#### Imports $\c \$

```
In [486]: import pandas
import numpy
from sklearn import svm
from sklearn.metrics import confusion_matrix,classification_report
from sklearn.decomposition import PCA
import seaborn
import matplotlib.pyplot as pyplot
import warnings
warnings.filterwarnings("ignore")
```

#### Creating the SVM model instance(object)

This model will be used for checkin working of the data before and after tranformation of data using PCA

```
In [565]: model_for_normal_data=svm.SVC()
    model_for_Transformed_data=svm.SVC()
    temp_model=svm.SVC()
```

#### Setting the matplotlib configurations

```
In [572]: %matplotlib inline
pyplot.rcParams["figure.figsize"] = (15, 12)
```

#### Creating the some preprocessing functions

```
classes_list=["rice", "maize", "cotton", "coconut", "orange", "apple", "watermelon", "jute", "mango", "coffee"]
In [489]:
          def get_class_number(class_name):
              if class name=='rice':
                  return 0
              if class_name=='maize':
                  return 1
              if class_name=='cotton':
                  return 2
              if class_name=='coconut':
                  return 3
              if class_name=='orange':
                  return 4
              if class_name=='apple':
                  return 5
              if class_name=='jute':
                  return 6
              if class_name=='mango':
                  return 7
              if class_name=='watermelon':
                  return 8
              if class_name=='coffee':
                  return 9
```

# Data Reading 4

```
In [490]: data=pandas.read_csv('./Crop_Suggestion.csv')
```

cheking the columns, data, data type information, correlation between attributes

```
In [491]: data.columns
Out[491]: Index(['temperature', 'humidity', 'rainfall', 'label'], dtype='object')
```

```
In [492]: data
```

#### Out[492]:

|     | temperature | humidity      | rainfall   | label  |
|-----|-------------|---------------|------------|--------|
|     | tomporataro | - indiminanty |            | 14.501 |
| 0   | 20.879744   | 82.002744     | 202.935536 | rice   |
| 1   | 21.770462   | 80.319644     | 226.655537 | rice   |
| 2   | 23.004459   | 82.320763     | 263.964248 | rice   |
| 3   | 26.491096   | 80.158363     | 242.864034 | rice   |
| 4   | 20.130175   | 81.604873     | 262.717340 | rice   |
|     |             |               |            |        |
| 995 | 26.774637   | 66.413269     | 177.774507 | coffee |
| 996 | 27.417112   | 56.636362     | 127.924610 | coffee |
| 997 | 24.131797   | 67.225123     | 173.322839 | coffee |
| 998 | 26.272418   | 52.127394     | 127.175293 | coffee |
| 999 | 23.603016   | 60.396475     | 140.937041 | coffee |

1000 rows × 4 columns

#### **♦** checking the available number of classes

In [493]: data['label'].value\_counts()

Out[493]: rice

100 maize 100 100 cotton 100 coconut orange 100 apple 100 100 watermelon 100 jute mango 100 coffee 100

Name: label, dtype: int64

In [494]: data.describe()

#### Out[494]:

|       | temperature | humidity    | rainfall    |
|-------|-------------|-------------|-------------|
| count | 1000.000000 | 1000.000000 | 1000.000000 |
| mean  | 25.017344   | 78.038307   | 127.851236  |
| std   | 3.808391    | 14.857447   | 56.785011   |
| min   | 10.010813   | 45.022364   | 40.126504   |
| 25%   | 23.113147   | 67.087637   | 90.413542   |
| 50%   | 24.971106   | 81.979157   | 111.777864  |
| 75%   | 26.681848   | 90.918003   | 169.861544  |
| max   | 35.990097   | 99.981876   | 298.560117  |

### Scatter plot of the data

```
In [570]: pyplot.scatter(x=[i for i in range(1,len(data)+1)],y=data['temperature'],color = 'gray')
pyplot.scatter(x=[i for i in range(1,len(data)+1)],y=data['humidity'],color = 'red')
pyplot.scatter(x=[i for i in range(1,len(data)+1)],y=data['rainfall'],color = 'yellow')
```

Out[570]: <matplotlib.collections.PathCollection at 0x227025d5730>



here each graph is drawn by one to one manner



# **Dimensionality Reduction**

# **Principal Component Analysis Transformation**

creating instance of PCA 👇

In [497]: Principal\_Component\_Analyser=PCA(n\_components=2)

Number of Principle components is 2 👆

. . . \_

means any number of features will be converted in to 2 features ( M features ----> 2 features)

In [498]: Component\_Data=Principal\_Component\_Analyser.fit\_transform(data.iloc[:,:3])

**♦** Mean of each features

In [499]: Principal\_Component\_Analyser.mean\_

Out[499]: array([ 25.01734441, 78.03830672, 127.85123646])

□ Covariance matrix of the Given Data

In [500]: Principal\_Component\_Analyser.get\_covariance()

[-1.46912754e+00, 1.18638463e+02, 3.22453752e+03]])

```
In [501]: Transformed_Data=pandas.DataFrame({"label":data['label']})
In [502]: Transformed_Data['column1']=[i[0] for i in Component_Data]
          Transformed_Data['column2']=[i[1] for i in Component_Data]
```

### **→** Tranformed Data

In [505]: Transformed\_Data

Out[505]:

|     | label  | column1    | column2   |
|-----|--------|------------|-----------|
| 0   | rice   | 75.184975  | -1.351831 |
| 1   | rice   | 98.819617  | 1.333277  |
| 2   | rice   | 136.177367 | 0.914760  |
| 3   | rice   | 115.005984 | 2.539035  |
| 4   | rice   | 134.905152 | 1.330025  |
|     |        |            |           |
| 995 | coffee | 49.425175  | 13.687306 |
| 996 | coffee | -0.771709  | 21.515530 |
| 997 | coffee | 45.010739  | 12.475718 |
| 998 | coffee | -1.697363  | 25.875760 |
| 999 | coffee | 12.381359  | 17.954461 |
|     |        |            |           |

1000 rows × 3 columns

In [506]: Transformed\_Data.describe()

Out[506]:

|       | column1       | column2       |
|-------|---------------|---------------|
| count | 1.000000e+03  | 1.000000e+03  |
| mean  | -6.366463e-15 | -1.409717e-14 |
| std   | 5.682620e+01  | 1.475104e+01  |
| min   | -8.732669e+01 | -2.004431e+01 |
| 25%   | -3.814501e+01 | -1.341110e+01 |
| 50%   | -1.555714e+01 | -2.553518e+00 |
| 75%   | 4.201219e+01  | 1.044617e+01  |
| max   | 1.708440e+02  | 3.244620e+01  |

#### Attribute comparison paring graph of Transformed Data

here each graph is drawn by one to one manner

In [507]: | seaborn.pairplot(Transformed\_Data,hue="label",palette="bright")

Out[507]: <seaborn.axisgrid.PairGrid at 0x22701ca3850>



Out[571]: <matplotlib.collections.PathCollection at 0x22703eee670>



# **Training and Testing on Data** before Tranformation by PCA

# **Data Preparation for Training and testing on Normal Data**

#### Suffling the data set 4



this is to get splitted data, that have all type of the classes in training and testing

```
In [546]: | shuffled_Data=data.sample(frac=1)
          Training_Data = shuffled_Data[:850]
          Testing_Data = shuffled_Data[850:]
```

# Splitting the dataset into training and testing $\d$

For Training 85% data is being used and for testing 15% data is used from the given data

means 850 rows will be used for training and 150 rows will be used for testing

# Dividing the training data features and labels -



```
In [547]: training_Labels=Training_Data['label']
    training_Features=Training_Data.drop(['label'],axis=1)
    testing_Labels=Testing_Data['label']
    testing_Features=Testing_Data.drop(['label'],axis=1)
```

### dividing the testing data features and labels 👆

this will be used for testing the SVM model

## 

```
In [548]: model_for_normal_data.fit(training_Features,training_Labels)
Out[548]: SVC()
```

Now model is Trained 4

# Optional Part 👇

checking model on training data to check training accuracy (not needed)

plotting the confusion matrix for model on training data

calculating the accuracy of the model and precision of the respective classes

```
In [549]: training_predicted_values=model_for_normal_data.predict(training_Features)
    training_classification_data=confusion_matrix(training_Labels,training_predicted_values)
    seaborn.heatmap(training_classification_data,annot=True,xticklabels=classes_list,yticklabels=classes_list)
    print(classification_report(training_Labels,training_predicted_values,target_names=classes_list))
```

|              | precision | recall | t1-score | support |
|--------------|-----------|--------|----------|---------|
|              |           |        |          |         |
| rice         | 0.52      | 0.54   | 0.53     | 84      |
| maize        | 0.92      | 0.94   | 0.93     | 88      |
| cotton       | 1.00      | 0.90   | 0.95     | 88      |
| coconut      | 0.88      | 0.97   | 0.92     | 86      |
| orange       | 0.74      | 0.90   | 0.81     | 81      |
| apple        | 0.99      | 0.84   | 0.91     | 89      |
| watermelon   | 0.97      | 1.00   | 0.98     | 83      |
| jute         | 0.55      | 0.56   | 0.55     | 84      |
| mango        | 0.97      | 0.79   | 0.87     | 86      |
| coffee       | 0.96      | 1.00   | 0.98     | 81      |
|              |           |        |          |         |
| accuracy     |           |        | 0.84     | 850     |
| macro avg    | 0.85      | 0.84   | 0.84     | 850     |
| weighted avg | 0.85      | 0.84   | 0.84     | 850     |
|              |           |        |          |         |



# Now Testing the model •

plotting the confusion matrix for model of tested data

calculating the accuracy of the model and precision of the respective classes

In [550]: | predicted\_values=model\_for\_normal\_data.predict(testing\_Features) classification\_data=confusion\_matrix(testing\_Labels,predicted\_values) seaborn.heatmap(classification\_data,annot=True,xticklabels=classes\_list,yticklabels=classes\_list) print(classification\_report(testing\_Labels,predicted\_values,target\_names=classes\_list))





# Training and Testing on Transformed Data after Tranformation by PCA

# Data Preparation for Training and testing on Transformed Data

Suffling the Transformed data set because PCA is unsupervised, hence label are same as previous



this is to get splitted data, that have all type of the classes in training and testing

```
Tranformed_shuffled_Data=Transformed_Data.sample(frac=1)
In [551]:
          Tranformed_Training_Data = Tranformed_shuffled_Data[:850]
          Tranformed_Testing_Data = Tranformed_shuffled_Data[850:]
```

# Splitting the dataset into training and testing 👆

For Training 85% data is being used and for testing 15% data is used from the given data

means 850 rows will be used for training and 150 rows will be used for testing

# Dividing the training data features and labels |

this will be used for training of SVM model

```
In [552]: Tranformed_training_Labels=Tranformed_Training_Data['label']
          Tranformed_training_Features=Tranformed_Training_Data.drop(['label'],axis=1)
          Tranformed_testing_Labels=Tranformed_Testing_Data['label']
          Tranformed_testing_Features=Tranformed_Testing_Data.drop(['label'],axis=1)
```

### dividing the testing data features and labels



### fitting the model on Transformed Data 🖣

In [554]: model\_for\_Transformed\_data.fit(Tranformed\_training\_Features,Tranformed\_training\_Labels)

Out[554]: SVC()

checking model on training data to check training accuracy (not needed)

plotting the confusion matrix for model on training data

calculating the accuracy of the model and precision of the respective classes

In [555]: Transformed\_training\_predicted\_values=model\_for\_Transformed\_data.predict(Tranformed\_training\_Features)
Transformed\_training\_classification\_data=confusion\_matrix(Tranformed\_training\_Labels,Transformed\_training\_predicted\_values)
seaborn.heatmap(Transformed\_training\_classification\_data,annot=True,xticklabels=classes\_list,yticklabels=classes\_list)

print(classification\_report(Tranformed\_training\_Labels, Transformed\_training\_predicted\_values, target\_names=classes\_list))

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| rice         | 0.55      | 0.54   | 0.55     | 89      |
| maize        | 0.95      | 0.95   | 0.95     | 82      |
| cotton       | 1.00      | 0.97   | 0.98     | 86      |
| coconut      | 0.90      | 0.98   | 0.94     | 82      |
| orange       | 0.80      | 0.93   | 0.86     | 80      |
| apple        | 0.98      | 0.80   | 0.88     | 81      |
| watermelon   | 0.93      | 1.00   | 0.96     | 87      |
| jute         | 0.55      | 0.59   | 0.57     | 86      |
| mango        | 0.97      | 0.81   | 0.88     | 89      |
| coffee       | 0.98      | 1.00   | 0.99     | 88      |
|              |           |        |          |         |
| accuracy     |           |        | 0.85     | 850     |
| macro avg    | 0.86      | 0.86   | 0.86     | 850     |
| weighted avg | 0.86      | 0.85   | 0.85     | 850     |



# Now Testing the model •

plotting the confusion matrix for model of tested data

calculating the accuracy of the model and precision of the respective classes

In [556]: Transformed\_predicted\_values=model\_for\_Transformed\_data.predict(Tranformed\_testing\_Features) Transformed\_classification\_data=confusion\_matrix(Tranformed\_testing\_Labels,Transformed\_predicted\_values) seaborn.heatmap(Transformed\_classification\_data,annot=True,xticklabels=classes\_list,yticklabels=classes\_list) print(classification\_report(Tranformed\_testing\_Labels,Transformed\_predicted\_values,target\_names=classes\_list))

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| rice         | 0.38      | 0.45   | 0.42     | 11      |
| maize        | 0.89      | 0.89   | 0.89     | 18      |
| cotton       | 1.00      | 0.86   | 0.92     | 14      |
| coconut      | 0.85      | 0.94   | 0.89     | 18      |
| orange       | 0.86      | 0.90   | 0.88     | 20      |
| apple        | 1.00      | 0.84   | 0.91     | 19      |
| watermelon   | 1.00      | 1.00   | 1.00     | 13      |
| jute         | 0.54      | 0.50   | 0.52     | 14      |
| mango        | 1.00      | 1.00   | 1.00     | 11      |
| coffee       | 0.92      | 1.00   | 0.96     | 12      |
| accuracy     |           |        | 0.85     | 150     |
| macro avg    | 0.84      | 0.84   | 0.84     | 150     |
| weighted avg | 0.86      | 0.85   | 0.85     | 150     |



# If we just remove one column rather than using PCA, then Accuracy changed as following

```
In [567]: temp_shuffled_Data=data.sample(frac=1)
    temp_Training_Data = temp_shuffled_Data[:850]
    temp_Testing_Data = temp_shuffled_Data[850:]
    temp_training_Labels=temp_Training_Data['label']
    temp_training_Features=temp_Training_Data.drop(['label','rainfall'],axis=1)
    temp_testing_Labels=temp_Testing_Data['label']
    temp_testing_Features=temp_Testing_Data.drop(['label','rainfall'],axis=1)
    temp_model.fit(temp_training_Features,temp_training_Labels)
    temp_predicted_values=temp_model.predict(temp_testing_Features)
    temp_classification_data=confusion_matrix(temp_testing_Labels,temp_predicted_values)
    seaborn.heatmap(temp_classification_data,annot=True,xticklabels=classes_list,yticklabels=classes_list)
    print(classification_report(temp_testing_Labels,temp_predicted_values,target_names=classes_list))
```

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| nico         | 1 00      | 0 17   | a 20     | 10      |
| rice         | 1.00      | 0.17   | 0.29     | 18      |
| maize        | 0.65      | 0.92   | 0.76     | 12      |
| cotton       | 0.55      | 0.75   | 0.63     | 8       |
| coconut      | 0.36      | 0.31   | 0.33     | 16      |
| orange       | 0.00      | 0.00   | 0.00     | 18      |
| apple        | 0.67      | 0.67   | 0.67     | 18      |
| watermelon   | 0.95      | 1.00   | 0.97     | 18      |
| jute         | 0.22      | 0.45   | 0.29     | 11      |
| mango        | 0.41      | 0.67   | 0.51     | 18      |
| coffee       | 0.50      | 0.62   | 0.55     | 13      |
|              |           |        |          |         |
| accuracy     |           |        | 0.53     | 150     |
| macro avg    | 0.53      | 0.55   | 0.50     | 150     |
| weighted avg | 0.54      | 0.53   | 0.49     | 150     |
|              |           |        |          |         |





### Features before PCA -





# **Accuracy Before Transformnation**

In [562]: print(classification\_report(testing\_Labels,predicted\_values,target\_names=classes\_list))

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| rice         | 0.69      | 0.56   | 0.62     | 16      |
| maize        | 0.86      | 1.00   | 0.92     | 12      |
| cotton       | 1.00      | 0.83   | 0.91     | 12      |
| coconut      | 0.81      | 0.93   | 0.87     | 14      |
| orange       | 0.81      | 0.89   | 0.85     | 19      |
| apple        | 1.00      | 0.73   | 0.84     | 11      |
| watermelon   | 1.00      | 1.00   | 1.00     | 17      |
| jute         | 0.63      | 0.75   | 0.69     | 16      |
| mango        | 1.00      | 0.86   | 0.92     | 14      |
| coffee       | 0.95      | 1.00   | 0.97     | 19      |
| 2664192614   |           |        | 0.96     | 150     |
| accuracy     | 0.00      | 0.06   | 0.86     | 150     |
| macro avg    | 0.88      | 0.86   | 0.86     | 150     |
| weighted avg | 0.87      | 0.86   | 0.86     | 150     |

# Testing accuracy is 85% before applying PCA 👆

# **Accuracy After Transformnation**

In [563]: print(classification\_report(Tranformed\_testing\_Labels,Transformed\_predicted\_values,target\_names=classes\_list))

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
|              |           |        |          |         |
| rice         | 0.38      | 0.45   | 0.42     | 11      |
| maize        | 0.89      | 0.89   | 0.89     | 18      |
| cotton       | 1.00      | 0.86   | 0.92     | 14      |
| coconut      | 0.85      | 0.94   | 0.89     | 18      |
| orange       | 0.86      | 0.90   | 0.88     | 20      |
| apple        | 1.00      | 0.84   | 0.91     | 19      |
| watermelon   | 1.00      | 1.00   | 1.00     | 13      |
| jute         | 0.54      | 0.50   | 0.52     | 14      |
| mango        | 1.00      | 1.00   | 1.00     | 11      |
| coffee       | 0.92      | 1.00   | 0.96     | 12      |
|              |           |        |          |         |
| accuracy     |           |        | 0.85     | 150     |
| macro avg    | 0.84      | 0.84   | 0.84     | 150     |
| weighted avg | 0.86      | 0.85   | 0.85     | 150     |
|              |           |        |          |         |

Testing accuracy is 85% After applying PCA 👆

In [568]: print(classification\_report(temp\_testing\_Labels,temp\_predicted\_values,target\_names=classes\_list))

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| rice         | 1.00      | 0.17   | 0.29     | 18      |
| maize        | 0.65      | 0.92   | 0.76     | 12      |
| cotton       | 0.55      | 0.75   | 0.63     | 8       |
| coconut      | 0.36      | 0.31   | 0.33     | 16      |
| orange       | 0.00      | 0.00   | 0.00     | 18      |
| apple        | 0.67      | 0.67   | 0.67     | 18      |
| watermelon   | 0.95      | 1.00   | 0.97     | 18      |
| jute         | 0.22      | 0.45   | 0.29     | 11      |
| mango        | 0.41      | 0.67   | 0.51     | 18      |
| coffee       | 0.50      | 0.62   | 0.55     | 13      |
|              |           |        |          |         |
| accuracy     |           |        | 0.53     | 150     |
| macro avg    | 0.53      | 0.55   | 0.50     | 150     |
| weighted avg | 0.54      | 0.53   | 0.49     | 150     |

If we just remove one column rather than using PCA, then Accuracy become 55%

if we use PCA then M features get transformed/Reduced in N features with having similar data properties with original data, hence it is able to show similar accuracy as like as original data even having less features

but if we reduce the number of columns manualy by just removing it then we can loose some important features of the original data, hence accuracy for model can get reduced