

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/091,698	03/05/2002	Brian N. Ripley	100202181-I	7441
7590	12/02/2005			EXAMINER ROJAS, MIDYS
			ART UNIT 2185	PAPER NUMBER

DATE MAILED: 12/02/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)	
	10/091,698	RIPLEY, BRIAN N.	
	Examiner	Art Unit	
	Midys Rojas	2185	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 13 October 2005.
 2a) This action is **FINAL**. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1-14, 16-20 and 23-25 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-14, 16-20 and 23-25 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on 05 March 2002 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date. _____ .
3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) Paper No(s)/Mail Date _____ .	5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152)
	6) <input type="checkbox"/> Other: _____ .

DETAILED ACTION

Response to Arguments

Applicant's arguments filed on October 13th, 2005 have been considered but are not persuasive.

Applicant argues that Lee discloses a memory address scheme based on paging instead of disclosing variable width memory locations. A page only refers to an area of a memory bank accessed by a given row address. In contrast, actual memory locations are accessed with given row and column addresses. However, it is noted that the features upon which applicant relies (i.e., actual memory locations are accessed with given row and column addresses) are not recited in the rejected claim(s). Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993). The adjustable memory pages of Lee do correspond to variable width memory locations since pages in memory are memory locations that are referred to using row addresses. The claimed invention does not specify that the memory locations of the invention must be accessed using row and column addresses. In this case, an adjustable page size is equivalent to a variable width memory location since such distinction is not specified in the invention of the instant application as claimed.

Claim Rejections - 35 USC § 102

1. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an

international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.

2. Claims 1-14, 16-20, and 23-25 are rejected under 35 U.S.C. 102(e) as being anticipated by Lee et al. (2003/0158995).

Regarding Claim 1, Lee discloses a variable width memory system comprising (DRAM control with adjustable page size):

a bus for communicating information (Figure 1, exemplary system, buses 160, 170);
a plurality of memory locations coupled to said bus (memory locations of memory 140),
said plurality of variable width memory locations store information (DRAM access, Abstract,
wherein storing is an accesses), wherein said plurality of variable width memory locations
receive a number of bits corresponding to the width of the variable memory locations
(determining adjustable page portion, Claim 1); and a controller coupled to said bus 410 (Figure
4), said controller directs access to said plurality of variable width memory locations being
accessed (page 2, paragraphs 18 and 19). Being that the memory has variable widths (page size),
the number of widths accessed depends of the current width of the memory location accessed.
Additionally, since the page width is determined for each access, all memory pages do not have
to have the same width.

Regarding Claim 2, Lee discloses variable width memory locations 420 included on a single memory substrate (see Figure 4).

Regarding Claim 3, the memory of Lee can be implemented a DRAM (abstract).

Regarding Claims 4-5, the memory locations of Lee have individual addresses (memory row address, memory column strobe, Page 2, paragraph 19) and therefore, are identified by unique internal identifiers. The addresses are used by the controller in making access requests.

Additionally, such addresses are part of a mapping system used at the time of access implemented in the memory controller 410.

Regarding Claim 6, in the system of Lee, two memory locations could have the same width (page size) depending on the parameters being used and in what the page sizes are determined to be in step 520 (Figure 5, and paragraphs 0025-0026).

Regarding Claim 7, Lee discloses variably configuring the width (page size) of the memory in order to achieve a reduction delay by increasing page hit rate (processor operations) thus decreasing power consumption (paragraph 0008).

Regarding Claim 8 and 14, Lee et al. discloses a variable width memory (Fig. 1, 140) comprising receiving a register indicator corresponding to a register (internal address provided from the requester); accessing a memory cell (memory controller multiplexes row and column address to system memory) based on said register indicator, wherein said memory cell is allocated a storage size correlating to the bit capacity of said register (determine page size, Figure 5); and transferring information between said memory cell and another component (data is transferred between memory controller and system memory 420, paragraph 0019), wherein said information includes the same number of bits as said bit capacity, and varying the bit capacity on a per access basis to the memory cell automatically (Figure 5). Being that the memory has variable widths (page size), the number of widths accessed depends of the current width of the memory location accessed. Additionally, since the page width is determined for each access, all memory pages do not have to have the same width.

Regarding Claims 9, the register indicator (memory address) is received from a processor (requester). Page 2, paragraph 0018.

Regarding Claim 10, the bit capacity is determined (Figure 5) by processing criteria (input from requester) associated with a processor.

Regarding Claim 11, the data being transferred (see Figure 4) is in the form of a packet wherein packets are a group of bits or bytes of information.

Regarding Claim 12, the information being transferred to and from the memory also includes information such as column address strobe, row address strobe, and write enable (paragraph 0019). These commands are associated with certain fields in the memory and participate in the performance of accessing functions for completing such commands.

Regarding Claim 13, the information being transferred that is associated with certain fields (row and column address information) is sequentially received and taken in by the memory 420 (see Figure 4).

Regarding Claim 20, Lee et al. discloses a variable memory width assignment method (Figure 5) comprising analyzing a data block configuration specification (as part of determining process 520, Figure 5); identifying bits in a portion of said block of data while variably configuring the width (page size) of the memory in order to achieve a reduction delay by increasing page hit rate (processor operations) thus decreasing power consumption (paragraph 0008); and assigning a memory location width equal to said number of bits in said portion of said block of data (produce an adjustable page portion for prior access... Page 3, paragraph 0023), the data being transferred (see Figure 4) is in the form of a packet wherein packets are a group of bits or bytes of information; this information also includes column address strobe, row address strobe, and write enable (paragraph 0019). These commands are associated with certain fields in

the memory and participate in the performance of accessing functions for completing such commands; they are sequentially received and taken in by the memory 420 (see Figure 4).

Being that the memory has variable widths (page size), the number of widths accessed depends of the current width of the memory location accessed. Additionally, since the page width is determined for each access, all memory pages do not have to have the same width.

Regarding Claims 16-18, as in all memories, the variable page size memory of Lee et al. has many memory locations uniquely identified by memory addresses, which could be known as external identifiers (paragraph 0018) and these are used in accessing the adjustable memory pages (locations of various widths, paragraph 0010).

Regarding Claim 19, Perego et al. discloses an adjustable page size memory system, which arranges incoming bits in a contiguous manner during the write operation (paragraph 0019).

Regarding Claim 23, Lee et al. discloses a variable width memory (adjustable page size) assignment system (Abstract) comprising a means for communicating memory location identifiers (internal address provided by the requester); a means for storing information in a uniquely identifiable different width memory locations corresponding to said memory location identifiers (RAS# and CAS# are used to access adjustable pages within memory 420, Figure 4. Paragraphs 0010 and 0018-0020), wherein said means for storing said information returns a number of bits equal to the width of one of said uniquely identifiable different width memory locations in response to a read request (read request, paragraph 0019); and a means for managing a connection with said uniquely identifiable different width memory locations (DRAM controller 410), wherein said means for managing said connection supervises writing and reading of

information to and from said uniquely identifiable different width memory location. Being that the memory has variable widths (page size), the number of widths accessed depends of the current width of the memory location accessed. Additionally, since the page width is determined for each access, all memory pages do not have to have the same width.

Regarding Claim 24, Lee discloses the variable width memory assignment system wherein said means for managing said connection (memory controller 410) includes a means for tracking a correspondence between said uniquely identifiable variable memory widths and register identifiers (asserts RAS# and CAS# signals from internal address provided by requester, paragraphs 0018-0019).

Regarding Claim 25, Lee discloses the variable width memory assignment system wherein said register identifiers are provided by a means for processing said information (internal address provided by requester, paragraph 0018).

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Midys Rojas whose telephone number is (571) 272-4207. The examiner can normally be reached on M-F 5:30am - 4:00pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Mano Padmanabhan can be reached on (571) 272-4210. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 2185

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Midys Rojas
Midys Rojas
Examiner
Art Unit 2185

MR

November 27th, 2005

Mano Padmanabhan
11/28/05

MANO PADMANABHAN
SUPERVISORY PATENT EXAMINER