Упражнения: Повторения (цикли)

Практически упражнения към курса <u>"Увод в програмирането" за ученици</u>.
Тествайте решенията си от тази тема в Judge: https://judge.softuni.bg/Contests/2638/Повторения

0. Празно Visual Studio решение (Blank Solution)

1. Създайте празно решение (**Blank Solution**) във Visual Studio за да организирате кода от задачите за упражнение. Целта на този **blank solution** е да съдържа **по един проект за всяка задача** от упражненията.

2. Задайте **да се стартира по подразбиране текущия проект** (не първият в решението). Кликнете с десен бутон на мишката върху **Solution 'Loops'** → [Set StartUp Projects...] → [Current selection].

1. Числа от 1 до 100

Напишете програма, която отпечатва числата от 1 до 100, по едно на ред.

изход
1
2
3
98
99
100

Подсказки:

1. Създайте **нов проект** в съществуващото Visual Studio решение – конзолна С# програма. Задайте подходящо име на проекта, например "**Numbers1To100**".

2. Отидете в тялото на метода **Main(string[] args)** и напишете решението на задачата. Можете да си помогнете с кода от картинката по-долу:

3. Стартирайте програмата с [Ctrl+F5] и я тествайте:

4. **Проверете** решението си в **judge системата**.

Отворете страницата в judge за този урок: https://judge.softuni.bg/Contests/2638/Повторения.

Изберете задачата " **Числа от 1 до 100**". Копирайте и поставете в тъмното поле **сорс кода**. Натиснете бутона за изпращане **[Submit]**:

Трябва да получите 100 точки (напълно вярна задача):

2. Числа до 1000, завършващи на 7

Напишете програма, която отпечатва числата в диапазона [1...1000], които завършват на 7.

вход	изход
(няма)	7 17 27 997

Подсказка: можете да завъртите **for**-цикъл от 1 до 1000 и да проверите всяко число дали завършва на 7. Едно число **num** завършва на 7, когато (**num** % **10** == **7**).

3. Всички латински букви

Напишете програма, която отпечатва всички букви от латинската азбука: а, b, c, ..., z.

Подсказка: можете да завъртите for-цикъл от 'a' до 'z' (освен числа може да въртите в цикъл и букви).

4. Сумиране на числа

Да се напише програма, която **чете n-** на брой **цели числа**, въведени от потребителя, **и ги сумира**.

- От първия ред на входа се въвежда броят числа **n**.
- От следващите **n** реда се въвежда по едно цяло число.

Програмата трябва да прочете числата, да ги сумира и да отпечата сумата им. Примери:

вход	изход
2	30
10	
20	

вход	изход
3	-60
-10	
-20	
-30	

вход	изход
4	43
45	
-20	
7	
11	

вход	изход
1	999
999	

вход	изход
0	0

Подсказки:

- Първо въведете едно число **n** (броят числа, които предстои да бъдат въведени).
- Инициализирайте **sum** = **0** (в началото няма още прочетени числа, и съответно сумата е празна).
- В цикъл **n пъти** прочетете по едно цяло число **num** и го прибавете към сумата (**sum = sum + num**).
- Накрая в **sum** трябва да се е запазила сумата на прочетените числа. Отпечатайте я.

5. Най-голямо число

Напишете програма, която чете \mathbf{n} -на брой цели числа (\mathbf{n} > 0), въведени от потребителя, и намира найголямото измежду тях. Първо се въвежда броят числа \mathbf{n} , а след това самите \mathbf{n} числа, по едно на ред. Примери:

вход	изход
2	100
100	
99	

вход	изход
3	20
-10	
20 -30	
- 30	
-30	

вход	изход
4	99
45	
-20	
7	
99	

вход	изход
1	999
999	

вход	изход
2	-1
-1	
-2	

Подсказки:

- Първо въведете едно число **n** (броят числа, които предстои да бъдат въведени).
- Въведете от конзолата първото число. Сложете текущият максимум **тах** да е прочетеното число.
- В цикъл **n-1 пъти** прочетете по едно цяло число **num**. Ако прочетеното число **num** е по-голямо от текущият максимум **max**, запомнете **num** в **max**.
- Накрая в **т**ах трябва да се е запазило най-голямото число. Отпечатайте го.

6. Най-малко число

Напишете програма, която чете \mathbf{n} -на брой цели числа (\mathbf{n} > 0), въведени от потребителя, и намира най-малкото измежду тях. Първо се въвежда броят числа \mathbf{n} , а след това самите \mathbf{n} числа, по едно на ред. Примери:

вход	изход	
2	99	

вход	изход			
3	-30			

вход	изход
4	-20

вход	изход
1	999

вход	изход	
2	-2	

100		-10		45		999		-1	
99		20		-20				-2	
		-30		7					
				99					

Подсказки: задачата е абсолютно аналогична с предходната.

7. Лява и дясна сума

Да се напише програма, която чете **2*n-на брой** цели числа, подадени от потребителя, и проверява дали **сумата на първите n числа** (лява сума) е равна на **сумата на вторите n числа** (дясна сума). При равенство печата "**Yes**" + **сумата**; иначе печата "**No**" + **разликата**. Разликата се изчислява като положително число (по абсолютна стойност). Примери:

вход		изход	коментар				
2	Yes,	sum = 100	10+90 = 60+40 = 100				
10							
90							
60							
40							

вход		изход	коментар
2	No,	diff = 1	90+9 ≠ 50+50
90			Difference =
9			99-100 = 1
50			
50			

Подсказки:

- Въведете **n**.
- Въведете първите **n** числа (**лявата** половина) и ги сумирайте.
- Въведете още **n** числа (**дясната** половина) и ги сумирайте.
- Изчислете разликата между сумите по абсолютна стойност: Math.Abs(leftSum rightSum).
- Ако разликата е 0, отпечатайте "Yes" + сумата; иначе отпечатайте "No" + разликата.

8. Четна / нечетна сума

Да се напише програма, която чете **n-на брой** цели числа, подадени от потребителя, и проверява дали **сумата от числата на четни позиции** е равна на **сумата на числата на нечетни позиции**. При равенство да се отпечата "**Yes**" + **сумата**; иначе да се отпечата "**No**" + **разликата**. Разликата се изчислява по абсолютна стойност. Примери:

вход	изход	коментар
4	Yes	10+60 =
10	Sum = 70	50+20 =
50		70
60		
20		

вход	изход	коментар
4	No	3+1 ≠ 5-2
3	Diff = 1	Diff =
5		4-3 = 1
1		
-2		

вход	изход	коментар
3	No	5+1 ≠ 8
5	Diff = 2	Diff =
8		6-8 = 2
1		

Подсказки: Въведете числата едно по едно и изчислете двете **суми** (числа на **четни** позиции и числа на **нечетни** позиции). Както в предходната задача, изчислете абсолютна стойност на разликата и отпечатайте резултата ("**Yes**" + **сумата** при разлика 0 или "**No**" + **разликата** в противен случай).

9. Еднакви двойки

Дадени са 2***n-на брой** числа. Първото и второто формират **двойка**, третото и четвъртото също и т.н. Всяка двойка има **стойност** – сумата от съставящите я числа. Напишете програма, която проверява **дали всички двойки имат еднаква стойност** или печата **максималната разлика** между две последователни

двойки. Ако всички двойки имат еднаква стойност, отпечатайте "Yes, value={Value}" + стойността. В противен случай отпечатайте "No, maxdiff={Difference}" + максималната разлика. Примери:

вход	изход	коментари	вход	изход	коментари
3	Yes, value=3	стойности = {3, 3, <mark>3</mark> }	2	No, maxdiff=1	стойности = {3, 4}
1		еднакви стойности	1		разлики = {1}
2			2		макс. разлика = 1
0			2		
3			2		
4					
-1					
4	No, maxdiff=4	стойности = {2, 4, <mark>4</mark> , 0}	1	Yes, value=10	стойности = {10}
1		разлики = {2, 0, 4}	5		една стойност
1		макс. разлика = 4	5		еднакви стойности
3					
1					
2					
2					
0					
0					
2	Yes, value=-1	стойности = {-1, -1}	2	No, maxdiff=2	стойности = {1, -1}
-1		еднакви стойности	-1		разлики = {2}
0			2		макс. разлика = 2
0			0		
-1			-1		

Подсказки:

- Прочитайте входните числа по двойки. За всяка двойка пресмятайте сумата.
- Докато четете входните двойки, за всяка двойка без първата пресмятайте разликата с предходната.
 За целта пазете в отделна променлива сумата на предходната двойка.
- Намерете най-голямата разлика между две двойки. Ако е **0**, печатайте "**Yes**" иначе "**No**" + разликата.

10. * Елемент, равен на сумата на останалите

Да се напише програма, която чете **n-на брой** цели числа, въведени от потребителя, и проверява дали сред тях съществува число, което е равно на сумата на всички останали. Ако има такъв елемент, печата "Yes", "Sum = " + неговата стойност; иначе печата "No", "Diff = " + разликата между най-големия елемент и сумата на останалите (по абсолютна стойност).

Примери:

вход	изход	коментари
7	Yes	3 + 4 + 1 + 2 + 1 + 1 = 12
3	Sum = 12	
4		
1		

1 2 12 1		
4 6 1 2 3	Yes Sum = 6	1 + 2 + 3 = 12
3 1 1 10	No Diff = 8	10 - (1 + 1) = 8
3 5 5 1	No Diff = 1	5 - (5 + 1) = 1
3 1 1 1	No Diff = 1	

Подсказка: изчислете сумата на всички елементи и най-големият от тях и проверете търсеното условие.

Министерство на образованието и науката (МОН)

• Настоящият курс (презентации, примери, задачи, упражнения и др.) е разработен за нуждите на Национална програма "Обучение за ИТ кариера" на МОН за подготовка по професия "Приложен програмист".

• Курсът е базиран на учебно съдържание и методика, предоставени от фондация "Софтуерен университет" и се разпространява под свободен лиценз СС-ВҮ-NC-SA (Creative Commons Attribution-Non-Commercial-Share-Alike 4.0 International).

