README LUZ POLARIZADA

Primero: Meter estos tres scripts en la carpeta donde estén todas las imágenes polarizadas

Entender que es lo que hay: Hay tres scripts:

Area_fibras_finas.m : Un script en forma de función que calcula el área fibras finas en base a un filtrado de color a verde.

Area_fibras_gruesas.m : Un script en forma de función que calcula el área de fibras gruesas en base a un filtrado de color a amarillo-rojo.

Calculo_areas_luz_no_polarizadas.m : Un script que lee todas las imágenes en formato .tif de la carpeta en la que se encuentre y calcula el área de las fibras finas (ejecutando Area_fibras_finas.m) y el área de fibras gruesas (ejecutando Area_fibras_gruesas.m). Guarda los resultados en un archivo .csv en esa misma carpeta. Se recomiendo una vez ejecutado escribir 'Resultados' en la Command Window y pulsar Enter para ver los resultados por pantalla.

Ejecución: Cambiar el directorio de Matlab a donde estén estos scripts con las imágenes y SOLO SE EJECUTA Calculo_areas_luz_polarizadas.m

Se abre 'Calculo_areas_luz_polarizadas.m' en Matlab y se le da a Run. Los resultados se guardaran automáticamente en un archivo .csv llamado 'Calculo_areas_luz_polarizada.csv'

Cambios: Se pueden realizar todos los cambios pertinentes para adaptarlo. Desde cambiar las funciones de filtrado pegando unos nuevos filtrados realizados con Color Thresholder hasta cambiar el nombre del csv.