

Workshop schedule

		Afternoon
Monday, 11.03.2019	Planning sequencing studies *	Linux command line *
Tuesday, 12.03.2019	Amplicon sequencing *	Tutorial I *
Wednesday, 13.03.2019	Tutorial II *	Assisted coding
Thursday, 14.03.2019	Multivariate data analysis *	Assisted coding
Friday, 15.03.2019	Introduction to git Q & A	Assisted coding

Collect questions and ideas during the course!

* Relevant for certificate

Planning sequencing studies

Content:

- Sequencing platforms
- Amplicon vs. shotgun sequencing
- Choosing your sequencing target
- Requirements for data analysis (computing facilities)
- Sampling and experimental design, power analysis
- Data archiving (11:00 12:00 Ivaylo Kostadinov)

https://zmtcloud.zmt-bremen.de/index.php/s/Mkgty4KxUpJ3qsi

Sequencing platforms

Sequencing technology	Principle	Read length	Errors	Comments
454	Light intensity ~ number of bases	~ 450 bp SE	homopolymers	discontinued

- Emulsion PCR
- Each nucleotide supplied separately in specified flow order
- Intensity of light signal ~ number of bases

Sequencing technology	Principle	Read length	Errors	Comments
Illumina	Color ~ base	< 300 bp SE < 550 bp PE	substitutions	Most popular sequencing platform

https://www.uppmax.uu.se/illumina-sequencing

- Sequencing one nucleotide at a time
- All nucleotides supplied at once, but with different 'color'
- https://www.youtube.com/watch?v=fCd6B5HRaZ8

Sequencing technology	Principle	Read length	Errors	Comments
Ion Torrent	Current strength ~ number of bases	< 400 bp SE	homopolymers	

Electrical current ~ number of bases

Sequencing technology	Principle	Read length	Errors	Comments
PacBio	Color ~ base	> 10 kb	~ 10% error rate (single pass)	

 DNA pulled through attached polymerase → base-dependent light signal

Sequencing technology	Principle	Read length	Errors	Comments
Nanopore	Current ~ base Length ~ number	> 10 kb	< 4% error rate	In development, but very promising Epigenetics
	The state of the s	3	************	. d A. s. No. South

https://www.nature.com/news/nanopore-genome-sequencer-makes-its-debut-1.10051

DNA pulled through membrane-bound pore → electrical current

Sequencing technology	Principle	Read length	Errors	Comments
454	Light intensity ~ number of bases	~ 450 bp SE	homopolymers	discontinued
Illumina	Color ~ base	< 300 bp SE < 550 bp PE	substitutions	Most popular sequencing platform
Ion Torrent	Current strength ~ number of bases	< 400 bp SE	homopolymers	
PacBio	Color ~ base	> 10 kb	~ 10% error rate (single pass)	
Nanopore	Current ~ base Length ~ number	> 10 kb	< 4% error rate	In development, but very promising Epigenetics

Sequencing approaches

PCR-based (amplicon) sequencing:

- Synonyms: metabarcoding, tag sequencing
- Marker gene
- PCR bias
- E.g. 16S screening

- Short reads
- High sample throughput
- Low sequencing depth
- 2x300bp paired-end Illumina

PCR-free (shotgun) sequencing:

- Not targeted
- No PCR bias
- E.g. metagenomics, metatranscriptomics

- Long reads
- Lower sample throughput
- Deep sequencing
- Illumina, PacBio, Nanopore

Choosing your sequencing target

Computing requirements

Are we producing more data than what we can handle?

Sampling and experimental design

- No study without sampling design
- No analysis without appropriate sampling design
 - 'post mortem' of your data set
- Planning is more important than execution

- Access and benefit sharing:
- → Convention on biodiversity
- → Nagoya protocol
- Consider time, financial, legal, and ethical expenses
- Simpler designs are usually better than complicated ones
- Be aware what kind of data you are collecting: continuous, discrete, percentages (compositions), binary, etc.
- Be aware of the assumptions of the statistical tests suitable for your kind of data
- Be aware of the limitations of field, laboratory, and statistical techniques

Know how to analyze your data before collecting it!

Study types

	Correlative study	Manipulative study
Pro	Observations in natural systemBiologically relevant variation	Controlled environment
Con	 Unknown, confounding factors Accessability Covariates Correlation ≠ causation 	Bias through manipulationGeneralization to natural conditions
Examples	Field studies	Lab experiments

Randomization and bias

- Random sample = representative sample
- Mathematically random is not always representative
- Haphazard sampling

- Bias = Failure to obtain a representative sample
- Sample of convenience
- Time of sampling
- Observer bias
- Expectation bias

Pseudoreplication

- Individual observations are not independent
- Other examples:
 - Common environment
 - Temporal and spatial autocorrelation
 - Duplicate measurements and technical replicates

Sampling design trees

Sampling design trees

Sampling design trees

- Efficiency of sample homogenization?
- Random variation?
- Extraction yield?

- Random variation?
- Differences between replicate PCRs?

- Sufficient sequencing depth?
- Sequencing error profiles?
- Random variation?

https://www.well.ox.ac.uk/ogc/sequencing-quality-monitoring-run

Confounding factors

- What else varies with your factor of interest?
- Wrong conclusions about effect
- Manipulative studies: controls
- Correlative studies: detailed understanding of system

Let's see if the subject responds to magnetic stimuli... ADMINISTER THE MAGNET!

Interesting...there seems to be a significant decrease in heart rate. The fish must sense the magnetic field.

Power analysis

- Statistical power = probability to detect difference if there is one
- Depending on:
 - Effect size
 Random variation
 Sample size

 Educated guesswork
 This we can modify

Plans vs. Reality

- > 10 replicates for each treatment
- Additional technical replicates
- Balanced sampling design
- Normally distributed data
- No missing data
- No outliers
- No (observer) bias
- No confounding variables

- ~ 3 replicates because of logistic constraints
- Technical replicates not comparable
- Unbalanced sampling design
- Irregular data distribution
- Missing data due to failed measurements
- Many outliers
- Strong biases
- Highly confounded environmental data

• ..

Compromise

Irregular data distributions: Simple sampling design

Consider non-parametric tests and/or permutation tests

Logistic constraints: Instead of reducing the number of replicates,

reduce the number of treatments

Missing data: Collect more samples than necessary,

even if they are not going to be analyzed

Plans vs. Reality

Plans vs. Reality

Check list

- What are your hypotheses?
- Which conditions do you want to compare?
- How many factors do you have, with how many levels?
- What kind of design is best suited for your hypotheses?
- Which kind of data are you working with?
- How much time and money do you have?
- How many **replicates** are feasible?
- What is your level of independent replication?
- How do you want to analyze your data?
- Which tests are suitable for your data and experiment, and which assumptions have to be met?
- What are your plans B, C, D, ...?

Good scientific practice

- Research must be reproducible!
 - > Take detailed notes and write code (that others can understand)
 - Document any modification to raw data (scripts)
 - Back-up your work immediately/regularly (electronic and hard copy)
 - Archive your data: raw data and code!

"We forgot to back up our files, so we're asking everyone to remember everything they have typed during the past 10 days."

Data archiving

Dr. Ivaylo Kostadinov

https://www.gfbio.org/