Question:

Given that x and y satisfy the following system of inequalities, find the integers x and y that maximize x + y.

$$\begin{cases} 2x - y - 3 \ge 0 \\ 2x + 3y - 6 \le 0 \\ 3x - 5y - 15 \le 0 \end{cases}$$

Solution:

First, process each inequality in the system of inequalities:

1. $(2x - y - 3 \ge 0)$ can be transformed to $(y \le 2x - 3)$,

2. $\(2x + 3y - 6 \le 0)\)$ can be transformed to $\(3y \le -2x + 6)\)$, i.e., $\(y \le \frac{-2x + 6}{3}\)$, 3. $\(3x - 5y - 15 \le 0)\)$ can be transformed to $\(5y \ge 3x - 15\)$, i.e., $\(y \ge \frac{3x - 15}{5}\)$. Next, find the feasible region given by $\(y \le 2x - 3\)$, $\(y \le \frac{-2x + 6}{3}\)$, and $\(y \le \frac{3x - 15}{5}\)$.

Examine the intersection points of these three lines and substitute them to verify they meet all the constraints:

Find the intersection point (A): where (y = 2x - 3) and $(y = \frac{-2x + 6}{3})$. Solve the system of equations:

 $(2x - 3 = \frac{-2x + 6}{3})$, which gives (6x - 9 = -2x + 6), implying (8x = 15), solving for (x) yields $(x = \frac{15}{8})$, substitute back into (y = 2x - 3) to get $(y = \frac{-9}{8})$, so the intersection point is $(A(\frac{15}{8}, \frac{-9}{8}))$.

Find the intersection point \(B\): where \(y = 2x - 3\) and \(y = \frac{3x - 15}{5}\). Solve the system of equations:

\(2x - 3 = \frac{3x - 15}{5}\), which gives \(10x - 15 = 3x - 15\), implying \(7x = 0\), solving for \(x\) yields \(x = 0\), substitute back into \(y = 2x - 3\) to get \(y = -3\), so the intersection point is \(B(0, -3)\). Find the intersection point \(C\): where \(y = \frac{-2x + 6}{3}\) and \(y = \frac{3x - 15}{5}\). Solve the system of equations: \(\frac{-2x + 6}{3} = \frac{3x - 15}{5}\), cross-multiplying yields \(-10x + 30 = 9x - 45\), implying \(19x = 75\), solving for \(x\) yields \(x = \frac{75}{19}\), substitute back into \(y = \frac{-2x + 6}{3}\) to get \(y = \frac{57}{19}\), so the intersection point is \(C(\frac{75}{19}), \frac{57}{19})\).

Find the integer point $\langle (x, y) \rangle$ that maximizes $\langle (x + y) \rangle$: the integer point within the feasible region that maximizes $\langle (x + y) \rangle$ is $\langle (x, y) \rangle \rangle$, so the maximum value of $\langle (x + y) \rangle$ at the boundary is $\langle (3) \rangle$. Final answer: $\langle (x + y) \rangle$.

Gold Step:

- (1) First, process each inequality in the system of inequalities:
- 1. $(2x y 3 \ge 0)$ can be transformed to $(y \le 2x 3)$,
- 2. $(2x + 3y 6 \le 0)$ can be transformed to $(3y \le -2x + 6)$, i.e., $(y \le \frac{-2x + 6}{3})$,
- 3. $(3x 5y 15 \le 0)$ can be transformed to $(5y \ge 3x 15)$, i.e., $(y \le \frac{3x 15}{5})$. (2) Next, find the feasible region given by $(y \le 2x 3)$, $(y \le \frac{-2x + 6}{3})$, and $(y \le \frac{3x 15}{5})$.
- (3) Examine the intersection points of these three lines and substitute them to verify they meet all the constraints:
- Find the intersection point (A): where (y = 2x 3) and $(y = \frac{-2x + 6}{3})$. Solve the system of equations:

 $(2x - 3 = \frac{-2x + 6}{3}),$

which gives (6x - 9 = -2x + 6),

implying (8x = 15),

solving for $\langle x \rangle$ yields $\langle x = \frac{15}{8} \rangle$,

substitute back into (y = 2x - 3) to get $(y = \frac{-9}{8})$,

so the intersection point is $(A(\frac{15}{8}, \frac{-9}{8}))$.

(4) Find the intersection point \(B\): where \(y = 2x - 3\) and \(y = \frac{3x - 15}{5}\). Solve the system of equations:

 $(2x - 3 = \frac{3x - 15}{5}),$

which gives (10x - 15 = 3x - 15),

implying (7x = 0),

solving for (x) yields (x = 0),

substitute back into (y = 2x - 3) to get (y = -3),

so the intersection point is $\setminus (B(0, -3) \setminus)$.

(5) Find the intersection point \(C\): where \(y = \frac{-2x + 6}{3}\) and \(y = \frac{3x - 6}{3}\)

15{5}\). Solve the system of equations:

implying (19x = 75),

solving for $\langle (x) \rangle$ yields $\langle (x = \frac{75}{19}) \rangle$,

solving for ((x)) yields $((x = \frac{75}{19}))$, substitute heads into $((x = \frac{75}{19}))$

substitute back into $(y = \frac{-2x + 6}{3})$ to get $(y = \frac{57}{19})$, so the intersection point is $(C(\frac{57}{19}), \frac{57}{19})$

so the intersection point is $(C(\frac{75}{19}, \frac{57}{19}))$.

(6) Find the integer point $\langle (x, y) \rangle$ that maximizes $\langle (x + y) \rangle$: the integer point within the feasible region that maximizes $\langle (x + y) \rangle$ is $\langle (x, y) \rangle \rangle$, so the maximum value of $\langle (x + y) \rangle$ at the boundary is $\langle (3) \rangle$.

(7) Final answer: ((x=2; y=1)).

Gold Step Scores: ["1", "1", "0", "1", "0", "0", "0"]

Gold Scores: 3

StepMathAgent:

- (1) Transform the inequality $(2x y 3 \ge 0)$ into $(y \le 2x 3)$: 1
- (2) Transform the inequality $(2x + 3y 6 \le 0)$ into $(y \le \frac{-2x + 6}{3})$: 1
- (3) Transform the inequality $(3x 5y 15 \le 0)$ into $(y \ge \frac{3x 15}{5})$: 1
- (4) Determine the feasible region defined by the inequalities $(y \le 2x 3)$, $(y \le \frac{-2x + 6}{3})$, $(y \le \frac{3x 15}{5})$: 1
- (5) Calculate the intersection point (A): (y = 2x 3) and $(y = \frac{-2x + 6}{3})$, solve the system to get $(x = \frac{15}{8})$, $(y = \frac{-9}{8})$: **0**
- (6) Calculate the intersection point $\B \$: $\y = 2x 3\$) and $\y = \frac{3x 15}{5}\$, solve the system to get $\x = 0\$, $\y = -3\$: 1
- (7) Calculate the intersection point $\(C\): \(y = \frac{-2x + 6}{3}\)$ and $\(y = \frac{3x 15}{5}\)$, solve the system to get $\(x = \frac{75}{19}\)$, $\(y = \frac{57}{19}\)$: **0**
- (8) Determine the integer pair ((2, 1)) within the feasible region that maximizes (x + y): 0
- (9) The final answer $\langle (x = 2, y = 1) \rangle$, so $\langle (x + y = 3) \rangle$: **0**

Final score: 4

Tree-of-Error: (5)-(8)-(9), (7)-(8)-(9)

问题:

已知x,y满足如下不等式组,求使x+y取最大值的整数x,y。

解题过程:

解题过程:【首先,处理不等式组中的每个不等式: 1. \$2x - y - 3 \ge 0\$ 可以变形为 \$y \le 2x - 3\$。 2. \$2x + 3y - 6 \le 0\$ 可以变形为 \$3y \le -2x + 6\$,即 \$y \le \frac{-2x + 6}{3}\$。 3. \$3x - 5y - 15 \le 0\$ 可以变形为 \$5y \ge 3x - 15\$,即 \$y \ge \frac{3x - 15}{5}\$。接下来, 求可行域: - 由 \$v \le 2x - 3\$ 和 \$v \le \frac{-2x + 6}{3}\$ 以及 \$v \ge \frac{3x - 15}{5}\$ 得 到的可行域区域。画图可以帮助理解。- 考察这三条直线的交点,并代入确认满足所有 不等式的约束。求交点: 1. 交点 \$A\$: \$y = 2x - 3\$ 和 \$y = \frac{-2x + 6}{3}\$,解方程组: - \$2x - 3 = \frac{-2x + 6}{3}\$,得 \$6x - 9 = -2x + 6\$,即 \$8x = 15\$,解得 \$x = \frac{15}{8}\$, 代入 \$y = 2x - 3\$ 得 \$y = \frac{-9}{8}\$, 所以交点 \$A(\frac{15}{8}, \frac{-9}{8})\$。 2. 交点 \$B\$: \$y = 2x - 3\$ 和 \$y = \frac{3x - 15}{5}\$,解方程组: - \$2x - 3 = \frac{3x - 15}{5}\$,得 \$10x - 15 = 3x - 15\$,即 \$7x = 0\$,解得 \$x = 0\$,代入 \$y = 2x -3\$ 得 \$y = -3\$,所以交点 \$B(0, -3)\$。3. 交点 \$C\$: \$y = \frac{-2x + 6}{3}\$ 和 \$y = \frac{3x - 15}{5}\$,解方程组: - \$\frac{-2x + 6}{3} = \frac{3x - 15}{5}\$,交叉相乘得到 \$-10x + 30 = 9x - 45\$,即 \$19x = 75\$,解得 $\$x = \frac{75}{19}\$$,代入 $\$y = \frac{-2x + 30}{9}$ 6}{3}\$ 得 \$y = \frac{57}{19}\$, 所以交点 \$C(\frac{75}{19}, \frac{57}{19})\$。找出使 \$x+y\$ 最大的整数对\$(x,y)\$: - 尝试不同接近整数边界值的整数对,在可行域内选择。-观察可行区域发现,在可行区域内的整数点最多达到\$(x,y) = (2, 1)\$。- 故求得 \$x+y\$ 最 大的整数对在边界 \$(2,1)\$,其值为 \$3\$。】最终答案: $\mathbf{x}=2$; $\mathbf{y}=1$ 】

标准划分:

- (1) 首先,处理不等式组中的每个不等式: 1. $\$2x y 3 \ge 0\$$ 可以变形为 $\$y \ge 2x 3\$$, 2. $\$2x + 3y 6 \ge 0\$$ 可以变形为 $\$3y \ge -2x + 6\$$, 即 $\$y \ge \frac{-2x + 6}{3}\$$, $\$3x 5y 15 \ge 0\$$ 可以变形为 $\$5y \ge 3x 15\$$, 即 $\$y \ge \frac{3x 15}{5}\$$
- (2) 接下来求由 \$y \le 2x 3\$ 和 \$y \le \frac{-2x + 6}{3}\$ 以及 \$y \ge \frac{3x 15}{5}\$ 得到的可行域区域
- (3) 考察这三条直线的交点,并代入确认满足所有不等式的约束: 求交点 \$A\$: \$y = 2x 3\$ 和 \$y = \frac{-2x + 6}{3}\$, 解方程组: \$2x 3 = \frac{-2x + 6}{3}\$, 得 \$6x 9 = -2x + 6\$, 即 \$8x = 15\$, 解得 \$x = \frac{15}{8}\$, 代入 \$y = 2x 3\$ 得 \$y = \frac{-9}{8}\$, 所以交点 \$A(\frac{15}{8}, \frac{-9}{8})\$
- (4) 求交点 \$B\$: \$y = 2x 3\$ 和 $\$y = \frac{3x 15}{5}\$$,解方程组: $\$2x 3 = \frac{3x 15}{5}\$$,得 \$10x 15 = 3x 15\$,即 \$7x = 0\$,解得 \$x = 0\$,代入 \$y = 2x 3\$ 得 \$y = -3\$,所以交点 \$B(0, -3)\$
- (5) 求交点 \$C\$: $y = \frac{-2x + 6}{3}$ 和 $y = \frac{3x 15}{5}$, 解方程组: $\frac{-2x + 6}{3} = \frac{3x 15}{5}$, 交叉相乘得到 -10x + 30 = 9x 45, 即 19x = 75, 解 得 $x = \frac{75}{19}$, 代入 $y = \frac{-2x + 6}{3}$ 得 $y = \frac{57}{19}$, 所以交点 $C(\frac{75}{19}, \frac{57}{19})$
- (6) 找出使 x+y 最大的整数对(x,y): 在可行区域内的整数点最多达到(x,y) = (2,1), 故求得 x+y 最大的整数对在边界 (2,1), 其值为 3
- (7) 最终答案: 【x=2; y=1】

标准步骤分数: ["1", "1", "0", "1", "0", "0", "0"]

标准最终分数:3

StepMathAgent:

- (1) 将不等式 \$2x y 3 \ge 0\$ 变形为 \$y \le 2x 3\$: 1
- (2) 将不等式 \$2x + 3y 6 \le 0\$ 变形为 \$y \le \frac{-2x + 6}{3}\$: 1
- (3) 将不等式 \$3x 5y 15 \le 0\$ 变形为 \$y \ge \frac{3x 15}{5}\$: 1
- (4) 确定可行区域是由不等式 $y \le 2x 3$, $y \le \frac{-2x + 6}{3}$, $y \le \frac{3x 15}{5}$, 确定的区域: **1**
- (5) 计算交点 \$A\$: y = 2x 3\$ 和 $y = \frac{-2x + 6}{3}$ \$,解方程组得到 $x = \frac{15}{8}$ \$, $y = \frac{-9}{8}$ \$:**0**
- (6) 计算交点 \$B\$: \$y = 2x 3\$ 和 \$y = \frac{3x 15}{5}\$, 解方程组得到 \$x = 0\$, \$y = -3\$: **1**
- (7) 计算交点 \$C\$: \$y = \frac{-2x + 6}{3}\$ 和 \$y = \frac{3x 15}{5}\$, 解方程组得到 \$x = \frac{75}{19}\$, \$y = \frac{57}{19}\$: **0**
- (8) 判断在可行区域内使 x+y 最大的整数对是 (2, 1): 0
- (9) 最终答案 \$x=2, y=1\$, 故 \$x+y=3\$: **0**

最终得分:4

错误链: (5)-(8)-(9), (7)-(8)-(9)

Tree-of-Error

(5) 计算交点 \$A\$: \$y = 2x - 3\$ 和 \$y = \frac{-2x + 6}{3}\$,解方程组得到 \$x = \frac{15}{8}\$,\$y = \frac{-9}{8}\$

(7) 计算交点 \$C\$: \$y = \frac{-2x + 6}{3}\$ 和 \$y = \frac{3x - 15}{5}\$, 解方程组得到 \$x = \frac{75}{19}\$, \$y = \frac{57}{19}\$

(8) 判断在可行区域内使 \$x+y\$ 最大的整数对是 \$(2,1)\$

(9) 最终答案 \$x=2, y=1\$, 故 \$x+y=3\$