Delay, loss, and throughput

CE 352: Computer Networks
Salem Al-Agtash

Lecture 2

Slides are adapted from Computer Networking: A Top Down Approach, 7th Edition © J.F Kurose and K.W. Ross

Recap (The Internet : Interconnected networks)

General view:

- Internet: "network of networks"
 - Interconnected ISPs
- Protocols: control sending, receiving of messages e.g., TCP, IP, HTTP, Skype, 802.11
- Standards: RFC: Request for comments, IETF: Internet Engineering Task Force

Service view:

- Infrastructure that provides services to applications: Web, email, VoIP
- Provides programming interface to applications

Recap (Network structure)

Network edge:

hosts: clients, servers (data centers)

Access networks:

Home, enterprise, datacenter, mobile

Physical media:

wired, wireless communication links

Network core:

- interconnected routers
- network of networks

How to connect end systems to edge router? (bits per sec, shared/ dedicated)

- Access and core networks
- Layers: Application, Transport, Network, Data link, Physical

Recap (Packet switching - key functions)

routing: determines source-destination route taken by packets

routing algorithms

forwarding: move packets from router's input to appropriate router output

Recap (Circuit switching)

end-to-end resources allocated to, reserved for "call" between source and destination

- e.g. each link has four circuits. call gets 2nd circuit in top link and 1st circuit in right link.
- · dedicated resources: no sharing
- circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)

- source reserves network capacity along a path
 - Node A sends a reservation request
 - Interior switches establish a connection "circuit"
 - A starts sending data
 - A sends a "teardown circuit" message

Example: Research and Education Networks (CalREN, Internet2, ESnet ...)

Example – Circuit Switching

Each user:

- 20 Mb/s when "active"
- active 10% of time

• How many users can be served at most?

Example – Circuit Switching

Each user:

- 20 Mb/s when "active"
- active 10% of time

- How many users can be served at most?
 - 200 Mbps / 20 Mbps = 10 circuit-switched users

Each user:

- 20 Mb/s when "active"
- active 10% of time 19 packet-switching users (i.e., Nps = 19)
- Probability (specific) user is busy transmitting is _____
- Probability one specific other user is not busy transmitting is _____
- Probability all of other N_{ps}-1 USers are not transmitting is _____

Each user:

- 20 Mb/s when "active"
- active 10% of time 19 packet-switching users (i.e., Nps = 19)
- Probability (specific) user is busy transmitting is P = 0.10
- Probability one specific other user is not busy is (1-p)
- Probability all of other N_{ps} -1 users are not transmitting is $(1-p)^{Nps-1}$

•	Probability that one specif	ic user is busy transmitting,	and the remaining	USETS are not
	transmitting is			

• The probability that exactly one (anyone) of the N_{ps} users is busy transmitting is ______

• Probability that 10 Specific USErS of 19 users are transmitting and the other 9 users are not transmitting is ______

• Probability any 10 of 19 users are busy transmitting is _____

Probability more than 10 of 19 users are busy transmitting is ______

https://en.wikipedia.org/wiki/Binomial_distribution
http://gaia.cs.umass.edu/kurose_ross/interactive/

- Probability that one specific user is busy transmitting, and the remaining users are not transmitting is $p^1(1-p)^{Nps-1}$
- The probability that exactly one (anyone) of the N_{ps} users is busy is $Nps *p^1(1-p)^{Nps-1}$
- Probability that 10 specific users of 19 users are transmitting and the other 9 users are not transmitting is $p^{10}(1-p)^9$

Binomial Coefficient

• Probability any 10 of 19 users are busy transmitting is

$$\binom{19}{10} p^{10} (1-p)9 = \frac{19!}{10!(19-10)!} p^{10} (1-p)9$$

• Probability more than 10 of 19 users are busy transmitting is

$$\sum_{i=11}^{19} {19 \choose i} p^{i} (1-p) 19^{-i}$$

https://en.wikipedia.org/wiki/Binomial_distribution
http://gaia.cs.umass.edu/kurose_ross/interactive/

Topics of today

- Sending packets
- Packet delay and loss
- Throughput of a link
- Linux network commands

Sending packets

Host takes application message, breaks into smaller chunks, known as *packets*, of length *L* bits, and transmits at *rate R*

Bandwidth (capacity): "width" of the link?

Transmission - Delay: "size" of the packet?

Propagation - Delay: "length" of the link?

Bandwidth-Delay: "volume" of the link?

Example: Transmitting data over a cross boarder fast transmission link:

- Bandwidth = 1oGbps
- Delay = 1omsec
- Volume = _____

Sending packets

Host takes application message, breaks into smaller chunks, known as *packets*, of length *L* bits, and transmits at *rate R*

Bandwidth (capacity): "width" of the link

number of bits sent (or received) per unit time (bits/sec or bps) \rightarrow transmission rate R

Transmission - Delay: → L (bits)/ R(bps)

Probagation - Delay: "length" of the link

transmission time of data (L-bit packet) to travel along the link (seconds) = distance (m)/ $3*10^8$ (mps)

Bandwidth-Delay: "volume" of the link

amount of data that can be in link at any time (bits in link) = bits/time x propagation delay

Example: Transmitting data over a cross boarder fast transmission link:

- Bandwidth = 1oGbps
- Delay = 1omsec
- Volume = 10^{10} x 10^{-2} = 10^{8} bits = 12.5MBytes

Example: sending packets

Example: sending packets

Packet delay

1Mbps, 10ms (V=10,000)

↑

M
time →

- Nodal Processing Delay:
- Queuing Delay:
- Transmission Delay:
- Propagation Delay:

10Mbps, 1ms (V=10,000)

Packet delay

- Nodal Processing Delay: The time required to examine the packet's header and determine where to direct the packet
- Queuing Delay: The time a packet waits to be transmitted onto the link
- Transmission Delay: This time required to push (that is, transmit) all of the packet's bits into the link, L (packet size)/R (bandwidth)
- Propagation Delay: The time required to propagate from the beginning to the end of the link.

1Mbps, 1oms (V=10,000)

time →

10Mbps, 1ms (V=10,000)

time \rightarrow

CE 352: Computer Networks

BW

Example: Transmission/ propagation Delay

• Transmission Delay:

• Propagation Delay:

Example: Transmission/ propagation Delay

- Transmission Delay: This time required to push (that is, transmit) all of the packet's bits into the link
 - = L (packet size)/R (bandwidth) --> 100 bytes * (8 bits/1 byte)// 1 Mbps --> 800 bits/ 1 x 10⁶ bits/second = 8x10⁻⁴ seconds --> 0.8 ms
- Propagation Delay: The time required to propagate from the beginning to the end of the link, bits travel at the speed of light
 - = distance / speed of light --> 300 km/3x10⁸m/second --> $3x10^{5}/3x10^{8}$ m/s = $1x10^{-3}$ s --> 1 ms

Capacity (Bytes) and Speed (Bits per Second)

- Units of size (memory, disk, data, etc.)
- Bits and bytes (1 byte = 8 bits)

Term	Abbrev	Binary Size	Speed (bits per second - bps)	Decimal Compare
Byte	В	8 bits		
Kilobyte	KB	2 ¹⁰ bytes	Kbps	103
Megabyte	MB	2 ²⁰ bytes	Mbps	10 ⁶
Gigabyte	GB	2 ³⁰ bytes	Gbps	10 ⁹
Terabyte	TB	2 ⁴⁰ bytes	Tbps	10 ¹²
Petabyte	PB	2 ⁵⁰ bytes		10 ¹⁵
Exabyte	EB	2 ⁶⁰ bytes		10 ¹⁸

Link Length: 500 Km

packet length of 12000 bits

Bits travel at speed of light 3x108 m/sec

Link 1 transmission delay = L/R = 12000 bits / 100 Mbps \rightarrow 0.12 ms Link 1 propagation delay = d/s = 2 Km / 3*10**8 m/sec \rightarrow 0.0067 ms Link 2 transmission delay = L/R = 12000 bits / 10 Mbps \rightarrow 1.2 ms Link 2 propagation delay = d/s = 500 Km / 3*10**8 m/sec \rightarrow 1.667 ms Link 3 transmission delay = L/R = 12000 bits / 10 Mbps \rightarrow 1.2 ms Link 3 propagation delay = d/s = 1 Km / 3*10**8 m/sec \rightarrow 0.0033 ms

Total end-to-end delay = 4.196667 msecs.

Example: round trip time (RTT)

Example: round trip time (RTT)

Packet length of **12000** bits

Bits travel at 3x10⁸ m/sec

Link 2 $d_{trans} = 1.2 \text{ ms}$

Link 2 $d_{prop} = 1.667 \text{ ms}$

Link 3 $d_{trans} = 1.2 \text{ ms}$

Link 3 $d_{prop} = 0.0033 \text{ ms}$

RTT = 2*(4.0703) = 8.14 ms

Transmission rate: 10 Mbps Link Length: 500 Km

Packet-switching: queueing and loss

Queueing

Packet queuing and loss

Packet-switching: queueing and loss

Queueing occurs when packets arrive faster than can be serviced:

Packet queuing and loss: if arrival rate (in bps) to link exceeds transmission rate (bps) of link for some period of time:

- packets will queue, waiting to be transmitted on output link
- packets can be dropped (lost) if memory (buffer) in router fills up

How do loss and delay occur?

- packets queue in router buffers
- packet arrival rate to link (temporarily) exceeds output link capacity
- packets queue, wait for turn

Four sources of packet delay

$$d_{\text{total}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

d_{trans} : transmission delay:

- L: packet length (bits)
- R: link bandwidth (bps)

•
$$d_{trans} = L/R$$

d_{prop} : propagation delay:

- *d*: length of physical link
- s: propagation speed (~3x10⁸ m/sec)
 - $d_{\text{prop}} = d/s$

d_{proc} : nodal processing

- check bit errors
- determine output link
- typically < msec

d_{queue} : queueing delay

- time waiting at output link for transmission
- depends on congestion level of router

- When A-B link (300km) has 100 Gbps bandwidth and transmitting files:
- 1 KByte? \rightarrow d_{trans} =
- 1TByte? \rightarrow d_{trans} =
- $d_{prop} =$

SO?

- When A-B link (300km) has 100 Gbps bandwidth and transmitting files:
- 1 KByte? \rightarrow d_{trans} = 8x10³/1x10¹¹ = 80 ns
- 1TByte? \rightarrow d_{trans} = 8x10¹²/1x10¹¹ = 8x10¹= 80 s
- $d_{prop} = 300 \times 10^3 / 3 \times 10^8 = 1 \times 10^{-3} = 1 \text{ ms}$

SO

- d_{prop} dominates d_{trans} when trasmitting 1 Kbyte,
- d_{trans} dominates d_{prop} when transmitting 1TByte

Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- packet arriving to full queue dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not at all

Throughput

throughput: rate (bits/time unit) at which bits transferred between sender/receiver

- instantaneous: rate at given point in time
- average: rate over longer period of time

Throughput: Internet scenario

per-connection end-end throughput:

• ?

in practice:

• R_c or R_s is often bottleneck

10 connections (fairly) share backbone bottleneck link *R* bits/sec

Throughput: Internet scenario

per-connection end-end throughput:

• min(R_c, R_s, R/10)

in practice:

• R_c or R_s is often bottleneck

10 connections (fairly) share backbone bottleneck link *R* bits/sec

Example

- maximum achievable endend throughput (in Mbps)= ?
- bottleneck link for each session
 - = ?
- Utilization of each link
 - ? for Rs
 - ? for R
 - ? for Rc

Example

- maximum achievable endend throughput (in Mbps)
 = 50 Mbps
- bottleneck link for each session= 50 Mbps
- Utilization of each link
 - 50/50 * 100% = 100% for Rs
 - 50/75 * 100% = 66.67% for R
 - 50/60 * 100% = 83.33% for Rc

Summary

Today:

- Sending packets
- Bandwidth (bps)
- Latency (delay)
- Bandwidth Delay (Volume) (bits)
- Throughput (bits/ time unit)

Camino discussion:

- Reflection
- Exit ticket

Next time:

- read 1.5, 1.6, and 1.7 of K&R
- follow on Canvas! material and announcements

Any questions?