

Large Language Models Operations (LLMOps)

- LLMOPs introduction
- Deployment and scalability of LLMs
- Monitoring and maintenance of models in production
- Performance evaluation and continuous improvement
- Ethical considerations and privacy

Intro to LLMOPS

XOPs

Automation Collaboration Reproducibility CI/CD Observability

DevOps

https://medium.com/@ritusherke86/what-is-devops-and-why-devops-86051071a42b

Continuous Integration

Collaboration & S & Communication & S

LLMOps

Training and deployment of Large Language Models

Data Governance Officer

Data Engineer

Data Scientist

ML Engineer

Business Stakeholder

Model

Validation

Data Preparation

Exploratory Data analysis

Feature Engineering

Model Training

Deployment

Monitoring

What specific scaling challenges exist for LLMs?

Initial training: trillions of tokens, <u>hundreds to thousands of GBs</u> & very long run times.

Fine-tuning: updating model weights based on your own data, still requires relatively large data and long training times. Plus lots of evaluation!

Storage: the models contain billions of parameters, often <u>hundreds of GB</u>. This can be prohibitive for some devices.

Latency: Running inference on these models can be very costly in terms of time.

Cost: All of this costs \$\$\$!

What specific scaling challenges exist for LLMs?

Initial training: don't do it!

Fine-tuning: Optimize and use a scalable framework, such as Ray.

Storage: Quantization, memorization, caching ...

Latency: Quantization, memorization, caching, hardware and memory bandwidth optimization...

Cost: Above plus use 'open source' models

Types of use-cases for Enterprises

How willing are enterprises to use LLMs for different use cases?

(% of enterprises experimenting with given use case who have deployed to production)

Source: a16z survey of 70 enterprise Al decision makers

LLM application archetypes

Prompt Engineering Applications

Retrieval Augmented Generation Applications

Agentic Applications

Multi-Agent Applications

Fine-tunning LLM Applications

Operationalizing Fine-tuning Pipelines

- Automation, version control, reproducibility
- Distributed training infrastructure
 - DeepSpeed, PEFT, GPUs
- Similar to classical model training serving
- Optimization techniques
 - vLLM, MLC, CudaGraph, MQA, Quantization, TensorRT
- Deeper understanding of GPUs, TTFT, TPOT

Types of LLM Applications

Architecture: fine-tuning

Types of LLM Applications

Practitioner's Perspective

LLMOps Starting Points

Use-Case

Improve asset management through LLM optimization and advanced summarization techniques · Automation of summarization processes, facilitated by LLMs Data summarization extracts valuable insights, key trends, and strategic directives from large volumes of data to improve equipment management · Utilizing a weighted Quality Score model on the real project environment to improve operational efficiency and simplify decision-making **Authors:** Luis Angarita Gutiérrez softserve Constanza Garcia Diaz

Improve Asset Management with LLM Evaluation Pipelines

Creating efficient Al-powered summaries, LLMs save up to 93% of the time taken by traditional manual processes. Our white paper explains how this allows you to optimize asset management operations.

https://info.softserveinc.com/summarization-tasks-for-llm-white-paper

Monitoring and maintenance of LLM applications

Monitoring for 'classic' ML

Monitoring for LLMs

Deploying and monitoring systems

Key advice

Use flexible tooling for packaging

Why?

- You will swap AI libraries over time: LangChain, LLamaIndex, Python, ...
- Uniform APIs lower the cost of switching libraries for a use case

How?

- MLflow supports built-in-flavors, PyFuncs, and custom flavors.
- All are managed behind uniform APIs

Use optimized inference

Why?

User experience and TCO

How?

- Real-time: Model Serving
 - Foundation Model APIs for pre-optimized architectures
 - Custom models for DIY
- Batch and streaming
 - ai_query to call Model Serving
 - GPU clusters with vLLM, etc.

Performance evalaution and continous improvement of LLM applications

LLM evaluation methods & resources

Ground-truth metrics

- BLEU
- ROGUE
- METEOR

Benchmarks

- TruthfulQA
- Arc
- HellaSwag

Uncertainty estimation

- SelfCheckGPT
- Perplexity

LLM evaluation of LLMs

- Prometheus
- JudgeLM

Evaluation - One of the Most Impactful Parts

Model Comparison

Bias Detection

Satisfaction & Trust

Evaluating Gen Al systems

Key advice

Augment existing eval tooling

Why?

- Much tooling is reusable: MLflow, data pipelines, etc.
- New metrics can be added to existing systems

How?

- Adopt metrics from classic areas: toxicity (NLP), precision/recall (IR), ...
- Use new tools like LLM-as-a-judge
- Evaluate both the components + system as a whole

Build user feedback into your app

Why?

- Users can be the best judges
- Build proprietary datasets for the future fine-tuning and pretraining

How?

- Consider implicit and explicit feedback
- Manage feedback like any other data: same governance, same ETL, etc.

Evaluating Gen AI systems with mlflow

Batch evaluation in code

- LLM-as-a-judge
- Human evaluation using ground truth data
- New metrics for Gen AI, NLP, and retrieval

Interactive evaluation in UI

- Compare Multiple models and prompts visually
- Iteratively test new queries during development

Materials

Class Repo

https://github.com/LGuillermoAngaritaG/llmops-class-eia

Books:

https://www.databricks.com/sites/default/files/2024-06/2023-10-EB-Big-Book-of-MLOps-2nd-Edition.pdf

List of applications for LLMOps:

https://github.com/tensorchord/Awesome-LLMOps

Courses:

https://github.com/mlabonne/llm-course

¡TU OPINIÓN CUENTA!

Estudiante de Educación Continua, te invitamos a completar nuestra breve encuesta de satisfacción.

¡Ayúdanos a mejorar tu experiencia educativa!

