Exercise 1 (Gibbs Sampler)

1. First, let $X' = X^{(t)}$, $X = X^{(t-1)}$, $Y' = Y^{(t)}$ and $Y = Y^{(t-1)}$. Then:

$$K^{S}((x,y),(x',y')) = \pi_{Y|X}(y' \mid x)\pi_{X|Y}(x' \mid y')$$

Then, to show that it is not reversible:

$$\pi(x,y)K((x,y),(x',y')) = \pi(x,y)\pi(y'\mid x)\pi(x'\mid y')$$

$$\pi(x',y')K((x',y'),(x,y)) = \pi(x',y')\pi(y\mid x')\pi(x\mid y)$$

$$\vdots$$

$$\frac{\pi(x,y)K((x,y),(x',y'))}{\pi(x',y')K((x',y'),(x,y))} = \frac{\pi(x,y)\pi(y'\mid x)\pi(x'\mid y')}{\pi(x',y')\pi(y\mid x')\pi(x\mid y)} = \frac{\pi(y)\pi(y'\mid x)}{\pi(y')\pi(y\mid x')} \neq 1$$

Therefore, it is not reversible.

2. First, the kernel expression:

$$K(x,x') = \int \pi(y'\mid x)\pi(x'\mid y')dy'$$

Now, let's show that it is π_X -reversible.

$$\pi(x')K(x',x) = \pi(x') \int \pi(y \mid x')\pi(x \mid y)dy = \int \pi(x')\frac{\pi(y,x')}{\pi(x')}\pi(x \mid y)dy =$$

$$= \int \pi(y,x')\pi(x \mid y)dy = \int \pi(y,x')\frac{\pi(x,y)}{\pi(y)}dy = \int \pi(x,y)\frac{\pi(x',y)}{\pi(y)}dy =$$

$$= \pi(x) \int \pi(y \mid x)\pi(x' \mid y)dy = \pi(x)K(x,x')$$

3. First, the kernel expression is:

$$K^{R}((x,y),(x',y')) = \pi(y'\mid x)\pi(x'\mid y')0.5 + \pi(x'\mid y)\pi(y'\mid x')0.5$$

Note that it is half the density of sampling first from y plus half the density of sampling first from x.

Now, let's show that it is reversible:

$$\frac{\pi(x,y)[\pi(y'\mid x)\pi(x'\mid y')0.5 + \pi(x'\mid y)\pi(y'\mid x')0.5]}{\pi(x',y')[\pi(y\mid x')\pi(x\mid y')0.5 + \pi(x\mid y')\pi(y\mid x)0.5]} =$$

$$= \frac{\frac{\pi(y'\mid x)}{\pi(y')} + \frac{\pi(x'\mid y)}{\pi(x)}}{\frac{\pi(y\mid x')}{\pi(y)} + \frac{\pi(x\mid y')}{\pi(x)}} = 1$$

Exercise 2 (Metropolis-within-Gibbs)

1. Note that:

$$\alpha(X_1 \mid X_1^{(t-1)}, X_2^{(t-2)}) = \min \left\{ 1, \frac{\pi(X_1', X_2^{(t-1)}) \pi(X_1^{(t-1)} \mid X_2^{(t-1)})}{\pi(X_1^{(t-1)}, X_2^{(t-1)}) \pi(X_1' \mid X_2^{(t-1)})} \right\} = \min\{1, 1\}$$

Therefore, we get a systematic scan Gibbs sampler, where one samples $X_1^t \sim \pi(\cdot \mid X_2^{(t-1)})$, then we accept, since $\alpha = 1$, and finally sample $X_2^t \sim \pi(\cdot \mid X_1^{(t)})$.

2. First, let's write the kernel. Since we only accept or reject the variabel X_1 , the kernel is the M-H kernel multiplied by the probability density function of $\pi_{X_2|X_1}(X_2 \mid X_1)$. Let $X_1^t, X_2^t = Y_1, Y_2$:

$$K((x_1,x_2),(y_1,y_2)) = (q(y_1 \mid x_1,x_2)\alpha(y_1 \mid x_1,x_2)) + (1-a(y_1 \mid x_1,x_2))\delta_{y_1}(x_1)\pi_{(Y_2\mid Y_1)}(y_2 \mid y_1)$$

Note that $\alpha = 1$. With that, we show that the kernel is invarant:

$$\int \int K((x_1, x_2), (y_1, y_2)) \pi(x_1, x_2) dx_1 dx_2 = \int \int \pi(y_1 \mid x_2) \pi(y_2 \mid y_1) \pi(x_1, x_2) dx_1 dx_2 =$$

$$= \int \pi(y_1 \mid x_2) \pi(y_2 \mid y_1) \pi(x_2) dx_2 = \int \pi(y_1, x_2) \pi(y_2 \mid y_1) dx_2 = \pi(y_1, y_2)$$

Exercise 3 (Metropolis-Hastings and Gibbs Sampler)

1. Let's show that the chain is reversible. If x=y, it is trivially reversible. If $x\neq y$, then:

$$T(x,y)\pi(x) = \alpha(x,y)q(x,y)\pi(x) = \frac{\gamma(x,y)}{\pi(x)}\pi(x) = \gamma(y,x) =$$
$$= \alpha(y,x)q(y,x)\pi(y) = T(y,x)\pi(y)$$