Problem monitorowania galerii

Każdy punkt galerii musi być widoczny dla co najmniej jednej kamery.

Ile kamer potrzeba?

Gdzie je umieścić?

Kamery mogą się obracać (kąt 2π) \rightarrow problem 2D

Model galerii – wielokąt prosty

Wielokąt – figura na płaszczyźnie ograniczona skończoną liczbą odcinków, łączących się w domknięty, wielokątny łańcuch.

Krawędzie brzegu wielokąta spełniają warunki:

- przecięcie się każdej pary sąsiadujących odcinków jest punktem wierzchołkowym,
- odcinki nie sąsiadujące ze sobą nie mają punktów wspólnych.

PROSTY – ograniczamy się do obszarów otoczonych pojedynczym łańcuchem. Nie ma dziur.

Triangulacja wielokąta w 2D

Podział wielokąta na trójkąty, których wierzchołkami są wierzchołki wielokąta

Można umieścić kamery w każdym trójkącie.

Triangulacja

Niech:

K − określa sympleks w danej przestrzeni

Definicja:

T nazywamy triangulacją Ω , jeżeli spełnione są następujące warunki:

•
$$\Omega = \bigcup_{K \in T} K$$

- Każdy element *K* ma niepuste wnętrze,
- Wnętrza różnych elementów są rozłączne,
- Przecięcie dwóch różnych elementów jest:
 - (a) albo puste
 - (b) albo zredukowane do jednego punktu, który jest wspólnym wierzchołkiem tych elementów
 - (c) albo zredukowane do jednej krawędzi, która jest wspólną krawędzią tych elementów
 - (d) albo zredukowane do jednej ściany (w 3D), która jest wspólną ścianą tych elementów.

Czy triangulacja zawsze istnieje?

Ile trójkątów może być w triangulacji?

Dla danego wielokąta istnieje na ogół wiele różnych triangulacji.

Definicja:

Przekątna wielokąta P – odcinek łączący dwa wierzchołki P, który nie ma innych punktów wspólnych z brzegiem ∂P wielokąta.

Twierdzenie:

Każdy wielokąt o więcej niż trzech wierzchołkach ma przekątną.

niech v skrajnie lewy wierzchołek P

ullet niech u i w wierzchołki sąsiednie z v na brzegu P

jeśli otwarty odcinek uw leży we wnętrzu P, to jest on szukaną przekątną

➤w przeciwnym przypadku:

 jeden lub więcej wierzchołków leży wewnątrz trójkąta uwv lub na przekątnej uw

niech v' będzie najdalszy od uw

odcinek vv' nie może przecinać krawędzi P

odcinek vv' jest szukaną przekątną

Twierdzenie:

Każdy prosty wielokąt można striangulować, a każda triangulacja prostego wielokąta o *n* wierzchołkach składa się z dokładnie *n*-2 trójkątów.

Dowód przez indukcję względem n.

- jeśli P ma 3 wierzchołki wielokąt sam jest trójkątem.
- w przeciwnym przypadku;
 - ✓ znajdź przekątną, która dzieli P na dwa wielokąty proste P_1 i P_2 ,
 - ✓ niech m_1 liczba wierzchołków w P_1 , a m_2 w P_2
 - $\checkmark m_1, m_2 < n$, więc P_1 i P_2 można striangulować.

$$\left| m_1 + m_2 = n + 2 \right|$$

Przez indukcję – Każda triangulacja P_i składa się z m_i – 2 trójkątów, zatem triangulacja P składa się z $(m_1-2)+(m_2-2)=n-2$ trójkątów

Kamera w każdym trójkącie →
Każdy wielokąt prosty o *n* wierzchołkach
można chronić z użyciem *n* – 2 kamer.

Kamera na wybranych przekątnych → zmniejszamy liczbę kamer do około *n*/2.

Inny pomysł → 3-kolorowanie triangulacji

Wystarczy najmniejszy jednobarwny zbiór wierzchołków, w którym umieszczamy kamery

Czy takie kolorowanie istnieje?

Graf dualny

Graf dualny jest drzewem (jeśli wielokąt prosty!), którego każdy wierzchołek jest co najwyżej trzeciego stopnia

Można pokolorować stosując przeszukiwanie w głąb.

Twierdzenie o galerii

Dla prostego wielokąta o *n* wierzchołkach wystarcza $\lfloor n/3 \rfloor$ kamer, aby każdy punkt wielokąta był widoczny z co najmniej jednej kamery.

Czy można zmniejszyć liczbę kamer?

 Procedura rekurencyjna triangulacji wielokąta:

Przekątna dzieli wielokąt na dwie części. Powtarzając tę procedurę otrzymujemy algorytm triangulacji wielokąta w czasie $O(n^2)$.

Czy można lepiej?

Dla wypukłych O(*n*)

Podział na wielokąty wypukłe – tak samo trudny jak triangulacja

Wielokąty monotoniczne

Definicja

Wielokąt prosty nazywamy ściśle monotonicznym względem prostej l (wyznaczającej kierunek monotoniczności), gdy jego brzeg można podzielić na dwa spójne łańcuchy takie, że dowolna prosta l' prostopadła do l przecina każdy z łańcuchów w co najwyżej jednym punkcie.

Definicja

Wielokąt jest *monotoniczny* względem prostej *l*, gdy przecięcie dowolnej prostej *l*' prostopadłej do *l* z dowolnym łańcuchem jest spójne.

Przecięcie wielokąta z *l'* jest spójne – jest odcinkiem, punktem lub jest puste

Wielokąt monotoniczny względem osi y nazywamy y-monotonicznym.

Idąc z najwyższego wierzchołka do najniższego wzdłuż lewego (lub prawego) łańcucha zawsze poruszamy się w dół lub poziomo, nigdy w górę.

Idea podziału na wielokąty monotoniczne:

- Idziemy z najwyższego wierzchołka do najniższego wzdłuż lewego (prawego) łańcucha
- Wierzchołek, gdzie zmieniamy kierunek, nazywamy wierzchołkiem zwrotu
- Aby podzielić P na części y-monotoniczne,
 należy wyeliminować wierzchołki zwrotu dodając przekątne

Rodzaje wierzchołków w P:

- początkowy, gdy obaj jego sąsiedzi leżą poniżej i kąt wewnętrzny $< \pi$,
- końcowy, gdy obaj jego sąsiedzi leżą powyżej i kąt wewnętrzny < π,
- łączący, gdy obaj jego sąsiedzi leżą powyżej i kąt wewnętrzny > π,
- dzielący, gdy obaj jego sąsiedzi leżą poniżej i kąt wewnętrzny > π,
- prawidłowy, w pozostałych przypadkach (ma jednego sąsiada powyżej, drugiego – poniżej).

Wielokąt jest y-monotoniczny, gdy nie ma wierzchołków dzielących i łączących.

- Załóżmy, że wielokąt nie jest y-monotoniczny.
- Wtedy przecięcie poziomej prostej l z wielokątem tworzy co najmniej dwie spójne składowe.

- Istnieje odcinek na zewnątrz wielokąta łączący je.
- Weźmy ciąg krawędzi wielokąta łączących końce tego odcinka.
 - Najbardziej odległy od l wierzchołek takiej łamanej jest wierzchołkiem dzielącym lub łączącym.

Można zastosować **algorytm zamiatania** do podziału wielokąta prostego na wielokąty monotoniczne

Niech $v_1, v_2, ..., v_n$ ciąg wierzchołków w kierunku przeciwnym do wskazówek zegara

Niech $e_1, e_2, ..., e_n$ ciąg krawędzi, gdzie $e_i = v_i v_{i+1}$

Przesuwamy miotłę w dół po płaszczyźnie.

Miotła zatrzymuje się w punktach zdarzeń – w wierzchołkach *P*

Cel zamiatania – dodanie przekątnych z każdego wierzchołka dzielącego lub wierzchołka łączącego.

Stan miotły – odcinki przecinające miotłę,

- dla których wielokąt jest po prawej stronie,
- posortowane od lewej do prawej,
- każdy ze swoim pomocnikiem

pomocnik krawędzi e_j – najniższy wierzchołek powyżej miotły taki, że odcinek łączący ten wierzchołek z e_i leży wewnątrz P

pomocnik krawędzi e_j – najniższy wierzchołek powyżej miotły taki, że odcinek łączący ten wierzchołek z e_i leży wewnątrz P

Wierzchołek dzielący

 $oldsymbol{e_{j}}$ - krawędź na miotle bezpośrednio na lewo od v_{i}

 $oldsymbol{e}_k$ - krawędź na miotle bezpośrednio na prawo od v_i

pomocnik krawędzi e_j – najniższy wierzchołek między e_i i e_k powyżej v_i

Jeśli nie ma takiego – górny koniec e_i lub e_k

Wierzchołek łączący

 v_i – nowy pomocnik e_j , gdy miotła trafia na niego Nie znamy najwyższego wierzchołka poniżej miotły e_j Gdy miotła zejdzie do v_m , ten zastąpi v_i w roli pomocnika

Gdy zastępujemy pomocnika jakiejś krawędzi, sprawdzamy, czy stary pomocnik jest wierzchołkiem łączącym. Jeśli tak, dodajemy przekątną między starym i nowym pomocnikiem.

Może się zdarzyć, że pomocnik nie jest zastępowany poniżej – łączymy z dolnym końcem e_i .

Struktura zdarzeń –

lista L uporządkowanych malejąco względem y-ów wierzchołków P.

Struktura stanu –

drzewo poszukiwań binarnych *T* przechowujące w liściach ciąg aktualnie przecinanych przez miotłę krawędzi ograniczających wielokąt *P* z lewej strony wraz z dowiązaniami do ich pomocników.

Stan zmienia się, gdy miotła się przemieszcza. Krawędzie zaczynają lub przestają przecinać miotłę, zmieniają się pomocnicy W zależności od rodzaju wierzchołka v, który odwiedza miotła, wykonywane są różne procedury.

Niech $e_l\left(e_p\right)$ oznacza lewą (prawą) krawędź o końcu w wierzchołku v. Niech e_v oznacza krawędź leżącą bezpośrednio na lewo od v.

Wierzchołek początkowy

wstaw e_l do T;

 $pomocnik(e_l) := v;$

Wierzchołek końcowy

 $\emph{if } pomocnik(e_l)$ jest wierzchołkiem łączącym

then wstaw przekątną miedzy ${m v}$ i $pomocnik(e_l)$;

usuń e_1 z T;

Wierzchołek dzielący v_i

znajdź w T krawędź e_v ; wstaw przekątną między v_i i pomocnik (e_v) ; pomocnik $(e_v) := v_i$; wstaw e_p do T i pomocnik $(e_p) := v_i$;

Wierzchołek łączący v_i

if $pomocnik(e_p)$ jest wierzchołkiem łączącymthen wstaw przekątną między v_i i $pomocnik(e_p)$;usuń e_p z T;znajdź w T krawędź e_v ;if $pomocnik(e_v)$ jest wierzchołkiem łączącymthen wstaw przekątną między v_i i $pomocnik(e_v)$; $pomocnik(e_v) := v_i$;

Wierzchołek prawidłowy

 $pomocnik(e_v) := v;$

```
Niech e_g (e_d) będzie krawędzią powyżej (poniżej) v.
\it if wnętrze P leży na prawo od \it v
  then if pomocnik(e_g) jest
                  wierzchołkiem łączącym
          then wstaw przekątną między
                v i pomocnik(e_g);
       usuń e_g z T;
       wstaw e_d do T i pomocnik(e_d) := v;
  else znajdź w T krawędź e_v;
       if pomocnik(e_v) jest wierzchołkiem łączącym
          then wstaw przekątną między v i pomocnik(e_v);
```


Triangulowanie wielokąta monotonicznego

- Określamy lewy i prawy łańcuch wielokąta względem kierunku monotoniczności
- Porządkujemy wierzchołki wzdłuż kierunku monotoniczności
- Wkładamy dwa pierwsze wierzchołki na stos.
- Jeśli kolejny wierzchołek należy do innego łańcucha niż wierzchołek stanowiący szczyt stosu, to możemy go połączyć ze wszystkimi wierzchołkami na stosie. Na stosie zostają dwa wierzchołki, które były "zamiatane" ostatnie.
- Jeśli kolejny wierzchołek należy do tego samego łańcucha co wierzchołek ze szczytu stosu, to analizujemy kolejne trójkąty, jakie tworzy dany wierzchołek z wierzchołkami zdejmowanymi ze stosu.
 - Jeśli trójkąt należy do wielokąta, to usuwamy wierzchołek ze szczytu stosu
 - w przeciwnym przypadku umieszczamy badane wierzchołki na stosie.

