IT492: Recommendation Systems

Lecture - 05

Collaborative Filtering: Model-based Methods

Arpit Rana

7th Feb 2022

Flaws in Memory-based Collaborative Methods

Memory-based methods rely on rating correlation and have the following flaws.

- These methods assume that users can be neighbors only if they have rated common items.
 - This assumption is very limiting, as users having rated a few or no common items may still have similar preferences.

Flaws in Memory-based Collaborative Methods

Memory-based methods rely on rating correlation and have the following flaws.

Since only items rated by neighbors can be recommended, the (catalog) coverage of such methods can also be limited.

Flaws in Memory-based Collaborative Methods

Memory-based methods rely on rating correlation and have the following flaws.

- These methods suffer from (or are sensitive to) the lack of available ratings (a.k.a. sparsity).
 - Users or items newly added to the system may have no ratings at all, a problem known as *cold-start*.

Learning-based Collaborative Methods

Learning-based methods obtain the similarity or affinity between users and items

- by defining a parametric model that describes the relation between users, items or both, and then
- computes the model parameters through an optimization process.

Learning-based Collaborative Methods

Learning-based methods have a few advantages over memory-based methods.

- These methods can capture high-level patterns and trends in the data, are generally more robust to outliers,
- They are known to generalize better than approaches solely based on local relations.
- These methods require less memory because the relations between users and items are encoded in a limited set of parameters.
- Since the parameters are usually learned offline, the online recommendation process is generally faster.

Learning-based Methods

Learning-based methods that use neighborhood or similarity information can be divided in two categories:

- Factorization methods (e.g. MF), and
- Adaptive neighborhood learning methods (e.g. SLIM).

Factorization Methods

Factorization methods

- These methods project users and items into a reduced latent space that captures their most salient features.
- A relation between two users can be found, even though these users have rated different items, thus, are generally less sensitive to sparse data.
- There are essentially two ways in which factorization can be used:
 - Factorization of a sparse similarity matrix, and
 - Factorization of a user-item rating matrix.

Eigenvalues and Eigenvectors

■ Eigenvectors are the vectors that **does not change its orientation** when multiplied by the transition matrix, but it **just scales by a factor** of corresponding eigenvalues.

$$Av = \lambda v$$
Where $A \in R^{m imes m}$ $v \in R^{m imes 1}$ $\lambda \in R^{m imes m}$

Eigenvalues and Eigenvectors

■ Eigenvectors are the vectors that **does not change its orientation** when multiplied by the transition matrix, but it **just scales by a factor** of corresponding eigenvalues.

$$Av = \lambda v$$

$$\begin{bmatrix} a_{11} & a_{12} & --- & a_{1m} \\ a_{21} & a_{22} & --- & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m_1} & a_{m_2} & --- & a_{mm} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_m \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & --- & 0 \\ 0 & \lambda_2 & --- & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & --- & \lambda_m \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_m \end{bmatrix}$$

Diagonalization

- If square matrix "A" has same number of linearly independent eigenvectors as the rank, it can be turned into a diagonal matrix.
- Suppose, we have "m" linearly independent eigenvectors of A, we denote their matrix as "S" -

$$AS = S\Lambda$$

$$S^{-1}AS = \Lambda$$

Decomposition

- If square matrix "A" has same number of linearly independent eigenvectors as the rank, it can be turned into a diagonal matrix.
- Suppose, we have "m" linearly independent eigenvectors of A, we denote their matrix as "S" -

$$AS = S\Lambda$$

$$A = S\Lambda S^{-1}$$

Symmetric Matrix

■ If a square matrix "A" remains unchanged when we take its transpose, it is called *symmetric matrix*.

$$A^T = A$$

- Symmetric matrix has two important properties:
 - The eigenvalues are real (i.e. doesn't have imaginary part)
 - The eigenvectors are *orthogonal* (i.e. perpendicular to each other)

Eigendecomposition of a Symmetric matrix

Since, symmetric matrix has orthogonal eigenvectors -

$$A = Q\Lambda Q^{-1}$$

$$= Q\Lambda Q^{T}$$

- Neighborhood similarity measures (e.g. correlation similarity) are usually very sparse.
- A simple solution to densify a sparse similarity matrix is to compute a low-rank approximation of this matrix with a factorization method.

Let W be a symmetric matrix of rank n representing either user or item similarities.

• We wish to approximate W with a matrix $\hat{W} = QQ^T$ of lower rank k < n by minimizing the following objective function.

$$E(Q) = ||W - QQ^{\top}||_F^2$$
$$= \sum_{i,j} (w_{ij} - \mathbf{q}_i \mathbf{q}_j^{\top})^2,$$

• Finding the factor matrix Q is equivalent to computing the eigenvalue decomposition of W.

$$W = V\Lambda V^T$$

Let W be a symmetric matrix of rank n representing either user or item similarities.

- Let V_k be a matrix formed by the k principal (normalized) eigenvectors of W, which correspond to the axes of the k-dimensional latent subspace.
- The coordinates $q_i \in R^k$ of an item i in this subspace is given by the i^{th} row of matrix $Q = V_k \Lambda_k^{1/2}$
- The item similarities computed in this latent subspace is given by -

$$egin{aligned} \hat{W} &= QQ^T \ &= V_k \Lambda_k V_k^T \end{aligned}$$

Let W be a symmetric matrix of rank n representing either user or item similarities.

A user u, represented by the u^{th} row r_u of the rating matrix R, is projected in the plane defined by V_k

$$\mathbf{r}'_u = \mathbf{r}_u V_k.$$

- In an offline step, the users of the system are clustered in this subspace using recursive hierarchical clustering.
- Then, the rating of user u for an item i is evaluated as the mean rating for i made by users in the same cluster as u.

IT492: Recommendation Systems

(Model-based contd...)

Next lecture Collaborative Methods