Ch06 T2 Mouvement d'un système

E. Machefer

10 janvier 2024

Introduction

- Faire le Flash test p 214
- Regarder la vidéo Flânerie infinitésimales (Voyage au pays des maths)

Vecteur vitesse

Définition 1.

Dans un référentiel, un point M est caractérisé à l'instant t_i par :

- sa position : $M_i(x_i; y_i; z_i)$ sa vitesse : $\vec{v_i} = \frac{\overrightarrow{M_i M_{i+1}}}{\Delta t}$ avec $\Delta t = t_{i+1} t_i$ et $\overrightarrow{M_i M_{i+1}}$ le vecteur entre les points M_i et M_{i+1}

Pour Δt suffisamment petit ¹ le vecteur vitesse est **tangent** à la trajectoire.

Exercice 1.

3 p 224

Variation du vecteur vitesse

Le vecteur variation de vitesse $\Delta \vec{v}$ est défini par

$$\Delta \vec{v} = \vec{v}_j - \vec{v}_i$$

avec \vec{v}_k (k = i ou j) vecteur vitesse du système à l'instant t_k .

Exercice 2.

4 p 234

Remarque 1.

- Pour des valeurs de Δt importantes, le calcul de la vitesse donne de meilleurs résultats avec les points M_{i-1} et M_{i+1} .
- Pour un intervalle de temps infinitésimal dt, le vecteur variation de vitesse correspond au vecteur accélération

^{1.} infinitésimal $\Delta t \rightarrow 0 = dt$

3.1 Résultante d'une force

Définition 3.

La **résultante des forces** correspond à la somme des forces qui s'appliquent à un système :

$$\vec{F}_{tot} = \sum \vec{F}_i$$

Pour construire graphiquement la résultante, on additionne les vecteurs force qui s'appliquent au système.

3.2 Expresion approchée de la seconde loi de Newton

Le principe d'inertie stipule que lorsque la résultante des forces qui s'applique au système est nulle ², le système poursuit dans son mouvement rectiligne uniforme.

Dans le cas général, ce principe d'inertie devient la seconde loi de Newton.

Définition 4.

Dans un référentiel \mathbf{R} galliléen, si un système de mase m est soumis à une résultante des forces non nulle, alors la résultante et la variation de vitesse sont reliés par :

$$\vec{F}_{tot} = m \frac{\Delta \vec{v}}{\Delta t}$$

Remarque 2.

Les deux vecteurs \vec{F}_{tot} et $\Delta \vec{v}$ sont colinéaire et ont le même sens.

Remarque 3.

Plus la masse d'un système est grande, plus il est difficile de modifier le vecteur vitesse \vec{v} , c'est **l'inertie** du système.

Exercice 3.

17, 16, 22 et 25 p 227-231

^{2.} dans un référentiel