

主讲人:李全龙

主要内容

网络层服务

虚电路网络与数据报网络

路由器体系结构

IP协议

- ·IP数据报
- · IP地址与子网划分
- · CIDR与路由聚合

DHCP协议

NAT

ICMP协议

IPv6简介

路由算法

- 链路状态路由算法
- 距离向量路由算法
- 层次路由

路由协议

- RIP协议
- · OSPF协议
- BGP协议

主要内容

网络层服务

虚电路网络与数据报网络

路由器体系结构

IP协议

- ·IP数据报
- · IP地址与子网划分
- · CIDR与路由聚合

DHCP协议

NAT

ICMP协议

IPv6简介

路由算法

- 链路状态路由算法
- 距离向量路由算法
- 层次路由

路由协议

- RIP协议
- OSPF协议
- BGP协议

计算机网络

网络层

- * 从发送主机向接收主机传 送数据段(segment)
- ❖ 发送主机:将数据段封装 到数据报(datagram)中
- ❖ 接收主机:向传输层交付数据段(segment)
- ❖ 每个主机和路由器都运行 网络层协议
- ❖ 路由器检验所有穿越它的 IP数据报的头部域
 - 决策如何处理IP数据报

网络层核心功能-转发与路由

- * 转发(forwarding): 将分组从路由器的输入端口转移到合适的输出端口
- ❖ 路由(routing): 确定 分组从源到目的经 过的路径
 - 路由算法 (routing algorithms)

_路由算法(协议)确定 通过网络的端到端路径

_转发表确定在本路 由器如何转发分组

网络层核心功能-连接建立

- ❖某些网络的重要功能:
 - ATM, 帧中继, X.25
- ◆ 数据分组传输之前两端主机 需要首先建立虚拟/逻辑连接
 - 网络设备(如路由器)参与连接的建立
- ❖ 网络层连接与传输层连接的 对比:
 - 网络层连接: 两个主机之间 (路 径上的路由器等网络设备参与 其中)
 - 传输层连接: 两个应用进程之 间(对中间网络设备透明)

网络层服务模型

Q: 网络层为发送端(主机)到接收端(主机)的数据报传送"通道(channel)"提供什么样的服务模型(service model)?

Network		Service	Guarantees ?				Congestion
Archi	itecture	Model	Bandwidth	Loss	Order	Timing	feedback
	Internet	best effort	none	no	no	no	no (inferred via loss)
	ATM	CBR	constant	yes	yes	yes	no
			rate				congestion
	ATM	VBR	guaranteed	yes	yes	yes	no
			rate				congestion
	ATM	ABR	guaranteed minimum	no	yes	no	yes
	ATM	UBR	none	no	yes	no	no

网络层服务模型

❖无连接服务(connection-less service):

- 不事先为系列分组的传输确定传输路径
- 每个分组独立确定传输路径
- 不同分组可能传输路径不同
- 数据报网络(datagram network)

❖连接服务(connection service):

- 首先为系列分组的传输确定从源到目的经过的路径 (建立连接)
- 然后沿该路径(连接)传输系列分组
- 系列分组传输路径相同
- 传输结束后拆除连接
- 虚电路网络(virtual-circuit network)

主要内容

网络层服务

虚电路网络与数据报网络

路由器体系结构

IP协议

- IP数据报
- · IP地址与子网划分
- · CIDR与路由聚合

DHCP协议

NAT

ICMP协议

IPv6简介

路由算法

- 链路状态路由算法
- 距离向量路由算法
- 层次路由

路由协议

- RIP协议
- · OSPF协议
- BGP协议

连接服务与无连接服务

- ❖数据报(datagram)网络与虚电路(virtual-circuit)网络是典型两类分组交换网络
- ◆数据报网络提供网络层无连接服务
- ❖虚电路网络提供网络层连接服务
- ❖类似于传输层的无连接服务(UDP)和面向连接服务(TCP),但是网络层服务:
 - 主机到主机服务
 - 网络核心实现

虚电路(Virtual circuits)

虚电路: 一条从源主机 到目的主机,类似于 电路的路径(逻辑连接)

- 分组交换
- 每个分组的传输利用链路的全部带宽
- 源到目的路径经过的网络层设备共同完成虚电路功能

虚电路(Virtual circuits)

❖ 通信过程:

- 呼叫建立(call setup)→数据传输→拆除呼叫
- ❖每个分组携带虚电路标识(VC ID),而不是目的主机地址
- ※ 虚电路经过的每个网络设备 (如路由器),维护每条经过 它的虚电路连接状态
- *链路、网络设备资源(如带宽、缓存等)可以面向VC进行预分配
 - 预分配资源=可预期服务性能
 - 如ATM的电路仿真(CBR)

VC的具体实现

每条虚电路包括:

- 1. 从源主机到目的主机的一条路径
- 2. 虚电路号(VCID),沿路每段链路一个编号
- 3. 沿路每个网络层设备(如路由器),利用转发表记录经过的每条虚电路
- ❖ 沿某条虚电路传输的分组,携带对应虚电路的VCID,而不是目的 地址
- ❖ 同一条VC,在每段链路上的VCID通常不同
 - 路由器转发分组时依据转发表改写/替换虚电路号

VC转发表

路由器R1的VC转发表:

输入接口	输入VC#	输出接口	输出VC#
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87

VC路径上每个路由器都需要维护VC连接的状态信息!

虚电路信令协议(signaling protocols)

- ❖用于VC的建立、维护与拆除
 - 路径选择
- ❖应用于虚电路网络
 - 如ATM、帧中继(frame-relay)网络等
- ❖目前的Internet不采用

数据报网络

- * 网络层无连接
- ❖ 每个分组携带目的地址
- * 路由器根据分组的目的地址转发分组
 - 基于路由协议/算法构建转发表
 - 检索转发表
 - 每个分组独立选路

路由算法(协议)确定 通过网络的端到端路径

转发表确定在本路 由器如何转发分组

目的地址范围	链路接口
11001000 00010111 00010 <mark>000 00000000</mark> 至	0
11001000 00010111 00010 <mark>111 11111111</mark>	· ·
11001000 00010111 000110 <mark>00 00000000</mark> 至	1
11001000 00010111 000110 <mark>11 11111111</mark>	'
11001000 00010111 000111 <mark>00 00000000</mark> 至	2
11001000 00010111 000111 <mark>11 11111111</mark>	
其他	3

Q: 如果地址范围划分的不是这么"完美"会怎么样?

最长前缀匹配优先

例如:

	链路接口			
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	00010111	00011***	*****	2
其他				3

DA: 11001000 00010111 00010<mark>110 10100001</mark>

从哪个接口转发? A:0

DA: 11001000 00010111 00011000 10101010

从哪个接口转发? A:1

最长前缀匹配优先。

在检索转发表时,优先选择与分组目的地址匹配<mark>前缀最长</mark>的入口(entry)。

数据报网络 or VC网络?

Internet (数据报网络)

- * 计算机之间的数据交换
 - "弹性"服务,没有严格时间需求
- * 链路类型众多
 - 特点、性能各异
 - 统一服务困难
- ❖ "智能"端系统 (计算机)
 - 可以自适应、性能控制、差错恢复
- ❖ 简化网络, 复杂"边缘"

ATM (VC网络)

- ❖ 电话网络演化而来
- *核心业务是实时对话:
 - 严格的时间、可靠性需求
 - 需要有保障的服务
- ◆ "哑(dumb)"端系统(非智能)
 - 电话机
 - 传真机
- ❖ 简化"边缘", 复杂网络

主要内容

网络层服务

虚电路网络与数据报网络

路由器体系结构

IP协议

- IP数据报
- · IP地址与子网划分
- · CIDR与路由聚合

DHCP协议

NAT

ICMP协议

IPv6简介

路由算法

- 链路状态路由算法
- 距离向量路由算法
- 层次路由

路由协议

- RIP协议
- · OSPF协议
- BGP协议

Router architecture overview

two key router functions:

- run routing algorithms/protocol (RIP, OSPF, BGP)
- forwarding datagrams from incoming to outgoing link

Input port functions

- port using forwarding table in input port memory ("match plus action")
- goal: complete input port processing at 'line speed'
- queuing: if datagrams arrive faster than forwarding rate into switch fabric

Input port queuing

- fabric slower than input ports combined -> queueing may occur at input queues
 - queueing delay and loss due to input buffer overflow!
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

output port contention:
only one red datagram can be
transferred.

lower red packet is blocked

one packet time later: green packet experiences HOL blocking

Switching fabrics

- transfer packet from input buffer to appropriate output buffer
- switching rate: rate at which packets can be transfer from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable
- three types of switching fabrics

Switching via memory

first generation routers:

- traditional computers with switching under direct control of CPU
- packet copied to system' s memory
- speed limited by memory bandwidth (2 bus crossings per datagram)

Switching via a bus

- datagram from input port memory to output port memory via a shared bus
- bus contention: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers

Switching via interconnection network

- overcome bus bandwidth limitations
- banyan networks, crossbar, other interconnection nets initially developed to connect processors in multiprocessor
- * advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- Cisco 12000: switches 60 Gbps through the interconnection network

Output ports

- buffering required when datagrams arrive from fabric faster than the transmission rate
- scheduling discipline chooses among queued datagrams for transmission

Output port queueing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!

主要内容

网络层服务

虚电路网络与数据报网络

路由器体系结构

IP协议

- ·IP数据报
- IP地址与子网划分
- · CIDR与路由聚合

DHCP协议

NAT

ICMP协议

IPv6简介

路由算法

- 链路状态路由算法
- 距离向量路由算法
- 层次路由

路由协议

- RIP协议
- · OSPF协议
- BGP协议

计算机网络

Internet网络层

主机、路由器网络层主要功能:

IP数据报(分组)格式

- **※ 版本号**字段占4位: IP协议的版本号
 - E.g. $4\rightarrow IPv4$, $6\rightarrow IPv6$

- ❖ 首部长度字段占4位: IP分组首部长度
 - 以4字节为单位
 - E.g. 5→IP首部长度为20(5×4)字节

- ❖ 服务类型(TOS)字段占8位: 指示期望获得哪种类型的服务
 - 1998 年这个字段改名为区分服务
 - 只有在网络提供区分服务(DiffServ)时使用
 - 一般情况下不使用,通常IP分组的该字段(第2字节)的值为00H

位 8 **16 19** 24 31 版本号 首部长度 服务类型(TOS) 总长度 标志位 标识 片偏移 生存时间(TTL) 协议 首部检验和 源IP地址 目的IP地址 填充 选项字段(长度可变) 数据

- ❖ 总长度字段占16位: IP分组的总字节数(首部+数据)
 - 最大IP分组的总长度: 65535B
 - 最小的IP分组首部: 20B
 - IP分组可以封装的最大数据: 65535-20=65515B

位 **19 31** 8 **16** 24 版本号 首部长度 服务类型(TOS) 总长度 标识 标志位 片偏移 生存时间(TTL) 协议 首部检验和 源IP地址 目的IP地址 填充 选项字段(长度可变) 数据

- **❖ 生存时间(TTL)**字段占8位: IP分组在网络中可以通过的路由器数(或跳步数)
 - 路由器转发一次分组,TTL减1
 - 如果TTL=0,路由器则丢弃该IP分组

- * 协议字段占8位: 指示IP分组封装的是哪个协议的数据包
 - 实现复用/分解
 - E.g. 6为TCP,表示封装的为TCP段;17为UDP,表示封装的是UDP数据报

- ❖ 首部校验和字段占16位:实现对IP分组首部的差错检测
 - 计算校验和时,该字段置全0
 - 采用反码算数运算求和,和的反码作为首部校验和字段
 - 逐跳计算、逐跳校验

※源IP地址、目的IP地址字段各占32位:分别标识发送分组的源主机/路由器(网络接口)和接收分组的目的主机/路由器(网络接口)的IP地址

位 **19 31** 8 **16** 24 版本号 首部长度 服务类型(TOS) 总长度 标识 标志位 片偏移 生存时间(TTL) 协议 首部检验和 源IP地址 目的IP地址 填充 选项字段(长度可变) 数据

- ❖ 选项字段占长度可变,范围在1~40B之间:携带安全、源 选路径、时间戳和路由记录等内容
 - 实际上很少被使用

❖填充字段占长度可变,范围在0~3B之间:目的是补齐整个首部,符合32位对齐,即保证首部长度是4字节的倍数

最大传输单元(MTU)

❖ 网络链路存在MTU (最 IF:MTU₁>MTU₂ 大传输单元)—链路层数 据帧可封装数据的上限 ■ 不同链路的MTU不同 MTU₂ IP分组 **MTU**₁ 数据帧 Н **Data** MTU=Max(Data)

IP分片与重组

- * 大IP分组向较小MTU链路转发时,可以被"分片" (fragmented)
 - 1个IP分组分为多片IP分组
 - IP分片到达目的主机后进行"重组" (reassembled)
- ❖IP首部的相关字段用 于标识分片以及确定 分片的相对顺序
 - 总长度、标识、标志 位和片偏移

位 **19** 31 8 **16** 24 首部长度 版本号 服务类型(TOS) 总长度 标志位 标识(ID) 片偏移 生存时间(TTL) 协议 首部检验和 源IP地址 目的IP地址 填充 选项字段(长度可变) 数据

- ❖ 标识字段占16位:标识一个IP分组
 - IP协议利用一个计数器,每产生IP分组计数器加1,作为该IP分组的标识

位 **19** 8 **16** 24 31 服务类型(TOS) 版本号 首部长度 总长度 标志位 标识(ID) 片偏移 生存时间(TTL) 协议 首部检验和 源IP地址 目的IP地址 填充 选项字段(长度可变) 数据

- ❖ 标志位字段占3位:
 - **DF** (Don't Fragment)
 - MF (More Fragment)

- **DF** =1: 禁止分片;
 - **DF** =0: 允许分片
- MF =1: 非最后一片;
 - **MF** =0: 最后一片(或未分片)

位 **19 31** 8 **16** 24 版本号 首部长度 服务类型(TOS) 总长度 标志位 标识(ID) 片偏移 生存时间(TTL) 协议 首部检验和 源IP地址 目的IP地址 填充 选项字段(长度可变) 数据

- ❖ **片偏移**字段占13位: 一个IP分组分片封装原IP分组数据的相对偏移量
 - 片偏移字段以8字节为单位

IP分片过程

- ❖ 假设原IP分组总长度为L, 待转发链路的MTU为M
- **❖** 若*L>M*,且DF=0,则可以/需要分片
- ❖ 分片时每个分片的标识复制原IP分组的标识
- ❖ 通常分片时,除最后一个分片,其他分片均分为MTU允许的最大分片
- ❖ 一个最大分片可封装的数据应该是8的倍数,因此,一个 最大分片可封装的数据为:

$$d = \left| \frac{M - 20}{8} \right| \times 8$$

*需要的总片数为:

$$n = \left\lceil \frac{L - 20}{d} \right\rceil$$

52

IP分片过程

❖ 每片的片偏移字段取值为:

$$F_i = \frac{d}{8} \times (i-1), \qquad 1 \le i \le n$$

*每片的总长度字段为:

$$L_i = \begin{cases} d + 20 & 1 \le i < n \\ L - (n-1)d & i = n \end{cases}$$

❖ 每片的MF标志位为:

$$\mathbf{MF}_{i} = \begin{cases} 1 & 1 \le i < n \\ 0 & i = n \end{cases}$$

IP分片过程

例如:

- * 4000B数据报
- ❖ 输出链路MTU = 1500B
- **⋄** DF=0

1个大数据报分片为3个小数据报(片)

片偏移 = 1480/8 | length | ID | MF=1 | offset | =185

length ID MF=0 offset =370

主要内容

网络层服务

虚电路网络与数据报网络

路由器体系结构

IP协议

- IP数据报
- IP地址与子网划分
- · CIDR与路由聚合

DHCP协议

NAT

ICMP协议

IPv6简介

路由算法

- 链路状态路由算法
- 距离向量路由算法
- 层次路由

路由协议

- RIP协议
- · OSPF协议
- BGP协议

IP编址(addressing)

❖ IP分组:

- 源地址(SA)-从哪儿来
- 目的地址(DA)-到哪儿去
- ❖ 接口(interface): 主机/路 由器与物理链路的连接
 - 实现网络层功能
 - 路由器通常有多个接口
 - 主机通常只有一个或两个接口 (e.g.,有线的以太网接口,无线的802.11接口)

IP编址(addressing)

❖IP地址: 32比特(IPv4)编号标识主机、路由器的接口

❖ IP地址与每个接口关联

❖ 怎样为接口分配IP地址呢?

❖IP地址:

- ■网络号(NetID) 高位比特
- ■主机号(HostID) 低位比特

NetID

HostID

❖IP子网:

- ■IP地址具有相同网络号的设备接口
- 不跨越路由器(第三及以上 层网络设备)可以彼此物理 联通的接口

图中网络有多少个IP子网?

❖IP地址:

- 网络号(NetID) 高位比特
- ■主机号(HostID) 低位比特

NetID

HostID

❖IP子网:

- ■IP地址具有相同网络号的设 备接口
- 不跨越路由器(第三及以 上层网络设备)可以彼此 物理联通的接口

特殊IP地址

NetID	HostID	作为IP分组 源地址	作为IP分组 目的地址	用途	
全0	全0	可以	不可以	在本网范围内表示本机;在 路由表中用于表示默认路由 (相当于表示整个Internet网络)	
全0	特定值	不可以	可以	表示本网内某个特定主机	
全1	全1	不可以	可以	本网广播地址(路由器不转发)	
特定值	全0	不可以	不可以	网络地址,表示一个网络	
特定值	全1	不可以	可以	直接广播地址,对特定网络 上的所有主机进行广播	
127	非全 0 或 非全 1 的 任何数	可以	可以	用于本地软件环回测试,称为环回地址	

私有(Private)IP地址

Class	ass NetIDs	
A	10	1
В	172.16 to 172.31	16
C	192.168.0 to 192.168.255	256

❖IP地址:

- 网络号(NetID) 高位比特
- ■主机号(HostID) 低位比特

NetID

HostID

❖IP子网:

- IP地址具有相同网络号的设备接口
- 不跨越路由器(第三及以 上层网络设备)可以彼此 物理联通的接口

子网划分(Subnetting)?

- ❖如何区分一个IP子网更小范围网络(子网)?
 - 子网划分

子网划分?

❖IP地址:

- ■网络号(NetID) 高位比特
- ■子网号(SubID) 原网络主机号部分比特
- ■主机号(HostID) 低位比特

子网划分?

❖IP地址:

- 网络号(NetID) 高位比特
- ■子网号(SubID) 原网络主机号部分比特
- ■主机号(HostID) 低位比特

- ❖ 如何确定是否划分了子网?利用多 少位划分子网?
 - 子网掩码

子网掩码

- ❖形如IP地址:
 - **32**位
 - ■点分十进制形式
- ❖ 取值:
 - NetID、SubID位全取1
 - HostID位全取0

❖例如:

- ■A网的默认子网掩码为: 255.0.0.0
- ■B网的默认子网掩码为: 255.255.0.0
- ■C网的默认子网掩码为: 255.255.255.0
- ■借用3比特划分子网的B网的子网掩码为: 255.255.224.0

NetID SubID HostID

子网地址+子网掩码 →准确确定子网大小

子网划分

❖例如:

■子网201.2.3.0, 255.255.255.0, 划分为等长的4个子网

❖路由器如何确定应该将IP分组转发到哪个子网?

子网掩码的应用

- ❖将IP分组的目的IP地址与子网掩码按位与运算,提取子网地址
- ❖例如:
 - ■目的IP地址: 172.32.1.112, 子网掩码: 255.255.254.0

- ■子网地址: 172.32.0.0(子网掩码: 255.255.254.0)
- 地址范围: 172.32.0.0~172.32.1.255
- ■可分配地址范围: 172.32.0.1~172.32.1.254
- ■广播地址: 172.32.1.255

一个C类网络划分子网举例

子网	SubID (二进制)	HostID取值范围 (二进制)	第4八位组取值范围 (十进制)
1#	000	00000 thru 11111	.0 thru .31
2#	001	00000 thru 11111	.32 thru .63
3#	010	00000 thru 11111	.64 thru .95
4#	011	00000 thru 11111	.96 thru .127
5#	100	00000 thru 11111	.128 thru .159
6#	101	00000 thru 11111	.160 thru .191
7#	110	00000 thru 11111	.192 thru .223
8#	111	00000 thru 11111	.224 thru .255

一个C类网络划分子网举例

子网	SubID (二进制)	HostID取值范围 (二进制)	第4八位组取值范围 (十进制)
1#	000	00000 thru 11111	.0 thru .31
2#	001	00000 thru 11111	.32 thru .63
3#	010	00000 thru 11111	.64 thru .95
4#	011	00000 thru 11111	.96 thru .127
5#	100	00000 thru 11111	.128 thru .159
6#	101	00000 thru 11111	.160 thru .191
7#	110	00000 thru 11111	.192 thru .223
8#	111	00000 thru 11111	.224 thru .255

主要内容

网络层服务

虚电路网络与数据报网络

路由器体系结构

IP协议

- IP数据报
- · IP地址与子网划分
- CIDR与路由聚合

DHCP协议

NAT

ICMP协议

IPv6简介

路由算法

- 链路状态路由算法
- 距离向量路由算法
- 层次路由

路由协议

- RIP协议
- · OSPF协议
- BGP协议

CIDR

无类域间路由(CIDR: Classless InterDomain Routing)

- 消除传统的 A 类、B 类和 C 类地址界限
 - NetID+SubID→Network Prefix (Prefix)可以任意长度
- 融合子网地址与子网掩码,方便子网划分
 - 无类地址格式: a.b.c.d/x,其中x为前缀长度
- 例如

← Prefix ← HostID→

11001000 00010111 00010000 00000000

200.23.16.0/23

■ 子网201.2.3.64*,*255.255.255.192→201.2.3.64/26

CIDR与路由聚合

无类域间路由(CIDR: Classless InterDomain Routing)

- 提高IPv4 地址空间分配效率
- 提高路由效率
 - 将多个子网聚合为一个较大的子网
 - 构造超网(supernetting)

■ 路由聚合 (route aggregation)

81

层级编址使得路由信息通告更高效:

选用更具体的路由: 最长前缀匹配优先!

主要内容

网络层服务

虚电路网络与数据报网络

路由器体系结构

IP协议

- IP数据报
- · IP地址与子网划分
- · CIDR与路由聚合

DHCP协议

NAT

ICMP协议

IPv6简介

路由算法

- 链路状态路由算法
- 距离向量路由算法
- 层次路由

路由协议

- RIP协议
- · OSPF协议
- BGP协议

如何获得IP地址?

- Q: 一个主机如何获得IP地址?
- ❖ "硬编码"
 - 静态配置

如何获得IP地址?

- Q: 一个主机如何获得IP地址?
- ❖"硬编码"
 - ■静态配置
- ❖动态主机配置协议-DHCP: Dynamic Host Configuration Protocol
 - 从服务器动态获取:
 - · IP地址
 - 子网掩码
 - 默认网关地址
 - DNS服务器名称与IP地址
 - "即插即用"
 - 允许地址重用
 - 支持在用地址续租
 - 支持移动用户加入网络

动态主机配置协议(DHCP)

- ❖ 主机广播 "DHCP discover" (发现报文)
- ❖ DHCP服务器利用 "DHCP offer" (提供报文) 进行响应
- ❖ 主机请求IP地址: "DHCP request" (请求报文)
- ❖ DHCP服务器分配IP地址: "DHCP ack" (确认报文)

DHCP工作过程示例

DHCP工作过程示例

- ❖ DHCP协议在应用层实现
 - 请求报文封装到 UDP数据报中
 - IP广播
 - 链路层广播 (e.g. 以太网广播)

DHCP工作过程示例

- ❖ DHCP服务器构造 ACK报文
 - 包括分配给客户的IP地址、子网掩码、默认网 关、DNS服务器地址

主要内容

网络层服务

虚电路网络与数据报网络

路由器体系结构

IP协议

- IP数据报
- IP地址与子网划分
- · CIDR与路由聚合

DHCP协议

NAT

ICMP协议

IPv6简介

路由算法

- 链路状态路由算法
- 距离向量路由算法
- 层次路由

路由协议

- RIP协议
- · OSPF协议
- BGP协议

计算机网络

动机:

- 只需/能从ISP申请一个IP地址
 - · IPv4地址耗尽
- 本地网络设备IP地址的变更,无需通告外界网络
- 变更ISP时,无需修改内部网络设备IP地址
- 内部网络设备对外界网络不可见,即不可直接寻址(安全)

实现:

- ■替换
 - 利用(NAT IP地址,新端口号)替换每个外出IP数据报的(源IP地址,源端口号)
- 记录
 - 将每对(NAT IP地址, 新端口号) 与(源IP地址, 源端口号)的替换信息存储到NAT转换表中
- ■替换
 - 根据NAT转换表,利用(**源IP地址**, **源端口号**)替换每个进入内网IP数据报的(目的IP地址,目的端口号),即(NAT IP地址, 新端口号)

- **❖16-bit**端口号字段:
 - 可以同时支持60,000多并行连接!
- ❖NAT主要争议:
 - 路由器应该只处理第3层功能
 - 违背端到端通信原则
 - •应用开发者必须考虑到NAT的存在, e.g., P2P应用
 - 地址短缺问题应该由IPv6来解决

NAT穿透问题

- ❖客户期望连接内网地址为 10.0.0.1的服务器
 - 客户不能直接利用地址 10.0.0.1直接访问服务器
 - 对外唯一可见的地址是NAT 地址: 138.76.29.7
- ❖解决方案1: 静态配置NAT ,将特定端口的连接请求 转发给服务器
 - e.g., (138.76.29.7, 2500) 总 是转发给(10.0.0.1, 25000)

NAT穿透问题

- ❖解决方案2: 利用UPnP (Universal Plug and Play) 互联网网关设备协议 (IGD-Internet Gateway Device) 自动配置:
 - * 学习到NAT公共IP地址 (138.76.29.7)
 - ❖ 在NAT转换表中,增删端口 映射

NAT穿透问题

- ❖解决方案3: 中继(如Skype)
 - NAT内部的客户与中继服务器建立连接
 - 外部客户也与中继服务器建立连接
 - 中继服务器桥接两个连接的分组

主要内容

网络层服务

虚电路网络与数据报网络

路由器体系结构

IP协议

- ·IP数据报
- · IP地址与子网划分
- · CIDR与路由聚合

DHCP协议

NAT

ICMP协议

IPv6简介

路由算法

- 链路状态路由算法
- 距离向量路由算法
- 层次路由

路由协议

- RIP协议
- OSPF协议
- BGP协议

互联网控制报文协议(ICMP)

- ❖ 互联网控制报文协议 ICMP (Internet Control Message Protocol)
- * 支持主机或路由器:
 - 差错(或异常)报告
 - 网络探询
- ❖ 两类ICMP 报文:
 - 差错报告报文(5种)
 - 目的不可达
 - 源抑制(Source Quench)
 - 超时/超期
 - 参数问题
 - 重定向 (Redirect)
 - 网络探询报文(2组)
 - 回声(Echo)请求与应答报文(Reply)
 - 时间戳请求与应答报文

ICMP报文

类型(Type)	编码(Code)	description
0	0	回声应答 (ping)
3	0	目的网络不可达
3	1	目的主机不可达
3	2	目的协议不可达
3	3	目的端口不可达
3	6	目的网络未知
3	7	目的主机未知
4	0	源抑制(拥塞控制-未用)
8	0	回声请求(ping)
9	0	路由通告
10	0	路由发现
11	0	TTL超期
12	0	IP首部错误

例外情况

- ❖几种不发送 ICMP差错报告报文的特殊情况:
 - 对ICMP差错报告报文不再发送 ICMP差错报告报文
 - 除第1个IP数据报分片外,对所有后续分片均不发送ICMP差错报告报文
 - 对所有多播IP数据报均不发送 ICMP差错报告报文
 - 对具有特殊地址(如127.0.0.0 或 0.0.0.0)的IP数据报不发送 ICMP 差错报告报文
- ❖ 几种 ICMP 报文已不再使用
 - 信息请求与应答报文
 - 子网掩码请求和应答报文
 - 路由器询问和通告报文

ICMP报文的格式

❖ ICMP报文封装到IP数据报中传输

ICMP差错报告报文数据封装

ICMP的应用举例: Traceroute

- ❖ 源主机向目的主机发送一系列UDP 数据报
 - 第1组IP数据报TTL =1
 - 第2组IP数据报TTL=2, etc.
 - 目的端口号为不可能使用的端口号
- ❖ 当第*n*组数据报(TTL=*n*)到达第*n*个路由器时:
 - 路由器丢弃数据报
 - 向源主机发送ICMP报文 (type=11, code=0)
 - ICMP报文携带路由器名称和IP地址信息

❖ 当ICMP报文返回到源主机时, 记录RTT

停止准则:

- * UDP数据报最终到达目的主机
- ❖ 目的主机返回"目的端口不可达" ICMP报文 (type=3, code=3)
- ❖ 源主机停止

主要内容

网络层服务

虚电路网络与数据报网络

路由器体系结构

IP协议

- IP数据报
- · IP地址与子网划分
- · CIDR与路由聚合

DHCP协议

NAT

ICMP协议

IPv6简介

路由算法

- 链路状态路由算法
- 距离向量路由算法
- 层次路由

路由协议

- RIP协议
- · OSPF协议
- BGP协议

IPv6: 动机

- ❖ 最初动机: 32位IPv4地址空间已分配殆尽
- ❖ 其他动机: 改进首部格式
 - 快速处理/转发数据报
 - 支持QoS

IPv6数据报格式:

- 固定长度的40字节基本首部
- 不允许分片

IPv6数据报格式

优先级(priority): 标识数据报的优先级 流标签(flow Label):标识同一"流"中的数据报 下一个首部(next header):标识下一个选项首部或上层协议首部(如TCP首部)

其他改变 vs IPv4

- ❖校验和(checksum): 彻底移除,以减少每跳处理时间
- ❖选项(options): 允许,但是从基本首部移出,定义多个选项首部,通过"下一个首部"字段指示
- ❖ICMPv6: 新版ICMP
 - 附加报文类型, e.g. "Packet Too Big"
 - 多播组管理功能

IPv6地址表示形式

◆ 一般形式: 1080:0:FF:0:8:800:200C:417A

❖ 压缩形式: FF01:0:0:0:0:0:0:43

压缩→FF01::43

❖ IPv4-嵌入形式:
0:0:0:0:0:0:FFFF:13.1.68.3

或 ::FFFF:13.1.68.3

❖ 地址前缀: 2002:43c:476b::/48

(注: IPv6不再使用掩码!)

URLs: http://[3FFE::1:800:200C:417A]:8000

IPv6基本地址类型

单播(unicast):

一对一通信

□- ------

多播(multicast):

一对多通信

任意播(anycast):

一对一组之一 (最近一个)通信

IPv4向IPv6过渡

- ❖不可能在某个时刻所有路由器同时被更新为IPv6
 - 不会有"标志性的日期"
 - IPv4和IPv6路由器共存的网络如何运行?
- ❖ 隧道(tunneling): IPv6数据报作为IPv4数据报的载 荷进行封装,穿越IPv4网络

隧道(tunneling)

主要内容

计算机网络

网络层服务

虚电路网络与数据报网络

路由器体系结构

IP协议

- ·IP数据报
- IP地址与子网划分
- · CIDR与路由聚合

DHCP协议

NAT

ICMP协议

IPv6简介

路由算法

- 链路状态路由算法
- 距离向量路由算法
- 层次路由

路由协议

- RIP协议
- · OSPF协议
- BGP协议

路由与转发

路由算法(协议)确定去往目的网络的最佳路径

转发表确定在本路 由器如何转发分组

网络抽象:图

图: G = (N, E)

N = 路由器集合= { u, v, w, x, y, z }

E = 链路集合 ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

附注: 图的抽象在网络领域应用很广泛

E.g.:P2P, 其中, N是 peers集合, 而E是TCP连接集合

图抽象:费用(Costs)

c(x, x') = 链路(x, x')的费用 e.g., c(w, z) = 5

每段链路的费用可以总是1,

或者是,

带宽的倒数、拥塞程度等

路径费用: $(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$

关键问题: 源到目的(如u到z)的最小费用路径是什么?

路由算法: 寻找最小费用路径的算法

119

路由算法分类

静态路由 vs 动态路由?

静态路由:

- ❖ 手工配置
- ❖ 路由更新慢
- * 优先级高

动态路由:

- * 路由更新快
 - 定期更新
 - 及时响应链路费用或 网络拓扑变化

全局信息 vs 分散信息?

全局信息:

- ❖ 所有路由器掌握完整的网络 拓扑和链路费用信息
- ❖ E.g. 链路状态(LS)路由算法分散(decentralized)信息:
- ❖ 路由器只掌握物理相连的邻居以及链路费用
- ❖ 邻居间信息交换、运算的迭 代过程
- ❖ E.g. 距离向量(DV)路由算法

主要内容

网络层服务

虚电路网络与数据报网络

路由器体系结构

IP协议

- IP数据报
- IP地址与子网划分
- · CIDR与路由聚合

DHCP协议

NAT

ICMP协议

IPv6简介

路由算法

- 链路状态路由算法
- 距离向量路由算法
- 层次路由

路由协议

- RIP协议
- · OSPF协议
- BGP协议

网络抽象:图

图: G = (N, E)

N = 路由器集合= { u, v, w, x, y, z }

E = 链路集合 ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

链路状态路由算法

Dijkstra 算法

- ❖ 所有结点(路由器)掌握网络拓扑和链路费用
 - 通过"链路状态广播"
 - 所有结点拥有相同信息
- * 计算从一个结点("源") 到达所有其他结点的最 短路径
 - 获得该结点的转发表
- * 迭代: k次迭代后,得到 到达k个目的结点的最短 路径

符号:

- ***** C(x,y): 结点x到结点y链路 费用; 如果x和y不直接相 连,则=∞
- ❖ D(v): 从源到目的v的当前 路径费用值
- ❖p(v): 沿从源到v的当前路 径,v的前序结点
- ❖ N': 已经找到最小费用路 径的结点集合

Dijkstra 算法

```
1 初始化:
  N' = \{u\}
  for 所有结点v
   if v毗邻u
     then D(v) = c(u,v)
   else D(v) = \infty
  Loop
  找出不在 N'中的w ,满足D(w)最小
   将w加入N'
   更新w的所有不在N'中的邻居v的D(v):
   D(v) = \min(D(v), D(w) + c(w,v))
13 /*到达v的新费用或者是原先到达v的费用,或者是
    已知的到达w的最短路径费用加上w到v的费用 */
14
15 until 所有结点在N'中
```

124

Dijkstra 算法:例1

Dijkstra 算法:例2

Step	N'	D (v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2 ,u	<u>5,u</u>	1,u	00	∞
1	ux←	2,u	4,x		2,x	∞
2	uxy←	2, u	3,y			4 ,y
3	uxyv←		3,y			4,y
4	uxyvw ←					4,y
5	uxyvwz ←	_				

Dijkstra 算法:例2

u的最终最短路径树:

u的最终转发表:

目的	链路
V	(u,v)
X	(u,x)
y	(u,x)
W	(u,x)
Z	(u,x)

Dijkstra 算法:讨论

算法复杂性: n个结点

- ❖ 每次迭代: 需要检测所有不在集合N'中的结点w
- ❖ n(n+1)/2次比较: O(n²)
- * 更高效的实现: O(nlogn)

存在震荡(oscillations)可能:

❖ e.g., 假设链路费用是该链路承载的通信量:

基于这些费用 计算新的路由…

基于这些费用 计算新的路由…

主要内容

网络层服务

虚电路网络与数据报网络

路由器体系结构

IP协议

- IP数据报
- · IP地址与子网划分
- · CIDR与路由聚合

DHCP协议

NAT

ICMP协议

IPv6简介

路由算法

- 链路状态路由算法
- 距离向量路由算法
- 层次路由

路由协议

- RIP协议
- · OSPF协议
- BGP协议

距离向量(Distance Vector)路由算法

Bellman-Ford方程(动态规划)

```
�:
 d_{x}(y):=从x到y最短路径的费用(距离)
则:
 d_{x}(y) = \min_{x} \{c(x, y) + d_{y}(y)\}
                    从邻居v到达目的y的费用(距离)
              x到邻居v的费用
         在x的所有邻居v中取最小值
```

Bellman-Ford 举例

显然:
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

根据B-F方程:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), \\ c(u,x) + d_{x}(z), \\ c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \} = 4$$

重点: 结点获得最短路径的下一跳,该信息用于转发表中!

距离向量路由算法

- \mathbf{v} $\mathbf{D}_{\mathbf{x}}(\mathbf{y}) =$ 从结点**x**到结点**y**的最小费用估计
 - x维护距离向量(DV): **D**_x = [D_x(y): y ∈ N]
- ❖ 结点x:
 - 已知到达每个邻居的费用: c(x,v)
 - 维护其所有邻居的距离向量: $\mathbf{D}_{v} = [\mathbf{D}_{v}(\mathbf{y}): \mathbf{y} \in \mathbf{N}]$

核心思想:

- ❖ 每个结点不定时地将其自身的DV估计发送给其邻居
- ❖ 当x接收到邻居的新的DV估计时,即依据B-F更新其自身的距离向量估计:

 $D_x(y) \leftarrow min_v\{c(x,v) + D_v(y)\}\$ for each node $y \in N$

❖ D_x(y)将最终收敛于实际的最小费用 d_x(y)

距离向量路由算法

异步迭代:

- * 引发每次局部迭代的因素
 - 局部链路费用改变
 - 来自邻居的DV更新

分布式:

- ❖ 每个结点只当DV变化时 才通告给邻居
 - 邻居在必要时(其DV更新 后发生改变)再通告它们 的邻居

每个结点:

距离向量路由算法: 举例

距离向量路由算法: 举例

距离向量DV: 链路费用变化

链路费用变化:

- * 结点检测本地链路费用变化
- * 更新路由信息,重新计算距离向量
- * 如果DV改变,通告所有邻居

 t_0 : y检测到链路费用改变,更新DV,通告其邻居.

t₁: z收到y的DV更新,更新其距离向量表,计算到达x的最新最小费用,更新其DV,并发送给其所有邻居.

t₂: y收到z的DV更新,更新其距离向量表,重新计算y的DV, 未发生改变,不再向z发送DV.

"砂好消息传播快!" "坏消息会怎么样呢?"

距离向量DV: 无穷计数问题

坏消息传播慢!

— "无穷计数 (count to infinity)" 问题!

距离向量DV: 无穷计数问题

毒性逆转(poisoned reverse):

- ◆ 如果一个结点(e.g. Z)到达某目的(e.g.X)的最小 费用路径是通过某个邻居(e.g.Y),则:
 - 通告给该邻居结点到达该目的的距离为无穷大

毒性逆转能否彻底解决无穷计数问题?

距离向量DV: 无穷计数问题

定义最大度量(maximum metric):

◆ 定义一个最大的有效费用值,如15跳步为最大有效跳数,16跳步表示∞

LS与DV算法比较

报文交换复杂性

- ❖ LS: 对于n个结点, E条链路的 网络, 发送报文为O(nE)级
- ❖ DV: 只在邻居之间交换DV

收敛速度

- ❖ LS: 时间复杂度为O(n²), 信息 复杂度为O(nE)
 - 可能产生震荡
- ❖ DV: 收敛时间不定
 - 可能出现路由环路
 - 无穷计数问题

robustness: what happens if router malfunctions?

LS:

- node can advertise incorrect link cost
- each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- each node's table used by others
 - error propagate thru network

主要内容

网络层服务

虚电路网络与数据报网络

路由器体系结构

IP协议

- IP数据报
- IP地址与子网划分
- · CIDR与路由聚合

DHCP协议

NAT

ICMP协议

IPv6简介

路由算法

- 链路状态路由算法
- 距离向量路由算法
- 层次路由

路由协议

- RIP协议
- · OSPF协议
- BGP协议

层次路由

将任意规模网络抽象为一个图计算路由-过于理想化

- * 标识所有路由器
- ❖ "扁平"网络

——在实际网络(尤其是大规模网络)中,不可行!

网络规模:考虑6亿目的结点的网络

- ❖ 路由表几乎无法存储!
- ❖ 路由计算过程的信息 (e.g. 链路状态分组、 DV)交换量巨大,会淹 没链路!

管理自治:

- ❖每个网络的管理可能都期望自主控制其网内的路由
- ❖ 互联网(internet) = 网络之 网络(network of networks)

层次路由

- ❖聚合路由器为一个区域: 自治系统AS (autonomous systems)
- ❖同一AS内的路由器运行相 同的路由协议(算法)
 - 自治系统内部路由协议 ("intra-AS" routing protocol)
 - 不同自治系统内的路由器可以运行不同的AS内部路由协议

- 网美路由器(gateway router):
- ❖位于AS"边缘"
- ❖ 通过链路连接其他AS的 网关路由器

互连的AS

- ❖ 转发表由AS内部路由算法与 AS间路由算法共同配置
 - AS内部路由算法设置AS 内部目的网络路由入口 (entries)
 - AS内部路由算法与AS间路由算法共同设置AS外部目的网络路由入口

自治系统间(Inter-AS)路由任务

- ❖ 假设AS1内某路由器收到一个目的地址在AS1之外的数据报:
 - 路由器应该将该数据 报转发给哪个网关路 由器呢?

AS1必须:

- 1.学习到哪些目的网络可以通过AS2到达,哪些可以通过AS3到达
- 2.将这些网络可达性信息 传播给AS1内部路由器

自治系统间路由任务!

例: 路由器1d的转发表设置

- ❖假设AS1学习到(通过AS间路由协议):子网x可以通过AS3 (网关 1c)到达,但不能通过AS2到达
 - AS间路由协议向所有内部路由器传播该可达性信息
- ❖路由器1d:利用AS内部路由信息,确定其到达1c的最小费用路径接口/

例:在多AS间选择

- ❖假设AS1通过AS间路由协议学习到:子网x通过 AS3和AS2均可到达
- ❖为了配置转发表,路由器1d必须确定应该将去往 子网**x**的数据报转发给哪个网关?
 - 这个任务也是由AS间路由协议完成!

例:在多AS间选择

- ❖假设AS1通过AS间路由协议学习到:子网x通过 AS3和AS2均可到达
- ❖为了配置转发表,路由器1d必须确定应该将去往 子网**x**的数据报转发给哪个网关?
 - 这个任务也是由AS间路由协议完成!
- *热土豆路由:将分组发送给最近的网关路由器。

主要内容

网络层服务

虚电路网络与数据报网络

路由器体系结构

IP协议

- IP数据报
- · IP地址与子网划分
- · CIDR与路由聚合

DHCP协议

NAT

ICMP协议

IPv6简介

路由算法

- 链路状态路由算法
- 距离向量路由算法
- 层次路由

路由协议

- RIP协议
- · OSPF协议
- BGP协议

计算机网络

AS内部路由

- ❖Internet采用层次路由
- ❖AS內部路由协议也称为内部网络协议IGP (interior gateway protocols)
- ❖最常见的AS内部路由协议:
 - 路由信息协议: RIP(Routing Information Protocol)
 - 开放最短路径优先: OSPF(Open Shortest Path First)
 - 内部网关路由协议: IGRP(Interior Gateway Routing Protocol)
 - Cisco私有协议

RIP

- ❖ 早于1982年随BSD-UNIX操作系统发布
- ❖ 距离向量路由算法
 - 距离度量: 跳步数 (max = 15 hops), 每条链路1个跳步
 - 每隔30秒,邻居之间交换一次DV,成为通告(advertisement)
 - 每次通告: 最多25个目的子网(IP地址形式)

从路由器A到目的子网:

subnet	<u>hops</u>
u	1
V	2
W	2
X	3
у	3
Z	2

RIP: 举例

路由器D的路由表

destination subnet	next router	# hops to dest
W	A	2
у	В	2
Z	В	7
X		1
		••••

RIP: 举例

路	由	哭	D	竹	略	由	表
\mathbf{u}		石口		ЦΊ	四世		X

destination subnet	next router	# hops to dest
W	A	2
y	В	2 _ 5
Z	BA	7
X		1
		••••

RIP: 链路失效、恢复

如果180秒没有收到通告→邻居/链路失效

- 经过该邻居的路由不可用
 - ■重新计算路由
- 向邻居发送新的通告
- 邻居再依次向外发送通告(如果转发表改变)
- 链路失效信息能否快速传播到全网?
 - ■可能发生无穷计数问题
- 毒性逆转技术用于预防乒乓(ping-pong)环路 (另外: 无穷大距离 = 16 hops)

RIP路由表的处理

- ❖RIP路由表是利用一个称作route-d (daemon)的应用层进程进行管理
 - ❖应用进程实现
- ❖通告报文周期性地通过UDP数据报发送

主要内容

网络层服务

虚电路网络与数据报网络

路由器体系结构

IP协议

- IP数据报
- · IP地址与子网划分
- · CIDR与路由聚合

DHCP协议

NAT

ICMP协议

IPv6简介

路由算法

- 链路状态路由算法
- 距离向量路由算法
- 层次路由

路由协议

- RIP协议
- OSPF协议
- BGP协议

OSPF (Open Shortest Path First)

- ❖"开放":公众可用
- ◆采用链路状态路由算法
 - LS分组扩散(通告)
 - 每个路由器构造完整的网络(AS)拓扑图
 - 利用Dijkstra算法计算路由
- ❖OSPF通告中每个入口对应一个邻居
- ❖OSPF通告在整个AS范围泛洪
 - OSPF报文直接封装到IP数据报中
- ❖与OSPF极其相似的一个路由协议: IS-IS路由协议

OSPF优点(RIP不具备)

- ❖安全(security): 所有OSPF报文可以被认证 (预防恶意入侵)
- ❖允许使用多条相同费用的路径 (RIP只能选一条)
- ❖对于每条链路,可以针对不同的TOS设置多个不同的费用度量 (e.g., 卫星链路可以针对"尽力" (best effort) ToS设置"低"费用;针对实时ToS设置"高"费用)
- ❖集成单播路由与多播路由:
 - 多播OSPF协议(MOSPF) 与OSPF利用相同的 网络拓扑数据
- ❖OSPF支持对大规模AS分层(hierarchical)

主要内容

网络层服务

虚电路网络与数据报网络

路由器体系结构

IP协议

- IP数据报
- · IP地址与子网划分
- · CIDR与路由聚合

DHCP协议

NAT

ICMP协议

IPv6简介

路由算法

- 链路状态路由算法
- 距离向量路由算法
- 层次路由

路由协议

- RIP协议
- · OSPF协议
- BGP协议

Internet AS间路由协议: BGP

- ❖ 边界网关协议BGP (Border Gateway Protocol): 事实上的标准域间路由协议
 - 将Internet "粘合"为一个整体的关键
- ❖ BGP为每个AS提供了一种手段:
 - eBGP: 从邻居AS获取子网可达性信息.
 - iBGP: 向所有AS内部路由器传播子网可达性信息.
 - 基于可达性信息与策略,确定到达其他网络的"好" 路径。
- ❖ 容许子网向Internet其余部分通告它的存在: "我在这儿!"

BGP基础

- ❖BGP会话(session): 两个BGP路由器("Peers")
 交换BGP报文:
 - 通告去往不同目的前缀(prefix)的路径("路径向量 (path vector)"协议)
 - 报文交换基于半永久的TCP连接
- ❖BGP报文:
 - OPEN: 与peer建立TCP连接,并认证发送方
 - UPDATE: 通告新路径 (或撤销原路径)
 - KEEPALIVE: 在无UPDATE时,保活连接; 也用于对 OPEN请求的确认
 - NOTIFICATION: 报告先前报文的差错; 也被用于关闭 连接

BGP基础

- ❖当AS3通告一个前缀给AS1时:
 - AS3承诺可以将数据报转发给该子网
 - AS3在通告中会聚合网络前缀

BGP基础: 分发路径信息

- ❖ 在3a与1c之间, AS3利用eBGP会话向AS1发送前缀可 达性信息.
 - 1c则可以利用iBGP向AS1内的所有路由器分发新的前缀可达性信息
 - 1b可以(也可能不)进一步通过1b-到-2a的eBGP会话,向 AS2通告新的可达性信息
- ❖ 当路由器获得新的前缀可达性时,即在其转发表中增加关于该前缀的入口(路由项).

路径属性与BGP路由(route)

- ❖ 通告的前缀信息包括BGP属性
 - 前缀+属性= "路由"
- ❖ 两个重要属性:
 - AS-PATH(AS路径): 包含前缀通告所经过的AS序列: e.g., AS 67, AS 17
 - NEXT-HOP(下一跳): 开始一个AS-PATH的路由器接口,指向下一跳AS.
 - 可能从当前AS到下一跳AS存在多条链路

BGP路由选择

- ❖ 网关路由器收到路由通告后,利用其输入策略 (import policy)决策接受/拒绝该路由
 - e.g., 从不将流量路由到AS x
 - 基于策略(policy-based) 路由
- ❖路由器可能获知到达某目的AS的多条路由,基于 以下准则选择:
 - 1. 本地偏好(preference)值属性: 策略决策(policy decision)
 - 2. 最短AS-PATH
 - 3. 最近NEXT-HOP路由器: 热土豆路由(hot potato routing)
 - 4. 附加准则

BGP路由选择策略

- ❖ A,B,C是提供商网络/AS(provider network/AS)
- ❖ X,W,Y是客户网络(customer network/AS)
- ❖ W,Y是桩网络(stub network/AS): 只与一个其他AS相连
- ❖ X是双宿网络(dual-homed network/AS): 连接两个其他AS
 - X不期望经过他路由B到C的流量
 - ... 因此, X不会向B通告任何一条到达C的路由

BGP路由选择策略

- ❖ A向B通告一条路径: AW
- ❖ B向X通告路径: BAW
- ❖ B是否应该向C通告路径BAW呢?
 - 绝不! B路由CBAW的流量没有任何"收益",因为W和C均不是B的客户。
 - B期望强制C通过A向W路由流量
 - B期望只路由去往/来自其客户的流量!

为什么采用不同的AS内与AS间路由协议?

策略(policy):

- ❖ inter-AS: 期望能够管理控制流量如何被路由,谁路由 经过其网络等.
- ❖ intra-AS: 单一管理, 无需策略决策

规模(scale):

- * 层次路由节省路由表大小,减少路由更新流量
- * 适应大规模互联网

性能(performance):

- ❖ intra-AS: 侧重性能
- ❖ inter-AS: 策略主导

某网络拓扑如下图所示,路由器R1通过接口E1、E2分别连接局域网1、局域网2,通过接口L0连接路由器R2,并通过路由器R2连接域名服务器与互联网。R1的L0接口的IP地址是202.118.2.1;R2的L0接口的IP地址是202.118.2.2,L1接口的IP地址是130.11.120.1,E0接口的IP地址是202.118.3.1;域名服务器的IP地址是202.118.3.2。

R1和R2的路由表结构为:

目的网络IP地址 子网掩码 下一跳IP地址 接口

- (1) 将IP地址空间202.118.1.0/24划分为2个子网,分别分配给局域网1、局域网2,每个局域网需分配的IP地址数不少于120个。请给出子网划分结果,说明理由或给出必要的计算过程。
- (2)请给出R1的路由表,使其明确包括到局域网1的路由、局域网2的路由、域名服务器的主机路由和互联网的路由。
 - (3) 请采用路由聚合技术,给出R2到局域网1和局域网2的路由。

(1)将IP地址空间 202.118.1.0/24划分为2 个子网,分别分配给局域 网1、局域网2,每个局域 网需分配的IP地址数不少 于120个。请给出子网划 分结果,说明理由或给出 必要的计算过程。

解:

(1) 把IP地址空间202.118.1.0/24划分为2个等长的子网。划分结果:

子网1:子网地址为202.118.1.0,子网掩码为255.255.255.128

(或子网1: 202.118.1.0/25)

子网2: 子网地址为202.118.1.128,子网掩码为255.255.255.128

(或子网2: 202.118.1.128/25)

地址分配方案:子网1分配给局域网1,子网2分配给局域网2。

(2)请给出R1的路由表,使其明确包括到局域网1的路由、局域网2的路由、域名服务器的主机路由和互联网的路由。

解:

若子网1分配给局域网1,子网2分配给局域网2

(2) R1的路由表如下:

(3)请采用路由聚合技术,给出R2到局域网1和局域网2的路由。

解:

(3) R2的路由表中,到局域网1和局域网2的路由表项如下:

目的网络IP地址	子网掩码	下一跳IP地址	接口
202.118.1.0	255.255.255.0	202.118.2.1	LO

