Patent Abstracts of Japan

PUBLICATION NUMBER

62011810

PUBLICATION DATE

20-01-87

APPLICATION DATE

09-07-85

APPLICATION NUMBER

: 60152038

APPLICANT:

HORIBA LTD;

INVENTOR:

SAITO MITSUNORI;

INT.CL.

G02B 6/42 // G02B 6/16 G02B 6/30

TITLE

METHOD FOR MAKING LINEARLY

POLARIZED LIGHT INCIDENT ON

OPTICAL FIBER

1

ABSTRACT :

PURPOSE: To improve the transmission efficiency by inclining an incident end face of an optical fiber at a supplementary angle of a Brewster's angle, making a linearly polarized light incident, and advancing an incident light in parallel to an axis.

CONSTITUTION: An incident end face 2 of an optical fiber 1 is inclined at a supplementary angle (90°- θ B) of a Brewster's angle θ B. An incident light (i) is made incident on a normal of the end face 2 from a direction of the Brewster's angle θ B. An angle of refraction θ B' of a transmission light (t) in the incident end face 2 becomes θ B'=90°- θ B, the transmission light (t) advances in parallel to an axis of the optical fiber 1, and a divergent angle of an emitted light U becomes small. In this way, the transmission efficiency is improved, the emitted light U is condensed easily, and the incident end face 2 is polished easily. This method is suitable for a laser knife and a laser for working.

COPYRIGHT: (C)1987,JPO&Japio

ANS PAGE BLANK (USPTO)

⑩ 日本国特許庁(JP)

⑪特許出願公開

⑩ 公 開 特 許 公 報 (A)

昭62-11810

@Int_Cl_4

識別記号

· 庁内整理番号

④公開・昭和62年(1987)1月20日

G 02 B 6/42 6/16 6/30 7529-2H D-7370-2H 7529-2H

審査請求 未請求 発明の数 1

函発明の名称

直線偏光の光ファイバへの入射方法

20特 頣 昭60-152038

四出 頤 昭60(1985)7月9日

明 の発 者

徳 族 光

京都市南区吉祥院宮ノ東町2番地 株式会社堀場製作所内

人 堀場製作所 ①出 願 株式会社

砂代 理 弁理士 藤本 英夫

1. 発明の名称

直線偏光の光ファイバへの入射方法

2. 特許請求の範囲

ブリュースタ角の補角で傾斜させた光ファイバ の入射端面に、直線偏光をブリュースタ角で入射 することを特徴とする直線偏光の光ファイバへの 入射方法。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、光ファイバに対する直線偏光の入射 方法に関するものである。

(従来の技術)

光ファイバに空気中から光が入射された場合、 第2回に示したように入射光の一部が反射される。 図において、1は光ファイバ、iは入射光、rは 反射光、ιは透過光である。ここで、光線の反射 率は、光ファイバがAS₂S₂ 製の場合、第3図に示 したように、P偏光はrrとなり、S偏光はrs 一般光はデになる。.

そして、P偏光とS偏光の透過光にと反射光に は、それぞれ次の式で表される。

P偏光

京都市南区吉祥院宮ノ東町2番地

$$t_{p} = \frac{\sin 2\theta \cdot \sin 2\theta'}{\sin^{2}(\theta + \theta') \cos^{2}(\theta - \theta')}$$

$$r_{p} = \frac{\tan^{2}(\theta - \theta')}{\tan^{2}(\theta + \theta')}$$

== E, sind = f sin 0

S偏光

$$t_s = \frac{\sin 2\theta \cdot \sin 2\theta'}{\sin^2(\theta + \theta')}$$

$$T_s = \frac{\sin^2(\theta - \theta')}{\sin^2(\theta + \theta')}$$

$$\vdots \quad \xi, \sin \theta' = \frac{1}{2}\sin \theta$$

光ファイバに光を入射する場合、従来はたとえ ば第4回に示す方法が知られている。周図におい て、光ファイバ1の入射端面2を、光ファイバ1 の軸線に対し垂直にし、入射光;を光ファイバ1 の蚰線とほぼ平行にして入射端面でから入射する。 透過光には光ファイバ1の蚰線と平行方向に伝送 される。しかし、入射光1の一部は反射損失とな り、光ファイバ1がAS.S。製であるとすると、第

3 図から入射角が0°であるから、約17%の反射 損失が生じる。この反射損失を改善する方法として、入射端面2 およびそれと相対する出射面に無 反射コートを施すことが知られている。

また、反射損失をなくするために、第5図に示したように、光ファイバ1の入射端面2に対して、直線偏光を入射光線;としてブリュースク角で入射する方法、及び第6図のように、光ファイバ1の入射端面2をブリュースク角の。の斜面として、直線偏光を入射光;として光ファイバの軸線と平行して入射する方法が知られている。

(発明が解決しようとする問題点)

上記従来の入財方法において、第4図に示した 方法は、光の反射損失の問題を有する。反射損失 をなくするために入射端面2に無反射コートをす る方法があるが、多くの手間を要しコストが上昇 する問題がある。また、入射端面2に対して光を 垂直に入射するから、光の入射面積が小さくなる。 したがって、この方法でたとえばレーザ光を入射 するとエネルギーの密度が高くなるから、光ファ

3

(作用)

本発明の入射方法は、直線偏光した入射光を入 射端面にプリュースタ角で入射するから、入射光 線の反射損失がなくなり、かつ入射端面はプリュー ースタ角の補角で傾斜させているから、この入射 端面における透過乳の屈折で、透過光は光ファイ パの蚰線と平行に進み、光ファイバの周面での反 射回数が少なく伝送損失が小さくなる。そして、 出射光の広がり角が小さく集光が容易である。

(実施例)

本発明の実施例を第1図について説明する。図 において、光ファイバ1の入射端面2を、ブリュ ースタ角の補角(90°-0₄)で傾斜させている。

そして、直線偏光した人射光:を前記入射端面 2 に対してプリュースタ角の。で入射させる。入 射端面 2 における透過光:の屈折角の1 kは、

 θ ' = 30 - θ

となるから、透過光:は光ファイバ1の帕線と 平行に進行し、出射光Uの広がり角は小さくなる。 上記のように、光ファイバ!に対して光を入射 イバーの入射端面?を損傷する問題も発生する。

第5 図と第6 図の方法では、反射損失の問題は 解決できるが、透過光にはいずれの方法でも光ファイバ1 の中心軸に平行には進行しないため、光ファイバ1 の周面での金万射回数が多くなるから 伝送損失が大きくなる問題がある。また、透過光が光ファイバ1 中で斜めに進行するから、出射光 Uの広がり角が大きくなって、集光が困難になる。 これは伝送光がレーザ光の場合には、エネルギー 密度の低下となり、大きな欠点となる。

本発明は上記のような問題を解決するためになされたもので、光の反射損失をなくし、かつ透過 光を光ファイバの軸線と平行に進行させて、伝送 損失を小さくするとともに、出射光の広がり角を 小さくして現光が容易にできる、光ファイバに対 する光の入射方法を得ることを目的とする。

【問題点を解決するための手段】

本発明の入射方法は、プリュースタ角の補角で 傾斜させた光ファイバの入射端面に、直線偏光を プリュースタ角で入射することを特徴とする。

4

すれば、入射端面 2 における入射光 1.の反射損失がなく光を効率よく伝送することができ、かつ送過光 1 は、光ファイバ 1 の曲線方向に進み、光ファイバ 1 内における全反射回数が少なくなり、伝送損失も小さくすることができる。また、出射光 Uの広がりを小さくできるから、出射光 2 の 4 光 が容易である。

光ファイバ1の入射端面2は、プリュースタ角の補角で傾斜させて研修するのみでよく、入射端面2の加工が容易であり、かつこの入射端面2に対して入射光1をプリュースク角として傾斜させて入射するから、入射端面2における入射光1の入射面積が、第4図に示した従来の方法に比して大きくなる。

したがって、光を効率よく伝送することが必要である、レーザメスや金属板などの切断または溶接その他に使用される加工用のレーザ光の入射にこの方法を使用すれば、大きなエネルギーのレーザ光を入射端面 2 を損傷することなく無反射で光ファイベ1 に入射することができるとともに、エ

時開昭62-11810(3)

ネルギーの損失を小さくして伝送することが可能 である。そして、光射光の広がり角が小さく集光 が容易であるから、伝送したレーザー光を加工に 対して効率よく使用できる。

このように、この光の入射方法は直線偏光をうることが容易であるレーザ光の入射に対して適するものである。そして、入射伝送するレーザ光の用途としては、前記の加工用に限るものではなく、通信その他の各種の用途のレーザ光の入射伝送に対しても有効である。

光ファイバ」としては任意の材料で形成したものが使用でき、たとえば、前記のASzS。をはじめとするカルコゲナイドガラス以外に、石英系カラス、フッ化物ガラス、ハロゲン化物結晶などがある

(発明の効果)

本発明は上記するように、光ファイバの入射端面にプリュースク角で直線偏光を入射するから、 入射端面での前記入射光の反射損失をなくすることが可能である。そして、入射端面における光の

7

図は光の反射と透過を示す図、第3図は光の反射 損失を示す図、第4図と第5図。第6図はそれぞ れ従来の異なった入射方法を示す側面図である。

1 …光ファイバ、2 …入射端面、i …入射光。

特許出願人 株式会社 掘場製作所 代理人 弁理士 蔣本英夫 入射面積が、入射端面に対して垂直で光を入射する場合に比して大きくなるから、 たとえば、 レーザ光を入射する場合において、入射端面におけるエネルギー密度が小さくなり、入射端面の損傷を防止できる。 入射端面は研磨するのみでよく、 その加工が容易である。

また、光ファイバの入射端面をブリュースタ角の補角で傾斜させ、かつこの入射端面に対して光をブリュースク角で入射するから、その透過光の配折角は90~0。(ブリュースク角)となり、前記透過光は光ファイバの軸線と平行に進む。したがって、光ファイバ内での透過光の全反射回数が少なくなり、伝送損失を少なくすることができる。このように、透過光は光ファイバ内を、その軸線と平行に進み、出射光の広がりが小さくて集光が容易であるから、加工用レーザ光のように集光を必要とする場合にも、その光を効率よく利用でき

4. 図面の簡単な説明

第1図は本発明の一実施例を示す側面図、第2

8

—72<u>—</u>