Package 'Ppurple'

January 23, 2018

Title P(robabilistic)PU(rity)PL(oidy)E(stimation) Operations
Version 0.2.0
Description Purity and ploidy inference from WGS, panel, WES from total read density and hets.
Depends R (>= 3.1.0), GenomicRanges (>= 1.18), gUtils, bamUtils, data.table (>= 1.9)
Imports IRanges (>= 2.0), S4Vectors (>= 0.4), GenomeInfoDb (>= 1.2), parallel, BiocGenerics(>= 0.12), methods, Matrix, stringr
Suggests BSgenome.Hsapiens.UCSC.hg19,
testthat,
rtracklayer
License GPL-2
BugReports http://github.com/mskilab/Ppurple LazyData true RoxygenNote 6.0.1.9000
R topics documented:
hapseg Ifactorial Ilnorm Ilpois log.sum.exp ppem ppemgrid ppurple ssegment
Index

2 Ifactorial

hapseg

Internal function doing simple implementation of Carter, Getz 2011 hapseg

Description

Phases grouped (i.e. presegmented) hets and computes cluster centers (lambdas) and expected sufficient statistics for joint poisson per group (i.e. segment)

Internal function

Usage

```
hapseg(hets)
```

Author(s)

Marcin Imielinski

lfactorial

Internal function doing approximate log factorial

Description

Internal function

Usage

```
lfactorial(x)
```

Arguments

Х

integer vector for whiich to compute approximate log factorial

Value

log factorial

Author(s)

Ilnorm 3

llnorm

Internal function doing product of normal log likelihoods

Description

Internal function

Usage

```
llnorm(x, sos, n, mu, sd)
```

Author(s)

Marcin Imielinski

llpois

Internal function doing product of poisson log likelihoods

Description

Internal function

Usage

```
llpois(slfx, sx, n, lambda)
```

Arguments

slfx numeric vector of sum log factorials of data

sx numeric vector of sum of data

n numeric vector of data ns

lambda numeric vector of lambda parameters

Value

log poisson joint likelihood

Author(s)

4 ppem

log.sum.exp

Internal function doing log sum exp

Description

Internal function

Usage

```
## S3 method for class 'sum.exp'
log(x)
```

Arguments

Х

vector of log probabilities

Value

log.sum.exp of input

Author(s)

Marcin Imielinski

ppem

ppem

Description

Utility function taking in segs = grid of total copy number segments x alpha x tau x $k \rightarrow y$, mu, sd, sos, sos.k, nbins segs.h = data.table storing grid of "high" and "low" haplotype segments x alpha x tau x $k \rightarrow y$.high, y.low, high.slfx, high.sx, low.slfx, low.sx, nbins

and returns locally optimal solution with tolerance <= tol or after max_iter iterations initialized with sd0 and copy number prior with tau.sd = 1 the output is list with fields, each containing the following data.tables p = posterior probability of purity ploidy combo alpha tau segs = prid of segments with final output segs = prid of haplotype segments with final output prid across total copy states for each alpha tau prid across haplotype specific copy states for each alpha tau

Usage

```
ppem(segs.grid, segs = NULL, segs.h = NULL,
  sd0 = segs.grid[!duplicated(j), sqrt(var(y))], sd0.k = 3,
  use.tot = TRUE, use.het = TRUE, use.uniform = FALSE, tol = 1,
  fix.sd = NULL, max_iter = 100, verbose = FALSE)
```

Author(s)

ppemgrid 5

ppemgrid

ppemgrid internal function

Description

Given data.tlable of segs and segs.h populated with summary stats sets up grid across purities and ploidies and K copy states and deploys ppem on it returns posterior probability across purities x ploidy combos given data and optimal params

Usage

```
ppemgrid(purities = NULL, ploidies = NULL, pp = NULL, segs, segs.h,
  rho = 1, rho.h = 1, k.dist = 3, K = 20, verbose = TRUE)
```

Author(s)

Marcin Imielinski

ppurple

Probabilistic purity ploidy estimation

Description

Computes posterior probability of purity ploidy for data with coverage cov (granges with value \$y specifying coverage) hets with \$talt, \$tref, \$nref, \$nalt specifying tumor and normal alt and ref allelic counts, and (optional) segments via EM algorithm.

If segments not specified, then it is inferred from the segmentation of cov via CBS (using DNA copy)

EM begins with initial (user specified) grid of values and then refines at 10 fold (or value of refine arg, >1) around the modes, meaning that it reruns the calculation with a finer grid completely surrounding the modes to output the final solution which is a data.table mapping \$purity and \$ploidy values to a posterior probability \$p

Usage

```
ppurpl(cov, hets = NULL, segs = NULL, purities = seq(0, 1, 0.1),
  ploidies = seq(1, 5, 0.2), refine = 10, K = 20, verbose = TRUE,
  min.p = 1e-04, mc.cores = 1, numchunks = mc.cores)
```

Author(s)

6 ssegment

ssegment

Internal function utilizing DNAcopy to segment a coverage profile

Description

Internal function utilizing DNAcopy to segment a coverage profile

Usage

```
ssegment (tcov)
```

Arguments

tcov

GRanges of binned genome-wide coverage

Value

GRanges of genomewise segments of piecewise constant coverage

Author(s)

Index

```
hapseg, 2

lfactorial, 2

llnorm, 3

llpois, 3

log.sum.exp, 4

ppem, 4

ppemgrid, 5

ppurpl (ppurple), 5

ppurple, 5

ssegment, 6
```