Section 5.2 Differential Operators and the Elimination Method for Systems Problem Solve for x1t) and ytt) if:

 $a_1 \frac{dx}{dt} + a_2 \frac{dy}{dt} + a_3 x + a_4 y = F(t)$ $b_1 \frac{dx}{dt} + b_2 \frac{dy}{dt} + b_3 x + b_4 y = F_2(t)$

where a, az, az, ay, b, bz, bz and by are constants.

Example 1 Solve: 2x' - 2y' - 3x = t (*) 2x' + 2y' + 3x + 8y = 2

Solution '= d = D < differential operator

 $2x' = 2 \frac{dx}{dt} = 2 \frac{d}{dt} x = 20x$

Rewrite system: 2Dx - 2Dy - 3x = t2Dx + 2Dy + 3x + 8y = 2

: (20-3)x - 20y = t } $\in Eliminate y - (20+3)x + (20+8)y = .2$

(20+8)(20-3)x - (20+8)20y = (20+8)t20(20+3)x + 20(20+8)y = 202

 $(40^{2}+60)\times + (40^{2}+160)y = 2(1)+8t$ Add $(40^{2}+60)\times + (40^{2}+160)y = 2(0)$

$$(80^2 + 160 - 24) \times = 2 + 8t$$

C.F.
$$\ddot{x} + 2\ddot{x} - 3x = 0$$

$$(m+3)(m-1)=0$$

$$M = -3,1$$

$$M = -3,1$$

 $X_1 = 0^{-3}t$, $X_2 = 0^t$

$$xp = a$$
 $xp = 0$

$$-3at + (2a - 3b) = t + 1/4$$

$$2a - 3b = 1/4$$
 \Rightarrow $3b = 2a - \frac{1}{4} = -\frac{2}{3} - \frac{1}{4} = -\frac{11}{12}$

and,
$$x = x_c + x_p = c_1 e^{-3t} + c_2 e^t - \frac{1}{3}t - \frac{11}{36}$$

To obtain y(+) return to the original system (*) and add appropriate multiples of the two equations together so as to eliminate y':

$$2x' - 2y' - 3x = t$$
 Add
 $2x' + 2y' + 3x + 8y = 2$ Add

should involve at most 2 arbitrary constants.

Example 2 Solve:
$$x^{1} + y^{1} - x = -2t$$

 $x^{1} + y^{1} - 3x - y = t^{2}$

$$0x + 0y - x = -2t$$

$$0x + 0y - 3x - y = t^{2}$$

$$(D-1) \times + Dy = -2t$$
 } Elemenate y.
 $(D-3) \times + (D-1) y = t^2$

$$(D-1)(D-1) \times + (D-1)Dy = (D-1)(-2t)$$

$$(D^2 - 2D + 1) \times + (D^2 - D) = (-2)(1) + 2t$$
 Subtract

$$[(0^2 - 20 + 1) - (0^2 - 30)] \times = -2$$

$$\frac{dx}{dt} + x = -2 = 1 \text{ st. order linear}$$

$$= x = -2 + ce^{-t}$$

Return to the original system:

$$x' + y' - x = -2t$$
 Subtract (to elementey!)
 $x' + y' - 3x - y = t^2$

$$y = -2x - 2t - t^2 = -2(-2 + CQ^{-t}) - 2t - t^2$$

$$= 4 - 2t - t^2 - 2CQ^{-t}$$

Gen. Soln.
$$x = -2 + CQ^{-t}$$

 $y = 4 - 2t - t^2 - 2CQ^{-t}$

Example 3 Solve:
$$3x' + 2y' - x + y = t - 1$$

 $x' + y' - x = t + 2$

$$(30-1) \times + (20+1) y = t-1$$
 Eliminate y.
 $(0-1) \times + 0y = t+2$

$$O(30-1)x + O(20+1)y = O(t-1)$$
 } Subtract.
 $(20+1)(0-1)x + (20+1)0y = (20+1)(t+2)$

$$[(30^2-0)-(20^2-0-1)]x=[1]-[2+t+2]$$

:
$$[n^2 + 1] x = -t - 3$$

C.F.
$$\dot{x} + \dot{x} = 0$$
 $\dot{x} = 0$
 $\dot{x} = 0$

m=±i

$$x_1 = cost$$
, $y_2 = smt$ sub $xp + xp = -t-3$
 $x_1 = cost$ $c_1 = c_2 + c_2 + c_3 + c_4 + c_5 + c$

$$a = -1$$
, $b = -3$
 $xp = -b - 3$

$$X = Xc + Xp = c_1 cost + c_2 sint - t - 3$$

Return to the original system:

$$3x' + 2y' - x + y = t - 1$$
 Eliminate y! $2x' + 2y' - 2x = 2t + 4$

$$x' + x + y = -t - S$$

Gen. Soln.
$$x = c_1 \cos t + c_2 \sin t - t - 3$$

 $y = -(c_1 + c_2)(\cos t) + (c_1 - c_2)(\sin t) - 1$