不确定度概观

中国科学技术大学少年班学院 沈晨晔

2022年4月20日

目录

1	A 类不确定度	2
2	$egin{array}{cccccccccccccccccccccccccccccccccccc$	2
3	* 坏值检验	3
4	不确定度的简单合成	3
5	极限不确定度	4
6	最小二乘法 6.1 A 类不确定度	
7	Gosset 分布 t 因子表 $(P=0.95)$	5

1 A 类不确定度

对数据组 x_i , 有期望

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

和标准不确定度 (Bessel)

$$\sigma_{\overline{x}} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n(n-1)}}$$

但以上的计算基于无穷次测量的 Gauss 分布,在实际测量中,数据服从 Gosset 分布,为此需要将 $\sigma_{\overline{x}}$ 乘以一个 t 因子

t = t(P) 因子的计算方法如下

$$\int_0^{t_P} \left(1 + \frac{x^2}{\nu} \right)^{-\frac{\nu+1}{2}} dx = {}_2F_1\left(\frac{1}{2}, \frac{2}{\nu+1}, \frac{3}{2}, -\frac{t_P^2}{\nu} \right) = \frac{\Gamma\left(\frac{\nu}{2}\right)}{\Gamma\left(\frac{\nu+1}{2}\right)} \cdot \sqrt{(\nu+1)\pi} P$$

对单变量测量,有 $\nu = n - 1$,于是

$$u_A = t_P \cdot \sigma_{\overline{x}}$$

2 B 类不确定度

2.1 允差 Δ_{fl}

首先值得指出的是,允差是仪器本身自带的误差,与测量过程无关 以及如果实验室已经给出了仪器允差,务必实验室数据为准

I. 长度类测量仪器

仪器	刻度尺	钢卷尺	游标卡尺	螺旋测微器
$\Delta_{\ell\!\!\!/} / \mathrm{mm}$	0.1	1.2	0.02	0.004

- II. 质量测量仪器见仪器标定
- III. 电阻类仪器允差可直接读出
- IV. 模拟式仪表允差为 $\Delta_{\Omega} =$ 量程 × 级别
- V. 数字式仪表允差为 $\Delta_{\Omega} =$ 量程 × 级别 + 跳动字数
- VI. 秒表允差为 $\Delta_{\Omega} = \Delta_{\Omega} + \Delta_{\Lambda}$

2.2 估计误差 Δ_{dit}

这里要指出,估计误差是单次测量时用于代替 A 类不确定度的产物,一般情况下并不需要考虑 多次测量值无差异时要视作单次测量!

I. 模拟式仪器取最小分度 e 的倍数 $K \cdot e$ (K 视情况取 1.0, 0.5, 0.2 均可)

II. 数字式仪表不存在估计误差

当多次测量时 $\Delta_{\text{dit}} = 0$,我们有

$$\Delta_B = \sqrt{\Delta_{\acute{ ext{\scriptsize \'l}}}^2 + \Delta_{\acute{ ext{\scriptsize \'l}} \dotplus \id}^2}$$

2.3 u_B 的计算

 Δ_B 首先要除以分布系数 C 转换为 σ_B

分布类型	正态分布	三角分布	均匀分布
典例	刻度尺等大部分仪器	定容仪器	游标卡尺
C	$3(P_0 = 0.68)$	$\sqrt{6} (P_0 = 0.65)$	$\sqrt{3}\left(P_0 = 0.58\right)$

由于仪器本身误差完全服从理想分布,即 $\nu = \infty$,所以置信因子 K_P 是容易得到的

$$\operatorname{Erf}(\operatorname{Erf}^{-1}(P_0)\cdot K_P)=P$$

下面给出三种分布对应的 K_P 表

R_P	0.500	0.577	0.650	0.683	0.900	0.950	0.955	0.990	0.997
正态分布	0.675	0.801	0.935	1.000	1.650	1.960	2.000	2.580	3.000
三角分布	0.717	0.862	1.000	1.064	1.675	1.901	1.929	2.204	2.315
均匀分布	0.877	1.000	1.127	1.183	1.559	1.645	1.654	1.715	1.727

于是

$$u_B = K_P \cdot \frac{\Delta_B}{C}$$

3 * 坏值检验

坏值检验一般使用 PauTa 准则,即 $|x_i-\overline{x}|>3\sigma$ 时剔除该值,而在要求更为苛刻的场合时可以使用 Chauvenet 准则或 Grubbs 准则,即要求 $|x_i-\overline{x}|>K\cdot\sigma$

中华人民共和国标准文件 JJF1001/1059 推荐使用 Grubbs 法则

下面给出 Chauvenet 准则和 Grubbs 准则的 K 值

Chauvenet Criterion													
\overline{n}	3	10	15	20									
Z_C	1.38	1.54	1.65	1.73	1.80	1.86	1.92	1.96	2.13	2.24			
	Grubbs Criterion $(P = 0.95)$												
\overline{n}	n 3 4 5 6 7 8 9 10 15 20												
G 1.15 1.46 1.67 1.82 1.94 2.03 2.11 2.18 2.41										2.56			

4 不确定度的简单合成

对任一直接测量量有

$$u_{\overline{x}} = \sqrt{u_A^2 + u_B^2}$$

同时对于间接测量量 $Y = Y(X_i)$ 有

$$u_Y = \sqrt{\sum_i \left(\frac{\partial Y(X_i)}{\partial X_i} \cdot u_{\overline{X_i}}\right)^2}$$

5 极限不确定度

一般的,我们认为极限不确定度为 $e = \Delta_{\alpha}$,有

$$e_Y = \sum_i \left(\left| \frac{\partial Y(X_i)}{\partial X_i} \right| \cdot e_{X_i} \right)$$

6 最小二乘法

6.1 A 类不确定度

对数据组 X_i, Y_i 进行拟合,有 Y = KX + B,自由度 $\nu = n - 2$

$$K = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2}, B = \frac{\sum (X_i - \overline{X})(X_i \overline{Y} - Y_i \overline{X})}{\sum (X_i - \overline{X})^2}, R = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2}}$$

K, B 的 A 类标准不确定度为

$$\sigma_K = K \cdot \sqrt{\frac{(1 - R^2)}{R^2 \cdot \nu}}, \, \sigma_B = \sigma_K \cdot \sqrt{\frac{\sum X_i^2}{n}}$$

6.2 B 类不确定度

连续累加测量,视r=1

$$u_K = \left(1 - \frac{1}{n}\right) \frac{\sqrt{\left(\sum u_{X_i} \cdot \left| (Y_i - 2KX_i) - (\overline{Y} - 2K\overline{X}) \right| \right)^2 + \left(\sum u_{Y_i} \cdot \left| X_i - \overline{X} \right| \right)^2}}{\sum \left(X_i - \overline{X}\right)^2}$$

$$u_{B} = \frac{\sqrt{\left(\sum u_{X_{i}} \left| \left(1 - \frac{1}{n}\right) \overline{X} \left((Y_{i} - 2KX_{i}) - (\overline{Y} - 2K\overline{X})\right) + \overline{XY} - \overline{XY} \right| \right)^{2} + \left(\sum u_{Y_{i}} \left| \left(1 - \frac{1}{n}\right) \overline{X} (X_{i} - \overline{X}) - \overline{\frac{XY}{K}} - \overline{XY} \right| \right)^{2}}{\sum (X_{i} - \overline{X})^{2}}$$

独立测量,视 r=0

$$u_{K} = \left(1 - \frac{1}{n}\right) \frac{\sqrt{\sum \left(u_{X_{i}} \cdot \left|\left(Y_{i} - 2KX_{i}\right) - (\overline{Y} - 2K\overline{X})\right|\right)^{2} + \sum \left(u_{Y_{i}} \cdot \left|X_{i} - \overline{X}\right|\right)^{2}}}{\sum \left(X_{i} - \overline{X}\right)^{2}}$$

$$u_{B} = \frac{\sqrt{\sum\left(u_{X_{i}}\left|\left(1 - \frac{1}{n}\right)\overline{X}\left((Y_{i} - 2KX_{i}) - (\overline{Y} - 2K\overline{X})\right) + \overline{XY} - \overline{XY}\right|\right)^{2} + \sum\left(u_{Y_{i}}\left|\left(1 - \frac{1}{n}\right)\overline{X}(X_{i} - \overline{X}) - \overline{\frac{XY}{K}}\right|\right)^{2}}{\sum\left(X_{i} - \overline{X}\right)^{2}}$$

特别的,当允差固定时

$$u_K = (1 - \frac{1}{n}) \sqrt{\frac{K^2 u_X^2 + R^2 u_Y^2}{R^2 \sum (X_i - \overline{X})^2}}, u_B = \sqrt{\overline{X}^2 u_K^2 + \frac{K^2 u_X^2 + u_Y^2}{n}}$$

7 Gosset 分布 t 因子表 (P = 0.95)

$\overline{\nu}$	1	2	3	4	5	6	7	8	9	10	15	20	30
\overline{t}	12.71	4.30	3.18	2.78	2.57	2.45	2.36	2.31	2.26	2.23	2.13	2.09	2.04