SIMULATED ANNEALING

Brandon Lyons

Tyler Herd

OUTLINE

- ► Traditional Descent
- ▶ Problems with Traditional Descent
- Introduction to Simulated Annealing
- General Annealing
- Key points
- Algorithm
- Uses
- ► Traveling Salesperson
- ► TSP Uses

TRADITIONAL DESCENT

- Randomly select initial state
- Iterate through solutions
- Find extremes through iteration
 - Steepest Descent
 - ▶ Random Descent
- Minimums or Maximums

FOR EXAMPLE

BUT WHAT ABOUT?

TO CLARIFY

- You need to find the highest hill
- ▶ But there is a dense fog

How do you know you are there?

LOCAL EXTREMA

Traditional descent stops at local extremes

SOLUTION

- Simulated Annealing
- ► Genetic Algorithm
- Ant Colony Algorithm
- **...**

SIMULATED ANNEALING

- ► Basic idea comes from metallurgy
- Very similar to Traditional Descent

BASIC IDEA OF ANNEALING

- ► Solid > Melting point > Solid
- Structural properties of the cooled solid depends on the rate of cooling

KEY POINTS

- ► Temperature decreases over time
- ► Temperature continues to decrease until the system "freezes" into a steady state

Thermodynamic simulation	Combinatorial optimization
System states Energy Change of state Temperature Frozen State	Feasible solutions Cost Neighboring solution Control parameter Heuristic solution

MORE KEY POINTS

- Simulated Annealing can make less than optimal choices
- No single algorithm

ALGORITHM

Given: initial state s0, maximum iterations maxK, maximum allowable energy maxEnergy

```
state ← s0; energy ← calculateEnergy(state);
bestState ← state; bestEnergy ← energy
k ← 0
while k < maxK and energy > maxEnergy
newState ← neighbor(state); newEnergy ← calculateEnergy(newState)
if newEnergy < bestEnergy then
bestState ← newState; bestEnergy ← newEnergy
if P(energy, newEnergy, temp(k/kmax)) > random() then
state ← newState; energy ← newEnergy
k ← k + l
return bestState
```


TEMPERATURE

▶ The key to the whole algorithm

$$e^{-\Delta D/T} > R(0,1)$$

USES

- ► Traveling Salesman Problem (TSP)
- N-Queens Problem
- ► Knapsack Problem
- **.**..

TRAVELING SALESMAN

- Simple problem
 - A salesperson is trying to visit a set of cities
 - For maximum profit, he needs to save gas money

TSP USES

- ▶ Route Optimization
- Manufacturing
 - Drilling
 - Welding
- Astronomy

