Map building

Javier González Jiménez

Reference Books:

- Probabilistic Robotics. S. Thrun, W. Burgard, D. Fox. MIT Press. 2001
- Simultaneous Localization and Mapping for Mobile Robots: Introduction and Methods. Juan-Antonio Fernández-Madrigal and José Luis Blanco Claraco. IGI-Global. 2013.

Content

- Type of Maps for mobile robots
- Estimation of Landmark Maps
 - Least Squares
 - Extended Kalman filter
 - Range-bearing mapping
- Estimation of Occupancy Grid Maps

Types of Maps

Geometric:

Topological

Semantic

Landmark Mapping

Problem: Given a set of measurements $z = \{z_k\}$, k=1,...,M that are related to the *pose* x and *map* m by the observation function

$$z_k = h(x, m) + e_k \qquad e_k \sim N(0, Q)$$

find the map distribution p(m|z,x) that "best" explains z

$$m = \{(x_i, y_i), i=1,...,N\}$$

Notice:

- the pose x is not a random variable here, but a known 3x1 (or 6x1) vector
- z_k is a sample from a distribution (typically, Gaussian) with mean h(x,m)

$$z_k \sim p(z_k|x,m) = K \cdot \exp\{-\frac{1}{2}[h(x,m) - z_k]^T Q^{-1}[h(x,m) - z_k]\}$$

DIFFERENT SOLUTIONS for the mapping problem:

- Least Squares = MLE if $p(z_k|x,m)$ is Gaussian (same as in localization)
- Kalman Filter

Landmark Mapping. Least Squares

Least Squares (LS): The best estimate of the landmark is the weighted average of all observations (Similar to Localization)

of all observations (similar to Localization)
$$\widehat{m} = \arg\min_{m} e^{T} Q^{-1} e = \arg\min_{m} \left[(z - h(m))^{T} Q^{-1} (z - h(m)) \right] \qquad e_{k} = \left[z_{k} - h(x, m) \right] \sim N(0, Q_{k})$$

Solution if h(m) linear: h(m) = H m

$$\widehat{m} = (H^T Q^{-1} H)^{-1} H^T Q^{-1} z$$

$$\Sigma_{\widehat{m}} = (H^T Q^{-1} H)^{-1}$$

Closed form solution

Example: 3 measures z_k to a landmark m

Three errors:
$$e = [e_1, e_2, e_3]^T$$

$$z_k = [r_k, \theta_k] \longrightarrow \dim(e_k) = 2, \dim(e) = 6$$

This could be the case of 1 robot from 3 known poses, or 3 robots estimating the position of a landmark

Solution if h(m) not linear

$$\delta = -(J^T Q^{-1}J)^{-1}J^T Q^{-1}[z - h(x_0)]$$

Gauss-Newton iterative algorithm

5

Landmark Mapping. Least Squares

Example: Least squares in 1D with two range observations z_1 , z_2

Q

6

$$z_1 = h(x_1, m) + e_1 = (m - x_1) + e_1$$

$$z_2 = h(x_2, m) + e_2 = (m - x_2) + e_2$$

$$z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} m - x_1 \\ m - x_2 \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} e = \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} \sim N(0, \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix})$$

To write this expresion as a linear form z = Hm:

We "create" an observation z' = x + z that measures the position of the landmark (not the distance)

Example (cont): Least squares in 1D with two range observations z_1 , z_2

$$z' = Hm + e - \widehat{m} = (H^TQ^{-1}H)^{-1}H^TQ^{-1}z' \quad \text{Most probable value for } m \text{ (the } mode)$$

$$\Sigma_m = (H^TQ^{-1}H)^{-1} \quad \text{Covariance of the estimation (tell us how precise is the estimated } \widehat{m})$$

$$\widehat{m} = (\begin{bmatrix} 1 \\ 1 \end{bmatrix}^T \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix})^{-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix}^T \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}^{-1} \begin{bmatrix} z_1' \\ z_2' \end{bmatrix} = (\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2})^{-1} \begin{bmatrix} \frac{1}{\sigma_1^2} & \frac{1}{\sigma_2^2} \end{bmatrix} \begin{bmatrix} z_1' \\ z_2' \end{bmatrix} \\ = \frac{\sigma_2^2 z_1' + \sigma_1^2 z_2'}{\sigma_1^2 + \sigma_2^2} \xrightarrow{\sigma_1 > \sigma_2 > \sigma_2 > \sigma_1 > m = z_1'} \xrightarrow{\sigma_2 > \sigma_2 > \sigma_1 > m = z_1'} \xrightarrow{\sigma_2 > \sigma_2 > \sigma_2 > \sigma_1 > m = z_1'}$$

$$\Sigma_m = \left(\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}\right)^{-1} = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2} = \sigma_1^2 \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$$

The covariance of the estimated mean is smaller than any of the two observations The estimated mean is closer to the observation having the smaller variance

Landmark Mapping. Least Squares

Least Squares is not the best method when:

- 1. the observations come to the robot sequentially (not all at once)
- 2. the observation does not get the full state of m (e.g. only distance to a 2D landmark) or
- 3. some prior information (model) might exist for the map

SOLUTION: to apply Bayes to recursively integrate measurements

Note: the subindices k and t are used indistinctly

Landmark Mapping. EKF

Extended Kalman Filter

Map *m* given by *N* landmarks:

$$m=\{m_1,\ldots,m_i,\ldots,m_N\}$$
 Measures given by the sensor at each pose

Problem: Estimate the probability: $p(m|z_{1:t}, x_{1:t}) \longrightarrow \text{Known robot poses}$

Assumptions:

1. The estimation of landmarks is independent one to another, and each one depends only on its observations

$$p(m_i|z_{1:t},x_{1:t}) = p(m_i|z_{1:t}^i,x_{1:t})$$

2. The map is static \rightarrow state transition model is $m_t = m_{t-1}$

$$m_t = A_t m_{t-1} + B_t u_t + \varepsilon_t$$
 $(A=I, B=0, \varepsilon=0)$

No need of a prediction step in the KF!!

Landmark Mapping. EKF

Extended Kalman Filter

Features may be provided by:

- Laser scanners or depth cameras: at the intersection of lines, corners of rectangles, edges of objects, ...
- Vision systems: at key points, lines, planes

Range-Bearing mapping (RECALL)

Range-bearing observations: $z = [r, \theta]$

$$z_{i} \equiv \begin{bmatrix} r_{i} \\ \theta_{i} \end{bmatrix} = \begin{bmatrix} h_{r}(x_{v}, m_{i}) \\ h_{\theta}(x_{v}, m_{i}) \end{bmatrix} + \begin{bmatrix} e_{r} \\ e_{\theta} \end{bmatrix} = \begin{bmatrix} \sqrt{(x_{i} - x_{v})^{2} + (y_{i} - y_{v})^{2}} \\ \operatorname{atan2}(\frac{y_{i} - y_{v}}{x_{i} - x_{v}}) - \theta_{v} \end{bmatrix} + \begin{bmatrix} e_{r} \\ e_{\theta} \end{bmatrix} \sim N(0, R) \text{ with } R = \begin{bmatrix} \sigma_{r}^{2} & 0 \\ 0 & \sigma_{\theta}^{2} \end{bmatrix}$$

The observation function is non-linear -> EKF

RECALL

How is the covariance
$$Q = \Sigma_{z_p} = \begin{bmatrix} \sigma_r^2 & 0 \\ 0 & \sigma_\theta^2 \end{bmatrix}$$
 seen from the global frame (Σ_{xy}) ?

Sensor pose:
$$p = [x_v, y_v, \theta_v]^T$$

Observation in Cartesian :
$$z_c = \begin{bmatrix} z_x, z_y \end{bmatrix}^T$$

Observation in polar:
$$z_p = [r, \theta]^T$$

$$m = p \oplus z_c = f(p, z_c) = \begin{bmatrix} x_v + z_x \cos \theta_v - z_y \sin \theta_v \\ y_v + z_x \sin \theta_v + z_y \cos \theta_v \end{bmatrix} = \begin{bmatrix} x_v + r \cos(\theta + \theta_v) \\ y_v + r \sin(\theta + \theta_v) \end{bmatrix}$$

Covariance in the **moving system** (Σ_z):

$$z_{c} = \begin{bmatrix} z_{x} \\ z_{y} \end{bmatrix} = \begin{bmatrix} r\cos\theta \\ r\sin\theta \end{bmatrix} = f(r,\theta) \implies \Sigma_{Z_{c}} = \frac{\partial z_{c}}{\partial z_{p}} \Sigma_{Z_{p}} \left(\frac{\partial z_{c}}{\partial z_{p}} \right)^{T} \quad \text{with } \frac{\partial z_{c}}{\partial z_{p}} = \begin{bmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{bmatrix}$$

Covariance in the **global system** ($\Sigma_{\chi\gamma}$):

$$\Sigma_{z_c}$$

$$\Sigma_{xy} = \frac{\partial m}{\partial z_c} \frac{\partial z_c}{\partial z_p} \Sigma_{z_p} \left(\frac{\partial m}{\partial z_c} \frac{\partial z_c}{\partial z_p} \right)^T = \frac{\partial m}{\partial z_c} \left(\frac{\partial z_c}{\partial z_p} \Sigma_{z_p} \left(\frac{\partial z_c}{\partial z_p} \right)^T \right) \left(\frac{\partial m}{\partial z_c} \right)^T = \frac{\partial m}{\partial z_c} \Sigma_{z_c} \left(\frac{\partial m}{\partial z_c} \right)^T$$

Landmark Mapping. EKF

Range-Bearing mapping:

 $\begin{bmatrix} z_x \\ z_y \end{bmatrix} = r_k \begin{bmatrix} \cos \alpha_k \\ \sin \alpha_k \end{bmatrix}$

• m (map): matrix of landmarks (also named features)

$$m = xEst = \begin{bmatrix} x_1, y_1, x_2, y_2, \cdots, x_{nf}, y_{nf} \end{bmatrix}^T$$
 nf :#features Coordinates of the landmark 2

• The estimation of each landmark can be done independently of the others, that is, we could use a different KF for each

$$p(m|z,x)=p(m_1,m_2,\dots m_{nf}|z,x)=\prod_{k=1}^{nf}p(\overbrace{m_k|z_k},x)$$
 Data association association given, i.e. we know which observation is from the landmark k

for example: the estimation of 3 landmarks simultaneously is the same as if they were estimated with 3 concurrent KFs

- Coordinates of a new map landmark: $m = x \oplus z_c = \begin{bmatrix} x_v \\ y_v \end{bmatrix} + \begin{bmatrix} z_x \cos \theta z_y \sin \theta \\ z_x \sin \theta + z_y \cos \theta \end{bmatrix}$
- Observations: $[r_k, \theta_k, f]$ index of the observed landmark (known, data association given) z_k : observation k

EKF Algorithm

Given: Robot pose, measurement convariance Q

Initially the map m is empty

For all the robot poses

Get an observation z_k to landmark k

If it is a new landmark (not in the map yet)

- Extend the mean vector $mean_m$ and covariance Σ_m as follows:
 - landmark mean: $m_k = x \oplus z_k$
 - covariance matrix $\Sigma_m = J\Sigma_z J^T$ (recall: the pose has no uncertainty)
- The covariance matrices of the other landmarks are not changed

else

ullet do the update (correction) step of the EKF for the landmark k

end_if

end_For

EKFMapping details:

New observation: No update step

- Mean State vector extended: $mean_m = [-, -, ..., -, [\bar{x} \ \bar{y}]]^T$
- Covariance matrix extended:

•
$$\Sigma_m = \begin{bmatrix} - & - \\ - & - \end{bmatrix}$$
 ... 0 global system added: $Qest = J\Sigma_{r\theta}J^T$ $\Sigma_{r\theta} = \begin{bmatrix} \sigma_r^2 & 0\\ 0 & \sigma_\theta^2 \end{bmatrix}$

No correlation between the landmarks because the pose is known

Observed landmark k already in the map: do update for that landmark

Observation Jacobian:
$$J = \begin{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \cdots & \begin{bmatrix} J_{mk} \end{bmatrix}_{2x2} \cdots & \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix}$$

Jacobian of the landmark m_k that has been observed, 0_{2x2} for the rest

New observation mean

This step is equivalent to combine the previous Gaussian with the new one \rightarrow product of gaussians

$$X_{1} \sim N(\mu_{1}, \Sigma_{1}) \} \Rightarrow p(X_{1}) \cdot p(X_{2}) \sim N(\Sigma_{12}(\Sigma_{1}^{-1}\mu_{1} + \Sigma_{2}^{-1}\mu_{2}), \quad \Sigma_{12} = (\Sigma_{1}^{-1} + \Sigma_{2}^{-1})_{15}^{-1})$$

Example

Landmark Mapping. EKF

Map m represented by a grid $m = \{m_1, \ldots, m_k, \ldots, m_N\}$

- Each element of the map m_k can be either occupied (1) or empty (0) \rightarrow binary random variables!
- The location of each cell m_k is known, i.e. $m_k = m_{i,j}$

No need to estimate the coordinates, only if the cell is occupied (1) or not (0)

with k = i * I + j

Mapping Problem: Estimate the probability that a cell $m_k = m_{i,j}$ is occupied by an obstacle: $P(m_k \mid z_{1:t}, x_{1:t})$

Assumption: Occupancy of individual cells (m_k) is independent of each other This map is used for navigation and localization by scan-based sensor: sonar and laser 17

PROBLEM: Estimation of

M: Estimation of (assuming
$$m_{iN} \perp m_{j} | \mathbf{z}_{1:t}, \mathbf{x}_{1:t}$$
 for any $i \neq j$)
$$P(m|z_{1:t}, x_{1:t}) = P(\{m_{i}\}_{i=1}^{N} | z_{1:t}, x_{1:t}) \approx \prod_{i=1}^{N} P(m_{i}|z_{1:t}, x_{1:t}) \frac{Bel(m_{i})}{a}$$

- Notice:
 1. No index t in m since the map does not change over time (static)
 2. The probability of each cell Bel(m_i) is estimated independiently of the others

Bayes for
$$z_t$$

$$P(m_i | z_{1:t}, x_{1:t}) = P(m_i | z_t, z_{1:t-1}, x_{1:t}) = P(z_t | m_i, z_{1:t-1}, x_{1:t}) P(m_i | z_{1:t-1}, x_{1:t})$$

$$P(z_t | z_{1:t-1}, x_{1:t}) \text{ Depends only on 1:t-1} \rightarrow P(z_t | z_{1:t-1}, x_{1:t})$$

$$P(z_t | m_i, z_{1:t-1}, x_{1:t}) = P(z_t | m_i, x_t)$$

$$= \frac{P(m_i | z_t, x_t) P(z_t | x_t)}{P(m_i | x_t)}$$
Bayes for m_i

$$m_i \text{ independent of } x_t \longrightarrow = \frac{P(m_i | z_t, x_t) P(z_t | x_t)}{P(m_i)}$$

$$= \underbrace{\frac{P(m_i|z_t,x_t)p(z_t|x_t)}{P(m_i)}}_{P(m_i)}\underbrace{\frac{P(m_i|z_{1:t-1},x_{1:t-1})}{P(z_t|z_{1:t-1},x_{1:t})}}_{\text{Scale factor that will be eliminated next}} (1$$

An expression hard to apply, but ...

Probability that the cell m_i is occupied (from previous slide -repeated-):

(1)
$$P(m_i|z_{1:t},x_{1:t}) = \frac{P(m_i|z_t,x_t)p(z_t|x_t)}{P(m_i)} \frac{P(m_i|z_{1:t-1},x_{1:t-1})}{p(z_t|z_{1:t-1},x_{1:t})}$$
Scale factor

Now, we introduce the probability that the cell m_i is empty (not occupied):

(2)
$$P(\neg m_i | z_{1:t}, x_{1:t}) = \frac{P(\neg m_i | z_t, x_t) p(z_t | x_t) P(\neg m_i | z_{1:t-1}, x_{1:t-1})}{P(\neg m_i) p(z_t | z_{1:t-1}, x_{1:t})}$$
Scale factor

Of course:
$$P(\neg m_i | z_{1:t}, x_{1:t}) = 1 - P(m_i | z_{1:t}, x_{1:t})$$

Dividing (1) by (2) to elimiante the scale factor, and taken In to simplify:

This is called *odds(m)*

$$\ln \frac{P(m_i|z_{1:t},x_{1:t})}{P(\neg m_i|z_{1:t},x_{1:t})} = \ln \frac{P(m_i|z_t,x_t)}{P(\neg m_i|z_t,x_t)} + \ln \frac{P(m_i|z_{1:t-1},x_{1:t-1})}{P(\neg m_i|z_{1:t-1},x_{1:t-1})} - \ln \frac{P(m_i)}{P(\neg m_i)}$$

$$\frac{P(m_i|z_{1:t},x_{1:t})}{P(\neg m_i|z_t,x_t)} = \ln \frac{P(m_i|z_t,x_t)}{P(\neg m_i|z_t,x_t)} + \ln \frac{P(m_i|z_{1:t-1},x_{1:t-1})}{P(\neg m_i|z_{1:t-1},x_{1:t-1})} - \ln \frac{P(m_i)}{P(\neg m_i)}$$

Recursive expression for computing the OGM:

$$l_t(m_i) = \tau_t(m_i) + l_{t-1}(m_i) + l_0(m_i)$$

$$\uparrow$$
This is called $Log_odds(m)$

20

From WIKIPEDIA:

In statistics, odds are an expression of relative probabilities: is the ratio of the probability that the event will happen to the probability that the event will not happen.

constant

$$l_t(m_i) = \tau_t(m_i) + l_{t-1}(m_i) + l_0(m_i)$$

We need to provide values for $l_{t-1}(m_i)$ (previous estimation) and $\tau_t(m_i)$ at each step, which requires computing $P(m_i)$ and $P(m_i|z_t,x_t)$

$$P(m_i|z_{1:t},x_{1:t}) \in (0,1)$$
 but $l_t(m_i) \in (-\infty,+\infty)$ Log_odds never saturate!

To recover the probability: $l_t(m_i) = \ln \frac{P(m_i|z_{1:t},x_{1:t})}{P(\neg m_i|z_{1:t},x_{1:t})}$

$$e^{l_t(m_i)} = \frac{P(m_i|z_{1:t}, x_{1:t})}{1 - P(m_i|z_{1:t}, x_{1:t})} \implies e^{l_t(m_i)} (1 - P(m_i|z_{1:t}, x_{1:t})) = P(m_i|z_{1:t}, x_{1:t})$$

$$P(m_i|z_{1:t},x_{1:t}) = \frac{e^{l_t(m_i)}}{1 + e^{l_t(m_i)}} = 1 - \frac{1}{1 + e^{l_t(m_i)}}$$

For a sonar:

For a laser: Beam sensor model

 $P(z|x,m) = \alpha_{hit}P_{hit}(z|x,m) + \alpha_{unexp}P_{unexp}(z|x,m) + \alpha_{max}rand_{max}$

OGM (Gray level map): Value of a pixel indicates the probability of being occupied

Binarizing the occupancy grid map at a threshold of 0.5

Three-level map:

0 (black): occupied

1 (white): empty

0.5 (gray): unobserved (initialization value)

Occupancy Grid Mapping: ETSI Informatica – Univ. Malaga

Difference between a **point-based map** and an occupancy grid map

In OGM we can distinguish between **free space** and **unobserved space**, while in Point-based maps we don't!!

Summary

- Typical geometric maps can be represented either by a set of landmarks or a rectangular grid (cells)
- The probabilistic map consists in obtaining p(m|z,x)

LANDMARKS

- Landmarks are given by their position in space plus a descriptor to distinguish one to another.
- If the correspondence between landmark and observation is given, we only care about the landmark position, i.e. m = (x, y) (not its description)
- Two techniques: Least Squares (batch) and Extended Kalman Filter (recursive)

OGM

- Grid maps are composed of cells representing the probability of being occupied, i.e. m_i ={1,0}, $P(m_i|z_{1:t},x_{1:t}) \in (0,1)$
- Implemented with a recursive algorithm: $l_t(m_i) = \tau_t(m_i) + l_{t-1}(m_i) + l_0(m_i)$ Only $\tau_t(m_i)$ needs to be estimated at each step (new observation)