Storage Class Memory

A solid-state memory that blurs the boundaries between storage and memory by being low-cost, fast, and non-volatile.

信息存储理论与技术 Current Challenges

Google

Facebook

HPC

Cloud **Computing**

Mobile Computing

Challenges

Performance

Scalability

Energy Consumption

Space

Operation 及 Cost 12611 70

Power & space in the server room

 The cache/memory/storage hierarchy is rapidly becoming the bottleneck for large systems.

We know how to create MIPS & MFLOPS cheaply and in abundance, but feeding them with data has become the performance-limiting and most-expensive part of a system (in both \$ and Watts).

天河二号"尚无个人用户签约使用 网易数码

2014年10月9日 - 落户国家超级计算广州中心的"天河二号"已于6月底 开门迎客,记者日前探营发现,已经有少里个人用户试用,但因为各种原 因,仍没有正式签约使用的个人用户。...

digi.163.com/14/1009/0... 2014-10-09 V3

Source IDC: 2006, Document # 201722, "The Impact Of Power and Cooling On Data Center Infrastructure", John Humphreys, Jed Scaramella

Problem & Opportunity

The access-time gap between memory & storage

- Modern computer systems have long had to be designed around hiding the access gap between memory and storage -> caching, threads, predictive branching, etc.
- "Human perspective" if a CPU instruction is analogous to a 1-second decision by a human, retrieval of data from off-line tape represents an analogous delay of 1250 years

Problem & Opportunity

The access-time gap between memory & storage

- Today, Solid-State Disks based on NAND Flash can offer fast ON-line storage, and storage capacities are increasing as devices scale down to smaller dimensions...
- but while prices are dropping, the performance gap between memory and storage remains significant, and the already-poor device endurance of Flash is getting worse.

信息存储理论与技术 Storage Class Memory

信息存储理论与技术 Storage Class Memory

信息存储理论与技术

Storage Class Memory

Source: Western Digital estimates

Problem & Opportunity

The access-time gap between memory & storage

- Several interesting ways to change the memory/storage hierarchy
 - 1) M-type Storage Class Memory high-density, fast OFF- (or ON*)-chip NVM
 - 2) S-type Storage Class Memory high-density, very-near-ON-line storage

信息存储理论与技术

S-type vs. M-type SCM

M-type: Synchronous

- Hardware managed
- Low overhead

- Processor waits
- New NVM → not Flash
- Cached or pooled memory
- Persistence (data survives despite component failure or loss of power) requires redundancy in system architecture

~1us read latency ---

S-type: Asynchronous

- Software managed
- High overhead

- Processor doesn't wait, (process-, thread-switching)
- Flash or new NVM
- Paging or storage
- Persistence → RAID

Storage-type vs. memory-type Storage Class Memory

SCM System Integration

SCM as Block Device

a. Current system

b. Replace disk

c. Hybrid disk

SCM as Memory Device

d. Hybrid Memory

e. Entire SCRAM

Disk-based Storage Software Systems

- Software plays an important role in improving system performance
 I/O scheduling, Buffer cache et al.
- Software can also provide useful services like replication, encryption, compression, provenance tracking, et al. (Reliability & Security)
- For a 4-Kbyte access to a commodity disk, the stock Linux software stack accounts for just 0.3% of the latency and 0.4% of the energy

Linux IO stack

VFS File System Volume Manager **Block Layer** SCSI layer **Device Driver** (SATA, SAS, iSCSI) **HDD**

Buffer Cache

Replication Encryption

IO Request Queue Schedule

Disks replaced by SCM directly

Rethinking the role and structure of software and hardware in storage systems

Steven Swanson and Adrian M. Caulfield. *Refactor, Reduce, Recycle: Restructuring the I/O Stack for the Future of Storage*. Computer, IEEE, 2013. 信息存储及

Persistency Moves Up to Memory Layer

How to utilize the SCM (Hardware)

 Hardware: SCM is attached to memory bus directly

How to utilize the SCM (Software)

Software:

- 1. RamDisk mode, use a regular FS, nothing need to be changed. (Generic block layer overhead will affect the performance of whole system)
- 2. Modify the existing memory based file system, such as tmpfs, ramfs. (not for persistent storage device, metadata: inmemory data structure. Modifying ≈ redesigning)
- 3. Design new FS for SCM

➤ 英特尔已经推出Optane DC Persistent Memory模块,单条最大容量可达512GB Intel Xeon(Cascade Lake)单处理器支持6条

➤ Memory Mode 和 App Direct Mode

Memory Mode

App Direct Mode

英特尔Optane DC Persistent Memory基本性能

➤ 延迟: 100~300 ns

▶ 带宽:读:39.4GB/s(单条6.6GB/s)

写: 13.9GB/s(单条2.3GB/s)

英特尔Optane DC Persistent Memory性能

Optane DC as Main Memory

英特尔Optane DC Persistent Memory性能

Optane DC as Persistent Storage

From NVSL of UCSD, 2019-08-09

Closing the Latency Gap

Throughput easy, latency hard

Throughput is easy

Latency is hard

Throughput is an engineering problem, latency is a physics problem!

Where Are We?

Thanks!