CS-341 Lecture 22

May 1, 2001

Flip-Flops

- Solves the problem of outputs changing while clock is true. Needed for registers.
- D Master-Slave flip-flop.
 - Master operates during clock pulse, but ignores input changes when clock is false.
 - Slave operates when clock is false, but ignores input changes during clock pulse.

Register Design

- Two operations
 - Select two registers to connect to the ALU
 - Two sets of Multiplexers
 - Select registers to receive the output of the ALU.
 - Connect ALU to D inputs of all registers and enable the clock inputs on the ones to receive the result.

Memory Design

- Static vs Dynamic RAM
- Static RAM Design (Figure 3-29)
 - One flip-flop per bit
 - Decode the address to select a word
 - Use RD to read (false means write)
 - CS to select a chip
 - OE to enable outputs
 - · Tristate buffers
 - Write Gate = $CS \cdot \sim RD \cdot Word Select$
 - · Goes to all clocks in a word
 - Read Gate = Data Value ⋅ Word Select
 - Gets OR'd with other bits in the same "slice."
 - Data Input and Data Output Lines