Balanced binary trees

* Operations on binary search trees

- O (height of tree)

* want to keep our binary trees (An

nodes) boalanced so that h= o(logn)

* Height balanced Eree (AVL)

At every node, lht (left subtree)
- ht (right subtree) | < 1

(eg) label (ht 1 kft, 9-1 light subtree)

at each node

(3,2) (2,1) (0,1) (0,0) (0,0)

A-Adelson V-Velsky L-Landis

Slope to node =

tre slope

19- arst node

AVL tree: Slope (12) E

ht (leftsubtree) - ht (right subtree)

negative slope

{-1,0,13

* After 1 insert/delete

 \sim) slopes \in $\{2-2,-1,0,1,2\}$

* so rebalance tree after each insert/ delete

* Do bottom-up rebalances.

- · Assume x is not Lalanced, slope = 2
- ° LT, RT are bolanced
- · so ME(RT)= h, ht(LT)= h+2

LT(x):

Case I slope(y) = 0 or 1 : ht (RT(y)) = h+1 Rotate tree right at x parent (x) parent(x) 1+a (a slope (9) = h+1 - [8125 h+17 Slope (x) = h 2+1 - h Case I slope(y) = -1 Rotate Gree left at y 1 Parent (x) parent (x) * at least one of LICE) RICE)

Summary

- slope (y) = {0,13 >> rotale n'out at re
- slope y c [-1]

 => sotate left aty

 notate right at x

Symmetric analysis

- slope (y) ∈ ₹ 0,-13 → rotate left at x
- slope (y) e {13}

 => sotate sight aty

 sotate left at re

Rebalancing (at a node) -> O(1)

In recursive insert/delete,

right after calling recursive insert/del (child-)

Do rebalance (child)

* computing ht (tree) -> 0 (size h)!!

* so instead store to height at

each node t

* apdate to height with each insert/del

~ aci)