# Statistiques pour les sciences (MAT-4681)

#### Arthur Charpentier

# 13 - Loi multinomiale et tableaux croisés

été 2022

### Tableau de comptage

X peut prendre les modalités  $\{x_1, \dots, x_I\}$ . On appelle tableau de comptage le vecteur  $\mathbf{n}$  de taille J  $\mathbf{n} = [n_i] = (n_1, \dots, n_I)$ où  $n_i$  est le nombre d'individus dont la modalité est  $x_i$ .

**Example** Considérons l'exemple où X désigne la couleur des yeux, de la base HairEyeColor,

```
1 > data(HairEyeColor)
 > n = apply(HairEyeColor[,,Sex="Female"],1,sum)
3 > n
4 Black Brown Red Blond
 52
        143 37
                     81
```

Si 
$$n$$
 est l'effectif total,  $n = \sum_{i=1}^{n} \mathbf{1}_{j} x_{i}$   
La fréquence est  $\mathbf{f} = \frac{1}{n} \mathbf{n} = \left[\frac{n_{j}}{n}\right]$ 

- > barplot(n)
- f = n/sum(n)
- 3 > barplot(f)





On suppose que  $\{X_1, \dots, X_n\}$  est une collection de variables catégorielles indépendantes, de loi  $\mathbf{p} = (p_1, \dots, p_I)$ 

La variable  $Y_{j:i} = \mathbf{1}_{j}(X_{i})$  suit une loi de Bernoulli  $\mathcal{B}(p_{i})$ , où

$$p_j = \mathbb{E}[Y_j] = \mathbb{E}(\mathbf{1}_j(X)) = \mathbb{P}[X = x_j]$$

La variable  $N_j = \sum_{i=1}^{n} \mathbf{1}_j(X_i) = \sum_{i=1}^{n} Y_{j:i}$  suit une loi binomiale  $\mathcal{B}(n, p_j)$ 

### Espérance, variance et covariance

$$E(N_i) = np_i \quad \text{var}(N_i) = np_i(1 - p_i)$$
$$cov(N_i, N_j) = -np_ip_j$$

(admis)

Les variables  $N_i$  et  $N_j$  ne sont pas indépendantes, car  $\sum_{j=1}^{J} N_j = n$ 

On peut simuler une loi prenant les valeurs  $\{1, 2, 3\}$ , uniforme  $(\mathbf{p} = (1/3, 1/3, 1/3))$ , n = 30 fois.

> N = table(X)[as.character(1:3)]







On peut montrer que

#### Loi multinomiale

$$\mathbb{P}(N_1 = n_1, \dots N_j = n_J) = \frac{n!}{n_1! \dots n_m!} p_1^{n_1} \dots p_J^{n_J}$$
pour tout  $\mathbf{n} = (n_1, \dots, n_J)$  tel que  $n_1 + \dots + n_J = n$ .

En particulier si J=2, on retrouve la loi binomiale,

$$\mathbb{P}(N_1 = n_1, N_2 = n_2) = \frac{n!}{n_1! n_2!} p_1^{n_1} p_2^{n_2}$$

pour  $n_1$  et  $n_2$  tels que  $n_1 + n_2 = n$ , ou

$$\mathbb{P}(N_1 = n_1, N_2 = n - n_1) = \frac{n!}{n_1!(n - n_1)!} p_1^{n_1} (1 - p_1)^{n - n_1}$$





#### On peut montrer que

### Loi multinomiale, approximation

Si  $\{x_1, \dots, x_n\}$  est une collection de variables catégorielles indépendantes, de probabilités  $\mathbf{p} = (p_1, \dots, p_J)$ , et si  $n_i$  est le nombre d'observations de la modalité *i*,

$$\frac{N_j - np_j}{\sqrt{np_j(1-p_j)}} \approx \mathcal{N}(0,1)$$

et

$$\sum_{j=1}^{J} \frac{(N_j - np_j)^2}{np_j} \approx \chi^2(J - 1)$$

(le résultat sera admis ici)

#### Test

Cette dernière propriété permet de proposer un test de fréquence

### Loi multinomiale, test $H_0: \mathbf{p} = \mathbf{p}_0$ contre $H_1: \mathbf{p} \neq \mathbf{p}_0$

Si  $\{x_1, \dots, x_n\}$  est une collection de variables catégorielles indépendantes, de probabilités  $\mathbf{p} = (p_1, \dots, p_I)$ , pour tester  $H_0: \boldsymbol{p} = \boldsymbol{p}_0$  contre  $H_1: \boldsymbol{p} \neq \boldsymbol{p}_0$  la statistique de test est

$$Q = \sum_{j=1}^{J} \frac{\left(N\hat{p}_{j} - Np_{0,j}\right)^{2}}{Np_{0,j}} = \sum_{j=1}^{J} \frac{\left(n_{j} - Np_{0,j}\right)^{2}}{Np_{0,j}}$$

Si  $H_0: \boldsymbol{p} = \boldsymbol{p}_0$  est vraie,  $Q \sim \chi^2(J-1)$ . Et donc

 $\blacktriangleright$  on rejette  $H_0$  si  $q > Q_{l-1}^{-1}(1-\alpha)$ 

où  $Q_{\nu}$  est la fonction de répartition de la loi du chi-deux,  $\gamma^2(\nu)$ .



### Loi multinomiale, test

On a lancé n = 600 fois un dé, est-il biaisé ?

$$q = \frac{(88 - 100)^2}{100} + \frac{(109 - 100)^2}{100} + \frac{(107 - 100)^2}{100} + \frac{(94 - 100)^2}{100} + \frac{(105 - 100)^2}{100}$$

```
1 > sum((table(X1)-100)^2/100)
2 [1] 3.44
```

or le quantile à 95% d'une loi  $\chi^2(6-1)$  est 11.07

```
_{1} > qchisq(.95,6-1)
2 [1] 11.0705
```

et la p-value vaut 36.7%

```
_{1} > 1-pchisq(3.44,6-1)
```

2 [1] 0.6324852

### Loi multinomiale, test

On a lancé n = 600 fois un (autre) dé, est-il biaisé?

$$q = \frac{(89 - 100)^2}{100} + \frac{(131 - 100)^2}{100} + \frac{(93 - 100)^2}{100} + \frac{(92 - 100)^2}{100} + \frac{(104 - 100)^2}{100}$$

qui dépasse le quantile à 95% d'une loi  $\chi^2(6-1)$  est 11.07

et la *p*-value vaut 36.7%

1 > 1-pchisq(12.92,6-1)

### Tests multiples ★★★

On a ponctuellement des intervalles de confidance, sur les probabilités

$$\left[ \hat{p}_j \pm u_{1-\alpha} \cdot \sqrt{\frac{\hat{p}_j(1-\hat{p}_j)}{n}} \right] \text{ où } \hat{p}_j = \frac{n_j}{n},$$

et sur les fréquences

$$\left[ n_j \pm u_{1-\alpha} \cdot \sqrt{\frac{n_j(n-n_j)}{n}} \right]$$





### Tests multiples ★★★

Ces intervalles de confiance sont associés à 6 tests simples



On peut refuser un test simple (un sur les six)

```
> table(X)
   78 116 99 104 103 100
 > prop.test(table(X)[1],600,1/6)
5
6
   1-sample proportions test with continuity correction
7
8 data: table(X)[1] out of 600, null probability 1/6
9 \text{ X-squared} = 5.547, df = 1, p-value = 0.01851
10 alternative hypothesis: true p is not equal to
     0.1666667
11 95 percent confidence interval:
0.1046716 0.1601808
```

### Tests multiples ★★★

et on peut accepter le test multiple (p-value de 17.6%)



Car ici, on regarde un test multiple,  $H_0: p_1 = \cdots = p_6$ .

```
1 > 1-pchisq(sum((table(X)-100)^2/100),6-1)
2 [1] 0.175996
```

i.e.

```
chisq.test(table(X), p = rep(1/6,6))

Chi-squared test for given probabilities

data: table(X)
X-squared = 7.66, df = 5, p-value = 0.176
```

La formule de base repose sur

$$Z_j = \frac{\text{comptage observ\'e} - \text{comptage attendu sous } H_0}{\sqrt{\text{comptage attendu}}} = \frac{O_j - E_j}{\sqrt{E_j}}$$

Si on a assez d'observations,  $Z_i \approx \mathcal{N}(0,1)$  et

$$Q = Z_1^2 + Z_2^2 + \dots + Z_{J-1}^2 + Z_J^2 \approx \chi^2(J-1)$$

que l'on notera aussi

$$Q = \sum_{j=1}^{J} \frac{(O_j - E_j)^2}{E_j} \approx \chi^2 (J - 1)$$



De manière générale, la statistique de test est

$$q = \sum_{j=1}^{J} \frac{\left(N\hat{p}_{0,j} - Np_{0,j}\right)^2}{Np_{0,j}} = \sum_{j=1}^{J} \frac{\left(n_j - Np_{0,j}\right)^2}{Np_{0,j}}$$

la p-value est

$$p = \mathbb{P}[Q > q | Q \sim \chi^2(J-1)]$$

mais on peut passer par la région de rejet

- $\triangleright$  si  $q > Q_{l-1}^{-1}(1-\alpha)$  on rejette  $H_0$
- ightharpoonup si  $q < Q_{l-1}^{-1}(1-\alpha)$  on ne rejette pas  $H_0$





### Tableau de contingence

X peut prendre les modalités  $\{x_1, \dots, x_l\}$  et Y les modalités  $\{y_1, \dots, y_I\}$ . On appelle tableau de contingence la matrice  $N, I \times J, N = [n_{i,j}]$  où  $n_{i,j}$  est le nombre d'individus dont les modalités sont  $x_i$  et  $y_i$ . On parle parfois aussi de tri-croisé.

**Example** Considérons l'exemple où X désigne la couleur des cheveux, et Y la couleur des yeux, de la base HairEyeColor,

```
> data(HairEyeColor)
> HairEyeColor[,,Sex="Female"]
      Eve
4 Hair Brown Blue Hazel Green
  Black 36 9 5
 Brown 66 34 29 14
  Red 16 7 7 7
7
  Blond 4
             64
                5
                      8
```

### Effets marginaux

Les effets marginaux sont notés

$$n_{i,.} = \sum_{j} n_{i,j}$$
 et  $n_{.,j} = \sum_{i} n_{i,j}$ 

L'effectif total de la population est alors

$$n=\sum_i n_{i,\cdot}=\sum_j n_{\cdot,j}=\sum_{i,j} n_{i,j}$$

```
> apply(HairEyeColor[,,Sex="Female"],2,sum)
2 Brown Blue Hazel Green
   122 114
               46 31
4 > apply(HairEyeColor[,,Sex="Female"],1,sum)
5 Black Brown Red Blond
    52 143
               37
                     81
```

On pose alors 
$$F = \frac{1}{n}N = [f_{i,j}]$$
, où  $f_{i,j} = \frac{n_{i,j}}{n}$ .

1 > HairEyeColor[,,Sex="Female"]/sum(HairEyeColor[,,Sex="Female"])

Eye

3 Hair Brown Blue Hazel Green

4 Black 0.11501597 0.02875399 0.01597444 0.006389776

Brown 0.21086262 0.10862620 0.09265176 0.044728435

Red 0.05111821 0.02236422 0.02236422 0.022364217

Blond 0.01277955 0.20447284 0.01597444 0.025559105

De la même manière, on peut définir les effets marginaux

$$f_{i,\cdot} = \sum_{j} f_{i,j}$$
 et  $f_{\cdot,j} = \sum_{i} f_{i,j}$ 









### Probabilités conditionnelles

|       | brown | hazel | green | blue  |        |
|-------|-------|-------|-------|-------|--------|
| black | 63.0% | 13.9% | 4.6%  | 18.5% | 100.0% |
| brown | 41.6% | 18.9% | 10.1% | 29.4% | 100.0% |
| red   | 36.6% | 19.7% | 19.7% | 23.9% | 100.0% |
| blond | 5.5%  | 7.9%  | 12.6% | 74.0% | 100.0% |
|       | 37.2% | 15.7% | 10.8% | 36.3% |        |



|       | brown  | hazel  | green  | blue   |       |
|-------|--------|--------|--------|--------|-------|
| black | 30.9%  | 16.1%  | 7.8%   | 9.3%   | 18.2% |
| brown | 54.1%  | 58.1%  | 45.3%  | 39.1%  | 48.3% |
| red   | 11.8%  | 15.1%  | 21.9%  | 7.9%   | 12.0% |
| blond | 3.2%   | 10.8%  | 25.0%  | 43.7%  | 21.5% |
|       | 100.0% | 100.0% | 100.0% | 100.0% |       |
|       | •      |        |        |        |       |



### Test d'indépendance I

### Indépendance $X \perp \!\!\! \perp Y$

Soit X et Y deux variables discrètes, X et Y sont indépendantes - noté  $X \perp \!\!\!\perp Y$  - si

$$\mathbb{P}[X=x,Y=y]=\mathbb{P}[X=x]\cdot\mathbb{P}[Y=y],\ \forall x,y.$$

Compte tenu des notations précédentes.

- on estime  $\mathbb{P}[X = x_i, Y = y_i]$  par  $\hat{p}_{i,j} = f_{i,j} = \frac{n_{i,j}}{n}$
- $\blacktriangleright$  on estime  $\mathbb{P}[X = x_i]$  par  $\widehat{p}_{i,\cdot} = f_{i,\cdot} = \frac{n_{i,\cdot}}{n}$
- ▶ on estime  $\mathbb{P}[Y = y_j]$  par  $\hat{p}_{\cdot,j} = f_{\cdot,j} = \frac{n_{\cdot,j}}{p}$



### Test d'indépendance II

### Indépendance empirique x 111 y

Soit  $(\mathbf{x}, \mathbf{y}) = \{(x_1, y_1), \dots, (x_n, y_n)\}\$  des couples de variables catégorielles appareillées. Si  $[n_{i,j}]$  est le tableau de contingence associé, on dira que x et y sont empiriquement indépendant - noté x ⊥⊥ y - si

$$\widehat{p}_{i,j} = \widehat{p}_{i,.}\widehat{p}_{.,j}$$
 ou  $\frac{n_{i,j}}{n} = \frac{n_{i,.}}{n} \frac{n_{.,j}}{n}$ ,  $\forall i$  et  $j$  ou  $n_{i,j} = \frac{n_{i,.}n_{.,j}}{n}$ ,  $\forall i$  et  $j$ 

On pourra noter  $\hat{p}_{i,j}^{\perp} = \hat{p}_{i,\cdot}\hat{p}_{\cdot,j}$ , et on aura indépendance si  $\boldsymbol{p} = \boldsymbol{p}^{\perp}$ Un test naturel sera un test du chi-deux.





# Test d'indépendance III

### Test $H_0: X \perp\!\!\!\perp Y$ contre $H_1: X \perp\!\!\!\perp Y$

Soit  $(\mathbf{x}, \mathbf{y}) = \{(x_1, y_1), \dots, (x_n, y_n)\}\$  des couples de variables catégorielles appareillées. Si  $[n_{i,j}]$  est le tableau de contingence associé, pour tester  $H_0: X \perp\!\!\!\perp Y$  contre  $H_1: X \perp\!\!\!\perp Y$ la statistique de test est

$$Q = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(n\hat{p}_{i,j} - n\hat{p}_{i,}.\hat{p}_{.,j})^{2}}{n\hat{p}_{i,}.\hat{p}_{.,j}} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(n_{i,j} - n_{i,}.n_{.,j})^{2}}{n_{i,}.n_{.,j}}$$

Si  $H_0: X \perp \!\!\!\perp Y$  est vraie,  $Q \sim \chi^2((I-1)(J-1))$ . Et donc

• on rejette  $H_0$  si  $q > Q_{(I-1)((I-1))}^{-1}(1-\alpha)$ 

où  $Q_{\nu}$  est la fonction de répartition de la loi du chi-deux,  $\chi^2(\nu)$ .



# Test d'indépendance IV

Notons qu'on peut aussi écrire la statistique de test sur les probabilités, et pas les comptages

$$Q = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(n\hat{p}_{i,j} - n\hat{p}_{i,\cdot}\hat{p}_{\cdot,j}\right)^{2}}{n\hat{p}_{i,\cdot}\hat{p}_{\cdot,j}} = n \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(\hat{p}_{i,j} - \hat{p}_{i,\cdot}\hat{p}_{\cdot,j}\right)^{2}}{\hat{p}_{i,\cdot}\hat{p}_{\cdot,j}}$$

On peut également écrire

$$Q = \sum_{i=1}^{I} \sum_{j=1}^{J} \epsilon_{i,j}^{2} \text{ où } \epsilon_{i,j} = \frac{(n\hat{p}_{i,j} - n\hat{p}_{i,.}\hat{p}_{.,j})}{\sqrt{n\hat{p}_{i,.}\hat{p}_{.,j}}}$$

où, si  $H_0: X \perp \!\!\!\perp Y$  est vraie,  $\epsilon_{i,i} \approx \mathcal{N}(0,1)$ .

 $\epsilon_{i,i}^2$  est appelée contribution au test du chi-deux



## Test d'indépendance V

```
1 > N = HairEyeColor[,,Sex="Female"]+HairEyeColor[,,Sex
    ="Male"]
2 > (Q = chisq.test(N))
3
   Pearson's Chi-squared test
5
6 data:
7 X-squared = 138.29, df = 9, p-value < 2.2e-16
8 > Q$observed
       Eve
10 Hair Brown Blue Hazel Green
  Black 68 20
                  15
 Brown 119 84 54 29
12
 Red 26 17 14 14
13
14 Blond 7 94 10 16
```

# Test d'indépendance VI

```
1 > Q$expected
       Eye
3 Hair Brown Blue Hazel Green
 Black 40.13514 39.22297 16.96622 11.675676
5 Brown 106.28378 103.86824 44.92905 30.918919
6 Red 26.38514 25.78547 11.15372 7.675676
7 Blond 47.19595 46.12331 19.95101 13.729730
```

# Comme attendu, on notera que $n_{\cdot,j}^{\perp} = n_{\cdot,j}$ pour tout j

```
1 > apply(Q$observed,2,sum)
2 Brown Blue Hazel Green
3 220 215 93 64
4 > apply(Q$expected,2,sum)
5 Brown Blue Hazel Green
6 220 215 93 64
```

(et on vérifiera que  $n_{\cdot,j}^{\perp} = n_{\cdot,j}$  pour tout j)

# Test d'indépendance VII

```
1 > Q
2
   Pearson's Chi-squared test
 data:
6 \text{ X-squared} = 138.29, df = 9, p-value < 2.2e-16
```

On rejette ici  $H_0: X \perp \!\!\!\perp Y$  car q dépasse le quantile à 95% d'une loi du  $\chi^2(3 \times 3)$ .

```
_{1} > qchisq(.95,3*3)
2 [1] 16.91898
```

avec une p-value inférieure à  $10^{-16}$ .

On peut aussi calculer les résidus  $\epsilon_{i,j} = \frac{(n\hat{p}_{i,j} - n\hat{p}_{i,\cdot}\hat{p}_{\cdot,j})}{\sqrt{n\hat{p}_{i,\cdot}\hat{p}_{\cdot,j}}}$ 



## Test d'indépendance VIII

$$\epsilon_{i,j} = \frac{(n\hat{\rho}_{i,j} - n\hat{\rho}_{i,\cdot}\hat{\rho}_{\cdot,j})}{\sqrt{n\hat{\rho}_{i,\cdot}\hat{\rho}_{\cdot,j}}}$$

```
1 > Q$residuals
       Eve
2
3 Hair Brown Blue Hazel Green
   Black 4.3984 -3.0694 -0.4774 -1.9537
  Brown 1.2335 -1.9495 1.3533 -0.3451
   Red -0.0750 -1.7301 0.8523 2.2827
7
   Blond -5.8510 7.0496 -2.2278 0.6127
```

#### On rejette $H_0$ car on a

- trop de personnes aux cheveux Black ayant les yeux Brown
- trop de personnes aux cheveux Blond ayant les yeux Blue
- pas assez de personnes Black ayant les yeux Blue
- pas assez de personnes Blond ayant les yeux Brown



# Test d'indépendance IX

|       | brown | hazel | green | blue |     |
|-------|-------|-------|-------|------|-----|
| black | 68    | 15    | 5     | 20   | 108 |
| brown | 119   | 54    | 29    | 84   | 286 |
| red   | 26    | 14    | 14    | 17   | 71  |
| blond | 7     | 10    | 16    | 94   | 127 |
|       | 220   | 93    | 64    | 215  |     |

|       | brown | hazel | green | blue |     |
|-------|-------|-------|-------|------|-----|
| black | 40    | 17    | 12    | 39   | 108 |
| brown | 106   | 45    | 31    | 104  | 286 |
| red   | 26    | 11    | 8     | 26   | 71  |
| blond | 47    | 20    | 14    | 46   | 127 |
|       | 220   | 93    | 64    | 215  |     |



on compare  $n_{i,j}$  et  $n_{i,j}^{\perp}$ 

$$n_{i,j}^{\perp} = \frac{n_{i,\cdot} \cdot n_{\cdot,j}}{n}$$





