Trees

Trees

Definition of Tree

- A tree is a finite set of one or more nodes such that:
- There is a specially designated node called the root.
- The remaining nodes are partitioned into n>=0 disjoint sets T₁, ..., T_n, where each of these sets is a tree.
- We call T₁, ..., T_n the subtrees of the root.

Level and Depth

Level

Node =13 Degree of a tree = 3 Height of a tree = 4

Terminology

- The degree of a node is the number of subtrees of the node
 - The degree of A is 3; the degree of C is 1.
- The node with degree 0 is a leaf or terminal node.
- A node that has subtrees is the *parent* of the roots of the subtrees.
- The roots of these subtrees are the *children* of the node.
- Children of the same parent are siblings.
- The ancestors of a node are all the nodes along the path from the root to the node.

Representation of Trees

- List Representation
 - (A(B(E(K,L),F),C(G),D(H(M),I,J)))
 - The root comes first, followed by a list of sub-trees

data link 1 link 2	•••	link n
--------------------	-----	--------

How many link fields are needed in such a representation?

Left Child - Right Sibling

Binary Trees

- A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called *the left subtree* and *the right subtree*.
- Any tree can be transformed into binary tree.
 - by left child-right sibling representation
- The left subtree and the right subtree are distinguished.

Left child-right child tree representation of a tree

Abstract Data Type Binary_Tree

structure *Binary_Tree*(abbreviated *BinTree*) is **objects:** a finite set of nodes either empty or consisting of a root node, left *Binary_Tree*, and right *Binary_Tree*.

functions:

for all bt, bt1, $bt2 \in BinTree$, $item \in element$ Bintree Create()::= creates an empty binary tree Boolean IsEmpty(bt)::= if (bt==empty binary

tree) return TRUE else return FALSE

BinTree MakeBT(bt1, item, bt2)::= return a binary tree whose left subtree is bt1, whose right subtree is bt2, and whose root node contains the data item Bintree Lchild(bt)::= if (IsEmpty(bt)) return error else return the left subtree of bt element Data(bt)::= if (IsEmpty(bt)) return error else return the data in the root node of bt Bintree Rchild(bt)::= if (IsEmpty(bt)) return error else return the right subtree of bt

Samples of Trees

Maximum Number of Nodes in BT

- The maximum number of nodes on level i of a binary tree is 2^{i-1} , $i \ge 1$.
- The maximum nubmer of nodes in a binary tree of depth k is 2^k-1 , k>=1.

Prove by induction.

$$\sum_{i=1}^{k} 2^{i-1} = 2^k - 1$$

Relations between Number of Leaf Nodes and Nodes of Degree 2

For any nonempty binary tree, T, if n_0 is the number of leaf nodes and n_2 the number of nodes of degree 2, then $n_0=n_2+1$

proof:

Let *n* and *B* denote the total number of nodes & branches in *T*.

Let n_0 , n_1 , n_2 represent the nodes with no children single child, and two children respectively.

$$n = n_0 + n_1 + n_2$$
, $B + 1 = n$, $B = n_1 + 2n_2 = > n_1 + 2n_2 + 1 = n_1 + 2n_2 + 1 = n_0 + n_1 + n_2 = > n_0 = n_2 + 1$

Full BT vs Complete BT

- A full binary tree of depth k is a binary tree of depth k having 2^k -1 nodes, k>=0.
- A binary tree with *n* nodes and depth *k* is complete *iff* its nodes correspond to the nodes numbered from 1 to *n* in the full binary tree of depth *k*.

Full binary tree of depth 4

Binary Tree Representations

- If a complete binary tree with n nodes (depth = $\log n + 1$) is represented sequentially, then for any node with index i, $1 \le i \le n$, we have:
 - parent(i) is at i/2 if i!=1. If i=1, i is at the root and has no parent.
 - $left_child(i)$ ia at 2i if $2i \le n$. If 2i > n, then i has no left child.
 - $right_child(i)$ ia at 2i+1 if $2i+1 \le n$. If 2i+1 > n, then i has no right child.

Linked Representation

```
typedef struct node *tree_pointer;
typedef struct node {
  int data;
  tree_pointer left_child, right_child;
};
```

left_child	data	right_child
------------	------	-------------

Binary Tree Traversals

- Let L, V, and R stand for moving left, visiting the node, and moving right.
- There are six possible combinations of traversal
 - LVR, LRV, VLR, VRL, RVL, RLV
- Adopt convention that we traverse left before right, only 3 traversals remain
 - LVR, LRV, VLR
 - inorder, postorder, preorder

Arithmetic Expression Using BT

inorder traversal A/B * C * D + Einfix expression preorder traversal + * * / A B C D E prefix expression postorder traversal AB/C*D*E+ postfix expression level order traversal + * E * D / C A B

Inorder Traversal (recursive version)

```
void inorder(tree pointer ptr)
/* inorder tree traversal */
                          A/B * C * D + E
    if (ptr) {
        inorder(ptr->left child);
        printf("%d", ptr->data);
        indorder(ptr->right child);
```

Preorder Traversal (recursive version)

```
void preorder(tree pointer ptr)
/* preorder tree traversal */
                         + * * / A B C D E
    if (ptr) {
        printf("%d", ptr->data);
        preorder(ptr->left child);
        predorder(ptr->right child);
```

Postorder Traversal (recursive version)

```
void postorder(tree pointer ptr)
/* postorder tree traversal */
                       AB/C*D*E+
    if (ptr) {
        postorder(ptr->left child);
        postdorder(ptr->right child);
        printf("%d", ptr->data);
```

Iterative Inorder Traversal

```
(using stack)
void iter inorder(tree pointer node)
  int top= -1; /* initialize stack */
  tree pointer stack[MAX STACK SIZE];
  for (;;) {
   for (; node; node=node->left child)
     add(&top, node);/* add to stack */
   node= delete(&top);
                /* delete from stack */
   if (!node) break; /* empty stack */
   printf("%D", node->data);
   node = node->right child;
```

Level Order Traversal

(using queue)

```
void level order(tree pointer ptr)
/* level order tree traversal */
  int front = rear = 0;
  tree pointer queue[MAX QUEUE SIZE];
  if (!ptr) return; /* empty queue */
  addq(front, &rear, ptr);
  for (;;) {
    ptr = deleteq(&front, rear);
```

```
if (ptr) {
  printf("%d", ptr->data);
  if (ptr->left child)
    addq(front, &rear,
                  ptr->left child);
  if (ptr->right child)
    addq(front, &rear,
                  ptr->right child);
else break;
                    + * E * D / C A B
```

Copying Binary Trees

```
tree poointer copy(tree pointer original)
tree pointer temp;
if (original) {
 temp=(tree pointer) malloc(sizeof(node));
if (IS FULL(temp)) {
   fprintf(stderr, "the memory is full\n");
   exit(1);
 temp->left child=copy(original->left child);
 temp->right child=copy(original->right child)
 temp->data=original->data;
 return temp;
                        postorder
return NULL;
```

Equality of Binary Trees

the same topology and data

```
int equal(tree pointer first, tree pointer second)
/* function returns FALSE if the binary trees first and
   second are not equal, otherwise it returns TRUE */
 return ((!first && !second) || (first && second &&
       (first->data == second->data) &&
      equal(first->left child, second->left child) &&
      equal(first->right child, second->right child)))
```

node structure

```
left_child data value right_child
```

```
typedef emun {not, and, or, true, false } logical;
typedef struct node *tree_pointer;
typedef struct node {
         tree_pointer list_child;
         logical data;
         short int value;
         tree_pointer right_child;
         };
```

Threaded Binary Trees

 Two many null pointers in current representation of binary trees

```
n: number of nodes
number of non-null links: n-1
total links: 2n
null links: 2n-(n-1)=n+1
```

Replace these null pointers with some useful "threads".

Threaded Binary Trees (Continued)

If ptr->left_child is null,
replace it with a pointer to the node that would be
visited before ptr in an inorder traversal

If ptr->right_child is null,
replace it with a pointer to the node that would be
visited after ptr in an inorder traversal

A Threaded Binary Tree

Data Structures for Threaded BT

```
left_thread left_child data right_child right_thread
  TRUE
                                  FALSE
                           FALSE: child
  TRUE: thread
typedef struct threaded tree
 *threaded pointer;
typedef struct threaded tree {
    short int left thread;
    threaded pointer left child;
    char data;
    threaded pointer right child;
    short int right thread; };
```

Memory Representation of A Threaded BT

Next Node in Threaded BT

```
threaded pointer insucc(threaded pointer
 tree)
  threaded pointer temp;
  temp = tree->right child;
  if (!tree->right thread)
    while (!temp->left thread)
      temp = temp->left child;
  return temp;
```

Inorder Traversal of Threaded BT

```
void tinorder(threaded pointer tree)
/* traverse the threaded binary tree
 inorder */
    threaded pointer temp = tree;
    for (;;) {
        temp = insucc(temp);
O(n)
      if (temp==tree) break;
        printf("%3c", temp->data);
```

Inserting Nodes into Threaded BTs

- Insert child as the right child of node parent
 - change parent->right thread to FALSE
 - set child->left_thread and child->right_thread
 to TRUE
 - set child->left child to point to parent
 - set child->right child to parent->right child
 - change parent->right child to point to child

Examples

Insert a node D as a right child of B.

Insertion of child as a right child of parent in a threaded binary tree

Right Insertion in Threaded BTs

```
void insert right(threaded pointer parent,
                              threaded pointer child)
    threaded pointer temp;
(1)child->right_child = parent->right_child;
child->right_thread = parent->right_thread;
child->left_child = parent; case (a) child->left_thread = TRUE;
parent->right_child = child;
parent->right_thread = FALSE;
  if (!child->right thread) { case (b)

(4) temp = insucc(child);
temp->left_child = child;
```

Heap

- A max tree is a tree in which the key value in each node is no smaller than the key values in its children. A max heap is a complete binary tree that is also a max tree.
- A *min tree* is a tree in which the key value in each node is no larger than the key values in its children. A *min heap* is a complete binary tree that is also a min tree.
- Operations on heaps
 - creation of an empty heap
 - insertion of a new element into the heap;
 - deletion of the largest element from the heap

Max heaps

Property:

The root of max heap (min heap) contains the largest (smallest).

Min heaps

Application: priority queue

- machine service
 - amount of time (min heap)
 - amount of payment (max heap)
- factory
 - time tag

Data Structures

- unordered linked list
- unordered array
- sorted linked list
- sorted array
- heap

Priority queue representations

Representation	Insertion	Deletion
Unordered array	$\Theta(1)$	$\Theta(n)$
Unordered linked list	$\Theta(1)$	$\Theta(n)$
Sorted array	O(n)	$\Theta(1)$
Sorted linked list	O(n)	$\Theta(1)$
Max heap	$O(\log_2 n)$	$O(\log_2 n)$

Example of Insertion to Max Heap

insert 5 into heap

insert 21 into heap

Insertion into a Max Heap

```
void insert max heap(element item, int *n)
  int i;
  if (HEAP FULL(*n)) {
    fprintf(stderr, "the heap is full.\n");
    exit(1);
  i = ++(*n);
  while ((i!=1)&&(item.key>heap[i/2].key)) {
    heap[i] = heap[i/2];
    i /= 2;
                      2^{k}-1=n ==> k= \log_{2}(n+1)
  heap[i] = item;
                     O(\log_2 n)
```

Example of Deletion from Max Heap

Deletion from a Max Heap

```
element delete max heap(int *n)
  int parent, child;
  element item, temp;
  if (HEAP EMPTY(*n)) {
    fprintf(stderr, "The heap is empty\n");
    exit(1);
  /* save value of the element with the
    highest key */
  item = heap[1];
  /* use last element in heap to adjust heap
  temp = heap[(*n)--];
  parent = 1;
  child = 2;
```

```
while (child <= *n) {
    /* find the larger child of the current
       parent */
    if ((child < *n) &&
        (heap[child].key<heap[child+1].key))</pre>
      child++;
    if (temp.key >= heap[child].key) break;
    /* move to the next lower level */
    heap[parent] = heap[child];
    child *= 2;
  heap[parent] = temp;
  return item;
```

Binary Search Tree

Heap

- a min (max) element is deleted. $O(log_2n)$
- deletion of an arbitrary element O(n)
- search for an arbitrary element O(n)

Binary search tree

- Every element has a unique key.
- The keys in a nonempty left subtree (right subtree) are smaller (larger) than the key in the root of subtree.
- The left and right subtrees are also binary search trees.

Examples of Binary Search Trees

Searching a Binary Search Tree

```
tree pointer search (tree pointer root,
                     int \overline{k}ey)
/* return a pointer to the node that
 contains key. If there is no such
 node, return NULL */
  if (!root) return NULL;
  if (key == root->data) return root;
  if (key < root->data)
      return search (root->left child,
                     key);
  return search(root->right child, key);
```

Insert Node in Binary Search Tree

Insert 80

Insert 35

Insertion into A Binary Search Tree

```
void insert node(tree pointer *node, int num)
{tree pointer ptr,
      temp = modified search(*node, num);
  if (temp || !(*node)) {
   ptr = (tree pointer) malloc(sizeof(node));
   if (IS FULL(ptr)) {
     fprintf(stderr, "The memory is full\n");
     exit(1);
   ptr->data = num;
   ptr->left child = ptr->right child = NULL;
   if (*node)
     if (num<temp->data) temp->left child=ptr;
        else temp->right child = ptr;
   else *node = ptr;
```

Deletion for A Binary Search Tree

Deletion for A Binary Search Tree

Before deleting 60

After deleting 60

Forest

 \blacksquare A forest is a set of $n \ge 0$ disjoint trees

Transform a forest into a binary tree

- T1, T2, ..., Tn: a forest of trees B(T1, T2, ..., Tn): a binary tree corresponding to this forest
- algorithm
 - (1) empty, if n = 0
 - (2) has root equal to root(T1) has left subtree equal to B(T11,T12,...,T1*m*) has right subtree equal to B(T2,T3,...,Tn)

Forest Traversals

Preorder

- If F is empty, then return
- Visit the root of the first tree of F
- Taverse the subtrees of the first tree in tree preorder
- Traverse the remaining trees of F in preorder

Inorder

- If F is empty, then return
- Traverse the subtrees of the first tree in tree inorder
- Visit the root of the first tree
- Traverse the remaining trees of F is indorer

Set Representation

 $S_1=\{0, 6, 7, 8\}, S_2=\{1, 4, 9\}, S_3=\{2, 3, 5\}$

- Two operations considered here
 - Disjoint set union $S_1 \cup S_2 = \{0,6,7,8,1,4,9\}$
 - Find(i): Find the set containing the element i. $3 \in \mathbb{S}_3, 8 \in \mathbb{S}_1$

Disjoint Set Union

Make one of trees a subtree of the other

Possible representation for S₁ union S₂

Data Representation of S₁S₂and S₃

Array Representation for Set

i	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
parent	-1	4	-1	2	-1	2	0	0	0	4

```
int find1(int i)
    for (; parent[i]>=0; i=parent[i]);
    return i;
void union1(int i, int j)
    parent[i]= j;
```

Applications

- Find equivalence class $i \equiv j$
- Find S_i and S_j such that $i \in S_i$ and $j \in S_j$ (two finds)
 - $-S_i = S_j$ do nothing
 - $-S_i \neq S_j$ union (S_i, S_j)
- example

$$0 \equiv 4, 3 \equiv 1, 6 \equiv 10, 8 \equiv 9, 7 \equiv 4, 6 \equiv 8,$$

 $3 \equiv 5, 2 \equiv 11, 11 \equiv 0$
 $\{0, 2, 4, 7, 11\}, \{1, 3, 5\}, \{6, 8, 9, 10\}$