Atividade 7

Verificando as suposições do modelo

Paulo Ricardo Seganfredo Campana

29 de setembro de 2023

Questão 1.

Por razão de segurança, um estudo de ursos envolveu a coleção de várias medidas, que foram feitas depois que os ursos foram anestesiados. É relativamente fácil usar uma fita métrica para encontrar algumas medidas, como tamanho da cabeça, tamanho do tórax e comprimento do urso, mas é difícil pesar o urso. Em vez de pesar o urso, podemos predizer seu peso com com base nestas outras medidas? Considere a seguinte tabela de dados:

Peso	80	344	416	348	262	360	332	34	140	180	105	166
Tmn. da cabeça	11	16.5	15.5	17	15	13.5	16	9	12.5	14	11.5	13
Comprimento	53	67.5	72	72	73.5	68.5	73	37	63	67	52	59
Tmn. do tórax	26	45	54	49	41	49	44	19	32	37	29	33

a) Estime um modelo de regressão linear múltiplo que explique os pesos dos ursos em função das variáveis: tamanho da cabeça, tamanho do tórax e comprimento do urso.

O modelo estimado é $\hat{y} = -203.66 + 9.30x_1 - 2.75x_2 + 12.58x_3$.

b) Através do teste F, você acha que o modelo adotado é razoável? Justifique sua resposta.

Sim, conjuntamente o modelo é significativo com p-valor de 4.41×10^{-7} no teste F, porém alguns regressores parecem não estarem contribuindo muito para o modelo.

Tabela 2: Teste F para o modelo de regressão linear múltipla

Variável	gl	SS	MS	Estatística	p-valor
Tamanho da cabeça	1	140985	140985	302.11	1.22×10^{-7}
Comprimento	1	2379	2379	5.10	0.0539
Tamanho do tórax	1	33980	33980	72.81	0.0000274
(Regressão)	3	177344	59115	126.67	4.41×10^{-7}
(Resíduos)	8	3733	467		
(Total)	11	181077	16462		

c) O \mathbb{R}^2 e \mathbb{R}^2_a sugerem que o modelo proposto explica razoavelmente os dados?

```
summary(fit1)$r.squared
## [1] 0.9793824
summary(fit1)$adj.r.squared
## [1] 0.9716509
```

Sim, temos um coeficiente de determinação ajustado muito alto, mesmo com poucas observações e 3 variáveis.

d) Analisando os testes t para cada coeficiente da regressão, quais variáveis deverão ser excluídas?

Tabela 3: Teste t para as variáveis do modelo de regressão linear múltipla

Variável	Estimativa	Erro padrão	Estatística	p-valor
(Intercepto)	-203.66	46.30	-4.40	0.00229
Tamanho da cabeça	9.30	7.15	1.30	0.23
Comprimento	-2.75	1.61	-1.70	0.127
Tamanho do tórax	12.58	1.48	8.53	0.0000274

Os regressores Tamanho da cabeça e Comprimento não são significantes segundo o teste t então devem ser retirados do modelo.

e) O pesquisador que lidera este estudo não entende porque nem todas as variáveis foram significativas. Verifique a hipótese de multicolinearidade e, com base nesses resultados, justifique a exclusão dessas variáveis.

```
car::vif(fit1)
## x1 x2 x3
## 7.153588 7.529552 5.776141
```

Temos Fatores de Inflação da Variância altos (maiores que 5) para todas as variáveis, isso indica multicolinearidade na regressão, iremos então retirar as variáveis Tamanho da cabeça e Comprimento.

f) Depois dessa análise e considerando que não é possível obter novos dados, ajuste um modelo de regressão que explique o peso através do tamanho do tórax. Considerando esta regressão faça as seguintes análises:

```
fit2 <- lm(y \sim x3, data)
```

g) Verifique a hipótese de normalidade. Comente os resultados.

Tabela 4: Resultados dos testes de normalidade para os resíduos studentizados

Teste de normalidade	Estatística	p-valor
Lilliefors	D = 0.262	0.0221
Shapiro-Wilk	W = 0.898	0.1517
Jarque-Bera	JB = 0.504	0.7771

Apenas o teste de normalidade de Lilliefors rejeita a normalidade dos resíduos, provavelmente devido ao pequeno número de observações.

h) Verifique a hipótese de linearidade. Comente os resultados.

```
data |>
   mutate(predict = predict(fit2)) |>
   ggplot(aes(x = y, y = predict)) +
   geom_point(color = "#4582ec") +
   geom_abline(intercept = 0, slope = 1, alpha = 0.25) +
   theme_bw()
```


Tabela 5: Resultados dos testes de linearidade

Teste de linearidade	Estatística	p-valor
RESET (y)	RESET = 3.661	0.0743
RESET (x_3)	RESET = 3.661	0.0743
Rain test	Rain = 1.094	0.4876

Pelo gráfico, vemos um comportamento bastante linear entre y e \hat{y} além de que os testes não rejeitam a hipótese de linearidade.

i) Verifique a hipótese de autocorrelação. Comente os resultados.

```
lmtest::dwtest(fit2)$p.value
## [1] 0.1043301
```

O teste para autocorrelação de Durbin-Watson indica que não há autocorrelação no modelo.

j) Verifique a hipótese de homocedasticidade. Comente os resultados.

Tabela 6: Resultados dos testes para heterocedasticidade

Teste de heterocedasticidade	Estatística	p-valor
Goldfeld-Quandt	GQ = 3.244	0.140
Breusch-Pagan Koenker	BP = 0.264 BP = 0.405	$0.607 \\ 0.524$

Todos os testes indicam que o modelo é homocedástico a um nível de significância de 5%.

k) Através dos itens anteriores e do \mathbb{R}^2 , teste F e testes t, você acha que o modelo adotado é razoável? Justifique sua resposta.

```
summary(fit2)$adj.r.squared
## [1] 0.968706
```

Sim, o modelo é razoável pois continuamos com um \mathbb{R}^2 muito alto e o novo modelo é muito mais significativo com apenas um regressor.