

Varianta 068

Subjectul I:

a)
$$3\sqrt{2}$$
. b) $5\sqrt{7}$. c) 0. d) $\sqrt{2}$. e) $\frac{\sqrt{6}}{3}$. f) $\cos x = \frac{4}{5}$.

Subjectul II:

1. a)
$$(f \circ f)(2)=2$$
. b) $f \ge 1 \Leftrightarrow x^2 - 6x + 9 = (x-3)^2 \ge 0$ "A". c) $P = 3/4$. d) 1810. e) $x=8$.

2. a)
$$f'(x) = 8x - \frac{1}{x^2}$$
. b) $f'(x) = \frac{8x^3 - 1}{x^2}$. Pentru $\forall x > 1 \Rightarrow x^2 > 0 \Rightarrow f'(x) > 0 \Rightarrow f$ strict

crescatoare pe
$$(1, \infty)$$
. c) $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1) = 7$. d) $f''(x) = 8 + \frac{2}{x^3} = \frac{8x^3 + 2}{x^3}, \forall x > 0$. Deci f este

convexa pe $(0, \infty) \Rightarrow$ nu are nici un punct de inflexiune e) $\int_{1}^{e} f(x)dx = \frac{4e^3}{3} - \frac{1}{3}$

Subjectul III:

a)
$$f(0)=[0]+\left[\frac{1}{n}\right]+\left[\frac{2}{n}\right]+...+\left[\frac{n-1}{n}\right]-\left[0\right]=0+0+0+...0-0=0$$

b)
$$f(x+\frac{1}{n}) = \left[x+\frac{1}{n}\right] + \left[x+\frac{2}{n}\right] + \dots + \left[x+\frac{n-1}{n}\right] + \left[x+1\right] - \left[nx+1\right] = f(x), \forall x \in \mathbf{R}$$

c)
$$0 \le x - \frac{k}{n} < \frac{1}{n} \iff \frac{k}{n} \le x < \frac{k+1}{n} \iff k \le nx < k+1$$
, de unde rezultă $k = [nx]$.

d) Pentru
$$x \in \left[0, \frac{1}{n}\right)$$
 avem: $[x] = \left[x + \frac{1}{n}\right] = \left[x + \frac{2}{n}\right] = \dots = \left[x + \frac{n-1}{n}\right] = [nx] = 0$.

e) Conform b) functia f este periodica si
$$T = \frac{1}{n}$$
 este perioada a functiei si pentru $x \in \left[0, \frac{1}{n}\right]$ avem

$$f(x) = 0$$
, deci $f(x) = 0$, $\forall x \in \mathbf{R}$

f)Punand x=1 in relatia data obtinem s=t.

Presupunem că $a_s \neq b_s$, de exemplu $a_s < b_s$ si alegem $x \in (1 - b_s, 1 - a_s) \subset (0,1) \Rightarrow$

$$[x+a_i] = 0 \Rightarrow \sum_{i=1}^{s} [x+a_i] = 0$$
. Deoarece $x, b_i \in [0,1] \Rightarrow [x+b_i] \ge 0, x+b_i$ fiind pozitiv si

 $x + b_s > 1 - b_s + b_s = 1$. De aici $\sum_{i=1}^{s} [x + b_i] \ge 1$. Deci $a_s = b_s$ si repetand rationamentul rezulta succesiv

$$a_{s-1} = b_{s-1}, ..., a_1 = b_1$$
.

g)
$$0 \le a_1 < a_2 < \dots < a_s < 1$$
 şi $[x+a_1] + [x+a_2] + \dots + [x+a_s] = [sx]$]

Conform c) avem
$$[x]+[x+\frac{1}{s}]+...+[x+\frac{s-1}{s}]=[sx]$$

Rezultă
$$\sum_{i=1}^{s} [x + a_i] = \sum_{i=1}^{s} [x + \frac{i-1}{s}]$$
. Deci $\sum_{i=1}^{s} [x + a_i] = \sum_{i=1}^{s} [x + b_i]$ conform pct. f) $\{a_1, a_2, ..., a_s\} = \{b_1, b_s, ..., b_s\}$.

Subjectul IV:

a)
$$f'_n(x) = \frac{1}{1!} + \frac{2x}{2!} + \frac{3x^2}{3!} + \dots + \frac{nx^{n-1}}{n} = f_{n-1}(x), \forall n \in \mathbb{N}$$

b)
$$f_{n+1}(x) = \frac{1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \frac{x^{n+1}}{(n+1)!} = f_n(x) + \frac{x^{n+1}}{(n+1)!} = \frac{x^{n+1}}{(n+1)!} + f_n(x), \forall n \in \mathbf{N}^*$$

c)
$$f_2(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} = 1 + x + \frac{x^2}{2}, \forall x \in \mathbf{R}$$

$$f_2(x) \ge \frac{1}{2} \Leftrightarrow 1 + x + \frac{x^2}{2} \ge 1 \Leftrightarrow x^2 + 2x + 1 \ge 0 \Leftrightarrow (x+1)^2 \ge 0$$
 adevarat $\forall x \in \mathbf{R}$

d)
$$x + \int_0^x f_n(t)dt = 1 + F_n(x) - F_n(0)$$
, unde F_n este o primitiva a functiei f_n

Conform a)
$$f_{n+1}$$
 este o primitiva a lui $f_n \Rightarrow x + \int_0^x f_n(t) dt = 1 + f_{n+1}(x) - f_{n+1}(0) = f_{n+1}(x)$

e) Pentru n=2, afirmația devine $f_2(x) > 0$, $\forall x \in \mathbf{R}$ adevărat conform c)

$$f_2(x) \ge \frac{1}{2} > 0, \forall x \in \mathbf{R}$$
. Demonstram ca daca $f_{2k}(x) > 0, \forall x \in \mathbf{R} \Rightarrow f_{2k+2}(x) > 0, \forall x \in \mathbf{R}$, pentru $k \in \mathbf{N}$

Conform a)
$$f'_{2k+1}(x) = f_{2k}(x) > 0, \forall x \in \mathbf{R} => f_{2k+1} \text{ strict crescatoare} => \text{ are cel mult o rădăcină}.$$

$$\lim_{x \to -\infty} f_{2n-1}(x) = -\infty, \lim_{x \to +\infty} f_{2n+1}(x) = +\infty, f_{2k+1} \text{ continua} \Rightarrow \text{ are exact o radacina.}.$$

Deoarece

Fie
$$\alpha$$
 radacina functiei f_{2k+1} . Avem $f_{2k+2}(x) \ge f_{2k+1}(\alpha) + \frac{\alpha^{2n+2}}{(2n+2)!} > 0, \forall x \in \mathbf{R}$.

f)
$$f'_{2007}(x) = f_{2006}(x) > 0, \forall x \in \mathbf{R} \Rightarrow f_{2007}$$
 strict crescatoare pe **R**, deci injectiva.

Surjectivitatea rezulta din
$$\lim_{x \to -\infty} f_{2007}(x) = -\infty$$
, $\lim_{x \to +\infty} f_{2007}(x) = +\infty$, si f continua pe \mathbf{R}

g)
$$f_{2008}$$
" $(x) = f_{2006}(x) > 0, \forall x \in \mathbf{R} \Rightarrow f_{2008}$ convexă pe \mathbf{R} .