ĐẠI HỌC KHOA HỌC TỰ NHIÊN HÀ NỘI KHOA TOÁN-CƠ-TIN

 $(D\hat{e} \ g\hat{o}m \ 1 \ c\hat{a}u/1 \ trang)$

ĐỀ KIỂM TRA THƯỜNG XUYÊN 2 Môn: Toán rời rạc (MAT3500 2, 2022-2023)

Thời gian: 30 phút

- Trình bày lời giải vào các khoảng trống sau đề bài. Sử dụng mặt sau nếu thiếu khoảng trống.
- Không sử dụng tài liệu. Không trao đổi, bàn bạc khi làm bài.

Họ và Tên: .						

Mã Sinh Viên:______Lớp: _____

Câu:	1	Tổng
Điểm tối đa:	10	10
Điểm:		

1. Cho các số nguyên dương m_1, m_2, \dots, m_n thỏa mãn $m_i \geq 2$ và $\gcd(m_i, m_j) = 1$ với mọi $i \neq j$ và $1 \leq i, j \leq n$ với số nguyên $n \geq 2$ nào đó. Bằng cách sử dụng các gợi ý dưới đây, chứng minh rằng

nếu
$$a \equiv b \pmod{m_i}$$
 với mọi $1 \leq i \leq n$, thì $a \equiv b \pmod{m}$ với $m = m_1 m_2 \dots m_n$.

- (a) (5 điểm) Chứng minh phát biểu cho n=2.
- (b) (2 điểm) Chứng minh rằng $gcd(m_i, m/m_i) = 1$ với mọi $i, 1 \le i \le n$.
- (c) (3 điểm) Chứng minh phát biểu với mọi $n \geq 2$.

Lời giải:

(a) Giả sử các số nguyên dương m_1, m_2 thỏa mãn $m_1, m_2 \ge 2$ và $\gcd(m_1, m_2) = 1$. Ta chứng minh nếu $a \equiv b \pmod{m_1}$ và $a \equiv b \pmod{m_2}$ thì $a \equiv b \pmod{m_1m_2}$. Do $a \equiv b \pmod{m_1}$, tồn tại $k_1 \in \mathbb{Z}$ sao cho $a-b=k_1m_1$. Do $a \equiv b \pmod{m_2}$, tồn tại $k_2 \in \mathbb{Z}$ sao cho $a-b=k_2m_2$. Từ Định lý Bézout, tồn tại $s,t \in \mathbb{Z}$ sao cho $\gcd(m_1,m_2)=1=sm_1+tm_2$. Ta có

$$a - b = k_1 m_1$$

$$= k_1 m_1 (sm_1 + tm_2)$$

$$= (k_1 m_1) (sm_1) + (k_1 m_1) (tm_2)$$

$$= (k_2 m_2) (sm_1) + (k_1 m_1) (tm_2)$$

$$= m_1 m_2 (k_2 s + k_1 t).$$

Do đó, $a \equiv b \pmod{m_1 m_2}$.

(b) Ta sử dụng phương pháp phản chứng. Giả sử tồn tại $i \in \{1,2,\ldots,n\}$ sao cho $\gcd(m_i,m/m_i)=d>1$. Gọi p>1 là một ước nguyên tố của d. Theo định nghĩa, $p\mid (m/m_i)$, do đó $p\mid m_1m_2\ldots m_{i-1}m_{i+1}\ldots m_n$. Do đó, tồn tại $j\in \{1,2,\ldots,n\}-\{i\}$ thỏa mãn $p\mid m_j$. Do $p\mid m_i$ và $p\mid m_j$, p là một ước chung của m_i và m_j . Thêm vào đó, $p>1=\gcd(m_i,m_j)$. Điều này mâu thuẫn với định nghĩa ước chung lớn nhất. Do đó, với mọi $i\in \{1,2,\ldots,n\}$, $\gcd(m_i,m/m_i)=1$.

(c) Giả sử $a \equiv b \pmod{m_i}$ với mọi i thỏa mãn $1 \le i \le n$ với số nguyên $n \ge 2$ nào đó, trong đó $m_i \ge 2$ và $\gcd(m_i, m_j) = 1$ với mọi $i \ne j$ và $1 \le i, j \le n$. Ta chứng minh phát biểu P(n) sau đúng với mọi $n \ge 2$ bằng phương pháp quy nạp.

$$a \equiv b \pmod{m}$$
, trong đó $m = m_1 m_2 \dots m_n$.

- Bước cơ sở: P(2) đúng do (a).
- Bước quy nạp: Giả sử P(k) đúng với số nguyên $k \geq 2$ nào đó. Ta chứng minh P(k+1) đúng. Thật vậy, từ giả thiết quy nạp, ta có $a \equiv b \pmod{m_1 m_2 \dots m_k}$. Theo giả thiết, ta cũng có $a \equiv b \pmod{m_{k+1}}$. Thêm vào đó, từ phần (b), ta có $\gcd(m_{k+1}, m_1 m_2 \dots m_k) = 1$. Áp dụng phần (a), ta có $a \equiv b \pmod{m_1 m_2 \dots m_k m_{k+1}}$, nghĩa là P(k+1) đúng.