Steepest descent method

• Local optimal direction

Consider
$$f'(\alpha) = p^T (A x^k - b) + \alpha p^T A p$$

Then
$$f'(0) = p^T F'(x^k)$$
 $(F'(x) = A x - b)$

= changes in F at x^k in the direction of p

Idea: make f'(0) as negative as possible by varying p

Assume ||p|| = 1. Then

$$f'(0)$$
 max if $p = F'(x^k) / ||F'(x^k)|| = steepest ascent$

$$f'(0)$$
 min if $p = -F'(x^k) / ||F'(x^k)|| = steepest descent$

$$= r^{k} / ||r^{k}||$$
 (F'(x) = -r)

Steepest descent method:

$$x^{k+1} = x^k + \alpha^k r^k$$
 $\alpha^k = \text{step length}$

The optimal
$$\alpha^k = (r^k)^T (r^k) / (r^k)^T A r^k$$
 $(\alpha = p^T r^k / p^T A p)$

$$r^{k+1} = b - A x^{k+1}$$

$$= b - A (x^k + \alpha_k r^k)$$

$$= b - A x^k - \alpha_k A r^k$$

$$= r^k - \alpha_k A r^k$$

Algorithm

Given
$$x^0$$
, compute $r^0 = b - A x^0$ for $k = 0, 1, 2, ...$
$$\alpha_k = (r^k)^T (r^k) / (r^k)^T A r^k$$

$$x^{k+1} = x^k + \alpha_k r^k$$

$$r^{k+1} = r^k - \alpha_k A r^k$$
 end

<u>Notes</u>

- 1) Only 1 matrix-vector product (A rk) per iteration
- 2) "Nonlinear" iterative method:

$$x^{k+1} = x^k + \alpha_k (b - A x^k)$$

i.e.
$$M = M^k = 1/\alpha_k I$$

Method of conjugate directions

• Each new directions is "A-orthogonal" to previous search directions.

<u>Def</u>: Suppose A is SPD. The A-inner product is defined as:

$$(p, q)_A = p^T A q$$

The A-norm is defined as:

$$\|p\|_{A} = \sqrt{(p,p)_{A}}$$

Gram-Schmidt process

- Construct a set of orthogonal vectors.
- Suppose the previous search directions $p^0, p^1, \ldots, p^{k-1}$ are A-orth. Given the current r^k , construct p^k .

Let
$$p^{k} = r^{k} + \sum_{i=0}^{k-1} \beta_{i} p^{i}$$

$$(p^{k}, p^{j})_{A} = 0 \implies (r^{k}, p^{j})_{A} + (\sum_{i=0}^{k-1} \beta_{i} p^{i}, p^{j})_{A} = 0$$

$$(r^{k}, p^{j})_{A} + \beta_{j} (p^{j}, p^{j})_{A} = 0$$

$$\beta_{j} = -\frac{(r^{k}, p^{j})_{A}}{(p^{j}, p^{j})_{A}}$$

Conjugate gradient method

Construct a set of A-orth search vectors $\{p^k\}$ by the residual vectors $\{r^k\}$.

i.e.
$$p^{k} = r^{k} + \sum_{i=0}^{k-1} \beta_{i} p^{i} = r^{k} - \sum_{i=0}^{k-1} \frac{(r^{k}, p^{i})_{A}}{(p^{i}, p^{i})_{A}} p^{i}$$

CG Algorithm 1

$$x^0$$
 = initial guess; r^0 = b - A x^0 for k = 0, 1, 2, . . . , n -1
Compute p^k as above.
$$x^{k+1} = x^k + \alpha^k p^k$$

$$r^{k+1} = r^k - \alpha^k A p^k$$
 end

Notes

1)
$$\alpha^{k} = (r^{k}, p^{k}) / (p^{k}, p^{k})_{\Delta}$$

2)
$$r^{k+1} = b - A x^{k+1}$$

Useful facts

• span {
$$p^0$$
, ..., p^{k-1} } = span { r^0 , ..., r^{k-1} }
= span { r^0 , Ar^0 , ..., $A^{k-1} r^0$ }
= \mathcal{K}_k (A, r^0)
= k-dim Krylov subspace

- $r^k \perp \text{span} \{ r^0, \dots, r^{k-1} \}$ i.e. $(r^k, r^j) = 0$ $j = 0, 1, \dots, k-1$ Hence $r^k \perp \text{span} \{ p^0, \dots, p^{k-1} \}$.
- $(r^k, p^k) = (r^k, r^k)$ Pf: $(r^k, p^k) = (r^k, r^k + \text{sum } \beta_i p^i) = (r^k, r^k)$
- $(r^k, p^i)_A = 0$ i = 0, 1, ..., k-2.

Pf:
$$p^{i} \in \text{span}\{p^{0},...,p^{i}\} = \text{span}\{r^{0},Ar^{0},...,A^{i}r^{0}\}$$

 $\Rightarrow Ap^{i} \in \text{span}\{Ar^{0},A^{2}r^{0},...,A^{i+1}r^{0}\}$
 $\subseteq \text{span}\{r^{0},Ar^{0},...,A^{i+1}r^{0}\}$
 $= \text{span}\{r^{0},r^{1},...,r^{i+1}\}$

But $r^k \perp \text{span}\{r^0, r^1, ..., r^{i+1}\} \quad \forall i+1 \le k-1$

$$\therefore (r^k, p^i)_A = (r^k, Ap^i) = 0 \quad \forall i \le k - 2$$

•
$$p^{k} = r^{k} + \sum_{i=0}^{k-1} \beta_{i} p^{i} = r^{k} - \sum_{i=0}^{k-1} \frac{(r^{k}, p^{i})_{A}}{(p^{i}, p^{i})_{A}} p^{i}$$

$$= r^{k} - \frac{(r^{k}, p^{k-1})_{A}}{(p^{k-1}, p^{k-1})_{A}} p^{k-1}$$

•
$$r^{k} = r^{k-1} - \alpha_{k-1} A p^{k-1}$$

$$(r^{k}, r^{k}) = (r^{k}, r^{k-1}) - \alpha_{k-1} (r^{k}, A p^{k-1})$$
Thus $(r^{k}, p^{k-1})_{A} = (r^{k}, A p^{k-1}) = -1/\alpha_{k-1} (r^{k}, r^{k})$

• 0 =
$$(r^{k}, p^{k-1})$$
 = (r^{k-1}, p^{k-1}) - $\alpha_{k-1}(Ap^{k-1}, p^{k-1})$
= (r^{k-1}, r^{k-1}) - $\alpha_{k-1}(p^{k-1}, p^{k-1})_A$

Thus $(p^{k-1}, p^{k-1})_A = 1/\alpha_{k-1} (r^{k-1}, r^{k-1})$

$$=> \beta_{k-1} = -\frac{(r^k, p^{k-1})_A}{(p^{k-1}, p^{k-1})_A} = -\left(\frac{-1}{\alpha_{k-1}}(r^k, r^k)\right) \frac{\alpha_{k-1}}{(r^{k-1}, r^{k-1})} = \frac{(r^k, r^k)}{(r^{k-1}, r^{k-1})}$$

Conjugate gradient (CG) algorithm

$$x^{0} = \text{initial guess; } r^{0} = b - A \ x^{0}$$
 for $k = 0, 1, \ldots, n-1$
$$\beta_{k-1} = (r^{k}, r^{k}) \ / (r^{k-1}, r^{k-1}) \qquad (\beta_{-1} = 0)$$

$$p^{k} = r^{k} + \beta_{k-1} \ p^{k-1}$$

$$\alpha_{k} = (r^{k}, r^{k}) \ / (p^{k}, Ap^{k})$$

$$x^{k+1} = x^{k} + \alpha_{k} \ p^{k}$$

$$r^{k+1} = r^{k} - \alpha_{k} \ Ap^{k}$$
 end

<u>Notes</u>

- Only 1 matrix-vector multiply; 2 inner-products.
- At most n A-orth vectors in Rⁿ. Terminate at most n steps → exact solution.