Задача ??. Для регрессионной модели $Y_i = \beta x_i + \varepsilon_i$, $\mathbb{E}[\varepsilon_i] = 0$, $D(\varepsilon_i) = \sigma^2$, $\text{cov}(\varepsilon_i, \varepsilon_j) = 0$, $i \neq j$, докажите частный случай теоремы Гаусса–Маркова. А именно, покажите, что

- (a) МНК-оценка $\hat{\beta} = \frac{\sum_{i=1}^{n} x_i Y_i}{\sum_{i=1}^{n} x_i^2}$ является линейной по вектору $Y = (Y_1, \dots, Y_n)^T$,
- (b) МНК-оценка $\hat{\beta} = \frac{\sum_{i=1}^{n} x_i^Y_i}{\sum_{i=1}^{n} x_i^2}$ является несмещенной оценкой параметра β ,
- (c) МНК-оценка $\hat{\beta} = \frac{\sum_{i=1}^n x_i^Y_i}{\sum_{i=1}^n x_i^2}$ имеет наименьшую дисперсию в классе всех линейных по $Y = (Y_1, ..., Y_n)^T$, несмещенных оценок параметра β .

Решение.

(а) Пусть $Y = (Y_1, \dots, Y_n)^T$, $Z = (Z_1, \dots, Z_n)^T$ и $\lambda \in \mathbb{R}$. Функция $\hat{\beta}(X, Y) = \frac{\sum_{i=1}^n x_i^{Y_i}}{\sum_{i=1}^n x_i^2}$ является линейной по переменной Y, поскольку

$$\hat{\beta}(X,Y+Z) = \frac{\sum_{i=1}^{n} x_i (Y_i + Z_i)}{\sum_{i=1}^{n} x_i^2} = \frac{\sum_{i=1}^{n} x_i Y_i}{\sum_{i=1}^{n} x_i^2} + \frac{\sum_{i=1}^{n} x_i Z_i}{\sum_{i=1}^{n} x_i^2} = \hat{\beta}(X,Y) + \hat{\beta}(X,Z)$$

И

$$\hat{\beta}(X,\lambda Y) = \frac{\sum_{i=1}^n x_i(\lambda Y_i)}{\sum_{i=1}^n x_i^2} = \lambda \frac{\sum_{i=1}^n x_i Y_i}{\sum_{i=1}^n x_i^2} = \lambda \hat{\beta}(X,Y).$$

(b) Оценка $\hat{\beta} = \frac{\sum_{i=1}^{n} x_i Y_i}{\sum_{i=1}^{n} x_i^2}$ является несмещенной, поскольку

$$\mathbb{E}[\hat{\beta}] = \mathbb{E}\left[\frac{\sum_{i=1}^{n} x_{i} Y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}\right] = \frac{1}{\sum_{i=1}^{n} x_{i}^{2}} \mathbb{E}\left[\sum_{i=1}^{n} x_{i} Y_{i}\right] = \frac{1}{\sum_{i=1}^{n} x_{i}^{2}} \sum_{i=1}^{n} x_{i} \mathbb{E}\left[Y_{i}\right] = \frac{1}{\sum_{i=1}^{n} x_{i}^{2}} \sum_{i=1}^{n} x_{i} \beta x_{i} = \beta.$$

(c) Прежде всего, заметим, что всякая линейная по вектору $Y = (Y_1, ..., Y_n)^T$ оценка $\tilde{\beta}$ имеет вид:

$$\tilde{\beta} = \sum_{i=1}^{n} c_i Y_i.$$

Представим МНК-оценку $\hat{\beta} = \frac{\sum_{i=1}^{n} x_i Y_i}{\sum_{i=1}^{n} x_i^2}$ в виде

$$\hat{\beta} = \sum_{i=1}^{n} a_i Y_i ,$$

где $a_i \coloneqq \frac{x_i}{\sum_{i=1}^n x_j^2}, \ i=1,\dots,n$. Тогда оценку $\tilde{\beta}$ можно переписать в виде

$$\tilde{\beta} = \sum_{i=1}^{n} (a_i + b_i) Y_i,$$

где $b_i := c_i - a_i, i = 1, ..., n$.

Далее, учитывая, что МНК-оценка $\hat{\beta}$ является несмещенной, т.е. $\mathbb{E}[\hat{\beta}] = \beta$ для любого $\beta \in \mathbb{R}$, получаем соотношение

$$\mathbb{E}[\hat{\beta}] = \mathbb{E}\left[\sum_{i=1}^n a_i Y_i\right] = \sum_{i=1}^n a_i \mathbb{E}[Y_i] = \sum_{i=1}^n a_i \beta x_i = \beta \sum_{i=1}^n a_i x_i = \beta,$$

верное при любом $\beta \in \mathbb{R}$. Следовательно, верное и при $\beta = 1$. Значит,

$$\sum_{i=1}^{n} a_i x_i = 1.$$
(*)

В свою очередь, оценка $\tilde{\beta}$ также является несмещенной, т.е. $\mathbb{E}[\tilde{\beta}] = \beta$ для любого $\beta \in \mathbb{R}$. Следовательно, имеет место соотношение

$$\mathbb{E}[\tilde{\beta}] = \mathbb{E}\left[\sum_{i=1}^{n} (a_i + b_i) Y_i\right] = \sum_{i=1}^{n} (a_i + b_i) \mathbb{E}[Y_i] = \sum_{i=1}^{n} (a_i + b_i) \beta x_i = \beta \sum_{i=1}^{n} (a_i + b_i) x_i = \beta,$$

верное при любом $\beta \in \mathbb{R}$. Стало быть, верное и при $\beta = 1$. Поэтому

$$\sum_{i=1}^{n} (a_i + b_i) x_i = 1.$$
 (**)

Из соотношений (*) и (**) получаем, что

$$\sum_{i=1}^{n} b_i x_i = 0. (***)$$

В свою очередь, отсюда следует, что

$$\sum_{i=1}^{n} a_i b_i = \sum_{i=1}^{n} \frac{x_i}{\sum_{j=1}^{n} x_j^2} b_i = \frac{1}{\sum_{j=1}^{n} x_j^2} \underbrace{\sum_{i=1}^{n} x_i b_i}_{=0} = 0.$$
 (****)

Теперь сравним дисперсии $D(\hat{\beta})$ и $D(\tilde{\beta})$. Имеем:

$$D(\hat{\beta}) = D(\sum_{i=1}^{n} a_{i}Y_{i}) = \sum_{i=1}^{n} D(a_{i}Y_{i}) = \sum_{i=1}^{n} a_{i}^{2} D(Y_{i}) =$$

$$= \sum_{i=1}^{n} a_{i}^{2} D(\beta x_{i} + \varepsilon_{i}) = \sum_{i=1}^{n} a_{i}^{2} D(\varepsilon_{i}) = \sum_{i=1}^{n} a_{i}^{2} \sigma^{2} = \sigma^{2} \sum_{i=1}^{n} a_{i}^{2};$$

$$D(\tilde{\beta}) = D(\sum_{i=1}^{n} (a_{i} + b_{i})Y_{i}) = \sum_{i=1}^{n} D((a_{i} + b_{i})Y_{i}) = \sum_{i=1}^{n} (a_{i} + b_{i})^{2} D(Y_{i}) =$$

$$= \sum_{i=1}^{n} (a_{i} + b_{i})^{2} D(\beta x_{i} + \varepsilon_{i}) = \sum_{i=1}^{n} (a_{i} + b_{i})^{2} \sigma^{2} = \sigma^{2} \sum_{i=1}^{n} (a_{i} + b_{i})^{2} =$$

$$= \sigma^{2} \sum_{i=1}^{n} a_{i}^{2} + 2\sigma^{2} \sum_{i=1}^{n} a_{i}b_{i} + \sigma^{2} \sum_{i=1}^{n} b_{i}^{2} \ge \sigma^{2} \sum_{i=1}^{n} a_{i}^{2} = D(\hat{\beta}),$$

т.е. дисперсия МНК-оценки $\hat{\beta}$ нестрого меньше, чем дисперсия произвольной линейной по вектору $Y = (Y_1, \dots, Y_n)^T$ и несмещенной оценки $\tilde{\beta}$. \square