

82 Espaces probabilisés

Révision

83 Variables aléatoires discrètes

Révision

84 Espérance et variance

Révision

85 Fonctions génératrices

Révision

42 Espaces vectoriels normés

Normes Définition, exemples, propriétés. Distance associée à une norme, distance d'un vecteur à une partie de E. Norme euclidienn associée à un produit scalaire. Normes usuelles sur \mathbb{K}^p , sur $\mathcal{M}_{np}(\mathbb{K})$, sur $\mathbb{K}[X]$, sur $\mathcal{C}^0([a,b],\mathbb{K})$. Pour A partie non vide de \mathbb{R} et $k \ge 0$, on utilise directement $\sup\{kx, x \in A\} = k \operatorname{Sup}(A)$. La norme infinie.

Boules, partie convexe de E, partie bornée de E.

Espace vectoriel normé produit.

Suites d'éléments d'un evn Convergence, divergence. Unicité de la limite, lien avec la suite numérique $(\|u_n - \ell\|)_{n \in \mathbb{N}}$.

Suites bornées. Opérations sur les suites convergentes.

En dimension finie, suites coordonnées, convergence par coordonnées. Convergence des suites à valeurs dans un espace produit.

Comparaison des normes Normes équivalentes. On admet pour l'instant que les normes d'un espace de dimension finie sont équivalentes.

Invariance du caractère borné, de la convergence.

Méthode pour comparer deux normes.

43 Topologie des evn

Point intérieur, ouvert, voisinage Voisinage d'un point (défini par les boules ouvertes), cas des normes équivalentes.

U est ouvert s'il est voisinage de chacun de ses points. Une boule ouverte est un ouvert. Union quelconque, intersection finie d'ouverts. Un produit fini d'ouverts est un ouvert.

Point intérieur à A, intérieur \mathring{A} de A. A est ouvert ssi $\mathring{A} = A$. \mathring{A} est le plus grand ouvert inclus dans A.

Point adhérent, fermé, densité A est fermé ssi son complémentaire A^C est ouvert. Une boule fermée est un fermé. Un union finie, une intersection quelconque de fermés est un fermé. Un produit fini de fermés est un fermé. Point adhérent à A, adhérence \overline{A} de A. A est fermé ssi $\overline{A} = A$. \overline{A} est le plus petit fermé contenant A. Lien avec d(x, A).

Frontière. Densité.

Caractéristations séquentielles de l'adhérence, du caractère fermé, de la densité.

Topologie et normes équivalentes

Topologie induite

31 Espaces préhlibertiens réels

Produit scalaire et norme associée Produit scalaire. Exemples de références dans \mathbb{R}^n , $\mathcal{M}_{np}(\mathbb{R})$ et $\mathcal{M}_{n1}(\mathbb{R})$, $\mathcal{C}^0([a,b],\mathbb{R})$. Autres exemples.

Inégalité de Cauchy-Schwarz, cas d'égalité, inégalité de Minkowski. Norme euclidienne. Identités remarquables.

Exercices et résultats classiques à connaître

42.1

Soit $E = \mathcal{C}^0([0,1],\mathbb{K})$ l'ensemble des fonctions numériques bornées sur [0,1]. Montrer qu'en posant :

$$||f||_{\infty} = \sup_{t \in [0,1]} (|f(t)|)$$

on définit une norme sur E.

42.2

Soit E un espace vectoriel normé. Montrer que toute boule ouverte de E est convexe.

42.3

On note E l'espace vectoriel des fonctions réelles continues sur [0,1]. Pour $f \in E$, on note :

$$||f||_1 = \int_0^1 |f(t)| dt$$
 et $N(f) = \int_0^1 t|f(t)| dt$

- (a) Montrer que N est une norme sur E.
- (b) Pour $n \in \mathbb{N}$, on définit :

$$f_n: t \mapsto \begin{cases} n(1-nt) & \text{si } t \in [0,1/n] \\ 0 & \text{si } t \in]1/n,1] \end{cases}$$

Calculer $N(f_n)$ et vérifier que, pour la norme N, $f_n \xrightarrow[n \to +\infty]{} 0$.

(c) Calculer $||f_n||_1$. Qu'en conclure?

43.1

Pour $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$, montrer que $\mathrm{GL}_n(\mathbb{K})$ est dense dans $\mathcal{M}_n(\mathbb{K})$.

43.2

Soit H un sous-groupe non nul de $(\mathbb{R}, +)$.

- (a) Justifier l'existence de $\alpha = \text{Inf}\{x \in H, x > 0\}.$
- (b) On suppose $\alpha > 0$. Montrer que $\alpha \in H$, puis $H = \alpha \mathbb{Z}$.
- (c) On suppose $\alpha = 0$. Montrer que H est dense dans \mathbb{R} .
- (d) Montrer que $\mathbb{Z} + 2\pi\mathbb{Z}$ est un sous-groupe de $(\mathbb{R}, +)$. En déduire que $\{\cos(n), n \in \mathbb{N}\}$ est dense dans [-1, 1].

43.3

Soit E un espace vectoriel normé, et F un sous-espace vectoriel de E. On suppose que $\mathring{F} \neq \emptyset$. Montrer que F = E.

Exercices du CCINP à travailler

0.4

GNP 1.1

On note E l'espace vectoriel des applications continues sur [0,1] à valeurs dans \mathbb{R} .

On pose :
$$\forall f \in E$$
, $||f||_{\infty} = \sup_{t \in [0,1]} |f(t)|$ et $||f||_{1} = \int_{0}^{1} |f(t)| dt$.

1. Les normes $\|\cdot\|_{\infty}$ et $\|\cdot\|_1$ sont-elles équivalentes? Justifier.

0.5

GNP 37.12

On note E l'espace vectoriel des applications continues de [0;1] dans \mathbb{R} .

On pose :
$$\forall f \in E, N_{\infty}(f) = \sup_{x \in [0;1]} |f(x)| \text{ et } N_1(f) = \int_0^1 |f(t)| dt.$$

- 1. (a) Démontrer que N_{∞} et N_1 sont deux normes sur E.
 - (b) Démontrer qu'il existe k > 0 tel que, pour tout f de E, $N_1(f) \le kN_\infty(f)$.
- 2. Démontrer que les normes N_1 et N_∞ ne sont pas équivalentes.

0.6

GNP 54.21

Soit E l'ensemble des suites à valeurs réelles qui convergent vers 0.

2. On pose :
$$\forall u = (u_n)_{n \in \mathbb{N}} \in E$$
, $||u|| = \sup_{n \in \mathbb{N}} |u_n|$.

(a) Prouver que ||.|| est une norme sur E.

|0.7|

GNP 61.1

On note $\mathcal{M}_n\left(\mathbb{C}\right)$ l'espace vectoriel des matrices carrées d'ordre n à coefficients complexes.

Pour
$$A = (a_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}} \in \mathcal{M}_n(\mathbb{C})$$
, on pose : $||A|| = \underset{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}}{\operatorname{Max}} |a_{i,j}|$.

1. Prouver que || || est une norme sur $\mathcal{M}_n(\mathbb{C})$.