

Deep Learning for Computer Vision

Dr. Konda Reddy Mopuri Mehta Family School of Data Science and Artificial Intelligence IIT Guwahati Aug-Dec 2022

So far in the class..

Brief introduction to ML

So far in the class..

- Brief introduction to ML
- Artificial neuron models, Perceptron

So far in the class..

- Brief introduction to ML
- Artificial neuron models, Perceptron
- MLP, CNNs and different families of architecture

So far in the class...

- Brief introduction to ML
- Artificial neuron models, Perceptron
- MLP, CNNs and different families of architecture
- (today) Some of the important training aspects of CNNs

Data preprocessing for Computer vision

• Mean subtraction (e.g. AlexNet: $32 \times 32 \times 3$, VGG: $1 \times 1 \times 3$)

Data preprocessing for Computer vision

- Mean subtraction (e.g. AlexNet: $32 \times 32 \times 3$, VGG: $1 \times 1 \times 3$)
- Mean subtraction and division by standard deviation per channel (e.g. ResNet)

Data preprocessing for Computer vision

- Mean subtraction (e.g. AlexNet: $32 \times 32 \times 3$, VGG: $1 \times 1 \times 3$)
- Mean subtraction and division by standard deviation per channel (e.g. ResNet)
- PCA or whitening are not common

• What if all the parameters are initialized to zero?

- What if all the parameters are initialized to zero?
- Or, a different constant?

- What if all the parameters are initialized to zero?
- Or, a different constant?
- Leads to a failure mode (often known as the 'symmetry' problem)

• How about randomly initializing? W = 0.001 * np.random.randn(d_l , d_{l-1})

- How about randomly initializing? W = 0.001 * np.random.randn(d_l, d_{l-1})
- Okay for the shallow nets

- How about randomly initializing? $W = 0.001 * np.random.randn(d_l, d_{l-1})$
- Okay for the shallow nets
- However, the dynamic range of the activations at later layers goes on shrinking \rightarrow activations tend to zero at deeper layers (e.g. 6 layer MLP with a tanh nonlinearity)

- How about randomly initializing? $W = 0.001 * np.random.randn(d_l, d_{l-1})$
- Okay for the shallow nets
- However, the dynamic range of the activations at later layers goes on shrinking → activations tend to zero at deeper layers (e.g. 6 layer MLP with a tanh nonlinearity)

All zero gradients, no learning!

• W = 0.001 * np.random.randn(
$$d_l, d_{l-1}$$
)/np.sqrt(d_{l-1})

• W = 0.001 * np.random.randn(d_l, d_{l-1})/np.sqrt(d_{l-1})

We prefer the o/p to have similar variance as the input

- We prefer the o/p to have similar variance as the input
- ullet Consider a single layer, y=Wx, i.e. $y_i=\sum_{j=1}^{d_{l-1}}x_j\cdot w_j$

- We prefer the o/p to have similar variance as the input
- ullet Consider a single layer, y=Wx, i.e. $y_i=\sum_{j=1}^{d_{l-1}}x_j\cdot w_j$
- $var(y_i) = d_{l-1} \cdot var(x_i \cdot w_i)$ (Assuming w_i and x_i are i.i.d)

- We prefer the o/p to have similar variance as the input
- ullet Consider a single layer, y=Wx, i.e. $y_i=\sum_{j=1}^{d_{l-1}}x_j\cdot w_j$
- $\operatorname{var}(y_i) = d_{l-1} \cdot var(x_i \cdot w_i)$ (Assuming w_i and x_i are i.i.d)
- $\operatorname{var}(y_i) = d_{l-1} \cdot \left(E(x_i^2) \cdot E(w_i^2) E(x_i)^2 \cdot E(w_i)^2 \right)$ (Assuming x and w are independent)

- We prefer the o/p to have similar variance as the input
- Consider a single layer, y = Wx, i.e. $y_i = \sum_{j=1}^{d_{l-1}} x_j \cdot w_j$
- $var(y_i) = d_{l-1} \cdot var(x_i \cdot w_i)$ (Assuming w_i and x_i are i.i.d)
- $\operatorname{var}(y_i) = d_{l-1} \cdot \left(E(x_i^2) \cdot E(w_i^2) E(x_i)^2 \cdot E(w_i)^2 \right)$ (Assuming x and w are independent)
- $var(y_i) = d_{l-1} \cdot var(x_i) \cdot var(w_i)$ Assuming $(x_i \text{ and } w_i \text{ are zero-mean})$

- We prefer the o/p to have similar variance as the input
- Consider a single layer, y = Wx, i.e. $y_i = \sum_{j=1}^{d_{l-1}} x_j \cdot w_j$
- $var(y_i) = d_{l-1} \cdot var(x_i \cdot w_i)$ (Assuming w_i and x_i are i.i.d)
- $\text{var}(y_i) = d_{l-1} \cdot \left(E(x_i^2) \cdot E(w_i^2) E(x_i)^2 \cdot E(w_i)^2 \right)$ (Assuming x and w are independent)
- ullet var $(y_i)=d_{l-1}\cdot {\sf var}(x_i)\cdot {\sf var}(w_i)$ Assuming $(x_i$ and w_i are zero-mean)
- $\bullet \to \mathsf{var}(w_i) = \frac{1}{d_{l-1}}$

Kaiming or MSRA initialization

Figure credits: Dr Justin Johnson

- Kaiming or MSRA initialization
- $std=sqrt(2/d_{l-1})$

Figure credits: Dr Justin Johnson