Data Analytics 101 Course Project: Car Price Predictor

Wisdom Agbeve & Daniel Enesi

2024-11-30

Brief introduction of the project: This project aims to build predictive models for car prices using two datasets: Cars93 and CarPrice_Assignment

Load both cars data

```
cars93 <- read.csv("Cars93.csv")
cars_assign = read.csv("CarPrice_Assignment.csv")</pre>
```

Standard deviations for cars_assign

```
sd(cars_assign$enginesize)

## [1] 41.64269

sd(cars_assign$horsepower)

## [1] 39.54417

sd(cars_assign$curbweight)

## [1] 520.6802
```

[1] 7988.852

sd(cars_assign\$price)

Standard deviations for cars93

```
sd(cars93$EngineSize)
## [1] 1.037363
sd(cars93$Horsepower)
```

[1] 52.37441

```
sd(cars93$Weight)
```

[1] 589.8965

```
knitr::opts_chunk$set(echo = TRUE)
library(ggplot2) # Ensure ggplot2 is loaded
```

Dataset 1 Summary

summary(cars_assign)

```
##
        car_ID
                   symboling
                                      CarName
                                                        fueltype
                       :-2.0000
                                    Length:205
                                                       Length: 205
   Min.
          : 1
                 Min.
   1st Qu.: 52
                 1st Qu.: 0.0000
                                   Class : character
                                                       Class : character
   Median:103
                 Median : 1.0000
                                   Mode :character
                                                       Mode : character
                       : 0.8341
##
  Mean
          :103
                 Mean
   3rd Qu.:154
                  3rd Qu.: 2.0000
##
  Max.
          :205
                 Max. : 3.0000
                                            carbody
##
    aspiration
                       doornumber
                                                              drivewheel
##
   Length:205
                      Length:205
                                         Length:205
                                                            Length: 205
   Class :character
                      Class :character
                                         Class : character
                                                             Class :character
   Mode :character
                      Mode :character
                                         Mode :character
                                                            Mode :character
##
##
##
##
##
   enginelocation
                        wheelbase
                                          carlength
                                                           carwidth
                                              :141.1
##
   Length:205
                            : 86.60
                                                               :60.30
                      Min.
                                       Min.
                                                       Min.
   Class : character
                      1st Qu.: 94.50
                                        1st Qu.:166.3
                                                       1st Qu.:64.10
   Mode :character
##
                      Median : 97.00
                                       Median :173.2
                                                       Median :65.50
##
                       Mean
                             : 98.76
                                       Mean
                                             :174.0
                                                       Mean
                                                               :65.91
                      3rd Qu.:102.40
##
                                        3rd Qu.:183.1
                                                        3rd Qu.:66.90
##
                      Max.
                              :120.90
                                       Max.
                                              :208.1
                                                       Max.
                                                               :72.30
##
                                                      cylindernumber
      carheight
                      curbweight
                                    enginetype
##
   Min.
          :47.80
                   Min.
                          :1488
                                  Length:205
                                                     Length: 205
##
   1st Qu.:52.00
                   1st Qu.:2145
                                  Class :character
                                                     Class : character
   Median :54.10
                   Median:2414
                                  Mode :character
                                                     Mode : character
   Mean
         :53.72
                   Mean
                          :2556
##
##
   3rd Qu.:55.50
                   3rd Qu.:2935
##
   Max.
          :59.80
                   Max.
                          :4066
##
      enginesize
                    fuelsystem
                                         boreratio
                                                          stroke
##
   Min.
         : 61.0
                   Length: 205
                                       Min.
                                             :2.54
                                                     Min.
                                                            :2.070
##
   1st Qu.: 97.0
                   Class : character
                                       1st Qu.:3.15
                                                     1st Qu.:3.110
##
   Median :120.0
                   Mode :character
                                       Median:3.31
                                                     Median :3.290
##
  Mean
         :126.9
                                             :3.33
                                       Mean
                                                     Mean
                                                           :3.255
##
   3rd Qu.:141.0
                                       3rd Qu.:3.58
                                                     3rd Qu.:3.410
                                              :3.94
##
   Max.
          :326.0
                                       Max.
                                                     Max.
                                                            :4.170
   compressionratio
                      horsepower
                                       peakrpm
                                                       citympg
## Min. : 7.00
                    Min. : 48.0
                                     Min. :4150
                                                   Min. :13.00
## 1st Qu.: 8.60
                    1st Qu.: 70.0
                                     1st Qu.:4800
                                                   1st Qu.:19.00
## Median: 9.00
                    Median: 95.0
                                     Median:5200
                                                   Median :24.00
## Mean :10.14
                    Mean :104.1
                                     Mean :5125
                                                   Mean :25.22
   3rd Qu.: 9.40
                                     3rd Qu.:5500
                    3rd Qu.:116.0
                                                   3rd Qu.:30.00
```

```
:288.0
##
   Max.
          :23.00
                    Max.
                                    Max.
                                           :6600
                                                   Max.
                                                         :49.00
                       price
##
     highwaympg
  Min.
          :16.00
                          : 5118
   1st Qu.:25.00
                   1st Qu.: 7788
  Median :30.00
                   Median :10295
##
  Mean
          :30.75
                   Mean
                          :13277
  3rd Qu.:34.00
                   3rd Qu.:16503
## Max.
          :54.00
                   Max.
                          :45400
```

Dataset 2 Summary

summary(cars93)

```
Manufacturer
                                      Model
                                                         Туре
##
         id
## Min.
          : 1
                Length:93
                                   Length:93
                                                     Length:93
   1st Qu.:24
                Class :character
                                   Class :character
                                                     Class : character
## Median :47
                Mode :character
                                   Mode :character
                                                     Mode :character
## Mean
         :47
##
   3rd Qu.:70
##
   Max.
         :93
##
##
     Min.Price
                       Price
                                     Max.Price
                                                    MPG.city
                                                                  MPG.highway
   Min. : 6.70
                                                                        :20.00
##
                   Min. : 7.40
                                   Min. : 7.9
                                                 Min.
                                                       :15.00
                                                                 Min.
   1st Qu.:10.80
                   1st Qu.:12.20
                                   1st Qu.:14.7
                                                 1st Qu.:18.00
                                                                 1st Qu.:26.00
##
  Median :14.70
                  Median :17.70
                                   Median:19.6
                                                 Median :21.00
                                                                 Median :28.00
   Mean :17.13
                  Mean :19.51
                                   Mean :21.9
                                                 Mean
                                                        :22.37
                                                                 Mean
                                                                       :29.09
   3rd Qu.:20.30
                                                 3rd Qu.:25.00
##
                   3rd Qu.:23.30
                                   3rd Qu.:25.3
                                                                 3rd Qu.:31.00
##
   Max.
          :45.40
                 Max.
                         :61.90
                                   Max.
                                         :80.0
                                                 Max.
                                                        :46.00
                                                                 Max.
                                                                        :50.00
##
##
     AirBags
                       DriveTrain
                                         Cylinders
                                                             EngineSize
##
   Length:93
                      Length:93
                                        Length:93
                                                           Min.
                                                                :1.000
                                        Class :character
   Class :character
                      Class : character
                                                           1st Qu.:1.800
                                        Mode :character
   Mode :character
                      Mode :character
                                                           Median :2.400
##
##
                                                           Mean
                                                                  :2.668
##
                                                           3rd Qu.:3.300
##
                                                           Max.
                                                                  :5.700
##
##
                        RPM
                                   Rev.per.mile Man.trans.avail
     Horsepower
   Min. : 55.0
                   Min.
                          :3800
                                 Min.
                                        :1320
                                                Length:93
##
   1st Qu.:103.0
                   1st Qu.:4800
                                 1st Qu.:1985
                                                Class : character
##
   Median :140.0
                   Median:5200
                                 Median:2340
                                                Mode :character
##
   Mean
          :143.8
                   Mean
                          :5281
                                 Mean
                                         :2332
   3rd Qu.:170.0
                   3rd Qu.:5750
                                  3rd Qu.:2565
          :300.0
                          :6500
##
   Max.
                   Max.
                                 Max.
                                         :3755
##
##
   Fuel.tank.capacity Passengers
                                                       Wheelbase
                                         Length
                             :2.000
   Min. : 9.20
                      Min.
                                      Min.
                                            :141.0
                                                     Min. : 90.0
                                                     1st Qu.: 98.0
##
   1st Qu.:14.50
                      1st Qu.:4.000
                                      1st Qu.:174.0
## Median :16.40
                      Median :5.000
                                      Median :183.0
                                                     Median :103.0
## Mean :16.66
                      Mean :5.086
                                      Mean :183.2
                                                     Mean :103.9
## 3rd Qu.:18.80
                      3rd Qu.:6.000
                                      3rd Qu.:192.0
                                                     3rd Qu.:110.0
## Max.
         :27.00
                      Max.
                             :8.000
                                      Max.
                                            :219.0
                                                     Max.
                                                            :119.0
##
```

```
##
        Width
                     Turn.circle
                                     Rear.seat.room
                                                      Luggage.room
                                                                           Weight
                                                            : 6.00
##
    Min.
           :60.00
                    Min.
                            :32.00
                                     Min.
                                            :19.00
                                                                             :1695
                                                     Min.
                                                                      Min.
                    1st Qu.:37.00
    1st Qu.:67.00
                                     1st Qu.:26.00
                                                      1st Qu.:12.00
                                                                      1st Qu.:2620
   Median :69.00
                    Median :39.00
                                     Median :27.50
                                                     Median :14.00
                                                                      Median:3040
##
##
    Mean
          :69.38
                    Mean
                           :38.96
                                     Mean
                                           :27.83
                                                     Mean
                                                             :13.89
                                                                      Mean
                                                                              :3073
##
    3rd Qu.:72.00
                    3rd Qu.:41.00
                                     3rd Qu.:30.00
                                                      3rd Qu.:15.00
                                                                      3rd Qu.:3525
##
    Max.
          :78.00 Max.
                           :45.00
                                     Max.
                                            :36.00
                                                     Max.
                                                            :22.00
                                                                      Max.
                                                                            :4105
##
                                     NA's
                                           :2
                                                      NA's
                                                             :11
##
       Origin
                           Make
##
    Length:93
                       Length:93
    Class :character
                       Class :character
    Mode :character
                       Mode :character
##
##
##
##
##
Scatter
cars93$Passengers
\#\# [1] 5 5 5 6 4 6 6 6 5 6 5 5 5 4 6 7 8 6 2 6 6 6 5 5 6 7 6 4 5 6 4 5 5 4 4 7 5 6
## [39] 4 4 4 4 4 5 5 4 5 5 5 4 6 6 4 5 5 7 2 5 5 4 5 5 5 5 5 7 5 5 5 7 6 4 4 5 4 5
## [77] 6 5 5 4 5 5 4 5 4 5 7 4 7 5 4 5 5
cars93$Cylinders
                           "6"
                                    "6"
                                             "4"
                 "6"
                                                       "4"
                                                                "6"
                                                                          "6"
    [1] "4"
                 "8"
                           "8"
                                    "4"
                                             "4"
                                                       "6"
                                                                "4"
                                                                          "6"
   [9] "6"
##
                           "8"
                                    "6"
                                                                          "4"
## [17]
       "6"
                 "8"
                                             "4"
                                                       "6"
                                                                "4"
## [25] "4"
                 "6"
                           "4"
                                    "6"
                                             "4"
                                                       "6"
                                                                "4"
                                                                          "4"
## [33] "4"
                 "4"
                           "4"
                                    "6"
                                             "6"
                                                       "8"
                                                                "3"
                                                                          "4"
                                                                         "8"
                 "4"
                           "4"
                                    "4"
                                             "4"
                                                       "4"
                                                                "4"
## [41] "4"
                 "6"
                           "6"
                                    "8"
                                             "4"
                                                       "4"
                                                                "4"
                                                                          "6"
## [49] "6"
                                                       "4"
                           "6"
                                    "4"
                                                                "6"
                                                                          "4"
## [57] "rotary"
                 "4"
                                             "6"
                                                       "6"
## [65] "4"
                 "6"
                           "6"
                                    "4"
                                             "4"
                                                                "6"
                                                                          "4"
                 "4"
                           "6"
                                    "6"
                                             "6"
                                                       "4"
                                                                "4"
                                                                          "3"
## [73] "4"
                           "3"
                                    "4"
                                             "4"
                                                       "4"
                                                                "4"
                                                                          "4"
## [81] "4"
                 "4"
                                             "5"
                           "6"
                                    "4"
## [89] "5"
                 "4"
columns93 <- c("MPG.city", "MPG.highway", "EngineSize", "Horsepower", "RPM", "Rev.per.mile", "Fuel.tank
length(columns93)
## [1] 13
ggplot(cars93, aes(x = MPG.city, y = Price)) +
 geom point()
```


cars93[]

##		id	Manufacturer	Model	Туре	Min.Price	Price	Max.Price	MPG.city
##	1	1	Acura	Integra	Small	12.9	15.9	18.8	25
##	2	2	Acura	Legend	${\tt Midsize}$	29.2	33.9	38.7	18
##	3	3	Audi	90	Compact	25.9	29.1	32.3	20
##	4	4	Audi	100	Midsize	30.8	37.7	44.6	19
##	5	5	BMW	535i	Midsize	23.7	30.0	36.2	22
##	6	6	Buick	Century	${\tt Midsize}$	14.2	15.7	17.3	22
##	7	7	Buick	LeSabre	Large	19.9	20.8	21.7	19
##	8	8	Buick	Roadmaster	Large	22.6	23.7	24.9	16
##	9	9	Buick	Riviera	${\tt Midsize}$	26.3	26.3	26.3	19
##	10	10	Cadillac	DeVille	Large	33.0	34.7	36.3	16
##	11	11	Cadillac	Seville	Midsize	37.5	40.1	42.7	16
##	12	12	Chevrolet	Cavalier	Compact	8.5	13.4	18.3	25
##	13	13	Chevrolet	Corsica	Compact	11.4	11.4	11.4	25
##	14	14	Chevrolet	Camaro	Sporty	13.4	15.1	16.8	19
##	15	15	Chevrolet	Lumina	Midsize	13.4	15.9	18.4	21
##	16	16	Chevrolet	Lumina_APV	Van	14.7	16.3	18.0	18
##	17	17	Chevrolet	Astro	Van	14.7	16.6	18.6	15
##	18	18	Chevrolet	Caprice	Large	18.0	18.8	19.6	17
##	19	19	Chevrolet	Corvette	Sporty	34.6	38.0	41.5	17
##	20	20	Chrylser	Concorde	Large	18.4	18.4	18.4	20
##	21	21	Chrysler	LeBaron	Compact	14.5	15.8	17.1	23
##	22	22	Chrysler	Imperial	Large	29.5	29.5	29.5	20
##	23	23	Dodge	Colt	Small	7.9	9.2	10.6	29

	24		Dodge	Shadow	Small	8.4	11.3	14.2	23
	25		Dodge	Spirit	Compact	11.9	13.3	14.7	22
##	26		Dodge	Caravan	Van	13.6	19.0	24.4	17
##	27		Dodge	• •	Midsize	14.8	15.6	16.4	21
##		28	Dodge	Stealth	Sporty	18.5	25.8	33.1	18
##		29	Eagle	Summit	Small	7.9	12.2	16.5	29
	30		Eagle	Vision	Large	17.5	19.3	21.2	20
	31		Ford	Festiva	Small	6.9	7.4	7.9	31
	32		Ford	Escort	Small	8.4	10.1	11.9	23
##	33	33	Ford	Tempo	Compact	10.4	11.3	12.2	22
##	34		Ford	Mustang	Sporty	10.8	15.9	21.0	22
##	35	35	Ford	Probe	Sporty	12.8	14.0	15.2	24
##	36	36	Ford	Aerostar	Van	14.5	19.9	25.3	15
##	37	37	Ford	Taurus	Midsize	15.6	20.2	24.8	21
##	38	38	Ford	Crown_Victoria	Large	20.1	20.9	21.7	18
##	39	39	Geo	Metro	Small	6.7	8.4	10.0	46
##	40	40	Geo	Storm	Sporty	11.5	12.5	13.5	30
##	41	41	Honda	Prelude	Sporty	17.0	19.8	22.7	24
##	42	42	Honda	Civic	Small	8.4	12.1	15.8	42
##	43	43	Honda	Accord	Compact	13.8	17.5	21.2	24
##	44	44	Hyundai	Excel	Small	6.8	8.0	9.2	29
##	45	45	Hyundai	Elantra	Small	9.0	10.0	11.0	22
##	46	46	Hyundai	Scoupe	Sporty	9.1	10.0	11.0	26
##	47	47	Hyundai	Sonata	${\tt Midsize}$	12.4	13.9	15.3	20
##	48	48	Infiniti	Q45	${\tt Midsize}$	45.4	47.9	50.4	17
##	49	49	Lexus	ES300	${\tt Midsize}$	27.5	28.0	28.4	18
##	50	50	Lexus	SC300	${\tt Midsize}$	34.7	35.2	35.6	18
##	51	51	Lincoln	Continental	${\tt Midsize}$	33.3	34.3	35.3	17
##	52	52	Lincoln	Town_Car	Large	34.4	36.1	37.8	18
##	53	53	Mazda	323	Small	7.4	8.3	9.1	29
##	54	54	Mazda	Protege	Small	10.9	11.6	12.3	28
##	55	55	Mazda	626	Compact	14.3	16.5	18.7	26
##	56	56	Mazda	MPV	Van	16.6	19.1	21.7	18
##	57	57	Mazda	RX-7	Sporty	32.5	32.5	32.5	17
##	58	58	Mercedes-Benz	190E	Compact	29.0	31.9	34.9	20
##	59	59	Mercedes-Benz	300E	${\tt Midsize}$	43.8	61.9	80.0	19
##	60	60	Mercury	Capri	Sporty	13.3	14.1	15.0	23
##	61	61	Mercury	Cougar	${\tt Midsize}$	14.9	14.9	14.9	19
##	62	62	Mitsubishi	Mirage	Small	7.7	10.3	12.9	29
##	63	63	Mitsubishi	Diamante	Midsize	22.4	26.1	29.9	18
##	64	64	Nissan	Sentra	Small	8.7	11.8	14.9	29
##	65	65	Nissan	Altima	Compact	13.0	15.7	18.3	24
	66		Nissan	Quest	Van	16.7	19.1	21.5	17
	67		Nissan	Maxima	Midsize	21.0	21.5	22.0	21
	68		Oldsmobile	Achieva	Compact	13.0	13.5	14.0	24
	69		Oldsmobile	Cutlass_Ciera	Midsize	14.2	16.3	18.4	23
	70		Oldsmobile	Silhouette	Van	19.5	19.5	19.5	18
##	71	71	Oldsmobile	Eighty-Eight	Large	19.5	20.7	21.9	19
	72		Plymouth	Laser	Sporty	11.4	14.4	17.4	23
##	73	73	Pontiac	LeMans	Small	8.2	9.0	9.9	31
##	74	74	Pontiac	Sunbird	${\tt Compact}$	9.4	11.1	12.8	23
##	75	75	Pontiac	Firebird	Sporty	14.0	17.7	21.4	19
##	76	76	Pontiac	<pre>Grand_Prix</pre>	${\tt Midsize}$	15.4	18.5	21.6	19
##	77	77	Pontiac	Bonneville	Large	19.4	24.4	29.4	19

	78		Saab		Compact	20.3	28.7	37.1	20
	79		Saturn	SL	Small	9.2	11.1	12.9	28
	80		Subaru	Justy	Small	7.3	8.4	9.5	33
	81		Subaru	Loyale	Small	10.5	10.9	11.3	25
	82		Subaru		Compact	16.3	19.5	22.7	23
	83		Suzuki	Swift	Small	7.3	8.6	10.0	39
	84		Toyota	Tercel	Small	7.8	9.8	11.8	32
	85		Toyota	Celica	Sporty	14.2	18.4	22.6	25
	86		Toyota	•	Midsize	15.2	18.2	21.2	22
	87		Toyota	Previa	Van	18.9	22.7	26.6	18
	88		Volkswagen	Fox	Small	8.7	9.1	9.5	25
	89		Volkswagen	Eurovan	Van	16.6	19.7	22.7	17
	90		Volkswagen	Passat	Compact	17.6	20.0	22.4	21
	91		Volkswagen	Corrado	Sporty	22.9	23.3	23.7	18
##	92	92	Volvo	240	Compact	21.8	22.7	23.5	21
##	93	93	Volvo		Midsize	24.8	26.7	28.5	20
##		MPG.	highway	AirBags I	OriveTrain	•	_	ineSize Horsep	ower
##	_		31	None	Front		4	1.8	140
##	2		25 Driver	& Passenger	Front		6	3.2	200
##	3		26	Driver only	Front		6	2.8	172
##	4		26		Front		6	2.8	172
##	5		30	Driver only	Rear		4	3.5	208
##	6		31	Driver only	Front		4	2.2	110
##	7		28	Driver only	Front		6	3.8	170
##	8		25	Driver only	Rear		6	5.7	180
##	9		27	Driver only	Front		6	3.8	170
##	10		25	Driver only	Front		8	4.9	200
##	11		25 Driver	& Passenger	Front		8	4.6	295
##	12		36	None	Front		4	2.2	110
##	13		34	Driver only	Front		4	2.2	110
##	14		28 Driver	& Passenger	Rear		6	3.4	160
##	15		29	None	Front		4	2.2	110
##	16		23	None	Front		6	3.8	170
##	17		20	None	4WD		6	4.3	165
##	18		26	Driver only	Rear		8	5.0	170
##	19		25	Driver only	Rear		8	5.7	300
##	20		28 Driver	& Passenger	Front		6	3.3	153
##	21		28 Driver	& Passenger	Front		4	3.0	141
##	22		26		Front		6	3.3	147
##	23		33	None	Front		4	1.5	92
##	24		29	Driver only	Front		4	2.2	93
##	25		27	Driver only	Front		4	2.5	100
##	26		21	Driver only	4WD		6	3.0	142
##	27		27	Driver only	Front		4	2.5	100
##	28		24	Driver only	4WD		6	3.0	300
##	29		33	None	Front		4	1.5	92
##	30		28 Driver	& Passenger	Front		6	3.5	214
##	31		33	None	Front		4	1.3	63
##	32		30	None	Front		4	1.8	127
##	33		27	None	Front		4	2.3	96
##	34		29	Driver only	Rear		4	2.3	105
##	35		30	Driver only	Front		4	2.0	115
##	36		20	Driver only	4WD		6	3.0	145
##	37		30	Driver only	Front		6	3.0	140

шш	20	0.0	D	D	0	4 C	100
##		26	Driver only	Rear	8	4.6	190
##		50	None	Front	3	1.0	55
##		36	Driver only	Front	4	1.6	90
##			& Passenger	Front	4	2.3	160
##		46	Driver only	Front	4	1.5	102
##			& Passenger	Front	4	2.2	140
	44	33	None	Front	4	1.5	81
##		29	None	Front	4	1.8	124
##	46	34		Front	4	1.5	92
##	47	27	None	Front	4	2.0	128
##	48	22	Driver only	Rear	8	4.5	278
##	49	24	Driver only	Front	6	3.0	185
##	50	23 Driver	& Passenger	Rear	6	3.0	225
##	51	26 Driver	& Passenger	Front	6	3.8	160
##	52	26		Rear	8	4.6	210
##	53	37	None	Front	4	1.6	82
##	54	36	None	Front	4	1.8	103
##	55	34	Driver only	Front	4	2.5	164
##	56	24	None	4WD	6	3.0	155
##	57	25	Driver only	Rear	rotary	1.3	255
##	58	29	Driver only	Rear	4	2.3	130
##	59	25 Driver	& Passenger	Rear	6	3.2	217
	60	26	Driver only	Front	4	1.6	100
##		26	None	Rear	6	3.8	140
	62	33	None	Front	4	1.5	92
	63	24	Driver only	Front	6	3.0	202
	64	33	Driver only	Front	4	1.6	110
##		30	Driver only	Front	4	2.4	150
##		23	None		6	3.0	151
				Front			
##		26	Driver only	Front	6	3.0	160
##		31	None	Front	4	2.3	155
##		31	Driver only	Front	4	2.2	110
	70	23	None	Front	6	3.8	170
##		28	Driver only	Front	6	3.8	170
	72	30	None	4WD	4	1.8	92
##		41	None	Front	4	1.6	74
	74	31	None	Front	4	2.0	110
##			& Passenger	Rear	6	3.4	160
	76	27	None	Front	6	3.4	200
##	77	28 Driver	& Passenger	Front	6	3.8	170
##	78	26	Driver only	Front	4	2.1	140
##	79	38	Driver only	Front	4	1.9	85
##	80	37	None	4WD	3	1.2	73
##	81	30	None	4WD	4	1.8	90
##	82	30	Driver only	4WD	4	2.2	130
##	83	43	None	Front	3	1.3	70
##	84	37	Driver only	Front	4	1.5	82
##		32	Driver only	Front	4	2.2	135
	86	29	Driver only	Front	4	2.2	130
	87	22	Driver only	4WD	4	2.4	138
	88	33	None	Front	4	1.8	81
	89	21	None	Front	5	2.5	109
	90	30	None	Front	4	2.0	134
	91	25	None	Front	6	2.8	178
π#	01	20	MOTTE	1 1 011 0	U	2.0	110

##	92		28	Driver only	Rear	4	2.3	114
##	93			& Passenger	Front	5	2.4	168
##				Man.trans.avail	Fuel.tank.			
##		6300	2890	Yes		13.2	5	177
##		5500	2335	Yes		18.0	5	195
##		5500	2280	Yes		16.9	5	180
##		5500	2535	Yes		21.1	6	193
##		5700	2545	Yes		21.1	4	186
##		5200	2565	No		16.4	6	189
##		4800	1570	No		18.0	6	200
##		4000	1320	No		23.0	6	216
##		4800	1690	No		18.8	5	198
		4100	1510	No		18.0	6	206
##		6000	1985	No		20.0	5	204
##		5200 5200	2380 2665	Yes		15.2 15.6	5 5	182 184
		4600	1805	Yes Yes		15.5	4	193
		5200	2595	No		16.5	6	193
		4800	1690	No		20.0	7	178
		4000	1790	No		27.0	8	194
		4200	1350	No		23.0	6	214
		5000	1450	Yes		20.0	2	179
		5300	1990	No		18.0	6	203
		5000	2090	No		16.0	6	183
		4800	1785	No		16.0	6	203
		6000	3285	Yes		13.2	5	174
		4800	2595	Yes		14.0	5	172
##	25	4800	2535	Yes		16.0	6	181
##	26	5000	1970	No		20.0	7	175
##	27	4800	2465	No		16.0	6	192
##	28	6000	2120	Yes		19.8	4	180
##	29	6000	2505	Yes		13.2	5	174
		5800	1980	No		18.0	6	202
		5000	3150	Yes		10.0	4	141
		6500	2410	Yes		13.2	5	171
		4200	2805	Yes		15.9	5	177
		4600	2285	Yes		15.4	4	180
		5500	2340	Yes		15.5	4	179
		4800	2080	Yes		21.0	7	176
		4800	1885	No		16.0	5	192
		4200	1415	No		20.0	6	212
		5700 5400	3755 3250	Yes		10.6 12.4	4	151 164
		5800	2855	Yes Yes		15.4	4	175
		5900	2650	Yes		11.9	4	173
		5600	2610	Yes		17.0	4	185
		5500	2710	Yes		11.9	5	168
		6000	2745	Yes		13.7	5	172
		5550	2540	Yes		11.9	4	166
		6000	2335	Yes		17.2	5	184
		6000	1955	No		22.5	5	200
		5200	2325	Yes		18.5	5	188
		6000	2510	Yes		20.6	4	191
##	51	4400	1835	No		18.4	6	205

##	52	4600		1840		No		20.0	6	219
##	53	5000		2370		Yes		13.2	4	164
##	54	5500		2220		Yes		14.5	5	5 172
##	55	5600		2505		Yes		15.5	5	184
##	56	5000		2240		No		19.6	7	190
##	57	6500		2325		Yes		20.0	2	169
##	58	5100		2425		Yes		14.5	5	175
##	59	5500		2220		No		18.5	5	
##		5750		2475		Yes		11.1	4	
##		3800		1730		No		18.0	5	
##		6000		2505		Yes		13.2	5	
##		6000		2210		No		19.0	5	
##		6000		2435		Yes		13.2	5	
##		5600		2130		Yes		15.9	5	
##		4800		2065		No		20.0	7	
##		5200		2045		No		18.5		
##		6000		2380		No		15.2	Ę	
##		5200		2565		No		16.5	5	
##		4800		1690		No		20.0	7	
##		4800		1570		No		18.0	6	
##		5000		2360		Yes		15.9	4	
##		5600		3130		Yes		13.2	4	
##		5200		2665		Yes		15.2	5	
##		4600		1805		Yes		15.2	4	
##		5000		1890		Yes		16.5	- -	
##		4800						18.0	6	
##				1565		No			5	
		6000		2910		Yes		18.0		
##		5000		2145		Yes		12.8	5	
##		5600		2875		Yes		9.2	4	
##		5200		3375		Yes		15.9	5	
##		5600		2330		Yes		15.9	5	
##		6000		3360		Yes		10.6	4	
##		5200		3505		Yes		11.9	5	
##		5400		2405		Yes		15.9	4	
##		5400		2340		Yes		18.5	5	
##		5000		2515		Yes		19.8	7	
		5500		2550		Yes		12.4	4	
		4500		2915		Yes		21.1	7	
##		5800		2685		Yes		18.5	5	
##		5800		2385		Yes		18.5	4	
##		5400		2215		Yes		15.8	5	
	93	6200		2310		Yes		19.3		
##		Wheel				Rear.sea		Luggage.room	_	_
##			102	68	37		26.5	1:		non-USA
##			115	71	38		30.0	15		non-USA
##			102	67	37		28.0	14		non-USA
##			106	70	37		31.0	17		non-USA
##			109	69	39		27.0	13		non-USA
	6		105	69	41		28.0	16		USA
##	7		111	74	42		30.5	17		USA
##			116	78	45		30.5	2:		USA
##			108	73	41		26.5	14		USA
	10		114	73	43		35.0	18		USA
##	11		111	74	44		31.0	14	4 3935	USA

## 12	101	66	38	25.0	13	2490	USA
## 13	103	68	39	26.0	14	2785	USA
## 14	101	74	43	25.0	13	3240	USA
## 15	108	71	40	28.5	16	3195	USA
## 16	110	74	44	30.5	NA	3715	USA
## 17	111	78	42	33.5	NA	4025	USA
## 18	116	77	42	29.5	20	3910	USA
## 19	96	74	43	NA	NA	3380	USA
## 20	113	74	40	31.0	15	3515	USA
## 21	104	68	41	30.5	14	3085	USA
## 22	110	69	44	36.0	17	3570	USA
## 23	98	66	32	26.5	11	2270	USA
## 24	97	67	38	26.5	13	2670	USA
## 25	104	68	39	30.5	14	2970	USA
## 26	112	72	42	26.5	NA	3705	USA
## 27	105	69	42	30.5	16	3080	USA
## 28	97	72	40	20.0	11	3805	USA
## 29	98	66	36	26.5	11	2295	USA
## 30	113	74	40	30.0	15	3490	USA
## 31	90	63	33	26.0	12	1845	USA
## 32	98	67	36	28.0	12	2530	USA
## 33	100	68	39	27.5	13	2690	USA
## 34	101	68	40	24.0	12	2850	USA
## 35	103	70	38	23.0	18	2710	USA
## 36	119	72	45	30.0	NA	3735	USA
## 37	106	71	40	27.5	18	3325	USA
## 38	114	78	43	30.0	21	3950	USA
## 39	93	63	34	27.5	10		non-USA
## 40	97	67	37	24.5	11		non-USA
## 41	100	70	39	23.5	8		non-USA
## 42	103	67	36	28.0	12		non-USA
## 43	107	67	41	28.0	14		non-USA
## 44	94	63	35	26.0	11		non-USA
## 45	98	66	36	28.0	12		non-USA
## 46	94	64	34	23.5	9		non-USA
## 47	104	69	41	31.0	14		non-USA
## 48	113	72	42	29.0	15		non-USA
## 49	103	70	40	27.5	14		non-USA
## 50	106	71	39	25.0	9		non-USA
## 51	109	73	42	30.0	19	3695	USA
## 52	117	77	45	31.5	22	4055	USA
## 53	97	66	34	27.0	16		non-USA
## 54	98	66	36	26.5	13		non-USA
## 55	103	69	40	29.5	14		non-USA
## 56	110	72	39	27.5	NA		non-USA
## 57	96	69	37	NA	NA		non-USA
## 58	105	67	34	26.0	12		non-USA
## 59	110	69	37	27.0	15		non-USA
## 60	95	65	36	19.0	6	2450	USA
## 61	113	73	38	28.0	15	3610	USA
## 62	98	67	36	26.0	11		non-USA
## 63	107	70	43	27.5	14		non-USA
## 64	96	66	33	26.0	12		non-USA
## 65	103	67	40	28.5	14	3050	non-USA

##	66	112 74	41	27.0	NA	4100	non-USA
	67	104 69	41	28.5	14		non-USA
##	68	103 67	39	28.0	14	2910	USA
##	69	105 70	42	28.0	16	2890	USA
	70	110 74	44	30.5	NA	3715	USA
	71	111 74	42	31.5	17	3470	USA
	72	97 67	39	24.5	8	2640	USA
	73	99 66	35	25.5	17	2350	USA
	74	101 66	39	25.0	13	2575	USA
##	75	101 75	43	25.0	13	3240	USA
##	76	108 72	41	28.5	16	3450	USA
##	77	111 74	43	30.5	18	3495	USA
##	78	99 67	37	26.5	14		non-USA
##	79	102 68	40	26.5	12	2495	USA
##	80	90 60	32	23.5	10		non-USA
##	81	97 65	35	27.5	15		non-USA
##	82	102 67	37	27.0	14		non-USA
##	83	93 63	34	27.5	10		non-USA
##	84	94 65	36	24.0	11		non-USA
##	85	99 69	39	23.0	13		non-USA
##	86	103 70	38	28.5	15	3030	non-USA
##	87	113 71	41	35.0	NA	3785	non-USA
##	88	93 63	34	26.0	10	2240	non-USA
##	89	115 72	38	34.0	NA	3960	non-USA
##	90	103 67	35	31.5	14	2985	non-USA
##	91	97 66	36	26.0	15	2810	non-USA
##	92	104 67	37	29.5	14	2985	non-USA
##	93	105 69	38	30.0	15	3245	non-USA
##		Make					
	1	Acura Integra					
	2	Acura Legend					
	3	Audi 90					
	4	Audi 100					
	5	BMW 535i					
	6	Buick Century					
	7	Buick LeSabre					
##		Buick Roadmaster					
##		Buick Riviera					
##	11	Cadillac DeVille Cadillac Seville					
	12	Chevrolet Cavalier					
##		Chevrolet Cavallel					
	14	Chevrolet Camaro					
	15	Chevrolet Lumina					
	16	Chevrolet Lumina_APV					
	17	Chevrolet Astro					
	18	Chevrolet Caprice					
	19	Chevrolet Corvette					
	20	Chrylser Concorde					
	21	Chrysler LeBaron					
	22	Chrysler Imperial					
##		Dodge Colt					
##	24	Dodge Shadow					
##	25	Dodge Spirit					

```
## 26
                  Dodge Caravan
## 27
                  Dodge Dynasty
## 28
                  Dodge Stealth
## 29
                   Eagle Summit
## 30
                   Eagle Vision
## 31
                   Ford Festiva
## 32
                    Ford Escort
## 33
                     Ford Tempo
                   Ford Mustang
##
   34
##
  35
                     Ford Probe
##
   36
                  Ford Aerostar
## 37
                    Ford Taurus
##
   38
           Ford Crown_Victoria
## 39
                      Geo Metro
## 40
                      Geo Storm
## 41
                  Honda Prelude
## 42
                    Honda Civic
## 43
                   Honda Accord
##
  44
                  Hyundai Excel
## 45
               Hyundai Elantra
##
  46
                 Hyundai Scoupe
## 47
                 Hyundai Sonata
## 48
                   Infiniti Q45
## 49
                    Lexus ES300
## 50
                    Lexus SC300
## 51
           Lincoln Continental
## 52
              Lincoln Town_Car
##
   53
                      Mazda 323
## 54
                  Mazda Protege
## 55
                      Mazda 626
## 56
                      Mazda MPV
## 57
                     Mazda RX-7
## 58
            Mercedes-Benz 190E
## 59
            Mercedes-Benz 300E
##
  60
                  Mercury Capri
##
  61
                 Mercury Cougar
## 62
             Mitsubishi Mirage
## 63
           Mitsubishi Diamante
## 64
                  Nissan Sentra
## 65
                  Nissan Altima
##
   66
                   Nissan Quest
## 67
                  Nissan Maxima
            Oldsmobile Achieva
##
   68
      Oldsmobile Cutlass_Ciera
##
   69
  70
         Oldsmobile Silhouette
## 71
       Oldsmobile Eighty-Eight
##
  72
                 Plymouth Laser
## 73
                 Pontiac LeMans
## 74
               Pontiac Sunbird
## 75
              Pontiac Firebird
## 76
            Pontiac Grand_Prix
## 77
            Pontiac Bonneville
                       Saab 900
## 78
## 79
                      Saturn SL
```

```
## 80
                  Subaru Justy
## 81
                 Subaru Loyale
## 82
                 Subaru Legacy
## 83
                  Suzuki Swift
## 84
                 Toyota Tercel
## 85
                 Toyota Celica
## 86
                  Toyota Camry
## 87
                 Toyota Previa
## 88
                Volkswagen Fox
## 89
            Volkswagen Eurovan
## 90
             Volkswagen Passat
## 91
            Volkswagen Corrado
## 92
                     Volvo 240
## 93
                     Volvo 850
for (var in columns93)
  print(var);
  p <- ggplot(cars93, aes_string(x = var, y = "Price")) +</pre>
  geom_point() +
  geom_smooth(method = "lm", se = FALSE);
  print(p);
  correlation <- cor(cars93$Price, cars93[[var]]);</pre>
  print(correlation)
}
## [1] "MPG.city"
## Warning: 'aes_string()' was deprecated in ggplot2 3.0.0.
## i Please use tidy evaluation idioms with 'aes()'.
## i See also 'vignette("ggplot2-in-packages")' for more information.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
## 'geom_smooth()' using formula = 'y ~ x'
```



```
## [1] -0.5945622
```

^{## [1] &}quot;MPG.highway"

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'


```
## [1] -0.5606804
```

^{## [1] &}quot;EngineSize"

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'

^{## [1] 0.5974254} ## [1] "Horsepower"

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'

[1] 0.7882176 ## [1] "RPM"


```
## [1] -0.004954931
## [1] "Rev.per.mile"
```



```
## [1] -0.4263951
## [1] "Fuel.tank.capacity"
```



```
## [1] 0.61948
```

[1] "Length"

- ## [1] 0.5036284
- ## [1] "Wheelbase"
- ## 'geom_smooth()' using formula = 'y ~ x'


```
## [1] 0.5008642
```

^{## [1] &}quot;Width"


```
## [1] 0.4560279
## [1] "Rear.seat.room"

## 'geom_smooth()' using formula = 'y ~ x'

## Warning: Removed 2 rows containing non-finite outside the scale range
## ('stat_smooth()').

## Warning: Removed 2 rows containing missing values or values outside the scale range
## ('geom_point()').
```



```
## [1] NA
## [1] "Luggage.room"

## 'geom_smooth()' using formula = 'y ~ x'

## Warning: Removed 11 rows containing non-finite outside the scale range
## ('stat_smooth()').

## Warning: Removed 11 rows containing missing values or values outside the scale range
## ('geom_point()').
```


[1] NA ## [1] "Weight"

[1] 0.647179

```
columns_assign <- c("wheelbase", "carlength", "carwidth", "carheight", "curbweight", "enginesize", "hor

for (var in columns_assign)
{
    print(var);
    p <- ggplot(cars_assign, aes_string(x = var, y = "price")) +
        geom_point() +
        geom_smooth(method = "lm", se = FALSE);
    print(p);
    correlation <- cor(cars_assign$price, cars_assign[[var]]);
    print(correlation)
}

## [1] "wheelbase"</pre>
```



```
## [1] 0.5778156
```

^{## [1] &}quot;carlength"

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'


```
## [1] 0.68292
```

[1] "carwidth"


```
## [1] 0.7593253
```

[1] "carheight"


```
## [1] 0.1193362
```

^{## [1] &}quot;curbweight"

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'


```
## [1] 0.8353049
```

^{## [1] &}quot;enginesize"


```
## [1] 0.8741448
```

^{## [1] &}quot;horsepower"


```
## [1] 0.8081388
## [1] "peakrpm"
```



```
## [1] -0.08526715
## [1] "citympg"
```



```
## [1] -0.6857513
```

[1] "highwaympg"


```
## [1] -0.6975991
```

[1] "price"

[1] 1

 ${\bf Heatmap\ visualization}$

```
ggplot(cars_assign, aes(x = peakrpm, y = price)) +
  geom_bin2d() +
  labs(x = "Peak RPM", y = "Price", title = "Heatmap of Price vs. Peak RPM")
```

Heatmap of Price vs. Peak RPM

Cars93 linear regression model

```
model93 <- lm(Price ~ MPG.city + EngineSize + Horsepower + Fuel.tank.capacity + Weight, data = cars93)
summary(model93)</pre>
```

```
##
## Call:
## lm(formula = Price ~ MPG.city + EngineSize + Horsepower + Fuel.tank.capacity +
##
      Weight, data = cars93)
##
## Residuals:
##
      Min
               1Q Median
                                3Q
                                       Max
## -15.824 -2.713 -0.456
                             1.444 31.936
##
## Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                           -0.318
                      -3.509880 11.026931
                                                      0.751
## MPG.city
                      -0.078651
                                  0.215438
                                            -0.365
                                                      0.716
## EngineSize
                      -0.797961
                                  1.187025
                                            -0.672
                                                      0.503
## Horsepower
                                            6.754 1.55e-09 ***
                       0.128456
                                  0.019018
## Fuel.tank.capacity 0.040706
                                  0.445052
                                             0.091
                                                      0.927
                       0.002523
                                  0.003136
                                             0.805
                                                      0.423
## Weight
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6.015 on 87 degrees of freedom
```

```
## F-statistic: 30.05 on 5 and 87 DF, p-value: < 2.2e-16
cars_assignment linear regression model
model_assign <- lm(price ~ carwidth + curbweight + enginesize + horsepower + citympg, data = cars_assig
summary(model_assign)
##
## Call:
## lm(formula = price ~ carwidth + curbweight + enginesize + horsepower +
##
       citympg, data = cars_assign)
##
## Residuals:
##
               1Q Median
       Min
                                3Q
## -8184.4 -1715.3
                    -91.6 1339.2 14273.7
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -47388.322 13175.253 -3.597 0.000406 ***
## carwidth
               574.857 225.058 2.554 0.011390 *
## curbweight
                  2.378
                              1.324 1.795 0.074101 .
## enginesize
                  82.921
                             13.342 6.215 2.95e-09 ***
## horsepower
                  52.703
                             13.280 3.968 0.000101 ***
## citympg
                  27.400 70.724 0.387 0.698860
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3432 on 199 degrees of freedom
## Multiple R-squared: 0.8199, Adjusted R-squared: 0.8154
## F-statistic: 181.2 on 5 and 199 DF, p-value: < 2.2e-16
mpgcity+highway horsepower enginesize weight
cars_assign - Correlation between pairs of variables except price
for (var in c("carwidth", "curbweight", "enginesize", "horsepower", "citympg")) {
  for (var1 in c("carwidth", "curbweight", "enginesize", "horsepower", "citympg")) {
    if (var != var1) {
      print(paste("x =", var, ", y =", var1))
      p <- ggplot(cars_assign, aes_string(x = var, y = var1)) +</pre>
        geom_point() +
        geom_smooth(method = "lm", se = FALSE)
      print(p)
      correlation <- cor(cars_assign[[var1]], cars_assign[[var]])</pre>
```

Multiple R-squared: 0.6333, Adjusted R-squared: 0.6122

```
## [1] "x = carwidth , y = curbweight"
```

} } } print(paste("Correlation between", var, "and", var1, ":", correlation))

- ## [1] "Correlation between carwidth and curbweight : 0.867032464679123"
- ## [1] "x = carwidth , y = enginesize"
- ## 'geom_smooth()' using formula = 'y ~ x'

- ## [1] "Correlation between carwidth and enginesize : 0.735433404779637"
- ## [1] "x = carwidth , y = horsepower"
- ## 'geom_smooth()' using formula = 'y ~ x'

- ## [1] "Correlation between carwidth and horsepower : 0.640732075572292"
- ## [1] "x = carwidth , y = citympg"
- ## 'geom_smooth()' using formula = 'y ~ x'

- ## [1] "Correlation between carwidth and citympg : -0.642704340710898"
- ## [1] "x = curbweight , y = carwidth"
- ## 'geom_smooth()' using formula = 'y ~ x'

- ## [1] "Correlation between curbweight and carwidth : 0.867032464679123"
- ## [1] "x = curbweight , y = enginesize"
- ## 'geom_smooth()' using formula = 'y ~ x'

- ## [1] "Correlation between curbweight and enginesize : 0.850594073426277"
- ## [1] "x = curbweight , y = horsepower"
- ## 'geom_smooth()' using formula = 'y ~ x'

- ## [1] "Correlation between curbweight and horsepower : 0.750739251443481"
- ## [1] "x = curbweight , y = citympg"
- ## 'geom_smooth()' using formula = 'y ~ x'

- ## [1] "Correlation between curbweight and citympg : -0.757413784505601"
- ## [1] "x = enginesize , y = carwidth"
- ## 'geom_smooth()' using formula = 'y ~ x'

- ## [1] "Correlation between enginesize and carwidth : 0.735433404779637"
- ## [1] "x = enginesize , y = curbweight"
- ## 'geom_smooth()' using formula = 'y ~ x'


```
\#\# [1] "Correlation between enginesize and curbweight : 0.850594073426277"
```

^{## [1] &}quot;x = enginesize , y = horsepower"

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'


```
\#\# [1] "Correlation between enginesize and horsepower : 0.80976865453773"
```

^{## [1] &}quot;x = enginesize , y = citympg"

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'


```
## [1] "Correlation between enginesize and citympg : -0.65365791631142" ## [1] "x = horsepower , y = carwidth"
```

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'

- ## [1] "Correlation between horsepower and carwidth : 0.640732075572292"
- ## [1] "x = horsepower , y = curbweight"
- ## 'geom_smooth()' using formula = 'y ~ x'


```
## [1] "Correlation between horsepower and curbweight : 0.750739251443481"
```

^{## [1] &}quot;x = horsepower , y = enginesize"

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'


```
\#\# [1] "Correlation between horsepower and enginesize : 0.80976865453773"
```

^{## [1] &}quot;x = horsepower , y = citympg"

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'


```
\#\# [1] "Correlation between horsepower and citympg : -0.80145617566627"
```

[1] "x = citympg , y = carwidth"

- ## [1] "Correlation between citympg and carwidth : -0.642704340710898"
- ## [1] "x = citympg , y = curbweight"
- ## 'geom_smooth()' using formula = 'y ~ x'


```
\#\# [1] "Correlation between citympg and curbweight : -0.757413784505601"
```

[1] "x = citympg , y = enginesize"


```
## [1] "Correlation between citympg and enginesize : -0.65365791631142" ## [1] "x = citympg , y = horsepower"
```

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'

[1] "Correlation between citympg and horsepower : -0.80145617566627"

cars93 - Correlation between pairs of variables except price

```
for (var in c("MPG.city", "EngineSize", "Horsepower", "Fuel.tank.capacity", "Weight")) {
   for (var1 in c("MPG.city", "EngineSize", "Horsepower", "Fuel.tank.capacity", "Weight")) {
     if (var != var1) {
        print(paste("x =", var, ", y =", var1))

        p <- ggplot(cars93, aes_string(x = var, y = var1)) +
            geom_point() +
            geom_smooth(method = "lm", se = FALSE)
        print(p)

        correlation <- cor(cars93[[var1]], cars93[[var]])
        print(paste("Correlation between", var, "and", var1, ":", correlation))
    }
}</pre>
```

```
## [1] "x = MPG.city , y = EngineSize"
## 'geom_smooth()' using formula = 'y ~ x'
```



```
## [1] "Correlation between MPG.city and EngineSize : -0.710003161620369" ## [1] "x = MPG.city , y = Horsepower"
```

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'


```
## [1] "Correlation between MPG.city and Horsepower : -0.672636150795724" ## [1] "x = MPG.city , y = Fuel.tank.capacity"
```



```
## [1] "Correlation between MPG.city and Fuel.tank.capacity : -0.813144416992242" ## [1] "x = MPG.city , y = Weight"
```



```
## [1] "Correlation between MPG.city and Weight : -0.84313854799682" ## [1] "x = EngineSize , y = MPG.city"
```



```
## [1] "Correlation between EngineSize and MPG.city : -0.710003161620369" ## [1] "x = EngineSize , y = Horsepower"
```

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'


```
## [1] "Correlation between EngineSize and Horsepower : 0.732119730417387" ## [1] "x = EngineSize , y = Fuel.tank.capacity"
```

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'


```
## [1] "Correlation between EngineSize and Fuel.tank.capacity : 0.759306224903401" ## [1] "x = EngineSize , y = Weight"
```

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'


```
## [1] "Correlation between EngineSize and Weight : 0.845075335037262" ## [1] "x = Horsepower , y = MPG.city"
```

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'


```
\#\# [1] "Correlation between Horsepower and MPG.city : -0.672636150795724"
```

^{## [1] &}quot;x = Horsepower , y = EngineSize"

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'


```
## [1] "Correlation between Horsepower and EngineSize : 0.732119730417387" ## [1] "x = Horsepower , y = Fuel.tank.capacity"
```

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'


```
## [1] "Correlation between Horsepower and Fuel.tank.capacity : 0.711790317259719" ## [1] "x = Horsepower , y = Weight"
```

^{.... [1] 11 110120}po...o1 , j010110

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'

^{## [1] &}quot;x = Fuel.tank.capacity , y = MPG.city"

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'


```
## [1] "Correlation between Fuel.tank.capacity and MPG.city : -0.813144416992242" ## [1] "x = Fuel.tank.capacity , y = EngineSize"
```

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'


```
## [1] "Correlation between Fuel.tank.capacity and EngineSize : 0.759306224903401" ## [1] "x = Fuel.tank.capacity , y = Horsepower"
```

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'


```
## [1] "Correlation between Fuel.tank.capacity and Horsepower : 0.711790317259719" ## [1] "x = Fuel.tank.capacity , y = Weight"
```

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'


```
## [1] "Correlation between Fuel.tank.capacity and Weight : 0.894018054491314" ## [1] "x = Weight , y = MPG.city"
```

'geom_smooth()' using formula = 'y ~ x'


```
## [1] "Correlation between Weight and MPG.city : -0.84313854799682" ## [1] "x = Weight , y = EngineSize"
```

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'


```
## [1] "Correlation between Weight and EngineSize : 0.845075335037262" ## [1] "x = Weight , y = Horsepower"
```

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'


```
## [1] "Correlation between Weight and Horsepower : 0.738797515540372" ## [1] "x = Weight , y = Fuel.tank.capacity"
```

^{## &#}x27;geom_smooth()' using formula = 'y ~ x'

[1] "Correlation between Weight and Fuel.tank.capacity: 0.894018054491314"

Linear regression model using common columns: mpgcity+highway, horsepower, enginesize, weight

```
model_assign2 <- lm(price ~ citympg + highwaympg + curbweight + enginesize + horsepower, data = cars_as
summary(model_assign2)
```

```
##
## Call:
## lm(formula = price ~ citympg + highwaympg + curbweight + enginesize +
##
       horsepower, data = cars_assign)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -8942.7 -1685.5
                    -35.5 1322.6 13679.1
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -15803.388 4053.921 -3.898 0.000132 ***
                  -40.841
                           177.895 -0.230 0.818657
## citympg
## highwaympg
                   75.944
                             167.738
                                       0.453 0.651218
                   4.654
                                       4.226 3.63e-05 ***
## curbweight
                               1.101
## enginesize
                   83.295
                              13.586
                                       6.131 4.61e-09 ***
                                       3.675 0.000305 ***
## horsepower
                   51.005
                              13.878
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3486 on 199 degrees of freedom
## Multiple R-squared: 0.8142, Adjusted R-squared: 0.8095
## F-statistic: 174.4 on 5 and 199 DF, p-value: < 2.2e-16
summary(model_assign2)
##
## Call:
## lm(formula = price ~ citympg + highwaympg + curbweight + enginesize +
##
      horsepower, data = cars_assign)
##
## Residuals:
      Min
               1Q Median
                               3Q
## -8942.7 -1685.5
                   -35.5 1322.6 13679.1
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -15803.388  4053.921  -3.898 0.000132 ***
                 -40.841
                         177.895 -0.230 0.818657
## citympg
## highwaympg
                  75.944
                            167.738
                                     0.453 0.651218
## curbweight
                  4.654
                            1.101
                                     4.226 3.63e-05 ***
                             13.586 6.131 4.61e-09 ***
## enginesize
                  83.295
## horsepower
                  51.005
                             13.878 3.675 0.000305 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3486 on 199 degrees of freedom
## Multiple R-squared: 0.8142, Adjusted R-squared: 0.8095
## F-statistic: 174.4 on 5 and 199 DF, p-value: < 2.2e-16
The main model
model_assign3 <- lm(price ~ curbweight + enginesize + horsepower, data = cars_assign)
summary(model_assign3)
##
## lm(formula = price ~ curbweight + enginesize + horsepower, data = cars_assign)
##
## Residuals:
##
     {	t Min}
          1Q Median
                           3Q
                                 Max
## -9003 -1701 -24 1340 13760
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.346e+04 1.333e+03 -10.100 < 2e-16 ***
## curbweight
              4.263e+00 9.065e-01 4.702 4.78e-06 ***
## enginesize
              8.488e+01 1.276e+01 6.651 2.69e-10 ***
## horsepower
              4.875e+01 1.070e+01
                                     4.557 8.99e-06 ***
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3473 on 201 degrees of freedom
## Multiple R-squared: 0.8138, Adjusted R-squared: 0.811
## F-statistic: 292.9 on 3 and 201 DF, p-value: < 2.2e-16
model_assign_all <- lm(price ~ wheelbase + carlength + carwidth + carheight + curbweight + enginesize +
summary(model_assign_all)
##
## Call:
## lm(formula = price ~ wheelbase + carlength + carwidth + carheight +
      curbweight + enginesize + horsepower + peakrpm + citympg +
##
      highwaympg, data = cars_assign)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
## -8806.6 -1643.9 -146.4 1355.1 13900.7
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.787e+04 1.486e+04 -4.566 8.82e-06 ***
## wheelbase 4.487e+01 1.046e+02 0.429 0.66844
             -8.311e+01 5.812e+01 -1.430 0.15433
## carlength
             6.069e+02 2.567e+02 2.365 0.01904 *
## carwidth
## carheight 2.369e+02 1.413e+02
                                     1.677 0.09524 .
## curbweight 3.916e+00 1.670e+00
                                     2.345 0.02004 *
                                    7.142 1.80e-11 ***
## enginesize 1.009e+02 1.413e+01
## horsepower 3.305e+01 1.658e+01 1.994 0.04756 *
## peakrpm
              2.020e+00 6.713e-01 3.008 0.00297 **
## citympg
              -1.202e+02 1.813e+02 -0.663 0.50822
## highwaympg 1.585e+02 1.672e+02 0.948 0.34449
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 3364 on 194 degrees of freedom
## Multiple R-squared: 0.8314, Adjusted R-squared: 0.8227
## F-statistic: 95.68 on 10 and 194 DF, p-value: < 2.2e-16
any(is.na(cars93))
## [1] TRUE
custom_model <- lm(price ~ enginesize, data = cars_assign)</pre>
summary(custom_model)
##
## Call:
## lm(formula = price ~ enginesize, data = cars_assign)
## Residuals:
```

```
##
        Min
                 1Q
                       Median
## -10664.2 -2225.0 -482.4 1588.0 14271.5
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8005.446 873.221 -9.168
                                              <2e-16 ***
                            6.539 25.645 <2e-16 ***
## enginesize
                 167.698
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3889 on 203 degrees of freedom
## Multiple R-squared: 0.7641, Adjusted R-squared: 0.763
## F-statistic: 657.6 on 1 and 203 DF, p-value: < 2.2e-16
Data Cleaning: Clean Cars93.csv, use it to validate model.
price_prediction_assign <- model_assign3</pre>
Get the columns needed to validate from cars 93, three needed columns
cars93_clean <- cars93[, c("Weight", "EngineSize", "Horsepower")]</pre>
Convert EngineSize to cubic centiliters
cars93_clean$EngineSize <- cars93_clean$EngineSize * 100</pre>
Change the column names to reflect that of cars_assign
colnames(cars93_clean) <- c("curbweight", "enginesize", "horsepower")</pre>
Check for null rows
anyNA(cars93_clean)
## [1] FALSE
Check cars 93 for NA. Should be True
anyNA(cars93)
## [1] TRUE
Predict for first row
first_row = cars93_clean[1, ]
predicted_price <- predict(price_prediction_assign, first_row)</pre>
print(predicted_price)
## 20169.36
```

Predict for all in cars93

```
predicted_prices_assign <- predict(price_prediction_assign, cars93_clean)</pre>
print(predicted_prices_assign[1:10])
##
## 20169.36 38621.83 33073.15 33201.02 41899.20 22848.08 41868.56 61189.88
## 41975.12 53307.12
Calculate Error of cars assign prediction model, comparing the cars93$Max.Price
# First multiply cars 93 prices by 1000
cars93_prices = cars93$Max.Price * 1000
mse_assign = mean((cars93_prices - predicted_prices_assign)^2)
rmse_assign = sqrt(mse_assign)
mae_assign = mean(abs(cars93_prices - predicted_prices_assign))
print(paste("Mean Squared Error =", mse_assign
            , ", Root Mean Squared Error =", rmse_assign
            , ", Mean Absolute Error =", mae_assign))
## [1] "Mean Squared Error = 165852816.56787 , Root Mean Squared Error = 12878.385635159 , Mean Absolut
Values seem large: Check differences.
abs(cars93_prices - predicted_prices_assign)[1:10]
##
                          2
                                                               5
                                                                            6
             1
  1369.36297
                  78.17167
                              773.14781 11398.97564
                                                     5699.19943 5548.07689
##
##
## 20168.55870 36289.88123 15675.12248 17007.11853
# Some differences are really low... but some are pretty high :(
Get percentage of standard errors and predicted prices assign
mean_predicted_price <- mean(predicted_prices_assign)</pre>
print(mean_predicted_price)
## [1] 29289.53
print(rmse_assign / mean_predicted_price)
## [1] 0.4396924
print(mae_assign / mean_predicted_price)
## [1] 0.3236962
```

Make a model with cars 93 using the same variables

```
cars93_1000 = read.csv("Cars93.csv")
cars93_1000$Max.Price = cars93_1000$Max.Price * 1000
price_model93 <- lm(Max.Price ~ Weight + EngineSize + Horsepower, data = cars93_1000)
summary(price_model93)
##
## Call:
## lm(formula = Max.Price ~ Weight + EngineSize + Horsepower, data = cars93_1000)
##
## Residuals:
##
      Min
              1Q Median
                            ЗQ
                                  Max
##
  -14421
          -3471
                   -514
                          1658
                                46325
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8032.427
                           4868.375
                                     -1.650
                                               0.1025
## Weight
                   4.529
                              2.577
                                      1.758
                                               0.0822 .
## EngineSize
                                     -1.323
               -1917.945
                           1449.811
                                               0.1893
## Horsepower
                 146.908
                             22.781
                                       6.449 5.69e-09 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 7360 on 89 degrees of freedom
## Multiple R-squared: 0.5694, Adjusted R-squared: 0.5548
## F-statistic: 39.22 on 3 and 89 DF, p-value: 3.017e-16
Test the model on cars assign
# Get necessary columns
cars assign clean = cars assign[, c("curbweight", "enginesize", "horsepower")]
# Rename columns to fit model
colnames(cars_assign_clean) <- c("Weight", "EngineSize", "Horsepower")</pre>
predicted_prices93 = predict(price_model93, cars_assign_clean)
predicted_prices93[1:10]
##
                     2
                               3
## -229517.6 -229517.6 -264149.8 -191518.6 -239187.5 -241357.9 -239831.5 -239333.2
```

Turns out that cars 93 model is really bad. We can manage cars_assign model.

##

9

-224738.4 -221949.7

10

Conclusion and Insights: The project successfully demonstrated the process of predicting car prices using linear regression model on two distinct datasets. By exploring various predictors, such as engine size, horsepower, and weight, we identified key factors influencing car prices. The analysis revealed: Strong predictors: Variables like horsepower and curb weight consistently showed a significant impact on car prices across both datasets. Model performance: Both models achieved reasonable accuracy, with R-squared values indicating a good fit. However, there is room for improvement in capturing price variability. Dataset differences: The comparison between the Cars93 and CarPrice_Assignment datasets highlighted differences in market segments and vehicle specifications. These findings provide valuable insights into how

car features affect pricing, which could benefit both consumers and manufacturers. Future work could explore more advanced models or incorporate additional data to improve predictive power and better account for market dynamics.