

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

پردازش تصویر در حوزه فرکانس

Image Processing in Frequency Domain

فیلتر در حوزه فرکانس

- ابتدا تبدیل فوریه تصویر محاسبه میشود
 - سپس تبدیل فوریه پردازش میشود
- سپس تبدیل معکوس فوریه محاسبه میشود

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{+j2\pi(ux/M + vy/N)}$$

تبديل فوريه

كاهش نويز

• مدل نویز جمعشونده:

$$g(x,y) = f(x,y) + n(x,y)$$

- دستگاههای تصویربرداری مختلف دارای مدلهای نویز متفاوتی هستند
 - نویز گاوسی متداول ترین نویز است

n(x,y)

كاهش نويز

نویز متناوب

• این نوع نویز وابستگی مکانی دارد و با یک الگوی خاص در تصویر تکرار میشود

نویز متناوب

استخراج شکل

Shape Extraction

تشخیص خط

تشخيص دايره

تشخيص لبه

- شکلهای مورد نظر در مرز اشیاء قرار دارند و به همین دلیل نخستین گام در بسیاری از الگوریتمهای تشخیص شکل، تشخیص مرز اشیاء و لبههای تصویر است
 - یک لبه، مجموعهای از پیکسلهایی به هم پیوسته است که روی مرز دو ناحیه قرار دارند

تشخيص لبه

لبههای نویزی

لبههای نویزی

لبەھاى نويزى

لبههای نویزی

- حضور مقدار کمی نویز می تواند به میزان زیادی کار تشخیص لبه را توسط مشتق گیری سخت نماید
- هموارسازی تصویر قبل از استفاده از مشتق در کاربردهایی که نویز با چنین سطحی تصویر را تخریب میکند ضروری است
 - به طور ویژه، هموارسازی در جهت عمود بر جهت لبهیابی بسیار موثر است

$$\nabla f(x,y) = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

گرادیان تصویر

• گرادیان تابع دوبعدی f به صورت زیر تعریف میشود:

$$M(x,y) = \|\nabla f\| = \text{mag}(\nabla f) = \sqrt{g_x^2 + g_y^2} \approx |g_x| + |g_y|$$

• اندازه گرادیان

$$\alpha(x, y) = \operatorname{dir}(\nabla f) = \operatorname{atan2}(g_y, g_x)$$

• جهت گرادیان