Day 2, Session 1: Graphs

Brian D. Williamson

EPI/BIOST Bootcamp 2016

26 September 2016

Graphs

- Why do we use graphs?
 - Describe relationships in the data
 - Visualize functions
- Graphs are very useful in exploratory analyses, or for description

Example data analysis

- Data on 30 patients with leprosy
- Counts of leprosy bacilli measured at baseline and at a further time point
- Three treatments and an indicator of severity of the leprosy

Common types of graphs in data analysis

(c) Scatterplot

What do graphs tell us?

- Histograms: summaries of one-dimensional distributions
 - Counts or frequencies of each occurrence
- Boxplots: summaries of two-dimensional distributions
 - measures of center (typically median)
 - measures of spread (typically inter-quartile range)
- Scatterplots: summaries of two-dimensional distributions
 - Can visualize the whole data
 - Trends in two or more dimensions by using different colors/shapes for strata

Linear trends

- A common way to describe data (think linear regression!)
- Lines are easy to compute
 - Only need a point and a slope
 - Two common forms of linear equations

Slope-intercept form

- y = mx + b
- Slope: m
 - Rate of change, i.e. how does y change with each one unit change in x?
 - Example: speed, the distance traveled with each unit change in time
- Intercept: *b*
 - The point where the line crosses the y-axis

Slope-intercept form: determining a line

Slope-intercept form: determining a line

Point-slope form

•
$$y - y_1 = m(x - x_1)$$

- Point: (x_1, y_1)
 - A point on the line (can be any point! Even the intercept!)
- Slope: m
 - Same as in slope-intercept form!
- Example: y 1 = 2(x 0) is the same as y = 2x + 1 in slope-intercept form!

Exercise: slopes and intercepts

- 1. What is the slope of the line y = 2x 3?
- 2. What is the *y*-intercept of the line y = 2x 3?
- 3. What is the slope of the line y + 1 = 2(x 1)?
- 4. What point did we use to create the line y + 1 = 2(x 1)?

Solution: slopes and intercepts

- 1. The equation is in slope-intercept form, so the slope is 2
- 2. The equation is in slope-intercept form, so the intercept is -3
- 3. The equation is in point-slope form, so the slope is 2
- 4. The equation is in point-slope form, so the point is (1,-1)

Creating a graph using an equation

- Steps:
 - 1. Draw axes
 - 2. Place a point at the y-intercept (slope-intercept form) or at the starting point (point-slope form)
 - 3. Increase *x* by one unit, increase *y* by *m* units, place a new point
 - 4. Draw a line between the old point and the new point!

Example: creating a graph using an equation

- Equation y = 2x 3
- Slope: 2, Intercept: −3
- 1. Draw a point at (0, -3)

Example: creating a graph using an equation

- Equation y = 2x 3
- Slope: 2, Intercept: -3
- 2. Increase x to 1, increase y by 2. New point at (1, -1)

Example: creating a graph using an equation

- Equation y = 2x 3
- Slope: 2, Intercept: −3
- 3. Draw a line!

Reading an equation from a graph

- Two options:
 - 1. Slope-intercept form
 - 1.1 Find the *y*—intercept
 - 1.2 Find the slope: how much does y change with each 1 unit difference in x?
 - 2. Point-slope form
 - 2.1 Choose any point on the line
 - 2.2 Find the slope: how much does y change with each 1 unit difference in x?

1. Find the intercept. Here it is -2

2. Increase x by one to find the slope. The y value at x = 1 is 1, so y changed by 3

3. Slope-intercept: y = 3x - 2, point-slope: y + 2 = 3(x - 0)

Exercise: matching graphs to equations

1. Which is the graph of y = 2x - 3?

Solution: matching graphs to equations

```
(a) Intercept: -2, slope: 1
```

(b) Intercept: -3, slope: 3

(c) Intercept: 1, slope: 1

(d) Intercept: -3, slope: $2 \checkmark$

Quadratics

- Sometimes we believe a trend is higher order than linear
- Higher order terms allow more flexibility in modeling
- Quadratics are the natural next step from linear terms, and are shaped like parabolas

Defining a quadratic

- Standard form: $y = ax^2 + bx + c$
- a determines the direction of the tails and the degree of curvature
 - a > 0 means the curve faces up (convex)
 - a < 0 means the curve faces down (concave)
 - large |a| > 1 means steep slope
 - 0 < |a| < 1 means shallow slope
- b and a together determine the x-coordinate of the vertex: $x = -\frac{b}{2a}$
- c controls the height

Example: quadratics

•
$$y = x^2 + 2$$

•
$$a = 1$$
, $b = 0$, $c = 2$

• Not too steep, convex, and vertex is at (0,2)

Example: quadratics

•
$$y = -2x^2 + 3x + 2$$

•
$$a = -2$$
, $b = 3$, $c = 2$

• Steeper than before, concave, and vertex is at (3/4,2)

Exercise: quadratics

1. Which is a plausible plot of $x^2 - x + 2$?
(a) (b)

Solution: quadratics

- 1. a = 1, b = -1, c = 2
 - We are looking for a plot where the vertex has y-coordinate 2
 - This rules out (b) and (c)
 - Of the two remaining, (d) is concave, so it has a < 0
 - (a) is the solution!

Transforming graphs

- Once we have one graph, how do we get another?
- Two main types of transformations: shifting and stretching

Shifting graphs

- Sometimes we want to change the interpretation of the intercept
- Once we know the properties of a graph, shifting doesn't change much!
- Shift left: add to x
- Shift right: subtract from x
- Shift up: add to intercept
- Shift down: subtract from intercept
- Why? Adding to x: smaller x's now have the same y.
 Subtracting from x: larger x's now have the same y.

Example: shifting graphs

Stretching graphs

- Make the graph steeper, or shrink it: make |m| larger in a linear equation, and make |a| larger in a quadratic equation
- Make the graph shallower, or stretch it: make |m| smaller in a linear equation, and make |a| smaller in a quadratic equation

Example: stretching graphs

Exercise: transforming graphs

- 1. How do we shift the graph of y = 2x + 3 one unit right?
- 2. How do we transform the graph of y = 2x + 3 to have a shallower slope?
- 3. How do we transform the graph of y = 2x + 3 to have a slope of 1 and a y-intercept of 4?

Solution: shifting graphs

- 1. Subtract 1 from x! New equation: y = 2(x 1) + 3
- 2. Multiply by a number less than 1; for example, take x/2. This gives new equation y = 2(x/2) + 3, or y = x + 3
- 3. To get a slope of 1, divide x by 2. To make the y-intercept 4, shift left by adding 1/2 to x. New equation: y = 2 * (x/2 + 1/2) + 3, or y = x + 4

Summary

- Graphs are useful tools to describe relationships in data or visualize functions
- Histograms, boxplots, and scatterplots are common and useful types of graphs
- Linear trends can be described in:
 - Slope-intercept form y = mx + b
 - Point-slope form $y y_1 = m(x x_1)$
- Reading an equation from a graph involves finding the intercept and calculating the slope
- Graphs can be transformed by adding/subtracting from x, or multiplying/dividing x