PREDICTING CAR ACCIDENT SEVERITY

IBM DATA SCIENCE CAPSTONE

George Abou Assi https://github.com/Georgeab9

CASE UNDERSTANDING

Car accidents occur all over the world and cause multiple injuries and death

- Estimated more than 1 million deaths
- Most death involves young adults

Predicting accident severity may be applied in a mobile application that sends notifications to drivers, policemen, resuce teams, ambulances, car insurance companies, civil defence... to mobilize help immediately, protect people and themselves, avoid further impact in the car crash and many more benefits.

DATA

- Data was extracted from Seattle Government (Police Department)' https://s3.us.cloud-object-storage.appdomain.cloud/cf-courses-data/CognitiveClass/DP0701EN/version-2/Data-Collisions.csv
- Data includes 194673 observations and 38 features.
- Dataset involved several missing values and wrong formats that required cleaning
- Target variable contained inbalanced data which required undersampling / balancing

Most accidents involve property rather than injuries

Parked cars are the biggest reason of car accidents

Weather does not seem to impact car crashes

Most of the time, 2 vehicles are involved in accidents

SVM is the best classifier

	Decision Tree	K-Nearest Neighbors	Logistic Regression	Random Forest	Support Vector Machine
Jaccard Score	0.7102	0.7067	0.7123	0.7051	0.7140
F1 Score	0.6969	0.6993	0.7005	0.6974	0.7026
Injury Class F1 Score	0.7697	0.7572	0.7697	0.7564	0.7704
Injury Class Recall Score	0.8861	0.8368	0.8792	0.8379	0.8780

Parked Car and Number of Vehicles are the most important features

	Feature	Importance Score
0	Parked Car	0.39
1	VEHCOUNT	0.28
2	Sideswipe	0.13
3	PERSONCOUNT	0.11
4	UNDERINFL	0.02
5	PEDCOUNT	0.01

CONCLUSION

After cleaning and analyzing the data set, the number of vehicles and if a car is parked are the most important features for the accident severity predicition.

This shows that for the application to be most effective, an immediate report must be done by the police (or volunteers in the area) and communicated in the app.

With the advance of sensor technology, more data can be extracted and used to build more precise models.