

Large-scale Distributed Training for LLMs

Ayush Maheshwari
Sr. Solutions Architect, NVIDIA

Interested in research collaboration!

Fill this form - https://forms.gle/Q4mEWYhCqEsg6ngU6

Sessions

Cluster health-check using NCCL, MLPerf, HPL (1 hour) - Completed Understand the hardware and its performance on multiple GPUs. Ensure that your training performance aligns with the h/w benchmarks Evaluate the cluster to ensure platform fits within your needs. Large scale data curation for LLM training (1 hour) - Completed Deep-dive into aspects of data curation Mixed-precision training Distributed and stable LLM training on a large-scale cluster (1.5 hour) - Today Parallelism techniques Frameworks and wrappers Recipes and best practices Post-training and evaluation of pre-trained LLM (1 hour) Sync between training data and expected performance Algorithms and frameworks Fine-tuning and deployment (1 hour) Dynamic and static batching, state management, inference server

Best practices for optimizing model

Agenda

- 1. Concepts of Parallelism Data, Tensor and Pipeline
- 2. How does these work together?
- 3. Mixed -precision training

Not Covering

Transformer architecture, FP8 training

Training a Neural Network

Single GPU

- 1. Read the data
- 2. Transport the data
- 3. Pre-process the data
- 4. Queue the data
- 5. Transport the data
- 6. Calculate activations for layer one
- 7. Calculate activations for layer two
- 8. Calculate the output
- 9. Calculate the loss
- 10. Backpropagate through layer three
- 11. Backpropagate through layer two
- 12. Backpropagate through layer one
- 13. Execute optimization step
- 14. Update the weights
- 15. Return control

Training a Neural Network

Multiple GPUs with DDP

Parallelism: An overview

Data parallelism (DP)

Model parallelism (MP)

n copies of model parameters

Single copy of model parameters

Data parallelism

- Naïvely, model copy on each GPU
- Reductions of weight gradients at the end of every iteration to coalesce updates across replicas
- Our data parallelism implementation involves a simple DDP wrapper, with largely the same interface as PyTorch's DDP

Data Parallelism (Distributed Optimizer)

High Level Abstraction

Do {

Forward Path (activations) – calculate error

Backward Path – calculate gradients

Reduce Scatter gradients - each source gets a different part of the results

Update network weights (a.k.a. optimizer) available local part of the gradient weights

All Gather weights calculated in each GPU

} While error is above threshold / not decreasing anymore

Data Parallelism (Distributed Optimizer)

High Level Abstraction

Do {

Forward Path (activations) – calculate error

Backward Path – calculate gradients

Reduce Scatter gradients - each source gets a different part of the results

Update network weights (a.k.a. optimizer) available local part of the gradient weights

All Gather weights calculated in each GPU

} While error is above threshold / not decreasing anymore

Distributed Data Parallel - DDP

PyTorch: Streamline API for Fully Sharded Data Parallel (FSDP)

per-GPU throughput vs number of GPUs

From 128 GPUs, further increase of the number of GPUs doesn't affect the per-GPU throughput significantly.

ZeRO: Zero Redundancy Optimizer

- ZeRO removes the redundancy across data parallel process
- Partitioning optimizer states, gradients and parameters (3 stages) for a progressive memory savings and Communication Volume

ZeRO: Stage 1

ZeRO: Stage 2

Optimizer States

Parameters — Gradients

ZeRO: Stage 3

GPU Memory occupation

Let's review what is in your GPU memory

Model Weights

- 4 bytes * number of parameters for fp32 training
- 6 bytes * number of parameters for mixed precision training (maintains a model in fp32 and one in fp16 in memory)

Optimizer States

- 8 bytes * number of parameters for normal AdamW (maintains 2 states)
- 2 bytes * number of parameters for 8-bit AdamW optimizers like bitsandbytes
- 4 bytes * number of parameters for optimizers like SGD with momentum (maintains only 1 state)

Gradients

• 4 bytes * number of parameters for either fp32 or mixed precision training (gradients are always kept in fp32)

Forward Activations

size depends on many factors, the key ones being sequence length, hidden size and batch size

Distributed optimizer to reduce memory

Number of bytes of state per parameter
$$=$$
 $2 + 4 + 4 + 4 + 4$ $+ 4 + 4$ $+ 4$ $+ 4 + 4$ $+ 4$

Redundant optimizer state over DP replicas can be partitioned **fp32** gradient all-reduces → **fp32** gradient reduce-scatters + **bf16** param all-gathers

Data Parallelism / Model Parallelism

Data Parallelism

Data is too large, accelerated by processing in parallel

Model Parallelism

Model is too large, cannot fit in a single device / machine

TECHNOLOGIES THAT ENABLE SCALING LARGE MODELS

Complementary Types of Parallelism

- Pipeline (Inter-Layer) Parallelism
 - Split contiguous sets of layers across multiple GPUs
 - Layers 0,1,2 and layers 3,4,5 are on different GPUs
 - Maximizes GPU utilization in single-node

- Tensor (Intra-Layer) Parallelism
 - Split individual layers across multiple GPUs
 - Both devices compute different parts of Layers 0,1,2,3,4,5
 - Minimizes Latency in single-node

TENSOR PARALLELISM

Why?

- Relatively simple to implement
- Easier to load-balance
- Less restrictive on the batch-size (avoids bubble issue in pipelining)
 - Tensor parallelism is orthogonal to pipeline parallelism: very large models such as GPT-3 use both
- NVIDIA DGX servers with NVSwitch
 - DGX A100 has 600 GB/sec GPU-to-GPU bidirectional bandwidth
- Tensor parallelism works well for large matrices
 - Example: Transformers have large GEMMs

TRANSFORMERS CELL

Focus on the GeLU operation:

Approach 1: Split X column-wise and A row-wise:

$$X = [X_1, X_2]$$
 $A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$ $Y = \text{GeLU}(X_1 A_1 + X_2 A_2)$

- Before GeLU we will need a communication point
- Approach 2: Split A column-wise:

$$A = [A_1, A_2]$$
 $[Y_1, Y_2] = [GeLU(XA_1), GeLU(XA_2)]$

No communication is required

DEEP LEARNING INSTITUTE

Focus on the GeLU operation:

Approach 1: Split X column-wise and A row-wise:

$$X = [X_1, X_2]$$
 $A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$ $Y = \text{GeLU}(X_1 A_1 + X_2 A_2)$

Before GeLU we will need a communication point

Approach 2: Split A column-wise:

$$A = [A_1, A_2]$$

No communication is required

$$A = [A_1, A_2]$$
 $[Y_1, Y_2] = [GeLU(XA_1), GeLU(XA_2)]$

Chosen approach

Z = Dropout(YB)

INSTITUTE

GeLU Column Parallel

Dropout Row Parallel

Each layer of model is partitioned over multiple GPUs

 $g \rightarrow \text{All-reduction} (Y_1B_1 + Y_2B_2) \text{ in forward pass}$

Slow across inter-server communication links

f and g are conjugate, f is identity operator in the forward pass and all-reduce in the backward pass while g is all-reduce in forward and identity in backward.

SELF-ATTENTION TENSOR PARTITIONING

TENSOR PARALLEL TRANSFORMER LAYER

All Together

Challenges

Challenges - Idle Workers

Pipeline model parallelism

- Layers / operators in model sharded over GPUs (i.e., each GPU is responsible for a subset of layers in the model)
- Each batch split into smaller microbatches and execution pipelined across these microbatches
- Point-to-point communication between consecutive pipeline stages
- Pipeline bubble at the start and end of every batch (equal to (p-1) microbatches' forward and backward passes)

Interleaved pipeline parallelism

Smaller pipeline bubble but more communication

PIPELINE AND TENSOR PARALLELISM

Interleaved Pipeline

Tensor Parallelism

- Split individual layers across multiple GPUs where all devices compute different parts of Layers
- Challenge: Communication expensive
- Great performance within a server using NVSwitch
- Limitations: Limited number of Model Architectures | GPT-3 & T5

Pipeline Parallelism

- Split contiguous groups of layers across multiple GPUs so that Layers 0,1,2 and layers 3,4,5 are on different GPUs ...
- Communication cheap, maximizes GPU utilization over InfiniBand
- Good performance at larger batch sizes (pipeline stall amortized)
- Exceptions/Limitations: No Interleave Scheduling for Pipeline parallelism

GPU Affinity Grouping Example

Neural Network: 4 layers

Hardware: 2 nodes, 8 GPUs per node

Tensor parallel = 2

Pipeline parallel = 4

• Data parallel = 2

GPU Affinity Grouping Example

GPU Affinity Grouping Example

2 nodes, 8 GPUs per node

- Tensor parallel = 2
- Pipeline parallel = 4
- Data parallel = 2

GPU Affinity Grouping Example

2 nodes, 8 GPUs per node

- Tensor parallel = 2
- Pipeline parallel = 4
- Data parallel = 2

GPU Affinity Grouping Example

2 nodes, 8 GPUs per node

- Tensor parallel = 2
- Pipeline parallel = 4
- Data parallel = 2

Benefits of less bits

Memory

Weights and tensors occupy less space in memory

Bandwidth

Faster data movement from main memory HBM to cores (and vice versa)

Compute

More TFLOPS with less bits Faster matrix multiplications

Wider distributions suffer more with Quantization

Gradients have the widest distributions

Scaling Factors to Keep Tensors within Range

Automatic Mixed Precision (AMP)

Concept

Maintain a primary copy of weights in FP32.

Initialize scaling factor S to a large value.

- For each iteration:
 - Make an FP16 copy of the weights.
 - Forward propagation (FP16 weights and activations).
 - Multiply the resulting loss with the scaling factor S.
 - Backward propagation (FP16 weights, activations, and their gradients).
 - If there is an Inf or NaN in weight gradients:
 - Reduce S.
 - Skip the weight update and move to the next iteration.
 - Multiply the weight gradient with 1/S.
 - Complete the weight update (including gradient clipping, etc.).
 - If there hasn't been an Inf or NaN in the last N iterations, increase S.

Towards finer Scaling Factors

E8M0

^{*}MX stands for microscaled formats, read <u>OCP spec</u>

GEMM operation with MXFP8 operands

Operand
$$A = \{a_i, SF_A\}$$

Operand $B = \{b_i, SF_B\}$

Output =
$$(SF_A \times SF_B) \sum_{i=0}^{31} a_i \times b_1$$

Operand B

Tensors are quantized to MXFP8 after FP32 accumulation

How to cast back to MXFP8?

New FP8 Recipes for Blackwell and Hopper

[Hopper] Current Scaling + 1st & last layer BF16

- Current scaling is more stable than delayed scaling, but a bit slower
- Keeps the more sensitive 1st and last layer in BF16
- E4M3 for weights and activations, E5M2 for gradients

[Hopper] NV Subchannel Recipe (DeepSeek-V3 like)

- As DeepSeek-V3 pretraining
- 1x128 blocks for input and output_grad, 128x128 blocks for weights
- E4M3 for all weights, acts, and grads

[Blackwell] MXFP8 Blockwise Scaling

- Different scaling factor for each block of 32 values in a tensor
- E4M3 for all weights, acts, and grads

Transformer Engine

- An open-source library implementing the FP8 recipe for Transformer building blocks
- Optimized for FP8 and other datatypes
- PyTorch and JAX are supported frameworks
- Composable with the native framework operators
- Supports different types of model parallelism
 - DP, TP, PP, CP
- cuDNN kernels available such as GroupedGEMM
- https://github.com/NVIDIA/TransformerEngine
- Docs:
 - https://docs.nvidia.com/deeplearning/transformerengine/user-guide/index.html

```
import torch
import transformer engine.pytorch as te
from transformer engine.common import recipe
# Set dimensions.
in features = 768
out features = 3072
hidden size = 2048
# Initialize model and inputs.
model = te.Linear(in features, out features, bias=True)
inp = torch.randn(hidden size, in features, device="cuda")
# Create MXFP8 recipe.
fp8 recipe = recipe.MXFP8BlockScaling()
# Enable autocasting to FP8.
with te.fp8_autocast(enabled=True, fp8_recipe=fp8_recipe):
    out = model(inp)
# Calculate loss and gradients.
loss = out.sum()
loss.backward()
```

Recipes Available in NeMo FW and Megatron-LM

The backend is Transformer Engine

- NVIDIA NeMo framework allows developers to easily run multi-node training of LLMs
- Megatron-LM is research-oriented framework to train LLMs
- Recipes available in https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/llm/recipes/precision/mixed_precision.py

```
trainer = nl.Trainer(
    devices=args.devices,
    num_nodes=args.num_nodes,
    max_steps=args.max_steps,
    log_every_n_steps=args.log_interval,
    val_check_interval=args.val_check_interval,
    limit_val_batches=args.limit_val_batches,
    strategy=strategy,
    accelerator="gpu",
    plugins=bf16_with_mxfp8_mixed(),
    use_distributed_sampler=False,
    callbacks=[itr_rate_callback],
)
```

```
def fp16_with_mxfp8_mixed() -> run.Config[MegatronMixedPrecision]:
    """Create a MegatronMixedPrecision plugin configuration for mixed

Returns:
        run.Config[MegatronMixedPrecision]: Configuration for FP16 wir
    """
    cfg = fp16_mixed()
    cfg.fp8 = 'hybrid'
    cfg.fp8_recipe = "mxfp8"
    cfg.fp8_param_gather = False
    return cfg
```

Developer Tools and Resources

Accelerate innovation and growth

Learn more: <u>developer.nvidia.com</u>

Individuals

Software

100s of APIs, models, SDKs, microservices, and early access to NVIDIA tech

Learning

Tutorials, self-paced courses, blogs, documentation, code samples

Training

Hands-on self-paced courses, instructor-led workshops, and certifications

GPU Sandbox

Approval basis, multi-GPU and multi-node

Community

Dedicated developer forums, meetups, hackathons

Ecosystem

GTC, NVIDIA Partner Network

Organizations

Startups

Cloud credits, engineering resources, technology discounts, exposure to VCs

Venture Capital

Deal flow and portfolio support for Venture Capital firms

Higher Education

Teaching kits, training, curriculum co-development, grants

ISVs and SIs

Engineering guidance, discounts, marketing opportunities

Research

Grant programs, collaboration opportunities

Enterprises

Tailored developer training, skills certification, technical support

