Algebraic Number Theory (MA3A6) - Problem Sheet 5

You should answer any **three** out of **five** questions. All questions have equal weight. Marks will also be awarded for clarity/presentation.

Deadline: 4pm on Thursday 24th February (week 7)

- 1. Let K be a field. A subring $R \subseteq K$ is called a valuation ring of K if for each $x \in K^{\times}$ we have $x \in R$ or $x^{-1} \in R$.
 - (a) Show that every valuation ring R of K is a local ring (a local ring is a ring that has exactly one maximal ideal). [Hint: prove that $R R^{\times}$ is an ideal of R.]
 - (b) Show that any valuation ring of K is integrally closed in K.
- 2. Let R be an integral domain whose field of fractions $K := \operatorname{Frac}(R)$ is a number field. The *ideal quotient* of fractional ideals I and J with $J \neq (0)$ is the fractional ideal I : J defined by

$$I: J = \{\alpha \in K : \alpha J \subset I\}.$$

Prove that the ideal quotient of fractional ideals satisfies the following properties:

- -H:(IJ)=(H:I):J,
- $(\bigcap_k I_k) : J = \bigcap_k (I_k : J),$
- $-I:(\sum_k J_k)=\bigcap_k (I:J_k).$
- 3. Let I be an ideal in a commutative ring R and let $\sqrt{I} = \{r \in R \mid r^n \in I \text{ for some } n \in \mathbb{N}\}$. Show that \sqrt{I} is an ideal. It is called the *radical* of I.
 - · Suppose I is an ideal of a ring R. Show that if \sqrt{I} is finitely generated, then for some integer N we have $\sqrt{I}^N \subseteq I$. Conclude that in a noetherian ring, the ideals I and J have the same radical if and only if there is some integer N with $I^N \subseteq J$ and $J^N \subseteq I$.
- 4. Suppose \mathfrak{p} and \mathfrak{q} are distinct non-zero prime ideals in the ring of integers \mathcal{O}_K of a number field K. Show that $\mathfrak{p} + \mathfrak{q} = \mathcal{O}_K$ and $\mathfrak{p} \cap \mathfrak{q} = \mathfrak{pq}$.
 - · Let I_1 , I_2 , I_3 and I_4 be non-zero ideals of an integral domain R. Show that if I_1I_2 , I_2I_3 and I_3I_4 are all principal then I_1I_4 is also principal.
- 5. In $\mathbb{Z}[\sqrt{5}]$, find a non-zero ideal that is not invertible and a non-zero ideal that is not a product of prime ideals.