Adrien Paysant TP2 ASTAR IA

HE ARC 2020/21

Partie 1: Heuristiques

Etudier l'admissibilité des heuristiques suivantes :

- a) $h_0(n) = 0$
- b) $h_1(n) =$ "la distance entre n et B sur l'axe des x"
- c) $h_2(n) =$ "la distance entre n et B sur l'axe des y"
- d) h₃(n) = "la distance à vol d'oiseau entre n et B"
- e) h₄(n) = "la distance de Manhattan entre n et B"
- a) Si $h_0(n)=0$ alors $h_0(n)\ge 0$ (une distance est toujours positive ou nulle), de plus si $h_0(n)=0$ alors $h_0(n)\le h^*(n)$ (une distance est toujours positive ou nulle). En somme, $0\le h_0(n)\le h^*(n)$, l'heuristique est donc admissible.
- b) Il y a trois cas:
 - i. Soit B et n sont alignés selon l'axe O_x;
 - ii. Soit B et n sont alignés selon l'axe O_γ;
 - iii. Soit B et n ne sont alignés ni selon O_x, ni selon O_y.
 - (i) Si B et n sont alignés selon l'axe O_x , alors $h_1(n) \ge 0$ (une distance est toujours positive ou nulle), d'autre part dans ce cas $h_1(n) = h^*(n)$ qui est un cas particulier de $h_1(n) \le h^*(n)$. En somme, $0 \le h_1(n) \le h^*(n)$, l'heuristique est donc admissible.
 - (ii) Si B et n sont alignés selon l'axe O_y , alors $h_1(n)=0$ qui est un cas particulier de $h_1(n)\leq 0$. Dans ce cas, $h^*(n)\geq h_1(n)=0$ (une distance est toujours positive ou nulle).

En somme, $0 \le h_1(n) \le h^*(n)$, l'heuristique est donc admissible.

(iii) Si B et n ne sont alignés ni selon O_x , ni selon O_y , alors d'après les propriétés des triangles, $h^*(n) \ge ||OA|| = h_1(n)$ avec A le projeté orthogonal sur l'axe O_x de B. De plus $h_1(n) \ge 0$ (une distance est toujours positive ou nulle).

En somme, $0 \le h_1(n) \le h^*(n)$, l'heuristique est admissible.

L'heuristique étant toujours admissible dans chacun des cas, alors cela démontre que l'heuristique considérée est admissible.

- c) Il y a trois cas:
 - i. Soit B et n sont alignés selon l'axe O_v;
 - ii. Soit B et n sont alignés selon l'axe Ox;
 - iii. Soit B et n ne sont alignés ni selon O_{x_r} ni selon O_y .
 - (i) Si B et n sont alignés selon l'axe O_y , alors $h_2(n) \ge 0$ (une distance est toujours positive ou nulle), d'autre part dans ce cas $h_2(n) = h^*(n)$ qui est un cas particulier de $h_2(n) \le h^*(n)$. En somme, $0 \le h_1(n) \le h^*(n)$, l'heuristique est donc admissible.

(ii) Si B et n sont alignés selon l'axe O_x , alors $h_2(n)=0$ qui est un cas particulier de $h_1(n)\leq 0$.

Dans ce cas, $h^*(n) \ge h_2(n) = 0$ (une distance est toujours positive ou nulle).

En somme, $0 \le h_2(n) \le h^*(n)$, l'heuristique est donc admissible.

(iii) Si B et n ne sont alignés ni selon O_x , ni selon O_y , alors d'après les propriétés des triangles, $h^*(n) \ge ||OA|| = h_2(n)$ avec A le projeté orthogonal sur l'axe O_y de B.

De plus $h_2(n) \ge 0$ (une distance est toujours positive ou nulle).

En somme, $0 \le h_2(n) \le h^*(n)$, l'heuristique est admissible.

L'heuristique étant toujours admissible dans chacun des cas, alors cela démontre que l'heuristique considérée est admissible.

- d) $h_3(n) \ge 0$ (une distance est positive ou nulle), de plus la distance à vol d'oiseau est la plus courte distance reliant le point, donc $h_3(n) \le h^*(n)$. En somme, $0 \le h_3(n) \le h^*(n)$, l'heuristique est admissible.
- e) L'heuristique n'est pas admissible, preuve par contre-exemple : Si A(0,0) et B(3/2,2) alors $h_4([AB])=2+1.5=3.5$ or les villes que nous considérons peuvent être reliées par des droite donc $h^*([AB])=\sqrt{\left(\frac{3}{2}-0\right)^2+(2-0)^2}=2.5$ Or 2.5<3.5, donc l'heuristique est invalide.

Partie 2: Implémentation

- → Le dossier data contient deux fichiers, l'un, connections.txt permet de référencer les liens entre les villes, le second fichier, positions.txt, permet d'avoir les informations sur les villes.
- → Le fichier *CityLink.py* contient deux classes ainsi que des méthodes pour récupérer et mettre en forme les données du dossier data.
 - La classe City permet de représenter une ville ;
 - La classe Link représente une connexion entre deux villes ;
 - Les différentes méthodes permettent de lire les données et de les mettre en forme dans un dictionnaire grâce à la fonction readAll.
- → Le fichier *main.py* contient la saisie des paramètres de recherche ainsi que l'appel à *readAll* pour obtenir les données ; ainsi que l'appel effectif de la recherche A* et enfin une mise en forme de l'affichage du résultat de la recherche.
- → Le fichier *aStar.py* contient l'implémentation de l'algorithme ainsi que la définition des différentes heuristiques.

Partie 3: Expérimentation

1) L'usage d'heuristiques divers influe-t-elle sur l'efficacité de la recherche?

Oui, cette influence est démontré par l'exemple suivant :

```
Trajet recherché : Amsterdam->Naples
                                                                  Trajet recherché : Amsterdam->Naples
trajet trouvé en : 20 visites.
                                                                  trajet trouvé en : 19 visites.
Bilan du Trajet :
                                                                  Bilan du Trajet :
                                              A gauche, h0,
                                                                      Il y a 4 étapes :
    Il y a 4 étapes :
                                              A droite h1.
      DEPART
                                                                        DEPART
        ->Amsterdam
                                                                          ->Amsterdam
        ->Munich
                                                                          ->Munich
        ->Rome
                                                                          ->Rome
        ->Naples
                                                                          ->Naples
      ARRIVE
                                                                        ARRIVE
                                                                  Trajet recherché : Amsterdam->Naples
Trajet recherché : Amsterdam->Naples
                                                                  trajet trouvé en : 10 visites.
trajet trouvé en : 22 visites.
Bilan du Trajet :
                                                                  Bilan du Trajet :
                                              A gauche h2,
                                                                      Il y a 4 étapes :
    Il y a 4 étapes :
                                                                        DEPART
      DEPART
                                              A droite h3,
                                                                          ->Amsterdam
        ->Amsterdam
                                                                          ->Munich
        ->Munich
                                               En bas h5.
                                                                          ->Rome
        ->Rome
                                                                          ->Naples
        ->Naples
      ARRIVE
                                                                        ARRIVE
```

```
Trajet recherché : Amsterdam->Naples
trajet trouvé en : 22 visites.
Bilan du Trajet :
    Il y a 4 étapes :
    DEPART
        ->Amsterdam
        ->Munich
        ->Rome
        ->Naples
ARRIVE
```

Cet exemple de trajet entre Amsterdam et Naples démontre bien que le choix de l'heuristique influe sur la performance de la recherche.

2) Existe-t-il des exemples où le choix de l'heuristique change le chemin ?

Oui, cela est le cas pour le trajet Paris->Prague qui différent selon entre h3 et h4. En effet, la recherche avec la distance de Manhattan rajoute une étape, comme le montrent les sorties cidessous.

```
Trajet recherché : Paris->Prague
trajet trouvé en : 6 visites.
Bilan du Trajet :
    Il y a 6 étapes :
        DEPART
        ->Paris
        ->Brussels
        ->Hamburg
        ->Berlin
        ->Prague
ARRIVE
```

```
Trajet recherché: Paris->Prague trajet trouvé en: 15 visites.
Bilan du Trajet:
Il y a 5 étapes:
DEPART
->Paris
->Brussels
->Amsterdam
->Prague
ARRIVE
```

3) Dans un cas réel, quelle heuristique utiliseriez-vous? Pourquoi?

L'heuristique 3, à vol d'oiseau me parait être la plus performante par rapport à ses consœurs, le vol d'oiseau étant toujours la plus petite distance entre deux points.

En effet, h0 n'apporte aucune plus-value à l'usage (heuristique nulle), h1 et h2 sont par leur définition inférieur ou égaux à h3; h4 n'est pas admissible, donc h3 est bien la meilleure approche à considérer.

- 4) Aller plus loin : chercher la définition d'une heuristique monotone/consistante.
 - a. Quel est son impact sur les performances de A*?
 - b. Comment améliorer son code en conséquence?
 - c. Parmi les 5 heuristiques, y'en a-t-il des monotones ? Si non, proposer en une (sans implémentation) pour notre problème du voyageur.
 - a) Une heuristique est dite consistante si :

```
Heuristique consistante:
```

Pour tout x, pour tout y descendant de x, $h(x) \le h(y) + k(x,y)$

Heuristique admissible:

Pour tout x, $h(x) \le h^*(x)$ où $h^*(x)$ est la valeur optimale de x à T

T ensemble des états terminaux

h(x) heuristique estimant le coût de x à T

k(x,y) coût du passage de x à y, successeur de x

Source: Cours info IMT Atlantique

Cette définition est traduisible comme suit : la différence entre l'heuristique de deux nœuds quelconques reliés ne surestime pas la distance réelle entre ces nœuds.

L'impact est positif, une telle heuristique permettrait d'améliorer les performances de l'algorithme A*.

- b) Utiliser l'heuristique en question permet d'améliorer le code.
- c) Trivialement, l'heuristique h0 est consistante car $0 \le x \ \forall \ x \ge 0$. Rappelons qu'ici x est une distance, donc par définition $x \ge 0$. Donc on a bien $h(x) \le h(y) + k(x,y)$