Lecture 12: Pose-and-Point Estimation Problems AER1513: State Estimation

Timothy D. Barfoot

University of Toronto

Copyright © 2023

Outline

Lecture 12: Pose-and-Point Estimation Problems Motivation and Setup Bundle Adjustment Exploiting Sparsity

Motivation

- in this lecture, we will address one of the most fundamental problems in robotics, estimating the trajectory of a robot and the structure of the world around it (i.e., point landmarks) together
- in robotics this is called the simultaneous localization and mapping (SLAM) problem
- in computer vision an almost identical problem came to prominence through the application of aligning aerial photographs into a mosaic; the classic solution to this problem is called bundle adjustment (BA)
- we will look at BA through the lens of our SE(3) estimation techniques.

Setup

- the setup is very similar to the pose estimation setup from the last lecture
- the main difference is that the landmark positions are not known and must also be estimated from nonlinear observations

Bundle adjustment

- the state that we wish to estimate is

$$\mathbf{T}_k = \mathbf{T}_{v_k i}$$
 : pose of vehicle at time k

$$\mathbf{p}_j = egin{bmatrix} \mathbf{r}_i^{p_j i} \\ 1 \end{bmatrix}$$
 : position of landmark j

where $k = 1 \dots K$ and $j = 1 \dots M$

- we will use the shorthand,

$$\mathbf{x} = \{\mathbf{T}_1, \dots, \mathbf{T}_K, \mathbf{p}_1, \dots, \mathbf{p}_M\}$$
 (1)

as well as $\mathbf{x}_{jk} = \{\mathbf{T}_k, \mathbf{p}_j\}$ to indicate the subset of the state including the kth pose and jth landmark

– notably, we exclude \mathbf{T}_0 from the state to be estimated as the system is otherwise unobservable

Be glad you weren't a grad student back then

- this problem originated from stitching together aerial images
- the original solution was pretty slow

Measurement model

- BA does not use a motion model (no prior), so we set it up as a maximum likelihood problem
- the measurement, \mathbf{y}_{jk} , will correspond to some observation of point j from pose k (i.e., some function of $\mathbf{r}_{v_k}^{p_j v_k}$)
- the measurement model for this problem will be of the form

$$\mathbf{y}_{jk} = \mathbf{g}\left(\mathbf{x}_{jk}\right) + \mathbf{n}_{jk} \tag{2}$$

where $\mathbf{g}(\cdot)$ is the nonlinear model and $\mathbf{n}_{jk} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_{jk}\right)$ is additive Gaussian noise

we can use the shorthand

$$\mathbf{y} = \{\mathbf{y}_{10}, \dots \mathbf{y}_{M0}, \dots, \mathbf{y}_{1K}, \dots, \mathbf{y}_{MK}\}$$
(3)

to capture all the measurements that we have available

Two nonlinearities

- we can think of the overall observation model as the composition of two nonlinearities: one to transform the point into the vehicle frame and one turn that point into the actual sensor measurement through a camera (or other sensor) model
- letting

$$\mathbf{z}(\mathbf{x}_{jk}) = \mathbf{T}_k \mathbf{p}_j \tag{4}$$

we can write

$$\mathbf{g}\left(\mathbf{x}_{jk}\right) = \mathbf{s}\left(\mathbf{z}(\mathbf{x}_{jk})\right) \tag{5}$$

where $s(\cdot)$ is the nonlinear camera (or sensor) model

- in other words, we have

$$\mathbf{g} = \mathbf{s} \circ \mathbf{z} \tag{6}$$

in terms of the composition of functions

Perturbations

- we define the following perturbations to our state variables:

$$\mathbf{T}_{k} = \exp\left(\epsilon_{k}^{\wedge}\right) \mathbf{T}_{\mathrm{op},k} \approx \left(\mathbf{1} + \epsilon_{k}^{\wedge}\right) \mathbf{T}_{\mathrm{op},k}$$
 (7a $\mathbf{p}_{j} = \mathbf{p}_{\mathrm{op},j} + \mathbf{D} \zeta_{j}$

$$\mathbf{p}_j = \mathbf{p}_{\mathrm{op},j} + \mathbf{D}\,\boldsymbol{\zeta}_j \tag{7b}$$

where

$$\mathbf{D} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \tag{8}$$

is a dilation matrix so that our landmark perturbation, $oldsymbol{\zeta}_i$, is 3 imes 1

 the book works things out to second order but we'll stick to first order in the interest of simplicity

Shorthands

we will use the shorthands

$$\mathbf{x}_{\mathrm{op}} = \left\{ \mathbf{T}_{\mathrm{op},1}, \dots, \mathbf{T}_{\mathrm{op},K}, \mathbf{p}_{\mathrm{op},1}, \dots, \mathbf{p}_{\mathrm{op},M}
ight\}, \quad \delta \mathbf{x} = \begin{bmatrix} egin{align*} \epsilon_1 \\ dredsymbol{dredsymbol{arepsilon}_K} \\ \hline egin{align*} \zeta_1 \\ dredsymbol{arepsilon}_M \end{bmatrix} \end{bmatrix}$$

for the operating point and perturbation to the whole trajectory

we will also use

$$\mathbf{x}_{\mathrm{op},jk} = \left\{ \mathbf{T}_{\mathrm{op},k}, \mathbf{p}_{\mathrm{op},j} \right\}, \quad \delta \mathbf{x}_{jk} = \begin{bmatrix} \epsilon_k \\ \zeta_j \end{bmatrix}$$
 (10)

for the parts associated with kth pose and the jth landmark

First nonlinearity

 using the perturbation schemes above, we have for the linearization of the first nonlinearity in measurement model that

$$\mathbf{z}(\mathbf{x}_{jk}) = \mathbf{T}_{k}\mathbf{p}_{j}$$

$$\approx (\mathbf{1} + \boldsymbol{\epsilon}_{k}^{\wedge}) \mathbf{T}_{\text{op},k} (\mathbf{p}_{\text{op},j} + \mathbf{D} \boldsymbol{\zeta}_{j})$$

$$\approx \mathbf{T}_{\text{op},k}\mathbf{p}_{\text{op},j} + \boldsymbol{\epsilon}_{k}^{\wedge}\mathbf{T}_{\text{op},k}\mathbf{p}_{\text{op},j} + \mathbf{T}_{\text{op},k}\mathbf{D} \boldsymbol{\zeta}_{j}$$

$$= \mathbf{z}(\mathbf{x}_{\text{op},jk}) + \mathbf{Z}_{jk} \delta \mathbf{x}_{jk}$$
(11)

correct to first order in $\delta \mathbf{x}_{ik}$, where

$$\mathbf{z}(\mathbf{x}_{\mathrm{op},jk}) = \mathbf{T}_{\mathrm{op},k}\mathbf{p}_{\mathrm{op},j}$$
(12a)
$$\mathbf{Z}_{jk} = \left[(\mathbf{T}_{\mathrm{op},k}\mathbf{p}_{\mathrm{op},j})^{\odot} \quad \mathbf{T}_{\mathrm{op},k}\mathbf{D} \right]$$
(12b)
$$\delta \mathbf{x}_{jk} = \begin{bmatrix} \boldsymbol{\epsilon}_k \\ \boldsymbol{\zeta}_i \end{bmatrix}$$
(12c)

Second nonlinearity

 we insert the linearization of the first function into the second to work out the chain rule:

$$\mathbf{g}(\mathbf{x}_{jk}) = \mathbf{s}(\mathbf{z}(\mathbf{x}_{jk}))$$

$$\approx \mathbf{s}\left(\mathbf{z}(\mathbf{x}_{\text{op},jk}) + \mathbf{Z}_{jk} \, \delta \mathbf{x}_{jk}\right)$$

$$\approx \mathbf{s}(\mathbf{z}(\mathbf{x}_{\text{op},jk})) + \mathbf{S}_{jk} \mathbf{Z}_{jk} \, \delta \mathbf{x}_{jk}$$

$$\approx \mathbf{g}(\mathbf{x}_{\text{op},jk}) + \mathbf{G}_{jk} \, \delta \mathbf{x}_{jk}$$
(13)

correct to first order, where

$$\mathbf{g}(\mathbf{x}_{\mathrm{op},jk}) = \mathbf{s}(\mathbf{z}(\mathbf{x}_{\mathrm{op},jk})) \tag{14a}$$

$$\mathbf{G}_{jk} = \mathbf{S}_{jk} \mathbf{Z}_{jk} \tag{14b}$$

$$\mathbf{S}_{jk} = \frac{\partial \mathbf{s}}{\partial \mathbf{z}} \bigg|_{\mathbf{z}(\mathbf{x}_{\text{op},jk})}$$
(14c)

Error terms

 for each observation of a point from a pose, we define an error term as

$$\mathbf{e}_{y,jk}(\mathbf{x}) = \mathbf{y}_{jk} - \mathbf{g}\left(\mathbf{x}_{jk}\right) \tag{15}$$

where \mathbf{y}_{jk} is the measured quantity and \mathbf{g} is our observation model described above

- approximating the error function, we have

$$\mathbf{e}_{y,jk}(\mathbf{x}) \approx \underbrace{\mathbf{y}_{jk} - \mathbf{g}(\mathbf{x}_{\text{op},jk})}_{\mathbf{e}_{y,jk}(\mathbf{x}_{\text{op}})} - \mathbf{G}_{jk} \delta \mathbf{x}_{jk}$$
(16)

- we can now form an objective function

Objective function

 we seek to find the values of x to minimize the following objective function:

$$J(\mathbf{x}) = \frac{1}{2} \sum_{j,k} \mathbf{e}_{y,jk}(\mathbf{x})^T \mathbf{R}_{jk}^{-1} \mathbf{e}_{y,jk}(\mathbf{x})$$
(17)

where \mathbf{x} is the full state that we wish to estimate (all poses and landmarks) and \mathbf{R}_{jk} is the symmetric, positive-definite covariance matrix associated with the jkth measurement

 if a particular landmark is not actually observed from a particular pose, we can simply delete the appropriate term from the objective function

Gauss-Newton optimization

 inserting our linearized error function (to produce our shortcut to Gauss-Newton) we have

$$J(\mathbf{x}) \approx J(\mathbf{x}_{\text{op}}) - \mathbf{b}^T \delta \mathbf{x} + \frac{1}{2} \delta \mathbf{x}^T \mathbf{A} \delta \mathbf{x}$$
 (18)

correct to first order, where

$$\mathbf{b} = \sum_{j,k} \mathbf{P}_{jk}^T \mathbf{G}_{jk}^T \mathbf{R}_{jk}^{-1} \mathbf{e}_{y,jk} (\mathbf{x}_{op})$$
(19a)

$$\mathbf{A} = \sum_{j,k} \mathbf{P}_{jk}^T \mathbf{G}_{jk}^T \mathbf{R}_{jk}^{-1} \mathbf{G}_{jk} \mathbf{P}_{jk}$$
(19b)

$$\delta \mathbf{x}_{jk} = \mathbf{P}_{jk} \, \delta \mathbf{x} \tag{19c}$$

and where \mathbf{P}_{jk} is an appropriate projection matrix to pick off the jkth components of the overall perturbed state, $\delta \mathbf{x}$

Gauss-Newton optimization

– we now minimize $J(\mathbf{x})$ with respect to $\delta \mathbf{x}$ by taking the derivative:

$$\frac{\partial J(\mathbf{x})}{\partial \delta \mathbf{x}^T} = -\mathbf{b} + \mathbf{A} \, \delta \mathbf{x} \tag{20}$$

– setting this to zero, the optimal perturbation, δx^* , is the solution to the following linear system:

$$\mathbf{A}\,\delta\mathbf{x}^{\star} = \mathbf{b} \tag{21}$$

 we iterate between solving for the optimal perturbation and updating the nominal quantities using

$$\mathbf{T}_{\mathrm{op},k} \leftarrow \exp\left(\boldsymbol{\epsilon}_{k}^{\star^{\wedge}}\right) \mathbf{T}_{\mathrm{op},k}$$
 (22a)

$$\mathbf{p}_{\mathrm{op},j} \leftarrow \mathbf{p}_{\mathrm{op},j} + \mathbf{D} \, \boldsymbol{\zeta}_j^{\star}$$
 (22b)

which ensure that $\mathbf{T}_{op,k} \in SE(3)$ and $\mathbf{p}_{op,j}$ keeps its bottom (fourth) entry equal to 1

Sparsity

 at each iteration of Gauss-Newton, we are faced with solving a system of the following form:

$$\underbrace{\begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{12}^T & \mathbf{A}_{22} \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} \delta \mathbf{x}_1^{\star} \\ \delta \mathbf{x}_2^{\star} \end{bmatrix}}_{\delta \mathbf{x}^{\star}} = \underbrace{\begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix}}_{\mathbf{b}} \tag{23}$$

where the state, $\delta \mathbf{x}^{\star}$, has been partitioned into parts corresponding to (1) the pose perturbation, $\delta \mathbf{x}_{1}^{\star} = \boldsymbol{\epsilon}^{\star}$, and (2) the landmark perturbations, $\delta \mathbf{x}_{2}^{\star} = \boldsymbol{\zeta}^{\star}$

- it turns out that A has a very special sparsity pattern and is sometimes referred to as an arrowhead matrix
- this pattern is due to the presence of the projection matrices, \mathbf{P}_{jk} , in each term of \mathbf{A} ; they embody the fact that each measurement involves just one pose variable and one landmark

Arrowhead

Schur complement

- to exploit the arrowhead sparsity we can use the Schur complement
- we premultiply both sides by the invertible matrix

$$\begin{bmatrix} \mathbf{1} & -\mathbf{A}_{12}\mathbf{A}_{22}^{-1} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

so that our equation becomes

$$\begin{bmatrix} \mathbf{A}_{11} - \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{12}^T & \mathbf{0} \\ \mathbf{A}_{12}^T & \mathbf{A}_{22} \end{bmatrix} \begin{bmatrix} \delta \mathbf{x}_1^{\star} \\ \delta \mathbf{x}_2^{\star} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 - \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{b}_2 \\ \mathbf{b}_2 \end{bmatrix}$$

- we may then easily solve for $\delta {\bf x}_1^{\star}$ and since ${\bf A}_{22}$ is block-diagonal, ${\bf A}_{22}^{-1}$ is cheap to compute
- finally, $\delta {\bf x}_2^\star$ can also be efficiently computed through back-substitution, again owing to the sparsity of ${\bf A}_{22}$
- this procedure brings the complexity of each solve down from $O\left((K+M)^3\right)$ without sparsity to $O\left(K^3+K^2M\right)$ with sparsity

Cholesky decomposition

 alternatively, we can exploit the arrowhead via a sparse Cholesky decomposition:

$$\underbrace{\begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{12}^T & \mathbf{A}_{22} \end{bmatrix}}_{\mathbf{A}} = \underbrace{\begin{bmatrix} \mathbf{U}_{11} & \mathbf{U}_{12} \\ \mathbf{0} & \mathbf{U}_{22} \end{bmatrix}}_{\mathbf{U}} \underbrace{\begin{bmatrix} \mathbf{U}_{11}^T & \mathbf{0} \\ \mathbf{U}_{12}^T & \mathbf{U}_{22}^T \end{bmatrix}}_{\mathbf{U}^T} \tag{24}$$

where U is an upper-triangular matrix and

$$\mathbf{U}_{22}\mathbf{U}_{22}^T=\mathbf{A}_{22}$$
 : cheap to compute \mathbf{U}_{22} via Cholesky

due to
$$\mathbf{A}_{22}$$
 block-diagonal

$$\mathbf{U}_{12}\mathbf{U}_{22}^T = \mathbf{A}_{12}$$
 : cheap to solve for \mathbf{U}_{12}

due to
$$\mathbf{U}_{22}$$
 block-diagonal

$$\mathbf{U}_{11}\mathbf{U}_{11}^T+\mathbf{U}_{12}\mathbf{U}_{12}^T=\mathbf{A}_{11}$$
 : cheap to compute \mathbf{U}_{11} via Cholesky

due to small size of $\delta \mathbf{x}_1^{\star}$

so that we have a procedure to very efficiently compute \mathbf{U} , owing to the sparsity of \mathbf{A}_{22}

Cholesky decomposition

- after computing the Cholesky decomposition we can solve our linear system in two steps
- first, solve

$$Uc = b (25)$$

for a temporary variable, c

- this can be done very quickly since ${\bf U}$ is upper-triangular and so can be solved from the bottom to the top through substitution and exploiting the additional known sparsity of ${\bf U}$
- second, solve

$$\mathbf{U}^T \delta \mathbf{x}^* = \mathbf{c} \tag{26}$$

for $\delta \mathbf{x}^*$

– again, since \mathbf{U}^T is lower-triangular we can solve quickly from the top to the bottom through substitution and exploiting the sparsity

Comments and Summary

- setting BA up as a batch problem made the sparsity easy to visualize and exploit
- if we include a prior on motion in addition to our measurements, this is called simultaneous localization and mapping (SLAM) and then the ${\bf A}_{11}$ matrix becomes block-tridiagonal instead of block-diagonal
- we exploited the sparsity of ${\bf A}_{22}$ in our solution, but we could have instead chosen to exploit the sparsity of ${\bf A}_{11}$, even in the SLAM case
- we could turn this into a sliding-window filter by using mini batches that slide along with time
- our SE(3) approach made it easy to handle three-dimensional landmarks even with a nonlinear measurement model

