RBE502 - Homework Set 4

Keith Chester

Due date: September 22, 2021

Introduction

In this homework set we are looking at the dynamic system of a quadcopter.

The quadrotor operates with a body frame located at its center of mass (in the center of the quadcopter, equidistant and within the same plane as its rotors) c. We have a fixed reference frame e serving as our intertial frame.

The external forces and moments on the system are represented by \mathbf{r} and \mathbf{n} , where $\mathbf{r} = r_1c_1 + r_2c_2 + r_3c_3$ and $\mathbf{n} = n_1c_1 + n_2c_2 + n_3c_3$ directly applied to the center of mass. We are assuming that the torque of the rotor is proportionally related to the input thrust via the constant $\sigma > 0$, for $\tau_i = \sigma u_i$. We will be utilizing \mathbf{I} as our inertial matrix, where:

$$\mathbf{I} = \begin{bmatrix} I_x & 0 & 0 \\ 0 & I_y & 0 \\ 0 & 0 & I_z \end{bmatrix} \tag{1}$$

We have also had established for us that there exists a rotation matrix - $R_{C/E}$ - which rotates from frame C to frame E. This rotaton matrix is the result of a Euler angle z-y-x rotation along ϕ , θ , and ψ , respectively. This rotation matrix is such that:

$$R_{C/E} = \begin{bmatrix} \cos(\psi)\cos(\theta) & \cos(\psi)\sin(\phi)\sin(\theta) - \cos(\phi)\sin(\psi) & \sin(\phi)\sin(\psi) + \cos(\phi)\cos(\psi)\sin(\theta) \\ \cos(\theta)\sin(\psi) & \cos(\phi)\cos(\psi) + \sin(\phi)\sin(\psi)\sin(\theta) & \cos(\phi)\sin(\psi)\sin(\theta) - \cos(\psi)\sin(\phi) \\ -\sin(\theta) & \cos(\theta)\sin(\phi) & \cos(\phi)\cos(\theta) \end{bmatrix}$$
(2)

System Analysis

For our problem set, we are proived that the equations that descirbe our system can be derived via:

$$\dot{x} = \mathbf{v} \tag{3}$$

$$\dot{\alpha} = T^{-1}\omega \tag{4}$$

$$\dot{v} = -g\mathbf{e}_3 + \frac{1}{m}R_{C/E}(u_1 + u_2 + u_3 + u_4)\mathbf{c}_3 + R_{C/E}\mathbf{r}$$
(5)

$$\dot{\omega} = \mathbf{I}^{-1}((u_2 - u_4)lc_1 + (u_3 - u_1)lc_2 + (u_1 - u_2 + u_3 - u_4)\sigma c_3 + \mathbf{n} - \boldsymbol{\omega} \times \mathbf{I}\boldsymbol{\omega})$$
(6)

$$T^{-1} = \begin{bmatrix} 1 & \sin\phi \tan\theta & \cos\phi \tan t het a \\ 0 & \cos\phi & -\sin\phi \\ 0 & \frac{\sin\phi}{\cos\theta} & \frac{\cos\phi}{\theta} \end{bmatrix}$$
 (7)

When we expand upon these functions, we find ourselves with a several matricies that make up a system of equations.

$$\dot{\boldsymbol{x}} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \tag{8}$$

$$\dot{\alpha} = \begin{bmatrix} \omega_1 + \omega_3 \cos(\phi) \tan(\theta) + \omega_2 \sin(\phi) \tan(\theta) \\ \omega_2 \cos(\phi) - \omega_3 \sin(\phi) \\ \frac{\omega_3 \cos(\phi)}{\cos(\theta)} + \frac{\omega_2 \sin(\phi)}{\cos(\theta)} \end{bmatrix}$$
(9)

$$\dot{\mathbf{v}} = \begin{bmatrix} \frac{(\sin(\phi)\sin(\psi) + \cos(\phi)\cos(\psi)\sin(\theta))(u_1 + u_2 + u_3 + u_4)}{m} \\ -\frac{(\cos(\psi)\sin(\phi) - \cos(\phi)\sin(\psi)\sin(\theta))(u_1 + u_2 + u_3 + u_4)}{m} \\ \frac{\cos(\phi)\cos(\theta)(u_1 + u_2 + u_3 + u_4)}{m} - g \end{bmatrix}$$
(10)

$$\dot{\boldsymbol{\omega}} = \begin{bmatrix} \frac{l(u_2 - u_4) + Iy \,\omega_2 \,\omega_3 - Iz \,\omega_2 \,\omega_3}{Ix} \\ -\frac{l(u_1 - u_3) + Ix \,\omega_1 \,\omega_3 - Iz \,\omega_1 \,\omega_3}{Iy} \\ \frac{\sigma \,(u_1 - u_2 + u_3 - u_4) + Ix \,\omega_1 \,\omega_2 - Iy \,\omega_1 \,\omega_2}{Iz} \end{bmatrix}$$

$$(11)$$

Now that we have these system equations, we can append them to form our \dot{z} .

$$\dot{z} = \begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \\ \dot{\phi}_{1} \\ \dot{\theta}_{2} \\ \dot{v}_{3} \\ \dot{v}_{1} \\ \dot{v}_{2} \\ \dot{v}_{3} \\ \dot{\omega}_{1} \\ \dot{\omega}_{2} \\ \dot{\omega}_{3} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \omega_{1} + \omega_{3} \cos(\phi) \tan(\theta) + \omega_{2} \sin(\phi) \tan(\theta) \\ \omega_{2} \cos(\phi) - \omega_{3} \sin(\phi) \\ \frac{\omega_{3} \cos(\phi)}{\cos(\theta)} + \frac{\omega_{2} \sin(\phi)}{\cos(\theta)} \\ \frac{(\sin(\phi) \sin(\psi) + \cos(\phi) \cos(\psi) \sin(\phi)) (u_{1} + u_{2} + u_{3} + u_{4})}{m} \\ -\frac{(\cos(\psi) \sin(\phi) - \cos(\phi) \sin(\psi) \sin(\theta)) (u_{1} + u_{2} + u_{3} + u_{4})}{m} \\ -\frac{\cos(\phi) \cos(\theta) (u_{1} + u_{2} + u_{3} + u_{4})}{m} - g \\ \frac{l(u_{2} - u_{4}) + I_{Y} \omega_{2} \omega_{3} - I_{Z} \omega_{2} \omega_{3}}{I_{Y}} \\ -\frac{l(u_{1} - u_{3}) + I_{X} \omega_{1} \omega_{3} - I_{Z} \omega_{1} \omega_{3}}{I_{Y}} \end{bmatrix}$$

$$(12)$$

Problem 1 - Part A

In this part of the problem, we are considering $z_0 = \begin{bmatrix} x_1 & x_2 & x_3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}^T$ and $u_0 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T \frac{mg}{4}$. We wish to show that $(z,u) = (z_0,u_0)$ is an equilibrium point of this quadrotor system. Taking these values as defined, and plugging them into our \dot{z} calculates to the simple output of:

Since we see in the above equations that in this position with the targeted input, we have a system in a stable equilibrium. We can claim as such as there are no non-zero velocities or accelerations at this point.

At any given location in space with no external forces, the drone can hover when perfectly level - ie $\phi = \theta = \psi = 0$ - with no acceleration and orientation change if the resulting thrust is $\frac{mg}{4}$ - or, each motor providing resulting thrust of one fourth the vehicle's weight to cancel the force of gravity.

Problem 1 - Part B

We now wish to find the linear approximation of the quadrotor system using the vacinity of the aforementioned equilibrium point (z_0, u_0) .

To do this, we will be denoting z_d as our desired z, and u_d as our desired u. We will note then that $e := z_d - z$ and $w := u_d - u$. Using Taylor Serie's approximation we can then create a linear approximation.

$$f(z,u) \approx f(z_d, u_d) + \frac{\partial f}{\partial z} \Big|_{(z,u)=(z_d, u_d)} (z - z_d) + \frac{\partial f}{\partial u} \Big|_{(z,u)=(z_d, u_d)} (u - u_d)$$
(14)

If we let our linearized approximation have $\mathbf{A} := \frac{\partial f}{\partial z}\Big|_{(z,u)=(z_d,u_d)}$ and $\mathbf{B} := \frac{\partial f}{\partial u}\Big|_{(z,u)=(z_d,u_d)}$, we can then write an equation for $\dot{e} = \mathbf{A}e + \mathbf{B}w$. To create our \mathbf{A} and \mathbf{B} , we utilized the Jacobian of our \dot{z} , solved prior, to z and u. Thus \mathbf{A} is a 12x12 matrix and \mathbf{B} is a 12x4 matrix. If we utilize the equilibrium point from Part A, we can then plug in z_0 and u_0 , defined earlier. Thus:

$$\mathbf{A} = \begin{bmatrix} \frac{\partial \dot{z}_1}{\partial x_1} & \frac{\partial \dot{z}_1}{\partial x_2} & \cdots & \frac{\partial \dot{z}_1}{\partial \omega_2} & \frac{\partial \dot{z}_1}{\partial \omega_3} \\ \vdots & & \ddots & \vdots \\ \frac{\partial \dot{z}_{12}}{\partial x_1} & \frac{\partial \dot{z}_{12}}{\partial x_2} & \cdots & \frac{\partial \dot{z}_{12}}{\partial \omega_2} & \frac{\partial \dot{z}_{12}}{\partial \omega_3} \end{bmatrix}$$

$$(15)$$

$$\boldsymbol{B} = \begin{bmatrix} \frac{\partial \dot{z}_1}{\partial u_1} & \frac{\partial \dot{z}_1}{\partial u_2} & \frac{\partial \dot{z}_0}{\partial u_3} & \frac{\partial \dot{z}_0}{\partial u_4} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial \dot{z}_{12}}{\partial u_1} & \frac{\partial \dot{z}_{12}}{\partial u_2} & \frac{\partial \dot{z}_{12}}{\partial u_3} & \frac{\partial \dot{z}_{12}}{\partial u_4} \end{bmatrix}$$

$$(16)$$

The A matrix is large, but can be simplified in writing by noting that, for this system it can be divided into four quadrants. Two exist as 0_6 , which represents a 6x6 all-zero matrix. Another, I_6 , represents a 6x6 identity matrix. Finally, our bottom corner which we'll label as A_{21} , is a matrix we'll specifically define below.

$$\boldsymbol{A} = \begin{bmatrix} 0_6 & I_6 \\ A_{21} & 0_6 \end{bmatrix} \tag{18}$$

Our \boldsymbol{B} matrix is defined below:

We thus have a linearized model for the system with $\dot{e} = Ae + Bw$.

Problem 1 - Part C

Now we are tasked with determining if our linear system is controllable. To do this, we must check to see if matrix C has full rank. We define C as:

$$C = \begin{bmatrix} A^0 B & A^1 B * A^2 B & \dots & A^{n-1} B \end{bmatrix}$$
 (20)

...with n = 12 for each value within our \dot{z} . This results in a 12x48 matrix that is far too large to output here. When we look at the rank of this matrix, we see that it is full ranked - rank(C) = 12. This tells us that the linearized system is indeed controllable.

Problem 2

In this problem, we let $\dot{x} = Ax$, for $x \in \mathbb{R}$ and $A \in \mathbb{R}^{nxn}$. We assume A has distinct real eigenvalues $\lambda_i < 0$ for i = 1, 2, ..., n. We wish to prove that x = 0 is the only equilibrium point of the system, and that it is also asymptotically stable.

If A has real eigenvalues, we can thus present them as such (shrunk for room):

$$\begin{bmatrix} \dot{\boldsymbol{x}}_{1} \\ \dot{\boldsymbol{x}}_{2} \\ \dot{\boldsymbol{x}}_{3} \\ \vdots \\ \dot{\boldsymbol{x}}_{n-2} \\ \dot{\boldsymbol{x}}_{n-1} \\ \dot{\boldsymbol{x}}_{n} \end{bmatrix} = \begin{bmatrix} \lambda_{1} & 0 & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & \lambda_{2} & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda_{3} & \dots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_{n-2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & \lambda_{n-1} & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & \lambda_{n} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{n-2} \\ x_{n-1} \\ x_{n} \end{bmatrix}$$

$$(21)$$

From this, we can determine that $\dot{x}_i = \lambda_i(0)$, such that $\dot{x}_i = 0$ for each x_i . We then look at the solution of this system:

$$e^{\mathbf{A}t} := \sum_{k=0}^{\infty} \frac{\mathbf{A}^k t^k}{k!} \tag{22}$$

which we can write as...

$$x(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} + c_3 e^{\lambda_3 t} + \dots + c_n e^{\lambda_n t}$$
(23)

Since we stated earlier that we assumed that each lambda has a negative real parts in its eigenvalues ($\lambda_i < 0$), this results in:

$$x(t) = c_1 e^{-\infty} + c_2 e^{-\infty} + c_3 e^{-\infty} + \dots + c_n e^{-\infty}$$
(24)

...which would push all values to 0. This means that $||x(t)|| \to 0$ as $t \to \infty$.