Übungen zum Brückenkurs B SoSe 2024

Prof. Dr. J. Harz / S. Weber

Blatt 08 - 05. April, 2024

Die Aufgaben sind unterteilt in \circ Verständnisaufgaben, \square Vertiefungsaufgaben, * schwierige Aufgaben

Aufgabe 1: Reihen

Geben Sie an, ob die folgenden Reihen konvergieren und geben Sie in diesem Fall den Grenzwert an.

a)
$$\circ \sum_{n=1}^{\infty} \frac{2}{n!}$$

b)
$$\circ \sum_{n=1}^{\infty} \frac{2^n}{n!}$$

c)
$$\circ \sum_{n=1}^{\infty} \left(-\frac{1}{n}\right)$$

d)
$$\circ \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$$

e)
$$\Box \sum_{n=1}^{\infty} (1 + \frac{1}{n^2})^n$$

Aufgabe 2: Konvergenzkriterien für Reihen

Beweisen Sie mit Hilfe des Quotientenkriteriums, des Majorantenkriteriums oder des Leibniz-Kriteriums, dass die folgenden Reihen konvergieren.

a)
$$\circ \sum_{n=1}^{\infty} \frac{n}{n!}$$

b)
$$\circ \sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 2n + 1}$$

c)
$$\circ \sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

d)
$$\Box \sum_{n=1}^{\infty} (-1)^n e^{-n}$$

e)
$$\square \sum_{n=1}^{\infty} \frac{1}{n^n}$$

f) *
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

Aufgabe 3: Potenzreihen und Konvergenzradien

Geben Sie den Grenzwert sowie den Konvergenzradius folgender Potenzreihen an.

a)
$$\circ \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

b)
$$\circ \sum_{n=0}^{\infty} x^n$$

c)
$$\circ \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

d)
$$\circ \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

e)
$$\square \sum_{n=1}^{\infty} \frac{x^n}{n}$$

Aufgabe 4: Taylorreihen

Bestimmen Sie die Taylorentwicklung folgender Funktionen um die Stelle x_0 bis zur zweiten Ordnung.

a)
$$\Box f(x) = e^x$$
, $x_0 = 0$

b)
$$* f(x) = e^x$$
, $x_0 = 1$

c)
$$\Box f(x) = \sin(x), \quad x_0 = 0$$

d) *
$$f(x) = \sin(x)$$
, $x_0 = \frac{\pi}{2}$

e)
$$\Box f(x) = \cos(x), \quad x_0 = 0$$

f) *
$$f(x) = \cos(x)$$
, $x_0 = \frac{\pi}{2}$

g)
$$\Box f(x) = x, \quad x_0 = 0$$

h) *
$$f(x) = x$$
, $x_0 = 1$

i)
$$\Box f(x) = x^3, \quad x_0 = 0$$

j) *
$$f(x) = x^3$$
, $x_0 = 1$