Lecture 3.1: The rank

Optimization and Computational Linear Algebra for Data Science

Léo Miolane

Rank of a family of vectors

Definition

We define the rank of a family x_1, \ldots, x_k of vectors of \mathbb{R}^n as the dimension of its span:

$$rank(x_1,\ldots,x_k) \stackrel{\text{def}}{=} \dim(\mathrm{Span}(x_1,\ldots,x_k)).$$

Rank of a matrix

Definition

Let
$$M\in\mathbb{R}^{n\times m}$$
. Let $c_1,\ldots,c_m\in\mathbb{R}^n$ be its columns. We define $\mathrm{rank}(M)\stackrel{\mathrm{def}}{=}\mathrm{rank}(c_1,\ldots,c_m)=\dim(\mathrm{Im}(M)).$

Example

« Rank of columns = rank of rows »

Proposition

Let $M\in\mathbb{R}^{n\times m}$. Let $r_1,\ldots,r_n\in\mathbb{R}^m$ be the rows of M and $c_1,\ldots,c_m\in\mathbb{R}^n$ be its columns. Then we have

$$rank(r_1,\ldots,r_n)=rank(c_1,\ldots,c_m)=rank(M).$$

Computing the rank in practice

Computing the rank in practice