Landmark Recognition

Deepak Nagaraj, Mike Stackhouse and Roland Lim

Objective

Recognize well-known landmarks based on images with inference on the edge: Image Classification

Why?

- ✓ Organize personal photo collections
- ✓ Visual search
- ✓ Computer vision, autonomous driving
- ✓ Many other commercial applications e.g. gaming, education, tourism, \$\$

Dataset

- The Paris Dataset
- 6412 images collected from Flickr
- 12 Paris Landmarks
 - La Defense Paris
 - Eiffel Tower Paris
 - Hotel des Invalides Paris
 - Louvre Paris
 - Moulin Rouge Paris
 - Musee d'Orsay Paris
 - Notre Dame Paris
 - Pantheon Paris
 - Pompidou Paris
 - Sacre Coeur Paris
 - Arc de Triomphe Paris
 - Paris

Data preparation - Gathering

- Poor quality images removed
 - Dataset contained quality rating of each image kept images where >25% of object is visible

- Supplement lacking classes
 - Eiffel Tower, Musée d'Orsay, and The Centre Pompidou had <100 images each
 - Used <u>Google Images Download</u> to add ~75 additional images each
- Correct distractor images
 - o Images in the "general" class were matched other classes

Data preparation - Augmentation

Applied augmentation techniques using the <u>PIL / Python Image Library</u>

Horizontal Flip

Grayscale

Blur

Model Development

- Leverage existing models by applying transfer learning
- Took two approaches:
 - NVIDIA DIGITS
 - AlexNet
 - VGG16
 - <u>Tensorflow for Poets</u>
 - MobileNet 0.50
 - Inception V3

DIGITS

- DIGITS does not have bottleknecking built in but allows you to download a pretrained model
- Trained on TX2 for 3 epochs:
 - AlexNet performance was fairly poor
 - Achieved up to 93% accuracy with VGG16
- VGG16 achieved 97% trained on cloud P100 with 30 epochs.
 - Largest concern is that the model is very heavy

Tensorflow for Poets

- Very efficient training using bottleknecking (<20 minutes)
- Inception V3
 - Top accuracy 93.2%
- MobileNet 0.50
 - Top accuracy 94.8%

Neural Net Visualization

- Looking inside a neural net to see how image morphs over the layers
- Eiffel Tower over Inception v1:

Why was that classified wrong?

Example: Les Invalides misclassified as Sacre Coeur

Conclusion and Next Steps

- MobileNet is our ultimate architecture of choice, despite higher performance from VGG16 trained on a cloud P100
 - MobileNet architecture is much smaller and more practical for edge computation, yet still achieved 94.8% accuracy
- Next steps would be to expand the number of landmarks classified
 - Need a larger dataset (i.e. Google Landmark Recognition Challenge)
 - Image generalization could become problematic, so possibly link location data
- Could apply model pruning leveraging NVIDIA transfer learning toolkit
 - Cuts model size down further, faster computation

References

- http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/
- https://www.kaggle.com/c/landmark-recognition-challenge
- https://landmarksworkshop.github.io/CVPRW2018/
- https://www.blippar.com/blog/2018/02/16/landmark-recognition-api-never-confuse-landmark-again
- https://cloud.google.com/blog/products/gcp/around-the-world-landmark-detection-with-the-cloud-vision-api
- https://medium.com/@abhinaya08/google-landmark-recognition-274aab3c71ae
- https://towardsdatascience.com/google-landmark-recognition-using-transfer-learning-dde35cc760e1
- https://medium.com/@abhinaya08/google-landmark-recognition-274aab3c71ae
- Lucid Visualization Library:
 https://colab.research.google.com/github/tensorflow/lucid/blob/master/notebooks/misc/feature_inversion_caricatures.ipynb