COVID Simulation

P.Mathieu

SMAC Team Lille https://www.cristal.univ-lille.fr/gt/i2c/ prenom.nom@univ-lille.fr

1er mai 2020

Préambule

Modéliser les épidémies : pour faire quoi ?

Aider à comprendre.

Aide à la décision.

Essayer de répondre aux grandes questions.

- Combien de temps va durer l'épidémie?
- Combien de personnes seront infectées au cours de la crise?
- Combien de personnes décèderont au cours de la crise?
- Combien de personnes doivent être immunisées?
- Quand mettre en place un ou des confinements?
- Quelle durée doivent avoir les confinements?
- Quand arrivera t-on à saturation des hopitaux?

Principe

Ne jamais perdre de vue que :

- Un modèle n'est qu'une abstraction de la réalité
- L'important n'est pas d'avoir le plus de paramètres, mais de trouver les plus pertinents (l'essence du problème étudié)
- Pour que les thématiciens accaparent un modèle, il faut qu'il soit simple (exemple le modèle SIR : 3 boite cité dans des centaines de travaux en épidémio)

Torturez un modèle, il finit toujours par avouer!

Différentes approches

$$\begin{cases} \frac{\partial S(a,t)}{\partial t} + \frac{\partial S(a,t)}{\partial a} &= -\lambda(a,t)S(a,t) - \mu(a)S(a,t) \\ \frac{\partial E(a,t)}{\partial t} + \frac{\partial E(a,t)}{\partial a} &= \lambda(a,t)S(a,t) - \alpha(a)E(a,t) - \mu(a)E(a,t) \\ \frac{\partial I(a,t)}{\partial t} + \frac{\partial I(a,t)}{\partial a} &= \alpha(a)E(a,t) - \gamma(a)I(a,t) - \mu(a)I(a,t) \\ \frac{\partial R(a,t)}{\partial t} + \frac{\partial R(a,t)}{\partial t} &= \gamma(a)I(a,t) - \mu(a)R(a,t) \end{cases}$$

Approche Mathématique

Approche par flux

Approche par réseaux sociaux

Approche individus

Notre situation actuelle

principes

- Une approche par flux (compartiments) "classique" (Inserm ou Pasteur)
- SIGRM avec taux de transmission variable tout au long du temps
- SIAGRM (avec asymptomatiques et non asymptomatiques)

La validation

- Un modèle s'appuie sur des paramètres
- Plus il y a de paramètres plus c'est facile de coller aux données (overfitting)

Question : Comment valider le modèle

- Par autorité
- par calibration
 - Par les faits stylisés propres à une épidémie (croissance exponentielle, puis décroissance)
 - ► Par sa capacité à reproduire le passé (est-ce qu'on peut régler les paramètres pour que le modèle montre la situation actuelle)

Faits stylisés

Coller à la situation actuelle

Courbe obtenue avec les données ministère santé data.gouv.fr

Effet de différents confinements

Courbe obtenue avec les données ministère santé data.gouv.fr Courbe avec 2 bosses

Des hypothèses optimistes et pessimistes

Fait avec les données régionales

Comparaison avec Pasteur

pasteur.png

notrePasteur.png

Pasteur

Notre résultat

Regardez ce qu'ils montrent regardez ce qu'on montre

Comparaison avec Inserm

inserm.png

notreInserm.png

Inserm

Notre résultat

Regardez ce qu'ils montrent regardez ce qu'on montre

Ce que nous souhaitons faire

Nous sommes complémentaires!

Il y a surement plein de biaisOn a besoin de collaborer

- On est juste des modélisateurs
- On a besoin de votre experience en termes de medecin
- Qu'est-ce que vous attendez de nous?