AMENDMENTS TO THE CLAIMS

WHAT IS CLAIMED IS:

1. (Original): A compound of the formula (I)

wherein

A-B is -CH=CH- or -CH2-CH2-;

n is 0 or 1;

R₁ is C₁-C₁₂alkyl, C₃-C₈cycloalkyl or C₂-C₁₂alkenyl;

R₂ and R₃ are either,

(i) independently from each other, -Q, -C(=Y)-Q, -C(=Y)-Q, $-C(=Y)-N(R_6)-Q$, $-SO_2Q$, $-SO_2N(R_6)Q$ or CN; or

(ii) together with the nitrogen atom to which they are bound form a three- to ten-membered ring, which may be monocyclic or bicyclic, which may be saturated or unsaturated, and that may contain, in addition to the aforesaid nitrogen atom, one to two hetero atoms selected from the group consisting of N, O and S, and which is either unsubstituted or independently of one another mono- to pentasubstituted with substituents selected from OH, =O, SH, =S, halogen, CN, SCN, N₃, NO₂, aryl, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, C₁-C₁₂alkoxy, C₃-C₈cycloalkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂cycloalkylthio, C₁-C₁₂haloalkylthio, C₁-C₆alkenyl, C₂-C₆alkenyloxy, C₂-C₆haloalkenyloxy, C₂-C₆haloalkenyloxy, C₂-C₆haloalkylsulfinyl, C₃-C₆haloalkylsulfinyl, C₃-C₆haloalkenylsulfinyl, C₃-C₆haloalkenylsulfinyl, C₁-C₆alkylsulfinyl, C₂-C₆haloalkenylsulfinyl, C₃-C₆haloalkenylsulfinyl, C₃-C₆haloalkylsulfinyl, C₃-C₆haloalkylsulfonyl, C₃-C₆haloalkylsulfonyl, C₃-C₆haloalkylsulfonyl, C₃-C₆haloalkylsulfonyl, C₃-C₆haloalkenylsulfonyl, C₃-C₆haloalkenylsulfonyl, C₃-C₆haloalkenylsulfonyl, C₄-C₆haloalkenylsulfonyl, C₆-C₆haloalkenylsulfonyl, C₆-C₆haloalkenylsulfonyl, C₆-C₆haloalkenylsulfonyl, C₇-C₆haloalkenylsulfonyl, C₈-C₆haloalkenylsulfonyl, C₈-C₆haloalkenylsulfo

trialkylsilyl; $-C(=O)R_7$, $-O-C(=O)-R_8$, $-NH-C(=O)-R_8$ and $-N(R_9)_2$, wherein the two R_9 are independent of each other; or

(iii) together are $=C(R_4)R_5$;

 R_4 and R_5 are, independently from each other, -Q, -C(=Y)-Q, -C(=Y)-O-Q, -C(=Y)-N(R_6)-Q, -SO₂Q, -SO₂N(R_6)Q or CN; or

 R_4 and R_5 are together with the carbon atom to which they are bound, a three- to tenmembered alkylene or a four- to seven-membered alkenylene bridge, wherein one CH_2 group in the alkylene or alkenylene may have been replaced by O, S or NR_9 , and which is unsubstituted or mono to tri-substituted;

Y is O or S;

 R_6 is H, C_1 - C_8 alkyl, C_3 - C_8 cycloalkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, phenyl, benzyl or -C(=O) R_7 ;

Q is H, unsubstituted or mono- to pentasubstituted C_1 - C_{12} alkyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkenyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkynyl, unsubstituted or mono- to pentasubstituted or mono- to pentasubstituted or mono- to pentasubstituted C_5 - C_{12} -cycloalkenyl, unsubstituted or mono- to pentasubstituted aryl, or unsubstituted or mono- to pentasubstituted heterocyclyl;

and wherein the substituents of the alkyl, alkenyl, alkynyl, alkylene, alkenylene, cycloalkyl, cycloalkenyl, aryl and heterocyclyl radicals mentioned under Q, R2, R3, R4, R5 and R6 are selected from the group consisting of OH, =O, SH, =S, halogen, CN, SCN, SF₅, N₃, NO₂, aryl, C₃-C₈cycloalkyl, C₁-C₁₂haloalkyl, C₃-C₈halocycloalkyl, C₁-C₁₂alkoxy, C₃-C₈cycloalkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂cycloalkylthio, C₁-C₁₂haloalkylthio, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆-alkoxy-C₁-C₆-alkoxy, C₂-C₈alkenyl, C₂-C₆alkenyloxy, C₂-C₆haloalkenyl, C₂-C₆haloalkenyloxy, C₂-C₈alkynyl, C₂-C₆haloalkynyl, C₃-C₆alkynyloxy, C₃-C₆haloalkynyloxy, C_2 - C_6 alkenylthio, C_2 - C_6 haloalkenylthio, C_1 - C_6 alkylsulfinyl, C_3 - C_8 cycloalkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_3 - C_6 halocycloalkylsulfinyl, C_2 - C_6 alkenylsulfinyl, C_2 - C_6 haloalkenylsulfinyl, C₁-C₆alkylsulfonyl, C₃-C₈cycloalkylsulfonyl, C₁-C₆haloalkylsulfonyl, C₃-C₈halocycloalkylsulfonyl C₂-C₆alkenylsulfonyl, C₂-C₆haloalkenylsulfonyl, phenoxy, phenyl-C₁-C₆alkyl, trialkylsilyl; $-C(=O)R_7$, $-O-C(=O)-R_8$, $-NH-C(=O)-R_8$, $-N(R_9)_2$, wherein the two R_9 are independent of each other, aryl, benzyl, heterocyclyl, aryloxy, benzyloxy, heterocyclyloxy, arylthio, benzylthio and heterocyclylthio; wherein the aryl, heterocyclyl, aryloxy, benzyloxy, heterocyclyloxy, arylthio, benzylthio and heterocyclylthio radicals are unsubstituted or, depending on the possibilities of substitution on the ring, are mono- to pentasubstituted by substituents selected from the group

consisting of OH, =O, SH, =S, halogen, CN, NO₂, C_1 - C_{12} alkyl, C_1 - C_{12} hydroxyalkyl, C_3 - C_8 cycloalkyl, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkoxy, C_1 - C_{12} haloalkoxy, C_1 - C_{12} alkylthio, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, dimethylamino- C_1 - C_6 alkoxy, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, phenoxy, phenyl- C_1 - C_6 alkyl; methylenedioxy, -C(=O)R₇, -O-C(=O)-R₈, -NH-C(=O)R₇, -N(R₉)₂, wherein the two R₉ are independent of each other; C_1 - C_6 alkylsulfinyl, C_3 - C_8 cycloalkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_3 - C_8 halocycloalkylsulfonyl, C_1 - C_6 haloalkylsulfonyl and C_3 - C_8 halocycloalkylsulfonyl;

 R_7 is H, OH, SH, -N(R_9)₂, wherein the two R_9 are independent of each other, C_1 - C_{24} alkyl, C_2 - C_{12} alkenyl, C_1 - C_8 hydroxyalkyl, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkoxy, C_1 - C_1 2haloalkoxy, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy, benzyloxy, benzyloxy, heterocyclyloxy; or aryl, benzyl, heterocyclyl, aryloxy, benzyloxy, which are mono- to trisubstituted in the ring independently of one another by halogen, nitro, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkyl or C_1 - C_6 haloalkoxy;

R₈ is H; C₁-C₆alkyl, which is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, hydroxy and cyano; C₁-C₈-cycloalkyl, aryl, benzyl, heteroaryl; or aryl, benzyl or heteroaryl, which, depending on the possibilities of substitution on the ring, are mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂alkoxy, C₁-C₁₂haloalkylthio; and

 R_9 is H; C_1 - C_6 alkyl, which is optionally substituted with one to five substituents selected from the group consisting of halogen, C_1 - C_6 alkoxy, hydroxy and cyano; C_1 - C_8 -cycloalkyl, aryl, benzyl, heteroaryl; or aryl, benzyl or heteroaryl, which, depending on the possibilities of substitution on the ring, are mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO_2 , C_1 - C_{12} alkyl, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkoxy, C_1 - C_{12} alkoxy, C_1 - C_{12} haloalkylthio;

or, if appropriate, an E/Z isomer, E/Z isomer mixture and/or tautomer thereof, in each case in fro form or in salt form.

- 2. (Currently Amended): A pesticide <u>composition</u> which contains at least one compound of the formula (I) as described in claim 1 as active compound and at least one auxiliary.
- 3. (Currently Amended): A method for controlling pests wherein comprising applying a composition as described in claim 2 is applied to the pests or their habitat.

- 4. (Currently Amended): A process for preparing a composition as described in claim 2 which contains at least one auxiliary, wherein the active compound is mixed intimately and/or ground with the auxiliary(s) comprising intimately mixing and/or grinding the active compound with at least one auxiliary.
 - 5. (Cancelled).
 - 6. (Cancelled).
- 7. (Currently Amended): A method according to claim 3 for protecting plant propagation material, wherein the propagation material or the location where the propagation material is planted is treated, comprising applying a composition as described in claim 2.
 - 8. (Original): Plant propagation material treated in accordance with the method described in claim 7.