

Figure 1: Progress of P_{Sum} Max cut.

Figure 2: Progress of P_{Sum} Min cut.

Figure 3: Progress of P_{e^-} cut.

Figure 4: Progress of Cluster time difference cut.

Figure 5: Progress of positron d_0 cut.

Figure 6: Electrons Data: Cluster track time difference as a function of Momentum.

Figure 7: Electrons Tridents: Cluster track time difference as a function of Momentum.

Figure 8: Electrons Rad Tridents: Cluster track time difference as a function of Momentum.

Figure 9: Electrons WABs: Cluster track time difference as a function of Momentum.

Figure 10: Positrons Data: Cluster track time difference as a function of Momentum.

Figure 11: Positrons Tridents: Cluster track time difference as a function of Momentum.

Figure 12: Positrons Rad Tridents: Cluster track time difference as a function of Momentum.

Figure 13: Positrons WABs: Cluster track time difference as a function of Momentum.

Figure 14: Electrons Data: Cluster track X coordinate difference as a function of momentum.

Figure 15: Electrons Tridents: Cluster track X coordinate difference as a function of momentum.

Figure 16: Electrons Rad Tridents: Cluster track X coordinate difference as a function of momentum.

Figure 17: Positrons Rad Tridents: Cluster track X coordinate difference as a function of momentum.

Figure 18: Positrons Data: Cluster track X coordinate difference as a function of momentum.

Figure 19: Positrons Tridents: Cluster track X coordinate difference as a function of momentum.

Figure 20: Positrons Rad Tridents: Cluster track X coordinate difference as a function of momentum.

Figure 21: Positrons Rad Tridents: Cluster track X coordinate difference as a function of momentum.

¹ PSum comparison for different mass bins

Figure 22: Progress of P_{Sum} Min cut, for the 20 MeV < M(ee) < 40 MeV

Figure 23: Progress of $P_{\rm Sum}$ Min cut, for the 40 MeV < M(ee) $<60~{\rm MeV}$

Figure 24: Progress of $P_{\rm Sum}$ Min cut, for the 60 MeV < M(ee) <80 MeV

Figure 25: Progress of P_{Sum} Min cut, for the 80 MeV < M(ee) < 100 MeV

Figure 26: Progress of P_{Sum} Min cut, for the 100 MeV < M(ee) < 120 MeV

Figure 27: Progress of P_{Sum} Min cut, for the 120 MeV < M(ee) < 140 MeV

Figure 28: Progress of P_{Sum} Min cut, for the 140 MeV < M(ee) < 160 MeV

Figure 29: Progress of P_{Sum} Min cut, for the 160 MeV < M(ee) < 180 MeV

Figure 30: Progress of P_{Sum} Min cut, for the 180 MeV < M(ee) < 200 MeV