AlphaNet: Architecture, Models, and Applications

Final Presentation, June 2020 Major Project (CSE-419 and CSE-429) MANIT, Bhopal (India) – 462003

Outline

- About Project
- About Team
- Proposed Work
- Novelties in the project
- Methodology and Architecture (Dataset and Loss function)
- Results
- Conclusion
- Further Readings

About Project

- So called "major" project; it is actually huge!
- Innovation expected; Novelty in the elements of research required
- Hands-on theoritical and practical contributions
- Delieverables: Application, Report, Presentation, Code, etc.
- Preparation of a thesis/paper based on the project
- No. of credits: 2 for CSE-429 and 1 for CSE-419
- Open Source wherever seems appropriate :)

About Team

Team members:

Adya Sharma	(161112102)	CSE-1
/ to / a Silalilla	(101112102)	

- Jishan Shaikh (161112013) CSE–1
- Ankit Chouhan (161112051) CSE-1
- Avinash Mahawar (161112048) CSE-1

• Supervisor:

- Prof. Bholanath Roy (Dept. of CSE, MANIT Bhopal)
- Prof. Sweta Jain (Dept. of CSE, MANIT Bhopal)
- Reviewers and Coordinators:
 - Prof. Saritha Khetawat (Dept. of CSE, MANIT Bhopal)
 - Prof. Sanyam Shukla (Dept. of CSE, MANIT Bhopal)

Proposed Work

- Theoritical works
 - Alpha-net: Framework, Design Architecture
 - Improvements over traditional RESNETs (RESNET-32, etc.)
 - For plain networks and block networks
 - Analysis and Modeling with novelties
- Practical works
 - Implementation of Alpha-Net v1, v2, v3, and v4
 - Quantitative analysis over previous architectures and different techniques

Novelties in the project

- Normalization function Alpha-encoding
 - Better than log-scaling and z-score normalization in accuracy
- Loss function Additive Margin Softmax + Linear weights
 - Better than Softmax and AM Softmax in accuracy
- Layer interconnection Stochastic Manner
 - Better than linear interconnection in data per layer complexity
- Dataset Hybrid benchmark similar to that of ImageNet
 - Better training complexity because of simple and small representation (Alpha-blocks and convolutions)

Alpha-Net: Architecture

Alpha transforms (over convoluted layers)

- For normalization of data for lesser feature vector size
 - Stochastic Interconnection between layers
 - Data flow according to Alpha blocks
- Architecture
 - Novel loss function (AM Softmax + Linear weights)
 - Alpha-encoding in preprocessing
 - Diagram (...continued)

34-layer linear plain structure

Alpha-Net: GAN Dataset

Alpha-Net: Novel loss function

$$\Lambda_{AMS} = -\frac{1}{n} \sum_{i=1}^{n} \frac{e^{s(\cos\theta_{y_i} - m)}}{e^{s(\cos\theta_{y_i} - m)} + \sum_{j=1, j \neq y}^{c} e^{s\cos\theta_j}}$$

For linear weights $(y = ax_1 + c)$, we can add a piece-wise division of it to make AM Softmax function with linear weights trained on ImagNet benchmark, as follows:

$$\Lambda_{AMS} = \begin{cases} -\frac{1}{n} \sum_{i=1}^{n} \frac{e^{s(\cos\theta_{y_i} - m)}}{e^{s(\cos\theta_{y_i} - m)} + \sum_{j=1, j \neq y}^{c} e^{s\cos\theta_{j}}} & \theta - m > 0\\ ax_i + c & \theta - m <= 0 \end{cases}$$

Where:

 $\Lambda_{AMS} = \text{Calculated Loss}$

n = Training instances

 $\theta = \text{Angle with the origin}$

m = Gradient for the instance

s =Sample value of the current instance

a and c = Linear weight coefficients

Excerpt from report

Results (1 of 4)

Architecture No. of Layers	Layer structure (Top 1 Accuracy)			
	No. of Layers	Plain	Residual Blocks	Alpha Blocks
Alpha-Net v1	128	75.1%	78.2%	79.0%
Alpha-Net v2	256	76.2%	76.3%	79.2%
Alpha-Net v3	512	76.3%	76.5%	79.5%
Alpha-Net v4	1024	72.1%	76.1%	77.5%

Table 6.1: Accuracy comparison of Alpha-Net models vs Layer structure.

Results (2 of 4)

Architecture No. of Layers	Loss Function (Top 1 Accuracy)			
	Softmax	AM Softmax	AM Softmax + Linear Weights	
Alpha-Net v1	128	72.1%	74.3%	76.2%
Alpha-Net v2	256	71.3%	74.3%	77.1%
Alpha-Net v3	512	72.1%	74.3%	77.2%
Alpha-Net v4	1024	71.2%	73.1%	75.1%

Table 6.2: Accuracy comparison of Alpha-Net models vs Loss function.

Results (3 of 4)

Architecture	No. of Layers	Normalization (Top 1 Accuracy)		
		log-scaling	z-score	Alpha-encoding
Alpha-Net v1	128	69.2%	71.2%	71.0%
Alpha-Net v2	256	69.5%	70.1%	71.2%
Alpha-Net v3	512	70.1%	70.1%	71.5%
Alpha-Net v4	1024	71.2%	69.5%	70.5%

Table 6.3: Accuracy comparison of Alpha-Net models vs Normalization function.

Results (4 of 4)

Architecture	Top 1 Accuracy
Xception	79.0%
Inception v3	78.8%
ResNet 50	75.9%
VGG 19	72.7
VGG 16	71.5
InceptionResNet v2	80.4%
Alpha-Net v1	78.2%
Alpha-Net v2	79.1%
Alpha-Net v3	79.5%
Alpha-Net v4	78.3%

Table 6.4: Accuracy comparison of various architectures

Graphs (1 of 4)

Graphs (2 of 4)

Graphs (3 of 4)

Graphs (4 of 4)

Conclusion

- Designed Alpha-Net: Architecture with novel loss function, layer arrangements, normalization function, etc.
- Implemented 4 models Alpha-Net v1, v2, v3, and v4 based on Alpha-Net architecture with 128, 256, 512, and 1024 layers.
- Novel loss function: Additive margin Softmax + Linear weights.
- Quantitative analysis of Top 1 Accuracy with different layer structures, different normalization functions, and different loss functions.
- Comparisons with different architectures previously proposed.
- Custom dataset with ImageNet benchmark as an inspiration + large size
- Application of network ranges to a broad set of training tasks.

Thank you.

Questions?