VERMES MIKLÓS Fizikaverseny

II. forduló: megyei szakasz

2022. március 9.

Vermes Miklós (1905-1990) Kossuth-díjas középiskolai fizika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

XI. osztály

Az ábrákon fizikai fogalmak képrejtvényei láthatók. A megfejtéseket írd az ábrák alatti mezőbe! Az azonos pontszámot elért tanulók esetén számíthat a helyes megfejtés!

É

 \mathbf{E}

É

10. Adott oszcillátornak egy másik oszcillátor hatására történő mozgása.

1. feladat (10p)Írjuk be az üres mezőkbe illő betűket a meghatározásoknak megfelelő fogalom megfejtéséhez! 1. Szabályosan ismétlődő időtartam. Ó S \mathbf{E} 2. A 2π másodpercre jutó teljes rezgések száma. K E R A 3. Tágasság. I U Ó 4. A hullám által egy periódus alatt megtett távolság. 0 S 5. Egymással szembe menő hullámokból kialakult hullámkép. L 6. A hullámok "előhada". $\mathbf{0}$ 7. Hullámelhajlás. F Ó A 8. Együttrezgés, ráhangzás. 0 A Ι 9. Hullámok szuperpozíciója.

 \mathbf{E}

R

2. feladat

a)	Milyen magas a párizsi Pantheon kupolája, ha az onnan lelógó Foucault-inga periódusa $T=16,42s$?	(1p)	
b)	Mekkora szöggel fordul el a Foucault-inga lengési síkja egy teljes lengés alatt?	(3p)	
c)	Mennyit emelkedik a golyó, amikor megáll?	(1p)	
d)	Mekkora a golyó maximális sebessége?	(1p)	
e)	Maximálisan mennyivel növekszik meg a fémhuzalban a feszültség a nyugalmi helyzetben fellér értékéhez képest?	oő (1p)	

A fémszálón függő súly tömege m = 28kg, a lengésamplitúdó A = 3m. (A légellenállástól eltekintünk.)

3. feladat

Egy síkhullámforrás rezgésegyenlete $y = 3 \cdot \sin(12,56 \cdot t)$ (*cm*), a vízben a tranzverzális hullámok, amelyeket kelt v = 6cm/s sebességgel terjednek. Határozzuk meg:

a)	a hullámforrás rezgési periódusát;	(1p)
b)	a rezgési frekvenciáját;	(1p)
c)	a rezgés amplitúdóját;	(1p)
d)	a keltett hullám hullámhosszát;	(1p)
e)	írjuk fel a hullámforrás keltette síkhullámnak az egyenletét.	(2p)
f)	Számítsuk ki a terjedési irány mentén két, egymástól 3 <i>cm</i> -re lévő A és B pont közötti fáziskülönbséget és időkülönbséget!	(1p)
g)	Számítsuk ki a terjedési irány mentén két, egymástól 1,5 <i>cm</i> -re lévő C és D pont közötti fáziskülönbséget és időkülönbséget!	(1p)
h)	Készítsünk rajzokat az f) ponthoz tartozó helyzetekhez!	(2p)

Hivatalból 3 pont.