

KIIT Deemed to be University Online End Semester Examination(Autumn Semester-2020)

<u>Subject Name & Code:</u> DSA (CS 2001)Regular <u>Applicable to Courses: B.Tech</u>

Full Marks=50 Time:2 Hours

SECTION-A(Answer All Questions. Each question carries 2 Marks) Time:30 Minutes (7×2=14 Marks)

Question	Question Type	Question	CO	Answer Key
No	(MCQ/SAT)	<u> </u>	<u>Mapping</u>	(For MCQ
				Questions only)
<u>Q.No:1</u>	MCQ	What is the time complexity of following code: int a = 0, b = 0; for (i = 0; i < N; i=i*2) { a = a + rand(); } for (j = 0; j < M; j++) { b = b + rand(); } (A) O(N * M) time (B) O(N + M) time (C) O(log N+ M) time (D) O(N * M) time	CO2	(C)
	MCQ	What is the time complexity of following code: int i, j, k = 0; for (i = $n/2$; i <= n; i++) { for (j = 2; j <= n; j = j * 2) {	CO2	(B)
	<u>MCQ</u>	What is the time complexity of following code: int $a = 0$, $i = m$;	CO2	(D)

	MCQ	<pre>while (i > 0) { a += i; i /= 2; } (A) O(m) (B) O(Sqrt(m)) (C) O(m / 2) (D) O(log m) What is the time complexity of following code: int a = 0; for (i = 0; i < N; i++) { for (j = N; j > i; j) { a = a + i + j; } } (A) O(N) (B) O(N*log(N)) (C) O(N * Sqrt(N)) (D) O(N*N)</pre>	CO2	(D)
Q.No:2	MCQ	A binary search tree is generated by inserting integer values in order the order: 60, 25, 65, 15, 30, 55, 80, 10, 20, 40, 75, 35. Find the number of nodes in the left subtree, right subtree of the root and the height of the tree respectively. (A) (6, 5, 3) (B) (7, 4, 4) (C) (8, 3, 4) (D) (5, 6, 3)	CO 4	(C)
	MCQ	Suppose the following numbers are entered to construct a binary search tree. 100, 80, 200, 75, 84, 22, 63, 15, 7 Further, the tree is converted into a one way inorder threaded binary tree. How many threads will be present in the tree? (A) 4 (B) 5 (C) 7 (D) 8	CO 4	(B)

			Т	
	MCQ	Suppose the following	CO 4	(C)
		numbers are entered to		
		construct a binary search		
		tree.		
		80, 100, 75, 22, 63, 15, 7, 84,		
		200		
		Further, the tree is converted		
		into a one way inorder		
		threaded binary tree. How		
		many threads will be present		
		in the tree?		
		(A) 4		
		(B) 7		
		(C) 5		
		(D) 8		
	MCQ	Suppose the following	CO 4	(D)
	•	numbers are entered to		. ,
		construct a binary search		
		tree.		
		22, 15, 20, 18, 75, 60, 50, 10		
		Further, the tree is converted		
		into a one way inorder		
		threaded binary tree. How		
		many threads will be present		
		in the tree?		
		(A) 4		
		(B) 7		
		(C) 8		
		(D) 5		
Q.No:3	MCQ	Evaluate the following	CO1,CO	(A)
<u>V.110.5</u>	MCQ	prefix expression.	4	
		+, *, 2, +, /, 14, 2, 5, 1	7	
		(A) 25		
		(B) 24		
		(C) 23		
	MCC	(D) Fractional Value		(D)
	MCQ	Evaluate the following		(B)
		postfix expression.		
		1, 4, 18, 6, /, 3, +, +, 5, /, +		
		(A) 2		
		(B) 3		
		(C) 4		
		(D)5		
	MCQ	Evaluate the following		(A)
		postfix expression.		
		4, 3, 6, 3, *, 12, -, *, +		
		7, 3, 0, 3, , 12, -, , 1	l l	
		(A) 22		
		(A) 22		

	МСО	Evaluate the fellowing		(D)
	<u>MCQ</u>	Evaluate the following		(D)
		prefix expression.		
		*, -, +, 4, 3, 5, /, +, 2, 4, 5		
		(A) 14		
		(B) 21		
		(C) 19		
		(D) 12/5		
<u>Q.No:4</u>	<u>MCQ</u>	Consider the following	CO3	(B)
		code: void fun(struct node		
		* start) { if (start==NULL)		
		return;		
		if(start->next!=NULL)		
		fun(start->next->next);		
		<pre>printf("%d",start->data);</pre>		
		For a linked list with		
		following data input to the		
		above code, what will be		
		the output of the code?		
		11->15->25->50->87->23?		
		(A) 23 50 15		
		(B) 87 25 11		
		(C) 11 15 25 50 87 23		
		, ,		
	MCO	(D) 11 25 87	CO2	(D)
	<u>MCQ</u>	Consider a double circular	CO3	(B)
		linked list. Let P points to		
		the start node of the linked		
		list. Then the following		
		code snippet will		
		delete node?		
		[prev and next represent the		
		previous and next pointer		
		respectively]		
		p->prev->prev->next		
		=p->prev		
		p->prev->prev=p->prev->p		
		rev->prev		
		(A)Last		
		(B) Node before the last		
		(C) First		
		(D) Second		
	MCQ	Consider the following	CO3	(C)
	<u> v</u>	function applied to a single		
		linked list with odd no. of		
		nodes:		
		struct node * fun ()		
		Struct Hode Tull ()		
		struct node *n *c.		
		struct node *p, *q;		
		p=q=start;// start points to		
		the first node of the list		

		T		
		while(q!=NULL &&		
		q->next!=NULL)		
		{		
		q=q->next->next;		
		p=p->next;		
		}		
		retrun p;		
		}		
		The code will return		
		of the list.		
		(A)Last node		
		(B) Node before the last		
		node		
		(C) Middle node		
		(D) None of these		
	MCQ	Consider the following	CO3	(B)
	11200	function applied to a single		
		linked list with odd no. of		
		nodes:		
		void fun (struct node *		
		start)		
		start)		
		if(start!=NULL)		
		,		
		<pre>printf("%d", start->data);</pre>		
		fun(start->next);		
		<pre>printf("%d",start->data);</pre>		
		}		
		The code will print the		
		list		
		(A)Two times in		
		forward direction		
		(B) One time forward		
		direction and one		
		time backward		
		direction		
		(C) Two time in		
		backward direction		
		(D) None of these		
Q.No:5	MCQ	With the following set of	CO4	(D)
		traversal sequences		
		together, how many binary		
		trees can be identified?		
		Preorder :		
		ABDEFCGHJLK		
		Postorder:		
		DFEBGLJKHCA		
		(A)One		
		(B) Two		
		(C) Three		
		(D) Four		
		(D) FOUT		

	MCQ	With the following set of traversal sequences together, what is the equivalent postorder traversal sequence? Preorder: abcdefghijk Inorder: bacdfehgjki (A) bfhkjigedca (B) bfhkjigedac (C) bfhkijgedca (D) bhfkjigedca	CO4	(A)
	<u>MCQ</u>	What is the equivalent postfix expression for the prefix expression: ++ac*d-e/+fgh? (A) acd*+efg+h/+ (B) acd*+efg+h/-+ (C) acd*+feg+h/-+ (D) acd+*efg+h/-+	CO4	(B)
	<u>MCQ</u>	What is the equivalent prefix expression for the postfix expression: acd*+efg+h/-+? (A)++ac*de-/+fgh (B)++ac*d-e/+fgh (C)++ac*d-e/+fgh (D)++ac*d-e/+fgh	CO4	(C)
Q.No:6	MCQ	Figure below is a balanced binary tree. If a node inserted as child of the node R, how many nodes will become unbalanced? (A)2 (B) 1 (C) 3 (D) 0	CO4, CO1,CO 6	(B)
	MCQ MCQ	Maximum number of nodes present at any level of a tree is? A. n B. 2 ⁿ C. n+1 D. 2n What is the number of	CO4, CO1,CO 6	(B) (C)

		1 1 1 1	CO1 CO	
		edges present in a complete graph having n vertices? A. (n*(n+1))/2 B. n C. (n*(n-1))/2 D. nC2	CO1,CO 6	
	MCQ	A B-tree of order 4 is built from scratch by 10 successive insertions. What is the maximum number of node splitting operations that may take place? (A) 3 (B) 4 (C) 5 (D) 6	CO4, CO1,CO 6	(C)
Q.No:7	MCQ	Given the following input (122, 634, 1976, 679, 989, 571, 6773, 2399) and the hash function x mod 10, which of the following statements are true? (A) 679, 989, 2399 are having collision (B) 571,1976 are having collision. (C) All elements hash to the same value (D) Each element hashes to a different value	CO5,CO 6	(A) 679, 989, 2399 are having collision
	MCQ	Suppose we have a O(n) time algorithm that finds median of an unsorted array. Now consider a QuickSort implementation where we first find median using the above algorithm, then use median as pivot. What will be the worst case time complexity of this modified QuickSort. (A) O(n^2 Logn) (B) O(n^2) (C) O(n Logn Logn) (D) O(nLogn)	CO5,CO 6	(D)
	MCQ	Which of the following sorting algorithms in its typical implementation gives best performance	CO5,CO 6	(C) Insertion Sort

	when applied on an array which is sorted or almost sorted (maximum 1 or two elements are misplaced). (A) Quick Sort (B) Heap Sort (C) Insertion Sort (D) Merge Sort		
MCQ	For merging two sorted lists of size m and n into sorted list of size m+n, no. of comparisons required? a) O(m) b) O(n) c) O(m+n) d) O(logm + logn)	CO5,CO 6	(C)

SECTION-B(Answer Any Three Questions. Each Question carries 12 Marks)

Time: 1 Hour and 30 Minutes

(3×12=36 Marks)

Question	<u>Question</u>	CO Mapping
<u>No</u>		<u>(Each</u>
		<u>question</u>
		should be
		from the same
		<u>CO(s))</u>
<u>Q.No:8</u>	What is the difference between a single linked list	CO ₃
	and double linked list representation? Write a C	
	function to rotate a double linked list anti clock	
	wise. Given a double linked list, rotate the linked list	
	counter-clockwise by k nodes. Where k is a given	
	positive integer. For example, if the given linked list	
	is A->B->C->D->E->F and k is 3, the list should be	
	modified to D->E->F->A->B->C. Assume that k is	
	smaller than the count of nodes in linked list. [12]	
	What is the difference between an array and linked	
	list representation? Write function to reverse a single	
	list starting with k node followed by k+1,	
	k+2,The function should reverse first k nodes in	
	the list, then reverse next k+1 nodes in the list, then	
	reverse next k+2 node in the list, and like this, it will	
	continue till the end of the list.[12]	
	What is the difference between a single linked list	
	and a circular linked list representation? Write a	
	function detect the Loop() that checks whether a	
	given double Linked List contains loop and if loop is	

	present then removes the loop and returns true. If the list doesn't contain loop then it returns false. [12] Note: For a loop to be present either the last node's next pointer may keep the address of any other node or the first node's previous pointer may keep the address of any other node in the list or both.	
Q.No:9	A. Suppose a computer system has one processor to execute different tasks. Each task has a time of execution. Each task is assigned with a priority number depending upon the type of task: Local Printing (Lowest Priority -1), Web Applications (Priority-2), I/O interfacing (Highest Priority -3). Every time a task is generated, its execution time and priority number are entered and stored. Which data structure can efficiently maintain task waiting for the processor? Write functions for insertion and deletion operations for the tasks with the following conditions. i) A task will be processed first with minimum execution time. ii) A task will be processed first with highest priority. [8] B. Write insertion and deletion functions to implement an input restricted double ended queue. [4] A. Write insertion and deletion functions for implementing a priority queue using a two	CO1,CO4
	dimensional array. Discuss the time complexities of the functions. [4] B. Write a program to merge two sorted stacks S1 & S2 by using only push and pop functions and without taking any additional data structures. The final merge list to be stored in S1. Both S1 and S2 must be created dynamically. [8] A. Write insertion and deletion functions to implement a QUEUE ADT using STACK ADT.[4] B. Write a program to rearrange two sorted stacks S1 & S2 by using only push and pop functions and without taking any additional data structures. [8] Note: Rearrange :- Finally, both the arrays will be sorted, but the highest element in S1 should be less than the lowest element in S2.	
Q.No:10	A. What is the need of doing height balance of a Binary search tree? Illustrate the steps involved while building an AVL tree with values and also identify the rotations: 34, 36, 39, 28, 31, 22, 45, 76, 42, 75, 88, 92, 27, 65,	CO4,CO6

B. Write a function to implement linear probing (collision resolution technique) in hashing. [3]

C. Write the Depth First Search (DFS) graph traversal algorithm/ pseudo code. Discuss the steps of DFS algorithm with the following graph, where A is considered as starting vertex. [3]

D.

A. What is Hashing? Explain the collision with example. A hash table of length 10 uses open addressing with hash function h(k)=k mod 10, and linear probing. After inserting 8 values into an empty hash table, the table is as shown below.

0	
1	
2	12
3	13
4	2
2 3 4 5 6 7	2 3 23 5
6	23
	5
8	18
9	15

Find out the possible order in which the key values could have been inserted in the table (justify the answer with proper explanation). Write function to implement linear probing. [8]

B. Write the BFS traversal algorithm. Show all the steps to find BFS traversal of the given graph. The traversal starts from R. [4]

