AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1 (previously presented): An insulated integrated circuit comprising:

An integrated circuit; and

An insulating layer having a dielectric constant of less than about 2.5 is disposed on said integrated circuit, wherein said insulating layer is a polyimide film that is the polymerization product of polymerization product of an aromatic diamine having the general formula (I):

$$H_2N$$
 H_2
 H_3
 H_3
 H_3

and an aromatic dianhydride having the formula (II):

wherein R is an organic substituent selected from the group consisting of CF₃, o-trifluoromethyl phenyl, m-trifluoromethyl phenyl, p-trifluoromethyl phenyl and 3,5 bis[(m-trifluoromethyl) phenyl]; or

the polymerization product of an ormatic dianhydride having the general formula (III):

$$\begin{array}{c|c}
CF_3 & O \\
CF_4 & O \\
CF_5 & O \\
C$$

and an aromatic diamine having the formula (IV):

$$H_2N$$
 R
 NH_2

wherein R is a substituent selected from the group consisting of trifluoromethyl, o-trifluoromethyl phenyl, m-trifluoromethyl phenyl, p-trifluoromethyl phenyl and 3,5'-bis[(m-trifluoromethyl) phenyl];

further wherein the dielectric constant of said insulating layer is less than about 2.5.

Application No. 09/890,378 Response Dated July 16, 2004

Reply to Office Action of March 16, 2004

Claim 2 (original): The insulated integrated circuit according to claim 1, wherein said integrated

circuit is a microprocessor.

Claim 3 (original): The insulated integrated circuit according to claim 1, wherein the thickness

of said insulating layer is from about 10 to about 1000 microns.

Claim 4 (original): The insulated integrated circuit according to claim 1, wherein the thickness

of said insulating layer is from about 10 to about 500 microns.

Claim 5 (original): The insulated integrated circuit according to claim 1, wherein the thickness

of said insulating layer is from about 10 to about 100 microns.

Claims 6-8 (canceled)

Claim 9 (original): The insulated integrated circuit according to claim 1, wherein the coefficient

of thermal expansion is greater than about 23x10^{-6/o}C.

Claim 10 (original): The insulated integrated circuit according to claim 1, wherein the coefficient of thermal expansion is greater than about $42 \times 10^{-6/9}$ C.

Claim 11 (original): The insulated integrated circuit according to claim 1, wherein the coefficient of thermal expansion is greater than about $50x10^{-6/9}$ C.

Claim 12 (previously presented): An insulated electrically conductive component comprising: an electrically conductive component; and

an insulating layer comprising the polylmerization product of an aromatic diamine having the general formula (I):

$$\begin{array}{c} CF_3 \\ \\ H_2N \\ \hline \\ F_3C \\ \end{array}$$

and an aromatic dianhydride having the formula (II):

wherein R is an organic substituent selected from the group consisting of CF₃, o-trifluoromethyl phenyl, m-trifluoromethyl phenyl, p-trifluoromethyl phenyl and 3,5-bis[(m-trifluoromethyl) phenyl]; or

the polymerization product of an aromatic dianhydride having the general formula (III):

$$CF_3$$
 CF_3
 CF_3

and an aromatic diamine having the formula (IV):

$$R$$
 H_2N
 NH_2

wherein R is a substituent selected from the group consisting of trifluoromethyl, o-trifluoromethyl phenyl, m-trifluoromethyl phenyl, p-trifluoromethyl phenyl and 3,5'-bis[(m-trifluoromethyl) phenyl], wherein

the coefficient of thermal expansion of the insulated electrically conductive component is greater than about $23x10^{-6/o}$ C.

Claim 13 (previously presented): The insulated electrically conductive component according to claim 12, wherein said electrically conductive component is selected from the group consisting of capacitors, diodes, connectors and transistors.

Claim 14 (original): The insulated electrically conductive component according to claim 12, wherein the thickness of said insulating layer is from about 10 to about 1000 microns.

Claim 15 (original): The insulated electrically conductive component according to claim 12,

wherein the thickness of said insulating layer is from about 10 to about 500 microns.

Claim 16 (original): The insulated electrically conductive component according to claim 12,

wherein the thickness of said insulating layer is from about 10 to about 100 microns.

Claim 17 (original): The insulated electrically conductive component according to claim 12,

wherein the dielectric constant of said insulating layer is less than about 2.8.

Claim 18 (original): The insulated electrically conductive component according to claim 12,

wherein the dielectric constant of said insulating layer is less than about 2.7.

Claim 19 (original): The insulated electrically conductive component according to claim 12,

wherein the dielectric constant of said insulating layer is less than about 2.5.

Claim 20 (canceled)

Claim 21 (original): The insulated electrically conductive component according to claim 12,

wherein the coefficient of thermal expansion is greater than about $42x10^{-6/6}$ C.

Claim 22 (original): The insulated electrically conductive component according to claim 1, wherein the coefficient of thermal expansion is greater than about $50x10^{-6/0}$ C.

Claim 23 (currently amended): A method of coating an integrated circuit comprising the steps of:

preparing a polyimide comprising the polymerization product of an aromatic diamine

$$H_2N$$
 F_3C
 H_2
 H_2
 H_2
 H_3

having the general formula (I):

and an aromatic dianhydride having the formula (II):

wherein R is an organic substituent selected from the group consisting of CF3, o-trifluoromethyl phenyl, m-trifluoromethyl phenyl, p-trifluoromethyl phenyl and 3,5-bis[(m-trifluoromethyl) phenyl]; or

the polymerization product of an aromatic dianhydride having the general formula (III):

$$\begin{array}{c|c} CF_3 \\ CF_3 \\ CF_3 \end{array}$$

Application No. 09/890,378
Response Dated July 16, 2004
Reply to Office Action of March 16, 2004
and an aromatic diamine having the formula (IV):

wherein R is a substituent selected from the group consisting of trifluoromethyl, o-trifluoromethyl phenyl, m-trifluoromethyl phenyl, p-trifluoromethyl phenyl and 3,5'-bis[(m-trifluoromethyl) phenyl];

applying the polyimid dispersed within an organic solvent to the surface of the integrated circuit forming a thin insulating layer or film on the surface of the circuit; and

heating the integrated circuit with the insulating polyimide layer or film disposed thereon to a temperature sufficient to evaporate the organic solvent-and to cure the polyimide.

Claim 24 (original): The method according to claim 23, wherein the step of applying includes one of spraying, dipping, spin-coating, brush-coating and flow-coating.

Claim 25 (previously presented): The method according to claim 23, wherein the organic solvent is selected from the group consisting of acetone, cyclopentanone, tetrahydrofuran (THF), N,N'-dimethylacetamide (DMAc), N,N'-dimethylformamide (DMF), N-methylpyrrolidone (NMP) p-chlorophenol and m-cresol.