Feuille de TD n°5 : Recherche de zéros de fonctions

- 1. Écrire un algorithme qui prend en entrée une fonction f continue, un entier $n \in \mathbb{N}$ et $a,b \in \mathbb{R}$ tels que a < b et f(a)f(b) < 0 et qui renvoie le n-ième terme de la suite (a_n,b_n) définie dans la partie dichotomie du cours.
 - 2. Écrire un algorithme qui prend en entrée une fonction f continue, un réel $\epsilon > 0$ et $a, b \in \mathbb{R}$ tels que a < b et f(a)f(b) < 0 et qui renvoie une valeur approchée à ϵ près de ℓ tel que $f(\ell) = 0$, en utilisant des dichotomies.
 - 3. Écrire une version récursive de l'algorithme précédent.
- 1. Écrire un algorithme qui prend en entrée une fonction f convexe, un entier N, deux réels a < b tels que f(a) < 0 et f(b) > 0 et qui renvoie l'élément a_N défini par la méthode de la sécante.
 - Soit $f:[a,b] \to \mathbb{R}$ une fonction convexe et de classe \mathcal{C}^1 .
 - 2. Montrer que $f'(x) \geq f'(a)$, pour tous $x \in [a,b]$. On suppose que f'(a) > 0. Déterminer $\min\{|f'(x)| \mid x \in [a,b]\}.$
 - 3. Supposons que f(a)f(b) < 0. Soit $\ell \in]a,b[$ tel que $f(\ell) = 0$. Donner une majoration de $|x-\ell|$ en fonction de |f(x)|, pour $x \in [a,b]$.
 - 4. Écrire un algorithme qui prend en entrée une fonction f convexe et dérivable telle que f'(a) > 0, un réel $\epsilon > 0$, deux réels a < b tels que f(a) < 0 et f(b) > 0 et qui renvoie une valeur approchée à ϵ près de l'élement $\ell \in]a,b[$ tel que $f(\ell)=0,$ à l'aide de la méthode de la sécante.

Exercice 3. (méthode de Héron) On se donne la méthode suivante pour calculer $\sqrt{\alpha}$, pour $\alpha \in]1, +\infty[$. On pose $a_0 = \alpha$ et pour $n \in \mathbb{N}$, $a_{n+1} = \frac{1}{2}(a_n + \frac{\alpha}{a_n})$.

- 1. Tracer le tableau de variation de $f: \mathbb{R}_+^* \to \mathbb{R}_+^*$ définie par $f(x) = \frac{1}{2}(x + \frac{\alpha}{x})$, pour $x \in \mathbb{R}_+^*$. Dessiner le graphe de f, ainsi que le graphe de $x \mapsto x$. On déterminera notamment $\{x \in \mathbb{R}_+^* \mid$ f(x) > x} et $\{x \in \mathbb{R}_{+}^{*} \mid f(x) < x\}$.
- 2. Montrer que (a_n) est bien définie, que (a_n) est strictement décroissante et qu'elle converge vers
- 3. Montrer que pour tout $n \in \mathbb{N}$, $|a_{n+1} \sqrt{\alpha}| = \frac{|a_n \sqrt{\alpha}|^2}{2a_n} \le \frac{|a_n \sqrt{\alpha}|^2}{2}$.
- 4. Soit $k \in \mathbb{N}$. On suppose que $|a_n \sqrt{\alpha}| \le 10^{-k}$, où $k \in \mathbb{N}$. Que peut-on dire de $|a_{n+1} \sqrt{\alpha}|$?
- 5. Pour $n \in \mathbb{N}$, donner une majoration de $a_n \sqrt{\alpha}$ en fonction de $a_n^2 \alpha$ (on pourra calculer $(a_n - \sqrt{\alpha})(a_n + \sqrt{\alpha}).$
- 6. Écrire un algorithme qui prend en entrée $a \in]1,+\infty[$ et $k \in \mathbb{N}$, et qui renvoie une valeur approchée de \sqrt{a} à 10^{-k} près.

Exercice 4. On rappelle que si $x \in \mathbb{R}$, |x| (resp. [x]) est l'unique entier n vérifiant $n \le x < n+1$ $(resp. \ n-1 < x \le n).$

- 1. Montrer que $|\cdot|$ et $[\cdot]$ sont croissantes.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto \lceil \frac{x}{2} \rceil$. Que vaut f(x), pour $x \in]0,1]$. Si $\ell \in \mathbb{N}^*$, déterminer $f(2^{\ell})$.
- 3. Soit $x \in]1, +\infty[$. Montrer qu'il existe un unique $\ell \in \mathbb{N}$ tel que $x \in]2^{\ell}, 2^{\ell+1}]$.
- 4. Soit $x \in [1, +\infty[$. Montrer qu'il existe $n \in \mathbb{N}$ tel que $f^{\circ n}(x) = 1$. Calculer le plus petit n possible à l'aide de $\log_2(x)$.

- Exercice 5. 1. Soit $n \in \mathbb{N}^*$ et L une liste remplie d'éléments de $[\![1,n]\!]$. Écrire un algorithme qui prend en entrée un entier k et qui renvoie "faux" si tous les éléments de la liste sont différents de k, et qui renvoie "vrai" et un élément i tel que L[i] = k si un tel i existe. Combien d'éléments de L testez-vous dans le pire des cas?
 - 2. On suppose maintenant que la liste L ci-dessus est triée. Écrire un algorithme qui remplit la même fonction que celui de la question précédente, mais qui le fait en $O(\log_2(\log(L)))$ tests (on pourra penser à la dichotomie).
 - 3. Dans la même situation, écrire un algorithme qui teste si une valeur k apparaît dans le tableau et renvoie toutes les positions à laquelle elle apparaît, le cas échéant.

Exercice 6. Soit $\alpha \in \mathbb{R}_+^*$. On veut calculer $\frac{1}{\alpha}$ à l'aide de la méthode de Newton. Pour cela, on définit $f: \mathbb{R}^* \to \mathbb{R}$ par $f(x) = \frac{1}{x} - \alpha$. On définit $\varphi: \mathbb{R}^* \to \mathbb{R}^*$ par $\varphi(x) = x - \frac{f(x)}{f'(x)}$ pour tout $x \in \mathbb{R}^*$.

- 1. Calculer φ .
- 2. Dresser le tableau de variation de φ . En déduire que $]0, \frac{1}{\alpha}[$ est stable par φ .
- 3. Soit $a_0 \in]0, \frac{1}{\alpha}[$. Montrer que la suite (a_n) définie par $a_{n+1} = \varphi(a_n)$ pour $n \in \mathbb{N}$ est croissante et converge vers $\frac{1}{\alpha}$.
- 4. On suppose que l'on dispose d'un programme qui sait faire des additions et des multiplications, mais pas des divisions. On suppose également que l'on sait calculer 10^{-k} pour $k \in \mathbb{N}$. Écrire un programme qui prend en entrée deux éléments $\alpha, \epsilon \in \mathbb{R}_+^*$ et qui renvoie $x \in \mathbb{R}_+^*$ tel que $|x \frac{1}{\alpha}| < \epsilon$.
- 5. On suppose maintenant que l'on choisit $a_0, \alpha \in \mathbb{N}_{\geq 2}$. Montrer que (a_n) est bien définie. Décrire le comportement asymptotique de (a_n) (on pourra montrer que $a_n < 0$ pour tout $n \geq 1$).

Exercice 7. Lorsque l'on calcule une valeur approchée d'un zéro d'une fonction continue par dichotomie, est-il plus efficace de diviser l'intervalle en 4 au lieu de 2 ?

Exercice 8. Soient $f: \mathbb{R} \to \mathbb{R}$ une fonction polynômiale et r son degré. On suppose que le coefficient dominant de f est positif et que f admet exactement r racines réelles distinctes. On note $\alpha_1, \ldots, \alpha_r$ ces racines et on suppose que $\alpha_1 < \ldots < \alpha_r$. Soit $\varphi: \mathbb{R} \to \mathbb{R}$ définie par $\varphi(x) = x - \frac{f(x)}{f'(x)}$, pour $x \in \mathbb{R}$. On veut montrer que si on choisit $a_0 \in]\alpha_r, +\infty[$, alors la suite (a_n) définie par $a_{n+1} = \varphi(a_n)$, pour $n \in \mathbb{N}$ est bien définie et décroit strictement vers α_r .

- 1. Montrer que f' admet exactement r-1 racines réelles, et qu'elles sont toutes strictement comprises entre α_1 et α_r .
- 2. Calculer φ' . En déduire que φ est strictement croissante sur $]\alpha_r, +\infty[$ et que φ stabilise $]\alpha_r, +\infty[$.
- 3. Montrer que (a_n) est bien définie et strictement décroissante. Quelle est sa limite?
- 4. On admet que si $(p_k) \in \mathbb{R}^{(\mathbb{N})}$ et si $P : \mathbb{R} \to \mathbb{R}$ est définie par $P(x) = \sum_{k=0}^{\infty} p_k x^k$ pour $x \in \mathbb{R}$, alors pour toute racine β (éventuellement complexe) de P, on a $|\beta| \leq 1 + \max_{k \in \mathbb{N}} |p_k|$. Écrire un algorithme qui prend en entrée une liste $[p_0, \ldots, p_r]$ telle que $\sum_{k=0}^r p_k X^k$ admet r racines réelles et un entier $k \in \mathbb{N}$ et qui renvoie une valeur approchée de sa plus grande racine obtenue par la méthode de Newton après k itérations.