Graphes: définitions

Quentin Fortier

January 24, 2022

Graphes: définitions

Quentin Fortier

January 24, 2022

Graphe = dessin?

Un graphe est constitué:

- de sommets (vertices en anglais), représentés par des points
- d'arêtes (edges en anglais), représentés par des traits entre les points

Définition formelle

Un graphe (non orienté) est un couple G = (V, E) où:

- $oldsymbol{0}$ V est un ensemble fini (de **sommets**)
- ${f 2}$ E est un ensemble dont chaque élément, appelé **arête**, est un **ensemble** de 2 sommets

Définition formelle

Un graphe (non orienté) est un couple G = (V, E) où:

- \bullet V est un ensemble fini (de **sommets**)
- ${f 2}$ E est un ensemble dont chaque élément, appelé **arête**, est un **ensemble** de 2 sommets

lci
$$V=\{0,1,2,3,4,5,6\}$$
 et $E=\{\{0,6\},\{1,2\},\{1,3\},\{1,4\},\{2,4\},\{2,5\},\{3,4\},\{4,5\}\}.$

Définition formelle

Un graphe orienté est un couple $\overrightarrow{G}=\left(\,V,\overrightarrow{E}\,\right)$ où :

- $oldsymbol{0}$ V est un ensemble fini (de **sommets**)
- ② $\vec{E} \subseteq V \times V$ est un ensemble de **couples** de sommets (appelés arcs)

Soit G = (V, E) un graphe non orienté.

• Si $e = \{u, v\} \in E$ on dit que u et v sont les **extrémités** de e et que u et v sont **voisins** (ou **adjacents**).

Soit G = (V, E) un graphe non orienté.

- Si $e = \{u, v\} \in E$ on dit que u et v sont les **extrémités** de e et que u et v sont **voisins** (ou **adjacents**).
- Le **degré** d'un sommet $v \in V$, noté $\deg(\mathbf{v})$, est son nombre de voisins. Si $\deg(v) = 1$, v est une **feuille**.
 - Pour un graphe orienté, on note $\deg^-(v)$ et $\deg^+(v)$ les degrés entrants et sortants de v.

Soit G = (V, E) un graphe non orienté.

- Si $e = \{u, v\} \in E$ on dit que u et v sont les **extrémités** de e et que u et v sont **voisins** (ou **adjacents**).
- Le **degré** d'un sommet $v \in V$, noté $\deg(\mathbf{v})$, est son nombre de voisins. Si $\deg(v) = 1$, v est une **feuille**. Pour un graphe orienté, on note $\deg^-(v)$ et $\deg^+(v)$ les degrés entrants et sortants de v.
- Si $e \in E$, on note G e le graphe obtenu en supprimant e: $G e = (V, E \{e\}).$

Soit G = (V, E) un graphe non orienté.

- Si $e = \{u, v\} \in E$ on dit que u et v sont les **extrémités** de e et que u et v sont **voisins** (ou **adjacents**).
- Le **degré** d'un sommet $v \in V$, noté $\deg(v)$, est son nombre de voisins. Si $\deg(v) = 1$, v est une **feuille**. Pour un graphe orienté, on note $\deg^-(v)$ et $\deg^+(v)$ les degrés entrants et sortants de v.
- Si $e \in E$, on note G e le graphe obtenu en supprimant e: $G e = (V, E \{e\}).$
- Si $v \in V$, on note G-v le graphe obtenu en supprimant v: $G-v=(V-\{v\},E')$, où E' est l'ensemble des arêtes de E n'ayant pas v comme extrémité.

Formule des degrés

Formule des degrés (HP)

Soit G = (V, E) un graphe. Alors:

$$\sum_{v \in V} \deg(v) = 2|E|$$

Formule des degrés

Formule des degrés (HP)

Soit G = (V, E) un graphe. Alors:

$$\sum_{v \in V} \deg(v) = 2|E|$$

Preuve (par double comptage des extrémités d'arêtes) :

Le nombre d'extrémités d'arêtes est égal à :

- $oldsymbol{0}$ 2 |E| car chaque arête a 2 extrémités.
- 2 $\sum_{v \in V} \deg(v)$ car chaque sommet v est extrémité de $\deg(v)$ arêtes.

Formule des degrés

Formule des degrés (HP)

Soit G = (V, E) un graphe. Alors:

$$\sum_{v \in V} \deg(v) = 2|E|$$

Preuve (par double comptage des extrémités d'arêtes) :

Le nombre d'extrémités d'arêtes est égal à :

- $oldsymbol{0}$ 2 |E| car chaque arête a 2 extrémités.
- 2 $\sum_{v \in V} \deg(v)$ car chaque sommet v est extrémité de $\deg(v)$ arêtes.

Pour un graphe orienté : $\sum \deg^+(v) = \sum \deg^-(v) = 2|\vec{E}|$

Corollaire (HP)

Lemme des poignées de main (Handshake lemma)

Tout graphe possède un nombre pair de sommets de degrés impairs.

Corollaire (HP)

Lemme des poignées de main (Handshake lemma)

Tout graphe possède un nombre pair de sommets de degrés impairs.

Preuve:

$$\underbrace{\sum_{\deg(v) \text{ pair}} \deg(v) + \sum_{\deg(v) \text{ impair}} \deg(v) = \underbrace{2|E|}_{\text{pair}}$$

Corollaire (HP)

Lemme des poignées de main (Handshake lemma)

Tout graphe possède un nombre pair de sommets de degrés impairs.

Preuve:

$$\underbrace{\frac{\deg(v) \; \mathsf{pair}}{\deg(v) \; \mathsf{pair}}}_{\mathsf{pair}} + \sum_{\deg(v) \; \mathsf{impair}} \deg(v) = \underbrace{2|E|}_{\mathsf{pair}}$$

Application : existe t-il un graphe dont les sommets ont pour degrés 1, 2, 2, 3, 5 ?

Graphe complet

Un **graphe complet** est un graphe non orienté possèdant toutes les arêtes possibles.

Un graphe complet avec n sommets a

arêtes

Graphe complet

Un **graphe complet** est un graphe non orienté possèdant toutes les arêtes possibles.

Un graphe complet avec n sommets a $\binom{n}{2}$ arêtes : c'est le nombre maximum d'arêtes d'un graphe à n sommets.

De manière générale, tout graphe à n sommets et m arêtes vérifie $m = \mathrm{O}(n^2).$

Chaque sommet a degré n-1.

Chemin

Un chemin est une suite d'arêtes consécutives différentes.

La **longueur** d'un chemin est son nombre d'arêtes. La **distance** de u à v est la plus petite longueur d'un chemin de u à v (∞ si il n'y a pas de chemin) : c'est une distance au sens mathématique.

Un graphe non orienté est **connexe** s'il possède un chemin de n'importe quel sommet à n'importe quel autre.

Graphe non connexe

Graphe connexe

Un graphe non orienté est **connexe** s'il possède un chemin de n'importe quel sommet à n'importe quel autre.

Quel est le nombre minimum d'arêtes d'un graphe connexe à n sommets?

Montrons par récurrence $\mathcal{H}(n)$: « un graphe connexe à n sommets possède au moins n-1 arêtes ».

① Un graphe à 1 sommet possède 0 arête.

- ① Un graphe à 1 sommet possède 0 arête.
- ② Supposons $\mathcal{H}(n)$. Soit G=(V,E) un graphe connexe à n+1 sommets.

- Un graphe à 1 sommet possède 0 arête.
- ② Supposons $\mathcal{H}(n)$. Soit G=(V,E) un graphe connexe à n+1 sommets.
 - ullet Si G a un sommet v de degré 1 alors

- 1 Un graphe à 1 sommet possède 0 arête.
- ② Supposons $\mathcal{H}(n)$. Soit G=(V,E) un graphe connexe à n+1 sommets.
 - Si G a un sommet v de degré 1 alors G-v est un graphe connexe à n sommets donc, par $\mathcal{H}(n)$, G-v a au moins n-1 arêtes.

- Un graphe à 1 sommet possède 0 arête.
- ② Supposons $\mathcal{H}(n)$. Soit G=(V,E) un graphe connexe à n+1 sommets.
 - Si G a un sommet v de degré 1 alors G-v est un graphe connexe à n sommets donc, par $\mathcal{H}(n)$, G-v a au moins n-1 arêtes. Donc G a au moins n arêtes.
 - Sinon,

- 1 Un graphe à 1 sommet possède 0 arête.
- ② Supposons $\mathcal{H}(n)$. Soit G=(V,E) un graphe connexe à n+1 sommets.
 - Si G a un sommet v de degré 1 alors G-v est un graphe connexe à n sommets donc, par $\mathcal{H}(n)$, G-v a au moins n-1 arêtes. Donc G a au moins n arêtes.
 - Sinon, tous les sommets de G sont de degré ≥ 2 . Alors $2|E| = \sum_{v \in V} \deg(v) \geq 2(n+1) \geq 2n$. Donc $|E| \geq n$, ce qui montre $\mathcal{H}(n+1)$.

Composantes connexes

Considérons la relation d'équivalence sur les sommets d'un graphe non orienté G=(V,E):

 $u \sim v \iff$ il existe un chemin entre u et v

Composantes connexes

Considérons la relation d'équivalence sur les sommets d'un graphe non orienté G=(V,E):

$$u \sim v \iff$$
 il existe un chemin entre u et v

Les classes d'équivalences V/\sim sont les sous-graphes connexes maximaux (au sens de \subseteq) de G, ils sont appelés **composantes connexes**.

Un graphe avec 3 composantes connexes.

Si $\overrightarrow{G}=(V,\overrightarrow{E})$ est orienté, « $u\leadsto v\Longleftrightarrow$ il existe un chemin de u à v » **n'est pas** une relation d'équivalence.

Si $\overrightarrow{G}=(V,\overrightarrow{E})$ est orienté, « $u\leadsto v\Longleftrightarrow$ il existe un chemin de u à v » **n'est pas** une relation d'équivalence.

Par contre la relation suivante est une relation d'équivalence :

Si $\overrightarrow{G}=(V,\overrightarrow{E})$ est orienté, « $u\leadsto v\Longleftrightarrow$ il existe un chemin de u à v » **n'est pas** une relation d'équivalence.

Par contre la relation suivante est une relation d'équivalence :

Les classes d'équivalences V/ \Longleftrightarrow sont appelées composantes fortement connexes.

Un graphe orienté avec 3 composantes fortement connexes.

Si $\overrightarrow{G}=(V,\overrightarrow{E})$ est orienté, « $u\leadsto v\Longleftrightarrow$ il existe un chemin de u à v » n'est pas une relation d'équivalence.

Par contre la relation suivante est d'équivalence:

Les classes d'équivalences V/ \iff sont appelées **composantes** fortement connexes.

Le graphe des composantes fortement connexes est acyclique.

Cycle

Un cycle est un chemin revenant au sommet de départ.

Un cycle avec n sommets a

Cycle

Un cycle est un chemin revenant au sommet de départ.

Un cycle avec n sommets a n arêtes. Le degré de chaque sommet est 2.

Soit σ une permutation de $\{0,...,n-1\}$. On peut lui associer un graphe orienté (V,\overrightarrow{E}) où :

$$V = \{0, ..., n-1\}$$

$$② \overrightarrow{E} = \{(v, \sigma(v)), \ \forall v \in V\}$$

Si
$$\sigma = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 4 & 3 & 1 & 0 \end{pmatrix}$$
:

Les cycles d'une permutation sont celles de son graphe.

Le permutoèdre d'ordre n a pour sommets les permutations de $\{0,...,n-1\}$ et des arêtes entre deux permutations si elles différent d'une transposition.

Nombre de sommets :

Degré de chaque sommet :

Nombre d'arêtes :

Le permutoèdre d'ordre n a pour sommets les permutations de $\{0,...,n-1\}$ et des arêtes entre deux permutations si elles différent d'une transposition.

Nombre de sommets : n!

Degré de chaque sommet :

Nombre d'arêtes :

Le permutoèdre d'ordre n a pour sommets les permutations de $\{0,...,n-1\}$ et des arêtes entre deux permutations si elles différent d'une transposition.

Nombre de sommets : n!

Degré de chaque sommet : $\binom{n}{2}$

Nombre d'arêtes :

Le permutoèdre d'ordre n a pour sommets les permutations de $\{0,...,n-1\}$ et des arêtes entre deux permutations si elles différent d'une transposition.

Nombre de sommets : n!

Degré de chaque sommet : $\binom{n}{2}$

Nombre d'arêtes : $\frac{n!}{2} \binom{n}{2}$

Graphe acyclique

Un graphe est acyclique (ou : sans cycle) s'il ne contient pas de cycle.

Quel est le nombre maximum d'arêtes d'un graphe acyclique à n sommets?

Montrons d'abord :

Lemme

Tout graphe acyclique contient un sommet de degré ≤ 1 .

Montrons d'abord :

Lemme

Tout graphe acyclique contient un sommet de degré ≤ 1 .

 $\frac{\text{Preuve}}{\text{de ses extrémités. Alors }} considérons un chemin \mathcal{C} de longueur maximum et soit v une de ses extrémités. Alors <math>\deg(v) \leq 1$, sinon on pourrait augmenter la longueur de \$\mathcal{C}\$.}

Montrons d'abord :

Lemme

Tout graphe acyclique contient un sommet de degré ≤ 1 .

 $\frac{\text{Preuve}}{\text{de ses extrémités. Alors }} \text{deg}(v) \leq 1 \text{, sinon on pourrait augmenter la longueur de } \mathcal{C}.$

 $\underline{ \text{Remarque}}: \text{tout graphe acyclique avec au moins 2 sommets contient 2} \\ \underline{ \text{sommets de degr\'e}} \leq 1.$

Montrons par récurrence $\mathcal{H}(n)$: « un graphe acyclique à n sommets a au plus n-1 arêtes ».

Montrons par récurrence $\mathcal{H}(n)$: « un graphe acyclique à n sommets a au plus n-1 arêtes ».

- Un graphe à 1 sommet a 0 arête.
- ② Supposons $\mathcal{H}(n)$. D'après le lemme, un graphe G acyclique à n+1 sommets possède un sommet v de degré ≤ 1 .

Montrons par récurrence $\mathcal{H}(n)$: « un graphe acyclique à n sommets a au plus n-1 arêtes ».

- ① Un graphe à 1 sommet a 0 arête.
- ② Supposons $\mathcal{H}(n)$. D'après le lemme, un graphe G acyclique à n+1 sommets possède un sommet v de degré ≤ 1 . Un cycle ne peut pas passer par v, donc G-v est acyclique et a au plus n-1 arêtes, par $\mathcal{H}(n)$.
 - Donc G a au plus $n-1+\deg(v)\leq n$ arêtes, ce qui montre $\mathcal{H}(n+1)$.

Arbre

Théorème / définition

Un graphe T à n sommets est un **arbre** si il vérifie l'une des conditions équivalentes :

- T est connexe acyclique.
- T est connexe et a n-1 arêtes.
- T est acyclique et a n-1 arêtes.
- Il existe un unique chemin entre 2 sommets quelconques de T.

Preuve: au tableau.

Arbre

Théorème / définition

Un graphe T à n sommets est un **arbre** si il vérifie l'une des conditions équivalentes :

- T est connexe acyclique.
- T est connexe et a n-1 arêtes.
- T est acyclique et a n-1 arêtes.
- Il existe un unique chemin entre 2 sommets quelconques de T.

Preuve: au tableau.

Un arbre est couvrant s'il contient tous les sommets.

Les « arbres » que l'on a vu avant étaient enracinés. Ici il n'y a pas de racine.