Γραμμικές απεικονίσεις

Ορισμός

Κάθε συνάρτηση $T: \mathbb{R}^n \to \mathbb{R}^m$ ονομάζεται απεικόνιση/μετασχηματισμός και αντιστοιχεί κάθε διάνυσμα \mathbf{x} του \mathbb{R}^n σε ένα μόνο διάνυσμα $\mathbf{y} = T(\mathbf{x})$ του \mathbb{R}^m .

Σ. Δημόπουλος ΜΑΣ029 1 / 20

 $T: \mathbb{R}^3 \to \mathbb{R}^3$, $T(\mathbf{x}) = 2\mathbf{x}$.

Σ. Δημόπουλος ΜΑΣ029 2 /

Έστω η απεικόνιση $T: \mathbb{R}^2 \to \mathbb{R}^3$,

$$T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{pmatrix}.$$

• Να βρεθεί το $T \begin{pmatrix} 2 \\ -1 \end{pmatrix}$.

Σ. Δημόπουλος ΜΑΣ029 3 / 20

Έστω η απεικόνιση $T: \mathbb{R}^2 \to \mathbb{R}^3$,

$$T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{pmatrix}.$$

• Να βρεθεί $\mathbf{x} \in \mathbb{R}^2$ ώστε $T(\mathbf{x}) = \begin{pmatrix} 3 \\ 2 \\ -5 \end{pmatrix}$.

 Σ . Δημόπουλος MA Σ 029 4 / 20

Έστω η απεικόνιση $T: \mathbb{R}^2 \to \mathbb{R}^3$,

$$T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{pmatrix}.$$

• Να ελεγχθεί αν το $\mathbf{c} = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}$ είναι στο πεδίο τιμών της απεικόνισης.

Σ. Δημόπουλος ΜΑΣ029 5 / 20

Ορισμός

Μια απεικόνιση $T:\mathbb{R}^n o \mathbb{R}^m$ ονομάζεται γραμμική αν

- $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y}),$ για κάθε $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,
- ② $T(\lambda \mathbf{x}) = \lambda T(\mathbf{x})$, για κάθε $\lambda \in \mathbb{R}$, $\mathbf{x} \in \mathbb{R}^n$.

Παράδειγμα

 $T: \mathbb{R}^n \to \mathbb{R}^m, \ T(\mathbf{x}) = \mathbb{O}$

 $\Sigma.$ Δημόπουλος MA Σ 029 6 / 20

 $T: \mathbb{R}^n \to \mathbb{R}^n$, $T(\mathbf{x}) = \mathbf{x}$

Σ. Δημόπουλος ΜΑΣ029 7 /

 $T: \mathbb{R}^n \to \mathbb{R}^n$, $T(\mathbf{x}) = \lambda \mathbf{x}$

Σ. Δημόπουλος ΜΑΣ029 8 /

Ιδιότητες

Έστω $T: \mathbb{R}^n \to \mathbb{R}^m$ γραμμική απεικόνιση, $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$, $\lambda_1, \lambda_2 \in \mathbb{R}$.

- $T(\mathbb{O}) = \mathbb{O}$
- $T(-\mathbf{x}) = -T(\mathbf{x})$

Σ. Δημόπουλος ΜΑΣ029 9 / 20

Έστω $T: \mathbb{R}^n \to \mathbb{R}^n$, $T(\mathbf{x}) = \mathbf{x} + \mathbf{x}_0$, όπου $\mathbf{x}_0 \in \mathbb{R}^n$, $\mathbf{x}_0 \neq \mathbb{O}$. Είναι η T γραμμική;

Σ. Δημόπουλος ΜΑΣ029 10 / 20

Θεώρημα

Η απεικόνιση $T: \mathbb{R}^n \to \mathbb{R}^m$ είναι γραμμική αν και μόνο αν υπάρχει $m \times n$ πίνακας A ώστε $T(\mathbf{x}) = A\mathbf{x}$.

Απόδειξη:

Σ. Δημόπουλος ΜΑΣ029 11 / 20

Ορισμός

Έστω $T: \mathbb{R}^n \to \mathbb{R}^m$ γραμμική απεικόνιση. Ο πίνακας

$$A = [T(\mathbf{e}_1)T(\mathbf{e}_2)\dots T(\mathbf{e}_n)]$$

λέγεται κανονικός πίνακας της απεικόνισης Τ.

Παράδειγμα

Να βρεθεί ο κανονικός πίνακας της γραμμικής απεικόνισης

$$T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ -x_2 \end{pmatrix}.$$

Σ. Δημόπουλος MAΣ029 12 / 20

Έστω η απεικόνιση
$$T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_1 + x_2 \\ x_1 - 3x_2 \\ -x_1 + x_2 \end{pmatrix}$$
. Να δειχθεί ότι η T είναι γραμμική και να βρεθεί ο κανονικός πίνακας της.

Σ. Δημόπουλος ΜΑΣ029 13 / 20

Ορισμός

Μια απεικόνιση $T: \mathbb{R}^n \to \mathbb{R}^m$ λέγεται

- 1-1, αν $T(\mathbf{x}) = T(\mathbf{y}) \Longrightarrow \mathbf{x} = \mathbf{y}$ (ή ισοδύναμα $\mathbf{x} \neq \mathbf{y} \Longrightarrow T(\mathbf{x}) \neq T(\mathbf{y})$),
- επί, αν για κάθε $\mathbf{y} \in \mathbb{R}^m$ υπάρχει $\mathbf{x} \in \mathbb{R}^n$ ώστε $T(\mathbf{x}) = \mathbf{y}$.

Σ. Δημόπουλος ΜΑΣ029 14 / 20

Να ελεγχθεί αν οι παρακάτω απεικονίσεις είναι 1-1.

$$T(x) = x$$

$$T \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1^2 \\ x_2^2 \\ \vdots \\ x_n^2 \end{pmatrix}$$

Σ. Δημόπουλος $MA \Sigma 029$ 15 / 20

Θεώρημα

 $Aν T: \mathbb{R}^n \to \mathbb{R}^m$ γραμμική απεικόνιση με $T(\mathbf{x}) = A\mathbf{x}$ τότε τα ακόλουθα είναι ισοδύναμα.

- T 1-1
- $\mathbf{2}$ $T(\mathbf{x}) = \mathbb{O} \implies \mathbf{x} = \mathbb{O}$
- **③** Το γραμμικό σύστημα $A\mathbf{x} = \mathbb{O}$ έχει μόνο την τετριμμένη λύση.
- Οι στήλες του Α είναι γραμμικά ανεξάρτητες.

- T 1-1 \Leftrightarrow $A\mathbf{x} = \mathbb{O}$ έχει μόνο την τετριμμένη λύση
 - η κλιμακωτή μορφή του Α έχει ηγετικό στοιχείο σε κάθε στήλη (δηλαδή δεν υπάρχουν ελεύθερες μεταβλητές)

Σ. Δημόπουλος ΜΑΣ029 16 / 20

Θεώρημα

 $Av T: \mathbb{R}^n \to \mathbb{R}^m$ γραμμική απεικόνιση με $T(\mathbf{x}) = A\mathbf{x}$ τότε τα ακόλουθα είναι ισοδύναμα.

- 🚺 Τ επί.
- ② Για κάθε $\mathbf{b} \in \mathbb{R}^n$ το γραμμικό σύστημα $A\mathbf{x} = \mathbf{b}$ είναι συμβιβαστό.

- T επί \Leftrightarrow A**x** = **b** συμβιβαστό για κάθε **b**
 - η κλιμακωτή μορφή του Α έχει ηγετικό στοιχείο σε κάθε γραμμή

Σ. Δημόπουλος MAΣ029 17 / 20

Έστω
$$T(\mathbf{x}) = A\mathbf{x}$$
, όπου $A = \begin{pmatrix} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{pmatrix}$. Είναι η T 1-1 ή/και επί;

Σ. Δημόπουλος ΜΑΣ029 18 / 20

Έστω
$$T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 + x_2 \\ 5x_1 + 7x_2 \\ x_1 + 3x_2 \end{pmatrix}$$
. Είναι η T 1-1 ή/και επί;

Σ. Δημόπουλος ΜΑΣ029 19 / 20

Θεώρημα (Θεώρημα Αντιστρόφου Πίνακα)

Τα παρακάτω είναι ισοδύναμα για έναν $n \times n$ τετραγωνικό πίνακα A.

- (Ι) Ο Α είναι αντιστρέψιμος.
- (XIII) Η γραμμική απεικόνιση $T(\mathbf{x}) = A\mathbf{x}$ είναι 1-1.
- (XIV) Η γραμμική απεικόνιση $T(\mathbf{x}) = A\mathbf{x}$ είναι επί.

Σ. Δημόπουλος ΜΑΣ029 20 / 20