Home ► My courses ► EEE117-2017S-Tatro ► Exams and Quizzes ► Quiz 10 - Chapter 15

Started on	Wednesday, 26 April 2017, 5:25 PM
State	Finished
Completed on	Wednesday, 26 April 2017, 6:30 PM
Time taken	1 hour 4 mins
Overdue	4 mins 9 secs
Grade	100.00 out of 100.00

Question 1

Correct

Mark 100.00 out of 100.00

Quiz 10c

Given:
$$R_{in} = 10 \text{ k}\Omega$$
 (kilo Ohm) $C_{in} = 0.05 \mu\text{F}$ (micro F) $R_{f} = 10 \text{ k}\Omega$ (kilo Ohm)

$$R_2 = 10 \Omega \text{ (Ohm)}$$
 $R_{out} = 1 \text{ k}\Omega \text{ (kilo Ohm)}$

$$V_{in} = 20 \cos(\omega t) \text{ Volts}$$

You can assume the opamp is ideal and has power input rails at +20V and -20V.

In your answers below, report the magnitude as positive and the angle between -180 $\leq \theta \leq 0^{\circ}$.

a) Calculate the phasor voltage across resistor R_{out} when the input voltage frequency ω = zero rad/sec.

$$V_{Rout}(\omega=0)=\boxed{0}$$

b) Calculate the phasor voltage across resistor R_{out} when the input voltage frequency $\omega = 50$ rad/sec

$$V_{\text{Rout}}(\omega = 50) = \boxed{.5}$$

c) Calculate the phasor voltage across resistor R_{out} when the input voltage frequency $\omega=1{,}000$ rad/sec.

$$V_{\text{Rout}} (\omega = 1,000) = \boxed{8.9}$$

d) Calculate the phasor voltage across resistor R_{out} when the input voltage frequency $\omega = 5{,}000$ rad/sec.

$$V_{Rout}$$
 (ω = 5,000) = 18.6
at angle -158.2 \checkmark ° (Degrees) Volts

Numeric Answer

- a) V_{Rout} (w = 0) = 0 at angle -90° V
- b) V_{Rout} (w = 50) = 0.4998 at angle -91.43° V
- c) V_{Rout} (w = 1,000) = 8.9443 at angle -116.57° V
- d) V_{Rout} (w = 5,000) = 18.5695 at angle -158.20° V

Correct

Marks for this submission: 100.00/100.00.