Investigación Operativa - Clase 1

Introducción a Programación Lineal y modelización

Nazareno Faillace Mullen

2° Cuatrimestre 2025

Departamento de Matemática - FCEN - UBA

Cronograma

- $19/08 \rightarrow \mathbf{05/09}$: Cómo modelar problemas con Programación Lineal
- $09/09 \rightarrow \mathbf{03/10}$: SIMPLEX y Branch & Bound
- $07/10 \rightarrow 28/10$: Optimización no lineal
- $31/10 \rightarrow 18/11$: Teoría de grafos
- $21/11 \rightarrow 05/12$: Aplicaciones (teórica) y Consultas de TPs y recus (práctica)
- 09/12, 16/12 y 23/12: recuperatorios

Para aprobar la parte práctica de la materia:

- · Tres parciales
- · Un TP de implementación de Programación Lineal
- · Un TP teórico-práctico sobre optimización no lineal

La materia es promocionable.

(Abuso de) Notación

Sean $u,v\in\mathbb{R}^n$, si $u_i\leq v_i\;\forall\,i=1,\ldots,n$ vamos a notarlo $u\leq v.$

Ejemplos:

- 1. $x \ge 0$ significa que $x_i \ge 0 \ \forall i = 1, \dots, n$
- 2. Sean:

$$A = \begin{bmatrix} -2 & 3 \\ 4 & -1 \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad b = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$$

 $Ax \leq b$ significa que:

$$\begin{cases} -2x_1 + 3x_2 \le -3 \\ 4x_1 - x_2 \le 5 \end{cases}$$

Formulación canónica

Sean $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ y $b \in \mathbb{R}^m$

Programación Lineal (PL)

$$\begin{aligned} & \text{máx} & & c^T x \\ & \text{s.a:} & & Ax \leq b \\ & & & x \geq 0 \\ & & & & (x \in \mathbb{R}^n) \end{aligned}$$

Programación Lineal Entera (PLE)

$$\begin{array}{ll} \text{máx} & c^Tx \\ \text{s.a:} & Ax \leq b \\ & x \geq 0 \\ & x \in \mathbb{Z}^n \end{array}$$

Formulación canónica

Sean $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ y $b \in \mathbb{R}^m$

Programación Lineal Entera Binaria

$$\begin{aligned} & \max & c^T x \\ & \text{s.a:} & & Ax \leq b \\ & & & x \geq 0 \\ & & & x \in \{\mathbb{0}, \mathbb{1}\}^n \end{aligned}$$

Programación Lineal Entera Mixta

$$\begin{aligned} & \text{máx} & & c^Tx \\ & \text{s.a.} & & Ax \leq b \\ & & & x \geq 0 \\ & & & x_i \in \mathbb{Z} & \forall i \in I \\ & & & x_j \in \mathbb{R} & \forall j \in J \end{aligned}$$

 $Problema \rightarrow Plantear\ modelo \rightarrow Resolver\ modelo$

Problema → Plantear modelo → Resolver modelo

Pensando en el Escribiendo el modelo modelo

Componentes de un problema lineal

- Variables (x_1, x_2, \dots, x_n)
 - Reales
 - Enteras
 - Binarias
- · Parámetros: datos conocidos del problema
- Función objetivo: función que queremos maximizar o minimizar. Es combinación lineal de las variables:

$$f(x_1, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n = \sum_{j=1}^n c_j x_j = c^T x$$

• Restricciones: se expresan como una igualdad o desigualdad entre una combinación lineal de las variables y b_i un número real:

$$\sum_{j=1}^{n} a_{ij}x_j \le b_i \qquad \sum_{j=1}^{n} a_{ij}x_j \ge b_i \qquad \sum_{j=1}^{n} a_{ij}x_j = b_i$$

Ejemplo

Una fábrica de pintura quiere producir P_I y P_E . Para producir una tonelada de P_I necesita 6 toneladas del material M_1 y una de material M_2 . Por cada tonelada de P_E necesita 4 toneladas de M_1 y 2 de M_2 . La fábrica dispone diariamente de 24 toneladas de M_1 y 6 de M_2 .

Por otro lado, se sabe que diariamente se venden a lo sumo 2 toneladas de P_I y lo que se vende de P_E es a lo sumo la cantidad producida de P_I mas una tonelada. La fábrica vende todo lo que produce y no quiere quedarse con excedente.

Teniendo en cuenta que la fábrica gana 5 por tonelada de P_I y 4 por tonelada de P_E , decidir la cantidad de pintura de cada tipo que debe producir para maximizar su ganancia.

Soluciones de un PL

- Sea $x=(x_1,x_2,\ldots,x_n)$ tal que cumple con todas las restricciones, entonces x es una solución factible. En el ejemplo, (2,0) es una solución factible.
- A una solución factible que maximiza (o minimiza) la f.o. se la denomina **solución óptima** y el correspondiente valor de la f.o. es el **valor óptimo**. En el ejemplo, (2,2) es una solución óptima y 18 es el valor óptimo.
- · Puede haber una única solución óptima, infinitas o ninguna.

Operaciones lógicas

• Si tenemos dos variables binarias $x_1,\,x_2$, las operaciones lógicas pueden ser representadas de manera relativamente sencilla:

Operación	Notación lógica	Restricción
Conjunción Disyunción inclusiva	$\begin{array}{c} x_1 \wedge x_2 \\ x_1 \vee x_2 \end{array}$	
Disyunción exclusiva Implicación	$x_1 \lor x_2 \\ x_1 \Rightarrow x_2$	
Doble implicación	$x_1 \Leftrightarrow x_2$	

Todas las expresiones deben ser <u>lineales</u>

Ejercicio

La empresa multinacional MicroApple, presidida por Bill Jobs, decidió comprar empresas de distintos rubros y así aumentar su presencia en el mercado. Las adquisiciones se llevarán a cabo durante cada mes del año próximo, y se cuenta con un presupuesto de d_k para cada mes k ($1 \le k \le 12$). Hay N empresas pertenecientes a S rubros que pueden ser compradas, pero su precio varía según la época del año en la que se efectúa la compra: el precio de la empresa i ($1 \le i \le N$) en el mes k es p_{ik} . Naturalmente, cada empresa puede ser comprada a lo sumo una vez.

Se conoce g_{ik} , la ganancia que habrá obtenido MicroApple a finales de año por haber comprado la empresa i en el mes k. Por otro lado, MicroApple debe cumplir con la reglamentación anti-monopolio: a lo sumo puede comprar m_s empresas del rubro s ($1 \le s \le S$) durante el año. Además, el equipo de finanzas de MicroApple indica que es conveniente comprar a lo sumo una de las empresas del conjunto $\{5,7,11\}$.

Ayudemos a Bill a decidir qué empresas comprar y cuándo hacerlo para maximizar la ganancia de MicroApple.