Devoir

Exercice 1 Considérons le Tableau 1.

- 1. Construire une carte CUSUM récursif pour les données du tableau avec comme valeur de référence sous contrôle, $\mu_0 = 1050$, $\sigma_0 = 25$.
- 2. Construire une carte EWMA pour ces données avec lambda = 0.10 et L = 2.7. Comparer vos résultats avec ceux obtenus par CUSUM.
- 3. Construire une carte moyenne mobile (MA) pour ces données avec w = 6. Comparer vos résultats avec ceux obtenus par CUSUM.

Exercice 2 Considérons le Tableau 2.

- 1. Construire une carte CUSUM pour les données du tableau avec la valeur ciblée $\mu = 8.02$, avec h = 4.77 et k = 0.5 sachant qu'on pense avoir $\sigma = 0.05$.
- 2. Vérifier si $\sigma = 0.05$ correspond bien à ce processus.
- 3. Construire une carte CUSUM standardisé pour les données du Tableau 2 avec h=8.01 et k=0.25 sachant qu'on pense avoir $\sigma=0.05$.
- 4. Comparer les résultats
- 5. Discuter le choix de h et k.
- 6. Construire une carte EWMA pour ces données avec lambda = 0.2 et L = 3.
- 7. Construire une carte moyenne mobile (MA) pour ces données avec w = 5. Comparer vos résultats avec ceux obtenus par CUSUM.

Exercice 3 Montrer que pour l = 2/(w+1) la carte MA et EWMA sont équivalentes c'est à dire les deux cartes de contrôle sont identiques en régime stationnaire $(n \to \infty)$.

Observation Number	x	Observation Number	x
1	1045	11	1139
2	1055	12	1169
3	1037	13	1151
4	1064	14	1128
5	1095	15	1238
6	1008	16	1125
7	1050	17	1163
8	1087	18	1188
9	1125	19	1146
10	1146	20	1167

FIGURE 1 – exercice1

Sample Number	x	Sample Number	х
1	8.00	13	8.05
2	8.01	14	8.04
3	8.02	15	8.03
4	8.01	16	8.05
5	8.00	17	8.06
6	8.01	18	8.04
7	8.06	19	8.05
8	8.07	20	8.06
9	8.01	21	8.04
10	8.04	22	8.02
11	8.02	23	8.03
12	8.01	24	8.05

FIGURE 2 – exercice2

29.330	33.220	27.990	24.280
19.980	30.150	24.130	22.690
25.760	27.080	29.200	26.600
29.000	33.660	34.300	28.860
31.030	36.580	26.410	28.270
32.680	29.040	28.780	28.170
33.560	28.080	21.280	28.580
27.500	30.280	21.710	30.760
26.750	29.350	21.470	30.620
30.550	33.600	24.710	20.840
28.940	30.290	33.610	16.560
28.500	20.110	36.540	25.230
28.190	17.510	35.700	31.790
26.130	23.710	33.680	32.520
27.790	24.220	29.290	30.280
27.630	32.430	25.120	26.140
29.890	32.440	27.230	19.030
28.180	29.390	30.610	24.340
26.650	23.450	29.060	31.530
30.010	23.620	28.480	31.950
30.800	28.120	32.010	31.680
30.450	29.940	31.890	29.100
36.610	30.560	31.720	23.150
31.400	32.300	29.090	26.740
30.830	31.580	31.920	32.440

FIGURE 3 – exercice5

Exercice 4 Une procédé de fabrication opère sous contrôle avec une proportion de non-conformité égale à 0.1%, que la direction accepte 95% du temps. Si cette proportion augmente à 2% la direction souhaite le détecter avec une probabilité égale à 0.90. Construire une carte de contrôle d'acceptation adaptée.

Exercice 5 Considérons le Tableau 5.

- 1. Y-a-t-il un problème d'auto-corrélation?
- 2. Construire une carte de contrôle d'étendue mobile pour contrôler la variabilité. Quelles sont les conclusions à tirer ?
- 3. Construire une carte CUSUM supposant que les observations ne sont pas corrélées. Que peut-on dire de la performance de CUSUM.
- 4. Construire une carte de contrôle EWMA avec $\lambda = 0.15$. Comment cette carte se comporte.
- 5. Construire une carte de contrôle EWMA avec la ligne centrale mobile.

6. Supposons que nous disposons des données issues d'un modèle AR(2). Comment ce modèle peut aider pour le contrôle du procédé ? Construire une carte adaptée et statuer sur l'état du procédé.