

CHAPTER 4 PUBLIC KEY CRYPTO

PREPARED BY:

DR. MUHAMMAD IQBAL HOSSAIN

ASSOCIATE PROFESSOR

DEPARTMENT OF CSE, BRAC UNIVERSITY

APPENDIX

MODULAR ARITHMETIC

KNAPSACK

RSA

MODULAR ARITHMETIC

OFor integer x and n, "x mod n" is the remainder of x / n.

Examples

 $7 \mod 6 = 1$

 $33 \mod 5 = 3$

 $33 \mod 6 = 3$

 $51 \mod 17 = 0$

 $17 \mod 6 = 5$

Practice

 $6 \mod 5 = ?$

 $23 \mod 5 = ?$

 $10 \mod 5 = ?$

 $58 \mod 20 = ?$

 $100 \mod 20 = ?$

MODULAR ADDITION

ONotation and facts

- \bigcirc 7 mod 6 = 1
- \bigcirc 7 = 13 = 1 mod 6
- \circ ((a mod n) + (b mod n)) mod n = (a + b) mod n
- \circ ((a mod n)(b mod n)) mod n = ad mod n

• Addition example

- \circ 3 + 5 = 2 mod 6
- $\bigcirc 2 + 4 = 0 \mod 6$
- \bigcirc 3 + 3 = 0 mod 6
- \circ (7 + 12) mod 6 = 19 mod 6 = 1 mod 6
- \circ (7 + 12) mod 6 = (1 + 0) mod 6 = 1 mod 6

MODULAR MULTIPLICATION

OMultiplication example

- $\bigcirc 3 \cdot 4 = 0 \mod 6$
- $\bigcirc 2 \cdot 4 = 2 \mod 6$
- $\bigcirc 5 \cdot 5 = 1 \mod 6$
- \circ (7 . 4) mod 6 = 28 mod 6 = 4 mod 6
- \circ (7 .4) mod 6 = (1 .4) mod 6 = 4 mod 6

MODULAR INVERSE

- *Additive inverse* of x mod n, denoted as –x mod n, is the number that must be added to x to get 0 mod n.
 - $-2 \mod 4 = 6 \text{ since } 2+4 = 0+6$
- - $3^{-1} \mod 7 = 5$; since $3.5 = 1 \mod 7$

MODULAR ARITHMETIC QUIZ

- What is -3 mod 6?
- **3**
- What is -1 mod 6?
- Arr What is 5^{-1} mod 6?
- What is $2^{-1} \mod 6$?
- **????**

RELATIVE PRIMALITY

- x and y are relatively prime if they have no common factor other than 1.
- x^{-1} mod y exists only when x and y are relatively oprime.
- x^{-1} mod y is easy to find (when it exits) using **Euclidean** algorithm

TOTIENT FUNCTION

- $\bigcirc \phi(n)$ in the number of numbers less than n that are relatively prime to n.
 - O Positive integer.
- Example
 - \bigcirc $\phi(4) = 2$ since 4 is relatively prime to 3, 1.
 - \bigcirc $\phi(5) = 4$ since 5 is relatively prime to 1, 2, 3, 4
 - \circ $\phi(12) = 4$
 - \bigcirc $\phi(p) = p-1$ if p in prime.
 - \bigcirc $\phi(pq) = (p-1)(q-1)$ if p and q prime

$$\frac{1}{26} = (0.1.2...25)$$

$$\frac{1}{$$

$$(3) = 1$$

The second $(11, 26) = 1$

The sec

PKC IS NEWCOMER

- Different name
 - Asymmetric cryptography
 - Consider the symmetric cryptography
 - Two key cryptography
 - Non-security key cryptography
- The concept is relative newcomer
 - O In the late 1960s by GCHQ of British
 - Independently, in early 1970s by academic researchers

MISCONCEPTIONS ON PKC

- O PKC is more secure than that of symm cipher
 - Cipher Security is depends on computational work to break a cipher –
 both are depends on it
- PKC made symm cipher obsolete
 - The problem of computation overhead of PKC
- Key distribution of PKC is trivial
 - The procedures of PKC are so not simpler and more efficient than those of symm cipher
 - PKI is required for the key distribution of PKC

KEY GENERATION OF PKC

- O Making two keys: Based on trap door one way function
 - Easy to compute in one direction
 - Hard to compute in other direction
 - "Trap door" used to create keys
 - O Example: Given \mathbf{p} and \mathbf{q} , product $\mathbf{N} = \mathbf{pq}$ is easy to compute, but given \mathbf{N} , it is hard to find \mathbf{p} and \mathbf{q}
- A message encrypted by the public key can decrypted o nly with the corresponding private key

TWO MAIN BRACHES OF PKC

- OPublic key Encryption
 - O Suppose we encrypt M with Alice's public key
 - Only Alice's private key can decrypt to find M

TWO MAIN BRANCHES OF PKC

Digital Signature

- O Sign by "encrypting" with private key
- Anyone can verify signature by "decrypting" with public key
 Alice
- But only private key holder could ld have signed
- Like a handwritten signature (a nd then some)

PKCS TO DISCUSS

- O Knanpsack
 - The first proposed PKC
 - It is inscure
- **O** RSA
 - Problem of factoring large numbers
- Diffie-Hellman Key Exchange
 - Discrete log problem
- ECC(Elliptic Curve Cryptography)
 - Based on the algebraic structure of elliptic curves over finite fields

KNAPSACK

KNAPSACK PROBLEM

O Given a set of n weights $W_0, W_1, \Lambda W_{n-1}$ and a sum S, is it possible to find $a_i \in \{0,1\}$ so that

$$S = a_0 W_0 + a_1 W_1, \Lambda + a_{n-1} W_{n-1}$$

(technically, this is "subset sum" problem)

- Example
 - O Weights (62,93,26,52,166,48,91,141)
 - O Problem: Find subset that sums to S=302
 - O Answer: 62+26+166+48=302
- The (general) knapsack is NP-complete

KNAPSACK PROBLEM

- OGeneral knapsack (GK) is hard to solve
- O But superincreasing knapsack (SIK) is easy
- SIK each weight greater than the sum of all previous weights
- Example
 - O Weights (2,3,7,14,30,57,120,251)
 - O Problem: Find subset that sums to S=186
 - Work from largest to smallest weight
 - O Answer: 120+57+7+2=186

KNAPSACK CRYPTOSYSTEM

- 1. Generate superincreasing knapsack (SIK)
- 2. Convert SIK into "general" knapsack (GK)
 - O Public Key: **GK**
 - O Private Key: SIK plus conversion factors
 - Easy to encrypt with GK
 - With private key, easy to decrypt (convert ciphertext to SIK)
 - Without private key, must solve GK (???)

KNAPSACK CRYPTOSYSTEM

- 1. Let (2,3,7,14,30,57,120,251) be the SIK
- 2. Choose m = 41 and n = 491
 with m, n rel. prime and n
 greater than sum of elements of
 SIK

Then General knapsack can be computed;

3. General knapsack: (82,123,287,83,248,373,10,471)

```
2 \cdot 41 \mod 491 = 82

3 \cdot 41 \mod 491 = 123

7 \cdot 41 \mod 491 = 287

14 \cdot 41 \mod 491 = 83

30 \cdot 41 \mod 491 = 248

57 \cdot 41 \mod 491 = 373

120 \cdot 41 \mod 491 = 10
```

 $252 \cdot 41 \mod 491 = 471$

KNAPSACK EXAMPLE

OPrivate key: (2,3,7,14,30,57,120,251)

$$n = 491$$
 $m^{-1} \mod n \rightarrow 41^{-1} \mod 491 = 12$

- OPublic key: (82,123,287,83,248,373,10,471)
- O Example: Encrypt 10010110

$$82 + 83 + 373 + 10 = 548$$

To decrypt

$$\circ$$
 548 · 12 = 193 mod 491 = S

- \bigcirc Solve (easy) SIK with S = 193
- O 193=2+14+57+120
- Obtain plaintext 10010110

$$2 \cdot 41 \mod 491 = 82$$

$$3.41 \mod 491 = 123$$

$$7 \cdot 41 \mod 491 = 287$$

$$14 \cdot 41 \mod 491 = 83$$

$$30.41 \mod 491 = 248$$

$$57 \cdot 41 \mod 491 = 373$$

$$120.41 \mod 491 = 10$$

$$252.41 \mod 491 = 471$$

KNAPSACK WEAKNESS

- Trapdoor: Convert SIK into "general" knapsack using modular arithmetic
- One-way: General knapsack easy to encrypt, hard to solve; SIK easy to solve
- This knapsack cryptosystem is insecure
 - O Broken in 1983 with Apple II computer
 - The attack uses lattice reduction
 - O "General knapsack" derived from SIK is not general enough!
 - O This special knapsack is easy to solve!

RSA

• The most difficult computation?

Addition	Multiplication	Factorization
Easy		
123	123	221 = ?x?
+ 654	× 654	221/2 =
		221/3 =
777	492	221/5 =
	615	221/7 =
	738	221/11 =
		221/13 =
	80442	221 = 13 × 17

RSA

- Invented by Cocks (GCHQ), independently, by Rivest,
 Shamir and Adleman (MIT)
- O Let p and q be two large prime numbers
- \bigcirc Let N = pq be the modulus
- O Choose e relatively prime to (p-1)(q-1)
- O Find **d** s.t. $ed = 1 \mod (p-1)(q-1)$
- O Public key is (N,e)
- O Private key is d

RSA

- To encrypt message M compute
 - $C = M^e \mod N$
- To decrypt C compute
 - $M = C^d \mod N$
- O Recall that e and N are public
- O If attacker can factor N, he can use e to easily find d since $ed = 1 \mod (p-1)(q-1)$
- OFactoring the modulus breaks RSA
- OIt is not known whether factoring is the only way to break RSA

DOES RSA REALLY WORK?

 \bigcirc Given $C = M^e \mod N$ we must show

$$M = C^d \mod N = M^{ed} \mod N$$
 where $M < N$

O Euler's Theorem

If M is relatively prime to N then

$$M^{\phi(N)} = 1 \mod N$$
 where $\varphi(N)$ is totient function

- O Facts:
 - $e\vec{d} = 1 \mod (p-1)(q-1)$
 - O By definition of "mod", ed = k(p-1)(q-1)+1

DOES RSA REALLY WORK?

O Facts:

$$ed = 1 \mod (p-1)(q-1)$$
 $ed = k(p-1)(q-1)+1$

O By definition of "mod",

$$\phi(N) = (p-1)(q-1)$$

• Then $ed - 1 = k(p-1)(q-1) = k\phi(N)$

O Prove

$$M^{ed} = M^{(ed-1)+1} = M \bullet M^{ed-1} = M \bullet M^{k\phi(N)}$$
$$= M \bullet (M^{\phi(N)})^k \mod N = M \bullet (1)^k \mod N$$
$$= M \mod N$$

SIMPLE RSA EXAMPLE

- Example of RSA
 - \bigcirc Select "large" primes p = 11, q = 3
 - Then N = pq = 33 and (p-1)(q-1) = 20
 - Choose e = 3 (relatively prime to 20)
 - \bigcirc Find d such that ed = 1 mod 20, we find that d = 7 works
- O Public key: (N, e) = (33, 3)
- \bigcirc Private key: d = 7

SIMPLE RSA EXAMPLE

- **Public key:** (N, e) = (33, 3)
- \bigcirc Private key: d = 7
- \bigcirc Suppose message M = 8
- O Ciphertext C is computed as

$$C = M^e \mod N = 8^3 = 512 = 17 \mod 33$$

O Decrypt C to recover the message M by

$$M = C^d \mod N = 17^7 = 410,338,673 \mod 33$$

 $= 12,434,505 \times 33 + 8 = 8 \mod 33$

MORE EFFICIENT RSA (1)

- Modular exponentiation example
 - $5^{20} = 95367431640625 = 25 \mod 35$
- A better way: repeated squaring
 - \circ 20 = 10100 base 2
 - \bigcirc (1, 10, 101, 1010, 10100) = (1, 2, 5, 10, 20)
 - O Note that $2 = 1 \cdot 2$, $5 = 2 \cdot 2 + 1$, $10 = 2 \cdot 5$, $20 = 2 \cdot 10$
 - $0 51 = 5 \mod 35$
 - $5^2 = (5^1)^2 = 5^2 = 25 \mod 35$
 - $5^5 = (5^2)^2 \cdot 5^1 = 25^2 \cdot 5 = 3125 = 10 \mod 35$
 - $5^{10} = (5^5)^2 = 10^2 = 100 = 30 \mod 35$
 - $5^{20} = (5^{10})^2 = 30^2 = 900 = 25 \mod 35$
- O Never have to deal with huge numbers!

MORE EFFICIENT RSA (2)

- \bigcirc Let e = 3 for all users (but not same N or d)
 - O Public key operations only require 2 multiplies
 - O Private key operations remain "expensive"
 - \bigcirc If M < N^{1/3} then C = M^e = M³ and cube root attack
 - (mod N) operation has no effect
 - For any M, if C₁, C₂, C₃ sent to 3 users, cube root attack works (uses Chinese Remainder Theorem)
 - Can prevent cube root attack by padding message with random bits
- O Note: $e = 2^{16} + 1$ also used: Protect CRT attack