AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application: LISTING OF CLAIMS:

- 1. (Currently Amended) A lens system comprising:
- a positive component, positioned in an optical path of incident light, comprising a first negative lens, a double-convex lens and a holographic optical element, respectively; and

a second negative lens positioned in the optical path; and

an auxiliary double-convex lens positioned in an optical path between the positive component and the second negative lens, wherein the auxiliary double-convex lens has a magnifying power similar to the lens system.

- 2. (*Previously Presented*) The lens system of claim 1, wherein the holographic optical element is disposed on at least one surface of the first negative lens and the double-convex lens comprising the positive component.
- 3. (Original) The lens system of claim 1, wherein the first negative lens is made of polycarbonate.
- 4. (*Previously Presented*) The lens system of claim 1, wherein the first negative lens has a magnifying power ranging from 0.1 to 0.2.
- 5. (Original) The lens system of claim 1, wherein the second negative lens is made of polystyrene.
- 6. (*Previously Presented*) The lens system of claim 1, wherein the second negative lens has a magnifying power ranging from 0.5 to 0.7.

- 7. (Previously Presented) The lens system of claim 1, wherein at least one of the first negative lens, the double-convex lens and the second negative lens has at least one aspheric surface.
 - 8. (Currently Amended) A lens system comprising:

a positive component, positioned in an optical path of incident light, comprising a positive lens, a double-convex lens and a holographic optical element, respectively;

a negative lens positioned in the optical path; and

an auxiliary double-convex lens positioned in an optical path between the positive component and the negative lens, wherein the auxiliary double-convex lens has a magnifying power similar to the lens system.

- 9. (*Previously Presented*) The lens system of claim 8, wherein the holographic optical element is disposed on at least one surface of the positive lens and the double-convex lens comprising the positive component.
- 10. (Previously Presented) The lens system of claim 8, wherein the positive lens in the form of a meniscus is made of acryl material.
- 11. (Original) The lens system of claim 8, wherein the positive lens is positioned at a distance of 0.15 to 0.25 times a focal length of the lens system from an object imaged by said lens system.
- 12. (Original) The lens system of claim 8, wherein the negative lens is made of polystyrene.

- 13. (*Previously Presented*) The lens system of claim 8, wherein the negative lens has a magnifying power ranging from 0.2 to 0.3.
 - 14. (Cancelled).
- 15. (Currently Amended) The lens system of claim 8[[14]], wherein the auxiliary element is made of acryl material.
- 16. (*Previously Presented*) The lens system of claim 8, wherein the holographic optical element has a magnifying power ranging from 0.01 to 0.1.
- 17. (Previously Presented) The lens system of claim 8, wherein the holographic optical element has a phase profile V_H defined by the following equation:

$$V_H = A_1 y^2 + A_2 y^4 + A_3 y^6$$

where A_1 is a coefficient that is proportional to a magnifying power of the holographic optical element, A_2 is a coefficient that is proportional to spherical aberration caused by the positive component, A_3 is a coefficient that is proportional to spherical aberration caused by the negative lens, and y is the distance from an optical axis of the lens system measured at right angle to the optical axis.

- 18. (*Previously Presented*) The lens system of claim 8, wherein the double-convex lens is made of acryl material.
- 19. (*Previously Presented*) The lens system of claim 8, wherein the double-convex lens has a magnifying power ranging from 0.35 to 0.4.
- 20. (Currently Amended) An objective lens system for imaging a light from an object, the objective lens system comprising:

a lens system comprising:

a positive component, positioned in an optical path of the light from the object, comprising a first negative lens, a double-convex lens and a holographic optical element, respectively; and

a second negative lens positioned in the optical path after the positive component; and

an auxiliary double-convex lens positioned in an optical path between the positive component and the second negative lens, wherein the auxiliary double-convex lens has a magnifying power similar to the lens system.

- 21. (Currently Amended) An objective lens system for imaging a light from an object, the objective lens system comprising:
 - a lens system comprising:

a positive component, positioned in an optical path of the light, comprising a positive lens, a double-convex lens and a holographic optical element, respectively; and a negative lens positioned in the optical path after the positive component; and an auxiliary double-convex lens positioned in an optical path between the positive component and the negative lens, wherein the auxiliary double-convex lens has a magnifying power similar to the lens system.

- 22. (Currently Amended) An optical projection system for projecting a light emitted from an optical light source on a screen, the optical projection system comprising:
 - a lens system comprising:

AMENDMENT UNDER 37 C.F.R. § 1.116 U.S. Application No. 10/779,859

a positive component, positioned in an optical path of the light, comprising a first negative lens, a double-convex lens and a holographic optical element; and

a second negative lens positioned in the optical path before the positive component; and

an auxiliary double-convex lens positioned in an optical path between the positive component and the second negative lens, wherein the auxiliary double-convex lens has a magnifying power similar to the lens system; and

a coupler configured to connect the optical light source to the lens system.

23. (*Currently Amended*) An optical projection system for projecting a light emitted from an optical light source on a screen, the optical projection system comprising:

a lens system comprising:

a positive component, positioned in an optical path of the light, comprising a positive lens, a double-convex lens and a holographic optical element;

a negative lens positioned in the optical path before the positive component; and

an auxiliary double-convex lens positioned in an optical path between the positive

component and the negative lens, wherein the auxiliary double-convex lens has a magnifying

power similar to the lens system; and

a coupler configured to connect the optical light source to the lens system.