Data Storage

Representing Numeric Values

Numeric Values

Issues in storing numeric as

- Vnicede eient suppose you want to store 12, you would need 16 bits to do that
 - ✓ 99 could be stored in 16 bits
 - ✓ We will learn 16 bits can store 65,535 numeric values

Numeric Values

Binary

Notation only digits 0 and 1.

✓ Lets discuss an example of representing numeric values using binary notation

Example 3 bits (counting 0 to 7)

Numeric	Binary
Value	
0	000
1	001
2	010
3	011
4	100
5	101
6	110

Adding one more bit

Numeric	Binary	Numeric	Binary
0	0000	8	1000
1	0001	9	1001
2	0010	10	1010
3	0011	11	1011
4	0100	12	1100
5	0101	13	1101
6	0110	14	1110
7	0111	15	1111

Numeric Values Storage

Binary Notation Variations

- ✓ Two's complement for storing whole numbers
- ✓ Floating point notation for fractional numbers

Summary

Storing Numeric

- Values In Unicode for storing numeric values
- ✓ Binary notation