Graph Theory and Complex Networks: An Introduction

Maarten van Steen

VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl

Chapter 05: Trees

Version: April 21, 2014

Introduction

Definition

A connected graph without cycles is a tree.

Connector problem: Set up a communication infrastructure such that the total costs are minimized.

Communication network: Set up an overlay network such that the total costs from a source to all destinations are minimized.

- Formalities
- Spanning trees
- Routing in communication networks

Theorem

For any connected (simple) graph G with n vertices and m edges, $n \le m+1$.

Proof by induction on m

- $m = 1 \Rightarrow n = 2 \Rightarrow$ OK. Consider G with k > 1 edges
- Assume G has a cycle C. Let $e \in E(C)$ and $G^* = G e$

 Assume G is acyclic. Let P be a longest path in G, connecting vertices u and w.

Theorem

For any connected (simple) graph G with n vertices and m edges, $n \le m+1$.

- $m = 1 \Rightarrow n = 2 \Rightarrow$ OK. Consider G with k > 1 edges.
- Assume G has a cycle C. Let $e \in E(C)$ and $G^* = G e$.
 - G* is still connected
 - $n = |V(G^*)| \le |E(G^*)| + 1 = k 1 + 1 = k \le k + 1$.
- Assume G is acyclic. Let P be a longest path in G, connecting vertices u and w.
 - P is longest path $\Rightarrow \delta(u) = \delta(w) = 1$
 - Let $G^* = G u \Rightarrow |E(G^*)| = |E(G)| 1 = k 1$
 - $|V(G^*)| = n-1 \le |E(G^*)| + 1 = k \Rightarrow n \le k+1$

Theorem

For any connected (simple) graph G with n vertices and m edges, $n \le m+1$.

- $m = 1 \Rightarrow n = 2 \Rightarrow$ OK. Consider G with k > 1 edges.
- Assume G has a cycle C. Let $e \in E(C)$ and $G^* = G e$.
 - G* is still connected
 - $n = |V(G^*)| \le |E(G^*)| + 1 = k 1 + 1 = k \le k + 1$
- Assume G is acyclic. Let P be a longest path in G, connecting vertices u and w.
 - P is longest path $\Rightarrow \delta(u) = \delta(w) = 1$
 - Let $G^* = G u \Rightarrow |E(G^*)| = |E(G)| 1 = k 1$
 - $|V(G^*)| = n-1 \le |E(G^*)| + 1 = k \Rightarrow n \le k+1$

Theorem

For any connected (simple) graph G with n vertices and m edges, $n \le m+1$.

- $m = 1 \Rightarrow n = 2 \Rightarrow$ OK. Consider G with k > 1 edges.
- Assume G has a cycle C. Let $e \in E(C)$ and $G^* = G e$.
 - G* is still connected
 - $n = |V(G^*)| \le |E(G^*)| + 1 = k 1 + 1 = k \le k + 1$.
- Assume G is acyclic. Let P be a longest path in G, connecting vertices u and w.
 - P is longest path $\Rightarrow \delta(u) = \delta(w) = 1$
 - Let $G^* = G u \Rightarrow |E(G^*)| = |E(G)| 1 = k 1$
 - $|V(G^*)| = n-1 \le |E(G^*)| + 1 = k \Rightarrow n \le k+1$

Theorem

For any connected (simple) graph G with n vertices and m edges, $n \le m+1$.

- $m = 1 \Rightarrow n = 2 \Rightarrow$ OK. Consider G with k > 1 edges.
- Assume G has a cycle C. Let $e \in E(C)$ and $G^* = G e$.
 - G* is still connected
 - $n = |V(G^*)| \le |E(G^*)| + 1 = k 1 + 1 = k \le k + 1$.
- Assume G is acyclic. Let P be a longest path in G, connecting vertices u and w.
 - P is longest path $\Rightarrow \delta(u) = \delta(w) = 1$
 - Let $G^* = G u \Rightarrow |E(G^*)| = |E(G)| 1 = k 1$
 - $|V(G^*)| = n 1 \le |E(G^*)| + 1 = k \Rightarrow n \le k + 1$

Theorem

For any connected (simple) graph G with n vertices and m edges, $n \le m+1$.

- $m = 1 \Rightarrow n = 2 \Rightarrow$ OK. Consider G with k > 1 edges.
- Assume G has a cycle C. Let $e \in E(C)$ and $G^* = G e$.
 - G* is still connected
 - $n = |V(G^*)| \le |E(G^*)| + 1 = k 1 + 1 = k \le k + 1$.
- Assume G is acyclic. Let P be a longest path in G, connecting vertices u and w.
 - P is longest path ⇒ δ(u) = δ(w) = 1
 Let G* = G u ⇒ |E(G*)| = |E(G)| 1 = k 1
 |V(G*)| = n 1 < |E(G*)| ± 1 k ⇒ n < k ± 1

Theorem

For any connected (simple) graph G with n vertices and m edges, $n \le m+1$.

- $m = 1 \Rightarrow n = 2 \Rightarrow$ OK. Consider G with k > 1 edges.
- Assume G has a cycle C. Let $e \in E(C)$ and $G^* = G e$.
 - G* is still connected
 - $n = |V(G^*)| \le |E(G^*)| + 1 = k 1 + 1 = k \le k + 1$.
- Assume G is acyclic. Let P be a longest path in G, connecting vertices u and w.
 - *P* is longest path $\Rightarrow \delta(u) = \delta(w) = 1$
 - Let $G^* = G u \Rightarrow |E(G^*)| = |E(G)| 1 = k 1$
 - $|V(G^*)| = n 1 \le |E(G^*)| + 1 = k \Rightarrow n \le k + 1$

Theorem

For any connected (simple) graph G with n vertices and m edges, $n \le m+1$.

- $m = 1 \Rightarrow n = 2 \Rightarrow$ OK. Consider G with k > 1 edges.
- Assume G has a cycle C. Let $e \in E(C)$ and $G^* = G e$.
 - G* is still connected
 - $n = |V(G^*)| \le |E(G^*)| + 1 = k 1 + 1 = k \le k + 1$.
- Assume G is acyclic. Let P be a longest path in G, connecting vertices u and w.
 - *P* is longest path $\Rightarrow \delta(u) = \delta(w) = 1$
 - Let $G^* = G u \Rightarrow |E(G^*)| = |E(G)| 1 = k 1$
 - $|V(G^*)| = n 1 \le |E(G^*)| + 1 = k \Rightarrow n \le k + 1$

Theorem

For any connected (simple) graph G with n vertices and m edges, $n \le m+1$.

- $m = 1 \Rightarrow n = 2 \Rightarrow$ OK. Consider G with k > 1 edges.
- Assume G has a cycle C. Let $e \in E(C)$ and $G^* = G e$.
 - G* is still connected
 - $n = |V(G^*)| \le |E(G^*)| + 1 = k 1 + 1 = k \le k + 1$.
- Assume G is acyclic. Let P be a longest path in G, connecting vertices u and w.
 - *P* is longest path $\Rightarrow \delta(u) = \delta(w) = 1$
 - Let $G^* = G u \Rightarrow |E(G^*)| = |E(G)| 1 = k 1$
 - $|V(G^*)| = n 1 \le |E(G^*)| + 1 = k \Rightarrow n \le k + 1$

Theorem

For any connected (simple) graph G with n vertices and m edges, $n \le m+1$.

- $m = 1 \Rightarrow n = 2 \Rightarrow$ OK. Consider G with k > 1 edges.
- Assume G has a cycle C. Let $e \in E(C)$ and $G^* = G e$.
 - G* is still connected
 - $n = |V(G^*)| \le |E(G^*)| + 1 = k 1 + 1 = k \le k + 1$.
- Assume G is acyclic. Let P be a longest path in G, connecting vertices u and w.
 - *P* is longest path $\Rightarrow \delta(u) = \delta(w) = 1$
 - Let $G^* = G u \Rightarrow |E(G^*)| = |E(G)| 1 = k 1$
 - $|V(G^*)| = n-1 \le |E(G^*)| + 1 = k \Rightarrow n \le k+1$

Theorem

A connected graph G with n vertices and m edges for which n = m+1, is a tree.

Proof by contradiction

• Assume G contains a cycle C and let $e \in E(C)$.

• $G^* = G - e$ is connected

 $\Rightarrow n = |V(G^*)| \le |E(G^*)| + 1 = (m-1) + 1 = m.$

4/24

Theorem

A connected graph G with n vertices and m edges for which n = m+1, is a tree.

Proof by contradiction

- Assume *G* contains a cycle *C* and let $e \in E(C)$.
- $G^* = G e$ is connected $\Rightarrow n = |V(G^*)| \le |E(G^*)| + 1 = (m-1) + 1 = m.$ Contradicts fact that n = m+1. G must be acyclic, i.e., a tree.

Theorem

A connected graph G with n vertices and m edges for which n = m+1, is a tree.

Proof by contradiction

- Assume G contains a cycle C and let $e \in E(C)$.
- $G^* = G e$ is connected $\Rightarrow n = |V(G^*)| \le |E(G^*)| + 1 = (m-1) + 1 = m.$ Contradicts fact that n = m+1. G must be acyclic, i.e., a tree.

Theorem

A connected graph G with n vertices and m edges for which n = m+1, is a tree.

Proof by contradiction

- Assume G contains a cycle C and let $e \in E(C)$.
- $G^* = G e$ is connected $\Rightarrow n = |V(G^*)| \le |E(G^*)| + 1 = (m-1) + 1 = m$. Contradicts fact that n = m+1. G must be acyclic, i.e., a tree.

Theorem

A graph G is a tree iff $\forall u, v \in V(G)$: $\exists !(u, v)$ -path. (Notation: $\exists !$ means exists exactly one.)

- Let $u, v \in V(G)$ and (u, v)-path P.
- Assume another distinct (u, v)-path Q
- Let x be last vertex common to P and Q, and y first common one succeeding $x \Rightarrow$ have identified a cycle:

Theorem

A graph G is a tree iff $\forall u, v \in V(G)$: $\exists !(u, v)$ -path.

(Notation: ∃! means exists exactly one.)

- Let $u, v \in V(G)$ and (u, v)-path P.
- Assume another distinct (*u*, *v*)-path *Q*.
- Let x be last vertex common to P and Q, and y first common one succeeding x ⇒ have identified a cycle:

Theorem

A graph G is a tree iff $\forall u, v \in V(G)$: $\exists !(u, v)$ -path.

(Notation: ∃! means exists exactly one.)

- Let $u, v \in V(G)$ and (u, v)-path P.
- Assume another distinct (u, v)-path Q.
- Let x be last vertex common to P and Q, and y first common one succeeding x ⇒ have identified a cycle:

Theorem

A graph G is a tree iff $\forall u, v \in V(G) : \exists !(u, v)$ -path.

(Notation: ∃! means exists exactly one.)

- Let $u, v \in V(G)$ and (u, v)-path P.
- Assume another distinct (u, v)-path Q.
- Let x be last vertex common to P and Q, and y first common one succeeding x ⇒ have identified a cycle:

Theorem

A graph G is a tree iff $\forall u, v \in V(G)$: $\exists !(u, v)$ -path.

(Notation: ∃! means exists exactly one.)

- Let $u, v \in V(G)$ and (u, v)-path P.
- Assume another distinct (u, v)-path Q.
- Let x be last vertex common to P and Q, and y first common one succeeding x ⇒ have identified a cycle:

Proof $\forall u, v \in V(G) : \exists !(u, v)$ -path $\Rightarrow G$ is a tree

- By contradiction: assume G is not a tree.
- Note: G is connected.
- *G* is connected, not a tree \Rightarrow there exists a cycle $C = [v_1, v_2, ..., v_n = v_1].$
- $\forall v_i, v_i \in V(C)$: there are *two* distinct paths:
 - $P_{i \to j} = [v_i, v_{i+1}, \dots, v_{j-1}, v_j]$
 - $P_{i \to i} = [v_i, v_{i-1}, \dots, v_{j+1}, v_i]$

Proof $\forall u, v \in V(G) : \exists !(u, v)$ -path $\Rightarrow G$ is a tree

- By contradiction: assume G is not a tree.
- Note: G is connected.
- *G* is connected, not a tree \Rightarrow there exists a cycle $C = [v_1, v_2, ..., v_n = v_1].$
- $\forall v_i, v_i \in V(C)$: there are *two* distinct paths:
 - $P_{i \to j} = [v_i, v_{i+1}, \dots, v_{j-1}, v_j]$

Proof $\forall u, v \in V(G) : \exists !(u, v)$ -path $\Rightarrow G$ is a tree

- By contradiction: assume G is not a tree.
- Note: G is connected.
- *G* is connected, not a tree \Rightarrow there exists a cycle $C = [v_1, v_2, ..., v_n = v_1].$
- $\forall v_i, v_j \in V(C)$: there are *two* distinct paths:
 - $P_{i \to j} = [V_i, V_{i+1}, \dots, V_{j-1}, V_j]$ $P_{i \to j} = [V_i, V_{i-1}, \dots, V_{i+1}, V_i]$

Proof $\forall u, v \in V(G) : \exists !(u, v)$ -path $\Rightarrow G$ is a tree

- By contradiction: assume *G* is not a tree.
- Note: G is connected.
- G is connected, not a tree ⇒ there exists a cycle $C = [v_1, v_2, \dots, v_n = v_1].$
- $\forall v_i, v_i \in V(C)$: there are *two* distinct paths:

6/24

Proof $\forall u, v \in V(G)$: $\exists ! (u, v)$ -path $\Rightarrow G$ is a tree

- By contradiction: assume *G* is not a tree.
- Note: G is connected.
- *G* is connected, not a tree \Rightarrow there exists a cycle $C = [v_1, v_2, \dots, v_n = v_1].$
- $\forall v_i, v_i \in V(C)$: there are *two* distinct paths:
 - $P_{i \to j} = [v_i, v_{i+1}, \dots, v_{j-1}, v_j]$
 - $P_{j \to i} = [v_i, v_{i-1}, \dots, v_{j+1}, v_j]$

Proof $\forall u, v \in V(G)$: $\exists ! (u, v)$ -path $\Rightarrow G$ is a tree

- By contradiction: assume *G* is not a tree.
- Note: G is connected.
- *G* is connected, not a tree \Rightarrow there exists a cycle $C = [v_1, v_2, ..., v_n = v_1].$
- $\forall v_i, v_i \in V(C)$: there are *two* distinct paths:
 - $P_{i \to j} = [v_i, v_{i+1}, \dots, v_{j-1}, v_j]$
 - $P_{j\to i} = [v_i, v_{i-1}, \dots, v_{j+1}, v_j]$

Proof $\forall u, v \in V(G)$: $\exists ! (u, v)$ -path $\Rightarrow G$ is a tree

- By contradiction: assume *G* is not a tree.
- Note: G is connected.
- *G* is connected, not a tree \Rightarrow there exists a cycle $C = [v_1, v_2, ..., v_n = v_1].$
- $\forall v_i, v_i \in V(C)$: there are *two* distinct paths:
 - $P_{i \to j} = [v_i, v_{i+1}, \dots, v_{j-1}, v_j]$
 - $P_{j\to i} = [v_i, v_{i-1}, \dots, v_{j+1}, v_j]$

Theorem

An edge e of a graph G is a cut edge if and only if e is not part of any cycle of G.

- By contradiction: assume that $e = \langle u, v \rangle$ is not a cut edge $\Rightarrow u, v$ in the same component in G e.
- $\bullet \exists (u,v)$ -path P in G-e.
- But: P + e is a cycle in G. Contradiction.

Theorem

An edge e of a graph G is a cut edge if and only if e is not part of any cycle of G.

- By contradiction: assume that $e = \langle u, v \rangle$ is not a cut edge $\Rightarrow u, v$ in the same component in G e.
- $\exists (u, v)$ -path P in G e.
- But: P + e is a cycle in G. Contradiction.

Theorem

An edge e of a graph G is a cut edge if and only if e is not part of any cycle of G.

- By contradiction: assume that $e = \langle u, v \rangle$ is not a cut edge $\Rightarrow u, v$ in the same component in G e.
- $\exists (u, v)$ -path P in G e.
- But: P + e is a cycle in G. Contradiction.

Theorem

An edge e of a graph G is a cut edge if and only if e is not part of any cycle of G.

- By contradiction: assume that $e = \langle u, v \rangle$ is not a cut edge $\Rightarrow u, v$ in the same component in G e.
- $\exists (u, v)$ -path P in G e.
- But: P + e is a cycle in G. Contradiction.

Theorem

An edge e of a graph G is a cut edge if and only if e is not part of any cycle of G.

- By contradiction: assume that $e = \langle u, v \rangle$ is not a cut edge $\Rightarrow u, v$ in the same component in G e.
- $\exists (u, v)$ -path P in G e.
- But: P + e is a cycle in G. Contradiction.

Proof e is cut edge $\Rightarrow e$ is not in any cycle of G

- By contradiction: assume $e = \langle u, v \rangle$ was part of a cycle *C*.
- Let x and y be in different components of G e.
- e is cut edge $\Rightarrow \exists (x,y)$ -path P in G and $e \in E(P)$.
- Assume u precedes v when traversing from x to y. $P_1 = (x, u)$ -part of P, $P_2 = (v, y)$ -part of P.
- Note: C e is (u, v)-path in G e.
- u* is first vertex common to P₁ and C e;
 v* is first vertex common to P₂ and C e.
- $x \xrightarrow{P_1} u^* \xrightarrow{C-e} v^* \xrightarrow{P_2} y$ is an (x,y)-path in G-e, contradicting that x and y are in different components.

Proof e is cut edge $\Rightarrow e$ is not in any cycle of G

- By contradiction: assume $e = \langle u, v \rangle$ was part of a cycle C.
- Let x and y be in different components of G e.
- *e* is cut edge $\Rightarrow \exists (x,y)$ -path *P* in *G* and $e \in E(P)$.
- Assume u precedes v when traversing from x to y. $P_1 = (x, u)$ -part of P, $P_2 = (v, y)$ -part of P.
- Note: C e is (u, v)-path in G e.
- u* is first vertex common to P₁ and C e;
 v* is first vertex common to P₂ and C e.
- $x \xrightarrow{P_1} u^* \xrightarrow{C-e} v^* \xrightarrow{P_2} y$ is an (x,y)-path in G-e, contradicting that x and y are in different components.

Proof e is cut edge $\Rightarrow e$ is not in any cycle of G

- By contradiction: assume $e = \langle u, v \rangle$ was part of a cycle C.
- Let x and y be in different components of G e.
- *e* is cut edge $\Rightarrow \exists (x,y)$ -path *P* in *G* and $e \in E(P)$.
- Assume u precedes v when traversing from x to y. $P_1 = (x, u)$ -part of P, $P_2 = (v, y)$ -part of P.
- Note: C e is (u, v)-path in G e.
- u* is first vertex common to P₁ and C e;
 v* is first vertex common to P₂ and C e.
- $x \xrightarrow{P_1} u^* \xrightarrow{C-e} v^* \xrightarrow{P_2} y$ is an (x,y)-path in G-e, contradicting that x and y are in different components.

- By contradiction: assume $e = \langle u, v \rangle$ was part of a cycle C.
- Let x and y be in different components of G e.
- *e* is cut edge $\Rightarrow \exists (x,y)$ -path *P* in *G* and $e \in E(P)$.
- Assume u precedes v when traversing from x to y. $P_1 = (x, u)$ -part of P, $P_2 = (v, y)$ -part of P.
- Note: C e is (u, v)-path in G e.
- u* is first vertex common to P₁ and C e;
 v* is first vertex common to P₂ and C e.
- $x \xrightarrow{P_1} u^* \xrightarrow{C-e} v^* \xrightarrow{P_2} y$ is an (x,y)-path in G-e, contradicting that x and y are in different components.

- By contradiction: assume $e = \langle u, v \rangle$ was part of a cycle C.
- Let x and y be in different components of G e.
- *e* is cut edge $\Rightarrow \exists (x,y)$ -path *P* in *G* and $e \in E(P)$.
- Assume u precedes v when traversing from x to y. $P_1 = (x, u)$ -part of P, $P_2 = (v, y)$ -part of P.
- Note: C e is (u, v)-path in G e.
- u* is first vertex common to P₁ and C e;
 v* is first vertex common to P₂ and C e.
- $x \xrightarrow{P_1} u^* \xrightarrow{C-e} v^* \xrightarrow{P_2} y$ is an (x,y)-path in G-e, contradicting that x and y are in different components.

- By contradiction: assume $e = \langle u, v \rangle$ was part of a cycle C.
- Let x and y be in different components of G e.
- *e* is cut edge $\Rightarrow \exists (x,y)$ -path *P* in *G* and $e \in E(P)$.
- Assume u precedes v when traversing from x to y. $P_1 = (x, u)$ -part of P, $P_2 = (v, y)$ -part of P.
- Note: C e is (u, v)-path in G e.
- u* is first vertex common to P₁ and C e;
 v* is first vertex common to P₂ and C e.
- $x \xrightarrow{P_1} u^* \xrightarrow{C-e} v^* \xrightarrow{P_2} y$ is an (x,y)-path in G-e, contradicting that x and y are in different components.

- By contradiction: assume $e = \langle u, v \rangle$ was part of a cycle C.
- Let x and y be in different components of G e.
- *e* is cut edge $\Rightarrow \exists (x,y)$ -path *P* in *G* and $e \in E(P)$.
- Assume u precedes v when traversing from x to y. $P_1 = (x, u)$ -part of P, $P_2 = (v, y)$ -part of P.
- Note: C e is (u, v)-path in G e.
- u* is first vertex common to P₁ and C e;
 v* is first vertex common to P₂ and C e.
- $x \xrightarrow{P_1} u^* \xrightarrow{C-e} v^* \xrightarrow{P_2} y$ is an (x,y)-path in G-e, contradicting that x and y are in different components.

- By contradiction: assume $e = \langle u, v \rangle$ was part of a cycle C.
- Let x and y be in different components of G e.
- *e* is cut edge $\Rightarrow \exists (x,y)$ -path *P* in *G* and $e \in E(P)$.
- Assume u precedes v when traversing from x to y. $P_1 = (x, u)$ -part of P, $P_2 = (v, y)$ -part of P.
- Note: C e is (u, v)-path in G e.
- u* is first vertex common to P₁ and C e;
 v* is first vertex common to P₂ and C e.
- $x \xrightarrow{P_1} u^* \xrightarrow{C-e} v^* \xrightarrow{P_2} y$ is an (x,y)-path in G-e, contradicting that x and y are in different components.

Theorem

A connected graph G is a tree if and only if every edge is a cut edge.

- *G* is tree $\Rightarrow \forall e \in E(G)$: *e* is cut edge: Let *G* be a tree and $e \in E(G)$. *G* contains no cycles $\Rightarrow e$ not contained in any cycle $\Rightarrow e$ is cut edge.
- $\forall e \in E(G)$: e is cut edge $\Rightarrow G$ is tree: Assume G contains a cycle $C \Rightarrow \forall e \in E(C)$: e is not a cut edge \Rightarrow not every edge in G is a cut edge, contradicting our starting-point.

Theorem

A connected graph G is a tree if and only if every edge is a cut edge.

- *G* is tree $\Rightarrow \forall e \in E(G)$: *e* is cut edge: Let *G* be a tree and $e \in E(G)$ *G* contains no cycles $\Rightarrow e$ not contained in any cycle $\Rightarrow e$ is cut edge.
- $\forall e \in E(G)$: e is cut edge $\Rightarrow G$ is tree: Assume G contains a cycle $C \Rightarrow \forall e \in E(C)$: e is not a cut edge \Rightarrow not every edge in G is a cut edge, contradicting our starting-point.

Theorem

A connected graph G is a tree if and only if every edge is a cut edge.

- *G* is tree $\Rightarrow \forall e \in E(G)$: *e* is cut edge: Let *G* be a tree and $e \in E(G)$. *G* contains no cycles $\Rightarrow e$ not contained in any cycle $\Rightarrow e$ is cut edge.
- $\forall e \in E(G)$: e is cut edge $\Rightarrow G$ is tree: Assume G contains a cycle $C \Rightarrow \forall e \in E(C)$: e is not a cut edge \Rightarrow not every edge in G is a cut edge, contradicting our starting-point.

Theorem

A connected graph G is a tree if and only if every edge is a cut edge.

- *G* is tree $\Rightarrow \forall e \in E(G)$: *e* is cut edge: Let *G* be a tree and $e \in E(G)$. *G* contains no cycles $\Rightarrow e$ not contained in any cycle $\Rightarrow e$ is cut edge.
- $\forall e \in E(G)$: e is cut edge $\Rightarrow G$ is tree: Assume G contains a cycle $C \Rightarrow \forall e \in E(C)$: e is not a cut edge \Rightarrow not every edge in G is a cut edge, contradicting our starting-point.

Definition

 $T \subseteq G$ is a minimal spanning tree of G iff V(T) = V(G) and $\sum_{e \in E(T)} w(e)$ is minimal.

Algorithm (Kruskal)

- **○** Assume edges $E_k = \{e_1, e_2, ..., e_k\}$ have been chosen so far. Choose next edge $e_{k+1} \in E(G) \setminus E_k$ such that:
 - (1) $G_{k+1} = G[\{e_1, e_2, \dots, e_k, e_{k+1}\}]$ is acyclic (but not necessarily connected).
 - $(2) \ \forall e \in E(G) \backslash E_k : w(e) \ge w(e_{k+1}).$
- Stop when no such edge e_{k+1} can be selected.

Definition

 $T \subseteq G$ is a minimal spanning tree of G iff V(T) = V(G) and $\sum_{e \in E(T)} w(e)$ is minimal.

Algorithm (Kruskal)

- ① Assume edges $E_k = \{e_1, e_2, ..., e_k\}$ have been chosen so far. Choose next edge $e_{k+1} \in E(G) \setminus E_k$ such that:
 - (1) $G_{k+1} = G[\{e_1, e_2, \dots, e_k, e_{k+1}\}]$ is acyclic (but not necessarily connected).
 - $(2) \forall e \in E(G) \backslash E_k : w(e) \geq w(e_{k+1})$
- Stop when no such edge e_{k+1} can be selected.

Definition

 $T \subseteq G$ is a minimal spanning tree of G iff V(T) = V(G) and $\sum_{e \in E(T)} w(e)$ is minimal.

Algorithm (Kruskal)

- **1** Assume edges $E_k = \{e_1, e_2, ..., e_k\}$ have been chosen so far. Choose next edge $e_{k+1} \in E(G) \setminus E_k$ such that:
 - (1) $G_{k+1} = G[\{e_1, e_2, \dots, e_k, e_{k+1}\}]$ is acyclic (but not necessarily connected).
 - (2) $\forall e \in E(G) \backslash E_k : w(e) \geq w(e_{k+1}).$
- Stop when no such edge e_{k+1} can be selected.

Definition

 $T \subseteq G$ is a minimal spanning tree of G iff V(T) = V(G) and $\sum_{e \in E(T)} w(e)$ is minimal.

Algorithm (Kruskal)

- **1** Assume edges $E_k = \{e_1, e_2, ..., e_k\}$ have been chosen so far. Choose next edge $e_{k+1} \in E(G) \setminus E_k$ such that:
 - (1) $G_{k+1} = G[\{e_1, e_2, \dots, e_k, e_{k+1}\}]$ is acyclic (but not necessarily connected).
 - (2) $\forall e \in E(G) \backslash E_k : w(e) \geq w(e_{k+1}).$
- 2 Stop when no such edge e_{k+1} can be selected.

Theorem

Any spanning tree T_{opt} of a weighted connected graph G constructed by Kruskal's algorithm has minimal weight.

Proof by construction and contradiction

Notation: ∀spanning T ≠ T_{opt}, ι(T) smallest index i : e_i ∉ E(T).
Assume T_{opt} is not optimal. Let T be spanning with maximal ι(T)
ι(T) = k ⇒ e₁, e₂,..., e_{k-1} ∈ E(T) ∩ E(T_{opt}).
Note: T + e_k contains a unique cycle C

Theorem

Any spanning tree T_{opt} of a weighted connected graph G constructed by Kruskal's algorithm has minimal weight.

- Notation: \forall spanning $T \neq T_{opt}$, $\iota(T)$ smallest index $i : e_i \notin E(T)$.
- Assume T_{opt} is not optimal. Let T be spanning with maximal $\iota(T)$.
- $\iota(T) = k \Rightarrow e_1, e_2, \dots, e_{k-1} \in E(T) \cap E(T_{opt}).$
- Note: $T + e_k$ contains a unique cycle C

Theorem

Any spanning tree T_{opt} of a weighted connected graph G constructed by Kruskal's algorithm has minimal weight.

- Notation: \forall spanning $T \neq T_{opt}$, $\iota(T)$ smallest index $i : e_i \notin E(T)$.
- Assume T_{opt} is not optimal. Let T be spanning with maximal $\iota(T)$.
- $\iota(T) = k \Rightarrow e_1, e_2, \dots, e_{k-1} \in E(T) \cap E(T_{opt}).$
- Note: $T + e_k$ contains a unique cycle C

Theorem

Any spanning tree T_{opt} of a weighted connected graph G constructed by Kruskal's algorithm has minimal weight.

- Notation: \forall spanning $T \neq T_{opt}$, $\iota(T)$ smallest index $i : e_i \notin E(T)$.
- Assume T_{opt} is not optimal. Let T be spanning with maximal $\iota(T)$.
- $\iota(T) = k \Rightarrow e_1, e_2, \dots, e_{k-1} \in E(T) \cap E(T_{opt}).$
- Note: $T + e_k$ contains a unique cycle C

Theorem

Any spanning tree T_{opt} of a weighted connected graph G constructed by Kruskal's algorithm has minimal weight.

- Notation: \forall spanning $T \neq T_{opt}$, $\iota(T)$ smallest index $i : e_i \notin E(T)$.
- Assume T_{opt} is not optimal. Let T be spanning with maximal $\iota(T)$.
- $\iota(T) = k \Rightarrow e_1, e_2, \dots, e_{k-1} \in E(T) \cap E(T_{opt}).$
- Note: $T + e_k$ contains a unique cycle C

Theorem

Any spanning tree T_{opt} of a weighted connected graph G constructed by Kruskal's algorithm has minimal weight.

- Notation: \forall spanning $T \neq T_{opt}$, $\iota(T)$ smallest index $i : e_i \notin E(T)$.
- Assume T_{opt} is not optimal. Let T be spanning with maximal $\iota(T)$.
- $\iota(T) = k \Rightarrow e_1, e_2, \dots, e_{k-1} \in E(T) \cap E(T_{opt}).$
- Note: $T + e_k$ contains a unique cycle C

Theorem

Any spanning tree T_{opt} of a weighted connected graph G constructed by Kruskal's algorithm has minimal weight.

- Notation: \forall spanning $T \neq T_{opt}$, $\iota(T)$ smallest index $i : e_i \notin E(T)$.
- Assume T_{opt} is not optimal. Let T be spanning with maximal $\iota(T)$.
- $\iota(T) = k \Rightarrow e_1, e_2, \dots, e_{k-1} \in E(T) \cap E(T_{opt}).$
- Note: $T + e_k$ contains a unique cycle C (Why?)

- Let $\hat{e} \in \{E(C) \cap E(T)\} \setminus E(T_{opt})$.
- $\hat{e} \in E(C) \Rightarrow \hat{T} = (T + e_k) \hat{e}$ is connected and spanning tree of G.
- $w(\hat{T}) = w(T) + w(e_k) w(\hat{e})$ with $w(\hat{e}) \ge w(e_k)$
- Implication: \hat{T} must be optimal.
- However: $e_k \in E(\hat{T}) \Rightarrow \iota(\hat{T}) > \iota(T)$. Contradiction.

- Let $\hat{e} \in \{E(C) \cap E(T)\} \setminus E(T_{opt})$.
- $\hat{e} \in E(C) \Rightarrow \hat{T} = (T + e_k) \hat{e}$ is connected and spanning tree of G.
- $w(\hat{T}) = w(T) + w(e_k) w(\hat{e})$ with $w(\hat{e}) \ge w(e_k)$
- Implication: \hat{T} must be optimal.
- However: $e_k \in E(\hat{T}) \Rightarrow \iota(\hat{T}) > \iota(T)$. Contradiction.

- Let $\hat{e} \in \{E(C) \cap E(T)\} \setminus E(T_{opt})$.
- $\hat{e} \in E(C) \Rightarrow \hat{T} = (T + e_k) \hat{e}$ is connected and spanning tree of G.
- $w(\hat{T}) = w(T) + w(e_k) w(\hat{e})$ with $w(\hat{e}) \ge w(e_k)$
- Implication: \hat{T} must be optimal.
- However: $e_k \in E(\hat{T}) \Rightarrow \iota(\hat{T}) > \iota(T)$. Contradiction.

- Let $\hat{e} \in \{E(C) \cap E(T)\} \setminus E(T_{opt})$.
- $\hat{e} \in E(C) \Rightarrow \hat{T} = (T + e_k) \hat{e}$ is connected and spanning tree of G.
- $w(\hat{T}) = w(T) + w(e_k) w(\hat{e})$ with $w(\hat{e}) \ge w(e_k)$
- Implication: \hat{T} must be optimal.
- However: $e_k \in E(\hat{T}) \Rightarrow \iota(\hat{T}) > \iota(T)$. Contradiction.

- Let $\hat{e} \in \{E(C) \cap E(T)\} \setminus E(T_{opt})$.
- $\hat{e} \in E(C) \Rightarrow \hat{T} = (T + e_k) \hat{e}$ is connected and spanning tree of G.
- $w(\hat{T}) = w(T) + w(e_k) w(\hat{e})$ with $w(\hat{e}) \ge w(e_k)$ (Why?)
- Implication: \hat{T} must be optimal.
- However: $e_k \in E(\hat{T}) \Rightarrow \iota(\hat{T}) > \iota(T)$. Contradiction.

Correctness Kruskal's algorithm

Proof by construction and contradiction (cntd)

- Let $\hat{e} \in \{E(C) \cap E(T)\} \setminus E(T_{opt})$.
- $\hat{e} \in E(C) \Rightarrow \hat{T} = (T + e_k) \hat{e}$ is connected and spanning tree of G.
- $w(\hat{T}) = w(T) + w(e_k) w(\hat{e})$ with $w(\hat{e}) \ge w(e_k)$
- Implication: \hat{T} must be optimal.
- However: $e_k \in E(\hat{T}) \Rightarrow \iota(\hat{T}) > \iota(T)$. Contradiction.

Correctness Kruskal's algorithm

Proof by construction and contradiction (cntd)

- Let $\hat{e} \in \{E(C) \cap E(T)\} \setminus E(T_{opt})$.
- $\hat{e} \in E(C) \Rightarrow \hat{T} = (T + e_k) \hat{e}$ is connected and spanning tree of G.
- $w(\hat{T}) = w(T) + w(e_k) w(\hat{e})$ with $w(\hat{e}) \ge w(e_k)$
- Implication: \hat{T} must be optimal.
- However: $e_k \in E(\hat{T}) \Rightarrow \iota(\hat{T}) > \iota(T)$. Contradiction.

Routing

Basics

In a communication network, each node u maintains a routing table \mathbf{R}_u with $\mathbf{R}_u[i,j]=k$ meaning that messages from i to j should be forwarded to neighbor k.

Issue

Messages to destination u should follow a path along a spanning tree rooted at u.

Technically

We need to construct a spanning tree optimized for all (v, u)-paths, called a **sink tree**.

Algorithm (Dijkstra, sink tree construction)

$$\forall u : v \in S_t(u) \Rightarrow shortest(v,u)$$
-path found

$$\forall v : \mathbf{L}(v) = (L_1(v), L_2(v))$$
 with

- $L_1(v)$: vertex succeeding v in shortest (v,u)-path so far.
- $L_2(v)$: total weight (length) of that path.

Let
$$R_t(u) = S_t(u) \cup_{v \in S_t(u)} N(v)$$
, with $N(v) = \{w | \exists \ arc \ \langle \overrightarrow{w}, \overrightarrow{v} \rangle \}$.

- Initialize $t \leftarrow 0$; $\mathbf{L}(u) \leftarrow (u,0)$; $\forall v \neq u : \mathbf{L}(v) \leftarrow (-,\infty)$; $S_0(u) \leftarrow \{u\}$
- $\forall y \in R_t(u) \backslash S_t(u)$, select $x \in S_t(u) : L_2(x) + w(\langle \overline{y}, \overline{x} \rangle)$ is minimal. Set $L(y) \leftarrow (x, L_2(x) + w(\langle \overline{y}, \overline{x} \rangle))$.
- Let $z \in R_t(u) \setminus S_t(u) : L_2(z)$ is minimal. Set $S_{t+1}(u) \leftarrow S_t(u) \cup \{z\}$ If $S_{t+1}(u) = V(G)$, stop. Otherwise, $t \leftarrow t+1$, recompute $R_t(u)$ and repeat previous step.

Algorithm (Dijkstra, sink tree construction)

D is directed, weighted graph with nonnegative weights.

 $\forall u : v \in S_t(u) \Rightarrow shortest(v, u)$ -path found.

$$\forall v : \mathbf{L}(v) = (L_1(v), L_2(v)) \text{ with }$$

- $L_1(v)$: vertex succeeding v in shortest (v, u)-path so far.
- $L_2(v)$: total weight (length) of that path.

Let
$$R_t(u) = S_t(u) \cup_{v \in S_t(u)} N(v)$$
, with $N(v) = \{w | \exists \text{ arc } \langle \overline{w}, \overline{v} \rangle \}$.

- ① Initialize $t \leftarrow 0$; $\mathbf{L}(u) \leftarrow (u,0)$; $\forall v \neq u : \mathbf{L}(v) \leftarrow (-,\infty)$; $S_0(u) \leftarrow \{u\}$
- $\forall y \in R_t(u) \backslash S_t(u)$, select $x \in S_t(u) : L_2(x) + w(\langle \overline{y}, \overline{x} \rangle)$ is minimal. Set $L(y) \leftarrow (x, L_2(x) + w(\langle \overline{y}, \overline{x} \rangle))$.
- Let $z \in R_t(u) \setminus S_t(u) : L_2(z)$ is minimal. Set $S_{t+1}(u) \leftarrow S_t(u) \cup \{z\}$ If $S_{t+1}(u) = V(G)$, stop. Otherwise, $t \leftarrow t+1$, recompute $R_t(u)$ and repeat previous step.

Algorithm (Dijkstra, sink tree construction)

D is directed, weighted graph with nonnegative weights.

 $\forall u : v \in S_t(u) \Rightarrow shortest(v, u)$ -path found.

 $\forall v : \mathbf{L}(v) = (L_1(v), L_2(v)) \text{ with }$

- $L_1(v)$: vertex succeeding v in shortest (v,u)-path so far.
- $L_2(v)$: total weight (length) of that path.

Let $R_t(u) = S_t(u) \cup_{v \in S_t(u)} N(v)$, with $N(v) = \{w | \exists arc \langle w, \dot{v} \rangle \}$.

 $\forall y \in R_l(u) \setminus S_l(u)$, select $x \in S_l(u) : L_2(x) + w(\langle y, x \rangle)$ is minimal.

Set $L(y) \leftarrow (x, L_2(x) + w(\langle y, \hat{x} \rangle))$.

① Let $z \in R_t(u) \setminus S_t(u) : L_2(z)$ is minimal. Set $S_{t+1}(u) \leftarrow S_t(u) \cup \{z\}$ If $S_{t+1}(u) = V(G)$, stop. Otherwise, $t \leftarrow t+1$, recompute $R_t(u)$ and repeat previous step.

Algorithm (Dijkstra, sink tree construction)

$$\forall u : v \in S_t(u) \Rightarrow shortest(v, u)$$
-path found.

$$\forall v : \mathbf{L}(v) = (L_1(v), L_2(v))$$
 with

- $L_1(v)$: vertex succeeding v in shortest (v,u)-path so far.
- L₂(v): total weight (length) of that path.

Let
$$R_t(u) = S_t(u) \cup_{v \in S_t(u)} N(v)$$
, with $N(v) = \{w | \exists \ arc \ \langle \overrightarrow{w, v} \rangle \}$.

- 1 Initialize $t \leftarrow 0$; $L(u) \leftarrow (u,0)$; $\forall v \neq u : L(v) \leftarrow (-,\infty)$; $S_0(u) \leftarrow \{u\}$
- ② $\forall y \in R_t(u) \setminus S_t(u)$, select $x \in S_t(u) : L_2(x) + w(\langle \overrightarrow{y,x} \rangle)$ is minimal. Set $\mathbf{L}(y) \leftarrow (x, L_2(x) + w(\langle \overrightarrow{y,x} \rangle))$.
- ① Let $z \in R_t(u) \setminus S_t(u) : L_2(z)$ is minimal. Set $S_{t+1}(u) \leftarrow S_t(u) \cup \{z\}$. If $S_{t+1}(u) = V(G)$, stop. Otherwise, $t \leftarrow t+1$, recompute $R_t(u)$ and repeat previous step.

Algorithm (Dijkstra, sink tree construction)

$$\forall u : v \in S_t(u) \Rightarrow shortest(v, u)$$
-path found.

$$\forall v : \mathbf{L}(v) = (L_1(v), L_2(v))$$
 with

- $L_1(v)$: vertex succeeding v in shortest (v,u)-path so far.
- $L_2(v)$: total weight (length) of that path.

Let
$$R_t(u) = S_t(u) \cup_{v \in S_t(u)} N(v)$$
, with $N(v) = \{w | \exists arc \langle \overrightarrow{w,v} \rangle \}$.

- **1** Initialize $t \leftarrow 0$; $\mathbf{L}(u) \leftarrow (u,0)$; $\forall v \neq u : \mathbf{L}(v) \leftarrow (-,∞)$; $S_0(u) \leftarrow \{u\}$.
- ② $\forall y \in R_t(u) \setminus S_t(u)$, select $x \in S_t(u) : L_2(x) + w(\langle \overrightarrow{y}, \overrightarrow{x} \rangle)$ is minimal. Set $L(y) \leftarrow (x, L_2(x) + w(\langle \overrightarrow{y}, \overrightarrow{x} \rangle))$.
- ③ Let $z \in R_t(u) \setminus S_t(u) : L_2(z)$ is minimal. Set $S_{t+1}(u) \leftarrow S_t(u) \cup \{z\}$ If $S_{t+1}(u) = V(G)$, stop. Otherwise, $t \leftarrow t+1$, recompute $R_t(u)$ and repeat previous step.

Algorithm (Dijkstra, sink tree construction)

$$\forall u : v \in S_t(u) \Rightarrow shortest(v, u)$$
-path found.

$$\forall v : \mathbf{L}(v) = (L_1(v), L_2(v))$$
 with

- $L_1(v)$: vertex succeeding v in shortest (v,u)-path so far.
- $L_2(v)$: total weight (length) of that path.

Let
$$R_t(u) = S_t(u) \cup_{v \in S_t(u)} N(v)$$
, with $N(v) = \{w | \exists \ arc \ \langle \overrightarrow{w}, \overrightarrow{v} \rangle \}$.

- Initialize $t \leftarrow 0$; $\mathbf{L}(u) \leftarrow (u,0)$; $\forall v \neq u : \mathbf{L}(v) \leftarrow (-,\infty)$; $S_0(u) \leftarrow \{u\}$.
- $\forall y \in R_t(u) \setminus S_t(u)$, select $x \in S_t(u) : L_2(x) + w(\langle \overrightarrow{y,x} \rangle)$ is minimal. Set $\mathbf{L}(y) \leftarrow (x, L_2(x) + w(\langle \overrightarrow{y,x} \rangle))$.
- ① Let $z \in R_t(u) \setminus S_t(u) : L_2(z)$ is minimal. Set $S_{t+1}(u) \leftarrow S_t(u) \cup \{z\}$. If $S_{t+1}(u) = V(G)$, stop. Otherwise, $t \leftarrow t+1$, recompute $R_t(u)$ and repeat previous step.

Algorithm (Dijkstra, sink tree construction)

$$\forall u : v \in S_t(u) \Rightarrow shortest(v, u)$$
-path found.

$$\forall v : \mathbf{L}(v) = (L_1(v), L_2(v))$$
 with

- $L_1(v)$: vertex succeeding v in shortest (v,u)-path so far.
- $L_2(v)$: total weight (length) of that path.

Let
$$R_t(u) = S_t(u) \cup_{v \in S_t(u)} N(v)$$
, with $N(v) = \{w | \exists \ arc \ \langle \overrightarrow{w, v} \rangle \}$.

- Initialize $t \leftarrow 0$; $\mathbf{L}(u) \leftarrow (u,0)$; $\forall v \neq u : \mathbf{L}(v) \leftarrow (-,\infty)$; $S_0(u) \leftarrow \{u\}$.
- $\forall y \in R_t(u) \setminus S_t(u)$, select $x \in S_t(u) : L_2(x) + w(\langle \overrightarrow{y,x} \rangle)$ is minimal. Set $L(y) \leftarrow (x, L_2(x) + w(\langle \overrightarrow{y,x} \rangle))$.
- **③** Let $z \in R_t(u) \setminus S_t(u) : L_2(z)$ is minimal. Set $S_{t+1}(u) \leftarrow S_t(u) \cup \{z\}$. If $S_{t+1}(u) = V(G)$, stop. Otherwise, $t \leftarrow t+1$, recompute $R_t(u)$ and repeat previous step.

Theorem

Applying Dijkstra's algorithm vertex $u \in V(D)$, each time a vertex z is added to $S_t(u)$, $L_2(z)$ corresponds to the shortest (z, u)-path in D.

- Let z be first vertex added to $S_t(u)$, such that $L_2(z) > d(z,u)$
- Note: L₂(z) < ∞ (otherwise z would never have been added).
- Let P be shortest (z, u)-path
- Let y be last vertex on P not in $S_t(u)$, and x its successor (and thus in $S_t(u)$)

Theorem

Applying Dijkstra's algorithm vertex $u \in V(D)$, each time a vertex z is added to $S_t(u)$, $L_2(z)$ corresponds to the shortest (z, u)-path in D.

- Let d(w, u) be total weight of shortest (w, u)-path.
- Let z be first vertex added to $S_t(u)$, such that $L_2(z) > d(z,u)$.
- Note: $L_2(z) < \infty$ (otherwise z would never have been added).
- Let P be shortest (z, u)-path.
- Let y be last vertex on P not in $S_t(u)$, and x its successor (and thus in $S_t(u)$).

Theorem

Applying Dijkstra's algorithm vertex $u \in V(D)$, each time a vertex z is added to $S_t(u)$, $L_2(z)$ corresponds to the shortest (z, u)-path in D.

- Let d(w, u) be total weight of shortest (w, u)-path.
- Let z be first vertex added to $S_t(u)$, such that $L_2(z) > d(z,u)$.
- Note: $L_2(z) < \infty$ (otherwise z would never have been added).
- Let P be shortest (z, u)-path.
- Let y be last vertex on P not in $S_t(u)$, and x its successor (and thus in $S_t(u)$).

Theorem

Applying Dijkstra's algorithm vertex $u \in V(D)$, each time a vertex z is added to $S_t(u)$, $L_2(z)$ corresponds to the shortest (z, u)-path in D.

- Let d(w, u) be total weight of shortest (w, u)-path.
- Let z be first vertex added to $S_t(u)$, such that $L_2(z) > d(z,u)$.
- Note: $L_2(z) < \infty$ (otherwise z would never have been added).
- Let P be shortest (z, u)-path.
- Let y be last vertex on P not in $S_t(u)$, and x its successor (and thus in $S_t(u)$).

Theorem

Applying Dijkstra's algorithm vertex $u \in V(D)$, each time a vertex z is added to $S_t(u)$, $L_2(z)$ corresponds to the shortest (z, u)-path in D.

- Let d(w, u) be total weight of shortest (w, u)-path.
- Let z be first vertex added to $S_t(u)$, such that $L_2(z) > d(z, u)$.
- Note: $L_2(z) < \infty$ (otherwise z would never have been added).
- Let P be shortest (z, u)-path.
- Let y be last vertex on P not in $S_t(u)$, and x its successor (and thus in $S_t(u)$).

Theorem

Applying Dijkstra's algorithm vertex $u \in V(D)$, each time a vertex z is added to $S_t(u)$, $L_2(z)$ corresponds to the shortest (z,u)-path in D.

- Let d(w, u) be total weight of shortest (w, u)-path.
- Let z be first vertex added to $S_t(u)$, such that $L_2(z) > d(z, u)$.
- Note: $L_2(z) < \infty$ (otherwise z would never have been added).
- Let P be shortest (z, u)-path.
- Let y be last vertex on P not in $S_t(u)$, and x its successor (and thus in $S_t(u)$).

Theorem

Applying Dijkstra's algorithm vertex $u \in V(D)$, each time a vertex z is added to $S_t(u)$, $L_2(z)$ corresponds to the shortest (z,u)-path in D.

- Let d(w, u) be total weight of shortest (w, u)-path.
- Let z be first vertex added to $S_t(u)$, such that $L_2(z) > d(z, u)$.
- Note: $L_2(z) < \infty$ (otherwise z would never have been added).
- Let P be shortest (z, u)-path.
- Let y be last vertex on P not in $S_t(u)$, and x its successor (and thus in $S_t(u)$).

- Note: $L_2(x) = d(x, u)$ and $L_2(y) \le L_2(x) + w(\langle \overrightarrow{y, x} \rangle)$.
- Also: y is on shortest (z, u)-path $\Rightarrow L_2(y) = d(y, u)$.
- y was not selected at step $t \Rightarrow L_2(z) \le L_2(y)$.
- Note: d(z,y) + d(y,u) = d(z,u)
- $L_2(z) \le L_2(y) = d(y, u) \le d(y, u) + d(z, y) = d(z, u)$. Contradiction.

- Note: $L_2(x) = d(x, u)$ and $L_2(y) \le L_2(x) + w(\langle \overrightarrow{y, x} \rangle)$.
- Also: y is on shortest (z, u)-path $\Rightarrow L_2(y) = d(y, u)$.
- y was not selected at step $t \Rightarrow L_2(z) \le L_2(y)$.
- Note: d(z,y) + d(y,u) = d(z,u)
- $L_2(z) \le L_2(y) = d(y, u) \le d(y, u) + d(z, y) = d(z, u)$. Contradiction.

- Note: $L_2(x) = d(x, u)$ and $L_2(y) \le L_2(x) + w(\langle \overrightarrow{y, x} \rangle)$.
- Also: y is on shortest (z, u)-path $\Rightarrow L_2(y) = d(y, u)$.
- y was not selected at step $t \Rightarrow L_2(z) \le L_2(y)$.
- Note: d(z,y) + d(y,u) = d(z,u)
- $L_2(z) \le L_2(y) = d(y, u) \le d(y, u) + d(z, y) = d(z, u)$. Contradiction.

- Note: $L_2(x) = d(x, u)$ and $L_2(y) \le L_2(x) + w(\langle \overrightarrow{y, x} \rangle)$.
- Also: y is on shortest (z, u)-path $\Rightarrow L_2(y) = d(y, u)$.
- y was not selected at step $t \Rightarrow L_2(z) \le L_2(y)$.
- Note: d(z,y) + d(y,u) = d(z,u)
- $L_2(z) \le L_2(y) = d(y, u) \le d(y, u) + d(z, y) = d(z, u)$. Contradiction.

- Note: $L_2(x) = d(x, u)$ and $L_2(y) \le L_2(x) + w(\langle \overrightarrow{y, x} \rangle)$.
- Also: y is on shortest (z, u)-path $\Rightarrow L_2(y) = d(y, u)$.
- y was not selected at step $t \Rightarrow L_2(z) \le L_2(y)$.
- Note: d(z,y) + d(y,u) = d(z,u)
- $L_2(z) \le L_2(y) = d(y, u) \le d(y, u) + d(z, y) = d(z, u)$. Contradiction.

- Note: $L_2(x) = d(x, u)$ and $L_2(y) \le L_2(x) + w(\langle \overrightarrow{y, x} \rangle)$.
- Also: y is on shortest (z, u)-path $\Rightarrow L_2(y) = d(y, u)$.
- y was not selected at step $t \Rightarrow L_2(z) \le L_2(y)$.
- Note: d(z,y) + d(y,u) = d(z,u)
- $L_2(z) \le L_2(y) = d(y, u) \le d(y, u) + d(z, y) = d(z, u)$. Contradiction.

Decentralized routing

Observation

In order to execute Dijkstra's algorithm, each vertex should know the **topology** of the entire network.

Alternative

Let nodes tell their neighbors on shortest paths to other nodes discovered so far.

Observation

If a neighbor v of u knows about a path to w, and tells u, then u discovers a path to w (namely via v).

Decentralized routing

Observation

In order to execute Dijkstra's algorithm, each vertex should know the **topology** of the entire network.

Alternative

Let nodes tell their neighbors on shortest paths to other nodes discovered so far.

Observation

If a neighbor v of u knows about a path to w, and tells u, then u discovers a path to w (namely via v).

Decentralized routing

Observation

In order to execute Dijkstra's algorithm, each vertex should know the **topology** of the entire network.

Alternative

Let nodes tell their neighbors on shortest paths to other nodes discovered so far.

Observation

If a neighbor v of u knows about a path to w, and tells u, then u discovers a path to w (namely via v).

Bellman-Ford routing

Algorithm (Bellman-Ford)

• Consider node v_i . We proceed in **rounds**: in every round t, each node evaluates its routing table $\mathbf{R}_i[j] = d^t(i,j)$ with:

$$d^0(i,j) \leftarrow \left\{ egin{array}{ll} 0 & \textit{if } i = j \\ \infty & \textit{otherwise} \end{array} \right.$$

Every round, adjust d^t(i,j) to:

$$d^{t+1}(i,j) \leftarrow \min_{k \in N(v_i)} w(\langle v_i, v_k \rangle) + d^t(k,j)$$

• With $d^t(i,j)$ thus denoting the total weight of optimal (v_i, v_j) -path, found by v_i after t rounds.

Example: Bellman-Ford

Destination

	v_0	v_1	<i>v</i> ₂	<i>v</i> ₃	v_4	V 5	<i>v</i> ₆	v_7
<i>v</i> ₀ :	$(0, v_0)$		$(3, v_2)$	$(1, v_3)$	$(6, v_4)$			
<i>v</i> ₁ :		$(0, v_1)$	$(2, v_2)$	$(7, v_3)$				
<i>V</i> ₂ :	$(3, v_0)$	$(2, v_1)$	$(0, v_2)$			$(1, v_5)$		
<i>v</i> ₃ :	$(1, v_0)$	$(7, v_1)$		$(0, v_3)$			$(4, v_6)$	
<i>V</i> ₄ :	$(6, v_0)$				$(0, v_4)$	$(5, v_5)$	$(3, v_6)$	
<i>V</i> ₅ :			$(1, v_2)$		$(5, v_4)$	$(0, v_5)$		$(4, v_7)$
<i>v</i> ₆ :				$(4, v_3)$	$(3, v_4)$		$(0, v_6)$	$(2, v_7)$
V7:						$(4, v_5)$	$(2, v_6)$	$(0, v_7)$

Example: Bellman-Ford after 2 rounds

Destination

	v_0	<i>v</i> ₁	<i>v</i> ₂	<i>v</i> ₃	v_4	<i>V</i> 5	<i>v</i> ₆	<i>V</i> 7
<i>v</i> ₀ :	$(0, v_0)$	$(5, v_2)$	$(3, v_2)$	$(1, v_3)$	$(6, v_4)$	$(4, v_2)$	$(5, v_3)$	
<i>v</i> ₁ :	$(5, v_2)$	$(0, v_1)$	$(2, v_2)$	$(7, v_3)$		$(3, v_2)$	$(11, v_3)$	
<i>V</i> ₂ :	$(3, v_0)$	$(2, v_1)$	$(0, v_2)$	$(4, v_0)$	$(6, v_5)$	$(1, v_5)$		$(5, v_5)$
<i>V</i> ₃ :	$(1, v_0)$	$(7, v_1)$	$(4, v_0)$	$(0, v_3)$	$(7, v_0)$		$(4, v_6)$	$(6, v_6)$
<i>V</i> ₄ :	$(6, v_0)$		$(6, v_5)$	$(7, v_6)$	$(0, v_4)$	$(5, v_5)$	$(3, v_6)$	$(5, v_6)$
<i>V</i> ₅ :	$(4, v_2)$	$(3, v_2)$	$(1, v_2)$		$(5, v_4)$	$(0, v_5)$	$(6, v_7)$	$(4, v_7)$
<i>v</i> ₆ :	$(5, v_3)$	$(11, v_3)$		$(4, v_3)$	$(3, v_4)$	$(6, v_7)$	$(0, v_6)$	$(2, v_7)$
<i>V</i> ₇ :			$(5, v_5)$	$(6, v_6)$	$(5, v_6)$	$(4, v_5)$	$(2, v_6)$	$(0, v_7)$

A note on efficiency

Observation

Dijkstra's algorithm roughly requires each node to inspect every other node once, implying a total of approximately n^2 steps.

The Bellman-Ford algorithm requires that for each node we inspect exactly the tables of each of its neighbors. Because we have $\sum \delta(v) = 2m$ with m the number of edges, there are a total of roughly $n \cdot m$ steps.

A note on efficiency

