SOFTWARE TESTING LABORATORY									
Course Code	21ISL66	CIE Marks	50						
Teaching Hours/Week (L:T:P: S)	0:0:2:0	SEE Marks	50						
Total Hours of Pedagogy	24	Total Marks	100						
Credits	1	Exam Hours	03						

Course Objectives:

- CLO 1. Explain the test cases for any given problem
- CLO 2. Analyze the requirements for the given problem statement. CLO
- 3. Design the solution and write test cases for the given problem.
- \mbox{CLO} 4. Construct control flow graphs for the solution that is implemented. CLO 5.

Create appropriate document for the software artifact

	Note: two hours tutorial is suggested for each laboratory sessions.
	Prerequisite
	 Students should be familiar with programming languages like C, C++, Java,
	Python etc.
	Usage of IDEs like Eclipse, Netbeans and software testing tools should be
	introduced
Sl. No.	PART A – List of problems for which student should develop program and execute in the
31. NO.	Laboratory
	Design, develop, code and run the program in any suitable language to solve the commissio
1	problem. Analyze it from the perspective of boundary value testing, derive different test cases
	execute these test cases and discuss the test results.
	Design develop code and run the program in any suitable language to implement the NeytDat
	Design, develop, code and run the program in any suitable language to implement the NextDat function. Analyze it from the perspective of equivalence class value testing, derive different testing.
2	cases, execute these test cases and discuss the test results.
	cases, execute these test cases and discuss the test results.
	Design, develop, code and run the program in any suitable language to solve the commission
3	problem. Analyze it from the perspective of decision table-based testing, derive different te
	cases, execute these test cases and discuss the test results.
	Design and develop a program in a language of your choice to solve the triangle problem define
	as follows: Accept three integers which are supposed to be the three sides of a triangle ar
	determine if the three values represent an equilateral triangle, isosceles triangle, scaler
4	triangle, or they do not form a triangle at all. Assume that the upper limit for the size of any sign
	is 10. Derive test cases for your program based on boundary-value analysis, equivalence cla
	partitioning and decision-table approach and execute the test
	cases and discuss the results.
	Design, develop, code and run the program in any suitable language to solve the commissio
5	problem. Analyze it from the perspective of dataflow testing, derive different test case
	execute these test cases and discuss the test results.
	Design, develop, code and run the program in any suitable language to implement the
6	binary search algorithm. Determine the basis paths and using them derive different test
	cases, execute these test cases and discuss the test results.
	PART B – Practical Based Learning
01	Develop a Mini Project with documentation of suitable test-cases and their results to perform
01	automation testing of any E-commerce or social media web page.
	Suggested Guidelines:
	Create a WebDriver session.
	Navigate to a Web page. Legate the web elements on the navigated page.
	Locate the web elements on the navigated page. Derform an actions on the located elements.
	 Perform an actions on the located elements. Assert the performed actions did the correct thing.
	 Assert the performed actions and the correct tilling. Report the results of the assertions.
	• End the session.
	Each inputs / data feeds (ex: website, username, password, mobile no, product name,
	etc.,)must be provided through a file linked with code and neither to be entered manually no
	to be included in the code
	Use any software testing tool like selenium, Katalon, etc.,

Program 1 (Boundary value for Commission Problem)

/* Design, develop, code and run the program in any suitable language to solve the commission problem. Analyze it from the perspective of boundary value testing, derive test cases, execute these test cases and discuss the test results */

/* Assumption price for lock=45.0, stock=30.0 and barrels=25.0 production limit could sell in a month 70 locks,80 stocks and 90 barrels commission on sales = 10 % <= 1000 and 15 % on 1000 to 1800 and 20 % on above 1800*/

```
#include<stdio.h>
int main()
{
       int locks, stocks, barrels, tlocks, tstocks, tbarrels;
       float lprice, sprice, bprice, sales, comm;
       int c1,c2,c3, temp;
       lprice=45.0;
        sprice=30.0;
       bprice=25.0;
       tlocks=0;
       tstocks=0;
       tbarrels=0:
        printf("\nenter the number of locks and to exit the loop enter -1 for locks\n");
        scanf("%d",&locks);
        while(locks!=-1)
        {
               c1=(locks<=0||locks>70);
               printf("enter the number of stocks and barrels\n");
               scanf("%d%d",&stocks,&barrels);
               c2=(stocks<=0||stocks>80);
               c3=(barrels<=0||barrels>90);
               if(c1)
                       printf("value of locks not in the range 1..70");
               else
                       temp=tlocks+locks;
                       if(temp>70)
                               printf("new total locks =%d not in the range 1..70 so old ",temp);
                       else
                               tlocks=temp;
                  }
               printf("total locks = %d\n",tlocks);
               if(c2)
                       printf("value of stocks not in the range 1..80");
               else
                       temp=tstocks+stocks;
                       if(temp>80)
                       printf("new total stocks =%d not in the range 1..80 so old ",temp);
                       else
```

```
tstocks=temp;
       printf("total stocks=%d\n",tstocks);
       if(c3)
               printf("value of barrels not in the range 1..90");
       else
               temp=tbarrels+barrels;
               if(temp>90)
               printf("new total barrels =%d not in the range 1..90 so old ",temp);
               else
               tbarrels=temp;
         }
       printf("total barrel=%d",tbarrels);
       printf("\nenter the number of locks and to exit the loop enter -1 for locks\n");
       scanf("%d",&locks);
printf("\ntotal locks = %d\ntotal stocks = %d\ntotal barrels = %d\n",tlocks,tstocks,tbarrels);
sales = lprice*tlocks+sprice*tstocks+bprice*tbarrels;
printf("\nthe total sales=%f\n",sales);
if(tlocks>0&&tstocks>0&&tbarrels>0)
       if(sales > 1800.0)
       {
               comm=0.10*1000.0;
               comm=comm+0.15*800;
               comm=comm+0.20*(sales-1800.0);
       else if(sales > 1000)
       {
               comm = 0.10*1000;
               comm=comm+0.15*(sales-1000);
       else
               comm=0.10*sales;
       printf("the commission is=%f\n",comm);
else
       printf(" Commission cannot be calculated \n");
return 0;
```

}

Test Case Name: Boundary Value for Commission Problem

Experiment Number: 1

Test data: price Rs for lock - 45.0, stock - 30.0 and barrel - 25.0

sales = total lock * lock price + total stock * stock price + total barrel * barrel price

commission: 10% up to sales Rs 1000, 15% of the next Rs 800 and 20% on any sales in excess of 1800

Pre-condition: lock = -1 to exit and 1 < = lock < = 70, 1 < = stock < = 80 and 1 < = barrel < = 90

Brief Description : The salesperson had to sell at least one complete rifle per month.

CHECKING BOUNDARY VALUE FOR LOCKS, STOCKS AND BARRELS AND COMMISSION

Commission Problem Output Boundary Value Analysis Cases

Coso			Input Da	ta	Expec	ted Output	Actua	l output	Ctatus	
Case Id	Description	Total Locks	Total Stocks	Total Barrels	Sales	Comm- ission	Sales	Comm -ission	Status	Comment
1	Enter the min value for locks, stocks and barrels	1	1	1	100	10				output minimum
2		1	1	2	125	12.5				output minimum +
3	Enter the min value for 2 items and min +1 for any one item	1	2	1	130	13				output minimum +
4	any one item	2	1	1	145	14.5				output minimum +
5	Enter the value sales approximately mid value between 100 to 1000	5	5	5	500	50				Midpoint
6		10	10	9	975	97.5				Border point -
7	Enter the values to calculate the commission for sales nearly less than 1000	10	9	10	970	97				Border point -
8	sales fielding less than 1000	9	10	10	955	95.5				Border point -
9	Enter the values sales exactly equal to 1000	10	10	10	1000	100				Border point
10	Enter the values to calculate the commission for	10	10	11	1025	103.75				Border point +
11	Enter the values to calculate the commission for	10	11	10	1030	104.5				Border point +
12	sales nearly greater than 1000	11	10	10	1045	106.75				Border point +

	Enter the value sales approximately mid value						
13	between 1000 to 1800	14	14	14	1400	160	Midpoint
14	Enter the values to calculate the commission for	18	18	17	1775	216.25	Border point -
15	sales nearly less than 1800	18	17	18	1770	215.5	Border point -
16		17	18	18	1755	213.25	Border point -
17	Enter the values sales exactly equal to 1800	18	18	18	1800	220	Border point
18		18	18	19	1825	225	Border point +
19	Enter the values to calculate the commission for sales nearly greater than 1800	18	19	18	1830	226	Border point +
20	sales fleatly greater than 1800	19	18	18	1845	229	Border point +
21	Enter the values normal value for lock, stock and barrel	48	48	48	4800	820	Midpoint
22	Enter the max value for 2 items and max - 1 for	70	80	89	7775	1415	Output maximum -
23	any one item	70	79	90	7770	1414	Output maximum -
24		69	80	90	7755	1411	Output maximum -
25	Enter the max value for locks, stocks and barrels	70	80	90	7800	1420	Output maximum

Output Special Value Test Cases

			Input Da	ta	Expe	ted Output	Actua	l output		
Case Id	Description	Total Locks	Total Stocks	Total Barrels	Sales	Commissi on	Sales	Commi ssion	Status	Comment
1	Enter the random values such that to calculate commission for sales nearly less than 1000	11	10	8	995	99.5				Border point -
2	Enter the random values such that to calculate commission for sales nearly greater than 1000	10	11	9	1005	100.75				Border point +
3	Enter the random values such that to calculate commission for sales nearly less than 1800	18	17	19	1795	219.25				Border point -
4	Enter the random values such that to calculate commission for sales nearly greater than 1800	18	19	17	1805	221				Border point +

Program 2 (Next date program)

/* Design, develop, code and run the program in any suitable language to implement the NextDate function. Analyze it from the perspective of equivalence class value testing. Derive different test cases, execute these test cases and discuss the test results. */

```
#include<stdio.h>
int check(int day,int month)
{
    if((month==4||month==6||month==9 ||month==11) && day==31) return 1;
```

```
else return 0;
```

```
int isleap(int year)
       if((year\%4==0 \&\& year\%100!=0) || year\%400==0)
                       return 1;
       else
                       return 0;
int main()
       int day,month,year,tomm_day,tomm_month,tomm_year;
       char flag;
       do
       {
               flag='y';
               printf("\nenter the today's date in the form of dd mm yyyy\n");
               scanf("%d%d%d",&day,&month,&year);
               tomm_month=month;
               tomm_year= year;
               if(day<1 \parallel day>31)
                        printf("value of day, not in the range 1...31\n");
                        flag='n';
               if(month<1 || month>12)
                       printf("value of month, not in the range 1....12\n");
                       flag='n';
               else if(check(day,month))
               {
                       printf("value of day, not in the range day<=30");
                       flag='n';
               if(year<=1812 || year>2013)
                         printf("value of year, not in the range 1812. ..... 2013\n");
                         flag='n';
               if(month==2)
                       if(isleap(year) && day>29)
                              printf("invalid date input for leap year");
                              flag='n';
                       else if(!(isleap(year))&& day>28)
                              printf("invalid date input for not a leap year");
                              flag='n';
                        }
       }while(flag=='n');
```

```
switch (month)
       case 1:
       case 3:
       case 5:
       case 7:
       case 8:
       case 10:if(day<31)
                    tomm_day=day+1;
              else
               {
                    tomm_day=1;
                    tomm_month=month+1;
              break;
       case 4:
       case 6:
       case 9:
       case 11: if(day<30)
                    tomm_day=day+1;
              else
                    tomm_day=1;
                    tomm_month=month+1;
             break;
```

```
case 12: if(day<31)
              tomm_day=day+1;
       else
         {
              tomm_day=1;
              tomm_month=1;
              if(year==2013)
         printf("the next day is out of boundary value of year\n");
                 tomm_year=year+1;
               }
              else
                tomm_year=year+1;
         }
       break;
case 2:
      if(day < 28)
              tomm_day=day+1;
      else if(isleap(year)&& day==28)
                     tomm_day=day+1;
       else if(day==28 \parallel day==29)
               tomm_day=1;
               tomm_month=3;
       break;
```

}

```
printf("next day is : %d %d %d",tomm_day,tomm_month,tomm_year);
return 0;
}
```

Test Case Name : Equivalence class test cases for Next date

Experiment Number: 2

Test data: Enter the three integer value

Pre-condition: Month 1 to 12, DAY 1 TO 31 AND YEAR 1812 TO 2013

Valid Cases

```
M1 = \{ \text{ month } ; 1 \le \text{ month } \le 12 \}

D1 = \{ \text{ day } : 1 \le \text{ day } \le 31 \}

Y1 = \{ \text{ year } : 1812 \le \text{ year } \le 2013 \}
```

Invalid cases

```
M2 = {month : month < 1}

M3 = {month : month > 12}

D2 = {day : day < 1}

D3 = {day : day > 31}

Y2 = {year : year < 1812}

Y3 = {year : year > 2013}
```

Next date Output Equivalence Class Testing

(Weak and Strong Normal Equivalence Class)

Case Id	Description	Input Data			Expected Output			Actu	ıal out	put	. .	
		month	day	year	month	day	year	month	day	year	Status	Comment
WN1,SN1	Enter the M1, D1 and Y1 valid cases	6	15	1912	6	16	1912					

(Weak Robustness Equivalence Class)

Case Id	Description		put Da		Ехр	ected Out	put	Act	ual ou	tput	Status	Comme nt
Case Iu	Description	month	day	year	month	day	year	mon th	day	year		
WR1	Enter the M1, D1 and Y1 cases	6	15	1912	6	16	1912					
WR2	Enter the M2, D1 and Y1 cases	-1	15	1912	Should displ of the mor	•	_					
WR3	Enter the M3 ,D1 and Y1 cases	13	15	1912	Should displ of the mor	ay the me	_					
WR4	Enter the M1, D2 and Y1 cases	6	-1	1912	Should disployed of the day n	ay the me	_					
WR5	Enter the M1, D3 and Y1 cases	6	32	1912	Should displ of the day n							
WR6	Enter the M1, D1 and Y2 cases	6	15	1811	Should displ of the yea 1							
WR7	Enter the M1, D1 and Y3 cases	6	15	2014	Should displ of the yea 1	•	he range					

(Strong Robustness Equivalence Class)

C = -		1	ut Dat		Stress Equivalence Class)			
Case	Description				Expected Output	Actual Output	Status	Comment
Id	·	month	day	year	· · ·	•		
SR1	Enter the M2 , D1 and Y1 cases	-1	15	1912	Should display the message value of the			
3111	Enter the Wiz , brand ir cases	-	13	1312	month not in the range 112			
SR2	Enter the M1, D2 and Y1 cases	6	-1	1912	Should display the message value of the			
3112	Litter the Wil, D2 and 11 cases	U	-1	1912	day not in the range 131			
SR3	Enter the M1, D1 and Y2 cases	6	15	1811	Should display the message value of the			
SKS	Enter the MI, DI and 12 cases	0	13	1011	year not in the range 18122013			
					(i)Should display the message value of the			
CD4	Fatoutho M2 D2 and V1 acces	1	1	1012	month in range 112			
SR4	Enter the M2 , D2 and Y1 cases	-1	-1	1912	(ii) Should display the message value of			
					the day in range 131			
					(i) Should display the message value of			
SR5	Enter the M1 D2 and V2 cases	6	-1	1811	the day in range 131			
SKS	Enter the M1, D2 and Y2 cases	6	-1	1811	(ii) Should display the message value of			
					the year in range 18122013			
					(i) Should display the message value of			
cn.c	5		45	4044	the month in range 112			
SR6	Enter the M2, D1 and Y2 cases	-1	15	1811	(ii) Should display the message value of			
					the year in range 18122013			
					(i)Should display the message value of the			
					month in range 112			
					(ii) Should display the message value of			
SR7	Enter the M2, D2 and Y2 cases	-1	-1	1811	the day in range 131			
					(iii) Should display the message value of			
					the year in range 18122013			
					100		1	

Some addition equivalence Boundary checking

Case Id	Description		Input Da	ta	Expe	Expected Output		kpected Output		Actual Output		tput	Status	Comment
		day	month	year	day	month	year	day	month	year				
1	Enter the D1, M1 and Y1 valid cases	31	12	1811	Should display the message value of the year in range 18122013									
2	Enter the D1, M1 and Y2 valid cases	31	12	2012	1	1	2013							
3	Enter the D1, M1 and Y3 valid cases	31	12	2013	Should display the message Next is out of boundary 2013				•	•				

3. Design, develop, code and run the program in any suitable language to solve the commission problem. Analyze it from the perspective of decision table-based testing, derive different test cases, execute these test cases and discuss the test results.

```
#include<stdio.h>
int main()
{
    int locks, stocks, barrels, tlocks, tstocks, tbarrels; float lprice, sprice, bprice, sales, comm;
    int c1,c2,c3,temp; lprice=45.0; sprice=30.0; bprice=25.0; tlocks=0; tstocks=0;
    tbarrels=0;
    printf("\nenter the number of locks and to exit the loop enter -1 for locks\n"); scanf("%d",&locks);
    while(locks!=-1)
    {
        c1=(locks<=0||locks>70);
        printf("enter the number of stocks and barrels\n"); scanf("%d%d",&stocks,&barrels); c2=(stocks<=0||stocks>80);
        c3=(barrels<=0||barrels>90);
        if(c1)
```

```
printf("value of locks not in the range 1..70 ");
else
       temp=tlocks+locks;
       if(temp>70)
              printf("new total locks =%d not in the range 1..70 so old ",temp);
       else
               tlocks=temp;
  }
printf("total locks = %d\n",tlocks);
if(c2)
       printf("value of stocks not in the range 1..80 ");
else
       temp=tstocks+stocks;
       if(temp>80)
       printf("new total stocks =%d not in the range 1..80 so old ",temp);
       else
```

```
tstocks=temp;
       printf("total stocks=%d\n",tstocks);
       if(c3)
              printf("value of barrels not in the range 1..90 ");
       else
               temp=tbarrels+barrels;
               if(temp>90)
               printf("new total barrels =%d not in the range 1..90 so old ",temp);
               else
               tbarrels=temp;
         }
       printf("total barrel=%d",tbarrels);
       printf("\nenter the number of locks and to exit the loop enter -1 for locks\n");
       scanf("%d",&locks);
printf("\ntotal locks = %d\ntotal stocks = %d\ntotal barrels = %d\n",tlocks,tstocks,tbarrels);
sales = lprice*tlocks+sprice*tstocks+bprice*tbarrels;
printf("\nthe total sales=%f\n",sales);
if(tlocks>0&&tstocks>0&&tbarrels>0)
       if(sales > 1800.0)
       {
               comm=0.10*1000.0;
               comm=comm+0.15*800;
               comm=comm+0.20*(sales-1800.0);
       else if(sales > 1000)
       {
               comm = 0.10*1000;
               comm=comm+0.15*(sales-1000);
       else
               comm=0.10*sales;
       printf("the commission is=%f\n",comm);
else
       printf(" Commission cannot be calculated \n");
```

return 0;

Test Case Name: Decision Table for Commission Problem

Experiment Number: 3

Test data: price Rs for lock - 45.0, stock - 30.0 and barrel - 25.0

sales = total lock * lock price + total stock * stock price + total barrel * barrel price

commission: 10% up to sales Rs 1000, 15% of the next Rs 800 and 20% on any sales in excess of 1800

Pre-condition: lock = -1 to exit and 1 < = lock < = 70, 1 < = stock < = 80 and 1 < = barrel < = 90

Brief Description : The salesperson had to sell at least one complete rifle per month.

Input data decision Table

RULES	-	R1	R2	R	R4	R5	R	R7	R8	R10
				3			6			
Conditions	C1: Locks = -1	T	F	F	F	F	F	F	F	F
	C2 : 1 ≤ Locks ≤ 70	-	T	T	F	T	F	F	F	T
	C3:1 ≤ Stocks ≤ 80	-	T	F	T	F	T	F	F	T
	C4:1 ≤ Barrels ≤ 90	-	F	T	T	F	F	T	F	T
Actions	a1 : Terminate the input loop	X								
	a2 : Invalid locks input				X		X	X	X	
	a3 : Invalid stocks input			X		X		X	X	
	a4 : Invalid barrels input		X			X	X		X	
	a5 : Calculate total locks, stocks and barrels		X	X	X	X	X	X		X
	a5 : Calculate Sales	X								
	a6: proceed to commission decision table	X								

Commission calculation Decision Table (Precondition : lock = -1)

RULES		R1	R2	R3	R4
	C1: tlocks>0 && tstocks>0 && tbarrels>0	T	T	T	F
Condition	C1 : Sales > 0 AND Sales ≤ 1000	T	F	F	
Condition	C2 : Sales > 1001 AND sales ≤ 1800		T	F	

	C3 : sales ≥1801			T	
	A1 : Cannot calculate the commission				X
Actions	A2 : comm= 10%*sales	X			
Actions	A3 : comm = 10%*1000 + (sales-1000)*15%		X		
	A4 : comm = 10%*1000 + 15% * 800 + (sales-1800)*20%			X	

Precondition: Initial Value Total Locks=0, Total Stocks=0 and Total Barrels=0

Precondition Limit: Total locks, stocks and barrels should not exceed the limit 70,80 and 90 respectively

NIR-Not in Range

SAEO-Same as Expected Output

Commission Problem - Decision Table Test cases for input data

		Input Data			Output					A .4 .1	.4 .1	
Cas e Id	Description	Locks	Stocks	Barrels	Terminate i/p loop	Calculate commission	Total locks	Total stocks	Total Barrels	Actual Output	Status	Comments
1	Enter the value of Locks= -1	-1			yes	0				SAEO	PASS	
2	Enter the valid input for lock and stack and invalid for barrels	20	30	-5		no	20	30	NIR	SAEO	PASS	
3	Enter the valid input for lock and barrels and invalid for stocks	15	-2	45								
4	Enter the valid input for lock and barrels and invalid for stocks	-4	15	16								
5	Enter the valid input for lock and invalid value for stocks and barrels	15	80	100								
6	Enter the valid input for stocks and invalid value for locks and barrels	88	20	99								
7	Enter the valid input for barrels and invalid value for locks and stocks	100	200	25								

Commission Problem -Decision Table Test cases for commission calculation

L-locks S-Stocks B-Barrels

	Description	Input Data									
Case Id		L	S	В	Expected Sales	Actual Sales	Expected Commission	Actual Commission	Actual Output	Status	Comments
1	Check the value of sales=0	0	0	0	0	0	0	0	SAEO	PASS	
2	if sales value with in these range(Sales > 0 AND Sales ≤ 1000)	10	9	10							
3	if sales value with in these range(Sales > 1000 AND Sales ≤ 1800)	15	15	15							
4	if sales value with in these range(Sales > 1800	20	30	40							

Precondition: Locks = -1

Program 4 (Boundary Value and Equivalence Class Analysis Program)

/* Design and develop a program in a language of your choice to solve the triangle problem defined as follows: Accept three integers which are supposed to be the three sides of triangle and determine if the three values represent an equilateral triangle, isosceles triangle, scalene triangle, or they do not form a triangle at all. Derive test cases for your program based on boundary value analysis, execute the test cases and discuss the results */

```
printf("\nthe value of b=%d is not the range of permitted value",b);
       if (!c3)
               printf("\nthe value of c=%d is not the range of permitted value",c);
} while(!(c1 && c2 && c3));
// To check is it a triangle or not
if( a<b+c && b<a+c && c<a+b)
       istriangle='y';
else
       istriangle ='n';
// To check which type of triangle
if (istriangle=='y')
       if ((a==b) && (b==c))
               printf("equilateral triangle\n");
       else if ((a!=b) && (a!=c) && (b!=c))
               printf("scalene triangle\n");
         else
               printf("isosceles triangle\n");
else
       printf("Not a triangle\n");
return 0;
```

}

Test Case Name :Boundary Value Analysis for triangle problem

Experiment Number: 4

Test Data: Enter the 3 Integer Value(a, b And c)

Pre-condition: $1 \le a \le 10$, $1 \le b \le 10$ and $1 \le c \le 10$ and a < b + c, b < a + c and c < a + b

Brief Description: Check whether given value for a Equilateral, Isosceles, Scalene triangle or can't form a triangle

Triangle Problem -Boundary value Test cases for input data

Case Id	Description		out Da	ata	Expected Output	Actual	Status	Comments
case ia			a b c		Expected output	Output	Status	Comments
1	Enter the min value for a,b and c	1	1	1	Should display the message Equilateral triangle	Equilateral	PASS	a=b=c
2	Enter the min value for 2 items and min +1 for any one item1	1 1 2		2	Message should be displayed can't form a triangle			
3	Enter the min value for 2 items and min +1 for any one item1	1	2	1	Message should be displayed can't form a triangle			
4	Enter the min value for 2 items and min +1 for any one item1	2	1	1	Message should be displayed can't form a triangle			
5	Enter the normal value for 2 items and 1 item is min value	5	5	1	Should display the message Isosceles triangle			
6	Enter the normal value for 2 items and 1 item is min value	5	1	5	Should display the message Isosceles triangle			
7	Enter the normal value for 2 items and 1 item is min value	1	5	5	Should display the message Isosceles triangle			
8	Enter the normal Value for a, b and c	5	5	5	Should display the message Equilateral triangle			

Dept. of ISE Page 8

9	Enter the normal value for 2 items and 1 item is max value	5	5	10	Should display the message Not a triangle		
10	Enter the normal value for 2 items and 1 item is max value	5	10	5 Should display the message Not a triangle			
11	Enter the normal value for 2 items and 1 item is max value	10	5	5	Should display the message Not a triangle		
12	Enter the max value for 2 items and max - 1 for any one item	10	10	9	Should display the message Isosceles triangle		
13	Enter the max value for 2 items and max - 1 for any one item	10	9	10	Should display the message Isosceles triangle		
14	Enter the max value for 2 items and max - 1 for any one item	9	10	10	Should display the message Isosceles triangle		
15	Enter the max value for a, b and c	10	10	10	Should display the message Equilateral triangle		

5. Design, develop, code and run the program in any suitable language to solve the commission problem. Analyze it from the perspective of dataflow testing, derive different test cases, execute these test cases and discuss the test results.

/Program 5: (Dataflow Testing for commission calculation)

```
#include<stdio.h>
   int main()
   {
           int locks, stocks, barrels, tlocks, tstocks, tbarrels;
           float lprice, sprice, bprice, lsales, ssales, bsales, sales, comm;
           lprice=45.0;
           sprice=30.0;
           bprice=25.0;
           tlocks=0;
           tstocks=0;
           tbarrels=0;
           printf("\nenter the number of locks and to exit the loop enter -1 for
           locks\n");scanf("%d", &locks);
           while(loks!=-1) {
                   printf("enter the number of stocks and barrels\n");
                   scanf("%d%d",&stocks,&barrels);
                   tlocks=tlocks+locks;
                   tstocks=tstocks+stocks:
                   tbarrels=btarrels+barrels:
                   printf("\nenter the number of locks and to exit the loop enter -1 for
                   locks\n"); scanf("%d",&locks);
printf("\ntotal locks = %d\",tlocks);
           printf("total stocks =%d\n",tstocks);
           printf("total barrels =%d\n",tbarrels);
           lsales = lprice*tlocks;
           ssales=sprice*tstocks;
           bsales=bprice*tbarrels;
           sales=lsales+ssales+bsales;
           printf("\nthe total sales=%f\n",sales);
           if(sales > 1800.0)
comm=0.10*1000.0;
                   comm=comm+0.15*800;
                   comm=comm+0.20*(sales-1800.0);
           else if(sales > 1000)
comm =0.10*1000;
comm=comm+0.15*(sales-1000);
           else
comm=0.10*sales;
           printf("the commission is=%f\n".comm);
           return 0;
```

Test Case Name: Data Flow Testing for Commission Program

Experiment No: 4

Precondition: Enter -1 for locks to exit from input loop Brief Description: Enter the locks, stocks and barrels > 0

Define /Use nodes for variables in the commission problem

Variable name Defined at node Used at Node

Selected Define/Use Paths for Commission problem

Test case id	Description	Variables Path (Beginning, End nodes)	Du Paths	Definition clear?	Comments
1	Check for lock price variable DEF(Iprice,7) and USE(Iprice,24)	(7 , 24)	<7-8-9-10-11-12-13-14-15-16-17- 18-19-20-21-22-23-24>	Yes	
2	Check for Stock price variable DEF(sprice,8) and USE(sprice,25)	(8 , 25)	<8-9-10-11-12-13-14-15-16-17-18- 19-20-21-22-23-24-25>	Yes	
3	Check for barrel price variable DEF(bprice,9) and USE(bprice,26)	(9 , 26)	<9-10-11-12-13-14-15-16-17-18- 19-20-21-22-23-24-25-26>	Yes	
		(10 , 16)	<10-11-12-13-14-15-16>	Yes	
	Check for total locks variable DEF((tlocks,10) and DEF(tlocks,16)) and 3 usage node(USE(tlocks,16),USE(tlocks,21), USE(tlocks,24))	(10,21)	<10-11-12-13-14-15-16-17-18-19- 20-14-21>	No	
4		(10 , 24)	<10-11-12-13-14-15-16-17-18-19- 20-14-21-22-23-24>	No	
		(16 , 16)	<16-16>	Yes	
		(16 , 21)	<16-17-18-19-14-21>	No	
		(16 , 24)	<16-17-18-19-20-14-21-22-23-24>	No	
		(11 , 17)	<11-12-13-14-15-16-17>	Yes	
_	Check for total stocks variable DEF((tstocks,11) and DEF(tstocks,17)) and	(11 , 22)	<11-12-13-14-15-16-17-18-19-20- 21-14-21>	No	
5	3 usage node(USE(tstocks,17),USE(tstocks,22), USE(tstocks,25))	(11, 25)	<11-12-13-14-15-16-17-18-19-20- 21-14-21-23-24-25>	No	
	· , , , , , , , , , , , , , , , , , , ,	(17 , 17)	<17-17>	Yes	
		(17 , 22)	<17-18-19-20-14-21-22>	No	

		(17 , 25)	<17-18-19-20-14-21-22-23-24-25>	No	
		(13 , 14)	<13-14>	Yes	Begin the loop
6	check for locks variable (DEF(locks,13),	(13 , 16)	<13-14-15-16>	Yes	
ь	DEF(locks,19) and USE(locks,14),USE(locks,16)	(19 , 14)	<19-20-14>	Yes	
		(19 , 16)	<19-20-14-15-16>	Yes	Repeat the loop
7	Check for stocks variable (DEF(stocks,15) and USE(stocks,17)	(15 , 17)	<15-16-17>	Yes	
		(27 ,28)	<27-28>	Yes	
	Check for sales DEF(sales, 27) and USE(Sales, 28), USE(Sales , 29), USE(Sales, 33) , USE(Sales , 34) , USE(Sales, 37) , USE(Sales , 39)	(27 , 29)	<27-28-29>	Yes	
8		(27 , 33)	<27-28-29-30-31-32-33>	Yes	
0		(27 , 34)	<27-28-29-34>	Yes	
		(27 , 37)	<27-28-29-34-35-36-37>	Yes	
		(27 , 39)	<27-28-29-34-38-39>	Yes	
9	Check for Commission variable DEF(comm,	((31,32,33),40)	<31-32-33-40>	Yes	
	31,32,33) , DEF(comm,34,35) and	((34, 35), 40)	<34-35-40>	Yes	
	DEF(comm,39) and USE(comm,40)	((39 , 40)	<39 - 40>	Yes	

Program 6 (Binary Search - Path Testing)

/* Design, develop a code and run the program in any suitable language to implement the binary search algorithm. Determine the basis paths and using them derive different test cases execute these test cases and discuss the test results */

```
#include<stdio.h>
int binsrc(int x[],int low,int high,int key)
{
    int mid; while(low<=high)
    {
        mid=(low+high)/2; if(key==x[mid])
        return mid; if(key<x[mid])
        high=mid-1;</pre>
```

```
else
                      low=mid+1;
       }
       return -1;
}
int main()
       int x[20],key,i,n,succ;
       printf("Enter the n value");
       scanf("%d",&n);
       if(n>0)
       {
       printf("enter the elements in ascending order\n");
              for(i=0;i<n;i++)
              scanf("%d",&x[i]);
       printf("enter the key element to be searched\n");
            scanf("%d",&key);
               succ=binsrc(x,0,n-1,key);
              if(succ > = 0)
                      printf("Element found in position = %d\n",succ+1);
              else
                      printf("Element not found \n");
       else
              printf("Number of element should be greater than zero\n");
       return 0;
}
```

Binary Search function with line number int binsrc(int x[],int low,int high,int key) int mid; 1 while(low<=high) 2 mid=(low+high)/2; if(key==x[mid])3 return mid; 8 if(key<x[mid])</pre> high=mid-1; 5 else low=mid+1; 6 8 return -1;

Program Graph – for Binary Search

Independent Paths:

#Edges=11, #Nodes=9, #P=1 V(G)= E-N+2P = 11-9+2 = 4

P1: 1-**2**-3-8-9

P2: 1-2-3-4-5-7-2

P3: 1-2-3-4-6-7-2

P4: 1-**2**-8-9

Pre-Conditions/Issues:

Array has Elements in Ascending order T/F
Key element is in the Array T/F
Array has ODD number of Elements T/F

Test Cases – Binary Search

Paths	Inpu	ıts	Expected	Remarks
rauis	x[]	Key	Output	Kelliaiks
P1 : 1-2-3-8-9	{10,20,30,40,50}	30	Success	Key $\in X[]$ and Key== $X[mid]$
P2: 1-2-3-4-5-7-2	{10,20,30,40,50}	20	Repeat and Success	Key < X[mid] Search 1 st Half
P3: 1-2-3-4-6-7-2	{10,20,30,40,50}	40	Repeat and Success	Key > X[mid] Search 2 nd Half
P4: 1-2-8-9	{10,20,30,40,50}	60 OR 05	Repeat and Failure	Key ∉X[]
P4: 1-2-8-9	Empty	Any Key	Failure	Empty List