	DSC-530: Predictive Modeling Week 6 Assignment: Predictive Modeling Using Generalized Linear Models Author: Jonathan Ibifubara Pollyn
In [44]:	#Importing the required packages import pandas as pd import numpy as np import statsmodels.api as sm from scipy import stats import statsmodels.tools as stattools import matplotlib.pyplot as plt import math
In [4]:	<pre>#Importing the Adult Data set adult = pd.read_csv('C:/School/DSC-530/DataSets/Adult')</pre>
In [6]: Out[6]:	#View first 5 of the data adult.head(5) age workclass demogweight education num status occupation relationship race sex capital capital num status occupation relationship race sex gain loss years country
	039State-gov77516Bachelors13Never-marriedAdm-clericalNot-in-familyWhiteMale2174040United-States150Self-emp-not-inc83311Bachelors13Civ-managerialExec-managerialHusbandWhiteMale0013United-States
	2 38 Private 215646 HS-grad 9 Divorced Handlers- cleaners family White Male 0 0 40 United-States 3 53 Private 234721 11th 7 civ- cleaners cleaners Husband Black Male 0 0 40 United-States
	Married- Prof- spouse Wife Black Female 0 0 40 Cuba Spouse Wife Black Female 0 0 40 Cuba
In [9]:	1. Build a logistic regression model to predict the income of a person based on their age, education (as a number, with variable num), and the hours worked per week. Obtain the summary of the model. #Isolating the predictor and response variables X = pd.DataFrame(adult[['age', 'education-num', 'hours-per-week']])
In []:	<pre>X = pd.DataFrame(adult[['age', 'education-num', 'nours-per-week']]) X = sm.add_constant(X)</pre>
In [11]: Out[11]:	x.head(5) const age education-num hours-per-week 0 1.0 39 13 40
	1 1.0 50 13 13 2 1.0 38 9 40 3 1.0 53 7 40 4 1.0 28 13 40
In [22]:	<pre>income_var = np.array(adult['income']) (income_cat, income_cat_dict) = stattools.categorical(income_var, drop=True, dictnames=True)</pre>
<pre>In [23]: Out[23]:</pre>	<pre>income_cat array([[1., 0.],</pre>
In [24]:	income_cat_dict
Out[24]: In [25]:	<pre>{0: '<=50K.', 1: '>50K.'} y = pd.DataFrame(income_cat)</pre>
In [29]: In [31]:	<pre>income_ind = pd.get_dummies(adult['income'], drop_first = True) y = pd.DataFrame(income_ind)</pre>
In [32]: Out[32]:	У > 50К.
	 0 1 0 2 0 3 0
	4 0 24995 0
	 24996 0 24997 0 24998 0 24999 0
In [34]:	25000 rows × 1 columns logreg01 = sm.Logit(y, X).fit()
	Optimization terminated successfully. Current function value: inf Iterations 7 C:\Anaconda\lib\site-packages\statsmodels\discrete\discrete_model.py:1810: RuntimeWarning: overflow encountered in exp return 1/(1+np.exp(-X)) C:\Anaconda\lib\site packages\statsmodels\discrete\discrete discrete discrete model.py:1863: RuntimeWarning: divide by Tore encountered
In [35]:	<pre>C:\Anaconda\lib\site-packages\statsmodels\discrete\discrete_model.py:1863: RuntimeWarning: divide by zero encou ntered in log return np.sum(np.log(self.cdf(q*np.dot(X,params)))) logreg01.summary2()</pre>
	<pre>C:\Anaconda\lib\site-packages\statsmodels\discrete\discrete_model.py:1810: RuntimeWarning: overflow encountered in exp return 1/(1+np.exp(-X)) C:\Anaconda\lib\site-packages\statsmodels\discrete\discrete_model.py:1863: RuntimeWarning: divide by zero encou ntered in log return np.sum(np.log(self.cdf(q*np.dot(X,params))))</pre>
	<pre>C:\Anaconda\lib\site-packages\statsmodels\base\model.py:547: HessianInversionWarning: Inverting hessian failed, no bse or cov_params available warnings.warn('Inverting hessian failed, no bse or cov_params ' C:\Anaconda\lib\site-packages\statsmodels\base\model.py:547: HessianInversionWarning: Inverting hessian failed, no bse or cov_params available warnings.warn('Inverting hessian failed, no bse or cov_params '</pre>
Out[35]:	Model: Logit Pseudo R-squared: inf Dependent Variable: >50K. AIC: inf Date: 2021-10-11 12:14 BIC: inf No. Observations: 25000 Log-Likelihood: -inf
	Df Model: 3 LL-Null: 0.0000 Df Residuals: 24996 LLR p-value: 1.0000 Converged: 1.0000 Scale: 1.0000 No. Iterations: 7.0000
	Coef. Std.Err. z P> z [0.025 0.975] const -8.4611 0.1252 -67.5880 0.0000 -8.7064 -8.2157 age 0.0459 0.0013 34.9566 0.0000 0.0434 0.0485
	education-num 0.3449 0.0074 46.5794 0.0000 0.3304 0.3595 hours-per-week 0.0423 0.0014 29.1656 0.0000 0.0394 0.0451 1. Are there any variables that should be removed from the model from the previous exercise? If so, remove the variables and rerun the
In []:	model. #No
In [37]:	1. Write the descriptive form of the final logistic regression model from the previous exercise. #phat_income = (exp(-8.461+0.046(age)+0.345(education-num)+0.042(hours-per-week)/1+exp(-8.461+0.046(age)+0.345)
In [46]:	1. Interpret the coefficient of the age variable. math.exp(0.049) 1.050220350740028
In [48]:	1. Find the impact on the probability of having high income for every 10 years a person is older. math.exp(0.049*10)
Out[48]:	1.6323162199553791. Interpret the coefficient of the num variable.
In [49]: Out[49]:	math.exp (0.3449) 1.4118487277354066 1. Find the impact on the probability of having high income for every four or more years of education a person has.
In [50]: Out[50]:	math.exp(0.3449*4) 3.9733119847934852
In [51]:	1. Interpret the coefficient of the per.week variable. math.exp(0.0423)
Out[51]: In [52]:	 1.0432073940293334 1. Find the impact on the probability of having high income for every five or more hours per week a person works. math.exp(0.0423*5)
Out[52]:	1.2355299656287 1. Obtain the predicted values using the model from the previous exercise. Compare the predicted values to the actual values.
In [38]:	<pre>ypred = logreg01.predict(X)</pre> <pre>ypred</pre>
Out[39]:	0 0.378923 1 0.244160 2 0.127881 3 0.127805 4 0.269032
	24995
In [40]:	<pre>#Actual values yture = adult['income']</pre>
Out[41]:	>50K. 0 0 1 0
	2 0 3 0 4 0
	24995 0 24996 0 24997 0
	24998 0 24999 0 25000 rows × 1 columns
In [53]:	1. Build a Poisson regression model to predict the years of education a person has (using the variable num) based on a person's age and the hours they work per week. Obtain the summary of the model. poisreg01 = sm.GLM(y, X, family = sm.families.Poisson()).fit()
In [54]: Out[54]:	poisreg01.summary() Generalized Linear Model Regression Results Dep. Variable: >50K. No. Observations: 25000
	Model:GLMDf Residuals:24996Model Family:PoissonDf Model:3Link Function:logScale:1.0000
	Method: IRLS Log-Likelihood: -12770. Date: Mon, 11 Oct 2021 Deviance: 13571. Time: 13:05:20 Pearson chi2: 1.66e+04 No. Iterations: 6
	Covariance Type: nonrobust coef std err z P> z [0.025] 0.975] const -5.8308 0.080 -73.288 0.000 -5.987 -5.675
	age 0.0275 0.001 28.924 0.000 0.029 education-num 0.2100 0.005 39.866 0.000 0.200 0.220 hours-per-week 0.0230 0.001 24.289 0.000 0.021 0.025
In []:	1. Are there any variables that should be removed from the model from the previous exercise? If so, remove the variables and rerun the model. #No
In [55]:	1. Write the descriptive form of the final Poisson regression model from the previous exercise. #income = exp(-5.831+0.028(age)+0.210(enducation-num)+0.023(hours-per-week))
In [56]:	1. Obtain the predicted values using the model from the previous exercise. Compare the predicted values to the actual values. ypred_poisson = poisreg01.predict(X)
In [57]: Out[57]:	ypred_poisson 0 0.330078 1 0.239652
	2 0.138660 3 0.137560 4 0.244014 24995 0.127161 24996 0.082287 24997 0.126570
	24997
In [58]:	Length: 25000, dtype: float64 #Actual value ytrue = adult['income']