### Activités Mentales

24 Août 2023

On considère la fonction f définie sur  $\mathbb{R}$  par  $f(x) = 12x^3 - 6x^2 - 3x + 13$ .

- **1** Donner l'expression de la dérivée de la fonction f que l'on notera f'.
- **②** Montrer que pour tout  $x \in \mathbb{R}$ , on a  $3(-6x-1)(-2x+1) = 36x^2 12x 3$ .
- **③** Construire le tableau de signe de la fonction définie sur  $\mathbb{R}$  par 3(-6x-1)(-2x+1)
- 4 En déduire les variations de la fonction f.



On considère la fonction f définie sur  $\mathbb{R}$  par  $f(x) = 20x^3 - 38x^2 - 40x + 19$ .

- lacktriangle Donner l'expression de la dérivée de la fonction f que l'on notera f'.
- ② Montrer que pour tout  $x \in \mathbb{R}$ , on a  $-4(5x+2)(-3x+5) = 60x^2 76x 40$ .
- **③** Construire le tableau de signe de la fonction définie sur  $\mathbb{R}$  par -4(5x+2)(-3x+5)
- 4 En déduire les variations de la fonction f.



On considère la fonction f définie sur  $\mathbb{R}$  par  $f(x) = 4x^3 + 6x^2 - 72x + 14$ .

- **1** Donner l'expression de la dérivée de la fonction f que l'on notera f'.
- ② Montrer que pour tout  $x \in \mathbb{R}$ , on a  $-6(x+3)(-2x+4) = 12x^2 + 12x 72$ .
- **③** Construire le tableau de signe de la fonction définie sur  $\mathbb{R}$  par -6(x+3)(-2x+4)
- 4 En déduire les variations de la fonction f.



On considère la fonction f définie sur  $\mathbb{R}$  par  $f(x) = -8x^3 + 50x^2 + 100x - 19$ .

- lacktriangle Donner l'expression de la dérivée de la fonction f que l'on notera f'.
- **②** Montrer que pour tout  $x \in \mathbb{R}$ , on a  $4(6x+5)(-x+5) = -24x^2 + 100x + 100$ .
- **3** Construire le tableau de signe de la fonction définie sur  $\mathbb{R}$  par 4(6x+5)(-x+5)
- 4 En déduire les variations de la fonction f.



On considère la fonction f définie sur  $\mathbb{R}$  par  $f(x) = 12x^3 + 24x^2 - 48x + 23$ .

- lacktriangle Donner l'expression de la dérivée de la fonction f que l'on notera f'.
- **②** Montrer que pour tout  $x \in \mathbb{R}$ , on a  $3(-2x-4)(-6x+4) = 36x^2 + 48x 48$ .
- **③** Construire le tableau de signe de la fonction définie sur  $\mathbb{R}$  par 3(-2x-4)(-6x+4)
- 4 En déduire les variations de la fonction f.



**1** Soit  $x \in \mathbb{R}$ , on a

$$f(x) = 12x^3 - 6x^2 - 3x + 13$$

On a alors pour tout  $x \in \mathbb{R}$ ,

$$f'(x) = 12 \times 3x^2 - 6 \times 2x - 3 \times 1 + 0 = 36x^2 - 12x - 3$$

**2** Soit  $x \in \mathbb{R}$ ,

$$3(-6x-1)(-2x+1) = 3(12x^2 - 6x + 2x - 1)$$
$$= 3(12x^2 - 4x - 1)$$
$$= 36x^2 - 12x - 3$$

- 3 On pose A(x) = -6x 1 et B(x) = -2x + 1.
  - A est une fonction affine avec m=-6<0. f est donc décroissante sur  $\mathbb R$ . Elle est donc d'abord positive puis négative. . -1

De plus  $A(x) = 0 \Leftrightarrow x = \frac{-1}{6}$ .

• B est une fonction affine avec m=-2<0. B est donc décroissante sur  $\mathbb{R}$ . Elle est donc d'abord positive puis négative. sur  $\mathbb{R}$ .

De plus  $B(x) = 0 \Leftrightarrow x = \frac{1}{2}$ .

On compare les deux racines obtenues :  $\frac{-1}{6} < \frac{1}{2}$ 

On rappelle que A(x) = -6x - 1 et B(x) = -2x + 1 et f'(x) = 3(-6x - 1)(-2x + 1). Son tableau de signe est alors

| x     | $-\infty$ |   | $\frac{-1}{6}$ |   | $\frac{1}{2}$ |   | +∞ |
|-------|-----------|---|----------------|---|---------------|---|----|
| 3     |           | + |                | + |               | + |    |
| A(x)  |           | + | 0              | _ |               | _ |    |
| B(x)  |           | + |                | + | 0             | _ |    |
| f'(x) |           | + | 0              | _ | 0             | + |    |

 $oldsymbol{4}$  On en déduit les variations de la fonction f:

| x | $-\infty$ | $\frac{-1}{6}$ | $\frac{1}{2}$ | +∞ |
|---|-----------|----------------|---------------|----|
| f |           | <i></i>        | <b>—</b>      |    |

**1** Soit  $x \in \mathbb{R}$ , on a

$$f(x) = 20x^3 - 38x^2 - 40x + 19$$

On a alors pour tout  $x \in \mathbb{R}$ ,

$$f'(x) = 20 \times 3x^2 - 38 \times 2x - 40 \times 1 + 0 = 60x^2 - 76x - 40$$

**2** Soit  $x \in \mathbb{R}$ ,

$$-4(5x+2)(-3x+5) = -4(-15x^2 + 25x - 6x + 10)$$
$$= -4(-15x^2 + 19x + 10)$$
$$= 60x^2 - 76x - 40$$



- **3** On pose A(x) = 5x + 2 et B(x) = -3x + 5.
  - A est une fonction affine avec m=5>0. f est donc croissante sur  $\mathbb{R}$ . Elle est donc d'abord négative puis positive. .

De plus 
$$A(x) = 0 \Leftrightarrow x = \frac{-2}{5}$$
.

• B est une fonction affine avec m=-3<0. B est donc décroissante sur  $\mathbb R$ . Elle est donc d'abord positive puis négative. sur  $\mathbb R$ .

De plus 
$$B(x) = 0 \Leftrightarrow x = \frac{5}{3}$$
.

On compare les deux racines obtenues : 
$$\frac{-2}{5} < \frac{5}{3}$$



On rappelle que A(x) = 5x + 2 et B(x) = -3x + 5 et f'(x) = -4(5x+2)(-3x+5). Son tableau de signe est alors

| x     | $-\infty$ |   | $\frac{-2}{5}$ |   | $\frac{5}{3}$ |   | +∞ |
|-------|-----------|---|----------------|---|---------------|---|----|
| -4    |           | _ |                | _ |               | _ |    |
| A(x)  |           | _ | 0              | + |               | + |    |
| B(x)  |           | + |                | + | 0             | _ |    |
| f'(x) |           | + | 0              | _ | 0             | + |    |

**4** On en déduit les variations de la fonction f:

| x | $-\infty$ | $\frac{-2}{5}$ | $\frac{5}{3}$ | +∞ |
|---|-----------|----------------|---------------|----|
| f |           |                | <b>→</b>      |    |

**1** Soit  $x \in \mathbb{R}$ , on a

$$f(x) = 4x^3 + 6x^2 - 72x + 14$$

On a alors pour tout  $x \in \mathbb{R}$ ,

$$f'(x) = 4 \times 3x^2 + 6 \times 2x - 72 \times 1 + 0 = 12x^2 + 12x - 72$$

**2** Soit  $x \in \mathbb{R}$ ,

$$-6(x+3)(-2x+4) = -6(-2x^2 + 4x - 6x + 12)$$
$$= -6(-2x^2 - 2x + 12)$$
$$= 12x^2 + 12x - 72$$



- **3** On pose A(x) = x + 3 et B(x) = -2x + 4.
  - A est une fonction affine avec m = 1 > 0. f est donc croissante sur ℝ.
     Elle est donc d'abord négative puis positive.
     De plus A(x) = 0 ⇔ x = -3.
  - B est une fonction affine avec m = -2 < 0. B est donc décroissante sur R. Elle est donc d'abord positive puis négative. sur R. De plus B(x) = 0 ⇔ x = 2.</li>

On compare les deux racines obtenues : -3 < 2



On rappelle que A(x) = x + 3 et B(x) = -2x + 4 et f'(x) = -6(x+3)(-2x+4). Son tableau de signe est alors

| x     | $-\infty$ |   | -3 |   | 2 |   | +∞ |
|-------|-----------|---|----|---|---|---|----|
| -6    |           | _ |    | _ |   | _ |    |
| A(x)  |           | _ | 0  | + |   | + |    |
| B(x)  |           | + |    | + | 0 | _ |    |
| f'(x) |           | + | 0  | _ | 0 | + |    |

**4** On en déduit les variations de la fonction f:



Activités Mentales 24 Août 2023

**1** Soit  $x \in \mathbb{R}$ , on a

$$f(x) = -8x^3 + 50x^2 + 100x - 19$$

On a alors pour tout  $x \in \mathbb{R}$ ,

$$f'(x) = -8 \times 3x^2 + 50 \times 2x + 100 \times 1 + 0 = -24x^2 + 100x + 100$$

**2** Soit  $x \in \mathbb{R}$ ,

$$4(6x+5)(-x+5) = 4(-6x^2 + 30x - 5x + 25)$$
$$= 4(-6x^2 + 25x + 25)$$
$$= -24x^2 + 100x + 100$$



- **3** On pose A(x) = 6x + 5 et B(x) = -x + 5.
  - A est une fonction affine avec m=6>0. f est donc croissante sur  $\mathbb{R}$ . Elle est donc d'abord négative puis positive. .

De plus 
$$A(x) = 0 \Leftrightarrow x = \frac{-5}{6}$$
.

B est une fonction affine avec m = -1 < 0. B est donc décroissante sur R. Elle est donc d'abord positive puis négative. sur R. De plus B(x) = 0 ⇔ x = 5.</li>

On compare les deux racines obtenues :  $\frac{-5}{6}$  < 5

On rappelle que A(x) = 6x + 5 et B(x) = -x + 5 et f'(x) = 4(6x + 5)(-x + 5). Son tableau de signe est alors

| x     | $-\infty$ |   | $\frac{-5}{6}$ |   | 5 |   | +∞ |
|-------|-----------|---|----------------|---|---|---|----|
| 4     |           | + |                | + |   | + |    |
| A(x)  |           | _ | 0              | + |   | + |    |
| B(x)  |           | + |                | + | 0 | _ |    |
| f'(x) |           | _ | 0              | + | 0 | _ |    |

 $oldsymbol{4}$  On en déduit les variations de la fonction f:

| х | $-\infty$ | $\frac{-5}{6}$ | 5        | +∞       |
|---|-----------|----------------|----------|----------|
| f |           | <b>→</b>       | <i>→</i> | <b>—</b> |

**1** Soit  $x \in \mathbb{R}$ , on a

$$f(x) = 12x^3 + 24x^2 - 48x + 23$$

On a alors pour tout  $x \in \mathbb{R}$ ,

$$f'(x) = 12 \times 3x^2 + 24 \times 2x - 48 \times 1 + 0 = 36x^2 + 48x - 48$$

**2** Soit  $x \in \mathbb{R}$ ,

$$3(-2x-4)(-6x+4) = 3(12x^2 - 8x + 24x - 16)$$
$$= 3(12x^2 + 16x - 16)$$
$$= 36x^2 + 48x - 48$$

- 3 On pose A(x) = -2x 4 et B(x) = -6x + 4.
  - A est une fonction affine avec m = -2 < 0. f est donc décroissante sur
     <p>
     R. Elle est donc d'abord positive puis négative. .

     De plus A(x) = 0 ⇔ x = -2.
  - B est une fonction affine avec m=-6<0. B est donc décroissante sur  $\mathbb{R}$ . Elle est donc d'abord positive puis négative. sur  $\mathbb{R}$ .

De plus  $B(x) = 0 \Leftrightarrow x = \frac{2}{3}$ .

On compare les deux racines obtenues :  $-2 < \frac{2}{3}$ 

On rappelle que A(x) = -2x - 4 et B(x) = -6x + 4 et f'(x) = 3(-2x - 4)(-6x + 4). Son tableau de signe est alors

| x     | $-\infty$ |   | -2 |   | $\frac{2}{3}$ |   | +∞ |
|-------|-----------|---|----|---|---------------|---|----|
| 3     |           | + |    | + |               | + |    |
| A(x)  |           | + | 0  | _ |               | - |    |
| B(x)  |           | + |    | + | 0             | - |    |
| f'(x) |           | + | 0  | _ | 0             | + |    |

 $oldsymbol{4}$  On en déduit les variations de la fonction f:

| x | $-\infty$ | -2 | $\frac{2}{3}$ | +∞ |
|---|-----------|----|---------------|----|
| f |           |    | <b>→</b>      |    |