Objectives

Plot polar coordinates.

2 Convert from polar to rectangular coordinates.

3 Convert from rectangular to polar coordinates

4 Convert rectangular and polar equations.

For polar coordinates:

• Start at the origin (pole)

For polar coordinates:

- Start at the origin (pole)
- ullet Go out r units right (r>0) or left (r<0)

For polar coordinates:

- Start at the origin (pole)
- Go out r units right (r > 0) or left (r < 0)
- Rotate by the amount given (**direction**)

For polar coordinates:

- Start at the origin (pole)
- ullet Go out r units right (r>0) or left (r<0)
- Rotate by the amount given (**direction**)

The polar coordinates of a point are (r, θ) .

- (a) $A(2, 135^{\circ})$
 - (b) $B\left(-3, \frac{3\pi}{2}\right)$

- (a) $A(2, 135^{\circ})$
 - (b) $B\left(-3, \frac{3\pi}{2}\right)$

- (a) $A(2, 135^{\circ})$
 - (b) $B\left(-3, \frac{3\pi}{2}\right)$
 - (c) $C\left(-1,-\frac{\pi}{4}\right)$

- (a) $A(2, 135^{\circ})$
 - (b) $B\left(-3, \frac{3\pi}{2}\right)$
 - (c) $C\left(-1,-\frac{\pi}{4}\right)$

- (a) $A(2, 135^{\circ})$
 - (b) $B\left(-3, \frac{3\pi}{2}\right)$
 - (c) $C\left(-1, -\frac{\pi}{4}\right)$
 - (d) $D(3,315^{\circ})$

- (a) $A(2, 135^{\circ})$
 - (b) $B\left(-3, \frac{3\pi}{2}\right)$
- (c) $C\left(-1,-\frac{\pi}{4}\right)$
- (d) $D(3,315^{\circ})$

- (a) $A(2, 135^{\circ})$
 - (b) $B\left(-3, \frac{3\pi}{2}\right)$
 - (c) $C\left(-1, -\frac{\pi}{4}\right)$
 - (d) $D(3,315^{\circ})$
 - (e) $E(2,\pi)$

- (a) $A(2, 135^{\circ})$
 - (b) $B(-3, \frac{3\pi}{2})$
 - (c) $C\left(-1, -\frac{\pi}{4}\right)$
 - (d) $D(3,315^{\circ})$
 - (e) $E(2,\pi)$

- (a) $A(2, 135^{\circ})$
 - (b) $B\left(-3, \frac{3\pi}{2}\right)$
 - (c) $C\left(-1, -\frac{\pi}{4}\right)$
 - (d) $D(3,315^{\circ})$
 - (e) $E(2,\pi)$
 - (f) $F\left(-1, \frac{\pi}{3}\right)$

- (a) $A(2, 135^{\circ})$
 - (b) $B\left(-3, \frac{3\pi}{2}\right)$
 - (c) $C\left(-1, -\frac{\pi}{4}\right)$
 - (d) $D(3,315^{\circ})$
 - (e) $E(2,\pi)$
 - (f) $F\left(-1, \frac{\pi}{3}\right)$

Objectives

1 Plot polar coordinates.

2 Convert from polar to rectangular coordinates.

3 Convert from rectangular to polar coordinates.

4 Convert rectangular and polar equations.

Polar to Rectangular Coordinates

Polar to Rectangular Coordinates

$$\cos \theta = \frac{x}{r} \qquad \qquad \sin \theta = \frac{y}{r}$$

Polar to Rectangular Coordinates

$$\cos \theta = \frac{x}{r}$$
 $\sin \theta = \frac{y}{r}$
 $x = r \cos \theta$ $y = r \sin \theta$

(a)
$$(2,270^{\circ})$$

(a)
$$(2,270^{\circ})$$

 $x = 2\cos 270^{\circ}$ $y = 2\sin 270^{\circ}$

(a)
$$(2,270^{\circ})$$

 $x = 2\cos 270^{\circ}$ $y = 2\sin 270^{\circ}$
 $x = 2(0)$ $y = 2(-1)$

(a)
$$(2,270^{\circ})$$

 $x = 2\cos 270^{\circ}$ $y = 2\sin 270^{\circ}$
 $x = 2(0)$ $y = 2(-1)$
 $x = 0$ $y = -2$

Convert each to rectangular coordinates.

(a)
$$(2,270^{\circ})$$

 $x = 2\cos 270^{\circ}$ $y = 2\sin 270^{\circ}$
 $x = 2(0)$ $y = 2(-1)$
 $x = 0$ $y = -2$

(0, 2)

(b)
$$(-8, \frac{\pi}{3})$$

(b)
$$\left(-8, \frac{\pi}{3}\right)$$

$$x = -8\cos\left(\frac{\pi}{3}\right) \qquad y = -8\sin\left(\frac{\pi}{3}\right)$$

(b)
$$\left(-8, \frac{\pi}{3}\right)$$

$$x = -8\cos\left(\frac{\pi}{3}\right) \qquad y = -8\sin\left(\frac{\pi}{3}\right)$$

$$x = -8\left(\frac{1}{2}\right) \qquad y = -8\left(\frac{\sqrt{3}}{2}\right)$$

(b)
$$\left(-8, \frac{\pi}{3}\right)$$

$$x = -8\cos\left(\frac{\pi}{3}\right) \qquad y = -8\sin\left(\frac{\pi}{3}\right)$$

$$x = -8\left(\frac{1}{2}\right) \qquad y = -8\left(\frac{\sqrt{3}}{2}\right)$$

$$x = -4 \qquad y = -4\sqrt{3}$$

(b)
$$\left(-8, \frac{\pi}{3}\right)$$

$$x = -8\cos\left(\frac{\pi}{3}\right) \qquad y = -8\sin\left(\frac{\pi}{3}\right)$$

$$x = -8\left(\frac{1}{2}\right) \qquad y = -8\left(\frac{\sqrt{3}}{2}\right)$$

$$x = -4 \qquad y = -4\sqrt{3}$$

$$\left(-4, -4\sqrt{3}\right)$$

Objectives

1 Plot polar coordinates.

2 Convert from polar to rectangular coordinates.

- 3 Convert from rectangular to polar coordinates.
- 4 Convert rectangular and polar equations.

where θ' is the <u>reference angle</u> used to find the total angle rotated, θ .

(a)
$$\left(-1,\sqrt{3}\right)$$

(a)
$$(-1, \sqrt{3})$$

$$r = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{4} = 2$$

(a)
$$(-1, \sqrt{3})$$

$$r = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{4} = 2$$

(a)
$$(-1, \sqrt{3})$$

$$r = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{4} = 2$$

$$\theta' = \tan^{-1} \left| \frac{\sqrt{3}}{-1} \right| = 60^{\circ}$$

(a)
$$(-1, \sqrt{3})$$

$$r = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{4} = 2$$

$$\theta' = \tan^{-1} \left| \frac{\sqrt{3}}{-1} \right| = 60^{\circ}$$

(a)
$$(-1, \sqrt{3})$$

$$r = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{4} = 2$$

$$\theta' = \tan^{-1} \left| \frac{\sqrt{3}}{-1} \right| = 60^{\circ}$$

$$\theta = 120^{\circ}$$

(a)
$$(-1, \sqrt{3})$$

$$r = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{4} = 2$$

$$\theta' = \tan^{-1} \left| \frac{\sqrt{3}}{-1} \right| = 60^{\circ}$$

$$\theta=120^{\circ}$$

$$(2,120^{\circ})$$

(b)
$$(1,-1)$$

$$r = \sqrt{1^2 + 1^2} = \sqrt{2}$$

(b)
$$(1,-1)$$

$$r = \sqrt{1^2 + 1^2} = \sqrt{2}$$

(b)
$$(1,-1)$$

$$r = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$\theta' = \tan^{-1} \left| \frac{-1}{1} \right| = 45^{\circ}$$

(b)
$$(1,-1)$$

$$r = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$\theta' = \tan^{-1} \left| \frac{-1}{1} \right| = 45^{\circ}$$

(b)
$$(1,-1)$$

$$r = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$\theta' = \tan^{-1} \left| \frac{-1}{1} \right| = 45^{\circ}$$

$$\theta=315^{\circ}$$

(b)
$$(1,-1)$$

$$r = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$\theta' = \tan^{-1} \left| \frac{-1}{1} \right| = 45^{\circ}$$

$$\theta = 315^{\circ}$$

$$\left(\sqrt{2},315^{\circ}\right)$$

Objectives

1 Plot polar coordinates.

2 Convert from polar to rectangular coordinates.

3 Convert from rectangular to polar coordinates.

4 Convert rectangular and polar equations.

Rectangular and Polar Equations

We can use the relationship between rectangular and polar coordinates to convert equations of one form to the other.

Rectangular and Polar Equations

We can use the relationship between rectangular and polar coordinates to convert equations of one form to the other.

$$x = r \cos \theta$$

$$y = r \sin \theta$$

Rectangular and Polar Equations

We can use the relationship between rectangular and polar coordinates to convert equations of one form to the other.

$$x = r\cos\theta$$

$$y = r \sin \theta$$

$$x^2 + y^2 = r^2$$

$$\tan\theta = \frac{y}{x}$$

(a)
$$x + y = 5$$

(a)
$$x + y = 5$$

$$x + y = 5$$

(a)
$$x + y = 5$$

$$x + y = 5$$

$$r\cos\theta + r\sin\theta = 5$$

(a)
$$x + y = 5$$

$$x + y = 5$$

$$r \cos \theta + r \sin \theta = 5$$

$$r (\cos \theta + \sin \theta) = 5$$

(a)
$$x + y = 5$$

$$x + y = 5$$

$$r \cos \theta + r \sin \theta = 5$$

$$r (\cos \theta + \sin \theta) = 5$$

$$r = \frac{5}{\cos \theta + \sin \theta}$$

(b)
$$3x - y = 6$$

(b)
$$3x - y = 6$$

$$3x - y = 6$$

(b)
$$3x - y = 6$$

$$3x - y = 6$$

$$3r\cos\theta - r\sin\theta = 6$$

(b)
$$3x - y = 6$$

$$3x - y = 6$$

$$3r\cos\theta - r\sin\theta = 6$$

$$r(3\cos\theta - \sin\theta) = 6$$

(b)
$$3x - y = 6$$

$$3x - y = 6$$

$$3r\cos\theta - r\sin\theta = 6$$

$$r(3\cos\theta - \sin\theta) = 6$$

$$r = \frac{6}{3\cos\theta - \sin\theta}$$

Convert each of the following to rectangular equations.

(a)
$$r = 5$$

Convert each of the following to rectangular equations.

(a)
$$r = 5$$

$$r = 5$$

Convert each of the following to rectangular equations.

(a)
$$r = 5$$

$$r = 5$$

$$r^2 = 25$$

Convert each of the following to rectangular equations.

(a)
$$r = 5$$

$$r = 5$$

$$r^2 = 25$$

$$x^2 + y^2 = 25$$

(b)
$$\theta = \frac{\pi}{4}$$

(b)
$$\theta = \frac{\pi}{4}$$

$$\theta = \frac{\pi}{4}$$

(b)
$$\theta = \frac{\pi}{4}$$

$$\theta = \frac{\pi}{4}$$

$$\tan\theta=\tan\left(\frac{\pi}{4}\right)$$

(b)
$$\theta = \frac{\pi}{4}$$

$$heta=rac{\pi}{4}$$
 $an heta= an\left(rac{\pi}{4}
ight)$ $rac{y}{x}=1$

(b)
$$\theta = \frac{\pi}{4}$$

$$heta=rac{\pi}{4}$$
 $an heta= an\left(rac{\pi}{4}
ight)$ $rac{y}{x}=1$ $y=x$

(c)
$$r = 3 \csc \theta$$

(c)
$$r = 3 \csc \theta$$

$$r = 3 \csc \theta$$

(c)
$$r = 3 \csc \theta$$

$$r = 3 \csc \theta$$

$$r = 3\left(\frac{1}{\sin\theta}\right)$$

(c)
$$r = 3 \csc \theta$$

$$r = 3 \csc \theta$$
$$r = 3 \left(\frac{1}{\sin \theta}\right)$$
$$r = \frac{3}{\sin \theta}$$

(c)
$$r = 3 \csc \theta$$

$$r = 3 \csc \theta$$

$$r = 3 \left(\frac{1}{\sin \theta}\right)$$

$$r = \frac{3}{\sin \theta}$$

$$r \sin \theta = 3$$

(c)
$$r = 3 \csc \theta$$

$$r = 3 \csc \theta$$

$$r = 3 \left(\frac{1}{\sin \theta}\right)$$

$$r = \frac{3}{\sin \theta}$$

$$r \sin \theta = 3$$

$$y = 3$$

(d)
$$r = -6\cos\theta$$

(d)
$$r = -6\cos\theta$$

$$r = -6\cos\theta$$

(d)
$$r = -6\cos\theta$$

$$r = -6\cos\theta$$

$$r^2 = -6r\cos\theta$$

(d)
$$r = -6\cos\theta$$

$$r = -6\cos\theta$$
$$r^2 = -6r\cos\theta$$
$$x^2 + y^2 = -6x$$

(d)
$$r = -6\cos\theta$$

$$r = -6\cos\theta$$

$$r^2 = -6r\cos\theta$$

$$x^2 + y^2 = -6x$$

$$x^2 + 6x + y^2 = 0$$