(X, a, n) mble space.

Proportet f, q: X - [0,00] be mble.

Then (a) $f+g & f \cdot g$ are mble, and f is mble while $g \neq 0$.

(b) $\{f < g\}, \{f > g\}, \{f \leq g\}, \{f \geq g\}, \text{ and } \{f = g\} \text{ are mble}$

He Let $(n \in Y_n)$ be simple too s.t. (n) of (n) (n)

(b) {f<g} = \(\) (\(\) \(\)

{f>g} = X\{f<g}.

{f=g}= {f>g}n{f≤g}.

 $\{f \neq g\} = X \setminus \{f = g\}$.

Note: actually, we've just shown that (b) holds for mble for $X \longrightarrow [-\infty, \infty]$.

A wild mable for

la is not wild enough

for 0 < x < 1, let f(x) be the long-run upper frequency of 1's in the Handard brang lappanovon of x.

Then $f[(a,b)] = [0,1] \forall 0 < a < b < 1$.

f is Borel measurable be its a limsup of mble functions.

(in fact, simple!)

f is not Riemann Sble. but it is Lebegue Sble.

Remark: Let $\Psi, \Psi: X \longrightarrow [0, \infty)$ be simple with $\Psi \in \Psi$. then $\iint d\mu = \iint d\mu$.

Pf:
$$\psi = \varphi + (\psi - \psi)$$
, so $\int \varphi dn = \int \varphi dn + \int (\psi + \psi) dn = \int \varphi dn$.

Notation:

$$SF^{+} = \{ \varphi : \varphi \text{ is a } C_{0}, \infty \} \text{-value} \}$$
 simple for on X ?
 $8F^{+}(X, \alpha)$

Suppose $f \in SF^{+}$ than $\int f d\mu = s \{ \int \varphi d\mu : \varphi \in SF^{+}, \varphi = f \}$ from previous remark.

Detn: Let $f: X \longrightarrow [0, \infty]$ be mble ("let $f \in \alpha^+$ "). Then $\int f d\mu = \sup \{ \int \varphi d\mu : \varphi \in SF^+ \in \varphi \in f \}$

markov's Inequality:

Let
$$f \in a^+$$
 and let $o < y < \infty$.
then $\mu(f \ge y) \le \frac{1}{y} \int f d\mu$

So
$$\int y \mathcal{A} = y \mathcal{A} = \int f dn$$

$$\int \int y \mathcal{A} = \int f dn$$

Papir: Let
$$f \in a^+$$
. Suppose $\int f d\mu < \infty$.
then $\mu(f = \infty) = 0$.

$$\begin{cases}
f = \infty & 0 \le y \le \infty, \\
\begin{cases}
f = \infty & 0 \le y \le y, \\
y = \infty
\end{cases}$$

$$\begin{cases}
f = \infty & 0 \le y \le y, \\
y = \infty
\end{cases}$$

$$\begin{cases}
f = y & 0 \le y \le y, \\
y = \infty
\end{cases}$$

$$\begin{cases}
f = y & 0 \le y, \\
y = \infty
\end{cases}$$

$$\begin{cases}
f = y & 0 \le y, \\
y = \infty
\end{cases}$$

$$\begin{cases}
f = y & 0 \le y, \\
y = \infty
\end{cases}$$

Peopn: Let
$$f \in a^{\dagger}$$
. Then $\int f d\mu = 0$ iff $\mu (f > 0) = 0$.

If (=) Suppose
$$\int f du = 0$$
. Then for $0 < y < \infty$,
 $0 = \mu(f > y) = \frac{1}{y} \int f du = 0$.
So $\mu(f > 0) = \mu(\mathcal{O}_{N=1}^{2} \{f > \frac{1}{n}\}) = \sum_{n=1}^{\infty} \mu(f > \frac{1}{n}) = 0$.

Propose Let
$$f \in A^+$$
. Suppose If $d_A < \infty$. Then $\{f > 0\}$ is of σ -finite μ -measure.

Pf:
$$\{f > 0\} = \bigcup_{N \in \mathbb{N}} \{f \geqslant \frac{1}{n}\}$$
 and for each $n \in \mathbb{N}$, $\mu(f \geqslant \frac{1}{n}) < \infty$.

Proph: Let f∈a+ and c∈ [0,∞].

Ther Scfdu=cfdu

Pf either C=0, occ<00, or c=00.

Case O: propose c=0. Then Cf=0 so S(fdn=0.

and = Ifdn=0 even if Ifdn=0.

Case 1: Suppose $0 < c < \infty$. Thum $\{ \forall e SF^+ : \forall e cf \} - \{ \varphi e SF^+ : \varphi e f \}$. $\forall \varphi e SF^+ : \varphi e f \}$.

Taking the sup gives the result:

Let $t < \int cfdn$. Then for some $\Psi \in SF^+$ with $\Psi \neq cf$, we have $\int \Psi dn > t$. Let $\Psi = \frac{1}{6}\Psi$, so $\int \Psi dn = \int f dn$, so $t < \int \Psi dn = c \int \Psi dn \neq c \int f dn$.

Mris holds $\forall t < \int c f dn$, so $\int c f dn \leq c \int f dn$.

Same thing works the other way.

(ase 2: Suppose $c = \infty$. Then $cf = \infty 1_A$ where $A = \{f > 0\}$.

if $\mu(A) = 0$ then f = 0 a.e. So cf = 0 are, $\int cf d\mu = 0 = c \int f d\mu.$

If $\mu(A) > 0$ turn If $J_{n} > 0$ So C If $J_{n} = \infty$.

And $\int C f J_{n} > n \mu(A) \longrightarrow \infty$ as $n \longrightarrow \infty$, since $n \mid_{A} \leq \infty \mid_{A}$.

recall if f=0 a.e. then Ithm.

Let
$$\varphi \in SF^+$$
 with $\varphi \in f$. for each $y = 0$, $\{\varphi = y\} \subseteq \{f > 0\}$, so $\mu(\varphi = y) = 0$, So $\int \varphi d\mu = 0$, So $\int f d\mu = \sup_{x \in S} 0 = 0$.

Propos Let
$$f \in A^+$$
, let $A, B \in A$ with $A \cap B = \emptyset$.

then $\int_{A \cup B} f \, dn = \int_{A} f \, dn + \int_{B} f \, dn$

(Recall that $\int_{E} f \, dn = \int_{A} f \cdot 1_{E} \, dn$).

If $1_{AUB} = 1_A + 1_B$. Let $Y \in SF^{\dagger}$ with $Y = 1_{AUB}f$.

Let $Y_1 = 1_A Y$ and $Y_2 = 1_B Y$. Then $Y_1, Y_2 \in SF^{\dagger}$ a $Y_1 = 1_A f$, $Y_2 \in 1_B f$,

and $Y_1 + Y_2 - Y_1 = 1_B f$.

$$\int Y dn = \int Y_1 dn + \int Y_2 dn \leq \int |A + dn| + \int |B + dn|$$
So
$$\int_{A \cap B} f dn \leq \int_{A} f dn + \int_{B} f dn.$$

Now reprove >. I'f laug flu = 00, we are lone.

Suppose Saus Folm < 00. Thun Safdin , Safdin < 50.

Let €>0. for some 4, 42 e SF+ w/ 4, ≤ 1, f, g ≤ 1, f,

we have \$\int \land \lan

het $\varphi = \varphi_1 + \varphi_2$. Then $\varphi = 1_{A \cup B} f$, and $\int \varphi dn > \int_A f dn + \int_B f dn - \varepsilon$.

80 Sfdn > SAfdn + SBfdn.

Let $f_1, f_2, \dots \in a^+$ with $f_n 1 f$.

Then Ifn du 1 Ifdu.