Homework 2

Binomial Tree

I. Binomial Model Derivation

(20%) In the binomial model, suppose that the initial stock price is S_0 , and the life of the option is $T \cdot S_0$ can either move up from S_0 to a new level, $S_0 u$, where u > 1, or down to a new level, $S_0 d$, where 0 < d < 1. Suppose the payoff from option is f_u in the up state, and is f_d in the down state. Denote the risk-free rate by r.

Please construct a riskless portfolio in a one-step tree and show in detail

that
$$f = e^{-rT}[pf_u + (1-p)f_d]$$
 where $p = \frac{e^{rT} - d}{u - d}$

II. Binomial Trees in Practice

Consider a non-dividend-paying stock with current stock price $S_0 = 50 , volatility $\sigma = 0.3$, strike price K = \$52, time to maturity T = 2 years, interest rate r = 5%.

Please use binomial model to price European put options. You may refer to the materials in Section 18.1 of the textbook. Consider the following three alternative settings of time steps: $\Delta t = 1 \text{ month } (12 \text{ T steps})$; 1 week (52 T steps); and 1 day (252 T steps).

- (a) (10%) First compute the up step size u, the down step size d, and the probability of up move p under these three settings.
- (b) (40%) Use binomial model to compute the put option prices under these three settings. Report your results and compare them with that of the Black-Scholes formula. Briefly explain your findings.
- (c) (20%) Modify your program in (b) to compute the American put option values. Report your result.
- (d) (10%) Change the number of time steps from 1 to 2 to 3 all the way to 252. Plot your results as well as the Black-Scholes closed form solution. Briefly explain your findings.

Matlab function and syntax:

```
zeros(): to create an matrix of all zeros. e.g. S = zeros(m,n)
sqrt(): square root
exp(): exponential function
max(): max function
for loop

        e.g.
        for j=1:1:10
        statement
        end
```

*You have to submit your homework in class and **programs by e3**. Your computer program is part of this assignment. You can use either C++ or Matlab for programming. Should you have any problem in Matlab software, please contact our class assistant 賴兆 旎.