Avaliação Motor de CC

Grupo nº:	
Nome:	
Nome:	
Nome:	
Nome:	

Enunciado

O programa a ser desenvolvido no MATLAB refere-se a um motor CC com as seguintes características:

$$P_{
m nominal} = 30~{
m HP}$$
 $I_{L, \, {
m nominal}} = 110~{
m A}$ $V_T = 240~{
m V}$ $N_F = 2700~{
m espiras}$ por polo $n_{
m nominal} = 1800~{
m rpm}$ $N_{
m SE} = 14~{
m espiras}$ por polo $R_A = 0.19~{
m \Omega}$ $R_F = 75~{
m \Omega}$ $R_{
m ai} = 100~{
m a}$ 400 ${
m \Omega}$

O programa deverá ser capaz de resolver questões para qualquer um dos tipos de motor CC estudados (excitação independente, série, paralelo (shunt) ou composto). Perdas rotacionais desta máquina totalizam 3550 W a plena carga e sua curva de magnetização é

Os dados desta curva encontram-se no arquivo *ACC_mag.dat>* que acompanha esta tarefa. Portanto, o programa deve estar apto de ler este arquivo.

Para testar o programa, inicialmente vamos assumir que o motor está ligado em derivação, conforme circuito equivalente mostrado na figura seguir.

Testem seus programas resolvendo as seguintes questões para o motor apresentado:

- 1. Se o resistor $R_{\alpha j}$ for ajustado para 175 Ω , qual será a velocidade de rotação do motor a vazio?
- 2. Assumindo que não há reação de armadura, ou que esta esteja sendo compensada, qual é a velocidade do motor a plena carga? Qual é a regulação de velocidade do motor?
- 3. Se o motor estiver operando a plena carga e se sua resistência variável R_{aj} for aumentada para 250 Ω , qual será a nova velocidade do motor? Compare a velocidade de plena carga do motor, para $R_{aj} = 175 \Omega$, com a velocidade de plena carga para $R_{aj} = 250 \Omega$. Assuma que não há reação de armadura.
- 4. Se o motor está funcionando a plena carga e que o resistor variável R_{aj} é novamente 175 Ω . Se a reação de armadura for 1000 A•e a plena carga, qual será a velocidade do motor?
- 5. Varie R_{aj} de 100 a 400 Ω (de 25 em 25), calcule as velocidades a vazio máxima e mínima obtidas, e trace uma curva entre a corrente de campo I_F X velocidade.
- 6. Plote a característica de conjugado versus velocidade desse motor assumindo que não há reação de armadura e, novamente, assumindo uma reação de armadura de plena carga de 1200 A•e. Assuma que a reação de armadura cresce linearmente com o aumento de corrente de armadura.

A seguir testem seus programas para o motor CC ligado como excitação independente, como mostrado na figura a seguir. Ele tem uma tensão de campo fixa V_F de 240 V e uma tensão de armadura V_A que pode ser variada de 120 a 240 V.

1. Qual é a velocidade a vazio desse motor de excitação independente quando R_{aj} = 175 Ω e

a.
$$V_A = 120V$$
,

- b. $V_A = 180 \text{V e}$
- c. $V_A = 240 \text{V}$.
- 2. Qual é a velocidade a vazio máxima que se pode atingir variando a tensão V_A e a resistência R_{ai} ?
- 3. Qual é a velocidade a vazio mínima que se pode atingir variando a tensão V_A e a resistência R_{ai} ?
- 4. Determinem a eficiência do motor em condições nominais? [Observação: Assumam que (1) a queda de tensão nas escovas é 2 V; (2) as perdas no núcleo devem ser determinadas para uma tensão de armadura igual à tensão de armadura a plena carga e (3) as perdas suplementares são 1% da plena carga.]

Para finalizar o motor é ligado como composto cumulativo conforme a figura a seguir

Se o motor for ligado como composto cumulativo tendo $R_{ai} = 175 \Omega$:

- 1. Qual é a velocidade a vazio do motor?
- 2. Qual é a velocidade de plena carga do motor?
- 3. Qual é sua regulação de velocidade?
- 4. Calcule e plote a característica de conjugado versus velocidade desse motor. (Despreze os efeitos de reação de armadura neste problema.)
- 5. O motor foi ligado como composto cumulativo e está operando a plena carga. Qual será a nova velocidade do motor se a resistência R_{aj} for aumentada para 250 Ω ? Como a nova velocidade pode ser comparada com a velocidade de plena carga calculada em (1) e (2)?

Se o motor for ligado como composto diferencial.

- 6. Se $R_{aj} = 175 \Omega$, qual será a velocidade a vazio do motor?
- 7. Qual é a velocidade do motor quando a corrente de armadura atinge 20 A? 40 A? 60 A?

 Calculem e plotem a curva característica de conjugado ve motor. 	ersus velocidade desse