Лекция 20 от 08.02.2016

Линейные отображения (продолжение)

Пусть $\varphi \colon V \to W$ — линейное отображение.

Предложение.

- 1. $\operatorname{Ker} \varphi nodnpocmpaнcmeo \ \epsilon \ V$.
- 2. $\operatorname{Im} \varphi nodnpocmpaнcmso \ s \ W$.

Доказательство. Проверим по определению.

- 1. $\varphi(0_v) = 0_w$ этот факт мы уже доказали.
 - $v_1, v_2 \in \operatorname{Ker} \varphi \Rightarrow \varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2) = 0_w + 0_w = 0_w \Rightarrow v_1 + v_2 \in \operatorname{Ker} \varphi$.
 - $v \in \text{Ker } \varphi, \alpha \in F \Rightarrow \varphi(\alpha v) = \alpha \varphi(v) = \alpha 0 = 0$, то есть αv тоже лежит в ядре.
- 2. $0_w = \varphi(0_v) \Rightarrow 0_w \in \text{Im } (\varphi)$.
 - $w_1, w_2 \in \text{Im } \varphi \Rightarrow \exists v_1, v_2 \in V : w_1 = \varphi(v_1), w_2 = \varphi(v_2) \Rightarrow w_1 + w_2 = \varphi(v_1) + \varphi(v_2) = \varphi(v_1 + v_2) \Rightarrow w_1 + w_2 \in \text{Im } \varphi.$
 - $w \in \operatorname{Im} \varphi, \alpha \in F \Rightarrow \exists v \in V : \varphi(v) = w \Rightarrow \alpha w = \alpha \varphi(v) = \varphi(\alpha v) \Rightarrow \alpha w \in \operatorname{Im} \varphi.$

То есть все условия подпространства по определению выполнены и предложение доказано.

Предложение.

- 1. Отображение φ инъективно тогда и только тогда, когда ${\rm Ker}\ \varphi = \{0\}.$
- 2. Отображение φ сюръективно тогда и только тогда, когда ${\rm Im} \ \varphi = W.$

Доказательство.

- 1. [⇒] Очевидно.
 - $[\Leftarrow] v_1, v_2 \in V : \varphi(v_1) = \varphi(v_2) \Rightarrow \varphi(v_1 v_2) = 0 \Rightarrow v_1 v_2 = 0 \Rightarrow v_1 = v_2.$
- 2. Очевидно из определения образа.

Следствие. Отображение φ является изоморфизмом тогда и только тогда, когда $\operatorname{Ker} \varphi = \{0\}$ и $\operatorname{Im} \varphi = W$.

Предложение. Пусть $U \subset V$ — подпространство и e_1, \ldots, e_k — его базис. Тогда:

- 1. $\varphi(U)$ nodnpocmpaнcmso, $\varphi(U) = \langle \varphi(e_1), \dots, \varphi(e_k) \rangle$;
- 2. $\dim \varphi(U) \leqslant \dim U$.

Доказательство.

- 1. $\varphi(x_1e_1 + x_2e_2 + \ldots + x_ke_k) = x_1\varphi(e_1) + \ldots + x_k\varphi(e_k) \in \langle \varphi(e_1), \ldots, \varphi(e_k) \rangle$.
- 2. $\varphi(U) = \langle \varphi(e_1), \dots, \varphi(e_k) \rangle \Rightarrow \dim \varphi(U) \leqslant \dim U$ по основной лемме о линейной зависимости.

Пусть V, W — векторные пространства, $e = (e_1, \dots, e_n)$ — базис $V, f = (f_1, \dots, f_m)$ — базис W, A — матрица φ по отношению $k \in f$.

Предложение. $\dim \operatorname{Im} \varphi = \operatorname{rk} A$.

Доказательство.

$$v \in V$$
, $v = x_1 e_1 + \dots x_n e_n$
 $\varphi(v) = y_1 f_1 + \dots y_m e_m$

Тогда:

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

 $A^{(j)}$ — столбец координат в базисе \mathbb{F} , $\alpha_1, \ldots, \alpha_n \in F$.

$$\alpha_1 \varphi(e_1) + \dots + \alpha_n \varphi(e_n) = 0 \Leftrightarrow \alpha_1 A^{(1)} + \dots + \alpha_n A^{(n)} = 0$$

Отсюда следует, что:

$$\operatorname{rk} A = \operatorname{rk} \left\{ \varphi(e_1), \dots, \varphi(e_n) \right\} = \dim \underbrace{\left\langle \varphi(e_1), \dots, \varphi(e_n) \right\rangle}_{\operatorname{Im} \varphi} = \dim \operatorname{Im} \varphi.$$

Следствие. Величина ${\rm rk}\ A$ не зависит от выбора базисов ${\rm e}\ u$ ${\rm f.}$

Определение. Величина rkA называется рангом линейного отображения φ . Обозначение: $rk\varphi$.

Следствие. Если $\dim V = \dim W = n$, то φ — изоморфизм тогда и только тогда, когда $\det A \neq 0$. Тогда A— квадратная.

Доказательство.

 $[\Rightarrow] \varphi$ — изоморфизм, следовательно:

$$\operatorname{Im} \varphi = W \Rightarrow \dim \operatorname{Im} \varphi = n \Rightarrow \operatorname{rk} A = n \Rightarrow \det A \neq 0.$$

 $[\Leftarrow] \det A \neq 0 \Rightarrow \exists A^{-1}.$

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \Rightarrow \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = A^{-1} \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$$

Таким образом, линейное отображение φ является биекцией, а значит, и изоморфизмом. \square

Следствие. Пусть $A \in \operatorname{Mat}_{k \times m}$, $B \in \operatorname{Mat}_{m \times n}$. Тогда $\operatorname{rk} AB \leqslant \min \{\operatorname{rk} A, \operatorname{rk} B\}$.

Доказательство. Реализуем A и B как матрицы линейных отображений, то есть $\varphi_A \colon F^m \to F^k$, $\varphi_B \colon F^n \to F^m$. Тогда AB будет матрицей отображения $\varphi_A \circ \varphi_B$.

$$\operatorname{rk}(AB) = \operatorname{rk}(\varphi_A \circ \varphi_B) \begin{cases} \leqslant \dim \operatorname{Im} \varphi_A = \operatorname{rk} A \\ \leqslant \dim \operatorname{Im} \varphi_B = \operatorname{rk} B \end{cases}$$

Первое неравенство следует из того, что $\operatorname{Im}(\varphi_A \circ \varphi_B) \subset \operatorname{Im} \varphi_A$, откуда в свою очередь следует, что $\dim \operatorname{Im}(\varphi_A \circ \varphi_B) \leqslant \dim \operatorname{Im} \varphi_A$. Рассматривая второе неравенство, получаем:

$$\operatorname{Im}\left(\varphi_{A}\circ\varphi_{B}\right)=\varphi_{A}(\operatorname{Im}\varphi_{B})\Rightarrow\operatorname{dim}\operatorname{Im}\left(\varphi_{A}\circ\varphi_{B}\right)=\operatorname{dim}(\varphi_{A}(\operatorname{Im}\varphi_{B}))\leqslant\operatorname{dim}\operatorname{Im}\varphi_{B}.$$

Упражнение.

- Если A квадртана $u \det A \neq 0$, то $\operatorname{rk} AB = \operatorname{rk} B$.
- $Ecnu\ B \in M_n\ u \det B \neq 0$, mo rk $AB = \operatorname{rk} A$.

Теорема. dim Im $\varphi = \dim \varphi - \dim \operatorname{Ker} \varphi$.

Существует 2 способа доказательства. Рассмотрим оба.

Бескоординатный способ. Пусть $\dim \mathop{\mathrm{Ker}} \varphi = k$ и e_1, \ldots, e_k — базис в $\mathop{\mathrm{Ker}} \varphi$. Дополним его до базиса V векторами e_k, \ldots, e_n . Тогда:

$$\operatorname{Im} \varphi = \langle \varphi(e_1), \dots, \varphi(e_k), \dots, \varphi(e_n) \rangle = \langle 0, 0, \dots, 0, \varphi(e_{k+1}), \dots, \varphi(e_n) \rangle = \langle \varphi(e_{k+1}), \dots, \varphi(e_n) \rangle$$

Пусть $\alpha_{k+1}\varphi(e_{k+1}) + \ldots + \alpha_n\varphi(e_n) = 0$ для некоторых $\alpha_1, \ldots, \alpha_n \in F$. Тогда:

$$\varphi(\alpha_{k+1}e_{k+1} + \ldots + \alpha_n e_n) = 0$$

$$\alpha_{k+1}e_{k+1} + \ldots + \alpha_n e_n \in \operatorname{Ker} \varphi$$

$$\alpha_{k+1}e_{k+1} + \ldots + \alpha_n e_n = \beta_1 e_1 + \ldots \beta_k e_k,$$

для некоторых $\beta_1, \ldots, \beta_k \in F$.

Но так как e_1, \ldots, e_n — базис в V, то $\alpha_{k+1} = \ldots = \alpha_n = \beta_1 = \ldots = \beta_k = 0$. То есть векторы $\varphi(e_1), \ldots, \varphi(e_n)$ линейно независимы, а значит, образуют базис $\operatorname{Im} \varphi$. Что и означает, что $\dim \operatorname{Im} \varphi = n - k = \dim V - \dim \operatorname{Ker} \varphi$.

Координатный способ. Зафиксируем базис $e = (e_1, \dots, e_n)$ в V и базис $f = (f_1, \dots, f_m)$ в W. Пусть A — матрица φ в базисе f. Тогда $v = x_1e_1 + \dots + x_ne_n$, $\varphi(v) = y_1f_1 + \dots + y_mf_m$. Получим,

что
$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Кег φ состоит из векторов, координаты которых удовлетворяют СЛУ $A\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0$. Ранее

в курсе мы уже доказали, что размерность пространства решений равна $n-\operatorname{rk} A$, то есть $\dim\operatorname{Im}\varphi=n-\operatorname{rk} A=\dim V-\dim\operatorname{Ker}\varphi.$

Линейные операторы

Пусть V — конечномерное векторное пространство.

Определение. Линейным оператором (или линейным преобразованием) называется всякое линейное отображение $\varphi \colon V \to V$, то есть из V в себя. Обозначение: $L(V) = \operatorname{Hom}(V, V)$.

Пусть $e=(e_1,\ldots,e_n)$ — базис в V и $\varphi\in L(V)$. Тогда:

$$(\varphi(e_1),\ldots,\varphi(e_n))=(e_1,\ldots,e_n)A,$$

где A — матрица линейного оператора в базисе е. В столбце $A^{(j)}$ стоят координаты $\varphi(e_j)$ в базисе е. Матрица A — квадратная.

Пример.

- 1. $\forall v \in V : \varphi(v) = 0$ нулевая матрица.
- 2. Тождественный оператор: $\forall v \in V : id(v) = v e \partial u + u + u + a \beta$ матрица.

3. Скалярный оператор $\lambda \mathrm{id}(v) = \lambda V$ — матрица λE в любом базисе.

Следствие (Следствия из общих фактов о линейных отображениях).

- 1. Всякий линейный оператор однозначно определяется своей матрицей в любом фиксированном базисе.
- 2. Для всякой квадратной матрицы существует, причем единственный, линейный оператор φ такой, что матрица φ есть A.
- 3. Пусть $\varphi \in L(V)$, A матрица φ в базисе \mathfrak{e} . Тогда:

$$v = x_1 e_1 + \dots + x_n e_n$$

$$\varphi(v) = y_1 e_1 + \dots + y_n e_n$$

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Пусть $\varphi \in L(V)$, A — матрица φ в базисе $\mathfrak{E} = (e_1, \dots, e_n)$. Пусть $\mathfrak{E}' = (e'_1, \dots, e'_n)$ — другой базис, причём $(e'_1, \dots, e'_n) = (e_1, \dots, e_n)C$, где C — матрица перехода, и A' — матрица φ в базисе \mathfrak{E}' .

Предложение. $A' = C^{-1}AC$.

Доказательство.

$$(e'_1, \dots, e'_n) = (e_1, \dots, e_n)C$$

$$e'_j = \sum_{i=1}^n c_{ij}e_j$$

$$\varphi(e'_j) = \varphi\left(\sum_{i=1}^n c_{ij}e_j\right) = \sum_{i=1}^n c_{ij}\varphi(e_j)$$

$$(\varphi(e'_1), \dots, \varphi(e'_n)) = (\varphi(e_1), \dots, \varphi(e_n))C = (e_1, \dots, e_n)AC = (e'_1, \dots, e'_n)\underbrace{C^{-1}AC}_{A'}$$