IN THE CLAIMS:

Claims 1-32 are cancelled. Claims 33-40 are added. All pending claims and their present status are produced below.

- 1 1. (Canceled)
- 2 2. (Canceled)
- 3 3. (Canceled)
- 4 4. (Canceled)
- 5 5. (Canceled)
- 6 6. (Canceled)
- 7 7. (Canceled)
- 8 8. (Canceled)
- 9 9. (Canceled)
- 10 10. (Canceled)
- 11 11. (Canceled)
- 12 12. (Canceled)
- 13 13. (Canceled)
- 14 14. (Canceled)
- 15 15. (Canceled)
- 16 16. (Canceled)
- 17 17. (Canceled)
- 18 18. (Canceled)
- 19 19. (Canceled)
- 20 20. (Canceled)
- 21 21. (Canceled)

 Case 16010-05885 (Amendment A)

 U.S. Serial No. 10/043,824

22	22.	(Canceled)
23	23.	(Canceled)
24	24.	(Canceled)
25	25.	(Canceled)
26	26.	(Canceled)
27	27.	(Canceled)
28	28.	(Canceled)
29	29.	(Canceled)
30	30.	(Canceled)
31	31.	(Canceled)
32	32.	(Canceled)
1	33.	(New) A method of predicting the performance of an application in a multi-hop
2		network, the multi-hop network comprising a client and a server, the method
3		comprising:
4		determining, for each thread of the application, a set of application factors
5		corresponding to a set of functions performed by the application, the
6		application factors being independent of the network and of a network flow
7		control protocol, the application factors comprising average packet size and
8		average node send time;
9		determining a set of network delay times corresponding to a series of network delay
10		sources along the multi-hop network path, the network delay sources

11

12

a transmission delay, a constant delay, and a node delay;

comprising a queuing delay, a bandwidth delay, a bottleneck delay, and one of

13	determining a set of network flow factors corresponding to the network flow control
14	protocol, the network flow factors comprising a number of turns added per
15	direction, the direction relative to the client and the server;
16	determining a duration of each thread of the application based on the application
17	factors, the network delay times and the network flow factors; and
18	determining a total response time based on the durations of the threads.
1	34. (New) The method of claim 33, wherein said determining a set of network flow
2	factors comprises generating a histogram of node send time, and determining the number of
3	turns added per direction based on the histogram.
1	35. (New) An apparatus for predicting the performance of an application in a multi-hop
2	network, the multi-hop network comprising a client and a server, the apparatus
3	comprising:
4	means for determining, for each thread of the application, a set of application factor
5	corresponding to a set of functions performed by the application, the
6	application factors being independent of the network and of a network flow
7	control protocol, the application factors comprising average packet size and
8	average node send time;
9	means for determining a set of network delay times corresponding to a series of
10	network delay sources along the multi-hop network path, the network delay
11	sources comprising a queuing delay, a bandwidth delay, a bottleneck delay,
12	and one of a transmission delay, a constant delay, and a node delay;

. 13		means for determining a set of network flow factors corresponding to the network
14		flow control protocol, the network flow factors comprising a number of turns
15		added per direction, the direction relative to the client and the server;
16		means for determining a duration of each thread of the application based on the
17		application factors, the network delay times and the network flow factors; and
18		means for determining a total response time based on the durations of the threads.
1	36.	(New) The apparatus of claim 35, wherein said means for determining a set of
2		network flow factors comprises means for generating a histogram of node send time,
3	*	and means for determining the number of turns added per direction based on the
4		histogram.
1	37.	(New) A computer readable medium comprising computer readable instructions
2		which, when executed by a processing system, cause the processing system to
3		perform a method of predicting the performance of an application in a multi-hop
4		network, the multi-hop network comprising a client and a server, the method
5		comprising:
6		determining, for each thread of the application, a set of application factors
7	:	corresponding to a set of functions performed by the application, the
8		application factors being independent of the network and of a network flow
9		control protocol, the application factors comprising average packet size and
10		average node send time;
11		determining a set of network delay times corresponding to a series of network delay
12		sources along the multi-hop network path, the network delay sources

13	comprising a queuing delay, a bandwidth delay, a bottlefleck delay, and one of
14	a transmission delay, a constant delay, and a node delay;
15	determining a set of network flow factors corresponding to the network flow control
16	protocol, the network flow factors comprising a number of turns added per
17	direction, the direction relative to the client and the server;
18	determining a duration of each thread of the application based on the application
19	factors, the network delay times and the network flow factors; and
20	determining a total response time based on the durations of the threads.
1	38. (New) The medium of claim 37, further comprising computer readable instructions
2	which, when executed by the processing system, cause the processing system to generate a
3	histogram of node send time and to determine the number of turns added per direction based
4	on the histogram.
1	39. (New) An apparatus for predicting the performance of an application in a multi-hop
2	network, the multi-hop network comprising a client and a server, the apparatus
3	comprising:
4	application factor logic for determining, for each thread of the application, a set of
5	application factors corresponding to a set of functions performed by the
6	application, the application factors being independent of the network and of a
7	network flow control protocol, the application factors comprising average
8	packet size and average node send time;
9	delay time logic for determining a set of network delay times corresponding to a
10	series of network delay sources along the multi-hop network path, the network

delay sources comprising a queuing delay, a bandwidth delay, a bottleneck
delay, and one of a transmission delay, a constant delay, and a node delay;
flow factor logic for determining a set of network flow factors corresponding to the
network flow control protocol, the network flow factors comprising a number
of turns added per direction, the direction relative to the client and the server;
first duration logic for determining a duration of each thread of the application based
on the application factors, the network delay times and the network flow
factors; and
second duration logic for determining a total response time based on the durations of
the threads.
(New) The apparatus of claim 39, wherein said flow factor logic for determining a
set of network flow factors comprises logic for generating a histogram of node send
time, and logic for determining the number of turns added per direction based on the
histogram.

40.