Sinais e Sistemas - Trabalho 4 - Avaliação 8

Grupo 2

Leonardo Soares da Costa Tanaka Matheus Henrique Sant Anna Cardoso Theo Rudra Macedo e Silva 1.) Abaixo, use o número do grupo como o valor do parâmetro p. Entre no Octave com B = [0;0;1], C = [100], A = [010;001]; (-2p)(-2p+2)(-p+2)], e serão criadas as matrizes A,B e C de uma equação dinâmica. Com auxílio do help, pesquise e use os comandos eig para calcular os autovalores e ss para criar um sistema de espaço de estados.

Matrizes relativas ao Grupo 2 (p = 2):

$$B = [0; 0; 1], C = [1 0 0], A = [0 1 0; 0 0 1; -4 -2 0]$$

(a) Encontre o polinômio característico $\Delta(s)$ associado;

$$\Delta(s) = det(sI - A) = \begin{vmatrix} s & 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix} - \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 4 & 2 & 0 \end{vmatrix} = \begin{vmatrix} s & -1 & 0 \\ 0 & s & -1 \\ 4 & 2 & s \end{vmatrix} = s^3 + 2s + 4$$

(b) encontre a função de transferência T(s) associada, manualmente e pelo Octave (descubra como);

$$T(s) = C(sI - A)^{-1} + d = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} s & -1 & 0 \\ 0 & s & -1 \\ 4 & 2 & s \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} -\frac{s^2 + 2}{-s^3 - 2s - 4} & -\frac{s}{-s^3 - 2s - 4} & -\frac{1}{-s^3 - 2s - 4} \\ \frac{4}{-s^3 - 2s - 4} & -\frac{s^2}{-s^3 - 2s - 4} & -\frac{s^2}{-s^3 - 2s - 4} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{s^2 + 2}{-s^3 - 2s - 4} & -\frac{s^2}{-s^3 - 2s - 4} & -\frac{s^2}{-s^3 - 2s - 4} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{s^2 + 2}{-s^3 - 2s - 4} & -\frac{s}{-s^3 - 2s - 4} & -\frac{1}{-s^3 - 2s - 4} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \frac{1}{s^3 + 2s + 4}$$

- (c) encontre a resposta ao degrau (comando step) para yex;
- (d) encontre manualmente os autovetores;
- (e) escreva a REN seguindo o exemplo completo na nova versão dos slides094pwd.pdf a partir do slide 83;

- (f) usando o comando initial encontre a REN (yex) para x_0 colocado em um ponto da matriz V;
- (g) idem para x_0 como uma combinação linear das colunas da matriz W.
- 2.) Um oscilador ideal com duas massas, molas e sem atritos e/ou amortecimentos é descrito por $\ddot{y_1}(t) + 2\omega_1^2 y_1(t) = \omega_1^2 y_2(t)$ e $\ddot{y_2}(t) + 2\omega_2^2 y_2(t) = \omega_2^2 y_1(t)$. Use a escolha $x_1 = y_1; x_2 = \dot{y_1}; x_3 = y_2; x_4 = \dot{y_2}$ para variáveis de estado, ou qualquer outra, e considere $\omega_1 = \omega_2 = \omega_0$.

 G2: $\omega_0 = 2$.
- (a) Encontre a matriz de estados A, seu polinômio característico $\Delta(s)$;
- (b) os autovalores (faça $\lambda_1; \lambda_2; \lambda_3; \lambda_4$; pares complexos conjugados) e, manualmente, os autovetores v_1, v_2, v_3, v_4 ;
- (c) escreva a expressão da REN: $x(t) = \sum_{i=1}^{4} r_i v_i e^{\lambda_i t}$ onde os r_i são parâmetros de cada modo e os λ_i são os autovalores;
- (d) usando a identidade de Euler, coloque a expressão acima em uma forma onde apareçam senos e co-seno;
- (e) analisando esta última expressão, verifique que os pares r_1 e r_2, r_3 e r_4 são complexos conjugados;
- (f) usando $r_1 = \alpha + j\beta, r_2 = \alpha j\beta, r_3 = \gamma + j\delta, r_4 = \gamma j\delta$ encontre a expressão final para x(t);
- (g) encontre o estado inicial x_0 que corresponde a $(\alpha, \beta, \gamma, \delta) = (1, 0, 0, 0)$ e plote x(t) no Octave (comando initial);
- (h) idem $(\alpha, \beta, \gamma, \delta) = (0, 0, 1, 0)$ idem;
- (i) idem $(\alpha, \beta, \gamma, \delta) = (1, 0, 1, 0)$ idem;
- (j) idem $(\alpha, \beta, \gamma, \delta)$ = sua escolha idem;
- (k) comente as curvas obtidas.