Languages and Machines

Chap 3: 9, 11, 37

 $S \rightarrow aSc \mid Z$ $Z \rightarrow bZc \mid Zc \mid \lambda$ 11.

 $S \rightarrow aSB \mid \lambda$

 $B \rightarrow b \mid bBa$

37.

$$L_1$$
 $S \rightarrow WX$

 L_2 $S \,\to\, YZ$ $L_1 U L_2$ $S \rightarrow WX \mid YZ$

$$W \rightarrow aWb \mid ab$$

 $X \rightarrow cX \mid c$

$$Y \rightarrow aY \mid a$$

 $Z \rightarrow bZc \mid bc$

 $W \rightarrow aWb \mid ab$

$$X \,\to\, cX \mid c$$

$$Y \ \to \ aY \mid a$$

$$Z \ \to \ bYc \ | \ bc$$

 $L_1 U L_2$ will always be ambiguous because the string *abc* can be generated by either language:

$S \rightarrow WX$	S → YZ
$S \rightarrow abX$	$S \rightarrow aZ$
S → abc	S → abc

Find a CFG over {a,b} that generates the language consisting of strings that have twice as many a's as b's and prove your grammar correct.

 $S \rightarrow SaSaSbS \mid SaSbSaS \mid SbSaSaS \mid \lambda$

Basis

aab, aba, and baa all clearly have $n_a = 2 * n_b$

Inductive Hypothesis

 $n_a = 2* n_b$ for up to z derivations

Induction

- Suppose we have derived the word w with z derivations, which satisfies what we are trying to prove by the inductive hypothesis.
- The following rules are possibly derived from w for a total of z+1 derivations:

Rule	n _a	\mathbf{n}_{b}
S → SaSaSbS	2	1
S → SaSbSaS	2	1
S → SbSaSaS	2	1
$S \rightarrow \lambda$	0	0

In each case, the number of a's is 2* the number of b's as desired.