MÉTODOS NUMÉRICOS I TRABALHO II

EQUIPE:

CÍCERO CAVALCANTE LEANDRO MONTEIRO MURILO LIMA PAULO SÉRGIO RAFAEL DE LIMA

IMPLEMENTAÇÃO DOS MÉTODOS GAUSS-JACOBI E GAUSS-SEIDEL PARA CÁLCULO DE DESLOCAMENTO DE PARTÍCULAS – TEMA 1

SUMÁRIO

- Motivação
 - Problema
 - Métodos
- Metodologia
 - Análise
 - Modelagem
 - Implementação
- Estudo de Caso
- Conclusão

MOTIVAÇÃO

Problema

Achar deslocamentos d1,d2,..,dn de partículas através da inversa da matriz A. Isso é feito achando-se as colunas da inversa isoladamente. Para isso utilizamos os **Métodos Gauss-Jacobi e Gauss-Seidel.**

MOTIVAÇÃO

Métodos

Gauss-Jacobi

$$d_{k+1} = [C]\{d\}_k + \{g\}$$

Gauss-Seidel

$$d_{k+1} = (b_1 - a_{12}x_2 - ... - a_{1n}x_n)_k / a_{12}$$

METODOLOGIA

- Análise
 - Definição das classes
 - Padrão Behavioral Strategy
 - Atributos e funções

METODOLOGIA -> ANÁLISE

- Definição das classes
 - metodo
 - contexto
 - gaussjacobi
 - gaussseidel

METODOLOGIA -> ANÁLISE

Padrão Behavioral Strategy

METODOLOGIA -> ANÁLISE

- Atributos e funções
 - número de partículas
 - precisão
 - coeficientes da matriz
 - termos independentes
 - critérios de parada
 - deslocamentos
 - inversa da matriz

METODOLOGIA

Modelagem

METODOLOGIA

- Implementação
 - Classe metodo
 - double* somatorio(double *X,double *Y);
 - double diferenca(double *X,double *Y);
 - double max(double* X);
 - int criteriodaslinhas();
 - int criteriosassenfeld();
 - int inversa();
 - Classes gaussjacobi e gaussseidel
 - int inversa();

METODOLOGIA -> IMPLEMENTAÇÃO

- Implementação
 - Classe contexto
 - int executar();
 - Int Main()
 - Instancia problema;
 - simula o problema;

Figura 1: dados iniciais

```
TRABALHO II DE MÉTODOS NUMÉRICOS
Número de partículas: 3 Precisão: 0.0001
Digite os termos da matriz dos coeficientes:
A[1][1]: 10
A[1][2]: 2
A[1][3]: 1
A[2][1]: 1
A[2][2]: 5
A[2][3]: 1
A[3][1]: 2
A[3][2]: 3
A[3][3]: 10
Digite o vetor de termos independentes:
B[1]: 1
B[2]: 2
B[31: 3
```

Figura 2: Matriz e Termos Independentes

```
TRABALHO II DE MÉTODOS NUMÉRICOS
Número de partículas: 3 Precisão: 0.0001
Escolha uma dentre as alternativas abaixo:
1- Obter a inversa de A e os deslocamentos pelo metodo de Gauss-Jacob
2- Obter a inversa de A e os deslocamentos pelo metodo de Gauss-Seidel
3- Reiniciar o programa
0- Sair
Sua escolha: 1
```

Figura 3: Opções

Figura 4: Resultados – Gauss Jacobi

Figura 5: Resultados – Gauss Seidel

CONCLUSÃO

- Conclusão
 - Gauss Jacobi X Gauss Seidel
 - convergência -> Jacobi = Seidel
 - simplicidade -> Jacobi > Seidel
 - rapidez -> Jacobi < Seidel