WHAT IS CLAIMED IS:

1. An optically active 4-(tert-butoxycarbonyl)piperazine compound of formula (1'):

wherein X denotes a chlorine atom, a C1·C3 alkyl group or a C1·C3 alkoxy group and * designate an asymmetric carbon atom.

 A composition comprising an optical isomer of formula (1"):

wherein X denotes a chlorine atom, a C1-C3 alkyl group or a C1-C3 alkoxy group and * designate an asymmetric carbon atom, and an enantiomer thereof, in an optional ratio.

3. A 4-(tert-butoxycarbonyl)piperazine compound of formula (1):

15

10

wherein X denotes a chlorine atom, a C1-C3 alkyl group or a C1-C3 alkoxy group.

4. An optical isomer of formula (1"):

wherein X denotes a chlorine atom, a C1-C3 alkyl group or a C1-C3 alkoxy group and * designate an asymmetric carbon atom, or salts thereof.

An adduct salt of formula (3):

wherein X denotes a chlorine atom, a C1-C3 alkyl group or a C1-C3 alkoxy group and * designate an asymmetric carbon atom, n represents

10

15

20

25

an integer of 1 or 2, and Z represents

an optically active acid of formula (2):

wherein L represents -COOH or -SO₂H.

R² represents a hydrogen atom or a hydroxyl group,

 ${\rm R^{1}}$ and ${\rm R^{3}}$ are the same or different and each independently represent

a hydrogen atom, a halogen atom, an arylcarbonyloxy group,

a liner or branched alkyl group which may be substituted with at least one group selected from a hydroxyl group, a halogen atom, an arylcarbonyloxy group, a carboxy group and an arylaminocarbonyl group;

an aryl group which may be substituted with at least one group selected from a halogen atom, an alkyl group and an alkoxy group;

an aralkyl group which may be substituted with at least one group selected from a halogen atom, an alkyl group, an alkoxy group and a hydroxyl group;

an aryloxy group which may be substituted with at least one group selected from a halogen atom, an alkyl group, an alkoxy group and a hydroxyl group;

a cyclic alkyloxy group which may be substituted with at least one group selected from a halogen atom, an alkyl group, an alkoxy group and a hydroxyl group; or

a cyclic alkyl group which may be substituted with at least one group selected from a halogen atom, an alkyl group, an alkoxy group, a hydroxyl group and a phenylcarbonylamino group; or

R1 and R3 may be bonded together to form

10

an alkylene group which may be substituted with at least one group selected from a halogen atom, an alkyl group, an alkoxy group, a carboxyl group, an oxo group, a hydroxyl group, and a phenylcarbonylamino group, or

- a heterocycle which may be substituted with at least one group selected rom an alkyl group, alkoxy or a halogen atom.
- 6. An adduct salt according to claim 5, wherein the acid of formula (2) is optically active O,O'-dibenzoyltartaric acid.
 - An adduct salt according to any one of claims 1, 2, 3, 4, 5, or
 wherein X represents a chlorine atom at 4-position of the phenyl group.
 - 8. A process for producing a 4-(tert-butoxycarbonyl)piperazine compound of formula (1):

wherein X denotes a chlorine atom, a C1-C3 alkyl group or a C1-C3 alkoxy group, which comprises reacting 1-[(substituted phenyl) phenylmethyl]piperazine of formula (4):

wherein X has the same meaning as defined above, with di-tert-butyl dicarbonate of formula (5):

20

$[(CH_3)_3COCO]_2O$ (5)

9. A process for producing an optically active adduct salt of formula (3):

wherein X denotes a chlorine atom, a C1-C3 alkyl group or a C1-C3 alkoxy group, * represents an asymmetric carbon atom, and n represents an integer of 1 or 2, and

Z represents an optically active acid of formula (2):

10 wherein L represents -COOH or -SO₃H,

 \mathbb{R}^2 represents a hydrogen atom or a hydroxyl group;

R¹ and R³ are the same or different and independently represent a hydrogen atom, a halogen atom, or an arylcarbonyloxy group;

a liner or branched alkyl group which may be substituted with at least one group selected from a hydroxyl group, a halogen atom, an arylcarbonyloxy group, a carboxy group and an arylaminocarbonyl group;

an aryl group which may be substituted with at least one group selected from a halogen atom, an alkyl group and an alkoxy group;

an aralkyl group which may be substituted with at least one group selected from a halogen atom, an alkyl group, an alkoxy group and a hydroxyl group;

10

15

an aryloxy group which may be substituted with at least one group selected from a halogen atom, an alkyl group, an alkoxy group and a hydroxyl group;

a cyclic alkyloxy group which may be substituted with at least one group selected from a halogen atom, an alkyl group, an alkoxy group and a hydroxyl group; or

a cyclic alkyl group which may be substituted with at least one group selected from a halogen atom, an alkyl group, an alkoxy group, a hydroxyl group and a phenylcarbonylamino group; or

R1 and R3 may be bonded together to form

an alkylene group which may be substituted with at least one group selected from a halogen atom, an alkyl group, an alkoxy group, a carboxyl group, an oxo group, a hydroxyl group, and a phenylcarbonylamino group, or

a heterocycle which may be substituted with at least one group selected rom an alkyl group, an alkoxy group and a halogen atom,

which comprises reacting a composition comprising an optical isomer of 4-(tert-butoxycarbonyl)piperazine compound of formula (1"):

wherein X and * designate the same as defined above, and an enantiomer thereof, with an optically active acid of formula (2) as defined above.

10. A process according to claim 9, which further comprises recrystallizing the acid adduct salt of the optically active

15

5

4-(tert-butoxycarbonyl)piperazine of formula (3).

- 11. A process according to claim 9 or 10, which further comprises reacting an adduct salt of formula (3), with a base to produce an optically active 4-(tert-butoxycarbonyl)piperazine of formula (1').
 - 12. A process for producing an adduct salt of formula (6):

wherein X denotes a chlorine atom, a C1-C3 alkyl group or a C1-C3 alkoxy group, * represents an asymmetric carbon atom, and n represents an integer of 1 or 2,

Y represents a halogen atom, $-OSO_3H$, $-OSO_2CH_3$, $-OCOCF_3$, $-OCOCH_3$ and -OCOH, which comprises reacting an optically active 4-(tert-butoxycarbonyl)piperazine of formula (1'):

wherein X and * designate the same as defined above, with an acid of formula: HY, wherein Y represents the same as defined above.

13. A process for producing an optically active 1-[(substituted phenyl)phenylmethyl]piperazine of formula (7):

wherein X and * each have the same meaning as defined above, which process comprises reacting an optically active

4-(tert-butoxycarbonyl)piperazine compound of formula (1'):

wherein X denotes a chlorine atom, a C1-C3 alkyl group or a C1-C3 alkoxy group, * represents an asymmetric carbon atom, with an acid and subsequently with a base.