Probability and Statistics Mock Exam 2020

1 ((20pt)	Fill	in	the	hl	an	ks.
1.	(ZUDL)	1 1111	ш	uic	$\mathbf{v}_{\mathbf{I}}$	an	NO.

- (1) A and B are two events with P(A) = 0.4, $P(A \cup B) = 0.7$, then $P(B|\overline{A}) = \underline{\hspace{1cm}}$.
- (2) Three people are assigned randomly and independently into 4 rooms numbered A–D. Then the expected number of people in room A is ______ and the probability that room A has exactly 2 people is ______.
- (3) The PDF of X which has the standard normal distribution is $\varphi(x) = \underline{\hspace{1cm}}$
- (4) Suppose that random variables X and Y are independent, $X \sim Exp(1)$ and $Y \sim U[0,1]$. Then the joint PDF of (X,Y) is f(x,y) =______, and Var(X-Y) =_____.
- (5) Of the following families of distributions: binomial, Poisson, geometric, uniform, normal, and exponential, the _____ and ____ distributions are completely additive. A distribution family is additive if X and Y are independent and belong to this distribution family, then X + Y also belongs to this distribution family.
- (6) For an estimator (actually a sequence of estimators) to be practically usable, if must be ______. For any distribution, the unbiased and most efficient estimator of population expectation is ______.
 - **2.** (10pt) Suppose that random variables X and Y are independent, $X \sim N(0,1)$ and $Y \sim U[0,1]$. Let

$$Z = \left\{ \begin{array}{ll} X, & \text{if } Y < 0.4, \\ 2X - 1, & \text{otherwise.} \end{array} \right.$$

Find the CDF and PDF of Z. (You can simply write the CDF and PDF of the standard normal distribution by $\Phi(\cdot)$ and $\varphi(\cdot)$, respectively.)

3. (12pt) The PDF of X is given by

$$f(x) = \left\{ \begin{array}{ll} 1 - |x|, & \text{if } -1 < x < 1, \\ 0, & \text{otherwise.} \end{array} \right.$$

Let $Y = \cos(\frac{\pi X}{2})$. Find the PDF of Y.

- **4.** (10pt) Suppose that random point (X,Y) is uniformly distributed in the disk $x^2 + y^2 < 9$.
- (1) Find the conditional PDF $f_{Y|X}(y|x)$.
- (2) Determine P(Y > 0|X = 2).
- **5.** (14pt) The joint PDF of X and Y is given by

$$f(x,y) = \left\{ \begin{array}{ll} x+y, & \text{if } 0 < x < 1 \text{ and } 0 < y < 1, \\ 0, & \text{otherwise.} \end{array} \right.$$

Find

- (1) E(X) and E(Y);
- (2) Var(X) and Var(Y);
- $(3) \operatorname{Cov}(X, Y).$
- **6.** (10pt) Suppose that random variables X, Y and Z have E(X) = E(Y) = 1, E(Z) = -1, Var(X) = Var(Y) = Var(Z) = 1, $\rho_{X,Y} = 0$, $\rho_{X,Z} = \frac{1}{2}$, $\rho_{Y,Z} = -\frac{1}{2}$. Let W = X Y + Z. Find E(W) and Var(W).
- 7. (12pt) An insurance company runs a certain disease insurance policy, which has 10,000 policy holders. Each year, each policy holder pays the company a premium of \$170, and if he gets the disease in that year, he receives from the company a compensation of \$20,000. The probability for a person to get the disease in a year is 0.006. Using the central limit theorem, for this company approximately evaluate
 - (1) the probability that the annual profit of this policy is at least \$200,000;
 - (2) the probability that the annual profit of this policy is positive.
 - **8.** (12pt) Let X_1, \dots, X_n be a random sample from B(100, p).
 - (1) Derive the maximum likelihood estimator of p.
 - (2) Find the bias of the estimator you just derived. Is it unbiased?