## Due Friday, February 3

- 1. Consider the vector space  $\mathbb{R}^3$  over  $\mathbb{R}$ . Let B = ((1,0,1),(0,1,1),(1,1,0)) and C = ((4,3,3),(1,2,1),(-3,-1,5)) be two bases.
  - (a) Let v = (1,0,1), expressed in the standard basis for  $\mathbb{R}^3$ . Find  $[v]_B$  and  $[v]_C$ .
  - (b) Find the change-of-basis matrix  $_{B}M_{C}$ .
  - (c) Verify that  $[v]_B =_B M_C[v]_C$ .
- 2. Consider two linear transformations T and L from in  $\mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$  with the property that  $T(v_1) = L(v_1)$  and  $T(v_2) = L(v_2)$  for the vectors  $v_1$  and  $v_2$  sketched below. Prove that L(v) = T(v) for all vectors  $v \in \mathbb{R}^2$ .



3. Suppose  $b, c \in \mathbb{R}$ . Define  $T : \mathbb{R}^3 \to \mathbb{R}^2$  by

$$T(x, y, z) = (5x - 2y + 3z + b, 9y + cxz).$$

Show that T is linear if and only if b = c = 0. (Be sure to prove both directions!)

- 4. (Ax 3.A.4) Suppose  $T \in \mathcal{L}(V, W)$  and  $v_1, \ldots, v_m$  is a list of vectors in V such that  $Tv_1, \ldots, Tv_m$  is a linearly independent list in W. Prove that  $v_1, \ldots, v_m$  is linearly independent.
- 5. (Ax 3.B.2) Suppose V is vector space and  $S, T \in \mathcal{L}(V, V)$  are such that

$$range(S) \subset ker(T)$$
.

Prove  $(ST)^2 = 0$ .

- 6. Suppose that  $T \in \mathcal{L}(V, W)$  is injective and  $v_1, \ldots, v_n$  in linearly independent in V. Prove that  $Tv_1, \ldots, Tv_n$  is linearly independent in W.
- 7. Let V be a finite-dimensional vector space. A linear map  $P: V \to V$  is called *idempotent* if  $P \circ P = P$ . (In other words, P(P(v)) = P(v).) Prove that if P is idempotent,

$$V = \ker(P) \oplus \operatorname{range}(P)$$
.

(Hint: One way to do this is to first show that  $\ker(P) \cap \operatorname{range}(P) = \{0\}$ . Then compare the dimsum formula to the Fundamental Theorem of Linear Maps to conclude  $\ker(P) + \operatorname{range}(P) = V$ .

8. This question is optional. You do not have to hand it in. Suppose V is finite-dimensional. Prove that every linear map on a subspace of V can be extended to a linear map on V. In other words, show that if U is a subspace of V and  $S \in \mathcal{L}(U, W)$ , then there exists  $T \in \mathcal{L}(V, W)$  such that Tu = Su for all  $u \in U$ .