Задача 11.1. Алгебра и геометрия на наклонной плоскости

Кто-то умеет хорошо строить диаграммы векторов сил и предпочитает решать динамические задачи «геометрически». Кто-то рисовать совсем не умеет, и ему приходится заниматься громоздкими математическими преобразованиями.

В данной задаче вам предстоит рассмотреть несколько простых и знакомых задач, на примере которых вам предстоит продемонстрировать свои как алгебраические, так и геометрические способности.

Во всех частях задачи мы будем рассматривать движение бруска по поверхности.

Коэффициент трения бруска о поверхность во всех частях задачи равен μ

1. Брусок на неподвижной наклонной плоскости

Брусок движется по горизонтальной поверхности. Как пишут в учебниках, на брусок со стороны поверхности действуют сила нормальной реакции \vec{N} и сила трения (которую здесь и далее) будем обозначать \vec{F} . Но на самом деле это не разные силы — это две компоненты одной силы, силы взаимодействия бруска и поверхности, которую мы обозначим \vec{R} (силы реакции).

Назовем угол φ между направлением силы реакции \vec{R} и нормалью к поверхности.

- 1.1 Выразите коэффициент трения μ чрез угол трения φ .
- 1.2 Выразите модуль силы реакции \vec{R} через модуль силы нормальной реакции \vec{N} и угол трения ϕ .

Брусок находится на наклонной плоскости, образующей угол α с горизонтом.

- 1.3 Нарисуйте взаимное расположение векторов силы реакции \vec{R} и силы тяжести $m\vec{g}$, если брусок скользит по наклонной плоскости.
- 1.4 При каком минимальном угле наклона α_0 брусок начнет соскальзывать с наклонной плоскости? Ответ выразите через угол трения φ . Как в этом случае будет направлен вектор \vec{R} ? Чему он будет равен?
- 1.5 Брусок поместили на наклонную плоскость, образующую угол α с горизонтом ($\alpha > \alpha_0$). Чему равно ускорение бруска в этом случае? Выразите ответ через углы α и φ . Дайте геометрическую интерпретацию полученного выражения.

2. Брусок на ускоренно движущейся призме

Брусок положили на наклонную грань треугольной призмы, наклоненную под углом α к горизонту. Под действием внешних сил призма движется горизонтально с постоянным ускорением \vec{a}_0 , как показано на рисунке.

- 2.1 Покажите, что движение бруска по поверхности ускоренно движущейся призмы можно описать как движение бруска по неподвижной призме, только с другим значением вектора ускорения свободного падения \vec{g}' (который можно назвать эффективным ускорением свободного падения). Найдите угол β между векторами \vec{g}' и g'.
- 2.2 Покажите, что движение бруска по ускоренно движущейся призме можно описывать, как движение бруска по неподвижной призме, но с другим углом наклона к горизонту α' . Выразите значение этого угла через ускорение призмы \vec{a}_0 , ускорение свободного падения \vec{g} и угол α .
- 2.3 Пусть угол наклона призмы к горизонту α меньше α_0 (найденного в п.1.4). Запишите соотношение для углов α, β, φ , при котором начнется скольжение бруска.

Из этого соотношения можно найти минимальное ускорение \vec{a}_0 , при котором начнется скольжение бруска, но искать это значение (т.е. решать полученное уравнение) не требуется.