Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчёт по лабораторным работам №1-4 по дисциплине «Математическая статистика»

Выполнил студент: Самутичев Евгений Романович группа: 3630102/70201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2020 г.

Содержание

1	Пос	становка задачи	3
2	Teo	рия	4
	2.1	Распределения	4
	2.2	Гистограмма	5
	2.3	Вариационный ряд	5
	2.4	Выборочные характеристики	5
	2.5	Выбросы	6
		2.5.1 Определение	6
		2.5.2 Доля выбросов	6
	2.6	Боксплот Тьюки	6
		2.6.1 Описание	6
		2.6.2 Построение	7
	2.7	Эмпирическая функция распределения	7
	2.8	Ядерная оценка плотности распределения	7
3	Pea	кидация	8
4	Рез	ультаты	g
	4.1	Гистограммы и графики	9
	4.2		12
	4.3		14
	4.4		17
	4.5		17
	4.6		17
	4.7		20
5	Обо	суждение	25
•	5.1		2 5
	5.2		25
	5.3		$\frac{25}{25}$
	5.4		25
	5.5		26
	5.6	•	26
	5.7		26
6	Прі		27
	_		27
Cı	писо	к литературы	<i>4</i> (
C	пис	сок иллюстраций	
	1	Нормальное распределение	Ĝ
	2	Распределение Коши	9
	3		10
	4		10
	5	• • •	11
	6		14
	7		14

8	Распределение Лапласа	5
9	Распределение Пуассона	5
10	Равномерное распределение	6
11	Нормальное распределение	7
12	Распределение Коши	8
13	Распределение Лапласа	8
14	Распределение Пуассона	9
15	Равномерное распределение	9
16	Нормальное распределение	0
17	Распределение Коши	1
18	Распределение Лапласа	2
19	Распределение Пуассона	3
20	Равномерное распределение	4
Спис	сок таблиц	
1	Нормальное распределение	2
2	Распределение Коши	2
3	Распределение Лапласа	2
4	Распределение Пуассона	3
5	Равномерное распределение	3
6	Теоретическая вероятность выбросов	7
7	Доля выбросов	7

1 Постановка задачи

Для каждого из 5 распределений:

- Нормального N(x, 0, 1)
- Коши C(x, 0, 1)
- Лапласа $L(x,0,\frac{1}{\sqrt{2}})$
- Пуассона P(k, 10)
- Равномерного $U(x, -\sqrt{3}, \sqrt{3})$

выполнить следующее:

- 1. сгенерировать массив случайных данных (выборку) размера: 10, 50, 1000 и построить графики плотности вероятности (функции вероятности для распределения Пуассона как дискретного).
- 2. выборку размера: 10, 100, 1000 сгенерировать 1000 раз, для каждой генерации произвести вычисления выборочных характеристик \bar{x} , med x, z_R, z_Q, z_{tr} для всех генераций в рамках одного размера выборки получить значения среднего характеристик положения:

$$E(z) = \bar{z} \tag{1}$$

и дисперсию:

$$D(z) = \bar{z^2} - \bar{z}^2 \tag{2}$$

Представить полученные данные в виде таблиц.

- 3. сгенерировать выборки размера 20 и 100, построить боксплот Тьюки. Определить долю выбросов экспериментально (сгенерировав выборку каждого размера 1000 раз) и сравнить с результатами полученными теоретически.
- 4. сгенерировать выборки размером 20, 60 и 100 элементов. Построить на них эмпирические функции распределения и ядерные оценки плотности/функции распределения на отрезке [-4,4] для непрерывных распределений и на отрезке [6,14] для распределения Пуассона.

2 Теория

2.1 Распределения

Пусть задано вероятностное пространство $(\Omega, \mathcal{F}, \mathbf{P})$, на котором определена *случайная* величина $\xi: \Omega \to \mathbb{R}$ т.е. функция $\xi(\omega)$ такая что $\xi^{-1}(B) \in \mathcal{F}, \forall B \in \mathcal{B}(\mathbb{R})$. Она индуцирует вероятностную меру на \mathbb{R} как $\mathbf{P}_{\xi}(B) = \mathbf{P}(\xi^{-1}(B))$ которая и носит название *распределения* вероятностей случайной величины [1].

Функция $F_{\xi}(x) = \mathbf{P}_{\xi}(-\infty, x], x \in \mathbb{R}$ называется функцией распределения случайной величины ξ . Случайная величина может быть:

- 1. $\partial u c \kappa p e m h o \ddot{u}$, если распределение представимо в виде $\mathbf{P}_{\xi}(B) = \sum_{k: x_k \in B} p(x_k)$, где $p(x_k) = \mathbf{P}_{\xi}\{x_k\}$ для конечного $\{x_1, ..., x_n\}$ или счетного $\{x_1, ..., x_k, ...\}$ подмножества вещественных чисел. В этом случае функция $p(x_k)$ называется таблицей распределения.
- 2. непрерывной, если F(x) непрерывна
- 3. абсолютно непрерывной, если существует такая неотрицательная функция $f_{\xi}(x)$ называемая плотностью вероятности, что $F(x)=\int\limits_{-\infty}^{x}f(y)dy$

В работе рассматриваются следующие распределения:

1. *Нормальное* N(x,0,1) - абсолютно непрерывное, задается плотностью

$$f_N(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \tag{3}$$

2. Kowu C(x, 0, 1) - абсолютно непрерывное, задается плотностью

$$f_C(x) = \frac{1}{\pi(x^2 + 1)} \tag{4}$$

3. Лапласа $L(x,0,\frac{1}{\sqrt{2}})$ - абсолютно непрерывное, задается плотностью

$$f_L(x) = \frac{1}{2\sqrt{2}}e^{-\frac{1}{\sqrt{2}}|x|} \tag{5}$$

4. Пуассона P(k, 10) - дискретное, задается на $\{1, 2, ..., k, ...\}$ как

$$p(k) = \frac{10^k}{k!} e^{-10} \tag{6}$$

5. *Равномерное* $U(x, -\sqrt{3}, \sqrt{3})$ - абсолютно непрерывное, задается плотностью

$$f_U(x) = \begin{cases} \frac{1}{2\sqrt{3}} & \text{если } x \in [-\sqrt{3}, \sqrt{3}] \\ 0 & \text{иначе} \end{cases}$$
 (7)

2.2 Гистограмма

Все приведенные распределения характеризуются таблицей (для дискретных) или плотностью (для абсолютно непрерывных). Эмпирическим аналогом таблицы или плотности является $\mathit{гиствограммa}$ [2]. Гистрограмма строится по группированным данным. Предполагаемую область значений случайной величины ξ делят на некоторое количество интервалов:

Пусть $A_1,...,A_k$ - интервалы на прямой. Обозначим $\nu_j,j\in\{1,...,k\}$ - число элементов выборки, попавших в интервал A_j . Размер выборки в этих обозначениях равен $n=\sum\limits_{j=1}^k \nu_j$. На каждом из интервалов строят прямоугольник, площадь которого пропорциональна ν_j , общая площадь всех прямоугольников должна равняться единице (нормировка гистограммы), поэтому высота каждого определяется как $f_j=\frac{\nu_j}{nl_j}$. Полученная фигура из объединения прямоугольников и называется гистограммой.

2.3 Вариационный ряд

Если элементы выборки $x_1, ..., x_n$ упорядочить по возрастанию на каждом элементарном исходе (рассматриваем их как случайные величины), получится новый набор случайных величин, называемый вариационным рядом:

$$x_{(1)} \le \dots \le x_{(n)}$$

Элемент $x_{(k)}$ называется k-ой порядковой статистикой 1 .

2.4 Выборочные характеристики

При работе с выборкой нам неизвестно распределение по которому она получена, а значит и соответствующие характеристики распределения. Однако, существуют оценки - т.н. выборочные характеристики:

• Выборочное среднее

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{8}$$

• Выборочная медиана

$$med x = \begin{cases} x_{(k+1)} & \text{при } n = 2k+1 \\ \frac{x_{(k)} + x_{(k+1)}}{2} & \text{при } n = 2k \end{cases}$$
 (9)

• Полусумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(n)}}{2} \tag{10}$$

Выборочный квантиль уровня α

$$z_{\alpha} = \frac{x_{(\lfloor q \rfloor + 1)} + x_{(\lceil q \rceil + 1)}}{2}, \text{где } q = (n - 1)\alpha$$
 (11)

формула, используемая в **NumPy**, в этом случае $z_0 = \min_{i=1,\dots,n} x_{(i)}, z_1 = \max_{i=1,\dots,n} x_{(i)},$ $z_{0.5} = \operatorname{med} x$

 $^{^{1}}$ [2] crp. 10

• Полусумма квантилей

$$z_Q = \frac{z_{0.25} + z_{0.75}}{2} \tag{12}$$

• Усеченное среднее

$$z_{tr} = \frac{1}{n-2r} \sum_{i=r+1}^{n-r} x_{(i)}, \text{где } r = \lceil \frac{n}{4} \rceil$$
 (13)

Выборочные характеристики как борелевские функции от случайных величин (выборки) также являются случайными величинами, поэтому в работе и производится усреднение их значений для 1000 генераций и вычисление дисперсии.

2.5 Выбросы

2.5.1 Определение

Результат измерения, выделяющийся из выборки называется выбросом. Простейший критерий основан на межквартильном расстоянии, выбросами считаются элементы выборки лежащие вне диапазона $[X_1, X_2]$:

$$X_1 = LQ - \frac{3}{2}(UQ - LQ), X_2 = UQ + \frac{3}{2}(UQ - LQ)$$
(14)

, где LQ, UQ - выборочные нижний и верхний квартили.

Теоретическая вероятность выбросов для непрерывных распределений:

$$P_{outlier} = P(x < X_1) + P(x > X_2) = F(X_1) + (1 - F(X_2))$$
(15)

, а для дискретных с учетом возможного скачка

$$P_{outlier} = F(X_1) - (F(X_1 +) - F(X_1)) + (1 - F(X_2))$$
(16)

2.5.2 Доля выбросов

Проведем следующий эксперимент 1, ..., i, ..., N раз: сгенерируем выборку размера n и подсчитаем число выбросов k_i , используя определение (1), но с выборочными квартилями. Тогда доля выбросов в i-м эксперименте:

$$P_i = \frac{k_i}{n} \tag{17}$$

Собственно долей выбросов будем называть величину

$$P = \frac{1}{N} \sum_{i=1}^{N} P_i$$
 (18)

, с дисперсией

$$D = \frac{1}{N} \sum_{i=1}^{N} P_i^2 - P^2 \tag{19}$$

2.6 Боксплот Тьюки

2.6.1 Описание

Боксплот (англ. box plot) — график, использующийся в описательной статистике, компактно изображающий одномерное распределение вероятностей: в удобной форме показывает медиану, нижний и верхний квартили, минимальное и максимальное значение выборки и выбросы. [3]

2.6.2 Построение

Границами ящика служат LQ и UQ, линия в середине ящика — медиана. Концы усов — края статистически значимой выборки (без выбросов): X_1 и X_2 (1).

2.7 Эмпирическая функция распределения

Эмпирической функцией распределения, построенной по выборке $(x_1, ..., x_n)$ объема n называется случайная функция $F_n^* : \mathbb{R} \times \Omega \to [0, 1]$, которая имеет вид

$$F_n^*(y) = \frac{1}{n} \sum_{i=1}^n I(x_i < y)$$
 (20)

где I - индикатор события $x_i < y$ [2]

2.8 Ядерная оценка плотности распределения

Пусть $(x_1,...,x_n)$ - выборка полученная по распределению с некоторой плотностью f, требуется оценить функцию f. Ядерным оценщиком плотности называется [4]

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right) \tag{21}$$

где K - т.н. $s\partial po$ (некоторая неотрицательная функция), h>0 - сглаживающий параметр, именуемый $uupuho \ ino noc \ ino$

Как правило используется нормальное (или гауссово) ядро, в силу его удобных математических свойств:

$$K(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \tag{22}$$

В случае если используется гауссово ядро и оцениваемая плотность является гауссовой, оптимальный выбор для h определяется т.н. npaвилом Cunbвермана [4]:

$$h_n = \left(\frac{4s_n^5}{3n}\right)^{\frac{1}{5}} \approx 1.06s_n n^{-\frac{1}{5}} \tag{23}$$

где s_n - выборочное среднеквадратичное отклонение (корень из выборочной дисперсии)

3 Реализация

Работа выполнена с использованием языка **Python** в интегрированной среде разработки **PyCharm**, были задействованы библиотеки:

- NumPy работа с массивами данных, построение вариационного ряда и вычисления характеристик, вычисление квартилей для дальнейшего подсчета выбросов
- SciPy модуль stats для генерации данных по распределениям, вычисления ядерной оценки плотности
- Matplotlib отрисовка гистограмм и графиков, построение боксплотов

4 Результаты

4.1 Гистограммы и графики

Рис. 1: Нормальное распределение

Рис. 2: Распределение Коши

Рис. 3: Распределение Лапласа

Рис. 4: Распределение Пуассона

Рис. 5: Равномерное распределение

4.2 Выборочные характеристики

	\bar{x} (8)	$\mod x$ (9)	$z_R (10)$	$z_Q (12)$	$z_{tr} (13)$
n = 10					
E(z)	-0.0	-0.0	-0.0	-0.0	-0.1
D(z)	0.094467	0.130519	0.187448	0.105385	0.069492
n = 100					
E(z)	0.0	0.0	0.0	0.01	-0.01
D(z)	0.009651	0.015116	0.091466	0.011977	0.011309
n = 1000					
E(z)	-0.0	0.001	0.0	-0.0	-0.001
D(z)	0.001049	0.00153	0.062347	0.001313	0.001193

Таблица 1: Нормальное распределение

	\bar{x}	$\mod x$	z_R	z_Q	z_{tr}
n = 10					
E(z)	-0.0	-0.0	-1.0	-0.0	-0.2
D(z)	490.607293	0.332166	11914.643438	1.132547	0.210165
n = 100					
E(z)	2.0	0.0	79.0	0.0	-0.01
D(z)	3581.697241	0.026278	8922533.221739	0.04842	0.025421
n = 1000					
E(z)	1.0	0.0	642.0	0.0	-0.0
D(z)	2223.205146	0.00256	547218440.611133	0.004966	0.002619

Таблица 2: Распределение Коши

	\bar{x}	$\mod x$	z_R	z_Q	z_{tr}
n = 10					
E(z)	0.0	0.0	0.0	0.0	-0.1
D(z)	0.098335	0.072722	0.382323	0.089897	0.041919
n = 100					
E(z)	-0.0	0.0	-0.0	-0.0	-0.01
D(z)	0.009719	0.00561	0.433362	0.009396	0.005806
n = 1000					
E(z)	0.0	0.001	-0.0	0.001	-0.0
D(z)	0.000918	0.000483	0.441511	0.000944	0.000561

Таблица 3: Распределение Лапласа

	\bar{x}	med x	z_R	z_Q	z_{tr}
n = 10					
E(z)	10.0	10.0	10.0	10.0	7.0
D(z)	0.955624	1.3806	1.744716	1.128935	0.704541
n = 100					
E(z)	10.0	9.9	11.0	9.9	9.6
D(z)	0.097956	0.194391	0.997104	0.14328	0.110723
n = 1000					
E(z)	10.0	10.0	12.0	9.994	9.84
D(z)	0.010385	0.003484	0.6581	0.002748	0.011585

Таблица 4: Распределение Пуассона

	\bar{x}	$\mod x$	z_R	z_Q	z_{tr}
n = 10					
E(z)	0.0	0.0	-0.0	0.0	-0.1
D(z)	0.10033	0.234165	0.043909	0.136123	0.119729
n = 100					
E(z)	0.0	-0.0	0.001	0.0	-0.02
D(z)	0.009457	0.028559	0.00059	0.014028	0.018067
n = 1000					
E(z)	-0.001	-0.002	4e-05	-0.001	-0.003
D(z)	0.00102	0.003073	6e-06	0.001465	0.002005

Таблица 5: Равномерное распределение

4.3 Боксплоты

Рис. 6: Нормальное распределение

Рис. 7: Распределение Коши

Рис. 8: Распределение Лапласа

Рис. 9: Распределение Пуассона

Рис. 10: Равномерное распределение

4.4 Теоретическая вероятность выбросов

Подсчитана для каждого распределения при помощи модуля stats библиотеки SciPy (см. Реализация):

Распределение					
$P_{outlier} (15), (16)$	0.007	0.156	0.0625	0.008	0.0

Таблица 6: Теоретическая вероятность выбросов

4.5 Доля выбросов

Распределение	normal	cauchy	laplace	poisson	uniform
n=20					
P(18)	0.025	0.147	0.070	0.022	0.0023
D(19)	0.002085	0.005248	0.004219	0.001801	0.0002
n = 100					
P	0.0105	0.156	0.0658	0.0108	0.0
D	0.000185	0.001068	0.0009	0.000236	0.0

Таблица 7: Доля выбросов

4.6 Эмпирические функции распределения

Рис. 11: Нормальное распределение

Рис. 12: Распределение Коши

Рис. 13: Распределение Лапласа

Рис. 14: Распределение Пуассона

Рис. 15: Равномерное распределение

4.7 Ядерные оценки плотности распределения

Рис. 16: Нормальное распределение

Рис. 17: Распределение Коши

Рис. 18: Распределение Лапласа

Рис. 19: Распределение Пуассона

Рис. 20: Равномерное распределение

5 Обсуждение

5.1 Гистограммы и графики

Проведенный эксперимент подтверждает **утверждение**: пусть плотность распределения по которому построена выборка является непрерывной функцией. Если число интервалов гистограммы k(n) стремится κ бесконечности таким образом что $\lim_{n\to\infty}\frac{k(n)}{n}=0$, то имеет место сходимость по вероятности гистограммы κ плотности. [2] Действительно мы взяли $k(n)=\lceil \sqrt{n} \rceil$ и очевидно условие утверждения в таком случае выполнено, при этом гистограмма при увеличении n заполняет площадь под графиком плотности (кусочнолинейной функции вероятности для распределения Пуассона), а это и означает сходимость по вероятности.

5.2 Математическое ожидание и медиана

Для каждого из указанных в постановке задачи распределений, приведем теоретические значения математического ожидания и медианы:

- $N(x, 0, 1) : \mathbf{E} = 0, \text{med} = 0$
- $C(x,0,1): \mathbf{E}$ не определено, $\mathrm{med} = 0$
- $L(x, 0, \frac{1}{\sqrt{2}}) : \mathbf{E} = 0, \text{med} = 0$
- $P(k, 10) : \mathbf{E} = 10, \text{med} = 10$
- $U(x, -\sqrt{3}, \sqrt{3}) : \mathbf{E} = 0, \text{med} = 0$

Как известно, выборочное среднее является несмещенной и состоятельной оценкой для математического ожидания 2 Это объясняет то что для всех распределений кроме распределения Коши - выборочное среднее при росте n стремится к математическому ожиданию, для распределения Коши последовательность вычислений не демонстрирует никакой сходимости (см. таблицу 2), поскольку у него отсутствует математическое ожидание. В тоже время медиана имеется у всех распределений и к ней сходится выборочная медиана.

5.3 Полусуммы: z_R и z_Q

Полусумма квартилей z_Q и экстремальных выборочных элементов z_R оценивают центр симметрии распределения, из таблиц наблюдается что z_Q ближе к медиане и последовательность вычислений E(z) для z_Q при увеличении n сходится, в тоже время последовательность значений E(z) для z_R расходится при распределении Коши. Таким образом оценка через полусумму квартилей лучше, хотя и требует больше вычислений.

5.4 Упорядочение характеристик

Для n=1000 приведем упорядочение характеристик положения по каждому распределению:

- $N(x,0,1): z_{tr} < z_Q \le \bar{x} \le z_R < \text{med } x$
- $C(x, 0, 1) : z_{tr} \le z_Q \le \text{med } x < \bar{x} < z_R$

² [2] ctp. 17

- $L(x, 0, \frac{1}{\sqrt{2}}) : z_{tr} \le z_R \le \bar{x} < \text{med } x \le z_Q$
- $P(k, 10) : z_{tr} < z_Q < \text{med } x \le \bar{x} < z_R$
- $U(x, -\sqrt{3}, \sqrt{3}) : z_{tr} < \text{med } x < z_Q \le \bar{x} < z_R$

5.5 Выбросы

Из полученных таблиц видно что доля выбросов близка к теоретической. Наибольшая при этом у распределения Коши, что также видно по боксплоту Тьюки (рис. 7). Вторая по величине у распределения Лапласа. Для остальных выборок доля выбросов не превосходит 95%, а значит можно считать что они соответствуют гипотетическим распределениям.

5.6 Эмпирическая функция распределения

Существует **теорема** [2]: Пусть $(x_1, ..., x_n)$ - выборка из распределения с некоторой функцией распределения F и пусть F_n^* - эмпирическая функция распределения построенная по этой выборке. Тогда $F_n^*(y) \stackrel{p}{\to} F(y), \forall y \in \mathbb{R}$ Полученные графики подтверждают данный теоретический факт, с ростом n эмпирическая функцяи распределения все ближе к истинной.

5.7 Ядерная оценка плотности распределения

Для нормального распределения наилучшие результаты показал выбор h по правилу Сильвермана, что обосновано теоретически т.к. он оптимален в некотором смысле (см. Теория), как и для распределения Пуассона. Для распределения Лапласа хорошие результаты в приближении плотности распределения имеем как при h_n , так и при $0.5h_n$. Плотность равномерного распределения аппроксимируется неудачно т.к. оно далеко от гауссова, как и распределение Коши.

6 Приложения

- 1. Исходный код лабораторной 1 https://github.com/zhenyatos/statlabs/tree/master/Lab1
- 2. Исходный код лабораторной 2 https://github.com/zhenyatos/statlabs/tree/master/Lab2
- 3. Исходный код лабораторной 3 https://github.com/zhenyatos/statlabs/tree/master/Lab3
- 4. Исходный код лабораторной 4 https://github.com/zhenyatos/statlabs/tree/master/Lab4

Список литературы

- [1] А. Н. Ширяев, Вероятность-1. Изд. МЦНМО, Москва, 2017. 551 стр.
- [2] Н. И. Чернова, Математическая статистика: Учеб. пособие. Новосиб. гос. ун-т. Новосибирск, 2007. 148 стр.
- [3] Ящик с усами // Википедия. [2020—2020]. Дата обновления: 12.01.2020. URL: https://ru.wikipedia.org/?oldid=104502300 (дата обращения: 12.01.2020)
- [4] Ядерная оценка плотности // Википедия. [2020—2020]. Дата обновления: 05.01.2020. URL: https://ru.wikipedia.org/?oldid=104368872 (дата обращения: 05.01.2020).