第九章 正弦稳态功率和能量

作业

9-2 9-9 9-11 9-16 9-25

练习

9-6 9-8 9-15 9-19 9-26

§ 9-1 — § 9-3 单个元件的功率、贮能

设:
$$u(t) = U_m \cos(\omega t + \varphi_u)$$

 $i(t) = I_m \cos(\omega t + \varphi_i)$

1. 瞬时功率:

$$p_{R}(t) = ui = U_{m}\cos(\omega t + \varphi_{u}) I_{m}\cos(\omega t + \varphi_{i})$$

$$= U_{m}I_{m}\cos^{2}(\omega t + \varphi_{u})$$

$$= \frac{1}{2}U_{m}I_{m}[\cos(2(\omega t + \varphi_{u}) + 1]$$

2. 电阻的平均功率

$$P_R = \frac{1}{T} \int_0^T p_R(t) dt = \frac{1}{2} U_m I_m = UI = I^2 R = \frac{U^2}{R}$$

二.电感元件

i +u

1 瞬时功率

设: $u(t) = U_m \cos \omega t$ $i(t) = I_m \sin \omega t$

$$p(t) = U_{m}\cos\omega t I_{m}\sin\omega t = \frac{1}{2} U_{m}I_{m}\sin2\omega t$$

- A. p 按正弦规律变化, 其角频率为电压或电流角频率的两倍。
- B. p > 0 吸收功率; p < 0 放出功率

$$P = 0$$

3 贮能

瞬时贮能:

$$w(t) = \frac{1}{2} Li^{2}(t) = \frac{1}{2} LI_{m}^{2} \sin^{2} \omega t = \frac{1}{4} LI_{m}^{2} (1 - \cos 2\omega t)$$
$$= \frac{1}{4} LI_{m}^{2} - \frac{1}{4} LI_{m}^{2} \cos 2\omega t$$

平均贮能:

$$W_L = \frac{1}{4} L I_m^2 = \frac{1}{2} L I^2$$

4 无功功率 — 瞬时功率的最大值 电抗元件的U、I乘积。

$$Q_L = \frac{1}{2} U_m I_m = UI = \omega L I^2 = 2\omega W_L$$

单位: 乏(var)

电感的无功功率表示电源与电感能量交换 速率(功率)的最大值,或外电路与电感间能 量往返的规模。

三. 电容元件

$$P=0$$

$$W_C = \frac{1}{2} \mathbf{C} \mathbf{U}^2$$

$$Q_{C} = -\frac{1}{2} U_{m} I_{m}$$

$$= -UI$$

$$= -2\omega W_{c}$$

§ 9-4 单口网络的平均功率

设 $u(t) = U_m \cos(\omega t + \varphi_u)$

$$i(t) = I_m \cos(\omega t + \varphi_i)$$

以下公式中u和i均为关联参考方向. 若非关联,加负号。

1.瞬时功率

$$p_{N}(t) = U_{m}I_{m}\cos(\omega t + \varphi_{u})\cos(\omega t + \varphi_{i})$$

$$= \frac{1}{2}U_{m}I_{m}[\cos(\varphi_{u}-\varphi_{i}) + \cos(2\omega t + \varphi_{u}+\varphi_{i})]$$

$$= \frac{1}{2}U_{m}I_{m}\cos(\varphi_{u}-\varphi_{i}) + \frac{1}{2}U_{m}I_{m}\cos(2\omega t + \varphi_{u}+\varphi_{i})$$

$$u \cdot i \cdot p$$

2. 平均功率(有功功率)

$$\mathbf{P} = \frac{1}{2} \mathbf{U}_{m} \mathbf{I}_{m} \cos(\varphi_{u} - \varphi_{i}) = \mathbf{U} \mathbf{I} \cos(\varphi_{u} - \varphi_{i})$$

讨论:

(1) 如果N不含独立源

$$Z = U/I = U/I \angle (\varphi_u - \varphi_i) = |Z| \angle \theta_Z$$
 $\varphi_u - \varphi_i = \theta_Z$ 阻抗角
 $P = UI\cos \theta_Z$

此时若N中不含受控源, $|\theta_z|$ 小于90°,P为正此时若N中含受控源, $|\theta_z|$ 可能大于90°,P可正可负。

此外,

$$P=I^2 \operatorname{Re}[Z]$$

$$P=U^2 \operatorname{Re} [Y]$$

$$P = \sum_{K=1}^{n} P_{K}$$

(2) 若N中含独立源,P可正可负,此时 $\theta=\phi_u-\phi_i$

$$P = UIcos(\varphi_u - \varphi_i)$$

例9-6: 已知R=3Ω jωL=j4Ω -j/(ωC)=-j5Ω

$$I=12.65 \ 18.5^{\circ} A$$

$$I_1=20$$
 | -53.1° A

$$I_2=20 |90^{\circ}A$$

$$U=100 \mid 0^{\circ} V$$

求单口网络的功率P

解法四种,见教材P78

法1: P=100×12.65cos (0-18.5°) =1200 W

法2: $P = P_R = 3 \times 20^2 = 1200 \text{ W}$

法3: 利用R、L支路计算

 $P=UI_1\cos[0-(-53.1^{\circ})] =100\times20 \cos 53.1^{\circ}=1200 W$

法4: $P=I^2 \operatorname{Re}[Z]$

$$Z = (3+j4) // (-j5) = (7.5-j2.5) \Omega$$

$$P=12.65^{2} \times 7.5 = 1200W$$

§ 9-5 单口网络的无功功率

以RLC串联电路为例:

- 1 有功功率: P= UIcosθ 电阻分量的电压电流有效值乘积
- 2 无功功率: $Q = UI\sin\theta$ 电抗分量的电压电流有效值乘积

$$Q = \sum_{K=1}^{n} Q_K$$
 无功功率守恒

$$=Q_{\rm C}+Q_{\rm L}=2\omega(W_{\rm L}-W_{\rm C})$$

内部不含独立源的单口网络,其无功功率还有以下公式

$$Q = I^2 Im[Z]$$

$$Q = -U^2 \operatorname{Im}[Y]$$

讨论:

- (1) 若Q>0,则θ>0 呈感性若Q<0,则θ<0 呈容性。
- (2) 若Q=0,则能量只在C、L间交换,外电路 (电源)不参与交换。无功功率反映了外电 路参与能量往返的程度。

3 视在功率及功率三角形

$$S = UI$$

单位V·A

$$S^2 = P^2 + Q^2$$

$$\cos\theta = \frac{\mathbf{P}}{\mathbf{S}}$$

4 功率因数

$$\lambda = \frac{P}{S} = \cos\theta$$

$$\theta > 0$$
 电流滞后电压

"滞后"、感性

$$\theta < 0$$

 $\theta < 0$ 电流超前电压 "超前"、容性

5 有功功率P与无功功率Q的关系

Q=Ptan
$$\theta$$
 = P $\frac{\sqrt{1-\cos^2\theta}}{\cos\theta}$ =P $\frac{\sqrt{1-\lambda^2}}{\lambda}$

例9-10:感应电动机是电感性负载,设有一220V、50HZ、50kW的感应电动机,功率因数为0.5。

- (1) 求电源供应的电流 I_1 和 Q_1 ;
- (2)为使功率因数为1,需并联多大的电容? 此时电源提供的电流 I_2 多大?

解:

(1)
$$P=UI_1cos\theta_1=UI_1\lambda_1$$

$$I_1=\frac{P}{U\lambda_1}=455A$$

$$Q_1 = UI_1 \sin \theta_1 = 220 \times 455 \sqrt{1 - \cos^2 \theta} = 86.7 \text{KVAr}$$

 $Q_1 \neq 0$,电源与负载间存在徒劳往返的能量交换。

(2)

解法1: 利用平均功率不变性

为使 λ_2 =1, \mathbf{Q}_2 =0,应并联储能性质相反的元件一电容,使ab向右为一纯电阻,由于电容不消耗功率,故 P不变。

$$\begin{array}{c} Q_2 = Q_C + Q_1 = 0 & \overline{m} \, Q_1 = \bar{p} \, \text{来值不变} \\ Q_C = - \, Q_1 = \, -86.7 \, \text{K} \\ Q_C = - \, \omega \, \text{CU}^2 \\ C = \, -\frac{Q_C}{\omega \, \text{U}^2} = \frac{86.7 \, \text{K}}{2\pi \times 50 \times 220^2} = 5702 \, \mu\text{F} \\ \text{此时} \, \lambda_2 = 1, \, P = \text{UI}_2 = 50 \, \text{K} \, \text{来 } \\ \end{array}$$

$$I_2 = \frac{50K}{U} = \frac{50K}{220} \approx 227A$$
 电源提供的电流大大降低。

思考题: 若功率因数提高到0.9, 重新解此题。

解法2: 相量图法

原网络N₁的功率因数角为60° (感性负载)

$$I_1 = \frac{P}{U\lambda_1} = 455A$$

$$I_C = I_1 \sin 60^\circ \approx 394.03A$$

$$C = \frac{I_c}{\omega U} \approx 0.0057F$$

$$I_2 = I_1 \cos 60^\circ \approx 227 A$$

§ 9-7 正弦稳态最大功率传递定理

 Z_L 设 U_{OC} 、 Z_0 不变, Z_L 可变 求负载获得最大功率的条件

情况(1)
$$Z_L = R_L + jX_L$$
 R_L , X_L 都可变 $i = \frac{\dot{U}_{OC}}{Z_0 + Z_L} = \frac{\dot{U}_{OC}}{(R_0 + R_L) + j(X_0 + X_L)}$

$$I = \frac{U_{OC}}{\sqrt{(R_0 + R_L)^2 + (X_0 + X_L)^2}}$$

$$P_{L}=I^{2}R_{L}=rac{U_{oc}^{2}}{(R_{o}+R_{L})^{2}+(X_{o}+X_{L})^{2}}R_{L}$$
 当 $X_{L}=-X_{0}$ 时, P_{L} 最大

$$P_L = \frac{U_{OC}^2}{(R_0 + R_L)^2} R_L$$

得
$$R_L = R_0$$
 $P_{L\text{max}} = \frac{U_{\text{OC}}^2}{(R_0 + R_L)^2} R_L = \frac{U_{\text{OC}}^2}{4R_0}$

负载获得最大功率的条件: $R_L = R_0$, $X_L = -X_0$

共轭匹配:
$$Z_L = \overset{*}{Z_0}$$
 $P_{L\text{max}} = \frac{U_{\text{oc}}^2}{4R_0}$

情况(2) 负载阻抗的模可变

用理想变压器使负载获得最大功率时就是属于这种情况。

设负载阻抗Z_L的模为 | Z | ,幅角为φ,其实部为 | Z | cosφ,虚部为 | Z | sinφ。

回路中的i为电压相量 \dot{U}_{OC} 除以 $(R_0 + |Z|\cos\varphi) + j(X_0 + |Z|\sin\varphi)$

$$I = \frac{U_{OC}}{\sqrt{(R_0 + |Z|\cos\varphi)^2 + (X_0 + |Z|\sin\varphi)^2}}$$
 负载电阻的功率为:
$$P = \frac{U_{OC}^2 |Z|\cos\varphi}{(R_0 + |Z|\cos\varphi)^2 + (X_0 + |Z|\sin\varphi)^2}$$
 之。
$$\frac{Z_L}{|Z|\cos\varphi}$$
 之。
$$\frac{Z_L}{|Z|\cos\varphi}$$
 之。
$$\frac{Z_L}{|Z|\cos\varphi}$$
 之。
$$\frac{Z_L}{|Z|\sin\varphi}$$

该式的变量为 | Z | ,求该式对 | Z | 的导数, 令导数等于0,

得到:
$$|z|^2 = R_0^2 + X_0^2$$
 $|z| = \sqrt{R_0^2 + X_0^2}$ 模匹配

当负载为纯电阻R_L时,负载获得最大功率的条件是:

$$R_{L} = \sqrt{R_{o}^2 + X_{o}^2}$$

- 补充1: (P₉₅ 练习9-13) 电路如图, I_s=212∠0° mA
 - (1) 若 Z_L 为阻抗, Z_L 为何值时?获最大功率 求最大功率值;
 - (2) 若Z_L为纯电阻, 求Z_L获得的最大功率。

解:

(1)
$$Z_0 = \frac{(2+2) \times 10^3 \times \text{j}4 \times 10^3}{(2+2) \times 10^3 + \text{j}4 \times 10^3} = \frac{\text{j}16 \times 10^3}{4+\text{j}4}$$

= $2 + \text{j}2 = 2\sqrt{2}\angle 45^\circ \text{K}\Omega$

 $Z_L = (2 - j2)$ K Ω 时获得最大功率

求开路电压:

$$\dot{U}_{oc} = \frac{2 \times 10^3}{2 \times 10^3 + (2 \times 10^3 + j4 \times 10^3)} \times 212 \angle 0^\circ \times 10^{-3} \times j4 \times 10^3$$

$$= \frac{212 \times j4}{2 + i2} = 212\sqrt{2} \angle 45^{\circ}V$$

$$P_{\text{max}} = \frac{U_{\text{oc}}^2}{4 \times 2 \times 10^3} = \frac{(212\sqrt{2})^2}{8 \times 10^3} = 11.24 \text{W}$$

(2)
$$Z_L = 2\sqrt{2} \times 10^3 = 2.83 \text{K}\Omega$$

$$\dot{I} = \frac{\dot{U}_{OC}}{(2 + j2 + 2.83) \times 10^3}$$
 \dot{U}_{OC}
 \dot{U}_{OC}

$$= \frac{212\sqrt{2}\angle 45^{\circ}}{(4.83 + j2) \times 10^{3}} = 57.34\angle 22.51^{\circ} \text{ mA}$$

$$P_{\text{max}} = I^2 R_L = (57.34 \times 10^{-3})^2 \times 2.83 \times 10^3 = 9.3 \text{W}$$