СЛАУ

Прямые и итерационные методы решения.

Цыбулин Иван (<u>tsybulin@crec.mipt.ru</u>)

Методы решения СЛАУ

- Прямые методы выдают решение за фиксированное число операций
- Итерационные методы строят последовательность *приближений* к решению. Последовательность обрывают после достижения заданной точности.

Метод Гаусса

- Метод последовательного исключения неизвестных
- Прямым ходом приводит матрицу системы к треугольному виду, а затем находит решение полученной треугольной системы обратной подстановкой
- Для системы $n \times n$ количество арифметических действий $O(n^3)$ (примерно $\frac{2}{3}n^3$ умножений) прямой метод.

Рассмотрим систему

$$egin{pmatrix} 10^{-3} & 1 \ 1 & -1 \end{pmatrix} egin{pmatrix} x_1 \ x_2 \end{pmatrix} = egin{pmatrix} 2 \ 1 \end{pmatrix} & egin{pmatrix} x_1 \ x_2 \end{pmatrix} pprox egin{pmatrix} 2.997003 \ 1.997003 \end{pmatrix}$$

Будем решать ее методом Гаусса, используя в вычислениях только три значащие цифры

$$\left(egin{array}{c|c|c|c} 10^{-3} & 1 & 2 \ 1 & -1 & 1 \end{array}
ight)\sim \left(egin{array}{c|c|c} 1 & 10^3 & 2\cdot 10^3 \ 1 & -1 & 1 \end{array}
ight)\sim \left(egin{array}{c|c|c} 1 & 10^3 & 2\cdot 10^3 \ 0 & -10^3 & -2\cdot 10^3 \end{array}
ight)\sim \left(egin{array}{c|c|c} 1 & 10^3 & 2\cdot 10^3 \ 0 & -10^3 & -2\cdot 10^3 \end{array}
ight)\sim \left(egin{array}{c|c|c} 1 & 10^3 & 2\cdot 10^3 \ 0 & 1 & 2 \end{array}
ight)\sim \left(egin{array}{c|c|c} 1 & 0 & 0 \ 0 & 1 & 2 \end{array}
ight)$$

Полученное решение значительно отличается от точного.

Данную проблему можно устранить, если в качестве ведущего элемента (того на который делится очередная строка) выбирать наибольший по модулю элемент в столбце. Такой метод называется методом Гаусса с выбором главного элемента по столбцу.

Применим его к той же системе

$$\left(egin{array}{c|cc|c} 10^{-3} & 1 & 2 \ \hline 1 & -1 & 1 \end{array}
ight) \sim \left(egin{array}{c|cc|c} 0 & \boxed{1} & 2 \ 1 & -1 & 1 \end{array}
ight) \sim \left(egin{array}{c|cc|c} 0 & 1 & 2 \ 1 & 0 & 3 \end{array}
ight) \sim \left(egin{array}{c|cc|c} 1 & 0 & 3 \ 0 & 1 & 2 \end{array}
ight)$$

Теперь отличие от точного решения не превосходит $3 \cdot 10^{-3}$, что оказалось даже меньше погрешности вычислений.

Почему же так происходит? Может система просто плохо обусловлена? Проверим.

$$u(\mathbf{A}, \mathbf{b}) = rac{\|\mathbf{A}^{-1}\|\|\mathbf{b}\|}{\|\mathbf{A}^{-1}\mathbf{b}\|}$$

$$\mathbf{A}^{-1} = rac{1}{1001} egin{pmatrix} 1000 & 1000 \\ 1000 & -1 \end{pmatrix} & \mathbf{b} = egin{pmatrix} 2 \\ 1 \end{pmatrix} & \mathbf{A}^{-1}\mathbf{b} pprox egin{pmatrix} 2.997003 \\ 1.997003 \end{pmatrix}$$

$$u_{\infty} = rac{2000}{1001} rac{3}{2.997003} pprox 2.$$

Данная система *обусловлена хорошо*. Проблема в методе Гаусса. В методе Гаусса могут накапливаться *ошибки округления*.

Диагональное преобладание

Говорят, что матрица $\mathbf{A}=\{a_{ij}\}_{i,j=1}^n$ обладает (нестрогим) **диагональным преобладанием**, если

$$|a_{ii}|\geqslant \sum_{j
eq i}|a_{ij}|,\quad orall i=1,\ldots,n$$

Преобладание называется строгим, если

$$|a_{ii}| > \sum_{j
eq i} |a_{ij}|, \quad orall i = 1, \ldots, n.$$

Для матриц с диагональным преобладанием в методе Гаусса без выбора ведущего элемента не происходит значительного накопления ошибок округления. Как говорят, для этих матриц метод Гаусса вычислительно устойчив.

Трехдиагональные системы

При решении дифференциальных уравнений нередко возникает линейная система специального

При решении дифференциальных уравнений нередко возникает линейная система специальног трехдиагонального вида
$$\begin{cases} b_1x_1 &+ c_1x_2 &= f_1\\ a_2x_1 &+ b_2x_2 &+ c_2x_3 &= f_2\\ a_3x_2 &+ b_3x_3 &+ c_3x_4 &= f_3\\ &\ddots\\ && &\ddots\\ && &a_{n-1}x_{n-2} &+ b_{n-1}x_{n-1} &+ c_{n-1}x_n &= f_{n-1}\\ && &a_nx_{n-1} &+ b_nx_n &= f_n \end{cases}$$
 Все уравнения имеют вид
$$a_kx_{k-1} + b_kx_k + c_kx_{k+1} = f_k, \quad k=1,\dots,n$$

$$a_1 = c_n = 0$$

$$a_k x_{k-1} + b_k x_k + c_k x_{k+1} = f_k, \quad k = 1, \dots, n$$
 $a_1 = c_n = 0$

Прогонка

Для системы с трехдиагональной матрицей можно реализовать метод Гаусса, имеющий сложность O(n) действий вместо $O(n^3)$. Данный метод называется *прогонкой*.

Будем искать решение в виде прогоночного соотношения

$$x_{k-1} = P_k x_k + Q_k,$$

где P_k, Q_k — пока не известные прогоночные коэффициенты.

Первое уравнение легко переписать в виде прогоночного соотношения:

$$b_1x_1+c_1x_2=f_1 \implies x_1=-rac{c_1}{b_1}x_2+rac{f_1}{b_1} \implies P_2=-rac{c_1}{b_1}, \; Q_2=rac{f_1}{b_1}$$

Пусть мы знаем прогоночные коэффициенты до P_k, Q_k включительно.

$$x_{k-1} = P_k x_k + Q_k$$

Подставим это сооношение в уравнение с номером k

$$a_k x_{k-1} + b_k x_k + c_k x_{k+1} = f_k \ a_k (P_k x_k + Q_k) + b_k x_k + c_k x_{k+1} = f_k \ x_k = -rac{c_k}{a_k P_k + b_k} x_{k+1} + rac{f_k - a_k Q_k}{a_k P_k + b_k}$$

Мы получили рекуррентные формулы для вычисления P_{k+1}, Q_{k+1} :

$$P_{k+1} = -rac{c_k}{a_k P_k + b_k}, \quad Q_{k+1} = rac{f_k - a_k Q_k}{a_k P_k + b_k}.$$

Начиная с P_2,Q_2 прямым ходом прогонки можно последовательно вычислить P_k,Q_k для $k=3,4,\dots,n+1$. Для последнего уравнения $c_n=0$ и $P_{n+1}=0$. Прогоночное соотношение для x_n принимает вид

$$x_n=Q_{n+1}.$$

Теперь обратной подстановкой можно найти остальные неизвестные:

$$egin{aligned} x_{n-1} &= P_n x_n + Q_n \ x_{n-2} &= P_{n-1} x_{n-1} + Q_{n-1} \ &dots \ x_1 &= P_2 x_2 + Q_2. \end{aligned}$$

```
import numpy as np
def solve_tdm(a, b, c, f):
  n = len(a)
  P = np.zeros(n); Q = np.zeros(n); x = np.zeros(n)
  P[0] = -c[0] / b[0]
  Q[0] = f[0] / b[0]
  for k in range(n-1):
     P[k+1] = -c[k+1] / (a[k+1] * P[k] + b[k+1])
     Q[k+1] = (f[k+1] - a[k+1] * Q[k]) / (a[k+1] * P[k] + b[k+1])
  x[n-1] = Q[n-1]
  for k in reversed(range(n-1)):
     x[k] = P[k] * x[k+1] + Q[k]
  return x
```

```
from scipy.linalg import solve_banded
a = np.array([0, 1, 1, 1, 1, 1, 1])
b = -np.array([2, 2, 2, 2, 2, 2, 2, 2])
c = np.array([1, 1, 1, 1, 1, 1, 1, 0])
f = -np.array([1, 1, 1, 1, 1, 1, 1, 1])
x = solve\_tdm(a, b, c, f)
print('TDM solver: x=', x)
G = np.zeros((3, len(a)))
G[0, 1:] = c[:-1]
G[1, :] = b
G[2, :-1] = a[1:]
x_scipy = solve_banded((1, 1), G, f)
print('SciPy banded solver: x=', x_scipy)
```

TDM solver: x = [4, 7, 9, 10, 10, 9, 7, 4]

SciPy banded solver: x= [4. 7. 9. 10. 10. 9. 7. 4.]

Матричные разложения

Довольно часто для решения систем линейных уравнений и других задач линейной алгебры применяют матричные разложения. Наиболее известными являются:

- ${f A}={f L}{f U}$, где ${f L}$ нижнетреугольная матрица, а ${f U}$ верхнетреугольная. Соответствует методу Гаусса без выбора главного элемента.
- ullet ${f A} = {f L}{f L}^ op$ разложение Холецкого, применяется вместо LU для симметричных матриц.
- ${f A}={f Q}{f R}$, где ${f Q}$ ортогональная, а ${f R}$ верхнетреугольная. Также может быть использовано для решения СЛАУ.

Эти разложения имеют сложность $O(n^3)$, как и метод Гаусса.

Другие важные разложения:

- ${f A}={f U}{f \Sigma}{f V}$ сингулярное разложение, ${f U},{f V}$ ортогональные, ${f \Sigma}$ диагональная матрица из сингулярных чисел.
- ${f A} = {f S}{f \Lambda}{f S}^{-1}$ спектральное разложение, ${f S}$ матрица из собственных векторов, ${f \Lambda}$ диагональная матрица собственных чисел.

Получение таких разложений — трудоемкая задача. Более того, эти разложения получаются итерационными методами, сложность алгоритма зависит от матрицы ${f A}$.

Покажем, как решить линейную систему, зная LU разложение ее матрицы: пусть ${f A}={f L}{f U}.$ Система

$$\mathbf{A}\mathbf{x} = \mathbf{f}$$

может быть записана в виде:

$$\mathbf{L}(\mathbf{U}\mathbf{x}) = \mathbf{f}.$$

Решим сначала вспомогательную задачу с нижнетреугольной матрицей (прямой подстановкой)

$$\mathbf{L}\mathbf{y}=\mathbf{f},$$

а затем задачу с верхнетреугольной матрицей (обратной подстановкой)

$$\mathbf{U}\mathbf{x}=\mathbf{y}.$$

```
from scipy.linalg import lu, solve_triangular
def lu_solve(A, f):
   P, L, U = Iu(A) # A = P L U
   y = solve_triangular(L, P.T.dot(f), lower=True, unit_diagonal=True)
   x = solve_triangular(U, y, lower=False, unit_diagonal=False)
   return x
n = 4
x0 = np.ones(n)
A = np.random.rand(n, n)
f = A.dot(x0)
x = lu\_solve(A, f)
print('x = ', x)
lu(A)
X = [1. 1. 1. 1.]
(array([[ 0., 1., 0., 0.],
    [ 0., 0., 1., 0.],
    [ 1., 0., 0., 0.],
    [0., 0., 0., 1.]]),
array([[ 1. , 0. , 0. , 0. ],
     [0.05387288, 1. , 0. , 0. ],
     [ 0.29155253, -0.49537567, 1. , 0. ],
     [ 0.23474376, 0.36296334, -0.05152276, 1. ]]),
```

Итерационные методы решения СЛАУ

Итерационные методы для системы

$$\mathbf{A}\mathbf{x} = \mathbf{f}$$

строят последовательность приближений

$$\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots,$$

которая сходится к решению системы \mathbf{x}^* . Итерационным методам необходимо начальное приближение к решению \mathbf{x}_0 .

Метод простой итерации

Пусть итерационный метод строит новое приближение \mathbf{x}_{k+1} по правилу

$$\mathbf{x}_{k+1} = \mathbf{B}\mathbf{x}_k + \mathbf{F}. \tag{*}$$

Назовем В матрицей итераций.

Отвлечемся от исходной системы $\mathbf{A}\mathbf{x}=\mathbf{f}$ и ответим на вопросы

- Когда сходится метод (*), то есть когда последовательность \mathbf{x}_k стремится к какому-то \mathbf{x}^* ?
- К чему сходится метод, то есть что такое \mathbf{x}^* ?

Пусть последовательность \mathbf{x}_k сходится к некоторому \mathbf{x}^* . Тогда переходя в

$$\mathbf{x}_{k+1} = \mathbf{B}\mathbf{x}_k + \mathbf{F}$$

к пределу при $k o \infty$, получаем

$$\mathbf{x}^* = \mathbf{B}\mathbf{x}^* + \mathbf{F}.$$

То есть, если предел \mathbf{x}_k существует, то он — решение уравнения

$$\mathbf{x}^* = \mathbf{B}\mathbf{x}^* + \mathbf{F}.$$

Рассмотрим вопрос сходимости метода простой итерации

$$\mathbf{x}_{k+1} = \mathbf{B}\mathbf{x}_k + \mathbf{F}$$

$$\mathbf{x}^* = \mathbf{B}\mathbf{x}^* + \mathbf{F}$$

Вычитая второе соотношение из первого, получаем

$$\mathbf{x}_{k+1} - \mathbf{x}^* = \mathbf{B}(\mathbf{x}_k - \mathbf{x}^*).$$

Вектор $\mathbf{e}_k = \mathbf{x}_k - \mathbf{x}^*$ будем называть *вектором ошибки*. За одну итерацию вектор ошибки умножается на матрицу итераций \mathbf{B} .

$$\mathbf{e}_{k+1} = \mathbf{B}\mathbf{e}_k$$
.

Условие $\mathbf{x}_k o \mathbf{x}^*$ эквивалентно $\|\mathbf{x}_k - \mathbf{x}^*\| \equiv \|\mathbf{e}_k\| o 0$. Здесь годится любая норма.

Достаточное условие сходимости

Если **какая-то** норма матрицы ${f B}$ оказалась меньше 1, то метод простой итерации

$$\mathbf{x}_{k+1} = \mathbf{B}\mathbf{x}_k + \mathbf{F}$$

сходится при любом начальном приближении \mathbf{x}_0 и любой правой части \mathbf{F} . Действительно, пусть

$$q = \|\mathbf{B}\| < 1.$$

Тогда

$$\|\mathbf{e}_{k+1}\| = \|\mathbf{B}\mathbf{e}_k\| \leqslant \|\mathbf{B}\| \cdot \|\mathbf{e}_k\| = q\|\mathbf{e}_k\| \leqslant \cdots \leqslant q^{k+1}\|\mathbf{e}_0\|.$$

Норма ошибки стремится к нулю как геометрическая прогрессия со знаменателем q < 1 .

Сходимость со скоростью геометрической прогрессии называют еще линейной сходимостью.

Критерий сходимости

Для того, чтобы метод простой итерации

$$\mathbf{x}_{k+1} = \mathbf{B}\mathbf{x}_k + \mathbf{F}$$

сходился при любом начальном приближении \mathbf{x}_0 и любой правой части \mathbf{F} необходимо и достаточно, чтобы

$$|\lambda(\mathbf{B})| < 1,$$

то есть все собственные числа ${f B}$ должны попасть в единичный круг $|\lambda| < 1, \lambda \in {\mathbb C}.$

Для симметричной матрицы

$$\|\mathbf{B}\|_E = \max |\lambda(\mathbf{B})|,$$

так что условие $\|\mathbf{B}\|_{E} < 1$ является не только достаточным, но и необходимым для сходимости процесса.

Как же можно по данной системе

$$\mathbf{A}\mathbf{x} = \mathbf{f}$$

построить итерационный процесс

$$\mathbf{x}_{k+1} = \mathbf{B}\mathbf{x}_k + \mathbf{F},$$

который бы сходился к решению системы?

Вспомним, что итерационный процесс сходится к решению уравнения

$$\mathbf{x} = \mathbf{B}\mathbf{x} + \mathbf{F}$$
.

Преобразуем $\mathbf{A}\mathbf{x} = \mathbf{f}$ к такому виду.

Метод простой итерации с параметром

Введем вектор невязки

$$\mathbf{r}_k = \mathbf{A}\mathbf{e}_k = \mathbf{A}\mathbf{x}_k - \mathbf{f}$$
.

Рассмотрим процесс с некоторым фиксированным au
eq 0 .

$$\mathbf{x}_{k+1} = \mathbf{x}_k - au \mathbf{r}_k$$

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \tau \mathbf{A} \mathbf{x}_k + \tau \mathbf{f} = (\mathbf{E} - \tau \mathbf{A}) \mathbf{x}_k + \tau \mathbf{f}.$$

Мы получили процесс с матрицей итераций ${f B}={f E}- au{f A}$ и ${f F}= au{f f}$, который сходится к решению

$$\mathbf{x} = (\mathbf{E} - \tau \mathbf{A})\mathbf{x} + \tau \mathbf{f},$$

что эквивалентно исходной системе.

Сходимость метода с параметром

Запишем необходимое и достаточное условие $|\lambda(\mathbf{B})| < 1$ через собственные числа матрицы \mathbf{A} .

$$\lambda(\mathbf{B}) = \lambda(\mathbf{E} - \tau \mathbf{A}) = 1 - \tau \lambda(\mathbf{A})$$
 $|\lambda(\mathbf{B})| = |1 - \tau \lambda(\mathbf{A})| < 1$

Последнее условие показывает, что собственные числа матрицы ${f A}$ должны лежать внутри единичного круга радиуса $\frac{1}{ au}$ с центром в $\frac{1}{ au}$.

Для симметричных положительно определенных матриц $\mathbf{A}=\mathbf{A}^ op>0$ собственные числа лежат на отрезке $\lambda(\mathbf{A})\in[\lambda_{\min},\lambda_{\max}]$

Необходимое и достаточное условие сходимости будет иметь вид

$$0 < \lambda_{\min} < \lambda_{\max} < rac{2}{ au} \Leftrightarrow 0 < au < rac{2}{\lambda_{\max}}$$

```
def simple_iteration(A, f, x0, tau, maxit=1000, eps=1e-6):
    x = x0.copy()
    it = 0
    res = []
    while it < maxit:
        r = A.dot(x) - f
        x = x - tau * r
        res.append(np.linalg.norm(r))
    if np.linalg.norm(r) < eps:
        return x, res
    it += 1
    print('Method has not converged in %d iterations' % maxit)
    return x, res</pre>
```

Show code

lambda(A) = [0.16969125 1.52638833 19.30392042] tau = 0.12 Method has not converged in 1000 iterations

Show code

lambda(A) = [0.16969125 1.52638833 19.30392042] tau = 0.1

