239.14

THOMAS BREYDO

Problem. Suppose $T \in \mathcal{L}(V)$. Prove that dim range T equals the number of nonzero singular values of T.

Claim. null $T = E(0, \sqrt{T*T})$

Proof. Decompose T into $S\sqrt{T^*T}$. Suppose $v \neq 0$ and Tv = 0. Then,

$$S\sqrt{T^*T}v = 0,$$

which means $\sqrt{T^*T}v=0$, since S preserves norms. Thus, null $T=\operatorname{null}\sqrt{T^*T}$. Finally, since null $\sqrt{T^*T}=E(0,\sqrt{T^*T})$, we get

$$\operatorname{null} T = E(0, \sqrt{T^*T})$$

(0 /T*T)

Suppose T has k nonzero singular values. Since $k = \dim V - \dim E(0, \sqrt{T^*T})$. Finally,

$$\dim \operatorname{range} T = \dim V - \dim \operatorname{null} T$$

$$= \dim V - \dim E(0, \sqrt{T^*T})$$

$$= k$$

Note. You can view the source code for this solution here.