Семинары: Погорелова П.В.

Семинар 4.

Множественная регрессия.

1. Рассмотрим классическую линейную модель регрессии

$$y = X\beta + \varepsilon$$
.

Найдите:

- (a) $Cov(e, \hat{\beta})$;
- (b) Cov(e, y);
- (c) $Cov(e, \hat{y})$.
- 2. Пусть регрессионная модель $Y_i = \beta_1 + \beta_2 X_{i2} + \beta_3 X_{i3} + \varepsilon_i$, $i = 1, \ldots, n$, задана в матричном виде при помощи уравнения $y = X\beta + \varepsilon$, где $\beta = \begin{pmatrix} \beta_1 & \beta_2 & \beta_3 \end{pmatrix}'$. Известно, что $\varepsilon \sim N(0, \sigma_{\varepsilon}^2 \cdot \mathbf{I}_n)$. Известно также, что:

$$y = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

Для удобства расчётов ниже приведены матрицы:

$$X'X = \begin{pmatrix} 5 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \text{ if } (X'X)^{-1} = \begin{pmatrix} 1/3 & -1/3 & 0 \\ -1/3 & 4/3 & -1 \\ 0 & -1 & 2 \end{pmatrix}.$$

- (а) Рассчитайте при помощи метода наименьших квадратов оценку для вектора неизвестных коэффициентов.
- (b) Рассчитайте несмещенную оценку для неизвестного параметра σ_{ε}^2 регрессионной модели.
- (c) Рассчитайте $\widehat{\mathrm{Var}}(\hat{\beta})$, оценку для ковариационной матрицы МНК-оценки $\widehat{\beta}$ вектора коэффициентов β .
- (d) Рассчитайте TSS, RSS и ESS.
- (e) Сформулируйте основную и альтернативную гипотезы, которые соответствуют тесту на значимость переменной X_2 в уравнении регрессии.
- (f) Протестируйте на значимость переменную X_2 в уравнении регрессии на уровне значимости 10%:

- Семинары: Погорелова П.В.
- і. Приведите формулу для тестовой статистики.
- іі. Укажите распределение тестовой статистики при верной H_0 .
- ііі. Вычислите наблюдаемое значение тестовой статистики.
- iv. Укажите границы области, где основная гипотеза не отвергается.
- v. Сделайте статистический вывод о значимости переменной X_2 .
- (g) Найдите p-value, соответствующее наблюдаемому значению тестовой статистики (t_{obs}) из предыдущего пункта. На основе полученного p-value сделайте вывод о значимости переменной X_2 .
- (h) Постройте 90%-ый доверительный интервал для оценки коэфициента β_2 .
- 3. По n наблюдениям Вася оценил исходную модель:

$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i.$$

Для надежности Вася стандартизировал переменные, т.е. перешёл к $y_i^* = (y_i - \bar{y})/\hat{\sigma}_y$ и $x_i^* = (x_i - \bar{x})/\hat{\sigma}_x$. Затем Вася оценил ещё две модели:

$$y_i^* = \beta_1' + \beta_2' x_i^* + \varepsilon_i'$$

И

$$y_i^* = \beta_2'' x_i^* + \varepsilon_i''.$$

В решении можно считать $\hat{\sigma}_x$ и $\hat{\sigma}_y$ известными.

- (a) Найдите $\hat{\beta}'_1$.
- (b) Как связаны между собой $\hat{\beta}_2$, $\hat{\beta}_2'$ и $\hat{\beta}_2''$?
- (c) Как связаны между собой e_i, e_i' и e_i'' ?
- (d) Как связаны между собой $\widehat{\mathrm{Var}}\left(\hat{\beta}_{2}\right)$, $\widehat{\mathrm{Var}}\left(\hat{\beta}_{2}'\right)$ и $\widehat{\mathrm{Var}}\left(\hat{\beta}_{2}''\right)$?
- (e) Как выглядит матрица $\widehat{\operatorname{Var}}\left(\hat{\beta}'\right)$?
- (f) Как связаны между собой t-статистики $t_{\hat{\beta}_2},\,t_{\hat{\beta}_2'}$ и $t_{\hat{\beta}_2''}$?
- (g) Как связаны между собой \mathbb{R}^2 , $\mathbb{R}^{2\prime}$ и $\mathbb{R}^{2\prime\prime}$?
- (h) В нескольких предложениях прокомментируйте последствия перехода к стандартизированным переменным.