Predicting Machine Maintenance

Bill Murphy 3/10/2019

The Problem Summary:

 Using data captured over a one year period, across a fleet of production machines, develop a model that will predict which machines will fail within the next 24 hours.

 Model should be extensible to predict maintenance costs and develop a proactive strategy to minimize costs

 Results: A random Forest model was created that was 97% effective in identifying machines due to fail. It would allow an efficient strategy to be developed, and significant savings (49%) to be achieved.

The Data

Dataset contains:

100 Machines

4 Models

Ages 0-20 years

Differing failure profiles

Hourly Sensor Data:

Vibration, Rotation, Pressure, Voltage

5 Different Error Codes

Daily Failure Data

The Data (contd)

Sensor data has predominantly normal distributions

Error Codes map to varying run length

Machine age Matters:

Age maps to different run lengths, with a visible change at 12 years

"Outliers" (machines that have long TBF) are more prevalent in the younger machines

The Data (contd)

Lag features:

- 3 and 24 hour periods created
- Surprisingly low correlation to "fails'.
 Makes sense given multiple failures modes likely have different physical profiles.

PCA:

- Many features required to absorb variance.
- No clear 'knee' supports low correlation of sensors to fails

	volt_roll24	pressureroll24	rotateroll24	vibrationroll24	fails
voltroll24	1.000000	-0.087151	0.102392	-0.129977	0.044354
pressureroll24	-0.087151	1.000000	0.066487	-0.090076	0.039598
rotateroll24	0.102392	0.066487	1.000000	0.074266	-0.055014
vibrationroll24	-0.129977	-0.090076	0.074266	1.000000	0.044072
fails	0.044354	0.039598	-0.055014	0.044072	1.000000

The Model Features: 8 given, 168 derived, 176 total

Туре	Source	Derived	Groups
Time Series Run Length	Sensor, Error Codes, Model	max, min, std, roll3, roll24, Q1-	Age, Model Type,
Time Series	Time from fail	delta	MachinelD
Run Number	Error Codes Fails	Delta	MachineID
Categorical	DOW, Model	One hot encode	

The Model

Considerations / Decisions

Single Daily Fail Point / Develop "Fail w/in 24hr" target class –Binary Classification

Unbalanced Data / Keep All Fail24 Class, Subsample Normal Class

PCA indicates need for high # features / Keep all features, try both logistic regression and Random forest as a first pass

Feature Importance (rf model)

Most Important Features

- Machine age interacting with error code# and runtime
 - Max Pressure over past 24 hours
 - Rotation Performance

Judging Criteria:

- Maintenance cost = $f(correctly\ predicted\ failures) + f(incorrectly\ predicted\ failures) + f(false\ failure\ service\ calls)$
- We don't know the actual costs, but we need a mechanism to judge the model. For exercise purposes:
- $f(correctly\ predicted\ failures)$ = True Positives = \$500 (min down time, mini repair cost)
- $f(incorrectly\ predicted\ failures)$ = False Negatives = \$1,000 (maximum down time, max repair cost)
- $f(false\ failure\ service\ calls)$ = False Positives = \$250 (0 downtime, unnecessary repair call)
- Baseline: 4,053 failures * \$1,000/unpredicted failure = \$4.05M maintenance cost

Model Results

Logistic Regression

• True Failures = 2,875 \$1,437,500

• Unpredicted Failures = 1,178 \$1,178,000

• Falsely Predicted Failures = 5,481 \$1,370,250

1.5% Savings

Baseline \$4,053,000

\$3,990,525

Savings:

\$ 62,475

Random Forest

• True Failures = 4,034

\$2,017,000

• Unpredicted Failures = 19

\$ 38,000

FALSELY PREDICTED FAILURES = 65

\$ 16,250

49% Savings

•

•

\$2,071,250

SAVINGS:

\$ 1,981,750

The Model (results)

The Logistic Regression Model:

- Some predictive value
- The economic penalties of the incorrect predictions make that model almost worthless.

The Random Forest Model:

- 97% accuracy in predictions
- Economic Impact Clear

Summary

 Across a dataset with 100 machines, all with different failure profiles, basic sensor, errorcode and failure rates were analyzed.

- A model was developed that is 97% accurate in terms of predicting machines that will fail within 24 hours
 - Key indicators: error codes run times in model and age contexts (5/top 11)
 - Pressure and Rotation Sensor outputs over past 24 hours (6/top 11)
- Using reasonable assumptions, the best model was able to save nearly 50% of the maintenance cost. A poor model saved only 1.5%