G. de Veciana

Topics: Multiple continuous, RVs, expectations, conditional expectation, total probability, derived distributions

Q. 1 Random variables *X* and *Y* are described by the joint PDF

$$f_{X,Y}(x,y) = ax$$
 for $2 \le x \le 4$, $0 \le y \le x$

and zero otherwise.

- 1. Evaluate the constant a.
- 2. Determine the marginal PDF $f_Y(y)$
- 3. Determine the expected value for $\frac{1}{X}$ given that Y = 3
- **Q. 2** Suppose *X* and *Y* are described by the joint PDF

$$f_{X,Y}(x,y) = \begin{cases} 5x^2/2 & -1 \le x \le 1, \ 0 \le y \le x^2 \\ 0 & \text{otherwise} \end{cases}$$

Let *A* be the event $\{Y \le 1/3\}$.

- 1. What is the conditional joint density $f_{X,Y|A}(x,y)$?
- 2. What are $f_{Y|A}(y)$ and $f_{X|A}(x)$?
- 3. What are E[Y|A] and E[X|A]?
- **Q. 3** Suppose X has pdf:

$$f_X(x) = \begin{cases} \frac{1}{2}x & \text{if } 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

X denotes the length of a stick. Now suppose the stick is randomly broken and let Y denote the length of the remaining stick.

- 1. Find the joint PDF of Y and X.
- 2. Find the marginal PDF of Y.
- 3. Find E[Y].
- **Q. 4** A customer entering a store is served by clerk i with probability p_i , i = 1, ..., n. The time taken by clerk i to serve a customer is an exponentially distributed random variable with parameter α_i .
 - 1. Find the pdf of T, the time taken to service a customer.
 - 2. Find E[T] and Var(T). You should find expressions in terms of p_i and α_i , i = 1, ..., n
 - 3. Suppose *T* > 5. Find an expression for the probability that clerk *i* served the customer. Hint: You will need to use a version of Bayes Rule.
- **Q. 5** Suppose $X = e^Y$ where $Y \sim \text{Normal}(\mu, \sigma^2)$, i.e.,

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}} \text{ for } -\infty < y < \infty,$$

then X is said to have a log normal distribution with parameters μ, σ^2 , denoted $X \sim Lognormal(\mu, \sigma^2)$. Determine the PDF of X.

Q. 6 A Mixed RV is a "mixture" of a discrete and a continuous RV. For example, suppose X is discrete with CDF $F_X(x)$ and Y is continuous with CDF $F_Y(y)$. Define:

$$Z = \left\{ \begin{array}{ll} X & \textit{w.p.} & \alpha \\ Y & \textit{w.p.} & (1-\alpha) \end{array} \right. \text{ where } \alpha \in [0,1].$$

Z is said to be a Mixed RV.

- 1. Suppose $X \sim \text{Bernoulli}(p)$, $Y \sim \exp(\lambda)$, and $\alpha = \frac{1}{2}$. Find the CDF of Z.
- 2. Suppose *Z* has CDF $F_Z(z)$:

find F_X discrete, F_Y continuous, and α for Z.

Q.7 Jane goes to the bank to make a withdrawal, and is equally likely to find 0 or 1 customers ahead of her. The service time of the customer ahead, if present, is exponentially distributed with parameter λ What is the CDF of Jane's waiting time?