H26 数学必修 0.1

https://www.math.kobe-u.ac.jp/HOME/home-j/gif/h26.pdf

$$\boxed{1} (1) \begin{pmatrix} x \\ y \end{pmatrix} = (x+y)/2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + (x-y)/2 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 である. $x=y=0$ でないなら一次従属である. $x=y=0$

のときは $c \neq 0$ にたいして $c \begin{pmatrix} x \\ y \end{pmatrix} = 0$ となるから一次独立でない.

 $(3)\{u_1\}$ は一次独立である。 $\{u_1,\ldots,u_{k-1}\}$ が一次独立と仮定する。このとき $c_1u_1+\cdots+c_ku_k=0$ と する. $\lambda_k c_1 u_1 + \cdots + \lambda_k c_k u_k = 0$ である. また A をかけると $\lambda_1 c_1 u_1 + \cdots + \lambda_k c_k u_k = 0$ である. よって $\lambda_1c_1u_1+\cdots+\lambda_kc_{k-1}u_{k-1}=\lambda_kc_1u_1+\cdots+\lambda_kc_{k-1}u_{k-1}$ である.一次独立性から $\lambda_ic_i=\lambda_kc_i$ であり $\lambda_i
eq \lambda_k$ より $c_i = 0$ である. このとき $c_k = 0$ であるから $\{u_1, \ldots, u_k\}$ は一次独立である.

 $(4)(a)c_0x+c_1Ax+\dots c_{n-1}A^{n-1}x=0$ とする. 両辺に A^{n-1} をかけると $c_0A^{n-1}x=0$ である. $A^{n-1}x\neq 0$ であるから $c_0=0$ である.次に A^{n-2} をかければ $c_1=0$ が分かる.これを繰り返して $c_0=\cdots=c_{n-1}=0$ で あるから一次独立.

(b)n 個のベクトル $\{x, Ax, \ldots, A^{n-1}x\}$ が一次独立であるからこれは \mathbb{R}^n の基底である. よって任意の $y \in \mathbb{R}^n$ は $y = c_0 x + \dots + c_{n-1} A^{n-1} x$ とかける. $A^n y = c_0 A^n x + \dots + c_{n-1} A^{2n-1} x = 0$ であるから $A^n = O$ で ある.

 $\boxed{2}$ $(1)(a)\varphi:\mathbb{R}\to\mathbb{R}_+;x\mapsto e^x$ は全単射である. $\varphi(x+y)=e^{x+y}=e^xe^y=\varphi(x)\varphi(y)$ であるから φ は群の同 型写像である.

 $(b) \varphi \colon \mathbb{Q} \to \mathbb{Q}_+$ が群同型写像とする. $\varphi(1) = \alpha$ とする. $\varphi(\sum_{i=1}^n 1/n) = \varphi(1/n)^n = \alpha$ である. すなわち $\varphi(1/n)=lpha^{1/n}$ である. $lpha^{1/n}$ が有理数にならないような n は存在するからこれは arphi が同型写像であることに 矛盾.

(2)(a)G' の単位元を e' とする. $f: G \to G'$ に対して $\ker f = \{x \in G \mid f(x) = e'\}$ である. $g \in G, x \in \ker f$ に対して $f(g^{-1}xg) = f(g)^{-1}f(x)f(g) = f(g)^{-1}f(g) = e'$ より $g^{-1}xg \in \ker f$ であるから $\ker f$ は正規部分群.

 $(b)f(g+g') = (f_1(g+g'), f_2(g+g')) = (f_1(g) + f_1(g'), f_2(g) + f_2(g')) = (f_1(g), f_2(g)) + (f_1(g'), f_2(g')) = (f_1(g) + f_2(g'$ f(g) + f(g') である. よって f は準同型.

 $(3)\pi_1: G \to G/N_1, \pi_2: G \to G/N_2$ を自然な全射とする. $\pi: G \to G/N_1 \times G/N_2$ を $\pi(x) = (\pi_1(x), \pi_2(x))$ で 定める. (2) から π は準同型である. $\ker \pi = \{x \in G \mid \pi(x) = (e_1, e_2)\} = \{x \in G \mid \pi_1(x) = e_1, \pi_2(x) = e_2\} = \{x \in G \mid \pi(x) = e_1, \pi(x) = e_2\}$ $\{x \in G \mid x \in N_1, x \in N_2\} = N_1 \cap N_2 \ \mathcal{C} \ \mathcal{B} \ \mathcal{S}.$

よって $N_1\cap N_2$ は正規部分群で準同型定理から $G/(N_1\cap N_2)\cong G/N_1\times G/N_2$ である.右辺はアーベル群 であるから、左辺もアーベル群である.

 $\boxed{3} \ (1)(\mathbf{a})x > 0 \ \mathfrak{C} \ 1 - 1/(1+x) > 0 \ \mathfrak{Cb3}. \quad \sharp \ \mathfrak{I} \ \mathfrak{I} \ 0 < \int_0^x 1 - 1/(1+t) dt = x - \log(1+x) \ \mathfrak{Cb3}.$ x>0 で $x-1+1/(1+x)\geq 2\sqrt{(x+1)\frac{1}{1+x}}-2=0$ であるから $0<\int_0^x t-1+1/(1+t)dt=x^2/2-x+\log(1+x)$ である. すなわち $x - \log(1+x) < x^2/2$ である.

(b) $\sum\limits_{n=1}^{\infty}(\frac{1}{n}-\log\left(1+\frac{1}{n}\right))\leq\sum\limits_{n=1}^{\infty}\frac{1}{2n^2}<\infty$ であるから収束する。 $(2)f_x(x,y)=2xe^{x-y^2}+(x^2-8y)e^{x-y^2}=(x^2+2x-8y)e^{x-y^2}$ である。 $f_y(x,y)=-8e^{x-y^2}-2y(x^2-8y)e^{x-y^2}=(x^2+2x-8y)e^{x-y^2}$ $(16y^2-2x^2y-8)e^{x-y^2}$ である. $f_x(x,y)=f_y(x,y)=0$ とすると, $x^2+2x-8y=0$, $16y^2-2x^2y-8=0$ である. これを解く. $(x^2+2x)y = x^2y+4$ より xy = 2 である. よって $x \neq 0$ であるから $8y^2-4/y-4=0$ である.

よって $8y^3-4y-4=0$ である. $8y^3-4y-4=(y-1)(8y^2+8y+4)$ であり $2y^2+2y+1=2(y+1/2)^2+1/2>0$ であるから x=2,y=1 が唯一の実数解である.

 $f_{xx}=(2x+2)e^{x-y^2}+(x^2+2x-8y)e^{x-y^2}=(x^2+4x-8y+2)e^{x-y^2}, \ f_{xy}=-8e^{x-y^2}-2y(x^2+2x-8y)e^{x-y^2}=(-2x^2y-4xy+16y^2-8)e^{x-y^2}, \ f_{yy}=(32y-2x^2)e^{x-y^2}-2y(16y^2-2x^2y-8)e^{x-y^2}=(-32y^3+4x^2y^2+48y-2x^2)e^{x-y^2}$ である. よって (2,1) におけるヘッセ行列は $\begin{pmatrix} 6e & -8e \\ -8e & 24e \end{pmatrix}=80e^2>0$ であり $f_{xx}|_{(2,1)}=6e>0$ より f は (2,1) で極小値 f(2,1)=-4e をとる.

 $(3)\sqrt{9-x^2-y^2}=\sqrt{1+x^2+y^2}$ をみたすのは $x^2+y^2=4$ のときである. よって求める体積を V とする. $D=\{(x,y)\mid x^2+y^2\leq 4\}$ とする. $V=\iint_D\sqrt{9-x^2-y^2}-\sqrt{1+x^2+y^2}dxdy$ である. $(x,y)=(r\cos\theta,r\sin\theta)\quad (0\leq r\leq 2,0\leq 2\pi)$ と極座標変換するとヤコビアンはr である.

$$\begin{split} V &= \int_0^{2\pi} \int_0^2 (\sqrt{9-r^2} - \sqrt{1+r^2}) r dr dd\theta \\ &= 2\pi \int_0^2 (\sqrt{9-r^2} - \sqrt{1+r^2}) r dr \\ &= 2\pi \left(\int_0^2 r \sqrt{9-r^2} dr - \int_0^2 r \sqrt{1+r^2} dr \right) \\ &= 2\pi \left(\left[-\frac{1}{3} (9-r^2)^{3/2} \right]_0^2 - \left[\frac{1}{3} (1+r^2)^{3/2} \right]_0^2 \right) \\ &= 2\pi \left(-\frac{1}{3} (5^{3/2} - 27) - \frac{1}{3} (5^{3/2} - 1) \right) \\ &= 4\pi \left(14 - 5\sqrt{5} \right) / 3 \end{split}$$

- (4) 任意の ε に対してある $N \in \mathbb{N}$ が存在して任意の $n \geq N$ に対して $\alpha \varepsilon < a_{n+1} a_n < \alpha + \varepsilon$ である. よって $a_n + \alpha \varepsilon < a_{n+1} < a_n + \alpha + \varepsilon$ である。 すなわち任意の $k \in \mathbb{N}$ に対して $a_N + k\alpha k\varepsilon < a_{N+1} + (k-1)\alpha + (k-1)\varepsilon < \dots < a_{N+k} < a_N + k\alpha + k\varepsilon$ がなりたつ。よって $\frac{a_N + k\alpha k\varepsilon}{N + k} < \frac{a_N + k\alpha + k\varepsilon}{N + k}$ である。 $k \to \infty$ とすると $\alpha \varepsilon < \lim_{n \to \infty} \frac{a_n}{n} < \alpha + \varepsilon$ より $\lim_{n \to \infty} \frac{a_n}{n} = \alpha$ である。
- 4 $(1)\{2,3,4\}\subset A$ である. $0\in C\in \mathcal{O}$ に対して $X\setminus C$ が空集合,または有限集合であるから C は無限集合である.よって C は A の部分集合でない.よって $A^i=\{2,3,4\}$ である. $x\in X\setminus A$ は $x\neq 0$ であるから $x\in \{x\}\subset X\setminus A$ より $A^e=X\setminus A$ である. $0\in C\in \mathcal{O}$ は $C\cap X\setminus A\neq \emptyset$ となるから $A^f=\{0\}$.
- $(2)x,y\in X\setminus\{0\}$ に対して $x\in\{x\}\in\mathcal{O},y\in\{y\}\in\mathcal{O},\{x\}\cap\{y\}=\emptyset$ である. $x=0,y\neq0$ に対して $x\in X\setminus\{y\}\in\mathcal{O}$ であり $x\in\{x\}\cap(X\setminus\{y\})=\emptyset$ である. よってハウスドルフ.
- (3)X の開被覆 $S=\{U_{\lambda}\mid \lambda\in \Lambda\}$ を任意にとる。 $0\in U_{\lambda}$ となる $\lambda\in \Lambda$ が存在する。 $0\in U_{\lambda}$ であるから $X\setminus U_{\lambda}$ は有限集合か空集合である。空集合なら $\{u_{\lambda}\}$ が有限部分被覆となる。有限集合なら $X\setminus U_{\lambda}=\{x_{1},\ldots,x_{n}\}$ とできる。 $x_{i}\in U_{\lambda_{i}}$ となる $\lambda_{i}\in \Lambda$ が存在する。 $\{U_{\lambda_{1}},\ldots,U_{\lambda_{n}},U_{\lambda}\}$ が有限部分被覆となる。よってコンパクト。
- $(4)f\colon X\to Y; n\to 1/n$ とする. f は全単射である. U を Y の開集合とする. $0\notin U$ なら $0\notin f^{-1}(U)$ より $f^{-1}(U)\in \mathcal{O}$ である. $0\in U$ ならある $\varepsilon>0$ が存在して $(-\varepsilon,\varepsilon)\cap Y\subset U$ である. $0<1/n<\varepsilon$ なる n は無限個存在するから U は無限集合である. よって $f^{-1}(U)$ は 0 を含まない無限集合であるから $f^{-1}(U)\in \mathcal{O}$ である. よって f は連続.

 $0 \in B \in \mathcal{O}$ に対して $Y \setminus f(B) = f(X \setminus A) = \{1/n_1, \dots, 1/n_m\}$ は閉集合.よって f(B) は開集合. $0 \notin A \in \mathcal{O}$ に対して $f(A) = \{1/n \mid n \in A\}$ である. $1/(n+1) < 1/n - \varepsilon_n < 1/n < 1/n + \varepsilon_n < 1/(n-1)$ なる ε_n が存在する.よって $(1/n - \varepsilon_n, 1/n + \varepsilon_n) \cap Y = \{1/n\}$ より f(A) は開集合.よって f は同相.