UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: MAT3400/4400 — Linear analysis with applications

Day of examination: Thursday, June 14, 2018

Examination hours: 14.30 – 18.30

This problem set consists of 6 pages.

Appendices: None.

Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

With solutions!

Problem 1 (weight 15 points)

Let $(\Omega, \mathcal{A}, \mu)$ be a measure space. For each integer $k \in \mathbb{Z}$, let $A_k \in \mathcal{A}$ and assume that $A_k \cap A_l = \emptyset$ whenever $k \neq l$. Set $A := \bigcup_{k \in \mathbb{Z}} A_k \in \mathcal{A}$.

Assume $f: \Omega \to \mathbb{C}$ is A-measurable and integrable over A with respect to μ .

1a (weight 5 points)

Explain why f is integrable over A_k with respect to μ for each $k \in \mathbb{Z}$.

Solution: The assumption implies that $\int |f| \chi_A d\mu < \infty$. For each $k \in \mathbb{Z}$ we have $A_k \subset A$, so $|f| \chi_{A_k} \leq |f| \chi_A$, and we get

$$\int |f| \chi_{A_k} d\mu \le \int |f| \chi_A d\mu < \infty,$$

thus showing that f is integrable over A_k with respect to μ .

1b (weight 10 points)

Show that

$$\int_A f \, d\mu \, = \, \lim_{n \to \infty} \sum_{k=-n}^n \int_{A_k} f \, d\mu \, .$$

Solution: For each $n \in \mathbb{N}$, set $f_n = \sum_{k=-n}^n f \chi_{A_k}$ and $g = |f|\chi_A$. Then all f_n 's, and also g, are \mathcal{A} -measurable. Moreover, since A is the disjoint union of the A_k 's, we have that $\sum_{k=-n}^n \chi_{A_k} \leq \chi_A$ and $|f_n| \leq g$ for all $n \in \mathbb{N}$, and also that $\lim_{n\to\infty} f_n = f\chi_A$ (pointwise). As g is μ -integrable (from the

assumption), Lebesgue's Dominated Convergence Theorem gives that each f_n is μ -integrable, and

$$\int_A f \, d\mu = \int f \chi_A \, d\mu = \lim_{n \to \infty} \int f_n \, d\mu = \lim_{n \to \infty} \sum_{k=-n}^n \int f \chi_{A_k} \, d\mu.$$

Problem 2 (weight 40 points)

Let \mathcal{M} denote the σ -algebra of all Lebesgue measurable subsets of \mathbb{R} and let λ denote the Lebesgue measure on $(\mathbb{R}, \mathcal{M})$. For any $E \subset \mathbb{R}$ and $a \in \mathbb{R}$, set

$$E - a := \left\{ x - a \mid x \in E \right\}.$$

We recall that for all $E \in \mathcal{M}$ and $a \in \mathbb{R}$, we have $E - a \in \mathcal{M}$ and $\lambda(E - a) = \lambda(E)$.

2a (weight 15 points)

Let $a \in \mathbb{R}$ and $E \in \mathcal{M}$. Show that if $f : \mathbb{R} \to [0, \infty)$ is \mathcal{M} -measurable, then

$$\int_{E} f(x) d\lambda(x) = \int_{E-a} f(x+a) d\lambda(x).$$

Hint: Check this first when $f = \chi_A$ for some $A \in \mathcal{M}$.

Solution: If $f = \chi_A$ for some $A \in \mathcal{A}$, we get

$$\int_{E} f(x) d\lambda(x) = \int \chi_{E \cap A} d\lambda = \lambda(E \cap A), \text{ while}$$

$$\int_{E-a} f(x+a) d\lambda(x) = \int_{E-a} \chi_{A-a} d\lambda = \lambda((E-a) \cap (A-a))$$

$$= \lambda((E \cap A) - a) = \lambda(E \cap A),$$

which shows that the desired inequality holds in this case. By linearity of the integral, we get that it also holds for all elements in the set \mathcal{S} of all nonnegative \mathcal{A} -measurable simple functions on Ω .

Now, if $f: \mathbb{R} \to [0, \infty)$ is \mathcal{M} -measurable, we can pick a nondecreasing sequence $\{g_n\}_{n\in\mathbb{N}}$ in \mathcal{S} such that $g_n \to f$ pointwise as $n \to \infty$. We may then apply the Monoton Convergence Theorem, first to the sequence $\{g_n\chi_E\}_{n\in\mathbb{N}}$, then also to the sequence $\{h_n\chi_{E-a}\}_{n\in\mathbb{N}}$, where $h_n(x) := g_n(x+a)$, to get that

$$\int_{E} f(x) d\lambda(x) = \int f\chi_{E} d\mu = \lim_{n \to \infty} \int g_{n}\chi_{E} d\mu = \lim_{n \to \infty} \int_{E} g_{n} d\mu$$

$$= \lim_{n \to \infty} \int_{E-a} g_{n}(x+a) d\lambda(x) = \lim_{n \to \infty} \int h_{n}(x)\chi_{E-a}(x) d\lambda(x)$$

$$= \int f(x+a)\chi_{E-a}(x) d\lambda(x) = \int_{E-a} f(x+a) d\lambda(x)$$

as desired.

Next, we recall that a function $g: \mathbb{R} \to \mathbb{C}$ is called *periodic* if there exists some a > 0 such that g(x + a) = g(x) for all $x \in \mathbb{R}$.

(Continued on page 3.)

2b (weight 10 points)

Assume $g: \mathbb{R} \to \mathbb{C}$ is \mathcal{M} -measurable and periodic.

Prove that g is Lebesgue integrable if and only if g = 0 λ -a-e.

Solution: Let a>0 denote a period for g and assume g is Lebesgue integrable, i.e.,

$$M:=\int_{\mathbb{R}}\,|g|\,d\lambda<\infty\,.$$

For each $k \in \mathbb{Z}$, set $A_k := [ka, (k+1)a)$. Then each A_k is Lebesgue measurable, the A_k 's are pairwise disjoint and $\mathbb{R} = \bigcup_{k \in \mathbb{Z}} A_k$. Moreover, using 2a and that g(x+a) = g(x) for all $x \in \mathbb{R}$, we get that

$$\int_{A_k} |g| \, d\lambda = \int_{A_k - a} |g(x + a)| \, d\lambda(x) = \int_{A_{k-1}} |g| \, d\lambda$$

for every $k \in \mathbb{Z}$. This implies that

$$\int_{A_k} |g| \, d\lambda = \int_{A_0} |g| \, d\lambda = \int_{[0,a)} |g| \, d\lambda$$

for every $k \in \mathbb{Z}$. Applying now 1b, we get that

$$M = \int_{\mathbb{R}} |g| \, d\lambda = \lim_{n \to \infty} \sum_{k=-n}^{n} \int_{A_k} |g| \, d\mu = \lim_{n \to \infty} (2n+1) \int_{[0,a)} |g| \, d\lambda.$$

Since $M < \infty$, this is only possible when $\int_{[0,a)} |g| d\lambda = 0$, in which case we get that M = 0. This implies that |g| = 0 λ -a.e., i.e. g = 0 λ -a.e. The converse implication is trivial.

2c (weight 15 points)

Let $h: \mathbb{R} \to \mathbb{R}$ be given by

$$h(x) = \frac{2 + \sin(x)}{\sqrt{x^2 + 1}}$$
 for all $x \in \mathbb{R}$.

Determine for which $p \in [1, \infty)$ we have that $h \in \mathcal{L}^p(\mathbb{R}, \mathcal{M}, \lambda)$.

Solution: Assume $1 . Clearly, if <math>x \neq 0$, then $|h(x)| \leq 3|x|^{-1}$. Thus we get

$$\int_{\mathbb{R}} |h|^p d\lambda \le 3^p \int_{(-\infty,-1]} \frac{1}{|x|^p} d\lambda(x) + \int_{[-1,1]} |h|^p d\lambda + 3^p \int_{[1,\infty)} \frac{1}{|x|^p} d\lambda(x).$$

Since $\int_{[-1,1]} |h|^p d\lambda = \int_{-1}^1 |h(x)|^p dx < \infty$ (as $|h|^p$ is continuous),

$$\int_{(-\infty,-1]} \frac{1}{|x|^p} d\lambda(x) = \lim_{n \to \infty} \int_{-n}^{-1} \frac{1}{(-x)^p} dx = \lim_{n \to \infty} \int_{1}^{n} \frac{1}{x^p} dx = \frac{1}{p-1},$$

(Continued on page 4.)

and, similarly, $\int_{[1,\infty)} |x|^{-p} d\lambda(x) = 1/(p-1)$, we get that $\int_{\mathbb{R}} |h|^p d\lambda < \infty$. Hence, $h \in \mathcal{L}^p(\mathbb{R}, \mathcal{M}, \lambda)$ in this case.

On the other hand, we have $2 + \sin(x) \ge 1$ for all x and $\sqrt{x^2 + 1} \le \sqrt{2}x$ when $x \ge 1$. Thus $h(x) \ge (\sqrt{2}x)^{-1}$ when $x \ge 1$, so

$$\int_{\mathbb{R}} |h| d\lambda \ge \int_{[1,\infty)} |h| d\lambda \ge \frac{1}{\sqrt{2}} \int_{[1,\infty)} \frac{1}{x} d\lambda(x)$$
$$= \frac{1}{\sqrt{2}} \lim_{n \to \infty} \int_{1}^{n} \frac{1}{x} dx = \frac{1}{\sqrt{2}} \lim_{n \to \infty} \ln(n) = \infty.$$

Hence, $h \notin \mathcal{L}^1(\mathbb{R}, \mathcal{M}, \lambda)$.

Problem 3 (weight 10 points)

Let \mathbb{F} denote \mathbb{R} or \mathbb{C} , and let X be a normed space over \mathbb{F} . Let $\varphi \in \mathcal{B}(X,\mathbb{F})$ and assume that $\varphi \neq 0$.

Show that there exists some $y \in X \setminus \{0\}$ such that

$$X = \ker(\varphi) \oplus N$$
,

where $N := \operatorname{Span}\{y\}$.

Solution: Since $\varphi \neq 0$, there exists $y \in X \setminus \{0\}$ such that $\varphi(y) \neq 0$. Let $x \in X$. Then, by linearity of φ , we have

$$\varphi\left(x - \frac{\varphi(x)}{\varphi(y)}y\right) = \varphi(x) - \frac{\varphi(x)}{\varphi(y)}\varphi(y) = 0.$$

Thus, $m:=x-\frac{\varphi(x)}{\varphi(y)}y\in \ker(\varphi),\ z:=\frac{\varphi(x)}{\varphi(y)}y\in \operatorname{Span}\{y\},\ \text{and}\ x=m+z.$ Hence,

$$X = \ker(\varphi) + \operatorname{Span}\{y\}.$$

Moreover, if $v \in \ker(\varphi) \cap \operatorname{Span}\{y\}$, then we have $\varphi(v) = 0$ and $v = \lambda y$ for some $\lambda \in \mathbb{F}$, and this gives that $\lambda \varphi(y) = \varphi(\lambda y) = \varphi(v) = 0$, hence $\lambda = 0$ (since $\varphi(y) \neq 0$), so v = 0. Thus,

$$\ker(\varphi) \cap \operatorname{Span}\{y\} = \{0\}.$$

This shows that X is the algebraic direct sum of $\ker(\varphi)$ and $N := \operatorname{Span}\{y\}$. As $\ker(\varphi)$ is closed (since φ is continuous, by assumption) and N is closed too (being finite-dimensional), we get that $X = \ker(\varphi) \oplus N$, as desired.

Problem 4 (weight 25 points)

Let H be an infinite-dimensional Hilbert space (over \mathbb{R} or \mathbb{C}) having a countable orthonormal basis $\mathcal{B} = \{u_n \mid n \in \mathbb{N}\}.$

4a (weight 5 points)

Let $T \in \mathcal{B}(H)$. Justify that for every $k \in \mathbb{N}$ we have

$$\langle T(u_k), T(u_k) \rangle = \sum_{n=1}^{\infty} |\langle T(u_k), u_n \rangle|^2.$$

Solution: Let $k \in \mathbb{N}$. Parseval's identity says that for any $x \in H$ we have

$$\langle x, x \rangle = ||x||^2 = \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2.$$

Applying this with $x = T(u_k)$ gives the assertion.

4b (weight 10 points)

Let $P \in \mathcal{B}(H)$ be a self-adjoint projection (i.e., we have $P^* = P = P^2$).

Assume that $\langle P(u_k), u_k \rangle \in \{0, 1\}$ for some $k \in \mathbb{N}$.

Show that $\langle P(u_k), u_n \rangle = 0$ for all $n \in \mathbb{N}$ such that $n \neq k$.

Solution: We first note that the assumptions give that

$$\langle P(u_k), P(u_k) \rangle = \langle (P^*P)(u_k), u_k \rangle = \langle P(u_k), u_k \rangle \in \{0, 1\}.$$

We can now apply 4a (with T = P):

If $\langle P(u_k), P(u_k) \rangle = 0$, then we get that $\sum_{n=1}^{\infty} |\langle P(u_k), u_n \rangle|^2 = 0$, so $\langle P(u_k), u_n \rangle = 0$ for all n.

On the other hand, if $\langle P(u_k), P(u_k) \rangle = 1$, then we also have that $\langle P(u_k), u_k \rangle = 1$, so get that

$$1 = 1 + \sum_{n \in \mathbb{N}, n \neq k} \left| \left\langle P(u_k), u_n \right\rangle \right|^2,$$

so $\langle P(u_k), u_n \rangle = 0$ for all $n \neq k$.

4c (weight 10 points)

Let $P \in \mathcal{B}(H)$ be a self-adjoint projection and let $D_P \in \mathcal{B}(H)$ denote the diagonal operator w.r.t. \mathcal{B} which satisfies that

$$D_P(u_n) = \langle P(u_n), u_n \rangle u_n \text{ for all } n \in \mathbb{N}.$$

Show that if D_P is a projection, then we have $P = D_P$.

(Continued on page 6.)

Solution: Assume that D_P is a projection, i.e., we have $(D_P)^2 = D_P$, and set $\lambda_k := \langle P(u_k), u_k \rangle \in \mathbb{F}$ for each $k \in \mathbb{N}$. Then we have that

$$\lambda_k u_k = D_P(u_k) = D_P(D_P(u_k)) = D_P(\lambda_k u_k) = \lambda_k D_P(u_k) = \lambda_k^2 u_k$$

hence that $\lambda_k = \lambda_k^2$ for all $k \in \mathbb{N}$. This implies that

$$\langle P(u_k), u_k \rangle = \lambda_k \in \{0, 1\}$$

for every $k \in \mathbb{N}$. Hence, using 4b, we deduce that $\langle P(u_k), u_n \rangle = 0$ for all $k, n \in \mathbb{N}$ such that $n \neq k$. Since \mathcal{B} is an orthonormal basis, we get that

$$P(u_k) = \sum_{n=1}^{\infty} \langle P(u_k), u_n \rangle u_n = \langle P(u_k), u_k \rangle u_k = D_P(u_k)$$

for every $k \in \mathbb{N}$. Since a bounded operator is determined by its values on an orthonormal basis, we can conclude that $P = D_P$, as desired.

Problem 5 (weight 10 points)

Let H be an infinite-dimensional Hilbert space (over \mathbb{R} or \mathbb{C}) and let $T \in \mathcal{B}(H)$ be compact. Explain what it means that T is compact. Then show that $\langle T(u_n), u_n \rangle \to 0$ as $n \to \infty$ whenever $\{u_n\}_{n \in \mathbb{N}}$ is an orthonormal sequence in H.

Solution: That T is compact means that $\{T(x_n)\}_{n\in\mathbb{N}}$ has a convergent subsequence whenever $\{x_n\}_{n\in\mathbb{N}}$ is a bounded sequence in H. Equivalently, that T maps bounded sets into relatively compact sets.

Next, let $\{u_n\}_{n\in\mathbb{N}}$ be an orthonormal sequence in H and assume (for contradiction) that $\langle T(u_n), u_n \rangle \not\to 0$ as $n \to \infty$. Then there exists $\varepsilon > 0$ and natural numbers $n_1 < n_2 < \cdots < n_j < \cdots$ such that

$$\left|\left\langle T(u_{n_j}), u_{n_j} \right\rangle\right| \geq \varepsilon \quad \text{for all } j \in \mathbb{N}.$$

Set $x_j := u_{n_j}$ for each $j \in \mathbb{N}$. Since $\{x_j\}_{j \in \mathbb{N}}$ is bounded, we can find a subsequence $\{y_k\}_{k \in \mathbb{N}} := \{x_{j_k}\}_{k \in \mathbb{N}}$ of $\{x_j\}_{j \in \mathbb{N}}$ such that $T(y_k) \to z$ for some $z \in H$. We can then find $K \in \mathbb{N}$ such that $\|z - T(y_k)\| < \varepsilon/2$ for all $k \geq K$, which gives that

$$|\langle z - T(y_k), y_k \rangle| \le ||z - T(y_k)|| ||y_k|| < \varepsilon/2$$

for all $k \geq K$. Since $|\langle T(y_k), y_k \rangle| \geq \varepsilon$ for all $k \in \mathbb{N}$, we obtain that

$$\begin{aligned} \left| \langle z, y_k \rangle \right| &= \left| \left\langle T(y_k), y_k \right\rangle + \left\langle z - T(y_k), y_k \right\rangle \right| \\ &\geq \left| \left\langle T(y_k), y_k \right\rangle \right| - \left| \left\langle z - T(y_k), y_k \right\rangle \right| \\ &> \varepsilon - \varepsilon/2 \\ &= \varepsilon/2 \end{aligned}$$

for all $k \geq K$. But this implies that $\sum_{k=1}^{\infty} |\langle z, y_k \rangle|^2 = \infty$, which contradicts Bessel's inequality. Thus, we must have $\langle T(u_n), u_n \rangle \to 0$ as $n \to \infty$.