VLSI Project Report

Soham Jahagirdar

2023102046

IIIT Hyderabad

soham.jahagirdar@students.iiit.ac.in

I. INTRODUCTION

A 4-bit Carry Look-Ahead (CLA) Adder computes the sum of two 4-bit numbers and outputs a 4-bit sum with a 5th carry bit. Unlike a Ripple Carry Adder, which calculates carries sequentially, the CLA Adder determines all carries simultaneously, minimizing propagation delay.

CLA Block Diagram

II. PROPOSED STRUCTURE FOR CLA

We need to create Three Blocks that are $Carry(c_i)$, $Propagate(p_i)$ and $Generate(g_i)$

p_i and g_i are given by

$$p_i = a_i \bigoplus b_i$$
$$g_i = a_i * b_i$$

Then we use Propagate and Generate to calculate Carry $c_{i+1} = p_i * c_i + g_i$

Finally we get all the carries as-

$$\begin{split} c_1 &= (p_0 * c_0) + g_0 \\ c_2 &= (p_1 * p_0 * c_0) + (p_1 * g_0) + g_1 \\ c_3 &= (p_2 * p_1 * p_0 * c_0) + (p_2 * p_1 * g_0) + (p_2 * g_1) + g_2 \\ c_4 &= (p_3 * p_2 * p_1 * p_0 * c) + (p_3 * p_2 * p_1 * g0) + (p_3 * p_2 * g_1) + (p_3 * g_2) + g_3 \end{split}$$

And the final Sum can be calculated as

$$S_i = p_i \bigoplus c_i$$

Now we represent the above circuit as Combination of 2-i/p AND,OR and XOR Gates

CLA Circuit Diagram

III. TOPOLOGY AND SIZING

A. CLA Combinational Circuit

We need 2-input AND, OR and XOR gates for designing the proposed Circuit. AND, OR gates and Inverters are made using CMOS Style and XOR is made using PTL Logic style.

XOR Gate

AND Gate

OR Gate

B. D-FlipFlop

We use a TSPC D-flipflop working on Positive Edge. PMOS Width = 40W and NMOS Width = 20W

TSPC D-FlipFlop

IV. PRE-LAYOUT SIMULATIONS IN NGSPICE

A.CLA Combinational Circuit

For eg,we take inputs as 1001 and 0110 and we get output as 01111,hence we verify the working of CLA Circuit in NgSpice.

Now to calculate Propagation Delay we give all Inputs as 1 .i.e a=1111,b=1111, including Cin. So, we get the Delays as Below

```
tpd_carry = 1.670580e-10 targ= 2.170580e-10 trig= 5.000000e-11 tpd_s3 = 2.674000e-10 targ= 3.174000e-10 trig= 5.000000e-11 tpd_s2 = 2.668316e-10 targ= 3.168316e-10 trig= 5.000000e-11 tpd_s1 = 3.089448e-10 targ= 3.589448e-10 trig= 5.000000e-11 tpd_s0 = 5.456558e-11 targ= 1.045655e-10 trig= 5.000000e-11
```

We have $T_{pd}(max)=0.3089$ ns and $T_{pd}(min)=54.55$ ps.

B. D-FlipFlop

Finding T_{PCQ} of the FlipFlop

tpcq_min	=	1.153144e-10 targ=	2.316531e-08 f	trig=	2.305000e-08
tpcq_max		1.579699e-10 targ=			
rhed_wax	_	1.3/30336-10 targ-	3.20/3/06-03	crig-	3.0300008-07

V. TIMING ANALYSIS

A.D-Flipflop

As we have used a TSPC topology while Designing the Flipflop as there is no \sim clk involved T_{HOLD} of our Flipflop is zero.

By Hit and Trial we observe that if clock comes before 0.111ns we don't get an output, hence T_{SETUP} =0.111ns.

B.Finding Maximum Clock Frequency

$$T_{CLK}(min) = T_{SETUP} + T_{PD}(max) + T_{PCQ}(max)$$

= 0.111+ 0.3089 + 0.1579 ns
= 0.5778 ns

$$F_{CLK}(max) = 1/T_{CLK}(min) = 1.73 \text{ GHz}$$

Output at T_{CLK}=0.6ns

We get Reliable Results at T_{CLK} =0.6ns which is quite close to our theoretical Calculations.

VI. STICK DIAGRAMS FOR UNIQUE COMPONENTS

XOR GATE

AND Gate

OR Gate

D FlipFlop

VII. POST LAYOUT SIMULATIONS

A. CLA Combinational Circuit

Magic Layout-

First, we test the same input that we used Pre-Layout i.e 1001 and 0110

CLA output for a=1001 and b=0110

Our CLA is working fine Post-Layout.

Lets Take more case as 0111,0111 and 1111,1111 we can verify the output is 01110 and 11110. Hence, our CLA is functioning Properly.

CLA output for a=1111/0111 and b=1111/0111

Now to calculate Propogation Delay we give all Inputs as 1 .i.e a=1111,b=1111, including Cin. So,we get the Delays as Below

We have $T_{pd}(max)=0.430$ ns and $T_{pd}(min)=0.154$ ns

B. D-FlipFlop

Magic Layout-

As we have used a TSPC topology while Designing the Flipflop as there is no \sim clk involved T_{HOLD} of our Flipflop is zero.

By Hit and Trial we observe that if clock comes before 0.111ns we don't get an output, hence T_{SETUP} =0.117ns.

Finding Maximum Clock Frequency

tpcq_min tpcq_max

$$T_{CLK}(min) = T_{SETUP} + T_{PD}(max) + T_{PCQ}(max)$$

= 0.117+ 0.430 + 0.1691 ns
= 0.7161 ns

 $F_{CLK}(max) = 1/T_{CLK}(min) = 1.39 GHz$

Output at T_{CLK}=0.9ns

We find for the inputs a=1111 and b=1111 we find Reliable Outputs for T_{CLK} =0.9 ns.

C. Final Circuit

Magic Layout-

Let's Take test case as 0111,0111 and 1111,1111 we can verify the output is 01110 and 11110. Hence, our CLA is functioning Properly

Output for a=0111/1111 and b=0111/1111

+256.32 +283.68 microns

Horizontal Pitch=256.32 um Vertical Pitch=283.68 um

VIII. PRE AND POST LAYOUT COMPARISONS

	Pre Layout	Post Layout
T _{PD} (max)	0.3089 ns	0.430 ns
T _{PD} (min)	0.054 ns	0.154 ns

	Pre Layout	Post Layout
$T_{PCQ}(max)$	0.157 ns	0.169 ns
T _{PCQ} (min)	0.115 ns	0.119 ns

	Pre Layout	Post Layout
F _{CLK} (max)	1.73 GHz	1.39 GHz
theoretical		
F _{CLK} (max)	1.66 GHz	1.11 GHz
observed		

IX. VERILOG SIMULATIONS

We test the Verilog Circuit with inputs a=1111,b=1111 and a=0110,b=1001

Reset = 0	A = 1111	B = 1111	Cout = 0	S = 0000
Reset = 0	A = 1111	B = 1111	Cout = 1	S = 1110
Reset = 0	A = 0110	B = 1001	Cout = 1	S = 1110
Reset = 0	A = 0110	B = 1001	Cout = 0	S = 1111

Verilog Output

Now plotting the Waveform of these Outputs

GTKWave Output

We can Observe that after input comes, we get output on next +ve clock edge. 15+15=11110 and 6+9=01111

X. FPGA SIMULATION

We give input as 7 and 10 in FPGA

FPGA Output

We can see the output 10001(17).

Now we also Verify the Reading using Oscilloscope.

Oscilloscope Outputs

Oscilloscope Readings:

Output>3.2V is considered high i.e 1

Cout=1

S3=0 and S2=0

S1=0 and S0=1

The output is 10001.

ACKNOWLEDGMENT

I would like to express my gratitude to **Prof. Abhishek Srivastava** and VLSI-D TAs for their invaluable guidance and mentorship throughout the course and this project.

REFERENCES

- [1] Digital Logic and Computer Design by Morris Mano
- [2] Verilog HDL Samir Palnitkar
- [3] Various IEEE Papers