

Cibersegurança em Ambientes DevOps

Uma Revisão Sistemática da Literatura

Roberto Carlos Bautista Ramos Sang Guun Yoo

Escuela Politécnica Nacional - Quito, Equador

Baseado no artigo: Cybersecurity in DevOps Environments: A Systematic Literature Review

Julho de 2025

Roteiro da Apresentação

Introdução

Metodologia

Resultados

Discussão e Conclusão

Introdução

Introdução: Contextualização

- ► Paradigma DevOps: Solução para acelerar a entrega de valor, melhorando a qualidade do software e a colaboração entre equipes de Desenvolvimento (Dev) e Operações (Ops).
- ► Flexibilidade e Complexidade: A agilidade operacional do DevOps aumentou a complexidade da superfície de ataque, tornando a cibersegurança um desafio central.
- Limitações da Segurança Tradicional: Abordagens reativas são insuficientes em ambientes com múltiplos deploys diários. A segurança precisa ser integrada desde o início.
- Surgimento do DevSecOps: Adiciona a segurança como um elemento recorrente e automatizado em todo o ciclo de vida do software, promovendo a cultura de "shift-left security".

Introdução: Problema e Relevância

- Novos Vetores de Ataque: Ferramentas como Kubernetes, Docker e pipelines de CI/CD (Jenkins, GitLab CI) introduziram novas vulnerabilidades.
- Riscos Críticos: Ameaças incluem configurações incorretas de infraestrutura, cadeias de suprimentos comprometidas (ex: SolarWinds) e exposição acidental de segredos.
- Conhecimento Fragmentado: A literatura científica sobre o tema é vasta, mas dispersa e com diferentes níveis de validação empírica.

Justificativa

Esta revisão sistemática visa consolidar o conhecimento, analisando os desafios de segurança em DevOps, identificando estratégias de mitigação e avaliando seu impacto no desempenho dos sistemas.

Objetivos da Pesquisa

Objetivo Geral

Realizar uma revisão sistemática da literatura para analisar os desafios de cibersegurança em ambientes DevOps, identificando ameaças, vetores de ataque, vulnerabilidades e as estratégias de mitigação documentadas.

Objetivos Específicos (Baseados nas Questões de Pesquisa)

- Mapear as principais ciberameaças e vetores de ataque, e as abordagens para mitigar seu impacto.
- 2. Identificar as vulnerabilidades inerentes aos ambientes DevOps e as medidas corretivas implementadas.
- Analisar como as estratégias de mitigação influenciam o desempenho do sistema e quais se mostram mais eficazes.

Metodologia

Metodologia: Visão Geral

- Protocolo rigoroso baseado nas diretrizes de Kitchenham & Charters (2007).
- Processo estruturado e replicável para garantir a validade dos achados.

Figura: Fases do Processo Metodológico da RSL (Adaptado de Bautista Ramos & Yoo, 2025).

Metodologia: Planejamento e Execução

Fontes de Dados

- Scopus
- ► IEEE Xplore
- SpringerLink
- ▶ ScienceDirect
- ACM Digital Library

Período de Análise

Janeiro de 2016 a Maio de 2025.

String de Busca Principal

```
(devops AND (''cybersecurity', OR ''cyber
threats', OR ''vulnerabilities', OR ''attack
vectors', OR ''mitigation strategies', OR
''safeguard', OR ''security solution', OR
''security', OR ''risk',))
```

Critérios de Seleção

- Artigos de periódicos e conferências revisados por pares.
- Publicações em inglês.
- Foco explícito em cibersegurança no contexto DevOps.

Metodologia: Fluxo de Seleção dos Estudos

Figura: Diagrama de fluxo da identificação e seleção dos artigos (Adaptado de Bautista Ramos & Yoo, 2025).

- **Busca Inicial:** 876 artigos encontrados.
- Após Remoção de Duplicatas e Triagem: 219 artigos selecionados.
- Após Leitura Completa e Avaliação: 49 artigos eleitos.
- Adicionados via Snowballing: 13 artigos.
- Corpus Final: 62 estudos primários.

Resultados

Resultados: Principais Ameaças Identificadas

- Configurações Incorretas em IaC e
 Contêineres: Principal fonte de exposição de serviços críticos.
- Gerenciamento Inadequado de Acessos Privilegiados: Causa escalonamento de privilégios e acesso indevido a recursos.
- Ataques à Cadeia de Suprimentos (Supply Chain): Injeção de malware através de dependências e ferramentas de terceiros.
- Falta de Autenticação entre Microsserviços: Facilita movimentos laterais dentro de arquiteturas distribuídas.
- Fator Humano (Shadow IT): Uso de ferramentas não autorizadas que introduzem vetores de ataque não auditados.

Figura: Frequência das Ameaças Identificadas na Literatura.

Resultados: Principais Vetores de Ataque

- Injeção de Código em Pipelines CI/CD: Permite a execução automatizada de comandos maliciosos.
- Credenciais Embutidas ou Mal Gerenciadas: Exposição de segredos que dão acesso persistente a recursos críticos.
- Acesso Não Controlado a Repositórios Públicos: Exfiltração de código-fonte, tokens e chaves de API.
- Movimento Lateral entre Serviços: Exploração da falta de segmentação de rede para se mover dentro da infraestrutura.
- Inclusão de Dependências Vulneráveis: Principal ponto de entrada para ataques de supply chain.

Figura: Frequência dos Vetores de Ataque Identificados.

Resultados: Principais Vulnerabilidades

- Falta de Testes de Segurança
 Automatizados: Permite que falhas críticas cheguem aos ambientes de produção.
- Exposição e Má Gestão de Segredos: Principalmente em pipelines de CI/CD e repositórios de código.
- Configurações Inseguras em Contêineres: Privilégios elevados, falta de limites de recursos e exposição de portas de rede.
- Práticas de Desenvolvimento Inseguras:
 Falta de padrões de codificação segura e uso de scripts legados.
- Falta de Monitoramento de Cibersegurança em Tempo Real: Impede a detecção de ataques em andamento.

Figura: Frequência das Vulnerabilidades Identificadas.

Resultados: Estratégias de Mitigação

- Automação de Testes (SAST/DAST/IAST): Integração de scanners de segurança no pipeline de CI/CD para detecção precoce.
- Gestão Automatizada de Segredos: Uso de cofres (vaults) como HashiCorp Vault para gerenciar credenciais e tokens.
- Validação de Infraestrutura como Código (IaC): Ferramentas como OPA e Terraform Validator para garantir configurações seguras.
- Segmentação e Autenticação Mútua (mTLS): Para controlar o tráfego e prevenir movimento lateral.
- Proteção da Cadeia de Suprimentos: Análise de composição de software (SCA) e assinatura de artefatos.

Figura: Frequência das Estratégias de Mitigação Documentadas.

Discussão e Conclusão

Discussão dos Achados

- Impacto no Desempenho: A maioria dos estudos concorda que estratégias de mitigação automatizadas, quando bem implementadas, não degradam o desempenho. Pelo contrário, fortalecem a estabilidade e a resiliência.
- Foco da Literatura: Há uma grande concentração de estudos em identificar ameaças e vetores, mas menos em validar empiricamente as soluções propostas.
- Principal Lacuna Identificada: Falta de validação empírica rigorosa e métricas comparativas de eficácia para as estratégias de mitigação em ambientes de produção reais.
- ► Impacto na Tríade de Segurança (CIA): A análise mostra que a Integridade (31%) é o pilar mais afetado, seguido pela Rastreabilidade (21%) e Confidencialidade (20%).

Síntese

Esta revisão sistemática mapeou com sucesso o ecossistema de cibersegurança em DevOps, identificando as principais ameaças, vetores de ataque e vulnerabilidades. Foram documentadas mais de 30 estratégias de mitigação.

Principal Conclusão

A automação e a integração da segurança (DevSecOps) são cruciais. Estratégias bem alinhadas ao ciclo DevOps fortalecem a segurança sem sacrificar a agilidade. No entanto, a falta de validação empírica na literatura é uma limitação crítica que precisa ser abordada.

Trabalhos Futuros

- Extensão para a Internet das Coisas (IoT): Aplicar os princípios de DevSecOps em ambientes IoT, que possuem desafios únicos:
 - Heterogeneidade de dispositivos.
 - Conectividade intermitente e recursos limitados.
 - Necessidade de atualizações remotas seguras (FOTA).
- Frameworks de Avaliação Comparativa: Desenvolver frameworks para avaliar empiricamente e comparar a eficácia de diferentes estratégias de DevSecOps em contextos híbridos (Cloud-Edge-IoT).
- DevSecOps para Tecnologia Operacional (OT): Adaptar as práticas para ambientes de automação industrial, onde a continuidade operacional e a segurança física são primordiais.

Obrigado!