RETIFICADOR MONOFÁSICO DE MEIA ONDA (R)

$$(VLmed) = \frac{1}{2pi} \int_0^{pi} Vo\sqrt{2} * Sen(wt) dwt = 0.45 * Vo$$

$$Corrente\ M\'edia\ na\ Carga\ (ILmed) = \frac{VLmed}{R} = \frac{0.45Vo}{R}$$

Tensão de Pico na Carga (VLp) = $Vo\sqrt{2}$

Tensão Eficaz (VLrms ou VLif) =
$$\frac{VLp}{2}$$

Corrente de Pico na Carga (ILp) =
$$\frac{Vo\sqrt{2}}{R}$$

Corrente de Pico no Diodo (Idp) =
$$\frac{Vo\sqrt{2}}{R}$$

Tensão de Pico Inversa no Diodo $(Vdp) = Vo\sqrt{2}$

Corrente Eficaz na Carga (ILef) =
$$\frac{Vo}{R\sqrt{2}}$$

$$Potencia\ no\ Resistor\ (P) =\ R*ILef^2\ [W]$$

RETIFICADOR MONOFÁSICO DE MEIA ONDA (RL) SEM De

$$(VLmed) = \frac{1}{2\pi i} \int_{0}^{\beta} Vo\sqrt{2} * Sen(wt) dwt = 0.225Vo(1 - Cos\beta)$$

$$\textit{Corrente M\'edia na Carga (ILmed)} = \frac{\textit{VLmed}}{\textit{R}} = \frac{0.225\textit{Vo}}{\textit{R}} (1 - \textit{Cos}\beta)$$

Corrente de Pico no Diodo
$$(Idp) = \frac{Vo\sqrt{2}}{R}$$

Tensão de Pico no Diodo
$$(Vdp) = Vo\sqrt{2}$$

Corrente Eficaz na Carga (ILef) =
$$\frac{IEFN * Vo\sqrt{2}}{Z}$$

Potencia no Resistor
$$(P) = R * ILef^2$$

$$X = wL = (2 * pi * f) * L$$

 $tg\phi = \frac{X}{2}$ $Z = \sqrt{X^2 + R^2}$

$$IEFN = \frac{Z * ILef}{Vo * \sqrt{2}}$$

Devido a presença da indutância, o diodo não se bloqueia quando wt = pi. O bloqueio ocorre no ângulo β que é superior a pi.

IEFN é retirado da tabela utilizando o ângulo φ

RETIFICADOR MONOFÁSICO DE ONDA COMPLETA EM PONTE (RL)

$$(VLmed) = \frac{2}{2pi} \int_0^{pi} Vo\sqrt{2} * Sen(wt) dwt = 0.9 * Vo$$

Corrente Média na Carga (ILmed) =
$$\frac{VLmed}{R}$$

Tensão de Pino Reversa no Diodo (PIV) = V2p

Corrente de Pico na Carga (IRLp) = $\frac{VRLp}{R}$

RETIFICADOR MEIA ONDA COM TRANSFORMADOR (R M O)

Relação de Espiras → N1 * V2 = N2 * V1

Tensão de Pico no Secundário $(V2p) = V2 * \sqrt{2}$

Tensão de Pico na Carga $(VRLp) = V2p - V\gamma$ (diodo)

$$(VLmed) = \frac{1}{2ni} \int_{0}^{pi} V2\sqrt{2} * Sen(wt) dwt = 0.45 * V2$$

Tensão Eficaz na Carga (VRLrms) =
$$\frac{VRLp}{2}$$

Corrente de Pico na Carga (IRLp) =
$$\frac{VRLp}{R}$$

Corrente Média na Carga (ILmed) =
$$\frac{VLmed}{R}$$

Corrente Eficaz na Carga (IRLrms) =
$$\frac{VRLrms}{R}$$

Tensão de Pico Reversa no Diodo (PIV) = V2p

Corrente de Pico no Diodo (Idp) = IRLp

Corrente Eficaz no Enrolamento Primario (I1ef) =
$$\frac{ILmed}{2}$$

Corrente Eficaz no Enrolamento Secundario (12ef) =
$$\frac{ILmec}{\sqrt{2}}$$

 $Potencia\ Media\ na\ Carga(PL) = VLmed*ILmed\ [W]$

Potencia Aparente (Primario e Secundario) \rightarrow S1 = 1,11PL; S2 = 1,57PL [VA]

RETIFICADOR MONOFÁSICO DE MEIA ONDA (RL)COM DR

$$(VLmed) = \frac{1}{2\pi i} \int_{0}^{\pi i} Vo\sqrt{2} * Sen(wt) dwt = 0.45 * Vo$$

Corrente Média na Carga (ILmed) =
$$\frac{VLmed}{R} = \frac{0.45Vo}{R}$$

Tensão de Pico na Carga (VLp) =
$$Vo\sqrt{2}$$

Corrente de Pico na Carga (ILp) =
$$\frac{Vo\sqrt{2}}{R}$$

Corrente de Pico no Diodo (Idp) =
$$\frac{Vo\sqrt{R}}{R}$$

Tensão de Pico no Diodo
$$(Vdp) = Vo\sqrt{2}$$

Corrente Eficaz na Carga (ILef) =
$$\frac{Vo}{R\sqrt{2}}$$

Potencia no Resistor
$$(P) = R * ILef^2[W]$$

Tensão Eficaz (VLrms ou VLif) =
$$\frac{VLp}{2}$$

$$X = wL = (2 * pi * f) * L$$

$$5\tau = 5 * \frac{L}{R} \qquad tg\emptyset = \frac{X}{R} \qquad Z = \sqrt{X^2 + R^2}$$

$$IEFN = \frac{\frac{N}{Z*ILef}}{\frac{N}{Vox\sqrt{2}}}$$

No semiciclo negativo, devido a indutância, a corrente de carga circula pelo diodo de roda livre (D_{s_i})

Com a presença do diodo de roda livre a corrente se mantém até β que é sempre 180 + o ângulo encontrado. Se β for maior que 2pi a corrente é contínua, caso contrario a corrente é descontinua

RETIFICADOR ONDA COMPLETA COM CENTER TAPE (ROCCT)

Relação de Espiras → N1 * V2 = N2 * V1

Tensão de Pico no Secundário (V2p) = $V2 * \sqrt{2}$

Tensão de Pico na Carga (VRLp) = $\frac{V2p}{2}$ – $V\gamma$ (diodo)?

$$(VLmed) = \frac{2}{2pi} \int_0^{pi} V2\sqrt{2} * Sen(wt) dwt = 0.9V2$$

Tensão Eficaz na Carga (VRLrms) =
$$\frac{VRLp}{\sqrt{2}}$$

Corrente de Pico na Carga (IRLp) =
$$\frac{V2p}{R}$$

Corrente Média na Carga (ILmed) =
$$\frac{VLmed}{R}$$

Corrente Eficaz na Carga (IRLrms) =
$$\frac{V2}{R}$$

Tensão de Pico Reversa no Diodo (VDp) =
$$2 * V2p$$

Corrente de Pico no Diodo (Idp) =
$$\frac{V2p}{R}$$

Corrente Média no Diodo (IDmed) =
$$\frac{VLmed}{2R}$$

Corrente Eficaz no Diodo (IDef) =
$$0.707 * ILmed$$

Tensão Eficaz no Enrolamento Secundario (V2ef) =
$$\frac{VLme}{0.9}$$

$$Potencia\ Media\ na\ Carga(PL) = VLmed*ILmed[W]$$

$$Potencia\ Aparente\ (Primario\ e\ Secundario) \rightarrow S1 = 1,11PL\ ; S2 = 1,57PL\ [VA]$$

Corrente Eficaz nos Enrolamentos (IS1ef IS2ef)) = 0,707 * ILmed

RETIFICADOR ONDA COMPLETA EM PONTE (ROCEP)

 $Relação~de~Espiras \rightarrow N1*V2 = N2*V1$

Tensão de Pico no Secundário (V2p) = $V2 * \sqrt{2}$

Tensão de Pico na Carga (VRLp) = V2p

$$(VLmed) = \frac{2}{2pi} \int_0^{pi} V2\sqrt{2} * Sen(wt) dwt = 0.9 * V2$$

Tensão Eficaz na Carga (VRLrms) = $\frac{VRLp}{\sqrt{2}}$

Corrente de Pico na Carga (IRLp) = $\frac{VRLp}{R}$

Corrente Média na Carga (ILmed) = $\frac{VLmea}{R}$

Corrente Eficaz na Carga (IRLrms) = $\frac{VRLrms}{R}$

 $Tens\~ao~de~Pico~Reversa~no~Diodo~(PIV) = V2p$

Potencia Aparente no Secundario (S2) = 1,11PL

Corrente Eficaz no Secundario = $(I2ef) = \sqrt{\frac{1}{pi}} \int_0^{pi} ILmed^2 dwt$

Tensão Eficaz no Secundario = $\frac{VLmea}{0.9}$

Corrente no Primario = $I2 * \frac{N2}{N1} \longrightarrow I2 = ILmed$

RETIFICADOR TRIFASICO DE MEIA ONDA (TRES PULSOS)

$$(VLmed) = \frac{3}{2pi} \int_{\frac{1}{6}}^{\frac{5pi}{6}} \sqrt{2} Vo * Sen(wt) dwt = \frac{3\sqrt{3}\sqrt{2}Vo}{2pi} = 1,17Vf$$

Corrente Média na Carga (ILmed) = $\frac{VLmed}{R} = \frac{1,17Vo}{R}$

Corrente Média nos Diodos (IDmed) = $\frac{ILmed}{3}$

Tensão de Pico na Carga $(VLp) = Vo\sqrt{2}$

Corrente de Pico na Carga (ILp) = $\frac{VLP}{R}$

Corrente de Pico nos Diodos (IDp) = $\frac{VLp}{R}$

 $\textit{Corrente Eficaz no Diodo} \ (\textit{IDef}) = 0.59 * \textit{ILmed}$

Tensão de Pico Reversa Diodos (VDp) = $\sqrt{3}\sqrt{2}Vf$ = 2,45Vf

 $\textit{Corrente Eficaz na Carga (ILef)} = \sqrt{\frac{3}{2pi} \int_{pi/6}^{5pi/6} \left(\frac{VLp}{R}\right)^2 Sen^2(wt) dwt}$

Potencia na Carga $(P) = R * ILef^2[W]$

 $Potencia\ Aparente\ por\ Fase(S2f) = Vo*ISef; Vo=\frac{VLmed}{1,17}; ISef=ILmed/\sqrt{3}=0.493 \\ Potencia\ Aparente\ por\ Fase(S2f)=Vo*ISef: Vo=\frac{VLmed}{1,17}; ISef=ILmed/\sqrt{3}=0.493 \\ Potencia\ Aparente\ por\ Fase(S2f)=Vo*ISef=ICmed/\sqrt{3}=0.493 \\ Potencia\ Aparente\ por\ Potencia\ Poten$

Potencia Aparente TOTAL (S2) = 3 * S2f = 1,48PL

D3(0, 30), D1(30, 150), D2(150 270), D3(270, 390)

Em cada enrolamento a corrente é composta de pulsos de corrente com duração de 120º sendo portanto unidirecional.

RETIFICADOR TRIFASICO DE MEIA ONDA - TRAFO (TRES PULSOS) (R L)

Tensão de Fase (V fase) =
$$\frac{V}{a} \rightarrow a = \frac{N1}{N2}$$

$$(VLmed) = \frac{3}{2pi} \int_{\frac{pi}{6}}^{\frac{5pi}{6}} \sqrt{2} Vfase * Sen(wt) dwt = 1,17 * Vf$$

Corrente Média na Carga (ILmed) = $\frac{VLmed}{R}$

Corrente Média nos Diodos (IDmed) = $\frac{ILmed}{3}$

Corrente de Pico nos Diodos (IDp) = ILmedCorrente Eficaz no Diodo (IDef) = 0,59 * ILmed

 $\textit{Corrente Nos Enrolamentos (ISef)} = \sqrt{\frac{1}{2pi} \int_{pi/6}^{5pi/6} \textit{ILmed2dwt}}$

Tensão Máxima na Carca e Tensão de Pico Reversa Diodos (VDp) = $\sqrt{3}\sqrt{2}Vf$ ase

Corrente Média na Carga (ILmed) = $\frac{VLmed}{R}$

 $\textit{Corrente Eficaz na Carga (IRLrms)} = \frac{\textit{VRLrms}}{\textit{R}}$

Corrente Média no Diodo (IDmed) = $\frac{ILmed}{3}$

 ${\it Corrente \ de \ Pico \ no \ Diodo \ (Idp) = \ ILmed}$

Potencia Aparente por Fase(S2f) = Vo * ISef ; Vo = $\frac{VLmed}{1,17}$; ISef = $ILmed/\sqrt{3}$ = 0,493PL

Potencia Aparente TOTAL (S2) = 3 * S2f = 1,48PL

D3(0, 30), D1(30, 150), D2(150 270), D3(270, 390)

RET. TRIFASICO DE ONDA COMPLETA (SEIS PULSOS) (R)

$$(VLmed) = \frac{6}{2pi} \int_{\frac{pi}{3}}^{\frac{2pi}{3}} \sqrt{3\sqrt{2}Vo * Sen(wt)} \ dwt = 2,34 * Vo$$

 $\textit{Corrente M\'edia na Carga (ILmed)} = \frac{\textit{VLmed}}{\textit{R}}$

Corrente Média nos Diodos (IDmed) = $\frac{ILmed}{3}$

Corrente Eficaz no Diodo (IDef) = $\frac{ILmed}{\sqrt{3}}$

Tensão de Pico Reversa Diodos (VDp) = $\sqrt{3}\sqrt{2}V$

 $\textit{Corrente Eficaz na Carga (IRLrms)} = \frac{\textit{VRLrms}}{\textit{R}}$

 ${\tt D3\ D5(60),\ D1\ D5(60),\ D1\ D6(60),\ D2\ D6,\ D2\ D4,\ D4\ D3,\ D3\ D5}$

RET. TRIFASICO DE ONDA COMPLETA - TRAFO (SEIS PULSOS) (R L)

$$(VLmed) = \frac{6}{2pi} \int_{\frac{pi}{3}}^{\frac{2pi}{3}} \sqrt{2} \, Vo * Sen(wt) \, dwt$$

 $\textit{Corrente M\'edia na Carga (ILmed)} = \frac{\textit{VLmed}}{\textit{R}}$

Corrente Média nos Diodos (IDmed) = $\frac{ILmed}{3}$

Corrente Eficaz no Diodo (IDef) = $\frac{ILmed}{\sqrt{3}}$

Tensão de Pico Reversa Diodos (VDp) = $\sqrt{3}\sqrt{2}Vf$

 $\textit{Corrente Eficaz na Carga (IRLrms)} = \frac{\textit{VRLrms}}{\textit{R}}$

 ${\it Corrente\ Eficaz\ no\ Enrolamento\ Secundario\ (ISef)} =$

$$\sqrt{\frac{1}{2pi}(\int_{0}^{2pi/3}ILmed^{2}dwt+\int_{pi}^{\frac{spi}{3}}ILmed^{2}dwt)}=\sqrt{\frac{2}{3}ILmed}$$

Tensão Eficaz no enrolamento Secundario (VSef) = $\frac{VLmed}{2.34}$

Potencia Aparente Enrolamento Secundario (S1 = S2) = 1,05PL

PL = VLmed * ILmed

D3 D5(60), D1 D5(60), D1 D6(60), D2 D6, D2 D4, D4 D3, D3 D5

Ligação Estrela (Y):

Tensão de Linha = $\sqrt{3} * Tensão de fase$

Corrente de Linha = Corrente de Fase

Ligação Triangulo ():

 $Tens\~ao\ de\ Linha=Tens\~ao\ de\ fase$

Corrente de Linha = $\sqrt{3}$ * Corrente de Fase

7.4 Conexão Entre Transformadores Trifásico

