PROJEÇÃO DO VOLUME DE CONCRETO COMO FERRAMENTA DE APOIO A TOMADA DE DECISÃO ESTRATÉGICA PARA GESTORES DE CENTRAIS DOSADORAS DE CONCRETO - ROCHA E NAVES¹

Willian Jonathan Rocha Pereira² Alysson Alexander Naves Silva³

RESUMO

O mercado de concreto é considerado um dos mais competitivos do mundo. Por isto muitas empresas que não utilizam métodos tecnológicos como a projeção de produção, acabam enfrentando dificuldades e podem até mesmo falir. Por outro lado, os que se destacam no cenário mundial podem estar relacionados com o uso da tecnologia em seus negócios. Os méritos da tecnologia neste mercado é que ela pode auxiliar na gestão e solução de problemas. O presente trabalho tem como objetivo principal evidenciar que a tecnologia pode proporcionar praticidade e comodidade para os gestores de concreteiras no planejamento operacional e gerencial. Neste mercado, o planejamento e organização de recursos se torna essencial para obter um melhor resultado em todas as áreas. Com o enorme número de equipamentos, materiais e concreto que são movimentados diariamente, o controle manual se torna inviável e acarreta em prejuízos devido ao mal planejamento. Como proposta de solução para este tipo de transtorno foram analisadas duas diferentes formas de regressão para auxiliar no planejamento de concreteiras.

Palavras-chaves: concreto; projeção; tecnologia.

¹ Artigo submetido em 14/10/2022, e apresentado à Libertas – Faculdades Integradas, como parte dos requisitos para obtenção do Título de Bacharel em Sistemas de Informação, em 09/11/2022.

² Willian Jonathan Rocha Pereira - Graduando em Sistemas de Informação pela Libertas – Faculdades Integradas

⁻ E-mail: uilaan32@gmail.com

³ Alysson Alexander Naves Silva - Mestre em Ciências da Computação e Matemática Computacional pelo ICMC/USP. Docente na Libertas - Faculdades Integradas - E-mail: alyssonsilva@libertas.edu.br

1 INTRODUÇÃO

Vivemos hoje na era da informação, devido a isso, as organizações precisam de uma gestão de seus recursos, que pode ser facilitada pela adoção de recursos da área de sistemas de informação e tecnologia da informação. Com o avanço da tecnologia, as organizações se veem cada vez mais apoiadas pelas mesmas, com isso, a aquisição de novos softwares e equipamentos parou de ser vista como um gasto e se tornou um investimento. Devido a globalização, os processos organizacionais precisam ser precisos, eficientes e confiáveis.

Uma das principais dificuldades dos gestores de centrais dosadoras de concreto é gerenciar de maneira inteligente, reduzir custos e transformar os dados que possui em uma ferramenta de auxílio à tomada de decisão. Devido a este desafio enfrentado, os gestores se encontram desamparados e como consequência, não conseguem aprimorar os processos, levando a perda da vantagem competitiva de mercado e até mesmo a falência.

Este trabalho tem como objetivo auxiliar na gestão de centrais dosadoras de concreto, desde o processo de compra de matéria prima à produção do concreto usinado. Através da projeção do volume de concreto é possível calcular a quantidade de matéria prima necessária para suprir a produção projetada, calcular a quantidade de viagens que um caminhão betoneira terá que realizar e até mesmo o tempo que será gasto nas obras para entregar o produto. Este auxílio promoverá boas práticas que permitam otimizar a organização e controle dos setores.

O projeto em questão surgiu em decorrência de uma análise quanto à dificuldade que os gestores de diversas centrais dosadoras de concreto em se-organizar seus processos. Devido a essa dificuldade enfrentada pelos gestores, verificou-se então, a necessidade de uma ferramenta para apoiar as decisões estratégicas dos gestores dessa área, proporcionando uma melhor organização e diminuição de gastos.

2 REFERENCIAL TEÓRICO

2.1 Regressão Linear Simples

De acordo com (BUSSAB, Wilton O.; MORETTIN, Pedro A. Estatística Básica. 9 a ed. - São Paulo: Saraiva, 2017), regressão é uma técnica que permite quantificar e inferir a relação de uma variável dependente (variável de resposta) com variáveis independentes (variáveis explicativas). A análise da regressão pode ser usada como um método descritivo da análise de dados (por exemplo, o ajustamento de curvas).

Evidência a relação casual entre duas variáveis por meio de uma reta. Uma variável é denominada dependente, e outra denominada independente. Também tem por objetivo determinar a equação da reta ajustada (modelo matemático linear).

O cálculo de uma regressão linear simples se dá pela equação: y = a + bx. Para estimar os valores (x, y) possuindo apenas alguns valores específicos (x1, y1), (x2, y2). O intuito é identificar mudanças na variável independente x que afetam a variável dependente y.

2.2 Correlação

Para (BUSSAB, Wilton O.; MORETTIN, Pedro A. Estatística Básica. 9 a ed. - São Paulo: Saraiva, 2017), a correlação é um método estatístico utilizado para medir as relações entre duas variáveis (*X* e *Y*). O objetivo da correlação é compreender como o comportamento de uma variável quando outra se varia, procurando identificar uma relação entre ambas.

Figura 1 – Diagrama de correlação

Fonte: https://dataunirio.github.io/AulaCorrelacao/#3

2.3 Coeficiente de correlação de Pearson

É uma variável que demonstra a intensidade e a forma da correlação linear entre duas variáveis. Com base no resultado da análise, é possível determinar se o modelo linear é adequado ou não para a modelagem do fenômeno.

Onde o n é o número de termos. Os valores e limites de r são: -1 e +1:

- Se a correlação é perfeita positiva, então: r = +1
- Se a correlação é perfeita negativa, então: r = -1. Ou seja, se o valor de uma variável aumenta, a outra diminui linearmente.
- Se não há correlação, então: r = 0. Quando isto ocorre, significa que as duas variáveis não estão linearmente associadas.

Para (COHEN, 2013), a correlação pode possuir três diferentes graus, sendo eles:

- Quando $0.5 \le r \le 1$ significa que há uma forte correlação.
- Quando $0.3 \le r \le 0.49$ significa que há uma correlação média.
- Quando $0.1 \le r \le 0.29$ significa que há uma correlação fraca

A figura 2 ilustra os graus de correlação, conforme explicado acima.

Figura 2 – Representação gráfica da correlação

Fonte: https://dataunirio.github.io/AulaCorrelacao/#15

2.4 Concreteiras

De acordo com (REGANATI, 2020), as concreteiras são centrais dosadoras de concreto, sendo elas responsáveis por todo o processo de fabricação do concreto, juntamente com o caminhão betoneira elas são capazes de fabricar todos os tipos de concreto com precisão. (REGANATI, 2020) complementa ainda que a função principal de uma central dosadora de concreto é dispor de equipamentos que mensuram a quantidade de material necessário para a produção do concreto usinado. Como a qualidade e característica dos materiais influenciam no resultado final, a empresa deve possuir um conhecimento técnico para assegurar que a composição do concreto esteja correta.

2.4.1 Crescimento

A CBIC (Câmara Brasileira da Indústria da Construção), entidade que estuda o segmento, revisou a previsão de crescimento do PIB da construção civil brasileira no ano de 2021 de 2,5%, divulgado em abril, para 4%. De acordo com CBIC (2021a):

Mesmo com pandemia e desafios impostos por escassez e aumento nos custos dos materiais, a expectativa da Câmara Brasileira da Indústria da Construção (CBIC) para o PIB do setor em 2021 subiu de 2,5% para 4%, o que seria seu maior crescimento desde 2013.

2.4.2 Gastos

Segundo a CBIC (2021b):

O aumento nos custos dos insumos continua sendo fonte de preocupação para os empresários do setor. Conforme a Sondagem Nacional da Indústria da Construção, realizada pela Confederação Nacional da Indústria (CNI), com o apoio da CBIC, há quatro trimestres consecutivos este é o principal problema enfrentado pelo setor. No segundo trimestre de 2021, 55,5% dos empresários pesquisados na Sondagem Indústria da Construção apontaram que esse é o principal problema do setor. A persistir o cenário atual este também deverá ser o principal problema do trimestre do ano.

Houve um aumento de 17,68% de janeiro a julho, a maior variação para o período desde que a FGV começou a divulgação dos indicadores, em 1996. Vale ressaltar que o setor da Construção Civil é prejudicado por estas altas, o que vem contribuindo com o incremento das atividades econômicas do País.

Figura 3 – Evolução das variações (%) acumuladas de janeiro a julho de cada ano INCC Materiais e Equipamentos

Fonte: https://cbic.org.br/incc-materiais-e-equipamentos-sobem-1768-em-7-meses-/

2.4.3 O impacto da Tecnologia

O uso da tecnologia em meio ao segmento da construção civil visa a otimização e controle dos processos com o intuito de aumentar a produtividade e aprimorar a qualidade de entrega. Com a projeção, é possível calcular a quantidade de material e viagens necessárias em um determinado período e/ou obra, o que facilita todos os processos, desde a compra de materiais à entrega.

Segundo o SEBRAE (2018), o investimento em tecnologias que aumentem a produtividade na construção pode ser vantajoso a curto, médio e longo prazo. Entre estas vantagens, vale citar:

Redução no tempo da construção

- Redução do desperdício de materiais
- Padronização das atividades

3 MATERIAIS E MÉTODOS

Para o desenvolvimento deste trabalho, foram utilizadas as ferramentas e conceitos descritos a seguir:

3.1 Linguagem Python

A linguagem de programação escolhida para desenvolver o algoritmo de regressão foi Python. A escolha foi feita baseada nas bibliotecas (conjunto de algoritmos) voltadas para regressão e estatística. Durante o desenvolvimento, foram utilizadas as seguintes bibliotecas: Pandas, Numpy, Scikit-learn e Matplotlib.

Python é uma linguagem de programação que possui um conjunto integrado de recursos de software para manipulação de dados, cálculos e exibição gráfica. Python fornece uma ampla variedade de técnicas estatísticas (modelagem linear e não linear, testes estatísticos clássicos, análise de série temporal, classificação, agrupamento e técnicas gráficas, e é altamente extensível. A linguagem Python é frequentemente o veículo de escolha para pesquisa em metodologia estatística, e ele fornece uma rota de código aberto para a participação nessa atividade.

Todos os cálculos e análises realizados durante o desenvolvimento deste trabalho foram feitos com base nesta linguagem.

3.2 Ambiente de desenvolvimento

Antes de começar a desenvolver o algoritmo, o primeiro passo é escolher uma IDE (Integrated Development Environment), também conhecido como ambiente de desenvolvimento integrado. A IDE é importante pois ela possui características e ferramentas de apoio ao desenvolvimento únicas com fim de agilizar e facilitar o desenvolvimento.

Para este trabalho, foi escolhido a IDE Google Collaboratory, um ambiente desenvolvido e disponibilizado pela Google que possui um foco maior na linguagem de programação Python.

3.3 Bibliotecas de programação

Na área da programação, a biblioteca é uma coleção de códigos que auxiliam no desenvolvimento de um algoritmo, podendo ser desde uma conjunto que contenha funções matemáticas básicas como a multiplicação e divisão até mesmo conjuntos mais avançados, como por exemplo os cálculos de regressão utilizados.

Para o desenvolvimento do algoritmo, o primeiro passo é importar as bibliotecas necessárias para o algoritmo, conforme figura 4.

Figura 4 – Importação das bibliotecas no ambiente de desenvolvimento

```
# Importando as bibliotecas necessárias
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
```

A biblioteca numpy está voltada para as matrizes de dados, possuindo uma coleção de rotinas para manipulação e processamento desses, contemplando desde simples manipulação de dados até complexos modelos de machine learning (aprendizado de máquina).

A biblioteca pandas tem como foco a manipulação e análise de dados, facilitando o processo de manipular tabelas e séries temporais.

Para uma análise visual do modelo, foram utilizadas as bibliotecas matplotlib, que contempla a análise por meio de gráficos visuais.

Por último, a biblioteca scikit-learn tem o foco no machine learning, contemplando ferramentas mais complexas, como a de regressão linear utilizada.

3.4 Criação e manipulação do conjunto de dados

Os data frames são essenciais para a criação do modelo, pois eles armazenam os dados que iremos utilizar em todo o algoritmo.

Para a criação do conjunto de dados, foi utilizada a biblioteca pandas.

Figura 5 – Criação dos data frames através da biblioteca Pandas

```
# Criando o conjunto de dados
dados = pd.read_csv('Dados_TCC.csv')
```

Fonte: Elaborado pelo autor (2022).

A partir do código apresentado na figura 5, criamos a variável dados, que representa todo o nosso conjunto de dados e logo em seguida, separamos nosso conjunto em dois subconjuntos: eixo x e eixo y. Esta separação foi necessária pois mais à frente do processo, foi utilizado um subconjunto para treinar o algoritmo e outro para testes.

Após a criação do conjunto de dados, o próximo passo foi separar as colunas em outras variáveis. Este processo foi necessário pois precisamos manipular individualmente as duas colunas do conjunto de dados para processos distintos. Para isso, a coluna que

representa a data foi armazenada na variável X e a coluna que representa o volume foi armazenada na variável Y.

Figura 6 – Separação das colunas do conjunto de dados

```
#Separando as colunas do conjunto de dados
X = dados['Data'].values
Y = dados['Volume'].values
```

Fonte: Elaborado pelo autor (2022).

Com as colunas já separadas, as convertemos num conjunto de dados do tipo Matriz. Esta transformação do tipo de dados é necessária pois as funções da biblioteca scikit-learn que serão utilizadas, exige que o tipo de dados seja matriz. Para isso, a função reshape que é padrão da linguagem Python foi utilizada, conforme a figura 7.

Figura 7 – Transformação do conjunto de dados para o tipo matriz

```
#Convertendo os dados do formato Lista para Matriz
Eixo_x = Eixo_x.reshape(-1,1)
Eixo_x = Eixo_y.reshape(-1,1)
```

Fonte: Elaborado pelo autor (2022).

3.5 Banco de dados MySQL

Segundo Manzano (2011):

"MySql" é um sistema de gerenciamento de banco de dados relacional que utiliza a linguagem SQL como interface de acesso e extração de informações do banco de dados em uso. É rápido, multitarefa e multiusuário."

A principal função de um banco de dados é armazenar as informações registradas dentro de uma aplicação de forma organizada, padronizada e segura.

Como o sistema analisado TopCon utiliza este modelo de banco dados em suas aplicações, ou seja, todas as ações e processos realizados são armazenados no MySQL.

3.6 Raiz Quadrática Média dos Erros (RMSE)

Essa métrica calcula a raiz quadrática média dos erros entre os valores reais, e predições feitas pelo modelo.

A métrica RMSE (Root Mean Squared Error) é calculada através da equação:

Figura 8 – Equação RMSE

$$RMSE(y, \hat{y}) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Fonte: https://www.alura.com.br/artigos/metricas-de-avaliacao-para-series-temporais

Nesta equação há o cálculo da diferença entre o valor y e ŷ, contudo com a elevação do resultado ao quadrático. Mas para deixar o resultado na mesma escala que os dados, é aplicado a raiz quadrada no resultado.

4 RESULTADOS

4.1 Extração de Dados

Foi utilizado uma base de dados unificada, ou seja, uma base de dados que contém dados de diversos clientes diferentes centralizados em uma única base. Após o acesso a base de dados, foi realizado o processo de coleta, limpeza e carregamento dos dados (ETL - Extract, Transform and Load), com intuito de padronizar, tratar e garantir a integridade dos dados que serão utilizados no modelo de projeção.

Para a elaboração deste estudo, efetuou-se análises para obter informações quanto ao gerenciamento e organização do processo de produção, desde a aquisição da matéria prima à entrega do concreto usinado. Foram consideradas, portanto, nos anos de 2020, 2021 e 2022, as centrais dosadoras de concreto que consomem matérias primas diversas e que produzem tipos diferentes de concreto.

4.2 Desenvolvimento do algoritmo de Regressão

O primeiro passo do desenvolvimento é dividir o conjunto de dados em dois tipos: treino e teste. O conjunto de dados de treino é o que será apresentado ao algoritmo durante a criação do modelo e costumam representar cerca de 70% da totalidade dos dados. Já o conjunto de dados de teste é o que será apresentado ao modelo após sua criação, que irá simular previsões reais do modelo, avaliando o desempenho do modelo.

Para realizar esta divisão do conjunto de dados, será utilizado a função train_test_split da biblioteca scikit-learn. Para este modelo, foi determinado que o conjunto de teste será composto por 20% dos dados e o de treino por 80%.

Figura 9 – Criação do conjunto de treino e teste

```
#Dividindo os dados em dois tipos: treino e teste
x_treinamento, x_teste, y_treinamento, y_teste = train_test_split(
    Eixo_x,
    Eixo_y,
    test_size=0.2
)
```

4.2.1 Criação do modelo

Após separar os dados em conjuntos de treino e teste, o próximo passo é criar o modelo de regressão utilizando a função LinearRegression da biblioteca scikit-learn. A função LinearRegression aplica todo o cálculo estatístico da regressão linear ao conjunto de dados informado, figura 10.

Figura 10 – Criação do modelo de regressão linear usando a biblioteca scikit-learn

```
#Criando o modelo de regressão
Funcao_Regressao = LinearRegression()
```

Fonte: Elaborado pelo autor (2022).

4.2.2 Treinando o modelo

Com a função de regressão linear pronta conforme apresentado na figura 10, é necessário treinar o modelo. Para isto, utilizamos a função FIT da biblioteca scikit-learn ao modelo. A função FIT tem por objetivo encontrar o melhor coeficiente da regressão para o conjunto de dados passado e treinar os dados.

Figura 11 - Treinamento do modelo de regressão

```
#Treinando o modelo
Funcao_Regressao.fit(x_treinamento, y_treinamento);
```

Fonte: Elaborado pelo autor (2022).

Após a criação e treino do modelo, é importante visualizar como ficou a reta de regressão, para isso, a biblioteca matplotlib foi utilizada para criar o gráfico do modelo.

A biblioteca matplotlib não suporta o tipo de dados no formato de data nas funções, como por exemplo: 01/2020, 02/2020, etc. Por isso, foi realizada uma tratativa na coluna de data para que fosse possível utilizar a biblioteca e função em questão. A tratativa aplicada foi remover o separador de barras (/) entre mês e ano e representar como mês 1, 2, exemplo: $01/2020 \rightarrow 01$.

Figura 12 – Código para construção do gráfico do modelo

```
#Plotando a regressão linear
plt.figure(figsize=(10,5))
plt.scatter(x_treinamento, y_treinamento)
plt.plot(x_teste, Funcao_Regressao.predict(x_teste), color='red');
```

Após executar o código da figura 12, é possível visualizar como o modelo de regressão ajustou os valores tratados, ilustrado na figura 13.

Figura 13 - Visualização gráfica da regressão linear

Fonte: Elaborado pelo autor (2022).

4.2.3 Análise do modelo

A última etapa foi a análise do modelo, para que seja possível verificar algumas métricas importantes, como a raiz quadrada do erro médio (RMSE) e a correlação das variáveis envolvidas. A primeira métrica a ser calculada é o RMSE.

Para realizar o cálculo no Python, duas bibliotecas foram utilizadas: numpy e scikit-learn.

Figura 14 – Cálculo do RMSE

A partir do código apresentado na figura 14, obtivemos que o RMSE é de aproximadamente 6,16. Este valor atingido é aceitável pois significa que comparando os valores reais com os preditos, há uma variação de apenas 6,16% dos valores preditos para os valores totais, classificando assim, um ótimo modelo.

4.2.4 Correlação das variáveis

Por fim, pode-se analisar a correlação entre as variáveis presentes no modelo: tempo e volume de produção. Para o cálculo, a função escolhida é a correoef da biblioteca numpy.

Para utilizá-la, devemos passar nosso conjunto de dados já separados em dois eixos: x e y, conforme explicado no item 4.2.4.

Figura 15 – Cálculo de correlação

```
#Calculando a Correlação
correlacao = np.corrcoef(Eixo_x, Eixo_y)
```

Fonte: Elaborado pelo autor (2022).

Após executar o código conforme a figura 15, obtivemos o resultado de 0.38 o que classifica esta correlação como média, pois está entre 0,3 e 0,49, conforme explicado no item 2.3.

5 CONSIDERAÇÕES FINAIS

Este trabalho permitiu, por meio de análise, entender como o tempo (mês/ano) impacta na produção efetiva do concreto. Além disso, com os resultados da análise, foi possível avaliar se a estratégia adotada é interessante para o problema apresentado.

Os resultados foram atingidos, ou seja, através do histórico de dados de uma concreteira, foi possível desenvolver um modelo de regressão linear capaz de, entender a relação entre os dados analisados e a partir disso, conseguir elaborar um plano de ação tomando como base os valores preditos no modelo.

O desenvolvimento do modelo poderia ter sido aprimorado se o conjunto de dados analisado fosse maior, isso porque na análise, foi utilizado um pequeno volume de dados, o que pode prejudicar no desenvolvimento e resultados finais do modelo.

Tendo os resultados em vista, concluímos que, com este trabalho, é possível o desenvolvimento de um modelo de projeção do volume de concreto como ferramenta de apoio a tomada de decisão estratégica para gestores de centrais dosadoras de concreto, utilizando apenas o histórico de produção contendo as variáveis de data e volume.

REFERÊNCIAS

CBIC. Expectativa da cbic para o pib de 2021. In: CBIC (Ed.). [s.n.], 2021. Disponível em:

https://cbic.org.br/expectativa-da-cbic-para-o-pib-do-setor-em-2021-subiu-de-25-para-4-/. Citado na página 5.

CBIC. Incc: materiais e equipamentos sobem 17,68% em 7 meses. In: CBIC (Ed.). [s.n.], 2021. Disponível em:

https://cbic.org.br/incc-materiais-e-equipamentos-sobem-1768-em-7-meses-/. Citado na página 5.

COHEN, J. Statistical power analysis for the behavioral sciences. [S.l.]: Academic press, 2013. Citado na página 4.

GIL, A. C. et al. *Como elaborar projetos de pesquisa*. [S.l.]: Atlas São Paulo, 2002. Citado na página 8.

MANZANO, J. A. N. G. *MySql 5.1 - Interativo*. 3rd. ed. [S.l.]: Érica - São Paulo, 2011. 19 p. Citado na página 7.

ORG, R. P. Introdução a linguagem r. In: ORG, R. P. (Ed.). [s.n.], 2021. Disponível em: https:-

//www.r-project.org/about.html>. Citado na página 7.

REGANATI, E. B. O que é uma concreteira. In: CONCRETOUSINADO (Ed.). [s.n.], 2020. Disponível em: https://www.concretousinado.com.br/noticias/usina-concreto/. Citado na página 5.

SEBRAE. O uso da tecnologia na construção civil pode aumentar a produtividade. In: CBIC (Ed.). [s.n.], 2018. Disponível em: https://www.mapadaobra.com.br/inovacao/uso-da-tecnologia-na-construcao-civil-pode-aumentar-a-produtividade/>. Citado na página 6.

BUSSAB, Wilton O.; MORETTIN, Pedro A. Estatística Básica. 9 a ed. - São Paulo: Saraiva, 2017. Citado na página 2 e 3.