### COMP2022|2922 Models of Computation

Non-regularity

Sasha Rubin

August 24, 2022





To show that a language is regular, it is sufficient to find a DFA, NFA, or Regular Expression for it.

But how do we show a language is not regular?

- One must show that there is no DFA that recognises it.
- We will show that  $\{a^nb^n:n\geq 1\}=\{ab,aabb,aaabbb,\dots\}$  is not regular.
- We will start with an intuition of why this language is not regular, and then prove it mathematically.

### Intuition

What happens if you try build a DFA for the language  $\{a^nb^n:n\geq 1\}$ ?

- What information does the DFA have to remember in its state?
- How many states are needed?

# Pigeonhole principle (PHP)

If there are n holes and > n objects to put in the holes, then at least one hole must get at least two objects.

- We will apply this with n states and > n strings, and conclude that at least one state must be associated with two strings.
- Then we will use these two strings to "fool" the DFA into accepting (or rejecting) a string that it shouldn't.

# Distinguishability

Let L be a language over  $\Sigma$ .

#### Definition

Two strings x,y are distinguishable with respect to L if there is some string z such that exactly one of xz and yz is in L.

So: x,y are indistinguishable wrt L means that for every z either both xz and yz are in L or both are not in L.

### Example

- 1.  $L = L(a^*b^*)$ 
  - aa and ab are distinguishable (by z = a).
  - aab and ab are indistinguishable.
  - -aba and ba are indistinguishable.
- 2.  $L = \{a^n b^n : n \ge 1\}$ 
  - aa and aaa are distinguishable (by z = bb).
  - aaa and aaaaaaaaa are distinguishable (by z = bbb).

# Distinguishability

What is the largest number of strings that are pairwise distinguishable?

### Example

- 1.  $L = L(a^*b^*)$ 
  - Strings in  ${\cal L}$  that don't have b are pairwise indistinguishable.
  - Strings in L that have b are pairwise indistinguishable.
  - Strings not in L are pairwise indistinguishable.
  - Largest number of strings that are pairwise distinguishable is 3, one from each set, e.g., aa and ab and aba.
- 2.  $L = \{a^n b^n : n > 1\}$ 
  - If  $i \neq j$ , strings  $a^i$  and  $a^j$  are distinguishable (by  $z = b^i$ ).
  - So we can find infinitely many strings that are pairwise distinguishable, e.g.,  $a, aa, aaa, aaaa, \cdots$ .

#### Theorem

If there are infinitely many strings  $x_1, x_2, \cdots$  that are pairwise distinguishable with respect to L then L is not regular.

We prove this by **contradiction**. Here is the structure:

- We are given that there are infinitely many pairwise distinguishable strings wrt L.
- We assume (for a "moment") that our conclusion is false
  - i.e., that there is some DFA recognising L.
- We insert a clever argument here and that ends with a contradictory ("impossible") statement
  - i.e., that some pair of the given strings are indistinguishable!
- Immediately conclude that our assumption is false
  - i.e., L cannot be regular, which is what we want to show!

#### **Theorem**

If there are infinitely many strings  $x_1, x_2, \cdots$  that are pairwise distinguishable with respect to L then L is not regular.

- 1. Given  $x_1, x_2, \cdots$  pairwise distinguishable.
- 2. Assume L is recognised by some DFA, say with state set Q.
- 3. Write f(x) for the state that M reaches after reading input x.
- 4. There must exist  $i \neq j$  such that  $f(x_i) = f(x_j)$ .
  - Why? By the pigeonhole principle. There are infinitely many pigeons  $x_1, x_2, x_3, \cdots$ , but only |Q| many pigeonholes.
- 5. But if  $f(x_i) = f(x_j)$  then  $x_i$  and  $x_j$  are indistinguishable.
  - Why? if  $x_i, x_j$  go to the same state then for every string z both  $x_iz$  and  $x_jz$  go to the same state, and thus either both  $x_iz$  and  $x_jz$  are accepted, or both are rejected.

(To think about: where do we use that we are working with a DFA and not an NFA?)

#### Theorem

If there are infinitely many strings  $x_1, x_2, \cdots$  that are pairwise distinguishable with respect to L then L is not regular.

That proves the theorem.

To apply this theorem to show that a specific L is not regular, we must find infinitely many strings that are pairwise distinguishable wrt L.

#### **Theorem**

If there are infinitely many strings  $x_1, x_2, \cdots$  that are pairwise distinguishable with respect to L then L is not regular.

### Example 1

 $L = \{a^nb^n : n \ge 1\}$  is not regular. We will show that  $a, aa, aaa, \cdots$  are pairwise distinguishable.

- 1. Let  $x_n = a^n$  for  $n \ge 1$ .
- 2. Then  $x_n, x_m$  (for  $n \neq m$ ) are distinguished by  $z = b^n$ . Why?
- 3. String  $x_n z = a^n b^n \in L$  (obvious).
- 4. String  $x_m z = a^m b^n \notin L$  since  $n \neq m$ .

#### **Theorem**

If there are infinitely many strings  $x_1, x_2, \cdots$  that are pairwise distinguishable with respect to L then L is not regular.

### Example 2

 $L = \{ww : w \in \{0,1\}^*\}$  is not regular. We will show that  $ab, aab, aaab, \cdots$  are pairwise distinguishable wrt L.

- 1. Let  $x_n = a^n b$  for  $n \ge 1$ .
- 2. Then  $x_n, x_m$  (for n < m) are distinguished by  $z = a^n b$ . Why?
- 3.  $x_n z = a^n b a^n b \in L$  since it is of the form ww for  $w = a^n b$ .
- 4.  $x_m z = a^m b a^n b \notin L$  since the left half of this string only contains as while the right contains two b's.

#### **Theorem**

If there are infinitely many strings  $x_1, x_2, \cdots$  that are pairwise distinguishable with respect to L then L is not regular.

### Example 3

 $L = \{w \in \{a\}^* : |w| \text{ is a power of } 2\}$  is not regular. We will show that  $a, aa, aaaa, aaaaaaaaa, \cdots$  are pairwise distinguishable wrt L.

- 1. Let  $x_n = a^{2^n}$  for n > 1.
- 2. Then  $x_n, x_m$  (for n < m) are distinguished by  $z = a^{2^n}$ . Why?
- 3. String  $x_n z \in L$  since  $|x_n z| = 2^n + 2^n = 2^{n+1}$ .
- 4. String  $x_m z \notin L$  since

$$2^m < |x_m z| = 2^m + 2^n < 2^m + 2^m = 2^{m+1}$$

so  $|x_m z|$  is not a power of 2 (because there is no power of 2 between  $2^m$  and  $2^{m+1}$ ).

11 / 15

### Other techniques

Once we know that a language is not regular, we can deduce that other languages are not regular using the closure properties of regular languages.

### Example

Prove that the set  $L_1$  of strings with the same number of as as bs is not regular.

We will use that  $L_0 = \{a^n b^n : n \ge 1\}$  is not regular.

- 1. We know that  $L_0$  is not regular (previous slides).
- 2. Assume  $L_1$  is regular.
- 3. Then  $L_1 \cap L(a^*b^*)$  is regular. Why?
- 4. But  $L_0 = L_1 \cap L(a^*b^*)$ . Why?
- 5. So  $L_0$  is regular. But this is a contradiction to what we know.
- 6. So, our assumption is wrong, i.e.,  $L_1$  cannot be regular.

### Example

Prove that the language  $L_2$  consisting of strings over  $\{a,b\}$  with a different number of as as bs is not regular.

We will use that  $L_1$  (consisting of strings over  $\{a,b\}$  with the same number of as as bs) is not regular.

- 1. We know that  $L_1$  is not regular (previous slide).
- 2. Assume  $L_2$  is regular.
- 3. Then  $\{a,b\}^* \setminus L_2$  is regular. Why?
- 4. So  $L_1 = \{a, b\}^* \setminus L_2$  is regular. But this is a contradiction to what we know.
- 5. So, deduce that  $L_2$  is not regular.

### Summary

- We use a fooling argument to show that certain languages are not regular.
  - A variation is called the *pumping lemma*, see Sipser.
- But these particular non-regular languages are still quite simple!
  - e.g., there is an algorithm for deciding if a given string is of the form  $a^nb^n$  for some n. How would it work?
- So, we need a more powerful model of computation to recognise more complex languages.
- Next we will see a very powerful model of computation that captures our intuitive idea of what an arbitrary algorithm can do.