LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

▶ We recall a few things from previous lectures.

- We recall a few things from previous lectures.
- ▶ Definition 9.5: Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an orthonormal basis if

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

- We recall a few things from previous lectures.
- ▶ Definition 9.5: Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an orthonormal basis if

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

▶ In other words, an orthonormal basis is a basis consisting of mutually orthogonal unit vectors.

- We recall a few things from previous lectures.
- ▶ Definition 9.5: Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an orthonormal basis if

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

- ▶ In other words, an orthonormal basis is a basis consisting of mutually orthogonal unit vectors.
- **Example 9.6:** For \mathbb{R}^n (or \mathbb{C}^n) the standard basis $\{e_1, e_2, \ldots, e_n\}$, where e_j is the vector whose j-th coordinate is one and all other coordinates are equal to zero, is an orthonormal basis with respect to the standard inner product.

A formula for coefficients

▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.

A formula for coefficients

- ▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.
- ▶ It gives a formula for the coefficients in the expansion of any vector in terms of the basis.

A formula for coefficients

- ▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.
- ▶ It gives a formula for the coefficients in the expansion of any vector in terms of the basis.
- ▶ Theorem 9.7: Let $\{v_1, v_2, \dots, v_n\}$ be an orthonormal basis of an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then for any vector $w \in V$,

$$w=\sum_{j=1}^n\langle v_j,w\rangle v_j.$$

Orthogonal complement

▶ Definition 12.1 Let S be a non-empty subset of an inner product space V. Then the orthogonal complement of S is defined as:

$$S^{\perp} = \{ v \in V : \langle x, v \rangle = 0, \ \forall x \in S \}.$$

Orthogonal complement

▶ Definition 12.1 Let S be a non-empty subset of an inner product space V. Then the orthogonal complement of S is defined as:

$$S^{\perp} = \{ v \in V : \langle x, v \rangle = 0, \ \forall x \in S \}.$$

Example 12.2: Consider $S \subset \mathbb{R}^3$ where

$$S = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}$$

Orthogonal complement

▶ Definition 12.1 Let S be a non-empty subset of an inner product space V. Then the orthogonal complement of S is defined as:

$$S^{\perp} = \{ v \in V : \langle x, v \rangle = 0, \ \forall x \in S \}.$$

Example 12.2: Consider $S \subset \mathbb{R}^3$ where

$$S = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}$$

► Then

$$S^{\perp}=\{\left(egin{array}{c}c\c\end{array}
ight):c\in\mathbb{R}\}.$$

▶ Proposition 12.2: Let S be a non-empty subset of an inner product space V. Then S^{\perp} is a subspace of V. Further, $(S^{\perp})^{\perp}$ is a subspace containing S.

- ▶ Proposition 12.2: Let S be a non-empty subset of an inner product space V. Then S^{\perp} is a subspace of V. Further, $(S^{\perp})^{\perp}$ is a subspace containing S.
- ▶ Proof: We recall the definition of S^{\perp} :

$$S^{\perp} = \{ v \in V : \langle x, v \rangle = 0, \ \forall x \in S \}.$$

- ▶ Proposition 12.2: Let S be a non-empty subset of an inner product space V. Then S^{\perp} is a subspace of V. Further, $(S^{\perp})^{\perp}$ is a subspace containing S.
- ▶ Proof: We recall the definition of S^{\perp} :

$$S^{\perp} = \{ v \in V : \langle x, v \rangle = 0, \ \forall x \in S \}.$$

Now if $v, w \in S^{\perp}$ and $c, d \in \mathbb{F}$: For $x \in S$,

$$\langle x, cv + dw \rangle = c \langle x, v \rangle + d \langle x, w \rangle = c.0 + d.0 = 0.$$

- ▶ Proposition 12.2: Let S be a non-empty subset of an inner product space V. Then S^{\perp} is a subspace of V. Further, $(S^{\perp})^{\perp}$ is a subspace containing S.
- ▶ Proof: We recall the definition of S^{\perp} :

$$S^{\perp} = \{ v \in V : \langle x, v \rangle = 0, \ \forall x \in S \}.$$

Now if $v, w \in S^{\perp}$ and $c, d \in \mathbb{F}$: For $x \in S$,

$$\langle x, cv + dw \rangle = c \langle x, v \rangle + d \langle x, w \rangle = c.0 + d.0 = 0.$$

▶ Hence $cv + dw \in S^{\perp}$. This proves that S^{\perp} is a subspace of V.

- ▶ Proposition 12.2: Let S be a non-empty subset of an inner product space V. Then S^{\perp} is a subspace of V. Further, $(S^{\perp})^{\perp}$ is a subspace containing S.
- ▶ Proof: We recall the definition of S^{\perp} :

$$S^{\perp} = \{ v \in V : \langle x, v \rangle = 0, \ \forall x \in S \}.$$

Now if $v, w \in S^{\perp}$ and $c, d \in \mathbb{F}$: For $x \in S$,

$$\langle x, cv + dw \rangle = c \langle x, v \rangle + d \langle x, w \rangle = c.0 + d.0 = 0.$$

- ▶ Hence $cv + dw \in S^{\perp}$. This proves that S^{\perp} is a subspace of V.
- ▶ It is easy to see that if $x \in S$ then $x \in (S^{\perp})^{\perp}$. Therefore $S \subseteq (S^{\perp})^{\perp}$.

- ▶ Proposition 12.2: Let S be a non-empty subset of an inner product space V. Then S^{\perp} is a subspace of V. Further, $(S^{\perp})^{\perp}$ is a subspace containing S.
- ▶ Proof: We recall the definition of S^{\perp} :

$$S^{\perp} = \{ v \in V : \langle x, v \rangle = 0, \ \forall x \in S \}.$$

Now if $v, w \in S^{\perp}$ and $c, d \in \mathbb{F}$: For $x \in S$,

$$\langle x, cv + dw \rangle = c \langle x, v \rangle + d \langle x, w \rangle = c.0 + d.0 = 0.$$

- ▶ Hence $cv + dw \in S^{\perp}$. This proves that S^{\perp} is a subspace of V.
- ▶ It is easy to see that if $x \in S$ then $x \in (S^{\perp})^{\perp}$. Therefore $S \subseteq (S^{\perp})^{\perp}$.
- ▶ We have already seen that orthogonal complement of any non-empty subset is a subspace. In particular, $(S^{\perp})^{\perp}$ is a subspace.

▶ Consider $V = \mathbb{R}^3$ with standard inner product.

- ▶ Consider $V = \mathbb{R}^3$ with standard inner product.
- Consider the subspace

$$V_0 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \\ 0 \end{array} \right) : x_1, x_2 \in \mathbb{R} \right\}$$

- ▶ Consider $V = \mathbb{R}^3$ with standard inner product.
- Consider the subspace

$$V_0 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \\ 0 \end{array} \right) : x_1, x_2 \in \mathbb{R} \right\}$$

► Take $V_1 = (V_0)^{\perp}$.

- ▶ Consider $V = \mathbb{R}^3$ with standard inner product.
- Consider the subspace

$$V_0 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \\ 0 \end{array} \right) : x_1, x_2 \in \mathbb{R} \right\}$$

- ► Take $V_1 = (V_0)^{\perp}$.
- Clearly,

$$V_2 = \{ \begin{pmatrix} 0 \\ 0 \\ x_3 \end{pmatrix} : x_3 \in \mathbb{R} \}.$$

We see that any vector $x \in V$ decomposes uniquely as x = y + z with $y \in V_0$ and $z \in V_1$.

- We see that any vector $x \in V$ decomposes uniquely as x = y + z with $y \in V_0$ and $z \in V_1$.
- Indeed for

$$x = \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right)$$

the only choice is:

$$y = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}; z = \begin{pmatrix} 0 \\ 0 \\ x_3 \end{pmatrix}.$$

- We see that any vector $x \in V$ decomposes uniquely as x = y + z with $y \in V_0$ and $z \in V_1$.
- Indeed for

$$x = \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right)$$

the only choice is:

$$y = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}; z = \begin{pmatrix} 0 \\ 0 \\ x_3 \end{pmatrix}.$$

▶ We want to show that this is a general phenomenon.

▶ Theorem 12.4: Let V_0 be a non-trivial subspace of a finite dimensional vector space V. Then any basis of V_0 extends to a basis of V, that is, if $\{v_1, v_2, \ldots, v_k\}$ is a basis of V_0 then there exists $\{v_{k+1}, \ldots, v_n\}$ such that $\{v_1, \ldots, v_n\}$ is a basis of V.

- Theorem 12.4: Let V_0 be a non-trivial subspace of a finite dimensional vector space V. Then any basis of V_0 extends to a basis of V, that is, if $\{v_1, v_2, \ldots, v_k\}$ is a basis of V_0 then there exists $\{v_{k+1}, \ldots, v_n\}$ such that $\{v_1, \ldots, v_n\}$ is a basis of V.
- ► Proof: Take

$$M_k := \operatorname{span} \{v_1, v_2, \dots, v_k\}$$

- ▶ Theorem 12.4: Let V_0 be a non-trivial subspace of a finite dimensional vector space V. Then any basis of V_0 extends to a basis of V, that is, if $\{v_1, v_2, \ldots, v_k\}$ is a basis of V_0 then there exists $\{v_{k+1}, \ldots, v_n\}$ such that $\{v_1, \ldots, v_n\}$ is a basis of V.
- ► Proof: Take

$$M_k := \operatorname{span} \{v_1, v_2, \dots, v_k\}$$

▶ If $M_k = V$ then $V_0 = V$, $\{v_1, \ldots, v_k\}$ is a basis for V and so no extension is required.

- ▶ Theorem 12.4: Let V_0 be a non-trivial subspace of a finite dimensional vector space V. Then any basis of V_0 extends to a basis of V, that is, if $\{v_1, v_2, \ldots, v_k\}$ is a basis of V_0 then there exists $\{v_{k+1}, \ldots, v_n\}$ such that $\{v_1, \ldots, v_n\}$ is a basis of V.
- ► Proof: Take

$$M_k := \operatorname{span} \{v_1, v_2, \dots, v_k\}$$

- ▶ If $M_k = V$ then $V_0 = V$, $\{v_1, \ldots, v_k\}$ is a basis for V and so no extension is required.
- ▶ If not, choose any $v_{k+1} \in V \setminus M_k$. Then $\{v_1, \ldots, v_{k+1}\}$ is a linearly independent set (Why?). Take

$$M_{k+1} := \text{span}\{v_1, \dots, v_{k+1}\}.$$

- ▶ Theorem 12.4: Let V_0 be a non-trivial subspace of a finite dimensional vector space V. Then any basis of V_0 extends to a basis of V, that is, if $\{v_1, v_2, \ldots, v_k\}$ is a basis of V_0 then there exists $\{v_{k+1}, \ldots, v_n\}$ such that $\{v_1, \ldots, v_n\}$ is a basis of V.
- ► Proof: Take

$$M_k := \operatorname{span} \{v_1, v_2, \dots, v_k\}$$

- ▶ If $M_k = V$ then $V_0 = V$, $\{v_1, ..., v_k\}$ is a basis for V and so no extension is required.
- ▶ If not, choose any $v_{k+1} \in V \setminus M_k$. Then $\{v_1, \dots, v_{k+1}\}$ is a linearly independent set (Why?). Take

$$M_{k+1} := span\{v_1, \dots, v_{k+1}\}.$$

▶ If $V = M_{k+1}$ then $\{v_1, \ldots, v_{k+1}\}$ is a basis for V and we are done. If not, take $v_{k+2} \in V \setminus M_{k+1}$ and continue the induction process.

▶ The process terminates after a finite number of steps as *V* is finite dimensional and so it can have at most dim (*V*) linearly independent elements.

- ► The process terminates after a finite number of steps as V is finite dimensional and so it can have at most dim (V) linearly independent elements.
- ▶ Therefore $V = M_n$ for some n and $\{v_1, \ldots, v_n\}$ is a basis for V.

▶ Theorem 12.5: Let V_0 be a non-trivial subspace of a finite dimensional inner product space V. Then any orthonormal basis of V_0 extends to an orthonormal basis of V, that is, if $\{v_1, v_2, \ldots, v_k\}$ is an orthonormal basis of V_0 then there exists $\{v_{k+1}, \ldots, v_n\}$ such that $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.

- ▶ Theorem 12.5: Let V_0 be a non-trivial subspace of a finite dimensional inner product space V. Then any orthonormal basis of V_0 extends to an orthonormal basis of V, that is, if $\{v_1, v_2, \ldots, v_k\}$ is an orthonormal basis of V_0 then there exists $\{v_{k+1}, \ldots, v_n\}$ such that $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.
- ▶ Proof: By the previous theorem we may extend $\{v_1, \ldots, v_k\}$ to a basis $\{v_1, \ldots, v_k, w_{k+1}, \ldots, w_n\}$ of V.

- ▶ Theorem 12.5: Let V_0 be a non-trivial subspace of a finite dimensional inner product space V. Then any orthonormal basis of V_0 extends to an orthonormal basis of V, that is, if $\{v_1, v_2, \ldots, v_k\}$ is an orthonormal basis of V_0 then there exists $\{v_{k+1}, \ldots, v_n\}$ such that $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.
- ▶ Proof: By the previous theorem we may extend $\{v_1, \ldots, v_k\}$ to a basis $\{v_1, \ldots, v_k, w_{k+1}, \ldots, w_n\}$ of V.
- Now apply the Gram-Schmidt procedure on $\{v_1, \ldots, v_k, w_{k+1}, \ldots, w_n\}$ to get an ortho-normal basis $\{e_1, \ldots, e_n\}$ of V.

- ▶ Theorem 12.5: Let V_0 be a non-trivial subspace of a finite dimensional inner product space V. Then any orthonormal basis of V_0 extends to an orthonormal basis of V, that is, if $\{v_1, v_2, \ldots, v_k\}$ is an orthonormal basis of V_0 then there exists $\{v_{k+1}, \ldots, v_n\}$ such that $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.
- ▶ Proof: By the previous theorem we may extend $\{v_1, \ldots, v_k\}$ to a basis $\{v_1, \ldots, v_k, w_{k+1}, \ldots, w_n\}$ of V.
- Now apply the Gram-Schmidt procedure on $\{v_1, \ldots, v_k, w_{k+1}, \ldots, w_n\}$ to get an ortho-normal basis $\{e_1, \ldots, e_n\}$ of V.
- ▶ It is an elementary exercise to see that $e_j = v_j$ for $1 \le j \le k$ as v_1, \ldots, v_k are already orthonormal. ■

Orthogonal complement of a subspace

Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V. Suppose $\{v_1, \ldots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.

- Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V. Suppose $\{v_1, \ldots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.
- Take

$$V_1 = \text{ span } \{v_{k+1}, \dots, v_n\}.$$

- Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V. Suppose $\{v_1, \ldots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.
- Take

$$V_1 = \text{span } \{v_{k+1}, \dots, v_n\}.$$

• We claim that $V_1 = (V_0)^{\perp}$ and $\{v_{k+1}, \ldots, v_n\}$ is an ortho-normal basis of V_1 .

- Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V. Suppose $\{v_1, \ldots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.
- Take

$$V_1 = \text{ span } \{v_{k+1}, \dots, v_n\}.$$

- We claim that $V_1 = (V_0)^{\perp}$ and $\{v_{k+1}, \ldots, v_n\}$ is an ortho-normal basis of V_1 .
- ► The second part is obvious. We only need to prove $V_1 = (V_0)^{\perp}$.

- Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V. Suppose $\{v_1, \ldots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.
- Take

$$V_1 = \text{span } \{v_{k+1}, \dots, v_n\}.$$

- We claim that $V_1 = (V_0)^{\perp}$ and $\{v_{k+1}, \ldots, v_n\}$ is an ortho-normal basis of V_1 .
- The second part is obvious. We only need to prove $V_1 = (V_0)^{\perp}$.
- ▶ Note that $\langle v_i, v_j \rangle = 0$ for all $1 \le i \le k$ and $(k+1) \le j \le n$

- Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V. Suppose $\{v_1, \ldots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.
- Take

$$V_1 = \text{span } \{v_{k+1}, \dots, v_n\}.$$

- We claim that $V_1 = (V_0)^{\perp}$ and $\{v_{k+1}, \ldots, v_n\}$ is an ortho-normal basis of V_1 .
- The second part is obvious. We only need to prove $V_1 = (V_0)^{\perp}$.
- ▶ Note that $\langle v_i, v_j \rangle = 0$ for all $1 \leq i \leq k$ and $(k+1) \leq j \leq n$
- ▶ Therefore $\langle \sum_{i=1}^k c_i v_i, \sum_{j=(k+1)}^n c_j v_j \rangle$ for any scalars c_1, \ldots, c_n .

- Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V. Suppose $\{v_1, \ldots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.
- Take

$$V_1 = \text{span } \{v_{k+1}, \dots, v_n\}.$$

- We claim that $V_1 = (V_0)^{\perp}$ and $\{v_{k+1}, \ldots, v_n\}$ is an ortho-normal basis of V_1 .
- The second part is obvious. We only need to prove $V_1 = (V_0)^{\perp}$.
- ▶ Note that $\langle v_i, v_j \rangle = 0$ for all $1 \leq i \leq k$ and $(k+1) \leq j \leq n$
- ▶ Therefore $\langle \sum_{i=1}^k c_i v_i, \sum_{j=(k+1)}^n c_j v_j \rangle$ for any scalars c_1, \ldots, c_n .

- Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V. Suppose $\{v_1, \ldots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.
- Take

$$V_1 = \operatorname{span} \{v_{k+1}, \dots, v_n\}.$$

- We claim that $V_1=(V_0)^{\perp}$ and $\{v_{k+1},\ldots,v_n\}$ is an ortho-normal basis of V_1 .
- ▶ The second part is obvious. We only need to prove $V_1 = (V_0)^{\perp}$.
- ▶ Note that $\langle v_i, v_j \rangle = 0$ for all $1 \le i \le k$ and $(k+1) \le j \le n$
- ▶ Therefore $\langle \sum_{i=1}^k c_i v_i, \sum_{j=(k+1)}^n c_j v_j \rangle$ for any scalars c_1, \ldots, c_n .
- ▶ This shows $\langle x, y \rangle = 0$ for all $x \in V_0$ and $y \in V_1$. Hence $V_1 \subseteq (V_0)^{\perp}$.

▶ Suppose $x \in V_0^{\perp}$.

- ▶ Suppose $x \in V_0^{\perp}$.
- As $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V, we get $x = \sum_{j=1}^{n} \langle v_j, x \rangle v_j$.

- ▶ Suppose $x \in V_0^{\perp}$.
- As $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V, we get $x = \sum_{i=1}^{n} \langle v_i, x \rangle v_i$.
- ▶ As x is orthogonal to V_0 , we get $\langle v_j, x \rangle = 0$ for $1 \le j \le k$.

- ► Suppose $x \in V_0^{\perp}$.
- As $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V, we get $x = \sum_{j=1}^{n} \langle v_j, x \rangle v_j$.
- ▶ As x is orthogonal to V_0 , we get $\langle v_j, x \rangle = 0$ for $1 \leq j \leq k$.
- ▶ Hence $x = \sum_{j=k+1}^{n} \langle v_j, x \rangle v_j$ and therefore $x \in V_1$.

- ► Suppose $x \in V_0^{\perp}$.
- As $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V, we get $x = \sum_{i=1}^{n} \langle v_i, x \rangle v_i$.
- ▶ As x is orthogonal to V_0 , we get $\langle v_j, x \rangle = 0$ for $1 \leq j \leq k$.
- ▶ Hence $x = \sum_{i=k+1}^{n} \langle v_i, x \rangle v_i$ and therefore $x \in V_1$.
- ▶ This proves $(V_0)^{\perp} \subseteq V_1$ and completes the proof of our claim.

▶ Theorem 12.6: Let V_0 be a subspace of a finite dimensional inner product space V. Then every $x \in V$ decomposes uniquely as

$$x = y + z$$

where $y \in V_0$ and $z \in V_0^{\perp}$.

▶ Theorem 12.6: Let V_0 be a subspace of a finite dimensional inner product space V. Then every $x \in V$ decomposes uniquely as

$$x = y + z$$

where $y \in V_0$ and $z \in V_0^{\perp}$.

▶ Proof: Suppose $V_0 = \{0\}$. Then $V_0^{\perp} = V$ and we can decompose x as x = 0 + x, with $0 \in V_0$ and $x \in V_0^{\perp}$.

▶ Theorem 12.6: Let V_0 be a subspace of a finite dimensional inner product space V. Then every $x \in V$ decomposes uniquely as

$$x = y + z$$

where $y \in V_0$ and $z \in V_0^{\perp}$.

- ▶ Proof: Suppose $V_0 = \{0\}$. Then $V_0^{\perp} = V$ and we can decompose x as x = 0 + x, with $0 \in V_0$ and $x \in V_0^{\perp}$.
- ▶ If $V_0 \neq \{0\}$, choose an orthonormal basis $\{v_1, \dots, v_k\}$ for V_0 . Extend it to an orthonormal basis $\{v_1, \dots, v_n\}$ of V.

▶ Theorem 12.6: Let V_0 be a subspace of a finite dimensional inner product space V. Then every $x \in V$ decomposes uniquely as

$$x = y + z$$

where $y \in V_0$ and $z \in V_0^{\perp}$.

- ▶ Proof: Suppose $V_0 = \{0\}$. Then $V_0^{\perp} = V$ and we can decompose x as x = 0 + x, with $0 \in V_0$ and $x \in V_0^{\perp}$.
- ▶ If $V_0 \neq \{0\}$, choose an orthonormal basis $\{v_1, \ldots, v_k\}$ for V_0 . Extend it to an orthonormal basis $\{v_1, \ldots, v_n\}$ of V.
- Now we know that any $x \in V$ decomposes as

$$x = \sum_{j=1}^{n} \langle v_j, x \rangle v_j$$

▶ Take

$$y = \sum_{j=1}^{k} \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^{n} \langle v_j, x \rangle v_j.$$

Take

$$y = \sum_{j=1}^{k} \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^{n} \langle v_j, x \rangle v_j.$$

▶ Clearly $y \in V_0$ and $z \in V_0^{\perp}$. This proves the existence.

Take

$$y = \sum_{j=1}^{k} \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^{n} \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^{\perp}$. This proves the existence.
- Suppose x = y + z and x = y' + z' are two decompositions of x with $y, y' \in V_0$ and $z, z' \in V_0^{\perp}$.

Take

$$y = \sum_{j=1}^{k} \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^{n} \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^{\perp}$. This proves the existence.
- Suppose x = y + z and x = y' + z' are two decompositions of x with $y, y' \in V_0$ and $z, z' \in V_0^{\perp}$.
- ► We have,

$$y+z=y'+z'.$$

Take

$$y = \sum_{j=1}^{k} \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^{n} \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^{\perp}$. This proves the existence.
- Suppose x = y + z and x = y' + z' are two decompositions of x with $y, y' \in V_0$ and $z, z' \in V_0^{\perp}$.
- We have,

$$y + z = y' + z'.$$

▶ Therefore y - y' = z' - z. As $y, y' \in V_0$, $y - y' \in V_0$.

Take

$$y = \sum_{j=1}^{k} \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^{n} \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^{\perp}$. This proves the existence.
- Suppose x = y + z and x = y' + z' are two decompositions of x with $y, y' \in V_0$ and $z, z' \in V_0^{\perp}$.
- We have,

$$y+z=y'+z'.$$

- ► Therefore y y' = z' z. As $y, y' \in V_0$, $y y' \in V_0$.
- Also as $z, z' \in V_0^{\perp}$, $y y' = z' z \in V_0^{\perp}$.

Take

$$y = \sum_{j=1}^{k} \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^{n} \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^{\perp}$. This proves the existence.
- Suppose x = y + z and x = y' + z' are two decompositions of x with $y, y' \in V_0$ and $z, z' \in V_0^{\perp}$.
- We have,

$$y+z=y'+z'.$$

- ► Therefore y y' = z' z. As $y, y' \in V_0$, $y y' \in V_0$.
- ▶ Also as $z, z' \in V_0^{\perp}$, $y y' = z' z \in V_0^{\perp}$.
- ► Hence $\langle y y', y y' \rangle = 0$. Consequently y = y' and z' = z. This proves the uniqueness.

► Suppose *V* is a finite dimensional inner product space and let *y* be a non-zero vector in *V*.

- ► Suppose *V* is a finite dimensional inner product space and let *y* be a non-zero vector in *V*.
- ▶ Consider the one dimensional space $V_0 = \{cy : c \in \mathbb{F}\}.$

- Suppose V is a finite dimensional inner product space and let y be a non-zero vector in V.
- ▶ Consider the one dimensional space $V_0 = \{cy : c \in \mathbb{F}\}.$
- Now $\{v\}$ is an ortho-normal basis for V_0 where

$$v = \frac{y}{\|y\|}.$$

- Suppose V is a finite dimensional inner product space and let y be a non-zero vector in V.
- ▶ Consider the one dimensional space $V_0 = \{cy : c \in \mathbb{F}\}.$
- Now $\{v\}$ is an ortho-normal basis for V_0 where

$$v = \frac{y}{\|y\|}.$$

▶ Therefore any $x \in V$ decomposes as $x = \langle v, x \rangle v + z$ where z is orthogonal to v.

▶ We have $|z|^2 \ge 0$.

- ▶ We have $|z|^2 \ge 0$.
- ► This means that:

$$||x - \langle v, x \rangle v||^2 \ge 0.$$

- ▶ We have $|z|^2 \ge 0$.
- ► This means that:

$$||x - \langle v, x \rangle v||^2 \ge 0.$$

► Here

$$||x - \langle v, x \rangle v||^2 = \langle x, x \rangle - 2|\langle x, v \rangle|^2 + |\langle x, v \rangle|^2$$
$$= ||x||^2 - |\langle x, v \rangle|^2$$
$$= ||x||^2 - |\langle x, \frac{y}{||y||} \rangle|^2$$

- We have $|z|^2 \ge 0$.
- This means that:

$$||x - \langle v, x \rangle v||^2 \ge 0.$$

Here

$$||x - \langle v, x \rangle v||^2 = \langle x, x \rangle - 2|\langle x, v \rangle|^2 + |\langle x, v \rangle|^2$$
$$= ||x||^2 - |\langle x, v \rangle|^2$$
$$= ||x||^2 - |\langle x, \frac{y}{||y||} \rangle|^2$$

and the positivity of this is same as the Cauchy-Schwarz inequality:

$$||x||^2 ||y||^2 \ge ||\langle x, y \rangle|^2.$$

▶ The equality holds, only when z = 0, that is when $x \in \text{span}$ $\{y\}$. (We have assumed $y \neq 0$.). This explains our proof of Cauchy-Schwarz inequality.

- ▶ The equality holds, only when z = 0, that is when $x \in \text{span}$ $\{y\}$. (We have assumed $y \neq 0$.). This explains our proof of Cauchy-Schwarz inequality.
- **Exercise** 12.7 : Consider examples of vectors in \mathbb{R}^2 and \mathbb{R}^3 and try to understand the projection theorem in concrete cases.

- ▶ The equality holds, only when z = 0, that is when $x \in \text{span}$ $\{y\}$. (We have assumed $y \neq 0$.). This explains our proof of Cauchy-Schwarz inequality.
- **Exercise** 12.7 : Consider examples of vectors in \mathbb{R}^2 and \mathbb{R}^3 and try to understand the projection theorem in concrete cases.
- ► END OF LECTURE 12.