Examenul de bacalaureat național 2015 Proba E. c) Matematică *M_mate-info*

Varianta 3

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Calculați rația progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_1=1$ și $a_2=2015$.
- **5p** 2. Determinați valoarea maximă a funcției $f:[1,4] \to \mathbb{R}$, f(x) = x+1.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_3(x^2 8x) = \log_3 9$.
- **5p 4.** Determinați câte numere naturale de trei cifre distincte se pot forma cu elementele mulțimii $A = \{1, 2, 3, 4\}$.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(3,3), B(6,3) și C(4,0). Determinați coordonatele punctului D, știind că ABCD este paralelogram.
- **5p 6.** Calculați lungimea laturii *BC* a triunghiului *ABC* în care AB = 1, $B = \frac{\pi}{3}$ și $C = \frac{\pi}{6}$.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricele $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $O_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ și $A(a) = \begin{pmatrix} 1 & a & a+1 \\ 0 & 1 & a+2 \\ 0 & 0 & 1 \end{pmatrix}$, unde a este

număr real.

- **5p** a) Arătați că $\det(A(1))=1$.
- **5p b**) Determinați numerele reale a, știind că $A^2(a) 2A(a) + I_3 = O_3$, unde $A^2(a) = A(a)A(a)$.
- **5p** c) Arătați că A(2) + A(4) + A(6) + ... + A(100) = 50A(51).
 - **2.** Se consideră polinomul $f = X^3 4X^2 + mX + 2$, unde *m* este număr real.
- **5p a**) Arătați că f(0) = 2.
- **5p b)** Determinați numărul real m pentru care $x_1 = x_2 + x_3$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.
- $\mathbf{5p}$ c) Pentru m = 8, arătați că polinomul f nu are toate rădăcinile reale.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x(x^2 6x + 9)$.
- **5p** a) Arătați că $f'(x) = e^x(x^2 4x + 3), x \in \mathbb{R}$.
- **5p b**) Determinați intervalele de monotonie a funcției f.
- **5p** c) Demonstrați că $e^x (x-3)^2 \le 4e$, pentru orice $x \in (-\infty, 3]$.
 - **2.** Pentru fiecare număr natural nenul n, se consideră numărul $I_n = \int_0^1 (1-x^3)^n dx$.
- **5p** a) Arătați că $I_1 = \frac{3}{4}$.
- **5p b**) Arătați că $I_{n+1} \le I_n$, pentru orice număr natural nenul n.
- **5p** c) Demonstrați că $I_{n+1} = \frac{3(n+1)}{3n+4}I_n$, pentru orice număr natural nenul n.