Feuille d'exercices 1

Fonctions de plusieurs variables - Topologie de \mathbb{R}^n

Exercice 1. — Normes usuelles et boules unités.

On définit sur \mathbb{R}^n les trois applications suivantes :

$$||x||_1 := |x_1| + \dots + |x_n|$$

$$||x||_2 := \sqrt{(x_1)^2 + \dots + (x_n)^2}$$

$$||x||_{\infty} := \max(|x_1|, \dots, |x_n|)$$

- 1. Vérifier que $\|\cdot\|_1$, $\|\cdot\|_2$ et $\|\cdot\|_\infty$ sont des normes sur \mathbb{R}^n .
- 2. Calculer $||(1, -2, 0)||_p$ pour $p \in \{1, 2, \infty\}$.
- 3. Montrer que les trois normes définies ci-dessus sont équivalentes. [On pourra montrer que pour tout $x \in \mathbb{R}^n$, on a : $\|x\|_{\infty} \leq \|x\|_2 \leq \|x\|_1 \leq n\|x\|_{\infty}$.]
- 4. Dessiner les boules unités de \mathbb{R}^2 associées à ces normes.

Exercice 2. — Ouverts et fermés.

Dire si les sous ensembles de \mathbb{R}^2 suivants sont ouverts ou fermés :

$$A = \{(x,y) \in \mathbb{R}^2 \mid 0 < |x-1| < 1\}$$

$$B = \{(x,y) \in \mathbb{R}^2 \mid 0 \leqslant x \leqslant y\}$$

$$C = \{(x,y) \in \mathbb{R}^2 \mid |x| < 1, |y| \leqslant 1\}$$

$$D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 4\}$$

$$E = \{(x,y) \in \mathbb{R}^2 \mid x^2 - e^{\sin y} \leqslant 12\}$$

$$F = \{(x,y) \in \mathbb{R}^2 \mid \ln(x^2 + 1) > 0\}.$$

Exercice 3. — Intérieur, adhérence et frontière.

1. Déterminer l'intérieur et l'adhérence des sous ensembles de \mathbb{R}^2 suivants :

$$A = \{(x,y) \in \mathbb{R}^2 \mid 2x > y + 1\}$$

$$B = \{(x,y) \in \mathbb{R}^2 \mid 0 < x < 2 \text{ et } 0 \leqslant y \leqslant 1\}.$$

$$C = \{(x,y) \in \mathbb{R}^2 \mid 0 \leqslant x^2 + y^2 \leqslant 1\}$$

$$D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \geqslant 4\} \cap \mathbb{Z}^2.$$

2. Déterminer la frontière des sous ensembles de \mathbb{R}^2 suivants :

$$E = \{(x, y) \in \mathbb{R}^2 \mid 0 < x^2 + y^2 < 2\}$$
 $F =]-2, 1[\times [0, 1].$

Exercice 4. — Prolongement par continuité.

On considère la fonction f définie sur $D = \{(x,y) \in \mathbb{R}^2 \mid x \neq 0\}$ par $f(x,y) = \frac{x + \sqrt[3]{y}}{x}$.

- 1. Déterminer la plus grande partie A de D telle que la restriction $f_{|A}$ de f à A soit la fonction constante égale à 2.
- 2. Quelle est la nature toplogique de A?
- 3. Déterminer l'adhérence, l'intérieur et la frontière de A.
- 4. Peut-on prolonger la fonction f par continuité au point (0,0)?

Exercice 5. — Prolongement par continuité (Bis).

On considère la fonction $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = \frac{x}{\sqrt{x} + \sqrt{y}}$.

- 1. Déterminer et représenter l'ensemble de définition D de f.
- 2. L'ensemble D est-il ouvert ou fermé ? Déterminer alors l'intérieur, l'adhérence ainsi que la frontière de D.
- 3. Montrer que pour tout $(x,y) \in D$, on a : $\sqrt{x+y} \le \sqrt{x} + \sqrt{y}$. Peut-on prolonger la fonction f par continuité sur l'adhérence de D?

Exercice 6. — Un compact de \mathbb{R}^3 .

On considère l'ensemble $C=\{(x,y,z)\in\mathbb{R}^3\,|\,1\leqslant x\leqslant 2,\,y=x^2\,,\,z=0\}.$

- 1. Écrire C comme l'image directe dans \mathbb{R}^3 d'un intervalle de \mathbb{R} par une application continue γ .
- 2. En déduire que C est un compact de \mathbb{R}^3 .