

Biips software: Bayesian inference with interacting particle systems

Rencontres AppliBUGS

Adrien Todeschini[†], François Caron*, Pierrick Legrand[†], Pierre Del Moral[‡] and Marc Fuentes[†]

[†]Inria Bordeaux, *Univ. Oxford, [‡]UNSW Sydney

Montpellier, Novembre 2014

A. Todeschini

Outline

Context

Graphical models and BUGS language

SMC

Biips software

Particle MCMC

Summary

Context

Graphical models and BUGS language

SMC

Biips software

Particle MCMC

Context

Biips = Bayesian inference with interacting particle systems

Bayesian inference

- lacktriangle Sample from a posterior distribution $p(X|Y) = rac{p(X,Y)}{p(Y)}$
- High dimensional, arbitrary complexity
- ► Simulation methods: MCMC, SMC...

Motivation

▶ Last 20 years: success of SMC in many applications

▶ No general and easy-to-use software for SMC

Context

Biips = Bayesian inference with interacting particle systems

Bayesian inference

- lacktriangle Sample from a posterior distribution $p(X|Y) = rac{p(X,Y)}{p(Y)}$
- High dimensional, arbitrary complexity
- ► Simulation methods: MCMC, SMC...

Motivation

- ▶ Last 20 years: success of SMC in many applications
- No general and easy-to-use software for SMC

Context

Biips = Bayesian inference with interacting particle systems

Objectives

- ► BUGS language compatible
- Extensibility: custom functions/samplers
- Black-box SMC inference engine
- ▶ Interfaces with popular software: Matlab/Octave, R
- Post-processing tools

Summary

Context

Graphical models and BUGS language

SMC

Biips software

Particle MCMC

Directed acyclic graph

The graph displays a factorization of the joint distribution:

$$p(x_{1:3},y_{1:2})$$

Directed acyclic graph

The graph displays a factorization of the joint distribution:

$$p(x_{1:3}, y_{1:2}) = p(x_1) p(x_2|x_1) p(y_1|x_2) p(x_3|x_1, x_2) p(y_2|x_2, x_3)$$

Directed acyclic graph

The graph displays a factorization of the joint distribution:

$$p(x_{1:3}, y_{1:2}) = p(x_1) p(x_2|x_1) p(y_1|x_2) p(x_3|x_1, x_2) p(y_2|x_2, x_3)$$

Directed acyclic graph

The graph displays a factorization of the joint distribution:

$$p(x_{1:3}, y_{1:2}) = p(x_1) \ p(x_2|x_1) \ p(y_1|x_2)$$
$$p(x_3|x_1, x_2) \ p(y_2|x_2, x_3)$$

Directed acyclic graph

The graph displays a factorization of the joint distribution:

$$p(x_{1:3}, y_{1:2}) = p(x_1) \ p(x_2|x_1) \ p(y_1|x_2) \ p(x_3|x_1, x_2) \ p(y_2|x_2, x_3)$$

Directed acyclic graph

The graph displays a factorization of the joint distribution:

$$p(x_{1:3}, y_{1:2}) = p(x_1) \ p(x_2|x_1) \ p(y_1|x_2) p(x_3|x_1, x_2) \ p(y_2|x_2, x_3)$$

- ► S-like declarative language for describing graphical models
- ► Stochastic relations
- Deterministic relations

- ► S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

```
Linear regression:
model {
   Y ~ dnorm(mu, tau)
```

}

- S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

```
Linear regression:
model {
    Y ~ dnorm(mu, tau)
    tau ~ dgamma(0.01, 0.01)
}
```


- S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

```
Linear regression:
model {
   Y ~ dnorm(mu, tau)
   tau ~ dgamma(0.01, 0.01)
   mu <- beta * X + alpha
}</pre>
```


- S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

```
Linear regression:
model {
    Y ~ dnorm(mu, tau)
    tau ~ dgamma(0.01, 0.01)
    mu <- beta * X + alpha
    alpha ~ dnorm(0, 1E-6)
    beta ~ dnorm(0, 1E-6)
}</pre>
```


- S-like declarative language for describing graphical models
- Stochastic relations
- Deterministic relations

```
Linear regression:
model {
    Y ~ dnorm(mu, tau)
    tau ~ dgamma(0.01, 0.01)
    mu <- beta * X + alpha
    alpha ~ dnorm(0, 1E-6)
    beta ~ dnorm(0, 1E-6)
}</pre>
```

Goal:

Estimate $p(\alpha, \beta, \tau | X, Y)$

BUGS software using MCMC

BUGS = Bayesian inference Using Gibbs Sampling

- WinBUGS, OpenBUGS, JAGS [Plummer, 2012]
- ► Expert system automatically derives MCMC methods (Gibbs, Slice, Metropolis, ...) in a 'black-box' fashion
- Very popular among practitioners, applying MCMC methods to a wide range of applications [Lunn et al., 2012]

Summary

Context

Graphical models and BUGS language

SMC

Biips software

Particle MCMO

Topological sort (with priority to measurement nodes): $(X_1, Y_1, Y_3, X_3, X_2, Y_4, Y_2)$

Rearrangement of the directed acyclic graph:

Topological sort (with priority to measurement nodes):

$$(\underbrace{X_1}_{\mathbf{X_1'}},\underbrace{Y_1,Y_3}_{\mathbf{Y_1'}},\underbrace{X_3,X_2'}_{\mathbf{X_2'}},\underbrace{Y_4,Y_2}_{\mathbf{Y_2'}})$$

A. Todeschini

Topological sort (with priority to measurement nodes):

$$(\underbrace{X_1}_{\mathbf{X}_1'},\underbrace{Y_1,Y_3}_{\mathbf{Y}_1'},\underbrace{X_3,X_2'}_{\mathbf{X}_2'},\underbrace{Y_4,Y_2}_{\mathbf{Y}_2'})$$

Rearrangement of the directed acyclic graph:

The statistical model decomposes as $p(x'_1, x'_2, y'_1, y'_2) = p(x'_1)p(y'_1|x'_1) = p(x'_2|x'_1, y'_1)p(y'_2|x'_2)$

A. Todeschini

SMC algorithm

More generally, assume that we have sorted variables $(X_1, Y_1, \ldots, X_n, Y_n)$.

The statistical model decomposes as

$$p(x_{1:n},y_{1:n}) = p(x_1)p(y_1|x_1)\prod_{t=2}^n p(x_t|\mathsf{pa}(x_t))p(y_t|\mathsf{pa}(y_t))$$

where pa(x) denotes the set of parents of variable x.

SMC algorithm

- ▶ A.k.a. interacting MCMC, particle filtering, sequential Monte Carlo methods (SMC) ...
- Sequentially sample from conditional distributions of increasing dimension

$$\pi_1(x_1|y_1)
ightarrow \pi_2(x_{1:2}|y_{1:2})
ightarrow ...
ightarrow \pi_n(x_{1:n}|y_{1:n})$$

where, for t=1,...,n

$$egin{aligned} \pi_t(x_{1:t}|y_{1:t}) &= rac{p(x_{1:t},y_{1:t})}{p(y_{1:t})} \ &= \pi_{t-1}(x_{1:t-1}|y_{1:t-1}) rac{p(x_t|\mathsf{pa}(x_t))p(y_t|\mathsf{pa}(y_t))}{p(y_t|y_{1:t-1})} \end{aligned}$$

Two stochastic mechanisms:

- Mutation/Exploration

Standard SMC Algorithm

For
$$t = 1, \ldots, n$$

- ightharpoonup For $i=1,\ldots,N$
 - lacksquare Sample: $X_{t,t}^{(i)} \sim q_t$ and let $X_{t,1:t}^{(i)} = (\widetilde{X}_{t-1,1:t-1}^{(i)}, X_{t,t}^{(i)})$

 - $lackbox{Normalize:} \ W_t^{(i)} = rac{w_t^{(i)}}{\sum_{j=1}^N w_t^{(j)}}$
- ▶ Resample: $\{X_{t,1:t}^{(i)}, W_t^{(i)}\}_{i=1,...,N} \to \{\widetilde{X}_{t,1:t}^{(i)}, \frac{1}{N}\}_{i=1,...,N}$

Outputs

- lacksquare Weighted particles $(W_t^{(i)}, X_{t,1:t}^{(i)})_{i=1,\dots,N}$ for $t=1,\dots,n$
- lacktriangle Estimate of the marginal likelihood $\widehat{Z} = \prod_{t=1}^n \left(rac{1}{N} \sum_{i=1}^N w_t^{(i)}
 ight)$

A. Todeschini

SMC algorithm

Marginal distributions

$$\pi_1(x_1|y_1) \ o \ \pi_2(x_{1:2}|y_{1:2}) \ o ... o \ \pi_n(x_{1:n}|y_{1:n})$$

Filtering:
$$\pi_1(x_1|y_1) \to \pi_2(x_2|y_{1:2}) \to ... \to \pi_n(x_n|y_{1:n})$$

Smoothing: $\pi_1(x_1|y_{1:n}) \to \pi_2(x_2|y_{1:n}) \to ... \to \pi_n(x_n|y_{1:n})$

Limitations and diagnosis of SMC algorithms

For a given $t \leq n$, for each unique value $X_{n,t}^{\prime(k)}$, $k=1,\ldots,K_{n,t}$, let $W_{n,t}^{\prime(k)} = \sum_{i|X_t^{(i)}=X_t^{\prime(k)}} W_n^{(i)}$ be its associated total weight. A measure of the quality of the approximation of the posterior distribution $p(x_{t:n}|y_{1:n})$ is given by the smoothing effective sample size (SESS):

$$SESS_{t} = \frac{1}{\sum_{k=1}^{K_{n,t}} \left(W_{n,t}^{\prime(k)}\right)^{2}} \tag{1}$$

with $1 < SESS_t < N$.

Summary

Context

Graphical models and BUGS language

SMC

Biips software

Particle MCMO

Technical implementation

- ► Interfaces: Matlab/Octave, R
- Multi-platform: Windows, Linux, Mac OSX

► Free and open source (GPL)

Example: Stochastic kinetic Lotka-Volterra model

- lacktriangle Evolution of two species $X_1(t)$ (prey) and $X_2(t)$ (predator) at time t
- Continuous-time Markov jump process described by three reaction equations:

$$egin{array}{cccc} X_1 & \stackrel{c_1}{\longrightarrow} & 2X_1 & ext{ prey reproduction,} \ X_1 + X_2 & \stackrel{c_2}{\longrightarrow} & 2X_2 & ext{ predator reproduction,} \ X_2 & \stackrel{c_3}{\longrightarrow} & \emptyset & ext{ predator death} \end{array}$$

where $c_1 = 0.5$, $c_2 = 0.0025$ and $c_3 = 0.3$.

$$\begin{aligned} &\Pr(X_1(t+dt) = x_1(t) + 1, X_2(t+dt) = x_2(t) | x_1(t), x_2(t)) \\ &= c_1 x_1(t) dt + o(dt) \\ &\Pr(X_1(t+dt) = x_1(t) - 1, X_2(t+dt) = x_2(t) + 1 | x_1(t), x_2(t)) \\ &= c_2 x_1(t) x_2(t) dt + o(dt) \\ &\Pr(X_1(t+dt) = x_1(t), X_2(t+dt) = x_2(t) - 1 | x_1(t), x_2(t)) \\ &= c_3 x_2(t) dt + o(dt) \end{aligned}$$

[Boys et al., 2008]

A. Todeschini 20 / 39

Gillespie algorithm

R function to forward simulate from the LV model with Gillespie algorithm

```
lotka_volterra_gillespie <- function(x, c1, c2, c3, dt) {</pre>
  z \leftarrow matrix(c(1, -1, 0, 0, 1, -1), nrow=2, byrow=TRUE)
  t <- 0
  while (TRUE) {
    rate <- c(c1*x[1], c2*x[1]*x[2], c3*x[2])
    sum_rate <- sum(rate);</pre>
    # Sample the next event from an exponential distribution
    t <- t - log(runif(1))/sum_rate
    if (t>dt)
     break
    # Sample the type of event
    ind <- which((sum_rate*runif(1)) <= cumsum(rate))[1]</pre>
    x \leftarrow x + z[,ind]
  return(x)
```

A. Todeschini

Add a custom sampler to the BUGS language

Rbiips

A. Todeschini 22 / 39

Example: Stochastic kinetic Lotka-Volterra model

lacktriangle We observe at some time $t=1,2,\ldots,t_{
m max}$ the number of preys with some additive noise

$$Y(t) = X_1(t) + \epsilon(t), \ \ \epsilon(t) \sim \mathcal{N}(0, \sigma^2)$$

lacktriangleq Objective: approximate $\Pr(X_1(t),X_2(t)|Y(1),\ldots,Y(t_{\max}))$ at $t=1,\ldots,t_{\max}$.

A. Todeschini 23 / 39

Example: Stochastic kinetic Lotka-Volterra model

stoch_kinetic_gill.bug

```
model
{
    x[,1] ~ LV(x_init, c[1], c[2], c[3], 1)
    y[1] ~ dnorm(x[1,1], 1/sigma^2)
    for (t in 2:t_max)
    {
        x[,t] ~ LV(x[,t-1], c[1], c[2], c[3], 1)
        y[t] ~ dnorm(x[1,t], 1/sigma^2)
    }
}
```


A. Todeschini 24 / 39

Model compilation

Rbiips

Ground truth and data

SMC samples

Rbiips

(a) Estimates

(b) Smoothing effective sample size

Kernel density estimates

Rbiips

kde_smc <- biips_density(out_smc)

A. Todeschini 27 / 39

Probability mass estimates

Rbiips

tab_smc <- biips_table(out_smc)</pre>

A. Todeschini 28 / 39

Summary

Context

Graphical models and BUGS language

SMC

Biips software

Particle MCMC

A. Todeschini 29 / 39

Particle MCMC

Recent algorithms that use SMC algorithms within a MCMC algorithm

- ► Particle Independant Metropolis-Hastings (PIMH)
- Particle Marginal Metropolis-Hastings (PMMH)

Static parameter estimation

Due to the successive resamplings, SMC estimations of $p(\theta|y_{1:n})$ might be poor.

The PMMH splits the variables in the graphical model into two sets:

- ightharpoonup a set of variables X that will be sampled using a SMC algorithm
- ightharpoonup a set $\theta = (\theta_1, \dots, \theta_p)$ sampled with a MH proposal

Standard PMMH algorithm

Set
$$\widehat{Z}(0) = 0$$
 and initialize $\theta(0)$
For $k = 1, \dots, n_{\text{iter}}$.

- Sample $\theta^{\star} \sim \nu(.|\theta^{(k-1)})$
- Run a SMC to approximate $p(x_{1:n}|y_{1:n},\theta^\star)$ with output $(X_{1:n}^{\star(i)},W_n^{\star(i)})_{i=1,\dots,N}$ and $\widehat{Z}^\star \approx p(y_{1:n}|\theta^\star)$
- ▶ With probability

$$\min\left(1, \frac{\nu(\theta^{\star}|\theta(k-1))p(\theta^{\star})\widehat{\pmb{Z}}^{\star}}{\nu(\theta(k-1)|\theta^{\star})p(\theta(k-1))\widehat{\pmb{Z}}(k-1)}\right)$$

set
$$X_{1:n}(k)=X_{1:n}^{\star(\ell)}$$
, $\theta(k)=\theta^{\star}$ and $\widehat{Z}(k-1)=\widehat{Z}^{\star}$, where $\ell\sim\operatorname{Discrete}(W_n^{\star(1)},\ldots,W_n^{\star(N)})$

otherwise, keep previous iteration values

Outputs

lacktriangleq MCMC samples $(X_{1:n}(k), \theta(k))_{k=1,...,n_{\text{iter}}}$

A. Todeschini 32 / 39

Example: Stochastic kinetic Lotka-Volterra model

stoch_kinetic_gill.bug

```
model
{
   logc[1] ~ dunif(-7,2)
   logc[2] ~ dunif(-7,2)
   logc[3] ~ dunif(-7,2)
   c[1] <- exp(logc[1])
   c[2] <- exp(logc[2])
   c[3] <- exp(logc[3])
   ...
}</pre>
```

A. Todeschini 33 / 39

Run a PMMH algorithm

Rbiips

```
# create a pmmh object
obj_pmmh = biips_pmmh_init(model,
                           param_names = c('logc[1]',
                                            'logc[2]',
                                            'logc[3]'),
                            inits = list(-1, -5, -1).
                           latent names = 'x')
# adaptation and burn-in iterations
biips_pmmh_update(obj_pmmh, n_iter = 2000, n_part = 100)
# samples
out_pmmh = biips_pmmh_samples(obj_pmmh, n_iter = 20000,
                              n_{part} = 100, thin = 10)
summ_pmmh = biips_summary(out_pmmh, probs = c(.025, .975))
kde_pmmh = biips_density(out_pmmh)
```

A. Todeschini 34/39

Posterior samples

A. Todeschini 35 / 39

Conclusion

- ► BUGS language compatible
- Extensibility: custom functions/samplers
- Black-box SMC inference engine
- Interfaces with popular software: Matlab/Octave, R
- Post-processing tools
- And more: backward smoothing algorithm, particle independent Metropolis-Hastings algorithm, sensitivity analysis, some optimal/conditional samplers (Gaussian-Gaussian, beta-Bernoulli, finite discrete)

Bibliography I

Andrieu, C., Doucet, A., and Holenstein, R. (2010).

Particle markov chain monte carlo methods.

Journal of the Royal Statistical Society B, 72:269–342.

Boys, R. J., Wilkinson, D. J., and Kirkwood, T. B. L. (2008).

Bayesian inference for a discretely observed stochastic kinetic model.

Statistics and Computing, 18(2):125–135.

Feynman-Kac Formulae. Genealogical and Interacting Particle Systems with Application. Springer.

Doucet, A., de Freitas, N., and Gordon, N., editors (2001).

Sequential Monte Carlo Methods in Practice.

Springer-Verlag.

Doucet, A. and Johansen, A. (2010).

A tutorial on particle filtering and smoothing: Fifteen years later.

In Crisan, D. and Rozovsky, B., editors, *Oxford Handbook of Nonlinear Filtering*. Oxford University Press.

Exact stochastic simulation of coupled chemical reactions.

The journal of physical chemistry, 81(25):2340-2361.

A. Todeschini 37 / 39

Bibliography II

Golightly, A. and Gillespie, C. S. (2013). Simulation of stochastic kinetic models. In *In Silico Systems Biology*, pages 169–187. Springer.

Lunn, D., Jackson, C., Best, N., Thomas, A., and Spiegelhalter, D. (2012). *The BUGS Book: A Practical Introduction to Bayesian Analysis*. CRC Press/ Chapman and Hall.

Plummer, M. (2012).

JAGS Version 3.3.0 user manual.

A. Todeschini 38 / 39

THANK YOU

http://alea.bordeaux.inria.fr/biips

A. Todeschini 39 / 39