### PROBLEMAS DE ALTA COMPLEJIDAD

### Dr. Flabio Gutierrez

flabiogs@yahoo.es

https://flabiogutierrez.wordpress.com/

### a. Búsquedas por Internet



### b) Planificador de rutas



#### Mito:

La capacidad de computación es ilimitada, ¿por qué preocuparse de la eficiencia si siempre podemos encontrar un sistema más potente?

Además está la Ley de Moore

# 1.- EL PROBLEMA DE AGENTE VIAJERO TRAVELING SALESMAN PROBLEM (TSP)



## 1.- EL PROBLEMA DE AGENTE VIAJERO TRAVELING SALESMAN PROBLEM (TSP)

Sea n= número de ciudades

Para n=7, hay 7! = 5040 posibles rutas (permutaciones) posibles.

Para n=10, hay 10! = 3 628 800 rutas posibles.

Para n=12, hay 12! = 479 001 600 rutas posibles.

Para n=20 hay 2432 9020 0817 6640 000 rutas posibles.

Explorando 10000 permutaciones por segundo, una búsqueda exhaustiva demandaría un tiempo estimado de:

| n  | Rutas                   | Tiempo estimado                                                    |
|----|-------------------------|--------------------------------------------------------------------|
| 7  | 5040                    | 0.504                                                              |
| 10 | 3 628 800               | 362.88 aprox 6.048 minutos                                         |
| 12 | 479 001 600             | 47 900.2 = 798.333 minutos<br>13.3055 horas                        |
| 20 | 2432 9020 0817 6640 000 | 243290200817664 segundos<br>4.05484xE10 minutos<br>7.82183xE6 años |

## 1.- EL PROBLEMA DE AGENTE VIAJERO TRAVELING SALESMAN PROBLEM (TSP)

#### Aplicaciones

El camino más corto entre varios puntos,

- Un plan de mínimo coste para repartir mercancías a clientes,
- Una asignación óptima de trabajadores a tareas a realizar,
- Una secuencia óptima de proceso de trabajos en una cadena de producción,
- Una distribución de tripulaciones de aviones con mínimo coste,
- El mejor enrutamiento de un paquete de datos en Internet





# 2.- EL PROBLEMA DEL RUTEO DE VEHÍCULOS VEHICLE ROUTING PROBLEM (VRP)











| Tiempo de<br>Procesamiento |   |   |   | Secu       | Secuencia de Máquinas |        |       |  |
|----------------------------|---|---|---|------------|-----------------------|--------|-------|--|
| Operaciones                |   |   |   |            | Op                    | eracio | nes   |  |
| Job                        | 1 | 2 | 3 | Job        | 1                     | 2      | 3     |  |
| <i>j</i> 1                 | 3 | 3 | 2 | $j_1$      | $m_1$                 | $m_2$  | $m_3$ |  |
| $\dot{J}_2$                | 1 | 5 | 3 | $j_2$      | $m_1$                 | $m_3$  | $m_2$ |  |
| Ĵз                         | 3 | 2 | 3 | <i>j</i> 3 | $m_2$                 | $m_1$  | $m_3$ |  |

Ejemplo de un problema de tres jobs y tres máquinas.

Objetivo: Minimizar el tiempo total de proceso (makespan)



Un schedule factible.

El JSSP (secuenciación de tareas) consta básicamente de un conjunto de trabajos, donde cada uno tiene un conjunto de operaciones a ser procesadas en un conjunto de recursos, llamadas máquinas.

Dichas operaciones tienen un orden y un tiempo de procesamiento en cada una de las máquinas y este no es modificable.

Cada máquina puede procesar a lo mucho un trabajo en un tiempo y una vez que un trabajo ha iniciado sobre una máquina se debe completar su procesamiento sobre esa máquina por un tiempo ininterrumpido

El objetivo es encontrar un plan de trabajo (calendario) que cumpla con las restricciones del problema y que concluya todas las operaciones de los trabajos en el menor tiempo posible (función objetivo)

Se debe miminimizar el makespan, que es el tiempo en completar todos los trabajos, es decir, la longitud del calendario desde que empieza a ejecutarse el primer trabajo hasta que finaliza el último trabajo.

El PJSS son combinatorios y se caracterizan por pertenecer a la clase NP-Duro,

Los problemas de planificación o programación de tareas aparecen constantemente en el mundo real.

- Dichos problemas se utilizan en una amplia gama de aplicaciones diversas como:
- En las líneas de producción de una fábrica.
- En los hospitales para atender a los pacientes.
- En los aeropuertos para despachar los vuelos.
- En las escuelas para distribuir las actividades de los alumnos y profesores.
- En un taller, para decidir qué equipo es reparado primero o bien la secuencia de la reparación, etc.
- El PJSS es un problema que se caracteriza por pertenecer a la clase NP-Duro,

Para probar un algoritmo que resuelva el PJSS se puede usar la familia de instancias del problema de Job Shop Scheduling conocidas como instancias de Lawrence (LA) (S. R. Lawrence,1984).

Consta de 40 problemas de 8 diferentes tamaños propuestos (M. Ventresca and B. M. Ombuki,2004):

| 10 x 5  |  |  |  |  |  |  |
|---------|--|--|--|--|--|--|
| 15 x 5  |  |  |  |  |  |  |
| 20 x 5  |  |  |  |  |  |  |
| 10 x 10 |  |  |  |  |  |  |
| 15 x 10 |  |  |  |  |  |  |
| 20 x 10 |  |  |  |  |  |  |
| 30 x 10 |  |  |  |  |  |  |
| 15 x 15 |  |  |  |  |  |  |

LA (D. Applegate y W. Cook,1991) es una de las familias más comúnmente utilizadas para probar el desempeño de JSP. Cada instancia se compone de una fila de descripción y varias filas con valores enteros. Cada fila de valores enteros corresponde a un trabajo. El trabajo es un conjunto de parejas conocido como operaciones, la pareja es integrada por el número de la máquina y tiempo de procesamiento en dicha máquina.

| Instancia | Татайо  |
|-----------|---------|
| LA01      |         |
| LA02      |         |
| LA03      | 10 x 5  |
| LA04      |         |
| LA05      |         |
| LA06      |         |
| LA07      |         |
| LA08      | 15 x 5  |
| LA09      |         |
| LA10      |         |
| LA11      |         |
| LA12      |         |
| LA13      | 20 x 5  |
| LA14      |         |
| LA15      |         |
| LA16      |         |
| LA17      |         |
| LA18      | 10x 10  |
| LA19      |         |
| LA20      |         |
| LA21      |         |
| LA22      | 15 x 10 |
| LA23      |         |
| LA24      |         |
| LA25      |         |
| LA26      |         |
| LA27      |         |
| LA28      | 20 x 10 |
| LA29      |         |
| LA30      |         |
| LA31      |         |
| LA32      | 20. 15  |
| LA33      | 30 x 10 |
| LA34      |         |
| LA35      |         |
| LA36      |         |
| LA37      |         |
| LA38      | 15 x 15 |
| LA39      |         |
| LA40      |         |

#### Ejemplo: en el artículo

Flórez, E., Díaz, N., Gómez, W., Bautista, L., & Delgado, D. (2018). Evaluación de algoritmos bioinspirados para la solución del problema de planificación de trabajos. *I*+ *D Revista de Investigaciones*, *11*(1), 142-155.

#### Presentan:

Un Algoritmo Colonia de Hormigas Elitista (EAS) y un algoritmo de Selección Clonal (CLONALG) para resolver el PJSS y se evalúan en las instancias de Lawrence

Se observa los resultados en cada instancia de Lawrence, se listan el mejor makespan *Cmax* obtenido por cada algoritmo, el error relativo frente al makespan de la mejor solución conocida (Best Known Solution, BKS)

|           | Tamaño  | BKS  | EAS              |                     | CLONALG |                     |
|-----------|---------|------|------------------|---------------------|---------|---------------------|
| Instancia |         |      | C <sub>max</sub> | Error<br>relativo % | Cmax    | Error<br>relativo % |
| LA01      |         | 666  | 666              | 0,00                | 666     | 0,00                |
| LA02      |         | 655  | 669              | 2,14                | 655     | 0,00                |
| LA03      | 10 x 5  | 597  | 617              | 3,35                | 603     | 1,01                |
| LA04      |         | 590  | 595              | 0,85                | 590     | 0,00                |
| LA05      |         | 593  | 593              | 0,00                | 593     | 0,00                |
| LA06      |         | 926  | 926              | 0,00                | 926     | 0,00                |
| LA07      |         | 890  | 890              | 0,00                | 890     | 0,00                |
| LA08      | 15 x 5  | 863  | 863              | 0,00                | 863     | 0,00                |
| LA09      |         | 951  | 951              | 0,00                | 951     | 0,00                |
| LA10      |         | 958  | 958              | 0,00                | 958     | 0,00                |
| LA11      |         | 1222 | 1222             | 0,00                | 1222    | 0,00                |
| LA12      |         | 1039 | 1039             | 0,00                | 1039    | 0,00                |
| LA13      | 20 x 5  | 1150 | 1150             | 0,00                | 1150    | 0,00                |
| LA14      |         | 1292 | 1292             | 0,00                | 1292    | 0,00                |
| LA15      |         | 1207 | 1212             | 0,41                | 1207    | 0,00                |
| LA16      |         | 945  | 996              | 5,40                | 946     | 0,11                |
| LA17      |         | 784  | 812              | 3,57                | 784     | 0,00                |
| LA18      | 10x 10  | 848  | 885              | 4,36                | 848     | 0,00                |
| LA19      |         | 842  | 873              | 3,68                | 851     | 1,07                |
| LA20      |         | 902  | 912              | 1,11                | 907     | 0,55                |
| LA21      |         | 1046 | 1107             | 5,83                | 1102    | 5,35                |
| LA22      | 15 x 10 | 927  | 995              | 7,34                | 974     | 5,07                |
| LA23      | 13 x 10 | 1032 | 1049             | 1,65                | 1033    | 0,10                |
| LA24      |         | 935  | 1008             | 7,81                | 987     | 5,56                |
| LA25      | ĺ       | 977  | 1062             | 8,70                | 1028    | 5,22                |
| LA26      |         | 1218 | 1296             | 6,40                | 1297    | 6,49                |
| LA27      |         | 1235 | 1349             | 9,23                | 1342    | 8,66                |
| LA28      | 20 x 10 | 1216 | 1322             | 8,72                | 1308    | 7,57                |
| LA29      |         | 1157 | 1331             | 15,04               | 1286    | 11,15               |
| LA30      |         | 1355 | 1410             | 4,06                | 1414    | 4,35                |
| LA31      |         | 1784 | 1784             | 0,00                | 1784    | 0,00                |
| LA32      |         | 1850 | 1860             | 0,54                | 1884    | 1,84                |
| LA33      | 30 x 10 | 1719 | 1731             | 0,70                | 1723    | 0,23                |
| LA34      |         | 1721 | 1778             | 3,31                | 1804    | 4,82                |
| LA35      |         | 1888 | 1902             | 0,74                | 1918    | 1,59                |
| LA36      |         | 1268 | 1396             | 10,09               | 1352    | 6,62                |
| LA37      |         | 1397 | 1517             | 8,59                | 1508    | 7,95                |
| LA38      | 15 x 15 | 1196 | 1315             | 9,95                | 1330    | 11,20               |
| LA39      |         | 1233 | 1304             | 5,76                | 1331    | 7,95                |
| LA40      |         | 1222 | 1300             | 6,38                | 1338    | 9,49                |

Comportamiento de los Makespan de los algoritmos para el JSP (Best Known Solution [BKS], Algoritmo Colonia de Hormigas Elitista [EAS], Algoritmo de Selección Clonal [CLONALG])



|           |         |      | 1    | EAS        |      | CLONALG    |  |
|-----------|---------|------|------|------------|------|------------|--|
| Instancia | Tamaño  | BKS  |      | Error      |      | Free       |  |
|           |         |      | Cmax | relativo % | Cmax | relativo % |  |
| LA01      |         | 666  | 666  | 0,00       | 666  | 0,00       |  |
| LA02      | 1       | 655  | 669  | 2,14       | 655  | 0,00       |  |
| LA03      | 10 x 5  | 597  | 617  | 3,35       | 603  | 1,01       |  |
| LA04      |         | 590  | 595  | 0,85       | 590  | 0,00       |  |
| LA05      | 1       | 593  | 593  | 0,00       | 593  | 0,00       |  |
| LA06      |         | 926  | 926  | 0,00       | 926  | 0,00       |  |
| LA07      | 1       | 890  | 890  | 0,00       | 890  | 0,00       |  |
| LA08      | 15 x 5  | 863  | 863  | 0,00       | 863  | 0,00       |  |
| LA09      | ]       | 951  | 951  | 0,00       | 951  | 0,00       |  |
| LA10      |         | 958  | 958  | 0,00       | 958  | 0,00       |  |
| LA11      |         | 1222 | 1222 | 0,00       | 1222 | 0,00       |  |
| LA12      | 1       | 1039 | 1039 | 0,00       | 1039 | 0,00       |  |
| LA13      | 20 x 5  | 1150 | 1150 | 0,00       | 1150 | 0,00       |  |
| LA14      | ]       | 1292 | 1292 | 0,00       | 1292 | 0,00       |  |
| LA15      | 1       | 1207 | 1212 | 0,41       | 1207 | 0,00       |  |
| LA16      |         | 945  | 996  | 5,40       | 946  | 0,11       |  |
| LA17      | 1       | 784  | 812  | 3,57       | 784  | 0,00       |  |
| LA18      | 10x 10  | 848  | 885  | 4,36       | 848  | 0,00       |  |
| LA19      | 1       | 842  | 873  | 3,68       | 851  | 1,07       |  |
| LA20      | 1       | 902  | 912  | 1,11       | 907  | 0,55       |  |
| LA21      |         | 1046 | 1107 | 5,83       | 1102 | 5,35       |  |
| LA22      | 15 x 10 | 927  | 995  | 7,34       | 974  | 5,07       |  |
| LA23      | 13 x 10 | 1032 | 1049 | 1,65       | 1033 | 0,10       |  |
| LA24      | 1       | 935  | 1008 | 7,81       | 987  | 5,56       |  |
| LA25      | ĺ       | 977  | 1062 | 8,70       | 1028 | 5,22       |  |
| LA26      |         | 1218 | 1296 | 6,40       | 1297 | 6,49       |  |
| LA27      | 1       | 1235 | 1349 | 9,23       | 1342 | 8,66       |  |
| LA28      | 20 x 10 | 1216 | 1322 | 8,72       | 1308 | 7,57       |  |
| LA29      | 1       | 1157 | 1331 | 15,04      | 1286 | 11,15      |  |
| LA30      | 1       | 1355 | 1410 | 4,06       | 1414 | 4,35       |  |
| LA31      |         | 1784 | 1784 | 0,00       | 1784 | 0,00       |  |
| LA32      | 1       | 1850 | 1860 | 0,54       | 1884 | 1,84       |  |
| LA33      | 30 x 10 | 1719 | 1731 | 0,70       | 1723 | 0,23       |  |
| LA34      | 1       | 1721 | 1778 | 3,31       | 1804 | 4,82       |  |
| LA35      | 1       | 1888 | 1902 | 0,74       | 1918 | 1,59       |  |
| LA36      |         | 1268 | 1396 | 10,09      | 1352 | 6,62       |  |
| LA37      | 1       | 1397 | 1517 | 8,59       | 1508 | 7,95       |  |
| LA38      | 15 x 15 | 1196 | 1315 | 9,95       | 1330 | 11,20      |  |
| LA39      | 1       | 1233 | 1304 | 5,76       | 1331 | 7,95       |  |
| LA40      | 1       | 1222 | 1300 | 6,38       | 1338 | 9,49       |  |

Comportamiento del error relativo para las instancias de Lawrence (Algoritmo Colonia de Hormigas Elitista [EAS], Algoritmo de Selección Clonal [CLONALG])

Se observa que conforme las instancias son más grandes y de mayor complejidad los errores crecen en la mayoría de los casos haciendo una excepción en la instancia 23 y el rango de la 30 a la 35, este comportamiento es similar en los 2 algoritmos,



|           |         |      | , ,  |                     |                  |                     |  |
|-----------|---------|------|------|---------------------|------------------|---------------------|--|
|           | Tamaño  | BKS  |      | EAS                 | CLONALG          |                     |  |
| Instancia |         |      | Cmax | Error<br>relativo % | C <sub>max</sub> | Error<br>relativo % |  |
| LA01      |         | 666  | 666  | 0,00                | 666              | 0,00                |  |
| LA02      |         | 655  | 669  | 2,14                | 655              | 0,00                |  |
| LA03      | 10 x 5  | 597  | 617  | 3,35                | 603              | 1,01                |  |
| LA04      |         | 590  | 595  | 0,85                | 590              | 0,00                |  |
| LA05      |         | 593  | 593  | 0,00                | 593              | 0,00                |  |
| LA06      |         | 926  | 926  | 0,00                | 926              | 0,00                |  |
| LA07      |         | 890  | 890  | 0,00                | 890              | 0,00                |  |
| LA08      | 15 x 5  | 863  | 863  | 0,00                | 863              | 0,00                |  |
| LA09      |         | 951  | 951  | 0,00                | 951              | 0,00                |  |
| LA10      |         | 958  | 958  | 0,00                | 958              | 0,00                |  |
| LA11      |         | 1222 | 1222 | 0,00                | 1222             | 0,00                |  |
| LA12      |         | 1039 | 1039 | 0,00                | 1039             | 0,00                |  |
| LA13      | 20 x 5  | 1150 | 1150 | 0,00                | 1150             | 0,00                |  |
| LA14      |         | 1292 | 1292 | 0,00                | 1292             | 0,00                |  |
| LA15      |         | 1207 | 1212 | 0,41                | 1207             | 0,00                |  |
| LA16      |         | 945  | 996  | 5,40                | 946              | 0,11                |  |
| LA17      |         | 784  | 812  | 3,57                | 784              | 0,00                |  |
| LA18      | 10x 10  | 848  | 885  | 4,36                | 848              | 0,00                |  |
| LA19      |         | 842  | 873  | 3,68                | 851              | 1,07                |  |
| LA20      |         | 902  | 912  | 1,11                | 907              | 0,55                |  |
| LA21      |         | 1046 | 1107 | 5,83                | 1102             | 5,35                |  |
| LA22      | 15 x 10 | 927  | 995  | 7,34                | 974              | 5,07                |  |
| LA23      | 13 X 10 | 1032 | 1049 | 1,65                | 1033             | 0,10                |  |
| LA24      |         | 935  | 1008 | 7,81                | 987              | 5,56                |  |
| LA25      |         | 977  | 1062 | 8,70                | 1028             | 5,22                |  |
| LA26      |         | 1218 | 1296 | 6,40                | 1297             | 6,49                |  |
| LA27      |         | 1235 | 1349 | 9,23                | 1342             | 8,66                |  |
| LA28      | 20 x 10 | 1216 | 1322 | 8,72                | 1308             | 7,57                |  |
| LA29      |         | 1157 | 1331 | 15,04               | 1286             | 11,15               |  |
| LA30      |         | 1355 | 1410 | 4,06                | 1414             | 4,35                |  |
| LA31      |         | 1784 | 1784 | 0,00                | 1784             | 0,00                |  |
| LA32      |         | 1850 | 1860 | 0,54                | 1884             | 1,84                |  |
| LA33      | 30 x 10 | 1719 | 1731 | 0,70                | 1723             | 0,23                |  |
| LA34      |         | 1721 | 1778 | 3,31                | 1804             | 4,82                |  |
| LA35      |         | 1888 | 1902 | 0,74                | 1918             | 1,59                |  |
| LA36      |         | 1268 | 1396 | 10,09               | 1352             | 6,62                |  |
| LA37      |         | 1397 | 1517 | 8,59                | 1508             | 7,95                |  |
| LA38      | 15 x 15 | 1196 | 1315 | 9,95                | 1330             | 11,20               |  |
| LA39      |         | 1233 | 1304 | 5,76                | 1331             | 7,95                |  |
| LA40      |         | 1222 | 1300 | 6,38                | 1338             | 9,49                |  |

Representación del error relativo vs tamaño de las instancias para cada algoritmo en el JSP (Algoritmo Colonia de Hormigas Elitista [EAS], Algoritmo de Selección Clonal [CLONALG])

Es interesante observar que aunque en la mayoría de tamaños el mejor rendimiento lo obtuvo el algoritmo CLONALG para el caso de las instancias de mayor tamaño (30x10 y 15X15) presenta un mejor desempeño el algoritmo EAS.



|           |         | BKS  | EAS  |                     | CLONALG          |                     |
|-----------|---------|------|------|---------------------|------------------|---------------------|
| Instancia | Татайо  |      | Cmax | Error<br>relativo % | C <sub>max</sub> | Error<br>relativo % |
| LA01      |         | 666  | 666  | 0,00                | 666              | 0,00                |
| LA02      |         | 655  | 669  | 2,14                | 655              | 0,00                |
| LA03      | 10 x 5  | 597  | 617  | 3,35                | 603              | 1,01                |
| LA04      | Г       | 590  | 595  | 0,85                | 590              | 0,00                |
| LA05      | Г       | 593  | 593  | 0,00                | 593              | 0,00                |
| LA06      |         | 926  | 926  | 0,00                | 926              | 0,00                |
| LA07      |         | 890  | 890  | 0,00                | 890              | 0,00                |
| LA08      | 15 x 5  | 863  | 863  | 0,00                | 863              | 0,00                |
| LA09      |         | 951  | 951  | 0,00                | 951              | 0,00                |
| LA10      |         | 958  | 958  | 0,00                | 958              | 0,00                |
| LA11      |         | 1222 | 1222 | 0,00                | 1222             | 0,00                |
| LA12      | ı       | 1039 | 1039 | 0,00                | 1039             | 0,00                |
| LA13      | 20 x 5  | 1150 | 1150 | 0,00                | 1150             | 0,00                |
| LA14      | ı       | 1292 | 1292 | 0,00                | 1292             | 0,00                |
| LA15      |         | 1207 | 1212 | 0,41                | 1207             | 0,00                |
| LA16      |         | 945  | 996  | 5,40                | 946              | 0,11                |
| LA17      | ı       | 784  | 812  | 3,57                | 784              | 0,00                |
| LA18      | 10x 10  | 848  | 885  | 4,36                | 848              | 0,00                |
| LA19      | - 1     | 842  | 873  | 3,68                | 851              | 1,07                |
| LA20      |         | 902  | 912  | 1,11                | 907              | 0,55                |
| LA21      |         | 1046 | 1107 | 5,83                | 1102             | 5,35                |
| LA22      | 15 10   | 927  | 995  | 7,34                | 974              | 5,07                |
| LA23      | 15 x 10 | 1032 | 1049 | 1,65                | 1033             | 0,10                |
| LA24      | ı       | 935  | 1008 | 7,81                | 987              | 5,56                |
| LA25      | İ       | 977  | 1062 | 8,70                | 1028             | 5,22                |
| LA26      |         | 1218 | 1296 | 6,40                | 1297             | 6,49                |
| LA27      | T I     | 1235 | 1349 | 9,23                | 1342             | 8,66                |
| LA28      | 20 x 10 | 1216 | 1322 | 8,72                | 1308             | 7,57                |
| LA29      | T I     | 1157 | 1331 | 15,04               | 1286             | 11,15               |
| LA30      | T I     | 1355 | 1410 | 4,06                | 1414             | 4,35                |
| LA31      |         | 1784 | 1784 | 0,00                | 1784             | 0,00                |
| LA32      | ı       | 1850 | 1860 | 0,54                | 1884             | 1,84                |
| LA33      | 30 x 10 | 1719 | 1731 | 0,70                | 1723             | 0,23                |
| LA34      | ŀ       | 1721 | 1778 | 3,31                | 1804             | 4,82                |
| LA35      | ŀ       | 1888 | 1902 | 0,74                | 1918             | 1,59                |
| LA36      |         | 1268 | 1396 | 10,09               | 1352             | 6,62                |
| LA37      | F       | 1397 | 1517 | 8,59                | 1508             | 7,95                |
| LA38      | 15 x 15 | 1196 | 1315 | 9,95                | 1330             | 11,20               |
| LA39      | ŀ       | 1233 | 1304 | 5,76                | 1331             | 7,95                |
| LA40      | ŀ       | 1222 | 1300 | 6,38                | 1338             | 9,49                |







BERTH ALLOCATION PROBLEM: qué espacio en el muelle y qué tiempo de servicio asignar a los barcos que han de cargarse y descargarse en una terminal.



http://www.localizatodo.com/ http://www.marinetraffic.com/



http://www.localizatodo.com/



#### 5.- JUEGO DEL AJEDREZ

Encontrar un algoritmo que permita siempre ganar la partida de



#### 5.- JUEGO DEL AJEDREZ



A.E.D. Tema 0-2. Algorítmica

#### 5.- JUEGO DEL AJEDREZ

Para juegos complejos, como el ajedrez, el árbol de búsqueda adquiere dimensiones inimaginables.. Si suponemos que un computador tarda 1/3 de nanosegundo (15<sup>-9</sup> seg.) en generar cada sucesor, el árbol del ajedrez sería generado en:

 $10^{120}*15*10^{(-9)}$  seg.

- = aproximadamente 1021 siglos.

Por consiguiente, por ahora se debe desechar la idea de generar en juegos complejos todo el árbol de búsqueda con la intención de determinar de antemano una estrategia ganadora.

### Cita...

• "No hay un incremento concebible en el poder de las computadoras que pueda saturar la demanda científica: aún pensando que una computadora posea un ciclo de tiempo subnuclear (10<sup>-23</sup> seg.) y densidades de almacenamiento subnucleares (10<sup>39</sup> bits/cm<sup>3</sup>), ésta no podría manejar la mayoría de los problemas que son importantes en la investigación científica básica y aplicada. Por lo tanto, existirá siempre una fuerte presión para incrementar la eficiencia de los programas, para poder incrementar también la cantidad de información últil generada por un programa."

Ken Wilson, Nóbel de Física 1982