STAT 4005 Time Series

Chapter 1 - Introduction

Agenda

- Basic Description
- 2 Simple Descriptive Techniques
 - Trend Only
 - Trend and Seasonal Effect
- Real Applications
- Quick Implementation using R
- Summary

Basic Description

What is Time Series?

- A collection of values $X_t : t = 1, 2, ..., n$
 - t: time index (e.g. days, months, years)
 - \bullet X_t : observed data at different time (e.g. temperature, stock price)

Example of Time Series:

3/46

Distinctive feature of time series

- \bullet In classical setting (e.g. t-test, regression), we assume X_t 's are independent
- In time series, we relax the independence assumption
 - Assume X_t 's are dependent
 - The dependence in time series is quantified by auto-covariance

For small
$$k$$
, $Cov(X_t, X_{t+k}) \neq 0$

Importance of Time Series

Example 1 - Using correlation to find a correct C.I of μ

Model : $X_t = \mu + a_t - \theta a_{t-1}$ where $a_t \sim N(0,1)$

- $E(X_t) = \mu + E(a_t) \theta E(a_{t-1}) = \mu$
- There exists time dependence because

$$Cov(X_t, X_{t-k}) = \begin{cases} -\theta & k = \pm 1\\ 1 + \theta^2 & k = 0\\ 0 & \text{otherwise} \end{cases}$$

Importance of Time Series

ullet Approximate 95% Confidence interval for the mean μ

$$\overline{X} \pm 2\sqrt{Var(\overline{X})}$$

Proof.

By Central Limit Theorem (C.L.T.),

$$\frac{X-\mu}{\sqrt{Var(\overline{X})}} \to N(0,1)$$

$$\therefore P\left(-2 \le \frac{\overline{X}-\mu}{\sqrt{Var(\overline{X})}} \le 2\right) \approx 0.95$$

$$\Rightarrow P\left(\overline{X} - 2\sqrt{Var(\overline{X})}\right) \leq \mu \leq \overline{X} + 2\sqrt{Var(\overline{X})}\right) \approx 0.95$$

Introduction (CUHK) Chapter 1

Importance of Time Series

Recall 95% CI for μ is $\overline{X} \pm 2\sqrt{Var(\overline{X})}$. Note that

$$\operatorname{Var}(\overline{X}) = \operatorname{Cov}\left(\frac{1}{n}\sum_{t=1}^{n}X_{t}, \frac{1}{n}\sum_{t=1}^{n}X_{t}\right) = \frac{1}{n^{2}}\sum_{t=1}^{n}\sum_{s=1}^{n}\operatorname{Cov}(X_{t}, X_{s})$$

$$= \frac{1}{n^{2}}\left(n\operatorname{Cov}(X_{1}, X_{1}) + 2(n-1)\operatorname{Cov}(X_{2}, X_{1})\right)$$

$$= \frac{1}{n^{2}}\left[n(1+\theta^{2}) - 2(n-1)\theta\right] = \frac{1}{n}\left[(1-\theta)^{2} + \frac{2\theta}{n}\right].$$

Therefore, a 95% C.I. is

$$\overline{X} \pm \frac{2}{\sqrt{n}} \left[(1-\theta)^2 + \frac{2\theta}{n} \right]^{1/2}$$
.

- Without dependence $(\theta=0)$, 95% C.I. is $\overline{X}\pm\frac{2}{\sqrt{n}}$
- Need to incorporate correlation structure to produce a correct C.I.

Exercise

Model : $X_t = \mu + a_t - 0.5a_{t-1}$ where $a_t \sim N(0,1)$. Let $(X_1, X_2, X_3, X_4, X_5) = (4, 5, 6, 4, 1)$.

- lacktriangle Find \overline{X} .
- ② Find the autocovariance function $\gamma(k) = \text{Cov}(X_t, X_{t-k})$.

 \bullet Find $Var(\overline{X})$.

4 Find the 95% C.I. for μ .

Agenda

- Basic Description
- Simple Descriptive Techniques
 - Trend Only
 - Trend and Seasonal Effect
- Real Applications
- Quick Implementation using R
- Summary

Simple Descriptive Techniques

Decomposition of a time series

$$X_t = egin{array}{cccc} T_t & + & S_t & + & N_t \ & ({\sf Trend}) & ({\sf Seasonality}) & ({\sf Noise}) \end{array}$$

- ullet T_t and S_t are Macroscopic Components
- ullet N_t is Microscopic Component

Series

Trend

Seasonality

Noise

Trends

Examples

- Linear Trend : $T_t = \alpha + \beta t$
- Quadratic Trend : $T_t = \alpha + \beta t + \gamma t^2$

| Chapter 1 | Chapter 1 | Chapter 1 | 11/46

Outline

- Basic Description
- Simple Descriptive Techniques
 - Trend Only
 - Trend and Seasonal Effect
- Real Applications
- Quick Implementation using R
- Summary

Estimation of trends without Seasonality

When $X_t = T_t + N_t$ (no seasonal effect), the trend can be estimated by

- 1) Least Squares Method
 - minimizes $\sum (X_t T_t)^2$
 - T_t is a simple model of trend, e.g. $T_t = \alpha + \beta t$
- 2) Filtering
 - $\widehat{T}_t = S_m(X_t)$
 - ullet S_m is a smoother: an operator that computes weighted average of observations near X_t
- 3) Differencing
 - $\bullet \ \Delta X_t = X_t X_{t-1}$
 - Removing trend instead of estimating trend

1. Least Squares Method

ullet Idea : Find lpha , eta_j s in $T_t=lpha+eta_1t+\cdots+eta_kt^k$ such that

$$RSS = \sum_{t=1}^{n} \left(X_t - T_t \right)^2$$
 is minimized

- Method: Regression $Y = \mathbf{X}\beta + e \Rightarrow \hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'Y$
 - Comparing $X_t = \alpha + \beta_1 t + \dots + \beta_k t^k + N_t$ to $Y = \mathbf{X}\beta + e$

$$\Rightarrow Y = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix}; \mathbf{X} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 2^k \\ \vdots & & \vdots \\ 1 & n & \cdots & n^k \end{pmatrix}$$

$$\Rightarrow \widehat{T} = \mathbf{X}\widehat{\beta} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'Y$$

- R-Implementation:
 - n=100; k=2; Y=3+2*(1:n)+10*rnorm(n)
 - X=rep(1,n); for $(j in 1:k) \{ X=cbind(X,(1:n)\land(j)) \}$
 - Trend.coef=solve(t(X)%*%X,t(X)%*%Y)
 - Trend=X%*%Trend.coef; ts.plot(Y);points(1:n,Trend,col=2,type='1')
- Drawbacks
 - ullet Only allow simple form of T_t , otherwise the minimization is difficult .

1. Least Squares Method:

Exercise:

• Given the data $\{1.2, 2.1, 2.9, 3.8\}$, estimate the trend in the form $T_t = \alpha + \beta t$.

Idea: Smooth the series using local data to estimate the trend

$$\widehat{T}_t = S_m(X_t) = \sum_{r=-s}^s a_r X_{t+r}$$

"smoothed" series Weighted average of $\{X_{t-s}, X_{t-s+1}, \dots, X_{t+s}\}$

- Local: Window size s is much smaller than sample size n.
- Conditions on the weight $\{a_r\}$:
 - **1** Symmetric: $a_r = a_{-r}$

Examples

1) Moving Average Filter

$$\widehat{T}_t = \frac{1}{2s+1} \sum_{r=-s}^{s} X_{t+r}$$

- What is $\{\widehat{T}_t\}$ if $\{X_t\} = \{1.1, 2.2, 2.7, 4.1, 5.2, 5.8\}$ and s=1?
- If $X_t = \alpha + \beta t + N_t$ (Trend+Noise),

$$\begin{split} \widehat{T}_t &= S_m(X_t) = \frac{1}{2s+1} \sum_{r=-s}^s \left[\alpha + \beta(t+r) + N_{t+r} \right] \\ &\approx \alpha + \beta t \quad \left(\text{ smoothing: } \frac{1}{2s+1} \sum_{r=-s}^s N_{t+r} \approx 0 \right) \end{split}$$

Introduction (CUHK) Chapter 1 17/46

Examples

2) Spencer 15-point filter:

$$(a_0, a_1, ..., a_7) = \frac{1}{320} (74, 67, 46, 21, 3, -5, -6, -3) , \quad a_r = a_{-r}$$

- Property: Does not distort a cubic trend:
 - If $X_t = T_t + N_t$, where $T_t = at^3 + bt^2 + ct + d$, then

$$\widehat{T}_{t} = S_{m}(X_{t}) = \sum_{r=-7}^{7} a_{r} T_{t+r} + \sum_{r=-7}^{7} a_{r} N_{t+r}
= at^{3} + bt^{2} + ct + d + \underbrace{\sum_{r=-7}^{7} a_{r} N_{t+r}}_{r=-7}
\approx T_{t} \left(\sum_{r=-7}^{7} a_{r} N_{t+r} \approx 0 \right)$$

ullet We say: the cubic trend T_t "passes through" the filter S_m

Introduction (CUHK) Chapter 1 18/46

Exercise: Spencer 15-point filter:

$$(a_0, a_1, ..., a_7) = \frac{1}{320} (74, 67, 46, 21, 3, -5, -6, -3), \quad a_r = a_{-r}$$

What is the filtered/smoothed series if the input is

• $X_t = ct$?

• $X_t = bt^2$?

• $X_t = at^3$?

Theorem 1

A k^{th} order polynomial passes through a filter (i.e., $S_m(X_t) = \sum_{r=-s}^s a_r X_{t+r} = X_t$ for $X_t = c_0 + c_1 t + \cdots + c_k t^k$) if and only if

- $\sum_{r=-s}^{s} r^{j} a_{r} = 0$ for j = 1, 2, ..., k
 - Application: Design a filter that passes through a quadratic trend.
 - Find $\{a_r\}$ such that $\sum_{r=-s}^s a_r = 1$, $\sum_{r=-s}^s ra_r = \sum_{r=-s}^s r^2 a_r = 0$.
 - Three equations \Rightarrow Three unknowns \Rightarrow Try s=1, $\{a_{-1},a_0,a_1\}$.
 - Not satisfied? Try larger s.

3. Differencing

Differencing

First Order:
$$\Delta X_t = X_t - X_{t-1}$$

Second Order: $\Delta^2 X_t = \Delta \left(\Delta X_t \right)$

- Definition: Backshift operator (B):
 - $\bullet \ BX_t = X_{t-1}$
 - $B^k X_t = X_{t-k}, k = 1, 2, ...$
- Definition: Differencing operator (Δ):
 - $\Delta X_t = (1 B)X_t$
 - $\Delta^k X_t = (1 B)^k X_t, k = 1, 2, ...$
- Exercise: What is $\{\Delta X_t\}$ if $\{X_t\} = \{1.1, 2.2, 2.7, 4.1, 5.2, 5.8\}$

3. Differencing removes trend

- If $X_t = \alpha + \beta t$,
 - $\Delta X_t = X_t X_{t-1} = \alpha + \beta t [\alpha + \beta (t-1)] = \beta$ (no Trend!)
- If $X_t = t^p$,

•
$$\Delta X_t = X_t - X_{t-1} = t^p - (t-1)^p = pt^{p-1} - C_2^p t^{p-2} + \cdots$$

- In general, if $X_t = T_t + N_t$ and $T_t = \sum_{j=0}^p a_j t^j$,

 - If the trend is a p^{th} degree polynomial, then the trend can be eliminated in differencing p times.
- Example:
 - n=100; t=1:n; $x=5-2*t+3*t \land 2-4*t \land 3+10*rnorm(n)$
 - d1=diff(x);d2=diff(d1);d3=diff(d2);d4=diff(d3);d5=diff(d4)
 - par(mfrow=c(2,3))
 - ts.plot(x);ts.plot(d1);ts.plot(d2);ts.plot(d3);ts.plot(d4);ts.plot(d5)

Outline

- Basic Description
- Simple Descriptive Techniques
 - Trend Only
 - Trend and Seasonal Effect
- Real Applications
- Quick Implementation using R
- Summary

Seasonal Cycles

General Decomposition

$$X_t = T_t + S_t + N_t$$

• Seasonal component S_t : period=d

- Requirements
- e.g. season: d=4, month: d=12, week: d=7

Estimating/Removing Seasonal effect

Difficulties when both T_t and S_t exist:

ullet Need to separate the effect of trend T_t and seasonal effect S_t

Available Methods:

- Least Squares Method
- Filtering using Moving Average
- Seasonal Differencing

1. Least Squares Method

- Idea :
 - Modeling seasonal effect: $S_t = \alpha_1 1_{\{s=1\}} + \alpha_2 1_{\{s=2\}} + \cdots + \alpha_d 1_{\{s=d\}}$
 - Modeling trend: $T_t = \beta_1 t + \cdots + \beta_k t^k$ (no constant term)
 - Find α_i s , β_j s such that

$$RSS = \sum_{t=1}^{n} (X_t - S_t - T_t)^2$$
 is minimized

- Method: $X_t = \alpha_1 1_{\{s=1\}} + \dots + \alpha_d 1_{\{s=d\}} + \beta_1 t + \dots + \beta_k t^k + N_t$
 - ullet Regression: e.g. d=3, n=kd+2 for some integer k

$$Y = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ \vdots \\ X_n \end{pmatrix}; \mathbf{X} = \begin{pmatrix} 1 & 0 & 0 & 1 & \cdots & 1 \\ 0 & 1 & 0 & 2 & \cdots & 2^k \\ 0 & 0 & 1 & 3 & \cdots & 3^k \\ 1 & 0 & 0 & 4 & \cdots & 4^k \\ \vdots & & & & \vdots \\ 0 & 1 & 0 & n & \cdots & n^k \end{pmatrix}$$

$$\Rightarrow \widehat{S} + \widehat{T} = \mathbf{X}\widehat{\beta} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'Y$$

- Let $\bar{\alpha} = \sum_{i=1}^d \hat{\alpha}_i / d$
- Estimated Trend \widehat{T}_t : $\bar{\alpha} + \hat{\beta}_1 t + \cdots + \hat{\beta}_k t^k$
- Estimated Seasonal Effect \widehat{S}_i : $\hat{\alpha}_i \bar{\alpha}$ (so that $\sum_{i=1}^d \hat{S}_i = 0$)

1. Least Squares Method

$$X_t = \alpha_1 1_{\{s=1\}} + \dots + \alpha_d 1_{\{s=d\}} + \beta_1 t + \dots + \beta_k t^k + N_t$$

$$\bullet \quad Y = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ \vdots \\ X_n \end{pmatrix}; \quad \mathbf{X} = \begin{pmatrix} 1 & 0 & 0 & 1 & \cdots & 1 \\ 0 & 1 & 0 & 2 & \cdots & 2^k \\ 0 & 0 & 1 & 3 & \cdots & 3^k \\ 1 & 0 & 0 & 4 & \cdots & 4^k \\ \vdots & & & & \vdots \\ 0 & 1 & 0 & n & \cdots & n^k \end{pmatrix}$$

- $\Rightarrow \widehat{S} + \widehat{T} = \mathbf{X}\hat{\beta} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'Y$
- Let $\bar{\alpha} = \sum_{i=1}^d \hat{\alpha}_i / d$
- Estimated Trend \widehat{T}_t : $\bar{\alpha} + \hat{\beta}_1 t + \cdots + \hat{\beta}_k t^k$
- Estimated Seasonal Effect \widehat{S}_i : $\widehat{\alpha}_i \bar{\alpha}$

• R-Implementation:

- s1=rep(c(1,0,0),33);s2=rep(c(0,1,0),33);s3=rep(c(0,0,1),33)
- n=99;k=2;d=3; Y=3+2*(1:n)+9*s1-9*s3+10*rnorm(n)
- X=cbind(s1,s2,s3); for (j in 1:k) { X=cbind(X,(1:n)∧(j))}
- Reg.coef=solve(t(X)%*%X,t(X)%*%Y); a0=mean(Reg.coef[1:3])
- Trend=a0+X[,4:5]%*%Reg.coef[4:5]
- Season=X[,1:3]%*%Reg.coef[1:3]-a0
- ts.plot(cbind(Y, Trend, Season, Trend+Season), col=1:4)

2. Filtering by Moving Average

- ullet STEP 1: Estimate the trend T_t by a special moving average filter
 - ullet the filter must cover a complete cycle (length d) with equal weights
 - \Rightarrow the estimated trend is free from seasonal effect because $\sum_{j=1}^d S_j = 0$

$$\widehat{T}_t = \left\{ \begin{array}{ll} \frac{1}{d} \left(\frac{1}{2} X_{t-q} + X_{t-q+1} + \ldots + \frac{1}{2} X_{t+q} \right) &, & \text{if } d = 2q \\ \frac{1}{d} \sum_{r=-q}^q X_{t+r} &, & \text{if } d = 2q+1 \end{array} \right.$$

• STEP 2: Estimate the seasonal component (j = 1, ..., d)

$$\widehat{S}_i = \frac{\sum_{t=i,d+i,2d+i,\dots} (D_t - \overline{D})}{n_i}, \ D_t = X_t - \widehat{T}_t, \ \overline{D} = \frac{1}{n_d} \sum D_t,$$

- $n_i = \text{number of season } i \text{ observed}$
- $n_d = \text{total number of } D_t s$
- RESULT: $X_t = \widehat{T}_t + \widehat{S}_t + \widehat{N}_t$, $(\widehat{N}_t = X_t \widehat{T}_t \widehat{S}_t)$
- ullet REMARK: May apply a better filter to $X_t \widehat{S}_t$ to get an improved \widetilde{T}_t , then iterate Step 2 and improved filter until they converge.

2. Filtering by Moving Average

Example 2

Consider the data set

$$(X_1, \dots, X_{11}) = (2.1, 3.9, 0.5, 2.8, 6.1, 8.2, 4.5, 6.9, 9.3, 11.9, 9.4)$$

- \bullet What is d?
- $\textbf{ 9} \ \text{Find} \ \widehat{T}$

 \widehat{S}_i for $i=1,\ldots,d$

3. Seasonal Differencing

Seasonal Differencing

$$\Delta^d X_t = (1 - B^d) X_t$$
$$= X_t - X_{t-d}$$

• Seasonal differencing removes seasonal effects: If $X_t = S_t + N_t$ and period= d, then $\Delta^d X_t = S_t - S_{t-d} + N_t - N_{t-d} = N_t - N_{t-d}$. (Recall $S_t = S_{t-d}$)

Seasonal differencing also reduce polynomial trend by one degree:

$$\Delta^d t^p = t^p - (t - d)^p = dt^{p-1} + \cdots$$

$$\Delta^d t = t - (t - d) = d(\text{no } t)$$

- Drawbacks
 - lacktriangle Lose d data points
 - ullet data $=(X_1,X_2,...,X_n)\Rightarrow$ differenced data $=(\Delta X_{d+1},...,\Delta X_n)$
 - ② No estimated seasonal effect \widehat{S}_t is obtained.

3. Seasonal Differencing

Example 3

Consider the data set

$$(X_1, \dots, X_{11}) = (2.1, 3.9, 0.5, 2.8, 6.1, 8.2, 4.5, 6.9, 9.3, 11.9, 9.4)$$

Draw the seasonal differenced series.

Agenda

- Basic Description
- 2 Simple Descriptive Techniques
 - Trend Only
 - Trend and Seasonal Effect
- Real Applications
- Quick Implementation using R
- Summary

Example in R

<u>Data</u>:
 Quarterly operating revenues of Washington power company 80-86

http://www.sta.cuhk.edu.hk/NHCHAN/TSBook2nd/dataset.html

• Step 0: Time Series Plot

Fig. 1.2 Time series plots.

Step 0: Time Series Plot

R-Codes for reading data and time series plot

```
x=read.delim("C://washpower.dat",head=FALSE)
x=ts(x, frequency = 4, start = c(1980, 1))
ts.plot(x,main="Wasington Water Power Co")
```

- Observations
 - 1) Slightly increasing trend
 - 2) Annual Cycle (d=4)
 - Lower in summer
 - Higher in winter (heating?)
- Goal: Decompose $X_t = T_t + S_t + N_t$ by three methods

Method 1: Least Squares Method

Model:
$$X_t = \alpha_1 1_{\{s=1\}} + \dots + \alpha_4 1_{\{s=4\}} + \beta_1 t + \beta_2 t^2 + N_t$$

R-Implementation:

Define seasonal indicator variables:

```
s1=rep(c(1,0,0,0),7); s2=rep(c(0,1,0,0),7); s3=rep(c(0,0,1,0),7); s4=rep(c(0,0,0,1),7)
```

Define X matrix:

```
X=cbind(s1,s2,s3,s4); for (j in 1:2){ X=cbind(X,(1:28)\((j)))}
```

- Least Squares fitting: Reg.coef=solve(t(X)%*%X,t(X)%*%x);
- Results:

```
a0=mean(Reg.coef[1:4]); T1=a0+X[,5:6]%*%Reg.coef[5:6];
S1=X[,1:4]%*%Reg.coef[1:4]-a0; ts.plot(x,T1,S1,T1+S1,col=1:4)
```


Introduction (CUHK) Chapter 1 35 / 46

Method 2: Filtering by Moving Average – Step 1

• Step 1: Estimate trend \hat{T}_t by a filter covering a complete cycle (d=4)

$$\widehat{T}_{3} = \frac{\frac{1}{2}X_{1} + X_{2} + X_{3} + X_{4} + \frac{1}{2}X_{5}}{4}
\widehat{T}_{4} = \frac{\frac{1}{2}X_{2} + X_{3} + X_{4} + X_{5} + \frac{1}{2}X_{6}}{4}
\dots
\widehat{T}_{5} = \frac{\frac{1}{2}X_{24} + X_{25} + X_{26} + X_{27} + \frac{1}{2}X_{28}}{4}$$


```
n=length(x)
make empty vector to store trend
T2=rep(NA,n)
filter=c(0.125,0.25,0.25,0.25,0.125)
# compute filtered values recursively
radius=2;start=3;end=n-2
for ( k in start:end) {
T2[k]=filter%*%x[(k-radius):(k+radius)]
}
ts.plot(T2,ylab="Trend")
```

Method 2: Filtering by Moving Average – Step 2

ullet Step 2: Estimate seasonal effect from the trend-removed series D_t

$$D_t = X_t - \widehat{T}_t$$
, $\overline{D} = \frac{1}{24} \sum_{i=3}^{26} D_i$

Estimating the seasonal part S_i

$$\begin{split} \widehat{S}_1 &= [(D_5 - \overline{D}) + (D_9 - \overline{D}) + \dots + (D_{25} - \overline{D})]/6 \\ \widehat{S}_2 &= \\ [(D_6 - \overline{D}) + (D_{10} - \overline{D}) + \dots + (D_{26} - \overline{D})]/6 \\ \widehat{S}_3 &= [(D_3 - \overline{D}) + (D_7 - \overline{D}) + \dots + (D_{23} - \overline{D})]/6 \\ \widehat{S}_4 &= [(D_4 - \overline{D}) + (D_8 - \overline{D}) + \dots + (D_{24} - \overline{D})]/6 \\ \Rightarrow S_{i+4j} &= S_i, \quad \text{all } i, j \end{split}$$


```
d=4;  # set period=4
D=x-T2;
# na.rm=T means remove NA entries
D.bar=mean(D,na.rm=T)
# data of same season put in same col.
S.mat=matrix(D-D.bar,ncol=d,byrow=T)
# compute column(2) mean
S2=apply(S.mat,2,mean,na.rm=T)
# make S the same length as x
S2=rep(S2,n/d)
ts.plot(S2,ylab="Seasonality")
```

Method 2: Filtering by Moving Average – Results

```
par(mfrow=c(1,4)) # make 1×4 plots
ts.plot(x)
ts.plot(T2,ylab="Trend")
ts.plot(S2,ylab= "Seasonality")
ts.plot(x,T2,S2,T2+S2,col=1:4)
```


Method 3: Seasonal Differencing

$$Y_t = (1 - B^4)X_t = X_t - X_{t-4}$$

```
dx=diff(x,4)
par(mfrow=c(1,2))
ts.plot(x,cex=2, main="Data") #(cex controls the size of title)
ts.plot(dx,cex=2,main="Differenced Data")
```


Introduction (CUHK) Chapter 1 39 /46

Comparing the three Methods

- Method 1 (Least Squares) vs Method 2 (Filtering)
 - Mean Squared error (MSE):

```
E1=mean((x-T1-S1)\land 2)
E2=mean((x-T2-S2)[3:26]\land 2)
```

$$E1 = 65649889 > 28719343 = E2$$

- Method 1
 - uses a simpler model
 - allows extrapolation (predicting the future)
 - has no lost of data point
 - worse fit in terms of MSE
- Method 2
 - uses a complicated model
 - does not allow extrapolation
 - loses 4 data points
 - better explains the data based on MSE.

Comparing the three Methods

- Method 3 (Differencing) has no estimated Trend and Seasonal Effect
 - \Rightarrow Not directly comparable to Methods 1 and 2
 - Compare by Residual plots

```
par(mfrow=c(1,4))
ts.plot(x,cex=2,main="Data")
ts.plot(x-T1-S1,cex=2, main="Residual by Least Squares")
ts.plot(x-T2-S2,cex=2, main="Residual by Filtering")
ts.plot(dx,cex=2,main="Residual by Differencing")
```


Random Enough!

Agenda

- Basic Description
- 2 Simple Descriptive Techniques
 - Trend Only
 - Trend and Seasonal Effect
- Real Applications
- Quick Implementation using R
- Summary

Command stl in R

```
stl(data,s.window="periodic")
```

- data is a "ts" object with a specified frequency (period)
- ullet Method is similar to filtering with iterations between T_t and S_t

```
x=read.delim("C://washpower.dat",head=FALSE)
x=ts(x[1:28,1], frequency = 4)
decomp=stl(x,s.window="periodic")
plot(decomp)
```

```
# Store the results
trend=decomp$time.series[,2]
seasonal=decomp$time.series[,1]
y=decomp$time.series[,3] # Noise
```


4 D > 4 D > 4 E > 4 E > E 990

Introduction (CUHK) Chapter 1 43 / 46

Agenda

- Basic Description
- 2 Simple Descriptive Techniques
 - Trend Only
 - Trend and Seasonal Effect
- Real Applications
- Quick Implementation using R
- Summary

Summary of Chapter 1

- 1) Time Series
 - Observations with time dependent structure
 - $Cov(X_t, X_{t+k}) \neq 0$
- 2) Decomposition

$$X_t = egin{array}{cccc} T_t & + & S_t & + & N_t \ & ext{(Trend)} & ext{(Seasonality)} & ext{(Noise)} \end{array}$$

- i) Removing Trend only
 - Least Squares Method: Minimizes $\sum_{t=1}^{n} (X_t T_t)^2$
 - Filters: $\widehat{T}_t = S_m(X_t) = \sum_{r=-q}^s a_r X_{t+r}$
 - Differencing $\Delta X_t = (1 B)X_t = X_t X_{t-1}$
- ii) Removing Trend and Seasonality
 - Least Squares Method with seasonal indicators
 - Seasonal Filtering:
 - Step 1: Moving average filter with length d to obtain \widehat{T}_t Step 2: Estimate \widehat{S}_t from $X_t \widehat{T}_t$
 - Seasonal Differencing $\Delta^d X_t = (1 B^d) X_t = X_t X_{t-d}$

Decomposition $X_t = \widehat{T}_t + \widehat{S}_t + \widehat{N}_t$

What to do after decomposition or differencing?

- Check the residuals
 - $\widehat{N}_t = X_t \widehat{T}_t \widehat{S}_t \text{ or }$
 - $\widehat{N}_t = X_t X_{t-d}$

to detect further structure

 \bullet Sophisticated models for the microscopic structure in \widehat{N}_t will be discussed in later chapters