REC'D 14 JAN 2005.

WIPO PCT

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le ______ 0 2 NOV. 2004

Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef du Département des brevets

Martine PLANCHE

OCUMENT DE PRIORITÉ

PRÉSENTÉ OU TRANSMIS CONFORMÉMENT À LA RÈGLE 17.1.a) OU b)

> INSTITUT NATIONAL DE LA PROPRIETE INDUSTRIELLE

26 bis, rue de Saint-Petersbourg 75800 PARIS cedex 08 Téléphone : 33 (0)1 53 04 53 04 Télécopie : 33 (0)1 53 04 45 23 www.hpt.fr

ETABLISSEMENT PUBLIC NATIONA

CREE PAR LA LOI Nº 51-444 DU 19 AVRII 1951

DEST AVAILABLE CUT

BREVET D'INVENTION CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

REQUÊTE EN DÉLIVRANCE 1/2

26 bis, rue de Saint Pétersbourg
75800 Paris Cedex 08
Téléphone : 01 53 04 53 04 Télécopie : 01 42 94 86 54

			Cet Imprimé est à remplir lisiblement à l'encre noire DB 540 W /200899			
REMISE DES PIÈCES DATE	Réservé à l'INPI		NOM ET ADRESSE DU DEMANDEUR OU DU MANDATAIRE À QUI LA CORRESPONDANCE DOIT ÊTRE ADRESSÉE			
"" 30 OC.	T 2003		B = 1			
75 INPI P		.0	GROSSET-FOURNIER & DEMACHY			
N° D'ENREGISTREMENT NATIONAL ATTRIBUÉ PAR L'INPI	0312729	8	54, rue Saint-Lazare F-75009 Paris			
DATE DE DÉPÔT ATTRIBUÉE PAR L'INPI	3 0 OCT. 2003	A CONTRACTOR OF THE CONTRACTOR	1-13007 1 atts			
Vos références pour (facultatif)	ce dossier FB 03 BU CNR HPBP)				
Confirmation d'un d	épôt par télécopie	☐ N° attribué par	r l'INPI à la télécopie			
2 NATURE DE LA			4 cases suivantes			
Demande de brev		区				
Demande de cert	ificat d'utilité					
Demande division	naire					
	Demande de brevet initiale	N°	Date / /			
ou demande	e de certificat d'utilité initiale	N°	Date I . / /			
Transformation d'	une demande de					
	Demande de brevet iniliale ENTION (200 caractères ou	No	Date ! / /			
		T				
DÉCLARATION	DE PRIORITÉ	Pays ou organisati	on / N°			
OU REQUÊTE D	U BÉNÉFICE DE	Pays ou organisati	· · · · · · · · · · · · · · · · · · ·			
LA DATE DE DÉ	PÔT D'UNE	T	/ N°			
DEMANDE ANT	TÉRIEURE FRANÇAISE	Pays ou organisati	ion / N°			
		☐ S'ilyad'a	utres priorités, cochez la case et utilisez l'imprimé «Suite»			
DEMANDEUR-		S'il y a d'a	utres demandeurs, cochez la case et utilisez l'imprimé «Suite»			
Nom ou dénomin	nation sociale	CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE				
Prénoms						
Forme juridique						
N° SIREN		<u> </u>	· · · · · · · · · · · · · · · · · · ·			
Code APE-NAF						
Adresse	Rue	3, rue Michel-	·Ange			
	Code postal et ville	R_75704 P	ARIS CEDEX-16			
Pays		FRANCE	Auto Obbass 19			
Nationalité		FRANCAISE				
N° de téléphone						
N° de télécopie						
Adresse électror	nique <i>(facultatif)</i>					

BREVET D'INVENTION CERTIFICAT D'UTILITÉ

REQUÊTE EN DÉLIVRANCE 2/2

REMISE DES PIÈCES DATE LIEU 30 OCT 2003 75 INPI PARIS N° D'ENREGISTREMENT NATIONAL ATTRIBUÉ PAR L'INPI 031272	OB 540 W /260899					
Vos références pour ce dossier : (facultatif)	IFB 03 BU CNR HPBP					
MANDATAIRE Nom Prénom Cabinet ou Société	DEMACHY Charles GROSSET-FOURNIER & DEMACHY					
N °de pouvoir permanent et/ou de lien contractuel						
Adresse Rue Code postal et ville N° de téléphone (facultatif) N° de télécopie (facultatif)	54, rue Saint-Lazare 75009 PARIS 01.42.81.09.58 01.42.81.08.71					
Adresse électronique (facultatif) INVENTEUR (S)						
Les inventeurs sont les demandeurs	☐ Oui ☑ Non Dans ce cas fournir une désignation d'inventeur(s) séparée					
RAPPORT DE RECHERCHE	Uniquement pour une demande de brevet (y compris division et transformation)					
Établissement immédiat ou établissement différé						
Paiement échelonné de la redevance	Paiement en deux versements, uniquement pour les personnes physiques Oui					
RÉDUCTION DU TAUX DES REDEVANCES	Uniquement pour les personnes physiques ☐ Requise pour la première fois pour cette invention (joindre un avis de non-imposition) ☐ Requise antérieurement à ce dépôt (joindre une copie de la décision d'admission					
Si vous avez utilisé l'imprimé «Suite», indiquez le nombre de pages jointes	pour celle invention ou indiquer su référence):					
SIGNATURE DU DEMANDEUR OU DU MANDATAIRE (Nom et qualité du signataire) 422.5/1	es DEMACHY OU DE L'INPI					

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ

26 bis, rue de Saint Pétersbourg 75800 Paris Cedex 08 Téléphone : 01 53 04 53 04 Télécopie : 01 42 94 86 54

Réservé à l'INPI

REQUÊTE EN DÉLIVRANCE Page suite N° .1./.1.

HEN	OCT 2003 PI PARIS 031272	9		•	
NATIONAL ATTRIBUÉ PA	R L'INPI		Cet imprimé est à remplir l	isiblement à l'encre noire	D8 829 V: ;260899
Vos références	pour ce dossier (facultatif)	IFB 03 BU	CNR HPBP		
OU REQUÊTI	ON DE PRIORITÉ E DU BÉNÉFICE DE E DÉPÔT D'UNE	Pays ou organisation Date / / Pays ou organisation Date / /	. No		
DEMANDE A	NTÉRIEURE FRANÇAISE	Pays ou organisation Date : / /	N°	·	•
5 DEMANDEU	R				
Nom ou déno	mination sociale	UNIVERSITE	HENRI POINCARE	NANCY 1	
Prénoms				· · · · · · · · · · · · · · · · · · ·	٠,
Forme juridiq	ue				7
· N° SIREN					1
Code APE-NA	F	!		•	· .
Adresse	Rue	24-30, rue Lio			4
	Code postal et ville	FRANCE	NCY CEDEX		
Pays		FRANCAISE			2.
Nationalité		MAINCAIDE			4
N° de télépho	one (<i>facultatif</i>)				•
N° de télécop	nie (<i>facultatif</i>)			·	÷.
Adresse élect	tronique <i>lfacultatif</i>)				
5 DEMANDEU	R				!
Nom ou déno	omination sociale				
Prėnoms		-		· · · · · · · · · · · · · · · · · · ·	
Forme juridiq	ue				
N° SIREN	·			4-	
Code APE-NA	F				
Adresse	Rue				
	Code postal et ville			<u> </u>	
Pays		1			
Nationalité		 	· · · · · · · · · · · · · · · · · · ·	·	
N° de télépho	one [facultatif]			······································	
N° de télécor	oie (<i>facultatif</i>)				
Adresse élect	tronique (facultatif)		A		
OU DU MA	DU DEMANDEUR NDATAIRE alité du signataire)	Charles D Mandatair 422.5/PP.1	e little	VISA DE LA PRÉF OU DE L'INP L. MARIELL	l

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI

NOUVELLE PROTEINE DE FIXATION DU PHOSPHATE, COMPOSITIONS PHARMACEUTIQUES LA CONTENANT ET SES UTILISATIONS

5

La présente invention a pour objet une nouvelle protéine, issue du sérum humain, de fixation du phosphate, des compositions pharmaceutiques la contenant ainsi que ses utilisations, notamment dans le cadre du traitement de l'hyperphosphatémie et des maladies cardiovasculaires ou de l'arthrite.

10

Le phosphate est une molécule très importante impliquée dans de nombreux mécanismes biologiques. On retrouve notamment le phosphate dans les phospholipides, dans le mécanisme de production d'énergie (ATP, ADP), dans les processus de signalisation cellulaire, dans la composition du matériel génétique dans les os (sous forme de phosphate de calcium).

15

L'hyperphosphatémie est une pathologie liée à un excès de phosphate dans l'organisme et provoque notamment une augmentation des risques de maladies cardiovasculaires, en favorisant les processus d'athérosclérose et de calcification des artères (Dorozhkin et Epple, 2002; Amann et al., 2003; Blazheevich et al., 1975). La calcification s'effectuant au niveau des articulations, l'hyperphosphatémie peut aussi provoquer de l'arthrite (pseudo-goutte).

20

Les sels de phosphate de calcium produits dans le sérum lors d'une hyperphosphatémie précipitent dans les tissus mous avec calcification ectopique dans différents tissus: vaisseaux (accidents vasculaires cérébraux ou cardiaques), articulations (pseudo-goutte), cristallin, interstitium rénal (néphrocalcinose), souscutanées (prurit), pulmonaires, pancréatiques.

25

Ainsi, la moitié des décès chez les personnes souffrant d'insuffisance rénale est due à des maladies cardiovasculaires liées à l'hyperphosphatémie. A cet égard, certains chélateurs du phosphate qui complexent le phosphate dans la lumière intestinale sont actuellement utilisés comme médicament. Cependant, tous ces chélateurs ne sont pas physiologiques. De là découlent certaines complications ou restrictions quant à leur usage.

30

Les préparations contenant du magnésium sont limitées par la survenue de troubles digestifs (diarrhée) et sont à proscrire en raison du risque d'hypermagnésémie. De même, la prescription d'hydroxyde d'aluminium, longtemps utilisé du fait de son efficacité, doit être évitée, ou du moins limitée à de très faibles périodes, en raison du

10

15

20

25

30

risque d'intoxication aluminique (anémie hypochrome microcytaire, ostéomalacie, myopathie, démence).

La prescription de sels de calcium est le meilleur moyen pour corriger à la fois l'hypocalcémie et l'hyperphosphorémie, permettant d'une part d'augmenter la quantité de calcium absorbée par l'intestin grêle malgré le déficit en calcitriol, et d'autre part de complexer le phosphore dans la lumière intestinale sous forme de phosphate de calcium qui sera éliminé dans les selles. Cependant, l'inconvénient majeur des chélateurs contenant du calcium est d'induire une hypercalcémie, qui, dans certaines séries, a pu être notée chez 20% des malades. Ce risque a conduit à mettre au point d'autres produits capables de limiter l'hyperphosphorémie.

Le médicament actuellement le plus utilisé est le Renagel[®] (Ramsdell; 1999). Il s'agit d'un polymère cationique, non absorbable capable de chélater le phosphate.

La présente invention a pour but de fournir un nouveau chélateur protéique physiologique se liant au phosphate, ne nécessitant pas l'emploi d'autres ions qui peuvent entraîner des complications et offrant de plus larges perspectives d'utilisation, que les chélateurs actuels.

La présente invention concerne une protéine caractérisée en ce qu'elle comprend ou est constituée par :

- la séquence SEQ ID NO: 1,
- ou toute séquence dérivée de la séquence SEQ ID NO: 1, notamment par substitution, suppression ou addition d'un ou plusieurs acides aminés, sous réserve que ladite séquence dérivée se lie au phosphate,
- ou toute séquence homologue de la séquence SEQ ID NO:1, ayant de préférence une homologie d'au moins environ 80% avec la séquence SEQ ID NO:1, sous réserve que ladite séquence homologue se lie au phosphate,
- ou tout fragment d'une des séquences définies ci-dessus, sous réserve que ledit fragment se lie au phosphate, notamment tout fragment étant constitué d'au moins environ 20 acides aminés contigus dans la séquence SEQ ID NO: 1.

La séquence SEQ ID NO: 1 correspond à la protéine humaine de fixation du phosphate. Cette nouvelle protéine a été isolée dans le plasma humain et sa structure tridimensionnelle montre qu'elle appartient à la classe des "phosphate binding protein" (protéines de fixation du phosphate : PBP).

La propriété de fixation du phosphate des séquences de l'invention peut être vérifiée par le test suivant de fixation du phosphate par marquage radioactif:

10

15

20

25

30

La protéine est fixée sur une membrane de nitrocellulose (dot blot par aspirațion). On laisse incuber la membrane dans un tampon radioactif (³²P (10 mCi/ml, <u>Amersham</u>-Biosciences) 2M; Tris 50 mM; pH 8,0)

La membrane est rapidement rincée 2 × 1 min dans un tampon Tris 50 mM, pH 8,0. En exposant un film photographique avec la membrane (environ 45 min) on peut détecter les zones qui fixent le phosphate radioactif (voir Figure 3 ci-après).

La présente invention concerne également une séquence nucléotidique codant pour une protéine telle que définie ci-dessus.

La présente invention concerne également un vecteur recombinant, notamment plasmide, cosmide, phage ou ADN de virus, contenant une séquence nucléotidique telle que définie ci-dessus.

Selon un mode de réalisation avantageux, la présente invention concerne un vecteur recombinant tel que défini ci-dessus, contenant les éléments nécessaires à l'expression dans une cellule hôte des polypeptides codés par la séquence nucléotidique telle que définie ci-dessus, insérée dans ledit vecteur.

La présente invention concerne également une cellule hôte, choisie notamment parmi les bactéries, les virus, les levures, les champignons, les plantes ou les cellules de mammifères, ladite cellule hôte étant transformée, notamment à l'aide d'un vecteur recombinant tel que défini ci-dessus.

La présente invention concerne également une composition pharmaceutique comprenant à titre de substance active une protéine telle que définie ci-dessus, notamment SEQ ID NO: 1, en association avec un véhicule pharmaceutiquement acceptable.

La présente invention concerne également l'utilisation d'une protéine telle que définie ci-dessus pour la préparation d'un médicament destiné à la prévention ou au traitement de maladies liées à une hyperphosphatémie, telles que les maladies cardiovasculaires et l'arthrite (pseudo-goutte).

Le terme "hyperphosphatémie" désigne un excès de phosphate dans l'organisme. Plus exactement, l'hyperphosphatémie est définie par une augmentation de la concentration plasmatique de phosphate au dessus de 1,44 mmol/l (45 mg/l), ladite quantité étant obtenue par dosage du phosphate total (le dosage par méthode colorimétrique est effectué après un procédé de minéralisation).

Selon un mode de réalisation avantageux, la protéine de l'invention pourra être administrée sous forme intraveineuse pour pouvoir fixer une quantité maximale de

10

15

20

25

30

phosphate pendant une longue période. En éliminant ultérieurement la protéine, une grande quantité de phosphate sera ainsi éliminée rapidement. Ceci pourrait espacer et diminuer les temps de dialyse.

La présente invention concerne plus particulièrement l'utilisation d'une protéine telle que définie ci-dessus dans le cadre de la prévention ou du traitement des maladies cardiovasculaires.

La présente invention concerne également une méthode de dosage de la protéine telle que définie ci-dessus, caractérisée en ce qu'elle comprend les étapes suivantes :

- des anticorps monoclonaux de lapin dirigé contre différents épitopes de la protéine de l'invention (anti-HPB) sont fixés sur une plaque et le sérum humain à analyser contenant ladite protéine (HPB) est déposé sur la plaque susmentionnée,
 - la plaque est rincée et lavée,
- on dépose sur la plaque des anticorps anti-anticorps de lapin (anti-IGrabbit-per) marqués avec de la peroxydase durant 30 minutes, afin de former un complexe, ternaire entre un anticorps monoclonal de lapin, la protéine selon l'invention et un anticorps anti-anticorps de lapin susmentionnés (anti-HPB HPB anti-IGrabbit-per),
 - la plaque est rincée et lavée,
- on fait réagir la peroxydase fixée sur la plaque avec son substrat (kit disponible, en commerce, Chemiluminescent Peroxidase Substrate (Sigma)) et la réaction est arrêtée au bout de 30 minutes avec la 3,3',5,5'-tétraméthylbenzidine (TMB, Sigma),
- la densité optique du produit formé à l'étape précédente est mesurée à 450 nm à l'aide d'un spectrophotomètre, et la comparaison de cette mesure avec une courbe étalon permet de déterminer la concentration de la protéine selon l'invention (HPB) présente dans le sérum.

Ainsi, la méthode de dosage susmentionné utilise une méthode par immunodosage du type ELISA (Engvall et al., 1971).

D'autres méthodes peuvent être utilisées pour doser la concentration de la protéine de l'invention dans le plasma telles que :

- les méthodes électrophorétiques, ou
- la quantification de son activité.

La présente invention concerne également l'application de la méthode de dosage telle que définie ci-dessus

au diagnostic in vitro de maladies liées à une hyperphosphatémie notamment lorsque la quantité de protéine telle que définie ci-dessus, dosée selon la méthode telle

que définie ci-dessus, est inférieure à la quantité de cette protéine normalement présente dans le sang d'un individu sain, ou

au diagnostic in vitro de maladies liées à une hypophosphatémie notamment lorsque la quantité de protéine telle que définie ci-dessus, dosée selon la méthode telle que définie ci-dessus, est supérieure à la quantité de cette protéine normalement présente dans le sang d'un individu sain, ou

au diagnostic in vitro d'une prédisposition d'un individu à de telles pathologies.

Le taux de la protéine selon l'invention est un indicateur de prédisposition à un risque de maladie cardiovasculaire. Ainsi, les personnes ayant un taux faible de ladite protéine auront un taux plus important de phosphate libre qui précipitera avec le calcium du plasma pour former des plaques de phosphate de calcium, ce qui est un facteur aggravant notamment les risques de maladies cardiovasculaires ou d'arthrite.

Un taux anormal de cette protéine est aussi le signe d'une pathologie existante. Par exemple une hyperphosphatémie peut déclencher une production accrue de protéine dans le but de limiter le taux de phosphate. Un taux faible peut être lui aussi révélateur d'un dysfonctionnement.

La présente invention concerne également l'application telle que définie ci-dessus au diagnostic *in vitro* de maladies liées à une hyperphosphatémie telles que les maladies cardiovasculaires, notamment les maladies cardiovasculaires liées à la formation de plaques d'athéromes, ou au diagnostic *in vitro* d'une prédisposition d'un individu au développement d'une des maladies susmentionnées.

La présente invention concerne également l'application telle que définie ci-dessus au diagnostic in vitro de maladies liées à une hypophosphatémie, ou au diagnostic in vitro d'une prédisposition d'un individu au développement de ces maladies.

Parmi les signes cliniques ou physiologiques caractérisant les maladies liées à une hypophosphatémie, on peut citer :

- une déminéralisation des os,

5

10

15

20

25

30

- les manifestations musculaires de l'hypophosphatémie qui comportent une myopathie proximale affectant le muscle squelettique et une dysphagie et un iléus affectant les muscles lisses,
 - des carences cardiopulmonaires par le manque d'ATP, et
 - une encéphalopathie métabolique.

LEGENDES DES FIGURES

La Figure 1 représente un gel SDS-PAGE des fractions finales dans le cadre de la purification de la paraoxonase humaine et de la protéine de l'invention SEQ ID NO : 1.

La colonne A correspond au marqueur de poids moléculaire et les colonnes B, C et D à trois purifications différentes issues de différentes poches de plasma humain. Elles contiennent toute les 3 la paraoxonase humaine et la protéine de fixation du phosphate.

10

15

5

La Figure 2 représente la structure schématique de la protéine de l'invention SEQ ID NO: 1 à laquelle est fixée une molécule de phosphate.

La Figure 3 correspond à un test de fixation du phosphate par la protéine de l'invention.

Les colonnes A à F correspondent à différents lots de purification de la protéine, de l'invention provenant de différentes poches de plasma humain; la colonne G auglysozyme 1 mg/ml et la colonne H à la β-lacto globuline.

20

La Figure 4 représente les coordonnées moléculaires de la protéine cristallisée de l'invention.

PARTIE EXPÉRIMENTALE

Isolation de la protéine

5

10

15

20

25

30

La protéine est obtenue à partir du plasma humain suivant le procédé de Gan et al. (1991):

La protéine est purifiée à partir de poches de plasma congelé (~200 ml) fournies par l'Etablissement de Transfusion Sanguine de Lyon-Beynost. Le caillot de fibrine, formé par l'ajout de 1 M (1% v/v) de CaCl2 au plasma est séparé du sérum par filtration. Le sérum est alors mélangé à 400 ml de Gel d'affinité (Cibacron 3GA-Agarose, C-1535, Sigma) équilibré avec un tampon A (Tris/HCl 50 mM, CaCl₂ 1mM, NaCl 4M, pH 8). Dans ces conditions, principalement les HDL ("high density lipoprotein": lipoprotéines de haute densité) sont adsorbées. Après 6 à 8 heures d'incubation, les protéines non adsorbées sur le gel sont éliminées par filtration sur fritté de porosité n°2. Ce lavage s'effectue jusqu'à ce que l'on ne détecte plus de protéine dans l'éluat (absorption UV à 280 nm). Le gel est ensuite équilibré avec un tampon B (Tris/HCl 50 mM, CaCl₂ 1mM, pH 8) puis placé en colonne XK 50/30 (Pharmacia). L'élution est réalisée en rajoutant 1g/l de déoxycholate de sodium et 0,1% de triton X-100 au tampon B. Les fractions montrant une activité arylestérase sont injectées sur 50 ml d'un gel échangeur d'anions (DEAE Sepharose Fast Flow, Pharmacia) disposé en colonne XK 26/70 (Pharmacia) et équilibré avec le tampon B et 0,05% de triton X-100. L'élution se fait par gradient de NaCl. Un premier palier est réalisé à 87,5 mM de NaCl afin d'éliminer l'apo A-I, une protéine liée à la paraoxonase, et la majorité des protéines contaminantes. La paraoxonase humaine (PON1) est environ éluée à la concentration de 140 mM de NaCl. Toutes les fractions conservées montrent une activité paraoxonase et arylestérase, ces activités étant vérifiées selon les tests mentionnés plus loin. Les fractions éluées ne sont pas regroupées. Les gels SDS-PAGE des fractions obtenues montrent des bandes comprises entre 38 kDa et 45 kDa (voir Figure 1). Chaque purification n'apporte pas toujours la même distribution de masse apparente. Cette légère hétérogénéité peut s'expliquer par la présence de 2 chaînes glycosylées sur la PON1.

En plus de la PON1 dans ces lots une autre protéine a été isolée par cristallisation, en substituant le triton par le C12-maltoside et en utilisant le sulfate d'ammonium comme agent précipitant. Les cristaux obtenus sont ceux d'une protéine inconnue caractérisée par radiocristallographie. La cristallisation est actuellement le seul procédé existant pour purifier cette protéine.

10

15

20

25

30

L'activité paraoxonase est mesurée dans un tampon Glycine 50 mM/NaOH, CaCl₂ 1 mM, en présence de 1 M NaCl, pH 10,5 et est déterminée au moyen d'un spectrophotomètre à double faisceau (Shimadzu UV 160A) thermostaté à 25°C. La vitesse d'hydrolyse est déterminée d'après la variation d'absorbance a 412nm, correspondant à la formation de p-nitrophénol libéré par l'hydrolyse de paraoxon, en fonction du temps, ε = 18290 M⁻¹cm⁻¹ (Smolen, 1991).

L'activité arylestérase est mesurée dans un tampon tris 50mM/HCl, CaCl₂ 1mM, pH 8 et est déterminée au moyen d'un spectrophotomètre à double faisceau (Shimadzu UV 160A) thermostaté à 25°C. La vitesse d'hydrolyse est déterminée d'après la variation d'absorbance a 270nm, correspondant à la formation de phénol libéré par l'hydrolyse de phényl acétate, en fonction du temps, $\varepsilon = 1310$ M⁻¹cm⁻¹ (Smolen, 1991).

Structure

La structure de la protéine cristallisée a été obtenue par cristallographie des rayons X. La structure à 1,9 Å de résolution a été obtenue par la méthode SIRAS (Single Isomorphous Replacement and Anomalous Scattering)(Figure 2).

Les données de diffraction des rayons X ont été collectées sur la ligne BM30 de l'ESRF (Grenoble).

Un dérivé de sel d'atome lourd a été obtenu en trempant un cristal dans une solution contenant des sels d'uranium.

Les images ont été intégrées, mises à l'échelle et combinées avec les programmes XDS2000 (Kabsch, 1993) et la suite CCP4 (COLLABORATIVE COMPUTATIONAL PROJECT, NUMBER 4. 1994. "The CCP4 Suite: Programs for Protein Crystallography". Acta Cryst. D50, 760-763).

Les programmes CNS (BRUNGER, 1998) et SnB (Weeks, 1999) ont été utilisés pour localiser les atomes d'uranium. Le programme SHARP (Copyright © 2001-2002 the Buster Development Group) a été utilisé pour obtenir les phases par la technique SIRAS.

372 acides aminés ont été construits automatiquement dans la carte de densité électronique par le programme ARP/wARP (Perrakis, 1997). Ce premier modèle a ensuite été affiné par le programme CNS.

En raison de la très bonne qualité des cartes de densité électronique, la séquence primaire de la protéine a pu être assignée avec 80% de fiabilité. Une molécule de phosphate a aussi pu être localisée.

La structure obtenue ne correspond pas du tout à la paraoxonase humaine. Le séquençage obtenu en identifiant les acides aminés à partir de la densité électronique indique que ni cette protéine humaine ni son gène n'ont été décrits auparavant. Il s'agit donc d'une nouvelle protéine.

La structure de la protéine de l'invention montre une très forte homologie avec la protéine de fixation du phosphate ("phosphate binding") d'*Escherichia coli*. Cette protéine chez cette bactérie sert à transporter le phosphate à travers le périplasme. On la retrouve chez beaucoup de procaryotes mais chez aucun eucaryote.

La densité électronique a aussi montré qu'une molécule de phosphate était fixée à la nouvelle protéine de l'invention, de la même façon que dans celle d'Escherichia coli.

Ainsi, on peut conclure que la protéine de l'invention caractérisée à partir du plasma humain présente une très forte homologie avec la protéine bactérienne et qu'elle est capable de fixer le phosphate et de le transporter.

Fixation du phosphate

5

10

15

20

25

30

La fixation du phosphate par la protéine de l'invention a été mise en évidence selon le test suivant :

On dépose 200 µl de la protéine de l'invention (colonnes A-F de la Figure 3), ou du lysozyme 1 mg/ml (colonne G) ou de la βlacto-globuline sur nitrocellulose (dot blot par aspiration).

L'ensemble est incubé pendant 2 h 30 dans un mélange comprenant : tris 50 mM; pH 8,0; ³²P (10 mCi/ml) 2 mM.

On effectue ensuite un rinçage 2 fois pendant 1 minute avec du tris 50 mM à pH 8,0, puis on expose l'ensemble à température ambiante pendant 45 minutes.

On constate alors (voir Figure 3) que la protéine de l'invention a fixé le phosphate radioactif (colonnes A à F), alors que les témoins tests ne l'ont pas fixée (colonnes G et H).

Rôle et utilisation de cette protéine

Pour doser la concentration de cette protéine dans le plasma les méthodes utilisables sont :

- les methodes électrophorétiques,
- la purification de la protéine,
- la quantification de son activité,
- l'immunodosage de la protéine en utilisant des anticorps polyclonaux/monoclonaux dirigé contre la protéine.

12

10

5

RÉFÉRENCES BIBLIOGRAPHIQUES

5

- Amann K., Tornig J., Kugel B., Gross M.L., Tyralla K., El-Shakmak A., Szabo
 A., Ritz E. (2003) Kidney Int. 63(4): 1296-1301;
- Blazheevich N.V., Spirichev V.B., Pozdniakov A.L. (1975) Kardiologiia. 15(6): 67-71;

10

- Brunger A.T., Adams P.D., Clore G.M., Delano W.L., Gros P., Grosse-Kunstleve R.W., Jiang J.-S., Kuszewski J., Nilges N., Pannu N.S., Read R.J., Rice L.M., Simonson T. et Warren G.L. (1998) *Acta Cryst.* **D54**: 905-921;

- Dorozhkin S.V., Epple M. (2002) Angew Chem Int Ed Engl. 41(17): 3130-46;

Engvall E., Jonsson K., Perlmann P. (1971) Biochim Biophys Acta. (1971) 251:
 427-34;

15

- Gan, K.N., Smolen, A., Eckerson, H.W. & La Du, B.N. (1991). Drug Metab Dispos. 19,100-106;
 - Kabsch W. (1993) J. Appl. Cryst. 26: 795-800;
- Perrakis, A., Sixma, T. K., Wilson, K.S., et Lamzin, V. S. (1997) Acta Cryst.
 D53: 448-455;

20

- Ramsdell R. (1999) Anna J. 26(3); 346-7.
- Smolen A, Eckerson HW, Gan KN, Hailat N, La Du BN. (1991) Drug Metab Dispos., 19: 107-112;
 - Weeks, C.M. & Miller, R. (1999) J. Appl. Cryst. 32, 120-124;

1

25

10

15

20

25

30

REVENDICATIONS

- 1. Protéine caractérisée en ce qu'elle comprend ou est constituée par :
- la séquence SEQ ID NO: 1,
- ou toute séquence dérivée de la séquence SEQ ID NO: 1, notamment par substitution, suppression ou addition d'un ou plusieurs acides aminés, sous réserve que ladite séquence dérivée se lie au phosphate,
- ou toute séquence homologue de la séquence SEQ ID NO: 1, ayant de préférence une homologie d'au moins environ 80% avec la séquence SEQ ID NO: 1, sous réserve que ladite séquence homologue se lie au phosphate,
- ou tout fragment d'une des séquences définies ci-dessus, sous réserve que ledit fragment se lie au phosphate, notamment tout fragment étant constitué d'au moins environ 20 acides aminés contigus dans la séquence SEQ ID NO : 1.
- 2. Séquence nucléotidique codant pour une protéine telle que définie dans la revendication 1.
- 3. Vecteur recombinant, notamment plasmide, cosmide, phage ou ADN de virus, contenant une séquence nucléotidique selon la revendication 2.
- 4. Vecteur recombinant selon la revendication 3, contenant les éléments nécessaires à l'expression dans une cellule hôte des polypeptides codés par les séquence nucléotidiques selon la revendication 1, insérés dans ledit vecteur.
- 5. Cellule hôte, choisie notamment parmi les bactéries, les virus, les levures, les champignons, les plantes ou les cellules de mammifères, ladité cellule hôte étant transformée, notamment à l'aide d'un vecteur recombinant selon l'une des revendications 3 ou 4.
- 6. Composition pharmaceutique comprenant à titre de substance active une protéine selon la revendication 1, notamment SEQ ID NO: 2, en association avec un véhicule pharmaceutiquement acceptable.

REVENDICATIONS

- 1. Protéine caractérisée en ce qu'elle comprend ou est constituée par :
- la séquence SEQ ID NO: 1,

5

10

15

20

25

30

- ou toute séquence dérivée de la séquence SEQ ID NO: 1, notamment par substitution, suppression ou addition d'un ou plusieurs acides aminés, sous réserve que ladite séquence dérivée se lie au phosphate,
- ou toute séquence homologue de la séquence SEQ ID NO: 1, ayant de préférence une homologie d'au moins environ 80% avec la séquence SEQ ID NO: 1, sous réserve que ladite séquence homologue se lie au phosphate,
- ou tout fragment d'une des séquences définies ci-dessus, sous réserve que ledit fragment se lie au phosphate, notamment tout fragment étant constitué d'au moins environ 20 acides aminés contigus dans la séquence SEQ ID NO : 1.
- 2. Séquence nucléotidique codant pour une protéine telle que définie dans la revendication 1.
- 3. Vecteur recombinant, notamment plasmide, cosmide, phage ou ADN de virus, contenant une séquence nucléotidique selon la revendication 2.
- 4. Vecteur recombinant selon la revendication 3, contenant les éléments nécessaires à l'expression dans une cellule hôte des polypeptides codés par une séquence nucléotidique selon la revendication 2, insérés dans ledit vecteur.
- 5. Cellule hôte, choisie notamment parmi les bactéries, les levures, les cellules de champignons, les cellules de plantes ou les cellules de mammifères, ladite cellule hôte étant transformée à l'aide d'un vecteur recombinant selon l'une des revendications 3 ou 4.
- 6. Composition pharmaceutique comprenant à titre de substance active une protéine selon la revendication 1, en association avec un véhicule pharmaceutiquement acceptable.

10

15

20

- 7. Utilisation d'une protéine selon la revendication 1 pour la préparation d'un médicament destiné à la prévention ou au traitement de maladies liées à une hyperphosphatémie, telles que les maladies cardiovasculaires.
- 8. Utilisation d'une protéine selon la revendication 1 dans le cadre de la prévention ou du traitement des maladies cardiovasculaires et de l'arthrite.
- 9. Méthode de dosage de la protéine selon la revendication 1, caractérisée en ce qu'elle comprend les étapes suivantes :
- des anticorps monoclonaux de lapin dirigé contre différents épitopes de la protéine selon la revendication 1 sont fixés sur une plaque et le sérum humain à analyser contenant ladite protéine est déposé sur la plaque susmentionnée,
 - la plaque est rincée et lavée,
- on dépose sur ladite plaque des anticorps anti-anticorps de lapin marqués avec de la peroxydase durant 30 minutes, afin de former un complexe ternaire entre un anticorps monoclonal de lapin, ladite protéine et un anticorps anti-anticorps de lapin susmentionnés,
 - la plaque est rincée et lavée,
- on fait réagir la peroxydase fixée sur la plaque avec son substrat et la réaction est arrêtée au bout de 30 minutes avec la 3,3',5,5'-tétraméthylbenzidine,
- la densité optique du produit formé à l'étape précédente est mesurée à 450 nm à l'aide d'un spectrophotomètre, et la comparaison de cette mesure avec une courbe étalon permet de déterminer la concentration de la protéine selon l'invention présente dans le sérum.

25

10. Application de la méthode de dosage selon la revendication 9

au diagnostic in vitro de maladies liées à une hyperphosphatémie notamment lorsque la quantité de protéine selon la revendication 1, dosée selon la méthode de la revendication 9, est inférieure à la quantité de cette protéine normalement présente dans le sang d'un individu sain, ou

30

au diagnostic in vitro de maladies liées à une hypophosphatémie notamment lorsque la quantité de protéine selon la revendication 1, dosée selon la méthode de la revendication 9, est supérieure à la quantité de cette protéine normalement présente dans le sang d'un individu sain, ou

- 7. Composition pharmaceutique selon la revendication 6, comprenant à titre de substance active une protéine représentée par la séquence SEO ID NO: 1.
- 8. Utilisation d'une protéine selon la revendication 1, pour la préparation d'un médicament destiné à la prévention ou au traitement de maladies liées à une hyperphosphatémie, telles que les maladies cardiovasculaires.
- 9. Utilisation d'une protéine selon la revendication 1, pour la préparation d'un médicament destiné à la prévention ou au traitement des maladies cardiovasculaires et de l'arthrite.
- 10. Méthode de dosage de la protéine selon la revendication 1, caractérisée en ce qu'elle comprend les étapes suivantes :
- des anticorps monoclonaux de lapin dirigé contre différents épitopes de la protéine selon la revendication 1 sont fixés sur une plaque et le sérum humain à analyser contenant ladite protéine est déposé sur la plaque susmentionnée,
 - la plaque est rincée et lavée,

10

15

20

25

30

- on dépose sur ladite plaque des anticorps anti-anticorps de lapin marqués avec de la peroxydase durant 30 minutes, afin de former un complexe ternaire entre un anticorps monoclonal de lapin, ladite protéine et un anticorps anti-anticorps de lapin susmentionnés.
 - la plaque est rincée et lavée,
- on fait réagir la peroxydase fixée sur la plaque avec son substrat et la réaction est arrêtée au bout de 30 minutes avec la 3,3',5,5'-tétraméthylbenzidine,
- la densité optique du produit formé à l'étape précédente est mesurée à 450 nm à l'aide d'un spectrophotomètre, et la comparaison de cette mesure avec une courbe étalon permet de déterminer la concentration de la protéine selon la revendication 1 présente dans le sérum.

11. Application de la méthode de dosage selon la revendication 10

au diagnostic in vitro de maladies liées à une hyperphosphatémie notamment lorsque la quantité de protéine selon la revendication 1, dosée selon la méthode de la revendication 10, est inférieure à la quantité de cette protéine normalement présente dans le sang d'un individu sain, ou

10

au diagnostic in vitro d'une prédisposition d'un individu à de telles pathologies.

- 11. Application selon la revendication 10 au diagnostic *in vitro* de maladies liées à une hyperphosphatémie telles que les maladies cardiovasculaires, notamment les maladies cardiovasculaires liées à la formation de plaques d'athéromes, ou au diagnostic *in vitro* d'une prédisposition d'un individu au développement d'une des maladies susmentionnées.
- 12. Application selon la revendication 10 au diagnostic *in vitro* de maladies liées à une hypophosphatémie, ou au diagnostic *in vitro* d'une prédisposition d'un individu au développement de ces maladies.

au diagnostic in vitro de maladies liées à une hypophosphatémie notamment lorsque la quantité de protéine selon la revendication 1, dosée selon la méthode de la revendication 10, est supérieure à la quantité de cette protéine normalement présente dans le sang d'un individu sain, ou

au diagnostic in vitro d'une prédisposition d'un individu à de telles pathologies.

12. Application selon la revendication 11 au diagnostic *in vitro* de maladies liées à une hyperphosphatémie telles que les maladies cardiovasculaires, notamment les maladies cardiovasculaires liées à la formation de plaques d'athéromes, ou au diagnostic *in vitro* d'une prédisposition d'un individu au développement d'une des maladies susmentionnées.

10

5

FIGURE 1

FIGURE 2

A B C D E F G H

FIGURE 3

ŧ

•

·

MOTA	1	CB	SER A	1	24,666	45.653	14.370	1.00 26.15	71.
		OG	SER A	1					A
MOTA MOTA	2 3	C	SER A	i	25.258 22.519	46.028 45.324	13.130 15.622	1.00 38.82 1.00 20.30	A A
MOTA	4	ŏ	SER A	î	21.889	46.093	16.367	1.00 20.30	A
ATOM	5	N	SER A	ī	22.817	47.273	14.074	1.00 22.37	Ä
MOTA	6	CA	SER A	1	23.146	45.831	14.317	1.00 22.87	A
MOTA	7	N	ILE A	2	22.676	44.027	15.878	1.00 14.00	A
MOTA	8	CA	ILE A	2	22.149	43.401	17.092	1.00 13.36	· A
MOTA	. 9	CB	ILE A ILE A	2	21.747 21.536	41.923	16.828	1.00 14.04	A
ATOM ATOM	10 11	CG2 CG1	ILE A ILE A	2 2	20.458	41.191 41.872	18.155 15.988	1.00 9.05 1.00 13.38	A A
ATOM	12	CDI	ILE A	2	20.173	40.501	15.357	1.00 14.27	, A
MOTA	13	C	ILE A	2	23.303	43.459	18.083	1.00 12.32	A
MOTA	14	0	ILE A	2	24.376	42.890	17.847	1.00 14.26	A
MOTA	15	N	ASP A ASP A	3	23.075	44.122	19.205	1.00 13.19	A
ATOM ATOM	16 17	CA CB	ASP A ASP A	3 3	24.134 24.149	44.331 45.830	20.193 20.578	1.00 11.15 1.00 12.52	A A
ATOM	18	ČĠ	ASP A	3	24.268	46.744	19.351	1.00 12.32	Ā
MOTA	19	OD1	ASP A	3	25.289	46.618	18.642	1.00 11.97	A
MOTA	20	OD2	ASP A	3	23.356	47.569	19.094	1.00 13.82	A
ATOM	21	Ç	ASP A	3	23.981	43.508	21.456	1.00 11.88	A
MOTA MOTA	22 23	N O	ASP A GLY A	3 4	22.947 25.022	43.577 42.763	22.116 21.800	1.00 11.48 1.00 9.46	A A
ATOM	24	ČA	GLY A	4	24.973	41.947	23.007	1.00 10.97	Â
ATOM	25	C	GLY A	4	26.303	41.966	23.740	1.00 8.48	A
MOTA	26	0	GLY A	4	27.314	42.413	23.200	1.00 9.87	A
ATOM	27	N	GLY A	5	26.296	41.496	24.987	1.00 11.77	A
ATOM ATOM	28 29	CA C	GLY. A GLY A	5 5	27.511 27.163	41.489 41.000	25.785 27.186	1.00 4.85 1.00 8.06	A A
ATOM	30	ŏ	GLY A	5	26.009	40.610	27.100	1.00 9.13	Ä
MOTA	31	N	GLY A	6	28.144	41.021	28.089	1.00 9.80	A
MOTA	32	CA	GLY A	6	27.898	40.589	29.458	1.00 9.86	A
ATOM	33	Ç	GLY A	6	28.970	39.679	30.014	1.00 7.11	A
ATOM ATOM	34 35	N O	GLY A ALA A	6 7	30.150 28.567	40.030 38.518	30.000 30.525	1.00 8.89 1.00 9.08	A A
ATOM	36	ČA	ALA A	ż	29.509	37.540	31.079	1.00 8.69	A
ATOM	37	CB	ALA A	7	28.814	36.168	31.195	1.00 7.94	A
ATOM	38	C	ALA A	7	30.811	37.363	30.277	1.00 9.69	Ā
ATOM ATOM	· 39 40	N O	ALA A THR A	7 8	30.781 31.941	37.212 37.367	29.050 30.981	1.00 7.30 1.00 7.56	A A
ATOM	41	ČA	THR A	8	33.236	37.135	30.338	1.00 7.30	A
ATOM	42	CB	THR A	8	34.402	37.865	31.065	1.00 8.00	Ā
ATOM	43	OG1	THR A	8	34.532	37.344	32.402	1.00 9.83	A
ATOM	44	CG2		8	34.123	39.388	31.139	1.00 10.68	Ā
ATOM	45	C	THR A	8 8	33.542 34.355	35.624 35.168	30.340 29.552	1.00 5.67 1.00 8.00	A A
ATOM ATOM	46 47	И	THR A LEU A	9	32.885	34.842	31.195	1.00 6.65	A
ATOM	48	CA	LEU A	9	33.190	33.389	31.224	1.00 9.98	A
MOTA	49	CB	LEU A	9	32.275	32.649	32.238	1.00 10.55	A
ATOM	50	CG	LEU A	9	32.400	31.109	32.271	1.00 11.53	A
ATOM ATOM	51 52	CD1 CD2		9 9	32.200 31.356	30.566 30.503	33.699 31.300	1.00 10.77 1.00 6.94	. A
ATOM	53	C	LEU A	é	33.103	32.755	29.817	1.00 10.91	A
ATOM	54	Ο.	LEU A	9	33.985	31.970	29.421	1.00 9.67	Α
ATOM	55	И	PRO A	10	32.051	33.088	29.040	1.00 6.59	A
ATOM ATOM	56 57	CD CA	PRO A	10 10	30.763 31.915	33.664 32.521	29.485 27.686	1.00 8.09	A A
ATOM	58	CB	PRO A	10	30.428	32.218	27.611	1.00 11.73	Ä
ATOM	59	CG	PRO A	10	29.845	33.467	28.251	1.00 8.40	A
MOTA	60	C	PRO A	10	32.317	33.504	26.579	1.00 8.72	A
ATOM	61	0	PRO A	10	32.040	33.263	25.396	1.00 9.01	A A
ATOM ATOM	62 63	N CA	GLU A GLU A	11 11	33.003 33.325	34.589 35.565	26.928 25.896	1.00 5.35 1.00 8.04	Ā
ATOM	64	CB	GLU A	īī	33.978	36.829	26.493	1.00 12.60	· A
ATOM	65	CG	GLU A	11	35.380	36.672	27.001	1.00 21.32	A
ATOM	66	CD	GLU A	11	35.994		27.391	1.00 26.61	A
ATOM	67	OE1		11	35.264		27.920	1.00 30.93	A
ATOM	68 69	OE2	GLU A	11 11	37.203 34.143	38.202 35.066	27.176 24.709	1.00 31.32 1.00 10.00	A A
ATOM ATOM	70	ŏ	GLU A	11	33.866		23.563	1.00 10.00	Ä
ATOM	71	Ŋ	LYS A	12	35.134	34.215	24.957	1.00 8.65	A
ATOM	72	CA	LYS A	12	35.935	33.678	23.850	1.00 10.43	A
ATOM	73	CB	LYS A	12	37.081	32.840	24.374 25.090	1.00 11.05 1.00 9.26	A A
MOTA MOTA	74 75	CG	LYS A LYS A	12 12	38.151 39.117	33.646 32.622	25.673	1.00 9.26 1.00 17.64	A
					U-144/	,			••

						_			
ATOM	76	CE	LYS A	12	40.293	33.277	26.307	1 00 24 02	
								1.00 24.93	
ATOM	77	NZ	LYS A	12	41.298	32.237	26.600	1.00 25.96	
ATOM	78	C	LYS A	12	35.079	32.830	22.934	1.00 11.17	
ATOM	79	0	LYS A	12	35.339	32.726	21.736	1.00 8.79	
ATOM	80	Ň	LEU A	13	34.071	32.176	23.498		
ATOM	81	ĈA	LEU A	13				1.00 7.67	
					33.189	31.383	22.669	1.00 10.04	
MOTA	82	CB	LEU A	13	32.230	30.549	23.534	1.00 8.86	
MOTA	83	CG	LEU A	13	31.082	29.888	22.769	1.00 8.97	
MOTA	84	CD1	LEU A	13	31.649	28.807	21.805	1.00 12.12	
ATOM	85	CD2	LEU A	13	30.101	29.268	23.753	1.00 12.69	
ATOM	86		LEU A						
		Č		13	32.371	32.292	21.750	1.00 9.01	
ATOM	87	0	LEU A	13	32.293	32.064	20.536	1.00 10.60	
ATOM	· 88	N	TYR A	14	31.761	33.329	22.305	1.00 10.47	
MOTA	89	CA	TYR A	14	30.920	34.195	21.482	1.00 9.03	
MOTA	90	CB	TYR A	14	30.029	35.087	22.352	1.00 8.38	
MOTA	91	CG	TYR A	14	29.091	34.293	23.253	1.00 11.48	
ATOM	92	CD1	TYR A	14	28.499	33.109	22.806		
MOTA	93	CEI		14				1.00 12.01	
			TYR A		27.671	32.341	23.642	1.00 10.45	
ATOM	94	CD2	TYR A	14	28.824	34.706	24.564	1.00 10.30	
MOTA	95	CE2	TYR A	14	27.998	33.948	25.403	1.00 10.35	
ATOM	96	CZ	TYR A	14	27.430	32.766	24.933	1.00 8.21	
MOTA	97	OH	TYR A	14	26.628	32.014	25.757	1.00 8.65	
ATOM	98	C	TYR A	14	31.715	35.036	20.489	1.00 9.67	
ATOM	99	ŏ	TYR A	14	31.142	35.538			
ATOM	100						19.515	1.00 8.36	
		Ŋ	LEU A	15	33.021	35.184	20.738	1.00 8.53	
ATOM	101	CA	LEU A	15	33.904	35.936	19.838	1.00 9.45	
MÖTA	102	CB	LEU A	15	35.087	36.564	20.601	1.00 8.09	
MOTA	103	CG	LEU A	15	34.742	37.802	21.433	1.00 14.85	
MOTA	104	CD1	LEU A	15	35.932	38.141	22.306	1.00 16.07	
MOTA	105		LEU A	15	34.364	38.990	20.510	1.00 12.61	
ATOM	106	C	LEU A	15	34.467	35.018	18.756		
MOTA	107	_	LEU A	15				1.00 16.00	
		O.			35.174	35.466	17.859	1.00 16.13	
ATOM	108	N	THR A	16	34.178	33.729	18.848	1.00 11.70	
ATOM	109	CA	THR A	16	34.681	32.791	17.853	1.00 11.09	
MOTA	110	CB	THR A	16	34.523	31.334	18.371	1.00 11.33	
ATOM	111	OG1	THR A	16	35.406	31.142	19.484	1.00 13.08	
ATOM	112	CG2	THR A	16	34.848	30.314	17.291	1.00 11.23	
ATOM	113	Ċ	THR A	16	33.906	32.997	16.549	1.00 12.10	
ATOM	114	ŏ	THR A	16	32.671				
ATOM	115					32.996	16.540	1.00 12.20	
		N	PRO A	17	34.620	33.158	15.420	1.00 14.18	
ATOM	116	CD	PRO A	17	36.085	33.162	15.251	1.00 14.83	
MOTA	117	CA	PRO A	17	33.933	33.367	14.137	1.00 17.90	
MOTA	118	CB	PRO A	17	35.068	33.292	13.113	1.00 20.97	
MOTA	119	CG	PRO A	17	36.251	33.842	13.890	1.00 21.64	
MOTA	120	С	PRO A	17	32.830	32.341	13.854	1.00 14.42	
ATOM	121	ŏ	PRO A	īż	33.027	31.143	14.066	1.00 14.18	
ATOM	122	Ň	ASP A	18	31.673	32.836	13.414		•
ATOM	123	ČA	ASP A					1.00 15.17	
				18	30.515	32.020	13.058	1.00 19.19	
ATOM	124	CB	ASP A	18	30.932	30.829	12.169	1.00 23.04	
ATOM	125	CG	ASP A	18	31.649	31.260	10.885	1.00 30.30	
MOTA	126		ASP A	18	31.214	32.238	10.239	1.00 30.86	
MOTA	127		ASP A	18	32.645	30.599	10.511	1.00 39.65	
MOTA	128	С	ASP A	18	29.657	31.479	14.212	1.00 13.08	
ATOM	129	0	ASP A	18	28.651	30.833	13.958	1.00 13.28	
ATOM	130	N	VAL A	19	30.041	31.709	15 466	1 00 13 07	
ATOM	131	CA	VAL A	19	29.199	31.221	16.570	1.00 8.94	
ATOM	132	CB	VAL A	19	29.976	31.225	17 011	1.00 0.54	
ATOM	133						17.911	1.00 9.65	
		CG1	VAL A	19	29.014	31.123	19.098	1.00 11.73	
ATOM	134	CG2	VAL A	19	30.930	30.026	17.923	1.00 11.99	
ATOM	135	C	VAL A	19	27.971	32.126	16.613	1.00 11.81	
ATOM	136	0	VAL A	19	26.829	31.655	16.707	1.00 11.21	
"MOTA"	137 "	N	LEU A	20 ~ .	28.198	33.434	16.567	~1.00 10.93	
ATOM	138	CA	LEU A	20	27.077	34.363	16.486	1.00 8.58	
ATOM	139	CB	LEU A	20	27.439	35.730	17.084	1.00 13.44	
ATOM	140	CG	LEU A	20	27.677	35.767	18.601	1.00 13.44	
ATOM	141		LEU A			33.707			
				20	27.863	37.222	19.084	1.00 13.26	
ATOM	142	CD2		20	26.480	35.130	19.315	1.00 11.94	
ATOM	143	Ç	LEU A	20	26.857	34.470	14.969	1.00 15.21	
ATOM	144	0	LEU A	20	27.836	34.550	14.196	1.00 11.72	
ATOM	145	N	THR A	21	25.596	34.455	14.540	1.00 14.05	
ATOM	146	CA	THR A	21	25.268	34.511	13.114	1.00 12.27	
ATOM	147	CB	THR A	21	24.006	33.653	12.865	1.00 16.46	
ATOM	148	OG1	THR A	21	22.966	34.044	13.774	1.00 13.53	
ATOM	149	CG2	THR A	21	24.326				
						32.173	13.121	1.00 17.80	
ATOM	150	C	THR A	21	25.121	35.937	12.509	1.00 14.67	
ATOM	151	0	THR A	21	25.452	36.928	13.148	1.00 12.04	

以 以此以 以上於 學 大學是 持衛

ATOM 152 N ALA A 22 24.663 36.037 11.265 1.00 12.98 ATOM 153 CA ALA A 22 24.523 37.335 10.594 1.00 12.25 ATOM 154 CB ALA A 22 23.913 37.146 9.208 1.00 15.06 ATOM 155 C ALA A 22 23.749 38.418 11.337 1.00 10.99 ATOM 156 O ALA A 22 22.688 38.174 11.916 1.00 15.12 ATOM 157 N GLY A 23 24.285 39.636 11.292 1.00 13.67 ATOM 158 CA GLY A 23 24.285 39.636 11.292 1.00 13.67 ATOM 159 C GLY A 23 24.068 41.057 13.371 1.00 14.29 ATOM 160 O GLY A 23 23.775 42.138 13.894 1.00 15.41 ATOM 161 N PHE A 24 24.760 40.116 14.001 1.00 12.44 ATOM 162 CA PHE A 24 25.238 40.283 15.363 1.00 14.48 ATOM 163 CB PHE A 24 25.238 40.283 15.363 1.00 14.48 ATOM 165 CD1 PHE A 24 24.156 38.276 16.527 1.00 12.35 ATOM 165 CD1 PHE A 24 24.156 38.276 16.527 1.00 12.35 ATOM 165 CD1 PHE A 24 23.888 38.237 17.898 1.00 12.73 ATOM 166 CD2 PHE A 24 23.888 38.237 17.898 1.00 12.73 ATOM 168 CE2 PHE A 24 22.035 37.153 16.125 1.00 11.12 ATOM 168 CE2 PHE A 24 22.035 37.153 16.125 1.00 11.12 ATOM 169 CZ PHE A 24 22.035 37.153 16.125 1.00 11.12 ATOM 169 CZ PHE A 24 22.035 37.153 16.125 1.00 11.12 ATOM 169 CZ PHE A 24 22.035 37.153 16.125 1.00 11.12 ATOM 170 C PHE A 24 22.035 37.153 16.125 1.00 11.12 ATOM 170 C PHE A 24 22.035 37.153 16.125 1.00 11.79 ATOM 171 O PHE A 24 22.035 37.153 16.378 1.00 12.41 ATOM 173 CA ALA A 25 26.630 42.141 16.183 1.00 14.60 ATOM 173 CA ALA A 25 27.881 42.875 16.378 1.00 12.46 ATOM 175 CB ALA A 25 27.881 42.875 16.378 1.00 12.46 ATOM 175 CB ALA A 25 27.881 42.875 16.378 1.00 12.46 ATOM 175 CB ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 CB ALA A 25 27.606 44.233 17.024 1.00 15.48 ATOM 175 CB ALA A 25 27.606 44.233 17.024 1.00 15.48 ATOM 175 CB ALA A 25 27.606 44.233 17.024 1.00 15.49 ATOM 175 CB ALA A 25 27.606 44.233 17.024 1.00 15.46 ATOM 175 CB ALA A 25 27.606 44.233 17.024 1.00 15.46 ATOM 175 CB ALA A 25 27.606 44.233 17.024 1.00 15.46 ATOM 175 CB ALA A 25 27.606 44.233 17.024 1.00 15.46 ATOM 175 CB ALA A 25 27.606 44.233 17.024 1.00 15.46 ATOM 175 CB ALA A 25 27.606 44.233 17.024 1.00 15.46 ATOM 175 CB ALA A 25 27.606 44.233 17
ATOM 154 CB ALA A 22 23.913 37.146 9.208 1.00 15.06 ATOM 155 C ALA A 22 23.749 38.418 11.337 1.00 10.99 ATOM 156 O ALA A 22 22.688 38.174 11.916 1.00 15.12 ATOM 157 N GLY A 23 24.285 39.636 11.292 1.00 13.67 ATOM 158 CA GLY A 23 23.631 40.753 11.951 1.00 14.86 ATOM 159 C GLY A 23 24.068 41.057 13.371 1.00 14.29 ATOM 160 O GLY A 23 23.775 42.138 13.894 1.00 15.41 ATOM 161 N PHE A 24 24.760 40.116 14.001 1.00 12.44 ATOM 162 CA PHE A 24 25.238 40.283 15.363 1.00 14.48 ATOM 163 CB PHE A 24 25.238 40.283 15.363 1.00 14.48 ATOM 165 CD1 PHE A 24 24.156 38.276 16.527 1.00 12.35 ATOM 165 CD1 PHE A 24 24.156 38.276 16.527 1.00 12.35 ATOM 165 CD2 PHE A 24 23.888 38.237 17.898 1.00 12.73 ATOM 167 CE1 PHE A 24 23.888 38.237 17.898 1.00 12.73 ATOM 169 CZ PHE A 24 22.035 37.153 16.125 1.00 11.12 ATOM 169 CZ PHE A 24 22.035 37.153 16.125 1.00 11.79 ATOM 170 C PHE A 24 21.772 37.118 17.502 1.00 11.79 ATOM 171 O PHE A 24 21.7569 40.592 14.850 1.00 12.41 ATOM 173 CA ALA A 25 27.881 42.875 16.378 1.00 12.48 ATOM 173 CA ALA A 25 27.881 42.875 16.378 1.00 15.19 ATOM 174 CB ALA A 25 27.881 42.875 16.378 1.00 15.19 ATOM 175 C ALA A 25 27.881 42.875 16.378 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 174 CB ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.148
ATOM 156 O ALA A 22 22.688 38.174 11.916 1.00 15.12 ATOM 157 N GLY A 23 24.285 39.636 11.292 1.00 13.67 ATOM 158 CA GLY A 23 24.068 41.057 13.371 1.00 14.86 ATOM 160 O GLY A 23 24.068 41.057 13.371 1.00 14.29 ATOM 161 N PHE A 24 24.760 40.116 14.001 1.00 15.41 ATOM 162 CA PHE A 24 25.238 40.283 15.363 1.00 14.48 ATOM 163 CB PHE A 24 25.238 40.283 15.363 1.00 14.48 ATOM 164 CG PHE A 24 24.156 38.276 16.527 1.00 12.35 ATOM 166 CD2 PHE A 24 23.225 37.734 15.644 1.00 6.46 ATOM 167 CE1 PHE A 24 23.888 38.237 17.898 1.00 12.73 ATOM 167 CE1 PHE A 24 22.035 37.153 16.125 1.00 11.12 ATOM 169 CZ PHE A 24 22.035 37.662 18.397 1.00 7.42 ATOM 169 CZ PHE A 24 22.035 37.662 18.397 1.00 7.42 ATOM 169 CZ PHE A 24 22.035 37.162 18.397 1.00 7.42 ATOM 170 C PHE A 24 22.035 37.162 18.397 1.00 12.36 ATOM 170 C PHE A 24 22.035 37.662 18.397 1.00 12.41 ATOM 172 N ALA A 25 26.584 41.030 15.444 1.00 14.36 ATOM 173 CA ALA A 25 26.630 42.141 16.183 1.00 14.60 ATOM 173 CA ALA A 25 27.881 42.875 16.378 1.00 13.54 ATOM 174 CB ALA A 25 27.881 42.875 16.378 1.00 13.54 ATOM 174 CB ALA A 25 27.881 42.875 16.378 1.00 13.54 ATOM 175 C ALA A 25 27.881 42.875 16.378 1.00 13.54 ATOM 175 C ALA A 25 27.881 42.875 16.378 1.00 13.54 ATOM 175 C ALA A 25 27.881 42.875 16.378 1.00 13.54 ATOM 175 C ALA A 25 27.881 42.875 16.378 1.00 13.54 ATOM 175 C ALA A 25 27.881 42.875 16.378 1.00 13.54 ATOM 175 C ALA A 25 27.881 42.875 16.378 1.00 13.54
ATOM 157 N GLY A 23 24.285 39.636 11.292 1.00 13.67 ATOM 158 CA GLY A 23 23.631 40.753 11.951 1.00 14.86 ATOM 159 C GLY A 23 24.068 41.057 13.371 1.00 14.29 ATOM 160 O GLY A 23 23.775 42.138 13.894 1.00 15.41 ATOM 161 N PHE A 24 24.760 40.116 14.001 1.00 12.44 ATOM 162 CA PHE A 24 25.238 40.283 15.363 1.00 14.48 ATOM 163 CB PHE A 24 25.424 38.899 16.020 1.00 9.89 ATOM 164 CG PHE A 24 24.156 38.276 16.527 1.00 12.35 ATOM 165 CD1 PHE A 24 23.225 37.734 15.644 1.00 6.46 ATOM 166 CD2 PHE A 24 23.225 37.734 15.644 1.00 6.46 ATOM 166 CD2 PHE A 24 23.888 38.237 17.898 1.00 12.73 ATOM 167 CE1 PHE A 24 22.035 37.153 16.125 1.00 11.12 ATOM 168 CE2 PHE A 24 22.035 37.662 18.397 1.00 7.42 ATOM 169 CZ PHE A 24 22.695 37.662 18.397 1.00 7.42 ATOM 169 CZ PHE A 24 22.695 37.662 18.397 1.00 12.41 ATOM 170 C PHE A 24 22.695 37.662 18.397 1.00 12.41 ATOM 171 O PHE A 24 26.584 41.030 15.444 1.00 14.36 ATOM 172 N ALA A 25 26.630 42.141 16.183 1.00 14.60 ATOM 173 CA ALA A 25 27.881 42.875 16.378 1.00 13.54 ATOM 174 CB ALA A 25 27.881 42.875 16.378 1.00 13.54 ATOM 175 C ALA A 25 27.881 42.875 16.378 1.00 13.54 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19
ATOM 158 CA GLY A 23 23.631 40.753 11.951 1.00 14.86 ATOM 159 C GLY A 23 24.068 41.057 13.371 1.00 14.29 ATOM 160 O GLY A 23 23.775 42.138 13.894 1.00 15.41 ATOM 161 N PHE A 24 24.760 40.116 14.001 1.00 12.44 ATOM 162 CA PHE A 24 25.238 40.283 15.363 1.00 14.48 ATOM 163 CB PHE A 24 25.424 38.899 16.020 1.00 9.89 ATOM 164 CG PHE A 24 24.156 38.276 16.527 1.00 12.35 ATOM 165 CD1 PHE A 24 23.225 37.734 15.644 1.00 6.46 ATOM 166 CD2 PHE A 24 23.888 38.237 17.898 1.00 12.73 ATOM 167 CE1 PHE A 24 22.035 37.153 16.125 1.00 11.12 ATOM 168 CE2 PHE A 24 22.035 37.153 16.125 1.00 11.12 ATOM 169 CZ PHE A 24 22.695 37.662 18.397 1.00 7.42 ATOM 169 CZ PHE A 24 22.695 37.662 18.397 1.00 7.42 ATOM 170 C PHE A 24 22.695 37.662 18.397 1.00 11.79 ATOM 170 C PHE A 24 26.584 41.030 15.444 1.00 14.36 ATOM 171 O PHE A 24 26.584 41.030 15.444 1.00 14.36 ATOM 172 N ALA A 25 26.630 42.141 16.183 1.00 14.60 ATOM 173 CA ALA A 25 27.881 42.875 16.378 1.00 13.54 ATOM 174 CB ALA A 25 27.881 42.875 16.378 1.00 13.54 ATOM 174 CB ALA A 25 27.8606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19
ATOM 161 N PHE A 24 24.760 40.116 14.001 1.00 12.44 ATOM 162 CA PHE A 24 25.238 40.283 15.363 1.00 14.48 ATOM 163 CB PHE A 24 25.424 38.899 16.020 1.00 9.89 ATOM 164 CG PHE A 24 24.156 38.276 16.527 1.00 12.35 ATOM 165 CD1 PHE A 24 23.225 37.734 15.644 1.00 6.46 ATOM 166 CD2 PHE A 24 23.888 38.237 17.898 1.00 12.73 ATOM 167 CE1 PHE A 24 22.035 37.153 16.125 1.00 11.12 ATOM 168 CE2 PHE A 24 22.035 37.662 18.397 1.00 7.42 ATOM 169 CZ PHE A 24 22.695 37.662 18.397 1.00 7.42 ATOM 169 CZ PHE A 24 22.695 37.662 18.397 1.00 7.42 ATOM 170 C PHE A 24 26.584 41.030 15.444 1.00 14.36 ATOM 171 O PHE A 24 26.584 41.030 15.444 1.00 14.36 ATOM 172 N ALA A 25 26.630 42.141 16.183 1.00 14.60 ATOM 173 CA ALA A 25 27.881 42.875 16.378 1.00 13.54 ATOM 174 CB ALA A 25 27.861 42.33 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19
ATOM 161 N PHE A 24 24.760 40.116 14.001 1.00 12.44 ATOM 162 CA PHE A 24 25.238 40.283 15.363 1.00 14.48 ATOM 163 CB PHE A 24 25.424 38.899 16.020 1.00 9.89 ATOM 164 CG PHE A 24 24.156 38.276 16.527 1.00 12.35 ATOM 165 CD1 PHE A 24 23.225 37.734 15.644 1.00 6.46 ATOM 166 CD2 PHE A 24 23.888 38.237 17.898 1.00 12.73 ATOM 167 CE1 PHE A 24 22.035 37.153 16.125 1.00 11.12 ATOM 168 CE2 PHE A 24 22.695 37.662 18.397 1.00 7.42 ATOM 169 CZ PHE A 24 22.695 37.662 18.397 1.00 7.42 ATOM 169 CZ PHE A 24 22.695 37.662 18.397 1.00 7.42 ATOM 170 C PHE A 24 26.584 41.030 15.444 1.00 14.36 ATOM 171 O PHE A 24 26.584 41.030 15.444 1.00 14.36 ATOM 172 N ALA A 25 26.630 42.141 16.183 1.00 14.60 ATOM 173 CA ALA A 25 27.881 42.875 16.378 1.00 13.54 ATOM 174 CB ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19
ATOM 163 CB PHE A 24 25.424 38.899 16.020 1.00 9.89 A ATOM 164 CG PHE A 24 24.156 38.276 16.527 1.00 12.35 A ATOM 165 CD1 PHE A 24 23.225 37.734 15.644 1.00 6.46 A ATOM 166 CD2 PHE A 24 23.888 38.237 17.898 1.00 12.73 A ATOM 167 CE1 PHE A 24 22.035 37.153 16.125 1.00 11.12 A ATOM 168 CE2 PHE A 24 22.695 37.662 18.397 1.00 7.42 A ATOM 169 CZ PHE A 24 21.772 37.118 17.502 1.00 11.79 A ATOM 170 C PHE A 24 26.584 41.030 15.444 1.00 14.36 A ATOM 171 O PHE A 24 27.569 40.592 14.850 1.00 12.41 A ATOM 172 N ALA A 25 26.630 42.141 16.183 1.00 14.60 A ATOM 173 CA ALA A 25 27.881 42.875 16.378 1.00 13.54 A ATOM 174 CB ALA A 25 27.606 44.233 17.024 1.00 15.19 A ATOM 175 C ALA A 25 28.752 42.031 17.315 1.00 12.48
ATOM 164 CG PHE A 24 24.156 38.276 16.527 1.00 12.35 ATOM 165 CD1 PHE A 24 23.225 37.734 15.644 1.00 6.46 ATOM 166 CD2 PHE A 24 23.888 38.237 17.898 1.00 12.73 ATOM 167 CE1 PHE A 24 22.035 37.153 16.125 1.00 11.12 ATOM 168 CE2 PHE A 24 22.695 37.662 18.397 1.00 7.42 ATOM 169 CZ PHE A 24 21.772 37.118 17.502 1.00 11.79 ATOM 170 C PHE A 24 26.584 41.030 15.444 1.00 14.36 ATOM 171 O PHE A 24 27.569 40.592 14.850 1.00 12.41 ATOM 172 N ALA A 25 26.630 42.141 16.183 1.00 14.60 ATOM 173 CA ALA A 25 27.881 42.875 16.378 1.00 13.54 ATOM 174 CB ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 28.752 42.031 17.315 1.00 12.48
ATOM 165 CD1 PHE A 24 23.225 37.734 15.644 1.00 6.46 A ATOM 166 CD2 PHE A 24 23.888 38.237 17.898 1.00 12.73 A ATOM 167 CE1 PHE A 24 22.035 37.153 16.125 1.00 11.12 A ATOM 168 CE2 PHE A 24 22.695 37.662 18.397 1.00 7.42 A ATOM 169 CZ PHE A 24 21.772 37.118 17.502 1.00 11.79 A ATOM 170 C PHE A 24 26.584 41.030 15.444 1.00 14.36 A ATOM 171 O PHE A 24 27.569 40.592 14.850 1.00 12.41 A ATOM 172 N ALA A 25 26.630 42.141 16.183 1.00 14.60 A ATOM 173 CA ALA A 25 27.881 42.875 16.378 1.00 13.54 A ATOM 174 CB ALA A 25 27.606 44.233 17.024 1.00 15.19 A ATOM 175 C ALA A 25 28.752 42.031 17.315 1.00 12.48
ATOM 167 CE1 PHE A 24 22.035 37.153 16.125 1.00 11.12 ATOM 168 CE2 PHE A 24 22.695 37.662 18.397 1.00 7.42 ATOM 169 CZ PHE A 24 21.772 37.118 17.502 1.00 11.79 ATOM 170 C PHE A 24 26.584 41.030 15.444 1.00 14.36 ATOM 171 O PHE A 24 27.569 40.592 14.850 1.00 12.41 ATOM 172 N ALA A 25 26.630 42.141 16.183 1.00 14.60 ATOM 173 CA ALA A 25 27.881 42.875 16.378 1.00 13.54 ATOM 174 CB ALA A 25 27.606 44.233 17.024 1.00 15.19 ATOM 175 C ALA A 25 28.752 42.031 17.315 1.00 12.48
ATOM 168 CE2 PHE A 24 22.695 37.662 18.397 1.00 7.42 A ATOM 169 CZ PHE A 24 21.772 37.118 17.502 1.00 11.79 A ATOM 170 C PHE A 24 26.584 41.030 15.444 1.00 14.36 A ATOM 171 O PHE A 24 27.569 40.592 14.850 1.00 12.41 A ATOM 172 N ALA A 25 26.630 42.141 16.183 1.00 14.60 A ATOM 173 CA ALA A 25 27.881 42.875 16.378 1.00 13.54 A ATOM 174 CB ALA A 25 27.606 44.233 17.024 1.00 15.19 A ATOM 175 C ALA A 25 28.752 42.031 17.315 1.00 12.48
ATOM 169 CZ PHE A 24 21.772 37.118 17.502 1.00 11.79 A ATOM 170 C PHE A 24 26.584 41.030 15.444 1.00 14.36 A ATOM 171 O PHE A 24 27.569 40.592 14.850 1.00 12.41 A ATOM 172 N ALA A 25 26.630 42.141 16.183 1.00 14.60 A ATOM 173 CA ALA A 25 27.881 42.875 16.378 1.00 13.54 A ATOM 174 CB ALA A 25 27.606 44.233 17.024 1.00 15.19 A ATOM 175 C ALA A 25 28.752 42.031 17.315 1.00 12.48 A
ATOM 171 O PHE A 24 27.569 40.592 14.850 1.00 12.41 A ATOM 172 N ALA A 25 26.630 42.141 16.183 1.00 14.60 A ATOM 173 CA ALA A 25 27.881 42.875 16.378 1.00 13.54 A ATOM 174 CB ALA A 25 27.606 44.233 17.024 1.00 15.19 A ATOM 175 C ALA A 25 28.752 42.031 17.315 1.00 12.48 A
ATOM 172 N ALA A 25 26.630 42.141 16.183 1.00 14.60 A ATOM 173 CA ALA A 25 27.881 42.875 16.378 1.00 13.54 A ATOM 174 CB ALA A 25 27.606 44.233 17.024 1.00 15.19 A ATOM 175 C ALA A 25 28.752 42.031 17.315 1.00 12.48 A
ATOM 174 CB ALA A 25 27.606 44.233 17.024 1.00 15.19 A ATOM 175 C ALA A 25 28.752 42.031 17.315 1.00 12.48 A
ATOM 175 C ALA A 25 28.752 42.031 17.315 1.00 12.48 A
ATION 177 N DDO N OC 20 OCT 12 OCT 17
ATOM 177 N PRO A 26 30.067 42.289 17.348 1.00 11.27 A ATOM 178 CD PRO A 26 30.837 43.202 16.476 1.00 13.96 A
ATOM 179 CA PRO A 26 30.952 41.507 18.231 1.00 12.70 A
ATOM 180 CB PRO A 26 32.334 42.117 17.989 1.00 14.99 A ATOM 181 CG PRO A 26 32.241 42.582 16.519 1.00 19.22 A
ATOM 182 C PRO A 26 30.536 41.602 19.699 1.00 10.57
ATOM 183 O PRO A 26 30.222 42.681 20.192 1.00 10.54 A
ATOM 184 N TYR A 27 30.529 40.456 20.367 1.00 8.04 A ATOM 185 CA TYR A 27 30.161 40.345 21.793 1.00 9.13 A
ATOM 186 CB TYR A 27 30.294 38.886 22.231 1.00 8.74 A
ATOM 187 CG TYR A 27 29.824 38.612 23.648 1.00 5.12 A ATOM 188 CD1 TYR A 27 28.469 38.512 23.938 1.00 6.81 A
ATOM 188 CD1 TYR A 27 28.469 38.512 23.938 1.00 6.81 A ATOM 189 CE1 TYR A 27 28.024 38.224 25.247 1.00 9.00 A
ATOM 190 CD2 TYR A 27 30.741 38.423 24.682 1.00 5.70 A
ATOM 191 CE2 TYR A 27 30.310 38.131 25.992 1.00 7.78 A ATOM 192 CZ TYR A 27 28.948 38.032 26.259 1.00 9.36 A
ATOM 193 OH TYR A 27 28.502 37.709 27.532 1.00 8.37 A
ATOM 194 C TYR A 27 31.081 41.207 22.675 1.00 10.49 A ATOM 195 O TYR A 27 32.297 41.207 22.494 1.00 9.91 A
ATOM 196 N ILE A 28 30.510 41.931 23.635 1.00 8.97 A
ATOM 197 CA ILE A 28 31.324 42.765 24.517 1.00 12.31 A
ATOM 198 CB ILE A 28 30.801 44.225 24.521 1.00 13.61 A ATOM 199 CG2 ILE A 28 31.657 45.098 25.459 1.00 13.95 A
ATOM 200 CG1 ILE A 28 30.871 44.793 23.095 1.00 11.91 A
ATOM 201 CD1 ILE A 28 30.192 46.146 22.915 1.00 12.92 A ATOM 202 C ILE A 28 31.333 42.191 25.942 1.00 13.14 A
ATOM 203 0 ILE A 28 30.315 42.189 26.622 1.00 8.79 A
ATOM 204 N GLY A 29 32.499 41.706 26.373 1.00 13.23 A ATOM 205 CA GLY A 29 32.630 41.105 27.695 1.00 15.83 A
ATOM 206 C GLY A 29 32.868 42.127 28.791 1.00 16.10 A
ATOM 207 O GLY A 29 33.915 42.794 28.826; 1.00 12.27 A
ATOM 208 N THR A 30 31.900 42.234 29.697 1.00 8.70 A ATOM 209 CA THR A 30 31.966 43.200 30.783 1.00 10.71 A
ATOM 210 CB THR A 30 31.061 44.442 30.473 1.00 11.83 A
ATOM 211 OG1 THR A 30 29.703 44.014 30.222 1.00 16.91 A ATOM 212 CG2 THR A 30 31.607 45.235 29.249 1.00 8.83 A
ATOM 213 C THR A 30 31.538 42.640 32.147 1.00 11.78 A
ATOM 214 O THR A 30 31.532 43.378 33.135 1.00 11.34 A ATOM 215 N GLY A 31 31.187 41.352 32.210 1.00 10.41 A
ATOM 216 CA GLY A 31 30.729 40.789 33.473 1.00 8.40 A
ATOM 217 C GLY A 31 29.208 40.604 33.467 1.00 9.64 A
ATOM 218 O GLY A 31 28.478 41.396 32.862 1.00 8.01 A ATOM 219 N SER A 32 28.718 39.566 34.138 1.00 7.93 A
ATOM 220 CA SER A 32 27.274 39.297 34.143 1.00 4.39 A
ATOM 221 CB SER A 32 26.961 37.954 34.832 1.00 2.86 A ATOM 222 OG SER A 32 27.538 36.876 34.125 1.00 6.73 A
ATOM 223 C SER A 32 26.440 40.386 34.793 1.00 7.61 A
ATOM 224 O SER A 32 25.321 40.626 34.354 1.00 9.70 A
ATOM 225 N GLY A 33 26.984 41.052 35.811 1.00 8.20 A ATOM 226 CA GLY A 33 26.256 42.121 36.506 1.00 6.91 A

ATOM	227	C	GLY A	33		25.942	43.235	35.524	1.00 9.	.16
MOTA	228	0	GLY A	33		24.799	43.708	35.429		. 95
MOTA	229	N	LYS A	34		26.943	43.633	34.749	1.00 10.	
ATOM	230	CA	LYS A	34		26.710	44.681	33.758		. 52
MOTA	231	CB	LYS A	34		28.040	45.240	33.250	1.00 7.	.07
ATOM ATOM	232 233	CG	LYS A	34		28.667	46.220	34.250	1.00 12.	
ATOM	234	CE	LYS A LYS A	3 <u>4</u> 34		29.957	46.854	33.703	1.00 10.	
ATOM	235	NZ	LYS A	34		30.597 29.700	47.768	34.748	1.00 10.	
ATOM	236	C	LYS A	34		25.848	48.890 44.201	35.066 32.601	1.00 23.	47
ATOM	237	ŏ	LYS A	34		25.070	44.977	32.043	1.00 12. 1.00 9.	.59
ATOM	238	N	GLY A	35		25.983	42.928	32.236		.69 .
ATOM	239	CA	GLY A	35		25.158	42.386	31.162		50
ATOM	240	Ğ	GLY A	35		23.677	42.414	31.542		68
ATOM	241	Ö.	GLY A	35		22.831	42.767	30.717	1.00 9.	.00
ATOM ATOM	242 243	N CA	LYS A LYS A	36		23.340	42.077	32.787		.56
ATOM	244	CB	LYS A	36 36		21.929 21.709	42.089	33.173		26
ATOM	245	ČĞ	LYS A	36		21.709	41.393 39.861	34.533 34.445		.15
ATOM	246	CD	LYS A	36		21.394	39.069	35.662		. 28 . 85
MOTA	247	CE	LYS A	36		21.990	39.576	36.986	1.00 11.	
MOTA	248	NZ	LYS A	36		21.397	38.945	38.221	1.00 11.	
ATOM	249	C	LYS A	36		21.409	43.527	33.204	1.00 11.	
MOTA	250	Ö.	LYS A	36		20.311	43.787	32.724	1.00 14.	03
ATOM ATOM	251 252	N CA	ILE A ILE A	37		22.190	44.459	33.749		12
ATOM	253	CB	ILE A	37 37		21.752 22.778	45.854	33.766	1.00 11.	15
ATOM	254	CG2	ILE A	37		22.424	46.779 48.252	34.462 34.197	1.00 10.	
MOTA	255	CG1	ILE A	37	•	22.774	46.522	35.972	1.00 11. 1.00 9.	50
MOTA	256	CD1	ILE A	37		24.024	47.029	36.669	1.00 15.	62
ATOM	257	Ç	ILE A	37		21.563	46.368	32.325	1.00 11.	
ATOM	258	0	ILE A	37		20.570	47.017	32.018	1.00 11.	36
ATOM ATOM	259 260	N	ALA A	38		22.518	46.071	31.452		31
ATOM	261	CA CB	ALA A ALA A	38 38	•	22.438 23.650	46.539	30.063	1.00 10.	
MOTA	262	C	ALA A	38		23.630	46.016 46.102	29.269 29.375	1.00 10.	
ATOM	263	ŏ	ALA A	38		20.447	46.899	28.712		69 41
ATOM	264	N	PHE A	39		20.771	44.831	29.541		70
ATOM	265	CA	PHE A	39		19.566	44.327	28.914		40
ATOM	266	CB	PHE A	39		19.549	42.787	28.888		06
ATOM ATOM	267 268	CG	PHE A	39		18.287	42.214	28.270	1.00 7.	16
ATOM	269	CD2	PHE A	39 39		18.223 17.146	41.953	26.896		56
ATOM	270	CEI	PHE A	39		17.035	42.000 41.481	29.051 26.306		19
MOTA	271	CE2	PHE A	39		15.947	41.530	28.479		12 01
MOTA	272	CZ	PHE A	39		15.888	41.269	27.101		28
ATOM	273	Ç	PHE A	39		18.304	44.790	29.608	1.00 12.	
ATOM ATOM	274	O.	PHE A	39		17.398	45.313	28.972	1.00 10.	76 .
MOTA	275 276	N CA	LEU A LEU A	40 40		18.246	44.602	30.920		71
ATOM	277	CB	LEU A	40		17.034 17.204	44.938 44.513	31.678 33.144		94
ATOM	278	ČĞ	LEU A	40	'	17.342	43.005	33.400	1.00 7. 1.00 10.	80
ATOM	279	CD1	LEU A	40		17.809		34.887	1.00 6.	45
ATOM	280		LEU A	40		16.006	42.296	33.132	1.00 12.	
ATOM	281	Č	LEU A	40		16.626	46.403	31.632	1.00 10.	63
ATOM ATOM	282 283	O N	LEU A GLU A	40 41		15.430	46.730	31.629		
MOTA	284	CA	GLU A	41		17.604 17.294	47.291 48.717	31.586 31.551	1.00 10.	
MOTA	285	CB	GLU A	41		18.053	49.436	32.669	1.00 9. 1.00 13.	10
MOTA	286	CG	GLU A	41		17.802	48.829	34.036	1.00 11.	
ATOM	287	CD	GLU A	41		18.671	49.429	35.131	1.00 22.	
ATOM	288		GLU A	41	• ~ • • •	18:975	48.713	36.103	1.00 27.	
ATOM ATOM	289	OE2	GLU A	41		19.037	50.616	35.043	1.00 22.	49
MOTA MOTA	290 291	С 0	GLU A GLU A	41 41		17.633 17.505	49.361	30.218	1.00 12.	
ATOM	292	И	ASN A	42		18.010	50.576 48.537	30.066	1.00 13.	
ATOM	293	CA	ASN A	42		18.463	49.008	29.238 27.923	1.00 11.	
MOTA	294	CB	ASN A	42		17.322	49.494	27.022	1.00 11.	
ATOM	295	CG	ASN A	42		17.824	49.897	25.642	1.00 16.	
ATOM	296		ASN A	42		18.885	49.428	25.189	1.00 15.	
ATOM	297	ND2	ASN A	42		17.076	50.763	24.960	1.00 14.	
ATOM ATOM	298 299	C O	ASN A ASN A	42 42		19.486 19.300	50.126 51.260	28.091	1.00 16.	
ATOM	300	Ŋ	SER A	43		20.578	49.789	27.631 28.767	1.00 14.	
			· ··			_0.5,0	-5.705	20.707	1.00 14.	27

8/45.

MOTA	301	CA	SER A	43	•	21.665	50.740	29.001	1.00 14.54	A
MOTA	302	CB	SER A	43		21.920	50.874	30.520	1.00 19.90	. А
MOTA	303	ŌĞ	SER A	43		20.922	51.662	31.162	1.00 26.26	
ATOM	304	č	SER A	43						A
						22.965	50.327	28.302	1.00 13.78	A
MOTA	305	0	SER A	43		23.790	49.633	28.891	1.00 10.60	A
MOTA	306	N	TYR A	44		23.168	50.755	27.056	1.00 9.73	. A
MOTA	307	CA	TYR A	44		24.396	50.401	26.361	1.00 10.86	A
MOTA	308	CB	TYR A	44		24.330	50.880	24.904	1.00 10.54	Α
MOTA	309	CG	TYR A	44		25.414	50.311	24.034	1.00 12.22	A
ATOM	310	CD1	TYR A	44		26.631	50.983	23.857	1.00 12.57	A
ATOM	311	CE1	TYR A	44		27.625	50.469	23.011	1.00 10.91	A
ATOM	312	CD2	TYR A	44		25.217	49.106	23.357	1.00 10.34	. A
ATOM	313	CE2	TYR A	44		26.201	48.587	22.517		
										A
MOTA	314	CZ	TYR A	44		27.394	49.267	22.347	1.00 14.12	A
MOTA	315	ÕН	TYR A	44		28.357	48.725	21.524	1.00 11.54	A
MOTA	316	C	TYR A	44		25.650	50.971	27.026	1.00 8.02	Α
MOTA	317	0	TYR A	44		26.775	50.515	26.756	1.00 10.36	Α
MOTA	318	N	ASN A	45		25.484	51.941	27.917	1.00 8.55	A
MOTA	319	CA	ASN A	45		26.657	52.547	28.535	1.00 14.36	A
MOTA	320	CB	ASN A	45		26.271	53.811	29.337	1.00 8.69	A
ATOM	321	CG	ASN A	45		25,707	53.503	30.708	1.00 11.69	A
ATOM	322	OD1	ASN A	45		25.048	52.488	30.910	1.00 13.56	A
ATOM	323	ND2	ASN A	45		25.934	54.411	31.655	1.00 14.48	Ā
MOTA	324	C	ASN A	45		27.423	51.535	29.388	1.00 13.91	A
ATOM	325	ŏ	ASN A	45		28.573	51.781	29.755	1.00 11.13	A
ATOM	326	Ŋ	GLN A	46		26.788	50.393	29.681	1.00 8.83	A
ATOM	327	CA	GLN A	46		27.462	49.337			
	328		GLN A					30.435	1.00 11.62	A
ATOM		CB		46		26.421	48.390	31.080	1.00 10.13	A
ATOM	329	CG	GLN A	46		25.487	49.076	32.083	1.00 14.66	A
ATOM	330	CD	GLN A	46		26.259	49.792	33.170	1.00 18.72	A
MOTA	331	OE1	GLN A	46		26.983	49.165	33.937	1.00 18.65	A
ATOM	332	NE2	GLN A	46		26.133	51.116	33.228	1.00 16.99	A
ATOM	333	Ç	GLN A	46		28.408	48.543	29.491	1.00 10.06	A
ATOM	334	0	GLN A	46		29.275	47.818	29.956	1.00 10.43	A
MOTA	335	N	PHE A	47		28.232	48.691	28.174	1.00 8.72	A
ATOM	336	CA	PHE A	47		29.055	48.025	27.148	1.00 7.46	Α
ATOM	337	CB	PHE A	47		28.191	47.487	25.992	1.00 7.56	A
ATOM	338	CG	PHE A	47		27.271	46.349	26.366	1.00 12.11	A
ATOM	339	CD1	PHE A	47		27.433	45.651	27.559	1.00 11.35	A
ATOM	340	CD2	PHE A	47		26.268	45.945	25.474	1.00 14.21	A
ATOM	341	CE1		47		26.616	44.567	27.861	1.00 9.31	A
ATOM	342	CE2		47		25.442	44.859	25.761	1.00 9.84	Ā
MOTA	343	CZ	PHE A	47		25.617	44.167	26.959	1.00 10.19	Ä
ATOM	344	č	PHE A	47		30.053	48.988	26.484	1.00 12.94	Ä
ATOM	345	ŏ	PHE A	47		31.109	48.580	26.022	1.00 14.11	Ā
ATOM	346	Ŋ	GLY A	48		29.677	50.257	26.378	1.00 11.49	Ā
ATOM	347	CA	GLY A	48		30.551			1.00 11.49	
ATOM	348	Ĉ	GLY A	48		30.027	51.222 52.642	25.731		A
ATOM	349	-	GLY A					25.833	1.00 15.44	A
		O		48		28.999	52.908	26.459	1.00 16.60	A
MOTA	350	N	THR A	49		30.722	53.566	25.187	1.00 14.37	Ā
ATOM	.351	CA	THR A	49		30.333	54.967	25.256	1.00 13.58	Ā
MOTA	352	CB	THR A	49		31.576	55.843	25.161	1.00 14.46	A
MOTA	353	OG1	THR A	49		32.234	55.567	23.924	1.00 15.00	A
MOTA	354	CG2	THR A	49		32.558	55.524	26.322	1.00 13.17	A
ATOM	355	C	THR A	49		29.301	55.436	24.216	1.00 14.30	A
MOTA	356	0	THR A	49		28.716	56.511	24.370		A
ATOM	357	Ŋ	ASN A	50		29.062	54.659	23.162	1.00 13.09	A
ATOM	358	CA	ASN A	50		28.076	55.116	22.173	1.00 14.85	A
ATOM	359	CB	ASN A	50		28.324	54.519	20.785	1.00 15.63	A
ATOM	360	CG	ASN A	50		27.379	55.096	19.739	1.00 18.88	A
ATOM	361	OD1		50		26.472	55.883	20.059	1.00 19.28	A
ATOM	362	MD2	ASN A	50		27.574	54.707	18.489	1.00 19.28	A
ATOM	363	C	ASN A	50		26.669	54.751	22.615	1.00 14.82	Α
ATOM	364	0	ASN A	50		26.099	53.739	22.187	1.00 14.58	A
ATOM	365	N	THR A	51		26.097	55.608	23.443	1.00 13.25	A
ATOM	366	CA	THR A	51		24.782	55.377	23.988	1.00 15.77	Ä
ATOM	367	CB	THR A	51		24.595	56.210	25.242	1.00 17.96	Ä
ATOM	368	OG1		51		24.937	57.574	24.973	1.00 17.36	Ä
ATOM	369	CG2		51		25.506	55.684	26.332	1.00 18.18	A
ATOM	370	C	THR A	51		23.581	55.539	23.053		A
ATOM	371	Ö	THR A	51		22.440	55.436			A
								23.512	1.00 19.68	
ATOM	372	N Ca	THR A	52 52		23.820 22.702	55.795	21.761	1.00 16.82	A N
ATOM	373	CA	THR A				55.865	20.827	1.00 19.67	A
ATOM	374	CB	THR A	52	-	23.017	56.666	19.524	1.00 22.55	A
ATOM	375	OGI	THR A	52		24.028	56.006	18.744	1.00 22.57	A

ATOM	376	CG2	THR A	52	23.460	58.081	19.875	1.00 21.07
ATOM	377	C	THR A	52	22.342	54.428	20.446	1.00 21.07
MOTA	378	ŏ	THR A	52	21.270	54.175	19.905	1.00 17.92
MOTA	379	N	LYS A	53	23.238	53.488	20.740	1.00 14.41
ATOM	380	CA	LYS A	53	22.978	52.080	20.427	1.00 12.53
MOTA MOTA	381 382	CB	LYS A	53	24.292	51.292	20.406	1.00 14.33
ATOM	383	CG	LYS A LYS A	53 53	25.207 26.478	51.573	19.213	1.00 17.93
ATOM	384	CE	LYS A	53	27.477	50.731 51.052	19.324 18.214	1.00 18.20 1.00 21.01
MOTA	385	NZ	LYS A	53	26.908	50.784	16.865	1.00 22.67
ATOM	386	Ċ	LYS A	53	22.045	51.470	21.474	1.00 12.72
MOTA MOTA	387 388	И О	LYS A ASP A	53	22.075	51.869	22.635	1.00 11.93
ATOM	389	CA	ASP A ASP A	54 54	21.223 20.298	50.499 49.826	21.064	1.00 13.58
MOTA	390	CB	ASP A	54	18.887	49.745	21.982 21.380	1.00 10.96 1.00 12.81
ATOM	391	CG	ASP A	54	18.249	51.107	21.218	1.00 19.07
ATOM ATOM	392 393	OD1 OD2	ASP A ASP A	54	18.010	51.529	20.059	1.00 17.31
ATOM	394	C	ASP A ASP A	54 54	17.997 20.819	51.759 48.416	22.260 22.246	1.00 15.46
ATOM	395	Ŏ	ASP A	54	21.505	47.837	21.407	1.00 8.44 1.00 14.56
MOTA	396	N	VAL A	55	20.485	47.875	23.411	1.00 12.75
ATOM ATOM	397 398	CA CB	VAL A VAL A	55	20.919	46.541	23.799	1.00 12.22
ATOM	399	CG1	VAL A	55 55	21.150 21.596	46.486 45.057	25.328 25.775	1.00 7.89 1.00 7.35
ATOM	400	CG2	VAL A	55	22.229	47.518	25.707	1.00 7.35 1.00 6.23
ATOM	401	C	VAL A	55	19.840	45.540	23.386	1.00 9.36
ATOM ATOM	402 403	O	VAL A HIS A	55	18.659	45.768	23.630	1.00 11.95
ATOM	404	N CA	HIS A	56 56	20.258 19.323	44.441 43.432	22.755 22.285	1.00 9.82
MOTA	405	CB	HIS A	56	19.552	43.432	20.782	1.00 8.89 1.00 8.33
ATOM	406	CG	HIS A	56	19.455	44.485	19.985	1.00 9.48
ATOM ATOM	407	CD2	HIS A	56	20.414	45.264	19.430	1.00 11.14
ATOM	408 409	ND1 CE1	HIS A HIS A	56 56	18.255 18.483	45.121	19.738	1.00 13.82
ATOM	410	NE2	HIS A	56	19.783	46.236 46.345	19.064 18.866	1.00 12.14 1.00 12.83
ATOM	411	Ç	HIS A	56	19.389	42.097	23.033	1.00 9.87
ATOM ATOM	412 413	O	HIS A	56	18.419	41.331	23.039	1.00 8.84
ATOM	414	N CA	TRP A	57 57	20.531 20.618	41.797	23.649	1.00 10.03
MOTA	415	CB	TRP A	57	20.753	40.535 39.340	24.385 · 23.430	1.00 12.07 1.00 7.72
ATOM	416	CG	TRP A	57	22.078	39.288	22.673	1.00 9.96
MOTA MOTA	417 418	CD2	TRP A	57	23.188	38.398	22.935	1.00 8.55
ATOM	419	CE2	TRP A	5 7 57	24.161 23,442	38.642 37.413	21.945	1.00 7.37
ATOM	420	CD1	TRP A	57	22.430	40.021	23.914 21.570	1.00 9.79 1.00 9.43
ATOM	421	NE1	TRP A	57	23.685	39.637	21.124	1.00 7.89
ATOM ATOM	422 423	CZ2 CZ3	TRP A	57 57	25.381	37.936	21.895	1.00 8.66
ATOM	424	CH2	TRP A	57 57	24.647 25.605	36.713 36.982	23.862 22.852	1.00 7.59 1.00 13.66
MOTA	425	C	TRP A	57	21.830	40.575	25.286	1.00 13.66 1.00 9.35
MOTA	426	O.	TRP A	57	22.648	41.481	25.179	1.00 9.06
MOTA MOTA	427 428	N CA	ALA A ALA A	58 58	21.945	39.579	26.159	1.00 6.35
ATOM	429	СВ	ALA A	58	23.081 22.755	39.523 40.280	27.061 28.362	1.00 8.26 1.00 10.03
ATOM	430	C	ALA A	58	23.471	38.101	27.407	1.00 7.97
ATOM ATOM	431 432	N N	ALA A GLY A	58 59	22.638	37.207	27.401	
ATOM	433	CA	GLY A	59	24.749 25.213	37.908 36.608	27.702 28.184	1.00 9.58 1.00 7.09
ATOM	434	C	GLY A	59	25.342	36.791	29.695	1.00 9.23
ATOM	435	0	GLY A	59	25.779	37.846	30.159	1.00 10.14
ATOM ATOM	436 437	N CA-	SER A SER A	.60 · ·	24.938 25.058	35.801 35.917	30.484	1.00 5.73
ATOM	438	CB	SER A	60	23.815	36.613	31.938	1.00 5.95 1.00 10.17
ATOM	439	QG	SER A	60	23.896	36.707	33.966	1.00 9.12
ATOM	440	C	SER A	60	25.161	34.540	32.566	1.00 8.54
ATOM ATOM	441 442	N O	SER A ASP A	60 61	24.437 26.067	33.632 34.376	32.146	1.00 9.12
ATOM	443	CA	ASP A	61	26.132	33.124	33.536 34.292	1.00 9.30 1.00 8.23
ATOM	444	CB	ASP A	61	27.543	32.485	34.381	1.00 6.13
ATOM ATOM	445	CG	ASP A	61	2B.600	33.266	33.649	1.00 13.41
ATOM	446 447	OD1 OD2	ASP A ASP A	61 61	28.869 29.150	32.961 34.191	32.449 34.281	1.00 10.15
ATOM	448	C	ASP A	61	25.597	33.456	35.710	1.00 13.11 1.00 10.77
ATOM	449	0	ASP A	61	25.818	32.716	36.658	1.00 10.77
ATOM	450	N	SER A	62 63	24.914	34.595	35.833	1.00 7.59
ATOM	451	CA	SER A	62	24.213	34.995	37.067	1.00 10.29

The second of the second second second

7.00	450	an	000 3	CO	24 522	26 425			_
ATOM ATOM	.452	CB	SER A	62	24.522	36.437	37.497	1.00 11.42	A
	453	og	SER A	62	23.631	36.832	38.549	1.00 11.94	A
ATOM ATOM	454 455	C O	SER A	62 62	22.721 22.274	34.944 35.605	36.706 35.745	1.00 10.70	A
ATOM	456	N	LYS A	63	21.944	34.168	37.449	1.00 9.88 1.00 8.95	. A
ATOM	457	ĈA	LYS A	63	20.519	34.089	37.137	1.00 10.67	. A
ATOM	458	CB	LYS A	63	19.834	32.996	37.959	1.00 10.67	. A
ATOM	459	CG	LYS A	63	20.046	31.605	37.461	1.00 15.43	A
ATOM	460	CD	LYS A	63	19.148	30.619	38.201	1.00 13.34	A
ATOM	461	CE	LYS A	63	17.702	30.671	37.728	1.00 15.94	A
ATOM	462	NZ	LYS A	63	16.903	29.498	38.239	1.00 14.00	Ā
ATOM	463	C	LYS A	63	19.786	35.392	37.399	1.00 12.40	A
ATOM	464	ŏ	LYS A	63	20.192	36.183	38.257	1.00 10.37	· A
ATOM	465	Ň	LEU A	64	18.699	35.604	36.659	1.00 7.10	Ā
ATOM	466	CA.	LEU A	64	17.863	36.778	36.842	1.00 9.01	A
MOTA	467	CB	LEU A	64	16.824	36.871	35.716	1.00 6.27	A
MOTA	468	CG	LEU A	64	17.447	37.378	34.405	1.00 7.74	A
MOTA	469	CD1	LEU A	64	16.586	37.016	33.190	1.00 8.96	A
ATOM '	470	CD2	LEU A	64	17.619	38.883	34.510	1.00 9.78	A
ATOM	471	C	LEU A	64	17.168	36.569	38.197	1.00 10.06	A
MOTA	472	<u>o</u> .	LEU A	64	16.712	35.465	38.508	1.00 11.86	A
ATOM	473	И	THR A	65	17.120	37.614	39.012	1.00 6.99	A
ATOM	474	CA	THR A	65	16.503	37.481	40.334	1.00 11.54	A
ATOM	475	CB	THR A	65	17.097	38.472	41.341	1.00 13.33	A.
MOTA MOTA	476 477	OG1 CG2	THR A	65 65	16.736	39.811	40.952 41.395	1.00 13.29	A
ATOM	478	C	THR A	65	18.644 15.009	38.331 37.751	40.239	1.00 11.42 1.00 13.06	A A
ATOM	479	ŏ	THR A	65	14.530	38.268	39.233	1.00 13.00	Â
ATOM	480	Ň	ALA A	66	14.272	37.374	41.281	1.00 11.93	Â
ATOM	481	CA	ALA A	66	12.831	37.607	41.287	1.00 16.82	A
ATOM	482	CB	ALA A	66	12.231	37.106	42.601	1.00 17.23	A
MOTA	483	С	ALA A	66	12.527	39.104	41.105	1.00 14.69	Α
ATOM	484	0	ALA A	66	11.587	39.467	40.409	1.00 12.67	Α
MOTA	485	N	SER A	67	13.322	39.962	41.744	1.00 15.98	A
ATOM	486	CA	SER A	67	13.150	41.417	41.640	1.00 12.48	A
MOTA	487	CB	SER A	67	14.108	42.166	42.579	1.00 18.87	A
ATOM	488	og .	SER A	67	13.662	42.081	43.921	1.00 28.18	A
ATOM ATOM	489 490	C	SER A SER A	67	13.403	41.890	40.212	1.00 12.05	A
ATOM	491	O N	GLN A	67 68	12.630 14.495	42.671	39.666	1.00 12.31	A.
ATOM	492	CA	GLN A	68	14.796	41.426 41.803	39.616 38.237	1.00 8.93 1.00 8.58	A A
ATOM	493	CB	GLN A	68	16.123	41.176	37.768	1.00 11.33	Â
ATOM	494	ĊĞ	GLN A	68	17.343	41.749	38.524	1.00 12.20	A
MOTA	495	CD	GLN A	68	18.656	41.026	38.242	1.00 15.53	A
MOTA	496	OE1	GLN A	68	18.690	39.815	38.034	1.00 11.56	A
MOTA	497	NE2	GLN A	68	19.743	41.770	38.255	1.00 14.33	A
ATOM	498	C	GLN A	68	13.673	41.385	37.290	1.00 12.61	. А
ATOM	499	O.	GLN A	68	13.270	42.158	36.423	1.00 10.84	A
ATOM ATOM	500 501	N CA	LEU A	69 69	13.163	40.164	37.455	1.00 13.81	A
ATOM	502	CB	LEU A		12.093 11.809	39.687 38.189	36.576 36.829	1.00 13.47 1.00 13.08	A A
ATOM	503	ČĞ	LEU A		12.989	37.268	36.496	1.00 13.08	. A
ATOM	504		LEU A		12.772	35.862	37.071	1.00 16.18	Â
ATOM	505		LEU A		13.140	37.233	34.981	1.00 11.50	A
ATOM	506	С	LEU A	69	10.810	40.484	36.778	1.00 13.14	A
MOTA	507	0	LEU A	69	10.138	40.860	35.814		A
ATOM	508	N	ALA A		10.465	40.728	38.034	1.00 12.61	A
ATOM	509	CA	ALA A		9.227	41.443	38.328	1.00 12.01	A
ATOM	510	CB	ALA A		8.951	41.453	39.841	1.00 13.19	A
MOTA MOTA	511 512	C	ALA A ALA A		9.275 8.297	42.852 43.334	37.785 37.240	1.00 12.44 1.00 16.48	A A
ATOM	513	Ŋ	THR A		10.419	43.512	37.240	1.00 16.48 1.00 12.49	A
ATOM	514	ĊA	THR A		10.574	44.865	37.436	1.00 12.45	Â
ATOM	515	CB	THR A		11.914	45.463	37.941	1.00 18.09	A
ATOM	516	OG1			11.834	45.621	39.370	1.00 19.27	A
MOTA	517	CG2			12.225	46.811	37.267	1.00 13.43	A
ATOM	518	C	THR A	71	10.501	44.905 [°]	35.902	1.00 11.57	. A
MOTA	519	0	THR A		9.881	45.800	35.337	1.00 15.24	A
ATOM	520	N	TYR A		11.116	43.941	35.223	1.00 13.13	A
ATOM	521	CA	TYR A		11.049	43.941	33.760	1.00 12.95	A
ATOM	522	CB	TYR A		11.927	42.839	33.174	1.00 11.21	A
ATOM	523	CG	TYR A		12.194	43.011	31.682	1.00 12.14	A
ATOM	524 525	CD1			13.122 13.376	43.936	31.224	1.00 11.17 1.00 11.35	A א
ATOM ATOM	525 526	CE1 CD2			11.515	44.101 42.239	29.841 30.736	1.00 11.35 1.00 14.03	A A
ATOM	527		TYR A		11.765	42.378	29.372	1.00 8.40	Ä
					· -			• •	

ATOM 528 CZ TYR A 72 ATOM 530 C TYR A 72 ATOM 531 C TYR A 72 ATOM 531 C TYR A 72 ATOM 531 C TYR A 72 ATOM 533 C A ALA A 73 ATOM 533 C A ALA A 73 ATOM 533 CB ALA A 73 ATOM 534 CB ALA A 73 ATOM 535 C ALA A 73 ATOM 536 C ALA A 73 ATOM 537 N ALA A 74 ATOM 538 CA ALA A 74 ATOM 539 CB ALA A 74 ATOM 539 CB ALA A 74 ATOM 540 C ALA A 74 ATOM 541 C ALA A 74 ATOM 541 C ALA A 74 ATOM 542 N ASN A 75 ATOM 545 CB ASN A 75 ATOM 545 CB ASN A 75 ATOM 546 CD ASN A 75 ATOM 547 ND2 ASN A 75 ATOM 548 C ASN A 75 ATOM 549 C ASN A 75 ATOM 549 C ASN A 75 ATOM 551 CA LYS A 76 ATOM 551 CA LYS A 76 ATOM 551 CA LYS A 76 ATOM 555 CE LYS A 76 ATOM 556 NZ LYS A 76 ATOM 557 C LYS A 76 ATOM 556 NZ LYS A 76 ATOM 556 NZ LYS A 76 ATOM 557 C LYS A 76 ATOM 558 CD LYS A 76 ATOM 559 N GLN A 77 ATOM 561 CB GLN A 77 ATOM 561 CB GLN A 77 ATOM 562 CG GLN A 77 ATOM 563 CD GLN A 77 ATOM 566 NEZ LYS A 76 ATOM 557 C LYS A 76 ATOM 557 C LYS A 76 ATOM 558 O LYS A 76 ATOM 559 N GLN A 77 ATOM 561 CB GLN A 77 ATOM 562 CB GLN A 77 ATOM 563 CD GLN A 77 ATOM 566 CA GLN A 77 ATOM 567 O GLN A 77 ATOM 568 CD PRO A 78 ATOM 570 CA PRO A 78 ATOM 5	12.689	5 1.00 10.75 3 1.00 13.42 4 1.00 14.74 A A A 1.00 14.68 1.00 10.74 1.1.00 14.04 A A A A A A A A A A A A A A A A A A A
--	--------	---

中心, 各性知識的影響的關聯時度

ATOM 607 CA LEU A 83 12.057 38.305 28.161 1.00 10.47 ATOM 609 CB LEU A 83 12.057 38.292 92.48 1.00 16.59 ATOM 609 CG LEU A 83 13.059 38.501 30.705 1.00 16.59 ATOM 609 CG LEU A 83 13.059 38.501 30.705 1.00 13.88 ATOM 611 CD LEU A 83 13.059 38.501 30.705 1.00 13.88 ATOM 612 C LEU A 83 14.620 39.508 11.412 1.00 12.95 ATOM 613 O LEU A 83 12.951 38.599 28.661 1.00 12.95 ATOM 613 O LEU A 83 11.288 36.662 28.664 1.00 12.14 ATOM 613 O LEU A 84 13.294 36.330 27.567 1.00 9.04 ATOM 614 N ILE A 84 13.606 34.912 27.467 1.00 7.94 ATOM 615 CA ILE A 84 13.606 34.912 27.467 1.00 7.94 ATOM 616 CB ILE A 84 13.506 34.912 27.467 1.00 7.94 ATOM 617 CCI LILE A 84 13.506 34.912 25.866 1.00 115.02 ATOM 619 CDI ILE A 84 12.326 34.957 3.05 1.00 15.02 ATOM 619 CDI ILE A 84 12.407 34.310 23.806 1.00 10.66 ATOM 620 C ILE A 84 14.957 34.662 29.231 1.00 9.34 ATOM 621 O ILE A 84 12.407 34.310 23.806 1.00 10.66 ATOM 622 N GLU A 85 15.018 33.666 29.023 1.00 7.70 ATOM 623 CA GLU A 85 15.018 33.668 29.023 1.00 7.70 ATOM 624 CD GLU A 85 15.018 33.668 29.023 1.00 7.70 ATOM 625 CD GLU A 85 16.269 33.331 29.683 1.00 7.70 ATOM 626 CD GLU A 85 17.472 33.466 33.142 1.00 9.44 ATOM 627 OEI GLU A 85 16.269 33.331 29.683 1.00 7.70 ATOM 628 CCZ GLU A 85 16.629 33.331 29.683 1.00 7.70 ATOM 628 CCZ GLU A 85 16.629 33.331 29.28 1.00 1.00 1.08 ATOM 628 CCZ GLU A 85 16.629 33.331 29.28 1.00 1.00 1.08 ATOM 628 CCZ GLU A 85 16.629 33.331 29.28 1.00 1.00 1.08 ATOM 630 CR WLA A 86 17.742 33.466 33.402 1.00 9.44 ATOM 631 N WLA A 86 17.742 33.466 33.402 1.00 9.40 ATOM 632 C GLU A 85 16.629 33.331 29.28 1.00 1.00 1.18 ATOM 633 CR WLA A 86 17.742 33.466 33.402 1.00 9.40 ATOM 630 CR WLA A 86 17.742 33.466 33.402 1.00 9.40 ATOM 630 CR WLA A 86 17.742 33.466 33.402 1.00 9.40 ATOM 640 CA FRO A 87 20.92 29.23 34.103 1.00 1.18 ATOM 640 CA FRO A 87 20.92 29.23 34.103 1.00 1.00 9.15 ATOM 650 CR WLA A 86 17.742 33.466 33.400 0.00 9.40 ATOM 650 CR WLA A 86 17.742 33.466 33.402 1.00 9.61 ATOM 660 CR WLA A 86 19.247 29.657 39.400 1.00 9.61 ATOM 660 CR WLA A 88 20.667 20.92 29.23 31.0	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
--	---

ATOM	680	CG2	VAL A	93	32.592	27.269	38.376		.45		A
ATOM ATOM	681 682	C	VAL A	93 93	36.033 36.162	25.643 24.745	37.694 38.527		.49		A
ATOM	683	N	ALA A	94	37.064	26.148	37.025		.26 .00		A A
MOTA	684	CA	ALA A	94	38.425	25.645	37.236		. 64		A
MOTA	685	CB	ALA A	94	39.204	25.722	35.921		.88		A
ATOM ATOM	686 687	C	ALA A ALA A	94 94	39.197 38.906	26.374 27.530	38.329 38.625		.97		A
ATOM	688	й	ILE A	95	40.210	25.709	38.894		.61 .77		A A
MOTA	689	CA	ILE A	95	41.016	26.290	39.963		. śó		Ā
MOTA	690	CB	ILE A	95	40.870	25.486	41.307	1.00 9	. 66		A
ATOM ATOM	691 692	CG2 CG1	ILE A ILE A	95 95	41.522	26.261	42.465		.29		A
ATOM	693	CD1	ILE A	95 95	39.401 38.566	25.218 26.491	41.641 41.909		.13 .60		A
ATOM	694	C	ILE A	95	42.496	26.263	39.572		.10		A A
MOTA	695	0	ILE A	95	43.261	25.373	40.001		.23		Ä
MOTA	696	И	PRO. A	96	42.923	27.216	38.742		. 65		A
ATOM ATOM	697 698	CD CA	PRO A	96 96	42.133 44.330	28.263 27.265	38.063 38.326		.16		A
ATOM	699	CB	PRO A		44.275	28.107	37.054		.43 .06		A A
MOTA	700	CG	PRO A	96	43.207	29.147	37.446		.84		Â
ATOM	701	Ç	PRO A	96	45.133	27.938	39.434	1.00 10	. 94		A
ATOM ATOM	702 703	N O	PRO A	96 97	44.574	28.645	40.277		.21		A
ATOM	704	ČA	PHE A	97	46.441 47.276	27.715 28.302	39.447 40.480		.05 .97		A A
MOTA	705	CB	PHE A	97	47.259	27.414	41.732		.70		Ā
ATOM	706	CG	PHE A		47.748	26.015	41.477		.86		Ä
ATOM ATOM	70 7 708	CD1	PHE A		49.114	25.720	41.524		.13		A
ATOM	709	CD2 CE1	PHE A	97 97	46.862 49.589	25.010 24.436	41.121 41.211		.97 .97		A
ATOM	710	CE2	PHE A	97	47.326	23.704	40.802		.94	-	A A
ATOM	711	CZ	PHE A		48.709	23.433	40.852		. 63		A
MOTA	712	C	PHE A		48.698	28.418	39.949		. 55		Α.
MOTA MOTA	713 714	O N	PHE A ARG A	97 98	49.054 49.498	27.761 29.260	38.962 40.597		.51	,	Α
MOTA	715	CA	ARG A		50.900	29.457	40.205		.26 .26		A A
MOTA	716	CB	ARG A		51.149	30.927	39.808		.41		A
MOTA	717	CG	ARG A		52.624	31.218	39.452		.41		Α:.
ATOM ATOM	718 719	CD NE	ARG A ARG A	98 98	52.902 54.350	32.648 32.871	39.002		. 00		. A
ATOM	720	CZ	ARG A		55.048	33.714	38.907 39.670		.95 .61		A T
ATOM	721	NH1	ARG A	98	54.454	34.446	40.606		.05		Ã.
MOTA	722	NH2	ARG A		56.361	33:824	39.500		. 95		A, Ţ
ATOM ATOM	723 724	C	ARG A		51.765 51.955	29.079	41.415		. 82		Α
ATOM	725	Ŋ	LYS A		52.258	29.881 27.838	42.327 41.417		.72 .72		A A
ATOM	726	CA	LYS A		53.081	27.314	42.510		.88		Α
ATOM	727	CB	LYS A		52.179	26.922	43.688		.80		Α
ATOM ATOM	728 729	CD	LYS A LYS A		52.899 53.744	26.401 27.518	44.919		.32		A
ATOM	730	CE	LYS A		54.525	27.318	45.557 46.790		.62 .76		· A A
ATOM	731	NZ	LYS A		55.346	28.125	47.368		.56		Â
ATOM	732	Č	LYS A		53.809	26.095	41.956	1.00 14	.43		A
MOTA MOTA	733 734	N O	LYS A ALA A		53.200 55.120	25.056 26.226	41.701 41.769	1.00 15 1.00 12			A
ATOM	735	ĈA.	ALA A	100	55.911	25.143	41.202	1.00 14			A A
MOTA	736	CB	ALA A	100	57.354	25.629	40.914	1.00 14			A
ATOM	737	C	ALA A		55.960	23.900	42.072	1.00 14			A
ATOM ATOM	738 739	o N	ALA A GLY A		55.929 56.061	23.987 22.751	43.303 41.409	1.00 16			A
MOTA	740	ĈA	GLY A		56.133	21.476	42.096	1.00 10			A A
ATOM	741			101	55.786	20.360	41.136	1.00 17			÷
ATOM	742	O	GLY A		54.853	20.479	40.338	1.00 14			Α
MOTA MOTA	743 744	N CA	GLY A GLY A		56.543 56.273	19.274 18.156	41.195 40.313	1.00 13			A
ATOM	745	č	GLY A		55.051	17.348	40.720	1.00 20	.81 .58		A A
MOTA	746	0	GLY A	102	54.498	16.627	39.898	1.00 16	. 24		A
ATOM	747	N	ASN A		54.624	17.451	41.976	1.00 17			Α
MOTA MOTA	748 749	CA CB	ASN A ASN A		53.465 53.372	16.675 16.694	42.434 43.963	1.00 16			A N
ATOM	750	CG	ASN A		54.365	15.760	44.615	1.00 15	.22 .02		A A
MOTA	751	OD1	ASN A	103	55.279	15.249	43.955	1.00 19			Ä
ATOM	752	ND2			54.205	15.535	45.916	1.00 15			Α
ATOM ATOM	753 754	C O	ASN A ASN A		52.145 51.991	17.197 18.390	41.885	1.00 15			A
ATOM	755	Ŋ	ALA A		51.183	16.390	41.666 41.693	1.00 11 1.00 16			A A
				•							

MOTA	756	CA	ALA A 104		49.880	16.744	41.219	1.00 16.65	A
ATOM ATOM	757 758	CB	ALA A 104 ALA A 104		49.068 49.170	15.538 17.427	40.741 42.395	1.00 20.27 1.00 15.98	A A
MOTA	759	0	ALA A 104		49.298	16.986	43.531	1.00 15.25	. A
MOTA MOTA	760 761	N CA	VAL A 105		48.470 47.701	18.530 19.227	42.127 43.157	1.00 13.62 1.00 13.77	A A
ATOM	762	CB	VAL A 105		47.708	20.756	42.945	1.00 15.80	· A
MOTA	763	CG1	VAL A 105		46.645	21.409 21.310	43.814 43.295	1.00 16.24	A
MOTA MOTA	764 765	CG2 C	VAL A 105		49.081 46.273	18.699	43.026	1.00 15.48 1.00 13.93	A A
MOTA	766	0	VAL A 105		45.634	18.867	41.982	1.00 11.00	A
ATOM ATOM	767 768	N CA	ASP A 106 ASP A 106		45.781 44.446	18.059 17.447	44.085 44.087	1.00 11.30 1.00 13.33	. A . A
ATOM	769	CB	ASP A 106	;	44.594	15.914	44.007	1.00 15.23	A
ATOM ATOM	770 771	CG OD1	ASP A 106		43.266 43.294	15.181 13.932	43.763 43.636	1.00 18.75 1.00 20.08	A A
ATOM	772	OD2	ASP A 106	5	42.201	15.832	43.705	1.00 16.37	Ä
ATOM ATOM	773 774	С. О	ASP A 106 ASP A 106		43.748 44.013	17.854 17.312	45.371 46.441	1.00 13.44 1.00 12.47	A A
ATOM	775	И	LEU A 107		42.838	18.809	45.256	1.00 12.47	A
MOTA	776	CA	LEU A 107		42.126	19.322	46.424	1.00 10.60	A
ATOM ATOM	777 778	CB CG	LEU A 107		41.608 42.656	20.743 21.830	46.139 45.874	1.00 9.94 1.00 15.11	A A
MOTA	779	CD1	LÉU A 107		41.992	23.049	45.233	1.00 12.77	A
ATOM ATOM	780 781	CD2 C	LEU A 107	,	43.332 40.936	22.222 18.504	47.191 46.860	1.00 15.50 1.00 11.58	A A
MOTA	782	Õ	LEU A 107	7	40.118	18.134	46.029	1.00 11.26	A
MOTA MOTA	783. 784	N CA	SER A 108		40.840 39.632	18.205 17.555	48.157 48.632	1.00 10.03 1.00 9.49	A A
ATOM	785	CB	SER A 108	3	39.823	16.938	50.026	1.00 11.45	A
ATOM ATOM	786 787	OG C	SER A 108		40.112 38.686	17.944 18.762	50.988 48.734	1.00 10.62 1.00 13.88	A A
MOTA	788	0	SER A 108	3	39.137	19.909	48.733	1.00 9.31	Α
ATOM ATOM	789 790	N CA	VAL A 109		37.384 36.456	18.528 19.648	48.795 48.915	1.00 11.62 1.00 12.52	A A
ATOM	791	CB	VAL A 109	9	34.997	19.149	48.822	1.00 14.25	A
ATOM ATOM	792 793	CG1 CG2	VAL A 10:		34.022 34.738	20.273 18.624	49.172 47.385	1.00 10.43 1.00 9.95	A A
ATOM	79 4	Ç	VAL A 10	9	36.705	20.397	50.228	1.00 8.60	A
ATOM ATOM	795 796	Ŋ	VAL A 10:		36.646 36.995	21.622 19.666	50.265 51.301	1.00 9.21 1.00 9.28	A A
MOTA	797	CA	LYS A 11	0	37.307	20.306	52.593	1.00 7.04	A
MOTA MOTA	798 799	CB CG	LYS A 11 LYS A 11		37.597 38.038	19.237 19.793	53.650 55.030	1.00 7.60 1.00 9.51	A A
MOTA	800	CD	LYS A 11	0	36.987	20.726	55.655	1.00 7.71	A
MOTA MOTA	801 802	CE NZ	LYS A 11		37.436 36.482	21.170 22.129	57.033 57.688	1.00 15.09 1.00 11.10	. A . A
MOTA	803	C	LYS A 11	0	38.532	21.234	52.452	1.00 8.55	A
ATOM ATOM	804 805	O N	LYS A 11		38.588 39.530	22.313 20.803	53.040 51.696	1.00 9.65 1.00 8.56	A A
ATOM	806	CA	GLU A 11	1	40.711	21.640	51.495	1.00 11.39	A
ATOM ATOM	807 808	CB CG	GLU A 11 GLU A 11	_	41.817 42.582	20.836 19.940	50.800 51.784	1.00 13.45 1.00 15.25	A A
ATOM	809	CD	GLU A 11	ĩ	43.527	18.960	51.098	1.00 16.99	A
ATOM ATOM	810 811	OE1 OE2			44.310 43.477	18.296 18.851	51.808 49.860	1.00 12.70	A A
MOTA	812	Ċ	GLU A 11	1	40.342	22.881	50.663	¹ 1.00 12.16	A
ATOM ATOM	813 814	NO	GLU A 11 LEU A 11		40.751 39.586	23.998 22.680	50.983 49.587	1.00 8.45 1.00 11.50	A A
ATOM	815	CA	LEU A 11	2	39.157	23.802	48.753	1.00 11.60	A
ATOM ATOM	816 817	CB CG	LEU A 11 LEU A 11		38.127 37.520	23.339 24.486	47.728 46.906	1.00 12.29 1.00 13.68	A A
MOTA	818	CD1	LEU A 11	2	38,486	24.835	45.793	1.00 14.87	Α
MOTA MOTA	81 ['] 9 820	CD2 C	LEU A 11 LEU A 11		36.183 38.491	24.067 24.845	46.307 49.648	1.00 23.81 1.00 11.64	. A
MOTA	821	0	LEU A 11	2	38.782	26.036	49.569	1.00 9.35	A
ATOM ATOM	822 823	N CA	CYS A 11 CYS A 11		37.598 36.869	24.370 25.251	50.511 51.407	1.00 9.13 1.00 10.02	A A
MOTA	824	C	CYS A 11	3	37.806	26.040	52.332	1.00 10.42	A
ATOM ATOM	825 826	O CB	CYS A 11 CYS A 11	3 3	37.620 35.881	27.243 24.414	52.550 52.215	1.00 9.94 1.00 7.06	A A
MOTA	827	SG	CYS A 11	3	34.495	23.714	51.225	1.00 12.97	A
ATOM ATOM	828 829	N CA	GLY A 11 GLY A 11		38.815 39.774	25.357 25.979	52.854 53.746	1.00 8.53 1.00 8.15	A A
ATOM	830	CA	GLY A 11	4	40.615	27.023	53.048	1.00 8.58	A
MOTA	831	0	GLY A 11		40.974	28.045	53.660	1.00 9.42	A

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	833 834 835 836 837 838	N CA CB CG1 C CA CB CCD1 CCD2 CCE1 CCE2 CCZ	VAL A 115 VAL A 115 VAL A 115 VAL A 115 VAL A 115 VAL A 115 PHE A 116 PHE A 116	40.929 41.724 42.142 42.754 43.175 40.933 41.450 39.672 38.885 37.891 38.564 39.041 38.792 39.742 39.742 39.971	26.780 27.727 27.154 28.274 26.034 28.999 30.107 28.856 30.046 29.774 29.656 28.429 30.791 28.319 30.708 29.463	51.773 51.001 49.611 48.736 49.794 50.769 50.958 50.383 49.000 47.664 47.220 46.892 46.019 45.6244	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	8.91 11.99 10.97 12.08 9.96 10.53 10.53 10.53 8.51 8.77 7.52 10.79 11.26 12.98 12.19	·	AAAAAAAAAAAAAA
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	8490123456789012 84855555555668 888888888888888888888888	CONCACONCACONCACONCACONCACO	PHE A 116 PHE A 116 SER A 117 SER A 118 GLY A 118 GLY A 118 GLY A 118 ARG A 119 ARG A 119 ARG A 119	38.236 37.688 38.322 37.217 38.251 38.693 40.312 41.850 42.935 41.107 41.550 40.503	30.713 31.802 30.077 30.669 29.605 28.827 31.372 32.241 30.988 31.576 30.640 30.873 29.575 28.522 27.518	51.319 51.180 52.493 53.654 55.2474 55.31 54.174 55.984 56.246 57.485	1.00 1.00 1.00 1.00 1.00 1.00 1.00	11.72 10.01 7.36 12.12 11.41 12.73 12.93 9.90 14.10 15.65 15.32		AAAAAAAAAAAAAA
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	864 8665 8667 8669 871 872 874 876	CG CD NE CNH1 NH2 CON CB CG2 CG1	ARG A 119 ILE A 120	 40.986 39.880 39.338	26.359 25.325 24.771 23.717 23.061 27.990 27.784 27.672 27.088 25.956 25.443 24.638	58.390 58.628 57.377 56.727 57.188 55.607 56.896 57.757 55.620 55.134 54.113 53.529 54.812 53.863	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	17.52 19.04 17.23 11.41 9.19 10.56 14.09 12.49 11.86 12.88 12.97		AAAAAAAAAAAAA
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	877 878 879 881 8881 8883 8885 8886 8887 8889 8890	CONCACBCOD1ND2C	ILE A 120 ILE A 121 ALA A 122 ASN A 122	45.040 46.131 46.884 47.111 48.211 48.868 49.887 50.853 52.279 52.666 49.681	28.241 28.704 28.706 29.848 30.850 29.482 30.329 28.227 27.789 27.467 27.293 26.224 28.363 26.568	54.445 53.391 55.051 54.529 55.640 53.284 54.056 53.507 54.660 54.188 53.725 54.608	1.00 1.00 1.00	12.93 16.50 15.43 14.70 21.39 15.45 12.53 13.64 12.63 13.64 11.32		AAAAAAAAAAAA
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	891 892	N O	ASN A 122 TRP A 123 TRP A 124 SER A 124	 48.809 50.454	25.737 26.499 25.390 25.597 26.503 26.508 27.279 24.884 27.862 28.334 27.256 24.863 26.043 24.045 23.006 24.054 22.801	52.865 51.528 -50.580 49.406 48.337 46.533 46.841 48.227 47.140 45.403 45.710 45.012 51.213 50.676 52.349 53.010	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	11.94 12.38 10.94 10.33 12.83 12.26 12.52 15.24 12.79 16.36 9.72 13.55 13.98	<u>.</u>	A A A A A A A A A A A A A A A A A A A

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	908 909 910 911 912 913 914 915 916 917 918	CB OC O N CA C O N CA CB	SER A 124 SER A 124 SER A 124 SER A 125 GLY A 125 GLY A 125 GLY A 125 GLY A 125 GLY A 126 ILE A 126 ILE A 126		52.670 52.130 50.361 50.354 49.273 47.999 47.216 46.116 47.759 47.111 47.116	23.038 23.884 22.161 20.974 22.937 22.416 21.569 21.066 21.413 20.590 21.338	54.135 55.132 53.564 53.924 53.617 54.117 53.101 53.404 51.892 50.866 49.499	1.00 11.89 1.00 14.19 1.00 17.25 1.00 13.81 1.00 13.73 1.00 13.26 1.00 19.05 1.00 15.82 1.00 13.57 1.00 13.57	A A A A A A A A
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	919 920 921 922 923 925 926 927 928 929	CG2 CG1 CD1 C O N CA CB OG1 CG2 C	ILE A 126 ILE A 126 ILE A 126 ILE A 126 THR A 127 THR A 127 THR A 127	. •	46.584 46.244 46.355 47.886 49.012 47.287 47.974 47.144 45.978	20.440 22.598 23.571 19.270 19.228 18.199 16.918 15.848 15.519	48.369 49.639 48.474 50.799 51.310 51.341 52.079 51.309	1.00 10.73 1.00 14.04 1.00 21.47 1.00 14.42 1.00 14.33 1.00 15.70 1.00 20.78 1.00 21.71	. A A A A A A A
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	9312 9334 9334 9336 9336 9339	ON CA CON CA CC CC O	THR A 127 GLY A 128 GLY A 128 GLY A 128 GLY A 128 ALA A 129 ALA A 129 ALA A 129 ALA A 129 ALA A 129		48.389 47.628 49.627 50.726 51.360 50.491 50.929 50.138 52.428 52.954	16.389 16.442 15.907 15.348 16.299 15.837 17.610 18.558 19.873 18.856 19.427	49.978 49.011 49.925 48.719 47.655 46.718 47.788 46.765 46.765 46.886 46.877 45.811	1.00 15.85 1.00 15.48 1.00 11.25 1.00 13.92 1.00 18.28 1.00 13.36 1.00 14.53 1.00 13.51 1.00 20.08 1.00 13.92	A A A A A A A
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	9944234 9944567 99499445 9949949	N CA C O N CA CCB CCD NE	GLY A 130 GLY A 130 GLY A 130 GLY A 130 ARG A 131 ARG A 131 ARG A 131 ARG A 131 ARG A 131 ARG A 131		53.110 54.552 54.937 55.944 54.130 54.361 53.312 53.506 52.479	18.489 18.715 20.167 20.485 21.059 22.500 23.102 22.713 22.985 22.959	47.863 47.931 47.720 47.088 48.274 48.142 47.190 45.730 44.895 43.441	1.00 13.92 1.00 15.72 1.00 18.22 1.00 17.01 1.00 16.95 1.00 14.67 1.00 10.65 1.00 14.78 1.00 13.27	A A A A A A A A A A
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	950 951 952 953 954 955 956 957 958 959	CZ NH1 NH2 C O N CA CB OG C	ARG A 131 ARG A 131		52.670 52.880 52.656 54.217 53.451 54.948 54.830 55.817 57.143 55.070	21.873 22.010 20.660 23.171 22.703 24.258 24.987 24.450 24.690 26.468	42.695 41.383 43.233 49.502 50.329 49.730 50.990 52.046 51.644 50.735	1.00 12.12 1.00 12.83 1.00 13.76 1.00 14.12 1.00 15.12 1.00 12.39 1.00 15.94 1.00 22.25 1.00 25.99 1.00 12.92	A A A A A A A
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	961 961 963 964 9667 9667 9669 9669	O N C C O N C C C C C C C C C C C C C C	SER A 132 GLY A 133 GLY A 133 GLY A 133 PRO A 134 PRO A 134 PRO A 134 PRO A 134 PRO A 134		55.695 54.570 54.695 53.295 52.320 53.162 54.254 51.854 52.196 53.623	26.857 27.300 28.734 29.318 28.589 30.633 31.607 31.291 32.760 32.900	49.746 51.634 51.442 51.394 51.561 51.548 51.548 51.828 51.266	1.00 16.84 1.00 14.33 1.00 14.73 1.00 12.31 1.00 15.09 1.00 16.35 1.00 14.55 1.00 20.54 1.00 21.58	A A A A A A A A A
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	970 971 972 973 974 975 976 977 978 979	C O N CA CB CG2 CG1 CD1 C	ILE A 135 ILE A 135 ILE A 135 ILE A 135		50.997 51.509 49.685 48.688 47.523 46.417 48.032 46.988 48.077 47.757	31.143 31.105 31.057 30.973 30.010 30.115 28.582 27.607 32.366 32.983	50.299 49.180 50.527 49.454 49.801 48.727 49.918 50.453 49.353 50.372	1.00 16.29 1.00 12.69 1.00 13.74 1.00 15.95 1.00 15.73 1.00 15.61 1.00 13.04	A A A A A A A
ATOM ATOM ATOM	981 982 983	N CA CB CG	GLN A 136 GLN A 136 GLN A 136 GLN A 136		47.918 47.319 48.317 47.892	32.872 34.190 35.145 36.594	48.136 47.958 47.306 47.337	1.00 11.91 1.00 11.20 1.00 12.71 1.00 19.42	A A A

MOTA	984	CD	GLN A 136		48.999	37.566	46.905	1.00	23.10	A
MOTA MOTA	985 986	OE1 NE2	GLN A 136 GLN A 136		49.620	37.403	45.858	1.00	23.52	Α
ATOM	987	C	GLN A 136		49.233 46.105	38.585 34.023	47.714 47.053	1.00	30.84 9.51	A A
ATOM	988	ō	GLN A 136		46.254	33.639	45.921	1.00	9.81	Â
MOTA	989	N	VAL A 137		44.911	34.303	47.552	1.00	8.18	A
MOTA	990	CA	VAL A 137		43.717	34.161	46.733	1.00	4.96	A
MOTA MOTA	991 992	CB CG1	VAL A 137 VAL A 137		42.470 41.176	33.907 34.014	47.657	1.00	8.36	A
MOTA	993	CG2	VAL A 137		42.589	32.543	46.855 48.294	1.00	5.20	A A
MOTA	994	C	VAL A 137		43.442	35.380	45.837	1.00	9.91	Â
MOTA	995	0	VAL A 137		43.555	36.534	46.284	1.00	9.14	A
ATOM ATOM	996 997	N CA	VAL A 138 VAL A 138		43.124 42.735	35.114	44.566	1.00	7.01	A
MOTA	998	CB	VAL A 138		43.437	36.134 35.976	43.600 42.226	1.00	8.67 9.91	A A
MOTA	999	CG1	VAL A 138		42.983	37.092	41.301	1.00	11.71	A
MOTA	1000	CG2	VAL A 138		44.947	36.068	42.394	1.00	18.67	A
MOTA MOTA	1001 1002	C	VAL A 138 VAL A 138		41.237	35.914	43.386	1.00	7.40	A
ATOM	1002	N O	TYR A 139		40.791 40.452	34.775 36.987	43.196 43.435	1.00	7.75 9.87	A A
MOTA	1004	CA	TYR A 139		39.009	36.871	43.256	1.00	9.42	Ã
MOTA	1005	CB	TYR A 139		38.303	36.902	44.625	1.00	8.26	A
ATOM ATOM	1006 1007	CG CD1	TYR A 139 TYR A 139		38.509	38.192	45.389	1.00	9.37	A
MOTA	1007	CE1	TYR A 139		37.570 37.748	39.211 40.424	45.322 46.013	1.00	8.61 9:72	A
MOTA	1009	CD2	TYR A 139	•	39.659	38.397	46.177	1.00	9.71	A A
MOTA	1010	CE2	TYR A 139		39.853	39.616	46.878	1.00	12.90	A
ATOM ATOM	1011 1012	CZ OH	TYR A 139 TYR A 139		38.890	40.623	46.786	1.00	15.66	A
MOTA	1013	C	TYR A 139		39.045 38.507	41.829 38.006	47.459 42.381	1.00	8.23 8.45	A A
MOTA	1014	ŏ	TYR A 139		39.246	38.947	42.099	1.00	8.15	A
MOTA	1015	N	ARG A 140		37.259	37.899	41.935	1.00	8.93	A
MOTA MOTA	1016 1017	CA CB	ARG A 140		36.660	38.903	41.070	1.00	7.41	A
ATOM	1018	CG	ARG A 140 ARG A 140		35.514 35.991	38.296 37.317	40.243 39.148	1.00	10.32 5.86	A
ATOM	1019	CD	ARG A 140		36.556	38.103	37.948	1.00	5.80	A A
ATOM	1020	NE	ARG A 140		35.502	38.821	37.218	1.00	7.23	A
ATOM	1021	CZ	ARG A 140		34.659	38.232	36.376	1.00	11.87	A
ATOM ATOM	1022 1023	NH1 NH2	ARG A 140 ARG A 140		34.748 33.715	36.918 38 <i>.</i> 952	36.152 35.769	1.00	5.93 8.31	A
MOTA	1024	C	ARG A 140		36.129	40.063	41.895	1.00	8.44	A A
MOTA	1025	0	ARG A 140		35.327	39.896	42.832	1.00	8.91	A
ATOM ATOM	1026 1027	N CA	ALA A 141 ALA A 141		36.583	41.242	41.523	1.00	8.44	A
MOTA	1027	CB	ALA A 141 ALA A 141		36.198 37.121	42.471 43.579	42.206 41.761	1.00	8.99 12.40	A A
MOTA	1029	Č_	ALA A 141		34.748	42.895	41.975	1.00	11.15	. A
ATOM	1030	0	ALA A 141		34.091	43.421	42.878	1.00	9.17	Ã
MOTA MOTA	1031 1032	N CA	GLU A 142 GLU A 142		34.258	42.679	40.765	1.00	10.41	A
ATOM	1032	CB	GLU A 142		32.912 32.944	43.110 43.735	40.401 38.995	1.00	11.28 11.17	A A
ATOM	1034	ČĠ	GLU A 142		32.968	42.720	37.800	1.00	16.02	A
ATOM	1035	CD	GLU A 142		34.319	41.984	37.551	1.00	14.71	A
ATOM ATOM	1036 1037	OE1 OE2			35.102 34.582	41.758 41.608	38.492 36.382		20.26	A
ATOM	1038	č	GLU A 142		31.854	42.001	40.428		15.07 15.45	A A
MOTA	1039	0	GLU A 142		32.160	40.827	40.689	1.00	11.17	A
ATOM ATOM	1040 1041	N CA	VAL A 143 VAL A 143		30.604	42.399				A
ATOM	1041	CB	VAL A 143		29.474 28.155	41.461 42.192	40.114 39.792		12.65 12.26	A A
MOTA	1043	CG1	VAL A 143		27.052	41.196	39.668		17.81	Â
ATOM	1044	CG2			27.822	43.174	40.870	1.00	18.80	Α
- ATOM ATOM	· 1045 · 1046	o -	VAL A 143 VAL A 143		29.770 29.785	40.456			12:06	 A.
MOTA	1047	й	SER A 144		29.972	40.814 39.198	37.811 39.388	1.00	10.75 10.21	A A
ATOM	1048	CA	SER A 144		30.352	38.119	38.462	1.00	6.60	Ā
ATOM	1049	CB	SER A 144		31.822	37.764	38.758	1.00	8.21	A
ATOM ATOM	1050	OG C	SER A 144 SER A 144		32.188	36.468	38.328	1.00	8.64	A
ATOM	1051 1052	C	SER A 144 SER A 144		29.499 29.166	36.834 36.346	38.512 39.601	1.00	7.57 8.05	A A
ATOM	1053	N	GLY A 145		29.168	36.303	37.330	1.00	5.34	A
MOTA	1054	CA	GLY A 145		28.437	35.047	37.226	1.00	7.72	A
ATOM ATOM	1055	C	GLY A 145		29.335	33.884	37.638	1.00	7.84	A
ATOM	1056 1057	N	GLY A 145 THR A 146		28.873 30.628	32.870 34.001	38.197 37.357	1.00	6.69 6.57	A A
MOTA	1058	CA	THR A 146		31.574	32.953	37.758	1.00	6.39	A
ATOM	1059	CB	THR A 146		33.012	33.263	37.279	1.00	9.37	A

ATOM	1060	OG1	THR A 1		33.026	33.463	35.855	1.00	8.49	A
MOTA MOTA	1061 1062	CG2	THR A 14		33.928 31.569	32.087 32.892	37.613 39.294	1.00	11.25 8.02	A A
MOTA MOTA	1063 1064	O N	THR A 14		31.601 31.551	31.802 34.064	39.888 39.930	1.00	8.00 6.33	A A
MOTA	1065	CA	THR A 1	47	31.483	34.131	41.394	1.00	8.35	. Â
MOTA MOTA	1066 1067	CB OG1	THR A 1		31.554 32.834	35.591 36.161	41.921 41.624	1.00	6.29 7.92	A A
MOTA	1068	CG2	THR A 1	47	31.373	35.602	43.450	1.00	8.46	A
MOTA MOTA	1069 1070	С О	THR A 1		30.175 30.172	33.486 32.745	41.885 42.883	1.00	5.86 7.90	A A
MOTA	1071	N	GLU A 1	48	29.059	33.751	41.198	1.00	5.81	A
MOTA MOTA	1072 1073	CA CB	GLU A 1		27.786 26.644	33.131 33.653	41.592 40.710	1.00	5.50 6.06	· A A
MOTA	1074	CG	GLU A 1	48	25.284	33.004	41.058	1.00	10.99	A
ATOM ATOM	1075 1076	CD OE1	GLU A 1		24.076 23.920	33.737 34.966	40.457 40.685	1.00	12.04 9.92	A A
MOTA	1077	OE2	GLU A 1	48	23.271	33.078	39.765	1.00	13.03	A
ATOM ATOM	1078 1079	C O	GLU A 1		27.846 27.419	31.591 30.866	41.491 42.408	1.00	6.20 7.44	A A
ATOM ATOM	1080 1081	N CA	LEU A 1		28.318	31.077	40.359	1.00	4.66	A
MOTA	1082	CB	LEU A 1	49	28.442 29.011	29.616 29.301	40.196 38.807	1.00	6.87 7.74	A A
ATOM ATOM	1083 1084	CG CD1	LEU A 1		28.105 28.878	29.569 29.218	37.591 36.342	1.00	8.75 10.50	A
MOTA	1085	CD2	LEU A 1	49	26.804	28.721	37.678	1.00	9.52	A A
MOTA MOTA	1086 1087	C	LEU A 1 LEU A 1		29.376 29.127	28.980 27.865	41.254 41.754	1.00	7.07 7.65	A A
MOTA	1088	N	PHE A 1	50	30.473	29.670	41.568	1.00	8.71	A
ATOM ATOM	1089 1090	CA CB	PHE A 1 PHE A 1		31.459 32.752	29.183 30.021	42.540 42.427	1.00	7.06 6.97	A A
MOTA	1091	CG	PHE A 1	50	33.884	29.551	43.325	1.00	9.24	A
MOTA MOTA	1092 1093	CD1	PHE A 1 PHE A 1		34.313 34.557	28.225 30.455	43.305 44.138	1.00	10.27 12.03	A A
MOTA	1094	CEL	PHE A 1		35.411	27.803	44.081	1.00	12.21	Α
MOTA MOTA	1095 1096	CE2 CZ	PHE A 1 PHE A 1		35.657 36.083	30.050 28.721	44.920 44.890	1.00	11.31	A A
ATOM ATOM	1097 1098	C	PHE A 1 PHE A 1	50	30.936	29.217	43.987	1.00	7.58	A
MOTA	1099	N O	THR A 1		31.060 30.350	28.236 30.334	44.709 44.409	1.00	6.52 7.57	A A
ATOM ATOM	1100 1101	CA CB	THR A 1 THR A 1	51 51	29.836 29.548	30.437	45.770	1.00	8.97	A
MOTA	1102	OG1	THR A 1		28.580	31.938 32.526	46.193 45.314	1.00	9.78 8.77	A A
ATOM ATOM	1103 1104	CG2 C	THR A 1		30.826 28.588	32.744 29.588	46.152 45.988	1.00	7.96 7.22	A A
MOTA	1105	0	THR A 1	51	28.274	29:245	47.131	1.00	7.49	A
ATOM ·	1106 1107	N CA	ARG A 1 ARG A 1		27.873 26.715	29.229 28.351	44.916 45.099	1.00	5.13 9.17	A A
MOTA	1108	CB	ARG A 1	52	25.914	28.189	43.796	1.00	9.15	A
ATOM ATOM	1109 1110	CG CD	ARG A 1 ARG A 1	52 52	24.606 23.671	27.376 27.529	43.974 42.755	1.00	10.79 17.61	A A
ATOM ATOM	1111 1112	NE CZ	ARG A 1 ARG A 1	52	23.071	28.868	42.641	1.00	14.93	A
MOTA	1113	NH1	ARG A 1	52	22.605	29.662 30.860	41.577 41.565		16.78 11.71	A A
MOTA MOTA	1114 1115	NH2 C	ARG A 1 ARG A 1		23.885 27.274	29.265 27.007	40.518 45.557,	1.00	11.02 7.79	A
MOTA	1116	0	ARG A 1	52	26.671	26.313	46.389	1.00	5.08	A A
ATOM ATOM	1117 1118	N CA	PHE A 1 PHE A 1		28.436 29.101	26.639 25.395	45.017 45.413	1.00	6.70 9.70	A A
MOTA	1119	CB	PHE A 1	53	30.280	25.059	44.478	1.00	7.27	A
ATOM ATOM	1120 1121	CG CD1	PHE A 1 PHE A 1	53	30.974 30.451	23.747 22.532	44.812 44.389	1.00	6.93 9.41	A A
MOTA MOTA	$\frac{1122}{1123}$		PHE A 1 PHE A 1		32.134	23.738	45.592	1.00	9.61	A
ATOM	1124	CE2	PHE A 1	53	31.069 32.764	21.315 22.534	44.747 45.959	1.00	11.43 13.90	A A
ATOM ATOM	1125 1126	CZ C	PHE A 1 PHE A 1		32.229 29.640	21.323 25.503	45.537	1.00	11.19	A
ATOM	1127	ŏ	PHE A 1	53	29.455	24.586	46.842 47.638	1.00	8.50 8.41	A A
MOTA MOTA	1128 1129	N CA	LEU A 1 LEU A 1		30.320 30.877	26.599 26.752	47.167 48.521	1.00	6.84 6.20	A A
MOTA	1130	CB	LEU A 1	54	31.672	28.060	48.657	1.00	6.23	A
ATOM ATOM	1131 1132	CG CD1	LEU A 1 LEU A 1		32.876 33.543	28.250 29.583	47.720 48.020	1.00	6.30 9.48	A A
ATOM	1133	CD2	LEU A 1	54 ·	33.893	27.117	47.886	1.00	6.15	A
MOTA MOTA	1134 1135	CO	LEU A 1 LEU A 1		29.762 29.912	26.737 26.170	49.564 50.641	1.00	6.13 9.16	A A

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	111339011211445678901234567890123111777778901234567890111111111111111111111111111111111111	ASN ASN ASN ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	30.359 29.698 28.213 27.565	343446 343446 3431446 3431446 3431446 3431446 3431446 3431446 3431446 3431446 3431446 3431446 3431446 3431446 3431446 3431446 3431446 3431446 3431446 3431446 3431446 3441	58.121 58.254 58.274 58.274 55.736 55.736 59.449 59.6727 60.7767 60.7767 61.579 61.	1.00 12.32 1.00 8.94 1.00 11.83 1.00 11.53 1.00 7.79 1.00 7.79 1.00 9.77 1.00 12.97	A A A A A A A A
ATOM - ATOM ATOM ATOM ATOM	1196 1197 1198 1199 1200	C GLY O GLY N THR CA THR CB THR OG1 THR CG2 THR O THR O THR O THR N PHE CA PHE CB PHE CG PHE CCD1 PHE	A 163 A 164 A 164 A A 164 A A 164 A A 164 A A 165 A A 165 E A 165 E A 165 E A 165	31.307 31.687 30.359 29.698 28.213	30.149 28.989 30.781 30.140 29.775	57.883 57.628 57.178 56.039 56.347	1.00 11.53 1.00 9.27 1.00 7.79 1.00 10.06 1.00 9.77	A A A A A A A A A A A A A A A A

MOTA	1212	CE2	PHE A	165	33.720	29.214	52.385	1.00	6.44	70
										A
MOTA	1213	CZ	PHE A	192	34.591	30.221	51.935	1.00	7.86	A
MOTA	1214	С	PHE A	165	28.135	31.467	51.854	1.00	10.39	A
MOTA	1215	0	PHE A							
		-			27.428	30.485	51.648	1.00	11.83	Α.
ATOM	1216	N	ALA A	166	27.738	32.712	51.601	1.00	8.80	A
MOTA	1217	CA	ALA A	166	26.424	33.000				
							51.006	1.00	10.97	Α
MOTA	1218	CB	ALA A	166	25.942	34.397	51.423	1.00	10.57	A
MOTA	1219	С	ALA A	166	26.593	32.960	49.483		10.58	
								1.00		Α
MOTA	1220	0	ALA A	166	27.694	33.182	48.968	1.00	7.60	A
MOTA	1221	N	VAL A	167	25.516	32.668	48.766	1.00	9.26	A
MOTA	1222	CA	VAL A		25.572	32.658	47.303	1.00	7.71	A
MOTA	1223	CB	VAL A	167	24.384	31.924	46.686	1.00	7.77	A
MOTA	1224		VAL A		24.546	31.870				
							45.159	1.00	8.04	Α
MOTA	1225	CG2	VAL A	167	24.283	30.511	47.265	1.00	10.61	A
MOTA	1226	С	VAL A	167	25.473	34.123	46.875	1.00	8.91	A
ATOM										
	1227	0	VAL A		24.523	34.816	47.244	1.00	7.79	A
MOTA	1228	N	THR A	168	26.408	34.580	46.048	1.00	8.13	A
ATOM	1229	CA	THR A							
					26.411	35.974	45.653	1.00	6.66	A
MOTA	1230	CB	THR A	168	27.060	36.810	46.769	1.00	13.46	Α
MOTA	1231	OG1	THR A	168	27.129	38.188	46.370			
								1.00	12.35	A
ATOM	1232	CG2	THR A		28.478	36.311	47.040	1.00	12.28	A
MOTA	1233	С	THR A	168	27.228	36.178	44.375	1.00	11.69	· A
MOTA	1234	Ó	THR A			35.282				
					27.960		43.947	1.00	11.22	A
MOTA	1235	N	THR A	169	27.106	37.352	43.770	1.00	9.36	Α
ATOM	1236	CA	THR A		27.888	37.641	42.580	1.00	5.90	A
MOTA	1237	CB	THR A		27.074	38.484	41.565	1.00	11.79	A
ATOM	1238	OG1	THR A	169	26.724	39.739	42.169	1.00	9.77	A
MOTA	1239	CG2	THR A		25.811					
						37.747	41.128	1.00	12.13	A
MOTA	1240	C	THR A	169	29.156	38.450	42.953	1.00	9.03	A
MOTA	1241	0	THR A	169	30.000	38.712	42.099	1.00	8.64	A
ATOM		N								
	1242		VAL A		29.279	38.848	44.224	1.00	11.21	Α
ATOM	1243	CA	VAL A	170	30.430	39.641	44.680	1.00	11.07	Α
ATOM	1244	CB	VAL A		29.944					
						41.003	45.248	1.00	8.64	A
MOTA	1245	CG1			29.433	41.863	44.106	1.00	8.12	A
MOTA	1246	CG2	VAL A	170	28.802	40,805	46.208	1.00	14.20	A
MOTA	1247		VAL A							
		Ç			31.158	38.830	45.741	1.00	10.94	A
MOTA	1248	0	VAL A	170	30.694	38.747	46.859	1.00	11.12	A
MOTA	1249	N	PHE A	171	32.305	38.247	45.386			
								1.00	11.66	Ā
MOTA	1250	CA	PHE A		33.003	37.367	46.312	1.00	9.52	A
MOTA	1251	CB	PHE A	171	34.279	36.775	45.677	1.00	8.67	A
MOTA	1252	CG	PHE A							
					34.940	35.686	46.519	1.00	10.69	A
MOTA	1253	CD1	PHE A	171	36.009	35.978	47.358	1.00	9.84	Α
MOTA	1254	CD2	PHE A		34.457	34.377	46.502	1.00	14.44	A
ATOM										
	1255	CE1	PHE A		36.593	34.986	48.184	1.00	8.85	A
MOTA	1256	CE2	PHE A	171	35.024	33.377	47.311	1.00	12.76	A
ATOM	1257	CZ	PHE A	171	36.096	33.686	48.158	1.00	12.60	
										Ā
ATOM	1258	C	PHE A		33.353	37.9 <i>77</i>	47.661	1.00	12.55	A
ATOM	1259	0	PHE A	171	33.292	37.294	48.679	1.00	7.64	A
ATOM	1260	N	ALA A		33.704	39.257				
							47.677	1.00	6.57	A
MOTA	1261	CA	ALA A		34.088	39.865	48.946	1.00	9.02	A
MOTA	1262	CB	ALA A	172	34.655	41.279	48.721	1.00	9.26	A
ATOM	1263	C	ALA A							
					32.948	39.885	49.957	1.00	11.22	Α
ATOM	1264	0	ALA A		33.188	40.071	51.155	1.00	10.96	Α
ATOM	1265	N	ASN A	173	31.714	39.677	49.493	1.00	8.23	Α
ATOM	1266	CA	ASN A		30.563	39.651				
							50.409		10.55	A
ATOM	1267	CB	ASN A		29.361	40.396	49.822,	1.00	11.87	A
MOTA	1268	CG	ASN A	173	29.628	41.862	49.606 [!]	1.00	13.88	A
MOTA	1269		ASN A		30.289	42.512	50.412		13.36	
						40 000				A
MOTA	1270		ASN A		29.098	42.398	48.515	1.00	16.29	A
MOTA	1271	C	ASN A	173	30.062	38.245	50.759	1.00	13.21	Α
ATOM	1272	0	ASN A		29.077	38.109	51.498	1.00	10.89	
										A
MOTA	1273	N	SER A		30.716	37.212	50.238	1.00	7.67	A
ATOM	1274	CA	SER A	174	30.250	35.859	50.468	1.00	9.24	Α
ATOM	1275	CB	SER A		30.869	34.905				
							49.429	1.00	9.01	A
ATOM	1276	OG	SER A		30.359	33.580	49.598	1.00	8.15	A
ATOM	1277	C	SER A	174	30.440	35.250	51.863	1.00	7.73	Ä
ATOM	1278	0	SER A		29.480	34.822	52.506	1.00	8.54	A
ATOM	1279	N	TYR A	175	31.684	35.160	52.303	1.00	6.67	A
ATOM	1280	CA	TYR A	175	31.978	34.535	53.599		6.35	
								1.00		A
ATOM	1281	CB	TYR A		33.493	34.371	53.735	1.00	7.83	Α
ATOM	1282	CG	TYR A	175	33.928	33,429	54.847	1.00	6.19	A
ATOM	1283	CD1	TYR A		34.845	33.842				
							55.825	1.00	9.13	A
ATOM	1284	CE1	TYR A		35.315	32.938	56.811	1.00	7.78	A
ATOM	1285	CD2	TYR A	175	33.481	32.102	54.879	1.00	6.63	Α
ATOM	1286	CE2	TYR A		33.939	31.206				
							55.856	1.00	9.07	A
ATOM	1287	CZ	TYR A	T./2	34.859	31.633	56.812	1.00	11.83	A

2 00014	7.000	011	WYD B 175		25 240	20 721	C2 24C	1 00	0 05		
MOTA	1288	OH	TYR A 175		35.348	30.731	57.746	1.00	8.85	•	A
MOTA	1289	C	TYR A 175		31.424	35.365	54.761	1.00	12.71		A
MOTA	1290	0	TYR A 175		31.649	36.556	54.806	1.00	7.92		A
			SER A 176		30.695	34.727	55.683		9.13		
MOTA	1291	N						1.00			A
MOTA	1292	ĊA	SER A 176		30.104	35.431	56.828	1.00	9.94		Α
MOTA	1293	CB	SER A 176		29.372	34.433	57.737	1.00	11.72		Α
	1294	ÖĞ	SER A 176		30.248	33.426	58.245	1.00	9.80		A
MOTA											
MOTA	1295	C	SER A 176		31.092	36.247	57.659	1.00	11.68		A
MOTA	1296	0	SER A 176		30.737	37.302	58.184	1.00	12.94		Α
ATOM	1297	N	LEU A 177		32.332	35.787	57.788	1.00	10.90		A
MOTA	1298	CA	LEU A 177		33.303	36.559	58.561	1.00	12.59		A
MOTA	1299	CB	LEU A 177		34.231	35.613	59.349	1.00	14.55		Α
ATOM	1300	CG	LEU A 177		33.537	34.649	60.324	1.00	15.21	•	Α
MOTA	1301	CD1	LEU A 177		34.579	33.649	60.872	1.00	18.41		Ā
			LEU A 177								
MOTA	1302	CD2			32.856	35.452	61.476	1.00	11.73		A
MOTA	1303	C	LEU A 177		34.139	37.522	57.692	1.00	13.68		Α
MOTA	1304	0	LEU A 177		35.126	38.104	58.163	1.00	12.71		Α
MOTA	1305	N	GLY A 178		33.754	37.680	56.434	1.00	9.18		A
		ĈA	GLY A 178		34.475	38.585	55.541	1.00	12.34		
ATOM	1306										A
MOTA	1307	C	GLY A 178		35.803	38.098	54.975	1.00	12.74		Α
ATOM	1308	0	GLY A 178		36,205	36.939	55.208	1.00	13.97		Α
ATOM	1309	N	LEU A 179		36.492	38.974	54.224	1.00	9.84		A
ATOM	1310	ČA	LEU A 179		37.787	38.610	53.621	1.00	10.63		A
MOTA	1311	CB	LEU A 179		38.078	39.437	52.350	1.00	11.33		A
MOTA	1312	CG	LEU A 179		37.189	39.202	51.120	1.00	10.67		Α
MÓTA	1313	CD1	LEU A 179		37.729	40.017	49.934	1.00	12.85		Α
ATOM	1314	CD2	LEU A 179		37.134	37.692	50.787	1.00	15.70		A
			LEU A 179								
ATOM	1315	Ċ			38.986	38.779	54.555	1.00	12.52		A
MOTA	1316	0	LEU A 179		40.096	38.319	54.233	1.00	13.43		Α
MOTA	1317	N	SER A 180		38.788	39.426	55.702	1.00	13.88		A
MOTA	1318	CA	SER A 180		39.910	39.635	56.612	1.00	17.84		A
ATOM	1319	CB	SER A 180		39.438	40.187	57.954	1.00	23.37		Ã
MOTA	1320	QG	SER A 180		39.006	41.521	57.770	1.00	30.75		A.
MOTA	1321	С	SER A 180		40.776	38.411	56.839	1.00	18.97		A
ATOM	1322	0	SER A 180	•	41.990	38.527	56.856	1.00	16.57		A
MOTA	1323	N	PRO A 181		40.170	37,223	57.010	1.00	17.96		A
ATOM	1324	CD	PRO A 181		38.739	36.923	57.219	1.00	18.24		
											Α.
MOTA	1325	CA	PRO A 181		40.989	36.023	57.228	1.00	19.35		Α
MOTA	1326	CB	PRO A 181		39.948	34.925	57.436	1.00	20.22		A
MOTA	1327	CG	PRO A 181		38.804	35.657	58.063	1.00	20.57		Α
ATOM	1328	C	PRO A 181		41.927	35.697	56.063	1.00	24.47		A
MOTA	1329	ŏ	PRO A 181		42.893	34.943	56.237	1.00	26.18		Ā
ATOM	1330	N	LEU A 182		41.646	36.251	54.880	1.00	17.84		Α
MOTA	1331	CA	LEU A 182		42.470	36.002	53.688	1.00	21.43		Α
ATOM	1332	CB	LEU A 182		41.615	36.019	52.410	1.00	20.15		Α
MOTA	1333	CG	LEU A 182		40.748	34.780	52.178	1.00	20.14		Α
ATOM	1334	CD1			39.849	34.968	50.952	1.00	17.30		A
					41.679						
ATOM	1335	CD2				33.580	52.004	1.00	15.09		A
ATOM	1336	C	LEU A 182		43.614	36.985	53.490	1.00	27.88		Α
ATOM	1337	0	LEU A 182		43.499	37.909	52.682	1.00	31.51		Α
ATOM	1338	N	ALA A 183		44.726	36.761	54.185	1.00	23.49		Α
MOTA	1339	ÇA	ALA A 183		45.893	37.639	54.073	1.00	26.24		Α
MOTA	1340	CB	ALA A 183		47.066	37.047	54.860		22.25		A
			ALA A 183								
ATOM	1341	Č			46.325	37.920	52.629		20.58		A
MOTA	1342	0	ALA A 183		46.623	37.001	51.856	1.00			Α
MOTA	1343	N	GLY A 184		46.354	39.202	51.856 52.278 50.949	, 1.00	17.97		A
MOTA	1344	CA	GLY A 184		46.762	39.603	50.949	1.00	17.46		Α
ATOM	1345	C	GLY A 184		45.908	39.186	49.755	1.00			A
ATOM	1346	0	GLY A 184		46.413	39.159	48.636	1.00			A
MOTA	1347	N	ALA A 185		44.634	38.878	49.956		12.15		A
ATOM	1348	CA	ALA A 185		43.798	38.500	48.811	1.00	14.55		Α
- ATOM ·	1349	CB -	ALA A 185		42.374	38.212	49.271	1.00	14:22	-	~ · A·
ATOM	1350	č	ALA A 185		43.812	39.649	47.795		16.74		A
	1351		ALA A 185		43.780						
MOTA		O				40.826	48.181	1.00			A
ATOM	1352	N	VAL A 186		43.836	39.300	46.507	1.00	9.90		A
MOTA	1353	CA	VAL A 186		43.880	40.276	45.419	1.00	11.92		Α
MOTA	1354	CB	VAL A 186		45.093	39.969	44.484	1.00	14.98		Α
ATOM	1355	ČĞ1			45.026	40.816	43.229	1.00			A
ATOM	1356	CG2			46.398	40.226	45.244	1.00			À
ATOM	1357	Č	VAL A 186		42.608	40.254	44.571	1.00			A
MOTA	1358	0	VAL A 186		42.152	39.182	44.149	1.00			A
MOTA	1359	N	ALA A 187		42.035	41.430	44.331	1.00	11.06		Α
ATOM	1360	CA	ALA A 187		40.829	41.543	43.508	1.00	10.57		A
ATOM	1361	CB	ALA A 187		39.897	42.606	44.096	1.00			A
ATOM	1362	c	ALA A 187		41.211	41.923	42.079	1.00			A
					42.128				14.58		
MOTA	1363	0	ALA A 187		42.128	42.736	41.876	1.00	14.38		A

ATOM ATOM ATOM ATOM	1364 1365 1366 1367	N CA CB C	ALA A 188 ALA A 188 ALA A 188 ALA A 188		40.543 40.832 41.725 39.515	41.328 41.672 40.609 41.759	41.085 39.672 39.018 38.913	1.00 8.38 1.00 8.09 1.00 10.94 1.00 9.75	A A A
MOTA	1368	0	ALA A 188		38.510 39.543	41.196 42.434	39.349 37.766	1.00 10.74 1.00 10.19	, A A
MOTA MOTA	1369 1370	N CA	ILE A 189 ILE A 189		38.355	42.646	36.936	1.00 9.71	A
MOTA MOTA	1371 1372	CB CG2	ILE A 189 ILE A 189		38.300 37.056	44.126 44.394	36.487 35.606	1.00 14.84 1.00 12.56	A A
MOTA	1373	CG1	ILE A 189		38.247	45.007	37.720	1.00 13.85	A
MOTA MOTA	1374 1375	CD1 C	ILE A 189 ILE A 189		36.964 38.307	44.848 41.760	38.520 35.705	1.00 20.17 1.00 11.18	A A
MOTA	1376	0	ILE A 189		39.260	41.715	34.930	1.00 12.80	· A
MOTA MOTA	1377 1378	N CA	GLY A 190 GLY A 190		37.185 37.039	41.062 40.181	35.518 34.368	1.00 12.93 1.00 9.66	A A
MOTA	1379	С	GLY A 190		37.836	38.881	34.432	1.00 11.20	A
MOTA MOTA	1380 1381	Ŋ	GLY A 190 SER A 191		38.763 37.494	38.745 37.919	35.238 33.570	1.00 12.00 1.00 12.31	A A
MOTA	1382	CA	SER A 191 SER A 191		38.216 37.530	36.644 35.671	33.539 32.568	1.00 11.69 1.00 8.59	A A
MOTA MOTA	1383 1384	CB OG	SER A 191		36.224	35.299	33.026	1.00 10.08	A
MOTA MOTA	1385 1386	C	SER A 191 SER A 191		39.678 40.612	36.896 36.295	33.104 33.638	1.00 14.30 1.00 11.39	A A
MOTA	1387	Ŋ	VAL A 192		39.880	37.809	32.156	1.00 11.76	A
MOTA MOTA	1388 1389	CA CB	VAL A 192 VAL A 192		41.235 41.273	38.101 39.029	31.704 30.449	1.00 14.84 1.00 13.34	A A
MOTA	1390	CG1	VAL A 192		40.838	38.252	29.213	1.00 24.13 1.00 29.05	A A
MOTA MOTA	1391 1392	CG2 C	VAL A 192 VAL A 192		40.396 42.056	40.246 38.767	30.678 32.804	1.00 29.05	A
ATOM ATOM	1393 1394	N O	VAL A 192 GLY A 193		43.247 41.431	38.485 39.670	32.940 33.559	1.00 14.10 1.00 12.08	A A
MOTA	1395	CA	GLY A 193		42.149	40.344	34.626	1.00 12.16	A
MOTA MOTA	1396 1397	C	GLY A 193 GLY A 193		42.575 43.652	39.354 39.486	35.700 36.291	1.00 14.30 1.00 9.20	A A
MOTA	1398	N	VAL A 194	•	41.725	38.369	35.976	1.00 9.32	A
MOTA MOTA	1399 1400	CA CB	VAL A 194 VAL A 194		42.069 40.845	37.370 36.459	36.992 37.341	1.00 9.16 1.00 7.74	A A
MOTA	1401	CG1	VAL A 194		41.309	35.168	38.071	1.00 8.55	À
ATOM ATOM	1402 1403	CG2 C	VAL A 194 VAL A 194		39.873 43.256	37.247 36.524	38.259 36.530	1.00 11.33 1.00 10.65	A A
MOTA MOTA	1404 1405	O N	VAL A 194 MET A 195		44.158 43.261	36.255 36.090	37.318 35.265	1.00 10.00 1.00 9.82	A A
MOTA	1406	CA	MET A 195		44.391	35.306	34.775	1.00 11.27	A
ATOM ATOM	1407 1408	CB CG	MET A 195 MET A 195		44.125 43.342	34.727 33.449	33.381 33.381	1.00 13.33 1.00 16.98	A A
MOTA	1409	SD	MET A 195		43.794	32.237	34.698	1.00 19.79	A
MOTA MOTA	1410 1411	CE	MET A 195 MET A 195		45.205 45.672	31.419 36.118	34.043 34.719	1.00 16.46 1.00 12.67	A A
ATOM ATOM	1412 1413	N O	MET A 195 ALA A 196		46.757 45.566	35.579 37.401	34.948 34.385	1.00 15.56 1.00 11.82	A A
ATOM	1414	CA	ALA A 196		46.750	38.239	34.346	1.00 15.74	A
ATOM ATOM	1415 1416	CB C	ALA A 196 ALA A 196		46.404 47.331	39.633 38.323	33.833 35.768	1.00 14.20 1.00 16.81	A A
MOTA	1417	0	ALA A 196		48.544	38.245	35.945	1.00 15.03	A
MOTA MOTA	1418 1419	N CA	ALA A 197 ALA A 197		46.464 46.939	38.468 38.538	36.778 38.151;	1.00 13.86 1.00 13.25	A A
ATOM ATOM	1420 1421	CB C	ALA A 197 ALA A 197		45.790 47.547	38.865 37.203	39.108 ¹ 38.542	1.00 13.70 1.00 13.49	A A
MOTA	1422	Ο.	ALA A 197	•	48.618	37.159	39.147	1.00 13.32	A
ATOM ATOM	1423 1424	N CA	ASP A 198 ASP A 198		46.853 47.326	36.119 34.777	38.202 38.547	1.00 12.41 1.00 16.61	A A
MOTA	1425	CB	ASP A 198		.46.311	33.719	38.074	1.00 18.96	A A
MOTA MOTA	1426 1427	CG OD1			46.605 46.440	32.327 32.107	38.629 39.857	1.00 29.19 1.00 32.24	A
MOTA MOTA	1428 1429	OD2 C	ASP A 198 ASP A 198		47.004 48.699	31.449 34.509	37.834 37.928	1.00 34.04 1.00 17.95	A A
MOTA	1430	0	ASP A 198		49.570	33.942	38.585	1.00 18.27	A
MOTA MOTA	1431 1432	N CA	ASN A 199 ASN A 199		48.900 50.173	34.941 34.733	36.684 35.980	1.00 16.24 1.00 17.75	A A
MOTA	1433	CB	ASN A 199		49.941	34.565	34.478	1.00 19.50	A
MOTA ATOM	1434 1435	CG OD1	ASN A 199 ASN A 199		49.270 49.454	33.263 32.254	34.122 34.786	1.00 21.16 1.00 29.31	A A
MOTA	1436	ND2	ASN A 199		48.504 51.227	33.275 35.832	33.041 36.144	1.00 24.39 1.00 20.64	A A
ATOM ATOM	1437 1438	C O	ASN A 199 ASN A 199		52.272	35.762	35.507	1.00 27.47	A
MOTA	1439	И	ASP A 200		50.973	36.838	36.970	1.00 19.22	A

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	11111111111111111111111111111111111111	ABGOOD CONABGO CONABGO CONABGO CONABGO CONABGO CONACCONABGO CONABGO CONACCA CONACA CONACCA CONACCA CONACCA CONACCA CON	ASP A A A A A A A A A A A A A A A A A A	2000 2000	50666225519000171669130685231415869323963938922434949675094533874485255601877645 93565255151910001716691306852314158693239639389224334949675094533874485257601984943336555555555555555555555555555555555	378.16661173777464411439.99743777765113777464411439.5573815.55378.33333333333333333333333333333333	825336652206969077464887347685261066777528458446983333333333333333333333333333333333	1.00 20.54 1.00 21.11 1.00 21.11 1.00 21.98 1.00 21.98 1.00 21.98 1.00 21.99 1.00 21.93 1.00 22.33 1.00 22.33 1.00 23.53 1.00 23.53 1.00 23.53 1.00 23.53 1.00 23.53 1.00 24.30 1.00 25.68 1.00 19.69 1.00 16.21 1.00 16.21 1.00 16.21 1.00 16.22 1.00 17.47 1.00 16.26 1.00 16.21 1.00 16.22 1.00 17.47 1.00 16.26 1.00 16.21 1.00 16.21 1.00 16.21 1.00 16.21 1.00 16.21 1.00 16.21 1.00 16.21 1.00 16.21 1.00 16.21 1.00 16.21 1.00 16.21 1.00 16.21 1.00 16.21 1.00 16.21 1.00 16.21 1.00 16.21 1.00 16.21 1.00 16.21 1.00 16.21 1.00 16.22 1.00 17.50 1.00 18.64 1.00 11.48		AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
---	--	--	---	--	---	--	--	---	--	--

MOTA MOTA	1516 1517	CD1 CE1	TYR A 210 TYR A 210	•	35.656 35.153	32.240 33.509	40.927	1.00 6.11 1.00 7.73	A A
MOTA MOTA	1518 1519	CD2 CE2	TYR A 210		37.188 36.699	32.386 33.643	42.778 43.086	1.00 6.57 1.00 5.93	A A
ATOM ATOM	1520 1521	CZ OH	TYR A 210		35.687 35.242	34.203 35.475	42.313 42.598	1.00 8.47 1.00 8.24	. A A
MOTA	1522	C	TYR A 210	1	38.169	30.983	39.087	1.00 5.52	A
MOTA MOTA	1523 1524	N O	TYR A 210 ILE A 211		38.184 37.934	32.222 30.201	39.010 38.032	1.00 9.37 1.00 6.28	A A
MOTA MOTA	1525 1526	CA	ILE A 211		37.720	30.832	36.735	1.00 7.52	A
ATOM	1527	CB CG2	ILE A 211		39.085 39.990	31.384 30.231	36.235 35.830	1.00 11.97 1.00 10.21	A A
ATOM ATOM	1528 1529	CG1 CD1	ILE A 211		38.902 40.159	32.361 33.203	35.075 34.806	1.00 14.62 1.00 15.71	· A A
MOTA	1530	C	ILE A 211		37.132	29.936	35.648	1.00 8.22	Ä
MOTA MOTA	1531 1532	И	ILE A 213 SER A 212		37.080 36.634	28.703 30.590	35.778 34.602	1.00 8.13 1.00 9.06	A A
MOTA	1533	CA	SER A 212	:	36.140	29.913	33.394	1.00 9.98	A
MOTA MOTA	1534 1535	CB OG	SER A 212 SER A 212		35.984 35.637	30.934 30.283	32.256 31.037	1.00 8.45 1.00 9.53	A A
ATOM ATOM	1536 1537	C	SER A 212 SER A 212		37.181 38.361	28.904 29.234	32.914 32.812	1.00 10.00 1.00 7.50	A A
MOTA	1538	N	PRO A 213	ı	36.761	27.668	32.585	1.00 8.50	A
MOTA MOTA	1539 1540	CD CA	PRO A 213		35.436 37.781	27.030 26.728	32.686 32.117	1.00 4.78 1.00 8.39	A A
MOTA	1541	CB	PRO A 213	}	37.035	25.392	32.059	1.00 10.29	A
MOTA MOTA	1542 1543	CG C	PRO A 213 PRO A 213		.35.578 38.360	25.849 27.149	31.743 30.777	1.00 9.33 1.00 10.79	A A
MOTA MOTA	1544 1545	и О	PRO A 213 ASP A 214		39.433 37.668	26.698 28.038	30.390 30.074	1.00 10.83 1.00 5.80	A A
MOTA	1546	CA	ASP A 214		38.164	28.514	28.775	1.00 8.50	A
MOTA MOTA	1547 1548	CB CG	ASP A 214 ASP A 214		37.033 37.248	29.175 29.146	27.997 26.497	1.00 7.35 1.00 11.12	A A
ATOM ATOM	1549 1550		ASP A 214 ASP A 214		36.479 38.159	29.849	25.801	1.00 11.42	A
MOTA	1551	C	ASP A 214	ł	39.314	28.428 29.526	26.007 28.935	1.00 10.72 1.00 12.08	A A
ATOM ATOM	1552 1553	и О	ASP A 214 PHE A 219		39.933 39.572	29.931 29.958	27.943 30.170	1.00 13.08 1.00 9.47	A A
MOTA	.1554	CA	PHE A 219	;	40.662	30.901	30.459	1.00 9.63	A
ATOM ATOM	1555 1556	CB CG	PHE A 215		40.121 39.375	32.106 33.081	31.233 30.402	1.00 12.63 1.00 9.86	A A
MOTA MOTA	1557 1558	CD1 CD2	PHE A 215		39.957 38.074	34.301 32.812	30.067 29.986	1.00 11.72	Α
MOTA	1559	CEL	PHE A 215	5	39.250	35.250	29.332	1.00 11.89	A A
ATOM ATOM	1560 1561	CE2 CZ	PHE A 215		37.357 37.949	33.759 34.976	29.245 28.921	1.00 6.37 1.00 13.90	A A
ATOM	1562	C	PHE A 215	5	41.748	30.286	31.356	1.00 13.88	, A
MOTA MOTA	1563 1564	N O	PHE A 215		42.837 41.463	30.865 29.131	31.480 31.976	1.00 12.28 1.00 9.02	A A
ATOM ATOM	1565 1566	CA CB	ALA A 216 ALA A 216		42.404 41.705	28.535 27.432	32.936 33.753	1.00 9.41 1.00 9.18	A A
MOTA	1567	C	ALA A 216	5	43.727	28.007	32.406	1.00 13.18	A
MOTA MOTA	1568 1569	N O	ALA A 210 ALA A 217		44.679 43.790	27.844 27.719	33.178 31.106	1.00 16.82 1.00 12.39	A A
ATOM ATOM	1570 1571	CA CB	ALA A 21' ALA A 21'		45.031 45.094	27.224 25.693	30.522 30.625 29.063		A A
MOTA	1572	C	ALA A 21	7	45.136	27.660			A
ATOM ATOM	1573 1574	N O	ALA A 213 PRO A 218		44.128 46.358	27.958 27.690	28.418 28.517	1.00 14.71 1.00 18.85	. A . A
ATOM ATOM	1575 1576	CD CA	PRO A 218	3	47.657	27.532	29.194	1.00 19.53	А
MOTA	1577	CB	PRO A 218	3	46.533 48.053	28.101 28.171	27.111 26.952	1.00 17.17 1.00 22.03	A A
MOTA MOTA	1578 1579	CG C	PRO A 218		48.553 45.889	28.433 27.162	28.357 26.076	1.00 24.10 1.00 17.95	A A
MOTA	1580	0	PRO A 218	3	45.490	27.606	24.986	1.00 20.60	A
MOTA MOTA	1581 1582	N CA	SER A 219		45.804 45.212	25.872 24.883	26.395 25.490	1.00 12.39	A A
ATOM ATOM	1583 1584	CB	SER A 219 SER A 219		46.308	24.053	24.816 25.749	1.00 17.69	A
ATOM	1585	OG C	SER A 219)	46.870 44.341	23.140 23.942	26.324	1.00 17.25 1.00 14.52	A A
ATOM ATOM	1586 1587	O N	SER A 219		44.454 43.479	23.896 23.180	27.559 25.664	1.00 15.86 1.00 13.85	A A
MOTA	1588	CA	LEU A 220)	42.614	22.250	26.389	1.00 13.63	A
ATOM ATOM	1589 1590	CB CG	LEU A 220 LEU A 220		41.705 40.632	21.491 22.337	25.401 24.707	1.00 15.59 1.00 16.07	A A
ATOM	1591		LEU A 22		39.908	21.517	23.646	1.00 15.58	A

MOFA	1592		LEU A 220	39.635	22.855	25.752	1.00 16.33	A
ATOM ATOM	1593 1594	C	LEU A 220 LEU A 220	43.401 43.034	21.251 20.986	27.245 28.395	1.00 15.71	A
MOTA	1595	Ŋ	ALA A 221	44.481	20.693	26.698	1.00 15.65 1.00 15.60	A A
MOTA	1596	CA	ALA A 221	45.283	19.714	27.452	1.00 18.03	Ā
MOTA	1597	CB	ALA A 221	46.452	19.175	26.604	1.00 17.58	A
ATOM	1598	C	ALA A 221	45.834	20.298	28.738	1.00 11.01	A
MOTA MOTA	1599 1600	O N	ALA A 221 GLY A 222	46.085 46.038	19.573 21.612	29.687 28.754	1.00 15.45	A
ATOM	1601	ĊA	GLY A 222	46.561	22.267	29.947	1.00 15.25 1.00 11.71	A A
A.TOM	1602	Č	GLY A 222	45.641	22.101	31.144	1.00 10.72	Â
MOTA	1603	0	GLY A 222	46.105	22.139	32.280	1.00 14.13	A
MOTA	1604	N	LEU A 223	44.340	21.938	30.914	1.00 11.19	· A
MOTA MOTA	1605 1606	CA CB	LEU A 223 LEU A 223	43.406 41.946	21.751 21.728	32.033 31.525	1.00 8.14	A
MOTA	1607	ČĞ	LEU A 223	41.481	23.046	30.874	1.00 9.90 1.00 9.91	A A
MOTA	1608	CD1	LEU A 223	40.035	22.918	30.331	1.00 9.85	Ä
MOTA	1609	CD2	LEU A 223	41.570	24.153	31.926	1.00 9.05	A
MOTA	1610	Ç	LEU A 223	43.720	20.444	32.773	1.00 11.22	A
MOTA MOTA	1611 1612	И О	LEU A 223 ASN A 224	43.369 44.389	20.297 19.505	33.939 32.100	1.00 7.21 1.00 9.60	A A
ATOM	1613	CA	ASN A 224	44.742	18.231	32.727	1.00 10.35	A
MOTA	1614	CB	ASN A 224	44.651	17.078	31.706	1.00 13.70	Ä
MOTA	1615	CG	ASN A 224	43.214	16.768	31.301	1.00 15.75	A
ATOM ATOM	1616 1617		ASN A 224 ASN A 224	42.347	16.610	32.146	1.00 21.72	A
MOTA	1618	C	ASN A 224	42.968 46.138	16.666 18.239	30.012 33.359	1.00 14.86 1.00 12.93	A A
MOTA	1619	ŏ	ASN A 224	46.580	17.226	33.898	1.00 12.93	A
MOTA	1620	N	ASP A 225	46.833	19.370	33.308	1.00 8.74	A
MOTA	1621	CA	ASP A 225	48.163	19.437	33.932	1.00 12.69	A
MOTA MOTA	1622 1623	CB CG	ASP A 225 ASP A 225	49.031 50.402	20.467 20.654	33.199 33.843	1.00 11.40 1.00 15.89	A
MOTA	1624		ASP A 225	50.673	20.034	34.922	1.00 13.89	A A
MOTA	1625		ASP A 225	51.211	21.401	33.261	1.00 16.19	A
MOTA	1626	Ċ	ASP A 225	47.960	19.844	35.398	1.00 13.53	A
MOTA MOTA	1627 1628	N O	ASP A 225 ALA A 226	47.776 48.035	21.016	35.691	1.00 10.79	A
MOTA	1629	ČA	ALA A 226	47.792	18.882 19.178	36.317 37.720	1.00 10.49 1.00 9.18	A :
MOTA	1630	CB	ALA A 226	47.424	17.889	38.478	1.00 13.20	A A
ATOM	1631	C	ALA A 226	48.881	19.939	38.461	1.00 12.23	A / A /
ATOM ATOM	1632	0	ALA A 226 THR A 227	48.773	20.144	39.678	1.00 13.15	Α '
ATOM	1633 1634	N CA	THR A 227	49.935 50.955	20.347 21.148	37.762 38.426	1.00 10.64 1.00 10.50	A :
ATOM	1635	CB	THR A 227	52.405	20.854	37.917	1.00 15.63	Ä
MOTA	1636	OG1		52.541	21.287	36.561	1.00 13.88	Α :
MOTA	1637	CG2	THR A 227	52.718	19.374	38.009	1.00 16.59	A
MOTA MOTA	1638 1639	C	THR A 227 THR A 227	50.620 51.320	22.628 23.509	38.154 38.626	1.00 9.17 1.00 10.52	A A A A
ATOM	1640	Ň	LYS A 228	49.530	22.876	37.414	1.00 10.32	A
MOTA	1641	CA	LYS A 228	49.079	24.226	37.069	1.00 12.05	A
MOTA	1642	CB	LYS A 228	49.378	24.511	35.594	1.00 15.38	, A
MOTA MOTA	1643 1644	CG CD	LYS A 228 LYS A 228	50.877 51.125	24.607 24.652	35.272 33.758	1.00 22.71	A
ATOM	1645	CE	LYS A 228	52.613	24.720	33.447	1.00 20.66 1.00 26.84	A A
MOTA	1646	NZ	LYS A 228	53.205	25.974	33.986	1.00 37.16	A
MOTA	1647	Č	LYS A 228	47.576	24.453	37.313	, 1.00 8.78	A
ATOM ATOM	1648 1649	N O	LYS A 228 VAL A 229	47.153 46.777	25.574 23.407	37.634 37.100	1.00 9.99 1.00 9.98	A
MOTA	1650	CA	VAL A 229	45.327	23.465	37.282	1.00 9.38	A A
MOTA	1651	CB	VAL A 229	44.611	23.300	35.939	1.00 8.87	Ä
MOTA	1652	CG1		43.082	23.303	36.150	1.00 10.77	A
- ATOM - ATOM	1653 1654	. CG2	VAL A 229	45.019 44.913	24-468	. 34.988-	-1.00 10.90	
ATOM	1655	ŏ	VAL A 229	45.107	22.339	38.245 37.967	1.00 10.51 1.00 8.04	A A
ATOM	1656	Ň	ALA A 230	44.343	22.706	39.383	1.00 10.29	A
MOTA	1657	CA	ALA A 230	43.985	21.696	40.387	1.00 8.30	Α
MOTA	1658	CB	ALA A 230	43.612	22.380	41.677	1.00 10.71	A
ATOM ATOM	1659 1660	C O	ALA A 230 ALA A 230	42.900 41.884	20.691 21.020	40.064 39.435	1.00 12.18 1.00 12.58	A A
ATOM	1661	N	ARG A 231	43.120	19.452	40.501	1.00 12.38	A
ATOM	1662	CA	ARG A 231	42.080	18.436	40.382	1.00 8.98	Ä
ATOM	1663	CB	ARG A 231	42.656	17.021	40.495	1.00 11.67	A
ATOM ATOM	1664 1665	CG	ARG A 231 ARG A 231	43.433	16.581	39.265	1.00 14.58	A
ATOM	1665 1666	CD NB	ARG A 231	44.130 44.972	15.244 14.941	39.487 38.336	1.00 18.76 1.00 19.63	A A
MOTA	1667	CZ	ARG A 231	45.931	14.029	38.331	1.00 26.24	A

ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1668 1669 1670 1671 1672 1673 1674	NH1 NH2 C O N CA CB OG1 CG2	ARG A 231 ARG A 231 ARG A 231 ARG A 231 THR A 232 THR A 232 THR A 232 THR A 232		46.184 46.649 41.271 41.801 39.997 39.180 38.236 39.017 37.382	13.312 13.848 18.738 19.332 18.371 18.607 19.820 21.004	39.426 37.228 41.632 42.582 41.640 42.822 42.623 42.384 43.883	1.00 22.17 1.00 31.31 1.00 8.66 1.00 13.24 1.00 9.11 1.00 11.84 1.00 13.64	A A A A A A
ATOM ATOM ATOM	1676 1677 1678	C 0	THR A 232 THR A 232		38.357 37.869	20.025 17.351 16.747	43.071 42.118	1.00 14.43 1.00 9.12 1.00 13.13	A A A
MOTA MOTA	1679 1680	N CA	GLY A 233 GLY A 233		38.240 37.466	16.934 15.739	44.332 44.636	1.00 9.55 1.00 13.57	. A
ATOM ATOM	1681 1682	0	GLY A 233 GLY A 233		38.197 37.634	14.616 13.556	45.364 45.591	1.00 14.09 1.00 16.30	A A
ATOM ATOM	1683 1684	N CA	LYS A 234 LYS A 234		39.460 40.226	14.831 13.834	45.706 46.438	1.00 14.67 1.00 15.04	A A
ATOM ATOM	1685 1686	CB CG	LYS A 234 LYS A 234		41.577 42.483	14.442 13.576	46.830 47.688	1.00 13.37 1.00 14.40	A A
MOTA MOTA	1687 1688	CE CE	LYS A 234 LYS A 234		43.807 43.594	14.314 15.567	47.968 48.839	1.00 17.84 1.00 15.78	A A
ATOM ATOM	1689 1690	NZ C	LYS A 234 LYS A 234		44.766 39.450	16.501 13.411	48.832 47.697	1.00 12.74 1.00 17.96	A A
ATOM ATOM	1691 1692	И	LYS A 234 GLY A 235		38.826 39.489	14.240 12.124	48.369 48.031	1.00 13.45 1.00 15.80	A A
ATOM ATOM	1693 1694	CA C	GLY A 235 GLY A 235		38.785 38.764	11.694 10.191	49.223 49.402	1.00 15.51	A A
MOTA MOTA	1695 1696	N O	GLY A 235 SER A 236		39.586 37.811	9.472 9.731	48.825 50.204	1.00 21.77	A A
ATOM ATOM	1697 1698	CA CB	SER A 236 SER A 236 SER A 236		37.624 38.018	8.311 8.004	50.489	1.00 24.63 1.00 25.33	A A
ATOM ATOM ATOM	1699 1700 1701	OG C O	SER A 236 SER A 236		39.359 36.159 35.282	8.397 7.969	52.161 50.291	1.00 33.33	A A
ATOM ATOM	1702 1703	N CA	SER A 237 SER A 237		35.262 35.891 34.522	8.624 6.947 6.520	50.855 49.488 49.238	1.00 27.89 1.00 22.58 1.00 23.79	A A A
ATOM ATOM	1704 1705	CB OG	SER A 237 SER A 237		34.123 34.019	6.799 8.197	47.786 47.578	1.00 25.37 1.00 38.24	A A
ATOM ATOM	1706 1707	CO	SER A 237 SER A 237		34.429 35.244	5.036 4.267	49.514 49.009	1.00 30.24	A A
MOTA MOTA	1708 1709	N CA	SER A 238 SER A 238		33.423	4.640	50.295 50.662	1.00 25.14 1.00 24.45	A A
MOTA MOTA	1710 1711	CB OG	SER A 238 SER A 238	٠.	32.716	2.427	49.471 49.163	1.00 27.22 1.00 39.35	A A
ATOM ATOM	1712 1713	Ċ	SER A 238 SER A 238		34.559 34.961	2.670 1.557	51.159 50.809	1.00 23.39	A A
ATOM ATOM	1714 1715	N CA	GLY A 239 GLY A 239		35.249 36.519	3.468	51.966 52.524	1.00 24.50 1.00 25.11	A A
MOTA MOTA	1716 1717	C	GLY A 239 GLY A 239		37.705 38.755	2.973 2.452	51.584 51.969	1.00 28.40 1.00 28.03	A A
ATOM ATOM	1718 1719	N CA	GLY A 240 GLY A 240		37.563 38.677	3.495 3.459	50.365 49.431	1.00 21.59 1.00 26.05	A A
MOTA MOTA	1720 1721	C O	GLY A 240 GLY A 240		39.082 38.218	4.858 5.685	48.984 48.714	1.00 24.32 1.00 23.70	A A
ATOM ATOM	1722 1723	N CA	GLY A 241 GLY A 241		40.386	5.121 6.422	48.920 48.500	1.00 21.49 1.00 27.38	A
MOTA	1724 1725	0	GLY A 241 GLY A 241		40.495	6.715 5.840	47.058 46.200	1.00 28.58	A
MOTA MOTA	1726 1727	N CA	ALA A 242 ALA A 242		40.057	7.939 8.303	46.784 45.434	1.00 24.66 1.00 22.08	A A
ATOM ATOM MOTA	1728 1729 1730	CB C	ALA A 242 ALA A 242 ALA A 242		38.159 40.385	8.527 9.573	45.367 45.043	1.00 25.95 1.00 22.46 1.00 16.67	A A
ATOM	1731 1732	o N CA	GLU A 243 GLU A 243		40.541 40.813 41.502	10.472 9.647 10.830	45.869 43.785 43.289	1.00 16.67 1.00 16.24 1.00 18.78	A A A
ATOM ATOM	1733 1734	CB CG	GLU A 243 GLU A 243		42.444 43.643	10.630	42.132 42.499	1.00 10.78 1.00 23.30 1.00 31.37	A A
ATOM ATOM	1735 1736	CD OE1	GLU A 243		44.658 44.234	9.584 9.507	41.368 40.195	1.00 37.64 1.00 38.59	A A
ATOM ATOM	1737 1738	OE2 C			45.876 40.469	9.628 11.817	41.644 42.757	1.00 41.94	A A
ATOM ATOM	1739 1740	о И	GLU A 243 GLY A 244		39.417 40.765	11.406 13.111	42.285 42.827	1.00 17.65 1.00 15.34	A A
MOTA MOTA	1741 1742	CA C	GLY A 244 GLY A 244		39.832 39.994	14.101 14.161	42.286 40.770	1.00 16.23 1.00 16.48	A A
ATOM	1743	ŏ	GLY A 244		40.894	13.528	40.228	1.00 14.37	A

MOTA MOTA	1744 1745	N CA	LYS A 245 LYS A 245		39.148 39.186	14.939 15.079	40.096 38.632	1.00 14.99 1.00 14.88		A A
ATOM ATOM	1746 1747	CB CG	LYS A 245 LYS A 245		37.792 37.294	14.795 13.363	38.060 38.289	1.00 13.06	5	A A
MOTA MOTA	1748 1749	CD CE	LYS A 245 LYS A 245		38.174 37.596	12.353 10.939	37.540 37.643	1.00 27.44 1.00 27.64	ŀ	A
ATOM ATOM	1750 1751	NZ C	LYS A 245 LYS A 245		37.298	10.599	39.063	1.00 36.34	Ł	Α
MOTA	1752	0	LYS A 245		39.617 39.580	16.471 17.431	38.165 38.932	1.00 13.81	5	A A
MOTA MOTA	1753 1754	N CA	SER A 246 SER A 246		40.022 40.405	16.572 17.856	36.902 36.344	1.00 14.72 1.00 11.87		A A
ATOM ATOM	1755 1756	CB OG	SER A 246 SER A 246		41.299 40.515	17.687 17.215	35.104 34.011	1.00 12.31 1.00 9.67	L	A A
ATOM ATOM	1757	C	SER A 246		39.095	18.500	35.913	1.00 10.79	•	Α
ATOM	1758 1759	Й	SER A 246 PRO A 247		38.076 39.114	17.815 19.825	35.735 35.698	1.00 10.08		A A
MOTA MOTA	1760 1761	CD CA	PRO A 247 PRO A 247		40.243 37.909	20.747 20.545	35.947 35.275	1.00 7.03 1.00 9.29		A A
ATOM ATOM	1762 1763	CB CG	PRO A 247 PRO A 247		38.210 39.737	21.988	35.692 35.385	1.00 7.19	•	A
ATOM ATOM	1764	C	PRO A 247		37.632	20.416	33.765	1.00 9.99	€	A
MOTA	1765 1766	N O	PRO A 247 ALA A 248		36.865 38.253	21.197 19.449	33.222 33.083	1.00 11.54 1.00 9.23	3	A A
MOTA MOTA	1767 1768	CA CB	ALA A 248 ALA A 248		37.992 38.832	19.278 18.097	31.638 31.069	1.00 12.63		A A
ATOM ATOM	1769 1770	C	ALA A 248 ALA A 248		36.487 35.838	19.021 18.390	31.431 32.278	1.00 15.07	7	A
ATOM ATOM	1771 1772	N CA	ALA A 249 ALA A 249		35.935 34.498	19.497	30.311	1.00 12.95	5	A
MOTA	1773	CB	ALA A 249		34.141	19.332 19.886	30.037 28.633	1.00 11.90 1.00 12.61	L	A A
MOTA MOTA	1774 1775	C O	ALA A 249 ALA A 249		34.037 32.953	17.890 17.617	30.149 30.666	1.00 15.30		A A
MOTA MOTA	1776 1777	N CA	ALA A 250 ALA A 250		34.845 34.426	16.949 15.542	29.672 29.769	1.00 14.76 1.00 18.43	5	A A
MOTA MOTA	1778 1779	CB C	ALA A 250 ALA A 250	•	35.486	14.623	29.168	1.00 15.53	}	Α
MOTA	1780	0	ALA A 250		34.118 33.366	15.102 14.154	31.200 31.410	1.00 15.76	•	A A
MOTA MOTA	1781 1782	N CA	ASN A 251 ASN A 251		34.677 34.433	15.785 15.380	32.190 33.575	1.00 14.82 1.00 13.85		A A
MOTA MOTA	1783 1784	CB CG	ASN A 251 ASN A 251		35.665 36.880	15.696 14.885	34.441	1.00 12.26	5	A
MOTA MOTA	1785 1786	OD1 ND2	ASN A 251 ASN A 251		36.755	13.712	33.653	1.00 14.23	3	Α
ATOM	1787	C	ASN A 251		38.056 33.168	15.487 15.968	34.091 34.210	1.00 13.09)	A A
ATOM ATOM	1788 1789	N	ASN A 251 SER A 252		32.877 32.431	15.686 16.806	35.357 33.482	1.00 14.43		A A
MOTA MOTA	1790 1791	CA CB	SER A 252 SER A 252		31.191 31.262	17.346 18.868	34.039 34.209	1.00 10.83	L	A
ATOM ATOM	1792 1793	OG C	SER A 252 SER A 252		31.266 30.027	19.536 16.982	32.953 33.101	1.00 23.58	3	Α
MOTA MOTA	1794	0	SER A 252		28.862	17.077	33.479	1.00 12.18	3	A
MOTA	1795. 1796	N CA	SER A 253 SER A 253		30.365 29.367			1.00 11.74 1.00 10.64	ŀ	A A
MOTA MOTA	1797 1798	CB OG	SER A 253 SER A 253		30.048 29.052	15.572 15.263	29.665 28.704	1.00 18.83		A A
MOTA MOTA	1799 1800	0	SER A 253 SER A 253		28.294 27.112	15.139 15.319	31.382 31.102	1.00 15.51 1.00 11.29		A A
MOTA MOTA	1801 1802	N CA	ALA A 254 ALA A 254		28.692 27.700	14.080 13.084	32.081 32.525	1.00 12.85	5	A
ATOM ATOM	1803	CB	ALA A 254		28.423	11.868	-33.216	1.00 13.94	Į.	Α
····MOTA		 	ALA A 254 ALA A -254		26.656 25.45.7		33.472 -33.342	1.00 14.13)	A A
ATOM ATOM	1806 1807	N CA	ALA A 255 ALA A 255		27.111 26.205	14.457 15.070	34.441 35.401	1.00 11.77		A A
MOTA MOTA	1808 1809	CB C	ALA A 255 ALA A 255		27.009 25.223	15.838 16.017	36.460 34.698	1.00 12.60)	A A
ATOM ATOM	1810 1811	Ŏ N	ALA A 255 ILE A 256		24.068	16.162	35.113	1.00 14.03	3	Α
MOTA	1812	CA	ILE A 256		25.684 24.812	16.680 17.599	33.644 32.920	1.00 13.10	•	A
ATOM ATOM	1813 1814	CB CG2	ILE A 256 ILE A 256		25.614 24.655	18.445 19.233	31.900 30.987	1.00 11.60		A A
ATOM ATOM	1815 1816	CG1 CD1	ILE A 256 ILE A 256		26.577 25.878	19.378 20.335	32.657 33.703	1.00 8.87	7	A A
ATOM ATOM	1817 1818	C	ILE A 256 ILE A 256		23.716 22.569	16.813 17.268	32.195	1.00 12.88	3	Α
ATOM	1819	И	SER A 257		24.069	15.639	32.118 31.678	1.00 12.14 1.00 12.01		A A

ATOM ATOM	1820 1821	CA CB	SER A 257 SER A 257		3.105 3.773	14.793 13.529	30.960	1.00 17.13 1.00 20.33		A A
ATOM ATOM	1822 1823	og C	SER A 257 SER A 257	2	4.331 1.886	13.802 14.359	29.157 31.750	1.00 27.40)	A
ATOM	1824	0	SER A 257	2	0.885	13.975	31.161	1.00 25.54	1 .	A
MOTA MOTA	1825 1826	N CA	VAL A 258 VAL A 258		1.949 0.803	14.417 13.983	33.070 33.849	1.00 18.31		A A
ATOM ATOM	1827 1828	CB CG1	VAL A 258 VAL A 258		1.230 2.055	13.049 11.887	34.996 34.443	1.00 23.45		A A
MOTA	1829	CG2	VAL A 258	2	2.004	13.831	36.041	1.00 29.89	5	A
ATOM ATOM	1830 1831	0	VAL A 258 VAL A 258		0.002 9.056	15.133 14.907	34.436 35.193	1.00 20.13		A A
ATOM ATOM	1832 1833	N CA	VAL A 259 VAL A 259		0.367 9.628	16.365 17.503	34.092 34.621	1.00 17.82		A A
MOTA	1834	CB	VAL A 259	2	0.345	18.816	34.305	1.00 9.6	1.	Α
ATOM ATOM	1835 1836	CG1 CG2	VAL A 259 VAL A 259	2	9.448 1.661	20.009 18.870	34.655 35.110	1.00 9.99)	A A
ATOM ATOM	1837 1838	C O	VAL A 259 VAL A 259		8.257 8.154	17.470 17.543	33.946 32.719	1.00 10.93		A A
ATOM ATOM	1839 1840	N CD	PRO A 260 PRO A 260	1	7.185 7.178	17.372 17.349	34.746 36.227	1.00 12.45	9	A A
MOTA	1841	CA	PRO A 260	1	5.823	17.321	34.204	1.00 12.14	4	A
MOTA MOTA	1842 1843	CB CG	PRO A 260 PRO A 260		4.992 5.705	16.881 17.553	35.415 36.556	1.00 18.60		A A
MOTA MOTA	1844 1845	C O	PRO A 260 PRO A 260		5.326 5.719	18.629 19.704	33.592 34.025	1.00 13.33		A A
MOTA	1846	N	LEU A 261	1	4.462	18.517	32.583	1.00 10.8	9	Α
MOTA MOTA	1847 1848	CA CB	LEU A 261 LEU A 261	1	3.906 3.190	19.697 19.272	31.899 30.612	1.00 14.89	6	A A
MOTA MOTA	1849 1850	CG CD1	LEU A 261 LEU A 261		4.033	18.724 18.115	29.470 28.388	1.00 23.3		A A
ATOM ATOM	1851 1852	CD2 C	LEU A 261 LEU A 261	1	4.860	19.854 20.354	28.927 32.782	1.00 21.8	6	A A
MOTA	1853	0	LEU A 261	1	2.313	19.715	33.667	1.00 13.0	0	A
MOTA MOTA	1854 1855	И CD	PRO A 262 PRO A 262	1	2.598 3.154	21.646 22.620	32.570 31.613	1.00 16.5		A A
ATOM ATOM	1856 1857	CA CB	PRO A 262 PRO A 262		1.576	22.260 23.752	33.421 33.137	1.00 16.8		A A
ATOM ATOM	1858 1859	CG C	PRO A 262 PRO A 262	1	2.147	23.764 21.709	31.698 · 32.911	1.00 22.5	5	A A
MOTA	1860	0	PRO A 262		0.136	21.357	31.743	1.00 14.3	2	A
ATOM ATOM	1861 1862	N CA	ALA A 263 ALA A 263		9.234 7.943	21.605 21.085	33.776 33.344	1.00 13.4 1.00 16.6		A A
MOTA MOTA	1863 1864	CB C	ALA A 263 ALA A 263		6.994 7.343	20.952 22.011	34.539 32.292	1.00 20.0		A A
ATOM ATOM	1865 1866	Ŋ	ALA A 263 ALA A 264		7.480	23.235	32.377 31.309	1.00 14.7 1.00 15.4	0	A A
MOTA	1867	CA	ALA A 264		6.050	22.206	30.239	1.00 12.7	4	A
MOTA MOTA	1868 1869	CB C	ALA A 264 ALA A 264		5.248 5.149	21.287 23.329	29.308 30.747	1.00 19.8 1.00 15.8	-	A A
MOTA MOTA	1870 1871	O N	ALA A 264 ALA A 265		5.247 4.284	24.461 23.037	30.264 31.721	1.00 17.3 1.00 13.7		A A
ATOM ATOM	1872 1873	CA CB	ALA A 265 ALA A 265		3.370 2.464	24.071 23.478	32.242 33.363	1.00 15.1	7	A A
ATOM	1874	C	ALA A 265		4.057	25.333	32.772	1.00 15.0	6	Α
MOTA MOTA	1875 1876	N	ALA A 265 ASN A 266		3.437 5.320	26.398 25.212	32.838, 33.175	1.00 13.7 1.00 13.8	5	A A
ATOM ATOM	1877 1878	CA CB	ASN A 266 ASN A 266		6.057 6.987	26.343 25.895	33.733 34.873	1.00 12.1 1.00 13.9		A A
MOTA MOTA	1879 1880	CG OD1	ASN A 266 ASN A 266		6.253 5.175	25.239 25.676	36.028 36.425	1.00 23.2 1.00 21.9	5	A A
ATOM	1881	ND2			6.856	24.200	36.592 32.730	1.00 19.3	7	Α
ATOM ATOM	1882 1883	C	ASN A 266		6.969 7.662	27.039 27.965	33.100	1.00 13.8	8	A A
ATOM ATOM	1884 1885	N CA	ARG A 267 ARG A 267		6.980 7.933	26.600 27.162	31.483 30.534	1.00 10.1		A A
ATOM ATOM	1886 1887	CB CG	ARG A 267 ARG A 267		8.029	26.254 24.945	29.306 29.675	1.00 10.5 1.00 12.0		A A
MOTA	1888	CD	ARG A 267		8.892	23.924	28.540	1.00 9.9	5	A
ATOM ATOM	1889 1890	NE CZ	ARG A 267 ARG A 267		9.275 9.533	22.637 21.530	29.124 28.439	1.00 14.7 1.00 14.9	4	A
ATOM ATOM	1891 1892	NH1 NH2			9.477 9.782	21.543 20.387	27.118 29.084	1.00 16.5 1.00 12.1		A A
MOTA MOTA	1893 1894	C	ARG A 267 ARG A 267		7.785 8.658	28.629 29.207	30.168 29.505	1.00 13.1 1.00 13.3	5	A
ATOM	1895	N	GLY A 268		6.711	29.240	30.663	1.00 11.1		Ä

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1896 1897 1899 1900 1900 1900 1900 1900 1900 1910 1911 1911 1911 1911 1911 1911 1912 1912 1912 1912	CCONCECOOCONCECECONCECONCO	GLY A 268 GLY A 268 GLY A 268 ASP A 269 PRO A 270 PRO A 271 ASN A 271		6.491 7.219 7.804 8.5233 9.7667 10.6742 10.2184 10.6742 11.0978 11.0978 12.522 14.53 14.53 14.595	30.653 31.679 30.7678 30.6653 31.2663 31.2663 31.2963 31.299 31.299 32.4967 33.7994 33.7994 33.7994 33.7867 34.7867 34	30.439 31.4489 31.44894 32.5914 33.9117 35.2348 33.3410 33.3410 33.331.3916 33.331.315 33.331.315 33.331.331 33.331.331 33.331.331 33.3	1.00 13.33 1.00 13.92 1.00 14.39 1.00 11.00 1.00 14.58 1.00 13.17 1.00 16.24 1.00 17.40 1.00 19.44 1.00 10.72 1.00 11.39 1.00 11.52 1.00 11.48 1.00 10.44 1.00 13.30 1.00 12.77 1.00 10.58 1.00 11.41 1.00 14.43 1.00 22.14 1.00 16.89 1.00 16.21 1.00 15.74	
MOTA MOTA	1922 1923	N CA	VAL A 272 VAL A 272		12.574 12.749	29.065 27.613	35.575 35.547	1.00 10.21 1.00 11.32	
MOTA MOTA	1924 1925	CB CG1	VAL A 272 VAL A 272		11.378 10.450	26.849 27.297	35.440 36.548	1.00 13.38 1.00 14.31	
MOTA MOTA	1926 1927	CG2 C	VAL A 272 VAL A 272		10.759 13.651	27.074 27.086	34.078 34.434	1.00 11.03 1.00 12.71	
ATOM ATOM	1928 1929	O N	VAL A 272 VAL A 272 TRP A 273		14.028 13.991	25.907 27.930	34.459 33.461	1.00 10.89 1.00 7.57	
MOTA	1930	CA	TRP A 273	•	14.862	27.465	32.366	1.00 7.83	
MOTA MOTA	1931 1932	CB CG	TRP A 273 TRP A 273		14.741 13.496	28.403 28.126	31.150 30.364	1.00 7.08 1.00 10.87	
ATOM ATOM	1933 1934	CD2	TRP A 273 TRP A 273 TRP A 273		13.359 12.020	27.161 27.228	29.325 28.860	1.00 9.80 1.00 9.21	
MOTA	1935	CE3	TRP A 273		14.241	26.240	28.732	1.00 10.74	
ATOM ATOM	1936 1937	CD1 NE1	TRP A 273 TRP A 273		12.271 11.375	28.728 28.192	30.500 29.590	1.00 7.74 1.00 12.31	
MOTA MOTA	1938 1939	CZ2 CZ3	TRP A 273 TRP A 273		11.545 13.764	26.412 25.428	27.838 27.700	1.00 10.97 1.00 10.91	
MOTA	1,940	CH2	TRP A 273		12.427	25.522	27.267	1.00 14.13	
ATOM ATOM	1941 1942	С 0	TRP A 273 TRP A 273		16.338 17.119	27.311 26.663	32.755 32.042	1.00 9.26 1.00 9.73	
MOTA MOTA	1943 1944	N CA	THR A 274 THR A 274		16.736 18.123	27.893 27.769	33.880 34.281	1.00 8.74 1.00 11.71	
MOTA MOTA	1945 1946	CB OG1	THR A 274		18.759 18.701		34.542	1.00 12.87	
MOTA	1947	CG2	THR A 274		20.240	28.973	33.334 34.959	1.00 16.61 1.00 9.96	
ATOM ATOM	1948 1949	C O	THR A 274 THR A 274		18.271 18.020	26.918 27.378	35.535 36.645	1.00 10.53 1.00 11.96	
ATOM ATOM	1950 1951	N CD	PRO A 275 PRO A 275		18.673 18.885	25.657 24.916	35.373 34.119.	1.00 11.80 1.00 13.30	
MOTA	1952	CA	PRO A 275		18.841	24.782	34.119, 36.543		
ATOM ATOM	1953 1954	CB CG	PRO A 275 PRO A 275		19.180 18.600	23.424 23.506	35.921 34.528	1.00 15.21 1.00 15.39	
ATOM ATOM	1955 1956	C	PRO A 275 PRO A 275		20.004 21.007	25.253 25.723	37.445 36.950	1.00 12.51 1.00 12.15	
ATOM -	· 1957· 1958	N.	VAL A 276 VAL A 276	•	19.869 20.999		39.615	1.009.91	
MOTA	1959	CB	VAL A 276		20.738	26.762	40.478	1.00 15.02	
ATOM ATOM	1960 1961	CG1 CG2			20.534 19.551	27.990 26.543	39.568 41.388	1.00 16.57 1.00 17.45	
ATOM ATOM	1962 1963	C	VAL A 276 VAL A 276		21.236 20.315	24.293 23.498	40.500 40.743	1.00 12.75 1.00 7.21	
MOTA	1964	N	PHE A 277		22.472	24.149	40.969	1.00 13.38	
ATOM ATOM	1965 1966	CA CB	PHE A 277 PHE A 277		22.848 24.231	23.017 22.491	41.798 41.373	1.00 12.43 1.00 8.49	
ATOM ATOM	1967 1968	CG CD1	PHE A 277		24.229 24.404	21.828 22.568	40.017 38.858	1.00 8.19 1.00 9.76	
ATOM	1969	CD2	PHE A 277		23.999	20.461	39.909	1.00 8.15	
ATOM ATOM	1970 1971	CE2	PHE A 277 PHE A 277		24.350 23.938	21.934 19.825	37.585 38.654	1.00 13.41 1.00 13.62	

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	19734567890123456789012345678900123456789011234567890122345678901233456789012322222222222222222222222222222222222	CCONCCONCECONCECCONCECONCCONCCONCCONCECCCONCECCONCECONCECONCECCONC	VAL A 280 VAL A 281 THR A 282 GLY A 283 GLY A 285 VAL A 285 VAL A 286 VAL A 287 ALA A 288 TYR A 288		44.88917397662283.3653365336533663365336633292222222222222	23.5773661224.55773661222.66296.629766292.6629.6629.6629.6629.	9244679470077006656675268328046636154667596222590084534444444444444444444444444444444444	1.00 17.78 1.00 16.62 1.00 12.88 1.00 10.29 1.00 11.08 1.00 8.88 1.00 12.41 1.00 9.59 1.00 10.87 1.00 6.63 1.00 7.60 1.00 7.46 1.00 12.67 1.00 12.67 1.00 12.61	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ATOM ATOM ATOM ATOM	2037 2038 2039 2040	OH C O	TYR A 288 TYR A 288 TYR A 288 TYR A 288	·	26.883 26.842 26.263 25.989	23.601 24.960 17.061 16.265	43.223 42.960 42.851 43.750	1.00 7.60 1.00 7.46 1.00 12.67 1.00 10.55	A A A A

						· ·						
MOTA	2048	N	ASP A	A 290		28.149	13.372	42.782	1.00 16	. 57		A
ATOM	2049	CA		A 290		29.092	12.691	43.652	1.00 20			A
MOTA	2050	CB		A 290		28.360	11.751	44.628	1.00 25			A
MOTA MOTA	2051 2052	CG OD1		A 290 A 290		27.489 26.599	10.723	43.929	1.00 34			A
ATOM	2053	OD2		A 290		27.693	10.146 10.478	44.604 42.716	1.00 38			A A
MOTA	2054	Č		A 290		30.154	11.952	42.824	1.00 33			Â
ATOM	2055	ŏ		A 290		30.990	11.231	43.362	1.00 21			Ä
MOTA	2056	N		A 291		30.136	12.152	41.509	1.00 14			A ·
MOTA	2057	CA		A 291		31.143	11.538	40.645	1.00 16			A
MOTA	2058	CB		A 291	•	30.592	10.290	39.925	1.00 16			Ā.
MOTA	2059	OG		A 291		29.549	10.625	39.031		.17		A
ATOM ATOM	2060 2061	C O		A 291 A 291		31.555 30.842	12.609 13.605	39.643 39.493	1.00 14 1.00 13			A.
ATOM	2062	Ŋ		A 292		32.692	12.419	38.971		.50 .79		A A
ATOM	2063	CA		A 292		33.181	13.423	38.019	1.00 14			A
ATOM	2064	C		A 292		33.713	14.688	38.707		. 05		A
MOTA	2065	0		A 292		33.964	14.669	39.909		.10		A
MOTA	2066	N		A 293		33.904	15.779	37.955		. 56		A
ATOM	2067	CA		A 293		34.380	17.049	38.529		. 23		A
MOTA MOTA	2068 2069	CB CG		A 293 A 293		34.838 35.535	18.014 19.229	37.443 38.012		.30 .13		A A
ATOM	2070	CD1		A 293		36.829	19.138	38.526		. 85		Â
ATOM	2071	CE1		A 293		37.482	20.269	39.049		.64		A
MOTA	2072	CD2		A 293		34.900	20.470	38.038		. 82		A
ATOM	2073	CE2		A 293		35.547	21.601	38.554		.43		A
MOTA	2074	CZ OH		A 293 A 293		36.839	21.488	39.052		.40		A
ATOM ATOM	2075 2076	C		A 293 A 293		37.488 33.183	22.625 17.645	39.496 39.252		.49 .71		A A
MOTA	2077	ŏ		A 293		32.142	17.834	38.657		. 02		A
MOTA	2078	Ŋ		A 294		33.347	18.021	40.531		. 25		A
MOTA	2079	CD		A 294		34.575	17.923	41.350		.44		Α ·
MOTA	2080	CA		A 294		32.229	18.559	41.302		. 24		A
MOTA	2081	CB		A 294 A 294		32.644	18.263	42.748		.15		A ·
MOTA MOTA	2082 2083	CG C		A 294 A 294		34.132 31.682	18.499 19.963	42.712 41.133		.49 .85		А. А.
ATOM	2084	ŏ		A 294		30.511	20.171	41.429		.37		A :
ATOM	2085	N		A 295		32.476	20.907	40.628		.88		A A
MOTA	2086	CA		A 295		31.990	22.280	40.510		.12		Α .
ATOM	2087	CB		A 295		33.062	23.301	40.934		.07		A
ATOM ATOM	2088 2089	CG2 CG1		A 295 A 295		32.375 33.733	24.656	41.232 42.236		.52		
ATOM	2090	CD1		A 295		34.841	22.853 23.801	42.703		.06 .46	•	A
ATOM	2091	C		A 295		31.564	22.574	39.087		. 87		A
MOTA	2092	0	ILE	A 295		32.397	22.660	38.182		. 57		A :
MOTA	2093	N		A 296		30.257	22.743	38.902		.82		Α.,
ATOM	2094	CA		A 296		29.703	22.951	37.570		.61		A A
ATOM ATOM	2095 2096	CB CG		A 296 A 296		29.370 28.032	21.578 20.884	36.949 37.276		. 63 . 75		A :
ATOM	2097	CD1		A 296		27.971	19.517	36.572		.60		A
ATOM	2098	CD2		A 296		27.852	20.690	38.784		.20		A
MOTA	2099	Č		A 296		28.461	23.828	37.612		.00		\mathbf{A}_{\cdot}
MOTA	2100	Ö		A 296		27.945	24.137	38.690		.47		A
ATOM ATOM	2101 2102	N CA		A 297 A 297		27.988 26.812	24.236 25.093	36.436 36.353		. 98 . 75		A A
ATOM	2103	č		A 297		26.503	25.452	34.906		.03		A
ATOM	2104	Ō		A 297		27.128	24.917	33.979		.23		A
MOTA	2105	N		A 298		25.544	26.353	34.700		.40		A
MOTA	2106	CA		A 298		25.177	26.758	33.350		. 84		A
MOTA MOTA	2107 2108	CB CG		A 298 . A 298		23.666 23.249	26.550 25.102	33.105 32.984		.30		A
	2109-			A 298		- 22.775	_24 398	34.0.94		.10 .62 ·		A - A
ATOM	2110	CD2		A 298		23.356	24.444	31.763		.37	-	A
MOTA	2111	CE1		A 298		22.414	23.038	33.988		.84		A
ATOM	2112	CE2		A 298		23.005	23.087	31.630		. 19		Α
ATOM	2113	CZ	PHE	A 298		22.533	22.379	32.747		. 00		A
MOTA MOTA	2114	C	PHE	A 298 A 298		25.469	28.235	33.145		. 22		A N
ATOM	2115 2116	N		A 298 A 299		25.431 25.811	29.007 28.615	34.114 31.910		. 27 . 04		A A
ATOM	2117	CA		A 299		25.961	30.029	31.594		. 99		A
ATOM	2118	CB		A 299		27.319	30.414	30.975	1.00 12			A
MOTA	2119	OG1	THR	A 299		27.293	31.818	30.682	1.00 10	. 67		A
ATOM	2120	CG2		A 299		27.616	29.617	29.740		.18	•	A
ATOM	2121	C		A 299		24.798	30.220	30.616		.12		A
ATOM ATOM	2122 2123	O N		A 299 A 300		24.482 24.173	29.325 31.392	29.810 30.677		.48 .49		A A
MIUM	2123	14	nor	W 200		22.I/3	31.334	30.077	1.00 8	. 47		A

22.930 CA **ASP A 300** 29.950 1.00 10.66 MOTA 2124 31.636 **ASP A 300** 21.849 CB 31.023 MOTA 2125 31.816 1.00 8.23 A MOTA 2126 CG **ASP A 300** 22.055 30.877 32.193 1.00 14.11 Α ASP A 300 22.141 29.660 31.928 A MOTA 2127 OD1 1.00 8.23 **ASP A 300** 22.149 33.373 1.00 15.65 OD2 31.341 Α 2128 MOTA 1.00 10.65 ASP A 300 MOTA 2129 С 22.828 32.790 28.975 Α 2130 0 ASP A 300 23.690 33.669 28.931 1.00 8.49 Α MOTA LEU A 301 LEU A 301 LEU A 301 21.740 32.765 28.202 1.00 8.77 MOTA 2131 33.819 33.226 CA 21.407 27.246 1.00 10.49 A MOTA 2132 1.00 10.57 21.121 25.850 MOTA 2133 CB Α 22.189 25.157 1.00 17.61 MOTA 2134 CG LEU A 301 32.371 A 23.775 2135 CD1 LEU A 301 21.699 31.951 1.00 16.46 A MOTA **LEU A 301** 23.456 33.151 25.057 1.00 12.96 2136 CD2 A MOTA LEU A 301 LEU A 301 34.533 1.00 20.128 27.689 7.85 A ATOM 2137 1.00 7.63 19.179 33.889 28.127 ATOM 2138 o Α MOTA 2139 ILE A 302 20.101 35.855 27.564 1.00 8.91 A N 7.82 CA ILE A 302 18.897 27.879 1.00 ATOM 2140 36.614 Α 37.648 CB ILE A 302 19.146 29.000 1.00 10.36 A 2141 MOTA ILE A 302 ILE A 302 29.261 1.00 17.848 MOTA 2142 CG2 38.429 12.51 A 19.588 30.287 ATOM 2143 CG1 36.918 1.00 8.81 Α 2144 7.82 MOTA CD1 ILE A 302 20.089 37.867 31.411 1.00 A MOTA 2145 С ILE A 302 18.517 37.368 26.602 1.00 9.48 Α ILE A 302 19.320 38.158 26.096 0 1.00 8.44 A MOTA 2146 PHE A 303 PHE A 303 17.311 37.120 37.786 26.081 1.00 8.80 N Α MOTA 2147 16.843 MOTA 2148 CA 24.854 1.00 8.37 Α PHE A 303 MOTA 2149 CB 16.751 36.821 23.651 1.00 7.07 Α 2150 CG 18.054 36.583 22.944 1.00 8.30 Α MOTA CD1 19.027 35.770 23.500 MOTA 2151 1.00 8.48 A 18.316 20.265 37.205 35.582 21.725 22.851 7.08 2152 1.00 A MOTA CD2 CE1 7.30 2153 1.00 Α MOTA: 19.559 PHE A 303 PHE A 303 MOTA 2154 CE2 37.023 21.065 1.00 9.28 Α 2155 CZ20.528 36.210 21.637 1.00 11.64 A MOTA PHE A 303 PHE A 303 SER A 304 MOTA 15.437 38.305 25.032 2156 С 1.00 9.03 Α 38.052 26.031 MOTA 2157 0 14.797 1.00 9.30 A 2158 14.947 1.00 7.56 И 39.002 24.014 Α MOTA CA SER A 304 SER A 304 ATOM 2159 13.566 39.465 24.044 1.00 9.72 A MOTA 2160 CB 13.470 40.870 23.444 1.00 11.08 Α SER A 304 SER A 304 SER A 304 MOTA 2161 OG 12.117 41.291 23.498 1.00 10.08 12.707 13.198 **ATOM** 2162 C 38.530 23.170 1.00 6.80 A MOTA Ω 38.018 22.162 1.00 10.90 A 2163 1.00 GLU A 305 GLU A 305 MOTA 11.451 38.293 8.14 Α 2164 23.534 N 10.605 1.00 11.11 MOTA 2165 CA 37.482 22.655 Α MOTA 2166 CB **GLU A 305** 9.268 37.125 23.316 1.00 10.66 **GLU A 305** 8.447 36.161 22.439 MOTA 2167 CG 1.00 11.71 Α 1.00 12.77 **GLU A 305** 7.073 35.820 22.985 ATOM 2168 CD Α 6.767 1.00 14.12 **GLU A 305** ATOM 2169 OE1 36.154 24.147 Α **GLU A 305** 1.00 16.70 MOTA 2170 OE2 6.288 35.192 22.228 Α 21.399 MOTA 2171 **GLU A 305** 10.305 38.329 1.00 15.34 MOTA 2172 0 **GLU A 305** 10.154 37.800 20,283 1.00 10.74 A CYS A 306 10.239 39.649 21.574 ATOM 2173 N 1.00 11.86 9.889 40.534 MOTA 2174 CA CYS A 306 20.450 1.00 12.96 A 2175 1.00 14.14 C CYS A 306 41.666 MOTA 20.140 Α CYS A 306 11.434 42.270 1.00 11.98 21.046 MOTA 2176 0 Α 20.726 8.531 MOTA 2177 CB CYS A 306 41.185 1.00 11.40 A MOTA 2178 SG CYS A 306 7.188 40.111 21.313 1.00 15.63 MOTA 2179 N TYR A 307 11.017 41.956 18.854 1.00 12.82 18.3971 17.712 18.703 TYR A 307 11.872 MOTA 2180 CA 43.060 1.00 10.85 Α TYR A 307 TYR A 307 1.00 CB 13.143 42.533 8.88 A MOTA 2181 14.066 41.850 1.00 13.96 ATOM 2182 CG Α MOTA 2183 CD1 TYR A 307 13.902 40.499 19.020 1.00 13.44 MOTA 2184 CE1 TYR A 307 14.683 39.882 20.020 1.00 13.43 Α CD2 TYR A 307 15.035 42.579 19.401 1.00 11.32 MOTA 2185 TYR A 307 1.00 11.99 15.821 41.972 20.410 **ATOM** 2186 CE2 15.637 20.712 1.00 12.10 CZTYR A 307 40.625 Α 2187 ATOM 1.00 12.32 OH **TYR A 307** 16.379 40.019 21.724 Α MOTA 2188 1.00 13.04 TYR A 307 11.056 17.424 **ATOM** 2189 С 43.908 Α MOTA 2190 0 TYR A 307 10.318 43.370 16.588 1.00 11.71 ALA A 308 45.229 17.546 1.00 13.47 MOTA 2191 N 11.161 16.660 2192 CA ALA A 308 10.420 46.123 1.00 19.16 MOTA 10.623 47.583 1.00 19.39 2193 17.116 Α ALA A 308 ATOM CB ALA A 308 15.176 1.00 16.58 ATOM 2194 10.827 45.960 Α 2195 ALA A 308 ATOM 0 9.990 46.011 14.290 1.00 15.94 2196 **ASN A 309** 12.109 45.752 14.919 1.00 16.56 ATOM N 1.00 15.71 **ASN A 309** 12.621 45.602 13.565 2197 ATOM CA 1.00 11.74 **ASN A 309** 14.084 46.052 13.558 ATOM 2198 CB ATOM 2199 CG **ASN A 309** 14.704 46,002 12.183 1.00 20.62

							40 000	1 00 1		•
ATOM	2276		PHE A 319	21.5		33.356	19.087	1.00		A
ATOM	2277	CE1	PHE A 319	24.		32.203	18.738 20.212	1.00 1		A A
ATOM	2278	CE2 CZ	PHE A 319 PHE A 319	22.3 23.9		32.919 32.338	20.212	1.00		Ā
ATOM ATOM	2279 2280	C	PHE A 319	20.4		31.222	16.587		10.27	A
MOTA	2281	Ö	PHE A 319	21.		30.282	16.868		12.47	A
MOTA	2282	Й	PHE A 320	19.		31.275	17.013		10.21	· A
ATOM	2283	CA	PHE A 320	18.		30.213	17.860		10.79	Ä
MOTA	2284	CB	PHE A 320	17.		30.581	18.363	1.00	9.11	A
ATOM	2285	CG	PHE A 320	17.		31.285	19.698	1.00	7.96	Ā
ATOM	2286		PHE A 320	16.		30.642	20.833	1.00	9.52	A
ATOM	2287	CD2	PHE A 320	17.		32.583	19.822	1.00		A
MOTA	2288	CE1	PHE A 320	16.		31.282	22.082	1.00	6.69	· A
ATOM	2289	CE2	PHE A 320	17.	712	33.244	21.075	1.00	9.45	A
ATOM	2290	CZ	PHE A 320	17.	220	32.579	22.209	1.00	8.89	A
MOTA	2291	C	PHE A 320	18.		28.912	17.089	1.00	7.76	A
MOTA	2292	0	PHE A 320	18.		27.838	17.634	1.00	9.90	A
MOTA	2293	N	THR A 321	18.		29.013	15.801	1.00	8.04	A
MOTA	2294	CA	THR A 321	18.		27.829	14.950	1.00	6.79	A
MOTA	2295	CB	THR A 321	17.		28.224	13.551	1.00	7.01	A
ATOM ATOM	2296 2297	OG1 CG2	THR A 321	16. 17.		28.695 27.032	13.691 12.573	1.00	9.32	A A
MOTA	2298	C	THR A 321	19.		27.128	14.872		11.09	Â
MOTA	2299	ŏ	THR A 321	19.		25.896	14.823	1.00		Ã
MOTA	2300	Ŋ	LYS A 322	20.		27.904	14.873	1.00	8.41	Ā
ATOM	2301	CA	LYS A 322	21.		27.319	14.849	1.00	8.00	A
MOTA	2302	CB	LYS A 322	22.		28.329	14.299	1.00	6.38	A
MOTA	2303	CG	LYS A 322	24.	410	27.805	14.359	1.00	10.15	A
MOTA	2304	CD	LYS A 322	25.		28.712	13.615	1.00	8.08	A
MOTA	2305	CE	LYS A 322			27.922	13.317	1.00		A
ATOM	2306	NZ	LYS A 322	27.		28.702	12.437		18.79	A
MOTA	2307	C	LYS A 322			26.857	16.242	1.00	9.52	A
MOTA	2308	0	LYS A 322			25.711	16.425	1.00	9.02	A
ATOM	2309	N	HIS A 323	. 22. 22.		27.735	17.231 18.569	1.00	10.06 9.00	A A
ATOM ATOM	2310 2311	CA CB	HIS A 323			27.420 28.677	19.469	1.00	7.78	A
ATOM	2312	CG	HIS A 323			28.657	20.637	1.00	9.56	Ä
MOTA	2313		HIS A 323		426	28.762	21.970	1.00	9.53	Ä
ATOM	2314		HIS A 323			28.560	20.494	1.00	7.88	A
ATOM	2315		HIS A 323		602	28.615	21.683	1.00	9.47	Α
MOTA	2316	NE2	HIS A 323	24.	653	28.736	22.598	1.00	12.97	A
MOTA	2317	C	HIS A 323		082	26.230	19.222	1.00	9.52	A
MOTA	2318	0	HIS A 323		687	25.507	20.019	1.00	8.65	A
ATOM	2319	N	TYR A 324		808	26.034	18.877	1.00	9.61	A
MOTA	2320	CA	TYR A 324		024	24.911	19.427		10.38	A
ATOM ATOM	2321 2322	CB CG	TYR A 324		767 137	25.434 26.376	20.149 21.277	1.00	6.95 7.33	A A
MOTA	2323	CD1			195	27.752	21.072	1.00	5.99	Ā
MOTA	2324	CEI			656	28.618	22.097	1.00	8.99	A
ATOM	2325	CD2			533	25.882	22.513	1.00	7.61	A
MOTA	2326	CE2	TYR A 324	19.	994	26.731	23.525	1.00	5.98	A
MOTA	2327	CZ	TYR A 324		052	28.094	23.303	1.00	7.54	A
MOTA	2328	OH	TYR A 324	20.	547	28.926	24.294	1.00	7.56	A
MOTA	2329	Č	TYR A 324		627	23.893	18.338	1.00	7.02	A
ATOM ATOM	2330 2331	N O	TYR A 324 GLY A 325		677 387	23.118 23.868	18.498	1.00	7.94	A A
MOTA	2332	CA	GLY A 325		064	22.938	17.254 16.181	1.00	7.51	Â
MOTA	2333	C.	GLY A 325		514	21.493	16.386	1.00		Ä
ATOM	2334	ŏ	GLY A 329	21.	492	21.227	17.097	1.00		A
ATOM	2335	N	THR A 326	i 19.	788	20.564	15.752	1.00	8.75	A
ATOM	2336	CA	THR A 326	20.	113	19.132	15.790		10.25	A
ATOM	2337	CB	THR A 326		005	18.311	15.135	1.00	9.46	A
MOTA	2338	OG1			759	18.707	15.708		10.73	A
ATOM	2339	CG2			212	16.788	15.369	1.00	7.67	A
ATOM	2340	Č	THR A 326		432	18.937	15.038	1.00	9.78	A
MOTA	2341	0	THR A 326		278	18.131	15.452		10.90	A A
ATOM	2342	N	SER A 32'	, 21.	614 858	19.688 19.666	13.953 13.176		12.37 11.58	A A
ATOM ATOM	2343 2344	CA CB	SER A 32		743	18.752	13.176	1.00		A
ATOM	2345	OG	SER A 32		725	19.192	11.051	1.00		Ä
ATOM	2346	č	SER A 32		158	21.118	12.764		10.87	Ä
`ATOM	2347	ŏ	SER A 32	22.	419	22.031	13.149	1.00	9.05	A
MOTA	2348	N	ALA A 328	24.	228	21.331	12.000	1.00	11.22	A
ATOM	2349	CA	ALA A 328		637	22.690	11.567	1.00		A
ATOM	2350	CB	ALA A 328		682	23.234	10.518	1.00		A
ATOM	2351	С	ALA A 328	24.	602	23.592	12.790	1.00	11.88	A

2 5024	0250	_			24 246	04 674	10 740	1 00 10 60	
MOTA	2352	0	ALA A 328		24.046	24.674	12.742	1.00 13.69	
ATOM	2353	N	ASN A 329		25.197	23.140	13.887	1.00 11.26	
MOTA	2354	ĊA	ASN A 329		25.150	23,910	15.123	1.00 10.51	
MOTA	2355	CB	ASN A 329		24.422	23.083	16.205	1.00 8.81	
MOTA	2356	CG	ASN A 329		25.132	21.771	16.536	1.00 9.32	
ATOM	2357		ASN A 329		26.352	21.717	16.573	1.00 11.49	
							10.373		
MOTA	2358	ND2	ASN A 329		24.360	20.714	16.792	1.00 10.75	
ATOM	2359	С	ASN A 329		26.526	24.402	15.604	1.00 12.21	
ATOM	2360	Ō	ASN A 329		27.515	24.381	14.849	1.00 9.35	
MOTA	2361	N	ASP A 330		26.586	24.863	16.851	1.00 10.38	
MOTA	2362	CA	ASP A 330		27.837	25.386	17.412	1.00 9.41	
ATOM	2363	CB	ASP A 330		27.575	26.677	18.208	1.00 10.91	
							17 221		•
MOTA	2364	CG	ASP A 330		27.239	27.852	17.331	1.00 13.71	
ATOM	2365	OD1	ASP A 330		26.333	28.653	17.720	1.00 14.93	
MOTA	2366	OD2	ASP A 330		27.880	27.981	16.261	1.00 10.16	
ATOM	2367	C	ASP A 330		28.536	24.416	18.346	1.00 10.31	
		_							
ATOM	2368	0	ASP A 330		29.484	24.809	19.029	1.00 8.29	
MOTA	2369	N	ASN A 331		28.111	23.153	18.363	1.00 8.79	
ATOM	2370	CA	ASN A 331		28.698	22.217	19.311	1.00 10.91	
					27.942		19.267		
MOTA	2371	CB	ASN A 331			20.869		1.00 11.40	
MOTA	2372	CG	ASN A 331		26.579	20.924	19.989	1.00 15.36	
MOTA	2373	OD1	ASN A 331		25.926	19.893	20.194	1.00 12.09	
MOTA	2374		ASN A 331		26.156	22.115	20.372	1.00 9.71	
MOTA	2375	Ç	ASN A 331		30.220	22.012	19.218	1.00 12.28	
ATOM	2376	0	ASN A 331		30.877	21.866	20.255	1.00 12.57	
MOTA	2377	N	ALA A 332		30.795	22.001	18.012	1.00 10.00	
MOTA	2378	CA	ALA A 332		32.252	21.842	17.903	1.00 12.41	
					20.626				
MOTA	2379	CB	ALA A 332		32.677	21.733	16.445	1.00 12.06	
MOTA	2380	C	ALA A 332		32.964	23.028	18.548	1.00 8.53	
MOTA	2381	0	ALA A 332		33.973	22.872	19.247	1.00 11.75	
ATOM	2382	N	ALA A 333		32.447	24.216	18.297	1.00 9.64	
MOTA	2383	CA	ALA A 333		33.057	25,422	18.858	1.00 10.83	
MOTA	2384	CB	ALA A 333		32.424	26.655	18.223	1.00 9.42	
MOTA	2385	C	ALA A 333		32.910	25.473	20.379	1.00 10.44	
MOTA	2386	ŏ	ALA A 333	•	33.787	25.982	21.096	1.00 9.81	
					21 707				
MOTA	2387	N	ILE A 334		31.787	24.963	20.869	1.00 9.49	
MOTA	2388	CA	ILE A 334		31.536	24.919	22.305	1.00 10.34	
MOTA	2389	CB	ILE A 334		30.099	24.404	22.567	1.00 7.35	
MOTA	2390	CG2	ILE A 334		29.902	24.030	24.056	1.00 4.48	
MOTA	2391	CG1	ILE A 334		29.093	25,467	22.091	1.00 8.68	
MOTA.	2392	CD1	ILE A 334		27.628	24.953	22.043	1.00 8.29	
ATOM	2393	С	ILE A 334		32.593	24.003	22.946	1.00 9.03	
MOTA	2394	0	ILE A 334		33.239	24.352	23.954	1.00 6.82	
ATOM	2395	Ň	GLN A 335		32.805	22.847	22.333	1.00 6.99	
					32.003				
MOTA	2396	CA	GLN A 335		33.800	21.903	22.831	1.00 8.99	
MOTA	2397	CB	GLN A 335		33.695	20.589	22.053	1.00 11.58	
MOTA	2398	CG	GLN A 335		32.448	19.784	22.446	1.00 21.44	
MOTA	2399	CD	GLN A 335		32.279	18.518	21.598	1.00 30.71	
	2400	OE1			33.212	18.083	20.927	1.00 34.68	
MOTA									
MOTA	2401	NE2			31.089	17.926	21.638	1.00 37.34	
MOTA	2402	С	GLN A 335		35.223	22.438	22.774	1.00 12.27	
ATOM	2403	0	GLN A 335		36.014	22.219	23.704	1.00 10.25	
ATOM	2404	N	ALA A 336		35.547	23.143	21.690	1.00 10.75	
MOTA	2405	ĈA	ALA A 336		36.868	23.726	21.514	1.00 12.71	
ATOM	2406	СВ	ALA A 336		36.989	24.375	20.091		
MOTA	2407	Ç	ALA A 336		37.109	24.794	22.591		
MOTA	2408	0	ALA A 336		38.247	25.134	22.894	1.00 11.00	
MOTA	2409	N	ASN A 337	•	36.025	25.310	23.164	1.00 8.06	
ATOM	2410	CA	ASN A 337		36.125	26.342	24.185	1.00 9.10	
ATOM	2411	CB	ASN A 337			27.440	23.887	1.00 8.86	
MOTA	2412	CG	ASN A 337		35.621	28.457	22.874	1.00 12.21	
MOTA	2413		ASN A 337	· ·· •	- 36.333	29.417	23.230	1.00 12.38	
ATOM	2414		ASN A 337		35.301	28.237	21.605	1.00 13.95	
			ASN A 337		35.979				
MOTA	2415	Ç				25.816	25.622		
MOTA	2416	0	ASN A 337		35.647	26.565	26.534	1.00 7.92	
ATOM	2417	N	ALA A 338		36.242	24.523	25.806	1.00 8.29	
ATOM	2418	CA	ALA A 338		36.194	23.863	27.117	1.00 8.92	
							28.069	1.00 10.50	
MOTA	2419	CB	ALA A 338		37.188	24.526			
MOTA	2420	C	ALA A 338		34.825	23.786	27.785	1.00 8.55	
ATOM	2421	0	ALA A 338		34.732	23.671	29.000	1.00 10.41	
ATOM	2422	N	PHE A 339		33.765	23.844	27.002	1.00 7.84	
									•
ATOM	2423	CA	PHE A 339		32.410	23.781	27.553	1.00 8.93	
MOTA	2424	CB	PHE A 339		31.624	25.034	27.120	1.00 7.76	
ATOM	2425	CG	PHE A 339		32.258	26.345	27.576	1.00 10.23	
ATOM	2426	CD1			32.566	26.557	28.923	1.00 11.28	
ATOM	2427		PHE A 339		32.497	27.369	26.664	1.00 9.75	
AIUM	2421	CDZ	EUD W 333		36.431	21.303	20.004	x,00 9.75	
						4 / 4			

FIGURE 4 (suite)

MOTA	2428	CE1	PHE A 339		33.108	27.795	29.360	1.00 11.58	A
				•					
MOTA	2429	CE2	PHE A 339		33.033	28.613	27.077	1.00 8.17	A
MOTA	2430	\mathbf{cz}	PHE A 339		33.339	28.820	28.437	1.00 8.56	A
ATOM	2431	С	PHE A 339		31.647	22.514	27.151	1.00 9.93	A
MOTA	2432	0	PHE A 339		32.084	21.742	26.279	1.00 9.23	, A
ATOM	2433	N	VAL A 340		30.508	22.304	27.797	1.00 8.19	``` . A
ATOM	2434	CA	VAL A 340		29.669	21.139	27.531	1.00 10.26	A
								and the second second	
ATOM	2435	CB	VAL A 340		29.169	20.468	28.851	1.00 11.72	A
MOTA	2436	CG1	VAL A 340		28.219	19.269	28.538	1.00 8.46	A
MOTA	2437		VAL A 340		30.346	19.998	29.679	1.00 8.91	A
MOTA	2438	C	VAL A 340		28.439	21.577	26.742	1.00 6.33	Α
MOTA	2439	0	VAL A 340		27.675	22.433	27.186	1.00 6.81	Α
ATOM	2440	N	PRO A 341		28.255	21.021	25.547	1.00 6.85	· A
MOTA	2441	CD	PRO A 341		29.193	20.162	24.797	1.00 10.26	A
MOTA	2442	CA	PRO A 341		27.082	21.373	24.736	1.00 9.67	Α
ATOM	2443	CB	PRO A 341		27.275	20.537	23.468	1.00 11.39	A
MOTA	2444	CG	PRO A 341		28.752	20.386	23.363	1.00 14.97	A
MOTA	2445	С	PRO A 341		25.807	20.931	25.497	1.00 10.96	A
ATOM	2446	0	PRO A 341		25.851	20.024	26.342	1.00 10.96	A
ATOM	2447	N	LEU A 342		24.673	21.558	25.211	1.00 8.13	A
MOTA	2448	CA	LEU A 342		23.435	21.157	25.870	1.00 10.08	A
MOTA	2449	CB	LEU A 342		22.326	22.194	25.646	1.00 12.81	A
ATOM	2450	CG	LEU A 342		22.558	23.605	26.207	1.00 16.13	A
MOTA	2451		LEU A 342		21.280	24.428	26.007	1.00 10.84	A
MOTA	2452	CD2	LEU A 342		22.908	23.542	27.715	1.00 14.00	A
MOTA	2453	C	LBU A 342		22.981	19.821	25.288	1.00 11.91	Α
					23.142				
MOTA	2454	0	LEU A 342			19.565	24.072	1.00 10.04	A
MOTA	2455	N	PRO A. 343		22.437	18.937	26.147	1.00 10.12	A.
MOTA	2456	$^{\rm CD}$	PRO A 343		22.407	19.074	27.618	1.00 8.23	Α
MOTA	2457	CA	PRO A 343		21.947	17.622	25.721	1.00 11.60	Ā
MOTA	2458	CB	PRO A 343		21.407	17.006	27.021	1.00 11.29	A
MOTA	2459	CG	PRO A 343		22.287	17.643	28.083	1.00 12.10	A
ATOM	2460	C	PRO A 343		20.850	17.839	24.688	1.00 11.38	A
MOTA	2461	0	PRO A 343		20.229	18.896	24.648	1.00 10.75	A
MOTA	2462	N	SER A 344		20.590	16.836	23.861	1.00 9.55	A
MOTA	2463	CA	SER A 344		19.592	16.995	22.801	1.00 8.34	· A
MOTA	2464	CB	SER A 344		19.547	15.741	21.940	1.00 15.39	A
ATOM	2465	0G	SER A 344		19.245	14.625	22.760	1.00 23.25	Α
MOTA	2466	C	SER A 344		18.185	17.315	23.281	1.00 8.79	A
MOTA	2467	ō	SER A 344		17.474	18.051	22.615	1.00 11.06	A
MOTA	2468	N	ASN A 345		17.751	16.744	24.410	1.00 11.97	A
MOTA	2469	CA	ASN A 345		16.403	17.061	24.874	1.00 13.51	A
MOTA	2470	CB	ASN A 345		15.962	16.128	26.015	1.00 11.25	Α
ATOM	2471	CG	ASN A 345		16.896	16.145	27.206	1.00 19.63	A
MOTA	2472	OD1	ASN A 345		18.105	16.399	27.083	1.00 15.65	A
MOTA	2473	ND2	ASN A 345		16.343	15.822	28.379	1.00 15.03	A
MOTA	2474	C	ASN A 345		16.296	18.532	25.277	1.00 12.03	A
ATOM	2475	0	ASN A 345		15.236	19.131	25.167	1.00 11.72	Ā
MOTA	2476	N	TRP A 346		17.397	19.115	25.739	1.00 10.97	A
MOTA	2477	CA	TRP A 346		17.397	20.533	26.097	1.00 9.55	Α
ATOM	2478	CB	TRP A 346		18.663	20.890	26.881	1.00 8.50	A
MOTA	2479	CG	TRP A 346		18.475	20.695	28.372	1.00 9.10	A
MOTA	2480	CD2	TRP A 346		17.927	21.660	29.285	1.00 10.08	Α
ATOM	2481	CE2	TRP A 346		17.831	21.036	30.549	1.00 12.11	Α
ATOM	2482	CE3			17.502	22.994	29.149	1.00 9.60	A
						30 553			
MOTA	2483	CD1			18.694	19.553	29.099	, 1.00 9.06	A
ATOM	2484	NE1	TRP A 346		18.304	19.752	30.411	1.00 9.93	Α
ATOM	2485	CZ2	TRP A 346		17.323	21.705	31.682	1.00 9.30	A
MOTA	2486	CZ3			17.004	23.662	30.261	1.00 10.14	A
MOTA	2487	CH2			16.917	23.012	31.522		A
MOTA	2488	С	TRP A 346		17.298	21.390	24.824	1.00 10.69	A
ATOM	2489	0	TRP A 346		16.509	22.333	24.769	1.00 13.16	A
ATOM	2490	Ň	LYS A 347		18.087	21.074	23.804	1.00 9.34	A
			TAO & 341						
MOTA	2491	CA	LYS A 347		17.984	21.852	22.557	1.00 8.27	A
ATOM	2492	CB	LYS A 347		18.902	21.287	21.466	1.00 12.86	A
ATOM	2493	ĊĠ	LYS A 347		20.416	21.357	21.748	1.00 11.51	Α
					21 221				
MOTA	2494	CD	LYS A 347		21.221	21.071	20.440	1.00 14.73	A
MOTA	2495	CE	LYS A 347		22.733	21.317	20.590	1.00 14.12	A
ATOM	2496	NZ	LYS A 347		23.467	20.312	21.462	1.00 10.37	Α
					16.549	21.789	22.030	1.00 10.83	A
MOTA	2497	C	LYS A 347						
ATOM	2498	0	LYS A 347		15.956	22.814	21.631	1.00 8.78	A
ATOM	2499	N	ALA A 348		15.987	20.583	21.997	1.00 9.70	A
ATOM	2500	CA	ALA A 348		14.627	20.418	21.472	1.00 9.41	A
ATOM	2501	CB	ALA A 348		14.238	18.928	21.448	1.00 12.04	A
MOTA	2502	С	ALA A 348		13.589	21.224	22.251	1.00 10.82	A
ATOM	2503	ŏ	ALA A 348		12.678	21.830	21.657	1.00 9.58	Α
		-							

MOTA	2504	N	ALA A 349	13.735	21.261	23.569	1.00	9.39	A
MOTA	2505	CA	ALA A 349	12.791	22.018	24.392	1.00	8.51	A
MOTA	2506 2507	CB .	ALA A 349 ALA A 349	13.045	21.750	25.891	1.00	8.51	A
MOTA MOTA	2508	Ö	ALA A 349	12.909 11.888	23.518 24.224	24.095 24.012	1.00	10.22 8.91	A
MOTA	2509	Ň	VAL A 350	14.140	24.002	23.930	1.00	12.16	A A
ATOM	2510	ĊA	VAL A 350	14.347	25.423	23.649	1.00	8.94	Ä
ATOM	2511	CB	VAL A 350	15.863	25.794	23.629	1.00	8.30	Ã
MOTA	2512	CG1	VAL A 350	16.075	27.221	23.071	1.00	8.00	A
MOTA	2513	CG2	VAL A 350	16.439	25.729	25.075	1.00	8.81	A
ATOM	2514	C	VAL A 350	13.709	25.763	22.305		10.89	A
ATOM ATOM	2515 2516	N N	VAL A 350 ARG A 351	13.046 13.890	26.787	22.177		11.46	. A
MOTA	2517	CA	ARG A 351	13.289	24.895 25.144	21.313 20.002	1.00	10.91	· A
ATOM	2518	CB	ARG A 351	13.765	24.106	18.988		10.07	A
MOTA	2519	CG	ARG A 351	15.237	24.167	18.647		10.05	A
MOTA	2520	CD	ARG A 351	15.527	23.433	17.312		14.16	A
MOTA	2521	NE	ARG A 351	14.971	22.067	17.282		17.52	Α
ATOM	2522	CZ	ARG A 351	15.577	20.991	17.780	1.00	14.15	A
ATOM ATOM	2523 2524	NH1 NH2	ARG A 351 ARG A 351	14.993 16.775	19.802	17.708	1.00	14.19	A
MOTA	2525	C	ARG A 351	11.750	21.097 25.097	18.338 20.069	1.00	15.54 13.24	A A
ATOM	2526	ŏ	ARG A 351	11.061	25.925	19.477	1.00	10.64	A
ATOM	2527	N	ALA A 352	11.221	24.112	20.786		10.94	Ä
ATOM	2528	CA	ALA A 352	9.772	23.942	20.890		13.45	A
ATOM	2529	CB	ALA A 352	9.447	22.656	21.636		14.54	A
ATOM	2530	C	ALA A 352	9.028	25.112	21.527		14.05	A
MOTA MOTA	2531 2532	O N	ALA A 352 SER A 353	7.875 9.669	25.385 25.802	21.193	1.00	9.92	A
ATOM	2533	CA	SER A 353	9.024	26.932	22.454 23.094	1.00	9.51 10.39	A A
MOTA	2534	CB	SER A 353	9.503	27.088	24.548	1.00	11.56	Â
ATOM	2535	OG	SER A 353	8.802	26.220	25.436		14.83	A
ATOM	2536	C	SER A 353	9.308	28.245	22.386	1.00	12.07	Α
MOTA	2537	0	SER A 353	 8.403	29.033	22.178	1.00	12.33	A
ATOM ATOM	2538 2539	N CA	TYR A 354 TYR A 354	10.568	28.459	22.015	1.00	10.56	A
ATOM	2540	CB	TYR A 354	10.955 12.240	29.733 30.188	21.455 22.159	1.00	8.65 11.42	A
ATOM	2541	ČĞ	TYR A 354	12.077	30.164	23.670		11.26	A A
MOTA	2542	CD1	TYR A 354	11.168	31.007	24.296	1.00	11.16	A
MOTA	2543	CE1	TYR A 354	10.962	30.955	25.673		13.86	A
ATOM	2544	CD2	TYR A 354	12.795	29.265	24.455		12.94	A
MOTA	2545	CE2	TYR A 354	12.608	29.204	25.846		13.83	A
MOTA MOTA	2546 2547	CZ OH	TYR A 354 TYR A 354	11.692 11.496	30.048 29.985	26.437	1.00	15.93	A
MOTA	2548	C	TYR A 354	11.069	29.882	27.784 19.951		31.84	A A
MOTA	2549	ŏ	TYR A 354	11.137	31.011	19.456		11.00	Â
MOTA	2550	N	LEU A 355	11.097	28.778	19.218	1.00	9.87	A
MOTA	2551	CA	LEU A 355	11.156	28.896	17.757		11.35	A
MOTA	2552	CB	LEU A 355	12.292	28.069	17.185		12.01	A
ATOM ATOM	2553 2554	CG CD1	LEU A 355 LEU A 355	13.697 14.731	28.633 27.617	17.424		18.77	A
ATOM	2555	CD2		13.856	29.963	16.930 16.666		13.44 19.42	A A
ATOM	2556	C	LEU A 355	9.848	28.484	17.086		12.49	A
MOTA	2557	0	LEU A 355	9.337	29.208	16.231		13.91	A
MOTA	2558	N	THR A 356	9.300	27.331	17.458		13.88	A
ATOM ATOM	2559 2560	CA CB	THR A 356 THR A 356	8.036 7.414	26.866	16.849	1.00	16.44	A
MOTA	2561	OG1		8.352	25.759 24.678	17.704 · 17.794	1.00	19.06 22.02	A A
ATOM	2562	CG2		6.108	25.265	17.077		20.44	A
MOTA	2563	С	THR A 356	7.058	28.040	16.684		15.88	. A
MOTA	2564	0	THR A 356	6.609	28.642	17.658		14.53	A
MOTA	-2565		-ALA A 357		- 28.362-	15441 -			
ATOM ATOM	2566	CA	ALA A 357	5.892	29.536	15.175		15.13	A
ATOM	2567 2568	CB C	ALA A 357 ALA A 357	5.654 4.569	29.669 29.630	13.662 15.918		17.87	A
ATOM	2569	ŏ	ALA A 357	4.141	30.714	16.295		18.27 19.17	A A
ATOM	2570	Ň	SER A 358	3.930	28.492	16.127	1.00	18.84	Â
MOTA	2571	CA	SER A 358	2.643	28.444	16.800	1.00	22.62	A
MOTA	2572	CB	SER A 358	1.953	27.125	16.459	1.00	18.79	A
MOTA	2573	og	SER A 358	2.853	26.049	16.654		21.93	A
ATOM	2574	C	SER A 358	2.716	28.607	18.318		22.54	A
MOTA MOTA	2575 2576	Ŋ	SER A 358 ASN A 359	1.719 3.886	28.918 28.410	18.949 18.916	1.00	19.82 20.48	A a
ATOM	2577	CA	ASN A 359	3.950	28.550	20.358	1.00	16.65	A A
ATOM	2578	CB	ASN A 359	5.249	27.956	20.909	1.00	12.27	Ä
ATOM	2579	CG	ASN A 359	5.180	27.718	22.387		11.80	A

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	25884 25884 25884 255884 255889 255899 255999 255999 2559999999 255999999999	ND2 C O N CA CB C O N CA CB CG CD1	ASN A 359 ASN A 359 ASN A 359 ASN A 360 ALA A 360 ALA A 360 ALA A 360 ALA A 361 LEU A 361 SER A 362 SER A 362	4.929 3.844 4.5972 1.6841 4.110 4.110 6.0763 6.07186 7.334 7.0344 7.0627	28.652 26.451 30.019 30.861 30.306 31.6651 32.309 33.532 31.488 32.021 31.060 30.788 29.586 32.030 32.219 32.716 31.821 31.936 31.145	23.170 22.793 20.745 20.194 21.712 22.208 23.320 22.744 22.825 23.144 23.653 24.685 25.971 26.849 22.818 21.314 21.317	1.00 16.11 1.00 14.58 1.00 16.93 1.00 15.08 1.00 15.71 1.00 18.67 1.00 22.67 1.00 16.11 1.00 14.62 1.00 15.51 1.00 15.57 1.00 15.50 1.00 12.87 1.00 12.87 1.00 9.97 1.00 10.76 1.00 15.72	•	AAAAAAAAAAAAAAAAA
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2600 2601 26003 26004 26005 26007 26008 2609 2611 2611	OG C O N CA CB CG2 CG1 CD1 C O N CA	ILE A 363	6.470 8.454 7.637 9.741 10.353 11.850 12.483 12.578 13.960 9.639 9.509 9.176 8.477	31.707 33.338 34.258 33.457 34.698 34.461 35.713 34.071 33.442 35.206 34.481 36.451 37.034	18.416 19.822 19.742 19.512 19.072 18.777 18.198 20.064 19.815 17.807 16.830 17.848 16.717	1.00 18.79 1.00 12.29 1.00 12.85 1.00 10.84 1.00 13.05 1.00 12.46 1.00 15.60 1.00 11.48 1.00 14.29 1.00 12.01 1.00 15.53 1.00 14.88		A A A A A A A A A A A A A
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2614 2615 2616 2617 2618 2619 2620 2621 2623 2623	CONCACBCCGOD1	GLY A 364 GLY A 364 ASP A 365 ASP A 365 ASP A 365 ASP A 365 ASP A 365	7.040 6.436 6.471 5.094 4.625 3.992 2.272 4.100 3.979 3.379 2.419	36.567 36.872 35.842 35.360 34.691 34.003 35.025 36.490 37.482 36.317 37.319	16.514 15.487 17.474 17.323 18.613 18.516 18.238 18.698 16.954 17.668 15.848 15.848	1.00 19.34 1.00 19.36 1.00 15.42 1.00 16.08 1.00 22.13 1.00 24.97 1.00 22.46 1.00 20.12 1.00 17.92 1.00 21.25 1.00 19.32		A A A A A A A A A A A A A A
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2625 2626 2627 2628 2630 2631 2633 2633 2635 2635	CB OC O N CA CB C O N CA CB	SER A 366 SER A 366 SER A 366 ALA A 367 ALA A 367 ALA A 367 ALA A 367 VAL A 368 VAL A 368	1.704 2.640 1.359 1.155 0.655 -0.384 -1.220 0.182 -0.402 1.311 1.903 2.729	36.787 36.400 37.814 39.010 36.920 37.363 36.175 38.093 39.066 37.612 38.229 37.182	14.108 13.125 16.342 17.024 17.965 18.431 19.187 19.682 19.692 20.864 21.657	1.00 21.13 1.00 29.92 1.00 15.84 1.00 22.39 1.00 18.40 1.00 25.23 1.00 19.13 1.00 25.24 1.00 26.45 1.00 24.39 1.00 21.43		A A A A A A A A A A
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2637 2638 2639 2641 2642 2643 2645 2646 2647 2648 2659 2659	CG1 CG2 CONCA COCB SGNCA COC		3.447 1.810 2.770 2.713 3.557 4.448 3.919 4.617 5.746 6.819 2.698 2.154 2.159 1.631	37.838 36.094 39.447 40.440 39.395 41.648 42.639 39.977 38.961 41.521 42.573 43.112	22.850 22.148 20.558 21.277 19.491 18.322 18.120 18.581 19.671 17.812 16.9627 18.705	1.00 19.42 1.00 25.28 1.00 19.50 1.00 22.77 1.00 17.47 1.00 20.32 1.00 23.64 1.00 26.98 1.00 22.42 1.00 19.53 1.00 25.38 1.00 27.80 1.00 21.46		A A A A A A A A A A A A A
MOTA MOTA ATOM ATOM MOTA	2651 2652 2653 2654 2655	N CA C O N	GLY A 371 GLY A 371 GLY A 371 GLY A 371 LYS A 372	2.872 2.970 3.913 3.946 4.689	44.885 46.237 46.463 47.561 45.443	16.988 17.516 18.695 19.263 19.057	1.00 20.44 1.00 23.12 1.00 26.63 1.00 23.97 1.00 23.24		A A A A

ATOM ATOM ATOM	2656 2657 2658	CA CB CG	LYS A 372 LYS A 372 LYS A 372	5.612 5.141 3.715	45.537 44.605 44.856	20.197 21.296 21.675	1.00 21.66 1.00 19.20 1.00 25.31	A A A
ATOM	2659	CD	LYS A 372	3.278	43.936	22.769	1.00 24.34	A
ATOM ATOM	2660 2661	CE NZ	LYS A 372 LYS A 372	1.884 1.426	44.315 43.423	23.208 24.285	1.00 29.63 1.00 25.95	A A
ATOM	2662	C	LYS A 372	7.037	45.167	19.855	1.00 18.74	A
ATOM ATOM	2663 2664	O N	LYS A 372 GLY A 373	7.337 7.917	44.799 45.247	18.721 20.852	1.00 17.43 1.00 15.44	A A
ATOM ATOM	2665 2666	CA C	GLY A 373 GLY A 373	9.297 10.366	44.876 45.876	20.616 21.015	1.00 12.87 1.00 17.42	A A
MOTA	2667	0	GLY A 373	10.168	47.106	20.965	1.00 13.70	, A
ATOM ATOM	2668 2669	N CA	ARG A 374 ARG A 374	11.517 12.639	45.342 46.187	21.419 21.792	1.00 14.49 1.00 13.29	A A
MOTA	2670	CB	ARG A 374	13.786	45.339	22.333	1.00 15.72	A
ATOM ATOM	2671 2672	CG CD	ARG A 374 ARG A 374	13.456 14.668	44.710 44.080	23.692 24.332	1.00 18.10 1.00 20.11	A A
MOTA	2673	NE	ARG A 374	15.729	45.034	24.665	1.00 13.47	A
ATOM ATOM	2674 2675	CZ NH1	ARG A 374 ARG A 374	16.143 15.564	45.296 44.694	25.899 26.928	1.00 13.50 1.00 11.14	A A
ATOM ATOM	2676 2677	NH2 C	ARG A 374 ARG A 374	17.206 13.097	46.082 46.989	26.100 20.563	1.00 9.65 1.00 14.09	A A
ATOM	2678	Õ	ARG A 374	13.008	46.517.	19.411	1.00 13.90	A
MOTA MOTA	2679 2680	N CD	PRO A 375 PRO A 375	13.575 13.680	48.225 48.834	20.797 22.133	1.00 13.52 1.00 12.37	A A
MOTA	2681	CA	PRO A 375	14.051	49.137	19.753	1.00 15.51	A
MOTA MOTA	2682 2683	CB CG	PRO A 375 PRO A 375	14.304 14.669	50.445 49.958	20.516 21.903	1.00 18.56 1.00 16.56	A A
MOTA	2684	С	PRO A 375	15.282	48.622	19.017	1.00 16.94	A
ATOM ATOM	2685 2686	N O	PRO A 375 GLU A 376	16.130 15.384	47.953 48.956	19.605 17.733	1.00 16.29 1.00 14.83	A A
ATOM ATOM	2687 2688	CA CB	GLU A 376 GLU A 376	16.501 16.191	48.480 48.638	16.928 15.429	1.00 14.54 1.00 20.94	A A
MOTA	2689	CG	GLU A 376	15.989	50.054	14.930	1.00 25.93	Α.
MOTA MOTA	2690 2691	CD OE1	GLU A 376 GLU A 376	15.840 16.852	50.093 50.265	13.408 12.693	1.00 28.12 1.00 27.73	A , A -
MOTA	2692	OE2	GLU A 376	14.706	49.921	12.926	1.00 22.85	Α
MOTA MOTA	2693 2694	C	GLU A 376 GLU A 376	17.818 17.779	49.144 50.308	17.258 17.715	1.00 15.46 1.00 20.34	A A
MOTA	2695		GLU A 376	18.870	48.501	17.040	1.00 17.16	A 🖟 A 🐰
MOTA MOTA	2696 2697	OH2 OH2	WAT S1500 WAT S1501	35.620 26.719	33.372 26.585	34.950 54.115	1.00 7.74 1.00 13.35	ម្ចាស់ មានការបានការបានការបានការបានការបានការបានការបានការបានការបានការបានការបានការបានការបានការបានការបានការបានការប
MOTA MOTA	2698 2699	OH2 OH2	WAT S1502 WAT S1503	32.910 25.842	38.720 40.990	42.612 19.393	1.00 11.02 1.00 10.30	နှ 🐬
MOTA	2700	OH2	WAT S1504	47.855	24.508	32.439	1.00 11.64	s 🦠
MOTA MOTA	2701 2702	OH2 OH2		37.575 43.970	38.877 19.166	30.460 36.360	1.00 13.25 1.00 11.89	S % S %
MOTA	2703	OH2		51.431	26.280	38.870	1.00 11.08	S -
MOTA MOTA	2704 2705		WAT S1509	21.180 34.016	34.238 23.145	33.496 55.150	1.00 10.94 1.00 7.21	SS
MOTA MOTA	2706 2707	OH2 OH2		34.137 29.833	35.767 31.064	50.996 61.815	1.00 14.32 1.00 12.62	s s
MOTA	2708	OH2	WAT S1512	36.421	34.348	51.750	1.00 8.81	S
ATOM ATOM	2709 2710	OH2 OH2	WAT S1513 WAT S1514	24.593 33.875	22.841 20.919	22.601 53.336	1.00 14.49 1.00 15.73	S S
MOTA	2711	OH2	WAT S1515	55.590 25.163	18.894 24.507	44.228, 19.298	1.00 20.22	S
MOTA MOTA	2712 2713		WAT S1517	29.287	27.565	53.584	1.00 10.43	s s
MOTA MOTA	2714 2715		WAT S1518 WAT S1519	27.630 34.308	35.157 40.814	54.573 45.314	1.00 11.84 1.00 9.91	S S
MOTA	2716	OH2	WAT S1520	24.097	26.340	47.444	1.00 12.35	S
ATOM	2717 2718	OH2 OH2	WAT S1521	26.289 31.025	17.353 26.248	26.191- 57.309	1.00-14.15	S S
MOTA	2719	OH2	WAT S1523	16.012	33.323	36.822	1.00 10.61	S
MOTA MOTA	2720 2721	OH2 OH2		35.079 48.948	31.981 16.302	26.882 35.666	1.00 7.27 1.00 22.32	ននន
MOTA	2722	OH2	WAT S1526	23.036	32.247	50.228 48.819	1.00 12.80 1.00 16.71	s s s
MOTA MOTA	2723 2724	OH2 OH2	WAT S1528		42.204 34.835	16.827	1.00 12.96	S
MOTA MOTA	2725 2726		WAT S1529 WAT S1530		33.895 31.646	27.983	1.00 10.22 1.00 12.12	S
MOTA	2727	OH2	WAT S1531	37.836	31.446	58.127	1.00 18.63	នននន
MOTA MOTA	2728 2729	OH2 OH2			29.528 16.727	35.937 51.505	1.00 10.10 1.00 9.28	S S
MOTA	2730	OH2	WAT S1534	5.728	38.503	24.985	1.00 13.33	
MOTA	2731	OH2	WAT S1535	29.914	14.295	35.432	1.00 16.41	S

ATOM 2735 OHZ WAT S1539 37.549 20.501 28.090 1.00 13.36 S ATOM 2737 OHZ WAT S1540 12.913 31.829 29.436 1.00 9.36 S ATOM 2737 OHZ WAT S1541 30.589 15.671 37.530 1.00 12.47 S ATOM 2737 OHZ WAT S1541 30.589 15.671 37.530 1.00 12.47 S ATOM 2738 OHZ WAT S1543 23.885 35.406 4.3402 1.00 18.37 S ATOM 2740 OHZ WAT S1544 32.885 35.406 4.44 23.757 1.00 12.24 S ATOM 2740 OHZ WAT S1544 1.44 44 23.757 1.00 12.24 S ATOM 2741 OHZ WAT S1545 27.923 19.477 7.944 1.00 11.68 S ATOM 2741 OHZ WAT S1545 27.923 19.477 7.944 1.00 11.68 S ATOM 2742 OHZ WAT S1546 17.540 33.345 7.715 1.00 12.24 S ATOM 2742 OHZ WAT S1546 17.540 33.345 7.715 1.00 12.24 S ATOM 2744 OHZ WAT S1546 27.770 26.074 40.675 1.00 15.68 S ATOM 2747 OHZ WAT S1540 27.770 26.074 40.675 1.00 15.46 S ATOM 2747 OHZ WAT S1540 27.770 27.770 27.770 OHZ WAT S1540 27.770 27.770 27.770 OHZ WAT S1555 37.53 33.819 20.741 1.00 14.34 S ATOM 2747 OHZ WAT S1555 37.53 33.819 20.741 1.00 14.34 S ATOM 2749 OHZ WAT S1555 4.472 22.061 32.567 1.00 17.08 S ATOM 2749 OHZ WAT S1555 4.472 22.061 32.567 1.00 18.41 S SATOM 2749 OHZ WAT S1555 4.472 22.061 32.567 1.00 18.41 S SATOM 2753 OHZ WAT S1555 24.555 40.930 14.067 37.560 10.00 10.00 10.6 S ATOM 2753 OHZ WAT S1555 24.555 40.930 14.067 37.798 10.00 10.00 10.6 S ATOM 2753 OHZ WAT S1555 24.555 40.930 14.067 37.798 10.00 10.00 10.6 S ATOM 2753 OHZ WAT S1555 24.555 40.930 18.00 10.00 17.32 S ATOM 2754 OHZ WAT S1556 24.555 40.930 18.00 10.00 17.32 S ATOM 2755 OHZ WAT S1556 24.855 31.931 17.255 49.603 1.00 19.00 10.	ATOM ATOM ATOM	2732 2733 2734	OH2 WAT S1536 OH2 WAT S1537 OH2 WAT S1538	31.310 44.863 40.186	38.281 16.606 22.869	18.695 36.022 38.700	1.00 9.93 1.00 15.09 1.00 9.90	s s
ATOM 2738 OHZ WAT S1542 23.885 35.406 43.402 1.00 18.37 S ATOM 2740 OHZ WAT S1543 8.663 34.010 25.289 1.00 13.37 S ATOM 2741 OHZ WAT S1544 13.484 46.444 33.757 1.00 12.246 S ATOM 2741 OHZ WAT S1546 12.221 19.477 57.941 1.00 11.62 S ATOM 2742 OHZ WAT S1546 12.221 19.477 57.941 1.00 11.62 S ATOM 2743 OHZ WAT S1546 12.221 19.477 57.941 1.00 11.62 S ATOM 2744 OHZ WAT S1546 12.221 19.477 57.941 1.00 11.62 S ATOM 2745 OHZ WAT S1548 27.270 26.074 40.675 1.00 12.84 S ATOM 2745 OHZ WAT S1549 27.760 43.771 20.816 1.00 13.46 S ATOM 2745 OHZ WAT S1554 27.760 43.771 20.816 1.00 13.46 S ATOM 2747 OHZ WAT S1555 37.046 17.292 27.914 1.00 14.34 S ATOM 2747 OHZ WAT S1555 40.930 14.067 35.565 1.00 14.34 S ATOM 2749 OHZ WAT S1555 40.930 14.067 35.565 1.00 17.08 S ATOM 2749 OHZ WAT S1555 40.930 14.067 35.565 1.00 17.08 S ATOM 2749 OHZ WAT S1555 40.930 14.067 37.945 1.00 14.34 S ATOM 2749 OHZ WAT S1555 51 14.165 35.737 1.00 14.01 0.0 14.01 S ATOM 2753 OHZ WAT S1555 29.555 43.029 36.030 1.00 7.32 S ATOM 2753 OHZ WAT S1555 29.555 43.029 36.030 1.00 7.32 S ATOM 2755 OHZ WAT S1556 22.555 34.029 36.030 1.00 7.32 S ATOM 2755 OHZ WAT S1556 31.931 17.255 49.603 1.00 13.16 S ATOM 2756 OHZ WAT S1556 31.931 17.255 49.603 1.00 13.06 S ATOM 2756 OHZ WAT S1556 31.931 17.255 49.603 1.00 13.06 S ATOM 2756 OHZ WAT S1566 31.327 13.311 33.059 1.00 12.47 S ATOM 2756 OHZ WAT S1566 31.327 13.311 33.059 1.00 12.47 S ATOM 2760 OHZ WAT S1566 31.327 31.311 33.059 1.00 12.47 S ATOM 2760 OHZ WAT S1567 34.489 35.489 37.001 1.00 15.06 S ATOM 2761 OHZ WAT S1568 31.331 17.255 49.603 1.00 39.16 S ATOM 2763 OHZ WAT S1566 31.327 31.311 33.059 1.00 12.47 S ATOM 2767 OHZ WAT S1568 31.331 37.74 S ATOM 2760 OHZ WAT S1568 31.331 37.74 S ATOM 2761 OHZ WAT S1568 31.331 37.37 S ATOM 2763 OHZ WAT S1568 31.331 37.327 31.311 33.059 1.00 12.47 S ATOM 2763 OHZ WAT S1569 31.327 31.331 33.059 1.00 12.00 15.06 S ATOM 2769 OHZ WAT S1568 31.331 37.74 S ATOM 2769 OHZ WAT S1568 31.331 37.74 S ATOM 2769 OHZ WAT S1568 31.331 37.74 S ATOM 2769 OHZ WAT S1568 31.34 S ATOM 2779 OHZ WAT S1568	MOTA	2735	OH2 WAT S1539	37.549	20.501	28.090	1.00 13.36	S
ATOM 2738 OHZ WAT S1542 23.885 35.406 43.402 1.00 18.37 S ATOM 2740 OHZ WAT S1543 8.663 34.010 25.289 1.00 13.37 S ATOM 2741 OHZ WAT S1544 13.484 46.444 33.757 1.00 12.246 S ATOM 2741 OHZ WAT S1546 12.221 19.477 57.941 1.00 11.62 S ATOM 2742 OHZ WAT S1546 12.221 19.477 57.941 1.00 11.62 S ATOM 2743 OHZ WAT S1546 12.221 19.477 57.941 1.00 11.62 S ATOM 2744 OHZ WAT S1546 12.221 19.477 57.941 1.00 11.62 S ATOM 2745 OHZ WAT S1548 27.270 26.074 40.675 1.00 12.84 S ATOM 2745 OHZ WAT S1549 27.760 43.771 20.816 1.00 13.46 S ATOM 2745 OHZ WAT S1554 27.760 43.771 20.816 1.00 13.46 S ATOM 2747 OHZ WAT S1555 37.046 17.292 27.914 1.00 14.34 S ATOM 2747 OHZ WAT S1555 40.930 14.067 35.565 1.00 14.34 S ATOM 2749 OHZ WAT S1555 40.930 14.067 35.565 1.00 17.08 S ATOM 2749 OHZ WAT S1555 40.930 14.067 35.565 1.00 17.08 S ATOM 2749 OHZ WAT S1555 40.930 14.067 37.945 1.00 14.34 S ATOM 2749 OHZ WAT S1555 51 14.165 35.737 1.00 14.01 0.0 14.01 S ATOM 2753 OHZ WAT S1555 29.555 43.029 36.030 1.00 7.32 S ATOM 2753 OHZ WAT S1555 29.555 43.029 36.030 1.00 7.32 S ATOM 2755 OHZ WAT S1556 22.555 34.029 36.030 1.00 7.32 S ATOM 2755 OHZ WAT S1556 31.931 17.255 49.603 1.00 13.16 S ATOM 2756 OHZ WAT S1556 31.931 17.255 49.603 1.00 13.06 S ATOM 2756 OHZ WAT S1556 31.931 17.255 49.603 1.00 13.06 S ATOM 2756 OHZ WAT S1566 31.327 13.311 33.059 1.00 12.47 S ATOM 2756 OHZ WAT S1566 31.327 13.311 33.059 1.00 12.47 S ATOM 2760 OHZ WAT S1566 31.327 31.311 33.059 1.00 12.47 S ATOM 2760 OHZ WAT S1567 34.489 35.489 37.001 1.00 15.06 S ATOM 2761 OHZ WAT S1568 31.331 17.255 49.603 1.00 39.16 S ATOM 2763 OHZ WAT S1566 31.327 31.311 33.059 1.00 12.47 S ATOM 2767 OHZ WAT S1568 31.331 37.74 S ATOM 2760 OHZ WAT S1568 31.331 37.74 S ATOM 2761 OHZ WAT S1568 31.331 37.37 S ATOM 2763 OHZ WAT S1568 31.331 37.327 31.311 33.059 1.00 12.47 S ATOM 2763 OHZ WAT S1569 31.327 31.331 33.059 1.00 12.00 15.06 S ATOM 2769 OHZ WAT S1568 31.331 37.74 S ATOM 2769 OHZ WAT S1568 31.331 37.74 S ATOM 2769 OHZ WAT S1568 31.331 37.74 S ATOM 2769 OHZ WAT S1568 31.34 S ATOM 2779 OHZ WAT S1568			= -					S S
ATOM 2740 OH2 WAT \$1544 13.484 46.444 33.757 1 0.00 12.24 SATOM 2741 OH2 WAT \$1545 27.923 19.477 57.944 1.00 11.68 SATOM 2742 OH2 WAT \$1546 17.540 33.345 7.785 1.00 12.28 SATOM 2742 OH2 WAT \$1546 7 51.545 12.00 12.28 SATOM 2742 OH2 WAT \$1546 9 27.760 43.771 20.816 1.00 13.46 SATOM 2746 OH2 WAT \$1549 27.760 43.771 20.816 1.00 13.46 SATOM 2746 OH2 WAT \$1550 37.046 17.292 27.914 1.00 13.46 SATOM 2746 OH2 WAT \$1551 37.573 33.819 20.741 1.00 13.46 SATOM 2747 OH2 WAT \$1552 40.930 14.067 35.555 1.00 17.08 SATOM 2749 OH2 WAT \$1552 40.930 14.067 35.555 1.00 17.08 SATOM 2749 OH2 WAT \$1555 42.00 12.20 14.06 9 35.555 1.00 17.08 SATOM 2749 OH2 WAT \$1555 42.00 23.20 12.20 13.26 13.20 10.00 17.08 SATOM 2750 OH2 WAT \$1555 42.00 23.20 12.20 13.2							1.00 18.37	S
ATOM 2767 OH2 WAT \$1571 10.314 39.156 33.480 1.00 10.32 S ATOM 2768 OH2 WAT \$1572 51.433 20.485 50.130 1.00 15.09 S ATOM 2769 OH2 WAT \$1573 43.925 30.656 51.790 1.00 17.28 S ATOM 2770 OH2 WAT \$1575 34.977 41.183 53.019 1.00 12.50 S ATOM 2771 OH2 WAT \$1576 29.766 26.781 12.309 1.00 18.82 ATOM 2773 OH2 WAT \$1577 9.190 36.561 30.593 1.00 11.25 S ATOM 2773 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1581 27.734 31.073 59.797 1.00 14.78 S ATOM 2779 OH2 WAT \$1583 29.933 42.651 53.057 1.00 14.52 S ATOM 2779 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.52 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.567 37.848 89.841 1.00 15.10 S ATOM 2785 OH2 WAT \$1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT \$1589 99.567 37.848 89.841 1.00 15.10 S ATOM 2786 OH2 WAT \$1599 6.391 48.835 28.636 1.00 19.52 S ATOM 2786 OH2 WAT \$1599 41.492 20.894 55.469 1.00 16.40 S ATOM 2789 OH2 WAT \$1599 37.216 41.499 30.864 1.00 19.68 S ATOM 2799 OH2 WAT \$1599 37.216 41.499 30.864 1.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.40 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 11.19 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1500 40.650 24.407 21.552 1.00 17.28 S ATOM 2799 OH2 WAT \$1								S
ATOM 2767 OH2 WAT \$1571 10.314 39.156 33.480 1.00 10.32 S ATOM 2768 OH2 WAT \$1572 51.433 20.485 50.130 1.00 15.09 S ATOM 2769 OH2 WAT \$1573 43.925 30.656 51.790 1.00 17.28 S ATOM 2770 OH2 WAT \$1575 34.977 41.183 53.019 1.00 12.50 S ATOM 2771 OH2 WAT \$1576 29.766 26.781 12.309 1.00 18.82 ATOM 2773 OH2 WAT \$1577 9.190 36.561 30.593 1.00 11.25 S ATOM 2773 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1581 27.734 31.073 59.797 1.00 14.78 S ATOM 2779 OH2 WAT \$1583 29.933 42.651 53.057 1.00 14.52 S ATOM 2779 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.52 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.567 37.848 89.841 1.00 15.10 S ATOM 2785 OH2 WAT \$1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT \$1589 99.567 37.848 89.841 1.00 15.10 S ATOM 2786 OH2 WAT \$1599 6.391 48.835 28.636 1.00 19.52 S ATOM 2786 OH2 WAT \$1599 41.492 20.894 55.469 1.00 16.40 S ATOM 2789 OH2 WAT \$1599 37.216 41.499 30.864 1.00 19.68 S ATOM 2799 OH2 WAT \$1599 37.216 41.499 30.864 1.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.40 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 11.19 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1500 40.650 24.407 21.552 1.00 17.28 S ATOM 2799 OH2 WAT \$1								S
ATOM 2767 OH2 WAT \$1571 10.314 39.156 33.480 1.00 10.32 S ATOM 2768 OH2 WAT \$1572 51.433 20.485 50.130 1.00 15.09 S ATOM 2769 OH2 WAT \$1573 43.925 30.656 51.790 1.00 17.28 S ATOM 2770 OH2 WAT \$1575 34.977 41.183 53.019 1.00 12.50 S ATOM 2771 OH2 WAT \$1576 29.766 26.781 12.309 1.00 18.82 ATOM 2773 OH2 WAT \$1577 9.190 36.561 30.593 1.00 11.25 S ATOM 2773 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1581 27.734 31.073 59.797 1.00 14.78 S ATOM 2779 OH2 WAT \$1583 29.933 42.651 53.057 1.00 14.52 S ATOM 2779 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.52 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.567 37.848 89.841 1.00 15.10 S ATOM 2785 OH2 WAT \$1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT \$1589 99.567 37.848 89.841 1.00 15.10 S ATOM 2786 OH2 WAT \$1599 6.391 48.835 28.636 1.00 19.52 S ATOM 2786 OH2 WAT \$1599 41.492 20.894 55.469 1.00 16.40 S ATOM 2789 OH2 WAT \$1599 37.216 41.499 30.864 1.00 19.68 S ATOM 2799 OH2 WAT \$1599 37.216 41.499 30.864 1.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.40 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 11.19 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1500 40.650 24.407 21.552 1.00 17.28 S ATOM 2799 OH2 WAT \$1	MOTA	2742						S
ATOM 2767 OH2 WAT \$1571 10.314 39.156 33.480 1.00 10.32 S ATOM 2768 OH2 WAT \$1572 51.433 20.485 50.130 1.00 15.09 S ATOM 2769 OH2 WAT \$1573 43.925 30.656 51.790 1.00 17.28 S ATOM 2770 OH2 WAT \$1575 34.977 41.183 53.019 1.00 12.50 S ATOM 2771 OH2 WAT \$1576 29.766 26.781 12.309 1.00 18.82 ATOM 2773 OH2 WAT \$1577 9.190 36.561 30.593 1.00 11.25 S ATOM 2773 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1581 27.734 31.073 59.797 1.00 14.78 S ATOM 2779 OH2 WAT \$1583 29.933 42.651 53.057 1.00 14.52 S ATOM 2779 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.52 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.567 37.848 89.841 1.00 15.10 S ATOM 2785 OH2 WAT \$1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT \$1589 99.567 37.848 89.841 1.00 15.10 S ATOM 2786 OH2 WAT \$1599 6.391 48.835 28.636 1.00 19.52 S ATOM 2786 OH2 WAT \$1599 41.492 20.894 55.469 1.00 16.40 S ATOM 2789 OH2 WAT \$1599 37.216 41.499 30.864 1.00 19.68 S ATOM 2799 OH2 WAT \$1599 37.216 41.499 30.864 1.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.40 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 11.19 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1500 40.650 24.407 21.552 1.00 17.28 S ATOM 2799 OH2 WAT \$1								. S
ATOM 2767 OH2 WAT \$1571 10.314 39.156 33.480 1.00 10.32 S ATOM 2768 OH2 WAT \$1572 51.433 20.485 50.130 1.00 15.09 S ATOM 2769 OH2 WAT \$1573 43.925 30.656 51.790 1.00 17.28 S ATOM 2770 OH2 WAT \$1575 34.977 41.183 53.019 1.00 12.50 S ATOM 2771 OH2 WAT \$1576 29.766 26.781 12.309 1.00 18.82 ATOM 2773 OH2 WAT \$1577 9.190 36.561 30.593 1.00 11.25 S ATOM 2773 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1581 27.734 31.073 59.797 1.00 14.78 S ATOM 2779 OH2 WAT \$1583 29.933 42.651 53.057 1.00 14.52 S ATOM 2779 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.52 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.567 37.848 89.841 1.00 15.10 S ATOM 2785 OH2 WAT \$1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT \$1589 99.567 37.848 89.841 1.00 15.10 S ATOM 2786 OH2 WAT \$1599 6.391 48.835 28.636 1.00 19.52 S ATOM 2786 OH2 WAT \$1599 41.492 20.894 55.469 1.00 16.40 S ATOM 2789 OH2 WAT \$1599 37.216 41.499 30.864 1.00 19.68 S ATOM 2799 OH2 WAT \$1599 37.216 41.499 30.864 1.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.40 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 11.19 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1500 40.650 24.407 21.552 1.00 17.28 S ATOM 2799 OH2 WAT \$1	MOTA	2745	OH2 WAT S1549	27.760	43.771	20.816	1.00 13.46	S
ATOM 2767 OH2 WAT \$1571 10.314 39.156 33.480 1.00 10.32 S ATOM 2768 OH2 WAT \$1572 51.433 20.485 50.130 1.00 15.09 S ATOM 2769 OH2 WAT \$1573 43.925 30.656 51.790 1.00 17.28 S ATOM 2770 OH2 WAT \$1575 34.977 41.183 53.019 1.00 12.50 S ATOM 2771 OH2 WAT \$1576 29.766 26.781 12.309 1.00 18.82 ATOM 2773 OH2 WAT \$1577 9.190 36.561 30.593 1.00 11.25 S ATOM 2773 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1581 27.734 31.073 59.797 1.00 14.78 S ATOM 2779 OH2 WAT \$1583 29.933 42.651 53.057 1.00 14.52 S ATOM 2779 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.52 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.567 37.848 89.841 1.00 15.10 S ATOM 2785 OH2 WAT \$1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT \$1589 99.567 37.848 89.841 1.00 15.10 S ATOM 2786 OH2 WAT \$1599 6.391 48.835 28.636 1.00 19.52 S ATOM 2786 OH2 WAT \$1599 41.492 20.894 55.469 1.00 16.40 S ATOM 2789 OH2 WAT \$1599 37.216 41.499 30.864 1.00 19.68 S ATOM 2799 OH2 WAT \$1599 37.216 41.499 30.864 1.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.40 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 11.19 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1500 40.650 24.407 21.552 1.00 17.28 S ATOM 2799 OH2 WAT \$1								S
ATOM 2767 OH2 WAT \$1571 10.314 39.156 33.480 1.00 10.32 S ATOM 2768 OH2 WAT \$1572 51.433 20.485 50.130 1.00 15.09 S ATOM 2769 OH2 WAT \$1573 43.925 30.656 51.790 1.00 17.28 S ATOM 2770 OH2 WAT \$1575 34.977 41.183 53.019 1.00 12.50 S ATOM 2771 OH2 WAT \$1576 29.766 26.781 12.309 1.00 18.82 ATOM 2773 OH2 WAT \$1577 9.190 36.561 30.593 1.00 11.25 S ATOM 2773 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1581 27.734 31.073 59.797 1.00 14.78 S ATOM 2779 OH2 WAT \$1583 29.933 42.651 53.057 1.00 14.52 S ATOM 2779 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.52 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.567 37.848 89.841 1.00 15.10 S ATOM 2785 OH2 WAT \$1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT \$1589 99.567 37.848 89.841 1.00 15.10 S ATOM 2786 OH2 WAT \$1599 6.391 48.835 28.636 1.00 19.52 S ATOM 2786 OH2 WAT \$1599 41.492 20.894 55.469 1.00 16.40 S ATOM 2789 OH2 WAT \$1599 37.216 41.499 30.864 1.00 19.68 S ATOM 2799 OH2 WAT \$1599 37.216 41.499 30.864 1.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.40 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 11.19 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1500 40.650 24.407 21.552 1.00 17.28 S ATOM 2799 OH2 WAT \$1	MOTA	2748	OH2 WAT S1552	40.930	14.067	35.565	1.00 17.08	š
ATOM 2767 OH2 WAT \$1571 10.314 39.156 33.480 1.00 10.32 S ATOM 2768 OH2 WAT \$1572 51.433 20.485 50.130 1.00 15.09 S ATOM 2769 OH2 WAT \$1573 43.925 30.656 51.790 1.00 17.28 S ATOM 2770 OH2 WAT \$1575 34.977 41.183 53.019 1.00 12.50 S ATOM 2771 OH2 WAT \$1576 29.766 26.781 12.309 1.00 18.82 ATOM 2773 OH2 WAT \$1577 9.190 36.561 30.593 1.00 11.25 S ATOM 2773 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1581 27.734 31.073 59.797 1.00 14.78 S ATOM 2779 OH2 WAT \$1583 29.933 42.651 53.057 1.00 14.52 S ATOM 2779 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.52 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.567 37.848 89.841 1.00 15.10 S ATOM 2785 OH2 WAT \$1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT \$1589 99.567 37.848 89.841 1.00 15.10 S ATOM 2786 OH2 WAT \$1599 6.391 48.835 28.636 1.00 19.52 S ATOM 2786 OH2 WAT \$1599 41.492 20.894 55.469 1.00 16.40 S ATOM 2789 OH2 WAT \$1599 37.216 41.499 30.864 1.00 19.68 S ATOM 2799 OH2 WAT \$1599 37.216 41.499 30.864 1.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.40 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 11.19 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1500 40.650 24.407 21.552 1.00 17.28 S ATOM 2799 OH2 WAT \$1								S
ATOM 2767 OH2 WAT \$1571 10.314 39.156 33.480 1.00 10.32 S ATOM 2768 OH2 WAT \$1572 51.433 20.485 50.130 1.00 15.09 S ATOM 2769 OH2 WAT \$1573 43.925 30.656 51.790 1.00 17.28 S ATOM 2770 OH2 WAT \$1575 34.977 41.183 53.019 1.00 12.50 S ATOM 2771 OH2 WAT \$1576 29.766 26.781 12.309 1.00 18.82 ATOM 2773 OH2 WAT \$1577 9.190 36.561 30.593 1.00 11.25 S ATOM 2773 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1581 27.734 31.073 59.797 1.00 14.78 S ATOM 2779 OH2 WAT \$1583 29.933 42.651 53.057 1.00 14.52 S ATOM 2779 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.52 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.567 37.848 89.841 1.00 15.10 S ATOM 2785 OH2 WAT \$1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT \$1589 99.567 37.848 89.841 1.00 15.10 S ATOM 2786 OH2 WAT \$1599 6.391 48.835 28.636 1.00 19.52 S ATOM 2786 OH2 WAT \$1599 41.492 20.894 55.469 1.00 16.40 S ATOM 2789 OH2 WAT \$1599 37.216 41.499 30.864 1.00 19.68 S ATOM 2799 OH2 WAT \$1599 37.216 41.499 30.864 1.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.40 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 11.19 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1500 40.650 24.407 21.552 1.00 17.28 S ATOM 2799 OH2 WAT \$1				14.165		16.934		s
ATOM 2767 OH2 WAT \$1571 10.314 39.156 33.480 1.00 10.32 S ATOM 2768 OH2 WAT \$1572 51.433 20.485 50.130 1.00 15.09 S ATOM 2769 OH2 WAT \$1573 43.925 30.656 51.790 1.00 17.28 S ATOM 2770 OH2 WAT \$1575 34.977 41.183 53.019 1.00 12.50 S ATOM 2771 OH2 WAT \$1576 29.766 26.781 12.309 1.00 18.82 ATOM 2773 OH2 WAT \$1577 9.190 36.561 30.593 1.00 11.25 S ATOM 2773 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1581 27.734 31.073 59.797 1.00 14.78 S ATOM 2779 OH2 WAT \$1583 29.933 42.651 53.057 1.00 14.52 S ATOM 2779 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.52 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.567 37.848 89.841 1.00 15.10 S ATOM 2785 OH2 WAT \$1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT \$1589 99.567 37.848 89.841 1.00 15.10 S ATOM 2786 OH2 WAT \$1599 6.391 48.835 28.636 1.00 19.52 S ATOM 2786 OH2 WAT \$1599 41.492 20.894 55.469 1.00 16.40 S ATOM 2789 OH2 WAT \$1599 37.216 41.499 30.864 1.00 19.68 S ATOM 2799 OH2 WAT \$1599 37.216 41.499 30.864 1.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.40 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 11.19 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1500 40.650 24.407 21.552 1.00 17.28 S ATOM 2799 OH2 WAT \$1				29.555				S
ATOM 2767 OH2 WAT \$1571 10.314 39.156 33.480 1.00 10.32 S ATOM 2768 OH2 WAT \$1572 51.433 20.485 50.130 1.00 15.09 S ATOM 2769 OH2 WAT \$1573 43.925 30.656 51.790 1.00 17.28 S ATOM 2770 OH2 WAT \$1575 34.977 41.183 53.019 1.00 12.50 S ATOM 2771 OH2 WAT \$1576 29.766 26.781 12.309 1.00 18.82 ATOM 2773 OH2 WAT \$1577 9.190 36.561 30.593 1.00 11.25 S ATOM 2773 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1581 27.734 31.073 59.797 1.00 14.78 S ATOM 2779 OH2 WAT \$1583 29.933 42.651 53.057 1.00 14.52 S ATOM 2779 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.52 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.567 37.848 89.841 1.00 15.10 S ATOM 2785 OH2 WAT \$1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT \$1589 99.567 37.848 89.841 1.00 15.10 S ATOM 2786 OH2 WAT \$1599 6.391 48.835 28.636 1.00 19.52 S ATOM 2786 OH2 WAT \$1599 41.492 20.894 55.469 1.00 16.40 S ATOM 2789 OH2 WAT \$1599 37.216 41.499 30.864 1.00 19.68 S ATOM 2799 OH2 WAT \$1599 37.216 41.499 30.864 1.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.40 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 11.19 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1500 40.650 24.407 21.552 1.00 17.28 S ATOM 2799 OH2 WAT \$1								S
ATOM 2767 OH2 WAT \$1571 10.314 39.156 33.480 1.00 10.32 S ATOM 2768 OH2 WAT \$1572 51.433 20.485 50.130 1.00 15.09 S ATOM 2769 OH2 WAT \$1573 43.925 30.656 51.790 1.00 17.28 S ATOM 2770 OH2 WAT \$1575 34.977 41.183 53.019 1.00 12.50 S ATOM 2771 OH2 WAT \$1576 29.766 26.781 12.309 1.00 18.82 ATOM 2773 OH2 WAT \$1577 9.190 36.561 30.593 1.00 11.25 S ATOM 2773 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1581 27.734 31.073 59.797 1.00 14.78 S ATOM 2779 OH2 WAT \$1583 29.933 42.651 53.057 1.00 14.52 S ATOM 2779 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.52 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.567 37.848 89.841 1.00 15.10 S ATOM 2785 OH2 WAT \$1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT \$1589 99.567 37.848 89.841 1.00 15.10 S ATOM 2786 OH2 WAT \$1599 6.391 48.835 28.636 1.00 19.52 S ATOM 2786 OH2 WAT \$1599 41.492 20.894 55.469 1.00 16.40 S ATOM 2789 OH2 WAT \$1599 37.216 41.499 30.864 1.00 19.68 S ATOM 2799 OH2 WAT \$1599 37.216 41.499 30.864 1.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.40 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 11.19 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1500 40.650 24.407 21.552 1.00 17.28 S ATOM 2799 OH2 WAT \$1								S
ATOM 2767 OH2 WAT \$1571 10.314 39.156 33.480 1.00 10.32 S ATOM 2768 OH2 WAT \$1572 51.433 20.485 50.130 1.00 15.09 S ATOM 2769 OH2 WAT \$1573 43.925 30.656 51.790 1.00 17.28 S ATOM 2770 OH2 WAT \$1575 34.977 41.183 53.019 1.00 12.50 S ATOM 2771 OH2 WAT \$1576 29.766 26.781 12.309 1.00 18.82 ATOM 2773 OH2 WAT \$1577 9.190 36.561 30.593 1.00 11.25 S ATOM 2773 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1581 27.734 31.073 59.797 1.00 14.78 S ATOM 2779 OH2 WAT \$1583 29.933 42.651 53.057 1.00 14.52 S ATOM 2779 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.52 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.567 37.848 89.841 1.00 15.10 S ATOM 2785 OH2 WAT \$1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT \$1589 99.567 37.848 89.841 1.00 15.10 S ATOM 2786 OH2 WAT \$1599 6.391 48.835 28.636 1.00 19.52 S ATOM 2786 OH2 WAT \$1599 41.492 20.894 55.469 1.00 16.40 S ATOM 2789 OH2 WAT \$1599 37.216 41.499 30.864 1.00 19.68 S ATOM 2799 OH2 WAT \$1599 37.216 41.499 30.864 1.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.40 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 11.19 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1500 40.650 24.407 21.552 1.00 17.28 S ATOM 2799 OH2 WAT \$1								S
ATOM 2767 OH2 WAT \$1571 10.314 39.156 33.480 1.00 10.32 S ATOM 2768 OH2 WAT \$1572 51.433 20.485 50.130 1.00 15.09 S ATOM 2769 OH2 WAT \$1573 43.925 30.656 51.790 1.00 17.28 S ATOM 2770 OH2 WAT \$1575 34.977 41.183 53.019 1.00 12.50 S ATOM 2771 OH2 WAT \$1576 29.766 26.781 12.309 1.00 18.82 ATOM 2773 OH2 WAT \$1577 9.190 36.561 30.593 1.00 11.25 S ATOM 2773 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1581 27.734 31.073 59.797 1.00 14.78 S ATOM 2779 OH2 WAT \$1583 29.933 42.651 53.057 1.00 14.52 S ATOM 2779 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.52 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.567 37.848 89.841 1.00 15.10 S ATOM 2785 OH2 WAT \$1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT \$1589 99.567 37.848 89.841 1.00 15.10 S ATOM 2786 OH2 WAT \$1599 6.391 48.835 28.636 1.00 19.52 S ATOM 2786 OH2 WAT \$1599 41.492 20.894 55.469 1.00 16.40 S ATOM 2789 OH2 WAT \$1599 37.216 41.499 30.864 1.00 19.68 S ATOM 2799 OH2 WAT \$1599 37.216 41.499 30.864 1.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.40 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 11.19 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1500 40.650 24.407 21.552 1.00 17.28 S ATOM 2799 OH2 WAT \$1	ATOM	2758	OH2 WAT S1562	44.879	35.365	50.334	1.00 9.60	S
ATOM 2767 OH2 WAT \$1571 10.314 39.156 33.480 1.00 10.32 S ATOM 2768 OH2 WAT \$1572 51.433 20.485 50.130 1.00 15.09 S ATOM 2769 OH2 WAT \$1573 43.925 30.656 51.790 1.00 17.28 S ATOM 2770 OH2 WAT \$1575 34.977 41.183 53.019 1.00 12.50 S ATOM 2771 OH2 WAT \$1576 29.766 26.781 12.309 1.00 18.82 ATOM 2773 OH2 WAT \$1577 9.190 36.561 30.593 1.00 11.25 S ATOM 2773 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1581 27.734 31.073 59.797 1.00 14.78 S ATOM 2779 OH2 WAT \$1583 29.933 42.651 53.057 1.00 14.52 S ATOM 2779 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.52 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.567 37.848 89.841 1.00 15.10 S ATOM 2785 OH2 WAT \$1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT \$1589 99.567 37.848 89.841 1.00 15.10 S ATOM 2786 OH2 WAT \$1599 6.391 48.835 28.636 1.00 19.52 S ATOM 2786 OH2 WAT \$1599 41.492 20.894 55.469 1.00 16.40 S ATOM 2789 OH2 WAT \$1599 37.216 41.499 30.864 1.00 19.68 S ATOM 2799 OH2 WAT \$1599 37.216 41.499 30.864 1.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.40 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 11.19 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1500 40.650 24.407 21.552 1.00 17.28 S ATOM 2799 OH2 WAT \$1								S
ATOM 2767 OH2 WAT \$1571 10.314 39.156 33.480 1.00 10.32 S ATOM 2768 OH2 WAT \$1572 51.433 20.485 50.130 1.00 15.09 S ATOM 2769 OH2 WAT \$1573 43.925 30.656 51.790 1.00 17.28 S ATOM 2770 OH2 WAT \$1575 34.977 41.183 53.019 1.00 12.50 S ATOM 2771 OH2 WAT \$1576 29.766 26.781 12.309 1.00 18.82 ATOM 2773 OH2 WAT \$1577 9.190 36.561 30.593 1.00 11.25 S ATOM 2773 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1581 27.734 31.073 59.797 1.00 14.78 S ATOM 2779 OH2 WAT \$1583 29.933 42.651 53.057 1.00 14.52 S ATOM 2779 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.52 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.567 37.848 89.841 1.00 15.10 S ATOM 2785 OH2 WAT \$1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT \$1589 99.567 37.848 89.841 1.00 15.10 S ATOM 2786 OH2 WAT \$1599 6.391 48.835 28.636 1.00 19.52 S ATOM 2786 OH2 WAT \$1599 41.492 20.894 55.469 1.00 16.40 S ATOM 2789 OH2 WAT \$1599 37.216 41.499 30.864 1.00 19.68 S ATOM 2799 OH2 WAT \$1599 37.216 41.499 30.864 1.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.40 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 11.19 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1500 40.650 24.407 21.552 1.00 17.28 S ATOM 2799 OH2 WAT \$1	MOTA	2761	OH2 WAT \$1565	11.411	42.003	26.114	1.00 14.55	ŝ
ATOM 2767 OH2 WAT \$1571 10.314 39.156 33.480 1.00 10.32 S ATOM 2768 OH2 WAT \$1572 51.433 20.485 50.130 1.00 15.09 S ATOM 2769 OH2 WAT \$1573 43.925 30.656 51.790 1.00 17.28 S ATOM 2770 OH2 WAT \$1575 34.977 41.183 53.019 1.00 12.50 S ATOM 2771 OH2 WAT \$1576 29.766 26.781 12.309 1.00 18.82 ATOM 2773 OH2 WAT \$1577 9.190 36.561 30.593 1.00 11.25 S ATOM 2773 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1581 27.734 31.073 59.797 1.00 14.78 S ATOM 2779 OH2 WAT \$1583 29.933 42.651 53.057 1.00 14.52 S ATOM 2779 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.52 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.567 37.848 89.841 1.00 15.10 S ATOM 2785 OH2 WAT \$1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT \$1589 99.567 37.848 89.841 1.00 15.10 S ATOM 2786 OH2 WAT \$1599 6.391 48.835 28.636 1.00 19.52 S ATOM 2786 OH2 WAT \$1599 41.492 20.894 55.469 1.00 16.40 S ATOM 2789 OH2 WAT \$1599 37.216 41.499 30.864 1.00 19.68 S ATOM 2799 OH2 WAT \$1599 37.216 41.499 30.864 1.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.40 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 11.19 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1500 40.650 24.407 21.552 1.00 17.28 S ATOM 2799 OH2 WAT \$1								S
ATOM 2767 OH2 WAT \$1571 10.314 39.156 33.480 1.00 10.32 S ATOM 2768 OH2 WAT \$1572 51.433 20.485 50.130 1.00 15.09 S ATOM 2769 OH2 WAT \$1573 43.925 30.656 51.790 1.00 17.28 S ATOM 2770 OH2 WAT \$1575 34.977 41.183 53.019 1.00 12.50 S ATOM 2771 OH2 WAT \$1576 29.766 26.781 12.309 1.00 18.82 ATOM 2773 OH2 WAT \$1577 9.190 36.561 30.593 1.00 11.25 S ATOM 2773 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1581 27.734 31.073 59.797 1.00 14.78 S ATOM 2779 OH2 WAT \$1583 29.933 42.651 53.057 1.00 14.52 S ATOM 2779 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.52 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.567 37.848 89.841 1.00 15.10 S ATOM 2785 OH2 WAT \$1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT \$1589 99.567 37.848 89.841 1.00 15.10 S ATOM 2786 OH2 WAT \$1599 6.391 48.835 28.636 1.00 19.52 S ATOM 2786 OH2 WAT \$1599 41.492 20.894 55.469 1.00 16.40 S ATOM 2789 OH2 WAT \$1599 37.216 41.499 30.864 1.00 19.68 S ATOM 2799 OH2 WAT \$1599 37.216 41.499 30.864 1.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.40 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 11.19 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1500 40.650 24.407 21.552 1.00 17.28 S ATOM 2799 OH2 WAT \$1						33.704	1.00 12.30	š
ATOM 2767 OH2 WAT \$1571 10.314 39.156 33.480 1.00 10.32 S ATOM 2768 OH2 WAT \$1572 51.433 20.485 50.130 1.00 15.09 S ATOM 2769 OH2 WAT \$1573 43.925 30.656 51.790 1.00 17.28 S ATOM 2770 OH2 WAT \$1575 34.977 41.183 53.019 1.00 12.50 S ATOM 2771 OH2 WAT \$1576 29.766 26.781 12.309 1.00 18.82 ATOM 2773 OH2 WAT \$1577 9.190 36.561 30.593 1.00 11.25 S ATOM 2773 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1578 36.599 15.728 48.666 1.00 21.18 S ATOM 2775 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1580 21.457 35.713 12.303 1.00 13.24 S ATOM 2777 OH2 WAT \$1581 27.734 31.073 59.797 1.00 14.78 S ATOM 2779 OH2 WAT \$1583 29.933 42.651 53.057 1.00 14.52 S ATOM 2779 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.52 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 29.933 42.651 53.057 1.00 14.55 S ATOM 2780 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.564 29.372 11.334 1.00 17.80 S ATOM 2782 OH2 WAT \$1588 99.567 37.848 89.841 1.00 15.10 S ATOM 2785 OH2 WAT \$1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT \$1589 99.567 37.848 89.841 1.00 15.10 S ATOM 2786 OH2 WAT \$1599 6.391 48.835 28.636 1.00 19.52 S ATOM 2786 OH2 WAT \$1599 41.492 20.894 55.469 1.00 16.40 S ATOM 2789 OH2 WAT \$1599 37.216 41.499 30.864 1.00 19.68 S ATOM 2799 OH2 WAT \$1599 37.216 41.499 30.864 1.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.15 S ATOM 2799 OH2 WAT \$1599 37.720 46.441 20.24 10.00 15.40 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 11.19 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1599 30.199 27.159 15.034 1.00 17.28 S ATOM 2799 OH2 WAT \$1500 40.650 24.407 21.552 1.00 17.28 S ATOM 2799 OH2 WAT \$1								S
ATOM 2784 OH2 WAT S1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT S1589 9.567 37.848 39.841 1.00 15.10 S ATOM 2786 OH2 WAT S1590 6.391 48.835 28.636 1.00 19.52 S ATOM 2787 OH2 WAT S1591 41.492 20.894 55.469, 1.00 16.40 S ATOM 2788 OH2 WAT S1592 22.505 28.556 52.952 1.00 24.23 S ATOM 2789 OH2 WAT S1593 27.720 46.441 20.204 1.00 15.40 S ATOM 2790 OH2 WAT S1594 37.216 41.499 30.864 1.00 19.68 S ATOM 2791 OH2 WAT S1595 30.199 27.159 15.034 1.00 11.19 S ATOM 2792 OH2 WAT S1596 25.139 30.964 53.858 1.00 21.47 S ATOM 2793 OH2 WAT S1597 35.730 20.698 18.767 1.00 15.15 S ATOM 2794 OH2 WAT S1598 44.994 20.666 23.797 1.00 17.67 S ATOM 2795 OH2 WAT S1599 28.802 58.069 26.514 1.00 17.28 S ATOM 2796 OH2 WAT S1600 16.767 47.104 22.319 1.00 17.28 S ATOM 2797 OH2 WAT S1601 30.159 33.756 60.797 1.00 17.89 S ATOM 2798 OH2 WAT S1601 30.159 33.756 60.797 1.00 9.19 S ATOM 2799 OH2 WAT S1602 48.106 27.997 36.005 1.00 14.93 S ATOM 2799 OH2 WAT S1604 48.106 27.997 36.005 1.00 14.93 S ATOM 2800 OH2 WAT S1605 16.621 15.788 18.605 1.00 25.68 S ATOM 2801 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.12 S ATOM 2803 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.85 S ATOM 2804 OH2 WAT S1608 22.968 17.449 18.008 1.00 17.85 S ATOM 2803 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1608 33.745 24.205 26.64 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24							1.00 10.32	s
ATOM 2784 OH2 WAT S1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT S1589 9.567 37.848 39.841 1.00 15.10 S ATOM 2786 OH2 WAT S1590 6.391 48.835 28.636 1.00 19.52 S ATOM 2787 OH2 WAT S1591 41.492 20.894 55.469, 1.00 16.40 S ATOM 2788 OH2 WAT S1592 22.505 28.556 52.952 1.00 24.23 S ATOM 2789 OH2 WAT S1593 27.720 46.441 20.204 1.00 15.40 S ATOM 2790 OH2 WAT S1594 37.216 41.499 30.864 1.00 19.68 S ATOM 2791 OH2 WAT S1595 30.199 27.159 15.034 1.00 11.19 S ATOM 2792 OH2 WAT S1596 25.139 30.964 53.858 1.00 21.47 S ATOM 2793 OH2 WAT S1597 35.730 20.698 18.767 1.00 15.15 S ATOM 2794 OH2 WAT S1598 44.994 20.666 23.797 1.00 17.67 S ATOM 2795 OH2 WAT S1599 28.802 58.069 26.514 1.00 17.28 S ATOM 2796 OH2 WAT S1600 16.767 47.104 22.319 1.00 17.28 S ATOM 2797 OH2 WAT S1601 30.159 33.756 60.797 1.00 17.89 S ATOM 2798 OH2 WAT S1601 30.159 33.756 60.797 1.00 9.19 S ATOM 2799 OH2 WAT S1602 48.106 27.997 36.005 1.00 14.93 S ATOM 2799 OH2 WAT S1604 48.106 27.997 36.005 1.00 14.93 S ATOM 2800 OH2 WAT S1605 16.621 15.788 18.605 1.00 25.68 S ATOM 2801 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.12 S ATOM 2803 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.85 S ATOM 2804 OH2 WAT S1608 22.968 17.449 18.008 1.00 17.85 S ATOM 2803 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1608 33.745 24.205 26.64 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24								S
ATOM 2784 OH2 WAT S1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT S1589 9.567 37.848 39.841 1.00 15.10 S ATOM 2786 OH2 WAT S1590 6.391 48.835 28.636 1.00 19.52 S ATOM 2787 OH2 WAT S1591 41.492 20.894 55.469, 1.00 16.40 S ATOM 2788 OH2 WAT S1592 22.505 28.556 52.952 1.00 24.23 S ATOM 2789 OH2 WAT S1593 27.720 46.441 20.204 1.00 15.40 S ATOM 2790 OH2 WAT S1594 37.216 41.499 30.864 1.00 19.68 S ATOM 2791 OH2 WAT S1595 30.199 27.159 15.034 1.00 11.19 S ATOM 2792 OH2 WAT S1596 25.139 30.964 53.858 1.00 21.47 S ATOM 2793 OH2 WAT S1597 35.730 20.698 18.767 1.00 15.15 S ATOM 2794 OH2 WAT S1598 44.994 20.666 23.797 1.00 17.67 S ATOM 2795 OH2 WAT S1599 28.802 58.069 26.514 1.00 17.28 S ATOM 2796 OH2 WAT S1600 16.767 47.104 22.319 1.00 17.28 S ATOM 2797 OH2 WAT S1601 30.159 33.756 60.797 1.00 17.89 S ATOM 2798 OH2 WAT S1601 30.159 33.756 60.797 1.00 9.19 S ATOM 2799 OH2 WAT S1602 48.106 27.997 36.005 1.00 14.93 S ATOM 2799 OH2 WAT S1604 48.106 27.997 36.005 1.00 14.93 S ATOM 2800 OH2 WAT S1605 16.621 15.788 18.605 1.00 25.68 S ATOM 2801 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.12 S ATOM 2803 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.85 S ATOM 2804 OH2 WAT S1608 22.968 17.449 18.008 1.00 17.85 S ATOM 2803 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1608 33.745 24.205 26.64 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24								·S
ATOM 2784 OH2 WAT S1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT S1589 9.567 37.848 39.841 1.00 15.10 S ATOM 2786 OH2 WAT S1590 6.391 48.835 28.636 1.00 19.52 S ATOM 2787 OH2 WAT S1591 41.492 20.894 55.469, 1.00 16.40 S ATOM 2788 OH2 WAT S1592 22.505 28.556 52.952 1.00 24.23 S ATOM 2789 OH2 WAT S1593 27.720 46.441 20.204 1.00 15.40 S ATOM 2790 OH2 WAT S1594 37.216 41.499 30.864 1.00 19.68 S ATOM 2791 OH2 WAT S1595 30.199 27.159 15.034 1.00 11.19 S ATOM 2792 OH2 WAT S1596 25.139 30.964 53.858 1.00 21.47 S ATOM 2793 OH2 WAT S1597 35.730 20.698 18.767 1.00 15.15 S ATOM 2794 OH2 WAT S1598 44.994 20.666 23.797 1.00 17.67 S ATOM 2795 OH2 WAT S1599 28.802 58.069 26.514 1.00 17.28 S ATOM 2796 OH2 WAT S1600 16.767 47.104 22.319 1.00 17.28 S ATOM 2797 OH2 WAT S1601 30.159 33.756 60.797 1.00 17.89 S ATOM 2798 OH2 WAT S1601 30.159 33.756 60.797 1.00 9.19 S ATOM 2799 OH2 WAT S1602 48.106 27.997 36.005 1.00 14.93 S ATOM 2799 OH2 WAT S1604 48.106 27.997 36.005 1.00 14.93 S ATOM 2800 OH2 WAT S1605 16.621 15.788 18.605 1.00 25.68 S ATOM 2801 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.12 S ATOM 2803 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.85 S ATOM 2804 OH2 WAT S1608 22.968 17.449 18.008 1.00 17.85 S ATOM 2803 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1608 33.745 24.205 26.64 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24	MOTA	2771	OH2 WAT S1575	34.977	41.183			S
ATOM 2784 OH2 WAT S1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT S1589 9.567 37.848 39.841 1.00 15.10 S ATOM 2786 OH2 WAT S1590 6.391 48.835 28.636 1.00 19.52 S ATOM 2787 OH2 WAT S1591 41.492 20.894 55.469, 1.00 16.40 S ATOM 2788 OH2 WAT S1592 22.505 28.556 52.952 1.00 24.23 S ATOM 2789 OH2 WAT S1593 27.720 46.441 20.204 1.00 15.40 S ATOM 2790 OH2 WAT S1594 37.216 41.499 30.864 1.00 19.68 S ATOM 2791 OH2 WAT S1595 30.199 27.159 15.034 1.00 11.19 S ATOM 2792 OH2 WAT S1596 25.139 30.964 53.858 1.00 21.47 S ATOM 2793 OH2 WAT S1597 35.730 20.698 18.767 1.00 15.15 S ATOM 2794 OH2 WAT S1598 44.994 20.666 23.797 1.00 17.67 S ATOM 2795 OH2 WAT S1599 28.802 58.069 26.514 1.00 17.28 S ATOM 2796 OH2 WAT S1600 16.767 47.104 22.319 1.00 17.28 S ATOM 2797 OH2 WAT S1601 30.159 33.756 60.797 1.00 17.89 S ATOM 2798 OH2 WAT S1601 30.159 33.756 60.797 1.00 9.19 S ATOM 2799 OH2 WAT S1602 48.106 27.997 36.005 1.00 14.93 S ATOM 2799 OH2 WAT S1604 48.106 27.997 36.005 1.00 14.93 S ATOM 2800 OH2 WAT S1605 16.621 15.788 18.605 1.00 25.68 S ATOM 2801 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.12 S ATOM 2803 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.85 S ATOM 2804 OH2 WAT S1608 22.968 17.449 18.008 1.00 17.85 S ATOM 2803 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1608 33.745 24.205 26.64 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24								S
ATOM 2784 OH2 WAT S1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT S1589 9.567 37.848 39.841 1.00 15.10 S ATOM 2786 OH2 WAT S1590 6.391 48.835 28.636 1.00 19.52 S ATOM 2787 OH2 WAT S1591 41.492 20.894 55.469, 1.00 16.40 S ATOM 2788 OH2 WAT S1592 22.505 28.556 52.952 1.00 24.23 S ATOM 2789 OH2 WAT S1593 27.720 46.441 20.204 1.00 15.40 S ATOM 2790 OH2 WAT S1594 37.216 41.499 30.864 1.00 19.68 S ATOM 2791 OH2 WAT S1595 30.199 27.159 15.034 1.00 11.19 S ATOM 2792 OH2 WAT S1596 25.139 30.964 53.858 1.00 21.47 S ATOM 2793 OH2 WAT S1597 35.730 20.698 18.767 1.00 15.15 S ATOM 2794 OH2 WAT S1598 44.994 20.666 23.797 1.00 17.67 S ATOM 2795 OH2 WAT S1599 28.802 58.069 26.514 1.00 17.28 S ATOM 2796 OH2 WAT S1600 16.767 47.104 22.319 1.00 17.28 S ATOM 2797 OH2 WAT S1601 30.159 33.756 60.797 1.00 17.89 S ATOM 2798 OH2 WAT S1601 30.159 33.756 60.797 1.00 9.19 S ATOM 2799 OH2 WAT S1602 48.106 27.997 36.005 1.00 14.93 S ATOM 2799 OH2 WAT S1604 48.106 27.997 36.005 1.00 14.93 S ATOM 2800 OH2 WAT S1605 16.621 15.788 18.605 1.00 25.68 S ATOM 2801 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.12 S ATOM 2803 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.85 S ATOM 2804 OH2 WAT S1608 22.968 17.449 18.008 1.00 17.85 S ATOM 2803 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1608 33.745 24.205 26.64 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24	MOTA	2774	OH2 WAT S1578	36.599	15.728	48.666	1.00 21.18	S
ATOM 2784 OH2 WAT S1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT S1589 9.567 37.848 39.841 1.00 15.10 S ATOM 2786 OH2 WAT S1590 6.391 48.835 28.636 1.00 19.52 S ATOM 2787 OH2 WAT S1591 41.492 20.894 55.469, 1.00 16.40 S ATOM 2788 OH2 WAT S1592 22.505 28.556 52.952 1.00 24.23 S ATOM 2789 OH2 WAT S1593 27.720 46.441 20.204 1.00 15.40 S ATOM 2790 OH2 WAT S1594 37.216 41.499 30.864 1.00 19.68 S ATOM 2791 OH2 WAT S1595 30.199 27.159 15.034 1.00 11.19 S ATOM 2792 OH2 WAT S1596 25.139 30.964 53.858 1.00 21.47 S ATOM 2793 OH2 WAT S1597 35.730 20.698 18.767 1.00 15.15 S ATOM 2794 OH2 WAT S1598 44.994 20.666 23.797 1.00 17.67 S ATOM 2795 OH2 WAT S1599 28.802 58.069 26.514 1.00 17.28 S ATOM 2796 OH2 WAT S1600 16.767 47.104 22.319 1.00 17.28 S ATOM 2797 OH2 WAT S1601 30.159 33.756 60.797 1.00 17.89 S ATOM 2798 OH2 WAT S1601 30.159 33.756 60.797 1.00 9.19 S ATOM 2799 OH2 WAT S1602 48.106 27.997 36.005 1.00 14.93 S ATOM 2799 OH2 WAT S1604 48.106 27.997 36.005 1.00 14.93 S ATOM 2800 OH2 WAT S1605 16.621 15.788 18.605 1.00 25.68 S ATOM 2801 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.12 S ATOM 2803 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.85 S ATOM 2804 OH2 WAT S1608 22.968 17.449 18.008 1.00 17.85 S ATOM 2803 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1608 33.745 24.205 26.64 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24								S
ATOM 2784 OH2 WAT S1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT S1589 9.567 37.848 39.841 1.00 15.10 S ATOM 2786 OH2 WAT S1590 6.391 48.835 28.636 1.00 19.52 S ATOM 2787 OH2 WAT S1591 41.492 20.894 55.469, 1.00 16.40 S ATOM 2788 OH2 WAT S1592 22.505 28.556 52.952 1.00 24.23 S ATOM 2789 OH2 WAT S1593 27.720 46.441 20.204 1.00 15.40 S ATOM 2790 OH2 WAT S1594 37.216 41.499 30.864 1.00 19.68 S ATOM 2791 OH2 WAT S1595 30.199 27.159 15.034 1.00 11.19 S ATOM 2792 OH2 WAT S1596 25.139 30.964 53.858 1.00 21.47 S ATOM 2793 OH2 WAT S1597 35.730 20.698 18.767 1.00 15.15 S ATOM 2794 OH2 WAT S1598 44.994 20.666 23.797 1.00 17.67 S ATOM 2795 OH2 WAT S1599 28.802 58.069 26.514 1.00 17.28 S ATOM 2796 OH2 WAT S1600 16.767 47.104 22.319 1.00 17.28 S ATOM 2797 OH2 WAT S1601 30.159 33.756 60.797 1.00 17.89 S ATOM 2798 OH2 WAT S1601 30.159 33.756 60.797 1.00 9.19 S ATOM 2799 OH2 WAT S1602 48.106 27.997 36.005 1.00 14.93 S ATOM 2799 OH2 WAT S1604 48.106 27.997 36.005 1.00 14.93 S ATOM 2800 OH2 WAT S1605 16.621 15.788 18.605 1.00 25.68 S ATOM 2801 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.12 S ATOM 2803 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.85 S ATOM 2804 OH2 WAT S1608 22.968 17.449 18.008 1.00 17.85 S ATOM 2803 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1608 33.745 24.205 26.64 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24	ATOM	2777	OH2 WAT S1581	27.734	31.073	59.797	1.00 14.78	S
ATOM 2784 OH2 WAT S1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT S1589 9.567 37.848 39.841 1.00 15.10 S ATOM 2786 OH2 WAT S1590 6.391 48.835 28.636 1.00 19.52 S ATOM 2787 OH2 WAT S1591 41.492 20.894 55.469, 1.00 16.40 S ATOM 2788 OH2 WAT S1592 22.505 28.556 52.952 1.00 24.23 S ATOM 2789 OH2 WAT S1593 27.720 46.441 20.204 1.00 15.40 S ATOM 2790 OH2 WAT S1594 37.216 41.499 30.864 1.00 19.68 S ATOM 2791 OH2 WAT S1595 30.199 27.159 15.034 1.00 11.19 S ATOM 2792 OH2 WAT S1596 25.139 30.964 53.858 1.00 21.47 S ATOM 2793 OH2 WAT S1597 35.730 20.698 18.767 1.00 15.15 S ATOM 2794 OH2 WAT S1598 44.994 20.666 23.797 1.00 17.67 S ATOM 2795 OH2 WAT S1599 28.802 58.069 26.514 1.00 17.28 S ATOM 2796 OH2 WAT S1600 16.767 47.104 22.319 1.00 17.28 S ATOM 2797 OH2 WAT S1601 30.159 33.756 60.797 1.00 17.89 S ATOM 2798 OH2 WAT S1601 30.159 33.756 60.797 1.00 9.19 S ATOM 2799 OH2 WAT S1602 48.106 27.997 36.005 1.00 14.93 S ATOM 2799 OH2 WAT S1604 48.106 27.997 36.005 1.00 14.93 S ATOM 2800 OH2 WAT S1605 16.621 15.788 18.605 1.00 25.68 S ATOM 2801 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.12 S ATOM 2803 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.85 S ATOM 2804 OH2 WAT S1608 22.968 17.449 18.008 1.00 17.85 S ATOM 2803 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1608 33.745 24.205 26.64 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24								S
ATOM 2784 OH2 WAT S1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT S1589 9.567 37.848 39.841 1.00 15.10 S ATOM 2786 OH2 WAT S1590 6.391 48.835 28.636 1.00 19.52 S ATOM 2787 OH2 WAT S1591 41.492 20.894 55.469, 1.00 16.40 S ATOM 2788 OH2 WAT S1592 22.505 28.556 52.952 1.00 24.23 S ATOM 2789 OH2 WAT S1593 27.720 46.441 20.204 1.00 15.40 S ATOM 2790 OH2 WAT S1594 37.216 41.499 30.864 1.00 19.68 S ATOM 2791 OH2 WAT S1595 30.199 27.159 15.034 1.00 11.19 S ATOM 2792 OH2 WAT S1596 25.139 30.964 53.858 1.00 21.47 S ATOM 2793 OH2 WAT S1597 35.730 20.698 18.767 1.00 15.15 S ATOM 2794 OH2 WAT S1598 44.994 20.666 23.797 1.00 17.67 S ATOM 2795 OH2 WAT S1599 28.802 58.069 26.514 1.00 17.28 S ATOM 2796 OH2 WAT S1600 16.767 47.104 22.319 1.00 17.28 S ATOM 2797 OH2 WAT S1601 30.159 33.756 60.797 1.00 17.89 S ATOM 2798 OH2 WAT S1601 30.159 33.756 60.797 1.00 9.19 S ATOM 2799 OH2 WAT S1602 48.106 27.997 36.005 1.00 14.93 S ATOM 2799 OH2 WAT S1604 48.106 27.997 36.005 1.00 14.93 S ATOM 2800 OH2 WAT S1605 16.621 15.788 18.605 1.00 25.68 S ATOM 2801 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.12 S ATOM 2803 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.85 S ATOM 2804 OH2 WAT S1608 22.968 17.449 18.008 1.00 17.85 S ATOM 2803 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1608 33.745 24.205 26.64 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24	MOTA	2780	OH2 WAT S1584	9.469	23.677	25.125	1.00 12.14	S
ATOM 2784 OH2 WAT S1588 20.542 42.224 40.862 1.00 13.90 S ATOM 2785 OH2 WAT S1589 9.567 37.848 39.841 1.00 15.10 S ATOM 2786 OH2 WAT S1590 6.391 48.835 28.636 1.00 19.52 S ATOM 2787 OH2 WAT S1591 41.492 20.894 55.469, 1.00 16.40 S ATOM 2788 OH2 WAT S1592 22.505 28.556 52.952 1.00 24.23 S ATOM 2789 OH2 WAT S1593 27.720 46.441 20.204 1.00 15.40 S ATOM 2790 OH2 WAT S1594 37.216 41.499 30.864 1.00 19.68 S ATOM 2791 OH2 WAT S1595 30.199 27.159 15.034 1.00 11.19 S ATOM 2792 OH2 WAT S1596 25.139 30.964 53.858 1.00 21.47 S ATOM 2793 OH2 WAT S1597 35.730 20.698 18.767 1.00 15.15 S ATOM 2794 OH2 WAT S1598 44.994 20.666 23.797 1.00 17.67 S ATOM 2795 OH2 WAT S1599 28.802 58.069 26.514 1.00 17.28 S ATOM 2796 OH2 WAT S1600 16.767 47.104 22.319 1.00 17.28 S ATOM 2797 OH2 WAT S1601 30.159 33.756 60.797 1.00 17.89 S ATOM 2798 OH2 WAT S1601 30.159 33.756 60.797 1.00 9.19 S ATOM 2799 OH2 WAT S1602 48.106 27.997 36.005 1.00 14.93 S ATOM 2799 OH2 WAT S1604 48.106 27.997 36.005 1.00 14.93 S ATOM 2800 OH2 WAT S1605 16.621 15.788 18.605 1.00 25.68 S ATOM 2801 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.12 S ATOM 2803 OH2 WAT S1608 40.650 24.407 21.552 1.00 17.85 S ATOM 2804 OH2 WAT S1608 22.968 17.449 18.008 1.00 17.85 S ATOM 2803 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1608 33.745 24.205 26.64 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 26.604 31.364 1.00 14.24								S
ATOM 2785 OH2 WAT S1589 9.567 37.848 39.841 1.00 15.10 S ATOM 2786 OH2 WAT S1590 6.391 48.835 28.636 1.00 19.52 S ATOM 2787 OH2 WAT S1591 41.492 20.894 55.469, 1.00 16.40 S ATOM 2788 OH2 WAT S1592 22.505 28.556 52.952 1.00 24.23 S ATOM 2789 OH2 WAT S1593 27.720 46.441 20.204 1.00 15.40 S ATOM 2790 OH2 WAT S1594 37.216 41.499 30.864 1.00 19.68 S ATOM 2791 OH2 WAT S1595 30.199 27.159 15.034 1.00 11.19 S ATOM 2792 OH2 WAT S1596 25.139 30.964 53.858 1.00 21.47 S ATOM 2793 OH2 WAT S1596 25.139 30.964 53.858 1.00 21.47 S ATOM 2793 OH2 WAT S1597 35.730 20.698 18.767 1.00 15.15 S ATOM 2794 OH2 WAT S1598 44.994 20.666 23.797 1.00 17.67 S ATOM 2795 OH2 WAT S1599 28.802 58.069 26.514 1.00 17.28 S ATOM 2796 OH2 WAT S1600 16.767 47.104 22.319 1.00 11.98 S ATOM 2797 OH2 WAT S1601 30.159 33.756 60.797 1.00 9.19 S ATOM 2798 OH2 WAT S1601 30.159 33.756 60.797 1.00 9.19 S ATOM 2799 OH2 WAT S1603 40.650 24.407 21.552 1.00 17.12 S ATOM 2799 OH2 WAT S1604 22.968 17.449 18.008 1.00 17.85 S ATOM 2800 OH2 WAT S1605 16.621 15.788 18.605 1.00 25.68 S ATOM 2801 OH2 WAT S1607 57.149 24.564 47.629 1.00 18.35 S ATOM 2803 OH2 WAT S1609 33.745 22.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 22.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 22.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 33.745 22.604 31.364 1.00 14.24 S		.2783	OH2 WAT S1587	9.572	40.421	17.037	1.00 14.99	Š
ATOM 2786 OH2 WAT \$1590 6.391 48.835 28.636 1.00 19.52 S ATOM 2787 OH2 WAT \$1591 41.492 20.894 55.469, 1.00 16.40 S ATOM 2788 OH2 WAT \$1593 27.720 46.441 20.204 1.00 15.40 S ATOM 2790 OH2 WAT \$1594 37.216 41.499 30.864 1.00 19.68 S ATOM 2791 OH2 WAT \$1595 30.199 27.159 15.034 1.00 11.19 S ATOM 2792 OH2 WAT \$1596 25.139 30.964 53.858 1.00 21.47 S ATOM 2793 OH2 WAT \$1596 25.139 30.964 53.858 1.00 21.47 S ATOM 2794 OH2 WAT \$1598 44.994 20.666 23.797 1.00 15.15 S ATOM 2795 OH2 WAT \$1598 44.994 20.666 23.797 1.00 17.67 S ATOM 2795 OH2 WAT \$1599 28.802 58.069 26.514 1.00 17.28 S ATOM 2796 OH2 WAT \$1600 16.767 47.104 22.319 1.00 11.98 S ATOM 2797 OH2 WAT \$1601 30.159 33.756 60.797 1.00 9.19 S ATOM 2797 OH2 WAT \$1601 30.159 33.756 60.797 1.00 9.19 S ATOM 2799 OH2 WAT \$1602 48.106 27.997 36.005 1.00 14.93 S ATOM 2800 OH2 WAT \$1604 22.968 17.449 18.008 1.00 17.12 S ATOM 2800 OH2 WAT \$1605 16.621 15.788 18.605 1.00 25.68 S ATOM 2801 OH2 WAT \$1607 57.149 24.564 47.629 1.00 18.35 S ATOM 2803 OH2 WAT \$1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT \$1609 33.745 22.604 31.364 1.00 23.21 S ATOM 2805 OH2 WAT \$1609 33.745 22.604 31.364 1.00 23.21 S ATOM 2806 OH2 WAT \$1609 33.745 22.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT \$1609 21.687 28.608 49.750 1.00 41.13				20.542	42.224	40.862		
ATOM 2788 OH2 WAT S1592 22.505 28.556 52.952 1.00 24.23 S ATOM 2789 OH2 WAT S1593 27.720 46.441 20.204 1.00 15.40 S ATOM 2790 OH2 WAT S1594 37.216 41.499 30.864 1.00 19.68 S ATOM 2791 OH2 WAT S1595 30.199 27.159 15.034 1.00 11.19 S ATOM 2792 OH2 WAT S1596 25.139 30.964 53.858 1.00 21.47 S ATOM 2793 OH2 WAT S1597 35.730 20.698 18.767 1.00 15.15 S ATOM 2794 OH2 WAT S1598 44.994 20.666 23.797 1.00 17.67 S ATOM 2795 OH2 WAT S1599 28.802 58.069 26.514 1.00 17.28 S ATOM 2796 OH2 WAT S1600 16.767 47.104 22.319 1.00 11.98 S ATOM 2797 OH2 WAT S1601 30.159 33.756 60.797 1.00 9.19 S ATOM 2798 OH2 WAT S1602 48.106 27.997 36.005 1.00 14.93 S ATOM 2799 OH2 WAT S1603 40.650 24.407 21.552 1.00 17.12 S ATOM 2800 OH2 WAT S1604 22.968 17.449 18.008 1.00 17.85 S ATOM 2801 OH2 WAT S1605 16.621 15.788 18.605 1.00 25.68 S ATOM 2802 OH2 WAT S1607 7.206 32.992 16.005 1.00 14.53 S ATOM 2803 OH2 WAT S1608 24.564 47.629 1.00 18.35 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1609 33.745 22.604 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 22.604 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 22.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 21.687 28.608 49.750 1.00 41.13		2786	OH2 WAT S1590	6.391	48.835	28.636	1.00 19.52	S
ATOM 2790 OH2 WAT S1594 37.216 41.499 30.864 1.00 19.68 S ATOM 2791 OH2 WAT S1595 30.199 27.159 15.034 1.00 11.19 S ATOM 2792 OH2 WAT S1596 25.139 30.964 53.858 1.00 21.47 S ATOM 2793 OH2 WAT S1597 35.730 20.698 18.767 1.00 15.15 S ATOM 2794 OH2 WAT S1598 44.994 20.666 23.797 1.00 17.67 S ATOM 2795 OH2 WAT S1599 28.802 58.069 26.514 1.00 17.28 S ATOM 2796 OH2 WAT S1600 16.767 47.104 22.319 1.00 11.98 S ATOM 2797 OH2 WAT S1601 30.159 33.756 60.797 1.00 9.19 S ATOM 2798 OH2 WAT S1602 48.106 27.997 36.005 1.00 14.93 S ATOM 2799 OH2 WAT S1603 40.650 24.407 21.552 1.00 17.12 S ATOM 2800 OH2 WAT S1604 22.968 17.449 18.008 1.00 17.85 S ATOM 2801 OH2 WAT S1605 16.621 15.788 18.605 1.00 25.68 S ATOM 2802 OH2 WAT S1606 7.206 32.992 16.005 1.00 14.53 S ATOM 2803 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1609 33.745 22.604 31.364 1.00 14.24 S ATOM 2805 OH2 WAT S1609 33.745 22.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1609 21.687 28.608 49.750 1.00 41.13								S
ATOM 2802 OH2 WAT S1606 7.206 32.992 16.005 1.00 14.53 S ATOM 2803 OH2 WAT S1607 57.149 24.564 47.629 1.00 18.35 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1609 33.745 22.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1610 21.687 28.608 49.750 1.00 41.13 S	MOTA	2789	OH2 WAT S1593	27.720	46.441	20.204	1.00 15.40	š
ATOM 2802 OH2 WAT S1606 7.206 32.992 16.005 1.00 14.53 S ATOM 2803 OH2 WAT S1607 57.149 24.564 47.629 1.00 18.35 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1609 33.745 22.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1610 21.687 28.608 49.750 1.00 41.13 S		2790					1.00 19.68	S
ATOM 2802 OH2 WAT S1606 7.206 32.992 16.005 1.00 14.53 S ATOM 2803 OH2 WAT S1607 57.149 24.564 47.629 1.00 18.35 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1609 33.745 22.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1610 21.687 28.608 49.750 1.00 41.13 S							1.00 21.47	s
ATOM 2802 OH2 WAT S1606 7.206 32.992 16.005 1.00 14.53 S ATOM 2803 OH2 WAT S1607 57.149 24.564 47.629 1.00 18.35 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1609 33.745 22.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1610 21.687 28.608 49.750 1.00 41.13 S								S
ATOM 2802 OH2 WAT S1606 7.206 32.992 16.005 1.00 14.53 S ATOM 2803 OH2 WAT S1607 57.149 24.564 47.629 1.00 18.35 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1609 33.745 22.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1610 21.687 28.608 49.750 1.00 41.13 S							1.00 17.28	s
ATOM 2802 OH2 WAT S1606 7.206 32.992 16.005 1.00 14.53 S ATOM 2803 OH2 WAT S1607 57.149 24.564 47.629 1.00 18.35 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1609 33.745 22.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1610 21.687 28.608 49.750 1.00 41.13 S	ATOM			16.767				S
ATOM 2802 OH2 WAT S1606 7.206 32.992 16.005 1.00 14.53 S ATOM 2803 OH2 WAT S1607 57.149 24.564 47.629 1.00 18.35 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1609 33.745 22.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1610 21.687 28.608 49.750 1.00 41.13 S		2797						S
ATOM 2802 OH2 WAT S1606 7.206 32.992 16.005 1.00 14.53 S ATOM 2803 OH2 WAT S1607 57.149 24.564 47.629 1.00 18.35 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1609 33.745 22.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1610 21.687 28.608 49.750 1.00 41.13 S	MOTA	2799	OH2 WAT S1603	40.650	24.407	21.552	1.00 17.12	S
ATOM 2802 OH2 WAT S1606 7.206 32.992 16.005 1.00 14.53 S ATOM 2803 OH2 WAT S1607 57.149 24.564 47.629 1.00 18.35 S ATOM 2804 OH2 WAT S1608 24.205 26.840 10.350 1.00 23.21 S ATOM 2805 OH2 WAT S1609 33.745 22.604 31.364 1.00 14.24 S ATOM 2806 OH2 WAT S1610 21.687 28.608 49.750 1.00 41.13 S								S
	ATOM	2802	OH2 WAT S1606	7.206	32.992	16.005	1.00 14.53	s
								S
	ATOM	2805	OH2 WAT S1609	33.745	22.604	31.364	1.00 14.24	S


```
OH2 WAT 51612
MOTA
         2808
                                           29.378
                                                      22.049
                                                                 15.378
                                                                           1.00 18.53
                                                     17.180
43.309
ATOM
         2809
                 OH2
                      WAT S1613
                                           47.580
                                                                 46.156
                                                                           1.00
                                                                                  18.00
MOTA
         2810
                 OH2
                      WAT
                            S1614
                                           23.216
                                                                 37.644
                                                                           1.00
                                                                                  13.17
MOTA
         2811
                 OH2
                      WAT
                            S1615
                                           22.669
                                                      24.274
                                                                 48.564
                                                                           1.00
                                                                                  24.15
ATOM
         2812
                 OH2
                      TAW
                            S1616
                                            0.336
                                                      31.433
                                                                 18.582
51.773
                                                                                  27.87
                                                                           1.00
                                                                                                 9999999999999
MOTA
         2813
                 OH2
                      WAT
                            S1617
                                           45.294
                                                      33.053
                                                                           1.00
                                                                                  13.88
                                                                 22.624
MOTA
         2814
                 OH2
                      TAW
                            S1618
                                           44.363
                                                      26.868
                                                                           1.00
                                                                                  23.01
                                           24.023
25.803
MOTA
         2815
                 OH2
                      WAT
                            S1619
                                                      16.291
                                                                 14.532
                                                                           1.00
MOTA
         2816
                 OH2
                      WAT
                            S1620
                                                      16.259
                                                                 28.626
                                                                           1.00
                                                                                  18.77
ATOM
         2817
                 OH2
                      TAW
                                                                 32.078
27.014
                            S1621
                                           10.423
                                                      51.944
                                                                           1.00
                                                                                  36.29
MOTA
         2818
                 OH2
                      TAW
                            S1622
                                           26.115
                                                      58.809
                                                                           1.00
                                                                                  15.64
                            S1623
MOTA
         2819
                 OH2
                      TAW
                                            1.344
                                                                22.672
                                                      28.356
                                                                           1.00
                                                                                  26.37
MOTA
         2820
                 OH2
                      WAT
                            S1624
                                           26.639
                                                      58.198
                                                                21.115
55.284
                                                                           1.00
                                                                                  25.02
MOTA
         2821
                 OH2
                      WAT
                            S1625
                                                      32.997
                                                                                  16.24
21.76
                                           26.622
                                                                           1.00
                                           15.027
57.187
44.922
                                                     52.473
25.783
43.322
38.779
ATOM
         2822
                 OH2
                      WAT
                           S1626
                                                                 26.183
                                                                           1.00
                                                                44.900
         2823
MOTA
                 OH2
                      WAT
                            S1627
                                                                           1.00
                                                                                  20.20
MOTA
         2824
                 OH2
                      TAW
                            S1628
                                                                           1.00
                                                                                  18.96
                                                                                                 55555
ATOM
         2825
                 OH2
                                           32.001
                      WAT
                            51629
                                                                53.199
22.108
                                                                           1.00
                                                                                  17.42
         2826
MOTA
                 OH2
                      WAT
                                           30.741
                            S1630
                                                     52.390
                                                                                  18.11
                                                                           1.00
         2827
2828
ATOM
                                                                44.162
55.552
                 OH2
                      WAT
                           S1631
                                                      39.258
                                                                           1.00
                                                                                  19.15
MOTA
                 OH2
                      WAT
                            S1632
                                           44.210
                                                     20.606
                                                                           1.00
                                                                                  17.79
                                           21.471
13.869
MOTA
         2829
                 OH2
                      WAT
                            S1633
                                                      43.377
                                                                12.416
31.777
                                                                           1.00
                                                                                  19.05
                                                                                                 S
MOTA
         2830
                 OH2
                      WAT
                            S1634
                                                     15.823
                                                                           1.00
                                                                                  25.21
                                                                                                 s
MOTA
                 OH2
                      WAT
         2831
                            S1635
                                                                55.173
52.050
                                           52.620
                                                      30.612
                                                                                  30.08
                                                                                                 S
                                                                           1.00
MOTA
         2832
                      WAT
                 OH2
                                           26.556
                                                     19.486
25.980
                            S1636
                                                                           1.00
ATOM
         2833
                 OH2
                      WAT
                            S1637
                                           21.965
                                                                           1.00
                                                                45.841
                                                                                  19.07
                                                                                                 s
                                          21.965
51.617
11.552
30.899
31.709
23.676
25.577
         2834
MOTA
                 OH2
                      TAW
                            S1638
                                                                42.473
                                                      33.897
                                                                           1.00
                                                                                   9.81
                                                                                                 s
                                                     20.655
MOTA
         2835
                 OH2
                      WAT
                            S1639
                                                                19.351
19.222
                                                                           1.00
                                                                                  16.68
                                                                                                 s
MOTA
         2836
                 OH2
                      WAT
                           S1640
                                                                                                 S
                                                                           1.00
                                                                                  26.19
MOTA
         2837
                 OH2
                      WAT
                            S1641
                                                     48.342
25.327
17.219
                                                                31.000
                                                                           1.00
                                                                                  18.10
MOTA
         2838
                      WAT
                 OH2
                                                                22.818
46.479
                           S1642
                                                                           1.00
                                                                                  14.28
                                                                                                 S
ATOM
         2839
                      WAT
                 OH2
                            S1643
                                                                                  20.91
                                                                           1.00
                                                                                                 S
                                          18.005
52.881
5.848
43.582
                                                     18.283
16.705
                                                                                 20.16
19.01
28.17
         2840
ATOM
                 OH2
                      WAT
                            S1644
                                                                19.152
                                                                           1.00
                                                                                                 S
ATOM
         2841
                 OH2
                      WAT
                            S1645
                                                                50.095
                                                                           1.00
                                                                                                 s
MOTA
         2842
                 OH2
                      WAT
                            S1646
                                                      42.562
                                                                37.856
                                                                                                 š
                                                                           1.00
         2843
ATOM
                 OH2
                      WAT
                            S1647
                                                                           1.00
                                                     14.659
                                                                34.565
                                                                                                 S
MOTA
         2844
                      WAT
                 OH2
                            S1648
                                           22.374
                                                     17.743
                                                                20.886
                                                                           1.00
                                                                                  18.81
                                                                                                 s
                                            8.712
2.521
                                                     48.989
47.157
ATOM
         2845
                 OH2
                      WAT
                            S1649
                                                                27.030
                                                                                  23.87
                                                                           1.00
                                                                                                 S
ATOM
         2846
                 OH2
                      TAW
                            S1650
                                                                                  30.10
                                                                34.228
                                                                           1.00
                                                                                                 S
                                          44.220
27.919
ATOM
         2847
                 OH2
                      TAW
                            S1651
                                                                40.109
12.179
                                                     43.064
                                                                           1.00
                                                                                  29.97
                                                                                                 s
MOTA
         2848
                 OH2
                      WAT
                           S1652
                                                     24.353
                                                                           1.00
                                                                                  16.62
                                                                                                 ٠S
                                          3.523
20.380
57.034
49.668
51.259
ATOM
         2849
                                                                26.249
37.672
45.056
                 OH2
                      TAW
                            S1653
                                                     42.077
                                                                                  22.83
17.30
                                                                           1.00
                                                                                                 s
MOTA
         2850
                                                     44.291
28.423
                 OH2
                      WAT
                            S1654
                                                                           1.00
MOTA
         2851
                 OH2
                      WAT
                            S1655
                                                                           1.00
                                                                                  27.44
                            S1656
ATOM
         2852
                 OH2
                      WAT
                                                                30.455
45.586
                                                     24.467
                                                                           1.00
                                                                                  22.73
                                                                                                 SSSS
MOTA
         2853
                            S1657
                 OH2
                      TAW
                                                                                  34.23
24.71
                                                     13.409
                                                                           1.00
ATOM
         2854
                 OH2
                      WAT
                            S1658
                                          9.456
52.331
                                                                36.163
57.905
56.268
                                                     23.136
                                                                           1.00
ATOM
         2855
                 OH2
                      WAT
                           S1659
                                                     23.665
                                                                           1.00
                                                                                  18.92
         2856
                                                     40.535
46.776
30.491
MOTA
                      WAT
                 OH2
                            S1660
                                           43.381
                                                                                  30.03
                                                                                                 s
                                                                           1.00
                                          13.806
53.981
41.765
40.737
ATOM
         2857
                 OH2
                      WAT
                            S1661
                                                                43.159
48.223
                                                                           1.00
                                                                                  30.72
                                                                                                 s
ATOM
         2858
                 OH2
                      WAT
                            S1662
                                                                                 13.32
27.76
                                                                           1.00
                                                                                                 S
                                                                48.223
28.744
53.732
8.674
39.651
30.933
54.500
46.118
ATOM
         2859
                 OH2
                      WAT
                            S1663
                                                     26.570
17.318
                                                                           1.00
                                                                                                 S
ATOM
         2860
                 OH2
                      WAT
                           S1664
                                                                           1.00
                                                                                  24.67
                                                                                                 S
         2861
2862
                                                     44.990
41.254
37.426
18.020
25.699
MOTA
                                          13.225
49.013
                 OH2
                      WAT
                           S1665
                                                                           1.00
                                                                                  28.84
                                                                                                 s
ATOM
                      TAW
                 OH2
                           S1666
                                                                           1.00
1.00
                                                                                  28.00
ATOM
                      WAT
         2863
                 OH2
                            S1667
                                           44.805
                                                                                  16.56
                                          43.625
14.317
3.256
ATOM
         2864
                 OH2
                      WAT
                            S1668
                                                                           1.00
                                                                                  24.62
ATOM
         2865
                 OH2
                      TAW
                           S1669
                                                                           1.00
                                                                                  34.64
MOTA
         2866
                 OH2
                      WAT
                           S1670
                                                     42.913
                                                                32.109
20.725
                                                                                 29.06
                                                                           1.00
                                                                                                 S
                      WAT
ATOM
         2867
                 OH2
                           S1671
                                          10.555
                                                     49.7.63
                                                                           1.00
                                                                                  28.19
MOTA
         2868
                 OH2
                      WAT
                                          10.096
                           S1672
                                                     51.223
                                                                27.611
                                                                           1.00
                                                                                 23.49
                                                                                                 S
                                                                36.209-
22.831
                                                     23.946
59.432
                                          14.363
25.126
ATOM
         2869
                 OH2
                     TAW.
                           S1673 ..
                                                                           1.00-40-49
MOTA
         2870
                 OH2
                      WAT
                           S1674
                                                                           1.00 22.37
                                          36.093
ATOM
         2871
                 OH2
                      WAT
                           S1675
                                                                46.425
43.906
                                                      4.004
                                                                                 41.05
                                                                           1.00
ATOM
         2872
                      WAT
                 OH2
                           S1676
                                          58.346
                                                     33.177
                                                                           1.00
                                                                                 32.25
                                                     35.192
19.301
MOTA
         2873
                      WAT
                           S1677
                                                                51.801
                 OH2
                                          48.932
                                                                           1.00
                                                                                 26.68
         2874
ATOM
                 OH2
                      WAT
                           S1678
                                          58.902
                                                                43.107
50.822
                                                                           1.00
                                                                                 25.48
ATOM
         2875
                 OH2
                      TAW
                           S1679
                                          44.340
                                                     42.085
                                                                           1.00
                                                                                 28.00
MOTA
         2876
                 OH2
                      TAW
                           S1680
                                                                34.016
55.706
21.778
                                          50.480
                                                     38.266
                                                                           1.00
                                                                                 31.92
ATOM
         2877
                 OH2
                      WAT
                           S1681
                                          32.259
                                                     20.178
                                                                           1.00
                                                                                 22.68
         2878
ATOM
                 OH2
                      WAT
                           S1682
                                            5.907
                                                     48.823
                                                                           1.00
                                                                                 41.37
ATOM
         2879
                 OH2
                      WAT
                           S1683
                                          50.286
                                                     29.738
                                                                36.205
                                                                           1.00
                                                                                  41.24
ATOM
         2880
                 OH2
                      WAT
                           S1684
                                           48.359
                                                     24.392
                                                                27.682
                                                                           1.00
                                                                                 21.59
MOTA
         2881
                 OH2
                      WAT
                           S1685
                                          28.819
27.814
                                                     16.491
                                                                25.944
                                                                           1.00
                                                                                 22.91
                      WAT
MOTA
                 OH2
         2882
                           S1686
                                                     39.366
                                                                53,598
29.647
                                                                           1.00
                                                                                 22.13
MOTA
                     WAT S1687
         2883
                 OH2
                                          23.282
                                                     56.182
                                                                           1.00
                                                                                 21.73
```

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4567890123456789001234567890122345678901233456789012322222222222222222222222222222222222	OH2 WAT S1688 OH2 WAT S1689 OH2 WAT S1690 OH2 WAT S1691 OH2 WAT S1692 OH2 WAT S1693 OH2 WAT S1693 OH2 WAT S1695 OH2 WAT S1696 OH2 WAT S1696 OH2 WAT S1697 OH2 WAT S1698 OH2 WAT S1698 OH2 WAT S1699 OH2 WAT S1700 OH2 WAT S1700 OH2 WAT S1701 OH2 WAT S1703 OH2 WAT S1705 OH2 WAT S1706 OH2 WAT S1707 OH2 WAT S1707 OH2 WAT S1708 OH2 WAT S1707 OH2 WAT S1708 OH2 WAT S1709 OH2 WAT S1710 OH2 WAT S1711 OH2 WAT S1711 OH2 WAT S1711 OH2 WAT S1712 OH2 WAT S1713 OH2 WAT S1716 OH2 WAT S1716 OH2 WAT S1717 OH2 WAT S1717 OH2 WAT S1717 OH2 WAT S1718 OH2 WAT S1717 OH2 WAT S1720 OH2 WAT S1721 OH2 WAT S1723 OH2 WAT S1725 OH2 WAT S1731 OH2 WAT S1733 OH2 WAT S1734 OH2 WAT S1734 OH2 WAT S1734 OH2 WAT S1735 OH2 WAT S1734 OH2 WAT S1734 OH2 WAT S1735 OH2 WAT S1744 OH2 WAT S1744 OH2 WAT S1745 OH2 WAT S1751 OH2 WAT S1753 OH2 WAT S1755 OH2 WAT S1755 OH2 WAT S1755	1.332851665817779440163885166381777944656614899078344947114590783449907834499078344990783449907834499078344990783449907834499078344990783449907834499078344990783449907834499078344990783449907834290783449907834290787842907878429078784290787842907878429078784290787842907878429078784290787878429078787878787878787878787878787878787878	38.592 29.886 13.376	2474295120522311632294981565875330245371883755661970127844664031045136322476391837366138837556619701274933324131082312022453324523108322453324523310832345234523452345234523452345234523453324553361940638533224533324533324533324533324533324533324533324533324533324533324533324533324533324533324533332453333245333324533332453333245333324533332453333245333324533332453333245333324533332453333324533333245333332453333324533333334533333453333334533333345333333	1:00 39.40 1:00 16.29 1:00 24.55 1:00 38.82 1:00 38.71 1:00 31.74 1:00 30.36 1:00 32.783 1:00 35.66 1:00 35.66 1:00 35.66 1:00 25.66 1:00 24.85 1:00 24.86 1:00 24.86 1:00 17.46 1:00 19.46 1:00 24.85 1:00 24.85 1:00 24.85 1:00 24.85 1:00 24.85 1:00 30.63 1:00 19.46 1:00 24.85 1:00 24.85 1:00 24.85 1:00 30.97 1:00 30.97 1:00 33.97 1:00 24.85 1:00 30.93 1:00 30.93 1:00 30.93 1:00 22.94 1:00 33.93 1:00 22.94 1:00 33.93 1:00 22.94 1:00 22.94 1:00 22.94 1:00 33.93 1:00 22.94 1:00 22.94 1:00 22.94 1:00 22.94 1:00 22.94 1:00 22.94 1:00 22.94 1:00 22.97 1:00 23.98 1:00 25.85 1:00 27.99 1:00 33.84 1:00 27.99 1:00 34.32 1:00 27.99 1:00 34.32 1:00 34.32	ល្អ លេក ស្គាល់ ស្គាល់ ស្គាល់ ស្គាល់ ស្គាល់ ស្គាល់ សុស្គាល់ សុស្គាល់ សុស្គាល់ សុស្គាល់ សុស្គាល់ សុស្គាល់ សុស្គាល់ សុស គ្នា
MOTA	2945	OH2 WAT S1749	42.354	43.166	56.140	1.00 29.49	s s
MOTA	2947	OH2 WAT S1751	51.086	26.646	30.768	1.00 30.84	S
						1.00 19.64	Š
MOTA	2950	OH2 WAT S1754	17.145	13.376			S
MOTA MOTA	2951 2952	OH2 WAT S1755 OH2 WAT S1756	24.658		33.101	1.00 39.56	S
ATOM	2953	OH2 WAT S1757	10.322	35.265	39.792 45.377	1.00 31.55	s .s s
ATOM ATOM	.2954 2955		57.341 9.420		36.963	1.00 32.92	s S
MOTA	2956	OH2 WAT S1760	32.502	28.596	14.854	1.00 21.37	s s
ATOM ATOM	2957 2958	OH2 WAT S1761	39.205 20.840			1.00 31.30	S
ATOM	2959		34.711				S

n mon	2960	OHO FIRM CARCA	F3 666	24 - 22			
ATOM		OH2 WAT S1764	51.666	34.131	47.365	1.00 35.34	S
MOTA	2961	OH2 WAT S1765	-2.014	36.180	15.830	1.00 28.16	S
MOTA	2962	OH2 WAT S1766	15.482	48.721	37.060	1.00 29.26	s
MOTA	2963	OH2 WAT S1767	40.630	14.716	31.062	1.00 40.40	S
MOTA	2964	OH2 WAT S1768	23.698	61.256	21.533	1.00 16.86	s
MOTA	2965	OH2 WAT S1769	24.781	28.532	54.977	1.00 16.20	2
MOTA	2966	OH2 WAT S1770	26.852	25.257	10.061		3
ATOM	2967	OH2 WAT S1771	43.726				S S S
				10.405	46.878	1.00 29.13	S
MOTA	2968	OH2 WAT S1772	25.837	37.362	54.027	1.00 21.97	S
MOTA	2969	OH2 WAT S1773	33.373	46.686	32.566	1.00 26.20	S
MOTA	2970	OH2 WAT S1774	27.264	20.817	13.545	1.00 22.02	S S S
MOTA	2971	OH2 WAT S1775	47.925	30.806	31.477	1.00 33,49	S
MOTA	2972	OH2 WAT S1776	8.238	38.202	37.592	1.00 26.28	
MOTA	2973	OH2 WAT S1777	21.090	51.641	25.222	1.00 18.54	š
MOTA	2974	OH2 WAT S1778	6.267	38.069	32.873	1.00 22.17	9
ATOM	2975	OH2 WAT S1779	23.234	49.347	16.745		S
ATOM	2976	OH2 WAT S1780	22.134				5
				39.856	40.656	1.00 21.00	S
MOTA	2977	OH2 WAT S1781	20.856	35.405	9.637	1.00 23.13	S
ATOM	2978	OH2 WAT S1782	21.475	53.999	26.047	1.00 27.01	S
MOTA	2979	OH2 WAT S1783	34.915	27.212	15.190	1.00 31.71	S
MOTA	2980	OH2 WAT S1784	45.211	12.993	42.137	1.00 21.38	S
MOTA	2981	OH2 WAT S1785	38.126	34.805	40.034	1.00 17.57	Š
MOTA	2982	OH2 WAT S1786	30.962	49.798	21.332	1.00 32.31	Š
MOTA	2983	OH2 WAT S1787	33.222	19.319	25.705	1.00 29.22	S
ATOM	2984	OH2 WAT S1788	40.144	19.662	28.253	1.00 33.93	S
ATOM	2985	OH2 WAT 51789	6.555	28.590	37.281	1.00 33.93	S
ATOM	2986	OH2 WAT S1790	43.426	43.935			5
ATOM					45.155	1.00 34.35	S
	2987	OH2 WAT S1791	3.263	33.201	14.705	1.00 33.11	S
ATOM	2988	OH2 WAT S1792	20.149	16.998	31.047	1.00 26.99	s
ATOM	2989	OH2 WAT S1793	34.123	42.842	21.180	1.00 24.49	S
MOTA	2990	OH2 WAT S1794	49.929	18.274	53.829	1.00 39.26	S
MOTA	2991	OH2 WAT S1795	14.815	31.617	9.739	1.00 35.94	s
ATOM	2992	OH2 WAT S1796	45.588	41.539	53.753	1.00 35.01	S.
ATOM	2993	OH2 WAT S1797	33.245	52.433	24.002	1.00 34.85	Š.
MOTA	2994	OH2 WAT S1798	43.010	24.276	22.909	1.00 21.38	S
ATOM	2995	OH2 WAT S1799	19.769	14.826	46.718	1.00 30.67	S.
ATOM	2996	OH2 WAT S1800	29.812	17.873	43.458		Š.
MOTA	2997	OH2 WAT S1801	7.028			1.00 28.85	5
ATOM	2998	OH2 WAT 51802	7.020	22.438	24.718	1.00 30.13	S.
			7.451	42.723	16.836	1.00 34.86	s∴
ATOM	2999	OH2 WAT S1803	13.062	50.532	16.899	1.00 27.23	S;
MOTA	3000	OH2 WAT S1804	31.535	17.528	46.115	1.00 21.48	S:
ATOM	3001	OH2 WAT S1805	1.214	41.199	23.409	1.00 33.03	S.
MOTA	3002	OH2 WAT S1806	12.350	33.958	40.836	1.00 34.82	S-
ATOM	3003	OH2 WAT S1807	33.164	41.928	54.755	1.00 33.81	Š.
ATOM	3004	OH2 WAT S1808	4.467	50.285	27.482	1.00 36.79	s .
MOTA	3005	OH2 WAT S1809	60.702	26.732	42.684	1.00 35.13	S :
ATOM	3006	OH2 WAT S1810	22.799	31.560	57.795	1.00 32.80	Si
ATOM	3007	OH2 WAT S1811	16.630	35.862	8.507	1.00 29.92	S#
ATOM	3008	OH2 WAT S1812	58.212	35.487	40.540	1.00 33.76	S
MOTA	3009	OH2 WAT S1813	31.566	17.525	26.426	1.00 39.01	S
ATOM	3010	OH2 WAT S1814	38.884	37.614			S
ATOM	3011	OH2 WAT S1815			20.120	1.00 33.89	
			58.154	24.777	37.822	1.00 35.73	S
ATOM	3012	OH2 WAT S1816	34.384	14.783	47.649	1.00 37.28	S
MOTA	3013	OH2 WAT S1817	3.439	43.153	36.372	1.00 30.78	· S S
ATOM	3014	OH2 WAT S1818	47.394	12.444	43.290	1.00 30.32	S
ATOM	3015	OH2 WAT \$1819	24.644	13.829	44.044, 32.322	1.00 32.65	S
ATOM	3016	OH2 WAT S1820	35.990	42.985	32.322	1.00 29.66	S
ATOM	3017	OH2 WAT S1821	26.914	40.212	9.947	1.00 33.58	S
MOTA	3018	OH2 WAT S1822	40.296	29.386	23.361	1.00 44.10	S
ATOM	3019	OH2 WAT S1823	42.915	30.163	27.417	1.00 33.23	S
ATOM	3020	OH2 WAT S1824	14.322	38.428	8.032	1.00 35.73	ŝ
-ATOM .		-OH2 WAT S1825		- 16.000-	45.385	1.00- 29.78	· · š
MOTA	3022	OH2 WAT S1826	55.683	28.168	38.449	1.00 30.81	S
ATOM	3023	OH2 WAT S1827	18.514	45.706	9.695	1.00 34.33	S
ATOM	3023	OH2 WAT S1828	19.453				5
ATOM				54.788	22.809	1.00 42.02	S
	3025	OH2 WAT S1829	46.686	27.005	20.816	1.00 31.17	S
ATOM	3026	OH2 WAT S1830	50.779	32.327	54.666	1.00 44.04	s
ATOM	3027	OH2 WAT S1831	5.243	43.614	40.262	1.00 40.69	S
ATOM	3028	OH2 WAT S1832	45.151	43.041	33.919	1.00 28.47	S
MOTA	3029	OH2 WAT S1833	26.385	11.949	41.104	1.00 33.70	S
MOTA	3030	OH2 WAT 51834	36.104	26.756	17.653	1.00 32.43	Š
MOTA	3031	OH2 WAT S1835	40.585	7.298	41.894	1.00 32.97	Š
ATOM	3032	OH2 WAT 51836	22.940	54.196	16.985	1.00 32.37	S
ATOM	3033	OH2 WAT S1837	53.968	24.450	37.442	1.00 39.88	S
ATOM	3034	OH2 WAT S1838	16.318				
ATOM				26.973	42.179	1.00 32.94	S
ALOM	3035	OH2 WAT S1839	14.513	48.940	39.307	1.00 29.97	S

44	1	45

				77/7-	,				
MOTA	3036	OH2 WAT 51840		31.652	6.945	51.493	1.00 27.66		S
MOTA	3037	OH2 WAT S1841		41.996	11.677	38.039	1.00 37.88		S
MOTA	3038	OH2 WAT S1842		7.510	48.642	19.668	1.00 35.11		S S
MOTA	3039	OH2 WAT S1843		42.467	3.493	49.912	1.00 33.41 1.00 44.37		S
MOTA	3040	OH2 WAT S1844		59.776	22.501	42.412 12.687	1.00 34.20	٠.	Š
MOTA	3041	OH2 WAT S1845		7.867 15.405	44.473	39.658	1.00 38.08		š
ATOM	3042	OH2 WAT S1846 OH2 WAT S1847		13.585	15.183	28.501	1.00 36.58		S
MOTA MOTA	3043 3044	OH2 WAT S1848		48.442	41.492	47.985	1.00 26.95		S
MOTA	3045	OH2 WAT S1849		50.374	40.886	46.017	1.00 34.93		S
ATOM	3046	OH2 WAT S1850		44.568	8.030	45.822	1.00 42.34		១១១១១១
MOTA	3047	OH2 WAT S1851	•	48.705	28.443	22.632	1.00 34.87 1.00 40.91		9
MOTA	3048	OH2 WAT S1852		38.217 26.698	33.408 47.866	18.268 16.749	1.00 26.87		š
ATOM	3049	OH2 WAT S1853 OH2 WAT S1854		36.624	40.405	57.361	1.00 30.57		S
MOTA MOTA	3050 3051	OH2 WAT S1855		44.243	22.209	21.682	1.00 25.97		s s
MOTA	3052	OH2 WAT S1856		50.807	22.291	30.826	1.00 30.01		S
ATOM	3053	OH2 WAT S1857		2.113	19.175	16.420	1.00 39.64 1.00 29.95		ខានាខានាខា
MOTA	3054	OH2 WAT S1858		35.799	20.261	25.717 18.474	1.00 29.30		S
MOTA	3055	OH2 WAT S1859		10.845 13.036	51.013 16.982	18.603	1.00 35.56		š
MOTA	3056 3057	OH2 WAT S1860 OH2 WAT S1861		48.755	33.466	53.529	1.00 32.19		s
ATOM ATOM	3057	OH2 WAT S1862		28.542	12.640	28.777	1.00 32.37		s
MOTA	3059	OH2 WAT S1863		15.582	33.781	40.294	1.00 31.38		ខាខាខាខាខា
MOTA	3060	OH2 WAT S1864		15.389	51.736	31.264	1.00 35.97 1.00 38.45		20
MOTA	3061	OH2 WAT S1865		59.586 33.931	24.576 18.197	44.154 52.470	1.00 30.45		Š
ATOM	3062	OH2 WAT S1866 OH2 WAT S1867		33.400	24.810	14.487	1.00 31.43		S
MOTA MOTA	3063 3064	OH2 WAT S1867 OH2 WAT S1868		2.939	39.474	28.464	1.00 42.13		s s s
MOTA	3065	OH2 WAT S1869		52.149	36.661	45.439	1.00 34.90		S
MOTA	3066	OH2 WAT S1870		45.901	34.119	54.146	1.00 28.55 1.00 37.03		5
MOTA	3067	OH2 WAT S1871		21.485	29.372 19.175	44.666 23.705	1.00 37.03 1.00 36.18		s
MOTA	3068	OH2 WAT S1872 OH2 WAT S1873		10.455 29.820	54.141	17.625	1.00 37.56		s
MOTA MOTA	3069 3070	OH2 WAT \$1873 OH2 WAT \$1874	•	36.824	12.036	41.616	1.00 36.62		S
ATOM	3070	OH2 WAT S1875		35.575	29.695	13.582	1.00 31.58		ល ល ល ល ល ល ល ល ល ល ល ល ល ល ល ល ល ល ល
ATOM	3072	OH2 WAT S1876		47.689	26.645	56.483	1.00 29.75		2
MOTA	3073	OH2 WAT S1877		25.923	24.021	7.877 19.444	1.00 35.32 1.00 38.13		S
MOTA	3074	OH2 WAT S1878		35.914 53.553	42.663 27.199	37.462	1.00 34.02		ŝ
MOTA MOTA	3075 3076	OH2 WAT S1879 OH2 WAT S1880		31.012	18.989	51.960	1.00 32.14		s
ATOM	3077	OH2 WAT S1881		5.543	24.207	39.126	1.00 33.92		S
MOTA	3078	OH2 WAT S1882		12.515	49.450	14.280	1.00 38.32		5
MOTA	3079	OH2 WAT S1883		19.621	34.441	42.264 15.606	1.00 32.10 1.00 41.76		S
MOTA	3080	OH2 WAT S1884 OH2 WAT S1885		0.567 19.842	34.443 21.597	48.228	1.00 38.20		š
MOTA MOTA	3081 3082	OH2 WAT S1885 OH2 WAT S1886		17.245		. 41.443	1.00 36.34		S
ATOM	3083	OH2 WAT S1887		31.241	17.703	18.315	1.00 43.85		S
ATOM	3084	OH2 WAT \$1888		47.120	35.974	31.511	1.00 44.95 1.00 42.81		9
MOTA	3085	OH2 WAT S1889		16.721 17.002	12.447 21.309	25.646 47.530	1.00 35.74		š
MOTA	3086 3087	OH2 WAT S1890 OH2 WAT S1891		11.124	36.224	11.415	1.00 28.23		S
MOTA MOTA	3088	OH2 WAT S1892		31.476	35.439	12.666	1.00 29.98		S
ATOM	3089	OH2 WAT S1893		20.313	44.798	8.239	1.00 38.49 1.00 34.21		5
MOTA	3090	OH2 WAT \$1894		49.492 11.168	37.692 48.631	31.490 11.775	1.00 34.21		S
MOTA .	3091	OH2 WAT S1895 OH2 WAT S1896		8.149	35.174	12.830	1.00 43.18		s
ATOM ATOM	3092 3093	OH2 WAT S1897		42.985	36.028	29.277	1.00 37.84		S
MOTA	3094	OH2 WAT S1898		15.722	26.088		1.00 40.56		5
MOTA '	3095	OH2 WAT S1899		9.466	42.584		1.00 38.58 1.00 40.16		S
MOTA	3096			55.683 16.412	27.859 44.824				s
MOTA	3097	OH2 WAT S1901 OH2 WAT S1902		30.819	20.863		1.00 36.12		S
MOTA MOTA	3098 3099			20.083	45.050	40.249	1.00 46.55		១១១១១១១១១១១១១១១១១១១១១១១១១១១១១១១១១១១១១១
MOTA	3100	OH2 WAT S1904		55.216		37.256			5
ATOM	3101	OH2 WAT S1905		17.194			1.00 41.92		S
MOTA	3102			55.468 34.073					Š
MOTA	3103			11.696			1.00 44.83		នួនខេត្តន
MOTA MOTA	3104 3105			37.193	57.700	24.645	1.00 29.20		S
ATOM	3106	OH2 WAT S1910		4.958	20.071				S
MOTA	3107	OH2 WAT S1911		28.212					S
MOTA	3108			25.791 44.830					s
MOTA	3109			45.538			1.00 31.60		S
MOTA MOTA	3110 3111			31.849					S
AION	2111	. 3110 11111 02020							

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3112 3113 3114 3115 3116 3117 3119 3120 31223 31223 31224 31225 31226 31229 31331 31332 31333 31334 31356 3137	OH2 OH2 OS4 S2 OS5 OS6 C15 C14 C16 C10 C11 C13 O2 C9 C8 S1 OS3 OS2	WATT WATT PLA	S1916 S1917 S1918 S1919 P1001	55.6992 34.711 8.7813 10.409 11.0582 9.492 9.492 9.492 8.01347 7.52366 10.8424 11.1064 12.338 11.1064 12.338 11.1064 12.338 11.1064 12.338 11.1064 12.338	32.376 24.353 25.157 10.496 29.613 28.5663 27.3516 27.356 26.5326 25.436 25.436 25.9388 23.588 23.588 23.588 23.588 23.544 22.881 22.881 22.881 22.881 22.881 22.881	47.108 16.736 38.490 39.8689 11.2567 12.199 12.0998 13.4815 12.4217 14.2267 14.2287 14.2287 14.2967 14.7016 15.66708	1.00 41.65 1.00 43.04 1.00 42.38 1.00 36.97 1.00 35.34 1.00 40.37 1.00 40.37 1.00 40.37 1.00 23.35 1.00 28.94 1.00 25.22 1.00 21.41 1.00 24.00 1.00 27.53 1.00 21.97 1.00 31.56 1.00 39.44 1.00 39.44 1.00 39.44 1.00 39.44 1.00 39.44 1.00 39.44 1.00 39.44 1.00 20.93 1.00 21.97	
ATOM ATOM ATOM ATOM ATOM ATOM	3138 3139 3140 3141 3142 3143	C2 C1 C3 O1 C4 C5	PLA PLA PLA PLA PLA PLA	P1001 P1001 P1001 P1001 P1001 P1001	6.780 7.938 5.455 4.329 5.419 6.617	19.948 19.230 19.218 19.881 17.867 17.226	16.206 16.659 16.215 15.839 16.622 17.060	1.00 29.90 1.00 26.11 1.00 29.97 1.00 27.77 1.00 27.79 1.00 24.04	មិត្តមិត្តមិត្ត
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	3144 3145 3146 3147 3148 3149 3150	054 52 0S5	PLA PLA PLA PLA PLA	P1001 P1001 P1002 P1002 P1002 P1002 P1002	7.890 8.958 -1.265 -2.593 -3.293 -3.702 -2.360	17.875 17.179 32.010 31.401 32.318 31.417 29.762	17.105 17.619 14.293 14.907 16.225 13.545 15.366	1.00 28.93 1.00 13.83 1.00 40.73 1.00 34.43 1.00 36.70 1.00 38.28 1.00 37.51	P P P P P P P P
ATOM ATOM ATOM ATOM ATOM ATOM	3151 3152 3153 3154 3155 3156	C14 C16 C10 C11 C13	PLA PLA PLA PLA PLA PLA	P1002 P1002 P1002 P1002 P1002 P1002	-1.339 -3.324 -3.227 -2.159 -1.219 -0.300	29.023 29.136 27.770 26.968 27.623 26.897	14.693 16.198 16.534 15.824 14.849 14.135	1.00 32.35 1.00 32.13 1.00 32.57 1.00 27.55 1.00 32.76 1.00 26.73	P P P
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3157 3158 3159 3160 3161 3162 3163	C12 O2 C9 C8 S1 OS3 OS2	PLA PLA PLA PLA PLA	P1002 P1002 P1002 P1002 P1002 P1002 P1002	-2.103 -1.093 -4.076 -4.072 -4.937 -6.417 -3.886	25.533 24.861 27.177 25.777 25.049 25.925 25.328	16.170 15.620 17.503 17.756 19.065 19.382 20.444	1.00 29.76 1.00 19.01 1.00 28.28 1.00 30.57 1.00 30.09 1.00 26.32 1.00 39.20	P. P. P. P. P. P.
ATOM ATOM ATOM ATOM ATOM ATOM	3164 3165 3166 3167 3168 3169 3170		PLA PLA PLA PLA PLA PLA	P1002 P1002 P1002 P1002 P1002 P1002 P1002	-5.060 -3.056 -2.942 -1.994 -2.109 -3.069	23.483 24.884 23.547 22.600 21.347 20.979 20.289	18.960 17.116 17.510 17.132 17.777 18.767	1.00 35.43 1.00 30.01 1.00 30.83	**************************************
ATOM ATOM ATOM ATOM ATOM ATOM	3171 3172 3173 3174 3175 3176	01 C4 · C5 C6	PLA PLA PLA PLA PLA	P1002 P1002 -P1002 P1002 P1002 P1002 I1000	-1.126 -0.254 -1.181 -2.175 -3.137 -4.110 31.378	20.633 19.011	17.352 16.366 17.978 18.965 19.364 20.286 34.442	1.00 26.71 1.00 35.63	- · P P
ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3177 3178 3179 3180 3181 3182 3183	01 02 03 04 U U	PO4 PO4 PO4 PO4 U U	11000 11000 11000 11000 11100 11101 11102	30.121 32.276 31.043 32.089 0.273 4.450 2.292	37.237 37.583 35.497 35.965 22.910 22.112 24.635	34.900 33.795 33.462 35.624 15.547 14.520 12.979	1.00 8.97 1.00 6.24 1.00 6.45 1.00 7.79 1.00 30.28 1.00 29.14 0.50 39.41	I I I I I I
ATOM END	3184	NA	NA	I1200	37.019	13.768	54.963	1.00 21.53	1

LISTE DE SEQUENCES

14 0

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE HENRI POINCARE DE NANCY NOUVELLE PROTEINE DE LIAISON AU PHOSPHATE, COMPOSITIONS PHARMACEUTIQUES LA CONTENANT ET SES UTILISATIONS <130> IFB 03 BU CNR HPBP <160> <170> PatentIn version 3.1 <210> <211> 376 <212> PRT <213> Homo sapiens <400> 1 Ser Ile Asp Gly Gly Gly Ala Thr Leu Pro Glu Lys Leu Tyr Leu Thr Pro Asp Val Leu Thr Ala Gly Phe Ala Pro Tyr Ile Gly Thr Gly Ser Gly Lys Gly Lys Ile Ala Phe Leu Glu Asn Ser Tyr Asn Gln Phe Gly Thr Asn Thr Thr Lys Asp Val His Trp Ala Gly Ser Asp Ser Lys Leu Thr Ala Ser Gln Leu Ala Thr Tyr Ala Ala Asn Lys Gln Pro Gly Trp Gly Lys Leu Ile Glu Val Pro Ser Val Ala Thr Ser Val Ala Ile Pro Phe Arg Lys Ala Gly Gly Asn Ala Val Asp Leu Ser Val Lys Glu Leu Cys Gly Val Phe Ser Gly Arg Ile Ala Asn Trp Ser Gly Ile Thr Gly Ala Gly Arg Ser Gly Pro Ile Gln Val Val Tyr Arg Ala Glu Val Ser Gly Thr Thr Glu Leu Phe Thr Arg Phe Leu Asn Ala Lys Cys Thr Thr Gln Pro Gly Thr Phe Ala Val Thr Thr Val Phe Ala Asn Ser Tyr Ser 170 Leu Gly Leu Ser Pro Leu Ala Gly Ala Val Ala Ala Ile Gly Ser Val Gly Val Met Ala Ala Asp Asn Asp Val Thr Thr Ala Gln Gly Arg Ile 200

Thr Tyr Ile Ser Pro Asp Phe Ala Ala Pro Ser Leu Ala Gly Leu Asn 210 215 220

Asp Ala Thr Lys Val Ala Arg Thr Gly Lys Gly Ser Ser Ser Gly Gly 225 230 235 240

Gly Ala Glu Gly Lys Ser Pro Ala Ala Ala Asn Ser Ser Ala Ala Ile 245 250 255

Ser Val Val Pro Leu Pro Ala Ala Ala Asn Arg Gly Asp Pro Asn Val 260 265 270

Trp Thr Pro Val Phe Gly Ala Val Thr Gly Gly Gly Val Val Ala Tyr 275 280 285

Pro Asp Ser Gly Tyr Pro Ile Leu Gly Phe Thr Asp Leu Ile Phe Ser 290 295 300

Glu Cys Tyr Ala Asn Ala Thr Gln Thr Gly Gln Val Arg Asn Phe Phe 305 310 315 320

Thr Lys His Tyr Gly Thr Ser Ala Asn Asp Asn Ala Ala Ile Gln Ala 325 330 335

Asn Ala Phe Val Pro Leu Pro Ser Asn Trp Lys Ala Ala Val Arg Ala 340 . 345 . 350

Ser Tyr Leu Thr Ala Ser Asn Ala Leu Ser Ile Gly Asp Ser Ala Val 355 360 365

Cys Gly Gly Lys Gly Arg Pro Glu 370 375

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

DÉPARTEMENT DES BREVETS

26 bis, rue de Saint Pétersbourg 75800 Paris Cedex 08

DÉSIGNATION D'INVENTEUR(S) Page N° .1 . / .1 .

(Si le demandeur n'est pas l'inventeur ou l'unique inventeur)

Féléphone : 01 53 04	1 53 04 Télécopie : 01 42 94 86 5	Get imprimé est à remplir lisiblement à l'encre noire	DB 113 W /2608					
Vos référence	s pour ce dossier		OB 113 W /2000					
(facultatif)		TED 02 DIT CAID TYPED						
พ° D'ENREGIS	TREMENT NATIONAL	IFB 03 BU CNR HPBP						
		03/12729						
HIKE DE LIM	VENTION (200 caractères ou	u espaces maximum)						
	•							
NC PH)UVELLE PROTEINE (ARMACEUTIQUES I	DE FIXATION DU PHOSPHATE, COMPOSITIONS LA CONTENANT ET SES UTILISATIONS						
LE(S) DEMAND	DEUR(S) :							
3, rue Michel UNIVERSIT 24-30, rue Li	I-Ange, F-75794 PARIS (TE HENRI POINCARE ionnois, F-54003 NANCY	NANCY 1 CEDEX, France						
utilisez un lori	EN TANT QU'INVENTEU mulaire identique et num	JR(S) : (Indiquez en haut à droite «Page N° 1/1» S'il y a plus de troi vérotez chaque page en indiquant le nombre total de pages).	is inventeurs,					
Nom								
Prénoms		CHABRIERE						
	Rue	Eric						
Adresse		7, rue de l'Octroi						
	Code postal et ville							
	enance (facultatif)	54000 NANCY						
Nom								
Prénoms		CONTRERAS-MARTEL	· · · · · · · · · · · · · · · · · · ·					
Adresse	Rue	Carlos Chez I. Lamadieu, 1, rue des Echelles						
2	Code postal et ville							
	enance (facultatif)	38120 SAINT EGREVE						
Nom								
Prénoms		FONTECILLA-CAMPS	FONTECILLA-CAMPS					
Adresse	Rue	Juan 77, rue des Erables						
	Code postal et ville							
Société d'apparte	nance (fucultatif)	39020 CROLLES						
DATE ET SIGNA DU (DES) DEWA OU DU MANDAT (Nom et qualité	ANDEUR(S) FAIRE	Paris, le 18 décembre 2003 Charles Demachy - Mandataire 422.5/PP170						

a loi n°78-17 du 6 janvier 1978 relative à l'Informatique, aux fichlers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.