CS 440: Probabilistic Search

Steven Nguyen & Kyra Kennedy

10 April 2021

0.1 Abstract

In this project, we demonstrated searching for a cell given probabilities of its location and using prior beliefs while iterating.

0.2 Academic Integrity

0.3 Problem 1

Assume:

- Belief $[C_i]_t$ is the belief that the target is in cell C_i at time t. It is calculated using $P(in(C_i)|O_t)$.
- $P(F(C_j))$ is the probability that the target is not found when searching cell C_j . It is calculated using $P(F(C_j)|in(C_j))*P(in(C_j))+P(!in(C_j))$, the probability that the target is not found in C_j if the target is in C_j added to the probability that the target is not in C_j .
- $P(in(C_i))$ is the probability that the target is in cell C_i , 1/the number of cells.
- O_t is Observations at time t.
- $N_{i,t}$ is the number of times cell C_i has been observed and resulted in a failure at time t.
- Belief $[C_i]_{t+1}$, is belief that the target is in cell C_i after applying a new observation, that the target is not at C_j . It is calculated by $P(in(C_i|O_t \wedge F(C_j))$.

First, $P(O_t \wedge F(C_j|in(C_i))$ is equivalent to $(P(F(C_i|in(C_i) \wedge N_{i,t+1}) + (0 \wedge (\text{the number of observations that were not cell } C_i))$.

Bayes' Theorem can be used to convert Belief $[C_i]_{t+1}$ to $P(O_t \wedge F(C_j|in(C_i) * P(in(C_i))/P(O_t \wedge F(C_j)).$

Bayes' Theorem can be used to convert Belief $[C_i]_t$ to $P(O_t|in(C_i)*P(in(C_i))/P(O_t)$.

Dividing these the t+1 equation by the t equation will give you their multiplicative relationship:

$$(P(F(C_i)|in(C_i)) \wedge (1 \text{ if } C_j \text{ is } C_i, 0 \text{ otherwise})) * (P(O_t)/P(O_t \wedge F(C_j)))$$

So, to update a belief given a new observation:

- 1. If the new observation was on this cell, multiply the belief by the probability of finding the target in this cell given that the target is in this cell.
- 2. Then, multiply by the previous observations divided by the new observations.

0.4 Problem 2

The probability that the target will be found in cell C_i given observations is: Belief $[C_i] * (1 - P(*Target not found in Cell_i| Target is in Cell_i).$

0.5 Problem 3

0.6 Problem 4