تكليف اول طراحي الكوريتم

استاد: دكتر مالكي

۱) به ازای هر یک از دو ترکیب عبارت A و B که در جدول زیر ذکر شده مشخص کنید عبارت A از A از A بنسبت به عبارت A است یا خیر A و A دو عدد ثابت بزرگ تر از یک هستند. از هر سطر برای استدلال پاسخ خود را بیان کنید.

Α	В	O	O	Ω	ω	Θ
n ^k	C ⁿ					
√n	n ^{sin(n)}					
2 ⁿ	2 ^{n/2}					
$n^{lg(c)}$	c ^{lg(n)}					
lg(n!)	lg(n ⁿ)					

۲) هر یک از عبارات زیر را اثبات و یا با مثال نقض رد کنید.

- I. f(n) = O(g(n)) implies g(n) = O(f(n))
- II. $f(n) + g(n) = \Theta(\min(f(n), g(n)))$
- III. III. f(n) = O(g(n)) implies $g(n) = \Omega(f(n))$
- IV. $f(n) = \Theta(f(n/2))$
- ۳) توابع زیر را به ترتیب سرعت رشد از چپ به راست مرتب کنید. توجه داشته باشید که تقدم g1 نسبت به تابع g2 به معنای $g1=\Omega(g2)$ است. همچنین توابعی را که در یک دسته بندی از کلاس رشد قرار میگیرند را مشخص کنید.

۴) در طول این درس به دفعات از پیچیدگی زمانی الگوریتم ها صحبت میشود و سعی میشود تا الگوریتم هایی با پیچیدگی زمانی نه چندان بالا برای مسائل پیدا شود. تصویر زیر یک ارتباط کلی بین اندازه ورودی، پیچیدگی زمانی الگوریتم وزمان اجرای آن ارائه میکند. آن را تفسیر کنید و با توجه با آن بگویید چرا گاهان پیچیدگی زمانی هایی که قبلا کارساز بودند دیگر جوبگو نیستند؟

	п	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2^n	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long