

Sistemas Digitais (SD)

Máquinas de Estado Microprogramadas: Circuitos de Controlo, Transferência e Processamento de Dados

Aula Anterior

Na aula anterior:

- ▶ Projecto de máquinas de estados microprogramadas:
 - com endereçamento explícito
 - com endereçamento implícito
- ▶ Exemplos

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
17/Fev a 21/Fev	Introdução	Sistemas de Numeração	
24/Fev a 28/Fev	CARNAVAL	Álgebra de Boole	P0
02/Mar a 06/Mar	Elementos de Tecnologia	Funções Lógicas	VHDL
9/Mar a 13/Mar	Minimização de Funções	Minimização de Funções	LO
16/Mar a 20/Mar	Def. Circuito Combinatório; Análise Temporal	Circuitos Combinatórios	P1
23/Mar a 27/Mar	Circuitos Combinatórios	Circuitos Combinatórios	L1
30/Mar a 03/Abr	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	P2
06/Abr a 10/Abr	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA
13/Abr a 17/Abr	Caracterização Temporal	Registos	L2
20/Abr a 24/Abr	Contadores	Circuitos Sequenciais Síncronos	P3
27/Abr a 01/Mai	Síntese de Circuitos Sequenciais Síncronos	Síntese de Circuitos Sequenciais Síncronos	L3
04/Mai a 08/Mai	Exercícios Tes	Memórias ste 1	P4
11/Mai a 15/Mai	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Microprograma	L4
18/Mai a 22/Mai	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	P5
25/Mai a 29/Mai	P6	P6	L5

J

Sumário

Tema da aula de hoje:

- ► Circuitos de controlo, transferência e processamento de dados
- ► Exemplo de uma arquitectura simples de um processador

Bibliografia:

- M. Mano, C. Kime: Capítulo 7
- G. Arroz, J. Monteiro, A. Oliveira: Secções 8.2 a 8.3

Circuito de Dados e Circuito de Controlo

Circuito de Dados e Circuito de Controlo (Revisão)

- ▶ Os sistemas digitais com alguma complexidade tornam-se difíceis de projectar como vulgares máquinas sequenciais síncronas, porque:
 - Diagramas de estados / tabela de estados de grande dimensão
 - Elevado número de:
 - o Entradas,
 - Saídas,
 - o Estados.

Solução: organizar esses sistemas hierarquicamente, estabelecendo uma divisão entre:

- circuito de dados dá suporte ao fluxo e à manipulação de dados;
- circuito de controlo controla o circuito de dados.

Unidade de Processamento e Unidade de Controlo

- ➤ A partir de um certo nível de complexidade, os circuitos digitais podem ser divididos em dois módulos distintos:
 - Circuito de dados ou <u>unidade de processamento</u> ou *datapath*;
 - Circuito de controlo ou unidade de controlo

Unidade de Processamento e Unidade de Controlo

- A unidade de processamento processa a informação útil do sistema e é tipicamente constituída por um conjunto de módulos combinatórios (ex: ALU) e elementos de memória (ex: banco de registos, memória RAM, etc.).
- Sobre a informação contida nos elementos de memória (ex: registo), podem ser realizadas operações cujo resultado pode ser guardado no mesmo registo, noutro registo ou mesmo numa posição de memória.

Unidade de Processamento e Unidade de Controlo

- ▶ A unidade de controlo é responsável por gerar os sinais de controlo (palavra de controlo) que sequenciam as operações básicas do circuito de dados a cada ciclo de relógio, de modo a que o sistema realize operações complexas. Têm dois tipos de entradas:
 - Entradas de controlo, que controlam o funcionamento do sistema;
 - **Bits de estado**, provenientes do circuito de dados, com informação referente à última operação realizada pelo circuito de dados.

Exemplo: Maior Divisor Comum

Pseudo-Código

```
Maior_Divisor_Comum (X,Y)

Enquanto (Y≠0) {
    se X≥Y
    então X = X - Y
    se não, troca X com Y
}

Resultado em X
```

Sugestão: verifique, através de um par de inteiros (ex: 54 e 36) que o resultado é o esperado.

Exemplo: Maior Divisor Comum

Pseudo-Código

```
Maior_Divisor_Comum (X,Y)

Enquanto (Y≠0) {
    se X≥Y
    então X = X - Y
    se não, troca X com Y
}

Resultado em X
```

Unidade de Processamento

Exemplo: Maior Divisor Comum

Unidade de Processamento

Fluxograma

Exemplo: Maior Divisor Comum

Exemplo: Maior Divisor Comum

Unidade de Controlo

Fluxograma

Exemplo: Maior Divisor Comum

Unidade de Controlo:

inicio problema: Circuito Dedicado!

Unidade de Processamento:

Problema:

➤ A síntese de circuitos de processamento e de controlo para a realização de operações complexas, com muitos estados e variáveis de entrada, torna-se complexa, trabalhosa e pouco eficiente

Esforço de desenvolvimento/implementação insustentável

Alternativa:

- ▶ Utilização de unidades de processamento genéricas e não dedicadas à aplicação;
- Utilização de unidades de controlo microprogramadas.

Unidade de Processamento Genérica

Unidade de Processamento Genérica

Banco de Registos

Unidade de Processamento Genérica

Unidade Lógica e Aritmética (ULA)

Unidade Lógica e Aritmética

Operações da unidade lógica e aritmética

- A função realizada é definida por uma palavra de comando;
- Várias codificações possíveis.

S ₄ S ₃ S ₂ S ₁ S ₀		Operação
00000	R ← A + B	Soma
00001	$R \leftarrow A - B$	Subtracção
00010	$R \leftarrow A + B + C$	Soma com bit de transporte
00011	$R \leftarrow A - B - \overline{C}$	Subtracção com transporte negado
00100	R ← A − 1	Decremento
00101	R ← A + 1	Incremento
00110	$R \leftarrow A - \overline{C}$	Decremento, se C=0
00111	$R \leftarrow A + C$	Incremento, se C=1
01-00	$R \leftarrow \overline{A}$	Complemento
01-01	$R \leftarrow A \land B$	Conjunção
01-10	$R \leftarrow A \; V \; B$	Disjunção
01-11	$R \leftarrow A \oplus B$	Disjunção exclusiva
10000	$R \leftarrow SHR\ A$	Deslocamento lógico à direita
10001	$R \leftarrow SHL \ A$	Deslocamento lógico à esquerda
10010	$R \leftarrow SHRA \ A$	Deslocamento aritmético à direita
10011	$R \leftarrow SHLA \ A$	Deslocamento aritmético à esquerda
10100	$R \leftarrow ROR\ A$	Rotação à direita
10101	$R \leftarrow ROL \ A$	Rotação à esquerda
10110	$R \leftarrow RORC \ A$	Rotação à direita com transporte
10111	$R \leftarrow RORL \ A$	Rotação à esquerda com transporte
11	$R \leftarrow A$	Transferência

Unidade de Processamento Genérica

Unidade de Controlo Microprogramada

- ▶ Características:
 - As saídas dependem apenas do estado actual

Máquina de Moore

- Em cada estado apenas é testada uma variável de entrada;
- Como resultado de cada teste numa variável de entrada, o controlador poderá saltar para um <u>estado arbitrário</u> (se o teste for verdadeiro) ou transitar para o <u>estado seguinte</u> (se o teste for falso)

Unidade de Controlo Microprogramada

Unidade de Controlo Microprogramada

➤ O bloco combinatório pode ser realizado utilizando uma ROM com um número de linhas igual ao número de estados e com tantas saídas quantas as necessárias para gerar as variáveis de saída do bloco combinatório.

Unidade de Controlo Microprogramada

Unidade de Controlo Microprogramada

Cada palavra da ROM deverá conter os seguintes campos:

NS	РО	TV	CT

- Next State (NS) especifica o próximo estado, para onde o controlador deverá saltar se o teste efectuado tiver resultado positivo;
- Primary Output (PO) valores pretendidos para as variáveis de saída;
- Test Variable (TV) indica a variável que deverá ser testada;
- Complement Test (CT) indica se o salto deverá ocorrer quando a variável de teste está a 1 ou a 0.

Unidade de Controlo Microprogramada

▶ Exemplo:

Unidade de Controlo Microprogramada

Cada palavra da ROM deverá conter os seguintes campos:

NS	РО	TV	СТ

- ▶ Ao conjunto de campos que especificam o funcionamento do controlador chama-se microinstrução;
- ▶ Ao conjunto de microinstruções chama-se microprograma.

Exemplo: Maior Divisor Comum

Unidade de Processamento Dedicada

Sel MUX Sel MUX LDy LD Ry Zy A>=B A-B xMy

Unidade de Processamento Genérica

Exemplo: Maior Divisor Comum

Descrição em linguagem RTL:

T0: $fim \leftarrow 1$

 $T0.inicio: T0 \leftarrow 0, T1 \leftarrow 1$

 $T1: R1 \leftarrow R1 - R2, fim \leftarrow 0$

 $T1.Z: T1 \leftarrow 0, T0 \leftarrow 1$

 $T1.N: T1 \leftarrow 0, T2 \leftarrow 1$

 $T2: \mathbb{R}3 \leftarrow \mathbb{R}1 + \mathbb{R}2, T2 \leftarrow 0, T3 \leftarrow 1, fim \leftarrow 0$

 $T3: R1 \leftarrow R2, T3 \leftarrow 0, T4 \leftarrow 1, fim \leftarrow 0$

 $T4: \quad \mathsf{R2} \leftarrow \mathsf{R3}, T4 \leftarrow 0, T1 \leftarrow 1, fim \leftarrow 0$

Dados de entrada: R1, R2

Resultado: R2

(R3 = registo temporário)

Fluxograma

Exemplo: Maior Divisor Comum

Microprogamação:

					11											
ES0		ES1	SE	EL	fim	op	era	ção	UL	ιA	reg	gΑ	re	g B	dε	est

- ▶ 5 estados → 3 bits para codificar os endereços de controlo
- Como T1 pode ter 3 estados seguintes diferentes (um deles é incremental):
 - 2 campos para endereço seguinte ES0 e ES1
 - 2 bits para decidir entre os 3 estados seguintes possíveis
- Condições de salto:
 - inicio, em T0
 - flags Z e N da ALU, em T1
 - estado seguinte, em T2 e T3
 - salto incondicional, em T4

2 bits de controlo (Sel)

▶ 1 bit para saída de controlo (fim)

Exemplo: Maior Divisor Comum

Exemplo: Maior Divisor Comum

End.	ES0	ES1	SEL	fim	Op. ULA	reg. A	reg. B	reg. dest.
0	000	XXX	10	1	XXXXX	XX	XX	XX
1	001	000	11	0	00001	01	10	01
2	XXX	XXX	01	0	00000	01	10	11
3	XXX	XXX	01	0	11000	10	XX	01
4	001	XXX	00	0	11000	11	XX	10

Exemplo: Maior Divisor Comum

► Especificação da ROM:

End.	ES0	ES1	SEL	fim	Op. ULA	reg. A	reg. B	reg. dest.
0	000	XXX	10	1	XXXXX	XX	XX	XX
1	001	000	11	0	00001	01	10	01
2	XXX	XXX	01	0	00000	01	10	11
3	XXX	XXX	01	0	11000	10	XX	01
4	001	XXX	00	0	11000	11	XX	10

End.	ROM
0h	00000010100000000000
1h	00100011000001011001
2h	00000001000000011011
3h	00000001011000100001
4h	00100000011000110010

▶ Dimensão da ROM:

5 endereços, palavras de 20 bits → 100 bits

Próxima Aula

Tema da Próxima Aula:

- ▶ Lógica programável:
 - ROM
 - PLA
 - PAL
 - FPGA
- ► Linguagens de descrição de hardware
 - VHDL

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Nuno Roma
- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás