# **Time Series Analysis and Forecasting** Vinod / Ashesh / Chris Workshop 4: Stationarity and ARIMA

# (a) Dickey-Fuller Test

#### (i) Plotting correlogram

Correlogram is plotted to check if the time series is stationary. The autocorrelation graph is as shown,

> Sample: 1960M01 2018M12 Included observations: 708

| Autocorrelation | Partial Correlation |    | AC    | PAC    | Q-Stat | Prob  |
|-----------------|---------------------|----|-------|--------|--------|-------|
|                 |                     | 1  | 0.992 | 0.992  | 699.84 | 0.000 |
|                 | <u> </u>            | 2  | 0.980 |        | 1384.0 | 0.000 |
|                 | 1                   | 3  | 0.968 | 0.008  | 2051.6 | 0.000 |
|                 | ינוףי               | 4  | 0.955 | 0.030  | 2703.3 | 0.000 |
|                 | ' '                 | 5  | 0.944 | 0.004  | 3339.9 | 0.000 |
|                 | I[I                 | 6  | 0.931 | -0.037 | 3961.0 | 0.000 |
|                 | ינוןי               | 7  | 0.919 | 0.027  | 4567.3 | 0.000 |
|                 | יוף ו               | 8  | 0.909 | 0.068  | 5160.5 | 0.000 |
|                 | 'P                  | 9  | 0.901 | 0.111  | 5743.7 | 0.000 |
|                 | ' '                 | 10 |       | -0.004 | 6318.5 | 0.000 |
|                 | q ·                 | 11 |       | -0.055 | 6884.1 | 0.000 |
|                 | <b>"</b>            | 12 |       | -0.113 | 7438.2 | 0.000 |
|                 | 100                 | 13 | 0.866 | 0.016  | 7980.0 | 0.000 |
|                 | ווי ו               | 14 | 0.856 | 0.069  | 8510.8 | 0.000 |
|                 | 1                   | 15 |       | -0.008 | 9031.3 | 0.000 |
|                 | 1111                | 16 | 0.838 | 0.019  | 9542.0 | 0.000 |
|                 | 1                   | 17 | 0.830 | 0.021  | 10043. | 0.000 |
|                 | 1 1                 | 18 | 0.822 | 0.006  | 10535. | 0.000 |
|                 | III                 | 19 | 0.814 | 0.010  | 11018. | 0.000 |
|                 | 1                   | 20 | 0.807 | 0.006  | 11494. | 0.000 |
|                 | (l)                 | 21 | 0.800 | -0.029 | 11963. | 0.000 |
|                 | (t)                 | 22 | 0.792 | -0.045 | 12423. | 0.000 |
|                 | ψ                   | 23 | 0.783 | -0.017 | 12873. | 0.000 |
|                 | 1 1                 | 24 | 0.774 | 0.002  | 13314. | 0.000 |
|                 | '  )                | 25 | 0.766 | 0.034  | 13745. | 0.000 |
|                 | l iĝi               | 26 | 0.758 | 0.031  | 14168. | 0.000 |
|                 | l ip                | 27 | 0.751 | 0.090  | 14585. | 0.000 |
| 1               | III                 | 28 | 0.746 | 0.012  | 14997. | 0.000 |
|                 | III                 | 29 | 0.741 | 0.024  | 15404. | 0.000 |
| 1               | 1 1                 | 30 | 0.738 | 0.000  | 15807. | 0.000 |
|                 |                     | 31 | 0.734 | -0.002 | 16207. | 0.000 |
| 1               | ·  <b>)</b>         | 32 | 0.732 | 0.061  | 16605. | 0.000 |

From the plot, we realize that the autocorrelation coefficients remain non-zero for many lags and do not die out quickly; hence it resembles characteristics similar to that of non-stationary series.

# (ii) Dickey-Fuller test

Title:

Augmented Dickey-Fuller Test

Test Results: PARAMETER:

Lag Order: 19

STATISTIC:

Dickey-Fuller: -0.0962

P VALUE: 0.5857

Null Hypothesis: COPPER has a unit root Exogenous: None
Lag Length: 1 (Automatic - based on SIC, maxlag=19)

|                       |                     | t-Statistic | Prob.* |
|-----------------------|---------------------|-------------|--------|
| Augmented Dickey-Fu   | ller test statistic | -0.525351   | 0.4888 |
| Test critical values: | 1% level            | -2.570670   |        |
|                       | 5% level            | -1.941606   |        |
|                       | 10% level           | -1.616176   |        |

\*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(COPPER)
Method: Least Squares
Date: 02/14/19 Time: 22:26 Sample (adjusted): 1985M03 2018M12 Included observations: 406 after adjustments

| Variable                                                                                                           | Coefficient                                                           | Std. Error                                                                                                     | t-Statistic           | Prob.                                                    |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------|
| COPPER(-1)<br>D(COPPER(-1))                                                                                        | -0.001635<br>0.339270                                                 | 0.003112<br>0.046923                                                                                           | -0.525351<br>7.230366 | 0.5996<br>0.0000                                         |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>Durbin-Watson stat | 0.113315<br>0.111120<br>288.1898<br>33553558<br>-2874.516<br>1.975388 | Mean dependent var<br>S.D. dependent var<br>Akaike info criterion<br>Schwarz criterion<br>Hannan-Quinn criter. |                       | 11.54389<br>305.6730<br>14.17003<br>14.18977<br>14.17784 |

The results from the Dickey-Fuller test is as shown above. The null hypothesis is to test whether COPPER series has unit root, meaning it is not stationary and imply random walk type behaviour. To check if the exchange rate series can be rejected, the t-statistic should be compared with Dickey-fuller distribution for unit root distribution. If t < DF or p-value is less than 0.05, then reject null hypotheses. In this case, since the result is opposite, we do not reject null hypothesis suggesting that series is indeed non-stationary.

#### (iii) Adding constant and trend in basic DF test

Dickey-Fuller test with constant and trend added is tested and the result is as shown,

#### Title: Augmented Dickey-Fuller Test

Test Results:
PARAMETER:
Lag Order: 19
STATISTIC:

Dickey-Fuller: -2.4675

P VALUE: 0.3804

Null Hypothesis: COPPER has a unit root Exogenous: Constant, Linear Trend Lag Length: 1 (Automatic - based on SIC, maxlag=19)

|                       |                     | t-Statistic | Prob.* |
|-----------------------|---------------------|-------------|--------|
| Augmented Dickey-Fu   | ller test statistic | -2.790857   | 0.2015 |
| Test critical values: | 1% level            | -3.980823   |        |
|                       | 5% level            | -3.420930   |        |
|                       | 10% level           | -3.133194   |        |

\*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(COPPER) Method: Least Squares Date: 02/14/19 Time: 22:30 Sample (adjusted): 1985M03 2018M12 Included observations: 406 after adjustments

| Variable                                           | Coefficient                       | Std. Error t-Statist        |                      | Prob.    |
|----------------------------------------------------|-----------------------------------|-----------------------------|----------------------|----------|
| COPPER(-1)                                         | -0.025480                         | 0.009130 -2.790857          |                      | 0.0055   |
| D(COPPER(-1))                                      | 0.349569                          | 0.046755 7.476613           |                      | 0.0000   |
| C                                                  | -91.23446                         | 73.00562 -1.249691          |                      | 0.2121   |
| @TREND("1960M01")                                  | 0.393199                          | 0.188703 2.083698           |                      | 0.0378   |
| R-squared                                          | 0.130186                          | Mean dependent var          |                      | 11.54389 |
| Adjusted R-squared                                 | 0.123695                          | S.D. dependent var          |                      | 305.6730 |
| S.E. of regression                                 | 286.1440                          | Akaike info criterion       |                      | 14.16067 |
| Sum squared resid                                  | 32915119                          | Schwarz criterion           |                      | 14.20014 |
| Log likelihood<br>F-statistic<br>Prob(F-statistic) | -2870.616<br>20.05600<br>0.000000 | Hannan-Quin<br>Durbin-Watso | 14.17629<br>1.985789 |          |

From the result, we can see that the p-value is still high and t-statistic is not less than DF, therefore it does not give enough evidence to reject the null hypotheses, indicating that it's non-stationary data.

Since both above cases indicate Non Stationary in the dataset, we introduce stationary in the dataset by using the DIFF(dataset) function and then checking the Dickey Fuller test to verify if Non-Stationary is removed.

#### (iv) Augmented DF test including lagged values of dependent variables

We check the autocorrelation coefficients of the residuals to see if series is stationary.

| Autocorrelation | Partial Correlation | AC                   | PAC      | Q-Stat           | Prob  |
|-----------------|---------------------|----------------------|----------|------------------|-------|
| 1/10            | 1 1                 | 1 0.01               | 4 0.014  | 0.1372           | 0.711 |
| ı(i             | l (fi               | 1                    | 0 -0.031 | 0.7918           | 0.673 |
| ılı .           | l di                | 3 -0.02              | 1 -0.020 | 1.0975           | 0.778 |
| ı <b>d</b> ı    | l di                | 4 -0.02              | 8 -0.028 | 1.6539           | 0.799 |
| ı <b>j</b> ı    | <u> </u>            | 5 0.07               | 0.070    | 5.1854           | 0.394 |
| <b>d</b> i      | (d)                 | 6 -0.05              | 2 -0.056 | 7.0883           | 0.313 |
| I I             | ļ iļi               | 7 0.00               | 2 0.007  | 7.0918           | 0.419 |
|                 | <u> </u>            | 8 -0.16              | 9 -0.173 | 27.567           | 0.001 |
| ı <b>q</b> ı    | ψ.                  | 9 -0.03              | 0 -0.022 | 28.218           | 0.001 |
| - III           |                     | 10 0.01              | 4 -0.006 | 28.349           | 0.002 |
| ' <b>!</b>      |                     | 11 0.18              |          | 51.674           | 0.000 |
| ų p             | 'P                  | 12 0.07              |          | 55.268           | 0.000 |
| q٠              | 4'                  | 13 -0.10             |          | 63.049           | 0.000 |
| 1 1             | Ψ.                  | 1                    | 3 -0.016 | 63.054           | 0.000 |
| ų.              | 1                   | 15 0.01              |          | 63.169           | 0.000 |
| 111             | '¶'                 |                      | 5 -0.047 | 63.185           | 0.000 |
| ' <b>p</b>      | ן יי                | 17 0.05              |          | 65.147           | 0.000 |
| <u>"</u> "      | '  '                | 18 -0.02             |          | 65.470           | 0.000 |
| q.              | '['                 | 19 -0.05             |          | 67.624           | 0.000 |
| Ψ.              | 'l!'                | 20 -0.00             |          | 67.632           | 0.000 |
| <u>'P</u>       | ! <b>!</b> !        | 21 0.07              |          | 72.074           | 0.000 |
| <u>'l'</u>      | "!                  | 22 0.05              |          | 74.594           | 0.000 |
| 7.              | 1 12 T              | 23 0.05              |          | 76.734           | 0.000 |
| 91              | "1."                |                      | 0 -0.031 | 78.556           | 0.000 |
| 11.             | l ' <u>'</u> '.     | 25 -0.00             |          | 78.621           | 0.000 |
| 31.             | l 5'.               | 26 -0.03             |          | 79.653           | 0.000 |
| 11.             | 1 7.                | 27 -0.02<br>28 -0.02 | 4 -0.019 | 80.064           | 0.000 |
| 31              | J. J.               | 29 -0.04             |          | 80.699           | 0.000 |
| 1.              | 1 3                 | 30 0.03              |          | 81.912           | 0.000 |
| 7.              | ""                  | 31 -0.08             |          | 82.863<br>87.749 | 0.000 |
| 3.              | 1 1                 | 32 0.01              |          | 87.946           | 0.000 |
| 36              | "  ;                | 33 0.02              |          | 88.244           | 0.000 |
| ili.            | ا أا                | 34 -0.01             |          | 88.404           | 0.000 |
| ili.            | l 16                | 35 0.04              |          | 89.927           | 0.000 |
| Ψ.              | 1 P                 | 100 0.04             | 0.040    | 00.021           | 5.566 |

From the residual ACF plot, we are able to see that the probability is high till lag 7 and then the probability drops below 0.05, indicating statistically significant values. This shows that there is autocorrelation and that the series is not stationary.

#### (v) Examining differences in series to check for stationarity



| ncluded observation | s: 707              |     |        |        |        |       |
|---------------------|---------------------|-----|--------|--------|--------|-------|
| Autocorrelation     | Partial Correlation |     | AC     | PAC    | Q-Stat | Prob  |
| · <b>=</b>          |                     | 1   | 0.333  | 0.333  | 78.954 | 0.000 |
| ı þ                 | (d)                 | 2   | 0.063  | -0.055 | 81.743 | 0.000 |
| 10                  | (I)                 | 3   | -0.020 | -0.027 | 82.020 | 0.000 |
| 4                   | 10                  | 4   | -0.037 | -0.021 | 82.987 | 0.000 |
| ı <b>j</b> ı        | i ju                | 5   | 0.009  | 0.033  | 83.043 | 0.000 |
| d)                  | <b>-</b>            | 6   | -0.081 | -0.107 | 87.696 | 0.000 |
| d)                  | (1)                 | - 7 | -0.098 | -0.045 | 94.588 | 0.000 |
| <u></u> -           | <u> </u>            | 8   | -0.205 | -0.176 | 124.70 | 0.000 |
| d)                  | i ji                | 9   | -0.090 | 0.037  | 130.57 | 0.000 |
| i)n                 | ı)                  | 10  | 0.025  | 0.041  | 131.02 | 0.000 |
| · 🖿                 | · 🗖                 | 11  | 0.166  | 0.160  | 150.89 | 0.000 |
| ı <b>j</b> ı        | (I)                 | 12  | 0.074  | -0.058 | 154.87 | 0.000 |
| d)                  | <b>-</b>            | 13  | -0.082 | -0.104 | 159.68 | 0.000 |
| ığı                 | 1 1                 | 14  | -0.040 | -0.004 | 160.86 | 0.000 |
| ı(tı                | 1 1                 | 15  | -0.012 | -0.004 | 160.96 | 0.000 |
| 1 1                 | (I)                 | 16  | -0.002 | -0.046 | 160.96 | 0.000 |
| ıþι                 | 10                  | 17  | 0.021  | 0.053  | 161.29 | 0.000 |
| ı <b>d</b> ı        | l di                | 18  | -0.039 | -0.037 | 162.37 | 0.000 |
| d:                  | 1 1                 | 19  | -0.066 | 0.001  | 165.51 | 0.000 |
| ı ı                 | l li                | 20  | -0.007 | 0.026  | 165.54 | 0.000 |

Title: Augmented Dickey-Fuller Test

Test Results:
PARAMETER:
Lag Order: 19
STATISTIC:

Dickey-Fuller: -6.1267

P VALUE: 0.01

Null Hypothesis: D(COPPER) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=19)

|                                              |                                                          | t-Statistic                                      | Prob.* |
|----------------------------------------------|----------------------------------------------------------|--------------------------------------------------|--------|
| Augmented Dickey-Fu<br>Test critical values: | ller test statistic<br>1% level<br>5% level<br>10% level | -18.74024<br>-3.971104<br>-3.416195<br>-3.130392 | 0.0000 |

<sup>\*</sup>MacKinnon (1996) one-sided p-values.

Differencing is performed on the time series variable, copper; and its line plot, correlogram and unit root test is analyzed to check if its first differences are stationary.

One can observe from its correlogram that autocorrelation coefficients die down to zero after the first lag indicating stationarity. DF unit root test also proves the same as the t-statistic is lower than the DF critical values. The p-value is also lower than 0.05 in this case, hence signifying evidence against the null hypothesis of having a unit root(non-stationarity).

## (b) ARIMA Modeling

#### (i) Establishing Stationarity



Correlogram of Gold time series is plotted and its autocorrelation coefficients are studied. Sine the coefficients decreases slowly without dying down quickly, the series is not stationary.

Differencing is done on the log return of the series and its correlogram is studied as shown,



From the correlogram, its apparent that the coefficient pattern resemble that of a stationary series. Since stationarity is established, Box-Jenkins methodology can be applied using Moving Average with lag 1.

## (ii)Identification

After removing the initial data, the correlogram is plotted again as shown,

Sample: 1985M01 2018M12

| Included observation | is: 407             |    |        |        |        |       |
|----------------------|---------------------|----|--------|--------|--------|-------|
| Autocorrelation      | Partial Correlation |    | AC     | PAC    | Q-Stat | Prob  |
|                      |                     | 1  | 0.136  | 0.136  | 7.6014 | 0.006 |
| od (                 | <u> </u>            | 2  | -0.085 | -0.106 | 10.580 | 0.005 |
| 1 1                  |                     | 3  | -0.000 | 0.028  | 10.580 | 0.014 |
| ւիլ                  |                     | 4  | 0.047  | 0.035  | 11.506 | 0.021 |
| 1)1                  | 1 1 1               | 5  | 0.018  | 0.009  | 11.647 | 0.040 |
| 1 1                  | 1 1 1               | 6  | 0.005  | 0.009  | 11.657 | 0.070 |
| ı <b>İ</b> zi        | <u> </u>            | 7  | 0.072  | 0.074  | 13.829 | 0.054 |
| 1)1                  | 1 1                 | 8  | 0.024  | 0.001  | 14.060 | 0.080 |
| 1 1                  | 1 1                 | 9  | -0.013 | -0.004 | 14.130 | 0.118 |
| 1 1                  | 1 1 1               | 10 | 0.009  | 0.013  | 14.163 | 0.166 |
| ı 🗖                  |                     | 11 | 0.154  | 0.148  | 24.152 | 0.012 |
| ı <b>j</b> i         | 1 1 1               | 12 | 0.030  | -0.017 | 24.534 | 0.017 |
| 1 1                  |                     | 13 | -0.001 | 0.027  | 24.534 | 0.027 |
| 1 <b>)</b> 11        |                     | 14 | 0.035  | 0.027  | 25.056 | 0.034 |
| ւիլ                  |                     | 15 | 0.045  | 0.027  | 25.923 | 0.039 |
| ւիլ                  |                     | 16 | 0.042  | 0.034  | 26.664 | 0.045 |
| 1)1                  | 1 1                 | 17 | 0.019  | 0.015  | 26.820 | 0.061 |
| ւիլ                  |                     | 18 | 0.057  | 0.038  | 28.209 | 0.059 |
| 1)1                  | 1 1                 | 19 | 0.021  | 0.002  | 28.390 | 0.076 |
| ı <b>İ</b> zi        | •  <b>b</b>         | 20 | 0.081  | 0.089  | 31.181 | 0.053 |
| 1 <b>)</b> 11        | 1 1                 | 21 | 0.027  | -0.002 | 31.496 | 0.066 |
| 1 <b>)</b> 1         | 1 1                 | 22 | 0.036  | 0.020  | 32.060 | 0.076 |
| ւիլ                  |                     | 23 | 0.037  | 0.025  | 32.656 | 0.087 |
| ւիլ                  |                     | 24 | 0.047  | 0.037  | 33.608 | 0.092 |
| ı (h                 | 1  1                | 25 | 0.009  | -0.016 | 33.647 | 0.116 |

From the ACF and PACF, there are two significant spikes and then the coefficients die down with random spikes appearing in lag 7, 11 and 20. A number of ARMA processes could result in this pattern. The following reasonable candidate models are verified: ARMA(2,0), ARMA(0,2), ARMA(1,0), ARMA(0,1), and ARMA(1,1).

# (iii) Estimation

ARMA(0,1) is tried out through linear regression to see if it's a reasonable candidate.

Sample: 1985M02 2018M12 Included observations: 407

Convergence achieved after 16 iterations
Coefficient covariance computed using outer product of gradients

| Variable           | Coefficient | Std. Error      | t-Statistic | Prob.     |
|--------------------|-------------|-----------------|-------------|-----------|
|                    |             |                 |             |           |
| С                  | 0.003484    | 0.002086        | 1.670293    | 0.0956    |
| MA(1)              | 0.167650    | 0.040449        | 4.144712    | 0.0000    |
| SIGMASQ            | 0.001196    | 6.34E-05        | 18.84932    | 0.0000    |
| R-squared          | 0.022957    | Mean depend     | ont var     | 0.003484  |
| •                  |             |                 |             |           |
| Adjusted R-squared | 0.018120    | S.D. depende    |             | 0.035029  |
| S.E. of regression | 0.034710    | Akaike info cri | terion      | -3.876179 |
| Sum squared resid  | 0.486726    | Schwarz criter  | rion        | -3.846630 |
| Log likelihood     | 791.8023    | Hannan-Quin     | n criter.   | -3.864485 |
| F-statistic        | 4.746237    | Durbin-Watso    | n stat      | 2.026107  |
| Prob(F-statistic)  | 0.009174    |                 |             |           |
| Inverted MA Roots  | 17          |                 |             |           |

Both its regression coefficients are statistically significant hence the model looks reasonable.

# (iv) Testing

Consider the characteristics residuals by plotting it out as shown,



The residuals seem to be random in nature, having same variance. To verify its nature further, correlogram for residuals is plotted and studied,

Sample: 1985M01 2018M12 Included observations: 407

Q-statistic probabilities adjusted for 1 ARMA term

| Autocorrelation | Partial Correlation |    | AC     | PAC    | Q-Stat | Prob  |
|-----------------|---------------------|----|--------|--------|--------|-------|
| П               | l di                | 1  | -0.014 | -0.014 | 0.0774 |       |
| <b>d</b> :      | d ·                 | 2  | -0.083 | -0.084 | 2.9417 | 0.086 |
| 1 1             | 1 1                 | 3  | 0.006  | 0.004  | 2.9572 | 0.228 |
| ı <b>j</b> ir   | I <mark>]</mark> II | 4  | 0.044  | 0.037  | 3.7588 | 0.289 |
| ())             | 1 11                | 5  | 0.012  | 0.015  | 3.8229 | 0.431 |
| ų i             | 1 1                 | 6  | -0.009 | -0.002 | 3.8558 | 0.570 |
| ı þi            | יום י               | 7  | 0.071  | 0.073  | 5.9516 | 0.429 |
| 1)1             | 1  1                | 8  | 0.014  | 0.013  | 6.0305 | 0.536 |
| ų.              | 1 1                 | 9  | -0.013 | -0.002 | 6.0984 | 0.636 |
| 41              | 10                  | 10 | -0.014 | -0.013 | 6.1854 | 0.721 |
| ' <b> </b>      |                     | 11 | 0.155  | 0.150  | 16.262 | 0.092 |
| 1 1             | 1 1                 | 12 | 0.006  | 0.005  | 16.277 | 0.131 |
| 1 1             | 1 11                | 13 | -0.007 | 0.020  | 16.296 | 0.178 |
| 1   11          | I                   | 14 | 0.030  | 0.028  | 16.689 | 0.214 |
| ı <b>j</b> ir   | ']                  | 15 | 0.034  | 0.025  | 17.181 | 0.247 |
| i <b>j</b> ii   |                     | 16 | 0.035  | 0.037  | 17.715 | 0.278 |
| 1 1             | 1 11                | 17 | 0.004  | 0.014  | 17.723 | 0.340 |
| ( <b>þ</b> )    | ווןי                | 18 | 0.056  | 0.042  | 19.070 | 0.325 |
| 1 1             | 1 1                 | 19 | -0.001 | -0.006 | 19.071 | 0.387 |
| ı <b>þ</b> i    | 'Þ                  | 20 | 0.079  | 0.087  | 21.741 | 0.297 |

The ACF plot shows random spikes at certain lags and are independent proving that the time series is stationary.

Q-statistic figures are all above 0.05, hence they are not statistically significant. Other measures like RSS, SBC, AIC and HQ are noted to understand the quality of the fit of model.

| RSS | 0.487  |
|-----|--------|
| SBC | -3.847 |
| AIC | -3.88  |
| HQ  | -3.86  |

From the figures, we realize SBC, AIC and HQ being negative indicating reasonable fitness of the model.

To find an alternative model, other reasonable candidate models are tried out and their results are validated as shown,

Figure 1: ARMA(2,0)

Sample: 1985M02 2018M12 Included observations: 407 Convergence achieved after 15 iterations Coefficient covariance computed using outer product of gradients

|                    |             | •                  |             |           |
|--------------------|-------------|--------------------|-------------|-----------|
| Variable           | Coefficient | Std. Error         | t-Statistic | Prob.     |
| c                  | 0.003473    | 0.001897           | 1.830899    | 0.0679    |
| AR(1)              | 0.150628    | 0.039910           | 3.774163    | 0.0002    |
| AR(2)              | -0.105918   | 0.043571           | -2.430929   | 0.0155    |
| SIGMASQ            | 0.001188    | 6.36E-05           | 18.67461    | 0.0000    |
| R-squared          | 0.029621    | Mean dependent var |             | 0.003484  |
| Adjusted R-squared | 0.022398    | S.D. depende       | ent var     | 0.035029  |
| S.E. of regression | 0.034634    | Akaike info cr     | iterion     | -3.878078 |
| Sum squared resid  | 0.483406    | Schwarz crite      | rion        | -3.838679 |
| Log likelihood     | 793.1888    | Hannan-Quir        | ın criter.  | -3.862486 |
| F-statistic        | 4.100590    | Durbin-Watson stat |             | 1.992539  |
| Prob(F-statistic)  | 0.006942    |                    |             |           |
| Inverted AR Roots  | .08+.32i    | .0832i             |             |           |

**Figure 2 : ARMA(1,1)** 

Sample: 1985M02 2018M12 Included observations: 407

Convergence achieved after 14 iterations

Coefficient covariance computed using outer product of gradients

| Variable                                                                                                                         | Coefficient                                                                      | Std. Error                                                                                    | t-Statistic                                   | Prob.                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------|
| C<br>AR(1)<br>MA(1)<br>SIGMASQ                                                                                                   | 0.003484<br>-0.330921<br>0.490279<br>0.001190                                    | 0.002013<br>0.215195<br>0.203645<br>6.33E-05                                                  | 1.731338<br>-1.537772<br>2.407521<br>18.80114 | 0.0842<br>0.1249<br>0.0165<br>0.0000                                    |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic) | 0.027818<br>0.020581<br>0.034666<br>0.484304<br>792.8132<br>3.843834<br>0.009822 | Mean depend<br>S.D. depende<br>Akaike info cr<br>Schwarz crite<br>Hannan-Quir<br>Durbin-Watso | ent var<br>iterion<br>rion<br>in criter.      | 0.003484<br>0.035029<br>-3.876232<br>-3.836833<br>-3.860640<br>2.011501 |
| Inverted AR Roots<br>Inverted MA Roots                                                                                           | 33<br>49                                                                         | <u> </u>                                                                                      | <u> </u>                                      |                                                                         |

Sample: 1985M02 2018M12 Included observations: 407

Convergence achieved after 11 iterations

Coefficient covariance computed using outer product of gradients

| Variable                                                                                                                         | Coefficient                                                                      | Std. Error                                                                                    | t-Statistic                            | Prob.                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|
| C<br>AR(1)<br>SIGMASQ                                                                                                            | 0.003486<br>0.136010<br>0.001201                                                 | 0.002101<br>0.039860<br>6.43E-05                                                              | 1.659647<br>3.412218<br>18.67665       | 0.0978<br>0.0007<br>0.0000                                              |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic) | 0.018565<br>0.013706<br>0.034788<br>0.488914<br>790.8945<br>3.820989<br>0.022702 | Mean depend<br>S.D. depende<br>Akaike info cr<br>Schwarz crite<br>Hannan-Quin<br>Durbin-Watso | nt var<br>iterion<br>rion<br>n criter. | 0.003484<br>0.035029<br>-3.871717<br>-3.842168<br>-3.860024<br>1.969347 |
| Inverted AR Roots                                                                                                                | .14                                                                              |                                                                                               |                                        |                                                                         |

Sample: 1985M02 2018M12 Included observations: 407 Convergence achieved after 16 iterations Coefficient covariance computed using outer product of gradients

| Variable           | Coefficient | Std. Error            | t-Statistic | Prob.     |
|--------------------|-------------|-----------------------|-------------|-----------|
| С                  | 0.003479    | 0.001948              | 1.786143    | 0.0748    |
| MA(1)              | 0.151899    | 0.040588              | 3.742491    | 0.0002    |
| MA(2)              | -0.079066   | 0.043340              | -1.824306   | 0.0688    |
| SIGMASQ            | 0.001188    | 6.36E-05              | 18.67115    | 0.0000    |
| R-squared          | 0.029432    | Mean dependent var    |             | 0.003484  |
| Adjusted R-squared | 0.022207    | S.D. dependent var    |             | 0.035029  |
| S.E. of regression | 0.034637    | Akaike info criterion |             | -3.877886 |
| Sum squared resid  | 0.483500    | Schwarz criterion     |             | -3.838487 |
| Log likelihood     | 793.1497    | Hannan-Quinn criter.  |             | -3.862294 |
| F-statistic        | 4.073607    | Durbin-Watson stat    |             | 1.996835  |
| Prob(F-statistic)  | 0.007200    |                       |             |           |
| Inverted MA Roots  | .22         | 37                    |             |           |

From the four different models, we are able to see that the ARMA(2,0) and ARMA(1,0) are more reasonable models comparable with ARMA(0,1) model since they have regression coefficients which are statistically significant.

## (v) Forecasting

The last 12 observations are removed first before forecasting is done. After keying in the equation for the model ARMA(0,1), different forecasting methods are evaluated and the graphs are as shown,



The graph above shows the forecast of gold using static method.



The graph above shows the forecast of gold using dynamic method.

Dynamic produces a 1-step-ahead forecast, a 2-step-ahead forecast, a 3-step-ahead forecast, all the way till 12-step-ahead forecast for a 12 month forecast. By contrast, Static forecasting produces twelve 1 –step ahead forecasts.

Static forecast for gold are plotted to see the fitness of model.



One can observe that the forecast charts the actual time series values of gold, hence it's proves to be a good fit.

Static forecasting is also tried with DLOG(gold) and its fitness is validated.



The forecast for DLOG(gold), GOLDF shows a upward trend around 2018 time period, indicating prices to go up over that year.

# Do you expect gold prices to go up or down in the next 12 months? How about risk? What is the prediction interval?

Prediction interval in this case is 12 months, from 2019 month1 to 2019 month12.

Forecasting for DLOG(gold) is done through dynamic forecasting and studied,



Prices of gold are expected to increase as seen from the forecasting model.

Risk of forecast in this case would be unpredictable decrease in gold price when it was expected to increase. An example would be buyinh GOLD commodity stocks assuming their level would appreciate over time, when in fact the stock prices decrease. This could cause them lose money invested.

Static forecasting makes use of actual values to make the next step forecast, which in this case in unavailable. In this scenario, forecast for the next 12 months are to be made based on past data. For this, dynamic forecasting is more appropriate as it previous forecasted values for prediction.