Software Quality Engineering

Testing, Quality Assurance, and Quantiable Improvement

Tian Siyuan tiansiyuan@gmail.com

Chapter 20. Defect Classification and Analysis

- · General Types of Defect Analyses
- ODC: Orthogonal Defect Classification
- Analysis of ODC Data

Defect Analysis

· Goal:

(actual/potential) defect decrease or quality improve in current and future products

- · General defect analyses
 - Questions: what/where/when/how/why?
 - · Distribution/trend/causal analyses
- · Analyses of classified defect data
 - Prior: defect classification
 - · Use of historical baselines
 - Attribute focusing in 1-way and 2-way analyses
 - Tree-based defect analysis (Chapter 21)

Defect in Quality Data/Models

- · Defect data is part of quality measurement data
 - · As part of direct Q data
 - · Extracted from defect tracking tools
 - Additional (defect classification) data may be available
- · Defect data in quality models
 - · As results in generalized models (GMs)
 - As r.v. (response/independent variable) in product specific models
 - semi-customized models ~= GMs,
 - observation-based: r.v. in SRGMs,
 - predictive: r.v. in TBDMs
 - (SRGMs/TBDMs in Chapter 22/21.)

General Defect Analysis

- · General defect analyses: Questions
 - What? identification (and classification)

- type, severity, etc.,
- even without formal classification
- · Where? distribution across location
- When? discovery/observation
 - what about when injection? harder
 - pre-release: more data
 - post-release: more meaningful/sensitive
- · How/why? related to injection
 - => use in future defect prevention
- · General defect analyses: Types
 - Distribution by type or area
 - Trend over time
 - Causal analysis
 - o Other analysis for classified data

Defect Analysis: Data Treatment

- · Variations of defect data
 - Error/fault/failure perspective
 - Pre-/post-release
 - · Unique defect?
 - · Focus here: defect fixes
- Why defect fixes (DF)
 - Propagation information
 - · Close ties to effort (defect fixing)
 - Pre-release: more meaningful

(post release: each failure occurrence.)

Defect Distribution Analysis

- Distribution: what, where, etc
- · What: Distribution over defect types
 - Ties to quality views/attributes (Chapter 2)
 - Within specific view: types/sub-types
 - Defect types (product's "domain"
 - IBM example: CUPRIMDSO
- Important observation
 - Skewed distribution, or 80:20 rule
 - => importance of risk identification for effective quality improvement
 - · Early indicators needed!

(Cannot wait after defect discoveries.)

• Web example: Table 20.1 (p.341)

Error	Description	# of
Type		Errors
A	permission denied	2079
В	no such file or directory	14
C	stale NFS file handle	4
D	client denied by server config.	2
E	file does not exist	28631
F	invalid method in request	0
G	invalid URL in req. connection	1
Н	mod_mime_magic	1
I	request failed	1
J	script not found or unable to start	27
K	connection reset by peer	0
all typ	30760	

- defect = "error" in web community
- dominance of type E "missing files"
- type A: further information needed
- all other types: negligible
- Further analysis of web example above
 - for dominant type E "missing files"
 - web error distribution by file type
 - Table 20.2 (p.342)
 - again, skewed distribution!

Туре	Errors	%
.gif	12489	43.62
.class	4913	17.16
directory	4425	15.46
.html	3656	12.77
.jpg	1323	4.62
other	394	1.38
All	28631	100

DF=	0	1	2	3	4	5	6
module #	771	174	102	63	31	29	23
%	58.8	13.4	7.9	4.9	2.4	2.2	1.8
DF sum	0	174	204	189	124	145	138
%	0	7.4	8.6	8.0	5.2	6.1	5.8

(Table 20.3 continued...)

DF=	7	8	9	10-19	20-37	all
module #	25	16	7	50	14	1295
%	1.9	1.2	0.5	3.9	1.1	100
DF sum	175	128	63	673	417	2367
%	7.4	5.0	2.7	28.4	17.6	100

- Where: Distribution over locations
 - o commonly by product areas
 - sub-product/module/procedure/etc
 - IBM-LS: Table 20.3 (p.342) above
 - o again, skewed distribution

DF =	0	1	2	3	4	5	6
module #	23	131	112	120	99	94	68
%	2.3	13.2	11.3	12.1	9.9	9.4	6.8
DF sum	0	131	224	360	396	470	408
%	1.67	2.86	4.60	5.06	6.01	5.21	4.47

(Table 20.4 continued...)

(
DF =	7	8	9	10-19	20-49	>50	all
module #	50	38	32	147	68	13	995
%	5.0	3.8	3.2	14.8	6.8	1.3	100
DF sum	350	304	288	2109	2040	910	7824
%	3.89	3.68	3.07	26.96	26.07	11.63	100

- IBM-NS: Table 20.4 (p.343) above
 - yet another skewed defect distribution
- Extension: distribution by other locators
 - e.g., types of sources or code, etc

Defect Trend Analysis

- Trend as a continuous function
 - Similar to Putnam model (Chapter 19)
 - but customized with local data
 - Other analysis related to SRE
 - defect/effort/reliability curves
 - more in Chapter 22 and related references
- Sometimes discrete analysis may be more meaningful (see below)
- · Defect dynamics model

- · Important variation to trend analysis
- · Defect categorized by phase
- Discovery (already done)
- · Analysis to identify injection phase

Inj.	Removal Phase						
Phase	R	S	D	С	Т	Р	All
Requirements	10	22	8	0	5	2	47
Specification		10	20	2	0	1	33
Design			52	120	32	5	209
Coding				198	320	46	564
Testing					58	7	65
Post-release						2	2
All	10	32	80	320	415	63	920

- Defect dynamics model: Table 20.5 (p.344)
 - o row: where (phase) injected
 - o column: where (phase) removed/discovered
 - o focus out-of-phase/off-diagonal ones!

Defect Causal Analysis

- · Defect causal analyses: Types
 - · Causal relation identified
 - error-fault vs. fault-failure
 - works backwards
 - · Techniques: statistical or logical
- Root cause analysis (logical)
 - Human intensive
 - Good domain knowledge
 - Fault-failure: individual and common
 - Error-fault: project-wide effort focused on pervasive problems
- Statistical causal analysis
- risk identification techniques in Chapter 21

ODC: Overview

- Development
 - Chillarege et al. at IBM
 - Applications in IBM Labs and several other companies
 - Recent development and tools
- · Key elements of ODC
 - Aim: tracking/analysis/improve
 - · Approach: classification and analysis
 - Key attributes of defects
 - · Views: both failure and fault

- · Applicability: inspection and testing
- · Analysis: attribute focusing
- · Need for historical data

ODC: Why?

- · Statistical defect models
 - · Quantitative and objective analyses
 - o SRGMs (Chapter 22), DRM (Chapter 19), etc
 - Problems: accuracy & timeliness
- · Causal (root cause) analyses
 - · Qualitative but subjective analyses
 - · Use in defect prevention
- Gap and ODC solution
 - · Bridge the gap between the two
 - · Systematic scheme used
 - Wide applicability

ODC: Ideas

- · Cause-effect relation by type
 - o Different types of faults
 - · Causing different failures
 - · Need defect classification
 - · Multiple attributes for defects
- · Good measurement
 - o Orthogonality (independent view)
 - · Consistency across phases
 - Uniformity across products
- ODC process/implementation
 - · Human classification
 - Analysis method and tools
 - Feedback results (and followup)

ODC: Theory

- Semantic classification
 - o defect classes for a product
 - o related-to/explain process
 - o akin to event measurement
 - sufficient condition
 - spanning set over process
 - formed by defect attributes
- Classification for cause-effect or views
 - o cause: type, trigger, etc
 - o effect: severity, impact, etc
 - o failure vs fault (internal cause) views

- o additional causal-analysis-related: source, where/when injected
- sub-population: environment data

ODC Example

• Table 20.6 (p.347)

Label	Name	Possible values or categories & labels
imp	impact	c=capability, u=usability, p=performance,
		r=reliability, in=installation, ma=maint.,
		im=implementation, mi=migration,
		sec=security, ser=service, std=standard
trig	trigger	i=installation, m=migration, s=stress,
		a=ad-hoc, b=backup, c=communications,
		f=file i/o, co=coexistence,
		e=exception, ss=startup/shutdown,
		hc=h/w config., sc=s/w config.,
		o=normal operation
sev	severity	range from 1 (highest)
1-	wools	to 4 (lowest) in severity
wk	week	week detected, from project start
ftype	fix	s=specification, hld=high-level design,
	type	IId=low-level design, c=code,
		b=build process, o=other product
act	action	a=add, d=delete, c=change
src	code	b=base, v=vendor, n=new, c=changed,
	source	i=incremental, s=scaffolded,
		p=previous defect fix
inj	phase	p=previous release, s=specification,
	injected	hld=high-level design, lld=low-level design,
		<pre>c=coding, ut=unit test, ft=function test,</pre>
		st=system test, d=customer usage

ODC Attributes: Failure-View

- Defect trigger
 - Associated with verification process
 - similar to test case measurement
 - collected by testers
 - Trigger classes
 - product specific
 - black box in nature
 - pre/post-release triggers
- Other attributes
 - Impact: e.g., IBM's CUPRIMDSO

- Severity: low-high (e.g., 1-4)
- o Detection time, etc

ODC Attributes: Cause/Fault-View

- Defect type
 - · Associated with development process
 - Missing or incorrect
 - · Collected by developers
 - · May be adapted for other products
- · Other attributes
 - · Action: add, delete, change
 - · Number of lines changed, etc
- Key attributes
 - Defect source: vendor/base/new code
 - · Where injected
 - When injected
- Characteristics
 - · Associated to additional causal analysis
 - (May not be performed.)
 - Many subjective judgment involved

(evolution of ODC philosophy)

• Phase injected: rough "when"

Adapting ODC for Web Error Analysis

- Continuation of web testing/QA study
- Web error = observed failures, with causes already recorded in access/error logs
- Key attributes mapped to ODC
 - Error type = defect impact
 - types in Table 20.1 (p.341)
 - response code (4xx) in access logs
 - Referring page = defect trigger
 - individual pages with embedded links
 - classified: internal/external/empty
 - focus on internal problems
 - Missing file type = defect source
 - different fixing actions to follow
- May include other attributes for different kinds of web sites

ODC Analysis: Attribute Focusing

- · General characteristics
 - Graphical in nature
 - 1-way or 2-way distribution

- Phases and progression
- · Historical data necessary
- · Focusing on big deviations
- Representation and analysis
 - 1-way: histograms
 - o 2-way: stack-up vs. multiple graphics
 - Support with analysis tools

ODC Analysis Examples

• 1-way analysis: Fig 20.1 (p.349)

- Defect impact distribution for an IBM product
- Uneven distribution of impact areas!
 - => risk identification and focus

- 1-way analysis: Fig 20.2 (p.350)
 - web error trend analysis
 - context: compare to usage (reliability)
 - stable operational reliability

Impact	Severity					
	1	2	3	4		
Capability	2	12	13	1		
Documentation	0	1	14	10		
Installability	0	6	6	4		
Maintainability	0	6	19	7		
Migration	0	0	0	1		
Performance	1	1	3	0		
Reliability	27	96	66	7		
Security	1	3	3	0		
Service	0	0	4	4		
Standards	0	1	2	1		
Usability	0	10	44	19		

- 2-way analysis: Table 20.7 (p.351)
 - Defect impact-severity analysis
 - IBM product study continued
 - Huge contrast: severity of reliability and usability problems!

ODC Process and Implementation

- ODC process
 - Human classification

- defect type: developers,
- defect trigger and effect: testers,
- other information: coordinator/other
- Tie to inspection/testing processes
- Analysis: attribute focusing
- Feedback results: graphical
- Implementation and deployment
 - Training of participants
 - · Data capturing tools
 - Centralized analysis
 - · Usage of analysis results

Linkage to Other Topics

- Development process
 - Defect prevention process/techniques
 - Inspection and testing
- · Testing and reliability
 - Expanded testing measurement
 - Defects and other information
 - Environmental (impact)
 - Test case (trigger)
 - Causal (fault)
 - Reliability modeling for ODC classes