

<u>LISTA 3</u> Cálculo Diferencial e Integral I

Prof°: Felipe Avelino de Souza E-mail: felipe-ensino@pq.uenf.br Curso: Bacharel em Ciências da Computação
Expresse a função na forma por partes, sem usar valores ab solutos. [Sugestão: Pode ser útil gerar o gráfico da função.]
27. (a) $f(x) = x + 3x + 1$ (b) $g(x) = x + x - 1 $
28. (a) $f(x) = 3 + 2x - 5 $ (b) $g(x) = 3 x - 2 - x + 1 $
(i) Explique por que a função f tem um ou mais buracos em seu gráfico e estabeleça os valores de x nos quais esses buracos ocorrem. (ii) Determine uma função g cujo gráfico seja idêntico ao de f, mas sem os buracos. ■
35. $f(x) = \frac{(x+2)(x^2-1)}{(x+2)(x-1)}$ 36. $f(x) = \frac{x^2+ x }{ x }$
 Sejam f(x) = 3√x - 2 e g(x) = x . Em cada parte, dê a fórmula para a função e o correspondente domínio. (a) f+g: Domínio: (b) f-g: Domínio: (c) fg: Domínio: (d) f/g: Domínio:
Sejam $f(x) = 2 - x^2$ e $g(x) = \sqrt{x}$. Em cada parte, dê a fórmula para a composição e o correspondente domínio. (a) $f \circ g$: Domínio: (b) $g \circ f$: Domínio:

Esboce o gráfico da equação por translação, reflexão, compressão e alongamento do gráfico de $y = x^2$, $y = \sqrt{x}$, y = 1/x, y = |x| ou $y = \sqrt[3]{x}$ de maneira apropriada e, então, use um recurso gráfico para confirmar que seu esboço está correto.

9.
$$y = 3 - \sqrt{x+1}$$

10.
$$y = 1 + \sqrt{x-4}$$

11.
$$y = \frac{1}{2}\sqrt{x} + 1$$

12.
$$y = -\sqrt{3x}$$

13.
$$y = \frac{1}{x-3}$$

14.
$$y = \frac{1}{1-x}$$

15.
$$y = 2 - \frac{1}{x+1}$$

16.
$$y = \frac{x-1}{x}$$

17.
$$y = |x + 2| - 2$$

18.
$$y = 1 - |x - 3|$$

19.
$$y = |2x - 1| + 1$$

19.
$$y = |2x - 1| + 1$$
 20. $y = \sqrt{x^2 - 4x + 4}$

Expresse f como uma composição de duas funções; isto é, 18) encontre $g \in h$ tais que $f = g \circ h$. [Nota: Cada exercício tem mais de uma solução.]

37. (a)
$$f(x) = \sqrt{x+2}$$

(b)
$$f(x) = |x^2 - 3x + 5|$$

38. (a)
$$f(x) = x^2 + 1$$

(b)
$$f(x) = \frac{1}{x-3}$$

39. (a)
$$f(x) = \sin^2 x$$

$$(b) f(x) = \frac{3}{5 + \cos x}$$

40. (a)
$$f(x) = 3 \operatorname{sen}(x^2)$$

(b)
$$f(x) = 3 \sec^2 x + 4 \sec x$$

19) 53-56 Encontre

$$\frac{f(x+h) - f(x)}{h} \quad e \quad \frac{f(w) - f(x)}{w - x}$$

e simplifique tanto quanto possível.

53.
$$f(x) = 3x^2 - 5$$

54.
$$f(x) = x^2 + 6x$$

55.
$$f(x) = 1/x$$

56.
$$f(x) = 1/x^2$$

20) 66-67 Use o Teorema 0.2.3 para determinar se os gráficos têm simetrias em relação ao eixo x, ao eixo y ou à origem.

66. (a)
$$x = 5y^2 + 9$$
 (b) $x^2 - 2y^2 = 3$

(b)
$$x^2 - 2y^2 = 3$$

(c)
$$xy = 5$$

67. (a)
$$x^4 = 2y^3 + y$$
 (b) $y = \frac{x}{3 + x^2}$ (c) $y^2 = |x| - 5$

(b)
$$y = \frac{x}{3 + x^2}$$

Combine a equação com seu gráfico na figura a seguir e 21) determine as equações para as assíntotas verticais e horizontais.

(a)
$$y = \frac{x^2}{x^2 - x - 2}$$
 (b) $y = \frac{x - 1}{x^2 - x - 6}$

(b)
$$y = \frac{x-1}{x^2 - x - 6}$$

(c)
$$y = \frac{2x^4}{x^4 + 1}$$

(c)
$$y = \frac{2x^4}{x^4 + 1}$$
 (d) $y = \frac{4}{(x+2)^2}$

