Wealth distribution in life-cycle economies Huggett(1996)

Tokuma Suzuki

October 3, 2017

Outline

- Introduction
- Model
- Results
- 4 Conclution

2 Model

Results

Conclution

3 / 16

Motivation

- The distribution of wealth has been discussed in many years.
- Need to investigate walth distribution quantitatively.
- The basic OLG model has a lot of problems about the wealth distribution.
- This paper overcomes these problems.

Innovation

- Huggett modified the basic OLG model in the following points.
 - 1. Agent's lifetime is uncertain.
 - 2. Individual's earnings is also uncertain.
 - 3. There is not any market to insure these uncertainty.
- Therefore, there will be accidental bequests and precautionary saving.
- This model can consider heterogeneity within an age group.

Data

capital output ratio	Transfer wealth ratio	Gini
3.0	0.78-1.32	0.72

Table: wealth in US

Percentage wealth in the top								
1%	5%	20%	40%	60%	80%			
28	49	75	89	96	99			

Table: wealth distribution in US

2 Model

Results

Household 1

- live a maximum of N periods and face survival probability s_t
- All age 1 agents have the same preference.

$$E\left[\sum_{t=1}^{N} \beta^{t} \left(\prod_{j=1}^{t} s_{j}\right) \frac{c_{t}^{1-\sigma}}{1-\sigma}\right]$$

- poputation grows at rate n. demographic dist is stationary.
- ullet labor supply is exogenous. a labor endowment is given by e(z,t).
- Agents face idiosyncratic labor productivity shock, z.

Household 2

Bellman equation can be written as follows.

$$V(a, z, j) = \max_{c, a'} [u(c) + \beta s_{t+1} E \{V(a', z', t+1)\}]$$

subject to

$$c + a' \le a(1 + r(1 - \tau)) + (1 - \theta - \tau)we(z, t) + T + b_t$$

$$c \ge 0$$

$$a' = \left\{ egin{array}{ll} rac{a}{0} & (t < N) \\ 0 & (t = N) \end{array}
ight.$$

Firm and Government

- Firm has a CRS production function $Y = AK^{\alpha}L^{1-\alpha}$
- ullet capital depreciates at rate δ every period.
- Government runs the PAYG social security system and receives tax.
- Government receives the accidental bequests and distributes it.

2 Model

Results

Wealth distribution

Table 3 Wealth distribution (risk aversion coefficient $\sigma = 1.5$)

Credit	Earnings shock	ock weal	Transfer	r Wealth Gìni	Percentage wealth in the top			Zero or
$\begin{array}{cc} \text{limit} & \text{shocl} \\ \underline{a} & \sigma_{\varepsilon}^2 \end{array}$			ratio		1%	5%	20%	negative wealth (%)
US econ	omy	3.0	0.78-1.32	0.72	28	49	75	5.8-15.0
Certain	lifetimes							
0.0	0.00	2.9	0.0	0.47	2.4	11.6	42.8	14.0
- w	0.00	2.8	0.0	0.54	2.7	12.7	46.6	25.0
0.0	0.045	3.2	0.0	0.70	10.8	32.4	68.9	19.0
-w	0.045	3.1	0.0	0.74	11.1	33.8	72.3	24.0
Uncerta	n lifetimes							
0.0	0.00	3.1	1.03	0.46	2.5	11.7	42.8	11.0
- w	0.00	3.0	1.07	0.49	2.6	12.1	44.3	12.0
0.0	0.045	3.4	0.84	0.69	10.9	32.9	70.0	17.0
- w	0.045	3.2	0.89	0.76	11.8	35.6	75.5	24.0

Gini coefficients within age groups

Uncertain Lifetimes

2 Model

Results

- This modified OLG model can replicate the measure of the aggregate wealth and transfer wealth in the US.
- It can also replicate the US wealth Gini.
- However, it fails to generate wealth concentration in the upper tail of the distribution.(e.g. top 1 %)
- Wealth inequality within age groups in the model cannot explain all of it.

Extension

- To replicate wealth concentration, we need to consider entrepreneurship.(Quadrini, 1999)
- More heterogeneity within age groups.
- Borrowing constraint may be loose.