Interim Design Review

NASA GODDARD SPACE FLIGHT CENTER ROBOTIC PROCESSING SYSTEM PROGRAM AUTOMATION SYSTEMS

M.E. DOBBS OCTOBER 1991

Prepared for: NASA Goddard Space Flight Center Space Technology Division Greenbelt, MD 20771

Contract No. NAG 5-1517

GUDDRED GRANT IN 63-CR VOL 2 64275 PY8

G3/63

Unclas

Interim Design Review

NASA Goddard Space Flight Center Robotic Material Processing System Program Automation Systems

18 October 1991

prepared by

Environmental Research Institute of Michigan Space Automation and Robotics Center P.O. Box 134001 Ann Arbor, Michigan 48113-4001

RoMPS General Mission Requirements

- Rapid Thermal Annealing (RTA) in Microgravity
 Microgravity material processing
 High temperature annealing furnace
 Automated RTA processing and sample change
- STS Hitchkiker Payload
 GAS canister and HH avionics mounting plate
 Class D payload classification
 Serial command and telemetry
- Mission Characteristics
 Operates during STS disturbance free "quiet" periods
 Operational changes expected
 reschedule operations to meet STS constraints
 modification of RTA processing parameters

Office of Commercial Programs Requirements

 Infrastructure - Enable Low Cost Space Manufacturing new technology - patents, license, product sales reduced cost-per-pound reduce non-recurring engineering cost use industrial practices and products carrier independent systems experiment independent systems

system architecture for manufacturing facility

• Closely Related OCP Infrastructure CCDS Flight Programs at SpARC Autonomous Rendezvous & Docking

Autonomous Experiment Mangement System (AEMS)

Wake Shield Facility

Autonomous Experiment Mangement System (AEMS)

Robotic Substrate Servicing System

Satellite Servicing System

EPOP Control and Data System (AEMS)

LABS

Autonomous Experiment Mangement System (AEMS)

Material Handling Automation

Automation Management System

- Schedule Scripts
 STS operational timeline changes
 Investigator sample priority changes
- Processing Scripts
 process methodology changes
 process parameter changes
- High Level Language User Interface
 industry proven
 put PI in the drivers seat
 attempt transparent environment from laboratory to flight
- Automatic Control
 automatic sample change
 automatic process control
 rule based error detection and resolution

Experiment Spreadsheet

	A	В	С	D	E	F	G	Н	1
1	Run	Sample	Rack	Rack Index	Temperature 1	Time 1	Temperature 2	Time 2	Processed
2	1	1	1	1	410	90	410	90	N
3	2	2	1	2	410	90	. 410	90	N
4	3	' 3	1	3	410	90	410	90	N
5	4	4	1	4	410	90	410	90	N
6	5	5	1	5	410	90	410	90	N
7	6	6	1	6	410	90	410	90	N
8	7	7	1	7	350	90	350	90	N
9				•••					
10				•••	•••			•••	•••
11				•••	•••			•••	•••
12		•••	•••	•••		•••		•••	
13	141	141	6	5	400	30	400	30	N
14	142	142	6	6	200	30	200	30	N
15	143	143	6	7	400	5	400	5	N
16	144	144	6	8	400	15	400	15	N

```
-- SCL Scenario Script
```

-- Function Defines processing scenario for do_processing -- script.

script experiment_scenario

run gSample[run] gRack[run] gRack_Index[run] gTemperature1[run] gTime1[run] gTemperature2[run] gTime2[run]	= 1 = 1 = 1 = 410 = 90 = 410 = 90
run	= 2
gSample[run]	= 2
gRack[run]	= 1

gRack[run] = 1
gRack_Index[run] = 2
gTemperature1[run] = 410
gTime1[run] = 90
gTemperature2[run] = 410
gTime2[run] = 90

gTime2[run] = 90

•••

= 144 run gSample[run] = 144 gRack[run] = 6 gRack Index[run] = 8 gTemperature1[run] = 200gTime1[run] = 30gTemperature2[run] = 200gTime2[run] = 30

end experiment_scenario

Spacecraft Command Language —

SCL Scripts

- SCL scripts are similar to tasks or other stand alone programs.
- Scripts can be executed immediately by command directive.
- Scripts can also be scheduled for deferred execution. SCL supports:
 - Absolute execution times.
 - Relative execution times.
- Scripts can be scheduled for cyclic execution (repetitive execution).

Spacecraft Command Language -

SCL Software Components

- The SCL software system is divided into 3 major components:
 - The Development Environment. The development environment provides tools for developing and maintaining scripts and rules and for controlling the operation of the system
 - The Real-Time Database. The database defines the SCL software's operating environment.
 - The Real-Time Engine (RTE). Executes the SCL scripts, rules, and command directives.

Spacecraft Command Language -

SCL Software Data Flows

SCL Real-Time Engine

- The Real-Time Engine (RTE) executes SCL scripts, rules and command directives.
- The RTE is portable:
 - Written in C and Ada
 - Application specific I/O and system service calls have been isolated and "abstracted" out the SCL software.
- The RTE is generic/reusable. SCL scripts and rules are used to tailor the system to a specific application.
- The RTE is dynamic. Scripts and rules can be added or deleted without changing the RTE and its underlying interface routines.

RoMPS EasyLab Command & Variable Summary for Rack Stations

RACK.INDEX

EasyLab variable used by RoMPS PyTechnology

to determine the current sample for robot

to manipulate. Initial Value is 1.

GET.FROM.RACK

Get sample RACK.INDEX from its home rack and

slot.

PUT.INTO.RACK

Move the currently held sample into the

home rack and slot of RACK.INDEX.

RoMPS EasyLab Command & Variable Summary for Annealer Module

ANNEALER.TEMPERATURE

Output Command Variable used to set the target temperature for the next annealing initiated by ANNEALER.ON and ANNEALER.TIMED.RUN.

Initial Value TBD.

ANNEALER.TIME

Output Command Variable used to set the annealing time for the next annealing initiated by ANNEALER.TIMED.RUN. Initial Value TBD.

ANNEALER.RATE

Output Command Variable used to set the heating rate for the next annealing initiated by ANNEALER.ON and ANNEALER.TIMED.RUN. Initial Value TBD.

ANNEALER.ACTIVE.OVEN

EasyLab variable used by the Annealer robot movent commands, to determine position to put and get samples.

MOVE.UNDER.ANNEALER

Move Robot Gripper Under Sample, Lined up to allow pallet to be inserted into annealer.

PUT.INTO.ANNEALER

Move sample up into Annealer After a MOVE.UNDER.ANNEALER command. Initiate an untimed run of the Annealer.

ANNEALER.ON

ANNEALER.OFF Terminate an untimed run of the Annealer.

ANNEALER.TIMED.RUN

Initiate a timed run of the Annealer.

Automation Management System

Architecture Demonstrated at SpARC on 4 October 1991

SC4 #1 with SCL implements generic - scheduler specific - carrier i/o

SC4 #2 with EASYLAB implements generic - sample handling, processing specific - robot geometry

Electronics

generic - servos, housekeeping specific - interfaces

Status

MOU's in place License agreements outlined DFD's prepared Elements to be designed have models to work from

- Long Term Architecture

 Multiple robot and process space manufacturing facility
- Minimize Lifecycle Costs
 Industrial development, support, maintenance and documentation

RoMPS Electronics Assemblies

• Support Electronics Assembly

Mounted to Hitchhiker Adapter Plate
Integrated assembly with common support plate and cover
Connector Bracket
Power Distribution
SwRI SC4 Computer #1
SwRI SC4 Computer #2
Navtrol DDSC Master

• GAS Electronics Assembly

Mounted inside 5" GAS Extension
Integrated assembly with common support plate
Connector Brackets
Power Distribution
Navtrol DDSC Slave #1
Navtrol DDSC Slave #2
Navtrol DDSC Slave #3
Thermocouple Signal Conditioning
Data Acquisition

SUPPORT ELECTRONICS ASSEMBLY

ENGINEER R.E. QUADA	DRAFTSMAN SJ. CARR	
ENVIRONMENTAL RESEARCH INSTITUTE of MI	LAYOUT SUPPORTELECTRONICS ASSEMBLY ROTTER	10/09/91
ANN ARBOR, MI		DATE

RoMPS Elec Weight & Power

	Α	В	С	D	E	F	G	Н
1	RoMPS Weigh	t & Power						
2	Assembly	Subassembly	Mfgr	Size LWH in	Mass Ibs	Avg Pwr	Peak Pwr	Comments
3	٠							
4	Support Elect	mount plate	GSFC		tbd			
5	Assembly	emi cover	GSFC		tbd			
6		SC-4	SwRI	7.25x12.25x2	3.7	5	5	
7		SC-4	SwRI	7.25x12.25x2	3.7	. 5	5	
8		HH 1/O	ERIM	7 x 7 x 0.75	1.1	1	1	
9			ERIM	7 x 7 x 1.25	1.1	0	0	
10				4.5x5.1x1	2	3.7	3.7	
11		connec. brack			tbd			
12		harness	ERIM		tbd			
13		hardware			tbd			
14								
15		SUBTOTAL			11.6	14.7		
16								
17	GAS Eectroni		GSFC	17.5 dia	tbd			
18	Assembly	DDSC	Navtrol	4.5x5.1x1	2			9.6a worst ca
19		DDSC	Navtrol	4.5x5.1x1	2		}	one axis only
20		DDSC	Navtrol	4.5x5.1x1	2			one axis only
21		Housekeeping		7x7x0.75	1.1			logic
22	 	Housekeeping		7x7x0.75	1.1			analog
23		Power Dist	ERIM	7x7x1.25	2.2	2	2	converter loss
24		connec.bracke			tbd		ļ	
25		harness	ERIM		tbd			
26		hardware			tbd		<u> </u>	
27								
28		SUBTOTAL			10.4	18.1		
29					<u> </u>	<u> </u>		<u> </u>
30		TOTAL			22	32.8	8	

Hitchhiker Interface Subsystem

- Flight Hardware
 power switching and bus protection
 serial interface receivers and drivers
 HH command packet protocol processing
 telemetry packet generation
 health and safety monitors
- Ground Support Equipment & Operations Console customer ground support equipment command generation script development process development telemetry processing archiving engineering unit conversion parameter limit checking investigator operations console

SCL Uplink Packet Definition

	Α	В	С	Ū	E
1	RoMPS Telen	netry			
2	Function	Description	Length	Rate	Comment
3					
4	Frame Header	sync	2	1	
5		sync/id	2	1	
6					
7	RTE Packet	id, etc .	2	1	
8		rte state	2	1	
9		agenda status	2	1	
10		script status	10	1	
11		script status	10	1	
12					
13	DUMP Packet		4	1	
14		sample id	. 2	1	
15		process id	2	1	
1.6		sample temp	2	1	
17		lamp intensit			
18		lamp intensit			
19		lamp intensit			
20		lamp intensit			
21		lamp current	2		
22		elevation	2		
23	ļ	theta	2		
24		radial	2		
25		grip	2		ļ
26		force	2		ļ
27		exp. current	2		<u> </u>
28		eot status	2		ļ
29		error reports			
30		housekeeping	16	1	8 maximum
31					<u> </u>
32	TOTAL		9.0		<u> </u>
33	BUDGET		120		1200 baud

TABLE 1.2.2-1

Preliminary Specification SC-4 Single Board Spacecraft Computer

Central Processor

80C186/80C187 16 Bit

Clock Frequency

10 MHz

Operating System

MS-DOS and VRTX Compatible

Onboard Memory

RAM EEPROM UVPROM 512K Bytes w/EDC 256K Bytes w/EDC 640K Bytes w/EDC

Hardware Vectored Interrupts

16 User Configurable

Timer/Event Counters

S, Software Configurable,

120 ns

Granularity

Input/Output Capability

Parallel I/O
Analog Input

Analog Output

RS-422 Serial I/O SCSI Interface

Software Controlled Power Switch

16 Input, 16 Output

32 Channels, 12-bit Resolution 4 Channels, 12-bit Resolution

2 Channels

1 Port

4 Each

Mass Storage

24M Bytes, Read/Write Non-volatile with

Additional Battery

Expansion

Internal Daughterboard Connector

Size

7.25 X 12 X 2.25 in

Weight

3.7 Lb (Approximate)

Power

28v @ 5w (Approximate)

Figure 3.2-1 SC-4 Single Board Spacecraft Computer Block Diagram

RoMPS AMS Software Summary

MODULE	VENDOR	FUNCTION	LANGUAGE
VRTX-32	Ready Systems	Real Time Executive	"C", Assembler
RTL/86 VRTX-32	Ready Systems	"C" Reentrent Run Time Library Interface	"C", Assembler
RT-SCOPE	Ready Systems	System Monitor, Debugger	"C", Assembler
RTL/86 RT-SCOPE	Ready Systems	"C" Language Interface to RT-SCOPE	"C", Assembler
SC-4 Board Support Package	ICS/SpARC	Interface Between VRTX and SC-4 Devices	"C", Assembler
Command Input	SpARC	Get Command Packets from HH Avionics	"C"
Zymate Interface	SpARC	SCL to Zymate Interface	"C"
Telemetry Acquistion	SpARC	Acquire the Data of the Telemetry Items and forward to Telemetry Reduction	"C"
Telemetry Output	SpARC	Format and send telemetry	"C"

RoMPS AMS Software Summary

MODULE	<u>VENDOR</u>	FUNCTION	LANGUAGE
SCL RTE	ICS	SCL Command Interpreter and Rules evaluation	"C"
Telemetry Reduction	ICS	Monitor Telemetry and post detected changes	"C"
Processing Scheduler	SpARC	Scheduled execution of scripts initiating EasyLab processing programs	SCL
Initiate Sample Processing	SpARC ×	Sends the EasyLab commands initiating sample processing	SCL
Initialize / Shutdown EasyLab	SpARC ,	Sends the EasyLab commands initiating/shutting down EasyLab	SCL
Send EasyLab Commnad	SpARC	Send an EasyLab Command	SCL

AMS Memory Map

Boot ROM, IVT 64K	FFFFF EFFFF	64K BOOTSTRAP PROM
VRTX 32 Components 89K		
Board Support 16K		256K EEPROM
SCL RTE and TM Acqusition 64k	·	
Sparc AEMS Code 17K		
Unused 70K	AFFFF	128K PERIPHERALS
Memory Mapped Device Space	8FFFF	IZOR FERIFIERALS
SCRIPT & TM Data Base 16K	01111	64K MASS MEMORY PAGE
Unused 48K	7FFFF	
UNUSED 256K		256K USER RAM
	3FFFF	
VRTX 32 Workspace 20K	3FFFF	
VRTX 32 Workspace 20K	3FFFF	
	3FFFF	256K USER RAM
VRTX 32 Workspace 20K VRTX managed user Memory 236K	3FFFF	256K USER RAM

RoMPS SC-4 EasyLab Software Summary

MODULE	VENDOR	FUNCTION	LANGUAGE
ZYOS	Zymark	Zymate Operating System	"C", PLM 86
Boot ROM	Zymark	Operating System Initialization	"C", PLM 86
Robot Module	SpARC	High level robot controller and servo interface	"C"
Annealer Module	SpARC	Oven controller interface	"C "
Annealer PyTechnology	SpARC	Annealer control variables and navigation routines	EasyLab
Rack Pytechnology	SpARC	Rack navigation routines and variables	EasyLab
Robot PyTechnology	SpARC	Robot control and navigation variables	EasyLab

SC-4 EasyLab System Memory Map

Boot ROM,IVT	FFFFF	64K BOOTSTRAP PROM
Unused 32K	EFFFF	
ZYOS 158K		
RoMPS Module Code 59 K		256K EEPROM
Unused 39K		
Memory Mapped Device Space	AFFFF 8FFFF	128K PERIPHERALS
Unused 64K		64K MASS MEMORY
Data Dictonary, Pytechnology ROM Copy, 18K	7FFFF	PAGE
		256K EEPROM
Unused 238K	·	
Data Dictonary, Pytechnology RAM Copy, 18K	3FFFF	
Unused 38K		
ZYOS Workspace 200K		256K USER RAM
	00000	

Processor Utilization

- RoMPS sample thruput limited by annealing time
- Spacecraft Command Language
 Compiled script 300 lines/second
- EasyLab
 Interpreted procedure 10 lines/second
- Memory Margin 37 %

Robot Control Subsystems

4 Degree-Of-Freedom Material Processing Robot elevation, azimuth, reach, gripper axis brushless dc motors
 hall effect commutation
 normally-on electrical brakes
 quadrature output incremental position encoders end-of-travel fiducials
 current or force limited
 compliant gripper
 sequential operation

Digital Servo Position Control
 positioning accuracy +- 0.025 inch
 velocity range 0.1 to 2.0 inches/sec
 force limiting +- 1 lbf
 Proportional-Integral-Deriviative algorithm
 <5 msec control loop cycle time

PWM Drive Amplifier
 chassis isolated output stage
 32 volt maximum phase voltage
 10 amp maximum phase current
 fold-back current limiting
 over-temperature protection
 output inhibit

. .

Servo Axis Control Logic Suppliers

Functional Characteristic	Navtrol	Zymark	Industrial	uC
control algorithm control loop rate number of channels/unit commandable pid parameters traje cpu embedded code rom'd edc ram position detection auxilary inputs/outputs standard functions interface library host i/o printed circuit board temperature range 883 883 available 1:1 industrial heritage flight heritage industrial cost mil-spec cost	custom 1.6 ms 2 no, ucode ctory mode 32020 no no pot,incr yes/yes no no AT bus smc industrial no no no pending 5k na	custom 5 ms 6 rom'd yes 80186 yes no pot+incr yes/no yes yes rs422 dip industrial no yes 1800 units no tbd na	pid 5 ms 1 yes no several yes no incr. yes/yes yes yes rs422 dip industrial no no yes no 2.5k na	pid 5ms 1 yes no NEC yes no incr. yes/no yes parallel smc industrial no no yes no 0.25k na
883B cost	>200k	>50k?	na	na

Annealing Oven Control Subsystem

Interfaces

Control

Feedback

Output

Protection

Power Requirements

Voltage

Current

Temperature Set Point

Range

Resolution

Repeatability

Time Set Point

Range

Resolution

controlled)

Response Time

limited by thermal coupling to sample

Time Profile

2 step time-temperature profile

1) preheat, 2) melt

serial interface conditioned thermcouple output

quartz halogen filament lamp

filament inrush protection

24 volt rated lamp

10 amp maximum

350°C to 1500°C

+- 2% of setpoint (6 bits)

+- 2% of setpoint (6 bits)

3 to 7200 seconds

+- 1 second (software

Experiment Data Acquisition Subsystem

- RTA process monitor thermocouple lamp flux monitors
- Oven Status lamp current
- Robot Status
 4 axis position
 1 axis force
 EOT fiducials
 overtemp, current limit indicators
- Computer Status
 executive status
 script status
 rule evalutation
- Health and Safety Monitors radiator oven robot electronics stacks power supplies

	Α	В	С	D	E
1	RoMPS Data	Acquisition			
2	Function	Description	Length	Rate	Comment
3	ſ				
4		sample temp	2	1	process
5		flux intensity	2	1	
6		flux intensity	2	1	
7		flux intensity	2	1	
8		flux intensity	2	1	
9		lamp current	2	1	
10		force	2	1	robot
11		eot status	2	1	
12		exp. current	2	1	engineering
13		elec temp	2	1	
14		elec temp	2	1	
15		radiator temp	2	1	
1.6		oven temp	2	1	
17		oven temp	2	1	
18		robot temp	2	1	
19					
20					
21					
22					
23					
24	TOTAL		30		

