1 Module 4: Fundamentals of Data Analysis

Contents

1	Moo	dule 4: Fundamentals of Data Analysis	1
	1.1	Transforming data using pandas merge	1
	1.2	Joining by multiple fields	٠
	1.3	Plotting (Joint & Violin Plots)	4
	1.4	Data Cleaning	1

1.1 Transforming data using pandas merge

- He has a GDP df and a separate Population df
- Renaming Columns: [DataFrame].rename(columns = "[old col. name]" : "[new col. name]")
- Joining tables: pd.merge(left = "[DataFrame 1]", right = "[DataFrame 2]", left_on = "[Column name 1]", right_on = "[Column Name 1]", how = "[left, right, inner, outer]") e.g. pd.merge(left='GDP',right='pop',right_on='Entity',left_on='Entity',how='outer') Pandas looks for all values which match in both the left & right dfs' "Entity" column
- There are four join types: left, right, inner and outer
 - Outer: if value does not exist in one or the other df, then the value is filled in as NaN

 Left/right join: Prioritizes the L/R table to always have its column value in the table; will drop rows in the unprioritized table if it does not exist in the main one

LEFT JOIN

- Inner: Keeps rows only if the column values exist in BOTH tables

Note that inner will permutate for each possible combination for nonunique keys. Resolve with "merging on multiple cols" below.

1.2 Joining by multiple fields

• Merging on multiple columns from each df: pd.merge(left=, right=, how=, left_on = ['Col1', 'Col2'], right_on = ['Col1', 'Col2'])

1.3 Plotting (Joint & Violin Plots)

• Histogram:

px.histogram(df[col]) sns.distplot(df[col], kde = Bool) for kernel density estimate

- Scatter: px.scatter(df, x=, y=, color=, size=) with size as 3rd param px Log axes: as a constructor, log_x or log_y = True
- Box and whisker plot: Median marked with green line; box borders describe first and third quartiles px.box(df, y=, color=)
- Violin Plot: combines a box+whisker with a kernel density plot the width is its probability density px.violin(df, points=all) where points=all shows distribution of points (x-axis has no value)

• Joint (or "Marginal") Plot: contrasts two distributions to form a scatter plot px.scatter(df, x=, y=, marginal_x = , marginal_y =) where marginal constructor can be histogram, box, etc.

• Heat Map: the color indicates magnitude for locations the x-y plane px.density_heatmap(df, x=, y=, marginal_x=, marginal_y=) sns.jointplot(df, x=, y=, kind='hex')

1.4 Data Cleaning

- Steps to Data Cleaning
 - Eliminate duplicates
 - Resolve structural errors (capitalization, naming conventions, typos, inconsistencies, mislabeling, etc.)
 - Filter outliers
 - Handle missing NaN or null data
 - Validate that data is useful and correct
- String patterns: df[col].str.contains(" ") .startswith(" ")

```
.replace(" "," ") – make sure to backslash BRACKETS .upper() or .lower() NOTE that you can use .str. commands on df.columns too
```

- Convert vals to int64: pd.to_numeric(df[col])
- Show unique value counts: df[col].value_counts()