\vdash

findresonances

原理

返回在用户指定的频率范围内 $[f_{min}, f_{max}]$,从复数信号的时间轨迹中提取的谐振频率、衰减常数、Q 因子、振幅和相位。findresonances 脚本命令使用一种称为滤波器对角化的谐波反转方法,通过指数衰减的谐波振荡的叠加来近似时间信号,其形式为

$$s(t)pprox \sum_{k=1}^{N}A_{k}e^{-i(2\pi f_{k}t-\phi_{k})}e^{-lpha_{k}t}, ext{ for complex signals}$$

以下是N谐振的数量,每个谐振由四个实值参数表征:

• *f_k*: 谐振频率。

• α_k : 衰减常数,其中 $\alpha_k \geq 0$ 。或者,衰减由Q因子 $Q_k = \omega_k/2\alpha$ 描述,其中 $\omega_k = 2\pi f_k$ 是相应的角频率。

A_k: 波幅。

φ_k: 相位。

此外,findresonances 返回一个误差估计值,可用于识别命令报告的虚假谐振。这个估计值是相对置信度的衡量标准,即只有通过比较找到的所有共振的估计值才有意义。如果谐振的误差估计值明显大于其余值,则它很有可能是杂散谐振。

引用

[1] MANDELSHTAM V A, TAYLOR H S. Harmonic inversion of time signals and its applications[J/OL]. The Journal of Chemical Physics, 1997, 107(17): 6756-6769. DOI:10.1063/1.475324.

例子

对以下信号

使用方法

```
findresonances(
const cx_vec& complex_signal,
const vec& time_series,
const vec& freqWin,
uword j_basis_count=0,
double removal_criteria=1e-6,
uword max_iterations=100,
double error_threshold = 1e-10);
```

结果

频率	衰减常数	Q因子	振幅	相位	误差估计
1.7650e+00	5.0000e-03	1.1090e+03	1.3000e+00	4.0000e-01	4.2243e-16
2.3450e+00	1.2000e-02	6.1392e+02	4.5000e-01	1.2340e+00	1.5187e-16

觉得有意思点个赞◊◊◊