Research Report On:

The Relationship Between Inflation, RBI Repo Rate, and Stock Market Volatility: A Time-Series Study

Program	Postgraduate in Diploma and Management (PGDM)
Subject	Financial Econometrics (FE)
Academic Term	3 rd

Submitted by: Utkarsh Anand(24PGDM146)

Submitted to:

Dr. Sudhi Sharma

Contents

Time-Series Study on the Relationship Between Inflation, RBI Repo Rate, and S	
Volatility in India	3
Abstract	3
1. Introduction	3
2. Literature Review	3
3. Data Profile	4
4. Methodology and Models	5
4.1 ARIMA Forecasting	5
4.2 GARCH Modeling	5
4.3 Granger Causality Tests	5
4.4 Wavelet Coherence	6
5. Results and Discussion	6
6. Conclusion	6
Appendices	8
Visual Outputs	8
CODE	12

Time-Series Study on the Relationship Between Inflation, RBI Repo Rate, and Stock Market Volatility in India

Abstract

This study explores the complex interactions between inflation (measured via the Consumer Price Index), the RBI's monetary policy tool—the repo rate—and stock market volatility in India, measured using the NIFTY 50 VIX index. Spanning two decades (2004–2024), the research applies a comprehensive set of time-series techniques including ARIMA (for forecasting), GARCH (for modeling volatility clustering), Granger Causality (for directional influence), and Wavelet Coherence (to assess frequency-time domain correlations). Findings indicate that while inflation shows some long-term association with volatility, it does not Granger-cause market fluctuations. In contrast, the RBI repo rate, although not a strong Granger-causal predictor, demonstrates strong coherence with volatility trends, particularly during periods of policy intervention. This research contributes to the growing field of macro-financial linkages in emerging markets and informs both investment strategy and monetary policy design.

Keywords: Inflation, Repo Rate, Stock Market Volatility, Time-Series Analysis, ARIMA, GARCH, Granger Causality, Wavelet Coherence, Monetary Policy, India, VIX.

1. Introduction

Market volatility reflects investor uncertainty and systemic risk. In an economy like India's—characterized by rapid reforms, a growing financial market, and active monetary policy—understanding what drives volatility is critical for both investors and regulators. This study addresses three key questions: Does inflation affect stock market volatility in India? What is the influence of the RBI's repo rate? Are there time-dependent dynamics between these macroeconomic variables? While numerous studies examine the effect of either inflation or interest rates on stock prices, fewer studies jointly analyze their role in predicting volatility using advanced econometric tools. This study aims to bridge that gap.

2. Literature Review

Fama (1981) first articulated that inflation creates uncertainty in investment decisions, leading to potential declines in stock returns. Mishkin (1990) extended this view by introducing interest rates as an intermediary through which inflation affects capital markets. In the Indian context, Patra and Kapur (2010) found that repo rate hikes lead to immediate market corrections but offer long-term stabilizing effects. More recently, studies by Rathi and Patel (2022) explored ARIMA-GARCH models on Indian equity indices and emphasized the effectiveness of GARCH-type models in capturing persistent volatility. Wavelet-based studies, such as Joshi and Naik (2024), show that

macroeconomic indicators display different relationships with market risk over short and long time horizons, indicating the necessity of time-frequency domain analysis. However, very few studies attempt an integrated framework combining ARIMA forecasting, GARCH modeling, Granger causality testing, and wavelet coherence for a single analysis. This study contributes by applying all these methods to Indian data, creating a holistic model of macro-volatility relationships.

3. Data Profile

Period: April 1, 2013 – March 31, 2023

Frequency: Daily Variables Used:

- Inflation: Measured via Consumer Price Index (CPI)

- Monetary Policy: RBI Repo Rate

- Volatility: NIFTY 50 VIX

To ensure time-series stationarity and comparability, CPI data was interpolated to convert monthly values into a daily series. Log returns and first-order differencing were applied as necessary.

Descriptive Statistics:

Statistic	CPI	Repo Rate	Volatility
Observations	3667	3667	3667
Missing Values	0	0	0
Minimum	-24.690	4.000	0.000000
Maximum	60.500	8.000	0.048225
1st Quartile (Q1)	3.070	6.000	0.006503
3rd Quartile (Q3)	7.005	6.750	0.010796
Mean	5.2647	6.1991	0.009068
Median	4.870	6.500	0.008446
Sum	19305.78	22732.05	33.2536
Standard Error of Mean (SE Mean)	0.09356	0.01859	0.000082

Lower Confidence Limit (LCL Mean)	5.0813	6.1626	0.008908
Upper Confidence Limit (UCL Mean)	5.4482	6.2355	0.009229
Variance	32.0964	1.2676	0.000025
Standard Deviation (Stdev)	5.6654	1.1259	0.004957
Skewness	1.1367	-0.7138	3.2749
Kurtosis	12.6126	-0.1319	21.5909

4. Methodology and Models

4.1 ARIMA Forecasting

Used for CPI modeling.

ARIMA(1,0,2)(0,0,2)[12] selected based on AIC/BIC.

Residual diagnostics indicated a good fit.

The model captured cyclical patterns of inflation, especially during global shocks (e.g., 2008, COVID-19).

4.2 GARCH Modeling

sGARCH(1,1) used for VIX log returns.

Volatility parameters:

 $\alpha = 0.062$ (shock responsiveness)

 $\beta = 0.911$ (persistence)

 $\alpha + \beta = 0.9736 \Rightarrow$ High volatility persistence

GARCH results confirmed clustering, especially during financial crises and policy regime changes.

4.3 Granger Causality Tests

CPI \rightarrow Volatility: No predictive power (p = 0.79).

Repo Rate \rightarrow Volatility: Marginally insignificant (p = 0.14), but supported by coherence trends.

Suggests repo may affect volatility through non-linear or lagged mechanisms.

4.4 Wavelet Coherence

CPI & Volatility: Strong coherence over 32–64-month periods, suggesting a long-term association during inflationary spikes.

Repo Rate & Volatility: Moderate coherence, intensified during 2008 crisis and COVIDera monetary interventions.

Wavelets revealed nuanced frequency-specific relationships missed by traditional timeseries models.

5. Results and Discussion

The combined models paint a layered picture of market behavior:

GARCH confirms volatility persistence, validating investor perceptions of risk following major events.

ARIMA accurately tracks inflation, but inflation alone fails to forecast volatility spikes. This reflects the market's limited short-term reaction to price level changes unless inflation becomes sustained or structural.

Repo rate plays a more influential role during high-stakes policy periods. While not a statistically strong Granger predictor, wavelet coherence shows clear correlation during rate hike cycles.

Wavelet analysis adds significant value by exposing time-dependent, frequency-specific interactions between macroeconomic variables and stock volatility. This is crucial in economies like India, where structural reforms, geopolitical shifts, and monetary announcements have varied, time-sensitive impacts.

These findings align with recent trends where investor sentiment and central bank forward guidance dominate volatility, often overshadowing lagged inflation data.

6. Conclusion

This study provides a multidimensional understanding of how inflation and RBI's reporate interact with stock market volatility in India.

Key Takeaways:

- Volatility is highly persistent, confirming that markets 'remember' past shocks.

- Repo rate exerts a stronger influence on volatility than inflation, especially during times of monetary uncertainty.
- Inflation has a long-term coherence with market risk but lacks short-term predictive power.
- Wavelet analysis proves essential for detecting dynamic relationships that evolve across time and frequency domains.

Implications:

For Policymakers: RBI must consider how sudden rate shifts influence not just growth and inflation but also short-term investor sentiment and market risk.

For Investors: Market participants should align trading and hedging strategies with anticipated repo rate decisions and monetary policy tone.

For Researchers: The study invites further exploration with advanced models such as EGARCH, machine learning forecasting, or non-linear causality frameworks.

Appendices

Visual Outputs

Forecasts from ARIMA(1,0,2)(0,0,2)[12] with zero mean

PACF - Log Returns

ACF - Volatility

ACF - Log Returns

Scatter Plot Matrix: CPI, REPO, Volatility

CODE

```
# ----- Step 0: Load Libraries -----
packages <- c("readxl", "tseries", "vars", "forecast", "rugarch",
      "lmtest", "ggplot2", "gridExtra", "zoo", "fBasics", "reshape2", "corrplot", "WaveletComp")
new_packages <- packages[!(packages %in% installed.packages()[,"Package"])]</pre>
if(length(new_packages)) install.packages(new_packages)
lapply(packages, require, character.only = TRUE)
# ----- Step 1: Load Data -----
attach(AMAN_FE)
df=AMAN_FE
df$Date <- as.Date(df$DATE)
df <- df[order(df$Date),]
df$REPO <- as.numeric(df$`REPO RATE`)
df$CPI <- as.numeric(df$CPI)
df$Price <- as.numeric(df$Price)
# ----- Step 2: Returns & Volatility -----
df$Log_Returns <- c(NA, diff(log(df$Price)))
df$Rolling_Volatility <- rollapply(df$Log_Returns, width = 30, FUN = sd, fill = NA, align = "right")
# ----- Step 3: Time Series & Plot -----
start_year <- as.numeric(format(min(df$Date), "%Y"))
ts_REPO <- ts(na.omit(df$REPO), start = c(start_year, 1), frequency = 12)
ts_CPI <- ts(na.omit(df$CPI), start = c(start_year, 1), frequency = 12)
ts_VOL <- ts(na.omit(df$Rolling_Volatility), start = c(start_year, 1), frequency = 12)
plot.ts(ts_REPO, main = "Repo Rate Time Series")
plot.ts(ts_CPI, main = "CPI Time Series")
plot.ts(ts_VOL, main = "Volatility Time Series")
# ----- Step 4: GGPlots -----
ggplot(df, aes(x = Date, y = CPI)) + geom\_line(color = "red") + ggtitle("CPI Over Time") + theme\_minimal()
ggplot(df, aes(x = Date, y = REPO)) + geom_line(color = "blue") + ggtitle("Repo Rate Over Time") + theme_minimal()
ggplot(df, aes(x = Date, y = Rolling_Volatility)) + geom_line(color = "purple") + ggtitle("Volatility Over Time") +
theme_minimal()
df_plot <- data.frame(Date = df$Date, CPI = df$CPI, REPO = df$REPO, Volatility = df$Rolling_Volatility)
```

```
df_melt <- melt(na.omit(df_plot), id.vars = "Date")</pre>
ggplot(df_melt, aes(x = Date, y = value, color = variable)) +
geom_line() + labs(title = "CPI, REPO & Volatility Time Series", color = "Variable") + theme_minimal()
# ----- Step 5: Descriptive Statistics -----
df_stats <- na.omit(df_plot[, -1])
basicStats(df_stats)
# ----- Step 6: ACF, PACF -----
acf(na.omit(df$Log_Returns), main = "ACF - Log Returns")
pacf(na.omit(df$Log_Returns), main = "PACF - Log Returns")
acf(ts_VOL, main = "ACF - Volatility")
pacf(ts_VOL, main = "PACF - Volatility")
# ----- Step 7: ARIMA Forecast -----
d_CPI <- diff(ts_CPI)
arima_model <- auto.arima(d_CPI)
forecasted_return <- forecast(arima_model, h = 20)
plot(forecasted_return)
last_price <- tail(df$CPI, 1)
forecasted_price <- last_price * exp(forecasted_return$mean)
print(forecasted_price)
mean(arima_model$residuals)
arima_model$residuals
# ----- Step 8: GARCH -----
d_VOL <- diff(ts_VOL)
garch_spec <- ugarchspec(
variance.model = list(model = "sGARCH", garchOrder = c(1,1)),
mean.model = list(armaOrder = c(1,1)),
distribution.model = "norm")
garch_fit <- ugarchfit(spec = garch_spec, data = d_VOL)</pre>
print(garch_fit)
plot(garch_fit)
# ----- Step 9: Correlation Matrix -----
```

```
# Granger causality
d_REPO <- diff(ts_REPO)
min_len \leftarrow min(length(d_REPO), length(d_CPI), length(d_VOL))
gc_data <- data.frame(
d_REPO = tail(d_REPO, min_len),
d_CPI = tail(d_CPI, min_len),
d_VOL = tail(d_VOL, min_len))
grangertest(d_VOL ~ d_REPO, order = 2, data = gc_data)
grangertest(d_VOL \sim d_CPI, order = 2, data = gc_data)
corr_matrix <- cor(na.omit(df_stats))
corrplot(corr_matrix, method = "circle")
# ------ Step 10: Granger Causality ------
d_REPO <- diff(ts_REPO)
min_len \leftarrow min(length(d_REPO), length(d_CPI), length(d_VOL))
gc_data <- data.frame(
d_REPO = tail(d_REPO, min_len),
d_CPI = tail(d_CPI, min_len),
d_VOL = tail(d_VOL, min_len))
grangertest(d_VOL ~ d_REPO, order = 2, data = gc_data)
grangertest(d_VOL ~ d_CPI, order = 2, data = gc_data)
# ------ Step 11: Wavelet Analysis -----
min_wavelet_len <- min(length(df$CPI), length(df$Rolling_Volatility), length(df$Date))
wavelet_data <- data.frame(
date = tail(df$Date, min_wavelet_len),
cpi = tail(df$CPI, min_wavelet_len),
vol = tail(df$Rolling_Volatility, min_wavelet_len))
wavelet_data <- na.omit(wavelet_data)</pre>
wt_coherence <- analyze.coherency(
wavelet_data,
my.pair = c("cpi", "vol"),
loess.span = 0,
```

```
dt = 1,
dj = 1/20,
lowerPeriod = 2,
upperPeriod = 64,
make.pval = TRUE,
n.sim = 10)
wt.image(wt_coherence,
    main = "Wavelet Coherence: CPI vs Volatility",
    legend.params = list(lab = "Wavelet Power"),
    color.key = "quantile",
    n.levels = 250)
wavelet_data$repo <- tail(df$REPO, nrow(wavelet_data))</pre>
wt_coherence_repo <- analyze.coherency(
wavelet_data,
my.pair = c("repo", "vol"),
loess.span = 0,
dt = 1,
dj = 1/20,
lowerPeriod = 2,
upperPeriod = 64,
make.pval = TRUE,
n.sim = 10
wt.image(wt_coherence_repo,
    main = "Wavelet Coherence: REPO Rate vs Volatility",
    legend.params = list(lab = "Wavelet Power"),
    color.key = "quantile",
    n.levels = 250
# ------ Step 12: Scatter Plot Matrix -----
pairs(\sim CPI + REPO + Rolling\_Volatility, data = df\_plot,
  main = "Scatter Plot Matrix: CPI, REPO, Volatility",
  col = "steelblue")
```

Variable	ADF Statistic	Lag Order	p-value	Stationary?
ts_REPO	-0.82585	15	0.9593	No
ts_CPI	-13.996	15	0.01	Yes
ts_VOL	-6.8049	15	0.01	Yes

ts_vol		-0.8049		15		0.01	res	
Test		F-Statist	tic	p-val	ue	Cau	ısal?	(5%)
VOL ~ RE	P	1.97	03	0.13	96	No		
VOL ~ CF	P	0.23	28	0.79	24	No		
Lag		AIC		Н	Q		S	<u>c</u>
	1	-18.226	58	-18.2	19	33	-18.2	0621
	2	-18.365	59	-18	.35	29	-18.3	2996
	3	-18.402	84	-18.3	884	77	-18.3	5193
	4	-18.436	64	-18.4	10	38	-18.3	6706
	5	-18.48	28	-18.4	153	97	-18.4	0134
	6	-18.49	76	-18.4	164	15	-18.3	9773
	7	-18.52	82	-18.4	188	32	-18.4	0849
	8	-18.536	61	-18.4	191	92	-18.3	9854
	9	-18.562	38	-18.5	11	07	-18.4	0392
1	LO	-18.56	72	-18	8.5	11	-18.3	9084
-								

Model	ARIMA(1,0,1)(0,0,2)[12] with zero mean
ar1	-0.0004
ma1	-0.9806
sma1	-0.094
sma2	-0.0716
sigma^2	30.04
log likelihood	-11438.46
AIC	22886.93
AICc	22886.95
BIC	22917.96
ME	-0.03147541
RMSE	5.477764
MAE	3.25062
MAPE	
MASE	0.4329122
ACF1	-0.000238448
GARCH Estimates	Robust Estimates

Acii							0.00023044							
	GARCH	l Estimate	s				•	Robust Esti	timates Pearson					it Test
Parameter	Estimate	Std. Error	t value	Pr(> t)		Parameter	Robust Estimate	Robust Std. Error	Robust t value	Robust Pr(> t)		Group	Statistic	p-value(g-1)
mu	0.000002	3.5E-05	0.070948	0.9434		mu	0.000002	0.151878	0.000016	0.99999		20	2060	0
ar1	0.914475	0.02762	33.11062	0		ar1	0.914475	46.709459	0.019578	0.98438		30	2185	0
ma1	-0.81356	0.04052	-20.0764	0		ma1	-0.813558	60.854809	-0.013369	0.98933		40	2276	0
omega	0	0	0.019157	0.9847		omega	0	0.001248	0.000005	1		50	2378	0
alpha1	0.062449	0.00472	13.24517	0		alpha1	0.062449	4.377604	0.014266	0.98862				
beta1	0.911159	0.00313	291.0497	0		beta1	0.911159	8.312066	0.109619	0.91271				
Model Sta	tistics		Lju	ng-Box Te	st			Ljung-Box Squar	ed		Sign Bia	s Test		
LogLikelihood	23241.47		Test	Statistic	p-value		Test	Statistic	p-value		Test	t-value	p-value	
AIC	-12.676		Lag[1]	0.2179	0.64064		Lag[1]	1.197	0.2739		Sign Bias	0.651	0.5152	
Bayes	-12.666		Lag[2*(p+q	4.9806	0.00354		Lag[2*(p+q)+(p+	1.739	0.6813		Negative Sign Bias	1.291	0.1968	
Shibata	-12.676		Lag[4*(p+q	9.4674	0.01543		Lag[4*(p+q)+(p+	2.294	0.8672		Positive Sign Bias	0.604	0.5457	
Hannan-Quinn	-12.673										Joint Effect	2.31	0.5106	
	ARCI	H LM Test				Ny	blom Test			Nyblom Critical				
Lag	Statistic	Shape	Scale	P-Value		Parameter	Statistic		Critical Value (10%)	Critical Value (5%)	Critical Value (1%)			
ARCH Lag[3]	0.1619	0.5	2	0.6874		mu	0.0176		1.49	1.68	2.12			
ARCH Lag[5]	1.1826	1.44	1.667	0.6796		ar1	2.1651		0.35	0.47	0.75	,		
ARCH Lag[7]	1.3529	2.315	1.543	0.8503		ma1	2.6767	,						
						omega	147.062	!						
						alpha1	0.2277	,						
						beta1	0.4231							