Libyan Academy of Postgraduate Studies Tripoli, Libya School of Applied Sciences and Engineering Department of Electrical and Computer Engineering Division of Information Technology (PHD)



## Arabic Text Classification Using Convolutional Neural Network and Genetic Algorithms

By

DEEM ALSALEH and SOUAD LARABI-MARIE-SAINTE (July 2021)



Supported by the Emerging Intelligent Autonomous Systems Data Science and Blockchain Lab (EIAS), Prince Sultan University, Riyadh, Saudi Arabia

Read & Summarized by Amal Omar Saad & Abdulmenam Alahreah

**Subject:** Natural Language Processing(NLP)

Lecturer: Dr. Abdulbaset Goweder

### **Outlines**

- Introduction
- Problem statement
- Related Work
- Aim and Contribution
- Concepts of CNN and Genetic Algorithm.
- Methodology and Experiments Setup
- Results and Discussion
- Conclusion
- Critique



### Introduction

- This paper proposes Genetic Algorithm (GA) based Convolutional Neural Network(CNN) for Arabic Text Classification.
- GA is the optimization methods were proved to enhance the Deep Learning results ([16], [17]), it has not been yet applied for Arabic text classification before this study.
- GA is used to optimize the CNN parameters (weight's values).
- The proposed model is tested using two large datasets and compared with the state-of-the art studies.
- The results showed that the classification accuracy achieved an improvement of 4 to 5%.

## **Problem Statement**

• **Gradient-descent** is **used** in CNN and other DL techniques might get stuck in the local optima due to the **random initialization** of the **weigh values**.



#### **Aim and Contribution**

1. Propose a new **hybrid Arabic text classifier** based on GA and CNN.

2. Enhance the classification accuracy by optimizing the CNN weight vector using GA.

## **Objectives**

- The objectives of this research article are four:
  - 1. Investigate the limitations of the existing Arabic text classification techniques.
  - 2. Perform the most suitable pre-processing techniques on raw Arabic text to make it ready for classification.
  - 3. Propose a new model to improve the classification accuracy of Arabic text classification.
  - 4. Perform a **comparison study** to **confirm** the efficiency of the proposed model.

## **Related Works**

|                                      |                  | Study Name                                     | Model         | Work Way                                                                                                                                                                                                                                                                                                  | Dataset                                                                                | Result                      | Limitation                                                                                                                  |
|--------------------------------------|------------------|------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| ARABIC TEXT                          | 8<br><b>[24]</b> | CNN for Arabic<br>Dialects<br>2017             | • CNN         | <ul> <li>No preprocessing</li> <li>Using model (SemEval-<br/>2017 Arabic dialect Twitter<br/>datasets)</li> </ul>                                                                                                                                                                                         | Tweets ( small dataset)                                                                |                             | Good result     outperformed                                                                                                |
| DL BASED ARABIC TI<br>CLASSIFICATION | 9<br><b>[7]</b>  | SATCDM<br>2020                                 | • CNN         | <ul> <li>No preprocessing</li> <li>based on         <ul> <li>Multi-Kernel CNN</li> <li>N-gram word embedding</li> </ul> </li> </ul>                                                                                                                                                                       | <ul> <li>15 public datasets</li> <li>Some of data preprocessing from source</li> </ul> | accuracy<br>rate<br>97.58%, | <ul> <li>performed a comparison study</li> <li>well-known</li> <li>Machine and Deep</li> <li>Learning algorithms</li> </ul> |
|                                      | 10               | a new approach<br>to recognize                 | CNN and<br>GA | • fitness function                                                                                                                                                                                                                                                                                        | ered as a GA chromosome.                                                               | accuracy<br>rate            | Dataset                                                                                                                     |
| I and GA                             | [16]             | human actions<br>(Image<br>Processing)<br>2016 |               | <ul> <li>classification accuracy</li> <li>64 chromosomes: <ul> <li>63 encode the 3 convolutional masks "range [-100,100]"</li> <li>last number is for the seed value "range 0 to 5000"</li> </ul> </li> <li>After 5 iterations: <ul> <li>best chromosomes probability 0.01 and 0.8</li> </ul> </li> </ul> |                                                                                        | 96.88%                      | action YouTube<br>videos dataset<br>(UCF50)                                                                                 |
| CN                                   | 11               | crack detection in images                      | CNN and<br>GA | <ul> <li>to optimize weight initiation for crack detection in images.</li> <li>chromosomes (initialized randomly 0 to 255).</li> </ul>                                                                                                                                                                    |                                                                                        | accuracy<br>rate            | Dataset                                                                                                                     |
|                                      | [17]             | 2004                                           |               | and the chromosome leng                                                                                                                                                                                                                                                                                   | n method, with a 1% mutation rate                                                      | 92.3%                       | Study 100 images                                                                                                            |

# BACKGRPUND Deep Learning(DL) and CNN

 The advantages of using DL over ML is eliminating the need for data pre-processing.



Fig(1):CNN architecture

# **GA Concept**

- A genetic algorithm (GA) is a search technique used in computing to find true or approximate solutions to optimization and search problems.
- GA was first introduced by John Holland in the early 1970's.



Fig (2): Genetic algorithm steps

#### **BACKGRPUND**

### **Concepts of GA**

#### **Chromosome representation**



#### A single-point crossover operator.



#### **Mutation Process**



Fig (3): Chromosome representation and Genetic algorithm steps

## **Genetic Algorithm flowchart**





Source :https://www.ewh.ieee.org/soc/es/May2001/14/Begin.htm

## Research Methodology

- Building two models:
  - Model 1: CNN with Glove (without GA)
  - Model 2: CNN with Glove + GA
    - Two data sets SAND and MAND
  - Model 3: CNN with TF-IDF take from (22)

|                | [22]                                  | Proposed Research    |          |  |
|----------------|---------------------------------------|----------------------|----------|--|
|                | [22]                                  | CNN                  | GA-CNN   |  |
| Data Size      | 111,728                               | 111,728              |          |  |
|                | <ul> <li>Remove Stop Words</li> </ul> | - Remove Stop Words  |          |  |
| Dro porossing  | - Stemming                            | - Stemming           |          |  |
| Pre-porcessing | - Remove Punctuation                  | - Remove Punctuation |          |  |
|                | - Remove Digits                       | - Remov              | e Digits |  |
| Representation | TF-IDF                                | (                    | Glove    |  |
|                | 0.0004                                | 0.0410               | 0.0040   |  |

#### Cont...

## Research Methodology



#### Cont...

## **Research Methodology**

#### (GA BASED CNN)

- The CNN classification model will be optimized using GA optimization algorithm to find the best weights.
  - the chromosomes represent the network weights.
  - The fitness function is the accuracy of the training set.
- The optimization is to maximizing the accuracy of the training set
- The tournament selection of three participants is utilized.



## Research Methodology

## (Validation)

#### The datasets are divided into three sets:

- 70% for training.
  - The training data is used to train the model.
- 15 % for validation.
  - The validation data is used to select the model based on the best solution (weight vector) achieving the highest accuracy.
- 15% for testing.
  - The testing data is used to evaluate proposed classification model GA-CNN.

Cont...

## **Experiment**

#### ( DATA COLLECTION)

#### Two large datasets in MSA format:

- 1. Saudi Newspapers Articles Dataset (SNAD)- 45935 docs
- 2. Moroccan Newspapers Articles Dataset (MNAD) 111728 docs

#### TABLE 2. Details of Saudi newspapers articles dataset.

| Resource | Economical | Political | Social | Sports | General news | Arts  | Total  |
|----------|------------|-----------|--------|--------|--------------|-------|--------|
| AlRiyadh | 1,992      | 3,442     | 220    | 3,954  | 2,362        | 591   | 12,561 |
| SPA      | 5,637      | 6,126     | 6,544  | 3,180  | 7,786        | 4,101 | 33,374 |
| Total    | 7,629      | 9,568     | 6,764  | 7,134  | 10,148       | 4,692 | 45,935 |

#### TABLE 3. Details of Moroccan newspapers articles dataset.

| Resource  | Politic | Sports | Economy                           | Culture | Diverse | Total   |
|-----------|---------|--------|-----------------------------------|---------|---------|---------|
| Hespress  | 5,737   | 6,965  | 3,795                             | 3,023   | 7,475   | 26,995  |
| Akhbarona | 12,387  | 5,313  | 7,820                             | 5,080   | 0       | 30,600  |
| Assabah   | 2,381   | 34,244 | 2,620                             | 5,635   | 9,253   | 54,133  |
| Total     | 20,505  | 46,522 | mal <b>a 4</b> 5 <b>2</b> 43menan | 13,738  | 16,728  | 111,728 |

#### Cont...

## **Experiment**

( DATA Preprocessing and Representation )

- Implemented using python 3:
- the preprocessing step contains four main sections:
  - cleaning, normalization, tokenization, and stemming.
- the National Language ToolKit (NLTK) [41] was used for tokenization and stemming,
- Data representation is done using (GLoVe) [42].
  - pre-trained GLoVe model is used called "glove.6B.100d".

## **Experiment**

#### (CLASSIFICATION USING GA-CNN)

 In this experiment, GA is applied to solve the issue of the randomly initialized weights in CNN.

**TABLE(1)**: presents a summary of the selected parameters.

| Operation        | Value           |
|------------------|-----------------|
| Fitness Function | Accuracy of CNN |
| Selection        | Tournament      |
| Crossover        | 0.65            |
| Mutation         | 0.05            |

The crossover is applied using 2-point with probability of

Crossover selection is random number to in this example must be less than 0.65

Mutation selection is random number to in this example must be less than 0.05

## **Experiment**

#### Setting the parameters of CNN (best parameters):

- **Epochs:** 40,

Batch Size: 1000,

Optimizer: RMSprop for both datasets,

- Max pooling is applied Dropout probability of 0.5,
- Activation function is ReLu.
- The classifier is trained using GA:
  - GA randomly initializes the chromosomes, which represent the weights.
  - After running the first iteration and finding the best chromosome (solution), it is used to train the classification model and find the accuracy using the validation set.
  - This process is iterated 100 times.
  - the best accuracy is selected along with the best chromosome.
  - The best values of the weights are then used to find the classification accuracy for the testing set.

## **Result Analysis**

1. Classification using GA-CNN For SNAD (New ) Dataset:

TABLE 6. Classification accuracy for the baseline and GA-CNN using SNAD dataset.

|            | CNN    | GA-CNN |
|------------|--------|--------|
| Validation | 0.8808 | 0.9423 |
| Testing    | 0.8432 | 0.8871 |

- It is clear that GA-CNN improved the classification accuracy.

TABLE 7. Classification results for the baseline and GA-CNN using SNAD testing set.

| Measure | Accuracy | F1 Score | Precision | Recall | RMSE   |
|---------|----------|----------|-----------|--------|--------|
| CNN     | 0.8432   | 0.8584   | 0.8704    | 0.8499 | 0.0317 |
| GA-CNN  | 0.8871   | 0.8920   | 0.8970    | 0.8871 | 0.0182 |

## **Result Analysis**

Classification using GA-CNN For MNAD Dataset:

TABLE 8. MNAD dataset - results of the comparison study.

|                | [22]                                   | Propos               | Proposed Research |  |  |
|----------------|----------------------------------------|----------------------|-------------------|--|--|
|                | [22]                                   | CNN                  | GA-CNN            |  |  |
| Data Size      | 111,728                                | 111,728              |                   |  |  |
|                | - Remove Stop Words                    | - Remov              | e Stop Words      |  |  |
| Dro norooccina | - Stemming                             | - Stemming           |                   |  |  |
| Pre-porcessing | <ul> <li>Remove Punctuation</li> </ul> | - Remove Punctuation |                   |  |  |
|                | - Remove Digits                        | - Remove Digits      |                   |  |  |
| Representation | TF-IDF                                 | Glove                |                   |  |  |
| Accuracy       | 0.9294                                 | 0.9410               | 0.9842            |  |  |

#### **Discussion**

- Effects of dataset type on accuracy:
  - SAND (45935)
  - MNAD(111728)



FIGURE Na Accourage of the training, validation, and testing for both 22 datasets using the parameters set above.

#### **Discussion**



FIGURE 18. The training and validation accuracy curve for MNAD dataset using batch size equals 1000 and RMSprop optimizer.

- Effects of number of Epochs on accuracy
  - Training
  - Validation
- Batch size =1000



FIGURE 19. The training and validation accuracy curve for SNAD dataset

#### Conclusion

#### Research Impacts:

- Supply a new Arabic Text Classification model that fill in the gap in ANLP.
- Provide a hybrid classier based on GA-CNN that enhances the classification accuracy by an average of 4 - 5%.
- Contribute in enhancing a Deep Learning technique by integrating an optimization algorithm to and the best weights.
- The new dataset SNAD is used for the first time.
   This allows new and future comparison studies.



## **Conclusion**

| LIMITATIONS OF GA-CNN     | ADVANTAGES OF GA-CNN         |
|---------------------------|------------------------------|
| It takes time when        | GA-CNN is a competitive      |
| training data using GA to | and efficient classification |
| find the optimal weights. | model for Arabic text.       |
|                           |                              |
|                           |                              |

### Critique the paper

- The study proposed the hybrid methodology as an attempt to find the best way to generate the weights for CNN algorithm, and this was based on a deep study of previous research.
- It still takes time when training data using GA to find the optimal weights.
- Slightly improvement over other CNN models.
- It is appear that is an Overfitting.

#### References

- B. Comrie, The World's Major Languages. London, U.K.: Routledge, 2009.
- [2] S. L. Marie-Sainte, N. Alalyani, S. Alotaibi, S. Ghouzali, and I. Abunadi, "Arabic natural language processing and machine learning-based systems," *IEEE Access*, vol. 7, pp. 7011–7020, 2019.
- [3] M. Eltay, A. Zidouri, and I. Ahmad, "Exploring deep learning approaches to recognize handwritten arabic texts," *IEEE Access*, vol. 8, pp. 89882–89898, 2020.
- [4] M. Al-Smadi, S. Al-Zboon, Y. Jararweh, and P. Juola, "Transfer learning for arabic named entity recognition with deep neural networks," *IEEE Access*, vol. 8, pp. 37736–37745, 2020.
- [5] M. T. B. Othman, M. A. Al-Hagery, and Y. M. E. Hashemi, "Arabic text processing model: Verbs roots and conjugation automation," *IEEE Access*, vol. 8, pp. 103913–103923, 2020.
- [6] H. A. Almuzaini and A. M. Azmi, "Impact of stemming and word embedding on deep learning-based arabic text categorization," *IEEE Access*, vol. 8, pp. 127913–127928, 2020.
- [7] M. Alhawarat and A. O. Aseeri, "A superior arabic text categorization deep model (SATCDM)," *IEEE Access*, vol. 8, pp. 24653–24661, 2020.
- [8] S. L. Marie-Sainte and N. Alalyani, "Firefly algorithm based feature selection for arabic text classification," J. King Saud Univ. Comput. Inf. Sci., vol. 32, no. 3, pp. 320–328, Mar. 2020.
- [9] D. Khurana, A. Koli, K. Khatter, and S. Singh, "Natural language processing: State of the art, current trends and challenges," 2017, arXiv:1708.05148. [Online]. Available: https://arxiv.org/abs/1708.05148
- 10] T. Sadad, A. Rehman, A. Munir, T. Saba, U. Tariq, N. Ayesha, and R. Abbasi, "Brain tumor detection and multi-classification using advanced deep learning techniques," *Microsc. Res. Technique*, vol. 84, no. 6, pp. 1296–1308, 2021.
- 11] M. A. El-Affendi, K. Alrajhi, and A. Hussain, "A novel deep learning-based multilevel parallel attention neural (MPAN) model for multidomain arabic sentiment analysis," *IEEE Access*, vol. 9, pp. 7508–7518, 2021.
- 12] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," *Nature*, vol. 521, no. 7553, p. 436, 2015.
- 13] W. Yin, K. Kann, M. Yu, and H. Schütze, "Comparative study of CNN and RNN for natural language processing," 2017, arXiv:1702.01923. [Online]. Available: https://arxiv.org/abs/1702.01923
- [14] A. A. Sallab, H. Hajj, G. Badaro, R. Baly, W. El Hajj, and K. B. Shaban, "Deep learning models for sentiment analysis in arabic," in *Proc. 2nd Workshop Arabic Natural Lang. Process.*, 2015, pp. 9–17.
- [15] A. M. Alayba, V. Palade, M. England, and R. Iqbal, "Arabic language sentiment analysis on health services," in *Proc. 1st Int. Workshop Arabic Script Anal. Recognit. (ASAR)*, Apr. 2017, pp. 114–118.
- [16] E. P. Ijjina and K. M. Chalavadi, "Human action recognition using genetic algorithms and convolutional neural networks," Pattern Recog和知识如此的自己的中心。
  pp. 199–212, Nov. 2016.

- [17] R. Oullette, M. Browne, and K. Hirasawa, "Genetic algorithm optimization of a convolutional neural network for autonomous crack detection," in *Proc. Congr. Evol. Comput.*, vol. 1, Jun. 2004, pp. 516–521.
- [18] D. AlSaleh, M. BinAlAmir, and S. Larabi-Marie-Sainte, "SNAD arabic dataset for deep learning," in *Intelligent Systems and Applications* (Advances in Intelligent Systems and Computing), K. Arai, S. Kapoor, and R. Bhatia, Eds., vol. 1250. Cham, Switzerland: Springer, 2021.
- [19] V. Jindal, "A personalized Markov clustering and deep learning approach for arabic text categorization," in *Proc. ACL Student Res. Workshop*, 2016, pp. 145–151.
- [20] R. Baly, H. Hajj, N. Habash, K. B. Shaban, and W. El-Hajj, "A sentiment treebank and morphologically enriched recursive deep models for effective sentiment analysis in arabic," ACM Trans. Asian Low-Resource Lang. Inf. Process., vol. 16, no. 4, p. 23, 2017.
- [21] M. Al-Smadi, O. Qawasmeh, M. Al-Ayyoub, Y. Jararweh, and B. Gupta, "Deep recurrent neural network vs. Support vector machine for aspect-based sentiment analysis of arabic hotels' reviews," *J. Comput. Sci.*, vol. 27, pp. 386–393, Jul. 2018.
- [22] S. Boukil, M. Biniz, F. E. Adnani, L. Cherrat, and A. E. E. Moutaouakkil, "Arabic text classification using deep learning technics," *Int. J. Grid Distrib. Comput.*, vol. 11, no. 9, pp. 103–114, Sep. 2018.
- [23] X. Chen, Y. Sun, B. Athiwaratkun, C. Cardie, and K. Weinberger, "Adversarial deep averaging networks for cross-lingual sentiment classification," Trans. Assoc. Comput. Linguistics, vol. 6, pp. 557–570, Dec. 2018.
- [24] M. Alali, N. M. Sharef, M. A. A. Murad, H. Hamdan, and N. A. Husing. "Narrow convolutional neural network for arabic dialects polarity classification," *IEEE Access*, vol. 7, pp. 96272–96283, 2019.
- [25] F. Altenberger and C. Lenz, "A non-technical survey on deep convolutional neural network architectures," 2018, arXiv:1803.02129. [Online]. Available: https://arxiv.org/abs/1803.02129
- [26] A. Severyn and A. Moschitti, "Learning to rank short text pairs with convolutional deep neural networks," in *Proc. 38th Int. ACM SIGIR Conf. Res. Develop. Inf. Retr.*, Aug. 2015, pp. 373–382.
- [27] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, *Deep Learning*, vol. 1. Cambridge, MA, USA: MIT Press, 2016.
- [28] J. Murphy, "An overview of convolutional neural network architectures for deep learning," Microway, Tech. Rep., 2016. [Online]. Available: https://www.microway.com/download/whitepaper/An\_Overview\_of\_ Convolutional\_Neural\_Network\_Architectures\_for\_Deep\_Learning\_ fall2016.pdf
- [29] M. A. Nielsen, Neural Networks and Deep Learning, vol. 25. San Francisco, CA, USA: Determination Press USA, 2015.
- [30] G. Tolias, R. Sicre, and H. Jégou, "Particular object retrieval with integral max-pooling of CNN activations," 2015, arXiv:1511.05879. [Online]. Available: https://arxiv.org/abs/1511.05879
- [31] D. Whitley, "A genetic algorithm tutorial," Statist. Comput., vol. 4, no. 2, enamp. 65–85, Jun. 1994.

## Thank you for your attention



Amal & Abdulmenam