Devoir Maison n°2 : Etude d'une suite récurrente

Les résultats non encadrés/soulignés/surlignés ne seront pas pris en compte.

On propose d'étudier le comportement de la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n + 2}{(u_n)^2 + 1}.$

A cette fin, on introduit la fonction f définie par : $\forall x \in \mathbb{R}, \ f(x) = \frac{x+2}{x^2+1}$.

Etude de la fonction f et dessin.

- 1. Etablir le tableau de variations complet de f (limites comprises).
- 2. Montrer que f admet un seul point fixe α que l'on déterminera, puis justifier que $\alpha > 1$. $Vocabulaire important : On dit que <math>\alpha \in \mathbb{R}$ est un point fixe de f lorsque $f(\alpha) = \alpha$.
- 3. (a) Démontrer que l'intervalle $I = [1, \frac{3}{2}]$ est stable par f.

 [Vocabulaire important : Ceci signifie que $f(I) \subset I$, c'est à dire que : $\forall x \in I$, $f(x) \in I$.]
 - (b) En déduire que pour tout $n \in \mathbb{N}$, $u_n \in [1, \frac{3}{2}]$.
 - 4. Dessiner, sur un même graphe, la courbe représentative de f ainsi que la droite diagonale d'équation y = x. On fera apparaître toutes les abscisses / ordonnées importantes. S'aider de ce dessin pour situer les valeurs de u₀, u₁, u₂, u₃. (On les fera figurer proprement sur le graphe en dessinant une sorte de "spirale"...)

Ordonner les valeurs u_0, u_1, u_2, u_3 et prévoir ainsi que la suite $(u_n)_{n \in \mathbb{N}}$ n'est pas monotone.

Implémentation en Python.

- 5. Définir, en Python, une fonction nommée f qui prend en entrée un réel x et renvoie la valeur de f(x).
- 6. (a) Compléter le programme suivant (à recopier sur votre copie) pour que l'appel de suite(n) renvoie la valeur du terme u_n . Par exemple, suite(0) devra renvoyer la valeur 1.

```
def suite(n) :
    u = ....
    for k in range( ...... ) :
        u = f(u)
    return u
```

- (b) A l'aide de cette fonction, donner les valeurs numériques approximatives de $u_0, u_1, u_2, u_3, u_4, u_5$ (on s'arrêtera à deux chiffres après la virgule).
- (c) Rappeler la valeur de α établie en question 2. Calculer cette valeur à l'aide de Python. (On donnera une approximation avec 4 chiffres après la virgule). Calculer ensuite les valeurs approximatives de $u_{10}, u_{100}, u_{1000}$. Que peut-on donc conjecturer sur le comportement de u_n lorsque $n \to +\infty$?

On introduit les suites des termes pairs et impairs définies par : $\forall n \in \mathbb{N}, v_n = u_{2n}$ et $w_n = u_{2n+1}$.

- 7. D'après 6.(b), que peut-on conjecturer sur le sens de variation de la suite v? Et celui de la suite w?
- 8. (a) Montrer que les suites v et w satisfont la relation de récurrence :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = (f \circ f)(v_n) \quad \text{et} \quad w_{n+1} = (f \circ f)(w_n).$$

- (b) Sans étude de fonction supplémentaire, justifier que $(f \circ f)$ est strictement croissante sur $[1, \frac{3}{2}]$.
- (c) Démontrer pour finir les conjectures établies en question 7.

Suite des termes pairs / impairs.