Linear Algebra: Wheatstone Bridge

The circuit shown in the figure is known as a Wheatstone bridge. It consists of five resistances and one applied voltage.

Kirchhoff's Voltage Law (KVL) applied to each loop in the circuit shown gives:

$$V - R_2 i_2 - R_4 i_4 = 0$$

 $-R_2 i_2 + R_1 i_1 + R_3 i_3 = 0$
 $-R_4 i_4 - R_3 i_3 + R_5 i_5 = 0$

Conservation of charge (aka Kirchhoff's Current Law, KCL) applied at each node in the circuit gives:

$$i_6 = i_1 + i_2$$
 $i_2 + i_3 = i_4$
 $i_1 = i_3 + i_5$
 $i_4 + i_5 = i_6$

Note that only 3 of these 4 equations are linearly independent.

Objectives

- a) Draw the cause/effect diagram.
- b) Write a function M-file that accepts as inputs the applied voltage, V, and a vector containing the values of the resistances, $\mathbf{R} = [R_1, R_2, R_3, R_4, R_5]$. The function should solve for the six currents and return these values in a vector as output.
- c) Use your function to find the currents for the following cases:

	V (volts)	R_1 (k Ω)	$R_2 (k\Omega)$	R_3 (k Ω)	$R_4 (k\Omega)$	$R_5(k\Omega)$
Case 1	0	1	1	1	1	1
Case 2	100	1	1	1	1	1
Case 3	100	1	5	2	10	5

- d) Use your function to study the effect of the applied voltage on the currents. On a single graph, plot the 6 currents as a function of voltage for V=0 to 500 volts. Use resistance values from Case 3. If the maximum allowable current is $I_{max}=0.08$ amps, what is the maximum allowable voltage, V_{max} ?
- e) Use your function to study the effect of R_1 on the currents. On a single graph, plot the 6 currents as a function of R_1 for $R_1 = 0$ to 1 k Ω . Use the R_2 - R_5 values from Case 3. If the minimum allowable I_3 is $I_{3,min} = 0.005$ A, what is $R_{1,max}$?