

Inteligência Artificial

Busca Local

Prof. Dr^a. Andreza Sartori <u>asartori@furb.br</u>

Documentos Consultados/Recomendados

- KLEIN, Dan; ABBEEL, Pieter. Intro to AI. UC Berkeley. Disponível em: http://ai.berkeley.edu.
- LIMA, Edirlei Soares. Inteligência Artificial. PUC-Rio, 2015.
- NOGUEIRA, Bruno Magalhães. Algoritmos de busca Parte 4: Busca local e algoritmo Hill Climbing (subida de encosta). LIA (Artificial Intelligence Laboratory) - UFMS. Acesso em: https://www.youtube.com/watch?v=OD012QkZpCA
- RUSSELL, Stuart J. (Stuart Jonathan); NORVIG, Peter. Inteligência artificial. Rio de Janeiro: Campus, 2013. 1021 p, il.
- ZADROZNY, Bianca. Inteligência Artificial. Instituto de Computação.
 Universidade Federal Fluminense (UFF) http://www.ic.uff.br/~bianca/ia

Conteúdo Programático

Unidade 1: Fundamentos de Inteligência Artificial

Unidade 2: Busca

Unidade 3: Sistemas Baseados em Conhecimento

Unidade 4: Redes Neurais Artificiais

Unidade 5: Aplicações de Inteligência Artificial

Conteúdo Programático

Unidade 1: Fundamentos de Inteligência Artificial

Unidade 2: Busca

Unidade 3: Sistemas Baseados em Conhecimento

Unidade 4: Redes Neurais Artificiais

Unidade 5: Aplicações de Inteligência Artificial

Conteúdo Programático

Unidade 1: Fundamentos de Inteligência Artificial

Unidade 2: Busca

- 2.1. Resolução de Problemas por meio de busca
- 2.2. Busca Cega ou Exaustiva
- 2.3. Busca Heurística
- 2.4. Busca Competitiva
- 2.5. Busca Local
 - 2.5.1 Algoritmos Genéticos (AG)

Relembrando: Problema de Busca

Relembrando: Definição de um Problema

- Estado Inicial: Estado inicial do agente.
 - Ex: Em(Arad)
- Estado Objetivo (Estado Final): Estado buscado pelo agente.
 - Ex: Em(Bucharest)
- Ações Possíveis (Função Sucessor): Conjunto de ações que o agente pode executar.
 - Ex: Ir(Cidade, PróximaCidade)
- Espaço de Estados: Conjunto de estados que podem ser atingidos a partir do estado inicial.
 - Ex: Mapa da Romênia.
- Custo de Caminho: Custo numérico de cada caminho.
 - Ex: Distância em KM entre as cidades.

Relembrando: Solução para um Problema

- A solução para um problema é um caminho desde o estado inicial até o estado objetivo (estado final).
- A qualidade da solução é medida pela função de custo de caminho, isto é, a solução que tiver menor custo de caminho entre todas as soluções.

Medida de Desempenho do Algoritmo de Busca

- Uma estratégia de busca é definida pela escolha da ordem da expansão de nós
- Estratégias são avaliadas de acordo com os seguintes critérios:
 - Completeza: o algoritmo sempre encontra a solução se ela existe?
 - Otimização (Custo de Caminho): a estratégia encontra a solução ótima? - Qualidade da solução
 - Para passos com igual custo, é aquela em menor profundidade na árvore de busca

Medida de Desempenho do Algoritmo de Busca

- Uma estratégia de busca é definida pela escolha da ordem da expansão de nós
- Estratégias são avaliadas de acordo com os seguintes critérios:
 - Complexidade De Tempo (Custo de Busca): quanto tempo ele leva para encontrar a solução? - Número de nós gerados
 - Complexidade De Espaço (Custo de Busca): quanta memória é necessária para executar a busca? - Número máximo de nós na memória.

Custo Total

Custo do Caminho + Custo de Busca.

Métodos de Busca

Busca Cega ou Exaustiva:

 Não tem nenhuma informação adicional sobre os estados, isto é, não sabe qual o melhor nó da fronteira a ser expandido. Apenas distingue o estado objetivo dos não objetivos.

Busca Heurística:

 Ou busca com informação, estima qual o melhor nó da fronteira a ser expandido baseado em funções heurísticas.

Busca Competitiva:

Considera que há oponentes hostis e imprevisíveis. Ex: Jogos

Busca Local:

- Operam em um único estado e movem-se para a vizinhança deste estado.
- Algorítmos Genéticos:
 - Variante de Busca Local em que é mantida uma grande população de estados. Novos estados são gerados por mutação e por crossover, que combina pares de estados da população.

Algoritmos de Busca Cega ou Exaustiva

As estratégias de busca sem informação se distinguem pela ordem em que os nós são expandidos.

- Busca em extensão/largura;
- Busca em profundidade;
- 3. Busca por aprofundamento iterativo;
- Busca de custo uniforme.

Métodos de Busca

Busca Cega ou Exaustiva:

 Não tem nenhuma informação adicional sobre os estados, isto é, não sabe qual o melhor nó da fronteira a ser expandido. Apenas distingue o estado objetivo dos não objetivos.

Busca Heurística:

 Ou busca com informação, estima qual o melhor nó da fronteira a ser expandido baseado em funções heurísticas.

Busca Competitiva:

Considera que há oponentes hostis e imprevisíveis. Ex: Jogos

Busca Local:

- Operam em um único estado e movem-se para a vizinhança deste estado.
- Algorítmos Genéticos:
 - Variante de Busca Local em que é mantida uma grande população de estados. Novos estados são gerados por mutação e por crossover, que combina pares de estados da população.

Busca Heurística

- Algoritmos de Busca Heurística
 - Busca Gulosa
 - Avalia os nós usando apenas a função heurística:

$$f(n) = h(n)$$

- A*
- Combina o custo do caminho g(n) com o valor da heurística h(n)

$$f(n) = g(n) + h(n)$$

Até aqui...

- Problemas sem interação com outro agente.
- O agente possui total controle sobre suas ações e sobre o efeito de suas ações.
- Muitas vezes encontrar a solução ótima é factível.

Jogos X Busca

O oponente é "imprevisível"

O agente tem que levar em consideração todos os movimentos possíveis do oponente.

Métodos de Busca

Busca Cega ou Exaustiva:

 Não tem nenhuma informação adicional sobre os estados, isto é, não sabe qual o melhor nó da fronteira a ser expandido. Apenas distingue o estado objetivo dos não objetivos.

Busca Heurística:

 Ou busca com informação, estima qual o melhor nó da fronteira a ser expandido baseado em funções heurísticas.

Busca Competitiva:

Considera que há oponentes hostis e imprevisíveis. Ex: Jogos

Busca Local:

- Operam em um único estado e movem-se para a vizinhança deste estado.
- Algorítmos Genéticos:
 - Variante de Busca Local em que é mantida uma grande população de estados. Novos estados são gerados por mutação e por crossover, que combina pares de estados da população.

Decisões Ótimas

- Considerando jogos com 2 jogadores:
- MAX e MIN
 - MAX faz o primeiro movimento, tentando maximizar, escolher os melhores valores para ele mesmo.
 - O MIN (oponente) vai tentar escolher o pior valor para aquele jogador MAX.

Busca Competitiva

- Algoritmos de Busca Competitiva
 - Algoritmo Minimax
 - Poda alfa-beta
 - Jogos Estocásticos

Minimax

- Melhor estratégia para jogos determinísticos
- Ideia: escolher a jogada com o melhor retorno possível supondo que o oponente também vai fazer a melhor jogada possível
- Ex: Jogo simples, cada jogador faz um movimento

- Algoritmo minimax: número de estados do jogo é exponencial em relação ao número de movimentos
- Poda α-β:
 - calcular a decisão correta sem examinar todos os nós da árvore,
 - retorna o mesmo que minimax, porém sem percorrer todos os estados.

Jogos Estocásticos

- Muitos jogos refletem imprevisibilidade, incluindo o elemento aleatório proveniente de jogo de dados, sorteio de cartas, etc. (Jogos de azar)
- Não-determinismo é inerente em ambientes reais.
 - O estudo de algoritmos para jogos com elemento aleatório é um passo em direção a algoritmos que podem ser aplicados no mundo real.
- Uma árvore de um jogo não-determinístico deve incluir nós de acaso além de nós minimax.

Jogos Estocásticos: EXPECTMINMAX

- Ramificações que levam a nós de acaso denotam "jogadas de dados possíveis" (anotadas com a probabilidade de cada mudança de estado).
 - Se faz a média ponderada dos valores ao acaso para escolher o valor de max.

Métodos de Busca

Busca Cega ou Exaustiva:

 Não tem nenhuma informação adicional sobre os estados, isto é, não sabe qual o melhor nó da fronteira a ser expandido. Apenas distingue o estado objetivo dos não objetivos.

Busca Heurística:

 Ou busca com informação, estima qual o melhor nó da fronteira a ser expandido baseado em funções heurísticas.

Busca Competitiva:

Considera que há oponentes hostis e imprevisíveis. Ex: Jogos

Busca Local:

- Operam em um único estado e movem-se para a vizinhança deste estado.
- Algoritmos Genéticos:
 - Variante de Busca Local em que é mantida uma grande população de estados. Novos estados são gerados por mutação e por crossover, que combina pares de estados da população.

Busca Local

- Em muitos problemas o caminho para a solução é irrelevante.
 - Queremos apenas encontrar o estado objetivo, não importando a sequência de ações.
 - Espaço de estados = conjunto de configurações completas.
 - Queremos encontrar a melhor configuração.
 - Neste caso podemos usar algoritmos de busca local.
 - Mantêm apenas o estado atual, sem a necessidade de manter a árvore de busca.
- Se o caminho para a solução não importa, podemos utilizar um algoritmo de busca local.

Busca Local: Exemplo

- Em muitos problemas o caminho para a solução é irrelevante.
 - Jogo das n-rainhas: o que importa é a configuração final e não a ordem em que as rainhas foram posicionadas.

LIMA, Edirlei S. Inteligência Artificial. PUC-Rio, 2015.

Busca Local: Exemplo

- Em muitos problemas o caminho para a solução é irrelevante.
 - Jogo das n-rainhas: o que importa é a configuração final e não a ordem em que as rainhas foram posicionadas.

Outros exemplos:

- Projeto de Circuitos eletrônicos;
- Layout de instalações industriais;
- Escalonamento de jornadas de trabalho;
- Otimização de redes de telecomunicações.

Exemplo: *n*-rainhas

• Colocar n rainhas em um tabuleiro $n \times n$, sendo que cada linha coluna ou diagonal pode ter apenas uma rainha.

Busca Local

Principais Algoritmos:

- Hill Climbing (Busca de Subida de Encosta)
- Simulated Annealing (Busca de Têmpera Simulada)
- Local Beam (Busca de Feixe Local)
- Genetic Algorithms (Algoritmos Genéticos)

Busca de Subida de Encosta

• "É como tentar alcançar o cume do Monte Everest em meio a um nevoeiro denso durante uma crise de amnésia" (Russel, 2013 p. 107)

Busca de Subida de Encosta

função SUBIDA-DE-ENCOSTA(problema) retorna um estado que é um máximo local

corrente ← CRIAR-NÓ(ESTADO-INICIAL[problema]) repita

vizinho ← um sucessor de *corrente* com valor mais alto
se VALOR[*vizinho*] ≤ VALOR[*corrente*] então retornar ESTADO[*corrente*]
corrente ← vizinho

- Consiste de um loop que continuamente move-se para os estados que aumentam o valor em sua função de avaliação (i.e., busco o estado mais promissor que o estado atual).
- Termina quando encontra um "pico" (ou vale) em que nenhum vizinho tem valor maior.
- Também é conhecido como Gradiente Descendente e a Função de Avaliação é vista como custo

a melhor qualidade:

Escolhe o primeiro melhor

Escolhe um entre todos

de forma aleatória

Busca de Subida de Encosta

- Se a elevação corresponder ao custo, o objetivo é encontrar o vale mais baixo = mínimo global.
- Se a elevação corresponder a uma função objetivo, então o objetivo é encontrar o vale mais alto = máximo global.
- O algoritmo consiste em uma repetição que percorre o espaço de estados no sentido do valor crescente (ou decrescente).

 Problema: dependendo do estado inicial pode ficar presa em máximos (ou mínimos) locais.

Responda Rápido

Considere o Algoritmo de Busca de Subida de Encosta. Se iniciar a partir da posição **X**, terminaremos em:

Responda Rápido: Resposta

Considere o Algoritmo de Busca de Subida de Encosta. Se iniciar a partir da posição **X**, terminaremos em:

Responda Rápido

Considere o Algoritmo de Busca de Subida de Encosta. Se iniciar a partir da posição **Y**, terminaremos em:

Responda Rápido: Resposta

Considere o Algoritmo de Busca de Subida de Encosta. Se iniciar a partir da posição **Y**, terminaremos em:

Responda Rápido

Considere o Algoritmo de Busca de Subida de Encosta. Se iniciar a partir da posição **Z**, terminaremos em:

Responda Rápido: Resposta

Considere o Algoritmo de Busca de Subida de Encosta. Se iniciar a partir da posição **Z**, terminaremos em:

- Não mantém uma árvore de busca, o nó atual só registra o estado atual e o valor da função objetivo.
- Não examina antecipadamente valores de estados além dos valores dos vizinhos imediatos do estado atual.
- É um **algoritmo guloso** escolhe sempre o primeiro melhor vizinho para progredir na busca.
 - Busca em profundidade + função de avaliação/heurística h(n) não considera a função de custo g(n)
- Essa abordagem pode ter bons resultados em alguns problemas. Sendo capaz de progredir rapidamente para a solução problema.

Configuração final

1	2	3
4	5	6
7	8	

Cálculo da distância Manhattan

Distância Manhattan ou máxima, "city block"

Dado dois vetores X e Y, esta métrica é definida como o somatória dos módulos das diferenças:

$$d(X,Y) = (\sum_{i=1}^{p} |X_i - Y_i|^1)^1 =$$

$$|X_1 - Y_1| + |X_2 - Y_2| + \dots + |X_p - Y_p|$$

$$d(x,y)=(|linha(x) - linha(y)| + |coluna(x) - coluna(y)|)$$

Os caminhos vermelho, amarelo e azul têm o mesmo menor comprimento de caminho igual a 12.

Na distância euclidiana, a linha verde tem comprimento aproximado de 8.49.

Distância Manhattan ou máxima, "city block"

$$d(X,Y) = (\sum_{i=1}^{p} |X_i - Y_i|^1)^1 =$$

$$|X_1 - Y_1| + |X_2 - Y_2| + \dots + |X_p - Y_p|$$

d(x,y)=(|linha(x) - linha(y)| + |coluna(x) - coluna(y)|)

Exemplo:

•
$$d(x,y) = |1-5| + |4-2|$$

•
$$d(x,y) = 4 + 2$$

•
$$d(x,y) = 6$$

Configuração final

1	2	3
4	5	6
7	8	

Exemplo - Cálculo da distância Manhattan do 8:

Posição esperada = (2,3) Posição atual = (2,2)

$$|2-2| + |3-2|$$

= $0+1=1$

Fonte: NOGUEIRA, Bruno Magalhães.

Fonte: NOGUEIRA, Bruno Magalhães. LIA - UFMS

Subida de encosta: Variantes

- Subida de encosta estocástica:
 - nem sempre escolhe o melhor vizinho (ou o filho mais promissor);
 - escolhe de forma aleatória os movimentos.
- Subida de encosta pela primeira escolha:
 - escolhe o primeiro bom vizinho que encontrar;
 - implementa a subida de encosta estocástica gerando sucessores ao acaso até ser gerado um sucessor melhor que o estado corrente.
 - essa é uma boa estratégia quando um estado tem muitos sucessores (por exemplo, milhares).
- Os algoritmos de subida de encosta descritos até agora são incompletos — com frequência, eles deixam de encontrar um objetivo que existe porque ficam presos em máximos locais.

Subida de encosta: Variantes

- Subida de encosta com reinício aleatório
 - adota o ditado: "Se não tiver sucesso na primeira vez, continue tentando."
 - conduz uma série de buscas de subida de encosta a partir de estados iniciais gerados (k) de forma aleatória, até encontrar um objetivo ou até que não exista progresso significativo.
 - o melhor de todos os resultados da busca é armazenado.

Busca Local

Vantagens:

- Ocupam pouquíssima memória (normalmente constante).
- Podem encontrar soluções razoáveis em grandes ou infinitos espaços de estados.

São úteis para resolver problemas de otimização.

 Nos quais o objetivo é encontrar o melhor estado de acordo com uma função objetivo.