MAT 2377 Probability and Statistics for Engineers

Chapter 5
Point and Interval Estimation

Iraj Yadegari (uOttawa)

Fall 2021

Contents

- 1. What is statistical Inference?
- 2. Confidence Interval for μ When σ is Known
- 3. Choice of Sample Size
- 4. Confidence Interval for μ When σ is Unknown
- 5. Confidence Interval for a Proportion
- 6. Summary

Statistical Inference

The main goals of **statistics** is to make **inference** about a **population** based on a random sample from the population.

Examples:

- Can we assess the reliability of a product's manufacturing process by randomly selecting a sample of the final product and determining how many of them are compliant according to some quality assessment scheme?
- Can we determine who will win an election by polling a small sample of respondents?

Statistical inference about **Unknown Parameters** is divided into:

- Point estimation
- Interval estimation (Confidence Interval)
- Hypothesis testing

Point estimation

We seek to estimate an unknown **parameter** θ using a single quantity, called **point estimate** $\hat{\theta}$.

 θ is parameter of interest and it can be a character of the population like mean, median, variance, standard deviation,

 $\hat{\theta}$ is the point estimate of θ and it is obtained using a **statistic**, which is simply a function of a random sample. This estimate depends on data and it is random, so it has a sampling distribution.

Example: consider a process that manufactures gear wheels (in some standard gauge). Let X be the random variable that records the weight of a randomly selected gear wheel. What is the population mean $\mu_X = E[X]$?.

Solution: in the absence of f(x), we can estimate $\mu = X$ with the help of a random sample X_1, \ldots, X_n of gear wheel weight measurements, *via* the sample mean statistic:

$$\overline{X} = \frac{X_1 + \dots + X_n}{n}$$
, which is $\approx \mathcal{N}\left(\mu, \sigma^2/n\right)$ according to C.L.T.

Statistic

Examples of statistics include:

- sample mean and sample median
- sample variance and sample standard deviation
- sample quantiles (median, quartiles, percentiles)
- test statistics (t-statistics, χ^2 -statistics, F-statistics, etc.)
- order statistics (sample maximum and minimum, sample range, etc.)
- sample moments and functions thereof (skewness, kurtosis, etc.)

Some point estimators

Unknown population parameters θ	Sample estimates (Statistic) $\hat{ heta}$
Mean μ	$\bar{X} = \sum_{i=1}^{n} X_i / n$
Variance σ^2	$S^{2} = \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} / (n-1)$
Standard deviation σ	$S = \sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 / (n-1)}$
Probability of success p	$\hat{p} = X/n$

Then $\hat{\mu}=\bar{X}$ means that \bar{X} is an estimator for μ . Similarly, $\hat{\sigma^2}=S^2$, $\hat{\sigma}=S$, and $\hat{p}=X/n$.

Variance and Standard Error of \bar{X}

The **standard error** of a statistic is the **standard deviation of its sampling distribution**.

For instance, if observations X_1, \ldots, X_n come from a a population with **unknown mean** μ and **known variance** σ^2 , then $\mathrm{Var}(\overline{X}) = \sigma^2/n$ and the **standard error of** \overline{X} is

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}.$$

If the variance of the original population is **unknown**, then it is estimated by the sample variance S^2 and the **estimated standard error of** \overline{X} is

$$\hat{\sigma}_{\overline{X}} = rac{S}{\sqrt{n}}\,, \quad ext{where} \quad S^2 = rac{1}{n-1} \sum\limits_{i=1}^n (X_i - \overline{X})^2$$

Examples:

1. A sample of 20 baseball player heights (in inches) is shown below.

Let \overline{X} be the sampling mean of the heights. Then,

$$\overline{X} = \frac{X_1 + \dots + X_{20}}{20} = 72.6$$

and the sample variance S^2 is

$$S^{2} = \frac{1}{20 - 1} \sum_{i=1}^{20} (X_{i} - 72.6)^{2} \approx 5.6211.$$

The standard error of \overline{X} is thus

$$\hat{\sigma}_{\overline{X}} = \frac{S}{\sqrt{20}} \approx \sqrt{\frac{5.6211}{20}} \approx 0.5301.$$

2. Consider a sample $\{X_1, \ldots, X_{100}\}$ of independent observations selected from a normal population $\mathcal{N}(\mu, \sigma^2)$ where $\sigma = 50$ is known, but μ is not. What is the best estimate of μ ? What is the sampling distribution of that estimate?

Solution: the sample mean $\overline{X} = \frac{X_1 + \cdots + X_{100}}{100}$ provides the best estimate of $\mu_X = \mu_{\overline{X}}$. The standard error of \overline{X} is $\sigma_{\overline{X}} = \frac{50}{\sqrt{100}} = 5$. Since the observations are sampled independently from a normal population with mean μ and standard deviation 50, $\overline{X} \sim \mathcal{N}(\mu, 5^2) = \mathcal{N}(\mu, 25)$, according to the CLT.

C.I. for μ When σ is Known

Consider a sample $\{x_1, \ldots, x_n\}$ from a normal population with **known** variance σ^2 and **unknown** mean μ . The sample mean

$$\overline{x} = \frac{x_1 + \dots + x_n}{n}$$

is a **point estimate** of μ .

Of course, this estimate is not exact, because \overline{x} is an observed value of \overline{X} ; it is unlikely that the observed value \overline{x} should coincide with μ .

We know that $\overline{X} \sim \mathcal{N}(\mu, \sigma^2/n)$, so that

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1).$$

The 68-96-99.7 Rule

If
$$Z \sim N(0,1)$$
, then : $P(-1 < Z < 1) \approx 0.683$

$$P(-2 < Z < 2) \approx 0.955$$

$$P(-3 < Z < 3) \approx 0.997.$$

Whenever we observe a sample mean \overline{X} from a normal population with mean μ , we would expect the inequality

$$-k < Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} < k$$

to hold approximately

$$g(k) = \begin{cases} 68.3\% \text{ of the time} & \text{if } k = 1\\ 95.5\% \text{ of the time} & \text{if } k = 2\\ 99.7\% \text{ of the time} & \text{if } k = 3 \end{cases}$$

Equivalently, the symmetric g(k) confidence interval for μ is

$$\overline{X} - k \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + k \frac{\sigma}{\sqrt{n}} \implies \overline{X} \pm k \frac{\sigma}{\sqrt{n}}.$$

Examples:

1. Consider a sample $\{X_1,\ldots,X_{64}\}$ from a normal population with standard deviation $\sigma=72$ and unknown mean μ . The sample mean is $\overline{X}=375.2$. Build a symmetric 68.3% confidence interval for μ .

Solution: according to the formula, the symmetric 68.3% confidence interval (k=1) for μ in this situation is

$$375.2 \pm 1 \cdot \frac{72}{\sqrt{64}} \implies (375.2 - 9, 375.2 + 9) = (366.2, 384.2).$$

IMPORTANT: this does not say that we're 68.3% sure that the true μ is between 366.2 and 384.2. What it says is that when a sample of size 64 is taken from a normal population $\mathcal{N}(\mu, 72^2)$ and a symmetric 68.3% confidence interval for μ is built, μ will fall between the endpoints of the interval about 68.3% of the time.

Interpretation of a 95% C.I.

A 95% C.I. indicates that we would expect 19 out of 20 samples from the same population to produce confidence intervals that contain the population parameter of interest, on average.

2. Build a symmetric 95.5% confidence interval for μ .

Solution: the same formula applies, with k = 2.

$$375.2 \pm 2 \cdot \frac{72}{\sqrt{64}} \implies (375.2 - 18, 375.2 + 18) = (357.2, 393.2).$$

3. Build a symmetric 99.7% confidence interval for μ .

Solution: the same formula applies, with k = 3.

$$375.2 \pm 3 \cdot \frac{72}{\sqrt{64}} \implies (375.2 - 27, 375.2 + 27) = (348.2, 402.2).$$

C.I. for μ When σ is Known (reprise)

Another approach to C.I. building is to specify the proportion of the area under $\phi(z)$ of interest, and then to determine the critical values (the endpoints) of the interval.

Let $\{X_1, \ldots, X_n\}$ be drawn from $N(\mu, \sigma^2)$. Recall that $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$. For a **symmetric** 95% **confidence interval**, we need to find $z^* > 0$ such that $P(-z^* < Z < z^*) \approx 0.95$.

But the LHS can be re-written as

$$P(-z^* < Z < z^*) = \Phi(z^*) - \Phi(-z^*)$$
$$= \Phi(z^*) - (1 - \Phi(z^*)) = 2\Phi(z^*) - 1$$

So we are looking for z^* such that

$$0.95 = 2\Phi(z^*) - 1 \Longrightarrow \Phi(z^*) = \frac{0.95 + 1}{2} = 0.975.$$

From the normal table, we see that $\Phi(1.96) \approx 0.9750$, so that

$$P(-1.96 < Z < 1.96) = P\left(-1.96 < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < 1.96\right) \approx 0.95.$$

In other words, the inequality

$$-1.96 < \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} < 1.96$$

holds with probability 0.95 (with the interpretation provided in Example 1).

Equivalently,

$$\bar{X} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + 1.96 \frac{\sigma}{\sqrt{n}} \implies \bar{X} \pm 1.96 \frac{\sigma}{\sqrt{n}}$$

is the symmetric 95% confidence interval for μ when σ is known.

A similar argument shows that

$$\overline{X} - 2.575 \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + 2.575 \frac{\sigma}{\sqrt{n}} \implies \overline{X} \pm 2.575 \frac{\sigma}{\sqrt{n}}$$

is the symmetric 99% confidence interval for μ when σ is known.

Critical Z-values

The **confidence level** $1-\alpha$ is usually expressed in terms of a **small** α , e.g. $\alpha=0.05\Rightarrow 1-\alpha=0.95$ confidence level.

For $\alpha = 0.01, 0.02, \dots, 0.98, 0.99$, the corresponding z_{α} are called the **percentiles** of the standard normal distribution. In general,

$$P(Z>z_{\alpha})=\alpha \implies z_{\alpha}$$
 is the $100(1-\alpha)$ percentile.

University of Ottawa 24

 $P(Z > z) = 1 - \Phi(z) = \Phi(-z)$

For 2-**sided confidence intervals**, the appropriate numbers are found by solving $P(|Z|>z^*)=\alpha$ for z^* . By the properties of $\mathcal{N}(0,1)$,

$$\alpha = P(|Z| > z^*) = 1 - P(-z^* < Z < z^*) = 1 - (2\Phi(z^*) - 1) = 2(1 - \Phi(z^*)),$$

so that

$$\Phi(z^*) = 1 - \alpha/2 \implies z^* = z_{\alpha/2}.$$

For instance,

$$P(|Z| > z_{0.025}) = 0.05 \implies z_{0.025} = 1.96$$

$$P(|Z| > z_{0.005}) = 0.01 \implies z_{0.005} = 2.575.$$

The symmetric $100(1-\alpha)\%$ confidence interval can generally be written as

$$\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \implies \overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

For a given confidence level α , shorter confidence intervals are better in relation to estimating the mean:

- estimates become better when the sample size n increases;
- ullet estimates become better when σ decreases.

If $\alpha_1 > \alpha_2$, the $100(1-\alpha_1)\%$ C.I. is smaller than the $100(1-\alpha_2)\%$ C.I. (i.e. a 95% C.I. is always shorter than a 99% C.I.)

If the sample comes from a normal population, then the C.I. is **exact**. Otherwise, if n is large, we may use the CLT and get an **approximate** C.I.

Examples:

1. A sample of 9 observations from a normal population with known standard deviation $\sigma=5$ yields a sample mean $\overline{X}=19.93$. Provide a 95% and a 99% C.I. for the unknown population mean μ based on this sample.

Solution: the estimate of μ is $\overline{X}=19.93$. The $100(1-\alpha)\%$ confidence intervals are

$$\overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}.$$

$$95\%: \overline{X} \pm z_{0.025} \frac{\sigma}{\sqrt{n}} \Rightarrow 19.93 \pm 1.96 \frac{5}{\sqrt{9}} \Rightarrow 19.93 \pm 3.27 \text{ or } (16.66, 23.20)$$

99%:
$$\overline{X} \pm z_{0.005} \frac{\sigma}{\sqrt{n}} \Rightarrow 19.93 \pm 2.575 \frac{5}{\sqrt{9}} \Rightarrow 19.93 \pm 4.29 \text{ or } (15.64, 24.22)$$

2. A sample of 25 observations from a normal population with known standard deviation $\sigma=5$ yields a sample mean $\overline{X}=19.93$. Provide a 95% and a 99% C.I. for the unknown population mean μ based on this sample.

Solution: the estimate of μ is $\overline{X}=19.93$. The $100(1-\alpha)\%$ confidence intervals are

$$95\%: \overline{X} \pm z_{0.025} \frac{\sigma}{\sqrt{n}} \Rightarrow 19.93 \pm 1.96 \frac{5}{\sqrt{25}} \Rightarrow 19.93 \pm 1.96 \text{ or } (17.97, 21.89)$$

$$99\%: \overline{X} \pm z_{0.005} \frac{\sigma}{\sqrt{n}} \Rightarrow 19.93 \pm 2.575 \frac{5}{\sqrt{25}} \Rightarrow 19.93 \pm 2.58 \text{ or } (17.35, 22.51)$$

3. A sample of 25 observations from a normal population with known standard deviation $\sigma=10$ yields a sample mean $\overline{X}=19.93$. Provide a 95% and a 99% C.I. for the unknown population mean μ based on this sample.

Solution: the estimate of μ is $\overline{X}=19.93$. The $100(1-\alpha)\%$ confidence intervals are

$$95\%: \overline{X} \pm z_{0.025} \frac{\sigma}{\sqrt{n}} \Rightarrow 19.93 \pm 1.96 \frac{10}{\sqrt{25}} \Rightarrow 19.93 \pm 3.92 \text{ or } (16.01, 23.85)$$

$$99\%: \overline{X} \pm z_{0.005} \frac{\sigma}{\sqrt{n}} \Rightarrow 19.93 \pm 2.575 \frac{10}{\sqrt{25}} \Rightarrow 19.93 \pm 5.15 \text{ or } (14.78, 25.08)$$

Note how the confidence intervals are affected by α , n, and σ .

Choice of Sample Size

The **error** we commit by estimating μ via the sample mean \overline{X} is smaller than $z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$, with probability $100(1-\alpha)\%$.

If we want to control the error, the only thing we can really do is control the sample size:

$$E > z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \implies n > \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2.$$

Examples:

1. A sample $\{X_1, \ldots, X_n\}$ is selected from a normal population with standard deviation $\sigma = 100$. What sample size should be used to insure that the error on the population estimate is at most E = 10, at a confidence level $\alpha = 0.05$?

Solution: as long as

$$n > \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = \left(\frac{z_{0.025} \cdot 100}{10}\right)^2 = (19.6)^2 = 384.16,$$

then the error committed by using \overline{X} to estimate μ will be at most 10, with 95% probability.

2. Repeat the first example, but with $\sigma = 10$.

Solution: we need

$$n > \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = \left(\frac{z_{0.025} \cdot 10}{10}\right)^2 = (1.96)^2 = 3.8416.$$

3. Repeat the first example, but with E=1.

Solution: we need

$$n > \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = \left(\frac{z_{0.025} \cdot 100}{1}\right)^2 = (196)^2 = 38416.$$

4. Repeat the first example, but with $\alpha = 0.01$.

Solution: we need

$$n > \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 = \left(\frac{z_{0.005} \cdot 100}{10}\right)^2 = (25.75)^2 = 663.0625.$$

The relationship between α , σ , E, and n is not always intuitive!

C.I. for μ When σ is Known

So far, we have been in the fortunate situation of sampling from a population with known variance σ^2 .

What do we do when the population variance is **unknown**?

We estimate σ using the **sample variance**

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

(remember that the true population mean μ is also unknown... that's what we're trying to find!) and the sample standard deviation $S = \sqrt{S^2}$.

If σ is known, we know from the CLT that $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ is approximately $\mathcal{N}(0,1)$.

If σ is unknown, it can be shown that $\frac{\overline{X}-\mu}{S/\sqrt{n}}$ follows approximately t(n-1), the Student T-distribution with n-1 degrees of freedom.

Consequently, for a confidence level α ,

$$P\left(-t_{\alpha/2}(n-1) < \frac{\overline{X} - \mu}{S/\sqrt{n}} < t_{\alpha/2}(n-1)\right) \approx 1 - \alpha,$$

where $t_{\alpha/2}(n-1)$ is the $100(1-\alpha/2)^{\text{th}}$ percentile of t(n-1) (these can be read from the table). Equality is reached if the underlying population is normal. Therefore

$$100(1-\alpha)\%$$
 C.I. for $\mu:\overline{X}\pm t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}}$.

For instance, if $\alpha=0.05$ and $\{X_1,X_2,X_3,X_4,X_5\}$ are samples from a normal distribution with unknown mean μ and unknown variance σ^2 , then

$$t_{0.025}(5-1) = 2.776$$
 and $P\left(-2.776 < \frac{\overline{X} - \mu}{S/\sqrt{5}} < 2.776\right) = 0.95.$

Examples:

1. For a given year, 9 measurements of ozone concentration are obtained:

Assume that the measured ozone concentrations follow a normal distribution with variance $\sigma^2=1.21$, build a 95% for the population mean μ . Note that $\overline{X}=5.01$ and that S=0.97.

Solution: since we know the variance, we need to use the standard normal percentile $z_{\alpha/2}=z_{0.025}=1.96$:

$$\overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 5.01 \pm 1.96 \frac{\sqrt{1.21}}{\sqrt{9}} = 5.01 \pm 0.72 \text{ or } (4.29, 5.73).$$

2. Same thing, but assume that the variance of the underlying population is unknown.

Solution: since we do not know the variance, we need to use the Student percentile $t_{\alpha/2}(n-1)=t_{0.025}(8)=2.306$ (make sure you understand how to get this value from the table):

$$\overline{X} \pm t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}} = 5.01 \pm 2.306\frac{0.97}{\sqrt{9}} \text{ or } (4.26, 5.76).$$

The 95% C.I. when we know the variance is **tighter** (smaller), which is natural as we are more confident about our results when we have more information.

C.I. for a Proportion

If $X \sim \mathcal{B}(n,p)$ (number of successes in n trials), then the point estimator for p is $\hat{P} = \frac{X}{n}$.

Recall that E[X] = np and Var[X] = np(1-p).

We can standardize any random variable:

$$Z = \frac{X - \mu}{\sigma} = \frac{n\hat{P} - np}{\sqrt{np(1-p)}} = \frac{\hat{P} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

is approximately $\mathcal{N}(0,1)$.

Thus, for sufficiently large n,

$$P\left(-z_{\alpha/2} < \frac{\hat{P} - p}{\sqrt{\frac{p(1-p)}{n}}} < z_{\alpha/2}\right) \approx 1 - \alpha.$$

Using the previous approach, an **approximate** $100(1-\alpha)\%$ C.I. for p is:

$$\hat{P} - z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

but this is not really useful because we don't actually know p! Instead:

$$\hat{P} - z_{\alpha/2} \sqrt{\frac{\hat{P}(1-\hat{P})}{n}}$$

Examples:

1. Two candidates (A and B) are running for office. A poll is conducted: 1000 voters are selected randomly and asked for their preference: 52% support A, while 48% support their rival, B. Provide a 95% C.I. for the support of each candidate.

Solution: we use $\alpha=0.05$ and $\hat{P}=0.52$. The 95% C.I. for A is

$$\hat{P} \pm z_{\alpha/2} \sqrt{\frac{\hat{P}(1-\hat{P})}{n}} = 0.52 \pm 1.96 \sqrt{\frac{0.52 \cdot 0.48}{1000}} \approx 0.52 \pm 0.031.$$

The 95% C.I. for B is 0.48 ± 0.031 .

2. On the strength of this polling result, a newspaper prints the following headline: "Candidate A Leads Candidate B!" Is the headline warranted?

Solution: although there is a 4-point gap in the poll numbers, the true support for candidate A is in the 48.9%-55.1% range, and, the true support for candidate B is in the 44.9%-51.1% range, with probability 95% (that is to say, 19 times out of 20).

Since there is overlap in the confidence intervals, the race is more likely to be a dead heat.

Two-samples: difference between means

Let X_1,\ldots,X_n be a random sample from a population with mean μ_X and variance σ_X^2 , and Y_1,\ldots,Y_m be another random sample, independent of X, from a population with mean μ_Y and variance σ_Y^2 . If \overline{X} and \overline{Y} are the respective sample means, then

$$Z = \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}$$

has standard normal distribution as $n, m \to \infty$.

KNOWN Variances: Therefore, when variances are known, a $100(1-\alpha)\%$ confidence interval for $\mu_X - \mu_Y$ is

$$(\overline{X} - \overline{Y}) - z_{\alpha/2} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}} < \mu_X - \mu_Y < (\overline{X} - \overline{Y}) + z_{\alpha/2} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}$$

POOLED Variance: Similarly, when variances are unknown but equal, a $100(1-\alpha)\%$ confidence interval for $\mu_X-\mu_Y$ is

$$(\overline{X} - \overline{Y}) - t_{\alpha/2}(df) S_p \sqrt{\frac{1}{n} + \frac{1}{m}} < \mu_X - \mu_Y < (\overline{X} - \overline{Y}) + t_{\alpha/2}(df) S_p \sqrt{\frac{1}{n} + \frac{1}{m}}$$

where df = n + m - 2 is degree of freedom and

$$S_p^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2}$$

Summary

Sample: $\{X_1, ..., X_n\}$.

Objective: Estimate μ with confidence level $100(1-\alpha)$.

• If population is **normal** with **known** variance σ^2 , the **EXACT** $100(1-\alpha)\%$ C.I. is

$$\overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}.$$

• If population is non-normal with known variance σ^2 and n is 'large enough', the approximate $100(1-\alpha)\%$ C.I. is

$$\overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
.

Summary

• If population is **normal** with **unknown** variance, the **EXACT** $100(1-\alpha)\%$ C.I. is

$$\overline{X} \pm t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}}.$$

• If population is non-normal with unknown variance and n is 'large enough', the approximate $100(1-\alpha)\%$ C.I. is

$$\overline{X} \pm z_{\alpha/2} \frac{S}{\sqrt{n}}.$$

Figure 12: Confidence interval for the mean of a population