

Adapting, and Predicting
Adapting Sensing, Adapting Sensing, Adapting Sensing Sensing

Project idea

AdaptoSense is an ANN-based system that predicts missing sensor data (temperature, humidity, CO2, light) in a room using internal and external weather data and trained on data collected during a successful implementation week.

Auditorium - the project location

- Located on the ground floor
- Spacious lecture room with two external wall, one glasswall with doors, one internal wall with huge, wall-to-wall windows
 - → This unique layout influences the building energy processes

Software Used

ARDUINO SCETCH IDE

PYTHON

EXCEL CSV FILE

Arduino board and sensors

ARDUINO MKR WI-FI 1010

PROTOTYPE SHIELD

Arduino board and sensors

DIGITAL TEMPERATURE SENSOR

Measure ambient temperature of the room.

PHOTORESISTOR SENSOR

Measure ambient brightness.

· CO2 AND HUMIDITY SENSOR

Measure the concentration of carbon dioxide in the air and the humidity of the air.

Process Flow sensors **ARDUINO** IoT CLOUD value collection prediction data Neural Network

Arduino Cloud Interface

Advantages of prediction of sensor values

CONTINIOUS OPERATION

In many industrial processes and environment, the uninterrupted operation of equipment is a key point. Systems can continue working based on predicted temperature and humidity data until the sensoring is normalized again.

DATA INTEGRITY

Gaps in data lead to uncertainties and inaccuracies in many processes, like analysis and decision-making. By applying the sensor-driven prediction, data collection is continious, ensuring the integrity of the overall data.

COST EFFICIENCY

Instead of immidiately replacing and repairing meters a system can operate based on predited values until a new metering device is installed.

AdaptoSense: NN Architecture

The ANN model consist of

- 1. **An Input Layer** (7 Nodes): can vary as per requirement
- 2. **A Hidden Layer** (Nodes =70): Can be vary as per requirement
- 3. **An Output Layer** (Nodes = 1): Can be vary as per requirement
- 1. No. of epoch: 100: can be changed

AdaptoSense: NN Architecture

- Any missing parameters can be represented as a mathematical function dependent on other working seven variables:
- y=f(x)
- Here, x is defined as:
 - x=[x1,x2...,x7]T
- Error cost function = (target predict)^2
- forward and back propagation algorithm with gradient descent methodology

sigmoid activation

Sigmold Funct

$$A = \frac{1}{1+e^{-x}}$$

Performance Check

- Root Mean Square Error
- · Graph Between Actual value and predicted value
- Equity Line

$$C.E. = 1 - E_{r,r,m,s}^2$$

$$E_{r.r.m.s.} = \sqrt{\sum (y^{(p)} - y^{(a)})^2 / \sum (y^{(a)})^2}$$

Model Performance for All Scenario

Scenario	Description	coefficient of efficiency (C.E.)
1	CO2 Sensor Closed	95.00
2	Photoresistor Sensor closed	95.9
3	Humdity Sensor Closed	99.99
4	Temperature sensor closed	99.99
5	Opla temperature closed	97.56

Conclusions

ADEQUATE SOLUTION

- The outcome of the project was satisfying
- Neural network learned to make prediction with 99% correctness over time
- Sensor measurements were validated with other independent tools

WELL CHOSEN ENVIRONMENT

- The collaboration of Arduino Cloud and Pyhton code written Google Colab was successful
- Arduino Cloud handled connected sensors and board well
- Data measurement was uninterrupted
- Neural Network trained itself with greater accuracy over time
- ightarrow Data collection with Arduino sensors and their representation and storage in the cloud was successful
- → Data prediction based on previous values of the sensor was successful

Thank you for your attention!