

Building the first CNN Architecture & Parameters Calculations

--- Ramendra Kumar ---

Convolution Operation : Input with one channel

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

Input

Kernel/Filter

Stride?

1x1	1x0	1x1	0	0
0x0	1x1	1 x 0	1	0
0 x 1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

4	

Output

Convolution Operation: Input with three channel

0	0	0	0	0	0	
0	167	166	167	169	169	
0	164	165	168	170	170	
0	160	162	166	169	170	
0	156	156	159	163	168	
0	155	153	153	158	168	

0	0	0	0	0	0	
0	163	162	163	165	165	
0	160	161	164	166	166	
0	156	158	162	165	166	
0	155	155	158	162	167	
0	154	152	152	157	167	

Input Channel #1 (Red)

Input Channel #2 (Green)

Input Channel #3 (Blue)

-1	-1	1
0	1	-1
0	1	1

Kernel Channel #1

308

Kernel Channel #2

ı	C	Id	п	He	21	1
		п				
		ш				
		Ш				
			_			

-498

Kernel Channel #3

164 + 1 = -25

Bias = 1

	 Jutp	ut	
-25			

Output

Blue Channel, 2D Matrix

Green Channel, 2D Matrix

Convolution Operation : Single / Multiple Kernel

Pooling Operation

Max Pool

2	3	1	9
4	7	3	5
8	2	2	2
1	3	4	5

Max-Pool with a 2 by 2 filter and stride 2.

Average Pool

2	3	1	9
4	7	3	5
8	2	2	2
1	3	4	5

Average Pool with a 2 by 2 filter and stride 2.

Zero Padding

0	0	0	0	0	0
0	35	19	25	6	0
0	13	22	16	53	0
0	4	3	7	10	0
0	9	8	1	3	0
0	0	0	0	0	0

NSE talent / IIIT Hyderabad

Deeper look into One Layer of a Convolution

Output shape after $Conv = \frac{n+2p-f}{s} + 1$

Deeper look into One Layer of a Convolution

Output shape after $Conv = \frac{n+2p-f}{s} + 1$

Calculating Parameters= $\left(f^l \times f^l \times n_c^{l-1} + 1\right) \times n_f^l$

CNN Architecture

U3W12_41_FashionMNIST_CNN_C.ipynb

CNN Example 1:

P1:
$$(3 \times 3 \times 1 + 1) \times 8 = 80$$

P2:
$$(3 \times 3 \times 8 + 1) \times 16 = 1168$$

Input: Image

Conv1

Output of Conv1

)f

Pool1

Output of Pool1

Conv2

Output of Conv2

Pool2

Output of Pool2

Output shape after
$$Conv = \frac{n+2p-f}{s} + 1$$

Output shape after
$$Pool = \frac{n-f}{s} + 1$$

Calculating Parameters=
$$\left(f^l \times f^l \times n_c^{l-1} + 1\right) \times n_f^l$$

P3: $[256, 400] + b(256) = ((256 \times 400) + 256) = 102,656$

P4:
$$[128, 256] + b(128) = ((128 \times 256) + 128) = 32,896$$

P5:
$$[64, 128] + b(64) = ((64 \times 128) + 64) = 8,256$$

P6:
$$[10, 64] + b(10) = ((10 \times 64) + 10) = 650$$

CNN Example 2:

w [3] →	000 w [4]	00 w [5	Softmax function (n Or, Sigmoid function (Bi	
l	(120, 1) FC2	(84, 1)	FC3	J
		Standard Neural Net	twork	

	Activation shape	Activation Size	Parameters
Input	(32,32,3)	3072	0
CONV 1 : Nf =8, f=5, Shape: (5, 5), Nc=3, S=1	(28,28,8)	6272	608
Pool1: f=2, s=2	(14,14,8)	1568	0
CONV 2: Nf =16, f=5, Nc=8, S=1	(10,10,16)	1600	3216
Pool2 : f=2, s=2	(5,5,16)	400	0
FC1	(120,1)	120	48120
FC2	(84,1)	84	10164
FC3-Softmax	(10,1)	10	850

Thanks!