MUSIC POPULARITY PREDICTOR

•••

Sean McCormick, Ryan Power, Sam Springer, and Jenna Dean

DESCRIPTION

Create a model that can successfully predict the popularity of a song and/or artist based on various quantitative and qualitative characteristics mined from the artist/song.

INTERESTING QUESTIONS

- 1. Can a model be created to predict the popularity of an artist or song using Spotify?
- 2. Can an artist's popularity be predicted based on the acoustic attributes of their songs and albums?
- 3. Is it possible to correlate a set of song characteristics that will effectively predict an artist's and/or song's future popularity and success?
- 4. Can a combination of genres predict which artists will be the most popular?

Prior work

- Spotify API query framework that retrieves current data (returned to API user in JSON) about a song or artist.
- Pandora Music Genome Project: analyzes each song using up to 400 distinct musical attributes that are relevant to understanding the interests of a listener. (https://www.pandora.com/corporate/mgp.shtml)
- Spotify Predictive Model: a predictive model that determines whether a listener likes or dislikes a song.
- Spotify Predictor of Song Popularity: a model based on how often a song is added to a playlist. (https://developer.spotify.com/documentation/web-api/reference/#object-trackobject)

DATASETS

- Queried data from Spotify's API which includes artist and song characteristics for just under 30,000 artists.
- A compiled dataset from Kaggle which can be found with the URL:
 (https://www.kaggle.com/yamaerenay/spotify-dataset-19212020-160k-tracks)
- Our data is installed on our machines locally and can also be found on our github project repository: (https://github.com/jede4829/Data-Mining-Team-Project)

artists	id_artists	release_date	danceability	energy	key	loudness	mode	speechiness	acousticness	instrumentalne	liveness	valence	tempo
[יווטי]	['45tIt06XoI0Iio4LBEVpls']	2/22/1922	0.645	0.445	0	-13.338	1	0.451	0.674	0.744	0.151	0.127	104.851
['Fernando Pessoa']	['14jtPCOoNZwquk5wd9DxrY']	6/1/1922	0.695	0.263	0	-22.136	1	0.957	0.797	0	0.148	0.655	102.009
['Ignacio Corsini']	['5LiOoJbxVSAMkBS2fUm3X2']	3/21/1922	0.434	0.177	1	-21.18	1	0.0512	0.994	0.0218	0.212	0.457	130.418
['Ignacio Corsini']	['5LiOoJbxVSAMkBS2fUm3X2']	3/21/1922	0.321	0.0946	7	-27.961	1	0.0504	0.995	0.918	0.104	0.397	169.98
['Dick Haymes']	['3BiJGZsyX9sJchTqcSA7Su']	1922	0.402	0.158	3	-16.9	0	0.039	0.989	0.13	0.311	0.196	103.22
['Dick Haymes']	['3BiJGZsyX9sJchTqcSA7Su']	1922	0.227	0.261	5	-12.343	1	0.0382	0.994	0.247	0.0977	0.0539	118.891
['Francis Marty']	['2nuMRGzeJ5jJEKlfS7rZ0W']	1922	0.51	0.355	4	-12.833	1	0.124	0.965	0	0.155	0.727	85.754
['Mistinguett']	['4AxgXfD7ISvJSTObqm4aIE']	1922	0.563	0.184	4	-13.757	1	0.0512	0.993	1.55E-05	0.325	0.654	133.088
['Greg Fieler']	['5nWlsH5RDgFuRAiDeOFVmf']	1922	0.488	0.475	0	-16.222	0	0.0399	0.62	0.00645	0.107	0.544	139.952

PROPOSED WORK

- Capture Data
 - O Query Spotify API for various data sets to compare and contrast against local data set to confirm preciseness and accuracy.
- Data Cleaning
 - Remove outlier attributes
 - Fill in missing attributes as needed
 - Utilize regression techniques to define missing values
- Data Preprocessing
 - O Dimensionality reduction
 - Find correlations between attributes
 - Normalization
- Data Integration
 - Call Spotify API using Python script
 - Using Python Dataframes > csv
 - Upload to Tableau to analyze data

LIST OF TOOLS

- Spotify API
- MLXTEND Apriori
- Numpy
- Pandas
- Sys
- Python
- Tableau

EVALUATION

- Compare modeled popularity results to what Spotify deems as popular based off of current streaming trends and charts.
- Compare Spotify recommendations to results generated by our predictive models.

