Lecture 2.4: Infectious disease phylodynamics

Timescale at which novel genomic variation is observed

From Biek et al. 2013 Trends Ecol Evol

The basic reproductive number

The basic reproductive number: R_0

 R_0 is the average number of secondary infections in a **fully** susceptible population

 $R_0>1$ Infection can spread

 R_0 <1 Infection will die out

 R_0 for some diseases

Measles >12

HIV 2-5

Ebola 2.2 (Stadler et al. 2014)

TB 3.4 (Tanaka et al. 2006)

The basic reproductive number: R_0

- Can depend on many factors:
 - Duration of infection
 - Incubation period
 - Host immunity
 - Behavioral changes

Some of these can be modeled using compartmental models:

- λ infection rate
- δ becoming-noninfectious rate
- p sampling probability

Phylogenetic epidemiology

Phylogenetics trees and infection

Complete transmission tree p₃

Sampled

transmission tree

Reconstructed genealogy

Account for sampling fraction

Assume that the sampled tree and reconstructed genealogy are equal

The genealogies have no information about who infected whom

From du Pleiss and Stadler 2015 Trends in Microb

Estimating population size: the coalescent

From Volz et al. 2013 PLOS Comp Biol

Estimating R_0 : coalescent phylodynamics

Transmission event

$$N(t) = N_0 e^{-rt}$$

r: exponential growth rate N_0 : initial population size N(t): population size at time t

$$r = (R_0 - 1) / D$$

 R_0 : basic reproductive ratio

D: duration of infection

Estimating R_0 : Birth-Death models

 λ : transmission rate (birth)

$$\delta = \frac{\text{sampling}}{\text{sampling}} + \frac{\text{death/recovered}}{\text{death/recovered}}$$

$$R_0 = \lambda / \delta$$

Skyline methods

- Coalescent and Birth-Death methods assume constant parameters
- This assumption can be relaxed
 - Birth Death Skyline
 - Coalescent Skyline

 R_e (t) is R_o at time t, R_e (0) = R_o

Image modified from Tanja Stadler's slides

Modelling framework

Bayesian approach

Birth-Death

$$R_0 = \lambda / (\delta)$$

 $\lambda = transmission rate$

 δ = becoming non-infectious rate

ρ = sampling probability

Birth-Death Susceptible-infected-recovered

$$R_0 = \lambda_0 / \delta$$

$$N=S+I+R$$

 $\lambda(S) = \lambda_0 S/N$

 $\lambda = \text{transmission rate}$

 δ = becoming non-infectious rate

ρ = sampling probability

Birth-Death Exposed-infected-recovered

 $\lambda = transmission rate$

 δ = becoming non-infectious rate

ρ = sampling probability

 σ = incubation rate

Birth-Death super-spreading

 λ_1 = transmission rate 1

 λ_2 = transmission rate 2

 δ = becoming non-infectious rate

ρ = sampling probability

Simulating trajectories

samples 400 Number of individuals 300 200 100 0 time

MASTER (BEAST2) (Vaughan and Drummond 2013) TreeSim (Stadler 2011)

Useful references

Kühnert, Denise, et al. "Simultaneous reconstruction of evolutionary history and epidemiological dynamics from viral sequences with the birth–death SIR model." *Journal of the Royal Society Interface* 11.94 (2014): 20131106.

du Plessis, Louis, and Tanja Stadler. "Getting to the root of epidemic spread with phylodynamic analysis of genomic data." *Trends in microbiology* 23.7 (2015): 383-386.

Go to Practical 4: Phylogenetic epidemiology in BEAST