9. Parametric g-formula: Continuous treatments

lan Lundberg Cornell Info 6751: Causal Inference in Observational Settings Fall 2022

20 Sep 2022

Learning goals for today

At the end of class, you will be able to:

- 1. Define causal effects with continuous treatments
- 2. Understand the risks of extrapolation
- 3. Select causal estimands for continuous treatments that support the production of credible estimates

Person 1

Person 2

Person 3

Person 4

	Outcome under treatment value					
	Untreated	Treated				
Person 1	0	0				
Person 2	0	0				
Person 3	0	0				
Person 4	0	0				

	Factual	Outcome under treatment value				
	treatment		Treated			
Person 1	Untreated	0	0			
Person 2	Treated	0	0			
Person 3	Treated	0	0			
Person 4	Untreated	0	0			

Factual	Outcome under treatment value					
	treatment	Untreated	Treated			
Person 1	Untreated	•	0			
Person 2	Treated	0	•			
Person 3	Treated	0	•			
Person 4	Untreated	•	0			

	Factual treatment	Outcome under treatment value					
		1	2	3	4	5	
Person 1	3	0	0	•	0	0	0
Person 2	2	0	•	0	0	0	0
Person 3	5	0	0	0	0	•	0
Person 4	4	0	0	0	•	0	0

	Factual	Outcome under treatment value						
	treatment	1	2	3	4	5		
Person 1	3	000	0000	0000	0000	0000	000	
Person 2	2	000	0000	0000	0000	0000	000	
Person 3	5	000	0000	0000	0000	0000	000	
Person 4	4	000	0000	0000	0000	0000	000	

	Factual	Outcome under treatment value						
	treatment	1	2	3	4	5		
Person 1	3	000	0000	0000	0000	0000	000	
Person 2	2	000	0000	0000	0000	0000	000	
Person 3	5	000	0000	0000	0000	0000	000	
Person 4	4	000	0000	0000	0000	0000	000	

Question: Why is this hard? How would you proceed?

A motivating example

(current work with Jennie E. Brand)

Mayer 1997 Brooks-Gunn & Duncan 1997 Duncan et al. 2010 Flwert & Pfeffer 2022

Ideal estimation. What we'd like to do in a huge sample.

1) Restrict to covariate stratum $\vec{L} = \vec{\ell}$

Ideal estimation. What we'd like to do in a huge sample.

1) Restrict to covariate stratum $\vec{L} = \vec{\ell}$

Ideal estimation. What we'd like to do in a huge sample.

- 1) Restrict to covariate stratum $\vec{L} = \vec{\ell}$
- 2) Estimate a smooth curve $E(Y(a) \mid \vec{L} = \vec{\ell})$

Income at Age 17

Ideal estimation. What we'd like to do in a huge sample.

- 1) Restrict to covariate stratum $\vec{L} = \vec{\ell}$
- 2) Estimate a smooth curve $\mathsf{E}(Y(a) \mid \vec{L} = \vec{\ell})$

Income at Age 17

- 1) Restrict to covariate stratum $\vec{L} = \vec{\ell}$
- 2) Estimate a smooth curve $E(Y(a) \mid \vec{L} = \vec{\ell})$
- 3) Repeat

- 1) Restrict to covariate stratum $\vec{L} = \vec{\ell}$
- 2) Estimate a smooth curve $E(Y(a) \mid \vec{L} = \vec{\ell})$
- 3) Repeat

Ideal estimation. What we'd like to do in a huge sample.

- 1) Restrict to covariate stratum $\vec{L} = \vec{\ell}$
- 2) Estimate a smooth curve $\mathsf{E}(Y(a) \mid \vec{L} = \vec{\ell})$
- Repeat

Income at Age 17

- 1) Restrict to covariate stratum $\vec{L} = \vec{\ell}$
- 2) Estimate a smooth curve $E(Y(a) \mid \vec{L} = \vec{\ell})$
- 3) Repeat

- 1) Restrict to covariate stratum $\vec{L} = \vec{\ell}$
- 2) Estimate a smooth curve $\mathsf{E}(Y(a) \mid \vec{L} = \vec{\ell})$
- Repeat

Income at Age 17

- 1) Restrict to covariate stratum $\vec{L} = \vec{\ell}$
- 2) Estimate a smooth curve $E(Y(a) \mid \vec{L} = \vec{\ell})$
- 3) Repeat

The previous slide introduced the dose-response curve

The previous slide introduced the **dose-response curve**

The previous slide introduced the **dose-response curve**

Target trial:

► Take everyone in the population

The previous slide introduced the **dose-response curve**

- ► Take everyone in the population
- ► Give them treatment value a

The previous slide introduced the **dose-response curve**

- ► Take everyone in the population
- ► Give them treatment value a
- ▶ What is the average outcome $E(Y^a)$?

The previous slide introduced the **dose-response curve**

- ► Take everyone in the population
- ► Give them treatment value a
- ▶ What is the average outcome $E(Y^a)$?
- ▶ Draw the curve for all values of a

The previous slide introduced the **dose-response curve**

- ► Take everyone in the population
- ► Give them treatment value a
- ▶ What is the average outcome $E(Y^a)$?
- ▶ Draw the curve for all values of a

The previous slide introduced the **dose-response curve**

Target trial:

- ► Take everyone in the population
- ► Give them treatment value a
- ▶ What is the average outcome $E(Y^a)$?
- ► Draw the curve for all values of a

How one estimates:

ightharpoonup Define the adjustment set \vec{L}

The previous slide introduced the **dose-response curve**

Target trial:

- ► Take everyone in the population
- ► Give them treatment value a
- ▶ What is the average outcome $E(Y^a)$?
- ► Draw the curve for all values of *a*

How one estimates:

- ▶ Define the adjustment set \vec{L}
- ► Estimate $E(E(Y \mid A = a, \vec{L}))$

The previous slide introduced the **dose-response curve**

Target trial:

- ► Take everyone in the population
- ► Give them treatment value a
- ▶ What is the average outcome $E(Y^a)$?
- ► Draw the curve for all values of *a*

How one estimates:

- ▶ Define the adjustment set \vec{L}
- ► Estimate $E(E(Y \mid A = a, \vec{L}))$
 - ► Model Y given A and \vec{L}

The previous slide introduced the **dose-response curve**

Target trial:

- ► Take everyone in the population
- ► Give them treatment value a
- ▶ What is the average outcome $E(Y^a)$?
- Draw the curve for all values of a

How one estimates:

- ▶ Define the adjustment set \vec{L}
- ► Estimate $E(E(Y \mid A = a, \vec{L}))$
 - ► Model Y given A and \vec{L}
 - ► Set A to the value a

Dose-response curve

The previous slide introduced the **dose-response curve**

Target trial:

- ► Take everyone in the population
- ► Give them treatment value a
- ▶ What is the average outcome $E(Y^a)$?
- Draw the curve for all values of a

How one estimates:

- ▶ Define the adjustment set \vec{L}
- ► Estimate $E(E(Y \mid A = a, \vec{L}))$
 - ► Model Y given A and \vec{L}
 - ► Set *A* to the value *a*
 - Make a prediction for everyone. Report the average

darning: In strongly confounded settings, the dose-response a dangerous goal. Here is why.	se curve

Sparse data can lead to extrapolation

Population Subgroup (Confounders)

- Gray Subgroup
- Blue Subgroup

Sparse data can lead to extrapolation

Sparse data can lead to extrapolation

Question: What should one do?

Sparse data can lead to extrapolation: Three solutions

- 1. Extrapolate transparently: Additive model
- 2. Reduce extrapolation: Small shift
- 3. Avoid extrapolation: Incremental causal effects

1) Extrapolate transparently: Additive model

1) Extrapolate transparently: Additive model

1) Extrapolate transparently: Additive model

► For each person, do not consider all treatment values a

- ► For each person, do not consider all treatment values a
- ► Consider a shift from *A* to

- ► For each person, do not consider all treatment values a
- ► Consider a shift from A to
 - $ightharpoonup A + \delta$ (additive shift)

- ► For each person, do not consider all treatment values a
- ► Consider a shift from A to
 - $ightharpoonup A + \delta$
 - \triangleright kA

(additive shift) (multiplicative shift)

- ► For each person, do not consider all treatment values a
- ► Consider a shift from A to
 - $ightharpoonup A + \delta$
 - \triangleright kA

(additive shift) (multiplicative shift)

- ► For each person, do not consider all treatment values a
- ► Consider a shift from A to

 - ► kA (multiplicative shift)

Example: The effect of adding 1: $E(Y^{A+1} - Y^A)$

- ► For each person, do not consider all treatment values a
- ► Consider a shift from *A* to
- ► kA (multiplicative shift)

Example: The effect of adding 1: $E(Y^{A+1} - Y^A)$

Advantages:

- ► For each person, do not consider all treatment values a
- ► Consider a shift from A to
- ► kA (multiplicative shift)

Example: The effect of adding 1: $E(Y^{A+1} - Y^A)$

Advantages:

Only two potential outcomes for each person

- ► For each person, do not consider all treatment values a
- ► Consider a shift from A to

 - The Court of a Library 1 F(VA+1 VA)

Example: The effect of adding 1: $E(Y^{A+1} - Y^A)$

Advantages:

- Only two potential outcomes for each person
- ► One of them is observed

- ► For each person, do not consider all treatment values a
- ► Consider a shift from A to

 - ► kA (multiplicative shift)

Example: The effect of adding 1: $E(Y^{A+1} - Y^A)$

Advantages:

- ► Only two potential outcomes for each person
- ► One of them is observed
- ► The other is not far away

3) Avoid extrapolation: Incremental causal effects¹

¹Rothenhäusler, D., & Yu, B. (2019). Incremental causal effects. arXiv preprint arXiv:1907.13258.

3) Avoid extrapolation: Incremental causal effects¹

Take the limit of an extremely small additive shift:

$$\frac{\mathsf{E}\left(Y^{A+\delta}-Y^{A}\right)}{\delta}$$

¹Rothenhäusler, D., & Yu, B. (2019). Incremental causal effects. arXiv preprint arXiv:1907.13258.

3) Avoid extrapolation: Incremental causal effects¹

Take the limit of an extremely small additive shift:

$$\frac{\mathsf{E}\left(\mathsf{Y}^{\mathsf{A}+\delta}-\mathsf{Y}^{\mathsf{A}}\right)}{\delta}$$

This is the **local slope** of the **local dose-response curve**, averaged over the population (see next slide).

¹Rothenhäusler, D., & Yu, B. (2019). Incremental causal effects. arXiv preprint arXiv:1907.13258.

²This estimation idea comes from: Friedberg, R., Tibshirani, J., Athey, S., & Wager, S. (2020). Local linear forests. Journal of Computational and Graphical Statistics, 30(2), 503-517.

²This estimation idea comes from: Friedberg, R., Tibshirani, J., Athey, S., & Wager, S. (2020). Local linear forests. Journal of Computational and Graphical Statistics, 30(2), 503-517.

- 1. Learn a random forest
 - ► Predict college completion
 - ▶ Predictors include covariates \vec{L} and treatment A

²This estimation idea comes from: Friedberg, R., Tibshirani, J., Athey, S., & Wager, S. (2020). Local linear forests. Journal of Computational and Graphical Statistics, 30(2), 503-517.

- 1. Learn a random forest
 - ► Predict college completion
 - ightharpoonup Predictors include covariates \vec{L} and treatment A
- 2. Each leaf is a coarsened subgroup of $\{\vec{L}, A\}$

²This estimation idea comes from: Friedberg, R., Tibshirani, J., Athey, S., & Wager, S. (2020). Local linear forests. Journal of Computational and Graphical Statistics, 30(2), 503-517.

- 1. Learn a random forest
 - ► Predict college completion
 - ightharpoonup Predictors include covariates \vec{L} and treatment A
- 2. Each leaf is a coarsened subgroup of $\{\vec{L}, A\}$
- 3. Within each leaf, estimate OLS with $\{\vec{L}, A\}$ as predictors

²This estimation idea comes from: Friedberg, R., Tibshirani, J., Athey, S., & Wager, S. (2020). Local linear forests. Journal of Computational and Graphical Statistics, 30(2), 503-517.

- 1. Learn a random forest
 - ► Predict college completion
 - ightharpoonup Predictors include covariates \vec{L} and treatment A
- 2. Each leaf is a coarsened subgroup of $\{\vec{L}, A\}$
- 3. Within each leaf, estimate OLS with $\{\vec{L}, A\}$ as predictors
- 4. Coefficient on the treatment \approx incremental causal effect

²This estimation idea comes from: Friedberg, R., Tibshirani, J., Athey, S., & Wager, S. (2020). Local linear forests. Journal of Computational and Graphical Statistics, 30(2), 503-517.

Rate of change in college completion per \$10,000 income boost

Describing the covariates of those with

Small Effects

-0.1% to 0.3% increase in P(College) per \$10,000 income boost per \$10,000 income boost

Big Effects

0.6% to 0.9% increase in P(College)

Describing the covariates of those with

Small Effects

-0.1% to 0.3% increase in P(College) per \$10,000 income boost

Big Effects

0.6% to 0.9% increase in P(College) per \$10,000 income boost

% Black

Small Effects

-0.1% to 0.3% increase in P(College) per \$10,000 income boost

19%

Big Effects

0.6% to 0.9% increase in P(College) per \$10,000 income boost

% Black

Small Effects

-0.1% to 0.3% increase in P(College) per \$10,000 income boost

Big Effects

0.6% to 0.9% increase in P(College) per \$10,000 income boost

% Black 19% 34%

Small	Effects
Jillali	THEC12

-0.1% to 0.3% increase in P(College) per \$10,000 income boost

Big Effects

0.6% to 0.9% increase in P(College) per \$10,000 income boost

% Black

19%

34%

% Hispanic

18%

Small Effects	Big Effects
-0.1% to 0.3% increase in P(College) per \$10,000 income boost	0.6% to 0.9% increase in P(College) per \$10,000 income boost

% Black 19% 34% % Hispanic 18% 25%

Small Effects	Big Effects
-0.1% to 0.3% increase in P(College) per \$10,000 income boost	0.6% to 0.9% increase in P(College) per \$10,000 income boost

% Black	19%	34%
% Hispanic	18%	25%
% Father Absent	21%	

Big Effects

0.6% to 0.9%

increase in P(College)

50%

	per \$10,000 income boost	per \$10,000 income boost
% Black	19%	34%
% Hispanic	18%	25%

Small Effects

-0.1% to 0.3%

increase in P(College)

21%

% Father Absent

Big Effects

0.6% to 0.9%

increase in P(College)

	per \$10,000 income boost	per \$10,000 income boost
% Black	19%	34%
% Hispanic	18%	25%
% Father Absent	21%	50%
% Neither Parent Finished College	74%	

Small Effects

-0.1% to 0.3%

increase in P(College)

Big Effects

0.6% to 0.9%

	increase in P(College) per \$10,000 income boost	increase in P(College) per \$10,000 income boost
% Black	19%	34%
% Hispanic	18%	25%
% Father Absent	21%	50%
% Neither Parent Finished College	74%	90%

Small Effects

-0.1% to 0.3%

Big Effects

0.6% to 0.9%

	increase in P(College) per \$10,000 income boost	increase in P(College) per \$10,000 income boost
% Black	19%	34%
% Hispanic	18%	25%
% Father Absent	21%	50%
% Neither Parent Finished College	74%	90%
Median Income	\$77,751	

Small Effects

-0.1% to 0.3%

increase in P(College) increase in P(College)

Big Effects

0.6% to 0.9%

	per \$10,000 income boost	per \$10,000 income boost
% Black	19%	34%
% Hispanic	18%	25%
% Father Absent	21%	50%
% Neither Parent Finished College	74%	90%
Median Income	\$77,751	\$31,433

Small Effects

-0.1% to 0.3%

There exists a common strategy:

There exists a common strategy:

Outcome =
$$\beta_0 + \beta_1 \times \text{Income} + \beta_2 \times \text{(Confounder 1)} + \beta_3 \times \text{(Confounder 2)} + \ldots + \epsilon$$

There exists a common strategy:

Outcome =
$$\beta_0 + \beta_1 \times \text{Income} + \beta_2 \times \text{(Confounder 1)}$$

"effect" $+\beta_3 \times \text{(Confounder 2)}$
of $+\ldots +\epsilon$

There exists a common strategy:

$$\begin{aligned} \mathsf{Outcome} &= \beta_0 + \beta_1 \times \mathsf{Income} + \beta_2 \times (\mathsf{Confounder}\ 1) \\ &+ \beta_3 \times (\mathsf{Confounder}\ 2) \\ &+ \ldots + \epsilon \\ &\\ &\mathsf{income} \end{aligned}$$

But the effect actually

- varies across people

heterogeneity

There exists a common strategy:

$$\begin{aligned} \mathsf{Outcome} &= \beta_0 + \beta_1 \times \mathsf{Income} + \beta_2 \times (\mathsf{Confounder}\ 1) \\ &+ \beta_3 \times (\mathsf{Confounder}\ 2) \\ &+ \ldots + \epsilon \\ &\\ &\mathsf{income} \end{aligned}$$

But the effect actually

- varies across people
- varies across income values

heterogeneity nonlinearity

There exists a common strategy:

$$\begin{aligned} \mathsf{Outcome} &= \beta_0 + \beta_1 \times \mathsf{Income} + \beta_2 \times (\mathsf{Confounder}\ 1) \\ &+ \beta_3 \times (\mathsf{Confounder}\ 2) \\ &+ \ldots + \epsilon \\ &\\ &\mathsf{income} \end{aligned}$$

But the effect actually

- varies across people
- varies across income values

heterogeneity

nonlinearity

Nonlinear and heterogeneous patterns offer opportunities for new discoveries

Learning goals for today

At the end of class, you will be able to:

- 1. Define causal effects with continuous treatments
- 2. Understand the risks of extrapolation
- 3. Select causal estimands for continuous treatments that support the production of credible estimates

Let me know what you are thinking

tinyurl.com/CausalQuestions

Office hours TTh 11am-12pm and at calendly.com/ianlundberg/office-hours Come say hi!

If time allows: Discuss

How would you define the estimand?

Pick one or invent your own example.

- 1. More time exercising causes lower blood pressure.
- 2. More time sleeping improves focus in class.
- 3. Reading more pages per day promotes vocabulary development.
- 4. Smoking more cigarettes causes higher risk of lung cancer.

Things to consider:

- ► What treatment values are compared?
- Over whom will you average those counterfactual outcomes?
- ► Are there dangers of extrapolation? How would you mitigate them?