Exercício 1. Considere o modelo $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ com $\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ e \mathbf{X} de posto completo k+1. Se $\hat{\boldsymbol{\epsilon}} = \mathbf{Y} - \hat{\mathbf{Y}} = \mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}$, prove que

- (i) $Cov(\widehat{\boldsymbol{\epsilon}}, \widehat{\boldsymbol{\beta}}) = \mathbf{0}$
- (ii) $Cov(\boldsymbol{\epsilon}, \widehat{\boldsymbol{\beta}}) = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\sigma^2$
- (iii) $Cov(\boldsymbol{\epsilon}, \mathbf{Y}) = [\mathbf{I} \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}]\sigma^2$
- (iv) $Cov(\boldsymbol{\epsilon}, \widehat{\mathbf{Y}}) = \mathbf{0}$.

Com base nos itens (iii) e (iv), discuta por que é preferível a análise gráfica de $\boldsymbol{\epsilon} \times \widehat{\mathbf{Y}}$ em relação à análise gráfica de $\boldsymbol{\epsilon} \times \mathbf{Y}$.

Exercício 2. Seja $\mathbf{Y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I}_n)$ com \mathbf{X} de posto completo p. Prove que

$$\left(\widehat{oldsymbol{eta}} - oldsymbol{eta}
ight)^{ op} rac{\mathbf{X}^{ op}\mathbf{X}}{\sigma^2} \left(\widehat{oldsymbol{eta}} - oldsymbol{eta}
ight) \sim \chi_p^2.$$

Exercício 3. No modelo $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, com $\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$, determine a distribuição do vetor de resíduos $\hat{\boldsymbol{\epsilon}} = \mathbf{Y} - \hat{\mathbf{Y}} = \mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}$.

Exercício 4. Para o modelo $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, i = 1, ..., 20, onde $\sum_{i=1}^{20} y_i^2 = 90$ e $\epsilon_i \sim N(0, \sigma^2)$ independentes, o sistema de equações normais obtido foi

$$\begin{bmatrix} 20 & 10 \\ 10 & 6 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 40 \\ 22 \end{bmatrix}$$

- (a) Calcule $\widehat{\boldsymbol{\beta}}^{\top} \mathbf{X}^{\top} \mathbf{Y}$ e SQRes= $\mathbf{Y}^{\top} \mathbf{Y} \widehat{\boldsymbol{\beta}}^{\top} \mathbf{X}^{\top} \mathbf{Y}$.
- (b) Construa um intervalo de confiança com coeficiente de confiança 0,95 para E(Y|x=3).
- (c) Construa o correspondente intervalo de predição.

Exercício 5. Sejam

$$Y_1 = \theta + \epsilon_1$$

$$Y_2 = 2\theta - \gamma + \epsilon_2$$

$$Y_3 = \theta + 2\gamma + \epsilon_3$$

onde $E(\epsilon_i) = 0, i = 1, ..., 3$. Determine os estimadores de mínimos quadrados de θ e γ .

Exercício 6. Considere um modelo linear em que

$$E(Y_{1i}) = \theta, \ i = 1, ..., m,$$

 $E(Y_{2i}) = \theta + \gamma, \ i = 1, ..., m,$
 $E(Y_{3i}) = \theta - 2\gamma, \ i = 1, ..., n$

em que todas as observações estão sujeitas a erros independentes com média 0 e variância σ^2 .

- (a) Determine os estimadores de mínimos quadrados de θ e γ .
- (b) Prove que esses estimadores são não correlacionados se m=2n.

Exercício 7. Mostre que $(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) = (\mathbf{Y} - \mathbf{X}\widehat{\boldsymbol{\beta}})^{\top}(\mathbf{Y} - \mathbf{X}\widehat{\boldsymbol{\beta}}) + (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})^{\top}\mathbf{X}^{\top}\mathbf{X}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})$ com $\widehat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$ e conclua que $(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$ é minimizada para $\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}$.

Exercício 8. Prove que o coeficiente de explicação do modelo, R^2 , em um modelo de regressão linear simples é o quadrado do coeficiente de correlação entre \mathbf{Y} e $\hat{\mathbf{Y}}$.