Session 2: Regressions

Welcome!

TA: Jennifer Lin

MMSS 211: Institutions, Rules, & Models in Social Science

2022-04-05

Goals

- 1. Reinforce understanding of the basics of linear regression
- 2. Learn to conduct regressions in R
- 3. Learn ways to effectively display regression results

The Fundimentals of Regression

What is a Regression

- Ordinary Least Squares (OLS) is the Best Linear Unbiased Estimator
- Regression is a line that sums up the relationship between X and Y

No Correlation

Positive Correlation

Negative Correlation

The Math Behind the Regression

Recall:

$$Y = mX + b$$

The Regression:

$$y = \alpha + \beta X + \epsilon$$

or

$$y = a + bX$$

Multiple Regressions

We can control for any number of other variables that we think might have an effect on the Y variable of interest

It is "subtracting out" the effect of X_2 on Y.

In Math:

$$y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k + \epsilon$$

Purpose of Regressions

- 1. For **summarizing** data: Calculates one line that describes the relationship between two variables the best and gives us a statistic that summarizes this relationship. This is the *coefficient*.
- 2. For making **inferences**: The line provides an average for the relationship for X and Y and we can use it to predict Y values from other X values that might not already be in the dataset.

Interpreting Regressions

Unit	Meaning
Y	Outcome for any X (input)
β	Slope (rise/run)
α	Y-intercept, where X is 0
3	Error term

 β is also known as the **coefficient**.

A 1-unit increase in X is associated with a coefficient-sized change in Y

Regressions in Practice

Data

The American National Elections Study is fielded every four years to assess American attitudes towards political matters during Presidential Election years

- The data include items on demographics (race, gender, age) along with an assortment of feeling thermometer variables.
- Feeling Thermometer variables start with FT_ and all range from 0-100.

```
ANES <- read.csv("ANES_2020.csv")
```

A Preview of Examples

- 1. Continuous IV and Continuous DV
- 2. Continuous IV and Continuous DV with continuous controls
- 3. Continuous DV with categorical IV
- 4. Continuous DV with categorical IV and categorical controls

Continuous IV and Continuous DV

Unit	Variable	Meaning
X_1	FT_Fauci	Feelings towards Anthony Fauci
Y	FT_CDC	Feelings towards the CDC

$$Y_{CDC} = \alpha + \beta_{Fauci} X_{Fauci} + \epsilon$$

```
model1 <- lm(
  FT_CDC ~ FT_Fauci,
  data = ANES)
model1</pre>
```

```
##
## Call:
## lm(formula = FT_CDC ~ FT_Fauci, data = ANES)
##
## Coefficients:
## (Intercept) FT_Fauci
## 38.5365 0.4642
```

summary(model1)

```
##
## Call:
## lm(formula = FT_CDC ~ FT_Fauci, data = ANES)
##
## Residuals:
##
      Min
          10 Median 30
                                     Max
## -84.953 -11.745 0.047 13.972 61.464
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 38.536458 0.556954 69.19 <2e-16 ***
## FT_Fauci 0.464165 0.007464 62.19 <2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19.05 on 7151 degrees of freedom
    (1127 observations deleted due to missingness)
##
## Multiple R-squared: 0.351, Adjusted R-squared: 0.3509
## F-statistic: 3868 on 1 and 7151 DF, p-value: < 2.2e-16
```

Continuous IV and Continuous DV with continuous controls

Unit	Variable	Meaning
X_1	FT_Fauci	Feelings towards Anthony Fauci
X_2	age	Age
X_3	pid7	Party ID (7-Category)
Y	FT_CDC	Feelings towards the CDC

$$Y_{CDC} = \alpha + eta_{Fauci} X_{Fauci} + eta_{age} X_{age} + eta_{pid7} X_{pid7} + \epsilon$$

```
model2 <- lm(
FT_CDC ~ FT_Fauci + age + pid7,
data = ANES)</pre>
```

```
##
## Call:
## lm(formula = FT_CDC ~ FT_Fauci + age + pid7, data = ANES)
##
## Residuals:
          1Q Median 3Q Max
##
      Min
## -85.978 -11.419 0.388 13.914 61.848
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 42.160563   1.101122   38.289   < 2e-16 ***
## FT Fauci 0.440590 0.009236 47.703 < 2e-16 ***
## age 0.006668 0.013817 0.483 0.629
## pid7 -0.594624 0.121897 -4.878 1.1e-06 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19.03 on 6870 degrees of freedom
    (1406 observations deleted due to missingness)
##
## Multiple R-squared: 0.3539, Adjusted R-squared: 0.3536
## F-statistic: 1254 on 3 and 6870 DF, p-value: < 2.2e-16
```

Interpreting a Regression Table

Components of a Table

Unit	Meaning
Coefficients	β values for the regression
(Intercept)	Y-intercept, where X is 0
Estimate	Slope
Std. Error	Standard Error
t value	T Statistic standard score
p-value	Probability of getting result by chance
Signif. Codes	Asterisks that symbolize "rarity"
R^2	Variation in Y explained by X
F	Model performance measure

```
modelsummary(
  list(model1, model2),
  estimate = "{estimate} ({std.error}){stars}",
  statistic = NULL,
  output = "kableExtra") %>%
  kable_styling(font_size = 14)
```

	Model 1	Model 2
(Intercept)	38.536 (0.557)***	42.161 (1.101)***
FT_Fauci	0.464 (0.007)***	0.441 (0.009)***
age		0.007 (0.014)
pid7		-0.595 (0.122)***
Num.Obs.	7153	6874
R2	0.351	0.354
R2 Adj.	0.351	0.354
AIC	62463.2	60018.2
BIC	62483.8	60052.4
Log.Lik.	-31228.612	-30004.090
F	3867.526	1254.197
RMSE	19.05	19.03

Plotting the Results

```
dwplot(list(model1, model2),
      vline = geom_vline(
         xintercept = 0, colour = "grey60", linetype = 2))+
  scale_color_manual(
    values = c("#636363", "#e6550d"),
    name = "Model",
   labels = c("With Controls", "Without Controls")
  ) +
 labs(
   title = "Feelings towards the CDC",
    subtitle = "With Continuous Independent Variables",
    caption = "Data: ANES 2020
   Author: Jennifer Lin"
  ) +
  theme bw()+
 theme(
    title = element_text(colour="black"),
    plot.title = element_text(size = 20, hjust = 0.5, face = 'bole
    plot.subtitle = element_text(size = 18, hjust = 0.5),
   legend.position = 'bottom'
```

Feelings towards the CDC With Continuous Independent Variables

Data: ANES 2020 Author: Jennifer Lin

Continuous DV with categorical IV

Unit	Variable	Meaning
X_1	PARTY	Party ID (3-Category)
Y	FT_Feminists	Feelings towards Feminists

$$Y_{Feminists} = \alpha + \beta_{PARTY} X_{PARTY} + \epsilon$$

```
model3 <- lm(
FT_Feminists ~ PARTY,
data = ANES)</pre>
```

```
##
## Call:
## lm(formula = FT_Feminists ~ PARTY, data = ANES)
##
## Residuals:
      Min
               1Q Median 30
##
                                     Max
## -73.040 -13.729 3.972 13.972 56.271
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
                           0.3922 186.24 <2e-16 ***
## (Intercept)
                73.0397
## PARTYIndependent -17.0114 0.8796 -19.34 <2e-16 ***
## PARTYRepublican -29.3109 0.5730 -51.15 <2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22.97 on 7301 degrees of freedom
    (976 observations deleted due to missingness)
##
## Multiple R-squared: 0.265, Adjusted R-squared: 0.2648
## F-statistic: 1316 on 2 and 7301 DF, p-value: < 2.2e-16
```

Continuous DV with categorical IV and categorical controls

Unit	Variable	Meaning
X_1	PARTY	Party ID (3-Category)
X_2	FEMALE	Gender: Female
X_3	MINORITY	Race: Minority
X_4	VOTED_2020	Voted in 2020
Y	FT_Feminists	Feelings towards the Feminists

$$Y_{Feminists} = \alpha + \beta_{PARTY} X_{PARTY} + \beta_{FEMALE} X_{FEMALE} + \beta_{MINORITY} X_{MINORITY} + \beta_{voted} X_{voted} + \epsilon$$

```
model4 <- lm(
  FT_Feminists ~ PARTY + FEMALE + MINORITY + Voted_2020,
  data = ANES)</pre>
```

```
##
## Call:
## lm(formula = FT_Feminists ~ PARTY + FEMALE + MINORITY + Voted_2020,
##
      data = ANES)
##
## Residuals:
      Min
              10 Median 30
##
                                    Max
## -76.437 -14.271 2.909 13.659 62.922
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
  (Intercept)
                   69.2445
                               0.8187 84.574 < 2e-16 ***
## PARTYIndependent -16.0458 0.8885 -18.059 < 2e-16 ***
## PARTYRepublican -29.3458 0.5861 -50.065 < 2e-16 ***
## FEMALETRUE
                    5.0966 0.5378 9.476 < 2e-16 ***
## MINORITYTRUE -2.8207 0.6223 -4.533 5.92e-06 ***
## Voted 2020TRUE 2.0960
                              0.7009 2.991 0.00279 **
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22.78 on 7298 degrees of freedom
    (976 observations deleted due to missingness)
##
## Multiple R-squared: 0.2773, Adjusted R-squared: 0.2768
## F-statistic: 560 on 5 and 7298 DF, p-value: < 2.2e-16
```

```
modelsummary(
  list(model3, model4),
  estimate = "{estimate} ({std.error}){stars}",
  statistic = NULL,
  output = "kableExtra") %>%
  kable_styling(font_size = 14)
```

	Model 1	Model 2
(Intercept)	73.040 (0.392)***	69.245 (0.819)***
PARTYIndependent	-17.011 (0.880)***	-16.046 (0.889)***
PARTYRepublican	-29.311 (0.573)***	-29.346 (0.586)***
FEMALETRUE		5.097 (0.538)***
MINORITYTRUE		-2.821 (0.622)***
Voted_2020TRUE		2.096 (0.701)**
Num.Obs.	7304	7304
R2	0.265	0.277
R2 Adj.	0.265	0.277
AIC	66516.1	66398.9
BIC	66543.7	66447.1
Log.Lik.	-33254.074	-33192.435
F	1316.045	560.003
RMSE	22.97	22.78

Plotting the Results

```
dwplot(list(model3, model4),
       vline = geom_vline(
         xintercept = 0, colour = "grey60", linetype = 2)) %>%
  relabel_predictors(
    PARTYIndependent = "Party: Independents",
    PARTYRepublican = "Party: Republicans",
    FEMALETRUE = "Gender: Female",
    MINORITYTRUE = "Race: Minority",
    Voted 2020TRUE = "Voted in 2020"
  ) +
  scale color manual(
    values = c("#636363", "#e6550d"),
    name = "Model",
    labels = c("With Controls", "Without Controls")
  ) +
  labs(
    title = "Feelings towards Feminists",
    subtitle = "With Categorical Independent Variables",
    caption = "Data: ANES 2020
    Author: Jennifer Lin"
  ) +
  theme_bw()+
```

Feelings towards Feminists With Categorical Independent Variables

Data: ANES 2020 Author: Jennifer Lin

Exercise

- 1. Pick a continuous variable to serve as your dependent variable and pick a handful of variables that might serve as reasonable independent variables. Write their names down.
- 2. Write down a reasonable regression model you might run.
- 3. Conduct the regression.
- 4. Interpret the results. What does the coefficient for your main independent variable tell us about the relationship between that variable and the dependent variable?