

Cloud Fundamentals

Chapter 3
Cloud Computing Service Models
4 IA

Manel Medhioub manel.madhioub@esprit.tn

Lesson plan

- Definition of service models
- Characteristics of service models
- Comparing service models

- A Cloud service model represents a specific pre-packaged combination of IT resources offered by a cloud provider.
- NIST has defined three Service Models
 - Infrastructure as a Service laaS
 - Platform as a Service PaaS
 - Software as a Service SaaS
- Various publications and different industry groups has defined alternate cloud service models based on laaS, PaaS and SaaS for a certain specialized cloud services and capabilities.
- They provide : NaaS(Network), DaaS(Desktop), IDaaS, StaaS(Storage) ...etc.
- However, these models eventually belong to one of the three primary cloud service models.

- The cloud service consumer is a temporary runtime role assumed by a software program when it accesses a cloud service.
- Common types of cloud service consumers can include software programs and services capable of remotely accessing cloud services.

Organizations of any type, size, or industry use cloud computing. For example:

- Mobile apps companies
- Websites
- Large organizations with extended IT services
- Video streaming platforms Netflix, Hulu, youtube...
- Online video games
- Developers that need to work together in a shared environment

- laaS
 - System, network and storage administrators
- PaaS
 - Application developers, testers and deployers
 - Application administrators
 - Application end users
- SaaS
 - Organizations providing software applications to their members or employees
 - End users and software application administrators

Service Models (1/3) - laaS

- Consumer capabilities:
 - provision processing, storage, networks (and other fundamental computing resources)
 - ability to deploy and run arbitrary software (can include operating systems and applications)

- Consumer management and control:
 - Not permitted at the underlying cloud infrastructure
 - Permitte ver operating systems, storage, deployed applications
 - possibly limited control of select networking components (e.g., host firewalls).

Service Models (2/3) - PaaS

- Consumer capabilities:
 - deploy onto the cloud infrastructure consumer-created or acquired applications created using programming languages and tools supported by the provider.

- Consumer management and control:
 - Not permitted at the underlying cloud infrastructure (network, servers, operating systems, or storage)
 - Permitted over the deployed applications
 - possiblopplication hosting environment configurations

Service Models (3/3) - SaaS

- Consumer capabilities:
 - Make use of the applications and services offered on the cloud infrastructure.
 - Applications are accessible from various client devices (thin client interface or a program interface)
- Consumer is unable to manage or control the underlying cloud infrastructure:
 - network, servers, operating systems, storage and individual application
 - possipexception of limited user specific application configuration settings.

Control level in Service models

Cloud Computing service models

IaaS Services PaaS Services SaaS Services Computing Networking Storage **Network Appliances** Servers Storage Manage physical and virtual networks with Flash-backed, durable, fast and High-performance cloud servers on hourly/monthly options routers, firewalls, VPN and load balancers flexible NFS-based storage Containers Load Balancer Big Data Storage An unstructured data storage service Orchestrate intelligent scheduling, Software-defined networking to manage traffic and distribute loads on each server designed for resiliency and security self-healing and horizontal scaling Scaling Domain Name Service (DNS) Automatically grow or shrink cloud Full service domain registration and environment based on demand administration Functions / Executors Content Delivery Network(CDN) Lets you run code without provisioning Decrease network latency by keeping or managing servers. data closer to users geography

PaaS Services laaS Services SaaS Services Middleware Security Identity and Access Mgmt. **Operating Systems** Open Source and enterprise Linux and Manage user access and encryption keys Windows systems

Data Management SQL and NoSQL databases as well as

information governance and migration tools

Business Rules

Automate and manage business logic and decisions outside of applications

Application Integration (APIs)

Automate and manage business logic and decisions outside of applications

SSL Certificates

Encrypt data between the client and server applications

Hardware Security Module

A physical device with key management and key storage

DevOps

Log Analysis

Log collection and search that automatically collects application and services data

Workload Scheduler

Beyond cron, create workflows that run at specific times or on a regular or event basis

CICD

Provision toolchains, automate builds and tests and control quality with analytics

Cost Management

Cost and usage data analysis to identify trends, cost drivers, & detect anomalies

laaS Services

PaaS Services

SaaS Services

Productivity

Search

Natural language processing, visual recognition and machine learning.

IoT Platform

Natural language processing, visual recognition and machine learning.

Business Rules

Automate and manage business logic and decisions outside of applications

Analytics

Data science, analytics engine, and platforms for analytics on large data sets.

Artificial Intelligence

Natural language processing, visual recognition and machine learning.

Media Services

High volume data streaming for various data types including video, audio, image, etc.

Mobile Services

Scalable, secure mobile access and push notifications that simplifies integration

Characteristics of IaaS

- Resources are distributed as a service
- Generally includes multiple users on a single piece of hardware
- Allows for dynamic scaling
- Has a variable cost, utility pricing model

Characteristics of IaaS

Resource	Low Cost	High Cost
VM with local storage	\$.015 per hour	\$1.6 per hour
CPU hour	\$.10	\$.96
Data transfer into the cloud	\$.08 per GB	\$.10 per GB
Data transfer out of the cloud	\$.10 per GB	\$.22 per GB
Object data storage	\$0.0 GET/HEAD/DELETE	\$.01 per 1000
	operations	PUT/COPY/POST/LIST operations
		\$.01 per 10,000 GET operations
Routable IP addresses	\$.01 per hour when not in use (provider X)	
	\$.01 per hour if activated (provider Y)	
	\$.10 per address remap if excessive (provider X)	

Typical Cloud Resources and Billing Rates

These values will continuously change as:

- (1) the cost of hardware changes,
- (2) hardware becomes more power efficient,
- (3) the cost of utility power fluctuates,
- (4) the cloud marketplace becomes more competitive.

Characteristics of PaaS

- Web based user interface creation tools
- Multi-tenant architecture where multiple concurrent users utilize the same development application.
- Builds on virtualization technology, so resources can easily be scaled up or down
- Usage fees calculated based on factors
 - Number and types of consumers (developers, tester, administrators ...)
 - Time for which platform is in use

Characteristics of PaaS

- The main functions/tools offered in such service by Cloud Service Providers (CSPs):
 - Runtime environments of multiple languages for application testing (for example, Python, Java)
 - A kit of software development tools (SDK)
 - An Administration Console for Cloud-Based App Management
 - A data storage, management and distribution repository ("data store")

Characteristics of SaaS

- Accessible in a browser (sometimes even when the user is offline)
- Software delivered in a "one to many" model.
- Users not required to handle software upgrades and patches.
- Managed from a central location and hosted on a remote server

- Vendor lock-in and Interoperability
- High availability
 - incident-reporting system
 - Backup solution
- Security and privacy
 - Access control
 - Integrity
 - Data location
 - Access via secured network
 - DDoS Protection Services

- SLA & Support
 - Performance Guarantee
 - 24/7 Support
 - Minimum Outage Duration
- Supported Hosts /clients
 - Technologies, standards, ...
- Supported deployment model
 - Public
 - Hybrid
 - Private
 - » Community

Geographic Availability

- Cloud computing locations are worldwide. These locations called "regions" and "availability zones."
- Each region is a separate geographic area. Within each region, there are multiple isolated locations known as availability zones.
- This geographic spread provides the ability to place resources, such as compute and storage, closer to end-users for faster access and better performance.
- The number of regions and the availability zones within them differs between cloud providers.
 - AWS has 18 regions and between 2-6 availability zones per region
 - GCP has 23 regions with at least 3 availability zones per region
 - Azure has 58 regions worldwide and is available in 140 countries all around the world
- The geographic locations between each cloud providers are different.
 - One example is that currently the only cloud provider that can work in mainland China is AWS.
 - GCP offers a region in Hong Kong, but those resources are not always accessible from mainland China.

Pricing

- The pricing models of the major cloud provides are similar:
 - On-demand, pay-as-you-go
 - Discounts for committed usage
 - Usage-based serverless resources
- On-demand pricing for the same compute (CPU-RAM-Disk) resources varies between cloud providers and is calculated on an hourly rate.
- Discounts also vary between cloud providers. For example,
 - AWS offers reserved instances that you can pre-purchase annually,
 - GCP offers "sustained use discount" whereby pricing goes down the more you use an instance.
- Serverless computing (Lambda on AWS, Functions on Azure, and Cloud Functions on GCP) are billed for the compute power you use, based on 100millisecond increments.

Workshop 2

- Each group will define and explain one of the deployment models:
 - Public, Private, Community, Hybrid.
- Each group should provide:
 - When we need to adopt the deployment model.
 - Which criteria are used to evaluate the choose of the model. (Elasticity, control level, cost, security,...)
 - Two or more success story.