Feedback — Elementary Sorts

Help Center

You submitted this quiz on **Sun 13 Sep 2015 11:57 AM EDT**. You got a score of **2.50** out of **3.00**. You can attempt again, if you'd like.

To specify an array or sequence of values in an answer, separate the value s in

the sequence by whitespace. For example, if the question asks for the firs

ten powers of two (starting at 1), then the following answer is acceptabl e:

1 2 4 8 16 32 64 128 256 512

If you wish to discuss a particular question and answer in the forums, ple ase

post the entire question and answer, including the seed (which can be used by

the course staff to uniquely identify the question) and the explanation (w hich

contains the correct answer).

Question 1

(seed = 20279)

Give the array that results after the first 6 exchanges (not iterations!) when insertion sorting the following array:

11 21 34 59 94 86 18 80 33 72

Your answer should be a sequence of 10 integers, separated by whitespace.

You entered:

11 18 21 34 59 86 94 80 33 72

Your Answer		Score	Explanation
11 18 21 34 59 86 94 80 33 72	~	1.00	
Total		1.00 / 1.00	

Question Explanation

The correct answer is: 11 18 21 34 59 86 94 80 33 72

Here is the array after each exchange:

11 21 34 59 94 86 18 80 33 72

1: 11 21 34 59 86 94 18 80 33 72

2: 11 21 34 59 86 18 94 80 33 72

3: 11 21 34 59 18 86 94 80 33 72

4: 11 21 34 18 59 86 94 80 33 72

5: 11 21 18 34 59 86 94 80 33 72

6: 11 18 21 34 59 86 94 80 33 72

Question 2

(seed = 166922)

The column on the left contains an input array of 16 strings to be sorted; the column

on the right contains the strings in sorted order; each of the other 6 columns contains

the array at some intermediate step during either insertion sort, selection sort, or shellsort

(with different columns potentially corresponding to different algorithms).

slug	bear	duck	bear	bear	hake	boar	bear
goat	boar	erne	boar	boar	goat	deer	boar
boar	deer	bear	deer	deer	boar	goat	deer
deer	duck	deer	duck	goat	deer	hoki	duck
hoki	erne	hake	erne	hoki	hoki	slug	erne
moth	goat	goat	goat	moth	moth	moth	goat
bear	hake	boar	hake	oryx	bear	bear	hake
oryx	hawk	hawk	oryx	slug	oryx	oryx	hawk
duck	moth	hoki	moth	duck	duck	duck	hoki

erne	hoki	moth	hoki	erne	erne	erne	mink
puma	puma	mule	puma	puma	puma	puma	moth
hawk	oryx	mink	hawk	hawk	hawk	hawk	mule
toad	oryx						
hake	slug	slug	slug	hake	slug	hake	puma
mule	mule	puma	mule	mule	mule	mule	slug
mink	mink	oryx	mink	mink	mink	mink	toad
0	?	?	?	?	?	?	4

Match up each column with the corresponding sorting algorithm from the give n list:

- 0. Original input
- 1. Insertion sort
- 2. Selection sort
- 3. Shellsort (3x + 1 increments)
- 4. Sorted

You should use each choice at least once. Your answer should be a sequence of 8 integers

between 0 and 4 (starting with 0 and ending with 4), separated by whitespac e.

Hint: think about algorithm invariants. Do not trace code.

You entered:

02122134

Your Answer		Score	Explanation
0	~	0.12	
2	~	0.12	
1	×	0.00	
2	~	0.12	
2	×	0.00	
1	×	0.00	

3	×	0.00
4	~	0.12
Total		0.50 / 1.00

Question Explanation

The correct answer is: 0 2 3 2 1 3 1 4

- 0: Original input
- 2: Selection sort after 8 iterations
- 3: Shellsort after 4-sorting
- 2: Selection sort after 7 iterations
- 1: Insertion sort after 8 iterations
- 3: Shellsort after 13-sorting
- 1: Insertion sort after 5 iterations
- 4: Sorted

Question 3

(seed = 704156)

Which of the following statements about elementary sorting algorithms are t rue? Check all that apply. Unless otherwise specified, assume that the sort ing implementations are the ones from the lectures.

Your Answer		Score	Explanation
The number of compares to Shellsort (with Knuth's 3x+1 increments) a sorted array of N distinct keys is ~ N.	*	0.20	It uses ~ N log_3 N compares. Each pass uses approximately N compares. There are ~ log_3 N passes because the increments go up by (roughly) a factor of 3.
The number of compar es to insertion sort a reverse-sorted arr	~	0.20	This is a worst case input for insertion sort.

ay of N distinct key s is $\sim 1/2 \text{ N}^2$. 0.20 During Shellsort, a g-sorted array remains g-sorted Immediately before t after h-sorting it. he 4-sorting pass in Shellsort (with Knut h's 3x+1 increment s), the array is bot h 13-sorted and 40-s orted. 4 0.20 The total number of compares becomes linearithmic (but number of exchanges is still Suppose that we modi fy insertion sort to quadratic). This is still a worthwhile improvement. use binary search to locate the position within the first i-1 entries of the array into which entry i s hould be inserted. T hen, the number of c ompares to insertion sort an array of N e lements is ~ N lg N in the worst case. 0.20 It uses ~ N log_3 N compares. Each pass uses approximately N compares. There are ~ log_3 N The order of growth of the number of com passes because the increments go up by (roughly) pares to Shellsort a factor of 3. (with Knuth's 3x+1 i ncrements) a sorted array of N distinct keys is $N^{(3/2)}$. Total 1.00 / 1.00 **Question Explanation**