# The Theory/Model Section of a Computational Research Paper

Dr. Richard W. Evans

April 2, 2018

# Good quote

"Aspiring programmers: be aware that programming is hard and unnatural. A human programming is like a dog playing a piano. If you are finding it hard, that is normal. Successful programmers look for their niche and keep plugging away at that keyboard." (Peter Shirley, @Peter\_shirley, 3/29/18)

# Last week presentations

- What stuck out to you from 2nd-year presentations?
- What did you like?
- What did you dislike?
- What should you incorporate into your proposal presentations?

# Rubric for proposal presentations

- 5 minutes, 10 slides, 30 sec per slide (see template)
- · State research question
- Cite some literature from which you will draw and to which you will contribute
  - Where do you fit?
  - How are you different?
- How will you model your research question? What is your model?
- What methods will you use to answer your research question?
- What do you think the answer will be (don't have results yet)?



#### Theory 1: Formal Model

A set of cause and effect mathematical relationships between variables used to explain, predict, and understand phenomena.

- Exogenous variables: inputs to the model, taken as given, from outside the model
- Endogenous variables: output of the model, dependent exog. vars.
- Has both qualitative and quantitative implications

$$f(x, z|\theta) = 0$$

#### Model

#### Theory 2: Informal Model

Narrative qualitative descriptions of relationships between variables, sometimes backed by experimental or anecdotal evidence.

- Often competing informal models are cited to show different possible relationships among variables
- · Provides interpretability of results
- Lacks quantitative implications

# Data generating process (DGP)

#### Def: Data generating process (DGP)

- Def. 1: A complete description of the mechanism that causes some observed phenomenon with all its dependencies (too complex)
- Def. 2: A simplified model version of the process that causes some observed phenomenon with its key dependencies.
  - This DGP or model must be specified in such a way that it could be used to simulate data.
  - This is a formal model, described earlier

# Structural Model

#### Def: Structural Model

Model in which the equations derived from individual optimization or firm optimization (behavioral equations).

- Includes linear models and linear approximations
- Most often nonlinear, dynamic

## Reduced Form model

#### Def: Reduced Form Model

Models in which equations are either not derived from behavioral equations or are only implicitly a linear approximation of some other model.

- Most often static
- There can be gray area or overlap between these two definitions
- Includes machine learning
- Often (but not always) atheoretical

# Theory vs. Empirical Strategy

- Theory
  - Statement of model (either formal or informal)
  - Provides interpretability of empirical results
  - Provides testable hypotheses
  - Assumes direction of causality
- Empirical strategy
  - What you do with your model and the data
  - Sometimes empirical strategy implicitly assumed to be the model
    - . e.g., reduced form model with no connection to theory



# Pure Theory Papers

- · Pure theory papers
  - Not what we are doing in this class
  - I love pure theory
  - Theory is the laboratory, rather than data
  - Mathematical analysis can determine results
  - · Computational simulation can determine results

Model is the theoretical version of the data generating process

- Model is the theoretical version of the data generating process
- It is a simplified version of reality

- Model is the theoretical version of the data generating process
- It is a simplified version of reality
- What are the main pieces of your model?

- Model is the theoretical version of the data generating process
- It is a simplified version of reality
- What are the main pieces of your model?
- Why did you choose to model some parts of the real world and neglect others?
  - This has to do with your research question

- Model is the theoretical version of the data generating process
- It is a simplified version of reality
- What are the main pieces of your model?
- Why did you choose to model some parts of the real world and neglect others?
  - · This has to do with your research question
- How do the parts of your model match up with the data?



- If much of model is standard, you can summarize
  - I am big advocate of technical appendices
  - List all your equations and derivations somewhere
  - You might find an error in the previous work
  - You might find an assumption that could be improved by a different assumption

- If much of model is standard, you can summarize
  - I am big advocate of technical appendices
  - List all your equations and derivations somewhere
  - You might find an error in the previous work
  - You might find an assumption that could be improved by a different assumption
- Some models require you to spend a lot of time on solution method

# Model Section Examples

- DeBacker, Evans, Phillips (2017)
  - What is question: How do rich tax functions perform in analysis of canonical tax reform?
  - Demographics
  - Heterogeneous ability
  - Overlapping households
  - Taxes
  - · How fits with data

# Model Section Examples

- Li, Narajabad, Temzelides (QE, 2016) "Robust dynamic energy use and climate change"
  - What is question: What is optimal carbon tax when policy makers have model uncertainty?
  - Household optimization
  - Production: intermediate goods and final goods
  - Aggregate resource constraint
  - Model uncertainty
  - Appendices
  - Given their question, did they have enough model uncertainty? Did they put the model uncertainty in the right place?