Chương 5 - Mạch khuếch đại công suất

- 1. Định nghĩa và phân loại mạch KĐCS
 - 2. Mạch khuếch đại lớp A
 - 3. Mạch khuếch đại đẩy kéo lớp B
 - 4. Khuếch đại đẩy kéo lớp AB

- Mạch khuếch đại công suất (Power amplifiers) có tác dụng cấp một công suất lớn cho tải.
- Một số đặc tính cơ bản của mạch khuếch đại công suất
 - Trở kháng ra nhỏ.
 - Công suất tiêu tán trong mạch nhỏ.
 - Có khả năng cấp dòng hoặc áp lớn cho tải.
 - THD (total harmonic distortion) nhỏ.
- Trong chương này tập trung khảo sát mạch khuếch đại công suất dùng BJT.

- Đặc điểm của một BJT công suất
 - Hệ số khuếch đại dòng nhỏ.
 - Áp dòng và công suất ngõ ra lớn.
 - Băng thông nhỏ.
- Bảng bên là thông số của BJT thường và 2 BJT công suất thông dụng.

Table 8.1 Comparison of the characteristics and maximum ratings of a small-signal and power BJT			
Parameter	Small-Signal BJT (2N2222A)	Power BJT (2N3055)	Power BJT (2N6078)
$V_{CE}(\max)$ (V)	40	60	250
$I_C(\max)$ (A)	0.8	15	7
$P_D(\text{max})$ (W) (at $T = 25$ °C)	1.2	115	45
β	35–100	5–20	12–70
$f_T(MHz)$	300	0.8	1

Công suất tức thời tiêu thụ bởi BJT

$$p_Q = v_{CE}i_C + v_{BE}i_B \approx V_{CE}i_C$$

Công suất trung bình

$$P = \frac{1}{T} \int_{T} v_{CE} i_{C} dt$$

Khi BJT hoạt động ở chế độ DC

$$P = V_{CE}I_{C}$$

• Khi thiết kế mạch công suất, cần đảm bảo $P < P_T$, với P_T là công suất cực đại của BJT (maximum rated power).

- Ví dụ: cho mạch BJT như hình với V_{CC} = 24V, R_L = 8Ω .
- DCLL: $V_{CE} = V_{CC} I_C R_L$
- Công suất:

$$P = V_{CE}I_C = (V_{CC} - I_CR_L)I_C = V_{CC}I_C - I_C^2R_L$$

- $I_{Cmax} = 3A$, $V_{CEmax} = 24V$.
- Công suất cực đại: $P_T = 18W$ khi $I_C = 1.5A$, $V_{CF} = 12V$.
- Khi thiết kế: chọn BJT có công suất lớn hơn 18W, dòng lớn hơn 3A, áp lớn hơn 24V.

 $I_{C}(A)$ $V_{CE, \, (\mathrm{sus})}$ 12

 V_{CC}

- Phân loại mạch khuếch đại công suất
 - a. Lớp A
 - b. Lớp B
 - c. Lớp AB
 - d. Lớp C

 2π

 π

 4π

ωt

 3π

(c)

- Phân loại mạch khuếch đại công suất
 - Mạch khuếch đại lớp A tương tự như các mạch khuếch đại đã phân tích ở chương 1, tuy nhiên ở đây tập trung vào tính toán công suất. Nhược điểm của mạch khuếch đại lớp A là hiệu suất truyền công suất thấp.
 - Mạch khuếch đại lớp B và lớp AB thường thiết kế theo cặp, sao cho mỗi transistor dẫn trong nữa chu kỳ và tắt trong nữa chu kỳ còn lại, và gọi là khuếch đại đẩy kéo (push-pull).
 - Mạch khuếch đại lớp C ít được sử dụng và không phân tích ở chương này.

Chương 5 - Mạch khuếch đại công suất

- 1. Định nghĩa và phân loại mạch KĐCS
- 2. Mạch khuếch đại lớp A
 - 3. Mạch khuếch đại đẩy kéo lớp B
 - 4. Khuếch đại đẩy kéo lớp AB

- Giả sử $V_{CEQ} = V_{CC}/2$, bỏ qua V_{CEsat} , dòng i_c có biên độ cực đại $I_P = I_{CQ} \Rightarrow V_P = V_{CC}/2$:

$$i_{c} = I_{cQ} + I_{p} \sin \omega t$$

$$V_{CE} = \frac{V_{CC}}{2} - V_p \sin \omega t$$

$$p_Q = v_{CE} \cdot i_C = \frac{V_{CC} I_{CQ}}{2} (1 - \sin^2 \omega t)^{v_I}$$

(bỏ qua công suất cực B).

- Hiệu suất

$$\eta = \frac{\text{signal load power } (P_L)}{\text{supply power } (P_S)}$$

- P_L: công suất AC trung bình trên tải.
- P_S: công suất trung bình của nguồn cung

- Mạch khuếch đại lớp A có hiệu suất thấp (thực tế η < 20%), chỉ sử dụng khi cần công suất nhỏ.

Vi dμ: Cho mạch khuếch đại, BJT có β = 100, $V_{CEsat} = 0.2V$, các tụ có giá trị rất lớn. Tính công suất AC trung bình cực đại trên tải R_L và hiệu suất của mạch.

Gợi ý:

 $I_{CQ} = 1.92$ mA, xác định biên độ cực đại của i_c , từ đó xác định biên độ cực đại của i_o , $v_o \Rightarrow ...$

- Mạch khuếch đại lớp A với cuộn dây (Inductively Coupled Amplifier)
- Giả sử ω L >> R_L, R_E rất bé, bỏ qua V_{CEsat}
- Khi max-swing:

$$I_{CQ} \approx \frac{V_{CC}}{R_L}$$
; $V_{CEQ} \approx V_{CC}$

- Biên độ dòng tải cực đại = I_{CQ} .

- Mạch khuếch đại lớp A với cuộn dây (Inductively Coupled Amplifier)
- Tính toán các công suất trung bình

$$\begin{cases} P_{L\text{max}} = \frac{1}{2}I_{CQ}^2 R_L = \frac{1}{2}\frac{V_{CC}^2}{R_L} \Rightarrow \eta_{\text{max}} = 50\% \\ P_{S} = V_{CC}I_{CQ} \end{cases}$$

- Công dụng của cuộn dây ở đây là tạo điện áp ngõ ra dao động với giá trị đỉnh lớn hơn V_{CC} (xem lại dao động áp ngõ ra nếu không dùng cuộn dây?).

- Mạch khuếch đại lớp A với biến áp (Transformer Coupled Amplifier)
- Thực tế khó thiết kế mạch với cuộn dây, nên sử dụng biến áp.
- Giả sử biến áp lý tưởng với hệ số biến áp $a = v_1/v_2$, R_E rất bé, bỏ qua V_{CEsat} .

$$\frac{\mathbf{v}_1}{\mathbf{i}_c} = a^2 \frac{\mathbf{v}_2}{\mathbf{i}_L} = a^2 R_L = R_L' \Longrightarrow \begin{cases} R_{DC} = R_E \\ R_{AC} = R_L' \end{cases}$$

 \rightarrow tính toán tương tự mạch với cuộn dây, thay R_I bằng R_I'.

- Mạch khuếch đại lớp A với biến áp (Transformer Coupled Amplifier)
- Tính toán các công suất trung bình

$$\begin{cases} P_{L_{\text{max}}} = \frac{1}{2} V_{CC} I_{CQ} \\ P_{S} = V_{CC} I_{CQ} \end{cases} \Rightarrow \eta_{\text{max}} = 50\%$$

Ví dụ: $V_{CC} = 12V$, $R_E = 20\Omega$, $R_L = 8\Omega$, $R_1 =$

- 2.3kΩ, R_2 = 1.75kΩ, β = 40 và V_{BEon} = 0.7V.
- a. Xác định l_{cQ}.
- b. Xác định tỉ số biến áp thể tải nhận công suất cực đại.
- c. Xác định công suất tải cực đại.
- d. Sử dụng kết quả câu c. và bỏ qua công suất trên cực B, tính hiệu suất.

- Mạch khuếch đại lớp A ghép CC với biến áp
- Giả sử biến áp lý tưởng với hệ số biến áp *a*, R_E rất bé, bỏ qua V_{CEsat}.

$$\frac{\mathbf{v}_e}{\mathbf{i}_e} = a^2 \frac{\mathbf{v}_o}{\mathbf{i}_o} = a^2 \mathbf{R}_L = \mathbf{R}_L' \Longrightarrow \begin{cases} \mathbf{R}_{DC} \approx \mathbf{0} \\ \mathbf{R}_{AC} = \mathbf{R}_L' \end{cases}$$

- Mạch khuếch đại lớp A ghép CC với biến áp
- Công suất trung bình trên tải:

$$P_{L} = \frac{1}{2} \frac{V_{p}^{2}}{R_{I}}$$

với V_D là biên độ áp trên tải.

$$V_{pmax} = \frac{V_{cc}}{a} \Rightarrow P_{L} = \frac{V_{cc}^{2}}{2a^{2}R_{L}}$$
$$\Rightarrow \eta_{max} = 50\%$$

Vi dụ: Mạch CC với biến áp lý tưởng, β = 100, $V_{BFon} = 0.7V$.

a. Thiết kế mạch để có độ lợi dòng $A_i = i_o/i_i$ = 80.

b. Nếu biên độ dòng xoay chiều cực E bằng 0.91_{CQ}, xác định công suất trên tải và hiệu suất của mạch.

Chương 5 - Mạch khuếch đại công suất

- 1. Định nghĩa và phân loại mạch KĐCS
- 2. Mạch khuếch đại lớp A
- 3. Mạch khuếch đại đẩy kéo lớp B
 - 4. Khuếch đại đẩy kéo lớp AB

- Mạch khuếch đại lớp B chỉ dẫn trong nữa chu kỳ, nên sử dụng một cặp đẩy kéo để tạo v_o đầy đủ 2 nữa chu kỳ, theo nguyên tắc sau:

- Khi v_i > 0, A dẫn, B tắt
- Khi v_i < 0, B dẫn, A tắt</p>

- Thực tế thì mạch đẩy kéo lớp B thường tạo ra điện áp v_o bị méo dạng, ví dụ xét cặp đẩy kéo BJT, với V_{BEon} khoảng 0.6V, khi đó v_o bằng 0 với -0.6V < v_i < 0.6V.
- Khoảng -0.6V $< v_i <$ 0.6V gọi là deadband, và khoảng deadband này tạo ra hiện tượng méo dạng xuyên tâm (crossover distortion).

- Để đơn giản trong việc khảo sát hiệu suất mạch đẩy kéo lớp B, giả sử $V_{\rm BEon}$ = oV, khi đó áp trên tải có dạng:

$$v_o = V_p \sin \omega t$$

với giá trị cực đại của V_p là V_{CC} .

- Công suất tức thời tiêu tán trên Q_n:

$$p_{Qn} = v_{CEn} \cdot i_{Cn}$$

với
$$v_{CEn} = V_{CC} - V_p \sin \omega t$$
 và $i_{Cn} = \begin{cases} \frac{V_p}{R_L} \sin \omega t; & 0 \le \omega t < \pi \\ 0; & \pi \le \omega t < 2\pi \end{cases}$

- Q_n : chỉ tiêu thụ công suất trong nữa chu kỳ $0 \le \omega t < \pi$:

$$p_{Qn} = \left(V_{CC} - V_p \sin \omega t\right) \left(\frac{V_p}{R_L} \sin \omega t\right)$$

- Từ đó tính được công suất trung bình:

$$P_{Qn} = \frac{V_{CC}V_p}{\pi R_L} - \frac{V_p^2}{4R_L}$$

- Do đối xứng nên $P_{Qp} = P_{Qn}$.

- Chứng minh được công suất trung bình cực đại

$$P_{\text{Qnmax}} = \frac{V_{\text{CC}}^2}{\pi^2 R_1} \quad khi \quad V_p = \frac{2V_{\text{CC}}}{\pi}$$

Công suất này dùng để thiết kế lựa chọn linh kiện cho mạch khuếch đại.

- Công suất trung bình trên tải:

$$P_{L} = \frac{1}{2} \frac{V_{p}^{2}}{R_{I}}$$

- Do mỗi nguồn cung cấp chỉ cấp dòng trong nữa chu kỳ sin, nên dòng trung bình và công suất trung bình mỗi nguồn cụng cấp sẽ là

- Hiệu suất:

$$I = \frac{V_p}{\pi R_L} \Rightarrow P_{S+} = P_{S-} = V_{CC} \left(\frac{V_p}{\pi R_L}\right)$$

$$\eta = \frac{P_L}{P_{S+}} = \frac{\pi}{4} \cdot \frac{V_p}{V_{CC}} \Rightarrow \eta_{max} = \frac{\pi}{4} = 78.5\%$$

(lưu ý $V_{pmax} = V_{CC}$)

- Thực tế thì hiệu suất cực đại sẽ thấp hơn, do V_{CEsat} và hiện tượng méo dạng xuyên tâm.

Chương 5 - Mạch khuếch đại công suất

- 1. Định nghĩa và phân loại mạch KĐCS
- 2. Mạch khuếch đại lớp A
- 3. Mạch khuếch đại đẩy kéo lớp B
- 4. Khuếch đại đẩy kéo lớp AB

- Sử dụng hai nguồn $V_{BB}/2$ để loại bỏ hiện tượng méo dạng xuyên tâm.
- Khi $v_I = o thì v_{BEn} = v_{EBp} = V_{BB}/2 nên$

$$i_{Cn} = i_{Cp} = I_S e^{\frac{V_{BB}}{2V_T}}$$

- Khi tăng v_I, v_{BEn} tăng và v_o cũng tăng, khi đó Q_n có vai trò như mạch CC và cấp dòng cho tải:

$$\begin{cases} v_o = v_I + \frac{V_{BB}}{2} - v_{BEn} \\ i_{Cn} = i_L + i_{Cp} \end{cases}$$

- Nếu v_o tăng \Rightarrow i_{Cn} tăng \Rightarrow v_{BEn} tăng \Rightarrow v_{EBp} giảm \Rightarrow i_{Cp} giảm, cụ thể:

$$V_{BEn} + V_{EBp} = V_{BB}$$

$$\Leftrightarrow V_{T} \ln \left(\frac{i_{Cn}}{I_{S}} \right) + V_{T} \ln \left(\frac{i_{Cp}}{I_{S}} \right) = 2V_{T} \ln \left(\frac{I_{CQ}}{I_{S}} \right)$$

$$\Rightarrow i_{Cn} i_{Cp} = I_{CQ}^{2}$$

- Trong thực tế nếu sử dụng hai nguồn DC VBB/2 để phân cực thì BJT dễ bị quá nhiệt, nên thường sử dụng 2 diode để phân cực.

Vi $d\mu$: Voʻi mạch hình bên, biết V_{CC} = 12V, R_L = 50 Ω , I_{CQ} = 2mA,BJT có β = 50, V_{BEon} = 0.7V, V_{CEsat} = 0.2V, I_S = 10⁻¹⁴A, diode có I_S = 10⁻¹³A, V_{D1} = V_{D2} = 0.7V và $I_{D(min)}$ = 1mA để đảm bảo diode dẫn.

- a. Tính hiệu suất cực đại của mạch và công suất tiêu tán trên mỗi BJT.
- b. Tính R₁, R₂.

Giải:

a. Biên độ áp cực đại trên tải:

$$V_{opmax} = V_{CC} - V_{CEsat} = 12 - 0.2 = 11.8V$$

Biên độ dòng tải cực đại:

$$i_{opmax} = \frac{V_{opmax}}{R_L} = 236mA$$

Công suất cực đại trên tải:

$$P_{L\text{max}} \approx \frac{i_{op\text{max}} V_{op\text{max}}}{2} = 1.39 \text{W}$$

Giải:

a. Công suất nguồn DC cung cấp khi công suất trên tải là cực đại:

$$P_{S} \approx \frac{2i_{opmax}V_{CC}}{\pi} + I_{CQ}V_{CC} = 1.83W$$

$$\Rightarrow \eta_{max} = \frac{P_{Lmax}}{P_{S}} = 76.1\%$$

Nhận xét: hiệu suất cực đại giảm đôi chút do có xét đến V_{CEsat} và tồn tại $I_{CO} > 0$.

Giải:

a. Công suất trên mỗi BJT:

$$P_{Q} = \frac{P_{S} - P_{L\text{max}}}{2} = 220\text{mW}$$

Giải:

b. Dòng qua R₁:

$$I_{R} = I_{D1} + i_{BN} = I_{D1} + \frac{I_{CQ} + i_{o}}{1 + \beta}$$

Có thể xem áp trên các diode không đổi nên I_R gần như không đổi, do đó có thể tính R_1 , R_2 bằng dòng I_{Dmin} và i_{opmax} :

$$R_{1} = R_{2} \approx \frac{V_{CC} - V_{D1}(=V_{D2} = V_{BB}/2)}{I_{Dmin} + (I_{CQ} + I_{opmax})/(1+\beta)} = 1.99k\Omega$$

Phân cực với diode và nguồn dòng I_{Bias}:

Ví dụ: Thiết kế mạch khuếch đại lớp AB như hình với $R_L = 8\Omega$, sao cho công suất trung bình trên tải là 5W, biên độ áp trên tải không vượt quá 80% V_{CC} , và dòng bé nhất qua diode là 5mA. Biết BJT có $β_n = β_p = 75$, $I_{SQ} = 10^{-13}$ A, diode có $I_{SD} = 3.10^{-14}$ A.

Giải: Gọi v_{op} là biên độ áp trên tải, khi đó

$$P_{L} = \frac{V_{op}^{2}}{2R_{L}} = 5W \Longrightarrow V_{op} = 8.94V$$

Áp nguồn cung cấp:

$$V_{cc} = \frac{V_{op}}{0.8} = 11.2V$$

Biên độ dòng cực E của Q_n:

$$i_{Enp} \approx i_{Lp} = \frac{V_{op}}{R_I} = 1.12A$$

Giải:

Biên độ dòng cực B của Q_n:

$$i_{Bnp} = \frac{i_{Enp}}{1+75} = 14.7 \text{mA}$$

Với yêu cầu dòng qua diode tối thiểu 5mA, nên chọn I_{Bias} = 20mA.

Để tính I_{CQ} , xét $v_i = o \Rightarrow I_{D1} = I_{D2} \approx I_{Bias}$ (bỏ qua dòng cực B của 2 BJT).

$$V_{BB} = V_{D1} + V_{D2}$$

Giải:

$$V_{BB} = 2V_T \ln \frac{I_D}{I_{SD}} = 1.416V$$

Dòng phân cực:

$$I_{CQ} = I_{SQ}e^{\frac{V_{BB}}{2V_T}} = 10^{-13}e^{\frac{1.416}{2(0.026)}} = 67\text{mA}$$

Câu hỏi: tính hiệu suất của mạch trong $v_I \sim trường hợp này? (57.2%)$

Một số cách phân cực khác:

V_{BE} Multiplier:

$$I_{R} = \frac{V_{BE1}}{R_{2}}; V_{BB} = I_{R}(R_{1} + R_{2}) = V_{BE1} \left(1 + \frac{R_{1}}{R_{2}}\right)$$

Từ đó lựa chọn R₁, R₂ để có V_{BB} mong muốn.

Mặt khác, có thể xem $I_{Bias} \approx I_{R1} + I_{C1}$ và

$$V_{BE1} = V_T \ln \left(\frac{I_{C1}}{I_{S1}} \right)$$

nên có thể tính giá trị I_{Bias} cần thiết.

Một số cách phân cực khác:

Sử dụng Transistor đệm (buffer transistors):

- Sử dụng mạch này trong trường hợp v_i có công suất nhỏ nhưng mong muốn ngõ ra v_o có công suất lớn.

Sử dụng các BJT ghép Darlington:

Sử dụng các BJT ghép Darlington:

- Chọn các BJT $Q_1,Q_2,\ Q_4$ và Q_5 giống nhau, Q_3 có $\beta\approx 1$.
- Mạch có tác dụng khuếch đại công suất lớn (khi nguồn v_i có công suất nhỏ) đồng thời khuếch đại điện áp.

