Learning to Classify Open Intent via Soft Labeling and Manifold Mixup

Zifeng Cheng, Zhiwei Jiang, Yafeng Yin, Member, IEEE, Cong Wang, and Qing Gu

EEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

전북대학교 IT정보공학과 202018392 박나현

Open intent classification

- 대화시스템에서 아직 난제
 - 기존 심층 신경망에서는 학습한 class에 대한 확률만 출력(closed world 가정)
 - Training 동안 user의 모든 intent를 고려하는 것은 불가능

Objective

• Open intent 를 찾는 동시에 known intent 를 정확하게 분류하는 것

Existing method

- 대부분 k-class classifier와 합쳐진 outlier detection algorithm 사용
 - 현실은 open world 인데 closed world에서만 잘 작용
- Open intent classification 위해 (k+1)-classifier 직접 학습
 - k-class 샘플을 (k+1)-class classifier 로 training 시키기 어려움 존재

	Utterance	Intent Label
۲	I am still waiting on my card?	Card_arrival
	Delete my account please.	Terminate_account
k개의 class로 분류 ┪	What ATM accepts Mastercard?	ATM_support
	What ATMs can I use this card?	ATM_support
L		
77.4HIII III = 0 1	My card isn't working at all.	Open intents
K+1번째 새로운 class = open intent	Where can I use this card?	Open intents

 $C_1 \mid C_2 \mid ... \mid C_K$

Known Intents Open Intents

Two main challenge

Two main challenge

- Known class의 boundary 보정 방법
 - Known class의 training sample의 label 분포를 재 구성하여 known intent 에 대한 overconfident 줄 일수 있을지
- Test 샘플을 k+1 번째 open intent class로 boundary 학습
 - Training sample 기반으로 decision boundary를 최 적화하기 위해 open intent 위한 pseudo sample 생성할 수 있을지

제안한 모델에서 해결

- Soft Labeling (SL)
 - 훈련 샘플 intent label 분포 재구성
 - Open intent로 예측될 확률을 줄 일 수 있어 알 려진 의도에 대한 overconfident 줄일 수 있음
- Manifold Mixup(MM)
 - Open intent 에 대한 pseudo sample 생성

known intent 의 샘플과 open intent의 유사 샘플의 label-reshaped 가 학습되고 open intent classification에서 효과적으로 사용

Framework of the proposed method

- Outlier detection algorithm 사용하지 않고 open intent classification을 위한 (k+1)-class classification framework 제안
- Soft labeling과 manifold mixup 사용
 - Open intent에 대한 추가적인 데이터 없이 decision boundary 학습

Deep intent classification model

- BERT 사용하여 intent representation 추출
- BERT의 마지막 hidden layer에서 token embedding 얻음

$$[CLS, T_1, \dots, T_{m_i}] \in \mathbb{R}^{(m_i+1)\times H}$$

- Mean pooling
 - Get the average representation $\tilde{x}_i = \text{mean-pooling}([CLS, T_1, \dots, T_{m_i}])$
- Dense layer
 - Get the intent representation

$$z_i = h(x_i) = \text{ReLU}(W_h x_i + b_h)$$

Pre-training for known intents

• 더 좋은 intent representation 을 얻기 위해 training set에서 known

intent label data를 pretrain

• Intent feature z_i 를 학습시키기 위해 softmax loss 사용

$$\mathcal{L}_{P} = -\frac{1}{L} \sum_{i=1}^{L} \log \frac{\exp(\phi_{K}(z_{i})^{y_{i}})}{\sum_{j=1}^{K} \exp(\phi_{K}(z_{i})^{j})}$$

Known Intents Open Intents

Training for open intent

- Open intent data 부족으로 open intent 구별 위한 model train에 어려움 존재
 - Soft labeling과 manifold mixup으로 pseudo data 생성하여 해결

Soft labeling

- Training set에서 label 분포를 reshape하므로서 known intent에 대한 pseudo data 생성
- Default 값으로 open intent class로 재할당하므로서 label 분포 soften
 - 작은 확률을 set하여 ground-truth class 의 확률이 open class 확률보다 높도록 set
- Kl-divergence loss로 학습 $D_{\text{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \log \left(\frac{P(x)}{Q(x)} \right)$
 - P 분포와 Q 분포가 얼마나 다른 지를 측정하는 방법
 - (Cross-Entropy) (Entropy) $\mathcal{L}_S = \sum_{i=1}^{L} D_{KL} \left(p(x_i) || q(x_i) \right)$

Training for open intent

Manifold mixup

• Generate open intent samples by interpolating between the representation of two

samples of different known intents sample pair (x_i, x_j) : Random shuffling

$$h_i^l = \operatorname{BERT}(h_i^{l-1}), l \in [1, n] \qquad \hat{h}_m^n = \lambda h_i^n + (1 - \lambda) h_j^n \longrightarrow \operatorname{mixup}$$

$$h_j^l = \operatorname{BERT}(h_j^{l-1}), l \in [1, n] \qquad \hat{h}_m^l = \operatorname{BERT}(\hat{h}_m^{l-1}), l \in [n + 1, T]$$

$$\hat{h}_m^l = \lambda h_i^n + (1 - \lambda) h_j^n \longrightarrow \operatorname{mixup}$$

Output: \hat{h}_m^T \hat{z}_m $\mathcal{L}_M = -\frac{1}{M}\sum_{m=1}^M \log \frac{\exp(\phi_{K+1}(\hat{z}_m)^{K+1})}{\sum_{k=1}^{K+1} \exp(\phi_{K+1}(\hat{z}_m)^k)}$ BERT 전체 충수

Overall training objective

• Soft labeling loss와 manifold mixup loss 합

$$\mathcal{L} = \mu \mathcal{L}_S + (1 - \mu) \mathcal{L}_M$$

Intent

TABLE I STATISTICS OF DATASET

Experiments

Dataset	Classes	#Training	#Validation	#Test	Vocabulary Size	Length(mean)
BAKING	77	9003	1000	3080	5028	11.91
CLINC	150	15000	3000	5700	8376	8.31
SNIPS	7	13084	700	700	11971	9.05
ATIS	18	4978	500	893	938	11.37

Dataset

Banking

• Contain 77 intents and 13,083 customer service queries in the banking domain

• oos

• Contain 22,550 in-scope queries convering 150 intents and 1200 out-of-scope queries across 10 domains

SNIPS

• Contain 7 intents across different domain

• ATIS

• Contain 18 intents in the airline travel domain

Experimental settings

- Dataset
 - Train, validation, test
- The number of known classes
 - 25%, 50%, 75%
 - 나머지 class 는 open 으로 여기고 train 때는 제거
 - Test 때는 전체 label 사용
- Model
 - BERT-Base
- Soft labeling
 - Open intent class에서 default 확률: 0.3
- Manifold mixup
 - Interpolate the hidden state before the last transformer layer of BERT
 - Beta distribution에서 알파값 = 2
- Optimixer: AdamW
- Learning rate: 2e-5
- Batch size: 128

Results

TABLE II PERFORMANCE OF OPEN INTENT CLASSIFICATION WITH DIFFERENT KNOWN CLASS RATIOS (25%, 50%, 75%) ON FOUR BENCHMARK DATASETS

	Methods	BANI	KING	CLI	INC	SN	IPS	AT	IS
	11204110410	Accuracy	F1	Accuracy	F1	Accuracy	F1	Accuracy	F1
	MSP	43.67	50.09	47.02	47.62	-	-	-	-
	DOC	56.99	58.03	74.97	66.37	-	-	-	-
25%	OpenMax	49.94	54.14	68.50	61.99	-	-	-	-
3%	ĹMLC	64.21	61.36	81.43	71.16		-		
	ADB	78.85	71.62	87.59	77.19	67.41	69.89	63.90	53.21
	SLMM	80.96 ± 0.83	72.58 ± 0.79	91.25 ± 0.25	80.04 ± 1.22	75.30 ± 4.72	74.64 ± 3.48	69.90 ± 10.81	61.18 ± 9.44
	MSP	59.73	71.18	62.96	70.41	-		-	-
	DOC	64.81	73.12	77.16	78.26	-	-	-	-
0.07	OpenMax	65.31	74.24	80.11	80.56	-	-	-	-
0%	ĹMLC	72.73	77.53	83.35	82.16	-	-	_	-
	ADB	78.86	80.90	86.54	85.05	80.36	82.96	81.27	63.24
	SLMM	$80.28 {\pm} 0.57$	81.98 ± 0.47	89.04 ± 0.27	86.72 ± 0.08	80.93 ± 0.08	83.15 ± 0.15	87.37 ± 2.69	70.21 ± 2.44
	MSP	75.89	83.60	74.07	82.38	-		-	-
	DOC	76.77	83.34	78.73	83.59	-	-	-	-
E 61	OpenMax	77.45	84.07	76.80	73.16	-	-	-	-
5%	ĹMLC	78.52	84.31	83.71	86.23	-	-		-
	ADB	81.08	85.96	86.32	88.53	82.56	85.13	87.53	71.60
	SLMM	82.18 ± 1.42	86.67 ± 0.75	88.88 ± 0.49	90.40 ± 0.53	85.37 ± 0.14	85.57 ± 0.21	94.33 ± 0.56	81.00 ± 1.03

"accuracy" and "F1" Denote the accuracy score and macro F1-score over all classes. Performance (mean±std) over 10 runs are reported. The

of baselines on BANKING and CLINC from Zhang et al. [10]. The results of ADB on SNIPS and ATIS are reproduced from open-source code.

Results

TABLE III
PERFORMANCE OF OPEN INTENT CLASSIFICATION WITH DIFFERENT KNOWN CLASS RATIOS (25%, 50%, 75%) ON FOUR BENCHMARK DATASETS

	Methods	BANI	KING	CL	INC	SN	IPS	AT	IS
	Methods	Open	Known	Open	Known	Open	Known	Open	Known
	MSP	41.43	50.55	50.88	47.53	-	-	-	-
	DOC	61.42	57.85	81.98	65.96	-	-	-	-
25%	OpenMax	51.32	54.28	75.76	61.62	-	-	-	-
2570	LMLC	70.44	60.88	87.33	70.73	-	-	-	-
	ADB	84.56	70.94	91.84	76.80	70.99	69.34	64.93	50.33
	SLMM	86.53 ± 0.51	71.85 ± 0.84	94.53 ± 0.62	79.66 ± 2.81	79.68 ± 4.67	72.13 ± 1.51	67.14 ± 11.79	59.84 ± 7.42
50.64	MSP	41.19	71.97	57.62	70.58	-	-	_	-
	DOC	55.14	73.59	79.00	78.25	-	-	-	-
	OpenMax	54.33	74.76	81.89	80.54	-	-	-	-
50%	ĹMLC	69.53	77.74	85.85	82.11	-	-	-	-
	ADB	78.44	80.96	88.65	85.00	74.92	84.97	77.27	61.40
	SLMM	80.14 ± 0.40	82.03 ± 0.56	91.07 ± 0.05	86.67 ± 1.11	75.07 ± 2.76	85.17 ± 0.08	85.66 ± 3.41	68.05 ± 1.79
	MSP	39.23	84.36	59.08	82.59	-	-	-	-
	DOC	50.60	83.91	72.87	83.69	-	-	-	-
750	OpenMax	50.85	84.64	76.35	73.13	-	-	-	-
75%	ĹMLC	58.54	84.75	81.15	86.27	-	-	-	-
	ADB	66.47	86.29	83.92	88.58	69.30	88.29	71.08	71.72
	SLMM	69.20 ± 0.50	86.97 ± 1.08	87.15 ± 1.07	90.43 ± 0.32	69.72 ± 2.68	$89.00 \!\pm\! 0.15$	79.84 ± 2.68	81.08 ± 0.92

[&]quot;open" and "known" denote the macro F1-score over open class and known classes respectively. APerformance (mean±std) of our method over 10 runs are reported. The best results are in bold. All results of baselines on BANKING and CLINC from Zhang [10]. The results of ADB on SNIPS and ATIS are reproduced from open-source code.

Ablation Study

TABLE IV
ABLATION STUDY OF OPEN INTENT CLASSIFICATION WITH DIFFERENT KNOWN
CLASS RATIOS (25%, 50%, 75%) ON CLINC DATASET

	Setting	CLINC				
	Setting	Accuracy	F1	Weighed-F1	Acc-KoK	
	SLMM	91.25	80.04	90.97	97.81	
	w/o pre-training	84.01	69.30	88.94	95.18	
25%	w/o SL	84.78	74.82	81.55	95.35	
	w/o MM	89.84	80.26	90.36	97.54	
	w/o SL&MM	19.78	37.31	8.18	97.11	
	SLMM	89.04	86.72	89.45	96.93	
	w/o pre-training	81.22	76.48	87.86	95.47	
50%	w/o SL	63.84	71.44	72.76	90.98	
	w/o MM	88.35	86.74	89.00	97.11	
	w/o SL&MM	39.95	59.92	26.09	96.84	
	SLMM	88.88	90.40	88.70	96.40	
	w/o pre-training	81.21	81.35	88.07	95.83	
75%	w/o SL	72.14	81.22	81.01	91.16	
	w/o MM	88.25	90.14	88.46	96.25	
	w/o SL&MM	59.25	75.05	46.98	96.01	

F1 denotes macro-F1 over all classes. Acc-KoK denotes the accuracy of known intents classifier on samples of known intents. Averaged results over 10 runs are reported. The best results are in bold.

Error Analysis

• 두 종류 오류

- Open class 관련 오류가 많은 오류를 차지하고 있으며 많은 open class 샘플이 인식되지 않은 것을 알 수 있음
- There are five samples belonging to known classes error.

TABLE VII TWO EXAMPLES FOR ERROR ANALYSIS

Utterance	Ground-Truth Intent	Predicted Intent
Add this song to blues roots.	Add To Play List Open intents	Play Music Known intents
Find a movie called living in america.	Search Creative Work Open intents	Search Screening Event Known intents

• 추가

• 일부 open intent가 known intent 와 유사하다는 것을 발견

Conclusion

- Soft labeling과 manifold mixup을 기반으로하는 deep open intent
 - classification model 제안
 - Soft labeling
 - 각 sample 이 open intent 로 예측될 확률을 제공
 - Manifold mixup
 - 두 개의 서로 다른 알려진 의도 샘플의 숨겨진 표현 사이의 interpolating을 통해 open intent sample을 생성
- **Algorithm 1:** Training Flow of SLMM. **Input:** The training set Output: A open intent classification model. # Pre-training for Known Intents: for all iteration = $1, \dots, MaxIter do$ Sample a mini-batch $\{(x_i, y_i)\}$ Calculate the training loss by (3) Obtain derivative and update the model end for # Training for Open Intents: for all iteration = $1, \dots, MaxIter do$ Sample a mini-batch $\{(x_i, y_i)\}$ Reshape label distribution via soft labeling Calculate soft labeling loss by (4) 11: Generate pseudo data via manifold mixup Calculate manifold mixup loss by (8) Calculate total loss by (9) Obtain derivative and update the model end for

17: **return**The model converges on validation set.

• outlier detection algorithms 없이 (k+1)-class classification을 수행

Thank you

Soft labeling and manifold mixup(slmm)

Soft labeling(sl)

• 각 샘플이 공개 의도로 예측 될 확률을 줄 수 있으므로 known intent 에 대한 confidence 감소 가능

Manifold mixup(mm)

- Mixup
 - 데이터를 두개씩 쌍을 지어 mixup 한 후 그 데이터를 새로 운 학습 데이터로 사용하는 것
- Open intent에 대한 유사샘플 을 생성

Manifold mixup

- Mixup
 - Data agumentation method
- Manifold mixup
 - 음냐
- Interpolation
 - 데이터와 데이터 사이의 빈공간을 채워넣는것
- 데이터 증강, 모델 일반화를 위해 Manifold mixup을 사용함으로써 이전 연구들과 차이점을 두고 manifold mixup을 open intent classification task를 위해 선택

Model analysis

 $\label{eq:table v} \text{TABLE V}$ Effect of α of Beta Distribution in Manifold Mixup

α	0.5	1	2	4
Accuracy	81.50	90.22	91.25	91.85 79.79
F1	15.08	69.78	80.04	

	n	9	10	11
A	Accuracy	87.03	86.85	91.25
	F1	75.30	75.18	80.04

Model analysis

Fig. 4. Effects of ξ and μ on CLINC dataset with 25% known classes. Left part is the effect of ξ and the right part is the effect of μ .