Exercício 02

Objetivo:

Aprender a utilizar a interface do RARS executando o segundo exemplo de programação na linguagem de montagem do RISC-V no livro texto.

Instruções:

- Inicie o RARS
- No editor de textos do RARS, transcreva o código abaixo e salve o arquivo com o nome exercicio_02.

```
# Exercício 02 - Patterson pags. 54/55/56
# Mostra a compilação de um comando de atribuição em C usando Array
# Trecho em C:
\# A[12] = h + A[8]
    .data
           # segmento de dados
# definição do array A. Coloca os valores de A[0]=0 até A[15]=150 na memória
Array A: .word 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150
    .text # segmento de código (programa)
main:
    addi s2, zero, 1
                    # Inicializa s2 em 1
                    # como o exercício assume que o endereço-base de A[]
      s3, Array A
                    # está em s3, foi incluida esta instrução
       t0, 32(s3)
                    # t0 = A[8]
    add t0, s2, t0
                    # t0 = t0 + h
        t0, 48(s3)
                    # A[12] = t0
```

- 3. Para iniciar a montagem do código vá ao menu **Run** e selecione a opção **Assemble** ou pressione **F3**.
- 4. Na janela de segmento de dados se pode optar por mostrar, por exemplo, o conteúdo da região de memória que armazena os dados do programa (0x10010000 (.data)), da pilha (current sp) e do sistema operacional (0xffff0000 (.MMIO)), conforme é mostrado abaixo.

Área de dados do sistema operacional

Área de dados do programa do usuário

Área de dados da pilha

5. Na seção DATA, os elementos do vetor são armazenados em células de memória organizadas de forma matricial, sendo que o endereço inicial do vetor é igual a **0x10010000** conforme a tabela a seguir:

Endereço da linha	Deslocamento									
	(+0)	(+4)	(+8)	(+c)	(+10)	(+14)	(+18)	(+1C)		
0x10010000	Array_A[0]	Array_A[1]	Array_A[2]	Array_A[3]	Array_A[4]	Array_A[5]	Array_A[6]	Array_A[7]		
0x10010020	Array_A[8]	Array_A[9]	Array_A[10]	Array_A[11]	Array_A[12]	Array_A[13]	Array_A[14]	Array_A[15]		
0x10010040										
0x10010060										

O endereço de cada elemento na matriz é dado pelo endereço da linha somado ao deslocamento associado à coluna. Por exemplo, o endereço do elemento 11 é dado por 0x10010020 + 0xC = 0x1001002C.

Lembre que, se o cálculo for feito em relação ao endereço base do vetor, deve-se fazer: 0x10010000 + 4x 11 = 0x10010000 + 44 = 0x10010000 + 0x2C = 0x1001002C.

(end. base em hexa)+(4 x posArray dec.) = (end. base em hexa) + (desl. decimal) = (end. base hexa) + (desl. hexa) = (end. desejado).

- 6. Observe que os valores armazenados no vetor são expressos em hexadecimal, embora no código eles sejam definidos em decimal. Então, por exemplo, o elemento Array_A[8] = 0x00000050 = 80 (em decimal).
- 7. Conforme especificado no código do programa, o que se espera, após a sua execução, é que o elemento Array_A[12] receba a soma do conteúdo do elemento Array_A[8] com o conteúdo do registrador s2. Se este registrador for igual a 0, então, após a execução, Array_A[12] será igual a Array_A[8].
- 8. Inicie a execução passo-a-passo, pressionando **F7** até chegar à segunda instrução do programa (endereço 0x00400004).
- 9. Abaixo, observe, na quarta coluna, que a instrução a ser executada é auipc 19, 0xfc10 [Array_A], mas que originalmente foi especificada como la s3, Array_A. A instrução la (load array) é na verdade uma pseudo-instrução que o montador traduz para uma seqüência das instruções auipc (add upper immediate to pc) e addi (add immediate) do RISC-V (pseudo-instruções tornam a programação mais facilitada). Essa sequência permite carregar o endereço-base do vetor (Array_A) para um registrador base (s3) para que se possa acessar qualquer elemento do vetor por meio de deslocamentos em relação ao endereço-base.

Bkpt	Address	Code	Basic				Sourc	e
	0x00400000	0x00100913	addi x18,x0,1	17:	addi	32,	zero, 1	# Inicializa s2
	0x00400004	0x0fc10997	auipc x19,0x0000fc10	18:	la	s3,	Array_A	# como o exercí
	0x00400008	0xffc98993	addi x19,x19,0xfffffffc					
	0x0040000c	0x0409b283	ld x5,0x00000040(x19)	20:	ld	tO,	64 (33)	# t0 = A[8]
	0x00400010	0x005902b3	add x5,x18,x5	21:	add	tO,	s2, t0	# t0 = t0 + h
	0x00400014	0x0659b023	sd x5,0x00000060(x19)	22:	sd	tO,	96 (83)	# A[12] = t0

10. Faça a execução passo-a-passo do programa e, a cada instrução, preencha a tabela abaixo cada vez que o valor de um registrador ou posição da memória de dados for modificado.

Antes da execução da instrução		Depois da execução da instrução								
		Registradores			Segmento de Dados					
PC	Instrução	R8	R18	R19	10010000		10010040		10010060	
		(\$t0)	(\$s2)	(\$s3)	Array_A[0] 1a linha coluna (+0)		Array_A[8] 3a linha coluna (+0)		Array_A[12] 4a linha coluna (+0)	
		00000000	00000000	00000000	00000000		00000050		0000078	
00400000	addi s2, zero, 1		0000001							
00400004	auipc 19, Array_A									l
00400008	addi 19,19, 0xffffffc			1001000						

Obs: A segunda (auipc) e a terceira (addi) instruções apresentadas acima são inseridas pelo montador em substituição à pseudo-instrução la s3, Array_A utilizada originalmente no código fonte. Essa pseudo-instrução tem a função de carregar o endereço base do vetor (Array_A) para o registrador destino (s3). A instrução auipc primeiramente carrega o endereço do vetor para o registrador 19 e a segunda instrução soma o conteúdo de 19 para s3.

NOTA: Se for necessário reiniciar o programa, faça: Run > Reset