# Scalar on Function Regression with Applications to Near-Infrared Spectroscopy

Jonathan Willnow, Jakob Juergens, Jonghun Baek

18.01.2022



#### Introduction

- Near-Infrared (NIR) Spectroscopy enables fast diagnostics by using the NIR region of the electromagnetic spectrum (from 780 nm to 2500 nm)
- Suited for field-monitoring / on-line analysis
- Spectroscopy results in high-dimensional dataset.
- This set of measurements serves as set of discretized approximations of smooth spectral curves
- Regression to determine relationship between octane rating and spectral curves

# Theory

A simple functional dataset is given by

$$\{x_i(t_{j,i}) \in \mathbb{R} \mid i = 1, 2, ..., N, j = 1, 2, ..., J_i, t_{j,i} \in [T_1, T_2]\}$$

- ▶ Continuous underlying process, where  $x_i(t)$  exists  $\forall t \in [T_1, T_2]$
- ightharpoonup Only observed at  $x_i(t_{j,i})$
- Example: Gasoline dataset (60 x 400)
- Other Examples: Growth curves, financial data, human perception (pitch), ...



#### Random Function

A **Random Variable** is a function  $X:\Omega\to\mathcal{S}$  which is defined on a common probability space  $(\Omega,\mathcal{F},\mathbb{P})$  where  $\Omega$  is a probability space with a  $\sigma$ -algebra  $\mathcal{F}$  and a probability measure  $\mathbb{P}$ .

- ▶ If  $S = \mathbb{R}$  then X is a random variable
- ▶ If  $S = \mathbb{R}^n$  then X is a random vector
- ▶ If S is a space of functions, X is called a **Random Function**

#### Random Function

Let  $\mathbb{E}$  be the index set and this can be described as

$$X = \{X(t,\omega) : t \in \mathbb{E}, \omega \in \Omega\},\$$

where  $X(t, \cdot)$  is  $\mathcal{F}$ -measurable function on the sample space  $\Omega$ .

- ▶ It can be shortened to X(t) by omitting  $\omega$
- ▶ The function is realized when the X(t) exists  $\forall t \in \mathbb{E}$

#### **Plots**



Growth curves of 54 girls age 1-18



NIR spectrum of 60 gasoline samples



# Square Integrable Function

If a function f(t) satisfies

$$\int_0^1 (f(t))^2 dt < \infty$$

the function f(t) is called **Square Integrable Function** written  $f(t) \in \mathbb{L}^2[0,1]$ .

- Without loss of generality, the interval is defined in [0,1].
- $ightharpoonup \mathbb{L}^2$  is the set of all square integrable functions.

# Square Integrable Function

Let  $f,g \in \mathbb{L}^2[0,1]$ , then we can define inner product by

$$\langle f,g\rangle = \int_0^1 f(t)g(t)dt$$

- Orthogonality of two different functions with  $\langle f,g\rangle=0$
- Distance between functions



### Basis Expansion

**Basis Expansion** is a linear combination of functions as described:

$$X_i(t) = \sum_{k=1}^{\infty} c_{ik} \phi_k(t) pprox \sum_{k=1}^{K} c_{ik} \phi_k(t), \quad i = 1, \dots, n, \quad \forall t \in \mathbb{E}$$

where  $\phi_k(t)$  is the  $k^{th}$  basis function of the expansion and  $c_{ik}$  is the corresponding coefficient. We truncate the basis at K to:

- make the function smoother
- replace the original curves  $X_i(t)$  by a smaller collection of  $c_{nm}$

# Two Typical Types of Basis Function

**Fourier Basis Function** is an element of the set:

$$\{\sqrt{2}sin(2\pi nx|n\in\mathbb{N})\}\cup\{\sqrt{2}cos(2\pi nx|n\in\mathbb{N})\}\cup\{1\}$$

**B-spline Basis Function** is a polynomial function defined by order and knots.



#### Plots of Basis Functions



Fourier basis functions

#### Plots of Basis Functions



Bspline basis functions



#### Trade Off between Bias and Variance

How do we choose the number K of basis functions?

$$\mathsf{MSE}[\hat{X}(t)] = \mathsf{Bias}^2[\hat{X}(t)] + \mathsf{Var}[\hat{X}(t)]$$

$$\mathsf{MISE}[\hat{X}] = \int_0^1 \mathsf{MSE}[\hat{X}(t)] dt$$

- ► The larger K, the better fit to the data, but also more fitting noise
- ► If *K* is too small, the expansion would miss some significant information



#### Trade Off between Bias and Variance





Assume the following Data Generating Process

$$Y(\omega) = \alpha + \int_0^1 \beta(s) X(\omega)(s) ds + \epsilon(\omega)$$

 $ightharpoonup Y(\omega)$  and  $\epsilon(\omega)$  realize in  $\mathbb{R}$  and  $X(\omega)$  realizes in  $\mathbb{L}^2[0,1]$ 

Let  $\{\phi_i(t) \mid i = 1, ..., \infty\}$  be a basis of  $\mathbb{L}^2[0, 1]$  leading to the following representation of  $\beta(t)$ 

$$eta(t) = \sum_{j=1}^{\infty} c_j \phi_j(t) pprox \sum_{j=1}^{L} c_j \phi_j(t)$$



We can transform the data generating process into:

$$Y(\omega) = \alpha + \int_0^1 \left[ \left( \sum_{j=1}^\infty c_j \phi_j(s) \right) X(\omega)(s) \right] ds + \epsilon(\omega)$$

$$= \alpha + \sum_{j=1}^\infty \left[ c_j \int_0^1 X(\omega)(s) \phi_j(s) ds \right] + \epsilon(\omega)$$

$$= \alpha + \sum_{j=1}^\infty c_j Z_j(\omega) + \epsilon(\omega)$$

Where a  $Z_j(\omega)$  is a **scalar random variable**.



Each combination of  $x_i(t)$  and  $\phi_j(t)$  gives us

$$Z_{i,j} = \int_0^1 x_i(s) \phi_j(s) \mathrm{d}s$$

- This allows us to write each observation in the data set as  $(y_i, Z_{i,1}, Z_{i,2}, \dots)$
- Truncating the functional basis yields an approximation  $(y_i, Z_{i,1}, Z_{i,2}, \dots, Z_{i,L})$

Coefficients can then be estimated using theory from **multivariate regression** leading to an estimated coefficient vector  $\hat{c} \in \mathbb{R}^L$ .



This can be translated into an estimated coefficient function  $\hat{\beta}(t)$ :

$$\hat{\beta}_L(t) = \sum_{j=1}^L \hat{c}_{L,j} \phi_j(t)$$

This is dependent on...

- ▶ The basis  $(\phi_j(t))_{j\in\mathcal{I}}$  for the estimation of  $\beta(t)$
- The truncation parameter L
- lacktriangle The basis  $(\psi_j(t))_{j\in\mathcal{I}}$  used for the expansion of the observations
- ► The truncation parameter in the approximation of the observations *K*



## Karhunen-Loéve Expansion

Mean Function:

$$\mu(t) = \mathbb{E}\left[X(\omega)(t)\right]$$

**Autocovariance Function:** 

$$c(t,s) = \mathbb{E}\big[\left(X(\omega)(t) - \mu(t)\right)\left(X(\omega)(s) - \mu(s)\right)\big]$$

The **Eigenvalues** and **Eigenfunctions**:  $\{(\lambda_i, \nu_i) \mid i \in \mathcal{I}\}$  are solutions of the following equation:

$$\int_0^1 c(t,s)\nu(s)\mathrm{d}s = \lambda\nu(t)$$



## Karhunen-Loéve Expansion

A random function  $X(\omega)$  can be expressed in terms of its mean function and its Eigenfunctions:

$$X(\omega)(t) = \mu(t) + \sum_{j=1}^{\infty} \xi_j(\omega)\nu_j(t)$$

Where the  $\xi_j$  are scalar-valued random variables with the following properties.

1. 
$$\mathbb{E}[\xi_i(\omega)] = 0$$

2. 
$$Var(\xi_i(\omega)) = \lambda_i$$

3. 
$$Cov(\xi_i(\omega), \xi_j(\omega)) = 0$$
 for  $i \neq j$ 

This is called the **Karhunen-Loéve Expansion** of  $X(\omega)$  and the Eigenfunctions can serve as a basis.

▶ Spectral Representation of Random Vectors



### Functional Principal Component Analysis

**Principal Component Analysis** can be extended to functional regressors in the form of **Functional Principal Component Analysis** (FPCA).

**Empirical Mean Function:** 

$$\hat{\mu}(t) = \frac{1}{n} \sum_{j=1}^{n} x_j(t)$$

**Empirical Autocovariance Function:** 

$$\hat{c}(t,s) = \frac{1}{n} \sum_{j=1}^{n} (x_j(t) - \hat{\mu}(t)) (x_j(s) - \hat{\mu}(s))$$



#### Functional Principal Component Analysis

The **Eigenvalues** and **Eigenfunctions**:  $\{(\hat{\lambda}_i, \hat{\nu}_i) \mid i \in \mathcal{I}\}$  are solutions of the following equation:

$$\int_0^1 \hat{c}(t,s)\hat{\nu}(s)\mathrm{d}s = \hat{\lambda}\hat{\nu}(t)$$

The  $\{\hat{\nu}_i(s) \mid i \in \mathcal{I}\}$  are called **Functional Principal Components** and can serve as a basis for representing the original curves.

The corresponding scores  $\hat{\xi}_i$  can be derived as

$$\hat{\xi}_j(\omega) = \int_0^1 (F(\omega)(s) - \hat{\mu}(s))\hat{\nu}_j(s)\mathrm{d}s$$

▶ PCA for Random Vectors



#### FPCA - Plot





### Simulation Setup

- ▶ Use the **Gasoline Dataset** (NIR-spectroscopy,  $60 \times 401$ ) to predict octane ratings.
- Generate similar curves from gasoline dataset:

$$ilde{X}(\omega)(t) = \hat{\mu}(t) + \sum_{j=1}^J ilde{\xi_j}(\omega) \hat{
u}_j(t)$$

- $lackbox{} ilde{\xi}_j \sim \mathcal{N}(0,\hat{\lambda}_j)$  and  $ilde{\xi}_j \perp \!\!\! \perp ilde{\xi}_k$  for j 
  eq k
- ightharpoonup Simplification: the  $\xi_j$  do not follow a normal
- $\check{X}(\omega)(t)$ ,  $\hat{\mu}(t)$  and  $\hat{\nu}_i(t)$  are approximated as vectors in  $\mathbb{R}^{401}$ .

### Simulation Setup cont.

Following **Reiss and Ogden (2007)**, let  $f_1(t)$  and  $f_2(t)$  be two coefficient functions:



#### Simulation Setup cont.

Let

$$Y_{1,f} = \langle NIR, f \rangle + Z \left( \frac{var(\langle NIR, f \rangle)}{0.9} - var(\langle NIR, f \rangle) \right)$$

$$Y_{2,f} = \langle NIR, f \rangle + Z \left( \frac{var(\langle NIR, f \rangle)}{0.6} - var(\langle NIR, f \rangle) \right)$$

where  $Z \sim \mathcal{N}(0,1)$  be two responses for  $f \in \{f_1(t), f_2(t)\}$ .

- ▶ Four combinations with different number of cubic basis-function  $n_{basis} \in (4, 5, ..., 25)$  and fourier functions (1, 3, ..., 25) to perform regression using basis expansion and the FPCR approach.
- Compare results via criteria (CV, Mallows CP,...)



# Recap: Trade Off between Bias and Variance



#### Simulation - Interpretation of results

- Basis expansion regression
  - Smooth true coefficient functions requires smaller number of n<sub>basis</sub> and vis versa.
  - Setup with higher noise requires smoother function.
  - Bsplines perform overall better.
- FPCR
  - ► Two PC enough to explain variation.

# Simulation Results - bspline basis expansion

| f1_e1_spline | f1_e2_spline | f2_e1_spline | f2_e2_spline | n_basis |
|--------------|--------------|--------------|--------------|---------|
| 2.1318       | 71.71        | 0.6082       | 1.5345       | 4       |
| 2.0076       | 71.9395      | 0.3427       | 1.2906       | 5       |
| 1.9937       | 72.2563      | 0.2456       | 1.2014       | 6       |
| 2.0365       | 73.7857      | 0.2797       | 1.2495       | 7       |
| 2.1861       | 79.0485      | 0.1044       | 1.1458       | 8       |
| 2.0511       | 74.1784      | 0.0356       | 1.0217       | 9       |
| 2.1052       | 76.1884      | 0.0297       | 1.0393       | 10      |
| 2.1012       | 76.4031      | 0.0296       | 1.0425       | 11      |
| 2.3815       | 86.1707      | 0.037        | 1.1819       | 12      |
| 2.2114       | 80.6208      | 0.0363       | 1.1024       | 13      |
| 2.4495       | 87.6977      | 0.038        | 1.2126       | 14      |
| 2.2887       | 83.4755      | 0.0315       | 1.1363       | 15      |
| 2.5491       | 93.593       | 0.0352       | 1.2652       | 16      |
| 2.5514       | 93.3074      | 0.0352       | 1.2661       | 17      |
| 2.7516       | 100.5562     | 0.038        | 1.362        | 18      |
| 3.0243       | 109.9876     | 0.041        | 1.4813       | 19      |
| 3.4255       | 122.396      | 0.0472       | 1.6854       | _20 _   |

# Simulation Results - fourier basis expansion

| f1_e1_spline | f1_e2_spline | f2_e1_spline | f2_e2_spline | n_basis |
|--------------|--------------|--------------|--------------|---------|
| 0            | 0            | 0            | 0            | 1       |
| 2.0292       | 72.0085      | 0.512        | 1.4747       | 3       |
| 2.022        | 72.6017      | 0.1616       | 1.1375       | 5       |
| 2.0355       | 73.1836      | 0.0293       | 0.9907       | 7       |
| 2.062        | 73.9631      | 0.029        | 0.9994       | 9       |
| 2.0881       | 75.0921      | 0.0291       | 1.0139       | 11      |
| 2.0997       | 75.9422      | 0.0294       | 1.0291       | 13      |
| 2.1087       | 76.7123      | 0.0298       | 1.0371       | 15      |
| 2.1301       | 77.4908      | 0.03         | 1.0398       | 17      |
| 2.1535       | 78.3943      | 0.0303       | 1.0509       | 19      |
| 2.1775       | 79.2058      | 0.0307       | 1.0617       | 21      |
| 2.2058       | 80.3801      | 0.031        | 1.077        | 23      |
| 2.2372       | 81.509       | 0.0315       | 1.0905       | 25      |



# Simulation Results - bspline FPCR $(n_{harm} = 2)$

| $f_1$ , error 1 | $f_1$ , error 2 | f <sub>2</sub> , error 1 | f <sub>2</sub> , error 2 | expl. variance   | n_basis   |
|-----------------|-----------------|--------------------------|--------------------------|------------------|-----------|
| 2.9163          | 10.8768         | 0.9599                   | 1.6431                   | 1                | 4         |
| 2.345           | 10.585          | 0.8649                   | 1.5631                   | 0.9776           | 5         |
| 2.4187          | 10.6889         | 0.8739                   | 1.5759                   | 0.9556           | 6         |
| 2.4971          | 10.7287         | 0.8625                   | 1.5723                   | 0.9472           | 7         |
| 2.5799          | 10.6971         | 0.8716                   | 1.575                    | 0.9239           | 8         |
| 2.6828          | 10.7669         | 0.853                    | 1.5661                   | 0.9178           | 9         |
| 2.825           | 10.7906         | 0.8304                   | 1.5622                   | 0.8976           | 10        |
| 2.9082          | 10.7774         | 0.8237                   | 1.5424                   | 0.906            | 11        |
| 2.9519          | 10.8126         | 0.8286                   | 1.5561                   | 0.9036           | 12        |
| 2.9972          | 10.8221         | 0.8404                   | 1.5551                   | 0.9052           | 13        |
| 2.9755          | 10.7706         | 0.8396                   | 1.5614                   | 0.9074           | 14        |
| 2.9762          | 10.7946         | 0.8476                   | 1.557                    | 0.9058           | 15        |
| 2.9627          | 10.8067         | 0.8609                   | 1.5615                   | 0.9061           | 16        |
| 2.9621          | 10.7707         | 0.857                    | 1.5628                   | 0.906            | 17        |
| 2.9929          | 10.8315         | 0.8536                   | 1.5632                   | 0.8935           | 18        |
| 2.9576          | 10.7894         | 0.8676                   | 1.5656                   | 0.901            | 19        |
| 2.9835          | 10.8445         | 0.8514                   | 1.5612                   | 0.8934 - 🗗 🕨 - 🖹 | ▶20 🖹 ▶ 📑 |



# Simulation Results - fourier FPCR $(n_{harm} = 2)$

| $f_1$ , error 1 | $f_1$ , error 2 | $f_2$ , error 1 | $f_2$ , error 2 | expl. variance | n_basis |
|-----------------|-----------------|-----------------|-----------------|----------------|---------|
| 0               | 0               | 0               | 0               | 0              | 1       |
| 2.2059          | 11.2438         | 0.8768          | 1.5528          | 0.9846         | 3       |
| 2.2148          | 11.2567         | 0.8227          | 1.5215          | 0.9584         | 5       |
| 2.2635          | 11.2662         | 0.8828          | 1.5563          | 0.9489         | 7       |
| 2.2721          | 11.2692         | 0.8811          | 1.5531          | 0.9439         | 9       |
| 2.2797          | 11.2574         | 0.879           | 1.555           | 0.9397         | 11      |
| 2.3039          | 11.2708         | 0.8887          | 1.5591          | 0.9421         | 13      |
| 2.3248          | 11.2898         | 0.8743          | 1.5514          | 0.9283         | 15      |
| 2.3798          | 11.2957         | 0.875           | 1.5511          | 0.9182         | 17      |
| 2.4233          | 11.3049         | 0.8632          | 1.5453          | 0.9167         | 19      |
| 2.4589          | 11.3094         | 0.8619          | 1.5432          | 0.9133         | 21      |
| 2.5306          | 11.331          | 0.8562          | 1.5408          | 0.9082         | 23      |
| 2.5752          | 11.3272         | 0.8531          | 1.5393          | 0.9062         | 25      |



#### Application setup

- Use insights from the simulation study to uncover dependence.
- Similar setup, but using only bspline basis expansion and initial 60 spectral curves.
- Validation set approach: Scores of test data needs to be estimated by the training data.
- Report results by MSE scaled by variance.

#### Summary

- Concepts of functional data:
  - See dataset as smooth curve than as set of discrete measurements.
  - Theory of Random Functions, motivated from random variable.
  - Basis expansion and its Bias-Variance tradeoff.
  - Scalar on Function Regression via Basis Expansion.
  - Functional principal component Analysis and FPCR.
- Simulation study results: specification depends on function and signal-to-noise ratio
- Guided through application to predict octane ratings.



Thank you for your time!

## Further Reading

#### Further Reading:



Gy. Bohács, Z. Ovádi, A. Salgó (1998). "Prediction of Gasoline Properties with near Infrared Spectroscopy". In: *Journal of near infrared spectroscopy*, 6, pp. 341–348.



Li, Yuanpeng et al. (2020). "Early Diagnosis of Type 2 Diabetes Based on Near-Infrared Spectroscopy Combined With Machine Learning and Aquaphotomics". In: Frontiers in Chemistry 8, p. 1133. ISSN: 2296-2646. DOI: 10.3389/fchem.2020.580489. URL: https://www.frontiersin.org/article/10.3389/fchem.2020.580489.



Reiss, Philip T. and R. Todd Ogden (2007). "Functional Principal Component Regression and Functional Partial Least Squares". In: *Journal of the American Statistical Association* 102.479, pp. 984–996. ISSN: 0162-1459. DOI: 10.1198/016214507000000527.

#### Spectral Representation of Random Vectors

Let  $X(\omega)$  be a random vector realizing in  $\mathbb{R}^p$ .

- ▶ Let  $\mu_{\mathsf{X}} = \mathbb{E}(\mathsf{X})$  and  $\Sigma_{\mathsf{X}} = \mathsf{Cov}(\mathsf{X})$
- ▶ Let  $\{\gamma_i \mid i=1,\ldots,p\}$  be the orthonormal **Eigenvectors** of  $\Sigma_X$
- ▶ Let  $\{\lambda_i | i = 1, ..., p\}$  be the corresponding **Eigenvalues** of  $\Sigma_X$

Then X can also be represented as

$$X(\omega) = \mu_{x} + \sum_{i=1}^{p} \xi_{i}(\omega)\gamma_{i}$$

where the  $\xi_i(\omega)$  have the following properties

- 1.  $\mathbb{E}[\xi_i(\omega)] = 0$
- 2.  $Var(\xi_i(\omega)) = \lambda_i$

3.  $Cov(\xi_i(\omega), \xi_j(\omega)) = 0$  for  $i \neq j$ 

► Karhunen-Loéve Expansion



### Principal Component Analysis

A related concept is **Principal Component Analysis** (PCA).

 $\Sigma_X$  unknown o sample analogues

- Let  $\mathbf{X} \in \mathbb{R}^{n \times p}$  contain the standardized regressors
- ▶ Let  $\hat{\Sigma}_X = \frac{\mathbf{X}'\mathbf{X}}{n}$
- Let  $\{\hat{\gamma}_i \mid i=1,\ldots,p\}$  be the orthonormal **Eigenvectors** of  $\hat{\Sigma}_X$
- Let  $\{\hat{\lambda}_i | i=1,\ldots,p\}$  be the corresponding **Eigenvalues** of  $\hat{\Sigma}_X$

Then  $Z_i(\omega) = \hat{\gamma}_i' X(\omega)$  is called the i'th principal component and

- 1.  $\mathbb{E}[Z_i(\omega)] = 0$
- 2.  $Var(Z_i(\omega)) = \hat{\lambda}_i$

3.  $Cov(Z_i(\omega), Z_j(\omega)) = 0$  for  $i \neq j$ 

► Functional Principal Component Analysis

