ERO1 - Rapport

iliane.formet

June 2025

Table des matières

1	$\mathbf{Ext}_{\mathbf{I}}$	Extraction et préparation du graphe routier					
	1.1	Source et périmètre	2				
	1.2	Nettoyage et simplification	2				
		Résultat					
2	Drone						
	2.1	Objectif	3				
		Étape 1 : construction du graphe					
	2.3	Étape 2 : cycle eulérien sur tout le graphe	3				
		Limite pratique					
		Spécifications matérielles retenues					
	2.6	Étape 3 : placement des bases et répartition des arêtes	3				
	2.7	Meilleure solution obtenue					
	2.8	Conclusion	4				

1 Extraction et préparation du graphe routier

1.1 Source et périmètre

Le graphe est extrait automatiquement depuis OpenStreetMap avec la bibliothèque OSMnx. Nous sélectionnons les « routes carrossables » en mode drive_service, ce qui inclut :

- les axes principaux (primary, secondary, tertiary);
- les routes de service et résidentielles nécessaires au déneigement (service, residential).

1.2 Nettoyage et simplification

- 1. Reprojection en coordonnées métriques (EPSG : 32188) pour des distances en mètres.
- 2. Contraction des chaînes de nœuds de degré 2 (sections droites sans véritable intersection).
- 3. Fusion des intersections trop proches (< 15 m) pour corriger les artefacts OSM.

1.3 Résultat

Le graphe obtenu est :

- orienté (arêtes dirigées);
- métrique (longueurs en m);
- cohérent (nœuds nettoyés/fusionnés);

2 Drone

2.1 Objectif

Déterminer un parcours complet du réseau routier de Montréal par drone, en minimisant le coût :

coût fixe drone : 100 e/jourcoût kilométrique : 0.01 e/km

2.2 Étape 1 : construction du graphe

Le réseau routier est extrait d'OpenStreetMap puis converti en MultiDiGraph orienté; chaque arête stocke ses coordonnées, sa géométrie et sa longueur.

2.3 Étape 2 : cycle eulérien sur tout le graphe

Avec un seul drone, l'idée naturelle est de trouver un **cycle eulérien** : le drone traverse exactement une fois chaque arête et revient à son point de départ.

- Condition: le graphe doit être équilibré (degré entrant = degré sortant pour chaque nœud).
- S'il ne l'est pas :
 - (a) lister les nœuds « excédent +1 » et « déficit -1 » ;
 - (b) calculer les plus courts chemins entre tous les + et (Dijkstra);
 - (c) résoudre l'appariement minimal avec l'algorithme hongrois;
 - (d) ajouter ces arcs virtuels (segments directs le drone vole);
 - (e) le graphe est alors eulérien; on extrait le circuit (Hierholzer).

Résultat : un tour $\approx 9~900$ km, coût ≈ 200 e.

2.4 Limite pratique

Aucun drone civil ne couvre 10 000 km sans recharge, et pas dans des délais raisonnables. Nous scindons donc la tâche : flotte de drones + plusieurs bases.

2.5 Spécifications matérielles retenues

Trinity F90 + (Quantum Systems)

- autonomie : 90 min à 60 km/h \rightarrow 120 km utiles
- rayon de contrôle : 100 km
- -- caméra 42 MP + LiDAR, décollage vertical

Nous conservons 105 km par vol (marge vent/batterie).

2.6 Etape 3 : placement des bases et répartition des arêtes

Hypothèses:

- 5 à 11 bases maximum
- ≤ 25 drones par base
- $-\,$ 1 seul vol par drone par jour pour éviter l'usure trop rapide et garantir un temps de survol du réseau complet en 90min

Algorithme

- 1. K-Means++ (50 initialisations) pour placer B bases;
- 2. affectation capacitaire : on assigne chaque arête à la base la plus proche sans dépasser un quota $(\approx n_{\rm drones} \times 105 \ {\rm km})$;
- 3. correction de la connectivité : chaque cluster doit être faiblement connexe;
- 4. pour chaque cluster, on trouve un cycle eulérien et on découpe en tournées ≤ 105 km;
- 5. $coût = 100 e \times n_{drones} + 0.01 e \times distance totale;$
- 6. on garde la configuration au plus faible coût.

2.7 Meilleure solution obtenue

Bases: 6 Drones: 102 Distance totale: 9 901 km

Table 1 – Répartition optimale des bases et drones

		1		
Base	Drones	km circuit	km trajet	Coût (e)
1	17	1 605,1	87,2	1718
2	17	$1561,\!0$	110,5	1718
3	19	$1735,\!4$	120,3	1920
4	9	791,1	52,5	909
5	21	$1812,\!3$	174,1	2122
6	19	1739,3	112,5	1920

Coût total flotte : 10 299 e ($\approx 100\,\mathrm{e}{\times}102\,+\,0.01\,\mathrm{e}{\times}9$ 901 km)

2.8 Conclusion

- Le cycle eulérien global fournit un optimum théorique mais impraticable.
- La décomposition en clusters + flotte de 102 drones couvre le réseau en un vol chacun, pour ≈ 10 ke par jour.
- Faire varier B ou la limite de 105 km permet d'explorer d'autres scénarios (plus de bases, moins de drones, etc.).