

Universidad de Guanajuato - CIMAT

OWO

Sebastian Sánchez, Diego García, José Soto

ICPC World Finals 2023 2024-04-07

3 Data structures	3
4 Numerical	5
5 Number theory	8
6 Combinatorial	10
7 Graph	11
-	19
9 Strings	24
10 Various	26
$\underline{\text{Contest}}$ (1)	
, ,	
template.cpp 34 li	nes
<pre>#include <bits stdc++.h=""> #define fi first</bits></pre>	
#define se second	
<pre>#define mp make_pair #define pb push_back</pre>	
#define all(v) v.begin(), v.end()	
<pre>#define sz(x) ((int) (x).size())</pre>	
using namespace std;	
<pre>using l1 = long long; using pii = pair<int,int>;</int,int></pre>	
<pre>using pll = pair<11,11>;</pre>	
<pre>using vi = vector<int>;</int></pre>	
<pre>using vp = vector<pii>; using vl = vector<ll>;</ll></pii></pre>	
<pre>using vvi = vector<vi>;</vi></pre>	
<pre>using vvl = vector<vl>;</vl></pre>	
<pre>using vb = vector<bool>;</bool></pre>	
template <typename a,="" b="" typename=""> ostream& operator<<(ostream</typename>	&
os, const pair <a, b=""> &p) {return os << '(' << p.fi << ",</a,>	
<pre><< p.se << ')';} template<typename c,="" enable_if<!is_same<="" pre="" t="typename" typename=""></typename></pre>	<c< th=""></c<>
, string>::value, typename C::value_type>::type>	-
ostream& operator<<(ostream &os, const C &v){string sep; for(
<pre>const T &x : v) os << sep << x, sep = " "; return os;} #define deb() logger(#VA_ARGS,VA_ARGS)</pre>	
template <typenameargs></typenameargs>	
<pre>void logger(string vars, Args&& values){</pre>	
<pre>cout << "[Debug]\n\t" << vars << " = "; string d = "[";</pre>	
(, (cout << d << values, d = "] ["));	
cout << "]\n";	
} int main()	
<pre>int main() {</pre>	
<pre>ios_base::sync_with_stdio(0); cin.tie(0);</pre>	
return 0;	
,	

1 Contest

2 Mathematics

3 Data structures

troubleshoot.txt

Pre-submit:

Write a few simple test cases if sample is not enough. Are time limits close? If so, generate max cases.

Is the memory usage fine?

Could anything overflow?

Make sure to submit the right file.

Wrong answer:

Print your solution! Print debug output, as well.

Are you clearing all data structures between test cases? Can your algorithm handle the whole range of input?

Read the full problem statement again.

Do you handle all corner cases correctly?

Have you understood the problem correctly?

Any uninitialized variables?

Any overflows?

Confusing N and M, i and j, etc.?

Are you sure your algorithm works?

What special cases have you not thought of?

Are you sure the STL functions you use work as you think?

Add some assertions, maybe resubmit.

Create some testcases to run your algorithm on.

Go through the algorithm for a simple case.

Go through this list again.

Explain your algorithm to a teammate.

Ask the teammate to look at your code.

Go for a small walk, e.g. to the toilet.

Is your output format correct? (including whitespace)

Rewrite your solution from the start or let a teammate do it.

Runtime error:

Have you tested all corner cases locally?

Any uninitialized variables?

Are you reading or writing outside the range of any vector?

Any assertions that might fail?

Any possible division by 0? (mod 0 for example)

Any possible infinite recursion?

Invalidated pointers or iterators?

Are you using too much memory?

Debug with resubmits (e.g. remapped signals, see Various).

Time limit exceeded:

Do you have any possible infinite loops?

What is the complexity of your algorithm?

Are you copying a lot of unnecessary data? (References)

How big is the input and output? (consider scanf)

Avoid vector, map. (use arrays/unordered_map)

What do your teammates think about your algorithm?

Memory limit exceeded:

What is the max amount of memory your algorithm should need? Are you clearing all data structures between test cases?

$| \, { m Mathematics} \, \, (2)$

$$ax + by = e$$

$$cx + dy = f$$

$$\Rightarrow x = \frac{ed - bf}{ad - bc}$$

$$y = \frac{af - ec}{ad - bc}$$

In general, given an equation Ax = b, the solution to a variable x_i is given by

$$x_i = \frac{\det A_i'}{\det A}$$

where A'_i is A with the i'th column replaced by b.

2.1 Game theory

Nimbers = mex(posiciones a donde puedo llegar)

2.2 Recurrences

If $a_n = c_1 a_{n-1} + \cdots + c_k a_{n-k}$, and r_1, \ldots, r_k are distinct roots of $x^k - c_1 x^{k-1} - \cdots - c_k$, there are d_1, \ldots, d_k s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1n + d_2)r^n$.

2.3 Trigonometry

$$\sin(v+w) = \sin v \cos w + \cos v \sin w$$
$$\cos(v+w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$
$$\sin v + \sin w = 2\sin\frac{v+w}{2}\cos\frac{v-w}{2}$$
$$\cos v + \cos w = 2\cos\frac{v+w}{2}\cos\frac{v-w}{2}$$

$$(V+W)\tan(v-w)/2 = (V-W)\tan(v+w)/2$$

where V, W are lengths of sides opposite angles v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$

$$a\sin x + b\cos x = r\sin(x + \phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

2.4 Geometry

2.4.1 Triangles

Side lengths: a, b, c

Semiperimeter:
$$p = \frac{a+b+c}{2}$$

Area:
$$A = \sqrt{p(p-a)(p-b)(p-c)}$$

Circumradius:
$$R = \frac{abc}{4A}$$

Inradius:
$$r = \frac{A}{p}$$

Length of median (divides triangle into two equal-area triangles): $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

$$s_a = \sqrt{bc \left[1 - \left(\frac{a}{b+c}\right)^2\right]}$$

Law of sines: $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} = \frac{1}{2R}$

Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos \alpha$

Law of tangents: $\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$

2.4.2 Quadrilaterals

With side lengths a, b, c, d, diagonals e, f, diagonals angle θ , area A and magic flux $F = b^2 + d^2 - a^2 - c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180° , ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$.

2.4.3 Spherical coordinates

$$\begin{array}{ll} x = r \sin \theta \cos \phi & r = \sqrt{x^2 + y^2 + z^2} \\ y = r \sin \theta \sin \phi & \theta = \arccos(z/\sqrt{x^2 + y^2 + z^2}) \\ z = r \cos \theta & \phi = \operatorname{atan2}(y, x) \end{array}$$

2.5 Derivatives/Integrals

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \qquad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \qquad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

2.6 Sums

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c - 1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

2.7 Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, (-\infty < x < \infty)$$

2.8 Probability theory

Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_x x p_X(x)$ and variance $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

Expectation is linear:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

2.8.1 Discrete distributions Binomial distribution

The number of successes in n independent yes/no experiments, each which yields success with probability p is $Bin(n, p), n = 1, 2, ..., 0 \le p \le 1$.

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mu = np, \, \sigma^2 = np(1-p)$$

Bin(n, p) is approximately Po(np) for small p.

First success distribution

The number of trials needed to get the first success in independent yes/no experiments, each which yields success with probability p is Fs(p), $0 \le p \le 1$.

$$p(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$

$$\mu = \frac{1}{p}, \sigma^2 = \frac{1-p}{p^2}$$

Poisson distribution

The number of events occurring in a fixed period of time t if these events occur with a known average rate κ and independently of the time since the last event is $Po(\lambda)$, $\lambda = t\kappa$.

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$
$$u = \lambda, \sigma^2 = \lambda$$

2.8.2 Continuous distributions Uniform distribution

If the probability density function is constant between a and b and 0 elsewhere it is U(a, b), a < b.

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\mu = \frac{a+b}{2}, \, \sigma^2 = \frac{(b-a)^2}{12}$$

Exponential distribution

The time between events in a Poisson process is $\operatorname{Exp}(\lambda)$, $\lambda > 0$.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$
$$\mu = \frac{1}{\lambda}, \sigma^2 = \frac{1}{\lambda^2}$$

Normal distribution

Most real random values with mean μ and variance σ^2 are well described by $\mathcal{N}(\mu, \sigma^2)$, $\sigma > 0$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If
$$X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$$
 and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ then

$$aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$$

2.9 Markov chains

A Markov chain is a discrete random process with the property that the next state depends only on the current state. Let X_1, X_2, \dots be a sequence of random variables generated by the Markov process. Then there is a transition matrix $\mathbf{P} = (p_{ij})$, with $p_{ij} = \Pr(X_n = i | X_{n-1} = j)$, and $\mathbf{p}^{(n)} = \mathbf{P}^n \mathbf{p}^{(0)}$ is the probability distribution for X_n (i.e., $p_i^{(n)} = \Pr(X_n = i)$), where $\mathbf{p}^{(0)}$ is the initial distribution.

 π is a stationary distribution if $\pi = \pi \mathbf{P}$. If the Markov chain is irreducible (it is possible to get to any state from any state), then $\pi_i = \frac{1}{\mathbb{E}(T_i)}$ where $\mathbb{E}(T_i)$ is the expected time between two visits in state i. π_i/π_i is the expected number of visits in state j between two visits in state i.

For a connected, undirected and non-bipartite graph, where the transition probability is uniform among all neighbors, π_i is proportional to node i's degree.

A Markov chain is *ergodic* if the asymptotic distribution is independent of the initial distribution. A finite Markov chain is ergodic iff it is irreducible and aperiodic (i.e., the gcd of cycle lengths is 1). $\lim_{k\to\infty} \mathbf{P}^k = \mathbf{1}\pi$.

A Markov chain is an A-chain if the states can be partitioned into two sets A and G, such that all states in A are absorbing $(p_{ii}=1)$, and all states in **G** leads to an absorbing state in **A**. The probability for absorption in state $i \in \mathbf{A}$, when the initial state is j, is $a_{ij} = p_{ij} + \sum_{k \in \mathbf{G}} a_{ik} p_{kj}$. The expected time until absorption, when the initial state is i, is $t_i = 1 + \sum_{k \in \mathbf{G}} p_{ki} t_k$.

Data structures (3)

OrderStatisticTree.h

Description: A set (not multiset!) with support for finding the n'th element, and finding the index of an element. To get a map, change null_type. Usage: Same functions as set +

find_bv_order(k): Returns an iterator to the k-th element (0 indexed) order_of_key(x): Returns how many elements go strictly before x t.join(t1): Assuming T < T2 or T > T2, merge t2 into t Declare as Tree<int>, Tree<pii>, ...

#include <bits/extc++.h> using namespace __gnu_pbds; template<class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;

HashMap.h

Time: $\mathcal{O}(\log N)$

Description: Hash map with mostly the same API as unordered_map, but ~3x faster. Uses 1.5x memory. Initial capacity must be a power of 2 (if

```
#include <bits/extc++.h>
// To use most bits rather than just the lowest ones:
struct chash { // large odd number for C
```

```
const uint64 t C = 11(4e18 * acos(0)) | 71;
 11 operator()(11 x) const { return __builtin_bswap64(x*C); }
__gnu_pbds::gp_hash_table<ll,int,chash> h({},{},{},{},{1<<16});
SegmentTree.h
Description: Zero-indexed max-tree. Bounds are inclusive to the left and
```

exclusive to the right. Can be changed by modifying T, f and unit. Time: $\mathcal{O}(\log N)$

```
struct Tree {
 typedef int T;
 static constexpr T unit = INT_MIN;
 T f(T a, T b) { return max(a, b); } // (any associative fn)
 vector<T> s; int n;
 Tree (int n = 0, T def = unit) : s(2*n, def), n(n) {}
 void update(int pos, T val) {
   for (s[pos += n] = val; pos /= 2;)
     s[pos] = f(s[pos * 2], s[pos * 2 + 1]);
 T query (int b, int e) { // query (b, e)
   T ra = unit, rb = unit;
   for (b += n, e += n; b < e; b /= 2, e /= 2) {
     if (b % 2) ra = f(ra, s[b++]);
     if (e % 2) rb = f(s[--e], rb);
   return f(ra, rb);
};
```

UnionFindRollback.h.

Description: Disjoint-set data structure with undo. If undo is not needed, skip st, time() and rollback().

Usage: int t = uf.time(); ...; uf.rollback(t); Time: $\mathcal{O}(\log(N))$

```
struct RollbackUF {
 vi e; vector<pii> st;
 RollbackUF(int n) : e(n, -1) {}
 int size(int x) { return -e[find(x)]; }
 int find(int x) { return e[x] < 0 ? x : find(e[x]); }</pre>
 int time() { return sz(st); }
 void rollback(int t) {
   for (int i = time(); i --> t;)
     e[st[i].first] = st[i].second;
    st.resize(t);
 bool join(int a, int b) {
   a = find(a), b = find(b);
    if (a == b) return false;
   if (e[a] > e[b]) swap(a, b);
   st.push_back({a, e[a]});
   st.push_back({b, e[b]});
   e[a] += e[b]; e[b] = a;
    return true;
};
```

LineContainer.h

Description: Container where you can add lines of the form kx+m, and query maximum values at points x. Useful for dynamic programming ("convex hull trick").

```
Time: \mathcal{O}(\log N)
```

```
struct Line {
 mutable 11 k, m, p;
 bool operator<(const Line& o) const { return k < o.k; }</pre>
 bool operator<(11 x) const { return p < x; }</pre>
```

```
struct LineContainer : multiset<Line, less<>>> {
  // (for doubles, use inf = 1/.0, div(a,b) = a/b)
  static const ll inf = LLONG MAX;
  ll div(ll a, ll b) { // floored division
    return a / b - ((a ^ b) < 0 && a % b); }
  bool isect(iterator x, iterator y) {
    if (y == end()) return x \rightarrow p = inf, 0;
    if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
    else x->p = div(y->m - x->m, x->k - y->k);
    return x->p >= y->p;
  void add(ll k, ll m) {
    auto z = insert(\{k, m, 0\}), y = z++, x = y;
    while (isect(y, z)) z = erase(z);
    if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
    while ((y = x) != begin() \&\& (--x)->p >= y->p)
      isect(x, erase(y));
 ll query(ll x) {
    assert(!empty());
    auto 1 = *lower_bound(x);
    return 1.k * x + 1.m;
};
```

LiChaoTree.h

Description: min Li Chao Tree for linear functions.

Usage: Functions can be changed, just make sure they cross at most once.

```
struct func {
    func(11 m = 0, 11 b = 1e18) : m(m), b(b) {}
    11 eval(int x) { return m * x + b; }
} st[4 * N];
void add(int u, int 1, int r, func f) {
    int m = (1 + r) / 2;
    bool lef = f.eval(1) < st[u].eval(1);</pre>
    bool mid = f.eval(m) < st[u].eval(m);</pre>
    if(mid) swap(f, st[u]);
    if(1 == r) return;
    if(lef != mid) add(2*u+1, 1, m, f);
    else add(2*u+2, m+1, r, f);
11 get(int u, int 1, int r, int x) {
    if(l == r) return st[u].eval(x);
    int m = (1 + r) / 2;
    if (x \le m) return min(st[u].eval(x), get(2*u+1, 1, m, x));
    return min(st[u].eval(x), get(2*u+2, m+1, r, x));
```

Treap.h

Description: A short self-balancing tree. It acts as a sequential container with log-time splits/joins, and is easy to augment with additional data. Time: $\mathcal{O}(\log N)$

```
struct Node {
 Node *1 = 0, *r = 0;
 int val, y, c = 1;
 Node(int val) : val(val), y(rand()) {}
 void recalc();
int cnt(Node* n) { return n ? n->c : 0; }
void Node::recalc() { c = cnt(l) + cnt(r) + 1; }
template < class F > void each (Node * n, F f) {
 if (n) { each (n->1, f); f(n->val); each (n->r, f); }
```

```
pair<Node*, Node*> split(Node* n, int k) {
 if (!n) return {};
  if (cnt(n->1) >= k) { // "n->val>= k" for lower_bound(k)
    auto pa = split(n->1, k);
   n->1 = pa.second;
   n->recalc();
   return {pa.first, n};
   auto pa = split(n->r, k - cnt(n->1) - 1); // and just "k"
   n->r = pa.first;
   n->recalc();
   return {n, pa.second};
Node* merge(Node* 1, Node* r) {
 if (!1) return r;
 if (!r) return 1;
  if (1->y > r->y) {
   1->r = merge(1->r, r);
   1->recalc();
   return 1:
  } else {
    r->1 = merge(1, r->1);
    r->recalc();
   return r;
Node* ins(Node* t, Node* n, int pos) {
 auto pa = split(t, pos);
  return merge (merge (pa.first, n), pa.second);
// Example application: move the range (l, r) to index k
void move(Node*& t, int 1, int r, int k) {
 Node *a, *b, *c;
  tie(a,b) = split(t, 1); tie(b,c) = split(b, r - 1);
 if (k \le 1) t = merge(ins(a, b, k), c);
  else t = merge(a, ins(c, b, k - r));
```

FenwickTree.h

Description: Computes partial sums a[0] + a[1] + ... + a[pos - 1], and updates single elements a[i], taking the difference between the old and new

Time: Both operations are $\mathcal{O}(\log N)$.

```
struct FT {
 vector<ll> s;
  FT(int n) : s(n) {}
  void update(int pos, ll dif) { // a[pos] += dif
    for (; pos < sz(s); pos |= pos + 1) s[pos] += dif;</pre>
  11 query(int pos) { // sum of values in [0, pos)
    11 \text{ res} = 0;
    for (; pos > 0; pos &= pos - 1) res += s[pos-1];
   return res:
  int lower_bound(11 sum) \{// min \ pos \ st \ sum \ of \ [0, \ pos] >= sum
    // Returns n if no sum is \geq sum, or -1 if empty sum is.
    if (sum <= 0) return -1;
   int pos = 0;
    for (int pw = 1 << 25; pw; pw >>= 1) {
     if (pos + pw <= sz(s) && s[pos + pw-1] < sum)</pre>
        pos += pw, sum -= s[pos-1];
```

```
return pos;
};
FenwickTree2d.h
Description: Computes sums a[i,j] for all i<I, j<J, and increases single ele-
ments a[i,j]. Requires that the elements to be updated are known in advance
(call fakeUpdate() before init()).
Time: \mathcal{O}(\log^2 N). (Use persistent segment trees for \mathcal{O}(\log N).)
"FenwickTree.h"
                                                               22 lines
struct FT2 {
 vector<vi> ys; vector<FT> ft;
 FT2(int limx) : ys(limx) {}
 void fakeUpdate(int x, int y) {
    for (; x < sz(ys); x = x + 1) ys[x].push_back(y);
    for (vi& v : vs) sort(all(v)), ft.emplace back(sz(v));
 int ind(int x, int y) {
    return (int) (lower_bound(all(ys[x]), y) - ys[x].begin()); }
 void update(int x, int y, ll dif) {
    for (; x < sz(ys); x | = x + 1)
      ft[x].update(ind(x, y), dif);
 11 query(int x, int y) {
   11 \text{ sum} = 0;
   for (; x; x &= x - 1)
     sum += ft[x-1].query(ind(x-1, y));
    return sum;
};
RMQ.h
Description: Range Minimum Queries on an array. Returns min(V[a], V[a
+ 1], ... V[b - 1]) in constant time.
Usage: RMQ rmq(values);
rmq.query(inclusive, exclusive);
Time: \mathcal{O}(|V|\log|V|+Q)
template<class T>
struct RMO {
 vector<vector<T>> imp;
 RMQ(const vector<T>& V) : jmp(1, V) {
    for (int pw = 1, k = 1; pw * 2 <= sz(V); pw *= 2, ++k) {
      jmp.emplace_back(sz(V) - pw * 2 + 1);
      rep(j,0,sz(jmp[k]))
        jmp[k][j] = min(jmp[k - 1][j], jmp[k - 1][j + pw]);
```

MoQueries.h

};

T query(int a, int b) {

Description: Answer interval or tree path queries by finding an approximate TSP through the queries, and moving from one query to the next by adding/removing points at the ends. If values are on tree edges, change step to add/remove the edge (a, c) and remove the initial add call (but keep in). Time: $\mathcal{O}(N\sqrt{Q})$

return min(jmp[dep][a], jmp[dep][b - (1 << dep)]);

assert (a < b); // or return inf if a == b

int dep = 31 - __builtin_clz(b - a);

```
void add(int ind, int end) { ... } // add a[ind] (end = 0 or 1)
void del(int ind, int end) { ... } // remove a[ind]
int calc() { ... } // compute current answer
vi mo(vector<pii> Q) {
```

```
int L = 0, R = 0, blk = 350; // \sim N/sqrt(Q)
 vi s(sz(Q)), res = s;
#define K(x) pii(x.first/blk, x.second ^ -(x.first/blk & 1))
 iota(all(s), 0);
 sort(all(s), [\&](int s, int t) { return K(Q[s]) < K(Q[t]); \});
  for (int qi : s) {
   pii q = Q[qi];
    while (L > q.first) add(--L, 0);
    while (R < q.second) add(R++, 1);</pre>
    while (L < g.first) del(L++, 0);
    while (R > q.second) del(--R, 1);
   res[qi] = calc();
 return res;
vi moTree(vector<array<int, 2>> Q, vector<vi>& ed, int root=0){
 int N = sz(ed), pos[2] = {}, blk = 350; // \sim N/sqrt(Q)
 vi s(sz(Q)), res = s, I(N), L(N), R(N), in(N), par(N);
 add(0, 0), in[0] = 1;
 auto dfs = [&](int x, int p, int dep, auto& f) -> void {
   L[x] = N;
   if (dep) I[x] = N++;
    for (int y : ed[x]) if (y != p) f(y, x, !dep, f);
   if (!dep) I[x] = N++;
   R[x] = N;
 };
 dfs(root, -1, 0, dfs);
#define K(x) pii(I[x[0]] / blk, I[x[1]] ^ -(I[x[0]] / blk & 1))
 iota(all(s), 0);
 sort(all(s), [\&](int s, int t) { return K(Q[s]) < K(Q[t]); \});
 for (int qi : s) rep(end, 0, 2) {
   int &a = pos[end], b = Q[qi][end], i = 0;
#define step(c) { if (in[c]) { del(a, end); in[a] = 0; } \
                  else { add(c, end); in[c] = 1; } a = c; }
    while (!(L[b] <= L[a] && R[a] <= R[b]))</pre>
    I[i++] = b, b = par[b];
    while (a != b) step(par[a]);
    while (i--) step(I[i]);
   if (end) res[qi] = calc();
 return res;
```

IntervalContainer.h

Description: Add and remove intervals from a set of disjoint intervals, mantaining some info. for them. To add [l, r] first it removes intersections with it, then it adds it as its own interval. If 'maximal' is on and endpoint touches other interval of same info, they will merge.

Time: $\mathcal{O}(\log N)$ amortized

```
template <class T = int, class Info = int>
struct IntervalContainer {
    bool maximal;
    IntervalContainer(bool f = false) : maximal(f) {}
    struct Inter {
        T 1, r;
        Info u;
        Inter(T r_{-} = 0) : r(r_{-}) {}
        Inter(T l_, T r_, Info u_) : l(l_), r(r_), u(u_) {}
        bool operator < (const Inter &o) const { return r < o.r</pre>
             ; }
    set <Inter> S;
    //returns deleted intervals
    vector<Inter> del(T l, T r) { if(l > r) return {};
        vector <Inter> updated;
        for(T pos : {1, r}) {
```

14 lines

```
auto it = S.lower bound(pos);
        if(it != S.end() && it->1 <= pos) {
            auto old = *it;
            S.erase(it);
            if(old.1 != pos) S.insert(Inter(old.1, pos - 1,
                  old.u));
            if(old.r != pos) S.insert(Inter(pos + 1, old.r,
                  old.u));
    for(auto it = S.lower_bound(1); it != S.upper_bound(r);
        updated.pb(*it);
    S.erase(S.lower_bound(1), S.upper_bound(r));
    return updated;
//adds [l, r] with info u
vector <Inter> upd(T 1, T r, Info u) { if(1 > r) return {};
    auto updated = del(1, r);
    if(maximal) {
        auto it_1 = S.lower_bound(1);
        if(it 1 != S.begin()) {
            it_1--;
            if(it_l->u == u && it_l->r == 1 - 1) {
               1 = it_1->1;
                S.erase(it_l);
        auto it_r = S.lower_bound(r);
        if(it r != S.end() && it r->u == u && it r->l == r
            + 1) {
            r = it r->r;
            S.erase(it_r);
    S.insert(Inter(l, r, u));
    return updated;
bool elem(T pos) {
    auto it = S.lower_bound(pos);
    return it != S.end() && it->1 <= pos;
Inter cover(T pos) { //assert(elem(pos));
    return *S.lower_bound(pos);
```

Numerical (4)

4.1 Polynomials and recurrences

Polynomial.h

};

```
17 lines
```

```
struct Poly {
  vector<double> a;
  double operator()(double x) const {
   double val = 0;
   for (int i = sz(a); i--;) (val *= x) += a[i];
   return val;
  void diff() {
    rep(i, 1, sz(a)) a[i-1] = i*a[i];
   a.pop_back();
  void divroot(double x0) {
   double b = a.back(), c; a.back() = 0;
   for(int i=sz(a)-1; i--;) c = a[i], a[i] = a[i+1]*x0+b, b=c;
```

```
a.pop_back();
};
PolvRoots.h
Description: Finds the real roots to a polynomial.
Usage: polyRoots (\{\{2, -3, 1\}\}, -1e9, 1e9\} // solve x^2-3x+2=0
Time: \mathcal{O}\left(n^2\log(1/\epsilon)\right)
"Polynomial.h"
vector<double> polyRoots(Poly p, double xmin, double xmax) {
  if (sz(p.a) == 2) { return {-p.a[0]/p.a[1]}; }
  vector<double> ret;
  Polv der = p;
  der.diff();
  auto dr = polyRoots(der, xmin, xmax);
  dr.push back(xmin-1);
  dr.push_back(xmax+1);
  sort(all(dr));
  rep(i, 0, sz(dr) - 1) {
    double l = dr[i], h = dr[i+1];
    bool sign = p(1) > 0;
    if (sign ^{(p(h) > 0)}) {
      rep(it,0,60) { // while (h - l > 1e-8)
        double m = (1 + h) / 2, f = p(m);
        if ((f <= 0) ^ sign) l = m;
        else h = m;
      ret.push_back((1 + h) / 2);
  return ret;
PolyInterpolate.h
Description: Given n points (x[i], y[i]), computes an n-1-degree polynomial
p that passes through them: p(x) = a[0] * x^0 + ... + a[n-1] * x^{n-1}. For
numerical precision, pick x[k] = c * \cos(k/(n-1) * \pi), k = 0 \dots n-1.
Time: \mathcal{O}\left(n^2\right)
```

```
typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {
 vd res(n), temp(n);
 rep(k, 0, n-1) rep(i, k+1, n)
   y[i] = (y[i] - y[k]) / (x[i] - x[k]);
 double last = 0; temp[0] = 1;
 rep(k, 0, n) rep(i, 0, n) {
   res[i] += y[k] * temp[i];
   swap(last, temp[i]);
   temp[i] -= last * x[k];
 return res;
```

BerlekampMassev.h

Description: Recovers any n-order linear recurrence relation from the first 2n terms of the recurrence. Useful for guessing linear recurrences after bruteforcing the first terms. Should work on any field, but numerical stability for floats is not guaranteed. Output will have size $\leq n$.

```
Usage: berlekampMassey({0, 1, 1, 3, 5, 11}) // {1, 2}
Time: \mathcal{O}(N^2)
```

```
"../number-theory/ModPow.h"
vector<ll> berlekampMassey(vector<ll> s) {
 int n = sz(s), L = 0, m = 0;
 vector<ll> C(n), B(n), T;
 C[0] = B[0] = 1;
 11 b = 1;
rep(i,0,n) { ++m;
```

```
11 d = s[i] % mod;
  rep(j, 1, L+1) d = (d + C[j] * s[i - j]) % mod;
  if (!d) continue;
  T = C; 11 coef = d * modpow(b, mod-2) % mod;
  rep(j,m,n) C[j] = (C[j] - coef * B[j - m]) % mod;
  if (2 * L > i) continue;
  L = i + 1 - L; B = T; b = d; m = 0;
C.resize(L + 1); C.erase(C.begin());
for (11& x : C) x = (mod - x) % mod;
return C;
```

LinearRecurrence.h

Description: Generates the k'th term of an n-order linear recurrence $S[i] = \sum_{j} S[i-j-1]tr[j]$, given $S[0... \ge n-1]$ and tr[0...n-1]. Faster than matrix multiplication. Useful together with Berlekamp-Massey.

Usage: linearRec({0, 1}, {1, 1}, k) // k'th Fibonacci number Time: $\mathcal{O}\left(n^2 \log k\right)$

```
typedef vector<ll> Poly;
11 linearRec(Poly S, Poly tr, 11 k) {
 int n = sz(tr);
 auto combine = [&] (Poly a, Poly b) {
   Polv res(n \star 2 + 1):
    rep(i, 0, n+1) rep(j, 0, n+1)
     res[i + j] = (res[i + j] + a[i] * b[j]) % mod;
    for (int i = 2 * n; i > n; --i) rep(j,0,n)
     res[i - 1 - j] = (res[i - 1 - j] + res[i] * tr[j]) % mod;
    res.resize(n + 1);
    return res;
 };
  Poly pol(n + 1), e(pol);
  pol[0] = e[1] = 1;
  for (++k; k; k /= 2) {
    if (k % 2) pol = combine(pol, e);
    e = combine(e, e);
 11 \text{ res} = 0;
 rep(i, 0, n) res = (res + pol[i + 1] * S[i]) % mod;
 return res;
```

4.2 Optimization

GoldenSectionSearch.h

Description: Finds the argument minimizing the function f in the interval [a, b] assuming f is unimodal on the interval, i.e. has only one local minimum. The maximum error in the result is eps. Works equally well for maximization with a small change in the code. See TernarySearch.h in the Various chapter for a discrete version.

```
Usage: double func(double x) { return 4+x+.3*x*x; }
double xmin = gss(-1000, 1000, func);
Time: \mathcal{O}(\log((b-a)/\epsilon))
double gss(double a, double b, double (*f)(double)) {
  double r = (sqrt(5)-1)/2, eps = 1e-7;
```

```
double x1 = b - r*(b-a), x2 = a + r*(b-a);
double f1 = f(x1), f2 = f(x2);
while (b-a > eps)
 if (f1 < f2) { //change to > to find maximum
   b = x2; x2 = x1; f2 = f1;
   x1 = b - r*(b-a); f1 = f(x1);
  } else {
   a = x1; x1 = x2; f1 = f2;
```

```
UG-CIMAT OWO
      x2 = a + r*(b-a); f2 = f(x2);
  return a:
HillClimbing.h
Description: Poor man's optimization for unimodal functions.
                                                              14 lines
typedef array<double, 2> P;
template<class F> pair<double, P> hillClimb(P start, F f) {
  pair<double, P> cur(f(start), start);
  for (double jmp = 1e9; jmp > 1e-20; jmp /= 2) {
    rep(j, 0, 100) rep(dx, -1, 2) rep(dy, -1, 2) {
     P p = cur.second;
      p[0] += dx * jmp;
     p[1] += dy * jmp;
      cur = min(cur, make_pair(f(p), p));
  return cur;
Integrate.h
Description: Simple integration of a function over an interval using Simp-
son's rule. The error should be proportional to h^4, although in practice you
will want to verify that the result is stable to desired precision when epsilon
changes.
template<class F>
double quad(double a, double b, F f, const int n = 1000) {
  double h = (b - a) / 2 / n, v = f(a) + f(b);
  rep(i,1,n*2)
   v += f(a + i*h) * (i&1 ? 4 : 2);
  return v * h / 3;
IntegrateAdaptive.h
Description: Fast integration using an adaptive Simpson's rule.
Usage: double sphereVolume = quad(-1, 1, [](double x) {
```

```
return quad(-1, 1, [&] (double y) {
return quad(-1, 1, [&] (double z) {
return x*x + y*y + z*z < 1; });});

typedef double d;
#define S(a,b) (f(a) + 4*f((a+b) / 2) + f(b)) * (b-a) / 6

template <class F>
d rec(F& f, d a, d b, d eps, d S) {
    d c = (a + b) / 2;
    d S1 = S(a, c), S2 = S(c, b), T = S1 + S2;
    if (abs(T - S) <= 15 * eps || b - a < 1e-10)
        return T + (T - S) / 15;
    return rec(f, a, c, eps / 2, S1) + rec(f, c, b, eps / 2, S2);
}
template <class F>
d quad(d a, d b, F f, d eps = 1e-8) {
    return rec(f, a, b, eps, S(a, b));
}
```

Simplex.h

Description: Solves a general linear maximization problem: maximize c^Tx subject to $Ax \leq b, \ x \geq 0$. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of c^Tx otherwise. The input vector is set to an optimal x (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that x=0 is viable.

```
Usage: vvd A = \{\{1,-1\}, \{-1,1\}, \{-1,-2\}\};
vd b = \{1, 1, -4\}, c = \{-1, -1\}, x;
T val = LPSolver(A, b, c).solve(x);
Time: \mathcal{O}(NM * \#pivots), where a pivot may be e.g. an edge relaxation.
\mathcal{O}(2^n) in the general case.
typedef double T; // long double, Rational, double + mod<P>...
typedef vector<T> vd;
typedef vector<vd> vvd;
const T eps = 1e-8, inf = 1/.0;
#define MP make pair
#define ltj(X) if(s == -1 || MP(X[j], N[j]) < MP(X[s], N[s])) s=j
struct LPSolver {
  int m, n;
  vi N, B;
  vvd D:
  LPSolver (const vvd& A, const vd& b, const vd& c) :
    m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2), vd(n+2)) {
      rep(i, 0, m) rep(j, 0, n) D[i][j] = A[i][j];
      rep(i, 0, m) \{ B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i]; \}
      rep(j, 0, n) \{ N[j] = j; D[m][j] = -c[j]; \}
      N[n] = -1; D[m+1][n] = 1;
  void pivot(int r, int s) {
    T *a = D[r].data(), inv = 1 / a[s];
    rep(i, 0, m+2) if (i != r \&\& abs(D[i][s]) > eps) {
      T *b = D[i].data(), inv2 = b[s] * inv;
      rep(j, 0, n+2) b[j] -= a[j] * inv2;
      b[s] = a[s] * inv2;
    rep(j, 0, n+2) if (j != s) D[r][j] *= inv;
    rep(i,0,m+2) if (i != r) D[i][s] *= -inv;
    D[r][s] = inv;
    swap(B[r], N[s]);
  bool simplex(int phase) {
    int x = m + phase - 1;
    for (;;) {
      int s = -1;
      rep(j,0,n+1) if (N[j] !=-phase) ltj(D[x]);
      if (D[x][s] >= -eps) return true;
      int r = -1;
      rep(i,0,m) {
        if (D[i][s] <= eps) continue;</pre>
        if (r == -1 \mid | MP(D[i][n+1] / D[i][s], B[i])
                      < MP(D[r][n+1] / D[r][s], B[r])) r = i;
      if (r == -1) return false;
      pivot(r, s);
  T solve(vd &x) {
    int r = 0;
    rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
    if (D[r][n+1] < -eps) {
      pivot(r, n);
      if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
      rep(i,0,m) if (B[i] == -1) {
        int s = 0:
        rep(j,1,n+1) ltj(D[i]);
        pivot(i, s);
```

```
bool ok = simplex(1); x = vd(n);
rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
return ok ? D[m][n+1] : inf;
};</pre>
```

4.3 Matrices

Determinant.h

Description: Calculates determinant of a matrix. Destroys the matrix. **Time:** $\mathcal{O}(N^3)$

```
double det(vector<vector<double>>& a) {
  int n = sz(a); double res = 1;
  rep(i,0,n) {
    int b = i;
  rep(j,i+1,n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
    if (i != b) swap(a[i], a[b]), res *= -1;
    res *= a[i][i];
    if (res == 0) return 0;
    rep(j,i+1,n) {
        double v = a[j][i] / a[i][i];
        if (v != 0) rep(k,i+1,n) a[j][k] -= v * a[i][k];
    }
}
return res;
}
```

IntDeterminant.h

Description: Calculates determinant using modular arithmetics. Modulos can also be removed to get a pure-integer version.

Time: $\mathcal{O}(N^3)$

SolveLinear.h

Description: Solves A * x = b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost. **Time:** $\mathcal{O}(n^2m)$

```
typedef vector<double> vd;
const double eps = 1e-12;

int solveLinear(vector<vd>& A, vd& b, vd& x) {
   int n = sz(A), m = sz(x), rank = 0, br, bc;
   if (n) assert(sz(A[0]) == m);
   vi col(m); iota(all(col), 0);

rep(i,0,n) {
   double v, bv = 0;
   rep(r,i,n) rep(c,i,m)
   if ((v = fabs(A[r][c])) > bv)
        br = r, bc = c, bv = v;
```

```
if (bv <= eps) {
    rep(j, i, n) if (fabs(b[j]) > eps) return -1;
   break;
  swap(A[i], A[br]);
  swap(b[i], b[br]);
  swap(col[i], col[bc]);
  rep(j,0,n) swap(A[j][i], A[j][bc]);
 bv = 1/A[i][i];
  rep(j,i+1,n) {
   double fac = A[j][i] * bv;
   b[j] -= fac * b[i];
   rep(k,i+1,m) A[j][k] = fac*A[i][k];
 rank++;
x.assign(m, 0);
for (int i = rank; i--;) {
 b[i] /= A[i][i];
 x[col[i]] = b[i];
 rep(j,0,i) b[j] -= A[j][i] * b[i];
return rank; // (multiple solutions if rank < m)
```

SolveLinear2.h

Description: To get all uniquely determined values of x back from Solve-Linear, make the following changes:

```
"SolveLinear.h" 7 li
rep(j,0,n) if (j != i) // instead of rep(j,i+1,n)
// ... then at the end:
x.assign(m, undefined);
rep(i,0,rank) {
   rep(j,rank,m) if (fabs(A[i][j]) > eps) goto fail;
   x[col[i]] = b[i] / A[i][i];
fail:; }
```

SolveLinearBinary.h

Description: Solves Ax = b over \mathbb{F}_2 . If there are multiple solutions, one is returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b. **Time:** $\mathcal{O}\left(n^2m\right)$

```
typedef bitset<1000> bs;
int solveLinear(vector<bs>& A, vi& b, bs& x, int m) {
  int n = sz(A), rank = 0, br;
 assert(m \le sz(x));
 vi col(m); iota(all(col), 0);
  rep(i,0,n) {
   for (br=i; br<n; ++br) if (A[br].any()) break;</pre>
   if (br == n) {
     rep(j,i,n) if(b[j]) return -1;
     break:
    int bc = (int)A[br]._Find_next(i-1);
    swap(A[i], A[br]);
    swap(b[i], b[br]);
    swap(col[i], col[bc]);
    rep(j,0,n) if (A[j][i] != A[j][bc]) {
     A[j].flip(i); A[j].flip(bc);
    rep(j,i+1,n) if (A[j][i]) {
     b[i] ^= b[i];
     A[j] ^= A[i];
    rank++;
```

```
x = bs();
for (int i = rank; i--;) {
   if (!b[i]) continue;
   x[col[i]] = 1;
   rep(j,0,i) b[j] ^= A[j][i];
}
return rank; // (multiple solutions if rank < m)</pre>
```

MatrixInverse.h

Description: Invert matrix A. Returns rank; result is stored in A unless singular (rank < n). Can easily be extended to prime moduli; for prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$ where A^{-1} starts as the inverse of A mod p, and k is doubled in each step.

```
Time: \mathcal{O}\left(n^3\right)
int matInv(vector<vector<double>>& A) {
 int n = sz(A); vi col(n);
 vector<vector<double>> tmp(n, vector<double>(n));
 rep(i,0,n) tmp[i][i] = 1, col[i] = i;
 rep(i,0,n) {
    int r = i, c = i;
    rep(j,i,n) rep(k,i,n)
      if (fabs(A[j][k]) > fabs(A[r][c]))
        r = j, c = k;
    if (fabs(A[r][c]) < 1e-12) return i;</pre>
    A[i].swap(A[r]); tmp[i].swap(tmp[r]);
    rep(j,0,n)
     swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);
    swap(col[i], col[c]);
    double v = A[i][i];
    rep(j,i+1,n) {
      double f = A[j][i] / v;
     A[j][i] = 0;
      rep(k,i+1,n) A[j][k] -= f*A[i][k];
      rep(k,0,n) tmp[j][k] \rightarrow f*tmp[i][k];
    rep(j, i+1, n) A[i][j] /= v;
    rep(j,0,n) tmp[i][j] /= v;
    A[i][i] = 1;
 for (int i = n-1; i > 0; --i) rep(j, 0, i) {
    double v = A[j][i];
    rep(k,0,n) tmp[j][k] -= v*tmp[i][k];
 rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] = tmp[i][j];
 return n;
```

Tridiagonal.h

Description: x = tridiagonal(d, p, q, b) solves the equation system

```
0
                                                  0
b_1
              q_0
                   d_1 \quad p_1
                                                               x_1
                                                  0
b_2
              0
                   q_1
                                                               x_2
b_3
                                                               x_3
               0
                    0
                               q_{n-3}
                                       d_{n-2}
                    0
```

This is useful for solving problems on the type

```
a_i = b_i a_{i-1} + c_i a_{i+1} + d_i, \ 1 \le i \le n,
```

where a_0, a_{n+1}, b_i, c_i and d_i are known. a can then be obtained from

```
\begin{aligned} \{a_i\} &= \operatorname{tridiagonal}(\{1,-1,-1,\ldots,-1,1\},\{0,c_1,c_2,\ldots,c_n\},\\ \{b_1,b_2,\ldots,b_n,0\},\{a_0,d_1,d_2,\ldots,d_n,a_{n+1}\}). \end{aligned}
```

Fails if the solution is not unique.

Time: $\mathcal{O}(N)$

If $|d_i| > |p_i| + |q_{i-1}|$ for all i, or $|d_i| > |p_{i-1}| + |q_i|$, or the matrix is positive definite, the algorithm is numerically stable and neither tr nor the check for diag[i] == 0 is needed.

```
typedef double T;
vector<T> tridiagonal(vector<T> diag, const vector<T>& super,
    const vector<T>& sub, vector<T> b) {
 int n = sz(b); vi tr(n);
  rep(i, 0, n-1) {
    if (abs(diag[i]) < 1e-9 * abs(super[i])) { // diag[i] == 0
      b[i+1] = b[i] * diag[i+1] / super[i];
      if (i+2 < n) b[i+2] -= b[i] * sub[i+1] / super[i];</pre>
      diag[i+1] = sub[i]; tr[++i] = 1;
      diag[i+1] -= super[i]*sub[i]/diag[i];
      b[i+1] -= b[i] * sub[i] / diag[i];
 for (int i = n; i--;) {
    if (tr[i]) {
      swap(b[i], b[i-1]);
      diag[i-1] = diag[i];
      b[i] /= super[i-1];
    } else {
      b[i] /= diag[i];
      if (i) b[i-1] -= b[i]*super[i-1];
 return b;
```

4.4 Fourier transforms

FastFourierTransform.h

vector<C> in(n), out(n);

Description: fft(a) computes $\hat{f}(k) = \sum_x a[x] \exp(2\pi i \cdot kx/N)$ for all k. N must be a power of 2. Useful for convolution: conv(a, b) = c, where $c[x] = \sum_i a[i]b[x-i]$. For convolution of complex numbers or more than two vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT back. Rounding is safe if $(\sum_i a_i^2 + \sum_i b_i^2) \log_2 N < 9 \cdot 10^{14}$ (in practice 10^{16} ; higher for random inputs). Otherwise, use NTT/FFTMod.

```
Time: O(N \log N) with N = |A| + |B| (\sim 1s \text{ for } N = 2^{22})
                                                             35 lines
typedef complex<double> C;
typedef vector<double> vd;
void fft(vector<C>& a) {
 int n = sz(a), L = 31 - __builtin_clz(n);
  static vector<complex<long double>> R(2, 1);
  static vector<C> rt(2, 1); // (^ 10% faster if double)
  for (static int k = 2; k < n; k *= 2) {
    R.resize(n); rt.resize(n);
    auto x = polar(1.0L, acos(-1.0L) / k);
    rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2];
 vi rev(n);
  rep(i,0,n) \ rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
      Cz = rt[j+k] * a[i+j+k]; // (25\% faster if hand-rolled)
      a[i + j + k] = a[i + j] - z;
      a[i + j] += z;
vd conv(const vd& a, const vd& b) {
 if (a.empty() || b.empty()) return {};
 vd res(sz(a) + sz(b) - 1);
 int L = 32 - \underline{\quad} builtin_clz(sz(res)), n = 1 << L;
```

8 lines

```
copy(all(a), begin(in));
rep(i,0,sz(b)) in[i].imag(b[i]);
fft(in);
for (C& x : in) x *= x;
rep(i,0,n) out[i] = in[-i & (n - 1)] - conj(in[i]);
fft(out);
rep(i,0,sz(res)) res[i] = imag(out[i]) / (4 * n);
return res;
}
```

FastFourierTransformMod.h

Description: Higher precision FFT, can be used for convolutions modulo arbitrary integers as long as $N\log_2 N\cdot \mathrm{mod} < 8.6\cdot 10^{14}$ (in practice 10^{16} or higher). Inputs must be in $[0,\mathrm{mod})$.

Time: $\mathcal{O}(N \log N)$, where N = |A| + |B| (twice as slow as NTT or FFT)

"FastFourierTransform.h"

22 line

```
typedef vector<ll> v1;
template<int M> v1 convMod(const v1 &a, const v1 &b) {
 if (a.empty() || b.empty()) return {};
  vl res(sz(a) + sz(b) - 1);
  int B=32-__builtin_clz(sz(res)), n=1<<B, cut=int(sqrt(M));</pre>
  vector<C> L(n), R(n), outs(n), outl(n);
  rep(i,0,sz(a)) L[i] = C((int)a[i] / cut, (int)a[i] % cut);
  rep(i,0,sz(b)) R[i] = C((int)b[i] / cut, (int)b[i] % cut);
  fft(L), fft(R);
  rep(i,0,n) {
   int j = -i \& (n - 1);
   outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
   outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;
  fft(outl), fft(outs);
  rep(i.0.sz(res)) {
   11 av = 11(real(out1[i])+.5), cv = 11(imag(outs[i])+.5);
   11 bv = 11(imag(out1[i])+.5) + 11(real(outs[i])+.5);
   res[i] = ((av % M * cut + bv) % M * cut + cv) % M;
  return res;
```

NumberTheoreticTransform.h

Description: ntt(a) computes $\hat{f}(k) = \sum_x a[x]g^{xk}$ for all k, where $g = \operatorname{root}^{(mod-1)/N}$. N must be a power of 2. Useful for convolution modulo specific nice primes of the form 2^ab+1 , where the convolution result has size at most 2^a . For arbitrary modulo, see FFTMod. $\operatorname{conv}(a, b) = c$, where $c[x] = \sum_x a[i]b[x-i]$. For manual convolution: NTT the inputs, multiply pointwise, divide by n, reverse(start+1, end), NTT back. Inputs must be in $[0, \operatorname{mod})$.

Time: $\mathcal{O}(N \log N)$

```
"../number-theory/ModPow.h"
const 11 mod = (119 \ll 23) + 1, root = 62; // = 998244353
// For p < 2^30 there is also e.g. 5 << 25, 7 << 26, 479 << 21
// and 483 \ll 21 (same root). The last two are > 10^9.
typedef vector<11> v1;
void ntt(vl &a) {
  int n = sz(a), L = 31 - __builtin_clz(n);
  static v1 rt(2, 1);
  for (static int k = 2, s = 2; k < n; k \neq 2, s++) {
    rt.resize(n);
   11 z[] = \{1, modpow(root, mod >> s)\};
    rep(i,k,2*k) rt[i] = rt[i / 2] * z[i & 1] % mod;
  vi rev(n);
  rep(i,0,n) \ rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
     11 z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
      a[i + j + k] = ai - z + (z > ai ? mod : 0);
```

FastSubsetTransform.h

Time: $\mathcal{O}(N \log N)$

Description: Transform to a basis with fast convolutions of the form $c[z] = \sum_{z=x \oplus y} a[x] \cdot b[y]$, where \oplus is one of AND, OR, XOR. The size of a must be a power of two.

Number theory (5)

5.1 Modular arithmetic

Modular Arithmetic.h

Description: Operators for modular arithmetic. You need to set mod to some number first and then you can use the structure.

```
18 lines
const 11 mod = 17; // change to something else
struct Mod {
 11 x;
 Mod(11 xx) : x(xx) \{ \}
 Mod operator+(Mod b) { return Mod((x + b.x) % mod); }
 Mod operator-(Mod b) { return Mod((x - b.x + mod) % mod); }
 Mod operator*(Mod b) { return Mod((x * b.x) % mod); }
 Mod operator/(Mod b) { return *this * invert(b); }
 Mod invert (Mod a) {
   ll x, y, g = euclid(a.x, mod, x, y);
   assert(g == 1); return Mod((x + mod) % mod);
 Mod operator^(ll e) {
   if (!e) return Mod(1);
   Mod r = *this ^ (e / 2); r = r * r;
   return e&1 ? *this * r : r;
};
```

ModInverse.h

Description: Pre-computation of modular inverses. Assumes LIM \leq mod and that mod is a prime.

```
const 11 mod = 1000000007, LIM = 200000;
ll* inv = new ll[LIM] - 1; inv[1] = 1;
rep(i,2,LIM) inv[i] = mod - (mod / i) * inv[mod % i] % mod;
ModPow.h
```

```
const 11 mod = 1000000007; // faster if const

11 modpow(11 b, 11 e) {
    11 ans = 1;
    for (; e; b = b * b % mod, e /= 2)
        if (e & 1) ans = ans * b % mod;
    return ans;
}
```

ModLog.h

Description: Returns the smallest x > 0 s.t. $a^x = b \pmod{m}$, or -1 if no such x exists. modLog(a,1,m) can be used to calculate the order of a. **Time:** $\mathcal{O}(\sqrt{m})$

```
11 modLog(ll a, ll b, ll m) {
    ll n = (ll) sqrt(m) + 1, e = 1, f = 1, j = 1;
    unordered_map<ll, ll> A;
    while (j <= n && (e = f = e * a % m) != b % m)
        A[e * b % m] = j++;
    if (e == b % m) return j;
    if (__gcd(m, e) == __gcd(m, b))
        rep(i,2,n+2) if (A.count(e = e * f % m))
        return n * i - A[e];
    return -1;
}</pre>
```

ModSum.h

Description: Sums of mod'ed arithmetic progressions. modsum(to, c, k, m) = $\sum_{i=0}^{\text{to}-1} (ki+c)\%m$. divsum is similar but for floored division.

Time: $\log(m)$, with a large constant.

16 lines

```
typedef unsigned long long ull;
ull sumsq(ull to) { return to / 2 * ((to-1) | 1); }

ull divsum(ull to, ull c, ull k, ull m) {
    ull res = k / m * sumsq(to) + c / m * to;
    k %= m; c %= m;
    if (!k) return res;
    ull to2 = (to * k + c) / m;
    return res + (to - 1) * to2 - divsum(to2, m-1 - c, m, k);
}

ll modsum(ull to, ll c, ll k, ll m) {
    c = ((c % m) + m) % m;
    k = ((k % m) + m) % m;
    return to * c + k * sumsq(to) - m * divsum(to, c, k, m);
}
```

ModMulLL.h

Description: Calculate $a \cdot b \mod c$ (or $a^b \mod c$) for $0 \le a, b \le c \le 7.2 \cdot 10^{18}$. **Time:** $\mathcal{O}(1)$ for modmul, $\mathcal{O}(\log b)$ for modpow

```
typedef unsigned long long ull;
ull modmul(ull a, ull b, ull M) {
    ll ret = a * b - M * ull(1.L / M * a * b);
    return ret + M * (ret < 0) - M * (ret >= (ll)M);
}
ull modpow(ull b, ull e, ull mod) {
    ull ans = 1;
```

```
for (; e; b = modmul(b, b, mod), e /= 2)
 if (e & 1) ans = modmul(ans, b, mod);
return ans;
```

ModSart.h

Description: Tonelli-Shanks algorithm for modular square roots. Finds xs.t. $x^2 = a \pmod{p}$ (-x gives the other solution).

Time: $\mathcal{O}(\log^2 p)$ worst case, $\mathcal{O}(\log p)$ for most p

```
24 lines
ll sqrt(ll a, ll p) {
 a %= p; if (a < 0) a += p;
 if (a == 0) return 0;
  assert (modpow(a, (p-1)/2, p) == 1); // else no solution
  if (p % 4 == 3) return modpow(a, (p+1)/4, p);
  // a^{(n+3)/8} \text{ or } 2^{(n+3)/8} * 2^{(n-1)/4} \text{ works if } p \% 8 == 5
  11 s = p - 1, n = 2;
  int r = 0, m;
  while (s % 2 == 0)
   ++r, s /= 2;
  while (modpow(n, (p-1) / 2, p) != p-1) ++n;
  11 x = modpow(a, (s + 1) / 2, p);
  ll b = modpow(a, s, p), q = modpow(n, s, p);
  for (;; r = m) {
   11 t = b;
    for (m = 0; m < r && t != 1; ++m)
     t = t * t % p;
    if (m == 0) return x;
   11 \text{ gs} = \text{modpow}(q, 1LL \ll (r - m - 1), p);
   a = as * as % p;
   x = x * gs % p;
   b = b * q % p;
```

Primality

FastEratosthenes.h

Description: Prime sieve for generating all primes smaller than LIM.

Time: LIM=1e9 $\approx 1.5s$

```
const int LIM = 1e6;
bitset<LIM> isPrime;
vi eratosthenes() {
  const int S = (int)round(sqrt(LIM)), R = LIM / 2;
  vi pr = {2}, sieve(S+1); pr.reserve(int(LIM/log(LIM)*1.1));
  vector<pii> cp;
  for (int i = 3; i <= S; i += 2) if (!sieve[i]) {</pre>
    cp.push_back(\{i, i * i / 2\});
    for (int j = i * i; j <= S; j += 2 * i) sieve[j] = 1;</pre>
  for (int L = 1; L \leftarrow R; L \leftarrow S) {
    array<bool, S> block{};
    for (auto &[p, idx] : cp)
     for (int i=idx; i < S+L; idx = (i+=p)) block[i-L] = 1;</pre>
    rep(i, 0, min(S, R - L))
     if (!block[i]) pr.push_back((L + i) * 2 + 1);
 for (int i : pr) isPrime[i] = 1;
 return pr;
```

MillerRabin.h

Description: Deterministic Miller-Rabin primality test. Guaranteed to work for numbers up to $7 \cdot 10^{18}$; for larger numbers, use Python and extend A randomly.

Time: 7 times the complexity of $a^b \mod c$.

```
bool isPrime(ull n) {
```

```
"ModMulLL.h"
                                                                              12 lines
```

```
if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;</pre>
ull A[] = \{2, 325, 9375, 28178, 450775, 9780504, 1795265022\},
    s = builtin ctzll(n-1), d = n >> s;
for (ull a : A) { // ^ count trailing zeroes
  ull p = modpow(a%n, d, n), i = s;
  while (p != 1 && p != n - 1 && a % n && i--)
   p = modmul(p, p, n);
  if (p != n-1 && i != s) return 0;
return 1:
```

Factor.h

Description: Pollard-rho randomized factorization algorithm. Returns prime factors of a number, in arbitrary order (e.g. 2299 -> {11, 19, 11}).

Time: $\mathcal{O}\left(n^{1/4}\right)$, less for numbers with small factors.

```
"ModMulLL.h", "MillerRabin.h"
ull pollard(ull n) {
 auto f = [n] (ull x) { return modmul(x, x, n) + 1; };
 ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
 while (t++ % 40 | | gcd(prd, n) == 1) {
   if (x == y) x = ++i, y = f(x);
   if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
   x = f(x), y = f(f(y));
 return __gcd(prd, n);
vector<ull> factor(ull n) {
 if (n == 1) return {};
 if (isPrime(n)) return {n};
 ull x = pollard(n);
 auto 1 = factor(x), r = factor(n / x);
 1.insert(1.end(), all(r));
 return 1;
```

5.3 Divisibility

euclid.h

Description: Finds two integers x and y, such that $ax + by = \gcd(a, b)$. If you just need gcd, use the built in $_gcd$ instead. If a and b are coprime, then x is the inverse of $a \pmod{b}$.

```
ll euclid(ll a, ll b, ll &x, ll &y) {
 if (!b) return x = 1, y = 0, a;
 11 d = euclid(b, a % b, y, x);
 return y -= a/b * x, d;
```

"euclid.h"

Description: Chinese Remainder Theorem.

crt(a, m, b, n) computes x such that $x \equiv a \pmod{m}$, $x \equiv b \pmod{n}$. If |a| < m and |b| < n, x will obey $0 \le x < \text{lcm}(m, n)$. Assumes $mn < 2^{62}$ Time: $\log(n)$

```
11 crt(ll a, ll m, ll b, ll n) {
 if (n > m) swap(a, b), swap(m, n);
 11 x, y, g = euclid(m, n, x, y);
 assert ((a - b) % g == 0); // else no solution
 x = (b - a) % n * x % n / g * m + a;
 return x < 0 ? x + m*n/q : x;
```

5.3.1 Bézout's identity

For $a \neq b \neq 0$, then d = qcd(a, b) is the smallest positive integer for which there are integer solutions to

$$ax + by = d$$

If (x, y) is one solution, then all solutions are given by

$$\left(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)}\right), \quad k \in \mathbb{Z}$$

phiFunction.h

Description: Euler's ϕ function is defined as $\phi(n) := \#$ of positive integers $\leq n$ that are coprime with n. $\phi(1) = 1$, p prime $\Rightarrow \phi(p^k) = (p-1)p^{k-1}$, $m, n \text{ coprime } \Rightarrow \phi(mn) = \phi(m)\phi(n).$ If $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ then $\phi(n) =$ $(p_1-1)p_1^{k_1-1}...(p_r-1)p_r^{k_r-1}.$ $\phi(n)=n\cdot\prod_{p\mid n}(1-1/p).$ $\sum_{d|n} \phi(d) = n, \sum_{1 \le k \le n, \gcd(k,n)=1} k = n\phi(n)/2, n > 1$ Euler's thm: a, n coprime $\Rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$. **Fermat's little thm**: $p \text{ prime } \Rightarrow a^{p-1} \equiv 1 \pmod{p} \ \forall a.$

```
const int LIM = 5000000;
int phi[LIM];
void calculatePhi() {
 rep(i, 0, LIM) phi[i] = i&1 ? i : i/2;
 for (int i = 3; i < LIM; i += 2) if(phi[i] == i)</pre>
    for (int j = i; j < LIM; j += i) phi[j] -= phi[j] / i;</pre>
```

5.4 Fractions

ContinuedFractions.h

Description: Given N and a real number $x \geq 0$, finds the closest rational approximation p/q with p, q < N. It will obey |p/q - x| < 1/qN.

For consecutive convergents, $p_{k+1}q_k - q_{k+1}p_k = (-1)^k$. $(p_k/q_k$ alternates between > x and < x.) If x is rational, y eventually becomes ∞ ; if x is the root of a degree 2 polynomial the a's eventually become cyclic.

Time: $\mathcal{O}(\log N)$

typedef double d; // for $N \sim 1e7$; long double for $N \sim 1e9$ pair<11, 11> approximate(d x, 11 N) { 11 LP = 0, LO = 1, P = 1, O = 0, inf = LLONG MAX; dv = x; ll lim = min(P ? (N-LP) / P : inf, Q ? (N-LQ) / Q : inf),a = (11) floor(v), b = min(a, lim),NP = b*P + LP, NQ = b*Q + LQ;**if** (a > b) { // If b > a/2, we have a semi-convergent that gives us a // better approximation; if b = a/2, we *may* have one. // Return {P, Q} here for a more canonical approximation. return (abs(x - (d)NP / (d)NO) < abs(x - (d)P / (d)O)) ? make_pair(NP, NQ) : make_pair(P, Q); **if** $(abs(y = 1/(y - (d)a)) > 3*N) {$ return {NP, NQ}; LP = P; P = NP;LO = O; O = NO;

FracBinarySearch.h

Description: Given f and N, finds the smallest fraction $p/q \in [0,1]$ such that f(p/q) is true, and $p, q \leq N$. You may want to throw an exception from f if it finds an exact solution, in which case N can be removed.

muFunction Interpolation IntPerm

Usage: fracBS([](Frac f) { return f.p>=3*f.q; }, 10); // {1,3} Time: $\mathcal{O}(\log(N))$ struct Frac { ll p, q; }; template<class F> Frac fracBS(F f, 11 N) { **bool** dir = 1, A = 1, B = 1; Frac lo{0, 1}, hi{1, 1}; // Set hi to 1/0 to search (0, N] if (f(lo)) return lo; assert (f(hi)); while (A | | B) { 11 adv = 0, step = 1; // move hi if dir, else lo for (int si = 0; step; (step *= 2) >>= si) { Frac mid{lo.p * adv + hi.p, lo.g * adv + hi.g}; if (abs(mid.p) > N || mid.q > N || dir == !f(mid)) { adv -= step; si = 2; hi.p += lo.p * adv;hi.q += lo.q * adv;dir = !dir; swap(lo, hi); A = B; B = !!adv;return dir ? hi : lo;

5.5 Pythagorean Triples

The Pythagorean triples are uniquely generated by

$$a = k \cdot (m^2 - n^2), \ b = k \cdot (2mn), \ c = k \cdot (m^2 + n^2),$$

with m > n > 0, k > 0, $m \perp n$, and either m or n even.

5.6 Primes

p=962592769 is such that $2^{21}\mid p-1$, which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than 1000000.

Primitive roots exist modulo any prime power p^a , except for p=2, a>2, and there are $\phi(\phi(p^a))$ many. For p=2, a>2, the group \mathbb{Z}_{2a}^{\times} is instead isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2a-2}$.

5.7 Estimates

$$\sum_{d|n} d = O(n \log \log n).$$

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e10, 200 000 for n < 1e19.

5.8 Mobius Function

$$\mu(n) = \begin{cases} 0 & n \text{ is not square free} \\ 1 & n \text{ has even number of prime factors} \\ -1 & n \text{ has odd number of prime factors} \end{cases}$$

Mobius Inversion:

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(n/d)$$

Other useful formulas/forms:

$$\begin{array}{l} \sum_{d|n} \mu(d) = [n=1] \text{ (very useful)} \\ g(n) = \sum_{n|d} f(d) \Leftrightarrow f(n) = \sum_{n|d} \mu(d/n) g(d) \\ g(n) = \sum_{1 \leq m \leq n} f(\left\lfloor \frac{n}{m} \right\rfloor) \Leftrightarrow f(n) = \sum_{1 \leq m \leq n} \mu(m) g(\left\lfloor \frac{n}{m} \right\rfloor) \\ \text{muFunction.h} \end{array}$$

```
Description: Sieve that computes μ

mu[1] = 1;

for(int i = 1; i < LIM; i++)

for(int j = i+i; j < LIM; j += i)

mu[j] -= mu[i];
```

5.8.1 Mobius example:

Coprime pairs:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} [\gcd(i,j) = 1] = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{d|\gcd(i,j)}^{n} \mu(d)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{d=1}^{n} [d|i][d|j]\mu(d)$$

$$= \sum_{d=1}^{n} \mu(d) (\sum_{j=1}^{n} [d|j])^{2}$$

$$= \sum_{d=1}^{n} \mu(d) \lfloor \frac{n}{d} \rfloor^{2}.$$

Gcd sum:

$$\sum_{k=1}^{n} k \sum_{i=1}^{n} \sum_{j=1}^{n} [\gcd(i,j) = k] = \sum_{k=1}^{n} k \sum_{a=1}^{\lfloor n/k \rfloor} \sum_{b=1}^{\lfloor n/k \rfloor} [\gcd(a,b) = 1]$$
$$= \sum_{k=1}^{n} k \sum_{i=1}^{\lfloor n/k \rfloor} \mu(d) \lfloor \frac{n}{kd} \rfloor^{2}.$$

doing k = ld we get

$$\sum_{l=1}^n \big\lfloor \frac{n}{l} \big\rfloor^2 \sum_{k|l} k \mu(\frac{k}{l}) = \sum_{l=1}^n \big\lfloor \frac{n}{l} \big\rfloor^2 \phi(l).$$

5.9 Interpolation

Interpolation.h

Description: Interpolates polynomial P at x assuming sample = P(1)...P(N) and P has deg < n

Time: $\mathcal{O}(N)$. Change mints to ints and care for modulo when using $_{21 \text{ lines}}$

```
mint interpolate(vector<mint> &sample, mint x) {
   int n = sz(sample);
   mint fac = fact[n - 1];
   vector<mint> pref(n), suf(n);
   pref[0] = mint(1);
   for(int i = 2; i <= n; i++) {</pre>
```

```
pref[i - 1] = pref[i - 2] * (x - (i - 1));
}
suf[n - 1] = mint(1);
for(int i = n - 2; i >= 0; i--)
    suf[i] = suf[i + 1] * (x - (i + 2));
mint ans = 0;
for(int i = 1; i <= n; i++) {
    mint term = invfact[i - 1] * invfact[n - i];
    if((n - i) % 2 == 1)
        term = term * mint(-1);
    term *= pref[i - 1] * suf[i - 1] * sample[i - 1];
    ans += term;
}
return ans;</pre>
```

Combinatorial (6)

6.1 Permutations

6.1.1 Factorial

IntPerm.h

Description: Permutation -> integer conversion. (Not order preserving.) Integer -> permutation can use a lookup table.

6.1.2 Cycles

Let $g_S(n)$ be the number of *n*-permutations whose cycle lengths all belong to the set S. Then

$$\sum_{n=0}^{\infty} g_S(n) \frac{x^n}{n!} = \exp\left(\sum_{n \in S} \frac{x^n}{n}\right)$$

6.1.3 Derangements

Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left\lfloor \frac{n!}{e} \right\rfloor$$

6.1.4 Burnside's lemma

Given a group G of symmetries and a set X, the number of elements of X up to symmetry equals

$$\frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where X^g are the elements fixed by g (g.x = x).

If f(n) counts "configurations" (of some sort) of length n, we can ignore rotational symmetry using $G = \mathbb{Z}_n$ to get

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k|n} f(k)\phi(n/k).$$

6.2 Partitions and subsets

6.2.1 Partition function

Number of ways of writing n as a sum of positive integers, disregarding the order of the summands.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$

$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$

6.2.2 Lucas' Theorem

Let n, m be non-negative integers and p a prime. Write $n = n_k p^k + \ldots + n_1 p + n_0$ and $m = m_k p^k + \ldots + m_1 p + m_0$. Then $\binom{n}{m} \equiv \prod_{i=0}^k \binom{n_i}{m_i} \pmod{p}$.

6.2.3 Binomials

multinomial.h

Description: Computes
$$\binom{k_1+\cdots+k_n}{k_1,k_2,\ldots,k_n} = \frac{(\sum k_i)!}{k_1!k_2!\ldots k_n!}$$
.

11 multinomial (vi& v) {
 11 c = 1, m = v.empty() ? 1 : v[0];
 rep(i,1,sz(v)) rep(j,0,v[i])
 c = c * ++m / (j+1);
 return c;

6.3 General purpose numbers

6.3.1 Bernoulli numbers

EGF of Bernoulli numbers is $B(t) = \frac{t}{e^t - 1}$ (FFT-able). $B[0, \ldots] = [1, -\frac{1}{2}, \frac{1}{6}, 0, -\frac{1}{30}, 0, \frac{1}{42}, \ldots]$

Sums of powers:

$$\sum_{i=1}^{n} n^{m} = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_{k} \cdot (n+1)^{m+1-k}$$

Euler-Maclaurin formula for infinite sums:

$$\sum_{i=m}^{\infty} f(i) = \int_m^{\infty} f(x) dx - \sum_{k=1}^{\infty} \frac{B_k}{k!} f^{(k-1)}(m)$$

$$\approx \int_{m}^{\infty} f(x)dx + \frac{f(m)}{2} - \frac{f'(m)}{12} + \frac{f'''(m)}{720} + O(f^{(5)}(m))$$

6.3.2 Stirling numbers of the first kind

Number of permutations on n items with k cycles.

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k), \ c(0,0) = 1$$
$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\dots(x+n-1)$$

$$c(8,k) = 8, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1$$

 $c(n,2) = 0, 0, 1, 3, 11, 50, 274, 1764, 13068, 109584, \dots$

6.3.3 Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) \geq j$, k j:s s.t. $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} \binom{n+1}{j} (k+1-j)^{n}$$

6.3.4 Stirling numbers of the second kind

Partitions of n distinct elements into exactly k groups.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^{n}$$

6.3.5 Bell numbers

Total number of partitions of n distinct elements. B(n) = 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, For <math>p prime,

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

6.3.6 Labeled unrooted trees

on n vertices: n^{n-2} # on k existing trees of size n_i : $n_1 n_2 \cdots n_k n^{k-2}$ # with degrees d_i : $(n-2)!/((d_1-1)!\cdots(d_n-1)!)$

6.3.7 Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, \ C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \ C_{n+1} = \sum_{n=1}^{\infty} C_n C_{n-n}$$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

- sub-diagonal monotone paths in an $n \times n$ grid.
- strings with n pairs of parenthesis, correctly nested.
- binary trees with with n+1 leaves (0 or 2 children).
- ordered trees with n+1 vertices.
- ways a convex polygon with n + 2 sides can be cut into triangles by connecting vertices with straight lines.
- \bullet permutations of [n] with no 3-term increasing subseq.

Catalan convolution (k = 0 is regular Catalan):

$$C_n^{(k)} = \frac{k+1}{n+k+1} {2n+k \choose n} = \frac{(2n+k-1)(2n+k)}{n(n+k+1)} C_{n-1}^k.$$

6.3.8 Stars and bars

• La cantidad de formas de sumar N con K sumandos positivos (no necesariamente distintos y ordenados $-(1,2) \neq (2,1)$) es

$$\binom{N-1}{K-1}$$

 La cantidad de formas de sumar N con K sumandos no negativos (no necesariamente distintos y ordenados) es

$$\binom{N+K-1}{N}$$

6.3.9 XOR basis

xorbasis.h

Description: Computes de basis for a set of elements in $[0,2^D)$. Every element in the basis has a different most significant bit. The element with i-th bit on is saved on basis[i] (if it exists).

Time: $\mathcal{O}\left(D\right)$ 38 lines

```
const int D = 60;
ll basis[D];
int dim;
//To check if an element is in the span, do the same
//but, if !basis[i] return false, otherwise true.
void insert_vector(ll k) {
    for (int i = D-1; i >= 0; i--) {
        if(!(k >> i & 1)) continue;
        if(!basis[i]) {
            basis[i] = k;
            dim++;
            return;
          ^= basis[i];
//k-th smallest in linspace
ll get kth(ll k) {
    11 x = 0:
    int pref = dim;
    for(11 i = D-1; i >= 0; i--) {
        if(!basis[i]) continue;
        11 p2 = 111 << (pref - 1);
        11 \min_{e} 1 = 1;
        11 maxi_leq = p2;
        if(!(x >> i & 1))
            mini_leq += p2, maxi_leq += p2;
        if (mini_leq <= k && maxi_leq >= k) {
            if(!(x >> i & 1)) k -= p2;
            x ^= basis[i];
        else if(x >> i & 1) k -= p2;
        pref--;
    return x;
```

PushRelabel MinCostMaxFlow MinCostMaxFlow2

Graph (7)

7.1 Network flow

PushRelabel.h

Description: Push-relabel using the highest label selection rule and the gap heuristic. Quite fast in practice. To obtain the actual flow, look at positive values only.

Time: $\mathcal{O}\left(V^2\sqrt{E}\right)$

```
48 lines
struct PushRelabel {
  struct Edge {
   int dest, back;
   11 f, c;
  vector<vector<Edge>> g;
 vector<11> ec;
  vector<Edge*> cur:
  vector<vi> hs; vi H;
  PushRelabel(int n) : g(n), ec(n), cur(n), hs(2*n), H(n) {}
  void addEdge(int s, int t, ll cap, ll rcap=0) {
   if (s == t) return;
   g[s].push_back({t, sz(g[t]), 0, cap});
   g[t].push_back({s, sz(g[s])-1, 0, rcap});
  void addFlow(Edge& e, ll f) {
   Edge &back = q[e.dest][e.back];
   if (!ec[e.dest] && f) hs[H[e.dest]].push_back(e.dest);
   e.f += f; e.c -= f; ec[e.dest] += f;
   back.f -= f; back.c += f; ec[back.dest] -= f;
  11 calc(int s, int t) {
   int v = sz(q); H[s] = v; ec[t] = 1;
   vi co(2*v); co[0] = v-1;
   rep(i, 0, v) cur[i] = g[i].data();
   for (Edge& e : g[s]) addFlow(e, e.c);
    for (int hi = 0;;) {
     while (hs[hi].empty()) if (!hi--) return -ec[s];
     int u = hs[hi].back(); hs[hi].pop_back();
     while (ec[u] > 0) // discharge u
       if (cur[u] == g[u].data() + sz(g[u])) {
         H[u] = 1e9;
          for (Edge& e : q[u]) if (e.c && H[u] > H[e.dest]+1)
           H[u] = H[e.dest]+1, cur[u] = &e;
          if (++co[H[u]], !--co[hi] && hi < v)</pre>
            rep(i, 0, v) if (hi < H[i] && H[i] < v)
              --co[H[i]], H[i] = v + 1;
         hi = H[u];
        } else if (cur[u]->c && H[u] == H[cur[u]->dest]+1)
         addFlow(*cur[u], min(ec[u], cur[u]->c));
        else ++cur[u];
 bool leftOfMinCut(int a) { return H[a] >= sz(q); }
```

MinCostMaxFlow.h

Description: Min-cost max-flow. cap[i][j] != cap[j][i] is allowed; double edges are not. If costs can be negative, call setpi before maxflow, but note that negative cost cycles are not supported. To obtain the actual flow, look at positive values only.

Time: Approximately $\mathcal{O}(E^2)$

81 lines

```
#include <bits/extc++.h>
const ll INF = numeric_limits<ll>::max() / 4;
```

```
typedef vector<ll> VL:
struct MCMF {
 int N:
 vector<vi> ed, red;
 vector<VL> cap, flow, cost;
 vi seen;
 VL dist, pi;
 vector<pii> par;
 MCMF (int N) :
   N(N), ed(N), red(N), cap(N, VL(N)), flow(cap), cost(cap),
    seen(N), dist(N), pi(N), par(N) {}
 void addEdge(int from, int to, ll cap, ll cost) {
   this->cap[from][to] = cap;
    this->cost[from][to] = cost;
    ed[from].push_back(to);
    red[to].push_back(from);
 void path(int s) {
   fill(all(seen), 0);
    fill(all(dist), INF);
   dist[s] = 0; 11 di;
    __qnu_pbds::priority_queue<pair<11, int>> q;
    vector<decltype(q)::point_iterator> its(N);
    q.push({0, s});
    auto relax = [&](int i, ll cap, ll cost, int dir) {
     11 val = di - pi[i] + cost;
     if (cap && val < dist[i]) {
       dist[i] = val;
       par[i] = \{s, dir\};
       if (its[i] == q.end()) its[i] = q.push({-dist[i], i});
        else q.modify(its[i], {-dist[i], i});
   };
    while (!q.empty()) {
     s = q.top().second; q.pop();
      seen[s] = 1; di = dist[s] + pi[s];
      for (int i : ed[s]) if (!seen[i])
        relax(i, cap[s][i] - flow[s][i], cost[s][i], 1);
      for (int i : red[s]) if (!seen[i])
        relax(i, flow[i][s], -cost[i][s], 0);
    rep(i, 0, N) pi[i] = min(pi[i] + dist[i], INF);
 pair<11, 11> maxflow(int s, int t) {
   11 totflow = 0, totcost = 0;
    while (path(s), seen[t]) {
     11 fl = INF;
      for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
       fl = min(fl, r ? cap[p][x] - flow[p][x] : flow[x][p]);
     totflow += fl:
      for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
       if (r) flow[p][x] += fl;
        else flow[x][p] -= fl;
   rep(i,0,N) rep(j,0,N) totcost += cost[i][j] * flow[i][j];
    return {totflow, totcost};
  // If some costs can be negative, call this before maxflow:
  void setpi(int s) { // (otherwise, leave this out)
    fill(all(pi), INF); pi[s] = 0;
```

```
while (ch-- && it--)
      rep(i,0,N) if (pi[i] != INF)
        for (int to : ed[i]) if (cap[i][to])
          if ((v = pi[i] + cost[i][to]) < pi[to])</pre>
            pi[to] = v, ch = 1;
    assert(it >= 0); // negative cost cycle
};
MinCostMaxFlow2.h
Description: MCMF using Dijkstra and Potentials. O(nm) in potentials
calc. + O(F \text{ m log m}) where F = \max flow (faster in practice).
template <class T = int>
struct MCF {
    int n, s, t;
    static constexpr T T inf = numeric limits<T>::max();
    T bound:
    struct Edge {
        int u, v;
        T cap, cost;
        Edge(int u_, int v_, T c, T w) : u(u_), v(v_), cap(c),
             cost(w) {}
    vector <Edge> edges;
    vector <vi> adj;
    vector <T> pot, dist;
    bool any flow;
    MCF (int n_, int s_, int t_, T b = T_inf, bool af = false)
     : n(n_{-}), s(s_{-}), t(t_{-}), bound(b), adj(n + 1), pot(n + 1),
          dist(n + 1), any_flow(af) {}
    void add_edge(int u, int v, T c, T w) {
        edges.pb(Edge(u, v, c, w));
        edges.pb(Edge(v, u, 0, -w));
        adj[u].pb(sz(edges) - 2);
        adj[v].pb(sz(edges) - 1);
    pair <T, T> mincost flow() {
        //call get potentials if needed!
        T flow = 0;
        T cost = 0;
        vector <bool> vis(n + 1, false);
        vi comes_from(n + 1);
        while(bound) {
            fill(all(vis), false);
            fill(all(dist), T_inf);
            priority_queue <pair<T, int>, vector<pair<T, int>>,
                  greater<>> pq;
            pq.push({0, s});
            dist[s] = 0;
            while(!pq.empty()) {
                auto [d, u] = pq.top();
                pq.pop();
                if(vis[u]) continue;
                vis[u] = true;
                for(int i : adj[u]) {
                    int v = edges[i].v;
                    T c = edges[i].cap;
                    T d = dist[u] + edges[i].cost + pot[u] -
                    if(c > 0 && !vis[v] && d < dist[v]) {
                         dist[v] = d;
                         comes from[v] = i;
                         pq.push({dist[v], v});
```

if(!vis[t]) break;

int it = N, ch = 1; 11 v;

EdmondsKarp Dinic2 MinCut GlobalMinCut GomoryHu

```
T path_cost = 0;
        T path_flow = bound;
        for(int v = t; v != s; v = edges[comes from[v]].u)
            path_flow = min(path_flow, edges[comes_from[v
                 ]].cap);
            path_cost += edges[comes_from[v]].cost;
        path_cost *= path_flow;
        if(any_flow && path_cost >= 0) break;
        bound -= path flow;
        for(int v = t; v != s; v = edges[comes_from[v]].u)
            int i = comes_from[v];
            edges[i].cap -= path_flow;
            edges[i ^ 1].cap += path_flow;
        flow += path_flow;
        cost += path_cost;
        for(int i = 1; i <= n; i++) {</pre>
            dist[i] += pot[i] - pot[s];
        pot = dist;
    return {flow, cost};
void get potentials() {
    for(int i = 1; i <= n; i++) {</pre>
        for(auto e : edges) {
            if(e.cap == 0) continue;
            if(pot[e.u] + e.cost < pot[e.v]) {</pre>
                pot[e.v] = pot[e.u] + e.cost;
                assert(i != n);
   }
```

Edmonds Karp.h

Description: Flow algorithm with guaranteed complexity $O(VE^2)$. To get edge flow values, compare capacities before and after, and take the positive values only.

```
35 lines
template<class T> T edmondsKarp(vector<unordered_map<int, T>>&
    graph, int source, int sink) {
  assert (source != sink);
 T flow = 0:
  vi par(sz(graph)), q = par;
  for (;;) {
    fill(all(par), -1);
   par[source] = 0;
   int ptr = 1;
   q[0] = source;
    rep(i,0,ptr) {
     int x = q[i];
     for (auto e : graph[x]) {
       if (par[e.first] == -1 && e.second > 0) {
         par[e.first] = x;
          q[ptr++] = e.first;
         if (e.first == sink) goto out;
    return flow;
```

```
T inc = numeric_limits<T>::max();
    for (int y = sink; y != source; y = par[y])
      inc = min(inc, graph[par[y]][y]);
    flow += inc:
    for (int y = sink; y != source; y = par[y]) {
      int p = par[v];
      if ((graph[p][y] -= inc) <= 0) graph[p].erase(y);</pre>
      graph[y][p] += inc;
 }
Dinic2.h
Description: Flow algorithm with complexity O(VE \log U) where
U = \max |\text{cap}| if using potentials, else O(V^2 E). Other complexities:
O(\min(E^{1/2}, V^{2/3})E) if U = 1; O(\sqrt{V}E) for bipartite matching.
template <class T = int>
struct Dinic {
    struct Edge {
        int u, v;
        Edge(int u, int v, T c) : u(u), v(v), cap(c) {}
    };
    int n, lim;
   bool scaling;
    vi pt, dist;
    vector <Edge> edges;
    vector <vi> adi:
    Dinic(int n, bool sc = true) : n(n), scaling(sc), pt(n),
         dist(n), adj(n) {}
    void add_edge(int u, int v, T cap) {
        edges.pb(Edge(u, v, cap));
        edges.pb(Edge(v, u, T(0)));
        adj[u].pb(sz(edges) - 2);
        adj[v].pb(sz(edges) - 1);
    bool bfs(int s, int t) {
        fill(all(dist), n);
        queue <int> q;
        dist[s] = 0;
        q.push(s);
        while(!q.empty()) {
            int u = q.front();
            q.pop();
            for(auto e : adj[u]) {
                if(!edges[e].cap) continue;
                int v = edges[e].v;
                if(dist[v] == n) {
                    dist[v] = dist[u] + 1;
                    q.push(v);
        return dist[t] != n;
   T dfs(int u, int t, T flow) {
        if(u == t) return flow;
        for(; pt[u] < sz(adj[u]); pt[u]++) {</pre>
            int i = adj[u][pt[u]];
            int v = edges[i].v;
            T c = edges[i].cap;
            if(!c || dist[v] != dist[u] + 1) continue;
            T can_push = dfs(v, t, min(flow, c));
            if(can_push > 0) {
                edges[i].cap -= can_push;
                edges[i ^ 1].cap += can_push;
                return can push;
```

MinCut.h

Description: After running max-flow, the left side of a min-cut from s to t is given by all vertices reachable from s, only traversing edges with positive residual capacity.

GlobalMinCut.h

Description: Find a global minimum cut in an undirected graph, as represented by an adjacency matrix.

Time: $\mathcal{O}(V^3)$

```
pair<int, vi> globalMinCut(vector<vi> mat) {
  pair<int, vi> best = {INT_MAX, {}};
  int n = sz(mat);
 vector<vi> co(n);
  rep(i, 0, n) co[i] = {i};
  rep(ph,1,n) {
   vi w = mat[0];
    size_t s = 0, t = 0;
    rep(it,0,n-ph) { //O(V^2) \rightarrow O(E \log V) with prio. queue
      w[t] = INT_MIN;
      s = t, t = max_element(all(w)) - w.begin();
      rep(i, 0, n) w[i] += mat[t][i];
    best = min(best, \{w[t] - mat[t][t], co[t]\});
    co[s].insert(co[s].end(), all(co[t]));
    rep(i, 0, n) mat[s][i] += mat[t][i];
    rep(i, 0, n) mat[i][s] = mat[s][i];
    mat[0][t] = INT_MIN;
 return best;
```

GomorvHu.h

Description: Given a list of edges representing an undirected flow graph, returns edges of the Gomory-Hu tree. The max flow between any pair of vertices is given by minimum edge weight along the Gomory-Hu tree path. **Time:** $\mathcal{O}(V)$ Flow Computations

```
"PushRelabel.h" 13 lines
typedef array<11, 3> Edge;
vector<Edge> gomoryHu(int N, vector<Edge> ed) {
  vector<Edge> tree;
  vi par(N);
  rep(i,1,N) {
    PushRelabel D(N); // Dinic also works
    for (Edge t : ed) D.addEdge(t[0], t[1], t[2], t[2]);
    tree.push_back({i, par[i], D.calc(i, par[i])});
  rep(j,i+1,N)
    if (par[j] == par[i] && D.leftOfMinCut(j)) par[j] = i;
```

```
return tree:
```

7.2 Matching

hopcroftKarp.h

Description: Fast bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i]will be the match for vertex i on the right side, or -1 if it's not matched. Usage: vi btoa(m, -1); hopcroftKarp(q, btoa);

```
Time: \mathcal{O}\left(\sqrt{V}E\right)
```

```
bool dfs (int a, int L, vector < vi>& g, vi& btoa, vi& A, vi& B) {
  if (A[a] != L) return 0;
  A[a] = -1;
  for (int b : q[a]) if (B[b] == L + 1) {
   B[b] = 0;
    if (btoa[b] == -1 || dfs(btoa[b], L + 1, g, btoa, A, B))
      return btoa[b] = a, 1;
  return 0:
int hopcroftKarp(vector<vi>& g, vi& btoa) {
  int res = 0:
  vi A(q.size()), B(btoa.size()), cur, next;
  for (;;) {
    fill(all(A), 0);
    fill(all(B), 0);
    cur.clear();
    for (int a : btoa) if (a != -1) A[a] = -1;
    rep(a, 0, sz(g)) if(A[a] == 0) cur.push_back(a);
    for (int lay = 1;; lay++) {
     bool islast = 0;
     next.clear();
      for (int a : cur) for (int b : g[a]) {
       if (btoa[b] == -1) {
          B[b] = lay;
          islast = 1;
        else if (btoa[b] != a && !B[b]) {
         B[b] = lav;
          next.push_back(btoa[b]);
      if (islast) break;
     if (next.empty()) return res;
      for (int a : next) A[a] = lay;
      cur.swap(next);
    rep(a, 0, sz(q))
      res += dfs(a, 0, g, btoa, A, B);
```

DFSMatching.h

Description: Simple bipartite matching algorithm. Graph q should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i]will be the match for vertex i on the right side, or -1 if it's not matched.

Usage: vi btoa(m, -1); dfsMatching(q, btoa); Time: $\mathcal{O}(VE)$

```
bool find(int j, vector<vi>& g, vi& btoa, vi& vis) {
 if (btoa[j] == -1) return 1;
 vis[j] = 1; int di = btoa[j];
 for (int e : g[di])
```

```
if (!vis[e] && find(e, g, btoa, vis)) {
     btoa[e] = di;
     return 1;
 return 0;
int dfsMatching(vector<vi>& g, vi& btoa) {
 rep(i, 0, sz(g)) {
   vis.assign(sz(btoa), 0);
   for (int j : q[i])
     if (find(j, g, btoa, vis)) {
       btoa[j] = i;
       break;
 return sz(btoa) - (int)count(all(btoa), -1);
```

MinimumVertexCover.h

Description: Finds a minimum vertex cover in a bipartite graph. The size is the same as the size of a maximum matching, and the complement is a maximum independent set.

```
"DFSMatching.h"
vi cover(vector<vi>& q, int n, int m) {
 vi match(m, -1);
 int res = dfsMatching(q, match);
 vector<bool> lfound(n, true), seen(m);
 for (int it : match) if (it != -1) lfound[it] = false;
 rep(i,0,n) if (lfound[i]) g.push_back(i);
 while (!q.empty()) {
   int i = q.back(); q.pop_back();
   lfound[i] = 1;
   for (int e : g[i]) if (!seen[e] && match[e] != -1) {
     seen[e] = true;
     q.push_back(match[e]);
 rep(i,0,n) if (!lfound[i]) cover.push_back(i);
 rep(i,0,m) if (seen[i]) cover.push_back(n+i);
 assert(sz(cover) == res);
 return cover;
```

Hungarian.h

Description: Maximum matching minimum cost. 1-indexed. For non complete bipartite graph add edges (u, v) with cost inf. For Maximum matching maximum cost multiply the weights by -1. Matching (u, v) is stored in M. Make sure $n = \text{rows} \leq \text{columns} = m$.

Time: $\mathcal{O}(n^3)$ $-\mathcal{O}(n^2m)$ for non-square matrix-

```
const 11 inf = 1e18;
struct Hungarian {
public:
    int n,m;
    vvl w;
    11 min cost;
    vp M;
    Hungarian(vvl &w){
        this->w = w;
        n = w.size()-1;
        m = w[0].size()-1;
        run();
        return;
        vl u(n+1), v(m+1), p(m+1);
```

```
vi path(m+1);
        for (int i=1; i<=n; i++) {</pre>
             p[0] = i;
             int j0 = 0;
             vl minv(m+1, inf);
             vb used(m+1, false);
                 used[j0] = true;
                 int i0 = p[j0], j1;
                 11 delta = inf;
                 for (int j=1; j<=m; j++)</pre>
                     if (!used[j]){
                         11 \text{ cur} = w[i0][j]-u[i0]-v[j];
                          if (cur < minv[j])</pre>
                              minv[j] = cur, path[j] = j0;
                          if (minv[j] < delta)</pre>
                              delta = minv[j], j1 = j;
                 for (int j=0; j<=m; ++j)
                     if (used[j])
                          u[p[j]] += delta, v[j] -= delta;
                          minv[j] -= delta;
                 j0 = j1;
             }while (p[j0] != 0);
             do{
                 int j1 = path[j0];
                 p[j0] = p[j1];
                 j0 = j1;
             }while(j0);
        for(int i=1; i<=m; i++) M.pb({p[i], i});</pre>
        min cost = -v[0];
        return;
};
```

GeneralMatching.h

Description: Matching for general graphs. Fails with probability N/mod. Time: $\mathcal{O}(N^3)$

```
"../numerical/MatrixInverse-mod.h"
                                                            40 lines
vector<pii> generalMatching(int N, vector<pii>& ed) {
 vector<vector<ll>> mat(N, vector<ll>(N)), A;
 for (pii pa : ed) {
    int a = pa.first, b = pa.second, r = rand() % mod;
    mat[a][b] = r, mat[b][a] = (mod - r) % mod;
  int r = matInv(A = mat), M = 2*N - r, fi, f;
  assert(r % 2 == 0);
  if (M != N) do {
    mat.resize(M, vector<ll>(M));
    rep(i,0,N) {
     mat[i].resize(M);
      rep(j,N,M) {
        int r = rand() % mod;
        mat[i][j] = r, mat[j][i] = (mod - r) % mod;
 } while (matInv(A = mat) != M);
 vi has (M, 1); vector<pii> ret;
 rep(it, 0, M/2) {
    rep(i,0,M) if (has[i])
      rep(j,i+1,M) if (A[i][j] && mat[i][j]) {
        fi = i; fj = j; goto done;
    } assert(0); done:
    if (fj < N) ret.emplace_back(fi, fj);</pre>
```

```
has[fi] = has[fj] = 0;
rep(sw,0,2) {
    11 a = modpow(A[fi][fj], mod-2);
    rep(i,0,M) if (has[i] && A[i][fj]) {
        11 b = A[i][fj] * a % mod;
        rep(j,0,M) A[i][j] = (A[i][j] - A[fi][j] * b) % mod;
    }
    swap(fi,fj);
}
return ret;
```

7.3 DFS algorithms

SCC.h

Description: Finds strongly connected components in a directed graph. If vertices u, v belong to the same component, we can reach u from v and vice versa

Usage: $scc(graph, [\&](vi\&v) \{ \dots \})$ visits all components in reverse topological order. comp[i] holds the component index of a node (a component only has edges to components with lower index). ncomps will contain the number of components. **Time:** $\mathcal{O}(E+V)$

```
vi val, comp, z, cont;
int Time, ncomps;
template < class G, class F> int dfs (int j, G& q, F& f) {
  int low = val[j] = ++Time, x; z.push_back(j);
  for (auto e : g[j]) if (comp[e] < 0)
    low = min(low, val[e] ?: dfs(e,q,f));
  if (low == val[j]) {
    do {
      x = z.back(); z.pop_back();
     comp[x] = ncomps;
     cont.push_back(x);
    } while (x != i);
    f(cont); cont.clear();
    ncomps++;
  return val[j] = low;
template < class G, class F> void scc(G& g, F f) {
  int n = sz(q);
  val.assign(n, 0); comp.assign(n, -1);
 Time = ncomps = 0;
  rep(i,0,n) if (comp[i] < 0) dfs(i, g, f);
```

BiconnectedComponents.h

Description: Finds all biconnected components in an undirected graph, and runs a callback for the edges in each. In a biconnected component there are at least two distinct paths between any two nodes. Note that a node can be in several components. An edge which is not in a component is a bridge, i.e., not part of any cycle.

int me = num[at] = ++Time, e, y, top = me;

for (auto pa : ed[at]) if (pa.second != par) {

```
tie(y, e) = pa;
    if (num[y]) {
     top = min(top, num[y]);
     if (num[y] < me)
        st.push_back(e);
    } else {
      int si = sz(st);
      int up = dfs(y, e, f);
     top = min(top, up);
      if (up == me) {
        st.push_back(e);
        f(vi(st.begin() + si, st.end()));
        st.resize(si);
      else if (up < me) st.push_back(e);</pre>
     else { /* e is a bridge */ }
 return top;
template<class F>
void bicomps (F f) {
 num.assign(sz(ed), 0);
 rep(i, 0, sz(ed)) if (!num[i]) dfs(i, -1, f);
```

2sat.h

Description: Calculates a valid assignment to boolean variables a, b, c,... to a 2-SAT problem, so that an expression of the type (a|||b)&&(!a||||c)&&(d|||!b)&&... becomes true, or reports that it is unsatisfiable. Negated variables are represented by bit-inversions $(\sim x)$.

```
Usage: TwoSat ts(number of boolean variables); ts.either(0, \sim3); // Var 0 is true or var 3 is false ts.setValue(2); // Var 2 is true ts.atMostOne(\{0, \sim 1, 2\}); // <= 1 of vars 0, \sim1 and 2 are true ts.solve(); // Returns true iff it is solvable ts.values[0..N-1] holds the assigned values to the vars
```

Time: $\mathcal{O}(N+E)$, where N is the number of boolean variables, and E is the number of clauses.

```
56 lines
struct TwoSat {
 int N;
 vector<vi> ar:
 vi values; // 0 = false, 1 = true
 TwoSat(int n = 0) : N(n), gr(2*n) {}
 int addVar() { // (optional)
   gr.emplace_back();
   gr.emplace_back();
   return N++;
 void either(int f, int j) {
   f = \max(2*f, -1-2*f);
   j = \max(2 * j, -1 - 2 * j);
   gr[f].push_back(j^1);
   gr[j].push_back(f^1);
 void setValue(int x) { either(x, x); }
 void atMostOne(const vi& li) { // (optional)
   if (sz(li) <= 1) return;</pre>
   int cur = \simli[0];
   rep(i,2,sz(li)) {
     int next = addVar();
     either(cur, ~li[i]);
     either(cur, next);
```

```
either(~li[i], next);
      cur = \sim next:
    either(cur, ~li[1]);
 vi val, comp, z; int time = 0;
 int dfs(int i) {
    int low = val[i] = ++time, x; z.push_back(i);
    for(int e : gr[i]) if (!comp[e])
     low = min(low, val[e] ?: dfs(e));
    if (low == val[i]) do {
     x = z.back(); z.pop_back();
      comp[x] = low;
      if (values[x>>1] == -1)
       values[x>>1] = x&1;
    } while (x != i);
    return val[i] = low;
 bool solve() {
    values.assign(N, -1);
    val.assign(2*N, 0); comp = val;
    rep(i,0,2*N) if (!comp[i]) dfs(i);
    rep(i,0,N) if (comp[2*i] == comp[2*i+1]) return 0;
    return 1:
};
```

BridgesAndArticulation.h

Description: Tarjan's algorithm for finding bridges and articulation points in undirected graph. Can be used for building the bridge tree.

Time: construction $\mathcal{O}\left(NlogM\right)$ since briges and points are kept in sets, but easy to make $\mathcal{O}\left(N+M\right)$ keeping some bool vector.

```
struct Tarjan {
    int t, n;
    vi mt, dt, in_stack; //mt = min \ time, dt = discovery \ time
    vector <vi> adj;
    set <pii>> bridges;
    set <int> artic_points;
    Tarjan(int n_{-}): n(n_{-}), t(1), adj(n+1), mt(n+1), dt(n+1),
         in_stack(n+1) {}
    void add_edge(int u, int v) { adj[u].pb(v); adj[v].pb(u); }
    void tarjan_dfs(int u, int par) {
        if(dt[u]) return;
        int child_cnt = 0;
        dt[u] = mt[u] = t++;
        in_stack[u] = 1;
        for(int v : adj[u]) {
            if(v == par) continue;
            if(!dt[v]) {
                tarjan_dfs(v, u);
                child_cnt++;
                mt[u] = min(mt[u], mt[v]);
                if (mt[v] >= dt[u] && par != -1) {
                    artic_points.insert(u);
                if(mt[v] > dt[u]) {
                    bridges.insert({min(v, u), max(u, v)});
                else
                    //can\ connect\ (u,\ v)\ a\ bridge\ tree
            else if(in_stack[v]) {
                mt[u] = min(mt[u], dt[v]);
```

```
in stack[u] = 0;
        if(par == -1 && child_cnt > 1) artic_points.insert(u);
    void find_points_and_bridges() {
        for(int i = 1; i <= n; i++) tarjan_dfs(i, -1);</pre>
};
```

EulerWalk.h

Description: Eulerian undirected/directed path/cycle algorithm. Input should be a vector of (dest, global edge index), where for undirected graphs, forward/backward edges have the same index. Returns a list of nodes in the Eulerian path/cycle with src at both start and end, or empty list if no cycle/path exists. To get edge indices back, add .second to s and ret. Time: $\mathcal{O}(V+E)$

```
vi eulerWalk(vector<vector<pii>>& gr, int nedges, int src=0) {
 int n = sz(qr);
  vi D(n), its(n), eu(nedges), ret, s = \{src\};
  D[src]++; // to allow Euler paths, not just cycles
  while (!s.empty()) {
   int x = s.back(), y, e, &it = its[x], end = sz(gr[x]);
   if (it == end) { ret.push_back(x); s.pop_back(); continue; }
   tie(y, e) = gr[x][it++];
   if (!eu[e]) {
     D[x]--, D[y]++;
     eu[e] = 1; s.push_back(y);
  for (int x : D) if (x < 0 \mid | sz(ret) != nedges+1) return {};
 return {ret.rbegin(), ret.rend()};
```

7.4 Coloring

EdgeColoring.h

Description: Given a simple, undirected graph with max degree D, computes a (D+1)-coloring of the edges such that no neighboring edges share a color. (D-coloring is NP-hard, but can be done for bipartite graphs by repeated matchings of max-degree nodes.) Time: $\mathcal{O}(NM)$

```
vi edgeColoring(int N, vector<pii> eds) {
  vi cc(N + 1), ret(sz(eds)), fan(N), free(N), loc;
  for (pii e : eds) ++cc[e.first], ++cc[e.second];
```

```
int u, v, ncols = *max_element(all(cc)) + 1;
vector<vi> adj(N, vi(ncols, -1));
for (pii e : eds) {
 tie(u, v) = e;
 fan[0] = v;
 loc.assign(ncols, 0);
 int at = u, end = u, d, c = free[u], ind = 0, i = 0;
 while (d = free[v], !loc[d] && (v = adj[u][d]) != -1)
   loc[d] = ++ind, cc[ind] = d, fan[ind] = v;
 cc[loc[d]] = c;
 for (int cd = d; at != -1; cd ^= c ^ d, at = adj[at][cd])
   swap(adj[at][cd], adj[end = at][cd ^ c ^ d]);
  while (adj[fan[i]][d] != -1) {
   int left = fan[i], right = fan[++i], e = cc[i];
   adj[u][e] = left;
   adj[left][e] = u;
   adj[right][e] = -1;
   free[right] = e;
 adj[u][d] = fan[i];
 adj[fan[i]][d] = u;
 for (int y : {fan[0], u, end})
   for (int& z = free[y] = 0; adj[y][z] != -1; z++);
 for (tie(u, v) = eds[i]; adj[u][ret[i]] != v;) ++ret[i];
```

```
return ret;
```

7.5 Heuristics

MaximalCliques.h

Description: Runs a callback for all maximal cliques in a graph (given as a symmetric bitset matrix; self-edges not allowed). Callback is given a bitset representing the maximal clique.

```
Time: \mathcal{O}\left(3^{n/3}\right), much faster for sparse graphs
```

```
typedef bitset<128> B;
template<class F>
void cliques(vector<B > \& eds, F f, B P = \sim B(), B X={}, B R={}) {
  if (!P.any()) { if (!X.any()) f(R); return; }
  auto g = (P | X)._Find_first();
  auto cands = P & ~eds[q];
  rep(i, 0, sz(eds)) if (cands[i]) {
   R[i] = 1;
    cliques(eds, f, P & eds[i], X & eds[i], R);
    R[i] = P[i] = 0; X[i] = 1;
```

MaximumClique.h

Description: Quickly finds a maximum clique of a graph (given as symmetric bitset matrix; self-edges not allowed). Can be used to find a maximum independent set by finding a clique of the complement graph.

Time: Runs in about 1s for n=155 and worst case random graphs (p=.90). Runs faster for sparse graphs.

```
typedef vector<bitset<200>> vb;
struct Maxclique {
 double limit=0.025, pk=0;
 struct Vertex { int i, d=0; };
 typedef vector<Vertex> vv;
 vb e;
 vv V;
 vector<vi> C;
 vi qmax, q, S, old;
 void init(vv& r) {
    for (auto \& v : r) v.d = 0;
   for (auto& v : r) for (auto j : r) v.d += e[v.i][j.i];
    sort(all(r), [](auto a, auto b) { return a.d > b.d; });
   int mxD = r[0].d;
   rep(i, 0, sz(r)) r[i].d = min(i, mxD) + 1;
 void expand(vv& R, int lev = 1) {
   S[lev] += S[lev - 1] - old[lev];
   old[lev] = S[lev - 1];
    while (sz(R)) {
     if (sz(q) + R.back().d <= sz(qmax)) return;</pre>
      q.push_back(R.back().i);
     vv T;
      for(auto v:R) if (e[R.back().i][v.i]) T.push_back({v.i});
      if (sz(T)) {
       if (S[lev]++ / ++pk < limit) init(T);</pre>
       int j = 0, mxk = 1, mnk = max(sz(qmax) - sz(q) + 1, 1);
       C[1].clear(), C[2].clear();
       for (auto v : T) {
         int k = 1;
         auto f = [&](int i) { return e[v.i][i]; };
         while (any_of(all(C[k]), f)) k++;
         if (k > mxk) mxk = k, C[mxk + 1].clear();
         if (k < mnk) T[j++].i = v.i;
         C[k].push_back(v.i);
       if (j > 0) T[j - 1].d = 0;
```

rep(k, mnk, mxk + 1) for (int i : C[k])

```
T[j].i = i, T[j++].d = k;
        expand(T, lev + 1);
      } else if (sz(q) > sz(qmax)) qmax = q;
      q.pop_back(), R.pop_back();
 vi maxClique() { init(V), expand(V); return qmax; }
 Maxclique(vb conn): e(conn), C(sz(e)+1), S(sz(C)), old(S) {
    rep(i,0,sz(e)) V.push_back({i});
};
```

MaximumIndependentSet.h

Description: To obtain a maximum independent set of a graph, find a max clique of the complement. If the graph is bipartite, see MinimumVertex-

7.6 Trees

BinaryLifting.h

Description: Calculate power of two jumps in a tree, to support fast upward jumps and LCAs. Assumes the root node points to itself.

Time: construction $\mathcal{O}(N \log N)$, queries $\mathcal{O}(\log N)$

```
vector<vi> treeJump(vi& P){
 int on = 1, d = 1;
  while (on < sz(P)) on *= 2, d++;
  vector<vi> jmp(d, P);
  rep(i,1,d) rep(j,0,sz(P))
    jmp[i][j] = jmp[i-1][jmp[i-1][j]];
  return jmp;
int jmp(vector<vi>& tbl, int nod, int steps){
 rep(i, 0, sz(tbl))
    if(steps&(1<<i)) nod = tbl[i][nod];
 return nod;
int lca(vector<vi>& tbl, vi& depth, int a, int b) {
 if (depth[a] < depth[b]) swap(a, b);</pre>
 a = jmp(tbl, a, depth[a] - depth[b]);
 if (a == b) return a;
  for (int i = sz(tbl); i--;) {
    int c = tbl[i][a], d = tbl[i][b];
    if (c != d) a = c, b = d;
 return tbl[0][a];
```

LCA.h

Description: Data structure for computing lowest common ancestors in a tree (with 0 as root). C should be an adjacency list of the tree, either directed or undirected.

```
Time: \mathcal{O}(N \log N + Q)
```

```
"../data-structures/RMQ.h"
struct LCA {
  int T = 0;
  vi time, path, ret;
  RMQ<int> rmq;
  LCA(vector < vi > \& C) : time(sz(C)), rmq((dfs(C, 0, -1), ret)) {}
  void dfs(vector<vi>& C, int v, int par) {
    time[v] = T++;
    for (int y : C[v]) if (y != par) {
      path.push_back(v), ret.push_back(time[v]);
      dfs(C, y, v);
```

```
int lca(int a, int b) {
   if (a == b) return a;
   tie(a, b) = minmax(time[a], time[b]);
   return path[rmq.query(a, b)];
}
//dist(a,b){return depth[a] + depth[b] - 2*depth[lca(a,b)];}
;;
```

VirtualTree.h

Description: 1-indexed. vT is the adjacency list of the virtual tree, vT_nodes its nodes with root vT_root. Uses the same labels as the original tree.

Usage: build(). Is not necessary to manually call clearVT. **Time:** $\mathcal{O}(k \log N)$ to build VT of k nodes constexpr int LOG = 19; // n <= 2e5struct VirtualTree{ int n, root, dfs t = 0, vT root; vvi T, vT, parent; vi vT_nodes, dfs_start, dfs_end, depth; vb active_nodes; VirtualTree(vvi &T, int root) : n(sz(T) - 1), root(root), T (T) { vT.resize(n + 1);parent.assign(n + 1, vi(LOG)); dfs_start.resize(n + 1); $dfs_{end.resize(n + 1)};$ depth.resize(n + 1);active_nodes.assign(n + 1, false); __dfs(root, root); __lca(); int lca(int a, int b) { if(depth[a] < depth[b]) swap(a, b);</pre> for(int i=LOG-1; i>=0; i--) if(depth[parent[a][i]] >= depth[b]) a = parent[a][i]; if(a == b) return a; for(int i=LOG-1; i>=0; i--) if(parent[a][i] != parent[b][i]) a = parent[a][i], b = parent[b][i]; return parent[a][0]; void build(vi &arr) { auto cmp = [&] (const int &a, const int &b) { return dfs_start[a] < dfs_start[b];</pre> }; clearVT(); sort(all(arr), cmp); vT_nodes = arr; for(auto u: arr) active_nodes[u] = true; int temp: for(int i=0; i+1<sz(arr); i++) {</pre> temp = lca(arr[i], arr[i+1]);if(!active_nodes[temp]) vT_nodes.pb(temp); active_nodes[temp] = true; sort(all(vT_nodes), cmp); vT_root = vT_nodes[0]; stack<int> s; s.push(vT_root); for(auto nd:vT_nodes) { if(nd == vT_root) continue; while(dfs_start[nd] > dfs_end[s.top()]) s.pop();

vT[s.top()].pb(nd);

```
vT[ nd ].pb(s.top());
            s.push(nd);
   void clearVT(){
       for(auto u: vT_nodes)
           vT[u].clear(), active_nodes[u] = false;
   void __dfs(int u, int pu){
       dfs_start[u] = dfs_t++;
       parent[u][0] = pu;
       for(auto nxt:T[u]){
            if(nxt == pu) continue;
           depth[nxt] = 1 + depth[u];
            __dfs(nxt, u);
       dfs\_end[u] = dfs\_t++;
   void __lca() {
       for(int bit=1; bit<LOG; bit++)</pre>
            for(int i=1; i<=n; i++)
               parent[i][bit] = parent[ parent[i][bit-1] ][bit
                     -11;
};
```

HLD.h

Description: Decomposes a tree into vertex disjoint heavy paths and light edges such that the path from any leaf to the root contains at most $\log(n)$ light edges. Code does additive modifications and max queries, but can support commutative segtree modifications/queries on paths and subtrees. Takes as input the full adjacency list. VALS_EDGES being true means that values are stored in the edges, as opposed to the nodes. All values initialized to the segtree default. Root must be 0.

Time: $\mathcal{O}\left((\log N)^2\right)$

```
"../data-structures/LazySegmentTree.h"
                                                          46 lines
template <bool VALS EDGES> struct HLD {
 int N, tim = 0;
 vector<vi> adi;
 vi par, siz, depth, rt, pos;
 Node *tree:
 HLD (vector<vi> adj )
   : N(sz(adj_)), adj(adj_), par(N, -1), siz(N, 1), depth(N),
     rt(N), pos(N), tree(new Node(0, N)) { dfsSz(0); dfsHld(0); }
 void dfsSz(int v) {
   if (par[v] != -1) adj[v].erase(find(all(adj[v]), par[v]));
   for (int& u : adj[v]) {
     par[u] = v, depth[u] = depth[v] + 1;
     dfsSz(u);
     siz[v] += siz[u];
     if (siz[u] > siz[adj[v][0]]) swap(u, adj[v][0]);
 void dfsHld(int v) {
   pos[v] = tim++;
   for (int u : adj[v]) {
     rt[u] = (u == adj[v][0] ? rt[v] : u);
     dfsHld(u);
 template <class B> void process(int u, int v, B op) {
   for (; rt[u] != rt[v]; v = par[rt[v]]) {
     if (depth[rt[u]] > depth[rt[v]]) swap(u, v);
     op(pos[rt[v]], pos[v] + 1);
   if (depth[u] > depth[v]) swap(u, v);
   op(pos[u] + VALS_EDGES, pos[v] + 1);
```

void modifyPath(int u, int v, int val) {

```
process(u, v, [&](int 1, int r) { tree->add(1, r, val); });
}
int queryPath(int u, int v) { // Modify depending on problem
  int res = -1e9;
  process(u, v, [&](int 1, int r) {
      res = max(res, tree->query(1, r));
  });
  return res;
}
int querySubtree(int v) { // modifySubtree is similar
  return tree->query(pos[v] + VALS_EDGES, pos[v] + siz[v]);
};
```

LinkCutTree.h

Description: Represents a forest of unrooted trees. You can add and remove edges (as long as the result is still a forest), and check whether two nodes are in the same tree.

Time: All operations take amortized $\mathcal{O}(\log N)$.

00 line

```
struct Node { // Splay tree. Root's pp contains tree's parent.
  Node *p = 0, *pp = 0, *c[2];
 bool flip = 0;
 Node() { c[0] = c[1] = 0; fix(); }
  void fix() {
    if (c[0]) c[0]->p = this;
    if (c[1]) c[1]->p = this;
    // (+ update sum of subtree elements etc. if wanted)
  void pushFlip() {
    if (!flip) return;
    flip = 0; swap(c[0], c[1]);
    if (c[0]) c[0]->flip ^= 1;
    if (c[1]) c[1]->flip ^= 1;
  int up() { return p ? p->c[1] == this : -1; }
  void rot(int i, int b) {
    int h = i ^ b;
    Node *x = c[i], *y = b == 2 ? x : x -> c[h], *z = b ? y : x;
    if ((y->p = p)) p->c[up()] = y;
    c[i] = z -> c[i ^ 1];
    if (b < 2) {
      x->c[h] = y->c[h ^ 1];
      z - > c[h ^ 1] = b ? x : this:
    y - > c[i ^1] = b ? this : x;
    fix(); x->fix(); y->fix();
    if (p) p->fix();
    swap(pp, y->pp);
 void splay() {
    for (pushFlip(); p; ) {
      if (p->p) p->p->pushFlip();
      p->pushFlip(); pushFlip();
      int c1 = up(), c2 = p->up();
      if (c2 == -1) p->rot(c1, 2);
      else p->p->rot(c2, c1 != c2);
 Node* first() {
    pushFlip();
    return c[0] ? c[0]->first() : (splay(), this);
};
struct LinkCut {
 vector<Node> node;
 LinkCut(int N) : node(N) {}
```

DirectedMST DominatorTree xorMST

```
void link(int u, int v) { // add an edge (u, v)
    assert(!connected(u, v));
    makeRoot(&node[u]);
   node[u].pp = &node[v];
  void cut(int u, int v) { // remove an edge (u, v)
    Node *x = &node[u], *top = &node[v];
    makeRoot(top); x->splay();
    assert(top == (x->pp ?: x->c[0]));
    if (x->pp) x->pp = 0;
    else {
     x->c[0] = top->p = 0;
     x \rightarrow fix();
  bool connected (int u, int v) { // are u, v in the same tree?
   Node* nu = access(&node[u])->first();
    return nu == access(&node[v])->first();
  void makeRoot(Node* u) {
    access(u);
    u->splay();
    if(u->c[0]) {
     u - c[0] - p = 0;
     u - c[0] - flip ^= 1;
     u - c[0] - pp = u;
     u - > c[0] = 0;
     u->fix();
  Node* access(Node* u) {
    u->splay();
    while (Node* pp = u->pp) {
     pp->splay(); u->pp = 0;
     if (pp->c[1]) {
       pp - c[1] - p = 0; pp - c[1] - pp = pp; 
     pp->c[1] = u; pp->fix(); u = pp;
    return u;
};
```

DirectedMST.h

Description: Finds a minimum spanning tree/arborescence of a directed graph, given a root node. If no MST exists, returns -1. Time: $\mathcal{O}\left(E\log V\right)$

```
60 lines
"../data-structures/UnionFindRollback.h"
struct Edge { int a, b; ll w; };
struct Node {
  Edge key;
 Node *1, *r;
  11 delta;
  void prop() {
    key.w += delta;
    if (1) 1->delta += delta;
    if (r) r->delta += delta;
    delta = 0;
  Edge top() { prop(); return key; }
Node *merge(Node *a, Node *b) {
  if (!a || !b) return a ?: b;
  a->prop(), b->prop();
  if (a->key.w > b->key.w) swap(a, b);
  swap(a->1, (a->r = merge(b, a->r)));
  return a;
void pop (Node \star \& a) { a->prop(); a = merge(a->1, a->r); }
```

```
pair<11, vi> dmst(int n, int r, vector<Edge>& q) {
 RollbackUF uf(n);
 vector<Node*> heap(n);
 for (Edge e : g) heap[e.b] = merge(heap[e.b], new Node{e});
 11 \text{ res} = 0:
 vi seen(n, -1), path(n), par(n);
 seen[r] = r;
 vector<Edge> Q(n), in(n, \{-1,-1\}), comp;
 deque<tuple<int, int, vector<Edge>>> cycs;
 rep(s,0,n) {
   int u = s, qi = 0, w;
    while (seen[u] < 0) {</pre>
     if (!heap[u]) return {-1,{}};
     Edge e = heap[u]->top();
     heap[u]->delta -= e.w, pop(heap[u]);
      Q[qi] = e, path[qi++] = u, seen[u] = s;
      res += e.w, u = uf.find(e.a);
      if (seen[u] == s) {
       Node \star cyc = 0;
       int end = qi, time = uf.time();
       do cyc = merge(cyc, heap[w = path[--qi]]);
       while (uf.join(u, w));
       u = uf.find(u), heap[u] = cyc, seen[u] = -1;
        cycs.push_front({u, time, {&Q[qi], &Q[end]}});
    rep(i, 0, qi) in[uf.find(Q[i].b)] = Q[i];
 for (auto& [u,t,comp] : cycs) { // restore sol (optional)
   uf.rollback(t);
   Edge inEdge = in[u];
    for (auto& e : comp) in[uf.find(e.b)] = e;
    in[uf.find(inEdge.b)] = inEdge;
 rep(i,0,n) par[i] = in[i].a;
 return {res, par};
```

DominatorTree.h

Description: 0-indexed. Computes dominator tree of a directed graph. run(s) returns a vector p. p[i] = -1 if i = s or if i is not reachable from s, otherwise is equal to the parent. s is the root. u is ancestor of v if u appears in every path from s to v.

```
Usage: add_edge (u, v) - run (s)
Time: \mathcal{O}(|E|\log|V|)
```

```
50 lines
struct DominatorTree{
   vector< basic_string<int> > g, rg, bucket;
   basic_string<int> arr, par, rev, sdom, dom, dsu, label;
   int n. t:
    explicit DominatorTree(int n) : g(n), rg(n), bucket(n), arr
         (n, -1), par(n, -1), rev(n, -1), sdom(n, -1), dom(n, -1)
         -1), dsu(n, 0), label(n, 0), n(n), t(0) {}
   void add_edge(int u, int v) {
       q[u] += v;
   void dfs(int u) {
       arr[u] = t;
       rev[t] = u;
       label[t] = sdom[t] = dsu[t] = t;
        for(int w : g[u]){
            if (arr[w] == -1) {
                dfs(w);
                par[arr[w]] = arr[u];
```

rg[arr[w]] += arr[u];

```
int find(int u, int x=0){
        if(u == dsu[u]) return x ? -1 : u;
        int v = find(dsu[u], x + 1);
        if(v < 0) return u;</pre>
        if(sdom[label[dsu[u]]] < sdom[label[u]])</pre>
            label[u] = label[dsu[u]];
        dsu[u] = v;
        return x ? v : label[u];
    vi run(int root){
        dfs(root);
        iota(all(dom), 0);
        for(int i=t-1; i>=0; i--) {
            for(int w : rq[i]) sdom[i] = std::min(sdom[i], sdom
                 [find(w)]);
            if(i) bucket[sdom[i]] += i;
            for(int w : bucket[i]){
                int v = find(w);
                if (sdom[v] == sdom[w]) dom[w] = sdom[w];
                else dom[w] = v;
            if(i > 1) dsu[i] = par[i];
        for(int i=1; i<t; i++) if(dom[i] != sdom[i]) dom[i] =</pre>
             dom[dom[i]];
        vi outside_dom(n, -1);
        for(int i=1; i<t; i++) outside_dom[rev[i]] = rev[dom[i</pre>
        return outside_dom;
};
```

xorMST.h

Description: If problem requires long long make a custom case, is not tested for LOG > 30. 1-indexed (a and T). Given an array a of n integers computes a spanning tree of the complete graph where the weight between two different nodes $1 \le i, j \le n$ is $a_i \oplus a_j$. xor_sum stores the weight of the MST. T is the tree.

```
Time: \mathcal{O}(N \log^2 N)
```

```
using dtype = int;
constexpr int LOG = 30;
struct XORMST{
    vvi T:
    int n;
    vector< pair<dtype, int> > a;
    11 xor_sum = 0;
    XORMST(vector<dtype> &a) {
        this->n = a.size() - 1;
        this->a.resize(n + 1);
        for(int i=1; i<=n; i++) this->a[i] = {a[i], i};
        sort(1 + all(this->a));
        T.resize(n + 1);
        buildMST(1, n, LOG);
        return;
    void getMinEdge(int L1, int R1, int L2, int R2, int bit,
        int &u, int &v) {
        vector< array<int,3> > trie;
        trie.pb(\{0, 0, 0\});
        int cnt = 0;
        auto add = [&] (dtype x, int idx) {
            int curr = 0, b;
```

```
for(int i=bit; i>=0; i--){
            b = !!(x&((dtype)(1) << i));
            if(!trie[curr][b]) trie[curr][b] = ++cnt, trie.
                 pb({0, 0, 0});
            curr = trie[curr][b];
        trie[curr][2] = idx;
        return:
   };
    auto qry = [&] (dtype x) {
        int curr = 0, b;
        for(int i=bit; i>=0; i--){
            b = !!(x&((dtype)(1)<<i));
            if(trie[curr][b]) curr = trie[curr][b];
            else curr = trie[curr][!b];
        return trie[curr][2];
    };
    for(int i=L1; i<=R1; i++) add(a[i].fi, i);</pre>
    int j;
    dtype min_xor = -1;
    for(int i=L2; i<=R2; i++) {</pre>
        j = qry(a[i].fi);
        if (\min_x or == -1) u = j, v = i, \min_x or = a[j].fi^a
        if((a[j].fi^a[i].fi) < min_xor) u = j, v = i, min_xor
              = a[j].fi^a[i].fi;
    return;
void buildMST(int L, int R, int bit) {
   if(L == R) return;
    if(bit < 0){
        for(int i=L+1; i<=R; i++) T[ a[L].se ].pb( a[i].se</pre>
            ), T[ a[i].se ].pb( a[L].se );
        return;
    dtvpe pot = ((dtvpe)(1) << bit);
    if(a[L].fi&pot || !(a[R].fi&pot)) return buildMST(L, R,
    int mid = L;
    while(!(a[mid+1].fi&pot)) mid++;
   buildMST(L, mid, bit-1);
    buildMST (mid+1, R, bit-1);
    getMinEdge(L, mid, mid+1, R, bit-1, u, v);
    xor_sum += (ll)(a[u].fi^a[v].fi);
   T[ a[v].se ].pb( a[u].se );
   T[ a[u].se ].pb( a[v].se );
    return;
```

ReachabilityTree Point **Description:** Computes the Reachability/KruskalReconstruction tree T of a graph G when inserting the edges in the given order. Nodes of G correspond to leaves of T and internal nodes of T corresponds to edges that connects the set of leaves of its subtrees. Nodes of G should be 1-indexed. edges should be $\{u, v, w\}$ (endpoints and weight), this vector should be 0-indexed. T has at most 2N-1 vertices. If u is an internal node of T then w[u] corresponds to weight of the associated edge. **Time:** $\mathcal{O}(N \log N)$ but can be improved to $\mathcal{O}(N)$, $\log N$ comes from DSU. struct DSU{ int n, comp; vi dsu; $DSU(int n) : n(n), dsu(n + 1), comp(n) { iota(all(dsu), 0);}$ int getF(int u) { if(dsu[u] == u) return u; return dsu[u] = getF(dsu[u]); bool join(int u, int v) { int Fu = getF(u), Fv = getF(v); if(Fu == Fv) return false; dsu[Fu] = Fv; return true; struct ReachabilityTree{ int n, idx, root; DSU dsu = DSU(0); vvi T, p; vi parent, depth, sz_subtree, sz_leaves, w; vector< array<int, 3> > edges; ReachabilityTree(int n, vector< array<int, 3> > edges){ this->n = n:this->idx = n+1; this->edges = edges; T.resize(n + n);parent.resize(n + n); dsu = DSU(n + n - 1); // DSU indexa en 1 solito depth.resize(n + n);sz_subtree.resize(n + n); sz_leaves.resize(n + n); w.resize(n + n);__build(); __dfs(root, 0); void __build() { int u, v; for(auto e:edges) { u = dsu.getF(e[0]);v = dsu.getF(e[1]);if (u != v) { T[idx].pb(u); T[idx].pb(v);parent[u] = idx; parent[v] = idx; // Warning: Join debe asignar como nuevo representante a idx dsu.join(u, idx); dsu.join(v, idx);

w[idx] = e[2];

idx++;

return;

continue;

if(dsu.comp == 1) root = idx;

```
}
void __dfs(int u, int d) {
    depth[u] = d;
    sz_subtree[u] = 1;
    sz_leaves[u] = !T[u].size();
    for(auto v:T[u]) {
        __dfs(v, d+1);
        sz_subtree[u] += sz_subtree[v];
        sz_leaves[u] += sz_leaves[v];
    }
    return;
}
```

7.7 Math

7.7.1 Number of Spanning Trees

Create an $N \times N$ matrix mat, and for each edge $a \to b \in G$, do mat[a][b]--, mat[b][b]++ (and mat[b][a]--, mat[a][a]++ if G is undirected). Remove the ith row and column and take the determinant; this yields the number of directed spanning trees rooted at i (if G is undirected, remove any row/column).

7.7.2 Erdős–Gallai theorem

A simple graph with node degrees $d_1 \ge \cdots \ge d_n$ exists iff $d_1 + \cdots + d_n$ is even and for every $k = 1 \dots n$,

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k).$$

Geometry (8)

8.1 Geometric primitives

Point.h

Description: Class to handle points in the plane. T can be e.g. double or long long. (Avoid int.)

```
template \langle class T \rangle int sgn(T x) \{ return (x > 0) - (x < 0); \}
template<class T>
struct Point {
 typedef Point P;
  explicit Point (T x=0, T y=0) : x(x), y(y) {}
 bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }</pre>
 bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
  P operator+(P p) const { return P(x+p.x, y+p.y); }
  P operator-(P p) const { return P(x-p.x, y-p.y); }
  P operator*(T d) const { return P(x*d, y*d); }
  P operator/(T d) const { return P(x/d, y/d); }
 T dot(P p) const { return x*p.x + y*p.y; }
 T cross(P p) const { return x*p.y - y*p.x; }
 T cross(P a, P b) const { return (a-*this).cross(b-*this); }
 T dist2() const { return x*x + y*y; }
  double dist() const { return sgrt((double)dist2()); }
  // angle to x-axis in interval [-pi, pi]
 double angle() const { return atan2(y, x); }
 P unit() const { return *this/dist(); } // makes dist()=1
 P perp() const { return P(-y, x); } // rotates +90 degrees
 P normal() const { return perp().unit(); }
```

};

11 lines

```
// returns point rotated 'a' radians ccw around the origin
P rotate (double a) const {
  return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
friend ostream& operator<<(ostream& os, P p) {</pre>
  return os << "(" << p.x << "," << p.y << ")"; }
```

lineDistance.h

Description: Returns the signed distance between point p and the line containing points a and b. Positive value on left side and negative on right as seen from a towards b. a==b gives nan. P is supposed to be Point<T> or Point3D<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long. Using Point3D will always give a non-negative distance. For Point3D, call .dist /S on the result of the cross product.

4 lines

```
template<class P>
double lineDist(const P& a, const P& b, const P& p) {
 return (double) (b-a).cross(p-a)/(b-a).dist();
```

SegmentDistance.h

Description:

Returns the shortest distance between point p and the line segment from point s to e.


```
typedef Point<double> P;
double segDist(P& s, P& e, P& p) {
 if (s==e) return (p-s).dist();
 auto d = (e-s).dist2(), t = min(d, max(.0, (p-s).dot(e-s)));
 return ((p-s)*d-(e-s)*t).dist()/d;
```

SegmentIntersection.h

Description:

If a unique intersection point between the line segments going from s1 to e1 and from s2 to e2 exists then it is returned. If no intersection point exists an empty vector is returned. If infinitely many exist a vector with 2 elements is returned, containing the endpoints of the common line segment. The wrong position will be returned if P is Point<ll> and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long.


```
Usage: vector<P> inter = segInter(s1,e1,s2,e2);
if (sz(inter) == 1)
```

cout << "segments intersect at " << inter[0] << endl;</pre> 13 lines "Point.h", "OnSegment.h"

```
template<class P> vector<P> segInter(P a, P b, P c, P d) {
 auto oa = c.cross(d, a), ob = c.cross(d, b),
      oc = a.cross(b, c), od = a.cross(b, d);
  // Checks if intersection is single non-endpoint point.
 if (sgn(oa) * sgn(ob) < 0 && sgn(oc) * sgn(od) < 0)
   return { (a * ob - b * oa) / (ob - oa) };
  set<P> s:
 if (onSegment(c, d, a)) s.insert(a);
 if (onSegment(c, d, b)) s.insert(b);
 if (onSegment(a, b, c)) s.insert(c);
 if (onSegment(a, b, d)) s.insert(d);
 return {all(s)};
```

lineIntersection.h

Description:

If a unique intersection point of the lines going through s1,e1 and s2,e2 exists {1, point} is returned. If no intersection point exists $\{0, (0,0)\}$ is returned and if infinitely many exists $\{-1, e^2\}$ (0,0)} is returned. The wrong position will be returned if P is Point<|l> and the intersection point does not have integer coordinates. Products of three coordinates are used in inter- \$1 mediate steps so watch out for overflow if using int or ll.

```
Usage: auto res = lineInter(s1,e1,s2,e2);
if (res.first == 1)
cout << "intersection point at " << res.second << endl;</pre>
template<class P>
pair<int, P> lineInter(P s1, P e1, P s2, P e2) {
```

```
auto d = (e1 - s1).cross(e2 - s2);
if (d == 0) // if parallel
 return {-(s1.cross(e1, s2) == 0), P(0, 0)};
auto p = s2.cross(e1, e2), q = s2.cross(e2, s1);
return {1, (s1 * p + e1 * q) / d};
```

sideOf.h

Description: Returns where p is as seen from s towards e. $1/0/-1 \Leftrightarrow \text{left/on}$ line/right. If the optional argument eps is given 0 is returned if p is within distance eps from the line. P is supposed to be Point<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long.

```
Usage: bool left = sideOf(p1,p2,q) ==1;
"Point.h"
```

```
template<class P>
int sideOf(P s, P e, P p) { return sgn(s.cross(e, p)); }
template<class P>
int sideOf(const P& s, const P& e, const P& p, double eps) {
 auto a = (e-s).cross(p-s);
 double 1 = (e-s).dist()*eps;
 return (a > 1) - (a < -1);
```

OnSegment.h

Description: Returns true iff p lies on the line segment from s to e. Use (segDist(s,e,p) <=epsilon) instead when using Point <double>. 3 lines

```
"Point.h"
template < class P > bool on Segment (P s, P e, P p) {
 return p.cross(s, e) == 0 && (s - p).dot(e - p) <= 0;
```

linearTransformation.h Description:

Apply the linear transformation (translation, rotation and scaling) which takes line p0-p1 to line q0-q1 to point r.

```
typedef Point<double> P;
P linearTransformation(const P& p0, const P& p1,
   const P& q0, const P& q1, const P& r) {
 P dp = p1-p0, dq = q1-q0, num(dp.cross(dq), dp.dot(dq));
 return q0 + P((r-p0).cross(num), (r-p0).dot(num))/dp.dist2();
```

LineProjectionReflection.h

Description: Projects point p onto line ab. Set refl=true to get reflection of point p across line ab instead. The wrong point will be returned if P is an integer point and the desired point doesn't have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow.

```
"Point.h"
template<class P>
P lineProj(P a, P b, P p, bool refl=false) {
  P v = b - a;
  return p - v.perp()*(1+refl)*v.cross(p-a)/v.dist2();
```

Angle.h

struct Angle {

9 lines

Description: A class for ordering angles (as represented by int points and a number of rotations around the origin). Useful for rotational sweeping. Sometimes also represents points or vectors.

```
Usage: vector<Angle> v = \{w[0], w[0].t360() ...\}; // sorted
int j = 0; rep(i,0,n) { while (v[j] < v[i].t180()) ++j; }
// sweeps j such that (j-i) represents the number of positively
oriented triangles with vertices at 0 and i
```

```
int x, y;
 int t;
  Angle(int x, int y, int t=0) : x(x), y(y), t(t) {}
  Angle operator-(Angle b) const { return {x-b.x, y-b.y, t}; }
  int half() const {
    assert(x || y);
    return v < 0 || (v == 0 && x < 0);
  Angle t90() const { return \{-v, x, t + (half() \&\& x >= 0)\}; \}
  Angle t180() const { return {-x, -y, t + half()}; }
 Angle t360() const { return {x, y, t + 1}; }
bool operator<(Angle a, Angle b) {</pre>
  // add a. dist2() and b. dist2() to also compare distances
  return make tuple(a.t, a.half(), a.v * (11)b.x) <</pre>
         make_tuple(b.t, b.half(), a.x * (ll)b.y);
// Given two points. this calculates the smallest angle between
// them, i.e., the angle that covers the defined line segment.
pair < Angle, Angle > segment Angles (Angle a, Angle b) {
 if (b < a) swap(a, b);
 return (b < a.t180() ?
         make_pair(a, b) : make_pair(b, a.t360()));
Angle operator+(Angle a, Angle b) { // point a + vector b
 Angle r(a.x + b.x, a.y + b.y, a.t);
 if (a.t180() < r) r.t--;
 return r.t180() < a ? r.t360() : r;
Angle angleDiff(Angle a, Angle b) { // angle b- angle a
 int tu = b.t - a.t; a.t = b.t;
 return {a.x*b.x + a.y*b.y, a.x*b.y - a.y*b.x, tu - (b < a)};
```

8.2 Circles

"Point h"

CircleIntersection.h.

Description: Computes the pair of points at which two circles intersect. Returns false in case of no intersection.

```
typedef Point<double> P;
bool circleInter(P a, P b, double r1, double r2, pair < P, P >* out) {
  if (a == b) { assert(r1 != r2); return false; }
  P \text{ vec} = b - a;
  double d2 = vec.dist2(), sum = r1+r2, dif = r1-r2,
         p = (d2 + r1*r1 - r2*r2)/(d2*2), h2 = r1*r1 - p*p*d2;
```

```
if (sum*sum < d2 || dif*dif > d2) return false;
P mid = a + vec*p, per = vec.perp() * sqrt(fmax(0, h2) / d2);
*out = {mid + per, mid - per};
return true;
```

CircleTangents.h

Description: Finds the external tangents of two circles, or internal if r2 is negated. Can return 0, 1, or 2 tangents – 0 if one circle contains the other (or overlaps it, in the internal case, or if the circles are the same); 1 if the circles are tangent to each other (in which case .first = .second and the tangent line is perpendicular to the line between the centers). .first and .second give the tangency points at circle 1 and 2 respectively. To find the tangents of a circle with a point set r2 to 0.

```
"Point.h"
                                                            13 lines
template<class P>
vector<pair<P, P>> tangents(P c1, double r1, P c2, double r2) {
  P d = c2 - c1;
  double dr = r1 - r2, d2 = d.dist2(), h2 = d2 - dr * dr;
  if (d2 == 0 || h2 < 0) return {};</pre>
  vector<pair<P, P>> out;
  for (double sign : {-1, 1}) {
   P v = (d * dr + d.perp() * sqrt(h2) * sign) / d2;
   out.push_back(\{c1 + v * r1, c2 + v * r2\});
  if (h2 == 0) out.pop back();
 return out;
```

CircleLine.h

Description: Finds the intersection between a circle and a line. Returns a vector of either 0, 1, or 2 intersection points. P is intended to be Point<double>.

```
"Point.h"
template<class P>
vector<P> circleLine(P c, double r, P a, P b) {
 P \ ab = b - a, \ p = a + ab * (c-a).dot(ab) / ab.dist2();
  double s = a.cross(b, c), h2 = r*r - s*s / ab.dist2();
 if (h2 < 0) return {};
 if (h2 == 0) return {p};
 P h = ab.unit() * sqrt(h2);
  return {p - h, p + h};
```

CirclePolygonIntersection.h

Description: Returns the area of the intersection of a circle with a ccw polygon.

Time: $\mathcal{O}(n)$

```
"../../content/geometry/Point.h"
                                                                          19 lines
typedef Point < double > P;
```

```
#define arg(p, q) atan2(p.cross(q), p.dot(q))
double circlePoly(P c, double r, vector<P> ps) {
  auto tri = [&] (P p, P q) {
   auto r2 = r * r / 2;
   Pd = q - p;
   auto a = d.dot(p)/d.dist2(), b = (p.dist2()-r*r)/d.dist2();
   auto det = a * a - b;
   if (det <= 0) return arg(p, g) * r2;</pre>
   auto s = max(0., -a-sqrt(det)), t = min(1., -a+sqrt(det));
   if (t < 0 || 1 <= s) return arg(p, q) * r2;</pre>
   Pu = p + d * s, v = p + d * t;
   return arg(p,u) * r2 + u.cross(v)/2 + arg(v,g) * r2;
  auto sum = 0.0;
  rep(i, 0, sz(ps))
   sum += tri(ps[i] - c, ps[(i + 1) % sz(ps)] - c);
  return sum;
```

"Point.h"

circumcircle.h Description:

The circumcirle of a triangle is the circle intersecting all three vertices. ccRadius returns the radius of the circle going through points A, B and C and ccCenter returns the center of the same circle.


```
typedef Point < double > P;
double ccRadius (const P& A, const P& B, const P& C) {
  return (B-A).dist() * (C-B).dist() * (A-C).dist() /
      abs((B-A).cross(C-A))/2;
P ccCenter(const P& A, const P& B, const P& C) {
 P b = C-A, c = B-A;
  return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;
```

MinimumEnclosingCircle.h

Description: Computes the minimum circle that encloses a set of points. **Time:** expected $\mathcal{O}(n)$

```
"circumcircle.h"
pair<P, double> mec(vector<P> ps) {
 shuffle(all(ps), mt19937(time(0)));
 P \circ = ps[0];
 double r = 0, EPS = 1 + 1e-8;
 rep(i, 0, sz(ps)) if ((o - ps[i]).dist() > r * EPS) {
   o = ps[i], r = 0;
   rep(j,0,i) if ((o - ps[j]).dist() > r * EPS) {
     o = (ps[i] + ps[j]) / 2;
     r = (o - ps[i]).dist();
     rep(k, 0, j) if ((o - ps[k]).dist() > r * EPS) {
       o = ccCenter(ps[i], ps[j], ps[k]);
       r = (o - ps[i]).dist();
 return {o, r};
```

8.3 Polygons

InsidePolygon.h

Description: Returns true if p lies within the polygon. If strict is true, it returns false for points on the boundary. The algorithm uses products in intermediate steps so watch out for overflow.

```
Usage: vector\langle P \rangle v = \{P\{4,4\}, P\{1,2\}, P\{2,1\}\};
bool in = inPolygon(v, P{3, 3}, false);
Time: \mathcal{O}(n)
"Point.h", "OnSegment.h", "SegmentDistance.h"
template<class P>
```

```
bool inPolygon(vector<P> &p, P a, bool strict = true) {
 int cnt = 0, n = sz(p);
 rep(i,0,n) {
   P q = p[(i + 1) % n];
    if (onSegment(p[i], q, a)) return !strict;
    //or: if (segDist(p[i], q, a) \le eps) return !strict;
   cnt ^= ((a.v<p[i].v) - (a.v<q.v)) * a.cross(p[i], q) > 0;
 return cnt;
```

PolygonArea.h

Description: Returns twice the signed area of a polygon. Clockwise enumeration gives negative area. Watch out for overflow if using int as T! "Point.h"

```
template<class T>
T polygonArea2(vector<Point<T>>& v) {
 T = v.back().cross(v[0]);
 rep(i,0,sz(v)-1) a += v[i].cross(v[i+1]);
 return a:
```

PolygonCenter.h

Description: Returns the center of mass for a polygon.

```
Time: \mathcal{O}(n)
"Point.h"
```

typedef Point<double> P; P polygonCenter(const vector<P>& v) { P res(0, 0); double A = 0; for (int i = 0, j = sz(v) - 1; i < sz(v); j = i++) { res = res + (v[i] + v[j]) * v[j].cross(v[i]);A += v[i].cross(v[i]);return res / A / 3;

PolygonCut.h Description:

Returns a vector with the vertices of a polygon with everything to the left of the line going from s to e cut away.

```
Usage: vector<P> p = ...;
p = polygonCut(p, P(0,0), P(1,0));
"Point.h", "lineIntersection.h"
```


13 lines

33 lines

```
typedef Point <double > P;
vector<P> polygonCut(const vector<P>& poly, P s, P e) {
 vector<P> res;
 rep(i, 0, sz(poly)) {
    P cur = polv[i], prev = i ? polv[i-1] : polv.back();
    bool side = s.cross(e, cur) < 0;</pre>
    if (side != (s.cross(e, prev) < 0))
      res.push_back(lineInter(s, e, cur, prev).second);
    if (side)
      res.push back(cur);
 return res;
```

PolygonUnion.h

Description: Calculates the area of the union of n polygons (not necessarily convex). The points within each polygon must be given in CCW order. (Epsilon checks may optionally be added to sideOf/sgn, but shouldn't be needed.)

Time: $\mathcal{O}(N^2)$, where N is the total number of points "Point.h", "sideOf.h"

```
typedef Point<double> P;
double rat(P a, P b) { return sgn(b.x) ? a.x/b.x : a.y/b.y; }
double polyUnion(vector<vector<P>>& poly) {
  double ret = 0;
  rep(i, 0, sz(poly)) rep(v, 0, sz(poly[i])) {
    P A = poly[i][v], B = poly[i][(v + 1) % sz(poly[i])];
    vector<pair<double, int>> segs = {{0, 0}, {1, 0}};
    rep(j,0,sz(poly)) if (i != j) {
      rep(u, 0, sz(poly[j])) {
        P C = poly[j][u], D = poly[j][(u + 1) % sz(poly[j])];
        int sc = sideOf(A, B, C), sd = sideOf(A, B, D);
        if (sc != sd) {
          double sa = C.cross(D, A), sb = C.cross(D, B);
          if (\min(sc, sd) < 0)
            segs.emplace_back(sa / (sa - sb), sgn(sc - sd));
        } else if (!sc && !sd && j<i && sgn((B-A).dot(D-C))>0){
          segs.emplace_back(rat(C - A, B - A), 1);
          segs.emplace_back(rat(D - A, B - A), -1);
```

17 lines

```
}
}
sort(all(segs));
for (auto& s : segs) s.first = min(max(s.first, 0.0), 1.0);
double sum = 0;
int cnt = segs[0].second;
rep(j,1,sz(segs)) {
   if (!cnt) sum += segs[j].first - segs[j - 1].first;
   cnt += segs[j].second;
}
ret += A.cross(B) * sum;
}
return ret / 2;
```

ConvexHull.h

Description:

Returns a vector of the points of the convex hull in counterclockwise order. Points on the edge of the hull between two other points are not considered part of the hull.

Time: $\mathcal{O}(n \log n)$

"Point.h" 13 lines

```
typedef Point<ll> P;
vector<P> convexHull(vector<P> pts) {
   if (sz(pts) <= 1) return pts;
   sort(all(pts));
   vector<P> h(sz(pts)+1);
   int s = 0, t = 0;
   for (int it = 2; it--; s = --t, reverse(all(pts)))
      for (P p: pts) {
      while (t >= s + 2 && h[t-2].cross(h[t-1], p) <= 0) t--;
        h[t++] = p;
   }
   return {h.begin(), h.begin() + t - (t == 2 && h[0] == h[1])};
}</pre>
```

Minkowski.h

Description: Returns vertices of the Minkowski sum of two convex polygons (also a convex polygon).

```
template <class T> //lowest vertex first
void reorder polygon(vector<Point<T>> &P) {
    int pos = 0;
    for(int i = 1; i < sz(P); i++) {</pre>
        if(P[i].y < P[pos].y || (P[i].y == P[pos].y && P[i].x <</pre>
             P[posl.x))
            pos = i;
    rotate(P.begin(), P.begin() + pos, P.end());
template <class T> //assumes P and Q are ccw
vector<Point<T>> minkowski(vector<Point<T>> P, vector<Point<T>>
    reorder_polygon(P);
    reorder_polygon(Q);
   P.pb(P[0]); P.pb(P[1]); Q.pb(Q[0]); Q.pb(Q[1]);
   vector<Point<T>> result;
   int i = 0, j = 0;
    while(i < sz(P) - 2 | | j < sz(Q) - 2) {
        result.pb(P[i] + Q[j]);
        auto cross = (P[i + 1] - P[i]).cross(Q[j + 1] - Q[j]);
       if(cross >= 0 \&\& i < sz(P) - 2) ++i;
       if (cross \leq 0 && j \leq sz(Q) - 2) ++j;
   return result;
```

HullDiameter.h

Description: Returns the two points with max distance on a convex hull (ccw, no duplicate/collinear points).

Time: $\mathcal{O}\left(n\right)$

PointInsideHull.h

Description: Determine whether a point t lies inside a convex hull (CCW order, with no collinear points). Returns true if point lies within the hull. If strict is true, points on the boundary aren't included.

Time: $\mathcal{O}(\log N)$

```
"Point.h", "sideOf.h", "OnSegment.h"

typedef Point<11> P;

bool inHull(const vector<P>& l, P p, bool strict = true) {
  int a = 1, b = sz(l) - 1, r = !strict;
  if (sz(l) < 3) return r && onSegment(l[0], l.back(), p);
  if (sideOf(l[0], l[a], l[b]) > 0) swap(a, b);
  if (sideOf(l[0], l[a], p) >= r || sideOf(l[0], l[b], p) <= -r)
    return false;
  while (abs(a - b) > 1) {
    int c = (a + b) / 2;
    (sideOf(l[0], l[c], p) > 0 ? b : a) = c;
  }
  return sgn(l[a].cross(l[b], p)) < r;
}</pre>
```

LineHullIntersection.h.

Description: Line-convex polygon intersection. The polygon must be ccw and have no collinear points. lineHull(line, poly) returns a pair describing the intersection of a line with the polygon: \bullet (-1,-1) if no collision, \bullet (i,-1) if touching the corner i, \bullet (i,i) if along side $(i,i+1), \bullet$ (i,j) if crossing sides (i,i+1) and (j,j+1). In the last case, if a corner i is crossed, this is treated as happening on side (i,i+1). The points are returned in the same order as the line hits the polygon. extrVertex returns the point of a hull with the max projection onto a line.

Time: $\mathcal{O}(\log n)$

```
#define cmp(i,j) sgn(dir.perp().cross(poly[(i)*n]-poly[(j)*n]))
#define extr(i) cmp(i + 1, i) >= 0 && cmp(i, i - 1 + n) < 0
template <class P> int extrVertex(vector<P>& poly, P dir) {
   int n = sz(poly), lo = 0, hi = n;
   if (extr(0)) return 0;
   while (lo + 1 < hi) {
      int m = (lo + hi) / 2;
      if (extr(m)) return m;
   int ls = cmp(lo + 1, lo), ms = cmp(m + 1, m);
      (ls < ms || (ls == ms && ls == cmp(lo, m)) ? hi : lo) = m;
   }
   return lo;
}
#define cmpL(i) sgn(a.cross(poly[i], b))
template <class P>
array<int, 2> lineHull(P a, P b, vector<P>& poly) {
```

int endA = extrVertex(poly, (a - b).perp());

```
int endB = extrVertex(poly, (b - a).perp());
if (cmpL(endA) < 0 || cmpL(endB) > 0)
  return {-1, -1};
array<int, 2> res;
rep(i, 0, 2) {
  int lo = endB, hi = endA, n = sz(poly);
  while ((lo + 1) % n != hi) {
    int m = ((lo + hi + (lo < hi ? 0 : n)) / 2) % n;
    (cmpL(m) == cmpL(endB) ? lo : hi) = m;
  res[i] = (lo + !cmpL(hi)) % n;
  swap (endA, endB);
if (res[0] == res[1]) return {res[0], -1};
if (!cmpL(res[0]) && !cmpL(res[1]))
  switch ((res[0] - res[1] + sz(poly) + 1) % sz(poly)) {
    case 0: return {res[0], res[0]};
    case 2: return {res[1], res[1]};
return res;
```

8.4 Misc. Point Set Problems

ClosestPair.h

Description: Finds the closest pair of points.

Time: $\mathcal{O}(n \log n)$

```
typedef Point<11> P;
pair<P, P> closest(vector<P> v) {
   assert(sz(v) > 1);
   set<P> S;
   sort(all(v), [](P a, P b) { return a.y < b.y; });
   pair<11, pair<P, P>> ret{LLONG_MAX, {P(), P()}};
   int j = 0;
   for (P p : v) {
        P d(1 + (11) sqrt (ret.first), 0};
        while (v[j].y <= p.y - d.x) S.erase(v[j++]);
        auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
        for (; lo != hi; ++lo)
            ret = min(ret, {(*lo - p).dist2(), {*lo, p}});
        S.insert(p);
   }
   return ret.second;
}</pre>
```

ManhattanMST.h

Description: Given N points, returns up to 4*N edges, which are guaranteed to contain a minimum spanning tree for the graph with edge weights w(p, q) = -p.x - q.x - + -p.y - q.y -. Edges are in the form (distance, src, dst). Use a standard MST algorithm on the result to find the final MST. **Time:** $\mathcal{O}(N \log N)$

```
"Point.h"
                                                          23 lines
typedef Point<int> P;
vector<array<int, 3>> manhattanMST(vector<P> ps) {
 vi id(sz(ps));
 iota(all(id), 0);
 vector<array<int, 3>> edges;
  rep(k,0,4) {
    sort(all(id), [&](int i, int j) {
         return (ps[i]-ps[j]).x < (ps[j]-ps[i]).y;});
    map<int, int> sweep;
    for (int i : id) {
      for (auto it = sweep.lower_bound(-ps[i].y);
                it != sweep.end(); sweep.erase(it++)) {
        int j = it->second;
        P d = ps[i] - ps[j];
        if (d.y > d.x) break;
        edges.push_back({d.y + d.x, i, j});
```

sweep[-ps[i].y] = i;

```
for (P& p : ps) if (k & 1) p.x = -p.x; else swap(p.x, p.y);
  return edges;
kdTree.h
Description: KD-tree (2d, can be extended to 3d)
typedef long long T;
typedef Point<T> P;
const T INF = numeric limits<T>::max();
bool on_x(const P& a, const P& b) { return a.x < b.x; }</pre>
bool on_y(const P& a, const P& b) { return a.y < b.y; }</pre>
struct Node {
 P pt; // if this is a leaf, the single point in it
  T x0 = INF, x1 = -INF, v0 = INF, v1 = -INF; // bounds
  Node *first = 0, *second = 0;
  T distance (const P& p) { // min squared distance to a point
    T x = (p.x < x0 ? x0 : p.x > x1 ? x1 : p.x);
    T y = (p.y < y0 ? y0 : p.y > y1 ? y1 : p.y);
    return (P(x,y) - p).dist2();
  Node (vector<P>&& vp) : pt(vp[0]) {
    for (P p : vp) {
      x0 = min(x0, p.x); x1 = max(x1, p.x);
      y0 = min(y0, p.y); y1 = max(y1, p.y);
    if (vp.size() > 1) {
      // split on x if width >= height (not ideal...)
      sort(all(vp), x1 - x0 >= y1 - y0 ? on_x : on_y);
      // divide by taking half the array for each child (not
      // best performance with many duplicates in the middle)
      int half = sz(vp)/2;
      first = new Node({vp.begin(), vp.begin() + half});
      second = new Node({vp.begin() + half, vp.end()});
};
struct KDTree {
  Node* root:
  KDTree(const vector<P>& vp) : root(new Node({all(vp)})) {}
  pair<T, P> search(Node *node, const P& p) {
    if (!node->first) {
      // uncomment if we should not find the point itself:
      // if (p = node > pt) return \{INF, P()\};
      return make_pair((p - node->pt).dist2(), node->pt);
    Node *f = node->first, *s = node->second;
    T bfirst = f->distance(p), bsec = s->distance(p);
    if (bfirst > bsec) swap(bsec, bfirst), swap(f, s);
    // search closest side first, other side if needed
    auto best = search(f, p);
    if (bsec < best.first)</pre>
     best = min(best, search(s, p));
    return best;
  /\!/ find nearest point to a point, and its squared distance
```

```
// (requires an arbitrary operator< for Point)
pair<T, P> nearest (const P& p) {
  return search(root, p);
```

HalfplaneIntersection.h

Description: Computes convex polygon which represents intersection of half

```
planes (each half plane is to the left of the segment) Careful with precision!
const double EPS = 1e-9;
const double DINF = 1e100;
template <typename T> struct HalfPlane {
   Point<T> p, pq;
    T angle;
    HalfPlane() {}
    HalfPlane(Point<T>_p, Point<T>_q): p(_p), pq(_q - _p),
        angle(atan2(pq.y, pq.x)) {}
    bool operator<(HalfPlane &b) const { return angle < b.angle</pre>
         ; }
    bool out(Point<T> q) { return pq.cross(q - p) < EPS; }</pre>
    Point<T> intersect(HalfPlane<T> 1) {
        if (abs(pq.cross(l.pq)) < EPS) return Point<T>(DINF,
        return 1.p + 1.pq * ((p - 1.p).cross(pq) / 1.pq.cross(
}; // Halfplane to the left of line
template <typename T> vector<Point<T>> intersect (vector<</pre>
    HalfPlane<T>> b) {
    vector<Point<T>> bx = {Point<T>(DINF, DINF), Point<T>(-DINF)
         , DINF), Point<T>(-DINF, -DINF), Point<T>(DINF, -DINF)
         };
    for (int i = 0; i < 4; ++i) b.emplace_back(bx[i], bx[(i +
        1) % 4]);
    sort(b.begin(), b.end());
    int n = b.size(), q = 1, h = 0;
    vector<HalfPlane<T>> c(b.size() + 10);
    for (int i = 0; i < n; ++i) {</pre>
        while (q < h \&\& b[i].out(c[h].intersect(c[h - 1]))) h
        while (q < h \&\& b[i].out(c[q].intersect(c[q + 1]))) q
        c[++h] = b[i];
        if (q < h \&\& abs(c[h].pq.cross(c[h - 1].pq)) < EPS) {
            if (c[h].pq.dot(c[h - 1].pq) <= 0) return {};</pre>
            if (b[i].out(c[h].p))c[h] = b[i];
    while (q < h - 1 \&\& c[q].out(c[h].intersect(c[h - 1]))) h
    while (q < h - 1 \&\& c[h].out(c[q].intersect(c[q + 1]))) q
         ++;
    if (h - q <= 1) return {};</pre>
    c[h + 1] = c[q];
    vector<Point<T>> s;
    for (int i = q; i < h + 1; ++i) s.push_back(c[i].intersect(</pre>
        c[i + 1]));
    return s;
```

Delaunay Triangulation.h

Description: Computes the Delaunay triangulation of a set of points. Each circumcircle contains none of the input points. If any three points are collinear or any four are on the same circle, behavior is undefined.

```
Time: \mathcal{O}\left(n^2\right)
```

"Point.h", "3dHull.h" 10 lines

```
template<class P, class F>
void delaunay(vector<P>& ps, F trifun) {
 if (sz(ps) == 3) { int d = (ps[0].cross(ps[1], ps[2]) < 0);
   trifun(0,1+d,2-d);}
 vector<P3> p3;
 for (P p : ps) p3.emplace_back(p.x, p.y, p.dist2());
 if (sz(ps) > 3) for (auto t:hull3d(p3)) if ((p3[t.b]-p3[t.a]).
     cross(p3[t.c]-p3[t.a]).dot(P3(0,0,1)) < 0)
   trifun(t.a, t.c, t.b);
```

FastDelaunav.h

Description: Fast Delaunay triangulation. Each circumcircle contains none of the input points. There must be no duplicate points. If all points are on a line, no triangles will be returned. Should work for doubles as well, though there may be precision issues in 'circ'. Returns triangles in order {t[0][0], $t[0][1], t[0][2], t[1][0], \dots\}$, all counter-clockwise.

Time: $\mathcal{O}(n \log n)$

#define H(e) e->F(), e->p

int half = sz(s) / 2;

Q A, B, ra, rb;

#define valid(e) (e->F().cross(H(base)) > 0)

```
"Point.h"
typedef Point<11> P;
typedef struct Quad* Q;
typedef int128 t 111; // (can be ll if coords are < 2e4)
P arb(LLONG_MAX, LLONG_MAX); // not equal to any other point
struct Quad {
  Q rot, o; P p = arb; bool mark;
  P& F() { return r()->p; }
  O& r() { return rot->rot; }
  O prev() { return rot->o->rot; }
  Q next() { return r()->prev(); }
bool circ(P p, P a, P b, P c) { // is p in the circumcircle?
  111 p2 = p.dist2(), A = a.dist2()-p2,
      B = b.dist2()-p2, C = c.dist2()-p2;
  return p.cross(a,b) *C + p.cross(b,c) *A + p.cross(c,a) *B > 0;
Q makeEdge(P orig, P dest) {
  Q r = H ? H : new Quad{new Quad{new Quad{new Quad{0}}}};
  H = r -> 0; r -> r() -> r() = r;
  rep(i, 0, 4) r = r -> rot, r -> p = arb, r -> o = i & 1 ? r : r -> r();
  r->p = orig; r->F() = dest;
  return r;
void splice(Q a, Q b) {
  swap(a->o->rot->o, b->o->rot->o); swap(a->o, b->o);
Q connect(Q a, Q b) {
  Q = makeEdge(a->F(), b->p);
  splice(q, a->next());
  splice(q->r(), b);
  return q;
pair<Q,Q> rec(const vector<P>& s) {
  if (sz(s) <= 3) {
    Q = makeEdge(s[0], s[1]), b = makeEdge(s[1], s.back());
    if (sz(s) == 2) return { a, a->r() };
    splice(a->r(), b);
    auto side = s[0].cross(s[1], s[2]);
    Q c = side ? connect(b, a) : 0;
    return {side < 0 ? c->r() : a, side < 0 ? c : b->r() };
```

```
tie(ra, A) = rec({all(s) - half});
  tie(B, rb) = rec({sz(s) - half + all(s)});
  while ((B->p.cross(H(A)) < 0 && (A = A->next())) ||
         (A->p.cross(H(B)) > 0 && (B = B->r()->o)));
  Q base = connect(B->r(), A);
  if (A->p == ra->p) ra = base->r();
 if (B->p == rb->p) rb = base;
#define DEL(e, init, dir) Q e = init->dir; if (valid(e)) \
    while (circ(e->dir->F(), H(base), e->F())) { \
     0 t = e \rightarrow dir; \
     splice(e, e->prev()); \
     splice(e->r(), e->r()->prev()); \
     e->o = H; H = e; e = t; \setminus
  for (;;) {
   DEL(LC, base->r(), o); DEL(RC, base, prev());
    if (!valid(LC) && !valid(RC)) break;
   if (!valid(LC) || (valid(RC) && circ(H(RC), H(LC))))
     base = connect(RC, base->r());
   else
     base = connect(base->r(), LC->r());
  return { ra, rb };
vector<P> triangulate(vector<P> pts) {
  sort(all(pts)); assert(unique(all(pts)) == pts.end());
  if (sz(pts) < 2) return {};</pre>
  Q e = rec(pts).first;
  vector<Q> q = \{e\};
  int qi = 0;
  while (e->o->F().cross(e->F(), e->p) < 0) e = e->o;
#define ADD { Q c = e; do { c->mark = 1; pts.push_back(c->p); \
  q.push_back(c->r()); c = c->next(); } while (c != e); }
  ADD; pts.clear();
  while (qi < sz(q)) if (!(e = q[qi++]) \rightarrow mark) ADD;
```

$8.5 \quad 3D$

PolyhedronVolume.h

Description: Magic formula for the volume of a polyhedron. Faces should point outwards.

6 lines

```
template < class V, class L>
double signedPolyVolume(const V& p, const L& trilist) {
  double v = 0;
  for (auto i : trilist) v += p[i.a].cross(p[i.b]).dot(p[i.c]);
  return v / 6;
}
```

Point3D.h

Description: Class to handle points in 3D space. T can be e.g. double or long long.

```
template < class T > struct Point3D {
    typedef Point3D P;
    typedef const P& R;
    T x, y, z;
    explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) {}
    bool operator < (R p) const {
        return tie(x, y, z) < tie(p.x, p.y, p.z); }
    bool operator==(R p) const {
        return tie(x, y, z) == tie(p.x, p.y, p.z); }
    P operator + (R p) const {
        return P(x+p.x, y+p.y, z+p.z); }
    P operator < (R p) const {
        return P(x-p.x, y-p.y, z-p.z); }
    P operator < (R p) const {
        return P(x+d, y+d, z+d); }
    P operator < (R d) const {
        return P(x+d, y+d, z+d); }
    P operator / (R d) const {
        return P(x+d, y+d, z+d); }
</pre>
```

```
T dot(R p) const { return x*p.x + y*p.y + z*p.z; }
 P cross(R p) const {
   return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);
 T dist2() const { return x*x + y*y + z*z; }
 double dist() const { return sqrt((double)dist2()); }
 //Azimuthal angle (longitude) to x-axis in interval [-pi, pi]
 double phi() const { return atan2(y, x); }
 //Zenith angle (latitude) to the z-axis in interval [0, pi]
 double theta() const { return atan2(sqrt(x*x+y*y),z); }
 P unit() const { return *this/(T)dist(); } //makes dist()=1
 //returns unit vector normal to *this and p
 P normal(P p) const { return cross(p).unit(); }
 //returns point rotated 'angle' radians ccw around axis
 P rotate (double angle, P axis) const {
   double s = sin(angle), c = cos(angle); P u = axis.unit();
    return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;
};
```

3dHull.h

struct PR {

typedef Point3D<double> P3;

Description: Computes all faces of the 3-dimension hull of a point set. *No four points must be coplanar*, or else random results will be returned. All faces will point outwards.

```
faces will point outwards. 
 Time: \mathcal{O}\left(n^2\right)
```

```
void ins(int x) { (a == -1 ? a : b) = x; }
 void rem(int x) { (a == x ? a : b) = -1; }
 int cnt() { return (a != -1) + (b != -1); }
 int a, b;
struct F { P3 q; int a, b, c; };
vector<F> hull3d(const vector<P3>& A) {
 assert(sz(A) >= 4);
 vector<vector<PR>>> E(sz(A), vector<PR>(sz(A), {-1, -1}));
#define E(x,y) E[f.x][f.y]
 vector<F> FS;
 auto mf = [\&] (int i, int j, int k, int l) {
   P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
   if (q.dot(A[1]) > q.dot(A[i]))
     q = q * -1;
   F f{q, i, j, k};
   E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
   FS.push_back(f);
 rep(i,0,4) rep(j,i+1,4) rep(k,j+1,4)
   mf(i, j, k, 6 - i - j - k);
 rep(i,4,sz(A)) {
   rep(j,0,sz(FS)) {
     F f = FS[j];
     if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
       E(a,b).rem(f.c);
       E(a,c).rem(f.b);
       E(b,c).rem(f.a);
       swap(FS[j--], FS.back());
       FS.pop_back();
   int nw = sz(FS);
   rep(j,0,nw) {
     F f = FS[j];
#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);
     C(a, b, c); C(a, c, b); C(b, c, a);
```

```
}
for (F& it : FS) if ((A[it.b] - A[it.a]).cross(
    A[it.c] - A[it.a]).dot(it.q) <= 0) swap(it.c, it.b);
return FS;
};</pre>
```

sphericalDistance.h

Description: Returns the shortest distance on the sphere with radius radius between the points with azimuthal angles (longitude) f1 (ϕ_1) and f2 (ϕ_2) from x axis and zenith angles (latitude) t1 (θ_1) and t2 (θ_2) from z axis (0 = north pole). All angles measured in radians. The algorithm starts by converting the spherical coordinates to cartesian coordinates so if that is what you have you can use only the two last rows. dx*radius is then the difference between the two points in the x direction and d*radius is the total distance between the points.

```
double sphericalDistance(double f1, double t1,
    double f2, double t2, double radius) {
    double dx = sin(t2)*cos(f2) - sin(t1)*cos(f1);
    double dy = sin(t2)*sin(f2) - sin(t1)*sin(f1);
    double dz = cos(t2) - cos(t1);
    double d = sqrt(dx*dx + dy*dy + dz*dz);
    return radius*2*asin(d/2);
}
```

Strings (9)

KMP.h

Description: pi[x] computes the length of the longest prefix of s that ends at x, other than s[0...x] itself (abacaba -> 0010123). Can be used to find all occurrences of a string. **Time:** $\mathcal{O}(n)$

```
vi pi(const string& s) {
  vi p(sz(s));
  rep(i,1,sz(s)) {
    int g = p[i-1];
    while (g && s[i] != s[g]) g = p[g-1];
    p[i] = g + (s[i] == s[g]);
  }
  return p;
}

vi match(const string& s, const string& pat) {
  vi p = pi(pat + '\0' + s), res;
  rep(i,sz(p)-sz(s),sz(p))
    if (p[i] == sz(pat)) res.push_back(i - 2 * sz(pat));
  return res;
}
```

Zfunc.h

Description: z[x] computes the length of the longest common prefix of s[i:] and s, except z[0] = 0. (abacaba -> 0010301) **Time:** $\mathcal{O}(n)$

```
vi Z(const string& S) {
  vi z(sz(S));
  int 1 = -1, r = -1;
  rep(i,1,sz(S)) {
    z[i] = i >= r ? 0 : min(r - i, z[i - 1]);
    while (i + z[i] < sz(S) && S[i + z[i]] == S[z[i]])
    z[i]++;
  if (i + z[i] > r)
    1 = i, r = i + z[i];
}
return z;
```

Manacher.h

Description: For each position in a string, computes p[0][i] = half length of longest even palindrome around pos i, <math>p[1][i] = longest odd (half rounded down). **Time:** $\mathcal{O}(N)$

```
array<vi, 2> manacher(const string& s) {
  int n = sz(s);
  array<vi,2> p = {vi(n+1), vi(n)};
  rep(z,0,2) for (int i=0,1=0,r=0; i < n; i++) {
    int t = r-i+!z;
    if (irr) p[z][i] = min(t, p[z][1+t]);
    int L = i-p[z][i], R = i+p[z][i]-!z;
    while (L>=1 && R+1<n && s[L-1] == s[R+1])
        p[z][i]++, L--, R++;
    if (R>r) l=L, r=R;
  }
  return p;
}
```

MinRotation.h

Time: $\mathcal{O}(N)$

Description: Finds the lexicographically smallest rotation of a string. **Usage:** rotate(v.beqin(), v.beqin()+minRotation(v), v.end());

int minRotation(string s) {
 int a=0, N=sz(s); s += s;
 rep(b,0,N) rep(k,0,N) {
 if (a+k == b || s[a+k] < s[b+k]) {b += max(0, k-1); break;}
 if (s[a+k] > s[b+k]) { a = b; break; }
}

SuffixArray.h

return a:

Description: Builds suffix array for a string. sa[i] is the starting index of the suffix which is i'th in the sorted suffix array. The returned vector is of size n+1, and sa[0]=n. The lcp array contains longest common prefixes for neighbouring strings in the suffix array: lcp[i]=lcp(sa[i], sa[i-1]), lcp[0]=0. The input string must not contain any zero bytes.

```
Time: \mathcal{O}(n \log n)
                                                           23 lines
struct SuffixArray {
  vi sa, lcp;
  SuffixArray(string& s, int lim=256) { // or basic_string<int>
    int n = sz(s) + 1, k = 0, a, b;
    vi x(all(s)+1), y(n), ws(max(n, lim)), rank(n);
    sa = lcp = y, iota(all(sa), 0);
    for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim = p) {
     p = j, iota(all(y), n - j);
     rep(i,0,n) if (sa[i] >= j) y[p++] = sa[i] - j;
      fill(all(ws), 0);
      rep(i, 0, n) ws[x[i]] ++;
      rep(i,1,lim) ws[i] += ws[i-1];
     for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
      swap(x, y), p = 1, x[sa[0]] = 0;
     rep(i,1,n) = sa[i-1], b = sa[i], x[b] =
        (y[a] == y[b] && y[a + j] == y[b + j]) ? p - 1 : p++;
    rep(i,1,n) rank[sa[i]] = i;
    for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k)</pre>
     for (k \&\& k--, j = sa[rank[i] - 1];
          s[i + k] == s[j + k]; k++);
```

SuffixTree.h

Description: Ukkonen's algorithm for online suffix tree construction. Each node contains indices [l,r) into the string, and a list of child nodes. Suffixes are given by traversals of this tree, joining [l,r) substrings. The root is 0 (has l=-1, r=0), non-existent children are -1. To get a complete tree, append a dummy symbol – otherwise it may contain an incomplete path (still useful for substring matching, though). **Time:** $\mathcal{O}(26N)$

```
struct SuffixTree {
 enum { N = 200010, ALPHA = 26 }; //N \sim 2*maxlen+10
 int toi(char c) { return c - 'a'; }
 string a; //v = cur \ node, q = cur \ position
 int t[N][ALPHA],1[N],r[N],p[N],s[N],v=0,q=0,m=2;
 void ukkadd(int i, int c) { suff:
    if (r[v] <=q) {
     if (t[v][c]==-1) { t[v][c]=m; l[m]=i;
       p[m++]=v; v=s[v]; q=r[v]; qoto suff; }
     v=t[v][c]; q=l[v];
    if (q==-1 || c==toi(a[q])) q++; else {
     l[m+1]=i; p[m+1]=m; l[m]=l[v]; r[m]=q;
     p[m]=p[v]; t[m][c]=m+1; t[m][toi(a[q])]=v;
     l[v]=q; p[v]=m; t[p[m]][toi(a[l[m]])]=m;
     v=s[p[m]]; q=l[m];
      while (q < r[m]) \{ v = t[v][toi(a[q])]; q + = r[v] - l[v]; \}
     if (q==r[m]) s[m]=v; else s[m]=m+2;
     q=r[v]-(q-r[m]); m+=2; goto suff;
 SuffixTree(string a) : a(a) {
   fill(r,r+N,sz(a));
   memset(s, 0, sizeof s);
   memset(t, -1, sizeof t);
   fill(t[1],t[1]+ALPHA,0);
   s[0] = 1; 1[0] = 1[1] = -1; r[0] = r[1] = p[0] = p[1] = 0;
   rep(i,0,sz(a)) ukkadd(i, toi(a[i]));
 // example: find longest common substring (uses ALPHA = 28)
 pii best;
 int lcs(int node, int i1, int i2, int olen) {
   if (1[node] <= i1 && i1 < r[node]) return 1;</pre>
   if (1[node] <= i2 && i2 < r[node]) return 2;</pre>
   int mask = 0, len = node ? olen + (r[node] - l[node]) : 0;
   rep(c, 0, ALPHA) if (t[node][c] != -1)
     mask |= lcs(t[node][c], i1, i2, len);
    if (mask == 3)
     best = max(best, {len, r[node] - len});
    return mask;
 static pii LCS(string s, string t) {
   SuffixTree st(s + (char) ('z' + 1) + t + (char) ('z' + 2));
   st.lcs(0, sz(s), sz(s) + 1 + sz(t), 0);
   return st.best;
};
```

Hashing.h

Description: 0-indexed. Self-explanatory methods for string hashing ha

```
// Arithmetic mod 2^64-1. 2x slower than mod 2^64 and more
// code, but works on evil test data (e.g. Thue-Morse, where
// ABBA... and BAAB... of length 2^10 hash the same mod 2^64).
// "typedef ull H;" instead if you think test data is random,
// or work mod 10^9+7 if the Birthday paradox is not a problem.
typedef uint64_t ull;
struct H {
ull x; H(ull x=0) : x(x) {}
```

```
H operator+(H \circ) { return x + \circ.x + (x + \circ.x < x); }
  H operator-(H o) { return *this + ~o.x; }
  H operator * (H o) { auto m = ( uint128 t) x * o.x;
    return H((ull)m) + (ull)(m >> 64); }
  ull get() const { return x + !~x; }
 bool operator==(H o) const { return get() == o.get(); }
 bool operator<(H o) const { return get() < o.get(); }</pre>
static const H C = (11)1e11+3; // (order \sim 3e9; random also ok)
struct HashInterval {
 vector<H> ha, pw;
 HashInterval(string& str) : ha(sz(str)+1), pw(ha) {
    pw[0] = 1;
    rep(i, 0, sz(str))
     ha[i+1] = ha[i] * C + str[i],
      pw[i+1] = pw[i] * C;
 H hashInterval(int a, int b) { // hash [a, b)
    return ha[b] - ha[a] * pw[b - a];
};
vector<H> getHashes(string& str, int length) {
 if (sz(str) < length) return {};</pre>
 H h = 0, pw = 1;
 rep(i,0,length)
   h = h * C + str[i], pw = pw * C;
 vector<H> ret = {h};
 rep(i,length,sz(str)) {
    ret.push_back(h = h * C + str[i] - pw * str[i-length]);
 return ret;
H hashString(string& s){H h{}; for(char c:s) h=h*C+c;return h;}
```

AhoCorasick.h

Description: Aho-Corasick automaton, used for multiple pattern matching. Initialize with Aho-Corasick ac(patterns); the automaton start node will be at index 0. find(word) returns for each position the index of the longest word that ends there, or -1 if none. findAll(-, word) finds all words (up to $N\sqrt{N}$ many if no duplicate patterns) that start at each position (shortest first). Duplicate patterns are allowed; empty patterns are not. To find the longest words that start at each position, reverse all input. For large alphabets, split each symbol into chunks, with sentinel bits for symbol boundaries.

Time: construction takes $\mathcal{O}(26N)$, where N = sum of length of patterns. find(x) is $\mathcal{O}(N)$, where $N = \text{length of x. findAll is } \mathcal{O}(NM)$.

```
66 lines
struct AhoCorasick {
 enum {alpha = 26, first = 'A'}; // change this!
  struct Node {
    // (nmatches is optional)
    int back, next[alpha], start = -1, end = -1, nmatches = 0;
    Node(int v) { memset(next, v, sizeof(next)); }
 };
 vector<Node> N;
 vi backp;
  void insert(string& s, int j) {
    assert(!s.empty());
    int n = 0;
    for (char c : s) {
      int& m = N[n].next[c - first];
      if (m == -1) { n = m = sz(N); N.emplace_back(-1); }
      else n = m;
    if (N[n].end == -1) N[n].start = j;
    backp.push_back(N[n].end);
    N[n].end = j;
```

Suffix Automaton Eertree IntervalCover

```
N[n].nmatches++;
  AhoCorasick(vector<string>& pat) : N(1, -1) {
    rep(i,0,sz(pat)) insert(pat[i], i);
   N[0].back = sz(N);
   N.emplace_back(0);
    queue<int> q;
    for (q.push(0); !q.empty(); q.pop()) {
     int n = q.front(), prev = N[n].back;
     rep(i,0,alpha) {
       int &ed = N[n].next[i], y = N[prev].next[i];
       if (ed == -1) ed = y;
        else {
         N[ed].back = y;
          (N[ed].end == -1 ? N[ed].end : backp[N[ed].start])
           = N[y].end;
         N[ed].nmatches += N[y].nmatches;
          q.push (ed);
  vi find(string word) {
    int n = 0;
    vi res; // ll count = 0;
    for (char c : word) {
     n = N[n].next[c - first];
     res.push_back(N[n].end);
     // count \neq= N[n].nmatches;
   return res;
  vector<vi> findAll(vector<string>& pat, string word) {
   vi r = find(word);
   vector<vi> res(sz(word));
    rep(i, 0, sz(word)) {
     int ind = r[i];
     while (ind !=-1) {
       res[i - sz(pat[ind]) + 1].push_back(ind);
        ind = backp[ind];
    return res;
};
```

SuffixAutomaton.h

Description: Computes suffix automaton for a given string. Letters have to be added one by one from left to right. After adding all the letters maybe call markTerminalNodes().

```
Usage: For a string s.
SuffixAutomaton sa(sz(s));
for(auto ch: s) sa.add(ch);
sa.markTerminalNodes()
```

Time: $\mathcal{O}\left(N\right)$ time and $\mathcal{O}\left(N\alpha\right)$ memory. If array is replaced with map $\mathcal{O}\left(N\log\alpha\right)$ time and $\mathcal{O}\left(N\right)$ memory.

```
constexpr short alpha = 26;
constexpr char offset = 'a';
struct state{
   int len, link;
   bool is_terminal;
   array<int, alpha> next;
   state() {
      len = 0; link = -1; is_terminal = false;
      next.fill(0);
   }
};
```

```
struct SuffixAutomaton{
    int n:
    vector<state> sa;
   int sz = 1, last = 0;
   SuffixAutomaton(int n) : n(n), sa(2*n + 1){}
    void add(char ch ) {
        short ch = ch -offset;
       int curr = sz++;
       sa[curr].len = sa[last].len + 1;
       int p = last;
       while(p!=-1 && !sa[p].next[ch]){
            sa[p].next[ch] = curr;
            p = sa[p].link;
       if(p == -1){
            sa[curr].link = 0;
            int q = sa[p].next[ch];
            if(sa[p].len+1 == sa[q].len) {
                sa[curr].link = q;
            }else{
                int clone = sz++;
                sa[clone].len = sa[p].len + 1;
                sa[clone].next = sa[q].next;
                sa[clone].link = sa[q].link;
                while(p!=-1 && sa[p].next[ch] == q){
                    sa[p].next[ch] = clone;
                    p = sa[p].link;
                sa[q].link = sa[curr].link = clone;
        last = curr;
        return;
    void markTerminalNodes(){
       int curr = last;
       while (curr) {
            sa[curr].is terminal = true;
            curr = sa[curr].link;
        return;
};
```

Eertree.k

Description: Computes eartree for a given string. Letters have to be added one by one from left to right. After adding all the letters maybe call computeFrequency().

```
Usage: Let s be the original string and p be the palindrome associated with node u et [u].1 is the length of p et [u].cnt is the number of times p appears as the longest palindrome suffix (not necessarily proper) of a prefix s[0:i]. After calling computeFrequency() is the number of times p appears in s. et [u].1ink is the node corresponding to the longest proper palindrome of p
```

Time: $\mathcal{O}(N)$ time and $\mathcal{O}(N\alpha)$ memory. If array is replaced with map $\mathcal{O}(N\log\alpha)$ time and $\mathcal{O}(N)$ memory.

```
constexpr short alpha = 26;
constexpr char offset = 'a';
struct state{
  int 1, link, cnt;
  array<int,alpha> go;
  state() {
    1 = cnt = 0;
    go.fill(0);
}
```

```
};
struct eertree{
    int n = 2:
    int last = 1;
    vector<state> et;
    string s;
    eertree(){
        et.resize(2);
        et[0].link = et[1].link = 1;
        et[1].1 = -1;
    int palSuff(int x) {
        while(s[sz(s) - 2 - et[x].1] != s.back()) x = et[x].
             link:
        return x;
    int add(char ch) {
        s.pb(ch);
        last = palSuff(last);
        bool new_pal = !et[last].go[ch-offset];
        if (new_pal) {
            et.pb(state());
            et[last].go[ch-offset] = n++;
            et.back().link = et[palSuff(et[last].link)].go[ch-
                 offset];
            et.back().1 = et[last].1 + 2;
            if(et.back().1 == 1) et.back().link = 0;
        last = et[last].go[ch-offset];
        // Do something with last, maybe if new_pal
        et[last].cnt++;
        if(et[last].l == sz(s)) last = et[last].link;
        return new_pal;
    void computeFrequency(){
        for(int i=n-1; i>1; i--)
            et[ et[i].link ].cnt += et[i].cnt;
};
```

$\underline{\text{Various}}$ (10)

10.1 Bitset

- _Find_first() regresa el indice del primer bit encendido.

 Manejar explícitamente cuando no existe
- _Find_next(idx) regresa el menor indice mayor a idx con el bit encendido. Manejar explícitamente cuando no existe
- count() Regresa la cantidad de 1's
- set() Asigna todos los bits a 1
- reset() Asigna todos los bits a 0
- flip()

10.2 Intervals

IntervalCover.h

Description: Compute indices of smallest set of intervals covering another interval. Intervals should be [inclusive, exclusive). To support [inclusive, inclusive], change (A) to add || R.empty(). Returns empty set on failure (or if G is empty).

```
Time: \mathcal{O}(N \log N)
template<class T>
vi cover(pair<T, T> G, vector<pair<T, T>> I) {
  vi S(sz(I)), R;
 iota(all(S), 0);
  sort(all(S), [&](int a, int b) { return I[a] < I[b]; });</pre>
  T cur = G.first:
  int at = 0;
  while (cur < G.second) \{ // (A) \}
   pair<T, int> mx = make_pair(cur, -1);
    while (at < sz(I) && I[S[at]].first <= cur) {</pre>
     mx = max(mx, make_pair(I[S[at]].second, S[at]));
    if (mx.second == -1) return {};
    cur = mx.first;
    R.push_back (mx.second);
  return R;
```

ConstantIntervals.h

Description: Split a monotone function on [from, to) into a minimal set of half-open intervals on which it has the same value. Runs a callback g for

```
Usage: constantIntervals(0, sz(v), [&](int x){return v[x];},
[&] (int lo, int hi, T val) \{\ldots\});
Time: \mathcal{O}\left(k\log\frac{n}{k}\right)
```

```
template<class F, class G, class T>
void rec(int from, int to, F& f, G& g, int& i, T& p, T q) {
 if (p == q) return;
  if (from == to) {
    q(i, to, p);
    i = to; p = q;
    int mid = (from + to) >> 1;
   rec(from, mid, f, q, i, p, f(mid));
   rec(mid+1, to, f, q, i, p, q);
template<class F, class G>
void constantIntervals(int from, int to, F f, G q) {
 if (to <= from) return;</pre>
  int i = from; auto p = f(i), q = f(to-1);
 rec(from, to-1, f, q, i, p, q);
 g(i, to, q);
```

10.3 Misc. algorithms

TernarySearch.h

Description: Find the smallest i in [a,b] that maximizes f(i), assuming that $f(a) < \ldots < f(i) > \cdots > f(b)$. To reverse which of the sides allows non-strict inequalities, change the < marked with (A) to <=, and reverse the loop at (B). To minimize f, change it to >, also at (B).

```
Usage: int ind = ternSearch(0, n-1, [&](int i){return a[i];});
Time: \mathcal{O}(\log(b-a))
                                                                    11 lines
```

```
template<class F>
int ternSearch(int a, int b, F f) {
  assert (a <= b);
  while (b - a >= 5) {
   int mid = (a + b) / 2;
   if (f(mid) < f(mid+1)) a = mid; //(A)
   else b = mid+1;
  rep(i,a+1,b+1) if (f(a) < f(i)) a = i; // (B)
  return a;
```

LIS.h

Description: Compute indices for the longest increasing subsequence. Time: $\mathcal{O}\left(N\log N\right)$ 17 lines

```
template < class I > vi lis (const vector < I > & S) {
 if (S.empty()) return {};
 vi prev(sz(S));
 typedef pair<I, int> p;
 vector res;
 rep(i, 0, sz(S)) {
   // change 0 \rightarrow i for longest non-decreasing subsequence
   auto it = lower_bound(all(res), p{S[i], 0});
   if (it == res.end()) res.emplace back(), it = res.end()-1;
   *it = {S[i], i};
   prev[i] = it == res.begin() ? 0 : (it-1) -> second;
 int L = sz(res), cur = res.back().second;
 vi ans(L);
 while (L--) ans[L] = cur, cur = prev[cur];
 return ans;
```

FastKnapsack.h

Description: Given N non-negative integer weights w and a non-negative target t, computes the maximum S <= t such that S is the sum of some subset of the weights.

Time: $\mathcal{O}(N \max(w_i))$

```
16 lines
int knapsack(vi w, int t) {
 int a = 0, b = 0, x;
 while (b < sz(w) && a + w[b] <= t) a += w[b++];
 if (b == sz(w)) return a;
 int m = *max_element(all(w));
 vi u, v(2*m, -1);
 v[a+m-t] = b;
 rep(i,b,sz(w)) {
   rep(x, 0, m) \ v[x+w[i]] = max(v[x+w[i]], u[x]);
   for (x = 2*m; --x > m;) rep(j, max(0,u[x]), v[x])
     v[x-w[j]] = max(v[x-w[j]], j);
 for (a = t; v[a+m-t] < 0; a--);</pre>
 return a;
```

10.4 Dynamic programming

KnuthDP.h

Description: When doing DP on intervals: $a[i][j] = \min_{i < k < j} (a[i][k] + a[i][k])$ a[k][i] + f(i,i), where the (minimal) optimal k increases with both i and j, one can solve intervals in increasing order of length, and search k = p[i][j] for a[i][j] only between p[i][j-1] and p[i+1][j]. This is known as Knuth DP. Sufficient criteria for this are if $f(b,c) \leq f(a,d)$ and $f(a,c) + f(b,d) \le f(a,d) + f(b,c)$ for all $a \le b \le c \le d$. Consider also: LineContainer (ch. Data structures), monotone queues, ternary search, Time: $\mathcal{O}(N^2)$

DivideAndConquerDP.h

Description: Given $a[i] = \min_{lo(i) \leq k < hi(i)} (f(i, k))$ where the (minimal) optimal k increases with i, computes $\bar{a}[i]$ for i = L..R - 1. Time: $\mathcal{O}((N + (hi - lo)) \log N)$

```
struct DP { // Modify at will:
 int lo(int ind) { return 0; }
 int hi(int ind) { return ind; }
 11 f(int ind, int k) { return dp[ind][k]; }
 void store(int ind, int k, ll v) { res[ind] = pii(k, v); }
```

```
void rec(int L, int R, int LO, int HI) {
  if (L >= R) return;
  int mid = (L + R) \gg 1;
  pair<11, int> best (LLONG_MAX, LO);
  rep(k, max(LO,lo(mid)), min(HI,hi(mid)))
    best = min(best, make_pair(f(mid, k), k));
  store(mid, best.second, best.first);
  rec(L, mid, LO, best.second+1);
  rec(mid+1, R, best.second, HI);
void solve(int L, int R) { rec(L, R, INT_MIN, INT_MAX); }
```

Debugging tricks

- signal(SIGSEGV, [](int) { _Exit(0); }); converts segfaults into Wrong Answers. Similarly one can catch SIGABRT (assertion failures) and SIGFPE (zero divisions). _GLIBCXX_DEBUG failures generate SIGABRT (or SIGSEGV on gcc 5.4.0 apparently).
- feenableexcept (29); kills the program on NaNs (1), 0-divs (4), infinities (8) and denormals (16).

10.6 Optimization tricks

__builtin_ia32_ldmxcsr(40896); disables denormals (which make floats 20x slower near their minimum value).

10.6.1 Bit hacks

- x & -x is the least bit in x.
- for (int x = m; x;) { --x &= m; ... } loops over all subset masks of m (except m itself).
- c = x&-x, r = x+c; $(((r^x) >> 2)/c) | r$ is the next number after x with the same number of bits set.
- rep(b, 0, K) rep(i, 0, (1 << K)) if (i & 1 << b) $D[i] += D[i^(1 << b)];$ computes all sums of subsets.

10.6.2 Pragmas

- #pragma GCC optimize ("Ofast") will make GCC auto-vectorize loops and optimizes floating points better.
- #pragma GCC target ("avx2") can double performance of vectorized code, but causes crashes on old machines.
- #pragma GCC optimize ("trapv") kills the program on integer overflows (but is really slow).

FastMod.h

Description: Compute a%b about 5 times faster than usual, where b is constant but not known at compile time. Returns a value congruent to a \pmod{b} in the range [0, 2b).

```
typedef unsigned long long ull;
struct FastMod {
 ull b, m;
 FastMod(ull b) : b(b), m(-1ULL / b) {}
```

};

ull reduce(ull a) { // a % b + (0 or b)

return a - (ull) ((__uint128_t(m) * a) >> 64) * b;

FastInput BumpAllocator SmallPtr BumpAllocatorSTL

```
FastInput.h
Description: Read an integer from stdin. Usage requires your program to
pipe in input from file.
Usage: ./a.out < input.txt</pre>
Time: About 5x as fast as cin/scanf.
                                                              17 lines
inline char gc() { // like getchar()
  static char buf[1 << 16];</pre>
  static size t bc, be;
  if (bc >= be) {
   buf[0] = 0, bc = 0;
   be = fread(buf, 1, sizeof(buf), stdin);
  return buf[bc++]; // returns 0 on EOF
int readInt() {
 int a, c;
 while ((a = gc()) < 40);
  if (a == '-') return -readInt();
  while ((c = gc()) >= 48) a = a * 10 + c - 480;
  return a - 48;
```

BumpAllocator.h

Description: When you need to dynamically allocate many objects and don't care about freeing them. "new X" otherwise has an overhead of something like 0.05us + 16 bytes per allocation.

```
// Either globally or in a single class:
static char buf[450 << 20];
void* operator new(size_t s) {
  static size_t i = sizeof buf;
  assert(s < i);
  return (void*) &buf[i -= s];
void operator delete(void*) {}
```

SmallPtr.h

Description: A 32-bit pointer that points into BumpAllocator memory.

```
"BumpAllocator.h"
template < class T > struct ptr {
  unsigned ind:
  ptr(T*p = 0) : ind(p ? unsigned((char*)p - buf) : 0) {
    assert (ind < sizeof buf);
  T& operator*() const { return *(T*)(buf + ind); }
  T* operator->() const { return &**this; }
  T& operator[](int a) const { return (&**this)[a]; }
 explicit operator bool() const { return ind; }
```

BumpAllocatorSTL.h

```
Description: BumpAllocator for STL containers.
```

```
Usage: vector<vector<int, small<int>>> ed(N);
```

```
14 lines
char buf[450 << 20] alignas(16);</pre>
size_t buf_ind = sizeof buf;
template < class T > struct small {
 typedef T value_type;
  small() {}
  template < class U > small(const U&) {}
  T* allocate(size t n) {
```

```
buf_ind -= n * sizeof(T);
  buf ind \&= 0 - alignof(T);
  return (T*) (buf + buf ind);
void deallocate(T*, size_t) {}
```

10.7 Theory

10.7.1 Problemas de Fluio

Mínimo corte: El valor del mínimo corte es igual al del máximo flujo. Corriendo máximo flujo recupera un mínimo corte como el conjunto de los nodos alcanzables desde s en la red residual, y su complemento.

Mínimo costo, cualquier flujo: Correr mincost-flow, terminar cuando el camino aumentante sea no negativo.

Flujo con cotas inferiores/demandas: Sea

 $\overline{D = \sum_{(u \to v) \in E} d(u \to v)}$ la suma de todas las demandas en G = (V, E). Construir nueva red G', con nuevos source y sink s' y t'. Para cada $v \in V$ hacer capacidad $c'(s' \to v) = \sum_{u \in V} d(u \to v)$ (demandas que le entran) y $c'(v \to t') = \sum_{u \in v} d(v \to u)$ (demandas que le salen). Para cada $(u \to v) \in E$, $c'(u \to v) = c(u \to v) - d(u \to v)$. Además, $c'(t \to s) = \infty$. Existe un flujo válido ssi el maximo flujo en G' es D.

Para máximo flujo valido, hacer otra red: este es el flujo va mandado por las demandas, sumado al flujo en otra red G". Si G' mandó $f'(u \to v)$ de flujo con $(u \to v) \in E$, poner $c''(u \to v) = c(u \to v) - f'(u \to v)$, y en el reverso $c''(v \to u) = f'(u \to v) - d(u \to v)$, y resolver en esta red. Para mínimo costo, se debió correr G' con mincost-flow, para preservar que no hava ciclos negativos, y también hay que agregarle costo infinito a la arista auxiliar $(t \to s)$.

Max-weight closure: Dado G con pesos w en nodos encontrar un subconjunto $V' \subseteq V$ cerrado (si algo de V' alcanza un nodo, este también está en V') de máximo costo. Si w(u) > 0 se agrega $s \to u$ con capacidad w(u), de otra manera, $u \to t$ con -w(u). Para todo $(u \to v) \in E$ agregar $c(u \to v) = \infty$. El w(V') óptimo es la suma de todo w(u) > 0 menos el minimo corte. Recuperar V' como los nodos del lado de s en el mincut.

Dilworth (máxima anticadena, cubrir poset con min. num. cadenas): Dado un poset, una cadena es un conjunto en el que cualquier par es comparable, y una anticadena es tal que ninguno lo es. El tamaño de la máxima anticadena es igual al mínimo número de cadenas para particionar al poset, y este valor se define como la longitud del poset.

Duplicar nodos. Si u < v agregar $u \to n + v$. Esto hace un grafo bipartito, y la longitud del poset es n menos el máximo matching. Las aristas tomadas son aristas en las cadenas.

Si C es un vertex cover de cardinalidad máxima en este bipartito (veáse Konig), los nodos que **no** están presentes en C (en ninguna de sus dos versiones) son una anticadena máxima.

Cubrir DAG en min. num. caminos: Hacer un grafo bipartito como el del punto anterior y correr matching, si los caminos son disjuntos en vértices. Si son disjuntos en aristas, hacer la cerradura transitiva (es un poset) antes de calcular el matching.

Teorema de Mirsky: Dual de Dilworth. La cardinalidad máxima de una cadena es igual al mínimo número de anticadenas para cubrir a un poset.

Grafos bipartitos

Konig's theorem: En un grafo bipartito la cardinalidad del maximum matching es igual a la cardinalidad del minimum vertex cover (conjunto de vertices que incluye al menos un extremo de cada arista).

- Construcción con flujo: Sean A, B las dos partes. Para $a \in A$, agregar $c(s \to a) = 1$, para $b \in B$, $c(b \to t) = 1$. Si $(a \to b) \in E$ agregar $c(a \to b) = \infty$. El matching máximo, de tamaño |M| corresponde a las aristas $a \to b$ tomadas por el máximo flujo. Sea (S,T) un mínimo corte v $A = A_S \cup A_T$, $B = B_S \cup B_T$ de acuerdo a que lado están del corte. Entonces el corte tiene tamaño $|A_T| + |B_S| = |M|$ y $A_T \cup B_S$ es un vertex cover mínimo.
- ullet Construcción con Kuhn: En el arreglo M queda almacenado el matching. M[i] es el indice del conjunto Lcon el que el nodo i de R esta matcheado o -1 si no esta con ninguno.
- Max. Indep. Set: Tomar los nodos no tomados en el Máx. Vertex Cover.
- Max Clique: Construir la red del complemento de G y tomar Max. Indep. Set.
- Min. Edge Cover: Aristas del matching, más para los 10.7.2 odoStringsnados en el matching, tomar cualquier arista.
 - ullet Una strings S tiene a lo más N palíndromos distintos
 - \bullet En una string aleatoria S la cantidad esperada de palíndromos distintos es $O(\sqrt{N\sigma})$

29

- Sea S una string de longitud N y T una string de longitud minima tal que $S = T + T + \cdots + T$. Si consideramos $k = N \pi[N]$ –donde $\pi[N]$ se obtiene con KMP– tenemos lo siguiente, si k divide a N se cumple que T = S[1:k] si no necesariamente T = S.
- Pensar el suffix tree como un Aho Corasick comprimido de todos los sufijos de una string y creer en la template

Suffix Automaton

- Es un DAG
- Los caminos del nodo inicial a uno terminal corresponden a sufijos
- Cada nodo representa una clase de equivalencia que contiene las strings que tienen el mismo conjunto **endpos** (el conjunto de posiciones donde terminan). Para el nodo u, su conjunto **endpos** contiene strings de longitudes consecutivas siendo u.len la mas grande y u.link.len + 1 la mas corta. Lo anterior se puede pensar como que el link lleva al siguiente conjunto de strings mas cortas consecutivas, además, existe un camino del nodo inicial a u para toda longitud en [u.link.len + 1, u.len].
- Los suffix links inducen un árbol
- El orden topologico se debe obtener como en un DAG general

Eertree

- Recorrer de N a 2 da un orden topologico, tener cuidado con los nodos 0 y 1 porque son strings vacias
- Los nodos de strings de longitud par inducen un arbol con los links, tambien los impares
- Podemos pensarlo como un DAG donde $u \to v$ si v se obtiene como c+u+c para algun caracter $c; aba \to cabac$.