Санкт-Петербургский Государственный Университет

Факультет математики и компьютерных наук

Анализ Фурье

Конспект основан на лекциях Романа Викторовича Бессонова

29 января 2021 г.

Конспект основан на лекциях по анализу Фурье, прочитанных Романом Викторовичем Бессоновым студентам Факультета математики и компьютерных наук Санкт-Петербургского государственного университета в осеннем семестре 2020–2021 учебного года. В конспекте содержится материал 5-го семестра. Авторы: Михаил Опанасенко Александр Гребенников © 2020 г. Распространяется под лицензией Creative Commons Attribution 4.0 International License, CM. https://creativecommons.org/licenses/by/4.0/. Последняя версия и исходный код:

Сайт СПБГУ: https://spbu.ru.

Сайт факультета МКН: https://math-cs.spbu.ru.

Оглавление

Аналі	из Фурь	be	1
1	Преобразование Фурье на классе Шварца		1
	1.1	Определение	1
	1.2	Пространство Шварца	1
	1.3	Алгебраические свойства преобразования Фурье	2
	1.4	Формула обращения для преобразования Фурье	6
	1.5	Преобразование Фурье — гомеоморфизм $\mathcal{S}(\mathbb{R}^n)$	7
	1.6	Преобразование Фурье в $L^2(\mathbb{R}^n)$ и его унитарность	9
2	Преобразование Фурье на классе распределений медленного роста		10
	2.1	Определение распределений и их свойства	10
	2.2	Распределения медленного роста	11
	2.3	Распределения, соответствующие функциям	12
	2.4	Примеры распределений медленного роста	12
	2.5	Преобразование Фурье на $\mathcal{S}'(\mathbb{R}^n)$	13
	2.6	Согласованность определений преобразования Фурье	14
	2.7	Дифференцирование распределений	15
	2.8	Произведение распределения и гладкой функции	16
	2.9	Распределения и свёртка	17
	2.10	Преобразование Фурье свёртки	18
	2.11	Ещё один пример	19
3	Прил	ожения преобразования Фурье	19
	3.1	Теорема Хёрмандера	19
	3.2	Теорема Пэли-Винера	22
	3.3	Следствия из теоремы Пэли-Винера	25
	3.4	Лемма Римана-Лебега	26
	3.5	Теорема Котельникова-Шеннона-Виттакера	27
4	Дискретное преобразование Фурье		
	4.1	Напоминание и примеры	29
	4.2	Поточечная сходимость ряда Фурье	29
	4.3	Теорема Фейера	31
	4.4	Теорема Харди	34
5	Форм	ула суммирования Пуассона	36
6	Проблема круга		
	6.1	Постановка и идея доказательства	38
	6.2	Предварительные леммы	39

	6.3	Доказательство	42
7	Teope	ема Рисса-Торина и её приложения	44
	7.1	Теорема Рисса-Торина	44
	7.2	Неравенство Юнга-Хаусдорфа	46
	7.3	Неравенство Юнга для свёртки	47
8	Mepa	Xaapa	48
	8.1	Локально компактные группы и инвариантные меры	48
	8.2	Существование меры Хаара	49
	8.3	Единственность меры Хаара	53
	8.4	Примеры мер Хаара	55
9	Преобразование Фурье на локально компактных абелевых группах		
	9.1	Основные определения и примеры	56
	9.2	Свойства сдвига, свёртки и преобразования Фурье	57
	9.3	Одна полезная лемма	60
10	Теорема Петера-Вейля		
	10.1	Формулировка	61
	10.2	Вспомогательные леммы	61
	10.3	Доказательство теоремы Петера-Вейля	64
	10.4	Следствия из теоремы Петера-Вейля	65

Анализ Фурье

1 Преобразование Фурье на классе Шварца

1.1 Определение

Определение. Преобразованием Фурье функции $f \in L^1(\mathbb{R}^n)$ называется интеграл

$$(\mathcal{F}f)(t) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x)e^{-i\langle x,t\rangle} d\lambda_n(x), \qquad t \in \mathbb{R}^n.$$

Здесь $f: \mathbb{R}^n \to \mathbb{C}$, $L^1(\mathbb{R}^n) = L^1(\mathbb{R}^n, \lambda_n)$, λ_n — мера Лебега в пространстве \mathbb{R}^n , $\langle x, t \rangle$ — стандартное скалярное произведение в \mathbb{R}^n .

Определение. Обратным преобразованием Фурье функции $f \in L^1(\mathbb{R}^n)$ называется интеграл

$$(\mathcal{F}^{-1}f)(t) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x)e^{i\langle x,t\rangle} d\lambda_n(x), \qquad t \in \mathbb{R}^n.$$

Обозначение. Если $x = (x_1, ..., x_n) \in \mathbb{R}^n$, то

$$x^{\alpha} := x_1^{\alpha_1} \cdot \ldots \cdot x_n^{\alpha_n}, \qquad |x|^{\alpha} := |x_1|^{\alpha_1} \cdot \ldots \cdot |x_n|^{\alpha_n}.$$

1.2 Пространство Шварца

Определение. Пространством Шварца $S(\mathbb{R}^n)$ называется множество таких функций $f \in C^{\infty}(\mathbb{R}^n, \mathbb{C})$, что для любых мультииндексов $\alpha = (\alpha_1, \dots, \alpha_n)$ и $\beta = (\beta_1, \dots, \beta_n)$ с целыми неотрицательными коэффициентами выполнено условие

$$p_{\alpha,\beta}(f) = \sup_{x \in \mathbb{R}^n} |x|^{\alpha} \left| \frac{\partial^{|\beta|} f}{\partial x^{\beta}}(x) \right| < \infty.$$

Другими словами, $\mathcal{S}(\mathbb{R}^n)$ — это гладкие функции, все частные производные которых убывают на бесконечности быстрее любого полинома. Нетрудно видеть, что $p_{\alpha,\beta}$ — полунормы.

Пример 1.1. $e^{-||x||^2} \in \mathcal{S}(\mathbb{R}^n)$.

Пример 1.2. Если $f \in C_0^\infty(\mathbb{R}^n)$, то $f \in \mathcal{S}(\mathbb{R}^n)$.

 $^{^1}$ Напомним, что $C_0^\infty(\mathbb{R}^n)$ — гладкие функции с компактным носителем. Ясно, что при взятии производной носитель не увеличивается, а непрерывная функция на компакте ограничена.

Нетрудно заметить, что функции $p_{\alpha,\beta}$ на $\mathcal{S}(\mathbb{R}^n)$ из определения пространства Шварца — полунормы. С помощью них можно задать на $\mathcal{S}(\mathbb{R}^n)$ топологию.

Определение. База топологии $\mathcal{S}(\mathbb{R}^n)$ в точке $f \in \mathcal{S}(\mathbb{R}^n)$ — это множество вида

$$V_{A,\varepsilon}(f) := \{ g \in \mathcal{S}(\mathbb{R}^n) : p_{\alpha,\beta}(f - g) < \varepsilon \ \forall p_{\alpha,\beta} \in A \},$$

$$(1.1)$$

где A — это произвольный конечный набор полунорм $p_{\alpha,\beta}$.

Ясно, что $\mathcal{S}(\mathbb{R}^n)$ с указанной топологией — это локально выпуклое (линейное топологическое) пространство.

Утверждение 1.1. $S(\mathbb{R}^n)$ — пространство Фреше².

Доказательство. Определим

$$\rho(f,g) := \sum_{n \geqslant 1} 2^{-n} \frac{p_n(f-g)}{p_n(f-g) + 1},$$

где $\{p_n\}$ — занумерованные в произвольном порядке полунормы $p_{\alpha,\beta}$. Нетрудно проверить³, что топология, задаваемая такой инвариантной метрикой, совпадает с топологией, задаваемой окрестностями (1.1).

Осталось проверить полноту. Пусть $\{f_k\}$ — последовательность Коши в метрике ρ . Пространство непрерывных ограниченных функций $C_b(\mathbb{R}^n)$ вместе с sup-нормой банахово⁴, а потому функции $x^{\alpha} \frac{\partial^{|\beta|}}{\partial x^{\beta}} f_k$ сходятся к некоторой непрерывной ограниченной $f_{\alpha,\beta}$ для любых мультииндексов α,β . По теореме Стокса–Зейделя⁵

$$x^{\alpha} \frac{\partial^{|\beta|}}{\partial x^{\beta}} f_{0,0} = f_{\alpha,\beta}.$$

Значит, $f_{0,0} \in \mathcal{S}(\mathbb{R}^n)$. Кроме того, $\rho(f_k, f_{0,0}) \to 0$, что и требовалось.

1.3 Алгебраические свойства преобразования Фурье

Теорема 1.2 (алгебраические свойства преобразования Фурье). Для любой функции $f \in \mathcal{S}(\mathbb{R}^n)$ выполнены следующие свойства:

(1)
$$\mathcal{F}(f(\square-x_0))(t)=e^{-i\langle x_0,t\rangle}(\mathcal{F}f)(t)$$
, где $x_0\in\mathbb{R}^n,\,t\in\mathbb{R}^n;\,^6$

(2)
$$\mathcal{F}(e^{i\langle x,t_0\rangle}f)(t) = (\mathcal{F}f)(t-t_0);$$

 $^{^{2}}$ Пространство Фреше — это полное метризуемое локально выпуклое пространство.

 $^{^3}$ Мы это доказывали в курсе функционального анализа для произвольного ЛВП со счётным числом полунорм.

⁴Это факт из функционального анализа.

⁵Она утверждает, что если $h_k \in C^1(\mathbb{R}), h_k \to h \in C(\mathbb{R})$ и $h_k' \rightrightarrows g \in C(\mathbb{R})$, то h' = g. В данном случае все сходимости равномерны.

⁶Здесь $f(\Box - x_0)$ обозначает функцию $t \mapsto f(t - x_0)$.

(3) если $\alpha = (\alpha_1, \ldots, \alpha_k)$,

$$D_{\alpha} = \prod_{k=1}^{n} \left(\frac{1}{i} \frac{\partial}{\partial x_k} \right)^{\alpha_k},^{7}$$

то $(\mathcal{F}(D_{\alpha}f))(t) = t^{\alpha}(\mathcal{F}f)(t)$.

- (4) $\mathcal{F}(x^{\alpha}f)(t) = (-1)^{|\alpha|}D_{\alpha}(\mathcal{F}f)(t);$
- (5) для любых $f, g \in L^1$ имеет место равенство

$$\mathcal{F}(f * g) = (2\pi)^{n/2} (\mathcal{F}f) \cdot (\mathcal{F}g),$$

где

$$(f * g)(y) = \int_{\mathbb{R}^n} f(x)g(y - x) \, \mathrm{d}\lambda_n(x)$$

— свёртка функций f и g.

Доказательство.

(1) Распишем по определению:

$$\begin{split} \mathcal{F}(f(\Box - x_0))(t) &= \frac{1}{(2\pi)^{n/2}} \int\limits_{\mathbb{R}^n} f(x - x_0) e^{-i\langle x, t \rangle} \, \mathrm{d}\lambda_n(x) \\ &= \frac{1}{(2\pi)^{n/2}} \int\limits_{\mathbb{R}^n} f(w) e^{-i\langle w + x_0, t \rangle} \, \mathrm{d}\lambda_n(w) \\ &= e^{-i\langle x_0, t \rangle} (\mathcal{F}f)(t). \end{split}$$

(2) По определению:

$$\mathcal{F}(e^{i\langle x,t_0\rangle}f)(t) = \frac{1}{(2\pi)^{n/2}}\int_{\mathbb{R}^n} f(x)e^{i\langle x,t_0\rangle - i\langle x,t\rangle} \,\mathrm{d}\lambda_n(x) = (\mathcal{F}f)(t-t_0).$$

(3) Доказываем по индукции. Достаточно рассмотреть случай $\alpha = (1, 0, \dots, 0)$:

$$\mathcal{F}\left(\frac{1}{i}\frac{\partial}{\partial x_{1}}f\right)(t) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^{n}} \frac{1}{i} \left(\frac{\partial}{\partial x_{1}}f\right)(x) \cdot e^{-i\langle x,t\rangle} \, \mathrm{d}\lambda_{n}(x)$$

$$= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^{n-1}} \left[\left.\frac{1}{i}f(x) \cdot e^{-i\langle x,t\rangle}\right|_{x_{1}=-\infty}^{x_{1}=+\infty}$$

$$-\int_{\mathbb{R}} \frac{1}{i}f(x) \left(\frac{\partial}{\partial x_{1}}(e^{-i\langle x,t\rangle})\right)(x,t) \, \mathrm{d}x_{1}\right] \, \mathrm{d}\lambda_{n-1}(x)$$

$$= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}} \left(-\frac{1}{i}\right) \cdot (-it_{1}) \cdot f(x)e^{-i\langle x,t\rangle} \, \mathrm{d}x_{1} \, \mathrm{d}\lambda_{n-1}(x)$$

 $^{^7}$ Эта запись обозначает композицию дифференциальных операторов.

$$= t_1(\mathcal{F}f)(t) = t^{\alpha}(\mathcal{F}f)(t).$$

(4) Аналогично, достаточно рассмотреть случай $\alpha = (1, 0, ..., 0)$:

$$\begin{split} \mathcal{F}(x_1 f)(t) &= \frac{1}{(2\pi)^{n/2}} \int\limits_{\mathbb{R}^n} x_1 f(x) e^{-i\langle x, t \rangle} \, \mathrm{d}\lambda_n(x) \\ &= \frac{1}{(2\pi)^{n/2}} \int\limits_{\mathbb{R}^n} f(x) \frac{1}{-i} \left(\frac{\partial}{\partial t_1} e^{-i\langle x, t \rangle} \right) (x, t) \, \mathrm{d}\lambda_n(x) \\ &= \frac{1}{(2\pi)^{n/2}} \frac{1}{-i} \left(\frac{\partial}{\partial t_1} \int\limits_{\mathbb{R}^n} f(x) e^{-i\langle x, t \rangle} \, \mathrm{d}\lambda_n(x) \right) (t) \\ &= -D_{\alpha}(\mathcal{F}f)(t). \end{split}$$

Здесь третье равенство верно, так как если навесить на обе его части интеграл по t_1 , то получится в точности теорема Фубини.

(5) Для начала поймём, что $f * g \in L^1(\mathbb{R}^n)$:

$$\int_{\mathbb{R}^{n}} \left| \int_{\mathbb{R}^{n}} f(x)g(y-x) \, d\lambda_{n}(x) \right| d\lambda_{n}(y) \leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |f(x)| |g(y-x)| \, d\lambda_{n}(y) \, d\lambda_{n}(x)$$

$$= \int_{\mathbb{R}^{n}} |f(x)| \, d\lambda_{n}(x) \cdot \int_{\mathbb{R}^{n}} |g(y)| \, d\lambda_{n}(y).$$

(Здесь мы пользуемся инвариантностью меры Лебега относительно сдвигов и теоремой Тонелли.) Значит, $\mathcal{F}(f*g)$ определено. Распишем:

$$\begin{split} (\mathcal{F}(f*g))(t) &= \frac{1}{(2\pi)^{n/2}} \int\limits_{\mathbb{R}^n} \int\limits_{\mathbb{R}^n} f(x)g(y-x)e^{-i\langle y,t\rangle} \, \mathrm{d}\lambda_n(x) \, \mathrm{d}\lambda_n(y) \\ &= \frac{1}{(2\pi)^{n/2}} \int\limits_{\mathbb{R}^n} f(x)e^{-i\langle x,t\rangle} \int\limits_{\mathbb{R}^n} g(y-x)e^{-i\langle y-x,t\rangle} \cdot \, \mathrm{d}\lambda_n(y) \, \mathrm{d}\lambda_n(x) \\ &= (2\pi)^{n/2} (\mathcal{F}f)(t) \cdot (\mathcal{F}g)(t), \end{split}$$

что и требовалось.

Отметим, что $L^1(\mathbb{R})$ — коммутативная банахова алгебра относительно операции свёртки.

Лемма 1.3. Имеет место равенство

$$\mathcal{F}(e^{-\|x\|^2/2})(t) = e^{-\|t\|^2/2}.$$

Доказательство. Если \mathcal{F}_1 — преобразование Фурье на $\mathcal{S}(\mathbb{R})$, то

$$\mathcal{F}\left(e^{-\|x\|^2/2}\right)(t) = \prod_{k=1}^n \mathcal{F}_1\left(e^{-\widetilde{x}^2/2}\right)(t_k), \qquad (\widetilde{x} \in \mathbb{R}).$$

Поэтому можно считать, что n = 1.

$$\mathcal{F}_{1}(e^{-x^{2}/2}) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-x^{2}/2} e^{-ixt} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-(x^{2}+2ixt-t^{2})/2} dx \cdot e^{-t^{2}/2}$$

$$= e^{-t^{2}/2} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-(x+it)^{2}/2} dx.$$

Поскольку $g(z)=e^{-z^2/2}$ — целая функция, $\int_{\Gamma_N}g\,\mathrm{d}z=0$, где Γ_N — прямоугольник вида (см. рисунок 1)

$$\Gamma_{1,N} + \Gamma_{2,N} + \Gamma_{3,N} + \Gamma_{4,N} = [-N,N] + [N,N+it] + [N+it,-N+it] + [-N+it,-N].$$

Очевидно, что $\int_{\Gamma_{2,N}} g \, \mathrm{d}z \xrightarrow[N \to +\infty]{} 0$ и $\int_{\Gamma_{4,N}} g \, \mathrm{d}z \xrightarrow[N \to +\infty]{} 0$. Следовательно,

Рис. 1: Контур Γ_N

$$\int\limits_{\Gamma_{1,N}} g\,\mathrm{d}z + \int\limits_{\Gamma_{3,N}} g\,\mathrm{d}z \xrightarrow[N \to +\infty]{} 0.$$

Значит,

$$\int_{\mathbb{R}} e^{-(x+it)^2/2} dx = -\lim_{N \to +\infty} \int_{\Gamma_{2,N}} g dz = \lim_{N \to +\infty} \int_{\Gamma_{1,N}} g dz = \int_{\mathbb{R}} e^{-x^2/2} dx = \sqrt{2\pi}.$$

Таким образом,

$$\mathcal{F}_1(e^{-x^2/2}) = e^{-t^2/2} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-(x+it)^2/2} dx = e^{-t^2/2},$$

что и требовалось.

1.4 Формула обращения для преобразования Фурье

Упражнение. Докажите, что если $f \in \mathcal{S}(\mathbb{R}^n)$, то $\mathcal{F}f \in \mathcal{S}(\mathbb{R}^n)$.

Теорема 1.4 (формула обращения для преобразования Фурье). Для любой функции $f \in \mathcal{S}(\mathbb{R}^n)$ и вектора $x \in \mathbb{R}^n$ выполнено

$$f(x) = \mathcal{F}^{-1}((\mathcal{F}f)(\square))(x),$$

то есть

$$f(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{D}^n} \left(\frac{1}{(2\pi)^{n/2}} \int_{\mathbb{D}^n} f(y) e^{-i\langle y, t \rangle} d\lambda_n(y) \right) e^{i\langle x, t \rangle} d\lambda_n(t).$$

(По теореме об алгебраических свойствах преобразования Фурье внутри первого интеграла стоит функция из $\mathcal{S}(\mathbb{R}^n)$.)

Доказательство. Сначала проверим, что формула верна в точке x = 0:

$$\mathcal{F}^{-1}\big((\mathcal{F}f)(\square)\big)(0) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(y) e^{-i\langle y, t \rangle} \, \mathrm{d}\lambda_n(y) \, \mathrm{d}\lambda_n(t)$$

$$= \frac{1}{(2\pi)^n} \lim_{\varepsilon \to 0} \int_{\mathbb{R}^n} e^{-\varepsilon^2 \|t\|^2/2} \int_{\mathbb{R}^n} f(y) e^{-i\langle y, t \rangle} \, \mathrm{d}\lambda_n(y) \, \mathrm{d}\lambda_n(t)$$
[теорема Фубини] =
$$\frac{1}{(2\pi)^n} \lim_{\varepsilon \to 0} \int_{\mathbb{R}^n} f(y) \int_{\mathbb{R}^n} e^{-\varepsilon^2 \|t\|^2/2} e^{-i\langle y, t \rangle} \, \mathrm{d}\lambda_n(t) \, \mathrm{d}\lambda_n(y). \tag{1.2}$$

Во втором равенстве используется теорема Лебега о мажорированной сходимости. Посчитаем внутренний интеграл:

$$\int\limits_{\mathbb{R}^n} e^{-\varepsilon^2 \|t\|^2/2} e^{-i\langle y,t\rangle} \, \mathrm{d}\lambda_n(t) = [s = \varepsilon t] = \int\limits_{\mathbb{R}^n} e^{-\|s\|^2/2} e^{-i\langle \frac{y}{\varepsilon},s\rangle} \, \mathrm{d}\lambda_n(s) \cdot \varepsilon^{-n}$$
 [лемма 1.3] $= e^{\|\frac{y}{\varepsilon}\|^2/2} \cdot \varepsilon^{-n} (2\pi)^{n/2}$.

Продолжим равенство (1.2):

$$\begin{split} \mathcal{F}^{-1}\big((\mathcal{F}f)(\square)\big)(0) &= \frac{1}{(2\pi)^{n/2}} \lim_{\varepsilon \to 0} \int\limits_{\mathbb{R}^n} f(y) \varepsilon^{-n} e^{-\|\frac{y}{\varepsilon}\|^2/2} \, \mathrm{d}\lambda_n(y) \\ &= \frac{1}{(2\pi)^{n/2}} \lim_{\varepsilon \to 0} \int\limits_{\mathbb{R}^n} f(\varepsilon w) e^{-\|w\|^2/2} \, \mathrm{d}\lambda_n(w) \\ &[\text{т. Лебега}] &= \frac{1}{(2\pi)^{n/2}} \int\limits_{\mathbb{R}^n} f(0) e^{-\frac{1}{2}\|w\|^2} \, \mathrm{d}\lambda_n(w) \\ &[\text{лемма 1.3}] &= f(0). \end{split}$$

Теперь будем доказывать общий случай. Как мы помним из теоремы 1.2(1),

$$\begin{split} e^{i\langle x,t\rangle} \mathcal{F}(f)(t) &= e^{i\langle x,t\rangle} \int_{\mathbb{R}^n} f(y) e^{-i\langle y,t\rangle} \, \mathrm{d}\lambda_n(y) \\ &= \int_{\mathbb{R}^n} f(y) e^{-i\langle y-x,t\rangle} \, \mathrm{d}\lambda_n(y) \\ &= \int_{\mathbb{R}^n} f(w+x) e^{-i\langle w,t\rangle} \, \mathrm{d}\lambda_n(w) = \mathcal{F}(f(x+\square))(t). \end{split}$$

Таким образом, мы можем свести общий случай к случаю x = 0 для другой функции:

$$\mathcal{F}^{-1}(\mathcal{F}(f)(t))(x) = \mathcal{F}^{-1}(e^{i\langle x,t\rangle}\mathcal{F}(f)(t))(0)$$
$$= \mathcal{F}^{-1}(\mathcal{F}(f(x+\square)))(0) = f(x+0) = f(x),$$

что и требовалось.

1.5 Преобразование Фурье — гомеоморфизм $\mathcal{S}(\mathbb{R}^n)$

Лемма 1.5. $\mathcal{F}^4 = \text{id на } \mathcal{S}(\mathbb{R}^n).$

Доказательство. Поскольку $\mathcal{F}^{-1}(f)(x) = \mathcal{F}(f)(-x)$, имеем

$$\mathcal{F}^2(f)(x) = \mathcal{F}\big(\mathcal{F}(f)\big)(x) = \mathcal{F}^{-1}\big(\mathcal{F}(f)\big)(-x) = f(-x).$$

Следовательно, $\mathcal{F}^4(f)(x) = \mathcal{F}^2(f)(-x) = f(x)$.

Теорема 1.6 (о преобразовании Фурье на классе Шварца). Преобразование Фурье \mathcal{F} — это гомеоморфизм $\mathcal{S}(\mathbb{R}^n)$ на себя.

Доказательство. По упражнению выше $\mathcal{F}(\mathcal{S}(\mathbb{R}^n)) \subset \mathcal{S}(\mathbb{R}^n)$. По лемме 1.5 $\mathcal{F}^4 = \mathrm{id}$ на $\mathcal{S}(\mathbb{R}^n)$. Поэтому \mathcal{F} инъективно и сюръективно, а также из непрерывности \mathcal{F} следует непрерывность отображения $\mathcal{F}^{-1} = \mathcal{F}^3$.

Значит, осталось проверить непрерывность $\mathcal F$ как отображения из $\mathcal S(\mathbb R^n)$ на себя. Это пространство метризуемо, то есть непрерывность можно проверять на последовательностях. Пусть $f_k \to f$, где $f_k, f \in \mathcal S(\mathbb R^n)$. Хотим проверить, что для любых мультииндексов α, β выполняется

$$\sup_{t\in\mathbb{R}^n}\left|t^\alpha\frac{\partial}{\partial t^\beta}\mathcal{F}f_k-t^\alpha\frac{\partial}{\partial t^\beta}\mathcal{F}f\right|\xrightarrow[k\to\infty]{}0.$$

Покажем, что:

- (1) отображения $g\mapsto x^{\gamma}g$ и $g\mapsto \frac{\partial}{\partial x^{\gamma}}g$ непрерывны;
- (2) если $f_k \to f$ в $\mathcal{S}(\mathbb{R}^n)$, то $\|\mathcal{F}(f_k f)\|_{L^\infty(\mathbb{R}^n)} \xrightarrow[k \to \infty]{} 0$.

После этого можно будет внести умножение на t^{α} и взятие производных под преобразование Фурье по теореме 1.2 (3, 4), при этом по пункту (1) выражения для f_k будут стремиться к соответствующим выражениям для f в $\mathcal{S}(\mathbb{R}^n)$, и останется воспользоваться пунктом (2).

(1) Пусть $g_k \to g$ в $\mathcal{S}(\mathbb{R}^n)$. Тогда непрерывность функций второго вида получается сразу из определения:

$$\sup_{t\in\mathbb{R}^n}\left|t^\alpha\frac{\partial}{\partial t^\beta}\left(\frac{\partial}{\partial t^\gamma}g_k\right)-t^\alpha\frac{\partial}{\partial t^\beta}\left(\frac{\partial}{\partial t^\gamma}g\right)\right|=\sup_{t\in\mathbb{R}^n}\left|t^\alpha\frac{\partial}{\partial t^{\beta+\gamma}}g_k-t^\alpha\frac{\partial}{\partial t^{\beta+\gamma}}g\right|\xrightarrow[k\to\infty]{}0.$$

Для непрерывности функций первого вида заметим, что $\frac{\partial}{\partial t^{\beta}}(t^{\gamma}g)$ представляется в виде конечной линейной комбинации выражений $t^{\gamma_i}\frac{\partial}{\partial t^{\beta_i}}g$ для некоторых мультииндексов β_i, γ_i ; поэтому

$$\sup_{t\in\mathbb{R}^n}\left|t^{\alpha}\frac{\partial}{\partial t^{\beta}}(t^{\gamma}g_k)-t^{\alpha}\frac{\partial}{\partial t^{\beta}}(t^{\gamma}g)\right|\leqslant \sum_{i=1}^nc_i\sup_{t\in\mathbb{R}^n}\left|t^{\alpha+\gamma_i}\frac{\partial}{\partial t^{\beta_i}}g-t^{\alpha+\gamma_i}\frac{\partial}{\partial t^{\beta_i}}g\right|\xrightarrow[k\to\infty]{}0.$$

(2) Проверим, что из сходимости f_k к f в $\mathcal{S}(\mathbb{R}^n)$ следует, что $f_k \to f$ в $L^1(\mathbb{R}^n)$. 8 Можно считать, что f=0. Тогда $f_k \to 0$ в $\mathcal{S}(\mathbb{R}^n)$. Значит,

$$\sup_{x \in \mathbb{R}^n} |f_k(x)| \to 0, \quad \sup_{x \in \mathbb{R}^n} ||x||^{2n} |f_k(x)| \to 0.$$

Здесь мы воспользовались стремлением к нулю полунормы $p_{0,0}(f_k)$ и полунорм $p_{\alpha,0}(f_k)$ для некоторых мультииндексов с $|\alpha|=2n$.

Оценим L^1 -норму f_k :

$$\begin{split} \int\limits_{\mathbb{R}^n} |f_k(x)| \, \mathrm{d}\lambda_n(x) &= \int\limits_{\mathbb{R}^n} (1 + \|x\|^{2n}) |f_k(x)| \cdot \frac{1}{1 + \|x\|^{2n}} \, \mathrm{d}\lambda_n(x) \\ &\leq \sup_{x \in \mathbb{R}^n} (1 + \|x\|^{2n}) |f_k(x)| \cdot \int\limits_{\mathbb{R}^n} \frac{1}{1 + \|x\|^{2n}} \, \mathrm{d}\lambda_n(x). \end{split}$$

Здесь первый множитель стремится к нулю, а второй конечен, так как его можно по формуле коплощади разбить на интегралы по сферам и получить оценку сверху числом $\int_0^{+\infty} \frac{Cr^{n-1}}{1+r^{2n}} \, \mathrm{d}r$.

Таким образом, $f_k \to f$ в $L^1(\mathbb{R}^n)$, и мы можем завершить доказательство:

$$\|\mathcal{F}f - \mathcal{F}f_k\|_{L^{\infty}(\mathbb{R}^n)} = \|\mathcal{F}(f - f_k)\|_{L^{\infty}(\mathbb{R}^n)}$$

$$= \operatorname{ess\,sup}_{t \in \mathbb{R}^n} \left| \int_{\mathbb{R}^n} (f - f_k)(x) e^{-i\langle t, x \rangle} \, \mathrm{d}\lambda_n(x) \right|$$

 $^{^8}$ Интуитивно это очевидно, потому что сходимость в $\mathcal{S}(\mathbb{R}^n)$ — сходимость всех частных производных быстрее любого многочлена — это очень сильное условие.

$$\leqslant \int_{\mathbb{R}^n} |f_k(x) - f(x)| \, \mathrm{d}\lambda_n(x) = \|f - f_k\|_{L^1(\mathbb{R}^n)}.$$

1.6 Преобразование Фурье в $L^2(\mathbb{R}^n)$ и его унитарность

Следствие 1.7. Преобразование Фурье продолжается до унитарного оператора в $L^2(\mathbb{R}^n)$. В частности, имеет место равенство Парсеваля:

$$\|\mathcal{F}f\|_{L^2(\mathbb{R}^n)} = \|f\|_{L^2(\mathbb{R}^n)}$$

для любой функции $f \in L^2(\mathbb{R}^n)$.

Доказательство. Пусть $f \in \mathcal{S}(\mathbb{R}^n)$. Тогда $|f|^2 \in \mathcal{S}(\mathbb{R}^n)$, так как пространство $\mathcal{S}(\mathbb{R}^n)$ замкнуто относительно операций умножения и сопряжения. Далее,

$$\int_{\mathbb{R}^n} |f(x)|^2 d\lambda_n(x) = (2\pi)^{n/2} \left(\mathcal{F}(|f|^2) \right)(0) = \left(\mathcal{F}f * \mathcal{F}\overline{f} \right)(0). \tag{1.3}$$

Объясним второе равенство, а именно, поймём, что преобразование Фурье переводит произведение в свёртку (с точностью до домножения на константу). Как мы помним,

$$\mathcal{F}(f * g) = (2\pi)^{n/2} \cdot \mathcal{F}(f) \cdot \mathcal{F}(g).$$

Подставляя -t вместо t, получаем

$$\mathcal{F}^{-1}(f * g) = (2\pi)^{n/2} \cdot \mathcal{F}^{-1}(f) \cdot \mathcal{F}^{-1}(g).$$

Обозначим $F \coloneqq \mathcal{F}^{-1}(f), G \coloneqq \mathcal{F}^{-1}(g)$. Тогда

$$f * g = (2\pi)^{n/2} \cdot \mathcal{F}(FG).$$

Отсюда по биективности преобразования Фурье равенство

$$\mathcal{F}(FG) = \frac{1}{(2\pi)^{n/2}} \big(\mathcal{F}(F) * \mathcal{F}(G) \big)$$

выполнено для любых $F, G \in \mathcal{S}(\mathbb{R}^n)$.

Продолжим цепочку равенств (1.3):

$$(\mathcal{F}f(t)*\overline{\mathcal{F}f(-t)})(0)=\int_{\mathbb{R}^n}(\mathcal{F}f)(t)\overline{(\mathcal{F}f)(t)}\,\mathrm{d}\lambda_n(t)=\int_{\mathbb{R}^n}|(\mathcal{F}f)(t)|^2\,\mathrm{d}\lambda_n(t).$$

Значит, \mathcal{F} — изометрия $\mathcal{S}(\mathbb{R}^n)$ относительно L^2 -нормы.

Покажем, что $\mathcal{S}(\mathbb{R}^n)$ плотно в $L^2(\mathbb{R}^n)$. Если это не так, то его замыкание имеет нетривиальное ортогональное дополнение, то есть существует такая функция $g \in$

 $^{^9}$ Альтернативное доказательство этого факта можно получить из того, что C_0 плотно в L^2 , C_0^∞ плотно в C_0 , и $C_0^\infty\subset \mathcal{S}(\mathbb{R}^n)$.

 $L^2(\mathbb{R}^n)$, ненулевая на множестве положительной меры, что $\int_{\mathbb{R}^n} f\overline{g} \, \mathrm{d}\lambda_n = 0$ для любой функции $f \in \mathcal{S}(\mathbb{R}^n)$.

Можно считать, что $\mathrm{Re}(g) \geqslant \varepsilon$ на некотором компакте K положительной меры. Найдём такое открытое множество U, что $K \subset U$ и $\lambda_n(U) \leqslant (1+\delta)\lambda_n(K)$. Покроем K конечным числом шаров, лежащих внутри U, и построим на них разбиение единицы. При $\delta \to 0$ суммы функций из разбиения аппроксимируют χ_K , и при этом они лежат в $C_0^\infty(\mathbb{R}^n) \subset \mathcal{S}(\mathbb{R}^n)$. Тогда по теореме Лебега

$$\int_{\mathbb{D}^n} \chi_K \overline{g} \, \mathrm{d}\lambda_n = 0.$$

Но это противоречит выбору K.

Таким образом, \mathcal{F} можно продолжить на всё пространство L^2 . Поскольку $\mathcal{F}^4 = \mathrm{id}$ на $\mathcal{S}(\mathbb{R}^n)$, верно также $\mathcal{F}^4 = \mathrm{id}$ на $L^2(\mathbb{R}^n)$, а потому \mathcal{F} — унитарный оператор.

2 Преобразование Фурье на классе распределений медленного роста

2.1 Определение распределений и их свойства

Определение. Через $C^{\infty}(\mathbb{R}^n)$ мы будем обозначать пространство Фреше, состоящее из гладких функций с инвариантной метрикой, задаваемой следующим образом:

$$\rho(f,g) \coloneqq \sum_{N=1}^{\infty} 2^{-N} \frac{\|f - g\|_N}{\|f - g\|_N + 1},$$

где

$$||f||_N := \sup_{\substack{x \in K_N \\ |\alpha| \le N}} \left| \frac{\partial^{|\alpha|} f}{\partial x^{\alpha}}(x) \right|,$$

а K_N — последовательность вложенных компактов, в объединении дающих всё \mathbb{R}^n .

Определение. Пусть K — компакт,

$$\mathcal{D}_K(\mathbb{R}^n) := \{ f \in C_0^{\infty}(\mathbb{R}^n) : \operatorname{supp} f \subset K \},$$

с метрикой, индуцированной с $C_0^\infty(\mathbb{R}^n)$. Определим пространство основных функций как

$$\mathcal{D}(\mathbb{R}^n) := (C_0^{\infty}(\mathbb{R}^n), \mathcal{T}),$$

где \mathcal{T} — топология индуктивного предела пространств Фреше. Топология \mathcal{T} определяется базой в нуле, состоящей из выпуклых уравновешенных $U \in C_0^\infty(\mathbb{R}^n)$, таких что $U \cap \mathcal{D}_K(\mathbb{R}^n)$ открыто в $\mathcal{D}_K(\mathbb{R}^n)$ для любого компакта K.

Утверждение 2.1 (без доказательства). Выполнены следующие утверждения:

 $[\]overline{\ \ \ }^{10}$ Уравновешенность означает, что если $u\in U$, то $cu\in U$ для любого $c\in \mathbb{C}:|c|=1.$

- (1) $\mathcal{D}(\mathbb{R}^n)$ полное¹¹ локально выпуклое топологическое пространство;
- (2) $f_n \to f$ в $\mathcal{D}(\mathbb{R}^n)$ тогда и только тогда, когда существует такой компакт K, что $\operatorname{supp} f_n \subset K$ для всех $n \in \mathbb{N}$ и $f_n \to f$ в \mathcal{D}_K ;
- (3) у $\mathcal{D}(\mathbb{R}^n)$ нет счётной базы, а потому секвенциальная замкнутость не равносильна замкнутости.

Определение. Распределением или обобщённой функцией называется линейный непрерывный функционал на $\mathcal{D}(\mathbb{R}^n)$. Пространство обобщённых функций¹² обозначается через $\mathcal{D}'(\mathbb{R}^n)$.

Утверждение 2.2 (без доказательства). Линейный функционал φ на $\mathcal{D}(\mathbb{R}^n)$ лежит в $\mathcal{D}'(\mathbb{R}^n)$ тогда и только тогда, когда для любого компакта K существуют такие числа $N:=N(K)\in\mathbb{N}$ и c:=c(K)>0, что

$$\varphi(f) \leqslant c \|f\|_N \qquad (\forall f \in \mathcal{D}_K),$$

где

$$||f||_N = \sup_{\substack{x \in K \\ |\alpha| \le N}} \left| \frac{\partial^{|\alpha|} f}{\partial x^{\alpha}}(x) \right|,$$

При этом минимальное такое $N_0 \in \mathbb{N} \cup \{+\infty\}$, что существуют соответствующие $N(K) \le N_0$, называется *порядком распределения*.

2.2 Распределения медленного роста

Определение. *Распределение медленного роста* — линейный непрерывный функционал на $\mathcal{S}(\mathbb{R}^n)$. Пространство распределений медленного роста обозначается через $\mathcal{S}'(\mathbb{R}^n)$.

Утверждение 2.3. Имеет место включение

$$\mathcal{S}'(\mathbb{R}^n) \subset \mathcal{D}'(\mathbb{R}^n).$$

Его нужно понимать в том смысле, что если $\varphi \in \mathcal{S}'(\mathbb{R}^n)$, то $\varphi|_{C_0^\infty(\mathbb{R}^n)} \in \mathcal{D}'(\mathbb{R}^n)$.

Доказательство. Пусть это не так. Тогда по утверждению 2.2 существует такая функция $\varphi \in \mathcal{S}'(\mathbb{R}^n)$ и компакт K, что для любого $N \in \mathbb{N}$ найдётся функция $f_N \in \mathcal{D}_K(\mathbb{R}^n)$, удовлетворяющая условию

$$|\varphi(f_N)| \ge N ||f_N||_N$$
.

Обозначим $g_N \coloneqq f_N/(N\|f_N\|_N)$. Тогда при $N \geqslant |\alpha|$

$$|\varphi(g_N)| \geqslant 1$$
, $p_{\alpha,\beta}(g_N) \leqslant \frac{p_{\alpha,\beta}(f_N)}{N ||f_N||_N} \leqslant \frac{\sup_{x \in K} |x^{\beta}|}{N} \to 0$.

 $^{^{11}}$ Полнота здесь означает, что разности попадают в окрестность нуля (метрики нет).

¹²то есть пространство, сопряжённое к пространству основных функций

Таким образом, $g_N \to 0$ в $\mathcal{S}(\mathbb{R}^n)$, однако $\varphi(g_N) \not\to 0$. Противоречие, так как φ непрерывно.

2.3 Распределения, соответствующие функциям

Обозначение. Вместо $\varphi(f)$ будем писать (φ,f) . Если $f\in L^1_{\mathrm{loc}}(\mathbb{R}^n)$, то через φ_f будем обозначать функционал

$$g \mapsto \int_{\mathbb{R}^n} fg \, \mathrm{d}\lambda_n$$

(возможно, он не везде определён, пока это только обозначение).

Пример 2.1. Если $f \in L^1_{loc}(\mathbb{R}^n)$, то $\varphi_f \in \mathcal{D}'(\mathbb{R}^n)$. 13

Пример 2.2. Если $f \in L^p(\mathbb{R}^n)$, где $1 \leq p \leq +\infty$, то $\varphi_f \in \mathcal{S}'(\mathbb{R}^n)$.

Доказательство. Так как класс Шварца метризуем, достаточно проверять, что из сходимости $g_k \to 0$ в $\mathcal{S}(\mathbb{R}^n)$ следует сходимость $(\varphi_f, g_k) \to 0$. Это так по неравенству Гёльдера:

$$|(\varphi_f, g_k)| \leqslant \int_{\mathbb{R}^n} |fg_k| \, \mathrm{d}\lambda_n \leqslant ||f||_{L^p(\mathbb{R}^n)} \cdot ||g_k||_{L^q(\mathbb{R}^n)} \xrightarrow[k \to \infty]{} 0,$$

где $\frac{1}{q} + \frac{1}{p} = 1$. (Мы раньше проверяли, что сходимость в классе Шварца влечёт сходимость в L^1 ; доказательство для произвольного p аналогично.)

2.4 Примеры распределений медленного роста

Пример 2.3. Пусть $x_0, x_1 \in \mathbb{R}^n$ и мультииндекс α фиксированы. Определим

$$\varphi \colon f \mapsto 2f(x_0) + 3\left(\frac{\partial^{|\alpha|}f}{\partial x^{\alpha}}\right)(x_1).$$

Тогда $\varphi \in \mathcal{S}'(\mathbb{R}^n)$.

Доказательство. Пусть $f_n \to 0$ в $\mathcal{S}(\mathbb{R}^n)$. Тогда

$$|\varphi(f_k)| \leq 2p_{0,0}(f_k) + 3p_{\alpha,0}(f_k) \xrightarrow[k \to \infty]{} 0.$$

Пример 2.4. Пусть $f(x) = e^x \sin(e^x)$. Тогда $\varphi_f \in \mathcal{S}'(\mathbb{R})$.

Доказательство. Пусть $g_k \to 0$ в $\mathcal{S}(\mathbb{R})$. Тогда

$$|(\varphi_f, g_k)| = \left| \int_{\mathbb{R}} g_k(x) e^x \sin(e^x) dx \right|$$

 $^{^{13}{}m B}$ этом курсе мы ничего не будем доказывать про распределения; только про распределения медленного роста.

$$= \left| -g_k(x) \cos(e^x) \right|_{-\infty}^{+\infty} + \int_{\mathbb{R}} g'_k(x) \cos(e^x) \, \mathrm{d}x \right|$$

$$\leq 0 + \sup_{x \in \mathbb{R}^n} |g'_k(x)(1+x^2)| \cdot \int_{\mathbb{R}} \frac{|\cos(e^x)|}{1+x^2} \, \mathrm{d}x \xrightarrow[k \to \infty]{} 0,$$

что и требовалось.

Пример 2.5. Пусть $f(x) = e^x$. Тогда $\varphi_f \in \mathcal{D}'(\mathbb{R})$, но φ_f определена не на всём $\mathcal{S}(\mathbb{R})$.

 \mathcal{A} оказательство. Чтобы проверить принадлежность $\mathcal{D}'(\mathbb{R})$ воспользуемся утверждением 2.2. Для компакта K выберем N таким, что $K \subset K_N$ (см. определение метрики на C_0^∞), и положим $c = \int_{K_N} e^x$. Тогда для любой функции $g \in \mathcal{D}_K(\mathbb{R}^n)$

$$(\varphi_f, g) = \int\limits_K fg \,\mathrm{d}\lambda_1 \leqslant c \sup\limits_{x \in K_N} g(x) \leqslant c \|g\|_N.$$

Чтобы показать вторую часть утверждения, рассмотрим следующую функцию g:

$$g(x) = \begin{cases} e^{-x}, & x \ge 0, \\ 0, & x \le -1, \\ h(x), & -1 \le x \le 0, \end{cases}$$

где h(x) — гладкий спуск с единицы. С одной стороны, очевидно, что $g \in \mathcal{S}(\mathbb{R})$, а с другой стороны интеграл

$$(\varphi_f,g)=\int\limits_{\mathbb{R}}fg\,\mathrm{d}\lambda_1$$

расходится, так как fg = 1 на \mathbb{R}_+ . Таким образом, функция φ_f не определена на g.

Пример 2.6. Определим функционал Ф по правилу

$$\Phi \colon f \mapsto p.v. \int_{\mathbb{R}} \frac{f(x)}{x} \, \mathrm{d}x.$$

Тогда $\Phi \in \mathcal{S}'(\mathbb{R}^n)$.

Доказательство. Упражнение.

2.5 Преобразование Фурье на $\mathcal{S}'(\mathbb{R}^n)$

Определение. Пусть $\varphi \in \mathcal{S}'(\mathbb{R}^n)$. Тогда *преобразованием Фурье на* $\mathcal{S}'(\mathbb{R}^n)$ распределения φ называется такой линейный функционал $\mathcal{F}\varphi$, что

$$(\mathcal{F}\varphi, f) = (\varphi, \mathcal{F}f) \qquad \forall f \in \mathcal{S}(\mathbb{R}^n).$$

(3десь в левой части равенства преобразование Φ урье в новом смысле, а справа — в старом).

Утверждение 2.4. Если на $S'(\mathbb{R}^n)$ задана слабая топология $\sigma(S'(\mathbb{R}^n), S(\mathbb{R}^n))$, то

$$\mathcal{F} \colon \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$$

— гомеоморфизм.

Доказательство. Для начала покажем, что $\mathcal{F}\varphi \in \mathcal{S}'(\mathbb{R}^n)$ для всех $\varphi \in \mathcal{S}'(\mathbb{R}^n)$. Пусть $g_n \to 0$ в $\mathcal{S}(\mathbb{R}^n)$. Тогда $\mathcal{F}(g_n) \to 0$ в $\mathcal{S}(\mathbb{R}^n)$ по теореме 1.6. Поскольку $\varphi \in \mathcal{S}'(\mathbb{R}^n)$,

$$(\mathcal{F}\varphi, g_n) = (\varphi, \mathcal{F}g_n) \xrightarrow[n \to \infty]{} 0.$$

Заметим, что $\mathcal{F}^4 \varphi = \varphi$, так как

$$(\mathcal{F}^4\varphi, f) = (\varphi, \mathcal{F}^4f) = (\varphi, f).$$

Из этого следует, что \mathcal{F} — биекция. Осталось понять, что функция \mathcal{F} непрерывна на $\mathcal{S}'(\mathbb{R}^n)$. Обозначим

$$V_{A,\varepsilon}(\varphi) := \{ \psi \in \mathcal{S}'(\mathbb{R}^n) : |(\varphi - \psi, f)| < \varepsilon \ \forall f \in A \},$$

где A — конечное подмножество $\mathcal{S}(\mathbb{R}^n)$. Тогда непрерывность \mathcal{F} следует из равенства

$$\mathcal{F}^{-1}(V_{A,\varepsilon}(\varphi)) = V_{\mathcal{F}A,\varepsilon}(\mathcal{F}^{-1}\varphi),$$

Соответственно, функция $\mathcal{F}^{-1} = \mathcal{F}^3$ также непрерывна.

2.6 Согласованность определений преобразования Фурье

Напомним, что если $f \in L^1_{\mathrm{loc}}(\mathbb{R}^n)$, то мы определяем $arphi_f$ по правилу

$$\varphi_f \colon h \mapsto \int_{\mathbb{R}^n} fh \, \mathrm{d}\lambda_n \qquad \forall h \in \mathcal{D}(\mathbb{R}^n).$$

Заметим, что если $\varphi_f = \varphi_g$ как элементы $\mathcal{D}'(\mathbb{R}^n)$, то f = g почти всюду. Для этого достаточно аппроксимировать χ_K функциями из $\mathcal{D}(\mathbb{R}^n)$, где K — произвольный компакт. Тогда получится, что интегралы по f и по g совпадают на любом компакте. Это и значит, что f = g почти всюду.

Таким образом, мы можем отождествлять f и φ_f . Если функция f такова, что $\varphi_f \in \mathcal{S}'(\mathbb{R}^n)$, то можно рассматривать $\mathcal{F}f = \mathcal{F}\varphi_f$. При этом возникает вопрос согласованности нового определения преобразования Фурье со старым.

Утверждение 2.5. Пусть $\mathcal{F}_{old,1}$ — преобразование Фурье на $L^1(\mathbb{R}^n)$ или на $\mathcal{S}(\mathbb{R}^n)$; $\mathcal{F}_{old,2}$ — преобразование Фурье на $L^2(\mathbb{R}^n)$; \mathcal{F}_{new} — преобразование Фурье на $\mathcal{S}'(\mathbb{R}^n)$. Тогда выполнено следующее:

$$f \in L^1(\mathbb{R}^n) \implies \mathcal{F}_{old,1}f = \mathcal{F}_{new}f \text{ B } \mathcal{S}'(\mathbb{R}^n),$$

 $f \in L^2(\mathbb{R}^n) \implies \mathcal{F}_{old,2}f = \mathcal{F}_{new}f \text{ B } \mathcal{S}'(\mathbb{R}^n).$

(Вместо $\mathcal{F}_{new}f$ формально нужно было бы писать $\mathcal{F}_{new}\varphi_f$, а вместо $\mathcal{F}_{old}f-\varphi_{\mathcal{F}_{old}f}$, но мы их отождествили).

Доказательство. Пусть $f \in L^1(\mathbb{R}^n)$, $h \in \mathcal{S}(\mathbb{R}^n)$. Тогда¹⁴

$$(\mathcal{F}_{new}f, h) = (f, \mathcal{F}_{old,1}h)$$

$$= \int_{\mathbb{R}^n} f(t) \cdot (\mathcal{F}_{old,1}h)(t) \, d\lambda_n(t)$$

$$= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(t)h(x)e^{-i\langle x,t\rangle} \, d\lambda_n(x) \, d\lambda_n(t)$$

$$= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(t)h(x)e^{-i\langle x,t\rangle} \, d\lambda_n(t) \, d\lambda_n(x)$$

$$= \int_{\mathbb{R}^n} (\mathcal{F}f)(x) \cdot h(x) \, d\lambda_n(x)$$

$$= (\mathcal{F}_{old,1}f, h).$$

Значит, $\mathcal{F}_{new}f=\mathcal{F}_{old,1}f$. Пусть теперь $f\in L^2(\mathbb{R}^n)$, $h\in\mathcal{S}(\mathbb{R}^n)$. Имеем:

$$(\mathcal{F}_{new}f, h) = (f, \mathcal{F}_{old,1}h)$$

$$= \left[f_k \to f \text{ B } L^2(\mathbb{R}^n), f_k \in C_0^{\infty}(\mathbb{R}^n) \right]$$

$$= \lim_{k \to \infty} (f_k, \mathcal{F}_{old,1}h)$$

$$= \lim_{k \to \infty} (\mathcal{F}_{old,1}f_k, h)$$

$$= \lim_{k \to \infty} (\mathcal{F}_{old,2}f_k, h)$$

$$= (\mathcal{F}_{old,2}f, h).$$

Здесь мы пользовались непрерывностью $\mathcal{F}_{old,2}$, которая следует из его унитарности. Таким образом, $\mathcal{F}_{new}f = \mathcal{F}_{old,2}f$.

2.7 Дифференцирование распределений

Научимся дифференцировать распределения.

Определение. Пусть $\varphi \in \mathcal{D}'(\mathbb{R}^n)$; $\alpha = (\alpha_1, \dots, \alpha_n)$ — мультииндекс. Положим

$$\left(\frac{\partial^{|\alpha|}}{\partial x^\alpha}\varphi,f\right):=(-1)^{|\alpha|}\left(\varphi,\frac{\partial^{|\alpha|}}{\partial x^\alpha}f\right).$$

$$(f,g) = (\varphi_f,g) = \varphi_f(g) = \int_{\mathbb{R}^n} fg \, \mathrm{d}\lambda_n.$$

Это в точности скалярное произведение в $L^2(\mathbb{R}^n)$, что отчасти мотивирует введение таких обозначений.

 $^{^{14}}$ Отметим, что если f и g — функции из \mathbb{R}^n в \mathbb{R} , то по нашим соглашениям

Утверждение 2.6. Пусть α — произвольный мультииндекс. Тогда:

$$arphi \in \mathcal{D}'(\mathbb{R}^n) \implies rac{\partial^{|lpha|}}{\partial x^{lpha}} arphi \in \mathcal{D}'(\mathbb{R}^n), \ arphi \in \mathcal{S}'(\mathbb{R}^n) \implies rac{\partial^{|lpha|}}{\partial x^{lpha}} arphi \in \mathcal{S}'(\mathbb{R}^n).$$

В частности, мы получаем интересный факт — произвольные распределения можно сколько угодно раз дифференцировать.

Доказательство. Пусть $\varphi \in \mathcal{D}'(\mathbb{R}^n)$. Тогда по утверждению 2.2 для любого K существуют такие $N \in \mathbb{N}$ и c > 0, что

$$|(\varphi, f)| \le c ||f||_N \quad \forall f \in \mathcal{D}_K(\mathbb{R}^n),$$

Тогда нетрудно проверить, что при $\widetilde{N}:=N+|\alpha|,$ $\widetilde{c}:=c$ справедливо неравенство

$$\left| \left(\frac{\partial^{|\alpha|}}{\partial x^{\alpha}} \varphi, f \right) \right| \leqslant \widetilde{c} \cdot ||f||_{\widetilde{N}}.$$

Докажем вторую импликацию. Пусть $\varphi \in \mathcal{S}'(\mathbb{R}^n), h_n \to 0$ в $\mathcal{S}(\mathbb{R}^n)$. Тогда

$$\left(\frac{\partial^{|\alpha|}}{\partial x^{\alpha}}\varphi, h_n\right) \xrightarrow[n \to \infty]{} 0 \iff \left(\varphi, \frac{\partial^{|\alpha|}}{\partial x^{\alpha}}h_n\right) \xrightarrow[n \to \infty]{} 0,$$

а последнее верно, так как $\frac{\partial^{|\alpha|}}{\partial x^{\alpha}}h_n \to 0$ в $\mathcal{S}(\mathbb{R}^n)$ — мы проверяли непрерывность операции дифференцирования в классе Шварца.

2.8 Произведение распределения и гладкой функции

Определение. Пусть $f \in C^{\infty}(\mathbb{R}^n)$, $\varphi \in \mathcal{D}'(\mathbb{R}^n)$. Определим

$$f \cdot \varphi \colon h \mapsto (\varphi, fh) \quad \forall h \in \mathcal{D}(\mathbb{R}^n).$$

Аналогично, пусть $f\in C^\infty(\mathbb{R}^n)$ и $\frac{\partial^{|\alpha|}}{\partial x^\alpha}f\leqslant c\|x\|^{N(\alpha)},$ $\varphi\in\mathcal{S}'(\mathbb{R}^n).$ Определим

$$f \cdot \varphi \colon h \mapsto (\varphi, fh) \qquad \forall h \in \mathcal{S}(\mathbb{R}^n).$$

Утверждение 2.7.

- Для любого $\varphi \in \mathcal{D}'(\mathbb{R}^n)$ выполнено $f \cdot \varphi \in \mathcal{D}'(\mathbb{R}^n)$.
- Для любого $\varphi \in \mathcal{S}'(\mathbb{R}^n)$ выполнено $f \cdot \varphi \in \mathcal{S}'(\mathbb{R}^n)$.

Доказательство. Докажем только второе утверждение. Пусть $\varphi \in \mathcal{S}'(\mathbb{R}^n)$, $h_n \to 0$ в $\mathcal{S}(\mathbb{R}^n)$. Тогда $(f \cdot \varphi, h_n) = (\varphi, f \cdot h_n)$, а $(\varphi, f \cdot h_n) \to 0$ в $\mathcal{S}(\mathbb{R}^n)$, так как

$$|p_{\alpha,\beta}(f \cdot h_n)| \leq \operatorname{const}_{\alpha,\beta} \cdot \sup_{\substack{\gamma_1 \leq |\beta|, \gamma_2 \leq |\beta| \\ x \in \mathbb{R}^n}} \left| \frac{\partial^{|\gamma_1|}}{\partial x^{\gamma_1}} f(x) \cdot \frac{\partial^{|\gamma_2|}}{\partial x^{\gamma_2}} h(x) \cdot |x|^{\alpha} \right|$$

$$\leq \operatorname{const}_{\alpha,\beta,f} \cdot \sup_{\substack{|\gamma_2| \leq |\beta| \\ x \in \mathbb{R}^n}} \left| \frac{\partial^{|\gamma_2|}}{\partial x^{\beta}} h_n(x) \right| \cdot |x|^{\widetilde{\alpha}} \cdot ||x||^{N(\beta)} \xrightarrow[n \to \infty]{} 0,$$

поскольку $h_n \to 0$ в $\mathcal{S}(\mathbb{R}^n)$.

Утверждение 2.8. Новое определение производной согласуется со старым, то есть для любой функции $f \in \mathcal{S}(\mathbb{R}^n)$ имеет место равенство

$$\frac{\partial^{|\alpha|}}{\partial x^{\alpha}}\varphi_f = \varphi_{\frac{\partial^{|\alpha|}}{\partial x^{\alpha}}f}$$

Доказательство. Упражнение.

2.9 Распределения и свёртка

Определение. Пусть $\varphi \in \mathcal{D}'(\mathbb{R}^n)$, $f \in \mathcal{D}(\mathbb{R}^n)$. Определим

$$(\varphi * f, h) := (\varphi, \widetilde{f} * h) \quad \forall h \in \mathcal{D}(\mathbb{R}^n),$$

где $\widetilde{f}(x)\coloneqq f(-x).$ Аналогично, для $\varphi\in\mathcal{S}'(\mathbb{R}^n),$ $f\in\mathcal{S}(\mathbb{R}^n)$ определяем

$$(\varphi * f, h) := (\varphi, \widetilde{f} * h) \quad \forall h \in \mathcal{S}(\mathbb{R}^n).$$

Утверждение 2.9.

- Если $\varphi \in \mathcal{D}'(\mathbb{R}^n), f \in \mathcal{D}(\mathbb{R}^n),$ то $\varphi * f \in \mathcal{D}'(\mathbb{R}^n).$
- Если $\varphi \in \mathcal{S}'(\mathbb{R}^n)$, $f \in \mathcal{S}(\mathbb{R}^n)$, то $\varphi * f \in \mathcal{S}'(\mathbb{R}^n)$.

Доказательство. Доказываем только второе утверждение. Пусть $h_n \to 0$ в $\mathcal{S}(\mathbb{R}^n)$. Тогда $\mathcal{F}h_n \to 0$ в $\mathcal{S}(\mathbb{R}^n)$, $\mathcal{F}\widetilde{f} \cdot \mathcal{F}h_n \to 0$ в $\mathcal{S}(\mathbb{R}^n)$, $\widetilde{f} * h_n \to 0$ (так как \mathcal{F}^{-1} непрерывно). Тогда $(\varphi, \widetilde{f} * h_n) \to 0$, так как $\varphi \in \mathcal{S}'(\mathbb{R}^n)$, и потому $\varphi * f \in \mathcal{S}'(\mathbb{R}^n)$.

Утверждение 2.10. Новое определение свёртки согласуется со старым, то есть для $f \in \mathcal{S}(\mathbb{R}^n), g \in L^1(\mathbb{R}^n)$ выполнено

$$\varphi_g * f = \varphi_{g*f}.$$

Доказательство. Действительно,

$$(g * f, h) \xrightarrow{\text{HOB. OTIP.}} (g, \widetilde{f} * h)$$

$$= \int_{\mathbb{R}^n} g(y) \int_{\mathbb{R}^n} h(x) \widetilde{f}(y - x) \, d\lambda_n(x) \, d\lambda_n(y)$$

$$= \int_{\mathbb{R}^n} g(y) \int_{\mathbb{R}^n} h(x) f(x - y) \, d\lambda_n(x) \, d\lambda_n(y)$$

$$= \int_{\mathbb{R}^n} h(x) (g * f)(x) \, d\lambda_n(x)$$

$$\stackrel{\text{стар. опр.}}{=\!=\!=\!=} (g*f,h).$$

Пример 2.7. Обобщённая функция δ_0 : $h \mapsto h(0)$ называется дельта-функцией Дирака. Утверждается, что

$$\delta_0 * f = f \qquad \forall f \in \mathcal{S}(\mathbb{R}^n).$$

Доказательство. Пусть $h \in \mathcal{S}(\mathbb{R}^n)$. Тогда

$$(\delta_0 * f, h) = (\delta_0, \widetilde{f} * h) = (\widetilde{f} * h)(0) = \int_{\mathbb{R}^n} \widetilde{f}(y - x)h(x) \, \mathrm{d}\lambda_n(x) \, \bigg|_{y = 0} = (f, h).$$

Утверждение 2.11. Пусть

$$D^{\alpha} = \prod_{k=1}^{n} \left(\frac{1}{i} \frac{\partial}{\partial x_k} \right)^{\alpha_k}.$$

Тогда для всех $\varphi \in \mathcal{S}'(\mathbb{R}^n)$ выполнено

$$\mathcal{F}(D^{\alpha}\varphi)=t^{\alpha}\mathcal{F}(\varphi).$$

Доказательство. Утверждение следует из цепочки равенств

$$(\mathcal{F}D^{\alpha}\varphi, h) = (-1)^{|\alpha|}(\varphi, D^{\alpha}\mathcal{F}h) = (\varphi, \mathcal{F}(x^{\alpha}h)) = (t^{\alpha}\mathcal{F}\varphi, h).$$

Второе равенство здесь выполнено, так как

$$(-1)^{|\alpha|}D^{\alpha}\mathcal{F}h=\mathcal{F}(x^{\alpha}h)\qquad\forall h\in\mathcal{S}(\mathbb{R}^n).$$

2.10 Преобразование Фурье свёртки

Утверждение 2.12. Для любого распределения $\varphi \in \mathcal{S}'(\mathbb{R}^n)$ и любой функции $f \in \mathcal{S}(\mathbb{R}^n)$ имеет место равенство

$$\mathcal{F}(\varphi * f) = (2\pi)^{n/2} (\mathcal{F}\varphi) \cdot (\mathcal{F}f).$$

Доказательство. Вычисление:

$$(\mathcal{F}(\varphi * f), h) = (\varphi * f, \mathcal{F}h)$$

$$= (\varphi, \widetilde{f} * \mathcal{F}h)$$

$$= (\mathcal{F}\varphi, \mathcal{F}^{-1}(\widetilde{f} * \mathcal{F}h))$$

$$= (\mathcal{F}\varphi, \mathcal{F}(f * \mathcal{F}^{-1}h))$$

$$= (2\pi)^{n/2}(\mathcal{F}\varphi, \mathcal{F}f \cdot h)$$

$$= (2\pi)^{n/2}((\mathcal{F}\varphi) \cdot (\mathcal{F}f), h).$$

2.11 Ещё один пример

Пример 2.8. Посчитаем $\mathcal{F}(x^2)$, где $x^2 \in \mathcal{S}'(\mathbb{R})$. Для любого $g \in \mathcal{S}'(\mathbb{R})$:

$$\begin{split} \mathcal{F}\left(\left(\frac{1}{i}\frac{\partial}{\partial x}\right)^2g\right) &= t^2\mathcal{F}g,\\ \mathcal{F}^{-1}\left(\left(\frac{1}{i}\frac{\partial}{\partial x}\right)^2g\right) &= t^2\mathcal{F}^{-1}g,\\ \left(\frac{1}{i}\frac{\partial}{\partial x}\right)^2g &= \mathcal{F}(t^2\mathcal{F}^{-1}g). \end{split}$$

Подставим $g = \mathcal{F}1$:

$$\mathcal{F}(x^2) = \left(\frac{1}{i}\frac{\partial}{\partial x}\right)^2 \mathcal{F}1 = -\frac{\partial}{\partial x^2} \mathcal{F}1.$$

При этом

$$\begin{split} (\mathcal{F}1,h) &= (1,\mathcal{F}h) \\ &= \frac{1}{(2\pi)^{1/2}} \int\limits_{\mathbb{R}^n} \int\limits_{\mathbb{R}^n} h(y) e^{-i\langle y,t\rangle} \, \mathrm{d}\lambda_1(y) \, \mathrm{d}\lambda_1(t) \\ &= [\text{по } 1.4] = (2\pi)^{1/2} h(0) \end{split}$$

Значит, $\mathcal{F}1=(2\pi)^{1/2}\delta_0.^{15}$ Тогда $\mathcal{F}(x^2)=-(2\pi)^{1/2}\delta_0''$, где δ_0'' — это функционал на $\mathcal{S}(\mathbb{R})$, такой что δ_0'' : $h\mapsto h''(0)$.

3 Приложения преобразования Фурье

3.1 Теорема Хёрмандера

Обозначим через P(D) следующий дифференциальный оператор:

$$P(D) := \sum_{|\alpha| \leqslant N} c_{\alpha} \prod_{k=1}^{n} \left(\frac{1}{i} \frac{\partial}{\partial x_{k}} \right)^{\alpha_{k}}, \quad \text{где } P = \sum_{|\alpha| \leqslant N} c_{\alpha} x^{\alpha}, \ c_{\alpha} \in \mathbb{C}.$$

Определение. Будем писать

$$P(D)f = g$$

для $f,g\in L^2(\Omega)$, где Ω — область в \mathbb{R}^n , если для любой функции $\varphi\in C_0^\infty(\Omega)$

$$(f,P^*(D)\varphi)_{L^2(\Omega)}=(g,\varphi)_{L^2(\Omega)},$$

где
$$P^*(D) = Q(D), Q = \sum_{|\alpha| \leqslant N} \overline{c}_{\alpha} x^{\alpha}.$$

 $^{^{15}}$ Альтернативное доказательство этого утверждения можно получить, применив $\mathcal F$ к равенству $\mathcal F\delta_0=1.$

Теорема 3.1 (Хёрмандер). Пусть Ω — ограниченная область в \mathbb{R}^n . Тогда для любой функции $g \in L^2(\Omega)$ и любого многочлена $P = \sum_{|\alpha| \le N} c_\alpha x^\alpha$ существует такая функция $f \in L^2(\Omega)$, что

$$P(D)f = g$$
.

Лемма 3.2. Пусть $p(z) = c_0 + c_1 z + \cdots + c_k z^k$, g аналитична в $\mathbb D$ и непрерывна в его замыкании. Тогда

$$|c_k g(0)|^2 \leq \int_{\mathbb{T}} |p(z)g(z)|^2 dm(z),$$

где m — нормированная мера Лебега на \mathbb{T} .

Доказательство. Рассмотрим многочлен¹⁶

$$q(z) = \overline{c_0}z^k + \overline{c_1}z^{k-1} + \cdots + \overline{c_k}$$

При $z \in \mathbb{T}$ имеем $q(z) = z^k \overline{p(z)}$. Отметим, что $q(0) = \overline{c_k}$ и |q(z)| = |p(z)| на \mathbb{T} . По теореме о среднем для гармонических функций (отдельно для вещественной и мнимой частей) 17

$$\overline{c_k}g(0) = q(0)g(0) = \int_{\mathbb{T}} q(z)g(z) \, \mathrm{d}m(z).$$

Тогда по неравенству Гёльдера

$$\begin{aligned} |\overline{c}_k g(0)|^2 & \leqslant \left(\int_{\mathbb{T}} 1 \cdot |q(z)g(z)| \, \mathrm{d}m(z) \right)^2 \\ & \leqslant m(\mathbb{T}) \cdot \int_{\mathbb{T}} |q(z)g(z)|^2 \, \mathrm{d}m(z) \\ & = \int_{\mathbb{T}} |p(z)g(z)|^2 \, \mathrm{d}m(z). \end{aligned}$$

Доказательство теоремы Хёрмандера.

Шаг 1. Для каждой функции $\varphi \in C_0^\infty(\Omega)$ имеет место неравенство

$$||P(D)\varphi||_{L^2} \geqslant c||\varphi||_{L^2},\tag{3.1}$$

zде c не зависит от φ . Зафиксируем $t_0, t_1 \in \mathbb{R}^n$. Для каждого $z \in \mathbb{C}$ рассмотрим функцию $\widehat{\varphi} \colon \mathbb{C}^n \to \mathbb{C}$, определённую по правилу

$$\widehat{\varphi}(\zeta) := \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \varphi(x) e^{-i\langle \zeta, x \rangle} \, \mathrm{d}\lambda_n(x) = (\mathcal{F}\varphi)(\zeta).$$

Тогда $g=z\mapsto \widehat{\varphi}(t_0+t_1z)$ — целая функция 18 . Применим лемму 3.2 к функции g и

¹⁶«Отражённый многочлен» (на окружности)

¹⁷Произведение аналитичных функций аналитично, а аналитическая функция гармонична.

¹⁸Дифференцируемость несложно доказать по определению.

многочлену $p = z \mapsto P(t_0 + t_1 z)$ степени N:

$$|c_n g(0)|^2 = |P_N(t_1)\widehat{\varphi}(t_0)|^2 \leqslant \int_{\mathbb{T}} |g(z)p(z)|^2 dm(z) = \int_{\mathbb{T}} |P(t_0 + t_1 z) \cdot \widehat{\varphi}(t_0 + t_1 z)|^2 dm(z),$$

где $P_N = \sum_{|\alpha|=N} c_\alpha x^\alpha$. Проинтегрируем это неравенство по $\lambda_n(t_0)$:

$$|P_N(t_1)|^2 \int_{\mathbb{R}^n} |\widehat{\varphi}(t_0)|^2 d\lambda_n(t_0) \leqslant \int_{\mathbb{T}} \int_{\mathbb{R}^n} |(P\widehat{\varphi})(t_0 + t_1 z)|^2 d\lambda_n(t_0) dm(z). \tag{3.2}$$

Левый интеграл конечен, так как подынтегральное выражение лежит в пространстве Шварца, в частности, в L^2 . Имеем

$$(P\widehat{\varphi})(t_0+t_1z)=\mathcal{F}(P(D)\varphi)(t_0+t_1z),$$

так как мы знаем¹⁹, что $\mathcal{F}(\prod_{k=1}^n \frac{1}{i} \frac{\partial}{\partial x_k})^{\alpha_k} = t^{\alpha} \mathcal{F}$. Теперь воспользуемся свойством преобразования Фурье, чтобы избавиться от сдвига:

$$\mathcal{F}(P(D)\varphi)(t_0 + t_1 z) = \mathcal{F}(x \mapsto (P(D)\varphi)(x) \cdot e^{-i\langle zt_1, x \rangle})(t_0)$$

Преобразуем правую часть неравенства (3.2):

$$\int_{\mathbb{T}} \int_{\mathbb{R}^n} |(p\widehat{\varphi})(t_0 + t_1 z)|^2 d\lambda_n(t_0) dm(z) = \int_{\mathbb{T}} \int_{\mathbb{R}^n} |\mathcal{F}((P(D)\varphi)(x)e^{-\langle t_1 z, x \rangle})|^2 d\lambda_n(t_0) dm(z)
= \int_{\mathbb{T}} \int_{\mathbb{R}^n} |(P(D)\varphi)(x)e^{-\langle t_1 z, x \rangle}|^2 d\lambda_n(t_0) dm(z).$$

Во втором равенстве мы воспользовались равенством Парсеваля. С помощью того же равенства преобразуем левую часть (3.2):

$$|P_N(t_1)|^2 \int_{\mathbb{R}^n} |\widehat{\varphi}(t_0)|^2 d\lambda_n(t_0) = |P_N(t_1)|^2 \int_{\mathbb{R}^n} |\varphi(x)|^2 d\lambda_n(x).$$

Таким образом, мы получили, что

$$|P_N(t_1)|^2 \int_{\mathbb{R}^n} |\varphi(x)|^2 d\lambda_n(x) \le \int_{\mathbb{T}} \int_{\mathbb{R}^n} |(P(D)\varphi)(x)e^{-\langle t_1 z, x \rangle}|^2 d\lambda_n(t_0) dm(z).$$
 (3.3)

Так как степень P равна N, то существует точка t_1 , такая что $P_N(t_1) \neq 0$. Для такого t_1 положим

$$A := \sup_{x \in \Omega, \, z \in \mathbb{T}} |e^{-i\langle t_1 z, x \rangle}|$$

Отметим, что A конечно из-за ограниченности Ω . Теперь оценим L^2 -норму φ с помо-

 $^{^{19}}$ Формально мы знаем это только для вещественного преобразования Фурье, но в случае комплексного при условии $\varphi \in C_0^\infty(\mathbb{R}^n)$ проходит то же доказательство.

щью неравенства (3.3) и числа A:

$$\|\varphi\|_{L^{2}(\Omega)}^{2} \leq \left(\frac{A}{|P_{N}(t_{1})|}\right)^{2} \cdot \int_{\mathbb{T}} \|P(D)\varphi\|_{L^{2}(\Omega)}^{2} dm(z) = \left(\frac{A}{|P_{N}(t_{1})|}\right)^{2} \cdot \|P(D)\varphi\|_{L^{2}(\Omega)}^{2}.$$

Это и есть неравенство (3.1) для $c = |P_N(t_1)|/A$.

Шаг 2. Покажем, что для любой функции $g\in L^2(\Omega)$ существует функция $f\in L^2(\Omega)$, такая что

$$P(D)f = g$$
.

Для этого рассмотрим функционал Φ на $P(D)(C_0^\infty(\Omega))$, определённый по правилу

$$\Phi: P(D)\varphi \mapsto (\varphi, g)_{L^2(\Omega)}.$$

Он корректно задан, так как если $P(D)\varphi_1 = P(D)\varphi_2$, то по первому шагу $\|\varphi_1 - \varphi_2\|_{L^2} = 0$. Так как эти функции непрерывны, то $\varphi_1 = \varphi_2$. Кроме того,

$$|\Phi(P(D)\varphi)| \le \|\varphi\|_{L^2(\Omega)} \cdot \|g\|_{L^2(\Omega)} \le [\max 1] \le c \cdot \|P(D)\varphi\|_{L^2(\Omega)} \cdot \|g\|_{L^2(\Omega)}.$$

Значит, оператор Φ ограничен на области своего задания. По теореме Хана–Банаха существует его непрерывное продолжение на всё пространство $L^2(\Omega)$. По теореме Рисса о представлении существует такая функция $f \in L^2(\Omega)$, что

$$(\varphi,g)_{L^2(\Omega)} = \Phi(P(D)\varphi) = (P(D)\varphi,f)_{L^2(\Omega)} = (\varphi,P^*(D)f)_{L^2(\Omega)}$$

для любой функции $\varphi \in C_0^\infty(\Omega).$ Отсюда следует, что $P^*(D)f=g.$

Осталось лишь рассмотреть P^* вместо P. В этом случае мы получим, что что для всех $g \in L^2(\Omega)$ существует такая функция $f \in L^2(\Omega)$, что

$$P(D)f = P^{**}(D)f = g,$$

что и требовалось.

3.2 Теорема Пэли-Винера

Теорема 3.3 (Пэли, Винер). Пусть f — целая функция, $f \not\equiv 0$. Тогда следующие условия равносильны:

- (1) $f \in L^2(\mathbb{R})$, порядок f равен 1 и тип f не превосходит некоторого числа a > 0;
- (2) существует такая функция $g\in L^2[-a,a]$, что $\|g\|_{L^2}\neq 0$ и $f=\mathcal{F}^{-1}g$, то есть

$$f(z) = \frac{1}{(2\pi)^{1/2}} \int_{-a}^{a} g(t)e^{itz} dt.$$

Доказательство. (2) \Longrightarrow (1). Ясно, что $f \in L^2(\mathbb{R})$, так как $f = \mathcal{F}^{-1}g$ для $g \in L^2(\mathbb{R})^{20}$. Кроме того,

$$\begin{split} |f(z)| & \leq \frac{1}{(2\pi)^{1/2}} \int_{-a}^{a} |g(t)| e^{|t \cdot \operatorname{Im} z|} \, \mathrm{d}t \\ & \leq \frac{1}{(2\pi)^{1/2}} e^{a|\operatorname{Im} z|} \left(\int_{-a}^{a} |g(t)|^2 \, \mathrm{d}t \right)^{1/2} \left(\int_{-a}^{a} 1 \, \mathrm{d}t \right)^{1/2} \\ & \leq c(a) \cdot e^{a|\operatorname{Im} z|} \leq c(a) \cdot e^{a|z|}. \end{split}$$

Значит, тип f относительно порядка 1 не превосходит a. Так как $g \not\equiv 0$, то по равенству Парсеваля $f \not\equiv 0$.

Также f — целая функция (как интеграл целой), и $|f(z)| \le c(a)$ для любого $z \in \mathbb{R}$. Проверим, что порядок f равен единице. Если $\rho < 1$ — порядок f, то по принципу Фрагмена–Линделёфа $|f(z)| \le c(a)$ для любого $z \in \mathbb{C}_\pm$ (так как полуплоскость — угол раствора $\pi < \frac{\pi}{\rho}$). Тогда по теореме Лиувилля $f \equiv \text{const.}$ Но при этом $f \in L^2(\mathbb{R})$, то есть $f \equiv 0$. Противоречие.

 $(1)\Longrightarrow (2)$. Хотим показать, что подходит $g=\mathcal{F}f$. Для этого нужно проверить, что $g|_{\mathbb{R}\setminus[-a,a]}=0$ почти всюду. Для этого, в свою очередь, достаточно доказать, что что для любого $t_0\in\mathbb{R}\setminus[-a,a]$ и любого $\varepsilon>0$, такого что $(t_0-2\varepsilon,t_0+2\varepsilon)\cap[-a,a]=\varnothing$, выполнено

$$\int_{t_0-\varepsilon}^{t_0+\varepsilon} g(t) \, \mathrm{d}t = 0. \tag{3.4}$$

После этого по теореме о дифференцировании мер 21 мы получим, что

$$\frac{1}{2\varepsilon} \int_{t_0-\varepsilon}^{t_0+\varepsilon} g(t) dt \xrightarrow{\text{a.e.}} g(t_0).$$

Тогда g = 0 почти всюду на $\mathbb{R} \setminus [-a, a]$.

Будем считать, что $t_0 < -a - 2\varepsilon$ (то есть t_0 лежит левее -a), так как можно заменить g(t) на g(-t) и, соответственно, f(z) на -f(-z). Условие (3.4) равносильно

$$\frac{\left(\mathcal{F}f,\chi_{[t_0-\varepsilon,t_0+\varepsilon]}\right)_{L^2(\mathbb{R})}}{2\varepsilon}=0\iff \left(f,\mathcal{F}^{-1}\chi_{[t_0-\varepsilon,t_0+\varepsilon]}\right)_{L^2(\mathbb{R})}=0.$$

В последней эквивалентности мы воспользовались унитарностью \mathcal{F} . Посчитаем:

$$(\mathcal{F}^{-1}\chi_{[t_0-\varepsilon,t_0+\varepsilon]})(x)=e^{it_0x}\mathcal{F}^{-1}(\chi_{[-\varepsilon,\varepsilon]})(x),$$

 $[\]overline{^{20}}$ Поскольку $L^1[-a,a]\subset L^2[-a,a]$, мы знаем явную формулу для $\mathcal{F}^{-1}g$.

 $^{^{21}}$ Альтернативное доказательство можно получить, рассмотрев множество $\{z: \operatorname{Re} g(z) > \frac{1}{N}\}$ и приблизив его по мере открытыми. Или можно сказать, что функция g ортогональна всем ступенчатым функциям на $L^2[-a,a]$, то есть ортогональна всему $L^2[-a,a]$, а значит равна нулю в этом пространстве.

$$(\mathcal{F}^{-1}\chi_{[-\varepsilon,\varepsilon]})(x) = \frac{1}{\sqrt{2\pi}} \int_{-\varepsilon}^{\varepsilon} e^{itx} dt = \frac{1}{\sqrt{2\pi}} \left. \frac{e^{itx}}{ix} \right|_{-\varepsilon}^{\varepsilon} = \frac{1}{\sqrt{2\pi}} \frac{e^{i\varepsilon x} - e^{-i\varepsilon x}}{ix} = \sqrt{\frac{2}{\pi}} \frac{\sin \varepsilon x}{x}.$$

Таким образом, нужно проверить, что

$$\int_{\mathbb{R}} f(x)e^{-it_0x}\frac{\sin(\varepsilon x)}{x}\,\mathrm{d}x=0.$$

Под интегралом стоит целая функция $F(z) = f(z)e^{-it_0z}\sin(\varepsilon z)/z$, поэтому её интеграл по контуру Γ_R (отрезок [-R,R] и верхняя полуокружность C_R^+) равен 0:

$$0 = \oint_{\Gamma_R} F(z) dz = \int_{-R}^R F(z) dz + \oint_{C_p^+} F(z) dz.$$

Следовательно, достаточно доказать, что $\oint_{C_R^+} F(z) \, \mathrm{d}z \to 0$ при $R \to \infty$. Чтобы воспользоваться леммой Жордана, хотим представить F в виде

$$F(z)=h(z)e^{i\alpha z},$$
 где $\alpha>0,\;|h(z)|\xrightarrow{|z|\to\infty}0,\;z\in\mathbb{C}^+.$

Пусть сначала $|f(z)| \le c$ для всех $z \in \mathbb{C}$. Тогда функция $e^{i(a+\varepsilon)z}f(z)$ ограничена на сторонах 1 и 2 координатных четвертей. Для вещественной прямой это очевидно, а если z=it, то значение

$$|e^{i(a+\varepsilon)z}f(z)| = |f(it)|e^{-(a+\varepsilon)t}$$

ограничено при $t\geqslant 0$, так как тип f не превосходит a. Кроме того, эта функция имеет порядок 1. Следовательно, по принципу Фрагмена–Линделёфа для каждой из этих четвертей (угол раствора $\pi/2<\frac{\pi}{1}$) имеем $|e^{i(a+\varepsilon)z}f(z)|\leqslant c$ для всех $z\in\mathbb{C}^+$. Обозначим

$$h(z) := f(z) \cdot e^{i(a+2\varepsilon)z} \cdot \frac{\sin \varepsilon z}{z}.$$

Тогда

$$F(z) = f(z) \cdot e^{-it_0 z} \cdot \frac{\sin \varepsilon z}{z} = h(z)e^{i\alpha z},$$

где $\alpha = -a - 2\varepsilon - t_0 > 0$. Имеем

$$|h(z)| \leqslant c \cdot \left| e^{i\varepsilon z} \cdot \frac{\sin \varepsilon z}{z} \right| = c \cdot \left| \frac{e^{2i\varepsilon z} - 1}{2z} \right| \leqslant \frac{c_1}{|z|} \xrightarrow[z \in \mathbb{C}^+]{} 0.$$

Таким образом, по лемме Жордана $\oint_{C_R^+} F \to 0$, то есть теорема доказана в предположении, что $|f(x)| \leqslant c$ на $\mathbb R$. Теперь рассмотрим функции

$$f_{\delta}(z) = \frac{1}{\delta} \int_{0}^{\delta} f(z+\tau) d\tau.$$

Они целые как интегралы целых 22 , имеют порядок ≤ 1 и тип относительно единичного порядка $\leq a$, и, кроме того,

$$|f_\delta(x)| \leqslant rac{1}{\delta} \int\limits_0^\delta |f(z+ au)| \,\mathrm{d} au \leqslant ext{[нер-во Гёльдера]} \leqslant rac{1}{\sqrt{\delta}} \cdot \|f\|_{L^2(\mathbb{R})} = c(\delta).$$

То есть функции f_{δ} ограничены на вещественной оси. Из этого, в частности, следует, что их порядок равен единице (проверяли в доказательстве импликации $2 \implies 1$). Таким образом, по уже доказанному $\operatorname{supp} \mathcal{F} f_{\delta} \subset [-a,a]$.

Хотим проверить, что $f_\delta \to f$ в L^2 при $\delta \to 0$. Это очевидно для $f \in C_0^\infty(\mathbb{R})$. Покажем, что операторы

$$T_{\delta} \colon f \mapsto \frac{1}{\delta} \int_{0}^{\delta} f(\Box + \tau) \, \mathrm{d}\tau$$

равномерно ограничены, а именно, что $\sup_{\delta \in (0,1)} \|T_{\delta}\| \le 1$:

$$\|T_\delta f\|_{L^2}^2 = \int\limits_{\mathbb{R}} \left| rac{1}{\delta} \int\limits_0^\delta f(x+ au) \,\mathrm{d} au
ight|^2 \mathrm{d}x \leqslant ext{[нер-во Гёльдера и теорема Фубини]}$$
 $\leqslant rac{1}{\delta} \int\limits_0^\delta \int\limits_{\mathbb{R}} |f(x+ au)|^2 \,\mathrm{d}x \,\mathrm{d} au = \|f\|_{L^2}^2.$

Итого²³, $\|I - T_{\delta}\| \le 2$ для всех $\delta > 0$, $(I - T_{\delta})(f) \to 0$ на плотном подмножество $C_0^{\infty}(\mathbb{R})$ в $L^2(\mathbb{R})$. Тогда $(I - T_{\delta})(f) \to 0$ для всех $f \in L^2(\mathbb{R})$.

Таким образом, $f_\delta \to f$ в $L^2(\mathbb{R})$. Тогда $\mathcal{F} f_\delta \to \mathcal{F} f = g$ в $L^2(\mathbb{R})$, и $\mathrm{supp}\, g \subset [-a,a]$, что и требовалось.

3.3 Следствия из теоремы Пэли-Винера

Следствие 3.4. Множество целых функций порядка 1 типа $\leq a$, лежащих в $L^2(\mathbb{R})$, вместе с нулевой функцией образует гильбертово пространство относительно скалярного произведения, наследованного из $L^2(\mathbb{R})$.

Доказательство. Все свойства, кроме полноты, очевидны²⁴. Пусть $\{f_n\}$ — последовательность Коши в этом пространстве. Тогда $\mathcal{F}f_n$ — последовательность Коши в пространстве $L^2[-a,a]$, которое полно, то есть существует такая функция $g \in L^2[-a,a]$, что $\mathcal{F}f_n \to g$. Тогда $f_n \to \mathcal{F}^{-1}g$.

Определение. Пространство из предыдущего следствия называется *пространством* П*эли*–B*инера* и обозначается через PW_a .

²²Можно по определению проверить существование производной, переставив интеграл и предел.

 $^{^{23}}$ Здесь I — тождественный оператор.

 $^{^{24}}$ Замкнутость относительно сложения не совсем очевидна, но доказывается она также, как и полнота.

Следствие 3.5. Если $f \in PW_a$, то $|f(z)| \le ce^{a|\operatorname{Im} z|}$. Мы это знаем из доказательства теоремы Пэли–Винера, импликации (2) \Longrightarrow (1).

Следствие 3.6. Если $f \in PW_a$, то $||f'||_{L^2} \le a||f||_{L^2}$.

Доказательство. Действительно,

$$||f'||_{L^{2}}^{2} = ||\mathcal{F}(f')||_{L^{2}}^{2} = \int_{\mathbb{R}} |t \cdot (\mathcal{F}f)(t)|^{2} dt \leq \left[\sup \mathcal{F}f \subset [-a, a] \right]$$

$$\leq a^{2} \int_{\mathbb{R}} |(\mathcal{F}f)(t)|^{2} dt = a^{2} ||f||_{L^{2}}^{2}.$$

Следствие 3.7. Если $f \in PW_a$, то $|f(x)| \to 0$ при $x \to \infty$ и $x \in \mathbb{R}$.

Доказательство. Имеем $f = \mathcal{F}^{-1}g$, где $g \in L^1(\mathbb{R})$. Тогда утверждение следует из леммы Римана–Лебега (см. ниже).

3.4 Лемма Римана-Лебега

Теорема 3.8 (лемма Римана-Лебега). Имеет место следующее включение:

$$\mathcal{F}(L^1(\mathbb{R}^n)) \subset \left\{ h \in C(\mathbb{R}^n) : h(x) \xrightarrow{\|x\| \to \infty} 0 \right\}.$$

Доказательство. Если $f \in L^1(\mathbb{R}^n)$, то

$$(\mathcal{F}f)(t) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x) e^{-i\langle x, t \rangle} d\lambda_n(x).$$

(1) Покажем, что функция $\mathcal{F}f$ непрерывна. Заметим, что

$$|(\mathcal{F}f)(t) - (\mathcal{F}f)(t+s)| \leq \frac{1}{(2\pi)^{n/2}} ||f - S_s f||_{L^1(\mathbb{R})},$$

где S_s : $f(t) \mapsto f(t+s)$.

Значит, достаточно доказать, что $S_s f \to f$ при $s \to 0$ для всех f. Для этого достаточно показать сходимость на плотном множестве $C_0^\infty(\mathbb{R}^n)$ (это очевидно) и ограниченность норм S_s :

$$||S_s f||_{L^1(\mathbb{R}^n)} = \int_{\mathbb{R}^n} |f(x+s) dx| = ||f||_{L^1(\mathbb{R}^n)}.$$

Отсюда следует, что $||S_s|| = 1$.

(2) Покажем, что $(\mathcal{F}f)(t) \to 0$ при $||t|| \to \infty$. Если $f \in C_0^\infty(\mathbb{R}^n)$, то $\mathcal{F}f \in \mathcal{S}(\mathbb{R}^n)$, откуда следует требуемое. Если f — произвольная функция из $L^1(\mathbb{R}^n)$, то найдём

такую функцию $f_{arepsilon}\in C_0^\infty(\mathbb{R}^n)$, что $\|f-f_{arepsilon}\|_{L^1}\leqslant arepsilon$. Тогда

$$|(\mathcal{F}f)(t)| \leq |\mathcal{F}(f - f_{\varepsilon})(t)| + |(\mathcal{F}f_{\varepsilon})(t)| \leq \frac{\varepsilon}{(2\pi)^{n/2}} + |(\mathcal{F}f_{\varepsilon})(t)| \to 0.$$

Значит, $(\mathcal{F}f)(t) \to 0$ при $||t|| \to \infty$.

3.5 Теорема Котельникова-Шеннона-Виттакера

Теорема 3.9 (Теорема Котельникова–Шеннона–Виттакера). Для любой функции $f \in \mathrm{PW}_\pi$ выполнено равенство

$$\sum_{n\in\mathbb{Z}}|f(n)|^2=\int\limits_{\mathbb{R}}|f(x)|^2\,\mathrm{d}x<\infty.$$

Более того,

$$f(z) = \sum_{n \in \mathbb{Z}} f(n) \frac{\sin(\pi(z-n))}{\pi(z-n)}, \quad z \in \mathbb{C}.$$

Доказательство. Заметим, что система $E = \left\{ \frac{1}{\sqrt{2\pi}} e^{int} \right\}_{n \in \mathbb{Z}}$ — ортонормированный базис пространства $L^2[-\pi,\pi]$. Действительно,

$$\int_{-\pi}^{\pi} e^{int} e^{-imt} = \frac{e^{i(m-n)t}}{m-n} \Big|_{-\pi}^{\pi} = 0 \qquad (\forall n \neq m),$$

то есть элементы E попарно ортогональны; и если $\int_{-\pi}^{\pi} f(t)e^{int} \, \mathrm{d}t = 0$, то

$$\int_{\mathbb{T}} g(z)z^n \, \mathrm{d}m(z) = 0 \qquad (\forall n \in \mathbb{Z}).$$

где $g(e^{it}) = f(t)$. Значит, по теореме Стоуна–Вейерштрасса (тригонометрические полиномы — алгебра Стоуна на окружности),

$$\int_{\mathbb{T}} g(z)h(z)\,\mathrm{d}m(z)=0$$

для любой функции $h \in C(\mathbb{T})$. Значит, $g \equiv 0$, то есть ортогональное дополнение E тривиально.

Теперь применим \mathcal{F}^{-1} к этому базису. Как мы вычисляли в доказательстве теоремы Пэли–Винера,

$$\mathcal{F}^{-1}\chi_{[-a,a]} = \sqrt{\frac{2}{\pi}} \frac{\sin(ax)}{x}.$$

Тогда

$$\left\{\mathcal{F}^{-1}\left(\frac{1}{\sqrt{2\pi}}e^{int}\chi_{[-\pi,\pi]}\right)\right\}_{n\in\mathbb{Z}}=\left\{\frac{1}{\sqrt{2\pi}}(\mathcal{F}^{-1}\chi_{[-\pi,\pi]})(x-n)\right\}_{n\in\mathbb{Z}}=\left\{\frac{\sin(\pi(x-n))}{\pi(x-n)}\right\}_{n\in\mathbb{Z}}$$

— ортонормированный базис в PW_{π} . Из курса функционального анализа мы знаем, что в этом случае

$$f(x) = \sum_{n \in \mathbb{Z}} c_n \frac{\sin(\pi(x-n))}{\pi(x-n)},$$
(3.5)

где ряд сходится $L^2(\mathbb{R})$,

$$c_n = \left(f, \frac{\sin(\pi(x-n))}{\pi(x-n)}\right)_{L^2(\mathbb{R})}, \qquad \sum_{n \in \mathbb{Z}} |c_n|^2 = \|f\|_{L^2(\mathbb{R})}^2.$$

Покажем, что сходимость в правой части (3.5) равномерна на компактах в \mathbb{C} . Пусть $|z| \le K$, тогда $|\sin(\pi(z-n))| \le e^{\pi K}$, а $\sum c_n^2$ и $\sum \frac{1}{(z-n)^2}$ сходятся равномерно по z:

$$\sum_{|n|>N} c_n \frac{\sin(\pi(z-n))}{\pi(z-n)} \leqslant \left[\text{KEIII} \right] \leqslant \left(\sum_{|n|>N} c_n^2 \cdot \sum_{|n|>N} \frac{\sin^2(\pi(z-n))}{(\pi(z-n))^2} \right)^{1/2} \to 0.$$

Тогда в (3.5) справа стоит целая функция (как равномерный на компактах предел целых). Две целые функции совпадают почти всюду на \mathbb{R} , то есть по теореме единственности

$$f(z) = \sum_{n \in \mathbb{Z}} c_n \frac{\sin(\pi(z - n))}{\pi(z - n)} \qquad (\forall z \in \mathbb{C}).$$

Чтобы получить, что $c_N = f(N)$, нужно подставить в эту формулу z = N.

Интерпретация в теории обработки сигналов

Сигнал с конечной энергией — $f \in L^2(\mathbb{R})$, спектр сигнала — $\operatorname{supp} f$, сигнал с ограниченным спектром — такая функция $f \in L^2(\mathbb{R})$, что $\operatorname{supp} f \subset [-a,a]$ для некоторого числа a.

«Инженерная задача» — передавать сигнал в зависимости от времени. Формула обращения преобразования Фурье может быть интерпретирована следующим образом: любой сигнал — это «линейная комбинация» гармоник $\{e^{ixt}\}_{t\in\mathbb{R}}=\{\cos xt+i\sin xt\}_{t\in\mathbb{R}}$. На практике сигналы часто имеют ограниченный спектр.

С учётом теоремы Котельникова (в случае спектра $[-\pi,\pi]$) мы можем передавать не саму функцию f, а только набор $\{f(n)\}_{n\in\mathbb{Z}}$. Более того, можно ограничиться конечным числом значений $\{f(n)\}_{|n|\leqslant N}$: ошибка при передаче

$$\left\| f - \sum_{n \leq N} f(n) \frac{\sin(\pi(z-n))}{\pi(z-n)} \right\|_{L^2(\mathbb{R})}$$

стремится к нулю при $N \to \infty$, так как $\sum_{n \in \mathbb{Z}} |f(n)|^2 < \infty$.

4 Дискретное преобразование Фурье

4.1 Напоминание и примеры

Замечание. Пусть \mathcal{H} — гильбертово пространство, $\{e_n\}_{n\in I}$ — ортонормированный базис в \mathcal{H} , $h\in\mathcal{H}$. Тогда

$$h = \sum_{n \in I} (h, e_n) e_n,$$

где ряд сходится по норме в \mathcal{H} ,

$$||h||_{\mathcal{H}}^2 = \sum_{n \in I} |(h, e_n)|^2.$$

Числа (h, e_n) называются коэффициентами Фурье h относительно базиса $\{e_n\}$. Отображение $\mathcal{F}: h \mapsto \{(h, e_n)\}$ — унитарный оператор из \mathcal{H} в $\ell^2(I)$.

Пример 4.1. Пусть $\mathcal{H} = \mathbb{C}^n$, $\{e_k\}_{1 \le k \le n}$ — стандартный базис. В этом случае коэффициенты Фурье вектора — это его запись в координатах.

Пример 4.2. Пусть $\mathcal{H} = L^2(\mathbb{T}, m)$, $\{z^n\}_{n \in \mathbb{Z}}$ — ортонормированный базис. Тогда для любой функции $f \in L^2(\mathbb{T})$ имеет место представление в виде $f = \sum_{n \in \mathbb{Z}} c_n z^n$, где

$$c_n = \widehat{f}(n) = \int_{\mathbb{T}} f(z)\overline{z}^n dm(z),$$

а ряд сходится в пространстве $L^2(\mathbb{T})$. Такое представление называется *рядом Фурье* функции f. Общий вопрос — что можно сказать о его поточечной сходимости?

4.2 Поточечная сходимость ряда Фурье

Теорема (Карлесон, без доказательства). Ряд Фурье любой функции $f \in L^2(\mathbb{T})$ сходится к f почти всюду на \mathbb{T} .

Это очень сложная теорема; её доказательством можно заниматься целый семестр.

Утверждение 4.1. Пусть $f \in L^2(\mathbb{T})$ непрерывна в некоторой окрестности $U(z_0)$, и функция $g(z) = \sum_{n \in \mathbb{Z}} \widehat{f}(n) z^n$ (поточечный предел) определена и непрерывна в $U(z_0)$. Тогда $f \equiv g$ на $U(z_0)$.

Доказательство. Обозначим

$$f_N(z) := \sum_{|n| \leq N} \widehat{f}(n) z^n.$$

Мы знаем, что $f_N \to f$ в $L^2(\mathbb{T})$. Тогда f_N сходится к f по мере²⁵, и по теореме Рисса существует такая подпоследовательность $\{N_k\}$, что f_{N_k} сходится к f поточечно почти всюду на \mathbb{T} . С другой стороны, $f_N \to g$ поточечно на $U(z_0)$. Значит, f = g почти всюду на $U(z_0)$, и по непрерывности $f \equiv g$ на $U(z_0)$.

²⁵Это простое следствие неравенства Чебышева из теории меры.

Тем не менее, обычно тяжело понять, непрерывна ли сумма g(z). Исключением является следующее следствие:

Следствие 4.2. Если $f \in C(\mathbb{T})$ и $\sum_{n \in \mathbb{Z}} |\widehat{f}(n)| < \infty$, то

$$f(z) = \sum_{n \in \mathbb{Z}} \widehat{f}(n) z^n$$
 всюду на \mathbb{T} .

Такие функции образуют алгебру Винера.

Теорема 4.3. Существует такая функция $f \in C(\mathbb{T})$, что ряд Фурье f не сходится к f в точке 1.

Доказательство. Пусть это не так, тогда для любой $f \in C(\mathbb{T})$ существует предел

$$\lim_{N\to\infty}\sum_{|n|\leqslant N}\widehat{f}(n)=f(1).$$

Рассмотрим семейство функционалов Φ_N : $f\mapsto \sum_{|n|\leqslant N}\widehat{f}(n)$ на $C(\mathbb{T})$. Для любой функции $f\in C(\mathbb{T})$ имеем

$$\lim_{N\to\infty}\Phi_N(f)=f(1).$$

Поскольку пространство $C(\mathbb{T})$ банахово, можно применить теорему Банаха–Штейнгауза и получить, что $\sup_{N\in\mathbb{Z}}\|\Phi_N\|<\infty$. Оценим теперь нормы Φ_N снизу:

$$\begin{split} \Phi_N(f) &= \sum_{|n| \leqslant N} \widehat{f}(n) = \int_{\mathbb{T}} f(z) z^{-N} (1 + \dots + z^{2N}) \, \mathrm{d}m(z) \\ &= \int_{\mathbb{T}} f(z) \overline{z}^N \frac{1 - z^{2N+1}}{1 - z} \, \mathrm{d}m(z) \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) \frac{\sin((N + \frac{1}{2})t)}{\sin(\frac{t}{2})} \, \mathrm{d}t. \end{split}$$

Выбирая последовательность $f_n \to \mathrm{sgn}(\frac{\sin((N+\frac{1}{2})t)}{\sin(\frac{t}{2})})$, понимаем, что:

$$\begin{split} \|\Phi_N\| &\geqslant \frac{1}{2\pi} \int\limits_{-\pi}^{\pi} \left| \frac{\sin((N+\frac{1}{2})t)}{\sin(\frac{t}{2})} \right| \mathrm{d}t \geqslant \frac{1}{2\pi} \int\limits_{0}^{\pi} \frac{\sin^2((N+\frac{1}{2})t)}{\sin(\frac{t}{2})} \, \mathrm{d}t \\ &\geqslant \frac{1}{2\pi} \int\limits_{0}^{\pi} \frac{1-\cos((2N+1)t)}{t} \, \mathrm{d}t \geqslant \frac{1}{2\pi} \int\limits_{1}^{(2N+1)\pi} \frac{1-\cos(t)}{t} \, \mathrm{d}t \\ &\geqslant c_1 \log(N) - \int\limits_{1}^{(2N+1)\pi} \frac{\cos t}{t} \, \mathrm{d}t \geqslant \text{[этот интеграл сходится]} \geqslant c_2 \log(N). \end{split}$$

Противоречие.

4.3 Теорема Фейера

Обозначение. Пусть $f \in C(\mathbb{T}), N \in \mathbb{Z}_+$. Обозначим

$$S_N(f,z)\coloneqq \sum_{-N}^N \widehat{f}(k)z^k, \quad$$
 где $z\in\mathbb{T}.$

Мы знаем, что существует такая функция $f \in C(\mathbb{T})$, что $S_N(f,1) \not\to f(1)$ при $N \to \infty$.

Теорема 4.4 (Фейер). Пусть $f \in L^{\infty}(\mathbb{T}), z_0 \in \mathbb{T}$, и существуют пределы

$$f(z_0 + 0) = \lim_{t \to 0^+} f(e^{it}z_0), \quad f(z_0 - 0) = \lim_{t \to 0^+} f(e^{-it}z_0).$$

Тогда ряд Фурье f в точке z_0 сходится по Чезаро к значению

$$\frac{f(z_0+0)+f(z_0-0)}{2}$$
.

В частности, если f непрерывна в точке z_0 , то ряд

$$\sum_{-\infty}^{\infty} \widehat{f}(k) z_0^k$$

сходится по Чезаро к $f(z_0)$. Если же $f \in C(\mathbb{T})$, то этот ряд сходится по Чезаро к функции f равномерно на \mathbb{T} .

Доказательство. По определению сходимость по Чезаро в точке z_0 означает, что существует предел

$$\lim_{N\to\infty} \frac{1}{N+1} \sum_{n=0}^{N} S_n(f, z_0) = \frac{f(z_0+0) + f(z_0-0)}{2}.$$

Преобразуем левую часть:

$$\frac{1}{N+1} \sum_{n=0}^{N} S_n(f, z_0) = \frac{1}{N+1} \sum_{n=0}^{N} \sum_{k=-n}^{n} \int_{\mathbb{T}} f(\xi) \overline{\xi}^k z_0^k dm(\xi) = \int_{\mathbb{T}} f(\xi) p_N(\xi, z_0) dm(\xi),$$

где

$$p_N(\xi, z_0) = \frac{1}{N+1} \sum_{n=0}^{N} \sum_{k=-n}^{n} \overline{\xi}^k z_0^k$$

— некоторый тригонометрический многочлен. Для продолжения доказательства нам понадобятся несколько лемм.

Лемма 4.5. Имеет место следующее равенство:

$$p_N(\xi, z_0) = \frac{1}{N+1} |1 + \overline{\xi} z_0 + \dots + (\overline{\xi} z_0)^N|^2 = \frac{1}{N+1} \left| \frac{1 - (\overline{\xi} z_0)^{N+1}}{1 - \overline{\xi} z_0} \right|^2.$$

Доказательство. Меняем порядок суммирования и вычисляем:

$$p_{N}(\xi, z_{0}) = \frac{1}{N+1} \sum_{k=-N}^{N} \sum_{n=|k|}^{N} \overline{\xi}^{k} z_{0}^{k}$$

$$= \frac{1}{N+1} \sum_{k=-N}^{N} (N-|k|+1) \overline{\xi}^{k} z_{0}^{k}$$

$$= \frac{1}{N+1} (1 + \overline{\xi} z_{0} + \dots + (\overline{\xi} z_{0})^{N}) (1 + (\overline{\xi} z_{0})^{-1} + \dots + (\overline{\xi} z_{0})^{-N})$$

$$= \frac{1}{N+1} |1 + \overline{\xi} z_{0} + \dots + (\overline{\xi} z_{0})^{N}|^{2}.$$

Здесь третье равенство проверяется раскрытием скобок.

Лемма 4.6. Семейство $\{p_N(\Box, z_0\}_{N \in \mathbb{Z}_+}$ является аппроксимативной единицей с центром в точке z_0 , то есть:

- (1) $p_N \ge 0$, $\int_{\mathbb{T}} p_N(\xi, z_0) dm(\xi) = 1$;
- (2) для всех $\delta > 0$ выполнено

$$\sup_{|\xi-z_0|>\delta} p_n(\xi,z_0) \xrightarrow[n\to\infty]{} 0.$$

Кроме того, p_N — чётная функция относительно z_0 , то есть

(3)
$$p_N(e^{it}z_0, z_0) = p_N(e^{-it}z_0, z_0)$$
 для всех $t \in \mathbb{R}$.

Доказательство.

(1) Ясно, что $p_N\geqslant 0;\{z^n\}_{n\in\mathbb{Z}}$ — ортонормированный базис в $L^2(\mathbb{T})$, поэтому

$$\begin{split} \int_{\mathbb{T}} p_N(\xi, z_0) \, \mathrm{d} m(\xi) &= \frac{1}{N+1} \int_{\mathbb{T}} |q(\xi)|^2 \, \mathrm{d} m(\xi) \\ &= \frac{1}{N+1} \sum_{k \in \mathbb{Z}} |\widehat{q}(k)|^2 \\ &= \frac{1}{N+1} \sum_{k=0}^n |z_0^k|^2 = \frac{1}{N+1} \sum_{k=0}^n 1 = 1, \end{split}$$

где $q(\xi) = 1 + \overline{\xi}z_0 + \dots + (\overline{\xi}z_0)^N$. Во втором равенстве мы воспользовались формулой Парсеваля.

(2) Если $\delta > 0$ и $|\xi - z_0| > \delta$, то

$$p_N(\xi,z_0) = \frac{1}{N+1} \left| \frac{1-(\overline{\xi}z_0)^{N+1}}{1-\overline{\xi}z_0} \right|^2 \leqslant \frac{1}{N+1} \frac{2^2}{\delta^2} \xrightarrow[N\to\infty]{} 0.$$

(3) По предыдущей лемме,

$$p_N(e^{it}z_0, z_0) = \frac{1}{N+1}|1 + e^{-it}|z_0|^2 + \dots + e^{-iNt}|z_0|^{2N}|^2,$$

$$p_N(e^{-it}z_0, z_0) = \frac{1}{N+1}|1 + e^{it}|z_0|^2 + \dots + e^{iNt}|z_0|^{2N}|^2,$$

а эти выражения равны, так как

$$\overline{1 + e^{-it}|z_0|^2 + \dots + e^{-iNt}|z_0|^{2N}} = 1 + e^{it}|z_0|^2 + \dots + e^{iNt}|z_0|^{2N}.$$

Лемма 4.7. Пусть $h \in L^{\infty}[-\pi, \pi]$, существуют пределы

$$\lim_{x \to 0^{\pm}} h(x) = h(0\pm),$$

и предположим, что r_n — чётная аппроксимативная единица на $[-\pi,\pi]$ с центром в нуле. Тогда

$$\int_{-\pi}^{\pi} h(x)r_n(x) dx \xrightarrow[n \to \infty]{} \frac{h(0+) + h(0-)}{2}.$$

Доказательство. В силу чётности r_n достаточно проверить, что

$$\int_{0}^{\pi} h(x)r_{n}(x) dx \xrightarrow[n \to \infty]{} \frac{h(0+)}{2}.$$

Это так, поскольку

$$\int_{0}^{\pi} h(x)r_{n}(x) dx - \frac{h(0+)}{2} = \int_{0}^{\pi} (h(x) - h(0+))r_{n}(x) dx = \int_{0}^{\delta} + \int_{\delta}^{\pi} dx$$

Первый интеграл не больше $\sup_{x\in[0,\delta]}|h(x)-h(0+)|\cdot 1\to 0$ при $\delta\to 0$ по условию леммы. Второй интеграл не больше (ess $\sup h)\cdot \int_{\delta}^{\pi}r_n(x)\,\mathrm{d}x$, и это число стремится к нулю при $n\to\infty$ по второму свойству аппроксимативной единицы.

Доказательство теоремы Фейера, продолжение. Положим

$$h(t) := f(z_0 e^{it}), \quad r_N(t) := \frac{1}{2\pi} \cdot p_N(z_0 e^{it}, z_0),$$

где $t \in [-\pi, \pi]$. По лемме 4.6 r_N — чётная аппроксимативная единица с центром в нуле, и по лемме 4.7

$$\int_{\mathbb{T}} f(\xi) p_N(\xi, z_0) \, \mathrm{d}m(\xi) = \frac{1}{2\pi} \int_{-\pi}^{\pi} h(t) p_N(z_0 e^{it}, z_0) \, \mathrm{d}t$$

$$\xrightarrow[N \to \infty]{} \frac{h(0+) + h(0-)}{2} = \frac{f(z_0 + 0) + f(z_0 - 0)}{2}.$$

Более того, если $f \in C(\mathbb{T})$, то оценки в лемме 4.7 равномерны по z_0 .

Замечание. В инженерных задачах часто бывает, что надо передать некоторую функцию с помощью конечного набора чисел. Теорема Фейера позволяет восстановить непрерывную функцию по конечному числу её коэффициентов Фурье с *равномерно малой* погрешностью.

4.4 Теорема Харди

Теорема 4.8 (Харди). Пусть $f \in BV(-\pi, \pi)$, ²⁶

$$\widehat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx.$$

Тогда ряд Фурье функции f

$$\sum_{n\in\mathbb{Z}}\widehat{f}(n)e^{inx}$$

сходится к числу

$$\frac{f(x+0)+f(x-0)}{2}$$

для любого $x \in (-\pi, \pi)$.

Замечание. Так как $f \in BV(-\pi,\pi)$, то f представляется в виде линейной комбинации монотонных функций, а потому значения $f(x \pm 0)$ существуют.

Пример 4.3. Любая кусочно-гладкая функция на $(-\pi,\pi)$ с ограниченной (и даже просто суммируемой по мере Лебега) производной является функцией из $BV(-\pi,\pi)$, поэтому можно применить к ней теорему Харди. Например, ряд Фурье функции |x| сходится к ней самой всюду на промежутке $(-\pi,\pi)$.

Доказательство теоремы Харди. Напомним, что если ряд $\sum_{n=0}^{\infty} a_n$ сходится по Чезаро и $|a_n| \leqslant \frac{c}{n}$ для всех $n \geqslant 1$, то ряд $\sum_{n=0}^{\infty} a_n$ сходится в обычном смысле²⁷. Таким образом, осталось понять, что для ряда $\sum_{n \in \mathbb{Z}} \widehat{f}(n)e^{int}$ есть оценка $|\widehat{f}(n)e^{int}| \leqslant \frac{c}{|n|}$ при каждом $t \in [-\pi, \pi]$, или, что то же самое, есть оценка $|\widehat{f}(n)| \leqslant \frac{c}{|n|}$. После этого можно будет воспользоваться теоремой Фейера для функции $h(e^{it}) = f(t)$ и тауберовой теоремой Харди. Оценка на коэффициенты вытекает из следующей леммы.

Лемма 4.9. Если
$$f \in BV(-\pi,\pi)$$
, то $\widehat{f}(n) = O(\frac{1}{n})$ при $|n| \to \infty$.

Доказательство. Переопределим f в точках разрыва (если такие есть) значением f(x-0). Новая функция будет непрерывной слева, при этом она всё ещё будет лежать в $\mathrm{BV}(-\pi,\pi)$ (это очевидно для ограниченных монотонных функций, а любая функция ограниченной вариации есть линейная комбинация нескольких ограниченных монотонных функций) и будет иметь те же коэффициенты Фурье, так как мы меняем

 $^{^{26}}$ Напомним, что BV — функции ограниченной вариации (bounded variation). Здесь мы рассматриваем функции из \mathbb{R} в \mathbb{C} , то есть имеется в виду, что Re f и Im f — функции ограниченной вариации в обычном смысле.

²⁷Это тауберова теорема Харди, см. конспект второго семестра.

функцию на счётном множестве, то есть множестве меры ноль. Таким образом, мы можем считать функцию f непрерывной слева. Тогда существует такой заряд μ , что²⁸

$$f(x) = \mu([-\pi, x)) + f(-\pi) \qquad \forall x \in [-\pi, \pi].$$

Тогда при $|n| \geqslant 1$

$$\widehat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(f(-\pi) + \int_{[-\pi,x)} d\mu(s) \right) e^{-inx} dx$$

$$[|n| \ge 1] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{[-\pi,x)} d\mu(s) e^{-inx} dx$$

$$= \frac{1}{2\pi} \int_{[-\pi,\pi)}^{\pi} \int_{s}^{\pi} e^{-inx} dx d\mu(s)$$

$$= \frac{1}{2\pi} \int_{[-\pi,\pi)}^{\pi} \left(\frac{e^{-inx}}{-in} \Big|_{s}^{\pi} \right) d\mu(s)$$

$$= \frac{1}{n} \cdot \frac{1}{-2i\pi} \int_{[-\pi,\pi)}^{\pi} (e^{-in\pi} - e^{-ins}) d\mu(s) = O\left(\frac{1}{n}\right),$$

Объясним поподробнее последний переход. Подынтегральная функция g ограничена по модулю константой c=2. Кроме того, в теории меры мы проходили оценку

$$\left| \int_{[-\pi,\pi)} g(s) \, \mathrm{d}\mu(s) \right| \leqslant \int_{[-\pi,\pi)} |g(s)| \, \mathrm{d}|\mu|(s),$$

где $|\mu|$ — вариация заряда μ . Следовательно,

$$\left| \int_{[-\pi,\pi)} g(s) \, \mathrm{d}\mu(s) \right| \leq 2|\mu|([-\pi,\pi)).$$

 $^{^{28}}$ См. курс по теории меры (теорема 16.3).

5 Формула суммирования Пуассона

Теорема 5.1. Пусть $n\in\mathbb{N},$ $\delta_{\mathbb{Z}^d}=\sum_{k\in\mathbb{Z}^d}\delta_k,$ где δ_k — мера Дирака в точке k, то есть

$$\delta_k(S) = egin{cases} 1, & k \in S, \ 0, & k \notin S, \end{cases}$$
 где $S \subset \mathbb{R}^n.$

Аналогично, положим $\delta_{2\pi\mathbb{Z}^d} = \sum_{k\in\mathbb{Z}^d} \delta_{2\pi k}$. Тогда

$$\mathcal{F}(\delta_{\mathbb{Z}^d}) = (2\pi)^{d/2} \delta_{2\pi\mathbb{Z}^d}.$$
 (5.1)

Здесь мера $\delta_{\mathbb{Z}^d}$ рассматривается как распределение медленного роста.

Замечание. Равенство (5.1) означает, что для всех $\varphi \in \mathcal{S}(\mathbb{R}^d)$ выполнено равенство

$$\sum_{k\in\mathbb{Z}^d} (\mathcal{F}\varphi)(k) = (2\pi)^{d/2} \sum_{k\in\mathbb{Z}^d} \varphi(2\pi k),$$

или, иными словами, что для всех $\varphi \in \mathcal{S}(\mathbb{R}^d)$

$$\sum_{k\in\mathbb{Z}^d}\varphi(k)=(2\pi)^{d/2}\sum_{k\in\mathbb{Z}^d}(\mathcal{F}^{-1}\varphi)(2\pi k)=(2\pi)^{d/2}\sum_{k\in\mathbb{Z}^d}(\mathcal{F}\varphi)(2\pi k).$$

Доказательство. Возьмём произвольную функцию $\varphi \in \mathcal{S}(\mathbb{R}^d)$ и определим

$$f(x) \coloneqq \sum_{k \in \mathbb{Z}^d} \varphi(x+k).$$

Этот ряд сходится поточечно, так как

$$\begin{split} \sum_{k \in \mathbb{Z}^d} |\varphi(x+k)| &\leq \sum_{k \in \mathbb{Z}^d} \frac{c_0}{1 + \|k\|^{2d}} \\ &\leq c_1 \int\limits_{\mathbb{R}^d} \frac{\mathrm{d}\lambda_d(t)}{1 + \|t\|^{2d}} \\ &= c_2 \int\limits_0^\infty \frac{|S(0,1)| r^{d-1}}{1 + r^{2d}} \, \mathrm{d}r \\ &\leq c_3 \left(1 + \int\limits_1^\infty \frac{\mathrm{d}r}{1 + r^{d+1}}\right) < \infty. \end{split}$$

Покажем по индукции, что $f \in C^\infty(\mathbb{R}^d)$. Предположим, что для некоторого мульти-индекса α

$$rac{\partial}{\partial x^{lpha}}f(x)=\sum_{k\in\mathbb{Z}^d}\psi(x+k),$$
 где $\psi\in\mathcal{S}(\mathbb{R}^d).$

Заметим, что $\frac{\partial}{\partial x_i} \psi$ также лежит в $\mathcal{S}(\mathbb{R}^n)$, то есть ряд

$$\sum_{k\in\mathbb{Z}^d} \frac{\partial}{\partial x_i} \psi(x+k)$$

сходится равномерно. Тогда по теореме Стокса-Зейделя

$$rac{\partial}{\partial x^{lpha}\partial x_i}f(x)=\sum_{k\in\mathbb{Z}^d}\psi_i(x+k),$$
 где $\psi_i=rac{\partial}{\partial x_i}\psi.$

Таким образом, мы получаем переход индукции. Отметим также, что f(x+k) = f(x) для всех $k \in \mathbb{Z}^d$.

Обозначим $Q := [-\frac{1}{2}, \frac{1}{2}]^d$, и заметим, что система функций $\{e^{2\pi i \langle x, k \rangle}\}_{k \in \mathbb{Z}^d}$ образует ортонормированный базис в пространстве $L^2(Q)$. Действительно,

$$\int\limits_{Q} |e^{2\pi i \langle x,k\rangle}|^2 \, \mathrm{d}\lambda_d(x) = \int\limits_{Q} 1 \, \mathrm{d}\lambda_d = 1;$$

$$\int\limits_{Q} e^{2\pi i \langle x,k\rangle} \overline{e^{2\pi i \langle x,j\rangle}} = \int\limits_{Q} e^{2\pi i \langle x,k-j\rangle} \, \mathrm{d}\lambda_d(x).$$

Если $k \neq j$, то существует такое s_0 , что $1 \leqslant s_0 \leqslant d$ и $k_{s_0} - j_{s_0} \neq 0$, и тогда

$$\int_{Q} e^{2\pi i \langle x, k-j \rangle} d\lambda_d(x) = \prod_{s=1}^{d} \int_{-1/2}^{1/2} e^{2\pi i x_s (k_s - j_s)} dx_s = 0,$$

поскольку

$$\int_{-1/2}^{1/2} e^{2\pi i x_{s_0}(k_{s_0} - j_{s_0})} dx_{s_0} = 0.$$

Для доказательства полноты надо перейти на \mathbb{T}^d и воспользоваться теоремой Стоуна-Вейерштрасса для алгебры $\mathrm{span}\{z_1^{l_1}\dots z_d^{l_d}\mid l_1,\dots,l_d\in\mathbb{Z}\}$. Таким образом, в $L^2(Q)$ верно

$$f(x) = \sum_{k \in \mathbb{Z}^d} \widehat{f}(k) e^{2\pi i \langle x, k \rangle}, \tag{5.2}$$

где

$$\widehat{f}(k) = \int_{Q} f(x)e^{-2\pi i \langle x,k \rangle} d\lambda_d(x).$$

При этом для всех $N \in \mathbb{N}$

$$\widehat{f}(k) \le \int_{-1/2}^{1/2} \dots \int_{-1/2}^{1/2} \left| \int_{-1/2}^{1/2} f(x) e^{-2\pi i k_1 x_1} dx_1 \right| dx_2 \dots dx_n$$

= [N раз интегрируем по частям и пользуемся периодичностью f]

$$= \int_{-1/2}^{1/2} \dots \int_{-1/2}^{1/2} \frac{1}{(2\pi k_1)^N} \left| \int_{-1/2}^{1/2} \frac{\partial f}{\partial x_1^N}(x) e^{-2\pi i k_1 x_1} \, \mathrm{d}x_1 \right| \, \mathrm{d}x_2 \dots \, \mathrm{d}x_n$$

$$\leq \left[\text{можем считать, что } k_1 \geqslant \frac{\|k\|}{n} \right]$$

$$\leq \frac{n^N}{(2\pi \|k\|)^N} \int\limits_{Q} \left| \frac{\partial f}{\partial x_1^N}(x) \right| \, \mathrm{d}\lambda_d(x) \leqslant \frac{c_N}{1 + \|k\|^N}.$$

Значит, ряд в правой части (5.2) сходится равномерно, то есть является непрерывной функцией от x. Тогда из сходимости в $L^2(Q)$ следует поточечная сходимость. Подставляя в (5.2) x = 0, получаем:

$$\sum_{k \in \mathbb{Z}^d} \varphi(k) = f(0) = \sum_{k \in \mathbb{Z}_d} \widehat{f}(k).$$
 (5.3)

Посчитаем $\widehat{f}(k)$ в терминах функции φ :

$$\widehat{f}(k) = \int_{Q} f(x)e^{-2\pi i\langle x,k\rangle} d\lambda_{d}(x)$$

$$= \sum_{j \in \mathbb{Z}^{d}} \int_{Q} \varphi(x+j)e^{-2\pi i\langle x,k\rangle} d\lambda_{d}(x)$$

$$^{29} = \sum_{j \in \mathbb{Z}^{d}} \int_{Q+j} \varphi(y)e^{-2\pi i\langle y,k\rangle} d\lambda_{d}(y)$$

$$= \int_{\mathbb{R}^{n}} \varphi(y)e^{-2\pi i\langle y,k\rangle} d\lambda_{d}(y)$$

$$= (2\pi)^{d/2} (\mathcal{F}\varphi)(2\pi k).$$

Таким образом,

$$\sum_{k\in\mathbb{Z}^d}\widehat{f}(k)=\sum_{k\in\mathbb{Z}^d}(2\pi)^{d/2}(\mathcal{F}\varphi)(2\pi k).$$

Это как раз то, что мы хотели доказать — см. (5.3).

6 Проблема круга

6.1 Постановка и идея доказательства

Задача состоит в том, чтобы найти асимптотическое поведение для числа целых точек в круге большого радиуса с точностью до второго члена асимптотики. Другими

 $[\]overline{^{29}}$ Можем заменить x на x+j, так как $e^{-2\pi i \langle j,k \rangle} = 1$ при целых j и k.

словами, нас интересует поведение функции

$$N(R) := \#\{(m, n) : m^2 + n^2 < R^2\}.$$

Теорема 6.1. Имеет место равенство

$$N(R) = \pi R^2 + O(R^{2/3}), \quad R \to \infty.$$

Идея доказательства. Мы хотим доказать следующее:

$$N(R) = \sum_{k \in \mathbb{Z}^2} \chi_{B(0,R)}(k) \stackrel{?}{=} 2\pi \sum_{k \in \mathbb{Z}^2} \widehat{\chi}_{B(0,R)}(2\pi k) = 2\pi \widehat{\chi}_{B(0,R)}(0) + 2\pi \sum_{k \in \mathbb{Z}^2 \setminus \{0\}} \widehat{\chi}_{B(0,R)}(2\pi k).$$

Формально мы не можем пользоваться формулой суммирования Пуассона, так как $\chi_{B(0,R)} \notin \mathcal{S}(\mathbb{R}^2)$. Заметим, что

$$2\pi \widehat{\chi}_{B(0,R)}(0) = \int_{\mathbb{R}^2} \chi_{B(0,R)}(x) \, \mathrm{d}\lambda_2(x) = |B(0,R)| = \pi R^2.$$

Второе слагаемое равно $O(R^p)$, и мы можем надеяться, что степень p маленькая.

6.2 Предварительные леммы

Обозначение. Пусть B = B(0, 1) и

$$\varphi \geqslant 0$$
, $\int_{\mathbb{R}^2} \varphi \, d\lambda_n = 1$, $\sup \varphi \subset B$, $\varphi \in C^{\infty}(\mathbb{R}^2)$.

Для $\varepsilon > 0$ положим

$$\varphi_{\varepsilon} := \varepsilon^{-2} \varphi(\frac{x}{\varepsilon}).$$

Тогда

$$\varphi_{\varepsilon} \geqslant 0, \quad \int\limits_{\mathbb{D}^2} \varphi_{\varepsilon} \, \mathrm{d}\lambda_n = 1, \quad \operatorname{supp} \varphi \subset B(0, \varepsilon), \quad \varphi_{\varepsilon} \in C^{\infty}(\mathbb{R}^2)$$

Обозначим $\chi_{\varepsilon} := \chi_B * \varphi_{\varepsilon}$.

Лемма 6.2. Выполнено равенство

$$\chi_{\varepsilon}(x) = \begin{cases} 1, & ||x|| \leq 1 - \varepsilon, \\ \xi(x), & ||x|| \in (1 - \varepsilon, 1 + \varepsilon), \\ 0, & ||x|| \geq 1 + \varepsilon, \end{cases}$$

где $0 \leqslant \xi(x) \leqslant 1$. Кроме того, $\chi_{\varepsilon} \in C_0^{\infty}(\mathbb{R}^2) \subset \mathcal{S}(\mathbb{R}^2)$.

Доказательство. Рассмотрим несколько случаев.

• Если $||x|| \le 1 - \varepsilon$, то

$$\chi_{\varepsilon}(x) = \int_{\mathbb{R}^{2}} \chi_{B}(y) \varphi_{\varepsilon}(x - y) \, d\lambda_{2}(y)$$
$$= \int_{B} \varphi_{\varepsilon}(x - y) \, d\lambda_{2}(y)$$
$$= \int_{\mathbb{R}^{2}} \varphi_{\varepsilon}(x - y) \, d\lambda_{2}(y) = 1.$$

• Если $||x|| \ge 1 + \varepsilon$, то

$$\chi_{\varepsilon}(x) = \int\limits_{\mathbb{R}^2} \chi_B(y) \varphi_{\varepsilon}(x-y) \, \mathrm{d}\lambda_2(y) = \int\limits_B \varphi_{\varepsilon}(x-y) \, \mathrm{d}\lambda_2(y) = 0.$$

• Для любого х справедливо

$$0 \leqslant \chi_{\varepsilon}(x) \leqslant \int_{\mathbb{R}^2} \varphi_{\varepsilon}(x-y) d\lambda_2 = 1.$$

Функция χ_{ε} лежит в $C_0^{\infty}(\mathbb{R}^2)$, так как $\varphi_{\varepsilon} \in C^{\infty}(\mathbb{R}^2)$ и можно дифференцировать по параметру.

Следствие 6.3. Для любых $x \in \mathbb{R}^2$, R > 0 и $\varepsilon > 0$ имеет место неравенство

$$\chi_\varepsilon((1+\varepsilon)\tfrac{x}{R}) \leq \chi_{B(0,R)}(x) \leq \chi_\varepsilon((1-\varepsilon)\tfrac{x}{R}).$$

Доказательство. Из предыдущей леммы нетрудно вывести неравенства

$$\chi_{\varepsilon}((1+\varepsilon)x) \leq \chi_{B}(x) \leq \chi_{\varepsilon}((1-\varepsilon)x).$$

Осталось подставить x/R вместо x и заметить, что $\chi_B(x/R) = \chi_{B(0,R)}(x)$.

Лемма 6.4. Выполнено

$$(\mathcal{F}\chi_B)(t) = O\left(\frac{1}{\|t\|^{3/2}}\right), \quad \|t\| \to +\infty.$$

Доказательство. По определению,

$$2\pi(\mathcal{F}\chi_B)(t) = \int\limits_{\mathcal{B}} e^{-i\langle x,t\rangle} \,\mathrm{d}\lambda_2(x) = \int\limits_{\mathcal{B}} e^{i\langle x,t\rangle} \,\mathrm{d}\lambda_2(x).$$

Мы знаем, что UB = B и $\lambda_2(X) = \lambda_2(UX)$, если оператор $U: \mathbb{R}^2 \to \mathbb{R}^2$ унитарен. В частности, это верно для поворота U_t , который переводит фиксированный вектор t в

 $||t|| \cdot e_1$. Имеем

$$\begin{split} \int\limits_{B} e^{i\langle x,t\rangle} \,\mathrm{d}\lambda_{2}(x) &= \int\limits_{B} e^{i\langle U(x),U(t)\rangle} \,\mathrm{d}\lambda_{2}(x) \\ &= \int\limits_{B} e^{i\langle x,\|t\|e_{1}\rangle} \,\mathrm{d}\lambda_{2}(x) \\ &= \int\limits_{B} e^{i\|t\|x_{1}} \,\mathrm{d}\lambda_{2}(x) \\ &= \int\limits_{-1}^{1} \int\limits_{-\sqrt{1-x_{1}^{2}}} e^{i\|t\|x_{1}} \,\mathrm{d}x_{2} \,\mathrm{d}x_{1} \\ &= \int\limits_{-1}^{1} 2\sqrt{1-x_{1}^{2}} \cdot e^{i\|t\|x_{1}} \,\mathrm{d}x_{1}. \end{split}$$

Хотим оценить асимптотику последнего интеграла при $\|t\| \to \infty$. Положим

$$f(z) := \sqrt{1 - z^2} \cdot e^{i||t||z}.$$

Это аналитическая функция в $\mathbb{C} \setminus [-1,1]$. Также рассмотрим отрезки

$$\gamma = [-1, 1],
\gamma_{1,s} = [-1, -1 + is],
\gamma_{2,s} = [-1 + is, 1 + is],
\gamma_{3,s} = [1 + is, 1].$$

Тогда³⁰

$$\int_{-1}^{1} \sqrt{1 - x_1^2} \cdot e^{i||t||x_1} \, dx_1 = \int_{\gamma} f(z) \, dz = \int_{\gamma_{1,s}} f(z) \, dz + \int_{\gamma_{2,s}} f(z) \, dz + \int_{\gamma_{3,s}} f(z) \, dz.$$

При $s \to \infty$ имеем

$$\left| \int_{\gamma_{2,s}} f(z) \, dz \right| \leq 2 \cdot \max_{z \in \gamma_{2,s}} |\sqrt{1 - z^2}| e^{-||t||s} \to 0,$$

а потому

$$\int_{\gamma} f(z) dz = \int_{[-1,-1+i\infty]} f(z) dz - \int_{[1,1+i\infty]} f(z) dz.$$

 $^{^{30}}$ Когда мы пишем интеграл по γ , мы имеем в виду предел интегралов по $[-1+\delta i,1+\delta i]\subset\mathbb{C}^+$ при $\delta\to 0.$

Разберёмся с асимптотикой второго интеграла (асимптотика первого находится аналогичным образом).

$$\left| \int_{0}^{\infty} \sqrt{1 - (1 + iy)^{2}} e^{i||t||(1 + iy)} \, dy \right| = O\left(\int_{0}^{1} \sqrt{y} e^{-||t||y} \, dy + \int_{1}^{\infty} y e^{-||t||y} \, dy \right)$$

$$= \left[u = ||t||y, y \leqslant c e^{||t||y/2} \right] = O\left(\frac{1}{||t||^{3/2}} \int_{0}^{||t||} \sqrt{u} e^{-u} \, du + \int_{1}^{\infty} e^{-||t||y/2} \, dy \right)$$

$$= \left[\int_{0}^{\infty} \sqrt{u} e^{-u} \, du < \infty \right] = O\left(\frac{1}{||t||^{3/2}} + \frac{e^{-||t||/2}}{||t||} \right) = O\left(\frac{1}{||t||^{3/2}} \right).$$

6.3 Доказательство

Доказательство теоремы 6.1. Вместо $\chi_{B(0,R)}$ будем применять формулу суммирования Пуассона к функциям $\chi_{\varepsilon}(\frac{x}{r})$, где $r=\frac{R}{1+\varepsilon}$:

$$\sum_{k \in \mathbb{Z}^2} \chi_{\varepsilon} \left(\frac{k}{r} \right) = 2\pi \sum_{k \in \mathbb{Z}^2} \left(\mathcal{F} \chi_{\varepsilon} \left(\frac{\square}{r} \right) \right) (2\pi k). \tag{6.1}$$

Заметим, что если $\psi \in \mathcal{S}(\mathbb{R}^2)$, $\widetilde{\psi}(x) = \psi(\frac{x}{\lambda})$, то

$$(\mathcal{F}\widetilde{\psi})(t) = \frac{1}{2\pi} \int_{\mathbb{R}^2} \psi\left(\frac{x}{\lambda}\right) e^{-i\langle x,t\rangle} d\lambda_2(x) = (\mathcal{F}\psi)(\lambda t) \cdot \lambda^2.$$

Продолжим равенство (6.1):

$$(6.1) = 2\pi r^{2} \sum_{k \in \mathbb{Z}^{2}} (\mathcal{F}\chi_{\varepsilon})(2\pi rk)$$

$$= \left[\mathcal{F}(\chi_{B} * \varphi_{\varepsilon})(t) = 2\pi \cdot (\mathcal{F}\chi_{B})(t) \cdot (\mathcal{F}\varphi_{\varepsilon})(t) = 2\pi \cdot (\mathcal{F}\chi_{B})(t) \cdot (\mathcal{F}\varphi)(\varepsilon t)\right]$$

$$= (2\pi)^{2} r^{2} \sum_{k \in \mathbb{Z}^{2}} (\mathcal{F}\chi_{B})(2\pi rk) \cdot (\mathcal{F}\varphi)(\varepsilon \cdot 2\pi rk)$$

$$= (2\pi)^{2} r^{2} (\mathcal{F}\chi_{B})(0) \cdot (\mathcal{F}\varphi)(0) + (2\pi)^{2} r^{2} \sum_{k \in \mathbb{Z}^{2} \setminus \{0\}} (\mathcal{F}\chi_{B})(2\pi rk) \cdot (\mathcal{F}\varphi)(\varepsilon \cdot 2\pi rk)$$

Посчитаем первое слагаемое:

$$(2\pi)^{2}r^{2}(\mathcal{F}\chi_{B})(0)\cdot(\mathcal{F}\varphi)(0)=(2\pi)^{2}r^{2}\cdot\frac{1}{2\pi}\int_{\mathbb{R}^{2}}\chi_{B}\cdot\frac{1}{2\pi}\int_{\mathbb{R}^{2}}\varphi=r^{2}\lambda_{2}(B)=\pi r^{2}.$$

Хотим показать, что πr^2 — главный член асимптотики. Для этого оценим остаток (пользуемся леммой 6.4 и тем, что $\mathcal{F}\varphi \in \mathcal{S}(\mathbb{R}^2)$):

$$(2\pi)^{2} \sum_{k \in \mathbb{Z}^{2} \setminus \{0\}} (\mathcal{F}\chi_{B})(2\pi rk) \cdot (\mathcal{F}\varphi)(2\pi \varepsilon rk) = O\left(r^{2} \sum_{k \in \mathbb{Z}^{2} \setminus \{0\}} \frac{1}{\|rk\|^{3/2}} \cdot \frac{1}{\|\varepsilon rk\|^{2} + 1}\right)$$

$$= O\left(r^{2} \int_{\mathbb{R}^{2}} \frac{d\lambda_{2}(x)}{\|rx\|^{3/2}(\|\varepsilon rx\|^{2} + 1)}\right)$$

$$[u = \varepsilon rx] = O\left(r^{2} \frac{\varepsilon^{3/2}}{\varepsilon^{2} r^{2}} \int_{\mathbb{R}^{2}} \frac{d\lambda_{2}(u)}{\|u\|^{3/2}(\|u\|^{2} + 1)}\right) = O(\frac{1}{\sqrt{\varepsilon}}),$$

так как

$$\int_{\mathbb{R}^2} \frac{\mathrm{d}\lambda_2(u)}{\|u\|^{3/2}(\|u\|^2+1)} = \int_0^\infty \frac{2\pi t}{t^{3/2}(t^2+1)} \, \mathrm{d}t < \infty.$$

Таким образом,

$$\sum_{k \in \mathcal{V}^2} \chi_{\varepsilon} \left(\frac{k}{r} \right) = 2\pi r^2 + O\left(\frac{1}{\sqrt{\varepsilon}} \right).$$

Подставим $r = \frac{R}{1-\varepsilon}$:

$$N(R) = \sum_{k \in \mathbb{Z}^2} \chi_{B(0,R)}(k) \leqslant \sum_{k \in \mathbb{Z}^2} \chi_{\varepsilon} \left(\frac{k}{r}\right)$$

$$= 2\pi r^2 + O\left(\frac{1}{\sqrt{\varepsilon}}\right)$$

$$= 2\pi R^2 + 2\pi \left(\frac{R^2}{(1-\varepsilon)^2} - R^2\right) + O\left(\frac{1}{\sqrt{\varepsilon}}\right)$$

$$= [при \, \varepsilon < \frac{1}{2}] = 2\pi R^2 + O\left(R^2 \varepsilon + \frac{1}{\sqrt{\varepsilon}}\right)$$

Выберем оптимальное ε при фиксированном R (минимизируем значение выражения $R^2\varepsilon + \frac{1}{\sqrt{\varepsilon}}$):

$$\varepsilon_0 = \frac{1}{(2R^2)^{2/3}}.$$

Тогда в итоговой оценке

$$R^2\varepsilon_0 + \frac{1}{\sqrt{\varepsilon_0}} = O(R^{2/3}).$$

Аналогично, подставим $r = \frac{R}{1+\varepsilon}$:

$$N(R)=\sum_{k\in\mathbb{Z}^2}\chi_{B(0,R)}(k)\geqslant\sum_{k\in Z^2}\chi_{arepsilon}\left(rac{k}{r}
ight)$$
 = [выбираем такое же $arepsilon_0]=2\pi R^2+O(R^{2/3})$

Теорема Рисса-Торина и её приложения 7

Теорема Рисса-Торина 7.1

Теорема 7.1 (Рисс, Торин). Пусть $\mu, \nu - \sigma$ -конечные меры, зафиксированы числа $p_0, q_0, p_1, q_1 \in [1, +\infty]$, оператор T плотно задан на простых функциях и непрерывен как оператор между пространствами $(L^{p_0}(X,\mu),L^{q_0}(Y,\nu))$ и $(L^{p_1}(X,\mu),L^{q_1}(Y,\nu))$. Тогда T непрерывен как плотно заданный оператор для любой пары $(L^{p_{\theta}}(X,\mu),L^{q_{\theta}}(Y,\nu)),$ где

$$\left(\frac{1}{p_{\theta}}, \frac{1}{q_{\theta}}\right) = (1 - \theta) \left(\frac{1}{p_0}, \frac{1}{q_0}\right) + \theta \left(\frac{1}{p_1}, \frac{1}{q_1}\right) \qquad \forall \theta \in [0, 1].$$

Кроме того, $\|T\|_{p_{\theta},q_{\theta}} \leqslant \|T\|_{p_{0},q_{0}}^{1-\theta} \cdot \|T\|_{p_{1},q_{1}}^{\theta}.$

Доказательство. Пусть q_0', q_1', q_θ' — сопряжённые показатели к q_0, q_1 и q_θ соответственно 31 . Зафиксируем $\theta \in (0,1)$; рассмотрим простые функции f,g, такие что

$$||f||_{L^{p_{\theta}}(\mu)} \le 1, \quad ||g||_{L^{q'_{\theta}}(\nu)} \le 1.$$
 (7.1)

Определим для всех $z \in \mathbb{C}$, таких что $\text{Re } z \in [0,1]^{32}$

$$f_z := |f|^{p_{\theta}\left(\frac{1-z}{p_0} + \frac{z}{p_1}\right)} \operatorname{sgn} f,$$

$$g_z := |g|^{q'_{\theta}\left(\frac{1-z}{q'_0} + \frac{z}{q'_1}\right)} \operatorname{sgn} g,$$

$$\Phi(z) := \int\limits_{Y} (Tf_z)g_z \, \mathrm{d}\nu,$$

где $\operatorname{sgn} z = e^{i \operatorname{arg} z}$ для $z \neq 0$, и $\operatorname{sgn} 0 = 0$. Таким образом, $\operatorname{sgn} f \cdot |f| = f$. Докажем, что:

- (1) Φ аналитична в полосе $\text{Re } z \in (0,1)$ и непрерывна в полосе $\text{Re } z \in [0,1]$;
- (2) Φ ограничена в полосе $\text{Re } z \in [0, 1]$;
- (3) $|\Phi(iy)| \leq ||T||_{p_0,q_0}, |\Phi(1+iy)| \leq ||T||_{p_1,q_1}.$

Тогда по теореме Адамара о трёх прямых

$$|\Phi(\theta + iy)| \le ||T||_{p_0, q_0}^{1-\theta} \cdot ||T||_{p_1, q_1}^{\theta} = c_{\theta} \quad (\forall y \in \mathbb{R}).$$

После этого останется заметить, что по определению p_{θ} и q_{θ} справедливы равенства

³¹То есть $\frac{1}{q_0} + \frac{1}{q_0'} = 1$, и аналогично для q_1' и q_θ' . ³²Отметим, что если какие-то из p_0, p_1, q_0', q_1' равны +∞, то эти определения остаются корректными.

 $f_{ heta}=f$ и $g_{ heta}=g$, то есть $\Phi(heta)=\int_{Y}(Tf)g\,\mathrm{d}
u$, откуда

$$\left| \int\limits_{Y} (Tf)g \, \mathrm{d}\nu \right| \leqslant c_{\theta}$$

для любых простых функций f,g, удовлетворяющих условию (7.1). Тогда по двойственности³³ $\|Tf\|_{L^{q_{\theta}}(\nu)} \le c_{\theta}$ для всех простых f, таких что $\|f\|_{L^{p_{\theta}}} \le 1$. Это и значит, что $\|T\|_{p_{\theta},q_{\theta}} \le c_{\theta}$.

(1–2) Пусть $f = \sum a_k \chi_{E_k}$, $g = \sum b_l \chi_{F_l}$. Тогда $T f_z$ и g_z представляются в виде конечной линейной комбинации не зависящих от z функций с аналитическими (по z) коэффициентами:

$$Tf_z = \sum |a_k|^{p_{\theta}(\frac{1-z}{p_0} + \frac{z}{p_1})} \operatorname{sgn}(a_k) \cdot T\chi_{E_k},$$

$$g_z = \sum |b_l|^{q'_{\theta}(\frac{1-z}{q'_0} + \frac{z}{q'_1})} \operatorname{sgn}(b_l) \cdot \chi_{F_l}.$$

Значит, Ф можно записать в следующем виде:

$$\Phi(z) = \sum_{k,l} |a_k|^{p_{\theta}(\frac{1-z}{p_0} + \frac{z}{p_1})} \operatorname{sgn}(a_k) \cdot |b_l|^{q'_{\theta}(\frac{1-z}{q'_0} + \frac{z}{q'_1})} \operatorname{sgn}(b_l) \cdot \int_{Y} T \chi_{E_k} \cdot \chi_{F_k} d\nu,$$

— это линейная комбинация аналитических функций. При этом

$$\left| |a_k|^{p_\theta(\frac{1-z}{p_0}+\frac{z}{p_1})} \right| = |a_k|^{p_\theta(\frac{1-\operatorname{Re} z}{p_0}+\frac{\operatorname{Re} z}{p_1})} \leqslant c \quad \text{при $\operatorname{Re} z \in [0,1]$.}$$

Из этой оценки и аналогичной оценки для b_l следует ограниченность.

(3) Оценим $\Phi(iy)$ с помощью неравенства Гёльдера:

$$|\Phi(iy)| \leq ||Tf_{iy}||_{q_0} \cdot ||g_{iy}||_{q'_0} \leq ||T||_{p_0,q_0} \cdot ||f_{iy}||_{p_0} \cdot ||g_{iy}||_{q'_0}.$$

Во втором неравенстве мы воспользовались непрерывностью T как оператора из L^{p_0} в L^{q_0} . Теперь надо оценить p_0 -норму f_{iv} :

$$||f_{iy}||_{p_0}^{p_0} = \int\limits_X |f_{iy}|^{p_0} d\mu = \int\limits_X \left| |f|^{p_{\theta}(\frac{1-iy}{p_0} + \frac{iy}{q_0})} \right|^{p_0} d\mu = \int\limits_X |f|^{p_{\theta}} d\mu = ||f||_{p_{\theta}}^{p_{\theta}} \le 1.$$

В третьем равенстве мы избавились от мнимой части, так как $|a^{iy}|=1$ для всех a>0 и $y\in\mathbb{R}$. Последнее неравенство выполнено по нашему выбору функции f. Аналогично,

$$\|g_{iy}\|_{q'_0}^{q'_0} \le \|g\|_{q'_{\theta}}^{q'_{\theta}} \le 1,$$

$$(L^p(\mu))^* \simeq L^{p'}(\mu).$$

 $^{^{33}}$ Здесь имеется в виду тот факт, что для σ -конечной меры μ существует изоморфизм

и мы получаем искомую оценку на $|\Phi(iy)|$. Оценка для $\Phi(1+iy)$ выводится таким же образом.

7.2 Неравенство Юнга-Хаусдорфа

Теорема 7.2 (неравенство Юнга–Хаусдорфа). Пусть $f \in L^p(\mathbb{R}^n)$, $1 \le p \le 2$. ³⁴ Тогда $\mathcal{F}f \in L^{p'}(\mathbb{R}^n)$ и $\|\mathcal{F}f\|_{p'} \le \|f\|_p$.

Доказательство. Обозначим $T := \mathcal{F}$. Это корректно заданный и линейный на простых функциях оператор:

$$T: L^{2}(\mathbb{R}^{n}) \to L^{2}(\mathbb{R}^{n}), \quad ||T||_{2,2} = 1;$$

 $T: L^{1}(\mathbb{R}^{n}) \to L^{\infty}(\mathbb{R}^{n}), \quad ||T||_{1,\infty} \le \frac{1}{(2\pi)^{n/2}}.$

Равенство $||T||_{2,2} = 1$ следует из унитарности \mathcal{F} (равенство Парсеваля). Поясним оценку на вторую норму:

$$||Tf||_{L^{\infty}(\mathbb{R}^n)} = \operatorname{ess\,sup}_{t \in \mathbb{R}} \left| \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x) e^{-i\langle x, t \rangle} \, \mathrm{d}\lambda_n(x) \right|$$

$$\leq \sup_{t \in \mathbb{R}^n} \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} |f(x)| \, \mathrm{d}\lambda_n(x) \leq \frac{||f||_{L^1}}{(2\pi)^{n/2}}.$$

По теореме Рисса–Торина, $T\colon L^{p_\theta}(\mathbb{R}^n) \to L^{q_\theta}(\mathbb{R}^n)$ для всех таких $\theta\in(0,1)$, что

$$\left(\frac{1}{p_{\theta}}, \frac{1}{q_{\theta}}\right) = (1 - \theta) \left(\frac{1}{2}, \frac{1}{2}\right) + \theta(1, 0) = \left(\frac{1 + \theta}{2}, \frac{1 - \theta}{2}\right).$$

Убедимся, что $p_{\theta} \in [1,2]$ и $q_{\theta} = p'_{\theta}$. Ясно, что $p_{\theta} = \frac{2}{1+\theta} \in [1,2]$, и достигается каждое число в этом промежутке. Далее,

$$1 - \frac{1}{q_{\theta}} = 1 - \frac{1 - \theta}{2} = \frac{1 + \theta}{2} = \frac{1}{p_{\theta}},$$

то есть $\frac{1}{p_{\theta}} + \frac{1}{q_{\theta}} = 1$ и $q_{\theta} = p'_{\theta}$. Наконец, по второй части теоремы Рисса-Торина

$$||T||_{p_{\theta},q_{\theta}} \le ||T||_{2,2}^{1-\theta} \cdot ||T||_{1,\infty}^{\theta} = 1 \cdot \left(\frac{1}{(2\pi)^{n/2}}\right)^{\theta} \le 1.$$

Таким образом, если $p=p_\theta,\,p'=q_\theta,$ то $\|\mathcal{F}f\|_{L^{p'}(\mathbb{R}^n)}\leqslant \|f\|_{L^p(\mathbb{R}^n)}.$

Упражнение. Докажите, что для любой функции $f \in L^p(\mathbb{T},m)$, где $1 \leqslant p \leqslant 2$, верна оценка

$$\left(\sum |\widehat{f}(n)|^{p'}\right)^{1/p'} \leqslant ||f||_{L^p(\mathbb{T},m)}.$$

³⁴Здесь существенно, что $p \le 2$. При p > 2 это утверждение неверно.

7.3 Неравенство Юнга для свёртки

Утверждение 7.3 (неравенство Юнга для свёртки). Пусть числа $p,q,r \in [1,+\infty]$ таковы, что

$$1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}. (7.2)$$

Тогда для любых $f \in L^p(\mathbb{R}^n)$ и $g \in L^q(\mathbb{R}^n)$ выполнено неравенство

$$||f * g||_r \le ||f||_p \cdot ||g||_q. \tag{7.3}$$

Доказательство. Мы уже знаем, что $||f * g||_1 \le ||f||_1 \cdot ||g||_1$. Рассмотрим простые функции $f, g \in L^1(\mathbb{R}^n)$. Для них выполнено следующее:

$$|(f*g)(y)| = \left| \int_{\mathbb{R}^n} f(y-x)g(x) \, \mathrm{d}\lambda_n(x) \right| \leq ||f||_{\infty} \cdot \int_{\mathbb{R}^n} |g| \, \mathrm{d}\lambda_n = ||f||_{\infty} \cdot ||g||_1.$$

Следовательно, оператор $T: f \mapsto f * g$ — линейный, корректно заданный на простых функциях, непрерывный в паре $(L^{p_\theta}, L^{q_\theta})$, где $\|T\|_{1,1} \leqslant \|g\|_1$ и $\|T\|_{\infty,\infty} \leqslant \|g\|_1$,

$$\left(\frac{1}{p_{\theta}}, \frac{1}{q_{\theta}}\right) = (1 - \theta)(1, 1) + \theta(0, 0) = (1 - \theta, 1 - \theta).$$

Значит, T непрерывен как оператор из $L^{\frac{1}{1-\theta}}(\mathbb{R}^n)$ в $L^{\frac{1}{1-\theta}}(\mathbb{R}^n)$, $\frac{1}{1-\theta}\in[1,+\infty]$;

$$||T||_{p_{\theta},p_{\theta}} \leq ||g||_{1}^{1-\theta} \cdot ||g||_{1}^{\theta} = ||g||_{1}.$$

Таким образом, $||f * g||_p \le ||f||_p \cdot ||g||_1$, то есть мы доказали неравенство (7.3) в случае q = 1. Теперь рассмотрим (тот же самый) оператор

$$\widetilde{T}: L^1(\mathbb{R}^n) \to L^p(\mathbb{R}^n), \quad g \mapsto f * g.$$

По только что доказанному неравенству $\|\widetilde{T}\|_{1,p} \leqslant \|f\|_{p}.$ Кроме того,

$$||f * g||_{\infty} \leq \operatorname{ess\,sup}_{y \in \mathbb{R}^n} \int_{\mathbb{R}^n} |f(y - x)| \cdot |g(x)| \, \mathrm{d}\lambda_n(x) \leq ||g||_{p'} \cdot ||f||_p.$$

Значит, $\|\widetilde{T}\|_{p',\infty} \leqslant \|f\|_p$, то есть по теореме Рисса–Торина оператор \widetilde{T} действует из $L^{p_\theta}(\mathbb{R}^n)$ в $L^{q_\theta}(\mathbb{R}^n)$ для любых

$$\left(\frac{1}{p_{\theta}}, \frac{1}{q_{\theta}}\right) = (1 - \theta)\left(1, \frac{1}{p}\right) + \theta\left(\frac{1}{p'}, 0\right) = \left(1 - \theta + \frac{\theta}{p'}, \frac{1 - \theta}{p}\right),$$

и имеет место неравенство

$$\|\widetilde{T}\|_{p_{\theta},q_{\theta}} \leq \|f\|_p^{1-\theta} \cdot \|f\|_p^{\theta} = \|f\|_p.$$

Отсюда $||f * g||_{q_{\theta}} \le ||g||_{p_{\theta}} \cdot ||f||_{p}$. Осталось взять $\theta = \frac{p}{q'}$. Заметим, что из (7.2) следует,

что $1 - \frac{1}{q} \leqslant \frac{1}{p}$, то есть

$$0 \leqslant \theta = \frac{p}{q'} = p\left(1 - \frac{1}{q}\right) \leqslant 1.$$

Нетрудно проверить, что $q_{\theta}=\frac{p}{1-\theta}=r$ и $p_{\theta}=\frac{1}{1-\theta+\frac{\theta}{p'}}=q.$

8 Mepa Xaapa

8.1 Локально компактные группы и инвариантные меры

В этом параграфе через G мы будем обозначать *локально компактную топологическую группу* (то есть хаусдорфово топологическое пространство с непрерывными операциями умножения и обращения, вместе с которыми G образует группу; в котором каждая точка имеет окрестность, замыкание которой компактно).

Определение. Пусть μ — борелевская мера на G. Тогда мера μ называется:

- инвариантной слева, если $\mu(E) = \mu(x^{-1}E)$ для любых $E \in \mathcal{B}(G)$ и $x \in G$;
- инвариантной справа, если $\mu(E) = \mu(Ex)$ для любых $E \in \mathcal{B}(G)$ и $x \in G$;
- инвариантной, если она инвариантна слева и справа.

Пример 8.1. Пусть $G = \mathbb{R}^n$ с операцией сложения. Тогда $\mu = \lambda_n$ — мера, инвариантная относительно G.

Пример 8.2. Пусть $G = \mathbb{T}$ с операцией умножения комплексных чисел. Тогда мера $\mu = m$ инвариантна относительно G.

Пример 8.3. Пусть $G = \mathbb{Z}^2$ с операцией сложения и дискретной топологией. Тогда считающая мера на \mathbb{Z}^2 инвариантна относительно G.

Замечание. Ненулевая инвариантная слева регулярная³⁵ мера на G называется *левой мерой Хаара* (позже мы покажем, что такая мера существует для любой локально компактной топологической группы G).

Замечание. Если μ — мера Хаара, инвариантная относительно G слева, то мера $\nu(E) = \mu(E^{-1})$ инвариантна относительно G справа.

Замечание. Если группа G коммутативна, то инвариантность слева равносильна инвариантности справа.

$$\sup_{K\subset E}\mu(K)=\mu(E)=\inf_{E\subset U}\mu(U),$$

где супремум берётся по компактам, а инфимум — по открытым множествам.

 $^{^{35}}$ Это значит, что мера μ конечна на компактах, и для любого борелевского множества E

8.2 Существование меры Хаара

Теорема 8.1. Пусть G — локально компактная топологическая группа. Тогда на G существует инвариантная слева мера Хаара.

Введём несколько обозначений:

- $C_c(G)$ множество непрерывных функций из G в \mathbb{R} с компактным носителем;
- если $g \in C_c(G), x \in G$, то обозначим $g_x : y \mapsto g(x^{-1}y)$;
- для $f,g\in C_c(G)$, таких что $f\geqslant 0,g\geqslant 0$, причём $g\not\equiv 0$, положим

$$(f:g) := \inf \left\{ \sum_{i=1}^n t_n \mid x_n \in G, t_n \geqslant 0 : f(y) \leqslant \sum_{n=1}^N t_n g_{x_n}(y) \ \forall y \in G \right\}.$$

Отметим, что $(f:g) < \infty$ в силу компактности носителя f. Действительно, пусть $g(x_0) > 0$, тогда для любого $y_0 \in \operatorname{supp} f$ выполнено, что $g_{y_0x_0^{-1}}(y_0) > 0$, и поэтому по непрерывности $g_{y_0x_0^{-1}}$ и ограниченности f существует такое $t \ge 0$, что $f(y) < tg_{y_0x_0^{-1}}(y)$ для всех y в некоторой окрестности y_0 . Тогда можно выбрать из этих окрестностей конечное подпокрытие $\sup f$ и взять соответствующую ему линейную комбинацию.

Утверждение 8.2. Для любых функций f, f_1, f_2, g верно

- $(f:g) = (f_x:g)$ для любого $x \in G$;
- (tf:g) = t(f:g) для любого $t \geqslant 0$;
- $(f_1 + f_2 : g) \le (f_1 : g) + (f_2 : g)$.

Доказательство. Выполнено по определению.

Утверждение 8.3. Пусть $f, g, h \in C_c(G)$. Тогда

$$(f:h) \leq (f:g)(g:h).$$

Доказательство. Пусть $\{t_k\}, \{s_i\}$ — такие наборы, что для любого $y \in G$

$$f(y) \leqslant \sum_{k} t_k g_{x_k}(y), \quad g(y) \leqslant \sum_{i} s_j h_{w_j}(y).$$

Тогда

$$f(y) \leq \sum_{k} t_{k} \sum_{j} s_{j} h_{w_{j}}(x_{k}^{-1}y) = \sum_{k,j} t_{k} s_{j} h_{x_{k}w_{j}}(y),$$

то есть $(f:h) \leq (\sum t_k)(\sum s_j)$. Переходя к инфимуму в правой части, получаем требуемое неравенство.

Лемма 8.4. Пусть $f_0, f_1, f_2 \in C_c(G), f_0, f_1, f_2 \ge 0, f_0 \ne 0$. Тогда для любого $\varepsilon > 0$ существует E — окрестность e, такая что для любой функции $g \in C_c(G), g \ge 0, g \ne 0$, удовлетворяющей условию supp $g \subset E$, выполнено неравенство

$$(f_1:g) + (f_2:g) \le (f_1 + f_2:g) + \varepsilon(f_0:g).$$

Доказательство. По лемме Урысона 36 существует неотрицальная функция $h \in C_c(G)$, такая что

$$h(y) = \max_{w \in G} (f_1 + f_2)(w)$$
 при $f_1(y) + f_2(y) \neq 0$.

Действительно, $\operatorname{supp}(f_1+f_2)$ — замкнутое подмножество компакта $\operatorname{supp} f_1 \cup \operatorname{supp} f_2$, то есть компакт; и у него есть окрестность U с компактным замыканием, так как группа G локально компактна³⁷. Тогда лемму Урысона можно применить к замкнутым множествам $\operatorname{supp}(f_1+f_2)$ и $G\setminus U$. Носитель функции, полученной в лемме Урысона, будет лежать в компакте \overline{U} .

Зафиксируем $\delta > 0$. Рассмотрим теперь функцию $f := f_1 + f_2 + \delta h$. Нетрудно видеть, что она лежит в $C_c(G)$. найдём непрерывные функции h_1, h_2 с компактным носителем, такие что $0 \le h_1, h_2, h_1 + h_2 \le 1, h_1 f = f_1$ и $h_2 f = f_2$. Они существуют, так как supp $f_{1,2} \subset \operatorname{Int}(\operatorname{supp} f)$, то есть можно определить по формуле $f_{1,2}/f$ при $f \ne 0$ и нулём в противном случае.

Пусть $g \in C_c(G)$, $g \ge 0$ и $g \ne 0$; последовательности $\{t_k\}, \{x_k\}$ таковы, что

$$f(y) \leq \sum_k t_k g_{x_k}(y).$$

Тогда

$$f_{1,2}(y)=h_{1,2}(y)f(y)\leq \sum_k t_k h_{1,2}(y)g_{x_k}(y).$$

Выберем E — окрестность единицы e, так, чтобы выполнялось неравенство

$$|h_{1,2}(y) - h_{1,2}(x)| \le \delta \qquad (\forall x, y : x^{-1}y \in E).$$
 (8.1)

Покажем, что это возможно³⁸. По непрерывности для каждой точки $x \in G$ можно найти E_x — окрестность e, такую что для любого $x' \in E_x$ условие (8.1) выполнено для $\frac{\delta}{2}$ и пары (x, xx'). Теперь пусть $\varphi: G \times G \to G$ — умножение в группе; по непрерывности можно найти F_x , такое что $F_x \times F_x \in \varphi^{-1}(E_x)$. Тогда из множества $\{xF_x\}_{x \in G}$ можно выделить $a_1F_{a_1}, \ldots, a_mF_{a_m}$ — конечное подпокрытие $\sup h_{1,2}$. Тогда $E = F_{a_1} \cap \cdots \cap F_{a_m}$ действительно подходит.

Если $\operatorname{supp} g \subset E$, то

$$\sum_{k} t_{k} h_{1,2}(y) g_{x_{k}}(y) \leq \sum_{k} t_{k} (h_{1,2}(x_{k}) + \delta) g_{x_{k}}(y)$$

 $^{^{36}}$ Лемма Урысона утверждает, что в нормальном топологическом пространстве G для пары замкнутых множеств A и B можно построить такую функцию $h\colon G\to [0,1]$, что h(x)=0 при всех $a\in A$ и h(x)=1 при всех $b\in B$. Можно доказать, что любая топологическая группа нормальна.

³⁷Надо выбрать окрестности из определения локальной компактности в конечном наборе точек и взять их объединение (замыкание объединения есть объединение замыканий, то есть компакт).

 $^{^{38}}$ По сути здесь утверждается равномерная непрерывность функций $h_{1,2}$ — они непрерывны и имеют компактный носитель. Однако наше пространство может быть не метризуемым, так что нужно доказывать отдельно (оно аналогично).

Значит, $(f_{1,2}:g) \leq \sum t_k (h_{1,2}(x_k) + \delta)$. Следовательно,

$$(f_1:g) + (f_2:g) \leq \sum_k t_k (h_1(x_k) + h_2(x_k) + 2\delta) \leq (1+2\delta) \sum_k t_k.$$

Переходя к инфимуму в правой части, получаем, что

$$(f_1:g) + (f_2:g) \le (1+2\delta)(f:g).$$

По определению f и свойствам из утверждения 8.2

$$(1+2\delta)(f:g) = (1+2\delta)(f_1 + f_2 + \delta h : g)$$

$$= (f_1 + f_2 + \delta h : g) + 2\delta(f_1 + f_2 + \delta h : g)$$

$$\leq (f_1 + f_2 : g) + \delta(h : g) + 2\delta(f_1 + f_2 + \delta h : g)$$

$$\leq (f_1 + f_2 : g) + (2\delta(1+\delta) + \delta)(h : g)$$

$$\leq (f_1 + f_2 : g) + (2\delta^2 + 3\delta)(h : f_0)(f_0 : g).$$

В четвёртой строке мы воспользовались тем, что $f_1 + f_2 \le h$. Поскольку множитель $(2\delta^2 + 3\delta)(h:f_0)$ можно сделать сколько угодно малым за счёт выбора δ , это завершает доказательство.

Доказательство теоремы 8.1. Для любой функции $g \geqslant 0, g \in C_c(G)$, не равной нулю тождественно, определим функционал

$$I_g(f) = \frac{(f:g)}{(f_0:g)},$$

где f_0 — некоторая фиксированная (на всё доказательство) функция, такая что $f_0 \not\equiv 0$, $f_0 \not\in C_c(G)$. Этот функционал обладает следующими свойствами:

- (1) $I_g(tf) = tI_g(f)$;
- $(2)\ I_g(f_1+f_2) \leq I_g(f_1) + I_g(f_2);$
- (3) $I_g(f_1)+I_g(f_2)\leqslant I_g(f_1+f_2)+\varepsilon$, если $\mathrm{supp}\,g\subset E(\varepsilon)$ как в лемме 8.4;
- (4) $I_q(f) \ge 0$.

Таким образом, функционал I_g «почти» линейный. Хотим в «перейти к пределу» по $\varepsilon \to 0$ в свойстве (3). Для окрестности единицы V рассмотрим множество

$$K_V = \operatorname{Cl}\left\{\{I_g(f)\}_{f \in C_c(G)} \middle| \begin{array}{l} \operatorname{supp} g \subset V \\ g \geqslant 0, g \not\equiv 0 \end{array}\right\},$$

где замыкание берётся в топологическом пространстве

$$\mathcal{T} = \prod_{\substack{f \in C_c(G) \\ f \geqslant 0}} \left[\frac{1}{(f_0 : f)}, (f : f_0) \right].$$

с топологией произведения. Это пространство — компакт по теореме Тихонова. Значит, K_V также компакт как замкнутое подмножество компакта. Отметим, что $\{I_a(f)\}\in\mathcal{T}$, так как

$$\frac{1}{(f_0:f)} = \frac{(f:g)}{(f_0:f)(f:g)} \le \frac{(f:g)}{(f_0:g)} = I_g(f) = \frac{(f:g)}{(f_0:g)} \le \frac{(f:f_0) \cdot (f_0:g)}{(f_0:g)} = (f:f_0).$$

Таким образом, $\{K_V\}$, где V пробегает по всем окрестностям единицы, — семейство компактов. Кроме того,

$$K_{V_1} \cap \cdots \cap K_{V_n} \supset K_{V_1 \cap \cdots \cap V_n} \neq \emptyset$$
,

то есть это семейство обладает свойством конечного пересечения. Значит (по теории из общей топологии), $\bigcap K_V \neq \emptyset$, то есть это пересечение содержит некоторый элемент $\{I(f)\}_{f \in C_r(G)}^{f \geqslant 0}$. Рассмотрим функционал $I \colon f \mapsto I(f)$. Покажем, что

$$I(f_1 + f_2) = I(f_1) + I(f_2). (8.2)$$

По определению топологии произведения 39 для любого $\varepsilon>0$ и для любой окрестности единицы V найдется функция g такая, что $\sup g\subset V$ и

$$|I(f_1 + f_2) - I_g(f_1 + f_2)| < \varepsilon,$$

 $|I(f_{1,2}) - I_g(f_{1,2})| < \varepsilon.$

Для такой функции g

$$|I(f_1+f_2)-I(f_1)-I(f_2)| \leq |I_g(f_1+f_2)-I_g(f_1)-I_g(f_2)| + 3\varepsilon.$$

Выбирая окрестность V достаточно малой (то есть такой, что $V \subset E$ из леммы 8.4), получаем, что равенство (8.2) выполнено с погрешностью не более, чем 4 ε . Так как ε любое, это равенство верно.

Аналогичным образом проверяется, что функционал I(f) неотрицателен, однороден и инвариантен относительно сдвигов. Пусть $f^* \in C_c(G)$, $f \geqslant 0$, $x \in G$, тогда для любого $\varepsilon > 0$, $t \in \mathbb{R}$, $x \in G$ найдётся элемент $\{I_g(f)\}_{f \in C_c(G)}$ для некоторой функции $g \in C_c(G)$ такой, что

$$\begin{aligned} |I(f_x^*) - I_g(f_x^*)| &< \varepsilon, \\ |I(tf^*) - I_g(tf^*)| &< \varepsilon, \\ |I(f^*) - I_q(f^*)| &< \varepsilon. \end{aligned}$$

 $^{^{39}}$ Фактически, мы используем здесь следующее свойство: точка $\{x_{\alpha}\}_{\alpha\in A}$ лежит в замыкании множества $E\subset \prod_{\alpha\in A}[a_{\alpha},b_{\alpha}]$ тогда и только тогда, когда для любого конечного набора индексов α_1,\ldots,α_n и любого числа $\varepsilon>0$ найдется элемент $\{y_{\alpha}\}_{\alpha\in A}\in E$ такой, что $|x_{\alpha_k}-y_{\alpha_k}|<\varepsilon$ для любого $1\leqslant k\leqslant n$. В нашем случае $\alpha_1=f_1+f_2,\,\alpha_2=f_1,\,\alpha_3=f_2.$

Тогда

$$|tI(f^*) - I(tf^*)| \le |tI_g(f^*) - I_g(tf^*)| + (1 + |t|)\varepsilon = (1 + |t|)\varepsilon,$$

$$|I(f_x^*) - I(f^*)| \le |I_g(f_x^*) - I_g(f^*)| + 2\varepsilon = 2\varepsilon,$$

$$I(f^*) \ge I_g(f^*) - \varepsilon \ge -\varepsilon.$$

Значит, мы также показали, что

$$I(tf^*) = tI(f^*), \quad I(f^*) \ge 0, \quad I(f_x^*) = I(f^*).$$

Таким образом I — неотрицательный линейный функционал на конусе неотрицательных непрерывных функций с компактным носителем. Тогда по теореме Рисса–Маркова–Какутани существует и единственна μ — регулярная борелевская мера, такая что

$$I(f) = \int_{G} f \, \mathrm{d}\mu \qquad \forall f \in C_{c}(G).$$

Инвариантность слева следует из свойства $I(f_x) = I(f)$. Действительно, рассмотрим меру ν , такую что $\nu(E) = \mu(x^{-1}E)$. Тогда

$$\int_{G} f \, \mathrm{d}\mu = \int_{G} f_{x} \, \mathrm{d}\mu = \int_{G} f \, \mathrm{d}\nu,$$

откуда $\mu = \nu$ по единственности.

8.3 Единственность меры Хаара

Теорема 8.5 (о единственности меры Хаара). Пусть G — локально компактная топологическая группа, μ_1, μ_2 — меры Хаара на G. Тогда существует число $\lambda > 0$, такое что $\mu_1 = \lambda \mu_2$.

Доказательство (только коммутативный случай). Покажем, что существует неотрицательная функция $g \in C_c(G)$, такая что $\int_G g \, \mathrm{d} \mu_2 = 1$. Действительно, существует множество ненулевой меры, тогда по регулярности существует компакт K ненулевой меры. Тогда по лемме Урысона существует такая функция $h \in C_c(G)$, что для любого $x \in K$ выполнено h(x) = 1. Значит, $0 < \int_G h \, \mathrm{d} \mu_2 < \infty$, и можно взять $g = \frac{h}{\int_C h \, \mathrm{d} \mu_2}$.

Для любой функции $f \in C_c(G), f \ge 0$, имеем

$$\int_{G} f(x) d\mu_{1}(x) = \int_{G} f(x) d\mu_{1}(x) \cdot \int_{G} g(y) d\mu_{2}(y)$$

$$= \int_{G} g(y) \left(\int_{G} f(x) d\mu_{1}(x) \right) d\mu_{2}(y)$$

$$= \int_{G} g(y) \left(\int_{G} f(xy) d\mu_{1}(x) \right) d\mu_{2}(y) \tag{8.3}$$

$$= \iint_{G \times G} g(y) f(xy) d(\mu_1 \times \mu_2)(x, y)$$
(8.4)

$$= \int_{G} \left(\int_{G} g(y) f(xy) d\mu_{2}(y) \right) d\mu_{1}(x)$$
 (8.5)

$$= \int_{G} \int_{G} g(x^{-1}y)f(y) d\mu_{2}(y)\mu_{1}(x)$$
 (8.6)

$$= \int_{G} f(y) \left(\int_{G} g(yx^{-1}) d\mu_{1}(x) \right) d\mu_{2}(y)$$

$$= \int_{G} f(y) d\mu_{2}(y) \cdot \int_{G} g(x^{-1}) d\mu_{1}(x).$$
(8.7)

В равенствах (8.3) и (8.6) мы воспользовались инвариантностью мер μ_1 и μ_2 соответственно, в равенствах (8.3) и (8.7) — коммутативностью группы $G(x^{-1}y = yx^{-1})$ и xy = yx. Обозначим

$$\lambda = \int_C g(x^{-1}) \, \mathrm{d}\mu_1(x).$$

Это не зависящее от f положительное число (так как μ_1 — ненулевая мера). Значит,

$$\int_{G} f(x) d\mu_{1}(x) = \lambda \int_{G} f(y) d\mu_{2}(y),$$

откуда $\mu_1 = \lambda \mu_2$ — можно в качестве f подставить характеристические функции борелевских множеств.

Осталось обосновать равенства (8.4) и (8.5). В них мы сводили повторный интеграл к двойному и наоборот, меняли порядок интегрирования. Хотелось бы применить теорему Тонелли, но она верна только для σ -конечных мер. Поймём, что на примере следующего равенства, что переходы были корректны:

$$\int_{G} g(y) \left(\int_{G} f(xy) d\mu_{1}(x) \right) d\mu_{2}(y) = \iint_{G \times G} g(y) f(xy) d(\mu_{1} \times \mu_{2})(x,y).$$

Докажем, что мера $\mu_1 \times \mu_2$ конечна на $\operatorname{supp}(g(y)f(xy))$ — тогда можно будет применить теорему Тонелли. По регулярности меры Хаара для этого достаточно показать, что $\operatorname{supp}(g(y)f(xy)) \subset K_1 \times K_2$, где K_1, K_2 — компакты. Имеем цепочку включений

$$\{(x,y): g(y)f(xy) > 0\} \subset \{(x,y): y \in \operatorname{supp} g, xy \in \operatorname{supp} f\} \subset \subset \{(x,y): y \in \operatorname{supp} g, x \in \operatorname{supp} f \cdot (\operatorname{supp} g)^{-1}\}.$$

Значит, можно взять $K_1 = \operatorname{supp} f \cdot (\operatorname{supp} g)^{-1}$ и $K_2 = \operatorname{supp} g$. Здесь K_1 — это компакт, так как умножение непрерывно, и непрерывный образ компакта — компакт, а K_2 —

так как $g \in C_c(G)$.

8.4 Примеры мер Хаара

Пример 8.4. Если $G = \mathbb{R}^n$, то мера Лебега $\mu = \lambda_n$ — это мера Хаара. Для окружности $G = \mathbb{T}$ мерой Хаара будет $\mu = m$.

Пример 8.5. Рассмотрим множество $G = (0, +\infty)$ с операцией умножения и топологией подпространства \mathbb{R} . Можно проверить, что на ячейках мера Хаара G задаётся следующим образом:

$$\mu([a,b]) = \int_a^b \frac{\mathrm{d}t}{t}, \qquad 0 < a < b.$$

Проверим инвариантность относительно сдвигов:

$$\mu([a \cdot t_0, b \cdot t_0]) = \int_{a \cdot t_0}^{b \cdot t_0} \frac{\mathrm{d}t}{t} = \log(bt_0) - \log(at_0) = \log \frac{b}{a} = \mu([a, b]).$$

Пример 8.6. Если $G = \mathbb{Z}/n\mathbb{Z}$ с операцией сложения и дискретной топологией, то $\mu(A) = \#A$.

Упражнение. Найдите меру Хаара группы

$$G = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} : \theta \in \mathbb{R} \right\}.$$

Отождествите G с \mathbb{T} .

Пример 8.7. Рассмотрим множество изометрий

$$G = \left\{ T : X \xrightarrow{\mathsf{биекция}} X \ \middle| \
ho(Tx, Ty) =
ho(x, y)
ight\},$$

где (X, ρ) — компактное метрическое пространство. Оно образует (неабелеву) группу вместе с операцией композиции $T_1T_2=T_1\circ T_2$; и является компактом в топологии, индуцированной из C(X) по теореме Арцела–Асколи. На G существует мера Хаара, то есть такая мера μ , что $\mu(T\circ E)=\mu(E)$ для любого борелевского E, однако неясно, как её явно выразить.

9 Преобразование Фурье на локально компактных абелевых группах

В этом параграфе по умолчанию G — это локально компактная абелева группа, μ — мера Хаара на G.

⁴⁰ Детали оставляются в качестве упражнения.

9.1 Основные определения и примеры

Соглашение. Групповую операцию в G будем обозначать знаком +, чтобы подчеркнуть коммутативность.

Определение. *Левым сдвигом* называется оператор $T_s: x \mapsto x - s$.

Определение. Характером группы G называется непрерывный гомоморфизм

$$\gamma: G \to \mathbb{T}$$
,

где $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ — окружность со стандартной топологией и операцией умножения. Таким образом, гомоморфность означает, что $\gamma(x+y) = \gamma(x)\gamma(y)$.

Пример 9.1. Тождественная единица $\gamma(x) \equiv 1$ — характер.

Определение. Через \widehat{G} будем обозначать группу характеров $G.^{41}$

Определение. Пусть f,g — измеримые относительно меры Хаара μ функции, такие что 42

$$\int_{G} |f(x-y)| \cdot |g(y)| \, \mathrm{d}\mu(y) < \infty.$$

Тогда $c \dot{e} \dot{e} p m \kappa a f$ и g определяется по формуле

$$(f * g)(x) := \int_C f(x - y)g(y) d\mu(y).$$

Определение. Пусть $f \in L^1(G,\mu)$. Тогда *преобразованием Фурье* f называется оператор $\mathcal{F}f$ на группе характеров \widehat{G} , задающийся по правилу

$$(\mathcal{F}f)(\gamma) := \int_G f(x)\overline{\gamma(x)} \,\mathrm{d}\mu(x), \quad \gamma \in \widehat{G}.$$

Пример 9.2. Пусть $G=(\mathbb{R},+)$. Найдём \widehat{G} и \mathcal{F} для этой группы. Проверим, что любой характер $\gamma\in\widehat{G}$ непрерывно-дифференцируем. Пусть $\delta>0$ удовлетворяет условию $\alpha:=\int_0^\delta \gamma(x)\,\mathrm{d}x\neq 0$. Тогда

$$\gamma(y) = \alpha^{-1} \cdot \gamma(y) \int_0^{\delta} \gamma(x) \, \mathrm{d}x = \alpha^{-1} \int_0^{\delta} \gamma(x+y) \, \mathrm{d}x = \alpha^{-1} \int_y^{\delta+y} \gamma(x) \, \mathrm{d}x \in C^1(\mathbb{R}, \mathbb{T}).$$

Очевидно, что последнее выражение дифференцируемо по y, то есть $\gamma \in C^1(\mathbb{R}, \mathbb{T})$. Дифференцируя по x равенство $\gamma(x+y)=\gamma(x)\gamma(y)$, получаем, что

$$\gamma'(x+y) = \gamma'(x)\gamma(y).$$

 $^{^{41}}$ Проверка того, что множество характеров действительно образует группу, оставляется в качестве упражнения.

 $^{^{42}}$ Это условие называется условием существования свёртки f st g в точке x.

При x=0 получаем равенство $\gamma'(y)=\gamma'(0)\gamma(y)$. Следовательно, $\gamma(y)=e^{\gamma'(0)y}$. Так как $|\gamma(y)|=1$, то $\gamma'(0)=it$, где $t\in\mathbb{R}$. Таким образом, $\gamma(t)=e^{ity}$. С другой стороны, e^{ity} — характер \mathbb{R} для любого t. Значит,

$$\widehat{\mathbb{R}} = \{t \mapsto e^{ity} : y \in \mathbb{R}\} = \mathbb{R}.$$

Будем обозначать характер e^{ity} через γ_t . Тогда

$$(\mathcal{F}f)(\gamma_t) = \int_{\mathbb{R}} f(x)\overline{\gamma_t(x)} dx = \int_{\mathbb{R}} f(x)e^{-itx} dx,$$

то есть мы получили наше обычное преобразование Фурье (с точностью до нормировки, которая зашита в меру Хаара).

Упражнение. Докажите, что если $G = \mathbb{T}$, то

$$\widehat{G} = \{ \gamma_n \colon z \mapsto z^n \mid n \in \mathbb{Z} \} = \mathbb{Z},$$

$$(\mathcal{F}f)(\gamma_n) = \int_{\mathbb{T}} f(z) \overline{z}^n \, \mathrm{d}m(z).$$

9.2 Свойства сдвига, свёртки и преобразования Фурье

Утверждение 9.1 (свойства сдвига).

- (1) T_s изометрия в $L^p(G)$ для любого 1 ≤ p ≤ ∞;
- (2) T_s сходится к I в сильной операторной топологии в $L^p(G)$ при $1 \leqslant p < \infty$, то есть

$$||T_s f - f||_{L^p(\mu)} \xrightarrow{s \to 0} 0;$$

Доказательство.

(1) Действительно,

$$\int_{G} |f(x-s)|^{p} d\mu(x) = \int_{G} |f(x)|^{p} d\mu(x),$$

так как μ — мера Хаара.

(2) Покажем, что множество $C_c(G)$ плотно⁴³ в $L^p(\mu)$ при $1 \le p < \infty$. Действительно, можно приблизить характеристическую функцию измеримого множества характеристическими функциями открытого U и компактного K множеств: по лемме Урысона существует такая функция $\varphi \in C(G)$, что $\varphi \equiv 1$ на K и $\varphi \equiv 0$ на $G \setminus \overline{U}$. Значит,

$$\int_{G} |\chi_{E} - \varphi|^{p} d\mu \leq 2^{p} \mu(U \setminus K) < \varepsilon$$

⁴³ Ранее мы доказывали аналогичное утверждение для полных сепарабельных метрических пространств — см. теорему 8.7 из конспекта по теории меры.

в силу регулярности меры Хаара. Очевидно, что $\|T_s f - f\| \to 0$ для любой функции $f \in C_c(G)$, и по первому пункту $\sup_{s \in G} \|T_s\| = 1 < \infty$. Значит, $\|T_s f - f\| \to 0$ для всех $f \in L^p(G, \mu)$.

Утверждение 9.2 (свойства свёртки).

- (1) если $f \in L^p(G)$, $g \in L^q(G)$ и $\frac{1}{p} + \frac{1}{q} = 1$, то $f * g \in C(G)$;
- (2) если $f,g \in L^1(G)$, то свёртка (f*g)(x) определена при почти всех $x \in G$, измерима по Борелю, и $||f*g||_{L^1} \le ||f||_{L^1} \cdot ||g||_{L^1}$;
- (3) если $f,g\in L^1(G)$, то (f*g)(x)=(g*f)(x) для любого $x\in G$, такого что выполнено условие существования свёртки.

Доказательство.

(1) Будем считать, что $p < \infty$. По неравенству Гёльдера

$$|(f * g)(x_1) - (f * g)(x_2)| \le \int_G |f(x_1 - y) - f(x_2 - y)| \cdot |g(y)| \, \mathrm{d}\mu(y)$$

$$\le ||T_{-x_1} f - T_{-x_2} f||_{L^p} \cdot ||g||_{L^q}$$

$$= ||T_{x_1 - x_2} f - f||_{L^p} \cdot ||g||_{L^q}.$$

Первый множитель стремится к нулю при $x_1 - x_2 \to 0$ по свойству (2) сдвига.

(2) Доказываем только для σ -конечных мер. Заметим, что достаточно проверить утверждение для функций $f,g:G\to\mathbb{R}_+$. Общий случай получается из этого заменой f на |f| и g на |g|.

Пусть $\Phi: (x,y) \mapsto f(x-y)g(y)$. Проверим измеримость этой функции относительно $\mathcal{B}(G \times G)$. Для этого достаточно проверить измеримость функций⁴⁴ $\Phi_1: (x,y) \mapsto f(x-y)$ и $\Phi_2: (x,y) \mapsto g(y)$. Они измеримы, потому что

$$\begin{split} \{(x,y): \Phi_2(x,y) > a\} &= G \times \{x: g(y) > a\} \in \mathcal{B}(G \times G), \\ \{(x,y): \Phi_1(x,y) > a\} &= \Psi^{-1}(\{z: f(z) > a\}), \end{split}$$

где $\Psi(x,y) = x - y$ — непрерывная функция из $G \times G$ в G. Теперь по теореме Тонелли:

і. функция
$$f*g:x\mapsto \int_G f(x-y)g(y)\,\mathrm{d}\mu(y)$$
 измерима;

ii.
$$\int_G (f * g)(x) d\mu(x) = \int_G \int_G f(x - y)g(y) d\mu(y) d\mu(x) = \int_G f(x) d\mu(x) \cdot \int_G g(y) d\mu(y)$$
.

Таким образом, мы получили вторую и третью части утверждения. Первая часть следует из того, что так как $||f*g||_{L^1} < \infty$, то f*g принимает бесконечное значение на множестве меры 0.

⁴⁴Произведение измеримых функций измеримо.

(3) По определению и свойствам меры Хаара:

$$(f * g)(x) = \int_{G} f(x - y)g(y) d\mu(y)$$

$$= \int_{G} f(-(-x + y))g(y) d\mu(y)$$

$$= \int_{G} f(-y)g(x + y) d\mu(y)$$

$$= \int_{G} f(y)g(x - y) d\mu(y) = (g * f)(x). \tag{9.1}$$

Объясним первое равенство в (9.1). Достаточно проверить, что $\mu(U) = \mu(-U)$ для любого $U \in \mathcal{B}(G)$. Нетрудно проверить, что $\nu(U) = \mu(-U)$ — тоже мера Хаара, и по теореме единственности $\mu(U) = c\nu(U)$ для некоторой константы c. Найдём такой компакт $\widetilde{K} := K \cup (-K)$. Ясно, что $\widetilde{K} = -\widetilde{K}$. Значит, $\mu(\widetilde{K}) = \mu(-\widetilde{K}) = \nu(\widetilde{K})$, откуда c = 1, что и требовалось.

Утверждение 9.3 (свойства преобразования Фурье).

(1) $\mathcal{F}(f * g) = c \cdot \mathcal{F}(f) \cdot \mathcal{F}(g)$, где c — некоторая не зависящая от f и g константа;

(2)
$$\mathcal{F}(f(T_s(\square)))(\gamma) = \overline{\gamma(s)} \cdot (\mathcal{F}f)(\gamma)$$
.

Доказательство.

(1) Заметим, что $\overline{\gamma(x)}=\overline{\gamma(x-y)}\cdot\overline{\gamma(y)}$, так как $|\gamma(z)|=1$ для всех z и γ — гомоморфизм. Тогда

$$\mathcal{F}(f * g)(\gamma) = \int_{G} \int_{G} f(x - y)g(y) \, d\mu(y) \cdot \overline{\gamma(x)} \, d\mu(x)$$

$$= \int_{G} \int_{G} f(x - y)\overline{\gamma(x - y)} \cdot g(y)\overline{\gamma(y)} \, d\mu(y) \, d\mu(x)$$

$$= \int_{G} \left(\int_{G} g(y)\overline{\gamma(y)} \, d\mu(y) \right) f(x - y)\overline{\gamma(x - y)} \, d\mu(x)$$

$$= (\mathcal{F}g)(\mathcal{F}f)(\gamma).$$

Менять порядок интегрирования можно по свойству (2) свёртки и теореме Тонелли.

 $^{^{45}}$ Мы уже проверяли, что такой компакт существует — если мера любого компакта равна нулю, то по регулярности эта мера нулевая.

(2) По инвариантности меры Хаара и гомоморфности у:

$$\mathcal{F}(f(T_s)(\square))(\gamma) = \int_G f(x-s)\overline{\gamma(x)} \, \mathrm{d}\mu(x)$$

$$= \int_G f(x)\overline{\gamma(x+s)} \, \mathrm{d}\mu(x) = \overline{\gamma(s)} \cdot (\mathcal{F}f)(\gamma).$$

9.3 Одна полезная лемма

Следующая лемма пригодится нам в доказательстве теоремы Петера-Вейля.

Лемма 9.4. Пусть группа G компактна⁴⁶, $1 \le p < \infty$, $f \in L^p(G)$. Тогда

$$M(f) = \inf \left\{ \|f - f * \psi_U\|_{L^p(G)} \; \middle| \; \psi_U = \frac{\chi_U}{\mu(U)}, \; 0 \in U, \; U = -U \right\} = 0.$$

Доказательство. Для любой функции g верно, что

$$M(f) = M(f - g) + M(g) \le 2||f - g||_{L^p} + M(g),$$

где последний переход следует из того, что $\|\psi_U\|_{L^1} = 1$ и неравенства⁴⁷

$$||h_1 * h_2||_{L^p} \leq ||h_1||_{L^p} \cdot ||h_2||_{L^1}.$$

Найдём такую функцию $g \in C_c(G)$, что $\|f-g\|_{L^p} < \delta$. Так как $\|\psi_U\|_{L^1} = 1$, то

$$(g-g*\psi_U)(x)=\int\limits_G(g(x)-g(x-y))\psi_U(y)\,\mathrm{d}\mu(y).$$

Теперь найдём такую окрестность U, что $|g(x) - g(x - y)| < \varepsilon$ для любого $y \in U$. Значит,

$$\|g-g*\psi_U\|_{L^\infty}\leqslant \varepsilon\int\limits_C |\varphi_U(y)|\,\mathrm{d}\mu(y)=\varepsilon,$$

и по компактности G

$$||q - q * \psi_{IJ}||_{L^p} \leq \varepsilon \cdot (\mu(G))^{1/p} \xrightarrow{\varepsilon \to 0} 0.$$

Таким образом, M(g) = 0. Значит, $M(f) \le 2\delta$, и устремляя δ к нулю мы получаем требуемое равенство.

 $^{^{46}}$ Это верно для любой группы, но мы будем использовать лемму только в компактном случае.

⁴⁷Формально мы знаем это неравенство только в случае $G = \mathbb{R}^n$ (утверждение 7.3), однако в доказательстве мы пользовались только неравенством $\|f * g\|_{L^1} \leqslant \|f\|_{L^1} \cdot \|g\|_{L^1}$, которое мы уже проверили и для свёртки в произвольной группе.

 $^{^{48}}$ Как обычно, это можно сделать в силу равномерной непрерывности g.

10 Теорема Петера-Вейля

10.1 Формулировка

Замечание. На самом деле, мы докажем лёгкую версию теоремы Петера–Вейля, и только в коммутативном случае.

Теорема 10.1 (Петер, Вейль). Пусть G — компактная абелева группа, μ — мера Хаара на G, $\mu(G) = 1$, \widehat{G} — группа характеров. Тогда $\{\gamma\}_{\gamma \in \widehat{G}}$ — ортонормированный базис в пространстве $L^2(G)$.

10.2 Вспомогательные леммы

Лемма 10.2. Пусть $\{U_{\alpha}\}_{\alpha\in A}$ — семейство унитарных операторов в конечномерном гильбертовом пространстве \mathcal{H} . Предположим, что $U_{\alpha}U_{\beta} = U_{\beta}U_{\alpha}$ для любых $\alpha, \beta \in A$. Тогда в \mathcal{H} существует ортонормированный базис $\{\varphi_k\}$, такой что $U_{\alpha}\varphi_k = \lambda_{\alpha,k}\varphi_k$, где $\lambda_{\alpha,k}$ — некоторые числа. (Другими словами, в \mathcal{H} можно выбрать ортонормированный базис из собственных векторов U_{α}).

Доказательство. Доказываем индукцией размерности \mathcal{H} . Если dim $\mathcal{H}=1$, то утверждение очевидно. Если $U_{\alpha}=\theta_{\alpha}I$ для любого α , где $\theta_{\alpha}\in\mathbb{C}$, — то можно выбрать произвольный базис. Иначе существует такое число $\lambda\in\mathbb{C}$ и индекс $\alpha_0\in A$, что

$$E_{\lambda} = \{ \varphi \in H : U_{\alpha_0} \varphi = \lambda \varphi \} \neq \mathcal{H}, \quad E_{\lambda} \neq \emptyset.$$

Пусть $\varphi \in E_{\lambda}$. Для любого $\beta \in A$ выполнено

$$U_{\alpha_0}U_{\beta}\varphi=U_{\beta}U_{\alpha_0}\varphi=\lambda U_{\beta}\varphi,$$

то есть $U_{\beta}\varphi\in E_{\lambda}$. Значит, $U_{\beta}E_{\lambda}\subset E_{\lambda}$. При этом dim $\mathcal{H}<\infty$ и оператор U_{β} обратим, то есть $U_{\beta}E_{\lambda}=E_{\lambda}$. По унитарности также верно $U_{\beta}E_{\lambda}^{\perp}=E_{\lambda}^{\perp}$. Значит, можно применить предположение индукции отдельно для E_{λ} и E_{λ}^{\perp} .

Лемма 10.3. Пусть G, \widehat{G} — как в теореме Петера–Вейля, $\varphi \in L^2(G), \|\varphi\|_{L^2} = 1$. Тогда следующие условия равносильны:

- (1) $T_s \varphi = \lambda_s \varphi$ в $L^2(G)$ для всех $s \in G$;
- (2) $\varphi = c\gamma$ в $L^2(G)$ для некоторых $c \in \mathbb{C}$ и $\gamma \in \widehat{G}$.

Доказательство. (2) \Longrightarrow (1). Имеем:

$$(T_s \gamma)(x) = \gamma(x - s) = \gamma(-s)\gamma(x).$$

Значит, можно взять $\lambda_{s} = \gamma(-s)$.

 $(1) \Longrightarrow (2)$. Мы знаем, что равенство из условия выполнено во всех точках некоторого множества полной меры E_s :

$$\lambda_s \varphi(x) \chi_{E_s}(x) = \varphi(x - s) \qquad (\forall s \in G, x \in E_s),$$

где $\mu(E_s) = 1$. Домножим обе части на $\overline{\varphi(x)}$ и проинтегрируем по G:

$$\lambda_s = \lambda_s \int_G |\varphi(x)|^2 \chi_{E_s}(x) \, \mathrm{d}\mu(x) = \int_G \varphi(x-s) \overline{\varphi(x)} \, \mathrm{d}\mu(x) = (\varphi * \overline{\varphi})(s).$$

Самое левое равенство выполнено, так как $||f||_{L^2}=1$ по условию, а множество E_s полной меры. Поскольку $\varphi, \overline{\varphi} \in L^2(G)$, по свойству (1) свёртки функция $s \mapsto \lambda_s$ лежит в C(G). Заметим, что

$$\lambda_{s_1+s_2}\varphi=T_{s_1+s_2}\varphi=T_{s_1}T_{s_2}\varphi=\lambda_{s_1}\lambda_{s_2}\varphi,$$

то есть λ_s — гомоморфизм. Наконец, $|\lambda_s|=1$, так как

$$\|\varphi\|_{L^2} = \|T_s\varphi\|_{L^2} = |\lambda_s| \cdot \|\varphi\|_{L^2}.$$

Таким образом, λ_s — это характер.

Осталось показать, что функция $h(x) = \lambda_x \varphi(x)$ постоянна почти всюду на G. Тогда мы получим, что $\varphi = c \cdot \overline{\lambda}$, что и требуется. Имеем (в L^2):

$$T_s h = h(x - s) = \lambda_{x-s} \varphi(x - s) = \lambda_{x-s} \lambda_s \varphi(x) = \lambda_x \varphi(x) = h.$$

Рассмотрим функцию $\psi=rac{\chi_U}{\mu(U)}$ для такой окрестности единицы U, что U=-U. Тогда

$$\int_G h(x-y)\psi(y) d\mu(y) = \int_G h(x+y)\psi(-y) d\mu(y) = \int_G h(y)\psi(y) d\mu(y).$$

В последнем равенстве мы воспользовались симметричностью ψ и тем, что $T_s h = h$. Значит, значение $\int_G h(x-y)\psi(y) \, \mathrm{d}\mu(y) = c$ не зависит от x. Чтобы убедиться, что c не зависит от ψ , проинтегрируем по мере μ :

$$c = \iint\limits_{G \times G} h(x - y)\psi(y) \, \mathrm{d}\mu(y) \, \mathrm{d}\mu(x) = \int\limits_{G} h(x) \, \mathrm{d}\mu(x) \cdot \int\limits_{G} \psi(y) \, \mathrm{d}\mu(y) = \int\limits_{G} h(x) \, \mathrm{d}\mu(x).$$

Таким образом, $h * \psi = c$ почти всюду. По лемме 9.4 мы знаем, что

$$M(h) = \inf \left\{ \|h - h * \psi\|_{L^1} \ \middle| \ \psi = \frac{\chi_U}{\mu(U)}, \ 0 \in U, \ U = -U
ight\} = 0.$$

Значит, $||h - c||_{L^1} = 0$, то есть $h \equiv c$ почти всюду.

Лемма 10.4. Пусть $\psi = \frac{\chi_U}{\mu(U)}$, где U = -U — окрестность нуля. Тогда

$$A_{\psi} \colon f \mapsto \int_{G} f(y)\psi(x-y) \,\mathrm{d}\mu(y)$$

— компактный самосопряжённый оператор на $L^2(G)$.

Доказательство. По определению скалярного произведения в $L^2(G)$ выполнено $A_\psi^* = A_{\overline{\psi}}.$ Так как в нашем случае $\psi = \overline{\psi},$ то $A_\psi = A_\psi^*,$ и оператор самосопряжён.

Для компактности нужно проверить, что если $h_n\to 0$ слабо в $L^2(G)$, то $A_\psi h_n\to 0$ сильно в $L^2(G)$. Из слабой сходимости h_n следует, что

$$p_n(x) = \int_G h_n(y)\psi(y-x) \,\mathrm{d}\mu(y) = (h_n, T_x \psi) \xrightarrow{n \to \infty} 0 \qquad (\forall x \in G).$$

Рассмотрим функционалы $H_n: \varphi \mapsto (\varphi, h_n)$. Из слабой сходимости $h_n \to 0$ следует поточечная сходимость $H_n \to 0$. По теореме Банаха–Штейнгауза $\|H_n\| \leqslant c$. Значит, $\|h_n\|_{L^2} \leqslant c$ для всех n, откуда $|p_n(x)| \leqslant \|h_n\|_{L^2} \cdot \|\psi\|_{L^2} \leqslant \widetilde{c}$ и $p_n \to 0$ в L^2 по теореме Лебега об L^2 -мажорированной сходимости.

Лемма 10.5 (спектральная теорема для компактных операторов). Любой компактный самосопряжённый оператор A_{ψ} можно представить в виде

$$A_{\psi} = \sum_{k=1}^{N} \lambda_k P_k, \quad 1 \leqslant N \leqslant \infty,$$

где $|\lambda_1|\geqslant |\lambda_2|\geqslant |\lambda_3|\geqslant \dots,\lambda_n\to 0,$ а P_n — проектор на подпространство

$$E_n = \{ \varphi \in L^2(G) : A_{\psi} \varphi = \lambda_n \varphi \}$$

для каждого n, причём $\dim E_n < \infty$ при n < N и $E_{n_1} \perp E_{n_2}$ для любых $n_1 \neq n_2$.

Доказательство. См. конспект по функциональному анализу за 5-й семестр.

Лемма 10.6. Для любого k в обозначениях предыдущего следствия выполнено

$$T_{s}E_{k}=E_{k}$$
.

 \mathcal{A} оказательство. Проверим, что $T_sA_\psi=A_\psi T_s$. Пусть $f\in L^2(G)$, тогда

$$(T_s A_{\psi} f)(y) = \int_G f(x) \psi(y - x - s) \, \mathrm{d}\mu(x),$$

$$(A_{\psi}T_s f)(y) = \int_C f(x-s)\psi(y-x) \,\mathrm{d}\mu(x).$$

Правые части этих двух равенств совпадают по инвариантности μ относительно сдвига. Теперь рассмотрим функцию $\varphi \in E_k$. Имеем:

$$A_{\psi}(T_{s}\varphi) = T_{s}(A_{\psi}\varphi) = \lambda_{k}(T_{s}\varphi),$$

откуда $T_sE_k\subset E_k$. Однако $T_s|_{E_k}$ — инъективный оператор, и $\dim E_k<\infty$, откуда $T_sE_k=E_k$.

10.3 Доказательство теоремы Петера-Вейля

Доказательство теоремы Петера–Вейля. Возьмём функцию $f \in L^2(G)$ и проверим, что $f \in \operatorname{Cl}_{L^2(G)}(\operatorname{span} \widehat{G})$, то есть что $L^2(G) = \operatorname{Cl}_{L^2(G)}(\operatorname{span} \widehat{G})$. Для этого рассмотрим функцию $\psi = \frac{\chi_U}{\mu(U)}$, где U = -U — окрестность нуля. Мы выяснили, что $A_\psi f = \sum_{k=1}^N \lambda_k P_k f$. При этом

$$\sum_{k=m}^{N} \|\lambda_k P_k f\|^2 = \sum_{k=m}^{N} |\lambda_k|^2 \|P_k f\|^2 \leq |\lambda_m|^2 \sum_{k=m}^{N} \|P_k f\|^2 \leq |\lambda_m|^2 \cdot \|f\|_{L^2(G)} \xrightarrow[m \to N]{} 0,$$

где последнее неравенство выполнено, так как $E_{n_1} \perp E_{n_2}$. Таким образом, достаточно показать, что $P_k f \in \mathrm{span}(\widehat{G})$, так как в этом случае для любой ψ

$$A_{\psi}f = \lim_{m \to N} \sum_{k=1}^{m} \lambda_k P_k(f) \in \operatorname{Cl}_{L^2}(\operatorname{span}\widehat{G}).$$

Тогда и $f \in \operatorname{Cl}_{L^2(G)}(\operatorname{span} \widehat{G})$, поскольку $\inf \|f - f * \psi\|_{L^2(G)} = 0$.

Проверим, что $P_k f \in \text{span } \widehat{G}$ для любых $f \in L^2(G)$ и k < N (случай k = N разберём позже). Так как dim $E_k < \infty$, $\{T_s|_{E_k}\}_{s \in G}$ — коммутирующие унитарные операторы на E_k , то по лемме 10.2 существует ортонормированный базис $\{\gamma_{k,1}, \gamma_{k,2}, \ldots, \gamma_{k,n(k)}\}$ в E_k :

$$T_s \gamma_{kj} = \lambda_s \gamma_{kj} \qquad (\forall s \in G).$$

По лемме 10.3 получаем, что γ_{kj} пропорционально некоторому характеру (с точностью до меры ноль) для всех k, j. Значит,

$$P_k f = \sum_{j=1}^{n(k)} (P_k f, \gamma_{k_j}) \gamma_{k_j} \in \operatorname{span} \widehat{G}.$$

Если K=N (и N конечно), то $\lambda_N=0$, $P_Nf\in E_N$ и $A_\psi(P_Nf)=0\in \operatorname{Cl}\operatorname{span}\widehat{G}$, что и требовалось.

Наконец, проверим ортонормированность. Пусть $\gamma_1, \gamma_2 \in \widehat{G}$. Если $\gamma_1 = \gamma_2$, то

$$\int_{G} \gamma_1(x) \overline{\gamma_2(x)} \, \mathrm{d}\mu = \int_{G} |\gamma_1(x)|^2 \, \mathrm{d}\mu = \mu(G) = 1.$$

Если $\gamma_1 \neq \gamma_2$, то существует такое $s \in G$, что $\gamma_1(s) \neq \gamma_2(s)$. Тогда

$$\int\limits_G \gamma_1(x)\overline{\gamma_2(x)}\,\mathrm{d}\mu = \int\limits_G \gamma_1(x-s)\overline{\gamma_2(x-s)}\,\mathrm{d}\mu(x) = \overline{\gamma_1(s)}\gamma_2(s)\cdot\int\limits_G \gamma_1(x)\overline{\gamma_2(x)}\,\mathrm{d}\mu.$$

Следовательно, $(\gamma_1, \gamma_2) = 0$, что и требовалось.

10.4 Следствия из теоремы Петера-Вейля

Следствие 10.7. Если $L^2(G)$ сепарабельно, то \widehat{G} не более чем счётно.

Доказательство. Семейство $\{\gamma\}_{\gamma\in G}$ — ортонормированный базис в $L^2(G)$. Предположим, что оно более чем счётно. Так как

$$\|\gamma_1 - \gamma_2\|_{L^2} = \sqrt{(\gamma_1 - \gamma_2, \gamma_1 - \gamma_2)} = \sqrt{2},$$

то шары из семейства $\{B(\gamma, \frac{\sqrt{2}}{2})\}_{\gamma \in \widehat{G}}$ попарно не пересекаются, что противоречит сепарабельности $L^2(G)$.

Следствие 10.8. Если G имеет счётную базу в нуле, то $L^2(G)$ сепарабельно и \widehat{G} не более чем счётно.

Доказательство. По предыдущему следствию достаточно показать сепарабельность. Действительно, C(G) плотно в $L^2(G)$, а потому достаточно приблизить любую функцию из C(G) функцией из некоторого счётного подмножества $L^2(G)$. Так как у G есть счётная база в нуле $\{U_n\}_{n\geqslant 1}$, то $G=\bigsqcup_{j=1}^{k(n)} F_{n,j}$, где $F_{n,j}\subset U_n+x$ для некоторого $x\in G$:

$$F_{n,1} = U_n,$$

 $F_{n,2} = (U_n + x_2) \setminus F_{n,1},$
 $F_{n,3} = (U_n + x_3) \setminus (F_{n,1} \cup F_{n,2}),$

и так далее.

Если $f \in C(G)$, то для функции $h = \sum_{i=1}^{k(n)} f(y_i) \chi_{F_{n,j}}$ выполнено неравенство

$$(f-h)(x) \leq \sup_{y \in F_{n,j}} |f(x) - f(y)| < \varepsilon$$

по равномерной непрерывности f. Значит, $||f-h||_{L^2(G)} < \varepsilon$. Тогда $\{F_{n,j}\}_{n,j}$ — счётный набор, и это неравенство влечёт плотность счётного семейства

$$\left\{\sum_{n,j}c_j\chi_{F_{n,j}},c_j\in\mathbb{Q}\cup i\mathbb{Q}
ight\}.$$

Задача 10.1. Пусть G — компактная абелева группа со счётной базой в нуле. Докажите, что для любых $x_1, x_2 \in G$ существует такой характер $\gamma \in \widehat{G}$, что $\gamma(x_1) \neq \gamma(x_2)$.