Logique du premier ordre (HAI504I)

Licence 3
Département Informatique
Faculté des Sciences de Montpellier

TD $N^{\circ}4$

Exercice 1

On considère deux symboles de prédicats P et Q, respectivement unaire et binaire, ainsi qu'un symbole de fonction f unaire. Soient les formules suivantes :

- 1. $\forall x. P(f(x))$;
- 2. $\forall x. Q(x, f(x))$;
- 3. $\forall x. \exists y. Q(f(x), y)$;
- 4. $\forall x, y. Q(x, y) \Rightarrow Q(f(x), f(y))$;
- 5. $\forall x. P(x) \Rightarrow \exists y. Q(f(y), x)$.

Soit l'interprétation I telle que :

- $-D_I = \{0,1,2\};$
- $I(P) = \{(0, F), (1, T), (2, T)\};$
- -I(Q)(x,y) = T si x < y, F sinon ;
- $I(f) = \{(0,1), (1,2), (2,0)\}.$

Évaluer les formules dans l'interprétation I.

Exercice 2

On considère un symbole de prédicat P binaire, ainsi qu'un symbole de fonction f unaire. Soient les formules suivantes :

- $--F_1 = \forall x. \exists y. P(x,y);$
- $-F_2 = \forall x. P(x, f(x)).$

Démontrer la validité des formules suivantes ou trouver un contre-modèle :

- 1. $F_1 \Rightarrow F_2$;
- 2. $F_2 \Rightarrow F_1$.

Exercice 3

On considère un symbole de prédicat P binaire, deux symboles de fonction f et g unaires, et une constante a. Soient les formules suivantes :

- $g(a) = a(H_1);$
- $-- \forall x. g(f(x)) = g(x) (H_2);$
- $\forall x. P(x,x) (H_3).$

Démontrer que : $H_1, H_2, H_3 \models P(a, g(f(a)))$.

Exercice 4

On considère l'ensemble d'équations ${\mathcal E}$ suivant :

```
-plus(x,o) \doteq x;
```

$$- plus(x, s(y)) \doteq s(plus(x, y)).$$

Où o est une constante, s un symbole de fonction unaire, et plus un symbole de fonction binaire.

- 1. Démontrer que l'équation $plus(s(s(o)), s(s(o))) \doteq s(s(s(s(o))))$ est prouvable dans le système EQ à partir de \mathcal{E} ;
- 2. Peut-on démontrer l'équation $plus(o, x) \doteq x$ à partir de \mathcal{E} ? Si oui, faire la démonstration dans EQ, sinon dire ce qu'il faudrait rajouter à \mathcal{E} .