ITCS 531: Linear Algebra - Dimension

Rob Egrot

Bases

- ▶ Think about the Euclidean plane \mathbb{R}^2 .
- ▶ In \mathbb{R}^2 , every vector is defined by coordinates (x, y).
- ▶ I.e. every vector in \mathbb{R}^2 can be written as a sum x(1,0) + y(0,1) of the vectors (1,0) and (0,1).
- These vectors (1,0) and (0,1) are special, as they form a minimal set that generates the whole space.
- ▶ We can generalize this idea.

Definition 1

If V is a vector space, then a *basis* for V is a linearly independent set that spans V.

Expressing vectors with a basis

Lemma 2

Let V be a vector space over \mathbb{F} . Let $v_1, \ldots, v_n \in V$. Then (v_1, \ldots, v_n) is a basis for V if and only if every element u can be expressed as $a_1v_1 + \ldots + a_nv_n$, for some unique $\{a_1, \ldots, a_n\} \subseteq \mathbb{F}$.

- ▶ Suppose $(v_1, ..., v_n)$ is a basis for V.
- ▶ Given $u \in V$, we have $u = a_1v_1 + ... + a_nv_n$ for some $\{a_1, ..., a_n\} \subseteq \mathbb{F}$ as $(v_1, ..., v_n)$ spans V.
- If $u = a_1v_1 + \ldots + a_nv_n = b_1v_1 + \ldots + b_nv_n$. Then $0 = (a_1 b_1)v_1 + \ldots + (a_n b_n)v_n$, so $a_i = b_i$ for all $i \in \{1, \ldots, n\}$, as (v_1, \ldots, v_n) is linearly independent.
- Conversely, if (v_1, \ldots, v_n) satisfies the two stated properties then it is certainly a linearly independent spanning set.

The importance of bases

- Bases are extremely important in the study of vector spaces.
- Like the prime numbers generate the integers, a vector space is generated by a basis.
- ▶ In other words, if you have a basis, then you know the space.
- There are natural questions we can ask about bases.
- ▶ Does every vector space have one? Can a space have more than one?
- ▶ If a space has two (or more) possible bases, does it matter what basis we choose?
- We will see answers to these questions soon.

Removing redundant vectors from a spanning list

Lemma 3

Let V be a vector space over \mathbb{F} , and let $v_1, \ldots v_n \in V$. Suppose that (v_1, \ldots, v_n) is linearly dependent. Then there is $j \in \{1, \ldots, n\}$ such that:

- 1. $v_i \in \text{span}(v_1, \ldots, v_{i-1})$.
- 2. $\operatorname{span}(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n) = \operatorname{span}(v_1, \ldots, v_n)$.

- \triangleright Since (v_1, \ldots, v_n) is linearly dependent there are $a_1, \ldots, a_n \in \mathbb{F}$ with $a_1v_1 + \ldots + a_nv_n = 0$ and at least one $a_i \neq 0$.
- Let *j* be the largest value such that $a_i \neq 0$.
- ▶ Then $a_1v_1 + ... + a_iv_i = 0$, and, since $a_i \neq 0$ we can rewrite this as $v_j = -\frac{a_1}{a_i}v_1 - \ldots - \frac{a_{j-1}}{a_i}v_{j-1}$.
- ▶ This proves (1), and (2) follows easily from (1).

Linearly independent lists cannot be bigger than spanning lists

Proposition 4

Let V be a vector space over \mathbb{F} , let (u_1, \ldots, u_k) be linearly independent, and let (v_1, \ldots, v_n) span V. Then $k \leq n$.

- ▶ We will use lemma 3 multiple times.
- ▶ The idea is to replace elements of (v_1, \ldots, v_n) with different elements of (u_1, \ldots, u_k) , till we have used all the elements of (u_1, \ldots, u_k) .
- ▶ Being able to do this implies that $k \le n$.

Proof continued

- ightharpoonup Consider the list (u_1, v_1, \ldots, v_n) .
- ▶ By lemma 3 there is an element w_1 of (u_1, v_1, \ldots, v_n) such that w_1 is in the span of the part of the list (u_1, v_1, \ldots, v_n) that precedes it.
- ▶ Obviously we can't have $w_1 = u_1$, so w_1 is in (v_1, \ldots, v_n) .
- ▶ Let e.g. $(v_1, \ldots, v_n) \setminus \{w_1\}$ be (v_1, \ldots, v_n) with w_1 removed.
- Applying lemma 3 to $(u_2, u_1, v_1, \dots, v_n) \setminus \{w_1\}$ we get w_2 in the span of the part of the list (u_1, v_1, \dots, v_n) that precedes it.
- \triangleright w_2 can't be in (u_2, u_1) as this is linearly independent.
- Apply lemma 3 to $(u_3, u_2, u_1, v_1, \dots, v_n) \setminus \{w_1, w_2\}$ to get w_3 and so on. These lists all span V.
- ▶ In the end we get $(u_k, \ldots, u_1, v_1, \ldots, v_n) \setminus \{w_1, \ldots, w_k\}$, and each $w_i \in (v_1, \ldots, v_n)$.
- ▶ Thus $k \le n$ as claimed.

Finite dimensional spaces

Definition 5

A vector space V is *finite dimensional* if it contains a finite spanning list (v_1, \ldots, v_n) . If V is not finite dimensional then it is *infinite dimensional*.

Obtaining bases from spanning/linearly independent lists

Theorem 6

Let V be a vector space over \mathbb{R} . Then:

- 1. If $s = (v_1, \dots, v_n)$ spans V, then s can be reduced to a basis for V.
- 2. If V is finite dimensional, and if $t = (u_1, ..., u_k)$ is linearly independent in V, then t can be extended to a basis for V.

- ▶ For (1), we apply lemma 3 as many times as we can. The resulting list has the same span as the original, but is linearly independent as we can't apply the lemma again.
- For (2), since V is finite dimensional it has a spanning list (w_1, \ldots, w_m) . Now, the list $(u_1, \ldots, u_k, w_1, \ldots, w_m)$ also spans V, and so, by (1), reduces to a basis for V.
- ► This reduction does not remove any elements of *t*, as *t* is linearly independent.

The existence of bases

Corollary 7

Every finite dimensional vector space has a basis.

Proof.

Just reduce the finite spanning list to a basis.

- Every infinite dimensional vector space also has a basis, but this proof is more difficult.
- We need an infinite choice principle.

The size of bases

Proposition 8

If V is a finite vector space then every basis for V has the same length.

- Let s and t be bases for V.
- Then, as s is linearly independent and t spans V, by proposition 4, we must have $|s| \le |t|$.
- ▶ But t is also linearly independent, and s also spans V, so by the same proposition we also have $|t| \le |s|$.
- So |s| = |t| as claimed.

Defining dimension

Definition 9

If V is a finite dimensional vector space, then we define the dimension of V to be the size of its bases. We use $\dim(V)$ to denote the dimension of V.

Example 10

- 1. The vectors (1,0,0), (0,1,0) and (0,0,1) provide a basis for \mathbb{R}^3 . So dim $(\mathbb{R}^3)=3$.
- 2. The vectors (2,0,1), (2,3,0) and (0,6,-1) also provide a basis for \mathbb{R}^3 .
- 3. The vectors (1,2,3), (-1,-1,0), (1,1,1) and (3,-2,0) must be linearly dependent in \mathbb{R}^3 .
- 4. The vectors, $1, x, x^2, x^4, \ldots$ provide a basis for $\mathbb{R}[x]$, which is infinite dimensional.

Spanning/linearly independent lists of the right size are bases

Theorem 11

Let V be a finite dimensional vector space. Then:

- 1. If s is a spanning list for V and $|s| = \dim(V)$ then s is a basis for V.
- 2. If t is a linearly independent list in V and $|t| = \dim(V)$ then t is a basis for V.

- 1. If s spans V then s can be reduced to a basis, s', for V. By proposition 8 we must have $|s'| = \dim(V) = |s|$, so s' must be equal to s.
- 2. If t is linearly independent then t can be extended to a basis, t'. for V. We have $|t'| = \dim(V) = |t|$, so t is a basis for V.

Subspaces of finite dimensional spaces

Proposition 12

Every subspace of a finite dimensional vector space is finite dimensional.

- ▶ Let *V* be a finite dimensional vector space and let *U* be a subspace of *V*.
- ▶ If $U = \{0\}$ then the empty list spans U.
- ▶ If $U \neq \{0\}$ then we construct a basis for U by recursion:
 - ▶ Since $U \neq \{0\}$ we can choose $v_1 \in U \setminus \{0\}$. Define $s_1 = (v_1)$.
 - ▶ Given linearly independent $s_i = (v_1, ..., v_i)$ in U, if s_i does not span U then there is $v_{i+1} \in U \setminus \text{span}(s_i)$.
 - In this case define $s_{i+1} = (v_1, \ldots, v_i, v_{i+1})$.
- $ightharpoonup s_i$ is linearly independent for all i, and $|s_i| \leq \dim(U)$.
- ▶ There is k with $|s_k| = \dim(U)$. This s_k is a basis for U.

The dimension of subspaces

Corollary 13

If V is a finite dimensional vector space and U is a subspace of V, then $\dim(U) \leq \dim(V)$.

- ▶ Let $t = (v_1, ..., v_n)$ be a basis for V.
- ▶ Let $s = (u_1, ..., u_k)$ be a basis for U.
- Then s is linearly independent in V, and t spans V, so $|s| \le |t|$.
- ▶ Thus $dim(U) \le dim(V)$ as claimed.

Subspaces and direct sums

Proposition 14

Let V be a finite dimensional vector space, and let U be a subspace of V. Then there is a subspace W of V such that $V = U \oplus W$.

- ▶ Let $s = (u_1, ..., u_k)$ be a basis for U.
- ▶ Then s is linearly independent in V, so s can be extended to a basis $(u_1, \ldots, u_k, w_1, \ldots, w_m)$ for V.
- ▶ Define W to be $span(w_1, ..., w_m)$.
- ▶ To show $V = U \oplus W$ we check V = U + W, and $U \cap W = \{0\}$.
- V = U + W as $(u_1, \ldots, u_k, w_1, \ldots, w_m)$ spans V.
- ▶ $U \cap W = \{0\}$ because (u_1, \ldots, u_k) is basis for U, (w_1, \ldots, w_m) is a basis for W, and $(u_1, \ldots, u_k, w_1, \ldots, w_m)$ is linearly independent.

The dimension of a sum

Proposition 15

Let V be a finite dimensional vector space, and let U and W be subspaces of V. Then $\dim(U+W)=\dim(U)+\dim(W)-\dim(U\cap W)$.

Proof.

- ▶ Let $(v_1, ..., v_n)$ be a basis for $U \cap W$.
- We can extend (v_1, \ldots, v_n) to a basis $(u_1, \ldots, u_k, v_1, \ldots, v_n)$ for U, and a basis $(v_1, \ldots, v_n, w_1, \ldots, w_m)$ for W.
- ▶ We claim that

$$s = (u_1, \ldots, u_k, v_1, \ldots, v_n, w_1, \ldots, w_m)$$

is a basis for U + W.

ightharpoonup s clearly spans U+W, so we must check linear independence.

The dimension of a sum - proof continued

Suppose that

$$a_1u_1 + \ldots + a_ku_k + b_1v_1 + \ldots + b_nv_n + c_1w_1 + \ldots + c_mw_m = 0.$$

► Then

$$c_1 w_1 + \ldots + c_m w_m = -a_1 u_1 - \ldots - a_k u_k - b_1 v_1 - \ldots - b_n v_n$$

▶ So $c_1w_1 + \ldots + c_mw_m \in U \cap W$, and there are $b'_1, \ldots b'_n \in \mathbb{F}$ with $c_1w_1 + \ldots + c_mw_m = b'_1v_1 + \ldots + b'_nv_n$. I.e.

$$c_1 w_1 + \ldots + c_m w_m - b'_1 v_1 - \ldots - b'_n v_n = 0.$$

- ▶ But $(v_1, ..., v_n, w_1, ..., w_m)$ is linearly independent, so $c_i = 0$ for all i.
- So $a_1u_1 + \ldots + a_ku_k + b_1v_1 + \ldots + b_nv_n = 0$.
- As $(u_1, \ldots, u_k, v_1, \ldots, v_n)$ is linearly independent $a_i = b_j = 0$ for all i, j.
- ► So s is linearly independent as required.