Name :



## CONTINUOUS ASSESSMENT TEST II – OCTOBER 2022

| rogramme ·  | :B.Tech                                                                                                | Semester       | :Fall 2022                                       |
|-------------|--------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------|
| Course Name | :Applied Linear Algebra                                                                                | Course Code    | :MAT3004                                         |
| Faculty     | :Dr. M. Kaliyappan, Dr. Hannah Grace, Dr. David Raj<br>Micheal, Dr. S. Dhanasekar, Dr. Om Namha Shivay | Slot/ Class No | C2+TC2+TCC2/CH20222<br>31000390/391/392/ 393/394 |
| Гime        | :90 mins                                                                                               | Max. Marks     | :50                                              |

## Answer all questions (5 $\times$ 10 = 50 Marks)

1. (a) Determine the dimensions of the sum and of the intersection of the vector spaces 
$$V_1$$
 and  $V_2$  defined by the columns of these matrices: 
$$\begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & -1 & -2 \end{bmatrix}, \begin{bmatrix} 0 & 0 & -1 & 2 \\ 0 & 0 & -1 & 2 \\ 0 & 1 & -1 & 3 \\ 1 & 1 & 1 & 0 \end{bmatrix}.$$

(b) Find the unique polynomial p(x) of degree 2 or less, that agrees with the following data:

| i | $x_i$ | $y_1$ |
|---|-------|-------|
| 0 | 1     | 1     |
| 1 | 2     | 3     |
| 2 | 4     | 8     |

- 2. Let  $T_1: P_2 \to R^3$  and  $T_2: P_2 \to R^3$  be the linear transformations defined by  $T_1(a+bx+cx^2) = (a+c,a+b,0)$ ,  $T_2(a+bx+cx^2) = (0,a+b,a-c)$  where  $P_2$  is the vector space of all polynomials of degree at most 2.
  - (i) Find  $Ker(T_1)$  and  $Ker(T_2)$  and hence check the whether  $T_1$  and  $T_2$  are onto.
  - (ii) If  $T_1 + T_2$ :  $P_2 o R^3$  be another linear transformation defined as  $(T_1 + T_2)(p(x)) = T_1(p(x)) + T_2(p(x))$ , for every  $p(x) = a + bx + cx^2 \in P_2$  and a,b,c  $\in R$ , find the inverse map of  $(T_1 + T_2)$
- 3. Let  $T: \mathbb{R}^3 \to \mathbb{R}^3$  be the linear transformation given by T(x, y, z) = (-2x + y, -y z, x + 3z). 6+4 (i) Find  $[T]^{\beta}_{\alpha}$  where  $\alpha = \{(1, -3, 1), (0, 3, -1), (2, -2, 1)\}$  and  $\beta = \{(2, 0, 1), (3, -1, 1), (15, -6, 4)\}$ 
  - (ii) Find the transition matrix  $[id]^{\beta}_{\alpha}$ .

Also find a vector orthogonal to first two columns of A.

$$\begin{bmatrix} 1 & -1 & 4 \\ 1 & 3 & -2 \end{bmatrix}$$

Find the QR factorization of the matrix 
$$A = \begin{bmatrix} 1 & -1 & 4 \\ 1 & 3 & -2 \\ 1 & 3 & 2 \\ 1 & -1 & 0 \end{bmatrix}$$
.

5 + 5