

Decizie și Estimare în Prelucrarea Informației

Capitolul II. Elemente de teorie statistică a detecției

Introducere

- Detecția semnalelor = a decide care semnal este prezent dintre două sau mai multe posibilități
 - inclusiv că nu există nici un semnal
- Avem la dispoziție observații cu zgomot
 - semnalele sunt afectate de zgomot

Schema bloc a detecției semnalelor

Figure 1: Signal detection model

Conţinut:

- Sursa de informație: generează mesajele a_n cu probabilitățile $p(a_n)$
- ▶ Modulator: transmite semnalul $s_n(t)$ la mesajul a_n
- ► Canal: adaugă zgomot aleator
- **E**șantionare: prelevă eșantioane din semnalul $s_n(t)$
- ightharpoonup Receptor: **decide** ce mesaj a_n s-a fost receptionat

Scenarii practice

- Transmisie de date
 - ▶ nivele constante de tensiune (e.g. $s_n(t) = constant$)
 - ▶ modulație PSK (Phase Shift Keying): $s_n(t)$ = cosinus cu aceeași frecvență dar faze inițiale diferite
 - modulație FSK (Frequency Shift Keying): $s_n(t) = \text{cosinus cu frecvențe}$ diferite
 - modulație OFDM (Orthogonal Frequency Division Multiplexing): caz particular de FSK

Radar

- ▶ se emite un semnal; în cazul unui obstacol, semnalul se reflectă înapoi
- receptorul așteaptă posibilele reflecții ale semnalului emis și decide
 - nu este prezentă o reflecție -> nici un obiect
 - semnalul reflectat este prezent -> obiect detectat

Generalizări

- ▶ Decizie între mai mult de două semnale
- Numărul de eșantioane (observații):
 - un singur eşantion
 - mai multe esantioane
 - ▶ observarea întregului semnal continuu, pentru un timp *T*

Detecție unui semnal constant, 1 eșantion

- Cel mai simplu caz: detecția unui semnal constant afectat de zgomot, folosind un singur eșantion
 - ▶ două mesaje a₀ și a₁
 - mesajele sunt modulate cu semnale constante
 - pentru a_0 : se emite $s_0(t) = 0$
 - pentru a_1 : se emite $s_1(t) = A$
 - peste semnal se suprapune zgomot aditiv
 - esantionarea preia un singur esantion
 - decizie: se compară eșantionul cu un prag

Decizia pe bază de prag

- ▶ Valoarea eșantionului este r = s + n
 - s este semnalul adevărat ($s_0 = 0$ or $s_1 = A$)
 - ▶ *n* este un eșantion de zgomot
- n este o variabilă aleatoare continuă
- r este de asemenea o variabilă aleatoare
 - ▶ cum depinde distribuția lui r de cea a lui n
- ▶ Decizia se ia prin compararea lui r cu un prag T:
 - dacă r < T, se ia decizia D_0 : semnalul adevărat este s_0
 - ▶ dacă $r \ge T$, se ia decizia D_1 : semnalul adevărat este s_1

Ipoteze

- Receptorul decide între două ipoteze:
 - ▶ H_0 : semnalul adevărat este s_0 (s-a transmis a_0)
 - \vdash H_1 : semnalul adevărat este s_1 (s-a transmis a_1)
- Rezultate posibile
 - 1. Semnalul nu este prezent (s_0) , si nu este detectat
 - ▶ Decizia D_0 în ipoteza H_0
 - ▶ Probabilitatea sa este $P_n = P(D_0 \cap H_0)$
 - 2. **Alarmă falsă**: semnalul nu este prezent (s_0) , dar este detectat (eroare!)
 - ▶ Decizia D_1 în ipoteza H_0
 - ▶ Probabilitatea este $P_{fa}P(D_1 \cap H_0)$
 - 3. **Ratare**: semnalul este prezent (s_1) , dar nu este detectat (eroare!)
 - ▶ Decizia D_0 în ipoteza H_1
 - ▶ Probabilitatea este $P_m = P(D_0 \cap H_1)$
 - 4. Semnal detectat corect: semnalul este prezent, și este detectat
 - ▶ Decizia D_1 în ipoteza H_1
 - ▶ Probabilitatea este $P_d = P(D_1 \cap H_1)$

Criteriul plauzibilității maxime (Maximum Likelihood)

- Se alege ipoteza care pare cea mai plauzibilă dat fiind eșantionul observat r
- ▶ Plauzibilitatea ("likelihood") unei observații r = densitatea de probabilitate a lui r dată fiind ipoteza H_0 sau H_1
- ▶ Plauzibilitatea în cazul ipotezei H_0 : $w(r|H_0)$
 - lacktriangleright r este doar zgomot, deci provine din distribuția zgomotului de pe canal
- ▶ Plauzibilitatea în cazul ipotezei H_1 : $w(r|H_1)$
 - ▶ r este A + zgomot, deci valoarea sa provine din distribuția (A + zgomot)
- Raportul de plauzibilitate

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} 1$$

Interpretare grafică

- ► Fie cazul în care zgomotul are distribuție normală
- ▶ Desen: cele două densități de probabilitate pentru H_0 și H_1

Decizia pe bază de prag

- ightharpoonup Decizie ML pe baza raportului de plauzibilitate = compararea lui r cu un prag T
- ▶ Pragul = punctul de intersecție a celor două distribuții

Zgomot cu distribuție normală

- ightharpoonup Caz particular: zgomotul are distribuția normală $\mathcal{N}(0,\sigma^2)$
- ▶ Raportul de plauzibilitate este $\frac{w(r|H_1)}{r|H_0} = \frac{e^{-\frac{(r-A)^2}{2\sigma^2}}}{e^{-\frac{r^2}{2\sigma^2}}} \underset{H_0}{\overset{H_1}{\gtrless}} 1$
- ▶ Pentru distribuția normală, e preferabil să aplicăm logaritmul natural
 - logaritmul este o funcție monoton crescătoare, deci nu schimbă rezultatul comparatiei
 - ▶ dacă A < B, atunci log(A) < log(B)
- log-likelihood al unui observații = logaritmul plauzibilității (likelihood)
 - ▶ de obicei este vorba de logaritmul natural, dar poate fi orice bază

Testul "log-likelihood" în cazul ML

 Pentru zgomot cu distribuție normală, decizia ML înseamnă compararea log-likelihood

$$\frac{(r-A)^2}{r^2} \underset{H_0}{\overset{H_1}{\geqslant}} 1$$

Se extrage radicalul

$$\frac{|r-A|}{|r|} \underset{H_0}{\overset{H_1}{\geqslant}} 1$$

- |r A| = distanța de la r la A, |r| = distanța de la r la 0
- ▶ Decizie ML în zgomot normal: se alege valoarea 0 sau A cea mai apropiată de r
 - principiu foarte general, întâlnit în multe alte scenarii
 - principiul cel mai apropiat vecin ("nearest neighbor")
 - receptorul ML se mai numește receptor de distanță minimă ("minimum distance receiver")
 - echivalent cu setarea unui prag $T = \frac{A}{2}$

Generalizări

- Dacă zgomotul are altă distribuție?
 - ▶ Pragul *T* rămâne punctul de intersecție, oricare ar fi acela
 - ▶ Pot fi mai multe puncte de intersecție, deci mai multe praguri
 - ightharpoonup axa $\mathbb R$ este împărțită în **regiuni de decizie** R_0 și R_1
- ▶ Dacă distribuția zgomotului este diferită în cazurile H₀ și H₁?
 - Pragul T (sau pragurile) rămân punctele de intersecție, oricare ar fi acelea
- ▶ Dacă semnalul $s_0(t)$ (pentru ipoteza H_0 , simbolul a_0) nu este 0, ci o altă valoare constantă B?
 - Pragul T (sau pragurile) rămân punctele de intersecție, dar distribuțiile sunt centrate pe B și A
 - Pentru zgomot gaussian, se alege B sau A, cel mai apropiat de eșantion (pragul este la mijlocul distanței dintre B și A)

Generalizări

- Mai mult de două semnale?
 - ▶ De ex. 4 nivele de semnal posibile: -6, -2, 2, 6
 - Se alege cea mai plauzibilă ipoteză, pe baza celor 4 plauzibilități
 - ▶ Nu mai există un singur prag T, sunt în mod necesar mai multe

Exercitii

- ▶ Un semnal poate avea două valori posibile, 0 sau 5. Receptorul ia un singur eșantion cu valoarea r=2.25
 - 1. Dacă zgomotul este gaussian, ce semnal este detectat pe baza criteriului plauzibilității maxime?
 - 2. Dar dacă semnalul 0 este afectat de zgomot gaussian $\mathcal{N}(0,0.5)$, iar semnalul 5 de zgomot uniform $\mathcal{U}[-4,4]$?
 - 3. Repetați a. și b. dacă valoarea 0 se înlocuiește cu -1
- ▶ Un semnal poate avea patru valori posibile: -6, -2, 2, 6. Fiecare valoare durează timp de o secundă. Semnalul este afectat de zgomot alb cu distribuție normală. Receptorul ia un singur eșantion pe secundă. Folosind criteriul plauzibilității maxime, decideți ce semnal s-a transmis, dacă receptorul primește eșantioanele următoare:

$$4, 6.6, -5.2, 1.1, 0.3, -1.5, 7, -7, 4.4$$

Probabilități de eroare condiționate

- Putem calcula probabilitățile de eroare condiționate
- Fie regiunile de decizie:
 - ▶ R_0 : dacă $r \in R_0$, decizia este D_0 , de ex. (∞, T) pentru zgomot gaussian
 - ▶ R_1 : daca $r \in R_1$, decizia este D_1 , de ex. $[T, \infty)$ pentru zgomot gaussian
- ▶ Probabilitatea unei alarme false **dacă** semnalul original este $s_0(t)$

$$P(D_1|H_0) = \int_{R_1} w(r|H_0) dx$$

▶ Probabilitatea unei ratări **dacă** semnalul original este $s_1(t)$

$$P(D_0|H_1) = \int_{R_0} w(r|H_1) dx$$

- Aceste valori nu țin cont de probabilitatea ca semnalul să fie $s_0(t)$ sau $s_1(t)$
 - sunt condiționate ("dacă")

Probabilități de eroare condiționate

Figure 2: Probabilitățile deciziilor

[sursa: hhttp://gru.stanford.edu/doku.php/tutorials/sdt]

Reamintire (TCI): regula lui Bayes

► Reamintire (TCI): regula lui Bayes

$$P(A \cap B) = P(B|A) \cdot P(A))$$

- Interpretare
 - ▶ Probabilitatea P(A) este extrasă din P(B|A)
 - P(B|A) nu mai conține nici o informație despre P(A), șansele ca A chiar să aibă loc
 - ► Exemplu: P(gol | șut la poartă). Câte goluri se înscriu?

Exercițiu

- ▶ Un semnal poate avea două valori posibile, 0 sau 5. Semnalul 0 este afectat de zgomot gaussian $\mathcal{N}(0,0.5)$, iar semnalul 5 de zgomot uniform $\mathcal{U}[-4,4]$. Receptorul decide pe baza criteriului plauzibilității maxime, folosind un singur eșantion din semnal.
 - 1. Calculați probabilitatea unei decizii greșite când semnalul original este $s_0(t)$
 - 2. Calculați probabilitatea unei decizii greșite când semnalul original este $s_1(t)$

Dezavantaje ale criteriului plauzibilității maxime

- Raportul de plauzibilitate utilizează densitățile de probabilitate conditionate
 - ▶ condiționate de ipotezele H₀ sau H₁
- ▶ Condiționarea de ipotezele H_0 și H_1 ignoră probabilitatea celor două ipoteze H_0 și H_1
- ▶ Dacă $p(H_0) > p(H_1)$, am vrea să împingem pragul T înspre H_1 , și vice-versa
 - pentru că este mai probabil ca semnalul să fie $s_0(t)$
 - și de aceea vrem să "favorizăm" decizia D₀

Criteriul probabilității minime de eroare

- Se iau în calcul probabilitățile $P(H_0)$ și $P(H_1)$
- ► Se urmărește minimizarea probabilității totale de eroare P_e
 - ▶ erori = alarme false si ratări
- ► Trebuie să găsim regiunile de decizie R₀ și R₁

Probabilitatea de eroare

▶ Probabilitatea unei alarme false

$$P(D_1 \cap H_0) = P(D_1|H_0) \cdot P(H_0)$$

$$= \int_{R_1} w(r|H_0) dx \cdot P(H_0)$$

$$= (1 - \int_{R_0} w(r|H_0) dx \cdot P(H_0)$$

Probabilitatea unei ratări

$$P(D_0 \cap H_1) = P(D_0|H_1) \cdot P(H_1)$$

= $\int_{R_0} w(r|H_1) dx \cdot P(H_1)$

Suma lor este

$$P_e = P(H_0) + \int_{-\infty}^{T} [w(r|H_1) \cdot P(H_1) - w(r|H_0) \cdot P(H_0)] dx$$

Probabilitatea de eroare minimă

- lacktriangle Urmărim minimizarea P_e , adică să minimizăm integrala
- Pentru a minimiza integrala, se alege R_0 astfel încât pentru toți $r \in R_0$, termenul din integrala este **negativ**
 - ▶ integrarea pe întregul interval în care o funcție este negativă conduce la valoarea minimă
- ▶ Aṣadar, când $w(r|H_1) \cdot P(H_1) w(r|H_0) \cdot P(H_0) < 0$ avem r < T, adică decizia D_0
- ▶ Invers, dacă $w(r|H_1) \cdot P(H_1) w(r|H_0) \cdot P(H_0) > 0$ avem r > T, adică decizia D_1
- Astfel

$$w(r|H_{1}) \cdot P(H_{1}) - w(r|H_{0}) \cdot P(H_{0}) \underset{H_{0}}{\overset{H_{1}}{\geqslant}} 0$$

$$\frac{w(r|H_{1})}{w(r|H_{0})} \underset{H_{0}}{\overset{H_{1}}{\geqslant}} \frac{P(H_{0})}{P(H_{1})}$$

Interpretare

- Similar cu criteriul plauzibilității maxime, dar depinde de probabilitățile celor două ipoteze (cazuri, simboluri)
 - ► Când una dintre ipoteze este mai probabilă decât cealaltă, pragul este împins în favoarea sa, înspre cealaltă ipoteză
- ▶ De asemenea bazat pe raportul de plauzibilitate, ca și primul criteriu

Criteriul probabilității minime de eroare - zgomot gaussian

• Presupunând că zgomotul este gaussian (normal), $\mathcal{N}(0, \sigma^2)$

$$w(r|H_1) = e^{-\frac{(r-A)^2}{2\sigma^2}}$$

 $w(r|H_0) = e^{-\frac{r^2}{2\sigma^2}}$

► Se aplică logaritmul natural

$$-\frac{(r-A)^2}{2\sigma^2} + \frac{r^2}{2\sigma^2} \underset{H_0}{\overset{H_1}{\geqslant}} \ln\left(\frac{P(H_0)}{P(H_1)}\right)$$

Echivalent

$$2rA - A^{2} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} 2\sigma^{2} \cdot \ln \left(\frac{P(H_{0})}{P(H_{1})} \right)$$

$$r \underset{H_{0}}{\overset{H_{1}}{\gtrless}} \frac{A^{2} + 2\sigma^{2} \cdot \ln \left(\frac{P(H_{0})}{P(H_{1})} \right)}{2A}$$

$$T$$

Regiuni de decizie

- ▶ Se compară eșantionul tot cu un prag *T*, dar valoarea acestuia este împinsă înspre ipoteza mai puțin probabilă
 - ▶ T depinde de raportul $\frac{P(H_0)}{P(H_1)}$
- Regiuni de decizie
 - ▶ $R_0 = (-\infty, T]$
 - $ightharpoonup R_1 = [T, \infty)$
 - pot fi diferite pentru alte tipuri de zgomot

Exerciții

- O sursă de informație furnizează două mesaje cu probabilitățile $p(a_0)=\frac{2}{3}$ și $p(a_1)=\frac{1}{3}$. Mesajele se transmit prin semnale constante cu valorile -5 (a_0) și 5 (a_1) . Semnalele sunt afectate de zgomot alb cu distribuție gaussiană $\mathcal{N}(0,\sigma^2=1)$ Receptorul ia un singur eșantion cu valoarea r. Decizia se face prin compararea valorii r cu un prag T, astfel: dacă r < T se decide că s-a transmis mesajul a_0 , altfel se decide mesajul a_1 .
 - 1. Să se găsească valoarea pragului $\mathcal T$ conform criteriul probabilității minime de eroare
 - 2. Dar dacă semnalul 5 este afectat de zgomot uniform $\mathcal{U}[-4,4]$?
 - 3. Calculați probabilitatea unei alarme false și a unei ratări

Criteriul riscului (costului) minim

- Dacă ne afectează mai mult un anume tip de erori (de ex. alarme false) decât celelalte?
- Criteriul riscului (sau costului) minim: deciziile au un cost, se minimizează costul mediu
 - $ightharpoonup C_{ij} = {\sf costul}$ deciziei D_i când ipoteza adevărată este H_j
 - ► C₀₀ = costul unei rejecții corecte
 - $C_{10} = \text{costul}$ unei alarme false
 - $ightharpoonup C_{01} = \text{costul unei ratări}$
 - ▶ C₁₁ = costul unei detecții corecte
- ▶ Definim **riscul** = costul mediu

$$R = C_{00}P(D_0 \cap H_0) + C_{10}P(D_1 \cap H_0) + C_{01}P(D_0 \cap H_1) + C_{11}P(D_1 \cap H_1)$$

► Criteriul riscului minim: se minimizează riscul R

Calcule

- ► Demonstrație la tablă
 - ▶ se folosește regula lui Bayes
- ► Concluzie: regula de decizie este

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \frac{(C_{10} - C_{00})p(H_0)}{(C_{01} - C_{11})p(H_1)}$$

Interpretare

- Similar cu primele două criterii, bazat tot pe raportul de plauzibilitate
- ► Atât probabilitățile cât și costurile pot împinge pragul T într-o parte sau alta
- ▶ Caz particular: dacă $C_{10} C_{00} = C_{01} C_{11}$, se reduce la criteriul probabilității de eroare minime
 - de ex.: dacă $C_{00} = C_{11} = 0$ și $C_{10} = C_{01}$

În zgomot gaussian

- Dacă zgomotul este gaussian (normal), se aplică logaritmul natural, ca la celelalte criterii
- ► Se obține valoarea pragului T:

$$-(r-A)^{2} + r^{2} \underset{H_{0}}{\overset{H_{1}}{\gtrless}} \underbrace{2\sigma^{2} \cdot \ln\left(\frac{(C_{10} - C_{00})p(H_{0})}{(C_{01} - C_{11})p(H_{1})}\right)}_{C}$$

$$r \underset{H_{0}}{\overset{H_{1}}{\gtrless}} \underbrace{A^{2} + 2\sigma^{2} \cdot \ln\left(\frac{(C_{10} - C_{00})p(H_{0})}{(C_{01} - C_{11})p(H_{1})}\right)}_{T}$$

Exemplu

Exemplu la tablă: 0 / 5, zgomot alb $N(0,\sigma^2)$, un eșantion

Două nivele de semnal nenule

- ▶ Dacă semnalul $s_0(t)$ nu este 0, ci are o altă valoare constantă $s_0(t) = B$?
- ▶ Distribuția zgomotului $w(r|H_0)$ va fi centrată pe B în loc de 0
- ▶ În rest, totul rămâne la fel
- ▶ Performanțele sunt determinate de diferența dintre cele două valori (A − B)
 - cazul $s_0 = 0$, $s_1 = A$ este identic cu cazul $s_0 = -\frac{A}{2}$, $s_1 = \frac{A}{2}$
- ▶ Valabil pentru toate criteriile de decizie

Semnale diferențiale sau unipolare

- ▶ Semnal unipolar: o valoare este 0, cealaltă este nenulă
 - $s_0 = 0$, $s_1 = A$
- Semnal diferențial: două valori nenule cu semne contrare, aceeași valoare absolută
 - $s_0 = -\frac{A}{2}$, $s_1 = \frac{A}{2}$
- Care metodă este mai bună?

Semnale diferențiale sau unipolare

- ► Cu aceeași diferență între nivele, performanțele deciziei sunt identice
- ▶ Dar puterea medie a semnalelor diferă
- Pentru semnale diferențiale: $P = \left(\pm \frac{A}{2}\right)^2 = \frac{A^2}{4}$
- ▶ Pentru semnale unipolare: $P = P(H_0) \cdot 0 + P(H_1)(A)^2 = \frac{A^2}{2}$
 - presupunând probabilități egale $P(H_0) = P(H_1) = \frac{1}{2}$
- Semnalul diferențial necesită putere la jumătate față de cel unipolar (mai bine)

Sumar: criterii de decizie

- ▶ Am văzut: decizie între două nivele constante, bazată pe 1 eșantion r
- ▶ Toate criteriile au la bază un test al raportului de plauzibilitate

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

- Criterii diferite conduc la valori diferite pentru K (pragul de plauzibilitate)
- ▶ În funcție de distribuția zgomotului, axa reală este împărțită în regiuni
 - regiunea R_0 : dacă r este aici, se decide D_0
 - regiunea R_1 : dacă r este aici, se decide D_1
 - ▶ de ex. $R_0 = (-\infty, \frac{A+B}{2}]$, $R_1 = (\frac{A+B}{2}, \infty)$ (pentru crit. plauz. max)

Caracteristica de operare a receptorului (ROC)

- Performanța unui receptor este ilustrată cu un grafic numit "Caracteristica de operare a receptorului" ("Receiver Operating Characteristic", ROC)
- ▶ Reprezintă probabilitatea detecției corecte $P_d = P(D_1 \cap H_1)$ în funcție de probabilitatea alarmei false $P_{fa} = P(D_1 \cap H_0)$

Caracteristica de operare a receptorului (ROC)

- ightharpoonup Există întotdeauna un **compromis** între P_d și P_{fa}
 - ightharpoonup creșterea P_d implică și creșterea P_{fa}
 - ▶ pentru a fi siguri că nu ratăm nici un semnal (creșterea P_d), plătim prin creșterea probabilității de alarme false
- Criterii diferite = diferite praguri K = diferite puncte pe grafic = compromisuri diferite
- Cum să creștem performanțele unui receptor?
 - ightharpoonup adică să creștem P_D menținând P_{fa} la aceeași valoare

Performanțele detecției în zgomot alb gaussian

- ▶ Considerăm probabilități egale $P(H_0) = P(H_1) = \frac{1}{2}$
- Deciziile se iau pe baza raportului de plauzibilitate

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} K$$

Probabilitatea detecției corecte este

$$P_{d} = P(D_{1}|H_{1})P(H_{1})$$

$$= P(H_{1}) \int_{T}^{\infty} w(r|H_{1})$$

$$= P(H_{1})(F(\infty) - F(T))$$

$$= \frac{1}{4} \left(1 - erf\left(\frac{T - A}{\sqrt{2}\sigma}\right)\right)$$

$$= Q\left(\frac{T - A}{\sqrt{2}\sigma}\right)$$

Performanțele detecției în zgomot alb gaussian

▶ Probabilitatea alarmei false este

$$\begin{aligned} P_{fa} &= P(D_1|H_0)P(H_0) \\ &= P(H_0) \int_T^\infty w(r|H_0) \\ &= P(H_0)(F(\infty) - F(T)) \\ &= \frac{1}{4} \left(1 - erf\left(\frac{T - 0}{\sqrt{2}\sigma}\right) \right) \\ &= Q\left(\frac{T}{\sqrt{2}\sigma}\right) \end{aligned}$$

- ightharpoonup Rezultă că $rac{T}{\sqrt{2}\sigma}=Q^{-1}\left(P_{fa}
 ight)$
- Înlocuind în P_d se obține

$$P_d = Q\left(\underbrace{Q^{-1}(P_{fa})}_{constant} - \frac{A}{\sqrt{2}\sigma}\right)$$

Raportul semnal zgomot

- ► Raportul semnal zgomot (SNR) = puterea semnalului original puterea zgomotului
- ▶ Puterea medie a unui semnal = valoarea pătratică medie = $\overline{X^2}$
 - ▶ Puterea semnalului original este $\frac{A^2}{2}$
 - ullet Puterea zgomotului este $\overline{X^2}=\sigma^2$ (pentru valoare medie nulă $\mu=0$)
- În cazul nostru, $SNR = \frac{A^2}{2\sigma^2}$

$$P_d = Q \left(\underbrace{Q^{-1}(P_{fa})}_{constant} - \sqrt{SNR} \right)$$

- Pentru P_{fa} de valoare fixă, P_d crește odată cu SNR
 - Q este o funcție monoton descrescătoare

Performanța depinde de SNR

Performanța receptorului crește odată cu creșterea SNR

SNR mare: performanță bună

SNR mic: performanță slabă

Figure 4: Performanțele detecției depind de SNR

[sursa: Fundamentals of Statistical Signal Processing, Steven Kay]