Problem Set 7

Submission:

Thursday, 04/14/2022, until 1 PM, to be uploaded on the NYU Brightspace course homepage.

1. Confidence intervals for normally distributed data

[4 Points]

Suppose that in an experiment 5 data points are observed:

$$x_1 = 2.3,$$
 $x_2 = 1.9,$ $x_3 = 2.0,$ $x_4 = 1.8,$ $x_5 = 2, 1.$

Suppose that these data points are realizations of i.i.d. random variables $X_1, ..., X_5$, where $X_1 \sim \mathcal{N}(\mu, \sigma^2)$ with *unknown* μ and σ^2 .

- (a) Find a 95%-confidence interval for μ .
- (b) Explain why for general $X_1,...,X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu,\sigma^2)$ random variables, $\alpha \in (0,1)$, the interval

$$S(\mathbf{X}) = \left[\frac{n-1}{\chi_{n-1,1-\frac{\alpha}{2}}^2} S_n^2, \frac{n-1}{\chi_{n-1,\frac{\alpha}{2}}^2} S_n^2 \right], \qquad S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

is a $(1-\alpha)$ -confidence interval for σ^2 , when $\chi^2_{k,\beta}$ describes the β -quantile of the χ^2 distribution with k degrees of freedom. Calculate a 95%-confindence interval for σ^2 based on the observed data in the concrete example.

Hint: Use Theorem 2.7, (i).

2. Asymptotic confidence interval for the Poisson distribution

[4 points]

Let $X_1, ..., X_n \stackrel{\text{i.i.d.}}{\sim} Pois(\lambda)$, with unknown $\lambda > 0$.

- (a) Calculate the Fisher information $I(\lambda)$.
- (b) For $\alpha \in (0,1)$, find an asymptotic $(1-\alpha)$ -confidence interval for λ .

3. Asymptotic confidence interval for the Exponential distribution

[4 points]

Let $X_1, ..., X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{E}(\theta)$, with unknown $\theta > 0$.

- (a) Calculate the Fisher information $I(\theta)$.
- (b) For $\alpha \in (0,1)$, find an asymptotic $(1-\alpha)$ -confidence interval for θ .

4. Exact confidence interval for the Exponential distribution

[4 points]

Let $X_1, ..., X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{E}(\theta)$, with unknown $\theta > 0$.

- (a) Show that $2\theta \sum_{i=1}^{n} X_i$ follows a χ_{2n}^2 distribution.
- (b) Use (a) to find an exact (1α) -confidence interval for θ , for $\alpha \in (0, 1)$.