

FCC PART 15.247 TEST REPORT

For

Shanghai LeXiang Technology Co., Ltd.

Floor 6, Building 8, Yanjiaqiao Road, Pudong Area, Shanghai, China

FCC ID: 2AJPQ-P1PRO

Report Type: Original Report		Product Type: DPVR VR All-in-one Headset
Test Engineer:	Max Min	Max Min
Report Number:	RSHA19013000	05-00B
Report Date:	2019-03-22	
Reviewed By:	Oscar Ye RF Leader	Oscar. Ye
Prepared By:		88934268

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliant Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
ENERAL INFORMATION. PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT). OBJECTIVE. RELATED SUBMITTAL(S)/GRANT(S). TEST MENTIODOLOGY. MEASUREMENT UNCERTAINTY TEST PACHIDOLOGY. TEST FOR THE CONFIGURATION. DESCRIPTION OF TEST SETUP. UMMARY OF TEST RESULTS. DEST EQUIPMENT LIST. CC §15.247 (I) & §1.1310 & §2.1093 - RF EXPOSURE. MEASUREMENT RESULT. CC §15.247 (I) & §1.1310 & §2.1093 - RF EXPOSURE. MEASUREMENT RESULT. CC §15.247 (I) & §1.1310 & §2.1093 - RF EXPOSURE. MEASUREMENT RESULT. CC §15.240 - ANTENNA REQUIREMENT. APPLICABLE STANDARD. APPLICABLE STANDARD. CO STANDARD. CC §15.247 (I) - CA LINE CONDUCTED EMISSIONS. APPLICABLE STANDARD. EUT SETUP. EMI TEST RECEIVER SETUP. TEST PROCEDURE CORRECTED FACTOR & MARGIN CALCULATION. TEST PROCEDURE CORRECTED AMPLITUDE & MARGIN CALCULATION. TEST PROCEDURE CORRECTED AMPLITUDE & MARGIN CALCULATION. TEST PROCEDURE TEST DATA. CC §15.247 (I) (I) - CHANNEL SEPARATION TEST APPLICABLE STANDARD. TEST PROCEDURE TEST DATA. CC §15.247 (I) (I) - 20 dB EMISSION BANDWIDTH. APPLICABLE STANDARD. TEST PROCEDURE TEST DATA.	
TEST EQUIPMENT LIST	10
MEASUREMENT RESULT	11
APPLICABLE STANDARD	13
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS	18
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH	37
TEST DATA	37

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST	43
APPLICABLE STANDARD	43
TEST PROCEDURE	43
Test Data	
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	46
APPLICABLE STANDARD	46
TEST PROCEDURE	46
TEST DATA	
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	62
APPLICABLE STANDARD	62
TEST PROCEDURE	
TEST DATA	62
FCC §15.247(d) - BAND EDGES TESTING	68
APPLICABLE STANDARD	68
TEST PROCEDURE	68
TEST DATA	60

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	Shanghai LeXiang Technology Co., Ltd.	
Tested Model	PPVR P1 PRO	
Product Type	PVR VR All-in-one Headset	
Dimension	12.5mm(L)*106.3mm(W)*133.3mm(H)	
Power Supply	DC 3.8V from battery and DC 5.0V charging by Adapter	

Report No.: RSHA190130005-00B

Adapter Information: Model: S010WU0500200

Input: AC100-240 V 50/60Hz 400mA

Output: 5.0V, 2000mA

Objective

This test report is prepared on behalf of Shanghai LeXiang Technology Co., Ltd. in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules.

The tests were performed in order to determine Compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DTS, Part 15.407 NII submissions with FCC ID: 2AJPQ-P1PRO.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and 558074 D01 15.247 Meas Guidance v05r01.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.247 Page 4 of 74

^{*}All measurement and test data in this report was gathered from production sample serial number: 20190130005. (Assigned by the BACL. The EUT supplied by the applicant was received on 2019-01-30)

Measurement Uncertainty

	Item	Uncertainty
AC Power Line	es Conducted Emissions	3.19dB
RF conduct	ed test with spectrum	0.9dB
RF Output Po	ower with Power meter	0.5dB
	30MHz~1GHz	6.11dB
D. Fata Landaria	1GHz~6GHz	4.45dB
Radiated emission	6GHz~18GHz	5.23dB
	18GHz~40GHz	5.65dB
Оссир	pied Bandwidth	0.5kHz
Т	emperature	1.0℃
	Humidity	6%

Report No.: RSHA190130005-00B

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01), the FCC designation No. CN1185 under the FCC KDB 974614 D01 and CAB identifier CN0004 under the ISED requirement. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC Part 15.247 Page 5 of 74

SYSTEM TEST CONFIGURATION

Description of Test Configuration

Channel list for Bluetooth:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	40	2442
1	2403		
	•••		
•••	•••	78	2480
39	2441	/	/

Report No.: RSHA190130005-00B

EUT was tested with Channel 0, 39 and 78.

EUT Exercise Software

RF test software: QRCT.

GFSK, $\pi/4$ -DQPSK, 8DPSK Power level: 8.

Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

FCC Part 15.247 Page 6 of 74

Manufacturer	Description	Model	Serial Number
HUAWEI	Earphone	AM116	/

Report No.: RSHA190130005-00B

External I/O Cable

Cable Description	Length (m)	From Port	То
USB Cable	0.8	EUT	Adapter

Block Diagram of Test Setup

FCC Part 15.247 Page 7 of 74

FCC Part 15.247 Page 8 of 74

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result		
§15.247 (I), §1.1310 & §2.1093	RF EXPOSURE	Compliant		
§15.203	Antenna Requirement	Compliant		
§15.207(a)	AC Line Conducted Emissions	Compliant		
§15.205, §15.209 & §15.247(d)	Radiated Emissions & Restricted Bands Emissions	Compliant		
§15.247(a)(1)	20 dB Emission Bandwidth	Compliant		
§15.247(a)(1)	Channel Separation Test Complia			
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time) Comp			
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant		
§15.247(b)(1)	Peak Output Power Measurement Complian			
§15.247(d)	Band edges Compliant			

Report No.: RSHA190130005-00B

FCC Part 15.247 Page 9 of 74

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration	Calibration Due Date	
	Radiated Emission Test (Chamber 1#)					
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2018-11-12	2019-11-11	
Sunol Sciences	Broadband Antenna	JB3	A090413-1	2016-11-12	2019-11-11	
Sonoma Instrument	Pre-amplifier	310N	171205	2010-12-20	2019-12-23	
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/	
MICRO-COAX	Coaxial Cable	Cable-8	008	2018-08-15	2019-08-14	
MICRO-COAX	Coaxial Cable	Cable-9	008	2018-08-15	2019-08-14	
MICRO-COAX	Coaxial Cable	Cable-10	010	2018-08-15	2019-08-14	
MICKO-COAX		ission Test (Chan		2018-08-13	2019-08-14	
Rohde & Schwarz	EMI Test Receiver	ESU40	100207	2018-08-27	2019-08-26	
ETS-LINDGREN	Horn Antenna	3115	6229	2019-01-11	2022-01-10	
ETS-LINDGREN	Horn Antenna	3116	00084159	2016-10-18	2019-10-17	
A.H.Systems, inc	Amplifier	2641-1	466	2018-09-11	2019-09-10	
EM Electronics						
Corporation	Amplifier	EM18G40G	060726	2018-03-22	2019-03-21	
MICRO-TRONICS	Band Reject Filter	BRM50702	G024	2018-08-05	2019-08-04	
Narda	Attenuator	10dB	010	2018-08-15	2019-08-14	
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/	
MICRO-COAX	Coaxial Cable	Cable-6	006	2018-08-15	2019-08-14	
MICRO-COAX	Coaxial Cable	Cable-11	011	2018-08-15	2019-08-14	
MICRO-COAX	Coaxial Cable	Cable-12	012	2018-08-15	2019-08-14	
MICRO-COAX	Coaxial Cable	Cable-13	013	2018-08-15	2019-08-14	
	RI	F Conducted Test				
Rohde & Schwarz	Signal Analyzer	FSIQ26	836131/009	2018-11-30	2019-11-29	
Narda	Attenuator	10dB	010	2018-08-15	2019-08-14	
LeXiang	RF Cable	LeXiang C01	C01	Each Time	/	
	Cond	ucted Emission Te	st			
Rohde & Schwarz	EMI Test Receiver	ESCS30	834115/007	2018-11-30	2019-11-29	
Rohde & Schwarz	LISN	ENV216	3560655016	2018-11-30	2019-11-29	
BACL	Auto test Software	BACL-EMC	CE001	/	/	
Narda	Attenuator/6dB	10690812-2	26850-6	2019-01-10	2020-01-09	
MICRO-COAX	Coaxial Cable	Cable-15	015	2018-08-15	2019-08-14	

Report No.: RSHA190130005-00B

FCC Part 15.247 Page 10 of 74

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (I) & §1.1310 & §2.1093 - RF EXPOSURE

Applicable Standard

According to §15.247(i) and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Report No.: RSHA190130005-00B

According to KDB447498 D01 General RF Exposure Guidance v06:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is ≤ 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

Measurement Result

FCC Part 15.247 Page 11 of 74

For worst case

Mode	Frequency Range (MHz)	quency Range Frequency Conducted Power Distance	Calculated Distance	Calculated Value	Threshold (1-g)	SAR Test		
	,	,	(dBm)	(mW)	(mm)		(8/	Exclusion
Bluetooth	2402-2480	2480	2.00	1.58	5.00	0.50	3.00	Yes
BLE	2402-2480	2480	4.00	2.51	5.00	0.79	3.00	Yes
802.11b	2412~2462	2462	9.50	8.91	5.00	2.80	3.00	Yes
802.11g	2412~2462	2462	5.50	3.55	5.00	1.11	3.00	Yes
802.11n20	2412~2462	2462	8.00	6.31	5.00	1.98	3.00	Yes
802.11a	5150~5250	5250	6.00	3.98	5.00	1.82	3.00	Yes
802.11a	5725~5850	5850	6.50	4.47	5.00	2.16	3.00	Yes
802.11ac20	5150~5250	5250	6.50	4.47	5.00	2.05	3.00	Yes
802.11ac20	5725~5850	5850	7.00	5.01	5.00	2.42	3.00	Yes
802.11n20	5150~5250	5250	7.50	5.62	5.00	2.58	3.00	Yes
802.111120	5725~5850	5850	7.90	6.17	5.00	2.98	3.00	Yes
802.11ac40	5150~5250	5250	6.50	4.47	5.00	2.05	3.00	Yes
802.118040	5725~5850	5850	7.00	5.01	5.00	2.42	3.00	Yes
802.11n40	5150~5250	5250	7.50	5.62	5.00	2.58	3.00	Yes
002.111140	5725~5850	5850	7.90	6.17	5.00	2.98	3.00	Yes
802.11ac80	5210	5210	7.00	5.01	5.00	2.29	3.00	Yes
602.11ac80	5775	5775	7.00	5.01	5.00	2.41	3.00	Yes

Report No.: RSHA190130005-00B

Note: 1. The tune-up output power was declared by the manufacturer.

- 2. Bluetooth, BLE, 2.4 GHz & 5 GHz Wi-Fi share a same antenna and can't transmit simultaneously. 3. For 802.11b,802.11g,802.11a, the Tune-up power is base on SISO mode
- 3. For 802.11b,802.11g,802.11a, the Tune-up power is base on SISO mode For 802.11n20/ac20/n40/ac40/ac80, the Tune-up power is base on MIMO mode

So the stand-alone SAR evaluation is not necessary

FCC Part 15.247 Page 12 of 74

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: RSHA190130005-00B

Antenna Connector Construction

The EUT has a FPC antenna for Bluetooth, and the antenna gain is 2.79 dBi, which is permanently attached to the unit, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

FCC Part 15.247 Page 13 of 74

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm

from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

FCC Part 15.247 Page 14 of 74

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Corrected Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

Report No.: RSHA190130005-00B

The "Margin" column of the following data tables indicates the degree of Compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V) – Corrected Amplitude (dB μ V)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Test Data

Environmental Conditions

Temperature:	25.4 ℃
Relative Humidity:	51 %
ATM Pressure:	101.0 kPa

The testing was performed by Max Min on 2019-02-28.

EUT operation mode: Transmitting in middle channel of GFSK mode (Worst case)

FCC Part 15.247 Page 15 of 74

AC 120V/60 Hz, Line

Frequency (MHz)	Corrected Amplitude (dBµV)	Detector (PK/AV/QP)	Bandwidth (kHz)	Line	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Comment
0.150	35.30	QP	9.000	L1	16.06	66.00	30.70	Compliant
0.150	21.72	AV	9.000	L1	16.06	56.00	34.28	Compliant
0.270	30.44	QP	9.000	L1	16.03	61.12	30.68	Compliant
0.270	17.56	AV	9.000	L1	16.03	51.12	33.56	Compliant
0.555	37.88	QP	9.000	L1	16.04	56.00	18.12	Compliant
0.555	26.18	AV	9.000	L1	16.04	46.00	19.82	Compliant
2.050	28.88	QP	9.000	L1	15.85	56.00	27.12	Compliant
2.050	18.45	AV	9.000	L1	15.85	46.00	27.55	Compliant
9.900	41.72	QP	9.000	L1	16.06	60.00	18.28	Compliant
9.900	29.49	AV	9.000	L1	16.06	50.00	20.51	Compliant
14.950	37.34	QP	9.000	L1	16.21	60.00	22.66	Compliant
14.950	25.53	AV	9.000	L1	16.21	50.00	24.47	Compliant

FCC Part 15.247 Page 16 of 74

AC 120V/60 Hz, Neutral

Frequency (MHz)	Corrected Amplitude (dBµV)	Detector (PK/AV/QP)	Bandwidth (kHz)	Line	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Comment
0.190	30.39	QP	9.000	N	16.05	64.04	33.65	Compliant
0.190	21.83	AV	9.000	N	16.05	54.04	32.21	Compliant
0.560	36.51	QP	9.000	N	16.07	56.00	19.49	Compliant
0.560	30.18	AV	9.000	N	16.07	46.00	15.82	Compliant
0.930	26.44	QP	9.000	N	15.95	56.00	29.56	Compliant
0.930	20.75	AV	9.000	N	15.95	46.00	25.25	Compliant
1.750	24.43	QP	9.000	N	15.92	56.00	31.57	Compliant
1.750	17.98	AV	9.000	N	15.92	46.00	28.02	Compliant
9.550	33.96	QP	9.000	N	15.98	60.00	26.04	Compliant
9.550	20.89	AV	9.000	N	15.98	50.00	29.11	Compliant
13.300	33.01	QP	9.000	N	16.00	60.00	26.99	Compliant
13.300	23.65	AV	9.000	N	16.00	50.00	26.35	Compliant

Note:

1) Corrected Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

2) Margin (dB) = Limit (dB μ V) – Corrected Amplitude (dB μ V)

FCC Part 15.247 Page 17 of 74

FCC $\S15.205$, $\S15.209$ & $\S15.247(d)$ – RADIATED EMISSIONS

Applicable Standard

FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

FCC Part 15.247 Page 18 of 74

EMI Test Receiver Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver Setup was set with the following configurations:

Report No.: RSHA190130005-00B

Frequency Range RBW		Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1GHz	1MHz	3 MHz	/	PK
Above IGHZ	1MHz	3 MHz	/	Ave.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude ($dB\mu V/m$) = Meter Reading ($dB\mu V$) + Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB)

The "Margin" column of the following data tables indicates the degree of Compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.

FCC Part 15.247 Page 19 of 74

Test Data

Environmental Conditions

Temperature:	24℃~26℃
Relative Humidity:	48 %~50 %
ATM Pressure:	101.2kPa~101.5kPa

The testing was performed by Max Min from 2019-02-28 to 2019-03-20.

EUT operation mode: Transmitting

Spurious Emission Test:

30MHz-1GHz:

Pre-Scan with GFSK, $\pi/4$ -DQPSK, 8DPSK modes of operation in the X,Y and Z axes of orientation, the worst case middle channel of GFSK Mode in X-axis of orientation was recorded

Report No.: RSHA190130005-00B

Frequency	Corrected Amplitude	Rx Antenna		Turntable	Corrected	Limit	Margin	
(MHz)	Quasi-peak (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)	
30.485000	20.01	199.0	V	226.0	-4.3	40.00	19.99	
89.349300	25.22	101.0	V	40.0	-17.5	43.50	18.28	
119.697800	25.98	198.0	Н	0.0	-11.2	43.50	17.52	
143.951400	25.26	198.0	Н	333.0	-12.1	43.50	18.24	
279.981500	28.75	101.0	Н	181.0	-11.1	46.00	17.25	
806.296650	20.70	198.0	Н	226.0	-1.6	46.00	25.30	

FCC Part 15.247 Page 20 of 74

1GHz-18GHz:

Pre-Scan with GFSK, $\pi/4$ -DQPSK, 8DPSK modes of operation in the X,Y and Z axes of orientation, the worst case **GFSK Mode in X-axis of orientation** was recorded

Report No.: RSHA190130005-00B

Note:

- 1. This test was performed with the 2.4-2.5 GHz notch filter.
- 2. Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) Amplifier Factor (dB) Corrected Amplitude (dB μ V /m) = Corrected Factor (dB/m) + Reading (dB μ V) Margin (dB) = Limit (dB μ V/m) Corrected Amplitude (dB μ V /m)

Low Channel: 2402MHz

Frequency	Corrected Amplitude		Rx A	Rx Antenna		Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Turntable Degree	Factor (dB/m)	(dBµV/m)	(dB)
1615.400000	37.15		100.0	V	314.0	-9.5	74.00	36.85
1615.400000		27.11	100.0	V	314.0	-9.5	54.00	26.89
3454.800000	47.83		250.0	V	232.0	-3.6	74.00	26.17
3454.800000		37.91	250.0	V	232.0	-3.6	54.00	16.09
4804.000000	44.35		200.0	V	220.0	-0.5	74.00	29.65
4804.000000		34.63	200.0	V	220.0	-0.5	54.00	19.37
7206.000000	45.67		150.0	Н	293.0	5.7	74.00	28.33
7206.000000		37.55	150.0	Н	293.0	5.7	54.00	16.45
9605.400000		37.71	150.0	Н	104.0	7.8	54.00	16.29
9605.400000	45.39		150.0	Н	104.0	7.8	74.00	28.61
17442.400000	54.68		200.0	V	31.0	12.7	74.00	19.32
17442.400000		45.94	200.0	V	31.0	12.7	54.00	8.06

FCC Part 15.247 Page 21 of 74

Middle Channel: 2441MHz

Full Spectrum

Frequency	Corrected .	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1605.200000		24.39	150.0	V	209.0	-9.6	54.00	29.61
1605.200000	35.75		150.0	V	209.0	-9.6	74.00	38.25
3454.800000		36.32	150.0	V	232.0	-3.6	54.00	17.68
3454.800000	46.51		150.0	V	232.0	-3.6	74.00	27.49
4882.000000		31.43	150.0	V	314.0	-0.4	54.00	22.57
4882.000000	41.12		150.0	V	314.0	-0.4	74.00	32.88
7323.000000		36.94	150.0	Н	0.0	5.8	54.00	17.06
7323.000000	45.65		150.0	Н	0.0	5.8	74.00	28.35
9765.200000		38.53	150.0	V	244.0	7.9	54.00	15.47
9765.200000	46.80		150.0	V	244.0	7.9	74.00	27.20
14491.200000		44.79	150.0	V	221.0	12.7	54.00	9.21
14491.200000	55.03		150.0	V	221.0	12.7	74.00	18.97

FCC Part 15.247 Page 22 of 74

High Channel: 2480MHz

Full Spectrum

Frequency	Corrected Amplitude		Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1724.200000		25.93	150.0	V	226.0	-9.2	54.00	28.07
1724.200000	37.39		150.0	V	226.0	-9.2	74.00	36.61
3454.800000		35.85	150.0	V	226.0	-3.6	54.00	18.15
3454.800000	45.89		150.0	V	226.0	-3.6	74.00	28.11
4960.000000		33.40	150.0	V	43.0	-0.3	54.00	20.60
4960.000000	41.03		150.0	V	43.0	-0.3	74.00	32.97
7440.000000		38.38	150.0	Н	270.0	6.0	54.00	15.62
7440.000000	47.11		150.0	Н	270.0	6.0	74.00	26.89
9918.200000		38.90	150.0	V	7.0	8.1	54.00	15.10
9918.200000	47.84		150.0	V	7.0	8.1	74.00	26.16
17575.000000		42.92	150.0	Н	30.0	14.2	54.00	11.08
17575.000000	53.18		150.0	Н	30.0	14.2	74.00	20.82

FCC Part 15.247 Page 23 of 74

18GHz-25GHz:

Pre-Scan with GFSK, $\pi/4$ -DQPSK, 8DPSK modes of operation in the X,Y and Z axes of orientation, the worst case middle channel of GFSK Mode in X-axis of orientation was recorded

Report No.: RSHA190130005-00B

Date: 20.MAR.2019 13:37:06

Date: 20.MAR.2019 14:07:52

FCC Part 15.247 Page 24 of 74

Fundamental Test & Restricted Bands Emissions:

Pre-Scan with GFSK, $\pi/4$ -DQPSK, 8DPSK modes of operation in the X,Y and Z axes of orientation, the worst case middle channel of GFSK Mode in X-axis of orientation was recorded

Report No.: RSHA190130005-00B

Note:

1. Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) – Amplifier Factor (dB) Corrected Amplitude (dB μ V /m) = Corrected Factor (dB/m) + Reading (dB μ V) Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V /m)

	Corrected	l Amplitude	Rx A	ntenna		Corrected				
Frequency (MHz)	MaxPeak (dBμV /m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Turntable Degree	Factor (dB/m)	Limit (dBμV/m)	Margin (dB)		
	Low Channel: 2402MHz									
2402.000000	100.97		150.0	V	186.0	2.8	/	/		
2402.000000		100.81	150.0	V	186.0	2.8	/	/		
2402.000000	98.52		150.0	Н	218.0	2.8	/	/		
2402.000000		98.41	150.0	Н	218.0	2.8	/	/		
2390.000000		39.45	100.0	V	360.0	2.8	54.00	14.55		
2390.000000	49.11		100.0	V	360.0	2.8	74.00	24.89		
		1	Middle Cha	nnel: 24411	MHz					
2441.000000	97.71		100.0	V	104.0	2.9	/	/		
2441.000000		97.61	100.0	V	104.0	2.9	/	/		
2441.000000	95.47		250.0	Н	225.0	2.9	/	/		
2441.000000		95.32	250.0	Н	225.0	2.9	/	/		
			High Char	nnel: 2480N	ſНz					
2480.000000	100.74		100.0	V	346.0	3.0	/	/		
2480.000000		100.43	100.0	V	346.0	3.0	/	/		
2480.000000	98.42		200.0	Н	225.0	3.0	/	/		
2480.000000		98.20	200.0	Н	225.0	3.0	/	/		
2483.500000	49.50		100.0	V	211.0	3.0	74.00	24.50		
2483.500000		39.46	100.0	V	211.0	3.0	54.00	14.54		

FCC Part 15.247 Page 25 of 74

Conducted Spurious Emissions at Antenna Port

BDR (GFSK): Low Channel

BDR (GFSK): Middle Channel

FCC Part 15.247 Page 26 of 74

BDR (GFSK): High Channel

EDR (π/4-DQPSK): Low Channel

FCC Part 15.247 Page 27 of 74

EDR ($\pi/4$ -DQPSK): Middle Channel

EDR (π/4-DQPSK): High Channel

FCC Part 15.247 Page 28 of 74

EDR (8DPSK): Low Channel

EDR (8DPSK): Middle Channel

FCC Part 15.247 Page 29 of 74

EDR (8DPSK): High Channel

FCC Part 15.247 Page 30 of 74

FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Report No.: RSHA190130005-00B

Test Procedure

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a. Span: Wide enough to capture the peaks of two adjacent channels.
- b. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c. Video (or average) bandwidth $(VBW) \ge RBW$.
- d. Sweep: Auto.
- e. Detector function: Peak.
- f. Trace: Max hold.
- g. Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Test Data

Environmental Conditions

Temperature:	23.2 ℃
Relative Humidity:	50 %
ATM Pressure:	101.3 kPa

The testing was performed by Max Min on 2019-02-28.

EUT operation mode: Transmitting

Test Result: Compliance.

FCC Part 15.247 Page 31 of 74

Mode	Channel	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result	
	Low	2402	1.016	0.950	Dogg	
	Adjacent	2403	1.016	0.930	Pass	
BDR	Middle	2441	1.016	0.950	Pass	
(GFSK)	Adjacent	2442	1.010	0.930	rass	
	High	2480	1.016	0.950	Dogg	
	Adjacent	2479	1.016	0.930	Pass	
	Low	2402	1.010	0.866	Pass	
	Adjacent	2403	1.010	0.800	1 433	
EDR	Middle	2441	1.028	0.870	Pass	
$(\pi/4\text{-DQPSK})$	Adjacent	2442	1.026	0.870	T ass	
	High	2480	1.004	0.066	Pass	
	Adjacent	2479	1.004	0.866	rass	
	Low	2402	0.998	0.866	Pass	
	Adjacent	2403	0.996	0.800	rass	
EDR	Middle	2441	0.998	0.866	Pass	
(8DPSK)	Adjacent	2442	0.558	0.800	rass	
	High	2480	1.004	0.866	Dagg	
	Adjacent	2479	1.004	0.000	Pass	

Note: For BDR mode, Limit = 20 dB bandwidth; For EDR mode, Limit = 20 dB bandwidth*2/3

BDR (GFSK): Low Channel

FCC Part 15.247 Page 32 of 74

BDR (GFSK): Middle Channel

BDR (GFSK): High Channel

FCC Part 15.247 Page 33 of 74

EDR ($\pi/4$ -DQPSK): Low Channel

EDR ($\pi/4$ -DQPSK): Middle Channel

FCC Part 15.247 Page 34 of 74

EDR ($\pi/4$ -DQPSK): High Channel

EDR (8DPSK): Low Channel

FCC Part 15.247 Page 35 of 74

EDR (8DPSK): Middle Channel

EDR (8DPSK): High Channel

FCC Part 15.247 Page 36 of 74

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Report No.: RSHA190130005-00B

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	23.2 ℃
Relative Humidity:	50 %
ATM Pressure:	101.3 kPa

The testing was performed by Max Min on 2019-02-28.

EUT operation mode: Transmitting

Test Result: Compliance.

FCC Part 15.247 Page 37 of 74

Mode	Channel	Frequency (MHz)	20 dB Emission Bandwidth (MHz)
	Low	2402	0.950
BDR (GFSK)	Middle	2441	0.950
(GI SIK)	High	2480	0.950
	Low	2402	1.299
EDR (π/4-DQPSK)	Middle	2441	1.305
(MIDQISII)	High	2480	1.299
EDR (8DPSK)	Low	2402	1.299
	Middle	2441	1.299
	High	2480	1.299

BDR (GFSK): Low Channel

FCC Part 15.247 Page 38 of 74

BDR (GFSK): Middle Channel

BDR (GFSK): High Channel

FCC Part 15.247 Page 39 of 74

EDR ($\pi/4$ -DQPSK): Low Channel

EDR(π/4-DQPSK): Middle Channel

FCC Part 15.247 Page 40 of 74

EDR ($\pi/4$ -DQPSK): High Channel

EDR (8DPSK): Low Channel

FCC Part 15.247 Page 41 of 74

EDR (8DPSK): Middle Channel

EDR (8DPSK): High Channel

FCC Part 15.247 Page 42 of 74

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Report No.: RSHA190130005-00B

Test Procedure

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- c. $VBW \ge RBW$.
- d. Sweep: Auto.
- e. Detector function: Peak.
- f. Trace: Max hold.
- g. Allow the trace to stabilize.

It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies.

Test Data

Environmental Conditions

Temperature:	23.2 ℃
Relative Humidity:	50 %
ATM Pressure:	101.3 kPa

The testing was performed by Max Min on 2019-03-04.

EUT operation mode: Hopping

Test Result: Compliance.

FCC Part 15.247 Page 43 of 74

Mode	Frequency Range (MHz)	Number of Hopping Channel (CH)	Limit (CH)
BDR (GFSK)	2400-2483.5	79	≥15
EDR (π/4-DQPSK)	2400-2483.5	79	≥15
EDR (8DPSK)	2400-2483.5	79	≥15

BDR (GFSK): Number of Hopping Channels

Date: 4 M AR .2019 14:11:32

FCC Part 15.247 Page 44 of 74

Report No.: RSHA190130005-00B

EDR ($\pi/4$ -DQPSK): Number of Hopping Channels

EDR (8DPSK): Number of Hopping Channels

Date: 4 M AR .2019 14:16:03

FCC Part 15.247 Page 45 of 74

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Report No.: RSHA190130005-00B

Test Procedure

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a Span: Zero span, centered on a hopping channel.
- b RBW shall be \leq channel spacing and where possible RBW should be set \geq 1 / T, where T is the expected dwell time per channel.
- c Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d Detector function: Peak.
- e Trace: Max hold.

Test Data

Environmental Conditions

Temperature:	23.2 ℃
Relative Humidity:	52 %
ATM Pressure:	101.3 kPa

The testing was performed by Max Min on 2019-02-28.

EUT operation mode: Hopping

FCC Part 15.247 Page 46 of 74

Мос	de	Channel	Pulse Width (ms)	Dwell Time (s)	Limit (s)	Result
		Low	0.399	0.128	0.4	Pass
	DIII	Middle	0.413	0.132	0.4	Pass
	DH1	High	0.413	0.132	0.4	Pass
		No	ote: DH1:Dwell t	ime = Pulse time	*(1600/2/79)*31.	6S
		Low	1.679	0.269	0.4	Pass
BDR	DHA	Middle	1.679	0.269	0.4	Pass
(GFSK)	DH3	High	1.679	0.269	0.4	Pass
		No	ote: DH3:Dwell t	ime = Pulse time	*(1600/4/79)*31.	6S
		Low	2.954	0.315	0.4	Pass
	DILE	Middle	2.954	0.315	0.4	Pass
	DH5	High	2.930	0.313	0.4	Pass
		No	ote: DH5:Dwell t	ime = Pulse time	*(1600/6/79)*31.	6S
		Low	0.417	0.133	0.4	Pass
	2 D111	Middle	0.417	0.133	0.4	Pass
	2DH1	High	0.421	0.135	0.4	Pass
		No	te: 2DH1:Dwell	time = Pulse time	*(1600/2/79)*31	.6S
		Low	1.679	0.269	0.4	Pass
EDR	2DH3	Middle	1.679	0.269	0.4	Pass
$(\pi/4\text{-DQPSK})$		High	1.679	0.269	0.4	Pass
		Note: 2DH3:Dwell time = Pulse time*(1600/4/79)*31.6S				
	20115	Low	2.930	0.313	0.4	Pass
		Middle	2.930	0.313	0.4	Pass
	2DH5	High	2.930	0.313	0.4	Pass
		Note: 2DH5:Dwell time = Pulse time*(1600/6/79)*31.6S				
	apyri	Low	0.417	0.133	0.4	Pass
		Middle	0.417	0.133	0.4	Pass
	3DH1	High	0.417	0.133	0.4	Pass
			te:3 DH1:Dwell	time = Pulse time	*(1600/2/79)*31	.6S
EDR (8DPSK)		Low	1.679	0.269	0.4	Pass
	3DH3	Middle	1.679	0.269	0.4	Pass
		High	1.679	0.269	0.4	Pass
		Note: 3DH3:Dwell time = Pulse time*(1600/4/79)*31.6S				
		Low	2.938	0.313	0.4	Pass
		Middle	2.938	0.313	0.4	Pass
	3DH5	High	2.938	0.313	0.4	Pass
			l .	time = Pulse time	*(1600/6/79)*31	l .

FCC Part 15.247 Page 47 of 74

BDR (GFSK): Pulse time, Low Channel, DH1

BDR (GFSK): Pulse time, Middle Channel, DH1

FCC Part 15.247 Page 48 of 74

BDR (GFSK): Pulse time, High Channel, DH1

BDR (GFSK): Pulse time, Low Channel, DH3

FCC Part 15.247 Page 49 of 74

BDR (GFSK): Pulse time, Middle Channel, DH3

BDR (GFSK): Pulse time, High Channel, DH3

FCC Part 15.247 Page 50 of 74

BDR (GFSK): Pulse time, Low Channel, DH5

BDR (GFSK): Pulse time, Middle Channel, DH5

FCC Part 15.247 Page 51 of 74

BDR (GFSK): Pulse time, High Channel, DH5

EDR ($\pi/4$ -DQPSK): Pulse time, Low Channel, 2DH1

FCC Part 15.247 Page 52 of 74

EDR (π/4-DQPSK):Pulse time, Middle Channel, 2DH1

EDR (π/4-DQPSK):Pulse time, High Channel, 2DH1

FCC Part 15.247 Page 53 of 74

EDR (π /4-DQPSK):Pulse time, Low Channel, 2DH3

EDR (π/4-DQPSK):Pulse time, Middle Channel, 2DH3

FCC Part 15.247 Page 54 of 74

EDR (π/4-DQPSK):Pulse time, High Channel, 2DH3

EDR (π/4-DQPSK):Pulse time, Low Channel, 2DH5

FCC Part 15.247 Page 55 of 74

EDR (π/4-DQPSK):Pulse time, Middle Channel, 2DH5

EDR (π/4-DQPSK):Pulse time, High Channel, 2DH5

FCC Part 15.247 Page 56 of 74

EDR (8DPSK): Pulse time, Low Channel, 3DH1

EDR (8DPSK): Pulse time, Middle Channel, 3DH1

FCC Part 15.247 Page 57 of 74

EDR (8DPSK): Pulse time, High Channel, 3DH1

EDR (8DPSK): Pulse time, Low Channel, 3DH3

FCC Part 15.247 Page 58 of 74

EDR (8DPSK): Pulse time, Middle Channel, 3DH3

EDR (8DPSK): Pulse time, High Channel, 3DH3

FCC Part 15.247 Page 59 of 74

EDR (8DPSK): Pulse time, Low Channel, 3DH5

EDR (8DPSK): Pulse time, Middle Channel, 3DH5

FCC Part 15.247 Page 60 of 74

EDR (8DPSK): Pulse time, High Channel, 3DH5

FCC Part 15.247 Page 61 of 74

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Report No.: RSHA190130005-00B

Test Procedure

- a. Use the following spectrum analyzer settings:
 - 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - 2) RBW > 20 dB bandwidth of the emission being measured.
 - 3) VBW \geq RBW.
 - 4) Sweep: Auto.
 - 5) Detector function: Peak.
 - 6) Trace: Max hold.
- b. Allow trace to stabilize.
- c. Use the marker-to-peak function to set the marker to the peak of the emission.
- d. The indicated level is the peak output power, after any corrections for external attenuators and cables.
- e. A plot of the test results and setup description shall be included in the test report.

Test Data

Environmental Conditions

Temperature:	23.2 ℃
Relative Humidity:	53 %
ATM Pressure:	101.3 kPa

The testing was performed by Max Min on 2019-02-28.

EUT operation mode: Transmitting

Test Result: Compliance.

FCC Part 15.247 Page 62 of 74

Mode	Frequency	Output Power		Limit
Wiouc	(MHz)	(dBm)	(mW)	(mW)
	2402	1.25	1.33	1000
BDR (GFSK)	2441	1.56	1.43	1000
(GI SIL)	2480	1.94	1.56	1000
EDR (π/4-DQPSK)	2402	0.10	1.02	125
	2441	0.71	1.18	125
	2480	0.95	1.24	125
EDR (8DPSK)	2402	0.46	1.11	125
	2441	1.07	1.28	125
	2480	1.45	1.40	125

BDR (GFSK): 2402MHz

FCC Part 15.247 Page 63 of 74

BDR (GFSK): 2441MHz

BDR (GFSK): 2480MHz

FCC Part 15.247 Page 64 of 74

$EDR(\pi/4-DQPSK)$: 2402MHz

EDR($\pi/4$ -DQPSK): 2441MHz

FCC Part 15.247 Page 65 of 74

EDR($\pi/4$ -DQPSK): 2480MHz

EDR(8DPSK): 2402MHz

FCC Part 15.247 Page 66 of 74

EDR(8DPSK): 2441MHz

EDR(8DPSK): 2480MHz

FCC Part 15.247 Page 67 of 74

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates Compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Report No.: RSHA190130005-00B

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	23.2 ℃
Relative Humidity:	53 %
ATM Pressure:	101.3 kPa

The testing was performed by Max Min on 2019-02-28.

EUT operation mode: Transmitting & Hopping

Test Result: Compliance.

FCC Part 15.247 Page 68 of 74

BDR (GFSK): Left Side

Report No.: RSHA190130005-00B

BDR (GFSK): Right Side

FCC Part 15.247 Page 69 of 74

Report No.: RSHA190130005-00B

EDR ($\pi/4$ -DQPSK): Left Side

EDR ($\pi/4$ -DQPSK): Right Side

FCC Part 15.247 Page 70 of 74

Report No.: RSHA190130005-00B

EDR (8DPSK): Left Side

EDR (8DPSK): Right Side

FCC Part 15.247 Page 71 of 74

BDR (GFSK): Left Side – Hopping

BDR (GFSK): Right Side- Hopping

FCC Part 15.247 Page 72 of 74

EDR (π/4-DQPSK): Left Side- Hopping

EDR (π/4-DQPSK): Right Side- Hopping

FCC Part 15.247 Page 73 of 74

EDR (8DPSK): Left Side- Hopping

Report No.: RSHA190130005-00B

EDR (8DPSK): Right Side-Hopping

***** END OF REPORT *****

FCC Part 15.247 Page 74 of 74