Запись вводного вебинара доступна по ссылке: GO TO WEBINAR.

Содержание

1 Введение 2

Газовые гидраты Конспект лекций и семинаров

Муравцев А.А.¹ Чиглинцева А.С.² 12 апреля 2023 г.

1 Введение

¹конспектирует; email: almuravcev@yandex.ru

²лектор, доктор физико-математических наук, доцент, главный специалист отдела гидродинамических исследований скважин ООО «РН-БашНИПИнефть»

Ocean hydrates at the Barkley Canyon off the coast from Vancouver, CANADA.

Газогидраты

 $(CH_4 \cdot 6H_2O)_{solid} \rightarrow (CH_4)_{gas} + 6(H_2O)_{water}$

Methane Hydrates - A Detailed Overview Author: Christe Marbbn, March 11, 2009

Газогидрат оз. Байкал

 $1.5 \cdot 10^{16} \,\mathrm{m}^3$ Потенциальные ресурсы газа в газогидратах

массовое содержание метана в гидрате G = 0,11-0,13

9 – 12 % поверхности Океана дают положительный прогноз для обнаружения газогидратов

> Эффективно можем отбирать 17-20% - 3*1015 м3

Газогидраты

Твердое кристаллическое вещество, напоминающее снег или рыхлый лед Плотность $\rho_h^0 = 900 \, \kappa z / M^3$; массовое содержание метана $k_g = 0.11$ Удельная теплота разложения $l = 5 \cdot 10^5 \, \text{м}^2/c^2$

Зависимость температуры разложения от давления

$$T_s(p) = T_{s0} + T_* \ln(p/p_{s0})$$

 $(T_{s0}=273K,\;p_{s0}=2,5\,M\Pi a,\;T_*=10\,K\;$ для газогидрата метана)

Фазовая диаграмма системы метан - вода

Газогидрат, оз. Байкал

Молекулярная масса гидрата метана

 $M(CH_4 \cdot 6H_2O) = 16 + 6 \cdot 18 = 124(\Gamma/\text{моль})$

Массовая концентрация газа в составе Массовая концентрация воды в газогидрата

$$G_g = \frac{16}{124} = 0.13$$

$$G_g + G_l = 1$$

$$G_1 = \frac{108}{124} = 0.87$$

Энергетическая выгодность

При разложении 1 кг газогидрата метана выделяется масса газа

$$m_g=Gm_h=0.13\cdot 1=0.13 ext{ (кг)}$$
 $Q_g=m_gq_{CH_4}=0.13\cdot 4\cdot 10^7=5\cdot 10^6 ext{ (Дж)}$

$$Q_h = m_h l_h = 5 \cdot 10^5 (Дж)$$

На разложение гидрата метана требуется около 10% теплоты, выделяющейся при сгорании содержащегося в нем газа

Газогидратное состояние – удобное для хранения газа

Динамика мирового производства энергии

Условие фазового равновесия

$$T_{s}(p) = T_{s0} + T_{s} \ln (p/p_{s0})$$

$$T_{s0} = 273 \text{K}, \ p_{s0} = 2,56 \text{ M}\Pi\text{a},$$

 $T_{\star} \approx 10 \text{ K} \ (\text{T} > 0^{\circ}\text{C}), \ T_{\star} \approx 30 \text{ K} \ (\text{T} < 0^{\circ}\text{C})$

(для газогидрата метана)

Фазовая диаграмма газогидрата метана

Месторождения газогидратов

11

Треть суши, или 27%, и более 90% площади Мирового океана содержат газогидраты.

OCEANIA

Ресурсы природного газа в гидратах континентальной суммарно шельфовой областях России оцениваются 100-1000 трлн. M³, причем на континентальной части России этих ресурсов не более 100 трлн. м³.

Около 98% ресурсов газогидратов находится в акваториях мирового океана (y побережий Северной, Центральной и Южной Америки, Японии, Норвегии и Африки, а также в Каспийском и Черном морях) на глубинах воды более 200-700 м, и только 2% – в приполярных частях материков.

Гидраты, насышающие морские осадки, подняты скважин Мексиканском заливе и глубоководном бурении в Атлантическом и Тихом океанах. В Росссии они подняты с Черном, осадками В Каспийском, Охотском и Балтийском морях, со дна озера Байкал.

Во многих районах Мирового Океана наличие газогидратных залежей обнаруживается OT нескольких десятков или сотен метров от дна. На суше газогидраты залегают на глубинах 200-2000 м, а в осадках дна их находят от поверхности до глубин **500—800 м**.

На суше России выявлены такие гидратопроявления, как Ямбургское, Мессояхское и Бованенковское месторождения, район алмазоносной трубки Удачная, а также золотоносные россыпи Колымского района, Чукотки, Буреинского прогиба, Западная Якутия. В России для гидратонакопления благоприятно около 30% территории.

Естественные выходы пузырьков метана с морского дна

Первый в мире проект синтеза гидрата в реакторах∗

Компания Mitsui Engineering & Shipbuilding (MES) впервые разработала концепцию транспортировки гидрата природного газа в форме гидратных гранул с целью простой и эффективной транспортировки природного газа в гидратном состоянии.

Гранулы гидрата при атмосферном давлении

MES была Первая попытка осуществлена в 2003 году в Японии с производительностью 600 кг в сутки. Испытательный блок в Тибе (Япония)

установка по вторая производству гидрата смеси газов «Bench Scale Unit»

Завод по производству гидрата природного газа мощностью 5 тонн в сутки, встроенный в электростанцию (2009г.)

*Nakai S. Development of Natural Gas Hydrate (NGH) Supply Chain // Proceedings, 25th World Gas Conference, Kuala Lumpur, Malaysia, 4-8 June, 2012 - 2012. -Vol. 4. - pp. 3040-3050.

Контейнер для гранул гидрата

Образование гидрата метана и углекислого газа из ледяных частиц: теория и эксперимент

Образование гидратных участков на поверхности ледяных частиц

Falenty A., Salamatin A. N., Kuhs W. F. Kinetics of CO₂-Hydrate Formation from Ice Kuhs W.F., Staykova D.K., Salamatin A.N. Formation of Methane Hydrate from Powders: Data Summary and Modeling Extended to Low Temperatures // J. Phys. Polydisperse Ice Powders // J. Phys. Chem. B. 2006. V.110. Nº26. P. 13283-13295. Chem. C 2013. V.117. P. 8443.

Сравнение экспериментальных и расчетные данных образования гидрата метана и углекислого газа из ледяного порошка

Изображения начальных гидратных пленок (углекислого газа) на поверхности ледяных частиц при температуре 263 К и давлении 0,9 МПа

17

5 мм

Приведенный коэффициент диффузии метана в гидратном слое D^{\star} , м 2 /с		
<i>T</i> , К (6 МПа)	Kuhs W.F, Staykova D.K., Salamatin A.N.	Шагапов В.Ш., Чиглинцева А.С.
245	4·10 ⁻¹⁷	3.1·10 ⁻¹⁷
258	2.7·10 ⁻¹⁶	7·10 ⁻¹⁷
263	5.8·10 ⁻¹⁶	1.1·10 ⁻¹⁶

Приведенный коэффициент диффузии углекислого газа в гидратном слое <i>D</i> *, м²/с		
Т, К (р, МПа)	Falenty A., Salamatin A.N., Kuhs W.F.	Шагапов В.Ш., Чиглинцева А.С.
263 (0.9)	(3.7-4.4)-10-16	3.2·10 ⁻¹⁶
233 (0.5)	(7.1-7.4)·10 ⁻¹⁷	3·10 ⁻¹⁶

Gas
Liquid

Последовательные стадии роста гидратов из раствора ПАВ в воде: а – исходная система; b – начало образования и роста гидратов на стенках реактора и кармане термопары; с – рост гидратов на стенках реактора; d полное превращение воды (90-100~%) в гидрат.

Рост гидратной шапки на торцевой поверхности песчаной засыпкии и фильтрация влаги к фронту гидратообразования

Различные проблемы, имеющие отношение к извлечению газогидратов

«Склероз» газопровода из-за отложения газогидратов

Схематическое изображение трубопровода

L – длина рассматриваемого трубопровода, a_0 – внутренний радиус, a_1 – внешний радиус,

a – внутренний радиус при наличии гидратного слоя, δ –толщина гидратного слоя

Подводный купол в Мексиканском заливе

Компания ВР надеется решить проблему разлива нефти с помощью установки над аварийной скважиной «подводной системы нефтеизвлечения»

Британская нефтяная компания ВР заявила о проведении работ по переустановке защитного купола, временно удаленного техническим причинам и предназначенного для откачки нефти, вытекающей из аварийной скважины. Причиной временной приостановки откачки нефти и снятия защитного купола стал подводный робот, столкнувшийся с куполом и повредивший систему подачи теплой воды для предупреждения образования на нем льдоподобных кристаллов - гидратов метана.

