To confirm the validity of our rotations, we show below values for the (001) Silicon stiffness tensor – in Voigt matrix representation – rotated to (111) using various methods:

1. Voigt [1]:

լ193.35	57.65	42.5	-8.61	-0.38	ן 0.85
57.65	183.94	51.91	12.84	1.21	-0.98
42.5	51.91	199.09	-4.24	-0.83	0.13
-8.61	12.84	-4.24	67.61	0.13	1.21
-0.38	1.21	-0.83	0.13	58.2	-8.61
L _{0.85}	-0.98	0.13	1.21	-8.61	73.35

2. Reuss [2]:

$$\begin{bmatrix} 191.86 & 58.39 & 43.25 & -8.61 & -0.38 & 0.85 \\ 58.39 & 182.45 & 52.66 & 12.84 & 1.21 & -0.98 \\ 43.25 & 52.66 & 197.6 & -4.24 & -0.83 & 0.13 \\ -8.61 & 12.84 & -4.24 & 66.49 & 0.13 & 1.21 \\ -0.38 & 1.21 & -0.83 & 0.13 & 57.08 & -8.61 \\ 0.85 & -0.98 & 0.13 & 1.21 & -8.61 & 72.23 \end{bmatrix}$$

3. Hill [3] (which in principle is Voight and Reuss methods average):

$$\begin{bmatrix} 192.61 & 58.02 & 42.87 & -8.61 & -0.38 & 0.85 \\ 58.02 & 183.19 & 52.28 & 12.84 & 1.21 & -0.98 \\ 42.87 & 52.28 & 198.34 & -4.24 & -0.83 & 0.13 \\ -8.61 & 12.84 & -4.24 & 67.05 & 0.13 & 1.21 \\ -0.38 & 1.21 & -0.83 & 0.13 & 57.64 & -8.61 \\ 0.85 & -0.98 & 0.13 & 1.21 & -8.61 & 72.79 \end{bmatrix}$$

4. Lekhnitskii [4] and Salvati et al. [5]:

$$\begin{bmatrix} 194.49 & 58.93 & 40.08 & -10.70 & -0.48 & 1.05 \\ 58.93 & 182.78 & 51.80 & 15.97 & 1.50 & -1.21 \\ 40.08 & 51.80 & 201.62 & -5.27 & -1.02 & 0.17 \\ -10.70 & 15.97 & -5.27 & 67.50 & 0.17 & 1.50 \\ -0.48 & 1.50 & -1.02 & 0.165 & 55.78 & -10.70 \\ 1.05 & -1.21 & 0.17 & 1.50 & -10.70 & 74.63 \end{bmatrix}$$

5. Dunne et al. [6] (used in the current paper):

г 194.49	58.92	40.08	3.76	-10.70	-0.48 _]
58.93	182.78	51.80	-6.03	15.97	1.50
40.08	51.80	201.62	2.27	-5.27	-1.02
1.05	-1.21	0.17	84.78	1.50	-10.70
-10.70	15.97	-5.27	67.50	67.50	0.17
$L_{-0.48}$	1.50	-1.02	12.57	0.17	55.78 J

These values are consistent with Ref. [7] within ±4%.

Please note the difference in the shear components definition as here it follows ϵ_{xy} , ϵ_{xz} , and ϵ_{yz} and Ref. [7] uses a different order of ϵ_{yz} , ϵ_{xz} , and ϵ_{xy} instead. We also like to note that Ref. [5] uses Bunge rotation (X Z' X") where Bunger-Euler rotation (Z X' Z") is conventionally used for EBSD [8]. From these comparisons, we do not think a recalculation of the results is warranted, however, this discussion on this is now included to the Section B of the Supplementary Information. The amended text now reads:

"Descriptions and notations for rotation, and T_{σ} , T_{ε} and T matrices are different across literature. The transformation (Q) matrix is used for rotation of the coordinate system, and this differs from the rotation (R) matrix to rotate tensors (counterclockwise) in a fixed coordinate system. Also, the Bunge rotation (X Z' X'') where Bunger-Euler rotation (Z X' Z'') is conventionally used for EBSD [8]. For stiffness rotation, there are differences in the notation for ordering of the shear components [18],[20]. A comparison between rotations in the example of silicon (111), using different methods and notations: Voigt [21], Reuss [22], Hill [23], Lekhnitskii [24] and Salvati $et\ al.$ [25], Dunne $et\ al.$ [18] methods can be found here 1 ."

-

¹ See https://bit.ly/3hrmZlo for code and Silicon (111) dataset for verification.

References

- [1] Voigt W. Lehrbuch der kristallphysik:(mit ausschluss der kristalloptik). vol. 34. BG Teubner; 1910.
- [2] Reuss A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . ZAMM Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik 1929;9:49–58. https://doi.org/https://doi.org/10.1002/zamm.19290090104.
- [3] Hill R. The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society Section A 1952;65:349–54. https://doi.org/10.1088/0370-1298/65/5/307.
- [4] Lekhnitskii SG. General Equations of the Theory of Elasticity of an Anisotropic Body. Theory of Elasticity of an Anisotropic Elastic Body. 1st ed., Moscow: MIR Publishers; 1981, p. 15–73.
- [5] Salvati E, Sui T, Korsunsky AM. Uncertainty quantification of residual stress evaluation by the FIB–DIC ring-core method due to elastic anisotropy effects. International Journal of Solids and Structures 2016;87:61–9. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2016.02.031.
- [6] Dunne FPE, Rugg D, Walker A. Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: Application to cold-dwell fatigue in Ti alloys. International Journal of Plasticity 2007;23:1061–83. https://doi.org/https://doi.org/10.1016/j.ijplas.2006.10.013.
- [7] Hopcroft MA, Nix WD, Kenny TW. What is the Young's Modulus of Silicon? Journal of Microelectromechanical Systems 2010;19:229–38. https://doi.org/10.1109/JMEMS.2009.2039697.
- [8] Britton TB, Jiang J, Guo Y, Vilalta-Clemente A, Wallis D, Hansen LN, et al. Tutorial: Crystal orientations and EBSD Or which way is up? Materials Characterization 2016;117:113–26. https://doi.org/10.1016/j.matchar.2016.04.008.