Práctico 9

Transformaciones lineales

Objetivos.

- Aprender a calcular coordenadas de vectores
- Aprender a la matriz de una transformación lineal
- Aprender a calcular la matriz de una transformación respecto a las bases canónicas.
- Aprender a calcular el núcleo y la imagen de una transformación.
- Aprender a verificar si una transformación lineal es inyectiva, sobreyectiva o un isomorfismo
- Familiarizarse con el teorema sobre la dimensión del núcleo y la imagen.

Ejercicios. Algunos ejercicios tienen ayuda, las que hemos puesto al final del archivo para que los puedan pensar un poco antes de leerlas.

- (1) Decidir si las siguientes funciones son transformaciones lineales entre los respectivos espacios vectoriales sobre \mathbb{R} .
 - (a) La traza Tr : $\mathbb{R}^{n \times n} \longrightarrow \mathbb{R}$ (recordar Ejercicios 7, Práctico 3)
 - (b) $T: \mathbb{C} \longrightarrow \mathbb{C}, T(z) = \overline{z}.$
 - (c) $T : \mathbb{R}[x] \longrightarrow \mathbb{R}[x], T(p(x)) = x p(x).$
 - (d) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}, T(x,y) = xy$
 - (e) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, T(x,y) = (x,y,1)
 - (f) El determinante det : $\mathbb{R}^{n \times n} \longrightarrow \mathbb{R}$
- (2) Calcular la matriz con respecto a la base canónica de las siguientes transformaciones. Es decir, encontrar una matriz del tamaño apropiado de tal modo que las transformaciones sean iguales a multiplicar por dicha matriz. (Recordar Observación 3.1.2 de Garcia-Tiraboschi y la sección "Transformaciones de \mathbb{R}^n a \mathbb{R}^m " de la clase teórica "Transformaciones lineales 1")
 - (a) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}, T(x,y,z) = x + 2y + 3z$
 - (b) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, T(x, y, z) = (x + 2y + 3z, y z)
 - (c) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, T(x, y, z) = (x + 2y + 3z, y z, 0)
 - (d) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, T(x,y) = (x-y, x+y, 2x+3y).
- (3) Para cada una de las transformaciones lineales del ejercicio anterior describir implíctamente el núcleo y dar un conjunto de generadores de la imagen.
- (4) Sea $T: \mathbb{R}^4 \to \mathbb{R}^5$ dada por T(v) = Av donde A es la siguiente matriz

$$A = \begin{pmatrix} 0 & 2 & 0 & 1 \\ 1 & 3 & 0 & 1 \\ -1 & -1 & 0 & 0 \\ 3 & 0 & 3 & 0 \\ 2 & 1 & 1 & 0 \end{pmatrix}$$

- (a) Decir cuáles de los siguientes vectores están en el núcleo: (1,2,3,4), (1,-1,-1,2), (1,0,2,1).
- (b) Decir cuáles de los siguientes vectores están en la imagen: (2, 3, -1, 0, 1), (1, 1, 0, 3, 1), (1, 0, 2, 1, 0).
- (c) Dar una base del núcleo y de la imagen.

- (d) Dar la dimensión del núcleo y de la imagen.
- (e) Describir el núcleo y la imagen implícitamente.
- (5) Sea $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ una transformación lineal tal que $T(e_1) = (1, 2, 3), T(e_2) = (-1, 0, 5)$ y $T(e_3) = (-2, 3, 1)$. Calcular T(2, 3, 8) y T(0, 1, -1). Más generalmente, calcular T(x, y, z) para todo $(x, y, z) \in \mathbb{R}^3$ (es decir, que T quede definida de manera parecida a las del ejercicio (2)).
- (6) Encontrar en cada caso, cuando sea posible, una matriz $A \in \mathbb{R}^{3\times 3}$ tal que la transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, T(v) = Av, satisfaga las condiciones exigidas. Cuando no sea posible, explicar por qué no es posible.
 - (a) $\dim \operatorname{Im}(T) = 2 \text{ y } \dim \operatorname{Nu}(T) = 2.$
 - (b) T inyectiva y $T(e_1) = (1, 1, 1), T(e_2) = (1, 0, 1)$ y $T(e_3) = (0, 1, 0)$
 - (c) T sobrevectiva y $T(e_1) = (1, 1, 1), T(e_2) = (1, 0, 1)$ y $T(e_3) = (0, 1, 0)$
 - (d) $T(e_1) = (1, 1, 0), T(e_2) = (0, 1, 1)$ y $T(e_3) = (1, 0, 1)$
 - (e) $(1,1,0) \in \text{Im}(T) \text{ y } (0,1,1) \in \text{Nu}(T)$
 - (f) $\dim \operatorname{Im}(T) = 1$
- (7) Sea V un espacio vectorial no nulo y $T:V\longrightarrow \mathbb{R}$ probar que T=0 ó T es sobreyectiva.

Más ejercicios.

- (8) Verificar, en cada una de las transformaciones lineales de este práctico, si son inyectivas, sobreyectivas o isomorfismos.
- (9) Sea $T: \mathbb{R}^3 \longrightarrow \mathbb{R}[x]$ una transformación lineal tal que $T(e_1) = x^2 + 2x + 3$, $T(e_2) = -x^2 + 5$ y $T(e_3) = -2x^2 + 3x + 1$. Calcular T(2,3,8) y T(0,1,-1). Más generalmente, calcular T(a,b,c) para todo $(a,b,c) \in \mathbb{R}^3$.
- (10) Sea V un espacio vectorial de dimensión finita y $T:V\longrightarrow V$ una transformación lineal. Probar las siguientes afirmaciones.
 - (a) $\operatorname{Nu}(T) \subset \operatorname{Nu}(T^2)$
 - (b) $Nu(T) \neq Im(T)$ si dim(V) es impar.
- (11) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - (a) Existe una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(1,0,-1)=(1,-1) y T(-1,0,1)=(1,0).
 - (b) Existe una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(1,0,-1)=(1,-1) y T(-1,0,1)=(-1,1).
 - (c) Si $T: \mathbb{R}^9 \to \mathbb{R}^7$ es una transformación lineal, entonces dim Nu(T) > 2.
 - (d) Sea $T: V \to W$ una transformación lineal tal que $T(v_i) = w_i$, para i = 1, ..., n. Si $\{w_1, ..., w_n\}$ genera W, entonces $\{v_1, ..., v_n\}$ genera V.
 - (e) Existe una transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^5$ tal que los vectores (1, 0, -1, 0, 0), (1, 1, -1, 0, 0) y (1, 0, -1, 2, 1) pertenecen a la imagen de T.
 - (f) Existe una transformación lineal sobreyectiva $T: \mathbb{R}^5 \to \mathbb{R}^4$ tal que los vectores (1,0,1,-1,0) y (0,0,0,-1,2) pertenecen al núcleo de T.