COM 5335 Network Security Lecture 3 Finite Fields I

Scott CH Huang

Modular Arithmetic

- It's sometimes called the 'clock arithmetic'.
- It uses a finite number of values and loops back from either end:

$$- a \pmod{n} \equiv a+n \pmod{n} \equiv a+2*n \pmod{n}$$

Modulo 7 Example

```
-21 -20 -19 -18 -17 -16 -15
-14 -13 -12 -11 -10 -9 -8
-7 -6 -5 -4 -3 -2 -1
0 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31 32 33 34
```

Modular Arithmetic

- Define **modulo operator** $a \mod n$ as the remainder when a is divided by n.
- We use the term **congruence** for ' $a \equiv b \mod n'$.
 - It reads "a is congruent to b modulo n".
 - When divided by n, a & b have same remainder
 - $\text{ e.g. } 100 \equiv 34 \mod 11 \equiv 1 \mod 11$
 - -12 mod $7 \equiv$ -5 mod $7 \equiv$ 2 mod $7 \equiv$ 9 mod 7
- b is also called the **residue** of a mod n

Modular Arithmetic Operations

- Include additions & multiplications
- Apply modulo to reduce answer within n.
- Basic properties
 - $-a+b \mod n \equiv (a \mod n)+(b \mod n) \mod n$
 - $-a*b \mod n \equiv (a \mod n)*(b \mod n) \mod n$

Modulo 5 Example

+	0	1	2	3	4		0				
0	0	1	2	3 4	4	0	0 0 0	0	0	0	0
1	1	2	3	4	0	1	0	1	2	3	4
2	2	3	4	0	1	2	0	2	4	1	3
3	3	4	0	1	2	3	0	3	1	4	2
4	4	0	1	2	3	4	0	4	3	2	1

Divisors

- A non-zero number b divides a if, for some m, we have a=m*b (a,b,m all integers)
 - If we divide a by b, there's no remainder.
- Denoted by b|a
- b is called a divisor of a
 - e.g. each of 1,2,3,4,6,8,12,24 divides 24.

Modular Arithmetic

- Modular arithmetic for integer n:
 - $-Z_n = \{0, 1, ..., n-1\}$
 - $-(Z_n, +, *)$ forms a commutative ring (to be explained later)
- Some Remarks
 - If $(a+b)\equiv (a+c) \mod n$ then $b\equiv c \mod n$.
 - If $(a*b)\equiv (a*c) \mod n$ then $b\equiv c \mod n$ only if a is relatively prime to n.

Greatest Common Divisor (GCD)

- A.k.a. the highest common factor (HCF).
- An elementary concept in number theory.
- GCD(a,b) of a and b is the largest number that divides both a and b .
 - e.g. GCD(60,24) = 12
- Numbers are **relatively prime** if their GCD = 1.
 - e.g. GCD(8,15) = 1; 8 & 15 are relatively prime.

Euclid's Algorithm (輾轉相除法)

- An efficient way to find the GCD(a,b)
- Based on the lemma that
 - -GCD(a,b) = GCD(b, a mod b)
- Apply **Euclid's Algorithm** to compute GCD(a,b):
 - A=a, B=b
 - while B>0
 - R = A mod B
 - A = B, B = R
 - return A

Example GCD(1970,1066)

•
$$162 = 1 \times 94 + 68$$

$$\bullet$$
 94 = 1 x 68 + 26

•
$$68 = 2 \times 26 + 16$$

•
$$26 = 1 \times 16 + 10$$

•
$$16 = 1 \times 10 + 6$$

•
$$10 = 1 \times 6 + 4$$

$$\bullet$$
 6 = 1 x 4 + 2

•
$$4 = 2 \times 2 + 0$$

Introduction to Finite Field

- Important in cryptography
 - AES, Elliptic Curve, IDEA, XTR
- Operations on "abstract elements"
 - What constitutes a "number" and the type of operations varies considerably
- Groups, rings, fields from abstract algebra

Groups

• (G, *): a set G of elements with operation '*' satisfying

- Closure: $a,b \in G \Rightarrow a*b \in G$

- Associativity: (a*b)*c = a*(b*c)

- Identity: $\mathcal{A}e \ s.t. \ e^*a = a^*e = a$

- Inverse: $\forall a \ \mathcal{F} \ a^{-1} \ s.t. \ a *a^{-1} = a^{-1} *a = e$

- If commutativity also holds
 - i.e. a*b = b*a then it is called an **abelian group**

- $G = \{0, 1, 2, 3\}$
- Operation: + (*mod 4*)
- (G,+) is an abelian group.

- $G = \{0, 1, 2, 3\}$
- Operator: * (mod 4)
- Is (G, *) a group? If not, which condition fails?

- $G = \{1, 2, 3, 4\}$
- Operator: * (mod 5)
- (G, *) is an abelian group.

- $G = \{1, 2, 3\}$
- Operator: * (mod 5)
- Is (G, *) a group? If not, which condition fails?

- $G = \{1, 2, 3\}$
- Operator: * (mod 4)
- Is (G, *) a group? If not, which condition fails?

Rings

- (R, +, *) a set R of elements with two operations '+' and '*' satisfying the following conditions
 - -(R,+) is an abelian group.
 - -(R,*) is a semi-group, i.e.
 - Closure: $a,b \in R \Rightarrow a*b \in R$
 - Associativity: (a*b)*c = a*(b*c)
 - Distributivity: a*(b+c) = a*b + a*c, (b+c)*a = b*a + c*a,
- If '*' is also commutative, it's called a commutative ring.
- If the multiplicative identity exists, it's called a ring with 1.
- Exercise: Is {0,1,2,3; (+, *) (mod 4)} a ring?

Example of Ring: Z₆

- $Z_6 = \{0, 1, 2, 3, 4, 5\}$
- +: mod 6 addition
- *: *mod 6* multiplication
- Additive identity = θ
- Multiplicative identity = 1

- Additive inverse of *5*?
 - -5+1=0, -5=1
- Multiplicative inverse of 5?
 - $-5*5=1, 5^{-1}=5$
- Multiplicative inverse of 3?
 - 3 has no multiplicative inverse.
- Elements of a ring may not have multiplicative inverse.

Fields

- A ring (R, +, *) satisfying:
 - -(R,+) is an abelian group
 - $-(R\setminus\{0\},*)$ is an abelian group
- In short, a field is a commutative division ring.
- Exercise: Test if {0,1,2,3; (+, *) (mod 4)} is a field.
- Exercise: Test if {0,1,2,3, 4; (+, *) (mod 5)} is a field.

Galois Fields

- Finite fields play a key role in cryptography
- The number of elements in a finite field **must** be a power of a prime p^n (big theorem!)
- Known as Galois fields
- Denoted by $GF(p^n)$
- Most important finite fields:
 - -GF(p)
 - $-GF(2^n)$

Galois Fields GF(p)

- GF(p) is the set of integers $Z_p = \{0, 1, ..., p-1\}$ with arithmetic operations modulo a prime p
- $(Z_p, +, *)$ forms the finite field GF(p).
 - Since each item has a multiplicative inverse
- Division is "well-behaved"
 - We can perform addition, subtraction, multiplication, and division in GF(p).
- If p is prime, then Z_p is a field. $Z_p = GF(p)$.
- If n is not prime, then Z_n is not a field. Z_n is a commutative ring with 1.

Example GF(7)

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

(b) Multiplication modulo 7

Multiplicative Inverse of GF(7)

0	1	2	3	4	5	6
_	1	4	5	2	3	6

Finding Multiplicative Inverses in Z_p

- Finding the mult. inverse of 337 in Z₁₀₂₁
 - Run Euclid's algorithm
 - **-** 1021-3*337=10
 - **-** *337-33*10=7*
 - **-** 10-1*7=3
 - **-** 7-2*3=1

Finding Multiplicative Inverses in Z_p

Run extended Euclid's algorithm

$$-1=1*7+(-2)*3=1*7+(-2)(10-1*7)$$

$$- = (-2)10 + 3(7)$$

$$- = (-2)10 + 3(337 - 33*10)$$

$$- = (3)337 + (-101)10$$

$$- = 3(337) + (-101)(1021 - 3*337)$$

$$- = (-101)1021 + (306)337$$

 $-337^{-1}=306 \mod 1021$, multiplicative inverse.

Euclid's Algorithm in C

```
//Precondition: a,b > 0
int gcd(int a, int b) {
    while (b != 0){
       t = b;
       b = a \% b;
       a = t;
       return a;
```

Some Remarks

- If n is not prime, then Z_n is not a field.
- Given $x \in Z_n$, x^{-1} may not exist.
- Under what condition will x^{-1} exist?

Polynomial Arithmetic

- Consider $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum_{i=0}^n a_i x^i$
- Both + and * can be performed on polynomials if they can be performed on $a_0, ..., a_n$.
- Suppose $a_0, ..., a_n \in R$, R is a ring. Denote the set of polynomials by R[x].
- R[x] forms a ring, usually called the **polynomial ring**.
- Is $\{f \in R[x] \mid deg(f) \le n \}$ a ring?
- If F is a field. Is F[x] a field?

Ordinary Polynomial Arithmetic

• Z/x] arithmetics

- Let
$$f(x) = x^3 + x^2 + 2$$
 and $g(x) = x^2 - x + 1$

$$- f(x) + g(x) = x^3 + 2x^2 - x + 3$$

$$- f(x) - g(x) = x^3 + x + 1$$

$$- f(x) * g(x) = x^5 + 3x^2 - 2x + 2$$

Polynomial Arithmetic with Modulo Coefficients

- $Z_n[x]$ arithmetic
- In $Z_2[x]$

- Let
$$f(x) = x^3 + x^2$$
 and $g(x) = x^2 + x + 1$

$$- f(x) + g(x) = x^3 + x + 1$$

$$- f(x) * g(x) = x^5 + x^2$$

Modular Polynomial Arithmetic

- Can we generalize $a \equiv b \pmod{n}$ to $a(x) \equiv b(x) \pmod{n(x)}$?
- We can consider modular +, * on polynomials too.
 - If f(x) = q(x) * g(x) + r(x)
 - Interpret r(x) as a remainder
 - $r(x) \equiv f(x) \mod g(x)$
- If have r(x)=0, we say g(x) divides f(x).
- The set of all polynomials R[x] modulo a fixed polynomial g(x) also forms a ring.
- We call this ring the **quotient ring**, denoted by R[x]/g(x) or $R[x] \mod g(x)$.

Quotient Rings

- Z_p is actually a quotient ring too.
- $Z_p = \mathbb{Z}/p \text{ or } \mathbb{Z} \mod p$. - c.f. R[x]/g(x)
- If $p \in \mathbb{Z}$ is prime, then \mathbb{Z}/p is a field.
- If $p(x) \in R[x]$ is a prime (what does this mean???), then R[x]/p(x) is a field???

Irreducible Polynomials

- g(x) is **irreducible** iff it has no divisors other than itself & 1.
- If $p(x) \in R[x]$ is irreducible, then R[x]/p(x) is a field.
- We can find the multiplicative inverse of any polynomial by running the extended Euclid's algorithm just like what we did earlier with integers.

Euclid's Algorithm on Polynomials

- An efficient way to find the GCD(f(x),g(x))
- Based on the lemma that:
 - $GCD(f(x),g(x)) = GCD(g(x), f(x) \bmod g(x))$
- **Euclid's Algorithm** to compute GCD(f,g):
 - A=f, B=g
 - while B>0
 - R = A mod B
 - A = B, B = R
 - return A

Finite Field Construction

- To construct $GF(p^n)$
 - − Find an irreducible polynomial $p(x) \in Z_p[x]$
 - $GF(p^n)$ can be constructed as $Z_p[x]/p(x)$
- This is just one of many equivalent constructions.
- Multiplicative inverses always exist. Why?

Example of GF(2³)

- Find an irreducible polynomial $p(x)=x^3+x+1 \in Z_2[x]$
- $GF(8) = Z_2[x]/p(x)$
- From now on, we use 1011 to represent $1x^3+0x^2+1x^1+1x^0$
- Everything is calculated mod 1011 (not modulo a number!!)
- Never regard these bit-strings as binary numbers and perform these operations on numbers !!!
- Example: 10001 = 111 mod 1011 because 10001=10*1011+111
- We only need 3 bits to represent each element. Why?

Example of GF(2³)

Table 4.6 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

		000	001	010	011	100	101	110	111
	+	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	1	X	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x + 1	х	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	X	x	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
011	x + 1	x+1	x	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2
100	χ^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	х	x+1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^{2} + x$	1	0	x + 1	X
110	$x^{2} + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	х	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x ²	x+1	x	1	0

(a) Addition

		000	001	010	011	100	101	110	111
	×	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	X	0	x	x^2	$x^{2} + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	X
100	χ^2	0	x^2	x + 1	$x^2 + x + 1$	$x^2 + x$	x	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x^2	x	$x^2 + x + 1$	x + 1	$x^2 + x$
110	$x^{2} + x$	0	$x^{2} + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	x	x^2
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	X	1	$x^2 + x$	χ^2	x+1

(b) Multiplication

Computational Considerations

- Since coefficients are 0 or 1, we can always represent any polynomial as a bit string.
- Addition becomes XOR of these bit strings
- Multiplication can be done more easily
 - Shift & XOR (to be explained in lec 4)
- Modulo reduction can be done by repeatedly substituting highest power with remainder of an irreducible polynomial (also shift & XOR)