Calcolo Numerico - Laurea in Matematica, a.a. 2020-2021 Esercizi Opzionali, 02/11/2020

Siamo interessati alla risoluzione del sistema lineare

$$A\mathbf{x} = \mathbf{f}, \quad A \in \mathbb{R}^{n \times n} \tag{1}$$

La funzione Matlab [A,f]=poisson2d(n1) (nel sito del corso) crea $A \in \mathbb{R}^{n \times n}$, $n = \text{n1}^2$ ed $\mathbf{f} \in \mathbb{R}^n$ nel caso in cui $f \equiv 1$, per l'approssimazione numerica della equazione differenziale $-u_{xx} - u_{yy} = f$, con u = u(x,y), e $(x,y) \in (0,1) \times (0,1)$, con condizioni al bordo nulle.

1. Implementa il metodo di Jacobi $\mathbf a$ blocchi, in cui cioè la matrice P è scelta come

$$P = \begin{bmatrix} D_1 & & & \\ & D_2 & & \\ & & \ddots & \\ & & & D_{n1} \end{bmatrix}$$

dove D_i sono blocchi diagonali di dimensione $\mathtt{n1} \times \mathtt{n1}$ della matrice $A \in \mathbb{R}^{n \times n}, \ n = \mathtt{n1}^2$.

Per calcolare $P^{-1}r$, risolvi ogni sistema $D_iz = v$ usando la funzione di eliminazione di Gauss fatta in una precedente esercitazione. (Pensa eventualmente a modi alternativi per memorizzare ed usare le quantità associate ai blocchi D_i)

Al crescere di n1, confronta la performance di questo nuovo metodo con quella del metodo di Jacobi "scalare". In particolare, fai un display come il seguente:

n1	Jacobi		Jacobi	a blocchi
	its	cputime	its	cputime
50				
100				
150				
:	:	:	:	:

Ripeti i runs sostituendo alla tua eliminazione di Gauss il comando $z = D_i \setminus v$ e confronta i tempi di CPU.

- 2. Confronta anche il raggio spettrale dei due metodi, per i primi valori di n1.
- 3. Procedi in modo analogo per il metodo di Gauss-Seidel a blocchi