SITUATION

En utilisant le corollaire du théorème des valeurs intermédiaires (c'est-à-dire le théorème appliqué au cas des fonctions strictement monotones), on peut montrer qu'une équation admet une unique solution sur un intervalle.

ÉNONCÉ

Montrer que l'équation $x^3-2x+1=0$ admet une unique solution sur $]-\infty;-1]$.

Etape 1

Se ramener à une équation du type $f\left(x\right)=k$

On détermine une fonction f telle que l'équation soit équivalente à l'équation $\,f\,(x)=k\,.\,$

APPLICATION

On pose:

$$orall x \in \left] -\infty; -1
ight]$$
 , $\left. f \left(x
ight) = x^3 - 2x + 1
ight.$

On cherche à montrer que l'équation $f\left(x
ight)=0$ admet une unique solution sur $\left]-\infty;-1
ight]$.

Etape 2

Dresser le tableau de variations de f

Si l'on cherche à démontrer que l'équation f(x) = k admet une solution unique sur I, on dresse le tableau de variations de f sur I.

On étudie les variations de f au préalable, si cela n'a pas été fait dans les questions précédentes.

APPLICATION

On étudie la fonction f sur $]-\infty;-1]$:

f est dérivable sur $]-\infty;-1]$ en tant que restriction d'une fonction polynôme et :

$$orall x\in \left] -\infty; -1
ight]$$
 , $f^{\prime}\left(x
ight) =3x^{2}-2$

On étudie le signe de $f'\left(x
ight)$. Pour cela, on résout l'inéquation $f'\left(x
ight)>0$. Pour tout réel x :

$$3x^2 - 2 > 0$$

$$\Leftrightarrow x^2 > rac{2}{3}$$

$$\Leftrightarrow x > \sqrt{rac{2}{3}} \,\, \mathsf{ou} \,\, x < -\sqrt{rac{2}{3}}$$

On en déduit, comme $-1<-\sqrt{rac{2}{3}}$, que $f'\left(x
ight)>0$ sur $\left]-\infty;-1
ight]$. Ainsi, f est strictement croissante

sur
$$]-\infty;-1]$$
.

De plus, on a :

$$ullet \lim_{x o -\infty}\left(x^3-2x+1
ight)=\lim_{x o -\infty}x^3\left(1-rac{2}{x^2}+rac{1}{x^3}
ight)=-\infty$$

•
$$\lim_{x o -1} \left(x^3 - 2x + 1 \right) = \left(-1 \right)^3 - 2 imes \left(-1 \right) + 1 = 2$$

On dresse alors le tableau de variations de f:

Etape 3

Utiliser corollaire du théorème des valeurs intermédiaires

On récite les hypothèses :

- fest continue sur l.
- fest strictement monotone sur l.
- Soit J l'intervalle image de I par f, on vérifie que $k \in J$.

D'après le corollaire du théorème des valeurs intermédiaires, l'équation $f\left(x\right)=k$ admet une solution unique sur I.

APPLICATION

Sur
$$]-\infty;-1]$$
:

- fest continue.
- fest strictement monotone
- $\lim_{x o -\infty}f\left(x
 ight)=-\infty$ et $\lim_{x o -1}f\left(x
 ight)=2$. On a bien $0\in\left]-\infty;2
 ight]$.

D'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x)=0 admet une solution unique sur $]-\infty;-1]$.