# 6 Numerical Integration pt. 2

PVK 2019: MAD

bacdavid@student.ethz.ch

gitlab.ethz.ch/bacdavid

### Schedule

- 1. Theory
  - 1. Setup
  - 2. Taylor Expansion
  - 3. Richardson's Extrapolation
  - 4. Romberg Integration
  - 5. Adaptive Quadrature
- 2. Exercises
- 3. Homework

# Theory

# Setup

- Stepsize h
- Generic step-dependent function G(h) = f(x; h)

# Taylor Expansion

• A function f(x) around the origin can be written as an infinite Series:

$$f(x) = c_0 + c_1 x + c_2 x^2 + \cdots$$

• With...

$$c_0 = f(0)$$
  
 $c_1 = f'(0)$   
 $c_2 = \frac{f''(0)}{2}$   
etc.

Lower orders affect function the most



# Richardson's Extrapolation

• A function *G* depends on a stepsize *h*:

$$G_0(h)$$

• Perform a Taylor series expansion around 0:

$$G_0(h) = G_0(0) + c_1 h + c_2 h^2 + \cdots$$

• Decrease stepsize to h/2:

$$G_0(h/2) = G_0(0) + \frac{c_1}{2}h + \frac{c_2}{4}h^2 + \cdots$$

Combine to have:

$$G_1(h) = 2 \cdot G(h/2) - G(h) = G_0(0) + O(h^2)$$

## Richardson's Extrapolation cont.

Iterative formulation:

$$G_n(h) = \frac{1}{2^n - 1} \left( 2^n G_{n-1}(h/2) - G_{n-1}(h) \right) = G(0) + \mathcal{O}(h^{n+1})$$

# Richardson's Extrapolation cont.

- The order defines the **rate** at which the error drops
- However, the terms still depend on constants



## Romberg Integration

• The Romberg Integration uses Trapezoidal rule & Romberg extrapolation:

$$I_k^n = \frac{1}{4^k - 1} \left( 4^k I_{k-1}^{2n} - I_{k-1}^n \right)$$

With...

n: Number of steps to divide interval

k: Iterations step, resp. order k+1

• Use composite trapezoidal rule as base case:

$$I_0^n = \frac{h}{2} \Big( f(a) + f(b) + 2 \sum_{i=1}^{n-1} f_i \Big)$$

• With...

$$h = (b - a)/n$$
  
$$f_i = f(a + i \cdot h)$$

## Adaptive Quadrature

- Use adaptive stepsize
- Decrease stepsize in specific region until desired accuracy is achieved



# Adaptive Quadrature cont. Example

- Task:
  - Estimate the error e(h/2) with Richardson's Extrapolation that a numerical scheme is generating at h/2

### Adaptive Quadrature cont.

#### • Algorithm:

- 1. Apply Simpsons rule on interval
- 2. Split the interval into 2 intervals and apply Simpsons rule on both
- 3. Estimate the error with Richardson's
- 4. If the error is smaller than threshold stop, else split again ...

# Exercises

### Exercise 1

- a) Richardson's extrapolation method aims to improve the approximation by combining approximations of different step sizes: True / False.
- b) In the context of Richardson's extrapolation the approximation of a function is expressed as:

$$G(h) = G(0) + c_1h + c_2h^2 + c_3h^3 + ...$$
 (4)

$$G(h/2) = G(0) + \frac{1}{2}c_1h + \frac{1}{4}c_2h^2 + ...$$
 (5)

and a better approximation of G(0) can be obtained from:

$$G_1(h) = 2G(h/2) - G(h) = G + c_2h^2 + c_3h^3 + ...$$
 (6)

Find an expression for  $c_3'$  in terms of  $c_3$ .

- c) What is the leading error term for  $G_1(h)$ ?
  - h
  - h<sup>2</sup>
  - h<sup>3</sup>
  - 4. there is no error,  $G_1(h)$  is the exact solution.
- d) For the general approximating quantity  $G_n(h)$ , what is the leading error term?
  - h
  - h<sup>n</sup>
  - 3.  $h^{n+1}$
  - h<sup>n-1</sup>

### Exercise 2

- Given:
  - x = 0
  - h = 0.2
  - $f(x) = x^2$
- Task:
  - Approximate the error  $\epsilon\left(\frac{h}{2}\right)$  of the Euler Forward method and compare it to the true error:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

### Exercise 3

#### • Task:

- Write pseudo code for Adaptive Quadrature using recursion, the rule of numerical integration is simpsons
- The function itself takes a lower and and upper bound of an interval as an input (and is called with such in the recursion)

# Homework

### HW<sub>1</sub>

Write down the Taylor Series around 0 of

$$f(x) = \frac{1}{1-x}, \qquad x \in (-1,1)$$

### HW<sub>2</sub>

- Derive Romberg Integration (rather difficult)
- Tip:
  - Construct and integral  $I = \int_{-h}^{h} f(x) dx$  write f(x) as a Taylor expansion around 0 and compute the integral
  - Set up the Trapezoidal rule as  $I_T=h\cdot \left(f(-h)+f(h)\right)$  and express both terms f(-h),f(h) as Taylor expansion around 0
  - Compare the two, all terms which are similar are accurate, as soon as the terms differ the error starts
  - At this point you should have shown that errors are odd 3, 5, ...
  - This was for a single interval so the error is repeated N times, this will drop the leading term by the order of one (try to show this by expressing N through h)
  - Now your trapezoidal rule looks like this:  $I_T = I + c_1 h^2 + c_2 h^4 + \cdots$ . Apply Richardson's to this to eliminate the order 2 term

### HW<sub>3</sub>

a) Use the data provided in Fig. 6 to approximate  $\int_1^5 y(x) dx$  using Romberg integration as accurately as possible. Keep your computations and final answer in fractions.

| x | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| у | 2 | 3 | 4 | 1 | 2 |

Figure 6: Data points used in Romberg integration.

### HW 4

