ANALISI Note Title	1 -		EZIONE	20
Teoremi di tipo permanenza	e del segu	au		
Se $a_m \rightarrow Q > 0$, allora	au > 0 de	efiuitivame	eute <u>2</u>	
Dim.) Uso Da dep. di Dimis		2 8	\(\frac{\ell}{2}\)	30 2
$1-\frac{2}{2} \le a_{1} \le l$ Questo dimostra che an				
Se au → too, allora au				
Dim. J Uso Da def. di lic	u. cou		e ottengo o	le
Se au → √5, allora	2 < an </td <td>3 definitiv</td> <td>S -</td> <td></td>	3 definitiv	S -	
Dim.] Basta prendere E>0 abbastanta picado in 2 < 15 - E e Sappianno che definiti	V5+E «	< 3	2 \5 1 (m) 13-E \75+E	3
Teorema misterioso (Unici Ogni successione ha uni O, O, O, O	s e uno	sdo dei p		
Se inoltre à di tipo (2), a Definitivamente dovrebbe sta	11.0	min del		uu co

in due intervalli disginuti!

Tre criteri per i limiti di successioni
-> Giterio della RADICE
-> Critaio del RAPPORTO
-> Guiterio RAPPORTO -> RADICE
CRITERIO DELLA RADICE Sia au una successione.
Suppoulaus che
(i) au 20 definition (some per fane le raplici)
$(ii) \sqrt[n]{au} \rightarrow L \in [0, +\infty) \cup \{+\infty\}$
Allora
e se L < 1, allora au → 0
• Se L > 1 (iucluso il caso L = + ∞), allora an → + ∞
• Se L = 1, allora BOH.
CRITERIO DEL RAPPORTO Sia au una successione.
Suppouraus che
Ci) au > 0 deficitio. (serve per fare i rapporti)
$(ii) \qquad Q_{m+1} \qquad (z \vdash 0, +\infty) \cup \{+\infty\}$
$\frac{(ii)}{au} \longrightarrow L \in [0, +\infty) \cup \{+\infty\}$
XII or a della corre della Radia
Allora es attamente come nel caso della radice.
Come si usano operativamente?
Devo fare il liveile di au une non souo capace.
Magani sous capace di caladare il limite di
a source of
man oppure di au
Se une di questi due le se fane, e viene de esiste ed è +1,
allora no la risposta per quanto riguarda il limite di an,

