$report_addition_Switalska_Kohut.rmd$

2023-12-08

3. EDA

3.2. Barplots

We can see that bar plots for different methods are very similar.

plot_bar(df_all, by = "method", by_position = "dodge")

Page 1

Page 2

```
df1[, categorical] <- lapply(df1[, categorical], as.factor)
plot_bar(df1[-21], by = "Class", by_position = "dodge")</pre>
```


Page 1

Page 2

```
df2[, categorical] <- lapply(df2[, categorical], as.factor)
plot_bar(df2[-21], by = "Class", by_position = "dodge")</pre>
```


Page 1

Page 2

```
df5[, categorical] <- lapply(df5[, categorical], as.factor)
plot_bar(df5[-21], by = "Class", by_position = "dodge")</pre>
```


Page 1

Page 2

3.3. Histograms

We can see that density plots for different methods are very similar. Only for Protime results are a bit different.

```
p7 <- ggplot(df_all, aes(x = Age, color = method)) +
  scale_fill_brewer(palette = "Set2") +
  geom_density(size = 1.1)
p8 <- ggplot(df_all, aes(x = Albumin, color = method)) +
  scale_fill_brewer(palette = "Set2") +
  geom_density(size = 1.1)
p9 <- ggplot(df_all, aes(x = AlkPhosphate, color = method)) +
  scale_fill_brewer(palette = "Set2") +
  geom_density(size = 1.1)
p10 <- ggplot(df_all, aes(x = Bilirubin, color = method)) +
  scale_fill_brewer(palette = "Set2") +
  geom_density(size = 1.1)
p11 <- ggplot(df_all, aes(x = Protime, color = method)) +</pre>
  scale_fill_brewer(palette = "Set2") +
  geom_density(size = 1.1)
p12 <- ggplot(df_all, aes(x = Sgot, color = method)) +
```

```
scale_fill_brewer(palette = "Set2") +
      geom_density(size = 1.1)
ggarrange(p7, p8, p9, p10, p11, p12, ncol = 2, nrow = 3)
                                                                                                                                                                                                                                   method
                                                                                               method
           0.03 -
                                                                                                                                              0.75 -
                                                                                                           bag tree
                                                                                                                                                                                                                                                bag tree
                                                                                                                                       density
0.50 -
  density
0.02 -
                                                                                                           knn
                                                                                                                                                                                                                                                knn
                                                                                                           mice
                                                                                                                                                                                                                                                mice
           0.00 -
                                                                                                                                               0.00
                                                                                                           omit
                                                                                                                                                                                                                                                omit
                                                                                                                                                                        3
                                 20
                                                 40
                                                                 60
                                                                                 80
                                                                                                                                                                                                   5
                                                                                                                                                                                                                6
                                                 Age
                                                                                                                                                                               Albumin
                                                                                              method
                                                                                                                                                                                                                                   method
                                                                                                                                               1.00 -
  density
0.005
                                                                                                                                       density
0.50 -
0.25 -
                                                                                                                                                                                                                                               bag tree
                                                                                                           bag tree
                                                                                                           knn
                                                                                                                                                                                                                                                knn
                                                                                                           mice
                                                                                                                                                                                                                                                mice
           0.000
                                                                                                                                               0.00 -
                                                                                                           omit
                                                                                                                                                                                                                                                omit
                                                           200
                                                                                                                                                                         2
                                                                                                                                                                                                      6
                                       100
                                                                               300
                                                                                                                                                                                                                     8
                                                                                                                                                          0
                                    AlkPhosphate
                                                                                                                                                                               Bilirubin
                                                                                                                                                                                                                                   method
                                                                                              method
                                                                                                                                               0.0100
                                                                                                                                       den sit of the second of the s
          0.015
                                                                                                           bag tree
                                                                                                                                                                                                                                                bag tree
   density
          0.010 -
                                                                                                           knn
                                                                                                                                                                                                                                                knn
          0.005
                                                                                                                                              0.0025
                                                                                                           mice
                                                                                                                                                                                                                                               mice
           0.000 -
                                                                                                                                               0.0000 -
                                                                                                           omit
                                                                                                                                                                                                                                                omit
                                                                                                                                                                              200
                                                                                                                                                                                              400
                           Ó
                                       25
                                                    50
                                                                  75
                                                                              100
                                                                                                                                                                                                               600
                                             Protime
                                                                                                                                                                                       Sgot
p13 <- ggplot(df_all, aes(x = Age, color = method)) +
      scale_fill_brewer(palette = "Set2") +
      geom_density(size = 1.1) +
      facet_grid(Class ~ .)
p14 <- ggplot(df_all, aes(x = Albumin, color = method)) +
      scale_fill_brewer(palette = "Set2") +
      geom_density(size = 1.1) +
      facet_grid(Class ~ .)
p15 <- ggplot(df_all, aes(x = AlkPhosphate, color = method)) +
      scale_fill_brewer(palette = "Set2") +
      geom_density(size = 1.1) +
      facet_grid(Class ~ .)
p16 <- ggplot(df_all, aes(x = Bilirubin, color = method)) +
      scale fill brewer(palette = "Set2") +
      geom_density(size = 1.1) +
      facet_grid(Class ~ .)
p17 <- ggplot(df_all, aes(x = Protime, color = method)) +
```

```
scale_fill_brewer(palette = "Set2") +
         geom_density(size = 1.1) +
         facet_grid(Class ~ .)
p18 <- ggplot(df_all, aes(x = Sgot, color = method)) +
         scale_fill_brewer(palette = "Set2") +
         geom_density(size = 1.1) +
         facet grid(Class ~ .)
ggarrange(p13, p14, p15, p16, p17, p18, ncol = 2, nrow = 3)
                                                                                                                                                                                                                                                                                                                                          method
                                                                                                                                         method
              0.03 -
0.02 -
0.01 -
0.00 -
                                                                                                                                                                                                               1.0 -
                                                                                                                                                                                                                                                                                                                  0
                                                                                                                  0
                                                                                                                                                            bag tree
                                                                                                                                                                                                     density
0.0 -
                                                                                                                                                                                                                                                                                                                                                             bag tree
    density
                                                                                                                                                             knn
                                                                                                                                                                                                                                                                                                                                                             knn
              0.03 -
0.02 -
                                                                                                                                                            mice
                                                                                                                                                                                                                                                                                                                                                             mice
                                                                                                                                                                                                                0.5 -
                                                                                                                                                                                                              0.0
                0.01 -
                0.00 -
                                                                                                                                                                                                                                                                                                                                                             omit
                                                                                                                                                            omit
                                             20
                                                                 40
                                                                                     60
                                                                                                        80
                                                                                                                                                                                                                                                                                 5
                                                                                                                                                                                                                                                                                                  6
                                                                Age
                                                                                                                                                                                                                                                      Albumin
                                                                                                                                         method
                                                                                                                                                                                                                                                                                                                                          method
               0.015 -
                                                                                                                                                                                                               1.0 -
                0.010 -
                                                                                                                  0
                                                                                                                                                                                                    density
0.0 -
                                                                                                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                                                                                                                             bag tree
                                                                                                                                                            bag tree
    density
0.005 -
0.015 -
0.010 -
                                                                                                                                                             knn
                                                                                                                                                                                                                                                                                                                                                             knn
              0.010 -
                                                                                                                                                            mice
                                                                                                                                                                                                                                                                                                                                                            mice
                                                                                                                                                                                                                0.5 -
                0.005 -
                                                                                                                                                                                                               0.0
                0.000
                                                                                                                                                            omit
                                                                                                                                                                                                                                                                                                                                                            omit
                                                                                                                                                                                                                                                                   4
                                                      100
                                                                             200
                                                                                                     300
                                                                                                                                                                                                                                                                                                        8
                                                                                                                                                                                                                             0
                                              AlkPhosphate
                                                                                                                                                                                                                                                      Bilirubin
                                                                                                                                                                                          0.009 - 0.006 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 
                                                                                                                                         method
                                                                                                                                                                                                                                                                                                                                          method
                                                                                                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                                                                                                                             bag tree
                                                                                                                                                             bag tree
    density
                                                                                                                                                             knn
                                                                                                                                                                                                                                                                                                                                                             knn
                                                                                                                                                            mice
                                                                                                                                                                                                               0.006 - 0.003 -
                                                                                                                                                                                                                                                                                                                                                            mice
                                                                                                                                                             omit
                                                                                                                                                                                                                0.000 -
                                                                                                                                                                                                                                                                                                                                                             omit
                                                                                   75
                                                                   50
                                                                                                 100
                                                                                                                                                                                                                                                       200
                                                                                                                                                                                                                                                                         400
                                                   25
                                                                                                                                                                                                                                                                                               600
                                   0
                                                         Protime
                                                                                                                                                                                                                                                                 Sgot
```

3.4. Q-Q plot

We can see that Q-Q plots for different methods are very similar. Only for Protime results are a bit different. plot_qq(df_all, by = "method")

3.5. Boxplots

We can see that bar plots for different methods are very similar.

plot_boxplot(df_all, by = "method")

plot_boxplot(df1, by = "Class")

plot_boxplot(df2, by = "Class")

plot_boxplot(df5, by = "Class")

3.6. Correlation

We can see that correlation matrices for different methods are very similar. We also added a matrix for initial data with omitting objects with missing values.

```
df_omit <- na.omit(df)
cor_matrix1 <- cor(df_omit[, sapply(df_omit, is.numeric)], method = "pearson")
cor_matrix2 <- cor(df2[, sapply(df2, is.numeric)], method = "pearson")
cor_matrix3 <- cor(df5[, sapply(df5, is.numeric)], method = "pearson")

corrplot(cor_matrix1, tl.col = "black", addCoef.col = 1, number.cex = 0.9)</pre>
```


corrplot(cor_matrix2, tl.col = "black", addCoef.col = 1, number.cex = 0.9)

corrplot(cor_matrix3, tl.col = "black", addCoef.col = 1, number.cex = 0.9)

4. Classification

4.6. Logistic regression (LR)

We can see that summary for different methods are similar.

```
summary(model.logit1)
```

```
##
## Call:
### glm(formula = Class ~ . - Class, family = binomial(link = "logit"),
##
       data = train.balanced1)
##
## Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                                   0.98963
                  -2.030e+01
                               1.561e+03
                                          -0.013
## Age
                    1.152e-01
                               4.866e-02
                                            2.367
                                                   0.01794 *
## Sex
                    2.046e+01
                               1.561e+03
                                            0.013
                                                   0.98954
## Steroid
                    3.580e+00
                               1.369e+00
                                            2.615
                                                   0.00892 **
## Antivirals
                  -9.730e-01
                               1.688e+00
                                           -0.577
                                                   0.56426
                                                   0.28895
## Fatigue
                    1.686e+00
                               1.590e+00
                                            1.060
## Malaise
                    1.142e+00
                               1.154e+00
                                            0.989
                                                   0.32244
## Anorexia
                  -3.738e+00
                               1.182e+00
                                           -3.163
                                                   0.00156 **
## LiverBig
                  -1.809e+00
                               1.596e+00
                                          -1.134
                                                   0.25684
## LiverFirm
                  -5.856e-01
                               1.114e+00
                                          -0.526
                                                   0.59918
## SpleenPalpable 3.086e-01
                              1.094e+00
                                           0.282
                                                   0.77779
```

```
## Spiders
                  2.605e+00 1.153e+00
                                        2.259 0.02388 *
## Ascites
                                        0.430 0.66697
                  7.618e-01 1.770e+00
## Varices
                 -4.583e-01 1.534e+00 -0.299 0.76509
## Bilirubin
                  1.254e+00 4.536e-01
                                        2.764
                                               0.00571 **
## AlkPhosphate
                 -2.814e-03
                            7.666e-03
                                       -0.367
                                               0.71360
## Sgot
                 -2.227e-03 6.193e-03 -0.360
                                               0.71914
## Albumin
                 -2.050e+00
                            1.123e+00 -1.826
                                               0.06784 .
## Protime
                 -8.527e-02 3.647e-02 -2.338
                                               0.01940 *
## Histology
                  1.289e+00 9.392e-01
                                        1.372 0.17003
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 257.851 on 185 degrees of freedom
## Residual deviance: 68.755 on 166 degrees of freedom
## AIC: 108.76
##
## Number of Fisher Scoring iterations: 17
summary(model.logit2)
##
## Call:
### glm(formula = Class ~ . - Class, family = binomial(link = "logit"),
      data = train.balanced2)
##
## Coefficients:
##
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                            1.684e+03 -0.014 0.98854
                 -2.419e+01
                                        2.086 0.03700 *
## Age
                  8.595e-02 4.121e-02
## Sex
                  1.902e+01
                            1.684e+03
                                        0.011
                                               0.99099
## Steroid
                  2.484e+00 1.067e+00
                                        2.328
                                              0.01991 *
                 -7.505e-01
                            1.333e+00 -0.563 0.57341
## Antivirals
## Fatigue
                 3.549e-01 1.289e+00
                                       0.275
                                              0.78310
## Malaise
                 1.064e+00 1.082e+00
                                        0.983
                                               0.32570
## Anorexia
                 -2.753e+00 1.000e+00 -2.753
                                               0.00591 **
## LiverBig
                 -1.894e+00 1.127e+00 -1.680
                                               0.09286 .
## LiverFirm
                  3.556e-01 9.451e-01
                                        0.376 0.70678
## SpleenPalpable 9.053e-01 1.033e+00
                                        0.876 0.38087
## Spiders
                  1.112e+00 9.134e-01
                                        1.217 0.22363
## Ascites
                  2.711e+00 1.330e+00
                                        2.038 0.04156 *
## Varices
                 -5.952e-02 1.166e+00 -0.051 0.95928
## Bilirubin
                 1.131e+00 4.387e-01
                                        2.578 0.00995 **
## AlkPhosphate
                  9.912e-03
                            7.006e-03
                                        1.415
                                               0.15713
## Sgot
                 -1.912e-04
                            4.243e-03 -0.045
                                              0.96406
## Albumin
                 -5.053e-01
                            8.137e-01
                                       -0.621
                                               0.53456
## Protime
                 -5.367e-02 2.320e-02 -2.313
                                               0.02073 *
## Histology
                 -3.479e-02 7.806e-01 -0.045 0.96445
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 257.851 on 185 degrees of freedom
```

```
## Residual deviance: 79.775 on 166 degrees of freedom
## ATC: 119.77
##
## Number of Fisher Scoring iterations: 17
summary(model.logit3)
##
## Call:
### glm(formula = Class ~ . - Class, family = binomial(link = "logit"),
##
      data = train.balanced3)
##
## Coefficients:
##
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                 -1.857e+01 1.560e+03 -0.012
                                                0.9905
## Age
                 4.959e-02 4.608e-02
                                       1.076
                                                0.2819
## Sex
                 1.911e+01 1.560e+03 0.012
                                               0.9902
## Steroid
                 1.585e+00 1.117e+00
                                       1.419
                                                0.1558
## Antivirals
                 1.857e+00 1.429e+00
                                       1.299
                                               0.1939
## Fatigue
                 1.431e+00 1.684e+00 0.850 0.3955
## Malaise
                 1.811e+00 1.115e+00 1.624
                                              0.1043
## Anorexia
                -3.516e+00 1.409e+00 -2.496
                                                0.0125 *
## LiverBig
                 6.857e-01 1.247e+00 0.550
                                               0.5822
## LiverFirm
                 -1.942e+00 1.583e+00 -1.227
                                                0.2198
## SpleenPalpable 9.144e-01 1.103e+00 0.829
                                                0.4069
## Spiders
                  1.827e+00 1.001e+00
                                       1.825
                                                0.0681 .
                                       1.584
## Ascites
                 2.102e+00 1.327e+00
                                               0.1131
## Varices
                 4.188e-01 1.241e+00 0.337
                                               0.7358
## Bilirubin
                1.418e+00 5.844e-01
                                      2.427
                                                0.0152 *
## AlkPhosphate
                -6.290e-03 9.502e-03 -0.662
                                                0.5080
## Sgot
                 6.720e-03 4.844e-03
                                                0.1653
                                       1.387
## Albumin
                 -2.696e+00 1.082e+00 -2.491
                                                0.0127 *
## Protime
                 1.468e-02 2.790e-02 0.526
                                                0.5988
## Histology
                 -4.628e-01 9.276e-01 -0.499
                                                0.6178
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 257.851 on 185 degrees of freedom
## Residual deviance: 71.801 on 166 degrees of freedom
## AIC: 111.8
##
## Number of Fisher Scoring iterations: 17
summary(model.logit4)
##
## Call:
## glm(formula = Class ~ . - Class - Age - Anorexia - Bilirubin,
##
      family = binomial(link = "logit"), data = train.balanced1)
##
## Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
                 -1.397e+01 1.805e+03 -0.008
## (Intercept)
                                               0.9938
```

```
## Sex
                  1.865e+01 1.805e+03 0.010
                                                0.9918
## Steroid
                1.425e+00 7.365e-01
                                        1.935
                                                0.0530 .
                                                0.9684
## Antivirals
                4.030e-02 1.017e+00
                                        0.040
                 2.026e+00 1.291e+00
## Fatigue
                                        1.569
                                                0.1166
## Malaise
                  8.756e-01 8.106e-01
                                        1.080
                                                0.2801
## LiverBig
                 -7.743e-01 9.587e-01 -0.808
                                               0.4193
## LiverFirm
                 -6.358e-01 7.415e-01 -0.857
                                                0.3912
## SpleenPalpable 1.275e+00 8.195e-01
                                        1.555
                                                0.1199
## Spiders
                 1.076e+00 6.875e-01
                                        1.565
                                                0.1175
## Ascites
                 1.146e+00 1.118e+00
                                       1.026
                                                0.3050
## Varices
                 -4.592e-01
                            1.070e+00 -0.429
                                                0.6678
## AlkPhosphate
                 4.040e-04
                            5.868e-03
                                       0.069
                                                0.9451
                 -2.156e-03 3.223e-03 -0.669
                                                0.5035
## Sgot
## Albumin
                 -1.669e+00 7.459e-01
                                      -2.238
                                                0.0253 *
## Protime
                                                0.0346 *
                 -4.044e-02 1.913e-02 -2.114
## Histology
                 9.870e-03 7.066e-01
                                        0.014
                                                0.9889
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 257.85 on 185 degrees of freedom
##
## Residual deviance: 101.14 on 169 degrees of freedom
## AIC: 135.14
##
## Number of Fisher Scoring iterations: 17
summary(model.logit5)
##
## Call:
  glm(formula = Class ~ . - Class - Age - Anorexia - Bilirubin,
      family = binomial(link = "logit"), data = train.balanced2)
##
## Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
                 -1.357e+01 1.738e+03 -0.008 0.99377
## (Intercept)
## Sex
                  1.871e+01
                            1.738e+03
                                        0.011 0.99141
## Steroid
                 1.182e+00 7.307e-01
                                        1.618 0.10575
## Antivirals
                 -5.719e-01 1.105e+00 -0.518 0.60464
## Fatigue
                 9.768e-01 1.124e+00
                                        0.869 0.38473
## Malaise
                  8.048e-01 8.142e-01
                                        0.988 0.32294
## LiverBig
                 -1.136e+00 8.647e-01 -1.314 0.18898
## LiverFirm
                 4.764e-01 7.315e-01
                                       0.651 0.51491
## SpleenPalpable 9.117e-01 8.014e-01
                                        1.138 0.25524
## Spiders
                 6.444e-01 6.896e-01
                                        0.934 0.35006
## Ascites
                 1.438e+00 1.063e+00
                                       1.353 0.17616
## Varices
                 -5.385e-01 9.528e-01 -0.565
                                              0.57192
## AlkPhosphate
                 5.640e-03 5.762e-03
                                       0.979
                                               0.32766
## Sgot
                 -1.116e-03 3.206e-03 -0.348
                                               0.72768
## Albumin
                                      -2.037
                 -1.430e+00 7.018e-01
                                               0.04161 *
## Protime
                 -5.708e-02 1.942e-02 -2.939
                                               0.00329 **
## Histology
                 -6.452e-01 6.428e-01 -1.004 0.31546
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 257.85 on 185 degrees of freedom
## Residual deviance: 102.09 on 169 degrees of freedom
## AIC: 136.09
## Number of Fisher Scoring iterations: 17
summary(model.logit6)
##
## Call:
## glm(formula = Class ~ . - Class - Age - Anorexia - Bilirubin,
      family = binomial(link = "logit"), data = train.balanced3)
##
## Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
                 -1.015e+01 1.839e+03 -0.006 0.99560
## (Intercept)
## Sex
                  1.777e+01 1.839e+03 0.010 0.99229
## Steroid
                  8.657e-01 8.475e-01
                                        1.022 0.30699
## Antivirals
                 9.319e-01 1.135e+00
                                        0.821
                                               0.41148
## Fatigue
                  1.079e+00 1.445e+00
                                        0.747 0.45496
## Malaise
                 1.376e+00 9.495e-01
                                        1.449 0.14725
## LiverBig
                 6.535e-01 9.561e-01
                                        0.684 0.49428
## LiverFirm
                 -5.168e-01 9.734e-01 -0.531 0.59543
## SpleenPalpable 1.808e+00 7.930e-01 2.279 0.02264 *
## Spiders
                 1.222e+00 7.889e-01
                                       1.549 0.12150
## Ascites
                 9.997e-01 1.015e+00 0.985 0.32458
## Varices
                 5.655e-01 1.037e+00
                                       0.545 0.58548
## AlkPhosphate -1.740e-02 8.130e-03 -2.140 0.03235 *
## Sgot
                 4.508e-03 3.689e-03
                                       1.222 0.22176
## Albumin
                 -2.464e+00 7.798e-01 -3.159 0.00158 **
## Protime
                 -2.208e-02 1.816e-02 -1.216 0.22399
## Histology
                 -7.392e-01 7.447e-01 -0.993 0.32090
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 257.851 on 185 degrees of freedom
## Residual deviance: 88.159 on 169 degrees of freedom
## AIC: 122.16
##
## Number of Fisher Scoring iterations: 17
summary(model.logit7)
##
## glm(formula = Class ~ . - Class - Age - Steroid - AlkPhosphate -
##
      Sgot, family = binomial(link = "logit"), data = train.balanced1)
##
## Coefficients:
##
                   Estimate Std. Error z value Pr(>|z|)
```

```
## (Intercept)
                  -13.75786 1709.38618 -0.008 0.993578
## Sex
                   18.83603 1709.38375 0.011 0.991208
                                         0.110 0.912773
## Antivirals
                    0.12920
                               1.17947
## Fatigue
                    1.76994
                               1.24643
                                        1.420 0.155607
## Malaise
                    1.95626
                               0.81782
                                        2.392 0.016755 *
## Anorexia
                   -2.78879
                               0.83408 -3.344 0.000827 ***
## LiverBig
                   -0.75707
                            1.13804 -0.665 0.505896
## LiverFirm
                   -1.28415
                               0.88930 -1.444 0.148738
## SpleenPalpable
                    1.39971
                               0.86055
                                        1.627 0.103837
## Spiders
                   1.62689
                               0.82982
                                        1.961 0.049933 *
## Ascites
                    0.19876
                             1.25332
                                       0.159 0.873993
## Varices
                   -1.27272
                               1.10776 -1.149 0.250594
## Bilirubin
                    0.82404
                               0.31897
                                        2.583 0.009782 **
                   -1.84133
## Albumin
                               0.82090 -2.243 0.024893 *
## Protime
                   -0.03951
                               0.02197 -1.798 0.072149 .
## Histology
                    0.30671
                               0.77655
                                         0.395 0.692874
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 257.851 on 185 degrees of freedom
## Residual deviance: 84.748 on 170 degrees of freedom
## AIC: 116.75
##
## Number of Fisher Scoring iterations: 17
summary(model.logit8)
##
## Call:
## glm(formula = Class ~ . - Class - Age - Steroid - AlkPhosphate -
      Sgot, family = binomial(link = "logit"), data = train.balanced2)
##
## Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
                  -13.18976 1746.02601 -0.008 0.99397
## (Intercept)
## Sex
                   18.34547 1746.02399
                                        0.011 0.99162
## Antivirals
                   -0.19893
                               1.11282 -0.179 0.85813
## Fatigue
                    0.43351
                               1.02379
                                        0.423 0.67198
## Malaise
                    1.95153
                               0.82374
                                         2.369 0.01783 *
## Anorexia
                   -2.25367
                               0.81783 -2.756 0.00586 **
## LiverBig
                   -1.29737
                               0.94044 -1.380 0.16773
## LiverFirm
                    0.32007
                               0.77771
                                        0.412 0.68067
## SpleenPalpable
                    1.41388
                               0.80998
                                         1.746 0.08089 .
## Spiders
                    0.69000
                               0.78797
                                         0.876 0.38121
## Ascites
                    0.71461
                              1.05508
                                        0.677 0.49821
                               0.89232 -1.235 0.21698
## Varices
                   -1.10167
## Bilirubin
                    0.87276
                               0.34418
                                        2.536
                                               0.01122 *
## Albumin
                               0.71813 -2.048
                                               0.04059 *
                   -1.47049
## Protime
                   -0.04765
                               0.01868 -2.550 0.01076 *
                   -0.52041
                               0.68098 -0.764 0.44474
## Histology
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## (Dispersion parameter for binomial family taken to be 1)
##
                                      degrees of freedom
##
      Null deviance: 257.851 on 185
## Residual deviance: 91.399 on 170
                                      degrees of freedom
## AIC: 123.4
##
## Number of Fisher Scoring iterations: 17
summary(model.logit9)
##
## Call:
## glm(formula = Class ~ . - Class - Age - Steroid - AlkPhosphate -
      Sgot, family = binomial(link = "logit"), data = train.balanced3)
##
## Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
                 -1.401e+01 1.580e+03 -0.009 0.99293
## (Intercept)
## Sex
                  1.889e+01
                            1.580e+03
                                        0.012
                                                0.99046
## Antivirals
                 1.402e+00 1.247e+00
                                        1.125
                                               0.26071
## Fatigue
                 1.065e+00 1.422e+00
                                         0.749 0.45388
## Malaise
                  2.389e+00 9.812e-01
                                         2.435
                                                0.01491 *
## Anorexia
                 -2.497e+00 9.274e-01 -2.693 0.00708 **
## LiverBig
                  6.493e-01 1.094e+00
                                        0.594 0.55272
## LiverFirm
                 -1.461e+00 1.096e+00 -1.332 0.18273
## SpleenPalpable 1.510e+00 9.491e-01
                                         1.591 0.11152
## Spiders
                 1.319e+00 8.945e-01
                                        1.474 0.14042
## Ascites
                 1.124e+00 1.053e+00
                                        1.067 0.28580
## Varices
                 -1.307e+00 9.719e-01 -1.345 0.17877
## Bilirubin
                  1.296e+00 4.412e-01
                                         2.938
                                                0.00330 **
## Albumin
                 -2.712e+00 9.037e-01
                                       -3.001
                                               0.00269 **
## Protime
                 7.681e-03 1.903e-02
                                        0.404
                                                0.68648
## Histology
                 -1.059e+00 7.851e-01 -1.349 0.17743
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 257.851 on 185
                                      degrees of freedom
## Residual deviance: 78.127
                              on 170
                                      degrees of freedom
## AIC: 110.13
## Number of Fisher Scoring iterations: 17
We can see confusion matrices for all models. The results are pretty similar.
confusionMatrix(table(pred.labels1, real.labels), positive = "1")
## Confusion Matrix and Statistics
##
##
              real.labels
## pred.labels1 0 1
##
             0 28 3
##
             1 2 5
##
##
                 Accuracy : 0.8684
```

```
95% CI : (0.7191, 0.9559)
##
##
       No Information Rate: 0.7895
       P-Value [Acc > NIR] : 0.1596
##
##
##
                     Kappa: 0.5852
##
   Mcnemar's Test P-Value: 1.0000
##
##
               Sensitivity: 0.6250
               Specificity: 0.9333
##
##
            Pos Pred Value: 0.7143
            Neg Pred Value: 0.9032
##
                Prevalence: 0.2105
##
##
            Detection Rate: 0.1316
##
      Detection Prevalence: 0.1842
##
         Balanced Accuracy: 0.7792
##
##
          'Positive' Class: 1
##
confusionMatrix(table(pred.labels2, real.labels), positive = "1")
## Confusion Matrix and Statistics
##
               real.labels
  pred.labels2 0 1
##
              0 28 2
##
##
              1 2 6
##
##
                  Accuracy : 0.8947
                    95% CI: (0.752, 0.9706)
##
##
       No Information Rate: 0.7895
##
       P-Value [Acc > NIR] : 0.07462
##
##
                     Kappa: 0.6833
##
   Mcnemar's Test P-Value : 1.00000
##
##
##
               Sensitivity: 0.7500
##
               Specificity: 0.9333
            Pos Pred Value: 0.7500
##
            Neg Pred Value: 0.9333
##
##
                Prevalence: 0.2105
            Detection Rate: 0.1579
##
      Detection Prevalence: 0.2105
##
##
         Balanced Accuracy: 0.8417
##
##
          'Positive' Class : 1
##
confusionMatrix(table(pred.labels3, real.labels), positive = "1")
## Confusion Matrix and Statistics
##
##
               real.labels
```

```
## pred.labels3 0 1
##
              0 28 2
              1 2 6
##
##
##
                  Accuracy: 0.8947
##
                    95% CI: (0.752, 0.9706)
##
       No Information Rate: 0.7895
       P-Value [Acc > NIR] : 0.07462
##
##
##
                     Kappa: 0.6833
##
    Mcnemar's Test P-Value : 1.00000
##
##
##
               Sensitivity: 0.7500
##
               Specificity: 0.9333
##
            Pos Pred Value: 0.7500
##
            Neg Pred Value: 0.9333
                Prevalence: 0.2105
##
##
            Detection Rate: 0.1579
      Detection Prevalence: 0.2105
##
##
         Balanced Accuracy: 0.8417
##
##
          'Positive' Class : 1
confusionMatrix(table(pred.labels4, real.labels), positive = "1")
## Confusion Matrix and Statistics
##
               real.labels
## pred.labels4 0 1
              0 29 2
##
##
              1 1 6
##
##
                  Accuracy: 0.9211
##
                    95% CI: (0.7862, 0.9834)
       No Information Rate: 0.7895
##
##
       P-Value [Acc > NIR] : 0.02776
##
##
                     Kappa : 0.7511
##
    Mcnemar's Test P-Value : 1.00000
##
##
               Sensitivity: 0.7500
##
               Specificity: 0.9667
##
##
            Pos Pred Value: 0.8571
##
            Neg Pred Value: 0.9355
##
                Prevalence: 0.2105
##
            Detection Rate: 0.1579
##
      Detection Prevalence: 0.1842
##
         Balanced Accuracy: 0.8583
##
##
          'Positive' Class : 1
##
```

```
confusionMatrix(table(pred.labels5, real.labels), positive = "1")
## Confusion Matrix and Statistics
##
               real.labels
##
## pred.labels5 0 1
##
              0 28 2
              1 2 6
##
##
                  Accuracy : 0.8947
##
##
                    95% CI: (0.752, 0.9706)
##
       No Information Rate: 0.7895
##
       P-Value [Acc > NIR] : 0.07462
##
##
                     Kappa: 0.6833
##
##
    Mcnemar's Test P-Value : 1.00000
##
##
               Sensitivity: 0.7500
##
               Specificity: 0.9333
            Pos Pred Value: 0.7500
##
##
            Neg Pred Value: 0.9333
##
                Prevalence: 0.2105
##
            Detection Rate: 0.1579
##
      Detection Prevalence: 0.2105
##
         Balanced Accuracy: 0.8417
##
##
          'Positive' Class: 1
confusionMatrix(table(pred.labels6, real.labels), positive = "1")
## Confusion Matrix and Statistics
##
##
               real.labels
   pred.labels6 0 1
              0 28 2
##
              1 2 6
##
##
##
                  Accuracy : 0.8947
##
                    95% CI : (0.752, 0.9706)
       No Information Rate : 0.7895
##
       P-Value [Acc > NIR] : 0.07462
##
##
##
                     Kappa: 0.6833
##
##
    Mcnemar's Test P-Value : 1.00000
##
##
               Sensitivity: 0.7500
               Specificity: 0.9333
##
##
            Pos Pred Value : 0.7500
##
            Neg Pred Value: 0.9333
##
                Prevalence: 0.2105
```

Detection Rate: 0.1579

##

```
##
      Detection Prevalence: 0.2105
##
         Balanced Accuracy: 0.8417
##
##
          'Positive' Class : 1
confusionMatrix(table(pred.labels7, real.labels), positive = "1")
## Confusion Matrix and Statistics
##
##
               real.labels
## pred.labels7 0 1
##
              0 27 2
              1 3 6
##
##
##
                  Accuracy : 0.8684
##
                    95% CI: (0.7191, 0.9559)
##
       No Information Rate: 0.7895
##
       P-Value [Acc > NIR] : 0.1596
##
##
                     Kappa: 0.6215
##
##
    Mcnemar's Test P-Value: 1.0000
##
##
               Sensitivity: 0.7500
##
               Specificity: 0.9000
            Pos Pred Value: 0.6667
##
##
            Neg Pred Value: 0.9310
##
                Prevalence: 0.2105
##
            Detection Rate: 0.1579
##
      Detection Prevalence: 0.2368
##
         Balanced Accuracy: 0.8250
##
##
          'Positive' Class: 1
##
confusionMatrix(table(pred.labels8, real.labels), positive = "1")
## Confusion Matrix and Statistics
##
##
               real.labels
## pred.labels8 0 1
              0 27 2
##
              1 3 6
##
##
##
                  Accuracy : 0.8684
##
                    95% CI: (0.7191, 0.9559)
##
       No Information Rate: 0.7895
       P-Value [Acc > NIR] : 0.1596
##
##
##
                     Kappa: 0.6215
##
   Mcnemar's Test P-Value: 1.0000
##
##
               Sensitivity: 0.7500
##
```

```
##
               Specificity: 0.9000
##
            Pos Pred Value: 0.6667
            Neg Pred Value: 0.9310
##
##
                Prevalence: 0.2105
##
            Detection Rate: 0.1579
##
      Detection Prevalence: 0.2368
##
         Balanced Accuracy: 0.8250
##
##
          'Positive' Class : 1
##
confusionMatrix(table(pred.labels9, real.labels), positive = "1")
## Confusion Matrix and Statistics
##
##
               real.labels
  pred.labels9
                0 1
##
              0 29 2
##
              1 1 6
##
##
                  Accuracy: 0.9211
                    95% CI: (0.7862, 0.9834)
##
##
       No Information Rate: 0.7895
##
       P-Value [Acc > NIR] : 0.02776
##
                     Kappa : 0.7511
##
##
##
    Mcnemar's Test P-Value : 1.00000
##
##
               Sensitivity: 0.7500
               Specificity: 0.9667
##
##
            Pos Pred Value: 0.8571
##
            Neg Pred Value: 0.9355
##
                Prevalence: 0.2105
##
            Detection Rate: 0.1579
##
      Detection Prevalence: 0.1842
##
         Balanced Accuracy: 0.8583
##
##
          'Positive' Class : 1
##
```

4.7. Random tree

We can see that full trees for different models and different datasets (for different imputation methods) are pretty different.

```
rpart.plot(full.tree1)
```


rpart.plot(full.tree2)

rpart.plot(full.tree3)

rpart.plot(full.tree4)

rpart.plot(full.tree5)

rpart.plot(full.tree6)

rpart.plot(full.tree7)

rpart.plot(full.tree8)

We can see plots and information about misclassification error.

plotcp(full.tree1)

printcp(full.tree1)

```
##
## Classification tree:
## rpart(formula = mod1, data = train1, control = rpart.control(cp = -1,
##
       minsplit = 5))
##
## Variables actually used in tree construction:
   [1] Age
                 Bilirubin Fatigue
                                     Protime
                                                          Sgot
##
## Root node error: 24/117 = 0.20513
##
## n= 117
##
            CP nsplit rel error xerror
##
## 1 0.333333
                    0
                        1.00000 1.00000 0.18199
## 2 0.166667
                        0.66667 0.95833 0.17911
## 3 0.125000
                    2
                        0.50000 0.79167 0.16622
## 4 0.083333
                        0.37500 0.75000 0.16261
                        0.29167 0.70833 0.15883
## 5 0.041667
                    4
## 6 0.020833
                    6
                        0.20833 0.75000 0.16261
## 7 0.000000
                        0.12500 0.79167 0.16622
                   10
## 8 -1.000000
                   12
                        0.12500 0.79167 0.16622
plotcp(full.tree2)
```


printcp(full.tree2)

```
##
## Classification tree:
## rpart(formula = mod1, data = train2, control = rpart.control(cp = -1,
##
       minsplit = 5))
##
## Variables actually used in tree construction:
## [1] Age
                          Bilirubin Fatigue
                 Albumin
                                              Malaise
                                                         Protime
                                                                   Sex
##
## Root node error: 24/117 = 0.20513
##
## n= 117
##
            CP nsplit rel error xerror
##
## 1 0.500000
                    0
                          1.000 1.00000 0.18199
## 2 0.125000
                          0.500 0.66667 0.15485
## 3 0.083333
                    2
                          0.375 0.66667 0.15485
## 4 0.000000
                          0.125 0.75000 0.16261
                    5
## 5 -1.000000
                          0.125 0.75000 0.16261
plotcp(full.tree3)
```


printcp(full.tree3)

```
##
## Classification tree:
## rpart(formula = mod1, data = train3, control = rpart.control(cp = -1,
##
       minsplit = 5))
##
  Variables actually used in tree construction:
                                  AlkPhosphate Ascites
   [1] Age
##
                     Albumin
                                                             Bilirubin
   [6] Malaise
                     Protime
##
                                  Sgot
                                               Steroid
                                                             Varices
##
## Root node error: 24/117 = 0.20513
##
## n= 117
##
##
            CP nsplit rel error xerror
## 1 0.166667
                    0
                        1.00000 1.00000 0.18199
## 2 0.125000
                    2
                        0.66667 1.08333 0.18737
## 3 0.083333
                        0.54167 1.04167 0.18474
                        0.45833 1.00000 0.18199
## 4 0.055556
                    4
## 5 0.041667
                    7
                        0.29167 1.00000 0.18199
## 6 0.000000
                        0.25000 0.91667 0.17610
                    8
## 7 -1.000000
                   13
                        0.25000 0.91667 0.17610
plotcp(full.tree4)
```


printcp(full.tree4)

```
##
## Classification tree:
## rpart(formula = mod1, data = train0, control = rpart.control(cp = -1,
##
       minsplit = 5))
##
## Variables actually used in tree construction:
## [1] Age
                 Albumin
                                     Bilirubin Protime
                                                                    Steroid
                          Ascites
                                                         Sgot
##
## Root node error: 24/117 = 0.20513
##
## n= 117
##
            CP nsplit rel error xerror
##
                        1.00000 1.00000 0.18199
## 1 0.291667
                    0
## 2 0.083333
                        0.70833 1.20833 0.19460
## 3 0.041667
                    4
                        0.45833 0.95833 0.17911
## 4 0.000000
                        0.25000 1.08333 0.18737
                    9
                        0.25000 1.08333 0.18737
## 5 -1.000000
                   15
plotcp(full.tree5)
```


printcp(full.tree5)

```
##
## Classification tree:
## rpart(formula = mod2, data = train1, control = rpart.control(cp = -1,
##
       minsplit = 5))
##
## Variables actually used in tree construction:
  [1] Albumin
                 Anorexia Bilirubin Histology LiverFirm Protime
                                                                    Sex
##
## Root node error: 24/117 = 0.20513
##
## n= 117
##
            CP nsplit rel error xerror
##
## 1 0.333333
                    0
                        1.00000 1.00000 0.18199
## 2 0.166667
                        0.66667 1.04167 0.18474
## 3 0.083333
                    2
                        0.50000 0.83333 0.16967
## 4 0.041667
                        0.33333 0.75000 0.16261
                        0.25000 0.83333 0.16967
## 5 0.010417
                    6
## 6 0.000000
                   10
                        0.20833 0.83333 0.16967
## 7 -1.000000
                   12
                        0.20833 0.83333 0.16967
plotcp(full.tree6)
```


printcp(full.tree6)

```
##
## Classification tree:
## rpart(formula = mod2, data = train2, control = rpart.control(cp = -1,
##
       minsplit = 5))
##
## Variables actually used in tree construction:
## [1] Albumin Anorexia Bilirubin LiverBig Protime
## Root node error: 24/117 = 0.20513
##
## n= 117
##
            CP nsplit rel error xerror
##
## 1 0.500000
                    0
                           1.00 1.00000 0.18199
## 2 0.083333
                           0.50 0.66667 0.15485
## 3 0.000000
                    4
                           0.25 0.79167 0.16622
## 4 -1.000000
                           0.25 0.79167 0.16622
                   10
plotcp(full.tree7)
```


printcp(full.tree7)

```
##
## Classification tree:
## rpart(formula = mod2, data = train3, control = rpart.control(cp = -1,
##
       minsplit = 5))
##
## Variables actually used in tree construction:
  [1] Albumin
                      Ascites
                                     Bilirubin
                                                     Histology
                                                                    Malaise
## [6] Protime
                      SpleenPalpable Varices
## Root node error: 24/117 = 0.20513
##
## n= 117
##
##
            CP nsplit rel error xerror
                        1.00000 1.0000 0.18199
## 1 0.166667
                    0
## 2 0.125000
                    2
                        0.66667 1.2083 0.19460
## 3 0.083333
                    3
                        0.54167 1.2083 0.19460
                        0.45833 1.1667 0.19230
## 4 0.062500
                    4
## 5 0.041667
                    6
                        0.33333 1.1250 0.18989
## 6 0.020833
                        0.25000 1.1667 0.19230
                    8
## 7 0.000000
                   10
                        0.20833 1.1667 0.19230
## 8 -1.000000
                   13
                        0.20833 1.1667 0.19230
```

plotcp(full.tree8)

printcp(full.tree8)

```
##
## Classification tree:
## rpart(formula = mod2, data = train0, control = rpart.control(cp = -1,
##
       minsplit = 5)
##
## Variables actually used in tree construction:
## [1] Albumin
                 Anorexia Ascites
                                    Bilirubin LiverBig Malaise
                                                                   Protime
## [8] Spiders
##
## Root node error: 24/117 = 0.20513
##
## n= 117
##
##
            CP nsplit rel error xerror
                                           xstd
## 1 0.291667
                    0
                        1.00000 1.00000 0.18199
## 2 0.062500
                    1
                        0.70833 0.83333 0.16967
## 3
     0.041667
                        0.37500 0.83333 0.16967
                    6
                        0.25000 0.95833 0.17911
## 4 0.000000
                    9
## 5 -1.000000
                        0.25000 0.95833 0.17911
                   16
```

We can see basic information about all pruned trees. There are both similar and different trees.

```
print(full.tree1.pruned)
## n= 117
##
## node), split, n, loss, yval, (yprob)
##
         * denotes terminal node
##
## 1) root 117 24 0 (0.79487179 0.20512821)
     2) Protime>=46.5 89 6 0 (0.93258427 0.06741573) *
     3) Protime< 46.5 28 10 1 (0.35714286 0.64285714)
##
##
       6) Age< 32.5 4 0 0 (1.00000000 0.00000000) *
       7) Age>=32.5 24 6 1 (0.25000000 0.75000000) *
summary(full.tree1.pruned)
## Call:
## rpart(formula = mod1, data = train1, control = rpart.control(cp = -1,
##
       minsplit = 5)
##
    n = 117
##
##
            CP nsplit rel error
                                   xerror
## 1 0.3333333
                    0 1.0000000 1.0000000 0.1819881
                    1 0.6666667 0.9583333 0.1791116
## 2 0.1666667
## 3 0.1250000
                    2 0.5000000 0.7916667 0.1662209
##
## Variable importance
##
       Protime
                     Albumin
                                  Ascites
                                                    Age AlkPhosphate
                                                                        Bilirubin
##
             43
                                                     12
                                       14
##
        Varices
                    Anorexia
##
              3
##
## Node number 1: 117 observations,
                                       complexity param=0.3333333
    predicted class=0 expected loss=0.2051282 P(node) =1
##
##
       class counts:
                        93
                              24
##
      probabilities: 0.795 0.205
##
     left son=2 (89 obs) right son=3 (28 obs)
##
     Primary splits:
##
         Protime
                   < 46.5 to the right, improve=14.105690, (0 missing)
##
         Albumin
                   < 3.88 to the right, improve= 9.633249, (0 missing)
##
         Ascites
                   splits as LR,
                                        improve= 9.600905, (0 missing)
##
         Bilirubin < 1.65 to the left, improve= 6.304281, (0 missing)
                                        improve= 5.254887, (0 missing)
##
         Malaise
                   splits as LR,
##
     Surrogate splits:
##
         Albumin
                      < 3.45 to the right, agree=0.846, adj=0.357, (0 split)
##
         Ascites
                      splits as LR,
                                           agree=0.838, adj=0.321, (0 split)
##
                                           agree=0.778, adj=0.071, (0 split)
         Varices
                      splits as LR,
                      < 3.1 to the left, agree=0.778, adj=0.071, (0 split)
##
         Bilirubin
         AlkPhosphate < 159 to the left, agree=0.778, adj=0.071, (0 split)
##
##
## Node number 2: 89 observations
##
     predicted class=0 expected loss=0.06741573 P(node) =0.7606838
##
       class counts:
                        83
                               6
##
      probabilities: 0.933 0.067
##
```

```
## Node number 3: 28 observations,
                                    complexity param=0.1666667
##
     predicted class=1 expected loss=0.3571429 P(node) =0.2393162
       class counts:
##
                       10
                              18
##
      probabilities: 0.357 0.643
##
     left son=6 (4 obs) right son=7 (24 obs)
##
     Primary splits:
                   < 32.5 to the left, improve=3.857143, (0 missing)
##
         Age
                                        improve=3.457143, (0 missing)
##
        Histology splits as RL,
##
         Sex
                   splits as LR,
                                        improve=2.777143, (0 missing)
##
        Albumin
                  < 3.9 to the right, improve=2.777143, (0 missing)
##
         Anorexia splits as RL,
                                      improve=2.380952, (0 missing)
##
     Surrogate splits:
##
         Anorexia splits as RL,
                                       agree=0.893, adj=0.25, (0 split)
##
         Albumin < 3.9 to the right, agree=0.893, adj=0.25, (0 split)
##
## Node number 6: 4 observations
##
     predicted class=0 expected loss=0 P(node) =0.03418803
##
       class counts:
                        4
                              0
##
      probabilities: 1.000 0.000
##
## Node number 7: 24 observations
    predicted class=1 expected loss=0.25 P(node) =0.2051282
##
       class counts:
                        6
                              18
     probabilities: 0.250 0.750
print(full.tree2.pruned)
## n = 117
##
## node), split, n, loss, yval, (yprob)
##
        * denotes terminal node
##
##
   1) root 117 24 0 (0.79487179 0.20512821)
##
      2) Protime>=45 91 5 0 (0.94505495 0.05494505)
       4) Albumin>=2.65 89 3 0 (0.96629213 0.03370787) *
##
##
        5) Albumin< 2.65 2 0 1 (0.00000000 1.00000000) *
      3) Protime< 45 26 7 1 (0.26923077 0.73076923)
##
        6) Age< 32.5 3 0 0 (1.00000000 0.00000000) *
##
        7) Age>=32.5 23 4 1 (0.17391304 0.82608696)
##
##
        14) Sex=0 2 0 0 (1.00000000 0.00000000) *
         15) Sex=1 21 2 1 (0.09523810 0.90476190)
##
          30) Fatigue=0 2 0 0 (1.00000000 0.00000000) *
##
          31) Fatigue=1 19 0 1 (0.00000000 1.00000000) *
summary(full.tree2.pruned)
## rpart(formula = mod1, data = train2, control = rpart.control(cp = -1,
      minsplit = 5))
##
    n = 117
##
            CP nsplit rel error
                                    xerror
                  0 1.000 1.0000000 0.1819881
## 1 0.5000000
## 2 0.12500000
                     1
                          0.500 0.6666667 0.1548519
                     2
## 3 0.08333333
                          0.375 0.6666667 0.1548519
```

```
## 4 0.08300000
                     5
                           0.125 0.7500000 0.1626109
##
## Variable importance
##
        Protime
                                                Fatigue
                                                                               Sex
                     Albumin
                                       Age
                                                             Ascites
##
             41
                                         8
                                                                                 7
## AlkPhosphate
                   Bilirubin
##
##
## Node number 1: 117 observations,
                                        complexity param=0.5
     predicted class=0 expected loss=0.2051282 P(node) =1
##
##
       class counts:
                        93
                              24
##
      probabilities: 0.795 0.205
##
     left son=2 (91 obs) right son=3 (26 obs)
##
     Primary splits:
##
         Protime
                   < 45
                              to the right, improve=18.472530, (0 missing)
##
         Albumin
                   < 3.85
                              to the right, improve=11.775090, (0 missing)
##
         Ascites
                   splits as LR,
                                             improve= 9.600905, (0 missing)
##
         Bilirubin < 1.057866 to the left,
                                             improve= 5.553846, (0 missing)
##
                                             improve= 5.254887, (0 missing)
         Malaise
                   splits as LR,
##
     Surrogate splits:
##
         Albumin
                      < 3.618841 to the right, agree=0.838, adj=0.269, (0 split)
##
         Ascites
                                                agree=0.821, adj=0.192, (0 split)
                      splits as LR,
                                  to the left, agree=0.795, adj=0.077, (0 split)
##
                      < 3.35
         Bilirubin
         AlkPhosphate < 159
                                 to the left, agree=0.795, adj=0.077, (0 split)
##
##
                                       complexity param=0.08333333
## Node number 2: 91 observations,
     predicted class=0 expected loss=0.05494505 P(node) =0.7777778
##
                        86
##
       class counts:
##
      probabilities: 0.945 0.055
##
     left son=4 (89 obs) right son=5 (2 obs)
##
     Primary splits:
##
         Albumin
                   < 2.65
                              to the right, improve=3.6527970, (0 missing)
##
         Ascites
                   splits as
                                             improve=1.2598520, (0 missing)
##
                              to the right, improve=0.9956475, (0 missing)
         Protime
                   < 47.5
##
                   < 55
                              to the left, improve=0.9377289, (0 missing)
         Age
##
         Bilirubin < 1.65
                              to the left, improve=0.8401598, (0 missing)
##
## Node number 3: 26 observations,
                                       complexity param=0.125
     predicted class=1 expected loss=0.2692308 P(node) =0.2222222
##
##
                         7
                              19
       class counts:
##
      probabilities: 0.269 0.731
##
     left son=6 (3 obs) right son=7 (23 obs)
##
     Primary splits:
##
                                                improve=3.622074, (0 missing)
         Age
                      < 32.5
                                  to the left,
                                  to the right, improve=2.925214, (0 missing)
##
         AlkPhosphate < 157.5
                                                improve=2.314103, (0 missing)
##
         Sex
                      splits as
                                 LR,
##
         Fatigue
                      splits as
                                 LR,
                                                improve=2.314103, (0 missing)
##
                                  to the right, improve=2.314103, (0 missing)
         Albumin
                      < 3.95
##
## Node number 4: 89 observations
##
     predicted class=0 expected loss=0.03370787 P(node) =0.7606838
##
       class counts:
                        86
                                3
##
      probabilities: 0.966 0.034
##
```

```
## Node number 5: 2 observations
     predicted class=1 expected loss=0 P(node) =0.01709402
##
       class counts:
##
                         0
                               2
##
      probabilities: 0.000 1.000
##
## Node number 6: 3 observations
     predicted class=0 expected loss=0 P(node) =0.02564103
##
##
       class counts:
                         3
                               0
##
      probabilities: 1.000 0.000
##
## Node number 7: 23 observations,
                                      complexity param=0.08333333
     predicted class=1 expected loss=0.173913 P(node) =0.1965812
##
##
       class counts:
                         4
                              19
      probabilities: 0.174 0.826
##
##
     left son=14 (2 obs) right son=15 (21 obs)
##
     Primary splits:
##
                                                improve=2.989648, (0 missing)
         Sex
                      splits as LR,
##
         Fatigue
                      splits as
                                 LR,
                                               improve=2.989648, (0 missing)
##
                                               improve=2.164251, (0 missing)
         Malaise
                      splits as LR,
                                 to the right, improve=1.726343, (0 missing)
##
         AlkPhosphate < 159.5
##
         Bilirubin
                      < 1.057866 to the left, improve=1.305124, (0 missing)
##
     Surrogate splits:
##
         AlkPhosphate < 171
                                 to the right, agree=0.957, adj=0.5, (0 split)
##
## Node number 14: 2 observations
##
     predicted class=0 expected loss=0 P(node) =0.01709402
##
       class counts:
                         2
                               0
      probabilities: 1.000 0.000
##
##
## Node number 15: 21 observations,
                                       complexity param=0.08333333
##
     predicted class=1 expected loss=0.0952381 P(node) =0.1794872
##
       class counts:
                         2
##
      probabilities: 0.095 0.905
##
     left son=30 (2 obs) right son=31 (19 obs)
##
     Primary splits:
##
                                            improve=3.6190480, (0 missing)
         Fatigue
                   splits as LR,
##
         Bilirubin < 1.057866 to the left, improve=0.9523810, (0 missing)
##
                   < 49.5
                              to the left, improve=0.9523810, (0 missing)
         Sgot
##
         Malaise
                   splits as LR,
                                             improve=0.7619048, (0 missing)
##
         Spiders
                                             improve=0.7619048, (0 missing)
                   splits as LR,
##
## Node number 30: 2 observations
     predicted class=0 expected loss=0 P(node) =0.01709402
##
##
       class counts:
                         2
                               0
      probabilities: 1.000 0.000
##
##
## Node number 31: 19 observations
     predicted class=1 expected loss=0 P(node) =0.1623932
##
       class counts:
##
                         0
                              19
##
      probabilities: 0.000 1.000
print(full.tree3.pruned)
## n= 117
```

##

```
## node), split, n, loss, yval, (yprob)
##
         * denotes terminal node
##
   1) root 117 24 0 (0.79487179 0.20512821)
##
##
      2) Albumin>=3.85 70 2 0 (0.97142857 0.02857143) *
##
      3) Albumin< 3.85 47 22 0 (0.53191489 0.46808511)
        6) Ascites=0 33 11 0 (0.66666667 0.33333333)
##
         12) Protime>=35.5 24 5 0 (0.79166667 0.20833333) *
##
##
         13) Protime< 35.5 9 3 1 (0.33333333 0.66666667)
##
           26) Steroid=0 2 0 0 (1.00000000 0.00000000) *
##
           27) Steroid=1 7 1 1 (0.14285714 0.85714286) *
        7) Ascites=1 14 3 1 (0.21428571 0.78571429) *
summary(full.tree3.pruned)
## Call:
## rpart(formula = mod1, data = train3, control = rpart.control(cp = -1,
##
       minsplit = 5)
     n = 117
##
##
             CP nsplit rel error
                                   xerror
## 1 0.1666667
                     0 1.0000000 1.000000 0.1819881
## 2 0.12500000
                     2 0.6666667 1.083333 0.1873714
## 3 0.08333333
                     3 0.5416667 1.041667 0.1847395
                     4 0.4583333 1.000000 0.1819881
## 4 0.08300000
##
## Variable importance
##
        Albumin
                     Protime
                                  Ascites
                                             Bilirubin
                                                                Age AlkPhosphate
##
                                                                   8
             28
                          16
                                       16
                                                    15
                                                                                8
##
        Steroid
                   LiverFirm
                                     Sgot
##
              5
                           1
                                        1
##
## Node number 1: 117 observations,
                                       complexity param=0.1666667
     predicted class=0 expected loss=0.2051282 P(node) =1
##
##
       class counts:
                        93
                              24
##
     probabilities: 0.795 0.205
##
     left son=2 (70 obs) right son=3 (47 obs)
##
     Primary splits:
##
                  < 3.85 to the right, improve=10.863880, (0 missing)
         Albumin
                                         improve= 9.600905, (0 missing)
##
         Ascites
                   splits as LR,
                   < 44.5 to the right, improve= 8.835664, (0 missing)
##
##
         Bilirubin < 1.65 to the left, improve= 6.304281, (0 missing)
                                         improve= 5.254887, (0 missing)
##
         Malaise
                   splits as LR,
##
     Surrogate splits:
                      < 44.5 to the right, agree=0.761, adj=0.404, (0 split)
##
         Protime
##
         Bilirubin
                      < 1.35 to the left, agree=0.718, adj=0.298, (0 split)
##
         AlkPhosphate < 102.5 to the left, agree=0.718, adj=0.298, (0 split)
##
                                            agree=0.709, adj=0.277, (0 split)
         Ascites
                      splits as LR,
                      < 44.5 to the left, agree=0.701, adj=0.255, (0 split)
##
         Age
##
## Node number 2: 70 observations
##
     predicted class=0 expected loss=0.02857143 P(node) =0.5982906
##
       class counts:
                        68
##
      probabilities: 0.971 0.029
##
```

```
## Node number 3: 47 observations,
                                      complexity param=0.1666667
##
     predicted class=0 expected loss=0.4680851 P(node) =0.4017094
##
       class counts:
                        25
                              22
##
      probabilities: 0.532 0.468
##
     left son=6 (33 obs) right son=7 (14 obs)
##
     Primary splits:
##
         Ascites
                   splits as LR,
                                         improve=4.023303, (0 missing)
                   < 35.5 to the right, improve=3.855868, (0 missing)
##
         Protime
##
         Bilirubin < 3.7
                           to the left, improve=3.166160, (0 missing)
##
         Albumin
                  < 2.65 to the right, improve=3.166160, (0 missing)
##
         Malaise
                   splits as LR,
                                         improve=2.525134, (0 missing)
##
     Surrogate splits:
                   < 2.65 to the right, agree=0.809, adj=0.357, (0 split)
##
         Albumin
##
                           to the left, agree=0.766, adj=0.214, (0 split)
         Bilirubin < 3.7
##
                   < 19.5 to the right, agree=0.745, adj=0.143, (0 split)
         Sgot
##
##
  Node number 6: 33 observations,
                                      complexity param=0.125
     predicted class=0 expected loss=0.3333333 P(node) =0.2820513
##
##
       class counts:
                        22
                              11
##
      probabilities: 0.667 0.333
##
     left son=12 (24 obs) right son=13 (9 obs)
##
     Primary splits:
##
         Protime
                      < 35.5 to the right, improve=2.750000, (0 missing)
                      < 66.5 to the left, improve=2.200000, (0 missing)
##
         Sgot
##
         AlkPhosphate < 72.5 to the right, improve=1.580460, (0 missing)
##
         Malaise
                      splits as LR,
                                            improve=1.350877, (0 missing)
##
                      splits as
                                             improve=1.011494, (0 missing)
         Sex
                                 LR,
##
     Surrogate splits:
##
                      < 59.5 to the left, agree=0.818, adj=0.333, (0 split)
         Age
##
                      splits as RL,
                                             agree=0.788, adj=0.222, (0 split)
         LiverFirm
         AlkPhosphate < 63.5 to the right, agree=0.758, adj=0.111, (0 split)
##
##
##
   Node number 7: 14 observations
     predicted class=1 expected loss=0.2142857 P(node) =0.1196581
##
##
       class counts:
                         3
##
      probabilities: 0.214 0.786
##
## Node number 12: 24 observations
     predicted class=0 expected loss=0.2083333 P(node) =0.2051282
##
##
                        19
       class counts:
##
      probabilities: 0.792 0.208
##
## Node number 13: 9 observations,
                                      complexity param=0.08333333
     predicted class=1 expected loss=0.3333333 P(node) =0.07692308
##
##
       class counts:
                         3
##
      probabilities: 0.333 0.667
##
     left son=26 (2 obs) right son=27 (7 obs)
##
     Primary splits:
##
         Steroid
                      splits as LR,
                                             improve=2.285714, (0 missing)
                              to the right, improve=2.285714, (0 missing)
##
         Bilirubin
##
         AlkPhosphate < 102
                              to the right, improve=1.600000, (0 missing)
##
         Malaise
                      splits as LR,
                                             improve=1.000000, (0 missing)
                              to the left, improve=1.000000, (0 missing)
##
         Sgot
                      < 57
##
     Surrogate splits:
```

```
##
        Bilirubin < 3
                          to the right, agree=1, adj=1, (0 split)
##
## Node number 26: 2 observations
    predicted class=0 expected loss=0 P(node) =0.01709402
##
##
      class counts:
##
     probabilities: 1.000 0.000
##
## Node number 27: 7 observations
    predicted class=1 expected loss=0.1428571 P(node) =0.05982906
##
##
      class counts:
                        1
                              6
     probabilities: 0.143 0.857
print(full.tree4.pruned)
## n= 117
##
## node), split, n, loss, yval, (yprob)
##
        * denotes terminal node
##
   1) root 117 24 0 (0.79487179 0.20512821)
##
     2) Ascites=0 102 13 0 (0.87254902 0.12745098)
##
       4) Protime>=43.5 82 5 0 (0.93902439 0.06097561)
##
##
         8) Age< 55 72 2 0 (0.97222222 0.02777778) *
##
         9) Age>=55 10 3 0 (0.70000000 0.30000000)
##
          18) Steroid=0 5 0 0 (1.00000000 0.00000000) *
          19) Steroid=1 5 2 1 (0.40000000 0.60000000)
##
##
            38) Bilirubin< 0.9 2 0 0 (1.00000000 0.00000000) *
            39) Bilirubin>=0.9 2 0 1 (0.00000000 1.00000000) *
##
##
       5) Protime< 43.5 20 8 0 (0.60000000 0.40000000)
        ##
        11) Sgot>=66.5 10 3 1 (0.30000000 0.70000000) *
##
##
     3) Ascites=1 15 4 1 (0.26666667 0.73333333)
##
       6) Age< 29 2 0 0 (1.00000000 0.00000000) *
##
       7) Age>=29 13 2 1 (0.15384615 0.84615385)
##
        14) Protime>=44.5 6 2 1 (0.33333333 0.66666667)
##
          28) Albumin>=2.85 2 0 0 (1.00000000 0.00000000) *
          29) Albumin< 2.85 4 0 1 (0.00000000 1.00000000) *
##
        15) Protime< 44.5 7 0 1 (0.00000000 1.00000000) *
summary(full.tree4.pruned)
## Call:
## rpart(formula = mod1, data = train0, control = rpart.control(cp = -1,
##
      minsplit = 5)
##
    n = 117
##
##
            CP nsplit rel error
                                   xerror
                    0 1.0000000 1.0000000 0.1819881
## 1 0.29166667
                    1 0.7083333 1.2083333 0.1945970
## 2 0.08333333
                    4 0.4583333 0.9583333 0.1791116
## 3 0.04166667
                    9 0.2500000 1.0833333 0.1873714
## 4 0.04100000
##
## Variable importance
##
         Ascites
                                                      Albumin
                                                                     Protime
                           Sgot
                                           Age
##
              21
                             17
                                            13
                                                           10
                                                                          10
```

```
##
        Bilirubin
                         Steroid
                                        Malaise
                                                        Spiders
                                                                  AlkPhosphate
##
                                               4
                5
                               4
                                                              4
                                                                             3
                                         Fatigue
                                                                     Histology
##
              Sex
                      Antivirals
                                                       Anorexia
##
                2
                               2
                                               2
                                                              1
                                                                             1
## SpleenPalpable
##
##
## Node number 1: 117 observations,
                                       complexity param=0.2916667
##
     predicted class=0 expected loss=0.2051282 P(node) =1
##
       class counts:
                        93
                              24
##
      probabilities: 0.795 0.205
##
     left son=2 (102 obs) right son=3 (15 obs)
##
     Primary splits:
##
         Ascites
                   splits as LR,
                                          improve=9.442212, (3 missing)
##
                   < 3.85 to the right, improve=8.759234, (15 missing)
         Albumin
##
                   < 46.5 to the right, improve=8.727273, (51 missing)
##
         Bilirubin < 1.65 to the left, improve=5.578130, (6 missing)
##
                   splits as LR,
                                          improve=5.184493, (1 missing)
##
## Node number 2: 102 observations,
                                       complexity param=0.08333333
##
     predicted class=0 expected loss=0.127451 P(node) =0.8717949
##
       class counts:
                        89
##
      probabilities: 0.873 0.127
     left son=4 (82 obs) right son=5 (20 obs)
##
##
     Primary splits:
##
         Protime
                   < 43.5 to the right, improve=3.234583, (49 missing)
##
                   < 3.85 to the right, improve=2.191699, (15 missing)
         Albumin
                                          improve=2.125971, (3 missing)
##
         Spiders
                   splits as LR,
##
                                          improve=1.895783, (1 missing)
         Malaise
                   splits as LR,
         Bilirubin < 0.55 to the right, improve=1.887769, (6 missing)
##
##
     Surrogate splits:
##
         Albumin
                        < 3.45 to the right, agree=0.830, adj=0.182, (35 split)
##
         SpleenPalpable splits as LR,
                                               agree=0.811, adj=0.091, (13 split)
##
                        < 2.25 to the left, agree=0.811, adj=0.091, (0 split)
         Bilirubin
##
         AlkPhosphate
                        < 156.5 to the left, agree=0.811, adj=0.091, (0 split)
##
## Node number 3: 15 observations,
                                       complexity param=0.08333333
##
     predicted class=1 expected loss=0.2666667 P(node) =0.1282051
##
       class counts:
                         4
##
      probabilities: 0.267 0.733
     left son=6 (2 obs) right son=7 (13 obs)
##
##
     Primary splits:
##
         Age
                      < 29
                              to the left, improve=2.482051, (0 missing)
##
         AlkPhosphate < 173
                              to the right, improve=2.265734, (2 missing)
##
         Albumin
                      < 2.85 to the right, improve=1.866667, (0 missing)
                      < 84.5 to the right, improve=1.666667, (0 missing)
##
         Sgot
##
         Protime
                      < 44.5 to the right, improve=1.388462, (2 missing)
##
     Surrogate splits:
##
         Sgot < 116
                     to the right, agree=0.933, adj=0.5, (0 split)
##
## Node number 4: 82 observations,
                                      complexity param=0.04166667
     predicted class=0 expected loss=0.06097561 P(node) =0.7008547
##
##
       class counts:
                        77
                               5
##
      probabilities: 0.939 0.061
```

```
##
     left son=8 (72 obs) right son=9 (10 obs)
##
     Primary splits:
                              to the left,
##
         Age
                      < 55
                                            improve=1.3013550, (0 missing)
                                            improve=0.8477823, (18 missing)
##
         AlkPhosphate < 229
                              to the left,
##
         Bilirubin
                      < 2.55 to the left,
                                            improve=0.8452768, (4 missing)
##
                                             improve=0.8112875, (1 missing)
         Steroid
                      splits as LR,
                                             improve=0.6498489, (1 missing)
##
         Malaise
                      splits as LR,
##
## Node number 5: 20 observations,
                                      complexity param=0.08333333
     predicted class=0 expected loss=0.4 P(node) =0.1709402
##
##
       class counts:
                        12
##
      probabilities: 0.600 0.400
##
     left son=10 (10 obs) right son=11 (10 obs)
     Primary splits:
##
##
                                          improve=3.042105, (1 missing)
         Sgot
                    < 66.5 to the left,
##
         Albumin
                    < 3.2
                            to the left,
                                          improve=2.700000, (4 missing)
##
         Fatigue
                                           improve=2.133333, (0 missing)
                    splits as LR,
##
                    < 37.5 to the left,
                                          improve=1.600000, (0 missing)
         Age
##
                                           improve=1.600000, (0 missing)
         Antivirals splits as LR,
##
     Surrogate splits:
##
         Spiders
                    splits as LR,
                                          agree=0.684, adj=0.333, (1 split)
##
                    < 3.2
                                          agree=0.684, adj=0.333, (0 split)
         Albumin
                            to the left,
##
                                          agree=0.632, adj=0.222, (0 split)
         Antivirals splits as LR,
                    splits as LR,
                                          agree=0.632, adj=0.222, (0 split)
##
         Fatigue
##
         Malaise
                    splits as LR,
                                          agree=0.632, adj=0.222, (0 split)
## Node number 6: 2 observations
     predicted class=0 expected loss=0 P(node) =0.01709402
##
##
       class counts:
                         2
                               0
##
      probabilities: 1.000 0.000
##
## Node number 7: 13 observations,
                                      complexity param=0.04166667
##
     predicted class=1 expected loss=0.1538462 P(node) =0.1111111
##
       class counts:
                         2
##
      probabilities: 0.154 0.846
##
     left son=14 (6 obs) right son=15 (7 obs)
##
     Primary splits:
##
         Protime
                   < 44.5 to the right, improve=1.2727270, (2 missing)
##
                   < 2.85 to the right, improve=0.7179487, (0 missing)
##
         Bilirubin < 0.85 to the left, improve=0.5664336, (0 missing)
##
                                         improve=0.5664336, (0 missing)
         Histology splits as RL,
                   < 50.5 to the right, improve=0.5274725, (0 missing)
##
         Sgot
##
     Surrogate splits:
##
                                         agree=0.818, adj=0.50, (2 split)
         Anorexia splits as
                             RL,
         Histology splits as RL,
##
                                         agree=0.818, adj=0.50, (0 split)
                   < 55.5 to the right, agree=0.727, adj=0.25, (0 split)
##
##
         Albumin
                  < 2.95 to the left, agree=0.727, adj=0.25, (0 split)
##
## Node number 8: 72 observations
##
     predicted class=0 expected loss=0.02777778 P(node) =0.6153846
##
                        70
       class counts:
##
      probabilities: 0.972 0.028
##
## Node number 9: 10 observations,
                                      complexity param=0.04166667
```

```
##
     predicted class=0 expected loss=0.3 P(node) =0.08547009
##
       class counts:
                         7
                               3
     probabilities: 0.700 0.300
##
##
     left son=18 (5 obs) right son=19 (5 obs)
##
     Primary splits:
##
         Steroid splits as LR,
                                        improve=1.800000, (0 missing)
##
                                        improve=1.800000, (0 missing)
         Malaise splits as LR,
                          to the right, improve=1.200000, (0 missing)
##
                  < 64
##
         Sgot
                  < 56.5 to the left, improve=1.111111, (1 missing)
##
         LiverBig splits as LR,
                                        improve=0.750000, (2 missing)
##
     Surrogate splits:
                      < 61.5 to the right, agree=0.9, adj=0.8, (0 split)
##
         Age
##
         Malaise
                      splits as LR,
                                            agree=0.8, adj=0.6, (0 split)
##
         AlkPhosphate < 93
                              to the right, agree=0.8, adj=0.6, (0 split)
##
                                            agree=0.7, adj=0.4, (0 split)
         Sex
                      splits as LR,
##
         Spiders
                      splits as LR,
                                            agree=0.7, adj=0.4, (0 split)
##
  Node number 10: 10 observations
##
     predicted class=0 expected loss=0.1 P(node) =0.08547009
##
       class counts:
                        9
                              1
##
      probabilities: 0.900 0.100
##
## Node number 11: 10 observations
     predicted class=1 expected loss=0.3 P(node) =0.08547009
##
##
       class counts:
                         3
                               7
##
      probabilities: 0.300 0.700
##
## Node number 14: 6 observations,
                                      complexity param=0.04166667
     predicted class=1 expected loss=0.3333333 P(node) =0.05128205
##
##
       class counts:
                         2
##
      probabilities: 0.333 0.667
##
     left son=28 (2 obs) right son=29 (4 obs)
##
     Primary splits:
##
         Albumin < 2.85 to the right, improve=2.6666670, (0 missing)
##
                 < 50.5 to the right, improve=1.3333330, (0 missing)
##
                                       improve=0.6666667, (0 missing)
         Varices splits as LR,
##
                 < 41.5 to the left, improve=0.1666667, (0 missing)
##
         Steroid splits as RL,
                                       improve=0.1666667, (0 missing)
##
     Surrogate splits:
##
         Sgot < 50.5 to the right, agree=0.833, adj=0.5, (0 split)
##
## Node number 15: 7 observations
     predicted class=1 expected loss=0 P(node) =0.05982906
##
##
       class counts:
                         0
     probabilities: 0.000 1.000
##
##
## Node number 18: 5 observations
     predicted class=0 expected loss=0 P(node) =0.04273504
##
##
       class counts:
                         5
##
      probabilities: 1.000 0.000
##
## Node number 19: 5 observations,
                                      complexity param=0.04166667
##
    predicted class=1 expected loss=0.4 P(node) =0.04273504
##
      class counts:
                         2
```

```
##
     probabilities: 0.400 0.600
##
     left son=38 (2 obs) right son=39 (2 obs), 1 observation remains
     Primary splits:
##
         Bilirubin < 0.9 to the left, improve=2.00000000, (1 missing)
##
##
         Sgot
                   < 40
                           to the left, improve=2.00000000, (1 missing)
##
                   < 58.5 to the left, improve=0.06666667, (0 missing)
##
                                         improve=0.06666667, (0 missing)
         Spiders splits as LR,
                                         improve=0.06666667, (0 missing)
##
         Histology splits as RL,
##
     Surrogate splits:
##
         Sgot < 40
                     to the left, agree=1, adj=1, (0 split)
##
## Node number 28: 2 observations
    predicted class=0 expected loss=0 P(node) =0.01709402
##
##
       class counts:
                         2
##
     probabilities: 1.000 0.000
##
## Node number 29: 4 observations
     predicted class=1 expected loss=0 P(node) =0.03418803
##
       class counts:
                         0
##
      probabilities: 0.000 1.000
##
## Node number 38: 2 observations
     predicted class=0 expected loss=0 P(node) =0.01709402
##
                        2
##
       class counts:
##
      probabilities: 1.000 0.000
## Node number 39: 2 observations
    predicted class=1 expected loss=0 P(node) =0.01709402
##
##
       class counts:
                         0
                               2
      probabilities: 0.000 1.000
print(full.tree5.pruned)
## n= 117
##
## node), split, n, loss, yval, (yprob)
##
         * denotes terminal node
##
##
   1) root 117 24 0 (0.79487179 0.20512821)
      2) Protime>=46.5 89 6 0 (0.93258427 0.06741573) *
##
      3) Protime< 46.5 28 10 1 (0.35714286 0.64285714)
##
##
        6) Histology=1 8 2 0 (0.75000000 0.25000000) *
       7) Histology=0 20 4 1 (0.20000000 0.80000000)
##
##
         14) Sex=0 2 0 0 (1.00000000 0.00000000) *
         15) Sex=1 18 2 1 (0.11111111 0.88888889)
##
           30) Protime< 26 2 0 0 (1.00000000 0.00000000) *
##
##
           31) Protime>=26 16 0 1 (0.00000000 1.00000000) *
summary(full.tree5.pruned)
## Call:
## rpart(formula = mod2, data = train1, control = rpart.control(cp = -1,
      minsplit = 5))
    n = 117
##
##
```

```
CP nsplit rel error
                                    xerror
                     0 1.0000000 1.0000000 0.1819881
## 1 0.33333333
## 2 0.16666667
                     1 0.6666667 1.0416667 0.1847395
                     2 0.5000000 0.8333333 0.1696667
## 3 0.08333333
## 4 0.08300000
                     4 0.3333333 0.7500000 0.1626109
##
## Variable importance
##
     Protime
               Albumin
                         Ascites Histology
                                                  Sex Bilirubin
                                                                  Varices LiverBig
##
          48
                              12
                                          9
                                                    8
                                                              3
                                                                        3
                                                                                   2
##
   Anorexia
##
           1
##
## Node number 1: 117 observations,
                                       complexity param=0.3333333
     predicted class=0 expected loss=0.2051282 P(node) =1
##
##
       class counts:
                        93
                              24
##
      probabilities: 0.795 0.205
##
     left son=2 (89 obs) right son=3 (28 obs)
##
     Primary splits:
##
         Protime
                   < 46.5 to the right, improve=14.105690, (0 missing)
                   < 3.88 to the right, improve= 9.633249, (0 missing)
##
         Albumin
##
         Ascites
                   splits as LR,
                                        improve= 9.600905, (0 missing)
##
         Bilirubin < 1.65 to the left, improve= 6.304281, (0 missing)
                                         improve= 5.254887, (0 missing)
##
         Malaise
                   splits as LR,
##
     Surrogate splits:
##
         Albumin
                   < 3.45 to the right, agree=0.846, adj=0.357, (0 split)
##
         Ascites
                   splits as LR,
                                        agree=0.838, adj=0.321, (0 split)
##
                                        agree=0.778, adj=0.071, (0 split)
         Varices
                   splits as LR,
         Bilirubin < 3.1 to the left, agree=0.778, adj=0.071, (0 split)
##
##
## Node number 2: 89 observations
##
     predicted class=0 expected loss=0.06741573 P(node) =0.7606838
##
       class counts:
                        83
                               6
##
      probabilities: 0.933 0.067
##
## Node number 3: 28 observations,
                                      complexity param=0.1666667
     predicted class=1 expected loss=0.3571429 P(node) =0.2393162
##
##
       class counts:
                        10
                              18
##
      probabilities: 0.357 0.643
##
     left son=6 (8 obs) right son=7 (20 obs)
##
     Primary splits:
##
                                         improve=3.457143, (0 missing)
         Histology splits as RL,
##
                   splits as LR,
                                         improve=2.777143, (0 missing)
         Sex
##
         Albumin
                   < 3.9 to the right, improve=2.777143, (0 missing)
##
         Anorexia splits as RL,
                                         improve=2.380952, (0 missing)
##
         Fatigue
                   splits as LR,
                                         improve=1.780220, (0 missing)
##
     Surrogate splits:
##
         LiverBig splits as RL,
                                       agree=0.786, adj=0.250, (0 split)
##
                                       agree=0.750, adj=0.125, (0 split)
         Anorexia splits as RL,
##
         Albumin < 3.75 to the right, agree=0.750, adj=0.125, (0 split)
         Protime < 45.5 to the right, agree=0.750, adj=0.125, (0 split)
##
##
## Node number 6: 8 observations
##
     predicted class=0 expected loss=0.25 P(node) =0.06837607
##
       class counts:
                         6
```

```
##
      probabilities: 0.750 0.250
##
                                      complexity param=0.08333333
## Node number 7: 20 observations,
     predicted class=1 expected loss=0.2 P(node) =0.1709402
##
##
       class counts:
                         4
                              16
     probabilities: 0.200 0.800
##
     left son=14 (2 obs) right son=15 (18 obs)
##
##
     Primary splits:
##
         Sex
                   splits as LR,
                                        improve=2.844444, (0 missing)
##
         {\tt Protime}
                   < 26 to the left, improve=2.844444, (0 missing)
##
         Malaise
                   splits as LR,
                                        improve=1.542857, (0 missing)
                   < 3.66 to the right, improve=1.537255, (0 missing)
##
         Albumin
##
         Bilirubin < 1.1 to the left, improve=1.125275, (0 missing)
##
## Node number 14: 2 observations
##
     predicted class=0 expected loss=0 P(node) =0.01709402
                         2
##
       class counts:
##
      probabilities: 1.000 0.000
##
## Node number 15: 18 observations,
                                       complexity param=0.08333333
##
     predicted class=1 expected loss=0.1111111 P(node) =0.1538462
       class counts:
                         2
##
##
     probabilities: 0.111 0.889
     left son=30 (2 obs) right son=31 (16 obs)
##
##
     Primary splits:
##
         Protime
                  < 26
                         to the left, improve=3.5555560, (0 missing)
##
         Bilirubin < 1.1 to the left,
                                        improve=0.8888889, (0 missing)
##
         Albumin
                 < 3.71 to the right, improve=0.6805556, (0 missing)
##
                                        improve=0.3555556, (0 missing)
         Anorexia splits as RL,
##
         LiverFirm splits as LR,
                                        improve=0.2828283, (0 missing)
##
## Node number 30: 2 observations
##
     predicted class=0 expected loss=0 P(node) =0.01709402
                               0
##
       class counts:
                         2
##
      probabilities: 1.000 0.000
##
## Node number 31: 16 observations
##
     predicted class=1 expected loss=0 P(node) =0.1367521
##
       class counts:
                         0
     probabilities: 0.000 1.000
print(full.tree6.pruned)
## n= 117
##
## node), split, n, loss, yval, (yprob)
##
         * denotes terminal node
##
   1) root 117 24 0 (0.79487179 0.20512821)
##
##
      2) Protime>=45 91 5 0 (0.94505495 0.05494505)
##
        4) Albumin>=2.65 89 3 0 (0.96629213 0.03370787) *
##
        5) Albumin< 2.65 2 0 1 (0.00000000 1.00000000) *
##
      3) Protime< 45 26 7 1 (0.26923077 0.73076923)
##
        6) Sex=0 2 0 0 (1.00000000 0.00000000) *
##
        7) Sex=1 24 5 1 (0.20833333 0.79166667)
```

```
14) Protime< 29.5 4 1 0 (0.75000000 0.25000000) *
##
         15) Protime>=29.5 20  2 1 (0.10000000 0.90000000) *
##
summary(full.tree6.pruned)
## Call:
## rpart(formula = mod2, data = train2, control = rpart.control(cp = -1,
##
       minsplit = 5)
     n = 117
##
##
##
             CP nsplit rel error
                                    xerror
## 1 0.50000000
                     0
                            1.00 1.0000000 0.1819881
## 2 0.08333333
                     1
                            0.50 0.6666667 0.1548519
## 3 0.08300000
                            0.25 0.7916667 0.1662209
##
## Variable importance
     Protime
               Albumin
                         Ascites
                                        Sex Bilirubin
##
          57
                    23
                              10
                                          6
##
## Node number 1: 117 observations,
                                        complexity param=0.5
     predicted class=0 expected loss=0.2051282 P(node) =1
##
##
       class counts:
                        93
                              24
##
      probabilities: 0.795 0.205
##
     left son=2 (91 obs) right son=3 (26 obs)
##
     Primary splits:
         Protime
                              to the right, improve=18.472530, (0 missing)
##
                   < 45
##
         Albumin
                              to the right, improve=11.775090, (0 missing)
                  < 3.85
##
         Ascites
                   splits as LR,
                                             improve= 9.600905, (0 missing)
##
         Bilirubin < 1.057866 to the left, improve= 5.553846, (0 missing)
##
         Malaise
                                             improve= 5.254887, (0 missing)
                   splits as LR,
##
     Surrogate splits:
##
         Albumin
                   < 3.618841 to the right, agree=0.838, adj=0.269, (0 split)
                                             agree=0.821, adj=0.192, (0 split)
##
         Ascites
                   splits as LR,
##
         Bilirubin < 3.35
                              to the left, agree=0.795, adj=0.077, (0 split)
##
  Node number 2: 91 observations,
                                       complexity param=0.08333333
     predicted class=0 expected loss=0.05494505 P(node) =0.7777778
##
                        86
##
       class counts:
##
      probabilities: 0.945 0.055
     left son=4 (89 obs) right son=5 (2 obs)
##
##
     Primary splits:
##
         Albumin
                   < 2.65
                              to the right, improve=3.6527970, (0 missing)
##
         Ascites
                   splits as
                                             improve=1.2598520, (0 missing)
##
         Protime
                   < 47.5
                              to the right, improve=0.9956475, (0 missing)
                              to the left, improve=0.8401598, (0 missing)
##
         Bilirubin < 1.65
##
                                             improve=0.5862558, (0 missing)
         Malaise
                   splits as LR,
##
##
  Node number 3: 26 observations,
                                       complexity param=0.08333333
##
     predicted class=1 expected loss=0.2692308 P(node) =0.2222222
##
       class counts:
                         7
                              19
##
      probabilities: 0.269 0.731
##
     left son=6 (2 obs) right son=7 (24 obs)
##
     Primary splits:
##
         Sex
                  splits as LR,
                                            improve=2.314103, (0 missing)
##
         Fatigue splits as LR,
                                            improve=2.314103, (0 missing)
```

```
##
         Albumin < 3.95
                             to the right, improve=2.314103, (0 missing)
##
         Protime < 26
                             to the left, improve=2.314103, (0 missing)
                                           improve=1.354579, (0 missing)
##
         LiverBig splits as RL,
##
## Node number 4: 89 observations
     predicted class=0 expected loss=0.03370787 P(node) =0.7606838
##
                        86
##
       class counts:
##
      probabilities: 0.966 0.034
##
## Node number 5: 2 observations
     predicted class=1 expected loss=0 P(node) =0.01709402
##
       class counts:
                         0
##
      probabilities: 0.000 1.000
##
## Node number 6: 2 observations
##
     predicted class=0 expected loss=0 P(node) =0.01709402
##
       class counts:
                         2
##
      probabilities: 1.000 0.000
##
## Node number 7: 24 observations,
                                      complexity param=0.08333333
##
     predicted class=1 expected loss=0.2083333 P(node) =0.2051282
##
       class counts:
                         5
                              19
##
     probabilities: 0.208 0.792
     left son=14 (4 obs) right son=15 (20 obs)
##
##
     Primary splits:
##
         Protime
                   < 29.5
                              to the left, improve=2.8166670, (0 missing)
##
                                            improve=2.7348480, (0 missing)
         Fatigue
                   splits as LR,
                              to the right, improve=2.7348480, (0 missing)
##
         Albumin
                   < 3.95
##
                                            improve=1.3611110, (0 missing)
         Anorexia splits as RL,
##
         Bilirubin < 1.258523 to the left, improve=0.9796037, (0 missing)
##
## Node number 14: 4 observations
##
     predicted class=0 expected loss=0.25 P(node) =0.03418803
##
       class counts:
                         3
                               1
##
      probabilities: 0.750 0.250
##
## Node number 15: 20 observations
##
     predicted class=1 expected loss=0.1 P(node) =0.1709402
##
       class counts:
                         2
                              18
     probabilities: 0.100 0.900
print(full.tree7.pruned)
## n= 117
##
## node), split, n, loss, yval, (yprob)
         * denotes terminal node
##
## 1) root 117 24 0 (0.79487179 0.20512821)
##
     2) Albumin>=3.85 70 2 0 (0.97142857 0.02857143) *
##
     3) Albumin< 3.85 47 22 0 (0.53191489 0.46808511)
##
       6) Ascites=0 33 11 0 (0.66666667 0.333333333) *
##
       7) Ascites=1 14 3 1 (0.21428571 0.78571429) *
```

summary(full.tree7.pruned)

```
## Call:
## rpart(formula = mod2, data = train3, control = rpart.control(cp = -1,
##
       minsplit = 5)
##
     n = 117
##
##
            CP nsplit rel error
                                  xerror
                    0 1.0000000 1.000000 0.1819881
## 1 0.1666667
## 2 0.1660000
                    2 0.6666667 1.208333 0.1945970
##
## Variable importance
     Albumin
              Ascites
##
                         Protime Bilirubin
                                             Spiders
                                                        Malaise
##
          38
                    22
                              14
                                        13
                                                    9
                                                              4
##
## Node number 1: 117 observations,
                                       complexity param=0.1666667
##
     predicted class=0 expected loss=0.2051282 P(node) =1
       class counts:
##
                        93
                              24
##
      probabilities: 0.795 0.205
##
     left son=2 (70 obs) right son=3 (47 obs)
##
     Primary splits:
##
         Albumin
                  < 3.85 to the right, improve=10.863880, (0 missing)
##
                                        improve= 9.600905, (0 missing)
         Ascites
                   splits as LR,
##
                   < 44.5 to the right, improve= 8.835664, (0 missing)
         Protime
         Bilirubin < 1.65 to the left, improve= 6.304281, (0 missing)
##
##
                   splits as LR,
                                        improve= 5.254887, (0 missing)
         Malaise
##
     Surrogate splits:
         Protime
                   < 44.5 to the right, agree=0.761, adj=0.404, (0 split)
##
##
         Bilirubin < 1.35 to the left, agree=0.718, adj=0.298, (0 split)
##
                                        agree=0.709, adj=0.277, (0 split)
         Ascites
                  splits as LR,
##
                   splits as LR,
                                        agree=0.701, adj=0.255, (0 split)
         Spiders
                                        agree=0.650, adj=0.128, (0 split)
##
         Malaise
                   splits as LR,
##
## Node number 2: 70 observations
     predicted class=0 expected loss=0.02857143 P(node) =0.5982906
##
##
       class counts:
                        68
##
      probabilities: 0.971 0.029
##
                                      complexity param=0.1666667
## Node number 3: 47 observations,
     predicted class=0 expected loss=0.4680851 P(node) =0.4017094
##
##
       class counts:
                        25
                              22
##
      probabilities: 0.532 0.468
##
     left son=6 (33 obs) right son=7 (14 obs)
##
     Primary splits:
##
         Ascites
                   splits as LR,
                                        improve=4.023303, (0 missing)
##
                   < 35.5 to the right, improve=3.855868, (0 missing)
##
         Bilirubin < 3.7 to the left, improve=3.166160, (0 missing)
##
         Albumin
                   < 2.65 to the right, improve=3.166160, (0 missing)
##
         Malaise
                   splits as LR,
                                        improve=2.525134, (0 missing)
##
     Surrogate splits:
                   < 2.65 to the right, agree=0.809, adj=0.357, (0 split)
##
         Albumin
##
         Bilirubin < 3.7 to the left, agree=0.766, adj=0.214, (0 split)
##
## Node number 6: 33 observations
```

```
##
     predicted class=0 expected loss=0.3333333 P(node) =0.2820513
##
                        22
                              11
       class counts:
      probabilities: 0.667 0.333
##
##
## Node number 7: 14 observations
    predicted class=1 expected loss=0.2142857 P(node) =0.1196581
##
       class counts:
                         3
##
      probabilities: 0.214 0.786
print(full.tree8.pruned)
## n= 117
##
## node), split, n, loss, yval, (yprob)
##
         * denotes terminal node
##
##
   1) root 117 24 0 (0.79487179 0.20512821)
      2) Ascites=0 102 13 0 (0.87254902 0.12745098)
##
##
        4) Protime>=43.5 82 5 0 (0.93902439 0.06097561) *
##
        5) Protime< 43.5 20 8 0 (0.60000000 0.40000000)
         10) Albumin< 3.2 7 0 0 (1.00000000 0.00000000) *
##
         11) Albumin>=3.2 13 5 1 (0.38461538 0.61538462)
##
##
           22) Albumin>=3.95 2 0 0 (1.00000000 0.00000000) *
##
           23) Albumin < 3.95 11 3 1 (0.27272727 0.72727273) *
      3) Ascites=1 15 4 1 (0.26666667 0.73333333)
##
        6) Albumin>=2.85 8 4 0 (0.50000000 0.50000000)
##
         12) Albumin< 2.95 3 0 0 (1.00000000 0.00000000) *
##
##
         13) Albumin>=2.95 5 1 1 (0.20000000 0.80000000) *
        7) Albumin< 2.85 7 0 1 (0.00000000 1.00000000) *
summary(full.tree8.pruned)
## Call:
## rpart(formula = mod2, data = train0, control = rpart.control(cp = -1,
##
       minsplit = 5))
##
     n = 117
##
##
            CP nsplit rel error
                                   xerror
## 1 0.2916667
                    0 1.0000000 1.0000000 0.1819881
## 2 0.0625000
                    1 0.7083333 0.8333333 0.1696667
## 3 0.0620000
                    6 0.3750000 0.8333333 0.1696667
##
## Variable importance
##
          Ascites
                         Albumin
                                        Protime
                                                      Bilirubin
                                                                       Varices
##
               31
                              31
                                              13
                                                                             3
                                                              7
##
          Fatigue
                         Spiders SpleenPalpable
                                                      Histology
                                                                     LiverFirm
##
                                                                             2
                3
                               3
                                              3
                                                              3
##
         Malaise
                        Anorexia
##
                1
## Node number 1: 117 observations,
                                       complexity param=0.2916667
##
    predicted class=0 expected loss=0.2051282 P(node) =1
##
                        93
       class counts:
##
      probabilities: 0.795 0.205
     left son=2 (102 obs) right son=3 (15 obs)
##
```

```
##
     Primary splits:
##
                                         improve=9.442212, (3 missing)
         Ascites
                   splits as LR,
                   < 3.85 to the right, improve=8.759234, (15 missing)
##
                   < 46.5 to the right, improve=8.727273, (51 missing)
##
         Protime
##
         Bilirubin < 1.65 to the left, improve=5.578130, (6 missing)
##
                                         improve=5.184493, (1 missing)
         Malaise
                   splits as LR,
##
## Node number 2: 102 observations,
                                       complexity param=0.0625
##
     predicted class=0 expected loss=0.127451 P(node) =0.8717949
##
       class counts:
                        89
                              1.3
##
      probabilities: 0.873 0.127
##
     left son=4 (82 obs) right son=5 (20 obs)
##
     Primary splits:
                   < 43.5 to the right, improve=3.234583, (49 missing)
##
         Protime
##
                   < 3.85 to the right, improve=2.191699, (15 missing)
         Albumin
##
         Spiders
                   splits as LR,
                                         improve=2.125971, (3 missing)
##
                   splits as LR,
                                        improve=1.895783, (1 missing)
         Malaise
##
         Bilirubin < 0.55 to the right, improve=1.887769, (6 missing)
##
     Surrogate splits:
##
         Albumin
                        < 3.45 to the right, agree=0.830, adj=0.182, (35 split)
##
         SpleenPalpable splits as LR,
                                             agree=0.811, adj=0.091, (13 split)
##
                        < 2.25 to the left, agree=0.811, adj=0.091, (0 split)
##
                                       complexity param=0.0625
## Node number 3: 15 observations,
     predicted class=1 expected loss=0.2666667 P(node) =0.1282051
##
##
       class counts:
                              11
##
      probabilities: 0.267 0.733
##
     left son=6 (8 obs) right son=7 (7 obs)
##
     Primary splits:
##
         Albumin
                        < 2.85 to the right, improve=1.8666670, (0 missing)
##
         Protime
                        < 44.5 to the right, improve=1.3884620, (2 missing)
##
         Bilirubin
                        < 2.4 to the left,
                                             improve=1.0666670, (0 missing)
##
         Anorexia
                        splits as
                                   RL,
                                              improve=0.2666667, (0 missing)
##
                                   RL,
                                              improve=0.2666667, (0 missing)
         SpleenPalpable splits as
##
     Surrogate splits:
         Varices
##
                        splits as LR,
                                              agree=0.800, adj=0.571, (0 split)
##
         LiverFirm
                        splits as
                                   LR,
                                              agree=0.667, adj=0.286, (0 split)
##
         SpleenPalpable splits as RL,
                                              agree=0.667, adj=0.286, (0 split)
##
                                              agree=0.667, adj=0.286, (0 split)
         Bilirubin
                        < 1.5 to the left,
##
         Anorexia
                        splits as LR,
                                              agree=0.600, adj=0.143, (0 split)
##
## Node number 4: 82 observations
##
     predicted class=0 expected loss=0.06097561 P(node) =0.7008547
##
       class counts:
                        77
##
      probabilities: 0.939 0.061
##
## Node number 5: 20 observations,
                                      complexity param=0.0625
     predicted class=0 expected loss=0.4 P(node) =0.1709402
##
##
       class counts:
                        12
##
      probabilities: 0.600 0.400
##
     left son=10 (7 obs) right son=11 (13 obs)
##
     Primary splits:
         Albumin
                    < 3.2 to the left, improve=2.700000, (4 missing)
##
##
         Fatigue
                    splits as LR,
                                          improve=2.133333, (0 missing)
```

```
##
         Antivirals splits as LR,
                                         improve=1.600000, (0 missing)
##
                                         improve=1.350000, (0 missing)
         Malaise
                    splits as LR,
         Bilirubin < 1.85 to the left, improve=1.341270, (2 missing)
##
##
     Surrogate splits:
##
         Fatigue
                   splits as LR,
                                        agree=0.750, adj=0.333, (4 split)
                                        agree=0.750, adj=0.333, (0 split)
##
         Spiders
                   splits as LR,
                                        agree=0.688, adj=0.167, (0 split)
##
         Malaise
                   splits as LR,
         Bilirubin < 0.8 to the left, agree=0.688, adj=0.167, (0 split)
##
##
##
  Node number 6: 8 observations,
                                     complexity param=0.0625
##
     predicted class=0 expected loss=0.5 P(node) =0.06837607
##
       class counts:
##
      probabilities: 0.500 0.500
##
     left son=12 (3 obs) right son=13 (5 obs)
##
     Primary splits:
##
         Albumin
                   < 2.95 to the left,
                                        improve=2.400000, (0 missing)
##
                   < 44.5 to the right, improve=2.400000, (0 missing)
         Protime
##
         Anorexia splits as RL,
                                        improve=1.333333, (0 missing)
                                        improve=1.333333, (0 missing)
##
         Bilirubin < 2.95 to the left,
##
         LiverFirm splits as RL,
                                        improve=1.028571, (1 missing)
##
     Surrogate splits:
         Bilirubin < 1.1 to the left, agree=0.75, adj=0.333, (0 split)
##
##
         Protime < 44.5 to the right, agree=0.75, adj=0.333, (0 split)
                                        agree=0.75, adj=0.333, (0 split)
##
         Histology splits as RL,
##
## Node number 7: 7 observations
     predicted class=1 expected loss=0 P(node) =0.05982906
##
##
       class counts:
                         0
##
     probabilities: 0.000 1.000
##
## Node number 10: 7 observations
##
     predicted class=0 expected loss=0 P(node) =0.05982906
##
       class counts:
                         7
##
      probabilities: 1.000 0.000
##
## Node number 11: 13 observations,
                                       complexity param=0.0625
##
    predicted class=1 expected loss=0.3846154 P(node) =0.1111111
##
       class counts:
                         5
##
     probabilities: 0.385 0.615
##
     left son=22 (2 obs) right son=23 (11 obs)
##
     Primary splits:
##
         Albumin
                    < 3.95 to the right, improve=1.8000000, (3 missing)
##
         LiverBig
                    splits as RL,
                                         improve=1.5427350, (0 missing)
##
         Bilirubin < 1.3 to the left, improve=1.0242420, (2 missing)
##
         Antivirals splits as
                                         improve=0.6993007, (0 missing)
                              LR,
                                         improve=0.6205128, (0 missing)
##
         Anorexia
                    splits as
##
## Node number 12: 3 observations
##
     predicted class=0 expected loss=0 P(node) =0.02564103
##
       class counts:
                         3
##
      probabilities: 1.000 0.000
##
## Node number 13: 5 observations
    predicted class=1 expected loss=0.2 P(node) =0.04273504
```

```
##
       class counts:
                        1
##
      probabilities: 0.200 0.800
##
## Node number 22: 2 observations
##
     predicted class=0 expected loss=0 P(node) =0.01709402
       class counts:
                         2
##
                               0
      probabilities: 1.000 0.000
##
##
## Node number 23: 11 observations
     predicted class=1 expected loss=0.2727273 P(node) =0.09401709
##
##
       class counts:
                         3
      probabilities: 0.273 0.727
##
4.8. Bagging (bootstrap aggregating)
We can see basic information about all random forests. The error is pretty similar.
print(btree1)
## Bagging classification trees with 150 bootstrap replications
## Call: bagging.data.frame(formula = mod1, data = train1, nbagg = 150,
       coob = TRUE, minsplit = 2, cp = 0)
##
##
## Out-of-bag estimate of misclassification error: 0.1538
print(btree2)
## Bagging classification trees with 150 bootstrap replications
## Call: bagging.data.frame(formula = mod1, data = train2, nbagg = 150,
       coob = TRUE, minsplit = 2, cp = 0)
##
## Out-of-bag estimate of misclassification error: 0.1368
print(btree3)
## Bagging classification trees with 150 bootstrap replications
## Call: bagging.data.frame(formula = mod1, data = train3, nbagg = 150,
##
       coob = TRUE, minsplit = 2, cp = 0)
##
## Out-of-bag estimate of misclassification error: 0.1966
print(btree4)
##
```

```
print(btree5)
## Bagging classification trees with 150 bootstrap replications
## Call: bagging.data.frame(formula = mod2, data = train1, nbagg = 150,
##
       coob = TRUE, minsplit = 2, cp = 0)
##
## Out-of-bag estimate of misclassification error: 0.1709
print(btree6)
## Bagging classification trees with 150 bootstrap replications
## Call: bagging.data.frame(formula = mod2, data = train2, nbagg = 150,
       coob = TRUE, minsplit = 2, cp = 0)
##
## Out-of-bag estimate of misclassification error: 0.1197
print(btree7)
## Bagging classification trees with 150 bootstrap replications
## Call: bagging.data.frame(formula = mod2, data = train3, nbagg = 150,
       coob = TRUE, minsplit = 2, cp = 0)
##
##
## Out-of-bag estimate of misclassification error: 0.2051
print(btree8)
##
## Bagging classification trees with 150 bootstrap replications
## Call: bagging.data.frame(formula = mod2, data = train0, nbagg = 150,
       coob = TRUE, minsplit = 2, cp = 0)
##
##
## Out-of-bag estimate of misclassification error: 0.2167
4.9. Boosting
We can see basic information about all random forests. The error is pretty similar.
print(boost1)
## Call:
## ada(mod1, data = train1, iter = 10)
##
## Loss: exponential Method: discrete
                                        Iteration: 10
##
## Final Confusion Matrix for Data:
##
            Final Prediction
## True value 0 1
            0.84 9
##
##
            1 6 18
##
```

```
## Train Error: 0.128
##
## Out-Of-Bag Error: 0.137 iteration= 6
## Additional Estimates of number of iterations:
##
## train.err1 train.kap1
##
print(boost2)
## Call:
## ada(mod1, data = train2, iter = 10)
## Loss: exponential Method: discrete
                                      Iteration: 10
##
## Final Confusion Matrix for Data:
##
            Final Prediction
## True value 0 1
           0 87 6
##
##
           1 4 20
##
## Train Error: 0.085
## Out-Of-Bag Error: 0.103 iteration= 7
## Additional Estimates of number of iterations:
## train.err1 train.kap1
##
print(boost3)
## Call:
## ada(mod1, data = train3, iter = 10)
## Loss: exponential Method: discrete
                                      Iteration: 10
## Final Confusion Matrix for Data:
            Final Prediction
## True value 0 1
           0 88 5
##
##
           1 9 15
##
## Train Error: 0.12
## Out-Of-Bag Error: 0.12 iteration= 9
## Additional Estimates of number of iterations:
## train.err1 train.kap1
print(boost4)
```

67

Call:

```
## ada(mod1, data = train0, iter = 10)
##
## Loss: exponential Method: discrete
## Final Confusion Matrix for Data:
##
           Final Prediction
## True value 0 1
          0 90 3
##
##
          1 10 14
##
## Train Error: 0.111
## Out-Of-Bag Error: 0.12 iteration= 7
## Additional Estimates of number of iterations:
## train.err1 train.kap1
   9
print(boost5)
## Call:
## ada(mod2, data = train1, iter = 10)
## Loss: exponential Method: discrete
                                   Iteration: 10
## Final Confusion Matrix for Data:
           Final Prediction
## True value 0 1
          0 86 7
##
          1 6 18
##
##
## Train Error: 0.111
## Out-Of-Bag Error: 0.103 iteration= 9
## Additional Estimates of number of iterations:
## train.err1 train.kap1
   7
print(boost6)
## Call:
## ada(mod2, data = train2, iter = 10)
## Final Confusion Matrix for Data:
           Final Prediction
## True value 0 1
##
          0 88 5
##
          1 5 19
## Train Error: 0.085
```

```
## Out-Of-Bag Error: 0.094 iteration= 8
## Additional Estimates of number of iterations:
##
## train.err1 train.kap1
print(boost7)
## Call:
## ada(mod2, data = train3, iter = 10)
## Loss: exponential Method: discrete
                                        Iteration: 10
## Final Confusion Matrix for Data:
            Final Prediction
## True value 0 1
            0 84 9
            1 7 17
##
## Train Error: 0.137
##
## Out-Of-Bag Error: 0.128 iteration= 9
## Additional Estimates of number of iterations:
## train.err1 train.kap1
            4
##
print(boost8)
## Call:
## ada(mod2, data = train0, iter = 10)
## Loss: exponential Method: discrete
                                        Iteration: 10
##
## Final Confusion Matrix for Data:
            Final Prediction
## True value 0 1
##
            0 88 5
            1 11 13
##
##
## Train Error: 0.137
##
## Out-Of-Bag Error: 0.154 iteration= 8
##
## Additional Estimates of number of iterations:
##
## train.err1 train.kap1
            1
##
```

4.10. Random forest

We can see basic information about all random forests. The error is pretty similar.

```
print(rf1)
## Call:
## randomForest(formula = mod1, data = train1, ntree = 500, mtry = p1,
                                                                             importance = TRUE)
                  Type of random forest: classification
##
##
                        Number of trees: 500
## No. of variables tried at each split: 19
          OOB estimate of error rate: 17.09%
## Confusion matrix:
     0 1 class.error
## 0 82 11
           0.1182796
## 1 9 15
           0.3750000
print(rf2)
##
## Call:
## randomForest(formula = mod1, data = train2, ntree = 500, mtry = p1,
                                                                             importance = TRUE)
##
                  Type of random forest: classification
                        Number of trees: 500
##
## No. of variables tried at each split: 19
##
##
          OOB estimate of error rate: 12.82%
## Confusion matrix:
     0 1 class.error
## 0 84 9 0.09677419
## 1 6 18 0.25000000
print(rf3)
##
## Call:
## randomForest(formula = mod1, data = train3, ntree = 500, mtry = p1,
                                                                             importance = TRUE)
##
                  Type of random forest: classification
##
                        Number of trees: 500
## No. of variables tried at each split: 19
##
##
          OOB estimate of error rate: 18.8%
## Confusion matrix:
     0 1 class.error
## 0 83 10
           0.1075269
## 1 12 12
            0.5000000
print(rf4)
##
## Call:
  randomForest(formula = mod1, data = train1, ntree = 500, mtry = sqrt(p1),
                                                                                   importance = TRUE)
##
                  Type of random forest: classification
                        Number of trees: 500
## No. of variables tried at each split: 4
##
          OOB estimate of error rate: 14.53%
## Confusion matrix:
```

```
## 0 1 class.error
## 0 88 5 0.05376344
## 1 12 12 0.50000000
print(rf5)
##
## Call:
  randomForest(formula = mod1, data = train2, ntree = 500, mtry = sqrt(p1),
##
                                                                                   importance = TRUE)
                  Type of random forest: classification
                        Number of trees: 500
## No. of variables tried at each split: 4
##
##
           OOB estimate of error rate: 11.97%
## Confusion matrix:
      0 1 class.error
## 0 87 6 0.06451613
## 1 8 16 0.33333333
print(rf6)
##
## Call:
  randomForest(formula = mod1, data = train3, ntree = 500, mtry = sqrt(p1),
##
                                                                                   importance = TRUE)
                 Type of random forest: classification
                        Number of trees: 500
##
## No. of variables tried at each split: 4
##
           OOB estimate of error rate: 17.95%
## Confusion matrix:
     0 1 class.error
## 0 84 9 0.09677419
## 1 12 12 0.50000000
print(rf7)
##
## Call:
   randomForest(formula = mod2, data = train1, ntree = 500, mtry = p2,
                                                                            importance = TRUE)
                  Type of random forest: classification
                        Number of trees: 500
## No. of variables tried at each split: 15
           OOB estimate of error rate: 14.53%
##
## Confusion matrix:
     0 1 class.error
## 0 85 8 0.08602151
## 1 9 15 0.37500000
print(rf8)
##
## Call:
## randomForest(formula = mod2, data = train2, ntree = 500, mtry = p2,
                                                                            importance = TRUE)
                  Type of random forest: classification
                        Number of trees: 500
##
## No. of variables tried at each split: 15
```

```
##
##
           OOB estimate of error rate: 11.11%
## Confusion matrix:
     0 1 class.error
##
## 0 85 8 0.08602151
## 1 5 19 0.20833333
print(rf9)
##
## Call:
## randomForest(formula = mod2, data = train3, ntree = 500, mtry = p2,
                                                                             importance = TRUE)
                  Type of random forest: classification
                        Number of trees: 500
##
## No. of variables tried at each split: 15
##
##
           OOB estimate of error rate: 18.8%
## Confusion matrix:
     0 1 class.error
## 0 82 11
           0.1182796
## 1 11 13
            0.4583333
print(rf10)
##
## Call:
  randomForest(formula = mod2, data = train1, ntree = 500, mtry = sqrt(p2),
                                                                                   importance = TRUE)
                  Type of random forest: classification
##
                        Number of trees: 500
## No. of variables tried at each split: 4
##
           OOB estimate of error rate: 13.68%
##
## Confusion matrix:
     0 1 class.error
## 0 87 6 0.06451613
## 1 10 14 0.41666667
print(rf11)
##
   randomForest(formula = mod2, data = train2, ntree = 500, mtry = sqrt(p2),
                                                                                   importance = TRUE)
##
                  Type of random forest: classification
##
                        Number of trees: 500
## No. of variables tried at each split: 4
##
           OOB estimate of error rate: 11.11%
## Confusion matrix:
     0 1 class.error
## 0 87 6 0.06451613
## 1 7 17 0.29166667
print(rf12)
##
## Call:
## randomForest(formula = mod2, data = train3, ntree = 500, mtry = sqrt(p2),
                                                                                   importance = TRUE)
```

```
## Type of random forest: classification
## No. of variables tried at each split: 4
##
## OOB estimate of error rate: 15.38%
## Confusion matrix:
## 0 1 class.error
## 0 87 6 0.06451613
## 1 12 12 0.50000000
```

We can see classification error plot for all random forest models. There are both similar and different results plot(rf1)

plot(rf2)

plot(rf3)

plot(rf4)

plot(rf5)

plot(rf6)

plot(rf7)

plot(rf8)

plot(rf9)

plot(rf10)

plot(rf11)

plot(rf12)

rf12

We can see variable importance ranking for other random forest models. The results are different, but for each model, Protime is in the first place.

```
# Variable importance ranking
varImpPlot(rf1, main = "Variable Importance Plot")
```


varImpPlot(rf2, main = "Variable Importance Plot")

varImpPlot(rf3, main = "Variable Importance Plot")

varImpPlot(rf4, main = "Variable Importance Plot")

varImpPlot(rf5, main = "Variable Importance Plot")

varImpPlot(rf6, main = "Variable Importance Plot")

varImpPlot(rf7, main = "Variable Importance Plot")

varImpPlot(rf8, main = "Variable Importance Plot")

varImpPlot(rf9, main = "Variable Importance Plot")

varImpPlot(rf10, main = "Variable Importance Plot")

varImpPlot(rf11, main = "Variable Importance Plot")

varImpPlot(rf12, main = "Variable Importance Plot")

