BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer

Authors: Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang

Докладчик: Андрей Семенов #ods recommender systems

BERT4Rec: Sequential **recommendation** with bidirectional encoder representations from **transformer**

F Sun, J Liu, J Wu, C Pei, X Lin, W Ou... - Proceedings of the 28th ..., 2019 - dl.acm.org

... Here, we introduce a new sequential **recommendation** model ... from **Transformers** to a new task, sequential **Recommendation**. It is built upon the popular self-attention layer, "**Transformer** ...

☆ Save 55 Cite Cited by 894 Related articles All 9 versions

INTRODUCTION

Unidirectional architectures:

- a) restrict the power of hidden representation in users' behavior sequences;
- b) often assume a rigidly ordered sequence which is not always practical.

(c) SASRec model architecture.

(d) RNN based sequential recommendation methods.

INTRODUCTION

Bidirectional architectures:

all items in the bidirectional model can leverage the contexts from both left and right side.

The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning)

INTRODUCTION

Jointly conditioning on both left and right context in a deep bidirectional model would cause information leakage


```
Every now and then I feel a newly-qualified teacher who wants try everything new that he comes (honestly it doesn't happen that often any more when it does I take advantage it!) one these moments, I tried this amazing piece software create cloze texts
```

RELATED WORK

Sequential Recommendation:

- Markov chains (MCs)
- RNN
- Convolutional Sequence Model (Caser)

Attention Mechanism:

- RNN with attention mechanism
- Self-Attentive Sequential Recommendation (SASRec)

Problem Statement

- $\mathcal{U} = \{u_1, u_2, \dots, u_{|\mathcal{U}|}\}$ set of users
- $\mathcal{V} = \{v_1, v_2, \dots, v_{|\mathcal{V}|}\}$ set of items
- $S_u = [v_1^{(u)}, \dots, v_t^{(u)}, \dots, v_{n_u}^{(u)}]$ interaction sequence in chronological order for user $u \in U$

It can be formalized as modeling the probability over all possible items for user u at time step n_u+1 :

$$p(v_{n_u+1}^{(u)} = v|\mathcal{S}_u)$$

BERT4Rec Architecture

Position-wise Feed-Forward Network:

$$PFFN(\mathbf{H}^{l}) = \left[FFN(\mathbf{h}_{1}^{l})^{\top}; \dots; FFN(\mathbf{h}_{t}^{l})^{\top}\right]^{\top}$$

$$FFN(\mathbf{x}) = GELU(\mathbf{x}\mathbf{W}^{(1)} + \mathbf{b}^{(1)})\mathbf{W}^{(2)} + \mathbf{b}^{(2)}$$

$$GELU(\mathbf{x}) = \mathbf{x}\Phi(\mathbf{x})$$
(3)

LN(x + Dropout(sublayer(x))

Multi-Head Self-Attention:

$$\begin{aligned} & \text{MH}(\boldsymbol{H}^l) = [\text{head}_1; \text{head}_2; \dots; \text{head}_h] \boldsymbol{W}^O \\ & \text{head}_i = \text{Attention} \big(\boldsymbol{H}^l \boldsymbol{W}_i^Q, \boldsymbol{H}^l \boldsymbol{W}_i^K, \boldsymbol{H}^l \boldsymbol{W}_i^V \big) \end{aligned} \tag{1}$$

$$Attention(Q, K, V) = \operatorname{softmax} \left(\frac{QK^{\top}}{\sqrt{d/h}} \right) V$$
 (2)

(a) Transformer Layer.

BERT4Rec Architecture

Output Layer:

$$P(v) = \operatorname{softmax} \left(\operatorname{GELU}(\boldsymbol{h}_t^L \boldsymbol{W}^P + \boldsymbol{b}^P) \boldsymbol{E}^\top + \boldsymbol{b}^O \right)$$

Stacking Transformer Layer:

$$H^{l} = \operatorname{Trm}(H^{l-1}), \quad \forall i \in [1, \dots, L]$$
(4)

$$\mathsf{Trm}(\boldsymbol{H}^{l-1}) = \mathsf{LN}\left(\boldsymbol{A}^{l-1} + \mathsf{Dropout}\left(\mathsf{PFFN}(\boldsymbol{A}^{l-1})\right)\right) \tag{5}$$

$$A^{l-1} = LN(H^{l-1} + Dropout(MH(H^{l-1})))$$
 (6)

Embedding Layer:

$$\boldsymbol{h}_i^0 = \boldsymbol{v}_i + \boldsymbol{p}_i$$

(b) BERT4Rec model architecture.

Model Learning

Training:

Input:
$$[v_1, v_2, v_3, v_4, v_5] \xrightarrow{\text{randomly mask}} [v_1, [\text{mask}]_1, v_3, [\text{mask}]_2, v_5]$$
Labels: $[\text{mask}]_1 = v_2$, $[\text{mask}]_2 = v_4$

Negative log-likelihood loss
$$\mathcal{L} = \frac{1}{|\mathcal{S}_u^m|} \sum_{v_m \in \mathcal{S}_u^m} -\log P(v_m = v_m^* | \mathcal{S}_u')$$
 (8)

Test:

- Cloze objective is to predict the current masked item
- Sequential recommendation aims to predict the future

- Append the special token "[mask]" to the end of user's behavior sequence
- 2. Produce samples that only mask the last item in the input sequences during training

Table 1: Statistics of datasets.

Datasets	#users	#items	#actions	Avg. length	Density
Beauty	40,226	54,542	0.35m	8.8	0.02%
Steam	281,428	13,044	3.5m	12.4	0.10%
ML-1m	6040	3416	1.0m	163.5	4.79%
ML-20m	138,493	26,744	20m	144.4	0.54%

Table 2: Performance comparison of different methods on next-item prediction. Bold scores are the best in each row, while underlined scores are the second best. Improvements over baselines are statistically significant with p < 0.01.

Datasets	Metric	POP	BPR-MF	NCF	FPMC	GRU4Rec	GRU4Rec ⁺	Caser	SASRec	BERT4Rec	Improv.
	HR@1	0.0077	0.0415	0.0407	0.0435	0.0402	0.0551	0.0475	0.0906	0.0953	5.19%
	HR@5	0.0392	0.1209	0.1305	0.1387	0.1315	0.1781	0.1625	0.1934	0.2207	14.12%
Danita	HR@10	0.0762	0.1992	0.2142	0.2401	0.2343	0.2654	0.2590	0.2653	0.3025	14.02%
Beauty	NDCG@5	0.0230	0.0814	0.0855	0.0902	0.0812	0.1172	0.1050	0.1436	0.1599	11.35%
	NDCG@10	0.0349	0.1064	0.1124	0.1211	0.1074	0.1453	0.1360	0.1633	0.1862	14.02%
	MRR	0.0437	0.1006	0.1043	0.1056	0.1023	0.1299	0.1205	0.1536	0.1701	10.74%
	HR@1	0.0159	0.0314	0.0246	0.0358	0.0574	0.0812	0.0495	0.0885	0.0957	8.14%
	HR@5	0.0805	0.1177	0.1203	0.1517	0.2171	0.2391	0.1766	0.2559	0.2710	5.90%
C4	HR@10	0.1389	0.1993	0.2169	0.2551	0.3313	0.3594	0.2870	0.3783	0.4013	6.08%
Steam	NDCG@5	0.0477	0.0744	0.0717	0.0945	0.1370	0.1613	0.1131	0.1727	0.1842	6.66%
	NDCG@10	0.0665	0.1005	0.1026	0.1283	0.1802	0.2053	0.1484	0.2147	0.2261	5.31%
	MRR	0.0669	0.0942	0.0932	0.1139	0.1420	0.1757	0.1305	0.1874	0.1949	4.00%
	HR@1	0.0141	0.0914	0.0397	0.1386	0.1583	0.2092	0.2194	0.2351	0.2863	21.78%
	HR@5	0.0715	0.2866	0.1932	0.4297	0.4673	0.5103	0.5353	0.5434	0.5876	8.13%
MT 1	HR@10	0.1358	0.4301	0.3477	0.5946	0.6207	0.6351	0.6692	0.6629	0.6970	4.15%
ML-1m	NDCG@5	0.0416	0.1903	0.1146	0.2885	0.3196	0.3705	0.3832	0.3980	0.4454	11.91%
	NDCG@10	0.0621	0.2365	0.1640	0.3439	0.3627	0.4064	0.4268	0.4368	0.4818	10.32%
	MRR	0.0627	0.2009	0.1358	0.2891	0.3041	0.3462	0.3648	0.3790	0.4254	12.24%
	HR@1	0.0221	0.0553	0.0231	0.1079	0.1459	0.2021	0.1232	0.2544	0.3440	35.22%
M. oo	HR@5	0.0805	0.2128	0.1358	0.3601	0.4657	0.5118	0.3804	0.5727	0.6323	10.41%
	HR@10	0.1378	0.3538	0.2922	0.5201	0.5844	0.6524	0.5427	0.7136	0.7473	4.72%
ML-20m	NDCG@5	0.0511	0.1332	0.0771	0.2239	0.3090	0.3630	0.2538	0.4208	0.4967	18.04%
	NDCG@10	0.0695	0.1786	0.1271	0.2895	0.3637	0.4087	0.3062	0.4665	0.5340	14.47%
	MRR	0.0709	0.1503	0.1072	0.2273	0.2967	0.3476	0.2529	0.4026	0.4785	18.85%

Question 1: Do the gains come from the bidirectional self-attention model or from the Cloze objective?

Table 3: Analysis on bidirection and Cloze with d = 256.

Model		Beauty		ML-1m			
1110401	HR@10	NDCG@10	MRR	HR@10	NDCG@10	MRR	
SASRec	0.2653	0.1633	0.1536	0.6629	0.4368	0.3790	
BERT4Rec (1 mask)	0.2940	0.1769	0.1618	0.6869	0.4696	0.4127	
BERT4Rec	0.3025	0.1862	0.1701	0.6970	0.4818	0.4254	

Question 2: Why and how does bidirectional model outperform unidirectional models?

Figure 2: Heat-maps of average attention weights on Beauty, the last position "9" denotes "[mask]" (best viewed in color).

Impact of Hidden Dimensionality d

Figure 3: Effect of the hidden dimensionality d on HR@ 10 and NDCG@ 10 for neural sequential models.

Impact of Mask Proportion ρ

Figure 4: Performance with different mask proportion ρ on d=64. Bold symbols denote the best scores in each line.

Impact of Maximum Sequence Length N

Table 4: Performance with different maximum length N.

		10	20	30	40	50
	#samples/s	5504	3256	2284	1776	1441
Beauty	HR@10	0.3006	0.3061	0.3057	0.3054	0.3047
	NDCG@10	0.1826	0.1875	0.1837	0.1833	0.1832
		10	50	100	200	400
	#samples/s	14255	8890	5711	2918	1213
ML-1m	HR@10	0.6788	0.6854	0.6947	0.6955	0.6898

Ablation Study

Table 5: Ablation analysis (NDCG@10) on four datasets. Bold score indicates performance better than the default version, while ↓ indicates performance drop more than 10%.

Architecture	Dataset						
Themteetare	Beauty	Steam	ML-1m	ML-20m			
L=2,h=2	0.1832	0.2241	0.4759	0.4513			
w/o PE	0.1741	0.2060	0.2155↓	0.2867↓			
w/o PFFN	0.1803	0.2137	0.4544	0.4296			
w/o LN	0.1642↓	0.2058	0.4334	0.4186			
w/o RC	0.1619↓	0.2193	0.4643	0.4483			
w/o Dropout	0.1658	0.2185	0.4553	0.4471			
1 layer $(L=1)$	0.1782	0.2122	0.4412	0.4238			
3 layers $(L=3)$	0.1859	0.2262	0.4864	0.4661			
4 layers $(L=4)$	0.1834	0.2279	0.4898	0.4732			
1 head $(h=1)$	0.1853	0.2187	0.4568	0.4402			
4 heads $(h = 4)$	0.1830	0.2245	0.4770	0.4520			
8 heads $(h = 8)$	0.1823	0.2248	0.4743	0.4550			

Links

- 1. <u>BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer</u>
- 2. <u>Self-Attentive Sequential Recommendation</u>
- 3. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
- 4. The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning)
- 5. <u>Author's implementation on tensorflow</u>
- 6. A Systematic Review and Replicability Study of BERT4Rec for Sequential Recommendation