

Sequence Listing

RECEIVED

THE WILLIAM

<110> ASHKENAZI, AVI J
 BOTSTEIN, DAVID
 DODGE, KELLY H.
 GURNEY, AUSTIN L.
 KIM, KYUNG JIN
 LAWRENCE, DAVID A.
 PITTI, ROBERT
 ROY, MARGARET A
 TUMAS, DANIEL B
 WOOD, WILLIAM I.

- <120> DcR3 Polypeptide, A TNFR Homolog
- <130> P1134R2 REVISED
- <140> US 09/157,289
- <141> 1998-09-18
- <150> US 60/059,288
- <151> 1997-09-18
- <150> US 60/094,640
- <151> 1998-07-30
- <160> 18
- <210> 1
- <211> 300
- <212> PRT
- <213> Homo sapiens
- <400> 1
- Met Arg Ala Leu Glu Gly Pro Gly Leu Ser Leu Leu Cys Leu Val 1 5 10 15
- Leu Ala Leu Pro Ala Leu Leu Pro Val Pro Ala Val Arg Gly Val
 20 25 30
- Ala Glu Thr Pro Thr Tyr Pro Trp Arg Asp Ala Glu Thr Gly Glu 35 40 45
- Arg Leu Val Cys Ala Gln Cys Pro Pro Gly Thr Phe Val Gln Arg
 50 55 60
- Pro Cys Arg Arg Asp Ser Pro Thr Thr Cys Gly Pro Cys Pro Pro 65 70 75
- Arg His Tyr Thr Gln Phe Trp Asn Tyr Leu Glu Arg Cys Arg Tyr 80 85 90

Cys	Asn	Val	Leu	Cys 9.5	Gly	Glu	Arg	Glu	Glu 100	Glu	Ala	Arg	Ala	Cys 105
His	Ala	Thr	His	Asn 110	Arg	Ala	Cys	Arg	Cys 115	Arg	Thr	Gly	Phe	Phe 120
Ala	His	Ala	Gly	Phe 125	Cys	Leu	Glu	His	Ala 130	Ser	Cys	Pro	Pro	Gly 135
Ala	Gly	Val	Ile	Ala 140	Pro	Gly	Thr	Pro	Ser 145	Gln	Asn	Thr	Gln	Cys 150
Gln	Pro	Cys	Pro	Pro 155	Gly	Thr	Phe	Ser	Ala 160	Ser	Ser	Ser	Ser	Ser 165
Glu	Gln	Cys	Gln	Pro 170	His	Arg	Asn	Cys	Thr 175	Ala	Leu	Gly	Leu	Ala 180
Leu	Asn	Val	Pro	Gly 185	Ser	Ser	Ser	His	Asp 190	Thr	Leu	Cys	Thr	Ser 195
Cys	Thr	Gly	Phe	Pro 200	Leu	Ser	Thr	Arg	Val 205	Pro	Gly	Ala	Glu	Glu 210
Cys	Glu	Arg	Ala	Val 215	Ile	Asp	Phe	Val	Ala 220	Phe	Gln	Asp	Ile	Ser 225
Ile	Lys	Arg	Leu	Gln 230	Arg	Leu	Leu	Gln	Ala 235	Leu	Glu	Ala	Pro	Glu 240
Gly	Trp	Gly	Pro	Thr 245	Pro	Arg	Ala	Gly	Arg 250	Ala	Ala	Leu	Gln	Leu 255
Lys	Leu	Arg	Arg	Arg 260	Leu	Thr	Glu	Leu	Leu 265	Gly	Ala	Gln	Asp	Gly 270
Ala	Leu	Leu	Val	Arg 275	Leu	Leu	Gln	Ala	Leu 280	Arg	Val	Ala	Arg	Met 285
Pro	Gly	Leu	Glu	Arg 290	Ser	Val	Arg	Glu	Arg 295	Phe	Leu	Pro	Val	His 300
<210:	` 2													
<211		14												

<212> DNA

<213> Homo sapiens

<220>

<221> Unsure

<222> 1090

<223> Unknown base

.400. 0					
<400> 2 tccgcaggcg	gaccgggggc	aaaggaggtg	gcatgtcggt	caggcacagc	50
agggtcctgt	gtccgcgctg	agccgcgctc	tecetgetee	agcaaggacc	100
atgagggcgc	tggaggggcc	aggcctgtcg	ctgctgtgcc	tggtgttggc	150
gctgcctgcc	ctgctgccgg	tgccggctgt	acgcggagtg	gcagaaacac	200
ccacctaccc	ctggcgggac	gcagagacag	gggagcggct	ggtgtgcgcc	250
cagtgccccc	caggcacctt	tgtgcagcgg	ccgtgccgcc	gagacagccc	300
cacgacgtgt	ggcccgtgtc	caccgcgcca	ctacacgcag	ttctggaact	350
acctggagcg	ctgccgctac	tgcaacgtcc	tctgcgggga	gcgtgaggag	400
gaggcacggg	cttgccacgc	cacccacaac	cgtgcctgcc	gctgccgcac	450
cggcttcttc	gcgcacgctg	gtttctgctt	ggagcacgca	tcgtgtccac	500
ctggtgccgg	cgtgattgcc	ccgggcaccc	ccagccagaa	cacgcagtgc	550
cagccgtgcc	ccccaggcac	cttctcagcc	agcagctcca	gctcagagca	600
gtgccagccc	caccgcaact	gcacggccct	gggcctggcc	ctcaatgtgc	650
caggetette	ctcccatgac	accctgtgca	ccagctgcac	tggcttcccc	700
ctcagcacca	gggtaccagg	agctgaggag	tgtgagcgtg	ccgtcatcga	750
ctttgtggct	ttccaggaca	tctccatcaa	gaggctgcag	cggctgctgc	800
aggccctcga	ggccccggag	ggctggggtc	cgacaccaag	ggcgggccgc	850
gcggccttgc	agctgaagct	gcgtcggcgg	ctcacggagc	tcctgggggc	900
gcaggacggg	gcgctgctgg	tgcggctgct	gcaggcgctg	cgcgtggcca	950
ggatgcccgg	gctggagcgg	agcgtccgtg	agcgcttcct	ccctgtgcac	1000
tgatcctggc	cccctcttat	ttattctaca	tccttggcac	cccacttgca	1050
ctgaaagagg	cttttttta	aatagaagaa	atgaggtttn	ttaaaaaaaa	1100
aaaaaaaaaa	aaaa 1114				

<210> 3 <211> 491 <212> DNA <213> Unknown <220> <223> Unknown organism <220> <221> unsure <222> 62, 73, 86, 98 <223> unknown base <400> 3 gccgagacag ccccacgacg tgtggcccgt gtccaccgcg ccactacacg 50 cagttctgga antaactgga gcnctgccgc tactgnaacg tcctctgngg 100 ggagcgtgag gaggaggcac gggcttgcca cgccacccac aaccgtgcct 150 gccgctgccg caccggcttc ttcgcgcacg ctggtttctg cttggagcac 200 gcatcgtgtc cacctggtgc cggcgtgatt gccccgggca cccccagcca 250 gaacacgcag tgcctagccg tgcccccag gcaccttctc agccagcagc 300 tccagctcag agcagtgcca gccccaccgc aactgcacgg ccctgggcct 350 ggccctcaat gtgccaggct cttcctccca tgacaccctg tgcaccagct 400 gcactggctt ccccctcagc accagggtac caggagctga ggagtgtgag 450 cgtgccgtca tcgactttgt ggctttccag gacatctcca t 491 <210> 4 <211> 73 <212> DNA <213> Unknown <220> <223> Unknown organism <400> 4 gccgagacag ccccacgacg tgtggcccgt gtccaccgcg ccactacacg 50 cattctggaa ctacctggag cgc 73 <210> 5 <211> 271 <212> DNA <213> Unknown <220>

```
<223> Unknown organism
<220>
<221> unsure
<222> 42, 62, 73, 86, 98, 106, 120, 122, 153, 167, 184, 220, 233
<223> unknown base
<400> 5
gccgagacag ccccacgacg tgtggcccgt gtccaccgcg cnactacacg 50
cagttctgga antaactgga genetgeege tactgnaacg teetetgngg 100
ggagcntgag gaggaggcan gngcttgcca cgccacccac aaccgcgcct 150
gengetgeag caceggntte ttegegeacg etgntttetg ettggageae 200
gcatcgtgtc cacctggtgn cggcgtgatt gcnccgggca cccccagcca 250
gaacacgcat gcaaagccgt g 271
<210> 6
<211> 201
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<220>
<221> unsure
<222> 182
<223> unknown base
<400> 6
gcagttctgg aactacctgg agcgctgccg ctactgcaac gtcctctgcg 50
gggagcgtga ggaggaggca cgggcttgcc acgccaccca caaccgtgcc 100
 tgccgctgcc gcaccggctt cttcgcgcac gctggtttct gcttggagca 150
 cgcatcgtgt ccacctggtg ccggcgtgat tnccccgggc acccccagcc 200
 a 201
<210> 7
<211> 277
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
```

```
<220>
<221> unsure
<222> 142
<223> unknown base
<400> 7
gaggggcccc caggagtggt ggccggaggt gtggcagggg tcaggttgct 50
ggtcccagcc ttgcaccctg agctaggaca ccagttcccc tgaccctgtt 100
 etteceteet ggetgeagge acceecagee agaacaegea gneeageegt 150
geceeccagg cacettetea gecageaget ceageteaga geagtgecag 200
ccccaccgca actgcacggc cctgggcctg gccctcaatg tgccaggctc 250
ttcctcccat gacaccctgt gcaccag 277
<210> 8
<211> 199
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<400> 8
gcatcgtgtc cacctggtgc cggcgtgatt gccccgggca cccccagcca 50
gaacacgcag gcctagccgt gcccccagg caccttctca gccagcagct 100
ccageteaga geagtgeeag ecceaeegea actgeaegge eetgggeetg 150
gccctcaatg tgccaggctc ttcctcccat gacaccctgt gcaccagct 199
<210> 9
<211> 226
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<220>
<221> unsure
<222> 4, 9, 12, 165
<223> unknown base
<400> 9
agengtgene encaggeace tteteageea geagtteeag eteagageag 50
```

tgccagcccc accgcaactg cacggccctg ggcctggccc tcaatgtgcc 100 aggetettee teccatgaca egetgtgeac cagetgeact ggetteecec 150 tcagcaccag ggtancagga gctgaggagt gtgagcgtgc cgtcatcgac 200 tttgtggctt tccaggacat ctccat 226 <210> 10 <211> 283 <212> DNA <213> Homo sapiens <220> <221> Unsure <222> 1-283 <223> Unknown organism <220> <221> unsure <222> 27, 64, 140 <223> unknown base <400> 10 cttgtccacc tggtgccggc gtgattnccc gggcaccccc agccagaaca 50 cgcagtgcca gccntcccc caggcacctt ctcagccagc agctccagct 100 cagagcagtg ccagccccac cgcaactgca acgccctggn ctggccctca 150 atgtgccagg ctcttcctcc catgacaccc tgtgcaccag ctgcactggc 200 ttccccctca gcaccagggt accaggagct gaggagtgtg agcgtgccgt 250 catcgacttt gtggctttcc aggacatctc cat 283 <210> 11 <211> 21 <212> DNA <213> Unknown <220> <223> Unknown organism <400> 11 cacgctggtt tctgcttgga g 21 <210> 12 <211> 22

<212> DNA

```
<213> Unknown
<220>
<223> Unknown organism
<400> 12
agctggtgca cagggtgtca tg 22
<210> 13
<211> 53
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<400> 13
cccaggcacc ttctcagcca gccagcagct ccagctcaga gcagtgccag 50
ccc 53
<210> 14
<211> 24
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<400> 14
acacgatgcg tgctccaagc agaa 24
<210> 15
<211> 17
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<400> 15
cttcttcgcg cacgctg 17
<210> 16
<211> 16
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
```

atca		egg o	cacca	ag 16	5									
<210: <211: <212: <213:	> 463 > PR3	Г	apier	ns										
<400		_	1		**- 7				. .		•• 1	a 1	.	0 1
Met 1	Ala	Pro	vaı	A1a 5	vaı	Trp	Ата	Ala	10	Ala	vai	GIY	ьeu	15
Leu	Trp	Ala	Ala	Ala 20	His	Ala	Leu	Pro	Ala 25	Gln	Val	Ala	Phe	Thr 30
Pro	Tyr	Ala	Pro	Glu 35	Pro	Gly	Ser	Thr	Cys 40	Arg	Leu	Arg	Glu	Tyr 45
Tyr	Asp	Gln	Thr	Ala 50	Gln	Met	Cys	Cys	Ser 55	Lys	Cys	Ser	Pro	Gly 60
Gln	His	Ala	Lys	Val 65	Phe	Cys	Thr	Lys	Thr 70	Ser	Asp	Thr	Val	Cys 75
Asp	Ser	Cys	Glu	Asp 80	Ser	Thr	Tyr	Thr	Gln 85	Leu	Trp	Asn	Trp	Val 90
Pro	Glu	Cys	Leu	Ser 95	Cys	Gly	Ser	Arg	Cys 100	Ser	Ser	Asp	Gln	Val 105
Glu	Thr	Gln	Ala	Cys 110	Thr	Arg	Glu	Gln	Asn 115	Arg	Ile	Cys	Thr	Cys 120
Arg	Pro	Gly	Trp	Tyr 125	Cys	Ala	Leu	Ser	Lys 130	Gln	Glu	Gly	Cys	Arg 135
Leu	Cys	Ala	Pro	Leu 140	Arg	Lys	Cys	Arg	Pro 145	Gly	Phe	Gly	Val	Ala 150
Arg	Pro	Gly	Thr	Glu 155	Thr	Ser	Asp	Val	Val 160	Cys	Lys	Pro	Cys	Ala 165
Pro	Gly	Thr	Phe	Ser 170	Asn	Thr	Thr	Ser	Ser 175	Thr	Asp	Ile	Cys	Arg 180
Pro	His	Gln	Ile	Cys 185	Asn	Val	Val	Ala	Ile 190	Pro	Gly	Asn	Ala	Ser 195
Arg	Asp	Ala	Val	Cys 200	Thr	Ser	Thr	Ser	Pro 205	Thr	Arg	Ser	Met	Ala 210

<400> 16

Pro Gly Ala	Val His 215	Leu	Pro	Gln	Pro	Val 220	Ser	Thr	Arg	Ser	Gln 225
His Thr Gln	Pro Thr 230	Pro	Glu	Pro	Ser	Thr 235	Ala	Pro	Ser	Thr	Ser 240
Phe Leu Leu	Pro Met 245	Gly	Pro	Ser	Pro	Pro 250	Ala	Glu	Gly	Ser	Thr 255
Gly Asp Phe	Ala Leu 260	Pro	Val	Gly	Leu	Ile 265	Val	Gly	Val	Thr	Ala 270
Leu Gly Leu	Leu Ile 275	Ile	Gly	Val	Val	Asn 280	Cys	Val	Ile	Met	Thr 285
Gln Val Lys	Lys Lys 290	Pro	Leu	Cys	Leu	Gln 295	Arg	Glu	Ala	Lys	Val 300
Pro His Leu	Pro Ala 305	Asp	Lys	Ala	Arg	Gly 310	Thr	Gln	Gly	Pro	Glu 315
Gln Gln His	Leu Leu 320	Ile	Thr	Ala	Pro	Ser 325	Ser	Ser	Ser	Ser	Ser 330
Leu Glu Ser	Ser Ala 335	Ser	Ala	Leu	Asp	Arg 340	Arg	Ala	Pro	Thr	Arg 345
Asn Gln Pro	Gln Ala 350	Pro	Gly	Val	Glu	Ala 355	Ser	Gly	Ala	Gly	Glu 360
Ala Arg Ala	Ser Thr 365	Gly	Ser	Ser	Asp	Ser 370	Ser	Pro	Gly	Gly	His 375
Gly Thr Gln	Val Asn 380	Val	Thr	Cys	Ile	Val 385	Asn	Val	Cys	Ser	Ser 390
Ser Asp His	Ser Ser 395	Gln	Cys	Ser	Ser	Gln 400	Ala	Ser	Ser	Thr	Met 405
Gly Asp Thr	Asp Ser 410	Ser	Pro	Ser	Glu	Ser 415	Pro	Lys	Asp	Glu	Gln 420
Val Pro Phe	Ser Lys 425	Glu	Glu	Cys	Ala	Phe 430	Arg	Ser	Gln	Leu	Glu 435
Thr Pro Glu	Thr Leu 440	Leu	Gly	Ser	Thr	Glu 445	Glu	Lys	Pro	Leu	Pro 450
Leu Gly Val	Pro Asp 455	Ala	Gly	Met	Lys	Pro 460	Ser				

<210: <211: <212: <213:	> 29 > PR'	Г	apie	ns										
<400 Met		Lys	Leu	Leu 5	Cys	Cys	Ala	Leu	Val 10	Phe	Leu	Asp	Ile	Ser 15
Ile	Lys	Trp	Thr	Thr 20	Gln	Glu	Thr	Phe	Pro 25	Pro	Lys	Tyr	Leu	His 30
Tyr	Asp	Glu	Glu	Thr 35	Ser	His	Gln	Leu	Leu 40	Cys	Asp	Lys	Cys	Pro 45
Pro	Gly	Thr	Tyr	Leu 50	Lys	Gln	His	Cys	Thr 55	Ala	Lys	Trp	Lys	Thr 60
Val	Cys	Ala	Pro	Cys 65	Pro	Asp	His	Tyr	Tyr 70	Thr	Asp	Ser	Trp	His 75
Thr	Ser	Asp	Glu	Cys 80	Leu	Tyr	Cys	Ser	Pro 85	Val	Cys	Lys	Glu	Leu 90
Gln	Tyr	Val	Lys	Gln 95	Glu	Cys	Asn	Arg	Thr 100	His	Asn	Arg	Val	Cys 105
Glu	Cys	Lys	Glu	Gly 110	Arg	Tyr	Leu	Glu	Ile 115	Glu	Phe	Cys	Leu	Lys 120
His	Arg	Ser	Cys	Pro 125	Pro	Gly	Phe	Gly	Val 130	Val	Gln	Ala	Gly	Thr 135
Pro	Glu	Arg	Asn	Thr 140	Val	Cys	Lys	Arg	Cys 145	Pro	Asp	Gly	Phe	Phe 150
Ser	Asn	Glu	Thr	Ser 155	Ser	Lys	Ala	Pro	Cys 160	Arg	Lys	His	Thr	Asn 165
Cys	Ser	Val	Phe	Gly 170	Leu	Leu	Leu	Thr	Gln 175	Lys	Gly	Asn	Ala	Thr 180
His	Asp	Asn	Ile	Cys 185	Ser	Gly	Asn	Ser	Glu 190	Ser	Thr	Gln	Lys	Cys 195
Gly	Ile	Asp	Val	Thr 200	Leu	Cys	Glu	Glu	Ala 205	Phe	Phe	Arg	Phe	Ala 210
Val	Pro	Thr	Lys	Phe 215	Thr	Pro	Asn	Trp	Leu 220	Ser	Val	Leu	Val	Asp 225

Asn	Leu	Pro	Gly	Thr 230	Lys	Val	Asn	Ala	Glu 235	Ser	Val	Glu	Arg	Ile 240
Lys	Arg	Gln	His	Ser 245	Ser	Gln	Glu	Gln	Thr 250	Phe	Gln	Leu	Leu	Lys 255
Leu	Trp	Lys	His	Gln 260	Asn	Lys	Ala	Gln	Asp 265	Ile	Val	Lys	Lys	Ile 270
Ile	Gln	Asp	Ile	Asp 275	Leu	Cys	Glu	Asn	Ser 280	Val	Gln	Arg	His	Ile 285
Gly	His	Ala	Asn	Leu 290	Thr	Phe	Glu							