exp-cnn-63130500042

November 28, 2023

```
[1]: from tensorflow.keras.utils import image_dataset_from_directory
     import matplotlib.pyplot as plt
     import seaborn as sns
     import numpy as np
     import pandas as pd
    /opt/conda/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A
    NumPy version >=1.16.5 and <1.23.0 is required for this version of SciPy
    (detected version 1.24.3
      warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
[2]: RAND_STATE_VALUE = 42
     DATA_TEST_PATH = "/kaggle/input/landuse-scene-classification/
      ⇔images_train_test_val/test"
     DATA_TRAIN_PATH = "/kaggle/input/landuse-scene-classification/
     ⇔images_train_test_val/train"
     DATA_VAL_PATH = "/kaggle/input/landuse-scene-classification/
      ⇔images_train_test_val/validation"
     IMG SIZE = (256, 256)
     IMG_SHAPE = (256, 256, 3)
     LABEL_MODE = "categorical"
```

1 Load Data

```
Found 7350 files belonging to 21 classes. Found 1050 files belonging to 21 classes. Found 2100 files belonging to 21 classes.
```

```
[4]: for image_batch, labels_batch in train_ds:
         print(image_batch.shape)
         print(labels_batch.shape)
         break
    (32, 256, 256, 3)
    (32, 21)
[5]: class_names = train_ds.class_names
     class_names
[5]: ['agricultural',
      'airplane',
      'baseballdiamond',
      'beach',
      'buildings',
      'chaparral',
      'denseresidential',
      'forest',
      'freeway',
      'golfcourse',
      'harbor',
      'intersection',
      'mediumresidential',
      'mobilehomepark',
      'overpass',
      'parkinglot',
      'river',
      'runway',
      'sparseresidential',
      'storagetanks',
      'tenniscourt']
[6]: plt.figure(figsize = (10, 10))
     for images, labels in train_ds.take(1):
         for i in range(9):
             ax = plt.subplot(3, 3, i + 1)
             plt.imshow(images[i].numpy().astype("uint8"))
             plt.title(class_names[np.argmax(labels[i])])
             plt.axis("off")
         plt.show()
```


2 Model Creation

```
[9]: model = Sequential([
         data_augmentation,
         layers. Rescaling (1./255),
         layers.Conv2D(32, (3, 3), activation = "relu", kernel_regularizer = 12(0.
      ⇔0001)),
         layers.MaxPooling2D(),
         layers.BatchNormalization(),
         layers.Conv2D(64, (3, 3), activation = "relu", kernel_regularizer = 12(0.
      →0001)),
         layers.MaxPooling2D(),
         layers.BatchNormalization(),
         layers.Conv2D(128, (3, 3), activation = "relu", kernel_regularizer = 12(0.
      →0001)),
         layers.MaxPooling2D(),
         layers.BatchNormalization(),
         layers.Dropout(0.25),
         layers.Flatten(),
         layers.Dense(256, activation = "relu"),
         layers.Dense(len(train_ds.class_names), activation = "softmax")
     ])
```

[10]: model.compile(optimizer = "adam", loss = "categorical_crossentropy", metrics = □ → ["accuracy"])

[11]: model.summary()

Model: "sequential_1"

Layer (type)	Output Shape	Param #
sequential (Sequential)	(None, 256, 256, 3)	0
rescaling (Rescaling)	(None, 256, 256, 3)	0
conv2d (Conv2D)	(None, 254, 254, 32)	896
<pre>max_pooling2d (MaxPooling2 D)</pre>	(None, 127, 127, 32)	0
<pre>batch_normalization (Batch Normalization)</pre>	(None, 127, 127, 32)	128
conv2d_1 (Conv2D)	(None, 125, 125, 64)	18496
<pre>max_pooling2d_1 (MaxPoolin g2D)</pre>	(None, 62, 62, 64)	0

```
batch_normalization_1 (Bat (None, 62, 62, 64)
                                                       256
     chNormalization)
     conv2d_2 (Conv2D)
                               (None, 60, 60, 128)
                                                       73856
     max_pooling2d_2 (MaxPoolin (None, 30, 30, 128)
     g2D)
     batch_normalization_2 (Bat (None, 30, 30, 128)
                                                       512
     chNormalization)
                               (None, 30, 30, 128)
     dropout (Dropout)
                                                       0
     flatten (Flatten)
                               (None, 115200)
     dense (Dense)
                               (None, 256)
                                                       29491456
     dense_1 (Dense)
                               (None, 21)
                                                       5397
    Total params: 29590997 (112.88 MB)
    Trainable params: 29590549 (112.88 MB)
    Non-trainable params: 448 (1.75 KB)
[12]: history = model.fit(train_ds, epochs = 100, validation_data = val_ds, verbose = [12]:
      ⇒1)
    Epoch 1/100
    2023-11-27 22:17:29.409536: E
    tensorflow/core/grappler/optimizers/meta_optimizer.cc:954] layout failed:
    INVALID_ARGUMENT: Size of values 0 does not match size of permutation 4 @ fanin
    shape insequential_1/dropout/dropout/SelectV2-2-TransposeNHWCToNCHW-
    LayoutOptimizer
    accuracy: 0.1419 - val_loss: 13.3509 - val_accuracy: 0.0571
    Epoch 2/100
    230/230 [============= ] - 19s 80ms/step - loss: 4.9771 -
    accuracy: 0.1444 - val_loss: 3.3783 - val_accuracy: 0.1286
    Epoch 3/100
    230/230 [============ ] - 19s 80ms/step - loss: 3.1955 -
    accuracy: 0.1565 - val_loss: 2.7758 - val_accuracy: 0.1471
    Epoch 4/100
    230/230 [============= ] - 19s 81ms/step - loss: 2.7289 -
    accuracy: 0.2033 - val_loss: 3.1069 - val_accuracy: 0.2033
    Epoch 5/100
    230/230 [============== ] - 19s 80ms/step - loss: 2.5577 -
```

```
accuracy: 0.2135 - val_loss: 2.8194 - val_accuracy: 0.2167
Epoch 6/100
230/230 [============ ] - 19s 81ms/step - loss: 2.5004 -
accuracy: 0.2297 - val_loss: 4.0873 - val_accuracy: 0.1810
Epoch 7/100
accuracy: 0.2427 - val_loss: 2.6495 - val_accuracy: 0.2748
Epoch 8/100
230/230 [============= ] - 19s 81ms/step - loss: 2.3582 -
accuracy: 0.2620 - val_loss: 2.4668 - val_accuracy: 0.2067
Epoch 9/100
230/230 [============= ] - 19s 82ms/step - loss: 2.3044 -
accuracy: 0.2683 - val_loss: 2.5779 - val_accuracy: 0.2243
Epoch 10/100
accuracy: 0.2770 - val_loss: 3.0955 - val_accuracy: 0.1943
Epoch 11/100
230/230 [============= ] - 19s 81ms/step - loss: 2.2629 -
accuracy: 0.2882 - val_loss: 2.6829 - val_accuracy: 0.2052
Epoch 12/100
230/230 [============ ] - 19s 80ms/step - loss: 2.2153 -
accuracy: 0.3014 - val_loss: 2.4648 - val_accuracy: 0.2657
Epoch 13/100
230/230 [============= ] - 19s 80ms/step - loss: 2.1489 -
accuracy: 0.3190 - val_loss: 2.2258 - val_accuracy: 0.3071
Epoch 14/100
230/230 [============= ] - 19s 81ms/step - loss: 2.1002 -
accuracy: 0.3328 - val_loss: 2.4760 - val_accuracy: 0.3052
230/230 [============ ] - 19s 80ms/step - loss: 2.1073 -
accuracy: 0.3407 - val_loss: 3.7626 - val_accuracy: 0.2619
Epoch 16/100
230/230 [============ ] - 19s 80ms/step - loss: 2.0555 -
accuracy: 0.3457 - val_loss: 2.2917 - val_accuracy: 0.3367
Epoch 17/100
accuracy: 0.3584 - val loss: 2.0553 - val accuracy: 0.3476
Epoch 18/100
accuracy: 0.3686 - val_loss: 2.0705 - val_accuracy: 0.3667
Epoch 19/100
230/230 [============= ] - 19s 81ms/step - loss: 1.9695 -
accuracy: 0.3737 - val_loss: 2.2393 - val_accuracy: 0.3619
Epoch 20/100
accuracy: 0.3795 - val_loss: 1.9986 - val_accuracy: 0.3652
Epoch 21/100
230/230 [============ ] - 19s 81ms/step - loss: 1.9281 -
```

```
accuracy: 0.3893 - val_loss: 3.4114 - val_accuracy: 0.2814
Epoch 22/100
230/230 [============ ] - 19s 80ms/step - loss: 1.9177 -
accuracy: 0.4018 - val_loss: 1.9023 - val_accuracy: 0.4081
Epoch 23/100
230/230 [============ ] - 19s 80ms/step - loss: 1.8712 -
accuracy: 0.4177 - val_loss: 2.1609 - val_accuracy: 0.3719
Epoch 24/100
230/230 [============= ] - 19s 81ms/step - loss: 1.8374 -
accuracy: 0.4186 - val_loss: 1.8434 - val_accuracy: 0.4295
Epoch 25/100
230/230 [============= ] - 19s 80ms/step - loss: 1.8069 -
accuracy: 0.4246 - val_loss: 2.5232 - val_accuracy: 0.3067
Epoch 26/100
230/230 [============ ] - 19s 80ms/step - loss: 1.8157 -
accuracy: 0.4244 - val_loss: 1.9525 - val_accuracy: 0.4229
Epoch 27/100
230/230 [============ ] - 19s 81ms/step - loss: 1.7743 -
accuracy: 0.4371 - val_loss: 1.9757 - val_accuracy: 0.4390
Epoch 28/100
230/230 [============ ] - 19s 80ms/step - loss: 1.7348 -
accuracy: 0.4537 - val_loss: 2.4870 - val_accuracy: 0.3729
Epoch 29/100
230/230 [============= ] - 19s 80ms/step - loss: 1.7664 -
accuracy: 0.4437 - val_loss: 1.9859 - val_accuracy: 0.4090
Epoch 30/100
230/230 [============ ] - 19s 80ms/step - loss: 1.7457 -
accuracy: 0.4521 - val_loss: 1.8777 - val_accuracy: 0.4386
230/230 [============ ] - 19s 81ms/step - loss: 1.6833 -
accuracy: 0.4735 - val_loss: 1.8890 - val_accuracy: 0.4605
Epoch 32/100
230/230 [============ ] - 19s 80ms/step - loss: 1.6808 -
accuracy: 0.4720 - val_loss: 1.9725 - val_accuracy: 0.4286
Epoch 33/100
accuracy: 0.4799 - val loss: 1.8703 - val accuracy: 0.4405
Epoch 34/100
accuracy: 0.4838 - val_loss: 1.8363 - val_accuracy: 0.4657
Epoch 35/100
230/230 [============= ] - 19s 80ms/step - loss: 1.6338 -
accuracy: 0.4936 - val_loss: 1.7103 - val_accuracy: 0.4900
Epoch 36/100
230/230 [============ ] - 19s 81ms/step - loss: 1.5897 -
accuracy: 0.5026 - val_loss: 2.1301 - val_accuracy: 0.4129
Epoch 37/100
230/230 [============ ] - 19s 81ms/step - loss: 1.5871 -
```

```
accuracy: 0.5050 - val_loss: 2.0472 - val_accuracy: 0.4219
Epoch 38/100
230/230 [============ ] - 19s 80ms/step - loss: 1.5517 -
accuracy: 0.5261 - val_loss: 1.7969 - val_accuracy: 0.4838
Epoch 39/100
accuracy: 0.5180 - val_loss: 1.7578 - val_accuracy: 0.5005
Epoch 40/100
230/230 [============= ] - 19s 81ms/step - loss: 1.5079 -
accuracy: 0.5378 - val_loss: 1.8278 - val_accuracy: 0.4790
Epoch 41/100
230/230 [============= ] - 19s 81ms/step - loss: 1.5087 -
accuracy: 0.5322 - val_loss: 1.9791 - val_accuracy: 0.4576
Epoch 42/100
accuracy: 0.5405 - val_loss: 1.8369 - val_accuracy: 0.4576
Epoch 43/100
230/230 [============= ] - 19s 80ms/step - loss: 1.5324 -
accuracy: 0.5332 - val_loss: 2.0184 - val_accuracy: 0.4733
Epoch 44/100
230/230 [============ ] - 19s 81ms/step - loss: 1.4948 -
accuracy: 0.5423 - val_loss: 2.3227 - val_accuracy: 0.3995
Epoch 45/100
230/230 [============= ] - 19s 80ms/step - loss: 1.4702 -
accuracy: 0.5491 - val_loss: 2.0370 - val_accuracy: 0.4724
Epoch 46/100
230/230 [============= ] - 19s 81ms/step - loss: 1.4725 -
accuracy: 0.5548 - val_loss: 1.6260 - val_accuracy: 0.5424
Epoch 47/100
230/230 [============ ] - 19s 80ms/step - loss: 1.4461 -
accuracy: 0.5604 - val_loss: 1.8315 - val_accuracy: 0.4867
Epoch 48/100
230/230 [============ ] - 19s 81ms/step - loss: 1.4204 -
accuracy: 0.5676 - val_loss: 1.6233 - val_accuracy: 0.5281
Epoch 49/100
accuracy: 0.5599 - val loss: 1.7576 - val accuracy: 0.5152
Epoch 50/100
accuracy: 0.5737 - val_loss: 1.6091 - val_accuracy: 0.5290
Epoch 51/100
230/230 [============ ] - 19s 81ms/step - loss: 1.3780 -
accuracy: 0.5810 - val_loss: 1.6019 - val_accuracy: 0.5590
Epoch 52/100
230/230 [============ ] - 19s 82ms/step - loss: 1.3716 -
accuracy: 0.5837 - val_loss: 1.4176 - val_accuracy: 0.5814
Epoch 53/100
230/230 [============ ] - 19s 81ms/step - loss: 1.3631 -
```

```
accuracy: 0.5895 - val_loss: 1.6844 - val_accuracy: 0.5162
Epoch 54/100
230/230 [============ ] - 19s 80ms/step - loss: 1.3702 -
accuracy: 0.5853 - val_loss: 2.0403 - val_accuracy: 0.4971
Epoch 55/100
230/230 [============ ] - 19s 80ms/step - loss: 1.3677 -
accuracy: 0.5867 - val_loss: 1.9503 - val_accuracy: 0.4719
Epoch 56/100
230/230 [============= ] - 19s 81ms/step - loss: 1.3628 -
accuracy: 0.5856 - val_loss: 1.9504 - val_accuracy: 0.4962
Epoch 57/100
230/230 [============= ] - 19s 81ms/step - loss: 1.3249 -
accuracy: 0.5999 - val_loss: 1.5258 - val_accuracy: 0.5771
Epoch 58/100
accuracy: 0.6027 - val_loss: 1.6401 - val_accuracy: 0.5395
Epoch 59/100
230/230 [============= ] - 19s 81ms/step - loss: 1.3301 -
accuracy: 0.6029 - val_loss: 1.4793 - val_accuracy: 0.5786
Epoch 60/100
accuracy: 0.6084 - val_loss: 1.7342 - val_accuracy: 0.5133
Epoch 61/100
230/230 [============= ] - 19s 80ms/step - loss: 1.3197 -
accuracy: 0.6073 - val_loss: 1.5512 - val_accuracy: 0.5490
Epoch 62/100
230/230 [============= ] - 19s 81ms/step - loss: 1.3130 -
accuracy: 0.6020 - val_loss: 1.8412 - val_accuracy: 0.5205
accuracy: 0.6086 - val_loss: 1.8606 - val_accuracy: 0.5233
Epoch 64/100
230/230 [============ ] - 19s 80ms/step - loss: 1.3048 -
accuracy: 0.6087 - val_loss: 1.5594 - val_accuracy: 0.5652
Epoch 65/100
accuracy: 0.6042 - val loss: 1.6015 - val accuracy: 0.5514
Epoch 66/100
accuracy: 0.6205 - val_loss: 1.4710 - val_accuracy: 0.5786
Epoch 67/100
230/230 [============= ] - 19s 80ms/step - loss: 1.2872 -
accuracy: 0.6110 - val_loss: 1.5829 - val_accuracy: 0.5495
Epoch 68/100
230/230 [============ ] - 19s 82ms/step - loss: 1.2675 -
accuracy: 0.6190 - val_loss: 1.4142 - val_accuracy: 0.5957
Epoch 69/100
230/230 [============ ] - 19s 80ms/step - loss: 1.2748 -
```

```
accuracy: 0.6216 - val_loss: 2.4479 - val_accuracy: 0.5057
Epoch 70/100
230/230 [============ ] - 19s 80ms/step - loss: 1.2555 -
accuracy: 0.6223 - val_loss: 1.5017 - val_accuracy: 0.5733
Epoch 71/100
accuracy: 0.6219 - val_loss: 1.5575 - val_accuracy: 0.5705
Epoch 72/100
230/230 [============ ] - 19s 81ms/step - loss: 1.2611 -
accuracy: 0.6291 - val_loss: 1.5925 - val_accuracy: 0.5681
Epoch 73/100
accuracy: 0.6294 - val_loss: 1.6489 - val_accuracy: 0.5743
Epoch 74/100
accuracy: 0.6303 - val_loss: 1.4689 - val_accuracy: 0.5910
Epoch 75/100
230/230 [============= ] - 19s 80ms/step - loss: 1.2379 -
accuracy: 0.6348 - val_loss: 1.4342 - val_accuracy: 0.6105
Epoch 76/100
accuracy: 0.6427 - val_loss: 1.4764 - val_accuracy: 0.5824
Epoch 77/100
230/230 [============= ] - 19s 80ms/step - loss: 1.2148 -
accuracy: 0.6422 - val_loss: 1.4682 - val_accuracy: 0.6010
Epoch 78/100
230/230 [============= ] - 19s 82ms/step - loss: 1.2293 -
accuracy: 0.6314 - val_loss: 1.4897 - val_accuracy: 0.5952
Epoch 79/100
accuracy: 0.6348 - val_loss: 1.3853 - val_accuracy: 0.6062
Epoch 80/100
230/230 [============ ] - 19s 80ms/step - loss: 1.2240 -
accuracy: 0.6393 - val_loss: 1.5829 - val_accuracy: 0.5757
Epoch 81/100
accuracy: 0.6415 - val loss: 1.3228 - val accuracy: 0.6100
Epoch 82/100
accuracy: 0.6446 - val_loss: 1.5766 - val_accuracy: 0.5690
Epoch 83/100
230/230 [============ ] - 19s 81ms/step - loss: 1.2140 -
accuracy: 0.6502 - val_loss: 1.4977 - val_accuracy: 0.5933
Epoch 84/100
230/230 [============ ] - 19s 80ms/step - loss: 1.2050 -
accuracy: 0.6403 - val_loss: 1.5543 - val_accuracy: 0.5867
Epoch 85/100
230/230 [============ ] - 19s 80ms/step - loss: 1.1916 -
```

```
accuracy: 0.6465 - val_loss: 1.4223 - val_accuracy: 0.6052
Epoch 86/100
230/230 [============= ] - 19s 80ms/step - loss: 1.2145 -
accuracy: 0.6510 - val_loss: 1.3968 - val_accuracy: 0.6176
Epoch 87/100
accuracy: 0.6449 - val_loss: 1.5621 - val_accuracy: 0.5810
Epoch 88/100
230/230 [========== ] - 19s 80ms/step - loss: 1.1907 -
accuracy: 0.6567 - val_loss: 1.5821 - val_accuracy: 0.5900
Epoch 89/100
accuracy: 0.6521 - val_loss: 1.6131 - val_accuracy: 0.5652
Epoch 90/100
230/230 [============= ] - 19s 80ms/step - loss: 1.2228 -
accuracy: 0.6416 - val_loss: 1.3954 - val_accuracy: 0.6143
Epoch 91/100
230/230 [============ ] - 19s 80ms/step - loss: 1.1908 -
accuracy: 0.6498 - val_loss: 1.3755 - val_accuracy: 0.6195
Epoch 92/100
230/230 [============ ] - 19s 80ms/step - loss: 1.1762 -
accuracy: 0.6604 - val_loss: 1.3655 - val_accuracy: 0.6129
Epoch 93/100
230/230 [============ ] - 19s 80ms/step - loss: 1.1612 -
accuracy: 0.6631 - val_loss: 1.5934 - val_accuracy: 0.5633
Epoch 94/100
230/230 [============= ] - 19s 81ms/step - loss: 1.1908 -
accuracy: 0.6547 - val_loss: 1.4892 - val_accuracy: 0.6062
230/230 [============ ] - 19s 81ms/step - loss: 1.1781 -
accuracy: 0.6578 - val_loss: 1.3628 - val_accuracy: 0.6262
Epoch 96/100
230/230 [============ ] - 19s 81ms/step - loss: 1.1916 -
accuracy: 0.6520 - val_loss: 1.3125 - val_accuracy: 0.6276
Epoch 97/100
230/230 [=========== ] - 19s 81ms/step - loss: 1.1753 -
accuracy: 0.6630 - val loss: 1.5007 - val accuracy: 0.5924
Epoch 98/100
230/230 [============= ] - 19s 80ms/step - loss: 1.1821 -
accuracy: 0.6562 - val_loss: 1.3931 - val_accuracy: 0.6181
Epoch 99/100
accuracy: 0.6565 - val_loss: 1.3974 - val_accuracy: 0.6176
Epoch 100/100
230/230 [============ ] - 19s 81ms/step - loss: 1.1713 -
accuracy: 0.6634 - val_loss: 1.7742 - val_accuracy: 0.5643
```

```
[13]: # Plot training history for accuracy
      plt.subplot(2, 1, 1)
      plt.plot(history.history["accuracy"], label = "Training Accuracy")
      plt.plot(history.history["val_accuracy"], label = "Validation Accuracy")
      plt.title("Training and Validation Accuracy")
      plt.xlabel("Epoch")
      plt.ylabel("Accuracy")
      plt.legend()
      # Plot training history for loss
      plt.subplot(2, 1, 2)
      plt.plot(history.history["loss"], label = "Training Loss")
      plt.plot(history.history["val_loss"], label = "Validation Loss")
      plt.title("Training and Validation Loss")
      plt.xlabel("Epoch")
      plt.ylabel("Loss")
      plt.legend()
      plt.tight_layout()
      plt.show()
```


3 Model Testing and Evaluation

```
[14]: from sklearn.metrics import confusion matrix
   from sklearn.metrics import classification_report
[]: def decode_labels(labels):
      return np.argmax(labels, axis = 1)
[]: true labels = []
   all_pred_classes = []
   for images, labels in test_ds:
      predictions = model.predict(images)
      pred_classes = decode_labels(predictions)
      true_labels.extend(decode_labels(labels))
      all_pred_classes.extend(pred_classes)
   1/1 [======] - Os 169ms/step
   1/1 [======] - Os 52ms/step
   1/1 [======] - Os 39ms/step
   1/1 [=======] - Os 40ms/step
   1/1 [======] - Os 34ms/step
   1/1 [=======] - Os 48ms/step
   1/1 [=======] - Os 34ms/step
   1/1 [=======] - Os 34ms/step
   1/1 [=======] - 0s 31ms/step
   1/1 [=======] - Os 39ms/step
   1/1 [======] - Os 37ms/step
   1/1 [=======] - Os 35ms/step
   1/1 [=======] - Os 34ms/step
   1/1 [======] - Os 34ms/step
   1/1 [=======] - Os 32ms/step
   1/1 [======] - Os 34ms/step
   1/1 [=======] - Os 34ms/step
   1/1 [======] - Os 45ms/step
   1/1 [=======] - Os 35ms/step
   1/1 [======] - Os 32ms/step
   1/1 [=======] - Os 47ms/step
   1/1 [=======] - 0s 34ms/step
   1/1 [======] - Os 30ms/step
   1/1 [=======] - Os 30ms/step
   1/1 [======] - Os 42ms/step
   1/1 [=======] - Os 30ms/step
   1/1 [======] - Os 30ms/step
   1/1 [======] - Os 30ms/step
   1/1 [======] - Os 32ms/step
```


Classification Report:

orabbilioadion Nopelo.					
	precision	recall	f1-score	support	
agricultural	0.51	0.94	0.66	50	
airplane	0.61	0.34	0.44	50	
baseballdiamond	0.68	0.30	0.42	50	
beach	0.89	0.64	0.74	50	
buildings	0.48	0.32	0.39	50	
chaparral	1.00	0.88	0.94	50	
denseresidential	0.36	0.42	0.39	50	
forest	0.55	1.00	0.71	50	
freeway	0.61	0.76	0.68	50	
golfcourse	0.45	0.34	0.39	50	
harbor	0.96	0.90	0.93	50	
intersection	0.75	0.76	0.75	50	
mediumresidential	0.29	0.24	0.26	50	
${\tt mobilehomepark}$	0.60	0.60	0.60	50	
overpass	0.72	0.66	0.69	50	
parkinglot	0.82	0.84	0.83	50	
river	0.60	0.72	0.65	50	
runway	0.43	0.42	0.42	50	
sparseresidential	0.50	0.52	0.51	50	
storagetanks	0.30	0.22	0.25	50	
tenniscourt	0.37	0.46	0.41	50	
accuracy			0.58	1050	
macro avg	0.59	0.58	0.57	1050	
weighted avg	0.59	0.58	0.57	1050	
wergined avg	0.03	0.00	0.01	1000	

```
for images, labels in test_ds.take(1):
    predictions = model.predict(images)
    pred_classes = decode_labels(predictions)

plt.figure(figsize = (10, 10))
    for i in range(9):
        ax = plt.subplot(3, 3, i + 1)
        plt.imshow(images[i].numpy().astype("uint8"))
        pred_class = class_names[pred_classes[i]]
        true_class = class_names[np.argmax(labels[i])]
        prob = np.max(predictions[i])
        plt.title(f"Predict: {pred_class} ({prob:.2f})\n Actual: {true_class}")
```

plt.axis("off")
plt.show()

1/1 [======] - 0s 45ms/step

Predict: airplane (0.66) Actual: buildings

Predict: agricultural (1.00) Actual: agricultural

Predict: beach (0.67) Actual: beach

Predict: agricultural (0.93) Actual: beach

Predict: buildings (0.46) Actual: airplane

Predict: intersection (0.60) Actual: intersection

Predict: overpass (0.31) Actual: storagetanks

Predict: sparseresidential (1.00) Actual: sparseresidential

Predict: freeway (0.92) Actual: freeway

