Síntese do trabalho prático 2

Inteligência Artificial para Sistemas Autónomos

Introdução ao projeto

Este projeto, visa a construção de uma biblioteca em Java que produz a resolução de puzzles com peças deslizantes, tendo em conta certas configurações.

Iremos verificar alguns dos métodos de pesquisa em árvore de modo à biblioteca suportar diversos tipos de problemas.

Raciocínio Automático

Domínio do	Sistema Inteligente
problema	
Problema	Representação interna do problema
	(Modelo "do mundo")
Objetivo	Mecanismo de raciocínio
Solução	Representação da solução

De modo a encontrar uma solução ao problema, a biblioteca utiliza um racíocinio prospectivo, através de uma simulação interna do mundo, criada em forma de árvore.

Esra árvore possuí estados que representam as possíveis situações/configurações (ex. configuração do puzzle). Com o intuito de percorrer a árvore, aplicam-se operadores aos estados. Operadores são transformações que se podem aplicar a estados.

O espaço de estados de um sistema representa todos os estados com todas as opções possíveis.

O espaço de estados tem o seguinte aspecto:

Figura 1 Exemplo de espaço de estados

Raciocínio através de procura

Este tipo de raciocínio explora sucessivamento o espaço de estados até encontrar uma resposta. Através deste mesmo raciocínio temos os seguintes conceitos:

• Situação

Espaço de estados

Ação

Operador

Raciocínio

Simulação interna do mundo

Métodos de procura

Para compreender o método de procura que necessitamos, temos de ter em noção os seguintes aspetos:

• Completo

Garante que, caso a existência de uma solução, a mesma será encontrada

• Ótimo

Garante que, caso existam várias soluções, a melhor solução será encontrada.

• Complexidade

1. Tempo

Tempo necessário para encontrar uma solução.

2. Espaço

Memória necessária para encontrar uma solução

Após a explicação dos tipos de características presentes em estratégias de procura em árvora, podemos verificar algumas das suas variantes:

• Estratégia de controlo

- 1. Explorar primeiro os nós mais recentes
- 2. Explorar primeiro os nós mais antigos

• Procura em profundidade

Este tipo de procura, começa por expandir sempre o primeiro nó, até encontrar uma resposta. Se nenhuma resposta for encontrada começasse a expandir um nó paralelo.

Este método nem sempre encontra uma solução o que o faz ser **não completo** (caso o ramo a ser extendido seja infinito, nenhuma resposta será localizada).

Procura em profundidade limitada

Limita a procura em profundidade até uma certa profundidade.

Procura em profundidade iterativa

Como a procura em profundidade limitada, esta procura tem uma profundidade limitada. No entanto, caso a solução não seja encontrada, será feita outra procura com profundidade limitada. Isto continua até encontrar eventualmente uma solução.

Figura 2 Exemplo de procura em profundidade iterativa na árvore

• Procura em largura

Este género de procura, não explora outro nível de profundidade enquanto não expandir todos os nós com um certo nível de profundidade.

Este método utiliza uma grande **complexidade de tempo**, pois todos os nós de um sistema vão sendo expandidos (de nível em nível). No entanto, a procura em largura é **ótima**, pois caso haja uma solução, a mesma será encontrada.

Procura bidirecional

Esta procura consiste em "correr" duas procuras em largura, uma no início do percurso e outra no final do mesmo até chegar à solução.

Figura 3 Representação esquemática de uma procura bidirecional

Procura de custo uniforme

Este tipo de procura, explora primeiro caminhos com o menor custo garantindo assim uma procura ótima.

Todos os exemplos acima demonstrados pertencem à categoria de **procura não** informada. Este género de procura não tira partido de conhecimento do domínio do problema, nem é guiada.

De seguida observarei métodos de **procura informada**, ou seja, que tiram partido do conhecimento do domínio do problema, sendo uma procura guiada.

Procura em grafos com ciclos

Como podemos rapidamente verificar, que podemos estar a observar nós repetidos. Isto acontece quando as ações correspondentes às transições de estado são reversíveis.

Desta forma, ao expanditmos nós anteriormente analisados, estamos a desperdiçar recursos da máquina, que fazem o programa correr mais lento.

Função heurística h(n)

Representa uma esimativa do custo do percurso desde o nó n até ao nó objetivo.

Alguns dos métodos de procura informada apresentam-se a seguir:

• Procura melhor-primeiro

Utiliza uma função f para avaliação de cada nó n gerado. Esta função tipicamente representa uma estimativa do custo da solução através do nó n

• **Procura de Sôfrega** (Greedy Search) [f(n) = h(n)]

Não tem em conta o custo do percurso

Minimização do custo local

Não é **ótima**

• **Procura A*** [f(n) = g(n) + h(n)]

Minimização do custo global

Tabela de análise de desempenho

Tabela 1 Tabela de análise de desempenho da biblioteca

	Puzzle	Número	Complexidade	Complexidade	Heurística
		Iterações	Temporal	Espacial	
Profundidade	A	40	160	35	
	В	50	535228	43	
Profundidade	A	18	1924	18	
Iterada	В	30	1277344	26	
Largura	A	14	14576	2156	
	В	26	657596	24053	
Custo	A	14	18388	2487	
Uniforme	В	26	638004	24204	
Sôfrega	A	18	108	25	Peças fora do Lugar
	A	24	164	36	Distância de Manhattan
	В	132	5088	796	Peças fora do Lugar
	В	70	588	99	Distância de Manhattan
A*	A	14	332	54	Peças fora do Lugar
	A	14	808	146	Distância de Manhattan
	В	26	8444	1148	Peças fora do Lugar
	В	26	146968	15603	Distância de Manhattan

Docente: Engº Luís Morgado

Arman Khan de Freitas

Turma 41D

Nº 45414