```
# IMPORTANT: RUN THIS CELL IN ORDER TO IMPORT YOUR KAGGLE DATA SOURCES,
# THEN FEEL FREE TO DELETE THIS CELL.
# NOTE: THIS NOTEBOOK ENVIRONMENT DIFFERS FROM KAGGLE'S PYTHON
# ENVIRONMENT SO THERE MAY BE MISSING LIBRARIES USED BY YOUR
# NOTEBOOK.
import kagglehub
khushikyad001_india_road_accident_dataset_predictive_analysis_path = kagglehub.dataset_download('k

print('Data source import complete.')

Downloading from <a href="https://www.kaggle.com/api/v1/datasets/download/khushikyad001/india-road-accidenty">https://www.kaggle.com/api/v1/datasets/download/khushikyad001/india-road-accidenty
100%| 68.2k/68.2k [00:00<00:00, 41.0MB/s]Extracting files...
Data source import complete.
```

Table of Content

- 1) Importing Libraries
- 2) Loading the Data
- 3) Cleaning the Data
- 4) Date related Analysis
- 5) Categorical Analysis
- 6) Numerical Analysis
- 7) Conclusion: Indian Road Accident Insights

Start coding or generate with AI.

Importing Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
data=pd.read_csv('/content/accident_prediction_india.csv')
data.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 3000 entries, 0 to 2999
    Data columns (total 22 columns):
     # Column
                                     Non-Null Count Dtype
    ---
       State Name
                                     3000 non-null object
                                     3000 non-null object
     1
         City Name
     2
        Year
                                     3000 non-null
                                                     int64
                                     3000 non-null
     3
         Month
                                                    object
                                     3000 non-null
     4
         Day of Week
                                                     object
     5
         Time of Day
                                    3000 non-null
                                                     object
                                3000 non-null
         Accident Severity
                                                     object
```

-	All objects of All by the Tall and the	2000	11		
7	Number of Vehicles Involved	3000	non-null	int64	
8	Vehicle Type Involved	3000	non-null	object	
9	Number of Casualties	3000	non-null	int64	
10	Number of Fatalities	3000	non-null	int64	
11	Weather Conditions	3000	non-null	object	
12	Road Type	3000	non-null	object	
13	Road Condition	3000	non-null	object	
14	Lighting Conditions	3000	non-null	object	
15	Traffic Control Presence	2284	non-null	object	
16	Speed Limit (km/h)	3000	non-null	int64	
17	Driver Age	3000	non-null	int64	
18	Driver Gender	3000	non-null	object	
19	Driver License Status	2025	non-null	object	
20	Alcohol Involvement	3000	non-null	object	
21	Accident Location Details	3000	non-null	object	
types: int64(6) object(16)					

dtypes: int64(6), object(16)
memory usage: 515.8+ KB

Cleaning the Data

Check for null values:

 $\#First\ it's\ better\ to\ take\ a\ copy\ of\ dataset\ and\ work\ on\ a\ copy\ df=data.copy()$

#Checking null values accross the dataset
df.isnull().sum().sort_values(ascending=False)

0

	·
Driver License Status	975
Traffic Control Presence	716
Year	0
Month	0
State Name	0
City Name	0
Time of Day	0
Day of Week	0
Accident Severity	0
Number of Vehicles Involved	0
Number of Fatalities	0
Weather Conditions	0
Vehicle Type Involved	0
Number of Casualties	0
Road Condition	0
Road Type	0
Speed Limit (km/h)	0
Lighting Conditions	0
Driver Age	0
Driver Gender	0
Alcohol Involvement	0
Accident Location Details	0

dtype: int64

df['Driver License Status'].value_counts()

count

Driver License Status

Valid	1057
Expired	968

dtype: int64

df['Traffic Control Presence'].value_counts()

count

Traffic Control Presence

Signs	812
Signals	736
Police Checkpost	736

dtype: int64

```
df['Driver License Status']=df['Driver License Status'].fillna('Unknown')
df['Traffic Control Presence']=df['Traffic Control Presence'].fillna('Unknown')
```

Check for duplicated rows:

· Fortunately, there are no duplicate rows.

Date related Analysis

```
df['Year']=pd.to_datetime(df['Year'],format='%Y')
yearly_accident=df.groupby('Year')['Accident Severity'].count()

#Let's plot yearly_accidents to hvae better intuition.

plt.plot(yearly_accident.index,yearly_accident.values,marker='o',linestyle='-',color='red')
plt.title('Accidents over the year (2018-2023)')
plt.xlabel('Year')
plt.ylabel('Total Accidents')
plt.grid(axis='y')
plt.show()
```


Categorical Analysis

```
\# Let's see the number of unique categories in each column:
```

cat_features=list(df.select_dtypes(include=object).columns)
for i in cat_features:
 print(f'{i}: {df[i].nunique()}')

State Name: 32
City Name: 28
Month: 12
Day of Week: 7
Accident Severity: 3
Vehicle Type Involved: 7
Weather Conditions: 5

Road Type: 4
Road Condition: 4
Lighting Conditions: 4
Traffic Control Presence: 4

Driver Gender: 2

Driver License Status: 3
Alcohol Involvement: 2
Accident Location Details: 4
Time_Category: 4

#Since Time of Day has a lot of unique values it's not recomended to plot it using countplots so I cat_columns=cat_features.remove('Time of Day')

```
for i in cat_features:
    plt.figure()
    sns.countplot(data=df,x=i,hue='Accident Severity')
    plt.xticks(rotation=90)
    plt.title(f'{i} vs Accident Severity')

plt.tight_layout()
plt.show()
```


City Name vs Accident Severity

Time of Day

Weather Conditions vs Accident Severity

Road Condition vs Accident Severity

Lighting Conditions vs Accident Severity

Traffic Control Presence vs Accident Severity

Driver Gender vs Accident Severity

Driver License Status vs Accident Severity

Accident Location Details us Assident Coverity

ACCIDENT LOCATION DETAILS AS ACCIDENT SEVENTLY

