Prova di Ottimizzazione Combinatoria

19 Giugno 2013

Cognome	
Nome	
Matricola	

Esercizio 1

Dato un grafo non orientato G = (V, E), |V| = n, sia $U = \{c_1, ..., c_n\}$ l'insieme di n colori e sia \Im la famiglia dei sottoinsiemi X di U tale che X è una colorazione ammissibile per i nodi di G (una colorazione è ammissibile se essa permette di colorare i nodi del grafo in modo tale che nodi adiacenti abbiano colori diversi).

- a) La coppia (U, \mathfrak{I}) è subclusiva? Giustificare la risposta oppure fornire un controesempio.
- b) La coppia (U, \mathfrak{I}) soddisfa la proprietà di scambio? Giustificare la risposta oppure fornire un controesempio.
- c) Supponendo di associare un costo a ciascun colore, come si comporta l'algoritmo Greedy sul problema di determinare la colorazione ammissibile di costo minimo per *G*?

Esercizio 2

Si consideri il grafo in figura ed il matching corrente M={(1,4), (2,3), (6,7)}.

- 1. Dire se *M* è un matching massimale o massimo, motivando la risposta.
- 2. Nel caso non sia massimo, se possibile, applicare l'algoritmo per il calcolo del matching ottimo (spiegare nel dettaglio i passi dell'algoritmo utilizzato).
- 3. Se possibile, calcolare il minimo insieme trasversale (spiegare nel dettaglio i passi dell'algoritmo utilizzato).

Esercizio 3

Dato il seguente problema di Knapsack 0-1

$$\max 36x_1 + 15x_2 + 3x_3 + 5x_4 + 11x_5 - 30x_6$$

$$12x_1 + 6x_2 + 2x_3 + 3x_4 + 5x_5 - 9x_6 \le 8$$

$$x \in \{0, 1\}^6$$

applicare l'algoritmo di Branch-and-bound per determinare il vettore soluzione ottimo ed il suo valore.

Esercizio 4

Dire se la seguente matrice è totalmente unimodulare motivando la risposta.

$$M = \begin{pmatrix} -1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

Prova di Ottimizzazione Combinatoria

19 Giugno 2013

Cognome	
Nome	
Matricola	

Esercizio 5

La seguente matrice è una matrice delle distanze di un'istanza del problema del Commesso Viaggiatore.

	A	В	С	D	E
A	-	6	5,2	10	8
В	6	-	4,8	8	10
C D E	5,2	4,8	-	4,8	5,2
D	5,2 10	8	4,8	1	6
E	8	10	5,2	6	_

Calcolare un lower bound per il valore del ciclo hamiltoniano ottimo applicando l'algoritmo di Held e Karp per un massimo di due iterazioni.

Domanda

- 1. Dare la definizione di matching su un grafo e fornire un esempio grafico.
- 2. Formulare tramite la Programmazione Lineare Intera $\{0,1\}$ il problema di determinare il massimo matching su un grafo G = (V, E).
- 3. Scrivere il duale del rilassamento lineare del problema intero formulato. Quale interpretazione combinatoria ha il problema duale?