Algoritma Kriptografi Klasik (Bagian 1)

Bahan kuliah IF4020 Kriptografi

Pendahuluan

- Algoritma kriptografi klasik berbasis karakter
- Menggunakan pena dan kertas saja, belum ada komputer
- Termasuk ke dalam kriptografi kunci-simetri
- Tiga alasan mempelajari algoritma klasik:
 - 1. Memahami konsep dasar kriptografi.
 - 2. Dasar algoritma kriptografi modern.
 - 3. Memahami kelemahan sistem cipher.

- Algoritma kriptografi klasik disusun oleh dua teknik dasar:
 - 1. Teknik substitusi: mengganti huruf plainteks dengan huruf cipherteks.
 - 2. Teknik transposisi: mengubah susunan/posisi huruf plainteks ke posisi lainnya.
- Oleh karena itu, dikenal dua macam algoritma kriptografi klasik:
 - 1. Cipher Substitusi (Substitution Ciphers)
 - 2. Cipher Transposisi (Transposition Ciphers)

Cipher Substitusi

- Contoh: Caesar Cipher
- Tiap huruf alfabet digeser 3 huruf ke kanan

 p_i : A B C D E F G H I J K L M N O P Q R S T U V W X Y Z c_i : D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Contoh:

Plainteks: AWASI ASTERIX DAN TEMANNYA OBELIX

■Caesar wheel

Dalam praktek, cipherteks dikelompokkan ke dalam kelompok n-huruf, misalnya kelompok 4-huruf:

Semula: DZDVL DVWHULA GDQ WHPDQQBA REHOLA

Menjadi: DZDV LDVW HULA GDQW HPDQ QBAR EHOL A

Atau membuang semua spasi:

DZDVLDVWHULAGDQWHPDQQBAREHOLA

Tujuannya agar kriptanalisis menjadi lebih sulit

 $\blacksquare \quad \text{Misalkan,} \quad A = 0,$

$$B = 1$$
,

$$C = 2$$
,

• • •

$$Z = 25$$

maka, Caesar Cipher dirumuskan secara matematis:

Enkripsi: $c_i = E(p_i) = (p_i + 3) \mod 26$

Dekripsi: $p_i = D(c_i) = (c_i - 3) \mod 26$

Ket: p_i = karakter plainteks ke-i c_i = karakter cipherteks ke-i

Plainteks: AWASI ASTERIX DAN TEMANNYA OBELIX

- $p_1 = A' = 0 \rightarrow c_1 = E(0) = (0+3) \mod 26 = 3 = D'$
- $p_2 = \text{`W'} = 22 \implies c_2 = E(22) = (22 + 3) \mod 26 = 25 = \text{`Z'}$
- $p_3 = \text{`A'} = 0 \implies c_3 = E(0) = (0+3) \mod 26 = 3 = \text{`D'}$
- $p_4 = \text{`S'} = 18 \implies c_4 = E(18) = (18 + 3) \mod 26 = 21 = \text{`V'}$
- $p_5 = \text{`I'} = 8 \rightarrow c_4 = E(8) = (8+3) \text{ mod } 26 = 11 = \text{`L'}$
- dst...

ENKRIPSI

Plainteks: AWASI ASTERIX DAN TEMANNYA OBELIX

$$p_1 = A' = 0 \rightarrow c_1 = E(0) = (0+3) \mod 26 = 3 = D'$$

$$p_2 = \text{`W'} = 22 \implies c_2 = E(22) = (22 + 3) \mod 26 = 25 = \text{`Z'}$$

$$p_3 = \text{`A'} = 0 \implies c_3 = E(0) = (0+3) \mod 26 = 3 = \text{`D'}$$

$$p_4 = \text{`S'} = 18 \implies c_4 = E(18) = (18 + 3) \mod 26 = 21 = \text{`V'}$$

$$p_5 = \text{`I'} = 8 \Rightarrow c_4 = E(8) = (8+3) \text{ mod } 26 = 11 = \text{`L'}$$

■ dst...

DEKRIPSI

- $c_1 = D' = 3 \rightarrow p_1 = D(3) = (3-3) \mod 26 = 0 = A'$
- $c_2 = 'Z' = 25 \rightarrow p_2 = D(22) = (25 3) \text{ mod } 26 = 22 = 'W'$
- $c_3 = D' = 3 \rightarrow p_3 = D(3) = (3-3) \mod 26 = 0 = A'$
- **.**..
- $c_{12} = \text{`A'} = 0 \Rightarrow p_{12} = D(0) = (0-3) \mod 26 = -3 \mod 26 = 23 = \text{`X'}$ Keterangan: $-3 \mod 26$ dihitung dengan cara $|-3| \mod 26 = 3$, sehingga $-3 \mod 26 = 26 3 = 23$
- Plainteks: AWASI ASTERIX DAN TEMANNYA OBELIX

I Jika pergeseran huruf sejauh k, maka:

Enkripsi:
$$c_i = E(p_i) = (p_i + k) \mod 26$$

Dekripsi: $p_i = D(c_i) = (c_i - k) \mod 26$
 $k = \text{kunci rahasia}$

Untuk 256 karakter ASCII, maka:

Enkripsi:
$$c_i = E(p_i) = (p_i + k) \mod 256$$

Dekripsi: $p_i = D(c_i) = (c_i - k) \mod 256$
 $k = \text{kunci rahasia}$

Kelemahan:

Caesar cipher mudah dipecahkan dengan exhaustive key search karena jumlah kuncinya sangat sedikit (hanya ada 26 kunci).

Contoh: kriptogram XMZVH

Tabel 1. Contoh *exhaustive key search* terhadap cipherteks XMZVH

Kunci (k)	'Pesan' hasil	Kunci (k)	'Pesan' hasil	Kunci (k)	'Pesan' hasil
ciphering	dekripsi	ciphering	dekripsi	ciphering	dekripsi
0	XMZVH	17	GVIEQ	8	PERNZ
25	YNAWI	16	HWJFR	7	QFSOA
24	ZOBXJ	15	IXKGS	6	RGTPB
23	APCYK	14	JYLHT	5	SHUQC
22	BQDZL	13	KZMIU	4	TIVRD
21	CREAM	12	LANJV	3	UJWSE
20	DSFBN	11	MBOKW	2	VKXTF
19	ETGCO	10	NCPLX	1	WLYUG
18	FUHDP	9	ODQMY		

Plainteks yang potensial adalah CREAM dengan k = 21. Kunci ini digunakan untuk mendekripsikan cipherteks lainnya.

PHHW PH DIWHU WKH WRJD SDUWB

KEY

- 1 oggv og chvgt vjg vqic rctva
- 2 nffu nf bgufs uif uphb qbsuz
- 3 meet me after the toga party
- 4 Ldds ld zesdq sgd snfz ozqsx
- 5 kccr kc ydrcp rfc rmey nyprw
- 6 ...
- 21 ummb um inbmz bpm bwoi xizbg
- 22 tlla tl hmaly aol avnh whyaf
- 23 skkz sk glzkx znk zumg vgxze
- 24 rjjy rj fkyjw ymj ytlf ufwyd
- 25 qiix qi ejxiv xli xske tevxc

Cipherteks: VIVBQ SQBI SMBMUC LQ ICTI

k	Hasil dekripsi				
0	vivbq	sqbi	smbmuc	lq	icti
1	uhuap	rpah	rlaltb	kp	hbsh
2	tgtzo	qozg	qkzksa	jo	garg
3	sfsyn	pnyf	pjyjrz	in	fzqf
4	rerxm	omxe	oixiqy	hm	eype
5	qdqwl	nlwd	nhwhpx	gl	dxod
6	pcpuk	mkvc	mgvgow	fk	cwnc
7	obouj	ljub	lfufnu	еj	bvmb
8	nanti	kita	ketemu	di	aula
9	mzmsh	jhsz	jdsdlt	ch	ztkz
10	lylrg	igry	icrcks	bg	ysjy
11	kxkqf	hfqx	hbqbjr	af	xrix
12	jwjpe	gepw	gapaiq	ze	wqhw
13	iviod	fdov	fzozhp	yd	vpgv
14	huhnc	ecnu	eynygo	ХC	uofu
15	gtgmb	dbmt	dxmxfn	wb	tnet
16	fsfla	cals	cwlwem	va	smds
17	erekz	bzkr	bvkvdl	uz	rlcr
18	dqdjy	ayjq	aujuck	tу	qkbq
19	cpcix	zxip	ztitbj	SX	pjap
20	bobhw	ywho	yshsai	rw	oizo
21	anagv	xvgn	xrfqyg	pu	mgxm
22	xmzfu	wufm	wqfqyg	pu	mgxm
23	ylyet	vtel	vpepxf	ot	lfwl
24	xkxds	usdk	uodowe	ns	kevk
25	wjwcr	trcj	tncnvd	mr	jduj

Contoh: Misalkan kriptogram **HSPPW** menghasilkan dua kemungkinan kunci yang potensial, yaitu:

k = 4 menghasilkan pesan DOLLS

k = 11 menghasilkan WHEEL.

Nilai k mana yang benar?

Jika kasusnya demikian, maka lakukan dekripsi terhadap potongan cipherteks lain tetapi cukup menggunakan k = 4 dan k = 11 agar dapat disimpulkan kunci yang benar.

■ Di dalam sistem operasi Unix, ROT13 adalah fungsi menggunakan *Caesar cipher* dengan pergeseran k = 13

- Contoh: ROT13 (ROTATE) = EBGNGR
- Nama "ROT13" berasal dari net.jokes (hhtp://groups.google.com/group/net.jokes) (tahun 1980)
- ROT13 biasanya digunakan di dalam forum *online* untuk menyandikan jawaban teka-teki, kuis, canda, dsb
- Enkripsi arsip dua kali dengan ROT13 menghasilkan pesan semula:

$$P = ROT13 (ROT13 (P))$$

sebab $ROT_{13} (ROT_{13} (x)) = ROT_{26} (x) = x$

■ Jadi dekripsi cukup dilakukan dengan mengenkripsi cipherteks kembali dengan ROT13

Jenis-jenis Cipher Substitusi

- 1. Cipher abjad-tunggal (monoalphabetic cipher)
- 2. Cipher substitusi homofonik (Homophonic substitution cipher)
- 2. Cipher abjad-majemuk (Polyalpabetic substitution cipher)
- 3. Cipher substitusi poligram (Polygram substitution cipher)

Cipher abjad-tunggal (monoalphabetic cipher)

Satu huruf di plainteks diganti dengan satu huruf yang bersesuaian.

Contoh: Caesar Cipher

Jumlah kemungkinan susunan huruf-huruf cipherteks yang dapat dibuat pada sembarang cipher abjad-tunggal adalah sebanyak

26! = 403.291.461.126.605.635.584.000.000

■ Tabel substitusi dapat dibentuk secara acak:

Plainteks: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Cipherteks: D I Q M T B Z S Y K V O F E R J A U W P X H L C N G

Atau dengan kalimat yang mudah diingat:

Contoh: we hope you enjoy this book

Buang duplikasi huruf: wehopyunjtisbk

Sambung dengan huruf lain yang belum ada:

wehopyunjtisbkacdfglmqrvxz

Tabel substitusi:

Plainteks: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Cipherteks: W E H O P Y U N J T I S B K A C D F G L M Q R V X Z

Cipher Substitusi Homofonik

(Homophonic substitution cipher)

- Setiap huruf plainteks dipetakan ke dalam salah satu huruf atau pasangan huruf cipherteks yang mungkin.
- Tujuan: menyembunyikan hubungan statistik antara plainteks dengan cipherteks
- Fungsi *ciphering* memetakan satu-ke-banyak (*one-to-many*).

```
Misal: huruf E \rightarrow AB, TQ, YT, UX (homofon) huruf B \rightarrow EK, MF, KY (homofon)
```

Contoh: Sebuah teks dengan frekuensi kemunculan huruf sbb:

■ Huruf E muncul 13 % → dikodekan dengan 13 huruf homofon

Huruf	
Plainteks	Pilihan untuk unit cipherteks
A	BU, TX, YR, MB, OP, TF, QA
В	ER, FY
C	IU, CW, PL
D	NQ, VT, OA, GP
E	ZX, BR, JO, EW, HT, KC, ND, SO, BO, VE, KL, JU, HR
F	EP, MS
G	TW, HL
H	OU, HE, JK, AT, KY, IQ
I	GT, UA, CN, HI, WO, ZF, FI
J	OC
K	LV
L	TY, JO, DR, ML
M	GR, KU
N	BE, TF, XO, LG, PS, CD, IE
O	YA, HU, VS, KP, BD, JZ, OL
P	IR, JA
Q	SP
R	UL, XP, TA, RL, LW, DO
S	EQ, IF, TK, PN, GL, TA
T	SI, GD, KI, MA, EL, ET, MS, MT, TL
U	FA, BI, SF
V	GM
W	TG, AS
X	FI, TM
Y	SR, DS
Z	AR

- Unit cipherteks mana yang dipilih diantara semua homofon ditentukan secara acak.
- Contoh:

Plainteks: KRIPTO

Cipherteks: DI CE AX AZ CC DX

- Enkripsi: satu-ke-banyak
- Dekripsi: satu-ke-satu
- Dekripsi menggunakan tabel homofon yang sama.

Cipher Abjad-Majemuk

(Polyalpabetic substitution cipher)

- Cipher abjad-tunggal: satu kunci untuk semua huruf plainteks
- Cipher abjad-majemuk: setiap huruf menggunakan kunci berbeda.
- Cipher abjad-majemuk dibuat dari sejumlah cipher abjad-tunggal, masing-masing dengan kunci yang berbeda.
- Contoh: Vigenere Cipher (akan dijelaskan pada kuliah selanjutnya)

■ Plainteks:

$$P = p_1 p_2 \dots p_m p_{m+1} \dots p_{2m} \dots$$

Cipherteks:

$$E_k(P) = f_1(p_1) f_2(p_2) \dots f_m(p_m) f_{m+1}(p_{m+1}) \dots f_{2m}(p_{2m}) \dots$$

• Untuk m = 1, cipher-nya ekivalen dengan cipher abjad-tunggal.

Contoh: (spasi dibuang)

P: KRIPTOGRAFIKLASIKDENGANCIPHERALFABETMAJEMUK

K: LAMPIONLAMPIONLAMPIONLAMPIONLAMPIONL

C: VRUEBCTCARXSZNDIWSMBTLNOXXVRCAXUIPREMMYMAHV

Perhitungan:

$$(K + L) \mod 26 = (10 + 11) \mod 26 = 21 = V$$

 $(R + A) \mod 26 = (17 + 0) \mod 26 = 17 = R$
 $(I + M) \mod 26 = (8 + 12) \mod 26 = 20 = U$
dst

Contoh 2: (dengan spasi)

P: SHE SELLS SEA SHELLS BY THE SEASHORE

K: KEY KEYKE YKE YKEYKE YK EYK EYKEYKEY

C: CLC CIJVW QOE QRIJVW ZI XFO WCKWFYVC

Cipher substitusi poligram

(Polygram substitution cipher)

- Blok huruf plainteks disubstitusi dengan blok cipherteks.
- Misalnya AS diganti dengan RT, BY diganti dengan SL
- Jika unit huruf plainteks/cipherteks panjangnya 2 huruf, maka ia disebut digram (*biigram*), jika 3 huruf disebut ternari-gram, dst
- Tujuannya: distribusi kemunculan poligram menjadi *flat* (datar), dan hal ini menyulitkan analisis frekuensi.
- Contoh: Playfair cipher (akan dijelaskan pada kuliah selanjutnya)

Cipher Transposisi

- Cipherteks diperoleh dengan mengubah posisi huruf di dalam plaintekls.
- Dengan kata lain, algoritma ini melakukan transpose terhadap rangkaian huruf di dalam plainteks.
- Nama lain untuk metode ini adalah **permutasi**, karena *transpose* setiap karakter di dalam teks sama dengan mempermutasikan karakter-karakter tersebut.

Contoh: Misalkan plainteks adalah

DEPARTEMEN TEKNIK INFORMATIKA ITB

Enkripsi:

DEPART

EMENTE

KNIKIN

FORMAT

IKAITB

Cipherteks: (baca secara vertikal)

DEKFIEMNOKPEIRAANKMIRTIATTENTB

DEKF IEMN OKPE IRAA NKMI RTIA TTEN TB

Dekripsi: Bagi panjang cipherteks dengan kunci.

(Pada contoh ini, 30 / 6 = 5)

DEKFI

EMNOK

PEIRA

ANKMI

RTIAT

TENTB

Plainteks: (baca secara vertikal)

DEPARTEMEN TEKNIK INFORMATIKA ITB

- Contoh lain: Plainteks: ITB GANESHA SEPULUH
- Bagi menjadi blok-blok 8-huruf. Jika < 8, tambahkan huruf palsu.

■ Cipherteks: STBAGNEIUASPEULHGABDCEFH

Contoh lain. Misalkan plainteks adalah

CRYPTOGRAPHY AND DATA SECURITY

Plainteks disusun menjadi 3 baris (k = 3) seperti di bawah ini:

maka cipherteksnya adalah

CTAAAEIRPORPYNDTSCRTYGHDAUY

Super-enkripsi

- Menggabungkan cipher substitusi dengan cipher transposisi.
- Contoh. Plainteks HELLO WORLD
- dienkripsi dengan caesar cipher menjadi KHOOR ZRUOG kemudian hasil enkripsi ini dienkripsi lagi dengan cipher transposisi (k = 4):
 - KHOO
 - RZRU
 - OGZZ

Cipherteks akhir adalah: KROHZGORZOUZ