Singular Value Decomposition

Luis Serrano

Rotate

Linear transformations

What does this have to do with matrices?

$$A = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$$

(p,q) (p+0q) (p+5q)

(1,0) (3, 4)

(0,1) (0,5)

(-1,0) (-3, -4)

(0,-1) (0,-5)

Rotation matrices

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Stretching matrices

$$\begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix}$$

Stretching matrices

$$\begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix}$$

Stretching matrices

$$\begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix}$$

What does this have to do with matrices?

SVD

$$A = U\Sigma V^{\dagger}$$

$$\begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 0.316 & -0.949 \\ 0.949 & 0.316 \end{bmatrix} \begin{bmatrix} 6.708 & 0 \\ 0 & 2.236 \end{bmatrix} \begin{bmatrix} 0.7071 & 0.7071 \\ -0.7071 & 0.7071 \end{bmatrix}$$

$$\begin{bmatrix} 1/\sqrt{10} & -3/\sqrt{10} \\ 3/\sqrt{10} & 1/\sqrt{10} \end{bmatrix} \begin{bmatrix} 3\sqrt{5} & 0 \\ 0 & \sqrt{5} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$
Rotation of $\theta = -\frac{\pi}{4} = -\frac{\pi}{4}$

$$\begin{bmatrix} 1/\sqrt{10} & -3/\sqrt{10} \\ 3/\sqrt{10} & 1/\sqrt{10} \end{bmatrix} \begin{bmatrix} 3\sqrt{5} & 0 \\ 0 & \sqrt{5} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

Rotation of
$$\theta = -\frac{\pi}{4} = -45^{\circ}$$

$$A = U\Sigma V^{\dagger}$$

$$\begin{bmatrix} 1/\sqrt{10} & -3/\sqrt{10} \\ 3/\sqrt{10} & 1/\sqrt{10} \end{bmatrix} \begin{bmatrix} 3\sqrt{5} & 0 \\ 0 & \sqrt{5} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

Rotation of
$$\theta = -\frac{\pi}{4} = -45^{\circ}$$

$$A = U\Sigma V^{\dagger}$$

$$\begin{bmatrix} 1/\sqrt{10} & -3/\sqrt{10} \\ 3/\sqrt{10} & 1/\sqrt{10} \end{bmatrix} \begin{bmatrix} 3\sqrt{5} & 0 \\ 0 & \sqrt{5} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

Horizontal scaling by $3\sqrt{5}$

Scaling

$$A = U\Sigma V^{\dagger}$$

$$A = U\Sigma V^{\dagger}$$

$$\begin{bmatrix} 1/\sqrt{10} & -3/\sqrt{10} & 1 \end{bmatrix} \begin{bmatrix} 3\sqrt{5} & 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 3/\sqrt{10} & 1/\sqrt{10} & 0 & \sqrt{5} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$
 Vertical scaling by $\sqrt{5}$

$$A = U\Sigma V^{\dagger}$$

$$\begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 0.316 & -0.949 \\ 0.949 & 0.316 \end{bmatrix} \begin{bmatrix} 6.708 & 0 \\ 0 & 2.236 \end{bmatrix} \begin{bmatrix} 0.7071 & 0.7071 \\ -0.7071 & 0.7071 \end{bmatrix}$$

$$\begin{bmatrix} 1/\sqrt{10} & -3/\sqrt{10} \\ 3/\sqrt{10} & 1/\sqrt{10} \end{bmatrix} \begin{bmatrix} 3\sqrt{5} & 0 \\ 0 & \sqrt{5} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

Rotation of $\theta = \arctan(3) = 71.72^{\circ}$

$$A = U\Sigma V^{\dagger}$$

$$\begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 0.316 & -0.949 \\ 0.949 & 0.316 \end{bmatrix} \begin{bmatrix} 6.708 & 0 \\ 0 & 2.236 \end{bmatrix} \begin{bmatrix} 0.7071 & 0.7071 \\ -0.7071 & 0.7071 \end{bmatrix}$$

$$\begin{bmatrix} 1/\sqrt{10} & -3/\sqrt{10} \\ 3/\sqrt{10} & 1/\sqrt{10} \end{bmatrix} \begin{bmatrix} 3\sqrt{5} & 0 \\ 0 & \sqrt{5} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

Rotation of $\theta = \arctan(3) = 71.72^{\circ}$

Dimensionality reduction

Difference between these two matrices?

	1	2	3	4
1	1	2	3	4
-1	-1	-2	-3	-4
2	2	4	6	8
10	10	20	30	40

Difference between these two matrices?

	1	2	3	4
1	1	2	3	4
-1	-1	-2	-3	-4
2	2	4	6	8
10	10	20	30	40

	?	?	?	?
?	3	1	4	1
?	5	9	2	6
?	5	3	5	8
?	9	7	9	3

Rank 1 matrices

1	2	3	4		1				
-1	-2	-3	-4		1	<u> </u>	2	3	1
2	4	6	8	=	2			၁	4
10	20	30	40		10				

16 numbers

8 numbers

Higher rank matrices

3	1	4	1		?				
5	9	2	6		?	2	?	2	2
5	3	5	8	=	?	?	•	?	•
9	7	9	3		?				

16 numbers

Rank of a matrix

Rank 3 Rank 4

Approximation by a rank one matrix

3	1	4	1	
5	9	2	6	
5	3	5	8	~
9	7	9	3	

Rank 1 Rank 1

2.51	2.37	2.22	1.97
6.07	5,72	5.37	4.77
5.63	5,31	4.99	4.43
7.88	7.43	6.98	6.19

3.15	1.41	3.79	0.56
4.87	7.53	2.44	7.43
5.28	5.85	4.12	5.22
8.85	5.96	9.36	4.03

3.1	0.96	3.93	0.99
5.03	8.99	1.98	6
4.98	3.01	5.01	8
8.96	7.02	9.03	3

3	1	4	1
5	9	2	6
5	3	5	8
9	7	9	3

Dimensionality reduction

 1.8
 1.2

 4.4
 4.6

Rank 2 Rank 1

 1.5
 1.5

 4.5
 4.5

Approximation by rank one matrices

V1
V ₂
V 3
V 4

Rank 1 Rank 1

Rectangular matrices

No square matrix? No problem!

Image compression

www.github.com/luisguiserrano/singular value decomposition

0	1	1	0	1	1	0
1	1	1	1	1	1	1
1	1	1	1	1	1	1
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	1	0	0	0

Rank 4

0.73

Thank you!