CS4522 Advanced Algorithms

Batch 09, L4S1

Lecture 7: (05 July 2013)
Randomized Algorithms &
Probabilistic Analysis

N. H. N. D. DE SILVA

DEPT. OF COMPUTER SCIENCE & ENGINEERING UNIVERSITY OF MORATUWA

Announcement

- Mid-semester Quiz after the break!
- You can panic now (again)

Today's Outline

- Randomized Algorithms
 - Introduction: Hiring Problem
 - Probabilistic analysis
 - Randomized algorithms
 - Randomized Quick Sort
 - Randomized Selection
 - Random Number Generation

References

- Mainly
 - CLRS, Chapter 5 (pp. 114-128) and others

- Many online resources
- For detailed, in-depth coverage, read
 - "Randomized Algorithms" by Motwani and Raghavan

Suppose you need to hire a new assistant

"It's a difficult position to fill. Someone who's smarter than me – and smart enough to pretend not to know it."

- Suppose you need to hire a new assistant
 - You get a candidate each day from an agency
 - You interview and decide to hire or not

- Suppose you need to hire a new assistant
 - Need to pay the agency a fee for an interview

- Suppose you need to hire a new assistant
 - Hiring is more costly
 - Fire the current assistant
 - Pay a large hiring fee to the agency

Intro: Hiring Problem ...contd

- You always want to have the best person
 - If the interviewed person is better than the current assistant, then hire the new person
 - You are willing to pay the resulting price
- You want to estimate the price of strategy
- Assume
 - ► Candidates numbered 1,...,n
 - After interviewing candidate i, determine if i is the best seen so far
 - Costs: for interviewing ci and for hiring ch

Intro: Hiring Problem ...contd

```
HIRE-ASSISTANT (n)
 best ← 0 // least qualified, dummy
 for i \leftarrow 1 to n
  interview candidate i
  if candidate i is better than best
    best ← i
    hire candidate i
```

Intro: Hiring Problem ...contd

- If m people hired, total cost $O(n c_i + m c_h)$
 - If c_i is small, can focus on $(m c_h)$
- Worst-case?
 - Hire each person interviewed (they come in increasing order of quality); total cost = $n c_h$
 - But reasonable to expect this will not happen
 - Yet we don't know the order and we don't have a control over that
 - ▶ What do we expect to happen in an average case?

Probabilistic Analysis

- Probabilistic analysis means
 - Analyzing problems using probability
- In such analysis
 - Use knowledge of or make assumptions about distribution of inputs
 - Without this, cannot use probabilistic analysis
 - Compute an expected cost or running time
 - Expectation taken over all possible inputs
 - → averaging the cost/running time over that space

Probabilistic Analysis

...contd

- Example: Hiring problem/algorithm
 - Assume candidates come in random order
 - Can compare any two and decide who is better
 - ▶ There is a total order on the candidates
 - → can rank each candidate with a unique number between 1 and n; rank(i) denotes rank of i
 - Convention: higher rank means better qualified
 - ► The ordered list <rank(1), rank(2),..., rank(i)> is a permutation of the list <1, 2, ..., n>
 - List of ranks equally likely to be any one of n! permutations of numbers 1 through n

14

Randomized Algorithms

- As we saw, probabilistic analysis requires we know about the distribution on inputs
 - But this may not be so in many cases
- ► In our current HIRE-ASSISTANT algorithm
 - Candidates may seem to come randomly
 - But cannot know if this is correct or not
 - ▶ To have a randomized algorithm for this
 - Need to have greater control on interviewing order
 - What can we do?

15

- ...contd
- Randomized algorithm for hiring problem
 - Agency has n candidates; list sent in advance
 - Each day we randomly choose whom to interview
 - A significant change!
 - ▶ Instead of assuming, we enforce random order
- Randomized algorithm
 - Behavior is determined by input and by values produced by a random-number generator

Randomized Hiring Algorithm

```
RANDOMIZED-HIRE-ASSISTANT (n)
  randomly permute the candidate list
  best ← 0 // least qualified, dummy
 for i \leftarrow 1 to n
  interview candidate i
  if candidate i is better than best
     best ← i
     hire candidate i
```

Randomized Algorithms

A randomized algorithm

An algorithm that makes random choices during execution

- Random numbers used for making decisions
- Behavior determined by a random-number generator (in addition to the input)

Basics

Random decision making is introduced to reduce the chance of a worst-case scenario

- Randomized algorithms have no worstcase behavior due a particular input
 - ▶i.e., no bad inputs
 - But only bad random numbers !!

19

We compute expected running-time (the average case), considering probabilities when necessary

- Randomized strategy useful when
 - There are many ways we can proceed
 - But, difficult to determine a way guaranteed to be good

20

If many alternatives are good, we can simply choose one randomly

- If we have to make many choices, a random selection of good and bad choices can be a good strategy if,...
 - Benefits of good choices outweigh the costs of bad choices

Another Example

- Suppose a teacher wants to give a quiz in the class on the day a homework is due to make sure students did their own work
- But giving a quiz for every homework will consume time from limited class-time
- Practical solution might be to do this for 50% of homework
- How to decide when to give quizzes?

22

Announcing in advance is not effective

Giving un-announced quizzes on alternate homeworks → students will figure out

Giving quizzes on "important" topics?

Another Example ...contd

Easiest is to flip a coin to decide

24

Another Example ...contd

- Easiest is to flip a coin to decide
 - > 50% probability for a quiz on a homework
 - Expected number of quizzes = 1/2 of the number of homeworks
 - It is possible, but unlikely, that there is no quiz for the whole semester (or the opposite)
 - unless the coin is biased
 - > a randomized algorithm

25

- Randomized strategy particularly useful when faced with a malicious "adversary"
 - Will deliberately try to feed a bad input to the algorithm
 - Randomness commonly used/applied in cryptography
 - Issue: pseudo-random number generator

Basics ...contd

- Two types of randomized algorithms
 - Always gives the correct answer; may require some time/resources to execute

 Las Vegas algorithms
 - 2. Can complete quickly (bounded resource usage) but the answer may not be 100% accurate → Monte Carlo algorithms

Special complexity classes, analysis

Randomized Quick Sort

- Recall Quick Sort from Lecture 2
- (See also pp. 170-185, Ch. 7 of CLRS)
- Randomized Quick Sort Version 1
 - Before sorting the array, randomly permute the elements
 - Enforces the property that every permutation is equally likely
 - Makes the running time independent of the original input ordering

Randomized Quick Sort

- Randomized Quick Sort Version 2
 - Modifying the original PARTITION procedure, perform a randomized-PARTITION
 - Slight changes to original procedures
 - At each step, before partitioning, exchange A[p] with another element chosen randomly from A[p...r]

Random Numbers?

- Assume: we have a random-number generator of the form RANDOM(a,b)
 - Returns a random integer between a and b, inclusive, with each being equally likely
- In practice, true randomness cannot be achieved with a computer
- Most programming environments provide pseudo-random number generators

Randomized-QuickSort, V2

```
Input: Unsorted sub-array A[p..r]
```

Output: Sorted sub-array A[p..r]

```
RAND-QUICKSORT (A, p, r)

if p < r

then q \leftarrow \text{RAND-PARTITION}(A, p, r)

RAND-QUICKSORT (A, p, q-1)

RAND-QUICKSORT (A, q+1, r)
```

Randomized-Partition Algorithm

Input: same as for PARTITION()

Output: same as for PARTITION()

RAND-PARTITION (A, p, r)

 $i \leftarrow \text{RANDOM}(p, r)$

Exchange $A[p] \leftrightarrow A[i]$

return PARTITION(A, p, r)

Complexity Analysis

- Worst-case: discussed earlier
 - Running time $\Theta(n^2)$

- Average-case (expected) running time of randomized Quick Sort is $\Theta(n \mid g \mid n)$
 - Details: pp. 180-184 in CLRS

Average-case Analysis

- Intuitively, average-case running time of randomized Quick Sort is $\Theta(n \mid g \mid n)$
 - partitioning splits the array such that a fraction of elements are on one side
 - recursion tree has depth $\Theta(\lg n)$
 - $\Theta(n)$ work is performed at these $\Theta(\lg n)$ levels

Average-case Analysis ...contd

- Observations for precise analysis
 - Value q returned by PARTITION depends only on the rank of x = A[p] among A[p...r]
 - The rank of x, rank(x), in a set is the number of elements less than or equal to x in the set
 - Due to swapping with a random element first, rank(x)=i for i=1,2,...,n with probability 1/n
 - Assumptions: n=r-p+1 (# elements in A[p...r]), elements are distinct

Average-case Analysis

35

- ...contd
- Observations for precise analysis ...contd
 - If rank(x)=1: q=j=p is returned, low side of partition contains 1 element A[p]
 - ▶ This event occurs with probability 1/n
 - If rank(x)=2: the smallest element will go to A[p]; q, low side, probability same as above
 - ► If rank(x) > 2: low side of partition has i elements; probability=1/n for each i=2,...,n-1

Average-case Analysis ...contd

- Size of low side of partition (q-p+1) is
 - ▶ 1 with probability 2/n
 - \rightarrow i with probability 1/n for i=2,3,...,n-1
- Recurrence for the average (expected) running time of randomized Quick Sort

$$T(n) = \frac{1}{n} \left(T(1) + T(n-1) + \sum_{q=1}^{n-1} \left(T(q) + T(n-q) \right) \right) + \Theta(n)$$

Average-case Analysis ...contd

Can simplify and re-write this as

$$T(n) = \frac{2}{n} \sum_{q=1}^{n-1} T(k) + \Theta(n)$$

Solve the recurrence (substitution method)

$$T(n) \le a n \lg n + b$$

Average running time is O(n Ign)

Randomized Selection

- Discussion based on CLRS pp. 213-222
 - In Chapter 9, Medians and Order Statistics

- Selection problem
 - Input: a set A of n distinct numbers and a number i such that $1 \le i \le n$
 - Output: the element x of A that is larger than exactly i-1 other elements of A

Randomized Selection

- Selection problem can be solved in O(n lg n) time
 - Sort the numbers first and then index the *i*-th element in the array

But can be done faster, in O(n) averagetime, using a randomized algorithm

Randomized-Select Algorithm

```
RAND-SELECT(A, p, r, i)
    if p = r
      then return A[p]
    q \leftarrow \text{RAND-PARTITION}(A, p, r)
    k \leftarrow q - p + 1
    if i = k then return A[q] // pivot is the
    answer
    elseif i < k
      then return RAND-SELECT (A, p, q-1, i)
    else return RAND-SELECT (A, q+1, r, i-k)
```

- We consider the generation of pseudorandom numbers
 - Satisfy most statistical properties of random numbers and appear to be random
- In many cases, we need a sequence of random numbers
 - So use of the system clock may not work
 - Numbers should look independent

- Standard method
 - ► Linear congruential generator
 - First described by Lehmer in 1951

- Numbers $x_1, x_2, ...$ are generated satisfying $x_{i+1} = a x_i \mod m$
- $\rightarrow x_0$ is called the seed (must be given, $\neq 0$)
- a and m to be selected suitably

- Standard method
 - E.g., if m=11, a=7 and x₀=1, then we get 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, ...

▶ Here, after m-1=10, the sequence repeats

If m is a prime, then there are always choices for a that give a full period of m-1

- Standard method
 - For some a, this will not happen
 - ▶ e.g., if m=11, a=5 and $x_0=1$, then we get a sequence with a shorter period

► Generally, the 31-bit prime

m=
$$2^{31}$$
 -1 = 2,147,483,647 and
a = 7^5 = 16,807 are commonly used
(this a= 7^5 gives a full period generator)

- When m is a prime, x_i is never 0
- Sometimes we need a random real number in the between 0 and 1
 - This is obtained easily by dividing the above formula by m
 - Normalize to get 0 and 1

Conclusion

- Randomized algorithms
 - Introduction, Hiring problem
 - Randomized Quick Sort, Selection, Random Number Generation

Next time: Graph algorithms

References

Randomized Algorithms & Probabilistic Analysis [CLRS Chapter 5]

The lecture slides are based on the slides prepared by Prof. Sanath Jayasena for this class in previous years.