Image 8 - Steganography

Round 1:

First pixel: row 1, column 1, RGB values: (253, 238, 223). Convert to binary to reveal hidden values

R: 253 to binary is 1111 1101

1101 is least sig and when converting 1101 to decimal = 208.

So hidden value Red is 208

G: 238 to binary is 1110 1110

1110 is least sig. 1110 to decimal = 224

Hidden Green value is 224

B: 223 to binary is 1101 1111

1111 is least significant. 1111 to decimal is 240

Hidden value for Blue is 240

The hidden value for RGB: 253, 238, 223 is, RGB 208, 224, 240

Round 2:

Second Pixel: row 1, column 2, RGB values: (253, 238, 223). Reveal hidden colour values by converting to hexadecimal

R: 250 = FD in hex

D is least significant. SO D0 becomes leading digits for the hidden colour value.

D0 to decimal = 208, revealing hidden value for Red is 208

G: 238 = EE

E is least significant. SO E0 becomes leading digits for the hidden colour value.

D0 to decimal = 224, revealing hidden value for Green is 224

B: 223 = DF

F is least significant. SO F0 becomes leading digits for the hidden colour value.

F0 to decimal = 240, revealing hidden value for Blue is 240

Conclusion: Hidden colour values from RGB 253, 238, 223 are, RGB 208, 224, 240.

Round 3:

Third pixel:

Red = 253, hidden value is 208

Green = 126, hidden value is 224

Blue = 127, hidden value is 240

Explanation: Divide the values given with 16 and multiply the decimal result by 256 and it returns the hidden results.

Image # 08

253	253	253	253
238	238	238	238
223	223	223	223
253	121	185	189
238	92	140	142
223	21	21	31
253	189	253	253
238	142	254	254
223	31	255	255
125	185	121	249
126	140	124	252
127	21	117	245

This is the image 8 I worked on and the image on the right is the result after revealing all hidden values from the original on the left.