Token Composition: A Graph-Based Exploration of Ethereum Event Logs

Martin Harrigan

Dept. of Computing, Carlow Campus South East Technological University Rep. of Ireland martin.harrigan@setu.ie

Thomas Lloyd

Dept. of Computing, Carlow Campus South East Technological University Rep. of Ireland tomlloyd1992@gmail.com

Daire O'Broin

Dept. of Computing, Carlow Campus South East Technological University Rep. of Ireland daire.obroin@setu.ie

Abstract—Abstract goes here. Keywords—blockchain, tokens, tokenisation, decentralised finance

I. Introduction

Introduction goes here.

II. RELATED WORK

Related work goes here. [1]

III. TOKEN COMPOSITION

Token composition goes here.

IV. DATA

A. Ethereum Event Logs and Meta-Events

The Ethereum event logs record specific occurrences or outputs generated during the execution of contract code. They enable off-chain applications to react to on-chain events. A popular event is the Transfer event emitted by ERC 20 tokens [?]:

Listing 1. The ERC $20\ \text{Transfer}$ event specifies three parameters: from, to, and value.

The event has two special cases. In the first, the from address is the zero address (0×0) and the contract mints new tokens. In the second, the to address is the zero address and the contract burns existing tokens.

A single transaction can emit multiple events. We define a *meta-event* to be a sequence of events that match some pattern and are emitted by a single transaction. We define a *tokenising meta-event* to be a meta-event where the pattern is two Transfer events: one must indicate a transfer of tokens to the contract and another must indicate a new token being minted (*deposit & mint*), or one must indicate a token being burned and another must indicate a transfer of an existing token from the contract (*withdraw & burn*. Our aim is to identify instances where a token is tokenised by another token. In the terminology of ERC 4626, a tokenising meta-event corresponds to either a Deposit event or a Withdraw event. However, our tokenising meta-event does not require the contract to follow ERC 4626.

We extracted all Transfer events from Ethereum mainnet from block height 0 to 16 685 101 (February 2023) inclusive using Geth's eth_getLogs RPC method [?]. From the Transfer events, we identified 4 032 033 tokenising metaevents using the pattern described above. Table I shows a sample of the data. The first (resp., last) two rows are the earliest (resp., latest) two occurrences of tokenising metaevents in the data that perform a deposit & mint, and a withdraw & burn.

For example, the first row indicates a transaction that deposited a dust amount of ARC [?] to a contract in a one-to-one exchange for newly minted SWT [?] in January 2017. The third row indicates a transaction that withdrew 5183 BONE [?] from a contract in exchange for burning 5160 tbone in February 2023. We are not concerned with the individual utility or value of the tokens (or lack thereof); we are only interested in the fact that Token $\mathcal X$ can be deposited with a contract to mint Token $\mathcal Y$, and/or Token $\mathcal Y$ can be burned by a contract to withdraw Token $\mathcal X$.

We filter the tokenising meta-events to include only those meta-events that involve two tokens, Token $\mathcal X$ and Token $\mathcal Y$, such that there is at least one instance of Token $\mathcal X$ being deposited with a contract to mint Token $\mathcal Y$, and at least one instance of Token $\mathcal Y$ being burned by a contract to withdraw Token $\mathcal X$. In other words, the "and/or" conjunction in the previous paragraph is replaced by "and". This excludes *one-way token upgrades* where Token $\mathcal X$ can be deposited with a contract to mint Token $\mathcal Y$ but Token $\mathcal X$ cannot be withdrawn from the contract, and *one-way token burns* where Token $\mathcal Y$ can be burned by a contract to withdraw Token $\mathcal X$ but Token $\mathcal X$ cannot be deposited with the contract to mint Token $\mathcal Y$. Of the $4\,032\,033$ tokenising meta-events, $3\,461\,723$ meet the additional criterion. We will refer to the unfiltered and filtered tokenising meta-events in Sect. IV-C.

B. Off-Chain Data

CoinGecko [?] is a cryptocurrency data platform that aggregates fundamental analysis of tokens including market price, exchange volume, and market capitalisation.

DEX Screener [?] stores, parses, and analyses blockchain data to produce a token screener, charts, and analytics. They cover many blockchains, decentralised exchanges, and tokens. Each tokenising meta-event contains the address of the source token, the address of the target token, one of two possible pairs of actions (deposit & mint or withdraw & burn), the amount of the source token that was deposited or withdrawn, the amount of the target token that was minted or burned, and a transaction hash. The table includes four sample entries from the full set of $4\,032\,033$ tokenising meta-events: the earliest and latest tokenising meta-events that have deposit & mint and withdraw & burn actions.

Source Token	Target Token	Actions	Source Amount	Target Amount	Tx Hash
ARC (0xac709f)	SWT (0xb12a3c)	deposit & mint	dust	dust	0x549a12
DGZ (0x84178d)	preDGZ (0x18aa6e)	withdraw & burn	1371	150	0x2da232
BONE (0x981303)	tBONE (0xf7a038)	withdraw & burn	5183	5160	0x5dbe32
WETH (0xc02aaa)	aWETH (0x030ba8)	deposit & mint	25	25	0xb4281a

Fig. 1. A token graph, \mathcal{TG} , with eight vertices, t_0, t_1, \ldots, t_7 , and eight edges. Each edge corresponds to a token tokenising another token. For example, the token represented by t_5 tokenises the token represented by t_0 . The graph contains an undirected cycle (t_0, t_5, t_6) , a directed cycle (t_1, t_6) , and a loop (t_6)

C. The Token Graphs

We can construct a directed graph from the tokenising metaevents as follows. Each vertex corresponds to a distinct token. Each directed edge from a source vertex to a target vertex corresponds to a set of tokenising meta-events that deposits the source token and mints the target token, and/or withdraws the source token and burns the target token. In the terminology of ERC 4626, the source token is the *asset* and the target token is the *share*. Figure 1 shows an example token graph.

In the unfiltered case, the directed graph has 23 687 vertices (distinct tokens) and 23 549 edges representing pairs of tokens where the second tokenises the first with either deposit & mint or withdraw & burn actions. In the filtered case, the directed graph has 8424 vertices that are incident with at least one edge and 7536 edges representing pairs of tokens where the second tokenises the first with both deposit & mint and withdraw & burn actions. We will refer to the unfiltered and filtered token graphs in the remainder of the paper.

D. Data Limitations

Our input data, namely, Ethereum event logs, CoinGecko market data, and DEX Screener liquidity pool data, have limitations. Firstly, Ethereum event logs are unauthenticated: a contract can emit an event of its choosing. There is no guarantee that, say, an ERC-20 Transfer event accurately reflects an actual transfer [?]. Additionally, the first special case highlighted in Sect. IV-A is stipulated by ERC-20¹ but the second is not. However, event logs are generally accurate and

TABLE II

EACH EDGE IN A TOKEN GRAPH REPRESENTS A SET OF TOKENISING META-EVENTS. THE TOP FIVE MOST SIGNIFICANT EDGES IN TERMS OF THE NUMBER OF TOKENISING META-EVENTS THEY CONTAIN ARE SHOWN. THE RESULTS ARE THE SAME FOR BOTH THE UNFILTERED AND FILTERED TOKEN GRAPHS, I.E., THE SAME FIVE EDGES ARE PRESENT IN BOTH.

Source Token	Towast Talson	# Tokenising	
Source Token	Target Token	Meta-Events	
SHIB (0x95ad61)	xSHIB (0xb4a812)	402 186	
BONE (0x981303)	tBONE (0xf7a038)	203734	
SUSHI (0x6b3595)	xSUSHI (0x879824)	120221	
LEASH (0x27c70c)	xLEASH (0xa57d31)	75 180	
USDC (0xa0b869)	aUSDC (0xbcca60)	69 373	

malicious contracts can be easily excluded. For an aggregated analysis, such as ours, the impact should be minimal.

Secondly, the data from CoinGecko and DEX Screener are snapshots that were gathered in April 2024 whereas the Ethereum event logs have a temporal component. It is possible that a token had an entry on CoinGecko in the past, but, at the time the data was gathered, the entry no longer existed. It is also possible that a token was tracked by DEX Screener in the past, but, at the time the data was gathered, it was no longer being tracked. It is also possible that CoinGecko's and DEX Screener's coverage is incomplete or inaccurate. However, as a high-level measure of token popularity, the impact of the mismatch should be minimal.

Thirdly, tokenising meta-events are a heurstic for identifying instances where one token is tokenised by another. False positives create edges in the token graph where the token corresponding to the source vertex is not tokenised by the token corresponding to the target vertex; false negatives are pairs of tokens where one is tokenised by the other but there is no corresponding edge in the token graph. We will discuss both cases in Sect. V and Sect. VI.

V. ANALYSIS

In this section we examine the macro-topological structure of the unfiltered and filtered token graphs including degree distributions, connected component structure, and cyclic structure. We also examine the micro-topological structure of some individual tokens. We visualise the composition of tokens and identify their direct and transitive dependencies.

We note that each edge in a token graph represents a set of tokenising meta-events. Before examining the structure of the graphs, we can identify the most significant

^{1&}quot;A token contract which creates new tokens SHOULD trigger a Transfer event with the _from address set to 0x0 when tokens are created." [?]

Fig. 2. The in- and out-degree distributions of the unfiltered token graph show an inverse relationship between the degree of a vertex and the number of vertices with that degree in the graph. There are a small number of vertices with high degree and a large number of vertices with low degree.

Fig. 3. The in- and out-degree distributions of the filtered token graph show a similar inverse relationship as in Fig. 2.

edges in terms of the number of tokenising meta-events they contain. Table II shows the results for both the unfiltered and filtered token graphs. Three of the five edges represent the staking of memecoins (SHIB \rightarrow xSHIB, BONE \rightarrow tBONE, and LEASH \rightarrow xLEASH), one represents the staking of a governance token for a decentralised exchange (SUSHI \rightarrow xSUSHI), and one represents the supply of a stablecoin to a decentralised lending market (USDC \rightarrow aUSDC). Of course, we could also measure the significance of a edge based on, say, the volume of tokens transacted, the present USD value of the locked tokens, etc.

A. Degree Distributions

The in- and out-degree distributions of the unfiltered and filtered token graphs show an inverse relationship between

TABLE III
THE TOP FIVE VERTICES (TOKENS) IN THE UNFILTERED AND FILTERED
TOKEN GRAPHS BY IN-DEGREE AND OUT-DEGREE.

	Top Five by In-Degree		Top Five by Out-Degree	
	Token	Deg.	Token	Deg.
7	CHI (0×0000000^2)	471	USDC (0xa0b869)	3587
Infiltered	USDP (0x145668)	117	DAI (0x6b1754)	1923
]ţţ	aUSDC (0xbcca60)	84	USDT (0xdac17f)	1175
l E	aWETH (0x030ba8)	63	WETH (0xc02aaa)	951
-	aDAI (0x028171)	54	sUSD (0x57ab1e)	548
	XDP2 (0xe68c1d)	16	USDC (0xa0b869)	1037
led	XDP1 (0x134fc6)	15	DAI (0x6b1754)	752
Filter	cyUSD (0x1d0914)	14	USDT (0xdac17f)	396
臣	iDOL (0x7591a3)	13	WETH (0xc02aaa)	281
	agEUR (0x1a7e4e)	8	WBTC (0x2260fa)	211

the degree of a vertex and the number of vertices with that degree in the graph (see Fig. 2 and Fig. 3). Table III shows the top five vertices in the unfiltered and filtered token graphs by in-degree and out-degree. The out-degree entries are easy to explain: they are the tokens that are deposited with contracts in order to mint many other types of tokens. They include stablecoins (USDC, DAI, USDT and sUSD), wrapped ether (WETH), and wrapped bitcoin (WBTC). The in-degree entries are more complex and have multiple explanations. For example, CHI [?] is a gas token created by linch, a decentralised exchange aggregator, that is burned to obtain a reduction in transaction fees; in some transactions the burning of CHI is combined with the withdrawal of another token. This is a false positive generated by our heuristic since CHI does not tokenise a token. The remaining in-degree entries in the unfiltered category are due to token swaps performed during a deposit. For example, aDAI [?] is a yield-bearing token issued by AAVE, a decentralised lending market, in exchange for the stablecoin DAI. However, in some transactions, other tokens are supplied and swapped to DAI. These are also false positives since only DAI is tokenised by aDAI. In the filtered category, the in-degree entries are more reliable. For example, the iDOL token is minted when a user deposits various forms of the SBT token (e.g., SBT09180200, SBT09250200, etc.) according to the Lien Protocol [?]. Similarly, the agEUR token is a stablecoin by the Angle Protocol [?] that accepts a variety of tokens as collateral.

Figure 4 plots in-degrees against out-degrees in the unfiltered and filtered token graphs. The tokens whose corresponding vertices have both high in-degree and high out-degree are tokens that tokenise many other tokens, and are themselves tokenised by many other tokens. Examples include mUSD, a stablecoin issued by the mStable protocol [?] and the ageur token. This makes intuitive sense as stablecoins can be minted from various forms of collateral, and stablecoins can be used as collateral to mint other tokens.

B. Connected Component Structure

The unfiltered graph has 4082 weakly connected components. A giant component contains 13794 vertices ($\sim 58\%$) and 17711 edges ($\sim 75\%$). 3336 components ($\sim 82\%$ of the total) contain two connected vertices. These vertices correspond to

Fig. 4. In the unfiltered and filtered token graphs, we can identify vertices with both high in-degree and high out-degree.

Fig. 5. The unfiltered token graph contains a weakly connected component whose vertices correspond to tokens related to the Angle Protocol and Stake DAO.

pairs of tokens where at least one tokenises the other, but neither tokenises, or is tokenised by, a third. Interestingly, none of the tokens represented by vertices in these components have a non-zero market capitalisation according to CoinGecko or are traded in a liquidity pool according to DEX Screener. Their lack of popularity reflects their isolation in the token graph.

There are 418 components, other than the giant component, with more than two connected vertices. Figure 5 is an example from this set. It shows the tokenising relationships between tokens related to the Angle Protocol [?] and Stake DAO [?]. Stake DAO implements investment strategies based on other decentralised protocols. Their "Liquid Lockers" produce liquidity, voting power, and yield from lockable tokens. ANGLE is Angle's governance token. It can be deposited with Stake DAO to mint sdANGLE. It is not possible to burn sdANGLE and withdraw ANGLE: the edge between those vertices represents a one-way operation and is present in the unfiltered token graph but not in the filtered version. ANGLE and sdANGLE can be deposited in a gauge (liquidity pool) to mint sdANGLE-gauge. We can use this visualisation to

identify the direct and transitive dependencies of tokenising tokens such as sdANGLE and sdANGLE-gauge. Many of the other components in the set produce similar insights that relate to other tokens and protocols.

The filtered graph has 1491 weakly connected components. A giant component contains 4648 vertices (\sim 55%) and 5247 edges (\sim 70%). 1162 components (\sim 78% of the total) contain two connected vertices. There are 196 components, other than the giant component, with more than two connected vertices. Figure 6 is an example from this set that relates to the JPEG'd Protocol [?]. JPEG'd is a decentralised lending market where users can supply non-fungible-tokens (NFTs) as collateral and obtain loans in peth, a synthetic token that tracks the price of ether. JPEG is the protocol's governance token. The figure shows the various ways in which peth and JPEG can be tokenised by liquidity pools such as Curve's peth/Weth pool [?]. Unlike the operations represented by edges in Fig. 5, all operations represented by edges in Fig. 6 can be reversed by burning the tokenising tokens and withdrawing the underlying.

Both the unfiltered and filtered graphs contain giant weakly connected components. Exploring such structures requires an interactive user interface with navigational aids such as selection, panning, and zooming. As an illustrative example of the interesting structure in the giant components, we identified the longest directed path in the filtered token graph. It comprises nine vertices and represents the following sequence of tokens:

- 1) renBTC (0xeb4c27)
- 2) sBTC (0xfe18be)
- 3) crvRenWSBTC (0x075b1b)
- 4) tbtc/sbtcCrv (0x64eda5)
- 5) btbtc/sbtcCrv (0xb9d076)
- 6) ibBTC (0xc4e159)
- 7) wibBTC (0x8751d4)
- 8) ibbtc/sbtcCRV-f (0xfbdca6)
- 9) bibbtc/sbtcCRV-f (0xae96ff)

renBTC can be deposited with a contract to mint sBTC, sBTC can be deposited with a contract to mint crvRenWSBTC, etc. The reverse operations can also be performed (withdraw & burn). The chain involves tokens from several different protocols. It is an example of "composition in the wild" — groups of interacting smart contracts than span multiple protocols.

C. Cyclic Structure

VI. CONCLUSION

Conclusion goes here.

REFERENCES

 T. Lloyd, D. O'Broin, and M. Harrigan, "Emergent outcomes of the veToken model," in *The IEEE International Conference on Omni-Layer Intelligent Systems (COINS)*, 2023.

Fig. 6. The filtered token graph contains a weakly connected component whose vertices correspond to tokens related to the JPEG'd Protocol.