Clasificación de Nudos III

Escuela FICO-González Acuña de nudos y 3 variedades

Luis Celso Chan Palomo Universidad Autónoma de Yucatán

December 13, 2017

Tabla de clasificación

Repaso: 3-coloraciones

Definición

Un diagrama D de un nudo K se denomina 3-coloreable si cada arco (entre un cruce por abajo y el siguiente) de D puede ser pintado usando alguno de los colores Azul, Rojo y Verde tal que se cumpla lo siguiente:

- al menos se usan dos colores, y
- en cada cruce llega un mismo color o exactamente los 3 colores.

Ejemplo

Invariante de nudos

Teorema

Si un diagrama de un nudo K es 3-coloreable entonces todos los diagramas de K son 3-coloreables.

Definición

Un nudo se denomina 3-coloreable si tiene al menos un diagrama 3-coloreable.

Ejemplo

El nudo trivial no es 3-coloreable:

Las siguientes curvas están anudadas:

Problema

Las siguientes nudos son 3-coloreables y por tanto no es posible distinguirlos:

Los siguientes nudos no son 3-coloreables y por tanto no es posible distinguirlos:

Tricoloraciones

Problema

Es posible distinguir los siguientes nudos con las 3-coloraciones:

Tricoloraciones

Problema

Es posible distinguir los siguientes nudos con las 3-coloraciones:

Definición

Un diagrama D de un nudo K se denomina tricoloreable si cada arco de D puede ser pintado usando alguno de los colores Azul, Rojo y Verde tal que en cada cruce llega un mismo color o exactamente los 3 colores. Se denotará por Tri(D) al número de diferentes tricoloraciones de D. Las tricoloraciones que usan un único color se denominan tricoloraciones triviales.

Invariante

Ejemplo

El Tri(D) para cada uno de los siguientes nudos:

es

Invariante

Ejemplo

El Tri(D) para cada uno de los siguientes nudos:

es 9,3 y 27, respectivamente.

Teorema

Tri(K) es un invariante de nudos (o enlaces), es decir, todos los diagramas D de un nudo son tales que tienen el mismo Tri(D).

Lema (Propiedades)

Sea K un nudo (o enlace) entonces se cumple que:

- ► Tri(K) es una potencia de 3.
- $ightharpoonup Tri(K_1) Tri(K_2) = 3 Tri(K_1 + K_2).$

Lema (Propiedades)

Sea K un nudo (o enlace) entonces se cumple que:

- Tri(K) es una potencia de 3.
- $Tri(K_1)Tri(K_2) = 3Tri(K_1 + K_2).$

Proof.

1) Identifique los colores A, R y V con $0,1,2\in\mathbb{Z}_3$, respec. Sea D un diagrama de K y considere

$$f: \{3\text{-coloraciones de }D\} \to \mathbb{Z}_3^r$$

donde r es el número de arcos de D.

Lema (Propiedades)

Sea K un nudo (o enlace) entonces se cumple que:

- Tri(K) es una potencia de 3.
- $ightharpoonup Tri(K_1) Tri(K_2) = 3 Tri(K_1 + K_2).$

Proof.

1) Identifique los colores A, R y V con $0,1,2\in\mathbb{Z}_3$, respec. Sea D un diagrama de K y considere

$$f: \{3\text{-coloraciones de } D\} \to \mathbb{Z}_3^r$$

donde r es el número de arcos de D.

2) Suponer que $K_1 + K_2$ tiene una 3-coloración

Infinidad de Nudos

Nota Existe una infinidad de nudos distintos.

Lema

Sean L_+, L_-, L_0 y L_∞ los 4 diagramas de enlaces ilustrados en la figura. Entonces entre los 4 números $Tri(L_+)$, $Tri(L_-)$, $Tri(L_0)$ y $Tri(L_\infty)$ 3 son iguales entre ellos y el cuarto es igual a los otros 3 o es 3 veces más grande, es decir, $Tri(L_+)/Tri(L_-) \in \{1,3,1/3\}$.

Ejemplo

Congruencias

Definición

Sean a y b en \mathbb{Z} y sea $m \ge 1$ fijo. Se dice que a es congruente a b módulo m, denotado por $a \equiv b \mod m$, si se cumple que m divide a - b.

Ejemplo

- 1. $15 \equiv 3 \mod 6$, pues 6 divide 15-3=12,
- 2. $29 \equiv 14 \mod 5$

Congruencias

Definición

Sean a y b en \mathbb{Z} y sea $m \ge 1$ fijo. Se dice que a es congruente a b módulo m, denotado por $a \equiv b \mod m$, si se cumple que m divide a - b.

Ejemplo

- 1. $15 \equiv 3 \mod 6$, pues 6 divide 15-3=12,
- 2. $29 \equiv 14 \mod 5$

Nota

Definición

Un diagrama D de un nudo K se denomina 3-coloreable si cada arco (entre un cruce por abajo y el siguiente) de D puede ser pintado usando los colores Azul, Rojo y Verde tal que se cumpla:

- al menos se usan dos colores, y
- en cada cruce llega un mismo color o los 3 colores.

Definición

Un diagrama D de un nudo K se denomina 3-coloreable si cada arco de D puede ser identificado con alguno de los números 0, 1, 2 tal que:

- ▶ al menos se usan dos números, y
- ▶ en cada cruce se cumple que $x + y + z \equiv 0 \mod 3$ donde x, y, z denotan los número asignados a los arcos.

Definición

Un diagrama D de un nudo K se denomina 3-coloreable si cada arco (entre un cruce por abajo y el siguiente) de D puede ser pintado usando los colores Azul, Rojo y Verde tal que se cumpla:

- al menos se usan dos colores, y
- en cada cruce llega un mismo color o los 3 colores.

Definición

Un diagrama D de un nudo K se denomina 3-coloreable si cada arco de D puede ser identificado con alguno de los números 0, 1, 2 tal que:

- ▶ al menos se usan dos números, y
- ▶ en cada cruce se cumple que $x + y + z \equiv 0 \mod 3$ donde x, y, z denotan los número asignados a los arcos.

Pregunta

Cúal sería una generalización para p arbitrario en lugar de p = 3?

p-coloraciones

Definición

Un diagrama D de un nudo K se denomina p-coloreable si cada arco de D puede ser identificado con alguno de los números $0,1,2,\ldots,p-1$ tal que:

- al menos se usan dos números, y
- ▶ en cada cruce se cumple que $2x \equiv y + z \mod p$ donde y, z denotan los número asignados a los arcos por abajo $y \times e$ número del arco por arriba.

Diagrama con una 5-coloración:

Invariante de nudos

Teorema

Si un diagrama de un nudo K es p-coloreable entonces todos los diagramas de K son p-coloreables.

Definición

Un nudo se denomina p-coloreable si tiene al menos un diagrama p-coloreable.

Nota

El nudo trivial no es p-coloreable:

Nudo 5-coloreable y por tanto anudado:

Los siguientes nudos primos de 6-cruces son 3-coloreables, 11-coloreable y 13-coloreable, respectivamente y por tanto es posible distinguirlos:

Los siguientes nudos primos son 5-coloreables, y por tanto no es posible distinguirlos:

Ejemplo

Encontrar todos los p para los cuales el nudo $K=4_1$ es p-coloreable:

$$2x = w + z$$
$$2w = x + y$$

Ejemplo

Encontrar todos los p para los cuales el nudo $K=4_1$ es p-coloreable:

$$\left[\begin{array}{ccccc}
1 & 1 & 0 & -2 \\
0 & 1 & -2 & 1 \\
1 & -2 & 1 & 0 \\
-2 & 0 & 1 & 1
\end{array}\right] \rightarrow$$

$$2x = w + z$$
$$2w = x + y$$

Ejemplo

Encontrar todos los p para los cuales el nudo $K=4_1$ es p-coloreable:

$$2x = w + z$$
$$2w = x + y$$

$$\begin{bmatrix} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 1 & -2 & 1 & 0 \\ -2 & 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & -3 & 1 & 2 \\ 0 & 2 & 1 & -3 \end{bmatrix} \rightarrow$$

Ejemplo

Encontrar todos los p para los cuales el nudo $K=4_1$ es p-coloreable:

$$2x = w + z$$
$$2w = x + y$$

$$\begin{bmatrix} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 1 & -2 & 1 & 0 \\ -2 & 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & -3 & 1 & 2 \\ 0 & 2 & 1 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & -5 & 5 \\ 0 & 0 & 5 & -5 \end{bmatrix}$$

$$\rightarrow \left[\begin{array}{cccc} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & -5 & 5 \\ 0 & 0 & 5 & -5 \end{array}\right] \xrightarrow{E_{43}(1)} \left[\begin{array}{cccc} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & -5 & 5 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

Nota

Podemos suponer w = 0 pues x = y = z = w = 1 es solución del sistema]

$$\rightarrow \left[\begin{array}{cccc} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & -5 & 5 \\ 0 & 0 & 5 & -5 \end{array}\right] \xrightarrow{E_{43}(1)} \left[\begin{array}{cccc} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & -5 & 5 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

Nota

Podemos suponer w = 0 pues x = y = z = w = 1 es solución del sistema]

$$\rightarrow \left[\begin{array}{cccc} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & -5 & 5 \end{array}\right] \rightarrow$$

$$\rightarrow \left[\begin{array}{cccc} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & -5 & 5 \\ 0 & 0 & 5 & -5 \end{array}\right] \xrightarrow{E_{43}(1)} \left[\begin{array}{cccc} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & -5 & 5 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

Nota

Podemos suponer w = 0 pues x = y = z = w = 1 es solución del sistema]

$$\rightarrow \left[\begin{array}{cccc} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & -5 & 5 \end{array} \right] \rightarrow \left[\begin{array}{cccc} 1 & 1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & -5 \end{array} \right] = A$$

Si p es primo entonces \mathbb{Z}_p es campo. Luego existen dos casos:

$$\rightarrow \left[\begin{array}{cccc} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & -5 & 5 \\ 0 & 0 & 5 & -5 \end{array}\right] \xrightarrow{E_{43}(1)} \left[\begin{array}{cccc} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & -5 & 5 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

Nota

Podemos suponer w = 0 pues x = y = z = w = 1 es solución del sistema]

$$\rightarrow \left[\begin{array}{cccc} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & -5 & 5 \end{array} \right] \rightarrow \left[\begin{array}{cccc} 1 & 1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & -5 \end{array} \right] = A$$

Si p es primo entonces \mathbb{Z}_p es campo. Luego existen dos casos: Caso 1: (5,p)=1. Implica A invertible y x=y=z=w=0.

$$\rightarrow \left[\begin{array}{cccc} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & -5 & 5 \\ 0 & 0 & 5 & -5 \end{array}\right] \xrightarrow{E_{43}(1)} \left[\begin{array}{cccc} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & -5 & 5 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

Nota

Podemos suponer w = 0 pues x = y = z = w = 1 es solución del sistema]

$$\rightarrow \left[\begin{array}{cccc} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & -5 & 5 \end{array} \right] \rightarrow \left[\begin{array}{cccc} 1 & 1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & -5 \end{array} \right] = A$$

Si p es primo entonces \mathbb{Z}_p es campo. Luego existen dos casos:

Caso 1: (5, p) = 1. Implica A invertible y x = y = z = w = 0.

Caso 2: (5, p) = 5. Implica p = 5.

Contando p-coloraciones

Ejercicio

- 1. Contar el número de 5-coloraciones del nudo $K = 4_1$.
- 2. Calcular la dimensión del espacio nulo de la matriz $A \in Mat_{3\times 3}(\mathbb{Z}_5)$.
- 3. Relacionar el número de 5-coloraciones con la dimensión del espacio nulo de la matriz $A \in Mat_{3\times 3}(\mathbb{Z}_5)$.

Contando p-coloraciones

Ejercicio

- 1. Contar el número de 5-coloraciones del nudo $K = 4_1$.
- 2. Calcular la dimensión del espacio nulo de la matriz $A \in Mat_{3\times 3}(\mathbb{Z}_5)$.
- 3. Relacionar el número de 5-coloraciones con la dimensión del espacio nulo de la matriz $A \in Mat_{3\times 3}(\mathbb{Z}_5)$.

Ejercicio (Generalización)

Sea D el diagrama de un nudo con n arcos y suponga que es p-coloreable. Entonces existe $B \in Mat_{n \times n}(\mathbb{Z}_p)$. Al borrar una fila y una columna de B se obtiene una matriz $A \in Mat_{n-1 \times n-1}(\mathbb{Z}_p)$. Si m = dim Ker A demostrar que el número de p-coloraciones es

$$p(p^{m}-1).$$

Observación

Si todas las etiquetas de los arcos de un nudo que es *p*-coloreable son multiplicadas por una constante *q* entonces el diagrama es *pq*-coloreable: porqué?

Figure: 5-coloración

2 8

Figure: 10-coloración

Por lo tanto basta estudiar *p* primos.

Más de un primo

Ejercicio

Demostrar que los nudos 4_1 , 7_1 y 8_{16} son distintos. [Hint: 8_{16} es 5-coloreable y 7-coloreable]

Ejemplo

El nudo $K = 10_{124}$ no es p-coloreable.

Polinomio de Jones

Definición

Sean K un nudo (o enlace) orientado y D un diagrama regular de K. El polinomio de Jones de K, $V_K(t)$, se define por los siguientes axiomas:

- ▶ Si K es trivial entonces $V_K(t) = 1$.
- ▶ Sean D_+ , D_- y D_0 los siguientes diagramas. Entonces:

$$t^{-1}V_{D_{+}}(t) - tV_{D_{-}}(t) = (t^{1/2} - t^{-1/2})V_{D_{0}}(t).$$

Nota

El pol. de Jones distingue a todos los nudos primos de 8 cruces.

Treboles distintos

Teorema

Si K^m es el nudo espejo de K entonces $V_{K^m}(t) = V_K(t^{-1})$.

Ejemplo

Nudos no alternantes

Definición

Un nudo se denomina no-alternante si no es alternante, es decir, si no tiene ningún diagrama alternante.

Problema

Cómo demostrar que los nudos anteriores: 8₁₉, 8₂₀ y 8₂₁ no son alternantes?

Ancho del polinomio de Jones

Definición

Se define el ancho del polinomio de Jones de un nudo K como la diferencia entre la potencia más grande y la más chica que ocurre en el polinomio: $B(V_K(t)) = M(V_K(t)) - m(V_K(t))$.

Ejemplo

Si
$$V_K(t) = -t^{-5} + t^{-4} - t^{-3} + 2t^{-2} - t^{-1} + 2 - t$$
 entonces $B(V_k(t)) = 1 - (-5) = 6$.

Nota

Los nudos 8_{19} , 8_{20} y 8_{21} son tales que $B(V_K(t)) < 8$. (www.indiana.edu/knotinfo/)

Diagramas reducidos

Definición

Un diagrama se denomina reducido si no posee cruces de la siguiente manera:

Ejemplo

Reducido

No Reducido

Teorema

Sea D un diagrama de n cruces de un nudo orientado con polinomio de Jones $V_K(t)$. Entonces:

- ▶ $B(V_K(t)) \leq n$,
- ▶ Si D es alternante y reducido entonces $B(V_K(t)) = n$.

Teorema

Sea D un diagrama de n cruces de un nudo orientado con polinomio de Jones $V_K(t)$. Entonces:

- ▶ $B(V_K(t)) \leq n$,
- ▶ Si D es alternante y reducido entonces $B(V_K(t)) = n$.

Corolario (Kauffman, Murasugi, Thistlewaite-1986)

Si un nudo tiene un diagrama alternante reducido de n cruces entonces no tiene un diagrama con menos de n cruces.

Nota

Los nudos 8₁₉, 8₂₀ y 8₂₁ son no alternantes.

Ejercicios

- 1. Demostrar que si un nudo (o enlace) K es 3-coloreable entonces su reflejado K^m también es 3-coloreable.
- 2. Demostrar que si un nudo (o enlace) K es p-coloreable entonces su reflejado K^m también es p-coloreable.
- 3. Demostrar que los nudos 4₁, 7₁ y 8₁₆ son distintos. [Hint: 8₁₆ es 5-coloreable y 7-coloreable]
- 4. Sea D el diagrama de un nudo con n arcos y suponga que es p-coloreable. Entonces existe B ∈ Mat_{n×n}(ℤ_p). Al borrar una fila y una columna de B se obtiene una matriz A ∈ Mat_{n-1×n-1}(ℤ_p). Si m = dim Ker A demostrar que el número de p-coloraciones es

$$p(p^{m}-1).$$