

Nonparametric Generative Modeling with Conditional Sliced-Wasserstein Flows

Chao Du, Tianbo Li, Tianyu Pang, Shuicheng Yan, Min Lin Sea Al Lab

TL;DR: A nonparametric conditional generative model (without NN & SGD training) achieves promising results.

Introduction

Nonparametric methods enjoy infinite capacity and flexibility but have been less explored in generative modeling. In these work, we

- Reveal the conditional modeling capabilities of SWF
- Introduce inductive biases for image tasks into SWF

Main takeaways:

- The first nonparametric conditional generative model
- Achieve comparable performance with parametric generative models

Background

1D Wasserstein distance (closed form):

$$W_2^2(p,q)=\int_0^1|F_p^{-1}(au)-F_q^{-1}(au)|^2\mathrm{d} au$$
 Inverse cumulative distribution functions (CDF) Associate

Sliced-Wasserstein distance:

Based on projections:
$$\theta^*(x) \triangleq \langle \theta, x \rangle$$

$$SW_2^2(p,q) riangleq \int_{\mathbb{S}^{d-1}} W_2^2(heta_\sharp^* p, heta_\sharp^* q) \mathrm{d} heta$$

SWF: Gradient flow in the Wasserstein space minimizing SW_2

$$\min_{p \in \mathcal{P}_2(\mathbb{R}^d)} SW_2^2(p,q) \quad \Rightarrow \quad \frac{\partial p_t(x)}{\partial t} + \nabla \cdot (p_t(x)v_t(x)) = 0$$

Conditional SWF

Ideally: Collection of SWFs $\min_{p_y \in \mathcal{P}_2(\mathcal{X})} SW_2^2(p_y, q_y), \forall y \in \mathcal{Y}$

This work: SWF in the joint space $\min_{p \in \mathcal{P}_2(\mathcal{X} \times \mathcal{Y})} SW_2^2(p,q)$

Intuition (Check the CDFs):

SWFs + Visual Inductive Biases

Motivated by the analogy of uniform projections and fully-connected layers Change the distribution of the projections

SWF (Liutkus et al., 2019)

Pyramidal Schedules

+ Locally-Connected Projections

Experiments

Unconditional Image Generation

CelebA. ♦ Use 160 × 160 center-cropping. * Use 128 × 128

Method	CIFAR-10	CelebA
Auto-encoder based		
VAE (Kingma & Welling, 2013)	155.7	85.7^{\diamond}
SWAE (Wu et al., 2019)	107.9	48.9^{*}
WAE (Tolstikhin et al., 2017)	_	42^\dagger
CWAE (Knop et al., 2020)	120.0	49.7^\dagger
Autoregressive & Energy based		
PixelCNN (Van den Oord et al., 2016)	65.9	_
EBM (Du & Mordatch, 2019)	37.9	_
Adversarial		
WGAN (Arjovsky et al., 2017)	55.2	41.3^{\diamond}
WGAN-GP (Gulrajani et al., 2017)	55.8	30.0°
CSW (Nguyen & Ho, 2022b)	36.8	_
SWGAN (Wu et al., 2019)	17.0	13.2^{*}
Score based		
NCSN (Song & Ermon, 2019)	25.3	_
Nonparametric		
SWF (Liutkus et al., 2019)	> 200	$> 150^{\dagger}$
SINF (Dai & Seljak, 2021)	66.5	37.3^{*}
ℓ-SWF (Ours)	59.7	38.3^{\dagger}

Class-Conditional Image Generation

Locally-Connected Projections & Pyramidal Schedules

Image Inpainting

Nearest Neighbors

