NOTE ON TYPE THEORIES

KEISUKE HOSHINO

[Cis19]

Notation 0.1. We employ the following notations.

- Possibly large (2,1)-categories are denoted by bf symbols: C, A, E, ...
- Small categories are denoted by bb symbols: $\mathbb{I}, \mathbb{D}, \mathbb{A}, \dots$
- Set is the category of small sets.
- Cat is the 2-category of small categories.
- Cat is the (2,1)-category of small categories.
- Δ^1 is the 1-simplex seen as a category. \mathbf{C}^{Δ^1} is the arrow category of \mathbf{C} .
- \bullet $\mathbf{C}_{/A}$ and $\mathbf{C}_{A/}$ are over and under categories respectively.
- cod and dom means codomain and domain respectively. They often have as their type $\mathbf{C}^{\Delta^1} \longrightarrow \mathbf{C}$, $\mathbf{C}_{/A} \longrightarrow \mathbf{C}$, or $\mathbf{C}_{A/} \longrightarrow \mathbf{C}$.
- By a *replete class of morphisms* of \mathbb{C} , we mean a replete subcategory of \mathbb{C}^{Δ^1} that is a groupoid.

Definition 0.2.

 $\begin{array}{ccc} \mathbf{StrCat} & \longrightarrow \mathbf{Cat}^{\Delta^1} \\ & & & \downarrow^{\mathsf{cod}} \\ \mathbf{Set} & \longrightarrow \mathbf{Cat} \end{array}$

Definition 0.3. A *clan* C = (C, Fib) is a pair of a category C and a replete class Fib of morphisms satisfying the following conditions. Arrows in Fib are called *fibrations* of C.

- C has a terminal object.
- Let $h: A \longrightarrow B$ and $f: X \longrightarrow B$ be morphisms in ${\bf C}$ such that f is a fibration. Then there is a pullback square

$$\begin{array}{ccc} \cdot & \longrightarrow & X \\ \downarrow & & & \downarrow^f \\ A & \xrightarrow[h]{} & B \end{array}$$

in **C** such that the left side is also a fibration.

- For each object $A \in \mathbb{C}$, the unique morphism $A \longrightarrow 1$ towards the terminal object is a fibraion.
- Fib is closed under composition.

Date: April 14, 2024.

1

Theorem 0.4. shoumei no aidani claim ireru yatu

Proof. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Claim. nannka claim siro

∵ Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris. ♦

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Theorem 0.5. Saigo ni claim kuru taipu.

Proof. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum. This follows from the following Claim, which completes the proof.

Claim. nannka claim siro

∵ Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris. ♦

References

[Cis19] D.-C. Cisinski. Higher Categories and Homotopical Algebra, volume 180 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2019. doi:10.1017/9781108588737.

Email address: hoshinok@kurims.kyoto-u.ac.jp

RESEARCH INSTITUTE OF MATHEMATICAL SCIENCE, KYOTO UNIVERSITY