

Chemicals & Petrochemicals

gPROMS ProcessBuilder

A new gPROMS family product

gPROMS product family

General mathematical modeling

gPROMS ModelBuilderAdvanced process
modeling environment

Sector-focused modeling tools

Chemicals & Petrochemicals

gPROMS ProcessBuilderAdvanced process
simulation

Advanced model libraries for reaction & separation

Life Sciences, Consumer, Food, Spec & Agrochem

Solids process optimization

Crystallization process optimization

Oral absorption

Power & CCS

CCS system modeling

Fuel Cells & Batteries

Fuel cell stack & system design

Oil & Gas

Flare networks & depressurization

Wastewater Treatment

Wastewater systems optimization

The gPROMS platform

Equation-oriented modeling & solution engine

Materials modeling

INFOCHEM **Multiflash**

Model deployment tools

Enterprise Objects

Deploy models in common engineering software

Motivation

Provide

- All the power of the gPROMS platform and first-principles modeling
 - without the need to write models
- 2. Custom modeling capability where necessary
 - maximize competitive advantage
- Ease-of-use combined with equation-oriented power
 - solve full problem scope rapidly
- → Full rigorous optimization
 - find optima <u>directly</u> no need for trial & error simulation

gPROMS ProcessBuilder "Advanced Process Simulation"

A process modeling tool for chemicals & petrochemicals

Basics

- Supports "core" flowsheeting functionality
 - drag-and-drop flowsheeting based on model libraries
 - analysis of process behavior via steady-state & dynamic simulation
 - optimization of design & operation via steady-state & dynamic optimization

So what's different?

Advanced Process Simulation

... goes well beyond standard flowsheeting tools

So what's different?

- 1. Industry-leading model libraries
- 2. Powerful custom modeling
- 3. Complex reactor models with standard units
- 4. Optimization
- 5. Equation-oriented power
- 6. State-of-the-art physical properties
- 7. Instrumentation & control
- 8. Pre-built modeling solutions for specific sectors
- 9. ... and more

gPROMS Model Libraries (gML)

- common unit operations for chemicals/petrochemicals
- comparable to those provided in other flowsheeting tools
- BUT
 - other key models, e.g. kinetic reactors, adsorption, membranes, control elements
 - steady-state <u>and</u> dynamic, high-fidelity

II. Advanced Model Libraries

- incorporate PSE's state-of-the-art modeling know-how
- AML:GLC Advanced Model Library for Gas/Liquid Contactors
- AML:FBCR Advanced Model Library for Fixed-Bed Catalytic Reactors

III. Client/3rd-party model libraries

can be used together with gML/AMLs,
 provided they conform to gPROMS ProcessBuilder standard

Separation

Separations – Fluid-Fluid

Component splitter

Flash drum

Decanter

3-phase separator

Distillation column (tray, equilibrium)

Distillation column (packed-bed, HETP)

Distillation column (packed-bed, 1D rate-based)

Distillation column (packed-bed, 2D rate-based)

Distillation column (reactive)

AML:GLC

Separations – Adsorption*

Adsorption bed

Schedule for periodic processes (PSA, TSA)

Schedule for self-interacting bed approach

Separations – Membranes*

Membrane module

* Unique in general process simulation tools

Separation

Reaction

Heat exchange

Flow transportation

Instrumentation control

Reaction and heat exchange

Reaction

Conversion reactor

Gibbs reactor

CSTR (kinetic & equilibrium reactions)

PFR (kinetic & equilibrium reactions)*

Fixed-bed catalytic reactor (1D)*

Fixed-bed catalytic reactor (2D)*

Fixed-bed catalytic reactor (2D + intra-particle)*

Reaction mechanisms

- Arrhenius
- Langmuir-Hinshelwood
- Michaelis-Menten
- User-specified

Separation

Reaction

AML:FBCR

Heat exchange

Flow transportation

Instrumentation control

^{*} Unique in process simulation tools

Heat exchange, flow transportation, compression

Heat exchange

Heater

Cooler

Two-stream heat exchanger

Multi-stream heat exchanger

Air cooler

Evaporator

Condenser

Flow transportation

Pipe

Pump

Valve

Compression

Compressor

Expander

Compressor section

Electric drive

Surge valve

Developed with Rolls-Royce Separation

Reaction

Heat exchange

Flow transportation

Instrumentation control

Instrumentation & control

Instrumentation & control

Controllers

Gain, PID, delays

Logic

Switches

Linear systems

Transfer function, state-space model

Discrete

Dead zone, hysteresis, saturation

Mathematics

Functions, basic operations

Signal Sources

 Constant, ramp, step signal, function generator, time signal

Signal Sinks

Display, plot, X-Y plot

Data

Lookup table, file read, file write

Functionality

- System identification, linearization
- Mixed-integer optimization

Separation

Reaction

Heat exchange

Flow transportation

Instrumentation & control

gPROMS ProcessBuilder – the difference

2. Powerful custom modeling

- Full power of gPROMS platform
 - Distributed systems, dynamics, discontinuity handling, etc.
- Advantages & benefits
 - Augment with own models
 - e.g. reactor, multi-stream heat exchanger
 - Capture competitive advantage
 - not using off-the-shelf black-box models like every body else
 - Validate against experimental data
 - capture corporate knowledge
- Add as ProcessBuilder library
 - Leverage knowledge across the organization
 - Multiple ROI

2. Powerful custom modeling

Accelerate development and reduce maintenance

- ProcessBuilder models have custom model interfaces for common types of customization
 - Augment/modify only the parts that need modification
 - Benefit from automatic initialization of ProcessBuilder models
 - Reduce maintenance of custom models and potential for error
- Use ProcessBuilder "component" models to build complex unit operations using a flowsheeting approach
 - Rapid development
 - Reduced potential for error

2. Powerful custom modeling

Example - Changing heat transfer correlation

ProcessBuilder reactor model

Inputs

Fluid conditions in the reactor

Outputs

Heat transfer coefficient

Custom correlation Single equation!

```
1 PARAMETER
 2 components
                           AS ORDERED SET
 3 number_of_tubes
                           AS REAL
 5 use viscosity
                           AS INTEGER
 6 use lambda
                           AS INTEGER
 7 use heat capacity
                           AS INTEGER
 8 use_two_phase
                           AS INTEGER
10 # Declare custom parameters here
ll design htc
                           AS REAL
13 DISTRIBUTION_DOMAIN
14 axial AS [0:1]
16 VARIABLE
17 # Input
18 T
                           AS DISTRIBUTION(axial)
                                                                              OF temperature qML
                                                                                                                     # Temperature (K)
19 P
                           AS DISTRIBUTION(axial)
                                                                              OF pressure gML
                                                                                                                      # Pressure (bar)
                                                                              OF mass fraction gML
20 w
                           AS DISTRIBUTION (components, axial)
                                                                                                                      # Mass fraction (-)
21 F
                           AS DISTRIBUTION(axial)
                                                                              OF mass_flowrate_gML
                                                                                                                      # Mass flowrate (kg/s)
22 d
                                                                                  length gML
                                                                                                                      # Channel diameter (m)
23 M T
                           AS DISTRIBUTION(axial)
                                                                              OF mass_density_gML
                                                                                                                     # Mass density (kg/m3)
                           AS DISTRIBUTION(axial)
                                                                              OF velocity_gML
 24 u
                                                                                                                      # Velocity (m/s)
26 # Optional input
27 viscosity
                           AS DISTRIBUTION(use_viscosity,axial)
                                                                              OF dynamic viscosity qML
                                                                                                                     # Fluid viscosity (kg/(m·s))
28 lambda
                           AS DISTRIBUTION(use_lambda,axial)
                                                                              OF thermal conductivity gML
                                                                                                                     # Fluid thermal conductivity (W/(m·K))
29 c_P
                           AS DISTRIBUTION (use heat capacity, axial)
                                                                              OF mass specific heat capacity qML
                                                                                                                     # Mass specific heat capacity kJ/(kg.K)
31 # Output
                                                                                                                     # Heat transfer coefficient W/(kg.K)
 2 htc
                           AS DISTRIBUTION(axial)
                                                                              OF heat_transfer_coefficient_gML
34 # Declare custom variables here
36 SET
37 use_viscosity := 0;
38 use lambda := 0;
39 use heat capacity := 0;
40 use_two_phase:=0;
42 EQUATION
44 # Enter custom heat transfer correlation here
45 HTC() = design_htc * ABS(F(0) / (165))^0.78;
```

3. Complex reaction models with standard units

- Example: styrene monomer production
 - Radial-flow multitubular reactors
 - 2D fixed-bed catalytic reactor models
 - standard "flowsheeting" models for flash, heat exchanger, distillation

3. Complex reaction models with standard units

AML:FBCR – multiscale modeling

4. Optimization

- Full power of gPROMS optimization
 - steady-state & dynamic
 - mixed-integer/continuous
- Objective function and constraints
 - arbitrary objective function –
 economic or technical
 - any constraints
- Decision variables
 - equipment dimensions
 - operating conditions
 - values or time trajectories
 - equipment configuration
 - e.g. feed tray location, no stages
 - process routing options

Dynamic optimization Minimize batch time

Integer optimization Choose optimal feed tray location

4. Optimization

New ways to create or add value

- Many <u>new classes</u> of application
 - Whole-plant steady-state optimization
 - many (typically 20-50) equipment design & operating decisions
 - Optimize start-up, grade-change
 - Batch recipe optimization
 - Process synthesis
- e.g. Repsol whole-plant optimization
 - multitubular reactor, full separation section \rightarrow 50 decision variables
 - equipment, operational, routing decisions
- improved process economics by \$10s of millions per annum © 2014 Process Systems Enterprise Limited

5. Equation-oriented power

Traditional sequential-modular

- Solve in sequence
- Iterate around recycle loops until converged

Advantages of EO – 1

- Multiple calculation types based on same model
 - steady-state & dynamic simulation
 - steady-state & dynamic optimization
 - parameter estimation
 - linearized model generation, ...
- 'Back-to-front' solution easy
 - given downstream values (e.g. throughput, conversion)
 calculate upstream conditions (e.g. feed flow)
 and/or equipment design parameters (e.g. reactor size)

Advantages of EO – 2

Solve new classes of problem

- Flowsheets with complex recycles
- Large-scale optimization complex reaction and separation section
- Mixed-integer optimization
 problems process synthesis,
 equipment configuration
- Rigorous sensitivity analysis
- Online model-based applications with rigorous models
- Complex dynamic processes
 e.g. pressure-swing adsorption

Complex recycles
Air Separation Unit (ASU)

Complex dynamics
Pressure-Swing Adsorption (PSA)

5. Equation-oriented power

Advantages of EO - Example

gPROMS ProcessBuilder – the difference

6. State-of-the art physical properties

gPROMS Properties

- KBC Multiflash®
- DIPPR database 2000+ components
- All standard thermodynamic models

gSAFT Advanced thermodynamics

- New-generation equations of state
- SAFT-VR Square Well & SAFT-γ Mie
- High-accuracy prediction

Other options

- Proprietary physprops pachage
 - New streamlined interface
- CAPE-OPEN physprops
 - Aspen PropertiesTM, etc.

$HF - H_2O$ system [INEOS]

6. Many physical property options

Example: Acid gas removal from LNG using DEA

literature reference>

gPROMS ProcessBuilder – the difference

7. Instrumentation & control

- Library contains models that operate on signals
 - In gPROMS: arrays of non-dimensional numbers
- Library can be used to
 - add signalling & control logic to flowsheets
 - add basic post-processing calculations to flowsheets in a graphical manner
 - Create custom models as "flowsheets" of signals
- Interfaces to ProcessBuilder unit operation models
 - bus connection is used to select and apply signals from quantities in unit operation models (e.g. flowrates, concentrations, temperatures, etc.)

7. Instrumentation & control

Enhanced steady-state and dynamic analysis

- Basic calculation
- Linear dynamic system
- Nonlinear dynamic system
- Control loop optimization

7. Instrumentation & control

Enhanced steady-state and dynamic analysis

Use gML Signal and gML Control model libraries to plot recovery of propylene against energy rate

7. Instrumentation & control

Enhanced steady-state and dynamic analysis

■ Full integration with "process simulation" flowsheets

8. Pre-built modeling solutions for sectors

Example: LNG production

Dehydration and sweetening (amines, glycol, ...)

Fractionation

TO ADD screenshot.....

Detailed Multi-Stream Heat Exchanger design (PFHX & CWHX)

Liquefaction (C3MR, AP-X...)

9. ... and more

- 1. Link models to CFD
 - couple hydrodynamics (mixing) and physics/chemistry
- Fit process behavior to plant, pilot-plant & lab data
- Create libraries for other users in or outside the organization
 - Encrypted if necessary, to protect IP
- Export process models for execution in other environments
 - Behind custom interfaces
 - CAPE-OPEN simulators e.g. Aspen Plus
 - MATLAB®
- 5. ...

Hybrid Multizonal/CFD approach

Multizonal gPROMS model

Zone population balance
Growth, nucleation kinetics
Network mass/energy balances

CFD model of unit
Total mass conservation
Momentum conservation

In conclusion...

gPROMS ProcessBuilder

Advanced Process Simulation

- First "true equation-oriented" process flowsheeting tool
 - modeling power
 with usability & robustness
- Current status
 - Model libraries complete
 - Application/testing on key processes
 - Olefins
 - Gas processing (NG/LNG)
 - Industrial gases
 - Syngas / hydrogen
 - Batch/reactive distillation
 - Ongoing evaluations by selected lead users
- Expected release date for v1.0: December 2014

