OLIMPIADA DE MADRID-2010

(tómese donde se necesite:

g= 9,81 m s⁻² ; e= 1,60x10⁻¹⁹ C; m_e = 9,11x10⁻³¹ kg; m_p = 1,67x10⁻²⁷ kg; μ_o = 4 π x10⁻⁷ N A⁻²)

c) 7185

d) 9155

1. Un helicóptero despega en el punto de coordenadas (0,0,0) con una velocidad constante $\mathbf{v} = (16,0\mathbf{i} + 18,0\mathbf{j} + 4,0\mathbf{k})$ m/s. La distancia que habrá recorrido cuando su altura sea de 1500

metros es: (expresada en metros)

b) 6000

b) 1027

a) 1500

a) 950

con una velocidad que rozamiento, la altura a	e desde el reposo y reb es la mitad de la que to la que llegará en el reb	enía al llegar al su	uelo. Despreciando el
momento de caer un: a) 25%	b) 50%	c) 75%	d) 100%
3. Si la ecuación de un primeros 3,0 s será (expre	movimiento rectilíneo es sa esada en metros):	=24+8t-2t ² (m), la di	istancia recorrida en los
a) 6	b) 8	c) 10	d) 32
inferior tiene una masa éste está un bloque de	apilados en una superfici de 37,0 kg, encima tier 16,0 kg; sobre este últi La fuerza que ejerce el	ne un bloque de 1 mo se realiza una	8,0 kg y encima de fuerza vertical y
es: (expresada en N)		oloquo uo ubujo c	
energía potencial de un s	b) 333,5 de la Tierra es 81 veces la satélite respecto del campo luna, la atracción gravitato resa mediante el factor:	gravitatorio terrestr	e es 9 veces la energía
a) 1	b) 1,5	c) 2	d) 3
la velocidad con la que e	ático realiza un <i>looping</i> pontra en la pista por su pur poping es: (expresado en m b) 12,7	to inferior es de 25	
·	el polo terrestre 981 N. Si con una densidad superio resado en N):	•	_

c) 1077

d) 1128

8. En un planeta la dur	ación de "su día" es igu	al al terrestre, sier	ndo en su polo la					
aceleración de la gravedad 0,0921 m/s², y en el ecuador nula. El radio del planeta es:								
(expresado en km)								
a) 8550	b) 10175	c) 14880	d) 17415					
_	e caliente en un globo aer		_					
_	ración con la que asciende							
a) 1,9	b) 2,5	c) 3,0	d) 3,8					
10 So pulvoriza agua a	22 °C cobro 190 a do o	uro fundido o 1063	OC (ou tomporatura do					
•	23 °C sobre 180 g de o se forma vapor a 100 °C y		•					
mínima de agua que debe	utilizarse es (expresada e	n gramos):	a 1000 01 <u>2</u> a 0aniidaa					
	_{V agua} = 22,6x10 ⁵ J kg ⁻¹ ; L _{f o} b) 5,73	_{ro} = 6,28x10 ⁴ J kg ⁻¹ c) 22,5	d) 32.4					
a) 4,3811. Dos cargas del mismo	b) 5,73 valor pero de diferente sig	, ,	, ,					
de un triángulo isósceles	. Si E _M es la intensidad	del campo eléctrico	en el centro del lado					
O J .	dad en el vértice opuesto a e forman los lados iguales (ente E _M /E _P tiene el valor					
a) 45°	b) 53°	c) 61°	d) 75°					
	0 ⁻⁸ kg y cargada con +7,2							
	ularmente en un campo n hace en dirección paralela	•	` ,					
interior del campo es (en n	ns):							
a) 2,2	•	c) 4,4	d) 5,0					
13. Por los ejes Ox y C	Dy circulan corrientes de	2 A cada una, y	en el sentido de los					
semiejes positivos. En e	el punto (4,-4), siendo es	stas coordenadas (en mm, el campo					
magnético tiene un valo		· · · · · · · · · · · · · · · · · · ·						
	b) (10 ⁻⁴ i +10 ⁻⁴ j) (T)	_						
	or de resistencia 20 Ω	_	-					
	a su plano, y de mód		•					
	01 T s ⁻² . La potencia	disipada en t= 5,	0 s en el anillo es:					
(expresada en nW)	1) 450	.) 000	1) 4050					
a) 225	b) 450	c) 900	d) 1250					
	nónico de amplitud A, cu	_	n es A/Z ei vaior de					
	ecto a su valor máximo		d) 7E0/					
a) 15%16 El período de una ond	b) 30% la transversal que se propa	c) 50%	d) 75% tensa es 2x10 ⁻² s. Si en					
un instante dado dos puntos consecutivos cuya diferencia de fase vale $\pi/2$ rad están separados una distancia de 10 cm, la velocidad de propagación de la onda es: (en m/s)								
a) 10	b) 15	c) 20	d) 25					

EXP1 Una barra rectangular de latón de masa M tiene dimensiones lineales axbxc; el *Momento de inercia* con respecto a un eje normal

por el centro de la cara axb es
$$I = \frac{1}{12} M \left(a^2 + b^2\right)$$
. a) Calcular la

densidad de la barra con su incertidumbre; b) Calcular el Momento

de inercia con su incertidumbre.

M=
$$(135,0 \pm 0,1)$$
 g; a= (80 ± 1) mm; b= (10 ± 1) mm; c= $(20,0 \pm 0,1)$ mm

EXP2 Para calcular la constante elástica de un resorte se sujeta éste de un extremo por una pinza colocada en una varilla vertical, y sucesivamente se le van colgando pesas con diferentes masas, midiéndose la longitud del muelle en cada caso, construyéndose la siguiente tabla de valores:

m (g)	200	300	500	700	800	900
L (cm)	5,1	5,5	6,8	7,5	8,6	9,4

Mediante análisis de regresión lineal y método gráfico calcular el valor de la constante elástica del muelle y de su incertidumbre, expresadas en unidades del S.I. Compárese el resultado obtenido por ambos métodos. Dato: $g=9,81 \text{ m s}^{-2}$