Exercícios: Equações Exponenciais

Prof. Gustavo Sarturi - ONG em Ação

11 de Julho de 2017

Exercício 1. Resolva as seguintes equações exponenciais:

a.
$$2^x = 128$$

b.
$$3^x = 243$$

c.
$$2^x = \frac{1}{16}$$

d.
$$\left(\frac{1}{5}\right)^x = 125$$

e.
$$(\sqrt[3]{2})^x = 8$$

f.
$$9^x = 27$$

g.
$$4^x = \frac{1}{8}$$

h.
$$\left(\frac{1}{125}\right)^x = 25$$

i.
$$(\sqrt[5]{4})^x = \frac{1}{\sqrt{8}}$$

j.
$$100^x = 0,001$$

k.
$$8^x = 0.25$$

l.
$$125^x = 0.04$$

m.
$$\left(\frac{2}{3}\right)^x = 2,25$$

Exercício 2. Resolva as seguintes equações exponenciais:

a.
$$2^{3x-1} = 32$$

b.
$$7^{4x+3} = 49$$

c.
$$11^{2x+5} = 1$$

d.
$$2^{x^2-x-15} = 16$$

e.
$$3^{x^2+2x} = 243$$

f.
$$5^{2x^2+3x-2} = 1$$

g.
$$81^{1-3x} = 27$$

h.
$$7^{3x+4} = 49^{2x-3}$$

i.
$$5^{3x-1} = \left(\frac{1}{25}\right)^{2x+3}$$

j.
$$(\sqrt{2})^{3x-1} = (\sqrt[3]{16})^{2x-1}$$

k.
$$8^{2x+1} = \sqrt[3]{4^{x-1}}$$

1.
$$4^{x^2-1} = 8^x$$

m.
$$27^{x^2+1} = 9^{5x}$$

n.
$$8^{x^2-x} = 4^{x+1}$$

Exercício 3. Determine os valores de x que satisfazem a equação:

$$100 \cdot 10^x = \sqrt[x]{1000^5}$$

Exercício 4. Resolva a equação $4^{x^2+4x} = 4^{12}$

Exercício 5. Resolva as seguintes equações exponenciais:

a.
$$(2^x)^{(x+4)} = 32$$

b.
$$(9^{x+1})^{x-1} = 3^{x^2+x+4}$$

c.
$$2^{3x-1} \cdot 4^{2x+3} = 8^{3-x}$$

d.
$$(3^{2x-7})^3:9^{x+1}=(3^{3x-1})^4$$

e.
$$2^{3x+2}: 8^{2x-7} = 4^{x-1}$$

f.
$$\frac{3^{x+2} \cdot 9^x}{243^{5x+1}} = \frac{81^{2x}}{27^{3-4x}}$$

g.
$$\sqrt[x+4]{2^{3x-8}} = 2^{x-5}$$

h.
$$8^{3x} = \frac{\sqrt[3]{32^x}}{4^{x-1}}$$

i.
$$\sqrt[x-1]{\sqrt[3]{2^{3x-1}}} - \sqrt[3x-7]{8^{x-3}} = 0$$

j.
$$\sqrt{8^{x-1}} \cdot \sqrt[x+1]{4^{2x-3}} = \sqrt[6]{2^{5x+3}}$$

Exercício 6. Determine o conjunto solução da equação:

$$\left[\begin{array}{ccc} 0 & 3^x & 1 \\ 0 & 3^x & 2 \\ 4 & 3^x & 3 \end{array} \right] = 0$$

Exercício 7. Resolva as seguintes equações exponenciais:

Exemplo:

$$2^{x+1} + 2^x + 2^{x+1} - 2^{x+2} + 2^{x+3} = 120 \rightarrow 2^{x-1} (1 + 2 + 2^2 - 2^3 + 2^4) = 120 \rightarrow 2^{x-1} \cdot 15 = 120 \rightarrow 2^{x-1} = 8 \rightarrow 2^{x-1} = 2^3 \rightarrow x - 1 = 3 \rightarrow x = 4$$

$$S = \{4\}$$

a.
$$3^{x-1} - 3^x + 3^{x+1} + 3^{x+2} = 306$$

b.
$$5^{x-2} - 5^x + 5^{x+1} = 505$$

c.
$$2^{3x} + 2^{3x+1} + 2^{3x+2} + 2^{3x+3} = 240$$

d.
$$5^{4x-1} - 5^{4x} - 5^{4x+1} + 5^{4x+2} = 480$$

e.
$$3 \cdot 2^x - 5 \cdot 2^{x+1} + 5 \cdot 2^{x+3} - 2^{x+5} = 2$$

f.
$$2 \cdot 4^{x+2} - 5 \cdot 4^{x+1} - 3 \cdot 2^{2x+1} - 4^x = 20$$

Exercício 8. Resolva as seguintes equações exponenciais: $E_{resmolo}$:

$$4^{x} - 2^{x} = 56 \Leftrightarrow (2^{x})^{2} - 2^{x} - 56 = 0$$

Fazendo
$$2^x = \lambda$$
 temos: $\lambda^2 - \lambda - 56 = 0 \Leftrightarrow \lambda = 8$ ou $\lambda = -7$

Observe que $\lambda = -7$ não convém, pois, $\lambda = 2^x > 0$.

$$De\lambda = 8 \ temos: \ 2^x = 2^3 = 3.$$

Sendo assim: $S = \{3\}$

a.
$$4^x - 2^x - 2 = 0$$

$$b. \ 9^x + 3^x = 90$$

$$c. \ 4^x - 20 \cdot 2^x + 64 = 0$$

$$d. \ 4^x + 4 = 5 \cdot 2^x$$

$$e. 9^x + 3^{x+1} = 4$$

$$f. \ 5^{2x} + 5^x + 6 = 0$$

$$g. \ 2^{2x} + 2^{x+1} = 80$$

$$h. \ 10^{2x-1} - 11 \cdot 10^{x-1} + 1 = 0$$

$$i. \ 4^{x+1} + 4^{3-x} = 257$$

j.
$$5 \cdot 2^{2x} - 4^{2x - \frac{1}{2}} - 8 = 0$$