Data structures and algorithms Spring 2025

Lecture 8

Tree part I

Lecturer: Do Thuy Duong

Contents

- Tree's ADT
- Binary tree
- Tree operations
- Tree implementations part 1

TREE

What it is (conceptual)

Why we use it (applications)

How we implement it (implementation)

Definition [1]

Nature View

Computer Scientists View

This might seem a little simplistic - but it can be quite helpfulto keep simple pictures in mind to help you workthrough the concepts and terminology.

Definition [2]

Definition

 Atree (CS) is an abstract model of a hierarchical structure

Definition [3]

- Atree consists of branches and nodes with a parent-child relation
- Example:
 - Folder structures
 - Organization structure
 - Domain name structure

```
olume serial number is 3AD5-78
   data
       ApplicationHeader
           images
       CommunityRating
       EnergyOptimizer
       Framework
       Integrator
           CommandLinks
           images
                buttons
                footer
                framework
               -layout
```

Definition [4]

Recursive definition:

Tree (T) is a finite set of **one or more nodes** such that:

- There is one specially designated node called the root of the tree.
- The remaining nodes (excluding the root) are partitioned into m disjoint sets T1, T2, ..., Tm and each of these sets in turn is a tree.
- The trees T1, T2, ..., Tm are called the **sub-trees** of the root.

Definition [5]

Recursive definition – Tree example

Terminologies [1]

Aleaf node:

Anode with no children.

Abranch node (interior node):

A node which is not the root node and a leaf node.

Level of node:

The distance from the node to the root.

Depth of a tree:

The maximum level of any leaf in the tree

Degree of a node:

The number of its children

Terminologies [2]

- Depth of a node: the number of edges from depth 0 the node to the tree's root node. height 3 - Height of a node: the number of edges from the node to the deepest possible leave. depth 1 depth 1 - Height of a tree is height of root node height 1 height 2 = Depth of a tree is depth of deepest node = maximum level of any leaf in the tree. depth 2 depth 2 height 0 height 0

root node

inner node

leaf node

depth 2

height 1

depth 3

height 0

Terminologies [3]

Parent and Siblings:

- Each root is said to be the parent of its sub-trees
- Children of the same parent are siblings.

Ancestor and Descendant:

 Ancestor and descendant can also be used to denote the relationship that may span several level of tree.

Node order

- The order of the children nodes
- Default is from left to right
- Node label (data)

Terminologies [4]

Example:

Level of node: State the levels of all the nodes:

A:____, B:____, C:____,

D:_____, E:_____, F:_____,

G.____, П.____, I.____

Root of a tree: Root of the tree is: _____

Depth of a tree: Depth of the tree is: _____

Degree of a node: State the degrees of:

A:____, B:____, C:____,

D:____, E:____, F:____

G:____, H:____, I:____

Terminal node or leaf: State all the leaf nodes:

Branch (interior) node: State all the branch nodes:

Terminologies [5]

Parent and Siblings:

State the parents of: A:___, B:___, C:___,

D:___, E:___, F:___,

G:___, H:___, I:___

State the siblings of: A:_____, B:_____

C:_____, D:_____, E:_____,

F:_____, G:_____, H:_____, I:_____

Ancestor and Descendant:

State the ancestors of: A:_____, B:_____, C:_____, D:______,

E______, F:______, G:_______,

H:______, I:______

State the descendants of: A:_____

D:____, E:____, F:____, G:____, H:____, I:____

Binarytree [1]

- Definition: Abinary tree is a tree that:
 - Root node and each interior node has at most two children.
 - The children of a node are an ordered pair.

Binarytree [2]

- Some typical types of Binary tree
 - Perfect Binary tree: every level is completely filled.
 - Full Binary tree: each node is either a leaf or has exactly two children.
 - Complete Binary tree: a perfect binary tree except perhaps for the final level which is filled from left to right.

Binarytree [2]

- Some typical types of Binary tree
 - Perfect Binary tree: every level is completely filled.
 - Full Binary tree: each node is either a leaf or has exactly two children.
 - Complete Binary tree: a perfect binary tree except perhaps for the final level which is filled from left to right.

Binarytree [3]

- Number of nodes in a Binary tree
 - Consider a binary tree T with the depth h, n is the total nodes of T, I is the total leaves of T
 - If Tis a perfect binary tree, then:

$$l = 2^h$$
 and $n = 2^{h+1} - 1 = 2l - 1$

If T is a full binary tree, then:

$$2^h \le n \le 2^{h+1} - 1$$

Tree traversal [1]

- Definition: Atraversal of a tree:
 - Start from the root of the tree
 - Visit every node of the tree.
 - Each node is visited once.
- Traversal order
 - Order of visiting
- Visit:
 - Do something with the node
 - Print node's label
 - Perform an operation on node's data
 - Visit a node go to a node

Tree traversal [2]

Example

Tree traversal to printall node's label

Result

- A, B, C, D
 - Start from A, visit A → go to B, visit B → go to C, visit
 C → go to B → go to D, visit D.
- C, D, B, A
 - Start from A → go to B → go to C, visit C → go to B → go to D, visit D → go to B, visit B → go to A, visit A.
- C, B, D, A
 - Start from A → go to B → go to C, visit C → go to B, visit B → go to D, visit D → go to B → go to A, visit A.

Tree traversal [3]

Level-order

Start at root, visit root.

Visit the nodes at each level, from left to right.

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7$$
$$\rightarrow 8 \rightarrow 9 \rightarrow 10$$

Pre-order

Visit each node, followed by its children (in pre-order) from left to right. $1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 8 \rightarrow 9 \rightarrow 6 \rightarrow 10 \rightarrow 4 \rightarrow 7$

Tree traversal [4]

In-order

Visit the left-most child, followed by the root, followed by the remaining children from left to right.

$$2 \rightarrow 1 \rightarrow 8 \rightarrow 5 \rightarrow 9 \rightarrow 3 \rightarrow 10 \rightarrow 6 \rightarrow 7$$

 $\rightarrow 4$

Post-order

Visit the left-most child, followed by the remaining children from left to right, followed by the root.

$$2 \rightarrow 8 \rightarrow 9 \rightarrow 5 \rightarrow 10 \rightarrow 6 \rightarrow 3 \rightarrow 7 \rightarrow 4$$

 $\rightarrow 1$

Tree operations [1]

- Create an empty tree
- Add a new node to the tree

- A new node is added to the tree as a child of a parent node.
- If the parent is null, new node is the root of the tree.
- Node is added from left to right.
- Example: addNode(D,B)

Tree operations [2]

Get root node of the tree

- Return the root node of the tree.
- Return null if the tree is empty.

Get the parent node of a node in the tree

- Return the parent node of a node n in the tree.
- Return null if the tree is empty or n is the root

Get the left most child of a node in the tree

- Return the left most child of a node n in the tree
- Return null if the tree is empty or n has no child

Tree operations [3]

- Get the nearest right sibling of a node in the tree
 - Return the nearest right sibling of a node n in the tree.
 - Return null if the tree is empty or n has no right sibling.
- Get/Set node's label
 - Get/set the label of a node in the tree.
- Check if the tree isempty
 - Return true if the number of nodes =0, otherwise return false

Tree ADT

```
Tree
+addNode(NodeType newNode, NodeTypeparent):
void
+getRoot(): NodeType
+getParent(NodeType n): NodeType
+leftMostChild(NodeType n): NodeType
+rightSibling(NodeType n): NodeType
+getNodeLabel(NodeType n): LabelType
+setNodeLabel(NodeType n, LabelType label): void
+isEmpty(): boolean
```


Tree Implementation

Array-based tree[1]

- Array is used to represent a tree
 - Atree Thas N nodes, each node is indexed by a number from 0 to N-1.
 - With node i in the tree
 - Lij is the label of node i
 - P[i] is the parent of node I
- Indexing scheme:
 - Incremental indexing started from root
 - Root is 0, parent is smaller than children
 - Children of the same parentare indexed from left to right

Array-based tree[2]

Example

0 1 2 3 4 5 6 7 8 9

A B C D E F G H I K

-1 0 0 0 2 2 3 4 4 5

L:

P:

Array-based tree[3]

```
Tree
-maxSize: int //maximum possible number of nodes
-n: int //current number of nodes in the tree
-I: String //Label array
-p: int[] //Parent array
+addNode(String label, int parent): void
+getParent(int node): int
+leftMostChild(int node): int
+rightSibling(int node): int
+getNodeLabel(int node): String
+setNodeLabel(int node, String label): void
```

Array-based tree[4]

- addNode(String label, int parent)
 - If parent is -1, then we will add a root node
 1[0]=label; p[0]=-1;
 - If parent is different from -1
 - Must find a correct position for the new node
 - Shifting the array to the right if it is necessary

```
addNode("G",3);
```

```
0 1 2 3
A B C D
-1 0 0 0
```

Array-based tree[4]

- addNode(String label, int parent)
 - If parent is -1, then we will add a root node
 1[0]=label; p[0]=-1;
 - If parent is different from -1
 - Must find a correct position for the new node
 - Shifting the array to the right if it is necessary

Array-based tree[5]

- addNode(String label, int parent)
 - If parent is different from -1
 - Must find a correct position for the new node
 - Shifting the array to the right if it is necessary

```
0 1 2 3 4

A B C D G

addNode("E",2);

1 0 0 0 3
```

Array-based tree[5]

- addNode(String label, int parent)
 - If parent is different from -1
 - Must find a correct position for the new node
 - Shifting the array to the right if it is necessary

Array-based tree[6]

- leftMostChild(int node)
 - Example:

```
leftMostChild(0) is 1
leftMostChild(3) is 4
leftMostChild(2) is -1
```

- Start from node+1
 - Find the first node i that:

- Return -1 if could not find i

0	1	2	3	4
Α	В	С	D	G
-1	0	0	0	3

Array-based tree[6]

- leftMostChild(int node)
 - Example:

```
leftMostChild(0) is 1
leftMostChild(3) is 4
leftMostChild(2) is -1
```

- Start from node+1
 - Find the first node i that:

p[i]==node

- Return -1 if could not find i

Array-based tree[7]

- nearestRightSibling(int node)
 - Example:

```
nearestRightSibling(1) is 2
nearestRightSibling(2) is 3
nearestRightSibling(3) is -1
```

- Check node+1
 - Return **node+1** if:

- Return -1 otherwise

0	1	2	3	4
Α	В	С	D	G
-1	0	0	0	3

Array-based tree[7]

- nearestRightSibling(int node)
 - Example:

```
nearestRightSibling(1) is 2
nearestRightSibling(2) is 3
nearestRightSibling(3) is -1
```

- Check node+1
 - Return node+1 if:

p[node+1]==p[node]

- Return -1 otherwise

Array-based binarytree [1]

Array is used to represent a binary tree

 Using the above same indexing scheme

L[i] is the label of node i³

 P[i] is the parent of node i

0 1 2 3 4 5 6 7 8 9

L: A B C D E F G H I K

P: -1 0 0 1 2 2 3 4 4 5

Array-based binarytree [2]

Array is used to represent a binary tree

Using perfect binary tree indexing scheme

- With node i in the tree
 - L[i] is the label of nodei
 - Left child: 2i+1
 - Right child: 2i+2

0

Array-based binarytree [3]

```
BinaryTree
-maxSize: int //maximum possible number of nodes
-n: int // Current number of nodes
+addRoot(String label): void
+getLeftChild(int node): int
+getRightChild(int node): int
+getParent(int node): int
+addLeftChild(int node): int
+addRightChild(int node): int
+getNodeLabel(int node): String
+setNodeLabel(int node, String label): void
+preOrderTravel(int node): void
```

Tutorial & next topic

Preparing for the tutorial:

 Practice with examples and exercises in Tutorial 8 Example Code

Preparing for next topic:

- Read textbook chapter 4 (4.1 4.3): Tree data structure.
- Read supplementary book chapter 10 (10.4) and chapter 12