CS – Cipher

Криптоалгоритм *CS-Cipher* (от франц. "Chiffrement Symetrique", Symmetric Cipher) 1 преобразует 64-битовый блок открытых данных $m=m_{63}\dots m_1m_0$ в 64-битовый блок шифртекста $m'=m'_{63}\dots m'_1m'_0$, под управлением 128-битового секретного ключа $k=k_{127}\dots k_1k_0$.

Обозначения. Символ $\|$ обозначает конкатенацию блоков; n-битовый блок $x=x_{n-1}\|$... $\|x_1\|$ x_0 интерпретируется как целое число $x_{n-1}2^{n-1}+...+x_12^1+x_0$; биты в блоке нумеруются справа налево, начиная с 0, т.е. x_0 — младший бит в блоке x; $x_{m.n}$ — сокращенная запись для $x_m\|x_{m-1}\|...\|x_n$ ($m\geq n$); для 8-битового блока (байта) x его левый (старший) и правый (младший) полубайты обозначаются как x.l и x.r; аналогично, для двухбайтового блока x его левая и правая половины обозначаются как x.l и x.r; x0 и x0 — операции побитового сложения по модулю x0 и умножения (коньюнкции) для блоков одинаковой длины; x1 — циклический сдвиг байта влево на один бит.

В алгоритме шифрования используются 64-битовые подключи $k^0, k^1, ..., k^8$, генерируемые на основе секретного ключа $k = k^{-1} \parallel k^{-2}$ по итерационно схеме:

$$k^i := k^{i-2} \oplus F(k^{i-1}, c^i)$$
 для $i = 0, 1, ..., 8,$

где c^i — 64-битовые константы:

 $c^{0} = 0x290d61409ceb9e8f$ $c^{1} = 0x1f855f585b013986$ $c^{2} = 0x972ed7d635ae1716$ $c^{3} = 0x21b6694ea5728708$ $c^{4} = 0x3c18e6e7faadb889$ $c^{5} = 0xb700f76f73841163$ $c^{6} = 0x3f967f6ebf149dac$ $c^{7} = 0xa40e7ef6204a6230$ $c^{8} = 0x03c54b5a46a34465$

Функция F с 64-битовыми аргументами и значением определена как

$$F(x,c) = T(P_8(x \oplus c)),$$

где P_8 определяется как

$$P_8(x_{63..0}) = P(x_{63..56}) \parallel P(x_{55..48}) \parallel ... \parallel P(x_{7..0}).$$

P — перестановка (подстановка) на множестве байтов; её значение

$$y.l \| y.r = P(x.l \| x.r)$$

для байта х вычисляется следующим образом:

$$z:=x.l \oplus f(x.r); y.r:=x.r \oplus g(z); y.l:=z \oplus f(y.r),$$

где f и g — функции, заданные табл. 1. Подстановка P приведена в табл. 2.

Преобразование T — перестановка битов в 64-битовом блоке: бит из позиции 8i+j перемещается в позицию $8j+i, 0 \le i, j \le 7$:

$$T(z_{63..0})=z_{63}z_{55}\parallel\ldots\parallel z_7\parallel z_{62}\parallel z_{54}\parallel\ldots\parallel z_6\parallel\ldots\parallel z_{56}\parallel z_{48}\parallel\ldots\parallel z_0.$$
 Отметим, что преобразования P и T инволютивны, т.е. $P^{-1}=P$, $T^{-1}=T$.

Таблица 1

 Функции ј и д в CS-Cipner

 x
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 a
 b
 c
 d
 e
 f

 f(x)
 f
 d
 b
 b
 7
 5
 7
 7
 e
 d
 a
 b
 e
 d
 e
 f

 g(x)
 a
 6
 0
 2
 b
 e
 1
 8
 d
 4
 5
 3
 f
 c
 7
 9

¹ Авторы шифра: Jacques Stern и Serge Vaudenau (Франция)

Подстановка Р в CS-Cipher

		· · · · · · · · · · · · · · · · · · ·														
хy	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	29	0d	61	40	9c	eb	9e	8f	1f	85	5f	58	5b	01	39	86
1	97	2e	d7	d6	36	ae	17	16	21	b6	69	4e	a5	72	87	80
2	3c	18	e6	e7	fa	ad	b8	89	b7	00	f7	6f	73	84	11	63
3	3f	96	7f	6e	bf	14	9d	ac	a4	0e	7e	f6	20	4a	62	30
4	03	c5	4b	5a	46	a3	44	65	7d	4d	3d	42	79	49	1b	5c
5	f5	6c	b5	94	54	ff	56	57	0b	f4	43	0с	4f	70	6d	0a
6	e4	02	3e	2f	a2	47	e0	c1	d5	1a	95	a7	51	5e	33	2b
7	5d	d4	1d	2c	ee	75	ec	dd	7c	4c	a6	b4	78	48	3a	32
8	98	af	c0	e1	2d	09	0f	1e	b9	27	8a	e9	bd	e3	9f	07
9	b1	ea	92	93	53	6a	31	10	80	f2	d8	b9	04	36	06	8e
а	be	a9	64	45	38	1c	7a	6b	f3	a1	f0	cd	37	25	15	81
b	fb	90	eb	d9	7b	52	19	28	26	88	fc	d1	e2	8c	a0	34
С	82	67	da	Cb	c 7	41	e5	c4	с8	ef	db	с3	СС	ab	ce	ed
d	d0	bb	d3	d2	71	68	13	12	9a	b3	c2	ca	de	77	dc	df
е	66	83	bc	8d	60	с6	22	23	b2	8b	91	05	76	cf	74	с9
f	aa	f1	99	a8	59	50	3b	2a	fe	f9	24	b0	ba	fd	f8	55

Алгоритм зашифрования

Блок открытых данных m преобразуется в блок шифртекста m' по правилу:

$$m' = \sigma[k^8] \circ \rho[k^7] \circ \rho[k^6] \circ \dots \circ \rho[k^1] \circ \rho[k^0](m), = m'_{63} \dots m'_1 m'_0$$
 где $f \circ g(x) = f(g(x)).$

Функция $\sigma[k']$ определяется как $\sigma[k](x) \equiv x \oplus k'$.

Раундовая функция $\rho[k']$ является композицией функций σ , M_4 и R с использованием 64-битовых констант 2 :

$$c = 0xb7e151628aed2a6a, c' = 0xbf7158809cf4f3c7,$$

а именно:

$$\rho[k'] = \varepsilon \circ \sigma[k],$$

где

$$\varepsilon = R \circ M_4 \circ \sigma[c'] \circ R \circ M_4 \circ \sigma[c] \circ R \circ M_4.$$

Функция M_4 определяется как

$$M_4(z_{63..0}) = M(z_{63..48}) \parallel M(z_{47..32}) \parallel M(z_{31..16}) \parallel M(z_{15..0}),$$

где M — функция от двухбайтового аргумента x, возвращающая двухбайтовое значение y = y. $L \parallel y$. R:

$$y.L = P((rol_1(x.L)\&0x55) \oplus x.L \oplus x.R);$$

 $y.R = P(rol_11(x.L) \oplus x.R).$

Функция R — перестановка байтов в 64-битовом (8-байтовом) блоке:

$$R(z_{63..56} \parallel z_{55..48} \parallel z_{47..40} \parallel z_{39..32} \parallel z_{31..24} \parallel z_{23..16} \parallel z_{15..8} \parallel z_{7..0}) = z_{63..56} \parallel z_{47..40} \parallel z_{31..24} \parallel z_{15..8} \parallel z_{55..48} \parallel z_{39..32} \parallel z_{23..16} \parallel z_{7..0}.$$

Алгоритм расшифрования

Блок шифртекста m' преобразуется в блок открытых данных m по правилу:

$$m:=\rho^{-1}[k_0]\circ\rho^{-1}[k_1]\circ\dots\circ\rho^{-1}[k_7]\circ\sigma[k_8],$$

где

$$\rho^{-1}[k'] = M_4^{-1} \circ R^{-1} \circ \sigma[c] \circ M_4^{-1} \circ R^{-1} \circ \sigma[c'] \circ \ M_4^{-1} \circ R^{-1} \circ \sigma[k'],$$

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = 2.$$
 b7e251628aed2a6abf7158809cf4f3c762e7160f₁₆ ...,

 $^{^{2}}$ Константа $c \parallel c'$ образована первыми 32 цифрами дробной части числа

а R^{-1} и M_4^{-1} определяются как

 $R^{-1}(z_{63..56} \parallel z_{55..48} \parallel z_{47..40} \parallel z_{39..32} \parallel z_{31..24} \parallel z_{23..16} \parallel z_{15..8} \parallel z_{7..0}) = z_{63..56} \parallel z_{31..24} \parallel z_{55..48} \parallel z_{23..16} \parallel z_{47..40} \parallel z_{15..8} \parallel z_{39..32} \parallel z_{7..0};$ $M_{4}^{-1}(x.L \parallel x.R) = y.L \parallel y.R;$ $y.L = (rol_{1}(P(x.L) \oplus P(x.R)) \& 0xaa) \oplus P(x.L) \oplus P(x.R),$ $y.R = rol_{1}(y.L) \oplus P(x.R).$

Рис. 1. Процесс зашифрования в CS-Cipher