

Algorithmen in der Bioinformatik

5. Sequenz-Vergleiche - Dynamische Programmierung II -

Prof. Dr. Gunnar Klau

Nach Jones & Pevzner: An Introduction to Bioinformatics Algorithms, Kapitel 6

LGT → **Globales Alignment**

- LGT erlaubt nur Matches & Indels (keine Mismatches)
- Score = 1 für Matches, 0 für Indels
- Wir können Indels mit negativem Score bestrafen
- > Einfachstes Scoringschema:
 - +1 : Belohnung für Match
 - -µ : Strafe für **Mismatch**
 - $-\sigma$: Strafe für **Indel**

Score = # Matches – μ (# Mismatches) – σ (# Indels)

Rekurrenz:

$$s_{i,j} = \max \begin{cases} s_{i-1,j-1} + 1 & \text{wenn } v_i = w_j \\ s_{i-1,j-1} - \mu & \text{wenn } v_i \neq w_j \\ s_{i-1,j} - \sigma \\ s_{i,j-1} - \sigma \end{cases}$$

Scoring-Matrizen

DNA [ATGC-]: (4+1) x (4+1) **Scoring-Matrix** $\delta(v_i, w_j)$ Aminosäuren [ARNDCEQGHILKMFPSTWYV-]: (20+1) x (20+1) **Scoring-Matrix** $\delta(v_i, w_j)$

⇒ Vereinfachte Rekurrenz-Relation:

$$s_{i,j} = \max \begin{cases} s_{i-1,j-1} + \delta(v_i, w_j) \\ s_{i-1,j} + \delta(v_i, -) \\ s_{i,j-1} + \delta(-, w_j) \end{cases}$$

Herstellung von Scoring-Matrizen

- Basierend auf biologischen Daten
- Alinierte Sequenzen sind durch Mutationen aus einem gemeinsamen Vorfahren entstanden
- Mutationen können sehr verschiedene Auswirkungen auf Fitness haben \rightarrow Scores $\delta(v_i, w_i)$ können sehr unterschiedlich sein
- Aminosäure-Austausche sind umso wahrscheinlicher, je ähnlicher die Codons sind.
- Aminosäure-Veränderungen sind weniger kritisch, wenn sie physiko-chemische Eigenschaften erhalten, z.B.:
 - polar (Aspartat → Glutamat)
 - nicht-polar (Alanin → Valin)
 - pos. Ladung (Arginin → Lysin)

٥	Alanin	n Lysin		
	А	R	N	K
Α	5	-2	-1	-1
R	-	7	-1	3
N	ı	ı	7	0
K	-	-	-	6

Alignment von kodierender DNA

Der genetische Code ist redundant

	Second letter													
		U	С	A	G									
	U	UUU Phenyl- alanine	UCU UCC UCA Serine	UAU UAC Tyrosine	UGU UGC Cysteine	U C								
		UUA UUG Leucine	UCG	UAA Stop codon UAG Stop codon	UGA Stop codon UGG Tryptophan	A G								
	С	CUU CUC Leucine	CCU CCC Proline	CAU CAC Histidine	CGU CGC Arginine	U C								
First letter)	CUA	CCA	CAA CAG Glutamine	CGA Algitule CGG	A G	Third							
First	Α	AUU AUC Isoleucine	ACU ACC Threonine	AAU AAC Asparagine	AGU AGC Serine	U C	letter							
	21	AUA Methionine; start codon	[ACA]	AAA AAG Lysine	AGA AGG Arginine	A G								
	G	GUU GUC Valine	GCU GCC Alanine	GAU Aspartic acid	GGU GGC Glycine	U C								
	0	GUA GUG	GCA GCG	GAA GAG Glutamic acid	GGA Glydite	A G								

- > DNA ist weniger konserviert als Aminosäuren
- Alignments von DNA werden besser, wenn man zuerst Aminosäuren aliniert, und dann das Alignment zurück in DNA übersetzt!

PAM - Scoring-Matrix für Aminosäuren

PAM = Point Accepted Mutation (Dayhoff et al.)

- ➤ 1 PAM = PAM₁ = 1% aller Positionen unterschiedlich
- ightharpoonup PAM₁₀₀ = (PAM₁)¹⁰⁰ (Mutationen wirken auf das schon mutierte!)
 - → nicht jede Position ist verändert
 - manche Positionen mutieren mehrmals, andere selten

		Α	R	N	D	С	Q	Ε	G	Н	1	L	K	M	F F	S	Т	W
PAM_{250}	Α	2											Amin		3-Buchstabe Code	n 1-Buchsta Code	ben Mole	kular-gewi
	R	-2	6										Alani Argin	in	Ala Arg	A R	89 174	
	N	0	0	2									Aspa Aspa Cyste	rginsäure	Asn Asp Cys	D C	132 133 121	
	D	0	-1	2	4								Gluta		Gln	Q	146	
	С	-2	-4	-4	-5	4							Glyci		Gly His	G H	175 155	
	O	0	1	1	2	-5	4						Isole	n	lle Leu	I L	131 131	
	E	0	_1	1	3	- 5	2	4					Lysin Meth	onin	Lys Met	M	146	
	_	U	- 1	ı	J	-0	_	4					Prolir		Phe Pro	F P	165 115	
	G	1	-3	0	1	-3	-1	0	5				Serin		Ser	S	105	
													Three		Thr	W	119 204	
	Н	-1	2	2	1	-3	3	1	-2	6			Tyros	•	Trp Tyr	Y	181	
		1	2	2	2	2	2	2	2	2	5		Valin		Val	V	117	

M(i,j) ~ wie hanfig erseetest ste mutiest i-te AA du j-te AA mig verwandten Alignm. Seg.

eigentlich 10

 $\log_{10}(\text{fraction}),$

ca. 10 * 0.176...

hier 10 $\log_{10}(1.5) =$

f(j) = Anteil AA juin den Seg

$$PAM^{1}(i,j) = log \left(\frac{M(i,j)}{f(j)}\right)$$

 $PAM^{1}(C, A) = log(\frac{1/4}{1/406}) = + ...$

BLOSUM - Scoring-Matrix für Aminosäuren

BLOSUM = BLOck **SU**bstitution **M**atrix

- Scores aus beobachteten Häufigkeiten von Substitutionen in Blöcken von lokalen Alignments verwandter Proteine
- Subskript gibt an, wie ähnlich die Proteine einander waren (BLOSUM62 aus Sequenzen mit ca. 62% Identität)
- nicht extrapoliert
- PAM für verwandte, BLOSUM für divergente Sequenzen

BLOSUM₅₀

	A	D	N	n	C	Λ	TC	C	ш	Т	Т	T/	M	TC	D	e e	т	**7	v	17	В	7	v	*
_	A	R	I	מ	•	Q	E	G	H	1	L	K	M	F	P	S	T	w	1	V	Б	Z	Λ	Щ
A	5	-2	-1	-2	-1	-1	-1	0	-2	-1	-2	-1	-1	-3	-1	1	0	-3	-2	0	-2	-1	-1	-5
R	-2	7	-1	-2	-4	1	0	-3	0	-4	-3	3	-2	-3	-3	-1	-1	-3	-1	-3	-1	0	-1	-5
N	-1	-1	7	2	-2	0	0	0	1	-3	-4	0	-2	-4	-2	1	0	-4	-2	-3	4	0	-1	-5
D	-2	-2	2	8	-4	0	2	-1	-1	-4	-4	-1	-4	-5	-1	0	-1	-5	-3	-4	5	1	-1	-5
C	-1	-4	-2	-4	13	-3	-3	-3	-3	-2	-2	-3	-2	-2	-4	-1	-1	-5	-3	-1	-3	-3	-2	-5
Q	-1	1	0	0	-3	7	2	-2	1	-3	-2	2	0	-4	-1	0	-1	-1	-1	-3	0	4	-1	-5
E	-1	0	0	2	-3	2	6	-3	0	-4	-3	1	-2	-3	-1	-1	-1	-3	-2	-3	1	5	-1	-5
G	0	-3	0	-1	-3	-2	-3	8	-2	-4	-4	-2	-3	-4	-2	0	-2	-3	-3	-4	-1	-2	-2	-5
Н	-2	0	1	-1	-3	1	0	-2	10	-4	-3	0	-1	-1	-2	-1	-2	-3	2	-4	0	0	-1	-5
I	-1	-4	-3	-4	-2	-3	-4	-4	-4	5	2	-3	2	0	-3	-3	-1	-3	-1	4	-4	-3	-1	-5
L	-2	-3	-4	-4	-2	-2	-3	-4	-3	2	5	-3	3	1	-4	-3	-1	-2	-1	1	-4	-3	-1	-5
K	-1	3	0	-1	-3	2	1	-2	0	-3	-3	6	-2	-4	-1	0	-1	-3	-2	-3	0	1	-1	-5
М	-1	-2	-2	-4	-2	0	-2	-3	-1	2	3	-2	7	0	-3	-2	-1	-1	0	1	-3	-1	-1	-5
F	-3	-3	-4	-5	-2	-4	-3	-4	-1	0	1	-4	0	8	-4	-3	-2	1	4	-1	-4	-4	-2	-5
P	-1	-3	-2	-1	-4	-1	-1	-2	-2	-3	-4	-1	-3	-4	10	-1	-1	-4	-3	-3	-2	-1	-2	-5
S	1	-1	1	0	-1	0	-1	0	-1	-3	-3	0	-2	-3	-1	5	2	-4	-2	-2	0	0	-1	-5
=	0	-1	0	-1	-1	-1	H	-2	-2	-1	-1	-1	-1	-2	-1	2	5	-3	-2	0	0	-1	0	-5
T	=	\vdash	4	=	=	_	-1		=	=	느	=	=	H	=	=	=	=	=	닏		H	닏	닏
W	-3	-3	-4	-5	-5	-1	-3	-3	-3	-3	-2	-3	-1	1	-4	-4	-3	15	2	-3	-5	-2	-3	-5
Y	-2	-1	-2	-3	-3	-1	-2	-3	2	-1	-1	-2	0	4	-3	-2	-2	_	8	-1	-3	-2	-1	-5
V	0	-3	-3	-4	-1	-3	$\overline{}$	-4	-4	4	1	-3	1	-1	-3	-2	0	-3	-1	5	-4	-3	-1	-5
В	-2	-1	4	5	-3	0	1	-1	0	-4	=	0	-3	-4	-2	0	0	-5	-3	-4	5	2	-1	-5
Z	-1	0	0	1	-3	4	5	-2	0	-3	-3	1	-1	-4	-1	0	-1	-2	-2	-3	2	5	-1	-5
X	-1	-1	-1	-1	-2	-1	-1	-2	-1	-1	-1	-1	-1	-2	-2	-1	0	-3	-1	-1	-1	-1	-1	-5
*	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	1

Globales Alignment: Problem

Ziel: Finde das beste Alignment für 2 Sequenzen bei vorgegebener Scoring-Matrix.

Eingabe: Strings **v**, **w** und eine Scoring-Matrix δ

Ausgabe: Ein Alignment zwischen v und w mit maximalem Score

Lösung: Dynamische Programmierung (à la LGT) mit Rekurrenz

$$s_{i,j} = \max \begin{cases} s_{i-1,j-1} + \delta(v_i, w_j) \\ s_{i-1,j} + \delta(v_i, -) \\ s_{i,j-1} + \delta(-, w_j) \end{cases}$$
 Needleman-Wunsch-Algorithmus

Globales Alignment: Beispiel

- v = GCATGCG, w = GATTACA. Match = 1, Mismatch = Gap = -1
- > Siehe https://en.wikipedia.org/wiki/Needleman-Wunsch algorithm

Needleman-Wunsch

m	natch =	1	misma	atch = -	1	gap =		
		G	С	A	Т	G	С	G
	0	-1	-2	-3	-4	-5	-6	-7
G	-1	1 -	0	1 ≪	2	-3 <	-4	-5
A	-2	0	0	1 -	- 0 ∢	⊢ -1 ≺	-2	-3
Т	-3	-1	-1	0	2	- 1	0	-1
Т	-4	-2	-2	-1	1	1 :	0 -	-1
A	-5	-3	-3	-1	0	0	0 <	-1
С	-6	-4	-2	-2	-1	-1	1	- 0
A	-7	-5	-3	-1 <	-2	-2	0	0

Lokales vs. Globales Alignment

Globales Alignment sucht den längsten Pfad zwischen (0,0) und (n,m) im Edit-Graphen

Lokales Alignment sucht den längsten Pfad zwischen beliebigen Knoten (*i,j*) und (*i', j'*) im Edit-Graphen

aattgccgccgtcgttttcagCAGTTATGTCAGatc

Durch negative Scores $\delta(v_i, w_j)$ kann ein lokales Alignment den höheren Score haben!

Warum lokale Alignments?

Zwei entfernt verwandte Gene mit konservierter Funktion können anhand von funktionell wichtigen Regionen erkannt werden

Beispiel: Homöobox-Gene haben einen Homöo-Domäne

- globales Alignment würde die übersehen!

Homeobox

YTRFQTLELEKEFHFNHYLTRRRRIEIAHALCLTERQIKIWFQNRRMKLKK YTR-QTLELEKEFHFN-YLTRRRRIEIAHALCL-ERQIKIWFQNRRMK-KK

Fiktives Bsp.:

Perfektes lok. Ali, 1/3 de lainse

Scare (lok. Ali)
$$\geq$$
 $1/3 (1) + \frac{2}{3} (-5)$

Mata
 $+ \frac{2}{3} (-0)^{2}$

$$\frac{1}{3} - \frac{4}{3} \gamma$$

$$=\frac{1}{4}-\frac{3}{4}\mu$$

$$\frac{1}{3} - \frac{4}{3} = \frac{1}{3} = \frac{3}{4/3} = \frac{1}{3} = \frac{$$

Lokales Alignment: Problem

Ziel: Finde das beste lokale Alignment zwischen 2 Sequenzen

Eingabe: Sequenzen **v**, **w** und Scoring-Matrix δ

<u>Ausgabe:</u> Alignment von Teilsequenzen von **v** und **w** mit maximalem Score (verglichen mit allen Alignments aller Teilsequenzen)

Lokales Alignment: Laufzeit

Laufzeit $O(n^4)$

- im $n \times n$ Gitter gibt es n^2 Knoten (i,j), die als Quellen dienen können
- Berechnung aller Alignments von diesem Startpunkt braucht $O(n^2)$

Schnellere Lösung? Freifahrscheine!

Lokales Alignment: Freifahrscheine

Yiiihaa, a free ride!

Gestrichelte Kanten sind Freifahrten von (0,0) zu allen Knoten

max. $s_{i,j}$ im Edit-Graphen entspricht dem besten lokalen Alignment

Rekurrenz:

$$s_{i,j} = \max \begin{cases} 0 \\ s_{i-1,j-1} + \delta(v_i, w_j) \\ s_{i-1,j} + \delta(v_i, -) \\ s_{i,i-1} + \delta(-, w_i) \end{cases}$$

Unterschied zur Rek. globalem Alignment

Needleman-Wunsch → Smith-Waterman

Smith-Waterman-Algorithmus

Sequenden TGTTACGG und GGTTGACTA

$$\delta(a,b) = \begin{cases} +3 & a=b \\ -3 & a\neq b \end{cases}$$

$$\delta(a,-) = \begin{cases} \delta(-,a) = -2 \end{cases}$$

Affine Lücken-Penalties

- Bisher: Strafkosten σ für jedes Indel
- Biologie: <u>eine</u> Mutation mit k Indels ist wahrscheinlicher als k einzelne Mutationen:

Affine Lücken-Penalties

Score für eine Lücke der Länge *k*:

$$-(\sigma + \varepsilon(k-1))$$

mit $\sigma > 0$ Strafe für das Öffnen der Lücke:

Gap opening penalty

und $\varepsilon > 0$ Strafe für das weitere Vergrößern der Lücke:

Gap extension penalty

In der Regel $\sigma > \epsilon$: Vergrößern ist billiger (biologisch wahrscheinlicher) als das Öffnen einer neuen Lücke

Affine Gaps und der Edit-Graph

Affine Gaps entsprechen langen (k) horizontalen und vertikalen Kanten mit Gewicht - $(\sigma + \varepsilon(k-1))$

Davon gibt es viele

- → Komplexität steigt von $O(n^2)$ auf $O(n^3)$
- Außer wir sind schlau!

Antall gruine Kanten:

Retrachte Knoten (iij):
$$M_{i}$$
 (n-j) homis. Kunten +

 $(n-i)$ vertikale Kanten.

Insperamt $\sum_{i=1}^{n} \sum_{j=1}^{n} (n-i) + \sum_{i=1}^{n} \sum_{j=1}^{n} (n-j)$

$$= 2 \sum_{i=1}^{n} \sum_{j=1}^{n} (n-i) = 2 n^{3} - \sum_{i=1}^{n} \sum_{j=1}^{n} i$$

$$= 2 n^{3} - \sum_{i=1}^{n} \frac{(n+1)}{2}$$

$$= 2 n^{3} - n \cdot n \cdot (n+1)$$

$$= 2 n^{3} - \frac{n^{3} + n^{2}}{2} = O(n^{3})$$

Beispiel und Idee

Affine Lücken: Manhattan in 3 Ebenen

$$\begin{cases} \mathbf{s}_{i,j-1} - \mathbf{\epsilon} & \text{Setze L\"{u}cke in w fort} \\ \mathbf{s}_{i,j} = \mathbf{max} & \mathbf{s}_{i,j-1} - \mathbf{\sigma} & \mathbf{\ddot{o}ffne L\"{u}cke in w (Mitte \rightarrow oben)} \end{cases}$$

$$s_{i,j} = \max \begin{cases} s_{i-1,j-1} + \delta(v_i, w_j) & Match oder Mismatch \\ \vdots & Ende L \ddot{u}cke in w (oben \rightarrow Mitte) \\ \vdots & Ende L \ddot{u}cke in v (unten \rightarrow Mitte) \end{cases}$$

$$Ende L \ddot{u}cke in v (unten \rightarrow Mitte)$$

Ende Lücke in v (unten → ?! Mitte)

$$\mathbf{S}_{i,j}^{\triangleright} = \mathbf{max} \left\{ \mathbf{S}_{i-1,j}^{\triangleright} - \mathbf{E} \right.$$

Setze Lücke in v fort

Öffne Lücke in v (Mitte→⊡unten)

- Sprung-Strafe -σ für Bewegungen vom Hauptlevel nach oben oder unten
- > Fortsetzungs-Strafe -ε für Schritte im oberen oder unteren Level

Noch weitere Änderungen für Initialisierung → Übung.

Multiples Alignment

Um Veränderungen zu verstehen, brauchen wir >2 Sequenzen

Verallgemeinerung von paarweisem Alignment

Alignment von 2 Sequenzen ~ 2-reihige Matrix

```
ATGCG-
```

ACGT-A

Alignment von 3 Sequenzen ~ 3-reihige Matrix (etc.)

```
AT-GCG-
```

A-CGT-A

ATCAC-A

Score: mehr Info (mehr konservierte Positionen)

→ besseres Alignment

Alignment-Pfade

0	1	1	2	3	4
	A	_	T	G	С
0	1	2	3	3	4
	A	A	T	_	С
0	0	1	2	3	4
	_	A	T	G	С

x-Koordinate

y-Koordinate

z-Koordinate

Pfad in 3-D:

$$(0,0,0) \rightarrow (1,1,0) \rightarrow (1,2,1) \rightarrow (2,3,2) \rightarrow (3,3,3) \rightarrow (4,4,4)$$

2-D vs. 3-D Alignment-Gitter

- Selbe Strategie wie in 2-D
- 3-D "Manhattan-Würfel", jede Achse repräsentiert 1 Seq.
- Gehe von Quelle zu Senke (für globales Alignment)

2-D edit graph

3-D edit graph

3-D vs. 2-D Alignment-Zellen

In 2-D, 3 Kanten pro Quadrat

In 3-D, 7 Kanten pro Würfel

Multiples Alignment: Rekurrenz

$$s_{i,j,k} = \max \begin{cases} s_{i-1,j-1,k-1} + \delta(v_i, w_j, u_k) \\ s_{i-1,j-1,k} + \delta(v_i, w_j, u_k) \\ s_{i-1,j,k-1} + \delta(v_i, w_j, u_k) \\ s_{i,j-1,k-1} + \delta(v_i, w_j, u_k) \\ s_{i-1,j,k} + \delta(v_i, v_j, u_k) \\ s_{i-1,j,k} + \delta(v_i, v_j, v_k) \\ s_{i,j-1,k} + \delta(v_i, v_j, v_k) \\ s_{i,j-1,k} + \delta(v_i, v_j, v_k) \end{cases}$$
Würfel-Diagonale:

1 Indel

Würfel-Diagonale:

0 Indels

Würfel-Diagonale:

0 Indels

Yurfel-Diagonale:

0 Indels

1 Indel

Since the series of the series of

 $\delta(x, y, z)$ ist ein Eintrag der 3-D Scoring-Matrix

Multiples Alignment: Laufzeit

Für 3 Sequenzen der Länge n: $7n^3 \rightarrow O(n^3)$

Für k Sequenzen: k-dimensionales Manhattan: $(2^k-1)(n^k) \rightarrow O(2^k n^k)$

Dynamische Programmierung kann leicht auf *k* Sequenzen verallgemeinert werden, aber Laufzeit ist inpraktikabel

Multiples Alignment → paarweises Alignment

Multiples Alignment induziert 3 paarweise Alignments:

```
x: AC-GCGG-C
y: AC-GC-GAG
z: GCCGC-GAG
```

```
→ x: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG
y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG
```

Induzieren 3 paarweise Alignments ein multiples Alignment?

Multiples Alignment: Gieriger Algorithmus

Wähle die 2 ähnlichsten* Sequenzen und kombiniere sie in ein Alignment: $k \to k$ - 1 Sequenzen/Profile

* besser: die am nächsten verwandten

Profil-Repräsentation eines multiplen Alignments

<u>Alignm</u>	<u>ent:</u>													
	_	A	G	G	C	T	A	T	C	A	C	C	T	G
	T	A	G	_	C	T	A	C	C	A	_	_	_	G
	C	A	G	_	C	T	A	C	C	A	_	-	_	G
	C	A	G	_	C	T	A	T	C	A	C	_	G	G
	C	A	G	_	C	T	A	T	C	G	C	_	G	G
Profil:														
A		1					1			. 8				
C	. 6				1			. 4	1		. 6	. 2		
G			1	. 2						. 2			. 4	1
T	. 2					1		. 6					. 2	
_	. 2			. 8							. 4	. 8	. 4	

Progressives Alignment: Integriere die Sequenzen schrittweise in das Profil, so dass das Profil nach *i* Schritten *i*+1 Sequenzen repräsentiert

ClustalW

- 1. Paarweise Alignments
- 2. → Führungs-Baum (für Reihenfolge)
- 3. Progressives Alignment (Gieriger Alg. mit Profilen)

Probleme:

- Gaps im Profil können nicht korrigiert werden
- Profile berücksichtigen Verwandtschaft nicht mehr