Lecture 6

Sorting lower bounds and O(n)-time sorting

Announcements

- More HW parties YAY!
 - Adding a Monday evening HW party (in addition to Thursdays).
 - By default, Mondays 7:30 pm-10:30pm, STLC 114.
 - Check out the Piazza post for details.
- "Please please please properly tag all your pages on Gradescope!" --The CAs
 - There is a Piazza post about how to do this.
- Please send OAE letters ASAP (to the staff list)

Stanford Mental Health and Wellness Week 2020

- We all go through ups and downs.
- Take care of yourself.

Some resources

Campus Resources Academic Advising

http://undergrad.stanford.edu/academic-advising-stanford

Academic Skills Coaching http://academicskills.stanford.edu

Confidential Support Team
419 Lagunita Drive
650-736-6933 (M–F, 8:30 AM – 5 PM)
650-725-9955 (24/7)
https://vaden.stanford.edu/get-help-now/confidential-support-team

Counseling and Psychological Services (CAPS) 866 Campus Drive, 2nd Floor 650-723-3785 https://caps.stanford.edu Office of Accessible Education (OAE) 563 Salvatierra Walk 650-723-1066 http://oae.stanford.edu

Residence Deans (RDs) 650-504-8022 (24/7 Dean On Call) http://resed.stanford.edu/student-support

The Bridge Peer Counseling Center 581 Capistrano Way 650-723-3392 https://thebridge.stanford.edu

Vaden Health Center 866 Campus Drive 650-498-2336 https://vaden.stanford.edu

Mental Health & Wellness Week 2020

Wellness Resources at Stanford

https://undergrad.stanford.edu/academicplanning/cardinal-compass/studenthandbook/wellness

National Suicide Prevention Hotline 1-800-273-8255 (24h a day)

Sorting

- We've seen a few O(n log(n))-time algorithms.
 - MERGESORT has worst-case running time O(nlog(n))
 - QUICKSORT has expected running time O(nlog(n))

Can we do better?

Depends on who you ask...

An O(1)-time algorithm for sorting: StickSort

• Problem: sort these n sticks by length.

• Algorithm:

are sorted

this way.

Now they

Drop them on a table.

That may have been unsatisfying

- But StickSort does raise some important questions:
 - What is our model of computation?
 - Input: array
 - Output: sorted array
 - Operations allowed: comparisons

-VS-

- Input: sticks
- Output: sorted sticks in vertical order
- Operations allowed: dropping on tables
- What are reasonable models of computation?

Today: two (more) models

- Comparison-based sorting model
 - This includes MergeSort, QuickSort, InsertionSort
 - We'll see that any algorithm in this model must take at least $\Omega(n \log(n))$ steps.

- Another model (more reasonable than the stick model...)
 - CountingSort and RadixSort
 - Both run in time O(n)

Comparison-based sorting

Comparison-based sorting algorithms

- You want to sort an array of items.
- You can't access the items' values directly: you can only compare two items and find out which is bigger or smaller.

Comparison-based sorting algorithms

"the first thing in the input list"

Want to sort these items.

There's some ordering on them, but we don't know what it is.

bigger than

?

Algorithm

The algorithm's job is to output a correctly sorted list of all the objects.

There is a genie who knows what the right order is.

The genie can answer YES/NO questions of the form:

is [this] bigger than [that]?

All the sorting algorithms we have seen work like this.

Lower bound of $\Omega(n \log(n))$.

• Theorem:

- Any deterministic comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps.
- Any randomized comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps in expectation.

This covers all the sorting algorithms we know!!!

- How might we prove this?
 - 1. Consider all comparison-based algorithms, one-by-one, and analyze them.
 - 2. Don't do that.

Instead, argue that all comparison-based sorting algorithms give rise to a **decision tree**. Then analyze decision trees.

Decision trees

Decision trees

- Internal nodes correspond to yes/no questions.
- Each internal node has two children, one for "yes" and one for "no."
- Leaf nodes correspond to outputs.
 - In this case, all possible orderings of the items.
- Running an algorithm
 on a particular input
 corresponds to a
 particular path through
 the tree.

Comparison-based algorithms look like decision trees.

Q: What's the runtime on a particular input?

Q: What's the worst-case runtime?

A: At least Ω (length of the longest path).

How long is the longest path?

We want a statement: in all such trees, the longest path is at least _____

- This is a binary tree with at least n! leaves.
- The shallowest tree with n! leaves is the completely balanced one, which has depth log(n!)
- So in all such trees, the longest path is at least log(n!).
- n! is about (n/e)ⁿ (Stirling's approx.*).
- log(n!) is about $n log(n/e) = \Omega(n log(n))$.

Conclusion: the longest path has length at least $\Omega(n \log(n))$.

Lower bound of $\Omega(n \log(n))$.

• Theorem:

• Any deterministic comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps.

Proof recap:

- Any deterministic comparison-based algorithm can be represented as a decision tree with n! leaves.
- The worst-case running time is at least the depth of the decision tree.
- All decision trees with n! leaves have depth $\Omega(n \log(n))$.
- So any comparison-based sorting algorithm must have worst-case running time at least $\Omega(n \log(n))$.

Aside:

What about randomized algorithms?

For example, QuickSort?

Theorem:

• Any randomized comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps in expectation.

Proof:

- (same ideas as deterministic case)
- (you are not responsible for this proof in this class)

\end{Aside}

So that's bad news

• Theorem:

• Any deterministic comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps.

• Theorem:

• Any randomized comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps in expectation.

On the bright side, MergeSort is optimal!

 This is one of the cool things about lower bounds like this: we know when we can declare victory!

But what about StickSort?

- StickSort can't be implemented as a comparison-based sorting algorithm. So these lower bounds don't apply.
- But StickSort was kind of silly.

Can we do better?

• Is there be another model of computation that's less silly than the StickSort model, in which we can sort faster than nlog(n)?

Especially if I have to spend time cutting all those sticks to be the right size!

Beyond comparison-based sorting algorithms

Another model of computation

The items you are sorting have meaningful values.

instead of

Pre-lecture exercise

- How long does it take to sort n people by their month of birth?
- [discussion]

Another model of computation

The items you are sorting have meaningful values.

instead of

Why might this help?

Implement the buckets as linked lists. They are first-in, first-out. This will be useful later.

Concatenate the buckets!

SORTED!
In time O(n).

Assumptions

- Need to be able to know what bucket to put something in.
 - We assume we can evaluate the items directly, not just by comparison
- Need to know what values might show up ahead of time.

Need to assume there are not too many such values.

RadixSort

- For sorting integers up to size M
 - or more generally for lexicographically sorting strings
- Can use less space than CountingSort

• Idea: CountingSort on the least-significant digit first, then the next least-significant, and so on.

Step 1: CountingSort on least significant digit

Step 2: CountingSort on the 2nd least sig. digit

Step 3: CountingSort on the 3rd least sig. digit

It worked!!

Why does this work?

Original array:

Sorted array

To prove this is correct...

What is the inductive hypothesis?

Think-Pair-Share Terrapins

Think: 1 min

Pair + Share: 1 min

RadixSort is correct

- Inductive hypothesis:
 - After the k'th iteration, the array is sorted by the first k least-significant digits.
- Base case:
 - "Sorted by 0 least-significant digits" means not sorted, so the IH holds for k=0.
- Inductive step:
 - TO DO
- Conclusion:
 - The inductive hypothesis holds for all k, so after the last iteration, the array is sorted by all the digits. Hence, it's sorted!

EXAMPLE: i=2

Inductive step

Inductive hypothesis:

After the k'th iteration, the array is sorted by the first k least-significant digits.

- Need to show: if IH holds for k=i-1, then it holds for k=i.
 - Suppose that after the i-1'st iteration, the array is sorted by the first i-1 least-significant digits.
 - Need to show that after the i'th iteration, the array is sorted by the first i least-significant digits.

Proof sketch...

proof on next (skipped) slide

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

- Let $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$ be any x,y.
- Suppose $[x_ix_{i-1}...x_2x_1] < [y_iy_{i-1}...y_2y_1].$
- Want to show that x appears before y at end of i'th iteration.
- CASE 1: x_i<y_i
 - x is in an earlier bucket than y.

Aka, we want to show that for any x and y so that x belongs before y, we put x before y.

Proof sketch...

proof on next (skipped) slide

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

Aka, we want to show that for any x and y so

that x belongs before y, we put x before y.

- Let $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$ be any x,y.
- Suppose $[x_ix_{i-1}...x_2x_1] < [y_iy_{i-1}...y_2y_1].$
- Want to show that x appears before y at end of i'th iteration.
- CASE 1: x_i<y_i
 - x is in an earlier bucket than y.
- CASE 2: x_i=y_i
 - x and y in same bucket, but x was put in the bucket first.

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

- Let $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$ be any x,y.
- Suppose $[x_i x_{i-1} ... x_2 x_1] < [y_i y_{i-1} ... y_2 y_1].$
- Want to show that x appears before y at end of i'th iteration.
- CASE 1: x_i<y_i.
 - x appears in an earlier bucket than y, so x appears before y after the i'th iteration.
- CASE 2: x_i=y_i.
 - x and y end up in the same bucket.
 - In this case, $[x_{i-1}...x_2x_1] < [y_{i-1}...y_2y_1]$, so by the inductive hypothesis, x appeared before y after i-1'st iteration.
 - Then x was placed into the bucket before y was, so it also comes out of the bucket before y does.
 - Recall that the buckets are FIFO queues.
 - So x appears before y in the i'th iteration.

SLIDE SKIPPED IN CLASS. Here for reference.

EXAMPLE: i=2

Inductive step

Inductive hypothesis:

After the k'th iteration, the array is sorted by the first k least-significant digits.

- Need to show: if IH holds for k=i-1, then it holds for k=i.
 - Suppose that after the i-1'st iteration, the array is sorted by the first i-1 least-significant digits.
 - Need to show that after the i'th iteration, the array is sorted by the first i least-significant digits.

IH: this array is sorted by first digit.

RadixSort is correct

- Inductive hypothesis:
 - After the k'th iteration, the array is sorted by the first k least-significant digits.
- Base case:
 - "Sorted by 0 least-significant digits" means not sorted, so the IH holds for k=0.
- Inductive step:
 - TO DO
- Conclusion:
 - The inductive hypothesis holds for all k, so after the last iteration, the array is sorted by all the digits. Hence, it's sorted!

What is the running time? for RadixSorting numbers base-10.

• Suppose we are sorting n d-digit numbers (in base 10). e.g., n=7, d=3:

- 1. How many iterations are there?
- 2. How long does each iteration take?

3. What is the total running time?

Think-Pair-Share Terrapins

Think: 3 minutes

Pair and share: 2 minutes

What is the running time? for RadixSorting numbers base-10.

• Suppose we are sorting n d-digit numbers (in base 10). e.g., n=7, d=3:

021 345 013	101	050	234	001
-------------	-----	-----	-----	-----

- 1. How many iterations are there?
 - d iterations
- 2. How long does each iteration take?
 - Time to initialize 10 buckets, plus time to put n numbers in 10 buckets. O(n).
- 3. What is the total running time?
 - O(nd)

Think-Pair-Share Terrapins

This doesn't seem so great

- To sort n integers, each of which is in {1,2,...,n}...
- $d = [\log_{10}(n)] + 1$
 - For example:
 - n = 1234
 - $\lfloor \log_{10}(1234) \rfloor + 1 = 4$
 - More explanation on next (skipped) slide.
- Time = $O(nd) = O(n \log(n))$.
 - Same as MergeSort!

Aside: why $d = [\log_{10}(n)] + 1$?

Slide skipped in class

- When we write a number $\mathbf{x} = [\mathbf{x}_d \mathbf{x}_{d-1} \dots \mathbf{x}_1]$ base 10, that means: $x = x_1 + x_2 \cdot 10 + \dots + x_{d-1} \cdot 10^{d-2} + x_d \cdot 10^{d-1}$ where $x_i \in \{0,1,\dots,9\}$
- Suppose that $x_d \neq 0$. Then we have
 - $x \ge x_d \cdot 10^{d-1}$
 - $\log_{10}(x) + 1 \log_{10}(x_d) \ge d$
 - $\log_{10}(x) + 1 > d$
 - $\lfloor \log_{10}(n) \rfloor + 1 \ge d$
- On the other hand, we also have
 - $x < (x_d+1) \cdot 10^{d-1}$
 - $\log_{10}(x) + 1 \log_{10}(x_d + 1) < d$
 - $\log_{10}(x) < d$
 - $[\log_{10}(n)] + 1 \le d$

Since x is bigger than just the last term in that sum!

(take logs of both sides and rearrange)

$$\log_{10}(x_d) > 0$$
 since $x_d > 0$

Since d is an integer

— Since if
$$x \ge (x_d+1) \cdot 10^{d-1}$$

then the d'th digit would have
been x_d+1 instead of x_d

(take logs of both sides and rearrange)

$$\log_{10}(x_d + 1) \le 1$$
 since $x_d < 10$

Since d is an integer

Can we do better?

- RadixSort base 10 doesn't seem to be such a good idea...
- But what if we change the base? (Let's say base r)
- We will see there's a trade-off:
 - Bigger r means more buckets
 - Bigger r means fewer digits

Original array:

21	345	13	101	50	234	1
----	-----	----	-----	----	-----	---

Original array:

Original array

VS.

Sorted array

Base 100:

- d=2, so only 2 iterations.
- 100 buckets

Base 10:

- d=3, so 3 iterations.
- 10 buckets

Bigger base means more buckets but fewer iterations.

General running time of RadixSort

- Say we want to sort:
 - n integers,
 - maximum size M,
 - in base r.
- Number of iterations of RadixSort:
 - Same as number of digits, base r, of an integer x of max size M.
 - That is $d = \lfloor \log_r(M) \rfloor + 1$
- Time per iteration:
 - Initialize r buckets, put n items into them
 - O(n+r) total time.
- Total time:
 - $O(d \cdot (n+r)) = O((\lfloor \log_r(M) \rfloor + 1) \cdot (n+r))$

Convince yourself that this is the right formula for d.

Running time: $O((\lfloor \log_r(M) \rfloor + 1) \cdot (n+r))$

Trade-offs

- Given n, M, how should we choose r?
- Looks like there's some sweet spot:

A reasonable choice: r=n

• Running time:

$$O((\lfloor \log_r(M)\rfloor + 1) \cdot (n+r))$$

Intuition: balance n and r here.

Choose n=r:

$$O(n \cdot (\lfloor \log_n(M) \rfloor + 1))$$

Choosing r = n is pretty good. What choice of r optimizes the asymptotic running time? What if I also care about space?

Running time of RadixSort with r=n

• To sort n integers of size at most M, time is

$$O(n \cdot (\lfloor \log_n(M) \rfloor + 1))$$

- So the running time (in terms of n) depends on how big
 M is in terms of n:
 - If $M \le n^c$ for some constant c, then this is O(n).
 - If $M = 2^n$, then this is $O\left(\frac{n^2}{\log(n)}\right)$
- The number of buckets needed is r=n.

What have we learned?

You can put any constant here instead of 100.

- RadixSort can sort n integers of size at most n¹⁰⁰ in time O(n), and needs enough space to store O(n) integers.
- If your integers have size much much bigger than n (like 2ⁿ), maybe you shouldn't use RadixSort.
- It matters how we pick the base.

Recap

- How difficult sorting is depends on the model of computation.
- How reasonable a model of computation is is up for debate.
- Comparison-based sorting model
 - This includes MergeSort, QuickSort, InsertionSort
 - Any algorithm in this model must use at least $\Omega(n \log(n))$ operations. 😊

- But it can handle arbitrary comparable objects. ©
- If we are sorting small integers (or other reasonable data):
 - CountingSort and RadixSort
 - Both run in time O(n) ©
 - Might take more space and/or be slower if integers get too big

Next time

- Binary search trees!
- Balanced binary search trees!

Before next time

- Pre-lecture exercise for Lecture 7
 - Remember binary search trees?

