

Scope

Engine Control Systems

Air Mass Calculation – Measured vs Predicted

Fuel Mass Calculation

SI Engine Control System

Air & Fuel Requirements

Measured vs Predicted

- Air mass measurement not very accurate Transient conditions
- Measured vs Predicted Usual cases converges within limits
- Measured Use MAP / MAF sensor
- Predicted Use TPS sensor
- Predicted values used for fail safe scenarios as well

Air Mass from MAP sensor

$$PV = mRT$$

- P Pressure of air inside the cylinder reading from MAP sensor in Pa
- V Volume of air inside the cylinder in m³
- R Gas constant 287 J/KgK
- T Temperature of air inside the cylinder reading from Intake Air Temperature Sensor in K
- m Mass of Air in Kg / Stroke

Air Mass from MAP sensor

$$PV = mRT$$

- P Pressure of air inside the cylinder reading from MAP sensor in Pa
- V Volume of air inside the cylinder in m³
- R Gas constant 287 J/KgK
- T Temperature of air inside the cylinder reading from Intake Air Temperature Sensor in K
- m Mass of Air in Kg / Stroke

$$m = (MAP) * \frac{Cyl\ Vol\ *VE}{T + 273} * (\frac{1}{R})$$

Air Inlet Temperature Model

- Temperature of air is an important factor in accurately measuring air mass
- Air Temp dependent on
 - Temp of air at inlet
 - Heat soak
 - Engine temperature
- IAT sensor alone will not suffice
- Temperature compensation model is built DOE & Testing
- Air temperature is offset based on values from LUT
- Compensate for air temperature increase due to other factors

Air Mass from MAF sensor

- MAF sensor calibrated to read air mass in g/s
- Total air mass flowing into engine measure directly
- Required in cases where engine VE is high Example?
- Forced induction setups ready around 200-250 kPa (positive pressures)
- MAP sensor is less accurate and slow
- MAF reading immediate BUT
- MAF measured just behind air filter
- MAP measured in manifold
- Variations between MAP and MAF denote leak in intake
- MAP sensor on Intercoolers Charge Pressure Sensor / Boost Pressure Sensor

Air Mass Predictions

- TPS vs RPM -> VE map -> Theoretical Air Mass in cylinder
- Atmos Pr vs TPS -> Vol Correction
- Air Temp vs TPS -> Temp Correction
- Predicted Air Mass = (Th Air Mass + Vol Correction) * Temp Correction * Density / Atmos Pressure
- Predicted air flow can be used when sensor failures occur
- Fail safe scenarios for multiple sensor failures
- Trade-Off between Predicted and Measured air mass for consideration

Air Mass Predictions

- TPS vs RPM -> VE map -> Theoretical Air Mass in cylinder
- Atmos Pr vs TPS -> Vol Correction
- Air Temp vs TPS -> Temp Correction
- Predicted Air Mass = (Th Air Mass + Vol Correction) * Temp Correction * Density / Atmos
 Pressure
- Predicted air flow can be used when sensor failures occur
- Fail safe scenarios for multiple sensor failures

Fuel Mass Calculation

Fuel Mass Predictions

- Once Air Mass is resolved -> Fuel Mass Calculation
- Base Fuel predictions closed loop or open loop
- Closed Loop Target AFR
- Open Loop LUT, applicable load factor
- Corrections to base fuel Steady state or transients
- Steady State Warm-Up Enrichment Summative
- Warm Up Offset Summative

Fuel Mass Calculation

Fuel Mass Predictions

- Other Corrections
 - Closed Loop Correction
 - Fuel Trims STFT & LTFT
 - Flaring Correction
 - Medium Transients
 - Wall Wetting
- Fast Transient Corrections?
- Applied as a correction factor Total Fuel Corrections

Thank You!

In our next session:

Correction factors for Transients