AD No. 22 29/ ASTIA FILE COPY ASLA 2/222

THE STRUCTURE AND ACTIVITY OF CATALYTICALLY ACTIVE SOLIDS

FIFTH TECHNICAL REPORT

Project NR 057 143
Contract N7 onr-45003

Period Covered: 1 October 1952 to 30 September 1953

by

Chief Investigator
P. W. SELWOOD
THOMAS FREUND
Research Associate
M. J. HULATT
Research Associate
PAUL E. JACOBSON
Research Assistant
LOUISE MOORE
Research Assistant

The Department of Chemistry
Northwestern University
Evanston, Illinois

THE STRUCTURE AND ACTIVITY OF CATALYTICALLY ACTIVE SOLIDS

Fifth Technical Report
Project NR 057 143
Contract N7 onr - 45003

Feriod Covered: 1 October 1952 to 30 September 1953

pà

P. W. Selwood, Chief Investigator
Thomas Freund, Research Associate
M. J. Hulatt, Research Associate
Paul E. Jacobson, Research Assistant
Louise Moore, Research Assistant

The Department of Chemistry
Northwestern University
Evanston, Illimois

SUMMARY

This report is in two parts. Part I is a manuscript to be submitted to the Editor of the Journal of the American Chemical Society. This represents completion of a phase of our Contract work started four years ago on an attempt to measure thermal migration in a supported copper catalyst system. The conclusion reached is that thermal migration, or sintering, does not occur in such a catalyst system.

Part II of this report represents the first phase of a magnetochemical study of poisoning and, in general, the influence of adsorbed gases, on supported metal catalyst systems. The principal conclusion is that carbon monoxide premotes the migration of iron atoms in a supported iron-alumina catalyst.

No. of Copies	Addresses
1	Commanding Officer Office of Naval Research, Branch Office 150 Causeway Street Boston, Massachusetts
2	Commanding Officer Office of Naval Research, Branch Office 844 North Rush Street Chicago 11, Illinois
1	Commanding Officer Office of Naval Research, Branch Office 346 Broadway New York 13, New York
1	Commanding Officer Office of Naval Research, Branch Office 1000 Geary Street San Francisco 9, California
1	Commanding Officer Office of Maval Research, Branch Office 1030 N. Green Street Pasadena 1, California
2	Officer-in-Charge Office of Maval Research, Branch Office Nevy Humber 100 Fleet Post Office New York, New York
9	Director, Naval Research Laboratory Washington 25, D. C. Attention: Technical Information Officer
4	Chief of Maval Research Office of Maval Research Washington 25, D. C. Attention: Chemistry Branch
1	Research and Development Foard Pentagon, Room 3D1941 Washington 25, D. C. Attention: Technical Reference Section
1	Dr. Ralph G. H. Siu, Research Director General Laboratories, QM Depot 2800 S. 20th Street Philadelphia 45, Pennsylvania

No. of Gopies	Addresses
1	Dr. Warren Stubblebine, Research Director Chemical + Plastics Section, RDB-MPD Quartermaster General's Office Washington 25, D. C.
1	Dr. A. Stuart Hunter, Tech. Director Research and Development Branch MPD Quartermaster General's Office Washington 25, D. C.
1	Dr. A. G. Horney Wright Air Development Center Wright-Patterson Air Force Base Dayton, Ohio Attention: WCRES-4
	Dr. A. Weissler Department of the Army Office of the Chief of Ordnance Washington 25, D. C. Attention: ORDTB-PS
1	Research and Development Group Logistics Division, General Staff Department of the Army Washington 25, D. C. Attn: Dr. W.T.Read, Scientific Advisor
3	Director, Naval Research Laboratory Washington 25, D. C. Attention: Chemistry Division (2 copies) * Code 3321 (Dr.M.L.Gastens) - 1 copy
2	Chief of the Bureau of Ships Navy Department Washington 25, D. C. Attention: Code 340
2	Chief of the Bureau of Aeronautics Navy Department Washington 25, D. C. Attention: Code TD-4
2 ,	Chief of the Bureau of Ordnance Navy Department Washington 25, D. C. Attention: Code Rexd

No. of Gopies	Addresses
5	Mr. J. H. Heald Library of Congress Navy Research Section Washington 25, D. C.
1	Dr. H. A. Zahl, Tech. Director Signal Corps Engineering Laboratories Fort Monmouth, New Jersey
1	U. S. Naval Radiological Defense Lab. San Francisco 24, California Attn: Technical Library
1	Naval Ordnance Test Station Inyokern CHINA LAKE, California Attn: Head, Chemistry Division
1	Office of Ordnance Research 2127 Myrtle Drive Durham, North Carolina
1,	Technical Command Chemical Corps Chemical Center, Maryland
1	V.S.Atomic Energy Commission Research Division Washington 25, D. C.
1	U.S.Atomic Energy Commission Chemistry Division Brookhaven Mational Laboratory Upton, New York
1	U.S.Atomic Energy Commission Library Branch, Tech.Info., ORE P. O. Box E Cak Ridge, Tennessee
1	Dr. P. H. Emmett Mellon Institute of Industrial Research University of Pittsburgh Pittsburgh 13, Pennsylvania
1	Dr. Ralph A. Beebe Amherst College Amherst, Massachusetts
1	Dr. W. C. Fierce Pomona College Claremont, California

No. of Copies		Addresses
1		Dr. Henry Eyring, Dean Graduate School University of Utah Salt Lake City 1, Utah
1		Squier Signal Laboratory Fort Monmouth, New Jersey Attn: Dr. S. Benedict Levin Components + Materials Branch
1		Dr. Joseph Danforth Grinnell Collage Grinnell, Iowa
1		Dr. H. S. Taylor Princeton University Princeton, New Jersey
1		Dr. H. S. Gutowsky Department of Chemistry University of Illinois Urbana, Illinois
1		Dr. R. L. Burwell, Jr. Department of Chemistry Northwestern University Evanston, Illinois
1		Officer in Charge Office of Naval Research Branch Office Navy Number 100 Fleet Pest Office New York, N. Y. FOR DISTRIBUTION to the following:
	(1)	Prof. Wilhelm Klemm, Director The Chemical Institute University of Kiel Kiel, Germany
	(1)	Prof. Robert Schwarz Department of Chemistry Technische Hochschule Aachen Aachen, Germany
	(1)	Prof. Josef Goubeau The Chemical Institute University of Grettingen Goettingen, Germany
	(1)	*

No. of Copies	(1)	Addresses *
	(1)	*
	(1)	*
	(1)	*
	(1)	*
	(1)	*

Mames to be inserted by ONR/London

(1)

TABLE OF CONTENTS

Title Pa	ge	1
Sweary		11
Distribu	tion List	111
Table of	Contents	vi.11
		Page
Part I.	Thermal Migration in Supported Copper Catalysts	1
	Introduction Experimental Methods Fig. 1 - Faraday Balance Fig. 2 - Field and Field Times Gradient Fig. 3 - Fig. 4 - Results Fig. 5 - Susceptibility Isotherm for Gopper on Alumina Fig. 6 - Susceptibility vs. Reciprocal Field Fig. 7 - Susceptibility vs. Reciprocal Field Table I Discussion of Results Table II	1 2 3 5 7 9 10 12 12a 13 14
Fart II.	The Effect of Garbon Monoxide on the Magnetic Properties of Iron Supported on Alumina Introduction	2
	Preparation and Purification of Materials Apparatus Calibration Table I Table II Experimental Technique Results Table III Discussion References Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8	2 2 3 5 6 7 7 8 10 12 13 14 15 16 17 17 17 17 17

Contribution from the Chemical Laboratory of Northwestern University

THERMAL MIGRATION IN SUPPORTED COPPER CATALYSTS

by Paul E. Jacobson and P. W. Selwood

(1) This work was initiated under contract with the Office of Maval Research and continued on the Union Carbide and Carbon Fellowship in Physical Chemistry, receipt of which is gratefully acknowledged. This is the fourteenth paper from this Laboratory on the susceptibility isotherm and related subjects. The thirteenth appeared in This Journal 76,000 (1954). Inquiries should be addressed to P. W. Selwood.

Development of a more sensitive magnetic susceptibility balance of the Faraday type has made possible extension of observations on supported cupric oxide, and of supported copper, on gamma alumina lown to copper concentrations of less than 0.5 per cent. It has been confirmed that thermal inactivation (sintering) of this system is not accompanied by copper particle aggregation. It has also been shown that supported cupric exide is structurally different from a mechanical mixture of crystalline cupric oxide plus cupric ions at infinite magnetic dilution.

The word "sintering" is often used in discussions on contact catalysis. It implies a change brought about by heat, and attended with a loss of activity and of specific surface. Sintering is generally found to occur above the Tammann temperature, and far below the melting points of the catalyst components. Thus Shekhter et al²

have reported microcrystal growth in supported metal catalysts such as platinum on asbestos at temperatures of a rew hundred degrees.

This kind of investigation lends itself to magnetochemical study because the magnetic susceptibility of many catalyst components is strongly dependent on particle size in the range of sizes often encountered in active catalysts. A preliminary study of supported copper by this method?

⁽²⁾ A. B. Shekhter, A. I. Echeistova, and I. I. Tret yakov, Chem. Abst. 44, 915 (1950); 45, 3216 (1951).

⁽³⁾ P. W. Selwood and N. S. Dallas, This Journal, 70, 2145 (1948).

failed to reveal any surface migration of copper atoms leading to aggregation. But the development of apparatus for measuring susceptibilities with about one hundred fold increase of sensitivity, and of conducting reductions and oxidations in situ, suggested a reinvestigation of this problem.

Experimental Methods

Magnetic Susceptibility Measurements. The method used is assentially that of Farerday. The sample hangs in a strong field which possesses a gradient in the vertical direction. The sample is suspended from a silica spiral in a manner similar
to a McBain-Bakr sorption balance. Deflection of the sample on application of the
magnetic field is observed with a micrometer microscope. The silica spiral and
the surrounding glass tubing are attached to the mechanical stage from a microscope. The stage is adapted for convenient vertical motion of the whole system
relative to the magnet. The apparatus is shown diagrammatically in Fig. 1.

The field and gradient were obtained by an electromagnet with poles cut in the manner suggested by Sucksmith.

(4) W. Sucksmith, Phil. Mag., 8, 158 (1929).

One pole face in profile is shown in Fig. 2. In an effort to increase sensitivity the angle \$\beta\$ shown as \$15° was increased from the 5° recommended by Sucksmith. A compromise of 10° has since been found to give good sensitivity with more convenience. The minimum pole interspace is 1.1 cm. Maximum fields of 20,000 certsteds were obtained.

The force acting on the small sample in this apparatus is given by $f = m \chi H \partial H / \partial \Delta$ where m is the mass of the sample, χ the susceptibility of the sample per gram, H is the field strength, and $\partial H / \partial s$ the field gradient. It is, therefore, necessary to obtain $\ddot{n} \partial H / \partial s$ in a region where this product is uniform and large. Most inorganic solids contain traces of ferromagnetic impurities.

It is necessary, for this reason, also to obtain H as a function of current in the magnet, so that extrapolation may be made to zero reciprocal field.

The product HdH/ds was obtained by calibration with pure cane sugar, the susceptibility of which was taken as -0.566×10^{-6} per gram.

(5) This value is based on studies by Dr. Carl Pitha in this laboratory, and is in agreement with the average of the three principal susceptibilities given in the International Critical Tables.

Correction must, of course, be made for the diamagnetism of the glass er silica bucket used to hold the sample. The sample moves on application of the field, hence the procedure followed is to apply the desired field; move the sample to a fixed position as observed in the micrometer microscope, remove the field, and observe extension of the silica spiral. This operation, extended to complete vertical mapping of $H \partial H / \partial z$, is conveniently done with the aid of the mechanical stage referred to above. The results are shown in Fig. 2.

The field, H, alone may be obtained by the Quincke method, using nickel chleride solution as a calibrating agent. A glass or, better, silica rod mounted in the fashion of the Gouy method will also serve to obtain the field as a function of current as at the working position indicated in Fig. 2.

The samples used ranged in weight from 20 to 40 mg. The several silica spirals used averaged in sensitivity 0.2 mm. extension per mm. Overall precision with the catalyst samples used was 0.1 to 0.6 per cent of the measured susceptibility. All measurements, except a few noted below, were made at room temperature, near 25°. The surrounding atmosphere was mitrogen which had been passed ever copper turnings at 609°, then dried over magnesium perchlorate.

This apparatus is convenient for carrying out reactions such as exidation and reduction in situ. The mechanical stage permits horizontal motion of the sample. A small tubular furnace may be placed around the sample for such heat treatment as may be desired. The atmosphere surrounding the sample may readily

be changed through flexible tubing attached to the apparatus as shown in Fig. 1.

Preparation and Analysis of Materials. -- The substances investigated were alumina, cupric exide, and copper. So-called «gamma»-alumina used throughout the study was prepared as described by Eischens and Selwood.

(6) R. P. Eischens and P. W. Selwood, This Journal, 69, 1590 (1947).

The specific surface area of this alumina as measured by nitrogen adsorption (B.E.T.) was about 250 m². The magnetic susceptibility versus reciprocal field for this substance is shown in Fig. 3, tegether with corresponding data for four commercial aluminas. The apparent susceptibility is markedly dependent on the presence of paramagnetic and, especially, of fevromagnetic impurities. It also depends on the water content. For instance, an oven-dried alumina with a susceptibility of -0.378 (x10⁻⁶) per gram was ignited at 500° for three hours. The susceptibility became -0.357, the change being roughly proportional to the water lest.

In the interest of high precision it was necessary that the copper used in this study should be as nearly free from ferromagnetic impurity as possible. The expedient of quenching the sample from a high temperature and thus forcing the ferromagnetic impurity into solid solution is obviously not practical here because the catalytically active surface would be destroyed.

G. F. copper generally shows strong evidence of ferremagnetism, and this may even be true of samples which seem to be spectroscopically free from iron, nickel, or cobalt. Magnetically pure copper can sometimes be prepared directly from selected sheet copper, or it may be purified by repeated electrolysis.

⁽⁷⁾ H. Morris and P. W. Selwood, This Journal, 62, 2245 (1943).

A convenient alternative method[®] is to dissolve the copper in nitric acid, to form

(8) Developed in this Laboratory by Dr. Fred N. Hill.

the tetrammine complex by the addition of excess ammonium hydroxide, and to add a dilute solution of aluminum nitrate. The aluminum hydroxide formed apparently coprecipitates ferromagnetic forming impurities because, after the precipitate of aluminum hydroxide is filtered, the solution may be neutralized and the precipitate of cupric hydroxide filtered, washed, ignited, and reduced to form magnetically pure copper. Sees data related to these procedures are shown in Fig. 4.

Supported cupric oxide was obtained in the usual manner by impregnation of gamma alumina with cupric nitrate solution. The mixture is filtered, dried, and ignited at 390° for twenty-four hours. The amount of copper present in the preduct may be varied at will by varying the concentration of the cupric nitrate solution.

Analysis of supported cupric oxide samples was done by dissolving the samples in sulfuric acid, then electroplating the sampler on to weighed platinum electrodes.

The supported cupric oxide samples gave an x-ray diffraction pattern for cupric exide, in addition to that for gamma alumina, at copper concentrations in excess of 7.5 per cent. As previously reported, the sample colors ranged from yellow-green at the lowest concentrations studied (\sim 0.5% Cu) through blue-green to gray at the highest concentrations (\sim 20% Cu). Samples reduced in hydrogen were jet black at all copper concentrations except the highest.

Details cencerning the procedure used in reducing the above supported exides are given below.

Results are reported first for the "susceptibility isotherm" of supported cupric oxide, then for reduced supported copper, then for samples which have been reduced, sintered, and reoxidized. Finally, some data are given at lower temperatures.

A typical isotherm for the supported cupric oxide system on alumina at 23° is shown in Fig. 5. This is similar in general form to that previously reported for this system by Selwood and Dallas, but the copper concentration limit is extended down to 1.42 per cent. The plateau of susceptibility per gram of cupric ion at low concentrations is confirmed. It should be emphasized that this is the only system, of some eight or ten studied in this laboratory, in which a plateau suggesting infinite magnetic dilution is found. It was also found that the exact shape and height of the isotherm depend, as expected, on the purity and formulation of the support, and to some degree on the magnetic purity of the solution used for impregnation. The limiting susceptibility per gram of cupric ion at infinite dilution corresponds to a magnetic moment of 1.7 Bohr magneton, in excellent agreement with the spin-only moment for the one unpaired electron in the cupric ion.

Reduced copper-alumina samples were prepared by reduction with hydrogen at 550° to 650° for eight to ten hours. All reductions were carried out in situ in the magnetic balance. Fig. 5 includes the susceptibility per gram of reduced copper supported on alumina down to a copper concentration of 0.488 per cent. Most of these reduced samples gave susceptibilities which were independent of field strength. A typical sample containing 5.43 per cent of copper had a susceptibility of 0.775 (x 10⁻⁶) per gram of catalyst sample in the oxidized state. This was changed to -0.334 in the reduced state. It was noted that the highest, and especially the lowest, concentrations of copper were more difficult to reduce than those of intermediate concentration. It was also noted that cooling the reduced samples in hydrogen produced the same final susceptibility as flushing and cool-

ing in pure nitrogen after reduction had been completed in hydrogen. This suggests that adsorbed and dissolved hydrogen do not have a measureable effect on the susceptibility of reduced copper under the conditions of this experiment.

Before the results on thermal migration are presented the theory of the method will be outlined. The cupric ions in highly dispersed cupric oxide have a magnetic susceptibility at room temperature of about $25(x \cdot 10^{-6})$ per gram. The cupric ions in pure crystalline cupric oxide have a susceptibility of about $4(x \cdot 10^{-6})$. Intermediate degrees of dispersion show intermediate susceptibilities, although the exact relationship between susceptibility and dispersion is not known.

If a highly dispersed copper system is "sinters." and if this brings about an aggregation of copper atoms, then the decreased dispersion of the copper will be revealed by a decrease of susceptibility. The observed relationship of susceptibility to dispersion occurs for copper only when the copper is in the form of cupric ions. Hence, attempts to detect thermal migration in the supported copper system involve the following steps: (1) measurement of susceptibility in the oxidized state, (2) reduction, (3) sintering, (4) reoxidation, and (5) measurement of susceptibility in the reexidized state. Any decrease of susceptibility occurring between steps (1) and (5) is evidence of thermal migration to form larger copper particles.

In the search for evidence of thermal migration there were tried a number of reduction and sintering conditions as indicated below.

Fig. 6 gives the susceptibilities per gram of samples at 23° against reciprocal field. The sample contained 1.42 per cent of copper. Reduction in hydrogen was for ninety minutes at 300°. Recxidation was performed by slowly heating the sample to 500° in exygen over a period of one hour. No further *sintering* was done during this particular run. Another trial with reduction conditions changed to sixteen hours at 400° gave similar results. It will be noted that there is no

FIG. 6. OXIDIZED, REDUCED, AND
REOXIZED COPPER-ALUMINA. (1.42% CL.)
SUSCEPTIBILITY VS. RECIPROCAL FIELD

FIG. 7. OXIDIZED, REDUCED, AND
REDXIDIZED COPPER-ALUMINA (7.29% Cu)
SUSCEPTIBILITY VS. RECIPROCAL FIELD

evidence for migration. The susceptibility of the reduced phase, which is included in Fig. 6, is not necessary for the experiment, but it illustrates the ubiquitous trace of ferromagnetism as shown by some dependence of susceptibility on field strength.

Evidence of diffusion in copper-mickel systems has been obtained as low as 200°, but temperatures above the Tammann temperature were thought more likely to provide positive thermal migration. Fig. 7 shows the data obtained on a sample containing 7.29 per cent copper. This sample was reduced and "sintered" in hydrogen at 550° for one hundred hours. Reconsidation was slow after this treatment. The progress of reoxidation was readily followed by the change of color and by the developing paramagnetism. Results similar to those shown in Fig. 7 were also obtained on samples containing 1.42 and 3.35 per cent copper, when these were subjected to the 550° reduction and sintering treatment.

For reasons described below susceptibilities on several samples were obtained over a range of temperature. The results are given in Table I.5

Table I

Susceptibilities at 23° per gram of sample for supported cupric oxide on alumina

Weight per cent Cu	X x 10 ⁶		
	298 % 。	195 % .	83 % .
1.42	- 0.088	+ 0.104	+ 1.57
9.72	+ 0.811	+ 1.26	+ 5.23
79.9 (pure CuO)	+ 3.00	+ 2.43	+ 1.98

⁽⁹⁾ These data were obtained in this Laboratory by Mr. Stephen Adler, to whom the authors are indebted for this assistance.

Two observations not directly related to the problem at hand will be mentioned.

The first is that some samples of supported cupric oxide on alumina on prolonged ignition at temperatures up to 900° gave definite evidence of ferromagnetism.

This shows that ferromagnetism may be found for certain phases of oxidation state and environment for almost any transition element in the periodic table.

The second observation is that some samples of supported cupric oxide on alumina undergo a spontaneous reduction when they are heated to about 500°. If this heating is done in air the reduction is rapidly followed by a reoxidation. The effect is apparently due to some adsorbed reducing gas, or may possibly be related to release of a trace of water from the gamma alumina at this temperature. The effect is not accompanied by a "glow phenomenor" or by significant loss of specific surface.

Discussion of Results

The plateau observed for the susceptibility isotherm of supported cupric oxide on alumina suggests that at low concentrations of copper in this system the cupric ions are effectively isolated from each other. Reduction might then be expected to yield isolated copper atoms, although these would doubtless be highly active chemically. Copper atoms have an odd number of electrons, and should be paramagnetic. It follows that reduction of a low concentration copper-alumina catalyst should produce little or no change of paramagnetism. Yet even at 1.42 per cent copper, which is well up on the plateau, reduction lowers the susceptibility per gram of copper to zero. The conclusion previously reached, namely that isolated copper atoms are not formed in these systems, is, therefore, confirmed and extended down to the lowest copper concentration which it is practical to reach with susceptibility apparatus at present available.

It has also been confirmed that there is no thermal migration leading to increased copper particle size in this system. "Sintering" as applied to low and meaning. The fact that prolonged sintering leads to some increase of susceptibility (after reoxidation) suggests that solid solution or compound formation between cupric oxide and alumina is the more probable reason why ignition destroys the activity of this system. This is not to say that sintering in pure copper powder may not lead to increased particle size because in any pure, rather than supported, catalyst the system must be regarded as self-supported.

Another conclusion to be drawn from the data concerns the nature of the supported oxide phase. In earlier work from this Laboratory it has been assumed that supported oxides differ qualitatively from pure crystalline oxides by a continuous diminution of the paramagnetic neighborhood surrounding each paramagnetic supported ion. There is an alternative view that a supported oxide may consist of a mixture of ions at infinite magnetic dispersion together with massive crystalline oxide. According to this view the susceptibility of, say, supported cupric oxide at any concentration on alumina should be the weighted average of the susceptibility of cupric ions at infinite magnetic dilution and that of cupric ions in massive cupric cride. That this view is probably incorrect is shown by the following calculation.

Let χ_d be the susceptibility per gram of cupric ions in cupric oxide at infinite magnetic dilution, and let χ_m be the susceptibility per gram of cupric ions in massive cupric oxide. Then according to the view presented above, the observed susceptibility, χ_o , per gram of cupric ions in any catalyst sample should be given by $\chi_o = \chi_d p + \chi_n(1-p)$ where p is the fraction of total cupric ions present as infinitely dispersed ions. This fraction should be independent of the temperature at which the susceptibility measurements are made.

Taking as an example the sample containing 9.72 per cent copper, we first the susceptibilities per gram of cupric ion to be as follows:

Trile I

Susceptibilities	per	gram	of	cupri,	.DE
------------------	-----	------	----	--------	-----

Condition	et 3%.	at 195%.	at 83%.
infinite magnetic dilution	.5	34.2	13*
9.72 per cent catalyst	٠.	16.8	57.7
purs cupric oxide*	.13	Judi	2.86

^{*}Pure cupric oxide is anti ferromagnet

ent fraction of cupric ions present of infinite secretaries at 195 %, 0.448 and at 33 %, 0.41. Into devi in the temperature of the position of cupric oxide may be a sidered at the supported cupric oxide may be a sidered at the support of the cupric ions and of pure crystalline and the result of the cupric ions and of pure crystalline and the result of the cupric ions and the cupror of the cupric ions and the cupror of the cupror of

Prepaton, Dlinete