Chuong 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ

Nội dung:

- 6.1 Chuỗi Fourier của tín hiệu rời rạc tuần hoàn
- 6.2 Biến đổi Fourier thời gian rời rạc (DTFT)
 - 6.2.1 Định nghĩa
 - 6.2.2 Các tính chất của DTFT
 - 6.2.3 Mối quan hệ giữa biến đổi DTFT và biến đổi Z
- 6.3 Biểu diễn miền tần số của hệ thống LTI
 - 6.3.1 Định nghĩa đáp ứng tần số
 - 6.3.2 Quan hệ trong miền tần số

Bài tập

Chương 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ

6.1 Chuỗi Fourier của tín hiệu rời rạc tuần hoàn:

❖ Giả sử x(n) là tín hiệu rời rạc tuần hoàn có chu kỳ N, nghĩa là:

$$x(n) = x(n+N), \forall n$$

→ Công thức khai triển Fourier (chuỗi Fourier):

$$x(n) = \sum_{k=0}^{N-1} c_k e^{j 2\pi k n/N}$$

trong đó, các hệ số Fourier c_k được xác định như sau:

$$c_k = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pi kn/N}, \quad k = 0, ..., N-1$$

- ❖ Nhận xét:
 - x(n) được biểu diễn trong miền tần số bởi các hệ số {c_k}
 - Các hệ số {c_k} cũng tuần hoàn với chu kỳ N.

Chương 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

- Mật độ phổ công suất
 - > Công suất trung bình của tín hiệu rời rạc tuần hoàn:

$$P_{x} = \frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^{2}$$

→ biểu diễn P_x theo các hệ số c_k???

$$P_{x} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) x^{*}(n) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) \left[\sum_{k=0}^{N-1} c_{k}^{*} e^{-j2\pi kn/N} \right]$$

$$= \sum_{k=0}^{N-1} c_k^* \left[\frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pi k n/N} \right] = \sum_{k=0}^{N-1} |c_k|^2$$

Suy ra:

$$P_{x} = \frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^{2} = \sum_{k=0}^{N-1} |c_{k}|^{2}$$

ightharpoonup Chuỗi $|c_k|^2$: biểu diễn phân bố công suất theo tần số ightharpoonup đồ thị biểu diễn $\{|c_k|^2\}$: mật độ phổ công suất của tín hiệu rời rạc tuần hoàn.

Chuong 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

6.1 Chuỗi Fourier của tín hiệu rời rạc tuần hoàn:

Ví dụ 1: Cho tín hiệu $x(n) = \{1,1,0,0\}$ tuần hoàn với chu kỳ N = 7.

Hãy xác định và vẽ phổ; mật độ phổ công suất.

Lời giải:

➤ Tín hiệu x(n) được biểu diễn trong miền tần số bởi các hệ số {c_k}:

$$c_{k} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pi kn/N} = \frac{1}{4} \sum_{n=0}^{3} x(n) e^{-j2\pi kn/4}; \quad k = 0, 1, 2, 3$$

*
$$k = 0 : c_0 = \frac{1}{4} \sum_{n=0}^{3} x(n) = \frac{1}{4} (1 + 1 + 0 + 0) = \frac{1}{2}$$

*
$$k = 1 : c_1 = \frac{1}{4} \sum_{n=0}^{3} x(n) e^{-j2\pi n/4} = \frac{1}{4} (1 \times e^0 + 1 \times e^{-j\pi/2}) = \frac{1}{4} (1 - j)$$

*
$$k = 2 : c_2 = \frac{1}{4} \sum_{n=0}^{3} x(n) e^{-j\pi n} = \frac{1}{4} (1 \times e^0 + 1 \times e^{-j\pi}) = 0$$

*
$$k = 3 : c_3 = \frac{1}{4} \sum_{n=0}^{3} x(n) e^{-j3\pi n/2} = \frac{1}{4} (1 \times e^0 + 1 \times e^{-j3\pi/2}) = \frac{1}{4} (1 + j)$$

Chương 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

> Vẽ phổ biên độ và phổ pha:

Mật độ phổ công suất:

$$|c_0|^2 = \frac{1}{4}; |c_1|^2 = \frac{1}{8}; |c_2|^2 = 0; |c_3|^2 = \frac{1}{8};$$

> Công suất tín hiệu:

$$P_x = \frac{1}{4} + \frac{1}{8} + 0 + \frac{1}{8} = \frac{1}{2}$$

Chương 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

6.2 Biến đổi Fourier thời gian rời rạc DTFT (Discrete Time Fourier Transform)

> phép biến đổi Fourier của tín hiệu rời rạc không tuần hoàn

6.2.1 Định nghĩa:

❖ Giả sử x(n) là tín hiệu rời rạc không tuần hoàn. Cặp công thức biến đổi DTFT:

$$X(\Omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\Omega n}$$

(biến đổi DTFT thuận)

$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{j\Omega n} d\Omega$$

(biến đổi DTFT ngược)

- ❖ Nhận xét:
 - Phổ của tín hiệu rời rạc không tuần hoàn có dạng liên tục, dạng phức.

$$X(\Omega) = |X(\Omega)| e^{j \angle X(\Omega)}$$

Phổ biên độ

Phổ pha

Chương 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

- ❖ Nhận xét (tt):
 - \triangleright X(Ω) tuần hoàn với chu kỳ 2π .

$$Voi x(n) thực: X^*(\Omega) = X(-\Omega), hay: \begin{cases} |X(\Omega)| = |X(\Omega)| \\ \angle X(\Omega) = -\angle X(-\Omega) \end{cases}$$

- ❖ Điều kiện tồn tại phép biến đổi Fourier:
 - X(Ω) tồn tại nếu vế phải của nó hội tụ, suy ra:
 - Như vậy, x(n) phải là tín hiệu có năng lượng hữu han.

$$\sum_{n=-\infty}^{\infty} |x(n)| < \infty$$

Ví dụ 2: Cho tín hiệu $x(n) = (0.5)^n u(n)$. Hãy xác định phố $X(\Omega)$? Lời giải:

> Xét điều kiện tồn tại của biến đổi Fourier:

$$\sum_{n=-\infty}^{\infty} x(n) = \sum_{n=0}^{\infty} (0.5)^n = \frac{1}{1 - 0.5} = 2 < \infty \quad \to \text{ tồn tại DTFT}$$

➤ Phổ của tín hiệu:

$$X(\Omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\Omega n} = \sum_{n=0}^{\infty} (0.5)^n e^{-j\Omega n} = \sum_{n=0}^{\infty} (0.5e^{-j\Omega})^n = \frac{1}{1 - 0.5e^{-j\Omega}}$$

Chương 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

Ví du 3: Cho tín hiệu $x(n) = a^n u(n), |a| < 1.$

Hãy vẽ các thành phần phổ thực / phổ ảo, phổ biên độ/ phổ pha của tín hiệu x(n)?

> Các thành phần phổ thực và phổ ảo:

$$X(\Omega) = \frac{1 - ae^{j\Omega}}{(1 - ae^{-j\Omega})(1 - ae^{j\Omega})} = \frac{1 - a\cos\Omega - ja\sin\Omega}{1 - 2a\cos\Omega + a^2}$$

$$\Rightarrow X_R(\Omega) = \frac{1 - a\cos\Omega}{1 - 2a\cos\Omega + a^2}; \quad X_I(\Omega) = \frac{-a\sin\Omega}{1 - 2a\cos\Omega + a^2}$$

Chương 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

Lời giải (tt):

Phổ của tín hiệu:

$$X(\Omega) = \sum_{n = -\infty}^{\infty} x(n)e^{-j\Omega n} = \sum_{n = 0}^{\infty} (ae^{-j\Omega})^n = \frac{1}{1 - ae^{-j\Omega}}$$

> Các thành phần phổ biên độ và phổ pha:

$$|X(\Omega)| = \frac{1}{\sqrt{1 - 2a\cos\Omega + a^2}};$$
 $\angle X(\Omega) = -arctg \frac{a\sin\Omega}{1 - a\cos\Omega}$

Chương 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

Ví dụ 4: Xác định x(n), biết phổ của nó:

$$X(\Omega) = \begin{cases} 1 &, |\Omega| < \Omega_0 \\ 0 &, |\Omega| \ge \Omega_0 \end{cases}$$

Lời giải:

Áp dụng phép biến đổi DTFT ngược:

$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{j\Omega n} d\Omega = \frac{1}{2\pi} \int_{-\Omega_0}^{\Omega_0} e^{j\Omega n} d\Omega = \begin{cases} \frac{\sin \Omega_0 n}{n\pi} &, n \neq 0 \\ \frac{\Omega_0}{\pi} &, n = 0 \end{cases}$$

Vậy tín hiệu rời rạc:

$$x(n) = \frac{\Omega_0}{\pi} Sa\Omega_0 n$$

Chương 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

❖ Quan hệ về năng lượng (Định lý Parseval về năng lượng)

$$E_{x} = \sum_{n=-\infty}^{\infty} |x(n)|^{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\Omega)|^{2} d\Omega$$

❖Một số cặp biến đổi DTFT thông dụng:

Sequence	Discrete-Time Fourier Transform
$\delta(n)$	1
$\delta(n-n_0)$	$e^{-jn_0\Omega}$
1	2πδ(Ω)
$e^{jn\Omega_0}$	$2\pi\delta(\Omega-\Omega_0)$
$a^n u(n), a < 1$	$\frac{1}{1-ae^{-j\Omega}}$
$-a^n u(-n-1), a > 1$	$\frac{1}{1-ae^{-j\Omega}}$
$(n+1)a^nu(n), a <1$	$\frac{1}{(1-ae^{-j\Omega})^2}$
$\cos n\Omega_0$	$\pi\delta(\Omega + \Omega_0) + \pi\delta(\Omega - \Omega_0)$

Chương 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

6.2.2 Các tính chất của biến đổi DTFT:

Property	Time Domain	Frequency Domain
Notation	x(n)	Χ(Ω)
	$x_1(n)$	$X_1(\Omega)$
	$x_2(n)$	$X_2(\Omega)$
Linearity	$a_1x_1(n) + a_2x_2(n)$	$a_1X_1(\Omega)+a_2X_2(\Omega)$
Time shifting	x(n-k)	$e^{-j\Omega k}X(\Omega)$
Time reversal	x(-n)	$X(-\Omega)$
Convolution	$x_1(n) * x_2(n)$	$X_1(\Omega)X_2(\Omega)$
Frequency shifting	$e^{j\Omega_{\Omega^n}x(n)}$	$X(\Omega - \Omega_{\mathcal{D}})$
Modulation	$x(n)\cos\Omega_0 n$	$\tfrac{1}{2}X(\Omega+\Omega_0)+\tfrac{1}{2}X(\Omega-\Omega_0)$
Multiplication	$x_1(n)x_2(n)$	$= \frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(\lambda) X_2(\Omega + \lambda) d\lambda$
Differentiation in the frequency domain	nx(n)	$j\frac{dX(\Omega)}{d\Omega}$
Conjugation	$x^*(n)$	$X^{\bullet}(-\Omega)$
Parseval's theorem	$\sum_{n=-\infty}^{\infty} x_1(n) x_2^*(n) = \frac{1}{2\pi} \int$	$\int_{-\pi}^{\pi} X_1(\Omega) X_2^{\bullet}(\Omega) d\Omega$

Chương 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

Ví dụ 5: Cho các tín hiệu $x_1(n) = x_2(n) = \{1, 1, 1\}$. Tính $x(n) = x_1(n) * x_2(n)$? **Lời giải:**

- Cách 1: (sử dụng bảng tích chập)
- Cách 2: (sử dụng tính chất biến đổi Fourier)
 - Xác định phổ của hai tín hiệu:

$$X_1(\Omega) = \sum_{n = -\infty}^{\infty} x_1(n)e^{-j\Omega n} = e^{-j\Omega} + e^0 + e^{j\Omega} = 1 + 2\cos\Omega$$

$$X_2(\Omega) = X_1(\Omega)$$

• Sử dụng tính chất tích chập:

$$X(\Omega) = X_1(\Omega)X_2(\Omega) = (1 + 2\cos\Omega)(1 + 2\cos\Omega)$$

$$= 1 + 4\cos\Omega + 4\cos^2\Omega = 3 + 4\cos\Omega + 2\cos2\Omega$$

$$= 3 + 2(e^{-j\Omega} + e^{j\Omega}) + (e^{-j2\Omega} + e^{j2\Omega})$$

- Mặc khác, biểu thức biến đổi DTFT: $X(\Omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\Omega n}$ • Đồng nhất hai biểu thức, suy ra:
 - $x(n) = \{1, 2, 3, 2, 1\}$

Chương 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

6.2.3 Mối quan hệ giữa biến đổi DTFT và biến đổi Z

> Biểu thức hai phép biến đổi:

$$\begin{cases} X(z) = \sum_{n=-\infty}^{+\infty} x(n)z^{-n} \\ X(\Omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\Omega n} \end{cases}$$

ightharpoonup Từ biểu thức biến đổi Z, nếu đặt z = re $^{j\Omega}$ (do z: biến phức). Lúc đó:

$$X(z) = \sum_{n=-\infty}^{+\infty} [x(n)r^{-n}]e^{-j\Omega n} = X(\Omega)$$

- →X(z) được xem là biến đổi DTFT của chuỗi x(n).r-n.
- ightharpoonup Ngược lại, nếu <math>X(z) hội tụ với |z| = 1, có thể biểu diễn: $z = e^{j\Omega}$, do vậy:

$$X(\Omega) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j\Omega n} = X(z)\Big|_{z=e^{j\Omega}}$$

 \rightarrow X(Ω) được xem như biến đổi Z của chuỗi xác định trên vòng tròn đơn vị.

Chương 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

6.2.3 Mối quan hệ giữa biến đổi DTFT và biến đổi Z

Ví du 6: Tìm biến đổi Z và biến đổi DTFT của chuỗi:

$$x(n) = (1/2)^n u(n)$$

Lời giải:

➤ Biến đổi Z:

$$X(z) = \sum_{n=-\infty}^{+\infty} x(n)z^{-n} = \sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n z^{-n} = \frac{1}{1 - \frac{1}{2}z^{-1}}, |z| > \frac{1}{2}$$

> Biến đổi DTFT:

Cách 1: (tính trực tiếp từ định nghĩa DTFT)

$$X(\Omega) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j\Omega n} = \sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n e^{-j\Omega n} = \frac{1}{1 - \frac{1}{2}e^{-j\Omega}}$$

Cách 2: (dựa vào biến đổi Z). Vì ROC: |z|>1/2, chứa vòng tròn đơn vị:

$$X(\Omega) = X(z)\Big|_{z=e^{j\Omega}} = \frac{1}{1 - \frac{1}{2}e^{-j\Omega}}$$

Chương 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

- 6.3 Biểu diễn miền tần số của hệ thống LTI
- 6.3.1 Định nghĩa đáp ứng tần số:
- ightharpoonup Xét hệ thống LTI có đáp ứng xung h(n). Biến đổi DTFT của h(n), ký hiệu H(Ω), được gọi là đáp ứng tần số của hệ thống rời rạc.

$$H(\Omega) = \sum_{n=-\infty}^{\infty} h(n)e^{-j\Omega n}$$

 $ightharpoonup H(\Omega)$ đặc trưng đầy đủ các tính chất của hệ thống trong miền tần số, và thường là một số phức:

 $H(\Omega) = H(\Omega) | e^{j \angle H(\Omega)}$

Đáp ứng pha

Đáp ứng biên độ

- > Khi biết đáp ứng tần số, dùng biến đổi DTFT ngược để tìm đáp ứng xung.
- > Điều kiện tồn tại đáp ứng tần số:

$$\mathsf{H}(\Omega)$$
 tồn tại nếu: $\sum_{n=-\infty} |h(n)| < \infty$,nghĩa là: hệ thống phải ổn định

Chương 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

Ví dụ 7: Cho hệ thống LTI nhân quả được mô tả bởi phương trình I/O: y(n) = 0.9y(n-1) + 0.1x(n)

Xác định đáp ứng biên độ và đáp ứng pha của hệ thống?

Lời giải:

Xác định đáp ứng xung h(n):

$$h(n) = 0.9h(n-1) + 0.1\delta(n)$$

$$n = 0$$
: $h(0) = 0.9h(-1) + 0.1\delta(0) = 0.1$

$$n = 1$$
: $h(1) = 0.9h(0) + 0.1\delta(1) = 0.9*0.1$

$$n = 2$$
: $h(2) = 0.9h(1) + 0.1\delta(2) = 0.9^{2} \cdot 0.1$;

.

$$\rightarrow$$
 h(n) = 0.1 (0.9)^{n.}u(n)

Nhận xét: hệ thống là ổn định, vì vậy tồn tại biến đổi DTFT.

Do đó, đáp ứng tần số:

$$H(\Omega) = \sum_{n=-\infty}^{\infty} h(n)e^{-j\Omega n} = \sum_{n=0}^{\infty} 0.1 \times (0.9)^n e^{-j\Omega n}$$
$$= 0.1 \frac{1}{1 - 0.9e^{-j\Omega}} = \frac{0.1}{1 - 0.9\cos\Omega + j0.9\sin\Omega}$$

Chương 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

6.3.1 Định nghĩa đáp ứng tần số (tt):

Ví dụ 7 (tt)

> Xác định đáp ứng tần số và đáp ứng pha

$$|H(\Omega)| = \frac{0.1}{\sqrt{1.81 - 1.8\cos\Omega}}; \quad \angle H(\Omega) = -arctg \frac{0.9\sin\Omega}{1 - 0.9\cos\Omega}$$

$$\angle H(\Omega) = -arctg \frac{0.9 \sin \Omega}{1 - 0.9 \cos \Omega}$$

> Vẽ đáp ứng tần số và đáp ứng pha:

Chương 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

6.3.2 Quan hệ trong miền tần số

Xét hệ thống LTI có đáp ứng xung h(n), đáp ứng tần số H(Ω):

> Đáp ứng tần số của các hệ thống ghép nối:

Chuong 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

6.3.2 Quan hệ trong miền tần số

Ví dụ 8: Cho hệ thống LTI có đáp ứng xung: $h(n) = (1/2)^n u(n)$

a. Xác định tín hiệu ngõ ra khi tín hiệu ngõ vào: $x(n) = (1/4)^n u(n)$

Lời giải:

> Phổ tín hiệu ngõ vào:

$$X(\Omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\Omega n} = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n e^{-j\Omega n} = \frac{1}{1 - e^{-j\Omega}/4}$$

Đáp ứng tần số của hệ thống:

$$H(\Omega) = \sum_{n=-\infty}^{\infty} h(n)e^{-j\Omega n} = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n e^{-j\Omega n} = \frac{1}{1 - e^{-j\Omega}/2}$$

Phổ tín hiệu ngõ ra:

$$Y(\Omega) = X(\Omega)H(\Omega) = \frac{1}{1 - e^{-j\Omega}/2} \times \frac{1}{1 - e^{-j\Omega}/4}$$

> Suy ra biểu thức tín hiệu miền thời gian:

$$y(n) = \left| 2\left(\frac{1}{2}\right)^n - \left(\frac{1}{4}\right)^n \right| u(n)$$

Chương 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

b. Xác định tín hiệu ngõ ra khi tín hiệu ngõ vào: $x(n) = 5 + 12\sin \pi n/2 - 20\cos(\pi n + \pi/4)$

Lời giải:

> Đáp ứng tần số của hệ thống:

$$H(\Omega) = \frac{1}{1 - e^{-j\Omega}/2} \Rightarrow \begin{cases} |H(\Omega)| = \frac{1}{\sqrt{1.25 - \cos\Omega}} \\ \angle H(\Omega) = -arctg \frac{0.5\sin\Omega}{1 - 0.5\cos\Omega} \end{cases}$$

- > Xác định ngõ ra với từng tần số ngõ vào:
 - Các tần số ngõ vào: 0; π/2; π.
 - Thay lần lượt vào biểu thức đáp ứng tần số và đáp ứng pha:
- ❖ Chú ý:

Chương 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

Ví dụ 8 (tt)

• Thay lần lượt vào biểu thức đáp ứng tần số và đáp ứng pha:

*
$$\Omega = 0$$
: $|H(0)| = \frac{1}{\sqrt{1.25 - 1}} = \frac{1}{0.5} = 2$

$$\angle H(0) = -arctg \, 0 = 0$$
* $\Omega = \pi / 2$: $|H(\frac{\pi}{2})| = \frac{1}{\sqrt{1.25 - 0}} = \frac{1}{1.12} = 0.89$

$$\angle H(\frac{\pi}{2}) = -arctg \, 0.5 = -0.15\pi$$
* $\Omega = \pi$: $|H(\pi)| = \frac{1}{\sqrt{1.25 + 1}} = \frac{1}{1.5} = 0.67$

$$\angle H(\pi) = -arctg \, 0 = 0$$

$$\Rightarrow y(n) = 5 |H(0)| + 12 |H(\frac{\pi}{2})| \sin\left[\frac{\pi}{2}n + \angle H(\frac{\pi}{2})\right]$$

$$-20 |H(\pi)| \sin\left[\pi n + \angle H(\pi)\right]$$

$$= 10 + 10.7 \sin(\pi n / 2 - 0.15\pi) - 13.4 \cos \pi n$$

Chương 6

XỬ LÝ TÍN HIỆU MIỀN TẦN SỐ (tt)

Bài tập:

- 6.1 (bài 6.1.1 trang 223)
- 6.2 (bài 6.1.6 trang 223)
- 6.3 (bài 6.2.1 trang 223)
- 6.4 (bài 6.3.1 trang 225)
- 6.5 (bài 6.3.3 trang 225)
- 6.6 (bài 6.3.4 trang 225)
- 6.7 (bài 6.3.7 trang 226)