Fundamentos de Redes

Seminario 3: Resolución de problemas del Tema 2

Curso 2023/2024

Profesor: Jesús Minguillón, minguillon@ugr.es

Ejercicio 1ASIGNACIÓN DE DIRECCIONAMIENTO Y ENCAMINAMIENTO IP

Se dispone de una red con la siguiente topología. Cada una de las redes finales (redes A, ..., H) está compuesta por el número de hosts indicado entre paréntesis. Además, se ha contratado el rango de direcciones públicas 168.168.168.0/22.

- a) Proponga un esquema de asignación de direcciones (de todos los equipos) que cumpla los siguientes requisitos:
 - Todos los hosts han de tener asignadas direcciones públicas.
 - La asignación de direcciones ha de minimizar el tamaño de las tablas de encaminamiento.
- b) Muestre las tablas de encaminamiento de todos los routers, suponiendo que se utiliza el esquema de asignación de direcciones del apartado anterior. NOTA: El router R0 tiene una IP pública diferente en su interfaz hacia Internet, e.g. 33.33.33/24.

\Box	(

Destino	Máscara	Siguiente salto	
168.168.168.0	/23	R ₂ (168.168.171.198)	Hacia redes G y H
168.168.170.0	/24	R ₂ (168.168.171.198)	Hacia redes E y F
168.168.171.0	/24	R ₁ (168.168.171.194)	Hacia redes A, B, C y D
168.168.171.208	/29	R ₂ (168.168.171.198)	Hacia subredes R ₂ -R ₅ y R ₂ -R ₆
168.168.171.192	/30	*	Conexión directa subred R ₀ -R ₁
168.168.171.196	/30	*	Conexión directa subred R ₀ -R ₂
33.33.33.0	/24	*	Conexión directa subred R ₀ -R _{ISP}
default	/0	IP Gateway ISP	Hacia Internet

R_1

Destino	Máscara	Siguiente salto	
168.168.171.0	/25	R ₄ (168.168.171.206)	Hacia redes C y D
168.168.171.128	/26	R ₃ (168.168.171.202)	Hacia redes A y B
168.168.171.192	/30	*	Conexión directa subred con R ₀
168.168.171.200	/30	*	Conexión directa subred con R ₃
168.168.171.204	/30	*	Conexión directa subred con R ₄
default	/0	R ₀ (168.168.171.193)	Hacia Internet y otras subredes

R_2

Destino	Máscara	Siguiente salto	
168.168.168.0	/23	R ₆ (168.168.171.214)	Hacia redes G y H
168.168.170.0	/24	R ₅ (168.168.171.210)	Hacia redes E y F
168.168.171.196	/30	*	Conexión directa subred con R ₀
168.168.171.208	/30	*	Conexión directa subred con R ₅
168.168.171.212	/30	*	Conexión directa subred con R ₆
default	/0	R ₀ (168.168.171.197)	Hacia Internet y otras subredes

R_3

Destino	Máscara	Siguiente salto	
168.168.171.160	/27	*	Conexión directa red A
168.168.171.128	/27	*	Conexión directa red B
168.168.171.200	/30	*	Conexión directa subred con R ₁
default	/0	R ₁ (168.168.171.201)	Hacia Internet y otras subredes

R_4

Destino	Máscara	Siguiente salto	
168.168.171.64	/26	*	Conexión directa red C
168.168.171.0	/26	*	Conexión directa red D
168.168.171.204	/30	*	Conexión directa subred con R ₁
default	/0	R ₁ (168.168.171.205)	Hacia Internet y otras subredes

R_5

Destino	Máscara	Siguiente salto	
168.168.170.128	/25	*	Conexión directa red E
168.168.170.0	/25	*	Conexión directa red F
168.168.171.208	/30	*	Conexión directa subred con R ₂
default	/0	R ₂ (168.168.171.209)	Hacia Internet y otras subredes

R

Destino	Máscara	Siguiente salto	
168.168.169.0	/24	*	Conexión directa red G
168.168.168.0	/24	*	Conexión directa red H
168.168.171.212	/30	*	Conexión directa subred con R ₂
default	/0	R ₂ (168.168.171.213)	Hacia Internet y otras subredes

Nota: En las tablas falta la columna "Interfaz". También habría que indicar las interfaces ethX en el diagrama anterior.

Ejercicio 2

ASIGNACIÓN DE DIRECCIONAMIENTO Y ENCAMINAMIENTO IP

La siguiente figura muestra la topología de red de una empresa, que tiene contratado con su ISP el rango de direcciones 15.16.17.0/24. El número de ordenadores conectados a las redes A, B y C están indicados en la figura entre paréntesis.

- a) Realice la asignación de direcciones IP tanto de equipos como de routers (incluyendo las redes entre los routers), utilizando direcciones públicas siempre que sea posible
- b) Indique las tablas de encaminamiento de todos los routers de forma que, para el tráfico entre las redes A, B y C, se encamine de acuerdo a las flechas en la figura). Debe haber conectividad completa entre estas redes y hacia Internet.

R

Destino	Máscara	Siguiente salto	Interfaz	
15.16.17.192	/27	R ₂ (15.16.17.226)	eth1	Red B
15.16.17.0	/25	R ₂ (15.16.17.226)	eth1	Red C
15.16.17.128	/26	*	eth0	Red A (directa)
15.16.17.224	/30	*	eth1	Directa
15.16.17.232	/30	*	eth2	Directa
15.16.17.236	/30	*	eth3	Directa
default	/0	R _A (15.16.17.237)	eth3	Internet y otras subredes

R_2

Destino	Máscara	Siguiente salto	Interfaz	
15.16.17.128	/26	R ₃ (15.16.17.229)	eth2	Red A
15.16.17.0	/25	R ₃ (15.16.17.229)	eth2	Red C
15.16.17.224	/30	*	eth0	Directa
15.16.17.192	/27	*	eth1	Red B (directa)
15.16.17.228	/30	*	eth2	Directa
15.16.17.240	/30	*	eth3	Directa
default	/0	R _A (15.16.17.241)	eth3	Internet y otras subredes

R_3

Destino	Máscara	Siguiente salto	Interfaz	
15.16.17.128	/26	R ₁ (15.16.17.233)	eth0	Red A
15.16.17.192	/27	R ₁ (15.16.17.233)	eth0	Red B
15.16.17.232	/30	*	eth0	Directa
15.16.17.228	/30	*	eth1	Directa
15.16.17.0	/25	*	eth2	Red C (directa)
15.16.17.244	/30	*	eth3	Directa
default	/0	R _A (15.16.17.245)	eth3	Internet y otras subredes

R_A

Destino	Máscara	Siguiente salto	Interfaz	
15.16.17.128	/26	R ₁ (15.16.17.238)	eth1	Red A
15.16.17.192	/27	R ₂ (15.16.17.242)	eth2	Red B
15.16.17.0	/25	R ₃ (15.16.17.246)	eth3	Red C
15.16.17.224	/30	R ₁ (15.16.17.238)	eth1	Subred R ₁ -R ₂
15.16.17.228	/30	R ₂ (15.16.17.242)	eth2	Subred R ₂ -R ₃
15.16.17.232	/30	R ₃ (15.16.17.246)	eth3	Subred R ₁ -R ₃
150.150.150.0	/24	*	eth0	Red ISP (directa)
15.16.17.236	/30	*	eth1	Directa
15.16.17.240	/30	*	eth2	Directa
15.16.17.244	/30	*	eth3	Directa
default	/0	IP Gateway ISP	eth0	Internet

Nota: Los equipos de las redes A, B y C tienen como pasarela por defecto sus respectivos routers (R1, R2 y R3).

Ejercicio 3

ASIGNACIÓN DE DIRECCIONAMIENTO Y ENCAMINAMIENTO IP (Y NAT)

Dada la siguiente topología, que representa la red de una empresa, asigne direcciones IP a los diferentes equipos y redes, minimizando el número de entradas en las tablas de encaminamiento. El ISP sólo nos proporciona la dirección IP pública 44.44.44. Ajustar en lo posible las asignaciones al número de ordenadores.

R_A

Destino	Máscara	Siguiente salto	Interfaz	
192.168.0.0	/22	R _B (192.168.4.1)	eth1	Agrupamiento .0.0 a .3.0
44.44.44.0	/24	*	eth0	Directa
192.168.4.0	/29	*	eth1	Directa
default	/0	IP Gateway ISP	eth0	Internet

R_D

Destino	Máscara	Siguiente salto	Interfaz	
192.168.3.0	/29	*	eth0	Directa
192.168.1.0	/24	*	eth1	Directa
Default	/0	R _B (192.168.3.1)	eth0	Internet y otras subredes

R_B

Destino	Máscara	Siguiente salto	Interfaz	
192.168.0.0	/25	R _C (192.168.3.2)	eth1	Departamento A
192.168.1.0	/24	R _D (192.168.3.3)	eth1	Departamento B
192.168.2.0	/24	R _E (192.168.3.4)	eth1	Red de visitantes
192.168.4.0	/29	*	eth0	Directa
192.168.3.0	/29	*	eth1	Directa
default	/0	R _A (192.168.4.2)	eth0	Internet

R_{E}

Destino	Máscara	Siguiente salto	Interfaz	
192.168.3.0	/29	*	eth0	Directa
192.168.2.0	/24	*	wlan0	Directa
default	/0	R _B (192.168.3.1)	eth0	Internet y otras subredes

R_{C}

Destino	Máscara	Siguiente salto	Interfaz	
192.168.3.0	/29	*	eth0	Directa
192.168.0.0	/25	*	eth1	Directa
default	/0	R _B (192.168.3.1)	eth0	Internet y otras subredes

Servidores WEB y MAIL

Destino	Máscara	Siguiente salto	Interfaz	
192.168.0.0	/22	R _B (192.168.4.1)	eth0	Agrupamiento .0.0 a .3.0
192.168.4.0	/29	*	eth0	Directa
default	/0	R _A (192.168.4.2)	eth0	Internet

Nota: Asumimos que para la red de visitantes es suficiente con /24 (192.168.2.0 /24). Asumimos que la IP de eth0 de RA es 44.44.44.44 /24, por lo que la subred correspondiente es 44.44.44.0 /24. Los ordenadores tienen su tabla de encaminamiento, aunque no se reporte.

Ejercicio 4 ENCAMINAMIENTO DINÁMICO

Dada la topología de la figura, explique qué ruta se utilizaría para mandar información entre el host A y el host B suponiendo:

- a) Que los routers implementan RIP. En el caso de que haya varias rutas posibles, explique cómo se elegiría la ruta a seguir en un caso real.
- b) Que los routers implementan OSPF. En el caso de que haya varias rutas posibles, explique cómo se elegiría la ruta a seguir en un caso real.

RIP (menor número de saltos) → cualquier ruta con 3 saltos (por ejemplo, A-R1-R2-R4-R5-B)

R3

OSPF (menor coste en términos de $10^8/BW$) \rightarrow la ruta elegida sería A-R1-R6-R4-R5-B (coste = 55)

Ejercicio 5 FRAGMENTACIÓN (Y NAT)

La siguiente figura muestra la topología de red de una empresa conectada a Internet (parte izquierda), así como la red de un trabajador que se conecta desde casa (parte derecha). El ISP contratado por la empresa le asigna el rango 150.150.150.0/24.

- a) Asigne direcciones IP a todos los equipos de la empresa (incluyendo los routers) de forma que todas sean públicas.
- b) En la red C hay un servidor de FTP. El equipo PC (en casa del trabajador) quiere descargarse un fichero de este servidor. Suponga que se hace una petición con un datagrama IP y que se recibe una respuesta a dicha petición. Indique los valores de los diferentes campos (direcciones IP origen y destino; puerto origen y destino (21), identificador de paquete, offset, flag More Fragments). Suponga que tanto la petición como la respuesta tienen 1480 bytes de datos (incluyendo cabeceras de protocolos superiores, e.g. TCP). La cabecera IP tiene 20 bytes.

Red A: $150.150.150.0/25 \rightarrow de .0 a .127$

Red B: 150.150.150.128/26 \rightarrow de .128 a .191

Red C: 150.150.150.192/27 \rightarrow de .192 a .223

Red servidores (WEB, FTP1, MAIL): 150.150.150.224/29 \rightarrow de .224 a .231

Red Rx-eth0 y Ra-eth2: 150.150.150.232/30

Red Ra-eth1 y Rb-eth2: 150.150.150.236/30

Red Rb-eth1 y Rc-eth1: 150.150.150.240/30

Mensaje	Segmento	Tamai	ño (datos+ cabec.)	IP origen	IP destino	Puerto origen	Puerto destino	ID paquete	offset	Flag MF
Petición	PC → RY (MTU 1500B)		1480B + 20B	192.168.1.33	150.150.150.193	1037	21	1	0	0
Petición	RY → RX (MTU 2000B)		1480B + 20B	8.8.8.8	150.150.150.193	1037	21	1	0	0
Petición (fragm. 1)	RX → RA (MTU 1000B)		976B + 20B	8.8.8.8	150.150.150.193	1037	21	1	0	1
Petición (fragm. 2)	RX → RA (MTU 1000B)		504B + 20B	8.8.8.8	150.150.150.193	1037	21	1	122	0
Petición (fragm. 1A)	RA → RB (MTU 500B)		480B + 20B	8.8.8.8	150.150.150.193	1037	21	1	0	1
Petición (fragm. 1B)	RA → RB (MTU 500B)		480B + 20B	8.8.8.8	150.150.150.193	1037	21	1	60	1
Petición (fragm. 1C)	RA → RB (MTU 500B)		16B + 20B	8.8.8.8	150.150.150.193	1037	21	1	120	1
Petición (fragm. 2A)	RA → RB (MTU 500B)		480B + 20B	8.8.8.8	150.150.150.193	1037	21	1	122	1
Petición (fragm. 2B)	RA → RB (MTU 500B)		24B + 20B	8.8.8.8	150.150.150.193	1037	21	1	182	0
Se repiten l	los fragmentos 1A, 1B, 1C, 2A	, 2B entre R	B → RC y después	entre RC → servic	dor FTP. Todos los ca	ampos serían ig	guales a las últim	as 5 filas.		
Respuesta	Servidor → RC (MTU 1500	В)	1480B + 20B	150.150.150.193	8.8.8.8	21	1037	1	0	0
Respuesta	RC → RB (MTU 1500B)		1480B + 20B	150.150.150.193	8.8.8.8	21	1037	1	0	0
Respuesta (fragm. 1)	RB → RA (MTU 1500B)		480B + 20B	150.150.150.193	8.8.8.8	21	1037	1	0	1
Respuesta (fragm. 2)	RB → RA (MTU 1500B)		480B + 20B	150.150.150.193	8.8.8.8	21	1037	1	60	1
Respuesta (fragm. 3)	RB → RA (MTU 1500B)		480B + 20B	150.150.150.193	8.8.8.8	21	1037	1	120	1
Respuesta (fragm. 4)	RB → RA (MTU 1500B)		40B + 20B	150.150.150.193	8.8.8.8	21	1037	1	180	0
Como el resto de los segmentos tienen una MTU mayor que 500B, ya no hay más fragmentaciones. Se repiten los fragmentos entre RA \rightarrow RX y RX \rightarrow RY, y ahí se desharía NAT (siguientes filas).										
Respuesta (fragm. 1)		480B + 20B	150.150.150.1			1037	1		0	1
Respuesta (fragm. 2)	_	480B + 20B				1037	1		50	1
Respuesta (fragm. 3)		480B + 20B				1037	1		20	1
Respuesta (fragm. 4)	$RY \rightarrow PC$	40B + 20B	150.150.150.1	93 192.168.	.1.33 21	1037	1	18	80	0

