EFREI 2014/2015 -- L'3

Théorie des Graphes -- Devoir surveillé Ecrit

Eléments de correction.

Q1. Chemin le plus court

Soit le graphe ci-dessous :

Q1.1. Déroulez l'algorithme de Bellman pour rechercher les chemins les plus courts de 'A' vers tous les autres sommets.

k	Α	В	С	D	E	F	G	Н	
0	0	∞	∞	∞	∞	∞	∞	8	
1	0	10 A	∞	∞	15 A	∞	∞	8	
2	0	10 A	11 B	∞	15 A	16 E	11 B	8	
3	0	6 E	11 B	12 C	15 A	16 E	11 B	∞	
4	0	6 E	7 B	12 C	15 A	16 E	7 B	13 D	
5	0	6 E	7 B	8 C	15 A	16 E	7 B	13 D	
6	0	6 E	7 B	8 C	15 A	16 E	7 B	9 D	
7	0	6 E	7 B	8 C	15 A	16 E	7 B	9 D	

Les chemins les plus courts peuvent être construits en reprenant les prédécesseurs de chaque sommet:

On peut les représenter sous forme d'un arbre

Q1.2. Peut-on également utiliser l'algorithme de Dijkstra ? Justifiez.

Non car il y a un arc avec une valeur négative.

Justification : cf. cours/TD.

Q1.3. Que se passerait il si on remplaçait l'arc « $D \rightarrow H$ » par l'arc « $H \rightarrow D$ » avec la même valeur ? Quels seraient les résultats (pour chaque sommet) en fin de déroulement de l'algorithme?

H deviendrait alors inaccessible depuis A. La valeur du chemin le plus court de A à H resterait donc égale à l'infini.

Les résultats seraient donc :

k	Α	В	С	D	E	F	G	Н
7	0	6 E	7 B	8 C	15 A	16 E	7 B	8

Q1.4. Que se passerait il si l'arc « $F \rightarrow A$ » avait pour valeur « -20 » au lieu de « 0 » ? Justifiez. Il y aurait alors création d'un circuit $A \rightarrow E \rightarrow F \rightarrow A$ de valeur négative (circuit absorbant), donc impossibilité de calculer les chemins de plus faible valeur.

L'algorithme de Bellman s'arrêterait donc à l'itération 8 sans avoir stabilisé les valeurs.

Q2. Ordonnancement

Soit le tableau suivant de description des tâches et contraintes d'un projet :

Tâches	Α	В	С	D	E	F	G	Н
Durées	1	2	3	4	5	6	7	8
d'exécution								
Contraintes	Aucune	A et E	Н	B et F	Aucune	A et E	Н	D

Interprétation:

Par exemple, A, de durée 1, n'a aucune contrainte pour son début d'exécution, alors que F, de durée 6, ne peut commencer que lorsque A et E sont terminées.

Q2.1. Tracez le graphe d'ordonnancement correspondant à ce tableau. Expliquez et justifiez la structure de votre graphe.

Explications / justifications : cf. cours/TD.

Q2.2. Calculez le calendrier au plus tôt et le calendrier au plus tard, en supposant que la date au plus tard de fin de projet est égale à sa date au plus tôt. Expliquez brièvement comment vous procédez.

Tâche	α	Α	В	С	D	E	F	G	Н	ω
Date	0	0	0	23	11	0	5	23	15	30
+ tôt										
Date	0	4	9	27	11	0	5	23	15	30
+ tard										

Explications : cf. cours/TD.

Q3. Détection de circuit

Pourquoi la méthode consistant à éliminer les points d'entrée et les points de sortie d'un graphe permet-elle de déterminer si le graphe de départ contient, ou non, un ou plusieurs circuits ?

Tout sommet appartenant à un circuit a au moins un prédécesseur et un successeur. Un point d'entrée (sans prédécesseur) ou de sortie (sans successeur) n'appartient donc à aucun circuit.

Eliminer un point d'entrée ou de sortie n'entraine donc pas de suppression d'un circuit, s'il en existe un.

Dans un graphe, s'il n'y a plus aucun point d'entrée ni point de sortie dans un graphe, alors tout sommet appartient fatalement à un circuit (tout chemin partant d'un sommet « repassera » fatalement par ce même sommet.

En fin de processus de suppression, on obtiendra donc un graphe constitué uniquement des sommets appartenant à au moins un circuit dans le graphe de départ.

La présence ou non d'un circuit dans le graphe de départ est donc équivalente à la présence d'au moins un sommet ou non dans le graphe obtenu.

Q4. Algorithme

Soit l'algorithme suivant :

```
Soit x un sommet quelconque du graphe.
Soit E un ensemble de sommets initialisé à Ø
Pour tout sommet y du graphe :
        si    il existe un chemin de x à y
            alors        ajouter y à E
Pour tout sommet y de E :
        si    il existe un chemin de y à x
            alors        supprimer y de E
si    E = Ø
    alors
        écrire « OUI »
    sinon
        écrire « NON »
```

Quelle est la particularité que le graphe doit respecter pour que l'exécution de cet algorithme provoque l'écriture de « OUI » ? Expliquez.

Q5. Rang

Calculez les rangs des sommets dans le graphe ci-contre.

Expliquez comment vous procédez, et ce qu'il se passe.

Justifiez.

Sommet	Α	В	С	D	Е	F
Rang	1	?	?	?	1	?

Calcul impossible!

Explications / justifications : présence d'un circuit.