CSC/MAT-220: Discrete Structures Solution 1

Thomas R. Cameron

August 25, 2017

Problem 3.9

Let A, B, C be points in the plane. We say that C is between A and B if

$$d(A,B) = d(A,C) + d(C,B),$$

where d(x, y) is the distance between two points x, y in the plane. Furthermore, we define the points A, B, C as *collinear* if A is between B and C, B is between A and C, and C is between A and B.

Problem 4.9

Two errors in this sentence are as follows:

- Points are not said to be in the plane.
- A line is an infinitely long collection of points, not a distance.

We can rewrite this sentence as follows: "The length of the line segment connecting two points in the plane is the shortest distance between them."

Problem 5.9

Proposition. Suppose a, b, c are integers such that a|b and a|c. Then, a|(b+c).

Proof. Since a|b and a|c, there exists integers k_1 and k_2 such that $ak_1 = b$ and $ak_2 = c$. Adding these two equations gives

$$a(k_1 + k_2) = b + c$$

and the result follows.

Problem 5.21

Proposition. The difference between distinct, nonconsecutive perfect squares is composite.

Proof. Suppose that a < b are nonconsecutive integers. Then b = a + k for some integer k > 1, and it follows that

$$b^{2} - a^{2} = (a+k)^{2} - a^{2}$$
$$= 2ak + k^{2}.$$

Therefore, the difference between the perfect squares a^2 and b^2 is divisible by k > 1, and is therefore composite.