

Universitatea Politehnica din București Facultatea de Automatică și Calculatoare Departamentul de Calculatoare

GRAFURI

Definiție

- Un graf este o modalitate de a reprezenta relaţiile care există între perechi de obiecte
- Un graf G este o pereche de două mulţimi
 G = (V, E), unde V este mulţimea (nevidă)
 a vârfurilor (nodurilor), iar E este mulţimea muchiilor (arcelor)
- O muchie din E unește o pereche de două vârfuri din V și se notează (v,w)

Tipuri de grafuri

- 1) Graf neorientat (undirected graph)
- 2) Graf orientat (directed graph, digraph)
- 3) Graf neorientat şi ponderat (undirected weighted graph)
- 4) Graf orientat şi ponderat (directed weighted graph)

- Nodurile unui graf se numerotează începând cu 1 și mulțimea V este o submulțime a numerelor naturale
- Termenii "vârf" şi "muchie" provin din analogia unui graf cu un poliedru şi se folosesc mai ales pentru grafuri neorientate
- Termenii "nod" şi "arc" se folosesc mai ales pentru grafuri orientate

Definiții

- Două vârfuri se numesc adiacente dacă sunt conectate direct printr-o muchie
- Vârfurile adiacente cu un vârf se numesc vecinii vârfului dat
- Un lanţ/drum reprezintă o secvenţă de muchii/arce

Arce

- Dacă graful este orientat, v originea
 arcului (v,w), w destinația arcului (v,w)
- Arce de ieşire (outgoing) ale unui nod v arcele orientate care au ca origine acel nod v
- Arce de intrare (incoming) ale unui nod v
 arcele orientate care au ca destinație acel nod v

Grade

- Gradul unui nod v este numărul de arce incidente cu acesta – d(v)
- Nod izolat d(v) = 0
- Gradul interior al unui nod dintr-un graf orientat d'(v) – numărul arcelor care intră în acel nod
- Gradul exterior al unui nod dintr-un graf orientat d⁺(v) – numărul arcelor care ies din acel nod

Ordin și dimensiune

- Ordinul unui graf este egal cu numărul de noduri din graf n = |V|
- Dimensiunea unui graf este egală cu numărul de muchii m = |E|

Grafuri conexe și neconexe

- Un graf se numeşte conex dacă există cel puţin un drum de la fiecare nod până la fiecare alt nod
- Un graf este conex dacă, pentru orice pereche de noduri (v,w), există cel puţin o cale de la v la w sau de la w la v
- Un graf neconex este alcătuit din mai multe componente conexe

a) Connected Graph

b) Non-connected Graph

- Vârfurile A şi B alcătuiesc una din componentele conexe, iar C şi D alcătuiesc a doua componentă conexă
- Aceste grafuri sunt grafuri neorientate
- Muchiile nu au o direcţie, ne putem deplasa pe ele în orice sens

- Un graf în care ne putem deplasa într-o singură direcție de-a lungul unei muchii date se numește graf orientat
- Direcția de deplasare permisă este indicată printr-o săgeată plasată pe muchie

Componentă conexă

- O componentă conexă a unui graf (V,E)
 este un subgraf conex (V',E'), unde V' este
 o submulțime a lui V, iar E' este o
 submulțime a lui E
- Împărțirea unui graf neorientat în componente conexe este unică, dar un graf orientat poate fi partiționat în mai multe moduri în componente conexe

Exemplu

 Graful (1,2), (1,4), (3,2), (3,4) poate avea componentele conexe:

```
- {1,2,4} și {3}
```

- {3,2,4} și {1}

Graf orientat tare conex

- Un graf orientat este tare conex (puternic conectat) dacă, pentru orice pereche de noduri (v,w), există (cel puţin) o cale de la v la w şi (cel puţin) o cale de la w la v
- Exemplu de graf tare conex graf care conţine un ciclu ce trece prin toate nodurile:
- (1,2), (2,3), (3,4), (4,1)

- Într-un graf orientat, arcul (v,w) pleacă din nodul v si intră în nodul w
- Acesta este diferit de arcul (w,v), care pleacă de la w la v
- Într-un graf neorientat poate exista o singură muchie între două vârfuri, notată (v,w) sau (w,v)

- Două noduri între care există un arc se numesc noduri vecine sau adiacente
- Într-un graf orientat ne putem referi la succesorii şi predecesorii unui nod, respectiv la arce care ies şi la arce care intră într-un nod

Graf bipartit

- Un graf bipartit este un graf în care mulţimea nodurilor V se partiţionează:
- $V = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$ astfel încât
- ∀ (v, w) ∈ E, v ∈ V₁ și w ∈ V₂ sau w ∈ V₁
 și v ∈ V₂

Grafuri ponderate

• Într-un **graf ponderat**, muchiile au asociate **ponderi**, adică numere care reprezintă distanțe fizice între două vârfuri, sau timpul necesar parcurgerii drumului dintre două vârfuri, sau costul drumului dintre cele două vârfuri

Proprietăți

- P1: Fie un graf neorientat G cu m muchii și mulțimea de vârfuri V
- $\sum d(i)=2*m$
- P2: Fie un graf orientat G cu m arce şi mulțimea de noduri V
- $\sum d(i)=m$
- $\sum d^{\dagger}(i)=m$

Proprietăți

- P3: Fie un graf G cu n vârfuri și m muchii
- Dacă G este neorientat atunci m ≤ n(n-1)/2
- Dacă G este orientat atunci m ≤ n(n-1)
- P4: Fie un graf G cu n vârfuri și m muchii
- Dacă G este conex atunci m ≥ n-1
- Dacă G este arbore atunci m = n-1
- Dacă G este o pădure atunci m ≤ n-1

Probleme asociate grafurilor

- Ciclu hamiltonian ciclu elementar, în care se vizitează fiecare vârf din graf exact o dată
- Ciclu eulerian un ciclu care vizitează fiecare muchie din graf exact o dată

Modalități de reprezentare

- Într-un graf, fiecare vârf poate fi conectat cu un număr arbitrar de alte vârfuri
- Pentru modelarea conectării nodurilor, cele mai frecvente două metode sunt:
 - Matricea de adiacență
 - Liste de adiacență

Matricea de adiacență

- O matrice de adiacență este un tablou bidimensional, în care elementele indică prezența unei muchii între două vârfuri
- Dacă graful are N vârfuri, matricea de adiacență este un tablou cu N*N elemente

	Α	В	С	D
A	0	1	1	1
В	1	0	0	1
С	1	0	0	0
D	1	1	0	0

Exemplu

- Vârfurile sunt trecute atât la capetele liniilor, cât și ale coloanelor din tabel
- O muchie între două vârfuri este indicată printr-o valoare 1 în tabel
- Valoarea 0 înseamnă absența unei muchii
- Legătura dintre un vârf și el însuși este reprezentată prin 0, formând diagonala principală a matricei

- Triunghiul superior al matricei (situat deasupra diagonalei principale) reprezintă imaginea în oglindă a celui inferior
- Ambele triunghiuri conţin aceeaşi informaţie – valabil doar la grafuri neorientate
- Această redundanță pare ineficientă, dar nu dispunem de o modalitate convenabilă de a crea un tablou triunghiular

- Dezavantajul matricei de adiacențe apare atunci când numărul de noduri din graf este mult mai mare ca numărul de arce, iar matricea este rară (cu peste jumătate din elemente nule)
- În aceste cazuri se preferă reprezentarea prin liste de adiacențe

Definirea structurii de graf

- Definirea structurii de graf printr-o matrice de adiacență alocată dinamic:
- typedef struct {
- int n, m;
- // n = număr de noduri, m = număr de arce
- int ** a; // adresa matrice de adiacență
- } Graf;

- Succesorii unui nod v sunt reprezentaţi de elementele nenule din linia v
- Predecesorii unui nod v sunt reprezentați de elementele nenule din coloana v
- În general, nu există arce de la un nod la el însuși, deci a[i][i] = 0

Operații uzuale cu grafuri

- 1) Inițializare graf cu număr dat de noduri:
 - initG (Graf & g, int n)
- 2) Adăugare muchie (arc) la un graf:
 - addArc (Graf & g, int x, int y)
- 3) Verificare existenţa unui arc de la un nod x la un nod y:
 - int arc(Graf g, int x, int y)
- 4) Eliminare arc dintr-un graf:
 - delArc (Graf & g, int x, int y)
- 5) Eliminare nod dintr-un graf:
 - delNod (Graf & g, int x)

Operații uzuale cu grafuri

```
// funcție de inițializare a grafului
void initG (Graf & g, int n) {
int i;
 g.n = n;
 g.m = 0;
 g.a = (int**) malloc((n+1)*sizeof(int*));
 // vârfuri numerotate 1...n
 for (i = 1; i \le n; i++)
  g.a[i] = (int^*) calloc((n+1), sizeof(int));
  // linia 0 și coloana 0 sunt nefolosite
```

Operații uzuale cu grafuri

```
// funcție de adăugare a arcului (x,y) la graful g
void addArc (Graf & g, int x, int y) {
g.a[x][y]=1;
g.m++;
// funcție care întoarce arcul (x,y) din graful g
int arc (Graf g, int x, int y) {
return g.a[x][y];
```

```
// funcție de eliminare a arcului (x,y) din graful g
void delArc (Graf & g, int x, int y) {
      g.a[x][y] = 0;
      g.m--;
/*Eliminarea unui nod din graf ar trebui să modifice și
dimensiunile matricei, dar se elimină doar arcele ce
pleacă și vin din/în acel nod*/
// funcție de eliminare a nodului x din graful g
void delNod (Graf & g, int x) {
int i;
 for (i = 1; i \le g.n; i++)
  delArc(g,x,i);
  delArc(q,i,x);
```

Liste de adiacență

- Cealaltă soluție de reprezentare a muchiilor este utilizând o listă de adiacență
- O listă de adiacență reprezintă un tablou de liste (sau o listă de liste)
- Fiecare listă individuală conține vârfurile adiacente unui vârf dat

Vertex	List Containing Adjacent Vertices
Α	B—>C—>D
В	A—>D
C	A
D	A—>B

- Fiecare legătură din listă reprezintă un vârf din graf
- În exemplu, vârfurile sunt ordonate alfabetic, deși această ordine nu este necesară
- Nu trebuie confundat conţinutul listelor de adiacenţă cu drumurile din graf

- Lista tuturor arcelor din graf este împărţită în mai multe subliste, câte una pentru fiecare nod din graf
- Listele de noduri vecine pot avea lungimi diferite şi se preferă implementarea lor prin liste înlănțuite

Exemplu

Reprezentarea grafului orientat
 (1,2),(1,4),(3,2),(3,4) printr-un tablou de
 pointeri la liste de adiacență

 Ordinea nodurilor într-o listă de adiacență nu este importantă și de aceea se poate adăuga mereu la începutul listei de noduri vecine

Definirea structurii de graf

```
typedef struct nod {
    int val;
                        // număr nod
    struct nod * leg;
    // adresa listei de succesori pentru un nod
} * pnod ;
                        // pnod este un tip pointer
 typedef struct {
    int n;
                        // număr de noduri în graf
    pnod * v;
    // tablou de pointeri la liste de succesori
```

Operații uzuale cu grafuri

```
// funcție de inițializare a grafului
void initG (Graf & g, int n) {
g.n = n;  // număr de noduri
g.v = (pnod*) calloc(n + 1, sizeof(pnod));
// inițializare pointeri cu 0
}
```

Operații uzuale cu grafuri

```
// funcție de adăugare a arcului (x,y)
void addArc (Graf & g, int x, int y) {
pnod nou = (pnod) malloc (sizeof(nod));
  nou \rightarrow val = y;
  nou \rightarrow leg = g.v[x];
  g.v[x] = nou;
  // se adaugă la începutul listei de adiacență
```

Operații uzuale cu grafuri

```
// funcție care testează dacă există arcul (x,y) în graful g
int arc (Graf g, int x, int y) {
  pnod p;
  for (p = g.v[x]; p != NULL; p = p→leg)
    if ( y == p→val) return 1;
  return 0;
}
```

 Reprezentarea unui graf prin liste de adiacență pentru fiecare vârf asigură cel mai bun timp de explorare a grafurilor (timp proporțional cu suma dintre numărul de vârfuri și numărul de muchii din graf), iar explorarea apare ca operație în mai mulți algoritmi pe grafuri

- Pentru un graf neorientat, fiecare muchie (x,y) este memorată de două ori: y în lista de adiacență a lui x și x în lista de adiacență a lui y
- Pentru un graf orientat, listele de adiacență sunt de obicei liste de succesori, dar pentru unele aplicații ne interesează predecesorii unui nod
- Lipsa de simetrie poate fi un dezavantaj al listelor de adiacenţă pentru reprezentarea grafurilor orientate

Arbore liber

- Un arbore liber este un graf neorientat aciclic
- Într-un arbore liber nu există un nod special rădăcină
- Într-un arbore, fiecare vârf are un singur părinte (predecesor), deci se poate reprezenta arborele printr-un tablou de noduri părinte

Arbore minim de acoperire

 Un arbore minim de acoperire reprezintă un arbore cu numărul minim de muchii necesare pentru conectarea tuturor vârfurilor

a) Extra Edges

b) Minimum Number
 of Edges

- În prima figură, sunt cinci vârfuri conectate prin mai multe muchii
- Aceleași vârfuri sunt conectate în a doua figură printr-un număr minim de muchii
- Acesta reprezintă un arbore minim de acoperire

- Pentru o mulţime dată de vârfuri, este posibilă construcţia mai multor arbori minimi de acoperire
- Arborele din a doua figură conține muchiile AB, BC, CD și DE
- Un alt arbore este cel care conţine muchiile AC, CE, ED şi DB

Arbore minim de acoperire

- Pentru un graf conex neorientat G = (V, E), se numeşte arbore minim de acoperire al lui G, un subgraf G' = (V, E'), care conţine toate vârfurile grafului G şi o submulţime minimă de muchii E' ⊆ E, cu proprietatea că uneşte toate vârfurile şi nu conţine cicluri
- Cum G' este conex şi aciclic, el este arbore

- Numărul E' de muchii dintr-un arbore minim de acoperire este cu o unitate mai mic decât numărul V de vârfuri
- E' = V 1
- Când se execută o parcurgere în adâncime şi se memorează muchiile traversate, se obține un arbore minim de acoperire