Pumping Lemma para linguagens regulares

- Seja \mathcal{L} uma linguagem regular que é aceita por um DFA M com k estados. Se $w \in \mathcal{L}$, com $|w| \ge k$, então w por ser escrita como w = xyz, com $|xy| \le k$, |y| > 0 e $xy^iz \in \mathcal{L}$, $\forall i \ge 0$.
- Seja \mathcal{L} uma linguagem infinita regular. Existe um inteiro $p \in \mathbb{N}^+$ (tamanho crítico ou pumping length), tal que toda cadeia $w \in \mathcal{L}$, com comprimento $|w| \ge p$, pode ser escrita como w = xyz, com $|xy| \le p$, |y| > 0 e $xy^iz \in \mathcal{L}$, $\forall i \ge 0$.

$\mathcal{L}_1 = \{ w \in \Sigma^* = \{0,1\}^* \mid w = u1^{|u|_0}, \ u \in \Sigma^* \}$

• Seja a cadeia $w=0^p1^p$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares ($w=u1^m$, com $u=0^p$ e $m=|u|_0=p$, ou seja, $w\in\mathcal{L}_1$). Segundo o Pumping Lemma, dado que w=xyz, com $|xy|\leqslant p$ e $z=0^{p-i-j}1^p$ ($i=|x|,\ j=|y|,\ i\geqslant 0$ e j>0), então $w'=xy^2z=xyyz=0^i0^j0^j0^{p-i-j}1^p=0^{p+j}1^p\in\mathcal{L}_1$. Contudo, $w'=u1^m$, com $u=0^{p+j}$ e m=p, ou seja, $|u|_0=p+j>m=p$ e $w'\notin\mathcal{L}_1$. Portanto, dada a contradição, a linguagem \mathcal{L}_1 não é regular.

$\mathcal{L}_2 = \{ w \in \Sigma^* = \{0,1\}^* \mid w = 0^m u, \ |u|_0 \leqslant m, \ m \in \mathbb{N}^+, \ u \in \Sigma^* \}$

• Seja a cadeia $w=0^p10^p$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares ($w=0^mu$, com m=p e $u=10^p$, ou seja, $|u|_0=p$ e $w\in\mathcal{L}_2$). Segundo o Pumping Lemma, dado que w=xyz, com $|xy|\leqslant p$ e $z=0^{p-i-j}10^p$ ($i=|x|,\ j=|y|,\ i\geqslant 0$ e j>0), então $w'=xy^0z=xz=0^{i0^{p-i-j}}1^p=0^{p-j}10^p\in\mathcal{L}_2$, ou seja, $w'=0^m0^n10^p$, com m+n=p-j e $u=0^n10^p$. Contudo, para todo $1\leqslant m\leqslant p-j$, tem-se que $|u|_0=n+p>m=p-j$ e $w'\notin\mathcal{L}_2$. Portanto, dada a contradição, a linguagem \mathcal{L}_2 não é regular.

$\mathcal{L}_3 = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 1^5 u, \ 2 \cdot |w|_0 = 3 \cdot |w|_1, \ u \in \Sigma^* \}$

• Seja a cadeia $w=1^51^{2p+1}0^{3p+9}=1^{2p+6}0^{3p+9}$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares ($w=1^5u$, com $u=1^{2p+1}0^{3p+9}$, $|u|_0=3p+9$, $|u|_1=2p+6$ e $2\cdot |w|_0=3\cdot |w|_1$, ou seja, $w\in\mathcal{L}_3$). Segundo o Pumping Lemma, dado que w=xyz, com $|xy|\leqslant p$ e $z=1^{2p+6-i-j}0^{3p+9}$ ($i=|x|,\ j=|y|,\ i\geqslant 0$ e j>0), então $w'=xy^0z=xz=1^{i}1^{2p+6-i-j}1^{3p+9}=1^{2p+6-j}0^{3p+9}\in\mathcal{L}_3$. Contudo, $w'=1^5u'$, com $u'=1^{2p+1-j}0^{3p+9}$, e $w'\notin\mathcal{L}_3$, pois $2|w|_0\neq 3\cdot |w|_1$ já que 3(5+2p+1-j)=6p+18-j<2(3p+9)=6p+18 para todo $1\leqslant j\leqslant p$). Portanto, dada a contradição, a linguagem \mathcal{L}_3 não é regular.

$\mathcal{L}_4 = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = uv, \ |u|_1 \geqslant |u|_0 + 4, \ u, v \in \Sigma^* \}$

$\mathcal{L}_5 = \{ w \in \Sigma^* = \{0,1\}^* \mid w = uv, \ |u| = |v|, \ |v|_1 \geqslant 1, \ u,v \in \Sigma^* \}$

- Seja a cadeia $w = 0^{p-1}110^{p-1}$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares ($u = 0^{p-1}1$, $v = 10^{p-1}$, |u| = |v| e $|v|_1 = 1$, ou seja, $w \in \mathcal{L}_5$). Segundo o Pumping Lemma, dado que w = xyz, com $|xy| \leq p$, |x| = i, |y| = j, $i \geq 0$ e j > 0, podem ocorrer dois casos:
 - a) $z = 0^{p-1-i-j}110^{p-1} \Rightarrow w' = xy^0z = xz = 0^i0^{p-1-i-j}110^{p-1} = 0^{p-1-j}110^{p-1}$. Contudo, como w' = u'v' e |u'| = |v'|, então (p-1-j)+1+1+(p-1)=2t, $t \in \mathbb{N}^+$ e $t \leq p$, ou seja,

j=2(p-t). Mas, como j>0, então $j\geqslant 2$ e para que |u'|=|v'| tem-se, necessariamente, que $|v'|_1=0$. Logo, $w'\notin \mathcal{L}_5$.

b) $z = 10^{p-1} \Rightarrow w' = xy^0z = xz = 0^i10^{p-1} = 0^i10^{p-1}$. Contudo, como w' = u'v', |u'| = |v'| e i < 1 + (p-1) = p, tem-se novamente que, necessariamente, $|v'|_1 = 0$. Logo, $w' \notin \mathcal{L}_5$.

Portanto, dadas as contradições apresentadas, a linguagem \mathcal{L}_5 não é regular.

$$\mathcal{L}_6 = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = uv, |u| \geqslant |v|, v = r1s, u, r, s \in \Sigma^* \}$$

$$\mathcal{L}_7 = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = uv^R v, \ u \in \Sigma^*, \ v \in \Sigma^+ \}$$

$\mathcal{L}_8 = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = u0v, \ |w| = 2 \cdot k + 1, \ |u| = |v|, \ k \in \mathbb{N}, \ u, v \in \Sigma^+ \}$

• Seja a cadeia $w=1^p01^p$, onde p é o $pumping\ length$ definido pelo $Pumping\ Lemma$ para linguagens regulares $(u=v=1^p, |u|=|v|=p|\ e\ |w|=2\cdot p+1, \ \text{ou seja}, \ w\in\mathcal{L}_8)$. Segundo o $Pumping\ Lemma$, dado que w=xyz, com $|xy|\leqslant p$ e $z=1^{p-i-j}01^p\ (i=|x|,\ j=|y|,\ i\geqslant 0$ e j>0), então $w'=xy^0z=xz=1^i1^{p-i-j}01^p=1^{p-j}01^p\in\mathcal{L}_8$. Contudo, como há apenas uma ocorrência do símbolo 0 em w', então obrigatoriamente $u=1^{p-j}$ e $v=1^p$, ou seja, $|u|\neq |v|$ e $w'\notin\mathcal{L}_8$. Portanto, dada a contradição, a linguagem \mathcal{L}_8 não é regular.

$\mathcal{L}_9 = \{ w \in \Sigma^* = \{0,1\}^* \mid w = cuc, \ c \in \Sigma, \ u \in \Sigma^+, \ |w|_0 = |w|_1 \}$

• Seja a cadeia $w=0^p1^{p+1}0$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares ($w=0u0, u=0^{p-1}1^{p+1}$ e $|w|_0=|w|_1=p+1$, ou seja, $w\in\mathcal{L}_9$). Segundo o Pumping Lemma, dado que w=xyz, com $|xy|\leqslant p$ e $z=0^{p-i-j}1^{p+1}0$ (i=|x|, j=|y|, $i\geqslant 0$ e j>0), então $w'=xy^2z=xyyz=0^i0^j0^j0^{p-i-j}1^{p+1}0=0^{p+j}1^{p+1}0\in\mathcal{L}_9$. Contudo, como $|w'|_0=p+j+1$ e $|w'|_1=p+1$, tem-se que $|w'|_0\neq |w'|_1$ e $w'\notin\mathcal{L}_9$. Portanto, dada a contradição, a linguagem \mathcal{L}_9 não é regular.

$\mathcal{L}_{10} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w| = 3 \cdot |w|_0 \}$

• Seja a cadeia $w=0^p1^{2p}$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares ($|w|_0=p$ e $|w|=3p=3|w|_0$, ou seja, $w\in\mathcal{L}_{10}$). Segundo o Pumping Lemma, dado que w=xyz, com $|xy|\leqslant p$ e $z=0^{p-i-j}1^{2p}$ ($i=|x|,\ j=|y|,\ i\geqslant 0$ e j>0), então $w'=xy^2z=xyyz=0^i0^j0^j0^{p-i-j}1^{2p}=0^{p+j}1^{2p}\in\mathcal{L}_{10}$. Contudo, como $|w'|_0=p+j$ e $|w'|=3p+j<3|w'|_0=3(p+j)$, então $w'\notin\mathcal{L}_{10}$. Portanto, dada a contradição, a linguagem \mathcal{L}_{10} não é regular.

$\mathcal{L}_{11} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_0 \neq |w|_1 \}$

$\mathcal{L}_{12} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_0 = 2 \cdot |w|_1 \}$

• Seja a cadeia $w=0^{2p}1^p$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares ($|w|_1=p$ e $|w|_0=2p=2|w|_1$, ou seja, $w\in\mathcal{L}_{12}$). Segundo o Pumping

Lemma, dado que w=xyz, com $|xy| \leq p$ e $z=0^{2p-i-j}1^p$ $(i=|x|, j=|y|, i \geq 0$ e j>0), então $w'=xy^0z=xz=0^{i}0^{2p-i-j}1^p=0^{2p-j}1^p\in\mathcal{L}_{12}$. Contudo, como $|w'|_1=p$ e $|w'|_0=2p-j<2|w'|_1=2p$, então $w'\notin\mathcal{L}_{12}$. Portanto, dada a contradição, a linguagem \mathcal{L}_{12} não é regular.

$\mathcal{L}_{13} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_{101} = |w|_{010} \}$

$\mathcal{L}_{14} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0^m 1^n, \ m \neq n \ \text{e} \ 2 \cdot m \neq n, \ m, n \in \mathbb{N} \}$

• Seja a cadeia $w = 0^p 1^{2p!+p}$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares ($w = 0^m 1^n 0^q$, com m = p, n = 2p!+p, $m \neq n$ e $2 \cdot m \neq n$, ou seja, $w \in \mathcal{L}_{14}$). Segundo o Pumping Lemma, dado que w = xyz, com $|xy| \leq p$ e $z = 0^{p-i-j} 1^{p!+p}$ (i = |x|, j = |y|, $i \geq 0$ e j > 0), então $w' = xy^{\frac{2p!}{j}+1}z = 0^i(0^j)^{\frac{2p!}{j}+1}0^{p-i-j}1^{2p!+p} = 0^{2p!+p}1^{2p!+p} \in \mathcal{L}_{14}$. Contudo, como $w' = 0^{m'}1^{n'}$, com m' = n' = 2p!+p, tem-se que $w' \notin \mathcal{L}_{14}$. Portanto, dada a contradição, a linguagem \mathcal{L}_{14} não é regular.

$\mathcal{L}_{15} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0^m 1^n, \ 3 \cdot m \leqslant n \leqslant 5 \cdot m, \ m, n \in \mathbb{N} \}$

• Seja a cadeia $w = 0^p 1^{3p}$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares ($w = 0^m 1^n$, com m = p e 3m = n < 5m, ou seja, $w \in \mathcal{L}_{15}$). Segundo o Pumping Lemma, dado que w = xyz, com $|xy| \leq p$ e $z = 0^{p-i-j} 1^{3p}$ (i = |x|, j = |y|, $i \geq 0$ e j > 0), então $w' = xy^2z = xyyz = 0^i 0^j 0^j 0^{p-i-j} 1^{3p} = 0^{p+j} 0^{3p} \in \mathcal{L}_{15}$. Contudo, como $w' = 0^{m'} 1^{n'}$, m' = p + j e n' = 3p, tem-se que $w' \notin \mathcal{L}_{15}$, pois n' = 3p < 3m' = 3(p+j) já que j > 0. Portanto, dada a contradição, a linguagem \mathcal{L}_{15} não é regular.

$\mathcal{L}_{16} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = (01)^n 0^n, \ n \in \mathbb{N} \}$

$\mathcal{L}_{17} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = (01)^m 0^n, \ n \geqslant 2 \cdot m, \ m, n \in \mathbb{N} \}$

- Seja a cadeia $w = (01)^p 0^{2p}$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares $(w = (01)^m 0^n$, com m = p e n = 2m = 2p, ou seja, $w \in \mathcal{L}_{17}$). Segundo o Pumping Lemma, dado que w = xyz e $|xy| \leq p$, então xy é subcadeia de $(01)^p$ e três casos devem ser considerados:
 - a) y começa com 0 e termina com $0 \Rightarrow w' = xy^0z = xz = u0^{2p}$, u contém 110 como subcadeia e $w' \notin \mathcal{L}_{17}$;
 - b) y começa com 1 e termina com $1 \Rightarrow w' = xy^0z = xz = u0^{2p}$, u contém 00 como subcadeia e $w' \notin \mathcal{L}_{17}$; e
 - c) y começa e termina com símbolos diferentes $\Rightarrow y = (10)^j$ ou $y = (01)^j$, j > 0 e $2 \le |y| \le p$, $w' = xy^2z = xyyz = (10)^{p+j}0^{2p} \notin \mathcal{L}_{17}$ ($w' = (01)^m1^n$, com m = p + j e n = p < 2n = 2(p+j)).

Portanto, dadas as contradições nos três casos, a linguagem \mathcal{L}_{17} não é regular.

$\mathcal{L}_{18} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 110(10)^n 0^{n-1}, \ n \in \mathbb{N} \}$

- Inicialmente, note-se que $110(10)^n0^{n-1} = 1(10)^{n+1}0^{n-1} = 1(10)^n100^{n-1} = 1(10)^n10^n$. Assim, seja a cadeia $w = 1(10)^p10^p$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares ($w \in \mathcal{L}_{18}$). Segundo o Pumping Lemma, dado que w = xyz e $|xy| \leq p$, então xy é subcadeia de $1(10)^p$ e três casos devem ser considerados:
 - a) y começa com 0 e termina com 0 \Rightarrow para $w' = xy^0z$, pelo menos uma subcadeia 10 é excluída, $w' = 1(10)^k 10^p$, com $0 \leqslant k < p$, e $w' \notin \mathcal{L}_{18}$;
 - b) y começa com 1 e termina com $1 \Rightarrow \text{para } w' = xy^0z$, pelo menos uma subcadeia 10 também é excluída e três casos podem ocorrer (i) $w' = (10)^p 10^p$, (ii) $w' = 0(10)^{k'} 10^p$, com $0 \le k' < p$ e (iii) $w' = 1(10)^{k''} 10^p$, com $0 \le k'' < p$; com $w' \notin \mathcal{L}_{18}$ nos três casos; e
 - c) y começa e termina com símbolos diferentes $\Rightarrow y = (10)^j$ ou $y = (01)^j$, j > 0 e $2 \leqslant |y| \leqslant p$, $w' = xy^2z = xyyz = 1(10)^{p+j}10^p \notin \mathcal{L}_{18}$.

Portanto, dadas as contradições nos três casos, a linguagem \mathcal{L}_{18} não é regular.

$$\mathcal{L}_{19} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0^m 1^m 0^n, \ m, n \in \mathbb{N} \}$$

$$\mathcal{L}_{20} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0^m 1^n 0^p, \ m + p \leqslant n, \ m, n, p \in \mathbb{N} \}$$

$\mathcal{L}_{21} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0^m 1^n 0^q, \ n \neq m + q, \ m, n, q \in \mathbb{N} \}$

• Seja a cadeia $w = 0^p 1^{p!+2p} 0^p$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares ($w = 0^m 1^n 0^q$, com m = q = p e $n = p! + p \neq m + q = 2p$, ou seja, $w \in \mathcal{L}_{21}$). Segundo o Pumping Lemma, dado que w = xyz, com $|xy| \leq p$ e $z = 0^{p-i-j} 1^{p!+2p} 0^p$ (i = |x|, $j = |y|, i \geq 0$ e j > 0), então $w' = xy^{\frac{p!}{j}+1}z = 0^i(0^j)^{\frac{p!}{j}+1}0^{p-i-j}1^{p!+2p}0^p = 0^{p!+p}1^{p!+2p}0^p \in \mathcal{L}_{21}$. Contudo, como $w' = 0^{m'}1^{n'}0^{q'}$ com m' = p! + p, q = p e n' = p! + 2p = m' + q', tem-se que $w' \notin \mathcal{L}_{21}$. Portanto, dada a contradição, a linguagem \mathcal{L}_{21} não é regular.

$\mathcal{L}_{22} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0^m 1^n 0^q, \ m \neq q, \ m, n, q \in \mathbb{N} \}$

• Seja a cadeia $w = 0^p 10^{p!+p}$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares $(w = 0^m 1^n 0^q, \text{ com } m = p, \ n = 1 \text{ e } q = p! + p \neq m = 2, \text{ ou seja, } w \in \mathcal{L}_{22}).$ Segundo o Pumping Lemma, dado que w = xyz, com $|xy| \leqslant p$ e $z = 0^{p-i-j} 10^{p!+p}$ $(i = |x|, j = |y|, i \geqslant 0 \text{ e } j > 0)$, então $w' = xy^{\frac{p!}{j}+1}z = 0^i(0^j)^{\frac{p!}{j}+1}0^{p-i-j}10^{p!+p}0^p = 0^{p!+p}10^{p!+p} \in \mathcal{L}_{22}.$ Contudo, como $w' = 0^{m'}1^{n'}0^{q'}$, com m' = q' = p! + p, tem-se que $w' \notin \mathcal{L}_{22}$. Portanto, dada a contradição, a linguagem \mathcal{L}_{22} não é regular.

$\mathcal{L}_{23} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0^m 1^n 0^q, \ q = 2 \cdot (m+n), \ m, n, q \in \mathbb{N} \}$

• Seja a cadeia $w=0^p1^p0^{4p}$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares ($w=0^m1^n0^q$, com m=n=p e q=2(m+n)=4p, ou seja, $w\in\mathcal{L}_{23}$). Segundo o Pumping Lemma, dado que w=xyz, com $|xy|\leqslant p$ e $z=0^{p-i-j}1^p0^{4p}$ ($i=|x|, j=|y|, i\geqslant 0$ e j>0), então $w'=xy^0z=xz=0^i0^{p-i-j}1^p0^{4p}=0^{p-j}1^p0^{4p}\in\mathcal{L}_{23}$. Contudo, como $w'=0^{m'}1^{n'}0^{q'}, m'=p-j$ e n'=p, tem-se que $w'\notin\mathcal{L}_{23}$, pois $q'=4p\neq 2(m'+n')=4p-2j$,

já que j > 0. Portanto, dada a contradição, a linguagem \mathcal{L}_{23} não é regular.

$\mathcal{L}_{24} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0^m 1^n 0^q, \ m > 5, \ n > 3, \ q \leqslant n, \ m, n, q \in \mathbb{N} \}$

- Seja a cadeia $w = 0^6 1^{p+3} 0^{p+3}$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares ($w = 0^m 1^q$, com m = 6 e n = q = p + 3, ou seja, $w \in \mathcal{L}_{24}$). Segundo o Pumping Lemma, dado que w = xyz e $|xy| \leq p$, então xy é subcadeia de $0^6 1^{p+3}$ e três casos devem ser considerados:
 - a) y começa com 0 e termina com $0 \Rightarrow w' = xy^0z = xz = 0^{6-j}1^{p+3}0^{p+3}$, $6-j \le 5$ pois j>0 e $w' \notin \mathcal{L}_{24}$;
 - b) y começa com 1 e termina com $1 \Rightarrow w' = xy^0z = xz = 1^61^{p+3-j}0^{p+3} = 0^{m'}1^{n'}0^{q'},$ n' = p+3-j < q' = p+3 pois j > 0 e $w' \notin \mathcal{L}_{24}$; e
 - c) y começa com 0 termina com $1 \Rightarrow y = 0^{j_1} 1^{j_2}$, $j_1, j_2 > 0$, $j_1 + j_2 \leqslant p$, $w' = xy^0 z = xz = 0^{6-j_1} 1^{p+3-j_2} 0^{p+3} \notin \mathcal{L}_{24}$ ($w' = 0^{m'} 1^{n'} 0^{q'}$, com $m' = 6 j_1 \leqslant 5$ e $n' = p + 3 j_2 < q' = p + 3$).

Portanto, dadas as contradições nos três casos, a linguagem \mathcal{L}_{24} não é regular.

$\mathcal{L}_{25} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0^m 1^n 0^q, \ m \leqslant 2 \cdot n \text{ ou } n \leqslant 3 \cdot q, \ m, n, q \in \mathbb{N} \}$

• Seja a cadeia $w = 0^{2p}1^p0^p$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares ($w = 0^m1^n0^q$, com m = 2p = 2n = 2p e n = p < 3q = 3p, ou seja, $w \in \mathcal{L}_{25}$). Segundo o Pumping Lemma, dado que w = xyz, com $|xy| \leq p$ e $z = 0^{2p-i-j}1^p0^p$ ($i = |x|, j = |y|, i \geq 0$ e j > 0), então $w' = xy^2z = xyyz = 0^i0^j0^j0^{2p-i-j}1^p0^p = 0^{2p+j}1^p0^p \in \mathcal{L}_{25}$. Contudo, como $w' = 0^{m'}1^{n'}0^{q'}$, m' = 2p + j e n' = p, tem-se que $w' \notin \mathcal{L}_{25}$, pois m' = 2p + j > 2n' = 2p, já que j > 0. Portanto, dada a contradição, a linguagem \mathcal{L}_{25} não é regular.

$\mathcal{L}_{26} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0^m 1^n 0^p, \ m = 1 \Rightarrow n = p, \ m, n, p \in \mathbb{N} \}$

$\mathcal{L}_{27} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0^m 1^{m+n} 0^n, \ m+n > 0, \ m, n \in \mathbb{N} \}$

• Seja a cadeia $w=0^p1^{2p}0^p$, onde p é o $pumping\ length$ definido pelo $Pumping\ Lemma$ para linguagens regulares $(w=0^m1^{m+n}0^n\ com\ m=n=p\ e\ m+n>0$, ou seja, $w\in\mathcal{L}_{27}$). Segundo o $Pumping\ Lemma$, dado que w=xyz, com $|xy|\leqslant p\ e\ z=0^{p-i-j}1^{2p}0^p\ (i=|x|,\ j=|y|,\ i\geqslant 0$ e j>0), então $w'=xy^0z=xz=0^i0^{p-i-j}1^{2p}0^p=0^{2p-j}1^{2p}0^p\in\mathcal{L}_{27}$. Contudo, como $|w'|_1=2p$ e $|w'|_0=2p-j<|w'|_1=2p$, então $w'\notin\mathcal{L}_{27}$. Portanto, dada a contradição, a linguagem \mathcal{L}_{27} não é regular.

$\mathcal{L}_{28} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0^m 1^n 0^{m-n}, \ m > n, \ m, n \in \mathbb{N} \}$

• Seja a cadeia $w=0^{2p}1^p0^p$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares ($w=0^m1^n0^{m-n}$ com $m=2p,\,n=p$ e m>n, ou seja, $w\in\mathcal{L}_{28}$). Segundo o Pumping Lemma, dado que w=xyz, com $|xy|\leqslant p$ e $z=0^{2p-i-j}1^p0^p$ ($i=|x|,\,j=|y|,\,i\geqslant 0$ e j>0), então $w'=xy^2z=xz=0^i0^j0^j0^{2p-i-j}1^p0^p=0^{2p+j}1^p0^p\in\mathcal{L}_{28}$. Contudo, como $w'=0^m1^n0^p$ com m=2p+j e n=p, então m-n=p+j>p e $w'\notin\mathcal{L}_{28}$. Portanto, dada a

contradição, a linguagem \mathcal{L}_{28} não é regular.

$$\mathcal{L}_{29} = \{ w \in \Sigma^* = \{0,1\}^* \mid w = 0^m 1^n 0^p 1^q, \ m = 2 \cdot q, \ n = p, \ m, n, p, q \in \mathbb{N} \}$$

$\mathcal{L}_{30} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0^m 1^n 0 1^{m+1}, \ m, n \in \mathbb{N} \}$

• Seja a cadeia $w = 0^p 101^{p+1}$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares ($w = 0^m 1^n 01^{m+1}$ com m = p e n = 1, ou seja, $w \in \mathcal{L}_{30}$). Segundo o Pumping Lemma, dado que w = xyz, com $|xy| \leq p$ e $z = 0^{p-i-j} 101^{p+1}$ ($i = |x|, j = |y|, i \geq 0$ e j > 0), então $w' = xy^0z = xz = 0^i 0^{p-i-j} 101^{p+1} = 0^{p-j} 101^{p+1} \in \mathcal{L}_{30}$. Contudo, como $w' = 0^{m'} 1^{n'} 01^{p+1}$ com m' = p - j, n' = 1 e j > 0, então $p + 1 > m' + 1 = p - j + 1 e <math>w' \notin \mathcal{L}_{30}$. Portanto, dada a contradição, a linguagem \mathcal{L}_{30} não é regular.

$\mathcal{L}_{31} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = (01)^n 0^m (01)^n, \ m < 3, \ m, n \in \mathbb{N} \}$

$\mathcal{L}_{32} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = (01)^n (01^{m_n})^n, \ m_n, n \in \mathbb{N}^+ \}$

- Seja a cadeia $w = (01)^p (01)^p$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares $(w = (01)^m (01)^n$, com m = n = p e $m_n = 1$, $1 \le n \le p$, ou seja, $w \in \mathcal{L}_{32}$). Segundo o Pumping Lemma, dado que w = xyz e $|xy| \le p$, então xy é subcadeia de $(01)^p$ e três casos devem ser considerados:
 - a) y começa com 0 e termina com $0 \Rightarrow w' = xy^0z = xz = u(01)^p$, u contém 110 como subcadeia e $w' \notin \mathcal{L}_{32}$;
 - b) y começa com 1 e termina com $1 \Rightarrow w' = xy^0z = xz = u(01)^p$, u contém 00 como subcadeia e $w' \notin \mathcal{L}_{32}$; e
 - c) y começa e termina com símbolos diferentes $\Rightarrow y = (10)^j$ ou $y = (01)^j$, j > 0 e $2 \leqslant |y| \leqslant p$, $w' = xy^2z = xz = (01)^{p+j}(01)^p \notin \mathcal{L}_{32}$.

Portanto, dadas as contradições nos três casos, a linguagem \mathcal{L}_{32} não é regular.

$\mathcal{L}_{33} = \{ w \in \Sigma^* = \{0,1\}^* \mid w = 1^m (01)^n (10)^n, \ m \geqslant 4, \ m,n \in \mathbb{N}^+ \}$

$\mathcal{L}_{34} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0^m 10^n 10^q \text{ ou } w = 0^n 10^{2n}, \ m, n, q \in \mathbb{N} \}$

• Seja a cadeia $w=0^p10^{2p}$, onde p é o $pumping\ length$ definido pelo $Pumping\ Lemma$ para linguagens regulares ($w=0^n10^{2n}\ com\ n=p$, ou seja, $w\in\mathcal{L}_{34}$). Segundo o $Pumping\ Lemma$, dado que w=xyz, com $|xy|\leqslant p$ e $z=0^{p-i-j}10^{2p}\ (i=|x|,\ j=|y|,\ i\geqslant 0$ e j>0), então $w'=xy^0z=xz=0^i0^{p-i-j}10^{2p}=0^{p-j}10^{2p}\in\mathcal{L}_{34}$. Contudo, como $w'=0^{n'}10^{n''}\ com\ n'=p-j$, n''=2p e j>0, então n''=2p>2n'=2(p-j) e $w'\notin\mathcal{L}_{34}$. Portanto, dada a contradição, a linguagem \mathcal{L}_{34} não é regular.

$\mathcal{L}_{35} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0^n 10^{2n} \text{ ou } w = 1^n 01^{3n}, \ n \in \mathbb{N} \}$

• Seja a cadeia $w=0^p10^{2p}$, onde p é o $pumping\ length$ definido pelo $Pumping\ Lemma$ para linguagens regulares ($w=0^n10^{2n}\ com\ n=p$, ou seja, $w\in\mathcal{L}_{35}$). Segundo o $Pumping\ Lemma$, dado que w=xyz, com $|xy|\leqslant p$ e $z=0^{p-i-j}10^{2p}\ (i=|x|,\ j=|y|,\ i\geqslant 0$ e j>0), então $w'=xy^0z=xz=0^i0^{p-i-j}10^{2p}=0^{p-j}10^{2p}\in\mathcal{L}_{35}$. Contudo, como $w'=0^{n'}10^{n''}\ com\ n'=p-j$, n''=2p e j>0, então n''=2p>2n'=2(p-j) e $w'\notin\mathcal{L}_{35}$. Portanto, dada a contradição, a linguagem \mathcal{L}_{35} não é regular.

$\mathcal{L}_{36} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0^m 1^n 0^q 1^r 0^s 1^t, \ m + q + r + t = n + s, \ m, n, q, r, s, t \in \mathbb{N} \}$

• Seja a cadeia $w = 0^p 1^p 010^3 1$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares ($w = 0^m 1^n 0^q 1^r 0^s 1^t$ com m = n = p, q = r = t = 1 e s = 3, ou seja, $w \in \mathcal{L}_{36}$). Segundo o Pumping Lemma, dado que w = xyz, com $|xy| \leq p$ e $z = 0^{p-i-j} 1^p 010^3 1$ ($i = |x|, j = |y|, i \geq 0$ e j > 0), então $w' = xy^0 z = xz = 0^i 0^{p-i-j} 1^p 010^3 1 \in \mathcal{L}_{36}$. Contudo, como $w' = 0^{m'} 1^{n'} 0^{q'} 1^{r'} 0^{s'} 1^{t'}$ com m = p - j, n' = p, q' = r' = t' = 1 e s' = 3, então m' + q' + r' + t' = p + 3 - j < n' + s' = p + 3 e $w' \notin \mathcal{L}_{36}$. Portanto, dada a contradição, a linguagem \mathcal{L}_{36} não é regular.

$\mathcal{L}_{37} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = 0^m 1^n 0^q 1^r 0^s 1^t, \ m + q + r = n + s + t, \ m, n, q, r, s, t \in \mathbb{N} \}$

• Seja a cadeia $w = 0^p 1^p$, onde p é o pumping length definido pelo Pumping Lemma para linguagens regulares ($w = 0^m 1^n 0^q 1^r 0^s 1^t$ com m = n = p, q = r = s = t = 0, ou seja, $w \in \mathcal{L}_{37}$). Segundo o Pumping Lemma, dado que w = xyz, com $|xy| \leq p$ e $z = 0^{p-i-j} 1^p 010^3 1$ ($i = |x|, j = |y|, i \geq 0$ e j > 0), então $w' = xy^0 z = xz = 0^i 0^{p-i-j} 1^p \in \mathcal{L}_{37}$. Contudo, como $w' = 0^{m'} 1^{n'} 0^{q'} 1^{r'} 0^{s'} 1^{t'}$ com m = p - j, n' = p, q' = r' = s' = t' = 0, então m' + q' + r' = p - j < n' + s' + t' = p e $w' \notin \mathcal{L}_{37}$. Portanto, dada a contradição, a linguagem \mathcal{L}_{37} não é regular.