

Intro. to Formal Verification

Prof. Chien-Nan Liu Institute of Electronics National Chiao-Tung Univ.

Tel: (03)5712121 ext:31211 E-mail: jimmyliu@nctu.edu.tw http://www.ee.ncu.edu.tw/~jimmy

Courtesy: Prof. Jing-Yang Jou

- Formal Verification Overview
- Equivalence Checking
 - Combinational equivalence checking
 - Sequential equivalence checking
- Model Checking

Specification V.S. Verification

- Specification: describe the behavior (property) of the system or circuits
- Verification: verify the system (circuit) against the specification
- Milestones of formal verification:
 - Software: begin around 1960
 - Hardware: late 1980
 - Hardware/software co-verification: ???

NCTU MSEDA Lab.

Current Design Practices

- Engineers write "reactive testbenches" in HDL
- Input generation
 - Manual (verification engineers think of test cases)
 - Pseudo-random
 - Mixed (some random parameters)
- These methods cannot get enough "coverage" to find all the bugs

4

Typical Verification Experience

Formal Verification

- Ensures consistency with specification for all possible inputs (100% coverage)
- Methods
 - Equivalence checking
 - Model checking
 - **.** . . .

Valuable, but not a general solution

Simulation v.s. Formal Verification

- Simulation:
 - Exhaustive simulation is not possible
 - Increasingly difficult to handle the subtle interactions between separated systems
- Formal verification:
 - Design Verification:
 - Model checking: Deadlock, Mutual Exclusion, etc.
 - Implementation Verification:
 - Equivalence checking: Ensure a correct translation from the specification to the implementation

NCTU MSEDA Lab.

7

Limitations of Verification Methods

- Simulation
 - CPU intensive
 - Have to run billions of cycles
 - Can handle large systems

- Formal verification
 - Memory intensive
 - Internal data structures (BDDs)
 - Memory usage is strongly related with the size of systems to be verified

- Formal Verification Overview
- Equivalence Checking
 - Combinational equivalence checking
 - Sequential equivalence checking
- Model Checking

Equivalence Checking

- Checks for mismatches between
 - Two gate-level circuits
 - HDL and gate-level designs
- "Formal", because it checks for all input values (solves SAT problem)
- Gaining acceptance in practice
- Limitation: targets implementation errors, not design errors
 - Similar to check C v.s. assembly language

Example: Equivalence Checking

out = sel ? a : b ;

```
always @ (sell or a or b)
   if (sel) out = a;
   else out = b;
```

```
module des1 (out,a,sel,b)
  output out;
  input a,sel,b;
  wire w1,w2,w3,
    and u1(w1,a,sel)
  and u2(w2,w3,b);
  not u3(w3,sel);
  or u4(out,w1,w2)
endmodule
```

```
module des1 (out,a,sel,b)
  output out;
  input a,sel,b;
  wire w1,w2,w3,
    nand u1(w1,a,sel)
  nand u2(w2,w3,b);
  not u3(w3,sel);
  nand u4(out,w1,w2)
endmodule
```


EIII

NCTU MSEDA Lab.

Equivalence Checking

- Combinational Equivalence Checking
 - Outputs depend only on present inputs
- Sequential Equivalence Checking
 - Outputs depend on present inputs as well as past sequence of inputs

Combinational Equivalence Checking

- Problem formulation:
 - Given: two combinational Boolean netlists F , G
 - Goal: check if the corresponding outputs of the two circuits are equal for all possible inputs
- $e = F(i_0, ..., i_n) \oplus G(i_0, ..., i_n)$
- F is equivalent to G ⇔ e = 0 for all possible combination of input patterns

Approaches for Combinational Ckts

- Functional methods: Transform output functions into a canonical representation
 - Based on BDDs
 - Canonical BDD variants
- Structural methods:
 - Based on internal correspondence
 - Learning techniques for identifying implications
 - Techniques for exploiting implications

Functional Methods

Key idea: check the satisfiability of equation f₁ ⊕ f₂

15

Functional Methods

- Given two circuits:
 - Build the ROBDDs of the outputs in terms of the primary inputs
 - Two circuits are equivalent if and only if the ROBDDs are isomorphic
- Complexity of verification depends on the size of ROBDDs
 - Compact in many cases

Structural Methods

- Based on internal correspondences
 - Learning techniques for identifying implications
 - Techniques for exploiting implications
- Basic idea:
 - Two networks to be verified have many internal equivalent points and implications
 - Identify these equivalences and implications to simplify verification problem

NCTU MSEDA Lab.

17

Implications

Direct Implication

Indirect Implication (Learning)

Learning: Identifying implications

Functional Learning

Recursive Learning

$$G = 1$$
Case 1: $H = 0$
Case 2: $I = 0 \Rightarrow b = 1$

$$\Rightarrow H = 0$$

$$G = 1 \Rightarrow H = 0$$

NCTU MSEDA Lab.

Learning for Verification

Learn:
$$c = 1 \Rightarrow e = 0$$

$$d = 1 \Rightarrow e = 0$$

Output: e = 1

$$\Rightarrow$$
 e = 0 (from 1) Conflict

Conclusion: e = 0 i.e. circuits are equal

Implications for Verification

Compare (Key) Points

- A design object used as a combinational logic endpoint during verification
- FEC tools verify a compare point by comparing the logic cone of two matching points
- FEC Tools use the following design objects to automatically create compare points:
 - Primary outputs
 - Sequential elements
 - Black box input pins
 - Nets driven by multiple drivers, where at least one driver is a port or black box

Logic Cones

- A logic cone consists of all logic that funnels down to, and drives, a key point
- A logic cone can have any number of inputs, but only one output

NCTU MSEDA Lab.

Constructing Compare Points

- Automatically defined compare points
- 2 User-defined compare points

MGTU

- Two basic approaches:
 - BDD based
 - General but suffer from memory explosion problem
 - Learning based
 - Require structural similarity
 - Fast but not as general
- Recently attempt to consolidate different approaches in a single environment
 - Identify equivalent nodes
 - If not enough equivalences then use implications
 - Finally BDD based approach such as partitioning

NCTU MSEDA Lab.

25

- Formal Verification Overview
- Equivalence Checking
 - Combinational equivalence checking
 - Sequential equivalence checking
- Model Checking

Sequential Equivalence Checking

FSM Model

- Finite state machine: FSM (i, x, y, o, t, f, x⁰)
 - i: set of input variables
 - x: set of current state variables
 - y: set of next state variables
 - o: set of output variables
 - t: state transition functions: y = t(x, i)
 - **f**: **output transition** functions: o = f(x, i)
 - x⁰: set of initial states

Represent a FSM using BDDs

- Representing a FSM includes:
 - the current/next states in the FSM
 - the transition/output relations

A modulo 8 counter

$$t_0 = v_0$$

$$t_1 = v_0 \oplus v_1$$

$$t_2 = (v_0 \wedge v_1) \oplus v_2$$

Represent Current/Next States

Characteristic Function

- Given a state transition function $y_k = t(x, i)$
- The characteristic function $z = \chi_{yk} (y_{kr} x_r i)$ of the function y_k is a query function:
 - z = 1 (true) means the values of y_k , x_i , i satisfy the equation: $y_k = t(x_i, i)$
 - z = 0 (false) otherwise
- The equation of z is :

$$z = \chi_{V^k} (y_k, x, i) = (y_k \Leftrightarrow t(x, i)) = XNOR(y_k, t(x, i))$$

21

State Transition Relation

Given the state transition functions:

$$t(x, i) = [t_1(x, i), t_2(x, i), ..., t_m(x, i)]$$

- t_k(X, i) corresponds to one FF
- The state transition relation T(x, i, y) of an FSM is defined as follows:

$$T(x,i,y) = \prod_{k=1}^{m} \left(\chi_{y_k}(y_k,x,i) \right) = \prod_{k=1}^{m} \left(y_k \iff t_k(x,i) \right)$$

characteristic function of each state transition function

Represent Transition Relation

$$N_0(V, T) = (t_0 \Leftrightarrow !v_0)$$

$$N_1(V, T) = (t_1 \Leftrightarrow V_0 \oplus V_1)$$

$$N_2(V, T) = (t_2 \Leftrightarrow (v_0 \land v_1) \oplus v_2)$$

$$N(V, T) = N_0(V, T) \wedge N_1(V, T) \wedge N_2(V, T)$$

BDDs of State Transition Relation

Existential Quantification

■ Given a state transition relation T(x, i, y), the existential quantification for x is defined by the operator ∃x:

$$F = \exists x \ T(x, i, y) = T_{x=1}(i, y) + T_{x=0}(i, y)$$

- F is still a characteristic function
 - F is true → there exists the assignments for x such that T is true

Forward and Reverse Images

Forward image

Image $(P, R) = \{v': \text{ for some } v, v \in P \text{ and } (v, v') \in R\}$

BDD for next state +

NCTU MSEDA Lab.

Forward and Reverse Images

Reverse image

Image⁻¹ $(P,R) = \{\mathbf{v} : \text{ for some } \mathbf{v}', \mathbf{v}' \in P \text{ and } (\mathbf{v},\mathbf{v}') \in R\}$

BDD for current state 4

→ BDD for next state

4

Example: Image Computation

Basic Approach of SEC

- Check if any state where the outputs are not equal is reachable from the initial state
- Reachability analysis
 - To determine that a set of states can be reached from initial states in a system
 - Implemented by BDDs

Reachability Analysis

s: current state, s': next state, x: prime input

R(s): set of current state

N(s'): set of next state

T(x, s, s'): set of state transition relation

N(s') can be obtained by the equation:

$$N(s') = \exists_{s,\times} (T(x, s, s') \wedge R^i(s))$$

ICTII MSEDA Lab

Algorithm of Reachability Analysis

```
Algorithm: do_reachability ( I(s), T(x, s, s') )
i = -1
R^{0}(s) = I(s)
repeat
i = i + 1
N(s') = \exists_{s,x} (T(x, s, s') \land R^{i}(s))
N(s) = N(s' \leftarrow s)
R^{i+1}(s) = R^{i}(s) + N(s)
until (R^{i+1}(s) = R^{i}(s))
return (R^{i+1}(s))
```


Debugging

- When any mismatch is found, a counter example that illustrates the difference will be generated
 - We can find the bugs through the example
- The counter example typically consists of
 - Comparison points that differ
 - Inputs of the logic cone that drive the comparison points
 - Intermediate nodes inside the logic cones
- Determine the exact location of the errors and how to correct them requires user's intervention

NCTU MSEDA Lab.

- Formal Verification Overview
- Equivalence Checking
 - Combinational equivalence checking
 - Sequential equivalence checking
- Model Checking

NCTU MSEDA Lab.

12

Specification & Temporal Logic

- Specification: describing the behaviors (properties) of the circuit
- Temporal logic: a formulism for describing the temporal properties of a system
 - Check whether the model satisfies those rules
- Features of temporal logic:
 - "time" is not mentioned explicitly
 - formulas might specify the concept of "eventually", "never", "always", or "until" for some designated states in the circuit

Computation Tree

 The computation tree shows all of the possible executions starting from the initial state of an FSM

Computation Tree Logic (CTL)

- Formulas are constructed from logic operators, temporal operators, and path quantifiers:
 - Formal representations for the properties of a design
- Logic operator:
 - \neg (not), (and), + (or), \rightarrow (imply), \leftrightarrow (if and only if)
- Temporal operator:
 - Xp property p holds *next time*
 - **Fp** property **p** holds *sometime in the future*
 - **G**p property **p** holds *globally in the future*
 - pUq property p holds until property q holds
- Path quantifier:
 - A "*for every path*" in the computation tree
 - E "there exists a path" in the computation tree

Temporal Operators

- **X**: "Next-time", Xp at t iff p at t+1
- **F**: "Future", F p at t iff p for some t $\geq t$

NCTU MSEDA Lab.

Temporal Operators

G: "Globally", Gp at t iff p for all $t' \ge t$

• **U**: "Until", p U q at t iff q for some $t' \ge t$ and p in the range [t, t']

CTL Formula

- Every operator F, G, X, U preceded by A or E
- Any CTL operator applied to a CTL formula gives another CTL formula
- Any Boolean combination of CTL formula is a CTL formula
- Propositions represented by small case alphabet (e.g. p, q, r)
- Examples of CTL formulas:
 - AG p
 - E (p U q)
 - AG EF p
 - AG (not(AX p) + EF q)

Branching View of Time

Computation Tree Logic

Computation Tree Logic

Example System: Traffic Light Controller

53

Block Diagram of TLC

Example Properties for TLC

- Invariant: It is never the case that both the highway and farm road have green simultaneously
- The CTL formula saying this is:

```
AG(!((hwy_light=green) * (farm_light=green)))
```


Example Properties for TLC

- If a car is waiting on the farm road, then eventually the farm road light turns green
- The CTL formula saying this is:

```
AG( car_waiting → AF(farm_light=green) )
```


Symbolic Model Checking

- State explosion problem
 - State graph exponential in program size
- Symbolic model checking approach
 - Boolean formulas represent sets and relations
 - Often represented using BDD
 - Use fixed point characterizations of CTL operators
 - No more states can be reached from current state
 - Model checking without building state graph

NCTU MSEDA Lab.

57

Explicit State Traversal

- For each state, its next state are enumerated one by one
- Process one state at a time
- The complexity depends on the number of states and the number of input combinations
 - Often a huge number for modern designs

Implicit State Traversal (1/2)

 Each layer of breadth-first search is represented by a BDD

No explicit STG is built

Implicit State Traversal (2/2)

- Step 1: represent the set of states by BDDs
- Step 2: calculate the set of next states y
 from the set of current states x
- Step 3: add the set of next states y to the set of reachable states R
- Step 4: let the set of reachable states R be the set of current states, and repeat step 2 and step 3 until R is saturated

Implicit State Traversal: Algorithm

Input: set of initial states $\chi_{x}(x^{0})$; state transition relation T(x, i, y);

```
k = -1
1
      R_0(x) = \chi_x(x^0);
2
      do
3
           k = k + 1;
                                                           Step 2
           \chi_{\nu}(y) = \exists x, i (R_{k}(x) \bullet T(x, i, y))
5
           \chi_{x}(x) = \chi_{y}(x \leftarrow y)
6
           R_{k+1}(x) = R_k(x) + \chi_x(x)
7
                                                               Step 3
     while (R_{k+1}(x)! = R_k(x))
8
      return R_{k+1}(x)
```


Implicit State Traversal: Example

(1) R₀ is the set of initial states

(2) R₁ is the set of states reachable from R₀ in less than or equal to one step

Implicit State Traversal: Example

(3) R₂ is the set of states reachable from R₀ in less than or equal to two step

(4) The iteration terminates after finding R₅ = R₄ and the resultant set is the set of reachable states

NCTU MSEDA Lab.

Acceptance of SMC

Acceptance:

- There have been major successes on some industrial projects
- Use on particular projects in huge companies (e.g. IBM, Intel)
- Commercially supported products
- But <1% use overall</p>

Limitations of SMC

Limitations:

- State explosion problems limits to small submodules of hardware
 - but interface is not specified
- Changing design may cause unpredictable blowup

Only "partial" or "bounded" model checking 0/0 S4 0/0 **Cycle Bound** Design's STG S4 **BFS** Tree