

U- (-) M y= (0) 11 MI, > 0 J=(1) M y=(2) 1-(1) M y=(2) 1-11-8 14112 J* M* Mu 11011 J* U UXT DTU

$$||x||_{2}^{2} = \int_{0}^{\infty} ||x(t)||_{2}^{2} dt = \int_{-\infty}^{+\infty} ||x(j\omega)||_{2}^{2} d\omega$$

$$= ||x||_{2}^{2}$$

** Systèmes H |
$$\tilde{x} = f(x, u)$$
 | Norme inhibite \hat{x}_2 | $\chi(0) = 0$ | $\chi(0) =$

X=(11-A)-BL

(1) [ACUSTR+PACU] PBa] + [CAT] LCA DAS] & CO 11 20 11 < 8 pour le système 20 = 41/2 + 30 mars 20 = 62 + 5 m mars avec A(+) < 6 | A(i) - A(v))

$$\int_{\delta} \left(\frac{dV}{dt} (t) + \| z_{\Delta}(t) \|^{2} \right) dt = \int_{\delta} \| w_{\Delta}(t) \|^{2} dt$$

$$V(t) - V(t) + \int_{\delta} \| z_{\Delta}(t) \|^{2} dt < \int_{\delta} \| w_{\Delta}(t) \|^{2} dt$$

$$\int_{\delta} | w_{\Delta}(t) |^{2} dt$$

$$\int_{\delta} | w_{\Delta}(t) |^{2} dt$$