ML Programming assignment II

Name: 林欣妤

Student number: 314652023

October 28, 2025

1 Sigmoid Function and the Hyperbolic Tangent Function

1.1 Definition of the Sigmoid Function

The sigmoid function, also known as the logistic function, is defined as

$$\sigma(x) = \frac{1}{1 + e^{-x}}.$$

Its range is (0,1), and it is commonly used as an activation function in neural networks due to its smooth and monotonic properties.

1.2 Definition of the Hyperbolic Tangent Function

The hyperbolic tangent function is defined as

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

Its range is (-1,1), and it is another widely used activation function. Notice that both functions are expressed in terms of exponentials.

1.3 Deriving the Relationship

We start by rewriting tanh(x) in a similar exponential form:

$$\tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1}.$$

Meanwhile, the sigmoid function can also be written as

$$\sigma(x) = \frac{e^x}{e^x + 1} = \frac{1}{1 + e^{-x}}.$$

Now consider $\sigma(2x)$:

$$\sigma(2x) = \frac{1}{1 + e^{-2x}}.$$

Then,

$$2\sigma(2x) - 1 = 2\left(\frac{1}{1 + e^{-2x}}\right) - 1 = \frac{1 - e^{-2x}}{1 + e^{-2x}} = \tanh(x).$$

Hence, we obtain the fundamental relation:

$$\tanh(x) = 2\sigma(2x) - 1.$$

1.4 Inverse Relation

By rearranging the above expression, we can express the sigmoid function in terms of the hyperbolic tangent function:

$$\sigma(x) = \frac{1 + \tanh\left(\frac{x}{2}\right)}{2}.$$

2 Graphical Comparison

3 Conclusion

From the derivation above, we conclude that the sigmoid and hyperbolic tangent functions are closely related. Specifically, $\tanh(x)$ is a **scaled and shifted** version of the sigmoid function. While $\sigma(x)$ maps inputs to (0,1), $\tanh(x)$ rescales this range to (-1,1), making it symmetric about the origin and often more suitable for neural network training.