

הנדסת תוכנה

Software Engineering

תרגיל 1 להגשה בתכנון וניתוח אלגוריתמים (קורס מס׳ 10120 מרצים: ד״ר ראובן חוטובלי ד״ר מריה ארטישצ׳ב

תאריך הגשה : 10.4.2021 עד השעה 23:00**. <u>העבודה בזוגות</u>**.

עליכם להגיש את פתרון התרגיל כקובץ word ו/או כמצגת, הכולל גם את האיורים.

שאלה 1 נתונה בעיית תכנון לינארי הבאה:

Maximize $Z = 2.5X_1 + X_2$

Subject to:

- 1) $3X_1 + 5X_2 \le 15$
- 2) $5X_1 + 2X_2 \le 10$
- 3) $X_1 \ge 0$
- 4) $X_2 \ge 0$

א. צייר במישור את תחום הפתרונות האפשריים ומצא בשיטה גרפית את הפתרון האופטימלי.

X1	X2	Z = 2.5X1 + X2
0	0	0
0	3	3
2	0	5
20 19	45 19	5

שני ערכים זהים מקסימליים ל - z בקדקודים סמוכים. לכן מדובר ב ∞ פתרונות וערך פונקציית המטרה 5.

ב. פתור את הבעיה הנתונה בשיטת הסימפלכס. בכל שלב הראה באיזו קדקוד של תחום הפתרונות האפשריים נמצאים באיור.

		1	2	3	4	5	6	7	8		
	מחירים	2.5	1								
	בסיס			ים	המקדמ	וטריצת	nΑ			b	b_i / a_{ik}
1	X3	3	5	1	0					15	5
2	X4	5	2	0	1					10	2
	C' _j	-2.5	-1	0	0					0	$=\mathbf{Z}$

בהתחלה נמצאים בקדקוד (0,0).

		1	2	3	4	5	6	7	8		
	מחירים	2.5	1								
	בסיס			מים	נ המקדנ	מטריצר	A			b	b _i / a _{ik}
1	X3	0	19/5	1	-3/5					9	45/19
2	X1	<u>1</u>	2/5	0	1/5					2	5
•	C'j	0	0	0	1/2					5	= Z

בהתחלה נמצאים בקדקוד (2,0) .

האופטימליות - כל המחירים הנוכחיים בשורת ה- Z אי שלילים אך נשים לב האופטימליות שאינו משתנה בסיסי שווה לאפס. צ $\mathrm{X}_{\scriptscriptstyle 2}$ שאינו משתנה בסיסי

.5 אכן ישנם פתרונות. במקרה זה, נעצרנו בקדקוד (2,0) וערך המטרה לכן

. $\underline{x}_B = B^{-1} \cdot b :$ כך ש $B^{-1} - 1$ מהן המטריצות B. ...

$$B = \begin{pmatrix} 1 & 3 \\ 0 & 5 \end{pmatrix}, B^{-1} = \begin{pmatrix} 1 & -\frac{3}{5} \\ 0 & \frac{1}{5} \end{pmatrix}$$

 $x_B = B^{-1} \cdot b \to \begin{pmatrix} 1 & -\frac{3}{5} \\ 0 & \frac{1}{5} \end{pmatrix} \begin{pmatrix} 15 \\ 10 \end{pmatrix} = \begin{pmatrix} 9 \\ 2 \end{pmatrix}$

ד. נסח את הבעיה הדואלית.

פרימאלית- $maximize \ Z = 2.5x_1 + x_2$ Subject to:

1. $3x_1 + 5x_2 \le 15$ 2. $5x_1 + 2x_2 \le 10$

דואלית- $min\{V=15y_1+10y_2\}$ Subject to: $3y_1+5y_2\geq 2.5$ $5y_1+2y_2\geq 1$ $y_1,y_2\geq 0$

: ואכן

ה. בהמשך לסעיף אי בלבד , השתמש בפתרון הבעיה הפרימלית שקיבלת בסעיף אי, וביחסים בין שתי הבעיות- פרימלית ודואלית, על מנת למצוא את פתרון של הבעיה הדואלית (בלי לפתור את הבעיה הדואלית).

נעזר בחוק המשלים.

קיבלנו : Z=5 (מצאים בבסיס, ושני בסיס, ושני בבסיס, ושני בכלנו : $(x_1,x_2)=\left(\frac{20}{19},\frac{45}{19}\right)$, ושני האילוצים של הבעיה הפרימלית מתקיימים כשוויון.

מכאן לפי משפט תנאי השלמת העודפים נובע ש: y_2, y_1 יהיו בבסיס הפתרון האופטימלי של הבעיה הדואלית כי הם המשתנים המתאימים לאילוצים של הבעיה הפרימלית שמתקיימים כשוויוניים.

מאחר ש: y_2,y_1 יהיו בבסיס של הבעיה הדואלית, כלומר יקבלו ערכים חיוביים, מכאן לפי משפט תנאי השלמת העודפים נובע ש: האילוץ הראשון והשני של הבעיה הדואלית יתקיימו כשוויון מאחר ש ולפי משפט תנאי השלמת העודפים, המשתנים אינם מתאפסים ולכן האילוצים המתאימים להם חייבים להתקיים כשוויוניים.

3. $x_i \ge 0$

$$\begin{array}{c} 3y_1 + 5y_2 = 2.5 \\ 5y_1 + 2y_2 = 1 \end{array} \rightarrow 3y_1 = -5y_2 + 2.5 \ \rightarrow y_1 = -\frac{5}{3}y_2 + \frac{5}{6} \\ \rightarrow 5\left(-\frac{5}{3}y_2 + \frac{5}{6}\right) + 2y_2 = 1 \end{array}$$

$$\rightarrow -\frac{25}{3}y_2 + \frac{25}{6} + 2y_2 = 1 \rightarrow y_2 = \frac{1}{2}, y_1 = 0$$

. $\left(0,\frac{1}{2}\right)$ ולכן, פתרון עבור הבעיה הדואלית עבור ולכן

: נתונה בעיית תכנון לינארי הבאה

Maximize $Z = 5X_1 + 2X_2$

Subject to:

1)
$$X_1 + X_2 \le 10$$

2)
$$X_1 = 5$$

3)
$$X_1 \ge 0$$

4)
$$X_2 \ge 0$$

א. צייר במישור את תחום הפתרונות האפשריים ומצא את הפתרון האופטימלי.

התחום הוא קטע.

הקדקוד הראשון הוא: (5,0).

הקדקוד השני הוא נקודת החיתוך בין שני אילוצים, והוא:

$$x_1 + x_2 = 10$$
, $x_1 = 5 \rightarrow x_2 = 5$

הפתרון האופטימלי מתקבל באחד הקצוות של הקטע.

<i>x</i> ₁	<i>x</i> ₂	z
5	0	25
5	5	35

זוהי בעיית מקסימום ולכו ערך מקסימלי ל- z מתקבל בקדקוד (5,5) והערך של – Z הוא 2.

ב. פתור את הבעיה בשיטת הסימפלכס והעזר בשיטת ה- ${
m M}$ הגדול. בכל שלב הראה באיזו קדקוד של תחום הפתרונות האפשריים נמצאים באיזו.

נהפוך את האילוצים (אי השוויוניים) לשוויוניים עייי הוספת משתנה חוסר לאי שוויון והוספת משתנה מלאכותי לשוויון.

$$maximize Z = 5x_1 + 2x_2 - My_1$$

משתנים אלו ≥ 0 .

Subject to:

1)
$$x_1 + x_2 + x_3 = 10$$

2)
$$x_1 + y_1 = 5$$

3)
$$x_i, y_1 \ge 0$$

בניית טבלה בעבור הפתרון

הבסיסי: קודקוד (0,0)

	X_1	X_2	X_3	Y_1		
מחירים מקוריים	5	2	0	-M		
משתני הבסיס		A מקדמים	מטריצת הנ		פתרון נוכחי b	מבחן המנה b_i/a_{ik}
X_3	1	1	1	0	10	
Y_1	1	0	0	1	5	
מחירים נוכחים	-M-5	-2	0	0	Z=-5M	

כעת נבחר משתנה נכנס ומשתנה יוצא על ידי מבחן המנה:

	X_1	X_2	X_3	Y_1		
מחירים מקוריים	5	2	0	-M		
משתני הבסיס		A מקדמים	מטריצת הנ		פתרון נוכחי b	מבחן המנה b_i/a_{ik}
X_3	1	1	1	0	10	10
Y_1	1	0	0	1	5	5
מחירים נוכחים	-M-5	-2	0	0	Z=-5M	

אפקה המכללה האקדמית להנדסה בתל־אביב AFEKA אפקה המכללה האקדמית להנדסה בתל־אביב

 Y_1 והמשתנה היוצא מן הבסיס הוא והמשתנה היוצא מו הבסיס הוא בכתוב נכתוב טבלה חדשה, בהתאם לחוקי הסימפלקס ו

	X_1	X_2	X_3	Y_1		
מחירים מקוריים	5	2	0	-M		
משתני הבסיס		A אקדמים	מטריצת הנ		eתרון נוכחי b	מבחן המנה b_i/a_{ik}
X ₃	0	1	1	-1	5	
X_1	1	0	0	1	5	
מחירים נוכחים	0	-2	0	M+5	Z=25	

- ✓ מבחן האופטימליות נכשל כי קיים מחיר נוכחי שלילי.
 - עתה נמצאים בקדקוד (5,0). ✓

	X_1	X_2	X_3	Y_1		
מחירים מקוריים	5	2	0	-M		
משתני הבסיס		A אקדמים	מטריצת הנ		פתרון נוכחי b	מבחן המנה b_i/a_{ik}
X ₃	0	1	1	-1	5	5
X_1	1	0	0	1	5	∞
מחירים נוכחים	0	-2	0	M+5	Z=25	

 X_{1} המשתנה הנכנס הוא X_{2} והמשתנה היוצא מן הבסיס הוא נכתוב טבלה חדשה, בהתאם לחוקי הסימפלקס:

	X_1	X_2	X_3	Y_1		
מחירים מקוריים	5	2	0	-M		
משתני הבסיס		אקדמים A	מטריצת הכ מטריצת הכ	<u> </u>	פתרון נוכחי b	מבחן המנה b_i/a_{ik}
X_2	0	1	1	-1	5	
X_1	1	0	0	1	5	
מחירים נוכחים	0	0	2	M+3	Z=35	

כל המחירים הנוכחיים בשורת ה- Z אי שלילים , ולכן יש פתרון אופטימלי והוא יחיד. במקרה זה, נעצרנו בקדקוד (5,5) וערך פונקציית המטרה הוא 35.

ג. נסח את הבעיה הדואלית.

פרימאלית $maximize\ Z = 5x_1 + 2x_2$ Subject to:

1)
$$x_1 + x_2 \le 10$$

2)
$$x_1 = 5$$

3)
$$x_i \geq 0$$

דואלית-
$$Min\{V=10y_1+5y_2\}$$
 Subject to: $y_1+y_2\geq 5$ $y_1\geq 2$ $y_1\geq 0$ y_2 is free

ד. פתור את הבעיה הדואלית של הבעיה הפרימלית הנתונה

- 1. בשיטה גרפית
- . באמצעות שיטת סימלכס והעזר בשיטת ה- M הגדול.

.35=V הפתרון האופטימלי נמצא בקדקוד (2,3): וערך פונקציית המטרה הוא

 $\mathbf{C}^T \mathbf{x} = \mathbf{b}^T \mathbf{y}$: ערך זה של פונקציית המטרה אפיו לפי משפט לפיו לפי משפט המטרה אוליות ערך או

פתרון בשיטת הסימלכס .

 $y_2 = {y'}_2 - {y''}_2$ עבור המשתנה החופשי נציב

נהפוך את האילוצים (אי השוויוניים) לשוויוניים ע"י הוספת משתני חוסר והוספת משתנים מלאכותים. משתנים אלו > 0.

$$\begin{aligned} &Min\{V = 10y_1 + 5y_2 + Mx_1 + Mx_2\} \\ &\text{Subject to:} \\ &y_1 + y_2' - y_2'' - y_3 + x_1 = 5 \\ &y_1 - y_4 + x_2 = 2 \\ &y_2 = y_2' - y_2'' \\ &y_1, y_2', y_2'' \geq 0 \end{aligned}$$

בניית טבלה בעבור הפתרון הבסיסי: קודקוד (0,0). נבחר משתנה נכנס ומשתנה יוצא על ידי מבחן המנה:

	Y_1	Y'2	Y",	Y_3	Y_4	X_1	X_2		
מחירים	10	5	-5	0	0	M	M		
מקוריים									
משתני			דמים A	יצת המק	מטר			פתרון	מבחן
הבסיס								c נוכחי	המנה
									c_i/a_{ik}
X_1	1	1	-1	-1	0	1	0	5	5
X_2	1	0	0	0	-1	0	1	2	2
מחירים	2M-10	M-5	5-M	-M	-M	0	0	V=7M	
נוכחים									

 X_2 המשתנה הנכנס הוא Y_1 והמשתנה היוצא מן הבסיס הוא נכתוב טבלה חדשה, בהתאם לחוקי הסימפלקס:

	Y_1	Y'2	Y'',	Y_3	Y_4	X_1	X_2		
מחירים	10	5	-5	0	0	M	M		
מקוריים									
משתני			דמים A	צת המק׳	מטרי			פתרון	מבחן
הבסיס								נוכחי כ	המנה
									c_i/a_{ik}
X_1	0	1	-1	-1	1	1	-1	3	3
Y_1	1	0	0	0	-1	0	1	2	∞
מחירים	0	M-5	5-M	-M	M-10	0	5-M	V = 3M + 20	
בוו ויו ים	U	101 5	J 1V1	141	141 10		2 111	V -51V1 20	

 X_1 והמשתנה היוצא מן הבסיס הוא Y_2 והמשתנה היוצא מן הבסיס הוא נכתוב טבלה חדשה, בהתאם לחוקי הסימפלקס:

	\mathbf{Y}_{1}	Y'2	Y'',	Y_3	Y_4	X_1	X_2		
מחירים מקוריים	10	5	-5	0	0	M	M		
משתני הבסיס			מים A	ו צת המקד	מטריז			פתרון נוכחי c	מבחן c_i/a_{ik}
Y'2	0	1	-1	-1	1	1	-1	3	
Y_1	1	0	0	0	-1	0	1	2	
מחירים נוכחים	0	0	0	-5	-5	5-M	10-2M	V=35	

אהדול. M הגענו לפתרון האופטימלי של הבעיה הדואלית בשיטת הגדול. כפי שצפינו מסעיף א, מדובר בקדקוד (2,3). וערך הפונקציה המתקבלת V=35.

שאלה 3 נתונה בעיית תכנון לינארי הבאה:

Maximize
$$Z = 2X_1 + 2X_2$$

Subject to:

1)
$$-X_1 + X_2 \le 1$$

2)
$$-X_1 + 2X_2 \le 4$$

3)
$$X_1 \ge 0$$

4)
$$X_2 \ge 0$$

א. צייר במישור את תחום הפתרונות האפשריים וקבע אם קיים פתרון יחיד/מרובה/לא חסום/אין פתרון אופטימלי .

קווים אדומים הם קווי גובה והחיצים מתארים את כיוון היכן ש- ${f Z}$ גדלה. תחום הפתרונות לא חסום ולפי החיצים ניתן לראות שהפתרון לא חסום.

ב. פתור את הבעיה הנתונה בשיטת הסימפלכס.

_		1	2	3	4	5	6	7	8		
	מחירים	2	2							_	
•	בסיס				b	b _i / a _{ik}					
1	X3	-1	1	1	0					1	1
2	X4	-1	2	0	1					4	2
	C'j	-2	-2	0	0					0	=Z
Ī		1	2	3	4	5	6	7	8		
	מחירים										
	בסיס				b	b_i / a_{ik}					
1	X2	-1	1	1	0					1	-
2	X4	1	<u>0</u>	-2	1					2	2
	C'j	-4	0	2	0					2	=Z
г		1	2	3	4	5	6	7	8		
	מחירים	2	2								
	בסיס			מים	נ המקדמ	<u></u> מטריצח	A			b	b_i / a_{ik}
1	X2	0	1	-1	1					3	_
2	X1	1	0	-2	1					2	-
•	C'j	0	0	-6	4					10	=Z

נרצה להכניס את לבסיס אך אין משתנה יוצא עקב מבחן המנה, לכן גיצה להכניס את לבסיס אך לבסיס גיצרנו בקדקוד (2,3). פתרון לא חסום נובע כי הפתרון לא

ג. הבעיה הדואלית הינה:

-פרימאלית errander $Z = 2x_1 + 2x_2$ Subject to:

1)
$$-x_1 + x_2 \le 1$$

2)
$$-x_1 + 2x_2 \le 4$$

3)
$$x_i \geq 0$$

דואלית-
$$\min\{V=y_1+4y_2\}$$
 Subject to:
$$-y_1-y_2 \geq 2 \\ y_1+2y_2 \geq 2 \\ y_i \geq 0$$

ד. לבעיה הדואלית אין פתרון אופטימלי, כיוון שלבעיה הפרימלית הפתרון לא חסום.

: נתונה בעיית תכנון לינארי הבאה

Maximize $\{Z = 3X_1 - 2X_2\}$

Subject to:

1)
$$X_1 + X_2 \le 1$$

2)
$$X_1 + X_2 \ge 2$$

3)
$$X_1 \ge 0$$

4)
$$X_2 \ge 0$$

א. צייר במישור את תחום הפתרונות האפשריים וקבע אם קיים פתרון יחיד/מרובה/לא חסום/אין פתרון אופטימלי .

תחום הפתרונות האפשריים הוא תחום ריק ולכן אין פתרון אופטימלי.

ב. פתור את הבעיה בשיטת הסימפלכס והעזר בשיטת ה- ${
m M}$ הגדול. בכל שלב הראה באיזו

נקודה בציור של חלק אי את/ה נמצא/ת.

: הבעיה היא

$$Max{Z = 3X_1 - 2X_2 - M \cdot Y_1}$$

Subject to:

1)
$$X_1 + X_2 + X_3 = 1$$

2)
$$X_1 + X_2 - X_4 + Y_1 = 2$$

3)
$$X_1 \ge 0$$
 $X_2 \ge 0$ $X_3 \ge 0$ $X_4 \ge 0$ $Y_1 \ge 0$

		X_1	X_2	X_3	X_4	\mathbf{Y}_{1}	6	7	8		
	מחירים	3	-2	0	0	-M					
	בסיס			A	מקדמים	ריצת הו	מט			b	b_i / a_{ik}
1	X3	1	1	1	0	0				1	1
2	Y1	1	1	0	-1	1				2	2
	C'j	-M-3	-M+2	0	M	0			_	0	$=\mathbf{Z}$

- (0,0) נמצאים בקדקוד •
- X_1 המשתנה הנכנס לבסיס •
- \mathbf{X}_3 המשתנה היוצא מן הבסיס

		X_1	X_2	X_3	X_4	\mathbf{Y}_{1}	6	7	8		
	מחירים	3	-2	0	0	-M					
	בסיס			מים A	המקד	מטריצת)			b	b_i / a_{ik}
1	X1	1	1	1	0	0				1	
2	Y 1	0	0	-1	-1	1				2	
	C'j	0	5	M+3	M	0				M+3	= Z

אמנם כל המחירים בשורת Z אי שלילים , אבל המשתנה המלאכותי \mathbf{Y}_1 עדיין בבסיס. לכן, לבעיה אין פתרון אופטימלי.

ג. נסח את הבעיה הדואלית.

-פרימאלית maximize $Z = 3x_1 - 2x_2$ Subject to:

- 1) $x_1 + x_2 \le 1$
- 2) $x_1 + x_2 \ge 2$
- 3) $x_i \ge 0$

ד. פתרון בעיה הדואלית:

התחום שנוצר הוא פתוח ברביע הרביעי.

הקווים בצבע אדום הם קווי גובה והחיצים האדומים מראים את הכיוון היכן ש-Z גדלה. לכן רואים שהפתרון לא חסום!

ה. מסקנה בעבור הבעיה הנתונה:

אם לבעיה הפרימלית אין פתרון אזי פתרון הבעיה הדואלית לא חסום.

באופן כללי: אם לבעיה הפרימלית אין פתרון אזי פתרון הבעיה הדואלית לא חסום או

שגם לבעיה הדואלית אין פתרון.

<u>שאלה 5</u> לפניך בעיה פרימלית של תכנון לינארי :

$$\max \left\{ Z = \alpha x_1 + (1 - \alpha) x_2 \right\}$$

:בכפוף לאילוצים האלה

$$(1) 2x_1 + x_2 \le 4$$

$$(2) -2x_1 + x_2 \ge 0$$

$$(3) x_2 \ge 1$$
$$x_1 \ge 0$$

בעבור אילו ערכים של הקדקוד (1,2) יהיה פתרון אופטימלי יחיד לבעיה הנתונה?

$$\frac{2}{3} < \alpha < 2$$
 .א

$$\alpha > 2$$
 .

$$\alpha < \frac{2}{3}$$
 .

ד. לא קיימים ערכים כאלו

שאלה 5ב׳

בעבור אילו ערכים של הקדקוד (0.5 , 1) יהיה פתרון אופטימלי יחיד לבעיה הנתונה?

$$\frac{2}{3} < \alpha < 2 \quad . \aleph$$

$$\alpha > 2$$
 .

$$\alpha < \frac{2}{3}$$
 .

ד. לא קיימים ערכים כאלו פתרון

٣	λ	ב	א	שאלה 5
			X	x
		X		ב

שאלה 6

: נתונה בעיית תכנון לינארי הבאה

$$\max \left\{ z = -X_1 + 4X_2 + X_3 \right\}$$

Subject to:

טבלה ב' שלפניך היא **הטבלה המתארת את הפתרון האופטימלי** בעבור הבעיה הנתונה. טבלה זו התקבלה לאחר כמה צעדים בשיטת הסימפלקס.

			משתנים								
		\mathcal{X}_1	x_2	x_3	S_1	S_2	S_3	אגף ימין			
	Z	$a_{\scriptscriptstyle 1}$	a_2	a_3	a_4	a_5	a_6	a_7			
ם,	x_1	1	0	a_8	1	a_{11}	3	15			
ס		0	1	a_9	0.5	a_{12}	1	7			
		0	0	a_{10}	0	<i>a</i> ₁₃	1	4			

. i -הוא משתנה החוסר המתאים לאילוץ ה- כאשר המשתנה $oldsymbol{S}_i$

- א. מצאו מהו הבסיס האופטימלי.
- ב. בטבלה בי חסרים 13 ערכים המסומנים באותיות a_1 עד מטבלה בי חסרים 13 ערכים אלה בלי להפעיל את שיטת הסימפלכס.

על גבי גיליון התשובות רשמו את האותיות a_1 עד האותיות רשום את הערד אילון התשובות רשמו את האותיות שצריך להופיע בטבלה במקום האות.

פתרון

לפי הטבלה ברור כי הבסיס האופטימלי הוא , x_1,x_2,s_2 , כלא יכול להיות ש- x_3 יהיה בבסיס מדוע? כי אם אז היינו מקבלים אז היינו מקבלים: $x_1=15,x_2=7,x_3=4$ וזה לא אפשרי כי פתרון זה לא מקיים את האילוץ השלישי. מכאן נובע:

$$\begin{pmatrix} a_5 \\ a_{11} \\ a_{12} \\ a_{13} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$B^{-1} = \begin{pmatrix} 1 & 0 & 3 \\ \frac{1}{2} & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \qquad x_B = B^{-1} \cdot b = \begin{pmatrix} 1 & 0 & 3 \\ \frac{1}{2} & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 12 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 15 \\ 7 \\ 4 \end{pmatrix}$$

$$a_7 = Z^* = c_B^T \cdot B^{-1} \cdot b = c_B^T \cdot x_B = (-1, 4, 0) \cdot \begin{pmatrix} 15 \\ 7 \\ 4 \end{pmatrix} = 13$$

c ערכי מקדמי		ערך פונק' המטרה
$-C^T + C_B^T B^{-1} A$	$C_B^T B^{-1}$	$C_B^T B^{-1} b$

: טבלת הסימפלכס האחרונה תראה כך

$$c_B^T \cdot B^{-1} = (-1, 4, 0) \begin{pmatrix} 1 & 0 & 3 \\ \frac{1}{2} & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} = (1, 0, 1)$$

אמה בהתאמה $S_1,\,S_2,\,S_3$ בעבור בשורת בשורת אלה המקדמים בשורת

$$\begin{pmatrix} a_4 \\ a_5 \\ a_6 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$c_{B}^{T} \cdot B^{-1} \cdot A = (-1, 4, 0) \cdot \begin{pmatrix} 1 & 0 & 3 \\ \frac{1}{2} & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -2 & 6 & 2 \\ -1 & 2 & 1 \\ 1 & -2 & 1 \end{pmatrix} = (-1, 4, 3)$$

$$-c^{T} + c_{B}^{T} \cdot B^{-1} \cdot A = (1, -4, -1) + (-1, 4, 3) = (0, 0, 2)$$

:מכאן נובע

$$a_1 = 0$$
 $a_2 = 0$ $a_3 = 2$

$$\begin{pmatrix} a_8 \\ a_9 \\ a_{10} \end{pmatrix} = B^{-1} \cdot A_3 = \begin{pmatrix} 1 & 0 & 3 \\ \frac{1}{2} & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \\ 2 \end{pmatrix}$$

: סופית

	x_1	x_2	x_3	s_1	s_2	s ₃	
Z	$a_1 = 0$	$a_2 = 0$	$a_3 = 2$	$a_4 = 1$	$a_5 = 0$	$a_6 = 1$	$a_7 = 13$
x_1	1	0	$a_8 = 5$	1	$a_{11} = 0$	3	15
x_2	0	1	$a_9 = 2$	0.5	$a_{12} = 0$	1	7
s_2	0	0	$a_{10} = 2$	0	$a_{13} = 1$	1	4

שאלה 7 נתונה בעיית תכנון לינארי הבאה:

Maximize
$$Z = -2X_1 - X_2 + 3X_3 - 2X_4$$

- Subject to:
- 1) $X_1 + 3X_2 X_3 + 2X_4 \le 7$
- \diamond 2) $-X_1 2X_2 + 4X_3 \leq 12$
- \diamond 3) $-X_1 4X_2 + 3X_3 + 8X_4 \le 10$
- \Diamond 4) $X_1 \ge 0$ 5) $X_2 \ge 0$
- \Diamond 6) $X_3 \ge 0$ 7) $X_4 \ge 0$

בהוספת משתני חוסר x_5, x_6, x_7 , באיטרציה האחרונה של הסימפלקס, התקבל:

$$z + \frac{7}{5}x_{1} + \frac{12}{5}x_{4} + \frac{1}{5}x_{5} + \frac{4}{5}x_{6} = 11$$

$$\frac{3}{10}x_{1} + 1x_{2} + \frac{4}{5}x_{4} + \frac{2}{5}x_{5} + \frac{1}{10}x_{6} = 4$$

$$-\frac{1}{10}x_{1} + 1x_{3} + \frac{2}{5}x_{4} + \frac{1}{5}x_{5} + \frac{3}{10}x_{6} = 5$$

$$\frac{1}{2}x_{1} + 10x_{4} + 1x_{5} - \frac{1}{2}x_{6} + 1x_{7} = 11$$

א. מהו ערכי Xj האופטימליים וערך פונקציית המטרה האופטימליי

ב. האם הפתרון בסעיף אי הוא פתרון יחיד?

ג. מהי הבעיה הדואלית ומה פתרונה? בסס את תשובתך על הטבלה הנתונה בלבד.

פתרון

 X_7 ו- X_2 ו- X_3 ו- X_3 ו- X_3

$$X_7 = 11$$
 ו- $X_3 = 5$, $X_2 = 4$ ערכם הוא:

 $X_1 = X_4 = X_5 = X_6 = 0$ ערכם של שאר המשתנים הוא 0 מכיוון שאינם בבסיס: Z = 11.

ב. הפתרון הוא פתרון יחיד מאחר ואם היה מדובר בפתרונות מרובים המקדם של משתנה לא בסיסי מסוים בפונקציה הסופית יהיה 0 , כלומר מצב בו הכנסת פתרון לא ישנה את הערך של פונקציית המטרה.

ג. הבעיה הפרימלית היא:

במקרה שלנו מצב כזה לא מתקיים ולכן חייב להיות פתרון יחיד.

^{*}וכמובן שגם אין מצב של אין פתרון, כי רואים שקיים פתרון אופטימלי.

אפקה המכללה האקדמית להנדסה בתל־אביב AFEKA אפקה המכללה האקדמית להנדסה בתל־אביב

$$\begin{aligned} & \mathbf{Max} \left\{ Z = -2X_1 - X_2 + 3X_3 - 2X_4 \right\} \\ & Y_1 \colon \ X_1 + \ 3X_2 - X_3 + 2X_4 \le 7 \\ & Y_2 \colon \ -X_1 - 2X_2 + 4X_3 \le 12 \\ & Y_3 \colon \ -X_1 - \ 4X_2 + 3X_3 + 8X_4 \le 10 \\ & \forall j \mid X_j \ge 0 \end{aligned}$$

הבעיה הדואלית המתאימה:

$$\begin{aligned} & \mathbf{Min} \, \{ V = \ 7Y_1 + 12Y_2 + 10 \ Y_3 \} \\ & Y_1 - Y_2 - Y_3 \ge -2 \\ & 3Y_1 - 2Y_2 - 4Y_3 \ge -1 \\ & -Y_1 + 4Y_2 + 3Y_3 \ge 3 \\ & 2Y_1 + 8Y_3 \ge -2 \\ & \forall j \mid Y_j \ge 0 \end{aligned}$$

פתרונה (בהתבסס על המקדמים של X_5,X_6 ו- X_5,X_6 בטבלה הסופית): V=11 כלומר $\left(\frac{1}{5},\frac{4}{5},0\right)$ בין ו- $Y_3=0$ ו- $Y_2=\frac{4}{5}$

בדרך אחרת:

נרשום את כל המשוואות שלנו:

1.
$$x_1(y_1 - y_2 - y_3 + 2) = 0$$

2.
$$x_2(3y_1 - 2y_2 - 4y_3 + 1) = 0$$

3.
$$x_3(-y_1+4y_2+3y_3-3)=0$$

4.
$$x_4(2y_1 + 8y_3 + 2) = 0$$

5.
$$y_1(x_1 + 3x_2 - x_3 + 2x_4 - 7) = 0$$

6.
$$y_2(-x_1 - 2x_2 + 4x_3 - 12) = 0$$

7.
$$y_3(-x_1 - 4x_2 + 3x_3 + 8x_4 - 10) = 0$$

נציב את האקסים שקיבלנו בסעיף א' במשוואות 5-7 ונראה שרק המשוואה עדיב את האקסים שקיבלנו בסעיף א' במשוואות $y_3=0$

עכשיו נמצא את שני הY ים הנותרים באמצעות המשוואות 2, 3:

$$3y_1 - 2y_2 = -1$$

$$-y_1 + 4y_2 = 3$$

ולכן לפני שני המשוואות:

$$y_1 = 0.2$$

$$y_2 = 0.8$$

$$y_3 = 0$$

$$V = 11$$

<u>שאלה 8</u>

לפניך שישה סעיפים שאינם תלויים זה בזה. ענה על כל הסעיפים. בכל סעיף נתונות ארבע תשובות, שרק אחת מהן נכונה. בכל סעיף, בחר את התשובה הנכונה וסמן את התשובות הנכונות על גבי טופס התשובות על ידי סימון ${\bf X}$ במשבצת המתאימה .

: לפניך בעיה פרימלית של תכנון לינארי

$$\max \quad \left\{ z = 24x_1 + 23x_2 + 32x_3 + 20x_4 \right\}$$

בכפוף לאילוצים האלה:

$$2x_1 + 7x_2 + 4x_3 + 7x_4 \le 90$$
$$2x_1 + 3x_2 + 2x_3 + 8x_4 \le 65$$
$$4x_1 + 5x_2 + 3x_3 + 3x_4 \le 85$$
$$x_1 \ge 0 \quad x_2 \ge 0 \quad x_3 \ge 0 \quad x_4 \ge 0$$

 $x_1=7, \quad x_2=0, \quad x_3=19, \quad x_4=0$: הפתרון האופטימלי הפרימלי הפרימלי היחיד הוא הפתרון האופטימלי הדואלי היחיד הוא היחיד הוא היחיד הוא היחיד הוא המשתנה הדואלי המתאים לאילוץ פרימלי i=1,2,3 , עבור i=1,2,3

א. בטבלת הסימפלקס הסופית עבור המודל הנתון, מספר המקדמים השונים מאפס,

:בשורת ה-z, הוא

- 5 (1
- 3 (2
- 4 (3
- 4) אי-אפשר לדעת
- ב. איזה מההיגדים הבאים נכון עבור הפתרון האופטימלי הפרימלי,
- 1) משתני הסרק של אילוצים 1 ו- 3 הם משתנים בסיסיים.
 - 2) משתני הסרק של כל האילוצים הם משתנים בסיסיים.
 - 2) משתנה הסרק של אילוץ 2 הוא משתנה בסיסי.
 - 4) משתנה הסרק של אילוץ 1 הוא בסיסי.
- : אוא המעודכן המדל המדל המעודכן של במקדמים של המעודכן הוא במודל במודל המעודכן הוא

$$\begin{aligned} \textit{Maximize} \ & 24x_1 + \textbf{20}x_2 + 32x_3 + 20x_4 \\ & 2x_1 + \textbf{8}x_2 + 4x_3 + 7x_4 \leq 90 \\ & 2x_1 + \textbf{6}x_2 + 2x_3 + 8x_4 \leq 65 \\ & 4x_1 + \textbf{4}x_2 + 3x_3 + 3x_4 \leq 85 \end{aligned}$$

הפתרון הדואלי החדש הוא:

AFEKA אפקר המכללה האקדמית להנדסה בתל־אביב AFEKA בתל־אביב

$$y_1 = 0$$
, $y_2 = 3.5$, $y_3 = 5.2$ (1)

$$y_1 = 5.6$$
, $y_2 = 0$, $y_3 = 3.2$ (2)

$$y_1 = 4.3, \quad y_2 = 0, \quad y_3 = 7.2$$
 (3)

$$y_1 = 0, \quad y_2 = 0, \quad y_3 = 10$$
 (4)

: המודל המעודכן הואי, $x_{\it new}$ חדש שלילי משתנה משתנה הוסיפו המעודכן ד. למודל משתנה המקורי הוסיפו משתנה אי

Maximize
$$24x_1 + 20x_2 + 32x_3 + 20x_4 + 25x_{new}$$

 $2x_1 + 8x_2 + 4x_3 + 7x_4 + 6x_{new} \le 90$

$$2x_1 + 6x_2 + 1x_3 + 7x_4 + 6x_{new} = 76$$

$$2x_1 + 6x_2 + 2x_3 + 8x_4 + 5x_{new} \le 65$$

$$4x_1 + 4x_2 + 3x_3 + 3x_4 + 9x_{new} \le 85$$

הפתרון האופטימלי הדואלי החדש הוא:

$$y_1 = 0$$
, $y_2 = 3$, $y_3 = 0$, $y_4 = 0$ (1)

$$y_1 = 5.6$$
, $y_2 = 0$, $y_3 = 3.2$

$$y_1 = 4.3$$
, $y_2 = 0$, $y_3 = 7.2$ (3)

$$y_1 = 0, \quad y_2 = 0, \quad y_3 = 10$$

, $3x_1 + 8x_2 + 2x_3 + x_4 \ge 35$: ה. לבעיה הפרימלית המקורית הוסיפו את האילוץ החדש יהיה כעת הפתרון האופטימלי של הבעיה הפרימלית יחד עם האילוץ החדש יהיה כעת

$$x_1 = 0$$
, $x_2 = 3$, $x_3 = 0$, $x_4 = 6.7$ (1)

$$x_1 = 7$$
, $x_2 = 0$, $x_3 = 19$, $x_4 = 0$ (2)

$$x_1 = 5$$
, $x_2 = 3$, $x_3 = 2.8$, $x_4 = 1.7$ (3

- 4) אף אחת מהתשובות הנתונות אינה נכונה.
- ו. חל שינוי באגף ימין של אילוץ 2 בבעיה הפרימלית. אגף ימין חדש הוא 60 במקום 65. איזה מההיגדים הבאים נכון :
 - 1) הפתרון הפרימלי הנתון הופך להיות בלתי אפשרי.
 - 2) הפתרון הפרימלי הנתון נשאר אפשרי אך איננו אופטימלי.
- 3) אילוץ 2 הופך להיות אילוץ שמתקיים כשוויון (כלומר הופך להיות אילוץ פעיל).
 - 4) הפתרון הפרימלי הנתון נשאר אפשרי ואופטימלי.

<u>פתרון</u>

4	3	2	1	שאלה/תשובה
	X			8
	X			ב
		X		٦
		X		7
		X		7
X				١

<u>שאלה 9</u>

לפניך בעיה פרימלית של תכנון לינארי:

$$\max \{Z = x_1 + 2x_2 + x_3\}$$

בכפוף לאילוצים האלה:

$$(1) x_1 + x_2 - x_3 \le 2$$

(2)
$$x_1 - x_2 + x_3 = 1$$

(3)
$$2x_1 + x_2 + x_3 \ge 2$$

 $x_1 \ge 0 \quad x_2 \le 0$
 $-\infty \le x_3 \le \infty$

- א. נסחו את הבעיה הדואלית.
- ב. הראו כי (0,1,0) הוא פתרון אפשרי לבעיה הדואלית שבסעיף אי.
- ג. נסמן ב- Z^* את הערך האופטימלי של הבעיה הפרימלית הנתונה. בלי לפתור את הבעיה הפרימלית והדואלית הוכיחו כי $Z^* <= 1$.
- ד. בלי לפתור את הבעיה הפרימלית והדואלית קבעו האם (1,0,0) הוא פתרון אופטימלי של הבעיה הפרימלית הנתונה? נמקו!

פתרון

הבעיה הדואלית המתאימה:

$$Min\{V = 2y_1 + y_2 + 2y_3\}$$

1) $y_1 + y_2 + 2y_3 \ge 1$
2) $y_1 - y_2 + y_3 \le 2$
3) $-y_1 + y_2 + y_3 = 1$
 $y_1 \ge 0$; y_2 is free; $y_3 \le 0$

ב. נציב באילוצים את הנקודה (0,1,0) ונראה כי כל האילוצים אכן מתקיימים:

1)
$$0 + 1 + 2 * 0 = 1 \ge 1$$

2) $0 - 1 + 0 = -1 \le 2$
3) $0 + 1 + 0 = 1$
 $y_1 \ge 0$; y_2 is free; $y_3 \le 0$

בגלל שהנקודה מקיימת את כל האילוצים, זהו פתרון אפשרי של הבעיה הדואלית.

ג.

: לפי המשפט הדואלית החלש

לכל פתרון אפשרי Y של הבעיה הפרימאלית ולכל פתרון אפשרי איז של הבעיה לכל פתרון אפשרי $c^tx \leq b^ty$ הדואלית מתקיים:

עפ"י סעיף ב' ידוע לנו כי (0,1,0) הוא פתרון אפשרי לבעיה הדואלית.

הערך של פונקציית המטרה של הבעיה הדואלית (בעיית המינימום) בנקודה (0,1,0) הוא 1. עפ"י משפט הדואליות החלש ידוע לנו כי כל פתרון אפשרי לבעיית מינימום, משרה חסם עליון לבעיית המקסימום. ולכן 1 ≥ ².

ד. האילוצים של הבעיה הפרימאלית מתקיימים בנקודה (1,0,0) ולכן הפתרון אפשרי. ערך פונקציית המטרה של הבעיה הפרימאלית הנתונה בנקודה (1,0,0) הוא 1. הוכחנו בסעיף ב' כי (0,1,0) הוא פתרון אפשרי לבעיה הדואלית. ערך פונקציית המטרה של הבעיה הדואלית בנקודה (0,1,0) הוא 1.

עפ"י משפט הדואליות החזק עבור פתרונות אפשריים לבעיה הדואלית והפרימאלית, אם הערכים בפונקציות המטרה של הבעיה הדואלית והפרימאלית שווים, אז הפתרונות הללו אופטימליים לבעיותיהם.

בנוסף הוכחנו בסעיף ג' שהערך האופטימלי של הבעיה הפרימאלית הוא לכל היותר 1.

לכן, (1,0,0) הוא פתרון אופטימלי לבעיה הפרימאלית הנתונה.

<u>שאלה 10</u>

ייאיגוד יצרני הממתקיםיי מאגד שלושה מפעלים המייצרים **מידי חודש** ממתקים בכמויות האלה:

מפעל 1 מייצר 140 טונות, מפעל 2 מייצר 100 טונות ומפעל 3 מייצר 80 טונות.

האיגוד משווק את הממתקים באמצעות שלושה מרכזי שיווק.

הטבלה שלהלן מתארת את המרחקים בין מפעלי האיגוד למרכזי השיווק (בקילומטרים), את הביקושים החודשיים לממתקים בכל מרכז שיווק ואת היצעי הממתקים.

מרכזי שיווק מפעלים	A	В	С	היצע
1	40	30	24	140
2	28	40	32	100
3	20	24	28	80
ביקוש	105	135	80	

הובלת טונה אחת של ממתקים עולה 1 ₪ לקילומטר.

- א. חשב כמה טונות של ממתקים יש להוביל מידי חודש מכל מפעל לכל מרכז שיווק, כדי שהעלות הכוללת של התובלה תהיה מזערית.
 - ב. חשב את עלות התובלה הכוללת המזערית לחודש.

- עולה 50 אגורות לקילומטר במקום 1 של ממתקים הייתה של ממתקים הייתה עולה 50 אגורות לקילומטר במקום 1 לקילומטר) אז י
 - 1. כיצד תראה טבלה התחלתית בלבד של היצע וביקוש!
 - 2. האם פתרון אופטימלי ישתנה!

פתרון

צעד 1:

מרכזי שיווק מפעלים	A]	В		C	היצע	u_i
1	40		30		24	-10	140	0
1	-	105	+	35			110	
2	28	-22	40		32	-12	100	10
2	+		-	100			100	10
3	20	-14	24		28		80	-6
3				0		80	80	-0
ביקוש	10	05	1.	135		0		
v_{j}	4	.0	3	30	3	4		

בצבע אדום= מחירים חדשים של התאים שלא נמצאים בבסיס.

צעד 2:

מרכזי שיווק מפעלים	I	A		В		C	היצע	u_{i}
1	40		30		24	-10	1.40	0
1	1	5	+	135		_	140	0
2	28		40	22	32	10	100	-12
2		100		-		_	100	-12
2	20	-14	24		28		90	6
3	+		-	0		80	80	-6
ביקוש	10	105		135		30		
v_{j}	4	.0	3	0	3	34		

צעד 3:

מרכזי שיווק מפעלים	P	A		В		С	היצע	u_{i}
1	40		30		24	-24	140	40
1	-	5		135	+		140	40
2	28		40	22	32	-4	100	28
2		100					100	20
3	20		24	14	28		90	20
3	+	0			-	80	80	20
ביקוש	1()5	13	35	8	30		
v_{j}	()	-1	10		8		

צעד 4:

מרכזי שיווק מפעלים	A		В		С		היצע	u_i
1	40	24	30		24		1.40	0
1		_	-	135	+	5	140	0
2	28		40	-2	32	-4	100	12
2	100						100	12
3	20		24	-10	28		90	4
3		5	+		-	75	80	4
ביקוש	105		135		80			
v_{j}	1	6	3	0	2	24		

צעד 5:

מרכזי שיווק מפעלים	F	4	1	3	(С	היצע	u_{i}
1	40	14	30		24		1.40	0
1				60		80	140	U
2	28		40	8	32	6	100	2
2	100						100	
3	20		24		28	10	80	-6
3		5		75		_	80	-0
ביקוש	10	05	13	35	8	30		
v_{j}	2	6	3	0	2	24		

פתרון זה אופטימלי.

ב. עלות התובלה הכוללת המינימלית החודשית היא:

$$\min Z = 60 \cdot 30 + 80 \cdot 24 + 100 \cdot 28 + 5 \cdot 20 + 75 \cdot 24 = 8420$$

.λ

1. הטבלה התחלתית תראה כך:

מרכזי שיווק מפעלים	F	4	I	3	(C	היצע	u_i
1	20	105	15	35	12		140	0
2	14		20	100	16		100	10
3	10		12	0	14	80	80	-6
ביקוש	10)5	13	35	8	0		
v_{j}	4	0	3	0	3	4		

2. פתרון אופטימלי לא משתנה והתובלה הכוללת המינימלית החודשית היא: 4210 ₪.

שאלה 11

מפעל מייצר 6 מוצרים באמצעות 6 מכונות. המכונות מסודרות במעגל באולם הייצור, כמתואר באיור שלפניך.

המפעל מעסיק שלושה עובדים המפעילים את המכונות. כל אחד מהעובדים הוכשר להפעיל את כל שש המכונות, ומסוגל להפעיל שתי מכונות סמוכות בו זמנית.

i מסי עובד מסי עובד, כאשר עובד מסי (בעשרות שקלים) הטבלה את רווחי את חוחי מפעל (בעשרות המפעל (j=1,,23,4,5,6 ; i=1,2,3) i

מסי מכונה מסי עובד	1	2	3	4	5	6
1	3	4	2	5	6	8
2	5	4	8	5	2	7
3	6	3	2	8	6	8

משיקולים של הנדסת אנוש הוחלט שכל עובד יפעיל שתי מכונות הסמוכות זו לזו.

איזה מכונות יפעיל כל עובד , כדי שהרווח הכולל של המפעל לשעת עבודה יהיה מקסימלי! מה יהיה הרווח המקסימלי לשעת עבודה!

הערה : תנו דעתכם שניתן לשבץ את העובדים לעבודה במכונות 1 ו- 2 , 3 ו- 4 , 5 ו- 6 , אך גם במכונות 2 ו- 3 , 4 ו- 5 , 6 ו- 1 וכ"ו . במכונות 2 ו- 3 , 4 ו- 5 , 6 ו- 1 וכ"ו .

פתרון

לפתרון בעיית ההשמה, יש להתייחס לשני מקרים שלהלן:

- 1+2, 3+4, 5+6 : עובד יכול לבצע עבודות •
- 1+6, 5+4, 3+2 : עובד יכול לבצע עבודות •

. $\max Z = -\min(-Z)$ בנוסף, יש לשים לב כי הבעיה הנתונה היא בעיית מקסימום . כידוע

מקרה 1: מקרה 2: 3+4 5+6 1 1+2 3+4 5+6 1 1-1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$:עבור כל מקרה בנפרד											
1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$:1 מקרה						
2	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3+2	-2		+2	3+4	5+6						
שלב 1: החסרת איבר מינימלי מכל שורה 1+6		-6	7		-7	-7	-14						
שלב 1: החסרת איבר מינימלי מכל שורה 1+6 5+4 3+2 1+2 3+4 5+6 1 0 0 5 0 2 2 0 0 5 0 3 5 4 0 3 7 0 3 0 0 0 4 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 8 0 0 0	רת איבר מינימלי מכל שורה 1+6 5+4 3+2 1 0 0 5 0 2 0 5 0 2 3 0 0 9 3 The state of the state	-12	9		-9	-13	-9						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-5	9		-9	-10	-14						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	מלי											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3+2	-2		+2	3+4	5+6						
שלב 2: החסרת איבר מינימלי מכל עמודה 1+6		5	7		7								
שלב 2: החסרת איבר מינימלי מכל עמודה 1+6		0	ļ		4	0	4						
1+6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9				4	0						
1+6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	מלי נ											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					3+4	5+6						
2 0 5 0 0 4 3 1 4 0 0 3 1 4 0 0 0 0 0 0 0 0 0													
שלב 3 1 4 0 0 9 3 1 4 0 0 9 שלב 3 1 1 4 0 0 שלב 3 1 1 4 0 0 0 5 1 1 6 5 4 1 5 6 1 1 6 1 5 6 1 1 6 1 5 6 1 1 6 1 5 6 1 1 6 1 1 6 1 6													
שלב $8:$ בדיקה האם ניתן לבצע השמה $1+6$ $5+4$ $3+2$ $1+2$ $3+4$ $5+6$ 1 0 0 5 $1 3 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9$	קה האם ניתן לבצע השמה $1+6$ $5+4$ $3+2$ 1 0 0 5 1 2 0 3 0 0 9 3 3 0 0 9 3 3 0 0 1 $3=3$ 3 3 4 $3=3$ 3 4 $3=3$ 3 4 $3=3$ 3 4 $3=3$ 3 4 $3=3$ 3 4 $3=3$ 3 4 $3=3$ 3 4 $3=3$ $3=3$ 3 $3=3$ 3 $3=3$ 3 $3=3$ 3 $3=3$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	לבצ '	_	לב 3 : בד	ט	ı							
$ \begin{array}{ c c c c c }\hline 1 & 0 & 0 & 5 & 0 & 2 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 0 & 0$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_			3+4	5+6						
$ \begin{array}{ c c c c c }\hline 2 & 0 & 5 & 0 \\\hline 3 & 0 & 0 & 9 \\\hline \hline & 3 & 0 & 0 & 9 \\\hline & 3 & 1 & 4 & 0 \\\hline & 2 & 6 & 0 & 2 \\\hline & 1 & 0 & 1 & 1 & 1 \\\hline & 1 & 0 & 1 & 1 & 1 \\\hline & 1 & 0 & 1 & 1 & 1 \\\hline & 2 & 0 & 5 & 0 & 1 \\\hline & 2 & 0 & 5 & 0 & 1 \\\hline & 3 & 0 & 0 & 1 & 9 \\\hline & 2 & 0 & 0 & 5 \\\hline & 3 & 0 & 0 & 1 & 9 \\\hline & 1 & 0 & 0 & 1 & 1 \\\hline & 2 & 0 & 0 & 1 \\\hline & 2 & 0 & 0 & 5 \\\hline & 3 & 0 & 0 & 1 & 1 \\\hline & 2 & 0 & 0 & 1 $							_						
$ \begin{array}{ c c c c c }\hline & & & & & & & & & & & & & & & & & & &$	3 פרניתן לבצע השמה (שלב 4: השמה, ישנן 2 אפוציות (שלב 4: חישוב ערך פונקציית המטרה פתרון 1 (שלב 4: ב 1 (שלב 5: ב 1 (0											
עלב 1. ניתן לבצע השמה שלב 1. תיקון הטבלה להשמה שלב 4: השמה, ישנן 2 אפוציות שלב 1. תיקון הטבלה להשמה שלב 4: השמה, ישנן 2 אפוציות שלב 1. תיקון הטבלה להשמה שלב 4: חשב 5 אור שלב 6 אור שלב 6 אור שלב 6 אור שלב 6 אור שלב 4 אור שלב 4 אור שלב 5 אור שלב 5 אור שלב 5 אור שלב 5 אור שלב 4 אור שלב 4 אור שלב 4 אור שלב 4 אור שלב 5 אור שלב 5 אור שלב 4 אור שלב 4 אור שלב 5 אור שלב 6 אור שלב 4 אור שלב 5 אור שלב 6 אור שלב 5 אור שלב 6 אור שלב 5 אור שלב 6 אור שלב	אפוציות לבצע השמה $3=3$ שלב $4:1$ השמה, ישנן 2 אפוציות $1+6$ $5+4$ $3+2$ $1 0+0 5$ $1 2 0 5 0+2 3 0 0 0+9 3 0 0 0+9 3 0 0 0+9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$					4							
שלב $1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.$	שלב $+$: השמה, ישנן 2 אפוציות $1+6$ $5+4$ $3+2$ 1 $0+$ 0 5 1 2 0 5 $0+$ 2 3 0 $0+$ $9 3 1+6 5+4 3+2 1+6 5+4 3+2 1+6 5+4 3+2 1 0 0+ 5 2 0 5 0+ 3 0+ 0 9 2 3 0+ 0 9 2 3 3 0+ 0 9 3 3 3 3 3 4 4 5 5 5 5 4 5 6 7 8 9 9 9 9 9 9 9 9 9 9 9$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ו : 4											
$ \begin{array}{ c c c c c }\hline 1 & 0+ & 0 & 5 \\ \hline 2 & 0 & 5 & 0+ \\ \hline 3 & 0 & 0+ & 9 \\ \hline \hline & 1+6 & 5+4 & 3+2 \\ \hline 1 & 0 & 0+ & 5 \\ \hline 2 & 0 & 5 & 0+ \\ \hline & 2 & 0 & 5 & 0+ \\ \hline & 3 & 0+ & 0 & 9 \\ \hline \\ \hline & & & & & & & & \\ \hline & & & & & &$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{ c c c c c }\hline 2 & 0 & 5 & 0+ \\\hline 3 & 0 & 0+ & 9 \\\hline \hline 3 & 0 & 0+ & 9 \\\hline \hline & 1+6 & 5+4 & 3+2 \\\hline 1 & 0 & 0+ & 5 \\\hline 2 & 0 & 5 & 0+ \\\hline 3 & 0+ & 0 & 9 \\\hline \hline & 1+2 & 3+4 & 5+6 \\\hline 2 & 0 & 5 & 0+ \\\hline 3 & 0+ & 0 & 9 \\\hline \hline & 2 & 0 & 0 \\\hline & 3 & 0 & 3 & 0 \\\hline & 1+2 & 3+4 & 5+6 \\\hline & 2 & 0 & 0 & 1 \\\hline & 2 & 0 & 0 & 1 \\\hline & 2 & 0 & 0 & 1 \\\hline & 2 & 0 & 0+ \\\hline & 2 & 0 & 0+ \\\hline & 2 & 0 & 0+ \\\hline & 1 & 2 & 6 & 0+ \\\hline & 1 & 2 & 6 & 0+ \\\hline & 2 & 0 & 0+ & 5 \\\hline & 3 & 0+ & 3 & 0 \\\hline & 2 & 0 & 0+ & 5 \\\hline & 3 & 0+ & 3 & 0 \\\hline & 1+2 & 3+4 & 5+6 \\\hline & 1 & 2 & 6 & 0+ \\\hline & 2 & 0 & 0+ & 5 \\\hline & 3 & 0+ & 3 & 0 \\\hline & 1+2 & 3+4 & 5+6 \\\hline & 1 & 2 & 6 & 0+ \\\hline & 2 & 0 & 0+ & 5 \\\hline & 3 & 0+ & 3 & 0 \\\hline & 1+2 & 3+4 & 5+6 \\\hline & 1 & 2 & 6 & 0+ \\\hline & 2 & 0 & 0+ & 5 \\\hline & 3 & 0+ & 3 & 0 \\\hline & 1+2 & 3+4 & 5+6 \\\hline & 1 & 2 & 6 & 0+ \\\hline & 2 & 0 & 0+ & 5 \\\hline & 3 & 0+ & 3 & 0 \\\hline & 1+2 & 3+4 & 5+6 \\\hline & 1 & 2 & 6 & 0+ \\\hline & 2 & 0 & 0+ & 5 \\\hline & 3 & 0+ & 3 & 0 \\\hline & 1+2 & 3+4 & 5+6 \\\hline & 1 & 2 & 6 & 0+ \\\hline & 2 & 0 & 0+ & 5 \\\hline & 3 & 0+ & 3 & 0 \\\hline & 1+2 & 3+4 & 5+6 \\\hline & 1+2 & 3+4 & 3+4 \\\hline & 1+2 & 3+4 & 3+$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$												
שלב 3: בדיקת השמה $1+6$ $5+4$ $3+2$ $1 0 0 0+ 5$ $1+2$ $3+4$ $5+6$ $2 0 5 0+ 1 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	1+6												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	3+2		<u> </u>		נ השמה	ילב 3 : בדיקר						
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$		-2		+2								
3 $0+$ 0 9 2 3 0 3 $3=3$	3					1							
3 ביתן לבצע השמה 3 ביתן לבצע השמה שלב 3 ביתן לבצע השמה 3 שלב 4 : השמה שלב 4 : השמה 2 ב $-\sum_{i,j=1}^3 x_{ij} \cdot c_{ij} = -(-11-12-14) = 37$ ב 2 ב $3+4$	$z=-\sum_{i,j=1}^3 x_{ij}\cdot c_{ij}=-(-11-12-14)=37$ ב $z=-\sum_{i,j=1}^3 x_{ij}\cdot c_{ij}=-(-11-12-14)=37$					0							
$Z = -\sum_{i,j=1}^3 x_{ij} \cdot c_{ij} = -(-11-12-14) = 37$ חישוב ערך פונקציית המטרה פתרון $Z = -\sum_{i,j=1}^3 x_{ij} \cdot c_{ij} = -(-11-12-14) = 37$ $= -\sum_{i,j=1}^3 x_{ij} \cdot c_{ij} = -(-11-12-14) =$	$Z = -\sum_{i,j=1}^{3} x_{ij} \cdot c_{ij} = -(-11 - 12 - 14) = 37$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $$		_		0	2							
$Z = -\sum_{i,j=1}^3 x_{ij} \cdot c_{ij} = -(-11-12-14) = 37$ חישוב ערך פונקציית המטרה פתרון $Z = -\sum_{i,j=1}^3 x_{ij} \cdot c_{ij} = -(-11-12-14) = 37$ $= -\sum_{i,j=1}^3 x_{ij} \cdot c_{ij} = -(-11-12-14) =$	$Z = -\sum_{i,j=1}^{3} x_{ij} \cdot c_{ij} = -(-11 - 12 - 14) = 37$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $$												
$Z = -\sum_{i,j=1}^3 x_{ij} \cdot c_{ij} = -(-11-12-14) = 37$	$Z = -\sum_{i,j=1}^{3} x_{ij} \cdot c_{ij} = -(-11 - 12 - 14) = 37$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $$	וב עו	,										
$Z = -\sum_{i,j=1} x_{ij} \cdot c_{ij} = -(-11 - 12 - 14) = 37$	$z = -\sum_{i,j=1}^3 x_{ij} \cdot c_{ij} = -(-11 - 12 - 14) = 37$ מאחר והרווח נספר בעשרות שקלים $z = -1$		-2		+2								
3 $0+$ 3 0 $0+$ $0+$ $0+$ $0+$ $0+$ $0+$ $0+$	$z = -\sum_{i,j=1}^3 x_{ij} \cdot c_{ij} = -(-11 - 12 - 14) = 37$ מאחר והרווח נספר בעשרות שקלים $z = -1$	$Z = -\sum x_{ii} \cdot c_{ii} = -(-11 - 12 - 14) = 37$											
0 + 3	z : 2 חישוב ערך פונקצית המטרה פתרון $z = -\sum_{i,j=1}^3 x_{ij} \cdot c_{ij} = -(-11 - 12 - 14) = 37$ $z = -11$					0 +							
חישוב ערך פונקציית המטרה: חישוב ערך פונקצית המטרה פתרון 2:	$Z = -\sum_{i,j=1}^3 x_{ij} \cdot c_{ij} = -(-11 - 12 - 14) = 37$ $Z = 10$ מאחר והרווח נספר בעשרות שקלים												
3	$Z = -\sum_{i,j=1}^3 x_{ij} \cdot c_{ij} = -(-11 - 12 - 14) = 37$ $Z = 10$ מאחר והרווח נספר בעשרות שקלים	רישוב ערד פונקצית המטרה פתרון 2:											
· · · · · · · · · · · · · · · · · · ·	וח מאחר והרווח נספר בעשרות שקלים – רווח			3		,	,						
$Z = x_{ij} \cdot c_{ij} = -(-11 - 12 - 14) = 37$ $Z = x_{ij} \cdot c_{ij} = -(-14 - 13 - 19) = 36$	וח מאחר והרווח נספר בעשרות שקלים – רווח	$Z = -\sum_{ij} x_{ij} \cdot c_{ij} = -(-11 - 12 - 14) = 37$					$Z = -\sum x_{ij} \cdot c_{ij} = -(-14 - 13 - 19) = 36$						
i,j=1 $i,j=1$		$i_{i}j=1$											
מאחר והרווח נספר בעשרות שקלים – רווח מאחר והרווח נספר בעשרות שקלים – רווח	במסעל לעעת עבנדה הנא 270 אום	זר וה											
המפעל לשעת עבודה הוא 360 ₪. המפעל לשעת עבודה הוא 370 ₪.	וובוניעל לשעונ עבודוו וווא סוכ פו.	על <u>ל</u>	3		ש 3 <mark>60 נ</mark>	עבוד <u>ה הוא</u>	מפעל לשעת						
הפתרון האופטימלי הינו- רווח המפעל 370 ₪ , כאשר עובד 2 מפעיל מכונות 3,2 ועובדים 1 ו-3	ו-3 און פאשר עובד 2 מפעיל מכונות 3,2 ועובדים 1 ו-3 ו $_{ m 0}$	עובד	۱۱'	זמפעל 0	רווח -	טימלי הינו [.]	פתרון האופי						

עבודה נעימה!!!

יכולים להפעיל את מכונות 1,6 או 4+5 ללא הבדל ברווח.