第 1 章

双対空間

線形汎関数

横ベクトル $(1 \times n$ 型行列)を縦ベクトル $(n \times 1$ 型行列) にかけると、 1×1 のスカラー 値が得られる。

$$\begin{pmatrix} a_1 & \cdots & a_n \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = a_1 v_1 + \cdots + a_n v_n$$

これは、縦ベクトルを入力とする関数(\mathbb{R}^n から \mathbb{R} への線形写像)と見なすことができる。 縦ベクトルを \pmb{v} 、この関数を $\pmb{\phi}$ とすると、次のように書ける。

$$\phi(\boldsymbol{v}) = a_1 v_1 + \dots + a_n v_n$$

この関数 ϕ は、線形汎関数と呼ばれる写像の一例である。

線形汎関数 V を \mathbb{R} 上の線形空間とするとき、V から \mathbb{R} への線形写像を V 上の線形汎関数あるいは線形形式という。

横ベクトルの集合と座標関数

 $n \times 1$ 型行列 (n 次の縦ベクトル) 全体の集合は \mathbb{R}^n と表された。

 $1 \times n$ 型行列 (n 次の横ベクトル) 全体の集合を $^{t}\mathbb{R}^{n}$ と表すことにする。

 $^t\mathbb{R}^n$ の元は $1\times n$ 型行列なので、 \mathbb{R}^n から \mathbb{R} への線形写像(すなわち \mathbb{R}^n 上の<mark>線形汎関数</mark>)を表現している行列だと考えることができる。

座標関数の表現行列

基本ベクトルを転置したもの ${}^t \boldsymbol{e}_j$ を縦ベクトルにかけると、j 番目の成分が得られる。 たとえば、n=3, j=2 の場合、

$${}^{t}\boldsymbol{e}_{2} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} = v_{2}$$

といった具合に、j番目の成分 v_j が得られる。

このように、ベクトル $oldsymbol{v} \in \mathbb{R}^n$ に対して、 $oldsymbol{j}$ 番目の成分を返す関数を $oldsymbol{e}$ 歴標関数といい、 $oldsymbol{x}_j$ と表記することにする。

$$\mathbb{R}^n
i oldsymbol{v} = egin{pmatrix} v_1\ dots\ v_n \end{pmatrix} \mapsto v_j \in \mathbb{R}$$

横基本ベクトル ${}^t e_j \in {}^t \mathbb{R}^n$ は、座標関数 $x_j : \mathbb{R}^n \to \mathbb{R}$ の表現行列になっている。

横ベクトルと線形汎関数の同一視

任意の横ベクトルは、横基本ベクトルの線形結合として一意的に表現できる。

$$(a_1 \cdots a_n) = a_1^t \boldsymbol{e}_1 + \cdots + a_n^t \boldsymbol{e}_n$$

これを用いると、

$$\phi = \begin{pmatrix} a_1 & \cdots & a_n \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$
 $= a_1{}^t \boldsymbol{e}_1 \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} + \cdots + a_n{}^t \boldsymbol{e}_n \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$
 $= a_1 x_1 + \cdots + a_n x_n$

となることから、任意の線形汎関数 $\phi \in {}^t\mathbb{R}^n$ は、座標関数 x_1,\ldots,x_n の線型結合として

$$\phi = a_1 x_1 + \dots + a_n x_n$$

のように一意的に書くことができる。

つまり、 $\{x_1,\ldots,x_n\}$ は ${}^t\mathbb{R}^n$ の基底である。

また、縦ベクトルが基底との線形結合の係数を並べたものであるのと同様に、 ϕ は横ベクトル (a_1,\ldots,a_n) と同一視できる。

双対空間

V から \mathbb{R} への線形写像、すなわち V 上の線形汎関数全体の集合を考える。

ightharpoons 双対空間 V 上の線形汎関数全体の集合を V の双対空間といい、 V^* と表す。

$$V^* := \operatorname{Hom}(V, \mathbb{R}) = \{ \phi \colon V \to \mathbb{R} \mid \phi$$
 は線形写像 \}

線形写像全体の集合は線形空間であるため、双対空間 V* も ℝ 上の線形空間である。

例:縦ベクトル空間の双対空間

 $V=\mathbb{R}^n$ のとき、ベクトルの j 番目の成分を返す座標関数 $x_j:\mathbb{R}^n \to \mathbb{R}$ は線形汎関数であるため、 V^* の元である。

$$x_j \in V^* \quad (j = 1, \ldots, n)$$

また、 V^* は線形空間であるため、 V^* の元 x_j の線形結合も V^* の元である。

$$\phi = a_1x_1 + \cdots + a_nx_n \in V^*$$

このとき、 $\{x_1,\ldots,x_n\}$ は V^* の基底をなす(※後述)ので、 V^* は x_1,\ldots,x_n の 1 次式として表せる関数全体の集合である。

また、このような ϕ は横ベクトル (a_1,\dots,a_n) と同一視できるので、 ϕ 全体の集合は横ベクトルの集合 $^t\mathbb{R}^n$ ともいえる。 すなわち、

縦ベクトルの集合 \mathbb{R}^n の双対空間は、

横ベクトルの集合 ${}^t\mathbb{R}^n$

である。

● 補足:なぜ基底といえるのか

 $\{x_1,\ldots,x_n\}$ が V^* の基底をなすことは、次のように確かめられる。 ここでは、各座標関数 x_i を次のように表記する。

$$x_j(\boldsymbol{v}) = v_j \quad (j = 1, \ldots, n)$$

線型独立であること

係数 a_1, \ldots, a_n が

$$a_1x_1+\cdots+a_nx_n=0$$

を満たすと仮定すると、任意の $\boldsymbol{v} \in \mathbb{R}^n$ に対して、

$$(a_1x_1+\cdots+a_nx_n)(\boldsymbol{v})=0$$

ここで、 x_i の線形性を用いると、

$$a_1x_1(\boldsymbol{v}) + \cdots + a_nx_n(\boldsymbol{v}) = 0$$
$$a_1v_1 + \cdots + a_nv_n = 0$$

これが任意の \boldsymbol{v} について成り立つということは、 $a_1=\cdots=a_n=0$ でなければならない(さもなくば、 \boldsymbol{v} によって和が 0 にならないものを作れる)ので、 x_i は線形独立である。

空間を張ること

 ϕ は線形なので、任意の縦ベクトル v に対して、

$$\phi(oldsymbol{v}) = \phi\left(\sum_{j=1}^n v_j oldsymbol{e}_j
ight) = \sum_{j=1}^n v_j \phi(oldsymbol{e}_j)$$

ここで、各 $\phi(e_i)$ は実数なので、それを $a_i := \phi(e_i)$ とおくと、

$$\phi(oldsymbol{v}) = \sum_{j=1}^n v_j a_j = \sum_{j=1}^n a_j x_j(oldsymbol{v})$$

したがって、

$$\phi = \sum_{j=1}^n a_j x_j$$

として、 x_1, \ldots, x_n の線形結合で任意の $\phi \in V^*$ を表すことができる。

双対基底

線形空間が有限次元の場合は、選んでおいた基底に対して、双対基底(dual basis)という双対空間の基底を考えることができる。

V を n 次元の線形空間とし、 $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n$ を V の 1 つの基底とする。 このとき、V の任意のベクトル \boldsymbol{v} は、基底の線形結合

$$\boldsymbol{v} = c_1 \boldsymbol{v}_1 + \cdots + c_n \boldsymbol{v}_n$$

として表すことができる。

各係数 c_i は、 \boldsymbol{v} の基底 $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n$ に関する第 i 成分(第 i 座標)である。

V の任意のベクトルを引数にとり、基底 $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n$ に関する第 i 座標 c_i を返す関数を

 $\phi_i \colon V \to \mathbb{R} \$ とおこう。

 $\phi_i \in V^*$ は線形なので、

$$\phi_i(oldsymbol{v}) = \phi\left(\sum_{j=1}^n c_j oldsymbol{v}_j
ight) = \sum_{j=1}^n c_j \phi_i(oldsymbol{v}_j)$$

 $ccc, \phi_i(\boldsymbol{v}) = c_i \ cccc, \phi_i(\boldsymbol{v})$

$$\phi_i(\boldsymbol{v}_j) = \delta_{ij} \quad (i, j = 1, \dots, n)$$

である必要がある。

このように定めた ϕ_i は、V の双対空間 V^* の基底となっている。

 $oldsymbol{\cdot}$ 双対基底の構成と双対空間の次元 V を n 次元の線形空間とし、 $oldsymbol{v}_1,\ldots,oldsymbol{v}_n$ を V の基底とする。

 $i=1,\ldots,n$ に対して、 $\phi_i \in V^*$ を

$$\phi_i(\boldsymbol{v}_j) = \delta_{ij} \quad (j = 1, \ldots, n)$$

により定めると、 ϕ_1, \ldots, ϕ_n は V^* の基底をなす。

特に、次が成り立つ。

$$\dim V = \dim V^* = n$$

ϕ_1,\ldots,ϕ_n が線型独立

線形関係式

$$\sum_{j=1}^{n} c_j \phi_j = 0$$

があるとすると、

$$\left(\sum_{j=1}^n c_j \phi_j\right)(m{v}_i) = 0$$
 ϕ の線形性 $\sum_{j=1}^n c_j \phi_j(m{v}_i) = 0$ $\phi_j(m{v}_i) = \delta_{ij}$ $\sum_{j=1}^n c_j \delta_{ij} = 0$

左辺の和は、 δ_{ij} の定義より、j=iの項のみ生き残って、

$$c_i = 0 \quad (i = 1, \ldots, n)$$

が得られる。

$\langle \phi_1, \ldots, \phi_n \rangle = V^*$

任意の $\boldsymbol{v} \in V$ に対して、

$$oldsymbol{v} = \sum_{i=1}^n c_i oldsymbol{v}_i$$

と書く。

 $\psi \in V^*$ を任意にとると、 ψ と ϕ の線形性により、

$$egin{aligned} \psi(oldsymbol{v}) &= \psi\left(\sum_{i=1}^n c_i oldsymbol{v}_i
ight) \ &= \sum_{i=1}^n c_i \psi(oldsymbol{v}_i) \ &= \sum_{i=1}^n \phi_i(oldsymbol{v}) \psi(oldsymbol{v}_i) \ &= \sum_{i=1}^n \psi(oldsymbol{v}_i) \phi_i(oldsymbol{v}) \ &= \left(\sum_{i=1}^n \psi(oldsymbol{v}_i) \phi_i
ight) (oldsymbol{v}) \end{aligned}$$

よって、

$$\psi = \sum_{i=1}^n \psi(oldsymbol{v}_i) \phi_i$$

上式で、任意の $\psi \in V^*$ を ϕ_1, \ldots, ϕ_n の線形結合で書けることが示せたので、 $\langle \phi_1, \ldots, \phi_n \rangle$ は V^* を張ることがわかる。

このようにして得られる V^* の基底 $\{\phi_1,\ldots,\phi_n\}$ を、V の基底 $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n\}$ の双対基底という。

例:数ベクトル空間と双対基底

 $V = \mathbb{R}^n$ の場合を考えてみよう。

任意の縦ベクトルは、標準基底の線形結合として書くことができる。

$$\begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = c_1 \boldsymbol{e}_1 + \dots + c_n \boldsymbol{e}_n \in \mathbb{R}^n$$

また、任意の横ベクトルは、標準基底を転置したものの線形結合として書くことができる。

$$(c_1 \cdots c_n) = c_1^t \boldsymbol{e}_1 + \cdots + c_n^t \boldsymbol{e}_n \in {}^t \mathbb{R}^n$$

つまり、縦ベクトル空間の基底 $\{e_1,\ldots,e_n\}$ に対して、横ベクトル空間の基底は $\{{}^te_1,\ldots,{}^te_n\}$ となる。

また、 ${}^t e_i$ を縦ベクトル $oldsymbol{v}$ にかけることで、 $oldsymbol{v}$ の i 番目の成分が得られるのだった。

$${}^{t}oldsymbol{e}_{i}oldsymbol{v}=\begin{pmatrix}0&\cdots&1&\cdots&0\end{pmatrix}egin{pmatrix}v_{1}\ dots\\v_{n}\end{pmatrix}=v_{i}$$

つまり、 ${}^t e_i$ は座標関数 $\phi_i : \mathbb{R}^n \to \mathbb{R}$ の表現行列になっている。

 ϕ_i を表す ${}^t e_i$ が、 \mathbb{R}^n の双対空間 ${}^t \mathbb{R}^n$ の基底をなしていることになる。

 $\phi_i(e_i)$ についても考えておこう。

 $m{e}_j$ は $m{j}$ 番目の成分が $m{1}$ で他は $m{0}$ の縦ベクトルであり、 $m{^t}m{e}_i$ は $m{i}$ 番目の成分が $m{1}$ で他は $m{0}$ の横ベクトルである。

$$\phi_i(oldsymbol{e}_j) = {}^toldsymbol{e}_ioldsymbol{e}_j = \begin{pmatrix} 0 & \cdots & 1 & \cdots & 0 \end{pmatrix} egin{pmatrix} 0 \ dots \ 1 \ dots \ 0 \end{pmatrix}$$

この結果が $1(e_i \cap j)$ 番目の成分)となるのは、i = j の場合のみである。

iとjがずれていれば、0.0か 1.0 しか現れないので、それらの和は0になってしまう。

よって、 \mathbb{R}^n の基底 $\{e_1,\ldots,e_n\}$ とその双対基底 $\{\phi_1,\ldots,\phi_n\}$ は、

$$\phi_i(\boldsymbol{e}_j) = \delta_{ij} \quad (i, j = 1, \ldots, n)$$

という関係にあることがわかる。

ペアリングの記号

 $\phi \in V^*$ と $\boldsymbol{v} \in V$ に対して、線形関数 ϕ に \boldsymbol{v} を入力して得られる値を次のように書くことがある。

$$\langle \phi, \boldsymbol{v} \rangle := \phi(\boldsymbol{v})$$

この記法をペアリングと呼ぶことにする。

例:行列の積を表すペアリング

 $V = \mathbb{R}^n$ の場合、その双対空間は $V^* = {}^t\mathbb{R}^n$ である。

 $\phi \in {}^t\mathbb{R}^n$ を横ベクトル、 $\boldsymbol{v} \in \mathbb{R}^n$ を縦ベクトルとみれば、 $\langle \phi, \boldsymbol{v} \rangle$ は行列としての積 $\phi \cdot \boldsymbol{v}$ と一致している。

双対空間の双対

V と V^* の次元が等しいことから、V と V^* は線形同型である。

しかし、この同型は V の基底に依存している。

一方、線形空間 V の双対空間 V^* もまた線形空間になるので、さらにその双対空間 $(V^*)^*$ を考えることができる。

 $(V^*)^*$ を第 2 双対空間といい、 V^{**} と書くことにする。

実は V^{**} とVは線形同型であり、この同型はVの基底に依存しないことが示される。

V から V** への写像の線形性

 $m{v} \in V$ を与えたとき、任意の線形汎関数(V^* の元)に $m{v}$ を入力したもの $\langle -, m{v} \rangle$ を考えることができる。

ー はプレースホルダーであり、ここに具体的なもの(ここでは線形汎関数)を入れられることを意味する。

ここで $\phi \in V^*$ を与えれば、スカラー $\langle \phi, \boldsymbol{v} \rangle \in \mathbb{R}$ が得られる。

$$V^* \ni \phi \mapsto \langle \phi, \boldsymbol{v} \rangle \in \mathbb{R}$$

この写像 $\phi \mapsto \langle \phi, \boldsymbol{v} \rangle$ を $\iota(\boldsymbol{v})$ とおく。

 $m{v}$ は固定されているものとして、 $m{\iota}(m{v})\colon V^* \to \mathbb{R}$ は線形汎関数 $m{\phi}$ を入力するとスカラーを返す写像である。

$$(\iota(\boldsymbol{v}))(\phi) = \langle \phi, \boldsymbol{v} \rangle = \phi(\boldsymbol{v})$$

このとき、 $V^* = \text{Hom}(V, \mathbb{R})$ における和とスカラー倍の定義より、 $\iota(\boldsymbol{v})$ は線形写像である。

☆ 補足:なぜ ι(**ν**) は線形写像といえるのか

 $\iota(\boldsymbol{v})(\phi) = \phi(\boldsymbol{v})$ という関係に着目しよう。

すると、 $\phi, \psi \in V^*$ に対して、

$$(\iota(\boldsymbol{v}))(\phi + \psi) = (\phi + \psi)(\boldsymbol{v})$$
$$= \phi(\boldsymbol{v}) + \psi(\boldsymbol{v})$$
$$= (\iota(\boldsymbol{v}))(\phi) + (\iota(\boldsymbol{v}))(\psi)$$

また、 $c \in \mathbb{R}$ に対して、

$$(\iota(\boldsymbol{v}))(c\phi) = (c\phi)(\boldsymbol{v})$$
$$= c\phi(\boldsymbol{v})$$
$$= c(\iota(\boldsymbol{v}))(\phi)$$

以上より、写像 $\iota(\boldsymbol{v})$ は線形性を満たしていることがわかる。

写像 $\iota(\boldsymbol{v})\colon V^*\to\mathbb{R}$ は線形写像なので、 $\iota(\boldsymbol{v})$ は V^* 上の線形汎関数といえる。すなわち、 $\iota(\boldsymbol{v})\in V^{**}$ である。

 ι は $\boldsymbol{v} \in V$ を入力として、 $\iota(\boldsymbol{v}) \in V^{**}$ を返す写像とみることができる。

$$\iota \colon V \to V^{**}$$

また、この L は線形写像である。

ここでも、 $\iota(\boldsymbol{v})(\phi) = \phi(\boldsymbol{v})$ という関係を用いる。

 V^* の元 ϕ は線形写像なので、

$$(\iota(\boldsymbol{v}_1 + \boldsymbol{v}_2))(\phi) = \phi(\boldsymbol{v}_1 + \boldsymbol{v}_2)$$

$$= \phi(\boldsymbol{v}_1) + \phi(\boldsymbol{v}_2)$$

$$= (\iota(\boldsymbol{v}_1))(\phi) + (\iota(\boldsymbol{v}_2))(\phi)$$

また、 $c \in \mathbb{R}$ に対して、

$$(\iota(c\mathbf{v}))(\phi) = \phi(c\mathbf{v})$$
$$= c\phi(\mathbf{v})$$
$$= c(\iota(\mathbf{v}))(\phi)$$

以上より、

$$\iota(\boldsymbol{v}_1 + \boldsymbol{v}_2) = \iota(\boldsymbol{v}_1) + \iota(\boldsymbol{v}_2)$$
$$\iota(c\boldsymbol{v}) = c\iota(\boldsymbol{v})$$

となり、写像 L は線形性を満たしていることがわかる。

V から V** への写像の同型

 $\iota: V \to V^{**}$ は線形写像であるので、 ι の全単射性から ι の線形同型性を考えることができる。

特にιが単射であることを示すために、次の定理を用いる。

 $oldsymbol{\iota}$ 双対空間の分離性 有限次元線形空間 V において、任意の $oldsymbol{u} \in V$ で $oldsymbol{v} \neq oldsymbol{o}$ ならば、 $oldsymbol{\phi}(oldsymbol{v}) \neq 0$ となるような線形汎関数 $oldsymbol{\phi} \in V^*$ が存在する。

証明

 $\boldsymbol{v} \neq \boldsymbol{o}$ より、 \boldsymbol{v} は線型独立である。

よって、基底の延長により、 \boldsymbol{v} を含む V の基底 $\{\boldsymbol{v},\boldsymbol{v}_2,\ldots,\boldsymbol{v}_n\}$ を選ぶことができる。

この基底に対応する双対基底 $\phi_1, \phi_2, \ldots, \phi_n \subset V^*$ を考えると、それぞれの ϕ_i は、次の性質をもつ。

$$\phi_i(\boldsymbol{v}_j) = \delta_{ij} \quad (i, j = 1, 2, \ldots, n)$$

このとき $\phi_1(\boldsymbol{v})=1$ であるので、 $\phi=\phi_1$ をとれば、任意の $\boldsymbol{v}\neq\boldsymbol{o}$ に対して $\phi(\boldsymbol{v})=1$ となる。

 $\iota(\boldsymbol{v})=0$ すなわち、任意の $\phi\in V^*$ に対して

$$\iota(\boldsymbol{v})(\phi) = \phi(\boldsymbol{v}) = 0$$

であると仮定する。

この仮定は、すべての線形汎関数が \boldsymbol{v} を 0 に写すことを意味する。

ここで、 $\boldsymbol{v} \neq \boldsymbol{o}$ とすると、双対空間の分離性より、 $\boldsymbol{\phi}(\boldsymbol{v}) \neq \boldsymbol{0}$ となるような線形汎関数 $\boldsymbol{\phi}$ が存在する。

これは $\iota(\boldsymbol{v})=0$ という仮定と矛盾するので、 $\iota(\boldsymbol{v})=0$ のもとでは、 $\boldsymbol{v}=\boldsymbol{o}$ でなければならない。

したがって、

$$\iota(\boldsymbol{v}) = 0 \Longrightarrow \boldsymbol{v} = \boldsymbol{o}$$

となり、これは線形写像 レが単射であることを示している。

写像 しは全射

双対空間の次元を考えると、

$$\dim V^{**} = \dim V^* = \dim V$$

[Note 1: 次元定理と全射性との関係を加筆したら、その記載箇所へのリンクを貼る]

 ι が単射であることから $\operatorname{Ker}(\iota) = \{o\}$ なので、線形写像の次元定理より、 $\dim V^{**} = \dim V$ は $\iota \colon V \to V^{**}$ が全射であることを示している。

双対性

V と $(V^*)^*$ の間には、線形同型写像 $\iota: V \to (V^*)^*$ が存在する。 このことから、V と $(V^*)^*$ は線形同型であることがいえる。

このように、V が有限次元の場合は、V と $(V^*)^*$ は自然に同一視することができるので、

双対空間 V^* の双対空間 $(V^*)^*$ は V 自身である

ということになる。

たとえるなら、V と V^* は表と裏のような関係になっていて、裏の裏 $(V^*)^*$ は表 V である。このような関係を $\chi \gamma$ と呼ぶ。

ペアリングの記号が表す双対

V を V^* の双対と考えても、 V^* を V の双対と考えてもよい。 ペアリングの記号は、この平等さを表す記法ともいえる。

 $\phi \in V^*$ を与えたとき、それに V の任意の元 \boldsymbol{v} を入力したもの $\langle \phi, \boldsymbol{v} \rangle$ を考えることができる。

$$\langle \phi, \boldsymbol{v} \rangle = \phi(\boldsymbol{v})$$

逆に $\mathbf{v} \in V$ を与えたとき、 $\iota(\mathbf{v})$ に V^* の任意の元 ϕ を入力したもの $\langle \mathbf{v}, \phi \rangle$ を考えることもできる。

$$\langle \boldsymbol{v}, \phi \rangle = \iota(\boldsymbol{v})(\phi)$$

どちらから考えても、具体的な \boldsymbol{v} と $\boldsymbol{\phi}$ を与えたときに得られるスカラーは同じである。

$$\langle \phi, \boldsymbol{v} \rangle = \langle \boldsymbol{v}, \phi \rangle = \phi(\boldsymbol{v}) = \iota(\boldsymbol{v})(\phi)$$

また、 V^* の双対空間 $(V^*)^*$ は V と同一視できるのだから、V の基底 $\{\boldsymbol{v}_i\}_{i=1}^n$ の双対基底を $\{\boldsymbol{\phi}_i\}_{i=1}^n$ とするとき、 $\{\boldsymbol{\phi}_i\}_{i=1}^n$ の双対基底は $\{\boldsymbol{v}_i\}_{i=1}^n$ と同一視できる。

$$\langle \phi_i, \boldsymbol{v}_i \rangle = \langle \boldsymbol{v}_i, \phi_i \rangle = \delta_{ii}$$

双対写像

線形空間の間の線形写像が与えられると、双対空間の間の線形写像を定めることができる。

線形空間 V, W の間の線形写像 $f: V \rightarrow W$ が与えられたとする。

W 上の線形汎関数を $\varphi \in W^*$ とすると、次のような関係になっている。

$$V \xrightarrow{f} W \downarrow_{\varphi}$$

このとき、合成写像 $\varphi \circ f \colon V \to \mathbb{R}$ を考えることができる。

$$V \xrightarrow{f} W \qquad \qquad \downarrow \varphi \qquad \qquad \downarrow \varphi$$

$$\varphi \circ f \qquad \downarrow \mathbb{R}$$

線形写像の合成もまた線形写像になるので、 φ o f は V 上の線形汎関数である。これを $f^*(\varphi) \in V^*$ と書くことにする。

$$V \xrightarrow{f} W \qquad \downarrow \varphi \\ f^*(\varphi) \searrow \mathbb{R}$$

 $f^*(\varphi)$ は V 上の線形汎関数なので、 $\boldsymbol{v} \in V$ を入力するとスカラーを返す。

合成写像の記法より、 $(\varphi \circ f)(\boldsymbol{v})$ は、 $\varphi(f(\boldsymbol{v}))$ とも書けるので、

$$f^*(\varphi)(\boldsymbol{v}) = \varphi(f(\boldsymbol{v})) = \langle \varphi, f(\boldsymbol{v}) \rangle$$

と整理できる。

また、 f^* は W^* 上の線形汎関数 φ を入力として、 V^* 上の線形汎関数 $f^*(\varphi)$ を返す線形写像である。

 $W^* = \text{Hom}(W, \mathbb{R})$ における和とスカラー倍の定義から示すことができる。

 $\varphi_1, \varphi_2 \in W^*$ に対して、

$$f^*(\varphi_1 + \varphi_2)(\boldsymbol{v}) = (\varphi_1 + \varphi_2)(f(\boldsymbol{v}))$$

$$= \varphi_1(f(\boldsymbol{v})) + \varphi_2(f(\boldsymbol{v}))$$

$$= f^*(\varphi_1)(\boldsymbol{v}) + f^*(\varphi_2)(\boldsymbol{v})$$

$$= (f^*(\varphi_1) + f^*(\varphi_2))(\boldsymbol{v})$$

また、 $c \in \mathbb{R}$ に対して、

$$f^*(c\varphi)(\boldsymbol{v}) = (c\varphi)(f(\boldsymbol{v}))$$

$$= c \cdot \varphi(f(\boldsymbol{v}))$$

$$= c \cdot f^*(\varphi)(\boldsymbol{v})$$

$$= (cf^*(\varphi))(\boldsymbol{v})$$

以上より、

$$f^*(\varphi_1 + \varphi_2) = f^*(\varphi_1) + f^*(\varphi_2)$$
$$cf^*(\varphi) = f^*(c\varphi)$$

となり、写像 f* は線形性を満たすことがわかる。

このように定まる線形写像 $f^*: W^* \rightarrow V^*$ を、f の双対写像という。

| 双対写像 V,W を線形空間とし、 $f:V\to W$ を線形写像とするとき、f の双対写像 $f^*:W^*\to V^*$ を次のように定義する。

$$f^*(\varphi) := \varphi \circ f \quad (\varphi \in W^*)$$

双対を表すペアリングの記法を用いると、次のように整理できる。

$$f^*(\varphi)(\boldsymbol{v}) = \langle f^*(\varphi), \boldsymbol{v} \rangle = \langle \varphi, f(\boldsymbol{v}) \rangle = \varphi(f(\boldsymbol{v})) \quad (\boldsymbol{v} \in V)$$

線形写像の双対写像の表現行列は、元の線形写像の表現行列の転置になる。 このことから、双対写像は<mark>転置写像</mark>とも呼ばれる。

 $\roldsymbol{\$}$ 双対写像の行列表現 V,W を有限次元の線形空間とし、 $f\colon V\to W$ を線型写像とする。また、 $\dim V=n$, $\dim W=m$ とする。

V の基底 $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n$ 、W の基底 $\boldsymbol{w}_1, \ldots, \boldsymbol{w}_m$ を選び、これらの双対基底をそれぞれ $\phi_1, \ldots, \phi_n, \psi_1, \ldots, \psi_m$ とする。

このとき、 $\{ m{v}_i \}$ 、 $\{ m{w}_j \}$ に関する f の表現行列を A とすると、 $\{ m{\psi}_j \}$, $\{ m{\phi}_i \}$ に関する f^* の表現行列は A^\top によって与えられる。

★ 証明

 $f: V \to W$ に対して、その双対写像 $f^*: W^* \to V^*$ は次で定義される。

$$\begin{array}{ccc}
V & \xrightarrow{f} & W \\
\psi \circ f & \downarrow \psi \\
\mathbb{R}
\end{array}$$

$$f^*(\psi) = \psi \circ f \quad (\psi \in W^*)$$

 $f^*(\psi)$ は V 上の線形汎関数なので、任意の $\boldsymbol{v} \in V$ を入力するとスカラーを返す。 合成写像の記法より、 $(\psi \circ f)(\boldsymbol{v})$ は、 $\psi(f(\boldsymbol{v}))$ とも書けるので、

$$f^*(\psi)(\boldsymbol{v}) = \psi(f(\boldsymbol{v}))$$

が成り立つ。

一方、f の表現行列 A は次のように構成される。

$$f(oldsymbol{v}_i) = \sum_{j=1}^m a_{ji} oldsymbol{w}_j \quad (1 \leq i \leq n)$$

したがって、任意のiに対し、

$$\psi_k(f(oldsymbol{v}_i)) = \psi_k\left(\sum_{j=1}^m a_{ji}oldsymbol{w}_j
ight) = \sum_{j=1}^m a_{ji}\psi_k(oldsymbol{w}_j)$$

ここで、 $\{\psi_k\}$ は $\{\boldsymbol{w}_j\}$ の双対基底なので、 $\psi_k(\boldsymbol{w}_j) = \delta_{kj}$ より、

$$\psi_k(f(\boldsymbol{v}_i)) = a_{ki}$$

また、 $f^*(\psi_k) \in V^*$ は V 上の線形汎関数なので、V の双対基底 $\{\phi_i\}$ の線形結合として表せる。

$$f^*(\psi_k) = \sum_{i=1}^n b_{ik} \phi_i$$

この係数 b_{ik} を並べた行列を B とすると、B は f^* の表現行列である。

このとき、

$$f^*(\psi_k)(\boldsymbol{v}_i) = \psi_k(f(\boldsymbol{v}_i)) = a_{ki}$$

であり、一方、

$$f^*(\psi_k)(\boldsymbol{v}_i) = \sum_{j=1}^n b_{ji}\phi_j(\boldsymbol{v}_i) = \sum_{j=1}^n b_{ji}\delta_{ij} = b_{ki}$$

でもあるから、 $b_{ki} = a_{ki}$ が成り立つ。すなわち、

$$B = A^{\mathsf{T}}$$

である。

例:縦ベクトルと横ベクトルによる線形写像

[Todo 1: まとめ直す]

A を $m \times n$ 型行列とする

縦ベクトルに A を左からかけることによって定まる線形写像を次のように表す

$$f_A: \mathbb{R}^n \to \mathbb{R}^m (\boldsymbol{v} \mapsto A\boldsymbol{v})$$

これと対照的に、横ベクトルに右から A をかけることによって定まる次の線形写像を転置写

像と呼ぶ

$$f_{\Delta}^*: {}^t\mathbb{R}^m \to {}^t\mathbb{R}^n (\phi \mapsto \phi A)$$

横ベクトル $\phi A \in {}^t\mathbb{R}^n$ は、次の合成写像の表現行列である

$$\mathbb{R}^n \xrightarrow{f_A} \mathbb{R}^m \xrightarrow{\phi} \mathbb{R}$$

 $m{t}$ 転置写像と自然なペアリング A を $m \times n$ 型行列とし、 $m{\phi} \in {}^t\mathbb{R}^m$, $m{v} \in \mathbb{R}^n$ に対して、

$$\langle f_A^*(\phi), \boldsymbol{v} \rangle = \langle \phi, f_A(\boldsymbol{v}) \rangle$$

証明

$$\langle f_A^*(\phi), \boldsymbol{v} \rangle = (\phi A)(\boldsymbol{v})$$

$$= \phi(A\boldsymbol{v})$$

$$= \phi(f_A(v))$$

$$= \langle \phi, f_A(\boldsymbol{v}) \rangle$$

より、目的の等式が得られる

 $oldsymbol{t}$ 転置写像と座標関数 A を $m \times n$ 型行列とし、 $y_1, \ldots, y_m \in {}^t\mathbb{R}^m$ を ${}^t\mathbb{R}^m$ 上の座標関数とするとき、

$$f_{\mathcal{A}}^*(y_i) = \sum_{j=1}^n a_{ij} x_j \quad (1 \leq i \leq m)$$

☎ 証明

行ベクトルとしての観点から見ると、 $y_i = {}^t \boldsymbol{e}_i$ として、

$$f_A^*(y_i) = f_A^*({}^toldsymbol{e}_i) = {}^toldsymbol{e}_iA = \left(a_{i1} \quad \cdots \quad a_{in}
ight)$$

これは双対基底 $x_j = {}^t \boldsymbol{e}_j$ を用いて、

$$f_A^*(y_i) = egin{pmatrix} a_{i1} & \cdots & a_{in} \end{pmatrix}$$
 $= \sum_{j=1}^n a_{ij}{}^t oldsymbol{e}_j$
 $= \sum_{j=1}^n a_{ij} x_j$

とも書ける

 $oldsymbol{\$}$ 転置写像の表現行列 A を m × n 型行列とするとき、基底 $\{y_1,\ldots y_m\},\,\{x_1,\ldots,x_n\}$ に関する f_A^* の表現行列は tA である

≥ 証明

[Todo 2: よくわからない]

表現行列は、基底 $\{y_i\}$ の各元が、写像を通してどのような線形結合で $\{x_j\}$ に写されるかを記述したものである

すなわち、写像 f_A^* の表現行列を求めることは、

$$f_A^*(y_i) = \sum_{j=1}^n a_{ij}x_j \quad (1 \leq i \leq m)$$

において、係数 a_{ij} を行列に並べることである

ここで、 f_A^* : ${}^t\mathbb{R}^m \to {}^t\mathbb{R}^n$ において、

- ullet 定義域の基底は $\{y_1,\ldots,y_m\}\subset {}^t\mathbb{R}^m$
- ullet 値域の基底は $\{x_1,\ldots,x_n\}\subset {}^t\mathbb{R}^n$

先ほど示した等式

$$f_A^*(y_i) = \sum_{j=1}^n a_{ij} x_j \quad (1 \leq i \leq m)$$

より、表現行列の第i列が、 $f_A^*(y_i)$ の係数ベクトル

$$\begin{pmatrix} a_{i1} & \cdots & a_{in} \end{pmatrix}$$

を転置して縦ベクトルにしたものになる

Zebra Notes

Туре	Number
todo	2
note	1