SVAR OCH ANVISNINGAR

- 1. En bas för nollrummet består av t
 ex de två vektorerna $\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$ och $\begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}.$ En bas för värderummet är t
 ex $\begin{bmatrix} 0 \\ 1 \end{bmatrix}.$
- 2. För alla a. Eftersom värderummet V(T) innehåller vektorn $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ innehåller V(T) också alla multiplar $c \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $c \in \mathbf{R}$. Speciellt innehåller alltså V(T) vektorn $\begin{bmatrix} 3 \\ 3 \end{bmatrix}$ oberoende av a.
- $3. \left[\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array} \right]$
- 4. T ex bildar de två vektorerna $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ och $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$ en sådan bas eftersom planets vektorer är av formen

$$\left[\begin{array}{c} x \\ y \\ x \end{array}\right] = x \left[\begin{array}{c} 1 \\ 0 \\ 1 \end{array}\right] + y \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right].$$

- 5. Eftersom matrisen är triangulär är egenvärdena lika med elementen på diagonalen, dvs $\lambda_0=1$ och $\lambda_1=2$ vilka båda är av multipliciteten ett. Då dessa två egenvärden är olika är matrisen diagonaliserbar.
- 6. En bas för egenrummet $E(1) = \text{Nul}(A 1 \cdot I)$ är t ex

$$\left[\begin{array}{c}1\\0\\0\end{array}\right], \left[\begin{array}{c}0\\-1\\1\end{array}\right].$$

Eftersom dimensionen av egenrummet E(1) är två och dimensionen av egenrummet E(3) är ett, och egenvektorer hörande till olika egenvärden är linjärt oberoende, finns en bas av egenvektorer i \mathbb{R}^3 till matrisen. Denna är alltså diagonaliserbar.

- 7. Man kan söka standardmatrisen av avbildningen och läsa av egenvärdena med sin multiplicitet direkt från denna eftersom den är diagonal. Följande resonemang är mer geometriskt. Vid speglingen är varje vektor i x_1x_2 -planet oförändrad och varje vektor **u** ortogonal mot planet speglas till $(-1)\mathbf{u}$. Alltså är x_1x_2 -planet egenrum av dimension två hörande till egenvärdet 1 som då måste ha multiplicitet större än eller lika med två och det tredje egenvärdet är -1, vars motsvarande egenrum är x_3 -axeln, och har därför multipliciteten större än eller lika med ett. Eftersom summan av multipliciteterna är tre har egenvärdet 1 multipliciteten två och egenvärdet -1 multipliciteten ett.
- 8. Den kvadratiska formens matris är $\begin{bmatrix} 1 & \frac{1}{4} \\ \frac{1}{4} & 1 \end{bmatrix}$ som har egenvärdena $\lambda_1 = \frac{3}{4}$ och $\lambda_2 = \frac{5}{4}$.

Det finns alltså en ON-bas i vilken ellipsen har ekvationen $\lambda_1 y_1^2 + \lambda_2 y_2^2 = 1$. Ellipsens halvaxlar är därför $a = \frac{2}{\sqrt{3}}$ respektive $b = \frac{2}{\sqrt{5}}$. Ellipsens area blir därför $\pi \frac{4}{\sqrt{15}}$.

- 9. $\frac{5}{3}t^2$.
- 10. Koordinaterna är de tal c_1 och c_2 sådana att $c_1(1+2t+t^2)+c_2(1-2t+t^2)=1+2at+t^2$. Detta leder till ett ekvationssystem med lösningen

$$c_1 = \frac{1+a}{2}, \quad c_2 = \frac{1-a}{2}$$

för alla a.

Lösning med basbyte Eftersom $4t = 1(1+2t+t^2) + (-1)(1-2t+t^2)$ och $2(1+t^2) = 1(1+2t+t^2) + 1(1-2t+t^2)$ kan vi välja 4t och $2(1+t^2)$ som ny bas med basbytesmatrisen

$$P = \left[\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right].$$

I den nya basen har $2at+1+t^2$ koordinaterna $\left[\begin{array}{c}a/2\\1/2\end{array}\right]$. Koordinaterna för polynomet med avseende på den gamla basen är därför

$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} a/2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} (1+a)/2 \\ (1-a)/2 \end{bmatrix}.$$

1. n=4 och m=2. Matrisens rang är ett som är lika med dimensionen av kolonnrummet (värderummet). En bas för kolonnrummet är t ${\rm ex}$

$$\left[\begin{array}{c} 0\\1\end{array}\right].$$

Enligt dimensionssatsen (rangsatsen) är dimensionen för nollrummet lika med 4-1=3. En bas för nollrummet är t ex

$$\left[\begin{array}{c}1\\0\\0\\0\end{array}\right], \left[\begin{array}{c}0\\0\\1\\0\end{array}\right], \left[\begin{array}{c}0\\-1\\0\\1\end{array}\right].$$

2. Matrisen för den kvadratiska formen är $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. Eftersom egenvärdena är $\lambda_1 = 2$ och $\lambda_2 = \lambda_3 = -1$ finns ett ortogonalt basbyte $\mathbf{x} = P\mathbf{y}$ så att den kvadratiska formen blir $Q(\mathbf{y}) = 2y_1^2 - y_2^2 - y_3^2 = 1$, där $y_1 = 0$ blir hyperboloidens symmetriplan. Detta svarar mot egenrummet $E(-1) = \text{Nul } (A+1 \cdot I)$ och har alltså ekvationen

$$x + y + z = 0$$

Avståndet mellan hyperboloidens båda delar blir avståndet mellan i xyz-systemet. hyperboloidens skärningspunkter med y_1 -axeln, dvs $2 \cdot \frac{1}{\sqrt{2}} = \sqrt{2}$.

EXTRA UPPGIFT

$$y_1 = 2c_1e^{3x} - c_2e^{-2x}$$
 och $y_2 = c_1e^{3x} + 2c_2e^{-2x}$.