

Listado para clase práctica 1: 26 de marzo de 2022

Prof.: A. González, F. Jara, M. Selva.

Listado 1: Vectores de \mathbb{R}^2 y \mathbb{R}^3 . Rectas y planos. Los problemas marcados con (P) serán resueltos en práctica.

1.	Sean $\vec{x} = (-1, 2)^{\mathrm{T}}, \ \vec{y} = (3, 1, -5)^{\mathrm{T}}, \ \vec{z} = (7, -3)^{\mathrm{T}} \ \text{y} \ \vec{w} = \left(2, 4, \frac{16}{3}\right)^{\mathrm{T}}$. Realice, si es posible, la	as
	siguientes operaciones entre ellos.	

(a) **(P)** $\vec{x} + \vec{y}$,

(c) $4\vec{w}$,

(e) $5\vec{x} + 2\vec{z} - \vec{w}$,

(b) $\vec{x} + \vec{z}$,

(d) **(P)** $\vec{y} - \vec{w}$,

- (f) $\frac{1}{2}(\vec{y} + \vec{w})$.
- 2. Considere los puntos A = (-1, 0, 1), B = (0, 1, 2) y C = (1, 1, 1) y los vectores $\vec{a} = \vec{OA}$, $\vec{b} = \vec{OB}$ y $\vec{c} = \vec{OC}$, donde O = (0, 0, 0). Determine
 - (a) $\vec{AB} \ \vec{V} \ \vec{BC}$,
 - (b) $\|\vec{a}\|$, $\|\vec{c}\|$, $\|2\vec{a} \vec{b}\|$,
 - (c) distancia entre \vec{AB} y \vec{a} .

Además describa el conjunto de los vectores $\vec{x} \in \mathbb{R}^3$ tales que

- (a) **(P)** \vec{x} es paralelo a \vec{c} y $||\vec{x}|| = 1$,
- (b) \vec{x} es paralelo a \vec{b} y la distancia de \vec{x} a \vec{c} es igual a $\sqrt{2}$.
- 3. En cada caso, encuentre x tal que la igualdad se cumpla, y determine si x es elemento de \mathbb{R} , \mathbb{R}^2 o \mathbb{R}^3 .
 - (a) **(P)** $(2,3)^{\mathrm{T}} + 3x = (-5,7)^{\mathrm{T}}$,
- (c) $(3, -3, 1)^{\mathrm{T}} + x = (5, -3, 2)^{\mathrm{T}}$,
- (b) (P) $x(1,-3)^{\mathrm{T}} = (0,6)^{\mathrm{T}} + (4,-18)^{\mathrm{T}},$ (d) $(1-3\sqrt{2},3)^{\mathrm{T}} = x (3\sqrt{2},4-\sqrt{8})^{\mathrm{T}}.$
- 4. Para cada uno de los tríos de vectores v_1, v_2, v_2 de vectores en \mathbb{R}^2 presentados, determine escalares $\alpha_1, \alpha_2, \alpha_3$ tales que

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = (0, 0)^{\mathrm{T}}.$$

(a) (b) (c)
$$v_{1} = (1,0)^{T} \qquad v_{1} = (2,-2)^{T} \qquad v_{1} = (2,-2)^{T}$$
$$v_{2} = (0,1)^{T} \qquad v_{2} = (0,-3)^{T} \qquad v_{2} = (-4,4)^{T}$$
$$v_{3} = (1,1)^{T} \qquad v_{3} = (-1,0)^{T} \qquad v_{3} = (0,0)^{T}$$

5. (P) Sea \mathcal{L}_1 la siguiente recta

$$\mathcal{L}_1: \quad \frac{x-5}{3} = -\frac{y}{6} = \frac{z-6}{5}.$$

- (a) Determine un vector director para \mathcal{L}_1 .
- (b) ¿Pertenece (2,4,7) a \mathcal{L}_1 ?
- (c) Determine la ecuación de la recta \mathcal{L}_2 paralela a \mathcal{L}_1 que contiene al punto $Q=(2,\,4,\,7)$.
- 6. Considere el siguiente par de rectas:

$$\mathcal{L}_1: x - 4 = \frac{2 - y}{3} = \frac{z + 3}{5},$$
 $\qquad \qquad \mathcal{L}_2: \frac{x - 11}{3} = \frac{y + 9}{-4} = \frac{z + 3}{-3}.$

Determine si son paralelas y si se intersectan en un punto.

7. (P) Considere el siguiente par de rectas:

$$\mathcal{L}_1: (x, y, z) = (11, -3, 4) + \lambda(3, -1, 3), \quad \lambda \in \mathbb{R},$$

$$\mathcal{L}_2: P \in \mathbb{R}^3 \text{ tales que } \vec{AP} \text{ es paralelo a} \begin{pmatrix} -2\\1\\7 \end{pmatrix} \text{ y } A = (6, -2, -15).$$

Determine si son paralelas y si se intersectan en un punto.

- 8. Determine qué puntos (x, y, z) pertenecen al plano que contiene a (0, 1, 2) y del que $\begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$ y $\begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix}$ son vectores directores.
- 9. **(P)** Considere los puntos A = (2, 1, 2), B = (0, -1, 1) y C = (-1, 1, 5).
 - (a) Muestre que ellos nos son colineales, es decir, no están ubicados sobre la misma recta.
 - (b) Encuentre qué puntos (x, y, z) pertenecen al plano que contiene a estos tres puntos.