MATH 561 Fall 2015 – Homework Set # 5

Last Name:	First Name:
UID:	Siganuture:

1. (30 points) (a) Consider an explicit multistep method of the form

$$\mathbf{u}_{n+2} - \mathbf{u}_{n-2} + \alpha(\mathbf{u}_{n+1} - \mathbf{u}_{n-1}) = h[\beta(\mathbf{f}_{n+1} + \mathbf{f}_{n-1}) + \gamma \mathbf{f}_n]$$

Show that the parameters α, β, γ can be chosen uniquely so that the method has order p = 6. {Hint: to preserve symmetry, and thus algebraic simplicity, define the associated linear functional on the interval [-2, 2] rather than [0, 4] as in Sect. 6.1.2. }

- (b) Discuss the stability properties of the method obtained in (a).
- 2. (30 points) Construct a pair of four-step methods, one explicit, the other implicit, both having $\alpha(\xi) = \xi^4 \xi^3$ and order p = 4, but global error constants that are equal in modulus and opposite in sign.
- 3. (40 points) Consider the (slightly modified) model problem

$$\frac{dy}{dx} = -\omega[y - a(x)], \ 0 \le x \le 1; \ y(0) = y_0,$$

where $\omega > 0$ and (i) $a(x) = x^2$, $y_0 = 0$; and (ii) $a(x) = e^x$, y(0) = 1.

- (a) In each of the cases (i) and (ii), obtain the exact solution y(x).
- (b) In each of the cases (i) and (ii), apply the kth-order Adams-Bashford method and kth-order Adams predictor/corrector method, for k=4, using exact starting values and step lengths $h=\frac{1}{20},\frac{1}{40},\frac{1}{80},\frac{1}{160}$. Print the exact values y_n and numerical solution u_n , and check the accuracy of the methods. Try $\omega=1,10,50$. Summarize your results.