Conjugate gradients: ingredients

- Quadratic form
- Steepest descent
- Eigenvectors and Eigenvalues
- Conjugate directions

Quadratic forms of a matrix

Singular, positive definite

Quadratic forms

General quadratic equation

$$f(x) = \frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} - \mathbf{x}^{\mathrm{T}} \mathbf{b}$$

f(x) is minimized by the solution to Ax=b, which is demonstrated on the next slide.

Gradient points in the direction of steepest increase of f(x).

Conjugate gradient (cont'd)

Gradient

$$f'(x) = \begin{bmatrix} \frac{\partial}{\partial x_1} f(x) \\ \frac{\partial}{\partial x_2} f(x) \\ \vdots \\ \frac{\partial}{\partial x_n} f(x) \end{bmatrix}$$

With some more math we arrive at

$$f'(x) = \frac{1}{2} \mathbf{x}^{\mathrm{T}} A + \frac{1}{2} (A \mathbf{x})^{\mathrm{T}} - \mathbf{b}^{\mathrm{T}}$$

which, if A is symmetric, reduces to

$$f'(x) = Ax - b$$

Setting f'(x)=0, this is equation we need to solve (at the minimum, the first derivative is zero).

Thus, Ax=b can be solved by finding x that minimizes f(x). This holds, if A is symmetric and positive definite!

Steepest descent

Question: How to get to the minimum (fast, efficiently)?

This is a general question, which arises in many different contexts, such as solving PDEs and inversion.

Suggestion: slide down to the minimum from an arbitrary starting point x_0 following a number of steps, $x_1, x_2,, x_n$ until we are close enough to the solution x.

$$-f'(x_i) = b - Ax_i$$

This would be the direction to follow in which f(x) decreases fastest (direction of steepest descent).

$$e_i = x_i - x$$

This is the **error vector**, which indicates the distance from the true solution vector, x, at each step, i=1,...,n.

$$r_i = b - Ax_i$$
$$r_i = -f'(x_i)$$

This is the **residual vector**, which indicates the distance from the true b vector at each step, i=1,...,n. Think of it as $r_i = -f'(x_i)$ from the true b vector at each step, i-1,...,n. Think of its the error vector transformed by A into the b-space. The residual vector is actually the direction of the steepest descent!

Steepest descent (cont'd)

These are then the different steps of the Steepest Descent method:

$$r_i = b - Ax_i$$

$$\alpha_i = \frac{r_i^T r_i}{r_i^T A r_i}$$

$$x_{i+1} = x_i + \alpha_i r_i$$

The method requires two matrixvector products per iteration! One can be eliminated though:

$$r_{i+1} = r_i - \alpha_i A r_i$$

Remember i and i+1 are the iteration counts of the steepest descent solver (NOT spatial indices)

Why is there a distinct zigzag path? Remember that α should be chosen that r_0 and $f'(x_1)$ are orthogonal.

Convergence of Steepest Descent: Instant convergence (cont'd)

There is only one step to the exact solution, because the x_i lies exactly on one axis of the ellipsoid and the residual points directly into the center of the ellipsoid;

thus, $\alpha_i = 1/\lambda_e$ results in instant convergence.

This is a very special case.

For a more general analysis we again think of a vector as a sum of other well-understood vectors i.e. express e_i as a linear combination of *orthonormal* eigenvectors.

Convergence of Steepest Descent: General convergence (cont'd)

In the suma, for demonstration we have n=2 and assume $\lambda_1 \ge \lambda_2$.

$$\kappa = \frac{\lambda_1}{\lambda_2} \ge 1$$
 spectral condition number

$$\mu = \frac{\xi_2}{\xi_1}$$
 slope of e_i

$$\omega^{2} = 1 - \frac{\left(\xi_{1}^{2}\lambda_{1}^{2} + \xi_{2}^{2}\lambda_{2}^{2}\right)^{2}}{\left(\xi_{1}^{2}\lambda_{1} + \xi_{2}^{2}\lambda_{2}\right)\left(\xi_{1}^{2}\lambda_{1}^{3} + \xi_{2}^{2}\lambda_{2}^{3}\right)}$$
$$= 1 - \frac{\left(\kappa^{2} + \mu^{2}\right)^{2}}{\left(\kappa + \mu^{2}\right)\left(\kappa^{3} + \mu^{2}\right)}$$

Convergence of Steepest Descent: General convergence (cont'd)

The more ill-conditioned the matrix is i.e. the larger the condition number the slower is the convergence.

What is a disadvantage of Steepest Descent?

Well, there are multiple steps in the same direction of various length.

What if we could find a set of orthogonal search directions d_0 , d_1 ,..., d_n where we take exactly one step in each direction!

Conjugate Directions (cont'd)

Solution: make the search directions A-orthogonal or conjugate instead of orthogonal

$$v_i^T A v_j = 0$$
 (here v_i could be the direction, d , and v_j could be some error, e).

These vectors are A-orthogonal, because...they are orthogonal after being "stretched".

Gram-Schmidt Conjugation

The last thing needed is a set of A-orthogonal search directions.

Suppose a set of n linearly independent vectors u_0, u_1, u_2, u_n (could be the coordinate axes). To construct d_i , take u_i and subtract any components that are not A-orthogonal. Thus, set $d_0 = u_0$ and for i > 0

$$d_{0} = u_{0}$$

$$d_{i} = u_{i} - \sum_{j=0}^{i-1} \beta_{ij} d_{j}$$

$$\beta_{ij} = \frac{u_i^T A d_j}{d_j^T A d_j}$$

Note, there is an outer loop over $j \le n$ search directions spanning the whole vector space!

Begin with two linearly independent vectors u_0 , u_1 . Set $d_0 = u_0$. The vector u_1 is composed of two components: u^* (A-orthogonal to d_0) and u^+ (parallel to d_0). After conjugation only A-orthogonal portion remains and $d_1 = u^*$.

The disadvantage is, all old search vectors must be kept (in memory) to construct the new one and $O(n^3)$ operations are required!

Conjugate gradients (cont'd)

Putting it all together:

$$d_{0} = r_{0} = b - Ax_{0}$$

$$\alpha_{i} = \frac{r_{i}^{T} r_{i}}{d_{i}^{T} A d_{i}}$$

$$x_{i+1} = x_{i} + \alpha_{i} d_{i}$$

$$r_{i+1} = r_{i} - \alpha_{i} A d_{i}$$

$$\beta_{i+1} = \frac{r_{i+1}^{T} r_{i+1}}{r_{i}^{T} r_{i}}$$

$$d_{i+1} = r_{i+1} + \beta_{i+1} d_{i}$$

Conjugate gradients (cont'd)

Putting it all together:

$$d_{0} = r_{0} = b - Ax_{0}$$

$$\alpha_{i} = \frac{r_{i}^{T} r_{i}}{d_{i}^{T} A d_{i}}$$

$$x_{i+1} = x_{i} + \alpha_{i} d_{i}$$

$$r_{i+1} = r_{i} - \alpha_{i} A d_{i}$$

$$\beta_{i+1} = \frac{r_{i+1}^{T} r_{i+1}}{r_{i}^{T} r_{i}}$$

$$d_{i+1} = r_{i+1} + \beta_{i+1} d_{i}$$

Given the inputs A, b, x_0 , maximum iteration number i_{max} , and error tolerance $\varepsilon < 1$:

$$i \Leftarrow 0$$

$$r \Leftarrow b - Ax$$

$$d \Leftarrow r$$

$$\delta_{new} \Leftarrow r^T r$$

$$\delta_0 \Leftarrow \delta_{new}$$
While $i < i_{max}$ and $\delta_{new} > \varepsilon^2 \delta_0$ do
$$q \Leftarrow Ad$$

$$\alpha \Leftarrow \frac{\delta_{new}}{d^T q}$$

$$x \Leftarrow x + \alpha d$$
If i is divisible by 50
$$r \Leftarrow b - Ax$$
else
$$r \Leftarrow r - \alpha q$$

$$\delta_{old} \Leftarrow \delta_{new}$$

$$\delta_{new} \Leftarrow r^T r$$

$$\beta \Leftarrow \frac{\delta_{new}}{\delta_{old}}$$

$$d \Leftarrow r + \beta d$$

$$i \Leftarrow i + 1$$

Preconditioning (cont'd)

Untransformed CG Method

$$r_{0} = b - Ax_{0}$$

$$d_{0} = M^{-1}r_{0}$$

$$\alpha_{i} = \frac{r_{i}^{T}M^{-1}r_{i}}{d_{i}^{T}Ad_{i}}$$

$$x_{i+1} = x_{i} + \alpha_{i}d_{i}$$

$$r_{i+1} = r_{i} - \alpha_{i}Ad_{i}$$

$$\beta_{i+1} = \frac{r_{i+1}^{T}M^{-1}r_{i+1}}{r_{i}^{T}M^{-1}r_{i}}$$

$$d_{i+1} = M^{-1}r_{i+1} + \beta_{i+1}d_{i}$$

Preconditioning (cont'd)

What does preconditioning due to the quadratic form? It stretched it and makes it appear more spherical.

There is a (very) large number of preconditioners out there and many consider it some kind of "black art". One example is simply a diagonal matrix with entries taken from A, which scales the quadratic form along the coordinate axes. Note, in case of the large problems, application of CG generally always requires a preconditioner of some sorts.

Concrete example of how to solve a set of nonlinear system of equations

Additional assumptions:

- 1. We neglect gravity (horizontal flow only) in 1D
- 2. C(p) = const. and D = K / C = const.

$$\frac{\partial p_{w}}{\partial t} = D \frac{\partial}{\partial x} \left[k_{w} (p_{w}) \frac{\partial p_{w}}{\partial x} \right]$$

Finite difference, implicit

$$\frac{p_i^{k+1} - p_i^k}{\Delta t} = \frac{D}{\Delta x^2} \left[k_{uw}(p) (p_{i-1}^{k+1} - p_i^{k+1}) + k_{uw}(p) (p_{i+1}^{k+1} - p_i^{k+1}) \right]$$

Instead of using the harmonic mean for the relative permeabilities k(p), we upwind $k_{uw}(p)$ i.e. take the values from the cell where the flow is coming from!

Concrete example and how to solve a set of nonlinear equation

We can re-write the equation

$$0 \equiv F(p^{k}) = p_{i}^{k+1} - p_{i}^{k} - \frac{D\Delta t}{\Delta x^{2}} \left[k_{uw}(p) \left(p_{i-1}^{k+1} - p_{i}^{k+1} \right) + k_{uw}(p) \left(p_{i+1}^{k+1} - p_{i}^{k+1} \right) \right]$$

$$0 \equiv F(p^{k+1}) = p^{k+1} - p^k - \mathbf{C}f(p^{k+1})$$

 ${\bf C}$ is a matrix containing the constant coefficients, $D\Delta t/\Delta x^2$.

C is not the A matrix from our Ax = b problem!

While C is a sparse matrix, its shape differs from A.

Applying the Newton-Raphson method

$$0 = F(p^{k+1}) = p^{k+1} - p^k - Cf(p^{k+1})$$

Because of the nonlinearity, we only achieve an approximation \widetilde{p}^{k+1} of the true p^{k+1} with one linear solve of the above system of equations. But we may be able to improve the approximation in an iterative fashion.

Using (again) a Taylor expansion we have

$$F(p^{k+1}) \approx F(\widetilde{p}^{k+1}) + F'(\widetilde{p}^{k+1})(p^{k+1} - \widetilde{p}^{k+1})$$

An improved approximation of p^{k+1} is obtained by

$$\widetilde{p}^{k+1} + d\widetilde{p}^{k+1}$$

$$-F'(\widetilde{p}^{k+1})d\widetilde{p}^{k+1} = F(\widetilde{p}^{k+1})$$
Solve the system of equations to find
$$d\widetilde{p}^{k+1} = -F'(\widetilde{p}^{k+1})^{-1}F(\widetilde{p}^{k+1})$$

Solve the system of equations to find the update

$$d\widetilde{p}^{k+1} = -F'(\widetilde{p}^{k+1})^{-1}F(\widetilde{p}^{k+1})$$

update Jacobi matrix

solution vector

Applying the Newton-Raphson method (cont'd)

The Jacobian

$$F'(p^{k+1}) = J(p^{k+1}) = \frac{\partial (p^{k+1} - p^k)}{\partial p^{k+1}} - \mathbf{C} \frac{\partial f(p^{k+1})}{\partial p^{k+1}} = 1 - \mathbf{C} \frac{\partial f(p^{k+1})}{\partial p^{k+1}}$$

$$J = \begin{bmatrix} \frac{\partial F_1}{\partial p_1} & \frac{\partial F_1}{\partial p_2} & \dots \\ \frac{\partial F_2}{\partial p_1} & \frac{\partial F_2}{\partial p_2} & \frac{\partial F_2}{\partial p_3} \\ \vdots & \ddots & \vdots \\ & & \dots & \frac{\partial F_N}{\partial p_N} \end{bmatrix}$$

What happens if $k(p) = k = \text{const. in } f(p^{k+1})$?

And how does J look in case of 2D and 3D?

Applying the Newton-Raphson method (cont'd)

$$F_{1} = p_{1}^{k+1} - p_{1}^{k} - \frac{D\Delta t}{\Delta x^{2}} \left[k_{uw}(p_{1}) (p_{0}^{k+1} - p_{1}) + k_{uw}(p_{2}) (p_{2}^{k+1} - p_{1}^{k+1}) \right]$$

$$\frac{\partial F_1}{\partial p_2} = -\frac{D\Delta t}{\Delta x^2} \left[\frac{\partial k_{uw}(p_2)}{\partial p_2} (p_2 - p_1) + k_{uw}(p_2) \right]$$

$$F_{2} = p_{2}^{k+1} - p_{2}^{k} - \frac{D\Delta t}{\Delta x^{2}} \left[k_{uw}(p_{2}) (p_{1}^{k+1} - p_{2}^{k+1}) + k_{uw}(p_{3}) (p_{3}^{k+1} - p_{2}^{k+1}) \right]$$

$$\frac{\partial F_2}{\partial p_1} = -\frac{D\Delta t}{\Delta x^2} \left[-k_{uw}(p_2) \right]$$

Etc.

Each row contains the transposed gradients of the function f.

Note, the Jacobian can also be approximated via a Taylor expansion (differencing), which however requires a large number of non-linear function evaluations.

Applying the Newton-Raphson method (cont'd)

The different steps of the Newton Raphson are

- 1. Calculate $F(p^n)$ starting e.g. from an initial guess of p, where n is the number of Newton-Raphson iteration.
- 2. Calculate the derivative $F'(p^n)$ i.e. the Jacobi matrix
- 3. The improvement dp^n is calculated as $dp^n = -F'(p^n)^{-1}F$
- 4. Calculate $p^{n+1} = p^n + dp^n$
- 5. Repeat steps 1 to 4 until $norm(dp^n)$ has decreases below a pre-defined limit

MATLAB/pseudo-code snipped:

```
niter = 0
while (niter < nmax & err > toll),
  niter = niter+1;
  [relperm,drelperm] = my_relperm(...)
  fp = my_fp()
  F = p - p_old - C*fp; % approx. soln vec
  dF = my_jacobian(...); % Analytical J or FD
  dp = -dF\F; %Solve for the update dp
  err = abs(dp); % Is this correct?
  p = p+dp
end
```

Thus, the Newton-Raphson method combines an outer non-linear iteration method with an inner linear systems solver approach.

The basic approach makes up the large class of Newton-PCG solvers, where a Newton method is combined with a PCG linear solver.