Texture Mapping Part 2

https://tutorcs.com

Frederick Li

WeChat: cstutorcs

Third Year Project

- My research interests include:
 - Computer graphics
 Assignment Project Exam Help
 Virtual reality

 - E-learning shattern stutores.com
 - Computer gaming, and echat: cstutorcs
 - 3D modelling with machine learning

This Lesson

- > Introduction to texture mapping
- Mapping Methods
 - Forward and backward manning Assignment Project Exam Help
 - Two-part mapping
- > WebGL Implettentations.com
- > Optimization: Whiphatappintgres
- > Applications of texture mapping
 - Bump mapping, Normal mapping, Displacement mapping, Environment mapping, Light mapping, Fog mapping

Texture Image Size

What is the size of a texture map?

- > Resolution: 1024 x 512 pixels
- Memory size occupied = 16 MB

Optimization: MIP-Mapping

Use "image pyramid" to precompute coarse versions of a texture

store whole pyramid in single block of memory

Problem solved: MIP-mapping allows properly sampled images to be used, avoiding over-sampling problem

MIP-Mapping

Storage: Only 1/3 more space required

What's Missing with Texture Mapping?

What's the difference between a real brick wall and a photograph of the wall texture-mapped onto a plane?

What happens if we change the lighting or the camera position?

Normal mapping

- Normal vectors encoded as an image
 - Generate visually 3D effect by applying lighting to perturbed normal vectors on the object surface

normal map

with normal mapping

actual geometry

Advantage

- Use textures to alter the surface normal
 - Does not change the actual shape of the surface, particularly does not increase geometry complexity, i.e. do rossing afficient performance overhead
 - Just shaded as if it were a different shape, producing visually pleasing results

WeChat: cstutorcs

Texture and Normal Maps

Normal Mapping Implementation

Load color and normal maps:

```
earthTexture.image.onload = function () {earthNormalMap handleLoadedTexture(earthTexture, sp.samplerUniform, 0);}
earthNormalMap.image.onload = function () {
   handleLoadedTexture(earthNormalMap, sp.samplerUniform_normal, 1);}

earthTexture.imageAssesignation = function () {
   cond normal map second to the property of the property
```

```
// Load color map and normal map into the program texture image buffers
function handleLoadedTexture(plips 'spilltopest'COM'
    gl.pixelStorei(gl.UNPACK_FLIPLY_WEBGL, true);

if (texUnit == 0) {
    gl.activeTexture(gl.VYTATO):hat: CStutorCS
    g_texUnit0 = true;
} else {
    gl.activeTexture(gl.TEXTURE1);
    g_texUnit1 = true;
}

gl.bindTexture(gl.TEXTURE_2D, texture);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, texture.image);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR_MIPMAP_NEAREST);
gl.generateMipmap(gl.TEXTURE_2D);
gl.uniform1i(uSampler, texUnit);
}
```

Senerate Color & hormal maps with map-mapping enabled.

CG / FL 11

Vertex Shader

Mainly take the inputs and hand over them to rasterization for interpolation

```
//Transformed vertex position
vec4 vertex Assignment Project Exam Help
//Transformed normal position
vec3 normal = vec3(uNMatrix/* vec4(aVertexNormal, 1.0));
//light direction, from Sight position to Vertex
vec3 lightDirection = uPointLightingLocation - vertex.xyz;
//eye direction, from camera to cstutores
vec3 eyeDirection = -vertex.xyz;
//Final vertex position
gl Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
vTextureCoord = aTextureCoord:
vLightDir = lightDirection;
vEyeDir = eyeDirection;
```


12

Fragment Shader

Unpack normal vectors from the normal map and apply lighting accordingly

```
// Unpack normal from texture
vec3 normal = normaliza(@.g.**correction*);

// Normalize the light direction and determine how much light is hitting this point
vec3 lightDirection = normalize(vLightDir);
float lambertTerm = max(dot(rdrrat) SightDirection);

// Calculate Specular level
vec3 eyeDirection = normalize(vEye(ir lat: CSTUTOCS
vec3 reflectDir = reflect(-lightDirection, normal);
float Is = pow(clamp(dot(reflectDir, eyeDirection), 0.0, 1.0), 12.0);

// Combine lighting and material colors
vec4 Ia = vec4(uAmbientColor, 1.0);
vec4 Id = vec4(uPointLightingColor, 1.0) * texture2D(uSampler, vTextureCoord) * lambertTerm * 1.8;
gl_FragColor = Ia + Id + Is * 0.5;
```


Bump Mapping

- Treat the texture as a single-valued height function
- Compute the normal from the partial derivatives in the texture
- The heights encode the amount by which to perturb N in the (u,v)

directions of the parametric space describing the object surface roject Exam Help

Normal map vs. Bump map

- Bump map
 - texture (greyscale) encodes height
 - Modifies the geometric normal
 - Harder to spring mental Project Exam Help
 - Easier to specify https://tutorcs.com
- > Normal map
 - texture (RGB) encodes to the far directly
 - Replaces the normal
 - but local coordinates
 - Easier to implement
 - Harder to specify

Displacement Mapping

- Use texture map to actually move surface points
- Geometry must be displaced before visibility is determined
- Done as a preprocess or with complicated vertex/fragment shader implementation Assignment Project Exam Help

Environment Maps

- We can simulate reflections by using the direction of the reflected ray to index a spherical texture map at "infinity".
- Assumes that all reflected rays begin from Abeigame pto Project Exam Help

Cube Environment Mapping

use surface normal as an index for each texel on the cube surface

Assignment Project Exam Help

https://tutores.com

WeChat! cstutores

'y | -z | -+x | Unfolded cube

Example

CG / FL

Texture Maps for Illumination

Also called "Light Maps"

> often different resolution than other textures Assignment Project Exam Help

Light Mapping

- Realistic lighting can be achieved
- Every single bit of expensive lighting calculation is done during preprocess time. Hence, avoid runtime overhead
- At run-time, all calculations (color arithmetic) are done by hardware. Hence, it is very fast
- Visual quality of the lighting is directly dependent on the size of the light map texture(s)
- For every triangle, wdiffuse texture map is applied first and then, a light map is usually modulated (multiplied) with it

[Images courtesy of flipcode.com]

CG / FL

About Lightmap

Lightmap Texture – the lightmaps for different parts of an object are "packed" into a large texture

Assignment Project Exam

https://tutorcs.com

Fog Maps

- Dynamic modification of light-maps
- > Put fog objects into the scene
- Compute the pintersect with geometry and paint the fog density into a dynamic light map
 https://tutorcs.com
 - Use same mapping as statistight map uses
- > Apply the fog map as with a light map
 - Extra texture stage

Fog Map Example

Summary

- > Texture mapping optimization
- Various applications of texture mapping

References: Assignment Project Exam Help

- > Computer Graphics/with Open GL [Chapter 16]
- > WebGL Programming Guide [Ch. 8] WeChat: cstutorcs

