Lecture 5.1: Gram-Schmidt algorithm

Optimization and Computational Linear Algebra for Data Science

Purpose of the algorithm

The Gram-Schmidt process takes as

- Input: a *linearly independent* family (x_1, \ldots, x_k) of \mathbb{R}^n .
- Output: an orthonormal basis $(v_1, \ldots v_k)$ of $\operatorname{Span}(x_1, \ldots, x_k)$.

Consequence

Every subspace of \mathbb{R}^n admits an orthonormal basis.

Gram-Schmidt algorithm

The Gram-Schmidt process constructs v_1, v_2, \ldots, v_k in this order, such that for all $i \in \{1, \ldots, k\}$:

$$\mathcal{H}_i: egin{cases} (v_1,\ldots,v_i) ext{ is an orthonormal family} \ \operatorname{Span}(v_1,\ldots,v_i) = \operatorname{Span}(x_1,\ldots,x_i). \end{cases}$$

2) Construction of on

We take
$$\sigma_1 = \frac{\alpha_1}{||\alpha_1||}$$
: $||\sigma_1|| = \frac{||\alpha_1||}{||\alpha_1||} = 1$

- . (152) is orthonormal } H_1

Iterative construction of the v_i 's

Iterative construction of the v_i 's

Span
$$(v_1, v_2) = Span(x_1, x_2)$$
We constructed o_1 , v_2 as linear combination of x_1 and x_2 :
$$Span(v_1, v_2) \subset Span(x_1, x_2)$$
· dim $Span(v_1, v_2) = 2$ because (v_1, v_2) lin indep-
$$dim Span(x_1, x_2) = 2$$

$$Span(v_1, v_2) = Span(x_1, x_2)$$

Iterative construction of the v_i 's

More gonerally, assuming that we constructed or ... vi

verifying Hi, let's construct Titz (12,7inz) T2+-+(vi 2ins)

· Let: Di+n = 21-1 - Pspan(v, ... vi) (242)

- · We let vitz = Vitz | Span (vn, ..., vi)

(v2. vitz) is otherormal. Everise: chal it!

· Span (v1 ... Vita) = Span (21 ... 2ita)