MAT0122 ÁLGEBRA LINEAR I FOLHA DE SOLUÇÃO

Nome:Beatriz Viana Costa Número USP: 13673214

Assinatura

Beatriz Viana Costa

Sua assinatura atesta a autenticidade e originalidade de seu trabalho e que você se compromete a seguir o código de ética da USP em suas atividades acadêmicas, incluindo esta atividade.

Exercício: E65 Data: 10/11/2022

SOLUÇÃO

i)

Objetivo: [u] = u + Ker f

Temos u' - u = 0, pois se são equivalentes, vale que:

$$f(u' - u) = 0$$

E por f ser uma função linear, temos então que:

$$f(u') - f(u) = 0$$

Que por sua vez é verdadeiro, pois u' e u são equivalentes, portanto:

$$f(u') = f(u)$$

Dessa forma, temos então que u' - $u = w \in Ker f$, logo u' = u + w, que por sua vez pode ser expressado como $u' = \{u\} + Ker f$.

E sabemos que $\forall u' \exists u$, Ker f tal que $\{u\}$ + Ker f = u', pois tendo um conjunto U, tal que U = U^* + Ker f, sendo f^* : $U \longrightarrow V^*$, uma função inversível, temos que $\forall u \in U^* \Longrightarrow se u' \sim u$, então, por definição, u' U^* , e portanto, $u' \in Ker$ f, havendo uma correspondência de 1 para 1. Assim dim [u] = dim Ker f, e assim, sabemos que para qualquer $w \in Ker$ f, existe u' de maneira que a relação apresentada é satisfeita.

ii)

Objetivo: $\pi: U^* \longrightarrow U/\sim$, tal que $\pi(u) = [u]$, é bijetora.

• Sobrejetora:

$$[u] \in U/\sim, [u] = u + Ker f$$

Iremos mostrar que $\exists u^* \in U^*$ tal que $\pi(u^*) = [u]$.

Seja $u = u^* + w$, onde $w \in Ker f$, temos:

$$[u] = u^* + w + Ker f$$

 $[u] = u^* + Ker f$
 $[u] = \pi(u^*)$

Portanto pi é sobrejetora.

• Injetora:

Sejam u_1 e $u_2 \in U^*$. Temos:

$$[u_1] \neq [u_2]$$

$$\pi(u_1) \neq \pi(u_2)$$

$$u_1 + Ker f \neq u_2 + Ker f$$

$$u_1 \neq u_2$$

Logo π é injetora, e portanto, bijetora.