TOTAL POINTS 9

1.

Question 1

Person 1 has hazard $h_1(t) = 1h_1(t) = 1$, and Person 2 has hazard $h_2(t) = 2h_2(t) = 2$. What is the probability of dying within the first year for each patient?

Hint:

The survival function S(t)S(t) in terms of the hazard function is:

$$S(t) = e^{-\int th(s)ds} S(t) = e^{-\int th(s)ds}$$

1 / 1 point

0

0.37, 0.14

◉

0.63, 0.86

0

0.6, 0.6

Correct

Note that since the hazards are constant,

$$S_1(1) = e^{(-h_1(0))} = e^{(-1)}S_1(1) = e^{(-h_1(0))} = e^{(-1)}.$$

$$S_2(1) = e^{(-h_2(0))} = e^{(-2)}S_2(1) = e^{(-h_2(0))} = e^{(-2)}$$
.

Since we want the probability of death, we take 1-S(t)1-S(t).

This gives us for person 1: $1-e^{(-1)} = 0.631 - e^{(-1)} = 0.63$.

For person 2,
$$1 - e^{(-2)} = 0.861 - e^{(-2)} = 0.86$$
.

2.

Question 2

Let T > 0T > 0.

For patient 1, let the survival function be S $1(t)S_1(t)$ and the hazard function be h $1(t)h_1(t)$.

For patient 2, let the survival function be S $2(t)S_2(t)$ and the hazard function be h $2(t)h_2(t)$

You see that $S_1(T) > S_2(T)S_1(T) > S_2(T)$. The survival probability of patient 1 at time T is higher than the survival probability of patient 2 at time T.

Which of the following is true about the hazard of patient 1 and 2 at time T?

Hint:

$$S(t) = e^{-\int th(s)ds} S(t) = e^{-\int th(s)ds}$$

1 / 1 point

C

 $h_1(T) > h_2(T)$

0

 $h_1(T) < h_2(T)$

0

 $h_1(T) = h_2(T)$

0

None of the above

Correct

The answer is none of the above.

Recall that S(t)S(t) decays exponentially in the integral of the hazard (it's e raised to the power of negative 1 times the integral of the hazard).

So just because you know S(T)S(T) at one point does not say anything about h(T)h(T) at that point, since S(T)S(T) also depends on what happened from time t=0 up to time t=T t=T.

3.

Question 3

Now assume that the hazards for patient 1, h_1h_1 and for patient 2, h_2h_2 are proportional to each other. Also assume that $S_1(T) > S_2(T)S_1(T) > S_2(T)$ for some T > 0.

Then which of the following is true about the hazards?

1 / 1 point

◉

$$h_1(T) < h_2(T)$$

0

$$h_1(T) = h_2(T)$$

0

$$h_1(T) > h_2(T)$$

Correct

Since the hazards are proportional, we know that they cannot cross each other when we vary the time T.

Therefore if the survival function of Person 1 is above the survival function of Person 2 at any point, it must be above the person 2 survival function everywhere.

Since the survival function decays exponentially with the hazards (it is e raised to the power of negative 1 times the integral of the hazard) it means that the hazard of Person 1 is LESS than the hazard of Person 2.

Since the hazards are proportional, this must be true for any time T.

In particular
$$h_1(T) \le h_2(T)h_1(T) \le h_2(T)$$
.

4.

Question 4

You've fit a Cox model on 2 features: age and smoking status.

The coefficients of these features are:

$$\beta = 0.9 \beta age = 0.9$$
 and $\beta = 10.0 \beta smoker = 10.0$.

What is the hazard ratio between Person 1, a 40 year old non-smoker, and Person 2, a 30 year old smoker?

Recall that Cox Proportional Hazards assumes a model of the form:

$$h(t) = \lambda_{0}(t) e^{(\beta_{age} \times Age + \beta_{smoker})} h(t) = \lambda_{0}(t) e^{\beta_{age} \times Age + \beta_{smoker}} + \lambda_{0}(t) e^{\beta_{age} \times Age + \beta_{smoker}}$$

We're asking you to find the ratio:

$$\frac{h_1(t)}{h_2(t)}h_2(t)h_1(t)$$

1 / 1 point

0

2.7

(

0.36

0

2.64

Correct

 $\frac {h_1(t)} {h_1(t)} h_1(t) = \frac{\langle \lambda_{0}(t) e^{(t)} e^{(t)} + \beta_{0}(t) = \frac{1} +$

When we take the ratio, the $\label{lambda} 10} \lambda_0$ will drop out.

So we just compute:

$$\frac{h_1(t)}{h_2(t)} = e^{(-1)} = 0.36h_2(t)h_1(t) = e^{(-1)} = 0.36$$

5.

Question 5

You've fit a cox model and have the following coefficients:

$$\beta = -1.0 \beta female = -1.0$$

\beta {age} =
$$1.0\beta age = 1.0$$
,

\beta
$$\{BP\} = 0.6 \beta_{BP} = 0.6$$

h(t) = \lambda_{0}(t) e^{((\beta_{female}) \times female)} + (\beta_{age} \times Age) + (\beta_{BP} \times BP) \)
$$h(t) = \lambda_0(t)e((\beta_{female} \times female) + (\beta_{age} \times Age) + (\beta_{BP} \times BP))$$

Which of the following interpretations is most correct?

1 / 1 point

O

All other things held equal, having lower age increases your risk

(E)

All other things held equal, being a female decreases your risk

0

All other things held equal, having higher BP decreases your risk

Correct

Note that the effect of increasing a feature x by 1 unit will be to multiply the hazard by $e^{(\hat{x})}e(\beta_x)$.

Since $e^{\{(0)\}} = 1e^{(0)} = 1$, a coefficient less than 0 (a negative coefficient) reduces the hazard. A coefficient greater than 0 (positive) increases the hazard.

Therefore the only correct interpretation is that being a female decreases the hazard, since $\beta < 0$ female 0.

6.

Question 6

Assume h 1(t) = t, and h 2(t) = 1.0. At which time T > 0 does S 1(T) = S 2(T)?

1 / 1 point

 \circ

0.5

0

(

2

0

None of the above

Correct

Remember that the Cumulative hazard is the integral from 0 to t of the hazard function. Using calculus, one can see that the cumulative hazard for Person 1 is 0.5t^2 and for person 2, the cumulative hazard is t.

Since $S(t) = \exp(-H(t))$, the survival functions are equal if and only if the cumulative hazard is equal.

Setting these equal to each other, we get t = 2. A common mistake is just to set the hazards equal, which would give you t = 1.

7. Question 7

Using the Nelson-Aalen estimator estimate H(7), the value of the cumulative hazard at t=7 for this dataset.

ID	Outcome
1	3
2	4
3	8
4	6+

The Nelson-Aalen estimator is:

$$H(t) = \sum_{i=0}^{t} \frac{d_i}{n_i} H(t) = \sum_{i=0}^{t} \frac{d_i}{d_i}$$

1 / 1 point

C

5/9

•

7/12

0

8/11

Correct

Evaluating this for t = 7t = 7, we get

$$\begin{aligned} & \left\{ d_3 \right\} \left\{ n_3 \right\} + \left\{ a_4 \right\} \left\{ n_4 \right\} \\ & + \left\{ 1 \right\} \left\{ 3 \right\} = \left\{ 7 \right\} \left\{ 12 \right\} \\ & + 127 \end{aligned}$$

8.

Question 8

Which risk assignments would make this pair concordant?

Patient 1

10

Patient 2

5+

1 / 1 point

Т

0

0.3, 0.8

0

0.5, 0.3

0

0.5, 0.5

•

The pair is not permissible

Correct

The pair is in fact not permissible. Since Patient 2 was censored before Patient 1 had the event, we cannot say who had a worse outcome.

9. Question 9

Compute the Harrell C-index for the following dataset and risk scores:

ID	Outcome	Score
1	4	1.6
2	6+	1.2
3	5	0.8
4	7	0.1

Step 1: Find all the permissible pairs

Step 2: of the permissible pairs, determine which ones are concordant.

Step 3: of the permissible pairs, determine which ones are risk ties.

Harrell's c-index = $\frac{\text{concordant} + 0.5 \times \text{riskties}}{\text{permissible}}$

1 / 1 point

O

1.0

•

8.0

 \circ

0.7

Correct

The permissible pairs are

$$(1, 2), (1, 3), (1, 4), (2, 3), (3, 4).$$

Of these, the concordant ones are

Since there are no ties, the harrell's c-index is the number of concordant pairs over the number of permissible pairs, which is $\frac{4}{5} = 0.854 = 0.8$.