Elijah Andrushenko

CPTS 453

Graph Theory

08/28/2019

Homework 1

1.

The equation to calculate the maximum number of edges in a simple graph is $\frac{n(n-1)}{2}$. So we have n=20 which gives us $\frac{20(20-1)}{2}=\frac{380}{2}=190$. Therefore the maximum number of edges in a simple graph with 20 vertices is 190.

Assuming the graph is connected then the equation to calculate the minimum number of edges in a simple graph is n-1. Since we have 20 vertices n=20, which gives us 20-1=19. Therefore the minimum number of edges in a simple graph with 20 vertices is 0 and if it is connected then the minimum number of edges is 19.

2.

The two graphs are not isomorphic. Both graphs have two vertices with a degree of 4, but in graph G the shortest walk from one vertex of degree 4 to the other vertex of degree 4 has a length of 1. In graph H the shortest walk from one vertex of degree 4 to the other vertex of degree 4 has a length of 2. Therefore since the lengths of the two walks between the two degree 4 vertices are different in each graph, these two graphs cannot be isomorphic.

3.

A)

Incidence Matrix M

	14	15	16	24	25	26	34	35	36
1	1	1	1	0	0	0	0	0	0
2	0	0	0	1	1	1	0	0	0
3	0	0	0	0	0	0	1	1	1
4	1	0	0	1	0	0	1	0	0
5	0	1	0	0	1	0	0	1	0
6	0	0	1	0	0	1	0	0	1

B)

Adjacency Matrix A

	1	2	3	4	5	6
1	0	0	0	1	1	1
2	0	0	0	1	1	1
3	0	0	0	1	1	1
4	1	1	1	0	0	0
5	1	1	1	0	0	0
6	1	1	1	0	0	0

C)

Source for doing matrix multiplication

https://www.dcode.fr/matrix-power

Adjacency Matrix A⁶

	1	2	3	4	5	6
1	243	243	243	0	0	0
2	243	243	243	0	0	0
3	243	243	243	0	0	0
4	0	0	0	243	243	243
5	0	0	0	243	243	243
6	0	0	0	243	243	243

The number of walks of length 6 between vertices 1 and 2 is 243.

D)

We calculate the Adjacency Matrix A^{10000}

The number of walks of length 10,000 between vertex 1 and vertex 4 is:

 $543783395114208624767752243060384905604044151194179331311606775397275243604773\\026249338521028261610322441734840774526514446852766639240128412715971512270416\\715106411838874146367514120961451889551988654833733805914942517666345775814181$

033201500545193605432832173455383972740071513828885322073959898810973908049936

E)
This is the Adjacency Matrix A⁵

	1	2	3	4	5	6
1	0	0	0	81	81	81
2	0	0	0	81	81	81
3	0	0	0	81	81	81
4	81	81	81	0	0	0
5	81	81	81	0	0	0
6	81	81	81	0	0	0

This matrix shows all number of possible walks from one vertex to another. Since $A_{1,1}$ $A_{2,2}$ $A_{3,3}$ $A_{4,4}$ $A_{5,5}$ and $A_{6,6}$ all have 0 then it must be the case that there does not exist a closed walk of length 5 for this graph.

F)

They are not isomorphic, since $K_{3,3}$ is bipartite and the graph shown is not bipartite. One graph can't be bipartite and the other not be bipartite and be isomorphic at the same time.