Vektorit

Juulia Lahdenperä ja Lotta Oinonen

2. lokakuuta 2015

Sisältö

1	Vektori		1
	1.1	xy-koordinaatisto	1
	1.2	Vektorin komponentit	1
	1.3	Kahden nisteen välinen vektori	2

1 Vektori

1.1 xy-koordinaatisto

IOKIN TERÄVÄ ALOITUS.

KUVA (koordinaatisto ja piste P)

Tehtävä 1.1.1. Tutki yllä olevaa kuvaa ??.

- (a) Nimeä kuvaan x- ja y-akselit.
- (b) Kuinka monta askelta siirrytään x-akselin suuntaan, jotta päästään pisteeseen P?
- (c) Kuinka monta askelta siirrytään y-akselin suuntaan, jotta päästään pisteeseen P?

Tason piste ilmoitetaan lukuparina (x, y), missä ensimmäinen luku x ilmoittaa x-akselin suuntaisten ja toinen luku y y-akselin suuntaisten askelten lukumäärän. Näitä lukuja kutsutaan **pisteen koordinaateiksi**. Kuvan ?? piste P sijaitsee siinä tason pisteessä, missä x=3 ja y=4. Näin ollen pistettä P merkitään P=(3,4). Koordinaattien avulla kaikki tason pisteet voidaan määrittää yksikäsitteisesti.

Koordinaattiakselit jakavat tason neljään osaan. Osat nimetään yleensä järjestysnumeroilla I, II, III ja IV alla olevan kuvan ?? mukaisesti. Koordinaattiakselien leikkauskohtaa kutsutaan **origoksi**. Origoa merkitään yleensä kirjaimella O, ja sen koordinaatit ovat O = (0,0).

KUVA (koordinaatiston neljä osaa)

Tehtävä 1.1.2. Valitse kuvasta ?? jokaiselta koordinaatiston neljänneksellä jokin piste ja ilmoita sen koordinaatit. Miten eri neljännekset vaikuttavat koordinaattien etumerkkeihin?

Tehtävä 1.1.3. HALUAISIN, ETTÄ A-KOHTA ALKAA VASTA SEURAAVALTA RIVILTÄ.

- (a) Piirrä koordinaatistoon pisteet (0, 2), (0, -4) ja (0, 3).
- (b) Piirrä koordinaatistoon kolme uutta pistettä, jotka ovat muotoa (0, y).
- (c) Piirrä kuva kaikista sellaisista tason pisteistä, jotka ovat muotoa (0, y).
- (d) Piirrä kuva kaikista sellaisista tason pisteistä, jotka ovat muotoa (x, 0).

1.2 Vektorin komponentit

Tarkastellaan seuraavaa kuvaa ??. Kuvassa on nuoli \bar{v} , yhden x-akselin suuntaisen askeleen pituinen nuoli \bar{i} , sekä yhden y-akselin suuntaisen askeleen pituinen nuoli \bar{j} .

KUVA (vektorin komponentit)

Huomataan, että nuolen \bar{v} päästä on sen kärkeen kolme x-akselin suuntaista askelta ja kaksi y-akselin suuntaista askelta. Tällainen nuoli \bar{v} voidaan ilmoittaa nuolien \bar{i} ja \bar{j} avulla muodossa $\bar{v}=3\bar{i}+2\bar{j}$.

Vektori on nuoli koordinaatistossa. Edellisen kuvan nuoli \bar{v} on siis vektori \bar{v} , joka voidaan ilmaista vektorien \bar{i} ja \bar{j} avulla. Vektoreita \bar{i} ja \bar{j} sanotaan komponenttivektoreiksi, ja summattavia $3\bar{i}$ ja $2\bar{j}$ vektorin \bar{v} **komponenteiksi**.

Tehtävä 1.2.1. Tarkastellaan seuraavaa kuvaa ??

KUVA (vektorin komponentit tehtava samat erit vektorit)

- (a) Ilmoita kaikki kuvassa olevat vektorit komponenttivektorien \bar{i} ja \bar{j} avulla. Mitä huomaat?
- (b) Mitä huomaat vektoreista, jotka lähtevät origosta?

Origosta lähtevän vektorin $\bar{v}=x\bar{i}+y\bar{j}$ kärki on pisteessä (x,y). Kyseistä vektoria \bar{v} kutsutaan pisteen (x,y) paikkavektoriksi.

Tehtävä 1.2.2. EI TÄHÄN

- (a) Piirrä komponenttivektorit \bar{i} ja \bar{j} koordinaatistoon siten, että ne lähtevät origosta.
- (b) Minkä pisteiden paikkavektoreita ne ovat?

1.3 Kahden pisteen välinen vektori

Tehtävä 1.3.1. EI TÄHÄN

- (a) Piirrä koordinaatistoon kaksi pistettä. Merkitse myös pisteiden koordinaatit.
- (b) Piirrä pisteiden väliin vektori \bar{v} .
- (c) Ilmoita vektori \bar{v} komponenttivektorien \bar{i} ja \bar{j} avulla.
- (d) Miten komponenttitekijät voitaisiin saada pisteiden x- ja y-koordinaattien avulla?

Kahden pisteen välinen vektori saadaan vähentämällä pisteiden x- ja y-koordinaatit keskenään. Esimerkiksi pisteestä A=(4,1) lähtevä ja pisteeseen (B=-1,3) päättyvä vektori \bar{v} on $\bar{v}=((-1)-4)\bar{i}+(3-1)\bar{j}=-5\bar{i}+2\bar{j}$. Kahden pisteen välinen vektori voi kulkea kahteen eri suuntaan. Nämä ovat erit vektorit. Pisteestä A pisteeseen B kulkevaa vektoria merkitään $A\bar{B}$, ja pisteestä B pisteeseen A kulkevaa vektoria merkitään $B\bar{A}$. Esimerkkimme vektori $\bar{v}=-5\bar{i}+2\bar{j}$, joka lähti pisteesta A ja päättyi pisteeseen B on siis vektori $A\bar{B}$.

Tehtävä 1.3.2. (a) Piirrä koordinaatistoon pisteet *A* ja *B* Merkitse myös niiden koordinaatit.

(b) Laske pisteiden koordinaattien avulla vektorin \overline{AB} komponenttiesitys.

(c) Laske pisteiden koordinaattien avulla vektorin $\bar{\it BA}$ komponenttiesitys.

samansuuntaiset, vastakkaissuuntaiset yms. yksikkövektori, vektorin pituus komponenttiesitys on yksikäsitteinen – oikea todistus