*

Zadatak 1.

Ispitati sljedeće algebarske strukture:

- a) $(\mathbb{C} \setminus \{0\}, \cdot),$
- b) (\mathbb{R}^+,\cdot) ,
- c) $(\mathbb{Z}, +)$,
- d) $(\mathbb{Q} \setminus \{0\}, /)$.

Rješenje

- a) Algebarska struktura ($\mathbb{C} \setminus \{0\},\cdot$) je Abelova grupa.
 - 1. Zatvorenost $(\forall x, y \in \mathbb{C} \setminus \{0\})$ $x \cdot y \in \mathbb{C} \setminus \{0\}$ Kako je operacija množenja zatvorena na skupu \mathbb{C} , vrijedi $x \cdot y \in \mathbb{C}$. Kako je $x \neq 0$ i $y \neq 0$, vrijedi $x \cdot y \neq 0$ pa zatvorenost vrijedi.
 - 2. Komutativnost $(\forall x, y \in \mathbb{C} \setminus \{0\})$ $x \cdot y = y \cdot x$ Kako je $\mathbb{C} \setminus \{0\} \subset \mathbb{C}$ i kako komutativnost množenja vrijedi na skupu \mathbb{C} , vrijedi komutativnost i na skupu $\mathbb{C} \setminus \{0\}$.
 - 3. Asocijativnost $(\forall x, y, z \in \mathbb{C} \setminus \{0\})$ $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ Kako je $\mathbb{C} \setminus \{0\} \subset \mathbb{C}$ i kako asocijativnost množenja vrijedi na skupu \mathbb{C} , vrijedi asocijativnost i na skupu $\mathbb{C} \setminus \{0\}$.
 - 4. Neutralni element $(\exists! \ e \in \mathbb{C} \setminus \{0\}) \ (\forall x \in \mathbb{C} \setminus \{0\}) \ x \cdot e = e \cdot x = x$ Pošto vrijedi komutativnost, dovoljno je pronaći $e \in \mathbb{C} \setminus \{0\}$ tako da je $x \cdot e = x$. Vidimo da je $e = 1 \in \mathbb{C} \setminus \{0\}$ neutralni element.
 - 5. Inverzni element $(\exists n \in \mathbb{C} \setminus \{0\}) \ (\forall x \in \mathbb{C} \setminus \{0\}) \ x \cdot n = n \cdot x = e$ Pošto vrijedi komutativnost, dovoljno je pronaći $n \in \mathbb{C} \setminus \{0\}$ tako da je $x \cdot n = e = 1$. Odavde je $n = \frac{1}{x} \in \mathbb{C} \setminus \{0\}$ inverzni element, jer je $x \neq 0$.
- b) Algebarska struktura (\mathbb{R}^+,\cdot) je Abelova grupa.
 - 1. Zatvorenost $(\forall x, y \in \mathbb{R}^+)$ $x \cdot y \in \mathbb{R}^+$ Kako je proizvod dva pozitivna realna broja takođe pozitivan realna broj, zatvorenost vrijedi.
 - 2. Komutativnost $(\forall x, y \in \mathbb{R}^+)$ $x \cdot y = y \cdot x$ Kako je $\mathbb{R}^+ \subset \mathbb{R}$ i kako komutativnost množenja vrijedi na skupu \mathbb{R} , vrijedi komutativnost i na skupu \mathbb{R}^+ .
 - 3. Asocijativnost $(\forall x, y, z \in \mathbb{R}^+)$ $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ Kako je $\mathbb{R}^+ \subset \mathbb{R}$ i kako asocijativnost množenja vrijedi na skupu \mathbb{R} , vrijedi asocijativnost i na skupu \mathbb{R}^+ .
 - 4. Neutralni element $(\exists! e \in \mathbb{R}^+)$ $(\forall x \in \mathbb{R}^+)$ $x \cdot e = e \cdot x = x$ Pošto vrijedi komutativnost, dovoljno je pronaći $e \in \mathbb{R}^+$ tako da je $x \cdot e = x$. Vidimo da je $e = 1 \in \mathbb{R}^+$ neutralni element.
 - 5. Inverzni element $(\exists n \in \mathbb{R}^+)$ $(\forall x \in \mathbb{R}^+)$ $x \cdot n = n \cdot x = e$ Pošto vrijedi komutativnost, dovoljno je pronaći $n \in \mathbb{R}^+$ tako da je $x \cdot n = e = 1$. Odavde je $n = \frac{1}{x} \in \mathbb{R}^+$ inverzni element, jer je x > 0 pa je i $\frac{1}{x} > 0$.
- c) Algebarska struktura (\mathbb{Z} , +) je Abelova grupa.
 - 1. Zatvorenost $(\forall x, y \in \mathbb{Z})$ $x + y \in \mathbb{Z}$ Kako je zbir dva cijela broja takođe cio broj, zatvorenost vrijedi.
 - 2. Komutativnost $(\forall x, y \in \mathbb{Z})$ x + y = y + xSabiranje je komutativna operacija na skupu \mathbb{Z} .
 - 3. Asocijativnost $(\forall x,y,z\in\mathbb{Z})\ (x+y)+z=x+(y+z)$ Sabiranje je asocijativna operacija na skupu \mathbb{Z} .
 - 4. Neutralni element $(\exists! e \in \mathbb{Z}) \ (\forall x \in \mathbb{Z}) \ x + e = e + x = x$ Pošto vrijedi komutativnost, dovoljno je pronaći $e \in \mathbb{Z}$ tako da je x + e = x. Vidimo da je $e = 0 \in \mathbb{Z}$ neutralni element.
 - 5. Inverzni element $(\exists n \in \mathbb{Z}) \ (\forall x \in \mathbb{Z}) \ x + n = n + x = e$ Pošto vrijedi komutativnost, dovoljno je pronaći $n \in \mathbb{Z}$ tako da je x + n = e = 0. Odavde je $n = -x \in \mathbb{Z}$ inverzni element, jer je za svaki cio broj x, takođe i -x cio broj.
- d) Algebarska struktura ($\mathbb{Q} \setminus \{0\}$, /) je grupoid.
 - 1. Zatvorenost $(\forall x, y \in \mathbb{Q} \setminus \{0\})$ $x/y \in \mathbb{Q} \setminus \{0\}$ Kako je $y \neq 0$, dijeljenje je moguće, a količnik dva racionalna broja različita od nule je takođe racionalan broj različit od nule.
 - 2. Komutativnost $(\forall x, y \in \mathbb{Q} \setminus \{0\})$ x/y = y/xUzmimo $x = 2 \in \mathbb{Q} \setminus \{0\}$ i $y = 1 \in \mathbb{Q} \setminus \{0\}$. Kako je x/y = 2 i $y/x = \frac{1}{2}$, komutativnost ne vrijedi.
 - 3. Asocijativnost $(\forall x, y, z \in \mathbb{Q} \setminus \{0\})$ (x/y)/z = x/(y/z)Uzmimo $x = 4 \in \mathbb{Q} \setminus \{0\}$, $y = z = 2 \in \mathbb{Q} \setminus \{0\}$. Kako je (x/y)/z = (4/2)/2 = 1 i x/(y/z) = 4/(2/2) = 4, asocijativnost ne vrijedi.

*

Zadatak 2.

Ispitati algebarsku strukturu ($\mathbb{C},*$) pri čemu je * operacija definisana sa

$$z_1 * z_2 = z_1 + z_2 + e^{i\pi}.$$

Rješenje

Kako je

$$e^{i\pi} = \cos \pi + i \sin \pi = -1,$$

operacija * se može definisati i kao

$$z_1 * z_2 = z_1 + z_2 - 1.$$

Ispitajmo algebarsku strukturu ($\mathbb{C}, *$).

- 1. $Zatvorenost~(\forall z_1, z_2 \in \mathbb{C})~z_1*z_2 \in \mathbb{C}$ Brojevi z_1, z_2 i -1 su kompleksni, pa je i zbir tri kompleksna broja takođe kompleksan broj, što implicira da zatvorenost vrijedi.
- 2. Komutativnost $(\forall z_1, z_2 \in \mathbb{C})$ $z_1 * z_2 = z_2 * z_1$ Kako je

$$z_1 * z_2 = z_1 + z_2 - 1$$

= $z_2 + z_1 - 1$
= $z_2 * z_1$,

komutativnost vrijedi.

3. Asocijativnost $(\forall z_1, z_2, z_3 \in \mathbb{C})$ $(z_1*z_2)*z_3 = z_1*(z_2*z_3)$ Kako je

$$(z_1 * z_2) * z_3 = (z_1 + z_2 - 1) * z_3$$

$$= (z_1 + z_2 - 1) + z_3 - 1$$

$$= z_1 + z_2 + z_3 - 2$$

$$= z_1 + (z_2 + z_3 - 1) - 1$$

$$= z_1 + (z_2 * z_3) - 1$$

$$= z_1 * (z_2 * z_3),$$

asocijativnost vrijedi.

4. Neutralni element $(\exists! e \in \mathbb{C}) \ (\forall z \in \mathbb{C}) \ z*e = e*z = z$ Pošto vrijedi komutativnost, dovoljno je pronaći $e \in \mathbb{C}$ tako da je

$$z*e=z$$

$$\Leftrightarrow \qquad z+e-1=z$$

$$\Leftrightarrow \qquad e=1.$$

Dakle, $e=1\in\mathbb{C}$ je neutralni element.

5. Inverzni element $(\exists n \in \mathbb{C})$ $(\forall z \in \mathbb{C})$ z * n = n * z = ePošto vrijedi komutativnost, dovoljno je pronaći $n \in \mathbb{C}$ tako da je

$$z*n=e$$

$$\Leftrightarrow z+n-1=1$$

$$\Leftrightarrow n=2-z.$$

Dakle, $n = 2 - z \in \mathbb{C}$ je inverzni element.

Dakle, $(\mathbb{C}, *)$ je Abelova grupa.

Zadatak 3.

Ispitati algebarsku strukturu ($\mathbb{Z}, *$) gdje je operacija * definisana sa x * y = x + y + xy.

Rješenje

- 1. Zatvorenost $(\forall x, y \in \mathbb{Z})$ $x * y \in \mathbb{Z}$ Kako je zbir i proizvod dva cijela broja takođe cio broj, zaključujemo da zatvorenost vrijedi.
- 2. Komutativnost $(\forall x,y\in\mathbb{Z})\ \ x*y=y*x$ Kako je

$$x * y = x + y + xy$$
$$= y + x + yx$$
$$= y * x,$$

komutativnost vrijedi.

3. Asocijativnost $(\forall x,y,z\in\mathbb{Z})\ (x*y)*z=x*(y*z)$ Kako je

$$(x*y)*z = (x + y + xy)*z$$

$$= (x + y + xy) + z + (x + y + xy)z$$

$$= x + y + xy + z + xz + yz + xyz$$

$$= x + y + z + xy + xz + yz + xyz$$

$$= x + y + z + yz + xy + xz + xyz$$

$$= x + (y + z + yz) + x (y + z + yz)$$

$$= x * (y + z + yz)$$

$$= x * (y * z),$$

asocijativnost vrijedi.

4. Neutralni element $(\exists! e \in \mathbb{Z}) \ (\forall x \in \mathbb{Z}) \ x * e = e * x = x$ Pošto vrijedi komutativnost, dovoljno je pronaći $e \in \mathbb{Z}$ tako da je

$$x * e = x$$

$$\Leftrightarrow \quad x + e + xe = x$$

$$\Leftrightarrow \quad e (1 + x) = 0$$

$$\Rightarrow \quad e = 0$$

Dakle, $e=0\in\mathbb{Z}$ je neutralni element.

5. Inverzni element $(\exists n \in \mathbb{Z}) \ (\forall x \in \mathbb{Z}) \ x * n = n * x = e$ Pošto vrijedi komutativnost, dovoljno je pronaći $n \in \mathbb{Z}$ tako da je

$$x*n = e$$

$$\Leftrightarrow x+n+xn = 0$$

$$\Leftrightarrow n(x+1) = -x$$

$$\Leftrightarrow n = -\frac{x}{x+1}$$

Primijetimo da $n = -\frac{x}{x+1}$ nije cio broj za svako $x \in \mathbb{Z}$.

Uzmimo x=1. Vidimo da je $n=-\frac{1}{2}\notin\mathbb{Z}$, pa ova algebarska struktura nema inverzni element.

Stoga, $(\mathbb{Z}, *)$ je komutativni monoid.

**

Zadatak 4.

Ispitati algebarsku strukturu ($\mathbb{R},*$) gdje je * operacija definisana sa

$$x * y = \sqrt{x^2 + y^2}.$$

Rješenje

1. Zatvorenost $(\forall x,y\in\mathbb{R})\ x*y\in\mathbb{R}$ Kako je $x^2+y^2\geq 0$, za svako $x,y\in\mathbb{R}$, vrijedi

$$\sqrt{x^2 + y^2} \in \mathbb{R}^+ \cup \{0\} \subset \mathbb{R}$$

pa zatvorenost vrijedi.

2. Komutativnost $(\forall x, y \in \mathbb{R})$ x * y = y * x Kako je

$$x * y = \sqrt{x^2 + y^2}$$
$$= \sqrt{y^2 + x^2}$$
$$= y * x,$$

komutativnost vrijedi.

3. Asocijativnost $(\forall x,y,z\in\mathbb{R})\ (x*y)*z=x*(y*z)$ Kako je

$$(x * y) * z = (\sqrt{x^2 + y^2}) * z$$

$$= \sqrt{(\sqrt{x^2 + y^2})^2 + z^2}$$

$$= \sqrt{x^2 + y^2 + z^2}$$

$$= \sqrt{x^2 + (y * z)}$$

$$= x * (y * z),$$

asocijativnost vrijedi.

4. Neutralni element $(\exists! e \in \mathbb{R}) \ (\forall x \in \mathbb{R}) \ x * e = e * x = x$ Pošto vrijedi komutativnost, dovoljno je pronaći $e \in \mathbb{R}$ tako da je

$$x * e = x$$

$$\Leftrightarrow \sqrt{x^2 + e^2} = x. \tag{1}$$

Primijetimo da je lijeva strana izraza (1) nenegativan broj, dok je sa desne strane realan broj (može da bude i negativan). Uzmimo x = -1. Tada ne postoji relan broj e takav da vrijedi jednakost (1). Stoga, ova algebarska struktura nema neutralni element.

Dakle, $(\mathbb{R}, *)$ je komutativna polugrupa.

Zadatak 5.

Ispitati algebarsku strukturu ($\mathbb{N}_0,*$) gdje je operacija * definisana sa

$$a * b = \left(a - b\right)^2.$$

Rješenje

- 1. Zatvorenost $(\forall a, b \in \mathbb{N}_0)$ $a * b \in \mathbb{N}_0$ Kako je $(a - b)^2 \ge 0$ i $(a - b)^2 \in \mathbb{Z}$, za svako $a, b \in \mathbb{N}_0$, zatvorenost vrijedi.
- 2. Komutativnost $(\forall a, b \in \mathbb{N}_0)$ a * b = b * a Kako je

$$a * b = (a - b)^{2}$$

$$= (-(b - a))^{2}$$

$$= (-1)^{2} \cdot (b - a)^{2}$$

$$= b * a.$$

komutativnost vrijedi.

3. Asocijativnost $(\forall a,b,c\in\mathbb{N}_0)$ (a*b)*c=a*(b*c) Uzmimo $a=1,\,b=2$ i c=3. Vrijedi

$$(a * b) * c = (1 * 2) * 3$$
$$= (1 - 2)^{2} * 3$$
$$= 1 * 3$$
$$= (1 - 3)^{2}$$
$$= 4$$

i

$$a * (b * c) = 1 * (2 * 3)$$

$$= 1 * (2 - 3)^{2}$$

$$= 1 * 1$$

$$= (1 - 1)^{2}$$

$$= 0.$$

Ovim smo pronašli kontra primjer i pokazali da asocijativnost ne vrijedi.

Dakle, $(\mathbb{N}_0, *)$ je komutativni grupoid.

Zadatak 6.

Na skupu $G = \big\{(a,b): a,b \in \mathbb{R}, a \neq 0\big\}$ definisana je operacija · sa

$$(a,b) \cdot (c,d) = (ac,ad+b).$$

Ispitati algebarsku strukturu (G, \cdot) .

Rješenje

- 1. Zatvorenost $(\forall (a,b), (c,d) \in G)$ $(a,b) \cdot (c,d) \in G$ Kako se kao rezultat množenja i sabiranja realnih brojeva kao rezultat dobija realan broj, $(ac, ad + b) \in \mathbb{R}^2$. Kako je $a \neq 0$ i $c \neq 0$, vrijedi $ac \neq 0$, odnosno, vrijedi $(a,b) \cdot (c,d) \in G$.
- 2. Komutativnost $(\forall (a,b), (c,d) \in G)$ $(a,b) \cdot (c,d) = (c,d) \cdot (a,b)$ Da bismo dokazali da komutativnost ne vrijedi u opštem slučaju, uzmimo kontra primjer (a,b) = (1,2) i (c,d) = (3,4). Vrijedi:

$$(a,b) \cdot (c,d) = (ac,ad+b) = (1 \cdot 3, 1 \cdot 4 + 2) = (3,6)$$

dok je sa druge strane

$$(c,d) \cdot (a,b) = (ca,cb+d) = (3 \cdot 1, 3 \cdot 2 + 4) = (3,10)$$

pa je $(a,b)\cdot(c,d)\neq(c,d)\cdot(a,b)$ u opštem slučaju. Dakle, komutativnost ne vrijedi.

3. Asocijativnost $(\forall (a,b), (c,d), (e,f) \in G)$ $((a,b) \cdot (c,d)) \cdot (e,f) = (a,b) \cdot ((c,d) \cdot (e,f))$ Vrijedi

$$((a,b)\cdot(c,d))\cdot(e,f) = (ac,ad+b)\cdot(e,f)$$

$$= (ac\cdot e,ac\cdot f + (ad+b))$$

$$= (ace,acf+ad+b)$$

$$= (a\cdot ce,a\cdot (cf+d)+b)$$

$$= (a,b)\cdot(ce,cf+d)$$

$$= (a,b)\cdot((c,d)\cdot(e,f)).$$

Ovim smo pokazali da asocijativnost vrijedi.

4. Neutralni element $(\exists! (e_1, e_2) \in G) (\forall (a, b) \in G) (a, b) \cdot (e_1, e_2) = (e_1, e_2) \cdot (a, b) = (a, b)$ Pošto komutativnost ne vrijedi, moramo odvojeno ispitati postojanje lijevog i desnog neutralnog elementa. Pronađimo prvo lijevi neutralni element:

$$(e_1, e_2) \cdot (a, b) = (a, b)$$

$$\Leftrightarrow (e_1 a, e_1 b + e_2) = (a, b)$$

$$\Rightarrow e_1 = 1 \land e_2 = 0.$$

Dakle, $(1,0) \in G$ je lijevi neutralni element. Pronađimo sada desni neutralni element:

$$(a,b) \cdot (e_1, e_2) = (a,b)$$

$$\Leftrightarrow (ae_1, ae_2 + b) = (a,b)$$

$$\Rightarrow e_1 = 1 \land e_2 = 0.$$

Dakle, $(1,0) \in G$ je i desni neutralni element, pa zaključujemo da je $(e_1,e_2) = (1,0)$ jedinstven neutralni element.

5. Inverzni element $(\exists (n_1, n_2) \in G) (\forall (a, b) \in G) (a, b) \cdot (n_1, n_2) = (n_1, n_2) \cdot (a, b) = (e_1, e_2)$ Pošto komutativnost ne vrijedi, moramo odvojeno ispitati postojanje lijevog i desnog inverznog elementa. Pronađimo prvo lijevi inverzni element:

$$(n_1, n_2) \cdot (a, b) = (e_1, e_2)$$

$$\Leftrightarrow (n_1 a, n_1 b + n_2) = (1, 0)$$

$$\Rightarrow n_1 = \frac{1}{a} \land n_2 = -\frac{b}{a}.$$

Pošto je iz definicije skupa G imamo $a \neq 0$, $\left(\frac{1}{a}, -\frac{b}{a}\right) \in G$ je lijevi inverzni element. Pronađimo sada desni inverzni element:

$$(a,b) \cdot (n_1, n_2) = (e_1, e_2)$$

$$\Leftrightarrow (an_1, an_2 + b) = (1,0)$$

$$\Rightarrow n_1 = \frac{1}{a} \land n_2 = -\frac{b}{a}.$$

Dakle, $\left(\frac{1}{a}, -\frac{b}{a}\right) \in G$ je i desni inverzni element, pa zaključujemo da je $(n_1, n_2) = \left(\frac{1}{a}, -\frac{b}{a}\right)$ jedinstven inverzni element.

Dakle, (G, \cdot) je grupa.

Zadatak 7.

Ispitati algebarsku strukturu (G_n, \cdot) gdje je $n \in \mathbb{N}$ fiksno i

$$G_n = \left\{ a + ib\sqrt{n} : a, b \in \mathbb{Z} \right\},\,$$

a \cdot standardna operacija množenja kompleksnih brojeva.

Rješenje

1. Zatvorenost $(\forall x, y \in G_n)$ $x \cdot y \in G_n$ Neka je $x = a + ib\sqrt{n}$ i $y = c + id\sqrt{n}$, gdje su $a, b, c, d \in \mathbb{Z}$ i $n \in \mathbb{N}$. Vrijedi

$$x \cdot y = (a + ib\sqrt{n}) \cdot (c + id\sqrt{n})$$
$$= ac + ibc\sqrt{n} + iad\sqrt{n} + i^2bd\sqrt{n}^2$$
$$= (ac - bdn) + i(bc + ad)\sqrt{n}.$$

Kako je $ac - bdn \in \mathbb{Z}$ i $bc + ad \in \mathbb{Z}$, zatvorenost vrijedi.

2. Komutativnost $(\forall x, y \in G_n)$ $x \cdot y = y \cdot x$ Kako je $G_n \subset \mathbb{C}$ i kako komutativnost množenja vrijedi na skupu \mathbb{C} , vrijedi komutativnost i na skupu G_n .

3. Asocijativnost $(\forall x, y, z \in G_n)$ $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ Kako je $G_n \subset \mathbb{C}$ i kako asocijativnost množenja vrijedi na skupu \mathbb{C} , vrijedi asocijativnost i na skupu G_n .

4. Neutralni element $(\exists! e \in G_n) \ (\forall x \in G_n) \ x \cdot e = e \cdot x = x$ Pošto vrijedi komutativnost, dovoljno je pronaći $e \in G_n$ tako da je

$$x \cdot e = x$$

$$\Leftrightarrow \qquad e = 1.$$

Kako se e=1 može predstaviti kao $e=1+i\cdot 0\sqrt{n}$, vidimo da vrijedi $e\in G_n$, što znači da je e=1 neutralni element.

5. Inverzni element $(\exists n \in G_n) \ (\forall x \in G_n) \ x \cdot n = n \cdot x = e$ Pošto vrijedi komutativnost, dovoljno je pronaći $n \in G_n$ tako da je

$$x \cdot n = e$$

$$\Leftrightarrow \qquad n = \frac{1}{x}.$$

Primijetimo da $n = \frac{1}{x}$ ne pripada skupu G_n u opštem slučaju. Da bismo to dokazali, pronađimo kontra primjer. Neka je $x = 0 + i \cdot 0 \cdot \sqrt{n} = 0$. Kako nije moguće dijeliti sa nulom, zaključujemo da je x = 0 kontra primjer kojim pokazujemo da inverzni

Dakle, (G_n, \cdot) je komutativni monoid.

element ne postoji u opštem slučaju.

Zadatak 8.

Ispitati algebarsku strukturu (S, *) gdje je

$$S = \{(a, b) : a, b \in \mathbb{Q}, a \neq 0\}$$

a operacija * je definisana sa

$$(a,b)*(c,d) = (ac,bc+c+d).$$

Rješenje

- 1. Zatvorenost $(\forall (a,b), (c,d) \in S)$ $(a,b) \cdot (c,d) \in S$ Kako se kao rezultat množenja i sabiranja racionalnih brojeva kao rezultat dobija racionalan broj, $(ac, bc + c + d) \in \mathbb{Q}^2$. Kako je $a \neq 0$ i $c \neq 0$, vrijedi $ac \neq 0$, odnosno, vrijedi $(a,b) \cdot (c,d) \in S$.
- 2. Komutativnost $(\forall (a,b), (c,d) \in S)$ $(a,b) \cdot (c,d) = (c,d) \cdot (a,b)$ Da bismo dokazali da komutativnost ne vrijedi u opštem slučaju, uzmimo kontra primjer (a,b) = (1,2) i (c,d) = (3,4). Vrijedi:

$$(a,b) \cdot (c,d) = (ac,bc+c+d) = (1 \cdot 3, 2 \cdot 3 + 3 + 4) = (3,13)$$

dok je sa druge strane

$$(c,d) \cdot (a,b) = (ca, da + a + b) = (3 \cdot 1, 4 \cdot 1 + 1 + 2) = (3,7)$$

pa je $(a,b)\cdot(c,d)\neq(c,d)\cdot(a,b)$ u opštem slučaju. Dakle, komutativnost ne vrijedi.

3. Asocijativnost $(\forall (a,b), (c,d), (e,f) \in S)$ $((a,b) \cdot (c,d)) \cdot (e,f) = (a,b) \cdot ((c,d) \cdot (e,f))$ Vrijedi

$$((a,b) \cdot (c,d)) \cdot (e,f) = (ac,bc+c+d) \cdot (e,f)$$

$$= (ac \cdot e, (bc+c+d) \cdot e + e + f)$$

$$= (ace,bce+ce+de+e+f)$$

$$= (a \cdot ce,b \cdot ce+ce+(de+e+f))$$

$$= (a,b) \cdot (ce,de+e+f)$$

$$= (a,b) \cdot ((c,d) \cdot (e,f)).$$

Ovim smo pokazali da asocijativnost vrijedi.

4. Neutralni element $(\exists! (e_1, e_2) \in S)$ $(\forall (a, b) \in S)$ $(a, b) \cdot (e_1, e_2) = (e_1, e_2) \cdot (a, b) = (a, b)$ Pošto komutativnost ne vrijedi, moramo odvojeno ispitati postojanje lijevog i desnog neutralnog elementa. Pronađimo prvo lijevi neutralni element:

$$(e_1, e_2) \cdot (a, b) = (a, b)$$

$$\Leftrightarrow (e_1 a, e_2 a + a + b) = (a, b)$$

$$\Leftrightarrow e_1 a = a \land a (e_2 + 1) + b = b$$

$$\Rightarrow e_1 = 1 \land e_2 = -1.$$

Dakle, $(1, -1) \in S$ je lijevi neutralni element.

Pronađimo sada desni neutralni element:

$$(a,b) \cdot (e_1, e_2) = (a,b)$$

$$\Leftrightarrow (ae_1, be_1 + e_1 + e_2) = (a,b)$$

$$\Leftrightarrow ae_1 = a \land be_1 + e_1 + e_2 = b$$

$$\Rightarrow e_1 = 1 \land e_2 = -1.$$

Dakle, $(1,-1) \in S$ je i desni neutralni element, pa zaključujemo da je $(e_1,e_2) = (1,-1)$ jedinstven neutralni element.

5. Inverzni element $(\exists (n_1, n_2) \in S) (\forall (a, b) \in S) (a, b) \cdot (n_1, n_2) = (n_1, n_2) \cdot (a, b) = (e_1, e_2)$ Pošto komutativnost ne vrijedi, moramo odvojeno ispitati postojanje lijevog i desnog inverznog elementa. Pronađimo prvo lijevi inverzni element:

$$(n_1, n_2) \cdot (a, b) = (e_1, e_2)$$

$$\Leftrightarrow (n_1 a, n_2 a + a + b) = (1, -1)$$

$$\Rightarrow n_1 = \frac{1}{a} \wedge n_2 = -\frac{1 + a + b}{a}.$$

Pošto je iz definicije skupa S imamo $a \neq 0$, $\left(\frac{1}{a}, -\frac{1+a+b}{a}\right) \in S$ je lijevi inverzni element. Pronađimo sada desni inverzni element:

$$(a,b) \cdot (n_1, n_2) = (e_1, e_2)$$

 $\Leftrightarrow (an_1, n_1 (b+1) + n_2) = (1, -1)$
 $\Rightarrow n_1 = \frac{1}{a} \wedge n_2 = -1 - (1+b) \cdot \frac{1}{a} = -\frac{1+a+b}{a}.$

Dakle, $\left(\frac{1}{a}, -\frac{1+a+b}{a}\right) \in S$ je i desni inverzni element, pa zaključujemo da je $(n_1, n_2) = \left(\frac{1}{a}, -\frac{1+a+b}{a}\right)$ jedinstven inverzni element.

Dakle, (S, \cdot) je grupa.

* * * *

Zadatak 9.

Dokazati da je algebarska struktura $\left(\left(-\frac{\pi}{2},\frac{\pi}{2}\right),*\right)$ grupa, gdje je * operacija definisana sa

$$a * b = \operatorname{arctg} (\operatorname{tg}(a) + \operatorname{tg}(b)).$$

Rješenje

1. Zatvorenost $\left(\forall a, b \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \right)$ $a * b \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$ Kako je $a, b \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$, vrijedi

$$tg(a) \neq \pm \infty i tg(b) \neq \pm \infty$$

pa kako je zbir dva konačna broja takođe konačan broj, tj.

$$tg(a) + tg(b) \neq \pm \infty$$

pa je i

$$\operatorname{arctg}\left(\operatorname{tg}(a) + \operatorname{tg}(b)\right) \neq \pm \frac{\pi}{2}$$

odnosno $a*b \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ čime je zatvorenost pokazana.

2. Komutativnost $\left(\forall a,b \in \left(-\frac{\pi}{2},\frac{\pi}{2} \right) \right)$ a*b=b*a Kako je

$$a * b = \operatorname{arctg} (\operatorname{tg}(a) + \operatorname{tg}(b))$$
$$= \operatorname{arctg} (\operatorname{tg}(b) + \operatorname{tg}(a))$$
$$= b * a$$

komutativnost vrijedi.

3. Asocijativnost $\left(\forall a, b, c \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \right) \ (a*b)*c = a*(b*c)$ Kako je

$$(a*b)*c = \left(\arctan\left(\operatorname{tg}(a) + \operatorname{tg}(b)\right)\right)*c$$

$$= \arctan\left(\operatorname{tg}\left(\operatorname{tg}\left(\arctan\left(\operatorname{tg}(a) + \operatorname{tg}(b)\right)\right) + \operatorname{tg}(c)\right)\right)$$

$$= \arctan\left(\operatorname{tg}(a) + \operatorname{tg}(b) + \operatorname{tg}(c)\right)$$

$$= \arctan\left(\operatorname{tg}(a) + \operatorname{tg}\left(\arctan\left(\operatorname{tg}(b) + \operatorname{tg}(c)\right)\right)\right)$$

$$= a*\left(\arctan\left(\operatorname{tg}(b) + \operatorname{tg}(c)\right)\right)$$

$$= a*(b*c)$$

asocijativnost vrijedi.

4. Neutralni element $\left(\exists! \ e \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right) \left(\forall a \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right) \ a * e = e * a = a$ Pošto vrijedi komutativnost, dovoljno je pronaći $e \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ tako da je a * e = a. Vrijedi:

$$a * e = a$$

$$\Leftrightarrow \operatorname{arctg} (\operatorname{tg}(a) + \operatorname{tg}(e)) = a / \operatorname{tg}$$

$$\Leftrightarrow \operatorname{tg} \left(\operatorname{arctg} (\operatorname{tg}(a) + \operatorname{tg}(e))\right) = \operatorname{tg}(a)$$

$$\Leftrightarrow \operatorname{tg}(a) + \operatorname{tg}(e) = \operatorname{tg}(a)$$

$$\Leftrightarrow \operatorname{tg}(e) = 0$$

$$\Leftrightarrow e = \operatorname{arctg}(0) = 0.$$

Kako $e = 0 \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, zaključujemo da je e = 0 neutralni element.

5. Inverzni element $\left(\exists n \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right) \left(\forall a \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right) \ a * n = n * a = e$ Pošto vrijedi komutativnost, dovoljno je pronaći $n \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ tako da je a * n = e. Vrijedi:

$$a * e = a$$

$$\Leftrightarrow \operatorname{arctg} (\operatorname{tg}(a) + \operatorname{tg}(n)) = 0 / \operatorname{tg}$$

$$\Leftrightarrow \operatorname{tg} \left(\operatorname{arctg} (\operatorname{tg}(a) + \operatorname{tg}(n))\right) = \operatorname{tg}(0)$$

$$\Leftrightarrow \operatorname{tg}(a) + \operatorname{tg}(n) = 0$$

$$\Leftrightarrow \operatorname{tg}(n) = -\operatorname{tg}(a) = \operatorname{tg}(-a) / \operatorname{arctg}$$

$$\Leftrightarrow n = -a.$$

Kako $\forall a \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ vrijedi $-a \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, jer je skup simetričan u odnosu na nulu, zaključujemo da je n = -a inverzni element.

Ovim smo dokazali da je $\left(\left(-\frac{\pi}{2},\frac{\pi}{2}\right),*\right)$ ne samo grupa već i Abelova grupa.

Zadatak 10.

Ispitati algebarsku strukturu (S, *) gdje je

$$S = \left\{ x + y\sqrt{2} \mid x, y \in \mathbb{Q} \land x^2 - 2y^2 = 1 \right\}$$

a operacija \ast je definisana sa

$$a * b = a \cdot b$$
.

Rješenje

1. Zatvorenost $(\forall a, b \in S)$ $a * b \in S$ Neka je $a = x_1 + y_1\sqrt{2}$ i $b = x_2 + y_2\sqrt{2}$, pri čemu vrijedi $x_1^2 - 2y_1^2 = 1$ i $x_2^2 - 2y_2^2 = 1$. Tada je

$$a * b = (x_1 + y_1\sqrt{2}) \cdot (x_2 + y_2\sqrt{2})$$

$$= x_1x_2 + x_2y_1\sqrt{2} + x_1y_2\sqrt{2} + 2y_1y_2$$

$$= (x_1x_2 + 2y_1y_2) + (x_1y_2 + x_2y_1)\sqrt{2}$$

Kako je

$$(x_1x_2 + 2y_1y_2)^2 - 2(x_1y_2 + x_2y_1)^2 = x_1^2x_2^2 + 4x_1x_2y_1y_2 + 4y_1^2y_2^2 - 2(x_1^2y_2^2 + 2x_1y_2x_2y_1 + x_2^2y_1^2)$$

$$= x_1^2x_2^2 + 4x_1x_2y_1y_2 + 4y_1^2y_2^2 - 2x_1^2y_2^2 - 4x_1x_2y_1y_2 - 2x_2^2y_1^2$$

$$= x_1^2(x_2^2 - 2y_2^2) - 2y_1^2(x_2^2 - 2y_2^2)$$

$$= (x_2^2 - 2y_2^2) \cdot (x_1^2 - 2y_1^2)$$

$$= 1 \cdot 1 = 1,$$

zatvorenost vrijedi.

2. Komutativnost $(\forall a, b \in S)$ a * b = b * a Kako je

$$a * b = a \cdot b = b \cdot a = b * a,$$

komutativnost vrijedi.

3. Asocijativnost $(\forall a, b, c \in S)$ (a * b) * c = a * (b * c) Kako je

$$(a * b) * c = (a \cdot b) \cdot c = a \cdot b \cdot c = a \cdot (b * c) = a * (b * c)$$

asocijativnost vrijedi.

4. Neutralni element $(\exists! \ e \in S) \ (\forall a \in S) \ a * e = e * a = a$ Pošto vrijedi komutativnost, dovoljno je pronaći $e \in S$ tako da je a * e = a. Vrijedi:

$$a * e = a$$

$$\Leftrightarrow a \cdot e = a$$

$$\Leftrightarrow e = 1.$$

Kako je

$$e = 1 = 1 + 0 \cdot \sqrt{2} \wedge 1^2 - 2 \cdot 0^2 = 1,$$

zaključujemo da je e=1 neutralni element.

5. Inverzni element $(\exists n \in S) \ (\forall a \in S) \ a * n = n * a = e$ Pošto vrijedi komutativnost, dovoljno je pronaći $n \in S$ tako da je a * n = e. Vrijedi:

$$a*n = e$$

$$\Leftrightarrow a \cdot n = 1$$

$$\Leftrightarrow n = \frac{1}{a}.$$

Neka je

$$a = x + y\sqrt{2} \mid x, y \in \mathbb{Q} \land x^2 - 2y^2 = 1$$

Kako je

$$n = \frac{1}{a} = \frac{1}{x + y\sqrt{2}} = \frac{1}{x + y\sqrt{2}} \cdot \frac{x - y\sqrt{2}}{x - y\sqrt{2}} = \frac{x - y\sqrt{2}}{x^2 - 2y^2} = x - y\sqrt{2}$$

i kako je

$$x^{2} - 2(-y)^{2} = x^{2} - 2y^{2} = 1$$

zaključujemo da je $n=\frac{1}{a}\in S$ inverzni element.

Dakle (S, *) je Abelova grupa.