CODE	COURSE NAME	CATEGORY	L	T	P	CREDIT
ITT401	DATA ANALYTICS	PCC	2	1	0	3

Preamble: This course will equip the learners with the popular technologies used in gathering, storing, manipulating, and analyzing big data. It is designed in such a way that the students will get an exposure to the analytic concepts from basic level to the advanced level.

Prerequisites:

- ITT201 Data Structures
- ITT 206 Database Management Systems
- MAT 208 Probability, Statistics and Advanced Graph theory
- ITT 306 Data Science

Course Outcomes: After completion of the course the student will be able to:

CO No.	Course Outcome (CO)	Bloom's Category Level
CO 1	Describe the introductory concepts of data analytics; integrate statistical learning into data analytic processing and tools	Level 2: Understand
CO 2	Summarize the big data concepts, methods, tools and applications; explain the evolution of NoSQL with popular NoSQL products like MongoDB	Level 3: Apply
CO 3	Illustrate the ideas of distributed processing with Hadoop, MapReduce paradigm and related projects namely HBase, Spark, YARN, Hive and Pig	Level 2: Understand
CO 4	Experiment with R language to perform data exploration, wrangling and modelling	Level 3: Apply
CO 5	Analyze how big data techniques could be used in diverse application domains of real world	Level 4: Analyze

Mapping of Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	2	2	2	-	-		-	-	-	-	2
CO 2	2	3	3	2	3	-	1	-	-	-	-	2
CO 3	2	2	2	2	3	-	-	-	-	-	-	2
CO 4	2	3	3	3	3	2	-	-	1	2	-	3
CO 5	2	3	3	3	-	3	3	-	-	2	-	3

3/2/1: High/Medium/Low

Assessment Pattern

Bloom's Category Levels	Contin Assess Tes	ment	End Semester Examination			
	1	2				
Level 1: Remember	10	10	20			
Level 2: Understand	20	15	35			
Level 3: Apply	20	15	35			
Level 4: Analyse	0 4	10				
Level 5: Evaluate		\perp	1010			
Level 6: Create	S	ŤŤ.	45FC			

Mark distribution

Total Marks	Continuous Internal Evaluation (CIE)	End Semester Examination (ESE)	ESE Duration
150	50	100	3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks
Continuous Assessment Test (2 numbers) : 25 marks
Assignment/Quiz/Course project : 15 marks

End Semester Examination Pattern: There will be *two* parts; Part A and Part B. Part A contain 10 questions with 2 questions from each module, having 3 marks for each question. Students should answer *all* questions. Part B contains 2 questions from each module of which student should answer *any one*. Each question can have maximum 2 sub-divisions and carry 14 marks.

Sample Course Level Assessment Questions

Course Outcome 1 (CO 1):

- 1. Define data analytics.
- 2. Describe the different types of data analytics with examples.
- 3. Illustrate data analytics life cycle.
- 4. Explain different statistical evaluation methods or tests.

Course Outcome 2 (CO 2):

- 1. Define big data.
- 2. List the characteristics of big data and different technologies related to it.
- 3. Explain the tools NoSQL and MongoDB.
- 4. Explain how MongoDB can be applied to create, update, and delete documents.

Course Outcome 3 (CO 3):

- 1. Describe the HDFS framework and interface.
- 2. Outline the Pig and Hive architecture.
- 3. Illustrate the anatomy of a YARN application.
- 4. Compare HBase and Hive.

Course Outcome 4 (CO 4):

- 1. Explain the basic programming concepts in R.
- 2. Summarize how ggplot2 and dplyr are applied in visualization of R.
- 3. List the methods of exploratory data analysis.
- 4. Explore the ways of tidying data.

Course Outcome 5 (CO 5):

- 1. Discuss Recommender Systems and its types in detail with a case study of Netflix.
- 2. Analyze Facebook data to do a case study on citizen centric public services.
- 3. Analyze uplift modelling with a case study on student dropout in higher education.

Model Question Paper

Course Code: ITT401

Course Name: Data Analytics

Max.Marks:100 Duration: 3 Hrs

Part A

Answer all questions. Each question carries 3 marks (10 * 3 = 30 Marks)

- 1. What is the relationship between BI and data science?
- 2. Differentiate between descriptive analytics and predictive analytics.
- 3. What are the steps involved in big data acquisition?
- 4. Define web data analysis.
- 5. Draw the architecture of Hive and explain the services provided by it.
- 6. How does data flow among clients that interact in HDFS?
- 7. What is the significance of functions gather() and spread() in tidying data? Illustrate with an example.
- 8. What does geom_ref_line() do? What package does it come from? Why is displaying a reference line in plots that show residuals useful and important?
- 9. What do you mean by hybrid filtering? What are the advantages?
- 10. What are the tools used in social media analytics?

Part B

	1	Answer all questions. Each question carries 14 marks. (5 * $14 = 70$ Marks)	
11	a	With a diagram, explain the various phases of Data Analytics Lifecycle.	10
	b	What is the significance of ANOVA?	4
		OR	
12	a	Describe the following resampling techniques: (i)Cross-Validation (ii) Bootstrapping	10
	b	Explain any method to test the difference in sample means of two populations.	4
13	a	Explain the process of data pre-processing in big data acquisition.	8
	b	Write a review about moving data into and out of the database in MongoDB.	6
		OR	
14	a	How is cloud computing and IoT related to big data?	8
	b	Define NoSQL. Explain Key value data stores.	6
15	a	Explain the role of MapReduce in Hadoop with a suitable example.	9
	b	Describe Spark with an example.	5
		OR	
16	a	Explain the architecture of HDFS. Discuss on how the MapReduce framework is modified using YARN.	7
	b	Discuss on how the MapReduce framework is modified using YARN.	7
17	a	Define ggplot2. What are the features provided by ggplot2? What are the problems faced while using ggplot2 and how can we overcome them?	8
	b	Write the R code to import a .csv file, examine its contents and generate its descriptive statistcs OR	6
18	a	With examples, illustrate how these R functions help in data analysis. • filter() • arrange() • summarize() • mutate()	14
		• select()	
19	a	Explain the insights for using social media as a platform to improve government—citizen interaction.	9
	b	Explain different types of recommender systems.	5
		OR	
20	a	Analyze uplift modelling with an appropriate example.	7
	h	Flahorate on recommender systems with Netflix application	7

Syllabus

Module 1: Introduction and statistics for data analytics (7 hours)

Introduction and evolution of data analytics - Types of data analytics - Data analytics life cycle - Statistical methods for evaluation - Resampling

Module 2: Big data, IoT, NoSQL technologies (8 hours)

Introduction to big data, Related Technologies- Cloud computing, IoT, Big data generation, Big data acquisition, Big data analysis- methods and tools, Big data applications

Non-relational databases -MongoDB

Module 3: Big data processing – Hadoop, Spark, Hive, Pig (8 hours)

Hadoop, HDFS and MR, HBase, Spark, YARN, Hive, Pig

Module 4:R programming for data analytics (7 hours)

R programming basics for data analytics, data import and export, visualization, transformation, exploratory analysis, tidying, modelling

Module 5: Popular data analytics case studies (5 hours)

Recommender systems, social media analytics , churn prediction and uplift modeling with appropriate case studies

Text Books

- 1. Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data. Wiley Publishing(1st. ed.). 2015.
- 2. Thomas Erl, Wajid Khattak, and Paul Buhler. Big Data Fundamentals: Concepts, Drivers & Techniques. Prentice Hall Press, USA.(1st. ed.). 2016.
- 3. Michael Berthold and David J. Hand. Intelligent Data Analysis: An Introduction Springer-Verlag, Berlin, Heidelberg. (1st. ed.). 1999.
- 4. Min Chen, Shiwen Mao, Yin Zhang, and Victor C. M. Leung. Big Data: Related Technologies, Challenges and Future Prospects. Springer Publishing Company, Incorporated.2014.
- 5. Shashank Tiwari. Professional NoSQL.Wrox Press Ltd., GBR. 2011.
- 6. Kristina Chodorow and Michael Dirolf. Mongo DB: The Definitive Guide. O'Reilly Media, Inc. (1st. ed.). 2010.
- 7. Tom White. Hadoop: The Definitive Guide. O'Reilly Media, Inc.(4th. ed.). 2015.
- 8. Hadley Wickham and Garrett Grolemund. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. O'Reilly Media, Inc.(1st. ed.). 2017.
- 9. Bart Baesens. Analytics in a Big Data World: The Essential Guide to Data Science and its Applications. Wiley Publishing.(1st. ed.). 2014.

References

- 1. Michael Minelli, Michele Chambers, and AmbigaDhiraj. Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses. Wiley Publishing.(Wiley CIO) (1st. ed.). 2013.
- 2. EelcoPlugge, Tim Hawkins, and Peter Membrey. The Definitive Guide to MongoDB: The NoSQL Database for Cloud and Desktop Computing. Apress, USA. (1st. ed.). 2010.
- 3. Joe Celko. Joe Celko's Complete Guide to NoSQL: What Every SQL Professional Needs to Know about Non-Relational Databases. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. (1st. ed.). 2013.
- 4. Benjamin Bengfort and Jenny Kim. Data Analytics with Hadoop: An Introduction for Data Scientists. O'Reilly Media, Inc. (1st. ed.). 2016.
- 5. Brett Lantz. Machine Learning with R. Packt Publishing. (2nd. ed.). 2015.
- 6. The R Manuals https://cran.r-project.org/manuals.html
- 7. Carlos A. Gomez-Uribe and Neil Hunt. (2016). *The Netflix Recommender System: Algorithms, Business Value, and Innovation*. ACM Trans. Manage. Inf. Syst. 6, 4, Article 13 (January 2016), 19 pages. DOI:https://doi.org/10.1145/2843948
- 8. Chicago Reddick, C., Chatfield, A., &Ojo, A. (2017). A social media text analytics framework for double-loop learning for citizen-centric public services: A case study of a local government Facebook use. Gov. Inf. Q., 34, 110-125.
- 9. Diego Olaya, Jonathan Vásquez, Sebastián Maldonado, Jaime Miranda, WouterVerbeke, *Uplift Modeling for preventing student dropout in higher education*, Decision Support Systems, Volume 134, 2020,113320, ISSN 0167-9236, https://doi.org/10.1016/j.dss.2020.113320.

Course Contents and Lecture Schedule

Sl. No.	Topic							
1	Introduction and statistics for data analytics	7 Hours						
1.1	Introduction and evolution of data analytics (Text1: 1.1, 1.1.2, 1.2)	1						
1.2	Data Analytics Lifecycle (Text1: 2.1 -2.7)	1						
1.3	Types of data analytics (descriptive, prescriptive, predictive, diagnostic) (Text2: 1)	1						
1.4	Statistical Methods for Evaluation (Text1: 3.3)	2						

1.5	Resampling (Text3: 2.6)	2
2	Big data, IoT, NoSQL technologies	8 Hours
2.1	Introduction to big data-Definition, features and challenges (Text4:Ch.1)	1
2.2	Related Technologies-Cloud computing and IoT(Text4:Ch.2- 2.1,2.2)	1
2.3	Big data Generation and Acquisition(Text4:Ch.3 – 3.1,3.2)	1
2.4	Big data analysis - (Text4:Ch.5 - 5.2, 5.3, 5.4)	1
2.5	Big data applications (Text4:Ch.6 - 6.2)	1
2.6	NoSQL:introduction and need for NoSQL, column oriented stores, key-value stores, document databases and graph databases (Text5:Ch.1)	1
2.7	MongoDB features , database, collection, documents, data types, configuration, shell,(Text6:Ch.1, 2)	1
2.8	Creating, updating, and deleting documents, Querying (Text6:Ch.3,4)	1
3	Big data processing – Hadoop, Spark, Hive, Pig	8 Hours
3.1	What is Hadoop, brief history of Hadoop, comparison with other systems (Text7:Ch.1)	1
3.2	MapReduce data flow, weather dataset example (Text7:Ch.2)	1
3.3	Hadoop Distributed File System (HDFS) concepts, basic commands, HDFS Java interface (Text7:Ch. 3)	1
3.4	HBase (Text7:Ch.17)	1
3.5	YARN, anatomy of a YARN application, scheduling (Text7:Ch. 4)	1
3.6	Pig Latin language, running an example, comparison with databases (Text7:Ch. 16)	1
3.7	Hive data warehousing, shell, running an example, Hive architecture, comparison with databases (Text7:Ch. 17)	1
3.8	Spark framework, example, anatomy of a SPARK job run (Text7:Ch.19)	1
4	R programming for data analytics	7 Hours
4.1	R programming: basics (Text8: Ch.1)	1
4.2	Data visualization with ggplot2 (Text8: Ch.1)	1
4.3	Data transformation with dplyr (Text8: Ch.3)	1
4.4	Exploratory data analysis in R (Text8: Ch.5)	1.5
4.5	Tidy data with tidyr (Text8: Ch.9)	1.5
4.6	Modelling (Text8: Ch. 18)	1
5	Popular data analytics case studies	5 Hours

5.1	Recommender system, types (Text9: Ch.8)	1
5.2	Case study: Netflix Recommender system (Ref.7)	1
5.3	Social media analytics: current trends, tools (Text9: Ch.8)	1
5.4	Social media analytics for citizen-centric public services: a case study of a local government Facebook use (Ref.8)	1
5.5	Churn prediction (Text9: Ch.8) Uplift modelling Case study: Uplift Modeling for preventing student dropout in higher education (Ref.9)	1

CODE	COURSE NAME	CATEGORY	L	T	P	CREDIT
ITL411	DATA ANALYTICS LAB	PCC	0	0	3	2

Preamble: Data analytics lab is a practical course to supplement the Data analytics theory course. The implementation of machine learning algorithms using R and experimenting with the dynamic, interactive visualization techniques using Tableau will equip the students to pursue careers in the data analytics domain. A familiarization of the popular analytic tools like Hadoop can help in academic projects or to carry out data analysis in new application areas.

Prerequisites:

- ITT201 Data Structures
- ITT 206 Database Management Systems
- MAT 208 Probability, Statistics and Advanced Graph theory
- ITT 306 Data Science

Course Outcomes: After the completion of the course the student will be able to:

CO No.	Course Outcome (CO)	Bloom's Category Level
CO 1	Solve simple problems of statistical analysis of data using	Level 3:
COI	Microsoft Excel	Apply
CO 2	Analyze the textual data and time series data with the data	Level 3:
CO 2	visualization techniques in R	Analyze
CO 3	Implement the basic statistical techniques and machine learning	Level 3:
003	algorithms using R	Apply
CO 4	Execute HDFS commands and apply Map Reduce technologies	Level 3:
CO 4	associated with big data analytics using HADOOP	Apply
CO 5	Analyzereal world data by applying the suitable visualization	Level 4:
	techniques in Tableau	Analyze

Mapping of Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	3	3	3	3	-	-	-	-	-	-	2
CO 2	3	3	3	3	3	2	2	2	2	2	-	2
CO 3	3	3	3	2	3	-	-	-	-	-	-	2
CO 4	3	3	3	2	3	-	-	-	-	-	-	2
CO 5	3	3	3	3	3	2	2	2	2	2	-	2

3/2/1: High/Medium/Low