Coul Show completeness of L' function.

Review L', Lo limit et step for Aiff. of a step for.

Lenna let $F \in L'$, then there is a step function Y s.t. $\|F - \Psi\|_{L^1} = \{|F - \Psi|\} < \epsilon$.

Pf: let F=g-h, $g,h\in L_0$. By def of L_0 functions, we can find V, V. Step functions s.t. $\|g-V\|_{L^2} \leq \frac{\varepsilon}{a}$ and $\|h-V\|_{L^2} \leq \frac{\varepsilon}{a}$.

 $y-\eta=y$ differ a step for ir a step fn.

Proposition: let $F \in \mathcal{L}'$. Then there is a decreasing segrence $\{g_n\}_{n=1}^{\infty}$, $g_n \in \mathcal{L}_0$ s.t. $g_n \longrightarrow F$ a.e. $\{g_n \longrightarrow f F\}$.

Pf: let F = g - h, $g_1h \in L_0$. This is an increase set of step function $\{ q_n \}_{n=1}^{\infty}$ $\{ q_n \rightarrow h \text{ a.e. and } \{ q_n \rightarrow f h, \}$ Let $\{ g_n = g - q_n \rightarrow g - h \text{ a.e. } = F$

$$\int g_n = \int g - \int f_n = \int g - h = \int F$$

$$(g_n)_{n=1}^{\infty} \text{ if } \int a_F \left(f_n \right)_{n=1}^{\infty} f$$

Now we am appareint of fracture w/ O step for and @ Lo functure.

Q: If $\int |F_k - F| \to 0$ then do you have $F_k \to F$ a.e.

Lemma: Let $\{\Psi_n\}_{n=1}^{\infty}$) seq of step functions s.t. $\{\{\Psi_n\}_{n=1}^{\infty}\}$ ir bounded. Thun $\{\Psi_n\}_{n=1}^{\infty}$ it bounded a.e. (and thur convergent).

(i. doer thir outsity {4n} appax. some Lo function?).

Conllus: If $F \in \mathcal{L}'$ non-negative s.b. $\int F = 0$, then F is 0 a.e. $P[F] : \{F, F, F, \dots\} \subseteq \mathcal{L}'$. Apply $P \cap P = 0$.

For $F \in \mathcal{L}^1$, we want to define $\|F\|_{\mathcal{L}^1} = \int |F|$.

Not a norm b/c if F=0 are, then $\int |F| = 0$. Then an lots of such F (a norm higher that only F=0 on have $\|F\|_{\mathcal{L}^1}$).

One function

The wolfing fulls wr if $\|F\|_{\ell^1} \Rightarrow F^{\pm 0}$ a.e.

L'is L'/~ where Frg if F=y a.e.

Then || · || f is a norm on []. Because if F=g a.e. then || F|| f != || g || g !

We want to show [' is Banach. i.e. completeness.

i.e. need to show that if $\{F_n\}_{n=1}^{\infty}$ churchy, $F_n \in L'$. Then there is $F_i \cap L'$ s.t. $\|F_n - F\| \xrightarrow{n \to \infty} 0$.

Proof: (1) propose a candidate for F.

Take a subsequence $\{F_{kj}\}$ such that for $l>k'_j$, $||F_l-F_{k'_j}||<2^{-j}$ (are def. of cauchy sequence).

Approx. ench F_{kj} : for each j , pick Y_j s.t. $\left\|F_{kj}-Y_j\right\|<2^{-j}$. Let $Y_0=0$.

Let $l_j = l_0 + (l_1 - l_0) + \dots + (l_j - l_{j-1})$ telesays truck $= \sum_{i=1}^{j} (l_i - l_{i-1})$ $= \sum_{i=1}^{j} (l_i - l_{i-1}) + \sum_{i=1}^{j} (l_i - l_{i-1})$ $= \sum_{i=1}^{j} (l_i - l_{i-1}) + \sum_{i=1}^{j} (l_i - l_{i-1})$

{\forall_system} are incurrently set of hon-rey-step functions.

To define \forall s.t. $\forall_j \rightarrow \forall$ a.e. and \forall s.t. $\forall_j \rightarrow \forall$ a.e. we need $\{\{\{\gamma_j\}\}\}$ and $\{\{\gamma_j\}\}\}$ be bounded.

$$\begin{cases}
\psi_{i} \in \underbrace{\sum_{i=1}^{j} \left(\psi_{i} - \psi_{i-1} \right)_{+}}_{\text{tree}} \in \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} \\
= \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} \in \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} \\
= \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} \in \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} \\
= \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} - \psi_{i-1} \right| \right)_{+}}_{\text{tree}} = \underbrace{\sum_{i=1}^{j} \left(\left| \psi_{i} -$$

So we on find of and to Take F= 4-1.

We now need to show $\|f_j - \bar{f}\| \to 0$ and $\bar{f} \in L'$