

概述

TP4056是一款单节锂离子电池恒流/恒压线性充电器,采用底部带散热片的ESOP-8L封装以及简单的外部应用电路,非常适合便携式设备应用,适合USB电源和适配器电源工作,内部采用防倒充电路,不需要外部隔离二极管。热反馈可对充电电流进行自动调节,以便在大功率操作或高环境温度条件下对芯片温度加以限制。

TP4056充电截止电压为4.2V,充电电流可通过外部电阻进行设置。当充电电流降至设定值的1/10时,TP4056将自动结束充电过程。

当输入电压被移掉后,TP4056 自动进入超低功耗待机状态,将待机电流降至 1uA 以下。TP4056 在有输入电源时也可置于停机模式,从而将工作电流降至 40uA。

特点

- 最大充电电流: 1A
- 无需 MOSFET、检测电阻器和隔离二极管
- 智能热调节功能可实现充电速率最大化
- 智能再充电功能
- 预充电压: 4.2V
- C/10 充电终止
- 待机电流 40uA
- BAT 超低自耗电 1uA
- 2.9V 涓流充电阈值
- 单独的充电、结束指示灯控制信号
- 封装形式: ESOP-8L

应用

- 手机、PDA、MP3/MP4
- 蓝牙耳机、GPS、电子词典
- 移动电源、充电座
- 数码相机、Mini 音响等便携式设备

典型应用电路

管脚

定购信息

封装	定购型号	包装形式	产品正印
ESOP-8L	TP4056	Tape and Reel	TP4056

极限参数(注1)

符号	参数	额定值	单位
VCC	输入电源电压	-0.3~7	V
PROG	PROG 脚电压	-0.3~0.3	V
BAT	BAT 脚电压	-0.3~7	V
CHRG	CHRG 脚电压	-0.3~7	V
STDBY	STDBY 脚电压	-0.3~7	V
TEMP	TEMP 脚电压	-0.3~7	V
CE	CE 脚电压	-0.3~7	V
T _{BAT_SHT}	BAT 脚短路持续时间	连续	-
I _{BAT}	BAT 脚电流	1200	mA
I_{PROG}	PROG 脚电流	1200	uA
T _{OP}	工作环境温度	-40~85	${\mathbb C}$
T _{STG}	储存温度	-65~125	$^{\circ}$
ESD	HBM	2000	V
LOD	MM	200	V

注 1: 最大极限值是指超出该工作范围芯片可能会损坏。

电气参数(注2,3)

如无特殊说明, VIN=5V, Ta=25℃

符号	参数	测试条件	最小值	典型值	最大值	单位
V _{CC}	输入电源电压		4.5	5	5.5	V
I _{CC}	输入电源电流	充电模式,R _{PROG} =1.2K		130	300	uA
		待机模式(充电终止)		50	100	uA
		停机模式(R _{PROG} 未连接,		40	80	uA
		$V_{CC} < V_{BAT}, V_{CC} < V_{UV}, V_{CE} = 0V)$				
V_{FLOAT}	输出浮充电压	0°C≤Ta≤85°C		4.2		V
I _{BAT}	BAT 引脚电流	R _{PROG} =2K,电流模式	500	550	600	mA
		R _{PROG} =1 K,电流模式	1000	1100	1200	mA
		待机模式(V _{CC} =5V,V _{BAT} =4.2V)	0	2	4	μΑ
		停机模式(R _{PROG} 未连接或		0	0	
		V _{CE} =0V)		0	2	μΑ
		睡眠模式,V _{CC} =0		0	2	μΑ
I _{TRIKL}	涓流充电电流	$V_{BAT} < V_{TRIKL}, R_{PROG} = 1.2K$	100	120	150	mA
V_{TRIKL}	涓流充电阈值电压	R _{PROG} =1K,VBAT 上升	2.8	2.9	3.0	V
V_{TRHYS}	涓流充电迟滞电压	R _{PROG} =1K	60	80	100	mV
V _{UV}	Vcc欠压保护阈值电压	Vcc上升	3.5	3.7	3.9	V
V _{UVHYS}	Vcc欠压保护迟滞电压	Vcc下降	0.15	0.2	0.3	V
V_{ASD}	V _{CC} -V _{BAT} 阈值电压	Vcc上升	60	100	140	mV
		Vcc下降	5	30	50	mV
I _{TERM}	C/10 终止电流阈值	R _{PROG} =2K	50	60	80	mA
		R _{PROG} =1K	100	120	150	mA
V_{PROG}	PROG 引脚电压	R _{PROG} =1K,电流模式	0.9	1.0	1.1	V
V_{CHRG}	CHRG引脚输出低电压	I _{CHRG} =5mA		0.3	0.6	V
V_{STDBY}	STDBY 引脚输出低电压	I _{STDBY} =5mA		0.3	0.6	V
ΔV_{RECHRG}	再充电电池阈值电压	V _{FLOAT} -V _{RECHRG}	70	100	150	mV
V_{TEMP-H}	TEMP 引脚高翻转电压			80	82	$%V_{CC}$
V_{TEMP-L}	TEMP 引脚低翻转电压		43	45		%V _{cc}
T_{LIM}	限定温度模式结温			125		$^{\circ}$ C
R _{ON}	功率 FET 导通电阻			500		mΩ
T _{SS}	软启动时间	I_{BAT} =0 Ξ I_{BAT} =1200V/ R_{PROG}		20		uS
T _{RECHRG}	再充电比较器滤波时间	V _{BAT} 下降	1	2	3	mS
T_{TERM}	结束比较器滤波时间	I _{BAT} 降至 C/10 以下	1	2	3	mS
I _{PROG}	PROG 引脚上拉电流			1		uA
V_{CE-H}	CE 逻辑使能高电平电压			0.9		V

注 2: 典型参数值为 25℃条件下测得的标准参数值。

注 3: 规格书的最小、最大规范范围由测试保证,典型值由设计、测试或统计分析保证。

内部框图

工作原理

TP4056是专门为一节锂离子电池或锂聚合物电池而设计的线性充电器,芯片集成功率晶体管,充电电流可以用外部电阻设定,最大持续充电电流可达1A,不需要另加阻流二极管和电流检测电阻。TP4056包含两个漏极开路输出的状态指示端,充电状态指示输出端CHRG和充电完成指示输出端STDBY。充电时管脚CHRG输出低电平,表示充电正在进行。如果电池电压低于2.9V,TP4056用小电流对电池进行预充电。当电池电压超过2.9V时,采用恒流模式对电池充电,充电电流由 PROG管脚和GND之间的电阻R_{PROG}确定。当电池电压接近4.2V电压时,充电电流逐渐减小,TP4056进入恒压充电模式。当充电电流减小到充电结束阈值时,充电周期结束,CHRG端输出高阻态,STDBY端输出低电位。 充电结束阈值是恒流充电电流的10%。

当电池电压降到再充电阈值4.1V以下时,TP4056自动开

始新的充电周期。芯片内部的高精度电压基准源、误差放大器和电阻分压网络确保电池端调制电压的精度在1%以内,满足锂离子电池和锂聚合物电池的要求。当输入电压低于欠压锁定阈值电压或者输入电压低于电池电压时,充电器进入低功耗的睡眠模式,此时电池端消耗的电流小于2uA。

TP4056 内部的智能温度控制电路在芯片的结温超过 125℃时自动降低充电电流,这个功能可以使用户最大限度的利用芯片的功率处理能力,不用担心因为过热而损坏芯片或者外部元器件。这样,用户在设计充电电流时,可以不用考虑最坏情况,而只是根据典型情况进行设计因为在最坏情况下,TP4056会自动减小充电电流。如果将使能输入端 CE 接低电平,充电器停止充电。

引脚功能

TEMP(PIN1):电池温度检测输入端

将TEMP管脚接电池的NTC传感器的输出端.如果TEMP管脚的电压小于输入电压的45%或者大于输入电压的80%,意味着电池温度过低或过高,则充电被终止。如果不需要电池温度检测功能,则可以将TEMP直接接GND,电池温度检测功能无效,但其他充电功能正常。

PROG(PIN2):恒流充电电流设置端

从PROG管脚连接一个电阻到GND可以对充电电流进行设定。设定电阻器和充电电流采用下列公式来计算: R_{PROG}=1100V/I_{BAT}

根据需要的充电电流I_{BAT}来确定电阻器R_{PROG}的阻值。在 涓流充电阶段,此管脚的电压被调制在 0.1V,在恒流充 电阶段,此管脚的电压被固定在1V。

GND(PIN3):电源地

Vcc(PIN4):输入电压正端

此管脚的电压为内部电路的工作电源。V_{CC}输入电压必须大于欠压锁定阈值且同时大于BAT电压100mV时,充电才会开始。当VCC输入电压低于欠压锁定阈值或V_{CC}与BAT管脚的电压差小于30mV时,TP4056将进入低功耗的停机模式,此时BAT管脚的消耗电流小于2uA。

BAT(PIN5):电池正连接端

将电池的正端连接到此管脚。在芯片被禁止工作或者睡眠模式。BAT管脚的漏电流小于2uA,BAT管脚向电池提供充电电流和4.2V的限制电压。

STDBY(PIN6):充电完成指示端

当电池充电完成时,STDBY被内部开关拉到低电平,表示充电完成。除此之外,STDBY管脚将处于高阻态。

CHRG(PIN7):充电状态指示端

当充电器向电池充电时, CHRG引脚被内部开关拉到低电平,表示充电正在进行; 否则CHRG管脚处于高阻态。

CE(PIN8):芯片始能输入端

输入高电平时,TP4056处于正常工作状态;输入低电平时,TP4056处于被禁止充电状态。CE管脚可以被TTL电平或者CMOS电平驱动。

应用说明

充电终止

当充电电流在达到最终浮充电压之后降至设定值的1/10时,充电过程结束。该条件是通过采用一个内部滤波比较器对PROG引脚进行监控来检测的,当PROG引脚电压降至100mV以下的时间超过2ms时,充电终止,TP4056进入待机模式,此时输入电源电流降至50µA。

智能再充电

在待机模式中, TP4056 对 BAT 引脚电压进行监控,只有当 BAT 引脚电压低于再充电阈值电压 4.1V时 (对应电池容量 80%~90%), 才会开始新的充电循环,重新对电池进行充电,这就避免了对电池进行不必要的反复充电,有效延长电池的使用寿命。

充电状态指示器

TP4056有两个漏极开路状态指示输出端,CHRG和STDBY,当充电器处于充电状态时,CHRG被拉到低电平,充电结束后,CHRG为高阻态,STDBY被拉到低电平。

如果不使用状态指示功能时,将不用的状态指示输出端接地。下表示装态指示功能总结:

充电状态	红灯(CHRG)	绿灯(STDBY)
正在充电	亮	灭
充电完成	灭	亮
欠压、温度过高	灭	灭
或过低		
BAT接10uF电	闪烁(T≈3S)	亮
容		

智能温度控制

TP4056内部集成了智能温度控制功能,当芯片温度高于125℃时,会自动减小充电电流。该功能允许用户提高给定电路板功率处理能力的上限而没有损坏 TP4056 的风险。在保证充电器将在最坏情况条件下自动减小电流的前提下,可根据典型(而不是最坏情况)环境温度来设定充电电流。

电池温度监测

为了防止温度过高或者过低对电池造成的损害,TP4056内部集成有电池温度监测电路。电池温度监测是通过监测TEMP管脚的电压实现的,TEMP管脚的电压由电池内的NTC热敏电阻和一个电阻分压网络实现,如典型应用电路所示。TP4056将TEMP管脚的电压同芯片内部的两个阈值 V_{TEMP-H}和 V_{TEMP-L}相比较,以确认电池的温度是

否超出正常范

围。V_{TEMP-L}=45%×V_{CC},V_{TEMP-H}=80%×V_{CC}。如果TEMP 管脚的电

压V_{TEMP}<V_{TEMP-L}或 者V_{TEMP}>V_{TEMP-H},则表示电池的温度 太高或者太低,充电过程将被终止;如果不需要电池温 度监测功能,则须将TEMP管脚接到地。

增加热调节电阻

降低IC的 V_{cc} 与BAT两端的压降能够显著减少IC中的功耗。在热调节时,这具有增加充电电流的作用。实现方式可以在输入电源与 V_{cc} 之间串联一个 0.3Ω 的功率电阻

或正向导通压降小于0.5V的二极管,从而将一部分功率 耗掉。

充电电流软启动

TP4056 内置了软启动路。当一个充电循环被启动时,充电电流将在20uS的时间从零逐渐上升至恒流充电电流。

手动停机

如果将CE端置为低电位或使 PROG 引脚浮空,TP4056 即被置于停机模式。电池漏电流将降至1μA以下,且电源电流降至40μA以下。

封装外形尺寸 *ESOP-8L*

⇔ 55	Dimensions In	Millimeters	Dimensions	In Inches
字符	Min	Max	Min	Max
Α	1. 350	1. 750	0.053	0.069
A1	0.050	0. 150	0.004	0.010
A2	1. 350	1. 550	0.053	0.061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0.006	0.010
D	4. 700	5. 100	0. 185	0. 200
D1	3. 202	3. 402	0. 126	0.134
E	3.800	4. 000	0. 150	0.157
E1	5. 800	6. 200	0. 228	0. 244
E2	2. 313	2. 513	0. 091	0.099
е	1. 270 (BSC)		0. 050	(BSC)
L	0.400	1. 270	0. 016	0.050
θ	0°	8°	0°	8 °