Operating Systems "Mini Project ©"

Memory Allocation

Names: Eslam Alaa Zaki & Eslam Medhat Mahrous

Section: 1

How the program works:

- 1) Choose the size of Memory.
- 2) State the size of a hole and its starting address then hit "add hole".
- 3) Repeat step 2 as desired.
- 4) After finishing adding the holes click "done".
- 5) You can now allocate or deallocate any process you want.
- 6) To deallocate any process just double click on its row -as simple as that 😉-.
- 7) To allocate a process choose the desired Methodology.
- 8) Then choose the size of the process and click "allocate process".
- 9) Any status will appear into a status box

Here is a test case for demonstration:

1) This is the initial shape of the program

2) Set the size of memory to 1 kilobyte

3) Adding holes

	Size	starting add	dress
1.	10	25	
2.	40	50	
3.	10	100	
4.	100	150	
5.	200	500	
6.	15	5	
7.	200	1000	out of memory:ex check error

Memory Managment

Cago Byte (5) Nego Byte (5) Nego Byte (5) Rose (5)	Make Holes Gigs Byte Mega Byte 15 No Byte Byte Starting Address Add Hole
Status The hole is added successfull	Done :

4) After Clicking Done the shape of the memory will be

5) Allocate process P8 with size 1byte and first fit algorithm

P5	40 Byte	110
Hole	100 Byte	150
P6	250 Byte	250
Hole	200 Byte	500
P7	324 Byte	700

6) Deallocate P4

250	250 Byte	P6	
500	200 Byte	Hole	
700	324 Byte	P7	
	//	1112200	_ Y

7) Allocate process P9 with size 10 byte and Best fit algorithm

250 Byte	P6	
200 Byte	Hole	
324 Byte	P7	10.
324 byte	F/	

8) Allocate process P10 with size 300 byte and Best fit algorithm without fragmentation "allocated is failed"

9) Allocate process P10 with size 300 byte and Best fit algorithm with fragmentation

10) Allocate process P11 with size 74 byte and Best fit algorithm with fragmentation

11) Allocate process P12 with size 1 byte and Best fit algorithm with fragmentation "allocated is failed"

12) Deallocate P7

13) Allocate process P12 with size 324 byte and first fit algorithm with fragmentation

14) Deallocate all processes

