28.06.2007.

	Ime i prezime	Matični broj	inačica A
--	---------------	--------------	------------------

Ispit se sastoji od pet cjelina, u kojima se točan odgovor na svako pitanje nezavisno boduje, te se sastoji od ukupno 20 pitanja. Ukoliko želite odgovoriti na neko pitanje, zacrnite odgovor na obrascu za test. Svaki točan odgovor donosi 1 bod, dok se neodgovorena pitanja i netočni odgovori ne boduju. Napišite ime na svim papirima s postupcima i predajte ih na kraju ispita zajedno s primjerkom testa u košuljici, dok se Obrazac za test posebno predaje.

(I) Vodljivi štap A-B giba se po vodljivim tračnicama jednolikom brzinom v u homogenom magnetskom polju indukcije B=1 T prema slici. U trenutku t=0 je x=0.

1.) Odrediti brzinu kojom se štap treba gibati da bi nakon 1 sekunde napon koji mjeri voltmetar bio 10 V

- A) v=15 m/s B) v=2 m/s
- C) v=10 m/s
- D) v=5 m/s E) v=1 m/s

	Koliki je ltmetar	magnetski tok	nakon 1 sekur	nde kroz petlju ko	oju čine vodič, trad	žnice i
	A) 1 Wb	B) 4 Wb	C) 2 Wb	D) 6 Wb	E) 8 Wb	
3.)	Koliki je	napon u_{AB} u tr	enutku <i>t</i> =3 s:			
	A) 17 V	B) 12 V	C) 35 V	D) 26 V	E) 32 V	
				rnik iznosa R=2 S emarite otpor voc	Σ, kolika će struja liča i tračnica.	poteći u
		B) 9 A C) 5 A	u smjeru kaza u smjeru obrr	utom od kazaljko		
(II)				$\mu_{ m r}$ =1) vlada elek nni $b, E_{0 m x}$ i $E_{0 m y}$, o	trično polje jako dredite:	sti:
5.)	α:					
	A) <i>α</i> = <i>b</i>	B) <i>α</i> = <i>µ</i> ₀ <i>b</i>	C) $\alpha = 0$ D)	$\alpha = E_{0x}/E_{0y}$ E)	$\alpha = b\sqrt{\mu_0 \varepsilon_0}$	
6.)	β:					
	A) <i>β</i> = <i>b</i>	B) $\beta = \mu_0 b$	C) β=0 D)	$\beta = E_{0y}/E_{0x}$ E)	$\beta = b\sqrt{\mu_0 \varepsilon_0}$	
7.)	Gustoću slo	obodnog naboja	a $ ho_{ m s}$:			
	A) $\rho_s = \beta$	B) $\rho_s = \alpha$	C) $\rho_s=0$	D) $\rho_s=E_{0x}\alpha$	E) $\rho_s=E_{0y}\beta$	
8.)	Magnetsko	polje \vec{H} :				
	A) $\vec{H} = \vec{a}_z$	$\sqrt{\frac{\mathcal{E}_0}{\mu_0}} \Big(E_{oy} e^{b(x\sqrt{\mu})}$	$e^{\frac{1}{0}\varepsilon_0-t}-E_{0x}e^{b(y)}$	$\sqrt{\mu_0 \varepsilon_0} - t$)		

B) $\vec{H} = \vec{a}_z \sqrt{\frac{\mathcal{E}_0}{\mu_0}} \left(E_{oy} e^{b(y\mu_0 - t)} - E_{0x} e^{b(y - t)} \right)$

C) $\vec{H} = \vec{a}_z \sqrt{\frac{\mathcal{E}_0}{\mu_0}} \left(E_{oy} e^{b(y-t)} - E_{0x} e^{b(y\mu_0-t)} \right)$

D) $\vec{H} = \vec{a}_z \sqrt{\frac{\varepsilon_0}{\mu_0}} \left(E_{oy} e^{E_{0y}/E_{0x} - bt} - E_{0x} e^{b(y\sqrt{\mu_0\varepsilon_0} - t)} \right)$

E)
$$\vec{H} = \vec{a}_z \sqrt{\frac{\mathcal{E}_0}{\mu_0}} (E_{oy} e^{-bt} - E_{0x} e^{-bt})$$

- (III) Vektor jakosti magnetskog polja antene smještene u ishodištu sfernog koordinatnog sustava je $\vec{H} = \frac{\sin^2 \vartheta}{r} \cos(\omega t - \beta r) \vec{a}_{\alpha}$. Zadano je $\varepsilon = \varepsilon_0$, $\mu = \mu_0$, f = 100 MHz.
 - 9.) Odredite apsolutnu vrijednost fazora jakosti električnog polja u točki (r=100m, $\vartheta = \frac{\pi}{4}$ rad):
 - A) 0,3 V/m B) 1,88 V/m C) 2,43 V/m D) 3,33 V/m E) 0,15 V/m
 - 10.) Odredite apsolutnu vrijednost Poyntingova vektora u točki (r=150 m, $\vartheta = \frac{\pi}{2}$ rad) u trenutku t=1 µs:
 - A) 0.13 mW/m^2
 - B) 2.78 mW/m^2
 - C) $3,74 \text{ mW/m}^2$
 - D) 9.4 mW/m^2
 - E) 17,22 mW/m²
 - 11.) Odredite apsolutnu vrijednost Poyntingova vektora u točki (r=200 m, $\vartheta = \frac{\pi}{2}$ rad) u trenutku t=1 µs:
 - A) 0.07 mW/m^2
 - B) $1,39 \text{ mW/m}^2$
 - C) $1,87 \text{ mW/m}^2$
 - D) $8,61 \text{ mW/m}^2$
 - E) 4.7 mW/m^2
 - 12.) Odredite srednju snagu koju emitira antena:
 - A) 1263 W
- B) 15 W
- C) 539 W
- D) 125 W
- E) 361 W
- Neki izvor proizvodi u vakuumu ravni val valne dužine 2π metara. Kada se taj val prostire u idealnom dielektriku nepoznatih značajki, valna dužina se smanji 20 puta, a omjer maksimalnih vrijednosti jakosti električnog i magnetskog polja E_m/H_m se poveća 10 puta.
 - 13.) Relativna dielektrična konstanta ε_r u dielektriku je:
 - A) 200
- B) 14
- C) 6 D) 2
- E) 4

B) 14 C) 6 D) 2 E) 4
ružna frekvencija vala je:
rad/s B) 3·10 ⁸ rad/s C) 1,8·10 ⁸ rad/s D) 1·10 ⁸ rad/s E)5·10 ⁸ rad/s
azna konstanta vala u dielektriku je:
B) 0.05 m^{-1} C) 20 m^{-1} D) 10 m^{-1} E) 0.1 m^{-1}
al frekvencije 10 MHz prostire se u realnom sredstvu s ϵ_r =4 i μ_r =1. Ako a iznosi 0,6 m ⁻¹ , a maksimalna vrijednost jakosti električnog polja V/m odredite:
rovodnost materijala:
A) 16,37 mS/m B) 12,57 mS/m C) 8,75 mS/m D) 6,54 mS/m E) 3,54 mS/m
rigušnu konstantu vala:
m^{-1} B) 2,78 m^{-1} C) 0,43 m^{-1} D) 1,15 m^{-1} E) 5,17 m^{-1}
psolutnu vrijednost valne impedancije:
Ω B) 107 $Ω$ C) 74 $Ω$ D) 299 $Ω$ E) 49 $Ω$
rednju vrijednost realnog dijela Poyntingova vektora na udaljenosti $x=d$ (d je rodiranja):
W/m^2 B) 12,45 W/m^2
V/m^2 D) 3,24 W/m^2 E) 5,14 W/m^2

Relativna permeabilnost $\,\mu_r\,$ u dielektriku je:

14.)