# **Madagascar Project Report**

### SAVING WITH LCC PROJECTION

| STUDENT     | 3007260t                               |
|-------------|----------------------------------------|
| FILE Name   | GEOG5008_Madagascar_3007260t.pdf       |
| SCHOOL      | SCHOOL OF GEOGRAPHICAL & EARTH SCIENCE |
| COURSE NAME | GEOG5008 GEOSPATIAL FUNDAMENTALS_24-25 |



December 16, 2024

### **Madagascar Projection Conversion Report**

#### 1. INTRODUCTION

Lillybank Tours previously designed a sightseeing flight path in Madagascar using the Mercator projection. The path starts in Antsiranana in the north, passes through Tsingy De Bemaraha National Park, and ends in Fararagana in the southeast. However, the Mercator projection, known for its conformality and ability to preserve angles, suffers from increasing distance distortion especially in areas away from the central line. In this project, such distortions lead to significant discrepancies in the actual route, resulting in higher fuel costs. To address this issue, the Lambert Conformal Conic (LCC) projection with standard parallels at  $-10^{\circ}$  and  $-25^{\circ}$  are used, approximately covering Madagascar's northern and southern boundaries. The LCC projection, known for its ability to minimize distortions over a region of interest, provides a more accurate estimation for fuel usage. This report is structured in the order of introduction, methodology, results, discussion, and conclusion.

Mercator projection is a cylindrical conformal map projection "where lines of constant bearing appear as straight segments [1]." LCC is short for Lambert Conformal Conic, named after Lambert, who first developed it in 1772 (Snyder 1987). Distortion between 2 standard parallels is small, so LCC is often "employed for aeronautical and regional mapping due to its ability to accurately represent shapes and distances in mid-latitudes.[1]"

#### 2. METHODOLOGIES

- **2.1 Data sources:** Pixel, geographic, and Mercator coordinates of four control points. Digitized pixel coordinates of 12 coastal points.
- **2.2 Methodologies:** Used the pixel and Mercator coordinates of control points to build a matrix equation [2]. Applie 2D similarity transformation with 2 points and 4 points to calculate the transformation constants a, b, T\_x and T\_y. Computed the Mercator coordinates of all control points and coastline points.

Formula [3] is used to convert the Mercator coordinates of all points into geographic coordinates.

$$\lambda = rac{x}{R} + \lambda_0$$
  $\phi = 2 rctan\left(e^{rac{y}{R}}
ight) - rac{\pi}{2}$ 

The Lambert Conformal Conic (LCC) projection formula from reference [4] is applied to calculate the Easting (X) and Northing (Y) for all points.

 $X = \rho \sin(\theta)$ 

$$Y = \rho_0 - \rho \cos(\theta)$$

$$\rho = \frac{RF}{\tan^n(\frac{\pi}{4} + \frac{\phi}{2})}$$

$$\rho_0 = \frac{RF}{\tan^n(\frac{\pi}{4} + \frac{\phi_0}{2})}$$

$$\theta = n(\lambda - \lambda_0)$$

$$F = \frac{\cos(\phi_1) \cdot \tan^n(\frac{\pi}{4} + \frac{\phi_1}{2})}{n}$$

$$n = \frac{\ln(\frac{\cos(\phi_1)}{\cos(\phi_2)})}{\left(\ln(\frac{\tan(\frac{\pi}{4} + \frac{\phi_2}{2})}{\tan(\frac{\pi}{4} + \frac{\phi_1}{2})}\right)} = \text{cone constant}$$

The error propagation formula is employed to quantify error accumulation during the transformation process. Initial errors are derived from the deviation between the computed Mercator coordinates of the four control points and the source data, which are treated as the true values. Error matrices [5] are calculated for each transformation step: from pixel to Mercator, Mercator to geographic, and geographic to LCC coordinates.

$$\sigma_y^2 = \sum_{i=1}^n \left(rac{\partial f}{\partial x_i}
ight)^2 \sigma_{x_i}^2 + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^n \left(rac{\partial f}{\partial x_i} \cdot rac{\partial f}{\partial x_j} \cdot \mathrm{Cov}(x_i, x_j)
ight)$$

The total errors for Mercator and LCC projections are evaluated. The impact of least squares optimization on the results is analyzed, along with the performance and applicability of each projection. The projection with smaller errors is identified by comparing relative RMSE values, calculated using the formula below:

$$\begin{aligned} \text{Relative RMSE (\%)} &= \frac{\text{RMSE}}{\text{Reference Value}} \times 100 \\ \text{RMSE} &= \sqrt{\frac{\sum_{i=1}^{n}(x_i - \hat{x}_i)^2}{n}} \end{aligned}$$

#### 2.3 Workflow: Figure 1:



Figure 1 Workflow of Madagascar project

## 3. Results and Analysis of Results

**3.1 Constants results:** Based on the first step of the methodology, the calculated 2D similarity transformation constants using 2 and 4 control points are presented in **Table 1**:

| Parameter | 2 points | 4 points  |
|-----------|----------|-----------|
| a         | 19889.45 | 19889.45  |
| b         | 101.5492 | -1.46E-11 |
| T_x       | -5010721 | -4985181  |
| T_y       | 3199432  | 3250460   |

**Table 1 Constants Table** 

The coordinates calculated using 2 and 4 control points are shown in **Table 2**:

| crtl_pt<br>_ID | Mer_x_2p   | Mer_y_2p    | Lam_x_2p   | Lam_y_2p    | Mer_x_4p   | Mer_y_4p    | Lam_x_4p   | Lam_y_4p    |
|----------------|------------|-------------|------------|-------------|------------|-------------|------------|-------------|
| A              | 3339512.99 | 4.6566E-10  | 3453058.86 | -273190.327 | 3348500.1  | 8479.3618   | 3463662.27 | -265963.786 |
| В              | 6661051.77 | 16958.7236  | 6807915.64 | -1063426.23 | 6670038.87 | 8479.3618   | 6814062.04 | -1074696.06 |
| С              | 6679025.98 | -3503474.59 | 5779021.47 | -4272542.56 | 6670038.87 | -3511953.95 | 5769191.6  | -4277179.22 |
| D              | 3357487.21 | -3520433.31 | 2939169.13 | -3601067.92 | 3348500.1  | -3511953.95 | 2932543.2  | -3592458.21 |
| C1             | 5454903.53 | -1381497.54 | 5247102.19 | -2069030.25 | 5456782.2  | -1383782.4  | 5248301.98 | -2071645.12 |
| C2             | 5596059.15 | -1758686.32 | 5284643.44 | -2455460.62 | 5596008.37 | -1761682.02 | 5283848.13 | -2458210.4  |
| C3             | 5516602.88 | -1778981.97 | 5206332.47 | -2454471.06 | 5516450.56 | -1781571.47 | 5205554.59 | -2456821.6  |
| C4             | 5517212.18 | -1898318.69 | 5177596.75 | -2564369.23 | 5516450.56 | -1900908.2  | 5176264.48 | -2566557.39 |
| C5             | 5301982.41 | -2595566.61 | 4818451.66 | -3143352.12 | 5297666.57 | -2597039.08 | 4814276.63 | -3143679.28 |
| C6             | 5223947.83 | -2894314.62 | 4682381.77 | -3389871.77 | 5218108.75 | -2895380.88 | 4677018.91 | -3389515.98 |
| C7             | 4845235.82 | -2737128.42 | 4381573.64 | -3169876.59 | 4840209.13 | -2736265.25 | 4377286.31 | -3168068.8  |
| C8             | 4901959.25 | -2160029.62 | 4554552.02 | -2662252.2  | 4899877.49 | -2159471.1  | 4552772.77 | -2661294.35 |
| C9             | 4940113.37 | -1841595.26 | 4658980.14 | -2377877.61 | 4939656.4  | -1841239.84 | 4658635.33 | -2377447.87 |
| C10            | 5158694.26 | -1800699.31 | 4870515.66 | -2389267.77 | 5158440.39 | -1801460.93 | 4870105.36 | -2389914.05 |
| C11            | 5296701.85 | -1561315.02 | 5055008.79 | -2199062.96 | 5297666.57 | -1562787.48 | 5055558.16 | -2200669.27 |
| C12            | 5454903.53 | -1381497.54 | 5247102.19 | -2069030.25 | 5456782.2  | -1383782.4  | 5248301.98 | -2071645.12 |

#### **Table 2 Coordinates table**

In the 2-point process, points A and C were selected as control points for georeferencing. As shown in **Table 2**, for the Mercator projection, the Easting (Mer\_x) values computed with the 4-point transformation are consistently slightly larger than those from the 2-point transformation, with differences ranging from approximately 800 m (e.g., point A) to nearly 1000 m (e.g., point C). In contrast, the Northing (Mer\_y) values exhibit smaller variations.

For the LCC projection, a similar trend is observed. The 4-point transformation consistently produces larger Easting (Lam x) values compared to the 2-point results, with

the magnitude of differences varying between approximately 1000 m (e.g., point A) and 1200 m (e.g., point B).

The complete coordinate results are presented in **Appendix A**.

#### 3.3 Plots results:

Geographic, Mercator and LCC Coordinates of 2-point method:

LCC Coordinates of 2 points A B C D C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 A B C D C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 -1.0 -1.0 -1.5 7 −1.5 Wer -10 → -2.0 E -2.5 ਸੂੰ -15 ਬੁ -20 -25 -30 5.0 Mer :

Figure 2 Plots of 2-point method

Geographic, Mercator and LCC Coordinates of 4-point method:



Figure 3 Plots of 4-point method

#### 3.3 Error results:

In **Table 3** for the Mercator projection, the 2-point transformation shows highly variable errors, with near-zero values for points A and C (Mer\_X= $2.33\times10^{-9}$ ), but large errors for points B and D (Mer\_X= $\pm17974$ ). The 4-point transformation significantly reduces variability, with errors stabilizing around  $\pm8987$  for all points. A similar trend is observed in the LCC projection, where the 2-point transformation produces large errors for points B and D (Lam\_X $\approx$ 18600) and near-zero values for points A and C. In contrast, the 4-point transformation reduces errors to approximately 9300(Lam\_X) and 8800(LamY) across all points.

| Contro  1 Point | MerX_error s_2p | MerY_error s_2p | LamX_erro rs_2p | LamY_erro rs_2p | MerX_error<br>s_4p | MerY_error<br>s_4p | LamX_erro rs_4p | LamY_erro |
|-----------------|-----------------|-----------------|-----------------|-----------------|--------------------|--------------------|-----------------|-----------|
| A               | 2.33E-09        | 7.08E-10        | 2.42E-09        | 7.35E-10        | 8987.108           | 8479.362           | 9349.381        | 8821.168  |
| В               | -17974.2        | 16958.72        | 18646.95        | 17593.46        | -8987.11           | 8479.362           | 9341.234        | 8813.481  |
| С               | 1.86E-09        | -4.7E-10        | 1.93E-09        | 4.84E-10        | -8987.11           | -8479.36           | 9341.234        | 8813.481  |
| D               | 17974.22        | -16958.7        | 18678.68        | 17623.39        | 8987.108           | -8479.36           | 9349.381        | 8821.168  |

**Table 3 Error table** 

**Figure 4** is a stacked bar chart of relative Root Mean Square Error. It clearly demonstrates that the errors obtained with 2 points are significantly larger than those using the Least Squares method with 4 points, consistent with **Table 3**. For both the Mercator (2p-Mer) and Lambert (2p-Lam) projections, the relative RMSE reaches approximately 141.42%, about 1.41 times greater than the 100% error observed when 4 points are used (4p-Mer and 4p-Lam).



Figure 4 Relative RMSE stacked bar chart

#### 3.4 Distance results:

**Table 4** lists the distances between Antsiranana, Tsingy De Bemaraha, and Fararagana, as well as the total distance.

| Tymo              | Antsiranana to Tsingy    | Tsingy De Bemaraha | Fararagana to  | Total Distance(m)   |  |
|-------------------|--------------------------|--------------------|----------------|---------------------|--|
| Туре              | De Bemaraha(m)           | to Fararagana(m)   | Antsiranana(m) | Total Distance(III) |  |
| Geo Distance      | 918706.0357              | 552406.2602        | 1164948.313    | 2636060.608         |  |
| Mercator Distance | 954900.9389              | 591355.9733        | 1223646.007    | 2769902.919         |  |
| LCC Distance      | LCC Distance 911837.2143 |                    | 1156561.819    | 2617106.14          |  |

**Table 4 Distance table** 

**Table 5** presents the relative error values (%) of distances compared to the ground surface distances under the Mercator and LCC projections.

| Time              | Relative Error - A-to- | Relative Error - TDB- | Relative Error - | Relative Error - |
|-------------------|------------------------|-----------------------|------------------|------------------|
| Туре              | TDB(%)                 | to-F(%)               | F-to-A(%)        | Total(%)         |
| Mercator Distance | 3.939769832            | 7.050918129           | 5.038652276      | 5.077360915      |
| LCC Distance      | 0.747662592            | 0.669643679           | 0.719902633      | 0.719045248      |

**Table 5 Proportion of distance difference** 

Figure 5 presents the line chart of the distances.



Figure 5 Distance line graph

Based on the data, the cost saving of a one-way trip using the LCC projection is \$44.44, with a saving rate compared to the Mercator projection of 5.52%.

#### 4. Discussion

The Lambert Conformal Conic (LCC) projection preserves angles and shapes but often shortens distances over large areas [1]. In contrast, the Mercator projection exaggerates distances at higher latitudes, making them significantly longer than actual surface distances [1]. The absolute distances in LCC are shorter than surface distances, and its equidistance property within 10-25° latitude makes it more suitable for estimating transportation costs.

Although from **Figure 2 & 3**, there is not a big difference between the 2-point and 4-point images. From **Table 3**, it can be seen that using points A and C as control points for georeferencing minimizes the error between them (-4.7E-10), making it negligible. However, the error values for points B and D range from 16,958.7 to 17,974.2, resulting in a large variance in the transformation. In contrast, the least squares 4-point method shows more evenly distributed errors. For example, in the Mercator 4-point transformation, the X and Y errors are similar, at 8,987.108 and 8,479.362, respectively. As stated in Step 6 of the Methodology, its relative RMSE is smaller than that of the 2-point method, as reflected in **Figure 4**. This demonstrates that the 4-point transformation improves accuracy and reduces error variability.

It is worth noting that since both Mercator error and LCC error result from error propagation, their distribution trends are consistent under the same method (2-point or 4-point). This also leads to LCC error values being slightly higher than Mercator's, regardless of the method used—this is determined by the differential formula of LCC.

**Table 4** shows that the ground surface distance is approximately 2,636,061 m, the Mercator projection distance is 2,769,903 m, while the LCC projection distance is 2,617,106 m. Compared to the ground surface distance (taken as the true value), LCC is closer with a difference of around 20 km, while Mercator has a larger discrepancy of about 130 km. From **Table 5**, the relative error for Mercator distance compared to the geographic distance is 5.08%, while for LCC, it is 0.72%, showing a significant reduction. **Figure 5** illustrates the distance trends, where all Mercator distances deviate from and are noticeably higher than the ground

surface distance. In contrast, LCC distances largely overlap with the ground surface distance at the current precision level.

Potential issues: (a) The four control points are relatively few and form the vertices of a rectangle in the Mercator projection, where their parallel arrangement may introduce computational bias. (b) Scanning precision: Some coastal points are quite close to each other, and their positions may slightly shift due to limited resolution. (c) The exact datum used in the original Mercator projection is not explicitly stated in the dataset provided. However, a commonly used global datum such as WGS84 could be properly used.

#### 5. Conclusions

Compared to the 2D similarity transformation using two points, the Least Squares method achieves a relative error ratio of 1:1.41, indicating a significant improvement in fitting accuracy. The LCC projection shows a 0.72% difference from the geographic distance, while the Mercator projection has a 5.08% difference, making LCC more accurate for flight path design. Using four control points with the Least Squares method and the LCC projection, a one-way trip saves \$44.44, with a saving rate of 5.52%.

#### References

- [1] J. P. Snyder, *Map Projections: A Working Manual*, U.S. Geological Survey, Washington, D.C., USA, 1987, pp. 43–45, 107–109.
- [2] J. Iliffe and R. Lott, *Datums and Map Projections for Remote Sensing, GIS, and Surveying*. (Second ed.) 2008.
- [3] University of Glasgow, "2023 GeoFun Week 4 Linear Algebra Solutions," *Jupyter Notebook, GeoFun 2024, Week 4*, Dec. 2024.
- [4] University of Glasgow, MadagascarExDay3, Geospatial Fundamentals 24-25, Week 8 Course Materials, 2024.
- [5] C. Ghilani, "Statistics and adjustments explained part 3: Error propagation," *Surveying and Land Information Science*, vol. 64, pp. 29–33, Mar. 2004.

# Appendix A

# **Results of 2 control points**

| crtl_pt | LatN | LongE | pixelx | pixely | Mer_x      | Mer_y       | Lat_y       | Long_x     | Lam_x      | Lam_y       |
|---------|------|-------|--------|--------|------------|-------------|-------------|------------|------------|-------------|
| _ID     | deg  | deg   |        |        |            |             |             |            |            |             |
| A       | 0    | 30    | 419    | -163   | 3339512.99 | 4.6566E-10  | 0           | 30         | 3453058.86 | -273190.327 |
| В       | 0    | 60    | 586    | -163   | 6661051.77 | 16958.7236  | 0.1523459   | 59.8385314 | 6807915.64 | -1063426.23 |
| С       | -30  | 60    | 586    | -340   | 6679025.98 | -3503474.59 | -30         | 60         | 5779021.47 | -4272542.56 |
| D       | -30  | 30    | 419    | -340   | 3357487.21 | -3520433.31 | -30.1318478 | 30.1614686 | 2939169.13 | -3601067.92 |
| C1      |      |       | 525    | -233   | 5454903.53 | -1381497.54 | -12.3145492 | 49.0032848 | 5247102.19 | -2069030.25 |
| C2      |      |       | 532    | -252   | 5596059.15 | -1758686.32 | -15.6024022 | 50.2713344 | 5284643.44 | -2455460.62 |
| C3      |      |       | 528    | -253   | 5516602.88 | -1778981.97 | -15.7779313 | 49.5575513 | 5206332.47 | -2454471.06 |
| C4      |      |       | 528    | -259   | 5517212.18 | -1898318.69 | -16.8069075 | 49.5630248 | 5177596.75 | -2564369.23 |
| C5      |      |       | 517    | -294   | 5301982.41 | -2595566.61 | -22.6987036 | 47.6295414 | 4818451.66 | -3143352.12 |
| C6      |      |       | 513    | -309   | 5223947.83 | -2894314.62 | -25.1516    | 46.9285298 | 4682381.77 | -3389871.77 |
| C7      |      |       | 494    | -301   | 4845235.82 | -2737128.42 | -23.8668142 | 43.5264288 | 4381573.64 | -3169876.59 |
| C8      |      |       | 497    | -272   | 4901959.25 | -2160029.62 | -19.0436529 | 44.035995  | 4554552.02 | -2662252.2  |
| C9      |      |       | 499    | -256   | 4940113.37 | -1841595.26 | -16.3184858 | 44.3787467 | 4658980.14 | -2377877.61 |
| C10     |      |       | 510    | -254   | 5158694.26 | -1800699.31 | -15.9655878 | 46.3423344 | 4870515.66 | -2389267.77 |
| C11     |      |       | 517    | -242   | 5296701.85 | -1561315.02 | -13.8878112 | 47.5821043 | 5055008.79 | -2199062.96 |
| C12     |      |       | 525    | -233   | 5454903.53 | -1381497.54 | -12.3145492 | 49.0032848 | 5247102.19 | -2069030.25 |

# **Results of 4 control points**

| crtl_pt_ID | Lat_deg_N | Long_deg_E | pixel_x | pixel_y | Mer_x      | Mer_y       | Long_x     | Lat_y       | Lam_x      | Lam_y       |
|------------|-----------|------------|---------|---------|------------|-------------|------------|-------------|------------|-------------|
| A          | 0         | 30         | 419     | 163     | 3348500.1  | 8479.3618   | 30.0807343 | 0.07617302  | 3463662.27 | -265963.786 |
| В          | 0         | 60         | 586     | 163     | 6670038.87 | 8479.3618   | 59.9192657 | 0.07617302  | 6814062.04 | -1074696.06 |
| С          | -30       | 60         | 586     | 340     | 6670038.87 | -3511953.95 | 59.9192657 | -30.0659459 | 5769191.6  | -4277179.22 |
| D          | -30       | 30         | 419     | 340     | 3348500.1  | -3511953.95 | 30.0807343 | -30.0659459 | 2932543.2  | -3592458.21 |

| C1  | 525 | 233 | 5456782.2  | -1383782.4  | 49.0201614 | -12.3346019 | 5248301.98 | -2071645.12 |
|-----|-----|-----|------------|-------------|------------|-------------|------------|-------------|
| C2  | 532 | 252 | 5596008.37 | -1761682.02 | 50.2708783 | -15.6283204 | 5283848.13 | -2458210.4  |
| C3  | 528 | 253 | 5516450.56 | -1781571.47 | 49.5561829 | -15.800316  | 5205554.59 | -2456821.6  |
| C4  | 528 | 259 | 5516450.56 | -1900908.2  | 49.5561829 | -16.8291749 | 5176264.48 | -2566557.39 |
| C5  | 517 | 294 | 5297666.57 | -2597039.08 | 47.5907707 | -22.7109061 | 4814276.63 | -3143679.28 |
| C6  | 513 | 309 | 5218108.75 | -2895380.88 | 46.8760753 | -25.1602702 | 4677018.91 | -3389515.98 |
| C7  | 494 | 301 | 4840209.13 | -2736265.25 | 43.4812724 | -23.8597229 | 4377286.31 | -3168068.8  |
| C8  | 497 | 272 | 4899877.49 | -2159471.1  | 44.0172939 | -19.0389101 | 4552772.77 | -2661294.35 |
| C9  | 499 | 256 | 4939656.4  | -1841239.84 | 44.3746416 | -16.3154215 | 4658635.33 | -2377447.87 |
| C10 | 510 | 254 | 5158440.39 | -1801460.93 | 46.3400538 | -15.9721657 | 4870105.36 | -2389914.05 |
| C11 | 517 | 242 | 5297666.57 | -1562787.48 | 47.5907707 | -13.9006519 | 5055558.16 | -2200669.27 |
| C12 | 525 | 233 | 5456782.2  | -1383782.4  | 49.0201614 | -12.3346019 | 5248301.98 | -2071645.12 |

### Appendix B

#### **Detailed Plots:**

Figure 6



Figure 7







Figure 9



Figure 10



Figure 11



# **Index of Supporting Documents**

| Report                                        | GEOG5008_Madagascar_3007260t.pdf              |  |  |  |  |
|-----------------------------------------------|-----------------------------------------------|--|--|--|--|
| Notebook_pdf                                  | GEOG5008_Madagasgar_notebook_3007260t.pdf     |  |  |  |  |
| Notebook_ipynb                                | GEOG5008_Madagasgar_notebook_3007260t.ipynb   |  |  |  |  |
| Naming txt file                               | Notebook Structure And Naming Conventions.txt |  |  |  |  |
| Zip file containing notebooks, excel and maps | GEOG5008_Madagascar_3007260t_zipfile.zip      |  |  |  |  |