

UNCLASSIFIED

AD 297 091

*Reproduced
by the*

**ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA**

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

AD 297 091

297 091

Correction to Boeing Document D1-92-0228, "A Fast Procedure for Generating Exponential Random Variables", by M. D. McLaren,
G. Marsaglia, T. A. Bray, dated January 1963:

The array referred to as $D(j)$ in the flow chart,
page 5, is tabulated as A_1 on pages 7 and 8.

N-63-2-5

01-B2-0298

CATALOGUED BY ASTIA
AS AD No. 297 091

BOEING SCIENTIFIC
RESEARCH LABORATORIES

A Fast Procedure for Generating
Exponential Random Variables

297 091

M. D. MacLaren

G. Marsaglia

T. A. Bray

Mathematics Research

January 1963

A FAST PROCEDURE FOR GENERATING EXPONENTIAL
RANDOM VARIABLES

by

M. D. MacLaren, G. Marsaglia, T. A. Bray

Mathematical Note No. 283
Mathematics Research Laboratory
BOEING SCIENTIFIC RESEARCH LABORATORIES

January 1963

1. Introduction

In this paper we present a very fast method for generating exponential random variables in a digital computer. The method is exact, in the sense that in theory it returns a random variable with exactly the exponential distribution. In practice the result is an approximation, but the accuracy of the approximation depends only on the word length of the computer. The method is based on the general techniques described in [1] and [2] and the special method for an exponential distribution given in [3].

When programmed for the IBM 7090 computer, the procedure takes 86 microseconds to generate one exponential random variable and requires 590 storage locations. On the IBM 1620 computer the time to generate one random variable is 10.8 milliseconds and 1600 storage locations are used. This computer has a variable word length, and a ten digit number occupies 10 storage locations. The figures given above are for a program having ten digit accuracy. We might remark that multiplication of two ten digit numbers requires 17.8 milliseconds on this computer.

The times quoted above are for standard FORTRAN function subprograms, and include linkages, setting index registers, returning x in normalized floating point, etc.

2. Outline of the procedure.

The procedures for decimal and binary machines are essentially the same. Only the various constants differ. The constants for both cases are listed in Section 4.

We assume that we have available a sequence u_1, u_2, \dots of independent uniform $[0,1]$ random variables. The problem is to generate an exponential random variable x in terms of the u_i 's.

Let f be the exponential density

$$f(t) = e^{-t}, \quad 0 \leq t.$$

Just as in [2] we write f as a mixture of three densities:

$$f(t) = r_1 g_1(t) + r_2 g_2(t) + r_3 g_3(t).$$

$$r_1 g_1(t) = e^{-(k+1)c} \quad \text{for } 0 \leq kc \leq t < (k+1)c \leq 4.$$

$$r_2 g_2(t) = e^{-t} - e^{-(k+1)c} \quad \text{for } 0 \leq kc \leq t < (k+1)c \leq 4.$$

$$r_3 g_3(t) = e^{-t} \quad \text{for } 4 \leq t.$$

Here k takes only integral values and the constant c is .1 for a decimal machine and .0625 for a binary machine.

Our procedure for generating x is essentially as follows.

Generate a uniform $[0,1]$ random variable u . If $u < r_1$, generate a random variable with density g_1 . If $r_1 \leq u < r_1 + r_2$, generate a random variable with density g_2 . If $r_1 + r_2 \leq u$, generate a random variable with density g_3 .

Examination of the flow chart will reveal, however, that the tests on u do not occur in exactly the above order, and also that they are combined with other tests used to generate the random variables with densities g_1 and g_2 .

A random variable with density g_1 may be generated as $y_1 + cu$, where y_1 is discrete, and u is uniform on $[0,1]$. The discrete random variable y_1 assumes values $0, c, 2c, \dots$. It is generated by the method described in [1].

A random variable with density g_2 is produced as $y_2 + c \min(v_1, v_2, \dots, v_z)$, where y_2 is discrete, taking values $0, c, 2c, \dots$. The v_i are independent uniform $[0,1]$, and z is a discrete random variable with the distribution

$$\text{Prob}(z = k) = c^k / [k!(e^c - 1 - c)]$$

for $k = 2, 3, \dots$

Finally we can generate a random variable with density g_3 as a sum $w + s$, where s has density $(r_1 g_1 + r_2 g_2) / (r_1 + r_2)$, and w is discrete with the distribution:

$$\text{Prob}(w = 4k) = e^{-4k} (e^4 - 1), \quad k = 1, 2, \dots$$

The random variable s is generated by using the procedure to generate the exponential random number x with a slight modification. To be exact we generate an independent uniform $[0,1]$ random variable v and set $u = (r_1 + r_2)v$. The procedure to generate x is re-entered at the first test on u , but now using $u = (r_1 + r_2)v$, which is uniform on $[0, r_1 + r_2]$. This results in the generation of a random variable with density

$$(r_1 g_1 + r_2 g_2)/(r_1 + r_2).$$

3. Flow chart

In this flow chart "generate u " means generate a uniform random variable u . The number r is assumed to have the fractional representation $.d_1 d_2 \dots$, where the representation is in octal if the program is for a binary space machine. With this notation $d_1 d_2$ is an integer, the representation being in octal for a binary machine. The number δ is $1/10$ for a decimal machine and $1/16$ for a binary machine.

4. Constants

For both binary and decimal machines P_k and Q_k are given by the following formulas. The constant c is .1 for a decimal machine and .0625 for a binary machine.

$$(1) \quad P_k = 1 - e^{-4(k+1)} \quad k = 0, 1, \dots$$

$$(2) \quad Q_k = \sum_{j=2}^k c^j / [j!(e^c - 1 - c)] \quad k = 2, 3, \dots$$

The s_i and n_i are

	Decimal	Binary ¹
s_1	.77	$.45_8$
s_2	.916	$.710_8$
s_3	.9314	$.7427_8$
n_1	198	294
n_2	-764	-144
n_3	-9074	-3639

The B_i and C_i are

i	Decimal Machine		Binary Machine	
	B	C	B	C
0	.9361625820	.9314837418	.94510842161	.94323480082
1	.9393519683	.9362156480	.94628827215	.94528539525
2	.9415112727	.9394089343	.94745642249	.94651430670
3	.9430881445	.9415306939	.94826073606	.94757146958
4	.9442217866	.9431777963	.94894248899	.94843821076
5	.9447661013	.9442476710	.94932953931	.94907597231
6	.9490727662	.9448391766	.94958329340	.94951504666
7	.9529852986	.9491545883	.94980003626	.94967253471
8	.9564834733	.9530173032	.94992008223	.94985597045
9	.9594024969	.9565646369	.95190460176	.95014449802
10	.9620288292	.9594610273	.95361457369	.95196110918
11	.9643851689	.9620617256	.95525892439	.95370563829
12	.9663753874	.9644731130	.95686066511	.95548989495
13	.9681837449	.9664624958	.95839152240	.95693234505
14	.9696461638	.9682369242	.95974907174	.95846135215

¹The subscript 8 means the number is given in octal representation.

	Decimal Machine		Binary Machine	
i	B	C	B	C
15	.9709809929	.9697058602	.96109651611	.95996010769
16	.9721477967	.9709940089	.96237258589	.96116288541
17	.9731607906	.9722161491	.96344671642	.96237915952
18	.9740454265	.9731906794	.96447806840	.96359303267
19	.9748756955	.9741022884	.96548445255	.96465303841
20	.9756090315	.9749092238	.96632678306	.96554574172
21	.9762878864	.9756546743	.96710374986	.96637002937
22	.9769411563	.9763682022	.96786063548	.96732383419
23	.9774820467	.9770129516	.96853524877	.96788774279
24	.9779150014	.9774905466	.96920558798	.96873186249
25	.9783264218	.9779423592	.96986129425	.96928987221
26	.9787218719	.9784074281	.97048802417	.96987974853
27	.9790899374	.9787424232	.97106734407	.97064928279
28	.9794260891	.9791686442	.97158600948	.97126042295
29	.9797130875	.9795023095	.97208825475	.97180092567
30	.9799999300	.9797154095	.97258093545	.97218820324
31	.9802789666	.9800882467	.97305557876	.97261055489
32	.9805168326	.9802838868	.97352084773	.97317426279
33	.9807267300	.9805541596	.97397651360	.97360757587
34	.9809269259	.9807990826	.97442652331	.97421630891
35	.9811028125	.9809466642	.97485411795	.97458419727
36	.9812764735	.9811351847	.97525425825	.97503048612
37	.9814292281	.9813135507	.97563794313	.97545242949
38	.9815580886	.9814534192	.97601648897	.97577828494
39	.9816843611	.9815896525	.97638555010	.97607969003
40			.97672015684	.97656636068
41			.97705105599	.97695777390
42			.97735451196	.97727717831
43			.97763681248	.97743933438
44			.97791811497	.97781881678
45			.97819899430	.97816010843
46			.97847642598	.97833194781
47			.97874079516	.97856652131
48			.97899467055	.97894151997
49			.97923892352	.97913322108
50			.97947750310	.97941727563
51			.97971601551	.97958029084
52			.97993661346	.97985429235
53			.98015717312	.98004465340
54			.98036825703	.98024848045
55			.98057295172	.98053642199
56			.98077711684	.98073305340
57			.98094419133	.98078047612
58			.98109613615	.98102348810
59			.98124587954	.98119594925
60			.98139402142	.98130639106
61			.98151460394	.98145802551
62			.98163244058	.98159104690
63			.98168436111	.98163745598

For a decimal machine the A_i are:

i	A_i	i	A_i								
0	0.0	1	.4	2	.8	3	1.1	4	1.5		
5	2.2	6	.1	7	.2	8	.3	9	.5		
10	.6	11	.7	12	.9	13	1.0	14	1.2		
15	1.3	16	1.4	17	1.6	18	1.7	19	1.8		
20	1.9	21	2.0	22	2.1	23	2.3	24	2.4		
25	2.5	26	2.7	27	2.6	28	2.9	29	3.1		
30	2.8	31	3.2	32	3.0	33	3.3	34	3.6		
35	3.4	36	3.5	37	3.7	38	3.8	39	3.9		
40	.2	41	.2	42	.2	43	.3	44	.3		
45	.3	46	.3	47	.3	48	.3	49	.6		
50	.6	51	1.2	52	1.2	53	1.2	54	1.2		
55	1.6	56	1.6	57	1.6	58	1.6	59	1.6		
60	2.3	61	2.3	62	2.3	63	2.3	64	2.3		
65	2.3	66	2.3	67	2.3	68	2.4	69	2.4		
70	2.4	71	2.4	72	2.4	73	2.5	74	2.5		
75	2.7	76	2.7	77	2.7	78	2.7	79	2.7		
80	3.1	81	3.1	82	3.1	83	3.4	84	3.4		
85	3.8	86	.5	87	.5	88	.5	89	.6		
90	.6	91	.6	92	.6	93	.6	94	.6		
95	.7	96	.7	97	.7	98	.9	99	.9		
100	.9	101	.9	102	.9	103	1.0	104	1.0		
105	1.2	106	1.2	107	1.3	108	1.3	109	1.3		
110	1.4	111	1.6	112	1.6	113	1.7	114	1.7		
115	1.7	116	1.7	117	1.7	118	1.8	119	1.8		
120	1.8	121	1.9	122	1.9	123	2.0	124	2.4		
125	2.4	126	2.5	127	2.5	128	2.5	129	2.5		
130	2.6	131	2.6	132	2.6	133	2.6	134	2.6		
135	2.9	136	2.9	137	2.9	138	2.8	139	2.8		
140	2.8	141	2.8	142	3.2	143	3.2	144	3.0		
145	3.0	146	3.0	147	3.3	148	3.3	149	3.6		
150	3.5	151	3.7	152	.7	153	.7	154	.8		
155	.8	156	1.3	157	1.8	158	1.8	159	1.8		
160	1.8	161	1.8	162	1.9	163	1.9	164	2.6		
165	2.6	166	2.9	167	2.9	168	2.9	169	2.9		
170	2.9	171	2.9	172	2.8	173	3.2	174	3.2		
175	3.2	176	3.2	177	3.0	178	3.0	179	3.3		
180	3.6	181	3.6	182	3.6	183	3.5	184	3.5		
185	3.5	186	3.5	187	3.5	188	3.5	189	3.7		
190	3.9	191	3.9	192	3.9	193	3.9	194	3.9		
195	3.9	196	3.9	197	3.9	198	.0	199	.0		
200	.0	201	.0	202	.1	203	.1	204	.1		
205	.1	206	.1	207	.1	208	.1	209	.1		
210	.4	211	.4	212	.4	213	.4	214	.4		
215	.4	216	.5	217	.5	218	.5	219	.5		
220	.5	221	.7	222	.7	223	.7	224	.7		
225	.8	226	.8	227	.8	228	.8	229	.9		
230	.9	231	1.1	232	1.3	233	1.3	234	1.4		
235	1.4	236	1.5	237	1.8	238	1.9	239	2.0		
240	.0	241	.0	242	.0	243	.0	244	.0		
245	.2	246	.2	247	.2	248	.2	249	.2		
250	.2	251	.2	252	.3	253	.3	254	.3		
255	.3	256	.3	257	.3	258	.6	259	.6		
260	.6	261	.6	262	.9	263	1.0	264	1.0		
265	1.0	266	1.1	267	1.1	268	1.2	269	1.2		
270	1.5	271	1.6	272	1.7	273	2.1	274	2.2		

For a binary machine the A_i are:

REFERENCES

- [1] G. Marsaglia, Generating Discrete Random Variables
in a Computer, Comm. Assoc. Comp. Mach., Vol.6, No. 1 (1963).
- [2] G. Marsaglia, M. D. MacLaren, T. A. Bray, A Fast
Procedure for Generating Normal Random Variables,
to be published .
- [3] G. Marsaglia, Generating Exponential Random Variables,
Ann. Math. Stat., Vol. 32, p. 899, (1961)