Calcul de la valeur de vérité d'une formule \mathcal{F} sur $\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$ pour un domaine donné \mathcal{D} et une interprétation donnée I de \mathcal{L} sur \mathcal{D}

 $\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$

- D=
- $I(P_1)\subseteq \mathcal{D}$ $I:a,b,c\to \mathcal{D}$
- $I(C_2)\subseteq \mathcal{D}^2$

 $\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$

- D=
- $I(P_1)\subseteq \mathcal{D}$ $I:a,b,c\to \mathcal{D}$
- $I(C_2)\subseteq \mathcal{D}^2$

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- D=
- $I(P_1) \subseteq \mathcal{D}$ $I: a, b, c \to \mathcal{D}$
- $I(C_2)\subseteq \mathcal{D}^2$

signification intuitive	
il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- D=
- $I(P_1)\subseteq \mathcal{D}$ $I:a,b,c\to \mathcal{D}$
- $I(C_2)\subseteq \mathcal{D}^2$

Formule ${\cal F}$	signification intuitive	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	
$\exists x \ P_1(x)$		
$\wedge \neg C_2(x,x)$		

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- D=
- $I(P_1)\subseteq \mathcal{D}$ $I: a, b, c \to \mathcal{D}$
- $I(C_2)\subseteq \mathcal{D}^2$

Formule ${\cal F}$	signification intuitive	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	
$\exists x \ P_1(x)$	il existe d de ${\cal D}$	
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$	

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- D=
- $I(P_1)\subseteq \mathcal{D}$ $I:a,b,c\to \mathcal{D}$
- $I(C_2)\subseteq \mathcal{D}^2$

Formule ${\cal F}$	signification intuitive	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	
$\exists x \ P_1(x)$	il existe d de ${\cal D}$	
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$	
$\forall x \ P_1(x)$		

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- D=
- $I(P_1)\subseteq \mathcal{D}$ $I:a,b,c\to \mathcal{D}$
- $I(C_2)\subseteq \mathcal{D}^2$

Formule ${\cal F}$	signification intuitive	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	
$\exists x \ P_1(x)$	il existe d de ${\cal D}$	
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$	
$\forall x \ P_1(x)$	pour tout d de $\mathcal{D},\ d\in I(P_1)$	

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- D=
- $I(P_1)\subseteq \mathcal{D}$ $I:a,b,c\to \mathcal{D}$
- $I(C_2)\subseteq \mathcal{D}^2$

Formule ${\cal F}$	signification intuitive	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	
$\exists x \ P_1(x)$	il existe d de ${\cal D}$	
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$	
$\forall x \ P_1(x)$	pour tout d de \mathcal{D} , $d \in I(P_1)$	
$P_1(a)$		

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- D=
- $I(P_1)\subseteq \mathcal{D}$ $I: a, b, c \to \mathcal{D}$
- $I(C_2)\subseteq \mathcal{D}^2$

Formule ${\cal F}$	signification intuitive	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	
$\exists x \ P_1(x)$	il existe d de ${\cal D}$	
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$	
$\forall x \ P_1(x)$	pour tout d de \mathcal{D} , $d \in I(P_1)$	
$P_1(a)$	$I(a) \in I(P_1)$	

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- D=
- $I(P_1)\subseteq \mathcal{D}$ $I:a,b,c\to \mathcal{D}$
- $I(C_2)\subseteq \mathcal{D}^2$

Formule ${\cal F}$	signification intuitive	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	
$\exists x \ P_1(x)$	il existe d de ${\cal D}$	
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$	
$\forall x \ P_1(x)$	pour tout d de \mathcal{D} , $d \in I(P_1)$	
$P_1(a)$	$I(a) \in I(P_1)$	
$C_2(a,b)$		

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- D=
- $I(P_1)\subseteq \mathcal{D}$ $I: a, b, c \to \mathcal{D}$
- $I(C_2)\subseteq \mathcal{D}^2$

Formule ${\cal F}$	signification intuitive	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	
$\exists x \ P_1(x)$	il existe d de ${\cal D}$	
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$	
$\forall x \ P_1(x)$	pour tout d de \mathcal{D} , $d \in I(P_1)$	
$P_1(a)$	$I(a) \in I(P_1)$	
$C_2(a,b)$	$(I(a),I(b))\in I(C_2)$	

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- D=
- $I(P_1)\subseteq \mathcal{D}$ $I: a, b, c \to \mathcal{D}$
- $I(C_2)\subseteq \mathcal{D}^2$

Formule ${\cal F}$	signification intuitive	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	
$\exists x \ P_1(x)$	il existe d de ${\mathcal D}$	
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$	
$\forall x \ P_1(x)$	pour tout d de \mathcal{D} , $d \in I(P_1)$	
<i>P</i> ₁ (<i>a</i>)	$I(a) \in I(P_1)$	
$C_2(a,b)$	$(I(a),I(b))\in I(C_2)$	
$C_2(a,c)$		

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- D=
- $I(P_1)\subseteq \mathcal{D}$ $I: a, b, c \to \mathcal{D}$
- $I(C_2)\subseteq \mathcal{D}^2$

Formule ${\mathcal F}$	signification intuitive	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	
$\exists x \ P_1(x)$	il existe d de ${\mathcal D}$	
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$	
$\forall x \ P_1(x)$	pour tout d de \mathcal{D} , $d \in I(P_1)$	
$P_1(a)$	$I(a) \in I(P_1)$	
$C_2(a,b)$	$(I(a),I(b))\in I(C_2)$	
$C_2(a,c)$	$(I(a),I(c))\in I(C_2)$	

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- \mathcal{D} = {Alain, Bob, Charles, Denis}
- $I_1(P_1) = \{ Alain, Bob \} I_1 : a, b, c \rightarrow Alain, Bob, Charles$
- $I_1(C_2) = \{ (Alain, Bob), (Bob, Charles), (Charles, Charles) \}$

Formule ${\cal F}$	signification intuitive	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	
$\exists x \ P_1(x)$	il existe d de ${\cal D}$	
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$	
$\forall x \ P_1(x)$	pour tout d de \mathcal{D} , $d \in I(P_1)$	
$P_1(a)$	$I(a) \in I(P_1)$	
$C_2(a,b)$	$(I(a),I(b))\in I(C_2)$	
$C_2(a,c)$	$(I(a),I(c))\in I(C_2)$	

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- \mathcal{D} = {Alain, Bob, Charles, Denis}
- $I_1(P_1) = \{ Alain, Bob \} I_1 : a, b, c \rightarrow Alain, Bob, Charles$
- $I_1(C_2) = \{ (Alain, Bob), (Bob, Charles), (Charles, Charles) \}$

Formule ${\cal F}$	signification intuitive	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	
$\exists x \ P_1(x)$	il existe d de ${\cal D}$	
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$	
$\forall x \ P_1(x)$	pour tout d de \mathcal{D} , $d \in I(P_1)$	
$P_1(a)$	$I(a) \in I(P_1)$	
$C_2(a,b)$	$(I(a),I(b))\in I(C_2)$	
$C_2(a,c)$	$(I(a),I(c))\in I(C_2)$	

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- \mathcal{D} = {Alain, Bob, Charles, Denis}
- $I_1(P_1) = \{ Alain, Bob \} I_1 : a, b, c \rightarrow Alain, Bob, Charles$
- $I_1(C_2) = \{ (Alain, Bob), (Bob, Charles), (Charles, Charles) \}$

Formule ${\cal F}$	signification intuitive	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	
$\exists x \ P_1(x)$	il existe d de ${\cal D}$	
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$	
$\forall x \ P_1(x)$	pour tout d de \mathcal{D} , $d \in I(P_1)$	
$P_1(a)$	$I(a) \in I(P_1)$	
$C_2(a,b)$	$(I(a),I(b))\in I(C_2)$	
$C_2(a,c)$	$(I(a),I(c))\in I(C_2)$	

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- \mathcal{D} = {Alain, Bob, Charles, Denis}
- $I_1(P_1) = \{ Alain, Bob \} I_1 : a, b, c \rightarrow Alain, Bob, Charles$
- $I_1(C_2) = \{ (Alain, Bob), (Bob, Charles), (Charles, Charles) \}$

Formule ${\cal F}$	signification intuitive	11	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$		
$\exists x \ P_1(x)$	il existe d de ${\cal D}$		
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$		
$\forall x \ P_1(x)$	pour tout d de \mathcal{D} , $d \in I(P_1)$		
$P_1(a)$	$I(a) \in I(P_1)$		
$C_2(a,b)$	$(I(a),I(b))\in I(C_2)$		
$C_2(a,c)$	$(I(a),I(c))\in I(C_2)$		

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- \mathcal{D} = {Alain, Bob, Charles, Denis}
- $I_1(P_1) = \{ Alain, Bob \} I_1 : a, b, c \rightarrow Alain, Bob, Charles$
- $I_1(C_2) = \{ (Alain, Bob), (Bob, Charles), (Charles, Charles) \}$

Formule ${\cal F}$	signification intuitive	<i>l</i> ₁	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	V	
$\exists x \ P_1(x)$	il existe d de ${\mathcal D}$		
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$		
$\forall x \ P_1(x)$	pour tout d de \mathcal{D} , $d \in I(P_1)$		
$P_1(a)$	$I(a) \in I(P_1)$		
$C_2(a,b)$	$(I(a),I(b))\in I(C_2)$		
$C_2(a,c)$	$(I(a),I(c))\in I(C_2)$		

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- \mathcal{D} = {Alain, Bob, Charles, Denis}
- $I_1(P_1) = \{ Alain, Bob \} I_1 : a, b, c \rightarrow Alain, Bob, Charles$
- $I_1(C_2) = \{ (Alain, Bob), (Bob, Charles), (Charles, Charles) \}$

Formule ${\cal F}$	signification intuitive	<i>l</i> ₁	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	V	
$\exists x \ P_1(x)$	il existe d de ${\cal D}$	V	
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$		
$\forall x \ P_1(x)$	pour tout d de \mathcal{D} , $d \in I(P_1)$		
$P_1(a)$	$I(a) \in I(P_1)$		
$C_2(a,b)$	$(I(a),I(b))\in I(C_2)$		
$C_2(a,c)$	$(I(a),I(c))\in I(C_2)$		

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- \mathcal{D} = {Alain, Bob, Charles, Denis}
- $I_1(P_1) = \{ Alain, Bob \} I_1 : a, b, c \rightarrow Alain, Bob, Charles$
- $I_1(C_2) = \{ (Alain, Bob), (Bob, Charles), (Charles, Charles) \}$

Formule ${\mathcal F}$	signification intuitive	<i>I</i> ₁	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	٧	
$\exists x \ P_1(x)$	il existe d de ${\cal D}$	V	
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$		
$\forall x \ P_1(x)$	pour tout d de \mathcal{D} , $d \in I(P_1)$	F	
$P_1(a)$	$I(a) \in I(P_1)$		
$C_2(a,b)$	$(I(a),I(b))\in I(C_2)$		
$C_2(a,c)$	$(I(a),I(c))\in I(C_2)$		

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- \mathcal{D} = {Alain, Bob, Charles, Denis}
- $I_1(P_1) = \{ Alain, Bob \} I_1 : a, b, c \rightarrow Alain, Bob, Charles$
- $I_1(C_2) = \{ (Alain, Bob), (Bob, Charles), (Charles, Charles) \}$

Formule ${\cal F}$	signification intuitive	<i>l</i> ₁	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	V	
$\exists x \ P_1(x)$	il existe d de ${\cal D}$	V	
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$		
$\forall x \ P_1(x)$	pour tout d de \mathcal{D} , $d \in I(P_1)$	F	
$P_1(a)$	$I(a) \in I(P_1)$	V	
$C_2(a,b)$	$(I(a),I(b))\in I(C_2)$		
$C_2(a,c)$	$(I(a),I(c))\in I(C_2)$		

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- \mathcal{D} = {Alain, Bob, Charles, Denis}
- $I_1(P_1) = \{ Alain, Bob \} I_1 : a, b, c \rightarrow Alain, Bob, Charles$
- $I_1(C_2) = \{ (Alain, Bob), (Bob, Charles), (Charles, Charles) \}$

Formule ${\mathcal F}$	signification intuitive	I_1	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	٧	
$\exists x \ P_1(x)$	il existe d de ${\cal D}$	V	
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$		
$\forall x \ P_1(x)$	pour tout d de \mathcal{D} , $d \in I(P_1)$	F	
$P_1(a)$	$I(a) \in I(P_1)$	V	
$C_2(a,b)$	$(I(a),I(b))\in I(C_2)$	V	
$C_2(a,c)$	$(I(a),I(c))\in I(C_2)$		

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- \mathcal{D} = {Alain, Bob, Charles, Denis}
- $I_1(P_1) = \{ Alain, Bob \} I_1 : a, b, c \rightarrow Alain, Bob, Charles$
- $I_1(C_2) = \{ (Alain, Bob), (Bob, Charles), (Charles, Charles) \}$

Formule ${\cal F}$	signification intuitive	I_1	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	٧	
$\exists x \ P_1(x)$	il existe d de ${\cal D}$	V	
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$		
$\forall x \ P_1(x)$	pour tout d de \mathcal{D} , $d \in I(P_1)$	F	
$P_1(a)$	$I(a) \in I(P_1)$	V	
$C_2(a,b)$	$(I(a),I(b))\in I(C_2)$	V	
$C_2(a,c)$	$(I(a),I(c))\in I(C_2)$	F	

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- \mathcal{D} = {Alain, Bob, Charles, Denis}
- $I_1(P_1) = \{ Alain, Bob \} I_1 : a, b, c \rightarrow Alain, Bob, Charles$
- $I_1(C_2) = \{ (Alain, Bob), (Bob, Charles), (Charles, Charles) \}$

Formule ${\cal F}$	signification intuitive	I_1	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	٧	
$\exists x \ P_1(x)$	il existe d de ${\cal D}$	V	
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$		
$\forall x \ P_1(x)$	pour tout d de \mathcal{D} , $d \in I(P_1)$	F	
$P_1(a)$	$I(a) \in I(P_1)$	V	
$C_2(a,b)$	$(I(a),I(b))\in I(C_2)$	V	
$C_2(a,c)$	$(I(a),I(c))\in I(C_2)$	F	

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- \mathcal{D} = {Alain, Bob, Charles, Denis}
- $I_1(P_1) = \{ Alain, Bob \} I_1 : a, b, c \rightarrow Alain, Bob, Charles$
- $I_1(C_2) = \{ (Alain, Bob), (Bob, Charles), (Charles, Charles) \}$

Formule ${\cal F}$	signification intuitive	I_1	
$\exists x \ C_2(x,x)$	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	٧	
$\exists x \ P_1(x)$	il existe d de ${\cal D}$	V	
$\wedge \neg C_2(x,x)$	avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$		
$\forall x \ P_1(x)$	pour tout d de \mathcal{D} , $d \in I(P_1)$	F	
$P_1(a)$	$I(a) \in I(P_1)$	V	
$C_2(a,b)$	$(I(a),I(b))\in I(C_2)$	V	
$C_2(a,c)$	$(I(a),I(c))\in I(C_2)$	F	

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- \mathcal{D} = l'ensemble des entiers
- $I(P_1)$ $I: a, b, c \rightarrow$
- $I(C_2)$

I_2	<i>I</i> ₁	signification intuitive	Formule ${\mathcal F}$
	V	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	$\exists x \ C_2(x,x)$
	V	il existe d de ${\cal D}$	$\exists x \ P_1(x)$
		avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$	$\wedge \neg C_2(x,x)$
	F	pour tout d de \mathcal{D} , $d \in I(P_1)$	$\forall x \ P_1(x)$
	V	$I(a) \in I(P_1)$	$P_1(a)$
	V	$(I(a),I(b))\in I(C_2)$	$C_2(a,b)$
	F	$(I(a),I(c))\in I(C_2)$	$C_2(a,c)$

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- \mathcal{D} = l'ensemble des entiers
- $I(P_1) = l$ 'ensemble des entiers pairs $I: a, b, c \rightarrow 0, 1, 1$
- $I_2(C_2)$ = l'ensemble des couples d'entiers successifs : $\{(0,1)...$

<i>I</i> ₂	<i>I</i> ₁	signification intuitive	Formule ${\mathcal F}$
	V	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	$\exists x \ C_2(x,x)$
	V	il existe d de ${\cal D}$	$\exists x \ P_1(x)$
		avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$	$\wedge \neg C_2(x,x)$
	F	pour tout d de \mathcal{D} , $d \in I(P_1)$	$\forall x \ P_1(x)$
	V	$I(a) \in I(P_1)$	$P_1(a)$
	V	$(I(a),I(b))\in I(C_2)$	$C_2(a,b)$
	F	$(I(a),I(c))\in I(C_2)$	$C_2(a,c)$

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- \mathcal{D} = l'ensemble des entiers
- $I(P_1) = l$ 'ensemble des entiers pairs $I: a, b, c \rightarrow 0, 1, 1$
- $I_2(C_2)$ = l'ensemble des couples d'entiers successifs : $\{(0,1)...$

<i>I</i> ₂	<i>I</i> ₁	signification intuitive	Formule ${\mathcal F}$
F	٧	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	$\exists x \ C_2(x,x)$
V	V	il existe d de ${\cal D}$	$\exists x \ P_1(x)$
		avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$	$\wedge \neg C_2(x,x)$
	F	pour tout d de \mathcal{D} , $d \in I(P_1)$	$\forall x \ P_1(x)$
	V	$I(a) \in I(P_1)$	$P_1(a)$
	V	$(I(a),I(b))\in I(C_2)$	$C_2(a,b)$
	F	$(I(a),I(c))\in I(C_2)$	$C_2(a,c)$

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- \mathcal{D} = l'ensemble des entiers
- $I(P_1) = l$ 'ensemble des entiers pairs $I: a, b, c \rightarrow 0, 1, 1$
- $I_2(C_2)$ = l'ensemble des couples d'entiers successifs : $\{(0,1)...$

<i>I</i> ₂	<i>I</i> ₁	signification intuitive	Formule ${\mathcal F}$
F	V	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	$\exists x \ C_2(x,x)$
V	V	il existe d de ${\cal D}$	$\exists x \ P_1(x)$
		avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$	$\wedge \neg C_2(x,x)$
F	F	pour tout d de \mathcal{D} , $d \in I(P_1)$	$\forall x \ P_1(x)$
	v	$I(a) \in I(P_1)$	$P_1(a)$
	V	$(I(a),I(b))\in I(C_2)$	$C_2(a,b)$
	F	$(I(a),I(c))\in I(C_2)$	$C_2(a,c)$

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- \mathcal{D} = l'ensemble des entiers
- $I(P_1) = l$ 'ensemble des entiers pairs $I: a, b, c \rightarrow 0, 1, 1$
- $I_2(C_2)$ = l'ensemble des couples d'entiers successifs : $\{(0,1)\dots$

12	<i>I</i> ₁	signification intuitive	Formule ${\mathcal F}$
F	V	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	$\exists x \ C_2(x,x)$
v	v	il existe d de ${\cal D}$	$\exists x \ P_1(x)$
		avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$	$\wedge \neg C_2(x,x)$
F	F	pour tout d de \mathcal{D} , $d \in I(P_1)$	$\forall x \ P_1(x)$
v	v	$I(a) \in I(P_1)$	$P_1(a)$
	V	$(I(a),I(b))\in I(C_2)$	$C_2(a,b)$
	F	$(I(a),I(c))\in I(C_2)$	$C_2(a,c)$

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- \mathcal{D} = l'ensemble des entiers
- $I(P_1) = l$ 'ensemble des entiers pairs $I: a, b, c \rightarrow 0, 1, 1$
- $I_2(C_2)$ = l'ensemble des couples d'entiers successifs : $\{(0,1)...$

<i>I</i> ₂	<i>I</i> ₁	signification intuitive	Formule ${\mathcal F}$
F	٧	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	$\exists x \ C_2(x,x)$
V	V	il existe d de ${\cal D}$	$\exists x \ P_1(x)$
		avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$	$\wedge \neg C_2(x,x)$
F	F	pour tout d de \mathcal{D} , $d \in I(P_1)$	$\forall x \ P_1(x)$
V	V	$I(a) \in I(P_1)$	$P_1(a)$
V	V	$(I(a),I(b))\in I(C_2)$	$C_2(a,b)$
	F	$(I(a),I(c))\in I(C_2)$	$C_2(a,c)$

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- \mathcal{D} = l'ensemble des entiers
- $I(P_1) = l$ 'ensemble des entiers pairs $I: a, b, c \rightarrow 0, 1, 1$
- $I_2(C_2)$ = l'ensemble des couples d'entiers successifs : $\{(0,1)...$

<i>I</i> ₂	<i>I</i> ₁	signification intuitive	Formule ${\mathcal F}$
F	٧	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	$\exists x \ C_2(x,x)$
V	V	il existe d de ${\cal D}$	$\exists x \ P_1(x)$
		avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$	$\wedge \neg C_2(x,x)$
F	F	pour tout d de \mathcal{D} , $d \in I(P_1)$	$\forall x \ P_1(x)$
V	V	$I(a) \in I(P_1)$	$P_1(a)$
V	V	$(I(a),I(b))\in I(C_2)$	$C_2(a,b)$
	F	$(I(a),I(c))\in I(C_2)$	$C_2(a,c)$

$$\mathcal{L} = (\{a, b, c\}, \{P_1, C_2\})$$

- \mathcal{D} = l'ensemble des entiers
- $I_2(P_1) = l'$ ensemble des entiers pairs $I_2 : a, b, c \rightarrow 0, 1, 1$
- $I_2(C_2)$ = l'ensemble des couples d'entiers successifs : $\{(0,1)...$

<i>I</i> ₂	<i>I</i> ₁	signification intuitive	Formule ${\mathcal F}$
F	٧	il existe d dans $\mathcal D$ avec $(d,d)\in I(\mathcal C_2)$	$\exists x \ C_2(x,x)$
V	V	il existe d de ${\cal D}$	$\exists x \ P_1(x)$
		avec $d \in I(P_1)$ et $(d,d) \notin I(C_2)$	$\wedge \neg C_2(x,x)$
F	F	pour tout d de \mathcal{D} , $d \in I(P_1)$	$\forall x \ P_1(x)$
V	V	$I(a) \in I(P_1)$	$P_1(a)$
V	V	$(I(a),I(b))\in I(C_2)$	$C_2(a,b)$
F	F	$(I(a),I(c))\in I(C_2)$	$C_2(a,c)$