STA301 Name Test 2 Fall 2022	Ivan Wang	CLASS	W-150
1631 2 1 411 2022	SHOW ALL WORK	ON ALL PROBLEMS	
1. (9 points) Determine t	the following:	-31	
a) $P(.46 < Z < 1.61)$		91	(7
9463-	6772=0.2	6 ((
2-1 (0)		ANSWER 0.26°	11 V
b) Determine the value k	so that $P(k < Z) = .063$		
937			
1-06	3		
	_1.53		
		1 77	/
c) Determine $P[(.75 < 2)]$	7)1/7 -1 9)]	ANSWER 1.53	
		110)	0/14/- 7721
$A(B) = \frac{P(A \cap B)}{P(B)}$	P(.75 LZ	- 21.87 = -	96417734
100	P(Z4	(1.8)	,9641
0.190	7		. /
= 0.96	TI= ///	0 10-	7661-50
0,70		ANSWER 0.19	1801058
		(r 0	1-r-1
2. (6 points) Determine the	ne mean of the random variable X	that has pdf $f(x) = \{.1, 2,\}$	15x569 1 13
E(x) = x	the mean of the random variable X	()= 3.58333822°	Herwise 37
F(x)-1x	1(~)	1111	1=9
~1	\=U		((1)(x) 1)

E(x) = $\begin{cases} x + 3 \\ x + 3 \end{cases}$ E

3. Given the probability density function for X is $f(x) = \begin{cases} 6x^5 \\ 0 \end{cases}$ 0 < x < 1otherwise

(4 points) Determine P(.6 < X) (4-decimal places)

$$\begin{array}{c|c}
x=1 \\
5 \\
6 \\
x=.6
\end{array}$$

$$\begin{array}{c|c}
x=1 \\
x=.6
\end{array}$$

$$\begin{array}{c|c}
x=1 \\
6 \\
6 \\
x=.6
\end{array}$$

$$\begin{array}{c|c}
x=1 \\
x=.6
\end{array}$$

$$\begin{array}{c|c}
x=1 \\
x=.6
\end{array}$$

$$=6(\frac{1}{6}-0.046656)$$

= 0.726064

ANSWER 0.720

f'(x)=

4. (4 points) Given the random variable X has CDF $F(x) = \begin{cases} 0 & x \le 1 \\ 1 - \frac{1}{x^4} & 1 < x \end{cases}$. Determine the pdf of X.

$$= \begin{cases} 4 \text{ (4 points) Given the random variable X has CDP } P(X) \\ + (X) - 7 + (X) \end{cases}$$

5. (6 points) Given the pdf for X is
$$f(x) = \begin{cases} 5x^4 & 0 < x < 1 \\ 0 & otherwise \end{cases}$$
, determine the variance of X. (4-decimal places)

Determine
$$E\left[\frac{1}{X^{3}}\right]$$

$$E(x) = \int x + (x)$$

$$5 \int \frac{1}{X^{3}} \cdot x^{4} dx = 75 \int x + 3x$$

$$= 5 \left(\frac{x^{2}}{2}\right) \Big|_{x=0}^{x=1}$$

$$= 5 \left(\frac{1}{2}\right)$$

$$= 7.5$$
Answer 2.5000

6. (6 points) Find the value k so that
$$f(x)$$
 is a pdf for a continuous random variable.
$$f(x) = \begin{cases} .3 & -1 < x < 0 \\ .6 + kx & 0 \le x \le 2 \\ 0 & otherwise \end{cases}$$

7. (8 points) Given
$$F(x) = \begin{cases} 0 & x \le 0 \\ \frac{x^2}{10} & 0 < x < 2 \\ \frac{x}{5} & 2 \le x \le 5 \\ 1 & 5 < x \end{cases}$$

a) Determine $P(1.8 \le X \le 7)$

$$F(7) - F(1.8)$$

$$= 1 - \frac{(1.8)^{2}}{10} = 71 - \frac{3.24}{10}$$

$$= 1 - 0.324$$

b) Determine the value k so that $P(X \le k) = .65$

$$\frac{x}{5} = .65$$

 $x = 3.25$

ANSWER 0.676

8. (4-points) Find the values
$$a$$
 and b , so that $F(x)$ is a CDF for a continuous random variable.

$$F(x) = \begin{cases} 0 & x < a & x = b \\ \ln(x) - 2 & a \le x \le b \\ 1 & b < x \end{cases}$$

$$\ln(x) - 2 = 0$$

$$\ln$$

9. (5-points) Determine k so that $f(x, y, z) = \frac{x + yz}{k}$ for x = 1, 2, 3 y = 1, 2 and z = 0, 1 is a pmf.

10. (8-points) Suppose that the joint probability density function of the jointly continuous random variables X and Y

is $f_{x,y}(x,y) = \begin{cases} ky^2 & \text{on the given region} \\ 0 & \text{otherwise} \end{cases}$

11. (4-points) Given that
$$V[X] = 4.1$$
, $V[Y] = 2.5$ and $Cov[X,Y] = 1.2$, determine $V[3X - 2Y]$

$$V(3X - 2Y) = V(3X) V(2Y) - 2 (oV(X/Y))$$

$$3^{2}V(X) V(Y) - 2 (oV(X/Y))$$

 $Q(t_1) - t(2.5) - 2(1.2) = 736.9 - 10 - 2.4$ 12. The joint pdf of X and Y is $f_{X,Y}(x,y) = \begin{cases} x+y & 0 < x < 1, \ 0 < y < 1 \\ 0 & otherwise \end{cases}$ (region below)

a) (5-points) Determine $f_X(x)$

b) (5-points) Determine $f_{\gamma}(y)$

c) (2-points) Determine $f_{Y|x}(y)$

$$f_{X/Y}(X|Y) = \frac{X+Y}{X+\frac{1}{2}}$$

13. (6-points) Suppose that the joint probability density function of the jointly continuous random variables X and Y is

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{x} & \text{On Support} \\ 0 & \text{otherwise} \end{cases}$$

(80-8-8)+(120-18-12)+(160-32-16)+(120-12-18)+(180-27-27)+(240-48-36) 0(164+90+112+96+126+156)=2.952

					the state of	1		1				1
		Z=2			/	/			Z=4			1
		X			/				X			
	0	1	2	3				0	1	2	3	
1 Y 2	.01	.02	.03	.04		Y	2	.03	.05	.04	.01	
3	.01	.01	.02	.02	\	1	3	.03	.07	.02	.08	
4	.03	.02	.01	.01		1	4	.01	.02	.03	.04	
) (A poin	$\int_{X} \int_{X} (x) dx$	0.08	!	.12		-		.09	.18	010	,21	/
1) (4-poin	$(S) \int_{X} (X)$. \										
>	(+;	$\langle (x) \rangle$										
	20	16										
		-10	-			/						
	10	.26			1/							
-	1	.16										
	MILE IN SHEE							1 1		1 1	- 1	
	$\frac{3}{f_{X,Y}}(x,$.33					A	0			2/	3
(4-poin	(s) $f_{X,Y}(x,$	y)				Y	11.	Q.OL	4 Coli	14/1	14	0.05
		X				- (4	0,0	1 190	17/0	DIV	0.00
		1		1-	1 >		7	7	10			
	10			1	15		1					
1=						_	1				/	
1	100	14/	107	0.07	1005							4
1	02	70	1.01		17						1	7
-	6.0	46	.01	0.10	0.13						-	V
-	100	40	800	1004	0.10	/						
(4-point	s) $\int_{X,Y} 0$	(x, v)	100	1011	1000	/						
(4-ропп	s) JX,Y=4	(,))	_									
			X			\		V				
	()	11	6	12		1		X	1712			
	0	1	1	4 0	011	- 1	X	2 1	114-01	_		
T	.03	1.05	1.0	1	08		1	13 63	163 16	3,/	7	1
-	07	.04	0	06 1	10		1/2	02104	12	164	1 -))
4	002	1	7 .0	12 .	108		1/2	03.0	02 0	3		/
	.03	.01	,	TH			1	13.6	2.05	04		
2		_	100	1			110	101 1	11	FZ		
3	.0	.02	1,0	121	NE		1	BI	2 63	00		