Universität Klagenfurt

Informatik – Systemsicherheit M. Morak · R. Wigoutschnigg

UE Algorithmen und Datenstrukturen SS 2019

Übungstermine: siehe ZEUS

Übungsblatt 1

Aufgabe 1.1: Komplexitätsklassen

Es seien $\log(n) := \log_2(n)$, $\ln(n) := \log_e(n)$ und $\varepsilon \in \mathbb{R}$ eine Konstante mit $0 < \varepsilon < 1$. Ordnen Sie die folgenden Komplexitätsklassen nach ihrer Größe und kennzeichnen Sie (gegebenenfalls) gleichmächtige Komplexitätsordnungen.

O(1),	$O(0, 2 \cdot n),$	$O(n^3)$,	$O(2^n),$
$O(n \cdot \log(n)),$	$O(n^n)$,	$O(n^{\log(7)}),$	$O(n \cdot \log(n) \cdot \log(\log(n))),$
$O(\ln(n)),$	$O(\log(n^2)),$	$O(n^2)$,	$O(5 \cdot n),$
$O(n^{1+\varepsilon}),$	$O(n \cdot (\log(n))^{1+\varepsilon}),$	$O(n \cdot \ln(n)),$	$O((\log(n))^2).$

Aufgabe 1.2: Landau-Symbole

a) Es bezeichne [x] den ganzzahligen Anteil der reellen Zahl x. Für welche Paare von Funktionen f_i und g_i $(1 \le i \le 5)$ gilt $f_i \in O(g_i)$, $f_i \in \Omega(g_i)$ bzw. $f_i \in \Theta(g_i)$?

$$f_1(n) = [\sqrt{n}] \qquad g_1(n) = 1000 \cdot n$$

$$f_2(n) = [\sqrt[3]{n}] \qquad g_2(n) = [\sqrt{n}]$$

$$f_3(n) = n^2 \qquad g_3(n) = [n \cdot \log(n)]$$

$$f_4(n) = 198 \cdot n^2 - 12 \cdot n + 55 \qquad g_4(n) = n^2$$

$$f_5(n) = [n^2 \cdot \sqrt[5]{n}] \qquad g_5(n) = [n^2 \cdot \sqrt{(\log(n))^{17.5}}]$$

b) Existieren Funktionen $f,g:\mathbb{N}\to\mathbb{N}+1$ mit $f\notin O(g)$ und $g\notin O(f)$? Beweisen Sie Ihre Aussage!

Aufgabe 1.3: Komplexität

Gegeben ist folgender Algorithmus zum Sortieren einer Liste L_1 der Länge n:

- 1. Lege eine leere Liste L_2 an.
- 2. Verschiebe das größte Element der Liste L_1 und an den Anfang der Liste L_2 .
- 3. Solange die Liste L_1 nicht leer ist, führe Schritt 2 aus.
- 4. Gib die Liste L_2 aus.
- a) Bestimmen Sie die asymptotische Ordnung Θ des Algorithmus im best und im worst case.
- b) Ist der Algorithmus schneller, wenn die Liste L_1 bereits vorsortiert ist? Begründen Sie Ihre Antwort.

Aufgabe 1.4: Perfekte Zahlen

Recherchieren Sie den Begriff Perfekte Zahlen und geben Sie einen Algorithmus an, der überprüft ob eine beliebige Zahl n eine Perfekte Zahl ist. Weiters geben Sie die Komplexitätsklasse Ihres Algorithmus exakt an (Θ) . Sollten dies nicht möglich sein, so geben Sie möglichst scharfe Schranken (O,Ω) an. Wie verhält sich die Sachlage bei Armstrong Zahlen?

Hinweis: Recherchieren Sie, wie viele Armstrong Zahlen es gibt.

Bitte wenden!

Aufgabe 1.5: Matritzenmultiplikation

Es seien M_1 eine 10×20 Matrix, M_2 eine 20×50 Matrix, M_3 eine 50×1 Matrix und M_4 eine 1×100 Matrix mit ganzzahligen Werten.

- a) Wie viele Möglichkeiten (Reihenfolgen der erforderlichen Matrizenmultiplikationen) existieren, um das Matrizenprodukt $M=M_1\cdot M_2\cdot M_3\cdot M_4$ zu ermitteln.
 - Hinweis: Die Multiplikation von Matrizen ist assoziativ.
- b) Wie viele Zahlen-Multiplikationen werden (minimal und maximal) zur Berechnung von M benötigt?