

Mathematical Sciences

Buy our Full Package and Get: Full Content of 10 Units, Previous Year Question Analysis with Explanation, 1000 Model Question with Explanation, Mock Test, Video Analysis of 20 Important Topics, Last Minute Suggestion.

1.17. Continuity:

Definition (Continuous at a point): Let $f:D\subseteq\mathbb{R}\to\mathbb{R}$ be a function and $c\in D$ f is said to be continuous at c if for a pre – assigned $\varepsilon > 0$, $\exists \delta > 0$ such that

$$|f(x) - f(c)| < \varepsilon \ \forall \ x \in (c - \delta, c + \delta) \cap D$$

We write $\lim_{x \to c} f(x) = f(c)$

1.17.1 Let $f:D\subseteq\mathbb{R}\to\mathbb{R}$ be a function. If c be an isolated point of D then f is continuous at c.

1.17.2 [Sequential Criterion]: Let $f:D\subseteq\mathbb{R}\to\mathbb{R}$ be a function and $c\in D\cap D'$. fix continuous at $c \Leftrightarrow$ for every sequence $\{x_n\}$ in D converging to c, the sequence $\{f(x_n)\}$ converges to f(c).

Example (1.71):

- (i) $f(x) = k \in \mathbb{R}$ $\forall x \in \mathbb{R}$ is continuous.
- (ii) $f(x) = x \ \forall \ x \in \mathbb{R}$ is continuous.

(iii)
$$f(x) = \begin{cases} \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 is not continuous at $x = 0$

Let $x_n = \frac{1}{2n\pi}$ then $\{x_n\}$ converges to 0 but $f(x_n) = 1 \Longrightarrow \{f(x_n)\}$ converges to $1 \ne 0 = f(0)$ (iv) $f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ is not continuous at any point $a \in \mathbb{R}$.

(iv)
$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$
 is not continuous at any point $a \in \mathbb{R}$.

Case – 1: Let $a \in \mathbb{Q}$, f(a) = 1 but we can find a sequence $\{x_n\}$ of irrational number which converges to a and $f(x_n) = 0 \Rightarrow \{f(x_n)\}$ converges to $0 \neq 1 = f(a)$. Case – 2: Similarly for $a \in \mathbb{R} \setminus \mathbb{Q}$

Note: This function f(x) is called Dirichlet's function which is every where discontinuous on \mathbb{R} .

> We think, the weightage of text is only 10 percent, the rest 90 percent of weightage lies within our remaining five services: solution of 1250 previous years questions and 1000 model questions (unit and subunit wise) with proper explanation, on-line MOCK test series, last minute suggestions and daily updates because it will make your preparation innovative, scientific and complete. Access these five services from our website: www.teachinns.com and qualify not only the eligibility of assistant professorship but also junior research fellowship.

1.17.3. Let $f: D \subseteq \mathbb{R} \to \mathbb{R}$ be continuous at $a \in D$ (or on D) then |f| is continuous at $a \in D$ (or on D). But converges is not true.

Example (1.72):

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ -1, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

1.17.4. Let $f, g: D \subseteq \mathbb{R} \to \mathbb{R}$ be two functions. We define the functions –

$$\sup (f,g); \inf (f,g): D \to \mathbb{R}$$
 by

$$\sup(f,g)(x) = \sup\{f(x), g(x)\}, x \in D$$

$$\inf(f,g)(x) = \inf\{f(x), g(x)\}, x \in D$$

1.17.5. Let $f, g : D \subseteq \mathbb{R} \to \mathbb{R}$ be continuous at $c \in D$. Then sup(f, g) and inf(f, g) are continuous at c.

Since,

$$\sup(f,g)(x) = \sup\{f(x),g(x)\} = \frac{1}{2} (f(x) + g(x)) + \frac{1}{2} |f(x) - g(x)|$$

$$= \frac{1}{2}(f+g)(x) + \frac{1}{2}|f-g|(x), \ x \in D$$

$$\inf(f,g)(x) = \inf\{f(x),g(x)\} = \frac{1}{2}(f(x) + g(x)) - \frac{1}{2}|f(x) - g(x)|$$

$$= \frac{1}{2}(f+g)(x) - \frac{1}{2}|f-g|(x), \ x \in D$$

1.17.6. Continuity of some important function: compilation of six

(i) Polynomial Function: PYOS, MOS, LMS, OMT, DU

$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n \forall x \in \mathbb{R}$$
 continuous in \mathbb{R} .

(ii) Rational Function:

$$f(x) = \frac{p(x)}{q(x)}$$
, $p(x)$, $q(x)$ be polynomial in \mathbb{R} and $x \neq \alpha_1, \ldots, \alpha_r$ where α'_i s are root of $q(x)$. Then $f(x)$ is continuous $\forall x \in \mathbb{R}$ for which $f(x)$ is defined.

- (iii) Trigonometric Function:
 - (a.) $\sin x$, $\cos x$ continuous on \mathbb{R} .
 - **(b.)** $\tan x$ is continuous on $\mathbb{R} \operatorname{except} x = (2n+1)\frac{\pi}{2}$, $n \in \mathbb{Z}$.
 - (c.) $\cot x$, $\cos x$, $\sec x$ are continuous on their respective domains.
- (iv) $f(x) = a^x$, a > 0, $x \in \mathbb{R}$ is continuous on $\mathbb{R} \Rightarrow e^x$ is continuous on \mathbb{R} .
- (v) Logarithmic Function:

$$f(x) = \log x, \ x > 0$$
 f is continuous on $(0, \infty)$

(vi) Square root Function:

$$f(x) = \sqrt{x}$$
, $x \ge 0$ f is continuous $(0, \infty)$

(vii) (a.) $f: D \subseteq \mathbb{R} \to \mathbb{R}$ such that $f(x) \ge 0 \quad \forall \ x \in D$ and f is continuous on D. Then \sqrt{f} is continuous on D.

Example (1.73): $f(x) = \sqrt{\sin x}$, $x \in [0, \pi]$ is continuous

- **(b.)** $f: D \subseteq \mathbb{R} \to \mathbb{R}$ such that f(x) > 0 and continuous then $\log f$ is continuous on D.
- (c.) If $f: D \subseteq \mathbb{R} \to \mathbb{R}$ is continuous on D, then e^f is continuous on D.

1.17.7 Some important limits:

(i)
$$\lim_{x \to 0} \frac{\log(1+x)}{x} = 1$$

(ii)
$$\lim_{x \to 0} \frac{e^{x} - 1}{x} = 1$$

(iii)
$$\lim_{x\to 0} \frac{a^{x}-1}{x} = \log_e a , a > 0$$

1.18 Properties of continuous functions:

1.18.1. Neighborhood properties: Let $f: D \subseteq \mathbb{R} \to \mathbb{R}$ be continuous on D and $c \in D$. If $f(c) \neq 0$ then \exists a suitable $\delta > 0$ such that $\forall x \in N_{\delta}(c) \cap D$, f(x) keeps the same sign as f(c).

Note: This is a local property of continuous function and is known as sign preserving property of continuous function.

Text with Technology

Cor – 1: Let $f : \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} . Then $S = \{x \in \mathbb{R} : f(x) > 0\}$ and $T = \{x \in \mathbb{R} : f(x) < 0\}$ are open sets in \mathbb{R} .

Cor – 2: Let $f : \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} . Then $S = \{x \in \mathbb{R} : f(x) \neq 0\}$ is an open set is \mathbb{R} and $T = \{x \in \mathbb{R} : f(x) = 0\}$ is a closed set in \mathbb{R} .

1.18.2. Let I = [a, b] be a closed, bounded interval and $f : I \to \mathbb{R}$ be continuous on \mathbb{R} then f is bounded on I and $\exists c, d \in I$ such that $f(c) = \sup_{x \in I} f(x)$ and $f(d) = \inf_{x \in I} f(x)$

But this is not true for open interval I = (a, b) which is bounded.

Example (1.74):

- (i) $f: I = (2,3) \to \mathbb{R}$ defined by $f(x) = \frac{1}{x}$, $x \in (0,1)$ Then f is continuous on I but not bounded.
- (ii) $f: I = (2,3) \to \mathbb{R}$ defined by $f(x) = x^2$. Then $\sup_{x \in I} f(x) = 9$ and $\inf_{x \in I} f(x) = 4$. But $\not\equiv x_0$ c, $d \in I$ such that f(c) = 9 and f(d) = 4, $x \in I$.
- (iii) A function f continuous as a closed interval I may not be bounded as I.

Example (1.75): $f:[0,\infty]\to\mathbb{R}$ be defined by $f(x)=\sqrt{x}$, $x\geq 0$. f is continuous on $[0,\infty]$ but f is not bounded on $[0,\infty]$.

- **1.18.3. Bolzano Theorem:** Let I = [a, b] be a closed and bounded interval and $f : I \to \mathbb{R}$ be continuous on I. If f(a) and f(b) one of opposite signs, then \exists at least one $c \in (a, b)$ such that f(c) = 0.
- **1.18.4. Intermediate Value Theorem:** Let I = [a, b] be a closed, bounded interval and $f : [a, b] \to \mathbb{R}$ be continuous on I. If $f(a) \ne f(b)$ then f attains every value between f(a) and f(b) at least once in the open interval (a, b) converse is not true.

Example (1.76): Let
$$f : [0,2] \to \mathbb{R}$$
 be defined by $-f(x) = \begin{cases} 0 & , & x = 0 \\ x & , & 0 < x \le 1 \\ 3 - x & , & 1 < x < 2 \\ 2 & , & x = 2 \end{cases}$

f assume every value between 0 and 2 on [0, 2]. But f is not continuous at x = 1, 2.

1.18.5. Let I = [a, b] be a closed and bounded interval and $f : I \to \mathbb{R}$ be continuous on I. If $M = \sup_{x \in I} f(x) \neq m = \inf_{x \in I} f(x)$ and $m < \mu < M$ then $\exists p \in (a, b)$ such that $f(p) = \mu$.

1.18.6. Let $f: I = [a, b] \to \mathbb{R}$ be continuous on I. Then $f(I) = \{f(x) : x \in I\}$ in a closed and bounded interval.

Note:

- (i) The continuous image of a closed and bounded interval [a, b] is a closed and bounded interval [m, M]. If particular, if f is constant on [a, b], the image reduces to a point.
- (ii) The continuous image of an open interval may not be open.

Example (1.77): $f: (-1,1) \to \mathbb{R}$ defined by $f(x) = x^2$, $\forall x \in I = (0,1)$ then f(I) = [0,1) which is not open.

1.18.7. Let I be an interval and $f = I \to \mathbb{R}$ be continuous (non-constant) in I. Then f(I) is an interval.

Examples (1.78):

(i) If $f: [0,1] \to [0,1]$ is continuous on [0,1], then \exists a point $c \in [0,1]$ such that f(c) = c[c is called a fixed point of f].

[**Hint:** if (0) = 0 or f(1) = 1, done. Let $f(0) \neq 0$, $f(1) \neq 1$.

Define g(x) = f(x) - x. Then g is continuous on [0,1] and g(0) = f(0) > 0 and $g(1) = f(1) - 1 < 0 \Rightarrow$ by Bolzano then, $\exists c \in (0,1)$ such that $g(c) = 0 \Rightarrow f(c) = c$

(ii) If
$$f: [0, 1] \to \mathbb{R}$$
 is continuous on $[0, 1]$ and assumed only rational values and $f\left(\frac{1}{2}\right) = \frac{1}{2}$, then $f(x) = \frac{1}{2} \ \forall \ x \in [0, 1]$

[Hint: Let $x_1 \in \left[0, \frac{1}{2}\right]$ and consider on $x_1, \frac{1}{2}$ let $f(x_1) = p \neq \frac{1}{2}$, p is rational. Let $\mu \in$

 $(p,\frac{1}{2})$ irrational by intermediate theorem, $\exists c \in (x_1,\frac{1}{2})$ such that

$$f(c) = \mu$$
, contradiction hence $f(x_{1}) = \frac{1}{2}$

1.18.8. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} . Then for every open subset G of \mathbb{R} , $f^{-1}(G)$ is open in \mathbb{R} . Conversely, if $f^{-1}(G)$ in open in \mathbb{R} for every open set G in \mathbb{R} . Then f is continuous on \mathbb{R} .

But if *f* is continuous then image of open set may not open.

Example (1.79):
$$f:(0,1) \to \mathbb{R}$$
 defined by $f(x) = 2 \quad \forall x \in (0,1)$.

1.18.9. Function $f : \mathbb{R} \to \mathbb{R}$ is continuous on $\mathbb{R} \Leftrightarrow f^{-1}(F)$ is closed in \mathbb{R} whenever F is closed in \mathbb{R} .

1.18.10. The functions f, $g: \mathbb{R} \to \mathbb{R}$ are both continuous on \mathbb{R} . Then the Lets,

- (i) $s = \{x \in \mathbb{R} : f(x) < g(x)\}$ is open set in \mathbb{R} .
- (ii) $T = \{x \in \mathbb{R} : f(x) \neq g(x)\}$ is open set in \mathbb{R} .
- (iii) $P = \{x \in \mathbb{R} : f(x) = g(x)\}$ is closed set in \mathbb{R} . Multiplication of Six
- (iv) If $\{f(x) = g(x)\}$ at all $x \in \mathbb{Q}$, then $f(x) = g(x) \ \forall \ x \in \mathbb{R}$ [Hint: $\mathbb{Q} \subseteq P \subseteq \mathbb{R}$ and P is closed $\Rightarrow P = \overline{P} = \mathbb{R}$]
- (v) If f(x) = k, constant $\forall x \in \mathbb{Q}$, then $f(x) = k \quad \forall x \in \mathbb{R}$. [Hint: let g(x) = k, $\forall x \in \mathbb{R} \Rightarrow f(x) = g(x) \forall x \in \mathbb{Q} \Rightarrow f(x) = g(x) = k \ \forall x \in \mathbb{R}$]
- **1.18.11.** Let $f: I = (a, b) \to \mathbb{R}$ be monotone increasing on I. Then at any point $c \in I$,
 - (i) $f(c-0) = \sup_{x \in (a,c)} f(x)$
 - (ii) $f(c+0) = \inf_{x \in (c,b)} f(x)$
 - (iii) $f(c-0) \le f(c) \le f(c+0)$

We think, the weightage of <u>text</u> is only 10 percent, the rest 90 percent of weightage lies within our remaining five services: solution of <u>1250 previous years questions</u> and <u>1000 model questions</u> (unit and subunit wise) with proper explanation, <u>on-line MOCK test series</u>, <u>last minute suggestions</u> and <u>daily updates</u> because it will make your preparation innovative, scientific and complete. Access these five services from our website: <u>www.teachinns.com</u> and qualify not only the eligibility of assistant professorship but also junior research fellowship.

- **1.18.12.** Discontinuity of first kind: Let $c \in (a,b) \in I$ and f be continuous on (a,c) and (c,b), but discontinuous at $c \in (a,b) \in I$ and $\lim_{x \to c^-} f(x)$ and $\lim_{x \to c^+} f(x)$ both exist.
 - $(\mathbf{i}) \quad \lim_{x \to c-} f(x) = \lim_{x \to c+} f(x)$
 - **a.** f is not defined at c, f is discontinuous at c.
 - **b.** f is defined at c, but $f(c) \neq \lim_{x \to c} f(x)$
 - (ii) $\lim_{x \to c^{-}} f(x) \neq \lim_{x \to c^{+}} f(x)$. In this case f is discontinuous at c. Whether f is defined at c or not. This type of discontinuity is called jump discontinuity.

Right jump: f(c + 0) - f(c)

<u>Left jump</u>: f(c) - f(c - 0)

- **1.18.13. Discontinuity of second kind:** If at least one of $\lim_{x\to c^-} f(x)$ and $\lim_{x\to c^+} f(x)$ does not exist. But f is bounded in some bounded $N'\delta(c)$ of. In this case f is discontinuous at c whether f is defined at c or not. This type of discontinuity is called oscillatory discontinuity.
- **1.18.14.** If $f:(a,b)\to\mathbb{R}$ be monotone on (a,b), then at every point $c\in(a,b)$, f(c-0) and f(c+0) both exist. Monotone function f cannot have discontinuity of second kind.
- **1.18.15.** If $f:[a,b] \to \mathbb{R}$ be monotone on [a,b], then the set of points at discontinuities of f in [a,b] is a countable set. A
- \Rightarrow If $f = \mathbb{R} \to \mathbb{R}$ be monotone on \mathbb{R} , then the set of points of discontinuities is a countable set. [Hint: $\mathbb{R} = (\bigcup_{n=0}^{\infty} [n-1, n+1]) \cup (\bigcup_{n=0}^{\infty} [-(n+1), -(n-1)])$]
- **1.18.16.** If a function $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and injective on [a,b] then f is strictly monotone on [a,b].
- \Rightarrow Let I be an interval and $f: I \to \mathbb{R}$ is continuous and injective on I. Then f is strictly monotone on I.
- **1.18.17.** If $f : [a, b] \to \mathbb{R}$ satisfies intermediate value property on [a, b] and f is injective on [a, b] then-
 - (i) f is strictly monotone on [a, b]
 - (ii) f is continuous on [a, b]

1.19. Uniform continuity:

Definition: A function $f: I \to \mathbb{R}$ is said to uniformly continuous on I if corresponding to a pre – assigned $\varepsilon > 0$, $\exists \delta > 0$ such that for any pair of point $x_1, x_2 \in I$,

$$|x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$$

Note: Uniform continuity is a global property.

Example (1.80):

- (i) $f(x) = \frac{1}{x}$, $x \in [1, \infty]$ is uniformly continuous on $[1, \infty]$ Since $|f(x) - f(y)| = \left|\frac{1}{x} - \frac{1}{y}\right| = \left|\frac{x - y}{xy}\right| \le |x - y| < \varepsilon$, $say (\because x, y \ge 1)$ then $\forall x, y \in [1, \infty]$ with $|x - y| < \varepsilon \Rightarrow |f(x) - f(y)| < \varepsilon$.
- (ii) $f(x) = \sin x, \ x \in \mathbb{R}$ is uniformly continuous on \mathbb{R} . Since $x, y \in \mathbb{R}$, $|\sin x - \sin y| = 2 \left| \sin \frac{x - y}{2} \right| \left| \cos \frac{x + y}{2} \right| \le 2 \left| \sin \frac{x - y}{2} \right| \le 2 \cdot |x - y| < \varepsilon$, $\sin y - \sin y < \varepsilon$
- **1.19.1.** Let I be an interval and a function $f: I \to \mathbb{R}$ be uniformly continuous on I. Then f is continuous on I. But not conversely.

Example (1.81): $f(x) = \frac{1}{x}$, $0 < x \le 1$ is continuous but not uniformly.

- **1.19.2.** Let I = [a, b] be a closed and bdd interval and $f : I \to \mathbb{R}$ be continuous on I. Then f is uniformly continuous on I.
- **1.19.3.** Let $f: D \subseteq \mathbb{R}$ be uniformly continuous on D. If $\{x_n\}$ be a Cauchy sequence in D, then $\{f(x_n)\}$ a Cauchy sequence in \mathbb{R} .

Example (1.82): $f(x) = \frac{1}{x}$, $x \in [0, 1]$ is not uniformly continuous in [0, 1]. Since $\left\{\frac{1}{n}\right\}$ in a Cauchy sequence in [0, 1] but $\left\{f\left(\frac{1}{n}\right) = n\right\}$ is not Cauchy in \mathbb{R} .

1.19.4. Let I be a bounded interval and a function $I \to \mathbb{R}$ be uniformly continuous on I. Then f is bounded on I converse is not true.

Example (1.83): $f(x) = \sin \frac{1}{x}$, $x \in (0, 1)$. Then f(x) is continuous on bdd interval (0, 1) and $|f(x)| \le 1$ but f(x) is not uniformly continuous. Since $\left\{\frac{2}{(2n+1)\pi}\right\}$ is Cauchy in (0, 1) but $\left\{f\left(\frac{2}{(2n+1)\pi}\right\}$ is not Cauchy in \mathbb{R} .

1.19.5. Let f be continuous on an open bdd interval (a, b). Then f is uniformly continuous on $(a, b) \Leftrightarrow \lim_{x \to a+} f(x)$ and $\lim_{x \to b-} f(x)$ both exist finitely.

1.19.6. Continuous Extension: Let f be continuous on an interval I. A function g is said to be a continuous extension of f to \mathbb{R} if g be continuous on \mathbb{R} and $g(x) = f(x) \ \forall \ x \in I$

Example (1.84): Let f : [a, b] be continuous and $g : \mathbb{R} \to \mathbb{R}$ be defined by-

$$g(x) = \begin{cases} f(a) , & x < a \\ f(x) , & x \in [a, b] \\ f(b) , & x > b \end{cases}$$

Then g is continuous extension of f.

Let f be continuous on an bdd open interval (a, b). Then f admits of a continuous extension to $\mathbb{R} \Leftrightarrow f$ be uniformly continuous on (a, b).

1.19.7. Definition (Lipschitz function): Let $I \subseteq \mathbb{R}$ be an interval. A function $f: I \to \mathbb{R}$ is said to satisfy a Lipschitz condition on I if $\exists 0 < M \in \mathbb{R}$ such that $|f(x_1) - f(x_2)| \le M |x_1 - x_2|$ for any two points $x_1, x_2, \in I$. In this case f is said to be a Lipschitz function on I.

Example (1.85):

Let
$$f(x) = x^2$$
, $x \in [0, 2]$. Then

$$|f(x_1) - f(x_2)| = |x_1^2 - x_2^2| \le 4|x_1 - x_2| \ \forall \ x_1 x_2 \in [0, 2]$$

1.19.8. Let $f: I \to \mathbb{R}$ be a Lipschitz function on I. Then f is uniformly continuous on I.

Example (1.86): Text with Technology

$$f(k) = \sin x$$
, $x \in \mathbb{R}$

$$|\sin x - \sin y| \le |x - y|$$
 Ins. com - A compilation of six

1.19.9. Continuity on a compact set: Let $D \subseteq \mathbb{R}$ be a compact set and a function $f: D \to \mathbb{R}$ be continuous on D. Then f(D) is a compact set in \mathbb{R} .

1.19.10. Let $D \subseteq \mathbb{R}$ be a compact set and $f: D \to \mathbb{R}$ is continuous D. Then f is uniformly continuous on D.

Converse of (1.19.8) is not true.

Example (1.87):
$$f(x) = \sqrt{x}$$
, $x \in [0, a]$, $a > 0$.

But $f(x) = \sqrt{x}$ is satisfies Lipschitz condition on [1, a], $\forall a > 1$

1.19.11. Some special uniform continuous functions:

- (i) **Periodic function:** If f be a continuous function such that f(x + p) = f(x) for some $P \in \mathbb{R}$, then f is uniformly continuous on \mathbb{R} .
- (ii) If $f(x + y) = f(x) + f(y) \ \forall \ x, y \in \mathbb{R}$ be continuous at a point $c \in \mathbb{R}$, then f is uniformly continuous on \mathbb{R} .
- (iii) Let $\phi \neq A \in \mathbb{R}$ and $f_A(x) = \inf \{|x a| : a \in A\} \forall x \in \mathbb{R}$. f is uniformly continuous on \mathbb{R} .

(iv) If f'(x) exists and bdd then f satisfice Lipschitz condition and hence it is uniformly continuous.

1.20. Differentiation:

Definition (Differentiability and derivative): Let I = [a, b] be an interval and $f : I \to \mathbb{R}$ be a function. f is said to be differentiable at $c \in I$ if $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exists. If l be its limit, then l is said to be the derivative of f at c and is denoted by f'(c).

- (i). If c be an interior point of the domain, then $\lim_{x \to c^-} \frac{f(x) f(c)}{x c}$ and $\lim_{x \to c^+} \frac{f(x) f(c)}{x c}$ should exist and they are equal in order to $\lim_{x \to c} \frac{f(x) f(c)}{x c}$ exist.
- (ii). If c = a, then $\lim_{x \to a+} \frac{f(x) f(a)}{x a}$ exists and the limit is called derivative of f at a and is denoted by f'(a).
- (iii). If c = b, then $\lim_{x \to b^{-}} \frac{f(b) f(x)}{b x}$ exists and limit is called derivative of f at b and is denoted by f'(b).
- **1.20.1. Definition (Right and left hand derivative):** Let I be an interval and $f: I \to \mathbb{R}$ and $c \in I$. If $\lim_{x \to c^+} \frac{f(x) f(c)}{x c}$ exists the limit is called the right hand derivative of at c and is denoted by R f'(c).

If $\lim_{x\to c^-} \frac{f(x)-f(c)}{x-c}$ exists, the limit is called left hand limit derivative of f and is denoted by Lf'(c).

1.20.2. Let $f: I \to \mathbb{R}$ be differentiable at a point $c \in I$. Then f is continuous at c. But converse is not true.

Example (1.88): f(x) = |x|, $x \in \mathbb{R}$. At x = 0, f(x) is continuous but

$$\lim_{x \to 0+} \frac{|x|-|0|}{x-0} = \lim_{x \to 0+} \frac{x}{x} = 1 = Rf'(0)$$

$$\lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{x \to 0^{-}} \frac{-x}{x} = -1 = Lf'(0)$$

As $Rf'(0) \neq Lf'(0) \Rightarrow f$ is not differentiable at 0.

Note: Let $D \subseteq \mathbb{R}$ and $f: D \to \mathbb{R}$ it is possible to define differentiability of f at $c \in D$, provided $c \in D'$ also i.e., if $c \in D \cap D'$, then f is said to be differentiable at c if $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exists and the limit is called derivative of f at c and is denoted by f'(c).

1.20.3. Let $f, g: I \to \mathbb{R}$ be differentiable at $c \in I$. Then –

(i).
$$(f+g)'(c) = f'(c) + g'(g)$$

(ii) if
$$k \in \mathbb{R}$$
, $(k f)'(c) = k f'(c)$

(iii)
$$(f \cdot g)'(c) = f'(c) g(c) + f(c) g'(c)$$

(iv)
$$\left(\frac{f}{g}\right)'(c) = \frac{g(c) f'(c) - f(c) g'(c)}{\{g(c)\}^2}$$
, proved $g(c) \neq 0$

1.20.4. Let I and J be intervals. Let $f: I \to \mathbb{R}$; $g: J \to \mathbb{R}$ and $f(I) \in J$. Let $c \in I$ and f is differentiable at c and g is differentiable at e and $(g \circ f)'(c) = g'(f(c)) \cdot f'(c)$.

Example (1.89):

Let
$$f(x) = x^{\alpha}$$
, $x > 0$ and $d \in \mathbb{R} \Rightarrow f(x) = e^{\alpha \log x}$

Let
$$g(x) = \alpha \log x$$
, $x > 0$ and $h(x) = e^x$, $x \in \mathbb{R}$

Then
$$f(x) = (h \circ g)(x) = h(g(x)) = e^{\alpha \log x} = x^{\alpha}$$

$$\Rightarrow f'(x) = h'(g(x)) \cdot g'(x) = e^{\alpha \log x} \cdot \frac{\alpha}{x} = x^{\alpha} \cdot \frac{\alpha}{x} = \alpha x^{\alpha - 1}, x > 0.$$

1.20.5. Let $I \subseteq \mathbb{R}$ be an interval and a function $f: I \to \mathbb{R}$ be strictly monotone and continuous on I. Let J = f(I) and Let $g: J \to \mathbb{R}$ be the inverse of f. If f is differentiable at $c \in I$ I and $f'(c) \neq 0$, then g is differentiable at d = f(c) and $g'(d) = \frac{1}{f'(c)}$.

Example (1.90):

(i). $f(x) = x^2$, $x \in [0, \infty]$. f is strictly increasing and continuous on $[0, \infty]$.

Let $I = [0, \infty]$ then $f(I) = [0, \infty]$. The inverse function g is defined by $g(y) = \sqrt{y}$, $y \in$ $[0,\infty]$ is continuous on $[0,\infty]f$ is differentiable on $[0,\infty]$ and $f'(x)=2x,\ x\in[0,\infty]$, $f'(x) \neq 0$ on $(0,\infty]$ hinns.com - A compilation of six

Let $I_1 = (0, \infty)$. Then $f(I_1) = (0, \infty)$.

Hence g'(y) exists $\forall y \in (0, \infty)$ and $g'(y) = \frac{1}{f'(x)} = \frac{1}{2x} = \frac{1}{2g(y)} = \frac{1}{2\sqrt{y}}$, $y \in (0, \infty)$.

(ii). $f(x) = e^x$, $x \in \mathbb{R}$. Then $f(\mathbb{R}) = (0, \infty)$. Inverse of f is g be field by $g(y) = \log y$, $y \in$ $(0, \infty)$ since f is strictly increasing and monotone on $(0, \infty)f'(x) \neq 0$ on \mathbb{R} . So

$$g'(y) = \frac{1}{f'(x)} = \frac{1}{e^x} = \frac{1}{e^{\log y}} = \frac{1}{y}, y \in (0, \in \infty).$$

(iii) $f(x) = \sin x$, $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ f(I) = [-1, 1]. The inverse of g is defined by

$$g(y) = \sin^{-1} y$$
, $y \in [-1, 1]$, $f'(x) \neq 0$ on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

$$\therefore g'(y) = \frac{1}{f'(x)} = \frac{1}{\cos x} = \frac{1}{\sqrt{1 - \sin^2 x}} = \frac{1}{\sqrt{1 - y^2}}, y \in (-1, 1).$$

Thus
$$\frac{d}{dx} \sin^{-1} y = \frac{1}{\sqrt{1-y^2}}$$
, $y \in (-1,1)$

(iv)
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Then,
$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{x} = \lim_{x \to 0} x \sin \frac{1}{x} = 0 \Rightarrow f'(0) = 0$$

$$\therefore f'(x) = \begin{cases} 2x \sin\frac{1}{x} - \cos\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

 $\lim_{x\to 0} \cos \frac{1}{x}$ does not exist (by Cauchy principle) $\Rightarrow f'(x)$ is continuous at 0.

(v) $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 0, & x < 0 \\ 0, & x \in \mathbb{R} | \mathbb{Q} \\ \frac{1}{q} \text{ if } x = \frac{p}{q}, & p, q \in \mathbb{Z}, q \neq x \text{ and } g \subset d \ (p, q) = 1 \end{cases}$$

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x}$$
 Let $x_n = \frac{1}{n}$ Then $f(x_n) = \frac{1}{n}$

Hence $\lim_{x_n\to 0} \frac{f(x_n)}{x_n} = 1$ and let $\{x_n\}$ be a sequence of irrational numbers converging to $0. \Rightarrow$

$$\lim_{x_n \to 0} \frac{0}{x_n} = 0.$$

Hence f is not differentiable at 0.

(vi) Give an example of continuous function which is nowhere differentiable.

$$f_0(x) = d(x, \mathbb{Z}) = \inf \{|x - k| : k \in \mathbb{Z}\}$$

$$f_m(x) = \lim_{m \to \infty} f_0(4^m x)$$

$$f = \lim_{m \to \infty} f_m(x) \text{ is everywhere continuous but nowhere differentiable.}$$

www.te $\frac{1}{2}$ chinns.com - $\frac{1}{f_0}$ compilation of six products: Text, PYQs, MQs, LMS, OMT, DU $\frac{f_0}{f_0}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

- **1.20.6. Definition** (**Higher Order Derivatives**): Let I be an interval and $f: I \to \mathbb{R}$ be differentiable at $c \in I$. If f be differentiable at every point of some sub interval $I_1(c)$ such that $c \in I_1(c) \subset I$, then $f': I_1(c) \to \mathbb{R}$ is a function on $I_1(c)$. If f' be differentiable at c then the derivative of f' at c is called second order derivative of f at c and is denoted by f''(c) or $f^{(2)}(c)$.
- **1.20.7.** Let $I \subset \mathbb{R}$ be a interval and $f: I \to \mathbb{R}$ be differentiable at $c \in I$
- (i) If f'(c) > 0 then f is increasing at c.
- (ii) If f'(c) < 0 then f is decreasing at c.

Example (1.91):

- (i) Let $f(x) = \begin{cases} x, & x < 1 \\ 2x 1, & x \ge 1 \end{cases}$ Then f is increasing at 1 but not differentiable at 1.
- (ii) $f(x) = \begin{cases} 1 x, & x < 0 \\ 1 2x, & x \ge 0 \end{cases}$ Then f is increasing at 0 but not differentiable.
- (iii) If f is increasing at c then f'(c) may not be positive.

Example (1.92): $f(x) = x^3, x \in \mathbb{R}$ f is increasing at 0, but f'(0) = 0.

- (iv) If f is decreasing at c then f'(c) may not be negative. $f(x) = -x^3$, $x \in \mathbb{R}$, f is decreasing at 0 but f'(c) = 0.
- (v) f'(c) > 0 does not imply that f is monotone in a neighbourhood of c.

Example (1.93):
$$f(x) = \begin{cases} \frac{x}{2} - 1 x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Then $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0} (\frac{1}{2} + x \sin \frac{1}{2}) = \frac{1}{2} > 0$ But is a neighbourhood of 0 f takes both positive and negative values.

1.20.8. Darboux: Let $f: I = [a, b] \to \mathbb{R}$ be differentiable on I. Let $f'(a) \neq f'(b)$. If k be a real number lying between f'(a) and f'(b) then $\exists c \in (a, b)$ such that f'(c) = k. [similar results as for continuous function].

Example (1.94): Let $f: [-1,1] \to \mathbb{R}$ be defined by $f(x) = \begin{cases} 0, & x \in [-1,0] \\ 1, & x \in (0,1) \end{cases}$ Does \exists a function g such that $g'(x) = f(x), & x \in [-1,1]$?

If possible, let $g: [-1,1] \to \mathbb{R}$ such that g'(x) = f(x) in [-1,1].

Then $g'(-1) = 0 \Rightarrow 1 = g'(1)$ by Dorboux theorem for every real number $\mu \in (g'(-1), g(1)) = (0,1), \exists c \in [-1,1]$ such that $g'(c) = \mu - a$ contradiction.

1.20.9. Let I be an interval and $f: I \to \mathbb{R}$ be differentiable on I. Then f'(I) is an interval.

1.20.10. If $f:[a,b] \to \mathbb{R}$ be differentiable on [a,b] then f' can not have a jump discontinuity on [a,b].

1.21. Mean Value Theorem (MVT):

- **1.21.1. Rolle's Theorem**: Let $f:[a,b] \to \mathbb{R}$ be a function such that
- (i) f is continuous on [a, b]
- (ii) f is differentiable in (a, b) and
- (iii) f(a) = f(b)

Then \exists at least one $c \in (a, b)$ such that f'(c) = 0

1.21.2. Lagrange Mean Value Theorem (MVG): Let $f:[a,b] \to \mathbb{R}$ be a function such that

(i) f is continuous on [a, b] and

(ii) f is differentiable in (a, b)

(iii)
$$f(a) \neq f(b)$$

Then \exists at least one point $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

1.21.3. Let $f : [a, b] \to \mathbb{R}$ satisfies (i) and (ii) of (iv) and $f'(x) = 0 \ \forall \ x \in (a, b)$ then f(x) is constant on [a, b].

1.21.4. Let $f, g : [a, b] \to \mathbb{R}$ satisfies (i) and (ii) of (10) and $f'(x) = g'(x) \forall x \in (a, b)$, then f = g + c (constant).

Example (1.95):
$$\frac{x}{1+x} < \log(1+x) < x \ \forall \ x > 0$$

Let
$$f(x) = \log(1+x) - \frac{x}{1+x}$$
, $x \ge 0$

$$\Rightarrow f'(x) = \frac{x}{(1+x)^2} > 0 \ \forall \ x > 0 \ \Rightarrow f \text{ is strictly increasing}$$

$$\Rightarrow f(x) > f(0) \Rightarrow \log(1+x) > \frac{x}{1+x}$$

Let
$$g(x) = x - \log(1 + x)$$
, $x > 0$

$$\Rightarrow g'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} > 0$$
 strictly increasing

$$\Rightarrow g(x) > g(0) \Rightarrow x > \log(1+x), x > 0$$

Hence
$$\frac{x}{1+x} < \log(1+x) < x$$
 or $x > 0$

1.21.5. Let I be an interval. If a function $f: I \to \mathbb{R}$ be such that f' exists and is bounded on I then f is uniformly continuous on I.

[Since:
$$|f'(x)| \le k \Rightarrow \left| \frac{f(x_2) - f(x_1)}{x_2 - x_2} \right| \le k \Rightarrow |f(x_2) - f(x_1)| \le k|x_2 - x_2|,$$

lipschitz condition satisfy.

Example (1.96):
$$f(x) = \frac{1}{x^2 + 1}$$
, $x \in \mathbb{R}$. Then $f'(x) = -\frac{2x}{(x^2 + 1)^2}$, $x \in \mathbb{R}$ and $|f'(x)| < 2 \,\forall x \in \mathbb{R}$

 $\mathbb{R} \Rightarrow f$ is uniformly continuous on \mathbb{R} .

We think, the weightage of <u>text</u> is only 10 percent, the rest 90 percent of weightage lies within our remaining five services: solution of <u>1250</u> <u>previous years questions</u> and <u>1000 model questions</u> (unit and subunit wise) with proper explanation, <u>on-line MOCK test series</u>, <u>last minute suggestions</u> and <u>daily updates</u> because it will make your preparation innovative, scientific and complete. Access these five services from our website: <u>www.teachinns.com</u> and qualify not only the eligibility of assistant professorship but also junior research fellowship.

1.21.6. Generalised MVT: Let $f, g: [a, b] \to \mathbb{R}$ such that

- (i) f and g are both continuous on [a, b] and
- (ii) f and g are both differentiable in (a, b)

Then \exists a point $c \in (a, b)$ such that [g(b) - g(a)]f'(c) = [f(b) - f(a)]g'(c).

1.21.7. Cauchy's MVT: Let $f,g:[a,b] \to \mathbb{R}$ be such that satisfy (i), (ii) of (12) and (iii) $g'(x) \neq 0 \ \forall \ x \in (a,b)$. Then $\exists \ c \in (a,b)$ such that $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$.

1.21.8. Leibnitz's Theorem: Let f and g be two functions each differentiable n times at a, then the n^{th} derivative of the product fg at a given by –

$$(fg)^{(n)}(a) = \sum_{r=0}^{n} {n \choose r} D^{n-r} f(a) D^r g(a)$$
 where $D^r(a) = f^r(a), r \ge 1$ and $Df(a) = f(a)$.

1.21.9. Taylor's Theorem: Let $f : [a, a + h] \to \mathbb{R}$ be such that

- (i) f^{n-1} is continuous on [a, a + h], and
- (ii) f^{n-1} is differentiable in (a, a + h).

Then $\exists \theta \ (0 < \theta < 1)$ such that –

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + \dots + \frac{h^{n-1}}{(n-1)!}f^{n-1}(a) + \frac{h^n(1-\theta)^{n-p}}{p(n-1)!}f^n(a+\theta h)$$

where p is a positive integer $\leq n$.

Note: The last term $\frac{h^n(1-\theta)^{n-p}}{p(n-1)!}f^n(a+\theta h)$ is called the remainder after n terms and it is denoted by R_n .

Cauchy's Form: If
$$p - 1$$
, $R_n = \frac{h^n(1-\theta)^{n-p}}{(n-1)!} f^n(a + \theta h)$

Lagrange's Form: If p = n, $R_n = \frac{h^n}{n!} f^n(a + \theta h)$

1.21.10. Maclaurin's Theorem: Let $f : [0, h] \to \mathbb{R}$ be such that

- (i) f^{n-1} is continuous on [0, h] and
- (ii) f^{n-1} is differentiable in (0, h).

Then for $x \in (0, h]$, $\exists \theta (0 < \theta < 1)$ such that

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^{n-1}}{(n-1)!}f^{n-1}(0) + \frac{x^n(1-\theta)^{n-p}}{p(n-1)!}f^n(\theta x)$$

Where p is a positive integer $\leq n$. For p = 1, cauchy form and p = n lagrenge's form.

Examples (1.97):

(i) Let $c \in \mathbb{R}$ and $f: \mathbb{R} \to \mathbb{R}$ be such that f'' is continuous on some neighbourhood of c. Then $\lim_{h \to 0} \frac{f(x+h)-2f(c)+f(c-h)}{h^2} = f''(c).$

Since f'' is continuous on $(c - \delta, c + \delta)$ for some $\delta > 0$. By Taylors theorem with Lagrange's form after remainder (after 2 terms) for any h with $0 < h < \delta$,

$$f(c+h) = f(c) + hf'(c) + \frac{h^2}{2!}f''(c+\theta h), 0 < \theta < 1$$

$$f(c-h) = f(c) - hf'(c) + \frac{h^2}{2!}f''(c+\theta h), 0 < \theta' < 1$$

$$f(c+h) - 2f(c) + f(c-h) = \frac{h^2}{2!} [f''(c+\theta h) + f''(c+\theta' h)]$$

$$\Rightarrow \frac{f(c+h)-2f(c)+f(c-h)}{h^2} = \frac{1}{2} [f''(c+\theta h) + f''(c+\theta' h)]$$

$$\Rightarrow \lim_{h \to 0} \frac{f(c+h)-2f(c)+f(c-h)}{h^2} = f''(c) \ [\because f'' \text{ is continuous at } c]$$

(ii) Use Taylor's Theorem,
$$1 + \frac{x}{2} - \frac{x^2}{8} < \sqrt{1+x} < 1 + \frac{x}{2}$$
 , if $x > 0$

Let
$$f(x) = \sqrt{1+x}$$
, $x \ge 0$ Then –

$$f'(x) = \frac{1}{2\sqrt{1+x}}$$
, $f''(x) = -\frac{1}{4(1+x)^{\frac{3}{2}}}$, $f'''(x) = \frac{3}{8(1+x)^{\frac{5}{2}}}$

By Taylor's theorem with Lagrange's form of remainder (after 3 terms) for any x > 0.

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(c)$$
 for some $c \in (0, x)$

$$or, \sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16(1+c)^{\frac{5}{2}}} \Rightarrow \sqrt{1+x} > 1 + \frac{x}{2} - \frac{x^2}{8} \ (\because x > 0)$$

By Taylor's theorem with Lagrange's form of remainder (after 2 terms) for any x > 0.

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(d) \text{ for some } d \in (0, x)$$

$$or, \sqrt{1+x} = 1 + \frac{x}{2} + \frac{x^2}{8(1+d)^{\frac{3}{2}}} \Rightarrow \sqrt{1+x} < 1 + \frac{x}{2} (\because x > 0)$$
 ilation of Six 1.21.11. Taylor's Infinite Series:

Let $a \in \mathbb{R}$ and f defined on some neighbourhood N(a) of a such that f^{n-1} is differentiable on N(a). Then for any $x \in N(a) - \{a\}$, $f(x) = P_n(x) + R_n(x)$,

where $R_n(x)$ is the remainder after *n* terms and

$$P_n(x) = f(a) + (x - a)f'(a) + \dots + \frac{(x - a)^{n-1}}{(n-1)!}f^{n-1}(a)$$
. $P_n(x)$ is a polynomial of degree

n-1 and $P_n(x)$ is such that –

$$P_n(a) = f(a), P'_n(a) = f'(a), P'_n(a) = f''(a), \dots P_n^{n-1}(a) = f^{n-1}(a). P_n(x)$$
 is

called the nth Taylor Polynomial of f about the point a. If for all n, f^n exists on N(a), then

 $P_n(x)$ be an infinite series $f(a) + (x-a)f'(a) + \frac{(x-a)^2}{2!}f''(a) + \dots$ which is convergent if $\{P_n(x)\}$ is convergent and if $\lim_{n\to\infty} R_n(x) = 0$ then we have –

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x-a)^2}{2!}f''(a) + \dots$$

If a = 0, we have Maclaurin's infinite series

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots$$

1.21.12. Expansion of some functions:

(i) Let $f(x) = e^x$, $x \in \mathbb{R}$. Then $f^n(x) = e^x$, $\forall x \in \mathbb{N}$. By Taylor's theorem with Lagrange's form of remainder after n terms $\forall 0 \neq x \in \mathbb{R}$,

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^{n-1}}{(x-1)!}f^{n-1}(0) + R_n(x)$$
. where

$$R_n(x) = \frac{x^n}{n!} f^n(\theta x), 0 < \theta < 1.$$

$$=\frac{x^n}{n!}e^{\theta x}$$
.

Let
$$u_n(x) = \frac{x^n}{n!} e^{\theta x}$$
, $\Rightarrow \lim_{x \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{x \to \infty} \frac{|x|}{n+1} = 0$

$$\Rightarrow \lim_{r\to\infty} |R_n(n)| = 0$$

$$\therefore e^x = 1 + x + \frac{x^2}{2!} + \cdots \forall x \in \mathbb{R}.$$

(ii)
$$f(x) = \sin x$$
, $x \in \mathbb{R}$. Then $f^n(x) = \sin\left(\frac{n\pi}{2} + x\right)$,

Where
$$R_n(x) = \frac{x^n}{n!} f^n(\theta x) = \frac{x^n}{n!} \sin\left(\frac{n\pi}{2} + \theta x\right), 0 < \theta < 1$$

$$\lim_{n \to \infty} |R_n(x)| = \lim_{n \to \infty} \frac{|x|^n}{n!} \left| \sin\left(\frac{n\pi}{2} + \theta x\right) \right| \le \lim_{n \to \infty} \frac{|x|^n}{n!} = 0 \left(\because \frac{u_n + 1}{u_n} = \frac{|x|}{n + 1} \right)$$

$$\therefore \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots, \forall x \in \mathbb{R}.$$

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$
 for $x \in (-1,1)$

(iv) e is irrational:

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} + \frac{x^n}{n!} e^{\theta}, 0 < \theta < 1 [by(i)]$$

$$\Rightarrow e = 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{(n-1)!} + \frac{1}{n!}e^{\theta}$$

$$\Rightarrow e > 2$$
 and $0 < e^{\theta} < e < 3$ (: $0 < \theta < 1$)

Let e be rational, then $\exists p, q \in \mathbb{Z}$ with gcd(p,q) = 1 and p, q > 0 such that $e = \frac{p}{q}$

Let n > q, then

$$\frac{p(n-1)!}{q} - (n-1)! \left\{ 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{(n-1)!} \right\} = \frac{e^{\theta}}{n}$$
(integer) [integer]

$$\Rightarrow \frac{e^{\theta}}{n}$$
 is an integer.

But
$$0 < e^{\theta} < e < 3 < n \Rightarrow 0 < \frac{e^{\theta}}{n} < 1$$
 (Proper fraction),

 \Rightarrow e is irrational [e = 2.7182818284 (correct upto 10 decimal places.)]

1.22. Maximum and Minimum:

1.22.1. Global maximum and global minimum:

Let I be an interval and $f: I \to \mathbb{R}$ be a function f is said to have a global maximum (or minimum) on I if \exists a point $c \in I$ such that $f(c) \geq f(x)$ [respectively minimum] point for f on I.

f is said to have a local maximum (or minimum) at a point $c \in I$ if \exists a neighbourhood $N_{\delta}(c)$ of c such that $f(c) \ge f(x)[respectively \ f(c) \le f(x)] \ \forall \ x \in N_{\delta}(c) \cap I$.

1.22.2. Let $f: I \to \mathbb{R}$ be such that of has a local extremum at an interior point $c \in I$. If f'(c)exists then f'(c) = 0. Converse is not true.

1.22.3. Corollary: Let $f: I \to \mathbb{R}$ and $c \in I$, where f has local minimum. Then either f'(c) does not exists or f'(c) = 0.

Example (1.98.):

(i) $f(x) = |x|, x \in \mathbb{R}$ has local minimum at x = 0, but f'(0) does not exist.

(ii) Let $f(x) = x^3$, $x \in \mathbb{R}$. Then f'(0) = 0 but 0 is not an extremum point.

(iii) (interior condition of c is in necessary). Let $f(x) = x, x \in [0,1]$. f has minimum at 0 and maximum at 1but $f'(0) = 1 = f'(1) \neq 0$.

1.22.4. [First derivative Test for extrem a]

Let $f: I = [a, b] \to \mathbb{R}$ continuous and c be and interior point of I and let f be differentiable on (a,c) and (c,b). Then –

(i) If \exists a neighbourhood $(c - \delta, c + \delta) \subset I$ such that for $x \in (c, \delta, c), f'(x) \ge 0$

 $(or, f'(x) \le 0)$ and for $x \in (c, c + \delta)$, $f'(x) \le 0$ (respectively $f'(x) \ge 0$) the f has local maximum (respectively local minimum) at c.

(ii) If f'(x) keeps the same sign on $(c - \delta, c)$ and $(c, c + \delta)$ then f has no extremumat c.Converse is not true.

Example (1.99):

Let
$$f(x) = \begin{cases} 2x^2 + x^2 \sin{\frac{1}{x}}, x \neq 0 \\ 0, x = 0 \end{cases}$$

Then f has local minimum at 0.

$$f'(x) = \begin{cases} 4x + 2x \sin\frac{1}{x} - \cos\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

f' takes both positive and negative values on both since of 0 (in any neighbourhood of 0).

1.22.5. Higher Order Derivative test for extreme:

Let $f: I \to \mathbb{R}$ and cbe an interior point of I.

If
$$f'(c) = f''(c) = f'''(c) = \dots = f^{n-1}(c)$$
 and $f^n(c) \neq 0$, then f has

- (i) no extremum at *c* if *n* be odd, and
- (ii) a local extremum at *c* if *n* be even;

a local maximum if f''(c) < 0, a local minimum if $f^n(c) > 0$.

Example (1.100):
$$f(x) = x^5 - 5x^4 + 5x^3 + 10$$

$$f'(x) = 5 x^4 - 20 x^3 + 15 x^2 = 0 \Rightarrow x = 0, 1, 3$$

$$f''(x) = 20 x^3 - 60 x^2 + 30 x^4$$
 with Technology

$$f'''(x) = 60 x^2 - 120x$$

$$f'''(x) = 60 x^2 - 120x$$

 $f^{iv}(x) = 120x$, $f^{v}(x) = 120$ — A compilation of six

Now, At
$$x = 0$$
, $f'(0) = 0$, $f''(0) = 0$, $f'''(0) = 0$, $f^{iv}(0) = 0$, $f^{v}(x) \neq 0$, so no extremum.

$$At \ x = 1, f(1) = 0, f''(1) < 0, f \ has \ maximum \ at \ x = 1$$

At
$$x = 3$$
, $f'(3) = 0$, $f''(3) > 0$, f has minimum at $x = 3$.

1.22.6. Indeterminate forms: Let
$$\lim_{x\to c} f(x) = l$$
 and $\lim_{x\to c} g(x) = m \neq 0$, then –

$$\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{l}{m}$$
. But if $l = m = 0$, in this case the limit of quotient $\frac{f}{g}$ is said to take the

indeterminate form $\frac{0}{2}$.

Note: Other indeterminate forms are $\frac{\infty}{\infty}$, $\infty - \infty$, $0 \cdot \infty$, 0^0 , 1^{∞} , $1^{-\infty}$, ∞^0

1.22.7. Let $c \in \mathbb{R}$ and $f, g: \mathbb{R} \to \mathbb{R}$ be two functions such that

f(c) = g(c) = 0 and $g(x) \neq 0$ in some deleted neighbourhood $N'_{\delta}(c)$ of c and f, g are differentiable at c and $g'(c) \neq 0$. Then $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{f'(c)}{g'(c)}$.

1.22.8. If
$$f, g : [a, b] \to \mathbb{R}$$
 and $f(a) = g(a) = 0, g(x) \neq 0$ on (a, b) and f, g are

differentiable at a and
$$g'(a) \neq 0$$
. Then $\lim_{n \to a+} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$

Example (1.101):
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, x \neq 0 \text{ and } g(x) = \sin x, x \in \mathbb{R} \\ 0, x = 0 \end{cases}$$

Then $f(0) = 0 = g(0), g(x) \neq 0$ is some deleted neighbourhood of 0 and f'(0) and g'(0)

both exist and
$$g'(0) = 1 \neq 0$$
. So, $\lim_{n \to a} \frac{f(x)}{g(x)} = \frac{f'(0)}{g'(0)} = 0$

1.22.9. L' Hospital Rule: Let $c \in \mathbb{R}$ and f, $g : \mathbb{R} \to \mathbb{R}$ be such that $f^n(x)$, $g^n(x)$ exist a_n some neighbourhood of $N'_{\delta}(c)$ and $g^n(x) \neq 0$ on $N'_{\delta}(c)$ and

$$\lim_{x \to c} f(x) = \lim_{x \to c} f'(x) = \dots \lim_{x \to c} f^{x-1}(x) = 0$$

$$\lim_{x \to c} g(x) = \lim_{x \to c} g'(x) = \dots \lim_{x \to c} g^{x-1}(x) = 0$$

Then if $\lim_{x \to c} \frac{f^n(x)}{g'(x)}$ exists in \mathbb{R} , then $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f^n(x)}{g^n(x)}$.

Example (1.102):

$$\lim_{x \to 0} \frac{e^{x} - e^{-x} - 2\log(1+x)}{x \sin x} \left(\frac{0}{0}\right)$$

$$= \lim_{x \to 0} \frac{e^x - e^{-x} - \frac{2}{1+x}}{x \cos x + \sin x} \left(\frac{0}{0}\right)$$

$$= \lim_{x \to 0} \frac{e^x - e^{-x} + \frac{2}{(1+x)^2}}{-x \sin x + 2 \cos x} = 1$$

1.23. Functions of Bounded Variation:

Definition: Let [a,b] be a closed and bounded interval and $f:[a,b] \to \mathbb{R}$ be a function. Let $P = \{x_0, x_1, \ldots, x_n\}$ where $a = x_0 < x_1 < x_2 < \ldots < x_n = b$, be a partition of [a,b]. Let us consider the sum

$$V(P,f) = |f(x_1) - f(x_0)| + |f(x_2) - f(x_1)| + \dots + |f(x_n) - f(x_{n-1})|$$

= $\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})|$

For different partitions $P \in \mathcal{D}[a,b]$, V(P,f) given a set of non-negative numbers. If the set $\{V(P,f): P \in \mathcal{D}[a,b]\}$ be bounded above, then f is said to be a function of bounded variation on [a,b].

The supremum of the set $\{V(P, f): P \in \wp[a, b]\}$ is said to be the total variation of f on [a, b] and is denoted by $V_f[a, b]$.

Example (1.103):

(i) Let $k \in \mathbb{R}$, $f(x) = k \ \forall \ x \in [a, b] \Rightarrow V(P, f) = 0 \ \forall \ P \in \mathcal{D}[a, b] \Rightarrow V_f[a, b] = 0 \Rightarrow f$ is a function of bounded variation on [a, b].

(ii)
$$f(x) = x, x \in [a, b] \Rightarrow V_f[a, b] = b - a < \infty$$

(iii)
$$f(x) = \sin x$$
, $x \in [a, b]$, $V_f[a, b] \le (b - a)$ (: $|\sin x_2 - \sin x_1| \le |x_2 - x_1|$)

(iv) Not a Function of bounded variation:

Let
$$f : [0,1] \to \mathbb{R}$$
 be defined by $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} | \mathbb{Q} \end{cases}$

Let $P = \{x_0, x_1, \dots, x_{2n}\}$ be a partition of [a, b] such that x_0, x_2, \dots, x_{2n} are all rational and $x_0, x_3, \dots, x_{2n-1}$ are all irrational. Then

$$V(P,f) = |f(x_1) - f(x_0)| + \dots + |f(x_{2n}) - f(x_{2n-1})| = 2n \to \infty \text{ as } x \to \infty$$

1.23.1. Let $f : [a, b] \to \mathbb{R}$ be a function of bounded variation on [a, b]. Then f is bounded on [a, b], converse is not true.

Example (1.104):

(i)
$$f(x) = \begin{cases} 1, x \in \mathbb{Q} &, x \in [0,1] \\ 0, & x \in \mathbb{R}|\mathbb{Q} \end{cases}$$

(ii)
$$f:[0,1] \to \mathbb{R}$$
 defined by $f(x) = \begin{cases} x \cos \frac{\pi}{2k}, & x \neq 0 \\ 0, & x = 0 \end{cases}$

Then $|f(x)| \le 1 \ \forall x \in [0,1]$

Let
$$P = \{0, \frac{1}{2n}, \frac{1}{2n-1}, \dots, \frac{1}{2}, 1\}$$
 be a partition of [0,1]

Then
$$f\left(\frac{1}{2r}\right) = \frac{1}{2r}\cos\left(\frac{r\pi}{2}\right) = \frac{1}{2r}(-1)^r \text{ for } r = 1, 2, \dots, n$$

And
$$f\left(\frac{1}{2r-1}\right) = \frac{1}{2r-1}\cos\frac{(2r-1)\pi}{2} = 0$$
 for $r = 1, 2, \dots, n$

$$= \frac{1}{2n} + \frac{1}{2n} + \frac{1}{2n-2} + \frac{1}{2n-2} + \dots + \frac{1}{2} + \frac{1}{2} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \to \infty \text{ as } x \to \infty$$

1.23.2. Let $f : [a, b] \to \mathbb{R}$ be monotone on [a, b]. Then f is a function of bounded variation on [a, b]. Converse is not true.

Example (1.105): $f(x) = \sin x$, $x \in [a, b]$.

1.23.3. Let $f : [a, b] \to \mathbb{R}$ be a Lipschitz function on [a, b]. Then f is a function of bounded variation on [a, b]. Converse is not true.

Example (1.106): $f : [0,1] \to \mathbb{R}$ be defined by $f(x) = \sqrt{x}, x \in [0,1]$.

 \Rightarrow f is monotone increasing on [0,1] \Rightarrow f is a function of bounded variation on [0,1] but f is not Lipschitz function on [0,1]. If since, for $x_1 = 0$, there is no $M \in \mathbb{R}$ such that

$$|f(x_2) - f(x_1)| \le M|x_2 - x_1| \forall x_2[0,1].$$

1.23.4. Let $f : [a, b] \to \mathbb{R}$ continuous on [a, b], f' exists and be bounded on (a, b). Then f is a function of bounded variation on [a, b].

Note-I: Boundedness of f' on [a, b] is not necessary.

Example (1.107): $f(x) = \sqrt{x}, x \in [0,1]$ is a function of bounded variation on [0,1] as it is monotonic increasing but $f'(x) = \frac{1}{2\sqrt{x}}$, $x \in (0,1)$ is not abounded on (0,1).

Note-II: A function f continuous and bounded on a closed interval [a, b] may not be a function of bounded variation on [a, b]

Example (1.108):
$$f(x) = \begin{cases} x \cos \frac{\pi}{2x}, & x \in (0,1) \\ 0, & x = 0 \end{cases}$$

1.23.5. Let $f, g : [a, b] \to \mathbb{R}$ be functions of bounded variation on [a, b]. Then-

- (i) f + g is also so and $V_{f+g} \le V_f + V_g$
- (ii) f g is also so and $V_{f-g} \le V_f + V_g$
- (iii) cf ($c \in \mathbb{R}$) is also so.
- (iv) fg is also so and $V_{fg} \le A V_f + B V_g$, $A = \sup\{|g(x)| = x \in [a, b]\}$,

$$B = \sup\{|f(x)| : x \in [a, b]\}$$

(Note: The close S of all BV - functions on [a, b] form a real vector space)

(v) If $\exists k \in \mathbb{R}$ such that $0 < k \le f(x) \ \forall x \in [a, b]$, then $\frac{1}{f}$ is a BV - function on [a, b] and

$$V_1 \leq \frac{v_f}{f}$$
 \overline{f}
 $\overline{f$

(vi) |f| is also so. **1.23.6. Definition (Refinement of partition):** Let $P = \{x_0, x_1, \dots, x_n\}$ be a partition of [a, b]. A partition \mathbb{Q} of [a, b] is said to be a refinement of P. P is a proper subset of \mathbb{Q} .

Example (1.109): $P = \{0, 1.4, \frac{1}{2}, \frac{3}{4}, 1\}$ is a partition of [a, 1] and $\mathbb{Q} = \{0, \frac{1}{8}, \frac{1}{4}, \frac{3}{8}, \frac{1}{2}, \frac{3}{4}, 1\}$ then Q is a refinement of P.

- **1.23.7.** Let $f:[a,b] \to \mathbb{R}$ be a function of bounded variation a [a,b] and P be a partition of [a, b]. If Q be a refinement of P then $V(Q, f) \ge V(P, f)$
- **1.23.8.** Let $f:[a,b] \to \mathbb{R}$ be a function on [a,b] and $c \in (a,b)$ then –
- (i) f is bounded variation on [a, c] and on [c, b]
- (ii) $V_f[a, b] = V_f[a, c] + V_f[c, b]$
- **1.23.9.** Let $f:[a,b] \to \mathbb{R}$ be a function of bounded variation on [a,c] and on [c,b] where $c \in$ (a,b). Then -
- (i) f is of bounded variation on [a, b]
- (ii) $V_f[a, c] + V_f[c, b] = V_f[a, b]$

Example (1.110): Let $f: [0,3] \to \mathbb{R}$ be defined by $f(x) = x^2 - 4x + 3, x \in [0,3]$.

f'(x) = 2x - 4. So f'(x) < 0 for $x \in [0,2]$ and f'(x) > 0 for $x \in [2,3] \Rightarrow f$ is decreasing on [0,2] and increasing on $[2,3] \Rightarrow f$ is a BV - function on [0,3].

$$V_f[0,2] = f(0) - f(2) = 4$$
 and $V_f[2,3] = f(3) - f(2) = 1$

$$V_f[0,3] = V_f[0,2] + V_f[2,3] = 5$$

1.23.10. Let $f : [a, b] \to \mathbb{R}$ be a BV - function on [a, b] and $\phi : [a, b] \to \mathbb{R}$ be such that ϕ is bounded on [a, b] and $\phi(x) = f(x)$ except at a finite number of points in [a, b], then ϕ is a BV - function in [a, b].

Example (1.111):

Let $f: [0,3] \to \mathbb{R}$ be defined by $f(x) = x - [x], x \in [1,3]$

$$f(x) = \begin{cases} x - 1, & 1 \le x < 2 \\ x - 2, & 2 \le x < 3 \\ 0, & x = 3 \end{cases}$$

Let ϕ_1 : [1,2] $\to \mathbb{R}$ be defined by $\phi_1(x) = x - 1, x \in [1,2]$

 $\phi_2: [2,3] \to \mathbb{R}$ be defined by $\phi_2(x) = x - 2, x \in [2,3]S$

Then ϕ_1 is increasing on [1,2] and ϕ_2 is function of bounded variation on [2,3].

Hence $f(x) = \phi_1(x) + \phi_2(x)$ $x \in [1,3]$ except x = 2,3. Hence f(x) is a function of bounded variation on [1,3].

1.23.11. Definition (Variation Function): Let $f:[a,b] \to \mathbb{R}$ be function of bounded variation on [a,b] and $x \in (a,b]$. Then $V_f[a,x]$ is a function of $x \forall x \in [a,b]$. Let $V:[a,b] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} V_f[a, b], a < x \le b \\ 0, x = a \end{cases}$$

V is called the variation function of f on [a, b]

Note: (i) V is monotone increasing on [a, b]

- (ii) V + f and V f are also monotone increasing on [a, b],
- **1.23.12.** Let $f : [a, b] \to \mathbb{R}$ be a function. Then f is a function of bounded variation on $[a, b] \Leftrightarrow f$ can be expressed as the difference of two monotone increasing functions on [a, b].

Example (1.112):

Let $f: [-1,1] \to \mathbb{R}$ be defined by $f(x) = x^2, x \in [-1,1]$.

Then f'(x) = 2x and so f'(x) < 0, $x \in [-1,0]$ and f'(x) > 0, $x \in \{0,1\} \Rightarrow f$ decreasing on [-1,0] and increasing on $[0,1] \Rightarrow f$ is BV - function on [-1,0] and [0,1] hence on [-1,1]. V(-1) = 0

If $-1 < x \le 0$, then $V(x) = V_f[-1, x] = f(-1) - f(x) = 1 - x^2$. Since f is decreasing on (-1,0).

1.23.12. If
$$0 < x \le 1$$
, then $V(x) = V[-1, x] = V_f[-1, 0] + V_f[0, x]$

$$= f(-1) - f(0) + f(x) - f(0)$$
, since f is increasing on [0,1]

$$= 1 + x^2$$

Therefore, $V(x) = \begin{cases} 1 - x^2, & -1 \le x \le 0 \\ 1 + x^2, & 0 < x \le 1 \end{cases}$ and V(x) is increasing on [-1,1].

$$(V+f)(x) = \begin{cases} 1, & -1 \le x \le 0 \\ 1+2x^2, & 0 < x \le 1 \end{cases} \Rightarrow V+f \text{ is a monotone increasing on } [-1,1].$$

 $\therefore f = (V + f) - V$, the difference of two monotone increasing functions.

1.23.13. Let $f:[a,b] \to \mathbb{R}$ be a BV-function on [a,b] then f can have only discontinuity of first kind and the points of discontinuity of f form a countable set.

1.23.14. Let $f:[a,b] \to \mathbb{R}$ be a BV – function on [a,b] and let V be the variation function on [a, b]. If f be continuous at a point $c \in [a, b]$ then V is continuous at c and conversely.

1.23.15. Corollary: If $f:[a,b] \to \mathbb{R}$ be continuous and be of bounded variation on [a,b] then f can be expressed as the difference of two monotone and continuous functions on [a, b] and conversely.

1.23.16. Definition (Positive Variation and Negative Variation):

Let $f:[a,b]\to\mathbb{R}$ be a BV-function on [a,b] and $P=\{x_0,x_1,\ldots,x_n\}$ be a partition

$$V(P,t) = |\Delta f_1| + \dots + |\Delta f_n|$$
 where $\Delta f_r = f(x_r) - f(x_{r-1}), r = 1, 2, \dots, n$

Let
$$V_+(P, f) = \sum_{\Delta f_i > 0} |\Delta f_i|$$
 and $V_-(P, f) = \sum_{\Delta f_i < 0} |\Delta f_i|$ Then—

$$V_{+}(P,f) - V_{-}(P,f) = f(b) - f(a)$$

$$V_{+}(P,f) + V_{-}(P,f) = V(P,f)$$

and $\sup_{n} \{V_{+}(P, f): P \in p[a, b]\} = P_{f}[a, b]$ or $(V_{+})_{f}[a, b]$ is called positive variation of f on [a,b] and $\sup_{p} \{V_{-}(P,f): P \in p[a,b]\} = n_f[a,b]$ or $(V_{-})_f[a,b]$ is called negative variation of *f* on [*a*, *b*].

> We think, the weightage of text is only 10 percent, the rest 90 percent of weightage lies within our remaining five services: solution of 1250 previous years questions and 1000 model questions (unit and subunit wise) with proper explanation, on-line MOCK test series, last minute suggestions and daily updates because it will make your preparation innovative, scientific and complete. Access these five services from our website: www.teachinns.com and qualify not only the eligibility of assistant professorship but also junior research fellowship.

Positive variation function V_+ or p(x)

$$p(x) = V_{+}(x) = \begin{cases} P_{f}[a, x], & x \in [a, b] \\ 0, & x = 0 \end{cases}$$

Negative variation function V_{-} or n(x):

$$n(x) = V_{-}(x) = \begin{cases} n_{f}[a, x], & x \in [a, b] \\ 0, & x = 0 \end{cases}$$

Note:p(x) and n(x) are monotone increasing on [a, b].

1.23.17. Let $f:[a,b]\to\mathbb{R}$ be a function of bounded variation on [a,b]. Then –

$$(i) p(x) + n(x) = V(x) \forall x \in [a, b]$$

(ii)
$$p(x) - n(x) = f(x) - f(a) \ \forall \ x \in [a, b].$$

$$\Rightarrow p(x) = \frac{1}{2}[V(x) + f(x) - f(a)]$$

$$n(x) = \frac{1}{2} [V(x) - f(x) + f(a)]$$

Example (1.113): Let $f : [-1,1] \to \mathbb{R}$ be defined by $f(x) = x^2$, $\forall x \in [-1,1]$.

Then f is BV – function on [-1,1] and
$$V(x) = \begin{cases} 1 - x^2, & -1 \le x \le 0 \\ 1 + x^2, & 0 < x \le 1 \end{cases}$$

$$\therefore p(x) = \begin{cases} \frac{1}{2} [1 - x^2 + x^2 - 1] = 0, & -1 \le x \le 0 \\ \frac{1}{2} [1 + x^2 + x^2 - 1] = x^2, & 0 < x \le 1 \end{cases}$$

1.24. Riemann Integral:

Let [a, b] be a closed bounded interval and $f : [a, b] \to \mathbb{R}$ be a bounded function on [a, b]. Let $P = \{x_1, x_2, \dots, x_n\}$ be a partition of [a, b]. Then f is bounded on each $Ir = [x_{r-1}, x_r]$ for $r = 1, 2, \dots, n$

Let
$$M_r = \sup_{x \in Ir} f(x)$$
, $m_r = \inf_{x \in Ir} f(x)$, $M = \sup_{x \in [a,b]} f(x)$, $m = \inf_{x \in [a,b]} f(x)$

Then
$$m \le m_r \le M_r \le M$$
 for $r = 1, 2, \dots, n$ (i)

$$U(P,f) = \sum_{r=1}^{n} M_r(x_r - x_{r-1})$$
 = Upper Darbou x sum of f corresponding to P.....(ii)

$$L(P, f) = \sum_{r=1}^{n} m_r(x_r - x_{r-1}) = \text{Lower Darbou } x \text{ sum of } f \text{ corresponding to } P.$$

Now,

(i)
$$\Rightarrow m(x_r - x_{r-1}) \le m_r(x_r - x_{r-1}) \le M_r(x_r - x_{r-1}) \le M(x_r - x_{r-1})$$

$$\Rightarrow m \sum_{r=1}^{n} (x_r - x_{r-1}) \le \sum_{r=1}^{n} m_r (x_r - x_{r-1}) \le \sum_{r=1}^{n} M_r (x_r - x_{r-1}) \le \sum_{r=1}^{n} M (x_r - x_{r-1})$$

$$\Rightarrow m(b-a) \le L(P,f) \le U(P,f) \le M(b-a)....(b)$$
 (ii)

If $\sup \{L(P, f) : P \in \mathcal{D}[a, b] \text{ exists, it is called the lower integral of } f \text{ on } [a, b] \text{ and is denoted}$ by $\int_a^b f dx = \int_a^b f$

And if $inf \{U(P, f) : P \in \mathcal{D}[a, b]\}$ exists, it is called the upper integral of f on [a, b] and is denoted by $\int_{a}^{\overline{b}} f dx = \int_{a}^{\overline{b}} f$.

f is said to be Riemann integrable on [a, b] if $\int_a^b f = \int_a^{\overline{b}} f$ and the common value $\int_a^b f$ or $\int_a^{\overline{b}} f$ is called the Reimann integral of f on [a, b] and is denoted by $\int_a^b f(x)dx$ or $\int_a^b f(x)dx$

We also define $\int_a^a f = 0$ and $\int_a^b f = -\int_b^a f$

Note-1:
$$m(b-a) \le \int_a^b f \le M(b-a)$$
, $m(b-a) \le \int_a^{\overline{b}} f \le M(b-a)$

Note-2: The class of all Riemann integrable function on [a, b] is denoted by R[a, b] and $R[a,b] \subset B[a,b]$. The class of functions of bounded variation on [a,b].

Example (1.114):

(i) Let
$$f: [a, b] \to \mathbb{R}$$
 be defined by $f(x) = c, x \in [a, b]$

Take $p = \{x_0, x_1, \dots, x_n\}$ be a partition of [a, b]. Then Mr = c = mr

$$\Rightarrow U(P,f) = c(x_1 - x_0) + c(x_2 - x_1) + \dots + c(x_n - x_{n-1}) = c(b - a)$$

$$L(P,f) = c(b - a)$$

$$\Rightarrow \inf \{ U(P,f) : P \in P[a,b] \} = (b-a) = \sup \{ L(P,f) : P \in P[a,b] \}$$

 $\Rightarrow f \text{ is Riemann integrable on } [a,b] \text{ and } \int_a^b f(x)dx = c(b-a).$ (ii) Let $f:[0,1] \to \mathbb{R}$ be define by $f(x) = \begin{cases} 1 & , & x \in \mathbb{Q} \\ 0 & , & x \in \mathbb{R}|\mathbb{Q} \end{cases}$

(ii) Let
$$f: [0,1] \to \mathbb{R}$$
 be define by $f(x) = \begin{cases} 1 & , & x \in \mathbb{Q} \\ 0 & , & x \in \mathbb{R} \mid \mathbb{Q} \end{cases}$

Let $P = \{x_0, x_1, \dots, x_n\}$ be a partition of [0, 1] Then $M_r = 1, m_r = 0$

$$\therefore U(P,f) = \sum_{r=1}^{n} M_r(x_r - x_{r-1}) = 1(1-0) = 1$$

$$L(P,f) = 0$$

$$\therefore \inf\{U(P,f): P \in \mathcal{D}[a,b]\} = 1 \neq 0 = \sup\{L(P,f): P \in \mathcal{D}[a,b]\}$$

Hence f is not Riemann integrable on [0, 1].

1.24.1. Let $f: [a, b] \to \mathbb{R}$ be bounded on [a, b] and P be a partition of [a, b].

If Q be a refinement of P, then

$$U(P,f) \ge U(Q,f)$$
 and $L(P,f) \le L(Q,f)$

$$\Rightarrow L(P,f) \le L(Q,f) \le U(Q,f) \le U(P,f).$$

1.24.2. Definition (Noun of a Partition): Let [a, b] be a closed and bounded interval and P = $\{x_0, x_1, \dots, x_n\}$ be a partition of [a, b]. The norm of P is denoted by ||P|| and in defined by $||P|| = \max\{(x_1 - x_0), (x_2 - x_1), \dots, (x_n - x_{n-1})\}$

Note: If *Q* be a refinement of *P*. Then $||Q|| \le ||P||$

1.24.3. Let $f:[a,b] \to \mathbb{R}$ be bounded on [a,b] and P a partition of [a,b] with $||P|| = \delta$ if P_k be a refinement of P with k additional Point of Partition, then

$$0 \le U(P, f) - U(P_k, f) \le (M - m)k\delta,$$

$$0 \le L(P_k, f) - L(P, f) \le (M - m)k\delta$$

1.24.4. Let $f:[a,b] \to \mathbb{R}$ be bounded on [a,b] and p,\mathbb{Q} be any two partitions of [a,b]. Then $L(P,f) \le U(Q,f); L(Q,f) \le U(P,f)$

$$\Rightarrow \int_{\underline{a}}^{b} f \le \int_{a}^{\overline{b}} f \Rightarrow m(b-a) \le \int_{\underline{a}}^{b} f \le \int_{a}^{\overline{b}} f \le M(b-a)$$

Example (1.115): Let f:[a,b] be defined by $f(x)=x, x \in [a,b]$ consider

$$P_n = \{a, a + h, a + 2h, \dots, a + nh\}$$
 be a partition of $[a, b]$ here $h = \frac{b-a}{n}$

$$\therefore M_r = \sup_{x \in [a+(r-1)h, a+rh]} f(x) = a+rh,$$

$$m_r = \sup_{x \in [a+(r-1)h, a+rh]} f(x) = a + (r-1)h$$

$$U(P_n, f) = h[(a+h) + (a+2h) + \dots + (a+2h)$$

$$= h [na + h(1+2 + \dots + n)]$$

$$= nha + \frac{nh(nh+a)}{2} \times t \text{ with Technology}$$

www.=
$$a(b-a)+\frac{(b-a)}{12}(b-a+\frac{b-a}{n})$$
A compilation of six

$$= ab - a^2 + \frac{1}{2}(b - a)^2 \left[1 + \frac{1}{n} \right] \to ab - a^2 + \frac{1}{2}(b - a)^2 = \frac{b^2 - a^2}{2} asn \to \alpha$$

$$L(P_n, f) = h[a + (a + h) + \dots + a + (n - 1)h]$$

$$= h[na + h(1 + 2 + \dots + (n - 1)]]$$

$$= nah + h \frac{(n-1)nh}{2}$$

$$= a(h - a) + \frac{(b-a)}{2}(h - a - \frac{b-a}{2}) \rightarrow ah$$

$$= a(b-a) + \frac{(b-a)}{2} \left(b - a - \frac{b-a}{n} \right) \to ab - a^2 + \frac{1}{2} (b-a)^2 = \frac{r-a^2}{2} \text{ as } n \to \alpha$$

$$\therefore \int_a^b f = \int_{\underline{a}}^b f = \int_a^{\overline{b}} f = \frac{b^2 - a^2}{2}$$

1.24.5. Condition for integrability: Let $f:[a,b] \to \mathbb{R}$ be bounded on [a,b]. Then f is integrable on $[a,b] \Leftrightarrow$ for each $\varepsilon > 0$, \exists a partition P of [a,b] such that

$$U(P,f) - L(P,f) < \varepsilon$$

1.24.6. Darboux Theorem: Let [a,b] be a closed and bounded interval and $f:[a,b] \to \mathbb{R}$ be bounded on [a,b]. Then-

To each pre-assigned $\varepsilon > 0 \quad \exists \quad \delta > 0$ such that

$$U(P,f) < \int_a^{\overline{b}} f + \varepsilon \quad \forall P \text{ of } [a,b] \text{ with } ||P|| \le \delta \text{ and}$$

$$L(P, f) > \int_a^b f - \varepsilon \quad \forall P \text{ of } [a, b] \text{ with } ||P|| \le \delta$$

1.24.7. Let $f:[a,b] \to \mathbb{R}$ be monotone on [a,b]. If $\{P_n\}$ be a sequence of partitions of [a,b] such that the sequence $\{\|P_n\|\}$ converge to 0, then –

(i)
$$\lim_{n\to\infty} U(P_n, f) = \int_a^{\overline{b}} f$$
 and

(ii)
$$\lim_{n\to\infty} L(P_n, f) = \int_{\underline{a}}^b f$$

1.24.8. Some Riemann integrable functions:

- (i) Let $f: [a, b] \to \mathbb{R}$ be monotone on [a, b]. Then f is integrable on [a, b].
- (ii) Let $f: [a, b] \to \mathbb{R}$ be continuous on [a, b]. Then f is integrable on [a, b].

(Note: C[a, b] denote the class of all continuous function on [a, b] and $C[a, b] \subset R[a, b]$)

- (iii) Let $f:[a,b] \to \mathbb{R}$ be bounded on [a,b] and let f be continuous on [a,b] except for a finite number points is [a,b]. Then f is integrable on [a,b].
 - \Rightarrow If $f:[a,b] \to \mathbb{R}$ be piecewise continuous on [a,b] then f is integrable on [a,b].
- (iv) Let $f: [a, b] \to \mathbb{R}$ be bounded on [a, b] and let f be continuous on [a, b] except on a infinite Subset $S \subset [a, b]$ such that the number of limit points of S is finite. Then f is integrable on [a, b].

Example (1.116):

(a)
$$f:[0,1] \to \mathbb{R}, \ f(x) = \begin{cases} 0, & x = 0, \\ (-1)^{r-1}, & \frac{1}{r+1} < x \le \frac{1}{r}, & r = 1, 2, 3, \end{cases}$$

F is continuous on [0, 1] except at the points $0, \frac{1}{2}, \frac{1}{3},$ Then set of points of

discontinuity of f has only the limit point 0 and f is bounded on $[0,1] \Rightarrow f \in R[0,1]$

b) Converse of (iv) is not true.

Example (1.117):

$$f: [0,1] \to \mathbb{R}, \ f(x) = \begin{cases} 0 & , & x = 0 \\ 0 & , & x \in \mathbb{R} | \mathbb{Q} \\ \frac{1}{q} & , & x = \frac{p}{q} & , \ p,q > 0 \ with \ gcd(p,q) = 1 \end{cases}$$

f is bounded on [0, 1] and f is continuous at 0 and every irrational number and discontinuous at non-zero rational number is [0, 1] so, the set S of points of discontinuity have infinite number of limit point. But f is Riemann integrable on [0, 1].

1.24.9. Lebesgue: A necessary and sufficient condition for a bounded function on [a, b] to be Riemann integrable on [a, b] is that the points of discontinuity of f is a set of measure zero.

1.24.10. Definition (Set of Measure Zero): A set $S \subset \mathbb{R}$ is said to the a set of measure zero if for each $\varepsilon > 0$ there is a countable collection of open intervals $\{I_n\}$ such that

$$S \subseteq \bigcup_{n=1}^{\infty} I_n \ and \ \sum_{n=1}^{\infty} |I_n| < \varepsilon$$

Example (1.118):

(a) A finite set $S \subseteq \mathbb{R}$ is a set of measure zero.

[Hint:
$$I_r = \left(x_r - \frac{\varepsilon}{2(m+1)}, x_r + \frac{\varepsilon}{2(m+1)}\right)$$
 for $r = 1, 2, \dots, m$.]

(b) An enumerable subset S of \mathbb{R} is a set of measure zero

[Hint:
$$I_r = \left(x_r - \frac{\varepsilon}{2^{r+2}}, x_r + \frac{\varepsilon}{2^{r+2}}\right)$$
]

- $\Rightarrow \mathbb{Q}$ is a set of meausre zero.
- (c) Let S be a bounded infinite subset of \mathbb{R} having finite (countable) number of limit points. Then S is a set of measure zero.

[Hint: Let x_1, x_2, \ldots, x_m be the limit points of S condition $I_r = \left(x_r - \frac{\delta_r}{2}, x_r + \frac{\delta_r}{2}\right)$ open interval containing x_r and let $\delta_1 + \delta_2 + \ldots + \delta_m < \frac{\varepsilon}{2}$. Then there are finite number of points out side $\bigcup_{r=1}^m I_r$. So we can cover these points by open interval whose sum of length is $< \frac{\varepsilon}{2}$.]

1.25. Properties of Riemann Integrable Function:

1.25.1. Let $f, g : [a, b] \to \mathbb{R}$ be two Riemann integrable functions on [a, b]. Then –

(i)
$$f + g \in R[a, b]$$
 and $\int_a^b f + g = \int_a^b f + \int_a^b g$

(ii)
$$cf \in R[a,b]$$
 and $\int_a^b cf = c \int_a^b f$, $c \in \mathbb{R}$, MQS, LMS, OMT, DU

(iii) $|f| \in R[a, b]$, but converse is not true.

[Example (1.119):
$$f:[a,b] \to \mathbb{R}, \ f(x) = \begin{cases} 1, \ x \in \mathbb{Q} \cap [a,b] \\ -1, \ x \in (\mathbb{R}|\mathbb{Q}) \cap [a,b] \end{cases}, |f(x)| = 1, x \in \mathbb{R}$$

[a,b] but $f \notin R[a,b]$

(iv)
$$f^2 \in R[a, b]$$

(v)
$$fg \in R[a,b] \left(: fg = \frac{1}{2}(f+g)^2 - \frac{1}{2}f^2 - \frac{1}{2}g^2 \right)$$

(vi)
$$\frac{1}{f} \in R [a, b]$$
 provide $f(x) \ge k > 0 \ \forall x \in [a, b]$.

(Note: $f(x) > 0 \quad \forall \ x \in [a,b]$, then f(x) may not belong to R[a,b].

Example (1.120):
$$f : [0,1] \to \mathbb{R}, f(x) = \begin{cases} x, & 0 < x \le 1 \\ 1, & x = 0 \end{cases}$$
 Then

 $f \in R[0,1]$ as it is continuous on [0,1] except x = 0.

But
$$\frac{1}{f}$$
 is not bounded on $[0,1] \Rightarrow \frac{1}{f} \notin R[0,1]$)

(vii) If $c \in (a,b)$, then $f \in R[a,b]$ and $f \in R[c,b]$ and $\int_a^b f = \int_a^c f + \int_c^b f$ converse is also true i.e., if $f \in R[c,b]$, then $f \in R[a,b]$ and $\int_a^c f + \int_c^b f = \int_a^b f$

1.25.2. Let $I = [a, b] \subset \mathbb{R}$ and $f : I \to \mathbb{R}$ be integrable on I and $J = [c, d] \subset \mathbb{R}$ such that $f(I) \subset J$ and $\phi: [c,d] \to \mathbb{R}$ be continuous on [c,d]. Then the composition function $\phi \circ f \in R [a, b].$

Note: Continuity of ϕ is necessary.

Example (1. 121):
$$f:[0,1] \to \mathbb{R}$$
, $f(x) = \begin{cases} 0 & \text{, } x \in \mathbb{R} | \mathbb{Q} \\ \frac{1}{n} & \text{, } x = \frac{m}{n} \text{, } \gcd(m,n), \ m,n \in \mathbb{Z}^* \end{cases}$

$$\phi: [0,1] \to \mathbb{R}, \ \phi(x) = \begin{cases} 1, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases} \text{ Then } -$$

$$\phi \circ f : [0,1] \to \mathbb{R} , \ (\phi \circ f)(x) = \begin{cases} 0, & x \in \mathbb{R} | \mathbb{Q} \\ 1, & x \in \mathbb{Q} \end{cases} \Rightarrow Q \circ f \notin R [0,1]$$

1.25.3. Let $f, \phi : [a, b] \to \mathbb{R}$ be both bounded on [a, b] and $f(x) = \phi(x)$ except for a finite number of points in [a, b]. If f be integrable on [a, b] then $\phi \in R[a, b]$ and $\int_a^b f = \int_a^b \phi$.

Note: If $f(x) = \phi(x)$ enumerable number of points, then ϕ may not belong to R[a, b].

Example (1. 122): $f, \phi : [0,1] \to \mathbb{R}$ be defined by $f(x) = 1, x \in [0,1] \Rightarrow f \in \mathbb{R}[0,1]$.

$$\phi(x) = \begin{cases} 0, & x \in [0,1] \cap \mathbb{Q} \\ 1, & x \in [0,1] \cap (\mathbb{R}|\mathbb{Q}) \end{cases} \Rightarrow \phi(x) \neq f(x), x \in [0,1] \cap \mathbb{Q}$$

$$\phi \notin R[0,1] \text{ teachings.com} - A \text{ compilation of Six}$$

1.25.4. Definition (Piecewise Continuous Function): A function $f:[a,b] \to \mathbb{R}$ is said to be a piecewise continuous function on [a, b] if \exists a partition $P = \{x_0, x_1, \dots, x_n\}$ of [a, b]such that f is continuous on the open interval (x_{k-1}, x_k) for $1 \le k \le n$ and each of $f(a+0), f(b-0), f(x_k+0), f(x_k-0)$ exist for $1 \le k \le n-1$. Clearly, a piecewise continuous function on [a, b] is continuous on [a, b] except for a finite number of points of jump discontinuity.

Example (1.123): A step function on [a, b]

1.25.5. Let $f:[a,b]\to\mathbb{R}$ be bounded on [a,b] and for every $c\in(a,b), f\in R[c,b]$. Then $f \in R [a, b]$.

[Hint: let $M = \sup_{x \in [a,b]} f(x)$, $m = \inf_{x \in [a,b]} f(x)$ and $\{c_n\}$ such that $c_n \to a$ as $n \to \infty$. Then $\varepsilon > a$ $0 \exists k \in \mathbb{N} \text{ such that } |c_n - a| < \frac{\varepsilon}{2(M-m)} \forall n \ge k \Rightarrow |c_k - a| < \frac{\varepsilon}{2(M-m)} \text{ and }$

 $f \in R[c_k, b] \Rightarrow \exists partition Q of [c_k, b] such that <math>U(Q_k, f) - L(Q_k, f) < \frac{\varepsilon}{2}$. Let $P = \{a\}$. \mathbb{Q} . Then $U(P,f) - L(P,f) < (M,m)(c_k - a) + (U(Q,f) - L(Q,f)) < \frac{\varepsilon}{1} + \frac{\varepsilon}{2} = \varepsilon$

- **1.25.6.** Corollary I: Let f:[a,b] be bounded on [a,b] and for every $d \in (a,b)$, $f \in R[a,d]$. Then $f \in R[a,b]$.
- **1.25.7.** Corollary II: Let $f : [a, b] \to \mathbb{R}$ be bounded on [a, b] and for every c, d saftisfying a < c < d < b $f \in R[c, d]$. Then $f \in R[a, b]$.
- **1.25.8. Inequalities:** Let $f : [a, b] \to \mathbb{R}$ be integrable on [a, b]. If M and m be the supremum of f and infimum of f on [a, b] respectively, then $m(b a) \le \int_a^b f \le M(b a)$
- **1.25.9.** Corollary (a): Let $f : [a,b] \to \mathbb{R}$ be ingegrable on [a,b]. Then $\exists \mu \in \mathbb{R}$ satisfying $m \le \mu \le M$ such that $\int_a^b f = \mu(b-a)$.
- **1.25.10.** Corollary (b) Let $f : [a,b] \to \mathbb{R}$ be continuous on [a,b]. Then $\exists \ a \ point \ c \in [a,b]$ such that $\int_a^b f = f(c)(b-a)$.
- **1.25.11**. Let $f: [a, b] \to \mathbb{R}$ be integrable on [a, b] and $f(x) \ge 0 \ \forall \ x \in [a, b]$ such that $\int_a^b f \ge 0$.
- **1.25.12.** Let $f, g : [a, b] \to \mathbb{R}$ be both integrable on [a, b] and $f(x) \ge g(x) \ \forall \ x \in [a, b]$. Then $\int_a^b f \ge \int_a^b g$.
- **1.25.13.** Let $f: [a, b] \to \mathbb{R}$ be integrable on [a, b] and $f(x) \ge 0 \ \forall \ x \in [a, b]$. Let $\exists \ c \in [a, b]$ such that f is continuous at c and f(c) > 0, then $\int_a^b f > 0$.

Note – (a) If f is continuous on [a, b] and f(x) > 0 on [a, b] then $\int_a^b f > 0$.

Note - (b) if $f \in R[a,b]$ and f(x) > 0 on [a,b] then also $\int_a^b f > 0$ because \exists at least a point of discontinuity $c \in [a,b]$ of f.

1.25.14. Let $f:[a,b]\to\mathbb{R}$ be integrable on [a,b]. Then $\left|\int_a^b f\right|\leq \int_a^b |f|$.

Examples (1.124):

(a) If f be continuous on [a, b] and $f(x) \ge 0$ on [a, b] and $\int_a^b f = 0$ then f = 0 on [a, b] identically.

[**Hint**: If $\exists c \in [a,b]$ such that $f(c) > 0 \implies \int_a^b f > 0$]

(b)
$$\frac{\pi^2}{9} < \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{x}{\sin x} \ dx < \frac{2\pi^2}{9}$$

[**Hint**: $1 \le \frac{1}{\sin x} \le 2$, $x \in \left[\frac{\pi}{6}, \frac{\pi}{2}\right] \Rightarrow x \le \frac{x}{\sin x} \le 2x$, $x \in \left[\frac{\pi}{6}, \frac{\pi}{2}\right]$ and $at \frac{\pi}{3}, \frac{\pi}{3} < \frac{1}{\sin(\frac{\pi}{3})} < \frac{2\pi}{3}$]

1.25.15. Let $f : [a, b] \to \mathbb{R}$ be integrable on [a, b] then the function F(x) defined by $F(x) = \int_a^x f(t) dt$, $x \in [a, b]$ is continuous on [a, b].

Note: F(x) always continuous even if f(x) may not continuous on [a,b] and also F(x) is uniform continuous on [a, b].

Example (1.125): Let
$$f : [0,1] \to \mathbb{R}$$
 be defined by $f(x) = \begin{cases} 0 & , -1 \le x \le 0 \\ 1 & , 0 < x \le 1 \end{cases}$

$$-1 \le x \le 0, F(x) = \int_{-1}^{x} f(t) dt = 0$$

$$0 < x \le 1, F(x) = \int_{-1}^{x} f(t) dt = \int_{-1}^{0} f(t) dt + \int_{0}^{x} f(t) dt = 0 + \int_{-1}^{x} dx = x$$

We have
$$F(x) = \begin{cases} 0, -1 \le x \le 0 \\ x, 0 < x \le 1 \end{cases} \Rightarrow F$$
 is continuous on $[-1,1]$.

- **1.25.16.** If $f:[a,b]\to\mathbb{R}$ be integrable on [a,b] then the function $F(x)=\int_a^x f(t)\,dt,\ x\in$ [a, b] is differentiable at any point $c \in [a, b]$ at which f is continuous and F'(c) = f(c).
- **1.25.17.** Corollary: If $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] then F is differentiable on [a,b] and $F'(x) = f(x) \ \forall x \in [a,b].$

1.26. Fundamental Theorem of Integral Calculus:

- **1.26.1. Definition (Anti-derivative or Primitive):** A function ϕ is called an anti-derivative or a primitive of a function f on an interval I if $\phi'(x) = f(x) \forall x \in I$.
- **1.26.2.** If $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and $\phi:[a,b] \to \mathbb{R}$ be an anti-derivative of fon [a, b], then $\int_a^b f = \phi(b) - \phi(a)$.

1.26.3. Fundamental Theorem of Integral Calculus:

- (i) $f : [a, b] \to \mathbb{R}$ be integrable on [a, b] and
- (ii) f possesses an anti derivative ϕ on [a,b], then

$$\int_a^b f = \phi(b) - \phi(a)$$

We think, the weightage of *text* is only 10 percent, the rest 90 percent of weightage lies within our remaining five services: solution of 1250 previous years questions and 1000 model questions (unit and subunit wise) with proper explanation, on-line MOCK test series, last minute suggestions and daily updates because it will make your preparation innovative, scientific and complete. Access these five services from our website: www.teachinns.com and qualify not only the eligibility of assistant professorship but also junior research fellowship.

1.26.4. Note $-\mathbf{I}$:(Integrability \Rightarrow existence of anti - derivative):

Example (1.126):
$$f: [-1,1] \to \mathbb{R}, f(x) = \begin{cases} 0, -1 \le x < 0 \\ 1, 0 \le x \le 1 \end{cases} \Rightarrow f \in R[-1,1] \text{ on } f \text{ is}$$

continuous on [-1,1] except at 0.

Let
$$\phi$$
 be anti-derivative of f on $[-1,1]$. Then $\phi'(x) = \begin{cases} 0, -1 \le x < 0 \\ 1, 0 \le x \le 1 \end{cases}$

Since $\phi'(-1) \neq \phi'(1)$, by Darboux theorem ϕ' must assume every real number lying between $\phi'(-1)$ and $\phi'(1)$ i.e., 0 and 1. But it does not do so.

1.26.5. Note –II: (Existence of anti-derivative ≠ Integrability):

Example (1.127): Let
$$f: [-1,1] \to \mathbb{R}$$
 be defined by $f(x) = \begin{cases} 2x \sin \frac{1}{x^2} - \frac{2}{x} \cos \frac{1}{x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$

 $f \notin R[-1,1]as f$ is unbounded on every neighbourhood of 0.

Now,
$$\phi : [-1,1] \to \mathbb{R}$$
 defined by $\phi(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$

Then $\phi'(x) = f(x)$ on [-1,1]. So, ϕ is anti-derivative of f on [-1,1].

1.26.6. If

(i) $f : [a, b] \to \mathbb{R}$ be integrable on [a, b] and

(ii) $\exists \phi : [a,b] \to \mathbb{R}$ such that ϕ is continuous on [a,b] and

$$\phi'(x) = f(x) \ \forall \ x \in [a,b], then \ \int_a^b f = \phi(b) - \phi(a).$$

1.26.7. Corollary: If $(i) f : [a, b] \to \mathbb{R}$ be integrable on [a, b] and $(i) f : [a, b] \to \mathbb{R}$ be integrable on [a, b] and

(ii) $\exists \phi : [a, b] \to \mathbb{R}$ such that ϕ is continuous on [a, b] and

 $\phi'(x) = f(x) \ \forall \ x \in [a, b] \setminus E$, where E is a finite set $\subset [a, b]$,

then
$$\int_a^b f = \phi(b) - \phi(a)$$
.

1.27. Riemann Sum and another Definition of Integration:

1.27.1. Riemann Sum: Let $f:[a,b] \to \mathbb{R}$ and $P=\{x_0,x_1,x_2,\ldots,x_n\}$ be a partition of [a, b] and $\xi_0, \xi_1, \xi_2, \ldots, \xi_n$ are arbitrarily chosen points such that $x_{r-1} \leq \xi_r \leq x_r$ for r =1,2,3...., n. Then the sum $\sum_{r=1}^{n} f(\xi_r)(x_r - x_{r-1})$ is called a Reimann sum for f corresponding to the partition P and choose intermediate points ξ_r . This is denoted by S(P, f).

1.27.2. Definition (Another Definition for Riemann Integration):

A function $f:[a,b] \to \mathbb{R}$ is said to be Riemann integrable on [a,b] if $\exists B > 0$ such that for each $\varepsilon > 0$, $\exists \alpha \delta = \delta(\varepsilon) > 0$ satisfying |S(P, f) - B| <

 $\varepsilon \forall partition P of [a, b] with ||P|| < \delta where S(P, f)$ is a Riemann sum for f

corresponding to the partition P and to any choice of intermediate points. In this case B = $\int_a^b f$.

This condition is expressed by the symbol $\lim_{\|P\|\to 0} S(P, f) = B$.

1.27.3. If
$$f:[a,b]\to\mathbb{R}$$
 be such that $\lim_{\|P\|\to 0}S(P,f)=B$, then B is unique.

1.27.4. If
$$f:[a,b]\to\mathbb{R}$$
 be such that $\lim_{\|P\|\to 0}S(P,f)$ exists, then f is bounded on $[a,b]$.

1.27.5. (Integration by Substitution): Let $I = [\alpha, \beta]$ be a closed and bounded interval and a function $\phi: I \to \mathbb{R}$ be such that ϕ' is continuous and $\neq 0$ on I. Let $\phi(\alpha) = a$, $\phi(\beta) = b$ and a function f be continuous on $\phi([\alpha, \beta])$. Then –

$$\int_{\alpha}^{\beta} f(\phi(t)) \, \phi'(t) \, dt = \int_{a}^{b} f(x) \, dx$$

1.27.6. Integration by parts: Let $f, g : [a, b] \to \mathbb{R}$ be both differentiable on [a, b] and f', g'are both intergable on [a, b]. Then -

$$\int_{a}^{b} f(x) g'(x) dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(x) g(x) dx$$

1.28. Mean Value Theorem for Integration:

1.28.1. First Mean Value Theorem:

If (i)
$$f, g : [a, b] \to \mathbb{R}$$
 be both integrable on $[a, b]$, and

(ii) g(x) has the same sign $\forall x \in [a, b]$

then there is a no μ such that $\int_a^b f(x) g(x) dx = \mu \int_a^b g(x) dx$

where $m < \mu \le M$ and $m = \inf_{x \in [a,b]} f(x)$, $M = \sup_{x \in [a,b]} f(x)$. Further, f is continuous on [a,b]there is a point $c \in [a, b]$ such that $\int_a^b f(x) g(x) dx = f(c) \int_a^b g(x) dx$.

1.28.2. Note:

(i) If
$$g(x) = 1$$
, then $\int_a^b f(x) dx = \mu \int_a^b dx = \mu(b-a)$, where $m \le \mu \le M$.

(ii) If f is continuous ojn [a, b] and g(x) = 1, then $\exists c \in [a, b]$ such that

$$\int_a^b f(x) \, dx = f(c)(b-a).$$

Since $c \in [a, b]$, $c = a + \theta (b - a)$ for some θ satisfying $0 \le \theta \le 1$.

$$\therefore \int_a^b f(x) \, dx = (b-a)f(a+\theta(b-a)), 0 \le \theta \le 1.$$

Example (1.128): Use first mean value theorem prove that

$$\frac{\pi}{6} \le \int_0^{\frac{1}{2}} \frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}} dx \le \frac{\pi}{6} \cdot \frac{1}{\sqrt{1-\frac{k^2}{4}}}, k^2 < 1$$

Let
$$(x) = \frac{1}{\sqrt{1-k^2x^2}}$$
, $g(x) = \frac{1}{\sqrt{(1-x^2)}}$, $x \in [0, \frac{1}{2}]$

Then
$$f, g \in R\left[0, \frac{1}{2}\right]$$
 and $g(x) > 0$, $\forall x \in \left[0, \frac{1}{2}\right]$

By first Mean Value Theorem $\exists \ a \ c \in \left[0, \frac{1}{2}\right]$ such that

$$\int_0^{\frac{1}{2}} f(x) g(x) dx = f(x) \int_0^{\frac{1}{3}} g(x) dx = \frac{1}{\sqrt{1 - k^2 x^2}} \cdot \frac{\pi}{6}$$

Since
$$0 \le c \le \frac{1}{2}$$
, $1 \le \frac{1}{\sqrt{1-k^2x^2}} \le \frac{1}{\sqrt{1-\frac{k^2}{4}}} \Rightarrow \frac{\pi}{6} \le \int_0^{\frac{1}{2}} f(x) g(x) dx \le \frac{\pi}{6} \cdot \frac{1}{\sqrt{1-\frac{k^2}{4}}}$

1.28.3. Second Mean Value Theorem (Bonnets Form):

- If (i) $f, g : [a, b] \to \mathbb{R}$ be both integrable on [a, b], and
 - (ii) f is monotone decreasing and non-negative on [a,b], then $\exists a \text{ point } c \in [a,b]$ such that $\int_a^b f(x) g(x) dx = f(a) \int_a^c g(x) dx$

1.28.4. Second MVT, Weierstrass' form:

- If (i) $f, g : [a, b] \to \mathbb{R}$ be both integrable on [a, b], and
 - (ii) f is monotonic on [a, b]

then \exists a point $c \in [a,b]$ such that $\int_a^b f(x) g(x) dx = f(a) \int_a^c g(x) dx + f(b) \int_c^b g(x) dx$

Example (1.129):

- (i) Prove that $\left| \int_a^b \frac{\sin x}{x} dx \right| \le \frac{2}{a}$, $0 < a < b < \infty$ (Bonnets form).
- (ii) Prove that $\left| \int_a^b \frac{\sin x}{x} dx \right| \le \frac{4}{a}$, $0 < a < b < \infty$ (Weierstrass form).
- (i) Let $f(x) = \frac{1}{x}$, $g(x) = \sin x$, $\forall x \in [a, b]$. Since $f, g \in R[a, b]$ and f is monotone decreasing on [a, b], by second mean value theorem (Bonnets form) $\exists c \in [a, b]$ such that $\int_a^b f(x) g(x) dx = f(a) \int_a^c g(x) dx = \frac{1}{a} \int_a^c \sin x \, dx = \frac{1}{a} [-\cos c + \cos a]$

$$\Rightarrow \left| \int_{a}^{b} \frac{\sin x}{x} \, dx \right| \le \frac{2}{a}$$

(ii) Since f is monotone on [a, b], by second mean value theorem (Weierstrass form) $\exists c \in [a, b]$ such that $\int_a^b f(x) g(x) dx = \frac{1}{a} \int_a^c g(x) dx + \frac{1}{b} \int_c^b g(x) dx$

$$= \frac{1}{a} [-\cos c + \cos a] + \frac{1}{b} [-\cos b + \cos c]$$

$$\therefore \left| \int_{a}^{b} \frac{\sin x}{x} \, dx \right| \le \frac{4}{a}$$

1.28.5. Definition (Logarithmic Function): The logarithmic function $L(or \ log)$ is defined by $L(x) = \log x = \int_1^x \frac{dt}{t}$, x > 0.

1.28.6. Definition (e): Then unique real number x satisfying L(x) = 1 is denoted by e i.e., L(e) = 1. Therefore e is denoted by $1 = \int_{1}^{e} \frac{1}{t} dt$.

1.29. Improper Integral:

There are two type of improper integrals-

- Improper integrals on a finite interval where the improper is unbounded.
- ii. Improper integrals on an unbounded interval.
- **1.29.1** Convergence of the improper integral $\int_a^b f(x)dx$ when a is the only point of infinite discontinuous of f in [a, b].

Let
$$\psi(\varepsilon) = \int_{a+\varepsilon}^b f(x) dx$$
, $0 < \varepsilon < b-a$

If $\lim_{\varepsilon \to 0+} \psi(\varepsilon) = l(finite)$, then the improper integral $\int_a^b f(x)$ is said to be convergent and we write $\int_a^b f(x)dx = l$.

If $\lim_{\varepsilon \to 0+} \psi(\varepsilon)$ does not exist, then the improper integral $\int_a^b f(x) dx$ is said to be divergent.

Example-(1.130):

The integral $\int_{1}^{2} \frac{dx}{\sqrt{x-1}}$ is improper integral, since 1 is a point of infinite discontinuity of the integral. The integrand is bounded and integrable on $[1 + \varepsilon, 2] \forall 0 < \varepsilon < 1$.

Www.teachin
$$\lim_{\varepsilon \to 0+} \int_{1+\varepsilon}^2 \frac{dx}{\sqrt{x-1}} = \lim_{\varepsilon \to 0+} 2[1-\sqrt{\varepsilon}] = 2$$
 ion of six Hence, the integral $\int_1^2 \frac{dx}{\sqrt{x-1}}$ is convergent and $\int_1^2 \frac{dx}{\sqrt{x-1}} = 2$

Example-(1.131):

The integral $\int_0^1 \frac{dx}{x}$ is improper, since 0 is the point of infinite discontinuity of the integrand and it bounded on $[\varepsilon, 1]$, $\forall 0 < \varepsilon < 1$.

$$\lim_{\varepsilon \to 0+} \int_{\varepsilon}^{1} \frac{dx}{x} = \lim_{\varepsilon \to 0+} [-\log \varepsilon] = \infty$$

Hence, the improper integral $\int_0^1 \frac{dx}{x}$ is divergent.

1.29.2. Convergence of the improper integral $\int_a^b f(x) dx$ when b is the only point of infinite discontinuity of f in [a, b].

Let
$$\psi(\varepsilon) = \int_a^{b-\varepsilon} f(x) dx$$
, $0 < \varepsilon < b-a$

If $\lim_{\varepsilon \to 0+} \psi(\varepsilon) = l(finite)$, then the improper integral is said to be convergent and we write $\int_{a}^{b} f(x) dx = l.$

If $\lim_{\varepsilon \to 0+} \psi(\varepsilon)$ does not exist, then the improper integral $\int_a^b f(x) dx$ is said to be divergent.

Example-(1.132):

 $\int_0^1 \frac{dx}{\sqrt{1-x^2}}$ is improper, since 1 is a point of infinite discontinuity and it is bounded on $[0,1-\varepsilon] \ \forall \ 0 < \varepsilon < 1$

$$\lim_{\varepsilon \to 0+} \int_0^{1-\varepsilon} \frac{dx}{\sqrt{1-x^2}} = \lim_{\varepsilon \to 0+} \sin^{-1}(1-\varepsilon) = \frac{\pi}{2}$$

Hence, the improper integral $\int_0^1 \frac{dx}{\sqrt{1-x^2}}$ is convergent.

Example-(1.133):

$$\int_0^2 \frac{dx}{2-x}$$
 is divergent (verify!)

1.29.3. Convergence of the improper integral $\int_a^b f(x)dx$ where a and b are the only point of infinite discontinuities of f in [a, b]

Let f be bounded on $[a + \varepsilon_1, b - \varepsilon_2]$, $0 < \varepsilon_1 < \varepsilon_2 < b - a$ and $c \in (a, b)$.

If both the integrals $\int_a^c f(x)dx$ and $\int_c^b f(x)dx$ are convergent, then the improper integral $\int_{a}^{b} f(x)dx \text{ is said to be convergent and we write,}$ $\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \text{ Technology}$

If one of $\int_a^c f(x)dx$ or $\int_a^c f(x)dx$ is divergent or both $\int_a^c f(x)dx$ and $\int_c^b f(x)dx$ are www.teachings.com - A compliation of Six divergent, then $\int_a^b f(x)dx$ is said to be divergent.

Example-(1.134):

The improper integral $\int_0^2 \frac{dx}{\sqrt{x(2-x)}}$ is improper, since 0 and 2 are point of infinite discontinuities of the integrand.

The integrand is bounded and integrable on $[0 + \varepsilon_1, \ 2 - \varepsilon_2] \ \forall \ 0 < \varepsilon_1, \ \varepsilon_2 < 1$

Now,
$$\lim_{\varepsilon_1 \to 0+} \int_{0+\varepsilon_1}^1 \frac{dx}{\sqrt{x(2-x)}} = \lim_{\varepsilon_1 \to 0+} [\sin^{-1}(x-1)]_{\varepsilon_1}^1 = \frac{\pi}{2}$$

$$\lim_{\varepsilon_2 \to 0+} \int_1^{2-\varepsilon_2} \frac{dx}{\sqrt{x(2-x)}} = \lim_{\varepsilon_2 \to 0+} \left[\sin^{-1}(x-1) \right]_1^{2-\varepsilon_2} = \frac{\pi}{2}$$

Therefore, $\int_0^2 \frac{dx}{\sqrt{x(2-x)}}$ is convergent and $\int_0^2 \frac{dx}{\sqrt{x(2-x)}} = \pi$

1.29.4. Convergence of the improper integral $\int_a^b f(x)dx$ when an interior point c is the only point of infinite discontinuity of f in [a, b].

If both the integrals $\int_a^c f(x)dx$ and $\int_c^b f(x)dx$ are convergent, then the improper integral $\int_{a}^{b} f(x)dx$ is convergent and we write

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

If one of $\int_a^c f(x)dx$ or $\int_c^b f(x)dx$ is divergent or both the integral $\int_a^c f(x)dx$ or $\int_c^b t(x)dx$ are divergent, then the improper integral $\int_a^b f(x)dx$ is divergent.

- **1.29.5.** Convergence of the improper integral $\int_a^b f(x) dx$ when a finite number of points $c_1, c_2, c_3, \ldots, c_k$ are the only points of infinite discontinuities of f in [a, b].
- a) Let $a < c_1 < c_2 < ... < c_k < b$.

 If the improper integrals $\int_a^{c_1} f(x) dx$, $\int_{c_1}^{c_2} f(x) dx$, $\int_{c_k}^b f(x) dx$ are all convergent, then the improper integral $\int_a^b f(x) dx$ is said to be convergent, then the improper integral $\int_a^b f(x) dx$ is said to be convergent and we write $\int_a^b f(x) dx = \int_a^{c_1} f(x) dx + \int_{c_1}^{c_2} f(x) dx + + \int_{c_k}^b f(x) dx$
- b) Let either $a = c_1$ or $b = c_k$ or both

If
$$a = c_1$$
, then $\int_a^b f(x)dx = \int_a^{c_2} f(x)dx + \int_{c_2}^{c_3} f(x)dx + \dots + \int_{c_k}^b f(x)dx$
If $b = c_k$, then $\int_a^b f(x)dx = \int_a^{c_1} f(x)dx + \int_{c_1}^{c_2} f(x)dx + \dots + \int_{c_{k-1}}^b f(x)dx$

1.29.6. Test for convergence of positive integrand

- i. Theorem: Let a be the only point of infinite discontinuity of a function f which is integrable on [a + ε, b], 0 < ε < b a and f(x) > 0 ∀ x ∈ [a, b]. A necessary and sufficient condition for the convergence of the improper integral ∫_a^b f(x)dx is that ∃ a k > 0 such that ∫_{a+ε}^b f(x)dx < k ∀ ε satisfying 0 < ε < b a.
- ii. **Theorem:** Let b be the only point of infinite discontinuity of a function f which is integrable on $[a, b \varepsilon]$, $0 < \varepsilon < b a$ and $f(x) > 0 \ \forall \ x \in [a, b]$

A necessary and sufficient condition for the convergence of the improper integral $\int_a^b f(x)dx$ is that $\exists a \ k > 0$ such that $\int_a^{b-\varepsilon} f(x)dx < k \ \forall \ \varepsilon$ satisfying $0 < \varepsilon < b-a$.

- iii. **Theorem (Comparison Test):** Let a be the only point of infinite discontinuity of the functions f and g which are both integrable on $[a + \varepsilon, b]$, $0 < \varepsilon < b a$ and $0 < f(x) \le mg(x) \ \forall \ x \in [a, b]$, where m > 0. Then
 - **a.** $\int_a^b g(x)dx$ is convergent $\Rightarrow \int_a^b f(x)dx$ is convergent.
 - **b.** $\int_a^b f(x)dx$ is divergent $\Rightarrow \int_a^b g(x)dx$ is divergent.

- iv. **Theorem [Comparison Test (limit form)]:** Let a be the only point of infinite discontinuity of the functions f and g which are both integrable on $[a+\varepsilon,b], 0<\varepsilon< b-a$ and $f(x)>0, g(x)>0 \ \forall \ x\in [a,b].$
 - If $\lim_{x \to a+} \frac{f(x)}{g(x)} = l$ (non-zero finite), then both the improper integrals $\int_a^b f(x) dx$ and $\int_a^b g(x) dx$ converges or diverge together.
- v. **Theorem** (μ -test): Let a be the only point of infinite discontinuity of a faction f which is integrable on $[a + \varepsilon, b]$, $0 < \varepsilon < b a$ and $f(x) > 0 \ \forall x \in [a, b]$.

If
$$\lim_{x \to a+} (x-a)^{\mu} f(x) = l$$
 (non-zero finite), then the integral $\int_a^b f(x) dx$ is convergent $\Leftrightarrow \mu < 1$.

Example-(1.135): The integral $\int_0^1 \frac{x^{m-1}}{1+x} dx$ is convergent $\iff m > 0$.

The integral is proper if $m - 1 \ge 0$ and improper if m < 1, 0 is the only point of infinite discontinuity.

Now,
$$\lim_{x \to 0+} (x-0)^{1-m} f(x) = \lim_{x \to 0+} x^{m-1} \cdot x^{m-1} \frac{1}{1+x} = 1$$

By μ -test the improper integral is convergent $\Leftrightarrow 1 - m < 1 \Rightarrow m > 0$.

Example-(1.136): The beta function $\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$ is convergent $\Rightarrow m, n > 0$.

- 1.29.7. Test for convergence of an improper integral when the integrand does not necessarily keep the same sign.
- i. **Theorem (Cauchy):** Let a be the only point of infinite discontinuity of a function f which is integrable on $[a + \varepsilon, b]$, $0 < \varepsilon < b a$ and f(x) may not keep same sign on [a, b].

A necessary and sufficient condition for the convergence of the improper integral $\int_a^b f(x) dx$ in that for a given $\varepsilon > 0$, \exists a positive $\delta < b - a$ such that

$$\left| \int_{a+\varepsilon_1}^{a+\varepsilon_2} f(x) dx \right| < \varepsilon \ \forall \ \varepsilon_1, \varepsilon_2 \ \text{ satisfying } 0 < \varepsilon_1 < \varepsilon_2 < \delta.$$

Definition (absolutely convergent): The improper integral $\int_a^b f(x)dx$ is said to be absolutely convergent if $\int_a^b |f|(x)dx$ is convergent.

ii. **Theorem:** Let a be the only point of infinite discontinuity of a function f which is integrable on $[a+\varepsilon,b]$, $0<\varepsilon< b-a$. It $\int_a^b |f|(x)dx$ is convergent, then $\int_a^b f(x)dx$ is convergent.

Note: Converse of the above theorem is not true.

Example-(1.137): The improper integrable $\int_0^1 \frac{\cos \frac{1}{x}}{\sqrt{x}} dx$ is convergent.

Let $f(x) = \frac{\cos \frac{1}{x}}{\sqrt{x}}$, $x \in [0,1]$ thus 0 is the only point of infinite discontinuity of f.

Now, $|f(x)| = \left| \frac{\cos \frac{1}{x}}{\sqrt{x}} \right| \le \frac{1}{\sqrt{x}}$ and $\int_0^1 \frac{dx}{\sqrt{x}}$ is convergent and hence $\int_0^1 \frac{\cos \frac{1}{\sqrt{x}}}{\sqrt{x}} dx$ is convergent.

Example-(1.138):

A Function f(x) is defined on [0,1] by

$$f(x) = \begin{cases} 0, & x = 0 \\ (-1)^{n+1}(n+1), & \frac{1}{n+1} < x \le \frac{1}{n} \end{cases} (n = 1, 2, \dots)$$

It can be shown that $\int_0^1 f(x)dx$ is convergent but $\int_0^1 |f|(x)dx$ is divergent.

1.29.8. Convergence of the improper integral $\int_a^\infty f(x)dx$ where f is integrable on

$$[a, X] \forall X > a$$

Let
$$\psi(X) = \int_a^X f(x) dx$$
, $X > a$

If $\lim_{X\to\infty} \psi(x)dx = l$ (exists finitely), then the improper integral $\int_a^\infty f(x)dx$ is said to be convergent and we write $\int_a^\infty f(x)dx = l$.

If $\lim_{x\to\infty} \psi(x)$ does not exist, then the improper integral $\int_a^\infty f(x)dx$ is said to be divergent.

Example-(1.139): chinns.com - A compilation of six

Consider the improper integral $\int_0^\infty e^{-x} dx \, e^{-x}$ is integrable on [0, X], X > 0.

Let
$$\psi(x) = \int_0^X e^{-x} dx = 1 - e^{-x}$$
, $\lim_{x \to \infty} \psi(x) = 1$

Hence $\int_0^\infty e^{-x} dx$ is convergent.

Example-(1.140): Consider the integral $\int_1^\infty \frac{dx}{x} \cdot \frac{1}{x}$ is integrable on [1, X], X > 1.

Let
$$\psi(x) = \int_1^X \frac{dx}{x} = \log X$$
, $\lim_{X \to \infty} \log X = \infty$.

Hence, $\int_{1}^{\infty} \frac{dx}{x}$ is divergent.

1.29.9. Convergence of the improper integral $\int_{-\infty}^{b} f(x)dx$ where f is integrable on $[X,b] \ \forall \ X < b$

Let
$$\psi(X) = \int_X^b f(x) dx, X < b$$
.

If $\lim_{X \to -\infty} \psi(X) = l$ (finite then the improper integral $\int_{-\infty}^{b} f(x)$ is said to be convergent and we write $\int_{-\infty}^{b} f(x) = l$.

If $\lim_{X\to -\infty} \psi(X)$ does not exist, then $\int_{-\infty}^{b} f(x)$ is said to be divergent.

1.29.10. Convergence of the improper integral $\int_{-\infty}^{\infty} f(x) dx$ where f is integrable on $[X_1, X_2] \ \forall \ X_1, X_2 \in \mathbb{R}$ with $x_1 < X_2$. Let $c \in \mathbb{R}$. If both the integrals $\int_{-\infty}^{c} f(x) dx$ and $\int_{c}^{\infty} f(x) dx$ are convergent, then $\int_{-\infty}^{\infty} f(x) dx$ is said to be convergent and we write $\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx$

1.29.11. Convergence of improper integral $\int_{-\infty}^{\infty} f(x)dx$ where f has a finite number of points of infinite discontinuity c_1, c_2, \ldots, c_k .

Let $c_1 < c_2 < \ldots < c_k$. If each of integral $\int_{-\infty}^{c_1} f(x) dx$, $\int_{c_1}^{c_2} f(x) dx$,, $\int_{c_k}^{\infty} f(x) dx$ one convergent.

Then $\int_{-\infty}^{\infty} f(x)dx$ is said to be convergent and we write

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{c_1} f(x)dx + \int_{c_1}^{c_2} f(x)dx + \dots + \int_{c_k}^{\infty} f(x)dx$$

1.29.12. Tests for convergence of positive integrand.

- i. **Theorem:** Let a function f be integrable on $[a, X] \ \forall X > a$ and $f(x) > 0 \ \forall x \ge a$.

 A necessary and sufficient condition for the convergence of the improper integral $\int_a^\infty f(x)dx$ is that $\exists a \ m > 0$ such that $\int_a^X f(x)dx < m \ \forall x > a$.
- ii. **Theorem (Comparison Test):** Let the function f and g be both integrable on $[a, X] \ \forall \ X > a$ and $0 < f(x) \le mg(x) \ \forall \ x \ge a$ with m > 0. Then

 a. $\int_a^\infty g(x) dx$ is convergent $\Rightarrow \int_a^\infty f(x) dx$ in convergent
 - b. $\int_{a}^{\infty} f(x)dx$ in divergent $\Rightarrow \int_{a}^{\infty} g(x)dx$ in divergent.
- iii. **Theorem [Comparison test (limit form):** Let the function f and g be both integrable on $[a, X] \ \forall \ X > a$ and $f(x) > 0, g(x) > 0 \ \ \forall \ x \ge a$.
 - If $\lim_{x \to \infty} \frac{f(x)}{g(x)} = l$ (non-zero finite), then the two improper integrals $\int_a^{\infty} f(x) dx$ and $\int_a^{\infty} g(x) dx$ converge or diverge together.
- iv. **Theorem** (μ -test): Let $f(x) > 0 \quad \forall x \ge a$. If $\lim_{x \to \infty} x^{\mu} f(x) = l$ (non-zero finite), then the improper integral $\int_a^{\infty} f(x) dx$ is convergent $\Leftrightarrow \mu > 1$.

Example-(1.141): Consider the improper integral $\int_{1}^{\infty} \frac{x^{m-1}}{1+x} dx$

Here,
$$f(x) = \frac{x^{m-1}}{1+x}$$

Now,
$$\lim_{x \to \infty} x^{2-m} f(x) = \lim_{x \to \infty} \frac{x}{1+x} = 1$$
 (non-zero finite)

Hence by μ -test $\int_{1}^{\infty} \frac{x^{m-1}}{1+x} dx$ is convergent $\Leftrightarrow 2-m > 1 \Rightarrow m < 1$

- **1.29.13.** Test for convergence of the improper integral on an infinite range of integration where the integrand may not keep same sign.
- i. **Theorem (Cauchy):** Let $a \in \mathbb{R}$ and a function f be integrable on $[a, X] \ \forall \ X > a$. A necessary and sufficient condition for the convergence of the improper integral $\int_a^\infty f(x) dx$ is that for a given $\varepsilon > 0$, $\exists \ a \ X_0 > 0$ such that $\left| \int_{X_1}^{X_2} f(x) dx \right| < \varepsilon \ \forall \ X_1, X_2 > X_0$
- ii. **Theorem:** An absolutely convergent improper integral $\int_a^\infty f(x)dx$ [where f is bounded and integrable on $[a, X] \ \forall \ X > a$] is convergent but the convergence is not true.

Example-(1.142):

Let a function f be defined on $[1, \infty]$ by $f(x) = \frac{(-1)^{n-1}}{n}, n \le x < n+1, n=1,2,3...$ If can be verified that $\int_1^\infty f(x) dx$ is convergent but $\int_1^\infty |f|(x) dx$ is not convergent.

- iii. Theorem (Abel's test): Let a function g be monotonic and bounded on $[a, \infty]$ and the integral $\int_a^\infty f(x)dx$ be convergent. Then the integral $\int_a^\infty f(x)dx$ is convergent.
- iv. **Theorem** (Dirichlet's test): Let a function g be monotonic bounded on $[a, \infty]$ and $\lim_{x \to \infty} g(x) = 0$ and the integral $\int_a^X f(x) dx$ be bounded on $[a, X] \, \forall \, X > a$. Then the integral $\int_a^\infty f(x) g(x) dx$ is convergent.

Example-(1.143): Text Post Most LMS. The gamma function $\Gamma(m) = \int_a^\infty x^{m-1} e^{-x} dx$ is convergent $\Leftrightarrow m > 0$.

1.30. Sequence of functions:

- **1.30.1. Definition:** Let $D \subset \mathbb{R}$ and for each $n \in \mathbb{N}$, let $f_n : D \to \mathbb{R}$ be a function, Then $\{f_n\}$ is a sequence of functions on D to \mathbb{R} . D may be [a,b], $[a,\infty] \to$ closed intervals (a,b), $(a,\infty) \to$ open intervals.
- **1.30.2. Definition (Pointwise Convergent):** The sequence of functions $\{f_n\}$ on D to \mathbb{R} is said to be pointwise convergent if for each $x \in D$, $\{f_n(x)\}$ converges.

Let for each $x \in D$, $\{f_n(x)\} \to l_x$ as $n \to \infty$. Define $f : D \to \mathbb{R}$ by $f(x) = l_x$ for each $x \in D$, Then f(x) is said to be the limit function of $\{f_n(x)\}$ on D. Write $\lim_{x \to \infty} f_n(x) = f(x)$ on D.

Examples (1.144): $f_n: \mathbb{R} \to \mathbb{R}$ defined by $f_n(x) = x^n, x \in \mathbb{R}$, $\forall n \in \mathbb{N}$ then $f_n(x)$ is a sequence of functions on \mathbb{R} . For each $x \in (-1,1)\{f_n(x)\}$ converges to 0 and for x = 1, $\{f_n(x)\}$ converges to 1. For all other $x \in \mathbb{R}$, the sequence $\{f_n(x)\}$ is divergent. So, the sequence $\{f_n\}$ is pointwise convergent on [-1,1] and the limit function f is defined by

$$f(x) = \begin{cases} 0, -1 < x < 1 \\ 1, x = 1 \end{cases}$$

ii. $f_n: \mathbb{R} \to \mathbb{R}$, $f_n(x) = \frac{x}{n}$, $x \in \mathbb{R}$, $\forall n \in \mathbb{N}$. Then $f_n(x)$ converges to $0 \forall n \in \mathbb{N}$. So its limit function is f(x) = 0, $x \in \mathbb{R}$.

iii.
$$f_n(x) = \tan^{-1}(nx), x \in \mathbb{R}, x \in \mathbb{N}$$

Then
$$\lim_{x \to \infty} f_n(x) = \begin{cases} \frac{\pi}{2}, x > 0\\ 0, x = 0\\ \frac{-\pi}{2}, x < 0 \end{cases}$$

So, the sequence $\{f_n\}$ is pointwise convergent on $\mathbb R$ and the limit function $f(x) = \frac{\pi}{2} \sin x$, $x \in \mathbb R$

iv.
$$f_n(x) = \frac{\sin nx}{n}$$
, $x \in \mathbb{R}$ $\lim_{x \to \infty} f_n(x) = 0 = f(x)$, $x \in \mathbb{R}$

v. Let
$$f_n(x) = ne^{-nx}, x \ge 0, n \in \mathbb{N}$$

For all $x \ge 0$, $0 \le ne^{-nx} \le \frac{1}{n}$, (since $e^{nx} > nx$, x > 0)

$$\therefore \lim_{x \to \infty} f_n(x) = 0 = f(x)$$

1.30.3. Definition (Uniform Convergent): Let $D \subseteq \mathbb{R}$ and for each $n \in \mathbb{N}$ $f_n = D \to \mathbb{R}$, be a function. The sequence $\{f_n(x)\}$ is said to be uniformly convergent on D to a function f if corresponding to a pre-assigned $\varepsilon > 0 \exists k(\varepsilon) \in \mathbb{N}$ such that for all $n \in D$, $|f_n(x) - f(x)| < \varepsilon \forall n \geq k$.

We write $\lim_{x\to\infty} f_n = f$ uniformly on D or $f_n \to f$ uniformly on D.

f is said to be the uniform limit of $\{f_n\}$ on D.

If $\{f_n(x)\}$ is uniformly convergent on D to the function f(x) then the sequence $\{f_n(x)\}$ also converges pointwise on D to f. But the converges is not true.

Example-(1.145): Let $f_n(x) = x^n$, $x \in \mathbb{R}$, $x \in \mathbb{N}$. Then $\{f_n(x)\}$ converges on [-1,1] to the function f where $f(x) = \{0, -1 < x < 1 \\ 1, x = 1\}$

Let $c \in (0,1)$. Then $|f_n(c) - f(c)| = c^n$ and let $0 < \epsilon < 1$. Then $|f_n(c) - f(c)| < \epsilon$ if $c^n < \epsilon$

as whenever $n \log \left(\frac{1}{c}\right) > \log \left(\frac{1}{\epsilon}\right)$

as whenever $n > \log\left(\frac{1}{\epsilon}\right) / \log\left(\frac{1}{\epsilon}\right)$.

Let
$$k = \left[\log\left(\frac{1}{\epsilon}\right)/\log\left(\frac{1}{c}\right)\right] + 1$$
Then $|f_n(c) - f(c)| < \epsilon \ \forall \ n \ge k$.

$$\ \, \because \forall \, n \in (0,1), |f_n(x) - f(x)| < \epsilon \, \, \forall \, n \geq k, k = \left[\log\left(\frac{1}{\epsilon}\right)/\log\left(\frac{1}{x}\right)\right] + 1$$

This k depends on ϵ and x. As $x \to 1$, $k \to \infty$

 $\nexists k \in \mathbb{N}$ such that $x \in (0,1)$, $|f_n(x) - f(x)| < \epsilon \ \forall \ n \ge k$.

Consequently $\{f_n\}$ is not uniformly convergent on (0,1).

But $\{f_n\}$ is uniformly convergent on [0, a], 0 < a < 1 since, in [0, a], the greatest value of

 $\log\left(\frac{1}{\epsilon}\right)/\log\left(\frac{1}{\epsilon}\right)$ is $\log\left(\frac{1}{\epsilon}\right)/\log\left(\frac{1}{\epsilon}\right)$

We think, the weightage of text is only 10 percent, the rest 90 percent of weightage lies within our remaining five services: solution of 1250 previous years questions and 1000 model questions (unit and subunit wise) with proper explanation, on-line MOCK test series, last minute suggestions and daily updates because it will make your preparation innovative, scientific and complete. Access these five services from our website: www.teachinns.com and qualify not only the eligibility of assistant professorship but also junior research fellowship.

Abbreviation:

3.

- w.teachinns.com A compilation of six Text: Unit wise separate pdf
- PYQs: Previous Years Questions

 Output

 Description: 1 ext. PYQs, MQs, LMS, OMT, DU
- **MQs: Model Questions**
- **LMS: Last Minute Suggestion** 4.
- **5. OMT: Online MOCK Test**
- **DU: Daily Updates** 6.

Buy any course and get 35% discount www.teachinns.com contact@teachinns.com