Day No. 03 16 - 02 - 2023

Analog Systems Design

2. Sampling

- 1. Alias Band Suppression: What is the suppression requirements of AAF?
 - Working at the limit of Nyquist criterion requires an ideal filter that does not exist
 - Signal in the alias band will alias in the desired signal band after sampling so, it must be suppressed by AAF

- Each pole gives a roll off 20 dB/decade so if $f_s/BW = 2$ for a 4th order filter the suppression will equal?

Aliasing band =
$$fs - BW$$
 to $f_s = f_s/2 = BW$
@ BW each pole gives $3 dB \rightarrow for \ a \ 4^{th} order \ filter \ the \ supression = $4*3 = 12 \ dB$$

2. Oversampling

- Oversampling relaxes the requirements of baseband anti-aliasing filter
- Higher relaxation zone means less pole numbers, simpler design, lower power consumption

3. Decimation

- Decimation is the process of reducing the sample rate of a sampled signal
- Unless the original signal is already filtered and oversampled, digital filtering is necessary
- We use decimation instead of using low sample rate from the beginning because oversampling makes filtering easy

4. Reconstruction filter

- As ADC needs an AAF also the DAC needs a reconstruction filter (smoothing filter) which:
 - In TD: interpolate / restore / reconstruct the original signal
 - In FD: reconstruction filter suppress the images

Day No. 03

- 5. Zero Order Hold (ZOH)
 - Keeps the value of the signal at the sample moment
 - The Fourier transform of ZOH is a sinc function sinc(x) = sin(x)/x where the nulls of sinc(x) at the inverse of the fold time

- The ZOH performs inherent reconstruction (filtering out images)

- Passband droop: ZOH suppresses images but introduce amplitude distortion
 - The passband distortion may be compensated by inverse sinc response in digital or analog domain

6. Noise in RC circuit

- Resistors generate white thermal noise but the BW is always limited by the capacitor

$$S_{nout}(f) = S_{v}(f) \left| \frac{V_{nout}(j\omega)}{V_{n}(j\omega)} \right|^{2}$$

$$\overline{V_{nout}^{2}} = V_{noutrms}^{2} = \int_{-\infty}^{\infty} S_{nout}(f) df$$

$$\overline{V_{nout}^{2}} = \frac{kT}{C}$$

$$S_{nout}(f) = \frac{kT}{C}$$

$$S_{nout}(f) = \frac{kT}{C}$$

- RMS noise is independent of R (why?)

 $R \uparrow, S_v(f) = 4kTR \uparrow$, but the BW = $1/RC \downarrow \rightarrow$ area under the curve $S_{nout}(f)$ remains constant

$$V_{nrms} = \sqrt{\frac{1p}{C}} * 64 \ uV_{rms}$$

- Equivalent noise bandwidth: define an equivalent noise BW (B_N) such that the area under a brick-well response is the same area under the actual spectral density curve
- For a first order system: $B_N=1/4RC=\pi/2\,f_{pole}$

Day No. 03 16 - 02 - 2023

7. Sampling noise

- The sampling capacitor determines noise power, SNR, and the No. of ADC bits
- C↑, noise ↓, SNR↑, but BW (speed) ↓ @ the same power consumption

C_{hold}	$V_{nrms} = \sqrt{\frac{kT}{c}}$ at T $= 300 K$	SNR (assume $V_{stgrms} = 1 Vrms$)	No. of bits (see next lecture)
100 fF	203 μ Vrms	74 dB	12-bit
1 pF	64 μVrms	84 dB	13.7-bit
10 pF	20.3 μ Vrms	94 dB	15.4-bit

8. Noise folding

- As sampling folds the signal it is also folds the noise

Before sampling:
$$P_n = kT/C = S_n(f) \times B_N$$

After sampling P_n is unchanged: $P_n = kT/C = S_{n,sampled}(f) \cdot \frac{f_s}{2}$

$$S_{n,sampled}(f) = \frac{kT}{C} \times \frac{2}{f_s} = S_n(f) \times B_N \times \frac{2}{f_s}$$

$$S_{n,sampled}(f) = S_n(f) \times \frac{2B_N}{f_s} = S_n(f) \times \frac{\pi BW}{f_s}$$

Noise power is unchanged, but noise density increases (noise folding).

- BW of the S/H circuit cannot be small because if

 $BW_{SH} \downarrow, \tau = RC \uparrow, S/H Cap charges slowely \rightarrow slow S/H response$