Was versteht man unter einer Zielfunktion?	Die Funtktion $f:G\to\mathbb{R},$ die minimiert wird.	
aufgabenstellung KOMOT::Optimierungsprobleme 926a7d3e-7e31-45e9-bf49-bd34967981a1	aufgabenstellung KOMOT::Optimierungsprobleme 926a7d3e-7e31-45e9-bf49-bd34967981a1	
Was ist der zulässiger Bereich G ?	Definitions bereich der Zielfunktion. $G\subseteq\mathbb{R}^n$.	
aufgabenstellung KOMOT::Optimierungsprobleme 926a7d3e-7e31-45e9-bf49-bd34967981a1	aufgabenstellung KOMOT::Optimierungsprobleme 926a7d3e-7e31-45e9-bf49-bd34967981a1	
Was verstehen wir unter einer (globalen) Lösung einer OA Aufgabe.	Ein $x^* \in G$ das die Zielfunktion minimiert.	
aufgabenstellung KOMOT::Optimierungsprobleme 926a7d3e-7e31-45e9-bf49-bd34967981a1	aufgabenstellung KOMOT::Optimierungsprobleme 926a7d3e-7e31-45e9-bf49-bd34967981a1	
Was ist eine $lokale\ L\ddot{o}sung\ x^*$ einer OA Aufgabe?	$f(x^*) \leq f(x) \forall x \in G \cap U(x^*),$ und es existiert so eine Umgebung von x^* .	
aufgabenstellung KOMOT::Optimierungsprobleme 926a7d3e-7e31-45e9-bf49-bd34967981a1	aufgabenstellung KOMOT::Optimierungsprobleme 926a7d3e-7e31-45e9-bf49-bd34967981a1	

Was ist eine isolierte Lösung?	Es existiert eine Umgebung $U(x*)$, so dass $f(x^*) < f(x)$. Bzw. es gibt keine witeren lokalen Loßungen in der Umgebung.
aufgabenstellung KOMOT::Optimierungsprobleme 926a7d3e-7e31-45e9-bf49-bd34967981a1	aufgabenstellung KOMOT::Optimierungsprobleme 926a7d3e-7e31-45e9-bf49-bd3496798ia1
Wie heißt $f_{\min}\coloneqq f(x^*)$?	Optimalwert oder Minimalwert
aufgabenstellung KOMOT::Optimierungsprobleme 926a7d3e-7e31-45e9-bf49-bd34967981a1	aufgabenstellung KOMOT::Optimierungsprobleme 926a7d3e-7e31-45e9-bf49-bd34967981a1
Eine Menge $G \subseteq \mathbb{R}^n$ heißt $konvex$, wenn	$\forall_{x,y\in G}$ die Verebindungstrecke zwischen den Punkten auch in G liegt. Formel: $\lambda x + (1-\lambda)y \in G, \forall (x,y,\lambda) \in (G\times G\times (0,1))$
konvexitaet KOMOT::Optimierungsprobleme b453bc66-dbc9-4445-898e-d69f7898f0dd	konvexitaet KOMOT::Optimierungsprobleme b453bc66-dbc9-4445-898e-d69f7898f0dd
Sei G konvex. Eine Funktion $f:G\to\mathbb{R}$ heißt konvex auf G , wenn	$\forall (x, y, \lambda) \in (G \times G \times (0, 1)):$ $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$
konvexitaet KOMOT::Optimierungsprobleme b453bc66-dbc9-4445-898e-d69f7898f0dd	konvexitaet KOMOT::Optimierungsprobleme b453bc66-dbc9-4445-898e-d69f7898f0dd

Wann ist eine Funktion $streng\ konve$ Menge G ?	ex auf einer kompakten	Wie bei normalen konvexität, abe	er mit < statt ≤.
$konvexita \verb et KOMOT:: Optimierungsprobleme$	b453bc66-dbc9-4445-898e-d69f7898f0dd	${\tt konvexitaet~KOMOT::} Optimierung sprobleme$	b453bc66-dbc9-4445-898e-d69f7898f0dd
Sei G konvex. Eine Funktion $f:G$ konvex auf G , wenn	$ ightarrow \mathbb{R}$ heißt $gleichmäeta ig$	$\exists \gamma > 0$, so dass $\forall (x, y, \lambda) \in (G \times G)$ $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)y$	
${\tt konvexitaet\ KOMOT::Optimierungsprobleme}$	b453bc66-dbc9-4445-898e-d69f7898f0dd	konvexitaet KOMOT::Optimierungsprobleme	b453bc66-dbc9-4445-898e-d69f7898f0dd
B offen G konvex und $G \subseteq B \subseteq \mathbb{R}^n$ $konvex$ g.d.w	, $f:B \to \mathbb{R}$ diff'bar. f	$\forall_{x,y \in G}:$ $f(y) - f(x) \ge \nabla f(x)$	$(x)^{T}(y-x).$
KOMOT::Optimierungsprobleme	4632476d-40e2-47b5-bbca-35f7cf3d5487	KOMOT::Optimierungsprobleme	4632476d-40e2-47b5-bbca-35f7cf3d5487
B offen G konvex und $G \subseteq B \subseteq \mathbb{R}^n$ $streng\ konvex\ \mathrm{g.d.w.}\$		$\forall_{x,y \in G}, x \neq y:$ $f(y) - f(x) > \nabla f(x)$	
KOMOT::Optimierungsprobleme	4632476d-40e2-47b5-bbca-35f7cf3d5487	KOMOT::Optimierungsprobleme	4632476d-40e2-47b5-bbca-35f7cf3d5487

B offen G konvex und $G\subseteq B\subseteq \mathbb{R}^n, f:B\to \mathbb{R}$ diff'bar. f gleichmäßig konvex g.d.w	$\exists \gamma > 0, \text{ so dass } \forall_{x,y \in G}:$ $f(y) - f(x) \ge \nabla f(x)^{T} (y - x) + \gamma x - y ^2.$
KOMOT::Optimierungsprobleme 4632476d-40e2-47b5-bbca-35f7cf3d5487	KOMOT::Optimierungsprobleme 4632476d-40e2-47b5-bbca-35f7cf3d5487
Wann ist eine quadratische Matrix $M \in \mathbb{R}^{n \times n} positiv semi-definit?$	wenn $s^{T} M s \geq 0 \forall s \in \mathbb{R}^n$. (\Leftrightarrow : Alle Eigenwerte ≥ 0 .)
definitheit KOMOT::Optimierungsprobleme 40b22ce9-aa36-4767-9356-920e9b42b0fb	definitheit KOMOT::Optimierungsprobleme 40b22ce9-aa36-4767-9356-920e9b42b0fb
Wann ist eine quadratische Matrix $M \in \mathbb{R}^{n \times n} positiv definit?$	wenn $s^{T}Ms > 0$, $\forall s \in \mathbb{R}^n / \{0\}$. (\Leftrightarrow : Alle Eigenwerte > 0 .)
definitheit KOMOT::Optimierungsprobleme 40b22ce9-aa36-4767-9356-920e9b42b0fb	definitheit KOMOT::Optimierungsprobleme 40b22ce9-aa36-4767-9356-920e9b42b0fb
$G\subseteq\mathbb{R}^n$ offen und konvex, $f:G\to\mathbb{R}$ zweimal stetig diff'bar. Dann f is $konvex$ auf G , genau dann wenn	$\forall x \in G : \nabla^2 f(x)$ positiv semidefinit.
KOMOT::Optimierungeprobleme 00a8ae21-6359-426c-8779-150f4a27353a	KDMDT::Optimierungsprobleme 00a8ae21-6359-426c-8779-150f4a27353a

$G\subseteq\mathbb{R}^n$ offen und konvex, $f:G\to\mathbb{R}$ zweimal stetig diff'bar. Dann f is $streng$ $konvex$ auf G , genau dann wenn	$\forall x \in G : \nabla^2 f(x)$ positiv definit.
KOMOT::Optimierungsprobleme 00a8ae21-6359-426c-8779-150f4a27353a	KOMOT::Optimierungsprobleme 00a8ae21-6359-426c-8779-150f4a27353a
$G\subseteq\mathbb{R}^n$ offen und konvex, $f:G\to\mathbb{R}$ zweimal stetig diff'bar. Dann f is gleichmäßig konvex auf G , genau dann wenn	$\exists \gamma > 0, \text{ so dass } \forall s, x \in G:$ $s^{T} \nabla^2 f(x) s \ge \gamma \ s\ ^2$
KOMOT::Optimierungsprobleme 00a8ae21-6359-426c-8779-150f4a27353a	KOMOT::Optimierungsprobleme 00a8ae21-6359-426c-8779-150f4a27353a
Die Zielfunktion sei konvex, was gibt uns das (bezogen auf Lösugnen)?	Jede lokale Lösung ist auch eine globale Lösung
KOMOT::Optimierungsprobleme 3549ab37-ceda-4214-a3af-35470bbd7690	KOMOT::Optimierungsprobleme 3549ab37-ceda-4214-a3af-35470bbd7690
Die Zielfunktion sei streng konvex, was gibt uns das (bezogen auf Lösugnen)?	Es gibt höchstens eine globale Lösung.
KOMOT::Optimierungsprobleme 3549ab37-ceda-4214-a3af-35470bbd7690	KOMOT::Optimierungsprobleme 3549ab37-ceda-4214-a3af-35470bbd7690

Die Zielfunktion sei gleichmäßig konvex, was gibt uns das (bezogen auf Lösugnen)?	Falls G nicht nur konvex aber auch abgeschlossen und nichtleer, dann besitzt die OA $genau\ eine$ Lösung.
KOMOT::Optimierungsprobleme 3549ab37-ceda-4214-a3af-35470bbd7690	KOMOT::Optimierungsprobleme 3549ab37-ceda-4214-a3af-35470bbd7690
Was ist die Definition der quasikonvexität?	$G\subseteq \mathbb{R}^n$ konvex. $f:G\to \mathbb{R}$ heißt $quasikonvex$ auf G , wenn $f(\lambda x+(1-\lambda)y)\leq \max\left\{f(x),f(y)\right\}$
KOMOT::Optimierungsprobleme 4d62a7fe-78a0-4188-be46-aea0d45ea53c	KOMOT::Optimierungsprobleme 4d62a7fe-78a0-4188-be46-aea0d45ea53c
Was bedeutet, dass eine Funktion pseudokonvex ist?	Sei G konvex, B offen mit $G\subseteq B\subseteq \mathbb{R}^n$. Sei $f:B\to \mathbb{R}$ diff'bar. f ist pseudokonvex auf G , wenn $\forall x,y\in G$: $(y-x)^T\nabla f(x)\geq 0\Rightarrow f(y)\geq f(x).$
KOMOT::Optimierungsprobleme 4d62a7fe-78a0-4188-be46-aea0d45ea53c	KOMOT::Optimierungsprobleme 4d62a7fe-78a0-4188-be46-aea0d45ea53c
Was ist stärker, pseudokonvexität oder quasikonvexität?	pseudokonvexität
KOMOT::Optimierungsprobleme 4d62a7fe-78a0-4188-be46-aea0d45ea53c	KOMOT::Optimierungsprobleme 4d62a7fe-78a0-4188-be46-aea0d45ea53c

Definiere den Kegel der zulässigen Richtungen in $x \in G$.	$Z(x)\coloneqq \mathrm{cone}\left\{d\in\mathbb{R}^n\mid x+\alpha d\in G,\ \forall\alpha\in[0,1]\right\}$, wobei $\mathrm{cone}(S)\coloneqq\left\{\lambda s\mid s\in S,\ \lambda\in[0,\infty)\right\}.$
KOMOT::Optimalitaetsbedinugngen d402bf82-614a-4943-9ae2-d633802088eb	KOMOT::Optimalitaetsbedinugngen d402bf82-614a-4943-9ae2-d633802088eb
Sei G konvex, die Zielfunktion f [(1)], x^* [(2)], und es gilt [(3)], dann ist x^* eine globale Lösung der OA.	1. pseudokonvex 2. eine lokale Lösung 3. $\nabla f(x^*)^T(x-x^*) \geq 0, \ \forall x \in G$
KOMOT::Optimalitaetsbedinugngen d402bf82-614a-4943-9ae2-d633802088eb	KOMOT::Optimalitaetsbedinugngen d402bf82-614a-4943-9ae2-d633802088eb
Definiere den Tangentialkegel	$T(x) := \left\{ d = \lim_{v \to \infty} \frac{x^v - x}{t_v} \mid \{x^v\} \subset G, \{t_v\} \subset (0, \infty), \right.$ $\lim_{v \to \infty} x^v = x, \lim_{v \to \infty} t_v = 0 \right\}$
tangentialkegel KOMOT::Optimalitaetsbedinugngen 5a2815a9-22bb-4242-a5fc-bc76956aba84	tangentialkegel KOMOT::Optimalitaetsbedinugngen 5a2815a9-22bb-4242-a5fc-bc76956aba84
Wann ist $T(x)$ Tangentialkegel gleich \mathbb{R}^n ?	Falls x im inneren von G ist.
tangentialkegel KOMOT::Optimalitaetsbedinugngen 5a2815a9-22bb-4242-a5fc-bc76956aba84	tangentialkegel KOMOT::Optimalitaetsbedinugngen 5a2815a9-22bb-4242-a5fc-bc76956aba84

Definiere den <i>Linearisierungskegel</i> .	$L(x) := \left\{ d \mid \nabla g_i(x)^T d \le 0 \text{ für } i \in I_0(x), \nabla h(x)^T d = 0 \right\}$ mit $I_0(x) := \left\{ i \in I \mid g <_i (x) = 0 \right\}.$
linearisierungskegel KOMOT::Optimalitaetsbedinugngen 32005844-5dd8-4870-957c-75e86e72ab82	linearisierungskegel KOMOT::Optimalitaetsbedinugngen 32005844-5dd8-4870-957c-75e86e72ab82
Wie heißt I_0 aus der Definition des $Linearisierungskegels?$	Indexmenge der in x aktiven (Ungleichungs)restriktionen
linearisierungskegel KOMOT::Optimalitaetsbedinugngen 32005844-5dd8-4870-957c-75e86e72ab82	linearisierungskegel KOMOT::Optimalitaetsbedinugngen 32005844-5dd8-4870-957c-75e86e72ab82
Wie nennt man die Bedingung, dass $T(x) = L(x)$?	Abadie Constraint Qualification ($m{ACG}$)
KOMOT::Optimalitaetsbedinugngen 92a7c841-e7f9-4094-b889-3b7adceb6a0f	KOMOT::Optimalitaetsbedinugngen 92a7c841-e7f9-4094-b889-3b7adceb6a0f
Wie nennt man die Bedingung, dass conv $(T(x)) = L(x)$?	Guignard Constraint Qualification ($m{GCQ}$)
KOMOT::Optimalitaetsbedinugngen 92a7c841-e7f9-4094-b889-3b7adceb6a0f	KOMOT::Optimalitaetsbedinugngen 92a7c841-e7f9-4094-b889-3b7adceb6a0f

Wann ist ACG erfüllt?		Falls $T(x) = L(x)$	
KOMOT::Optimalitaetsbedinugngen	92a7c841-e7f9-4094-b889-3b7adceb6a0f	${\tt KOMOT::Optimalitaets bedinug ngen}$	92a7c841-e7f9-4094-b889-3b7adceb6a0f
Wann ist GCQ erfüllt?		Falls $L(x)$ gleich der abgeschlosser	ner konvexen Hülle
KOMOT::Optimalitaetsbedinugngen	92a7c841-e7f9-4094-b889-3b7adceb6a0f	${\tt KOMOT::Optimalitaets bedinug} {\tt ngen}$	92a7c841-e7f9-4094-b889-3b7adceb6a0f
Wie heißt eine Bedingung die ACQ impliziert?		Regularitätsbedingung	
KOMOT::Optimalitaetsbedinugngen	10ae50eb-f330-4302-acf3-37722008f125	KOMOT::Optimalitaetsbedinugngen	10ae50eb-f330-4302-acf3-37722008f125
Nenne fünf Regularitätsbedingungen	ı.	EBCQ Error Bound Constraint (
		MFCQ Mangasarian-Fromori Co LICQ Linear Independence Cons Slater Bedinugng	
		Affinität $g_i, i \in I_0(x)$ und h sind	affin.
${\tt KOMOT::Optimalitaets beding} \\ \textbf{gen}$	10ae50eb-f330-4302-acf3-37722008f125	$ exttt{KOMOT}:: exttt{Optimalitaets} exttt{bedinugngen}$	10ae50eb-f330-4302-acf3-37722008f125

Wann gilt $EBCQ$?		$\exists \delta > 0, C > 0$, sodass $\forall z \in B$ $\mathrm{dist}[z, G] \leq C \bigg(\bigg\ \mathrm{max} \bigg)$	
KOMOT::Optimalitaetsbedinugngen	10ae50eb-f330-4302-acf3-37722008f125	${\tt KOMOT::Optimalitaets bedinugngen}$	10ae50eb-f330-4302-acf3-37722008f125
Wann gilt $MFCQ$?		Die Vektoren $\nabla h_1(x), \dots, \nabla h_n(x)$ und es gibt ein $s \in \mathbb{R}^n$, so das $\nabla g_i(x)^T s > 0$ und $\nabla h(x)^T s > 0$	is $\forall i \in I_0(x)$
KOMOT::Optimalitaetsbedinugngen	10ae50eb-f330-4302-acf3-37722008f125	KOMOT::Optimalitaetsbedinugngen	10ae50eb-f330-4302-acf3-37722008f125
Wann gilt $LICQ$?		Die Vektoren in der Familie $\left\{ abla g_i(x) \ I \ i \in I_0(x) \right\}$ sind linear unabhängig.	$\{ igcup \{ abla h_j(x) \mid j \in J \}$
KOMOT::Optimalitaetsbedinugngen	10ae50eb-f330-4302-acf3-37722008f125	KOMOT::Optimalitaetsbedinugngen	10ae50eb-f330-4302-acf3-37722008f125
Wann gilt die Slater Bedingung?		Die Funktionen g_1, \ldots, g_m sin dem $\exists \bar{x} \in \mathbb{R}^n$, so dass $g_i(\bar{x}) <$	ad konvex und $J = \emptyset$. Außer- $0 \ \forall i \in I$.

Wie Lautet die KKT Bedingung (kurz)?		$\nabla f(x^*)^T d \ge 0 \forall d \in L(x^*)$	
VVT VONOT u Ostival itaatabadi nyawaan	a40dda75-1e4f-4436-aa19-04733c697394	VVT VOMOT, u Ostisvolita otokodinu vogo	a40dda75-1e4f-4d36-aa19-04733c69739d
KKT KOMOT::Optimalitaetsbedinugngen	a40dda/b-1e4I-4d36-aa19-04/33c69/39d	KKT KOMOT::Optimalitaetsbedinugngen	a40dda/b-1e4f-4d36-aa19-04/33c69/39d
Was besagt das Lemma von Farka	s?	Seien $A \in \mathbb{R}^{n \times m}$, $B \in \mathbb{R}^{n \times p}$, folgenden zwei Systemen	$c \in \mathbb{R}^n$. Dann ist von den
		$A^{T}z \le 0, \ B^{T}z = 0$ $Au + Bv = 0$	
		stets genau ein lösbar.	
KKT KOMOT::Optimalitaetsbedinugngen	a40dda75-1e4f-4d36-aa19-04733c69739d	KKT KOMOT::Optimalitaetsbedinugngen	a40dda75-1e4f-4d36-aa19-04733c69739d
Wann gielten die KKK-Bedingungen ?		GCQ muss erfüllt werden. Man sucht nach einer Regularitätsbedingung.	
KKT KOMOT::Optimalitaetsbedinugngen	a40dda75-1e4f-4d36-aa19-04733c69739d	KKT KOMOT::Optimalitaetsbedinugngen	a40dda75-1e4f-4d36-aa19-04733c69739d
Schreibe das KKT System auf			
		$\nabla_x \mathcal{L}(x, u,$	v) = 0
		$h(x) = g(x) \le$	= 0 < 0
		$u \ge 0$	0
		$u^{T}g(x)$	=0
		und $u \in \mathbb{R}^m, v \in \mathbb{R}^p$	
KKT KOMOT::Optimalitaetsbedinugngen	a40dda75-1e4f-4d36-aa19-04733c69739d	KKT KOMOT::Optimalitaetsbedinugngen	a40dda75-1e4f-4d36-aa19-04733c69739d

Wie ist die Lagrangefunktion definiert?	$\mathcal{L}(x, u, v) = f(x) + u^{T} g(x) + v^{T} h(x)$ $\forall (x, u, v) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p$
KKT KOMOT::Optimalitaetsbedinugngen a40dda75-1e4f-4d36-aa19-04733c69739d	KKT KOMOT::Optimalitaetsbedinugngen a40dda75-1e4f-4d36-aa19-04733c69739d
Sei (x^*, u^*, v^*) ein KKT–Punkt, wann ist x^* eine globale Lösung?	Falls f pseudokonvex, alle g_i quasikonvex und h_j affin linear.
KKT KDMOT::Optimalitaetsbedinugngen a40dda75-1e4f-4d36-aa19-04733c69739d	KKT KDMOT::Optimalitaetsbedinugngen a40dda75-1e4f-4d36-aa19-04733c69739d
Definiere einen $Sattelpunkt$ einer Lagrangefuntion.	Ein Punkt $(x^*, u^*, v^*) \in \mathbb{R}^n \times \mathbb{R}^m_+ \times \mathbb{R}^p$ heißt Sattelpunkt der Langrange Funtion \mathcal{L} , wenn $\mathcal{L}(x^*, u, v) \leq \mathcal{L}(x^*, u^*, v^*) \leq \mathcal{L}(x, u^*, v^*)$ $\forall (x, u, v) \in \mathbb{R}^n \times \mathbb{R}^m_+ \times \mathbb{R}^p$.
Sattelpunkte KOMOT::Optimalitaetsbedinugngen 4648e945-f687-450e-b55e-e255cc8165db	Sattelpunkte KOMOT::Optimalitaetsbedinugngen 4648e945-f687-450e-b55e-e255cc8165db
Sei (x^*, u^*, v^*) ein Sattelpunkt von \mathcal{L} , dann	$\dots x^*$ eine globale Lösung der OA.

Was ist die erweiterte Slater-Bedingung?	$f: \mathbb{R}^n \to \mathbb{R}, \ g_1, \dots, g_m: \mathbb{R}^n \to \mathbb{R}$ diff'bar und konvex. $h: \mathbb{R}^n \to \mathbb{R}^p \text{ affin linear.}$
Erweiterte Slater-Bedingung KOMOT::Optimalitaetsbedinugngen dd8da85e-d83d-44a0-bb52-e3ea2786ad10	Erweiterte Slater-Bedingung KOMOT::Optimalitaetsbedinugngen dd8da85e~d83d~44a0~bb52~e3ea2786ad10
Was gibt die erweiterte Slater-Bedingung ?	Es gelte die erweiterte Slater-Bedingung. Wenn $x*$ eine Lösung der OA, dann gibt es ein Sattelpunkt mit $x=x^*$.
Erweiterte Slater-Bedingung KOMOT::Optimalitaetsbedinugngen dd8da85e-d83d-44a0-bb52-e3ea2786ad10	Erweiterte Slater-Bedingung KOMOT::Optimalitaetsbedinugngen dd8da85e-d83d-44a0-bb52-e3ea2786ad10
Was ist die <i>primale</i> Optimierungsaufgabe?	$P(x) \to \min_{x}$ $P: \mathbb{R}^{n} \to \mathbb{R} \cup \{+\infty\} P(x) \coloneqq \sup_{u \in \mathbb{R}^{m}_{+}, v \in \mathbb{R}^{p}} \mathcal{L}(x, u, v)$
Dualtitaet KOMOT::Optimalitaetsbedinugngen ef2d2fd9-3a6d-4a9d-9645-646186e59528	Dualtitaet KOMOT::Optimalitaetsbedinugngen ef2d2fd9-3a6d-4a9d-9645-646186e59528
Was ist die duale Optimierungsaufgabe?	$D(x) \to \max_{u,v}, \text{ bei } u \ge 0$ $D: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R} \cup \{+\infty\}, D(u,v) \coloneqq \inf_{x \in \mathbb{R}^n} \mathcal{L}(x,u,v)$
Dualtitaet KOMOT::Optimalitaetsbedinugngen ef2d2fd9-3a6d-4a9d-9645-646186e59528	Dualtitaet KOMOT::Optimalitaetsbedinugngen ef2d2fd9-3a6d-4a9d-9645-646186e59528

Wie lautet der Schwacher Dualitätssatz?	$\forall (x, u, v) \in \mathbb{R}^n \times \mathbb{R}^m_+ \times \mathbb{R}^p : D(u, v) \leq P(x)$ Ein (x^*, u^*, v^*) ein SP von $\mathcal{L} \Leftrightarrow P(x^*) = D(u^*, v^*)$
Dualtitaet KOMOT::Optimalitaetsbedinugngen ef2d2fd9-3a6d-4a9d-9645-646186e59528	Dualtitaet KOMOT::Optimalitaetsbedinugngen ef2d2fd9-3a6d-4a9d-9645-646186e59528
Wann sind die <i>primale</i> und die <i>duale</i> Aufgaben beide Lösbar? Was sind dann die Lösungen?	Falls es ein Sattelpunkt (x^*, u^*, v^*) gibt. Die Lösungen sind dann $P(x^*)$ und $D(u^*, v^*)$.
Dualtitaet KOMOT::Optimalitaetsbedinugngen ef2d2fd9-3a6d-4a9d-9645-646186e59528	Dualtitaet KOMOT::Optimalitaetsbedinugngen ef2d2fd9-3a6d-4a9d-9645-646186e59528
Wie heißt $P(x^*) - D(u^*, v^*)$?	Dualitätslücke
Dualtitaet KOMOT::Optimalitaetsbedinugngen ef2d2fd9-3a6d-4a9d-9645-646186e59528	Dualtitaet KOMOT::Optimalitaetsbedinugngen ef2d2fd9-3a6d-4a9d-9645-646186e59528
Sei (x^*, u^*, v^*) ein KKT-Punkt. Dann gilt es $d^T \nabla f(x^*) \ge 0$. Was sagt uns es, wenn $>$ oder $=$ gelten?	Bei ">" ist d eine Anstiegsrichtung von f . "="gibt uns keine Aussage darüber.

Wie lautet die notwendige optimalitäts Bedingung 2.Ord- nung für eine Lokale Lösung? Was wird vorausgesetzt?	Wenn $x*$ eine lokale Lösung und \mathbf{LICQ} gilt, dann: $d^T \nabla_{xx} \mathcal{L}(x^*,u^*,v^*) d \geq 0 \forall d \in L^+(x^*,u^*)$
2.Ordnung KOMOT::Optimalitaetsbedinugngen 46fble9f-3833-4347-b4f8-f6d6f7e27d31	2.Ordnung KOMOT::Optimalitaetsbedinugngen 46fble9f-3833-4347-b4f8-f6d6f7e27d31
Wie ist $L^+(x, u)$ definiert?	$L^+(x,u) := \left\{ d \in L(x) \mid \nabla g_i(x)^T d = 0 \text{ falls } u_i > 0 \right\} \subseteq L(x)$
2.Ordnung KOMOT::Optimalitaetsbedinugngen 46fble9f-3833-4347-b4f8-f6d6f7e27d31	2.Ordnung KOMOT::Optimalitaetsbedinugngen 46fble9f-3833-4347-b4f8-f6d6f7e27d31
Wann gilt $d \in L(x^*) \wedge d^{T} \nabla f(x^*) = 0 \Rightarrow d \in L^{(x^*, u^*)}$?	Falls \mathbf{MFCQ} in x^* erfüllt ist.
Wie lautet die hinreichende Optimalitäts Bedingung 2. Ordnung? Was wird genau vorausgesetzt?	2.0rdnung KOMOT::0ptimalitaetsbedinugngen 46fble9f-3833-4347-b4f8-f6d6f7e27d31 $f,g,h \text{ stätig zweimal diff'bar. } (x^*,u^*,v^*) \text{ ein KKT-Punkt. } x^* \text{ ist eine } strenge \text{ lokale Lösung der OA, falls:} \\ d^T \nabla_{xx} \mathcal{L}(x^*,u^*,v^*)d > 0 \forall d \in L^+(x^*,u^*)/\{0\}$

Wie definiert man eine Abstiegsrichtung?	d ist eine Abstiegsrichtung eine Funktion f an der Stelle $x,$ falls $\exists \bar{\alpha}>0,$ so dass $f(x+\alpha d)< f(x) \forall \alpha\in(0,\bar{\alpha}]$
KOMOT::Optimalitaetsbedinugngen a6fb041f-4cd6-4dd6-8d2e-e2c22ab0dcc2	KOMOT::Optimalitaetsbedinugngen a6fb041f-4cd6-4dd6-8d2e-e2c22ab0dcc2
Wann ist ein Vektor d eine Abstiegsrichtung einer Funktion f an der Stelle x ?	Falls $\nabla f(x)^{T} d < 0$
VONOT. Carical de la ballación	KOMOT::Optimalitaetsbedinugngen a6fb041f-4cd6-4dd6-8d2e-e2c22ab0dcc2
KOMOT::Optimalitaetsbedinugngen a6fb041f-4cd6-4dd6-8d2e-e2c22ab0dcc2	KOMOT::Optimalitaetsbedinugngen a6fb04if-4cd6-4dd6-8d2e-e2c22ab0dcc2
Wie läuft das Gradientenverfahren mit Cauchy – Schrittweitenwahl ab?	 S1 Initialisierung Wähle x⁰ ∈ Rⁿ, a > 0 setze k = 0. S2 Abbruchtest Stoppe falls ∇f(x^k) = 0. S3 Abstiegsrichtung Setze d^k = -∇f(x^k). S4 Schrittweite Berechne α_k ≥ 0, so dass f(x^k + α_kd^k) ≤ f(x^k + αd^k)∀α ∈ [0, a]. S5 Update Setze x^{k+1} = x^k + α_kd und k = k + 1. Gehe zu S2.
KOMOT::Optimalitaetsbedinugngen bf7910cf-fdca-46d4-9667-432bb3eb6b9b	KOMOT::Optimalitaetsbedinugngen bf7910cf-fdca-46d4-9667-432bb3eb6b9b
Beschriebe das globalisierte Newton-Verfahren (mit Amijo – Schrittweite).	S1 Initialisierung Wähle $x^0 \in \mathbb{R}^n, \delta \in (0,1), \rho > 0, q > 0,$ setze $k = 0$. S2 Abbruchtest Stopp falls $\nabla f(x^k) = 0$. S3 Abstiegsrichtung $H_k = \nabla^2 f(x^k)$, berechne d^k aus $H_k d = -\nabla f(x^k)$. Falls nicht möglich, oder $\nabla f(x^k)^T d^k \leq -\rho \ d^k\ ^q$ nicht erfüllt, dann setze $d^k = -\nabla f(x^k)$. S4 Schrittweite $\alpha_k = \max \left\{ \alpha \in S \middle f(x^k + \alpha d^k) \leq f(x^k) + \delta \alpha \nabla f(x^k)^T d^k \right\}$ S5 Update Setze $x^k = x^k + \alpha_k d^k$ und $k = k + 1$ Gehe zu S2.
KOMOT::Optimalitaetsbedinugngen e6id7fa2-68e9-4ac0-ad8c-4bfcc337a843	KOMOT::Optimalitaetsbedinugngen e61d7fa2-68e9-4ac0-ad8c-4bfcc337a843

Wann hat die Folge $\{x^k\}$, erzeugt vom globalisierten Newton Verfahren, mindestens einen Häufungspunkt?	Falls die Niveaumenge $W(x^0) := \left\{ x \in \mathbb{R}^n \middle f(x) \leq f(x^0) \right\}$ beschränkt ist.
KOMOT::Optimalitaetsbedinugngen e61d7fa2-68e9-4ac0-ad8c-4bfcc337a843	KOMOT::Optimalitaetsbedinugngen e61d7fa2-68e9-4ac0-ad8c-4bfcc337a843
Wann ist die Niveaumenge $W(x^0)$ kompakt (also auch beschränkt)?	Es reicht die gleichmäßige Konvexität der Zielfunktion aus.
KOMOT::Optimalitaetsbedinugngen e61d7fa2-68e9-4ac0-ad8c-4bfcc337a843	KOMOT::Optimalitaetsbedinugngen e61d7fa2-68e9-4ac0-ad8c~4bfcc337a843
Definiere eine \mathbf{Q} – lineare Konvergenz.	Seien $\{z^k\} \subset \mathbb{R}^l, z^* \in \mathbb{R}^l, z^* \not\in \{z^k\}$. Die Folge konvergiert \mathbf{Q} -linear gegen z^* , falls $\exists \sigma \in (0,1), k_0 \in \mathbb{N}$, so dass $\forall k \geq k_0$ $\frac{\ z^{k+1} - z^*\ }{\ z^k - z^*\ } \leq \sigma.$
KOMOT::Optimalitaetsbedinugngen 925c20a8-ea43-4e27-86c6-a88089a616da	KOMOT::Optimalitaetsbedinugngen 925c20a8-ea43-4e27-86c6-a88089a616da
Definiere eine Q – superlineare Konvergenz .	Seien $\{z^k\} \subset \mathbb{R}^l, z^* \in \mathbb{R}^l, z^* \not\in \{z^k\}$. Die Folge konvergiert Q-superlinear gegen z^* , falls $\lim_{k \to \infty} \frac{\ z^{k+1} - z^*\ }{\ z^k - z^*\ } = 0.$
KOMOT::Optimalitaetsbedinugngen 925c20a8-ea43-4e27-86c6-a88089a616da	KOMOT::Optimalitaetsbedinugngen 925c20a8-ea43-4e27-86c6-a88089a616da

Definiere eine ${\bf Q}$ – ${\bf Ordnung}\ au$ Konvergenz.	Seien $\{z^k\} \subset \mathbb{R}^l, z^* \in \mathbb{R}^l, z^* \not\in \{z^k\}$. Die Folge konvergiert mit der Q-Ordnung τ gegen z^* , falls $\lim_{k \to \infty} z^k = z^*$ und $\exists \sigma > 0, \tau > 1$, so dass $\forall k \in \mathbb{N}$: $\limsup_{k \to \infty} \frac{\left\ z^{k+1} - z^*\right\ }{\left\ z^k - z^*\right\ ^{\tau}} \leq \sigma.$
KOMOT::Optimalitaetsbedinugngen 925c20a8-ea43-4e27-86c6-a88089a616da	KOMOT::Optimalitaetsbedinugngen 925c20a8-ea43-4e27-86c6-a88089a616da
Was bedeutet, dass eine Folge $\{z^k\}$ gegen z^* R -linear, R -superlinear, oder mit R -Ordnung τ konvergiert?	\exists eine Folge $\mu_k\subset(0,\infty)$, so dass $\left\ z^k-z^*\right\ \leq\mu_k\forall k\in\mathbb{N}$ und $\{\mu_k\}$ mit der entsprechenden Q–Konvergenz gegen 0 konvergiert.
KOMOT::Optimalitaetsbedinugngen 925c20a8-ea43-4e27-86c6-a88089a616da	KOMOT::Optimalitaetsbedinugngen 925c20a8-ea43-4e27-86c6-a88089a616da
Wie ist die <i>quadratische Modellfunktion</i> bei dem Trust-Region-Verfahren definiert?	$m_k(p) \coloneqq f(x^k) + \nabla f(x^k)^T p + \frac{1}{2} p^T B_k p,$ mit $B_k \in \mathbb{R}^{n \times n}$ symmetrisch, $p = x - x^k$.

 ${\tt KOMOT::Optimalitaets bedinugngen}$ 273d8d2b-6081-45ae-95e7-d772482cd732 ${\tt KOMOT::Optimalitaets bedinugngen}$ 273d8d2b-6081-45ae-95e7-d772482cd732 Wie ist der ${\bf G\ddot{u}temaß}$ (Trust-Region-Verfahren) definiert? $\rho_k := \frac{f(x^k) - f(x^k + p)}{m_k(0) - m_k(p)}$

Wie sieht der Trust-Region-Verfahren Algorithmus aus? KOMOT::Optimalitaetsbedinugngen 273d8d2b-6081-45ae-95e7-d772482cd732	S1 Wähle $x^0 \in \mathbb{R}^n$, $\Delta_0 > 0$, $0 < \eta_1 < \eta_2 < 1$, $0 < \sigma_1 < 1 < \sigma_2$. Sätze $k = 0$. S2 Stoppe falls $\nabla f(x^k) = 0$. S3 Wähle symmetrische Matrix B_k Bestimme die Lösung von $m_k(p) \to \min$, $\ p\ \le \Delta_k$ S4 Berechne ρ_k . Falls $\rho_k \le \eta_1$ setze $\Delta_{k+1} = \sigma_1 \Delta_k$ Falls $\rho_k \in (\eta_1, \eta_2)$ setze $\Delta_{k+1} = \Delta_k$ Falls $\rho_k \ge \eta_2$ setze $\Delta_{k+1} = \sigma_2 \Delta_k$ S5 Falls $\rho_k > \eta_1$, setze $x^{k+1} = x^k + p^k$, $k = k+1$. Gehe zu S2. S6 Setze $x^{k+1} = x^k$, $k = k+1$ gehe zu S3.
KOMOT::Optimalitaetsbedinugngen 273d8d2b-6081-45ae-95e7-d772482cd732	KUMUT::Optimalitaetsbedinugngen 27348d2b-6081-45ae-95e7-d772482cd732