Week 4: Random Variables and Distributions

Part 1: Discrete Random Variables

Random Variables

A **random variable** is a real-valued variable whose value is determined by an underlying random experiment.

Examples:

- Flip two coins, X = number of heads
- Roll a die, X = number shown
- Soccer game, X = number of goals scored

Range of a Random Variable: The set of possible values the random variable can take.

Exercises:

- 1. I toss a coin 100 times. Let \boldsymbol{X} be the number of heads I observe. What's the range?
 - Answer: [0, 100]
- 2. I toss a coin until the first heads appears. Let Y be the total number of coin tosses. What's the range?
 - Answer: $[1, \infty)$

Discrete Random Variables

A random variable X is **discrete** if its range is countable (finite or countably infinite).

Example: $\{0, 1, 2, 3\}, \{1, 2, 3, \ldots\}$

Probability Mass Function (PMF)

Let X be a discrete random variable with range $R_X = \{x_1, x_2, x_3, \ldots\}$

The **PMF** is the function $P(X=x_k)$ for $k=1,2,3,\ldots$

The PMF tells us the probability that X takes each specific value in its range.

Example: I toss a fair coin twice, X = number of heads. Find the range and PMF.

Solution:

- Range: $\{0, 1, 2\}$
- P(X=0) = 1/4 (TT)
- P(X = 1) = 1/2 (HT or TH)
- P(X = 2) = 1/4 (HH)

Properties of PMF:

1.
$$0 \leq P(X=x) \leq 1$$
 for all x

2.
$$\sum P(X=x)=1$$
 (sum over all possible values)

Independence of Random Variables

Two random variables X and Y are **independent** if:

$$P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$$
 for all x, y

This extends to n random variables:

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = P(X_1 = x_1) \cdot P(X_2 = x_2) \cdot \dots \cdot P(X_n = x_n)$$

Example: Two coin flips are independent. Knowing the first flip doesn't change the probability of the second flip.

Special Discrete Distributions

1. Bernoulli Distribution

The simplest random variable: only two possible outcomes.

Definition: $X \sim \mathrm{Bernoulli}(p)$

PMF:

$$P_X(x) = egin{cases} p & ext{for } x=1 \ 1-p & ext{for } x=0 \ 0 & ext{otherwise} \end{cases}$$

where 0

Interpretation:

- X=1 with probability p (success)
- ullet X=0 with probability 1-p (failure)

Examples:

- Single coin flip: X=1 if heads, X=0 if tails, p=1/2
- ullet Pass/fail exam: X=1 if pass, X=0 if fail

2. Geometric Distribution

Question: How many trials until the first success?

Setup: I have a coin with P(H) = p. I toss until I observe the first heads. X = total number of tosses.

Definition: $X \sim \operatorname{Geometric}(p)$

PMF:

$$P_X(k) = egin{cases} p(1-p)^{k-1} & ext{for } k=1,2,3,\dots \ 0 & ext{otherwise} \end{cases}$$

where 0

Intuition: We need (k-1) failures, then one success.

Examples:

- P(X = 1) = p (success on first trial)
- $P(X=2) = (1-p) \cdot p$ (fail once, then succeed)
- $P(X=3) = (1-p)^2 \cdot p$ (fail twice, then succeed)

Think of this as: repeating independent Bernoulli trials until observing the first success.

3. Binomial Distribution

Question: In *n* trials, how many successes?

Setup: I have a coin with P(H)=p. I toss n times. X = total number of heads.

Definition: $X \sim \operatorname{Binomial}(n, p)$

PMF:

$$P_X(k) = egin{cases} inom{n}{k} p^k (1-p)^{n-k} & ext{for } k=0,1,2,\ldots,n \ 0 & ext{otherwise} \end{cases}$$

where
$$\binom{n}{k} = rac{n!}{k!(n-k)!}$$
 and 0

Derivation intuition:

- p^k : probability of k successes
- $(1-p)^{n-k}$: probability of (n-k) failures
- $\binom{n}{k}$: number of ways to arrange k successes in n trials

Important: Binomial = sum of n independent Bernoulli random variables

Examples:

- 10 coin flips, count heads: Binomial (10, 0.5)
- 20 patients, count responses to treatment: Binomial (20,p)

Cumulative Distribution Function (CDF)

The **CDF** of a random variable X is:

$$F_X(x) = P(X \leq x), \quad ext{for all } x \in \mathbb{R}$$

The CDF works for ANY random variable (discrete, continuous, or mixed).

For discrete random variables:

$$F_X(x) = \sum_{x_k \leq x} P_X(x_k)$$

This follows from **mutual exclusivity**: X can only take one value at a time, so we add probabilities.

Example: Toss a coin twice, X = number of heads.

•
$$P(X=0)=1/4$$

•
$$P(X=1)=1/2$$

•
$$P(X=2)=1/4$$

CDF:

•
$$F_X(x) = 0$$
, for $x < 0$

•
$$F_X(x) = 1/4$$
, for $0 \le x < 1$

•
$$F_X(x) = 3/4$$
, for $1 \le x < 2$

•
$$F_X(x)=1$$
, for $x\geq 2$

Properties of CDF:

1. $F_X(x)$ is non-decreasing: if $y \geq x$, then $F_X(y) \geq F_X(x)$

$$2.\lim_{x\to-\infty}F_X(x)=0$$

$$3.\lim_{x o\infty}F_X(x)=1$$

4. For discrete RVs, the CDF has "jumps" at values where P(X=x)>0

Useful property:

$$P(a < X \le b) = F_X(b) - F_X(a)$$

Expectation

The **expected value** (or mean) of X is the long-run average value.

Definition: For discrete X with range $R_X = \{x_1, x_2, x_3, \ldots\}$

$$E[X] = \sum_{x_k \in R_X} x_k \cdot P(X = x_k)$$

Think of this as a weighted average: each value is weighted by its probability.

Examples

Example 1: $X \sim \operatorname{Bernoulli}(p)$. Find E[X].

$$E[X] = 1 \cdot p + 0 \cdot (1-p) = p$$

Example 2: $X \sim \operatorname{Geometric}(p)$. Find E[X].

$$E[X] = \sum_{k=1}^\infty k \cdot p \cdot (1-p)^{k-1}$$

Using geometric series calculus: $E[X] = rac{1}{p}$

Intuition: If p is small (success is rare), we need many trials on average (1/p) is large). If p is large, we need few trials.

Properties of Expectation

1. Linearity of Expectation:

$$E[X_1 + X_2 + \dots + X_n] = E[X_1] + E[X_2] + \dots + E[X_n]$$

This is always true, even if the random variables are dependent!

2. Scaling:

$$E[aX + b] = a \cdot E[X] + b$$

Intuition:

- ullet Scaling X by a scales the mean by a
- Shifting X by b shifts the mean by b

Example 3: $X \sim \operatorname{Binomial}(n,p)$. Find E[X].

Key insight:
$$X = X_1 + X_2 + \cdots + X_n$$
 where each $X_i \sim \operatorname{Bernoulli}(p)$

By linearity:

$$E[X] = E[X_1 + X_2 + \dots + X_n] = E[X_1] + E[X_2] + \dots + E[X_n] = p + p + \dots + p = n \cdot p$$

Variance

The **variance** measures spread or variability around the mean.

Let
$$\mu_X = E[X]$$

Definition:

$$\mathrm{Var}(X) = E[(X - \mu_X)^2]$$

Computational formula (easier to use):

$$\operatorname{Var}(X) = E[X^2] - (E[X])^2$$

Standard deviation: $\mathrm{SD}(X) = \sqrt{\mathrm{Var}(X)}$

Why square the deviations? So positive and negative deviations don't cancel out.

Properties of Variance

1. Scaling:

$$\operatorname{Var}(aX+b)=a^2\cdot\operatorname{Var}(X)$$

Note:

- Adding a constant b doesn't change variance (just shifts the distribution)
- Multiplying by a scales the variance by a^2
- 2. Variance of sums (independent case):

If X_1, X_2, \ldots, X_n are independent:

$$\operatorname{Var}(X_1 + X_2 + \cdots + X_n) = \operatorname{Var}(X_1) + \operatorname{Var}(X_2) + \cdots + \operatorname{Var}(X_n)$$

Warning: This only works for independent random variables!

Examples

Example 1: $X \sim \operatorname{Bernoulli}(p)$. Find $\operatorname{Var}(X)$.

- E[X] = p
- $E[X^2] = 1^2 \cdot p + 0^2 \cdot (1-p) = p$
- $Var(X) = E[X^2] (E[X])^2 = p p^2 = p(1-p)$

Example 2: $X \sim \operatorname{Binomial}(n,p)$. Find $\operatorname{Var}(X)$.

Key insight: $X = X_1 + X_2 + \cdots + X_n$ where each $X_i \sim \operatorname{Bernoulli}(p)$ independently.

By independence:

$$\operatorname{Var}(X) = \operatorname{Var}(X_1) + \operatorname{Var}(X_2) + \dots + \operatorname{Var}(X_n) = p(1-p) + p(1-p) + p(1-p) + \dots + p(1-p) = n \cdot p \cdot (1-p)$$

Part 2: Continuous Random Variables

Key Differences from Discrete

For continuous random variables:

- Range is uncountable (e.g., all real numbers in an interval)
- $\,P(X=x)=0\,{
 m for}\,{
 m any}\,{
 m specific}\,{
 m value}\,x$
- ullet We can only talk about probability of intervals: P(a < X < b)

Why is
$$P(X=x)=0$$
?

Asking for the probability that someone's height is exactly 170 cm (not 169.9999 or 170.0001, but exactly 170.00000...) doesn't make sense. There are infinitely many possible values.

BUT: We can ask: P(169.9 < X < 170.1) — this has a meaningful probability!

Probability Density Function (PDF)

Since PMF doesn't work, we use the **PDF** instead.

The PDF f(x) is the **probability density** at point x.

Key idea: Probability = area under the PDF curve

$$P(a < X < b) = \int_a^b f(x) \, dx$$

Properties of PDF:

- 1. $f(x) \geq 0$ for all x
- 2. $\int_{-\infty}^{\infty} f(x) dx = 1$ (total area under curve is 1)

Important: f(x) can be greater than 1! It's a density, not a probability.

Cumulative Distribution Function (Continuous)

Definition: Same as for discrete!

$$F_X(x) = P(X \le x)$$

But for continuous:

$$F_X(x) = \int_{-\infty}^x f(t) \, dt$$

Relationship between PDF and CDF:

$$f(x)=rac{dF_X(x)}{dx}=F_X'(x)$$

(The PDF is the derivative of the CDF)

Conversely:

$$F_X(x) = \int_{-\infty}^x f(t) \, dt$$

(The CDF is the integral of the PDF)

Key difference from discrete: The CDF is a **continuous function** (no jumps).

Expectation and Variance (Continuous)

Same concepts, different formulas:

Replace summation (\sum) with integration (\int)

Replace PMF with PDF

Expectation:

$$E[X] = \int_{-\infty}^{\infty} x \cdot f(x) \, dx$$

Variance:

$$\operatorname{Var}(X) = \int_{-\infty}^{\infty} (x - \mu_X)^2 \cdot f(x) \, dx = E[X^2] - (E[X])^2$$

Properties: Same as discrete!

- $E[aX+b] = a \cdot E[X] + b$
- $Var(aX + b) = a^2 \cdot Var(X)$

Special Continuous Distributions

1. Uniform Distribution

The simplest continuous distribution: All values equally likely.

Definition: $X \sim \mathrm{Uniform}(a,b)$

PDF:

$$f_X(x) = egin{cases} rac{1}{b-a} & ext{for } a < x < b \ 0 & ext{otherwise} \end{cases}$$

CDF:

$$F_X(x) = egin{cases} 0 & ext{for } x < a \ rac{x-a}{b-a} & ext{for } a \leq x \leq b \ 1 & ext{for } x > b \end{cases}$$

Expected Value:

$$E[X] = rac{a+b}{2}$$

Variance:

$$\mathrm{Var}(X) = rac{(b-a)^2}{12}$$

Intuition: The PDF is constant (flat) over [a, b]. It's a rectangle with height $\frac{1}{b-a}$ and width (b-a), so area = 1. The mean is the midpoint of the interval.

Example: Pick a random number between 0 and $1 \rightarrow \text{Uniform}(0, 1)$

2. Normal Distribution

The most important distribution in statistics!

Why? Many natural phenomena follow normal distributions, and it appears in statistical inference (more on this next week).

Definition: $X \sim N(\mu, \sigma^2)$

PDF:

$$f_X(x) = rac{1}{\sigma\sqrt{2\pi}} \exp\left[-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2
ight], \quad ext{for all } x \in \mathbb{R}$$

where $\mu \in \mathbb{R}$ and $\sigma > 0$

Parameters:

- μ = mean (center of distribution)
- σ^2 = variance (spread of distribution)
- σ = standard deviation

Expected Value:

$$E[X] = \mu$$

Variance:

$$\operatorname{Var}(X) = \sigma^2$$

Sufficient statistics: μ and σ completely determine the shape.

Properties of Normal Distribution

1. Symmetry

- Bell-shaped and symmetric around the mean
- Mean = Median = Mode = μ

2. The tails never touch the x-axis

- Although very unlikely, extreme values are always possible
- "ANYTHING IS POSSIBLE!" (probability is never exactly 0)

3. Standard deviation marks inflection points

• The curve changes from "bending down" to "bending up" at $\mu \pm \sigma$

4. The 68-95-99.7 Rule

- Approximately 68% of data within $\mu \pm 1\sigma$
- Approximately 95% of data within $\mu \pm 2\sigma$
- Approximately 99.7% of data within $\mu \pm 3\sigma$

Standard Normal Distribution

Definition: $Z \sim N(0,1)$

A normal distribution with mean 0 and standard deviation 1.

PDF:

$$f_Z(z) = rac{1}{\sqrt{2\pi}} \exp\left(-rac{z^2}{2}
ight)$$

Why is this special?

Any normal distribution can be converted to the standard normal!

z-scores (Standardization)

Definition: For any value x from $N(\mu,\sigma)$, the z-score is:

$$z = rac{x - \mu}{\sigma}$$

Interpretation: z is the number of standard deviations x is from the mean.

Examples:

- z = 0: x is at the mean
- z = 1: x is 1 standard deviation above the mean
- z = -2: x is 2 standard deviations below the mean

Why use z-scores?

- 1. Compare values from different distributions
- 2. Calculate probabilities using standard normal tables
- 3. Understand how unusual a value is

Example: Test Scores

Test scores: $N(100, 15^2)$

- $\mu = 100$ (mean score)
- $\sigma = 15$ (standard deviation)

Question: A student scores 115. What percentile are they in?

Step 1: Calculate z-score

$$z = \frac{115 - 100}{15} = \frac{15}{15} = 1$$

Step 2: Find the cumulative probability

$$P(Z \le 1) \approx 0.84$$
 (or use R: pnorm(1))

Answer: 84th percentile (better than 84% of students)

The Φ Function (CDF of Standard Normal)

Notation: $\Phi(x) = P(Z \leq x)$ for $Z \sim N(0,1)$

Properties:

- 1. $\lim_{x \to \infty} \Phi(x) = 1$
- 2. $\lim_{x \to -\infty} \Phi(x) = 0$
- 3. $\Phi(0) = 0.5$ (by symmetry)
- 4. $\Phi(-x)=1-\Phi(x)$ (by symmetry)

In practice: Use R functions!

- (pnorm(x)) gives $\Phi(x)$
- (pnorm(x, mean, sd)) for non-standard normal

Key Takeaways

Discrete vs. Continuous

Feature	Discrete	Continuous
Range	Countable	Uncountable (interval)
Probability function	PMF: $P(X=x)$	PDF: $f(x)$
P(X=x)	Can be > 0	Always = 0
Probabilities	Direct from PMF	Area under PDF
Summation vs. Integration	Σ	ſ
CDF has jumps?	Yes	No

Important Distributions

Discrete:

- Bernoulli(p): Single trial
- Geometric (p): Trials until first success
- Binomial(n, p): Number of successes in n trials

Continuous:

- ullet Uniform(a,b): All values equally likely
- Normal (μ, σ^2) : The bell curve

Expectation and Variance

Always true:

- $E[aX+b]=a\cdot E[X]+b$ (linearity)
- $E[X_1+\cdots+X_n]=E[X_1]+\cdots+E[X_n]$ (linearity)
- $Var(aX + b) = a^2 \cdot Var(X)$ (scaling)

Only for independent variables:

•
$$\operatorname{Var}(X_1 + \cdots + X_n) = \operatorname{Var}(X_1) + \cdots + \operatorname{Var}(X_n)$$