Resume

J. Caleb Wherry

Software Architect

CONTACT

- **(**931) 338.1071
- ☑ caleb@calebwherry.com
- in linkedin.com/in/calebwherry
- ⊕ calebwherry.com
- Atlanta, Georgia

SKILLS

- Software Architecture
- Mathematical Analysis
- Scientific Computing
- High-performance Computing

EXPERTISE

- Modern C++: 11-20
- C# (.NET Core)
- Python
- **GPGPU**

EDUCATION

MASTER OF SCIENCE

Computer Science Georgia Tech

2014 - TBD (On Hiatus)

BACHELOR OF SCIENCE

Computer Science Austin Peay State University 2006 - 2011

PROFILE

A versatile Software Architect with over 10 years of experience productizing research-driven technologies. Expert in rapidly prototyping machine learning & mathematical algorithms from first principals into production-hardened systems that scale horizontally and vertically. Technical leader and innovator that pushes the boundaries of technologies and research capabilities for core product development.

NOTABLE EXPERIENCE

Principal Software Engineer

Nexidia, Inc / Atlanta, GA / Mar 2015 - Present

Technical lead for Research architecture and infrastructure. Rapid prototyping of C++, C# (.NET Core), & Python applications to provide efficient and robust solutions to kick-start productization of core research technologies.

- Architect for rapidly prototyped Redaction product leading to multi-millions in revenue.
- Architect for greenfield, cross-platform, containerized, gRPC-based product to modernize core research technologies for the entire tech stack.

Research Scientist

Georgia Tech Research Institute / Atlanta, GA / Jun 2014 - Mar 2015 Software Architect for FPGA analysis tools using large-scale graph analytics. Applied mathematics research in multiple areas: circuits, graph theory, pattern matching, and computationally hard combinatorial problems.

Research Engineer

Luna Innovations / Roanoke, VA / May 2011 - Aug 2012

Designed C++ and Python FPGA analysis tools using graph-theoretic methods. Developed Python QA automation framework to test all tools against general FPGA designs.

Visiting Research Scholar

Institute for Quantum Computing / Waterloo, ON, CA / Summer 2010 Researched genetic algorithm optimizations for pulse sequences in control theory for superconducting and NMR qubit implementations.