Interpretable Machine Learning

Regional Effects

Learning goals

- Difference between feature effects and feature interactions
- REPID

WHY REGIONAL EXPLANATIONS?

Problem: PD & ICE plots can be confounded by feature interactions.

Solution: Group homogeneous ICE curves in such a way that reduces the presence of individual interaction effects within a group \rightsquigarrow Regional effect plots (REPs).

Global Effect

Regional Effect (1)

Regional Effect (2)

- Splitting by the "workingday" revealed 2 different patterns that we're clashed together in the initial plot
- $\bullet \cup_i (regional_explanation_i) = global_explanation$
- $Fidelity(regional_explanation_i) > Fidelity(global_explanation)$

ICE CURVE: LOCAL FEATURE EFFECTS

Question: How do feature changes affect the prediction for **one observation**? **Idea:** Split $\mathbf{x} = (x_i, \mathbf{x}_{-i})$ into x_i (feature of interest) and \mathbf{x}_{-i} (remaining features)

- ullet Replace observed value x_j with grid values \tilde{x}_j while keeping values \mathbf{x}_{-j} fixed
- ullet Visualize function $\hat{f}(\tilde{\mathbf{x}}_j,\mathbf{x}_{-j})$ for varying $\tilde{\mathbf{x}}_j$ (ICE)

ICE CURVE: LOCAL FEATURE EFFECTS

Question: How do feature changes affect the prediction for **one observation**? **Idea:** Split $\mathbf{x} = (x_j, \mathbf{x}_{-j})$ into x_j (feature of interest) and \mathbf{x}_{-j} (remaining features)

- ullet Replace observed value x_j with grid values \tilde{x}_j while keeping values \mathbf{x}_{-j} fixed
- Visualize function $\hat{f}(\tilde{x}_j, \mathbf{x}_{-j})$ for varying \tilde{x}_j (ICE)

Example: SVM prediction surface (left), select observation and visualize changes in prediction for varying x_2 while keeping x_1 fixed \Rightarrow **local interpretation**

PD PLOT - GLOBAL FEATURE EFFECTS

Question: How do changes of feature values affect model prediction on average?

• **PD function**: Integrate out effect of X_{-j} to obtain marginal effect of x_j

$$f_j^{PD}(\tilde{x}_j) = \mathbb{E}_{X_{-j}}[\hat{f}(\tilde{x}_j, X_{-j})] = \int \hat{f}(\tilde{x}_j, X_{-j}) d\mathbb{P}(X_{-j})$$

• Estimate (MC integration): Average ICE curves at grid points \tilde{x}_j

$$\hat{f}_j^{PD}(\tilde{x}_j) = \frac{1}{n} \sum_{i=1}^n \hat{f}(\tilde{x}_j, \mathbf{x}_{-j}^{(i)})$$

FEATURE INTERACTIONS

Hooker (2004, 2007): Functional ANOVA decomposition of a function

$$\hat{f}(\mathbf{x}) = g_0 + \underbrace{\sum_{j=1}^{p} g_j(x_j)}_{\text{main effect}} + \underbrace{\sum_{j \neq k} g_{j,k}(x_j, x_k)}_{\text{two-way interaction effect}} + \cdots + \underbrace{g_{1,2,\dots,p}(\mathbf{x})}_{\text{p-way interaction effect}}$$

Friedman and Popescu (2008):

- \Rightarrow If x_j and \mathbf{x}_{-j} do not interact, we can decompose $f(\mathbf{x}) = g_j(x_j) + g_{-j}(\mathbf{x}_{-j})$
- \Rightarrow If x_j and x_k do not interact, we can decompose $f(\mathbf{x}) = g_{-j}(\mathbf{x}_{-j}) + g_{-k}(\mathbf{x}_{-k})$

Example: Not additively separable:

$$f(\mathbf{x}) = x_1 + x_2 + x_1 \cdot x_2 \neq g(x_1) + g(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + x_3 \cdot x_2 \text{ (not separable)}$$

$$f(\mathbf{x}) = x_1 + x_2 + x_3 \cdot x_3 \text{ (not separable)}$$

$$f(\mathbf{x}) = x_1 + x_2 + x_3 \cdot x_3 + x_3 \cdot x_4 + x_3 \cdot x_4 + x_4 \cdot x_5 + x_5 \cdot x_5 + x_$$

FEATURE INTERACTIONS

Hooker (2004, 2007): Functional ANOVA decomposition of a function

$$\hat{f}(\mathbf{x}) = g_0 + \underbrace{\sum_{j=1}^{p} g_j(x_j)}_{\text{main effect}} + \underbrace{\sum_{j \neq k} g_{j,k}(x_j, x_k)}_{\text{two-way interaction effect}} + \cdots + \underbrace{g_{1,2,\dots,p}(\mathbf{x})}_{\text{p-way interaction effect}}$$

Friedman and Popescu (2008):

- \Rightarrow If x_j and \mathbf{x}_{-j} do not interact, we can decompose $f(\mathbf{x}) = g_j(x_j) + g_{-j}(\mathbf{x}_{-j})$
- \Rightarrow If x_j and x_k do not interact, we can decompose $f(\mathbf{x}) = g_{-j}(\mathbf{x}_{-j}) + g_{-k}(\mathbf{x}_{-k})$

Example: Separable:

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1 \cdot x_2) = (x_1 + \log(x_1)) + (x_2 + \log(x_2)) = g_1(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + x_1 x_2 \text{ (not separable)}$$

$$f(\mathbf{x}) = x_1 + x_2 + x_1 x_2 \text{ (not separable)}$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + x_2 + \log(x_1) + g_2(x_2)$$

$$f(\mathbf{x}) = x_1 + g_2($$

REPID: REGIONAL EFFECT PLOTS • Herbinger et al. (2022)

Recall: Different shapes of ICE curves indicate interactions (ignore vertical shifts) ⇒ Focus on shape differences of mean-centered ICE curves.

Mean-centered ICE curve for obs. \mathbf{x} evaluated at m grid points $\tilde{x}_i^{(1)}, \dots, \tilde{x}_i^{(m)}$ is:

$$\hat{f}^{c}(\tilde{x}_{j}, \mathbf{x}_{-j}) = \hat{f}(\tilde{x}_{j}, \mathbf{x}_{-j}) - \frac{1}{m} \sum_{k=1}^{m} \hat{f}(\tilde{x}_{j}^{(k)}, \mathbf{x}_{-j})$$

REGIONAL EFFECTS - SYNTHETIC EXAMPLE

Example: $X_1, X_2, X_6 \sim \mathcal{U}(-1, 1), X_3, X_4, X_5 \sim \mathcal{B}(n, 0.5)$ (all iid)

 $ightharpoonup {
m Ground} \ {
m truth:} \ f(X) = 0.2 X_1 \frac{-8 X_2 + 8 X_2 \mathbbm{1}_{(X_1 > 0)} + 16 X_2 \mathbbm{1}_{(X_3 = 0)}}{-8 X_2 + 8 X_2 \mathbbm{1}_{(X_1 > 0)} + 16 X_2 \mathbbm{1}_{(X_3 = 0)}} + \epsilon$

 \rightsquigarrow Model: Random forest

Problem:

- PD curve of X₂ is misleading due to interactions → ICE
- ICE curves do not identify the interacting features

REGIONAL EFFECTS - SYNTHETIC EXAMPLE

Example: $X_1, X_2, X_6 \sim \mathcal{U}(-1, 1), X_3, X_4, X_5 \sim \mathcal{B}(n, 0.5)$ (all iid)

 $ightharpoonup ext{Ground truth: } f(X) = 0.2X_1 - 8X_2 + 8X_2 \mathbb{1}_{(X_1 > 0)} + 16X_2 \mathbb{1}_{(X_3 = 0)} + \epsilon$

 $\rightsquigarrow \mathsf{Model} \colon \mathsf{Random} \ \mathsf{forest}$

Problem:

- PD curve of X₂ is misleading due to interactions → ICE
- ICE curves do not identify the interacting features

Idea: Find regions with similar ICE curves and aggregate them to regional effects

REGIONAL EFFECTS - SYNTHETIC EXAMPLE

Example: $X_1, X_2, X_6 \sim \mathcal{U}(-1, 1), X_3, X_4, X_5 \sim \mathcal{B}(n, 0.5)$ (all iid)

$$ightharpoonup ext{Ground truth: } f(X) = 0.2X_1 - 8X_2 + \frac{8X_2\mathbb{1}_{(X_1 > 0)}}{8X_2\mathbb{1}_{(X_1 > 0)}} + \frac{16X_2\mathbb{1}_{(X_3 = 0)}}{8X_2\mathbb{1}_{(X_3 = 0)}} + \epsilon$$

 $\rightsquigarrow \mathsf{Model} \colon \mathsf{Random} \ \mathsf{forest}$

Problem:

- PD curve of X₂ is misleading due to interactions → ICE
- ICE curves do not identify the interacting features

Idea: Find regions with similar ICE curves and aggregate them to regional effects

Regional effect (blue curves) $\hat{=}$ Estimate PD curve in each region

⇒ Additive decomposition of global feature effect

REGIONAL EFFECTS - DETAILS

Question: How to split the curves into regions? Define risk as L2 loss of mean-centered ICE curves:

$$\mathcal{R}_{j}(\mathcal{N}) = \sum_{\mathbf{x} \in \mathcal{N}} \sum_{k=1}^{m} \left(\underbrace{\hat{f}^{c}(\tilde{\mathbf{x}}_{j}^{(k)}, \mathbf{x}_{-j}) - \hat{f}_{j|\mathcal{N}}^{PD,c}(\tilde{\mathbf{x}}_{j}^{(k)})}_{d_{k}} \right)^{2} \overset{\text{e.}}{\sim}$$

with the average feature effect in region $\mathcal{N}\subseteq\mathcal{X}$:

$$\hat{f}^{PD,c}_{j|\mathcal{N}}(\tilde{\mathbf{x}}_j) = \frac{1}{|\mathcal{N}|} \sum_{\mathbf{x} \in \mathcal{N}} \hat{f}^c(\tilde{\mathbf{x}}_j, \mathbf{x}_{-j})$$

- \Rightarrow Measures interaction-related heterogeneity (variance) of ICE curves in ${\cal N}$
- \Rightarrow Recursive partitioning (CART): Find best feature-split combination that solves

$$\mathop{\mathsf{arg\,min}}_{z,t} \; \mathcal{R}_{j} \left(\mathcal{N}_{\mathit{left}}
ight) + \mathcal{R}_{j} \left(\mathcal{N}_{\mathit{right}}
ight)$$

- $\bullet \ \mathcal{N}_{left} = \{ \mathbf{x} \in \mathcal{N} | x_z \le t \}$
- $\bullet \ \mathcal{N}_{right} = \{ \mathbf{x} \in \mathcal{N} | x_z > t \}$
- Split point t for feature $x_z, z \in -j$

Intuition: Is another feature x_z responsible for the heterogeneity (measured by \mathcal{R}_j)?

REGIONAL EFFECT PLOTS - REAL EXAMPLE

- Identify feature with highly heterogeneous local effects
 → hour: Most important and highly heterogeneous feature (highest variance)
- Find regions in feature space where this heterogeneity is minimal
 - Partition feature space using CART to minimize variance of mean-centered ICE curves within each region

REGIONAL EFFECT PLOTS - REAL EXAMPLE

