Arithmetique

Par Lorenzo

24 November 2024

Contents

1	Structures algébriques 1						
	1.1	Lois de compositions internes	1				
	1.2	Groupes	1				
	1.3	Anneaux et Corps	3				
2	Arithmétique des entiers 4						
	2.1	Rappels sur \mathbb{N} et \mathbb{Z}	4				
	2.2	Arithmétique élémentaire dans \mathbb{Z}	5				
	2.3	Division euclidienne	7				
	2.4	PGCD, PPCM	7				
3	Arithmétique avancée dans $\mathbb Z$						
	3.1	Bézout, Gauss	8				
	3.2	Unicité de la décomposition en facteurs premiers	9				
	3.3	Résolution des équations diophantiennes	9				
4	Arithmétique modulaire : $(\mathbb{Z}/n\mathbb{Z})$						
	4.1	L'anneau $(\mathbb{Z}/n\mathbb{Z}, +, \times)$	11				
	4.2	Restes chinois (aka le restau chinois)	12				
5	Poly	ynômes et Fractions rationnelles	12				
1	\mathbf{S}_{1}	tructures algébriques					
1.		Lois de compositions internes					
	E u	sion 1.1. Soit E un ensemble. On appelle loi de composition interne (l.e. ne opération binaire. parle d'application $E \times E \to E$	c.i)				
Dé	finit	ion 1.2. Soit * une l.c.i sur E. On dit que * est					
as	socio	ative $si \ \forall x, y, z \in E, \ x * (y * z) = (x * y) * z$					
co	mmi	$utative \ si \ \forall x, y \in E, \ x * y = x * y$					
$id\epsilon$	entit	eaire (a un élement neutre $e \in E$) si $\forall x \in E, x * e = e * x = x$					

1.2 Groupes

Définition 1.3. Soit G un ensemble et * une l.c.i sur G. On dit que (G,*) est un **groupe** lorsque les axiomes suivants sont vérifiés.

- * est associative
- * admet un élement neutre $e \in G$
- $\forall x \in G, \exists x' \in G \text{ tel que } x * x' = x' * x = e \text{ (on dit que } x' \text{ est l'élement inverse ou symétrique de } x \text{ pour *)}$

Remarques 1.1. Si de plus * est commutative, alors le groupe est dit abélien (ou commutatif).

Example 1.1. Si X est un ensemble, notons Bij(X), l'ensemble des application de X dans X admettant une application réciproque

$$\forall \ f : X \to X, \ \exists \ g : X \to X, \ g \circ f = f \circ g = \mathrm{Id}_X : \begin{cases} X & \to X \\ x & \mapsto x \end{cases}$$

Ainsi $(Bij(X), \circ)$ est un groupe.

Proposition 1.1.

Si(G,*) est un groupe alors

- (a) L'élement neutre de G est unique
- (b) Chaque $x \in G$ admet un unique élement inverse
- (c) $Si \ x, y, z \in G \ tel \ que \ x * y = z * y \ alors \ x * y \ (indépendament \ de \ l'ordre)$

Démonstration 1.1.

(a) Soient e, e' des élements neutres de G par *, e * e' = e' * e = e = e'

(b) Soient x', x" des élements inverse de
$$x \in G$$
, $x' = x' * e = x' * (x * x'') = (x' * x) * x'' = e * x'' = x''$

(c) Posons
$$x^{-1} * (x * y) = x^{-1} * (x * z) \implies (x^{-1} * x) * y = (x^{-1} * x) * z \implies e * y = e * z \implies y = z$$

Remarques 1.2. Lorsqu'il n'y a pas d'ambiguïtés, l'inverse d'un élement x sera noté x^{-1} . Notons que $(x^{-1})^{-1} = x$

Définition 1.4. Soit (G, *) un groupe. Soit $H \subset G$, on dit que H est un **sous-groupe** de G lorsque les condtions suivantes sont vérifiées.

• $\forall x, y \in H, \ x * y \in H.$ On dit que H est stable par *

• Muni de *, H est un groupe

Proposition 1.2.

Soit (G, *) un groupe et $H \subset G$. Les conditions suivantes sont équivalentes.

- (a) H est un sous groupe de G
- **(b)** $H \neq \emptyset$, H est stable par * et par passage au symétrique $(\forall x \in H, x^{-1} \in H)$
- **(b)** $H \neq \emptyset$ et $\forall x, y \in H$, $x * y^{-1} \in H$

Démonstration 1.2.

- $D\acute{e}montrons \ que \ (a) \implies (b).$
- \diamond H est un sous groupe donc doit admettre un élement neutre (e_H) donc $H \neq \emptyset$. Montrons que $e_H = e_G$, on a $e_H * e_H = e_H = e_G + e_H = e_G$.
- ♦ La stabilité par * fait partie de la définition de sous groupe.
- \diamond Soit $x \in H$, soit s' son symétrique dans H. x' est aussi un symétrique dans G. Dans G par unicité du symétrique $x^{-1} = x' \in H$.
- $D\'{e}montrons que (b) \implies (c)$.
- \diamond Soient $x, y \in H$. Alors $y^{-1} \in H$ et encore par $x * x^{-1} \in H$.
- $D\acute{e}montrons\ que\ (c) \implies (a)$.
- \diamond l'associativité est montré par $\forall x, y, z \in H, x, y, z \in G, x * (y * z) = (x * y) * z$
- \diamond l'élement neutre par $\exists x \in H, e = x * x^{-1} \in G$, ainsi $\forall x \in H, x \in G$
- \diamond l'élement inverse par $x \in H$, prenons y = e, ainsi $x^{-1} * e = x^{-1}$, ici x^{-1} est le symétrique de x dans H.
- \diamond la stabilité par * dans H par $x, y \in H$, posons $z = y^{-1}$, ainsi $x * y = x * z^{-1} \in H$.

Finalement par implication circulaire nous avons démontré que $(a) \iff (b) \iff (c)$

Définition 1.5. Soient (G, *) et (H, \square) deux groupes.

On appelle morphisme de groupes toute application $f: G \to H$ vérifiant

$$\forall x,y \in G, f(x*y) = f(x) \Box f(y)$$

Proposition 1.3.

Si $f: G \to H$ est un morphisme de groupe, alors $f(e_G) = e_H$

Démonstration 1.3.

$$f(e_G) = f(e_G * e_G) = f(e_G) \square f(e_G)$$

$$f(e_G) = f(e_G) \square e_H$$

$$f(e_G) \square f(e_G) = f(e_G) \square e_H \implies f(e_G) = e_H$$

Proposition 1.4.

Si $f: G \to H$ est un morphisme de groupe, alors $\forall x \in G, f(x^{-1}) = f(x)^{-1}$

Démonstration 1.4.

$$f(x^{-1}) = f(x^{-1})\Box f(x)\Box f(x)^{-1} = f(x^{-1}*x)\Box f(x)^{-1} = f(x)^{-1}$$

1.3 Anneaux et Corps

Définition 1.6. Un anneau est $(A, +, \times)$ où A est un ensemble, + et x sont deux l.c.i sur A vérifiant les axiomes suivants

- (A, +) est un groupe abélien (on note 0_A sont élément neutre)
- × est associative
- × est distributive sur +

Remarques 1.3. On dit que $(A, +, \times)$ est un anneau commutatif si, de plus \times est commutative.

Un élément $x \in A$ est dit inversible dans A lorsqu'il adment un symétrique pour \times .

Proposition 1.5.

Soit
$$(A, +, \times)$$
 un anneau alors $\forall x \in A, \ 0_A \times x = 0_A$

Démonstration 1.5.

$$0_A \times x = (0_A + 0_A) \times x$$

= $0_A \times x + 0_A \times x \implies 0_A = 0_A \times x \ (par \ soustraction \ de \ 0_A \times x)$

Proposition 1.6.

Soient $x, y, z \in A$, Si $x \times z = y \times z$ et z est inversible alors x = y

Démonstration 1.6.

$$x \times z = y \times z \implies (x \times z) \times z^{-1} = (y \times z) \times z^{-1}$$
$$\implies x \times (z \times z^{-1}) = y \times (z \times z^{-1})$$
$$\implies x \times 1_A = y \times 1_A$$
$$\implies x = y$$

Définition 1.7. Un **corps** est la donnée d'un triplet $(k, +, \times)$ où k est un ensemble, + et \times sont deux l.c.i sur k vérifiant les axiomes suivants:

- $(\mathbb{k}, +, \times)$ est un anneau commutatif
- (k^*, \times) est un groupe abélien (de neutre noté 1_k).

Remarques 1.4. De manière équivalente, un corps est un anneau commutatif avec un élément neutre pour \times où tout élément non-nul est inversible.

2 Arithmétique des entiers

2.1 Rappels sur \mathbb{N} et \mathbb{Z}

Théorème 2.1. (propriétés $de + et \times sur \mathbb{N}$)

- (a) + et \times sont associative et commutative sur \mathbb{N}
- (b) 0 est élement neutre pour + tandis que 1 est neutre pour \times
- (c) Il y a une distributivité de × sur +
- (d) $\forall x, y, m \in \mathbb{N}, x + m = y + m \implies x = y$

Théorème 2.2. $(propriétés de \leq sur \mathbb{N})$

- 1) (relation d'ordre total) $\forall m, n, p \in \mathbb{N}$
- (a) $n \leq n$
- (b) $m \le n \land n \le m \iff m = n$
- (c) $m < n \land n < p \implies m < p$
- (d) $m \le n \lor n \le m$
- 2) Les opérations + et \times sont compatibles avec la relation d'ordre $\forall n, m, p \in \mathbb{N}, n \leq m \implies (n + p \leq m + p) \land (n \times p \leq m \times p)$
- 3) $\forall n \in \mathbb{N}, \ 0 \leq n$
- 4) $\forall n, m \in \mathbb{N}, \forall p \in \mathbb{N}^*, n \leq m \implies n \times p \leq m \times p$

Théorème 2.3.

- 1. Toute partie finie de N admet un plus grand élément.
- 2. Toute partie non vide de N admet un plus petit élément.
- 3. Toute partie non vide et majorée de N admet un plus grand élément.
- 4. N n'admet pas de plus grand élément.

Théorème 2.4. (propriétés $de + et \times sur \mathbb{Z}$)

- (a) + et \times sont associative et commutative sur \mathbb{Z}
- (b) 0 est élement neutre pour + tandis que 1 est neutre pour ×
- (c) Il y a une distributivité de \times sur +
- (d) Tout $m \in \mathbb{Z}$ admet un symétrique (élément inverse), $-m \in \mathbb{Z}$ pour +

Théorème 2.5. (propriétés $de < sur \mathbb{Z}$)

- 1) \leq est une relation d'ordre totale sur \mathbb{Z} .
- 2) Soient $n, m, p \in \mathbb{Z}$
- (a) $n \le m \iff n+p \le m+p$
- (b) $\forall p \in \mathbb{Z}_{+}^{*}, n \leq m \iff np \leq mp$
- (c) $\forall p \in \mathbb{Z}_{-}^{*}, n \leq m \iff mp \leq np$
- (d) $\forall p \in \mathbb{Z}^*, m = n \iff mp = np$

2.2 Arithmétique élémentaire dans $\mathbb Z$

Définition 2.1. Soient x et y dans \mathbb{Z} . On dit que x divise y s'il existe $k \in \mathbb{Z}$ tel que y = kx. La notation associée est $x \mid y$. x est un diviseur de y ou y est un multiple de x

Remarques 2.1.

- tout entier relatif divise 0.
- 0 divise uniquement 0.
- si x est un diviseur de y alors (-x) est un diviseur de y
- 1 et -1 sont les diviseurs de tout entier relatifs.
- les diviseurs de 1 et -1 sont 1 et -1
- $\forall x, y \in \mathbb{N}^*, \ x \mid y \implies x \leq y$

Définition 2.2. On dit que $p \in \mathbb{N}$, $p \geq 2$ est un nombre premier si les seuls diviseurs positifs de p sont 1 et p.

Remarques 2.2. Une autre définition est tout nombre qui a exactement 2 diviseurs.

Remarques 2.3. Pour vérifier qu'un nombre est premier, on peut regarde pour chaque $\forall k \in \mathbb{N}, k \leq \sqrt{p}$ si k divise p.

Définition 2.3. Soit $n \in \mathbb{Z}^*$, on appelle décomposition en facteurs premiers de n une écriture de la forme

$$n = c \prod_{i=1}^{k} p_i = c(p_1 \times \dots \times p_k)$$

 $où c \in \{\pm 1\}, k \in \mathbb{N}, p_1, ..., p_k \text{ sont premiers}$

Proposition 2.1.

Tout $n \in \mathbb{Z}^*$ admet une décomposition en facteurs premier.

Démonstration 2.1.

Il suffit de le démontrer pour $n \in \mathbb{N}^*$ et c=1 et pour les négatifs on se ramène à \mathbb{N}^* en posant c=-1

Démonstration par récurrence forte.

Initialisation: n = 1, on pose c = 1, k = 0, c'est un produit vide.

Initialisation: Soit $n \in \mathbb{N}^*, \forall d \leq n$, on ait une telle décomposition. Si n+1 est premier, on pose k=1 $P_1=n+1$. Si n+1 n'est pas premier il admet un diviseur $d \in [2,n]$. Par hypothèse de récurrence $d=c \times p_1 \times ... \times p_k$. De même $d'=\frac{n+1}{d} \in [2;n]$ $d'=p'_1 \times ... \times p'_k$.

Donc $n+1=d\times d'=p_1\times\ldots\times p_k\times p_1'\times\ldots\times p_k'$

Corollaire 2.1. Tout entier $n \geq 2$ admet au moins un diviseur premier

Proposition 2.2.

L'ensemble des nombre premiers est infini.

Démonstration 2.2.

Supposons (par l'absurde) qu'il y ait un nombre fini de nombres premiers $p_1, ..., p_m$ On pose $N = p_1 \times ... \times p_m + 1$

Alors N admet un diviseur premier $p_i(i \in [i; m])$ i.e. $N = p_i N' \implies N = \prod p_j + 1 \implies p_i N' - p_i \prod_{i \neg j} p_j = 1 \implies p_i (N' - multi_{j \neg i} p_j) = 1$

2.3 Division euclidienne

Théorème 2.6. Soient $a \in \mathbb{Z}, b \in \mathbb{N}*$.

Alors il existe un unique couple $(q,r) \in \mathbb{Z} \times \mathbb{N}, a = bq + r \text{ avec } b > r \geq 0$

Démonstration 2.3.

Existence: Pour $a \in \mathbb{N}$, raisonnement par récurrence.

Initialisation: a = 0: On pose q = 0 et $r = 0 \implies 0 = b \times 0 + 0$

Hérédité: $Si \ a = bq + r \ avec \ (b > r \ge 0)$

Alors a+1 = bq + (r+1), C'est une division euclidienne lorsque $r+1 < b \implies r < l-1$ Lorsque r = b-1

a+1=bq+((b-1)+1)=bq+b=b(q+1)+0, C'est une division euclidienne.

Si a < 0 alors (-a) > 0 Donc $\exists (q, r) \in \mathbb{Z} \times \mathbb{N}, -a = bq + r \implies a = b \times (-q) + (-r)$ avec (b > r > 0)

 $\overrightarrow{Si} r = 0$, c'est une division euclidienne.

 $Sinon -b < -r < 0 \implies 0 < -r + b < b$

Donc $a = b \times (-q) + (-r+b) - b = b \times (-q-1) + (-r+b)$ C'est un division euclidienne.

Unicité: Si a = bq + r et a = bq' + r' avec $b > r, r' \ge 0$

Par soustraction: $0 = b(q - q') + r - r' \implies r' - r = b(q - q')$

 $b-1 \ge r'-r \ge -b-1 \ Donc \ r'-r=0 \implies r=r'$

 $Ainsi\ bq + r = bq' + r' \implies bq = bq' \implies q = q'$

2.4 PGCD, PPCM

Définition 2.4. le **pgcd** de deux nombres $a, b \in \mathbb{Z}^*$ est le plus grand diviseur commun à a et b. Il est noté PGCD(a,b) (ou encore $a \wedge b$)

On dit que a et b sont premiers entre eux si PGCD(a, b) = 1.

Le **ppcm** de deux nombres $a, b \in \mathbb{Z}^*$ est le plus petit multiple strictement positif commun à a et b. Il est noté PPCM(a, b) (ou encore $a \lor b$)

Proposition 2.3.

$$\forall a, b \in \mathbb{Z}^*, PGCD(a, b) \times PPCM(a, b) = |ab|$$

Démonstration 2.4.

Si on remplace a et b par leurs valeurs absolues: ||a||b|| = |ab|Les multiples et les diviseurs de |a| et de a sont les mêmes. Donc PGCD(a,b) = PGCD(|a|,|b|) et PPCM(a,b) = PPCM(|a|,|b|)Ainsi il suffit de montrer le résultat pour $a,b \in \mathbb{N}^*$ On pose d = PGCD(a,b) $\exists a',b' \in \mathbb{N}^*, a = da'$ et b = db' $\frac{ab}{d} = \frac{da'b}{d} = a'b \frac{ab}{d} = \frac{adb'}{d} = ab'$

Méthode 2.1.

L'algorithme d'Euclide:

Le PGCD peut se calculer avec l'algorithme d'Euclide:

- 1. (Eventuellement) remplacer a et b par |a| et |b|
- 2. De manière récursive:
- **2.1** Calculer la division euclidienne de a par b: a = bq + r
- **2.2** Si $r \neq 0$: recommencer en remplcaçant (a, b) par (b, r) Sinon sortir de la récursion

3. Le pgcd est le dernier reste non-nul calculé.

Proposition 2.4.

Si d est un diviseur commun à a et b alors $d \mid PGCD(a, b)$

Corollaire 2.2. Le PGCD est aussi le plus grand diviseur commun au sens de la divisibilité.

3 Arithmétique avancée dans $\mathbb Z$

3.1 Bézout, Gauss

Proposition 3.1 (Bézout).

Soient
$$a, b \in \mathbb{Z}^*$$
. Il existe $u, v \in \mathbb{Z}$ tels que $au + bv = PGCD(a, b)$

Méthode 3.1.

Pour trouver une relation de Bezout, il suffit de remonter l'algorithme d'Euclide. Que l'on appelle l'algorithme d'Euclide étendu.

- 1. Faire l'algorithme d'Euclide
- 2. Réecrire le reste avec les autres valeurs

Lemme 3.1. Les sous-groupes de \mathbb{Z} sont les $n\mathbb{Z} := \{nk \mid k \in \mathbb{Z}\}$ avec $n \in \mathbb{Z}$

Démonstration 3.1.

- $n\mathbb{Z}$ sous groupe de $(\mathbb{Z}, +)$ (cf TD1)
- Soit H un sous groupe de $(\mathbb{Z}, +)$ alors $0 \in H$

- $Si H = \{0\} alors H = 0\mathbb{Z}$
- Sinon il existe un x non nuls dans H, alors $(-x) \in H$ "A completer"

Corollaire 3.1. Soient $a, b \in \mathbb{Z}$ alors $a\mathbb{Z} + b\mathbb{Z} = \{au + bv | u, v \in \mathbb{Z}\} = \delta\mathbb{Z}$ où $\delta = \operatorname{PGCD}(a, b)$

Démonstration 3.2.

Soient $u, v \in \mathbb{Z}$ et c = au + bv. Comme δa et δb alors δc .

Réciproquement, soit $c \in \delta \mathbb{Z}$, il existe un c' dans \mathbb{Z} tel que $c = \delta c'$. Par Bézout, il existe $u', v' \in \mathbb{Z}$ tels que $au' + bv' = \delta$, en multipliant par c' on a $au'c' + bv'c' = \delta c' = c$. Il suffit alors de poser u = u'c' et v = v'c'.

On dit alors que le sous groupe **engendré par** a et b coïncide avec le sous groupe engendré par leurs PGCD.

Proposition 3.2 (Gauss).

Soient $n, a, b \in \mathbb{Z}^*$ tels que n|ab et PGCD(n, a) = 1. Alors n|b.

Démonstration 3.3.

Par Bezout, il existe u et v tels que nu + av = 1. Donc nub + abv = b. De ab = nk (pour un $k \in \mathbb{Z}$), on déduit n(ub + kv) = b. Donc n|b.

3.2 Unicité de la décomposition en facteurs premiers

Lemme 3.2.

1. Soient $a, b, c \in \mathbb{Z}^*$

$$\left. \begin{array}{l} \operatorname{PGCD}(c, a) = 1 \\ \operatorname{PGCD}(c, b) = 1 \end{array} \right\} \implies \operatorname{PGCD}(c, ab) = 1$$

- 2. Soient p un nombre premier et $a, b \in \mathbb{Z}^*$
 - (a) On a PGCD(a, p) = 1 ou p|a
 - (b) On a $[p|ab \implies (p|aoup|b)]$

Démonstration 3.4.

À faire

Proposition 3.3.

Une décomposition en facteurs premier est unique à l'ordre des facteurs près.

Démonstration 3.5.

À faire

3.3 Résolution des équations diophantiennes

Soient $a, b \in \mathbb{Z}^*$ et $c \in \mathbb{Z}$.

On cherche à résoudre l'équation suivante d'inconnues entères u, v

$$au + bv = c$$

Méthode 3.2.

1. Posant $\delta = PGCD(a, b)$, on $a = \delta a'$, $b = \delta b'$ et $c = \delta c'$ avec $a', b', c' \in \mathbb{Z}$ on a donc

$$a'u + b'v = c'$$

Soit d = PGCD(a', b') alors $d\delta$ est un diviseur commun à $a = \delta a'$ et $b = \delta b'$. Par maximalité du diviseur commun δ , on a d = 1. Donc a' et b' sont premier entre eux.

- 2. Bézout nous fournit une solution à l'équation a'u + b'v = 1, qu'il suffit de multiplier par c' pour avoir une solution particulière (u_0, v_0) .
- 3. Soit $(u, v) \in \mathbb{Z}^2$ une solution. a'u + b'v = c' et $a'u_0 + b'v_0 = c'$ donc $a'(u u_0) + b'(v v_0) = 0$. On a PGCD(a', b') = 1 donc, d'après Gauss, $a'|(v v_0)$. Donc $\exists k \in \mathbb{Z}$ tel que $v v_0 = ka' \implies v = v_0 + ka'$ donc $u = u_0 b'k$.
- 4. L'ensemble des solutions est donc contenu dans $\{u_0 b'k, v_0 + a'k \mid k \in \mathbb{Z}\}$

4 Arithmétique modulaire : $(\mathbb{Z}/n\mathbb{Z})$

Définition 4.1. Soient $a, b \in \mathbb{Z}$. On dit que a et b sont **congrus modulo** n si $a-b \in n\mathbb{Z}$. On note alors $a \equiv b[n]$ ou encore $a \equiv b \mod n$.

Proposition 4.1.

- 1. On $a \ a \equiv b[n] \iff \exists k \in \mathbb{Z}, a = b + kn$.

 On note $\bar{b} := \{b + nk \mid k \in \mathbb{Z}\} = \{a \in \mathbb{Z} \mid a \equiv b[n]\}$. On l'appelle la classe de congruence.
- 2. Supposons que a = nq + r soit la division euclidienne de a par n. Alors $\overline{a} = \overline{r}$.
- 3. If y a exactement n classes de congruence distinctes : les \overline{r} , pour $r \in \{0, 1, ..., n-1\}$. Elles sont disjointes 2 à 2.

Définition 4.2. On note $\mathbb{Z}/n\mathbb{Z}$ l'ensemble des classes de congruences. $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, ..., \overline{n-1}\}$ est un ensemble fini à n élements.

Démonstration 4.1.

À faire

Remarques 4.1. La congruence est un relation d'équivalence ainsi les classes congruences sont les classes d'équivalences pour la relation de congruence.

Ainsi $\mathbb{Z}/n\mathbb{Z}$ se réinterprète comme \mathbb{Z}/R avec $xRy \iff x \equiv y[n]$

4.1 L'anneau $(\mathbb{Z}/n\mathbb{Z}, +, \times)$

Proposition 4.2.

Soient $a, a', b, b' \in \mathbb{Z}$ tels que $a \equiv a'[n]$ et $b \equiv b'[n]$ Alors $a + b \equiv a' + b'[n]$

Démonstration 4.2.

$$(a - a') = kn$$
 et $(b - b') = k'n$ avec $k, k' \in \mathbb{Z}$
 $(a + b) - (a' + b') = a - a' + b - b' = kn + k'n = (k + k')n$

 $Donc\ a + b \equiv a' + b'[n]$

Définition 4.3. Soient $a, b \in \mathbb{Z}$. On pose dans $\mathbb{Z}/n\mathbb{Z} : \overline{a} + \overline{b} = \overline{a+b}$ et $\overline{a} \times \overline{b} = \overline{a \times b}$

Proposition 4.3.

 $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un anneau commutatif unitaire.

 $\overline{0}$ est l'élement neutre pour l'addition et $\overline{1}$ est l'élement neutre pour la multiplication.

Démonstration 4.3.

 $\grave{A} faire$

Example 4.1. On peut faire des tables d'addition et de multiplication dans $\mathbb{Z}/n\mathbb{Z}$. Par exemple la table de multiplication de $\mathbb{Z}/3\mathbb{Z}$

×	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
$\overline{1}$	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{1}$

Lemme 4.1. Soient a et b dans \mathbb{Z} tels que $a \equiv b[n]$.

Pour tout $p \in \mathbb{N}^*, a^p \equiv b^p[n]$

Démonstration 4.4.

 \grave{A} faire

Remarques 4.2. En revanche on n'a pas $p \equiv q[n] \implies a^p \equiv a^q[n]$

Théorème 4.1. $\{\mathbb{Z}/n\mathbb{Z}, +, \times\}$ est un corps si et seulement si n est premier.

Démonstration 4.5.

 λ faire

4.2 Restes chinois (aka le restau chinois)

Théorème 4.2 (des restes chinois).

Soient $n_1, n_2, ..., n_k \in \mathbb{N}^*$, tels que $\forall i \in \mathbb{N}^*, n_i \geq 2$ et deux à deux premiers entre eux. Alors pour tous $a_1, ..., a_k \in \mathbb{Z}$, il existe $x \in \mathbb{Z}$, unique modulo $n := \prod n_i$, tel que

$$\forall i \in [1, k], x \equiv a_i mod n_i$$

Plus formellement, on a une application bijective,

$$\varphi := \begin{cases} \mathbb{Z}/n\mathbb{Z} \to (\mathbb{Z}/n_1\mathbb{Z}) \times ... \times (\mathbb{Z}/n_k\mathbb{Z}) \\ x \mod n \mapsto (x \mod n_1, ..., x \mod n_k) \end{cases}$$

Démonstration 4.6.

À faire

Remarques 4.3. φ est un isomorphisme d'anneau. (respecte l'addition et la multiplication).

Méthode 4.1.

À faire

5 Polynômes et Fractions rationnelles

Définition 5.1. Un polynôme à coefficient dans \mathbb{k} : une suite $A = (a_n)_{n \in \mathbb{N}}$ telle que $\exists N \in \mathbb{N}, \forall n > N, a_n = 0$.

On écrira souvent $A = a_0 + a_1 X + a_2 X^2 + ... + a_N X^N = \sum_{i=0}^N a_i X^i = \sum_{i \in \mathbb{N}} a_i X^i = \sum_{i \in$

polynôme nul: tous les coefficients sont nuls.

polynôme constant: $\forall i > 0, a_i = 0 \ (A = cX^0 = c \ où \ c \in \mathbb{k})$

monôme : polynôme de la forme

Symbole de Kronecker $\delta_{i,j} = 1$ si i = j sinon 0

Propriétés 5.1.

Démonstration 5.1.

Soient
$$A = \sum (a_i X^i)$$
 et $B = \sum (b_i X^i)$
 $C = A + B$ avec $c_i = a_i + b_i$
 $Si \ i > max(deg A, deg B)$ alors