600	41	2011	42334.711210
44 2014 41039.893600	42	2012	42665.255970
	43	2013	42676.468370
45 2015 35175.188980	44	2014	41039.893600
	45	2015	35175.188980
46 2016 34229.193630	46	2016	34229.193630

Scatter plot of Canada per capita income

```
df.plot(x="year",y="per-capita-income-(US$)", kind="scatter")

v 0.2s

Python

AxesSubplot:xlabel='year', ylabel='per capita income (US$)'>

40000

35000
```



```
dep_var = df["per capita income (US$)"] #dependent variable
       exp_var = df["year"] #explanatory/independent variable
                                                                                                Python
       exp_var = sm.add_constant(exp_var)
Python
   Correlation Coefficient
       x_simple = np.array(df["year"])
       y_simple = np.array(df["per capita income (US$)"])
       rho = np.corrcoef(x_simple, y_simple)
       print(f"Correlation Coefficient: \n{rho}")
                                                                                                Python
·· Correlation Coefficient:
    [0.94388395 1. ]]
     r = 0.94
     Strength: Strong Positive Correlation
   Part 1: Linear Regression with outliers
     Fitting the linear regression model
       model = sm.OLS(dep_var,exp_var)
       result = model.fit()
[7] 	V 0.5s
                                                                                                Python
```

Linear Regression Results print(result.summary()) Python OLS Regression Results Dep. Variable: per capita income (US\$) R-squared: 0.891 Model: OLS Adj. R-squared: 0.888 Least Squares F-statistic: Method: 367.5 Thu, 09 Jun 2022 Prob (F-statistic): 20:58:47 Log-Likelihood: Date: 2.80e-23 Time: -455.71 No. Observations: 47 AIC: 915.4 Df Residuals: 45 BIC: 919.1 Df Model: Covariance Type: nonrobust ______ coef std err t P>|t| [0.025 0.975] const -1.632e+06 8.61e+04 -18.951 0.000 -1.81e+06 -1.46e+06 828.4651 43.214 19.171 0.000 741.427 915.503 ### 0.511 Durbin-Watson: Prob(Omnibus): 0.775 Jarque-Bera (JB): Skew: 0.130 Prob(JB): Kurtosis: 2.487 Cond ______ 0.230 0.647 0.724 2.93e+05 Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 2.93e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Interpretation of the Regression Results

R-squared - The R-squared value in the regression results is 0.891 or 89.1%. This value is very close to 1. As a coefficient of determination, it tells us that the model is a good fit in explaining the changes in our dependent variable, in this case, the per capita income. Mathematically, 89.1% of the variation in the per capita income can be explained by the model.

F-statistic and Prob(p-value) - In the regression results, F-statistic is 367.5 and p-value is 2.80e-23. Given that the value of F is largely greater than 1 and p-value is less than p=0.05, this signifies that there is a good amount of linear relationship between the target variable and feature variables (year,per capita income).

coef - The coefficients tell us the average expected change in the dependent variable, in this case, the per capita income. For each year x, the per capita income will increase by 828.47. On the other hand, we can expect a per capita income is equal to the intercept -1.632e+06 when year x value is equal to zero.

P>|t| - Each of the p-values in the regression results tell us whether or not each predictor variable is statistically significant. We can see that both the constant and year variables have p=0.00. This indicates that our independent variable is reliable and is likely to impact the predicted per capita income.

Predicting the per capita income of Canada in the year 2025

```
_year_to_predict = 2025
predic = result.predict([1,_year_to_predict])
print(f"Predicted Canada's per capita income (year {_year_to_predict}): ${predic}")

$\square 0.3s$

Python

Predicted Canada's per capita income (year 2025): $[45431.01947053]
```

Line of best fit (regression line) D ~ pred_plot = plt.figure() plt.xlabel("Year") plt.ylabel("Per capita income (US\$)") pred_plot = plt.plot(df["year"],df["per capita income (US\$)"],'ro',label="data") pred_plot = plt.plot(df["year"],result.fittedvalues,'b-',label="regression line") Python 40000 1980 2000 2010 1970 1990 Determining the linear equation using linear_model from sklearn from sklearn import linear_model Python _year = df.drop('per capita income (US\$)',axis='columns') [12] 0.2s Python _pci = df['per capita income (US\$)'] Python

```
LR = linear_model.LinearRegression()
       LR.fit(_year,_pci)
                                                                                                   Python
    LinearRegression()
   Linear Equation Y = a + bX
   where b = slope; X = year variable; a = intercept
      Determining the slope b
       print(f"Slope b = {LR.coef_}")
[15] 		 0.3s
                                                                                                   Python
··· Slope b = [828.46507522]
      Determining the intercept b
       print(f"Intercept a = {LR.intercept_}")
                                                                                                   Python
    Intercept a = -1632210.7578554575
   Equation of the Line of best fit:
   Y = -1632210.7578554575 + 828.46507522*X
```

```
Predicting using the prediction function
    predic = LR.predict([[_year_to_predict]])
    print(f"Predicted Canada's per capita income (year {_year_to_predict}): ${predic}")
                                                                                                 Python
Predicted Canada's per capita income (year 2025): $[45431.01947053]
 c:\Users\djkur\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X does not have valid
 feature names, but LinearRegression was fitted with feature names
  warnings.warn(
  Using the line of best fit to predict the per capita income for year x=2025
    y = -1632210.7578554575 + (828.46507522*_year_to_predict)
    print(f"Predicted Canada's per capita income (year {_year_to_predict}): ${y}")
                                                                                                 Python
Predicted Canada's per capita income (year 2025): $45431.01946504251
Part 2: Linear Regression without outliers
  Finding outliers
    df.shape
                                                                                                 Python
 (47, 2)
```



```
Verifying the boxplot that there is no outlier
         def outliers(dframe, feature):
             Q1 = dframe[feature].quantile(0.25)
Q3 = dframe[feature].quantile(0.75)
             IQR = Q3-Q1
             lower_bound = Q1 - 1.5 * IQR
             upper_bound = Q3 + 1.5 * IQR
             ls = df.index[ (df[feature] < lower_bound) | (df[feature] > upper_bound)]
             return ls
     ✓ 0.4s
                                                                                                              Python
         index_list = []
         for feature in ['year', 'per capita income (US$)']:
             index_list.extend(outliers(df, feature))
[25] 		0.4s
                                                                                                              Python
         index_list
[26] 		0.2s
                                                                                                              Python
    []
         def remove(dframe,ind_ls):
             ind_ls = sorted(set(ind_ls))
             dframe = dframe.drop(ind_ls)
             return dframe
[27]
                                                                                                              Python
```

