Question Number	Answer		Mark
17(a)(i)	Use of $F = \frac{GMm}{r^2}$	(1)	
	$F = 7.3 \times 10^{17} (\text{N})$	(1)	2
	Example of calculation		
	$F = \frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 1.99 \times 10^{30} \text{ kg} \times 9.38 \times 10^{20} \text{ kg}}{(4.14 \times 10^{11} \text{ m})^2}$ $\therefore F = 7.26 \times 10^{17} \text{ N}$		
17(a)(ii)	Use of $F = m\omega^2 r$	(1)	
	Use of $\omega = \frac{2\pi}{T}$	(1)	
	Conversion to years	(1)	
	T = 4.6 year [ecf from (i)]	(1)	
	Or		
	Use of $F = \frac{mv^2}{r}$	(1)	
	Use of $v = \frac{2\pi r}{T}$	(1)	
	Conversion to years	(1)	
	T = 4.6 year [ecf from (i)]	(1)	4
	Example of calculation		
	$\omega = \sqrt{\frac{F}{mr}} = \sqrt{\frac{7.26 \times 10^{17} \text{ N}}{9.38 \times 10^{20} \text{ kg} \times 4.14 \times 10^{11} \text{ m}}} = 4.32 \times 10^{-8} \text{ rad s}^{-1}$		
	$T = \frac{2\pi}{\omega} = \frac{2\pi \text{ rad}}{4.32 \times 10^{-8} \text{ rad s}^{-1}} = 1.45 \times 10^{8} \text{ s}$ $\therefore T = \frac{1.45 \times 10^{8} \text{ s}}{3.15 \times 10^{7} \text{ s year}^{-1}} = 4.61 \text{ year}$		
	3.13 \ 10 \ 3 year	,	

	Total for question 17		9
	$g_C = \frac{6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 9.38 \times 10^{20} \text{ kg}}{(4.7 \times 10^5 \text{ m})^2} = 0.283 \text{ N kg}^{-1}$ $\therefore \frac{g_c}{g_m} = \frac{0.283 \text{ N kg}^{-1}}{3.7 \text{ N kg}^{-1}} = 0.0765$		
	Example of calculation		
	g_c is 7.7% of g_m so claim is inaccurate Or $g_c = 0.283 \text{ N kg}^{-1}$ and 5% of $g_m = 0.185 \text{ N kg}^{-1}$, so claim is inaccurate	(1)	3
	a is 7.7% of a so claim is inaccurate		
	Ratio of field strengths calculated Or 5% of <i>g</i> for Mercury calculated	(1)	
17(b)	Use of $g = \frac{GM}{r^2}$ to calculate g for Ceres	(1)	