1

Verilog HDL 연산자

Kyung-Wook Shin kwshin@kumoh.ac.kr

School of Electronic Eng., Kumoh National Institute of Technology

Verilog HDL 자료형과 연산자 K. W. SHIN

2.2 Verilog의 연산자

2

연산자 기 능 연산자 {}, {{}} 결합, 반복 비트 exclusive or (비트 xor) ^~ 또는 ~^ +, -, *, /, ** 비트 등가 (비트 xnor) 산술 축약 and 나머지 ક æ >, >=, <, <= 축약 nand 관계 ~& 논리 부정 축약 or 1 축약 nor && 논리 and ~| 논리 or 축약 xor П 논리 등가 ^~ 또는 ~^ 축약 xnor 논리 부등 논리 왼쪽 시프트 != << 논리 오른쪽 시프트 case 등가 >> 산술 왼쪽 시프트 case 부등 <<< !== 비트 부정 산술 오른쪽 시프트 비트 and & 조건 비트 inclusive or Event or

표 2.8 Verilog HDL의 연산자

Verilog HDL 자료형과 연산자 K. W. SHIN

2.2 Verilog의 연산자

3

표 2.9 실수형 수식에 사용될 수 있는 연산자

연산자	기 능	연산자	기 능
+, -, *, /, **	산술	11	논리 or
+, -	부호	==	논리 등가
>, >=, <, <=	관계	!=	논리 부등
!	논리 부정	?:	조건
8.8	논리 and	or	Event or

❖ 비트, 축약, 시프트 연산자는 실수형 수식에 사용될 수 없음.

Verilog HDL 자료형과 연산자 K. W. SHIN

2.2 Verilog의 연산자

,

표 2.10 Verilog 연산자의 우선순위

2.2.1 산술 연산자

5

- ❖ 피연산자의 비트에 x (unknown)나 z (high-impedance)가 포함된 경우에는 전체 결과 값은 x가 됨
- ❖ 나누기와 나머지 연산자에서 두 번째 피연산자가 0인 경우, 결과값은 x가 됨
- ❖ 나머지 연산자의 결과 값은 첫번째 피연산자의 부호를 따름
- ❖ 거듭제곱 연산자에서 다음의 경우에는 결과 값이 정의되지 않음
 - ▶ 첫번째 피연산자가 0이고 두 번째 피연산자가 양수가 아닌 경우
 - ▶ 첫번째 피연산자가 음수이고 두 번째 피연산자가 정수 값이 아닌 경우

표 2.11 산술 연산자	기호	기 능
	+	더하기
	-	빼기
	*	곱하기
	/	나누기(몫)
	% 나머지(modu	
	**	거듭제곱(power)

Verilog HDL 자료형과 연산자 K. W. SHIN

2.2.1 산술 연산자

6

표 2.12 나머지 연산자의 연산 결과 예

수 식	결과값	설 명	
10 % 3	1	10을 3으로 나눈 나머지는 1	
11 % 3	2	11을 3으로 나눈 나머지는 2	
12 % 3	0	12를 3으로 나눈 나머지는 0	
-10 % 3	-1	결과 값은 첫번째 피연산자의 부호를 따름	
11 % -3	2	결과 값은 첫번째 피연산자의 부호를 따름	

Verilog HDL 자료형과 연산자 K. W. SHIN

2.2.2 관계 연산자

- ❖ 결과 값: 1비트의 참(1) 또는 거짓(0)
- ❖ 산술 연산자보다 낮은 우선 순위를 가짐
- ❖ 피연산자의 비트에 x (unknown)나 z(high-impedance)가 포함된 경우에는 결과 값은 1비트의 x가 됨
- ❖ 두 피연산자의 비트 수가 다른 경우에는, 비트 수가 작은 피연산자의 MSB 쪽에0이 채워져 비트 수가 큰 피연산자에 맞추어진 후, 관계를 판단함
- ❖ 피연산자 중 하나가 실수형이면 다른 피연산자가 실수형으로 변환된 후, 비교됨

표 2.14 관계 연산자

관계 연산자 식	의 미	
a < b	a가 b보다 작다	
a > b	a가 b보다 크다	
a <= b a가 b보다 작거나 같다		
a >= b	a가 b보다 크거나 같다	

Verilog HDL 자료형과 연산자 K. W. SHIN

2.2.2 관계 연산자

8

예 2.2.3 🚽 관계 연산자 수식

```
// A = 9, B = 4

// D = 4'b1001, E = 4'b1100, F = 4'b1xxx

A <= B // 결과 값은 거짓(0)

A > B // 결과 값은 참(1)

E >= D // 결과 값은 참(1)

E < F // 결과 값은 x
```

[예 2.2.4

```
① a < b-1 // ①과 ②는 결과가 동일
② a <(b-1)
③ b-(1 < a) // ③과 ④는 결과가 다를 수 있음
④ b-1 < a
```

Verilog HDL 자료형과 연산자 K. W. SHIN

2.2.3 등가 연산자

- ❖ 결과 값: 1비트의 참(1) 또는 거짓(0)
- ❖ 피연산자의 비트끼리 비교
- ❖ 관계 연산자 보다 낮은 우선순위를 가짐
- ❖ 두 피연산자의 비트 수가 다른 경우에는, 비트 수가 작은 피연산자의 MSB 쪽에 0이 채워져 비트 수가 큰 피연산자에 맞추어진 후, 등가를 판단함
- ❖ case equality와 case inequality 연산자(===, !==)는 EDA 툴에서 논리합성이 지원되지 않을 수 있음

표 2.15 등가 연산자

관계 연산자 식	의 미	
a === b	a와 b는 같다. (x와 z가 포함된 일치를 판단)	
a !== b a와 b는 같지 않다. (x와 z가 포함된 불일치를 판단		
a == b	a와 b는 같다. (결과가 x가 될 수 있음)	
a != b	a와 b는 같지 않다. (결과가 x가 될 수 있음)	

Verilog HDL 자료형과 연산자 K. W. SHIN

2.2.3 등가 연산자

10

예 2.2.5 등가 연산자의 예

```
// A = 9, B = 4

// D = 4'b1001, E = 4'b1100

// F = 4'b1xxz, G = 4'b1xxz, H = 4'b1xxx

A === B  // 결과 값은 거짓(0)

D != E  // 결과 값은 참(1)

D == F  // 결과 값은 참(1)

F === G  // 결과 값은 참(1)

F === H  // 결과 값은 거짓(0)

G !== H  // 결과 값은 참(1)
```

Verilog HDL 자료형과 연산자 K. W. SHIN

2.2.4 논리 연산자

11

- ❖ 결과값은 1비트의 참(1) 또는 거짓(0)
- ❖ 참 또는 거짓의 판단이 모호한 경우에는 결과값은 x

논리 연산자 식	의 미
a && b	a와 b의 논리 AND
a b	a와 b의 논리 OR
!a	a의 부정 (NOT a)

예 2.2.6 📉 논리 연산자의 예

```
// A = 3, B = 0, C = 2'b0x, D = 2'b10인 경우에,
A && B // 결과 값은 0
A || B // 결과 값은 1
!A // 결과 값은 0
!B // 결과 값은 1
C && D // 결과 값은 x
```

Verilog HDL

자료형과 연산자

K. W. SHIN

2.2.4 논리 연산자

12

```
| M 2.2.7 | M 2
```

2.2.5 비트 연산자

13

- ❖ 피연산자의 해당 비트들에 대한 연산을 수행
 - 피연산자의 비트 수만큼의 결과를 출력함
- ❖ 피연산자의 비트 수가 같지 않으면, 비트 수가 작은 피연산자의 MSB 위치에
 0이 채워진 후, 연산됨
- ❖ (a ~^ b)는 허용되나, (a ~& b) 또는 (a ~| b)는 허용되지 않음
 - ~(a & b), ~(a | b)로 표현해야 함

표 2.16 비트 and 연산자				
&	0	1	х	z
0	0	0	0	0
1	0	1	x	х
х	0	х	x	х
z	0	х	x	х

		01 — 01		
- 1	0	1	х	z
0	0	1	x	x
1	1	1	1	1
х	x	1	х	х
z	х	1	х	х

표 2.17 비트 or 연산자

Verilog HDL

자료형과 연산자

K. W. SHIN

2.2.5 비트 연산자

14

	표 2.18 비트 xnor 연산자			
~^	0	1	х	Z
0	1	0	х	x
1	0	1	х	x
х	х	x	х	x
z	х	х	х	х

	표 2.19 비트 xor 연산사			
۸	0	1	х	z
0	0	1	x	х
1	1	0	х	х
X	х	x	X	х
z	х	х	х	x

표 2.20 비트 부정 연산자

~ 0 0 1 1 1 0 x x x x x x

🧧 예 2.2.8 📉 비트 연산자의 예

Verilog HDL

자료형과 연산자

K. W. SHIN

2.2.6 축약(Reduction) 연산자

15

- ❖ 단항 연산자
- ❖ 피연산자의 단위 비트들에 적용되어 1비트의 결과값을 생성

reg[7:0] cnt;
assign parity = ^cnt;
assign parity = cnt[7]^cnt[6]^cnt[5]^cnt[4]^cnt[3]^cnt[2]^cnt[1]^cnt[0];

표 2.21 축약 and 연산자				
&	0	1	х	z
0	0	0	0	0
1	0	1	х	x
х	0	х	х	x
7	0	Y	Y	Y

~&	0	1	х	z
0	1	1	1	1
1	1	0	х	х
х	1	х	х	x
z	1	х	х	х

축약 nand 연산자

Verilog HDL 자료형과 연산자 K. W. SHIN

2.2.6 축약 연산자

16

	丑 2.22					
	0	1	х	z		
0	0	1	х	x		
1	1	1	1	1		
х	х	1	х	x		
z	х	1	х	х		

~	0	1	х	z
0	1	0	х	х
1	0	0	0	0
х	х	0	x	х
z	х	0	х	х

축약 nor 연산자

	丑 2.23			
۸	0	1	х	z
0	0	1	х	x
1	1	0	х	x
х	х	x	х	x
z	х	х	х	х

	축익	xnor 연	산자	
~^	0	1	х	z
0	1	0	x	х
1	0	1	x	х
х	х	x	х	х
z	x	x	x	x

Verilog HDL 자료형과 연산자 K. W. SHIN

예 2.2.9 축약 연산자의 연산 결과

연산자	연산 결과						설 명		
피연산자	&	~&	- 1	~	^	~	설정		
4'b0000	0	1	0	1	0	1	모든 비트가 0인 경우		
4'b1111	1	0	1	0	0	1	모든 비트가 1인 경우		
4'b0110	0	1	1	0	0	1	1의 개수가 짝수인 경우		
4'b1000	0	1	1	0	1	0	1의 개수가 홀수인 경우		

Verilog HDL 자료형과 연산자 K. W. SHIN

2.2.6 축약 연산자

18

■ 예 2.2.10 및 연산자를 이용한 4입력 NAND 게이트 모델링

[그림 2.7] 4입력 NAND 게이트

```
module nand4_op2(a, y);
 input [3:0] a;
  output y;
 assign y = ~&a;
endmodule
                축약 nand 연산자 사용
```

```
module nand4_op1(a, y);
 input [3:0] a;
 output y;
  assign y = \sim (a[0] \& a[1] \& a[2] \& a[3]);
endmodule
                                    비트 연산자 사용
```

[코드 2.3] 연산자를 이용한 4입력 NAND 게이트 모델링

[그림 2.8] 4비트 2입력 NOR 게이트 회로

```
module nor_op(a, b, y);
  input [3:0] a, b;
  output [3:0] y;
  assign y = ~(a | b);
endmodule
```

[코드 2.4] 연산자를 이용한 4비트 2입력 NOR 게이트 모델링

Verilog HDL 자료형과 연산자 K. W. SHIN

2.2.7 시프트 연산자

20

□ 논리 시프트 연산자 (<<, >>)

- ❖ << : 우측 피연산자 값만큼 좌측 피연산자를 왼쪽으로 시프트 후, 비어 있는 비트에 0을 채움
- ❖ >> : 우측 피연산자 값만큼 우측 피연산자를 오른쪽으로 시프트 후, 비어 있는 비트에 0을 채움
- □ 산술 시프트 연산자 (>>>, <<<)
 - ❖ <<<: 우측 피연산자 값만큼 좌측 피연산자를 왼쪽으로 시프트 후, 비어 있는 비트에 0을 채움
 - ❖ >>> : 우측 피연산자 값만큼 우측 피연산자를 오른쪽으로 시프트 후, 비어 있는 비트에 좌측 피연산자의 MSB를 채움
 - > 자료형에 signed 속성이 추가되어야 함

□ 우측 피연산자

- ❖ x 또는 z가 포함된 경우, 시프트 연산의 결과 값은 x
- ❖ 항상 unsigned 수

Verilog HDL 자료형과 연산자 K. W. SHIN

2.2.7 시프트 연산자

21

예 2.2.12

```
// A = 4'b1100
B = A >> 1 // 오른쪽으로 1비트 시프트, 결과 값은 B=4'b0110
C = A << 1 // 왼쪽으로 1비트 시프트, 결과 값은 B=4'b1000
D = A << 2 // 왼쪽으로 2비트 시프트, 결과 값은 B=4'b0000
```

에 2.2.13 <u>코드 2.5</u>] 왼쪽 논리시프트 연산자의 예

```
module shift;
reg [3:0] start, result;

initial begin
start = 1;
result =(start << 2); // 결과 값은 0100
end
endmodule
```

Verilog HDL 자료형과 연산자 K. W. SHIN

2.2.7 시프트 연산자

22

예 2.2.13 [코드 2.6] 오른쪽 산술시프트 연산자의 예

```
module ashift;
reg signed [3:0] start, result;
initial begin
start = 4'b1000;
result =(start >>> 2); // 결과 값은 1110
end
endmodule
```

Verilog HDL 자료형과 연산자 K. W. SHIN

2.2.8 조건 연산자

24

□ 조건 연산자

- ❖ expression1이 참(1, 즉 0, x 또는 z가 아닌 값)으로 평가되면 expression2의 값이 좌변의 변수에 할당
- ❖ expression1이 거짓(0)으로 평가되면 expression3의 값이 좌변의 변수에 결과 값으로 할당
- ❖ expression1이 x 또는 z이면(즉, 참 또는 거짓을 판단할 수 없는 모호성이 존재하는 경우), expression2와 expression3을 함께 평가하여 비트 단위로 비교된 값이 좌변의 변수에 할당
 - expression3이 real 형 값이 아니면 결과 값은 비트 단위로 비교되어 결정되며, real 형 값인 경우에는 결과 값은 0이 됨

```
conditional_expression ::= expression1 ? expression2 : expression3
```

표 2.24 조건에 애매성이 존재하는 경우의 조건 연산자의 결과 값 결정

?:	0	1	х	z
0	0	х	х	х
1	х	1	х	х
x	х	х	х	х
z	х	х	х	х

예 2.2.14

조건 연산자를 이용한 3상태 버퍼

```
wire [15:0] busa, data;
assign busa = drive_busa ? data : 16'bz;
```

Verilog HDL

자료형과 연산자

K. W. SHIN

2.2.9 결합 및 반복 연산자

26

□ 결합 연산자

- ❖ 중괄호 { }에 의해 묶인 두 개 이상의 표현이 갖는 비트들을 결합
 - ▶ 결합되는 피연산자들은 각각의 크기를 결정할 수 있어야 결합이 가능함
 - unsized 상수는 결합 연산자로 결합시킬 수 없음
- ❖ 대입문의 좌측 또는 우측에 사용 가능
- ❖ 비트 폭이 일치하지 않는 변수의 연산이나 대입이 허용됨
 - ▶ 우변의 비트 폭이 작은 경우, 우변의 MSB에 0을 붙여 연산 됨
 - ▶ 좌변의 비트 폭이 우변 보다 작을 경우, MSB는 누락되어 저장

예 2.2.15

```
wire [15:0] addr_bus;
Wire [7:0] addr_h, addr_1
  assign addr_bus = {addr_h, addr_1};
```

Verilog HDL

자료형과 연산자

K. W. SHIN

```
예 2.2.16
```

```
wire [3:0] a, b, sum;
wire carry;
assign {carry, sum} = a + b; // 4비트 데이터의 덧셈은 5비트 결과
// 좌변이 5 비트이므로, 우변의 a+b는 MSB에 0을 붙인 5비트로 연산 됨
```

Verilog HDL 자료형과 연산자 K. W. SHIN

2.2.9 결합 및 반복 연산자

28

- □ 반복 연산자
 - ❖ {a{b}}의 형태로 표현하여 b를 a회 반복
 - ▶ 반복 횟수 a는 0, x, z가 아닌 상수이어야 함

예 2.2.17

```
{4{w}} // {w, w, w, w}와 동일한 표현임.
a[31:0] = {1'b1,{0{1'b0}}}; // 우변이 {1'b1}가 되므로 잘못된 표현임
a[31:0] = {1'b1,{1'bz{1'b0}}}; // 우변이 {1'b1}가 되므로 잘못된 표현임
a[31:0] = {1'b1,{1'bx{1'b0}}}; // 우변이 {1'b1}가 되므로 잘못된 표현임
```

예 2.2.18

```
{b, {3{a, b}}} // {b, a, b, a, b, a, b}와 동일함
```