1 point Suppose m=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the two exams, which is as follows:

midterm exam	(midterm exam) ²	final exam
89	7921	96
72	5184	74
94	8836	87
69	4761	78

You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 \text{, where } x_1 \text{ is the midterm score and } x_2 \text{ is (midterm score)}^2 \text{.}$ Further, you plan to use both feature scaling (dividing by the "max-min", or range, of a feature) and mean normalization.

What is the normalized feature $x_2^{(2)}$? (Hint: midterm = 72, final = 74 is training example 2.) Please round off your answer to two decimal places and enter in the text box below.

Mean = (7921 + 5184 + 8836 + 4761) / 4 = 6675.5

Range = (8836 - 4761) = 4075

Answer: (5184 - 6675.5) / 4075 = -0.37

1 point 2. You run gradient descent for 15 iterations

with $\alpha = 0.3$ and compute $J(\theta)$ after each

iteration. You find that the value of $J(\theta)$ increases over

time. Based on this, which of the following conclusions seems

most plausible?

 $\alpha = 0.3$ is an effective choice of learning rate.

Rather than use the current value of α , it'd be more promising to try a smaller value of α (say $\alpha=0.1$).

Rather than use the current value of α , it'd be more promising to try a larger value of α (say $\alpha = 1.0$).

Answer: B

1 point	3.	additional all-ones feature for the intercept term, which you should add). The normal equation is $\theta = (X^T X)^{-1} X^T y$. For the given values of m and n , what are the dimensions of θ , X , and y in this equation?
		$X ext{ is } 28 \times 5, y ext{ is } 28 \times 5, \theta ext{ is } 5 \times 5$
		$ X is 28 \times 4, y is 28 \times 1, \theta is 4 \times 4 $
		$ X \text{ is } 28 \times 5, y \text{ is } 28 \times 1, \theta \text{ is } 5 \times 1 $
		$ X \text{ is } 28 \times 4, y \text{ is } 28 \times 1, \theta \text{ is } 4 \times 1 $
Answer: C		
1 point	4.	Suppose you have a dataset with $m=1000000$ examples and $n=200000$ features for each example. You want to use multivariate linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the normal equation?
		The normal equation, since gradient descent might be unable to find the optimal θ .
		Gradient descent, since it will always converge to the optimal $ heta.$
		Gradient descent, since $(X^TX)^{-1}$ will be very slow to compute in the normal equation.
		The normal equation, since it provides an efficient way to directly find the solution.
Answer: C		
1	5.	Which of the following are reasons for using feature scaling?
point		It prevents the matrix $\boldsymbol{X}^T\boldsymbol{X}$ (used in the normal equation) from being non-invertable (singular/degenerate).
		It speeds up gradient descent by making each iteration of gradient descent less expensive to compute.
		It speeds up gradient descent by making it require fewer iterations to get to a good solution.
		It is necessary to prevent the normal equation from getting stuck in local

Answer: C