Optimization Methods (CS1.404), Spring 2024 Lecture 22

Naresh Manwani

Machine Learning Lab, IIIT-H

April 15th, 2024

Strong Duality Theorem

Theorem

Consider the optimization problem

min
$$f(\mathbf{x})$$

s.t. $h_j(\mathbf{x}) \le 0, j = 1...I$

where f, h_j , $j=1\ldots l$ are convex functions over \mathbb{R}^n . Suppose that there exists $\hat{\mathbf{x}}$ such that $h(\hat{\mathbf{x}})<0$, $j=1\ldots l$ and the problem has finite optimal value. Then the optimal value d^* of the dual problem $g(\lambda)=\min_{\mathbf{x}}\ \mathcal{L}(\mathbf{x},\lambda)$ is attained and is same as optimal value p^* of the primal problem.

Example: Convex Optimization Problem But Slater's Condition not Satisfied

- Consider the problem: $\min_{x,y>0} e^{-x}$, s.t. $\frac{x^2}{y} \le 0$ with variable (x,y) and domain $D = \{(x,y) \mid y>0\}$.
- We have $p^* = 1$.
- The Lagrangian is $\mathcal{L}(x,y,\lambda)=e^{-x}+\lambda rac{x^2}{y}$ and the dual function is

$$g(\lambda) = \min_{x,y>0} e^{-x} + \lambda \frac{x^2}{y} = \begin{cases} 0, & \lambda \ge 0 \\ -\infty, & \lambda < 0 \end{cases}$$

- So, we can write the dual problem as $d^* = \max_{\lambda} 0 : \lambda \ge 0$ with optimal value $d^* = 0$.
- The optimal duality gap is $p^* d^* = 1$. In this problem, Slater's condition is not satisfied, since x = 0 for any feasible pair (x, y).

Naresh Manwani OM April 15th, 2024

Complimentary Slackness Conditions

Theorem

Consider the optimization problem

min
$$f(\mathbf{x})$$

 $s.t. h_j(\mathbf{x}) \leq 0, j = 1...I$

where f, h_j , $j=1\ldots l$ are convex functions over \mathbb{R}^n . Assume that strong duality holds. If \mathbf{x}^* and $\boldsymbol{\lambda}^*$ are optimal solutions of the primal and dual problems respectively, then

$$\mathbf{x}^* \in \operatorname{arg\,min}\ \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}^*)$$

 $\lambda_j^* h_j(\mathbf{x}^*) = 0,\ j = 1 \dots I$

Optimization Over a Convex Set

• Consider optimization problem (P): min $f(\mathbf{x})$ s.t. $\mathbf{x} \in C$, where f is continuously differentiable function and C is closed-convex set.

Definition: Stationary Points of Constrained Problem

Let f be a continuously differentiable function over a closed convex set C. Then \mathbf{x}^* is called a **stationary point** of (P) if $\nabla f(\mathbf{x}^*)^{\top}(\mathbf{x}-\mathbf{x}^*) \geq 0, \ \forall \mathbf{x} \in C.$

Theorem: Stationarity as a Necessary Optimality Condition

Let f be a continuously differentiable function over a closed convex set C, and let \mathbf{x}^* be a local minimum of (P). Then, \mathbf{x}^* is a stationary point of (P).

Examples

Feasible Set <i>C</i>	Explicit Stationary Condition
\mathbb{R}^n	$\nabla f(\mathbf{x}^*) = 0$
\mathbb{R}^n_+	$ \frac{\partial f}{\partial x_i}(\mathbf{x}^*) \begin{cases} = 0, & x_i^* > 0 \\ \geq 0, & x_i^* = 0 \end{cases} $
$\{\mathbf{x} \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1\}$	$\frac{\partial f}{\partial x_1}(\mathbf{x}^*) = \dots = \frac{\partial f}{\partial x_n}(\mathbf{x}^*)$
B[0, 1]	$\nabla f(\mathbf{x}^*) = 0$ or $\ \mathbf{x}^*\ = 1$ and $\exists \lambda \leq 0 : \nabla f(\mathbf{x}^*) = 0$
	λx^*

Stationarity in Convex Problems

Theorem

Let f be a continuously differentiable convex function over a closed and convex set $C \subseteq \mathbb{R}^n$. Then \mathbf{x}^* is a stationary point of

(P) min
$$f(\mathbf{x})$$

 $s.t. \mathbf{x} \in C$

if and only if x^* is an optimal solution of (P).

Orthogonal Projection

Projection Theorem

Let C be a closed convex set and $\mathbf{x} \in \mathbb{R}^n$. Let $P_C(\mathbf{x})$ denote the orthogonal projection of \mathbf{x} on the set C. Then $\mathbf{z} = P_C(\mathbf{x})$ if an only if $\mathbf{z} \in C$ and

$$(\mathbf{x} - \mathbf{z})^{\top}(\mathbf{y} - \mathbf{z}) \leq 0$$

for any $\mathbf{y} \in C$.

• Geometrically, it states that for a given closed and convex set C, $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in C$, the angle between $\mathbf{x} - P_C(\mathbf{x})$ and $\mathbf{y} - P_C(\mathbf{x})$ is greater than or equal to 90 degrees.

