

Big Data-Climate Change

1. Problem one—Creating Your First Model

(1) Implement a function closed_form_1 that computes this closed form solution given the features X, labels Y(using Python or Matlab)

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import statsmodels.api as sm

df = pd.read_csv('climate_change_1.csv')

def closed_form_1():
    traindata = df[df.Year<=2006]
    testdata = df[df.Year>2006]
    X = traindata[['MEI','CO2','CH4','N2O','CFC-11','CFC-12','TSI','Aerosols']]
    Y = traindata['Temp']
    est = sm.OLS(Y, sm.add_constant(X)).fit()
    print(est.summary())
    print(est.params)
```

closed_form_1()

(2) Write down the mathematical formula for the linear model and evaluate the model R^2 on the training set and the testing set.

```
\begin{aligned} y &= -124.594260 + 0.064205 \times MEI + 0.006457 \times CO2 + 0.000124 \times CH4 \\ &- 0.016528 \times N20 - 0.006630 \times CFC - 11 + 0.003808 \times CFC - 12 \\ &+ 0.093141 \times TSI - 1.537613 \times Aerosols \end{aligned} The R^2 on training set is 0.744 The R^2 on testing set is 0.425
```

- (3) Which variables are significant in the model? If the p-value is below 0.05, we will choose MEI, CO2, CFC-11, CFC-12, TSI, Aerosols.
- (4) Write down the necessary conditions for using the closed form solution. And you can apply it to the dataset climate_change_2.csv, explain the solution is unreasonable. Necessary conditions: MEI, CO2, CH4, N2O, CFC-11, CFC-12, TSI, Aerosols should not be correlated with each other.
 Unreasonable: N2O and CFC-11 are greenhouse gases and the regression coefficients of

them should be positive but the results are negative. Therefore, N2O and CFC-11 are

correlated with other variables in the data set.

2. Problem two—Regularization

Regularization is a method to boost robustness of model, including L_1 regularization and L_2 regularization.

(1) Please write down the loss function for linear model with L_1 regularization and L_2 regularization, respectively.

 L_1 Regularization:

$$C = C_0 + \frac{\lambda}{n} \sum_{\omega} |\omega|$$

 L_2 Regularization:

$$C = C_0 + \frac{\lambda}{2n} \sum_{\omega} \omega^2$$

 \mathcal{C}_0 represents the original cost function.

(2) The closed form solution for linear model with L_2 regularization.

import numpy as np import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import statsmodels.api as sm

df = pd.read_csv('climate_change_1.csv')

def closed_form_2():

lamb = 0.5

df['const'] = 1

traindata = df[df.Year<=2006]

testdata = df[df.Year>2006]

X = traindata[['MEI','CO2','CH4','N2O','CFC-11','CFC-12','TSI','Aerosols','const']]

Y = traindata['Temp']

Theta2 = np.dot(

 $np.dot(np.linalg.inv((np.dot(X.T, X) + lamb * np.eye(X.shape[1]))), X.T), Y) \\ print(Theta2)$

closed_form_2()

Result:

Item	θ		
MEI	4.55768014e-02		
CO2	7.80443532e-03		

CH4	1.95701031e-04
N2O	-1.64893727e-02
CFC-11	-6.38359095e-03
CFC-12	3.74766007e-03
TSI	1.44919104e-03
Aerosols	-3.65599605e-01
Const	-4.68953239e-03

(3) Compare the two solutions in problem 1 and problem 2 and explain the reason why linear model with L_2 regularization is robust.

The reason why the L_2 method is better than before is that the size of the coefficient of the constant term of the L_2 method is basically the same as the value of the temp result, which will not cause a large deviation of the result due to the error of the constant term estimation.

(4) You can change the regularization parameter λ to get different solutions for this problem.

λ	R ² of Training Set	R ² of Testing Set	
10	0.6746079231515448	0.9408716921954439	
1	0.6794692110104662	0.8467501178134881	
0.1	0.6944684109361836	0.6732879125422909	
0.01	0.7116529617244923	0.5852763146622774	
0.001	0.7148330433597858	0.5625217958135218	

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import statsmodels.api as sm

df = pd.read_csv('climate_change_1.csv')

def R_square(Y_pred, Y):
    ESS = np.sum((Y_pred - Y.mean())**2)
    TSS = np.sum((Y - Y.mean())**2)
    R2 = ESS / TSS
    print(R2)
```


- 3. Problem three—Feature Selection
- (1) From Problem 1, you can know which variables are significant, therefore you can use less variables to train model. For example, remove highly correlated and redundant features. You can propose a workflow to select feature.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import statsmodels.api as sm

df = pd.read_csv('climate_change_1.csv')
climate_change_1_train = df[df.Year<=2006]
climate_change_1_test = df[df.Year>2006]

climate_change_1_train_X = climate_change_1_train.iloc[:,2:10]
climate_change_1_train_Y = climate_change_1_train.iloc[:,10]

print(climate_change_1_train_X.corr())
#80% above is considered as highly related
#CO2 CH4 N2O CFC-12 are highly correlated with each other
#CFC-11 CFC-12 are correlated with each other
```


	MEI	C02	CH4	N20	CFC-11
MEI	1.000000	-0.041147	-0.033419	-0.050820	0.069000
CO2	-0.041147	1.000000	0.877280	0.976720	0.514060
CH4	-0.033419	0.877280	1.000000	0.899839	0.779904
N20	-0.050820	0.976720	0.899839	1.000000	0.522477
CFC-11	0.069000	0.514060	0.779904	0.522477	1.000000
CFC-12	0.008286	0.852690	0.963616	0.867931	0.868985
TSI	-0.154492	0.177429	0.245528	0.199757	0.272046
Aerosols	0.340238	-0.356155	-0.267809	-0.337055	-0.043921

#delete N2O,CH4,CFC-12
climate_change_1_train_X_new = climate_change_1_train.loc[:,['MEI','CO2','CFC11','TSI','Aerosols']]

1.2 run a regression remove not significant with alpha = 0.01 import statsmodels.api as sm from statsmodels import regression climate_change_1_train_X_new=sm.add_constant(climate_change_1_train_X_new) model=sm.OLS(climate_change_1_train_Y,climate_change_1_train_X_new) res=model.fit() print(res.summary())

#delete CFC-11 which is not significant

```
OLS Regression Results
Dep. Variable:
                                       R-squared:
                                Temp
Model:
                                 0LS
                                      Adj. R-squared:
Method:
                       Least Squares
                                      F-statistic:
                                      Prob (F-statistic)
Date:
                    Wed, 25 Dec 2019
Time:
                                       Log-Likelihood:
                            16:55:11
No. Observations:
                                       AIC:
                                 284
Df Residuals:
                                       BIC:
                                 278
Df Model:
                                   5
Covariance Type:
                                               P>|t|
                coef
                        std err
                                 -6.016
const
           -122.6255
                         20.383
                                               0.000
MEI
              0.0626
                         0.007
                                    9.481
                                               0.000
C02
              0.0110
                          0.001
                                   17.621
                                               0.000
             -0.0003
CFC-11
                          0.000
                                    -0.923
                                               0.357
TSI
              0.0871
                          0.015
                                    5.827
                                               0.000
Aerosols
             -1.5629
                          0.218
                                    -7.161
                                               0.000
Omnibus:
                              14.935
                                       Durbin-Watson:
Prob(Omnibus):
                                       Jarque-Bera (JB):
                               0.001
                               0.449
Skew:
                                       Prob(JB):
Kurtosis:
                               3.842
                                       Cond. No.
```

1.3 run the final model

climate_change_1_train_X_new_2 = climate_change_1_train.loc[:,['MEI','CO2','TSI','Aerosols']]

climate_change_1_train_X_new_2=sm.add_constant(climate_change_1_train_X_new_2) model=sm.OLS(climate_change_1_train_Y,climate_change_1_train_X_new_2) res=model.fit() print(res.summary())

		OLS Regression Results				
Dep. Variable: Model: Method: Date: Vime: No. Observations: Df Residuals: Df Model: Covariance Type:		Temp OLS Least Squares Wed, 25 Dec 2019 16:55:11 284 279 4 nonrobust		F-statistic: Prob (F-statistic)		
========	coef	std err		====== t	P> t	
const MEI CO2 TSI Aerosols	-118.6016 0.0620 0.0107 0.0842 -1.5844 	19.906 0.007 0.001 0.015 0.217	9 19 5	.958 .438 .777 .764 .303	0.000 0.000 0.000 0.000 0.000	

Result:

We will use MEI, CO2, TSI and Aerosols.

(2) Train a better model than the model in Problem 2.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import statsmodels.api as sm

df = pd.read_csv('climate_change_1.csv')

def R_square(Y_pred, Y):
    ESS = np.sum((Y_pred - Y.mean())**2)
    TSS = np.sum((Y - Y.mean())**2)
    R2 = ESS / TSS
    print(R2)

def closed_form_2():
    lamb = 0.1
```


closed_form_2()

4. Problem Four-Gradient Descent

Iterative Expression:

import numpy as np

$$\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

```
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import statsmodels.api as sm
from sklearn.preprocessing import normalize
df = pd.read_csv('climate_change_1.csv')
def Gradient_Descent(alpha, theta_0, x, y, tol):
    theta = theta_0
    cost = (1./(2*len(x))) * (np.sum((x @ theta_0 - y)**2))
    while not ((cost <= tol) | (count > 10000)):
         count += 1
         theta = theta - alpha * (1./len(x)) * (x.T @ (x @ theta - y))
         cost = (1./(2*len(x))) * (np.sum((x @ theta_0 - y)**2))
         print(theta)
    print('迭代共{}次'.format(count))
    print(theta)
def regularit(df):
    newDataFrame = pd.DataFrame(index=df.index)
```



```
columns = df.columns.tolist()
    for c in columns:
         if c != 'const':
              d = df[c]
              MAX = d.max()
              MIN = d.min()
              newDataFrame[c] = ((d - MIN) / (MAX - MIN)).tolist()
         else:
              newDataFrame[c] = 1
    return newDataFrame
def closed_form_2():
    lamb = 0.1
    df['const'] = 1
    traindata = df[df.Year<=2006]
    testdata = df[df.Year>2006]
    X = traindata[['MEI','CO2','CH4','N2O','CFC-11','CFC-12','TSI','Aerosols','const']]
    Y = traindata['Temp']
    X = regularit(X)
    Y = (Y-Y.mean())/(Y.max()-Y.min())
    print(X)
    print(Y)
    Theta2 = [1,1,1,1,1,1,1,1,1]
    Gradient_Descent(0.001, Theta2, X, Y, 10)
closed_form_2()
```