

Visión: Histogramas y tipos de funciones

Ing. Rodolfo Arias

OBJETIVO

En esta clase, se introducirá el concepto de visión por computadora.

En primer lugar, estudiaremos la aplicación del histograma, uno de los métodos mas básicos para extraer información de una imagen.

Luego estudiaremos los tipos básicos de funciones aplicables, que nos permitirán procesar la imagen para facilitar la extracción de datos de la misma.

EJEMPLOS DE APLICACIÓN

- Aplicación en brazo industrial
 https://www.youtube.com/watch?v=KI8xt1Nam5I
- Aplicación en autos autónomos https://www.youtube.com/watch?v=tiwVMrTLUWg
- Aplicación en zonas de riesgo y agricultura
 https://www.youtube.com/watch?v=sj3Pn_pogXw&t=17s
- Aplicaciones en Argentina (Save Track S.A.)

 https://www.lanacion.com.ar/1882657-un-despertador-para-conductores-que-sirve-para-evitar-accidentes

DESCRIPCIÓN DE UNA IMAGEN

Una imagen es una cuadricula de pixeles, los cuales difieren entre si por su color e intensidad.

4

DEFINICION DE COLOR

• Una de las definiciones mas clásicas del color es el método RGB, el cual define un color como la combinación entre la intensidad del color rojo, el verde y el azul.

• Existen otros métodos: cieLAB

PIXEL

El la apariencia de cada pixel, estará definida por tres números, que indicaran la intensidad de cada color base RGB sobre el pixel.

En este curso, utilizaremos dos formatos distintos para medir esta intensidad:

- o uint8 ► Numero entero entre 0 y 255
- o double > Numero en doble precisión entre 0 y 1

MATLAB permite una separación sencilla de estos parámetros, para poder analizar una imagen y realizar operaciones diversas.

PRIMER ANÁLISIS: HISTOGRAMA

El histograma es una forma sencilla de conocer la distribución de una imagen. Esta herramienta muestra la cantidad de veces que se repite cada valor de intensidad en la imagen

- Valles
- Picos
- Concentración

PRIMER ANÁLISIS: HISTOGRAMA

Funciones: Función Monadica

Función que genera una imagen basada en los valores de cada pixel de una imagen existente.

$$O[u,v] = f(I[u,v]), \forall (u,v) \in I$$

FUNCIONES: FUNCIÓN MONADICA

Threshold

Funciones: Función Monadica

Normalización del histograma

f(x) para la normalización es la función acumulada del histograma, normalizada a valor unitario

FUNCIONES: FUNCIÓN MONADICA

o Corrección Gamma

Funciones: Función Diádica

Función que genera una imagen en base a la comparación entre dos imágenes.

$$O[u,v] = f(I_1[u,v], I_2[u,v]), \forall (u,v) \in I_1$$

FUNCIONES: FUNCIÓN DIÁDICA

Mask

Funciones: Función 'Diádica'

• Escala grises

Aplicable en imágenes de intensidad lineal $GSI = RI \times 0.3 + GI \times 0.59 + BI \times 0.11$

FUNCIONES: FUNCIÓN ESPACIAL

Este tipo de funciones, calculan el valor de cada pixel en la imagen de salida como una función de los valores de los pixeles en un rango de la imagen de entrada. En nuestras aplicaciones, el rango de aplicación será cuadrado.

$$O[u,v] = f(I[u+i,v+j]), \forall (i,j) \in \mathcal{W}, \forall (u,v) \in I$$

La aplicación de este tipo de funciones será analizada en la próxima clase.