Multi-Agent Learning in a Pricing Game

Bernhard von Stengel

Galit Ashkenazi-Golan, Sahar Jahani, Katerina Papadaki, Edward Plumb

Department of Mathematics London School of Economics

June 2023

1

Overview (everything is work in progress)

Aim: exploring larger games with machine learning

Example: duopoly with demand inertia.

description of the duopoly game

new framework:

- o learning a strategy in the base game
- new strategy added to a population game
- compute a new equilibrium of the population game as the next learning environment
- main advantage: modularity, study aspects separately.

Duopoly with demand inertia

Model:

- a multi-stage pricing game = our base game
- analysed theoretically (subgame perfect equilibrium)

[R. Selten (1965), Game-theoretic analysis of an oligopolic model with buyers' interia. [German] *Zeitsch. gesammte Staatswiss.* 21, 301–304]

experimentally with subjects and submitted programmed strategies

[C. Keser (1993), Some results of experimental duopoly markets with demand inertia. *Journal of Industrial Economics* 41, 133–151]

[1992 PhD thesis: Springer Lecture Notes Econ. Math. Systems 391]

Total demand potential **400** split as $D_1 + D_2$ between two producing firms with costs $c_1 = 57$ and $c_2 = 71$.

Firm *i* chooses price p_i and sells $D_i - p_i$ units, gets profit $(D_i - p_i)(p_i - c_i)$

4

Total demand potential **400** split as $D_1 + D_2$ between two producing firms with costs $c_1 = 57$ and $c_2 = 71$.

Firm *i* chooses price p_i and sells $D_i - p_i$ units, gets profit $(D_i - p_i)(p_i - c_i) = -p_i^2 + (D_i + c_i)p_i - D_ic_i$

Total demand potential **400** split as $D_1 + D_2$ between two producing firms with costs $c_1 = 57$ and $c_2 = 71$.

Firm *i* chooses price p_i and sells $D_i - p_i$ units, gets profit $(D_i - p_i)(p_i - c_i) = -p_i^2 + (D_i + c_i)p_i - D_ic_i$

Optimal **myopic** price $p_i = (c_i + D_i)/2$. **Example:**

 $D_1 = 207$, $D_2 = 193$, $p_1 = p_2 = 132$, profits 75^2 , 61^2 .

Total demand potential **400** split as $D_1 + D_2$ between two producing firms with costs $c_1 = 57$ and $c_2 = 71$.

Firm *i* chooses price p_i and sells $D_i - p_i$ units, gets profit $(D_i - p_i)(p_i - c_i) = -p_i^2 + (D_i + c_i)p_i - D_ic_i$

Optimal myopic price $p_i = (c_i + D_i)/2$. Example:

$$D_1 = 207$$
, $D_2 = 193$, $p_1 = p_2 = 132$, profits 75^2 , 61^2 .

Played over 25 stages $t = 1, \dots, 25$,

$$egin{aligned} m{D_1^1} &= m{D_1^1} &= m{200} \ m{D_1^{t+1}} &= m{D_1^t} + (m{p_2^t} - m{p_1^t})/2 \end{aligned}$$

$$extbf{ extit{D}}_2^{t+1} = extbf{ extit{D}}_2^t + (extbf{ extit{p}}_1^t - extbf{ extit{p}}_2^t)/2$$

Cooperative solution

If both firms always choose myopic price:

Total profits over 25 stages about 156k, 109k

Subgame perfect equilibrium

Via parameterized backward induction:

Total profits about 137k, 61k

Strategy experiments [Keser 1993]

Submitted strategy = flowchart pair, for low-cost and high-cost firm.

Two competition rounds:

first round: 45 entries

(after feedback:)

second round: 34 entries

second-round profits:

- Very important for doing well: understanding the game
 - focus on demand potential, not price
 - smaller price strongly increases future profits
 - avoid wild swings
 - o exploit "suckers"

- Very important for doing well: understanding the game
 - o focus on demand potential, not price
 - smaller price strongly increases future profits
 - avoid wild swings
 - o exploit "suckers"
- No clear "cooperative behavior"; myopic play is a focal point

- Very important for doing well: understanding the game
 - o focus on demand potential, not price
 - smaller price strongly increases future profits
 - avoid wild swings
 - o exploit "suckers"
- No clear "cooperative behavior"; myopic play is a focal point
- Strategies react (typically to last price) but have no model of the opponent
 - one team reacted to predicted rather than past behavior

- Very important for doing well: understanding the game
 - o focus on demand potential, not price
 - smaller price strongly increases future profits
 - avoid wild swings
 - o exploit "suckers"
- No clear "cooperative behavior"; myopic play is a focal point
- Strategies react (typically to last price) but have no model of the opponent
 - one team reacted to predicted rather than past behavior
- Used now to custom-design and optimize an agent

The learning framework

• Base game = pricing game over 25 stages, in two roles

The learning framework

- Base game = pricing game over 25 stages, in two roles
- strategy represented by an RL agent that chooses the next price as a function of data for the last, say, 3 stages

The learning framework

- Base game = pricing game over 25 stages, in two roles
- strategy represented by an RL agent that chooses the next price as a function of data for the last, say, 3 stages
- agent is trained by repeatedly meeting another random agent, drawn from a mixed equilibrium of existing strategies, which define the population game of pairwise interactions

Standard Reinforcement Learning

Standard Reinforcement Learning

 here: (mixed) equilibrium as learning environment, random but constant (not evolving with the learning agent)

Standard Reinforcement Learning

- here: (mixed) equilibrium as learning environment, random but constant (not evolving with the learning agent)
- tested RL methods so far:
 - Q-table with rewards for (state, action) pairs
 - Policy Gradient Method: randomized policy via neural net

Learning a new strategy: not easy

- a whole strategy, for unknown situations, must be learned
- assumption: learn next price as function of last 3 stages with
 - o information per state : own price, own profit, opponent price
 - explicit state: demand potential, stage
 - e.g. using Policy Gradient Method (PGM):

learning is slow – Q-learning needs large Q-table

A custom learning agent for this game

Suppose the aim is a **strong strategy** for this game ("feature engineering", as in AlphaGo).

(Not for a general base game; use as benchmark?)

- Tune a small set of parameters for a special own strategy:
 - aim for a "fair split" of demand potential
 - predict opponent price with multiplicative weights
 - set own price to achieve target demand potential
 - use somewhat lower price to steal customers

A custom learning agent for this game

Suppose the aim is a **strong strategy** for this game ("feature engineering", as in AlphaGo).

(Not for a general base game; use as benchmark?)

- Tune a small set of parameters for a special own strategy:
 - aim for a "fair split" of demand potential
 - predict opponent price with multiplicative weights
 - set own price to achieve target demand potential
 - use somewhat lower price to steal customers
- optimization of ~ 4 parameters close to human-designed agent (not by gradient descent, too many "cliffs")

Add newly RL trained agents ("double oracle")

- a successfully trained strategy is added to the population game
 - new entrant has payoffs against each existing strategy
 - defines bimatrix game with new equilibrium as next learning environment

The population game

A successfully trained strategy is **added** to the population game, as a row or column depending on its role (low- or high-cost firm).

The population game

A successfully trained strategy is **added** to the population game, as a row or column depending on its role (low- or high-cost firm).

A new **equilibrium** is computed, typically **mixed** and **not unique**.

That mixed equilibrium defines the next learning environment.

The population game

A successfully trained strategy is **added** to the population game, as a row or column depending on its role (low- or high-cost firm).

A new **equilibrium** is computed, typically **mixed** and **not unique**.

That mixed equilibrium defines the next learning environment.

Which equilibrium?

- equilibrium selection via computing an equilibrium from random starting pair as prior (Harsanyi-Selten tracing procedure)
 - as (accurate??) proxy for evolutionary dynamics
 - finds only positive-index equilibria (for dynamic stability)
 - the prior could be the previous equilibrium
- has typically small support (no issue with PPAD-hardness)

Index of a fixed point

Fixed point $\mathbf{x} = \mathbf{f}(\mathbf{x})$: index $(\mathbf{x}) = \text{sign det } \mathbf{D}(\mathbf{x} - \mathbf{f}(\mathbf{x}))$

Index of a fixed point

Fixed point $\mathbf{x} = \mathbf{f}(\mathbf{x})$: index(\mathbf{x}) = sign det $\mathbf{D}(\mathbf{x} - \mathbf{f}(\mathbf{x}))$ positive index necessary for dynamic stability

Pure NE vs. mixed NE with higher payoff

(B, b) = **PGM-learned** pure NE, stops at size 8×5 (SPNE?)

Pure NE vs. mixed NE with higher payoff

 $(\boldsymbol{B}, \boldsymbol{b}) = \mathbf{PGM}$ -learned pure NE, stops at size $\mathbf{8} \times \mathbf{5}$ (SPNE?) Restricted to equilibrium supports:

Pure NE vs. mixed NE with higher payoff

(B, b) = PGM-learned pure NE, stops at size 8×5 (SPNE?)

Restricted to equilibrium supports:

Advantage of this framework

It is **modular** rather than a huge simulation:

- the base game (pricing game)
 - is complex (too complex?) as an interesting learning scenario
 - allows competition and cooperation
 - potentially has "hand-made" good (benchmark?) strategies
 - can be replaced by another game
- the population game ... uses game theory
 - provides via equilibria a "stable" learning environment
 - has typically mixed, non-unique equilibria
 - allows different equilibrium concepts (mixed, evolutionary)
- ⇒ can independently investigate different aspects

Challenges ahead

- RL agents learn **slowly** (investigate further approaches)
 often too jittery (oscillations)
- Learning for evolutionary success different from high-payoff
- comparison with existing approaches, e.g.
 [E. Calvano, G. Calzolari, V. Denicolò, and S. Pastorello (2020),
 Artificial intelligence, algorithmic pricing, and collusion.
 American Economic Review 110(10), 3267–3397.]

Future extension:

- competition between more than two firms (better model)
- different base games

Thank you!