第2节 抛物线定义与几何性质综合问题(★★★)

强化训练

1.(2022•安徽合肥模拟•★★)已知抛物线 $C: y^2 = 4\sqrt{3}x$ 的焦点为 F,准线为 l,过抛物线上一点 P 作准 线的垂线,垂足为 Q,若 $\angle PFQ = 60^{\circ}$,则 |PF| = ()

(A)
$$4\sqrt{3}$$
 (B) $2\sqrt{3}$ (C) $\sqrt{3}$ (D) 6

(B)
$$2\sqrt{3}$$

(C)
$$\sqrt{3}$$

答案: A

解析:如图,抛物线 C的焦点为 $F(\sqrt{3},0)$,准线为 $l: x = -\sqrt{3}$,记 l = x轴交于点 H,则 $|FH| = 2\sqrt{3}$, 由抛物线定义,|PQ|=|PF|,又 $\angle PFQ=60^{\circ}$,所以 ΔPFQ 为正三角形,

于是只需到 ΔHFQ 中求出 |QF|,即可得到 |PF|,因为 $\angle PQF = 60^{\circ}$,所以 $\angle HQF = 30^{\circ}$,

故
$$|QF| = \frac{|FH|}{\sin \angle HQF} = \frac{2\sqrt{3}}{\sin 30^{\circ}} = 4\sqrt{3}$$
,结合 ΔPFQ 为正三角形可得 $|PF| = 4\sqrt{3}$.

2. (2022 • 湖南岳阳模拟 • ★★★) 过抛物线 $C: y^2 = 2px(p>0)$ 的焦点 F 且斜率 k>0 直线与 C 交于 A, B两点,A 在第一象限,过 A 作准线的垂线,垂足为 H,若 $\angle HFB$ 被 x 轴平分,则 k =____.

答案: √3

解析:要求直线 AB 的斜率,可尝试通过分析几何关系找倾斜角,

如图,因为 $\angle HFB$ 被 x 轴平分,所以 $\angle 1 = \angle 2$,又由抛物线定义, |AH| = |AF| ,所以 $\angle 3 = \angle 4$, 因为AH//x轴,所以 $\angle 1 = \angle 4$,故 $\angle 1 = \angle 2 = \angle 3 = \angle 4$,又 $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$,所以 $\angle 2 = 60^{\circ}$, 由图可知 $\angle 5 = \angle 2$,所以 $\angle 5 = 60^{\circ}$,故直线 AB 的斜率 $k = \tan 60^{\circ} = \sqrt{3}$.

3.(2022•广东汕头模拟•★★★)已知抛物线 $C: y^2 = 6x$ 的焦点为F, A为C上一点且在第一象限,以F为圆心,FA 为半径的圆与抛物线 C 的准线交于 M,N 两点,且 A,F,M 三点共线,则 $|AF| = _____$.

答案: 6

解析:如图,因为A,F,M三点共线,所以AM是圆的直径,

由直径可联想到圆心为中点、圆周角为直角,故F是AM中点,且 $AN \perp MN$ ①,

设准线与x轴交于点H,则 $FH \perp MN$,结合①可得FH//AN,故|AN| = 2|FH|,

由题意,抛物线的焦点为 $F(\frac{3}{2},0)$,准线为 $x=-\frac{3}{2}$,所以|FH|=3,故|AN|=6,

结合抛物线定义可得|AF| = |AN| = 6.

- 4. (2023•河南洛阳模拟•★★★)已知抛物线 $x^2 = 4y$ 的焦点为 F,准线为 l,过抛物线上一点 P 作 l 的 垂线,垂足为A,若 \overrightarrow{FA} 在x轴上的投影向量的长为 $2\sqrt{3}$,则 ΔPAF 的面积为()
 - (A) $2\sqrt{3}$ (B) $4\sqrt{3}$ (C) $\sqrt{3}$ (D) 6

答案: B

解析:如图,设准线 y=-1 与 y 轴交于点 G,因为 \overrightarrow{FA} 在 x 轴上的投影向量的长为 $2\sqrt{3}$,所以 $|GA|=2\sqrt{3}$, 所以第 $S_{\Delta PAF}$ 以|GA|为高,但还差底|PA|,可由点P的纵坐标来算, x_P 等于|GA|,代入抛物线即得 y_P , $x_P = |GA| = 2\sqrt{3}$,代入 $x^2 = 4y$ 可求得点 P 的纵坐标为 $y_P = 3$,所以 |PA| = 3 + 1 = 4,故 $S_{\Delta PAF} = \frac{1}{2} |PA| \cdot |GA| = 4\sqrt{3}.$

- 5. (2013•江西卷•★★★) 已知点 A(2,0),抛物线 $C: x^2 = 4y$ 的焦点为 F,射线 FA 与抛物线 C 相交于点 M,与其准线相交于点 N,则 |FM|: |MN| = (
- (A) $2:\sqrt{5}$ (B) 1:2 (C) $1:\sqrt{5}$ (D) 1:3

答案: C

解析:如图,直接分析|FM|:|MN|不易,尝试将|FM|用定义转化为到准线的距离来看,

作
$$MP$$
 工准线于 P ,则 $|FM| = |MP|$,所以 $\frac{|FM|}{|MN|} = \frac{|MP|}{|MN|} = \sin \angle MNP = \sin \angle FAO = \frac{|OF|}{|FA|}$,

由题意,F(0,1),所以|OF|=1, $|AF|=\sqrt{5}$,故 $\frac{|FM|}{|MN|}=\frac{|OF|}{|AF|}=\frac{1}{\sqrt{5}}$.

6.(2014・新课标 I 巻・★★★)已知抛物线 $C: y^2 = 8x$ 的焦点为 F ,准线为 l , P 是 l 上一点, Q 是直线 PF与C的一个交点,若 $\overrightarrow{FP} = 4\overrightarrow{FQ}$,则|QF| = (

(A)
$$\frac{7}{2}$$
 (B) $\frac{5}{2}$ (C) 3 (D) 2

(B)
$$\frac{5}{2}$$

$$(C)$$
 3

答案: C

解析:条件中有 $\overline{FP} = 4\overline{FQ}$,可考虑向 x 轴作垂线,利用三角形相似将斜边之比转化为直角边之比,而直 角边之比又可由 x_o 表示,从而求出 x_o ,得到QF,

如图,设准线l与x轴交于点G, $QI \perp x$ 轴于点I,

由题意,F(2,0),由图可知, $\Delta FIQ \hookrightarrow \Delta FGP$,所以 $\frac{|FI|}{|FG|} = \frac{|FQ|}{|FP|}$,故 $\frac{2-x_Q}{4} = \frac{1}{4}$,所以 $x_Q=1$,故 $|QF|=x_Q+2=3$.

7. (2022•广东开平模拟•★★★)已知抛物线 $C: y^2 = 16x$ 的焦点为 F,M 是 C 上一点,FM 的延长线交 y 轴于点 N,若 $3\overrightarrow{FM} = 2\overrightarrow{MN}$,则 $|FN| = _____$.

答案: 16

解析:给出3FM = 2MN,可设FM的长,并用它表示其它线段的长,

抛物线的准线为x = -4,焦点为F(4,0),如图,作 $MM' \perp$ 准线于M',交y轴于点G,

设|FM|=2m,因为 $3\overline{FM}=2\overline{MN}$,所以 $\frac{|FM|}{|MN|}=\frac{2}{3}$,故|MN|=3m,|FN|=5m ①,

由抛物线定义,|MM'| = |FM| = 2m,|MG| = |MM'| - |M'G| = 2m - 4,

从图形来看,可用相似比来建立关于 m 的方程,

因为
$$GM//OF$$
, 所以 $\frac{|GM|}{|OF|} = \frac{|MN|}{|FN|}$,

从而
$$\frac{2m-4}{4} = \frac{3m}{5m}$$
,故 $m = \frac{16}{5}$,代入①得 $|FN| = 16$.

8. $(2022 \cdot \text{北京模拟 · ★★★)已知抛物线 C 的焦点为 F,准线为 l,过 F 的直线 m 与 C 交于点 A 和 B,$ 点 A 在 l 上的投影为 D,若 |AB| = |BD|,则 $\frac{|AB|}{|AF|} = ($

(A)
$$\frac{3}{2}$$
 (B) 2 (C) $\frac{5}{2}$ (D) 3

(C)
$$\frac{5}{2}$$

答案: A

解析: 如图,作 BE 工准线于 E,由抛物线定义, $\begin{cases} |BF| = |BE| \\ |AF| = |AD| \end{cases}$,所以 $\frac{|AB|}{|AF|} = \frac{|AF| + |BF|}{|AF|} = \frac{|AD| + |BE|}{|AD|}$ ①,

故接下来应寻找 |AD| 和 |BE| 的关系,条件中有 |AB| = |BD| ,想到取底边中点,

取 AD 中点 H, 连接 BH, 则 $BH \perp AD$, 所以 |BE| = |DH| = |AH|, 故 |AD| = 2|BE|,

代入①可得
$$\frac{|AB|}{|AF|} = \frac{2|BE| + |BE|}{2|BE|} = \frac{3}{2}$$
.

9. (2022 • 河南模拟 • ★★★) 过抛物线 $y^2 = 2px(p>0)$ 的焦点 F 的直线交抛物线于 A, B 两点,交其准 线于点 C,若点 F 是 AC 的中点,且 |AF| = 4,则 $|AB| = _____$.

答案: $\frac{16}{3}$

解析:如图,已知|AF|,只需求得|BF|即可求出|AB|,可先过A,B 向准线作垂线,

作 AA' 上准线于 A' , BB' 上准线于 B' ,则 |AA'| = |AF| = 4 , |BB'| = |BF| ,

接下来我们可以设一段长,利用几何关系来分析其它有关线段的长,

设|BB'| = |BF| = m,因为 F 是 AC 中点,所以|AC| = 2|AF| = 2|AA'|,从而 $\cos \angle CAA' = \frac{|AA'|}{|AC|} = \frac{1}{2}$,

故
$$\angle CAA' = 60^{\circ}$$
,又 $BB' // AA'$,所以 $\angle CBB' = 60^{\circ}$,故 $|BC| = \frac{|BB'|}{\cos \angle CBB'} = 2m$,

所以
$$|CF|=3m$$
, $|AC|=2|CF|=6m$,又 $|AC|=2|AF|=8$,所以 $6m=8$,故 $m=\frac{4}{3}$,即 $|BF|=\frac{4}{3}$,

所以
$$|AB| = |AF| + |BF| = 4 + \frac{4}{3} = \frac{16}{3}$$
.

10.(2022•重庆巫山模拟•★★★)抛物线 $E: y^2 = 4x$ 的焦点为F,过F的直线与E交于A,B两点,延 长 FB 交 E 的准线 l 于点 C,过 A, B 作 l 的垂线,垂足分别为 M,N,若 |BC|=2|BN|,则 ΔAFM 的面积为

(A)
$$4\sqrt{3}$$

(A)
$$4\sqrt{3}$$
 (B) 4 (C) $2\sqrt{3}$ (D) 2

答案: A

解析:如图,我们可以设AF和BF的长,结合定义求其它线段的长,再分析几何关系建立方程,

设
$$|AF|=m$$
, $|BF|=n$,则 $|AM|=m$, $|BN|=n$,

因为
$$|BC|=2|BN|$$
,所以 $|BC|=2n$, $|FC|=3n$,且 $\cos \angle NBC=\frac{|BN|}{|BC|}=\frac{1}{2}$,故 $\angle NBC=\frac{\pi}{3}$,

又
$$AM//BN$$
,所以 $\angle MAC = \frac{\pi}{3}$,从而 $\cos \angle MAC = \frac{|AM|}{|AC|} = \frac{m}{m+3n} = \frac{1}{2}$,故 $m = 3n$,

找到m和n的关系,就能分析F在AC上的位置,结合|FH|是已知的,可由相似比求得|AM|,

由题意, 抛物线的焦点为F(1,0), 准线为l: x = -1, 所以|FH| = 2,

由m=3n知|AF|=|FC|,所以F为AC中点,又FH//AM,所以|AM|=2|FH|=4,

由
$$\angle MAC = \frac{\pi}{3}$$
和 $|AM| = |AF|$ 知 $\triangle AFM$ 是正三角形,所以 $S_{\triangle AFM} = \frac{1}{2} \times 4 \times 4 \times \sin \frac{\pi}{3} = 4\sqrt{3}$.

11. (2022 •黑龙江齐齐哈尔模拟 •★★★★)已知抛物线 $C: y^2 = 2px(p>0)$ 的准线 x = -1 与 x 轴交于点 A,

F为 C 的焦点,B 是 C 上第一象限内的一点,则当 $\frac{|BF|}{|AB|}$ 取得最小值时, ΔABF 的面积为()

(A) 2 (B) 3 (C) 4 (D) 6

答案: A

解析: 抛物线的准线为 $x=-1 \Rightarrow p=2 \Rightarrow$ 抛物线的方程为 $y^2=4x$, 其焦点为F(1,0), A(-1,0),

如图 1,直接分析 $\frac{|BF|}{|AB|}$ 的最小值不易,涉及 |BF|,可用定义转化为 P 到准线的距离来看,

作 BD 上 准线于 D,则 $\left|BF\right| = \left|BD\right|$,所以 $\frac{\left|BF\right|}{\left|AB\right|} = \frac{\left|BD\right|}{\left|AB\right|} = \sin \angle BAD$,

要使 $\sin \angle BAD$ 最小,只需 $\angle BAD$ 最小,此时直线 AB 与抛物线相切,如图 2. 可联立直线和抛物线用 $\Delta=0$ 求解,

设切线 AB 的方程为 x = my - 1, 联立 $\begin{cases} x = my - 1 \\ y^2 = 4x \end{cases}$ 消去 x 整理得: $y^2 - 4my + 4 = 0$ ①,

因为直线 AB 与抛物线相切,所以方程①的判别式 $\Delta = (-4m)^2 - 4 \times 1 \times 4 = 0$,解得: $m = \pm 1$,

代入①解得: $y = \pm 2$,所以 $y_B = \pm 2$,故 $S_{\Delta ABF} = \frac{1}{2} |AF| \cdot |y_B| = \frac{1}{2} \times 2 \times 2 = 2$.

