Paper 102: Programming & Problem solving through C

Lecture-22:VDU Basics

Components of VDU

- The video system consists of two basic components:
 - A video screen on which we actually see the images either in text or graphics
 - A video display adapter which is a special printed circuit board.
 - Video card
- The microprocessor does not have the ability to send signals necessary to produce the images on the screen
- The display adapter acts as an agent between the microprocessor and the video screen.
- The display adapter consists of
 - Special memory called vdu memory
 - Circuitry which transfer the contents of the VDU memory on to the screen.

Components of VDU

- The microprocessor writes the information to be displayed on the screen into the VDU memory
- The display adapter transfer this information from VDU memory on to the screen.
 - A memory map display
 - Each address in VDU memory corresponds to a specific location on the screen
 - The adapter repeatedly reads information from VDU memory and places it on the screen, making the images displayed on the screen clear and steady
 - Refreshing the screen
 - The rate at which the adapter refreshes the screen is called 'refresh rate'

VDU memory

- The memory map is divided into 16 blocks of 64KB each.
- Out of these, block A and B are reserved for unconventional and conventional VDU memory respectively
- Which of these is used depends on the display adapter used in the computer system.
- CGA and MA are called conventional display adapters
 - Uses block B
- MCGA, EGA, VGA, SVGA, XGA are called unconventional display adapters and use a block of VDU memory

Video display modes

- Each modes has different combination of disdplay characteristics
- These characteristics include:
 - Whether text or graphics is to be displayed
 - The amount of text to be displayed in one line
 - The resolution
 - The number of possible colors
- Each mode requires certain hardware and programming approaches
 - Monitor and adapter
- Each and every mode will not be supported by a particular combination of monitor and display adapter
- All the modes are basically of two types
 - Text and graphics

Commonly used combinations

- 1. VGA monochrome monitor and VGA adapter
- 2. VGA color monitor and VGA adapter
- 3. VGA color monitor and SVGA adapter
- When computer is initially booted it usually boots up in mode 3, which is text mode
- To draw graphics it is required to switch from text mode to another mode available with the adapter
- Each mode uses a particular resolution
- All modes are fundamentally of two types, text and graphics.
- Most text mode uses block B in the memory map, and graphics uses block A

Different modes available

Mode no.	Туре	Resolution	Memory required		
3	Text	80x25	2 bytes/char (ascii code, attribute)		
5	Graphics	320X200	2 bits/pixel		
6	Graphics	640x200	1 bit/pixel		
7	Text	80x25	2 bytes/char		
12h	Graphics	640x48o	1 bit/pixel		
13h	Graphics	320X200	1 byte/pixel		

How characters actually are displayed on screen

- The ASCII value in vdu memory must be translated into a character and drawn on the screen
- This drawing is done by a character generator that is part of the display adapter
- The CGA has a character generator that uses 8 scan lines and 8 pixels each of these scan lines to produce a character on screen
- The MA character generator uses 9 scan lines and 14 pixels in each of these scan lines to produce a character
- Multiple character sets may reside in Ram simultaneously
 - 4 for EGA and 8 for VGA

How characters actually are displayed on screen

- Each character set can contain 256 characters
- Each character in the standard character set provided with the EGA is 8 pixels wide and 14 pixels tall
- VGA provides a 9 pixel wide by 16 pixels tall character set

Colours in text mode

- In mode 3, for each character on screen there are two bytes in VDU memory
 - ASCII value and attribute
 - The attribute byte controls the color of the character
 - It contain three components
 - Foreground
 - Background
 - Blinking component
 - The first four bits can produce 16 different colours
 - The red, green and blue component of background can produce 8 different colors

Bit setting

7	6	5	4	3	2	1	Ο	purpose
							1	Blue component of fg color
						1		green component of fg color
					1			red component of fg color
				1				intensity component of fg color
			1					Blue component of bg color
		1						green component of bg color
	1							red component of bg color
1								Blinking

Black(0000), blue, green, cyan, red, magenta, brown, white, light black, light blue, light green, light cyan, light red, light magenta, yellow, intense white(1111)

e.g., 00010100, red text and blue background

Colors in graphics mode

- Setting colors in this mode is different
- Each pixel has a color associated with it
- There is no fg or bg

Colors in CGA

- It supports two graphics modes
 - 320x200 and 64ox200
- Mode 5 of CGA supports palette o and palette 1
- The table shows the colors present in each palette

Palette	Bits	color
О	00	Black
О	01	Green
0	10	Red
0	11	Brown
1	00	Black
1	01	Cyan
1	10	Magenta
1	11	Light gray

Colours in EGA

- The EGA has several registers
- Some of these registers are responsible for determining the number of colors that EGA can support
- EGA's display memory is organized in four planes
- Each plane provides one bit of data for each pixel
- The bits for a given pixel from each of the four plane are combine into a nibble that identifies one of the 16 palette registers
- Each palette registers is 8 bits long, of these 6 bits are used to represent color

- These six bits can represent 64 colors, but since there are only 16 palette registers, they can contain only 16 out of 64
- Hence EGA can display 16 colors at a time

Colours in VGA

- VGA also has four planes-red, green, blue and intensity
- One bit from each plane contributing towards 1 pixel value
- The four bit pixel value from the display memory is used as the address of 1 to 16 palette registers
- A pixel value o selects the latte register o, and a pixel value 1 selects the palette register 1, etc
- VGA supports several graphics modes
- Two popular ones are 640x480, 16 color mode and 320x200, 256 colour mode

Video pages

- Mode 3 permits a maximum of 4 video pages fro CGA and 8 for VGA and EGA
- Each character on screen takes 2 bytes in display memory, a total of 2000 characters (25x8o) would require 4000 bytes(4KB)
- The display memory is split into several chunks of 4KB each, these are called video pages
- At any given time contents of one video page are displayed on the screen
- Using this technique while one page is displayed the others are being written into

Writing to VDU memory in text mode

- There are three ways of displaying characters on the screen
 - Using the standard library procedures
 - Using ROM-BIOS or DOS routines
 - Writing characters directly into VDU memory
- The block B is further divided into 32 KB, first one is used by MA, rest by CGA/EGA/VGA
- Beginning address for MA is oxBoooo and for CGA/EGA/VGA is oxB8ooo

Writing to VDU memory in text mode

```
/* Screenful of `A's*/
Void main()
{
   int I;
   char far *vidmem=oxB8oooooo;
   for(i=o;i<=3999;i=i+2)
       *(vidmem + i)=`A';
}</pre>
```

Writing to VDU memory in text mode

```
/* Changing the Screen attribute*/
void main()
{
   int I;
   char far *vidmem=oxB8oooooo;
   for(i=1;i<=3999;i=i+2)
       *(vidmem + i)=112;
}</pre>
```

Class assignment

- Write a program to change the case of all uppercase letter present on the current screen.
- Write a general purpose function writestring() which will display a message on the screen by writing it directly into VDU memory. The function should be able to display the message with an attribute sent to it