Lec1 Note of Abstract Algebra

Xuxuayame

日期: 2023年3月10日

Part I

群论基础

1 集合论预备知识

1.1 映射

定义 1.1. 称 f 是从集合 A 到集合 B 的**映射**,是指对 A 中任一元素 $a \in A$,按某种方式 存在 B 中唯一的元素,记为 f(a),称为 a 的**像**,与之相对应。

A 称为**定义域**, B 称为**值域**¹, f 称为对应关系。

定义 1.2. 设 $f: A \to B, g: C \to D$ 为映射。称 $f \ni g$ 相等,记作 f = g,当且仅当 $A = C, B = D, f(a) = g(a), \forall a \in A$ 。

例 1.1. 考虑两个映射

$$f: \mathbb{Z} \to \mathbb{Z},$$

$$n \mapsto 2n,$$

$$g: \mathbb{Z} \to 2\mathbb{Z},$$

$$n \mapsto 2n,$$

则 $f \neq g$,因为它们的值域不一致。

我们知道,对 $a \in A$, f(a) 为 a 的像。而对 $b \in B$,记 $f^{-1}(b) := \{a \in A \mid f(a) = b\}$,称为 b 的**原像**。注意, $f^{-1}(b)$ 可能为空集。

定义 1.3. 设 $f: A \to B$ 为映射。称 f 为**单射**,若

$$f(a_1) = f(a_2) \Rightarrow a_1 = a_2 e, \ \forall \ a_1, a_2 \in A.$$

¹更确切的说法应当是**到达域**,而值域一般用来指映射的像集,即 Imf。但记号当然并非 mathematically important,不过建议稍加注意。

称 f 为满射, 若

$$f^{-1}(b) \neq \emptyset, \ \forall \ b \in B,$$

也可以写成

$$f(a) = b, \ \forall \ b \in B, \ \exists \ a \in A.$$

称 f 为**双射**, 或 **1-1 映射**, 若 f 既是单射又是满射。

定义 1.4. $f(A) := \{f(a) \mid a \in A\}$ 称为 f 的**像集**。

我们注意到,对 $f\colon A\to B,\ A\neq\varnothing$,有 $A=\bigsqcup_{b\in f(A)}f^{-1}(b)$,这构成了 A 的一个拆分,进而给出了 A 上的等价关系 \sim :

$$a_1 \sim a_2 : \Leftrightarrow f(a_1) = f(a_2).$$

称为 f 所决定的等价关系。

1.2 映射的复合

定义 1.5. 设 $f: A \to B, g: B \to C$ 为映射,则映射

$$g \circ f \colon A \to C,$$

 $(g \circ f)(a) \mapsto g(f(a))$

称为 f 和 g 的**复合**。

这实际上可以理解为

$$A \xrightarrow{f} B \xrightarrow{g} C,$$

 $a \mapsto f(a) \mapsto g(f(a)).$

命题 1.1. 考虑集合与映射

$$A \stackrel{f}{\to} B \stackrel{g}{\to} C \stackrel{h}{\to} D.$$

则

$$h\circ (g\circ f)=(h\circ g)\circ f.$$

证明. 按定义, 有

$$(h \circ (g \circ f))(a) = h((g \circ f)(a)) = h(g(f(a))),$$

 $((h \circ g) \circ f)(a) = (h \circ g)(f(a)) = h(g(f(a))).$

于是二者相等。

评论. 这是所谓的映射的结合律。更一般的结合律见如下讨论。

定义 1.6. 设 M 为集合, M 上的一个二元运算是指映射

$$m: M \to M$$
.

类似可以定义 n 元运算

$$m: \underbrace{M \times M \times \cdots \times M}_{n \uparrow r} \to M.$$

m(a,b) 通常记为 $a \cdot b$, a * b, \cdots 。

例 1.2. 设 X 为集合,记 $Map(X,X) = \{f \colon X \to X\}$,则复合。为 Map(X,X) 上的一个二元运算。

我们称二元运算 m 满足结合律, 若

$$m(m(a,b),c) = m(a,m(b,c)), \forall a,b,c \in M.$$

若将 m(a,b) 记为 $a \cdot b$,则上式可写为

$$(a \cdot b) \cdot c = a \cdot (b \cdot c).$$

于是根据1.1,复合是 Map(X,X) 上的一个满足结合律的二元运算。

评论. 容易发现 (\mathbb{R}^3, \times) 不满足结合律,而它满足:

反对称性 $\alpha \times \beta = -\beta \times \alpha, \forall \alpha, \beta, \in \mathbb{R}^3$,

Jacobi 等式 $(\alpha \times \beta) \times \gamma + (\beta \times \gamma) \times \alpha + (\gamma \times \alpha) \times \beta = 0$ 。

我们称 \times 为 \mathbb{R}^3 上的李括号。