第一章 命题逻辑

习题与解答

- 1. 判断下列语句是否为命题,并讨论命题的真值。
- (1) 2x-3=0.
- (2) 前进!
- (3) 如果8+7>20,则三角形有四条边。
- (4) 请勿吸烟!
- (5) 你喜欢鲁迅的作品吗?
- (6) 如果太阳从西方升起, 你就可以长生不老。
- (7) 如果太阳从东方升起, 你就可以长生不老。
- 解 (3), (6), (7)表达命题, 其中(3), (6)表达真命题, (7)表达假命题。
- 2. 将下列命题符号化:
- (1) 逻辑不是枯燥无味的。
- (2) 我看见的既不是小张也不是老李。
- (3) 他生于 1963 年或 1964 年。
- (4) 只有不怕困难,才能战胜困难。
- (5) 只要上街,我就去书店。
- (6) 如果晚上做完了作业并且没有其它事情,小杨就看电视或听音乐。
- (7) 如果林芳在家里,那么他不是在做作业就是在看电视。
- (8) 三角形三条边相等是三个角相等的充分条件。
- (9) 我进城的必要条件是我有时间。
- (10) 他唱歌的充分必要条件是心情愉快。
- (1) 小王总是在图书馆看书,除非他病了或者图书馆不开门。
- 解 (1) p: 逻辑是枯燥无味的。
- "逻辑不是枯燥无味的"符号化为 $\neg p$ 。
- (2) p: 我看见的是小张。q: 我看见的是老李。
- "我看见的既不是小张也不是老李"符号化为 $\neg p \land \neg q$ 。
- (3) p: 他生于 1963 年。q: 他生于 1964 年。
- "他生于 1963 年或 1964 年"符号化为 $p \oplus q$ 。
- (4) p: 害怕困难。q: 战胜困难。
- "只有不怕困难,才能战胜困难"符号化为 $q \rightarrow \neg p$ 。
- (5) p: 我上街。q: 我去书店。
- "只要上街,我就去书店"符号化为 $p \rightarrow q$ 。
- (6) p: 小杨晚上做完了作业。q: 小杨晚上没有其它事情。
- r: 小杨晚上看电视。s: 小杨晚上听音乐。
- "如果晚上做完了作业并且没有其它事情,小杨就看电视或听音乐"符号化为 $p \wedge q \rightarrow r \vee s$ 。
- (7) p: 林芳在家里。q: 林芳做作业。r: 林芳看电视。
- "如果林芳在家里,那么他不是在做作业就是在看电视"符号化为 $p \rightarrow q \lor r$ 。
- (8) p: 三角形三条边相等。q: 三角形三个角相等。
- "三角形三条边相等是三个角相等的充分条件"符号化为 $p \rightarrow q$ 。
- (9) p: 我进城。q: 我有时间。
- "我进城的必要条件是我有时间"符号化为 $p \rightarrow q$ 。
- (10) p: 他唱歌。q: 他心情愉快。
- "他唱歌的充分必要条件是心情愉快" 符号化为 $p \leftrightarrow q$ 。
- (1) p: 小王在图书馆看书。q: 小王病了。r: 图书馆开门。
- "小王总是在图书馆看书,除非他病了或者图书馆不开门"符号化为 $\neg(q \lor \neg r) \to p$ 。
- 3. 列出除 \wedge , \vee , \oplus , \rightarrow , \leftrightarrow 之外的所有二元联结词的真值表。

解 共有 16 个二元联结词,记除 \land , \lor , \oplus , \longrightarrow 之外的二元联结词为 Δ_1,Δ_2,K , Δ_{11} 。

р	q	$p\Delta_1 q$	$p\Delta_2 q$	$p\Delta_3 q$	$p\Delta_4 q$	$p\Delta_5 q$	$p\Delta_6q$
0	0	0	0	0	0	0	1
0	1	0	0	0	1	1	0
1	0	0	1	1	0	0	0
1	1	0	0	1	0	1	0

р	q	$p\Delta_7 q$	$p\Delta_8 q$	$p\Delta_9 q$	$p\Delta_{10}q$	$p\Delta_{11}q$
0	0	1	1	1	1	1
0	1	0	0	1	1	1
1	0	1	1	0	1	1
1	1	0	1	0	0	1

4. 求下列公式在真值赋值 $(p_1/1, p_2/1, p_3/0, p_4/0)$ 下的值:

(1)
$$p_1 \lor (p_2 \land p_3)$$

(2)
$$(p_1 \land p_2 \land p_3) \lor \neg ((p_1 \lor p_2) \land (p_3 \lor p_4))$$

$$(3) \neg (p_1 \land p_2) \lor \neg p_3 \lor (((\neg p_1 \land p_2) \lor \neg p_3) \land \neg p_4)$$

$$(4) (p_2 \leftrightarrow \neg p_1) \rightarrow \neg p_3 \lor p_4$$

(5)
$$(p_1 \leftrightarrow p_3) \land (\neg p_2 \rightarrow p_4)$$

(6)
$$p_1 \lor (p_2 \rightarrow p_3 \land \neg p_1) \leftrightarrow p_2 \lor \neg p_4$$

(7)
$$(p_1 \leftrightarrow p_3) \land (\neg p_2 \oplus p_4)$$

解 记真值赋值 $(p_1/1, p_2/1, p_3/0, p_4/0)$ 为 v。

(1)
$$v(p_1 \lor (p_2 \land p_3)) = 1 \lor (1 \land 0) = 1$$
.

$$(2) \ \ v((p_1 \land p_2 \land p_3) \lor \neg ((p_1 \lor p_2) \land (p_3 \lor p_4))) = (1 \land 1 \land 0) \lor \neg ((1 \lor 1) \land (0 \lor 0)) = 1$$

(3)
$$v(\neg(p_1 \land p_2) \lor \neg p_3 \lor (((\neg p_1 \land p_2) \lor \neg p_3) \land \neg p_4))$$

$$= \neg (1 \land 1) \lor \neg 0 \lor (((\neg 1 \land 1) \lor \neg 0) \land \neg 0) = 1.$$

$$(4) \quad v((p_2 \leftrightarrow \neg p_1) \rightarrow \neg p_3 \lor p_4) = (1 \leftrightarrow \neg 1) \rightarrow \neg 0 \lor 0 = 1.$$

(5)
$$v((p_1 \leftrightarrow p_3) \land (\neg p_2 \rightarrow p_4)) = (1 \leftrightarrow 0) \land (\neg 1 \rightarrow 0) = 0$$
.

(6)
$$v(p_1 \lor (p_2 \rightarrow p_3 \land \neg p_1) \leftrightarrow p_2 \lor \neg p_4) = 1 \lor (1 \rightarrow 0 \land \neg 1) \leftrightarrow 1 \lor \neg 0 = 1$$
.

(7)
$$v((p_1 \leftrightarrow p_3) \land (\neg p_2 \oplus p_4)) = (1 \leftrightarrow 0) \land (\neg 1 \oplus 0) = 0$$
.

5. 用真值表判断以下公式是不是永真式、永假式、可满足式。

$$(1) (p \rightarrow r) \rightarrow ((q \rightarrow r) \rightarrow (p \lor q \rightarrow r))$$

$$(2) \quad (p \to \neg p) \to \neg p$$

(3)
$$(p \rightarrow q) \rightarrow ((p \rightarrow \neg q) \rightarrow p)$$

$$(4) (p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$$

(5)
$$(p \land q) \land (p \rightarrow r) \land (q \rightarrow r) \rightarrow r$$

(6)
$$\neg p \land \neg (p \rightarrow q)$$

$$(7) (p \rightarrow q) \rightarrow ((p \rightarrow \neg q) \rightarrow \neg p)$$

解 (1), (2), (4), (5), (7)是永真式, (6)是永假式, (3)是非永真的可满足式。

- 6. 指出满足下列公式的所有真值赋值。
- (1) $(p \land q) \lor (\neg p \lor r)$

(2)
$$p \lor (q \land \neg r \land (p \lor q))$$

(3)
$$p \lor r \to \neg (p \lor r) \land (q \lor r)$$

(4)
$$p \oplus (q \leftrightarrow r)$$

解 (1)
$$(p/0, q/0, r/0)$$
, $(p/0, q/0, r/1)$, $(p/0, q/1, r/0)$, $(p/0, q/1, r/1)$, $(p/1, q/0, r/1)$, $(p/1, q/1, r/0)$, $(p/1, q/1, r/1)$ 。

(2)
$$(p/0, q/1, r/0), (p/1, q/0, r/0), (p/1, q/0, r/1), (p/1, q/1, r/0),$$

 $(p/1, q/1, r/1)_{\circ}$

(3)
$$(p/0, q/0, r/0), (p/0, q/1, r/0)$$
.

(4)
$$(p/0, q/0, r/0)$$
, $(p/0, q/1, r/1)$, $(p/1, q/0, r/1)$, $(p/1, q/1, r/0)$.

- 7. 若公式 A既不是永真式,也不是永假式,则 A的每个替换实例一定既不是永真式,也不是永假式。对吗? **解** 不对。若 A 是非永真的可满足式,则它的替换实例中既有永真式,也有永假式,也有非永真的可满足式。8. 用真值表证明以下等值式。
- (1)
- (2)
- (3)
- (4)
- 9. 用等值演算证明以下等值式。

(1)
$$p \rightarrow (q \rightarrow r) \Leftrightarrow q \rightarrow (p \rightarrow r)$$

(2)
$$(p \rightarrow q) \land (p \rightarrow r) \Leftrightarrow p \rightarrow q \land r$$

(3)
$$(p \rightarrow q) \lor (r \rightarrow q) \Leftrightarrow p \land r \rightarrow q$$

$$(4) \quad p \to (q \to p) \Leftrightarrow \neg p \to (p \to q)$$

(5)
$$(p \rightarrow q) \land (r \rightarrow q) \Leftrightarrow p \lor r \rightarrow q$$

(6)
$$\neg (p \leftrightarrow q) \Leftrightarrow p \leftrightarrow \neg q$$

$$\texttt{\textit{\textbf{g}}} \quad \text{(1)} \quad p \to (q \to r) \Leftrightarrow \neg p \lor (\neg q \lor r) \Leftrightarrow \neg q \lor (\neg p \lor r) \Leftrightarrow q \to (p \to r)$$

$$(2) \quad (p \to q) \land (p \to r) \Leftrightarrow (\neg p \lor q) \land (\neg p \lor r) \Leftrightarrow \neg p \lor (q \land r) \Leftrightarrow p \to q \land r$$

$$(3) \quad (p \to q) \lor (r \to q) \Leftrightarrow \neg p \lor q \lor \neg r \lor q \Leftrightarrow \neg (p \land r) \to q \Leftrightarrow p \land r \to q$$

$$(4) \quad p \to (q \to p) \Leftrightarrow \neg p \lor \neg q \lor p \Leftrightarrow 1 \Leftrightarrow \neg \neg p \lor \neg p \lor q \Leftrightarrow \neg p \to (p \to q)$$

$$(5) \qquad (p \to q) \land (r \to q) \Leftrightarrow (\neg p \lor q) \land (\neg r \lor q) \Leftrightarrow (\neg p \land \neg r) \lor q$$
$$\Leftrightarrow \neg (p \lor r) \lor q \Leftrightarrow p \lor r \to q$$

$$(6) \neg (p \leftrightarrow q) \Leftrightarrow p \oplus q \Leftrightarrow (p \oplus (q \oplus 1)) \oplus 1 \Leftrightarrow \neg (p \oplus \neg q) \Leftrightarrow p \leftrightarrow \neg q$$

10. 用等值演算证明以下公式是永真式。

(1)
$$(q \to p) \land (\neg p \to q) \leftrightarrow p$$

$$(2) (p \rightarrow q) \land (r \rightarrow s) \rightarrow (p \land r \rightarrow q \land s)$$

(3)
$$(p \rightarrow q) \lor (p \rightarrow r) \lor (p \rightarrow s) \rightarrow (p \rightarrow q \lor r \lor s)$$

$$(4) (p \lor q \to r) \to (p \to r) \lor (q \to r)$$

$$\texttt{\textit{\textbf{g}}} \quad \text{(1)} \quad (q \to p) \land (\neg p \to q) \leftrightarrow p \Leftrightarrow (\neg q \lor p) \land (p \lor \neg q) \leftrightarrow p \Leftrightarrow p \leftrightarrow p \Leftrightarrow 1$$

$$(2) (p \to q) \land (r \to s) \to (p \land r \to q \land s)$$

$$\Leftrightarrow (\neg p \lor q) \land (\neg r \lor s) \land p \land r \to q \land s$$

$$\Leftrightarrow (\neg p \lor q) \land p \land (\neg r \lor s) \land r \to q \land s$$

$$\Leftrightarrow q \land p \land s \land r \rightarrow q \land s \Leftrightarrow 1$$

$$(3) \qquad (p \to q) \lor (p \to r) \lor (p \to s) \to (p \to q \lor r \lor s)$$

$$\Leftrightarrow \neg p \lor q \lor \neg p \lor r \lor \neg p \lor s \to (p \to q \lor r \lor s)$$

$$\Leftrightarrow \neg p \lor q \lor r \lor s \to \neg p \lor q \lor r \lor s \Leftrightarrow 1$$

$$(4) \qquad (p \lor q \to r) \to (p \to r) \lor (q \to r)$$

$$\Leftrightarrow \neg(\neg(p \lor q) \lor r) \lor \neg p \lor r \lor \neg q \lor r$$

$$\Leftrightarrow ((p \lor q) \land \neg r) \lor \neg p \lor \neg q \lor r$$

$$\Leftrightarrow (p \lor q \lor \neg p \lor \neg q \lor r) \land (\neg r \lor \neg p \lor \neg q \lor r) \Leftrightarrow 1 \land 1 \Leftrightarrow 1$$

11. 用等值演算证明以下公式是永假式。

(1)
$$(q \to p) \land (\neg p \to q) \leftrightarrow \neg p$$

(2)
$$(p \rightarrow q) \land (q \rightarrow r) \land \neg (p \rightarrow r)$$

$$\texttt{\textit{\textbf{\textit{M}}}} \quad \text{(1)} \quad (q \to p) \land (\neg p \to q) \leftrightarrow \neg p \Leftrightarrow (\neg q \lor p) \land (p \lor \neg q) \leftrightarrow \neg p \Leftrightarrow p \leftrightarrow \neg p \Leftrightarrow 0$$

$$(2) \qquad (p \to q) \land (q \to r) \land \neg (p \to r) \Leftrightarrow (\neg p \lor q) \land (\neg q \lor r) \land \neg (\neg p \lor r)$$

$$\Leftrightarrow (\neg p \lor q) \land (\neg q \lor r) \land p \land \neg r \Leftrightarrow ((\neg p \lor q) \land p) \land ((\neg q \lor r) \land \neg r)$$

$$\Leftrightarrow p \land q \land \neg q \land \neg r \Leftrightarrow 0$$

- 12. 找出与下列公式等值的尽可能简单的由 {¬, ∧} 生成的公式。
- 13. 找出与下列公式等值的尽可能简单的由 {¬,∨}生成的公式。

(1)
$$\neg p \land \neg q \land (\neg r \rightarrow p)$$

(2)
$$(p \rightarrow q \lor \neg r) \land \neg p \land q$$

(3)
$$p \wedge q \wedge \neg p$$

$$\mathbf{f} \qquad (1) \quad \neg p \land \neg q \land (\neg r \to p) \Leftrightarrow \neg p \land \neg q \land (\neg \neg r \lor p)$$

$$\Leftrightarrow (\neg p \land \neg q \land \neg \neg r) \lor (\neg p \land \neg q \land p)$$

$$\Leftrightarrow \neg p \land \neg q \land \neg \neg r \Leftrightarrow \neg (p \lor q \lor \neg r)$$

$$(2) \quad (p \to q \lor \neg r) \land \neg p \land q \Leftrightarrow (\neg p \lor q \lor \neg r) \land \neg p \land q \Leftrightarrow \neg(\neg(\neg p \lor q \lor \neg r) \lor p \lor \neg q)$$

$$(3) \quad p \land q \land \neg p \Leftrightarrow \neg (\neg p \lor \neg q \lor p)$$

14. 设 A 是由 $\{\longleftrightarrow\}$ 生成的公式。证明: A 是永真式当且仅当每个命题变元在 A 中出现偶数次。

$$A \Leftrightarrow \begin{cases} 1 & \exists p \in A + \exists p \in A}$$
 若 $p \in A + \exists p \in A}$ 若 $p \in A$ 中出现奇数次

对 p 在 A 中的出现次数进行归纳。

- ① 若 p 在 A 中出现 1 次,即 A 为 p,显然 $A \Leftrightarrow p$ 。
- ② 若 p 在 A 中出现 2 次,即 A 为 $p \leftrightarrow p$,显然 $A \Leftrightarrow 1$ 。
- ③ 设 p在 A中的出现 n次,A为 $B \leftrightarrow C$, p在 B, C中的出现次数分别为 k和 I,则 n = k + l , k < n 且 l < n 。若 n 为偶数,则 k和 I 的奇偶性相同,B和 C年值于同一公式, $A \Leftrightarrow 1$ 。若 n 为奇数,则 k和 I 的奇偶性不同,B和 C中一个等值于 p,另一个是永真式,因此

 $A \Leftrightarrow p \leftrightarrow 1 \Leftrightarrow p$.

设在 A 中的出现的所有命题变元为 p_1 , Λ , p_n , 它们的出现次数分别为 k_1 , Λ , k_n 。因为

 $A \longleftrightarrow B \Leftrightarrow \neg(A \oplus B) \Leftrightarrow \neg(B \oplus A) \Leftrightarrow B \longleftrightarrow A$, # \Box

$$(A \leftrightarrow B) \leftrightarrow C \Leftrightarrow \neg(\neg(A \oplus B) \oplus C) \Leftrightarrow A \oplus B \oplus 1 \oplus C \oplus 1$$

$$\Leftrightarrow A \oplus B \oplus C \oplus 1 \oplus 1 \Leftrightarrow \neg(A \oplus \neg(B \oplus C)) \Leftrightarrow A \leftrightarrow (B \leftrightarrow C)$$

所以 \leftrightarrow 满足交换律和结合律,存在由 $\{\leftrightarrow\}$ 生成的公式 B_1 , Λ , B_n , 使得 $A \Leftrightarrow B_1 \leftrightarrow \Lambda \leftrightarrow B_n$,并且 B_i 仅出现命题变元 p_i ,出现次数为 k_i , i=1, Λ ,n 。若 k_1 , Λ , k_n 全为偶数,则 $A \Leftrightarrow B_1 \leftrightarrow \Lambda \leftrightarrow B_n \Leftrightarrow 1 \oplus \Lambda \oplus 1 \Leftrightarrow 1$ 。若 k_1 , Λ , k_n 中有 k_{l_1} , Λ , k_{l_m} 是奇数,则 $A \Leftrightarrow B_1 \leftrightarrow \Lambda \leftrightarrow B_n \Leftrightarrow p_{l_1} \leftrightarrow \Lambda \leftrightarrow p_{l_m}$,显然 A不是永真式。

15. 设 A 是由 $\{ \oplus \}$ 生成的公式。证明: A 是永假式当且仅当每个命题变元在 A 中出现偶数次。

$$A \Leftrightarrow \begin{cases} 0 & \exists p \in A + \exists p \in A}$$
 若 $p \in A + \exists p \in A}$ 若 $p \in A$ 中出现奇数次

对 p 在 A 中的出现次数进行归纳。

- ① 若 p 在 A 中出现 1 次,即 A 为 p,显然 $A \Leftrightarrow p$ 。
- ② 若 p 在 A 中出现 2 次,即 A 为 p \oplus p,显然 A \Leftrightarrow 0 。
- ③ 设 p在 A中的出现 n次,A为 $B \oplus C$, p在 B, C中的出现次数分别为 k和 I,则 n = k + l , k < n 且 l < n 。若 n为偶数,则 k和 I 的奇偶性相同,B和 C年一个等值于 p,另一个是永假式,因此 $A \Leftrightarrow p \oplus 0 \Leftrightarrow p$ 。

设在 A 中的出现的所有命题变元为 p_1 , Λ , p_n ,它们的出现次数分别为 k_1 , Λ , k_n 。因为 \oplus 满足交换律和结合律,所以存在由 $\{\oplus\}$ 生成

的公式 B_1, Λ , B_n , 使得 $A \Leftrightarrow B_1 \oplus \Lambda \oplus B_n$, 并且 B_i 仅出现命题变元 p_i , 出现次数为 k_i , $i=1, \Lambda$,n 。 若 k_1, Λ , k_n 全为偶数,

则 $A \Leftrightarrow B_1 \oplus \Lambda \oplus B_n \Leftrightarrow 0 \oplus \Lambda \oplus 0 \Leftrightarrow 0$ 。 若 k_1, Λ, k_n 中 有 $k_{l_1}, \Lambda, k_{l_m}$ 是 奇 数 , 则

 $A \Leftrightarrow B_1 \oplus \Lambda \oplus B_n \Leftrightarrow p_{l_1} \oplus \Lambda \oplus p_{l_m}$, 显然 A不是永假式。

16. 北京、上海、天津、广州四市乒乓球队比赛,三个观众猜测比赛结果。

甲说:"天津第一,上海第二。"

乙说:"天津第二,广州第三。"

丙说:"北京第二,广州第四。"

比赛结果显示,每人猜对了一半,并且没有并列名次。

问:实际名次怎样排列?

解 用字母表示命题如下:

 p_2 :北京第二, q_2 :上海第二, r_1 :天津第一,

 r_2 :天津第二, s_3 :广州第三, s_4 :广州第四。

由己知条件列出以下方程:

甲猜对了一半: $r_1 \oplus q_2 = 1$, 乙猜对了一半: $r_2 \oplus s_3 = 1$,

丙猜对了一半: $p_2 \oplus s_4 = 1$,

每个城市只能得一个名次: $r_1 \wedge r_2 = 0$, $s_3 \wedge s_4 = 0$;

没有并列名次: $p_2 \wedge q_2 = 0$, $p_2 \wedge r_2 = 0$, $r_2 \wedge q_2 = 0$.

解以上8个方程组成的方程组。

$$r_2 = r_2 \land 1 = r_2 \land (r_1 \oplus q_2) = (r_2 \land r_1) \oplus (r_2 \land q_2) = 0 \oplus 0 = 0$$

将 $r_2=0$ 代入 $r_2\oplus s_3=1$ 得 $s_3=1$,将 $s_3=1$ 代入 $s_3\wedge s_4=0$ 得 $s_4=0$,将 $s_4=0$ 代入 $p_2\oplus s_4=1$ 得 $p_2=1$,将 $p_2=1$ 代

入 $p_2 \wedge q_2 = 0$ 得 $q_2 = 0$,将 $q_2 = 0$ 代入 $r_1 \oplus q_2 = 1$ 得 $r_1 = 1$ 。因此,天津第一,北京第二,广州第三,上海第四。

17. 某勘探队取回一块矿样,三人判断如下。

甲说:"矿样不含铁,也不含铜。"

乙说:"矿样不含铁,含锡。"

丙说:"矿样不含锡,含铁。"

已经知道,这三人中有一个是专家,一个是老队员,一个是实习队员。化验结果表明:这块矿样只含一种金属,专家的两个判断皆对,老队员的判断一对一错,实习队员的两个判断皆错。问:这三人的身分各是什么?

解 *p*:矿样含铁,

q:矿样含铜,

r:矿样含锡。

甲说的两句话为: $\neg p$, $\neg q$

乙说的两句话为: $\neg p$,r

丙说的两句话为: $\neg r$,p

如果用一个公式表达出这三人中有一个是专家,一个是老队员,一个是实习队员,公式会非常复杂。其实我们不必完全写出这样的公式。

因为矿样只含一种金属,所以 $p \land q = 0$, $q \land r = 0$, $r \land p = 0$ 。甲是实习队员,即甲说的两句话都是错的,可表示为: $p \land q$ 。

乙是实习队员,即乙说的两句话都是错的,可表示为: $p \land \neg r$ 。丙是实习队员,即丙说的两句话都是错的,可表示为: $r \land \neg p$ 。甲、乙、丙三人中至少有一个是实习队员,可表示为:

$$(p \land q) \lor (p \land \neg r) \lor (r \land \neg p) = 1$$

因为 $p \wedge q = 0$,所以 $(p \wedge \neg r) \vee (r \wedge \neg p) = 1$,即 $p \oplus r = 1$, p 和 r 中恰好有一个为 1,因此 q = 0。甲是老队员,即甲说的话一半对一半错,可表示为: $\neg p \oplus \neg q$ 。乙是老队员,即乙说的话一半对一半错,可表示为: $\neg p \oplus r$ 。丙是老队员,即丙说的话一半

对一半错,可表示为: $\neg r \oplus p$ 。甲、乙、丙三人中有奇数个老队员,可表示为:

$$(\neg p \oplus \neg q) \oplus (\neg p \oplus r) \oplus (\neg r \oplus p) = 1$$

由教材上的等值式可得到

$$(\neg p \oplus \neg q) \oplus (\neg p \oplus r) \oplus (\neg r \oplus p)$$

$$\Leftrightarrow (\neg p \oplus \neg p) \oplus (\neg r \oplus r) \oplus (\neg q \oplus p)$$

$$\Leftrightarrow 0 \oplus 1 \oplus (q \oplus 1 \oplus p) \Leftrightarrow q \oplus p$$

又知道 q=0,所以 p=1。因为 $r\wedge p=0$,所以 r=0。因此,甲说的话一半对一半错,甲是老队员。乙说的话全错,乙是实习队员。丙说的话全对,丙是专家。

18. 先用等值演算证明下列等值式,再用对偶定理得出新等值式。

$$(1) \neg (\neg p \lor \neg q) \lor \neg (\neg p \lor q) \Leftrightarrow p$$

(2)
$$(p \lor \neg q) \land (p \lor q) \land (\neg p \lor \neg q) \Leftrightarrow \neg (\neg p \lor q)$$

(3)
$$q \lor \neg ((\neg p \lor q) \land p) \Leftrightarrow 1$$

$$\mathbf{M} \quad \text{(1)} \quad \neg (\neg p \lor \neg q) \lor \neg (\neg p \lor q) \Leftrightarrow (p \land q) \lor (p \land \neg q) \Leftrightarrow p \land (q \lor \neg q) \Leftrightarrow p$$

由对偶定理得 $\neg(\neg p \land \neg q) \lor \neg(\neg p \land q) \Leftrightarrow p$ 。

$$(2) \qquad (p \lor \neg q) \land (p \lor q) \land (\neg p \lor \neg q) \Leftrightarrow (p \lor (\neg q \land q)) \land (\neg p \lor \neg q)$$
$$\Leftrightarrow p \land (\neg p \lor \neg q) \Leftrightarrow (p \land \neg p) \lor (p \land \neg q) \Leftrightarrow p \land \neg q \Leftrightarrow \neg (\neg p \lor q)$$

由对偶定理得 $(p \land \neg q) \lor (p \land q) \lor (\neg p \land \neg q) \Leftrightarrow \neg (\neg p \land q)$ 。

(3)

- 19. 设A是由 $\{0,1,\neg,\land,\lor\}$ 生成的公式, A^* 与A互为对偶式。
- (1) 若 A 是永真式,则 A^* 是永假式。
- (2) 若 A 是永假式,则 A^* 是永真式。

证明 (1) 设 A 是永真式,则 $A \Leftrightarrow 1$,由对偶定理得 $A^* = 0$,因此 A^* 是永假式。

- (2) 设 A 是永假式,则 $A \Leftrightarrow 0$,由对偶定理得 $A^* = 1$,因此 A^* 是永真式。
- 20. 证明以下联结词集合是极小完全集。
- $(1) \{0,\rightarrow\}$
- (2) $\{\oplus, \rightarrow\}$
- $(3) \{ \oplus, \wedge, \longleftrightarrow \}$
- $(4) \quad \{ \oplus, \vee, \longleftrightarrow \}$

证明 (1) $\neg p \Leftrightarrow \neg p \vee 0 \Leftrightarrow p \to 0$,因为 $\{\neg, \to\}$ 是完全集,所以 $\{0, \to\}$ 是完全集。任取由 $\{0\}$ 生成的不出现除命题变元 p之外的命题变元的公式 A,令真值赋值v = (p/0),则v(A) = 0,而 $v(\neg p) = 1$,因此 $\{0\}$ 不能定义 \neg 。所以 $\{0\}$ 不是完全集。任取由 $\{\to\}$ 生成的仅出现命题变元 p的公式 A,令真值赋值v = (p/1),则v(A) = 1,而 $v(\neg p) = 0$,因此 $\{\to\}$ 不能定义 \neg 。所以 $\{\to\}$ 是极小完全集。

(2) $\neg p \Leftrightarrow p \oplus 1 \Leftrightarrow p \oplus (p \to p)$, 因为 $\{\neg, \to\}$ 是完全集,所以 $\{\oplus, \to\}$ 是完全集。任取由 $\{\oplus\}$ 生成的仅出现除命题变元p的

公式 A,令真值赋值 v=(p/0),则 v(A)=0,而 $v(\neg p)=1$,因此 $\{\oplus\}$ 不能定义 \neg 。所以 $\{\oplus\}$ 不是完全集。 $\{\to\}$ 不是完全集。 所以 $\{\oplus,\to\}$ 是极小完全集。

(3) $\neg p \Leftrightarrow p \oplus 1 \Leftrightarrow p \oplus (p \to p)$,因为 $\{\neg, \land\}$ 是完全集,所以 $\{\oplus, \land, \leftrightarrow\}$ 是完全集。任取由 $\{\oplus, \land\}$ 生成的仅出现除命题变元p的公式A,令真值赋值v = (p/0),则v(A) = 0,而 $v(\neg p) = 1$,因此 $\{\oplus, \land\}$ 不能定义 \neg 。所以 $\{\oplus, \land\}$ 不是完全集。任取由 $\{\land, \leftrightarrow\}$ 生成的仅出现命题变元p的公式A,令真值赋值v = (p/1),则v(A) = 1,而 $v(\neg p) = 0$,因此 $\{\land, \leftrightarrow\}$ 不能定义 \neg 。所以 $\{\land, \leftrightarrow\}$ 不是完全集。所以 $\{\oplus, \land, \leftrightarrow\}$ 是极小完全集。

(4) $\neg p \Leftrightarrow p \oplus 1 \Leftrightarrow p \oplus (p \to p)$,因为 $\{\neg, \lor\}$ 是完全集,所以 $\{\oplus, \lor, \leftrightarrow\}$ 是完全集。任取由 $\{\oplus, \lor\}$ 生成的仅出现除命题变元 p 的公式 A,令真值赋值 v = (p/0),则v(A) = 0,而 $v(\neg p) = 1$,因此 $\{\oplus, \lor\}$ 不能定义 \neg 。所以 $\{\oplus, \lor\}$ 不是完全集。任取由 $\{\lor, \leftrightarrow\}$ 生成的仅出现命题变元 p 的公式 A,令真值赋值 v = (p/1),则v(A) = 1,而 $v(\neg p) = 0$,因此 $\{\lor, \leftrightarrow\}$ 不能定义 \neg 。所以 $\{\lor, \leftrightarrow\}$ 不是完全集。所以 $\{\oplus, \lor, \leftrightarrow\}$ 是极小完全集。

21. 证明以下联结词集合不是完全集。

- $(1) \{\land, \lor, \rightarrow, \leftrightarrow\}$
- (2) $\{\oplus, \wedge, \vee\}$

证明 (1) 任取由 $\{\land,\lor,\to,\leftrightarrow\}$ 生成的仅出现命题变元 p 的公式 A, 令真值赋值 v=(p/1),则 v(A)=1,而 $v(\neg p)=0$,因此 $\{\land,\lor,\to,\leftrightarrow\}$ 不能定义 \neg 。所以 $\{\land,\lor,\to,\leftrightarrow\}$ 不是完全集。

(2) 任取由 $\{\oplus, \wedge, \vee\}$ 生成的仅出现命题变元 p 的公式 A,令真值赋值 v = (p/0),则 v(A) = 0,而 $v(\neg p) = 1$,因此 $\{\oplus, \wedge, \vee\}$ 不能定义 \neg 。所以 $\{\oplus, \wedge, \vee\}$ 不是完全集。

22. 二元联结词 ↑ (称为"与非") 和 ↓ (称为"或非") 的真值表如下。

p	q	$p \uparrow q$	$p \downarrow q$
0	0	1	1
0	1	1	0
1	0	1	0
1	1	0	0

证明:

- (1) {↑} 是完全集。
- (2) { ↓ } 是完全集。
- (3) $\exists \Delta$ 是二元联结词且 $\{\Delta\}$ 是完全集,则 Δ 是 \uparrow 或 \downarrow 。

证明 (1) $\neg p \Leftrightarrow p \uparrow p$, $p \land q \Leftrightarrow \neg \neg (p \land q) \Leftrightarrow \neg (p \uparrow q) \Leftrightarrow (p \uparrow q) \uparrow (p \uparrow q)$

因为 $\{\neg, \land\}$ 是完全集,所以 $\{\uparrow\}$ 是完全集。

 $(2) \neg p \Leftrightarrow p \downarrow p, \quad p \lor q \Leftrightarrow \neg \neg (p \lor q) \Leftrightarrow \neg (p \downarrow q) \Leftrightarrow (p \downarrow q) \downarrow (p \downarrow q)$

因为 {¬,∨} 是完全集, 所以 {↓} 是完全集。

若 $0\Delta1$ ≠ $1\Delta0$,则 Δ 的真值表的最后一列有偶数个 1,真值表最后一列有奇数个 1 的 \wedge 不能由 Δ $0\Delta 1 = 1\Delta 0 = 1$,则 Δ 是 \uparrow 。若 $0\Delta 1 = 1\Delta 0 = 0$,则 Δ 是 \downarrow 。

23. 三元联结词 Δ 的真值表如下。

р	q	r	$\Delta(p,q,r)$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

证明 $\{\Delta\}$ 是极小完全集。

证明 $p \downarrow q \Leftrightarrow \Delta pqq$, 因为 $\{\downarrow\}$ 是完全集, 所以 $\{\Delta\}$ 是极小完全集。

24. 在下列公式中,哪些是析取范式,哪些是合取范式?

$$p$$
, $p \lor q$, $(p \lor q) \land r$, $p \land \neg r$, $p \lor \neg p$, $((p \lor q) \land \neg q) \lor r$

 \pmb{p} , $p \lor q$, $p \land \neg r$, $p \lor \neg p$ 是析取范式, p, $p \lor q$, $(p \lor q) \land r$, $p \land \neg r$, $p \lor \neg p$ 是合取范式。

25. 在下列公式中,哪些是关于p, q, r的主析取范式,哪些是关于p, q, r的主合取范式?

$$p \lor q \lor r, \ p \land \neg q \land r, \ (p \lor q \lor \neg r) \land (p \lor q \lor \neg r), \ p \lor (q \land r), \ (p \lor \neg p \lor q) \land (p \lor q \lor r)$$

 \mathbf{F} \mathbf{F}

26. 是否有这样的公式,它既是主合取范式,又是主析取范式?如果有,举出一例。

解 有。p既是关于p的主析取范式,又是关于p的主合取范式。

27. 求下列公式的主范式,进而判断其是否永真式、永假式、可满足式。

(1)
$$\neg p \land q \rightarrow r$$

- (2) $(p \rightarrow q) \rightarrow r$
- (3) $\neg p \lor \neg q \to (p \leftrightarrow \neg q)$
- $(4) \quad p \lor (p \to q \lor (\neg q \to r))$
- $(5) (p \to q \land r) \land (\neg p \to \neg q \land \neg r)$
- (6) $p \land q \land (\neg p \lor \neg q)$
 - $\mathbf{M} \qquad (1) \quad \neg p \land q \to r \Leftrightarrow \neg (\neg p \land q) \lor r \Leftrightarrow p \lor \neg q \lor r$

 $\neg p \land q \rightarrow r$ 的主合取范式是 $p \lor \neg q \lor r$,包含一个极大项,因此它是非永真的可满足式。

(2) $(p \rightarrow q) \rightarrow r \Leftrightarrow \neg(\neg p \lor q) \lor r$

$$\Leftrightarrow (\neg \neg p \land \neg q) \lor r \Leftrightarrow (p \lor r) \land (\neg q \lor r)$$

$$\Leftrightarrow (p \lor (q \land \neg q) \lor r) \land ((p \land \neg p) \lor \neg q \lor r)$$

$$\Leftrightarrow (p \lor q \lor r) \land (p \lor \neg q \lor r) \land (\neg p \lor \neg q \lor r)$$

 $(p \rightarrow q) \rightarrow r$ 的主合取范式是 $(p \lor q \lor r) \land (p \lor \neg q \lor r) \land (\neg p \lor \neg q \lor r)$,包含了三个极大项,因此它是非永真的可 满足式。

$$(3) \neg p \lor \neg q \to (p \leftrightarrow \neg q) \Leftrightarrow \neg(\neg p \lor \neg q) \lor ((\neg p \lor \neg q) \land (p \lor q))$$

$$\Leftrightarrow \neg(\neg p \lor \neg q) \lor (p \lor q) \Leftrightarrow (p \land q) \land p \lor q \Leftrightarrow p \lor q$$

 $\neg p \lor \neg q \to (p \leftrightarrow \neg q)$ 的主合取范式为 $p \lor q$,包含了一个极大项,因此它是非永真的可满足式。

$$(4) \quad p \lor (p \to q \lor (\neg q \to r)) \Leftrightarrow p \lor (\neg p \lor q \lor (\neg \neg q \lor r)) \Leftrightarrow 1$$

 $p \lor (p \to q \lor (\neg q \to r))$ 的主合取范式为1,不包含任何极大项,因此它是永真式。

$$(5) (p \to q \land r) \land (\neg p \to \neg q \land \neg r)$$

$$\Leftrightarrow (\neg p \lor (q \land r)) \land (\neg \neg p \lor (\neg q \land \neg r))$$

$$\Leftrightarrow (\neg p \land p) \lor (\neg p \land \neg q \land \neg r) \lor (q \land r \land p) \lor (q \land r \land \neg q \land \neg r)$$

$$\Leftrightarrow (\neg p \land \neg q \land \neg r) \lor (p \land q \land r)$$

 $(p \to q \land r) \land (\neg p \to \neg q \land \neg r)$ 的主析取范式为 $(\neg p \land \neg q \land \neg r) \lor (p \land q \land r)$,包含了两个极小项,因此它是非永 真的可满足式。

(6) $p \land q \land (\neg p \lor \neg q)$

$$\Leftrightarrow (p \lor (q \land \neg q)) \land ((p \land \neg p) \lor q) \land (\neg p \lor \neg q)$$

$$\Leftrightarrow (p \lor q) \land (p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$$

 $p \wedge q \wedge (\neg p \vee \neg q)$ 的主合取范式为 $(p \vee q) \wedge (p \vee \neg q) \wedge (\neg p \vee q) \wedge (\neg p \vee \neg q)$,包含了所有的四个极大项,因此它 是永假式。

28. 用主范式证明下列等值式。

$$(1) (p \to q) \to p \land q \Leftrightarrow (\neg p \to p) \land (r \to p)$$

(2)
$$(p \rightarrow q) \land (p \rightarrow r) \Leftrightarrow p \rightarrow q \land r$$

$$\mathbf{M} \quad (1) \quad (p \to q) \to p \land q \Leftrightarrow \neg(\neg p \lor q) \lor (p \land q)$$

$$\Leftrightarrow (p \land \neg q) \lor (p \land q) \Leftrightarrow (p \land \neg q \land (\neg r \lor r)) \lor (p \land q \land (\neg r \lor r))$$

$$\Leftrightarrow (p \land \neg q \land \neg r) \lor (p \land \neg q \land r)) \lor (p \land q \land \neg r) \lor (p \land q \land r)$$

$$(\neg p \to p) \land (r \to p) \Leftrightarrow (\neg \neg p \lor p) \land (\neg r \lor p)$$

$$\Leftrightarrow p \land (p \lor \neg r) \Leftrightarrow p \Leftrightarrow p \land (\neg q \lor q) \land (\neg r \lor r)$$

$$\Leftrightarrow (p \land \neg q \land \neg r) \lor (p \land \neg q \land r)) \lor (p \land q \land \neg r) \lor (p \land q \land r)$$

$$(p \to q) \to p \land q$$
 和 $(\neg p \to p) \land (r \to p)$ 等值于同一个关于 p , q , r 的主析取范式

$$(p \land \neg q \land \neg r) \lor (p \land \neg q \land r)) \lor (p \land q \land \neg r) \lor (p \land q \land r)$$
,因此,

$$(p \to q) \to p \land q \Leftrightarrow (\neg p \to p) \land (r \to p)$$
.

$$(2) (p \to q) \land (p \to r) \Leftrightarrow (\neg p \lor q) \land (\neg p \lor r)$$

$$\Leftrightarrow (\neg p \lor q \lor (r \land \neg r)) \land (\neg p \lor (q \land \neg q) \lor r)$$

$$\Leftrightarrow (\neg p \lor q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor q \lor r) \land (\neg p \lor \neg q \lor r)$$

$$\Leftrightarrow (\neg p \lor \neg q \lor r) \land (\neg p \lor q \lor r) \land (\neg p \lor q \lor \neg r)$$

$$p \to q \land r \Leftrightarrow \neg p \lor (q \land r) \Leftrightarrow (\neg p \lor q) \land (\neg p \lor r)$$

$$\Leftrightarrow (\neg p \lor q \lor (r \land \neg r)) \land (\neg p \lor (q \land \neg q) \lor r)$$

$$\Leftrightarrow (\neg p \lor q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor q \lor r) \land (\neg p \lor \neg q \lor r)$$

$$\Leftrightarrow (\neg p \lor \neg q \lor r) \land (\neg p \lor q \lor r) \land (\neg p \lor q \lor \neg r)$$

 $(p \rightarrow q) \land (p \rightarrow r)$ 和 $p \rightarrow q \land r$ 的主合取范式相同,所以,

$$(p \rightarrow q) \land (p \rightarrow r) \Leftrightarrow p \rightarrow q \land r$$
.

- 29. 判断以下关系是否成立,并说明理由。
- (1) $p \lor q$, $\neg p \models q$
- (2) $p \lor q$, $q \models p$
- (3) $p_1 \rightarrow q_1$, $p_2 \rightarrow q_2$, $p_1 \land p_2 \models q_1 \land q_2$
- (4) $p \rightarrow q$, $q \rightarrow p \models p \lor q$
- (5) $p \land q \rightarrow r$, $p \lor q \rightarrow \neg r \models p \land q \land r$
- 解 (1) 若真值赋值 v 使得 $v(p \lor q) = v(\neg p) = 1$,则 v(q) = 1。所以 $p \lor q$, $\neg p \models q$ 。
- (2) 真值赋值 v=(p/0,q/1) 使得 $v(p\vee q)=v(p\to q)=v(q)=1$,但 v(p)=0,所以 $p\vee q$, $p\to q$, $q\not\models p$ 。
- (3) 若真值赋值 v 使得 $v(p_1 \to q_1) = v(p_2 \to q_2) = v(p_1 \land p_2) = 1$,则 $v(p_1) = v(p_2) = 1$,因而 $v(q_1) = v(q_2) = 1$,

 $v(q_1 \land q_2) = 1$ 。所以 $p_1 \rightarrow q_1$, $p_2 \rightarrow q_2$, $p_1 \land p_2 \models q_1 \land q_2$ 。

- (4) 真值赋值v = (p/0, q/0) 使得 $v(p \rightarrow q) = v(q \rightarrow p) = 1$,但 $v(p \lor q) = 0$ 。所以 $p \rightarrow q$, $q \rightarrow p \not\models p \lor q$ 。
- 真值赋值v=(p/0,q/1,r/0)使得 $v(p\wedge q\to r)=v(p\vee q\to \neg r)=1$,但 $v(p\wedge q\wedge r)=0$ 。所以 $p \land q \rightarrow r$, $p \lor q \rightarrow \neg r \not\models p \land q \land r$.
- 30. 判断以下公式组成的集合是否可满足,并说明理由。
- (1) $(p \lor q) \lor (s \land \neg r), \neg (s \land \neg r)$
- (2) p_1 , $\neg p_1 \lor p_2$, $\neg p_1 \lor \neg p_2 \lor p_3$, ..., $\neg p_1 \lor \Lambda \lor \neg p_n \lor p_{n+1}$, ...
- (3) $p \lor q$, $\neg p \lor \neg q$, $p \to q$
- **解** (1) 可满足。真值赋值 (p/1, q/0, r/1, s/0)满足它。
- (2) 可满足。若真值赋值 v 使得 $v(p_i) = 1, i = 1, 2, \Lambda$,则 v 满足它。
- (3) 可满足。真值赋值(p/0,q/1)满足它。
- 31. 设 A, B, C是任意公式。 $A \lor B \models C$ 当且仅当 $A \models C$ 且 $B \models C$ 。

证明 1 (\Rightarrow)设 $A \lor B \models C$ 。任取满足 A 的真值赋值 v,则 $v(A \lor B) = 1$,因为 $A \lor B \models C$,所以 v(C) = 1 。这表明 $A \models C$ 。

任取满足 B的真值赋值 v,则 $v(A \lor B) = 1$,因为 $A \lor B \models C$,所以v(C) = 1。这表明 $B \models C$ 。

(\leftarrow) 设 $A \models C$ 且 $B \models C$ 。任取满足 $A \lor B$ 的真值赋值 v,则v(A) = 1或v(B) = 1。

- ② 若v(B)=1,因为 $B \models C$,所以v(C)=1。

因此, $A \lor B \models C$ 。

证明 2 $A \lor B \to C \Leftrightarrow \neg(A \lor B) \lor C \Leftrightarrow (\neg A \land \neg B) \lor C$

$$\Leftrightarrow (\neg A \lor C) \land (\neg B \lor C) \Leftrightarrow (A \to C) \land (B \to C)$$

 $A \vee B \models C$

当且仅当 $A \lor B \to C$ 是永真式

当且仅当 $(A \rightarrow C) \land (B \rightarrow C)$ 是永真式

当且仅当 $A \rightarrow C$ 和 $B \rightarrow C$ 都是永真式

当且仅当 $A \models C$ 且 $B \models C$

32. 设 Γ_1 和 Γ_2 是公式集合,B是公式, $\Gamma_2 \models B$,对于 Γ_2 中每个公式A, $\Gamma_1 \models A$ 。证明: $\Gamma_1 \models B$ 。

任取满足 Γ_1 的真值赋值 v。对于 Γ_2 中每个公式 A,因为 $\Gamma_1 \models A$,所以v(A) = 1。这表明 v 满足 Γ_2 。又因为 $\Gamma_2 \models B$,所以

v(B) = 1。因此, $\Gamma_1 \models B$ 。

33. 公式集合 Γ 不可满足当且仅当 $\Gamma \models 0$ 。

证明 (\Rightarrow)设 $\Gamma \not\models 0$,则存在真值赋值 ν 满足 Γ 且 $\nu(0)=0$,因此 Γ 可满足。

(\leftarrow)设 $\Gamma \models 0$ 。若 Γ 可满足,有真值赋值 ν 满足 Γ ,由 $\Gamma \models 0$ 得出 $\nu(0) = 1$,这是不可能的。因此, Γ 不可满足。

34. 设 n 是 正 整 数 , $\Gamma = \{p_1 \rightarrow q_1, \Lambda \ , p_n \rightarrow q_n, p_1 \lor \Lambda \lor p_n\} \cup \{\neg (q_i \land q_j) | 1 \le i < j \le n\}$ 。 证 明 : $\Gamma \models (q_1 \rightarrow p_1) \land \Lambda \land (q_n \rightarrow p_n)$.

证明 设真值赋值 v满足 Γ ,则 $v(p_1 \lor \Lambda \lor p_n) = 1$,存在 $i \le n$ 使 $v(p_i) = 1$ 。因为 $v(p_i \to q_i) = 1$,所以 $v(q_i) = 1$ 。若 $1 \le j < i$, 因为 $v(\neg(q_j \land q_i))=1$, 因此 $v(q_j)=0$ 。 若 $i < j \le n$, 因为 $v(\neg(q_i \land q_j))=1$, 因此 $v(q_j)=0$ 。 所以 $v((q_1 \to p_1) \land \Lambda \land (q_n \to p_n)) = 1$.

第二章 谓词逻辑 习题与解答

- 1. 将下列命题符号化:
- (1) 所有的火车都比某些汽车快。
- (2) 任何金属都可以溶解在某种液体中。
- (3) 至少有一种金属可以溶解在所有液体中。
- (4) 每个人都有自己喜欢的职业。
- (5) 有些职业是所有的人都喜欢的。
- **解** (1) 取论域为所有交通工具的集合。令T(x):x 是火车,C(x):x 是汽车,F(x,y):x 比 y 跑得快。
- "所有的火车都比某些汽车快"可以符号化为 $\forall x(T(x) \rightarrow \exists y(C(y) \land F(x,y)))$ 。
- (2) 取论域为所有物质的集合。令M(x):x是金属, L(x):x是液体, D(x,y):x可以溶解在y中。
- "任何金属都可以溶解在某种液体中" 可以符号化为 $\forall x (M(x) \rightarrow \exists y (L(y) \land D(x, y)))$ 。
- (3) 论域与谓词与(2) 同。"至少有一种金属可以溶解在所有液体中" 可以符号化为 $\exists x (M(x) \land \forall y (L(y) \to D(x,y)))$ 。
- (4) 取论域为所有事物的集合。令

$$M(x)$$
: x 是人, $J(x)$: x 是职业, $L(x, y)$: x 喜欢 y 。

- "每个人都有自己喜欢的职业" 可以符号化为 $\forall x(M(x) \rightarrow \exists y(J(y) \land L(x,y)))$
- (5)论域与谓词与(4)同。"有些职业是所有的人都喜欢的"可以符号化为 $\exists x(J(x) \land \forall y(M(y) \to L(y,x)))$ 。
- 2. 取论域为正整数集,用函数+(加法), (乘法)和谓词<,=将下列命题符号化:
- (1) 没有既是奇数,又是偶数的正整数。
- (2) 任何两个正整数都有最小公倍数。
- (3) 没有最大的素数。
- (4) 并非所有的素数都不是偶数。
- 解 先引进一些谓词如下:
- D(x,y): x 能被 y 整除, D(x,y) 可表示为 $\exists v(v \bullet x = y)$ 。
- J(x): x 是奇数, J(x) 可表示为 $\neg \exists v(v \bullet 2 = x)$ 。
- E(x): x 是偶数, E(x) 可表示为 $\exists v(v \bullet 2 = x)$ 。
- P(x): x 是素数, P(x) 可表示为一 $(x=1) \land \forall u (\exists v (v \bullet u = x) \leftrightarrow u = 1 \lor u = x)$ 。
- (1) "没有既是奇数,又是偶数的正整数"可表示为 $\neg\exists x(J(x) \land E(x))$,

并可进一步符号化为 $\neg \exists x (\neg \exists v (v \bullet 2 = x) \land \exists v (v \bullet 2 = x))$ 。

(2) "任何两个正整数都有最小公倍数"可表示为

 $\forall x \forall y \exists z (D(z, x) \land D(z, y) \land \forall u (D(u, x) \land D(u, y) \rightarrow z < u \lor z = u)).$

并可进一步符号化为

 $\forall x \forall y \exists z (\exists v (v \bullet x = z) \land \exists v (v \bullet y = z) \land \forall u (\exists v (v \bullet x = u) \land \exists v (v \bullet y = u) \rightarrow z < u \lor z = u)) (3)$ "没有最大的素数"可表

示为 $\neg \exists x (P(x) \land \forall y (P(y) \rightarrow y < x \lor y = x))$,

并可进一步符号化为

$$\neg \exists x (\neg (x=1) \land \forall u (\exists v (v \bullet u = x) \leftrightarrow u = 1 \lor u = x) \land \forall y (\neg (y=1) \land \forall u (\exists v (v \bullet u = y) \leftrightarrow u = 1 \lor u = y) \rightarrow y < x \lor y = x))$$

" 并 非 所 有 的 素 数 都 不 是 偶 数 " 可 表 示 为 $\neg \forall x (P(x) \rightarrow \neg E(x))$, 并 可 进 一 步 符 号 化 为 (4)

$$\neg \forall x (\neg (x=1) \land \forall u (\exists v (v \bullet u = x) \to \neg \exists v (v \bullet 2 = x))$$

- 3. 取论域为实数集合,用函数+,一(减法)和谓词<,=将下列命题符号化:
- (1) 没有最大的实数。
- (2) 任何两不同的实数之间必有另一实数。
- (3) 函数 f(x) 在点 a 处连续。
- (4) 函数 f(x) 恰有一个根。
- (5) 函数 f(x) 是严格单调递增函数。
- (1) "没有最大的实数"符号化为 $\neg \exists x \forall y (y < x \lor y = x)$ 。
- (2) "任何两不同的实数之间必有另一实数"符号化为 $\forall x \forall y (x < y \rightarrow \exists z (x < z \land z < y))$ 。
- (3) "函数 f(x) 在点 a 处连续"的定义是:

任给 $\varepsilon > 0$,总可以找到 $\delta > 0$,使得只要 $|x-a| < \delta$ 就有 $|f(x)-f(a)| < \varepsilon$ 。

"函数 f(x) 在点 a 处连续" 符号化为

$$\forall \varepsilon (0 < \varepsilon \rightarrow \exists \delta (0 < \delta \land \forall x (a - \delta < x \land x < a + \delta \rightarrow f(a) - \varepsilon < f(x) \land f(x) < f(a) + \varepsilon)))$$

- (4) "函数 f(x) 恰有一个根"符号化为 $\exists x (f(x) = 0 \land \forall y (f(y) = 0 \rightarrow y = x))$ 。
- (5) "函数 f(x) 是严格单调递增函数"符号化为 $\forall x \forall y (x < y \rightarrow f(x) < f(y))$ 。
- 4. 指出下列公式中变元的约束出现和自由出现,并对量词的每次出现指出其辖域。
- (1) $\forall x (P(y,x) \rightarrow P(x,a))$
- (2) $\forall x P(x) \rightarrow \forall z Q(x, y)$
- (3) $\forall x (P(x) \land R(x)) \rightarrow \forall x P(x) \land Q(x)$
- (4) $\forall y (P(f(x, y), x) \rightarrow \forall x P(z, g(x, y)))$
- (5) $\forall x (P(x) \rightarrow Q(x) \land \exists x R(x)) \land R(x)$
- 5. 归纳证明: 若 t, t' 是项,则 $t_{t'}^{x}$ 也是项。

证明 ① 若 $t \in x$, 则 $t_{t'}^{x} \in t'$, $t_{t'}^{x} \in \mathfrak{p}$ 。

- ② 若 t 是不同于 x 的变元 y,则 $t_{t'}^{X}$ 仍是 y, $t_{t'}^{X}$ 是项。
- ③若 t 是常元 a,则 $t_{t'}^{x}$ 仍是 a, $t_{t'}^{x}$ 是项。
- ④若 $t \in f(t_1, \Lambda, t_n)$,则 $t_{t'}^x \in f((t_1)_{t'}^x, \Lambda, (t_n)_{t'}^x)$,由归纳假设知 $(t_1)_{t'}^x, \Lambda, (t_n)_{t'}^x$ 都是项,所以 $t_{t'}^x$ 是项。
- 6. 归纳证明: 若 t 是项, A 是公式, 则 A_t^x 也是公式。

证明 ①若 $A \neq P(t_1, \Lambda, t_n)$,则 $A_t^x \neq P((t_1)_t^x, \Lambda, (t_n)_t^x)$,由上题知 $(t_1)_t^x, \Lambda, (t_n)_t^x$ 都是项,所以 A_t^x 是公式。

- ②若A是 $\neg B$,则 A_t^x 是 $\neg B_t^x$,由归纳假设知 B_t^x 是公式,所以 A_t^x 是公式。
- ③若A是 $B \to C$,则 A_t^X 是 $B_t^X \to C_t^X$,由归纳假设知 B_t^X 和 C_t^X 都是公式,所以 A_t^X 是公式。
- ④若 $A \in \forall x B$,则 A_t^x 仍是 A , A_t^x 是公式。
- ⑤若 A 是 $\forall y B$, 其中 y 是不同于 x 的变元,则 A_t^x 是 $\forall y B_t^x$, 由归纳假设知 B_t^x 是公式,所以 A_t^x 是公式。
- 7. 给定解释 I和 I中赋值 v如下:

$$D_I = \{1, 2\}, \ a^I = 1, \ b^I = 2, \ f^I(1) = 2, \ f^I(2) = 1$$

$$P^{I}(1,1) = P^{I}(1,2) = 1$$
, $P^{I}(2,1) = P^{I}(2,2) = 0$, $v(x) = 1$, $v(y) = 1$

计算下列公式在解释 I,赋值 v下的真值。

- (1) $P(a, f(x)) \wedge P(x, f(b)) \wedge P(f(y), x)$
- (2) $\forall x \exists y P(y,x)$
- (3) $\forall x \forall y (P(x, y) \rightarrow P(f(x), f(y)))$

解 (1)
$$I(P(a, f(x)) \wedge P(x, f(b)) \wedge P(f(y), x))(v)$$

$$=P^I(a^I,f^I(v(x)))\wedge P^I(v(x),f^I(b^I))\wedge P^I(f^I(v(y)),v(x))$$

$$=P^I(1,f^I(1))\wedge P^I(1,f^I(2))\wedge P^I(f^I(1),1)$$

$$=P^{I}(1,2)\wedge P^{I}(1,1)\wedge P^{I}(2,1)=1\wedge 1\wedge 0=0$$

(2)
$$I(\forall x \exists y P(y, x))(v)$$

$$= I(\exists y P(y,x))(v[x/1]) \wedge I(\exists y P(y,x))(v[x/2])$$

$$= (I(P(y,x))(v[x/1][y/1]) \vee I(P(y,x))(v[x/1][y/2]))$$

$$\wedge (I(P(y,x))(v[x/2][y/1]) \vee I(P(y,x))(v[x/2][y/2]))$$

$$=(P^{I}(1,1)\vee P^{I}(2,1))\wedge (P^{I}(1,2)\vee P^{I}(2,2))$$

$$= (1 \lor 0) \land (1 \lor 0) = 1$$

(3)
$$I(\forall x \forall y (P(x, y) \rightarrow P(f(x), f(y))))(v)$$

$$= (P^{I}(1,1) \to P^{I}(f^{I}(1), f^{I}(1))) \land (P^{I}(1,2) \to P^{I}(f^{I}(1), f^{I}(2)))$$

$$\land (P^I(2,1) \to P^I(f^I(2), f^I(1))) \land (P^I(2,2) \to P^I(f^I(2), f^I(2)))$$

$$= (P^{I}(1,1) \to P^{I}(2,2)) \land (P^{I}(1,2) \to P^{I}(2,1)) \land (P^{I}(2,1) \to P^{I}(1,2)) \land (P^{I}(2,2) \to P^{I}(1,1))$$

$$=(1 \rightarrow 0) \land (1 \rightarrow 0) \land (0 \rightarrow 1) \land (0 \rightarrow 1) = 0 \land 0 \land 1 \land 1 = 0$$

7. 给定解释
$$I$$
如下: $D_I = \{a,b\}$, $P^I(a,a) = P^I(b,b) = 1$, $P^I(a,b) = P^I(b,a) = 0$ 判断 I 是不是以下语句的模型。

(1)
$$\forall x \exists y P(x, y)$$

(2)
$$\forall x \forall y P(x, y)$$

(3)
$$\exists x \forall y P(x, y)$$

(4)
$$\exists x \exists y \neg P(x, y)$$

(5)
$$\forall x \forall y (P(x, y) \rightarrow P(y, x))$$

(6)
$$\forall x P(x,x)$$

解 (1)
$$I(\forall x \exists y P(x, y))$$

$$=(P^{I}(a,a)\vee P^{I}(a,b))\wedge(P^{I}(b,a)\vee P^{I}(b,b))=(1\vee 0)\wedge(0\vee 1)=1$$

(2)
$$I(\forall x \forall y P(x, y))$$

$$= P^{I}(a,a) \wedge P^{I}(a,b) \wedge P^{I}(b,a) \wedge P^{I}(b,b) = 1 \wedge 0 \wedge 0 \wedge 1 = 0$$

(3)
$$I(\exists x \forall y P(x, y))$$

$$=(P^{I}(a,a) \wedge P^{I}(a,b)) \vee (P^{I}(b,a) \wedge P^{I}(b,b)) = (1 \wedge 0) \vee (0 \wedge 1) = 0$$

(4)
$$I(\exists x \exists y \neg P(x, y))$$

$$= \neg P^{I}(a,a) \lor \neg P^{I}(a,b) \lor \neg P^{I}(b,a) \lor \neg P^{I}(b,b) = 0 \lor 1 \lor 1 \lor 0 = 1$$

(5)
$$I(\forall x \forall y (P(x, y) \rightarrow P(y, x)))$$

$$=(P^I(a,a)\rightarrow P^I(a,a))\land (P^I(a,b)\rightarrow P^I(b,a))$$

$$\wedge (P^I(b,a) \to P^I(a,b)) \wedge (P^I(b,b) \to P^I(b,b))$$

$$= (1 \rightarrow 1) \land (0 \rightarrow 0) \land (0 \rightarrow 0) \land (1 \rightarrow 1) = 1$$

(6) $I(\forall x P(x, x)) = P^{I}(a, a) \wedge P^{I}(b, b) = 1 \wedge 1 = 1$

9. 写出一个语句 A, 使得 A 有模型, 并且 A 的每个模型的论域至少有三个元素。

解 语句 A 为 $\forall x \neg P(x,x) \wedge P(a,b) \wedge P(b,c) \wedge P(c,a)$ 。给定解释 I' 如下。

$$D_{I'}$$
 为自然数集合, $P^{I'}(x,y) = 1$ 当且仅当 $x < y$, $a^{I'} = 1$, $b^{I'} = 2$, $c^{I'} = 3$

则 I' 是 A 的模型, A 有模型。

任取满足语句 A 的解释 I,则 $P^I(a^I,b^I)=P^I(b^I,c^I)=P^I(c^I,a^I)=1$,又因为 $I(\forall x\neg P(x,x))=1$,所以 a^I , b^I , c^I 是论域 D_I 中三个不同元素,论域 D_I 中至少有三个元素。

10. 写出一个语句 A, 使得 A有模型, 并且 A的每个模型的论域有无穷多个元素。

解 语句 A 为 $\forall x \neg P(x,x) \land \forall x \forall y (P(x,y) \land P(y,z) \rightarrow P(x,z)) \land \forall x \exists y P(x,y)$ 。给定解释 I' 如下。

$$D_{I'}$$
 为自然数集合, $P^{I'}(x,y)=1$ 当且仅当 $x < y$

则I'是A的模型,A有模型。

任取满足语句 A 的解释 I, 取 $d_1 \in D_I$, 因为 $I(\forall x \exists y P(x,y)) = 1$, 所以有 $d_2 \in D_I$ 使得 $P^I(d_1,d_2) = 1$, 又因为 $I(\forall x \neg P(x,x))=1$, 故 $d_1 \neq d_2$ 。 因 为 $I(\forall x \exists y P(x,y))=1$, 所 以 有 $d_3 \in D_I$ 使 得 $P^I(d_2,d_3)=1$, 又 因 为 $I(\forall x \neg P(x,x)) = 1$,故 $d_3 \neq d_2$ 。因为 $I(\forall x \forall y (P(x,y) \land P(y,z) \rightarrow P(x,z))) = 1$,所以 $P^I(d_1,d_3) = 1$,故 $d_3 \neq d_1$ 。 因此, d_1 , d_2 , d_3 是论域中的三个不同元素。这个过程可以永远进行下去,得到 d_1 , d_2 , d_3 , Λ 因此,论域中必然有无穷多个元素。 11. 判断以下公式是不是永真式、永假式、可满足式,并说明理由。

- (1) $\exists x P(x) \lor \exists x Q(x) \to \exists x (P(x) \lor Q(x))$
- (2) $\exists x P(x) \land \exists x Q(x) \rightarrow \exists x (P(x) \land Q(x))$
- (3) $\forall x (P(x) \lor Q(x)) \rightarrow \forall x P(x) \lor \forall x Q(x)$
- (4) $\forall x P(x, x) \rightarrow \forall x \forall y P(x, y)$
- (5) $(\forall x P(x) \rightarrow \forall x Q(x)) \rightarrow \forall x (P(x) \rightarrow Q(x))$
- (6) $(\exists x P(x) \to \forall x Q(x)) \to \forall x (P(x) \to Q(x))$
- (7) $\forall x (P(x) \rightarrow Q(x)) \rightarrow (\exists x P(x) \rightarrow \exists x Q(x))$
- (1) $\exists x P(x) \lor \exists x Q(x) \to \exists x (P(x) \lor Q(x))$ 是永真式。若解释 I 使得 $I(\exists x P(x) \lor \exists x Q(x)) = 1$,则 $I(\exists x P(x)) = 1$ 或 $I(\exists x Q(x)) = 1$.
- ① $\exists I(\exists x P(x)) = 1$, 则存在 $d \in D_I$ 使得 $P^I(d) = 1$, $P^I(d) \lor Q^I(d) = 1$.
- ② 若 $I(\exists x Q(x)) = 1$,则存在 $d \in D_I$ 使得 $Q^I(d) = 1$, $P^I(d) \lor Q^I(d) = 1$ 。

因此, $I(\exists x(P(x) \lor Q(x))) = 1$.

(2) $\exists x P(x) \land \exists x Q(x) \rightarrow \exists x (P(x) \land Q(x))$ 是非永真的可满足式。给定解释 I如下。

$$D_I = \{d\}, P^I(d) = 1, Q^I(d) = 1$$

则 $I(\exists x P(x) \land \exists x Q(x) \rightarrow \exists x (P(x) \land Q(x))) = 1$.

给定解释I'如下。

$$D_{I'} = \{a, b\}, P^{I'}(a) = 1, P^{I'}(b) = 0, Q^{I'}(a) = 0, Q^{I'}(b) = 1$$

则 $I'(\exists x P(x) \land \exists x Q(x) \rightarrow \exists x (P(x) \land Q(x))) = 0$.

(3) $\forall x(P(x) \lor Q(x)) \rightarrow \forall xP(x) \lor \forall xQ(x)$ 是非永真的可满足式。给定解释 I如下。

$$D_I = \{d\}, P^I(d) = 1, Q^I(d) = 1$$

则 $I(\forall x(P(x) \lor Q(x)) \to \forall xP(x) \lor \forall xQ(x)) = 1$.

给定解释I'如下。

$$D_{I'} = \{a, b\}, P^{I'}(a) = 1, P^{I'}(b) = 0, Q^{I'}(a) = 0, Q^{I'}(b) = 1$$

则 $I'(\forall x (P(x) \lor Q(x)) \to \forall x P(x) \lor \forall x Q(x)) = 0$.

(4) $\forall x P(x,x) \rightarrow \forall x \forall y P(x,y)$ 是非永真的可满足式。给定解释 I如下。

$$D_I = \{d\}, P^I(d,d) = 1$$

则 $I(\forall x P(x,x) \rightarrow \forall x \forall y P(x,y)) = 1$.

给定解释I'如下。

$$D_{I'} = \{a, b\}, P^{I'}(a, a) = P^{I'}(b, b) = 1, P^{I'}(a, b) = P^{I'}(b, a) = 0$$

则 $I'(\forall x P(x,x) \rightarrow \forall x \forall y P(x,y)) = 0$.

(5) $(\forall x P(x) \rightarrow \forall x Q(x)) \rightarrow \forall x (P(x) \rightarrow Q(x))$ 是非永真的可满足式。给定解释 I如下。

$$D_I = \{d\}, \quad P^I(d) = 1, \quad Q^I(d) = 1$$

则 $I((\forall x P(x) \rightarrow \forall x Q(x)) \rightarrow \forall x (P(x) \rightarrow Q(x))) = 1$.

给定解释I'如下。

$$D_{I'} = \{a, b\}, P^{I'}(a) = 1, P^{I'}(b) = 0, Q^{I'}(a) = 0, Q^{I'}(b) = 1$$

则 $I'((\forall x P(x) \to \forall x Q(x)) \to \forall x (P(x) \to Q(x))) = 0$.

(6) $(\exists x P(x) \to \forall x Q(x)) \to \forall x (P(x) \to Q(x))$ 是永真式。若解释 I 使得 $I(\forall x (P(x) \to Q(x))) = 0$,则存在 $d \in D_I$ 使得

$$P^{I}(d) \to Q^{I}(d) = 0$$
, $\exists \exists P^{I}(d) = 1 \exists Q^{I}(d) = 0$, $I(\exists x P(x)) = 1 \exists I(\forall x Q(x)) = 0$, $I((\exists x P(x)) \to \forall x Q(x)) = 0$.

(7) $\forall x(P(x) \to Q(x)) \to (\exists x P(x) \to \exists x Q(x))$ 是永真式。若解释 I 使得 $I((\exists x P(x) \to \exists x Q(x))) = 0$,则 $I(\exists x P(x)) = 1$ 且 $I(\exists x Q(x)) = 0$ 。存在 $d \in D_I$ 使得 $P^I(d) = 1$,又因为 $I(\exists x Q(x)) = 0$,所以 $Q^I(d) = 0$, $P^I(d) \to Q^I(d) = 0$ 。因此, $I(\forall x(P(x) \rightarrow Q(x))) = 0$.

12. 设 A, B是任意公式,证明以下公式是永真式。

- (1) $A_t^x \rightarrow \exists x A$, 其中项 t 对于 A中的 x 是可代入的。
- (2) $\neg \forall xA \leftrightarrow \exists x \neg A$
- (3) $\neg \exists x A \leftrightarrow \forall x \neg A$
- (4) $\exists x(A \land B) \rightarrow \exists xA \land \exists xB$
- (5) $\forall xA \lor \forall xB \rightarrow \forall x(A \lor B)$
- (6) $\forall x(A \rightarrow B) \rightarrow (A \rightarrow \forall xB)$, 其中 x不是 A的自由变元。
- (1) 任取解释 I 和 I 中赋值 v,若 $I(A_t^x)(v) = 1$,则 $I(A_t^x)(v) = I(A)(v[x/I(t)(v)]) = 1$,所以 $I(\exists xA)(v) = 1$ 。这表明 $A_t^x \to \exists x A$ 是永真式。
- (2) 任取解释 I和 I中赋值 v,

$$I(\neg \forall xA)(v) = 1$$

当且仅当
$$I(\forall xA)(v) = 0$$

当且仅当 存在
$$d \in D_I$$
 使得 $I(A)(v[x/d]) = 0$

当且仅当 存在
$$d \in D_I$$
使得 $I(\neg A)(v[x/d]) = 1$

当且仅当
$$I(\exists x \neg A)(v) = 1$$

这表明 $\neg \forall x A \leftrightarrow \exists x \neg A$ 是永真式。

(3) 任取解释 I和 I中赋值 v,

$$I(\neg \exists x A)(v) = 0$$

当且仅当
$$I(\exists xA)(v) = 1$$

当且仅当 存在
$$d \in D_I$$
使得 $I(A)(v[x/d]) = 1$

当且仅当 存在
$$d \in D_I$$
使得 $I(\neg A)(v[x/d]) = 0$

当且仅当
$$I(\forall x \neg A)(v) = 0$$

这表明 $\neg \exists x A \leftrightarrow \forall x \neg A$ 是永真式。

- (4) 任取解释 I 和 I 中赋值 v ,若 $I(\exists x(A \land B))(v) = 1$,则存在 $d \in D_I$ 使得 $I(A \land B)(v[x/d]) = 1$, I(A)(v[x/d]) = I(B)(v[x/d]) = 1 , $I(\exists xA)(v) = 1$ 且 $I(\exists xB)(v) = 1$, $I(\exists xA \land \exists xB)(v) = 1$ 。 这 表 明 $\exists x(A \land B) \to \exists xA \land \exists xB \text{ } \exists x \text{ } \exists$
- (5) 任取解释 I 和 I 中赋值 v,若 $I(\forall x(A \lor B))(v) = 0$,则存在 $d \in D_I$ 使得 $I(A \lor B)(v[x/d]) = 0$, I(A)(v[x/d]) = I(B)(v[x/d]) = 0, $I(\forall xA \lor \forall xB)(v) = 0$ 。这表明 $\forall xA \lor \forall xB \to \forall x(A \lor B)$ 是永真式。
- (6) 任取解释 I和 I中赋值 v,若 $I(\forall x(A \to B))(v) = I(A)(v) = 1$,则对于每个 $d \in D_I$, $I(A \to B)(v[x/d]) = 1$,因为 x不是 A 的 自 由 变 元 , 所 以 I(A)(v[x/d]) = I(A)(v) = 1 , 因 此 I(B)(v[x/d]) = 1 , $I(\forall xB)(v) = 1$ 。 这 表 明 $\forall x(A \to B) \to (A \to \forall xB)$ 是永真式。
- 13. 设 A_1 是公式 A 的闭包, A_2 是 $\exists x_1 \Lambda \ \exists x_n A$, 其中 $\mathrm{Var}(A) = \{x_1, \Lambda \ , x_n\}$ 。 证明:
- (1) A是永真式当且仅当 A_1 是永真式;
- (2) A是可满足式当且仅当 A_2 是可满足式。
- **证明** (1) (⇒) 首先证明: 若 A 是永真式,则 $\forall x A$ 是永真式。设 A 是永真式。任取解释 I 和 I 中赋值 v,任取 $d \in D_I$,因为 v[x/d] 也是 I 中赋值,所以 I(A)(v[x/d]) = 1, $I(\forall x A)(v) = 1$ 。 $\forall x A$ 是永真式。若 A 是永真式,则 $\forall x_n A$ 是永真式,… , $\forall x_1 \Lambda \ \forall x_n A$ 是永真式。
- (\leftarrow) 因为 $\forall x_1 \land \forall x_n A \rightarrow A$ 是永真式, 所以若 $\forall x_1 \land \forall x_n A$ 是永真式, 则 A 是永真式。
- (2) (\Rightarrow) 因为 $A \rightarrow \exists x_1 \land \exists x_n A$ 是永真式,所以若解释 I和 I中赋值 v满足 A,则 I和 v满足 $\exists x_1 \land \exists x_n A$ 。
- (\iff)若解释 I 和 I 中赋值 v 满足 $\exists x_1 \Lambda$ $\exists x_n A$,则有 d_1, Λ , $d_n \in D_I$ 使得 $I(A)(v[x_1/d_1, \Lambda, x_n/d_n])=1$,I 和 I 中赋值 $v[x_1/d_1, \Lambda, x_n/d_n]$ 满足 A。
- 14. 判断以下等值式是否成立,并说明理由。
- (1) $\forall x (P(x) \leftrightarrow Q(x)) \Leftrightarrow \forall x P(x) \leftrightarrow \forall x Q(x)$
- (2) $\forall x (P(x) \to Q(x)) \Leftrightarrow \forall x P(x) \to \forall x Q(x)$
- (3) $\forall x P(x) \Leftrightarrow P(x)$
- (4) $\forall x \forall x P(x) \Leftrightarrow \forall x P(x)$
- (5) $\forall x (P(x) \leftrightarrow \forall y Q(y)) \Leftrightarrow \forall x P(x) \leftrightarrow \forall y Q(y)$
- (6) $\forall x (P(x) \leftrightarrow \forall y Q(y)) \Leftrightarrow \exists x P(x) \leftrightarrow \forall y Q(y)$
- 解 (1) 不成立。取解释 I 如下。

$$D_I = \{a, b\}, \quad P^I(a) = 0, \quad P^I(b) = 1, \quad Q^I(a) = 1, \quad Q^I(b) = 0$$

则 $I(\forall x(P(x) \leftrightarrow Q(x))) = 0$ 且 $I(\forall xP(x) \leftrightarrow \forall xQ(x)) = 1$.

(2) 不成立。取解释 I 如下。

$$D_I = \{a, b\}, \quad P^I(a) = 0, \quad P^I(b) = 1, \quad Q^I(a) = 1, \quad Q^I(b) = 0$$

则 $I(\forall x(P(x) \rightarrow Q(x))) = 0$ 且 $I(\forall xP(x) \rightarrow \forall xQ(x)) = 1$.

(3) 不成立。取解释 I和 I中赋值 v下。

$$D_I = \{a, b\}, \quad P^I(a) = 0, \quad P^I(b) = 1, \quad v(x) = b$$

则 $I(\forall x P(x))(v) = 0$ 且 I(P(x))(v) = 1.

(4) 成立。任取解释 I 和 I 中赋值 v,因为 x 不是 $\forall x P(x)$ 中的自由变元,所以对于每个 $d \in D_I$,

 $I(\forall x P(x))(v[x/d]) = I(\forall x P(x))(v)$.

$$I(\forall x \forall x P(x))(v) = 1$$

当且仅当对于每个 $d \in D_I$, $I(\forall x P(x))(v[x/d]) = 1$

当且仅当 $I(\forall x P(x))(v) = 1$

(5) 不成立。取解释 I如下。

$$D_I = \{a, b\}, \quad P^I(a) = 0, \quad P^I(b) = 1, \quad Q^I(a) = 1, \quad Q^I(b) = 0$$

则 $I(\forall x(P(x) \leftrightarrow \forall yQ(y))) = 0$ 且 $I(\forall xP(x) \leftrightarrow \forall yQ(y)) = 1$.

(6) 不成立。取解释 I如下。

$$D_I = \{a, b\}, \quad P^I(a) = 1, \quad P^I(b) = 0, \quad O^I(a) = O^I(b) = 1$$

则 $I(\forall x(P(x) \leftrightarrow \forall yQ(y))) = 0$ 且 $I(\exists xP(x) \leftrightarrow \forall yQ(y)) = 1$.

15. 设 A, B是任意公式,证明以下等值式。

- (1) $\exists x A \Leftrightarrow \exists y A_y^x$, 其中 $y \in A$ 中不出现。
- (2) $\exists x(A \rightarrow B) \Leftrightarrow \forall xA \rightarrow \exists xB$
- (3) $\forall x \forall y (A \lor B) \Leftrightarrow \forall x A \lor \forall y B$, 其中 $x \land E B$ 的自由变元, $y \land E A$ 的自由变元。
- (4) $\exists x \exists y (A \land B) \Leftrightarrow \exists x A \land \exists y B$, 其中 $x \land \exists B$ 的自由变元, $y \land \exists A$ 的自由变元。
- (5) $\exists x \forall y (A \rightarrow B) \Leftrightarrow \forall x A \rightarrow \forall y B$, 其中 $x \land \exists B$ 的自由变元, $y \land \exists A$ 的自由变元。
- (6) $\forall x \forall y A \Leftrightarrow \forall y \forall x A$

证明 (1) $\exists x A \Leftrightarrow \neg \forall x \neg A \Leftrightarrow \neg \forall y \neg A_y^x \Leftrightarrow \exists y A_y^x$

- $(2) \exists x(A \to B) \Leftrightarrow \exists x(\neg A \lor B) \Leftrightarrow \exists x \neg A \lor \exists x B \Leftrightarrow \neg \forall x A \lor \exists x B \Leftrightarrow \forall x A \to \exists x B$
- (3) $\forall x \forall y (A \lor B) \Leftrightarrow \forall x (A \lor \forall y B) \Leftrightarrow \forall x A \lor \forall y B$
- (4) $\exists x \exists y (A \land B) \Leftrightarrow \exists x (A \land \exists y B) \Leftrightarrow \exists x A \land \exists y B$
- (5) $\exists x \forall y (A \rightarrow B) \Leftrightarrow \exists x (A \rightarrow \forall y B) \Leftrightarrow \forall x A \rightarrow \forall y B$
- (6) 任取解释 I和 I中赋值 v,

$$I(\forall x \forall y A)(v) = 0$$

当且仅当有 $d \in D_I$ 使得 $I(\forall yA)(v[x/d]) = 0$

当且仅当有 $d, c \in D_I$ 使得I(A)(v[x/d][y/c]) = 0

当且仅当有 $d,c \in D_I$ 使得I(A)(v[y/c][x/d]) = 0

当且仅当有 $c \in D_I$ 使得 $I(\forall xA)(v[y/c]) = 0$

当且仅当 $I(\forall y \forall xA)(v) = 0$

- 16. 判断以下逻辑推论关系是否成立,并说明理由。
- (1) $\forall x (P(x) \lor Q(x)) \models \forall x P(x) \lor \forall x Q(x)$
- (2) $\exists x P(x) \land \exists x Q(x) \models \exists x (P(x) \land Q(x))$
- (3) $\forall x (P(x) \leftrightarrow \forall x Q(x)) \models \forall x (P(x) \leftrightarrow Q(x))$
- (4) $\forall x (P(x) \rightarrow \forall x Q(x)) \models \forall x (P(x) \rightarrow Q(x))$
- (5) $\exists x (P(x) \rightarrow Q(x)), \exists x P(x) \models \exists x Q(x)$
- (6) $\exists x \exists y P(x, y) \models \exists x P(x, x)$
- (1) 不成立。取解释 I 如下。

$$D_I = \{a, b\}, \quad P^I(a) = 0, \quad P^I(b) = 1, \quad Q^I(a) = 1, \quad Q^I(b) = 0$$

则 $I(\forall x(P(x)\lor Q(x)))=1$ 且 $I(\forall xP(x)\lor \forall xQ(x))=0$ 。 这表明 $\forall x(P(x)\lor Q(x))\not\models \forall xP(x)\lor \forall xQ(x)$ 。

(2) 不成立。取解释 I如下。

$$D_I = \{a, b\}, \quad P^I(a) = 0, \quad P^I(b) = 1, \quad Q^I(a) = 1, \quad Q^I(b) = 0$$

则 $I(\exists x P(x) \land \exists x Q(x)) = 1$ 且 $I(\exists x (P(x) \land Q(x))) = 0$ 。这表明 $\exists x P(x) \land \exists x Q(x) \not\models \exists x (P(x) \land Q(x))$ 。

(3) 不成立。取解释 I如下。

$$D_I = \{a, b\}, \quad P^I(a) = P^I(b) = 0, \quad Q^I(a) = 1, \quad Q^I(b) = 0$$

则 $I(\forall x(P(x) \leftrightarrow \forall xQ(x))) = 1$ 且 $I(\forall x(P(x) \leftrightarrow Q(x))) = 0$ 。 这表明 $\forall x(P(x) \leftrightarrow \forall xQ(x)) \not\models \forall x(P(x) \leftrightarrow Q(x))$ 。

- (4) 若解释 I 使得 $I(\forall x(P(x) \rightarrow Q(x))) = 0$,则有 $d \in D_I$ 使得 $P^I(d) \rightarrow Q^I(d) = 0$, $P^I(d) = 1$ 且 $Q^I(d) = 0$, $I(\forall x Q(x)) = 0$, $I(\forall x (P(x) \to \forall x Q(x))) = 0$ 。 这表明 $\forall x (P(x) \to \forall x Q(x)) \models \forall x (P(x) \to Q(x))$ 。
- (5) 不成立。取解释 I如下。

$$D_I = \{a, b\}, \quad P^I(a) = 1, \quad P^I(b) = 0, \quad Q^I(a) = Q^I(b) = 0$$

则 $I(\exists x(P(x) \to Q(x))) = I(\exists xP(x)) = 1$ 且 $I(\exists xQ(x)) = 0$,这表明 $\exists x(P(x) \to Q(x))$, $\exists xP(x) \not\models \exists xQ(x)$ 。

(6) 不成立。取解释 I 如下。

$$D_I = \{a, b\}, \quad P^I(a, b) = 1, \quad P^I(a, a) = P^I(b, a) = P^I(b, b) = 1$$

则 $I(\exists x \exists y P(x, y)) = 1$,但 $I(\exists x P(x, x)) = 0$ 。所以 $\exists x \exists y P(x, y) \not\models \exists x P(x, x)$ 。

17. 设 A, B是任意公式,证明以下结论。

- (1) $\exists x(A \land B) \models \exists xA \land \exists xB$
- (2) $\forall x(A \rightarrow B), \forall xA \models \forall xB$
- (3) $\exists x A_x^y \models \exists x \exists y A$, 其中 x 对于 A 中的 y 是可代入的。
- (4) $\exists x A \rightarrow \exists x B \models \exists x (A \rightarrow B)$
- (1) 若解释 I 和 I 中赋值 v 使得 $I(\exists x(A \land B))(v) = 1$,则有 $d \in D_I$ 使得 $I(A \land B)(v[x/d]) = 1$, 证明 I(A)(v[x/d]) = I(B)(v[x/d]) = 1 , $I(\exists xA)(v) = 1$ 且 $I(\exists xB)(v) = 1$, $I(\exists xA \land \exists xB)(v) = 1$ 。 这 表 明 $\exists x(A \land B) \models \exists xA \land \exists xB$.
- 若解释 I 和 I 中赋值 v 使得 $I(\forall x(A \rightarrow B))(v) = I(\forall xA)(v) = 1$,则对于每个 $d \in D_I$, $I(A \rightarrow B)(v[x/d]) = I(A)(v[x/d]) = 1$, I(B)(v[x/d]) = 1, $I(\forall xB)(v) = 1$ 。这表明 $\forall x(A \rightarrow B), \forall xA \models \forall xB$ 。
- (3) 若解释 I 和 I 中赋值 v 使得 $I(\exists x A_x^y)(v) = 1$,则有 $d \in D_I$ 使得 $I(A_x^y)(v[x/y]) = 1$,因为 $I(A_x^y)(v[x/d]) = I(A)(v[x/d][y/I(x)(v[x/d])]) = I(A)(v[x/d][y/d]) , \text{ ff } 以 I(A)(v[x/d][y/d]) = 1 ,$ $I(\exists yA)(v[x/d]) = 1$, $I(\exists x\exists yA)(v) = 1$ 。这表明 $\exists xA_x^y \models \exists x\exists yA$ 。
- (4) 若解释 I 和 I 中赋值 v 使得 $I(\exists x(A \to B))(v) = 0$,则对于每个 $d \in D_I$, $I(A \to B)(v[x/d]) = 0$, I(A)(v[x/d]) = 1 且 I(B)(v[x/d]) = 0,因此 $I(\exists xA)(v) = 1$ 且 $I(\exists xB)(v) = 0$, $I(\exists xA \to \exists xB)(v) = 0$ 。所以 $\exists xA \to \exists xB \models \exists x(A \to B)$ 。 18. 设变元 x 既不是公式 B中的自由变元,也不是公式集 Γ 中任何公式的自由变元,A 是公式。若 $\Gamma \cup \{A\} \models B$,则 $\Gamma \cup \{\exists x A\} \models B$ 。

证明 设解释 I和 I中赋值 v满足 $\Gamma \cup \{\exists x A\}$,则 $I(\exists x A)(v) = 1$,有 $d \in D_I$ 使得 I(A)(v[x/d]) = 1。因为 x 不是公式集 Γ 中任 何公式的自由变元,所以 I 和 v[x/d] 也满足 Γ , I 和 v[x/d] 满足 Γ \cup $\{A\}$ 。又因为 Γ \cup $\{A\}$ \models B ,所以 I(B)(v[x/d]) = 1 ,因

为 x 不是 B 中的自由变元,因此 I(B)(v) = 1。这表明 $\Gamma \cup \{\exists x A\} \models B$ 。

19. 设 Γ 是公式集合,A是公式,则 $\Gamma \models A$ 当且仅当 $\Gamma \cup \{ \neg A \}$ 不可满足。

证明 设 $\Gamma \cup \{ \neg A \}$ 可满足,解释 I和 I中赋值 v满足 $\Gamma \cup \{ \neg A \}$,则 I和 v满足 Γ 且I(A)(v)=0,所以 $\Gamma \not\models A$ 。

设 $\Gamma \not\models A$,则有解释 I和 I中赋值 v满足 Γ 且 I(A)(v)=0,所以 I和 v满足 $\Gamma \cup \{\neg A\}$ 。因此, $\Gamma \cup \{\neg A\}$ 可满足。 20. 判断以下公式集合是否可满足,并说明理由。

- (1) $\{\neg P(t) | t$ 是项 $\} \cup \{\exists x P(x)\}$
- (2) $\{\forall x \neg P(x,x), \forall x \forall y \forall z (P(x,y) \land P(y,z) \rightarrow P(x,z)), \forall x \exists y P(x,y)\}$
- **解** (1) 可满足。取解释 I和 I中赋值 v如下。

$$D_I = \{1, 2\}, \qquad P^I(1) = 0, \quad P^I(2) = 1,$$

对每个常元 a, $a^I = 1$:

对每个 n 元函数符号 f, $f^{I}(x_1,\Lambda,x_n)=1$;

对每个变元 x, v(x)=1。

可归纳证明:对每个项 t, I(t)(v)=1。

I和 v满足 $\{\neg P(t) | t$ 是项 $\} \cup \{\exists x P(x)\}$ 。

(2) 可满足。取解释 I和 I中赋值 v如下。

$$D_I$$
 为自然数集, $P^I(x, y) = 1$ 当且仅当 $x < y$

则 I和 v满足 $\{\forall x \neg P(x,x), \forall x \forall y \forall z (P(x,y) \land P(y,z) \rightarrow P(x,z)), \forall x \exists y P(x,y)\}$ 。

- 1. 证明
- $(1) \quad \vdash (A \rightarrow B) \quad \rightarrow ((B \rightarrow C) \quad \rightarrow (A \rightarrow C))$
- (2) $\vdash (A \rightarrow (B \rightarrow C)) \rightarrow (B \rightarrow (A \rightarrow C))$
- (3) **├**¬¬A→A
- (4) **|**-A→¬¬A
- (5) $\vdash (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$
- (6) $\vdash (A \rightarrow (\neg B \rightarrow \neg (A \rightarrow B)))$
- (7) $\vdash A \rightarrow A \lor B$
- (8) **|**-A→B∨A
- (9) $\vdash A \land B \rightarrow A$
- (10) $\vdash A \land B \rightarrow B$
- 1. (6)

$$\vdash (A \rightarrow (\neg B \rightarrow \neg (A \rightarrow B)))$$

- A, A →B |-B
- $A \vdash (A \rightarrow B) \rightarrow B$
- $A \vdash \neg B \rightarrow \neg (A \rightarrow B)$
- $\vdash A \rightarrow (\neg B \rightarrow \neg (A \rightarrow B))$
- 1. (7)
- **⊢**A→A∨B
- $A1=A \rightarrow (\neg B \rightarrow A)$
- $A2 = (\neg B \rightarrow A) \rightarrow (\neg A \rightarrow \neg \neg B)$
- **A**3=¬¬B →B
- $A4 = (\neg A \rightarrow \neg \neg B) \rightarrow (\neg A \rightarrow B)$
- $A5 = (\neg B \rightarrow A) \rightarrow (\neg A \rightarrow B)$
- $A6=A \rightarrow (\neg A \rightarrow B)$
- $A7=A\rightarrow A\lor B$
- 1. (8)
- $A \lor B = (\neg A \rightarrow B)$
- $\vdash A \rightarrow B \lor A$
- $A1 = A \rightarrow (\neg B \rightarrow A)$
- **A**2= A→B∨A
- 2. (1)
- $\vdash A \rightarrow (\neg B \rightarrow \neg (A \rightarrow B))$
- ├A, ├B当且仅当 ├A∧B
- 证明如果 |-A, |-B则 |-A \\ B
- **A**1= A
- **A**2= B
- $A3 = A \rightarrow (\neg \neg B \rightarrow \neg (A \rightarrow \neg B))$
- **4**4=B→¬¬B
- $A5 = (\neg \neg B \rightarrow \neg (A \rightarrow \neg B)) \rightarrow (B \rightarrow \neg (A \rightarrow \neg B))$
- $A6= A \rightarrow (B \rightarrow \neg (A \rightarrow \neg B))$
- **A**7= B →¬(A→¬B)
- **A**8= ¬(A→¬B)
- 2. (1)

证明如果 -A \ B则 -A, -B $A1 = A \land B$

A2= A∧B→A

A3= A

A4= A∧B→B

A5= B

├A, **├**B

2. (2)

├A 或 ├B 当且仅当 ├A∨B

不对 ├ A→A

├珹∨A

├珹和 ├A

3证明空集是协调的公式集

证明:

由可靠性定理可知若 ├A 则 A 是永真式

因此对于任意命题变元 p, →p 空集是协调的公式集

4.

若1⊆2且1 ├A则2 ├A

若1⊆2 且1 |-A 则存在一个 A 的从 1 的推演该推演也是 A 的从 2 的推演因此 2 |-A

5 若 1 ⊆ 2 且 2 是协调的则 1 也是协调的

证明

9.

- (1) ├Atx→∃xA 其中t对于A中的x是可代入的
- (2) $\vdash \forall x (A \rightarrow B) \rightarrow (\exists xA \rightarrow \exists xB)$
- $(3) \quad \vdash \forall x (A \land B) \iff (\forall x A \land \forall x B)$
- $(4) \quad \vdash \exists x (A \lor B) \iff (\exists x A \lor \exists x B)$
- (5) $\vdash \exists x (A \land B) \rightarrow (\exists x A \land \exists x B)$
- (6) $\vdash \forall x A \leftrightarrow \neg \exists x \neg A$
- (7) $\vdash \forall x (A \rightarrow B) \rightarrow (\exists xA \rightarrow B)$ 其中x不是B的自由变元
- (8) $\vdash \exists x \forall y A \rightarrow \forall y \exists x A$

9. (1)

(1) ►Atx→∃xA 其中t对于A中的x是可代入的

 $A1 = \forall x \neg A \rightarrow \neg Atx$

A2= ¬¬Atx→¬∀x¬A

A3= Atx→¬Atx

 $A4= Atx \rightarrow \neg \forall x \neg A$

A5= Atx→∃xA

9. (2)

(2) $\vdash \forall x (A \rightarrow B) \rightarrow (\exists x A \rightarrow \exists x B)$

A1= ∃ xA→A

- $A7= (A \leftrightarrow B) \rightarrow (\forall x B \rightarrow \forall xA)$
- $A6 = (A \rightarrow B) \rightarrow (\forall x B \rightarrow \forall xA)$
- $A5 = (A \leftrightarrow B) \rightarrow (B \rightarrow A)$
- $A4= (A \leftrightarrow B) \rightarrow (\forall x A \rightarrow \forall xB)$
- $A3 = (A \rightarrow B) \rightarrow (\forall x A \rightarrow \forall xB)$
- $A2 = (A \leftrightarrow B) \rightarrow (A \rightarrow B)$
- **A**1= A ↔B
- 如果 $\vdash A \leftrightarrow B$,则 $\vdash \forall xA \leftrightarrow \forall xB$
- $(4) \quad \vdash \exists x (A \lor B) \quad \leftrightarrow (\exists x A \lor \exists x B)$
- 9. (4)
- 则 $\vdash \forall x (A \land B) \leftrightarrow (\forall x A \land \forall x B)$
- $i \mathbb{E} \mid (\forall x A \land \forall x B) \rightarrow \forall x (A \land B)$
- $\overline{\coprod} \vdash \forall x (A \land B) \rightarrow (\forall x A \land \forall x B)$
- $(3) \quad \vdash \forall x (A \land B) \quad \leftrightarrow (\forall x A \land \forall x B)$
- 213 V XII / (V XB · V X (II / (B)
- $A9 = \forall xA \land \forall xB \rightarrow \forall x (A \land B)$
- $A8 = A \land B \rightarrow \forall x (A \land B)$
- $A7= \forall xA \land \forall xB \rightarrow A \land B$
- A6= $\forall xA \land \forall xB \rightarrow B$
- **A**5= ∀xB→B
- $A4= \forall xA \land \forall xB \rightarrow \forall xB$
- $A3 = \forall xA \land \forall xB \rightarrow A$
- 40 \ / A A \ / D
- **A**2= ∀xA→A
- $A1 = \forall xA \land \forall xB \rightarrow \forall xA$
- 9. (3)
- $A10= \forall x (A \land B) \leftrightarrow (\forall x A \land \forall x B)$

 $\vdash (\forall xA \land \forall xB) \rightarrow \forall x (A \land B)$

- $A9 = \forall x (A \land B) \rightarrow \forall xB$
- $A8 = \forall x (A \land B) \rightarrow \forall xA$
- $A7=A \land B \rightarrow \forall xB$
- $A6= B \rightarrow \forall xB$
- **A**5= A∧B →B
- $A4=A \land B \rightarrow \forall xA$
- $\mathbf{A}3 = A \rightarrow \forall xA$
- **A**2= A∧B →A
- $A1 = \forall x (A \land B) \rightarrow A \land B$
- $\vdash \forall x (A \land B) \rightarrow (\forall x A \land \forall x B)$
- 则 $\vdash \forall x (A \land B) \leftrightarrow (\forall x A \land \forall x B)$
- $iii \vdash (\forall xA \land \forall xB) \rightarrow \forall x (A \land B)$
- $i \mathbb{E} \mid \forall x (A \land B) \rightarrow (\forall x A \land \forall x B)$
- $A1 = \forall x (A \rightarrow B) \rightarrow (\exists xA \rightarrow \exists xB)$
- $A1 = (A \rightarrow B) \rightarrow (\exists xA \rightarrow \exists xB)$
- $A1 = (A \rightarrow \exists xB) \rightarrow (\exists xA \rightarrow \exists xB)$
- $A1 = (A \rightarrow B) \rightarrow (A \rightarrow \exists xB)$
- $A1 = B \rightarrow \exists xB$
- $A1 = \forall x (A \rightarrow B) \rightarrow (A \rightarrow B)$

- $A8= (A \leftrightarrow B) \rightarrow \forall xA \leftrightarrow \forall xB$
- 9. (4)
- $A1 = \neg (A \lor B) \leftrightarrow \neg A \land \neg B$
- $A2 = \forall x \neg (A \lor B) \leftrightarrow \forall x (\neg A \land \neg B)$
- $A3 = \forall x (\neg A \land \neg B) \leftrightarrow (\forall x \neg A \land \forall x \neg B)$
- $A4= \forall x \neg (A \lor B) \leftrightarrow (\forall x \neg A \land \forall x \neg B)$
- $A6=\neg \forall x \neg (A \lor B) \leftrightarrow \neg (\forall x \neg A \land \forall x \neg B)$
- $A7 = \neg (\forall x \neg A \land \forall x \neg B) \leftrightarrow \neg \forall x A \lor \neg \forall x \neg B)$
- $A8 = \neg \forall x \neg (A \lor B) \leftrightarrow \neg \forall x A \lor \neg \forall x \neg B)$
- $A9 = \exists x (A \lor B) \leftrightarrow (\exists xA \lor \exists xB)$
- 9. (5)
- $(5) \vdash \exists x (A \land B) \rightarrow (\exists x A \land \exists x B)$
- $A1 = \exists x (A \land B) \rightarrow A \land B$
- **A**2= A∧B →A
- $A3 = A \rightarrow \exists xA$
- **A**4= A∧B →B
- **A**5= B→ ∃ xB
- $A6 = A \land B \rightarrow \exists xA \land \exists xB$
- $A7 = \exists x (A \land B) \rightarrow \exists xA \land \exists xB$
- 9. (6)
- (6) $\vdash \forall x A \leftrightarrow \neg \exists x \neg A$
- **A**1=A↔¬¬A
- $A2 = \forall xA \leftrightarrow \forall x \neg A$
- $A3 = \forall xA \leftrightarrow \neg \forall x \neg A$
- $A4 = \forall xA \leftrightarrow \neg \exists x\neg A$
- 9. (7)
- (7) $\vdash \forall x(A \rightarrow B) \rightarrow (\exists xA \rightarrow B)$ 其中x不是B的自由变元
- $A1 = \exists xA \rightarrow A$
- $A2 = (A \rightarrow B) \rightarrow (\exists xA \rightarrow B)$
- $A3 = \forall x (A \rightarrow B) \rightarrow (A \rightarrow B)$
- $A4= \forall x (A \rightarrow B) \rightarrow (\exists x A \rightarrow B)$
- 9. (8)
- (8) $\vdash \exists x \forall y A \rightarrow \forall y \exists x A$
- $A1 = \exists x \forall y A(x, y) \rightarrow \forall y A(c, y)$
- $A2 = \forall yA(c, y) \rightarrow A(c, y)$
- $A3=A(c, y) \rightarrow \exists x A(x, y)$
- $A4= \forall y \exists x A(x, y)$
- 10. (1)
- 若 ├A→B则 ├∃xA→∃xB
- **A**1= A →B
- $A2 = (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$
- **A**3= ¬B →¬A
- $A4= \forall x (\neg B \rightarrow \neg A)$

 $A5= \ \forall \ x \ (\neg B \ \rightarrow \neg A) \ \rightarrow (\ \forall \ x \ \neg B \rightarrow \forall \ x \ \neg A)$

 $A6 = \forall x \neg B \rightarrow \forall x \neg A$

 $A7 = \neg \forall x \neg A \rightarrow \neg \forall x \neg B$

A8= ∃x A→∃x B

10. (2)

若 ├A→B且x不是B的自由变元则 ├∃xA→B

A1= A →B

 $A2 = (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$

A3= ¬B →¬A

A4= ∀x(¬B →¬A)

 $\mathbf{A}5= \ \forall \ x \ (\neg B \ \rightarrow \neg A) \ \rightarrow (\neg B \rightarrow \forall \ x \ \neg A)$

A6= ¬B→ ∀x ¬A

A7= ¬∀x ¬A→¬¬B

A7= ¬¬B →B

A8= ∃x A→B

- 1. 用归结法证明:
- (1) $p \rightarrow q$, $p \rightarrow r \models p \rightarrow q \land r$
- (2) $p \rightarrow r$, $q \rightarrow r \models p \lor q \rightarrow r$
- (3) $p \to q \lor r \models (p \to q) \lor (p \to r)$
- $(4) \quad p \land q \to r \models (p \to r) \lor (q \to r)$
- $(5) \quad p \lor q \lor r \,, \quad p \to r \models q \lor r$
- (6) $(p \to q) \to (p \to r) \models p \to (q \to r)$
- \mathbf{M} (1) 首先将 $p \rightarrow q$, $p \rightarrow r$, $\neg (p \rightarrow q \land r)$ 化为合取范式。

$$p \to q \Leftrightarrow \neg p \lor q$$
$$p \to r \Leftrightarrow \neg p \lor r$$

$$\neg (p \to q \land r) \Leftrightarrow \neg (\neg p \lor (q \land r)) \Leftrightarrow p \land (\neg q \lor \neg r)$$

给出子句集 $\{\neg p \lor q, \neg p \lor r, p, \neg q \lor \neg r\}$ 的反驳如下。

- ① $\neg p \lor q$
- ② $\neg p \lor r$
- ③ p
- $\textcircled{4} \quad \neg q \lor \neg r$
- ⑤ q

①由和③

6 r

由②和③

 \bigcirc $\neg r$

由④和⑤

(8)

由⑥和⑦

因此, $p \rightarrow q$, $p \rightarrow r \models p \rightarrow q \land r$

(2) 首先将
$$p \rightarrow r$$
, $q \rightarrow r$, $\neg (p \lor q \rightarrow r)$ 化为合取范式。

$$\begin{array}{l} p \rightarrow r \Leftrightarrow \neg p \vee r \\ q \rightarrow r \Leftrightarrow \neg q \vee r \end{array}$$

$$\neg (p \lor q \to r) \Leftrightarrow (p \lor q) \land \neg r$$

给出子句集 $\{ \neg p \lor r, \neg q \lor r, p \lor q, \neg r \}$ 的反驳如下。

- ① $\neg p \lor r$
- ② $\neg q \lor r$
- \bigcirc $p \lor q$
- ④ ¬r
- \bigcirc $q \lor r$

由①和③

⑥ r

由②和⑤

7

由④和⑥

因此, $p \rightarrow r$, $q \rightarrow r \models p \lor q \rightarrow r$

(3) 首先将 $p \rightarrow q \lor r$, $\neg((p \rightarrow q) \lor (p \rightarrow r))$ 化为合取范式。

$p \rightarrow q \lor r \Leftrightarrow \neg p \lor q \lor r$

$$\neg ((p \mathbin{\rightarrow} q) \lor (p \mathbin{\rightarrow} r)) \Leftrightarrow \neg ((\neg p \lor q) \lor (\neg p \lor r)) \Leftrightarrow p \land \neg q \land \neg r$$

由①和②

给出子句集 $\{ \neg p \lor q \lor r, p, \neg q, \neg r \}$ 的反驳如下。

- 1 $\neg p \lor q \lor r$
- 2
- 3 $\neg q$
- 4 $\neg r$
- $q \vee r$
- 6 由③和⑤
- 7 由④和⑥

因此, $p \to q \lor r \models (p \to q) \lor (p \to r)$

(4) 首先将 $p \land q \rightarrow r$, $\neg((p \rightarrow r) \lor (q \rightarrow r))$ 化为合取范式。

 $p \land q \rightarrow r \Leftrightarrow \neg (p \land q) \lor r \Leftrightarrow \neg p \lor \neg q \lor r$

$$\neg((p \to r) \lor (q \to r)) \Leftrightarrow \neg((\neg p \lor r) \lor (\neg q \lor r)) \Leftrightarrow p \land q \land \neg r$$

给出子句集 $\{ \neg p \lor \neg q \lor r, p, q, \neg r \}$ 的反驳如下。

- ① $\neg p \lor \neg q \lor r$
- ② p
- ③ q
- ④ ¬r
- 由①和② \bigcirc $\neg q \lor r$
- 6 r

由③和⑤

7

由④和⑥

因此, $p \land q \rightarrow r \models (p \rightarrow r) \lor (q \rightarrow r)$

(5) 首先将 $p \rightarrow r$, $\neg (q \lor r)$ 化为合取范式。

 $p \rightarrow r \Leftrightarrow \neg p \lor r$

$$\neg (q \lor r) \Leftrightarrow \neg q \land \neg r$$

给出子句集{ $p \lor q \lor r$, $\neg p \lor r$, $\neg q$, $\neg r$ }的反驳如下。

- ① $p \lor q \lor r$
- ② $\neg p \lor r$
- ③ ¬q
- ④ ¬r
- \bigcirc $q \lor r$
- 由①和②
- 6 r
- 由③和⑤

7

由④和⑥

因此, $p \lor q \lor r$, $p \to r \models q \lor r$

(6) 首先将 $(p \to q) \to (p \to r)$, $\neg (p \to (q \to r))$ 化为合取范式。

$$(p \to q) \to (p \to r) \Leftrightarrow \neg(\neg p \lor q) \lor (\neg p \lor r)$$

 $\Leftrightarrow (p \land \neg q) \lor (\neg p \lor r) \Leftrightarrow \neg p \lor \neg q \lor r$

$\neg (p \rightarrow (q \rightarrow r)) \Leftrightarrow p \land q \land \neg r$

给出子句集 $\{\neg p \lor \neg q \lor r, p, q, \neg r\}$ 的反驳如下:

- ① $\neg p \lor \neg q \lor r$
- ② p
- (3) q
- ④ ¬r
- \bigcirc $\neg q \lor r$
- 由①和②
- 6 r
- 由③和⑤

(7)

由4)和6)

因此, $(p \to q) \to (p \to r) \models p \to (q \to r)$.

- 2. 用归结法判断以下结论是否成立:
- (1) $p \lor q \to r \models (p \to r) \lor (q \to r)$
- $(2) (p \to q) \lor (p \to r) \lor (p \to s) \models p \to q \lor r \lor s$
- (3) $(p \rightarrow q) \rightarrow (q \rightarrow r), r \rightarrow p \models q \rightarrow p$
- (4) $p \wedge q \rightarrow r$, $p \wedge q \rightarrow \neg r \models \neg p \wedge \neg q \wedge \neg r$
- 解 (1) 首先将 $p \lor q \to r$, $\neg((p \to r) \lor (q \to r))$ 化为合取范式。

 $p \lor q \to r \Leftrightarrow \neg (p \lor q) \lor r \Leftrightarrow (\neg p \land \neg q) \lor r \Leftrightarrow (\neg p \lor r) \land (\neg q \lor r)$

$$\neg((p \to r) \lor (q \to r)) \Leftrightarrow \neg((\neg p \lor r) \lor (\neg q \lor r)) \Leftrightarrow p \land q \land \neg r$$

给出子句集 $\{ \neg p \lor r, \neg q \lor r, p, q, \neg r \}$ 的反驳如下。

- ① $\neg p \lor r$
- ② $\neg q \lor r$
- ③ p
- (4) q
- (5) ¬r
- 6 r

由①和③

(7)

由⑥和⑤

因此, $p \lor q \to r \models (p \to r) \lor (q \to r)$

(2) 首先将 $(p \rightarrow q) \lor (p \rightarrow r) \lor (p \rightarrow s)$, $\neg (p \rightarrow q \lor r \lor s)$ 化为合取范式。

 $(p \rightarrow q) \lor (p \rightarrow r) \lor (p \rightarrow s) (\neg p \lor q) \lor (\neg p \lor r) \lor (\neg p \lor s) \Leftrightarrow \neg p \lor q \lor r \lor s$

 $\neg (p \to q \lor r \lor s) \Leftrightarrow \neg (\neg p \lor q \lor r \lor s) \Leftrightarrow p \land \neg q \land \neg r \land \neg s$

给出子句集 $\{\neg p \lor q \lor r \lor s, p, \neg q, \neg r, \neg s\}$ 的反驳如下。

- ① $\neg p \lor q \lor r \lor s$
- ② p
- ③ ¬q
- $\neg r$ 4
- \neg_S

 $\bigcirc q \lor r \lor s$

由③和⑥ \bigcirc $r \vee s$

8

由④和⑦

由①和②

9

由⑤和⑧

因此, $(p \to q) \lor (p \to r) \lor (p \to s) \models p \to q \lor r \lor s$

(3) 首先将 $(p \to q) \to (q \to r)$, $r \to p$, $\neg (q \to p)$ 化为合取范式。

$$(p \to q) \to (q \to r) \Leftrightarrow \neg (\neg p \lor q) \lor (\neg q \lor r) \Leftrightarrow (p \land \neg q) \lor \neg q \lor r \Leftrightarrow \neg q \lor r$$

 $r \to p \Leftrightarrow p \lor \neg r$

$$\neg(q \to p) \Leftrightarrow \neg(\neg q \lor p) \Leftrightarrow \neg p \land q$$

给出子句集 $\{ \neg q \lor r, p \lor \neg r, \neg p, q \}$ 的反驳如下。

- ① $\neg q \lor r$
- ② $p \vee \neg r$
- ③ ¬p
- 4 q
- ⑤ ¬*r*

由②和③

⑥ r

由④和①

(7)

由⑤和⑥

因此, $(p \to q) \to (q \to r)$, $r \to p \models q \to p$ 。

(4) 首先将 $p \land q \rightarrow r$, $p \land q \rightarrow \neg r$, $\neg (\neg p \land \neg q \land \neg r)$ 化为合取范式。

 $p \land q \rightarrow r \Leftrightarrow \neg (p \land q) \lor r \Leftrightarrow \neg p \lor \neg q \lor r$

$$p \land q \rightarrow \neg r \Leftrightarrow \neg (p \land q) \lor \neg r \Leftrightarrow \neg p \lor \neg q \lor \neg r$$

 $\neg(\neg p \land \neg q \land \neg r) \Leftrightarrow p \lor q \lor r$

为了判断子句集 $\{\neg p \lor \neg q \lor r, \neg p \lor \neg q \lor \neg r, p \lor q \lor r\}$ 是否可满足,消去命题变元 r,用子句 $\neg p \lor \neg q \lor \neg r$ 分别与子句 $p \lor q \lor r$ 和 $\neg p \lor \neg q \lor r$ 归结均得到子句 $\neg p \lor \neg q \lor p \lor q$,因为子句集 $\{\neg p \lor \neg q \lor p \lor q\}$ 可满足,所以子句集 $\{\neg p \lor \neg q \lor r, \neg p \lor \neg q \lor \neg r, p \lor q \lor r\}$ 可满足。

因此, $p \wedge q \rightarrow r$, $p \wedge q \rightarrow \neg r \not\models \neg p \wedge \neg q \wedge \neg r$ 。

3. 求下列公式的斯科伦范式。

$$(1) \neg \forall x (P(x) \rightarrow \forall y (P(y) \rightarrow P(f(x,y))) \land \neg \forall y (Q(x,y) \rightarrow P(y)))$$

$$(2) \forall x \exists y (P(x,y) \to Q(y,x)) \land (Q(y,x) \to R(x,y))$$

(3)
$$\forall x P(x, y) \rightarrow (Q(x) \rightarrow \neg \exists x R(y, x))$$

(4) $\forall x P(x, y) \oplus \exists y Q(x, y)$

$$\textbf{\textit{\textbf{\textit{H}}}} \quad (1) \ \neg \forall x (P(x) \rightarrow \forall y (P(y) \rightarrow P(f(x,y))) \land \neg \forall y (Q(x,y) \rightarrow P(y)))$$

$$\Leftrightarrow \neg \forall x (P(x) \to \forall y (P(y) \to P(f(x,y))) \land \neg \forall z (Q(x,z) \to P(z)))$$

$$\Leftrightarrow \exists x \neg (P(x) \to \forall y (P(y) \to P(f(x,y))) \land \neg \forall z (Q(x,z) \to P(z)))$$

$$\Leftrightarrow \exists x (P(x) \land \neg(\forall y (P(y) \rightarrow P(f(x,y))) \land \neg \forall z (Q(x,z) \rightarrow P(z)))$$

$$\Leftrightarrow \exists x (P(x) \land (\neg \forall y (P(y) \rightarrow P(f(x,y))) \lor \forall z (Q(x,z) \rightarrow P(z))))$$

$$\Leftrightarrow \exists x (P(x) \land (\exists y \neg (P(y) \rightarrow P(f(x,y))) \lor \forall z (Q(x,z) \rightarrow P(z))))$$

$$\Leftrightarrow \exists x \exists y \forall z (P(x) \land (\neg (P(y) \rightarrow P(f(x,y))) \lor (Q(x,z) \rightarrow P(z))))$$

$$\neg \forall x (P(x) \rightarrow \forall y (P(y) \rightarrow P(f(x,y))) \land \neg \forall y (Q(x,y) \rightarrow P(y)))$$
 的斯科伦范式是

$$\forall z (P(a) \land (\neg (P(b) \rightarrow P(f(a,b))) \lor (Q(a,z) \rightarrow P(z))))$$
.

(2)
$$\forall x \exists y (P(x, y) \rightarrow Q(y, x)) \land (Q(y, x) \rightarrow R(x, y))$$

$$\Leftrightarrow \forall z \exists u (P(z,u) \to Q(u,z)) \land (Q(y,x) \to R(x,y))$$

$$\Leftrightarrow \forall z \exists u ((P(z,u) \to Q(u,z)) \land (Q(y,x) \to R(x,y)))$$

$$\forall x \exists y (P(x,y) \rightarrow Q(y,x)) \land (Q(y,x) \rightarrow R(x,y))$$
 的斯科伦范式是

$$\forall z((P(z, f(z)) \rightarrow Q(u, f(z))) \land (Q(y, x) \rightarrow R(x, y)))$$
.

(3)
$$\forall x P(x, y) \rightarrow (Q(x) \rightarrow \neg \exists x R(y, x))$$

$$\Leftrightarrow \forall z P(z, y) \rightarrow (Q(x) \rightarrow \neg \exists u R(y, u))$$

$$\Leftrightarrow \forall z P(z, y) \rightarrow (Q(x) \rightarrow \forall u \neg R(y, u))$$

$$\Leftrightarrow \exists z \forall u (P(z, y) \rightarrow (Q(x) \rightarrow \neg R(y, u)))$$

$$\forall x P(x,y) \rightarrow (Q(x) \rightarrow \neg \exists x R(y,x))$$
 的斯科伦范式是 $\forall u (P(a,y) \rightarrow (Q(x) \rightarrow \neg R(y,u)))$ 。

(4)
$$\forall x P(x, y) \oplus \exists y Q(x, y)$$

$$\Leftrightarrow (\forall x P(x, y) \land \neg \exists y Q(x, y)) \lor (\neg \forall x P(x, y) \land \exists y Q(x, y))$$

$$\Leftrightarrow (\forall z P(z, y) \land \neg \exists u Q(x, u)) \lor (\neg \forall v P(v, y) \land \exists w Q(x, w))$$

$$\Leftrightarrow (\forall z P(z, y) \land \forall u \neg Q(x, u)) \lor (\exists v \neg P(v, y) \land \exists w Q(x, w))$$

$$\Leftrightarrow \forall z \forall u (P(z, y) \land \neg Q(x, u)) \lor \exists v \exists w (\neg P(v, y) \land Q(x, w))$$

$$\Leftrightarrow \exists v \exists w \forall z \forall u ((P(z, y) \land \neg Q(x, u)) \lor (\neg P(v, y) \land Q(x, w)))$$

 $\forall x P(x,y) \oplus \exists y Q(x,y)$ 的斯科伦范式是

$$\forall z \forall u ((P(z,y) \land \neg Q(x,u)) \lor (\neg P(a,y) \land Q(x,b)))$$
.

4. 证明: 前束范式 A 是永假式当且仅当 A 的无∃前束范式是永假式。

证明 设A'是前束范式A的无∃前束范式。

(⇐) 设A可满足,即有解释I和I中赋值v使得I(A)(v)=1,我们证明A'可满足。

对 4 中 ∃ 的出现次数进行归纳。

设A中 \exists 的出现次数为m+1。

若 A 为 $\exists yB$, A' 为 $(B_a^y)'$ 。 因为 I(A)(v)=1 , 故有 $d\in D_I$ 使得 I(B)(v[y/d])=1 。 令解释 I' 与 I 的区别仅在于 $a^{I'}=d$,则

$$I'(B_a^y)(v) = I'(B)(v[y/I'(a)(v)]) = I'(B)(v[y/d]) = 1$$

 B_a^y 可满足,由归纳假设知, $(B_a^y)'$ 可满足,即A'可满足。

若 A 为 $\forall x_1 \Lambda$ $\forall x_n \exists y B$, A' 为 $(\forall x_1 \Lambda \ \forall x_n B_{f(x_1,\Lambda \ ,x_n)}^y)'$ 。 定义 D_I 上的 n 元运算 g 如下: 对于任意 a_1,Λ , $a_n \in D_I$, 令 $g(a_1,\Lambda,a_n)$ 为集合 $\{b\,|\,I(B)(v[x_1/a_1,\Lambda,x_n/a_n,y/b])=1\}$ 中的一个元素,这个集合是非空的,因为

 $I'(B_{f(x_{1},\Lambda,x_{n})}^{y})(v[x_{1}/a_{1},\Lambda,x_{n}/a_{n}]) = I'(B)(v[x_{1}/a_{1},\Lambda,x_{n}/a_{n},y/I'(f(x_{1},\Lambda,x_{n}))(v[x_{1}/a_{1},\Lambda,x_{n}/a_{n}])])$

$$I(\exists yB)(v[x_1/a_1,\Lambda,x_n/a_n])=1$$
。令解释 I' 与 I 的区别仅在于 $f^{I'}=g$ 。对于任意 $a_1,\Lambda,a_n\in D_I$,

$$= I'(B)(v[x_1/a_1, \Lambda, x_n/a_n, y/g(a_1, \Lambda, a_n)]) = 1$$

所以, $I'(\forall x_1 \Lambda \ \forall x_n B_{f(x_1,\Lambda,x_n)}^y)(v) = 1$, $\forall x_1 \Lambda \ \forall x_n B_{f(x_1,\Lambda,x_n)}^y$ 可满足,由归纳假设知, $(\forall x_1 \Lambda \ \forall x_n B_{f(x_1,\Lambda,x_n)}^y)'$ 可满 足,即A'可满足。

(\Rightarrow) 我们证明 $A' \models A$ 。由谓词逻辑公理系统的可靠性定理知,只需证明 $A' \models A$ 。

对A中目的出现次数进行归纳。

若 A 中不出现 \exists ,则 A' 与 A 相同, A' $\vdash A$ 。

设A中 \exists 的出现次数为m+1。

若 A 为 $\exists yB$, A' 为 $(B_a^y)'$ 。由第三章习题 9(1)知, $\vdash B_a^y \to \exists yB$,故 $B_a^y \vdash \exists yB$ 。由归纳假设知, $(B_a^y)' \vdash B_a^y$,因此 $(B_a^y)' \vdash \exists y B$.

若 A 为 $orall x_1 \Lambda \ orall x_n \exists y B$, A' 为 $(orall x_1 \Lambda \ orall x_n B^y_{f(x_1,\Lambda \ ,x_n)})'$ 。 由 归 纳 假 设 知 ,

 $(\forall x_1 \land \ \forall x_n B_{f(x_1, \land, x_n)}^y)' \vdash \forall x_1 \land \ \forall x_n B_{f(x_1, \land, x_n)}^y$ 。由第三章习题 9 (1) 知, $\vdash B_{f(x_1, \land, x_n)}^y \to \exists y B$,再次应用例 3.8 得

到 $\vdash \forall x_1 \land \ \forall x_n B_{f(x_1, \Lambda_{\cdot}, x_n)}^{y} \rightarrow \forall x_1 \land \ \forall x_n \exists y B$ 。所以, $(\forall x_1 \land \ \forall x_n B_{f(x_1, \Lambda_{\cdot}, x_n)}^{y})' \vdash \forall x_1 \land \ \forall x_n \exists y B$,即 $A' \vdash A$, $A' \models A$ 。

若A'可满足,有解释I和I中赋值v满足A',则I和v满足A,A可满足。

- 5. 前東范式 A 的无 \forall 前東范式 A' 定义如下:
- (1) 若 A中不出现,则 A' 是 A;
- (2) 若 A是 $\forall yB$,则 A'是 $(B_a^y)'$,其中 a是在 B中不出现的常元;
- (3) 若 A 是 $\exists x_1 \Lambda \exists x_n \forall y B$,其中 n 是正整数,则 A' 为 $\left(\exists x_1 \Lambda \exists x_n \forall y B_{f(x_1,\Lambda x_n)}^y\right)'$,其中 f 是在 B 中不出现的 n 元函数符号。 证明: A是永真式当且仅当 A' 是永真式。

6. 证明: 若 I 是赫布兰德解释,则对每个基项 t, I(t) = t 。

证明 对 t 进行归纳。

- (1) 若 t 是常元 a,则 $I(a) = a^{I} = a$ 。
- (2) 若 $t \in f(t_1, \Lambda, t_n)$, 由归纳假设知: $I(t_1) = t_1, \dots, I(t_n) = t_n$.

$$I(f(t_1, \Lambda, t_n)) = f^{I}(I(t_1), \Lambda, I(t_n)) = f^{I}(t_1, \Lambda, t_n) = f(t_1, \Lambda, t_n)$$

- 7. 证明: 若语句集 Γ 可满足,则有赫布兰德解释满足 Γ 。
- 8. 用归结法证明以下子句构成的集合不可满足。

(1)
$$P(x, f(x), b)$$
, $\neg Q(x) \lor \neg Q(y) \lor \neg P(x, f(y), z) \lor Q(z)$, $Q(a)$, $\neg Q(b)$

- (2) $Q(a) \lor R(x)$, $\neg Q(x) \lor R(x)$, $\neg R(x) \lor \neg P(a)$, P(x)
- $P(y,a) \lor P(f(y),y)$, $P(y,a) \lor P(y,f(y))$, $\neg P(x,y) \lor \neg P(y,a)$, $\neg P(x,y) \lor P(f(y),y)$, (3) $\neg P(x, y) \lor P(y, f(y))$
- (4) $\neg E(x) \lor V(x) \lor S(x, f(x))$, $\neg E(x) \lor V(x) \lor C(f(x))$, P(a), E(a), $\neg S(a, y) \lor P(y)$, $\neg P(x) \lor \neg V(x)$, $\neg P(x) \lor \neg C(x)$
- (5) $\neg P(x, y, u) \lor \neg P(y, z, v) \lor \neg P(x, v, w) \lor P(u, z, w)$, P(g(x, y), x, y), P(x, h(x, y), y), $\neg P(f(x), x, f(x))$
- 解 (1) 给出该子句集的一个反驳如下:
 - (1) P(x, f(x), b)
 - (2) $\neg Q(x) \lor \neg Q(y) \lor \neg P(x, f(y), z) \lor Q(z)$
 - (3) Q(a)
 - (4) $\neg Q(b)$
 - (5) $\neg P(a, f(a), z) \lor Q(z)$

由(2) $\{x/a, y/a\}$ 和(3) ε

(6) Q(b)

由(1) $\{x/a\}$ 和(5) $\{z/b\}$

(7)

由(4) & 和(6) &

所以该子句集不可满足。

- (2) 给出该子句集的一个反驳如下:
- (1) $Q(a) \vee R(x)$
- (2) $\neg Q(x) \lor R(x)$
- (3) $\neg R(x) \lor \neg P(a)$
- (4) P(x)

(5) R(a)

曲(1) $\{x/a\}$ 和(2) $\{x/a\}$

(6) $\neg P(a)$

由(3) {x/a}和(5) &

(7)

曲(4) $\{x/a\}$ 和(6) ε

所以该子句集不可满足。

- (3) 给出该子句集的一个反驳如下:
 - (1) $P(y,a) \lor P(f(y),y)$
 - (2) $P(y,a) \lor P(y,f(y))$
 - (3) $\neg P(x, y) \lor \neg P(y, a)$
 - (4) $\neg P(x, y) \lor P(f(y), y)$
 - (5) $\neg P(x, y) \lor P(y, f(y))$
 - (6) $\neg P(f(a), a) \lor P(a, a)$

曲(3) $\{x/a, y/f(a)\}$ 和(2) $\{y/a\}$

(7) P(f(a), a)

由(1) $\{y/a\}$ 和(4) $\{x/a, y/a\}$

(8) P(a,a)

由(6) & 和(7) &

由(3) $\{x/a,y/a\}$ 和(8) ε

所以该子句集不可满足。

(9)

- (4) 给出该子句集的一个反驳如下:
 - (1) $\neg E(x) \lor V(x) \lor S(x, f(x))$
 - (2) $\neg E(x) \lor V(x) \lor C(f(x))$
 - (3) P(a)
 - (4) E(a)
 - (5) $\neg S(a, y) \lor P(y)$
 - (6) $\neg P(x) \lor \neg V(x)$
 - (7) $\neg P(x) \lor \neg C(x)$
 - (8) $\neg E(a) \lor V(a) \lor P(f(a))$

由(1) $\{x/a\}$ 和(5) $\{y/f(a)\}$

(9) $V(a) \vee P(f(a))$

由(4) **&** 和(8) **&**

(10) $\neg C(f(a)) \lor V(a)$

曲(9) ε 和(7) $\{x/f(a)\}$

(1) $\neg E(a) \lor V(a)$

曲(2) $\{x/a\}$ 和(10) ε

V(a)

由(4) & 和(11) &

(13) $\neg P(a)$

曲(6) $\{x/a\}$ 和(12) ε

(14)

由(3) & 和(13) &

所以该子句集不可满足。

- (5) 给出该子句集的一个反驳如下:
 - (1) $\neg P(x, y, u) \lor \neg P(y, z, v) \lor \neg P(x, v, w) \lor P(u, z, w)$
 - (2) P(g(x, y), x, y)
 - (3) P(x,h(x,y),y)
 - (4) $\neg P(f(x), x, f(x))$
 - (5) $\neg P(x,z,x) \lor P(u,z,u)$ $\pm (1)\{x / g(x,u), y / x, v / x, w / u\} \Rightarrow (2)\{y / u\}$
 - (6) P(u,h(x,x),u)

由(5) $\{z / h(x,x)\}$ 和(3) $\{y / x\}$

(7)

由(6) $\{u/f(h(x,x))\}$ 和(4) $\{x/h(x,x)\}$

所以该子句集不可满足。

- 9. 用归结法证明:
- $(1) \quad \forall y (P(y) \to Q(y)) \models \forall x (\exists y (P(y) \land R(x,y)) \to \exists z (Q(z) \land R(x,z)))$
- (2) $\forall x(\exists y(S(x,y) \land P(y)) \rightarrow \exists y(Q(y) \land R(x,y))),$

 $\neg \exists x Q(x) \models \forall x \forall y (S(x, y) \rightarrow \neg P(y))$

(3) $\forall x (Q(x) \land \neg R(x) \rightarrow \exists y (S(x, y) \land C(y))), \exists x (P(x) \land Q(x) \land \forall y (S(x, y) \rightarrow P(y))),$

 $\forall x (P(x) \rightarrow \neg R(x)) \models \exists x (P(x) \land C(x))$

- (4) $\forall x (P(x) \lor Q(x)) \not\models \forall x P(x) \lor \forall x Q(x)$
- (5) $\forall x \exists y P(x, y) \not\models \exists y \forall x P(x, y)$
- **解** (1) 由语句 $\forall y(P(y) \rightarrow Q(y))$ 得到子句 $\neg P(y) \lor Q(y)$,由语句 $\neg \forall x(\exists y(P(y) \land R(x,y)) \rightarrow \exists z(Q(z) \land R(x,z)))$ 得到

子句P(b), R(a,b)以及 $\neg Q(z) \lor \neg R(x,z)$ 。

构造子句集 $\{ \neg P(y) \lor Q(y), P(b), R(a,b), \neg Q(z) \lor \neg R(x,z) \}$ 的一个反驳如下:

- (1) $\neg P(y) \lor Q(y)$
- (2) P(b)
- (3) R(a,b)

- (4) $\neg Q(z) \lor \neg R(x,z)$
- (5) Q(b)

由(1)和(2)

(6) $\neg Q(b)$

由(3)和(4)

(7)

由(5)和(6)

因此, $\forall y(P(y) \rightarrow Q(y)) \models \forall x(\exists y(P(y) \land R(x,y)) \rightarrow \exists z(Q(z) \land R(x,z)))$ 。

(2) 由 语 句 $\forall x(\exists y(S(x,y)\land P(y))\to\exists y(Q(y)\land R(x,y)))$ 得 到 子 句 $\neg S(x,y)\lor \neg P(y)\lor Q(f(x))$ 和 $\neg S(x,y)\lor \neg P(y)\lor R(x,f(x))$,由语句 $\neg \exists x Q(x)$ 得到子句 $\neg Q(x)$,由语句 $\neg \forall x \forall y(S(x,y)\to \neg P(y))$ 得到子句 S(a,b) 和 P(b) 。

构造子句集 $\{\neg S(x,y)\lor \neg P(y)\lor Q(f(x)), \neg S(x,y)\lor \neg P(y)\lor R(x,f(x)), \neg Q(x), S(a,b), P(b)\}$ 的一个反驳如下:

- (1) $\neg S(x, y) \lor \neg P(y) \lor Q(f(x))$
- (2) $\neg S(x, y) \lor \neg P(y) \lor R(x, f(x))$
- (3) $\neg Q(x)$
- (4) S(a,b)
- (5) P(b)
- (6) $\neg S(x, y) \lor \neg P(y)$

由(1)和(3)

(7) $\neg P(b)$

由(4)和(6)

(8)

由(5)和(7)

因此,

 $\forall x(\exists y(S(x,y) \land P(y)) \rightarrow \exists y(Q(y) \land R(x,y))), \ \neg \exists x Q(x) \models \forall x \forall y(S(x,y) \rightarrow \neg P(y)).$

(3) 由 语 句 $\forall x(Q(x) \land \neg R(x) \rightarrow \exists y(S(x,y) \land C(y)))$ 得 到 子 句 $\neg Q(x) \lor R(x) \lor S(x,f(x))$ 和

 $\neg Q(x) \lor R(x) \lor C(f(x))$; 由语句 $\exists x (P(x) \land Q(x) \land \forall y (S(x,y) \rightarrow P(y)))$ 得到子句 P(a), Q(a), $\neg S(a,y) \lor P(y)$;

由语句 $\forall x (P(x) \to \neg R(x))$ 得到子句 $\neg P(x) \lor \neg R(x)$; 由语句 $\neg \exists x (P(x) \land C(x))$ 得到子句 $\neg P(x) \lor \neg C(x)$.

构造子句集 { $\neg Q(x) \lor R(x) \lor S(x, f(x))$, $\neg Q(x) \lor R(x) \lor C(f(x))$, P(a) , Q(a) , $\neg S(a, y) \lor P(y)$, $\neg P(x) \lor \neg R(x)$, $\neg P(x) \lor \neg C(x)$ } 的一个反驳如下:

- $(1) \quad \neg Q(x) \lor R(x) \lor S(x, f(x))$
- (2) $\neg Q(x) \lor R(x) \lor C(f(x))$

- (3) P(a)
- (4) Q(a)
- (5) $\neg S(a, y) \lor P(y)$
- (6) $\neg P(x) \lor \neg R(x)$
- (7) $\neg P(x) \lor \neg C(x)$
- (8) $\neg Q(a) \lor R(a) \lor P(f(a))$
- (9) $\neg R(a)$ 由(3)和(6)
- (10) $R(a) \lor P(f(a))$ 由(4)和(8)
- (11) P(f(a)) 由(9)和(10)
- (12) $R(a) \lor C(f(a))$ 由(2)和(4)
- (13) C(f(a)) 由(9)和(12)
- (4) $\neg P(f(a))$ 由(7)和(3)
- (15) 由(11)和(14)

因此, $\forall x(Q(x) \land \neg R(x) \rightarrow \exists y(S(x,y) \land C(y)))$,

 $\exists x (P(x) \land Q(x) \land \forall y (S(x, y) \rightarrow P(y))), \ \forall x (P(x) \rightarrow \neg R(x)) \models \exists x (P(x) \land C(x)).$

(4) 由语句 $\forall x(P(x) \lor Q(x))$ 得到子句 $P(x) \lor Q(x)$,由语句 $\neg \exists x(P(x) \land Q(x))$ 得到子句 $\neg P(x) \lor \neg Q(x)$ 。显然,这两个子句的归结子句是永真子句。因此, $\forall x(P(x) \lor Q(x)) \not\models \forall x P(x) \lor \forall x Q(x)$

由(1)和(5)

(5) 由语句 $\forall x \exists y P(x, y)$ 得到子句 P(x, f(x)),由语句 $\neg \exists y \forall x P(x, y)$ 得到子句 $\neg P(g(y), y)$ 。我们证明这两个子句没有归结子句。若有代换 $\{x/t_1\}$ 和代换 $\{y/t_2\}$ 使

$$t_1 = g(t_2)$$
 $f(t_1) = t_2$

可得出 $t_1 = g(f(t_1))$,这是不可能的,因为这里的=表示作为符号串的相同。因此, $\forall x \exists y P(x,y) \not\models \exists y \forall x P(x,y)$

10. 每个一年级学生至少有一个高年级学生作他的辅导员。凡理科学生的辅导员皆是理科学生。小王是理科一年级学生。因此,至少有一个理科高年级学生。

解 首先将前提和结论符号化。取个体域为学生的集合。

F(x): x 是一年级学生。 H(x): x 是高年级学生。 L(x): x 是理科学生。 W(x): x 是 文 科 学 生 。

G(x, y): $x \in y$ 的辅导员。 a: 小王。

"每个一年级学生至少有一个高年级学生作他的辅导员"符号化为: $\forall x (F(x) \rightarrow \exists y (H(y) \land G(y,x)))$ 。

"凡理科学生的辅导员皆是理科学生"符号化为: $\forall x(L(x) \rightarrow \forall y(G(y,x) \rightarrow L(y)))$ 。

"小王是理科一年级学生"符号化为: $L(a) \wedge F(a)$ 。

"至少有一个理科高年级学生"符号化为: $\exists x(L(x) \land H(x))$ 。

将 $\forall x(F(x) \rightarrow \exists y(H(y) \land G(y,x)))$ 化为斯科伦范式

 $\forall x((\neg F(x) \lor H(f(x))) \land (\neg F(x) \lor G(f(x), x)))$, 得出子句 $\neg F(x) \lor H(f(x))$ 和 $\neg F(x) \lor G(f(x), x)$ 。

将 $\forall x(L(x) \rightarrow \forall y(G(y,x) \rightarrow L(y)))$ 化 为 斯 科 伦 范 式 $\forall x \forall y(\neg L(x) \lor \neg G(y,x) \lor L(y))$, 得 出 子 句 $\neg L(x) \lor \neg G(y,x) \lor L(y)$.

 $L(a) \wedge F(a)$ 本身即为斯科伦范式,得出子句 L(a) 和 F(a)。

将 $\neg \exists x (L(x) \land H(x))$ 化为斯科伦范式 $\forall x (\neg L(x) \lor \neg H(x))$,得出子句 $\neg L(x) \lor \neg H(x)$ 。

构造子句集 $\{\neg F(x) \lor H(f(x)), \neg F(x) \lor G(f(x), x), \neg L(x) \lor \neg G(y, x) \lor L(y), L(a), F(a), \neg L(x) \lor \neg H(x)\}$ 的一个反驳如下:

- (1) $\neg F(x) \lor H(f(x))$
- (2) $\neg F(x) \lor G(f(x), x)$
- (3) $\neg L(x) \lor \neg G(y, x) \lor L(y)$
- (4) L(a)
- F(a)(5)
- (6) $\neg L(x) \lor \neg H(x)$
- (7) H(f(a))由(1)和(5)
- (8) G(f(a),a)由(2)和(5)
- (9) $\neg G(y,a) \lor L(y)$ 由(3)和(4)
- L(f(a))(10) 由(8)和(9)
- (11) $\neg L(f(a))$ 由(6)和(7)
- (12) 由(10)和(11)
- 11. 任何喜欢步行的人都不喜欢乘汽车。每个人或者喜欢乘汽车或者喜欢骑自行车。有的人不喜欢骑自行车。因此,有的人不喜欢步行。
- 首先将前提和结论符号化。取个体域为人的集合。

W(x): x 喜欢步行。 C(x): x 喜欢乘汽车。 B(x): x 喜欢骑自行车。

"任何喜欢步行的人都不喜欢乘汽车"符号化为: $\forall x(W(x) \to \neg C(x))$ 。

"每个人或者喜欢乘汽车或者喜欢骑自行车"符号化为: $\forall x (C(x) \lor B(x))$ 。

"有的人不喜欢骑自行车"符号化为: $\exists x \neg B(x)$ 。

"有的人不喜欢步行"符号化为: $\exists x \neg W(x)$ 。

需要证明

$$\forall x(W(x) \rightarrow \neg C(x)), \ \forall x(C(x) \lor B(x)), \ \exists x \neg B(x) \models \exists x \neg W(x)$$

将 $\forall x(W(x) \rightarrow \neg C(x))$ 化为斯科伦范式 $\forall x(\neg W(x) \lor \neg C(x))$, 得出子句 $\neg W(x) \lor \neg C(x)$ 。

 $\forall x (C(x) \lor B(x))$ 本身即是斯科伦范式,得出子句 $C(x) \lor B(x)$ 。

将 $\exists x \neg B(x)$ 化为斯科伦范式 $\neg B(a)$,得出子句 $\neg B(a)$ 。

将 $\neg\exists x \neg W(x)$ 化为斯科伦范式 $\forall x W(x)$,得出子句W(x)。

构造子句集 $\{ \neg W(x) \lor \neg C(x), C(x) \lor B(x), \neg B(a), W(x) \}$ 的一个反驳如下:

- $\neg W(x) \lor \neg C(x)$ 1
- $C(x) \vee B(x)$ 2
- 3 $\neg B(a)$
- 4 W(x)
- (5) $\neg C(x)$ 由①和④
- 6 B(x)由②和⑤
- 由③和⑥ 7