

TFG del Grado en Ingeniería Informática

Generador automático de Metrominuto

Presentado por Guillermo Paredes Muga en Universidad de Burgos — 12 de mayo de 2020

Tutor: Álvar Arnaiz González y César Ignacio García Osorio

Dr. Álvar Arnaiz González y Dr. César Ignacio García Osorio, profesores del departamento de Ingeniería Informática, Área de Lenguajes y Sistemas Informáticos.

Expone:

Que el alumno D. Guillermo Paredes Muga, con DNI 13174210-V, ha realizado el Trabajo final de Grado en Ingeniería Informática titulado Metrominuto.

Y que dicho trabajo ha sido realizado por el alumno bajo la dirección del que suscribe, en virtud de lo cual se autoriza su presentación y defensa.

En Burgos, 12 de mayo de 2020

 V° . B° . del Tutor: V° . B° . del co-tutor:

D. Álvar Arnaiz González D. César Ignacio García Osorio

Resumen

En este primer apartado se hace una **breve** presentación del tema que se aborda en el proyecto.

Descriptores

Palabras separadas por comas que identifiquen el contenido del proyecto Ej: servidor web, buscador de vuelos, android ...

Abstract

A **brief** presentation of the topic addressed in the project.

Keywords

keywords separated by commas.

Índice general

Indice	general	II
Índice	de figuras	v
Índice	de tablas	V
Introdu	ıcción	1
Objetiv	vos del proyecto	3
Concep	otos teóricos	Ę
3.1.	Mapa de tránsito	5
	Metrominuto	8
3.3.	Teoría de grafos	10
	Scalable Vector Graphics (SVG)	1.
	Referencias	1.
	Imágenes	1.
	Listas de items	12
	Tablas	13
Técnica	as y herramientas	15
4.1.	Técnicas	15
4.2.	Herramientas	16
	Bibliotecas	18

IV	INDICE GENERAL
Conclusiones y Líneas de trabajo futuras	27
Bibliografía	29

Índice de figuras

3.1.	Mapa del metro de Londres de 1928		6
3.2.	Mapa del metro de Londres de 1933.		7
3.3.	Metrominuto de Pontevedra		8
3.4.	Autómata para una expresión vacía	. 1	2

Índice de tablas

3.1. Herramientas y tecnologías utilizadas en cada parte del proyecto 13

Introducción

El tema principal del proyecto se basa en la mejora de la movilidad de los peatones en las ciudades a la hora de transitar por ellas a pie. Se centra en la idea de Metrominuto, que consiste en un mapa sinóptico que une diferentes puntos de la ciudad en función de la distancia existente entre cada uno de ellos. Su propósito es animar a los ciudadanos a moverse por la ciudad, lo cual supone beneficios en muchos aspectos: tanto de salud, como de contaminaciones.

Actualmente ya existen ciudades con Metrominutos como Pontevedra (pionera en esta idea), Sevilla, Madrid o León, pero este proyecto lo que trata es de automatizar este proceso de creación de mapas de manera que es el propio usuario quien selecciona los puntos que van a aparecer en él.

//Hablar sobre la movilidad urbana y sobre el fomento del turismo y la movilidad a pie ?? Quizás algún gráfico?

Objetivos del proyecto

A continuación, se detallan los diferentes objetivos que han motivado la realización del proyecto.

Objetivos principales

- Desarrollar una aplicación web en la que los diferentes usuarios puedan seleccionar diversos puntos en un mapa (ciudad) con el fin de recorrerlos de la forma más óptima posible.
- Creación automatizada de metrominutos.
- Generar un grafo de nodos a partir de los puntos seleccionados en el mapa.
- Visualizar los puntos seleccionados: información acerca de la ubicación, marcador en el mapa.
- Permitir al usuario añadir y eliminar líneas (conexiones) entre puntos.
- Calcular el trayecto mas corto para el usuario de manera que pase por todos los puntos seleccionados.

Objetivos técnicos

- Desarrollar una aplicación cliente servidor en Python utilizando Flask.
- Hacer uso del API de Google para obtener la localización de puntos de interés sobre sus mapas y para obtener datos sobre las distancias entre ellos.

- Hacer uso de Git como sistema de control de versiones del proyecto.
- Aplicar la teoría de grafos.

Objetivos a nivel personal

- Realizar una aportación al turismo derivada de una necesidad personal.
- Poner en práctica los conocimientos adquiridos durante el Grado para el correcto desarrollo del Trabajo de Fin de Grado.

Conceptos teóricos

3.1. Mapa de tránsito

Un mapa de tránsito consiste en un mapa topológico y esquemático utilizado para mostrar trayectos y estaciones en el ámbito urbano, como puede ser el metro o el autobús. Los elementos principales de este tipo de mapas son:

- Líneas de diferentes colores y grosores que indican las distintas líneas del medio de transporte en cuestión.
- Iconos o puntos que indican las paradas o estaciones del medio en el que se vaya a viajar.
- Diferentes iconología para señalar características significativas.

Como aplicación para este proyecto, las estaciones o paradas del mapa corresponderán con los puntos seleccionados por el usuario sobre el mapa, y las líneas serán las distancias correspondientes entre dichos puntos.

Harry Beck

Harry Beck fue un ingeniero electrónico del metro de Londres que trabajaba diseñando diagramas del circuito eléctrico, y que comenzó a diseñar un nuevo mapa de las líneas y estaciones de metro de su ciudad. El objetivo de la solución estaba claro: tenía que ser sencillo de leer para el público y que este pudiese reconocer claramente las distintas estaciones, salidas y traslados. Realizó varias versiones antes de llegar a la que conocemos hoy en día, como por ejemplo las que podemos observar en las imágenes 3.1 y 3.1.

Figura 3.1: Mapa del metro de Londres de 1928.

Figura 3.2: Mapa del metro de Londres de 1933.

3.2. Metrominuto

El concepto de Metrominuto surgió como resultado de diversas ideas sobre movilidad en la ciudad de Pontevedra. Este concepto hace referencia a un mapa sináptico, como si de un mapa de metro se tratase, que representa las distancias y los tiempos existentes entre los diferentes puntos de una ciudad. //Algún gráfico sobre movilidad urbana, medios de transporte....?

Figura 3.3: Metrominuto de Pontevedra

Metrominuto no solo ofrece información de cara a la gente que quiere visitar la ciudad, si no que también fomenta caminar como medio de transporte en una ciudad, donde de una manera sencilla y curiosa nos muestra cómo llegar de un sitio a otro. Caminar, como ya sabemos, es la mejor solución para evitar el gran flujo de automóviles en el área urbana, y lo que ello conlleva: una constante emisión de elementos contaminantes.

En los orígenes de este sistema de movilidad se encuentra el estudio, por medio de la técnica DAFO (Debilidades, Amenazas, Fortalezas, Oportunidades):

9

Debilidades: Como el estado cambiante del tiempo, diferente ritmo al caminar dependiendo de las personas, y la comodidad de coger el coche para moverse.

Amenazas: Prejuicios de la población.

Fortalezas: Cuidado del medio ambiente, mayor salud y al reducir los desplazamientos en automóvil se produce como resultado una mayor seguridad en los pocos que haya.

Oportunidades: Mejorar la ciudad, bienestar.

Estos planos no solo nos incitan a caminar, si no que también incluyen información útil acerca de líneas de autobús, estaciones de ferrocarril o de metro.

Proceso de elaboración

Los pasos a seguir para crear un *Metrominuto* de forma manual son los siguientes:

- Paso 1: Consiste en la selección, dentro de una ciudad, de los puntos que se quieren representar en el mapa. Estos puntos pueden elegirse en función de su importancia, interés turístico o de los ciudadanos.
- Paso 2: Decidir qué ruta peatonal es la mas adecuada para unirlos.
- Paso 3: Considerar cómo se va a dibujar el mapa. Puede ser más o menos preciso respecto a la realidad cartográfica.
- Paso 4: Situar un punto central que sirva como punto de origen y de orientación para todos los usuarios.
- Paso 5: Realizar por medio de herramientas de mapas, como Google Maps en nuestro caso o los mapas de Bing, el cálculo de las distancias entre los diferentes puntos.
- Paso 6: Establecer una relación entre las distancias con el tiempo medio que lleva recorrerlas. Tenemos que tener en cuenta que toda la población no camina al mismo ritmo.

- Paso 7: Una vez establecidas las diferentes rutas, hacer un estudio sobre ellas para corregir errores que puedan surgir, así como la variación en el tiempo si el terreno no es uniforme o si las condiciones de tráfico y semáforos varía.
- Paso 8: Reflejar accidentes naturales o elementos de la ciudad como parques, costa, ríos... A través de elementos muy sencillos y con un código de colores al que estamos acostumbrados.
- Paso 9: Reflejar aspectos de la movilidad intermodal, es decir elementos como estaciones de metro, autobús, tren, etc.
- Paso 10: Advertir de los espacios con condiciones adversas para personas con problemas de movilidad.
- Paso 11: Simplicidad, claridad y facilidad de lectura a la hora de dibujar el mapa.
- Paso 12: No sólo mostrar conexiones con el punto central establecido como referencia, sino que también debe aparecer información sobre la interconexión entre los diferentes puntos.

El objetivo de este proyecto es automatizar este proceso recogido en el documento publicado por el Concello de Pontevedra [4], ya que actualmente los Metrominutos existentes se realizan de esta forma. Con el proceso automatizado sería el mismo usuario quien realice su propio Metrominuto con los puntos de interés personalizados que él decida. Evitando que aparezcan puntos o información que no le resulta interesante.

3.3. Teoría de grafos

Es aquella rama de las matemáticas que, junto con la ciencia de computación se encarga de estudiar las propiedades de los grafos. Primeramente debemos saber que un grafo G=(V,E) es un conjunto de vértices o nodos unidos por enlaces llamados arcos. Existen varios tipos de grafos, pero en ese proyecto se han usado grafos no dirigidos para realizar las distintas operaciones con los nodos, es decir, los nodos corresponden con los puntos o lugares que selecciona el usuario y los arcos hacen referencia a la distancia existente entre ellos [10].

Uso de grafos

En este proyecto el resultado final es un mapa sinóptico formado por puntos o lugares (nodos) y el «camino» o distancia entre ellos (arcos), y para su generación es necesario realizar una serie de operaciones. //explicar proceso de elaboración o explicarlo en aspectos relevantes?

3.4. Scalable Vector Graphics (SVG)

SVG o gráficos vectoriales escalables, es un término que hace referencia a un formato de gráficos vectoriales bidimensionales bien sean estáticos o dinámicos en formato XML [9]. Permite tres tipos de elementos:

- 1. Elementos geométricos vectoriales, como líneas, rectas o círculos.
- 2. Imágenes de mapa de bits/digitales.
- 3. Texto.

Las ventajas que presenta SVG son que a estos elementos se les pueden aplicar diferentes estilos, agrupar o transformar bien sea antes de la compilación o dinámicamente.

3.5. Referencias

Las referencias se incluyen en el texto usando cite [8]. Para citar webs, artículos o libros [?].

3.6. Imágenes

Se pueden incluir imágenes con los comandos standard de LATEX, pero esta plantilla dispone de comandos propios como por ejemplo el siguiente:

Figura 3.4: Autómata para una expresión vacía

3.7. Listas de items

Existen tres posibilidades:

- primer item.
- lacksquare segundo item.
- 1. primer item.

3.8. TABLAS 13

Herramientas	App AngularJS	API REST	BD	Memoria
HTML5	X			
CSS3	X			
BOOTSTRAP	X			
JavaScript	X			
AngularJS	X			
Bower	X			
PHP		X		
Karma + Jasmine	X			
Slim framework		X		
Idiorm		X		
Composer		X		
JSON	X	X		
PhpStorm	X	X		
MySQL			X	
PhpMyAdmin			X	
Git + BitBucket	X	X	X	X
MikT _E X				X
TEXMaker				X
Astah				X
Balsamiq Mockups	X			
VersionOne	X	X	X	X

Tabla 3.1: Herramientas y tecnologías utilizadas en cada parte del proyecto

2. segundo item.

Primer item más información sobre el primer item.

Segundo item más información sobre el segundo item.

3.8. Tablas

Igualmente se pueden usar los comandos específicos de LATEXo bien usar alguno de los comandos de la plantilla.

Técnicas y herramientas

4.1. Técnicas

Scrum

Scrum es una metodología de desarrollo ágil la cual proporciona un marco de trabajo y desarrollo de productos. No es un solo proceso, si no que en esta metodología se aplican un conjunto de buenas prácticas y procesos para que el producto final sea de la mejor calidad posible. El principal elemento del Scrum consiste en los llamados Sprints, que son ciclos de trabajo de una semana de duración. Este periodo sirve para producir un desarrollo o mejora del producto final. Estos sprints están marcados por dos reuniones:

- Planificación: en ella se presentan los requisitos o avances que tiene que cumplir el proyecto, a la vez que se estiman los tiempos y se realiza la planificación.
- Reunión de revisión: entrega de los requisitos acordados en la reunión de planificación y el equipo analiza el sprint.

El uso de esta metodología, junto con las diversas reuniones que se realizan, permite que el producto final sea de mejor calidad ya que en todo momento se conoce el feedback del cliente y se pueden realizar distintos cambios incrementales a medida que avanza el proyecto. Es una metodología pensada para el trabajo en equipo, por lo que en este proyecto se han mantenido las bases pero se ha adaptado la forma de trabajar, de manera que las reuniones han sido entre los tutores y el alumno y la fecha de la reunión de planificación del Sprint coincide con la fecha de revisión del sprint anterior.

GitHub

Para el control de versiones de este proyecto he utilizado GitHub, que es un repositorio en línea que emplea Git. De esta manera tenemos acceso en línea a los diferentes cambios de nuestro proyecto. Git maneja los distintos archivos del proyecto como un conjunto de copias instantáneas.

4.2. Herramientas

Estándar Python Enhancement Proposal 8 – PEP8

En este proyecto se ha seguido la guía de estilo *PEP8*, guía única que define cómo debería estar escrito el código *Python* y la forma de nombrar variables, funciones, clases o los comentarios del mismo.

Entorno de desarrollo Integrado (IDE)

Para el desarrollo del proyecto, se valoraron inicialmente dos editores:

- Visual Studio Code
- PyCharm

Al inicio del proyecto se empezó trabajando con Visual Studio Code, pero tras darle una vuelta más se decidió usar Pycharm, ya que al estar programado el proyecto en Python este IDE ofrecía mejores opciones para el desarrollo.

Flask

Flask es un *framework* de Python que nos permite crear aplicaciones cliente – servidor de una manera mas sencilla, y que no impone ninguna limitación respecto a estructura del proyecto ni a los componentes que usar durante el desarrollo [5].

Ofrece servicios HTTP, pero para poder hacer uso de los contenidos HTML requiere de la utilización del motor de templates *Jinja2*.

Lenguaje de plantillas que permite insertar datos procesados y texto predeterminado.

Google API

En este proyecto, para la selección de los distintos puntos a recorrer por parte del usuario he empleado los mapas de Google. Google proporciona una plataforma para los desarrolladores en la que se puede encontrar una gran cantidad de documentación¹. Para poder integrar en la aplicación web tanto los mapas como las diferentes funcionalidades que ofrecen debemos adquirir lo que llama API Key², la cual se trata de una clave «privada» para tener acceso a los servicios de su API. Para su obtención es necesario incluir tus datos bancarios, ya que durante el primer año el uso de los servicios es gratis y luego comienza a pagarse a partir de un determinado número de peticiones. Una vez obtenida la clave, puede restringirse su uso para ciertas direcciones o dominios, de modo que puedes mantener el control de quien la usa. Además, no vale con conseguir una clave y ya esta, si no que para usar los diferentes servicios que proporciona Google hay que activar diferentes APIs. Las APIs que se usan en este proyecto son:

- Maps JavaScript API: Se utiliza en el cliente, de manera que se muestra el mapa al cargar la página y permite realizar diferentes acciones en él; tales como buscar, seleccionar puntos o moverte a traves de él. Algunas de estas acciones implican el uso de algunas de funcionalidades que proporcionan las APIs explicadas a continuación.
- Geocoding API: este API consta de dos elementos:
 - Geocodificación: Consiste en convertir direcciones en coordenadas.
 - Geocodificación inversa: Consiste en convertir coordenadas en una dirección legible.
- Places API: este servicio devuelve como resultado de la petición toda la información acerca de un lugar.
- **Distance Matrix API**: este API proporciona tanto la distancia como el tiempo de viaje que hay entre una lista de orígenes y una de destinos. En otras palabras, como resultado devuelve la distancia y tiempo que hay entre cada origen y cada destino.
- Directions API: como respuesta nos devuelve las indicaciones a seguir para llegar desde el punto de inicio hasta el punto de destino. Además, puede configurarse para diferentes modos de trasporte, diferentes momentos de salida o llegada.

https://cloud.google.com/maps-platform/

²https://developers-dot-devsite-v2-prod.appspot.com/maps/documentation/geocoding/get-api-key

Vue.js

Vue es un framework progresivo utilizado para construir interfaces de usuario. Está enfocado únicamente a la capa de visualización, por lo que resulta sencillo integrarlo con otras librerías o incluso en proyectos ya existentes, como es este caso. Vue ofrece la posibilidad de instalar el cliente mediante $Node.js^3$, aunque también permite integrarlo directamente en la capa de visualización incluyendo en los templates del proyecto el cdn:

Vue.js cdn 4.1: Versión de desarrollo.

```
<script
src="https://cdn.jsdelivr.net/npm/vue/dist/vue.js"
</script>
```

o con

Vue.js cdn 4.2: Versión de producción.

```
<script
src="https://cdn.jsdelivr.net/npm/vue"
</script>
```

La versión de desarrollo ofrece distintas alertas o advertencias que permiten realizar diferentes trazas a la hora de localizar posibles errores, mientras que la versión de producción está optimizada en cuanto a tamaño y velocidad. Para poder utilizar *Vue* en nuestros templates, además de incluir el *cdn* debemos crear un componente⁴, al que le añadiremos una variable. Esto se debe a que realmente la estructura y el nombre de los elementos de Vue es algo diferente a los que ya conocemos de *HTML5*. También es importante tener en cuenta que Vue utiliza los mismos delimitadores que *Flask*: {{variable}}. Es por esto por lo que a nuestro componente o variable debemos añadir la línea delimiters:['[[',']]'] para cambiarlos.

4.3. Bibliotecas

Networkx

NetworkX es la biblioteca por excelencia de Python para trabajar con grafos y redes. Permite crear, manipular y estudiar su estructura. Características:

³https://es.vuejs.org/v2/guide/installation.html

⁴https://vuejs.org/v2/guide/components.html

19

- Estructuras de datos para grafos simples, grafos dirigidos y multigrafos.
- Contiene la gran parte de algoritmos utilizados para el estudio y modificación de grafos.
- Los nodos pueden ser «cualquier cosa» como por ejemplo texto, imágenes o números.
- Los arcos pueden tener diferentes atributos o datos, como el peso, distancia...
- Es de código abierto.

Tube Map - D3

Esta biblioteca permite dibujar mapas muy similares a los mapas que hoy podemos ver en el metro, con sus estaciones, paradas e intersecciones. Se intentó implementar en el proyecto durante dos Sprints, pero se llegó a la conclusión que no se podía generar la estructura necesaria en el archivo JSON para el dibujado del mapa. Esta estructura debía contener coordenadas con números enteros y estar ordenadas de tal forma que se indicasen las esquinas y cruces que debía haber entre las diferentes líneas, o en este caso, recorridos.

Documentación

Aspectos relevantes del desarrollo del proyecto

En este apartado se van a recoger y explicar los aspectos más importantes del desarrollo del proyecto. Desde las implicaciones de las decisiones que se tomaron, hasta los numerosos y variados problemas a los que hubo que enfrentarse.

Elección del proyecto

El año pasado fui uno de los privilegiados de poder disfrutar de una beca Erasmus, en concreto con destino en la ciudad polaca de Gliwice [11]. Esto me llevó a conocer nuevas culturas pero también a conocer nuevas ciudades, y en la mayoría de ocasiones el tiempo del que disponíamos para recorrerlas era muy breve. Por ello, al ver las posibilidades que ofrecía el resultado final de este TFG me llamó la atención, ya que es una aplicación que de haberla tenido nos habría ahorrado muchos desplazamientos quizá inútiles al recorrer estas ciudades sin una ruta fija.

Formación

Para poder realizar el proyecto se necesitaban unos conocimientos no adquiridos sobre desarrollo web, tanto de la parte de servidor en Flask como la parte del cliente en HTML, CSS y JavaScript. Además de para aprendizaje, los recursos se han usado también como material de consulta durante el desarrollo.

Para la parte del servidor se siguieron los libros y tutoriales:

- Flask Web Development [5].
- The Flask Mega-Tutorial (2017) [6].

Para la parte del cliente se utilizaron principalmente los siguientes materiales:

■ W3Schools Tutorials [2].

A medida que se añadían nuevas herramientas al proyecto, su documentación oficial también ha sido consultada en varias ocasiones, están disponibles en:

- Documentación de Flask [1].
- Documentación de Bootstrap [3].
- Documentación de NetworkX [7].

Dibujado de grafos

El principal objetivo de este proyecto se basa en obtener un grafo final de manera que éste sea fácilmente entendible por todos. Es por ello que a la hora de dibujar dicho grafo se plantean cuestiones y problemas como dónde colocar los textos, a que distancias, cómo orientar esos textos...

Estos problemas han resultado de gran complejidad en el desarrollo final del proyecto, ya que como mencionaba antes, es el resultado final de todo el proyecto. Para solucionar el problema de que los textos no se superpongan, tanto en las líneas o *caminos* como en los puntos o *paradas*, he tenido en cuenta dos opciones:

■ Discretización de las líneas: este método consiste en dividir la parte de la línea no muy lejana al punto medio en varios puntos separados por una distancia δ . De este modo, conociendo las dimensiones del texto que queremos colocar, y siendo la posición conocida, podemos calcular si el texto se superpone a la línea. La elección de puntos cercanos al punto medio se debe a que la intención es colocar dicho texto en una poción centrada respecto de los dos puntos a los que hace referencia. En el caso de colocar el texto que referencia a los puntos o paradas la división en puntos separados δ se haría entorno al punto que se quiere referenciar.

• Superposición de cuadrados: Este método consiste en calcular primeramente el cuadrado que contiene el texto. Una vez que sabemos esto, podemos construir varios rectángulos en torno al punto donde queremos colocar el texto, tanto a un lado de la línea como al otro. Posteriormente, dividiremos la línea que une los dos puntos para los que queremos colocar el texto en cuatro cuadrados partiendo del punto medio. De este modo, en dos de ellos la diagonal sería parte de la línea que une los puntos, mientras que en los otros dos no habría nada. De esto modo, y conociendo la dirección de la línea podemos calcular si, sobre los rectángulos que forman parte de la línea, existe una superposición con alguno de los posibles rectángulos del texto. En el caso del texto que referencia el punto, el rectángulo, o en este caso cuadrado, que se construye sería el que contiene al círculo y se evaluaría el rectángulo correspondiente del que la línea forma parte.

Trabajos relacionados

Como se menciona anteriormente en este proyecto, la inicial de Metrominuto proviene de una idea en Pontevedra que tenía como finalidad el fomento del «arte de caminar». Derivada de ella, han aparecido aplicaciones y propuestas de metrominutos aplicados no solo a la movilidad urbana, si no también al turismo, a los colegios y a rutas por senderos y montaña. //desarrollar mas cada una de ellas?o poner alguna imagen de cada una?

Conclusiones y Líneas de trabajo futuras

Todo proyecto debe incluir las conclusiones que se derivan de su desarrollo. Éstas pueden ser de diferente índole, dependiendo de la tipología del proyecto, pero normalmente van a estar presentes un conjunto de conclusiones relacionadas con los resultados del proyecto y un conjunto de conclusiones técnicas. Además, resulta muy útil realizar un informe crítico indicando cómo se puede mejorar el proyecto, o cómo se puede continuar trabajando en la línea del proyecto realizado.

Bibliografía

- [1] Flask documentation. http://flask.pocoo.org/docs/1.0/.
- [2] W3Schools. https://www.w3schools.com/.
- [3] Bootstrap Contibutors. Bootstrap documentation. https://getbootstrap.com/docs/3.3/.
- [4] Concello de Pontevedra. Haz tu propio Metrominuto. 2013.
- [5] Miguel Grinberg. Flask Web Development: Developing Web Applications with Python. O'Reilly Media, 2014.
- [6] Miguel Grinberg. The Flask Mega-Tutorial. https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world, 2017.
- [7] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics, and function using networks. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman, editors, *Proceedings of the 7th Python in Science Conference*, pages 11 15, Pasadena, CA USA, 2008.
- [8] Wikipedia. Latex wikipedia, la enciclopedia libre, 2015. [Internet; descargado 30-septiembre-2015].
- [9] Wikipedia. Extensible markup language wikipedia, la enciclopedia libre, 2020. [Internet; descargado 11-marzo-2020].
- [10] Wikipedia. Teoría de grafos wikipedia, la enciclopedia libre, 2020. [Internet; descargado 20-marzo-2020].

30 BIBLIOGRAFÍA

[11] Wikipedia contributors. Gliwice — Wikipedia, the free encyclopedia, 2020. [Online; accessed 11-March-2020].