

衛兵問題

APIO 王國正在被忍者攻擊。忍者非常有威脅性,因爲攻擊時他/她們會躲在影子中並且不讓任何人發現。除了國王所在的城堡,APIO 王國已全數被攻陷。在城堡正前方,有一排共N個灌木叢。灌木叢的編號由 1 到 N,而有 K 個忍者恰巧躲在 K 個灌木叢中。城堡中有 M 個衛兵,衛兵 i 監視著編號 A_i 到 B_i 的連續灌木叢。每位衛兵會回報國王是否有忍者躲在他/她監視的灌木叢中。現在你必須根據衛兵的回報,告訴國王哪一個(些)灌木叢中「一定有忍者」。所謂「一定有忍者」,指的是對所有滿足衛兵回報的忍者藏身可能狀況,該灌木叢都躲著忍者。

問題

寫一個程式,根據衛兵的監視範圍和回報資訊,找出所有「一定有忍者」的灌木叢。

限制

灌木叢數量 (N), $1 \le N \le 100000$ 躲藏的忍者數量 (K), $1 \le K \le N$ 衛兵數量 (M), $1 \le M \le 100000$

輸入

從標準輸入讀入以下資料

- 第一行包含三個用空格隔開的整數 $N \times K$ 和 $M \times N$ 為權木叢數量 $\times K$ 為躲藏的忍者數量 $\times M$ 為衛兵數量 。
- 接下來的 M 行包含衛兵監視的範圍和回報結果,第 i 行包含三個用空格隔開的整數 $A_i \, \cdot \, B_i \, \cdot \, C_i \, (A_i \leq B_i)$,描述衛兵 i 監視著 A_i 到 B_i 的灌木叢; C_i 不是 1 就是 0,當 $C_i = 0$ 代表沒有忍者躲在 A_i 到 B_i 的灌木叢中,當 $C_i = 1$ 代表至少有一位忍者躲在 A_i 到 B_i 的灌木叢中。

對於每個測資,保證至少有一種忍者躲藏的情況合乎衛兵的回報。

組織

假如至少有一個灌木叢「一定有忍者」,輸出所有「一定有忍者」的灌木叢編號。灌木叢編號 請由小到大輸出,每行一個編號。也就是說,如果有X個灌木叢「一定有忍者」,輸出就會有X行。假如沒有任何灌木叢「一定有忍者」,輸出 -1。

評分

 $N \le 20$, $M \le 100$ 的測試資料佔分 10%。 $N \le 1000$, $M \le 1000$ 的測試資料佔分 50%。

輸入與輸出範例

輸入範例一	輸出範例一
5 3 4	3
1 2 1	5
3 4 1	
4 4 0	
4 5 1	

在此範例中,有兩種滿足條件的忍者躲藏方式,第一個是三名忍者躲在灌木叢 $1 \cdot 3 \cdot 5$,另一個是躲在灌木叢 $2 \cdot 3 \cdot 5$ 。

不管是哪一種躲藏方式,灌木叢 3 和 5 中「一定有忍者」,所以我們輸出 3 和 5。至於灌木叢 1,第一種狀況有忍者,但第二種就沒有。因此我們不輸出 1。同理,我們也不輸出 2。

輸入範例一	輸出範例一
5 1 1	-1
1 5 1	

在此範例中,沒有任何一個灌木叢「一定有忍者」,因此輸出-1。