LIDAR-BASED EDGE DETECTION IN VARIABLE LIGHT CONDITIONS

LIDAR-BASED EDGE DETECTION IN VARIA

TECHNICAL DISCLOSURE AND INTELLECTUAL PROPERTY DO

NaviFloor Robotics, Inc.

Document Reference: IP-LIDAR-2023-142

Last Updated: December 15, 2023

1. PROPRIETARY NOTICE AND CONFIDENTIALIT

This document contains confidential and proprietary information belonging t

NaviFloor Robotics, Inc. ("Company"). This technical disclosure is protected

under applicable intellectual property laws and is subject to existing non-disclosure agreements. Unauthorized reproduction, distribution, or disclosure is strictly prohibited.

2. TECHNICAL OVERVIEW

2.1 Technology Description

The disclosed technology relates to advanced LiDAR-based edge detection s specifically designed for autonomous mobile robots (AMRs) operating in valight conditions. The system employs proprietary algorithms for real-time surface analysis and edge detection across multiple environmental contexts.

2.2 Core Components

_

Multi-beam LiDAR array configuration (Patent Pending, US App. No. 17/X)

-	-	2	

Adaptive gain control system for variable light compensation

_

Real-time edge detection processing unit

_

Environmental condition monitoring subsystem

_

Surface characteristic analysis module

3. TECHNICAL SPECIFICATIONS

3.1 Operating Parameters

-

Scanning frequency: 20-120 Hz (adaptive)

-

Detection range: 0.05m - 25m

-

Angular resolution: 0.1° - 0.5° (configurable)

-

Light condition operating range: 0.1 - 100,000 lux

-

Processing latency: <5ms

3.2 Performance Metrics

-

Edge detection accuracy: 99.7% in standard conditions

-

False positive rate: <0.1%

-

Surface type identification reliability: 98.5%

- 4-

Real-time adjustment capability: 1000 updates/second

4. INTELLECTUAL PROPERTY CLAIMS

4.1 Protected Elements

The following elements are subject to intellectual property protection:

- a) Adaptive gain control methodology for variable light compensation
- b) Multi-surface characterization algorithms
- c) Real-time edge detection processing architecture
- d) Environmental condition compensation protocols
- e) System integration methodology

4.2 Patent Status

- - 5 -

Primary Patent Application: US 17/XXX,XXX (filed March 15, 2022)

_

PCT Application: PCT/US2022/XXXXX

_

Related Applications: EP22XXXXXX.X

5. IMPLEMENTATION SPECIFICATIONS

5.1 Hardware Requirements

_

Dedicated FPGA processing unit

-

Minimum 3 LiDAR sensors (Model NF-L350 or equivalent)

-

Environmental sensor array				
-				
Real-time processing module				
5.2 Software Architecture				
_				
Core detection algorithm (v4.2.1)				
(<u>2</u> .1)				
-				
Environmental compensation module (v2.1.0)				
-				
Surface analysis framework (v3.0.2)				
-				
System integration layer (v2.5.0)				

6. TRADE SECRET PROTECTION

6.1 Confidential Elements The following elements are maintained as trade secrets: Calibration methodologies Surface type classification algorithms Environmental compensation coefficients System integration protocols 6.2 Protection Measures All trade secret elements are subject to:

Access_control protocols (Level 3 security)

-

Employee confidentiality agreements

-

Vendor non-disclosure agreements

-

Segmented knowledge distribution

7. DEVELOPMENT HISTORY

7.1 Version Control

-

Initial Development: March 2020

-

Beta Testing: January 2021

- -9-

Production Release: September 2021

_

Current Version: 4.2.1 (December 2023)

7.2 Contributors

-

Principal Inventor: Dr. Marcus Depth

_

Development Team: NaviFloor Advanced Systems Group

-

External Consultants: [REDACTED]

8. LEGAL NOTICES

8.1 Ownership

All intellectual property rights, including but not limited to patents, trade secrets, and technical know-how described herein, are the exclusive property NaviFloor Robotics, Inc.

8.2 Use Restrictions

This technology shall not be used, reproduced, or disclosed without express written authorization from NaviFloor Robotics, Inc.

9. CERTIFICATION

The undersigned hereby certifies that this technical disclosure accurately represents the intellectual property of NaviFloor Robotics, Inc. as of the date indicated below.

- 11 -

By: _

Dr. Marcus Depth

Chief Technology Officer

NaviFloor Robotics, Inc.

Date: December 15, 2023

• • • •

10. DOCUMENT CONTROL

Document ID: IP-LIDAR-2023-142

Version: 2.1

Classification: CONFIDENTIAL

Distribution: Authorized Personnel Only

Review Date: June 15, 2024

