

**Inhibiting expression of target genes, useful e.g. for treating tumors,
by introducing into cells two double-stranded RNAs that are
complementary to the target**

Publication number: DE10100588 (A1)

Publication date: 2002-07-18

Inventor(s): KREUTZER ROLAND [DE]; LIMMER STEFAN [DE]; ROST SYLVIA [DE]; HADWIGER PHILIPP [DE]

Applicant(s): RIBOPHARMA AG [DE]

Cited documents:

DE19956568 (A1)

US4950652 (A)

WO0063364 (A2)

Classification:

- international: **C12N15/11; A61K38/00; C12N15/11; A61K38/00;** (IPC1-7): C12N15/63; C07H21/02; C12N15/11; C12N15/82

- European: C12N15/11M

Application number: DE20011000588 20010109

Priority number(s): DE20011000588 20010109

Abstract of DE 10100588 (A1)

Inhibiting expression of a target gene (TG) in a cell by introducing at least two oligoribonucleotides

(dsRNAI, II), both with a double-stranded (ds) structure of at most 49 sequential nucleotide (nt) pairs.

At least part of one strand (S1, S2) of the ds structures in each of dsRNAI, II are complementary to regions (B1, B2) in TG. An Independent claim is also included for material for inhibiting expression of TG containing at least dsRNAI and II.

.....
Data supplied from the **esp@cenet** database — Worldwide

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES

PATENT- UND
MARKENAMT

(12) **Offenlegungsschrift**
(10) **DE 101 00 588 A 1**

(51) Int. Cl.⁷:

C 12 N 15/63

C 12 N 15/82

C 12 N 15/11

C 07 H 21/02

(21) Aktenzeichen: 101 00 588.1

(22) Anmeldetag: 9. 1. 2001

(43) Offenlegungstag: 18. 7. 2002

(71) Anmelder:

Ribopharma AG, 95447 Bayreuth, DE

(74) Vertreter:

Gaßner, W., Dr.-Ing., Pat.-Anw., 91052 Erlangen

(72) Erfinder:

Kreutzer, Roland, Dr., 95447 Bayreuth, DE; Limmer, Stefan, Dr., 95447 Bayreuth, DE; Rost, Sylvia, Dr., 95447 Bayreuth, DE; Hadwiger, Philipp, Dr., 95447 Bayreuth, DE

(56) Entgegenhaltungen:

DE 199 56 568 A1
US 49 50 652
WO 00 63 364 A2

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Verfahren zur Hemmung der Expression eines Zielgens

(57) Die Erfindung betrifft ein Verfahren zur Hemmung der Expression eines Zielgens in einer Zelle, umfassend die folgenden Schritte:

Einführen mindestens eines ersten (dsRNA I) und eines zweiten Oligoribonukleotids (dsRNA II) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge,

wobei das erste (dsRNA I) und das zweite Oligoribonukleotid (dsRNA II) jeweils eine doppelsträngige aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweisen,

wobei ein Strang (S1) oder zumindest ein Abschnitt eines Strangs (S1) der doppelsträngigen Struktur des ersten Oligoribonukleotids (dsRNA I) komplementär zu einem ersten Bereich (B1) des Zielgens ist,

und wobei ein Strang (S2) oder zumindest ein Abschnitt eines Strangs (S2) der doppelsträngigen Struktur des zweiten Oligoribonukleotids (dsRNA II) komplementär zu einem zweiten Bereich (B2) des Zielgens ist.

DE 101 00 588 A 1

DE 101 00 588 A 1

DE 101 00 588 A 1

Beschreibung

[0001] Die Erfindung betrifft ein Verfahren, eine Verwendung und einen Stoff zur Hemmung der Expression eines Zielgens.

5 [0002] Aus der WO 99/32619 und der WO 00/44895 sind Verfahren zur Hemmung der Expression von medizinisch oder biotechnologisch interessanten Genen mit Hilfe eines doppelsträngigen Oligoribonukleotids (dsRNA) bekannt. Die bekannten Verfahren sind nicht besonders effektiv.

[0003] Aufgabe der vorliegenden Erfindung ist es, die Nachteile nach dem Stand der Technik zu beseitigen. Es soll insbesondere ein möglichst wirksames Verfahren, eine möglichst wirksame Verwendung und ein Stoff angegeben werden, 10 mit denen eine noch effizientere Hemmung der Expression eines Zielgens erreichbar ist.

[0004] Diese Aufgabe wird durch die Merkmale der Ansprüche 1, 36 und 72 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den Merkmalen der Ansprüche 2 bis 35, 37 bis 71 und 73 bis 99.

[0005] Mit den erfundungsgemäß beanspruchten Merkmalen wird überraschender Weise eine drastische Erhöhung der Effektivität der Hemmung der Expression eines Zielgens erreicht. Die genauen Umstände dieses Effekts sind noch nicht 15 geklärt.

[0006] Die gleichzeitige Applikation mehrerer erfundungsgemäßer Oligoribonukleotide mit zu unterschiedlichen Bereichen bzw. Abschnitten des Zielgens komplementären Sequenzen bewirkt eine stärkere Hemmung der Expression des Zielgens schon bei Verwendung sehr niedriger Konzentrationen.

[0007] Die Gesamtzahl der verwendeten unterschiedlichen erfundungsgemäßen Oligoribonukleotide kann bis zu 100 20 betragen. In einem besonderen Fall können die komplementären Bereiche der erfundungsgemäßen Oligoribonukleotide die gesamte Sequenz des Zielgens lückenlos überdecken. Dabei sind auch Überlappungen in den überdeckten Bereichen möglich.

[0008] Nach einem Ausgestaltungsmerkmal kann zumindest ein Ende des ersten und/oder des zweiten Oligoribonukleotids zumindest ein nicht nach Watson & Crick gepaartes Nukleotid aufweisen. Es wird angenommen, dass durch die 25 besondere Ausbildung des zumindest eine Endes zumindest eines der Oligoribonukleotide die Stabilität desselben erhöht wird. Durch die Erhöhung der Stabilität wird die wirksame Konzentration in der Zelle erhöht. Die Effektivität ist gesteigert.

[0009] Die Effektivität kann weiter gesteigert werden, wenn das Ende einen aus 1 bis 4 Nukleotiden gebildeten einsträngigen Abschnitt und/oder ungepaarte Nukleotide aufweist. Eine besondere Erhöhung der Stabilität des erfundungsgemäßen Oligoribonukleotids ist beobachtet worden, wenn das Ende das 3'-Ende eines Strangs der doppelsträngigen Struktur ist. 30

[0010] Als besonders vorteilhaft hat es sich erwiesen, die Zelle vor dem Einführen der Oligoribonukleotide mit Interferon zu behandeln. Auf diese Weise können besonders effektiv Tumore bekämpft werden.

[0011] Es hat sich gezeigt, dass durch eine solche aufeinanderfolgende Applikation von Interferon und erfundungsgemäßen Oligoribonukleotiden die Nachteile, wie sie bei der bekannten alleinigen Verwendung von langkettigen Oligoribonukleotiden auftreten, vermieden und die Vorteile der Verwendung von kurzen Oligoribonukleotiden mit weniger als 50 Nukleotidpaaren zur Hemmung der Genexpression besser ausgenutzt werden können. Darüber hinaus wird der durch die Oligoribonukleotide vermittelte hemmende Effekt auf die Genexpression verstärkt. 35

[0012] Nach einem weiteren Ausgestaltungsmerkmal wird die Effektivität des Verfahrens erhöht, wenn zumindest ein weiteres Oligoribonukleotid in die Zelle eingeführt wird, welches eine doppelsträngige aus mindestens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist, wobei ein Strang oder zumindest ein Abschnitt des Strangs der doppelsträngigen Struktur des weiteren Oligoribonukleotids komplementär zu einem dritten Bereich des Zielgens ist. Die Hemmung der Expression des Zielgens ist in diesem Fall deutlich gesteigert.

[0013] Nach einem weiteren Ausgestaltungsmerkmal kann das erste und/oder das zweite Oligoribonukleotid eine doppelsträngige aus weniger als 25 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweisen. 40

[0014] Der erste, zweite und dritte Bereich können abschnittsweise überlappen, aneinandergrenzen oder auch voneinander beabstandet sein.

[0015] Die erfundungsgemäßen Oligoribonukleotide können dann besonders einfach in die Zelle eingeschleust werden, wenn sie in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen werden. Es ist auch möglich das/die 45 Oligoribonukleotid/e in virale natürliche Kapside oder in auf chemischem oder enzymatischem Weg hergestellte künstliche Kapside oder davon abgeleitete Strukturen einzuschließen.

[0016] Das Zielgen kann nach einem weiteren Ausgestaltungsmerkmal eine der in dem anhängenden Sequenzprotokoll wiedergegebenen Sequenzen SQ001 bis SQ140 aufweisen. Es kann auch aus der folgenden Gruppe ausgewählt sein: Onkogen, Cytokin-Gen, Id-Protein-Gen, Entwicklungsgen, Prionen. 50

[0017] Das Zielgen wird zweckmäßigerweise in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert. Es kann Bestandteil eines Virus oder Viroids, insbesondere eines humanpathogenen Virus oder Viruids, sein. Das Virus oder Viruid kann auch ein tier- oder pflanzenpathogenes Virus oder Viroid sein.

[0018] Nach einem weiteren Ausgestaltungsmerkmal ist vorgesehen, dass die ungepaarten Nukleotide durch Nukleosidthiophosphate substituiert sind. 55

[0019] Die doppelsträngige Struktur der erfundungsgemäßen Oligoribonukleotide kann weiter durch eine chemische Verknüpfung der der beiden Stränge stabilisiert werden. Die chemische Verknüpfung kann durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise von-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet werden. Es hat sich weiter als zweckmäßig und die Stabilität erhöhend erwiesen, wenn die chemische Verknüpfung in der Nähe des einen oder in der Nähe der beiden Enden des erfundungsgemäßen Oligoribonukleotids gebildet ist. Weitere vorteilhafte Ausgestaltungen hinsichtlich der chemischen Verknüpfung können den Merkmalen der Ansprüche 23 bis 29 entnommen werden, ohne dass es dafür einer näheren Erläuterung bedarf. 60

[0020] Zum Transport der erfundungsgemäßen Oligoribonukleotide hat es sich ferner als vorteilhaft erwiesen, dass

DE 101 00 588 A 1

diese an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben werden. Das Hüllprotein kann vom Polyomavirus abgeleitet sein. Das Hüllprotein kann insbesondere das Virus-Protein 1 und/oder das Virus-Protein 2 des Polyomavirus enthalten. Nach einer weiteren Ausgestaltung ist vorgesehen, dass bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist. Ferner ist es von Vorteil, dass das/die Oligoribonukleotid/e zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist/sind. Die Zelle kann eine Vertebratenzelle oder eine menschliche Zelle sein.

5

[0021] Erfundungsgemäß ist weiterhin die Verwendung der vorgenannten ersten und zweiten Oligoribonukleotide mit den vorgenannten Merkmalen zur Hemmung der Expression eines Zielgens in einer Zelle vorgesehen. Es wird insoweit auf die vorangegangenen Ausführungen verwiesen.

10

[0022] Nach weiterer Maßgabe der Erfundung wird die Aufgabe gelöst durch einen Stoff zur Hemmung der Expression eines Zielgens, umfassend mindestens ein erstes und ein zweites Oligoribonukleotid in einer zur Hemmung der Expression des Zielgens ausreichenden Menge, wobei das erste und das zweite Oligoribonukleotid jeweils eine doppelsträngige aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweisen, und wobei ein Strang oder zumindest ein Abschnitt eines Strangs der doppelsträngigen Struktur des ersten Oligoribonukleotids komplementär zu einem ersten Bereich des Zielgens ist, und wobei ein Strang oder zumindest ein Abschnitt eines Strangs der doppelsträngigen Struktur des zweiten Oligoribonukleotids komplementär zu einem zweiten Bereich des Zielgens ist.

15

[0023] Nach einem weiteren Ausgestaltungsmerkmal weist zumindest ein Ende des ersten und/oder zweiten Oligoribonukleotids zumindest ein nicht nach Watson & Crick gepaartes Nukleotid auf. Wegen der weiteren vorteilhaften Ausgestaltung des ersten und zweiten Oligoribonukleotids wird auf die vorangegangenen Ausführungen verwiesen.

20

[0024] Die Erfundung wird nachfolgend anhand der Zeichnungen beispielhaft erläutert. Es zeigen:

[0025] Fig. 1a-c schematisch ein erstes, zweites und drittes Oligoribonukleotid und

[0026] Fig. 2 schematisch ein Zielgen.

25

[0027] Die in den Fig. 1a bis c gezeigten Oligoribonukleotide dsRNA I, dsRNA II und dsRNA III weisen jeweils ein erstes Ende E1 und ein zweites Ende E2 auf. Das erste Oligoribonukleotid dsRNA I und das zweite Oligoribonukleotid dsRNA II weisen an ihren Enden E1 und E2 einzelsträngige aus etwa 1 bis 4 ungepaarten Nukleotiden gebildete Abschnitte auf. Beim dritten Oligoribonukleotid dsRNA III handelt es sich um ein langes Oligoribonukleotid mit mehr als 49 Nukleotidpaaren.

30

[0028] In Fig. 2 ist schematisch ein auf einer DNA befindliches Zielgen gezeigt. Das Zielgen ist durch einen schwarzen Balken kenntlich gemacht. Es weist einen ersten Bereich B1, einen zweiten Bereich B2 und einen dritten Bereich B3 auf.

35

[0029] Jeweils ein Strang S1, S2 und S3 des ersten dsRNA I, zweiten dsRNA II und dritten Oligoribonukleotids dsRNA III ist komplementär zum entsprechenden Bereich B1, B2 und B3 auf dem Zielgen.

[0030] Die Expression des Zielgens wird dann besonders wirkungsvoll gehemmt, wenn die kurzkettigen ersten dsRNA I und zweiten Oligoribonukleotide dsRNA II an ihren Enden E1, E2 einzelsträngige Abschnitte aufweisen. Die einzelsträngigen Abschnitte können sowohl am Strang S1, S2 als auch am Gegenstrang oder am Strang S1, S3 und am Gegenstrang ausgebildet sein. Es hat sich weiter gezeigt, dass ab einer bestimmten Länge der Oligoribonukleotide, z. B. ab einer Länge von mehr als 49 Nukleotidpaaren, eine einzelsträngige Ausbildung der Enden E1, E2 weniger stark zur Unterdrückung der Expression des Zielgens beiträgt. Bei langen Oligoribonukleotiden, hier beim dritten Oligoribonukleotid dsRNA III, ist eine einzelsträngige Ausbildung an den Enden E1, E2 nicht unbedingt erforderlich.

35

[0031] Die Bereiche B1, B2 und B3 können, wie in Fig. 2 gezeigt, von einander beabstandet sein. Sie können aber auch aneinander grenzen oder überlappen.

40

[0032] Im Falle der einzelsträngigen Ausbildung der Enden E1, E2 sind alle denkbaren Permutationen möglich, d. h. es können ein Ende oder beide Enden des Strangs S1, S2, S3 oder ein Ende oder beide Enden des Gegenstrangs überstehen. Der einzelsträngige Abschnitt kann 1 bis 4 gepaarte Nukleotide aufweisen. Es ist auch möglich, dass ein Ende oder beide Enden E1, E2 mindestens ein nicht nach Watson & Crick gepaartes Nukleotidpaar aufweisen.

45

Ausführungsbeispiel

[0033] Es wurden aus Sequenzen des Grün-fluoreszierenden Proteins (GFP) der Alge *Aequoria victoria* abgeleitete doppelsträngige RNAs (dsRNAs) hergestellt und zusammen mit dem GFP-Gen in Fibroblasten mikroinjiziert. Anschließend wurde die Fluoreszenzabnahme gegenüber Zellen ohne dsRNA ausgewertet.

50

Versuchsprotokoll

[0034] Mittels eines RNA-Synthesizers (Typ Expedite 8909, Applied Biosystems, Weiterstadt, Deutschland) und herkömmlicher chemischer Verfahren wurden die aus den Sequenzprotokollen SQ141 SQ144 ersichtlichen RNA-Einzelstränge und die zu ihnen komplementären Einzelstränge synthetisiert. Die Hybridisierung der komplementären Einzelstränge zum Doppelstrang erfolgte für jede einzelne dsRNA durch Aufheizen des stöchiometrischen Gemisches der Einzelstränge in 10 mM Natriumphosphatpuffer, pH 6,8, 100 mM NaCl, auf 90°C und nachfolgendes langsames Abkühlen über 6 Stunden auf Raumtemperatur. Anschließend erfolgte Reinigung mit Hilfe der HPLC. Die so erhaltenen deRNAs wurden einzeln oder gemeinsam in die Testzellen mikroinjiziert. Als Testsystem für diese in-vivo-Experimente diente die murine Fibroblasten-Zelllinie NIH/3T3. Mit Hilfe der Mikroinjektion wurde das GFP-Gen in die Zellen eingebracht. Die Expression des GFP wurde unter dem Einfluß gleichzeitig mittransfizierter sequenzhomologer dsRNA untersucht. Die Auswertung unter dem Fluoreszenzmikroskop erfolgte 3 Stunden nach Injektion anhand der grünen Fluoreszenz des gebildeten GFP.

55

60

65

DE 101 00 588 A 1

Vorbereitung der Zellkulturen

[0035] Die Zellen wurden in DMEM mit 4,5 g/l Glucose, 10% fötalem Rinderserum unter 7,5% CO₂-Atmosphäre bei 37 W in Kulturschalen inkubiert und vor Erreichen der Konfluenz passagiert. Das Ablösen der Zellen erfolgte mit Trypsin/EDTA. Zur Vorbereitung der Mikroinjektion wurden die Zellen in Petrischalen überführt und bis zu Bildung von Mikrokolonien weiter inkubiert.

Mikroinjektion

10 [0036] Die Kulturschalen wurde zur Mikroinjektion für ca. 10 Minuten aus dem Inkubator genommen. Es wurde in ca. 50 Zellen pro Ansatz innerhalb eines markierten Bereiches unter Verwendung des Mikroinjektionssystems FemtoJet der Firma Eppendorf, Deutschland, einzeln injiziert. Anschließend wurden die Zellen weitere drei Stunden inkubiert. Für die Mikroinjektion wurden Borosilikat-Glaskapillaren der Firma Eppendorf mit einem Spalteninnendurchmesser von 0,5 µm verwendet. Die Mikroinjektion wurde mit dem Mikromanipulator 5171 der Firma Eppendorf durchgeführt. Die 15 Injektionsdauer betrug 0,8 Sekunden, der Druck ca. 80 hPa. Die in die Zellen injizierten Proben enthielten 0,01 µg/µl PGFP-C1 (Clontech Laboratories GmbH, Heidelberg, Deutschland) sowie an Dextran-70000 gekoppeltes Texas-Rot in 14 mM NaCl, 3 mM KCl, 10 mM KP04, pH 7,5. Zusätzlich wurden in ca. 100 pl folgende dsRNAs zugegeben: Ansatz 1: 100 µM dsRNA (Sequenzprotokoll SQ141); Ansatz 2: 100 µM dsRNA (Sequenzprotokoll SQ142); Ansatz 3: 100 µM dsRNA (Sequenzprotokoll SQ143); Ansatz 4: 100 µM dsRNA (Sequenzprotokoll SQ144); Ansatz 5: Gemisch von je 25 20 µM dsRNA (nach Sequenzprotokoll SQ141, SQ142, SQ143 und SQ144); Ansatz 6: ohne RNA.
[0037] Die Zellen wurden bei Anregung mit Licht der Anregungswellenlänge von Texas-Rot, 568 nm, bzw. von GFP, 513 nm, mittels eines Fluoreszenzmikroskops untersucht. Die Fluoreszenz aller Zellen im Gesichtsfeld wurde bestimmt und in Relation zur Zelldichte (ausgedrückt durch deren Gesamtproteinkonzentration) gesetzt.

Ergebnis und Schlussfolgerung

[0038] Sowohl bei einer Gesamtkonzentration von 10 als auch von 100 µM dsRNA konnte bei gleichzeitiger Verwendung von vier unterschiedlichen dsRNAs ein deutlich stärkerer hemmender Effekt auf die Expression des GFP-Gens in Fibroblasten beobachtet werden als mit einer dsRNA allein (Tabelle 1). Darüber hinaus war bei gleichzeitiger Verwendung von vier unterschiedlichen dsRNAs eine starke Hemmung bereits bei einer Konzentration von 10 µM zu erreichen, was mit nur einer dsRNA nicht möglich war.

[0039] Die Verwendung mehrerer, gegen das selbe Zielgen gerichteten dsRNAs ermöglicht somit eine stärkere Hemmung der Genexpression in Säugerzellen bereits bei niedrigeren Konzentrationen als dies mit nur einer dsRNA erreichbar ist.

Ansatz	dsRNA	gesamt 100 µM	gesamt 10 µM
1	SQ141	++	-
2	SQ142	++	+
3	SQ143	++	+
4	SQ144	++	+
5	SQ141 + SQ142 + SQ143 + SQ144	+++	+++
6	ohne RNA	-	-

[0040] Tabelle 1: Die Symbole geben den relativen Anteil an nicht oder schwach fluoreszierende Zellen an (+++ > 90%; ++ 60–90%; + 30–60%; - < 10%).

55

60

65

DE 101 00 588 A 1

SEQUENZPROTOKOLL

<110> Ribopharma AG

<120> Verfahren zur Hemmung der Expression
eines Zielgens 5

<130> 1234

<140>

<141> 10

<160> 144

<170> PatentIn Ver. 2.1 15

<210> 1

<211> 2955

<212> DNA

<213> Homo sapiens 20

<300>

<302> Eph A1

<310> NM00532 25

<300>

<302> ephrin A1

<310> NM00532

<400> 1

atggagccgc gctggcccct ggggcttaggg ctggtgctgc tgctctgcgc cccgctgccc 60
 ccggggggcgc gcgccaagga agttactctg atggacacaa gcaaggcaca gggagagctg 120
 ggctggctgc tggatcccccc aaaagatggg tggagtgaac agcaacagat actgaatggg 180
 acaccctctt acatgtacca ggactgccca atgcaaggac gcagagacac tgaccactgg 240
 cttcgctcca attgatcta ccgcggggag gaggcttccc gcgtccacgt ggagctgcag 300
 ttccacctgc gggactgcaa gagtttccct gggggagccg ggcctctggg ctgcaaggag 360
 accttcaacc ttctgtacat ggagagtgcac cagatgtgg gcattcagct ccgacggccc 420
 ttgttccaga aggttaaccac ggtggctgca gaccagagct tcaccatcg agacccgtcg 480
 tctggctccg tgaagctgaa tggggagccg tgctctctgg gccgcctgac ccgcctgtggc 540
 ctctacctcg cttttcacaa cccgggtgccc tgggttttttgc tgggtgttgtt ccgggtcttc 600
 taccagcgct gtcctgagac cctgaatggc ttggcccaat tcccagacac tctgcctggc 660
 cccgctgggt tggtggaaat ggcggggcacc tgcttggccc acgcgcggc cagccccagg 720
 ccctcagggt caccggcat gcactgcgc cctgtatggc agtggctgtt gcctgttagga 780
 cggtgccact gtgagcctgg ctatgaggaa ggtggcagtg gcgaagcatg tggccctgc 840
 cctagcggt cctaccggat ggacatggac acacccatt gtctcacgtg ccccccaggcag 900
 agcactgctg agtctgaggg ggccaccatc tgtacctgtg agagcggcca ttacagagct 960
 cccggggagg gcccccaagg ggcacatgcaca ggtccccctt cggccccccg aaacctgagc 1020
 ttctctgcct cagggactca gctctccctg cggtggaaac ccccaagcaga tacgggggaa 1080
 cggccaggatg tcagatacag tggatgtgtt tcccaatgtc agggcacacg acaggacggg 1140
 gggccctgcc agccctgtgg ggtggcgtg cacttctgc cggggggcccg ggcgcgtcacc 1200
 acacccctgcag tgcacatgtcaa tggccttgaa ccttatgcac actacacatt taatgtggaa 1260
 gccaaaaatg gagttgcagg gctggggcgc tctggccatg ccagcaccc tcagcgttgc 1320
 agcatggggc atgcacagatc actgtcaggc ctgtctctga gactggtaa gaaagaaccg 1380
 aggcaactag agtgcacctg ggcgggggtcc cggcccccggaa gcccctgggc gaacctgacc 1440
 tatgagctgc acgtgctgaa ccaggatgaa gaacggtacc agatggttct agaaccagg 1500
 gtcttgctga cagagctgca gcctgcacacc acatacatcg tcagagttccg aatgctgacc 1560
 ccactgggtc ctggcccttt ctcccccgtat catgagtttcc ggaccaggccc accagtgtcc 1620
 agggggcctga ctggaggaga gattgttagcc gtcatcttgc ggctgtgtt tggcaggg 1680
 ttgctgcttg ggattctgtt tttccggtcc aggagagccc agcggcagag gcagcagagg 1740
 cacgtgaccg cgccaccatgtggatcgag aggacaagct gtgctgaagc cttatgtggt 1800
 acctccagcc atacgaggac cctgcacagg gaggcttgaa ctttaccctggg aggctgttct 1860

DE 101 00 588 A 1

aattttcctt cccgggagct tgatccagcg tggctgatgg tggacactgt cataggagaa 1920
 ggagagtgg gggaaagtgtt tcgagggacc ctcaaggctcc ccagccagga ctgcaagact 1980
 gtggccatta agaccttaaa agacacatcc ccaggtggcc agtggtgaa cttccttcga 2040
 5 gaggcaacta tcatggcca gtttagccac ccgcataattc tgcacatcgga aggctcgctc 2100
 acaaagcgaa agccgatcat gatcatcaca gaatttatgg agaatgcagc cctggatgcc 2160
 ttccctgaggg agcgggagga ccagctggc cctggcagc tagtggccat gctgcagggc 2220
 atagcatctg gcatgaacta cctcagtaat cacaattatg tccaccggga cctggctgcc 2280
 agaaaacatct tggtaatca aaacctgtgc tgcaagggtt ctgacttgg cctgactcgc 2340
 10 ctcctggatg actttgatgg cacatacga acccaggggag gaaagatccc tatccgttgg 2400
 acagccccctg aaggcattgc ccattcgatc ttacaccacag ccagcgatgt gtggagctt 2460
 gggattgtga tggggggatg gctgagctt ggggacaagg cttatggga gatgagcaat 2520
 caggaggatg tgaagagcat tgaggatggg taccgggttgc cccctccgt ggactgcccct 2580
 gccccctgt attagctcat gaagaactgc tggcatatg accgtgcccgg cccggccacac 2640
 15 ttccagaagc ttccaggaca tctggagcaa ctgcttgcac accccccactc cctgcggacc 2700
 attgccaact ttgaccctcg ggtgactt cgcctgcac gcctgagtggtt ctcagatggg 2760
 atcccgatc gaaccgtctc tgagtggctc gagtcataac gcatgaaacg ctacatccctg 2820
 cacttccact cggtgggctt ggacaccatg gagtgtgtgc tggagctgac cgctgaggac 2880
 ctgacgcaga tgggaatcac actgcccggg caccagaagc gcatttttgc cagtattcag 2940
 20 ggattcaagg actga 2955

<210> 2
 <211> 3042
 25 <212> DNA
 <213> Homo sapiens

<300>
 <302> ephrin A2
 30 <310> XM002088

<400> 2
 gaagttgcgc gcaggccggc gggcgggagc ggacaccgag gccggcggtgc aggctgcgg 60
 gtgtcgccga gcccggctcg gggggatcg accgagagcg agaagcgccg catggagctc 120
 35 caggcagccc ggcctgtctt cgcctgtcg tgggtgtgt cgctggccgc ggccgcggcg 180
 ggcgcgggca aggaagtggt actgctggac tttgctgcag ctggaggggaa gctggctgg 240
 ctcacacacc cgtatggcaa agggtgggac ctgatgcaga acatcatgaa tgacatgcgg 300
 atctacatgt actccgtgtg caacgtgtg tctggcggacc aggacaactg gctccgcacc 360
 aactgggtt accgaggaga ggctgagcgt atcttcattt agctcaagtt tactgtacgt 420
 40 gactgcaaca gctttccctgg tggcccaagc tcctgcagg agacttcaa cctctactat 480
 gcccggctgg acctggacta cggcaccaac ttccagaagc gcctgttccac caagattgac 540
 accattgcgc ccgtgagat caccgtcagc agcacttgc aggacacgca cgtgaagctg 600
 aacgtggagg agcgtccgt gggggccgtc acccgcaaa gcttctacat ggccttccag 660
 gatatcggtt cctgtgtggc gctgctctcc gtcctgtct actacaagaa gtgccccgag 720
 45 ctgctgcagg gcctggccca cttccctgtg accatgcgg gctctgatgc accttccctg 780
 gcccactgtgg ccggcacctg tggggaccat gccgtggtgc caccgggggg tgaagagccc 840
 cgtatgcact gtgcagtgg tggcgagttt ctggtgcacca ttggcagtg cctgtgcagg 900
 gcaggctacg agaagggtgg ggtgcctgc caggcctgt cgccctggatt ttttaagttt 960
 gaggcatctg agagccccctg cttggagtgcc cctgagcaca cgctgcaccc ccctgagggt 1020
 50 gcccacccct gcgagtgtga ggaaggctt tcctgggcac ctcaggaccc agcgtcgatg 1080
 ctttgcacac gaccccccctc cggccacac tacctcacag ccgtggccat ggggtccaaag 1140
 gtggagctgc gctggacgccc ccctcaggac agcggggggcc gcgaggacat tgtctacagc 1200
 gtcacctgcg aacagtgtcg gcccggatct gggaaatgcg ggcctgtga ggccagtgtg 1260
 cgctactctgg agccctctca cggactgacc cgcacccatg tgacagtggag cgacccctggag 1320
 55 ccccacatga actacaccc taccgtggag gcccgcataatg gctgtctoagg cctggtaacc 1380
 agccgcagct tccgtactgc cagtgtcagc atcaaccaga cagagcccc caaggtgagg 1440
 ctggaggggcc gcagcaccac ctcgtttagc gtctctggc gcatcccccc gcccagccag 1500
 agccgagttt ggaagttacga ggtcaacttac cgcaagaagg gagactccaa cagctacaat 1560
 gtgcggccca ccgggggtttt ctccgtgacc ctggacgacc tggccccaga caccacctac 1620
 60 ctggtccagg tgcaggcact gacgcaggag ggccagggggg ccggcagcaaa ggtgcacgaa 1680
 ttccagacgc tgcggccggaa gggatctggc aacttgggg tgattggcgg cgctggctgtc 1740
 ggtgtggtcc tgcttctggt gctggcagga gttggcttct ttatccaccc caggaggaag 1800

DE 101 00 588 A 1

aaccagcgtg	cccggccagtc	cccgaggagac	gtttacttct	ccaagtcaga	acaactgaag	1860	
ccccctgaaga	catacgtgga	cccccacaca	tatgaggacc	ccaaccaggc	tgtgttgaag	1920	
ttcaactaccg	agatccatcc	atccctgtgtc	actcggcaga	aggtgatcgg	agcaggagag	1980	5
tttggggagg	tgtacaaggg	catgctgaag	acatcctcg	ggaagaagga	ggtgccgggt	2040	
gccatcaaga	cgctgaaagc	cggctacaca	gagaagcago	gagtggactt	cctcggcgag	2100	
gccggcatca	tggccagtt	cagccaccac	aacatcatcc	gcctagaggg	cgtcatctcc	2160	
aaatacaaga	ccatgtatgt	catcaactgag	tacatggaga	atggggccct	ggacaagttc	2220	
cttcgggaga	aggatggcga	gttcagcgtg	ctgcagctgg	tgggcatgtc	gccccggcattc	2280	
gcagctgca	tgaagtacct	ggccaaacatg	aactatgtgc	accgtgaccc	ggctgcccgc	2340	10
aacatcctcg	tcaacagcaa	cctggctcgc	aaggtgtctg	actttgcct	gtccccgtgt	2400	
ctggaggacg	accccgaggc	cacctacacc	accagtggcg	gcaagatccc	catccgctgg	2460	
accggccccc	aggccatttc	ctaccggaa	ttcacctctg	ccagcgaacgt	gtggagctt	2520	
ggcattgtca	tgtgggaggt	gatgacat	ggcgagcgcc	cctactgg	gtgtccaac	2580	
cacgaggtga	tgaaagccat	caatgatgc	tccggctcc	ccacaccat	ggactgcccc	2640	
tccgcccatt	accagctcat	gatgcagtgc	tggcagcagg	agcgtgccc	ccggcccaag	2700	15
ttcgctgaca	tcgtcagcat	cctggacaag	ctoattctgt	ccccctgactc	cctcaagacc	2760	
ctggctgact	ttgaccccg	cgtgtctatc	cggctcccc	gcacgagcgg	ctcgagggggg	2820	
gtgccttcc	gcacgggtgc	cgagtggctg	gagtcatca	agatgcagca	gtatacggag	2880	
cacttcatgg	cggccggcta	cactgccatc	gagaagggtgg	tgcagatgac	caacgacgac	2940	
atcaagagga	ttgggggtcg	gctgccccgc	caccagaagc	gcatcgctta	cagcctgctg	3000	
ggactcaagg	accaggtgaa	cactgtgggg	atccccatct	ga		3042	

<210> 3							25
<211> 2953							
<212> DNA							
<213> Homo sapiens							

<300>							30
<302> ephrin A3							
<310> NM005233							

<400> 3							
atggattgtc	agctctccat	cctcctcctt	ctcagctgct	ctgttctcga	cagttcggg	60	35
gaactgatc	cgcagccttc	caatgaagtc	aatctactgg	attcaaaaac	aattcaaggg	120	
gagctgggt	ggatcttta	tccatcacat	gggtggaaag	agatcagtgg	tgtggatgaa	180	
cattacacac	ccatcaggac	ttaccagggt	tgcataatgtca	tggaccacag	tcaaaaacaat	240	
tggctgagaa	caaactgggt	ccccaggaac	tcagtcaga	agattttatgt	ggagctcaag	300	
ttcaactctac	gagactgcaa	tagcattcca	ttgttttag	gaacttgcaa	ggagacattc	360	
aacctgtact	acatggagtc	tgatgatgat	catgggtga	aatttcgaga	gcatcagttt	420	40
acaaaagattg	acaccattgc	agctgatgaa	agtttactc	aaatggatct	tggggaccgt	480	
attctgaagc	tcaacactga	gattagagaa	gtaggtcctg	tcaacaagaa	gggattttat	540	
ttggcatttc	aagatgttgg	tgcttgcgtt	gccttgggt	ctgtgagagt	ataacttcaaa	600	
aagtgcctat	ttacagtgaa	gaatctggct	atgtttccag	acacggtacc	catggactcc	660	45
cagtccctgg	tggaggttag	agggtcttgt	gtcaacaatt	ctaaggagga	agatcctcca	720	
aggatgtact	gcagttacaga	aggcgaatgg	cttgtaaaaa	ttggcaagt	ttctctgcaat	780	
gctggctatg	aagaaagagg	ttttatgtgc	caagcttgc	gaccagggtt	ctacaaggca	840	
ttggatggta	atatgaagtg	tgctaagtgc	ccgcctcaca	gttctactca	ggaagatgg	900	
tcaatgaact	gcaggtgtga	gaataattac	ttccgggcag	acaaagaccc	tccatccatg	960	50
gtttgtaccc	gacccatc	ttcacaaga	aatgttatct	ctaataaaaa	cgagacctca	1020	
gttattcctgg	actggagttg	gcccctggac	acaggaggcc	ggaaagatgt	taccttcaac	1080	
atcatatgt	aaaaatgtgg	gtgaaatata	aaacagtgtg	agccatgcag	cccaaatgtc	1140	
cgcttccccc	ctcgacagtt	tggactcacc	aacaccacgg	tgacagtgac	agaccttctg	1200	
gcacataacta	actacaccc	tgagattgt	gccgttaatg	gggtgtcaga	gctgagctcc	1260	55
ccaccaagac	agtttgcgtc	ggtcagcatc	acaactaatac	aggctgc	atcacatgtc	1320	
ctgacgat	agaaaatgcg	gacccatc	aatagcatct	ctttgtctgt	gcaagaacat	1380	
gaacatccta	atgggatcat	atggactac	gaggtaat	actatgaaaa	gcaggaacaa	1440	
gaaacaagg	ataccattt	gagggtcaaga	ggcacaatg	ttaccatcag	tagcctcaag	1500	
cctgacacta	tatacgat	ccaaatccga	gcccgaacag	ccgctggata	tggacgaaac	1560	60
agccgcaagt	ttgagtttga	aactagtcc	gactttct	ccatctctgg	tgaaagtgc	1620	
caagtggta	tgatcgccat	ttcagcggca	gtagcaatta	ttctctc	tgttgcatac	1680	

DE 101 00 588 A 1

tatgtttga ttgggaggtt ctgtggctat aagtcaaaac atggggcaga taaaaaaaaga 1740
 cttcattttg gcaatggca tttaaaactt ccaggctca ggacttatgt tgacctcacat 1800
 acatatgaag acctaccca agctgttcat gagtttgcga aggaattgga tgccaccaac 1860
 5 atatccattt ataaagttgt tggagcaggtaaatttggag aggtgtcgag tggtcgctta 1920
 aaacttcctt caaaaaaaga gatttcagt gccattaaaa ccctgaaagt tgctcacaca 1980
 gaaaagcaga ggagagactt cctggagaa gcaagcatta tggacagtt tgaccacccc 2040
 aatatcattt cactggaaagg agttgttacc aaaagtaagc cagttatgtat tgtcacagaa 2100
 tacatggaga atggttcctt ggatagttt ctagttaaac acgtatggca gttactgtc 2160
 10 attcagctat tggggatgtc tcgagggata gcattctggca tgaagtacat gtcatgacatg 2220
 ggctatgttcc accgagacat cgctgctcg aacatcttga tcaacagtaa ctgggtgtgt 2280
 aagggttctt atttcgact ttgcgtgtc ctggaggatg acccagaagc tgcttataca 2340
 acaagagggag ggaagatccc aatcaggatgg acatcaccag aagctatagc ctaccgcaag 2400
 ttcacgtcag ccagcgtatgt atggagttat gggattgttc tctggaggt gatgtcttat 2460
 15 ggagagagac catactggga gatgtccaaat caggatgtaa taaaagctgt agatgagggc 2520
 tattcactgc caccatccat ggactgcaca gctgccttgc atcagctgtat gtggactgc 2580
 tggcagaaag acaggaacaa cagacccaaat tttgagcaga ttgttagtat tctggacaag 2640
 cttatccgga atcccgcaat cctgaagatc atcaccatgt cagccgcaag gccatcaaac 2700
 cttcttctgg accaaagcaa tttggatatac tctacccatcc gcacaacagg tgactggctt 2760
 20 aatggtgtcc ggacagcaca ctgcaaggaa atcttacatgg gcgtggagta cagttcttg 2820
 gacacaatag ccaagatttcc cacagatgac atgaaaaagg ttggtgtcac cgtgggtggg 2880
 ccacagaaga agatcatcag tagcattaaa gctctagaaa cgcaatcaaa gaatggccca 2940
 gttccctgtgtt aaaa 2953

25 <210> 4
 <211> 2784
 <212> DNA
 <213> Homo sapiens

30 <300>
 <302> ephrin A4
 <310> XM002578

35 <400> 4
 atggatggaaa aaaatacacc aatccgaacc taccatgtt gcaatgttat ggaacccagc 60
 cagaataact ggctacgaac tgattggatc acccgagaag gggctcagag ggtgttatatt 120
 gagatttaat tcacatttgcg ggaactcaat agtcttccgg gctgtatggg gacttgcag 180
 gagacgttta acctgtacta ctatgaatca gacaacgaca aagagcgat catcagagag 240
 40 aaccagtttgc tcaaaatttgc caccattgtc gctgtatgaga gcttcacccaa atggacatt 300
 ggtgacagaa tcatgaagctt gAACACCGAG atccggatg tagggccatt aagcaaaaag 360
 gggttttacc tggctttca ggtatgtggg gctgtatcg ccctggatc agtccgtgt 420
 ttctataaaaa agtgcactt cactgtccgc aatctggccc agttccatgaa caccatcaca 480
 ggggctgata cgtcttccctt ggttggaaatg tggctcttccctt gtgtcaacaa ctcagaagag 540
 45 aaagatgtgc caaaaatgtt ctgtggggca gatgggtat ggttggatcc cattggcaac 600
 tgcctatgca acgttggca tgaggagccg agggagaat gcaagcttgc caaaatttgc 660
 tattacaagg ctctctccac ggttggccacc ttttgcctt gtttgcctt gtttgcctt 720
 gtctggaaag gagccaccc ttttgcctt gtttgcctt gtttgcctt ttttgcctt 780
 gtttgcctt gtttgcctt ttttgcctt ttttgcctt ttttgcctt ttttgcctt 840
 50 aacgagacat ctgttgcactt ggaatggatg agccctcaga atacaggatgg ccggcaggac 900
 atttcctata atgttgcctt gtttgcctt gtttgcctt gtttgcctt gtttgcctt 960
 ttttgcctt gtttgcctt gtttgcctt gtttgcctt gtttgcctt gtttgcctt 1020
 atcaactgacc ttttgcctt gtttgcctt gtttgcctt gtttgcctt gtttgcctt 1080
 tccaaatata accctaaccat gtttgcctt gtttgcctt gtttgcctt gtttgcctt 1140
 55 gtttgcctt gtttgcctt gtttgcctt gtttgcctt gtttgcctt gtttgcctt gtttgcctt 1200
 gtttgcctt gtttgcctt gtttgcctt gtttgcctt gtttgcctt gtttgcctt gtttgcctt 1260
 gtttgcctt gtttgcctt gtttgcctt gtttgcctt gtttgcctt gtttgcctt gtttgcctt 1320
 atcaaaaggcc ttttgcctt gtttgcctt gtttgcctt gtttgcctt gtttgcctt gtttgcctt 1380
 gtttgcctt gtttgcctt gtttgcctt gtttgcctt gtttgcctt gtttgcctt gtttgcctt 1440
 60 attggatgtt gggcttactc cacatgttcc ttttgcctt gtttgcctt gtttgcctt gtttgcctt 1500
 gtttgcctt ttttgcctt gtttgcctt gtttgcctt gtttgcctt gtttgcctt gtttgcctt 1560
 aaacaagaag cggatgaaga gaaacatttgc aatcaaggtt taagaacata ttttgcctt 1620

DE 101 00 588 A 1

tttacgtacg aagatccaa ccaagcagtg cgagagttt ccaaagaat tgacgcattcc 1680	
tgcattaaga ttgaaaaagt tataggagtt ggtgaattt gtgaggatcg cagtggcg 1740	
ctcaaagtgc ctggcaagag agagatctgt gtggctatca agactctgaa agctggttat 1800	
acagacaaac agaggagaga cttcctgagt gaggccagca tcatggaca gtttgaccat 1860	5
ccgaacatca ttcaacttggg aggctggtc actaaatgtt aaccagtaat gatcataaca 1920	
gagtagatgg agaatggctc cttggatgca ttccctcagga aaaatgttgg cagattaca 1980	
gtcattcagc tggggcat gcttcgtggc attgggtctg ggtgaagta ttatctgtat 2040	
atgagctatg tgcattcgta tctggccgca cggAACATCC ttgtgaacag caacttggtc 2100	
tgcaaagtgt ctgatTTGG catgtcccga gtgcttgagg atgatccgga acagacttac 2160	
accaccagggt gtggcaagat tcctatccgg tggactgcgc cagaagcaat tgccstatcg 2220	10
aaattcacat cagaagtga tgtatggagc tattggatcg ttatgtggg agtgatgtcg 2280	
tacggggaga ggcccttattt ggatatgtcc aatcaagatg tgattaaagc cattgaggaa 2340	
ggctatcggt tacccttcc aatggactgc cccattgcgc tccaccagct gatgctagac 2400	
tgctggcaga aggagaggag cgacaggcct aaatttggc agattgtcaa catgttggac 2460	
aaactcatcc gcaacccaa cagcttgaag aggacaggaa cggagagctc cagacctaac 2520	15
actgccttgtt tggtatccaag ctccccctgaa ttctctgtg tggatctagt gggcgattgg 2580	
ctccaggcctt taaaatggg ccgtataag gataacttca cagctgtgg ttataccaca 2640	
ctagaggctg tgggcacgt gaaccaggag gacctggcaaa gaattgttat cacagccatc 2700	
acgcaccacaa ataagatTTT gaggcgtgtc caggcaatgc gaacccaaat gcagcagatg 2760	
cacggcagaa tggcccgt ctga 2784	

<210> 5

<211> 2997

<212> DNA

<213> Homo sapiens

25

<300>

<302> ephrin A7

<310> XM004485

30

<400> 5

atggttttc aaactcggtt cccttcattgg attatTTTat gctacatctg gctgctccgc 60	
ttgcacaca caggggaggc gcaggctcg aagaagtac tactgcttga ttctaaagca 120	
caacaaacag agttggatgt gatTTCTC ccacccaaatg ggtggaaaga aattagtgg 180	
ttggatgaga actatacccc gatacgaaca taccagggtt gccaagtcat ggagccaaac 240	
aaaacaaact ggctcgggac taatggatt tccaaaggca atgcacaaaag gattttgtt 300	
gaattgaaat tcacccctgag ggattgttac agtcttctgt ggtacttggg aacttgcag 360	
gaaacatttta attttacta ttatgaaaca gactatgaca ctggcaggaa tataagagaa 420	
aacctctatg taaaaataga caccattgtc gcagatgaaa ttggatccca aggtgaccctt 480	40
ggtaaagaa agatgaagct taacactgag gtgagagaga ttggatccca aggtgaccctt 540	
ggattctatc ttgcctttca ggatgttaggg gtttgcatacg ctttgggtt tgcacaaaag 600	
tactacaaga agtgcgtgtc cattattgg aacttagcta tctttccaga tacagtact 660	
ggtcagaat tttctcttt agtcgagtt cgagggacat gtgtcagcag tgcagaggaa 720	
gaagcggaaa acgccccccag gatgcactgc agtgcagaag gagaatgggtt agtgcaccatt 780	45
ggaaaatgta tctgc当地 aggttcccg caaaaaggag acacttgcata accctgtggc 840	
cgtgggttct acaagtctt ctttcaagat ctttgcgtct ctcgttgc当地 aactcacaagt 900	
ttttctgata aagaaggctc ctccagatgtt gatgtgaag atgggtatata cagggttccca 960	
tctgaccac catacggttgc atgcacaagg cttccatctg caccacagaa cctcatTTTc 1020	50
aacatcaacc aaaccacagt aagtttggaa tggatccctc ctgcagacaa tggggaaaga 1080	
aacgtatgtt ctttccatgtt attgtgttgc cggatcgatc gggatcgagg cgaatgtgtt 1140	
ccctgtgggaa gtaacattgg atacatgccc cagcagactg gatttagagga taactatgtc 1200	
actgtcatgg acctgtgtc ccacgctaat tatactttt gatgttgc当地 tggatctatc 1260	
gtttctgact taaggcgttcc agagggttcttgcgtct tcaatgttgc当地 cactggtcaa 1320	55
gcagctccctt cggatcgatc tggatgttgc当地 aaggagagag tactgc当地 gaggtgtcg 1380	
ctttctgtggc aggaaccaga gcatcccaat ggatgtatca cagaatgtt aatcaagtat 1440	
tacgagaaatg atcaaaaggaa acggacatcc tcaacagttt aaaccaagtc tacttgc当地 1500	
tccattaata atctgaaacc aggaacagtg tatgtttcc agattcgggc tttactgtt 1560	
gctgggtatg gaaattacag tcccagactt gatgttgc当地 cactagaggaa agtacaggt 1620	60
aaaatgtttt aagctacacgc tgc当地 caggaaatc ctgttattat cattgtgttgc当地 1680	
gttgc当地 tagtgc当地 ctttgc当地 ctttgc当地 ctttgc当地 ctttgc当地 1740	

65

aggcaactgtg gttatagcaa agctgaccaa gaaggcgatg aagagcttta ctttcatttt 1800
 aaatttcagg gcacccaaac ctacattgac cctgaaacct atgaggaccc aaatagagct 1860
 gtccatcaat tcgccaagga gctagatgcc tcctgtatta aaattgagcg tggattgg 1920
 5 gcaggagaat tcggtaagt ctgcagtggc cgttgaaac ttccaggaa aagagatgt 1980
 gcagtagcca taaaaaccct gaaagtttgt tacacagaaa aacaaaggag agacttttg 2040
 tgtgaagcaa gcatcatggg gcagtttgcac cacccaaattg ttgtccattt ggaagggtt 2100
 gttacaagag gggaaaccagt catgatacta atagagttca tggaaaatgg agccctagat 2160
 gcatttctca gggaaacatga tggcaattt acagtcatc agtttagg aatgctgaga 2220
 10 ggaattgtcg ctggaatgag atattttggct gatatggat atgttcacag ggaccttgca 2280
 gctcgcaata ttcttgtcaa cagcaatctc gtttgtaaag tgcagattt tggcctgtcc 2340
 cgagttatag aggatgatcc agaagctgtc tatacaacta ctggtgaaa aattccagta 2400
 aggtggacag caccgcagg catccagttac cgaaaaattca catcagccag tggatgtatgg 2460
 agctatggaa tagtcatgtg ggaagttatg tcttatggag aaagaccta ttgggacatg 2520
 15 tcaaataatcaag atgttataaa agcaataagaa gaaggttatc gtttaccage accatggac 2580
 tgcccagctg gccttcacca gctaattttt gattgttggc aaaaggagcg tgcgtaaaagg 2640
 cccaaatttt aacagatagt tggaaattcta gacaaaatga ttgcgaaaccc aaatagtctg 2700
 aaaactcccc tgggaacttg tagtaggcac ataagccctc ttctggatca aaacactct 2760
 gatttcacta cctttgttc agttggagaa tggctacaag ctattaagat gggaaagat 2820
 20 aaagataatt tcacggcagc tggctacaat tcccttgaat cagtagccag gatgactatt 2880
 gaggatgtga tgagtttagg gatcacactg gttggtcac aaaaagaaaat catgagcagc 2940
 attcagacta tgagagcaca aatgctacat ttacatggaa ctggcattca agtgtga 2997

25 <210> 6
 <211> 3217
 <212> DNA
 <213> Homo sapiens

30 <300>
 <302> ephrin A8
 <310> XM001921

<400> 6

35 ncbsncvwrb mdnctdrtng nmstrctrst tanmymmsar chbmdrtnnnc tdstrctrng 60
 mstmmmtamny rmtsndhstr ycbardasna stagnbankg rahcsmdatv washtmant 120
 hdbrandnkb arggnbankh msanshahar tntanmycm bmrnarnvdn tnhmansiha 180
 hamrnaaccc snmvrnsnmga tggccccgc ccggggccgc ctgccccctg cgctctgggt 240
 cgtcacggcc gcggcggcgg cggccacctg cgttccgcg ggcgcggcg aagtgaattt 300
 40 gctggacacg tcgaccatcc acggggactg gggctggctc acgtatccgg ctcatgggt 360
 ggactccatc aacgaggtgg acgagtcctt ccagccatc cacacgtacc aggtttgcaa 420
 cgtcatgagc cccaaaccaga acaactgtc ggcacgagc tgggtccccc gagacggcgc 480
 ccggcgcgtc tatgctgaga tcaagttatc cctgctgcac tgcaacacca tgcctgggt 540
 gctggggcacc tgcaaggaga ccttcaacct ctactacctg gagtcggacc ggcacctggg 600
 45 ggccagcaca caagaaagcc agttcctaa aatcgacacc attcgcccg acgagagctt 660
 cacaggtgcc gaccttggtg tgcggcgctt caagctcaac acggagggtgc gcaagtgtggg 720
 tcccctcagc aagcgcggct tctacctggc ctccaggac ataggtgcct gcctggccat 780
 cctctctctc cgcatctact ataagaagtg ccctgcccattg gtgcgaatc tggctgcctt 840
 ctggaggcca gtgacggggg ccgactcgtc ctcactggtg gaggtgaggg gccagtgct 900
 50 gccgcactca gaggagcggg acacacccaa gatgtactgc agcgcggagg gcgagtggt 960
 cgtccccatc ggcaaatgcg tgcgcgtgc cggctacgag gagcggcggg atgcctgtgt 1020
 ggcctgtgag ctgggcttct acaagtgcgc ccctggggac cagctgtgtg cccctgccc 1080
 tccccacagc cactccgcag ctccagccgc ccaagctgc cactgtgacc tcagctacta 1140
 ccgtgcagcc ctggaccggc ctgcctcagc ctgcacccgg ccaccctcg caccagtcaa 1200
 55 cctgatctcc agtgtgaatg ggacatcagt gactctggag tggggccctc ccctggaccc 1260
 aggtggccgc agtgcacatca cctacaatgc cgtgtccgc cgctccccct gggactgag 1320
 cccgtgcgag gcatgtggga gcccgcacccg ctttgcggc cagcagacaa gcctggtgca 1380
 ggcacccctg ctggggcca acctgtggc ccacatgaac tactccttct ggatcgaggc 1440
 cgtcaatgcc gtgtccgacc tgagccccga gccccggccgg gccgctgtgg tcaacatcac 1500
 60 cacgaaccag gcagccccgt cccaggttgtt ggtgatccgt caagagcggg cggggcagac 1560
 cagcgtctcg ctgcgtggc aggagccccga gcagccgaac ggcacatcc tggagtatga 1620
 gatcaagtac tacgagaagg acaaggagat gcagagctac tccaccctca agggcgtcac 1680

DE 101 00 588 A 1

caccagagcc accgtctccg gcctcaagcc gggcacccgc tacgtttcc aggtccgagc 1740 ccgcaccta gcaggctgtg gccgcttcag ccaggccatg gaggtggaga cccggaaacc 1800 ccggccccgc tatgacacca ggaccattgt ctggatctgc ctgacgctca tcacgggcct 1860 ggtgtgtctt ctgtcctgc tcatctgcaa gaagaggcac tgtggctaca gcaaggcctt 1920 5 ccaggactcg gacgaggaga agatgcacta tcagaatgga caggcacccc cacctgtctt 1980 cctgcctctg catcacccccc cgggaaagct cccagagccc cagttctatg cgaacccca 2040 cacctacgag gagccaggcc gggcgggccc cagttact cgggagatcg aggctctag 2100 gatccacatc gaaaaatca tcggctctgg agactccggg gaagtctgct acgggaggct 2160 gcgggtgcca gggcagcggg atgtgccctg ggocatcaag gcccctaaag cggctacac 2220 10 ggagagacag aggccggact tcctgagcga ggcgtccatc atgggcaat tcgaccatcc 2280 caacatcatc cgccctcgagg gtgtcgctac ccgtggccgc ctggcaatga ttgtactga 2340 gtacatggag aacggctctc tggacaccc cctgaggacc cacgacgggc agttcaccat 2400 catgcagctg gtgggcatgc tgagaggagt gggtgccgc atgcgtacc ttcagacact 2460 gggctatgtc caccgagacc tggccggcc caacgtcctg gttgacagca acctggctcg 2520 caaggtgtct gacttcgggc tctcacgggt gctggaggac gacccgatg ctgcctacac 2580 15 caccacgggc gggaaagatcc ccattccgtg gacggcccca gaggccatcg cttccgcac 2640 cttctcctcg gccagcgaag tggagggctt cggcgtggc atgtgggagg tctggctta 2700 tggggagccg ccctactgga acatgaccaa ccgggatgtc atcagctctg tggaggaggg 2760 gtaccgcctg cccgcaccca tgggctggcc ccacgcccctg caccagctca tgctcgactg 2820 ttggcacaag gaccggcgc agccgcctcg ctgtccctcag attgtcagtg tcctcgatgc 2880 gctcatccgc agccctgaga gtctcaggcc caccgcacca gtcagcaggt gcccacccca 2940 tgccttcgtc cggagctgtc ttgacctccg agggggcagc ggtggcggtg ggggcctcac 3000 cgtgggggac tggctggact ccattccgtat gggccggatc cgagaccact tcgctgcggg 3060 cgataactcc tctctggca tggtgctacg catgaacgccc caggacgtgc ggccttggg 3120 catcaccctc atgggccacc agaagaagat cctggcagc attcagacca tgcgggccc 3180 gctgaccagc acccaggggc cccgcccga cctctga 3217
<210> 7 <211> 1497 <212> DNA <213> Homo sapiens
<300> <308> U83508
30
<300> <302> angiopoietin 2 <310> U83508
40
<400> 7 atgacagttt tcctttcctt tgctttcctc gtcgcattc tgactcacat aggtgcagc 60 aatcagcgcc gaagtccaga aaacagtggg agaagatata accggattca acatggcaa 120 tgtgcctaca ctttcattct tccagaacac gatggcaact gtcgttagag tacacagac 180 cagtacaaca caaacgctct gcagagagat gctccacacg tggAACCGGA tttctttcc 240 45 cagaaacttc aacatctgga acatgtgtat gaaaattata ctcagtggct gaaaaaactt 300 gagaattaca ttgtggaaaa catgaagtgc gagatggccc agatacagca gaatgcagtt 360 cagaaccaca cggctaccat gctggagata ggaaccagcc tcctctctca gactgcagag 420 cagaccagaa agctgacaga tggtagagacc caggtaactaa atcaaacttc tcgacttgag 480 atacagctgc tggagaattc attatccacc tacaagctag agaagcaact tctcaacag 540 acaaatgaaa tcttgaagat ccatgaaaaa aacagtttat tagaacataa aatcttagaa 600 atggaaaggaa aacacaagga agagttggac accttaaagg aagagaaaaga gaaccttcaa 660 ggcttggta ctcgtcaaac atatataatc caggagctgg aaaagcaatt aaacagagct 720 accaccaaca acagtgtct tcagaaggcag caactggac tgatggacac agtccacaaac 780 cttgtcaatc tttgcactaa agaagggttt ttactaaagg gaggaaaaag agaggaagag 840 aaaccattta gagactgtgc agatgttat caagctggtt ttaataaaag tggaatctac 900 actatttata ttaataaatc gccagaaccc aaaaagggtgt ttgcaatat ggatgtcaat 960 ggggggaggtt ggactgtaat acaacatctgtt gaagatggaa gtcttagattt ccaaagagggc 1020 tggaaaggaaat ataaaatggg ttttggaaat ccctccggtg aatattggct gggaaatgg 1080 tttatttttg ccattaccag tcagaggcag tacatgctaa gaatttgatc aatggactgg 1140 gaagggaaacc gagcttattc acagtatgac agattccaca taggaaatga aaagcaaaac 1200
55
tttatttttg ccattaccag tcagaggcag tacatgctaa gaatttgatc aatggactgg 1140 gaagggaaacc gagcttattc acagtatgac agattccaca taggaaatga aaagcaaaac 1200
60

DE 101 00 588 A 1

tataggtgtt atttaaaagg tcacactggg acagcaggaa aacagagcag cctgatctta 1260
 cacgggtctg atttcagcac taaagatgt gataatgaca actgtatgtg caaatgtgcc 1320
 ctcatgttaa caggaggatg gtggtttgat gcttggcc cctccaatct aaatggaatg 1380
 5 ttctatactg cgggacaaaa ccatggaaaa ctgaatggga taaagtggca ctacttcaaa 1440
 gggcccagtt actccttacg ttccacaact atgatgattt gacctttaga ttttga 1497

<210> 8
 10 <211> 3417
 <212> DNA
 <213> Homo sapiens

15 <300>
 <310> XM001924

<300>
 <302> Tie1

20 <400> 8
 atggcttggc gggtgcggcc tttcttgc cccatccttct tcttggcttc tcatgtggc 60
 gcgccgggtgg acctgacgt gctggccaa ctgcggctca cggaccccca ggcgttcttc 120
 ctgacttgcg tgcgtgggg ggcggggcg gggaggggtt cggacgcctg gggcccgccc 180
 ctgctgtgg agaaggacga ccgtatcgat cgacccccgc cggggccacc cctgcgcctg 240
 25 gcgcgcacg gttcgacca ggtcacgctt cggggcttctt ccaaggccctc ggacctcg 300
 ggcgtcttctt cctgcgtggg cgggtctggg gcgcggcgca cgcgcgtcat ctacgtgac 360
 aacagccctg gagcccacct gcttccagac aaggtcacac acactgtgaa caaaggtgac 420
 accgctgtac tttctgcacg tgcacaag gagaagcaga cagacgtgat ctgaaagagc 480
 aacggatcct acttctacac cctggactgg catgaagccc aggtggcg gttctgctg 540
 30 cagctcccaa atgtcgaccc accatcgagc ggcatactaca gtgccactta cctgaaagcc 600
 agccccctgg gcagcgccctt ctttcggctc atcgtgcggg gttgtggggc tggcgctgg 660
 gggccaggtt gtaccaagga gtgcggaggt tgccatcgat gagggtctg ccacgaccat 720
 gacggcgaat gtgtatgccc ccctggcttc actggcaccc gctgtgaaca ggcctgcaga 780
 gaggggccgtt ttggcagag ctgcaggag cagtggccag gcatatcagg ctggggggc 840
 35 ctcaccttctt gcctcccaaga cccctatggc tgctttgtg gatctggctg gagaggaagc 900
 cagtgcacaaag aagcttgc cccctggcat tttggggctg attgcogact ccagtgcac 960
 tgcagaatgt gtggcaactt tgacgggttc agtgggtgtg tctgccttc tgggtggcat 1020
 ggagtgcact gtgagaagtc agacggatc cccagatcc tcaacatggc ctcaagaactg 1080
 gagttcaact tagagacat gccccggatc aactgtgcag ctgcaggaa ccccttcccc 1140
 40 gtgcggggca gcatacgact acgcaaggca gagccgcactg tgctctgtc caccaaggcc 1200
 attgtggagc cagagaagac cacagctgag ttgcagggtc ccccttggg tcttgcggac 1260
 agtgggttctt gggagtggcc tgcgtccaca tctggggcc aagacaggcg ggcgttcaag 1320
 gtaatgtga aagtgcggcc cgtgccttc gctgcaccc ggctcctgac caagcagagc 1380
 cggcagcttgc tggctctccc gctggctctg ttctctgggg atggaccat ctccactgtc 1440
 45 cgcctgcact accggccca ggacagtacc atggactgtt cgaccatgtt ggtggacccc 1500
 agtgagaacg tgacgttaat gaacctgagg ccaaagacag gatacgatgt tcgtgtgcag 1560
 ctgagccggc caggggaagg aggagagggg gcctggggc ctcccaccc catgaccaca 1620
 gactgtccgt agcctttgtt gcagccgtgg ttggagggctt ggcgttggaa aggactgac 1680
 cggctgcgag tgagctggc tttggccctt gttggggcc cactgggtgg cgacggtttc 1740
 50 ctgctgcgcc tgcgtggacgg gacacggggg caggagcggc gggagaacgt ctcatcccc 1800
 caggcccgcg ctgccttctt gacgggactc acgcctggc cccactacca gctggatgtg 1860
 cagctctacc actgcacccctt cctggggcccg gcctgcggcc ctgcacacgt gcttctgccc 1920
 cccagttggc ctccagcccc ccgacaccc tcacgcccagg ccctctcaga ctccgagatc 1980
 cagctgacat ggaagcaccc ggaggctctg cctggggccaa tatccaagta cgttgcggag 2040
 55 gtgcagggtgg ctgggggtgc aggagaccca ctgtggatag acgtggacag gcctgaggag 2100
 acaagcacca tcatccgtgg cctcaacgccc agcacgcgtt acctcttccg catgcgggccc 2160
 agcattcagg ggctcggggat gggagacac acatgtggaa agtccacccctt gggcaacggg 2220
 ctgcaggctg agggggccat ccaagagac cggggcagctg aagagggccctt ggatcagcag 2280
 ctgatcctgg cgggtggggg ctccgtgtt gccacacttcc tcaccatctt ggtggccctt 2340
 60 ttaaccctgg tgcgtatcccg cagaagctgc ctgcacatggc gacgcaccc ttccatccag 2400
 tcaggctcggtt ggcaggagac catcctgcacg ttcaacttccat ggcacccatcacttccgg 2460
 cggccaaac tgcagccccg gcccctgagc taccatgtc taagatggaa ggacatcacc 2520

DE 101 00 588 A 1

tttgaggacc	tcatcgggga	gggaaacttc	ggccaggtca	tccggccat	gatcaagaag	2580
gacgggtctga	agatgaacgc	agccatcaa	atgctgaaag	agtatgcctc	tgaaaatgac	2640
catcgtgact	ttgcgggaga	actggaagtt	ctgtgcaa	tggggcatca	ccccaacatc	2700
atcaacctcc	tgggggcctg	taagaaccga	ggttacttgt	atatcgctat	tgaatatgcc	2760
ccctacggga	acctgctaga	tttctgcgg	aaaagccggg	tcctagagac	tgacccagct	2820
tttgcgtcgag	agcatggac	agcctotacc	cttagctccc	ggcagctgt	gcgtttcgcc	2880
agtgtatgcgg	ccaatggcat	gcagttacctg	agtgagaagc	agttcatcca	cagggacactg	2940
gctgccccga	atgtgctggt	cgagagaaac	ctggcctcca	agattgcaga	cttcggcctt	3000
tctcggggag	aggaggttta	tgtgaagaag	acgatggggc	gtctccctgt	gcgctggatg	3060
gccattgagt	ccctgaacta	cagtgtctat	accaccaaga	gtgatgtctg	gtcctttgga	3120
gtccttcttt	gggagatagt	gagccttgg	ggtacacccct	actgtggcat	gacctgtgcc	3180
gagctctatg	aaaagctgcc	ccagggtctac	cgcattggagc	agcctcgaaa	ctgtgacgat	3240
gaagtgtacg	agctgtatgcg	tcagtgtctgg	cgggaccgtc	cctatgagcg	accccccctt	3300
gcccagattg	cgctacagct	aggccgcatg	cttggaaagcca	ggaaggccta	tgtgaacatg	3360
tcgcttgg	agaacttcac	ttacgcgggc	attgtatgcca	cagctgagga	gccccta	3417

<210> 9
<211> 3375
<212> DNA
<213> *Homo sapiens*

<300>
<302> TEK
<310> L06139

<400> 9
atggactctt tagccagctt agttctctgt ggagtcagct tgctccttc tggaactgtg 60
gaagggtgccs tggacttgat cttgatcaat tcctcacctc ttgtatctga tgctgaaaca 120
tctctcacct gcattgccts tgggtggcgc ccccatgagc ccataccat aggaagggac 180
tttgaaggct taatgaacca gcaccaggat ccgcttggaaat ttactcaaga tttgtgaccaga 240
aatgggcta aaaaaggtgt ttggaagaga gaaaaggcta gtaagatcaa ttgtgcttat 300
ttctgtgaag ggcgagttcg aggagaggca atcaggatac gaaccatgaa gatgcgtcaa 360
caagcttctt tcctaccagc tactttaact atgactgtgg acaagggaga taacgtgaac 420
atatcttca aaaaggattt gattaaagaa gaagatgcag tgatttacaa aaatggttcc 480
ttcatccatt cagtgcctcg gcatgaagta cctgatattc tagaagtaca cctgcctcat 540
gctcagcccc agatgtctgg agtgtactcg gccaggatata taggaggaaa cctcttcacc 600
tcggccttca ccaggctgtat agtccggaga ttgtgaagccc agaagtgggg acctgaatgc 660
aaccatctct gtactgtttt tatgaacaat ggtgtctgcc atgaagatac tggagaatgc 720
atttgccttc ctgggtttat gggaaaggacg ttgtgagaagg cttgtgaact gcacacgttt 780
ggcagaacct gtaaagaaag gtgcagtgg caagaggat gcaagtctta ttgtgtctgt 840
ctccctgacc cctatgggtt ttcctgtgcc acaggctggta agggtctgca ttgtcaatgaa 900
gcatgcacc cttgtttttt cggggccagat ttgtaaagctta ggtgcagctg caacaatggg 960
gagatgtgtg atgccttcca aggtatgtctc tgctctccag gatggcaggg gtcctcagtgt 1020
gagagagaag gcataccggag gatgacccca aagatagtgg atttgcagaa tcataatagaa 1080
gttaaacagtg gtaaattttt tcccatgtc aaagcttctg gctggccgct acctactaat 1140
gaagaaatga ccctggtaa gccggatggg acagtgtctc atccaaaaga cttaaccat 1200
acggatcatt tctcgttagc catattaccatccccc ttgttttttt tgactcagga 1260
gtttgggtct gcagtgtgaa cacagtggct gggatgggg aaaaaggccctt caacattttct 1320
gttaaagttc ttccaaagcc cctgaatgcc ccaaaacgtga ttgacactgg acataactt 1380
gctgtcatca acatcagtc tgagccttac ttggggatg gaccaatcaa atccaaagaag 1440
cttctataca aaccggtaa tcactatgag gcttggcaac atatcaagt gacaaatgg 1500
attgttacac tcaactattt ggaacctcg agcagaatatg aactctgtgt gcaactggc 1560
cgtcgtggag aggggtgggg aaggcattctt ggacctgtga gacgcttcac aacagttct 1620
atcggaacctt ctccctcaag aggtctaaat ctccctgccta aaagtccagac cactctaaat 1680
ttgacctggc aaccaatatt tccaaagctcg gaagatgact ttatgttg aatggagaga 1740
aggctgtgc aaaaaaggta tcagcagaat attaaagttc caggcaactt gacttcgtgt 1800
ctacttaaca acttacatcc cagggagcag tacgtggtcc gagcttaggt caacaccaag 1860
gcccagggggg aatggagtga agatctact gcttggaccc ttgtgacat tottccctct 1920
caaccagaaa acatcaagat ttccaaacatt acacactcct cggctgtgtat ttcttgacca 1980
atattggatg gctattctat ttcttctatt actatccgtt acaagggttca aggcaagaat 2040

DE 101 00 588 A 1

gaagaccaggc acgttgatgt gaagataaaag aatgccacca tcattcagta tcagctcaag 2100
 ggcctagagc ctgaaaacaggc ataccagggtg gacatttttgc cagagaacaa catagggtca 2160
 agcaaccaggc cctttctca tgaactgggtg accctccaggc aatctcaagc accagcggac 2220
 5 ctcggagggg ggaagatgtc gcttatagcc atcctggct ctgctgaat gacctgcctg 2280
 actgtgttgt tggcctttct gatcatatttgc caatttgaaga gggcaaatgt gcaaaggaga 2340
 atggcccaag ccttccaaa cgtgaggggaa gaaccagctg tgcaagtcaa ctcagggact 2400
 ctggccctaa acaggaaggt caaaaacaaac ccagatccta caatttatcc agtgcttgac 2460
 tggaaatgaca tcaaaatttca agatgtgatt gggaggggca attttggcca agttcttaag 2520
 10 gcgccatca agaaggatgg gttacggatg gatgtgcctca tcaaaaagaat gaaagaatat 2580
 gccttccaaag atgatcacag ggactttgc ggagaactgg aagttctttg taaacttgg 2640
 caccatccaa acatcatcaa tctcttagga gcatgtgaac atcgaggctc ctgttacctg 2700
 gccattgggt acgcggccca tggaaacactt ctggacttcc ttgcagagag ccgtgtgctg 2760
 gagacggacc cagcatttgc cattgccaat agcaccgcgt ccacactgtc ctcccagcag 2820
 15 ctccttcaact tcgctgcccga cgtggcccg ggcattggact acttgagcca aaaacagttt 2880
 atccacaggg atctggctgc cagaaacattttagttggta aaaaactatgt ggaaaaataa 2940
 gcagattttg gattgtcccg aggtcaagag gtgtacgtga aaaagacaat gggaaaggctc 3000
 ccagtgcgtt ggtatggccat cgagtcactg aattacagtgt tgtagacaac caacagtgtat 3060
 gtatggtcct atgggtgttt actatgggag attttagtct taggaggcac accctactgc 3120
 20 gggatgactt gtgcagaact ctacgagaag ctggcccccagg gctacagact ggagaagccc 3180
 ctgaactgtg atgatgaggt gtatgatcta atgagacaat gctggccggaa gaagccttat 3240
 gagaggccat catttgcctca gatattgggt tccttaaaca gaatgtttaga ggagcgaaag 3300
 acctacgtga ataccacgct ttatgagaag ttacttatg caggaatttga ctgttctgct 3360
 gaagaagcgg cctag 3375

25
 <210> 10
 <211> 2409
 <212> DNA
 30 <213> Homo sapiens

<300>
 <300>
 35 <302> beta5 integrin
 <310> X53002

<400> 10
 ncbnsncvwratgcccggc cccggcgccg ctgtacgcct gcctcctggg gctctgcgcg 60
 40 ctcctgcccc ggctcgcgagg tctcaacata tgcaactgtg gaagtgcac ctcatgtgaa 120
 gaatgtctgc taatccaccc aaaatgtgcc tgggtctcca aagaggactt cgaaagccc 180
 cggtccatca cctctcggtg tcatctgagg gcaaaccttgc taaaaatgg ctgtggaggt 240
 gagatagaga gcccagccag cagcttccat gtctcgagg gcctgcccct cagcagcaag 300
 ggttcgggct ctgeaggctg ggacgtcatt cagatgacac cacaggagat tgccgtgaac 360
 45 ctccggcccg gtgacaagac caccttccag ctacaggttc gccaggtgga ggactatct 420
 gtggacctgt actacctgtt ggacctctcc ctgtccatgtt aggtatgtt ggacaatata 480
 cggagcctgg gcaccaaact cgcggaggag atgaggaagc tcaccagcaa cttccgggtt 540
 ggatttgggt ctttgttga taaggacatc tctcctttct cctacacggc accgaggtac 600
 cagaccaatc cgtgcattgg ttacaagggtt ttccaaatttgcgtccctc ctttgggttc 660
 50 cggccatctgc tgcctctcac agacagagtg gacagctca atgaggaagt tcggaaacag 720
 aggggtgtccc ggaaccggaga tggccctgag gggggctttg atgcagtact ccagggcagcc 780
 gtctgcaagg agaagattgg ctggcgaaag gatgcactgc atttgctgtt gttcacaaca 840
 gatgatgtgc cccacatcgc attggatggaa aatttgggag gcctgggtca gccacacgt 900
 gcccagggtcc acctgaacgaa ggcacacgg tacacagcat ccaaccagat ggactatcca 960
 tcccttgctctgc tgcttggaga gaaattggca gagaacaaca tcaacctcat ctttgcagt 1020
 55 acaaaaaacc attatatgtt gtacaagaat ttacagccc tgataccctgg aacaacgggt 1080
 gagattttag atggagactc caaaaatatttcaactgtt ttatataatgc atacaatagt 1140
 atccggctca aagtggaggt gtcagttctgg gatcagccgtt aggtatctaa tctcttcttt 1200
 actgctacct gccaagatgg ggtatccat cctggtcaga ggaagtgtga gggcttgaag 1260
 60 attggggaca cggcatctt tgaagtatca ttggaggccc gaagctgtcc cagcagacac 1320
 acggagcatg tggccttgcctt gcccgggttgg ggattccggg acagccttggaa ggtgggggtc 1380
 acctacaact gcacgtgcgg ctgcagcggtt gggcttggaaac ccacacggc caggttgcac 1440

DE 101 00 588 A 1

gggagcggga cctatgtctg cgccctgtgt gagtgcagcc ccggctaccc gggcaccagg 1500
 tgcagtgcc aggatgggaa gaaccagagc gtgtaccaga acctgtcccg ggaggcagag 1560
 ggcaagcac ttgtcagcgg gcgtgggac tgcagctgca accagtgtctc ctgcttcgag 1620
 agcgagttt gcaagatcta tggcccttc tgtgagtgcg acaacttctc ctgtgccagg 1680 5
 aacaaggag tcctctgctc aggccatggc gagtgcact gcgggaaatg caagtgccat 1740
 gcaggttaca tcggggacaa ctgttaactgc tcgacagaca tcagcacatg cggggcaga 1800
 gatggccaga tctgcagcga gcgtggcac tgcgtctgtg ggcagtgcca atgcacggag 1860
 cggggggct ttggggatgt gtgtgagaag tgccccacct gcccggatgc atgcagcacc 1920
 aagagagatt gcgtcgagtg cctgtgtctc cactctggaa aacctgacaa ccagacctgc 1980 10
 cacagctat gcagggatga ggtgatcaca tgggtggaca ccatcgtaa agatgaccag 2040
 gaggctgtgc tatgtttcta caaaaaccgc aaggactgcg tcatgtgtt cacctatgtg 2100
 gagctccca gtggaaatgc caacctgacc gtcttcaggag agccagatg tgaaaacacc 2160
 cccaacgcca tgaccatctt cctggctgtg gtccgttagca tcctccctgt tgggcttgca 2220
 ctctggcta tctggaagct gcttgcaccatccacggacc ggagggagtt tgcaaagttt 2280
 cagagcgagc gatccaggc cgcctatgaa atggcttcaa atccattata cagaaagcct 2340
 atctccacgc acactgtgaa cttcacccatc aacaagttca acaaattctt caatggcact 2400
 gtggactga 2409

<210> 11
 <211> 2367
 <212> DNA
 <213> Homo sapiens

<300>
 <302> beta3 integrin
 <310> NM000212

<400> 11 20
 atgcgagcgc ggccgcggcc ccggccgtc tggcgactg tgctggcgct gggggcgctg 60
 gcggggcttg gctgttggagg gcccaacatc tgtaccacgc gagggtgtgag ctccctgccag 120
 cagtgcctgg ctgtgagccc catgtgtcc tgggtctctg atgaggccct gcctctggc 180
 tcacccctgcgt gtgaccctgaa ggagaatctg ctgaaggata actgtgcccc agaatccatc 240
 gagttcccaatg tgagtggc cccggatctc cccggatctc gggccggatct 300
 ggagacagct cccggatctc tcaagtcaat cccggatctc cccggatctc 360
 gatgattcga agaatttctc catccaaatgc cggcggatctc aggattaccc tggggacatc 420
 tactacttga tggaccctgtc ttactccatg aaggatgtc tggggacatc 480
 ggtaccaagc tggccacccca gatgcgaaatgc ctcaccatg acctggggatctc 540
 gcatttgggg acaagcctgt gtcaccatc atgttatatct cccggatctc 600 40
 aacccctgtc atgatatgaa gaccacccatc ttggccatgtt ttggctacaa acacgtgtc 660
 acgctaactg accaggtgac ccgttcaat gggggatctc agaaggcagatc 720
 aaccggatg cccggatctc tggctttgtat gccatcatgc aggctacatc 780
 aagattggct ggaggaatgtc tgcattccatc ttgtgtgtt ttaccactgtc 840
 catatagcat tggacggaaatgc gctggcggatctc attgtccatc ctaatgcacgg 900 45
 gttggtagtg acaatcatta ctctgcctcc actaccatgtc attatccctc 960
 atgactgaga agctatccca gaaaaacatc aatttgcgtc ttgcagtgcac 1020
 gtcaatctt atcagaacta tagtgcgtc atccggatctc 1080
 atggattcca gcaatgtctt ccagcttcatc gttgtgtt atggggaaat ccgttctaaa 1140
 gttagagctgg aagtgcgtga cctccctgaa gagttgtctc ttttttttccatc 1200 50
 ctcacaatcgg aggtcatccc tggccctcaag tcttgcgtt gactcaatgc 1260
 gtgagcttca gcatggggatctc caagggtgcga ggctgtccccc aggagaatgc 1320
 accataaaatgc cccggggatctc caaggacatc ctgatgtcc aggtcacctt 1380
 tggccctggcc aggcccaatgc tggccatctt agccatgcgt gcaacaatgg 1440
 tttggatgttgg gggatgtccatc ttgtggggatctc ggctggctgg gatcccacgt 1500 55
 gaggaggact atcggccatccc ccaggccatc gaaatgcgtc cccggggatctc 1560
 tgcagccatc gggggatctc cctctgtgtt caatgtgtt gccacacatc tgactttggc 1620
 aagatcactt gcaacttgcgtc cgatgtgtatc gacttgcgtt gtgtccgttca 1680
 atgtgtctatc gcaacttgcgtc gtgcgttgcgtt gggactgcgtt tggtgtactc 1740
 ggctactact gcaacttgcgtc cacggatctc gacacccatc tggggatctc 1800
 tgcagccatc gggggatctc tggggatctc agtgcgttgcgtt gatccatc 1860
 gggggacatc gttggactgttgcgtt ccaggatctc gcaatgttgcgtt 1920 60

DE 101 00 588 A 1

gtggagtgta agaagttga ccgggagccc tacatgaccg aaaatacctg caaccgttac 1980
 tgccgtgacg agattgagtc agtggaaagag cttaaggaca ctggcaagga tgcagtgaat 2040
 5 tgcgttatcata agaatgagga tgactgtgtc gtcagattcc agtactatga agattcttagt 2100
 ggaaagtcca tcctgtatgt ggtagaagag ccagagtgtc ccaaggccc tgacatcctg 2160
 gtggctcgc tctcgtatgt gggggccatt ctgctcattt gccttgcgc cctgctcatc 2220
 tggaaaactcc tcatacaccat ccacgaccga aaagaattcg ctaaatttga ggaagaacgc 2280
 gccagagcaa aatgggacac agccaacaac ccactgtata aagaggccac gtctaccttc 2340
 accaatatca cgtaccgggg cacttaa 2367
 10

<210> 12
 <211> 3147
 <212> DNA
 15 <213> Homo sapiens

<300>
 <302> alpha v intergrin
 <310> NM0022210
 20

<400> 12
 atggctttc cgccgcggcg acggctgcgc ctgggtcccc gcggcctccc gtttcttc 60
 tcgggactcc tgctacctct gtggcgcc ttcaacctag acgtggacag tcctgcccag 120
 tactctggcc ccgagggaag ttacttcggc ttggccgtgg atttcttcgt gcccagcgc 180
 25 tcttcccgga tgtttcttct cgtggagct cccaaagcaa acaccaccca gcctggatt 240
 gtgaaaggag ggcaggcct caaatgtgc tggcttcta cccggcgtg ccagccaatt 300
 gaatttgcgt caacaggcaa tagagattat gccaaggatg atccatttga atttaagtcc 360
 catcgtgtt ttggagacatc tggaggtcg aaacaggata aaattttggc ctgtgcccc 420
 ttgttaccat ggagaactga gatgaaacag gagcgagagc ctgttggAAC atgtttctt 480
 30 caagatggaa caaagactgt tgagtatgtc ccatgttagat cacaagatAT tgatgtgtat 540
 ggacagggat tttgtcaagg aggattcgc attgattttt ctaaagctga cagagtactt 600
 ctgggtggtc ctggtagctt ttattggca ggtcagctt ttccggatca agtggcagaa 660
 atcgtatcta aatacgaccc caatgtttac agcatcaatg ataataacca attagcaact 720
 35 cggactgcac aagctatTT tgatgacagc tatttgggtt attctgtggc tgccggagat 780
 ttcaatggtg atggcataga tgactttgt tcaggagttc caagagcgc aaggacttt 840
 ggaatggtt atatttatga tgggaagaac atgtcctct tatacaattt tactggcag 900
 cagatggctg catatttcgg atttctgtt gctgccactg acattaatgg agatgattat 960
 40 gcagatgtgt ttattggagc acctcttc atggatcgtg gctctgtatgg caaactccaa 1020
 gaggtggggc aggtctcagt gtctctacag agagcttcag gagacttcca gacgacaaag 1080
 ctgaatggat ttgaggtctt tgacgggtt ggcagtgcct tagctcttt gggagatctg 1140
 gaccaggatg gtttcaatga tattgcaatt gctgctccat atgggggtga agataaaaaaa 1200
 ggaattgttt atatctcaa tggaaagatca acaggcttga acgcagtccc atctcaaATC 1260
 Cttgaaggc agtgggctgc tcgaagcatg ccaccaagct ttggctattt aatgaaagga 1320
 45 gccacagata tagacaaaaaa tggatatcca gacttaattt taggagctt tggtagat 1380
 cgagctatct tatacaggcgc cagaccagtt atcactgtaa atgctgttct tgaagtgtac 1440
 cctagcattt taaatcaaga caataaaacc tgctcactgc ctggAACAGC tctcaaagtt 1500
 tcctgtttt atgttaggtt ctgcttaaag gcagatggca aaggagtact tcccaggaaa 1560
 cttaaattcc aggttgcact tcttttgat aaactcaagc aaaaggggagc aattcgcacga 1620
 50 gcactgtttc tctacagcag gtccccaaagt cactccaaga acatgactat ttcaaggggg 1680
 ggactgtatgc agtggagga attgatagcg tatctgcggg atgaatctga atttagagac 1740
 aaactcactt caattactat ttttatggaa tatcggttgg attatagaac agctgtgtat 1800
 acaacaggct tgcaacccat tcttaaccag ttcaacgcctg ctaacattag tcgacaggct 1860
 cacattctac ttgactgtgg tgaagacaat gtctgttAAAC ccaagcttga agtttctgt 1920
 55 gatagtgtatc aaaagaagat ctatattggg gatgacaacc ctctgacatt gattgttaag 1980
 gctcagaatc aaggagaagg tgccctacgaa gctgagctca tgcgttccat tccactgcag 2040
 gctgatttca tcggggttgt ccgaaacaat gaaggccttag caagactttc ctgtgcattt 2100
 aagacagaaaa accaaactcg ccaggtggta tggaccttgg gaaacccaaat gaaggcttga 2160
 actcaactct tagtggtct tcgtttcagt gtgcaccagc agtcagagat ggatacttct 2220
 60 gtgaaatttg acttacaaat ccaaagctca aatctatttgc acaaagtaag cccagttgt 2280
 tctcacaatgg tttgtatcttgc ttgggttgttgc gcatgttgcataaaggatgttgc 2340
 gatcatatct ttcttcggat tccaaacttgg gggcacaagg agaacccatgttgc gactgaagaa 2400
 gatgttggc cagttgttca gcacatctt gagctgagaa acaatggtcc aagttcatc 2460

DE 101 00 588 A 1

agcaaggcaa tgctccatct tcagtgccct tacaatata ataataaacac tctgttgtat 2520
 atccttcatt atgatattga tggaccaatg aactgcacct cagatatgga gatcaaccct 2580
 ttgagaatta agatctcatc tttgcaaaaca actgaaaaga atgacacggt tgccgggcaa 2640
 ggtgagcggg accatctcat cactaagcg gatctgccc tcagtgagg agatattcac 2700 5
 actttgggtt gtggagttgc tcagtgctt aagattgtct gccaaagg gagattagac 2760
 agagggaaaga gtgcaatctt gtacgtaaag tcattactgt ggactgagac ttttatgaat 2820
 aaagggaaatc agaatcattc ctattctctg aagtctgtctg cttcattaa tgtcatagag 2880
 tttcattata agaatcttc aattgaggat atcacaact ccacatttgt taccactaat 2940
 gtcacctggg gcattcagcc agcgcctatg cctgtgcctg tgtgggtgat catttagca 3000 10
 gttctagcag gattgtgtct actggctgtt ttgttatttg taatgtacag gatgggctt 3060
 tttaaacggg tccggccacc tcaagaagaa caagaaagg agcagctca acctcatgaa 3120
 aatggtgaag gaaactcaga aacttaa 3147

<210> 13

15

<211> 402

<212> DNA

<213> Homo sapiens

<300>

20

<302> CaSm (cancer associated SM-like oncogene)

<310> AF000177

<400> 13

25

atgaactata tgcctggcac cgccagcctc atcgaggaca ttgacaaaaa gcacttggtt 60
 ctgcttcgag atggaaggac acttataaggc ttttaagaa gcattgtatca atttgcaaac 120
 ttagtgctac atcagactgt ggagcgtatt catgtggca aaaaatacgg ttagatattcct 180
 cgagggattt ttgtggtcag aggagaaaat gtggcctac taggagaaaat agacttggaa 240
 aaggagagtg acaacccctt ccagcaagta tccattgaag aaattctaga agaacaagg 300 30
 gtggaacacgc agaccaagct ggaaggcagag aagttgaaag tgcaggccct gaaggaccga 360
 ggtctttcca ttcctcgagc agatactttt gatgagttact aa 402

<210> 14

35

<211> 1923

<212> DNA

<213> Homo sapiens

<300>

40

<302> c-myb

<310> NM005375

<400> 14

45

atggccggaa gacccggca cagcatatat agcagtgacg aggatgtatgg ggcattttgag 60
 atgtgtgacc atgactatga tgggctgtt cccaaatctg gaaagcgtca cttggggaaa 120
 acaaggtgga cccggaaaga ggtgaaaaaa ctgaagaagc tgggtggaca gaatggaaaca 180
 gatgactgga aagttattgc caattatctc ccgaatcgaa cagatgtgca gtgccagcac 240
 cgtatggcaga aagtactaaa ccctgagctc atcaagggtc cttggaccaa agaagaagat 300
 cagagagtga tagagcttgc acagaaatac ggtccgaaac gttggctgtt tattgccaag 360 50
 cacttaaagg ggagaattgg aaaacaatgt agggagaggt ggcataacca cttgaatcca 420
 gaagttttaaga aaacctcctg gacagaagag gaagacagaa ttatttacca ggcacacaag 480
 agactgggaa acagatgggc agaaaatcgca aagctactgc ctggacgaac tgataatgt 540
 atcaagaacc actgaaattc tacaatcgatc cggaaggatcg aacaggaagg ttatctgcag 600
 gagtttccaa aagccagccca gcccggatc gcccacaaatgt tccagaagaa cagtcatttg 660
 atgggttttg ctcaggctcc gcctacatgt caactccctg ccactggcca gcccactgtt 720
 aacaacgact attcattta ccacattttt gaaacacaaa atgtctccatg tcatgttcca 780
 taccctgtatgtt cgttacatgtt aatatagtc aatgtccctc agccagctgc cgcagccatt 840
 cagagacact ataatgtatgtt agacccctgatc aaggaaaaggc gaataaaggatcattttg 900
 ctcctaattgtt caaccggatggaa tgagctaaaaa ggacagcagg tgctaccaac acagaaccac 960 60
 acatgcagct accccgggttgc acacagcacc accattggcc accacacccatg acctcatgaa 1020
 gacagtcac ctgtttccatgtt tttgggagaa caccactcca ctccatctt gccagcggat 1080

55

60

65

DE 101 00 588 A 1

cctggctccc tacctgaaga aagcgccctcg ccagcaagggt gcatgatcgt ccaccagggc 1140
 accattctgg ataatgttaa gaaccttta gaatttgcag aaacactcca atttataat 1200
 tctttcttaa acacttccag taaccatgaa aactcagact tggaaatgcc ttctttaact 1260
 5 tccacccccc tcattggtca caaattgact gttacaacac catttcatag agaccagact 1320
 gtgaaaactc aaaaggaaaa tactgtttt agaacccccag ctatcaaag gtcatatctta 1380
 gaaagcttc caagaactcc tacaccattc aaacatgcac ttgcagctca agaaattaaa 1440
 tacggtcccc tgaagatgtc acctcagaca ccctctcata tagtagaaga tctgcaggat 1500
 gtatcaaac aggaatctga tgaatctgga tttgttgctg agtttcaaga aatggacca 1560
 10 cccttactga agaaaatcaa acaagaggtg gaatctccaa ctgataaatc agaaaacttc 1620
 ttctgctcac accactggga aggggacagt ctgaataccc aactgttcac gcagacctcg 1680
 cctgtgcgag atgcaccgaa tattcttaca agctccgtt taatggcacc agatcagaa 1740
 gatgaagaca atttctcaa agcatttaca gtacctaaaa acaggtccct ggcgagcccc 1800
 ttgcagccctt gtagcagttc ctggaaacct gcattctgtg gaaagatgga ggagcagatg 1860
 15 acatcttcca gtcaagctcg taaatacgtg aatgcattct cagccggac gctggcatg 1920
 tga 1923

<210> 15
 20 <211> 544
 <212> DNA
 <213> Homo sapiens

<300>
 25 <302> c-myc
 <310> J00120

<400> 15
 gacccccc gag ctgtgctgct cgccggccgccc accggccgggc cccggccgct cctggctccc 60
 30 ctcctgcctc gagaagggca gggcttctca gaggcttggc gggaaaaaga acggagggag 120
 ggatcgcgtc gagtataaaa gccgggtttc ggggctttat ctaactcgct gtagtaattc 180
 cagcggaggaggcagaggc gggccggcgccggcttaggg tggaagagcc gggcggcag 240
 agctgcgtcg cggggctctc gggaaaggag atccggagcga aatagggggc ttccgcctctg 300
 gcccagccct cccgctgatc ccccagccag cggccggccaa cccttgcgc atccacgaaa 360
 35 ctttgcctcat agcagccggc gggcactttt cactggact tacaacaccc gagcaaggac 420
 gcgactctcc cgacgcgggg aggctattct gccattttgg ggacacttcc cccggcgtgc 480
 caggaccgcgcttctctgaaa ggctctcctt gcagctgctt agacgctgga ttttttcgg 540
 gtag 544

40 <210> 16
 <211> 618
 <212> DNA
 <213> Homo sapiens

45 <300>
 <302> ephrin-A1
 <310> NM004428

50 <400> 16
 atggagttcc tctggggcccc tctcttgggt ctgtgctgca gtctggccgc tgctgatcgc 60
 cacaccgtct tctggAACAG ttcaaatccc aagttccggaa atgaggacta caccatacat 120
 gtgcagctga atgactacgt ggacatcatc tgccgcact atgaagatca ctctgtggca 180
 gacgctgcca tggagcagta catactgtac ctggtgagc atgaggagta ccagctgtgc 240
 55 cagccccagt ccaaggacca agtccgcgtgg cagtgcaacc ggcccagtgc caagcatggc 300
 ccggagaagc tgtctgagaa gttccagcgc ttcacacctt tcaccctggg caaggagttc 360
 aaagaaggac acagctacta ctacatctcc aaacccatcc accagcatga agaccgctgc 420
 ttgaggttga aggtgactgt cagtggccaa atcactcaca gtccctcaggc ccatgtcaat 480
 ccacaggaga agagacttgc agcagatgac ccagagggtgc gggttctaca tagcatcggt 540
 60 cacagtgcgtc ccccaacgcctt cttcccactt gcctggactg tgctgctcct tccacttctg 600
 ctgctgcaaa ccccggtga 618

DE 101 00 588 A 1

<210> 17
<211> 642
<212> DNA
<213> Homo sapiens

5

<400> 17
atggcgcccg cgcaagcgccc gctgctcccg ctgctgtcc tgctgttacc gctgccgccc 60
ccgccttcg cgcgcgccc ggacgcgcgc cgcgcacta cggaccgcta cggcgtctac 120
tggAACCGCA gcaACCCAG gttccacgca ggccgggggg acgacggcgg ggctacacg 180
gtggagggtga gcatcaatga ctacctggac atctactgcc cgcactatgg ggcgcgcgtg 240
ccgcggcccg agcgcattgga gcactacgtg ctgtacatgg tcaacggcga ggccacgc 300
tcctgcgacc accgcagcg cggcttcaag cgctgggagt gcaacccggc cgcggcgccc 360
ggggggccgc tcaaggttc ggagaagttc cagctttca cgccttctc cctgggtttc 420
gatTTCCGCG ccgccacgaa gtattactac atctctgcca cgcctccaa tgctgtggac 480
cgccccctgcc tgcactgaa ggtgtacgtg cggccgacca acgagacccct gtacgaggct 540
cctgagccca ttttaccatg caataactcg ttagcagcc cgggcggctg ccgcctttc 600
ctcagcacca tccccgtgt ctggaccctc ctgggttctt ag 642

20

<210> 18
<211> 717
<212> DNA
<213> Homo sapiens

25

<300>
<302> ephrin-A3
<310> XM001787

<400> 18
atggcgccgg ctccgctgt gctgctgtg ctgctgtgc ccgtgccgct gctgccgctg 60
ctggcccaag ggccggagg ggcgctggga aaccggcatg cggtaactg gaacagctcc 120
aaccagcacc tgccgcgaga gggctacacc gtgcaggtga acgtgaacga ctatctggat 180
attactgtcc cgcactacaa cagctcgggg gtggggcccg gggcgccgacc gggcccccgg 240
ggccggcccg agcagtacgt gctgtacatg gtgagccgca acggctaccg cacctgcaac 300
gccagccagg gcttcaagcg ctgggagtg aaccggccgc acgcccccgca cagccccatc 360
aagttctcgg agaatgttca ggcgtacacgc gccttcttc tgggctacga gttccacgccc 420
ggccacgagt actactacat ctccacgccc actcacaacc tgcactggaa gtgtctgagg 480
atgaagggtgt tcgtctgtg cgcctccaca tcgcactccg gggagaagcc ggtccccact 540
ctccccccagt tcaccatggg ccccaatatg aagatcaacg tgctggaaa ctttggggaa 600
gagaaccctc aggtgcccgg gcttgagaag agcatcagcg ggaccagcccc caaacgggaa 660
cacctgcccc tggccgtggg catgccttc ttctctatga cgttcttggc ctcttag 717

30

35

40

<210> 19
<211> 606
<212> DNA
<213> Homo sapiens

45

<300>
<302> ephrin-A3
<310> XM001784

50

<400> 19
atgcggctgc tgccctgtc gcggactgtc ctctggcccg cgttcctcg ctccctctg 60
cgccccctgc ccagcctccg ccacgtatc tactggact ccagtaaccc cagttgtt 120
cgaggagacg ccgtgggttga gctgggcctc aacgattacc tagacattgt ctgcctccac 180
tacgaaggcc caggcccccc tgaggcccc gagacgttg ctttgcatac ggtggactgg 240
ccaggctatg agtctgtcca ggcagaggcc cccggggct acaagcgctg ggtgtgtcc 300
ctgccttttgc gccatgttca attctcagag aagattcagc gcttcacacc cttctccctc 360
ggctttgagt tcttacctgg agagacttac tactacatct cggcggccac tccagagagt 420

55

60

65

DE 101 00 588 A 1

tctggccagt gcttgaggct ccaggtgtct gtctgctgca aggagagggaa gtctgagtca 480
 gcccacatctg ttgggagccc tggagagagt ggcacatcgag ggtggcggg gggggacact 540
 cccagcccccc tctgtcttctt gctattactg ctgcttctga ttcttcgtct tctgcgaatt 600
 5 ctgtga 606

<210> 20
<211> 687
10 <212> DNA
<213> Homo sapiens

<300>
15 <302> ephrin-A5
<310> NM001962

<400> 20
20 atgttgcacg tggagatgtt gacgctgggtg tttctgggtc tctggatgtg tggatcagc 60
caggaccgg gctccaaggc cgccgcac cgctacgctg tctactggaa cagcagcaac 120
cccagattcc agaggggtga ctaccatatt gatgtctgtt tcaatgacta cctggatgtt 180
ttctgccttc actatgagga ctccgtccca gaagataaga ctgagcgcta tgccctctac 240
atggtaact ttgatggcta cagtgcctgc gaccacactt ccaaagggtt caagagatgg 300
gaatgttaacc ggccctcactc tccaaatggc ccgctgaagt tctctgaaaa attccagctc 360
ttcactccct tttctctagg atttgaattt agggcaggcc gagaatattt ctacatctcc 420
25 tctgcaatcc cagataatgg aagaagggtt tgcgttcaaggc tcaaatgtt tggagaccca 480
acaatatacg ttagtggaaa tataagggtt catgatcgta tttcgatgt taacgacaaa 540
gtagaaaattt cattagaacc agcagatgac accgtacatg agtcagccga gcatcccc 600
ggcgagaacg cggcacaaac accaaggata cccagccgca ttttggcaat cctactgttc 660
ctcctggcga tgcttttgcg attatacg 687

30 <210> 21
<211> 2955
<212> DNA
35 <213> Homo sapiens

<400> 21
40 atggccctgg attatctact actgctcctc ctggcatccg cagtggctgc gatggaaagaa 60
acgttaatgg acaccagaac ggctactgca gagctgggtt ggacggccaa tcctgcgtcc 120
gggtggaaag aagtcaatgg ctacgatgaa aacctgaaca ccattccgcac ctaccagggtg 180
tgcataatgtt tcgagcccaa ccagaacaat tggctgtca ccaccttcat caaccggcgg 240
ggggcccatc gcatactacac agagatgcgc ttcaactgtt gagaactgcag cagccctcc 300
aatgtcccag gatctgcaaa ggagacccctt aacctgtatt actatgagac tgactctgtc 360
attgccacca agaagtcaac cttctgggtt gaggccccctt acctcaaagt agacaccatt 420
45 gctgcagatg agagcttctc ccaggtggac tttggggaa ggctgatgaa ggtaaacacaca 480
gaagtcaacca gctttggcc tcttactcgg aatgggtttt acctcgctt tcaggattat 540
ggagcctgta tgtctttctt ttctgtccgt gtcttcttca aaaagtgtcc cagcattgtg 600
caaaaattttt cagttttcc agagactatg acagggccag agagcacatc tctgggtatt 660
gctcgccggca catgcataccc caacgcagag gaagtggacg tgcccatcaa actctactgc 720
50 aacggggatg gggaaatggat ggtgcctatt gggcgatgca cctgcaagcc tggctatgag 780
cctgagaaca gcgtggcatg caaggcttgc cctgcaggga cattcaaggc cagccaggaa 840
gctgaaggtt gctcccactg cccctccaaac agccgctccc ctgcagaggc gtctccatc 900
tgcacactgtc ggaccgggta ttaccggacg gactttgacc ctccagaatg ggcacatgcact 960
agcgtcccat caggcccccg caatgttatac tccatcgta atgagacgtc catcattctg 1020
55 gatgtggcacc ctccaaggga gacaggtggg cgggatgtt tgacctacaa catcatctgc 1080
aaaaagtggcc gggcagaccg ccggagctgc tcccgctgtg acgacaatgt ggagtttgt 1140
cccaggcaggc tggggctgac ggagtgcctgc gtctccatca gcagcctgtg ggcccacacc 1200
ccctacaccc ttgacatcca ggccatcaat ggagtctcca gcaagatgc cttccccccca 1260
cagcacgtt ctgtcaacat caccacaaac caagccggcc cctccacatgt tcccatcatg 1320
60 caccacatca gtgcactat gaggagcatc accttgcattt ggccacagcc ggacgagccc 1380
aatggcatca tcctggacta tgagatccgg tactatgaga aggaacacaaa tgagttcaac 1440
tcctccatgg ccaggagtca gaccaacaca gcaaggattt atgggctgca gcctggcatg 1500

DE 101 00 588 A 1

gtatatgtgg tacagggtcg tgcccgact gttgctggct acggcaagtt cagtggcaag 1560 atgtgctcc agactctgac tgacgatgat tacaagtcag agctgaggga gcagctgccc 1620 ctgattgctg gctcggcagc ggccggggtc gtttcggtg tgccttggt gccatctct 1680 atcgctgtta gcaggaaacg ggcttatacg aaagaggctg tgtacagcga taagctccag 1740 cattacagca caggccgagg ctccccaggg atgaagatct acattgaccc cttcaactat 1800 gaggatccca acgaagctgt ccgggagtt gccaaggaga ttgatgtatc ttttgtaaa 1860 attgaagagg tcatcgagc aggggagtt ggagaagtg acaagggcg tttgaaactg 1920 ccaggcaaga gggaaatcta cgtggccatc aagaccctga aggcaggta ctcggagaag 1980 cagcgtcggt acttctgag tgaggcgagc atcatgggcc agttcgacca tcctaacatc 2040 attcgcttgg agggtgtgtt caccagagt cggcctgtca tgcattcac agagttcatg 2100 gagaatgggtt cattggatc ttccctcagg caaatgacg ggcagttcac cggtatccag 2160 cttgtgggtt tgctcagggg catcgctgt ggcatgaagt acctggctga gatgaattat 2220 gtgcattcggtt acctggctgc taggaacatt ctggtaaca gtaacctgggt gtgcaaggtg 2280 tccgactttg gccttcccg tcacctccag gatgacaccc cagatccac ctacaccagc 2340 tccttgggag ggaagatccc tggatgtgg acagctccag aggcacatcg ctaccggcaag 2400 ttcaatttcag ccagcgacgt ttggagctat gggatgtca tggggaaatg catgtcattt 2460 ggagagagac cctattggga tatgtccaaac caagatgtca tcaatggcat cgagcaggac 2520 taccggctgc ccccacccat ggactgtcca gctgtctac accagctcat gctggactgt 2580 tggcagaagg accggAACAG ccggccccc tttcgggaga ttgtcaacac cctagataag 2640 atgatccgga accccggcaag tctcaagact gtggcaacca tcaccggcgt gccttccag 2700 cccctgctcg accgcctcat cccagacttc acggcctta ccaccgtgga tgactggctc 2760 agcgcacatca aaatggtcca gtacaggac agttcctca ctgctggctt cacctccctc 2820 cagctggta cccagatgac atcagaagac ctctcgagaa taggcattcac ctggcaggc 2880 catcagaaga agatctgaa cagcattcat tctatgaggg tccagataag tcagtcacca 2940 acggcaatgg catga	5 10 15 20 25
--	---------------------------

<210> 22
<211> 3168
<212> DNA
<213> Homo sapiens

<400> 22 atggctctgc ggaggctggg ggcccgcgctg ctgctgtgc cgctgctcgc cgccgtggaa 60 gaaacgctaa tggactccac tacagcgact gctgagctgg gctggatgtt gcattctcca 120 tcagggtggg aagaggttag tggctacat gagaacatga acacgatccg cacttacag 180 gtgtcaacg tggatgtgc aagccagaac aactggctac ggacaaatg tattccggcgc 240 cgtggccccc accgcattca cgtggagatg aagtttcgg tgcgtgactg cagcagcatc 300 cccagcgtgc ctggctctg caaggagacc ttcaacctct attactatga ggctgacttt 360 gactcggcca ccaagacctt ccccaactgg atggagaatc catgggtgaa ggtggatacc 420 attgcagccg acgagagctt ctcccagggtt gacctgggtt gccgcgtcat gaaaatcaac 480 accgaggtgc ggagcttcgg acctgtgtcc cgcagcggct tctacctggc cttccaggac 540 tatggcgct gcatgtccct catcgccgtt cgtgtcttct accgcaatgt ccccccgcac 600 atccagaatg ggcgcattt ccagaaacc ctgtcgaaaa ctgagagcac atcgtgggtg 660 gctgcccggg gcagctgcat cgccaatatgc gaagaggtgg atgtaccat caagctctac 720 tptaacgggg acggcgagt gctgggtccc atcgccgcgt gcatgtgcaa agcaggcttc 780 gaggccgtt agaatggcac cgtctgcga gttgtccat ctgggacttt caaggccaaac 840 caagggatg aggctgtac ccactgtccc atcaacagcc ggaccaccc tgaaggggcc 900 accaactgtg tctggcccaa tggctactac agagcagacc tggaccctt ggacatgccc 960 tgcacaacca tccctccgc gccccaggct gtgatttcca gtgtcaatga gaccccttc 1020 atgctggagt ggacccctcc cgcgcactcc ggaggccgag aggacctcg tacaacatc 1080 atctgcaaga gctgtggctc gggccggggt gcctgcaccc gctgcgggaa caatgtacag 1140 tacgcaccac gccagctagg cctgaccggag ccacgcattt acatcagtga cctgctggcc 1200 cacacccatg acacccatgaa gatccaggct gtgaacggcg ttactgacca gagcccttc 1260 tcgcctcaatg tcgcctctgtt gaacatcacc accaaccagg cagctccatc ggcagtgcc 1320 atcatgcattt aggtgagccg caccgtggac agcattaccc tgcgtggc ccagccagac 1380 cagcccaatg gcgtatccat ggactatgatg ctgcagtact atgagaaggaa gctcagttag 1440 tacaacgcac cagccataaa aagcccccacc aacacggtca cctgtcaagg cctcaaagcc 1500 ggcgcacatct atgttccca ggtgcgggca cgcacccgtgg caggctacgg ggcgtacagc 1560 ggcacatgtt acttccagac catgacagaa gccgagttacc agacaagcat ccaggagaag 1620 ttggccactca tcatcggtc ctcggccgtt ggcctggctt tcctcattgc tgggttgc 1680	35 40 45 50 55 60
--	----------------------------------

DE 101 00 588 A 1

	atcgccatcg	tgtgtaacag	acgggggttt	gagcgtgctg	actcggagta	cacggacaag	1740
	ctgcaacact	acaccagtgg	ccacatgacc	ccaggcatga	agatctacat	cgatccttc	1800
	acctacgagg	acccaaacga	ggcagtgcgg	gagtttcca	aggaaattga	catctcctgt	1860
5	gtcaaaattg	agcaggtgat	cgagcaggg	gagtttgcg	aggctctgc	tggccacctg	1920
	aagctccag	gcaagagaga	gatcttgcg	gccatcaaga	cgctcaagtc	gggctacacg	1980
	gagaagcagc	gcccggactt	cctgagcgaa	gcctccatca	tggccagtt	cgaccatccc	2040
	aacgtcatcc	acctggaggg	tgtcgtgacc	aagagcacac	ctgtatgtat	catcaccgag	2100
	ttcatggaga	atggctccct	ggactcctt	ctccggcaaa	acgatggca	gttcacagtc	2160
10	atccagctgg	tggcatgct	tcggggcata	gcagctggca	tgaagtacct	ggcagacatg	2220
	aactatgttc	accgtgacct	ggctgcccgc	aacatcctcg	tcaacagcaa	cctggctctgc	2280
	aagggttcgg	actttgggt	ctcacgttt	ctagaggacg	atacctcaga	ccccacactac	2340
	accagtggcc	tggcggaaa	gatccccatc	cgctggacag	ccccgaaagc	catccagttac	2400
	cggaagttca	cctcggccag	tgtatgttgg	agctacggca	ttgtcatgtg	ggaggtgtatg	2460
15	tcctatgggg	agccggccata	ctgggacatg	accaaccagg	atgtatcaa	tgccattttag	2520
	caggactatc	ggctgccacc	gcccattggac	tgccggacgc	ccctgcacca	actcatgtcg	2580
	gactgttggc	agaaggacccg	caaccacccgg	cctaagttcg	gccaaattgt	caacacgcta	2640
	gacaagatga	tccgaatcc	caacagcctc	aaagccatgg	cgcccccttc	ctctggcattc	2700
	aacctgcgc	tgctggaccg	cacgatcccc	gactacacca	gttttaaacac	ggtggacgag	2760
20	tggctggagg	ccatcaagat	ggggcagttac	aaggagagct	tcgccaatgc	cgcttcacc	2820
	tcctttgacg	tcgtgtctca	gatgtatgt	gaggacattt	tccgggttgg	ggtaacttttgc	2880
	gctggccacc	agaaaaaaaat	cctgaacagt	atccaggtga	tgccggcgca	gatgaaccag	2940
	attcagtcgt	tggagggcca	gccactcgcc	aggaggccac	gggcccacggg	aagaaccaag	3000
	cggtgcccagc	cacgagacgt	caccaagaaa	acatgcaact	caaacgacgg	aaaaaaaaaaag	3060
25	ggaatggaa	aaaagaaaaac	agatcctggg	agggggcggg	aaatacaagg	aatatttttt	3120
	aaagaggatt	ctcataagga	aagcaatgac	tgttcttgcg	ggggataaa		3168

<210> 23
 30 <211> 2997
 <212> DNA
 <213> Homo sapiens

	<400> 23
35	atggccagag cccgcccccc gccgcccgg tcgcccggc cggggcttct gccgctgctc 60
	cctccgctgc tgctgctgcc gctgctgtc ctggccggcc gctgcccggc gctggaagag 120
	accctcatgg acacaaaatg ggttaacatct gagttggcgt ggacatctca tccagaaatg 180
	gggtggaaag aggtgagtgg ctacatggag gccatgaatc ccatccgcac ataccaggtg 240
	tgtatgtgc gcgagtcaag ccagaacaaatc tggcttcgcg cgggttcat ctggcggcg 300
40	gatgtgcacg ggggtctacgt ggagctcaag ttcaactgtgc gtgactcaatc cagcatcccc 360
	aacatccccg gtcctctgcaa ggagacccatc aacccttttc actacgaggc tgacagcgat 420
	gtggcctctag ctcctctcccc cttctggatc gagaacccct acgtgaaatg ggacaccatt 480
	gcaccccgatg agagcttctc gcggtctggat gccggccgtg tcaacaccaa ggtgcgcagc 540
	tttggggccac tttccaaggc tggcttcac ctggccttcc aggaccagg cgccctgcatt 600
45	tcgctcatct ccgtgcgcgc cttctacaatc aagtgtgcac ccaccacccgc aggcttcgc 660
	ctcttccccg agaccctcac tggggcgatc cccaccttcg tggtcattgc tcctggcacc 720
	tgcattcccta acggccgtgg ggtgtcggtg ccactcaagc tctactgcaatc cgccgtatggg 780
	gagtggatgg tgcctgtggg tgcctgcacc tggccacccg gccatgagcc agctgccaag 840
	gagtcccaatg gccggccctg tcccccttggg agtacaagg cgaaggaggagggggcc 900
50	tgcctccat gtccccccaa cagccgtacc acctccccat ccgcccacat ctgcacatgc 960
	cacaataact tctaccgtgc agactcggac tctcggtaca gtgcctgtac caccgtgcca 1020
	tctccacccc gaggtgtatc ctccaaatgtg aatggaaatct cactgatctt cgagtggagt 1080
	gagccccccgg acctgggtgt cccggatgac ctccatgtaca atgtcatctg caagaagtgc 1140
	catggggctg gaggggcctc agcctgtca cgctgtatg acaacgtgga gtttgcct 1200
55	cggcagctgg gcctgtcgaa gccccgggtc cacaccagcc atctgctggc ccacacgcgc 1260
	tacacccttg aggtgcaggc ggtcaacggc gtctcggtca agagccctct gcccctcg 1320
	tatgcggcccg tgaatatcac cacaaccagg gctgccccgt ctgaagtgcac cacactacgc 1380
	ctgcacacga gctcaggcagg cagccctcacc ctatccctggg cacccttccaga gcccggccaaac 1440
	ggagtcattcc tggactacga gatgaagttt tttggaaaga gcgaggccat cgccctccaca 1500
60	gtgaccagcc agatgaactc cgtcagctg gacggggcttc ggcctgcacgc ccgttatgtg 1560
	gtccagggtcc gtgcccgcac agtagctggc tatggccagt acagccccc tgccgagttt 1620
	gagaccacaa gtgagagagg ctctggggcc cagcagctcc aggagcagct tcccttcatac 1680

DE 101 00 588 A 1

gtgggctccg ctacagctgg gcttgtcttc gtgggtggctg tcgtggcat cgctatcg 1740
 tgcctcagga agcagcgaca cggctctgat tcggagtaca cggagaagct gcagcagtg 1800
 attgctcctg gaatgaaggt ttatattgac ccttttacct acgaggacc 1860
 gttcgggagt ttgccaagga gatcgacgtg tcctgcgtca agatcgagga ggtgatcg 1920
 gctggggaaat ttggggaaat gtgccgttgt cgactgaaac agcctggccg ccgagagg 1980
 tttgtggcca tcaagacgct gaaggtggc tacaccgaga ggcagcggcg ggacttc 2040
 agcgaggcct ccatcatggg tcagttgtat caccctaata taatccgct cgagggcgt 2100
 gtcaccaaaa gtggccagt tatgatcc 10
 tccttccccc ggctcaacga tggcagttt acggtcatcc agctggggg catgttgc 2220
 ggcattgtg cggcatgaa gtacctgtcc gagatgaact atgtgcacccg cgacctgg 2280
 gctcgcaaca tccttgtcaa cagcaacctg gtcgcaaaag tctcagactt tggcctctc 2340
 cgcttcctgg aggatgaccc ctccgatctt acctacacca gttccctggg cggaaagat 2400
 cccatccgct ggactgcccc agaggccata gcctatcgga agttcactt tgctagtgt 2460
 gtctggagct acggaattgt catgtgggag gtcatgagct atggagagcg accctactg 2520
 gacatgagca accaggatgt catcaatgcc gtggagcagg attaccggct gccaccaccc 2580
 atggactgtc ccacagcact gcaccaggtc atgctggact gctgggtgcg ggaccgg 2640
 ctcaggccca aattctccca gattgtcaat accctggaca agtcatccg caatgctg 2700
 agcctaagg tcattgccc cgctcagttt ggcattgtcac agccctctt ggaccgcac 2760
 gtcccagatt acacaacctt cacgacagtt ggtgattggc tggatccat caagatggg 2820
 cggtacaagg agagttcgt cagtgcggg tttcatctt ttgacctggg ggcggagat 2880
 acggcagaag acctgctccg tattgggatc accctggccg gccaccagaa gaagatcct 2940
 agcagtatcc aggacatgca gctgcagatg aaccagacgc tgcctgtca ggtctga 2997

5

10

15

20

25

<210> 24
 <211> 2964
 <212> DNA
 <213> Homo sapiens

30

<400> 24
 atggagactcc ggggtgctgct ctgctgggct tcgttggccg cagctttgga agagaccctg 60
 ctgaacacaa aattggaaac tgctgatctg aagtgggtga cattccctca ggtggacggg 120
 cagtggggagg aactgagcg 35
 cactggatgg gaaacagcaca gcgtgcgcac ctacgaagt 180
 tgtgaagtgc agcggtcccc gggccagggc cactggctt gcacagggtt ggtccacgg 240
 cggggcgcggc tccacgtgt 300
 cctcgggctg ggcgttctg cgccacgctg cggttccacca tgctcgatgt cctgtccctg 300
 gacacggcca cggccctcac caaggagacc ttcaccgtt tctactatgaa gagcgatg 360
 gtcggccggg agcatctcac cgggaagcgc cctggggccg aggccacccg gaaggtgaat 480
 gtcaagacgc tgcgtctggg accgctcagc aaggctggct tctacctggc cttccaggac 540
 cagggtgcct gcatggccct gctatccctg cacctttt aaaaaatgt cgcccgacgt 600
 actgtgaacc tgactcgatt cccggagact gtgcctcggt agctgggtgt gcccgtgg 660
 ggtagctgcg tgggtggatgc cgtcccccc cctggccca gccccagctt ctactgccc 720
 gaggatggcc agtggggccga acagccggc acgggctgca gctgtgtcc ggggttcgag 780
 gcagctgagg ggaacaccaa gtggcgagcc tggcccagg gcaccttcaa gcccctgtca 840
 ggagaagggt cctggccagcc atgcccagcc aatagccact ctaacaccat tggatctg 45
 gtctgccagt gcccgtcg ggacttccgg gcacgcacag aaaaaaagg 960
 accacccctc ctteggctcc gcgagcg 1020
 ctggaatgga gtggcccccgg gtagtctgtt ggccgagagg acctcacca cgcctccgc 1080
 tgccgggagt gcccggccgg aggcttctgt gcccctcg 1140
 cccggccccc gggacctgg ggagccctgg gtgggtgtc gagggtacg tccggactt 1200
 acctataacct ttgaggtcac tgcatgtt 1260
 ccatttgagc ctgtcaatgt caccactgac cgagaggtac ctccctgcgt gtctgacatc 1320
 cgggtgacgc ggtcttccacc cagcagttt agcctggctt gggctgtcc cggggcacc 1380
 agtggggcgt ggctggacta cgaggtcaaa taccatgaga agggcgccga gggcccagc 1440
 agcgtgcggc ttctgttgcgat gtcagaaaaac cgggcagacg tgccccggct gaagcg 1500
 gcccggccat tgggtcgagg acggggcgcgc tctgaggccg gtcacggcc cttccggcc 1560
 gaacatcaca gccagacc 1620
 attgcgggca cggcgttgcg ggggtgttgc ctggctctgg tggatctgtt ggtcgccgtt 1680
 ctctgcctca ggaagcagag caatgggaga gaagcagaat attcggacaa acacggacag 1740
 tatctcatcg gacatggtac taaggcttac atcgaccct tcacttatga agacccta 1800
 gaggctgtga gggatttgc aaaagagatc gatgtcttcc acgtcaagat tgaagaggtg 1860

35

40

45

50

55

60

65

DE 101 00 588 A 1

atttgggtgcag gtgagtttgg cgaggtgtgc cggggggcggc tcaaggcccc aggaaagaag 1920
 gagagctgtg tggcaatcaa gaccctgaag ggtggctaca cggagcggca gggcgtag 1980
 tttctgagcg aggccatccat catggccag ttccagaccc ccaatatcat ccgcctggag 2040
 5 ggcgtggtca ccaacagcat gcccgtcatg attctcacag agttcatgga gaacggcgcc 2100
 ctggactcct tcctgcggct aaacgacgga cagttcacag tcatccagct cgtgggcatg 2160
 ctgcggggca tcgcctcggg catgcgtac cttgccgaga tgagctacgt ccaccgagac 2220
 ctggctgctc gcaacatccat agtcaacagc aacctcgct gcaaagtgtc tgactttggc 2280
 ctttcccgat tcctggagga gaactcttcc gatcccaccc acacgagctc cctgggagga 2340
 10 aagattccca tccgatggac tgccccggag gccattgcct tccggaagtt cacttccgcc 2400
 agtgatgcct ggagttacgg gattgtgatg tggagggta tgcatttgg ggagaggccg 2460
 tactgggaca tgagcaatca ggacgtgatc aatgccattg aacaggacta ccggctgccc 2520
 cccggggccag actgtccac ctcctccac cagctcatgc tggactgtt gcaaaaagac 2580
 cggaatggcc gggcccgctt ccccccagggt gtcagcgccc tggacaagat gatccggAAC 2640
 15 cccggccagcc tcaaaaatcg gggccgggag aatggccgggg cctcacaccc tctcctggac 2700
 cagcggcagc ctcactactc agcttttggc tctgtggggcg agtggcttcg gccatcaaa 2760
 atgggaagat acgaagcccc ttgcagcc gctggctttg gtccttcga gctggtcagc 2820
 cagatctctg ctgaggaccc gctccgaatc ggagtcaactc tggcgggaca ccagaagaaa 2880
 atcttggcca gtgtccagca catgaagtcc caggccaagc cgggaacccc gggtgggaca 2940
 20 ggaggaccgg ccccgagta ctga 2964

<210> 25
 <211> 1041
 25 <212> DNA
 <213> Homo sapiens

<300>
 <302> ephrin-B1
 30 <310> NM004429

<400> 25
 atggctcgcc ctgggcagcg ttggctcgcc aagtggcttg tggcgatggt cgtgtggcg 60
 ctgtggcgc tcgcacacc gctggccaaag aacctggagc ccgtatccctg gagctccctc 120
 35 aaccccaagt tcctgagtttgg gaaggggctt gtgatctatc cgaaaattgg agacaagctg 180
 gacatcatct gccccccggc agaaggcaggc cggccctatg agtactacaa gctgtacctg 240
 gtgcggcctg agcaggcagc tgcctgttcc acagttctcg accccaaacgt gttggtcacc 300
 tgcaataggc cagaggcagga aatacgtttt accatcaagt tccaggagtt cagccccaaac 360
 tacatgggcc tggagttcaa gaagcacccat gattactaca ttacctcaac atccaatgg 420
 40 agcctggagg ggctggaaaaa cggggagggc ggtgtgtgcc gcacacgcac catgaagatc 480
 atcatgaagg ttggcaaga tcccaatgtt gtgacgcctg agcagctgac taccagcagg 540
 cccagcaagg aggcaagacaa cactgtcaag atggccacac aggcccctgg tagtcggggc 600
 tccctgggtt actctgatgg caagcatgag actgtgaacc aggaagagaa gagtggccca 660
 ggtgcaagtg gggcagcagc cggggaccct gatggcttc tcaactccaa ggtggcattg 720
 45 ttgcggcgtc tcgggtccgg ttgcgtcatc ttccgtctca tcatacatctt cctgacggc 780
 ctactactga agctacgcaaa gccggcaccgc aagcacacac agcagcgggc ggctgcccctc 840
 tcgctcagta ccctggccag tcccaagggg ggcagtggca cagcgggcac cgagcccagc 900
 gacatcatca ttcccttacg gactacagag aacaactact gccccacta tgagaaggtg 960
 agtggggact acggcaccct tgcgttatccatc gtccaaagaga tgccggccca gagccccggcg 1020
 50 aacatctact acaaggtctg a 1041

<210> 26
 <211> 1002
 55 <212> DNA
 <213> Homo sapiens

<300>
 <400> 26
 60 atggctgtga gaaggggactc cgtgtggaaag tactgctggg gtgttttatgc 60
 agaactgcga tttccaaatc gatagtttta gacccatctt attggaaattc ctgcactcc 120

DE 101 00 588 A 1

aaatttctac ctggacaagg actggtaacta tacccacaga taggagacaa attggatatt 180
 atttccccca aagtggactc taaaactgtt ggccagatcg aatattataa agtttatatg 240
 gttgataaaag accaagcaga cagatgcact attaagaagg aaaataccc tctcctcaac 300
 tgtgccaac cagaccaaga tatcaaattc accatcaagt ttcaagaatt cagccctaac 360
 ctctggggtc tagaattca gaagaacaaa gattattaca ttatatctac atcaaatggg 420
 tcttggagg gcctggataa ccaggaggg ggggtgtgcc agacaagagc catgaagatc 480
 ctcataaag ttggacaaga tgcaagttct gctggatcaa ccaggaataa agatccaaca 540
 agacgtccag aactagaagc tggtacaaat ggaagaagtt cgacaacaag tcccttgta 600
 aaaccaaattc cagggttctag cacagacggc aacagcgccg gacattcggg gaacaacatc 660
 ctcgggttccg aagtggcctt atttgcaggg attgttctag gatgcattcat cttcatcg 720
 atcatcatca cgctgggtgt cctcttgcgt aagtaccggg ggagacacag gaagactcg 780
 ccgcagcaca cgacacacgt gtgcgtcagc acactggcca caccbaagcg cagcggcaac 840
 aacaacggct cagagccca tgacattatc atcccgctaa ggactgcgga cagegtcttc 900
 tgcctcaact acgagaaggt cagcggcgcac tacgggcacc cggtgtacat cgtccaggag 960
 atgccccccgc agagcccgcc gaacatttac tacaaggatc ga 1002

5

10

15

<210> 27
 <211> 1023
 <212> DNA
 <213> Homo sapiens

20

<400> 27
 atggggccccc cccattctgg gccggggggc gtgcgagtcg gggccctgct gctgctgggg 60
 gtttggggc tgggtgtctgg gtcagcctg gagcctgtct actggaactc ggcaataag 120
 aggttccagg cagagggtgg ttatgtgtc taccctcaga tcggggaccg gctagacctg 180
 ctctggccccc gggcccgcc tcctggccct cactcctctc ctaattatga gttctacaag 240
 ctgtacctgg taggggggtgc tcagggccgg cgctgtgagg cacccttcg cccaaacctc 300
 ctctcaattt gtatcgccc agacctggat ctccgttca ccatcaagtt ccaggagtat 360
 agccctaattc tctggggcca cgagttccgc tcgcaccacg attactacat cattgccaca 420
 tcggatggga cccggggaggg cctggagagc ctgcaggggag gtgtgtgcct aaccagaggc 480
 atgaagggtgc ttctcccgagt gggacaagaat ccccgaggag gggctgtccc ccgaaaacct 540
 gtgtctgaaa tgcccatggaa aagagacca gggcagccc acagcctgga gcctgggaag 600
 gagaacctgc caggtgaccc caccagcaat gcaacctccc ggggtgtca aggccccctg 660
 cccctccca gcatgcctgc agtggctggg gcagcagggg ggctggcgct gctcttgctg 720
 ggcgtggcag gggctgggg tgccatgtgt tggcggagac ggccggccaa gccttcggag 780
 agtcgccacc ctggctctgg ctccctggg agggggaggt ctctgggcct ggggggtgg 840
 ggtgggatgg gacctcgga ggctgagct gggagactg ggatagctc gcgggggtggc 900
 ggggctgcag atccccctt ctgcccccac tatgagaagg tgagtggta ctatgggcatt 960
 cctgtgtata tcgtgcagga tggggccccc cagacccctc caaacatcta ctacaaggta 1020
 tga 1023

25

30

35

40

<210> 28
 <211> 3399
 <212> DNA
 <213> Homo sapiens

45

<300>
 <302> telomerase reverse transcriptase
 <310> AF015950

50

<400> 28
 atgccgcgcg ctccccgctg ccgagccgtg cgctccctgc tgccgcagcca ctaccgcgag 60
 gtgctggccg tggcacgtt cgtgcggcgc ctggggccccc agggctggcg gctgggtgcag 120
 cgccgggacc cggcggctt ccgcgcgtg gtggcccagt gcctgggtgt cgtccctgg 180
 gacgcacccgc cgcggccgc cgcggccgc tttccggcagg tgcctgcct gaaggagct 240
 gtggcccgag tgctgcagag gctgtgcagag cgcggcgcga agaacgtgt ggccttcggc 300
 ttgcgcgtgc tggacggggc ccgcgggggc ccccccggagg cttcaccac cagcgtgcgc 360
 agctacctgc ccaacacggc gaccgacgca ctgcggggga gcggggcgtg gggctgtcg 420
 ctgcgcgcg tggcgcacga cgtgctggt cacctgctgg cacgcgtgcgc gctctttgtg 480

55

60

65

DE 101 00 588 A 1

	ctgggtggctc	ccagactgcgc	ctaccagggtg	tgccccccgc	cgctgtacca	gctcgccgct	540
	gccactcagg	cccgcccccc	gccacacgct	agtggacccc	gaaggcgct	ggatgcgaa	600
	cgggcctgga	accatagcgt	caggaggccc	gggtcccccc	tggcctgcc	agcccccggg	660
5	gcgaggaggc	gcgggggcag	tgccagccga	agtcgtccgt	tgcccaagag	gcccaggcgt	720
	ggcgctgcc	ctgagccgga	gcccacgccc	gttggcagg	ggtcctggc	ccacccgggc	780
	aggacgcgt	gaccgagtga	ccgtggttt	tgtgtggtgt	cacctgccag	acccgcccggaa	840
	gaagccacct	ctttggaggg	tgegctctct	ggcacgcgc	actcccaccc	atccgtggc	900
	cgccagcacc	acggggccc	cccatccaca	tcgccccac	cacgtccctg	ggacacgcct	960
10	tgtccccccg	tgtacgcccga	gaccaaggac	ttccctact	cctcaggcga	caaggagcag	1020
	ctgcggccct	ccttctact	cagctctctg	aggcccagcc	tgactggcgc	tcggaggctc	1080
	gtggagacca	tcttctggg	ttccaggccc	tggatgccag	ggactccccg	caggttggcc	1140
	cgcctgcccc	agcgctactg	gcaaattgcgg	ccctgttcc	tggagctgct	tggaaaccac	1200
	gcmcagtgcc	cctacgggg	gctcctcaag	acgactgccc	cgctgogagc	tcgggtcacc	1260
15	ccagcagccg	gtgtctgtgc	ccgggagaag	cccaggggct	ctgtggggc	ccccgaggag	1320
	gaggacacag	accccccgtc	cctgggtcag	ctgtccgc	agcacagcag	ccccctggcag	1380
	gtgtacggct	tcgtgcggc	ctgcctgc	cggctgtgc	ccccaggcct	ctggggctcc	1440
	aggcacaacg	aacgcgcctt	cctcaggaac	accaagaagt	tcatctccct	gggaaagcat	1500
	gccaagctt	cgctcgagga	gctgacgtgg	aagatgagcg	tgccggactg	cgcttggctg	1560
20	cgcaggagcc	cagggttgg	ctgtgttccg	gcccagagc	accgtctgc	tgaggagata	1620
	ctggccaagt	tcctgcactg	gtgtatgatg	gtgtacgtcg	tgcagctgct	caggttcttc	1680
	tttatgtca	cggagaccac	tttcaaaaag	aacaggctt	ttttctaccg	gaagagtgtc	1740
	tggagcaagt	tgcaaaagcat	tggaatcaga	cacacttga	agagggtgc	gctgcgggg	1800
	ctgtcggaag	cagaggtcag	gcagcatcgg	gaagccaggc	ccgcctgt	gacgtccaga	1860
25	ctccgcctca	tccccaaagcc	tgacgggctg	cggccgattt	tgaacatgga	ctacgtcg	1920
	ggagccagaa	cggtccgcag	agaaaaagagg	gcccagcgtc	tcacctcgag	ggtgaaggca	1980
	ctgttcagcg	tgctcaacta	cgagcgggc	cgccgc	gcctcctgg	cgccctgt	2040
	ctgggcctgg	acgatatcca	cagggcctgg	cgcacctcg	tgctgcgt	cgccggcc	2100
	gaccgcggc	ctgagctgt	cattgtcaag	gtggatgtga	cgggcgct	cgacaccatc	2160
30	ccccaggaca	ggctcacgg	ggtcatcgcc	agcatcatca	aaccccaagaa	cacgtactgc	2220
	gtgcgtcggt	atgcgttgt	ccagaaggcc	gcccattggc	acgtccgcaa	ggccttcaag	2280
	agccacgtt	ctacccgtac	agacctccag	cgatcacatgc	gacagttcg	ggctcacctg	2340
	caggagacca	gcccgttag	ggatggcgtc	gtcatcgac	agagctctc	cctgaatgag	2400
	gccagcagt	gccttctcg	cgtcttccta	cgcttcatgt	gccaccacgc	cgtgcgc	2460
35	aggggcaagt	cctacgtcca	gtgccagggg	atcccgcagg	gtccatccct	ctccacgct	2520
	ctctgcagcc	tgtgtacgg	cgacatggag	aacaagctgt	ttgcggggat	tcggcgggac	2580
	gggctgtcc	tgcggtttgg	ggatgattt	ttgttggta	cacccat	caccacgc	2640
	aaaacccccc	tcagaccct	ggtccggaggt	gtccctgagt	atggctgcgt	ggtgaacttg	2700
	cggaaagacag	tggtaactt	ccctgttagaa	gacgaggccc	tgggtggac	ggcttttgtt	2760
40	cagatgcgg	cccacggcc	atccccctgg	tgccgc	tgctggatac	ccggaccctg	2820
	gagggtcaga	gcfactact	cagctatgcc	cgacccctca	tca	cgacc	2880
	aaccgcgg	tcaaggctt	gaggaacatg	cgtcgaaac	tctcacctt	cttgcggctg	2940
	aagtgtcaca	gcctgtttt	ggatgtcag	gtgaacagcc	tccagacgg	gtgcaccaac	3000
	atctacaaga	tcctcctgt	gcaggcgta	agtttacg	catgtgtgt	gcagctccca	3060
45	tttcatcagc	aagttggaa	gaacccca	ttttctgc	gcgtcatctc	tgacacggcc	3120
	tccctctgt	actccatctt	gaaaggca	aacgcaggga	tgcgtctgg	ggccaagggc	3180
	gccgcggcc	ctctgcctc	cgaggccgt	cagtggctgt	gccaccaagc	attcctgt	3240
	aagctgactc	gacaccgtgt	cacctacgt	ccactcctgg	ggtcactc	gacagcccag	3300
	acgcagctga	gtcggaaagct	cccggggac	acgcgtactg	ccctggaggc	cgcagccaa	3360
50	ccggcactgc	cctcagactt	caagaccatc	ctggactga			3399

<210> 29
 <211> 567
 55 <212> DNA
 <213> Homo sapiens

<300>
 <302> K-ras
 60 <310> M54968

<400> 29

DE 101 00 588 A 1

atgactgaat	ataaaacttgt	ggtagttgga	gcttgtggcg	taggc当地	tgc当地tgc当地	60
atacagctaa	ttcagaatca	ttttgtggac	aatatgatc	caacaataga	ggattccctac	120
aggaagcaag	tagtaattga	tggagaaaacc	tgtctcttg	atatttc当地	cacaggcagg	180
caagaggagt	acagtgc当地	gagggaccag	tacatgagga	ctggggaggg	ctttctt当地	240
gtatattgcca	taaataatac	taaatcattt	gaagatattc	accattatag	agaacaaatt	300
aaaagagttt	aggactctga	agatgtacct	atggc当地	taggaaataa	atgtgattt	360
ccttctagaa	cagtagacac	aaaacaggct	caggacttag	caagaagttt	tgaaattc当地	420
tttattgaaa	catcagcaaa	gacaagacag	ggtgtt当地	atgc当地tcta	tacatttagtt	480
cgagaaaattc	gaaaacataa	agaaaagatg	agcaaagatg	gtaaaaagaa	aaaaaagaag	540
tcaaaagacaa	agtgtgttaat	tatgttaa				567

<210> 30
<211> 3840
<212> DNA
<213> *Homo sapiens*

<300>
<302> mdr-1
<310> AF016535

<400>	30					
atggatcttg	aaggggaccg	caatggagga	gcaaagaaga	agaacttttt	taaactgaac	60
aataaaagt	aaaaagataa	gaaggaaaag	aaaccaactg	tcagtgtatt	ttcaatgtt	120
cgctattcaa	attggcttga	caagttgtat	atgggttgtt	gaacttggc	tgcacatcatc	180
catggggctg	gacttcctct	catgatgctg	gtgtttggag	aatgacaga	tatcttgc	240
aatgcaggaa	attagaaga	tctgatgtca	aacatcacta	atagaagtga	tatcaatgtat	300
acagggttct	tcatgaatct	ggaggaagac	atgaccagg	atgcctatta	ttacagtgg	360
attggtgctg	gggtgcttgt	tgctgcttac	attcaggtt	cattttgg	cctggcagct	420
ggaagacaaa	tacacaaaat	tagaaaacag	tttttcatg	ctataatgc	acaggagata	480
ggctggttt	atgtgcacga	tggtgggag	cttaacaccc	gacttacaga	tgatgtctcc	540
aagattaatg	aagaattgg	tgacaaaatt	ggaatgttct	ttcagtc	ggcaacattt	600
ttcaactgggt	ttatagtagg	atttacacgt	ggttggaa	taaccctt	gattttggcc	660
atcagtccctg	ttcttggact	gtcagctgct	gtctggcaa	agataactatc	ttcattttact	720
gataaagaac	tcttagcgta	tgcaaaagct	ggagcagtag	ctgaagaggt	cttggcagca	780
attagaactg	tgattgcatt	tggaggacaa	aagaaagaac	ttgaaaggt	caacaaaaat	840
ttagaagaag	ctaaaagaat	tgggataaaag	aaagctatta	cagccaatat	ttctataggt	900
gctgcttcc	tgctgatcta	tgcatcttat	gctctggcct	tctggatgg	gaccacctt	960
gtctctcg	ggaaatattc	tattggacaa	gtactca	tattttctgt	attaatttgg	1020
gcttttagt	ttggcacaggc	atctccaagc	atgaaagcat	ttgcaaatgc	aagaggagca	1080
gcttatgaaa	tcttcagat	aattgataat	aagccaagta	ttgacagcta	ttcgaagagt	1140
gggcacaaaac	cagataatat	taagggaaat	ttgaaattca	gaaatgttca	cttcagttac	1200
ccatctcgaa	aagaagttaa	gatcttgaag	gttctgaacc	tgaagggtca	gagtggcag	1260
acggtgcccc	tggggggaaa	cagtggctgt	gggaagagca	caacagtcca	gctgtatgcag	1320
aggctctatg	acccccacaga	ggggatgtc	agtgttgc	gacaggat	taggaccata	1380
aatgttaaagg	ttctacggg	aatcatgtt	gttggatgtc	aggaacctgt	atgtttgc	1440
accacgatag	ctgaaaacat	tcgctatggc	cgtgaaaatg	tcaccatgg	tgagattgag	1500
aaagctgtca	aggaagccaa	tgcctatgac	tttatcatga	aactgcctca	taaatttgc	1560
accctgggt	gagagagagg	ggcccagtt	agtgggtggc	agaagcagag	gatgccatt	1620
gcacgtcccc	tgggtcgca	cccccaagatc	ctcctgctgg	atgaggccac	gtcagctt	1680
gacacagaaa	gcgaagcagt	gttcaagg	gctctggata	aggccagaaa	aggtcgacc	1740
accattgt	tagctcatcg	tttgtctaca	gttcgtatg	ctgacgtcat	cgctggttt	1800
gatgatggag	tcattgtgg	gaaaggaaat	catgtatgaa	tcatgaaaga	gaaaggcatt	1860
tacttcaaac	ttgtcacaat	gcagacagca	ggaaaatgaa	ttgaatttga	aatgcagct	1920
gatgaatcca	aaagtggaaat	tgatgcctt	gaaatgtt	caaatgattc	aagatccagt	1980
ctaataagaa	aaagatcaac	tcgttagg	gtccgtggat	cacaagccca	agacagaaaag	2040
cttagtacca	aaggaggctct	ggatgaaat	atacctccag	tttcctttt	gaggattatg	2100
aagctaaatt	taactgaatg	gccttatttt	gttgggtt	tattttgtc	cattataaaat	2160
ggaggcctgc	aaccagcatt	tgcaataata	tttcaaaaga	ttataggggt	tttacaaga	2220
attgtatgatc	ctgaaaacaaa	acgacagaat	agtaacttgc	tttcactatt	gttctagcc	2280
cttggaaatta	tttctttat	tacattttc	cttcagggtt	tcacatttgg	caaagctgga	2340

DE 101 00 588 A 1

gagatcctca ccaagcggct ccgatacatg gtttccgat ccatgctcag acaggatgtg 2400
 agttggttt atgaccctaa aaacaccact ggagcattga ctaccaggct cgccaatgat 2460
 gctgctcaag ttaaaggggc tataggttcc aggcttgctg taattaccca gaatatacg 2520
 5 aatcttgga caggaataat tatacccttc atctatggtt ggcaactaac actgttactc 2580
 ttagcaattt taccatcat tgcaatacgaa ggagttgtt aaatgaaaat gttgtctgg 2640
 caagcactga aagataagaa agaactagaa ggtgctgggaa agatcgtac tgaagcaata 2700
 gaaaacttcc gaaccgttgt ttctttgact caggagcaga agtttgaaaca tatgtatgct 2760
 cagagtttgc aggttaccata cagaaactct ttgaggaaag cacacatctt tggaattaca 2820
 10 tttcccttca cccaggcaat gatgtatccc tcctatgctg gatgtttccg gtttggagcc 2880
 tacttggtgg cacataaact catgagctt gaggatgtt tgtagtatt tttagtgc 2940
 gtctttgggt ccatggccgt gggcaagtc agttcatttg ctccctgacta tgccaaagcc 3000
 aaaatatcg cagccacat catcatgatc attaaaaaa ccccttgat tgacagctac 3060
 agcacggaaag gcctaattgc gaacacatttgaagggaaatg tcacatttg tgaagttgt 3120
 15 ttcaactatc ccacccgacc ggacatccca gtgttccagg gactgagccct ggaggtgaag 3180
 aaggggccaga cgctggctt ggtggccagc agtggctgtg ggaagagcac agtggccag 3240
 ctcctggagc ggttttacga ccccttgca gggaaagtgc tgcttgatgg caaagaaaata 3300
 aagcgaactga atgttcagt gctccgagca cacttggca tcgtgttcca ggagccatc 3360
 ctgtttgact gcagcattgc tgagaacatttgcctatggag acaacagccg ggtgggtgt 3420
 20 caggaagaga ttgttggggc agcaaaggag gccaacatac atgccttcat cgagtca 3480
 cctaataaat atagcactaa agtaggagac aaaggaactc agtctctgg tggccagaaa 3540
 caacgcattt ccatacgctcg tgcccttgc agacagccctt atattttgtt tttggatgaa 3600
 gccacgtcag ctctggatac agaaagtgtt aagggtgtcc aagaagccct ggacaaagcc 3660
 agagaaggcc gcacctgcat tgtgattgtt caccgcctgt ccaccatcca gaatgcagac 3720
 25 ttaatagtgg tgtttgc gacatcttgc tggcagatc aaggagcatg gcacgcattca gcagctgt 3780
 gcacagaaag gcatcttgc ttaatgttgc agtgtccagg ctggaaacaaa gcccaggatg 3840

<210> 31
 30 <211> 1318
 <212> DNA
 <213> Homo sapiens

 <300>
 35 <302> UPAR (urokinase-type plasminogen activator receptor)
 <310> XM009232

<400> 31
 atgggtcacc cgccgctgct gccgctgctg ctgctgtcc acacctgcgt cccagccct 60
 40 tggggcctgc ggtgcattca gtgtaaagacc aacggggatt gccgtgttggaa agagtgcgcc 120
 ctgggacagg acctctgcag gaccacgatc gtgcgttgc gggaaagaagg agaagagctg 180
 gagctgggtt agaaaagctg taccctactca gagaagacca acaggacccct gagctatcg 240
 actggcttgc agatcaccag ccttaccggag gttgtgttgc gtttagactt gtcaaccagg 300
 ggcaactctg gcccggctgt cacctattcc cgaagccgtt acctcgaatg catttcctgt 360
 45 ggctcatcag acatgagctg tgagaggggc cggcaccaga gcctgcagtg ccgcagccct 420
 gaagaacagt gcctggatgt ggtgaccac tggatccagg aagggtgaaga aggccgtcca 480
 aaggatgacc gccacccctcg tggctgttgc taccttcccg gctgccccgg ctccaatgg 540
 ttccacaaca acgacacccct ccacttcctg aaatgtgtca acaccaccaa atgcaacag 600
 gggccaaatcc tggagcttgc aaatctggcg cagaatggcc gccagtgtt cagctgaag 660
 50 gggaaacagca cccatggatg ctccctgttgc gagactttcc tcattgactg ccgaggcccc 720
 atgaatcaat gtctggtagc caccggcact cacgaaccga aaaaccaaag ctatatggta 780
 agaggctgtg caaccgcctc aatgtgcataa catgcccacc tgggtgacgc cttcagcatg 840
 aaccacatgtt atgttcctcg ctgtactaaa agtggctgtt accaccacca cctggatgtc 900
 cagtaccgca gtggggctgc tcctcagccct ggcctgtccc atctcagccct caccatcacc 960
 55 ctgctaatga ctgcacact gtggggagggc acttcctct ggacctaaac ctggaaatccc 1020
 cctctctgccc ctggctggat ccgggggacc ccttgcctt tccctcgctt cccagcccta 1080
 cagacttgcgt gtgtgacccctc agggccatgtt gccgacccctt ctggggccatc gtttcccag 1140
 ctatgaaaac agtatctca caaatgttgc tgaagcagaa gagaaaagct ggaggaaggc 1200
 cgtggggccaa tgggagagct ttttttatttttgc ttttttttttgc ttttttttttgc 1260
 60 tattaattaa tattcatattt atttttttttacttacata aagattttttgc accagtgg 1318

DE 101 00 588 A 1

<210> 32
 <211> 636
 <212> DNA
 <213> Homo sapiens

<300>
 <302> Bak
 <310> U16811

<400> 32

atggcttcgg ggcaaggccc aggtcctccc aggcaggagt gcggagagcc tgccctgccc 60
 tctgcttctg aggagcaggt agcccaggac acagaggagg ttttcccgag ctacgttttt 120
 taccggccatc acaaggaaca ggaggctgaa ggggtggctg cccctgccga cccagagatg 180
 gtcacccatc ctctgcaacc tagcagcacc atggggcagg tgggacggca gctcgccatc 240
 atcggggacg acatcaaccg acgctatgac tcagagttcc agaccatgtt gcagcacctg 300
 cagccccacgg cagagaatgc ctatgagttac ttccaccaaga ttgccaccag cctgttttag 360
 agtggcatca attggggccg tgggtggct ctctgtggct tcggctaccg tctggcccta 420
 cacgtctacc agcatggccct gactggcttc ctaggccagg tgaccgcctt cgtggtcgac 480
 ttcatgtgc atcaactgcat tgcccggtgg attgcacaga ggggtggctg ggtggcagcc 540
 ctgaacttgg gcaatggtcc catcctgaac gtgctggtgg ttctgggtgt ggttctgttg 600
 ggccagtttg tggtaacgaag atttttcaaa tcatga 636

<210> 33
 <211> 579
 <212> DNA
 <213> Homo sapiens

<300>
 <302> Bax alpha
 <310> L22473

<400> 33

atggacgggt ccggggagca gcccagaggc ggggggccc ccagctctga gcagatcatg 60
 aagacagggg ccctttgtt tcaggggttc atccaggatc gagcaggcg aatggggggg 120
 gaggcaccgg agctggccct ggacccggtg cctcaggatg cgtccaccaa gaagctgagc 180
 gagtgtctca agcgcattcg ggacgaactg gacagtaaca tggagctgca gaggatgatt 240
 gcccggctgg acacagactc ccccccggagag gtcttttcc gagtggcagc tgacatgttt 300
 tctgacgca acttcaactg gggccgggtt gtcgccttt tctactttgc cagcaaactg 360
 gtgctcaagg ccctgtgcac caagggtggc gaactgatca gaaccatcat gggctggaca 420
 ttggacttcc tccgggagcg gctgtggc tggatccaag accagggtgg ttgggacggc 480
 ctccctctct acttgggac gcccacgtgg cagaccgtga ccattttgtt ggccggagtg 540
 ctaccggct cgctcaccat ctggaaagaag atgggctga 579

<210> 34
 <211> 657
 <212> DNA
 <213> Homo sapiens

<300>
 <302> Bax beta
 <310> L22474

<400> 34

atggacgggt ccggggagca gcccagaggc ggggggccc ccagctctga gcagatcatg 60
 aagacagggg ccctttgtt tcaggggttc atccaggatc gagcaggcg aatggggggg 120
 gaggcaccgg agctggccct ggacccggtg cctcaggatg cgtccaccaa gaagctgagc 180
 gagtgtctca agcgcattcg ggacgaactg gacagtaaca tggagctgca gaggatgatt 240
 gcccggctgg acacagactc ccccccggagag gtcttttcc gagtggcagc tgacatgttt 300
 tctgacgca acttcaactg gggccgggtt gtcgccttt tctactttgc cagcaaactq 360

DE 101 00 588 A 1

```

gtgctcaagg ccctgtgcac caaggtgccg gaactgatca gaaccatcat gggctggaca 420
ttggacttcc tcggggagcg gctgttggc tggatccaag accagggtgg ttgggtgaga 480
ctcctcaagc ctcctcaccc ccaccaccc gccttcacca ccgccttcgc cccaccgtcc 540
5 ctgcggccccc ccactcctct gggaccctgg gccttctgga gcaggtcaca gtgggtccct 600
ccccatct tcagatcatc agatgtggc tataatgcgt tttccttacg tgtctga 657

<210> 35
<211> 432
10 <212> DNA
<213> Homo sapiens

<300>
15 <302> Bax delta
<310> U19599

<400> 35
atggacgggt ccggggagca gcccgaggc gggggggccca ccagctctga gcagatcatg 60
20 aagacaggggg ccctttgct tcagggatg attgccgcgc tggacacaga ctccccccga 120
gaggtcttt tccgagtggc agctgacatg tttctgacg gcaacttcaa ctggggccgg 180
gttgcgccc ttttctactt tgccagcaaa ctgggtctca aggccctgtg caccaggta 240
ccggaactga tcagaaccat catgggtctgg acattggact tcctccggga gggctgttg 300
ggctggatcc aagaccaggg tggttggac ggcctctct cctactttgg gacgcccacg 360
25 tggcagaccg tgaccatctt tggcggggaa gtgctcaccc ctcgctcac catttggaaag 420
aagatgggct ga 432

<210> 36
30 <211> 495
<212> DNA
<213> Homo sapiens

<300>
35 <302> Bax epsilon
<310> AF007826

<400> 36
atggacgggt ccggggagca gcccgaggc gggggggccca ccagctctga gcagatcatg 60
40 aagacaggggg ccctttgct tcagggttc atccaggatc gagcaggcg aatggggggg 120
gagggcaccgg agctggccct ggaccgggtg cctcaggatg cgtccaccaa gaagctgagc 180
gagtgtctca agcgcacatgg ggacgaaactg gacagtaaca tggagctgca gagatgatt 240
gccgcgtgg acacagactc ccccccggagag gtcttttcc gagtggcagc tgacatgttt 300
50 tctgacggca acttcaactg gggccgggtt gtgccttct tctactttgc cagcaactg 360
gtgctcaagg ctggcgtgaa atggcgtgat ctgggtcac tgcaacctct gcctcctggg 420
ttcaagcgat tcacctgcct cagcatccca aggagctggg attacaggcc ctgtgcacca 480
aggcggcga actga 495

<210> 37
55 <211> 582
<212> DNA
<213> Homo sapiens

<300>
55 <302> bcl-w
<310> U59747

<400> 37
60 atggcgaccc cagcctcgcc cccagacaca cgggctctgg tggcagactt tggtaggttat 60
aagctgaggc agaagggtt aatgtctgtgg gctggccccc gggaggggcc aagcagctgac 120
ccgctgcacc aagccatgcg ggcagctgg aatgagttcg agacccgctt ccggcgcacc 180

```

DE 101 00 588 A 1

ttctctgatc tggcggtca gctgcgttg accccaggct cagcccagca acgcttcacc 240
 caggtctccg acgaactttt tcaagggggc cccaaactggg gccgccttgt agccttctt 300
 gtctttgggg ctgactgtg tgctgagagt gtcaacaagg agatggaaacc actgggtggga 360
 caagtgcagg agtggatggt ggcctacctg gagacgcggc tggctgactg gatccacagc 420
 agtgggggct gggcggagtt cacagctta tacggggacg gggccctgga ggaggcgcgg 480
 cgtctgcggg aggggaactg ggcattcgtg aggacagtgc tgacggggc cgtggcactg 540
 gggccctgg taactgttagg ggccttttt gctagcaagt ga 582

5

<210> 38
 <211> 2481
 <212> DNA
 <213> Homo sapiens

10

<300>
 <302> HIF-alpha
 <310> U22431

15

<400> 38
 atggaggggcg ccggcgccgc gaacgacaag aaaaagataa gttctgaacg tcgaaaagaa 60
 aagtctcgag atgcagccag atctcgccga agtaaagaat ctgaagtttt ttatgagctt 120
 gctcatcgt tgccacttcc acataatgtg agttcgcatc ttgataaggc ctctgtgtatg 180
 aggcttacca tcagctattt gcgtgtgagg aaacttctgg atgctggtga tttggatatt 240
 gaagatgaca tgaaagcaca gatgaattgc ttttatttga aaggcttggga tgggtttgtt 300
 atggttctca cagatgtatgg tgacatgatt tacatttctg ataatgtgaa caaatacatg 360
 ggattaactc agtttgaact aactggacac agtgtgtttt attttactca tccatgtgac 420
 catgaggaaa tgagagaaat gcttacacac agaaatggcc ttgtaaaaaa ggtaaagaa 480
 caaaacacac agcgaagctt ttttctcaga atgaagtgtat ccctaacttag cgaggaaga 540
 actatgaaca taaagtctgc aacatggaaag gtattgcact gcacaggcca cattcacgt 600
 tatgatacca acagtaacca acctcagtgt gggataaga aaccacccat gacgtgttg 660
 gtgctgatt gtgaacccat tcctcaccca tcaaataatttgg aaattccctt agatagcaag 720
 actttcctca gtcgacacag cctggatatg aaattttctt attgtgtatg aagaattacc 780
 gaattgtatgg gatgtgagcc agaagaacctt ttagggcgct caatttatgaa atattatcat 840
 gctttggact ctgtatctt gaccaaaactt catcatgata tggttactaa aggacaagtc 900
 accacaggac agtacaggat gcttgcacaa agaggtggat atgtctgggt tgaactcaa 960
 gcaactgtca tatataaacac caagaattctt caaccacagt gcattgtatg tggtaattac 1020
 gttgtgagtg gtattattca gcacgactt attttctccc ttcaacaaac agaatgtgtc 1080
 cttaaaccgg ttgaatcttc agatatggaa atgactcagc tattcaccaa agttaaatca 1140
 gaagatacaa gtggcctt tgacaaactt aagaaggaac ctgatgtttt aactttgtt 1200
 gccccagccg ctggagacac aatcatatct ttagatttttgc gcaacacgaa cacagaaact 1260
 gatgaccagc aacttgagga agtaccatataatgtatg taatgctccc ctacacccaaac 1320
 gaaaaattac agaatataaa ttggcaatgt tctccattac ccaccgcgtt aacgcacaaag 1380
 ccacttcgaa gtatgtctga ccctgcactt aatcaagaag ttgcattaaa attagaacca 1440
 aatccagagt cactggact ttcttttacc atgccccaga ttcaaggatca gacacctagt 1500
 cttcccgatg gaagcacttag acaaagttaa cctgagccctt atagtcccgatg tgaatattgt 1560
 ttttatgtgg atatgtatgat ggtcaatgttgc ttcaagttgg aattggtaga aaaaactttt 1620
 gctgaagaca cagaagcaaa gaacccattt tctactcagg acacagattt agacttggag 1680
 atgttagctc cctatatccc aatggatgtat gacttccagt tacgttccctt cgatcagttg 1740
 tcaccattag aaagcagttc cgcaaggccctt gaaagcgttca gtcctcaaaag cacagttaca 1800
 gtattccagc agactcaaataat acaagaacctt actgtctatg ccaccactac cactgccacc 1860
 actgtatgat taaaacacgt gacaaaagac cgtatggaaac acattaaaat attgattgca 1920
 tctccatctc ctacccacat acataaagaa actactagtgc ccacatcatc accatataga 1980
 gatactcaaa gtcggacacgc ctcacccaaac agagcaggaa aaggagtcat agaacagaca 2040
 gaaaaatctc atccaagaag ccctaactgttgc ttatctgtcg ctttgagtc aagaactaca 2100
 gttcctgagg aagaactaaa tccaaagata ctatgttgc agaatgtctca gagaagcga 2160
 aaaaatggaaac atgtatgttca gcaatgttgc ttggaaacattt attacagcag 2220
 ccagacgttccatctc atccatctc tacatcttgc tcttggaaac gtgtaaaagg atgcaaatct 2280
 agtgaacaga atggaaatggaa gcaaaagaca attatgtttaa taccctctga ttttagcatgt 2340
 agactgctgg ggcaatcaat ggatgaaatggatggac agtgcacccat agtgcacccat 2400
 gaaagttaatg ctccatataca aggcagcaga aacctactgc agggtaaga attactcaga 2460
 gctttggatc aagtaactg a 2481

35

40

45

50

55

60

65

DE 101 00 588 A 1

```

<210> 39
<211> 481
<212> DNA
5 <213> Homo sapiens

<300>
<302> ID1
<310> X77956

10 <400> 39
atgaaagtgc ccagtggcag caccgccacc gcccgcggg gccccagctg cgcgctgaag 60
gccggcaaga cagcgagcgg tgcgggcgg gtggtgcgt gtctgtctga gcagagcgtg 120
gccatctcgc gctgccgggg cgccggggcg cgctgcctg ccctgctgga cgagcagcag 180
15 gtaaacgtgc tgctctacga catgaacggc tgttactcac gcctcaagga gctggtgccc 240
accctgcccc agaaccgcaa ggtgagcaag gtggagattc tccagcacgt catcgactac 300
atcagggacc ttcaagttgga gctgaactcg gaatccgaag ttgggacccc cgggggcccga 360
gggctgccc tccgggctcc gctcagcacc ctcaacggcg agatcagcgc cctgacggcc 420
gaggcggcat gcgttcctgc ggacgatcgc attttgtgtc gctgaatggt gaaaaaaaaa 480
20 a
481

<210> 40
<211> 110
25 <212> DNA
<213> Homo sapiens

<300>
<302> ID2B
30 <310> M96843

<400> 40
tgaaaaggcctt cagtcccggt aggtccatta gaaaaaacag cctgttggac caccgcctgg 60
gcatctccca gagcaaaacc ccgggtggatg acctgtatgag cctgctgtaa
35 110

<210> 41
<211> 486
<212> DNA
40 <213> Homo sapiens

<300>
<302> ID4
<310> Y07958
45

<400> 41
atgaaggcgg tgagccccgt gcgccccctcg ggccgcaagg cgccgtcggt ctgcggggc 60
ggggagctgg cgctgcgtg cctggcggag cacggccaca gcctgggtgg ctccgcagecc 120
50 gccggcgccg cggccggccgc agcgcgtgt aaggcggccg aggccggccg cgacgagccg 180
gctgtgtgcc tgcagtgcga tatgaacgac tgctatacgcc gcctgcggag gctggtgccc 240
accatcccgcc ccaacaagaa agtcagcaaa gtggagatcc tgcagcacgt tattcgactac 300
atcctggacc tgcagctggc gctggagacg caccggccc tgctgaggca gccaccaccc 360
cccgcgcgcg cacaccaccc ggccgggacc tggccagccg cgccgcgcgcg gaccccgctc 420
actgcgtcta acaccgaccc ggccggcgcg gtgaacaagc agggcgacag cattctgtgc 480
55 cgctga
486

<210> 42
<211> 462
60 <212> DNA

```

DE 101 00 588 A 1

<213> Homo sapiens

<300>

<302> IGF1

<310> NM000618

5

<400> 42

atgggaaaaa tcagcagtct tccaaaccaa ttatTTAAGT gctgcttttG tgatttcttg 60
 aaggtaaga tgcacacca accttcacca gctctgccc acctggcgct gtgcctgctc 120
 accttcacca gctctgccc ggctggaccg gagacgctct gcggggctga gctgggtggat 180
 gctcttcagt tcgtgtgtgg agacaggggc ttttatttca acaagccac agggtatggc 240
 tccaggcgtc ggaggggcgc tcagacaggc atcggttatg agtgctgctt ccggagctgt 300
 gatctaagga ggctggagat gtattgcga cccctcaagc ctgccaagtc agtcgctct 360
 gtccgtgccc agcgccacac cgacatgccc aagaccaga aggaagtaca tttgaagaac 420
 gcaagttagag ggagtgcagg aaacaagaac tacaggatgt ag 462

10

<210> 43

<211> 591

20

<212> DNA

<213> Homo sapiens

<300>

<302> PDGFA

25

<310> NM002607

<400> 43

ataggacact tggcttgct gctgctcctc ggctgcggat acctcgccca tggctggcc 60
 gaggaagccg agatcccccg cgaggtgatc gagaggctgg cccgcagtca gatccacagc 120
 atccgggacc tccagcact cctggagata gactccgtag ggagtggagga ttotttggac 180
 accagcctga gagtcacgg ggtccacgcc actaagcatg tgcccggagaa gcggccctg 240
 cccattcggg ggaagagaag catcgaggaa gctgtccccc ctgtctgcaa gaccaggacg 300
 gtcatttacg agatccctcg gagtcaggc gacccacgt ccccaactt cctgatctgg 360
 ccccgctgctg tggaggtgaa acgctgcacc ggctgctgca acacgagcag tgcaagtgc 420
 cagccctccc gcgtccacca ccgcagcgtc aagggtggca aggtggaaa cgtcaggaaag 480
 aagccaaaat taaaagaagt ccagtgagg ttagaggcatttggatg cgctctgcgcg 540
 accacaagcc tgaatccggaa ttatcggaa gaggacacgg atgtgaggtg a 591

30

35

<210> 44

<211> 528

40

<212> DNA

<213> Homo sapiens

45

<300>

<302> PDGFRA

<310> XM003568

<400> 44

50

atggccaagc ctgaccacgc taccagtgaa gtctacgaga tcatggtaa atgctggAAC 60
 agtgaggccg agaagagacc ctcctttac cacctgagtg agattgtgga gaatctgctg 120
 cctggacaat ataaaaagag ttatgaaaaa attcacctgg acttcctgaa gagtgaccat 180
 cctgtgtgg cacgcatgct tggactca gacaatgcat acattgggtt cacttacaaa 240
 aacgaggaag acaagctgaa ggactggag ggtggctgg atgagcagag actgagcgct 300
 gacagtggct acatcattcc tctgcctgac attgaccctg tccctgagga ggaggacctg 360
 ggcaagagga acagacacag ctgcagacc tctgaagaga gtgcattgaa gacgggttcc 420
 agcagttcca cttcatcaa gagagaggac gagaccattg aagacatcga catgatggat 480
 gacatcgcc tagactcttc agacctggtaa gaagacatgt 528

55

60

<210> 45

65

DE 101 00 588 A 1

```

<211> 1911
<212> DNA
<213> Homo sapiens
5   <300>
<302> PDGFRB
<310> XM003790

10  <400> 45
atgcggcttc cgggtgcgat gccagctctg gccctcaaag gcgagctgct gttgctgtct 60
ctcctgttac ttcttggacc acagatctct cagggcttg tcgtcacacc cccggggcca 120
gagcttgtcc tcaatgtctc cagcacccctc gttctgacct gctcgggttc agctccggtg 180
gtgtggaaac ggatgtccca ggagccccca caggaatgg ccaaggccca ggatggcacc 240
15  ttctccagcg tgctcacact gaccaaccc actgggctag acacgggaga atactttgc 300
acccacaatg actcccgtgg actggagacc gatgagcgga aacggctcta catctttgtg 360
ccagatccca ccgtgggctt ctccttaat gatggcgagg aactattcat ctttctcacg 420
gaaataactg agatcaccat tccatgccga gtaacagacc cacagctggt ggtgacactg 480
cacgagaaga aaggggacgt tgcaactgcct gtcccctatg atcaccaacg tggctttct 540
20  ggtatcttg aggacagaag ctacatctgc aaaaccacca ttggggacag ggaggtggat 600
tctgatgcct actatgtcta cagactccag gtgtcatcca tcaacgtctc tggtaacgca 660
gtcagactg tggccgcca gggtgagaac atcaccctca tgtcattgt gatcggaat 720
gaggtggtca acttcgagtg gacatacccc cgcaaagaaa gtggggcgct ggtggagccg 780
gtgactgact tcctcttggc tatgccttac cacatccgct ccattctgca catccccagt 840
25  gccgagttag aagactcggg gacctacacc tgcaatgtga cggagagtgt gaatgaccat 900
caggataaaa aggccatcaa catcaccctg gttgagagcg gctacgtcg gctcctggga 960
gaggtgggca cactacaatt tgctgagctg catggagcc ggacactgca ggttagtggc 1020
gaggcctacc accggccac tgcctgtgg ttcaaagaca accgcacctt gggcgactcc 1080
agcgctggcg aaatcgccct gtccacgcgc aacgtgtcg agacccggta tggtaacgag 1140
30  ctgacactgg ttcgcgtgaa ggtggcagag gctggccact acaccatcg ggccttccat 1200
gaggatgtc aggtccagct ctccttcag ctacagatca atgtccctgt ccgagtgtctg 1260
gagctaagtg agagccaccc tgacagtggg gaacagacag tccgctgtcg tggccggggc 1320
atgccccacg cgaacatcat ctggctgtcc tgcagagacc tcaaaagggtg tccacgtgag 1380
ctggcccca cgctgctggg gaacagtcc gaagaggaga gccagctgga gactaacgtg 1440
35  acgtactggg aggaggagca ggaggttgag gtggtgagca cactgcgtc gcagcacgtg 1500
gatcgccac tgcgtgtcg ctgcacgtg cgcaacgtg tggccagga cacgcaggag 1560
gtcatcggtg tgccacactc ctggccctt aagggtggg tgcatttcacg catccctggcc 1620
ctgggtgtgc tcaccatcat ctccccatc atccatca tgctttggca gaagaagcca 1680
cgttacgaga tccgatggaa ggtgatttag tctgtgagct ctgacggcca tgagtacate 1740
40  tacgtggacc ccatgcagct gcccattagac tccacgtgg agctgcccgc ggaccagctt 1800
gtgctgggac gcaccctcggt ctctggggcc ttggggcagg tggtgaggc cacgggtcat 1860
ggcctgagcc atttcaagc cccaatggaa gtggccgtca aaaatgctta a 1911

45  <210> 46
<211> 1176
<212> DNA
<213> Homo sapiens

50  <300>
<302> TGFbeta1
<310> NM000660

<400> 46
55  atgcccgcct ccgggctgctg gctgctggcc ctgtgtctac cgctgctgtg gctactgggt 60
ctgacgcctg gccccccggc cgccggacta tccacctgca agactatcg catggagctg 120
gtgaagcgga agcgcatcgaa ggccatccgc ggccagatcc tgcattcgact gggctcgcc 180
agccccccga gccagggggga ggtgccggcc gggccgtgc ccgaggccgt gctgcccctg 240
tacaacagca cccgcgaccg ggtggccgggg gagatgtcgag aacggagcc cgagcctgag 300
60  gcccactact acgccaaggaa ggtcaccctcg gtgtaatgg tggaaaccca caacgaaatc 360
tatgacaagt tcaagcagag tacacacagc atatatatgt tcttcaacac atcagagctc 420
cgagaagcggtt tacctgaacc cgtgttgc tcccgccggcag agctgcgtct gctgaggagg 480

```

DE 101 00 588 A 1

ctcaagttaa aagtggagca gcacgtggag ctgtaccaga aatacagcaa caattcctgg 540
 cgataaccta gcaaccggct gctggcaccc agcgactcgc cagagtggtt atcttttgc 600
 gtcaccggag ttgtgcggca gtggttgagc cgtggagggg aaattgaggg ctttcgcctt 660
 agcgcccact gctcctgtga cagcagggat aacacactgc aagtggacat caacgggttc 720
 actaccggcc gccgaggtga cctggccacc attcatggca tgaaccggcc tttcctgc 780
 ctcatggcca cccccgtgga gagggccag catctgcaaa gctccggca cggccgagcc 840
 ctggacacca actattgctt cagctccacg gagaagaact gctgcgtgcg gcagctgtac 900
 attgacttcc gcaaggacct cggctggaag tggatccacg agcccaaggg ctaccatgcc 960
 aacttctgcc tcggccctg cccctacatt tggagcctgg acacgcagta cagcaaggtc 1020
 ctggccctgt acaaccagca taacccgggc gcctcggcgg cgccgtgctg cgtccgcag 1080
 gcgctggagc cgctgcccatt cgtgtactac gtggccgca agcccaaggt ggagcagctg 1140
 tccaacatga tcgtgegctc ctgcaagtgc agctga 1176

5

10

15

<210> 47
 <211> 1245
 <212> DNA
 <213> Homo sapiens

20

<300>
 <302> TGFbeta2
 <310> NM003238

<400> 47
 atgcactact gtgtgctgag cgctttctg atccgtcatt tggtcacggc cgcgctcagc 60
 ctgtctaccc gcagcacact cgatatggac cagttcatgc gcaagaggat cgaggcgatc 120
 cgcgggcaga tcctgagcaa gctgaagtc accagtcccc cagaagacta tcctgagccc 180
 gaggaagtcc cccccggaggt gatttccatc tacaacagca ccagggactt gctccaggag 240
 aaggcgagcc ggagggcggc cgctcgagc cgcgagagga ggcacgaaga gtactacgcc 300
 aaggaggtt acaaaataga catgcccggcc ttcttccctt cggaaaatgc catccggccc 360
 actttctaca gaccctactt cagaatttgtt cgatttgacg tctcagcaat ggagaagaat 420
 gcttccaatt tggtaaaagc agagttcaga gtcttcgtt tgcagaaacc aaaaagccaga 480
 gtgcctgaac aacgattgtt gcttatatccat atttcaagt ccaaagattt aacatctcca 540
 acccagcgct acatcgacag caaagttgtt aaaacaagag cagaaggcga atggctctcc 600
 ttcgatgtaa ctgatgtgt tcatgaatgg cttcaccata aagacaggaa cctgggattt 660
 aaaataaagtt tacactgtcc ctgctgcaat ttttattt ctaataatta catcatccca 720
 aataaaaagtg aagaactaga agcaagattt gcaggtattt atggcacctc cacatatacc 780
 agtgggtgatc agaaaactat aaagtccact agggaaaaaaa acagtgggaa gaccccacat 840
 ctccgtctaa ttttatttgc ctcctacagc cttgagtcac aacagaccaa ccggcggaaag 900
 aagcgtgtt tggatgcggc ctattgtttt agaaatgtgc aggataattt ctgcctacgt 960
 ccactttaca ttgatttcaa gagggatcta ggggtggaaat ggatacacga acccaaagg 1020
 tacaatgcca acttctgtgc tggagcatgc ccgtattttt ggagttcaga cactcagcac 1080
 agcaggggtcc tgagttata taataccata aatccagaag catctgcctc tccttgcgtc 1140
 gtgtcccaag atttagaacc tctaaccatt ctctactaca ttggcaaaac acccaagatt 1200
 gaacagctt ctaatatgtat tgtaaagtct tgcaaatgc gctaa 1245

25

30

35

40

45

<210> 48
 <211> 1239
 <212> DNA
 <213> Homo sapiens

50

<300>
 <302> TGFbeta3
 <310> XM007417

55

<400> 48
 atgaagatgc acttgcaaag ggctctgggt gtcctggccc tgctgaactt tgccacggtc 60
 agcctcttc tgcacttgc caccacccgtt gacttcggcc acatcaagaa gaagaggggt 120
 gaagccatata ggggacagat cttgagcaag ctcaggctca ccagcccccc tgagccaaacg 180
 gtgatgaccc acgtccccata tcaggtccctg gcccttaca acagcacccg ggagctgctg 240

60

65

DE 101 00 588 A 1

gaggagatgc atggggagag ggaggaaggc tgcacccagg aaaacaccga gtcggaatac 300
 tatgccaaag aaatccataa attcgacatg atccaggggc tggcggagca caacgaactg 360
 gctgtctgcc ctaaaggaat tacctccaag gtttccgtct tcaatgtgtc ctcagtggag 420
 5 aaaaatagaa ccaacctatt ccgagcagaa ttccgggtct tgcgggtgcc caaccccagc 480
 tctaagcgga atgagcagag gatcgagctc ttccagatcc ttcggccaga tgacacatt 540
 gccaaacacgc gctatatcggt tggcaagaat ctgccccacac ggggcactgc cgagtggctg 600
 tcctttagat tcactgacac tgtgcgttag tggctgtga gaagagagtc caacttaggt 660
 ctagaaatca gcattcactg tccatgtcac accttcagc ccaatggaga tattcctggaa 720
 10 aacattcactg aggtgatgga aatcaaattc aaaggcgtgg acaatgagga tgaccatggc 780
 cgtggagatc tggggcgcct caagaagcag aaggatcacc acaaccctca tctaattcctc 840
 atgatgatc ccccacacgc gctcgacaac ccgggcccagg ggggtcagag gaagaagcgg 900
 gctttggaca ccaattactg cttccgcaac ttggaggaga actgctgtgt gcgccccctc 960
 tacattgact tccgacagga tctgggtctt aagtgggtcc atgaacactaa gggttactat 1020
 15 gccaacttct gctcaggccc ttgcccatac ctccgcagtg cagacacaac ccacagcacg 1080
 gtgctgggac tgtacaacac tctgaacctt gaagcatctg cctcgcctt ctgcgtgccc 1140
 caggacctgg agccctgac catcctgtac tatgttgaaa ggaccccaa agtggagcag 1200
 ctctccaaca tggtgtgaa gtcttgtaaa tgttagctg 1239

20 <210> 49
 <211> 1704
 <212> DNA
 <213> Homo sapiens

25 <300>
 <302> TGFbetaR2
 <310> XM003094

30 <400> 49
 atgggtcggtt ggctgcttag gggcctgtgg ccgctgcaca tcgtcctgtg gacgcgtatc 60
 gccagcacga tcccacccga cggtcagaag tcggtaata acgacatgtat agtcaactgac 120
 aacaacgggt cagtcaagt tccacaactg tgtaaatttt gtatgtgtgat attttccacc 180
 tggacaacc agaaatctg catgagcaac tgcagcatca cctccatctg tgagaagcca 240
 35 caggaagtct gtgtggctgt atggagaaag aatgacgaga acataacact agagacagtt 300
 tgcctatggcc ccaagctccc ctaccatgac tttattctgg aagatgtgc ttctccaaag 360
 tgcattatga aggaaaaaaa aaaggctgtt gagacttct tcattgttcc ctgttagctct 420
 gatgagtgca atgacaacat catcttctca gaagaatata acaccagcaa tcctgacttg 480
 ttgcttagtca tatttcaagt gacaggcatc agcctctgc caccactggg agttgcata 540
 40 tctgtcatca tcatttctca ctgctaccgc gttaaccggc agcagaagct gagttcaacc 600
 tggaaacccg gcaagacgcg gaagctcatg gagttcagcg agcactgtgc catcatctg 660
 aaagatgacc gctctgacat cagctccacg tggccaaca acatcaacca caacacagag 720
 ctgctggcca tttagctggc caccctgggtt gggaaaggc gcttgcgtga ggtctataag 780
 gccaagctga agcagaacac ttccagagcag tttgagacag tggcagtcac gatcttccc 840
 45 tatgaggagt atgccttctt gaagacagag aaggacatct tctcagacat caatctgaa 900
 catgagaaca tactccagtt cctgacggct gaggagcggg agacggagtt gggaaaccaa 960
 tactggctga tcaccgcctt ccacgccaag ggcaacctac aggagtacct gacgcggcat 1020
 gtcatcagct gggaggacat ggcgaagctg ggcagctccc tcgccccggg gattgctcac 1080
 ctccacagtg atcacactcc atgtgggagg cccaaagatgc ccatcgtgca cagggacctc 1140
 50 aagagctcca atatccctgt gaagaacac ctaacctgtc gcctgtgtga ctttgggttt 1200
 tccctgcgtc tggaccctac tctgtctgtg gatgacctgg ctaacagtgg gcaggtggaa 1260
 actgcaagat acatggctcc agaagtccta gaatccagga tgaatttggaa gaatgtttag 1320
 tccttcaagc agaccgatgt ctactccatg gctctgggtc tctggaaat gacatctcgc 1380
 tggatgcag tggagaatg aaaagattat gagcctccat ttggttccaa ggtgcgggag 1440
 55 caccctgtg tcgaaagcat gaaggacaac gtgtgagag atcgagggcg accagaaatt 1500
 cccagcttct ggctcaacca ccaggccatc cagatgggtt gtgagacgtt gactgagtgc 1560
 tgggaccacg acccagaggc ccgtctcaca gcccagtggtg tggcagaacg ctccagtgag 1620
 ctggagcatc tggcaggctc tccggggagg agctgctcggtt aggagaagat tcctgaagac 1680
 ggctccctaa acactaccaa atag 1704

60 <210> 50

DE 101 00 588 A 1

<211> 609
 <212> DNA
 <213> Homo sapiens

<300>
 <302> TGFbeta3
 <310> XM001924

<400> 50

atgtctcatt acaccattat tgagaatatt tgcctaaag atgaatctgt gaaattctac 60
 agtcccaaga gagtgcactt tcctatcccg caagctgaca tggataagaa gcgattcago 120
 tttgtcttca agccgttctt caacacccca ctgtcttcc tacagtgtga gctgacgctg 180
 tgtacgaaga tggagaagca cccccagaag ttgccttaagt gtgtgcctcc tgacgaagcc 240
 tgcacccctgc tggacgcctc gataatctgg gccatgtgc agaataagaa gacgttca 300
 aagccccttg ctgtgatcca ccatgaagca gaatctaaag aaaaagggtcc aagcatgaag 360
 gaaccaaatac caatttctcc accaatttc catggcttgg acaccctaac cgtgatgggc 420
 attgcgtttg cagccttgc gatcgagca ctccgtacgg gggccttggt gtacatctat 480
 tctcacacag gggagacagc aggaaggcag caagtccccca cctcccccgc agcctcgaa 540
 aacagcagtg ctgcccacag catcgccagc acgcagagca cgcccttgctc cagcagcagc 600
 acggccttag 609

5

10

15

20

<210> 51
 <211> 3633
 <212> DNA
 <213> Homo sapiens

<300>
 <302> EGFR
 <310> X00588

25

30

<400> 51

atgcgacccct ccggggacggc cggggcagcg ctcctggcgc tgctggctgc gctctgccc 60
 gcgagtcggg ctctggagga aaagaaatgg tgccaaggca cgagtaacaa gctcacgcag 120
 ttgggcacct ttgaagatca ttttctcagc ctccagagga tggtaataa ctgtgagggtg 180
 gtccttggga atttggaaat tacctatgtg cagaggaatt atgatcttc ctctttaaag 240
 accatccagg aggtggctgg ttatgtctc attgcctca acacagtgg gccaatttct 300
 ttggaaaacc tgcagatcat cagaggaat atgtactacg aaaatttcta tgccttagca 360
 gtcttatcta actatgtgc aaataaaacc ggactgaagg agctgccccat gagaatttta 420
 cagggaaatcc tgcatggcgc cgtgcgggtc agcaacaacc ctgcctgtg caacgtggag 480
 agcatccagt ggcggacat agtcagcagt gactttctca gcaacatgtc gatggacttc 540
 cagaaccacc tggcagctg cccaaatgt gatccaagct gtcccaatgg gagctgctgg 600
 ggtgcaggag aggagaactg ccagaaactg accaaaatca tctgtgccca gcagtgtcc 660
 gggcgtgcc gtggcaagtc ccccagtgtac tgctgccaca accagtgtgc tgcaggctgc 720
 acaggcccccc gggagagcga ctgcctggc tgccgcaat tccgagacga agccacgtgc 780
 aaggacaccc gcccccaact catgtctac aaccccccacca cgtaccagat ggatgtgaac 840
 cccgaggggca aatacagctt tggtgccacc tgcgtgaaga agtgtccccg taattatgtg 900
 gtgacagatc acggctcggt cgtccggagcc tggggcccg acagctatga gatggaggaa 960
 gacggcgtcc gcaagtgtaa gaagtgcgaa gggccttgcc gcaaggatgtg taacggaaata 1020
 ggtattgggt aattaaaga ctcactctcc ataaatgtca cgaatattaa acacttcaaa 1080
 aactgcacct ccatcagtgg cgatctccac atcctgcccgg tggcatttag gggtaactcc 1140
 ttcacacata ctccctctt ggtccacag gaactggata ttctgaaaac cgtaaaggaa 1200
 atcacaagggt ttttgcgtat tcaggcttgg cctgaaaaca ggacggaccc ccatgcctt 1260
 gagaacctag aaatcatacg cggcaggacc aagcaacatg gtcagtttc tcttgccatgc 1320
 gtcagcctga acataacatc ctgggatca cgcccttca aggagataag tgatggagat 1380
 gtgataattt cggaaaacaa aaatttgc tatgcaataa caataaaactg gaaaaaaactg 1440
 tttgggaccc cgggtcagaa aacccaaatt ataagcaaca gaggtgaaaaa cagctgcaag 1500
 gcccacaggcc aggtctgcca tgccttgc tccccggagg gtcgtgggg cccggagccc 1560
 agggactgcg tctcttgcgg gaatgtcagc cgaggcaggg aatgcgtgg caagtgcag 1620
 cttctggagg gtgagccaag ggagtttgc gagaactctg agtgcataca gtgccaccca 1680
 gagtgccctgc ctcaggccat gaacatcacc tgcacaggac ggggaccaga caactgtatc 1740

35

40

45

50

55

60

65

DE 101 00 588 A 1

cagtgtgccc actacattga cgccccccac tgcgtcaaga cctgcccggc aggagtcatg 1800
 ggagaaaaca acacccttgt ctggaaagta gcagacgccc gccatgtgt ccacacctgtc 1860
 catccaaact gcacctacgg atgcacttggg ccaggtcttg aaggctgtcc aacgaatggg 1920
 5 cctaagatcc cgtccatcgca cactggatg gtggggggccc tcctcttgc gctgggtgt 1980
 gcccctgggta tcggccttcatgcg aggacatcg ctcggaaagcg cacgctgcgg 2040
 aggctgtgc aggagaggga gcttgtggag cctttacac ccagtgagaa agctccaaac 2100
 caagctctt tgaggatctt gaaggaaact gaattcaaaa agatcaaagt gctgggctcc 2160
 ggtgcgttcg gcacgggtgtaaaggactc tggatcccag aagggtgagaa agttaaaatt 2220
 10 cccgtcgcta tcaaggaaatt aagagaagca acatctccga aagccaacaa ggaaatccctc 2280
 gatgaaggct acgtgtatggc cagcgtggac aaccccaacg tgcgtccct gctgggcata 2340
 tgcctcacct ccaccgtgca actcatcaacg cagtcatgc cttcggctg cttcctggac 2400
 tatgtccggg aacacaaaga caatattggc tcccaactg tgctcaactg gtgtgtgcag 2460
 atcgcaaaagg gcatgaacta cttggaggac cgtcgcttgg tgcaccgcga cctggcagcc 2520
 15 aggaacgtac tggtaaaaaac accgcagcat gtcaagatca gagattttg gctggccaaa 2580
 ctgctgggtg cggaagagaa agaataccat gcagaaggag gcaaaagtgc tatcaagtgg 2640
 atggcattgg aatcaatttt acacagaatc tataaccacc agatgtatgt ctggagctac 2700
 ggggtgaccg tttgggagtt gatgacctt ggatccaagg catatgacgg aatccctgcc 2760
 agcgagatct cttccatctt ggagaaagga gaacgcctcc ctcagccacc catatgtacc 2820
 20 atcgatgtct acatgatcat ggtcaagtgc tggatgatag acgcagatag tcgccccaaag 2880
 ttccgtgagt tgatcatcgatcttccaaa atgccccggag acccccaagcg ctacccgtc 2940
 attcaggggg atgaaaagaat gcatttggca agtccatcag actccaaactt ctaccgtgcc 3000
 ctgatggatg aagaagacat ggacgacgtg gtggatgcgg acgagttacat catcccacag 3060
 cagggcttct tcagcagcccc 3120
 25 accagcaaca attccaccgt ggcttgcatt gatagaaatg ggctgcaaaag ctgtcccatc 3180
 aaggaagaca gcttcttgca gcgatacagc tcagacccca caggcgccct gactgaggac 3240
 agcatagacg acaccccttcccccgtgcct gaatacataa accagtccgt tcccaaaaagg 3300
 cccgctggct ctgtcagaa tccctgttat cacaatcagc ctctgaaccc cgcccccagc 3360
 agagaccac actaccagga cccccacagc actgcagtgg gcaacccca gatatctcaac 3420
 30 actgtccacgc ccacctgtgt caacagcaca ttgcacagcc ctgcccactg ggcccagaaa 3480
 ggcagccacc aaatttagcct ggacaaccct gactaccaggc aggacttctt tcccaaggaa 3540
 gccaagccaa atggcatctt taagggtctt acagctgaaa atgcagaata cctaagggtc 3600
 gcccacaaa gcagtgaatt tattggagca tga 3633

35 <210> 52
 <211> 3768
 <212> DNA
 <213> Homo sapiens

40 <300>
 <302> ERBB2
 <310> NM004448

45 <400> 52
 atggagctgg cggccttggc cggctggggg ctcctcctcg ccctcttgc ccccgagcc 60
 gcgagcaccc aagtgtgcac cggcacagac atgaagctgc ggctccctgc cagtcggcag 120
 acccacctgg acatgtcccg ccacctctac cagggctgcc aggtggtgca gggaaacctg 180
 gaactcacct acctgcccac caatgccagc ctgtccttcc tgcaggatat ccaggaggtg 240
 50 cagggctacg tgctcatcgca tcacaaccaa gtgaggcagg tcccactgca gaggctgcgg 300
 attgtgcgag gcaccacgt ctttggggac aactatgccc tggccgtgt agacaatgg 360
 gacccgctga acaataccac ccctgtcaca ggggcctccc caggaggct gcgggagctg 420
 cagttcggaa gcctcacaga gatcttggaaa ggaggggtct tgatccagcg gaaacccca 480
 ctctgttacc aggcacacgt tttgtggaaag gacatcttcc acaagaacaa ccagctggct 540
 55 ctcacactga tagacacccaa ccgtctcgcc gcctgcccacc cctgttctcc gatgtgtaa 600
 ggctcccgct gctggggaga gagttctgag gattgtcaga gcctgacgcg cactgtctgt 660
 gcccgggtgt gtgcggcgtc caagggggca ctgcccactg actgtgtccca tgacgtgt 720
 getggcggct gcacggggccca aagcactt gactgcctgg cctgccttca cttcaaccac 780
 agtggcatct gtgagctgca ctggccagcc ctgggtcacct acaacacaga cacgtttgag 840
 60 tccatgcccataccatccggg ccgtataca ttccggcggca gctgtgtgac tgctgtccc 900
 tacaactacc ttctacggc cgtggatcc tgccaccctcg tctggccccc gcaacacaa 960
 gaggtgacag cagaggatgg aacacagcgg tgtgagaagt gcagcaagcc ctgtgcccga 1020

DE 101 00 588 A 1

gtgtgctatg gtctggcat ggagcactt gtagaggtaa gggcagttac cagtgc 1080
 atccaggagt ttgctggctg caagaagatc tttggggacc tggcatttct gccggagagc 1140
 tttgatgggg acccagcctc caacactgcc ccgctccagc cagagcagct ccaagtgtt 1200
 gagactctgg aagagatcac aggttaccta tacatctcg catggccgga cagcctgc 1260 5
 gacotcagcg tcttccagaa cctgcaagta atccggggac gaattctgca caatggcgcc 1320
 tactcgtgaa ccctgcaagg gctggcattc agctggctgg ggctgcgtc actgaggaa 1380
 ctgggcagtg gactggccct catccaccat aacaccacc tctgcttcgt gcacacgg 1440
 ccctgggacc agctttcg gaacccgac caagctctgc tccacactgc caaccggcca 1500
 gaggacgagt gtgtggcga gggcctggcc tgccaccagg tgcgccccg aggactgc 1560 10
 tggggtccag ggcccacca gtgtgtcaac tgccaggact tccttcggg ccaggagtgc 1620
 gtggaggaaat gcccgtact gcaggggctc cccaggaggat atgtgaatgc caggactgt 1680
 ttggcgtgcc accctgatg tcagccctcg aatggctcg tgacctgtt tggaccggag 1740
 gctgaccagt gtgtggctg tgccactat aaggaccctc ccttctgcgt gcccgcgtc 1800
 cccagcggtg taaaacctga cctctccatc atgcccattc ggaagttcc agatgaggag 1860
 ggcgcattgc acccttgc acccaactgc catcaactgc acccaactt gtgtggac 1920 15
 ggctgccccg ccgagcagag agccagccct ctgacgttca tcgtctctgc ggtggggc 1980
 attctgctgg tcgtggctt ggggggtgtc tttggatcc tcataaagcg acggcagcag 2040
 aagatccgga agtacacgt gcgagactg ctgcaggaaa cggagcttgt ggagccgtc 2100
 acacctagcg gagcgtatgc caaccaggcg cagatgcggg tcctgaaaaga gacggagctg 2160
 aggaaggta aggtgttgg atctggcgt tttggcacag tctacaagg catctggatc 2220
 cctgatgggg agaatgtgaa aattccatg gccatcaaag tggctgggtt aaacacatcc 2280
 cccaaagcca acaaagaaat cttagacgaa gcatacgtga tggctgggtt gggctcccc 2340
 tatgtctccc gcctctggg catctgcgt acatccacgg tgcagcttgt gacacagctt 2400
 atgccctatg gctgcctt agaccatgtc cggaaaaacc gcggacgcct gggctccag 2460 25
 gacctgctga actgggttat gcagattgcc aagggatga gctacctgga ggtgtgcgg 2520
 ctcgtacaca gggacttggc cgctcgaaac gtgtgtca agatcccaa ccatgtcaaa 2580
 attacagact tcgggtggc tcggctgtc gacattgacg agacagatg ccatgcagat 2640
 gggggcaagg tgccatcaa gtggatggcg ctggagtccca ttctccgcg gcgggttacc 2700
 caccagatgt atgtgtggag ttatgggtg actgtgtgg agctgatgac tttggggcc 2760 30
 aaaccttacg atggatccc agcccccggg atccctgacc tgctggaaaa gggggagcgg 2820
 ctgccccagc ccccccattcg caccattgtat gtctacatga tcataaaggatc atgttggatg 2880
 attgactctg aatgtcgccg aagattcccg gagttgggtt ctgaatttctc cccatgcgtt 2940
 agggaccccc agcgcttgc ggtcatecg aatgaggact tggggccagc cagtccttg 3000
 gacagcacct tctaccgtc actgctggag gacatgaca tgggggaccc ggtggatgt 3060 35
 gaggagttatc tggtaaaaaa gcagggttcc ttctgtccag accctgcctt gggcgctgg 3120
 ggcatggtcc accacaggca ccgcagctca tctaccaggat tggcggtgg ggacctgaca 3180
 ctagggtctgg agccctctga agaggaggcc cccagggttc cactggcacc ctcgaaagg 3240
 gctggctccg atgtatgtt gttgacccg ggaatggggg cagccaagg gctgcaaaagc 3300
 ctccccacac atgacccctcg ccctctacag cggtagtgc aggacccac agtacccctg 3360 40
 ccctctgaga ctgtatggctt cgttgcctt ctgacgtca gccccccagc tgaatatgtg 3420
 aaccagccag atgtcgccg ccagccccct tcgccccggag agggccctct gcctgtgtcc 3480
 cgacctgtcg gtgcactct ggaaaggccc aagactctt ccccaaggaa gaatggggtc 3540
 gtcaaagacg ttttgcctt tgggggtgccc gtggagaacc ccgagttactt gacacccctg 3600
 ggaggagctg cccctcagcc ccaccctctt cctgccttca gcccagcctt cgacaacctc 3660
 tattactggg accaggaccc accagagcgg gggctccac ccagcacctt caaagggaca 3720 45
 cctacggcag agaaccacaga gtacctgggt ctggacgtgc cagtgtga 3768

<210> 53
 <211> 1986
 <212> DNA
 <213> Homo sapiens

<300>
 <302> ERBB3
 <310> XM006723

<400> 53
 atgcacaact tcagtgtttt ttccaaattt gcaaccattt gaggcagaag cctctacaac 60
 cggggcttct cattgttcatat gatggaaat ttggatgtca catctctggg cttccgtatcc 120 60
 ctgaaggaaa ttatgtgttgc gcgtatctt ataaatgttca ataggcagct ctgttaccac 180
 65

DE 101 00 588 A 1

cactcttga actggaccaa ggtgcttcgg gggcctacgg aagagcgact agacatcaag 240
 cataatccgc cgcgcagaga ctgcgtggca gagggcaaag ttgtgtaccc actgtgctcc 300
 tctggggat gctggggccc aggcccttgt cagtgtttgt cctgtcaaa ttatagccga 360
 5 ggagggtgtct gtgtgaccsa ctgcaactt ctgaatgggg agcctcgaga atttgcccat 420
 gaggccgaat gcttctcctg ccacccggaa tgccaaccca tggagggcac tgccacatgc 480
 aatggctcg gctctgatac ttgtgctcaa tgtgcccatt ttcgagatgg gccccactgt 540
 gtgagcagct gccccatgg agtccttagt gccaaggggcc caatctacaa gtacccagat 600
 gttcagaatg aatgtcggcc ctgccatgag aactgcaccc aggggtgtaa aggaccagag 660
 10 cttcaagact gtttaggaca aacactggtg ctgatcgca aaacccatct gacaatggct 720
 ttgacagtga tagcaggatt ggtagtgatt ttcatgatgc tggcgccac ttttctctac 780
 tggcgtggc gccgattca gaataaaagg gctatgagge gatacttgg acgggggtgag 840
 agcatagagc ctctggaccc cagtggaaag gctaacaag tcttggccag aatcttcaaa 900
 gagacagagc taaggaagct taaagtgtt ggctcggtt tcttggaaac tgcacaaaa 960
 15 ggagtgtgga tccctgggg tgaatcaatc aagattccag tctgcattaa agtcatttggag 1020
 gacaagagtg gacggcagag ttttcaagct gtgacagatc atatgtggc cattggcagc 1080
 ctggaccatg cccacattt aaggctgtg ggactatgcc cagggtcattc tctgcagctt 1140
 gtcactcaat atttgcctct ggggtctcg ctgatcatg tgagacaaca ccggggggca 1200
 ctggggccac agctgctgtc caactggggc gtacaaattt ccaagggaat gtactacctt 1260
 20 gaggaaacatg gtatggtca tagaaacctg gctgccccaa acgtgctact caagtcaccc 1320
 agtcagggtc aggtggcaga ttttgggtgt gctgacactc tgcctctga tgataagcag 1380
 ctgctataca gtgaggccaa gactccaatt aagtggatgg cccttggagag tatccacttt 1440
 gggaaataca cacaccagag tcatgtctgg agctatggg tgacagttt ggagttgatg 1500
 accttcgggg cagagcccta tgcagggtca cgattggctg aagtaccaga cctgctagag 1560
 25 aaggggggagc ggttggcaca gccccagatc tgcacaattt atgtctacat ggtatggtc 1620
 aagtgttggta tgattgtatga gaacattcgc ccaaccttta aagaacttagc caatgagttc 1680
 accaggatgg cccgagaccc accacggat tctgtcataa agagagagag tggcctgg 1740
 atagccccctg ggccagagcc ccatggctg acaaacaaga agctagagga agtagagctg 1800
 gagccagaac tagacctaga cctagactt gaaagcagagg aggacaacct ggcaaccacc 1860
 30 acactgggtc ccgcctctag cctaccagtt ggaacactt atcggccacg tggagccag 1920
 agccttttaa gtccatcatc tggatacatg cccatgaacc aggtaatct tgggttctt 1980
 ccttag 1986

35 <210> 54
 <211> 1437
 <212> DNA
 <213> Homo sapiens

40 <300>
 <302> ERBB4
 <310> XM002260

<400> 54

45 atgatgttacc tggaagaaaag acgactcggt catcggtt tggcagcccc taatgtctta 60
 gtgaaatctc caaacatgt gaaaatcaca gattttgggc tagccagact ctggaaagga 120
 gatggaaaag agtacaatgc tcatgtgggaa aagatgccaa ttaaatggat ggctctggag 180
 tggatatacatt acagaaatt caccatcatg agtgcgttt ggagctatgg agttactata 240
 tgggaaactgtg tgacctttgg agggaaaaccc tatgtatggaa ttccaacgcg agaaatccct 300
 50 gatttattatg agaaaggaga acgtttgcct cagcccccata tctgcactat tgacgtttac 360
 atggtcatgg tcaaataatgtt gatgattgtat gctgacagta gacctaaatt taaggaactg 420
 gctgctgatgt ttcaaggat ggctcgagac cctcaaagat acctagttt tcaggggtat 480
 gatcgatgtg agctccctcg tccaaatgac agcaagttt ttcagaatct ctggatgaa 540
 gaggattttgg aagatatgtat ggtatgttgg gagtacttgg tccctcaggc ttcaacatc 600
 55 ccaccccccata tctatactt cagagcaaga attgactcgaa ataggagtgaa aattggacac 660
 agccctccctc ctgcctcac ccccatgtca ggaaaccagg ttgtataccg agatggaggt 720
 tttgctgtcg aacaaggatgt tctgtggcc tacagagcccc caactagcact aattccagaa 780
 gtcctgtgg cacaggggtgc tactgtgtg atttttgttgc actcctgtg taatggcacc 840
 ctacgcaaggc cagttggcacc ccatgtccaa gaggacagta gcacccaggatgtacgtgt 900
 60 gaccccaccc tgtttggccc agaacgggac ccacggagg agctggatgaa ggaagggttac 960
 atgactccata tgcgagacaa acccaaacaa gaatacctga atccagtgaa ggagaaccct 1020
 tttgtttctc ggagaaaaaa tggagacccatgg caagcattgg ataatcccgaa atatcacaat 1080

DE 101 00 588 A 1

gcatccaatg gtccacccaa ggccgaggat gagtatgtga atgagccact gtacctcaac 1140
 acctttgcca acaccttggg aaaagcttag tacctgaaga acaacatact gtaatgcca 1200
 gagaaggcca agaaagcggt tgacaaccct gactactgga accacagcct gccacctcg 1260
 agcaccccttc agcaccaga ctacctgcag gagtagcaga caaaatattt ttataaacag 1320
 aatgggcgga tccggcctat tgtggcagag aatcctgaat acctctctga gttctccctg 1380
 aagccaggca ctgtgctgcc gcctccacct tacagacacc ggaatactgt ggtgtaa 1437

5

<210> 55
 <211> 627
 <212> DNA
 <213> Homo sapiens

10

<300>
 <302> FGF10
 <310> NM004465

15

<400> 55
 atgtggaaat ggatactgac acatttgcc tcagccttc cccacctgcc cggtgtgc 60
 tgctgtgc ttttgtgc gttcttggc tcttcgtcc ctgtcacctg ccaagccctt 120
 ggtcaggaca tgggtgtcacc agaggccacc aactcttctt ctcctccctt ctcctctcct 180
 tccagcgcgg gaaggcatgt gcccggatc aatcaccttc aaggagatgt ccgtggaga 240
 aagctattct ctttccacca gtactttctc aagattgaga agaacgggaa ggtcagcggg 300
 accaagaagg agaactgccc gtacagcatc ctggagataa catcagtata aatcgagtt 360
 gttgccgtca aagccattaa cagcaactat tacttagcca tgaacaagaa gggaaaactc 420
 tatggctcaa aagaatttaa caatgactgt aagctgaagg agaggataga gaaaaatgga 480
 tacaataacct atgcatcatt taactggcag cataatggga ggcaaatgta tggcattg 540
 aatggaaaag gagotccaag gagaggacag aaaacacgaa gaaaaaacac ctgtgtcac 600
 tttcttccaa tgggtgtaca ctcatag

20

25

30

<210> 56
 <211> 1069
 <212> DNA
 <213> Homo sapiens

35

<300>
 <302> FGF11
 <310> XM008660

40

<400> 56
 ncbsncvwrbdnctdrtnng nmstrctrst tanmymmsar chbmdrtnnctdstrctrng 60
 mstmmmtanmy rmtsndhstr ycbardasna stagnbankg rahcsmdatv washtmant 120
 hdbrandnkb arggnbankh msansbrbas tgrrntanm ycsmbmrnar nvdntnhmsa 180
 nsbrbastgr wthactrgmr naaccssnmv rsnmkywrd ssrchmanrg ansmhmsans 240
 karytamtaa chrdatacra natavrthra tatstmmamm aathrarmat scatarrhn 300
 mndahmrrnc basstathrs ncbanntatn rcttdrcts bmssnrnasb mttdnvnatn 360
 acnrrrbtch ngynrmatnn hbthsdamds aatggcggcg ctggccagta gcctgatccg 420
 gcagaagcgg gaggtcccg agccccgggg cagccggccg gtgtccgcg agccgcgt 480
 gtgtcccgcc ggcaccaat cccttgcga aagcagtc ctcatcctgc tggcaagg 540
 ggcactgtgc gggggcggc ccgcgcggcc ggaccgcgc ccggagcctc agctcaaagg 600
 catcgtcacc aaactgttct gcccgcaggg ttcttacctc caggcgaatc ccgacggaag 660
 catccagggc acccagagg ataccagctc ctccacccac ttcaacctga tccctgtggg 720
 ctccgtgtg gtcacccatcc agagcgcac gctgggtcac tacatggca tgaatgctg 780
 gggactgtct tacagttcgc cgcatttac agctgagtgt cgctttaagg agtgtgtctt 840
 tgagaattac tacgtctgt acgcctctgc tcttacccgc cagcgtcggtt ctggccggc 900
 ctggtacctc ggcctggaca aggaggcga ggtcatgaag gaaaccgag ttaagaagac 960
 caaggcagct gcccacttgc tgcccaagct cctggaggtg gccatgtacc aggagccttc 1020
 tctccacagt gtcggcagg cctcccttc cagtcacccct gccccctga

45

50

55

60

65

DE 101 00 588 A 1

```

<210> 57
<211> 732
<212> DNA
<213> Homo sapiens
5

<300>
<302> FGF12
<310> NM021032

10 <400> 57
atggctgccc cgatagccag ctcccttgc acggcagaagc ggcaggcgag ggagtccaaac 60
agcgaccggg tgtcggccctc caagcgccgc tccagccccca gcaaagacgg gcgctccctg 120
tgcgagagggc acgtcctcgg ggtttcagc aaagtgcgtct tctgcagcgg ccgcaagagg 180
15 cccgtgagggc ggagaccaga accccagtc aaagggattt tgacaagggtt attcagccag 240
cagggtatact tcctgcagat gcacccagat ggtaccattt atgggaccaa ggacgaaaac 300
agcgactaca ctctcttcaa tctaattttt gtggccctgc gtgttagtggc catccaagga 360
gtgaaggctt gcctctatgt ggccatgaat ggtgaaggct atctctacag ttcatatgtt 420
ttcactccag aatgcaaattt caaggaatct gtgtttgaaa actactatgtt gatctattct 480
20 tccacactgtt accgcccggc agaatcaggc cgagcttggt ttctgggactt caataaaagaa 540
ggtcaaattt tgaaggggaa cagagtgaag aaaaccaaggc cctcatcaca ttttgtaccg 600
aaaccttattt aagtgtgtat gtacagagaa ccatcgctac atgaaattgg agaaaaacaa 660
gggcgttcaa ggaaaagttt tggAACACCA accatgaatg gaggcaaagt tgtgaatcaa 720
gattcaacat ag 732

25

<210> 58
<211> 738
<212> DNA
<213> Homo sapiens

30 <300>
<302> FGF13
<310> XM010269

35 <400> 58
atggcggccgg ctatcgccag ctgcgtcatc cgtcagaaga ggcaaggccc cgagcgcgag 60
aaatccaacg cctgcgaatgt tgtcagcggc cccagcaaaag gcaagacccag ctgcgacaaa 120
aacaagttaa atgtcttttcc cgggttcaaa ctttcggtt ccaagaagag ggcgacaaga 180
40 agaccagagc ctcagcttaa gggtatagtt accaagcttat acagccgaca aggctaccac 240
ttgcagctgc aggccggatgg aaccatttgat ggcaccaaaatgaggacacg cacttacact 300
ctgttttaccatc tcatcccgtt gggtctgca gtggggctt tccaaggagt tcaaaccaag 360
ctgtacttgg caatgaacag tgagggatac ttgtacacctt cggaaactttt cacacctgag 420
tgcaaatttca aagaatcagt gtttggaaat tattatgttca tatttcatc aatgatatac 480
45 cgtcagcagc agtcaggccg aggggtgtt ctgggtctga acaaagaagg agagatcatg 540
aaaggcaacc atgtgaagaa gaacaaggctt gcagcttattt ttctgcctaa accactgaaa 600
gtggccatgt acaaggagcc atcaactgcac gatctcacgg agttctcccg atctggaaac 660
gggaccccaa ccaagagcag aagtgtctt ggcgtgctga acggaggcaa atccatgagc 720
cacaatgaat caacgttag 738

50

<210> 59
<211> 624
<212> DNA
<213> Homo sapiens

55 <300>
<302> FGF16
<310> NM003868

60 <400> 59
atggcagagg tggggggcgt ctgcgttcc ttggactggg atctacacgg ctgcgttcc 60

```

DE 101 00 588 A 1

tctctgggga	acgtgccctt	agctgactcc	ccagggttcc	tgaacgagcg	cctgggc当地	120
atcgaggggga	agctgcagcg	tggctcaccc	acagacttcg	cccacctgaa	ggggatc当地	180
cggcgc当地	agctctactg	ccgcaccggc	ttccacctgg	agatctccc	caacggc当地	240
gtgcacggga	cccgccacga	ccacagccgc	ttcggaatcc	tggagtttat	cagcctg当地	300
gtggggctga	tcagcatccg	gggagtggac	tctggcctgt	accttaggaat	gaatgagc当地	360
ggagaactct	atgggtcgaa	gaaactcaca	cgtgaatgt	ttttccggga	acagttgaa当地	420
aaaaacttgt	acaacaccta	tgcctcaacc	ttgtacaaaac	attcggactc	agagagacag当地	480
tattacgtgg	ccctgaacaa	agatggctca	ccccgggagg	gatacaggac	taaacgacac当地	540
cagaattca	ctcactttt	acccaggcct	gtagatcctt	ctaagttgcc	ctccatgtcc当地	600
agagacctct	ttcactatag	gtaa				624

<210> 60
<211> 651
<212> DNA
<213> *Homo sapiens* 15

<300>
<302> FGF17
<310> XM005316 20

```

<400> 60
atgggagccg cccgcctgct gcccaacctc actctgtgct tacagctgct gattctctgc 60
tgtcaaactc agggggagaa tcacccgtct cctaatttta accagtagct gagggaccag 120
ggcgccatga ccgaccagct gagcaggcgg cagatccgct agtacccaact ctacagcagg 180
accagtggca agcacgtgca ggtcaccggg cgtgcacatct ccgccaccgc cgaggacggc 240
aacaagtttgc caaagctcat agtggagacg gacacgtttg gcagccgggt tcgcatcaaa 300
ggggctgaga gtgagaagta catctgtatg aacaagaggg gcaagctcat cgggaagccc 360
agcgggaaaga gcaaagactg cgtttcacg gagatcgtgc tggagaacaa ctatacggcc 420
ttccagaacg cccggcacgaa gggctgttca atggccttca cgcggcaggg gcgccccccgc 480
caggctttccgc aacccggccaa gaaccagcgc gaggccact tcataagcg cctctaccaa 540
ggccagctgc cttcccccggccaa ccacgcccggag aagcagaagc agttcgagtt tggggctcc 600
gccccccaccc gccggaccaa ggcacacacgg cggccccagc ccctcacgtatg 651

```

```
<210> 61
<211> 624
<212> DNA
<213> Homo sapiens
```

<300>
<302> FGF18
<310> AE075292

```

<400> 61
atgtattcag cgcctccgc ctgcacttgc ctgtgtttac acttcctgct gctgtgcttc 60
caggtagcagg tgctgggtgc cgaggagaac gtggacttcc gcatccacgt ggagaaccag 120
acgcgggctc gggacgatgt gagccgttaag cagctgcggc tgtaccagct ctacagccgg 180
accagtggaa aacacatcca ggtcctggc cgccaggatca gtgcggcg 50 cgaggatggg 240
gacaagtatg cccagctct agtggagaca gacaccttcg ttagtcaagt ccggatcaag 300
ggcaaggaga cggaaattcta cctgtgcatt aaccgcggaa gcaagctcgt ggggaagccc 360
gatggcacca gcaaggagtg tggatccatc gagaaggttc tggagaacaa ctacacggcc 420
ctgtatgtcg ctaagtactc cggctggatc gtgggcttca ccaagaaggg gcggccgcgg 480
aaggggccca agaccggaa gaaccagcag gacgtgcatt tcatgaagcg ctaccccaag 540
gggcagcgg agttcagaa gcccattcaag tacacgacgg tgaccaagag gtcccgatcg 600
atccggccca cacaccctgc ctag 55 624

```

<210> 62
<211> 651
<212> DNA 60

DE 101 00 588 A 1

```

<213> Homo sapiens

<300>
<302> FGF19
5 <310> AF110400.

<400> 62
atgcggagcg ggtgtgttgt ggtccacgta tggatcctgg ccggcctctg gctggccgtg 60
10 gcccggcgcc ccctcgccct ctcggacgca gggccccacg tgcaactacgg ctggggcgac 120
cccacatccgccc tgccggcacct gtacacccctc gcgcacccacg ggctctccag ctgccttcctg 180
cgcatcccgatc cgcacggcggt cgtggactgc ggcggggcc agagcgcgca cagtttgcgt 240
gagatcaagg cagtgcgtct gcggaccgtg gccatcaagg gcgtgcacag cgtgcgggtac 300
ctctgcgttg ggcggcgacgg caagatgcg gggctgcgtt agtactcgga ggaagactgt 360
15 gctttcgagg aggagatccg cccagatggc tacaatgtgt accgatccga gaagcaccgc 420
ctcccggtct ccctgagcag tgccaaacac cgccagctgt acaagaacac aggtttctt 480
ccactctctc atttcctgcc catgctggcc atggteccag aggagctgaa ggacctcagg 540
ggccacttgg aatctgacat gttctctcg cccctggaga ccgcacagcat ggacccattt 600
gggcttgcgtca ccggactgga ggccgtgagg agtcccagct ttgagaagta a 651

20

<210> 63
<211> 468
<212> DNA
25 <213> Homo sapiens

<400> 63
atggctgaag gggaaatcac caccttcaca gccctgaccg agaagttaa tctgcctcca 60
gggaattaca agaagccaa actcctctac ttagcaacg ggggccactt cctgaggatc 120
30 cttccggatg gcacagtggc tgggacaagg gacaggagcg accagcacat tcagctgcag 180
ctcagtgcgg aaacgcgtggg ggaggtgtat ataaagagta ccgagactgg ccagtacttg 240
gccatggaca ccgcacgggct ttatacggc tcacagacac caaatgagga atgaaaatcc 300
ctggaaaggc tggaggagaa ccattacaac acctatatat ccaagaagca tgcagagaag 360
aattggtttgc ttggcctcaa gaagaatggg agctgcaaac gcggtcctcg gactcactat 420
35 ggccagaaag caatctgtt tctcccccctg ccagtctctt ctgattaa 468

<210> 64
<211> 636
40 <212> DNA
<213> Homo sapiens

<300>
<302> FGF20
45 <310> NM019851

<400> 64
atggctccct tagccgaagt cgggggcttt ctggggcgcc tggagggctt gggccagcag 60
gtgggttcgc atttctgtt gcctcctgccc ggggagcgcc cgccgctgt gggcgagcgc 120
50 aggagcgcgg cggagcggag cgcggcgcc gggccggggg ctgcgcagct ggcgcacctg 180
cacggcatcc tgcggccggc gcagctctat tgccgcaccc gttccaccc gcaatccctg 240
cccgcacggc gcgtgcaggg caccggcag gaccacagcc ttttcggat tttggaaattc 300
atcagtgtgg cagtggact ggtcagtatt agaggtgtgg acagtggctt ctatcttgg 360
atgaatgaca aaggagaact ctatggatca gagaaaactta cttccgaatg catctttagg 420
55 gagcagtttgc aagagaactg gtataacacc tattcatcta acatataaa acatggagac 480
actggccgcga ggtatgggtt ggcacttaac aaagacggaa ctccaagaga tggcgccagg 540
tccaagaggc atcagaaatt tacacatttc ttaccttagac cagtggatcc agaaagagtt 600
ccagaatttgt acaaggaccc actgtatgtac acttgta 636

60 <210> 65
<211> 630

```

DE 101 00 588 A 1

<212> DNA
 <213> Homo sapiens

<300>
 <302> FGF21
 <310> XM009100

5

<400> 65
 atggactcgg acgagacccg gttcgagcac tcaggactgt gggtttctgt gctggctgg 60
 cttctgctgg gagcctgcca ggcacacccc atccctgact ccagtccctc cctgcaattc 10
 gggggccaag tccggcagcg gtacctctac acagatgatg cccagcagac agaagccac 120
 ctggagatca gggaggatgg gaeccgtgggg ggcgctgctg accagagccc cgaaagtctc 180
 ctgcagctga aaggcttgaa gcggggagtt attcaaattct tgggagtcgaa gacatccagg 240
 ttccctgtgcc aegggccaga tggggccctg tatggatcgc tccactttaa ccctgaggcc 300
 tgca gcttcc gggagctgt tcttgaggac ggatacaatg tttaccatgc cgaagccac 360
 ggcctcccgcc tgacacccgtcc agggaaacaag tccccacacc gggaccctgc accccgagga 420
 ccagctcgct tcctgccact accaggctg ccccccgcac tcccgagcc accccgaaatc 480
 ctggccccc agccccccgaa tggtggctcc tcggaccctc tgagcatggt gggaccctcc 540
 cagggccgaa gccccagcta cgcttcctga 600
 630
 10
 15
 20

<210> 66
 <211> 513
 <212> DNA
 <213> Homo sapiens

25

<300>
 <302> FGF22
 <310> XM009271

30

<400> 66
 atgcgcggcc gcctgtggct gggcctggcc tggctgctgc tggcgccggc gccggacgcc 60
 gcgaaaaccc cgaggcgctc gcggggaccc cgca gctacc cgcacccgg gggcgacgtg 120
 cgctggcgcc gcctttctc ctccactcac ttcttccctgc gcgtggatcc cggcgccgc 180
 gtgcaggcgcc cccgctggcg ccacggccag gacagcatcc tggagatccg ctctgtacac 240
 gtgggcgtcg tggtcataa agca gcttccatcc tcaggcttcc acgtggccat gaaccggccg 300
 ggccgcctct acgggtcgcc actctacacc tggacttca ggttccggga ggcgcattc 360
 gagaacggcc acaacaccta cgcctcacag cgctggccgc gccgcggca gcccatgttc 420
 ctggcgctgg acaggagggg ggggccccgg ccaggcgccg ggacgcggcg gtaccacctg 480
 tccgcactt cctggccgt cctggctcc tga 513
 40

<210> 67
 <211> 621
 <212> DNA
 <213> Homo sapiens

45

<300>
 <302> FGF4
 <310> NM002007

50

<400> 67
 atgtcgccggc ccgggacggc cgccgttagcg ctgtcccg cggtcctgt ggccttgc 60
 gcgccctggg cggggccgagg gggcgccggc gcacccactg caccacccgg cacgctggag 120
 gccgagctgg agccggcgctg ggagagccctg gtggcgctc cggtggcgcc cctggccgtg 180
 gcagcgccagc ccaaggaggcc ggccgtccag agccggccgc ggcactaccct gctggccatc 240
 aagcggtctc ggcgctcta ctgcaacgtg ggcacccggc tccacccatc ggcgttcccc 300
 gacggccgca tcggccggcgc gcacccggc accccggaca ggcgttccgaa gcttccggcc 360
 gtggagccgg gcggtgttag catcttccggc gtggccagcc ggttcttgc ggcacatgagc 420
 agcaaggccgca agctctatgg ctgccttc ttcaccatgc agtgcacgtt caaggagatc 480
 ctccttccca acaactacaa cgcctacgag tcctacaatg accccggcat gttcatcgcc 540
 60
 65

DE 101 00 588 A 1

ctgagcaaga atggaaagac caagaagggg aaccgagtgt cgcccaccat gaaggtcacc 600
 cacttcctcc ccaggctgtg a 621

5 <210> 68
 <211> 597
 <212> DNA
 <213> Homo sapiens

10 <300>
 <302> FGF6
 <310> NM020996

15 <400> 68
 atgtcccggtt gaggcaggacg tctgcagggc acgctgtggg ctctcgcttt cctaggcatc 60
 ctagtgggca ttgggttgcc ctgcgcctgca ggacccctg ccaacaacac gctgctggac 120
 tcgaggggct ggggcaccct gctgtccagg tctcgccgg ggctagctgg agagattgcc 180
 ggggtgaact gggaaaagtgg ctatgttgg gggatcaagc ggcagcggag gctctactgc 240
 20 aacgtgggca tcggcttca cctccaggtg ctccccgacg gccggatcag cgggaccac 300
 gaggagaacc cctacagccct gctggaaatt tccactgtgg agcgaggcgt ggtgagtctc 360
 tttggagtgta gaagtgcctt ctgcgttgc atgaacagta aaggaagatt gtacgcaacg 420
 cccagcttcc aagaagaatg caagttcaga gaaaccctcc tgcccaacaa ttacaatgcc 480
 tacgagtctag acttgtacca agggacccat attgccttga gcaaatacgg acgggtaaag 540
 25 cggggcagca aggtgtcccc gatcatgact gtcactcatt tccttccag gatctaa 597

30 <210> 69
 <211> 150
 <212> DNA
 <213> Homo sapiens

35 <300>
 <302> FGF7
 <310> XM007559

40 <400> 69
 atgtcttggc aatgcacttc atacacaatg actaatctat actgtgatga tttgactcaa 60
 aaggagaaaa gaaattatgt agtttcaat tctgattcct attcaccttt tgtttatgaa 120
 tggaaagctt tgtcaaaaat atacatataa 150

45 <210> 70
 <211> 628
 <212> DNA
 <213> Homo sapiens

50 <300>
 <302> FGF9
 <310> XM007105

55 <400> 70
 gatggctccc ttaggtgaag ttggaaacta ttccgggtgt caggatgcgg taccgtttgg 60
 gaatgtgccc gtgtgcccgg tggacagccc ggttttgtta agtgaccacc tgggtcagtc 120
 cgaagcagggg gggctccccca ggggaccgcg agtcacggac ttggatcatt taaagggat 180
 tctcaggcgg aggcaagttt actgcaggac tggattcac ttagaaatct tcccaatgg 240
 tactatccag ggaaccagga aagaccacag ccgatttgcg attctggat ttatcagtt 300
 agcagtgggc ctggtcagca ttccgggtgtt ggacagtggc ctctaccccg ggatgaatga 360
 gaagggggag ctgtatggat cagaaaaact aacccaagag ttttgcattca gagaacagtt 420
 60 cgaagaaaaac tggtataata cgtactcatc aaaccttat aagcacgtgg acactggaaag 480
 gcgatactat gttgcattaa ataaagatgg gaccccgaga gaagggacta ggactaaacg 540
 gcaccagaaaa ttcacacatt ttttacccat accagtggac cccgacaaag tacctgaact 600

DE 101 00 588 A 1

gtataaggat attctaagcc aaagttga

628

<210> 71
<211> 2469
<212> DNA
<213> Homo sapiens

<300>
<302> FGFR1
<310> NM000604

<400> 71
atgtggagct ggaagtgcct cctttctgg gctgtgctgg tcacagccac actctgcacc 60
gctaggccgt ccccgacctt gcctgaacaa gcccagccct ggggagcccc tggtaagt 120
gagtccttcc tggtccaccc cggtgacactg ctgcagcttc gctgtcggct gggggacgat 180
gtgcagagca tcaactggct gcgggacggg gtgcagctgg cggaaagcaa ccgcacccgc 240
atcacagggg aggaggtgga ggtgcaggac tccgtccccg cagactccgg cctctatgct 300
tgcgtAACCA gcagccctc gggcagtgtac accacctact tctccgtcaa tgttttagat 360
gctctccctt cctcgagga tggatgtat gatgtact cctttcaga ggagaaagaa 420
acagataaca ccaaaccaaa cctgtatgccc gtagctccat attggacatc cccagaaaaag 480
atggaaaaga aattgcatgc agtgccgct gccaagacag tgaagttcaa atgccttcc 540
agtgggaccc caaacccac actgcgtgg ttggaaaatg gcaaagaatt caaacctgac 600
cacagaattt gaggctacaa ggtccgttat gccaccttgg gcatcataat ggactctgtg 660
gtgcctctg acaaggccaa ctacacctgc attgtggaga atgagtaacgg cagcatcaac 720
cacacatacc agctggatgt cgtggagccg tccctcacc gggccatctt gcaagcaggg 780
ttggccgcca acaaaaacagt gggccctgggt agcaacgtgg agttcatgtg taagggtgtac 840
agtgacccgc agccgcacat ccagtggta aagcacatcg aggtgaatgg gagcaagatt 900
ggcccaagaca acctgcctt gttccagatc ttggaaactg ctggagttaa taccaccgac 960
aaagagatgg aggtgttca cttaaagaaat gtctccttttggaggacgcagg ggagtataacg 1020
tgcttggcggt gtaactctat cggactctcc catactctg catggttgac cggtctggaa 1080
gccttggaaag agaggccgc agtggatgacc tcggccctgtt acctggagat catcatctat 1140
tgcacagggg ccttccatcat ctcctgcatg gtggggtcgg tcatcgctca caagatgaag 1200
agtggatcca agaagagtga cttccacagc cagatggctg tgcacaagatc ggccaagagc 1260
atccctctgc gcagacaggt aacagtgtct gctgacttca gtgcattccat gaactctggg 1320
gttcttctgg ttccggccatc acggctctcc tccagttgggat cttccatgtc agcaggggtc 1380
tctgagttat agctcccgaa agacccctgc tggagactgc tctggggacag actggctta 1440
ggcaaaacccc tgggagaggg ctgttttttggggatc tggcggacag tggcagaggc tatttttttttgc 1500
gacaaggaca aacccaaaccg tggatggggatc tggctgtga agatgttggaa gtggacgc 1560
acagagaaag acttgtcaga cctgtatctca gaaatggaga tgatggaaat gatcgaaag 1620
cataagaata tcataaacctt gctggggggcc tgcacgcagg atggccctt gtatgtcata 1680
gtggagttat cctccaaggg caacctgcgg gatgttccatc gggccggag gcccccaagg 1740
ctggaaatact gctacaaccc cagccacaaac ccagaggagc agtctccctc caaggacctg 1800
gtgtcctgcg cctaccaggt gggccggggc atggaggatc tggcctccaa gaatgtcata 1860
caccgagacc tggcagccag gaatgtcttgc tggacagagg acaatgtat gaagatagca 1920
gactttggcc tgcacggga cattcaccatc atcgactact ataaaaagac aaccaacggc 1980
cgactgcctg tgaagtggat ggcacccggag gcattatttgc accggatcta caccacccag 2040
agtgtatgtt ggtctttccgg ggtgtctctg tggagatct tcactctggg cggctccca 2100
taccccggtt tgcctgtggat ggaacttttca aaggtgtatc aggagggtca ccgcattggac 2160
aagcccagta actgcaccaa cggactgtac atgtatgtgc gggactgtcg gatgcagtg 2220
ccctcacaga gaccacccatc caagcactg tggaaagacc tggaccgcattt cgtggccctt 2280
acctccaaacc aggactaccc tggacctgtcc atgcccctgg accagtactc ccccaactt 2340
cccgacaccc ggagctctac tggctccatca gggaggattt ccgtcttctc tcatgagccg 2400
ctgcccgggg agccctgcctt gccccggacac ccagccaggc ttgccaatgg cgactcaaa 2460
cgccgctga 2469

<210> 72
<211> 2409
<212> DNA
<213> Homo sapiens

5

10

15

20

25

30

35

40

45

50

55

60

65

DE 101 00 588 A 1

<300>
 <302> FGFR4
 <310> XM003910

5 <400> 72
 atgcggctgc tgctggccct gttgggggtc ctgctgagtg tgcctggcc tccagtcttgc 60
 tccctggagg cctctgagga agtggagctt gagccctgcc tggctcccag cctggagcag 120
 caagagcagg agctgacagt agcccttggg cagcctgtgc ggctgtcgtg tggcgggct 180
 10 gagcgtgggt gccactggta caaggagggc agtcgcctgg cacctgctgg ccgtgtacgg 240
 ggctggaggg gcccctaga gattgccagc ttcttacctg aggatgctgg ccgttacctc 300
 tgcctggcac gaggctccat gatcgtctg cagaatctca ccttgattac aggtgactcc 360
 ttgaccca gcaagcatga tgaggacccc aagtccccata gggacccatc gaataggcac 420
 agttaccccc agcaagcacc ctactggaca caccggcagc gcatggagaa gaaactgtcat 480
 15 gcagtagctg cggggAACAC cgtcaagtgc cgctgtccag ctgcaggcaa cccacgccc 540
 accatccgct ggcttaagga tggacaggcc tttcatgggg agaaccgcatt tgaggaggatt 600
 cggctgcgcc atcagcactg gagtctcgat atggagagc tggtgcctc ggaccggc 660
 acatacacct gcctggtaga gaacgctgtg ggcagcatcc gttataacta cctgcttagat 720
 gtgctggagc ggtcccccgc cccggccatc ctgcaggccg ggctccggc caacaccaca 780
 20 gccgtgggtt gcagcgtacgt ggagctgtg tgcaagggtt acagcgatgc ccagccccac 840
 atccagtggc tgaagcacat cgtcatcaac ggccggcagct tcggagccga cggttttccc 900
 tatgtgcaag tcctaaagac tgcagacatc aatagctcg aggtggaggt cctgtacctg 960
 cggAACGTGT cagccggaga cgcaggccgag tacacctgcc tcgcaggcaa ttccatcgcc 1020
 ctctcttacc agtgcgtctg gtcacgggt ctgcaggagg aggaccacat atggaccgca 1080
 25 gcagcgcccc agggcaggta tacggacatc atcctgtacg cgtcggtc cctggccttgc 1140
 gctgtgtccc tgctgtggc caggctgtat cgagggcagg cgctccacgg cccgcaccccc 1200
 cggccggcccc ccactgtgca gaagcttcc cgcgttccctc tggccgaca gtttccctg 1260
 gagtcaggct cttccggcaa gtcaagctca tccctggatc gaggcgtcgt tcttcccttcc 1320
 agcggcccccg cttgtctgcg cggcctcgat agtctagatc tacctctcga cccactatgg 1380
 30 gagttcccccc gggacaggct ggtgtttggg aagccccatcg gcgagggtcgt ctttggccag 1440
 gttagtacgtg cagaggcctt tggcatggac cctggccggc ctgaccaagc cagcactgtg 1500
 gccgtcaaga tgctcaaaga caacgcctct gacaaggacc tggccgacact ggtctcgag 1560
 atggaggtga tgaagctgtat cggccgacac aagaacatca tcaacctgtct tggtgtctgc 1620
 acccaggaaag gggccctgtat cgtgatcgat gaggcgtcgt ccaaggaaaa cctgcgggag 1680
 35 ttccctgggg cccggccccccc cccaggcccc gacccatcgcc cgcacgggtcc tcggagcagt 1740
 gagggggccgc tctccccc agtcctggc tcctggccct accaggtggc cggaggcatg 1800
 cagtatctgg agtccccggaa gtgtatccac cggacccctgg ctgcggccaa tggctgggtg 1860
 actgaggaca atgtatgaa gattgtcgat tttttgtgg cccgggggtt ccaccacatt 1920
 gactactata agaaaaccag caacggccgc ctgcctgtga agtggatggc gcccggaggcc 1980
 40 ttgtttgacc ggggtgtacac acaccagagt gacgtgtgtt cttttggat cctgtatgg 2040
 gagatcttca ccctcggggg ctcccccgtat cctggcatcc cgggtggagga gctgttctcg 2100
 ctgctgggg agggacatcg gatggacccgca ccccccacact gccccccaga gctgtacggg 2160
 ctgtatcgat agtgcgtggc cgcacggcccc tccagaggcc ctaccttcaa gcaagctggg 2220
 gagggcgctgg acaagggtctt gctggccgtc tctgaggagt acctcgacact cgcctgacc 2280
 45 ttccggaccct attccccctc ttgggtgggac gccaggcggca cctgtccctc cagcgattct 2340
 gtcttcagcc acgacccccc gccattggga tccagctctc tcccttcgg gtcgtgggtg 2400
 2409

50 <210> 73
 <211> 1695
 <212> DNA
 <213> Homo sapiens

55 <300>
 <302> MT2MMP
 <310> D86331

<400> 73
 60 atgaagcgcc cccgctgtgg ggtgccagac cagttcgccc ttcgtgtt gaccaacctg 60
 cggccggcgatc ggaagcgatc cgccttcacc gggaggaatc ggaacaacca ccatctgacc 120

DE 101 00 588 A 1

ttttagcatcc agaactacac ggagaagttg ggctggtacc actcgatgga ggcgggtgcgc 180
 agggcctcc gcgtgtggga gcaggccacg cccctggctc tccaggaggt gcccttatgag 240
 gacatccggc tgccgcaca gaaggaggcc gacatcatgg tactcttgc ctctggcttc 300
 cacggcgaca gctcccggtt tgatggcacc ggtggcttc tggcccacgc ctatttcct 360 5
 ggccccggcc taggcgggaa caccattt gacgcagatg agccctggac ctctccagc 420
 actgacctgc atggaaacaa cctcttcctg gtggcagtgc atgagctgg ccacgcgctg 480
 gggctggagc actccagcaa ccccaatgcc atcatggcgc cgttctacca gtggaaggac 540
 gttgacaact tcaagctgcc cgaggacat ctccgtggca tccagcagct ctacggtacc 600
 ccagacggtc agccacagcc taccctggcc ctcccccactg tgacgcacg gggccaggc 660
 cggcctgacc accggccggcc cccgcctccc cagccaccac ccccaagtgg gaagccagag 720 10
 cggcccccaa agccggggcc cccagttccag ccccgagcca cagagccgccc cgaccagtat 780
 ggcccccaaca tctgcgacgg ggacttggac acatggcca tgcttcggg gtagatgttc 840
 gtgttcaagg gccgctgggtt ctggcgatc cggcacaacc gcttccttgc caactatccc 900
 atgcccatacg ggcacttctg gctggctctg cccggtgaca tcagtgctgc ctacgagcgc 960
 caagacggtc gttttgtctt ttcaaaagg gaccgtact ggctcttcg agaagcgaac 1020
 ctggagcccg gctaccacca gccgctgacc agctatggcc tggcattccc ctatgaccgc 1080
 attgacacgg ccatctggt ggagcccaca ggccacaccc tcttccttcca agaggacagg 1140
 tactggcgct tcaacagagga gacacagcg gtagggccctg gttaccccaa gcccattcgt 1200
 gtctggcagg ggatccctgc ctccctaaa gggcccttcc tgagcaatga cgccgcctac 1260 15
 acctacttct acaaggccac caaatactgg aaattcgcaca atgagcgcct gggatggag 1320
 cccggcttacc ccaagttccat cctggggac ttcatgggtt gccaggagca cgtggagcca 1380
 ggccccccat ggcccgacgt ggccggggcc cccttcaacc cccacggggg tgcaagcccc 1440
 gggccggaca ggcgcagaggg cgacgtgggg gatggggatg gggacttgg gggccgggtc 1500
 aacaaggaca gggccggcc cggtgtggg cagatggagg aggtggcacg gacggtaac 1560
 gtgtgtatgg tgctggtgcc actgctgtc ctgctctgc tcctgggcct cacctacgcg 1620
 ctggtgccaga tgcacgcaca gggtgcgcca cgtgtctgc tttactgcaa ggcgtcgctg 1680
 caggagtggg tctga 1695

<210> 74

30

<211> 1824

<212> DNA

<213> Homo sapiens

<300>

35

<302> MT3MMP

<310> D85511

<400> 74

40

atgatcttac tcacatttcg cactggaaaga cgggtggatt tcgtgcata ttcgggggtg 60
 tttttcttc aaaccttgc ttggattttt tggcttacag tctgcggaaac ggagcagttat 120
 ttcaatgtgg aggtttgggtt acaaaaatgc ggctacctt caccgactga ccccaaatg 180
 tcagtgtgc gctctgcaga gaccatgcag tctggccctag ctgccatgca gcaattctat 240
 ggcattaaca tgacaggaaa agtggacaga aacacaattt actggatgaa gaagcccgaa 300
 tgcgggttac ctgaccagac aagaggtagc tccaaattt atattctgtc aaagcgatat 360 45
 gcattgacag gacagaaaatg gcagcacaag cacatcaatc acagtataaa gaacgtaact 420
 cccaaaatgtg gagaccctga gactctgtttt gctattcgcc gtgccttga tgggtggcag 480
 aatgttaactc ctctgacatt tgaagaatgtt ccctacatgtt aatttagaaaa tggcaaacgt 540
 gatgtggata taaccattat ttttgcattt ggtttccatg gggacagctc tccctttgat 600
 ggagagggag gattttggc acatgcctac ttcctggac caggaattgg aggagatacc 660
 cattttactt cagatgagcc atggacacta gggaaatccta atcatgtatgg aaatgactta 720
 ttctttgtat cagttccatgtt actggggacat gctctggat tggagcattc caatgacccc 780
 actgccccatca tggctccatt ttaccatgtt atggaaacag acaacttcaa actaccta 840
 gatgatttac agggccatcca gaagatata ggtccacatg acaagatccc tccacctaca 900
 agaccttac cgacagtggc cccacacccgc tctatttcc tggctgaccc aagaaaaat 960 55
 gacaggccaa aacccctcg gcctccaaacc ggcagaccctt cctatcccg agccaaaccc 1020
 aacatctgtg atggaaactt taacacttca gctatttcc tgcgtgagat gtttggatcc 1080
 aaggaccatg ggtttggcg agtggaaaac aacagggtga tggatggata cccaatgcaa 1140
 attacttact tctggcgcccc cttgccttctt agtacgttgc cagtttatgtt aaatagcgac 1200
 gggaaattttt tggatggatcc agttaacaaa tattgggtt tcaaggatc aactcttcaa 1260
 cctgggttacc ctcattactt gataaccctt ggaagtggaa ttccccctca tggatttgc 1320

65

DE 101 00 588 A 1

tcagccattt ggtgggagga cgtcgggaaa acctatttct tcaaggaga cagatattgg 1380
 agatatagtg aagaaaatgaa aacaatggac cctggctatc ccaagccaat cacagtctgg 1440
 aaaggatcc ctgaatctcc tcagggagca tttgtacaca aagaaaatgg cttacgtat 1500
 5 ttctacaaag gaaaggagta ttggaaattc aacaaccaga tactcaaggt agaacctgga 1560
 tatccaagat ccattctcaa ggattttatg ggctgtatg gaccaacaga cagagttaaa 1620
 gaaggacaca gcccaccaga tgatgttagac attgtcatca aactggacaa cacagccagc 1680
 actgtgaaag ccatacgat tgcattccc tgcattttgg ccttatgcct ccttgtattg 1740
 gtttacactg tgttccagtt caagaggaaa ggaacacccc gccacatact gtactgtaaa 1800
 10 cgctctatgc aagagtgggt gtga 1824

<210> 75
 <211> 1818
 15 <212> DNA
 <213> Homo sapiens

<300>
 <302> MT4MMP
 20 <310> AB021225

<400> 75
 atgcggcgcc gcgcagcccc gggacccggc cccggcccc cagggcccg acttcgcgg 60
 ctgccgctgc tgccgctgccc gctgctgctg ctgctggcgg tggggacccg cgggggctgc 120
 25 gccgcgcccc aaccgcgcgc ggcgcggcgg gacccgcggc tggagtgga gtggctaagc 180
 aggttcgggtt acctgcccccc ggctgacccc acaacagggc agctgcagac gcaagaggag 240
 ctgtctaagg ccattcacagc catgcagcgg tttgtggcc tggaggccac cggcatctg 300
 gacgaggcca ccctggccct gatgaaaacc ccacgctgtt ccctgccaga cctccctgtc 360
 ctgaccaggc ctcgcaggag acgcccggcgt ccagccccca ccaagtggaa caagaggaac 420
 30 ctgtcggtt ggttccggac gttcccacgg gactcaccac tggggcacga cacgggtcggt 480
 gcactcatgt actacgcctt caaggcttgg agcgacattt cggcccttggaa cttccacggag 540
 gtggcgggca gcacccggca catccagatc gacttcttca aggccgacca taacgacggc 600
 tacccttcg acgccccggcg gcaccgtgtt caccgttctt tccccggcca ccaccacacc 660
 gccccgtaca cccactttaa cgatgcggag gcctggaccc tccgctctc ggatgcccac 720
 35 gggatggacc tggttgcgtt ggctgtccac gagttggcc acgcatttgg gttaagccat 780
 gtggccgtt cacaatccat catgcggccg tactaccagg gcccgggtgg tgacccgctg 840
 cgctacgggc tccccttca gacaaatgtt cgcgtctggc agctgtacgg tggcgggag 900
 tctgtgttcc ccacggcgca gcccggagg cctcccttgc tgccggagcc cccagacaac 960
 cggtccagcg ccccccggc gaaaggacgtt cccacagat gacgacttca ctttgacgcg 1020
 40 gtggcccaaga tccgggggtga agctttctt ttcacaaaggca agtacttctg gcccgtacg 1080
 cgggacccggc accttgggttc cctgcaggccg gcacagatgc accgccttctg gccccggctg 1140
 cccgtgcacc tggacagcgtt ggacggccgtg tacgagcgc cagcggacca caagatctg 1200
 ttctttaaag gagacaggta ctgggttttca aaggacaata acgttagagga aggatacccg 1260
 cggcccgctt ccgacttcgtt cctcccgctt ggcggcatcg acgctgcctt ctctggggcc 1320
 45 cacaatgaca ggacttattt cttaaggac cagctgtact ggcgtacca tgaccacacg 1380
 aggacatgg accccggcta ccccccggc agccccctgtt ggaggggtgt cccagacacg 1440
 ctggacacgtt ccatgcgtt gtcggacggt gccttactt tcttcgtgg ccaggagttac 1500
 tggaaagtgc tggatggcga gctggagggtt gcacccgggtt accccacatc caccggccgg 1560
 gactggctgg tggatggaga ctcacaggcc gatggatctt tggctgggg cgtggacgcg 1620
 50 gcaagggggc cccggcccccc tccaggacaa catgaccaga ggcgtcgga ggacggttac 1680
 gaggtctgtt catgcacccctc tggggcatcc tctccccggg gggcccccagg cccactgggt 1740
 gctgccacca tgctgtgtt gctggccggca ctgtcaccag ggcgttgcgtt gacagcggcc 1800
 caggccctga cgctatga 1818

55 <210> 76
 <211> 1938
 <212> DNA
 <213> Homo sapiens

60 <300>
 <302> MT5MMP

DE 101 00 588 A 1

<310> AB021227

<400> 76

atgccgagga	gccggggcgg	ccgcgcgcg	ccggggccgc	cggccgcgc	gcccgcgcg	60
ggccaggccc	cgcgtggag	ccgctggcg	gtccctgggc	ggctgtgt	gtgtgtgt	5
cccgcgtct	gtgcctccc	gggcgcgcg	cgggcgccgg	cgccggcg	gggggcaggg	180
aaccgggcag	cggtgccgt	ggcggtggcg	cgggcgacg	aggcgaggc	gccttcgccc	240
gggcagaact	ggttaaaagtc	ctatggctat	ctgtttccct	atgactcacg	ggcatctgcg	300
ctggacttag	cgaaggcctt	gcagtgcgca	gtctccacta	tgcagcagtt	ttacggatc	360
ccggtcaccc	gtgtgttgg	tcaagacaacg	atcgagtgga	tgaagaaacc	ccgatgtgg	10
gtccctgtatc	acccccactt	aagccgttag	cgagaaaaca	agcgctatgc	cctgactgg	480
cagaagtgg	ggcaaaaaca	catcacccat	agcattcaca	actatacccc	aaaagtgggt	540
gagctagaca	cgcggaaagc	tattcgccag	getttagatg	tgtggcagaa	ggtgacccca	600
ctgacctttg	aagggtgtcc	ataccatgag	atcaaaaatgt	accggaagga	ggcagacatc	660
atgatcttt	ttgcttctgg	tttccatggc	gacagctccc	catttgcgtt	agaaggggg	720
ttcctggccc	atgcctactt	ccctggccca	gggatggag	gagacaccca	ctttgactcc	780
gatgagccat	ggacgctagg	aaacgccaac	catgacggga	acgaccttt	cctgggtgg	840
gtgcatgagc	tgggcacgc	gctgggactg	gagactcca	gcaaaaaac	cgccatcatg	900
gccccttct	accagtagat	ggagacgcac	aactcaagc	tgccccagga	cgatctccag	960
ggcatccaga	agatctatgg	accccccagcc	gaggctctgg	agccccacaag	gccactccct	1020
acactcccc	tccgcaggat	ccactcacca	tcggagagga	aacacgagcg	ccagccagg	1080
ccccctcgcc	cgcgcctcg	ggaccggcca	tccacaccag	gcacccaaacc	caacatctgt	1140
gacggcaact	tcaacacagt	ggcccttc	cgggcgaga	tgttgtctt	taaggatcgc	1200
tggttctggc	gtctgcgcaa	taaccgagtg	caggaggct	accccatgca	gatcgagcag	1260
ttcttggagg	gcctgcctgc	ccgcacatcgac	gcagcctatg	aaagggccga	tggagattt	1320
gtcttcttca	aaggtgacaa	gtattgggt	ttaaggagg	tgacgggtga	gcctgggtac	1380
ccccacagcc	tggggagct	ggcagctgt	ttggccctgt	aaggcattga	cacagctctg	1440
cgctggAAC	ctgtgggcaa	gacctactt	ttcaaaggcg	agcgtactg	gctacagc	1500
gaggagcggc	gggcacgg	ccctggctac	cctaagccca	tcaccgtgt	gaagggcatc	1560
ccacaggc	cccaaggagc	tttcatcagc	aaggaaggat	attacaccta	tttctacaag	1620
ggccggact	actgaaagt	tgacaaccag	aaactgagcg	tggagccagg	ctacccgcgc	1680
aacatcc	gtgactggat	gggctgcaac	cagaaggagg	tggagcggcg	gaaggagcgg	1740
cggtgtcccc	aggacgacgt	ggacatcatg	gtgaccatca	acgatgtgcc	gggctccgt	1800
aacccgtgg	ccgtgttcat	ccctgcatac	ctgtccctct	gcatcctgt	gctggctac	1860
accatcttcc	agttcaagaa	caagacaggg	cctcagccctg	tcacctacta	taagcggcca	1920
gtccaggaat	gggtgtga					1938

<210> 77

40

<211> 1689

<212> DNA

<213> Homo sapiens

<300>

45

<302> MT6MMP

<310> AJ27137

<400> 77

atcggtgc	ggctccggct	tctggcgctg	ctgtttctgc	tgctggcacc	gcccgcgc	60
gccccgaagc	cctcgccgca	ggacgtgagc	ctggcgctgg	actggctgac	tcgttatgtt	50
tacctggcc	caccccaccc	tgcccaggcc	cagctgcaga	gcccgtgaaa	gttgcgcgt	120
gcccataa	tcatgcagag	gttcgcgggg	ctggcgaga	ccggccgc	ggacccagg	180
acagtggca	ccatgcgtaa	gccccgctgc	tccctgcctg	acgtgtctgg	ggtggcgffff	240
ctggtcaggc	ggcgctgccc	gtacgctctg	agcggcagcg	tgtggaaagaa	gcgaaccctg	300
acatggagg	tacgttccct	cccccaagac	tcccaagctga	gccaggagac	cgtgcgggtc	360
ctcatgag	atgcctgtat	ggcctggggc	atggagtctg	gcctcacatt	tcatgagggt	420
gattcccccc	agggccagga	gcccgcacatc	ctcatgcact	ttggccgcgc	cttccaccag	480
gacagctacc	ctttcgacgg	gttggggggc	accctagccc	atgccttctt	ccctggggag	540
caccccatct	ccggggacac	tcactttgac	gatgaggaga	cctggactt	tgggtcaaaa	600
gacggcgagg	ggacggacct	gtttggcg	gctgtccatg	agtttggcca	cgccctgggc	660
ctggggccact	cctcagcccc	caactccatt	atgaggccct	tctaccagg	tccgggtggc	720

65

DE 101 00 588 A 1

gaccctgaca agtaccgcct gtctcaggat gaccgcgatg gcctgcagca actctatggg 840
 aaggcgcccc aaacccata tgacaagccc acaaggaaac ccctggctcc tccgccccag 900
 cccccggcct cgcccacaca cagcccatcc ttccccatcc ctgatcgatg tgagggaat 960
 5 tttgacgcca tcgccaacat ccgagggaa actttcttc tcaaaggccc ctggttctgg 1020
 cgcctccagc cctccggaca gctgggtgtcc cgcgacccg cacggctgca cgccttctgg 1080
 gaggggctgc ccgcccaggt gagggtgtg cagggccct atgctggca cggagacggc 1140
 cgaatcctcc tcttagcggt gccccagttc tgggtgttcc aggaccggca gctggaggc 1200
 ggggwgccgc cgctcacggg gctggggctg ccccccggag aggaggtgga cgccgtgttc 1260
 10 tcgtggccac agaacgggaa gacccatctg gtcgcggcc ggcagtactg ggcgtacgac 1320
 gagggcgggg cgcgccccggg ccccggtac cctcgccgacc tgagcctctg ggaaggcgc 1380
 ccccccctccc ctgacgatgt caccgtcagc aacgcaggtg acacctactt cttcaaggc 1440
 gcccactact ggcgttcccc caagaacagc atcaagaccg agccggacgc ccccccagccc 1500
 atggggccca actggctgga ctgccccggcc ccgagctctg gtccccggc ccccaggccc 1560
 15 cccaaagcga ccccccgtgtc cgaaacctgc gattgtcagt gcgagctcaa ccaggccgca 1620
 ggacgttggc ctgtccccat cccgctgtc ctcttgcccc tgctgggtggg gggtagcc 1680
 tcccgtga 1689

20 <210> 78
 <211> 1749
 <212> DNA
 <213> Homo sapiens

25 <300>
 <302> MTMMP
 <310> X90925

<400> 78

30 atgtctcccg ccccaagacc ctcccggtgt ctccgtctcc ccctgctcac gctcgccacc 60
 gcgctcgctt ccctcggtct ggcccaaaagc agcagcttca gccccgaagc ctggctacag 120
 caatatggct acctgcctcc cggggaccta cgtacccaca cacagcgctc accccagtc 180
 ctctcagccg ccatcgctgc catgcagaag tttacggct tgcaagtaac aggcaaagct 240
 gatgcagaca ccatgaaggc catgaggcgc ccccgatgtg gtgttccaga caagtttggg 300
 35 gctgagatca aggccaatgt tcgaaggaaag cgctacgcca tccagggtct caaatggcaa 360
 catabatggaa tcactttctg catccagaat tacaccccca aggtgggcga gtatgccaca 420
 tacgaggcga ttgcgaaggc gttccgcgtg tggagagtg ccacaccaact ggcgttccgc 480
 gaggtgcctt atgcctacat ccgtgaggcgc catgagaagc aggccgacat catgatctt 540
 tttgcccagg gcttccatgg cgacagcacg cccttcgtg gtgaggccgg cttccctggcc 600
 40 catgcctact tcccaggccc caacatttga ggagacaccc actttgactc tgccgagct 660
 tggactgtca ggaatgagga tctgaatggg aatgacatct tcctgggtggc tggcacgag 720
 ctggggccatg ccctggggct cgagcatcc agtggccctt cggccatcat ggccaccttt 780
 taccagtggaa tggacacggg gaattttgtg ctgccccatg atgaccggcg gggcatccag 840
 caactttatg ggggtgagtc agggttcccc accaagatgc cccctcaacc cagactacc 900
 45 tcccggccctt ctgttccatg taaaacccaaa aaccccccact atggggccaa catctgtgac 960
 gggaaactttg acaccgtggc catgctccga ggggagatgt ttgttccaa ggagcgctgg 1020
 ttctggcggt tgaggaataa ccaagtgtatg gatggatacc caatgcccattt tggccagttc 1080
 tggcgccggcc tgcctcgctc catcaacact gcctacgaga ggaaggatgg caaattcgtc 1140
 ttcttcaaaag gagacaagca ttgggtgttt gatgaggcgt ccctggaaacc tggctacccc 1200
 50 aagcacatata aggagctggg ccgagggctg cctaccgaca agattgtacg tgcctcttcc 1260
 tggatgcccata atggaaagac ctacttcttc cgtggaaaca agtactaccg tttcaacgaa 1320
 gagctcaggc cagtggatag cgagtacccc aagaacatca aagtctggg aggatccct 1380
 gagttctccca gaggttattt catgggcacgc gatgaagtct tcacttactt ctacaagggg 1440
 aacaaataact gggaaattcaa caaccagaag ctgaaggtag aaccggcta ccccaagcca 1500
 55 gcccctgaggactgtatggg ctgccccatcg ggaggccggc cggatgggg gactgaggag 1560
 gagacggagg tgatccatcat tgaggtggac gaggaggccg gcggggccgt gacgcggct 1620
 gccgtgggtgc tgccctgtct gctgtgtc ctgggtgtgg cgggtggccct tgcaatcttc 1680
 ttcttcagac gccatgggac ccccaaggcga ctgctctact gccagcggttc cctgctggac 1740
 aagggtctga 1749

60

<210> 79

DE 101 00 588 A 1

<p><211> 744 <212> DNA <213> Homo sapiens</p> <p><300> <302> FGF1 <310> XM003647</p> <p><400> 79</p> <pre>atggccgcgg ccatcgctag cggcttgcgc cgccagaagg ggcaggcgcg ggagcagcac 60 tgggaccggc cgctgtccag caggaggcg agcagcccc gcaagaaccc cggctctgc 120 aacggcaacc tggtgatata ctctccaaa gtgcgcatct tcggcccaa gaagcgcagg 180 ttgcggcgcc aagatcccc gctcaagggt atagtgcacca gtttatattg caggcaaggc 240 tactactgc aaatgcaccc cgatggagct ctcgcattggaa ccaaggatga cagcactaat 300 tctacactct tcaacctcat accagtggga ctacgtgttgg ttgccatcca gggagtgaaa 360 acagggttgt atatacgcat gaatggagaa gtttacccatct accccatcaga actttttacc 420 cctgaatgca agtttaaga atctgtttt gaaaattatt atgttaatcta ctcatccatg 480 ttgtacagac aacaggaatc tggtagagcc tgggttttgg gattaaataa ggaagggcaa 540 gctatgaaag ggaacagagt aaagaaaacc aaaccagcag ctcattttct acccaagcca 600 ttgaaagggtt ccattgttaccg agaaccatct ttgcattgttgg ttggggaaac ggtcccgaag 660 cctggggtga cgccaaagtaa aagcacaagt gcgtctgcaa taatgaatgg aggcaaacc 720 gtcaacaaga gtaagacaac atag</pre> <p style="text-align: right;">744</p> <p><210> 80 <211> 468 <212> DNA <213> Homo sapiens</p> <p><300> <302> FGF2 <310> NM002006</p> <p><400> 80</p> <pre>atggcagcccg ggagcatcac cacgctgccc gccttgcggc aggtatggcg cagcggcgcc 60 ttcccgcccg gccacttcaa ggaccccaag cggtgtact gcaaaaaacgg gggcttcttc 120 ctgcgcatcc accccgacgg ccgagttgac ggggtccggg agaagagcga ccctcacato 180 aagctacaac ttcaagcaga agagagagga ttgtgtcta tcaaaggagt gtgtgcta 240 cgttacctgg ctatgaagga agatggaga ttactggctt ctaaatgtgt tacggatgag 300 tgtttcttt ttgaacgatt ggaatctaata aactacaata cttaccggc aaggaaatac 360 accagttgggt atgtggcact gaaacgaact gggcgtata aacttggatc caaaacagga 420 cctgggcaga aagctatact ttttcttcca atgtctgcta agagctga</pre> <p style="text-align: right;">468</p> <p><210> 81 <211> 756 <212> DNA <213> Homo sapiens</p> <p><300> <302> FGF23 <310> NM020638</p> <p><400> 81</p> <pre>atgttggggg cccgcctcag gctctgggtc tggccttgcgt gcagcgtctg cagcatgagc 60 gtcctcagag cctatccccaa tgcctccccaa ctgcgtggct ccagctgggg tggcctgatc 120 cacctgtaca cagccacagc caggaacagc taccacctgc agatccacaa gaatggccat 180 gtggatggcg caccatca gaccatctac agtgcctgatc tgatcagatc agaggatgtc 240 ggctttgtgg tgattacagg tggatgagc agaagatacc tctgcattgg tttcagaggc 300 aacattttg gatcacacta ttgcacccg gagaactgca gtttccaaaca ccagacgctg 360 gaaaacgggt acgacgtcta ccactctcact cagtatcact tctggcgtcag tctggccgg 420</pre> <p style="text-align: right;">60</p>	<p>5</p> <p>10</p> <p>15</p> <p>20</p> <p>25</p> <p>30</p> <p>35</p> <p>40</p> <p>45</p> <p>50</p> <p>55</p> <p>60</p> <p>65</p>
---	--

DE 101 00 588 A 1

gcgaagagag cttcctgcc aggcataaac ccaccccgactcccaagtt cctgtcccgg 480
 aggaacgaga tccccctaat tcacttcaac acccccatac cacggcggca caccggagc 540
 gcccggggacg actcggagcg ggacccctg aacgtgctga agccccggc cccgatgacc 600
 5 ccggccccgg ctcctgttc acaggagtc ccgagcggcc aggacaacag cccgatggcc 660
 agtgaccat taggggtgtt cagggggcgtt cgagtgaaca cgcacgctgg gggAACGGGC 720
 ccgaaaggct gcccctt cggcaaggatc atctag 756

10 <210> 82
 <211> 720
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> FGF3
 <310> NM005247

<400> 82
 20 atgggcctaa tctggctgct actgctcagc ctgctggagc ccggctggcc cgcagcgggc 60
 cctggggcgc ggttgcggcg cgatgcggc ggcgtggcg gcgtctacga gcacccggc 120
 ggggcgcggcc ggcgcgcgaa gctctactgc gccacgaagt accacccca gctgcaccccg 180
 agcggcccgcg tcaacggcagc cctggagaac aggcctaca gtatTTGGA gataacggca 240
 gtggaggtgg gcattgtggc catcaggggt ctcttctccg ggccgtaccc ggcacatgaa 300
 25 aagagggggac gactctatgc ttccggagcac tacagcggcc agtgcgagtt tggagcgg 360
 atccacgagc tgggtataaa tacgtatgcc tccggctgtt accggacggt gtctagtacg 420
 cctggggccc gccggcagcc cagcggccag agactgtggt acgtgtctgtt gaaacggcaag 480
 ggccggccccc gcaggggctt caagaccgcg cgcacacaga agtcctccctt gttctggcc 540
 cgcgtgctgg accacaggga ccacgagatg gtgcggcagc tacagagtgg gctgcccaga 600
 30 cccctggta agggggtcca gccccgacgg cggcggcaga agcagagccc ggataacctg 660
 gagccctctc acgttcaggc ttccgagactg ggctcccagc tggaggccag tgccactag 720

<210> 83
 <211> 807
 35 <212> DNA
 <213> Homo sapiens

<300>
 <302> FGF5
 40 <310> NM004464

<400> 83
 atgagcttgt ctttccttcct ctccttc ttcagccacc tgatcctcag cgcctggct 60
 45 cacggggaga agcgtctcgc ccccaaaggaa caacccggac ccgctgcac tgataggaaac 120
 cctataaggct ccagcagcagc acagagcagc agtagcgcta tgtcttc ttcgtccctcc 180
 tcctccccc cagttctctt gggcagccaa ggaagtggct tggagcagag cagttccag 240
 tggagccctt cggggcggcc gaccggcagc ctctactgcg gatggccat cgggttccat 300
 ctgcagatct accccggatgg caaagtcaat ggtatcccacg aagccaatat gttaagtgtt 360
 50 ttggaaatat ttgcgtgttc tcagggatt ttaggaatac gaggagttt cagcaacaaa 420
 ttttttagcga tgtcaaaaaaa aggaaaaactc catgcaagtg ccaagttcac agatgactgc 480
 aagttcaggg agcgtttca agaaaaatagc tataataccct atgcctcagc aatacataga 540
 actaaaaaaaaa cagggcggga gtggtatgtt gccctgaata aaagaggaaa agccaaacga 600
 ggggtcagcc cccgggttaa accccagcat atctctaccctt tttctcc aagattcaag 660
 55 cagtcggagc agccagaact ttcttcacg gttactgttc ctgaaaagaa aaatccaccc 720
 agccctatca agtcaaagat tcccccttgc acctcgga aaaataccaa ctcagtgaaa 780
 tacagactca agttcgctt tggataa 807

60 <210> 84
 <211> 649
 <212> DNA

DE 101 00 588 A 1

<213> Homo sapiens

<300>

<302> FGF8

<310> NM006119

5

<400> 84

atgggcagcc cccgctccgc gctgagctgc ctgctgttgc acttgcttgt cctctgcctc 60
 caagcccagg taactgttca gtccctacact aattttacac agcatgtgag ggagcagagc 120
 ctgggtgacgg atcagctcag cccggcgcctc atccggaccc accaactcta cagccgcacc 180
 agcgggaagc acgtgcaggt cctggccaac aagcgcatac acgccatggc agaggacggc 240
 gagcccttcg caaagctcat cgtggagacg gacaccccttg gaagcagagt tcgagtcg 300
 ggagcccgaga cgggcctcta catctgcacg aacaagaagg ggaagctgat cgccaaagagc 360
 aacggcaaag gcaaggactg cgtcttcacg gagattgtgc tggagaacaa ctacacagcg 420
 ctgcagaatg ccaagtauga gggctggta atggccttca cccgcaagg ccggccccgc 480
 aaggggctcca agacgcccga gcaccagcgt gaggtccact tcatgaagcg gctgccccgg 540
 ggccaccaca ccaccgagca gagcctgcgc ttcgagttcc tcaactaccc gcccttcacg 600
 cgcagcctgc gcggcagcca gaggacttgg gccccggaac cccgatagg 649

10

15

20

<210> 85

<211> 2466

<212> DNA

<213> Homo sapiens

25

<300>

<302> FGFR2

<310> NM000141

30

<400> 85

atggtcagct ggggtcggtt catctgcctg gtcgtggta ccatggcaac cttgtccctg 60
 gcccggccct ctttcagttt agttgaggat accacattag agccagaaga gccaccaacc 120
 aaataccaaa tcttcataacc agaagtgtac gtggctgcgc caggggagtc gctagagggtg 180
 cgctgcctgt tgaaagatgc cggcgtgatc agtggacta aggatgggggt gcacttgggg 240
 cccaaacaata ggacagtgtc tattggggag tacttgacgata taaagggcgc cacgcctaga 300
 gactccggcc tctatgttgc tactgcaagt aggactgttag acagtggaa ttgttacttc 360
 atggtaatg tcacagatgc catctcatcc ggagatgtatc aggtgacac cgatgggtgc 420
 gaagattttg tcagtgagaa cagtaacaac aagagagcac catactggac caacacagaa 480
 aagatggaaa agcggctcca tgctgtgcct gggccaaca ctgtcaagg tcgctgccc 540
 gcccggggga acccaatgcc aaccatgcgg tggctaaaa acgggaagga gtttaagcag 600
 gagcatcgca ttggaggctca caaggtacga aaccagcaact ggagcctcat tattggaaatg 660
 gtggtcccat ctgacaaggaa aaatttatacc tgggtggta agaatgaata cgggtccatc 720
 aatcacacgt accaccttgg tgggtggatc cgatgcctc accggcccat cttccaagcc 780
 ggactgcccgg caaatgcctc cacagtggc ggaggagacg tagagttgt ctgcaagg 840
 tacagtgtatc cccagccccca catccagttt atcaagcactc tggaaaagaa cggcagtaaa 900
 tacgggcccc acgggctgcc ctacctcaag gtttcaagg cggccgggtt taacaccacg 960
 gacaaagaga ttgagggtct ctatatttcgg aatgttaactt ttgaggacgc tggggatata 1020
 acgtgtttgg cgggttaattt tattgggata tcctttcaact ctgcatgggtt gacagtctg 1080
 ccagcgcctg gaagagaaaa ggagattaca gcttccccag actaccttgg gatagccatt 1140
 tactgcatac ggggtttttt aatcgccgtt atgggtgtaa cagtcattct gtggcgaatg 1200
 aagaacacga ccaagaagcc agacttcacg agccagccgg ctgtgcacaa gctgaccaaa 1260
 cgtatcccccc tgcggagaca ggtAACAGTT tcggctgagt ccagctcctc catgaactcc 1320
 aacacccccc tgggtggatc aacaacacgc ctctttcaaa cggcagacac ccccatgtg 1380
 gcagggggtt ccgagtatga acttccagag gacccaaaat gggagttcc aagagataag 1440
 ctgacactgg gcaagccccctt gggagaagggt tgctttggc aagtggtcat ggcggaaagca 1500
 gtggaaatgg acaaagacaa gcccaggag gcggtcaccg tggccgtgaa gatgttgaaa 1560
 gatgtatgcca cagagaaaga cttttctgtat ctgggtgtcag agatggagat gatgaagatg 1620
 attgggaaac acaagaatataatctt ctggggccctt gacacacgg tgggccttc 1680
 tatgtcatag ttgagttatgc ctctaaaggc aaccctccgg aataacctccg agcccgagg 1740
 ccaccggga tggagtactc ctatgacatt aaccgttgc ctgaggagca gatgacccctc 1800
 aaggacttgg tgcatacgatc ctaccagctg gccagaggca tggagttactt ggcttccaa 1860

35

40

45

50

55

60

65

DE 101 00 588 A 1

aaatgtattc atcgagattt agcagccaga aatgttttg taacagaaaa caatgtgatg 1920
 aaaatagcag actttggact cgccagagat atcaacaata tagactatta caaaaagacc 1980
 accaatggc ggcttccagt caagtggatg gctccagaag ccctgttga tagagtatac 2040
 5 actcatcaga gtatgtctg gtccttcggg gtgttaatgt gggagatctt cactttaggg 2100
 ggctcgccct acccaggat tcccgtggag gaactttta agctgctgaa ggaaggacac 2160
 agaatggata agccagccaa ctgcaccaac gaactgtaca tgatgtgag ggactgttgg 2220
 catgcagtgc cctcccagag accaacgttc aagcagttgg tagaagactt ggatcgaatt 2280
 ctcactctca caaccaatga ggaatacttg gacctcagcc aacctctcga acagtattca 2340
 10 cctagttacc ctgacacaaag aagttcttgt tcttcaggag atgattctgt ttttctcca 2400
 gaccccatgc cttacgaacc atgccttcct cagtatccac acataaacgg cagtgttaaa 2460
 acatga 2466

15 <210> 86
 <211> 2421
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> FGFR3
 <310> NM000142

<400> 86

25 atgggcgccccc ctgcctgcgc ctcgcgctc tgcgtggccg tggccatcgt ggcggcgcc 60
 tcctcgagt ccttggggac ggagcagcgc gtcgtgggc gagcggcaga agtcccgccc 120
 ccagagcccg gccacgcgga gcagttggc ttccgcagcg gggatgtgtt ggagctgagc 180
 tgtccccccgc cgggggggtgg tcccatgggg cccactgtct gggtaaaggga tggcacaggg 240
 ctggtgccct cggagcgtgt cctggtgggg cccacgcggc tgcaggtgtt gaatgcctcc 300
 30 cacgaggact cgggggccta cagctgcgg cagcggctca cgcagcgtt actgtgccac 360
 ttcagtgtgc ggggtgacaga cgctccatcc tcggagatg acgaagacgg ggaggacgag 420
 gctgaggaca caggtgtgga cacagggcc cttactgga cacggcccg gcgatggac 480
 aagaagctgc tggcgtgcc gggcgccaa acgtccgtt tccgctgccc agccgctggc 540
 aacccactc ctcctatctc ctggctgaag aacggcaggg agttccgcgg cgagcaccgc 600
 35 attggaggca tcaagctgcg gcatcagcag tggagcctgg tcatggaaag cgtgggtgccc 660
 tcggaccgcg gcaactacac ctgcgtcg gagaacaagt ttggcagcat cggcagacg 720
 tacacgctgg acgtgtgga ggcgtcccg caccggccca tctgcaggc gggctgccc 780
 gccaaccaga cgggggtgtt gggcagcgcgtt gtcaggttactt gtcagtgac 840
 gcacagcccc acatccagtgc gtcagcac acgtggatgtt acggcagcaa ggtggcccg 900
 40 gacggcacac cctacgttac ctgcgtcaag acggcggccg ctaaccacac cgacaaggag 960
 ctagagggttctctcattgtca caacgtcacc ttggaggacg cggggagata cacgtcctg 1020
 gggggcaatt ctattgggtt ttctcatcac tctgcgtggc tgggtgtgtt gcaagccag 1080
 gaggagctgg tggaggctga cgaggcggc agtgtgtatg caggcatctt cagctacggg 1140
 gtgggcttcttcttcat cctgggtgtt gggctgtga cgctctgccc cttgcgcagc 1200
 45 ccccccaaga aaggcctggg ctccccacc gtgcacaaga tctcccggtt cccgctcaag 1260
 cgacagggttccctggagtc caacgcgtcc atgagctcca acacaccact ggtgcgcattc 1320
 gcaaggctgttctcaggggaa gggccccacg ctggccaatg tctccgagct cgagctgcct 1380
 gccgacccca aatgggagct gtctcggcc cggctgaccc tggcaagcc cttggggag 1440
 ggctgcttgc gccaagggtgtt catggcggag gccatcgca ttgacaagga cggggccgc 1500
 50 aaggcctgtca ccgtagccgt gaagatgtt aaagacgtat ccactgacaa ggacctgtcg 1560
 gacctgggtt ctgagatgga gatgtatggaa atgatggga aacacaaaaa catcatcaac 1620
 ctgctggggc cctgcacgcga gggcggggcc ctgtacgtgc tgggtggata cgccggccaag 1680
 ggttaacctgc gggagtttctt gggggcgcgg cggccccccgg gcctggacta ctccctcgac 1740
 acctgtcaagc cgcccgagga gcagcttacc ttcaaggacc tgggtgtcctg tgcttaccag 1800
 55 gtggcccggtt gcatggatgtt cttggccctt cagaagtgc tccacaggga cttggctgcc 1860
 cgcaatgtgc tggtgaccga ggacaacgtt atgaaagatcg cagacttcgg gctggcccg 1920
 gacgtgcaca acctcgacta ctacaagaag acaaccaacg gccggctgcc cgtgaagtgg 1980
 atggcgccttgc aggcttgc ttgaccgtt tacactcacc agagtgcgt ctggtcctt 2040
 ggggtcctgc tctggagat ttcaacgtt gggggctccc cgttaccccg catccctgtg 2100
 60 gaggagctt tcaagctgtt gaaggaggcc caccgcattt gcaagccgc caactgcaca 2160
 cacgacctgtt acatgatcat gcgggagtgcc tggcatgcgc cggccctccca gagggccacc 2220
 ttcaaggcgc tggtggaggtt cttggaccgt gtccttaccg tgacgtccac cgacgagttac 2280

DE 101 00 588 A 1

ctggacctgt cggcgccctt cgagcagtac tccccgggtg gccaggacac ccccagctcc 2340
 agctccctag gggacgactc cgttttgcc cacgacctgc tgccccggc cccacccagc 2400
 agtgggggct cgccgacgtg a 2421

5

<210> 87
 <211> 2102
 <212> DNA
 <213> Homo sapiens

10

<300>
 <302> HGF
 <310> E08541

15

<400> 87
 atgcagaggg acaaaggaaa agaagaaaata caattcatga attcaaaaaaa tcagcaaaga 60
 ctacccta at caaaatagat ccagcactga agataaaaac caaaaaaagtg aatactgcag 120
 accaatgtgc taatagatgt acttaggaata aaggacttcc attcaacttgc aaggctttg 180
 ttttgataa agcaagaaaa caatgcctc ggttcccctt caatagcatg tcaagtggag 240
 tgaaaaaaga atttggccat gaatttgacc tctatgaaaa caaagactac attagaaaact 300
 gcatcattgg taaaggacgc agctacaagg gaacagtatc tatcactaag agtggcatca 360
 aatgtcagcc ctggagttcc atgataccac acgaacacag cttttgcct tcgagctatc 420
 gggtaaaga cctacaggaa aactactgtc gaaatcctcg aggggaagaa gggggaccct 480
 ggtgtttcac aagcaatcca gaggtacgt acgaagtctg tgacattcct cagtgttcag 540
 aagttgaatg catgacctgc aatggggaga gttatcgagg tctcatggat catacagaat 600
 caggcaagat ttgtcagcgc tgggatcatc agacaccaca cggcacaaaa ttcttgcctg 660
 aaagatatcc cgacaaggc tttgatgata attattgcgc caatcccgat ggccagccga 720
 ggcctatggc ctatactctt gaccctcaca cccgctggga gtactgtgca attaaaacat 780
 gcgctgacaa tactatgaat gacactgat ttccttgg aacaactgaa tgcatccaag 840
 gtcaaggaga aggctacagg ggcactgtca ataccatttga atatggaaat ccatgtcagc 900
 gttgggattc tcagtatctt cacgagcatg acatgactcc tgaaaatttc aagtgcagg 960
 acctacgaga aaattactgc cggaaatccag atgggtctga atcaccctgg tggtttacca 1020
 ctgatccaaa catccgagtt ggctactgtccc aactgtgat atgtcacatg 1080
 gacaagattt ttatcgtggg aatggcaaaa attatatggg caacttatcc caaacaagat 1140
 ctggactaac atgttcaatg tgggacaaga acatggaaatg cttacatcgat cttatcttct 1200
 gggaccaga tgcaagtaag ctgaatgaga attactgcgc aaatcccgat gatgatgctc 1260
 atggaccctg gtgcacacg gggaaatccac tcattccctt ggattatgc cctatttctc 1320
 gttgtgaagg tgataccaca cctacaatag tcaattttgc gcatcccgat atatcttgc 1380
 cccaaaggaa acaattgcga gttgtaaatg ggattccac acgaacaaac ataggatgga 1440
 tggtagttt gagatacaga aataaaacata tctgcggagg atcattgata aaggagagtt 1500
 gggttcttac tgacgcacag tggatccctt ctgcagactt gaaagatttgc aagatggc 1560
 ttggattca tgatgtccac ggaagaggag atgagaaatg caaacaggtt ctcaatgttt 1620
 cccagcttgtt atatggccctt gaaaggatcag atctggttt aatgaagctt gccaggcctg 1680
 ctgtccttgc tgatgtttt agtacgattt atttacctaa ttatggatgc acaattcctg 1740
 aaaagaccag ttgcgtgtt tatggctggg gctacactgg attgatcaac tatgtggcc 1800
 tattacgagt ggcacatctc tatataatgg gaaatgagaa atgcagccag catcatcgag 1860
 ggaaggtgac tctgaatgag tctgaaatat gtgtggggc tgaaaagatt ggatcaggac 1920
 catgtgaggg ggattatggt gggccacttg tttgtgagca acataaaatg agaatggtc 1980
 ttgggtgtcat tgttccttgc cgtggatgtt ccattccaaa tcgtccctgg attttgtcc 2040
 gagtagcata ttatgcaaaa tggatacaca aaattatccc aacatataag gtaccacagt 2100
 ca 2102

25

30

35

40

45

50

<210> 88
 <211> 360
 <212> DNA
 <213> Homo sapiens

55

<300>
 <302> ID3
 <310> XM001539

60

65

DE 101 00 588 A 1

```

<400> 88
atgaaggcgc tgagcccggt ggcggctgc tacgaggcgg tggctgcct gtcggAACGC 60
agtctggcca tcgccccgggg ccgagggaag ggcccggcag ctgaggagcc gctgagctt 120
5 ctggacgaca tgaaccactg ctactcccgctc ctgccccggaa tggtagccgg agtcccggaga 180
ggcaactcagc tttagccaggt ggaaatccctaa cagcgcgtca tcgactacat tctcgacctg 240
caggttagtcc tggccgagcc agcccttgga cccctgtatg gcccccacct tcccatccag 300
acagccgagc tcactccgga acttgtcatc tccaaacgaca aaaggagctt ttgccactga 360

10 <210> 89
<211> 743
<212> DNA
<213> Homo sapiens

15 <300>
<302> IGF2
<310> NM000612

20 <400> 89
atgggaatcc caatggggaa gtcgatgctg gtgcttcata cttcttggc cttcgccctcg 60
tgctgcattt ctgttaccg ccccaagttag accctgtcg gcccggagct ggtggacacc 120
ctccagttcg tctgtggggaa cccggcccttc tacttcagca ggcccgcag ccgtgtgagc 180
cgtcgcagcc gtggcatcgatg tggaggatgc tggttccgca gctgtgaccc tggccctctg 240
25 gagacgtact gtgttacccc cgccaaatggc gagaggagcc tggccggatc 300
cttccggaca acttccccag atacccctgt ggcaagttct tccaaatatga cacctggaaag 360
cagtccaccc agcgcctgcg caggggcctg cctgcctcc tgcgtgccc cccgggtcac 420
gtgctcgcca aggagctcgaa ggcgttcaagg gagccaaac gtcaccgtcc cctgattgt 480
ctaccaccc aagacccccgc ccacgggggc gccccccag agatggccag caatcggaag 540
30 tgagcaaaaac tgccgcaagt ctgcagccg gcgccaccat cctgcagccct cctctgacc 600
acggacgtt ccatccggat ccatccggaa aatctctcggtt ttccacgtcc ccctggggct 660
tctcctgacc cagccccgtt gccccggctc cccgaaacag gctactctcc tggcccccct 720
ccatcggtt gaggaagcac agc 743

35 <210> 90
<211> 7476
<212> DNA
<213> Homo sapiens

40 <300>
<302> IGF2R
<310> NM000876

45 <400> 90
atggggcccg ccgcggcccg gagcccccac ctggggcccg cgcccgccccg ccgcggccag 60
cgctctctgc tcctgtgc gctgctgtc ctcgtcgctg ccccggggtc caccgcaggcc 120
caggccgccc cgccccccgaa gctgtgcgttatacatggg aagctgttta taccaaaaat 180
aatgtacttt ataaaatcaa catctgtgaa agtgtggata ttgtccagtg cggccatca 240
50 agtgcgtttt gtatgcacga cttgaagaca cgcacttatac attcagtggtt tgactctgtt 300
ttgagaagtgc caaccagatc tcctctggaa ttcaacacaa cagtgagctg tgaccagcaa 360
ggcacaaatc acagagtccaa gagcagcatt gcctccctgt gtggggaaac cctgggaact 420
cctgaatttg taactgcaac agaatgtgtg cactactttt agtggaggac cactgcagcc 480
tgcaagaaaag acatattaa agcaaataag gaggtgccat gctatgttt tgatgaagag 540
55 ttgagggaaac atgatctcaa tcctctgtt aagcttagtg gtgcctactt ggtggatgac 600
tccgatcccg acacttcttattcatcaat gttttagag acatagacac actacgagac 660
ccaggttcac agtgcgggc ctgtcccccc ggcactgcgg cctgcctgggt aagaggacac 720
caggcggttgc atgttggccaa gccccgggac ggactgaagc tggtgccaa ggacaggctt 780
gtcctgaggat acgtgaggaa agaggcagga aagcttagat ttttgatgg tcacagccct 840
60 gcggtgacta ttacattgtt ttgcccgtcg gagcggagag agggcaccat tcccaaactc 900
acagctaaat ccaactgccc ctatgaaatt gagtggatta ctgagtatgc ctgccacaga 960

```

DE 101 00 588 A 1

gattacctgg aaagtaaaaac ttgttctctg agcggcgagc agcaggatgt ctccatagac 1020
 ctcacaccac ttgcccagag cgaggttca tcctatatattt cagatggaaa agaatatttg 1080
 ttttatttga atgtctgtgg agaaaactgaa atacagtct gtaataaaaa acaagctgca 1140
 gtttgc当地 5
 cagaccctcc gatattcgga tggagaccc accttgcata aactttgagt gcaataaaa acgaggtaac 1200
 agctcagggt ttcagcggat gagcgtcata aactttgact gacacccatctt ctccatcatgg 1260
 gatggaaag gaactcctgt attcacaggg gaggttgcact 1320
 gacacggaaat acgcctgtgt taaggagaag gaagacccctc tctgcgggtc caccgacggg 1380
 aagaagcgtc atgacccgtc cgcgctggc cgcacatgcag aaccagagca gaattgggaa 1440
 gctgtggat gcagtcagac ggaaacagag aagaagcatt ttttcattaa tatttgcac 1500
 agagtgcgc aggaaggcaa ggcacgggg tgccgggagg acgcccagt gtgtcagt 1560
 gataaaaaat gaagaaaaaa tctggggaaa ttatttctt ctccatgaa agagaaagga 1620
 aacattcaac tcttttattt agatgggtat gattgtggc atggcaagaa aattaaaaact 1680
 aatatcacac ttgtatgca gccaggtat ctggaaatgt caccagtgtt gagaactct 1740
 ggggaaggcg gttgctttt tagtggtag tggcgcacag ctgcggctg tggctgtct 1800
 aagacagaag gggagaactg cacggcttt gactcccagg cagggtttt ttttgcatt 1860
 tcacctctca caaagaaaaaa tgggcctat aaagttgaga caaagaagta tgactttat 1920
 ataaatgtgt gtggcccggt gtctgtgagc ccctgtcagc cagactcagg agcctgccag 1980
 gttgcaaaaaa gtatgagaa gacttggaaac ttgggtctga gtaatgcgaa gctttcatat 2040
 tatgatggga tgatccaact gaactacaga ggcggcacac cctataacaa tggaaagacac 2100
 acaccgagag ctacgctcat caccttctc tggatcgag acgcgggagt gggctccct 2160
 gaatatcagg aagaggataa ctccacccatc aacttccggc ggtacaccag ctatgcctgc 2220
 ccggaggagc ccctggaaatg cgtatgtgacc gaccctccca cgctggagca gtacgaccc 2280
 tccagtcggg caaaatctga aggtggcctt ggaggaaact ggtatgcctt ggacaactca 2340
 ggggaacatg tcacgtggag gaaataactac attaacgtgt gtcggccctt gaatccagt 2400
 ccgggctgca accgatatgc atcggtctgc cagatgaagt ataaaaaaga tcagggctcc 2460
 ttcactgaag tgggttccat cagtaactt ggaatggcaa agaccggccc ggtgggttag 2520
 gacagcggca gcctccctct ggaatacgtg aatgggtcgg cctgcaccac cagegatggc 2580
 agacagacca catataccac gaggatccat ctgcgtctgtt ccaggggcag gctgaacage 2640
 caccatctt tttctctcaa ctggggatgt gtgtcagtt tcctgtggaa cacagaggct 2700
 gcctgtccca ttcagacaaac gacggataca gaccaggctt gctctataag ggatcccaac 2760
 agtggatttgc tgggttacatc taatccgcta aacagttcgc aaggatataa cgctctgtgc 2820
 attgggaaga tttttatgtt taatgtcgtc ggcacaatgc ctgtctgtgg gaccatccctg 2880
 gggaaacatcg ttcgtggctg tgaggcagaa acccaaactg aagagctcaa gaattggaaag 3000
 ccagcaaggc cagtcggaaat tgagaaaagc ctccagctgtt ccacagaggc cttcatact 3060
 ctgacctaca aaggccctct ctctgccaaa ggtaccgtgt atgctttat cgtccgttt 3120
 gtttgcattt atgatgtttt ctcaaggcccc ctcaatttcc tgcatcaaga tatecgactt 3180
 gggcaaggaa tccgaaacac ttacttttag tttgaaaccg cggtggctg tggcccttct 3240
 ccagtggact gccaagtcac cgacctgctt ggaatggat acgacctgac tggcctaagc 3300
 acagtcaagga aacccctggc ggctgttgc acctctgtcg atgggagaaa gaggactttc 3360
 tatttgcggc tttgcatttcc tctcccttac attccctggat gccaggggcag cgcaagtgggg 3420
 tcttgccttgc tgcagaagg caatagctgg aatctgggtg tggcagat gatccccaa 3480
 gccgcggcga atggatctt ggcattatc tatgtcaacg gtgacaatgt tggaaaccag 3540
 cgcttcacca ccaggatcac gtttggatgt gctcagatattt cgggctcacc agcatttcag 3600
 ttcaaggatg gttgtgagta cgtgtttatc tggagaactg tggaaagctg tcccggtgtc 3660
 agagtggaaag gggacaactg tgaggtgaaa gaccaaggc atggcaactt gtatgacctg 3720
 aagccctgg gcctcaacga caccatctg agcgtggcg aatacaactt ttacttccgg 3780
 gtctgtggaa agcttcctc agacgtctgc cccacaatgt acaagtccaa ggtggctcc 3840
 tcatgtcagg aaaagcggga accgcaggaa tttcacaaatg tggcaggtct cctgactcag 3900
 aagctaactt atgaaaaatgg ctgtttaaaa atgaacttca cggggggggc cacttgcct 3960
 aagggttatac agcgtccac agccatctt ttctactgtg accgcggcacc ccagcggcca 4020
 gtatttctaa aggagacttc agattgttcc tactgtttt ggtggcaac gcaatgt 4080
 tgcccaccc tgcattctgc tgaatgtca ttcaaaatgt gggctggca ctccttcgac 4140
 ctctcgccc tgc当地 55
 gagcactacc tcatcaatgt ctgc当地 4200
 cctccagaag cagccgcgtg tctgctgggt ggcttcaaggc cctgtacactt cggcagggt 4260
 agggacggac ctcagtgagg agatggcata attgtcctga aatacgttga tggcactt 4320
 tggccatgtt ggatcgaaat aaagtcaacc accatccgt tcaacttgcag cgagagccaa 4380
 gtgaactcca ggcccatgtt catcagcgcgtt gtggaggact gtgagttacac cttgcctgg 4440
 cccacagcca cagctgtcc catgaagagc aacgagcatg atgactgcca ggtcaccaac 4500
 ccaagcacaag gacacccgtt tgatctgagc tccttaatgt gcagggccggg attcacagct 4560
 60
 4620

DE 101 00 588 A 1

	gcttacagcg	agaaggggtt	ggtttacatg	agcatctgtg	gggagaatga	aaactgcctt	4680
5	cctggcgtgg	gggcctgttt	tgacagaccc	aggatttagcg	tgcccaggc	caacaaggagg	4740
	ctgagatacg	tggaccagg	cctgcagctg	gtgtacaagg	atgggtcccc	ttgtccctcc	4800
	aaatccggcc	tgagctataa	gaqtgtgatc	agtttcgtgt	gcaggcctga	ggccggggcca	4860
10	accaataggc	ccatgtctat	ctccctggac	aagcagacat	gcactcttct	tttctccctgg	4920
	cacacgccc	tgccctgcga	gcaagcgacc	aatgttccg	tgaggaatgg	aagctctatt	4980
	gttgacttgt	ctccccctt	tcatcgact	ggtggtttag	aggcttatga	tgagagttag	5040
	gatgtatgcct	ccgataccaa	ccctgatttc	tacatcaata	tttgcagcc	actaaatccc	5100
15	atgcacgcag	tgccctgtcc	tgccggagcc	gctgtgtca	aagttcttat	tgatggtccc	5160
	cccatagata	tcggccgggt	agcaggacca	ccaataactca	atccaatagc	aatgagatt	5220
	tacctgaatt	ttgaaagcag	tactccttgc	ttagcggaca	agcatttcaa	ctacacctcg	5280
	ctcatcgctg	ttcactgtaa	gagaggtgtg	agcatgggaa	cgcctaagct	gttaaggacc	5340
20	agcgagtgcg	actttgtgtt	cgaatgggag	actcctgtcg	tctgtcctga	tgaagtgagg	5400
	atggatggct	gtaccctgac	agatgagcag	ctcctctaca	gettcaactt	gtccagcctt	5460
	tccacgagca	cctttaaggt	gactcgcgcac	tcgcgcaccc	acagcgttgg	ggtgtgcacc	5520
	tttgcagtcg	ggccagaaca	aggaggctgt	aaggacggag	gagtctgtct	gctctcaggc	5580
25	accaagggggg	cattccttgg	acggctgcaa	tcaatgaaac	tggattacag	gcaccaggat	5640
	gaagcgggtcg	ttttaagttt	cgtgaatgg	gatcgttgc	ctccagaaaac	cgatgacggc	5700
	gtccccctgtg	tcttccctt	catattcaat	gggaagagct	acgaggagtg	catcatagag	5760
	agcaggggcga	agctgtgg	tagcacaact	gcccactacg	acagagacca	cgagtggggc	5820
30	tttgcagac	actcaaacag	ctaccggaca	tccagcatca	tatthaagtg	tgatgaagat	5880
	gaggacattt	ggaggccaca	agtcttcagt	gaagtgcgt	ggtgtgtatgt	gacatttgag	5940
	tggaaaacaa	aagttgtctg	ccctccaaag	aagttggagt	gcaaaattcg	ccagaaacac	6000
	aaaacctacg	acctcgccgt	gctctctct	ctcaccgggt	cctgggtccct	ggtccacaaac	6060
35	ggagtctcg	actatataaa	tctgtgcag	aaaatataaa	aaaggccccct	gggctgtctt	6120
	gaaaggggcca	gcatttgcag	aaggaccaca	actggtgac	tccaggtcc	gggactcggt	6180
	cacacgcaga	agctgggtgt	cataggtgac	aaagttgttg	tcacgtactc	caaagtttat	6240
	ccgtgtgg	gaaataagac	cgcatcctcc	gtgatagaat	tgacctgtac	aaagacgggt	6300
40	ggcagacactg	cattcaagag	gtttgatatac	gacagctgca	cttactact	cagctggac	6360
	tcccggtctg	cctgcggcgt	gaagcctcag	gaggtgcaga	tgtgtaatgg	gaccatcacc	6420
	aaccctataa	atggcaagag	cttcagccctc	ggagatattt	attttaagct	gttcagagcc	6480
	tctggggaca	tgaggaccaa	tggggacaac	tacctgtatg	agatccaact	ttcctccatc	6540
45	acaagctcca	gaaaccggc	gtgctcttgc	gccaacatat	gccaggtgaa	gccccacat	6600
	cagcaattca	gtcgaaagt	tggAACCTCT	gacaagacca	agtaactacct	tcaagacggc	6660
	gatctcgatg	tcgtgtttgc	ctttctctct	aagtgcggaa	aggataagac	caagtcgtt	6720
	tcttccacca	tcttcttcca	ctgtgaccct	ctggtgagg	acgggatccc	cgagttcagt	6780
	cacgagactg	ccgactgcca	gtacctcttc	tcttggtaca	cctcagccgt	gtgtctctgt	6840
50	gggtgtggct	ttgacagcga	gaatcccggg	gacgacgggc	agatgcacaa	ggggctgtca	6900
	gaacggagcc	aggcagtcgg	cgcgggtctc	agcctgtgc	tgtggcgct	cacctgctgc	6960
	ctgtgtggcc	tgttgctcta	caagaaggag	aggaggaaaa	cagtgataag	taagctgacc	7020
	actgtctgt	ggagaagttc	caacgtgtcc	tacaaataact	caaaggtgaa	taaggaagaa	7080
	gagacagatg	agaatgaaaac	agagtggctg	atggaagaga	tccagctgcc	tcctccacgg	7140
55	cagggaaagg	aagggcagga	gaacggccat	attaccacca	agtcaagtgaa	agccctcagc	7200
	tccctgcatg	gggatgacca	ggacagtgag	gatgaggttc	tgaccatccc	agagggtaaa	7260
	gttcaactcg	gcagggggagc	tggggcagag	agctccacc	cagtgagaaaa	cgcacacagac	7320
	aatggccctt	aggagctgtg	ggacgatagg	gtggggctgg	tcaggggtga	gaaggcgagg	7380
	aaagggaagt	ccagctctgc	acagcagaag	acagttagct	ccaccaagct	ggtgtccctc	7440
	catgacgaca	gcgacgagga	cctttacac	atctga			7476
60	<210> 91						
	<211> 4104						
	<212> DNA						
	<213> Homo sapiens						
	<300>						
	<302> IGF1R						
	<310> NM000875						
65	<400> 91						
	atgaagtctg	gctccggagg	agggtccccg	acctcgctgt	gggggctct	gtttctctcc	60

DE 101 00 588 A 1

gccgcgcctc	cgctctggcc	gacgagtgga	gaaatctgcg	ggccaggcat	cgacatccgc	120	
aacgactatc	agcagctgaa	gcgcctggag	aactgcacgg	tgatcgaggg	ctacacctcac	180	
atcctgcgtca	tctccaaggc	cgaggactac	cgcagctacc	gcttccccaa	gctcacggtc	240	5
attaccgagt	acttgctgt	gttccgagtg	gctggcctcg	agagcctcgg	agaccttcc	300	
cccaacctca	cggcatccg	cggtctggaaa	ctttctaca	actaccccct	ggtcatcttc	360	
gagatgacca	atctcaagga	tattgggctt	tacaacctga	ggaacattac	tcggggggcc	420	
atcaggattg	agaaaaatgc	tgacctctgt	tacctctcca	ctgtggactg	gtccctgatc	480	
ctggatgcgg	tgtccaataa	ctacattgtg	ggsaataaagc	ccccaaagga	atgtgggac	540	
ctgtgtccag	ggaccatgg	ggagaagccg	atgtgtgaga	agaccacca	caacaatgag	600	10
tacaactacc	gctgctggac	cacaaccgc	tgccagaaaaa	tgtgccaag	cacgtgtggg	660	
aagcgggggt	gcaccgagaa	caatgagtgc	tgccaccccg	agtgcctggg	cagctgcagc	720	
gcgcctgaca	acgacacggc	ctgtgtact	tgccgccact	actactatgc	cggtgtctgt	780	
gtgcctgcct	gccccccaa	cacctacagg	tttggggct	ggcgcgtgt	ggaccgtgac	840	
ttctgcgcca	acatcctcg	cgccgagagc	agcactctcg	aggggtttgt	gatccacgac	900	
ggcgagtgca	tgcaggagtg	ccccctcgggc	ttcatccgca	acggcagcca	gagcatgtac	960	
tgcatccctt	gtgaagggtcc	ttgcccggag	gtctgtgagg	aagaaaagaa	aacaagacc	1020	
attgattctg	ttacttctgc	tcagatgctc	caaggatgca	ccatcttcaa	ggcaatttg	1080	
ctcattaaca	tccgacgggg	gaataacatt	gcttcagagc	tggagaactt	catggggctc	1140	
atcgaggtgg	tgacgggcta	cgtgaagatc	cgccattctc	atgccttgg	ctccttgc	1200	
ttcctaaaaa	accttcgctt	catcctagga	gaggagcagc	tagaaggaa	ttactccttc	1260	
tacgtcctcg	acaaccagaa	cttgccgca	ctgtggact	gggaccacccg	caacctgacc	1320	
atcaaagcag	ggaaaaatgt	ctttgcttc	aatcccaat	tatgtgtttc	cgaaaattac	1380	
cgcattgggg	aagtgcacgg	gactaaaggg	cgccaaagca	aaggggacat	aaacaccagg	1440	
aacaacgggg	agagagcctc	ctgtgaaagt	gacgtctgc	atttcaccc	caccaccacg	1500	25
tcgaagaatc	gcatcatcat	aacctggcac	cggtaccggc	ccccctgacta	cagggatctc	1560	
atcagcttca	ccgtttacta	caaggaagca	ccctttaaga	atgtcacaga	gtatgtggg	1620	
caggatgcct	gccccccaa	cagctggAAC	atgtggacg	tggacctccc	gcccaacaag	1680	
gacgtggagc	ccggcatctt	actacatggg	ctgaagccct	ggactcagta	cgccgtttac	1740	
gtcaaggctg	tgacccctac	catggtgag	aacgaccata	tccgtggg	caagagttag	1800	
atcttgcata	ttcgcaccaa	tgcttcagtt	ccttcattc	ccttggacgt	tcttcagca	1860	
tcgaactcct	cttctcagtt	aatcgtgaag	tggAACCTC	cctctctg	caacggcaac	1920	
ctgagttact	acattgtgcg	ctggcagcg	cagccctcagg	acggctacct	ttaccggcac	1980	
aattactgt	ccaaagacaa	aatccccatc	aggaaagtatg	ccgacggcac	catcgacatt	2040	
gaggaggtca	cgagaacccc	caagactgag	gtgtgtgggt	gggagaaagg	gccttgctgc	2100	35
gcctgcccc	aaactgaagc	cgagaagcag	ggcggaaagg	aggaggctga	ataccgc	2160	
gtctttgaga	atttcctgca	caactccatc	ttcgtggccca	gacctgaaag	gaagcggaga	2220	
gatgtcatgc	aagtggccaa	caccatcat	tccaggccaa	gcaggaacac	cacggccgca	2280	
gacacctaca	acatcaccga	cccggaagag	ctggagacag	agtaccctt	ctttgagacg	2340	
agagtggata	acaaggagag	aactgtcatt	tctaaccttc	ggcctttcac	attgtaccgc	2400	40
atcgatatacc	acagctgca	ccacgagct	gagaagctgg	gctgcagcgc	ctccaaatcc	2460	
gtctttgca	ggactatgccc	cgcagaagga	gcagatgaca	tccctggg	agtgacactgg	2520	
gagccaaggc	ctgaaaactc	catctttta	aagtggccgg	aacctgagaa	tcccaatgga	2580	
ttgattctaa	tgtatgaaat	aaaatacgg	tcacaagttg	aggatca	cgagaatgtgt	2640	
tccagacagg	aatacaggaa	gtatggaggg	gccaagctaa	accggctaaa	cccggggaac	2700	45
tacacagccc	ggattcaggc	cacatcttc	tctgggatg	gttcgtggac	agatcctgt	2760	
ttcttctatg	tccaggccaa	aacaggat	gaaaacttca	tccatctgt	catcgctctg	2820	
cccgtcgctg	tcctgttgc	cgtgggaggg	ttggtgatta	tgctgtacgt	cttccataga	2880	
aagagaaaata	acagcaggct	ggggatatgg	gtgtgtatg	cctctgtgaa	cccgaggatc	2940	
ttcagcgtcg	ctgtatgt	cgttcctgt	gagtgggagg	tggctggg	gaagatcacc	3000	
atgagccggg	aacttggca	ggggtcgtt	gggatgtct	atgaaggagt	tgccaagggt	3060	
gtggtgaaaag	atgaacctga	aaccagagt	gccattaaaa	cagtgaacga	ggccgcäägc	3120	
atgcgtgaga	ggattgagtt	tctcaacgaa	gcttctgtga	tgaaggagt	caattgtcac	3180	
catgtgggtc	gattgctggg	tgtggtg	caaggccagc	caacactgtt	catcatggaa	3240	
otgatgacac	ggggcgtatc	aaaaagtat	ctccggctc	tgaggccaga	aatggagaat	3300	55
aatccagtc	tagcacctcc	aaggcctgagc	aagatgattc	agatggccgg	agagattgca	3360	
gacggcatgg	catacctca	cgccaaataag	ttcgtccaca	gagaccctgc	tgcccgaaat	3420	
tgcattgttag	ccgaagattt	cacagtcaaa	atcggagatt	ttggatgac	gcgagatatac	3480	
tatgagacag	actattaccg	gaaaggaggg	aaaggcgtgc	tggccgtgc	ctggatgtct	3540	
cctgagtccc	tcaaggatgg	agtcttcacc	acttactcg	acgtctgtc	cttcgggggtc	3600	60
gtcctctggg	agatcgccac	actggccgag	cagccctacc	agggcttgc	caacgagcaa	3660	
gtccttcgct	tcgtcatgga	ggggccctt	ctggaca	actg	tcctgacat	3720	

DE 101 00 588 A 1

ctgtttgaac ttagtcgcgt gtgctggcag tataacccca agatgaggcc ttcccttcctg 3780
 gagatcatca gcagcatcaa agaggagatg gaggcctggct tccgggaggt ctccttctac 3840
 tacagcgagg agaacaagct gcccggccg gaggagctgg acctggagcc agagaacatg 3900
 5 gagagcgtcc ccctggaccc ctcggctcc tcgtcctccc tgccactgcc cgacagacac 3960
 tcaggacaca agggcgagaa cggccccggc cctgggggtgc tggcctccg cggcagcttc 4020
 gacgagagac agccttacgc ccacatgaac gggggccgca agaacgagcg ggccttgccg 4080
 ctggcccaagt cttcgacctg ctga 4104

10 <210> 92
 <211> 726
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> PDGFB
 <310> NM002608

20 <400> 92
 atgaatcgct gctgggcgct cttcctgtct ctctgctgct acctgcgtct ggtcagcgcc 60
 gagggggacc ccattcccgaa ggagctttat gagatgctga gtgaccactc gatccgctcc 120
 tttgtatgatc tccaacgcct gtcgacccgaa gaccccgagg aggaagatgg gggcgagttg 180
 gacctgaaca tgacccgctc ccactcttggaa ggcgagctgg agagcttggc tcgttggaaaga 240
 25 aggagcctgg gttccctgac cattgcttag ccggccatgaa tcgcccggatgaa caagacgcgc 300
 accggagggtgt tcgagatctc cccggcgccct atagaccgca ccaacgccaa cttcctggtg 360
 tggccgcctt gtgtggaggt gcagcgctgc tccggctgtc gcaacaaccg caacgtgcag 420
 tgccgccttcca cccagggtgca gctgcgacccgtt gtcggatgtgaa gaaagatcgaa gattgtgcgg 480
 aagaagccaa tcttttaagaa ggcacacgggtg acgctggaaag accacactggc atgcaagtgt 540
 30 gagacagtgg cagctgcacg gcctgtgacc cgaagcccg ggggttccca ggagcagcga 600
 gccaaaacgc cccaaactcg ggtgaccatt cggacgggtgc gatgtccggc gcccccccaag 660
 ggcaagcacc ggaatttcaa gcacacgcata gacaagacgg cactgaagga gacccttgaa 720
 gccttag 726

35 <210> 93
 <211> 1512
 <212> DNA
 <213> Homo sapiens

40 <300>
 <302> TGFbetaR1
 <310> NM004612

45 <400> 93
 atggaggccgg cggtcgctgc tccgcgtccc cggctgtcc tcctcggtct ggcggccggcg 60
 gccggccggcg cggccggcgct gctcccgggg gcgacggcgat tacagtgttt ctggcacctc 120
 tgtacaaaag acaattttac ttgtgtgaca gatgggctct gctttgtctc tgcacacagag 180
 accacagacata aagtataca caacagcatg tgtatagctg aaattgactt aattcctcgaa 240
 50 gataggccgt ttgtatgtgc accctcttca aaaactgggt ctgtgactac aacatattgc 300
 tgcaatcagg accattgcaaa taaaatagaa cttccaaacta ctgtaaagtc atcacactggc 360
 cttggccctg tggaactggc agctgtcatt gctggaccag tggccttcgt ctgcacatctca 420
 ctcatgttga tggcttatat ctggccacaaac cgcactgtca ttccaccatcg agtgcacaaat 480
 gaagaggacc cttcatttgc tcggcccttt atttcagagg gtactacgtt gaaagactta 540
 55 atttatgata tgacaacgcg aggttctggc tcagggtttac cattgcttgt tcagagaaca 600
 attgcgagaa ctattgtgtt acaagaaagc attggcaaaag gtcgatttgg agaagtttgg 660
 agaggaaaat ggcgggggaga agaagttgtct gttaaagatat ttcctcttag agaagaacgt 720
 tcgtgggtcc gtgaggcaga gatttatcaa actgtaatgt tacgtcatga aaacatccctg 780
 ggattttatag cagcagacaa taaagacaat ggtacttggc ctcagctctg gttgggtgtca 840
 60 gattatcatg agcatggatc cctttttgt tacttaaaca gatacacatgt tactgtggaa 900
 ggaatgataa aacttgctct gtcacggcg agcggcttgc cccatcttca catggagatt 960
 gttggtaccc aaggaaagcc agccattgtct catagagatt taaaatcttgc 1020

DE 101 00 588 A 1

gtaaaagaaga atggaacttg ctgtattgca gacttaggac tggcagtaag acatgattca 1080
 gccacagata ccattgatat tgctccaaac cacagagtgg gaacaaaaag gtacatggcc 1140
 cctgaaggtc tcgatgattc cataaatatg aaacattttgc aatcctcaa acgtgctgac 1200
 atctatgca tggcttagt attctggaa attgctcgac gatgtccat tggtaaatt 1260
 catgaagatt accaactgccc ttattatgtat cttgtacctt ctgaccatc agttgaagaa 1320
 atgagaaaag ttgttgtga acagaagttt aggccaaata tcccaaacag atggcagagc 1380
 tgtgaaggct tgagagtaat ggctaaaattt atgagagaat gttggtatgc caatggagca 1440
 gctaggctt cagcattgcg gattaagaaa acattatgcg aactcagtca acaggaaggc 1500
 atcaaaaatgt aa 1512

5

10

<210> 94
 <211> 4044
 <212> DNA
 <213> Homo sapiens

15

<300>
 <302> Flk1
 <310> AF035121

20

<400> 94
 atgcagagca aggtgctgct ggccgtcgcc ctgtggctct gcgtggagac ccggggccgccc 60
 tctgtgggtt tgcctagtgt ttctcttgat ctggccaggc tcagcataca aaaagacata 120
 cttacaatta aggctaatac aactcttcaa attacttgc ggggacagag ggacttggac 180
 tggctttggc ccaataatca gagtggcagt gagcaaaaggg tggaggtgac tgagtgcagc 240
 gatggcctct tctgttaagac actcacaattt ccaaaaatgtga tcggaaatga cactggagcc 300
 tacaagtgtct tctaccggaa aactgacttg gcctcggtca tttatgtcta tggtaaagat 360
 tacagatctc catttattgc ttctgttagt gaccaacatg gagtcgtgtt cattactgag 420
 aacaaaaaca aaactgtggt gattccatgt ctgggtcca tttcaaatctt caacgtgtca 480
 ctgtgtgcaaa gataaccaga aaagagattt gttcttgat gtaacagaat ttcctggac 540
 agcaagaagg gctttactat tccccagctac atgatcagct atgctggcat ggtttctgt 600
 gaagcaaaaa ttaatgtatgaa aagttaccag tctattatgtt acatagttgt cgttgttaggg 660
 tataggattt atgatgtggt tctgagttccg tctcatggaa ttgaactatc tggtaaagaa 720
 aagcttggct taaattgtac agcaagaactt gaactaaatg tggggatttga cttcaactgg 780
 gaataccctt cttcgaagca tcagcataag aaacttgtaa accgagacatc aaaaacccag 840
 tctgggagtg agatgaagaa atttttggc accttaacta tagatgtgtt aaccggaggt 900
 gaccaaggat tgcacacccg tgcagcatcc agtgggctgtca tgaccaagaa gaacagcaca 960
 tttgtcaggg tccatgaaaa accttttgcg gcttttggaa gtggcatgaa atctctgggt 1020
 gaagccacgg tggggagcg tgcagaatc cctcgcaagt accttgggtt cccacccccc 1080
 gaaataaaaat ggtataaaaaat tggaaatcccc ctttgcgttca atcacacaat taaagcgggg 1140
 catgtactga cgattatggaa agtgagtgaa agagacacag gaaattacac tgcacatc 1200
 accaatccca tttcaaagga gaagcagagc catgtggctt ctctgggtt gtatgtccca 1260
 ccccagattt gtgagaaatc tctaattctt cctgtggatt ctttgcgttca cggcaccact 1320
 caaacgctga catgtacggc ctatgcattt cctccccccgc atcacatcca ctgttattgg 1380
 cagttggagg aagagtgcgc caacgagccc agccaagctg tctcgtgtt aaacccatc 1440
 ccttgcgttgaag aatggagaag tttttttttt gaaataaaaat tgaagttat 1500
 aaaaatcaat ttgtctaat tgaaggaaaa aacaaaaactg taagtaccct tggtaatccaa 1560
 gcgccaaatgt tttttttttt gtacaaatgtt gaagcgttca acaaagtccg gagaggagag 1620
 aggggtgatct cttttttttt gttttttttt gttttttttt cttttttttt tgacatgc 1680
 cccactgagc aggagagcgt gtctttttttt tttttttttt acagatctac gtttggaaac 1740
 ctcacatgtt acaagcttgg cccacacccctt ctgtttttttt atgtgggaga gtttggccaca 1800
 cttttttttt tttttttttt tttttttttt ccaccatgtt ctctaatagc 1860
 acaaataatgtttttttttt ggagtttaat aatgcattttt tttttttttt tgacatgc 1920
 gtctgccttgc tttttttttt tttttttttt gttttttttt gttttttttt gttttttttt 1980
 gtccttagagc gtgtggcacc cttttttttt tttttttttt gttttttttt gttttttttt 2040
 gggggaaaagca tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2100
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2160
 aacccatgtttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2220
 agtggttcttgc gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2280
 acgaacttgg aatcattttt tttttttttt tttttttttt tttttttttt tttttttttt 2340
 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 2400

25

30

35

40

45

50

55

60

65

DE 101 00 588 A 1

tacttgtcca tcgtcatgga tccagatgaa ctcccattgg atgaacattg tgaacgactg 2460
 ccttatgatg ccagcaaatg ggaattcccc agagaccggc tgaagctagg taagcctctt 2520
 ggccgtgtg ccttgccca agtGattgaa gcagatgcct ttggattga caagacagca 2580
 5 acttgcagga cagtagcagt caaatgttg aaagaaggag caacacacag tgagcatcg 2640
 gctctcatgt ctgaactcaa gatcctcatt catattggc accatctcaa tgtggtaac 2700
 cttcttaggtg cctgtacca gccaggaggg ccactcatgg tgattgtgaa attctgaaa 2760
 tttggaaacc tgtccactta cctgaggagc aagagaaaatg aatttgcctt ctacaagacc 2820
 aaaggggcac gattccgtca agggaaagac tacgttgag caatccctgt ggatctgaaa 2880
 10 cgccgcttgg acagcatcac cagtagccag agtcagcca gctctggatt tggtggaggag 2940
 aagtccctca gtgatgtaga agaagaggaa gctcctgaaag atctgtataa ggacttcctg 3000
 accttggagc atctcatctg ttacagctt caagtggcta agggcatgga gttcttggca 3060
 tcgcegaacat gtatccacag ggacctggcg gcacgaaata tcctcttatac ggagaagaac 3120
 gtggtaaaaa tctgtgactt tggcttgcc cggatattt ataaagatcc agattatgtc 3180
 15 agaaaaggag atgctgcctt cccttggaaa tggatggccc cagaacaaat ttttgcacaga 3240
 gtgtacacaa tccagagtga cgtctggct tttgtgttt tgctgtgggaa aatattttcc 3300
 ttaggtgctt ctccatatcc tgggttaaag attgtgaaag aatttttag gggatgaaa 3360
 gaaggaacta gaatgagggc ccctgattt actacaccag aatgtacca gaccatgctg 3420
 gactgtggc acggggagcc cagtcagaga cccacgtttt cagagtggg ggaacattt 3480
 20 gggaaatctct tgcaagctaa tgctcagcag gatggcaaaag actacattgt tcttccgata 3540
 tcagagactt tgagcatgga agaggattt ggactctctc tgcctaccc acctgtttcc 3600
 tgtatggagg aggaggaagt atgtgacccc aaattccattt atgacaacac agcaggaatc 3660
 agtcagtatc tgcaaaacag taagcgaaag agccggcctg tgagtgtaaa aacatttggaa 3720
 gatatccctg tagaagaacc agaagtaaaa gtaatccctg atgacaacca gacggacagt 3780
 25 ggtatggttc ttgcctcaga agagctgaaa actttggaaag acagaaccaa attatctcca 3840
 tctttggtg gaatgggtcc cagaaaagc agggagtctg tggcatctga aggctcaaac 3900
 cagacaagcg gctaccagtc cggatatttcc tccatgaca cagacaccac cgtgtactcc 3960
 agtgaggaag cagaactttt aaagctgata gagattggag tgcaaaccgg tagcacagcc 4020
 cagattctcc agcctgactc ggggg 4044

30

- <210> 95
- <211> 4017
- <212> DNA
- 35 <213> Homo sapiens

- <300>
- <302> Flt1
- <310> AF063657

40

- <400> 95

atggtcagct actgggacac cggggctctg ctgtgcgcgc tgctcagctg tctgcttctc 60
 acaggatcta gttcagggttc aaaattaaaa gatcctgaaatc tgagttttaaa aggcacccag 120
 cacatcatgc aagcaggccca gacactgcat ctccaaatgca ggggggaagc agcccataaaa 180
 45 tggctttgc ctgaaatggt gagaaggaa agcgaaaggc tgagcataac taaatctgcc 240
 tggtaagaa atggcaaaaca attctgcagt acttttaacct tgaacacagc tcaagcaaac 300
 cacactggct tctacagctg caaatatcta gctgtaccta cttcaaaagaa gaaggaaaca 360
 gaatctgoaa tcttatattatt tattgtgat acaggttagac ctttctgtt gatgtacagt 420
 gaaatccccg aaattataca catgactgaa ggaaggggc tgctcattcc ctggcggggtt 480
 50 acgtcaccta acatcaactgt tactttaaaa aagtttccac ttgacactt gatccctgat 540
 gggaaacgcataatctggga cagtagaaag ggcttcatca tatcaaattgc aacgtacaaa 600
 gaaatagggc ttctgacctg tgaagcaaca gtcaatgggc atttgtataa gacaaactat 660
 ctcacacatc gacaaacccaa tacaatcata gatgtccaaa taagcacacc acgcccagtc 720
 aaattactta gaggccatac tcttgcctc aattgtactg ctaccactcc ttgaacacg 780
 55 agagttcaaa tgacgtggag ttaccctgtat gaaaaaaaaa agagagctt cgttaaggcga 840
 cgaatttgacc aaagcaattt ccattgcac atattctaca gtgttcttac tattgacaaa 900
 atgcagaaca aagacaaaagg actttataact tgcgtgtaa ggagtggacc atcattcaaa 960
 tctgttaaca cctcagtgca tataatgtat gaaagcattca tcactgtgaa acatcgaaaa 1020
 cagcagggtgc ttgaaaccgt agctggcaag cggcttacc ggctcttat gaaagtgaag 1080
 60 gcathttccct cgccggaaatgtatgggta aaagatgggt tacctgcac tgagaaatct 1140
 gctcgctatt tgactcgtgg ctactcgat attatcaagg acgttaactga agaggatgca 1200
 gggaaattata caatcttgct gagcataaaaa cagtcaaatg tgttaaaaa cctcactgcc 1260

65

DE 101 00 588 A 1

actctaattg tcaatgtcaa accccagatt tacgaaaagg ccgtgtcatc gttccagac 1320	5
ccggctctc acccaactggg cagcagacaa atcctgactt gtaccgcata tggtatccct 1380	
caacctacaa tcaagtgggt ctggcacccc tgtaaccata atcattccga agcaagggtgt 1440	
gactttgtt ccaataatga agagtcctt atcctggatg ctgacagcaa catggaaac 1500	
agaattgaga gcatcactca gcgcatggca ataatagaag gaaagaataa gatggcttag 1560	
accttgggtg tggctgactc tagaatttct ggaatctaca ttgcatacg ttccaataaaa 1620	
gttgggactg tggaaagaaa cataagctt tatatcacag atgtgc当地 tgggtttcat 1680	
gttaacttg aaaaaatgcc gacggaagga gaggacactga aactgtctt cacagttaa 1740	
aagttcttat acagagacgt tacttggatt ttactgc当地 cagtaataa cagaacaatg 1800	10
cactacaga ttagcaagca aaaaatggcc atcaactaagg agcactccat cactcttaat 1860	
cttaccatca tgaatgtttc cctgcaagat tcagggcacct atgcctgc当地 agccaggaat 1920	
gtatacacag gggaaagaaa cctccagaag aaagaaatta caatcagaga tcaggaagca 1980	
ccatacctcc tgcaaacct cagtgatcac acagtggccca tcagcagttc caccacttta 2040	
gactgtcatg ctaatgggtt ccccgagct cagatcaactt gtttaaaaaa caaccacaaa 2100	
atacaacaag agcctgaaat tatttttagga ccaggaagca gcacgctt当地 tattgaaaga 2160	15
gtcacagaag aggatgaaagg tgc当地 tgc当地 tgcaagggca ccaaccagaa gggctctgtg 2220	
gaaagtttag catacctc当地 tgc当地 acctcggaca agtctaactt ggagctgatc 2280	
actctaacat gcacctgtgt ggctgc当地 ctcttctggc tccttataac cctctttatc 2340	
cgaaaaatga aaaggcttcc ttctgaaata aagactgact accttataat tataatggac 2400	
ccagatgaag ttcccttggc tgagcagttt gagcggctcc ttatgatgc cagcaagtgg 2460	20
gagtttgc当地 gggagagact taaactggc aaatcaactt gaagagggc tttgaaaaa 2520	
gtgggttcaag catcagcatt tggcattaag aaatcaccta cgtgc当地 cttgtgtg 2580	
aaaatgctga aagagggggc cacggccagc gaggatcaaag ctctgatgac tgagctaaa 2640	
atcttgaccc acattggcc local ccatctgaac gtggtaacc tgctggagc ctgc当地 2700	
caaggagggc ctctgatgtt gatttttggaa tactgcaat atggaaatct ctccaaactac 2760	
ctcaagagca aacgtgactt attttttctc aacaaggatg cagcactaca catggagcc 2820	
aagaaagaaa aaatggagcc aggcctggaa caaggcaaga aaccaagact agatagcgtc 2880	
accagcagcg aaagcttgc gagctccggc tttcaggaag ataaaagtct gaggatgtt 2940	
gaggaagagg aggattctga cgggttctac aaggagccca tcactatgga agatctgatt 3000	30
tcttacagt ttcaagtggc cagaggcatg gagttcctgt cttccagaaa gtgc当地 3060	
cgggacctgg cagcagaaaaa cattcttta tctgagaaca acgtggtaa gattttgtat 3120	
tttggccttg cccggatata ttataagaac cccgattatg tgagaaaaagg agatactcga 3180	
cttccctc当地 aatggatggc tcctgaaatct atctttgaca aaatctacag caccacag 3240	
gacgtgtgtt cttacggagt attgtgttgg gaaatcttgc ctttaggtgg gtccatcata 3300	35
ccaggaggatc aaatggatga ggactttgc agtgc当地 gggaaaggcat gaggatgaga 3360	
gctcctgatc actctactcc tgaatcttgc cagatcatgc tggactgtc gcacacagac 3420	
ccaaaagaaa ggccaaagatc tgc当地 gttggaaaac taggtgatc gctcaagca 3480	
aatgtacaac aggatggtaa agatcacatc ccaatcatgc ccatactgac agggaaatagt 3540	
gggtttacat actcaactcc tgc当地 tgc当地 tcaaggaaag tattttcagct 3600	40
ccgaagtttta attcaggaag ctctgatgtat gtc当地 gtc当地 taaatgtttt caagttcatg 3660	
agcctggaaa gaatcaaaaac ctttgaagaa ctttaccga atgccaccc catgtttgtat 3720	
gactaccagg ggc当地 ggc当地 cactctgtt gc当地 gc当地 tgctgaagcg cttcacctgg 3780	
actgacagca aacccaaaggc ctgc当地 caag attgacttgc gaggatccag taaaagtaag 3840	
gagtcggggc tgtctgatgt cagcaggccc agtttctgc attccagctg tggcacgtc 3900	
agcgaaggca agcgc当地 gagtttgc当地 cacctacac gacgtgc当地 tggaaaggaa aatcgctgtc 3960	45
tgctccccgc ccccaagacta caactcggtg gtc当地 gtc当地 ccacccacc catctag 4017	

<210> 96
<211> 3897
<212> DNA
<213> Homo sapiens

<300>
<302> Flt4
<310> XM003852

<400> 96	50
atgcagcggg ggc当地 ggc当地 ctgtggctct gc当地 ggact cctggacggc 60	
ctgggtggatg gctactccat gacccccc当地 accttgaaca tcacggagga gtc当地 acgtc 120	
atcgacacccg gtgc当地 gagcccttcc tgc当地 gagcccttcc agcaccaccc cgagttgggt 180	60

DE 101 00 588 A 1

tggccaggag ctcaggaggc gccagccacc ggagacaagg acagcgagga cacgggggtg 240
 gtgcgagact gcgagggcac agacgccagg ccctactgca aggtgttgct gctgcacgag 300
 gtacatgcca acgacacagg cagctacgta tgctactaca agtacatcaa ggcacgcata 360
 5 gagggcacca cggccgccc ctcctacgtg ttctgtgagag actttgagca gccattcatc 420
 aacaagcctg acacgctt ggtcaacagg aaggacgcca tgggggtgccc ctgtctgg 480
 tccatccccg gcctcaatgt cagctgcgc tcgcaaaagct cgggtctgtg gccagacggg 540
 caggaggtgg tgtggatga cggccggggc atgctcggt ccacgccact gctgcacgat 600
 gcccgttacc tgcagtgcga gaccacctgg ggagaccagg acttccttc caacccttc 660
 10 ctggtgacaca tcacaggca ctagcttat gacatccagc tggccctg gaagtcgctg 720
 gagctgtgg taggggagaa gctggctctg aactgcaccg tggggctgaa gtttaactca 780
 ggtgtcacct ttgactggg ctacccagg aagcaggcag agcgggttaa gtgggtgccc 840
 gagcgcacgt cccagcagac ccacacagaa ctctccagca tcctgaccat ccacaacgta 900
 agccagcagc acctgggtc tstatgtgtc aaggccaaaca acggcatcca gcatgttcgg 960
 15 gagagcaccg aggttattgt gcatgaaaat cccttcatca gctcgagtg gctcaaagga 1020
 cccatctgg aggccacggc aggagacgag ctggtaagc tgccctgaa gctggcagcg 1080
 taccctccgc ccgagttca gttgtcaag gatggaaagg cactgtccgg gcccacagt 1140
 ccacatgccc tgggtctcaa ggaggtgaca gaggccagca caggcaccta caccctcgcc 1200
 ctgtggact cccgtgtgg cctgaggcg aacatcagcc tggagctgtt ggtaatgtg 1260
 20 ccccccaga tacatgagaa ggaggccctc tcccccaagca tctactcgcg tcacagccgc 1320
 caggccctca cctgcacggc ttaggggtg cccctgcctc tcagcatcca gtggcactgg 1380
 cgccctgga caccctgcaa gatgttgcctc cagctgttc tccggccggc gcagcagcaa 1440
 gacctcatgc cacagtgcgc tgactggagg gcggtgaccg cgcaggatgc cgtgaacccc 1500
 atcgagagcc tggacacctg gaccgaggaa tggaggggaa agaataagac tggagcaag 1560
 25 ctggtgatcc agaatgccaa cgtgtctgc atgtacaagt gtgtggctc caacaaggta 1620
 ggccaggatg agcggtcat ctacttctat gtgaccacca tccccgacgg cttcaccatc 1680
 gaatccaagc catccgagga gctactagag ggcagccgg tgctcctgag ctgccaagcc 1740
 gacagctaca agtacgagca tctgcgtgg taccgcctca acctgtccac gctgcacgat 1800
 ggcacggga acccgcttc gtcgactgc aagaacgtgc atctgttcgc caccctctg 1860
 30 gccgcccagcc tggaggaggt ggcacctggg gcgcgcacg ccacgctcag cctgagtata 1920
 ccccgctcg cgcccgagca cgaggggccac tatgtgtgcg aagtgcaga cccggcgcage 1980
 catgacaagc actgccacaa gaagtacctg tcgtgcagg ccctggaaagc ccctcggtc 2040
 acgcagaact tgaccgaccc cctggtgaaac gtgagcgact cgctggagat gcagtgttt 2100
 gtggccggag cgacacgcgc cagcatcgta tggtaaaag acgagaggct gctggaggaa 2160
 35 aagtctggag tcgacttggc ggactccaa cagaagctga gcatccagcg cgtgcgcgag 2220
 gaggatgcgg gacgtatct gtgcagctgt tgcaacgcga agggctgcgt caactcctcc 2280
 gccagctgg ccgtggaaagg ctccggagat aaggcagca tggagatcgt gatccttg 2340
 ggtaccggcg tcatcgctgt cttcttcgg gtctcttc tcctcatctt ctgtaacatg 2400
 aggaggccgg cccacgcaga catcaagacg ggctacctgt ccatcatcat ggaccccccgg 2460
 40 gaggtgcctc tggaggagca atgcgaatac ctgtcttacg atgcccggca gtgggaattc 2520
 ccccgagagc ggctgcaccc ggggagatgt ctggctacg ggccttcgg gaaggtgggtg 2580
 gaagcctccg ctttcggcat ccacaaggcc acagctgtg tgcggagct caagatcctc 2640
 Ctggaaagagg ggcacacggc cagcgagcag cgccgcgtga acacggcgc cgtgaaaatg 2700
 attcacatcg gcaaccaccc caacgtgtc aacctctcg gggctgcac caagccgcag 2760
 45 ggccccctca tggtgatcg tggatctgc aagtaaggca acctctccaa cttctcgcc 2820
 gccaagcggg acgccttcacg cccctgcgcg gagaagtctc ccgagcagcg cggacgcttc 2880
 cgcgcctatgg tggagctcgc caggctggat cggaggccgc cggggagcag cgacagggtc 2940
 ctcttcgcgc ggttctcgaa gaccggggc ggagcggaggc gggcttcac agaccaagaa 3000
 gctgaggacc tggatcgatcc cccgctgacc atgaaagatc ttgtctgtca cagcttccag 3060
 50 gtggccagag ggatggagtt cttggctcc cgaaagtgc tccacagaga cttggctgt 3120
 cggAACATTC tgctgtcgaa aagcgacgtg gtgaagatct gtgactttgg cttggccccc 3180
 gacatctaca aagaccccgaa ctacgtccgc aaggcagtg cccggctgca cctgaagtgg 3240
 atggccctcg aaagcatctt cgacaagggt tacaccacgc agatgtacgt gtggctttt 3300
 ggggtgcttc tctggagat cttctctcg ggggcctccc cgtaccctgg ggtgcagatc 3360
 55 aatgaggagt tctgccagcg gctgagagac ggcacaaaggaa tgagggcccc ggagctggcc 3420
 actcccgcca tacggccgat catgtgaac tgctggccg gagacccaa ggcagacact 3480
 gcattctcg agctgggtgg aatcgctgggg gacgtgtcc agggcagggg cctgcaagag 3540
 gaagaggagg tctgcgtgc cccggcgacg tctcagagct cagaagaggc cagcttctcg 3600
 cagggtgtcca ccatggccct acacatcgcc caggctgacg ctgaggacag cccgccaagc 3660
 60 ctgcagcgcc acaggctggc cgccaggat tacaactggg tggctttcc cgggtgcctg 3720
 gccagagggg ctgagacccg tggcttc tggatgaaga catttgagga attccccatg 3780
 accccaaacga cctacaaagg ctctgtggac aaccagacag acagtggat ggtgctggcc 3840

DE 101 00 588 A 1

tcggaggagt ttgagcagat agagagcagg catagacaag aaagcggctt caggtag 3897

<210> 97
<211> 4071
<212> DNA
<213> Homo sapiens

<300>
<302> KDR
<310> AF063658

<400> 97

atggagagca	agggtgcgt	ggccgtcgcc	ctgtggctct	gcgtggagac	ccggggccgccc	60	
tctgtgggtt	tgccctagtgt	ttctcttgat	ctgcccaggc	tcagcataca	aaaagacata	120	5
cttacaatta	aggctaatac	aactctcaa	attacttgc	ggggacagag	ggacttggac	180	
tggctttggc	ccaataatca	gagtggcagt	gagcaaaggg	tggaggtgac	tgagtgcagc	240	
gatggctct	tctgttaagac	actcacaatt	ccaaaagtga	tcggaaatga	cactggagcc	300	
tacaagtgc	tctaccggga	aactgacttg	gcctcggtca	tttatgtcta	tgttcaagat	360	
tacagatctc	catttattgc	ttctgttagt	gaccaacatg	gagtcgtgta	cattactgag	420	
aacaaaaaca	aaactgtgg	gattccatgt	ctcgggtcca	tttcaaattct	caacgtgtca	480	
ctttgtgca	gataccaga	aaagagattt	gttcctgtat	gtaacacagaat	ttcctgggac	540	
agcaagaagg	gcttactat	tcccagctac	atgatcagct	atgctggcat	ggtcttctgt	600	
gaagcaaaaa	ttaatgtga	aagttaccag	tttattatgt	acatagttgt	cgttgttaggg	660	
tataggattt	atgatgtgg	tctgagtcgg	tctcatggaa	ttgaactatc	tgttggagaa	720	
aagcttgtct	taaattgtac	agcaagaact	gaactaaatg	tggggattga	cttcaactgg	780	
gaataccctt	cttcgaagca	tcagcataag	aaacttgtaa	accgagacct	aaaaacccag	840	
tctgggagtg	agatgaagaa	attttgagc	accttaacta	tagatgggt	aacccggagt	900	
gaccaaggat	tgtacacctg	tgccagcatcc	agtgggctga	tgaccaagaa	gaacagcaca	960	
tttgtcaggg	tccatgaaaa	acctttgtt	gcctttggaa	gtggcatgga	atctctggtg	1020	
gaagccacgg	tgggggagcg	tgtcagaatc	cctgcgaagt	accttggta	ccccacccca	1080	
gaaataaaat	ggtataaaaaa	ttgaatacc	cttgcgttca	atcacacaaat	taaagcgggg	1140	
catgtactga	cgatttatgga	agtgcgtgaa	agagacacag	gaaattacac	tgtcatcctt	1200	
accaatccca	tttcaaaagga	gaagcagagc	catgtggct	ctctgggtgt	gtatgtccca	1260	
ccccagattg	gtgagaaatc	tctaattctc	cctgtggatt	cctaccagta	cggcaccact	1320	
caaacgcgtg	catgtacgg	ctatgcatt	cctccccgc	atcacatcca	ctggatttgg	1380	
cagttggagg	aagagtgcgc	caacgagccc	agccaagctg	tctcagtgc	aaacccatc	1440	
ccttgcgtt	aatggagaag	tgtggggac	ttccagggg	gaaataaaaat	tgaagttaat	1500	
aaaaatcaat	ttgtcttaat	tgaaggaaaa	aacaaaactg	taagtaccct	tgttatccaa	1560	
gcggcaaatg	tgtcagctt	gtacaaatgt	gaagcggtca	acaaagtccg	gagaggagag	1620	
agggtgatct	ccttccacgt	gaccagggtt	cctgaaattt	cttgcacacc	tgacatgcag	1680	
cccactgagc	aggagagcgt	gtctttgtgg	tgactgcag	acagatctac	gtttgagaac	1740	
ctcacatgtt	acaagcttgg	cccacagcct	ctgccaatcc	atgtgggaga	gtgcccaca	1800	
cctgtttgca	agaacttgg	tactcttgg	aaattgaatg	ccaccatgtt	ctctaatacg	1860	
acaaatgaca	ttttgatcat	ggagcttaag	aatgcaccc	tgaggacca	aggagactat	1920	
gtctgcctt	ctcaagacag	gaagaccaag	aaaagacatt	gcgtggtcag	gcagctcaca	1980	
gtcctagagc	gtgtggcacc	cacgatcaca	ggaaaacctgg	agaatcagac	gacaagtatt	2040	
ggggaaagca	tcgaagtctc	atgcacggca	tctggaaatc	cccctccaca	gatcatgtgg	2100	
tttaaagata	atgagaccct	tgtagaagac	tcaggcattt	tattgaagga	tggaaaccgg	2160	
aacctcacta	tccgcagagt	gaggaaggag	gacgaaggcc	tctacaccc	ccaggcatgc	2220	
agtgttctt	gctgtgcaaa	agtggaggca	tttttcataa	tagaagggtgc	ccaggaaaag	2280	
acgaacttgg	aaatcattat	tctagtaggc	acggcgggt	ttgccatgtt	cttctggctt	2340	
cttcttgct	tcatcctacg	gaccgttaag	cgggccaatg	gagggaaact	gaagacaggc	2400	
tacttgcctt	tcgtcatgga	tccagatgaa	ctcccatgg	atgaacattt	tgaacgactg	2460	
cctttagatg	ccagcaaatt	ggaattcccc	agagacccgc	tgaagctagg	taagcctt	2520	
ggccgtgg	cctttggcca	agtgatttga	gcagatgcct	ttggaattga	caagacagca	2580	
acttgcagga	cagtagcagt	aaaaatgtt	aaagaaggag	caacacacag	tgagcatcga	2640	
gctctcatgt	ctgaactcaa	gatccctatt	catattggc	accatctcaa	tgtggcaac	2700	
cttcttagtg	cctgtaccaa	gccaggaggg	ccactcatgg	tgatttgc	attctgc	2760	
tttggaaacc	tgtccactt	cctgaggagc	aagagaaatg	aattttgc	ctacaagacc	2820	
aaaggggcac	gattccgtca	agggaaagac	tacgttggag	caatccctgt	ggatctgaaa	2880	

65

DE 101 00 588 A 1

cggcgctgg acagcatcac cagtagccag agtcagcca gctctggatt tttggaggag 2940
 aagtccctca gtatgtaga agaagaggaa gctcctgaag atctgtataa ggacttcctg 3000
 accttggagc atctcatctg ttacagcttc caagtggcta agggcatgga gttcttggca 3060
 tcgcgaaagt gtatccacag ggacctggcg gcaagaaata tcctcttatac ggagaagaac 3120
 5 gtggtaaaaa tctgtgactt tggcttgccc cggatattt ataaagatcc agattatgtc 3180
 agaaaaggag atgctcgcct cccttgaaa tggatggccc cagaaacaat ttttgcacaga 3240
 gtgtacacaa tccagagtga cgtctggct tttgtgttt tgctgtggaa aatatttcc 3300
 ttagtgtct ctccatatcc tgggttaaag attgtgaag aattttgttag gcgattgaaa 3360
 10 gaaggaacta gaatggggc ccctgattt actacaccag aaatgtacca gaccatgctg 3420
 gactgctggc acggggagcc cagtcagaga cccacgtttt cagagtggg ggaacattt 3480
 gaaaatctct tgcaagctaa tgctcagcag gatggcaag actacattgt tcttccgata 3540
 tcagagactt tgagcatgga agaggatct ggactcttc tgcctaccc acctgtttcc 3600
 tgtatggagg aggaggaagt atgtgacccc aaattccatt atgacaacac agcaggaatc 3660
 15 agtcagtatc tgccagaacag taagcgaag agccggctg tgagtgtaaa aacattt 3720
 gatatcccgt tagaagaacc agaagtaaaa gtaatcccag atgacaacca gacggacagt 3780
 ggtatgggtc ttgcctcaga agagctaaa acttggaaag acagaaccaa attatctcca 3840
 tctttgggtg gaatgggtcc cagaaaagc aggagatctg tggcatctga aggtcaaac 3900
 cagacaagcg gctaccagtc cggatatcac tccgatgaca cagacaccac cgtgtactcc 3960
 20 agtgaggaag cagaactttt aaagctgata gagattggag tgccaaaccgg tagcacagcc 4020
 cagattctcc agcctgactc ggggaccaca ctgagctc ctcctgttta a 4071

<210> 98
 25 <211> 1410
 <212> DNA
 <213> Homo sapiens

<300>
 30 <302> MMP1
 <310> M13509

<400> 98
 atgcacagtttcact gctgctgctg ctgttctggg gtgtgggtc tcacagcttc 60
 35 ccagcgactc tagaaacaca agagcaagat gtggacttag tccagaaataa cctggaaaaaa 120
 tactacaacc tgaagaatga tgggaggcaaa gttgaaaagg ggagaaatag tggcccgatg 180
 gttgaaaaat tgaagcaaat gcaggaattt tttggctga aagtgtactgg gaaaccatg 240
 gctgaaaccc tgaaggtgtat gaagcagcccc agatgtggag tgcctgtatggcgtatgg 300
 gtcctcactg agggaaaccc tcgctggag caaacacatc tgaggtacag gattgaaaat 360
 40 tacacgcacatg atttgccaag agcagatgtg gaccatgcca ttgagaaagc cttccaaactc 420
 tggagtaatg tcacacctct gacattcacc aaggctctg agggtaacgc agacatcatg 480
 atatcttttgc tcaggggaga tcatcgggac aactctcctt ttgatggacc tggaggaaat 540
 cttgctcatg ctttcaacc aggcccaaggat attggagggg atgctcatt tgatgaagat 600
 gaaaggtgga ccaacaattt cagagatc aacttacatc gtgttgcggc tcataactc 660
 45 ggcattctc ttggactctc ccattctact gatatcgcccc ctttgcattt ccctagctac 720
 accttcagggt gtatgttca gctagctcag gatgacattt atggcatcca agccatatata 780
 ggacgttccc aaaatccgt ccagcccatc ggcccacaaa ccccaaaagc gtgtgacagt 840
 aagctaacct ttgtatgtat aactacgatt cggggagaag tgatgttctt taaaagacaga 900
 ttctacatgc gcacaaatcc cttctaccgg gaagttgac tcaatttcat ttctgttttc 960
 50 tggccacaaac tgccaaatgg gcttgaagct gcttacgaat ttggcgacag agatgaagtc 1020
 cggttttca aagggataa gtactgggt gttcaggggc agaatgtgtc acacggatac 1080
 cccaggaca tctacagctc ctttggcttc cctagaactg tgaagcatat cgatgtctgt 1140
 ctttctgagg aaaacactgg aaaaacctac ttctttgtt ctaacaata ctggaggat 1200
 gatgaataata aacgatctat ggtatccaaatg tatccaaaa tgatagcaca tgactttct 1260
 55 ggaattggcc acaaaaggta tgcagtttc atgaaagatg gatgttctt tttcttcat 1320
 ggaacaagac aatacaaattt tgatcttaaa acgaagagaa ttttgactct ccagaaagct 1380
 aatagctgtt tcaactgcag gaaaaatttga 1410

60 <210> 99
 <211> 1743
 <212> DNA

DE 101 00 588 A 1

<213> Homo sapiens

<300>

<302> MMP10

<310> XM006269

5

<400> 99

aaagaaggta agggcagtga gaatgatgca tcttgcatc cttgtgtgt tggtgtgc 60
 agtctgtct gcctatccctc tgagtggggc agcaaaaagag gaggactcca acaaggatct 120
 tgcccagcaa tacctagaaa agtactacaa cctcgaaaaag gatgtgaaac agtttagaag 180
 aaaggacagt aatctcattt taaaaaaaaat ccaaggaatg cagaaggttcc ttgggttgg 240
 ggtgacaggg aagctagaca ctgacactct ggaggtgtat cgcaagccca ggtgtggagt 300
 tcctgacgtt ggtcacttc gctccccc tggcatgccg aagtggagga aaacccacct 360
 tacatacagg attgtgatt atacaccaga tttgccaaga gatgtgttg attctgccat 420
 tgagaaagct ctgaaagtct gggaaagggt gactccactc acatttccca ggctgttatga 480
 aggagaggt gatataatga tctcttttc agttaaagaa catggagact ttactcttt 540
 tgatggccca ggacacagtt tggctcatgc ctacccacct ggacctggc tttatggaga 600
 tattcactt gatgtgatg aaaaatggac agaagatgca tcaggcacca atttatttcc 660
 cgttgtctg catgaacttg gccactccct gggctttt cactcagcca acactgaagc 720
 tttgatgtac ccactctaca actcattcac agagctcgcc cagttccccc ttgcaga 780
 tgatgtgaat ggcattcagt ctctctacgg acctccccct gcctctactg aggaacccct 840
 ggtgcccaca aaatctgttc ctccggatc tgagatgcca gccaagtgtg atctgtctt 900
 gtccttcgtt gccatcagca ctctgagggg agaatatctg ttctttaaag acagatattt 960
 ttggcgaaga tcccactgga accctgaacc tgaatttcat ttgatttctg cattttggcc 1020
 ctcttccca tcatattttgg atgctgcata tgaagttaac agcaggaca cgggtttat 1080
 ttttaaagga aatgagttct gggccatcag agggaaatggat gtacaagcag gttatccaag 1140
 aggcattccat accctgggtt ttccctccaaac cataaggaaa attgatgcag ctgtttctga 1200
 caaggaaaag aagaaaacat acttcttgc agcggacaaa tactggagat ttgatgaaaa 1260
 tagccagtcc atggagcaag gttcccttag actaataagct gatgacttcc caggagttga 1320
 gcctaagggtt gatgtgtat tacaggcatt tggatttttca tacttcttca gtggatcatc 1380
 acagtttgag tttgacccca atgcccaggat ggtgacacac atattaaaga gtaacagctg 1440
 gttacattgc taggcgagat agggggaga cagatatggg tggtttaat aaatctaata 1500
 attattcata taatgttata tgagccaaaa tggtaattt ttccctgcatt ttctgtgact 1560
 gaagaagatg agccttgcag atatctgcatt gtgtcatgaa gaatgtttct ggaattctt 1620
 acttgctttt gaattgcact gaacagaatt aagaaatact catgtgcaat aggtgagaga 1680
 atgtattttc atagatgtgtt tattacttcc tcaataaaaa gttttatttt gggcctgttc 1740
 ctt
1743

20

25

30

35

40

<210> 100

<211> 1467

<212> DNA

<213> Homo sapiens

45

<300>

<302> MMP11

<310> XM009873

<400> 100

50

atggctccgg ccgcctggct ccgcagcgcc gcccgcgcg ccctcctgcc cccgatgtgt 60
 ctgctgtctc tccagccgccc gccgctgtg gcccggctc tgccgcgggca cgcccaccac 120
 ctccatgcgg agaggagggg gcccacagccc tggcatgcag ccctgcccag tagcccgca 180
 cctgccccctg ccacgcagga agcccccccg cctgccagca gcctcaggcc tcccccgtt 240
 ggcgtgcccgg acccatctga tgggctgagt gcccgcacc gacagaagag gttcgtgttt 300
 tctggcggggc gctgggagaa gacggaccc acctacagga tccttcgtt cccatggcag 360
 ttggtgcaagg agcaggtgcg gcagacgatg gcagaggccc taaaggtatg gagcgatgt 420
 acgcccactca ctttactga ggtgcacgag ggcgtgtgt acatcatgat cgacttcgccc 480
 aggtactggc atggggacga cctggcggtt gatgggcctg ggggcattct ggcccatgcc 540
 ttcttcccca agactcaccgc agaaggggat gtccacttcg actatgtatg aacctggact 600
 atcggggatg accagggcac agacgtgtc caggtggcag cccatgaatt tggccacgtg 660
 ctggggctgc agcacacaac agcagccaa gcccctgtat cgccttctca cacccttcgc 720

55

60

65

DE 101 00 588 A 1

DE 101 00 588 A 1

atgcatccag gggcctggc tgccttcctc ttcttgagct ggactcattg tcggccctg 60 ccccttccca gtgggtgtga tgaagatgat ttgtctgagg aagaccca gttgcagag 120 cgctaccta gatcatacta ccattcata aatctcgccg gaatcctgaa ggagaatgca 180 gcaagctcca tgactgagag gctccgagaa atgcagtc ttctcgctt agaggtgact 240 ggcaaactt acgataaacac cttagatgtc ataaaaaagc caagatcg gggtcctgat 300 gtgggtgaat acaatgttt ccctcgaact cttaaatggt ccaaaatgaa tttaacctac 360 agaattgtga attacacccc tgatatgact cattctgaag tcgaaaaggc attcaaaaaa 420 gccttcaag tttgtccga tgtaactctt ctgaattttt ccagacttca cgatggcatt 480 gctgacatca tgatctttt tggattaag gacatggcg acttctaccc atttgatggg 540 ccctctgcc tgcgtgc tgccttcctt cctggccaa attatggagg agatgccat 600 tttgatgtatg atgaaacactg gacaagtgt tccaaaggct acaactgtt tcttgttgc 660 gcatgtgagt tcggccactc cttaggtttt gaccacttca aggacctgg agactctatg 720 tttccttatctt acacccatcac cggaaaagc cactttatgc ttctgtatga cgatgtacaa 780 gggatccagt ctctctatgg tccaggagat gaagaccccc accctaaaca tccaaaaacg 840 ccagacaaat gtgacccttc ctatccctt gatgccattt ccagtctccg aggagaaaaca 900 atgatctta aagacagatt ctctggcgc ctgcatttca agcagggttga tgcggagctg 960 tttttaacga aatcattttt gccagaacctt cccaaaccgtt ttgatgtgc atatgagcac 1020 ccctctcatg acctcatctt catcttcaga ggttagaaaat ttgggtctt taatggttat 1080 gacattctgg aaggttatcc caaaaaaaaaa tctgaacttgg gtcttccaaa agaagttaaag 1140 aagataagtg cagctgttca ctttgaggat acaggcaaga ctctctgtt ctcaggaaac 1200 caggtctgga gatatgtga tactaaccat attatggata aagactatcc gagactata 1260 gaagaagact tcccaggaat tggtgataaa ttagatgtgc tctatgagaa aaatggttat 1320 atctatcccc tcaacggacc catacagttt gaatacagca tctggagtaa ccgtattgtt 1380 cgcgtcatgc cagcaaaattt cattttgtgg tggtaa 1416	5 10 15 20 25
--	---------------------------

<210> 103
<211> 1749
<212> DNA
<213> Homo sapiens

<300>
<302> MMP14
<310> NM004995

<400> 103 atgtctcccg ccccaagacc ccccccgtgt ctctgtctcc ccctgtctac gtcggcacc 60 gctgcgtcc ctctggctc ggcccaaaagc agcagttca gccccgaagc ctggctacag 120 caatatggct acctgtcccg cggggaccta cgtacccaca cacagcgctc accccagtca 180 ctctcagccgg ccatcgctgc catgcagaag tttaacggct tgcaagtaac agggaaagct 240 gatgcagaca ccatgtaaaggc catgaggcgc ccccgatgtg gtgttccaga caagtttggg 300 gctgagatca aggccaatgt tgcaggaaag cgctacgcca tccagggtct caaatggcaa 360 cataatgaaa tcactttctg catccagaat tacacccca aggtggcgaa gtatgccaca 420 tacgaggcga ttgcgaaggc ttcccgctg tggagagtg ccacaccact ggccttccgc 480 gaggtgcctt atgcctacat ccgtgaggcc catgagaagc aggccgacat catgtatctt 540 tttgcgagg gcttccatgg cgacagcact cccttcgtatg gtgagggcgg ctccctggcc 600 catgcctact tcccaggccc caacatttga ggagacaccc actttgactc tgccgagcct 660 tggactgtca ggaatgagga tctgaatgaa atagacatct tcctgggtgc tgcacacgg 720 ctgggccccatg ccctggggct ctagattcc agtggaccctt cggccatcat ggcacccctt 780 taccagtgtt gggacacggg gaattttgtt ctgcccgtatg atgaccggcgg gggcatccag 840 caactttatg ggggtgagtc agggttcccc accaagatgc cccctcaacc caggactacc 900 tcccggccctt ctgttcctga taaacccaaa aaccccacct atgggcccaa catctgtgac 960 gggaactttt acaccgtggc catgtctccgaa ggggagatgt ttgttccaa ggagcgctgg 1020 ttctggcggg tgaggaataa ccaagtgtt gatggatacc caatgcccattt tggccagttc 1080 tggcgccccc tgcctgcgtc catcaacact gcctacgaga ggaaggatgg caaattcgtc 1140 ttcttcaaaatg gagacaagca ttgggtgtttt gatggggcgat ccctggaaacc tggctacccc 1200 aagcacatata aggagctggg ccgggggtgtt cttaccgaca agattgtgc tgctctttc 1260 tggatgcccata atggaaagac ctacttcttc cttggaaaca agtactaccg ttcaacacgg 1320 gagctcaggc cttggatag cttggatccca aagaacatca aagtctggg aggatccct 1380 gagttctccca gaggttccattt catggccggc gatgttgc ttacttactt ctacaagggg 1440 aacaaataact gggaaatttcaaa caaccggatca ctggatggtag aaccgggctt ccccaagtca 1500	40 45 50 55 60
---	----------------------------

65

DE 101 00 588 A 1

gcccgtgggg actggatggg ctgcccatacg ggaggccggc cgatgaggg gactgaggag 1560
 gagacggagg tgatcatcat tgaggtggac gaggaggcg gcggggcggt gagcgcggct 1620
 5 gccgtggtc tgcccgtct gctgtctc ctggtgctgg cggtggccct tgcagtcttc 1680
 ttcttcagac gccatggac ccccaggcga ctgtctact gccagcgttc cctgctggac 1740
 aaggctca 1749

10 <210> 104
 <211> 2010
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> MMP15
 <310> NM002428

20 <400> 104
 atgggcagcg acccgagcgc gcccggacgg ccgggcttggc cgggcagcct cctcgccgac 60
 cgggaggagg cgccgcggcc gcgactgtc ccgtgttcc tgggtttctt gggctgcctg 120
 ggccttggcg tagcgccga agacgcggag gtccatgccc agaactggct gggctttat 180
 ggctacctgc ctcagcccg ccgcattatg tccaccatgc gttccgccta gatcttggcc 240
 tcggccctt cagagatgca ggcgttctac gggatcccag tcaccgggtgt gctcgacgaa 300
 gagaccaagg agtggatgaa gcccggccgc tgggggtgc cagaccagtt cggggtaacgaa 360
 25 gtgaaaggcca acctgcggcg gcgtcgaaag cgctacgcct tcaccgggag gaagtggAAC 420
 aaccaccatc tgaccttttag catccagaac tacacggaga agttgggctg gtaccactcg 480
 atggaggcg tgcgcaggcc cttccgcgtg tggagcagg ccacgcctt ggtttccag 540
 gaggtgcctt atgaggacat cccgcgtgcg cgacagaagg aggccgacat catggtaactc 600
 tttgcctctg gcttccacgg cgacagctcg ccgtttgatg gcaccgggtgg cttctggcc 660
 30 cacgcctatt tccctggccc cggccttaggc gggacacccc attttgcgc agatgagccc 720
 tggaccttcc ctagcactga cctgcatttga aacaaccttcc tcctgggtggc agtgcatttgg 780
 ctggggccacg cgctggggct ggagcactcc agcaacccccca atgcattat ggcgcgttc 840
 taccagtggc aggacgttga caacttcaag ctggccgagg acgatctccg tggcatccag 900
 cagctctacg gtacccaga cggcgtccca cggcctaccc agcctctccc cactgtgacg 960
 35 ccacggccgc caggccggcc tgaccacccg cccggccggc ctccccagcc accaccccca 1020
 ggtgggaagc cagacgcggcc cccaaagccg ggcggccggc tccagccccg agccacagag 1080
 cggcccgacc agtatggcc caacatctgc gacggggact ttgacacagt ggcacatgtt 1140
 cgcggggaga tggctgtttt caaggccgc tgggtctggc gagtcggca caacccgcgtc 1200
 ctggacaact atccatgcc catcgccac ttctggcggt gtctggccgg tgacatcagt 1260
 40 gctgcctacg agcgccaaga cggtcgtttt gtcttttca aagggtgaccc ctactggctc 1320
 tttcgagaag cgaaccttggc gcccggctac ccacagccgc tgaccagcta tggctggcc 1380
 atcccctatg accgcatttga cacggccatc tgggtggagc ccacaggccca cacttcttc 1440
 ttccaagagg acaggtactg cgcgttcaac gaggagacac agcgtggaga ccotgggtac 1500
 cccaagccca tcagtgtctg caggggatc cctgcctccc ctaaaggggc cttcttgagc 1560
 45 aatgacgcag cctacaccta cttctacaag ggcaccaaatt actggaaattt cgacaatgag 1620
 cgcctgcggg tggagccggg ctaccccaag tccatcttc gggacttcat gggctgcccag 1680
 gagcacgtgg agccaggccc ccgtggccctt gacgtggccc ggccgcctt caaccccccac 1740
 ggggggtgcag agcccggggc ggacagcgca gagggcgacg tggggatgg gatggggac 1800
 tttggggccg gggtaacaa ggacgggggc agccgcgtgg tggtgacat ggaggaggtg 1860
 50 gcacggacgg tgaacgttgt gatggtgcgt gtggcaactgc tgctgttgt ctgcgtcttc 1920
 ggcctcacct acgcgttgtt gcagatgcag cgcaagggtg cgccacgtgt cctgctttac 1980
 tgcaaggcgtc cgctgcagga tgggtctga 2010

55 <210> 105
 <211> 1824
 <212> DNA
 <213> Homo sapiens

60 <300>
 <302> MMP16
 <310> NM005941

DE 101 00 588 A 1

<400> 105
atgatcttac tcacattcag cactggaaaga cggttggatt tcgtgcata ttcgggggtg 60
ttttcttc aaaccttgc ttggatttt atgtctacag tctgcggaaac ggagcagtat 120
ttcaatgtgg aggttgggt aaaaaagtac ggctaccctc caccgactga ccccagaatg 180
tcagtgcgc gctctgcaga gaccatgcag tctgccttag ctgccatgca gcagttctat 240
ggcattaaca tgacaggaaa agtggacaga aacacaattg actggatgaa gaagccccga 300
tgccgtgtac ctgaccagac aagaggtac tccaaatttc atattcgtaaa aagcgatata 360
gcattgacag gacagaaatg gcagcacaag cacatcactt acagtataaa gaacgtaact 420
ccaaaatgtac gagaccctga gactcgtaaa gctattcgcc gtgccttga tggatggcag 480
aatgttaactc ctctgacatt tgaagaagtt ccctacagtg aattagaaaa tggcaaacgt 540
gatgtggata taaccattat tttgcattt ggttccatg gggacagctc tcccttgc 600
ggagagggag gattttggc acatgcctac ttcctggac caggaattgg aggagatacc 660
cattttgcact cagatgagcc atggacacta ggaatccctt atcatgatgg aaatgactta 720
tttcttgcact cagatgaccc actgggacat gctctggat tggagcatc caatgacccc 780
actgccatca tggctccatt ttaccatgtac atgaaaacag acaacttcaa actaccta 840
gatgatttac agggcatcca gaaaatataat gttccacctg acaagattcc tccacctaca 900
agaccttac cgacagtgc cccacaccgc tctatccctc cggctgaccc aaggaaaaat 960
gacaggccaa aacccctcg gcctccaaacc ggcagaccct cctatcccg accaaacccc 1020
aacatctgtg atggaaacctt taacactcta gctatttttc gtcgtgagat gtttggc 1080
aaggaccagt gttttggcg agtgagaaac aacagggtga tggatggata ccaatgca 1140
attacttact tctggggggg cttgcctcct agtacgtatc cagtttatga aaatagcgac 1200
gggaattttt tgtttttaa aggttaacaaa tattgggtgt tcaaggatc aactcttcaa 1260
cctggttacc ctcatgactt gataaccctt ggaagtggaa ttccccctca tggatattgat 1320
tcagccattt ggtgggagga cgtcgaaaaa acctatttct tcaaggaga cagatattgg 1380
agatatagtg aagaaaatgaa aacaatggac cctggctatc ccaagccaaat cacagtctgg 1440
aaaggatcc ctgaatctcc tcagggagca ttttacaca aagaaaatgg ctttacgtat 1500
ttctacaagaa gaaaggagta ttggaaattt aacaaccaga tactcaaggt agaacctgga 1560
catccaagat ccatccctaa ggatttatg ggctgtgatc gaccaacaga cagatggaaa 1620
gaaggacaca gccaccaga tgatgttagac attgtcatca aactggacaa cacagccago 1680
actgtgaaag ccatacgat tgcattttcc tgcattttgg ctttatgcct ctttgtattt 1740
gtttacactg tgttccagtt caagaggaaa ggaacacccc gccacatact gtactgtaaa 1800
cgctctatgc aagagtgggt gtga 1824

<210> 106
<211> 1560
<212> DNA
<213> Homo sapiens

<300>
<302> MMP17
<310> NM004141

<400> 106
atgcagcagt ttgggtggct ggaggccacc ggcatttcgg acgaggcac cctggccctg 60
atgaaaaccc cacgtgttc cctgccagac ctccctgtcc tgacccaggc tcgcaggaga 120
cgccagggtc cagccccac caagtggaaac aagaggaacc tgcgtggag ggtccggacg 180
ttcccacggg actcaccact ggggcacac acgggtcgat cactcatgta ctacgccc 240
aaggctgtga gcgcatttc gccccctgaaac ttccacgggg tggcgccggc caccggccac 300
atccagatcg acttctccaa ggccgaccat aacgcacggct acccccttcga cggcccccggc 360
ggcacccgtgg cccacgcctt ctccccggc caccaccaca cccggggggc caccactt 420
gacgatgcacg aggctggac ctcccgatcc tggatgcctt acgggatggc cctgtttgca 480
gtggctgtcc acgatgtttgg ccacgcattt gggtaagcc atgtggccgc tgacacactcc 540
atcatgcggc cgtactacca gggcccggtt ggtgacccgc tgcgtacgg gctccctac 600
gaggacaagg tgcgtgttc gcagctgtac ggtgtgggg agtctgtgtc tccacggcg 660
cagccccagg agcccccctt gtcggggag ccccccacaca accgggtccag cggcccccggcc 720
aggaaggacg tgccccacag atgcacgtactt cactttgcacg cgggtggccca gatccgggggt 780
gaagcttttct tcttcaaagg caagtactt tggcggttca cgggggaccc gacacccgtt 840
tccctgcacgc cggcacatgtt gcaccgttcc tggggggcc tggctgtca cctggacacgc 900
gtggacgcggc tgtacgacg caccagcgac cacaagatcg tttttttaa aggagacagg 960

DE 101 00 588 A 1

tactgggtgt tcaaggacaa taacgttagag gaaggatacc cgcgccccgt ctccgacttc 1020
 agcctccgc ctggcggcat cgacgctgcc ttctcctggg cccacaatga caggacttat 1080
 ttcttaagg accagctgt a ctggcgctac gatgaccaca cgaggcacat ggaccccggc 1140
 5 taccggcccc agagccccct gtggaggggt gtccccagca cgctggacga cgccatgcgc 1200
 tggtccgacg gtgcctccctt cttctccgt gcgcaggagt actggaaagt gctggatggc 1260
 gagctggagg tggcaccgg gtacccacag tccacggccc gggactggct ggtgtgtgga 1320
 gactcacagg ccgatggatc tggctgtcg ggcgtggacg cggcagaggg gccccggcgc 1380
 cctccaggac aacatgacca gagccgctcg gaggacgggt acgaggtctg ctcatgcacc 1440
 10 tctggggcat cctctcccc gggggcccca ggcactgg tggctgccac catgctgctg 1500
 ctgctgccc cactgtcacc aggccctg tggacagcgg cccaggccct gacgctatga 1560

<210> 107
 <211> 1983
 15 <212> DNA
 <213> Homo sapiens

<300>
 20 <302> MMP2
 <310> NM004530

<400> 107
 atggaggcgc taatggcccg gggcgccgtc acgggtcccc tgagggcgct ctgtctcctg 60
 ggctgcctgc tgagccacgc cgccgcgcg ccgtcgccca tcatacgat cccggcgat 120
 25 gtcgccccca aaacggacaa agagttggca gtgcataacc tgaacaccc ttatggctgc 180
 cccaaggaga gctgcaacct gtttgtctg aaggacacac taaaagaatgc gagaagttc 240
 tttggactgc cccagacagg tgcattgtac cagaatacca tcgagaccat gccaagggca 300
 cgctgcggca acccagatgt ggccaaactac aacttcttcc ctgcgaagcc caagtggac 360
 30 aagaaccaga tcacatacag gatcattggc tacacacctg atctggaccc agagacagtg 420
 gatgatgcct ttgctcgtgc cttccaaatgc tggagcgatg tgacccact gcgggtttct 480
 cgaatccatg atggagaggc agacatcatg atcaactttt gccgctggga gcatggcgat 540
 ggataccctt ttgacggtaa ggacggactc ctggctcatg cttcgccccc aggcaactgg 600
 gttggggag actccattt tgatgacat gagctatgg ctttgggaga aggccaagtg 660
 35 gtccgtgtga agtatggcaa cgccgatggg gagtactgca agttccctt ctgttcaat 720
 ggcaaggagt acaacagctg cactgatacc ggcgcagcg atggcttct ctgtgtctcc 780
 accaccta aactttgagaa ggatggcaag tacggcttctt gttccatgaa gcccctgttc 840
 accatggcg gcaacgctga aggacagccc tgcaagttt cattccgtt ccaggccaca 900
 tcctatgaca gctgcaccac tgagggccgc acggatggct accgctggtg cggcaccact 960
 40 gaggactacg acccgacaa gaagtatggc ttctgcctg agaccgcatt gtccactgtt 1020
 ggtggaaact cagaagggtgc cccctgtgtc ttccccttca ctttcctggg caacaaatat 1080
 gagagctgca ccagccgcgg ccgcagtgac ggaaagatgt ggtgtgcgac cacagccaa 1140
 tacgatgacg accgcaagtg gggcttctgc cctgaccaag ggtacagccct gttcctctgt 1200
 45 gcagccccacg agttggcca cgccatgggg ctggagcact cccaaagaccc tggggccctg 1260
 atggcaccca ttacaccta caccacaaat ttccgtctgt cccaggatgaa catcaagggc 1320
 attcaggagc tctatggggc ctctctgtac attgacattt gcaccggccc caccggccaca 1380
 ctggggccctg tcactctgt gatctgcaaa caggacattt tatttgcattt catcgctcag 1440
 atccgtgtt agatcttctt cttcaaggac cggttcattt ggccgactgt gacgcccacgt 1500
 gacaagccca tggggccctt gctgggtggcc acattctggc ctgagctccc ggaaaagatt 1560
 50 gatgcggat acgaggcccc acaggaggag aaggctgtt tcttcgcagg gaatgaatac 1620
 tggatctact cagccagcac cctggagcga gggtaaaaaa agccactgac cagccctggga 1680
 ctggcccccgt atgtccagcg agtggatgcc gcctttaact ggagcaaaaaa caagaagaca 1740
 tacatctttt ctggagacaa attctggaga tacaatgagg tgaagaagaa aatggatctt 1800
 ggcttccca agctcategc agatgcctgg aatgccatcc cccataaccc ggatgcccgtc 1860
 55 gtggacctgc agggccgggg tcacagctac ttcttcagg gtgcctatta cctgaagctg 1920
 gagaaccaaa gtctgaagag cgtgaagttt ggaagcatca aatccgactg gctaggctgc 1980
 tga 1983

60 <210> 108
 <211> 1434
 <212> DNA

DE 101 00 588 A 1

<213> Homo sapiens

<300>

<302> MMP2

<310> XM006271

5

<300>

<302> MMP3

<310> XM006271

10

<400> 108

atgaagagtc ttccaatcct actgttgctg tgcggtggcag tttgctcagc ctagccattg 60
 gatggagctg caagggtga ggacaccgc atgaaccttgc ttcaaaaaata tctagaaaaac 120
 tactacgacc tcgaaaaaaa tggaaacag tttgttagga gaaaggacag tggccctgtt 180
 gttaaaaaaa tccgagaaat gcagaagttc cttggatgg aggtgacggg gaactggac 240
 tccgacactc tggaggtgat ggcgaagccc aggtgtggag ttccctgacgt tggtcactt 300
 agaaccttc ctggcatccc gaagtggagg aaaacccacc ttacatacag gattgtaat 360
 tatacacccag atttgccaaa agatgctgtt gattctgctg ttgagaaagc tctgaaagtc 420
 tggaaagagg tgactccact cacattctcc aggtgtatg aaggagaggc tgatataatg 480
 atctctttt cagttagaga acatggagac ttttaccctt ttgatggacc tggaaatgtt 540
 ttggccatcg cctatgcccc tgggccaggg attaatggag atgcccactt tgatgatgat 600
 gaacaatggc caaaggatac aacagggacc aatttatttc tcggtgctgc tcatgaaatt 660
 gcccaactccc tgggtctctt tcactcagcc aacactgaag ctttgatgtt cccactctat 720
 cactcactca cagacctgac tcggttccgc ctgtctcaag atgatataaa tggcattcag 780
 tccctctatg gacctcccc tggactccct gagacccccc tggtacccac ggaacctgtc 840
 cctccagaac ctggacgccc agccaactgt gatctgttt tgccctttga tgctgtcagc 900
 actctgaggg gagaatcct gatcttaaa gacaggcact tttggcgcaa atccctcagg 960
 aagcttgaac ctgaattgca ttgtatctt tcattttggc catctcttcc ttcaggcgtg 1020
 gatgccgcac atgaagttac tagcaaggac ctcgtttca tttttaaagg aaatcaattc 1080
 tggccatca gagaaatga ggtacgagct ggataccca gaggcatcca cacccttaggt 1140
 tccctccaa ccgtgaggaa aatcgatgca gccatttctg ataaggaaaa gaacaaaaca 1200
 tattttttt tagaggacaa atactggaga ttgtatgaga agagaaattc catggagcc 1260
 ggctttccca agcaaatacg tgaagacttt ccagggattt actcaaagat tgatgctgtt 1320
 tttgaagaat ttgggttctt ttatcttactt actggatctt cacagttgga gtttgaccca 1380
 aatgcaaaga aagtgacaca cactttaaag agtaacagct ggcttaattt ttga 1434

15

20

25

30

35

<210> 109

<211> 1404

<212> DNA

<213> Homo sapiens

40

<300>

<302> MMP8

<310> NM002424

45

<400> 109

atgttctccc tgaagacgct tccatttctg ctcttactcc atgtgcagat ttccaaggcc 60
 ttccctgtat cttctaaaga gaaaaataca aaaactgttc aggactaccc gaaaaagttc 120
 taccaattac caagcaacca gtatcgtct acaaggaaga atggcactaa tgtatcgtt 180
 gaaaagctt aagaaatgca gcgattttt ggggtgaatg tgacggggaa gccaaatgag 240
 gaaactctgg acatgatgaa aaagcctcgc tggatgtgc ctgacagtgg tgggtttatg 300
 ttaaccccaag gaaaccccaa gtgggaacgc actaacttga cctacaggat tcgaaactat 360
 accccacaggc tgcacggc tgaggttagaa agagctatca aggatgcct tgaactctgg 420
 agtgttgcac cacccatcat cttcaccagg atctcacagg gagaggcaga tatcaacatt 480
 gctttttacc aaagagatca cggtgacaat tctccatttgc atggaccacaa tggaaatcctt 540
 gtcatgcct ttccggcagg ccaaggatgg ggaggatgt ctcattttga tgcgaaagaa 600
 acatggacca acaccccgcc aaattacaac ttgttcttgc ttgtgtc tgaatttggc 660
 cattttttgg ggctcgctca ctccctgtac cctgggtgcct tgatgtatcc caactatgt 720
 ttcaggggaaa ccagcaacta ctcactccctt caagatgaca tcgatggcat tcaggccatc 780
 tatggactttt caagcaaccc tatccaacctt actggaccaa gcacacccaa accctgtgac 840

50

55

60

65

DE 101 00 588 A 1

cccagtttga catttgatgc tatcaccaca ctccgtggag aaatacttt ctttaagac 900
 aggtacttct ggagaaggca tcctcagcta caaagagtgc aaatgaattt tatttcctcta 960
 ttctggccat cccttccaac tggtatacacg gctgcttatg aagatttga cagagacctc 1020
 5 attttcctat ttaaaggcaa ccaatactgg gctctgagtg gctatgatat tctgcaaggt 1080
 tatcccaagg atatatcaaa ctatggcttc cccagcagcg tccaaagcaat tgacgcagct 1140
 gttttctaca gaagtaaaac atacttctt gtaaatgacc aattctggag atatgataac 1200
 caaagacaat tcatggagcc aggttatccc aaaagcatat caggtgcctt tccaggaata 1260
 gagagtaaag ttgatgcagt tttccagcaa gaacatttct tccatgtctt cagtggacca 1320
 10 agatattacg catttgatct tattgcttag agagttacca gagttgcaag aggcaataaa 1380
 tggcttaact gtagatatgg ctga 1404

<210> 110
 15 <211> 2124
 <212> DNA
 <213> Homo sapiens

<300>
 20 <302> MMP9
 <310> XM009491

<400> 110
 atgagcctct ggcagccccct ggtcctggtg ctccctggc tgggctgctg ctttgctgcc 60
 25 cccagacagc gccagtcac ccttgcgtc ttccctggag acctgagaac caatctcacc 120
 gacaggcagc tggcagagga atacctgtac cgctatgggt acactcggtt ggcagagatg 180
 cgtggagagt cgaardtctt ggggcctgcg ctgtgcgttc tccagaagca actgtccctg 240
 cccgagaccg gtgagctggta tagccacg ctgaaggcca tgcgaacccc acggtgccgg 300
 gtcccagacc tggcagatt ccaaaccctt gagggcggacc tcaagtggca ccaccacaac 360
 30 atcacctatt ggatccaaaa ctactcgaa gacttgcgc gggcggtat tgacgacgcc 420
 tttgcccgcg ctttcgcact gtggagcgcg gtgacgcgc tcaccttcac tcgcgtgtac 480
 agccgggacg cagacatgt catccagtt ggtgtcgcgg agcacggaga cgggtatccc 540
 ttgcacggga aggacgggct cctggcacac gccttcctc ctggcccccgg cattcaggga 600
 gacgcccatt tcgacgtga cgagttgtt tccctggca agggcgtcg ggttccaact 660
 35 cggtttggaa acgcagatgg cgcggccctgc cacttccct tcatcttcga gggccgtcc 720
 tactctgcct gcaccaccc cggtcgtcc gacggcttc cctggcgcag taccacggcc 780
 aactacgaca ccgacgaccg gtttgcgttc tgccccagcg agagactcta caccaggac 840
 ggcaatgcgt atggaaacc ctggcagttt ccattcatct tccaaggcca atctactcc 900
 gcctgcacca cggacggctg ctccgacggc taccgctgtt ggcaccac cgcacactac 960
 40 gaccgggacca agctttcgg ctctgcggc acccgagctg actcgacgg gatggggggc 1020
 aactcggggg gggagctgtg cgtcttcccc ttcaactttcc tggtaagga gtactcgacc 1080
 tgttaccagcg agggccggcg agatgggcgc ctctggcgtc ctaccaccc gaactttgac 1140
 agcgacaaga agtggggctt ctggccggac caaggataca gtttgcgtt cgtggccggc 1200
 45 catgagttcg gccacgcgtc gggcttagat cattcctcg tgccggaggc gctcatgtac 1260
 cctatgtacc gtttactga gggggcccccc ttgcataagg acgacgtgaa tggcatccgg 1320
 cacctctatg gtcctcgccc tgaacctgag ccacggccctc caaccaccc cacacccgc 1380
 cccacggctc cccccacggcgt ctggccacc ggaccccccctt ctgtccaccc ctcaagacgc 1440
 cccacagctg gccccacagg tccccctca gctggccccc caggtcccccc cactgctggc 1500
 cttctctacgg ccactactgt gccttgcgtt ccggtgacg atgcctgcaa cgtgaacatc 1560
 50 ttcgacgcac tgcggagat tggaaaccag ctgtattttt tcaaggatgg gaagtaactgg 1620
 cgattctctg agggcagggg gagccggccg cagggccccct tccttacgc cgacaagtgg 1680
 cccgcgtgc cccgcaagct ggactcggtc tttgaggagc ggctctccaa gaagctttc 1740
 ttcttctctg ggcggccaggt gtgggtgtac acaggcgcgt cggtgctggg cccgaggcgt 1800
 ctggacaagc tggggctggg agccgacgtg gcccaggtga ccggggccct ccggagtgcc 1860
 55 agggggaaaga tgctgtgtt cagcggggcg cgcctctgga gtttgcacgt gaaggcgcag 1920
 atggtggtc cccggagcgc cagcgagggt gaccggatgt tccccggggt gcctttggac 1980
 acgcacgacg tcttcagta ccgagagaaa gcctatttct gccaggaccc ctctactgg 2040
 cggcgtgaggc cccggagtgta gttgaaccag gtggaccaag tggctacgt gacccatgac 2100
 atcctgcagt gccctgagga cttag 2124

60 <210> 111

65

DE 101 00 588 A 1

<211> 2019
 <212> DNA
 <213> Homo sapiens

<300>
 <302> PKC alpha
 <310> NM002737

<400> 111

atggctgacg tttcccccggg caacgactcc acggcgtctc aggacgtggc caaccgcttc	60	10
gcccccaag gggcgctgag gcagaagaac gtgcacgagg tgaaggacca caaattcatc	120	
gcgcgttct tcaagcagcc cacttctgc agccactgca ccgacttcat ctgggggttt	180	
gggaaacaag gcttccagtg ccaagttgc tggtttgtgg tccacaagag gtgccatgaa	240	
tttgttactt tttttgtcc gggtgcggat aagggaccccg acactgatga ccccaggagc	300	
aaggcacaagt tcaaaaatcca cacttacgga agccccacct tctgcgatca ctgtgggtca	360	15
ctgctctatg gacttatcca tcaaggatg aaatgtgaca cctgcgatcatc gaacggttac	420	
aagcaatgcg tcatcaatgt ccccgccctc tgccgaatgg atcacactga gaagaggggg	480	
cggatttacc taaaggctga gggtgctgat gaaaagctcc atgtcacagt acgagatgca	540	
aaaaatctaa tccctatgga tccaaacggg ctttcagatc cttatgtgaa gctgaaactt	600	
attcctgatc ccaagaatga aagcaagcaa aaaacccaaa ccatcogctc cacactaaat	660	20
ccgcagtggg atgagtccct tacattcaaa ttgaaaacctt cagacaaaga ccgacgactg	720	
tctgttagaaa tctgggactg ggatcgaaca acaaggaatg acttcatggg atcccttcc	780	
tttggagttt cgaggctgat gaagatgccg gccagtggat ggtacaagtt gcttaaccaa	840	
gaagaagggtg agtactacaa cgtaccatt ccggaagggg acgaggaagg aaacatggaa	900	25
ctcaggcaga aattcgagaa agccaaacctt ggcctgctg gcaacaaagt catcagtccc	960	
tctgaagaca gggaaacaacc ttccaacaac cttgaccggat tgaaactcac ggacttcaat	1020	
ttcctcatgg tggggggaaa ggggagttt ggaaagggtgat tgcttgcga caggaagggo	1080	
acagaagaac tgtatgcaat caaaatccat aagaaggatg tggattca ggatgatgac	1140	
gtggagtgca ccattgtaga aaagcgatc ttggccctgc ttgacaaacc cccgttcttgc	1200	30
acgcagctgc actctctgctt ccagacagt gatcggtgt acttcgtcat ggaatatgtc	1260	
aacgggtgggg acctctatgtat ccacattcag caagttagaa aatttaagga accacaagca	1320	
gtattctatg cgccagagat ttccatcgat ttgttcttc ttcataaaag aggaatcatt	1380	
tatagggatc tgaagttaga taacgtcatg ttggattcag aaggacatata caaaattgtct	1440	
gactttgggg tggcaagga acacatgtat gatggatca cgaccaggac cttctgtggg	1500	35
actccagatt atatcgcccc agagataatc gcttatcagc cgtatggaaa atctgtggac	1560	
tggggggcct atggcgtctt gttgtatgaa atgttgcgc ggcagccctc attgtatggt	1620	
gaagatgaag acgagctatt tcagttatc atggagcaca acgtttctta tccaaaatcc	1680	
tttgttcaagg aggctgtttc tatctgcataa ggactgtatc ccaaacaccc agccaagcgg	1740	
ctgggctgtg ggcctgaggg ggagaggac gtgagagac atgccttctt ccggaggatc	1800	40
gactggaaa aactggagaa cagggagatc cagccaccat tcaagcccaa agtgtgtggc	1860	
aaaggagcag agaactttga caagttctt acacgaggac agccgtctt aacaccaccc	1920	
gatcagctgg ttattgctaa catagaccag tctgatttt aagggttctc gtatgtcaac	1980	
ccccagtttgc tgcacccat cttacagatc gcagttatgc	2019	

45

<210> 112
 <211> 2022
 <212> DNA
 <213> Homo sapiens

50

<300>
 <302> PKC beta
 <310> X07109

55

<400> 112

atggctgacc cggctgcccc gcccggcccg agcgagggcg aggagagcac cgtgcgcttc	60	
gcccccaaaag ggccttcccg gcagaagaac gtgcatgagg tcaagaacca caaattcacc	120	
gccccgttct tcaagcagcc cacttctgc agccactgca ccgacttcat ctggggcttc	180	
gggaaggcagg gattccagtg ccaagttgc tggtttgtgg tgcacaagcg gtgccatgaa	240	60
tttgtcacat tctctgtccc tggcgctgac aagggtccag cctccgatga ccccccgcagc	300	
aaacacaagt ttaagatcca cacgtactcc agccccacgt tttgtgacca ctgtgggtca	360	

65

DE 101 00 588 A 1

ctgctgtatg gactcatcca ccagggatg aaatgtgaca cctgcatgat gaatgtgcac 420
 aagcgctcg tcatgtatgt tcccagcctg tggcacgg accacacgga gcgcgcggc 480
 cgcacatcaca tccaggccca catcgacagg gacgtctca ttgtcctcgt aagagatgct 540
 5 aaaaacccctt tacccatggc ccccaatggc ctgtcagatc cctacgtaaa actgaaactg 600
 attcccgatc cccaaaagtga gagcaaacag aagaccaaaa ccatcaatg ctccctcaac 660
 cctgagtgga atgagacatt tagatttcag ctgaaagaat cgacaaaga cagaagactg 720
 tcagtagaga tttgggattt ggatttgacc agcaggaatg acttcatggg atctttgtcc 780
 tttgggattt ctgaacttca gaaggcoagt gttgatggct gtttaagtt actgagccag 840
 10 gaggaaaggcg agtacttcaa tggcctgtg ccaccagaag gaagtggagc caatgaagaa 900
 ctgcggcaga aatttgagag gccaagatc agtcaggaa ccaaggccc ggaagaaaaag 960
 acgaccaaca ctgtctccaa atttgacaa aatggcaaca gagacccgat gaaactgacc 1020
 gatTTTaaatccatgtt gctggggaaa ggcagcttg gcaaggcat gcttcagaa 1080
 15 cggaaaaggca catgagact ctatgctgtg aagatcctga agaaggacgt tggatccaa 1140
 gatgatgacg tggagtgcac tatggtgag aagcgggtg tggccctgcc tgggaagccg 1200
 cccttcctga cccagctcca ctcccttc cagaccatgg accgcctgta ctgtgtatg 1260
 gagtacgtga atggggcgaa ctcatgtat cacatccagc aagtccggc gttcaaggag 1320
 cccccatgtg tattttacgc tgcaaaaatt gccatcggtc tggcttctt acagagtaag 1380
 ggcatttcattt accgtgaccc aaaacttgc aacgtgtgc tcgatttgc gggacacatc 1440
 20 aagattggccg atttggcat gtgtaaagaa aacatctggg atgggggtgac aaccaagaca 1500
 ttctgtggca ctccagacta catcccccc gggataattt cttatcagcc ctatggaaag 1560
 tccgtggatt ggtgggcatt tggagtctg ctgtatgaaa tggcttcttgc gcaaggcacc 1620
 tttgaagggg aggatgaaaga tgaactttc caatccatca tggaaacacaa cgtagcctat 1680
 cccaagtcta tgtccaagga agctgtggcc atctgcaaaag ggctgatgac caaacaccca 1740
 25 ggcaaacgtc tgggttgtgg acctgaaggc gaacgtgtata tcaaagagca tgcattttc 1800
 cggtatattt attggggagaa acttgaacgc aaagagatcc agccccctta taagccaaaa 1860
 gcttgtggc gaaatgctga aaacttcgac cgattttca cccgcctatcc accagtccct 1920
 acacccccc accaggaatg catcaggaat attgaccaat cagaattcga aggatttcc 1980
 tttgttaact ctgaattttt aaaacccgaa gtcaagagct aa 2022

30

<210> 113
 <211> 2031
 <212> DNA
 35 <213> Homo sapiens

 <300>
 <302> PKC delta
 <310> NM006254

40

<400> 113
 atggcgccgt tcctgctcat cgccttcaac tcctatgagc tggctccct gcaggccgag 60
 gacgaggcga accagccctt ctgtccgtg aagatgaaagg aggcgtctag cacagagcgt 120
 gggaaaacac tgggtcagaa gaagccgacc atgtatcctg agtggaaatc gacgttcgtat 180
 45 Gcccacatct atgagggccg cgtcatccag attgtctaa tggccgcagc agaggagcca 240
 gtgtctgagg tgaccgtggg tgggtcgtg ctggccgagc gtcgaagaa gaacaatggc 300
 aaggctgagt tctggctgga cctgcagct caggccaagg tggatgtc tggcgtat 360
 ttcctggagg acgtggattt caaaacatct atgcgcgtg aggacgaggc caagttccca 420
 acgatgaaacc gcccgggagc catcaaacag gccaatcc actacatcaa gaaccatgag 480
 50 ttatcgcca ctttcttgg gcaacccacc ttctgttctg tggcaaaaga ctgtgtctgg 540
 ggcctcaaca agcaaggcta caaatgcagg caatgtaaacg ctgcctatcca caagaaatgc 600
 atcgacaaga tcatcgccag atgcacttgc accgcggcca acagccggg cactatattc 660
 cagaaagaac gcttcaacat cgacatggcc caccgttca aggttcacaa ctacatgagc 720
 cccacccctt gtgaccactg cggcagctg ctctggggac tggtaagca gggattaaag 780
 55 tggtaagact gcccgtt gttgcacccat aaatgcccggg agaagggtggc caacctctgc 840
 ggcattcaacc agaagctttt ggctgaggcc ttgaaaccaag tcacccagag agcctcccg 900
 agatcagact cagcttctc agacgttgc gggatatac agggtttgcgaa gaaagagacc 960
 ggagttctg gggaggacat gcaagacaac agtgggacct acggcaagat ctggggggc 1020
 60 agcagcaatg gcaacatcaa caacttcatc ttccacaagg tccctggggaa aggccatctc 1080
 gggaaagggtc tgctggaga gctgaaggcc agaggagat actctgcctt caagccctc 1140
 aagaaggatg tggctctgtat cgacgacgac gtggagtgca ccatggttga gaagcgggtg 1200
 ctgacacttgc ccgcagagaa tcccttctc acccaccatca tctgcacccctt ccagaccaag 1260

65

DE 101 00 588 A 1

gaccacctgt tctttgtat ggagttcctc aacggggggg acctgatgta ccacatccag 1320
 gacaaaggcc gcttgaact ctaccgtgcc acgttttatg ccgctgagat aatgtgtgga 1380
 ctgcagttc tacacagcaa gggcatcatt tacagggacc tcaaactgga caatgtgctg 1440
 ttggaccggg atgccacat caagattgcc gactttggga tgtgcaaaga gaacatattc 1500
 ggggagagcc gggccagcac ctctcgcc acccctgact atatcgcccc tgagatccta 1560
 cagggctga agtacacatt ctctgtggac tgggtgtctt tcgggtctt tctgtacgag 1620
 atgctcattt gccagtcacc cttccatggt gatgatgagg atgaactt ctagtccatc 1680
 cgtgtggaca cgccacattt tccccgtgg atcaccaagg agtccaagga catctggag 1740
 aagctcttg aaaggaaacc aaccaagagg ctggaaatga cggaaacat caaaatccac 1800
 cccttcttca agaccataaa ctggactctg ctggaaaagc ggaggttgg gccacccttc 1860
 aggccaaag tgaagtacc cagagactac agtaacttt accaggagtt cctgaacgag 1920
 aaggcgcgcc tctcttacag cgacaagaac ctcatcgact ccatggacca gtctgcattc 1980
 gctggcttctt ctttgtgaa ccccaattt gaggcacctcc tggaagattt a 2031

5

10

15

<210> 114
 <211> 2049
 <212> DNA
 <213> Homo sapiens

20

<300>
 <302> PKC eta
 <310> NM006255

25

<400> 114
 atgtcgctg gcaccatgaa gttcaatggc tatttgaggg tccgcacatgg tgaggcagtg 60
 gggctgcagc ccacccgctg gtccctgcgc cactcgctct tcaagaaggg ccaccagctg 120
 ctggaccctt atctgacggt gagcgtggac caggtgcgcg tggccagac cagcaccaag 180
 cagaagacca acaaaccac gtacaacgag gagtttgcg ctaacgtcac cgacggcggc 240
 cacctcgagt tggccgtctt ccacgagacc cccctggct acgacttcgt gccaactgc 300
 accctgcagt tccaggagct cgtccgcacg accggcgcctt cggacacctt cgagggttgg 360
 gtggatctcg agccagaggg gaaagtattt gtgtataataa cccttaccgg gagtttcaact 420
 gaagctactc tccagagaga cggatcttcc aaacattttta ccaggaagcg ccaaagggt 480
 atgcgaaggc gagtccacca gatcaatgga cacaagttca tggccacgta tctgaggcag 540
 cccacactact gctctactg caggaggtt atctggggag tggggggaa acagggttat 600
 cagtgc当地 tgc当地 cat aaacgctcc atcatctaataat tttacagcc 660
 tttacttgc当地 aaaacaatataat taacaaatgtt gatcaaaaga ttgc当地 aaca gaggttccggg 720
 atcaacatcc cacacaagtt cagcatccac aactacaatgg tggccacattt ctgc当地 atc 780
 tttggctcac tgc当地 tggggggaa aataatggcga caaggacttc agttaaat atgttaaatg 840
 aatgtgcata ttcgatgtca agc当地 acgtg gccc当地 taacttctcc aacctcgaaa 900
 cttgccaaga ccctggcagg gatgggtctc caacccggaa atatttctcc aacctcgaaa 960
 ctc当地 tccca gatcgaccct aagacgacag gggaaaggaga gcaacaaaga aggaaatggg 1020
 attgggggta attcttccaa cc当地 acttggt atcgacaact ttgagttcat cc当地 agtgg 1080
 gggaaaggaga gtttggaa ggtgatgctt gcaagagttaa aagaaacagg agacctctat 1140
 gctgtgaagg tgc当地 aagaa ggacgtgatt ctgctggatg atgatgtgga atgc当地 atc 1200
 accgagaaaa ggttccgtc tctggccgc aatcccccctt cc当地 tcaactca gttgttctgc 1260
 tgc当地 tccaga cccccc当地 atcgatcg tctgtttttt gtgatggatg ttgtgaatgg gggtaacttg 1320
 atgttccaca ttc当地 agatgc tctgtctt gatgaaggcac gagctcgctt ctatgctgca 1380
 gaaatcattt cggctctcat gttccctccat gataaaggaa tcatctatag agatctgaaa 1440
 ctggacaatg tcctgttggg ccacgagggt cactgttaaac tggc当地 agactt cc当地 atgtg 1500
 aaggagggaa tttgcaatgg tgc当地 caccacg gccacatttctt gtggc当地 agactatatac 1560
 gctccagaga tcctccagga aatgctgtac gggctgc当地 tagactggatg ggcaatggc 1620
 gtgttgc当地 atgatgtctt ctgtggatc ggc当地 ttttggg aggccagagaa tgaagatgac 1680
 ctctttgagg cc当地 aactgtgaa tgatgaggatg tctaccctta cctggctcca tgaagatgcc 1740
 acaggatcc taaaatctt catgaccaag aacccacca tgc当地 ctttgggg cagcctgact 1800
 cagggaggcg agc当地 acgccc当地 ttttggggatggc tggccccc当地 1860
 ctgaaccatc gccaataga accgc当地 ttttggggatggc tcaaatcccg agaagatgtc 1920
 agtaatttt accctgactt cataaaggaa gagccagttt taactccat tgc当地 gaggg 1980
 catcttccaa tgatcaacca ggtatgaggatg agaaactttt cctatgtgtc tccagaatgg 2040
 caaccatag 2049

30

35

40

45

50

55

60

65

DE 101 00 588 A 1

5 <210> 115
 <211> 948
 <212> DNA
 <213> Homo sapiens
 <300>
 <302> PKC epsilon
 <310> XM002370

10 <400> 115
 atgttggcag aactcaaggg caaagatgaa gtatatgctg tgaaggcttt aaagaaggac 60
 gtcatccctc aggatgatga cgtggactgc acaatgacag agaagaggat ttggctctg 120
 gcacggaaac acccgtaacct tacccaactc tactgctgct tccagaccaa ggaccgcctc 180
 15 ttttcgtca tggaatatgt aaatgggaa gacctcatgt ttccagattca gcgtccccga 240
 aaattcgacg agcctcggtc acggttctat gtcgcaggagg tcacatcgcc cctcatgttc 300
 ctcccaccagc atggagtcat ctacaggat ttggaaactgg acaacatcct tctggatgca 360
 gaagggtcaact gcaagctggc tgacttcggg atgtcaagg aagggttctt gaatgggttg 420
 acgaccacca cggtctgtgg gactcctgac tacatagctc ctgagatcct gcaggagttg 480
 20 gagtatggcc cttccgtgga ctgggtggcc ctgggggtgc tgatgtacga gatgtggct 540
 ggacagccctc ctttgaggc cgacaatgag gacgacctat ttgagttccat cttccatgac 600
 gacgtgtgtt acccagtctg gctcagaag gaggctgtca gcatcttcaa agctttcatg 660
 acgaagaatc cccacaagcg cttgggtgtt gtggcatcgc agaatggcga ggacgccatc 720
 aagcagcacc cattttcaa agagattgac tgggtgtcc tggagcagaa gaagatcaag 780
 25 ccacccttca aaccacgcat taaaaccaa agagacgtca ataatttga ccaagacttt 840
 acccgggaag agccggtaact cacccttgtg gacgaagcaa ttgtaaagca gatcaaccag 900
 gaggaattca aaggtttctc ctacttttgtt gaagacctga tgccctga 948

30 <210> 116
 <211> 1764
 <212> DNA
 <213> Homo sapiens

35 <300>
 <302> PKC iota
 <310> NM002740

<400> 116
 40 atgtcccacca cggtcgcagg cggcggcagc ggggaccatt cccaccaggc cgggtgaaa 60
 gcctactacc gcggggatata catgataaca cattttgaac cttccatctc ctttgagggc 120
 ctttgcaatg agtttcgaga catgtttct tttgacaacg aacagctttt caccatgaaa 180
 tggatagatg aggaaggaga cccgtgtaca gtatcatctc agttggagtt agaagaagcc 240
 ttttagacttt atgagctaaa caaggattctt gaactcttga ttcatgttcc ccttgttta 300
 45 ccagaacgtc ctggatgcc ttgtccagga gaagataaat ccatctaccg tagaggtgca 360
 cggccgttggaa gaaagcttta ttgtgccaat gggcacactt tccaagccaa gcgttcaac 420
 aggcgtgtc actgtccat ctgcacagac cgaatatggg gacttggacg ccaaggatata 480
 aagtgcatac actgcaaaact ttgggttcat aagaagtgcc ataaactcgt cacaattgaa 540
 tgtggccggc attctttgcc acaggaacca gtatgtccca tggatcagtc atccatgcat 600
 50 tctgaccatg cacagacagt aattccatata aatcccttcaa gtcatgagag ttggatcaa 660
 gttggtaag aaaaagaggc aatgaacacc agggaaagtg gcaaagcttc atccagtcta 720
 ggtcttcagg attttgattt gtcgggttata ataggaagag gaagttatgc caaagtactg 780
 ttgggttgcatt taaaaaaaaac agatgttattt tatgtatgaa aagttgtt aaaaagagttt 840
 gttaatgtatg atgaggatata tgattgggtt cagacagaga agcatgtt tgacggca 900
 55 tccaaatcatc cttcccttgcattt tgggtgtcat tctgttttca agacagaaag cagattgttc 960
 tttgtttagt agtatgtaaa tggaggagac ctaatgtttc atatgcacgc acaaagaaaa 1020
 cttccgttgcattt aacatgcccattt attttactct gcagaaatca gtcttagcatt aaattatctt 1080
 catgagcggcggatattt tagagatttga aaactggaca atgttataactt ggactctgaa 1140
 ggccacattt aactcaactga ctacggcatg tggtaaggaa gattacggcc aggagataca 1200
 60 accagcactt tctgtgttac ttcttaatttac attgttcttgc aaattttaaag aggagaagat 1260
 tatggttca gtgttgcactt gggcttccat gggatgttca tggttgcgtt gatggcaggaa 1320

DE 101 00 588 A 1

aggctccat	ttgatattgt	tggagctcc	gataaccctg	accagaacac	agaggattat	1380
ctcttccaag	ttatTTggA	aaaacaatt	cgcataccac	gttctgtc	tgtaaaagct	1440
gcaagtgttc	tgaagagttt	tcttaataag	gaccctaagg	aacgattggg	ttgtcatct	1500
caaacaggat	ttgctgatat	tcagggacac	ccgttcttc	gaaatgtga	ttgggatatg	1560
atggagcaaa	aacaggtggt	accccccTTT	aaacccaata	tttctggga	atttggttig	1620
gacaactttg	attctcagtt	tactaatgaa	cctgtccagc	tcactccaga	tgacgatgac	1680
attgtgagga	agattgatca	gtctgaattt	gaaggtttg	agtatatcaa	tcctctttt	1740
atgtctgcag	aagaatgtgt	ctga				1764

5

10

```
<210> 117  
<211> 2451  
<212> DNA  
<213> Homo sapiens
```

15

<300>
<302> PKC mu
<310> XM007234

20

<400> 117
atgtatgata agatccctgct ttttcgcctt gaccctaccc ctgaaaacat ccttcagctg 60
gtgaaagcgcc caagtatat ccaggaaggc gatcttattt aagtggctt gtcagcttc 120
gccacctttt aagactttca gattcgccc cagctctct ttgttcattt atacagagct 180
ccagctttct gtgatcaactg tggagaaatg ctgtggggc ttaccataag agatgtcat 240
tgtgaagggt gtgtctgaa gctctcaaacc gttccctca tacaagtgcc cctgtatgagc 300
agcgggtgtga ggccgagaag acatcatctg ctgaaactctc tggtagatggg tcaattctc 360
tcagagtcgt ttattgtcg attcaccc acaagatttt gatgtctaaa gttaaaagtgc 420
tcctacaccc ggcccacagt cagggcttgc agtcaaaga ccaaacaact gccttggca 480
tctgtatgtgg tcatggaaaa atggatgata tggagaagc aacgacagtgc gcgagatgca 540
atggatgata tggagaagc aacgacagtgc gcgagatgca agtccatcaa caagcaacaa 600
aagaggaaaa gcagcacagt acgctgcgga aacggcacta gacacagaaaa gcaggtacta 660
gtaaaaactt cagtttaat gcaaatgttag tgtattatgt aacagtgttc tcaccagtgg 720
cagcatgccc ttatgcccgt cacagagata tctctgttag atccatcacatc 780
atcagcacag tatatcgat gtttatggag gaaaacatcg ttacgatttcaacaaaacc 840
cttcatcacc ctgggtttgt gttgttatgg aaaaactcca aggttgcagc agcacaataac 900
tttcattttt aaaaatatcg gctgatcctt ttccctcaggta aatccatcgatc 960
aagtctttcc ggaggtcagt aacaagggtc acaatcgctc tttccatcgatc 1020
ctaagcgccca cattccatt gcttcatgt atccacccaaa aacaatttgc tgcaagtaaa 1080
ccttggtac aggactatca gagcgttaca tcacccatga gggctgcagt accccacaca 1140
actgaagaaaa cagaaatgaa

25

30

35

40

DE 101 00 588 A 1

<210> 118
 <211> 2673
 <212> DNA
 <213> Homo sapiens
 5
 <300>
 <302> PKC nu
 <310> NM005813
 10 <400> 118
 atgtctgcaa ataattcccc tccatcagcc cagaagtctg tattacccac agctattcct 60
 gctgtgcctc cagctgcctc tccgtgtca agtctctaaga cgggactctc tgcccgaactc 120
 tctaatgaa gcttcagtgc accatcaactc accaactcca gaggtctcgt gcatacagt 180
 15 tcatttctac tgcaaattgg cctcacacgg gagagtgtta ccattgaagc ccaggaactg 240
 tctttatctg ctgtcaagga tcttggtgc tccatagttt atcaaaaagg tccagagtgt 300
 ggattcttg gcatgtatga caaaaatttt ctcttcgccc atgacatgaa ctcagaaaaac 360
 atttgcagc tgattacctc agcagatgaa atacatgaag gagacctgtt ggaagtgggt 420
 ctttcagtt tagccacagt agaagacttc cagatcgctc cacatactct ctatgtacat 480
 20 tcttacaagg ctcctacttt ctgtgattac tgggtgaga tgctgtgggg attggtagt 540
 caaggactga aatgtgaagg ctgtggatta aattaccata aacgatgtgc cttcaagatt 600
 ccaaataact gtatgtggagt aagaaagaga cgctctgtcaa atgtatctt accaggaccc 660
 ggcctctcag ttccaagacc cctacagcc gaatatgttag cccttcccag tgaagagtca 720
 catgtccacc aggaaccaag taagagaatt cttcttggg gtggtcgccc aatctggatg 780
 25 gaaaagatgg taatgtgcag agtggaaat ccacacacat ttgctgttca ctcttacacc 840
 cgtcccacga tatgtcagta ctgcaagcgg ttactgaaag gcctcttcg ccaaggaatg 900
 cagtgtaaag attgcaaattt caactgcatt aaacgctgtg catcaaaaagt accaagagac 960
 tgccttggag aggttacttt caatggagaa cttccagtc tgggaacaga tacagatata 1020
 ccaatggata ttgacaataa tgacataaat agttagatgaa tgccgggtt ggtgacaca 1080
 30 gaagagccat caccggcaga agataagatg ttcttcttgg atccatctga tctcgatgtg 1140
 gaaagagatg aagaagccgt taaaacaatc agtccatcaa caagcaataa tattccgcta 1200
 atgaggggtt tacaatccat caagcacaca aagaggaaga gcagcacaat ggtgaaggaa 1260
 gggtggatgg tccattacac cagcaggat aacctgagaa agaggcatta ttggagactt 1320
 gacagcaat gtctaacatt atttcagaat gaatctggat caaagtatta taaggaaatt 1380
 35 ccactttcag aaattctccg catatctca ccacgagatt tcacaaacat ttcacaaggc 1440
 agcaatccac actgttttga aatcattact gataactatgg tatacttcgt tggtagaaac 1500
 aatggggaca gctctatcaa tcttgttctt gctgccactg gagttggact tgatgttagca 1560
 cagagctggg aaaaagcaat tgcacttctc cagggcaagg gaaagatcac aaagattgtt ctacaagat tctgttatct 1620
 40 aattgtcaga ttccaggagaa tggatgtttc agtactgttt accagatctt tgccatgtg 1680
 gtgcttgggtt caggccagtt tggcatcggtt tatggaggaa aacatagaaa gactggagg 1740
 gatgtggcta ttaaagtaat tgataagatg agattccccca caaaacaaga aagtcaactc 1800
 cgtaatgaag tggotatttt acagaattt caccatcctg ggattgtaaa cctggaatgt 1860
 atgtttggaaa ccccaagaacg agtcttgcgta gtaatggaaa agtgcatgg agatatgtt 1920
 45 gaaatgattc tatccagtga gaaaagtccg ctccagaac gaattactaa attcatggtc 2040
 acacagatac ttgttgcctt gaggaaatctg catttaaga atattgtcga ctgtgattta 2100
 aagccagaaa atgtgcgtct tgcacatcgca gagccatttc ctcaggtgaa gctgtgtgac 2160
 tttggatttg cacgcatcat tggtaaaatg tcattcagga gatctgtggt aggaactcca 2220
 gcatacttag cccctgaagt tctccggagc aaaggttaca accgttccct agatatgtgg 2280
 50 tcagtggag ttatcatcta tggatgtttc agtggcacat ttccctttaa tgaggatgaa 2340
 gatataaaatg accaaatcca aaatgtcga ttatgtacc caccaaatcc atggagagaa 2400
 atttctgggtt aagcaattga tctgataaaac aatctgcctc aagtgaagat gagaacacgt 2460
 tacagtgtt acaaatactct tagtcatccc tggctacagg actatcagac ttggcttgac 2520
 ctttagagaat ttgaaactcg cattggagaa cgttacatta cacatgaaag tgatgtatgt 2580
 55 cgctggaaa tacatgcata cacacataac cttgtataacc caaagcactt cattatggct 2640
 cctaattccag atgatatggta agaagatctt taa 2673

<210> 119
 <211> 2121
 60

DE 101 00 588 A 1

<212> DNA
 <213> Homo sapiens

<300>
 <302> PKC tau
 <310> NM006257

<400> 119

atgtcgccat ttcttcggat tggcttgc	aactttgact gcgggtcctg ccagtcttg	60	
cagggcggagg ctgttaaccc ttactgtgt	gtgctgtca aagagtatgt cgaatcagag	120	5
aacggggcaga tgttatcca gaaaaagcc	accatgtacc caccctggaa cagcacttt	180	
gatgccccata tcaacaaggg aagagtcatg	cagatcattg tgaaaaggcaa aaacgtggac	240	
ctcatctctg aaaccaccgt ggagctctac	tcgctggctg agaggtgcag gaagaacaac	300	
gggaagacag aaatatggtt agagctgaaa	cctcaaggcc gaatgctaattaat gaatgcaaga	360	
tactttctgg aaatgagtga cacaaggac	atgaatgataat ttgagacgga aggcttcttt	420	10
gctttgcata agcgccggg tgccatcaag	caggcaaaagg tccaccacgt caagtgccac	480	
gagttcactg ccaccccttccc acat	ttttgtctgt ctgtctgcca cgagtttgc	540	
tggggccctga acaaacaggg ctaccagtgc	cgacaatgc atgcagaaat tcacaagaag	600	
tgtattgata aagttatagc aaagtgcaca	ggatcagcta tcaatagccg agaaaaccatg	660	15
ttccacaagg agagattcaa aattgacatg	ccacacagat ttaaagtcta caattacaag	720	
agcccgacct tctgtgaaca ctgtggacc	ctgctgtggg gactggcacg gcaaggactc	780	
aagtgtgatg catgtggcat gaatgtgc	catagatgcc agacaaaggt gccaacac	840	
tgtggcataa accagaagct aatggctgaa	gfcgtggcca tgattgagag cactcaacag	900	
gctcgctgt taagagatac tgaacagatc	ttcagagaaag gtccgggtga atttggtctc	960	20
ccatgctcca tcaaaaatga agcaaggccg	ccatgtttac cgacacccggg aaaaagagag	1020	
cctcaggggca tttctggga gtctccgtt	gatgggtgg ataaaatgtg ccatcttcca	1080	
gaacctgaac tgaacaaaaga aagaccatct	ctgcagatta aactaaaaat tgaggatttt	1140	
atcttgcaca aaatgttggg gaaaggaagt	tttggcaagg tcttcctggc agaattcaag	1200	
aaaaccaatc aattttcgc aataaaggcc	ttaaagaaag atgtggtctt gatggacgat	1260	25
gatgttgagt gcacgatgtt	agagaagaga gtttttctt tggcctggga	1320	
ctgacgcaca tttttgtac attccagacc	aagaaaacc tctttttgt gatggagtac	1380	
ctcaacggag gggacttaat gtaccacatc	caaagctgcc acaagttcga ccttccaga	1440	
gfcgtgttt atgtgtgt	aatcatttctt ggtctgcagt tccttcattc	1500	
gtctcacaggc acctgaagct agataacatc	ctgttagaca aagatggaca tatcaagatc	1560	30
gfcgtgtttt gaatgtgcaaa ggagaacatg	tttaggagatg ccaagacgaa taccttctgt	1620	
ggggacacctg actacatcgc cccagagatc	ttgtctggtc agaaaataca ccactctgt	1680	
gactgtgtgt ctttcgggggt ttccttttat	gaaatgtgta ttggtcagtc gccttccac	1740	
ggggcaggatg aggaggagct cttccactcc	atccgcatgg acaatccctt ttaccacgg	1800	
tggctggaga aggaagcaaa ggaccttcg	gtgaagctct tcgtgcgaga acctgagaag	1860	40
aggctggcg tgaggggaga catccgcag	caccctttgt ttccggagat caactgggag	1920	
gaacttgaac ggaaggagat tgacccaccg	ttccggccga aagtgaatc accatggat	1980	
tgcagcaatt tcgacaaaaga attcttaaac	gagaagcccc ggctgtcatt tgccgacaga	2040	
gcactgtatca acagcatggc ccagaatatg	ttcaggaact tttccttcat gaaccccg	2100	
atggagcgcc tgatatcctg a		2121	45

<210> 120
 <211> 1779
 <212> DNA
 <213> Homo sapiens

<300>
 <302> PKC zeta
 <310> NM2744

<400> 120

atgcccagcc ggaccgaccc	caagatggaa gggagcggcg gccgcgtccg cctcaaggcg	60	
cattacgggg gggacatctt	catcaccacgc gtggacgccc ccacgacctt cgaggagctc	120	50
tgtgaggaag tgagagacat	gtgtcgctg caccacgc acccgctcac cctcaagtgg	180	
gtggacagcg aaggtgaccc	ttgcacggtg tcctcccaga tggagctgga agaggcttc	240	
cgcctggccc gtcagtgcag	ggatgaaggc ctcatcattc atgtttcccc gagcacccct	300	60

65

DE 101 00 588 A 1

gagcagcctg gcctgccatg tccgggagaa gacaaatcta tctaccgcg gggagccaga 360
 agatggagga agctgtaccg tgccaacggc cacctttcc aagccaagcg cttaacagg 420
 agagctact gcggtcagtg cagcgagagg atatggggcc tcgcgaggca aggctacagg 480
 5 tgcataact gcaaactgct ggtccataag cgctgccacg gcctcgccc gctgacctgc 540
 aggaagcata tggattctgt catgccttcc caagagcctc cagtagacga caagaacgag 600
 gacgcccacc ttccttccga ggagacagat ggaattgctt acatttctc atccccgaag 660
 catgacagca ttaaagacga ctcggaggac cttaagccag ttatcgatgg gatggatgga 720
 atcaaaaatct ctcaggggct tgggctgcag gactttgacc taatcagagt catcgccgc 780
 10 gggagctacg ccaagttct cctggtgccg ttgaagaaga atgaccaa at ttagccatg 840
 aaagtggta agaaagagct ggtgcattgt gacggggata ttgactgggt acagacagag 900
 aagcacgtgt ttgacggc atccagcaac cccttcctgg tcggattaca ctccctgcttc 960
 cagacgacaa gtccgttgg tctggtcatt gatgtacgtca acggcgggaa cctgatgttc 1020
 cacaatgcaga ggcagaggaa gctccctgag gaggacgcca gtttctacgc gggcggatc 1080
 15 tgcatacgccc tcaacttcct gcacgagagg gggatcatct acaggacatc gaagctggac 1140
 aacgtcctcc tggatgcggc cgggcacatc aagtcacag actacggcat gtgcaaggaa 1200
 ggcctgggcc ctggtgacac aacgagact ttctgcggaa ccccgattta catcgcccc 1260
 gaaatcctgc ggggagagga gtacgggtt acgtggact ggtggcgct gggagtcctc 1320
 atgtttgaga ttagtggccgg gcgctccccc ttgcacatca tcaccgacaa cccggacatg 1380
 20 aacacagagg actacccctt ccaagtgtac ctggagaagc ccatccggat ccccccgttc 1440
 ctgtccgtca aagcctccca tgttttaaaa ggatttttaa ataaggaccc caaagagagg 1500
 ctcggctgcc ggcacacagac tggattttct gacatcaagt cccacgcgtt ctccgcagc 1560
 atagactggg acttgcgtgg aagaagcag gcgctccctc cattccagcc acagatcaca 1620
 gacgactacg gtctggacaa ctttgacaca cagttcacca gcgagcccg gcaagctgacc 1680
 25 ccagacgatg aggatgccat aaagaggatc gaccagtcg agttcgaagg cttttagtat 1740
 atcaaccat tattgtgtc caccgaggag tcgggtgtga 1779

<210> 121

<211> 576

<212> DNA

<213> Homo sapiens

<300>

<302> VEGF

<310> NM003376

<400> 121

atgaacttc tgctgtcttg ggtgcattgg agcctgcct tgctgctcta cctccaccat 60
 40 gccaagtgtt cccaggctgc acccatgca gaaggaggag ggcagaatca tcacgaagt 120
 gtgaagttca tggatgtcta tcagcgacg tactgccatc caatcgagac cctggtgac 180
 atcttccagg agtaccctga tgagatcgag tacatcttca agccatccgt tggtccccctg 240
 atgcgatgcg ggggctgtcg caatgacgag ggcctggagt gtgtccccac tgaggagtcc 300
 aacatcacca tgcagattat gcgatcaaa cctcaccac gccagcacat aggagagatg 360
 45 agttcctac agcacaacaa atgtgaatgc agaccaaaga aagatagagc aagacaagaa 420
 aatccctgtg ggccttgctc agacggaga aagattttgt ttgtacaaga tccgcagacg 480
 tgtaaatgtt cctgcaaaaa cacagactcg cgttgcaagg cgaggcagct tgagttaaac 540
 gaacgtactt gcagatgtga caagccgagg cggtga 576

<210> 122

<211> 624

<212> DNA

<213> Homo sapiens

<300>

<302> VEGF B

<310> NM003377

<400> 122

atgagccctc tgctccgccc cctgctgctc gccgcactcc tgcaagctggc ccccccgg 60
 gcccctgtct cccagctga tgccctggc caccagagga aagtgggtgc atggatagat 120

DE 101 00 588 A 1

gtgtatactc ggcgtacactg ccagccccgg gaggtggtgg tgccttgac tgtggagctc 180
 atgggcacccg tggccaaaca gctggtccc agctgcgtga ctgtgcagcg ctgtggtggc 240
 tgctgccctg acgatggcct ggagtgtgtg cccactggc agcaccaagt cccgatgcag 300
 atccctatga tccgttaccc gagcagtcag ctggggaga tgtccctgga agaacacagc 360
 5
 cagtgtaat gcagaccta aaaaaaggac agtgtgtga agccagacag ggctgccact 420
 cccaccacc gtcggcagcc ccgttctgtt cgggctggg actctgcccc cggagcacc 480
 tccccagctg acatcaccca tcccactcca gcccaggcc cctctgccc cgctgcaccc 540
 agcaccacca gcccctgac cccggacct gccgcccgg ctgcccacgc cgcagcttcc 600
 tccgttgccttcc agggcggggc tttag 624
 10

<210> 123
 <211> 1260
 <212> DNA
 <213> Homo sapiens

15

<300>
 <302> VEGF C
 <310> NM005429

20

<400> 123
 atgcacttgc tgggcttctt ctctgtggcg tttctctgc tcggcgtgc gctgctccc 60
 ggtcctcgcg aggccccgc cgccgcgcgc gccttcgagt ccggactcga cctctcgac 120
 25
 gcgagcccg acgcggcga gccacggct tatgaagca aagatctgga ggagcgtta 180
 cggctgtgtt ccagtgttaga tgaactcatg actgtactct acccagaata ttggaaaatg 240
 tacaagtgtc agctaaggaa aggaggctgg caacataaca gagaacaggc caacctaacc 300
 tcaaggacag aagagactat aaaatttgc gcagcacatt ataatacaga gatcttggaa 360
 agtattgata atgagtggag aaagactcaa tgcacatgccc gggaggtgtg tatagatgtg 420
 gggagggat ttggagtcgc gacaaacacc ttctttaaac ctccatgtgt gtccgtctac 480
 agatgtgggg gttgtgcac tagtgagggg ctgcagtgca tgaacaccag cacgagctac 540
 30
 ctcagcaaga cgttatttgc aattacagtgc cctctctctc aaggccccaa accagtaaca 600
 atcagtttg ccaatcacac ttccgtccgc tgcatgtcta aactggatgt ttacagacaa 660
 gttcatttca ttatagacg ttccctgcgc gcaacactac cacagtgtca ggcagcgaac 720
 aagacctgccc ccaccaatta catgtggat aatcacatct gcagatgcct ggctcaggaa 780
 gattttatgt tttctcggt tgctggat gactcaacag atggatttca tgacatctgt 840
 ggaccaaaca aggagctgg tgaagagacc tgcgtgtg tctgcagagc ggggcttcgg 900
 cctgccagct gtggacccca caaagaacta gacagaaact catgccatgt tgctgtaaa 960
 aacaaactct tcccccagccca atgtggggcc aaccggaaat ttgtgaaaaa cacatgccag 1020
 tgcgtatgtt aaagaacctg ccccgaaat caacccctaa atcctggaaa atgtgcctgt 1080
 40
 gaatgtacag aaagtccaca gaaatgcctt taaaaggaa agaagttcca ccaccaaaca 1140
 tgcagctgtt acagacggcc atgtacgaac cgccagaagg cttgtgagcc aggatttca 1200
 tatagtgaag aagtgtgtcg ttgtgtccct tcatattgga aaagaccaca aatgagctaa 1260

35

<210> 124
 <211> 1074
 <212> DNA
 <213> Homo sapiens

45

<300>
 <302> VEGF D
 <310> AJ000185

50

<400> 124
 atattcaaaa tgtacagaga gtgggttagtg gtgaatgttt tcatgtgtt gtacgtccag 60
 ctgggtcagg gctccagtaa tgaacatggc ccagtgaagc gatcatctca gtccacattg 120
 55
 gaacgatctg aacagcagat cagggctgtc tctagttgg aggaactact tgcattact 180
 cactctgagg actgaaagct gtggagatgc aggtgagggc tcaaaaagg taccgtatg 240
 gactctcgct cagcatccca tcggtccact aggtttgcgg caactttcta tgacattgaa 300
 acactaaaag ttatagatgtt agaatggcaa agaactcagt gcagccctag agaaacgtgc 360
 gtggaggtgg ccagttagt gggaaagagt accaacacat tcttcaagcc cccttgcgtg 420

60

65

DE 101 00 588 A 1

aacgtgttcc gatgtggtgg ctgttgcata gaagagagcc ttatctgtat gaacaccaggc 480
 acctcgtaa tttccaaaca gctctttgag atatcagtgc ctttgacatc agtacctgaa 540
 ttagtgctg ttaaagttgc caatcataca gggttgaatg gcttgccaaac agccccccgc 600
 5 catccataact caattatcag aagatccatc cagatccctg aagaagatcg ctgttcccatt 660
 tccaagaaac tctgtcctat tgacatgcta tggatagca acaaatgtaa atgtgttttg 720
 caggaggaaa atccacttgc tggAACAGAA gaccactctc atctccagga accagctctc 780
 tgtggccac acatgtatgg tgacgaagat cggtgcgagt gtgtctgtaa aacaccatgt 840
 cccaaagatc taatccagca ccccaaaaac tgcagttgct ttgagtgcaa agaaaagtctg 900
 10 gagacctgtc gccagaagca caagcttattt caccagaca cctgcagctg tgaggacaga 960
 tggcccttc ataccagacc atgtgcaagt ggoaaaacag catgtgcaaa gcattgccgc 1020
 ttccaaaggc agaaaaggc tgcccaggcc cccacagcc gaaagaatcc ttga 1074

15 <210> 125
 <211> 1314
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> E2F
 <310> M96577

<400> 125
 25 atggccttgg ccggggcccc tgcgggcccgc ccatgcgcgc cggcgctgga ggcctgctc 60
 ggggcccggcg cgctgcccgt gctcgactcc tcgcagatcg tcatacatctc cggccgcgc 120
 gacgccagcg ccccccggc tcccacccggc cccgcggcgc cggccggcgg cccctgcgc 180
 cctgacctgc tgcttgcac cacaccggcag ggcggggcgc ccacacccag tgcggcggg 240
 cccgcgcctcg gccggccgc ggtgaagcgg aggctggacc tggaaactga ccatcagtac 300
 30 ctggccgaga gcagtggcc agctcgggc agaggccgc atccaggaaa aggtgtgaaa 360
 tccccggggg agaagtcaag ctatgagacc tcactgaatc tgaccaccaa ggccttcctg 420
 gagctgtga gccactcgcc tgacgggtgc gtcgacactga actgggctgc cgaggtgctg 480
 aagggtgcaga agccgcgcatt ctatgacatc accaaacgtcc ttgagggcat ccagctcatt 540
 gccaagaagt ccaagaacca catccagttt ctggcagcc acaccacagt gggcgtcgcc 600
 35 ggacggcttg aggggtgtac ccaggacatc cgacagctgc aggagagcga gcagcagctg 660
 gaccacctga tgaatatctg tactacgcag ctgcgcctgc tctccggagga cactgacago 720
 cagcgcctgg cctacgtgac gtgtcaggac cttcgttagca ttgcagaccc ttgcagagcag 780
 atggttatgg tgatcaaagc ccctccttag acccagctcc aagccgtgga ctcttcggag 840
 aactttcaga tctcccttaa gagcaaaaca ggcccgtatc atgttttctt gtgcctgtgg 900
 40 gagaccgtatg gtgggatcag ccctggaaag accccatccc aggaggtcac ttctgaggag 960
 gagaacaggc ccactgactc tgccaccata gtgtcaccac caccatcatc tcccccctca 1020
 tccctcacca cagatcccccg ccagtctcta ctcaaggctgg agcaagaacc gctgttgtcc 1080
 cggatggcga gcctgcgggc tcccgtggac gaggaccgc tgcccccgt ggtggcggcc 1140
 gactcgctcc tggagcatgt gggggaggac ttctccggcc tccctccctga ggagttcatc 1200
 45 agccttccc caccacgc ggcctcgac taccacttcg gcctcgagga gggcgaggc 1260
 atcagagacc tcttcgactg tgacttttttgg gacccatccc ccctggattt ctga 1314

<210> 126
 <211> 166
 <212> DNA
 <213> Human papillomavirus

<300>
 50 <302> EBER-1
 <310> Jo2078

<400> 126
 ggacctacgc tgccttagag gttttgttag ggaggagacg tttgtggctg tagccaccccg 60
 55 tcccggtac aagtcccggt tgggtggac ggtgtctgtg tttgtctcc cagactctgc 120
 tttctgcgt cttcggtcaa gtaccagctg gtggccgca tttttt 166

DE 101 00 588 A 1

<210> 127		5
<211> 172		
<212> DNA		
<213> Hepatitis C virus		
<300>		
<302> EBER-2		
<310> J02078		
 		10
<400> 127		
ggacagccgt tgccctagtg gtttcggaca caccgccaac gtcagtgcg gtgctaccga	60	
cccgaggctca agtccccggg gaggagaaga gaggcttccc gcttagagca tttgcaagtc	120	
aggattctct aatccctctg ggagaagggt attcggcttg tccgctat tt	172	
 		15
<210> 128		
<211> 651		
<212> DNA		
<213> Hepatitis C virus		
 		20
<300>		
<302> NS2		
<310> AJ238799		
 		25
<400> 128		
atggaccggg agatggcagc atcgtgcgga ggcgcgggtt tcgttaggtct gatactctt	60	
accttgtcac cgcaactataa gctgttcctc gctaggctca tatgggtggtt acaatatttt	120	
atcaccaggc ccgaggcaca cttgcaagtg tggatcccc ccctcaacgt tcgggggggc	180	
cgcgatccgc tcatccctcct cacgtgcgcg atccacccag agctaattt taccatcacc	240	
aaaatcttgc tcgcctactt cggtccactc atgggtctcc aggctggtat aaccaaagtg	300	
ccgtacttcg tgcgcgcaca cgggctcatt cgtcatgca tgctggcg gaagggttgct	360	
gggggttattt atgtccaaat ggctctcatg aagttggccg cactgacagg tacgtacgtt	420	
tatgaccatc tcacccact gcccacgcgg gcctacgaga ccttgcgggt	480	
gcagttgagc ccgtcgctt ctctgatatg gagaccaagg ttatcacctg gggggcagac	540	
accgcggcgt gtggggacat catcttggc ctgcccgtct ccgcggcag gggagggag	600	
atacatctgg gaccggcaga cagccttga gggcagggt ggcaacttcc t	651	
<210> 129		
<211> 161		
<212> DNA		
<213> Hepatitis C virus		
 		40
<300>		
<302> NS4A		
<310> AJ238799		
 		45
<400> 129		
gcacctgggt gctggtaggc ggagtcttag cagctctggc cgcgtattgc ctgacaacag	60	
gcagcgtgtt cattgtgggc aggatcatct tgtccggaaa gcccgcattt attcccgaca	120	
gggaagtctt ttaccggag ttcatgatgaga tggaagagtg t	161	
<210> 130		
<211> 783		
<212> DNA		
<213> Hepatitis C virus		
 		55
<300>		
<302> NS4B		
 		60
 		65

DE 101 00 588 A 1

<310> AJ238799

<400> 130

```

5   gcctcacacc tcccttacat cgaacaggga atgcagctcg ccgaacaatt caaacagaag 60
    gcaatcggt tgctgcaaac agccaccaag caagcggagg ctgctgtcc cgtggtgaa 120
    tccaagtggc ggaccctcga agccttctgg gcgaagcata tgtggattt catcagcggg 180
    atacaatatt tagcaggctt gtccactctg cctggcaacc ccgcgatagc atactgtat 240
    gcattcacag ccttatcac cagccccgctc accacccaaac ataccctcct gttaacatc 300
    ctgggggat gggggccgc ccaacttgct cctcccagcg ctgctctgc ttctgttaggc 360
10   gcccgcatcg ctggagcggc tggggcagc ataggcctt ggaagggtgct tggatatt 420
    ttggcagggtt atggagcagg ggtggcaggg gcgcctgtgg ccttaaggt catgagcggc 480
    gagatgcctt ccacccgagga cctggtaac ctactccctg ctatccctc ccctggcgcc 540
    ctatcgctcg gggctgtgt cgacgcata ctgcgtcgcc acgtgggccc aggggagggg 600
15   gctgtgcagt ggttacaccg gctgatagcg ttgcgttcgc gggtaacca cgtctccccc 660
    acgcactatg tgcctgagag cgacgctgca gcacgtgtca ctcagatctt ctctagtctt 720
    accatcaactc agctgctgaa gaggcttac cagtgatca acgaggactg ctccacgcca 780
    tgc                                         783

```

20 <210> 131

<211> 1341

<212> DNA

<213> Hepatitis C virus

25 <300>

<302> NS5A

<310> AJ238799

<400> 131

```

30   tccggcttgt ggctaagaga tgtttggat tggatatgca cgggtttgac tgatttcaag 60
    acctggctcc agtccaagct cctgcccgcg ttggccggag tccccttctt ctcatgtcaa 120
    cgtgggtaca agggagtctg gggggcgcgac ggcattatgc aaaccacctg cccatgtgga 180
    gcacagatca cgggacatgt gaaaaacccgt tccatgagga tcgtggggcc taggacctgt 240
    agtaacacgt ggcattggaa attccccatt aacgcgtaca ccacgggccc ctgcacgccc 300
    tccccggcgc caaattattc tagggcgctg tggcggtgg ctgctgagga gtacgtggag 360
    gttacgcggg tgggggattt ccactacgt acgggcattga ccactgacaa cgtaaagtgc 420
    ccgtgtcagg ttccggcccc cgaattttc acagaagtgg atgggggtcg gttgcacagg 480
    tacgctccag cgtgaaaacc cctcttacgg gaggaggtca cattccttgtt cgggctcaat 540
    caatacctgg ttgggtcaca gctcccatgc gagccgaaac cggacgttagc agtgcact 600
    tccatgctca ccgacccttc ccacattacg gggagacgg ctaagcgtag gctggccagg 660
    ggtatctcccc cctcttggc cagctcatca gotagccagc tgcgtccgc ttcttgaag 720
    gcaacatgca ctaccctgca tgactccccg gacgctgacc tcattcgaggc caacccctg 780
    tggcggcagg agatggcgg gaacatcacc cgcgtggagt cagaaaataa ggtagtaatt 840
    ttggacttt tcgagccgtt ccaagcggag gaggatgaga gggaaatgtatc cgttccggcg 900
    gagatcctgc ggaggtccag gaaattccct cgagcgatgc ccatatggc acggccggat 960
    tacaaccctc cactgttaga gtcctggaa gacccggact acgtccctcc agtggatcac 1020
    ggggtgtccat tgccgcctgc caaggccctt ccgataccac ctccacggag gaagaggacg 1080
    gttgtcttgtt cagaatctac cgtgttttgc gccttggcg agctcgccac aaagaccttc 1140
    50   ggcagctccg aatcgctggc cgtcgacagc ggcacggcaa cggcctctcc tgaccagccc 1200
    tccgacgacg ggcacgcggg atccgacgtt gagtcgtact cctccatgcc cccctttag 1260
    ggggagccgg gggatcccga tctcagcgtac gggtcttggt ctaccgtaa cgaggaggct 1320
    agtgaggacg tcgtctgtc c                                         1341

```

55 <210> 132

<211> 1772

<212> DNA

<213> Hepatitis C virus

60 <300>

<302> NS5B

DE 101 00 588 A 1

<310> AJ238799

<400> 132

tcgatgttct acacatggac	aggcgccctg atcacgccat	gcgctgcgga gaaaaccaag	60	
ctgccccatca atgcaactgag	caactctttg ctccgtcacc	acaacttggt ctatgctaca	120	5
acatctcgca gcgcaaggct	gcggcagaag aagtcacct	ttgacagact gcaggtcctg	180	
gacgaccact accgggacgt	gctcaaggag atgaaggcga	aggcgccac agttaaggct	240	
aaacttctat ccgtggagga	agcctgttaag ctgacgcccc	cacattcggc cagatctaaa	300	
tttggctatg gggcaaagga	cgtccggaac ctatccagca	aggccgttaa ccacatccgc	360	
tccgtgtgga aggacttgc	ggaagacact gagacaccaa	ttgacaccac catcatggca	420	10
aaaaaatgagg ttttctgcgt	ccaaccagag aaggggggcc	gcaaggccagc tcgccttatac	480	
gtattcccgat attttgggg	tcgtgtgca gaaaaatgg	ccctttacga tgggtctcc	540	
accctccctc agggcgtgat	gggcttctca tacggattcc	aatactctcc tggacagcgg	600	
gtcgagttcc tggtaatgc	ctggaaagcg aaaaaatgcc	ctatggctt cgcatatgc	660	
acccgcgttt ttgactcaac	ggtcaactgag aatgacatcc	gtgttgagga gtcaatctac	720	15
caatgttgtg actttggccc	cgaagccaga caggccataa	gttcgtcac agagcggctt	780	
tacatcgaaa gccccctgac	taattctaaa gggcagaact	gcccgtatcg ccgggtccgc	840	
gcgagcgggt tactgacgac	cagctcggtt aataccctca	catgttactt gaaggccgct	900	
gccccctgtc gagctgcgaa	gctccagagc tgcacgatgc	tcgtatgcgg agacacctt	960	
gtcgatatct gtggaaagcg	ggggaccctaa gaggacgagg	cgagcctacg ggcccttacg	1020	
gaggctatga cttagatactc	tgccccccct gggaccctgc	ccaaaccaga atacgacttg	1080	
gagttgataa catcatgctc	ctccaaatgtg tcagtcgc	acgatgcac tggcaaaaagg	1140	
gtgtactatc tcaccctgt	ccccaccacc ccccttgcgc	gggctcggtt ggagacagct	1200	
agacacactc cagtcaattc	ctggcttaggc aacatcatca	tgtatgcgcc caccttgcgg	1260	25
gcaaggatga tcctgtatgc	tcattttctc tccatccttc	tagtcagga acaacttggaa	1320	
aaagccctag attgtcagat	ctacggggcc tgtaactcca	ttgagccact tgacctacat	1380	
cagatcattc aacgactcca	tggccttagc gcattttcac	tccatagttt ctctccaggt	1440	
gagatcaata gggtggctt	atgcctcagg aaacttgggg	taccggccctt gcgagtctgg	1500	
agacatcggtt ccagaagttt	ccgcgtttagg ctactgtccc	agggggggag ggctgccact	1560	
tgtggcaagt acctcttcaa	ctgggcagta aggaccaagc	tcaaactcac tccaaatcccg	1620	
gctgcgtccc agttggattt	atccagctgg ttcgttgc	gttacagcgg gggagacata	1680	
tatcacagcc tgttcgtgc	ccgaccccgcc tgggtcatgt	ggtgccctact cctactttct	1740	
gtaggggtag gcatctatct	actccccaaac cg		1772	

35

<210> 133
<211> 1892
<212> DNA
<213> Hepatitis C virus

40

<300>
<302> NS3
<310> AJ238799

45

<400> 133				
cgcctattac ggcctactcc	caacagacgc gaggcctact	tggctgcate atcaactagcc	60	
tcacaggccg ggacaggaac	caggtcgagg gggaggtcca	agtggctcc accgcaacac	120	
aatctttcct ggcgacctgc	gtcaatgcgc tggatggac	tgtctatcat ggtgcggct	180	
caaagacctc tggccggccca	aaggggccaa tcacccaaat	gtacaccaat gtggaccagg	240	
acctcgtcggtt ctggcaagcg	ccccccgggg cggttccctt	gacaccatgc acctgcggca	300	
gctcggtactt ttacttggtc	acgaggcatg ccgtatgtat	tccgggtgcgc cggcggggcg	360	
acagcagggg gagctactc	tcccccagggc ccgtctccat	tcttgcgggc tcttgcggcg	420	
gtccactgtt ctggccctcg	gggcacgtgt tggcatctt	tcgggtgcgc gtgtgcaccc	480	
gaggggggttgc gaaggcggtt	gactttgtac ccgtcgagtc	tatggaaacc actatgcgg	540	
ccccgggtt cacggacaac	tcgtccccctc cggccgtacc	gcagacattc caggtggccc	600	
atctacacgc ccctactgtt	agcggcaaga gcactaagg	gcccgtgcg tatgcagccc	660	
aagggtataa ggtgttgc	ctgaaccctgt ccgtcgccgc	cacccttagt ttccggggcg	720	
atatgtctaa ggcacatgtt	atcgacccta acatcagaac	cggggttaagg accatcacca	780	
cgggtgcctt catcacgtac	tccacctatg gcaagttct	tgccgacggt ggtgtctcg	840	
gggggcgccta tgacatcata	atatgtgtatg agtgccactc	aactgactcg accactatcc	900	
tgggcacatcg	cacagtccgtt gaccaaggcgg	agacggctgg agcgcgactc	960	

65

DE 101 00 588 A 1

```

ccaccgctac gcctccggga tcggtcaccg tgcccacatcc aaacatcgag gaggtggctc 1020
tgtccagcac tggagaaatc ccctttatg gcaaagccat ccccacatcgag accatcaagg 1080
gggggaggca cctcatttgc tgccattcca agaagaaatg tcatcgactc gccgcgaagc 1140
5 tgcggcct cgactcaat gctgttagcat attaccgggg ctttgatgtt tccgtcatac 1200
caactagcg  agacgtcatt gtcgttagcaa cgacgtctc aatgacggc ttacccggcg 1260
atttcgactc agtgcattc tgcaatacat gtgcacccca gacagtgcac ttcagcctgg 1320
accgcacctt caccattgag acgacgacccg tgccacaaga cgccgtgtca cgctcgcc 1380
ggcgaggcag gactggtagg ggcaggatgg gcatttacag gtttgtact ccaggagaac 1440
ggccctcg  catgttcgtat tcctcggttc tggcgagtg ctatgacg  ggctgtgctt 1500
20 ggtacgact cacccccccg gagacctcg ttaggttgcg ggcttaccta aacacaccag 1560
ggttgcccgt ctggcaggac catctggat tctgggagag cgtcttaca ggcttcaccc 1620
acatagacgc ccatttcttgc tccagacta agcaggcagg agacaacttc ccctacctgg 1680
tagcatatcca ggctacggg tgcccaagg ctcaggctcc acctccatcg tggaccaaa 1740
15 tggaaatgt ttcatacg  ctaaagccta cgctgcacccg gccaacgccc ctgctgtata 1800
ggctgggagc cgttcaaaac gaggttacta ccacacaccc cataaccaa tacatcatgg 1860
catgcatgtc ggctgacctg gaggtcg 1892

<210> 134
20 <211> 822
<212> DNA
<213> Homo sapiens

<300>
25 <302> stmn cell factor
<310> M59964

<400> 134
30 atgaagaaga cacaacttgc gattctca  tgcatttata ttcagctgtc cctatttaat 60
cctctcg  aaactgaagg gatctcgagg aatctgttgc  ctaataatgt aaaagacg  120
actaaattgg tggcaaatct tccaaaagac tacatgataa ccctcaataa tggcccccggg 180
atggatgtt tgccaaatgc ttgttggata agcgagatgg tagtacaatt gtcagac  240
ttgactgatc ttctggacaa gtttcaat attctgttgc  gcttgagtaa ttattccatc 300
35 atagacaaac ttgtgaat  agtgcgttgc cttgtggatg gctgtcaaa  aaactcatct 360
aaggatctaa aaaaatcatt caagagccca gaacccaggc tctttactcc tgaagaattc 420
tttagaattt ttaatagatc cattgtatcc ttcaaggact ttgttagtgc atctgaaact 480
agtgattgtg tgggttctt aacattaatg cctgagaaag attccagatg cagtgtcaca 540
aaaccattt tggtaaaaaa tggcagcc agctccctta ggaatgacag cagtagcagt 600
40 aataggaagg ccaaaaatcc ccctggagac tccagcc  actgggc  catggcattt 660
ccagcattt tttctctt  aattggctt gctttggag ccttataatg gaagaagaga 720
cagccaagtc ttacaaggc agttgaaaat atacaaat  atgaagagga taatgagata 780
agtatgttgc aagagaaaga gagagat  caagaagtgt aa 822

<210> 135
45 <211> 483
<212> DNA
<213> Homo sapiens

<300>
50 <302> TGFalpha
<310> AF123238

<400> 135
55 atggtcccctt cggctggaca gctcgccctg ttgcgtctgg gtattgtgtt ggctgcgtgc 60
caggccttgg agaacagcac gtccccgttgc agtgcagacc cgcccggtggc tgacgc  120
gtgtccctt  ttaatgactc cccagattcc cacactcgt tctgttcca tggaaac  180
aggttttgg tgcaggagga caagccagca tggcgttgc  attctggta cgttggtgc 240
60 cgctgtgagc atgcggaccc tctggccgtg gtggctgcca gccagaagaa gcaaggccatc 300
accgccttgg tgggtgttcc catcgatggcc ctggctgtcc ttatcatc  atgtgtgtc 360
atacactgtc gccaggtccg aaaacactgt gatgttgc  gggccctcat ctggccgac 420

```

DE 101 00 588 A 1

gagaagccca gcgcctcct gaaggaaaga accgcttgc gccactcaga aacagtggtc 480
 tga 483

<210> 136 5
 <211> 1071
 <212> DNA
 <213> Homo sapiens

<300> 10
 <302> GD3 synthase
 <310> NM003034

<400> 136 15
 atgagccct gcggcgccgc cggcgaccaa acgtccagag gggccatggc tgtactggcg 60
 tggaaagtcc cgccggaccgg gctgcccattt ggagccatgt ccctctgtgt cgtggcttc 120
 tggggctct acatcttccc cgtctaccgg ctgccccaaacg agaaaagagat cgtgcagggg 180
 gtgctgcaac agggcacggc gtggaggagg aaccagaccg cggccagagc gttcaggaaa 240
 caaatggaaag actgctgca ccctgcccattt ctcttgcta tgactaaaaat gaattccccct 300
 atggggaaaga gcatgtggta tgacggggag ttttataact cattcaccat tgacaattca 360
 acttactctc tcttcccaca ggcaacccca ttccagctgc cattgaagaa atgcgcggtg 420
 gttggaaatg gtgggattct gaagaagagt ggctgtggcc gtcaaataaga tgaagcaaat 480
 tttgtcatgc gatcaatct ccctccttgc tcaagtgaat acactaagga tggggatcc 540
 aaaagtcaatgt tagtgacagc taatcccagc ataattccggc aaagggttca gAACCTCTG 600
 tggcccgaaa agacatttgt ggacaacatg aaaatctata accacaggttta catctacatg 660
 cctgcctttt ctatgaagac aggaacagag ccatttttgc gggtttattt tacactgtca 720
 gatgttggtg ccaatcaaaccatgtgtttt gccaacccca actttctgcg tagcattgg 780
 aagttctgga aaagtagagg aatccatgcc aagcgcctgt ccacaggact ttttctgg 840
 agcgcagctc tgggtctctg tgaagaggtt gccatctatg gcttctggcc cttctctgtg 900
 aatatgcatttgcagccat cagccaccac tactatgaca acgtcttacc cttttctggc 960
 ttccatgcca tgcccgagga atttctccaa ctctggatc ttccataaaaat cggtgcactg 1020
 agaatgcaggc tggacccatg tgaagatacc tcactccagc ccacttccta g 1071

<210> 137 35
 <211> 744
 <212> DNA
 <213> Homo sapiens

<300> 40
 <302> FGF14
 <310> NM004115

<400> 137 45
 atggccgcgg ccatcgctat cggcttgcattt cggcagaagc ggcaaggcgcg ggagcagcac 60
 tgggaccggc cgtctgccat caggaggcg agcagccca gcaagaacccg cggctctgc 120
 aacggcaacc tgggtggatat ttctccaaa gtgcgcattt tcggcctcaa gaagcgcagg 180
 ttgcggcgcc aagatccccca gctcaagggt atagtgcattt gtttatattt caggcaaggc 240
 tactacttgc aaatgcaccc cgtatggagct ctgcattttttt gcaaggatga cagcactaat 300
 tctacacttca tcaacctcat accagtggaa ctacgttttgc ttgcatttca gggagtgaaa 360
 acagggttgtt atatagccat gaatggagaa gtttacctt accccatcaga acttttacc 420
 cctgaatgca agttttaaaga atctgtttt gaaaattttt atgtaatcta ctcattccatg 480
 ttgtacagac aacaggaatc tggtagagcc tggtttttgg gattaaataa ggaaggggcaa 540
 gctatgaaag ggaacagagt aaagaaaaacc aaaccagcag ctcattttctt acccaagcca 600
 ttggaaagtgc ccatgttaccg agaaccatct ttgcatttgc ttggggaaac ggtcccgaaag 660
 cctgggggtga cgccaaatgaa aagcacaatgtt gctgttgcattttaatgaaaggccaa 720
 gtcaacaaga gtaagacaac atag 744

<210> 138 60
 <211> 1503

DE 101 00 588 A 1

<212> DNA

<213> Human immunodeficiency virus

<300>

5 <302> gag (HIV)

<310> NC001802

<400> 138

10 atgggtgcga gaggcgtcagt attaagcggg ggagaattag atcgatggga aaaaattcgg 60
 ttaaggccag gggaaagaa aaaataaa ttaaaaacata tagtatggc aagcaggag 120
 ctagaacat tcgcagttaa tcctggcctg ttagaaacat cagaaggctg tagacaaata 180
 ctggacacg tacaaccatc ccttcagaca ggatcagaag aacttagatc attatataat 240
 acatagcaa cccttattt tgcataca agatagaga taaaagacac caaggaagct 300
 15 ttagacaaga taggaaaga gaaaaacaaa agtaagaaaa aagcacagca agcagcagct 360
 gacacaggac acagcaatca ggtcagccaa aattacccta tagtgcagaa catccagggg 420
 caaatggtag atcaggccat atcaccttga actttaaatg catggtaaa agtagtagaa 480
 gagaaggct tcagcccaga agtgatacc accgtttcag cattatcaga aggagccacc 540
 ccacaagatt taaacaccat gctaaacaca gtgggggac atcaaggcgc catgcaaatg 600
 20 ttaaaaagaga ccatcaatga ggaagctgca gaatgggata gatgtcatcc agtgcattca 660
 gggccttattt caccaggcca gatgagagaa ccaaggggaa gtgacatagc aggaactact 720
 agtacccttc aggaacaaat agatggatg acaaataatc cacctatccc agtaggagaa 780
 atttataaaa gatggataat cttggattt aataaaatag taagaatgtt tagccctacc 840
 agcattctgg acataagaca aggaccaaag gaacccttta gagactatgt agaccgggtc 900
 25 tataaaactc taagagccga gcaagcttca caggaggtaa aaaattggat gacagaaacc 960
 ttgttgttcc aaaatgcgaa cccagattt aagactattt taaaagcatt gggaccagcg 1020
 gctacactag aagaaaatgt gacagcatgt cagggagtag gaggaccgg ccataaggca 1080
 agagtttgg ctgaagcaat gaggcaagta acaaattcag ctaccataat gatgcagaga 1140
 ggcaattttt ggaaccaaag aaagattttt aagtgttca attgtggcaaa agaagggcac 1200
 30 acagccagaa attgcagggc cccttaggaaa aagggtgtt ggaaatgtgg aaaggaagga 1260
 caccaaatga aagattgtac tgagagacag gctaattttt tagggaaat ctggccttcc 1320
 tacaagggaa ggcaggggaa tttcttcag agcagaccag agccaacagc cccaccagaa 1380
 gagagcttca ggtctgggtt agagacaaca actccccctc agaagcagga gccgatagac 1440
 aaggaactgt atcccttaac ttccctcagg tcactctttt gcaacgaccc ctcgtcacaa 1500
 35 taa 1503

<210> 139

<211> 1101

40 <212> DNA

<213> Human immunodeficiency virus

<300>

<302> TARBP2

45 <310> NM004178

<400> 139

50 atgagtgaag aggagcaagg ctccggcact accacgggt gcgggctgcc tagtataagag 60
 caaatgctgg ccgccaaccc aggcaagacc ccgatcagcc ttctgcagga gtatggacc 120
 agaatagggaa agacgcctgt gtacgaccc ttcaaaagccg agggccaagc ccaccagcct 180
 aatttccacct tccgggtcac cggtggcgc accagctgca ctggtcaggg ccccagcaag 240
 aaggcagcca agcacaaggc agctgaggt gcccctaaac acctcaaagg ggggagcatg 300
 ctggagccgg ccctgggagga cagcgttct ttttctccc tagactttc actgccttag 360
 gacattccgg ttttactgc tgcagcagct gctacccctc ttccatctgt agtcttaacc 420
 55 aggagcccccc ccatggaact gcagccccct gtctccctc agcagtctga gtgcaacccc 480
 gttgggtgctc tgcaggagct ggtggcgc acccaggagt ctggccagc ccacccaaa gaattccca tgacctgtcg agtggagcgt 540
 ttcatttgaga ttgggagttt cacttccaaa aaattggcaa agcgaatgc ggccggccaaa 600
 atgctgtttc gagtgccacac ggtgcctctg gatggccggg atggcaatga ggtggagcct 660
 60 gatgatgacc acttctccat tgggtgtggc ttccgcctgg atggcttcg aaaccggggc 720
 ccaggttgca cctgggattt tctacgaaat tcagtaggag agaagatct gtcctccgc 780
 agttgctccc tgggtccctg ggggtccctg ggcctgcct gctggccgtgt ctcagttag 840

DE 101 00 588 A 1

ctctctgagg agcaggcctt tcacgtcagc tacctggata ttgaggagct gaggctgagt 960
 ggactctgcc agtccttgtt ggaactgtcc acccagccgg ccactgtgt tcatggctct 1020
 gcaaccacca gggaggcagc ccgtggtgag gctgcccccc gtgcctgca gtacctaag 1080
 atcatggcag gcagcaagt a 1101

5

<210> 140
 <211> 219
 <212> DNA
 <213> Human immunodeficiency virus

10

<300>
 <302> TAT (HIV)
 <310> U44023

15

<400> 140
 atggagccag tagatcctag cctagagccc tgaaagcatc caggaagtca gcctaagact 60
 gcttgcacca cttgtatttg taaagagtgt tgctttcatt gccaagtttg tttcataaca 120
 aaaggcttag gcattcccta tggcaggaag aagcggagac agcgacgaag aactcctcaaa 180
 ggtcatcaga ctaatcaagt ttctctatca aagcagtaa 219

20

<210> 141
 <211> 21
 <212> RNA
 <213> Künstliche Sequenz

25

<220>
 <223> Beschreibung der künstlichen Sequenz: anti-GFP

30

<400> 141
 ccacauaag cagcacgacu u

21

35

<210> 142
 <211> 21
 <212> RNA
 <213> Künstliche Sequenz

40

<220>
 <223> Beschreibung der künstlichen Sequenz: anti-GFP2

<400> 142
 cuacguccag gagcgcacca u

21

45

<210> 143
 <211> 21
 <212> RNA
 <213> Künstliche Sequenz

50

<220>
 <223> Beschreibung der künstlichen Sequenz: anti-GFP3

55

<400> 143
 caaggugaac uucaagaaucc g

21

<210> 144
 <211> 21
 <212> RNA

60

65

<213> Künstliche Sequenz
 <220>
 5 <223> Beschreibung der künstlichen Sequenz: anti-GFP4
 <400> 144
 caacgucuau aucauggccg a

21

10 Literatur

Bass, B.L., 2000. Double-stranded RNA as a template for gene silencing. *Cell* 101, 235–238.
 Bosher, J.M. and Labouesse, M., 2000. RNA interference: genetic Wand and genetic watchdog. *Nature Cell Biology* 2, E31–E36.
 15 Caplen, N.J., Fleenor, J., Fire, A., and Morgan, R.A., 2000. dSRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. *Gene* 252, 95–105.
 Clemens, J.C., Worby, C.A., Simonson-Leff, N., Muda, M., Machama, T., Hemmings, B.A., and Dixon, J.E., 2000. Use of doublestranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. *Proc. Natl. Acad. Sci. USA* 97, 6499–6503.
 20 Ding, S.W., 2000. RNA silencing. *Curr. Opin. Biotechnol.* 11, 152–156.
 Fire, A., Xu,S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C., 1998. Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*. *Nature* 391, 806–811.
 Fire, A., 1999. RNA-triggered gene silencing. *TrendsGenet.* 15, 358–363.
 25 Freier, S.M., Kierzek, R., Jaeger, J.A., Sugimoto, N., Caruthers, M.H., Neilson, T., and Turner, D.H., 1986. Improved freeenergy parameters for prediction of RNA duplex stability. *Proc. Natl. Acad. Sci. USA* 83, 9373–9377.
 Hammond, S.M., Bernstein, E., Beach, D., and Hannon, G.J., 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. *Nature* 404, 293–296.
 Limmer, S., Hofmann, H.-P., Ott, G., and Sprinzl, M., 1993. The 3'-terminal end (NCCA) of tRNA determines the structure and stability of the aminoacyl acceptor stem. *Proc. Natl. Acad. Sci. USA* 90, 6199–6202.
 30 Montgomery, M.K. and Fire, A., 1998. Double-stranded RNA as a mediator in sequence-specific genetic silencing and cosuppression. *Trends Genet.* 14, 255–258.
 Montgomery, M.K., Xu,S., and Fire, A., 1998. RNA as a target of double-stranded RNA-mediated genetic interference in *Caenorhabditis elegans*. *Proc. Natl. Acad. Sci. USA* 95, 15502–15507.
 35 Uí-Tei, K., Zenno, S., Miyata, Y., and Saigo, K., 2000. Sensitive assay of RNA interference in Drosophila and Chinese hamster cultured cells using firefly luciferase gene as target. *FEBS Lett.* 479, 79–82.
 Zamore, P.D., Tuschl, T., Sharp, P.A., and Bartel, D.P., 2000. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. *Cell* 101, 25–33.

Patentansprüche

40 1. Verfahren zur Hemmung der Expression eines Zielgens in einer Zelle umfassend die folgenden Schritte:
 Einführen mindestens eines ersten (dsRNA I) und eines zweiten Oligoribonukleotids (dsRNA II) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge,
 wobei das erste (dsRNA I) und das zweite Oligoribonukleotid (dsRNA II) jeweils eine doppelsträngige aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweisen,
 45 wobei ein Strang (S1) oder zumindest ein Abschnitt eines Strangs (S1) der doppelsträngigen Struktur des ersten Oligoribonukleotids (dsRNA I) komplementär zu einem ersten Bereich (B1) des Zielgens ist,
 und wobei ein Strang (S2) oder zumindest ein Abschnitt eines Strangs (S2) der doppelsträngigen Struktur des zweiten Oligoribonukleotids (dsRNA II) komplementär zu einem zweiten Bereich (B2) des Zielgens ist.
 50 2. Verfahren nach Anspruch 1, wobei zumindest ein Ende (E1) des ersten (dsRNA I) und/oder des zweiten Oligoribonukleotids (dsRNA II) zumindest ein nicht nach Watson & Crick gepaartes Nukleotid aufweist.
 3. Verfahren nach Anspruch 1 oder 2, wobei das Ende (E1) einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist.
 4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Ende (E1) ungepaarte Nukleotide aufweist.
 5. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Ende (E1) das 3'-Ende eines Strangs der doppelsträngigen Struktur ist.
 55 6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Zelle vor dem Einführen der Oligoribonukleotide (dsRNA I, dsRNA II) mit Interferon behandelt wird.
 7. Verfahren nach einem der vorhergehenden Ansprüche, wobei ein weiteres Oligoribonukleotid (dsRNA III) in die Zelle eingeführt wird, welches eine doppelsträngige aus mindestens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist, wobei ein Strang (S3) oder zumindest ein Abschnitt eines Strangs (S3) der doppelsträngigen Struktur des weiteren Oligoribonukleotids (dsRNA III) komplementär zu einem dritten Bereich (B3) des Zielgens ist.
 60 8. Verfahren nach einem der vorhergehenden Ansprüche, wobei das erste (dsRNA I) und/oder das zweite Oligoribonukleotid (dsRNA II) eine doppelsträngige aus weniger als 25 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist/en.
 9. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1), zweite (B2) und dritte Bereich (B3) abschnittsweise überlappen oder aneinandergrenzen.

DE 101 00 588 A 1

10. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1), zweite (B2) und dritte Bereich (B3) voneinander beabstandet sind. 5

11. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Oligoribonukleotid/e (dsRNA I, dsRNA II, dsRNA III) in micellare Strukturen, vorzugsweise in Liposomen, eingeschlossen werden.

12. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Oligoribonukleotide (dsRNA I, dsRNA II, dsRNA III) in virale natürliche Kapside oder in auf chemischem oder enzymatischem Weg hergestellte künstliche Kapside oder davon abgeleitete Strukturen eingeschlossen werden.

13. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist. 10

14. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, Cytokin-Gen, Id-Protein-Gen, Entwicklungsgen, Prionen.

15. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert wird.

16. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen Bestandteil eines Virus oder Viroids ist. 15

17. Verfahren nach Anspruch 16, wobei das Virus ein humanpathogenes Virus oder Viroid ist.

18. Verfahren nach Anspruch 17, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

19. Verfahren nach einem der vorhergehenden Ansprüche, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind. 20

20. Verfahren nach einem der vorhergehenden Ansprüche, wobei die doppelsträngige Struktur durch eine chemische Verknüpfung der beiden Stränge stabilisiert wird.

21. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise von-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet wird. 25

22. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung in der Nähe des einen oder in der Nähe der beiden Enden (E1, E2) gebildet ist.

23. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicooxy-1,3-propandiol)- und/oder Polyethylenglycol-Ketten sind. 30

24. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Purinanaloge gebildet wird.

25. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet wird.

26. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet wird. 35

27. Verfahren nach einem der vorhergehenden Ansprüche, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N¹-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen.

28. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) der doppelsträngigen Struktur angebrachte Thiophosphoryl-Gruppen gebildet wird. 40

29. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt wird.

30. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Oligoribonukleotide (dsRNA I, dsRNA II, dsRNA III) an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben werden. 45

31. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

32. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

33. Verfahren nach einem der vorhergehenden Ansprüche, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist. 50

34. Verfahren nach einem der vorhergehenden Ansprüche, wobei zumindest eines der Oligoribonukleotide (dsRNA I, dsRNA II, dsRNA III) zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.

35. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist. 55

36. Verwendung eines ersten (dsRNA I) und eines zweiten Oligoribonukleotids (dsRNA II) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge, wobei das erste (dsRNA I) und das zweite Oligoribonukleotid (dsRNA II) jeweils eine doppelsträngige aus höchstens 49 aufeinanderfolgenden Nukleotidaaren gebildete Struktur aufweisen, wobei ein Strang (S1) oder zumindest ein Abschnitt eines Strangs (S1) der doppelsträngigen Struktur des ersten Oligoribonukleotids (dsRNA I) komplementär zu einem ersten Bereich (B1) des Zielgens ist, und wobei ein Strang (S2) oder zumindest ein Abschnitt eines Strangs (S2) der doppelsträngigen Struktur des zweiten Oligoribonukleotids (dsRNA II) komplementär zu einem zweiten Bereich (B2) des Zielgens ist. 60

37. Verwendung nach Anspruch 36, wobei zumindest ein Ende (E1) des ersten (dsRNA I) und/oder zweiten Oligoribonukleotids (dsRNA II) zumindest ein nicht nach Watson & Crick gepaartes Nukleotid aufweist. 65

38. Verwendung nach Anspruch 36 oder 37, wobei das Ende (E1) einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist.

39. Verwendung nach einem der Ansprüche 36 bis 38, wobei das Ende (E1) ungepaarte Nukleotide aufweist.

DE 101 00 588 A 1

40. Verwendung nach einem der Ansprüche 36 bis 39, wobei das Ende (E1) das 3'-Ende eines Strangs der doppelsträngigen Struktur ist.

41. Verwendung nach einem der Ansprüche 36 bis 40, wobei zumindest ein weiteres, Oligoribonukleotid (dsRNA III) in die Zelle eingeführt wird, wobei ein Strang (S3) oder zumindest ein Abschnitt des Strangs (S3) einer doppelsträngigen Struktur des weiteren Oligoribonukleotids (dsRNA III) komplementär zu einem dritten Bereich (B3) des Zielgens ist.

5 42. Verwendung nach Anspruch 41, wobei die doppelsträngige Struktur aus mindestens 49 aufeinanderfolgenden Nukleotidpaaren gebildet ist.

10 43. Verwendung nach einem der Ansprüche 36 bis 42, wobei das erste (dsRNA I) und/oder zweite Oligoribonukleotid (dsRNA II) eine doppelsträngige aus weniger als 25 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist/en.

15 44. Verwendung nach einem der Ansprüche 36 bis 43, wobei der erste (B1), zweite (B2) und dritte Bereich (B3) abschnittsweise überlappen oder aneinandergrenzen.

45. Verwendung nach einem der Ansprüche 36 bis 44, wobei der erste (B1), zweite und dritte Bereich (B3) voneinander beabstandet sind.

20 46. Verwendung nach einem der Ansprüche 36 bis 45, wobei die Oligoribonukleotide (dsRNA I, dsRNA II, dsRNA III) in micellare Strukturen, vorzugsweise in Liposomen, eingeschlossen sind.

47. Verwendung nach einem der Ansprüche 36 bis 46, wobei die Oligoribonukleotide (dsRNA I, dsRNA II, dsRNA III) in virale natürliche Kapside oder in auf chemischem oder enzymatischem Weg hergestellte künstliche Kapside oder davon abgeleitete Strukturen eingeschlossen sind.

25 48. Verwendung nach einem der Ansprüche 36 bis 47, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 aufweist.

49. Verwendung nach einem der Ansprüche 36 bis 48, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, Cytokin-Gen, Id-Protein-Gen, Entwicklungsgen, Prionen.

50. Verwendung nach einem der Ansprüche 36 bis 49, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert wird.

30 51. Verwendung nach einem der Ansprüche 36 bis 50, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.

52. Verwendung nach Anspruch 51, wobei das Virus ein humanpathogenes Virus oder Viroid ist.

53. Verwendung nach Anspruch 52, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

35 54. Verwendung nach einem der Ansprüche 36 bis 53, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.

55. Verwendung nach einem der Ansprüche 36 bis 54, wobei die doppelsträngige Struktur durch eine chemische Verknüpfung der beiden Stränge stabilisiert ist.

56. Verwendung nach einem der Ansprüche 36 bis 55, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise von-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet ist.

35 57. Verwendung nach einem der Ansprüche 36 bis 56, wobei die chemische Verknüpfung in der Nähe des einen oder in der Nähe der beiden Enden (E1, E2) gebildet ist.

40 58. Verwendung nach einem der Ansprüche 36 bis 57, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder Polyethylenlycol-Ketten sind.

59. Verwendung nach einem der Ansprüche 36 bis 58, wobei die chemische Verknüpfung durch Purinanaloge gebildet ist.

45 60. Verwendung nach einem der Ansprüche 36 bis 59, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet ist.

61. Verwendung nach einem der Ansprüche 36 bis 60, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet ist.

62. Verwendung nach einem der Ansprüche 36 bis 61, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin, Nacetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil, Psoralen.

50 63. Verwendung nach einem der Ansprüche 36 bis 62, wobei die chemische Verknüpfung durch in der Nähe der Enden der doppelsträngigen Struktur angebrachte Thiophosphoryl-Gruppen gebildet ist.

64. Verwendung nach einem der Ansprüche 36 bis 63, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt ist.

55 65. Verwendung nach einem der Ansprüche 36 bis 64, wobei die Oligoribonukleotide (dsRNA I, dsRNA II, dsRNA III) an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben ist.

66. Verwendung nach einem der Ansprüche 36 bis 65, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

60 67. Verwendung nach einem der Ansprüche 36 bis 66, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

68. Verwendung nach einem der Ansprüche 36 bis 67, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.

69. Verwendung nach einem der Ansprüche 36 bis 68, wobei die Oligoribonukleotide (dsRNA I, dsRNA II, dsRNA III) zum primären oder prozessierten RNA-Transkript des Zielgens komplementär sind.

65 70. Verwendung nach einem der Ansprüche 36 bis 67, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.

71. Verwendung nach einem der Ansprüche 36 bis 69, wobei die Zelle vor dem Einführen der Oligoribonukleotide

DE 101 00 588 A 1

(dsRNA I, dsRNA II, dsRNA III) mit Interferon- γ behandelt wird.

72. Stoff zur Hemmung der Expression eines Zielgens, umfassend mindestens ein erstes (dsRNA I) und ein zweites Oligoribonukleotid (dsRNA II) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge, wobei das erste (dsRNA I) und das zweite Oligoribonukleotid (dsRNA II) jeweils eine doppelsträngige aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweisen,

5

und wobei ein Strang (S1) oder zumindest ein Abschnitt eines Strangs (S1) der doppelsträngigen Struktur des ersten Oligoribonukleotids (dsRNA I) komplementär zu einem ersten Bereich (B1) des Zielgens ist, und wobei ein Strang (S2) oder zumindest ein Abschnitt eines Strangs (S2) der doppelsträngigen Struktur des zweiten Oligoribonukleotids (dsRNA II) komplementär zu einem zweiten Bereich (B2) des Zielgens ist.

10

73. Stoff nach Anspruch 72, wobei zumindest ein Ende (E1) des ersten (dsRNA I) und/oder zweiten Oligoribonukleotids (dsRNA II) zumindest ein nicht nach Watson & Crick gepaartes Nukleotid aufweist.

74. Stoff nach Anspruch 72 oder 73, wobei das Ende (E1) des Oligoribonukleotids einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist.

75. Stoff nach einem der Ansprüche 72 bis 74, wobei das Ende (E1) des Oligoribonukleotids ungepaarte Nukleotide aufweist.

15

76. Stoff nach einem der Ansprüche 72 bis 75, wobei das Ende (E1) das 3'-Ende eines Strangs oder beider Stränge der doppelsträngigen Struktur ist.

77. Stoff nach einem der Ansprüche 72 bis 76, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, Cytokin-Gen, Id-Protein-Gen, Entwicklungsgen, Prionen.

78. Stoff nach einem der Ansprüche 72 bis 77, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmoiden, exprimiert wird.

20

79. Stoff nach einem der Ansprüche 72 bis 78, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.

80. Stoff nach Anspruch 79, wobei das Virus ein humanpathogenes Virus oder Viroid ist.

81. Stoff nach Anspruch 79, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

82. Stoff nach einem der Ansprüche 72 bis 81, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.

25

83. Stoff nach einem der Ansprüche 72 bis 82, wobei die doppelsträngige Struktur (E1) des ersten (dsRNA I) und oder zweiten Oligoribonukleotids (dsRNA II) durch eine chemische Verknüpfung der beiden Stränge stabilisiert wird.

30

84. Stoff nach einem der Ansprüche 71 bis 83, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise von-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet ist.

85. Stoff nach einem der Ansprüche 72 bis 84, wobei die chemische Verknüpfung in der Nähe des einen oder in der Nähe der beiden Enden (E1, E2) gebildet ist.

86. Stoff nach einem der Ansprüche 72 bis 85, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder Polyethylenglycol-Ketten sind.

35

87. Stoff nach einem der Ansprüche 72 bis 86, wobei die chemische Verknüpfung durch Purinanaloge gebildet wird.

88. Stoff nach einem der Ansprüche 72 bis 87, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet wird.

40

89. Stoff nach einem der Ansprüche 72 bis 88, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloge gebildet wird.

90. Stoff nach einem der Ansprüche 72 bis 89, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen.

45

91. Stoff nach einem der Ansprüche 72 bis 90, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) der doppelsträngigen Struktur angebrachte Thiophosphoryl-Gruppen gebildet wird.

92. Stoff nach einem der Ansprüche 72 bis 91, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt wird.

50

93. Stoff nach einem der Ansprüche 72 bis 92, wobei die Oligoribonukleotide (dsRNA I, dsRNA II) an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben sind.

94. Stoff nach einem der Ansprüche 72 bis 93, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

55

95. Stoff nach einem der Ansprüche 72 bis 94, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

96. Stoff nach einem der Ansprüche 72 bis 95, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.

60

97. Stoff nach einem der Ansprüche 72 bis 96, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist/sind.

98. Stoff nach einem der Ansprüche 72 bis 97, wobei die Oligoribonukleotide (dsRNA I, dsRNA II) in micellare Strukturen, vorzugsweise in Liposomen, eingeschlossen werden.

65

99. Stoff nach einem der Ansprüche 72 bis 98, wobei die Oligoribonukleotide (dsRNA I, dsRNA II) in virale natürliche Kapside oder in auf chemischem oder enzymatischem Weg hergestellte künstliche Kapside oder davon abgeleitete Strukturen eingeschlossen sind.

100. Stoff nach einem der Ansprüche 72 bis 99, wobei die Sequenz des Zielgens aus der SQ001 bis SQ140 ausge-

DE 101 00 588 A 1

wählt ist.

Hierzu 1 Seite(n) Zeichnungen

5

10

15

20

25

30

35

40

45

50

55

60

65

- Leerseite -

Fig. 1a

Fig. 1b

Fig. 1c

Fig. 2