Exercises: Vector Basics

Problem 1. For each of the following directed segments, give the vector of which the directed segment is an instantiation:

1.
$$(1,2),(2,3)$$

2.
$$(10,20),(11,21)$$

3.
$$(1,-2),(2,3)$$

4.
$$(1,-2,0),(2,3,10)$$

Solution:

1. By definition of instantiation, we know that the vector is [2-1, 3-2] = [1, 1].

Problem 2. Give the default instantiations and the norms of the following vectors:

1.
$$[1, 2]$$

3.
$$[1, -2, 3]$$

Solution:

1. By definition, the default instantiation of [1,2] is (0,0),(1,2); and the vector's norm is $\sqrt{1^2+2^2}=\sqrt{5}$.

2. Default instantiation (0,0,0),(1,2,3); norm: $\sqrt{14}$.

3. Default instantiation (0,0,0),(1,-2,3); norm: $\sqrt{14}$.

Problem 3. Give the results of a + b and a - b for each of the following:

1.
$$\boldsymbol{a} = [1, 2], \boldsymbol{b} = [2, 5]$$

2.
$$\boldsymbol{a} = [1, 2, 3], \boldsymbol{b} = [2, 5, -7]$$

3.
$$\boldsymbol{a} = 10\boldsymbol{i} - 209\boldsymbol{j} + 32\boldsymbol{k}, \boldsymbol{b} = [2, 5, -7]$$

Solution:

1. By definition of the operators + and - on vectors, we have $\mathbf{a} + \mathbf{b} = [1+2,2+5] = [3,7]$ and $\mathbf{a} - \mathbf{b} = [1-2,2-5] = [-1,-3]$.

1

- 2. $\mathbf{a} + \mathbf{b} = [3, 7, -4] \text{ and } \mathbf{a} \mathbf{b} = [-1, -3, 10].$
- 3. $\mathbf{a} + \mathbf{b} = [12, -204, 25]$ and $\mathbf{a} \mathbf{b} = [8, -214, 39]$. Note that $10\mathbf{i} 209\mathbf{j} + 32\mathbf{k} = [10, -209, 32]$ are equivalent (recall the definitions of \mathbf{i}, \mathbf{j} and \mathbf{k}).

Problem 4. Give the results of ca for each of the following:

- 1. $\boldsymbol{a} = [1, 2], c = 5$
- 2. $\boldsymbol{a} = [1, 2, 3], c = -5$
- 3. $\mathbf{a} = 10\mathbf{i} 209\mathbf{j} + 32\mathbf{k}, c = 10$

Solution:

- 1. By definition of the scalar-multiplication operator, $c\mathbf{a} = [5 \cdot 1, 5 \cdot 2] = [5, 10]$.
- 2. [-5, -10, -15].
- 3. [100, -2090, 320].

Problem 5. Indicate whether **a** and **b** have the same directions in each of the following cases:

- 1. $\boldsymbol{a} = [1, 1], \boldsymbol{b} = [2, 2]$
- 2. $\boldsymbol{a} = [1, 2, 3], \boldsymbol{b} = [20, 40, 60]$
- 3. $\boldsymbol{a} = [1, 2, 3], \boldsymbol{b} = [2, -4, 6]$

Solution:

- 1. The direction of \boldsymbol{a} is defined to be the ray emanating from the origin (0,0) and passing the point (1,1). Similarly, The direction of \boldsymbol{b} is defined to be the ray emanating from the origin (0,0) and passing the point (2,2). These two rays are the same; namely, \boldsymbol{a} and \boldsymbol{b} have the same direction.
- 2. Same direction.
- 3. Different directions.

Problem 6. Let \boldsymbol{a} and \boldsymbol{b} be 2d vectors such that $\boldsymbol{a} + \boldsymbol{b} = [3, 5]$, and $\boldsymbol{a} - \boldsymbol{b} = [4, 6]$. What are \boldsymbol{a} and \boldsymbol{b} ?

Solution 1: Suppose that $\mathbf{a} = [a_1, a_2]$ and $\mathbf{b} = [b_1, b_2]$. From $\mathbf{a} + \mathbf{b} = [3, 5]$, we have $a_1 + b_1 = 3$ and $a_2 + b_2 = 5$, whereas from $\mathbf{a} - \mathbf{b} = [4, 6]$, we have $a_1 - b_1 = 4$ and $a_2 - b_2 = 6$. Solving these equations gives $\mathbf{a} = [3.5, 5.5]$ and $\mathbf{b} = [-0.5, -0.5]$.

Solution 2: From $\mathbf{a} + \mathbf{b} = [3, 5]$ and $\mathbf{a} - \mathbf{b} = [4, 6]$, we can directly obtain $(\mathbf{a} + \mathbf{b}) + (\mathbf{a} - \mathbf{b}) = 2\mathbf{a} = [3, 5] + [4, 6] = [7, 11]$. Hence, $\mathbf{a} = [3.5, 5.5]$. Then, $\mathbf{b} = [3, 5] - \mathbf{a} = [-0.5, -0.5]$.

Problem 7. Let **a** be a vector and **c** a scalar. Prove: $|c\mathbf{a}| = |c||\mathbf{a}|$.

Proof. Let
$$\mathbf{a} = [a_1, a_2, \dots, a_d]$$
. Hence, $c\mathbf{a} = [ca_1, ca_2, \dots, ca_d]$. Thus, $|c\mathbf{a}| = \sqrt{\sum_{i=1}^d (ca_i)^2} = \sqrt{c^2 \sum_{i=1}^d (a_i)^2} = \sqrt{c^2 \sqrt{\sum_{i=1}^d (a_i)^2}} = |c||\mathbf{a}|$.

Problem 8. Let A, B, C, D be 4 points in \mathbb{R}^d . Suppose that $\overrightarrow{A, B}, \overrightarrow{B, C}$, and $\overrightarrow{C, D}$ are instantiations of a, b, and c, respectively; see Figure 1. Prove that $\overrightarrow{A, D}$ is an instantiation of a + b + c.

Figure 1: Problem 8

Proof. Consider the directed segment $\overrightarrow{A}, \overrightarrow{C}$ as shown in Figure 2. By Lemma 2 in the notes of Lecture 1, $\overrightarrow{A}, \overrightarrow{C}$ is an instantiation of a + b (i.e., d = a + b). By applying the lemma again, we obtain that $\overrightarrow{A}, \overrightarrow{D}$ is an instantiation of d + c = a + b + c.

Figure 2: Proof of Problem 8

Problem 9. Let A, B, C, D be 4 points in \mathbb{R}^d . Suppose that $\overrightarrow{A, B}, \overrightarrow{C, B}$, and $\overrightarrow{C, D}$ are instantiations of \boldsymbol{a} , \boldsymbol{b} , and \boldsymbol{c} , respectively; see Figure 3. Give the vector of which $\overrightarrow{A, D}$ is an instantiation.

Solution: Consider the directed segment $\overrightarrow{A}, \overrightarrow{C}$ as shown in Figure 4. By Lemma 2 in the notes of Lecture 1, $\overrightarrow{A}, \overrightarrow{B}$ is an instantiation of $\mathbf{b} + \mathbf{c}$. This means that $\mathbf{a} = \mathbf{b} + \mathbf{d}$, leading to $\mathbf{d} = \mathbf{a} - \mathbf{b}$. By applying the lemma again, we obtain that $\overrightarrow{A}, \overrightarrow{D}$ is an instantiation of $\mathbf{d} + \mathbf{c} = \mathbf{a} - \mathbf{b} + \mathbf{c}$.

Figure 3: Problem 9

Figure 4: Solution to Problem 9