Les vecteurs (partie 2)

I) Rappels

Un vecteur est la représentation graphique à l'aide d'une flèche d'une translation. On identifie un vecteur avec la translation qu'il représente.

Un vecteur est défini par :

- une direction;
- un sens ;
- une norme, notée $\|\vec{u}\|$, qui représente la longueur de la flèche.

Caractérisation du vecteur \overrightarrow{AB} :

- sa direction est celle de la droite (AB);
- son sens est défini par l'origine A et l'extrémité B;
- sa norme est la longueur du segment [AB].

On a $\overrightarrow{AB} = \overrightarrow{CD}$ si et seulement si ABDC est un parallélogramme.

 \overrightarrow{AB} , \overrightarrow{CD} et \overrightarrow{u} sont trois représentants d'un même vecteur. Ils définissent la même translation.

Opérations sur les vecteurs

La somme des vecteurs \vec{u} et \vec{v} , notée $\vec{u} + \vec{v}$, est la translation qui résulte de l'enchaînement des translations \vec{u} et \vec{v} .

Pour déterminer $\vec{w} = \vec{u} + \vec{v}$, on met les vecteurs \vec{u} et \vec{v} « bout à bout ».

Vecteur opposé : $\vec{u} + (\overrightarrow{-u}) = \vec{u} - \vec{u} = \vec{0}$.

 $\vec{0}$ est le vecteur nul. Il correspond à un déplacement nul.

Relation de Chasles:

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

On a aussi les égalités :

$$-\overrightarrow{AB} = \overrightarrow{BA}$$
 et $\overrightarrow{AA} = \overrightarrow{0}$

II) Produit d'un vecteur par un réel

<u>Définition</u>:

Soit \vec{u} un vecteur et $k \in \mathbb{R}$.

On définit $k\vec{u}$ de la manière suivante :

- Si k > 0

 \vec{u} et $k\vec{u}$ ont la même direction

 \vec{u} et $k\vec{u}$ ont le même sens

 $||k\vec{u}|| = k||\vec{u}||$, ce qui signifie que la longueur de la flèche est multipliée par k

- Si k < 0

 \vec{u} et $k\vec{u}$ ont la même direction

 \vec{u} et $k\vec{u}$ ont des sens opposés

 $||k\vec{u}|| = |k|||\vec{u}||$, ce qui signifie que la longueur de la flèche est multipliée par |k| > 0

- Si k=0, alors $k\vec{u}=\vec{0}$

Remarque: $\forall k \in \mathbb{R}, k\vec{0} = \vec{0}$

<u>Propriétés</u>:

Soit \vec{u} et \vec{v} des vecteurs et $k \in \mathbb{R}, k' \in \mathbb{R}$. On a :

$$k(\vec{u}+\vec{v})=k\vec{u}+k\vec{v}$$

$$(k + k')\vec{u} = k\vec{u} + k'\vec{u}$$

$$\vec{k}(k'\vec{u}) = (kk')\vec{u}$$

Remarque:

On a aussi $k(\vec{u} - \vec{v}) = k\vec{u} - k\vec{v}$

Exemples :

même direction, même sens et 2 fois plus long

a)

même direction, sens contraire et 2 fois plus long

même direction, sens contraire et 1,5 fois plus long

b) La propriété

$$2(\vec{u} + \vec{v}) = 2\vec{u} + 2\vec{v}$$

est illustrée par la figure ci-contre.

c) Exemples de calculs vectoriels, avec simplification :

$$2\vec{u} + 3\vec{u} = (2+3)\vec{u} = 5\vec{u}$$

$$-\vec{u} + \frac{1}{2}\vec{u} = \left(-1 + \frac{1}{2}\right)\vec{u} = -\frac{1}{2}\vec{u}$$

$$-2 \times \left(\frac{2}{3}\vec{u}\right) = \left(-2 \times \frac{2}{3}\right)\vec{u} = -\frac{4}{3}\vec{u}$$

$$\overrightarrow{AB} - 2\overrightarrow{AB} = (1-2)\overrightarrow{AB} = -\overrightarrow{AB} = \overrightarrow{BA}$$

 $2\overrightarrow{AM} = \overrightarrow{0} \Leftrightarrow \overrightarrow{AM} = \overrightarrow{0} \Leftrightarrow \text{les points A et M sont confondus}$

Méthodes pour construire des points définis par une relation vectorielle :

a) Comment placer un point M défini par une relation vectorielle de la forme $\overrightarrow{AM} = \overrightarrow{u}$? On trace le représentant du vecteur \overrightarrow{u} ayant le point A comme origine. Le point M est à l'extrémité de ce vecteur.

- b) Comment placer un point M' défini par une relation vectorielle de la forme $\overline{M'A}=\vec{u}$? On trace le représentant du vecteur $-\vec{u}$ ayant le point A comme origine. Le point M' est à l'extrémité de ce vecteur.
- c) Comment placer un point M défini par une relation vectorielle de la forme $\overrightarrow{AM} = k \vec{u}$? Il faut tracer le représentant du vecteur $k \vec{u}$ ayant le point A comme origine. Si k>0, alors \vec{u} et $k \vec{u}$ ont le même sens et si k<0, alors \vec{u} et $k \vec{u}$ ont des sens opposés. On utilise la relation $\|k\vec{u}\| = |k| \|\vec{u}\|$ pour déterminer la norme du vecteur $k \vec{u}$ qui correspond à la distance entre A et M. Le point M est à l'extrémité du vecteur $k \vec{u}$.

Exemple:

Soit A et B deux points distincts du plan. Placer le point M tel que :

$$\overrightarrow{AM} = \frac{1}{2} \overrightarrow{AB}$$

M est sur la droite (AB).

Les vecteurs \overrightarrow{AM} et \overrightarrow{AB} ont même direction et même sens.

La longueur du segment [AM] est égale à la moitié de celle du segment [AB].

d) Comment placer un point M défini par une relation vectorielle dans laquelle le point M apparaît plusieurs fois ?

On choisit un point particulier P et on fait apparaître ce point dans tous les vecteurs dans lesquels le point M est mentionné, en utilisant la relation de Chasles. On peut alors exprimer le vecteur \overrightarrow{PM} en fonction de vecteurs dans lesquels le point M n'est plus mentionné et ainsi placer M.

Exemple:

Placer un point M défini par la relation :

(1)
$$\overrightarrow{AM} + \overrightarrow{BM} + \overrightarrow{CM} = \overrightarrow{0}$$

(1)
$$\Leftrightarrow \overrightarrow{AM} + (\overrightarrow{BA} + \overrightarrow{AM}) + (\overrightarrow{CA} + \overrightarrow{AM}) = \overrightarrow{0}$$
 on choisit A $\Leftrightarrow 3\overrightarrow{AM} + \overrightarrow{BA} + \overrightarrow{CA} = \overrightarrow{0}$ ensuite, on isole \overrightarrow{AM} $\Leftrightarrow 3\overrightarrow{AM} = -\overrightarrow{BA} - \overrightarrow{CA}$ $\Leftrightarrow 3\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC}$

Propriété:

On peut caractériser le milieu d'un segment de plusieurs façons.

$$I$$
 est le milieu de $[AB]$ $\Leftrightarrow \overrightarrow{AI} = \frac{1}{2} \overrightarrow{AB}$ $\Leftrightarrow \overrightarrow{AI} = \overrightarrow{IB}$ $\Leftrightarrow \overrightarrow{AI} + \overrightarrow{BI} = \overrightarrow{0}$

<u>Démonstration</u>:

$$\overrightarrow{AI} = \frac{1}{2} \overrightarrow{AB} \Leftrightarrow 2 \overrightarrow{AI} = \overrightarrow{AB}$$

$$\Leftrightarrow \overrightarrow{AI} + \overrightarrow{AI} = \overrightarrow{AB}$$

$$\Leftrightarrow \overrightarrow{AI} = \overrightarrow{AB} - \overrightarrow{AI}$$

$$\Leftrightarrow \overrightarrow{AI} = \overrightarrow{AB} + \overrightarrow{IA}$$

$$\Leftrightarrow \overrightarrow{AI} = \overrightarrow{IA} + \overrightarrow{AB}$$

$$\Leftrightarrow \overrightarrow{AI} = \overrightarrow{IB}$$

En pratique, pour démontrer qu'un point I est le milieu d'un segment [AB], il suffit donc de démontrer l'une de ces égalités équivalentes.

III) Vecteurs colinéaires, alignement et parallélisme

Définition:

Deux vecteurs <u>non nuls</u> sont dits <u>colinéaires</u> s'ils ont la même direction.

Les vecteurs \vec{u} et \vec{v} sont colinéaires

$$\Leftrightarrow$$
 il existe $k \in \mathbb{R}^*$ tel que $\vec{v} = k\vec{u}$.

Remarque : on ne parle pas de vecteurs parallèles, mais de vecteurs colinéaires.

Par convention, le vecteur nul $\vec{0}$ est colinéaire avec tous les autres vecteurs.

2 est le coefficient de colinéarité entre \vec{u} et \vec{v} On a ici $\vec{v}=2\vec{u}$

Propriétés :

Trois points A, B et C sont alignés

 \Leftrightarrow les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Remarque : on peut choisir aussi \overrightarrow{AB} et \overrightarrow{BC} ou \overrightarrow{AC} et \overrightarrow{BC}

Deux droites (AB) et (CD) sont parallèles \Leftrightarrow les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

 $3\overline{i}$

M(3;2)

 $\overrightarrow{OM} = 3\overrightarrow{i} + 2\overrightarrow{j}$

IV) Coordonnées d'un vecteur

Rappel de la définition d'un repère cartésien :

On considère O, I et J trois points distincts et non alignés du plan.

On dit que (0; I; J) est un repère cartésien du plan.

Si $(OI) \perp (OJ)$, le repère est dit orthogonal.

Si $(OI) \perp (OJ)$ et OI = OJ, le repère est dit <u>orthonormé</u>.

Remarque : si OI = OJ, le triangle est isocèle en O.

Le point O est l'origine du repère, la droite (OI) est l'axe des abscisses et la droite (OI) l'axe des ordonnées.

On appelle <u>vecteurs unitaires</u> de ce repère les vecteurs $\vec{i} = \overrightarrow{OI}$ et $\vec{j} = \overrightarrow{OJ}$.

Le repère est alors noté $(0; \vec{i}, \vec{j})$.

Rappel des coordonnées d'un point M:

Soit M un point du plan.

On trace la droite parallèle à (OJ) passant par M. Elle coupe (OI) en x (on confond le point et son abscisse sur la droite). De même la droite parallèle à (OI) et passant par M coupe (OJ) en y.

Le couple (x; y) représente les coordonnées du point M, ce que l'on note M(x; y).

Propriété :

Soit un repère $(0; \vec{i}, \vec{j})$.

Pour tout point M de coordonnées (x; y) dans ce repère, on a $\overrightarrow{OM} = x\vec{\imath} + y\vec{\jmath}$.

Définition:

On dit que le vecteur \overrightarrow{OM} a pour coordonnées $\binom{x}{y}$ dans la <u>base</u> $(\vec{i}; \vec{j})$.

<u>Remarque</u>: On note (x; y) les coordonnées du point M et $\binom{x}{y}$ les coordonnées du vecteur \overrightarrow{OM} .

Propriété:

Pour tout vecteur \vec{u} dans la base $(\vec{i}; \vec{j})$, il existe un unique couple de réels (x; y) tel que $\vec{u} = x\vec{i} + y\vec{j}$.

On dit que le vecteur \vec{u} a pour coordonnées $\binom{x}{y}$ dans la base $(\vec{i}; \vec{j})$.

Les coordonnées du vecteur \vec{u} dépendent uniquement du choix de la base $(\vec{i}; \vec{j})$.

Si on considère un repère $(O; \vec{\iota}, \vec{j})$, les coordonnées du vecteur \vec{u} sont les coordonnées de l'unique point M tel que $\overrightarrow{OM} = \vec{u}$.

Comment déterminer les coordonnées d'un vecteur ?

Pour déterminer les coordonnées d'un vecteur, il n'est pas nécessaire de placer un point M tel que $\overrightarrow{OM} = \overrightarrow{u}$. Les coordonnées d'un vecteur correspondent aux déplacements comptés suivant la direction de $\overrightarrow{\iota}$, en prenant $\|\overrightarrow{\iota}\|$ comme unité de mesure ($\|\overrightarrow{\iota}\| = 1$ par définition) et suivant la direction de $\overrightarrow{\jmath}$, en prenant $\|\overrightarrow{\jmath}\|$ comme unité de mesure ($\|\overrightarrow{\jmath}\| = 1$ par définition).

Le vecteur \vec{u} de la figure ci-contre a donc pour coordonnées $\binom{6}{4}$.

Propriété :

Soient deux points $A(x_a; y_a)$ et $B(x_b; y_b)$ dont les coordonnées sont données dans un repère $(0; \vec{\iota}, \vec{j})$.

- 1) Les coordonnées du vecteur \overrightarrow{AB} sont $\begin{pmatrix} x_b x_a \\ y_b y_a \end{pmatrix}$;
- 2) Les coordonnées du point I milieu du segment [AB] sont $(\frac{x_a+x_b}{2}; \frac{y_a+y_b}{2})$;
- 3) La distance AB est $AB = \sqrt{(x_b x_a)^2 + (y_b y_a)^2}$ et on a $\|\overrightarrow{AB}\| = AB = \sqrt{(x_b x_a)^2 + (y_b y_a)^2}$

Exemple:

Soient les points A(1; 2) et B(7; 5) dont les coordonnées sont données dans un repère $(0; \vec{i}, \vec{j})$.

Les coordonnées du vecteur \overrightarrow{AB} sont $\binom{7-1}{5-2} = \binom{6}{3}$. On écrit $\overrightarrow{AB} \binom{6}{3}$.

Les coordonnées du milieu I du segment [AB] sont $\begin{pmatrix} \frac{1+7}{2} \\ \frac{2+5}{2} \end{pmatrix} = \begin{pmatrix} \frac{4}{7} \\ \frac{7}{2} \end{pmatrix}$.

La distance entre les points A et B est $AB = \sqrt{(7-1)^2 + (5-2)^2} = \sqrt{36+9} = \sqrt{45} = 3\sqrt{5}$

V) Calculs avec les vecteurs

Propriétés :

Soient $\vec{u} \binom{x}{y}$ et $\vec{v} \binom{x'}{y'}$ deux vecteurs dont les coordonnées sont définies dans une base $(\vec{i}; \vec{j})$.

- 1) $\vec{u} = \vec{v}$ si et seulement si x = x' et y = y'
- 2) Les coordonnées du vecteur $\vec{u} + \vec{v}$ sont $\begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$
- 3) Les coordonnées du vecteur $k\vec{u}$ sont $\begin{pmatrix} kx \\ ky \end{pmatrix}$, où $k \in \mathbb{R}$.

Exemples:

a) Soient les points A(2; -2), B(5; 2), C(3; 2) et D(10; 14).

Montrer que
$$\overrightarrow{CD} = 2\overrightarrow{AB} + \overrightarrow{AC}$$

On calcule les coordonnées des vecteurs \overrightarrow{CD} , $2\overrightarrow{AB}$ et \overrightarrow{AC} .

On a
$$\overrightarrow{CD} = \begin{pmatrix} 10 - 3 \\ 14 - 2 \end{pmatrix} = \begin{pmatrix} 7 \\ 12 \end{pmatrix}$$
,
 $\overrightarrow{AB} = \begin{pmatrix} 5 - 2 \\ 2 - (-2) \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$,
 $2\overrightarrow{AB} = 2 \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \times 3 \\ 2 \times 4 \end{pmatrix} = \begin{pmatrix} 6 \\ 8 \end{pmatrix}$
 $\overrightarrow{AC} = \begin{pmatrix} 3 - 2 \\ 2 - (-2) \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$
 $2\overrightarrow{AB} + \overrightarrow{AC} = \begin{pmatrix} 6 \\ 8 \end{pmatrix} + \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 6 + 1 \\ 8 + 4 \end{pmatrix} = \begin{pmatrix} 7 \\ 12 \end{pmatrix}$

Et donc par identification des coordonnées, on a bien $\overrightarrow{CD} = 2\overrightarrow{AB} + \overrightarrow{AC}$.

b) Trouver les coordonnées d'un point M(x; y) tel que $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC}$

On a
$$\overrightarrow{AM} = \begin{pmatrix} x-2 \\ y-(-2) \end{pmatrix} = \begin{pmatrix} x-2 \\ y+2 \end{pmatrix}$$

 $\overrightarrow{AB} + \overrightarrow{AC} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} + \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 3+1 \\ 4+4 \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \end{pmatrix}$

On cherche donc M(x;y) tel $\begin{pmatrix} x-2 \\ y+2 \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \end{pmatrix} \Leftrightarrow \begin{cases} x-2=4 \\ y+2=8 \end{cases} \Leftrightarrow \begin{cases} x=4+2 \\ y=8-2 \end{cases} \Leftrightarrow \begin{cases} x=6 \\ y=6 \end{cases}$

Le point M recherché est M(6; 6).

Dans les calculs ci-dessus, on remarque que l'on identifie un vecteur avec ses coordonnées.

On écrit par exemple $\overrightarrow{AB} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$

VI) Critère de colinéarité

Propriété:

Soient
$$\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$.

Les vecteurs \vec{u} et \vec{v} sont colinéaires \Leftrightarrow il existe $k \in \mathbb{R}^*$ tel que $\vec{v} = k\vec{u}$

$$\Leftrightarrow \text{il existe } k \in \mathbb{R} * \text{tel que } \begin{cases} x' = kx \\ y' = ky \end{cases}$$

Les coordonnées de deux vecteurs colinéaires sont donc proportionnelles.

Exemple:

$$\overrightarrow{u}$$
 (5) et \overrightarrow{v} (6) sont colinéaires car (6) sont (6) sont colinéaires car (6) sont (6) sont colinéaires car (6) sont (6)

Le coefficient de colinéarité est 3 et $\vec{v} = 3\vec{u}$

Propriété:

Soient
$$\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$.

 \vec{u} et \vec{v} sont colinéaires si et seulement si xy' = x'y

<u>Démonstration</u>: (au programme)

a) On suppose \vec{u} et \vec{v} colinéaires Il existe $k \in \mathbb{R}^*$ tel que $\vec{v} = k\vec{u}$.

On a donc
$$\begin{cases} x' = kx \\ y' = ky \end{cases}$$
$$xy' = x(ky) = kxy$$
$$\text{et } x'y = (kx)y = kxy$$

On a bien l'égalité recherchée

b) On suppose que xy' = x'y et on veut montrer que les vecteurs sont colinéaires.

Si
$$x \neq 0$$
 et $y \neq 0$

De l'égalité précédente, on déduit que

$$\frac{x'}{x} = \frac{y'}{y} = k \quad \text{où } k \neq 0$$

Et donc
$$x' = kx$$
 et $y' = ky$

On a bien $\binom{x'}{y'} = k \binom{x}{y}$, soit $\vec{v} = k\vec{u}$, ce qui montre que \vec{u} et \vec{v} sont colinéaires.

Si x = 0 (avec $y \neq 0$) ou y = 0 (avec $x \neq 0$)

Supposons par exemple x = 0. On a donc $y \neq 0$ par hypothèse.

Comme
$$xy' = x'y$$
, on a $0 = x'y$ (car $x = 0$) et $x' = 0$ (car $y \neq 0$)

On a donc
$$\vec{u} = \begin{pmatrix} 0 \\ y \end{pmatrix}$$
, avec $y \neq 0$ et $\vec{v} = \begin{pmatrix} 0 \\ y' \end{pmatrix}$.

Si on pose $k = \frac{yr}{y}$ (ce qui est possible car $y \neq 0$), on a $\vec{v} = k\vec{u}$ et \vec{v} sont bien colinéaires.

On fait un raisonnement analogue si y = 0 et $x \neq 0$.

Si
$$x = 0$$
 et $y = 0$

Dans ce cas, on a $\vec{u} = \vec{0}$. Et \vec{u} est colinéaire avec \vec{v} .

Remarque:

 \vec{u} et \vec{v} sont colinéaires signifie que $\binom{x}{y}$ et $\binom{x'}{v'}$ sont proportionnels.

est donc un tableau de proportionnalité.

Définition:

Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs.

Le <u>déterminant de \vec{u} et \vec{v} </u> est le réel noté det (\vec{u}, \vec{v}) tel que :

$$\det(\vec{u}, \vec{v}) = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' - yx'$$

Bien faire attention à l'ordre de calcul.

 $\begin{vmatrix} x & x' \\ y & y' \end{vmatrix}$ on calcule le produit xy' « descendant » moins le produit yx' « montant ».

Propriété :

Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs.

Les vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement si det $(\vec{u}, \vec{v}) = 0$

Démonstration:

$$\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ sont colinéaires $\Leftrightarrow xy' = x'y$

$$\Leftrightarrow xy' - yx' = 0$$

$$\Leftrightarrow \det(\vec{u}, \vec{v}) = 0$$

Application:

a) Montrer que les points A(2;3), B(5;1) et C(8;-1) sont alignés.

Il suffit pour cela de montrer que les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

On a
$$\overrightarrow{AB} = \begin{pmatrix} 5-2\\1-3 \end{pmatrix} = \begin{pmatrix} 3\\-2 \end{pmatrix}$$
 et $\overrightarrow{AC} = \begin{pmatrix} 8-2\\-1-3 \end{pmatrix} = \begin{pmatrix} 6\\-4 \end{pmatrix}$.

$$det\big(\overrightarrow{AB},\overrightarrow{AC}\big) = \begin{vmatrix} 3 & 6 \\ -2 & -4 \end{vmatrix} = 3 \times (-4) - (-2) \times 6 = -12 + 12 = 0 \text{ donc les vecteurs } \overrightarrow{AB} \text{ et } \overrightarrow{AC} \text{ sont colinéaires.}$$

b) On considère le point D(3; -2). Montrer que les points A, B et D ne sont pas alignés.

Il suffit pour cela de montrer que les vecteurs \overrightarrow{AB} et \overrightarrow{AD} ne pas sont colinéaires.

$$\overrightarrow{AD} = \begin{pmatrix} 3-2 \\ -2-3 \end{pmatrix} = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$$

 $\overrightarrow{AD} = \begin{pmatrix} 3-2 \\ -2-3 \end{pmatrix} = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$ $det(\overrightarrow{AB}, \overrightarrow{AD}) = \begin{vmatrix} 3 & 1 \\ -2 & -5 \end{vmatrix} = 3 \times (-5) - (-2) \times 1 = -15 + 2 = -13 \neq 0 \text{ donc les vecteurs } \overrightarrow{AB} \text{ et } \overrightarrow{AD} \text{ ne sont}$