

Prueba Módulo IV FORMA A Mecánica

Licenciatura en Física - 2020¹

Problema I: Diversas órbitas y 3^a ley Kepler

Desde la tierra se desea lanzar un satélite en órbita parabólica (es decir que la energía mecánica sea E=0) y para ello se procede como sigue. Primero se coloca en una órbita circunferencial de radio R. En un punto B de esta órbita se dispara sus cohetes tangencialmente por un tiempo muy breve, quedando luego en una órbita elíptica cuyo radio mínimo es R. Al alcanzar su radio máximo r_A en el punto A (este no es un dato conocido), se dispara nuevamente en forma tangencial sus cohetes, alcanzando como condición la misma rapidez que obtuvo en B después del primer impulso, esto finalmente deja al satélite en una órbita parabólica.

Se pide determinar:

- 1. (20%) La rapidez V_0 del satélite en su órbita circunferencial y su correspondiente período T_0 .
- 2. (15%) La velocidad V_A' del satélite después del segundo impulso en función de r_A .
- 3. (20%) Halle la velocidad V_B cuando el satélite está en la órbita elíptica como una función de r_A .
- 4. (10%) Ahora utilizando la condición dada en el enunciado y utilizando los resultados de los ítemes (2) y (3) halle una ecuación que permita calcular r_A .
- 5. (20%) El tiempo t_{AB} que demora la nave en ir de B a A.

 1 Hora de INICIO: 14:00 hrs. Hora de TËRMINO: 17:30 hrs.

Enviar a e-mail: ivan.gonzalez@uv.cl

6. (15%) Si el satélite tiene masa m, determine el momentum angular L cuando el satélite está a mitad de camino en el trayecto BA.

Obs.: Considere la masa M de la Tierra y el radio R de la órbita como datos conocidos.

Obs.: Puede ser útil revisar la sesión online 37.

Problema II: Un sistema ternario

Tres cuerpos celestes idénticos, de masa M cada uno, están situados en los vértices de un triángulo equilátero de lado L (ver figura). El conjunto está girando con un movimiento circular uniforme en torno a su CM y sobre cada cuerpo actúan solamente las fuerzas gravitacionales ejercidas por los otros dos cuerpos.

Obs.: Para normalizar la notación etiquetaremos e las masas de la siguiente manera: M_1 la masa inferior izquierda, M_2 la masa inferior derecha. Al final de algún cálculo puede hacer el reemplazo $M_1 = M_2 = M_3 = M$.

Obs.: Recuerde que: $\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$, $\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$, etc.

Obs.: Para responder a las preguntas a continuación, considere un sistema coordenado cartesiano (con signatura estándar) con origen coincidente con la masa M_1 .

Determine:

- 1. (10%) Los vectores posición de cada masa.
- 2. (15%) La posición del CM \overrightarrow{r}_{CM} del sistema y evalúe su magnitud. ¿Qué ángulo forma con el eje horizontal?.
- 3. (20%) Determine la fuerza total sobre la masa M_1 , llamemos a esta fuerza \overrightarrow{F}_1 . Luego, halle $|\overrightarrow{F}_1|$ y evalúe el producto interno $\overrightarrow{F}_1 \times \overrightarrow{r}_{CM}$. ¿Tiene algún significado este último resultado?.
- 4. (25%) La magnitud de la velocidad \overrightarrow{V} de cada cuerpo y el período de la órbita.

- 5. (10%) El tiempo que demora M_1 en ocupar la posición de M_2 .
- 6. (20%) El vector velocidad de la masa ubicada en el origen.

Obs.: La circunferencia de la figura indica la órbita que cada cuerpo tiene.

La figura representa la trayectoria del planeta Marte en torno al Sol. Dicha trayectoria es elíptica y AB y CD representan, respectivamente, el eje mayor y el eje menor de la elipse:

Obs.: Cabe decir que para este ejercicio dos respuestas erradas anulan una respuesta correcta. Es **VERDADERO/FALSO** afirmar que:

- 1. El Sol está localizado exactamente en el punto de concurrencia de las rectas AB y CD (centro de la elipse).
- 2. Siendo \overrightarrow{V}_A y \overrightarrow{V}_B las velocidades de Marte en A y B respectivamente, se tiene entonces que $V_A=V_B$. Demuestre su respuesta.
- 3. Siendo \overrightarrow{F}_C y \overrightarrow{F}_D las fuerzas que el Sol ejerce sobre Marte en C y D, es cierto que \overrightarrow{F}_C y \overrightarrow{F}_D son iguales, colineales, pero de sentidos contrarios. Argumente.
- 4. Siendo a el valor del semieje mayor de la elipse, la aceleración de Marte, a_{Marte} en el punto A vale $a_{Marte} = \frac{GM_{Sol}}{a^2}$. Argumente.
- 5. Siendo F_A y F_B las magnitudes de las fuerzas que el Sol ejerce sobre Marte en A y B, tenemos que F_A es diferente de F_B . Argumente.
- 6. Las velocidades \overrightarrow{V}_C y \overrightarrow{V}_D son iguales.
- 7. La energía cinética en D es menor que en el perihelio. Argumente.