Parte 2) Classificação

Exercício 1 (Árvores de Classificação):

a) obter uma árvore de decisão para a base de dados abaixo, considerando que COMPRAR é o atributo meta (variável dependente):

SEXO	PAIS	IDADE	COMPRAR
M	França	25	Sim
M	Inglaterra	25	Sim
F	França	25	Sim
F	Inglaterra	25	Sim
F	França	55	Não
M	Alemanha	55	Não
M	Alemanha	55	Não
F	Alemanha	55	Não
F	França	55	Não
M	França	55	Não

b) Repita o exercício, agora eliminando o atributo IDADE da base de dados. Qual árvore é melhor, considerando "explicar o passado" e "predizer o futuro"?

Exercício 2: Para responder às perguntas 1-5, considere a seguinte base de dados: (Parte2 Pg 54)

A_1	A_2	A_3	A_4	Classe
S	Н	Н	W	N
S	Н	Н	S	N
О	Н	Н	W	Y
R	M	Н	W	Y
R	С	N	W	Y
R	С	N	S	N
О	С	N	S	Y
S	M	Н	W	N
S	С	N	W	Y
R	M	N	W	Y
S	М	N	S	Y
0	М	Н	S	Y
О	Н	N	W	Y
R	М	Н	S	N

- 1) Obter a árvore de classificação pelo ganho de informação;
- 2) Quais são as regras de classificação obtidas por meio desta árvore?
- 3) Qual é a acurácia deste conjunto de regras para o conjunto de treinamento? Esta acurácia é uma estimativa adequada para a capacidade de generalização do classificador (ao se considerar dados não vistos)?
- 4) Supondo-se que não se pode dispor adicionalmente de mais dados, descreva um procedimento que permita estimar melhor a acurácia do classificador em questão para dados novos (e.g., ainda não observados e que serão classificados pela árvore de decisão). Dica: ver validação cruzada.

Parte 3) Regressão

Exercício 3 (Árvores de Regressão):

- Realizar o teste para autônomo, complementar árvore

Exercício 4 (K-NN para regressão):

- Estimar Y para o objeto #9 com k=1,2,3,4,5 (com e sem ponderação)
- Diferença ao de classificação: estimar **média** para cada k

Exemplo	$\mathbf{a_1}$	$\mathbf{a_2}$	$\mathbf{a_3}$	Y
1	0	250	36	10
2	10	150	34	15
3	2	90	10	5
4	6	78	8	20
5	4	20	1	30
6	1	170	70	40
7	8	160	41	25
8	10	180	38	35
9	6	200	45	?

d(9,1) = 65d(9,2) = 65

d(9,3) = 149 d(9,4) = 159 d(9,5) = 226 d(9,6) = 60 d(9,7) = 46d(9,8) = 31

a) Sem ponderação
k = 1 : exemplo 8 -> Y = 38
k = 2: exemplo 8,7 -> $Y = (35 + 25)/2 = 30$
k = 3: exemplo 8,7,6 -> $Y = (35 + 25 + 5)/3 = 21,666$
$k = 4$: exemplo $8.7,6,1 \rightarrow Y = (35 + 25 + 5 + 10)/4 = 18.75$
k = 5 exemplo 8 7 6 1 2 -> $V = (35 + 25 + 5 + 10 + 15)/5 = 18$

b) Com ponderação (Inverso da distância manhattan)

k = 1 : exemplo 8 -> Y = 38

k = 2: exemplo 8,7 -> Y = (35 + 25)/2 = 30

k = 3: exemplo 8,7,6 -> Y = (35 + 25 + 5)/3 = 21,666

k = 4: exemplo $8,7,6,1 \rightarrow Y = (35 + 25 + 5 + 10)/4 = 18,75$

k = 5: exemplo 8,7,6,1,2 -> Y = (35+25+5+10+15)/5 = 18

Inversos: voto do 8 = 1/31 = 0,0322 voto do 7 = 1/46 = 0,0217 voto do 6 = 1/60 = 0,0166 voto do 1 = 1/65 = 0,0153 voto do 2 = 1/65 = 0,0153

Parte 4) Clustering Exercício 5 (K-means):

Objeto \mathbf{x}_{i}	x_{i1}	x_{i2}
1	1	2
2	2	1
3	1	1
4	2	2
5	8	9
6	9	8
7	9	9
8	8	8
9	1	15
10	2	15
11	1	14
12	2	14

Executar k-means com k = 3 nos dados acima a partir dos protótipos [6 6], [4 6] e [5 10]. Quais foram as partições e os centróides obtidos?

Objeto/centróide	[6,6]	[4,6]	[5,10]
1	$5^2 + 4^2 = 41$	$3^2 + 4^2 = 25$	$4^2 + 8^2 = 80$
2	$4^2 + 5^2 = 41$	$2^2 + 5^2 = 29$	$3^2 + 9^2 = 90$
3	$5^2 + 5^2 = 50$	$3^2 + 5^2 = 34$	$4^2 + 9^2 = 97$
4	$4^2 + 4^2 = 32$	$2^2 + 4^2 = 18$	$3^2 + 8^2 = 73$
5	$(-2)^2 + (-3)^2 = 13$	$(-4)^2 + (-3)^2 = 25$	$(-3)^2 + (1)^2 = 10$
6	$(-3)^2 + (-2)^2 = 13$	$(-5)^2 + (-2)^2 = 29$	$(-4)^2 + (2)^2 = 18$
7	$(-3)^2 + (-3)^2 = 18$	$(-5)^2 + (-3)^2 = 34$	$(-4)^2 + (1)^2 = 17$
8	$(-2)^2 + (-2)^2 = 8$	$(-4)^2 + (-2)^2 = 18$	$(-3)^2 + (2)^2 = 13$
9	$(5)^2 + (-9)^2 = 106$	$(3)^2 + (-9)^2 = 90$	$(4)^2 + (-5)^2 = 41$
10	$(4)^2 + (-9)^2 = 97$	$(2)^2 + (-9)^2 = 85$	$(3)^2 + (-5)^2 = 34$
11	$(5)^2 + (-8)^2 = 89$	$(3)^2 + (-8)^2 = 73$	$(4)^2 + (-4)^2 = 32$
12	$(4)^2 + (-8)^2 = 80$	$(2)^2 + (-8)^2 = 66$	$(3)^2 + (-4)^2 = 25$

 $P1[6,6] = \{6,8\}$

-c1x = (9 + 8)/2 = 8.5 | c1y = (8 + 8)/2 = 8

P1[4,6] = {1,2,3,4}

-c2x = (1 + 2 + 1 + 2)/4 = 1.5 | c2y = (2+1+1+2)/4 = 1.5

 $P1[6,6] = {5,7,9,10,11,12} -c3x = (8+9+1+2+1+2)/6=3,83 | c3y = (9+9+15+15+14+14)/6=12,6$

Exercício 6 (Silhueta Simplificada):

Calcule o valor para as silhuetas para a partição correta acima e também para uma

partição formada por dois clusters à sua escolha.

- 1) Dissimilaridade entre clusters
- Distância E² entre centroides → saber cluster mais próximo

2) para k = 3

P/ cluster 1:

$$i1 = (1,2)$$
, $bi1 = 7.5^2 + 6.5^2 = 98,5$, $ai1 = 0.5^2 + 0.5^2 = 0,5$
 $s(i1) = 98,5 - 0,5 / 98,5 = 98 / 98,5 = 0,9949 = s(i2)$

$$i3 = (1,1)$$
, $bi3 = 7.5^2 + 7.5^2 = 112,5$, $ai3 = 0.5^2 + 0.5^2 = 0,5$
 $s(i3) = 112,5 - 0,5 / 112,5 = 112 / 112,5 = 0,9955$

$$i4 = (2,2)$$
, $bi4 = 6.5^2 + 6.5^2 = 84,5$, $ai4 = 0.5^2 + 0.5^2 = 0,5$
 $s(i4) = 84,5 - 0,5 / 84,5 = 84 / 84,5 = 0,9940$

P/ cluster 2: {...}
P/ cluster 3: {...}

SSWC =
$$0.9949 + 0.9949 + 0.9955 + 0.9940 + ... + s(i)12 / 12 =$$

C1 = (1.5, 1.5);
C2 = (8.5, 8.5);
C3 = (1.5, 14.5);
C1 e C2 = 49 + 49 = 98;
C1 e C3 = 169;
C2 e C3 = 49 + 36 = 85;
C1
$$\rightarrow$$
 C2; C2 \rightarrow C3; C3 \rightarrow C2