Ordenagailuen Teknologiaren Oinarriak 2014/2015.

Gelako Praktikak. Zirkuituen ariketak.

1- Kalkulatu A eta B puntuen arteko erresistentzia baliokidea.

2- Kalkulatu A eta B puntuen arteko erresistentzia baliokidea.

3- Kalkulatu A eta B puntuen arteko erresistentzia baliokidea.

4- Kalkulatu A eta B puntuen arteko Thevenin baliokidea.

- Mo A a) Generikoki
 - b) V1=50; R1= 100.0 R2=80.0; R3=100.0

5- Kalkulatu A eta B puntuen arteko Norton baliokidea.

6- Kalkulatu irteerako tentsioa (Vo) mailen metodoa erabiliz.

7- Kalkulatu VAB tentsioa mailen metodoa erabiliz (gainezarmena).

$$V_{A}=3V$$

$$R_{1}=2K$$

$$R_{2}=2K$$

$$R_{3}=2K$$

$$R_{3}=2K$$

$$R_{4}=4K$$

$$R_{5}=4K$$

$$R_{5}=4K$$

8- Kalkulatu irteerako tentsioa (Vo) a) gainezarmena b) Thevenin aplikatuz.

10- Tentsio zatitzaileak: hurrengo zirkuituetan nolakoak izan behar dira erresistentzien balioak irteerako tentsio hori lortzeko?

11- Korronte zatitzaileak: hurrengo zirkuituetan nolakoak izan behar dira a)erresistentzien balioak korronte horiek lortzeko? b) nolakoak izango dira korronteak?

- 12- Fasore moduan adierazi:
 - a. $v_1(t)=24 \cdot \cos(628t-45^\circ)$
 - b. $v_2(t)=12 \cdot \cos(314t-425^\circ)$
 - c. $v_3(t)=18\cdot\sin(314t+4,2^\circ)$
- 13- Denboraren eremuan adierazi:
 - a. **V**=16 <u>/20</u>° (f=1 kHz)
 - b. I=10 <u>/-7</u>5° (f=1 kHz)
 - c. V=12 <u>/-6</u>0° (f=400 Hz)
- 14- Hurrengo zirkuiturako
 - a. $v(t)=24\cdot\cos(377t+75^\circ)$ eta R=6 Ω izanik, kalkulatu i(t)
 - b. $I=12 \ \underline{/}60^{\circ}$, $R=4 \ \Omega$ eta f=4 kHz direla jakinik, kalkulatu $v_{R}(t)$

$$\begin{cases} \overline{V} = R \cdot \overline{I} \\ \theta_{V} = \theta_{i} \end{cases}$$

15- Hurrengo zirkuiturako

- a. v(t)=12·cos(377t+20°) eta L=20 mH izanik, kalkulatu i(t)
- b. I=4 /-30°, L=0,05 H eta f=60 Hz direla jakinik, kalkulatu v(t)

16- Hurrengo zirkuiturako

17- Inpedantzia/admitantzia. Orain arte R, L, C solte; orokortuz ...

- a. Kalkulatu Zbaliokidea f=60 Hz bada
- b. v(t)=50·cos(ωt+30°) bada, kalkulatu i(t).
- c. Eta f=60 Hz ordez, f=400 Hz bada?

$$V(t) \bigcirc \begin{cases} R = 25.0 \\ 3 L = 20 \text{ mH} \end{cases}$$

$$\frac{1}{1} C = 50 \text{ mF}$$

18- Kalkulatu A eta B puntuen arteko inpedantzia baliokidea.

19- Kalkulatu A eta B puntuen arteko inpedantzia baliokidea.

20- v(t)=120-cos(377t+60°) izanik, kalkulatu i(t)

21- V=10 /20° dela jakinik, kalkulatu I

