

Mathematics in Motion: Animating Math Concepts for the Web

Courtney Yatteau

Agenda

- 1. Why Animate Math?
- 2. Tools for Motion
- 3. RAPID Framework
- 4. Demos
- 5. Takeaways

github.com/cyatteau/ math-in-motionbcc2025

Today's Objectives

- Understand the RAPID workflow for animations
- Learn to apply math to real-world animations

Why animate math on the web?

- Motion makes abstract ideas intuitive
- Interactivity turns watchers into explorers
- Runs anywhere a browser runs
- Same techniques power media/data viz, games

Research-backed benefits

- Animated/interactive visuals increase engagement & retention
- Learning improves when learners can control pace and inputs

Tools to Animate on the Web

- CSS (transforms, keyframes, math functions)
- Canvas + JavaScript
- WebGL / Three.js

RAPID Framework

- . Receive
- . Apply
- . Project
- . Iterate
- . Draw

R - Receive

Read sliders, mouse drags, or microphone data

A - Apply

Take the received input and feed it into your mathematical model.

P - Project

Map your mathematical results into the space you're drawing in (e.g., pixels, canvas coords, or map coords).

I - Iterate

Repeat the process to create motion, updating parameters each frame.

D - Draw

Render the current state to the screen so the user can see the results.

Demo IA: Quadratic Transformer

Demo IB: Real-World Example

Baseball Savant Home-Run Derby uses same parabola

- Receive: radar
- Apply: projectile formulas
- Project: 3D coordinates to WebGL2 scene
- Iterate: requestAnimationFrame
- · Draw: Render arcs & balls on the canvas

https://baseballsavant.mlb.com/hr_derby

Demo 2a: Sine-Wave Visualizer

Demo 2b: Tremolo Pedal Demo

Demo 3a: Tangent Explorer

Demo 3b: Instant Speedometer

Demo 4a: Riemann Sums

Demo 4b: Calories Burned

Demos 5a and 5b: Unit Circle and Radar Map

Key Takeaways

- RAPID is a reusable mental model for math in motion
- Swap formulas; keep the pipeline
- Canvas, Audio, Maps same five steps

Thank you, Beer City Code!

c_yatteau

courtneyyatteau

cyatteau.bsky.social

github.com/cyatteau/ math-in-motionbcc2025