TAM 598 Lecture 8:
THE MONTE CARLO METHOD

FOR ESTIMATING EXPECTATIONS

Announcements:

- HW 2 covers lectures 4-8; due on Feb 26

Our problem to day: high dimensional integrals

say we have a random vector
$$X = \{X_1, X_2, ..., X_d\} \in \mathbb{R}^d$$
 and some function $g(X)$.

things we want to compute:

expectation $\mathbb{E}[q(X)] =$

V[g(x)] =

$$CDF F(x) =$$

variance

why high dim. integrals are hard CURSE OF DIMENSIONALITY

LAW OF LARGE NUMBERS

Say we have an infinite series of independent random vaniables x_1, x_2, \dots all with the same distribution.

Mo	NT	E	CAF	ミ ト	0		2	l Ro	lγγ	ι,	V 0	n	N	lei	ım	ar	าท	l	194	tDs)					
																									6	
																									Č	/

say we want to estimate not only the expectation of a distribution by sampling, but also the variance. We can do this by deriving an expression for a variance estimator.

Show that the average of the estimator converges to the expectation.

VARIANCE OF A MONTE CARLO ESTIMATOR