1. The formula in Theorem 5.3.6 is

$$\mathbf{v} = \sum_{i=1}^{n} \left(\frac{\mathbf{v} \cdot \mathbf{b}_i}{\mathbf{b}_i \cdot \mathbf{b}_i} \right) \mathbf{b}_i$$

(so in case of an orthonormal basis, the denominators $\mathbf{b}_i \cdot \mathbf{b}_i$ are all equal to 1).

(a) The coefficients are

$$\frac{\mathbf{v} \cdot \mathbf{b}_1}{\mathbf{b}_1 \cdot \mathbf{b}_1} = \frac{16}{26} = \frac{8}{13}, \ \frac{\mathbf{v} \cdot \mathbf{b}_2}{\mathbf{b}_2 \cdot \mathbf{b}_2} = \frac{2}{26} = \frac{1}{13},$$

so

$$\begin{bmatrix} 1 \\ 3 \end{bmatrix} = \frac{8}{13} \begin{bmatrix} 1 \\ 5 \end{bmatrix} + \frac{1}{13} \begin{bmatrix} 5 \\ -1 \end{bmatrix}.$$

The right side can be readily computed by hand to be equal to the left side since 8+5=13 and $8 \cdot 5 - 1 = 40 - 1 = 39 = 3 \cdot 13$.

(b) This is an orthonormal basis, so each $\mathbf{b}_i \cdot \mathbf{b}_i = 1$. Hence, the coefficients are

$$\mathbf{v} \cdot \mathbf{b}_1 = \frac{11}{\sqrt{26}}, \ \mathbf{v} \cdot \mathbf{b}_2 = \frac{3}{\sqrt{26}},$$

SO

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \frac{11}{\sqrt{26}} (1/\sqrt{26}) \begin{bmatrix} 1 \\ 5 \end{bmatrix} + \frac{3}{\sqrt{26}} (1/\sqrt{26}) \begin{bmatrix} 5 \\ -1 \end{bmatrix}.$$

To compute the right side explicitly, we first note that each term has in its denominator $\sqrt{26} \cdot \sqrt{26} = 26$, so the right side is the same as

$$\frac{11}{26} \begin{bmatrix} 1 \\ 5 \end{bmatrix} + \frac{3}{26} \begin{bmatrix} 5 \\ -1 \end{bmatrix},$$

which we compute to be equal to the left side since $11 + 3 \cdot 5 = 26$ and $11 \cdot 5 - 3 = 52 = 2 \cdot 26$.

(c) We calculate the coefficients as

$$\frac{\mathbf{v} \cdot \mathbf{b}_1}{\mathbf{b}_1 \cdot \mathbf{b}_1} = \frac{6}{3} = 2, \quad \frac{\mathbf{v} \cdot \mathbf{b}_2}{\mathbf{b}_2 \cdot \mathbf{b}_2} = \frac{-2}{2} = -1, \quad \frac{\mathbf{v} \cdot \mathbf{b}_3}{\mathbf{b}_3 \cdot \mathbf{b}_3} = \frac{0}{6} = 0,$$

SO

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}.$$

The right side is equal to $\begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 2-1 \\ 2-0 \\ 2-(-1) \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, as desired.

2. Writing $\mathbf{u} = a\mathbf{v} + b\mathbf{w}$, we first rule out the possibility that a = 0. If a = 0 then $\mathbf{u} = b\mathbf{w}$, but then $b \neq 0$ (since \mathbf{u} is nonzero), so $\mathbf{w} = (1/b)\mathbf{u}$ and so \mathbf{u} and \mathbf{w} span the *same* line: $x\mathbf{u} = (xb)\mathbf{w}$ and $x\mathbf{w} = (x/b)\mathbf{u}$ for any scalar x. But we are given that \mathbf{u} and \mathbf{w} span different lines through the origin. That rules out the possibility a = 0 (and arguing similarly with \mathbf{v} in place of \mathbf{w} rules out the possibility b = 0). Since each of a and b is nonzero, we can express each of \mathbf{v} and \mathbf{w} in terms of the other two vectors: $a\mathbf{v} = \mathbf{u} - b\mathbf{w}$ implies $\mathbf{v} = (1/a)\mathbf{u} - (b/a)\mathbf{w}$, and likewise $b\mathbf{w} = \mathbf{u} - a\mathbf{v}$ implies $\mathbf{w} = (1/b)\mathbf{u} - (a/b)\mathbf{v}$.

3. (a) Writing
$$\mathbf{v}_3 = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
, its orthogonality to \mathbf{v}_1 and \mathbf{v}_2 amounts to the pair of equations

$$2a + 4c = 0$$
, $-2a + b + c = 0$,

so
$$c=-a/2$$
 and $b=2a-c=5a/2$. In other words, $\mathbf{v}_3=\begin{bmatrix} a\\5a/2\\-a/2\end{bmatrix}$ for some $a\neq 0$. The cleanest choice is $a=2$, giving $\mathbf{v}_3=\begin{bmatrix} 2\\5\\-1\end{bmatrix}$.

(b) We calculate

$$\begin{bmatrix} -1\\2\\3 \end{bmatrix} \cdot \begin{bmatrix} 2\\0\\4 \end{bmatrix} = 10, \quad \begin{bmatrix} -1\\2\\3 \end{bmatrix} \cdot \begin{bmatrix} -2\\1\\1 \end{bmatrix} = 7, \quad \begin{bmatrix} -1\\2\\3 \end{bmatrix} \cdot \begin{bmatrix} 2\\5\\-1 \end{bmatrix} = 5,$$

SO

$$\begin{bmatrix} -1\\2\\3 \end{bmatrix} = \frac{10}{20} \begin{bmatrix} 2\\0\\4 \end{bmatrix} + \frac{7}{6} \begin{bmatrix} -2\\1\\1 \end{bmatrix} + \frac{5}{30} \begin{bmatrix} 2\\5\\-1 \end{bmatrix}$$
$$= \frac{1}{2} \mathbf{v}_1 + \frac{7}{6} \mathbf{v}_2 + \frac{1}{6} \mathbf{v}_3.$$

4. (a) We calculate $\mathbf{b}_1 \cdot \mathbf{b}_1 = 30$, $\mathbf{b}_2 \cdot \mathbf{b}_2 = 5$, $\mathbf{b}_1 \cdot \mathbf{v} = 30$, and $\mathbf{b}_2 \cdot \mathbf{v} = 20$, so

$$\mathbf{v}' = \mathbf{b}_1 + 4\mathbf{b}_2 = \begin{bmatrix} 9 \\ 5 \\ -2 \end{bmatrix}.$$

- (b) By inspection $\mathbf{v}' \neq \mathbf{v}$. The reason \mathbf{v} cannot lie in the plane \mathcal{P} is because if it were in this plane, so it is in the span of the orthogonal collection of nonzero vectors $\{\mathbf{b}_1, \mathbf{b}_2\}$, then by Theorem 5.3.6 it would be equal to the expression defining \mathbf{v}' . But we observed that $\mathbf{v}' \neq \mathbf{v}$, so this is not possible.
- 5. (a) We can use

$$\mathbf{v}_2 = \mathbf{w} - \mathbf{Proj}_{\mathbf{v}_1}(\mathbf{w}) = \mathbf{w} - \frac{\mathbf{w} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \mathbf{w} - \frac{6}{5} \mathbf{v}_1 = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} - \frac{6}{5} \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3/5 \\ -6/5 \\ 1 \end{bmatrix}.$$

Likewise, we can use

$$\mathbf{w}_2 = \mathbf{v} - \mathbf{Proj}_{\mathbf{w}_1}(\mathbf{w}_1) = \mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{w}_1}{\mathbf{w}_1 \cdot \mathbf{w}_1} \mathbf{w}_1 = \mathbf{v} - \frac{3}{5} \mathbf{w}_1 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} - \frac{6}{10} \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1/5 \\ 1 \\ -3/5 \end{bmatrix}.$$

(Any nonzero scalar multiples of these would work just as well.)

(b) By the Fourier formula,

$$\mathbf{Proj}_{\mathcal{P}}(\mathbf{u}) = \frac{\mathbf{u} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{u} \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 = \frac{1}{5} \mathbf{v}_1 + \frac{4/5}{70/25} \mathbf{v}_2 = \frac{1}{5} \mathbf{v}_1 + \frac{2}{7} \mathbf{v}_2$$

and

$$\mathbf{Proj}_{\mathcal{P}}(\mathbf{u}) = \frac{\mathbf{u} \cdot \mathbf{w}_1}{\mathbf{w}_1 \cdot \mathbf{w}_1} \mathbf{w}_1 + \frac{\mathbf{u} \cdot \mathbf{w}_2}{\mathbf{w}_2 \cdot \mathbf{w}_2} \mathbf{w}_2 = \frac{2}{10} \mathbf{w}_1 + \frac{-1/5}{35/25} \mathbf{w}_2 = \frac{1}{5} \mathbf{w}_1 - \frac{1}{7} \mathbf{w}_2.$$

(c) In the solution to (a) we had

$$\mathbf{v}_2 = \mathbf{w} - \frac{6}{5}\mathbf{v}_1 = \mathbf{w} - \frac{6}{5}\mathbf{v}, \ \mathbf{w}_2 = \mathbf{v} - \frac{3}{5}\mathbf{w}_1 = \mathbf{v} - \frac{3}{5}\mathbf{w},$$

so plugging these into the answers to (b) gives

$$\mathbf{Proj}_{\mathcal{P}}(\mathbf{u}) = \frac{1}{5}\mathbf{v}_1 + \frac{2}{7}\mathbf{v}_2 = \frac{1}{5}\mathbf{v} + \frac{2}{7}(\mathbf{w} - \frac{6}{5}\mathbf{v}) = -\frac{1}{7}\mathbf{v} + \frac{2}{7}\mathbf{w}$$

and

$$\mathbf{Proj}_{\mathcal{P}}(\mathbf{u}) = \frac{1}{5}\mathbf{w}_1 - \frac{1}{7}\mathbf{w}_2 = \frac{1}{5}\mathbf{w} - \frac{1}{7}(\mathbf{v} - \frac{3}{5}\mathbf{w}) = -\frac{1}{7}\mathbf{v} + \frac{2}{7}\mathbf{w}.$$

So each way, we get e = 1/7 and f = 2/7.

6. (a) To show that necessarily $c_1 = 0$ and $c_2 = 0$, we have to rule out the case $c_1 \neq 0$ and the case $c_2 \neq 0$. If $c_1 \neq 0$ then we can divide by c_1 (or equivalently, multiply by $1/c_1$) to get $\mathbf{v}_1 + (c_2/c_1)\mathbf{v}_2 = \mathbf{0}$, so $\mathbf{v}_1 = -(c_2/c_1)\mathbf{v}_2$. But this is impossible since \mathbf{v}_1 isn't a scalar multiple of \mathbf{v}_2 .

Likewise, if $c_2 \neq 0$ then we can divide by c_2 (or equivalently, multiply by $1/c_2$) to get $(c_1/c_2)\mathbf{v}_1+$ $\mathbf{v}_2 = \mathbf{0}$, so $\mathbf{v}_2 = -(c_1/c_2)\mathbf{v}_1$. But this is impossible since \mathbf{v}_2 isn't a scalar multiple of \mathbf{v}_1 .

(b) If $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 = b_1\mathbf{v}_1 + b_2\mathbf{v}_2$ for some scalar coefficients then by subtracting the right side from the left side we get

$$\mathbf{0} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 - b_1 \mathbf{v}_1 - b_2 \mathbf{v}_2 = (a_1 - b_1) \mathbf{v}_1 + (a_2 - b_2) \mathbf{v}_2.$$

By (a), this can only happen when both coefficients vanish, which is to say $a_1 - b_1 = 0$ and $a_2 - b_2 = 0$, which is exactly the same as saying $a_1 = b_1$ and $a_2 = b_2$.

7. (a) Suppose $c_1 \neq 0$. We then multiply through by $1/c_1$ to get $\mathbf{w}_1 + (c_2/c_1)\mathbf{w}_2 + (c_3/c_1)\mathbf{w}_3 = \mathbf{0}$, so $\mathbf{w}_1 = -(c_2/c_1)\mathbf{w}_2 - (c_3/c_1)\mathbf{w}_3.$

But then \mathbf{w}_1 is "redundant" in the span defining W: any linear combination $a\mathbf{w}_1 + b\mathbf{w}_2 + c\mathbf{w}_3$ can be rewritten as

$$a(-(c_2/c_1)\mathbf{w}_2 - (c_3/c_1)\mathbf{w}_2) + b\mathbf{w}_2 + c\mathbf{w}_3 = -(ac_2/c_1)\mathbf{w}_2 - (ac_3/c_1)\mathbf{w}_2 + b\mathbf{w}_2 + c\mathbf{w}_3$$

= $(b - ac_2/c_1)\mathbf{w}_2 + (c - ac_3/c_1)\mathbf{w}_3$.

This says $W = \operatorname{span}(\mathbf{w}_2, \mathbf{w}_3)$, so dim $W \leq 2$. But we assumed dim W = 3, so this is impossible. Consequently, the possibility $c_1 \neq 0$ can't occur, so necessarily $c_1 = 0$.

The exact same reasoning applies equally well to c_2 and c_3 (up to some change in subscripts), so these coefficients also must vanish.

(b) If $a_1\mathbf{w}_1 + a_2\mathbf{w}_2 + a_3\mathbf{w}_3 = b_1\mathbf{w}_1 + b_2\mathbf{w}_2 + b_3\mathbf{w}_3$ for some scalar coefficients, then by subtracting the left side from the right side we get

$$\mathbf{0} = b_1 \mathbf{w}_1 + b_2 \mathbf{w}_2 + b_3 \mathbf{w}_3 - a_1 \mathbf{w}_1 - a_2 \mathbf{w}_2 - a_3 \mathbf{w}_3 = (b_1 - a_1) \mathbf{w}_1 + (b_2 - a_2) \mathbf{w}_2 + (b_3 - a_3) \mathbf{w}_3.$$

We can apply the conclusion of (a) to this to conclude that all three coefficients must vanish, which is to say that all differences $b_i - a_i$ vanish, or in other words $b_i = a_i$ for all i, as desired.

8. (a) We expand out the right side and then subtract the left side:

$$(a+3t)\mathbf{v}_1 + (b-5t)\mathbf{v}_2 = a\mathbf{v}_1 + 3t\mathbf{v}_1 + b\mathbf{v}_2 - 5t\mathbf{v}_2 = (a\mathbf{v}_1 + b\mathbf{v}_2) + t(3\mathbf{v}_1 - 5\mathbf{v}_2),$$

so subtracting the left side from this leaves us with $t(3\mathbf{v}_1 - 5\mathbf{v}_2)$. But

$$3\mathbf{v}_1 - 5\mathbf{v}_2 = 3((5/3)\mathbf{v}_2) - 5\mathbf{v}_2 = 5\mathbf{v}_2 - 5\mathbf{v}_2 = \mathbf{0},$$

so the *t*-part vanishes.

(b) Again we expand out the right side and then subtract the left side:

$$(a-3t)\mathbf{w}_1 + (b+8t)\mathbf{w}_2 + (c+4t)\mathbf{w}_3 = a\mathbf{w}_1 - 3t\mathbf{w}_1 + b\mathbf{w}_2 + 8t\mathbf{w}_2 + c\mathbf{w}_3 + 4t\mathbf{w}_3$$
$$= (a\mathbf{w}_1 + b\mathbf{w}_2 + c\mathbf{w}_3) + t(-3\mathbf{w}_1 + 8\mathbf{w}_2 + 4\mathbf{w}_3),$$

so subtracting the left side from this leaves us with $t(-3\mathbf{w}_1 + 8\mathbf{w}_2 + 4\mathbf{w}_3)$. But

$$-3\mathbf{w}_1 + 8\mathbf{w}_2 + 4\mathbf{w}_3 = -3\mathbf{w}_1 + 8\mathbf{w}_2 + 4((3/4)\mathbf{w}_1 - 2\mathbf{w}_2) = -3\mathbf{w}_1 + 8\mathbf{w}_2 + 3\mathbf{w}_1 - 8\mathbf{w}_2 = \mathbf{0},$$
 so the *t*-part vanishes.

9. (a) Since \mathbf{v}_1 and \mathbf{v}_2 are visibly nonzero and not scalar multiples of each other, they constitute a basis for their span, so dim V=2. One orthogonal basis $\{\mathbf{w}_1,\mathbf{w}_2\}$ consists of $\mathbf{w}_1=\mathbf{v}_1$ and $\mathbf{w}_2=\mathbf{v}_2-\mathbf{Proj}_{\mathbf{v}_1}(\mathbf{v}_2)$. We compute

$$\mathbf{w}_{2} = \mathbf{v}_{2} - \mathbf{Proj}_{\mathbf{v}_{1}}(\mathbf{v}_{2})$$

$$= \mathbf{v}_{2} - \frac{\mathbf{v}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}$$

$$= \mathbf{v}_{2} - \frac{12}{6} \mathbf{v}_{1}$$

$$= \mathbf{v}_{2} - 2\mathbf{v}_{1} = \begin{bmatrix} 0 \\ 5 \\ 2 \\ 1 \end{bmatrix} - 2 \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix},$$

so an orthogonal basis is given by $\left\{ \begin{bmatrix} 1\\2\\1\\0 \end{bmatrix}, \begin{bmatrix} -2\\1\\0\\1 \end{bmatrix} \right\}$. (Safety check: we can verify orthogonality

directly since $\mathbf{w}_1 \cdot \mathbf{w}_2 = -2 + 2 + 0 + 0 = 0$, and the spanning property of the 2-dimensional V for the pair of \mathbf{w}_j 's holds since $\mathbf{v}_2 = \mathbf{w}_2 + 2\mathbf{w}_1$ by design.)

(b) We use the orthogonal basis $\{\mathbf w_1, \mathbf w_2\}$ along with the projection formula to compute $\mathbf{Proj}_V(\mathbf b)$:

$$\begin{split} \mathbf{Proj}_V(\mathbf{b}) &= \mathbf{Proj}_{\mathbf{w}_1}(\mathbf{b}) + \mathbf{Proj}_{\mathbf{w}_2}(\mathbf{b}) \\ &= \frac{\mathbf{b} \cdot \mathbf{w}_1}{\mathbf{w}_1 \cdot \mathbf{w}_1} \, \mathbf{w}_1 + \frac{\mathbf{b} \cdot \mathbf{w}_2}{\mathbf{w}_2 \cdot \mathbf{w}_2} \, \mathbf{w}_2 \\ &= \frac{6}{6} \mathbf{w}_1 + \frac{-6}{6} \mathbf{w}_2 \\ &= \mathbf{w}_1 - \mathbf{w}_2 = \begin{bmatrix} 1\\2\\1\\0 \end{bmatrix} - \begin{bmatrix} -2\\1\\0\\1 \end{bmatrix} = \begin{bmatrix} 3\\1\\1\\-1 \end{bmatrix}. \end{split}$$

(As a safety check on our work, we can compute that $\mathbf{b} - \begin{bmatrix} 3 \\ 1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 2 \\ 1 \end{bmatrix}$ is indeed orthogonal

to both v_1 and v_2 , as should be true of $\mathbf{Proj}_V(\mathbf{b})$. It is not necessary to have done this, but checking your work is a good habit.)

(c) In the solution to (b) we saw that $\mathbf{Proj}_V(\mathbf{b}) = \mathbf{w}_1 - \mathbf{w}_2$. By construction, $\mathbf{w}_1 = \mathbf{v}_1$ and $\mathbf{w}_2 = \mathbf{v}_2 - 2\mathbf{v}_1$, so

$$\mathbf{Proj}_{V}(\mathbf{b}) = \mathbf{v}_{1} - (\mathbf{v}_{2} - 2\mathbf{v}_{1}) = 3\mathbf{v}_{1} - \mathbf{v}_{2}.$$

Hence, r=3 and s=-1. (As a safety check, which is not necessary but we recommend as a good habit, you can explicitly compute $3\mathbf{v}_1 - \mathbf{v}_2$ to see that it is equal to $\begin{bmatrix} 3\\1\\1\\-1 \end{bmatrix}$, the explicit determination of $\mathbf{Proj}_V(\mathbf{b})$ in (b).)

10. There are multiple approaches (and multiple correct answers) to this problem; we will just give one approach. Our strategy will be to find *some* basis for \mathcal{P} , then use Theorem 7.1.1 to convert it into an orthogonal basis.

In fact, any two non-zero vectors in \mathcal{P} not on the same line through the origin constitute a basis for \mathcal{P} . For example, we can find a basis as follows: let \mathbf{v}_1 be the unique point on \mathcal{P} with x=1,y=0

(so we must solve for z), while
$$\mathbf{v}_2$$
 has $x = 0, y = 1$. More specifically, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 5/2 \end{bmatrix}$.

As an orthonormal basis, we can take \mathbf{v}_1 and $\mathbf{v}_2' = \mathbf{v}_2 - \mathbf{Proj}_{\mathbf{v}_1}(\mathbf{v}_2) = \mathbf{v}_2 - \frac{\mathbf{v}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1$, so we need to compute some dot products:

$$\mathbf{v}_2 \cdot \mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \\ 5/2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} = -5, \ \mathbf{v}_1 \cdot \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} = 5,$$

SO

$$\mathbf{v}_2' = \mathbf{v}_2 - \frac{5}{5}\mathbf{v}_1 = \mathbf{v}_2 - \mathbf{v}_1 = \begin{bmatrix} 0\\1\\5/2 \end{bmatrix} - \begin{bmatrix} 1\\0\\2 \end{bmatrix} = \begin{bmatrix} -1\\1\\1/2 \end{bmatrix}.$$

We can also rescale \mathbf{v}_2' by 2 without changing the orthogonality (call the result \mathbf{v}_2'' for clarity). Summarizing, the orthogonal basis we've found is

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} , \mathbf{v}_2'' = \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix} .$$

11. (a) The vectors are

$$\mathbf{X} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{bmatrix}, \ \mathbf{Y} = \begin{bmatrix} -4 \\ -1 \\ 1 \\ 5 \\ 5 \\ 7 \\ 8 \end{bmatrix}.$$

(b) The vector \mathbf{v} can be taken to be $\mathbf{X} - \mathbf{Proj_1}(\mathbf{X}) = \mathbf{X} - \overline{x}\mathbf{1}$ with \overline{x} equal to the average of the entries x_i in \mathbf{X} . This average is

$$\frac{1+2+3+4+5+6+7}{7} = \frac{7(1+7)/2}{7} = \frac{28}{7} = 4,$$

so

$$\mathbf{v} = \mathbf{X} - (4)\mathbf{1} = \begin{bmatrix} -3\\ -2\\ -1\\ 0\\ 1\\ 2\\ 3 \end{bmatrix}.$$

(This v is what is called $\widehat{\mathbf{X}}$ in the main text.) The projection of Y into V is then given by

$$\frac{\mathbf{Y} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} + \frac{\mathbf{Y} \cdot \mathbf{1}}{\mathbf{1} \cdot \mathbf{1}} \mathbf{1} = \frac{12 + 2 - 1 + 0 + 5 + 14 + 24}{28} \mathbf{v} + \frac{-4 - 1 + 1 + 5 + 5 + 7 + 8}{7} \mathbf{1}$$
$$= \frac{56}{28} \mathbf{v} + \frac{21}{7} \mathbf{1}$$
$$= 2\mathbf{v} + (3)\mathbf{1}.$$

Hence, t = 2 and s = 3.

(c) We have v = X - (4)1, so

$$Proj_V(\mathbf{Y}) = 2\mathbf{v} + (3)\mathbf{1} = 2(\mathbf{X} - (4)\mathbf{1}) + (3)\mathbf{1}$$

= $2\mathbf{X} + (-8 + 3)\mathbf{1}$
= $2\mathbf{X} - (5)\mathbf{1}$.

Hence, the line of best fit is y = 2x - 5.

(d) Here is the plot of data and the line from (c).

FIGURE 1. The best-fit line y = 2x - 5 compared with the data.

It looks like a good fit.

 \Diamond

12. (a) By the parametric form of L, all displacement vectors between points of L are scalar multiples

of
$$\mathbf{x} = \begin{bmatrix} -1 \\ 4 \\ -1 \\ -2 \end{bmatrix}$$
. We want all of these to belong to \mathcal{P} , so it is the same to show \mathbf{x} belongs to

 $\mathcal{P} = \operatorname{span}(\mathbf{v}, \mathbf{w})$. That is, we seek $c, d \in \mathbf{R}$ for which $\mathbf{x} = c\mathbf{v} + d\mathbf{w}$. That is, we seek c, d satisfying

$$\begin{bmatrix} -1\\4\\-1\\-2 \end{bmatrix} = \begin{bmatrix} 2c+11d\\-c+5d\\-c-10d\\c+d \end{bmatrix}.$$

By equating coordinates, this is a collection of 4 equations in 2 unknowns:

$$2c + 11d = -1$$
, $-c + 5d = 4$, $-c - 10d = -1$, $c + d = -2$.

If we consider the first two equations, we can use the usual method from high-school algebra to find that those two have one simultaneous solution: c = -7/3 and d = 1/3. Direct evaluation confirms that these values also satisfy the third and fourth equations, so $\mathbf{x} = -(7/3)\mathbf{v} + (1/3)\mathbf{w} \in \mathcal{P}$ as desired.

(b) Based on the parametric form for L, we pick $\mathbf{y} = \begin{bmatrix} 4 \\ 4 \\ -7 \end{bmatrix}$ (corresponding to t = 0), though any choice of point on L will work just as well below.

The closest distance from y to \mathcal{P} is the length of $y - \operatorname{Proj}_{\mathcal{P}}(y)$: the displacement vector between y and its closest point $\mathbf{Proj}_{\mathcal{P}}(y)$ on \mathcal{P} . In order to compute the projection, we would like an orthogonal basis for \mathcal{P} . By Theorem 7.1.1, one such basis is $\mathbf{v}, \mathbf{w}' = \mathbf{w} - \mathbf{Proj}_{\mathbf{v}}(\mathbf{w}) =$ $\mathbf{w} - \frac{\mathbf{w} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}$, so we need to compute some dot products:

$$\mathbf{w} \cdot \mathbf{v} = \begin{bmatrix} 11 \\ 5 \\ -10 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \\ -1 \\ 1 \end{bmatrix} = 22 - 5 + 10 + 1 = 28, \ \mathbf{v} \cdot \mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ -1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \\ -1 \\ 1 \end{bmatrix} = 7,$$

so

$$\mathbf{w}' = \mathbf{w} - 4\mathbf{v} = \begin{bmatrix} 11 \\ 5 \\ -10 \\ 1 \end{bmatrix} - 4 \begin{bmatrix} 2 \\ -1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 11 \\ 5 \\ -10 \\ 1 \end{bmatrix} - \begin{bmatrix} 8 \\ -4 \\ -4 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 9 \\ -6 \\ -3 \end{bmatrix}.$$

Noting the common factor of 3 in all entries of this final expression, it does us no harm to

replace w' by
$$\mathbf{w''} = \frac{1}{3}\mathbf{w'} = \begin{bmatrix} 1\\3\\-2\\-1 \end{bmatrix}$$
 (though if you don't make this change then it has no impact

on the final answer below).

As we explained above, the shortest distance is the length of the vector

$$\mathbf{y} - \mathbf{Proj}_{\mathcal{P}}(\mathbf{y}) = \mathbf{y} - \mathbf{Proj}_{\mathbf{v}}(\mathbf{y}) - \mathbf{Proj}_{\mathbf{w}''}(\mathbf{y}) = \mathbf{y} - \frac{\mathbf{y} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} - \frac{\mathbf{y} \cdot \mathbf{w}''}{\mathbf{w}'' \cdot \mathbf{w}''} \mathbf{w}'',$$

which is

$$\mathbf{y} - \left(\frac{4 \cdot 2 + 4 \cdot (-1) + 4 \cdot (-1) + (-7) \cdot 1}{7}\right) \mathbf{v} - \left(\frac{4 \cdot 1 + 4 \cdot 3 + 4 \cdot (-2) + (-7) \cdot (-1)}{1 + 9 + 4 + 1}\right) \mathbf{w}'',$$

that in turn is equal to

$$\mathbf{y} - \frac{-7}{7}\mathbf{v} - \frac{15}{15}\mathbf{w}'' = \begin{bmatrix} 4\\4\\4\\-7 \end{bmatrix} + \begin{bmatrix} 2\\-1\\-1\\1 \end{bmatrix} - \frac{15}{15} \begin{bmatrix} 1\\3\\-2\\-1 \end{bmatrix} = \begin{bmatrix} 4+2-1\\4-1-3\\4-1+2\\-7+1+1 \end{bmatrix} = \begin{bmatrix} 5\\0\\5\\-5 \end{bmatrix}.$$

The length of this vector is $5\sqrt{3} = \sqrt{75}$.