

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 842 140 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 05.04.2000 Bulletin 2000/14
- (21) Application number: 96927536.1
- (22) Date of filing: 17.07.1996

- (51) Int Cl.⁷: **C07C 209/52**, C07C 213/02, C07D 333/36
- (86) International application number: PCT/EP96/03147
- (87) International publication number: WO 97/05094 (13.02.1997 Gazette 1997/08)
- (54) PROCESS FOR THE HYDROGENATION OF IMINES
 VERFAHREN ZUR HYDRIERUNG VON IMINEN

PROCEDE D'HYDROGENATION D'IMINES

- (84) Designated Contracting States: CH DE FR GB IT LI
- (30) Priority: 27.07.1995 CH 220995
- (43) Date of publication of application: 20.05.1998 Bulletin 1998/21
- (73) Proprietor: Novartis AG 4058 Basel (CH)

- (72) Inventors:
 - SABLONG, Rafa[I Brighton BN16 GR (GB)
 - OSBORN, John, Anthony F-67000 Strasbourg (FR)
 - SPINDLER, Felix CH-4656 Starrkirch-Wil (CH)
- (56) References cited:

EP-A- 0 612 758 US-A- 5 112 999 WO-A-95/21176 US-A- 5 371 256

P 0 842 140 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] The present invention relates to a process for the preparation of amines by hydrogenation of imines in the presence of dinuclear iridium complexes having ferrocenyl(di-tertiary phosphine) ligands.

[0002] US-A-5 112 999 describes dinuclear Ir(III) complexes having ditertiary diphosphine ligands and halide bridges, halide and hydride ligands and Ir(III) halide complex salts containing a ditertiary diphosphine ligand that are suitable as catalysts for a hydrogenation of imines that may be an enantioselective hydrogenation. Ditertiary ferrocenyldiphosphine ligands are not mentioned. US-A-5 371 256 and EP-A-0 612 758 describe iridium complexes having chiral ferrocenyldiphosphine ligands for the homogeneous enantioselective hydrogenation of imines. Those homogeneous catalysis processes have proved valuable, but the activity and selectivity of the catalysts, while already high *per se*, are still not entirely satisfactory. It has also been suggested that soluble halides be added to the reaction mixture in order to improve the enantioselectivity and the activity and stability of the catalysts.

[0003] It has now been found that dinuclear Ir(III) complexes having ditertiary diphosphine ligands and halide bridges, halide and hydride ligands and Ir(III) halide complex salts containing a ditertiary diphosphine ligand exhibit an unexpectedly high catalyst activity and stability in the hydrogenation of imines, on their own, without further additives. Furthermore, when chiral diphosphine ligands and prochiral imines are used, extraordinarily high enantioselectivities are achieved, which may amount to an enantiomeric excess of 80% and more. The reaction times for a one hundred percent conversion may even be considerably less than an hour and, even at low catalyst concentrations, very high yields can still be achieved in relatively short reaction times.

[0004] The present invention relates to a process for the preparation of primary or secondary amines by hydrogenation of imines with hydrogen at elevated pressure and in the presence of a dinuclear Ir(III) complex having ditertiary diphosphine ligands, halide bridges, halide and hydride ligands, or an Ir(III) halide complex salt containing ditertiary diphosphine ligands, as catalyst, wherein the catalyst corresponds to formula I or Ia or to mixtures of at least two compounds of formula I, at least two compounds of formula I and Ia, or at least two compounds of formula Ia

$$[(\mathsf{DIP})\mathsf{IrX}_{\mathsf{q}}\mathsf{Y}_{\mathsf{r}}]_{2} \tag{I},$$

$$[(DIP)X_4]^{\Theta}Me^{\Phi}$$
 (Ia),

wherein

25

30

35

40

DIP is the ditertiary diphosphine ligand of a ferrocenyldiphosphine the phosphine groups of which are either bonded directly or via a bridge group -CR_vR_w- to the ortho positions of a cyclopentadienyl ring or are each bonded to a cyclopentadienyl ring of a ferrocenyl, so that a 5-, 6- or 7-membered ring is formed together with the Ir atom;

 R_v and R_w are each independently of the other hydrogen, C_1 - C_8 alkyl, C_1 - C_4 fluoroalkyl, phenyl or benzyl, or are phenyl or benzyl each having from 1 to 3 C_1 - C_4 alkyl or C_1 - C_4 -alkoxy substituents;

X is CI, Br or I;

Y is H;

q is the number 2 or 3 and r is 0 or 1, the sum of q+r being equal to 3; and

Me[®] is an alkali metal cation or quaternary ammonium.

[0005] The iridium compounds are preferably homogeneous catalysts that are to a large extent soluble in the reaction medium. The term "catalyst" also includes catalyst precursors which are converted into an active catalyst species at the beginning of a hydrogenation reaction.

[0006] R_w is preferably hydrogen. R_v is preferably C_1 - C_4 alkyl, for example methyl, ethyl, n-propyl or n-butyl, and especially methyl.

[0007] The ditertiary ferrocenyldiphosphine preferably contains at least one chiral group, and the diphosphine is especially an optically pure stereoisomer or a pair of diastereoisomers since, with catalysts that contain chiral ligands, optical inductions are obtained in asymmetric hydrogen reactions.

[0008] The phosphine groups preferably contain two identical or different, more preferably identical, unsubstituted or substituted hydrocarbon radicals having from 1 to 20, especially from 1 to 12, carbon atoms. Preferred diphosphines are those wherein the secondary phosphine groups contain two identical or different radicals from the following group: linear or branched C₁-C₁₂alkyl; unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₅-C₁₂-cycloalkyl, C₅-C₁₂cycloalkyl-CH₂-, phenyl and benzyl; and phenyl and benzyl each substituted by halogen, (e.g. F, Cl and Br), C₁-C₆haloalkyl, (C₁-C₁₂alkyl)₃Si, (C₆H₅)₃Si, C₁-C₆haloalkoxy (e.g. trifluoromethoxy), -NH₂, phenyl₂N-, benzyl-, morpholi-

nyl, piperidinyl, pyrrolidinyl, $(C_1-C_{12}alkyl)_2N_1$, -ammonium- $X_1^{\Theta_1}$, -SO₃M₁, -CO₂M₁, -PO₃M₁ or by -COO-C₁-C₆alkyl (e. g. -COOCH₃); wherein M₁ is an alkali metal or hydrogen and $X_1^{\Theta_1}$ is the anion of a monobasic acid. M₁ is preferably H, Li, Na or K. $A_1^{\Theta_1}$, as the anion of a monobasic acid, is preferably Cl Θ_1 , Br Θ_2 or the anion of a carboxylic acid, for example formate, acetate, trichloroacetate or trifluoroacetate.

[0009] Examples of alkyl that preferably contains from 1 to 6 carbon atoms are methyl, ethyl, n-propyl, isopropyl, n-, iso- and tert-butyl and the isomers of pentyl and hexyl. Examples of unsubstituted or alkyl-substituted cycloalkyl are cyclopentyl, cyclohexyl, methyl- or ethyl-cyclohexyl and dimethylcyclohexyl. Examples of phenyl and benzyl each substituted by alkyl, alkoxy or by haloalkoxy are methylphenyl, dimethylphenyl, trimethylphenyl, ethylphenyl, methylphenyl, trifluoromethylphenyl, trifluoromethylphenyl, trifluoromethylphenyl, trifluoromethylphenyl, trifluoromethoxyphenyl and bistrifluoromethoxyphenyl. Preferred phosphine groups are those which contain identical or different, preferably identical, radicals from the following group: C₁-C₆alkyl; cyclopentyl and cyclohexyl that are unsubstituted or have from one to three C₁-C₄alkyl or C₁-C₄alkoxy, substituents; and benzyl and especially phenyl that are unsubstituted or have from one to three C₁-C₄alkyl, C₁-C₄alkoxy, F, Cl, C₁-C₄fluoroalkyl or C₁-C₄fluoroalkoxy substituents.

[0010] The secondary phosphine groups bonded to the cyclopentadienyl may be radicals of the formula

wherein m and n are each independently of the other an integer from 2 to 10 and the sum of m+n is equal to from 4 to 12, especially from 5 to 8. Examples thereof are [3.3.1]- and [4.2.1]-phobyl of the formulae

$$P$$
 and P .

[0011] The secondary phosphine groups may also be radicals of the formula

wherein R₁₆ is C₁-C₄alkylene, preferably C₂- or C₃-alkylene, and R₁₄ and R₁₅ are each independently of the other hydrogen, C₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆haloalkyl, C₅- or C₆-cycloalkyl, or phenyl that is unsubstituted or substituted by C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄haloalkyl or by halogen, or benzyl that is unsubstituted or substituted by C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄haloatkyl or by halogen. R₁₄ and R₁₅ may be, for example, methyl, ethyl, n- or iso-propyl, n-, iso-or tert-butyl, cyclohexyl, phenyl or benzyl. Halogen is preferably F or Cl. Those phosphine groups possess further chiral carbon atoms and can be used in the form of racemates or diastereoisomers. Among those phosphine ligands, those of the formula

15

20

25

30

35

wherein R₁₇ and R₁₈ are C₁-C₄alkyl or phenyl, are especially preferred.

[0012] The ferrocenyldiphosphine preferably corresponds to formula II

$$R_1R_2P-R_5-PR_3R_4 (II),$$

15 wherein

5

20

25

 $R_1,\,R_2,\,R_3$ and R_4 are each independently of the others a hydrocarbon radical having from 1 to 20 carbon atoms that is unsubstituted or substituted by $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ alkoxy, halogen, $C_1\text{-}C_6$ haloalkyl, $(C_1\text{-}C_{12}$ alkyl) $_3$ Si, $(C_6H_5)_3$ Si, $C_1\text{-}C_6$ haloalkoxy, -NH $_2$, phenyl $_2$ N-, benzyl $_2$ N-, morpholinyl, piperidinyl, pyrrolidinyl, $(C_1\text{-}C_{12}$ alkyl) $_2$ N-, -ammonium-X $_1$ O , -SO $_3$ M $_1$, -CO $_2$ M $_1$, -PO $_3$ M $_1$ or by -COO-C $_1\text{-}C_6$ alkyl, wherein M $_1$ is an alkali metal or hydrogen and X $_1$ O is the anion of a monobasic acid;

 R_1 and R_2 together and R_3 and R_4 together form a C_1 - C_4 alkylene radical that is unsubstituted or substituted by C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkyl, C_5 - or C_6 -cycloalkyl, by phenyl that is unsubstituted or substituted by C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl or by halogen, or by benzyl that is unsubstituted or substituted by C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl or by halogen; and

R₅ is a radical of the formula

whereir

5

10

15

 R_6 is hydrogen, C_1 - C_8 alkyl, C_1 - C_4 fluoroalkyl, phenyl or phenyl having from 1 to 3 C_1 - C_4 -alkyl or C_1 - C_4 alkoxy substituents.

[0013] R_1 , R_2 , R_3 and R_4 are preferably identical or different, preferably identical, radicals from the following group: C_1 - C_6 alkyl; cyclopentyl and cyclohexyl that are unsubstituted or have from one to three C_1 - C_6 alkyl or C_1 - C_6 alkoxy substituents; and benzyl and especially phenyl that are unsubstituted or have from one to three C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkoxy substituents.

[0014] Especially suitable disphosphine ligands DIP are those of formula III

wherein

35

40

55

Re is hydrogen and especially methyl; and

A represents identical or different groups -P(R) $_2$ wherein R is C $_1$ -C $_6$ alkyl, cyclohexyl, phenyl, benzyl, or phenyl or benzyl each having from one to three C $_1$ -C $_4$ alkyl, disubstituted amino, C $_1$ -C $_4$ alkoxy, -CF $_3$ or partially or completely fluorinated C $_1$ -C $_4$ alkoxy substituents.

[0015] R, when alkyl, is preferably branched C_3 - C_6 alkyl. Disubstituted amino is preferably secondary amino having from 2 to 20, and preferably from 2 to 12, carbon atoms. It may have the formula -NR₇R₀₇ wherein R₇ and R₀₇ are each independently of the other C_1 - C_6 -alkyl, unsubstituted or C_1 - C_4 alkyl- or C_1 - C_4 alky

[0016] A preferred sub-group is one in which the diphosphine of formula III is chiral and R_6 is C_1 - C_4 alkyl, or phenyl or benzyl each having from one to three C_1 - C_4 alkyl or C_1 - C_4 alkoxy substituents. A represents identical or different groups -P(R)₂ wherein R is branched C_3 - C_6 alkyl, cyclohexyl, phenyl, benzyl, or phenyl or benzyl each having from one to three C_1 - C_4 alkyl, C_1 - C_4 alkylamino, C_1 - C_4 alkoxy, -CF₃ or partially or completely fluorinated C_1 - C_4 alkoxy substituents. In the case of those phosphines, chirally substituted compounds wherein R_6 is methyl are especially preferred. [0017] R in the group -P(R)₂ is, within the scope of the preferences mentioned above, especially phenyl or substituted

[0018] Most especially preferred among those diphosphine ligands are the following, which may preferably be used in catalysts of formula (I):

{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}ethyl-di(3,5-dimethyl-phenyl)phosphine

{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}ethyl-di(3,5-dimethyl-4-N,N-dipropylaminophenyl)phosphine

{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}ethyl-di(3,5-di-iso-propyl-4-N,N-dimethylaminophenyl)phosphine

{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}ethyl-di(3,5-di-iso-propyl-4-N,N-dibenzylylaminophenyl)phosphine

{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl}}ethyl-di(3,5-dimethyl-4-N,N-dibenzylylaminophenyl)phosphine

{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}ethyl-di(3,5-dimethyl-4-(1'-pyrrolo)phenyl)phosphine

{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}ethyl-di(3,5-dimethyl-4-N,N-dipentylaminophenyl)phosphine

{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}ethyl-di(3,5-dimethyl-4-N,N-dimethylaminophenyl)phosphine

{(R)-1-[(S)-2-di(4-methoxyphenyl)phosphino)ferrocenyl]}ethyl-di(3,5-dimethyl-4-N,N-dimethylaminophenyl)phosphine and especially

{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl}}ethyl-di(3,5-dimethyl-phenyl)phosphine.

[0019] The preparation of ferrocenyldiphosphine ligands is described, for example, in EP-A-0 564 406 and by T. Hayashi et al. in Bull. Chem. Soc. Jpn., 53, pages 1136-1151, and by A. Togni et al. in J. Am. Chem. Soc., 116, pages 4062 to 4066 (1994) and in lnorg. Chim. Acta, 222, pages 213 to 224.

[0020] In formulae I and Ia, X is preferably Br and especially I. Also in formulae I and Ia, q is 2 or 3 and r is 1.

[0021] M^{\oplus} in formula la may be $(C_1 - C_6 a |ky|)_4 N^{\oplus}$, Li^{\oplus} , Na^{\oplus} or K^{\oplus} .

5

20

40

45

50

[0022] In an especially preferred form of the process of the invention, the catalysts are those of formula lb

$$[(DIP)Irl2H]2 (Ib),$$

wherein DIP is as defined hereinbefore, including the preferred definitions.

[0023] The iridium catalysts to be used according to the invention may be prepared according to the processes described in US-A-5 112 999.

[0024] Suitable imines are especially those which contain at least one C=N— group. If the groups are substituted asymmetrically and are thus compounds having a prochiral ketimine group, it is possible in the process of the invention for mixtures of optical isomers or pure optical isomers to be formed if enantioselective or diastereoselective iridium catalysts are used. The imines may contain further chiral carbon atoms. The free bonds in the above formulae may be saturated with hydrogen or organic radicals having from 1 to 22 carbon atoms or organic hetero radicals having from 1 to 20 carbon atoms and at least one hetero atom from the group O, S, N and P. The nitrogen atom of the group C=N— may also be saturated with NH₂ or a primary amino group having from 1 to 22 carbon atoms or a secondary amino group having from 2 to 40 carbon atoms. The organic radicals may be substituted, for example, by F, Cl, Br, C₁-C₄haloalkyl, wherein halogen is preferably F or Cl, -CN, -NO₂, -CO₂H, -CONH₂, -SO₃H, -PO₃H₂, or by C₁-C₁₂alkyl esters, C₁-C₁₂alkyl amides, phenyl esters or benzyl esters of the groups -CO₂H, -SO₃H and -PO₃H₂. Aldimine and ketimine groups are especially reactive and therefore a selective hydrogenation of C=N— groups in addition to the groups C=C(and/or)C=O is possible with the process of the invention. Aldimine and ketimine groups are also be understood as including hydrazone groups

[0025] The process of the invention is suitable especially for the hydrogenation of aldimines, ketimines and hydrazones with the formation of corresponding amines and hydrazines. The ketimines are preferably N-substituted. It is preferable to use chiral iridium catalysts and to hydrogenate enantiomerically pure, chiral or prochiral ketimines to prepare optical isomers, the optical yields (enantiomeric excess, ee) being, for example, higher than 30%, preferably higher than 50%, and it being possible to obtain yields of more than 90%. The optical yield indicates the ratio of the two stereoisomers formed, which ratio may be, for example, greater than 2:1 and preferably greater than 4:1.

[0026] The imines are preferably imines of formula IV

$$\begin{array}{c}
R_8 \\
CH = N - R_{10} \\
R_9
\end{array} (IV),$$

which are hydrogenated to form amines of formula V

$$\begin{array}{c}
R_8 \\
CH - NH - R_{10} \\
R_9
\end{array} \tag{V}$$

10 wherein

5

15

20

25

30

40

45

50

55

R₁₀ is preferably a substituent;

and wherein R_{10} is preferably linear or branched C_1 - C_{12} alkyl, cycloalkyl having from 3 to 8 ring carbon atoms; heterocycloalkyl bonded via a carbon atom and having from 3 to 8 ring atoms and 1 or 2 hetero atoms from the group O, S and NR₁₁; a C_7 - C_{16} aralkyl bonded via an alkyl carbon atom, or C_1 - C_{12} alkyl substituted by said cycloalkyl or heterocycloalkyl or heteroaryl;

or wherein R₁₀ is C₆-C₁₂aryl, or C₄-C₁₁heteroaryl bonded via a ring carbon atom and having 1 or 2 hetero atoms in the ring; R₁₀ being unsubstituted or substituted by -CN, -NO₂, F, Cl, C₁-C₁₂alkyl, C₁-C₁₂alkoxy, C₁-C₁₂alkylthio, C₁-C₆haloalkyl, -OH, C₆-C₁₂-aryl or -aryloxy or -arylthio, C₇-C₁₆-aralkyl or -aralkoxy or -aralkylthio, secondary amino having from 2 to 24 carbon atoms, -CONR₁₂R₁₃ or by -COOR₁₂, and the aryl radicals and the aryl groups in aralkyl, aralkoxy and aralkylthio in turn being unsubstituted or substituted by -CN, -NO₂, F, Cl, C₁-C₄-alkyl, -alkoxy, -alkylthio, -OH, -CONR₁₂R₁₃ or by -COOR₁₂;

 R_{12} and R_{13} are each independently of the other hydrogen, C_1 - C_{12} alkyl, phenyl or benzyl, or R_{12} and R_{13} together are tetra- or penta-methylene or 3-oxapentylene;

R₁₁ has independently the same meaning as given for R₁₂;

 R_8 and R_9 are each independently of the other a hydrogen atom, C_1 - C_{12} alkyl or cycloalkyl having from 3 to 8 ring carbon atoms, each of which is unsubstituted or substituted by -OH, C_1 - C_{12} alkoxy, phenoxy, benzyloxy, secondary amino having from 2 to 24 carbon atoms, -CONR₁₂R₁₃ or by -COOR₁₂; C_6 - C_{12} aryl or C_7 - C_{16} aralkyl each of which is unsubstituted or substituted as R_{10} , or -CONR₁₂R₁₃ or -COOR₁₂ wherein R_{12} and R_{13} are as defined hereinbefore; or

 R_{10} is as defined hereinbefore and R_8 and R_9 together are alkylene having from 2 to 5 carbon atoms that is optionally interrupted by 1 or 2 -O-, -S- or -NR $_6$ - radicals, and/or unsubstituted or substituted by -O or as indicated above for R_8 and R_9 in the meaning of alkyl, and/or condensed with benzene, pyridine, pyrimidine, furan, thiophene or pyrrole: or

 R_9 is as defined hereinbefore and R_8 and R_{10} together are alkylene having from 2 to 5 carbon atoms that is optionally interrupted by 1 or 2 -O-, -S- or -NR₁₁- radicals, and/or unsubstituted or substituted by =O or as indicated above for R_8 and R_9 in the meaning of alkyl, and/or condensed with benzene, pyridine, pyrimidine, furan, thiophene or pyrrole.

[0027] The radicals R_8 , R_9 and R_{10} may contain one or more centres of chirality.

[0028] R_8 , R_9 and R_{10} may be substituted in any desired positions by identical or different radicals, for example by from 1 to 5, preferably from 1 to 3, substituents.

[0029] Suitable substituents for R₈ and for R₉ and R₁₀ are:

C₁-C₁₂-, preferably C₁-C₆- and especially C₁-C₄-alkyl, -alkoxy or -alkylthio, e.g. methyl, ethyl, propyl, n-, iso- and tert-butyl, the isomers of pentyl, hexyl, octyl, nonyl, decyl, undecyl and dodecyl, and corresponding alkoxy and alkylthio radicals:

 C_1 - C_6 -, preferably C_1 - C_4 -haloalkyl having preferably F and Cl as halogen, e.g. trifluoro- or trichloro-methyl, difluorochloromethyl, fluorodichloromethyl, 1,1-difluoroeth-1-yl, 1,1-trichloro- or 1,1,1-trifluoroeth-2-yl, pentachloroethyl, pentafluoroethyl, 1,1,1-trifluoro-2,2-dichloroethyl, n-perfluoropropyl, iso-perfluoropropyl, n-perfluorobutyl, fluoro- or chloro-methyl, difluoro- or dichloro-methyl, 1-fluoro- or 1-chloro-eth-2-yl or -eth-1-yl, 1-, 2- or 3-fluoro- or 1-, 2- or 3-chloro-prop-1-yl or -prop-2-yl or -prop-3-yl, 1-fluoro- or 1-chloro-but-1-yl, -but-2-yl, -but-3-yl or -but-4-yl, 2,3-dichloro-prop-1-yl, 1-chloro-2-fluoro-prop-3-yl, 2,3-dichlorobut-1-yl;

C₆-C₁₂-aryl, -aryloxy or -arylthio, in which aryl is preferably naphthyl and especially phenyl, C₇-C₁₆-aralkyl, -aralkoxy and -aralkylthio, in which the aryl radical is preferably naphthyl and especially phenyl and the alkylene radical is linear or branched and contains from 1 to 10, preferably from 1 to 6 and especially from 1 to 3, carbon atoms, for example benzyl, naphthylmethyl, 1- or 2-phenyl-eth-1-yl or -eth-2-yl, 1-, 2- or 3-phenyl-prop-1-yl, -prop-2-yl or -prop-3-yl, with benzyl being especially preferred;

the radicals containing the aryl groups mentioned above may in turn be mono- or polysubstituted, for example by C_1 - C_4 -alkyl, -alkoxy or -alkylthio, halogen, -OH, -CONR₁₂R₁₃ or by -COOR₁₂, wherein R₁₂ and R₁₃ are as defined; examples are methyl, ethyl, n- and iso-propyl, butyl, corresponding alkoxy and alkylthio radicals, F, Cl, Br, dimethyl-methyl-thyl- and diethyl-carbamoyl and methoxy-, ethoxy-, phenoxy- and benzyloxycarbonyl; halogen, preferably F and Cl:

secondary amino having from 2 to 24, preferably from 2 to 12 and especially from 2 to 6, carbon atoms, the secondary amino preferably containing 2 alkyl groups, for example dimethyl-, methylethyl-, diethyl-, methylpropyl-, methyl-n-butyl-, di-n-propyl-, di-n-butyl-, di-n-hexyl-amino;

-CONR $_{12}$ R $_{13}$, wherein R $_{12}$ and R $_{13}$ are each independently of the other C $_1$ -C $_{12}$ -, preferably C $_1$ -C $_6$ -, and especially C $_1$ -C $_4$ -alkyl, or R $_{12}$ and R $_{13}$ together are tetra- or penta-methylene or 3-oxapentylene, the alkyl being linear or branched, e.g. dimethyl-, methyl-h, methyl-n-propyl-, ethyl-n-propyl-, di-n-propyl-, methyl-n-butyl-, ethyl-n-butyl-, n-propyl-n-butyl- and di-n-butyl-carbamoyl;

-COOR₁₂, wherein R_{12} is C_1 - C_{12} -, preferably C_1 - C_6 -alkyl, which may be linear or branched, e.g. methyl, ethyl, nand iso-propyl, n-, iso- and tert-butyl, and the isomers of pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and dodecyl.

[0030] R₈, R₉ and R₁₀ may contain especially functional groups, such as keto groups, -CN, -NO₂, carbon double bonds, N-O-, aromatic halogen groups and amide groups.

[0031] R₈ and R₉ as heteroaryl are preferably a 5- or 6-membered ring having 1 or 2 identical or different hetero atoms, especially O, S or N, which contains preferably 4 or 5 carbon atoms and can be condensed with benzene. Examples of heteroaromatics from which R₈ and R₉ can be derived are furan, pyrrole, thiophene, pyridine, pyrimidine, indole and quinoline.

[0032] R₈ and R₉ as heteroaryl-substituted alkyl are derived preferably from a 5- or 6-membered ring having 1 or 2 identical or different hetero atoms, especially O, S or N, that contains preferably 4 or 5 carbon atoms and can be condensed with benzene. Examples of hetero-aromatics are furan, pyrrole, thiophene, pyridine, pyrimidine, indole and quinoline

[0033] R_8 and R_9 as heterocycloalkyl or as heterocycloalkyl-substituted alkyl contain preferably from 4 to 6 ring atoms and 1 or 2 identical or different hetero atoms from the group O, S and NR_{11} . It can be condensed with benzene. It may be derived, for example, from pyrrolidine, tetrahydrofuran, tetrahydrothiophene, indane, pyrazolidine, oxazolidine, piperidine, piperazine or morpholine.

[0034] R_8 , R_9 and R_{10} as alkyl are preferably unsubstituted or substituted C_1 - C_6 -, especially C_1 - C_4 -alkyl, which may be linear or branched. Examples are methyl, ethyl, iso- and n-propyl, iso-, n- and tert-butyl, the isomers of pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and dodecyl.

[0035] R₈, R₉ and R₁₀ as unsubstituted or substituted cycloalkyl contain preferably from 3 to 6, especially 5 or 6, ring carbon atoms. Examples are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl, cyclohexyl and cycloctyl.

[0036] R_8 , R_9 and R_{10} as aryl are preferably unsubstituted or substituted naphthyl and especially phenyl. R_8 , R_9 and R_{10} as aralkyl are preferably unsubstituted or substituted phenylalkyl having from 1 to 10, preferably from 1 to 6 and especially from 1 to 4, carbon atoms in the alkylene, the alkylene being linear or branched. Examples are especially benzyl, and 1-phenyleth-1-yl, 2-phenyleth-1-yl, 1-phenylprop-1-yl, 1-phenylprop-2-yl, 1-phenylprop-3-yl, 2-phenylprop-1-yl, 2-phenylprop-2-yl and 1-phenylbut-4-yl.

[0037] In R_9 and R_{10} as -CON $R_{12}R_{13}$ and -COO R_{12} , R_{12} and R_{13} are preferably C_1 - C_6 -, especially C_1 - C_4 -alkyl, or R_{12} and R_{13} together are tetramethylene, pentamethylene or 3-oxapentylene. Examples of alkyl are mentioned hereinbefore.

[0038] R₈ and R₉ together or R₈ and R₁₀ together as alkylene are preferably interrupted by 1 -O-, -S- or -NR₁₁-, preferably -O-. R₈ and R₉ together or R₈ and R₁₀ together form, with the carbon atom or with the -N=C group to which they are respectively bonded preferably a 5-or 6-membered ring. For the substituents the preferences mentioned here-inbefore apply. As condensed alkylene, R₈ and R₉ together or R₈ and R₁₀ together are preferably alkylene condensed with benzene or pyridine. Examples of alkylene are: ethylene, 1,2- or 1,3-propylene, 1,2-, 1,3- or 1,4-butylene, 1,5-pentylene and 1,6-hexylene. Examples of interrupted or =O-substituted alkylene are 2-oxa-1,3-propylene, 2-oxa-1,4-butylene, 2-oxa-1,5-pentylene, 3-thia-1,5-pentylene, 2-thia-1,4-butylene, 2-thia-1,3-propylene, 2-methylimino-1,3-propylene, 2-ethylimino-1,4-butylene, 2- or 3-methylimino-1,5-pentylene, 1-oxo-2-oxa-1,3-propylene, 1-oxo-2-oxa-1,4-butylene, 2-oxo-3-oxa-1,4-butylene and 1-oxa-2-oxo-1,5-pentylene. Examples of condensed alkylene are:

55

5

10

15

[0039] Examples of condensed and interrupted and unsubstituted or =O-substituted alkylene are:

R₁₂ and R₁₃ are preferably each independently of the other hydrogen, C₁-C₄alkyl, phenyl or benzyl. R₁₁ is preferably hydrogen or C₁-C₄alkyl.

[0040] A further preferred group is formed by prochiral imines in which in formula IV R₈ and R₉ are different from each other.

[0041] In an especially preferred group, in formula IV R_{10} is 2,6-di- C_1 - C_4 alkylphen-1-yl and especially 2,6-dimethylphen-1-yl or 2-methyl-6-ethylphen-1-yl, R_8 is C_1 - C_4 alkyl and especially ethyl or methyl, and R_9 is C_1 - C_4 alkyl, C_1 - C_4 alkoxymethyl or C_1 - C_4 alkoxyethyl, and especially methoxymethyl.

[0042] Of those compounds, imines of formulae

10

20

40

50

$$CH_3 CH_2OCH_3 CH_3 CH_2OCH_3$$

$$CH_3 CH_3 (VIa) and C_2H_5 CH_3 (VIb)$$

are especially important, as is the imine of formula

CH₃
$$N = C - CH_2OCH_3$$
CH₃ (VIc).

[0043] Imines of formula IV are known or they can be prepared in accordance with known processes from aldehydes or ketones and primary amines.

[0044] The molar ratio of imine to iridium catalyst may be, for example, from 1 000 000 to 10, especially from 500 000 to 20, more preferably from 200 000 to 100 and most preferably from 100 000 to 100.

[0045] The process is carried out preferably at a temperature of from -20 to 100°C, especially from 0 to 80°C and more especially from 10 to 70°C, and preferably at a hydrogen pressure of from 2 x 10⁵ to 1.5 x 10⁷ Pa (5 to 150 bar), especially from 10⁶ to 10⁷ Pa (10 to 100 bar).

[0046] The reaction can be carried out in the absence or in the presence of solvents. Suitable solvents, which can

be used alone or as a mixture of solvents, are, for example:

25

35

40

aliphatic and aromatic hydrocarbons, such as pentane, hexane, cyclohexane, methylcyclohexane, benzene, toluene and xylene; ethers, such as diethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran and dioxane; halogenated hydrocarbons, such as methylene chloride, chloroform, 1,1,2,2-tetrachloroethane and chlorobenzene; esters and lactones, such as ethyl acetate, butyrolactone and valerolactone; acid amides and lactams, such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone, and ketones, such as acetone, dibutyl ketone, methyl isobutyl ketone and methoxyacetone.

[0047] In detail, the process according to the invention can be carried out by first dissolving the catalyst in a solvent or in a portion of the substance to be hydrogenated and then adding the imine (where appropriate as a solution). That mixture is hydrogenated in an autoclave and the reaction mixture is isolated and purified in a manner known per se, for example by precipitation, extraction or distillation. The catalyst may be formed *in situ* in the starting phase of the hydrogenation.

[0048] Before the hydrogenation reaction, a protective gas atmosphere is advantageously used. It is advantageous to ensure that the catalyst solution stands for only a short time, and to carry out the hydrogenation of the imines as soon as possible after the preparation of the catalyst solution.

[0049] In the case of the hydrogenation of aldimines and ketimines, the aldimines and ketimines can also be formed in situ before or during the hydrogenation. In a preferred form, an amine and an aldehyde or a ketone are mixed together and added to the catalyst solution and the aldimine or ketimine formed in situ is hydrogenated. It is also possible, however, to use an amine, a ketone or an aldehyde together with the catalyst as the initial batch and to add the ketone or the aldehyde or the amine thereto, either all at once or in metered amounts.

[0050] The hydrogenation can be carried out continuously or batchwise in various types of reactor. Preference is given to those reactors which allow comparatively good intermixing and good removal of heat, such as, for example, loop reactors. That type of reactor has proved to be especially satisfactory when small amounts of catalyst are used. [0051] The process according to the invention yields the corresponding amines in short reaction times while having chemically a high degree of conversion, with surprisingly excellent optical yields (ee) of 70 % or more being obtained even at relatively high temperatures of more than 50°C, and even with high molar ratios of imine to catalyst.

[0052] The hydrogenated organic compounds that can be prepared in accordance with the invention, for example the amines, are biologically active substances or are intermediates for the preparation of such substances, especially in the field of the preparation of pharmaceuticals and agrochemicals. For example, o,o-dialkylarylketamine derivatives, especially those having alkyl and/or alkoxyalkyl groups, are effective as fungicides, especially as herbicides. The derivatives may be amine salts, acid amides, for example of chloroacetic acid, tertiary amines and ammonium salts (see, for example, EP-A-0 077 755 and EP-A-0 115 470).

[0053] Especially important in this connection are the optically active amines of formula VII

$$R_{03}$$
 $CH - R_{04}$
 R_{02}
 R_{01}
 R_{01}
 R_{01}

which can be prepared using the processes according to the invention from the imines of formula (VI) in the presence of asymmetric iridium catalysts, and wherein R₀₁, R₀₂ and R₀₃ are each independently of the others C₁-C₄alkyl, and R₀₄ is C₁-C₄alkyl or C₁-C₄-alkoxymethyl or C₁-C₄alkoxymethyl, and especially the amines of the formulae

which can be prepared from the imines of formulae (VIa) and (VIb) and can be converted in accordance with methods that are customary *per se* with chloroacetic acid into the desired herbicides of the chloroacetanilide type; of those compounds, the compounds having the S-configuration at the asymmetric C* atom are most especially preferred.

[0054] The Examples that follow illustrate the invention in more detail. The chemical conversion is determined by gas chromatography (column 2m OV 101 / 100 to 200°C at 10°C/min). The optical yields (enantiomeric excess, ee) are determined either by gas chromatography [Chirasil-Val column, 50 m, manufacturer: Alltech, USA, T = 150°C, isothermic], by HPLC (Chiracel OD column) or by ¹H-NMR spectroscopy (using shift reagents).

[0055] For the diphosphines, the following abbreviations are used:

10 {(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}ethyl-bis[(3,5-dimethyl)phenyl]phosphine {PPF-P(xyl)₂]

{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}ethyl-bis[(3,5-dimethyl-4-dimethylamino)phenyl]phosphine [PPF-P (NMe₂xyl)₂]

{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}ethyl-di-(tertiary butyl)phosphine [PPF-P(t-Bu)₂]

A) Preparation of starting compounds and catalysts

Example A1: Preparation of [(PPF-P(xyI)₂)Ir(cyclooctadiene)]BF₄ (A1)

[0056] 320 mg (1.64 mmol) of AgBF₄ are added to a solution of 525 mg (0.78 mmol) of [Ir(cydooxctadiene)Cl]₂ in 10 ml of methylene chloride and stirred. After 15 minutes, 1 g (1.57 mmol) of PPF-P(xyI)₂ in 10 ml of methylene chloride is slowly added dropwise. The deep-red solution formed is stirred at room temperature for 12 h with the exclusion of light. It is then filtered over Celite and the solvent is evaporated off *in vacuo* to yield 1.54 g (96%) of a deep-red solid (A1). ³¹P{¹H}-NMR (121 MHz; CDCl₃)

40.34 and 8.68 (AX; ${}^{2}J_{PP} = 21.9$ and 23.6 Hz; 92%); 6.49 and 25.11 (AX; ${}^{2}J_{PP} = 23.96$ and 23.63 Hz; 6%); 18.87 (s; 2%).

Example A2: Preparation of [(PPF-P(NMe2xyI)2)Ir(cyclooctadiene)]BF4 (A2)

30 [0057] Preparation is effected analogously to Example A1. The isolated product contains, according to the NMR spectrum, approximately 10% by-products.

 $^{31}P\{^{1}H\}$ -NMR (121 MHz; CDCl₃) 39.76 and 10.24 (AX; $^{2}J_{PP}=21.5$ and 21.0 Hz)

35 Example A3: Preparation of [(PPF-P(t-Bu)₂)Ir(cyclooctadiene)]BF₄ (A3)

[0058] Preparation is effected analogously to Example A1. The isolated product contains, according to the NMR spectrum, approximately 10% by-products.

³¹P{¹H}-NMR (121 MHz; CDCl₃).

40 61.38 and 9.52 (AX; ${}^2J_{PP} = 10.5$ and 17.7 Hz)

Example A4: Preparation of [(PPF-P(xyl)₂)IrHl₂]₂ (Ir1)

[0059]

45

50

55

15

20

. . .

a) 6.5 g (48.6 mmol) of Lil are added to a solution of 1.5 mmol of compound A1 in 20 ml of acetone and the mixture is then refluxed with stirring for 5 h. After cooling, the solvent is removed using a rotary evaporator. The orange-red residue is dissolved in 100 ml of methylene chloride, left to stand at room temperature for 12 h, and the white precipitate which forms is removed by filtration. The filtrate is washed twice with 100 ml of water and the solvent is then removed using a rotary evaporator. The orange-brown residue is taken up in 20 ml of methylene chloride, 50 ml of pentane are added thereto and the orange-brown precipitate is removed by filtration. The filtrate is again concentrated to dryness, taken up in 5 ml of methylene chloride, 20 ml of pentane are added thereto and the redbrown precipitate is removed by filtration. The last procedure is repeated, and the three precipitates are combined, washed with 10 ml of water, twice with 10 ml of ethanol, twice with 5 ml of diethyl ether and three times with 10 ml of pentane. 1.35 g (83%) of an orange-brown solid are obtained as a mixture of isomers.

¹H-NMR (300 MHz; CDCl₃) Hydride region:

Main isomer -17.25 (dd, SJ = 25.5 Hz, 73%)

Other resonances: -16.15 (m, broad, 5%); -16.22 (dd, $\Sigma J = 24.6$ Hz, 6%); -19.16 (t, ${}^2J_P = 16.1$ Hz, 6%); -19.72 (t, ${}^2J_P = 16.1$ Hz, 5%); 20.86 (dd, $\Sigma J = 28.9$ Hz, 5%) ppm.

b) 450 mg (0.44 mmol) of compound A1 and 1.5 g of Lil (26 equivalents) are mixed with 10 ml of acetone, the mixture is refluxed for 2 h and then the solvent is removed to yield a deep-red solid comprising 2 position isomers as the main products, which are separated as follows:

First the residue is dried under a high vacuum for 12 h, then 20 ml of methylene chloride are added, the insoluble constituents are removed by filtration and the solvent is removed *in vacuo*. That procedure is repeated three times. Then 5 ml of toluene are added and the yellow-orange solution is decanted from the dark red oil which has separated. The procedure is repeated twice. The three filtrates are combined and concentrated to dryness by evaporation. 5 ml of toluene are added, the yellow solution is decanted from the red oil and the procedure is repeated. The filtrates and oil fractions are combined. 30 ml of pentane are added to the yellow toluene solution (10 ml) and the yellow solid which precipitates is removed by filtration. The filtrate is concentrated by evaporation, dissolved with 4 ml of toluene, 30 ml of pentane are added and the yellow solid which precipitates is then removed by filtration. The filtrate is concentrated by evaporation and the brown solid is washed twice with 2 ml of ethanol and twice with 2 ml of diethyl ether. After drying, 65 mg (14%) of compound Ir2 are obtained in the form of a fawn-coloured solid.

 1 H-NMR (300 MHz; CDCl₃) Hydride region: Main isomer -17.22 (dd, ΣJ = 25.6 Hz, 92%) 31 P{ 1 H}-NMR (121 MHz; CDCl₃). Main isomer 10.4 and -22.2 (AX; 2 J_{PP} = 18.5 and 15.8 Hz, 92%).

[0060] The red oil is dried *in vacuo* and dissolved in methylene chloride, and undissolved portions are removed by filtration. The solvent is then evaporated off and the procedure is repeated twice. 270 mg (57%) of compound Ir3 are obtained in the form of a reddish brown solid.

¹H-NMR (300 MHz; CDCl₃)

Hydride region:

5

10

15

20

Main isomer -19.74 (t, ²J_{HP} = 16.3 Hz, 84%)

³¹P{¹H}-NMR (121 MHz; CDCl₃).

Main isomer 15.5 and -8.6 (AX; ²J_{PP} = 12.5 and 12.8 Hz, 84%).

Example A5: Preparation of [(PPF-P(NMe₂xyl)₂)|rH|₂]₂ (lr4)

[0061] 1.4 g (39 equivalents) of Lil are added to a solution of 0.134 mmol of compound A2 in 8 ml of acetone and the mixture is refluxed with stirring for 5 h. It is then concentrated using a rotary evaporator to a volume of 4 ml and the yellow-orange solid residue is separated off by centrifuging. The solid is washed twice with 2 ml of acetone, with 2 ml of methylene chloride, with 2 ml of chloroform and twice with 5 ml of pentane. After drying in vacuo, 125 mg (40%) of a yellow-orange solid are obtained.

H-NMR (300 MHz; CD₃CN)
 Hydride region: -20.51 (t, ²J_{HP} = -16.1 Hz, 87%); -20.28 t, ²J_{HP} = -17.0 Hz, 13%).
 ³¹P{¹H}-NMR (121 MHz; CD₃CN)
 11.8 and -14.4 (s, 85%); 8.1 and -16.4 (m, 15%).

45 Example A6: Preparation of [(PPF-P(t-Bu)₂)IrHl₂]₂ (Ir5)

[0062] 2.6 g of Lil (19.43 mmol) are added to a solution of 0.245 mmol of compound A3 in 15 ml of acetone and the mixture is then refluxed with stirring for 8 h. The solvent is then removed using a rotary evaporator and the dark red solid residue is dried under a high vacuum. The solid is dissolved in 20 ml of methylene chloride and the insoluble constituents are removed by filtration. That procedure is repeated twice. The residue is again taken up in methylene chloride and washed twice with 10 ml of water. The methylene chloride is then removed using a rotary evaporator and the reddish brown residue is washed three times with 10 ml of ethanol and three times with 10 ml of diethyl ether. After drying *in vacuo*, 450 mg (93%) of a reddish brown solid are obtained.

¹H-NMR (300 MHz; CDCl₃)

Hydride region: -18.88 (dd, $\Sigma^2 J_{HP} = 32$ Hz, 40%); -21.48 (t, $^2 J_{HP} = 15.5$ Hz, 60%). $^{31}P\{^1H\}$ -NMR (121 MHz; CDCl₃) 60.4 and 8.0 (s, broad, 40%); 54.8 and -9.9 (s, broad, 60%).

B) Hydrogenation of imines

[0063] The following abbreviations are used for the imines used:

5

10

Examples B1-B13:

[0064] In a 50 ml steel autoclave, the catalyst (0.0157 mmol) is dissolved in 2.5 ml of methylene chloride and 7.5 ml of tetrahydrofuran. The imine (7.83 mmol, 500 equivalents) is added to the solution. The autoclave is degassed three times with hydrogen at 25 bar. The reaction mixture is then heated to 30°C and hydrogen is passed in under pressure. To examine the course of the reaction, samples may be taken periodically *via* a built-in cannula. t_{Con} is the time taken before the conversion indicated is reached and t_{End} is the total reaction time. S/Ir is the molar ratio of DMA to iridium catalyst. Ir denotes the iridium catalysts Ir1 to Ir5 according to Examples A4 to A6. In Examples B3 and B10 tetrahydrofuran is used, in Example B4 methylene chloride, in Example B5 toluene, and in Example B6 methyl tert-butyl ether. The results are given in Table 1.

Table 1

				eldar	1			
25	lr	S/Ir	H ₂ pressure (bar)	t _{Con} (% conversion)	t _{End}	Yield (%)	Optical Yield (% ee)	Example
	lr1	500	40	15'(82)	25'	98	82(S)	B1
	Ir1	500	10	30'(51)	1h15	98	82(S)	B2.
	Ir1	500	10	30'(61)	1h	98	81(S)	B3
30	lr1	500	10	1h (40)	3h25	80	77(S)	B4
	lr1	500	10	2h (49)	3h05	82	80(S)	B5
	lr1	500	40	30'(87)	45'	99	86(S)	B6
	lr2	500	40	15'(91)	45'	100	82(S)	B7
35	Ir2	500	10	15'(51)	30,	93	82(S)	B8
	lr2	10 000	40	2h (43)	4h	95	82(S)	B9
	lr2	85 000	40	24h(26)	96h	95	82(S)	B10
	Ir3	500	40	15'(47)	30'	96	82(S)	B11
	lr4	500	40	15'(68)	25'	98	83(S)	B12
40	lr5	500	40	24h(14)	95h	31	42(S)	B13

Claims

45 1. A process for the preparation of primary or secondary amines by hydrogenation of imines with hydrogen at elevated pressure and in the presence of a dinuclear Ir(III) complex having ditertiary diphosphine ligands, halide bridges, halide and hydride ligands, or an Ir(III) halide complex salt containing ditertiary diphosphine ligands, as catalyst, wherein the catalyst corresponds to formula I or Ia or to mixtures of at least two compounds of formula I, at least two compounds of formulae I and Ia, or at least two compounds of formula Ia

50

$$\left[\left(\mathsf{DIP} \right) \mathsf{IrX}_{\mathsf{q}} \mathsf{Y}_{\mathsf{r}} \right]_{2} \tag{i),}$$

ss [(DIP)X₄][⊖]Me[⊕]

(la),

wherein

DIP is the ditertiary diphosphine ligand of a ferrocenyldiphosphine the phosphine groups of which are either bonded directly or *via* a bridge group -CR_vR_w- in the ortho positions of a cyclopentadienyl ring or are each bonded to a cyclopentadienyl ring of a ferrocenyl, so that a 5-, 6- or 7-membered ring is formed together with the Ir atom:

 R_v and R_w are each independently of the other hydrogen, C_1 - C_8 alkyl, C_1 - C_4 fluoroalkyl, phenyl or benzyl, or are phenyl or benzyl each having from 1 to 3 C_1 - C_4 alkyl or C_1 - C_4 -alkoxy substituents; X is Cl. Br or I:

Y is H;

5

10

15

20

30

35

40

50

55

q is a number 2 or 3 and r is 0 or 1, the sum of q+r being equal to 3; and Me^{\oplus} is an alkali metal cation or quaternary ammonium.

- 2. A process according to claim 1, wherein R_w is hydrogen.
- 3. A process according to claims 1 and 2, wherein R_v is C₁-C₄alkyl.
- 4. A process according to claim 3, wherein R, is methyl.
- 5. A process according to claim 1, wherein the ditertiary diphosphine contains at least one chiral group and is a stereoisomer or a pair of diastereoisomers.
- A process according to claim 1, wherein the phosphine groups contain two identical or different unsubstituted or substituted hydrocarbon radicals having from 1 to 20 carbon atoms.
- 7. A process according to claim 1, wherein the diphosphines contain two identical or different radicals from the following group: linear or branched C₁-C₁₂alkyl; unsubstituted or C₁-C₆alkyl- or C₁-C₆alkoxy-substituted C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkyl-CH₂-, phenyl and benzyl; and phenyl and benzyl each substituted by halogen, C₁-C₆haloalkyl, (C₁-C₁₂alkyl)₃Si, (C₅H₅)₃Si, C₁-C₆haloalkoxy, -NH₂, phenyl₂N-, benzyl₂N-, morpholinyl, piperidinyl, pyrrolidinyl, (C₁-C₁₂alkyl)₂N-, -ammonium-X₁⊖-, -SO₃M₁, -CO₂M₁, -PO₃M₁ or by -COO-C₁-C₆alkyl; wherein M₁ is an alkali metal or hydrogen and X₁⊖ is the anion of a monobasic acid, and M₁ is preferably H, Li, Na or K.
 - A process according to claim 1, wherein the phosphine groups are radicals of the formula

wherein m and n are each independently of the other an integer from 2 to 10 and the sum of m+n is equal to from 45 4 to 12.

9. A process according to claim 1, wherein the phosphine groups are radicals of the formula

wherein R_{16} is C_1 - C_4 alkylene, preferably C_2 - or C_3 -alkylene, and R_{14} and R_{15} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkyl, C_5 - or C_6 -cycloalkyl, or phenyl that is unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl or by halogen, or benzyl that is unsubstituted or substituted by

C1-C4alkyl, C1-C4alkoxy, C1-C4haloalkyl or by halogen.

10. A process according to claim 1, wherein the ferrocenyldiphosphine corresponds to formula II

$$R_1 R_2 P - R_5 - PR_3 R_4$$
 (II),

wherein

 R_1 , R_2 , R_3 and R_4 are each independently of the others a hydrocarbon radical having from 1 to 20 carbon atoms that is unsubstituted or substituted by C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halogen, C_1 - C_6 haloalkyl, $(C_1$ - C_1 2alkyl) $_3$ Si, $(C_6H_5)_3$ Si, C_1 - C_6 haloalkoxy, -NH $_2$, phenyl $_2$ N-, benzyl $_2$ N-, morpholinyl, piperidinyl, pyrrolidinyl, $(C_1$ - C_1 2alkyl) $_2$ N-, -ammonium- X_1 $_2$, -SO $_3$ M $_1$, -CO $_2$ M $_1$, -PO $_3$ M $_1$ or by -COO- C_1 - C_6 alkyl, wherein M $_1$ is an alkali metal or hydrogen and X_1 $_2$ 0 is the anion of a monobasic acid;

 R_1 and R_2 together and R_3 and R_4 together form a C_1 - C_4 alkylene radical that is unsubstituted or substituted by C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkyl, C_5 - or C_6 -cycloalkyl, by phenyl that is unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl or by halogen, or by benzyl that is unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl or by halogen; and

R₅ is a radical of the formula

20

25

5

10

15

30

35

Fe

40

45

CHR₆— or

CHR₆

CHR₆—

50

55

wherein R_6 is hydrogen, C_1 - C_8 alkyl, C_1 - C_4 fluoroalkyl, phenyl or phenyl having from 1 to 3 C_1 - C_4 alkyl or C_1 - C_4 alkoxy substituents.

- 11. A process according to claim 10, wherein R₁, R₂, R₃ and R₄ are identical or different radicals from the following group: C₁-C₆alkyl; cyclopentyl and cyclohexyl that are unsubstituted or have from one to three C₁-C₄alkoxy substituents; and benzyl and especially phenyl that are unsubstituted or have from one to three C₁-C₄alkyl, C₁-C₄alkoxy, F, Cl, C₁-C₄fluoroalkyl or C₁-C₄fluoroalkoxy substituents.
- 12. A process according to claim 10, wherein the disphosphine ligands DIP are those of formula III

Fe A (III).

wherein

5

10

15

20

25

30

35

40

45

50

R₆ is hydrogen and especially methyl; and

A represents identical or different groups -P(R)₂ wherein R is C_1 - C_6 alkyl, cyclohexyl, phenyl, benzyl, or phenyl or benzyl each having from one to three C_1 - C_4 alkyl, disubstituted amino, C_1 - C_4 alkoxy, -CF₃ or partially or completely fluorinated C_1 - C_4 alkoxy substituents.

13. A process according to claim 12, wherein the diphosphine of formula III is chiral and R₆ is C₁-C₄alkyl, or phenyl or benzyl each having from one to three C₁-C₄alkyl or C₁-C₄-alkoxy substituents, A represents identical or different groups -P(R)₂ wherein R is branched C₃-C₆alkyl, cyclohexyl, phenyl, benzyl, or phenyl or benzyl each having from one to three C₁-C₄alkyl, C₁-C₄dialkylamino, C₁-C₄alkoxy, -CF₃ or partially or completely fluorinated C₁-C₄alkoxy substituents.

- 14. A process according to claim 13, wherein R in the group P(R)2 is phenyl or substituted phenyl.
- 15. A process according to claim 1, wherein the diphosphines are selected from the following group:

{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}ethyl-di(3,5-dimethyl-phenyl)phosphine

{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}ethyl-di(3,5-dimethyl-4-N,N-dipropylaminophenyl)phosphine

 $\label{eq:condition} $$ {(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}$ ethyl-di(3,5-di-iso-propyl-4-N,N-dimethylaminophenyl) phosphine $$ {(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}$ ethyl-di(3,5-di-iso-propyl-4-N,N-dimethylaminophenyl) phosphine $$ {(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}$ ethyl-di(3,5-di-iso-propyl-4-N,N-dimethylaminophenyl) phosphine $$$ {(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}$ ethyl-di(3,5-di-iso-propyl-4-N,N-dimethylaminophenyl) phosphine $$$$ {(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}$ ethyl-di(3,5-di-iso-propyl-4-N,N-dimethylaminophenyl) phosphine $$$$ {(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}$ ethyl-di(3,5-di-iso-propyl-4-N,N-dimethylaminophenyl) phosphine $$$$$ {(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}$ ethyl-di(3,5-di-iso-propyl-4-N,N-dimethylaminophenyl) phosphine $$$$$ {(R)-1-[(S)-2-(diphenylphosphino)ferrocenyll]}$ ethyl-di(3,5-di-iso-propyl-4-N,N-dimethylaminophenyll) phosphine $$$$$ {(R)-1-[(S)-2-(diphenylphosphino)ferrocenyll]}$ ethyl-di(3,5-di-iso-propyl-4-N,N-dimethylaminophenyll) phosphine $$$$$ {(R)-1-[(S)-2-(diphenylphosphino)ferrocenyll]}$ ethyl-di(3,5-di-iso-propyl-4-N,N-dimethylaminophenyll) phosphine $$$$$ {(R)-1-[(S)-2-(diphenylphosphino)ferrocenyll]}$ ethyl-di(3,5-di-iso-propyl-4-N,N-dimethylaminophenyll) phosphine $$$$$ {(R)-1-[(S)-2-(diphenylphosphino)ferrocenyll]}$ ethyl-di(3,5-di-iso-propyll-4-N,N-dimethylaminophenyll) ethyl-di(3,5-di-iso-propyll-4-N,N-dimethyllaminophenyllaminophenyllaminophenyllaminophenyllaminophenyllaminophenyllaminophenyll$

{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}ethyl-di(3,5-di-iso-propyl-4-N,N-dibenzylylaminophenyl)phosphine

{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}ethyl-di(3,5-dimethyl-4-N,N-dibenzylylaminophenyl)phosphine

{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}ethyl-di(3,5-dimethyl-4-(1'-pyrrolo)phenyl)phosphine

 $\label{eq:conditional} $$ \{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]\}$ ethyl-di(3,5-dimethyl-4-N,N-dipentylaminophenyl) phosphine $$ \{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyll]\}$ ethyl-di(3,5-dimethyl-4-N,N-dipentylaminophenyll) phosphino $$ \{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyll]\}$ ethyl-di(3,5-dimethyl-4-N,N-dipentylaminophenyll) phosphino $$ \{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyll]\}$ ethyl-di(3,5-dimethyl-4-N,N-dipentyllaminophenyll) phosphino $$ \{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyll]\}$ ethyl-di(3,5-dimethyllaminophenyl$

 $\label{eq:conditional} $$ \{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]$ ethyl-di(3,5-dimethyl-4-N,N-dimethylaminophenyl) phosphine $$ (R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]$ ethyl-di(3,5-dimethyl-4-N,N-dimethylaminophenylphosphino)$ ethyl-di(3,5-dimethyl-4-N,N-dimethylaminophenylphosphino)$ ethyl-di(3,5-dimethyl-4-N,N-dimethylaminophenylphosphino)$ ethyl-di(3,5-dimethyl-4-N,N-dimethylaminophenylphosphino$

{(R)-1-[(S)-2-di(4-methoxyphenyl)phosphino)ferrocenyl]}ethyl-di(3,5-dimethyl-4-N,N-dimethylaminophenyl)phosphine and especially

{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]}ethyl-di(3,5-dimethyl-phenyl)phosphine.

16. A process according to claim 1, wherein the catalysts are those of formula lb

$$[(DIP)Irl_{2}H]_{2}$$
 (Ib)

wherein DIP is as defined in claim 1.

17. A process according to claim 1, wherein the imines are imines of formula IV

$$\begin{array}{c}
R_8 \\
CH = N - R_{10} \\
R_9
\end{array} \tag{IV},$$

wherein R_{10} is linear or branched C_1 - C_{12} alkyl, cycloalkyl having from 3 to 8 ring carbon atoms; heterocycloalkyl bonded via a carbon atom and having from 3 to 8 ring atoms and 1 or 2 hetero atoms from the group O, S and NR_{11} ; a C_7 - C_{16} aralkyl bonded via an alkyl carbon atom, or C_1 - C_{12} alkyl substituted by said cycloalkyl or heterocycloalkyl or heteroc

or wherein R_{10} is C_6-C_{12} aryl, or C_4-C_{11} heteroaryl bonded via a ring carbon atom and having 1 or 2 hetero atoms in the ring; R_{10} being unsubstituted or substituted by -CN, -NO₂, F, Cl, C_1-C_{12} alkyl, C_1-C_{12} alkoxy, C_1-C_{12} alkylthio, C_1-C_6 haloalkyl, -OH, C_6-C_{12} -aryl or -aryloxy or -arylthio, C_7-C_{16} -aralkyl or -aralkoxy or -aralkylthio, secondary amino having from 2 to 24 carbon atoms, -CONR₁₂R₁₃ or by -COOR₁₂, and the aryl radicals and the aryl groups in aralkyl, aralkoxy and aralkylthio in turn being unsubstituted or substituted by -CN, -NO₂, F, Cl, C_1-C_4 -alkyl, -alkoxy, -alkylthio, -OH, -CONR₁₂R₁₃ or by -COOR₁₂;

 R_{12} and R_{13} are each independently of the other hydrogen, C_1 - C_{12} alkyl, phenyl or benzyl, or R_{12} and R_{13} together are tetra- or penta-methylene or 3-oxapentylene;

R₁₁ has independently the same meaning as given for R₁₂;

 R_8 and R_9 are each independently of the other a hydrogen atom, C_1 - C_{12} alkyl or cycloalkyl having from 3 to 8 ring carbon atoms, each of which is unsubstituted or substituted by -OH, C_1 - C_{12} alkoxy, phenoxy, benzyloxy, secondary amino having from 2 to 24 carbon atoms, -CONR₁₂R₁₃ or by -COOR₁₂; C_6 - C_{12} aryl or C_7 - C_{16} aralkyl each of which is unsubstituted or substituted as R_{10} , or -CONR₁₂R₁₃ or -COOR₁₂ wherein R_{12} and R_{13} are as defined hereinbefore; or

 R_{10} is as defined hereinbefore and R_8 and R_9 together are alkylene having from 2 to 5 carbon atoms that is optionally interrupted by 1 or 2 -O-, -S- or -NR₆- radicals, and/or unsubstituted or substituted by =O or as indicated above for R_8 and R_9 in the meaning of alkyl, and/or condensed with benzene, pyridine, pyrimidine, furan, thiophene or pyrrole; or

 R_9 is as defined hereinbefore and R_8 and R_{10} together are alkylene having from 2 to 5 carbon atoms that is optionally interrupted by 1 or 2 -O-, -S- or -NR₁₁- radicals, and/or unsubstituted or substituted by =O or as indicated above for R_8 and R_9 in the meaning of alkyl, and/or condensed with benzene, pyridine, pyrimidine, furan, thiophene or pyrrole.

18. A process according to claim 17, wherein R_8 and R_9 are different from each other.

19. A process according to claim 17, wherein, in formula IV, R₁₀ is 2,6-di-C₁-C₄alkylphen-1-yl, R₈ is C₁-C₄alkyl, and R₉ is C₁-C₄alkyl, C₁-C₄alkoxymethyl or C₁-C₄alkoxyethyl.

20. A process according to claim 17, wherein the imines are imines of the formulae

55

5

10

15

20

25

30

35

40

$$CH_3$$
 $N = C - CH_2OCH_3$ CH_3 (VIc).

- 21. A process according to claim 1, wherein the molar ratio of imine to iridium catalyst is from 1 000 000 to 10.
 - 22. A process according to claim 21, wherein the molar ratio of imine to iridium catalyst is from 500 000 to 20.
 - 23. A process according to claim 21, wherein the molar ratio of imine to iridium catalyst is from 200 000 to 100.
 - 24. A process according to claim 21, wherein the molar ratio of imine to iridium catalyst is from 100 000 to 100.
 - 25. A process according to claim 1, wherein the reaction temperature is from -20 to 100°C.
- 20 26. A process according to claim 1, wherein the hydrogen pressure is from 2 x 10⁵ to 1.5 x 10⁷ Pa.
 - 27. A process according to claim 1, wherein the reaction is carried out in the presence of a solvent.

25 Patentansprüche

15

30

35

45

50

1. Verfahren zur Herstellung von primären oder sekundären Aminen durch Hydrierung von Iminen mit Wasserstoff bei erhöhtem Druck und in Gegenwart eines zweikernigen Ir(III)-Komplexes mit ditertiären Diphosphinliganden, Halogenidbrükken, Halogenid- und Hydridliganden oder eines ditertiäre Diphosphinliganden-enthaltenden Ir(III)-Halogenidkomplexsalzes als Katalysator, wobei der Katalysator der Formel I oder la oder Gemischen von mindestens zwei Verbindungen der Formel I, mindestens zwei Verbindungen der Formel la entspricht

$$[(DiP)IrX_{a}Y_{r}]_{2}$$
 (I),

$$[(DIP)X_d]^{\bullet}Me^{\oplus}$$
 (la),

40 worin

DIP den ditertiären Diphosphinliganden eines Ferrocenyldiphosphins darstellt, dessen Phosphingruppen entweder direkt oder über eine Brückengruppe -CR_vR_w- in den ortho-Stellungen eines Cyclopentadienylrings gebunden sind oder jeder an einen Cyclopentadienylring eines Ferrocenyls gebunden ist, so daß ein 5-, 6-oder 7-gliedriger Ring, zusammen mit dem Ir-Atom, gebildet wird;

R_v und R_w jeweils unabhängig voneinander Wasserstoff, C₁-C₈-Alkyl, C₁-C₄-Fluoralkyl, Phenyl oder Benzyl bedeuten, oder Phenyl oder Benzyl mit 1 bis 3 C₁-C₄-Alkyl- oder C₁-C₄-Alkoxysubstituenten bedeuten; X CI, Br oder I darstellt;

Y H darstellt;

q eine Zahl 2 oder 3 ist und r 0 oder 1 ist, wobei die Summe von q+r gleich 3 ist; und Me[®] ein Alkalimetallkation oder quaternäres Ammonium darstellt.

- 2. Verfahren nach Anspruch 1, wobei R., Wasserstoff darstellt.
- Verfahren nach Ansprüchen 1 und 2, wobei R, C₁-C₄-Alkyl darstellt.
 - 4. Verfahren nach Anspruch 3, wobei R, Methyl darstellt.

- Verfahren nach Anspruch 1, wobei das diterti\u00e4re Diphosphin mindestens eine chirale Gruppe enth\u00e4lt und ein Stereoisomer oder ein Diastereoisomerenpaar darstellt.
- Verfahren nach Anspruch 1, wobei die Phosphingruppen zwei gleiche oder verschiedene unsubstituierte oder substituierte Kohlenwasserstoffreste mit 1 bis 20 Kohlenstoffatomen enthalten.
- 7. Verfahren nach Anspruch 1, wobei die Diphosphine zwei gleiche oder verschiedene Reste der nachstehenden Gruppe enthalten: lineares oder verzweigtes C₁-C₁₂-Alkyl; unsubstituiertes oder C₁-C₆-Alkyl- oder C₁-C₆-Alkoxy-substituiertes C₅-C₁₂-Cycloalkyl, C₅-C₁₂-Cycloalkyl-CH₂-, Phenyl und Benzyl; und jeweils mit Halogen, C₁-C₆-Halogenalkyl, (C₁-C₁₂-Alkyl)₃Si, (C₆H₅)₃Si, C₁-C₆-Halogenalkoxy, -NH₂, Phenyl₂N-, Benzyl₂N-, Morpholinyl, Piperidinyl, Pyrrolidinyl, (C₁-C₁₂-Alkyl)₂N-, -Ammonium-X₁-, -SO₃M₁, -CO₂M₁, -PO₃M₁, oder mit -COO-C₁-C₆-Alkyl substituiertes Phenyl und Benzyl, wobei M₁ ein Alkalimetall oder Wasserstoff darstellt und X₁- das Anion einer einbasigen Säure darstellt und M1 vorzugsweise H, Li, Na oder K darstellt.
- 8. Verfahren nach Anspruch 1, wobei die Phosphingruppen Reste der Formel

darstellen.

5

10

15

20

25

30

40

45

50

55

worin m und n jeweils unabhängig voneinander eine ganze Zahl von 2 bis 10 sind und die Summe von m+n gleich 4 bis 12 ist.

9. Verfahren nach Anspruch 1, wobei die Phosphingruppen Reste der Formel

darstellen,

worin

R₁₆ C₁-C₄-Alkylen, vorzugsweise C₂- oder C₃-Alkylen, darstellt, und R₁₄ und R₁₅ jeweils unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl, C₅-oder C₆-Cycloalkyl oder unsubstituiertes oder mit C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl oder mit Halogen substituiertes Phenyl oder unsubstituiertes oder mit C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl oder mit Halogen substituiertes Benzyl darstellen.

10. Verfahren nach Anspruch 1, wobei das Ferrocenyldiphosphin der Formel II

$$R_1R_2P-R_5-PR_3R_4 \tag{II}$$

entspricht,

worin

R₁, R₂, R₃ und R₄ jeweils unabhängig voneinander einen unsubstituierten oder mit C₁-C₆-Alkyl, C₁-C₆-Alkoxy,

Halogen, C_1 - C_6 -Halogenalkyl, $(C_1$ - C_{12} -Alkyl) $_3$ Si, $(C_6H_5)_3$ Si, C_1 - C_6 -Halogenalkoxy, -NH $_2$, Phenyl $_2$ N-, Benzyl $_2$ N-, Morpholinyl, Piperidinyl, Pyrrolidinyl, $(C_1$ - C_{12} -Alkyl) $_2$ N-, -Ammonium- X_1 -, -SO $_3$ M $_1$, -CO $_2$ M $_1$, -PO $_3$ M $_1$, oder mit -COO- C_1 - C_6 -Alkyl substituierten Kohlenwasserstoffrest mit 1 bis 20 Kohlenstoffatomen darstellt, worin M $_1$ ein Alkalimetall oder Wasserstoff darstellt und X $_1$ - das Anion einer einbasigen Säure darstellt; R $_1$ und R $_2$ zusammen und R $_3$ und R $_4$ zusammen einen unsubstituierten oder mit C $_1$ -C $_6$ -Alkyl, C $_1$ -C $_6$ -Alkoxy, C $_1$ -C $_6$ -Halogenalkyl, C $_5$ - oder C $_6$ -Cycloalkyl, unsubstituiertem oder mit C $_1$ -C $_4$ -Alkyl, C $_1$ -C $_4$ -Alkoxy, C $_1$ -C $_4$ -Halogenalkyl oder mit Halogen substituiertem Benzyl substituierten C $_1$ -C $_4$ -Alkylenrest bilden; und R $_5$ einen Rest der Formel

10

5

darstellt; worin

R₆ Wasserstoff, C₁-C₈-Alkyl, C₁-C₄-Fluoralkyl, Phenyl oder Phenyl mit 1 bis 3 C₁-C₄-Alkyl- oder C₁-C₄-Alk-oxysubstituenten darstellt.

- 11. Verfahren nach Anspruch 10, wobei R₁, R₂, R₃ und R₄ gleiche oder verschiedene Reste der nachstehenden Gruppe darstellen: C₁-C₆-Alkyl, Cyclopentyl und Cyclohexyl, die unsubstituiert sind oder ein bis drei C₁-C₄-Alkyl- oder C₁-C₄-Alkoxysubstituenten aufweisen; und Benzyl und insbesondere Phenyl, die unsubstituiert sind oder ein bis drei C₁-C₄-Alkyl-, C₁-C₄-Alkoxy-, F-, Cl, C₁-C₄-Fluoralkyl- oder C₁-C₄-Fluoralkoxysubstituenten aufweisen.
- 12. Verfahren nach Anspruch 10, wobei die Diphosphinliganden DIP jene der Formel III sind

55

worin

5

10

15

20

25

30

35

40

45

50

R₆ Wasserstoff und insbesondere Methyl darstellt und

A gleiche oder verschiedene Gruppen - $P(R)_2$ wiedergibt, worin R C_1 - C_6 -Alkyl, Cyclohexyl, Phenyl, Benzyl oder Phenyl oder Benzyl mit jeweils ein bis drei C_1 - C_4 -Alkyl-, disubstituierten Amino-, C_1 - C_4 -Alkoxy-, - CF_3 oder teilweise oder vollständig fluorierten C_1 - C_4 -Alkoxysubstituenten bedeutet.

- 13. Verfahren nach Anspruch 12, wobei das Diphosphin der Formel III chiral ist und R₆ C₁-C₄-Alkyl oder Phenyl oder Benzyl mit jeweils ein bis drei C₁-C₄-Alkyl- oder C₁-C₄-Alkoxysubstituenten darstellt, A gleiche oder verschiedene Gruppen -P(R)₂ wiedergibt, worin R verzweigtes C₃-C₆-Alkyl, Cyclohexyl, Phenyl, Benzyl oder Phenyl oder Benzyl, jeweils mit ein bis drei C₁-C₄-Alkyl-, C₁-C₄-Dialkylamino-, C₁-C₄-Alkoxy-, -CF₃ oder teilweise oder vollständig fluorierten C₁-C₄-Alkoxysubstituenten darstellt.
- 14. Verfahren nach Anspruch 13, wobei R in der Gruppe P(R)2 Phenyl oder substituiertes Phenyl darstellt.
- 15. Verfahren nach Anspruch 1, wobei die Diphosphine ausgewählt sind aus der nachstehenden Gruppe:

{(R)-1-[(S)-2-(Diphenylphosphino)ferrocenyl]}ethyldi-(3,5-dimethyl-phenyl)phosphin

{(R)-1-[(S)-2-(Diphenylphosphino)ferrocenyl]}ethyldi-(3,5-dimethyl-4-N,N-dipropylaminophenyl)phosphin

{(R)-1-[(S)-2-(Diphenylphosphino)ferrocenyl]}ethyldi-(3,5-di-iso-propyl-4-N,N-dimethylaminophenyl)phosphin

{(R)-1-[(S)-2-(Diphenylphosphino)ferrocenyl]}ethyldi-(3,5-di-iso-propyl-4-N,N-dibenzylylaminophenyl)phosphin

{(R)-1-[(S)-2-(Diphenylphosphino)ferrocenyl]}ethyldi-(3,5-dimethyl-4-N,N-dibenzylylaminophenyl)phosphin

{(R)-1-[(S)-2-(Diphenylphosphino)ferrocenyl]}ethyldi-(3,5-dimethyl-4-(1'-pyrrolo)phenyl)phosphin

{(R)-1-[(S)-2-(Diphenylphosphino)ferrocenyl]}ethyldi-(3,5-dimethyl-4-N,N-dipentylaminophenyl)phosphin

{(R)-1-[(S)-2-(Diphenylphosphino)ferrocenyl]}ethyldi-(3,5-dimethyl-4-N,N-dimethylaminophenyl)phosphin

{(R)-1-[(S)-2-(Di(4-methoxyphenyl)phosphino)ferrocenyl]}ethyldi(3,5-dimethyl-4-N,N-dimethylaminophenyl)phosphin und insbesondere

(R)-1-[(S)-2-(Diphenylphosphino)ferrocenyl]}ethyl-di(3,5-dimethyl-phenyl)phosphin.

16. Verfahren nach Anspruch 1, wobei die Katalysatoren jene der Formel Ib sind

$$[(DIP)Irl2H]2 (Ib),$$

worin DIP wie in Anspruch 1 definiert ist.

17. Verfahren nach Anspruch 1, wobei die Imine die Formel IV aufweisen

$$R_8$$

CH = N - R₁₀

(IV),

 R_9

worin

5

10

15

20

25

R₁₀ lineares oder verzweigtes C₁-C₁₂-Alkyl, Cycloalkyl mit 3 bis 8 Ringkohlenstoffatomen; Heterocycloalkyl, gebunden über ein Kohlenstoffatom und mit 3 bis 8 Ringatomen und 1 oder 2 Heteroatomen der Gruppe O, S und NR₁₁, ein über ein Alkylkohlenstoffatom gebundenes C₇-C₁₆-Aralkyl oder mit dem Cycloalkyl oder Heterocycloalkyl oder Heterocycloalkyl oder Heterocycloalkyl oder Heterocycloalkyl bedeutet;

oder worin R₁₀ C₆-C₁₂-Aryl oder über ein Ringkohlenstoff-atom gebundenes C₄-C₁₁-Heteroaryl und mit ein oder 2 Heteroatomen im Ring bedeutet; R₁₀ unsubstituiertes oder mit -CN, -NO₂, F, Cl, C₁-C₁₂-Alkyl, C₁-C₁₂-Alkyl, C₁-C₁₂-Alkylthio, C₁-C₆-Halogenalkyl, -OH, C₆-C₁₂-Aryl oder -Aryloxy oder -Arylthio, C₇-C₁₆-Aralkyl oder -Aralkoxy oder -Aralkylthio, sekundärem Amino mit 2 bis 24 Kohlenstoffatomen, -CONR₁₂R₁₃ oder mit -COOR₁₂ substituiert ist, und die Arylreste und die Arylgruppen in Aralkyl, Aralkoxy und Aralkylthio ihrerseits unsubstituiert oder mit -CN, -NO₂, F, Cl, C₁-C₄-Alkyl, -Alkoxy, -Alkylthio, -OH, -CONR₁₂R₁₃ oder mit -COOR₁₂ substituiert sind;

 $\rm H_{12}$ und $\rm H_{13}$ jeweils unabhängig voneinander Wasserstoff, $\rm C_1$ - $\rm C_{12}$ -Alkyl, Phenyl oder Benzyl darstellen, oder $\rm H_{12}$ und $\rm H_{13}$ zusammen Tetra- oder Pentamethylen oder 3-Oxapentylen darstellen;

R₁₁ unabhängig die gleiche Bedeutung wie für R₁₂ angegeben aufweist;

 R_8 und R_9 jeweils unabhängig voneinander ein Wasserstoffatom, C_1 - C_{12} -Alkyl oder Cycloalkyl mit 3 bis 8 Ringkohlenstoffatomen, wobei jedes davon unsubstituiert oder mit -OH, C_1C_{12} -Alkoxy, Phenoxy, Benzyloxy, sekundärem Amino mit 2 bis 24 Kohlenstoffatomen, -CONR $_{12}R_{13}$ oder mit -COOR $_{12}$ substituiert ist; C_6 - C_{12} -Aryl oder C_7 - C_{16} -Aralkyl, wobei jeder davon unsubstituiert oder wie R_{10} substituiert ist, oder -CONR $_{12}R_{13}$ oder -COOR $_{12}$, worin R_{12} und R_{13} wie vorstehend definiert sind, darstellen; oder

 R_{10} wie vorstehend definiert ist und R_8 und R_9 zusammen Alkylen mit 2 bis 5 Kohlenstoffatomen, das gegebenenfalls durch 1 oder 2 Reste -O-, -S- oder -NR $_8$ - unterbrochen ist und/oder unsubstituiert oder mit =O substituiert oder wie vorstehend für R_8 und R_9 in der Bedeutung von Alkyl substituiert ist und/oder mit Benzol, Pyridin, Pyrimidin, Furan, Thiophen oder Pyrrol kondensiert ist; oder

 R_9 wie vorstehend definiert ist und R_8 und R_{10} zusammen Alkylen mit 2 bis 5 Kohlenstoffatomen darstellen, das gegebenenfalls durch 1 oder 2 Reste -O-, -S- oder -NR₁₁- unterbrochen ist, und/oder unsubstituiert oder mit =O oder wie vorstehend für R_8 und R_9 in der Bedeutung von Alkyl substituiert ist und/oder mit Benzol, Pyridin, Pyrimidin, Furan, Thiophen oder Pyrrol kondensiert ist.

30

35

40

45

50

55

- 18. Verfahren nach Anspruch 17, wobei R₈ und R₉ verschieden voneinander sind.
- Verfahren nach Anspruch 17, wobei in Formel IV R₁₀ 2,6-Di-C₁-C₄-alkylphen-1-yl darstellt, R₈ C₁-C₄-Alkyl darstellt, und R₉ C₁-C₄-Alkyl, C₁-C₄-Alkoxymethyl oder C₁-C₄-Alkoxyethyl darstellt.
- 20. Verfahren nach Anspruch 17, wobei die Imine die Formeln

$$CH_3 = C - CH_2OCH_3$$

$$CH_3 \qquad (VIc)$$

aufweisen.

21. Verfahren nach Anspruch 1, wobei das Molverhältnis von Imin-zu-Iridiumkatalysator 1 000 000:10 ist.

- 22. Verfahren nach Anspruch 21, wobei das Molverhältnis von Imin-zu-Iridiumkatalysator 500 000:20 ist.
- 23. Verfahren nach Anspruch 21, wobei das Molverhältnis von Imin-zu-Iridiumkatalysator 200 000:100 ist.
- 24. Verfahren nach Anspruch 21, wobei das Molverhältnis von Imin-zu-Iridiumkatalysator 100 000:100 ist.
 - 25. Verfahren nach Anspruch 1, wobei die Reaktionstemperatur -20 bis 100°C ist.
 - 26. Verfahren nach Anspruch 1, wobei der Wasserstoffdruck 2 x 10⁵ bis 1,5 x 10⁷ Pa ist.
 - 27. Verfahren nach Anspruch 1, wobei die Reaktion in Gegenwart eines Lösungsmittels ausgeführt wird.

Revendications

15

20

10

1. Un procédé de préparation d'amines primaires ou secondaires par hydrogénation d'imines avec de l'hydrogène sous une pression élevée et en présence d'un complexe d'Ir(III) dinucléaire ayant des ligands diphosphiniques ditertiaires, des ponts halogénures, des ligands halogénures et hydrures ou un sel d'un complexe d'halogénure d'Ir(III) contenant des ligands diphosphiniques ditertiaires, comme catalyseur, où le catalyseur correspond à la formule I ou la ou aux mélanges d'au moins 2 composés de formule I, d'au moins 2 composés des formules I et la, ou d'au moins deux composés de formule la

$$[(\mathsf{DIP})\mathsf{IrX}_{\mathsf{q}}\mathsf{Y}_{\mathsf{r}}]_{2} \tag{I},$$

25

30

$$[(DIP)X_4]^{\Theta}Me^{\Phi}$$
 (Ia),

ОÙ

DIP signifie le ligand diphosphinique ditertiaire d'une ferrocényldiphosphine, dont les groupes phosphine sont soit liés directement ou via un groupe formant pont -CR,R,,- dans les positions ortho du cycle cyclopentadiényle ou sont liés chacun à un cycle cyclopentadiényle d'un ferrocényle, pour former un cycle à 5, 6 ou 7 chainons, ensemble avec l'atome Ir;

35

40

 R_v et R_w signifient chacun indépendamment de l'autre, l'hydrogène, un groupe C_1 - C_8 alkyle, C_1 - C_4 fluoroalkyle, phényle ou benzyle, ou signifient un groupe phényle ou benzyle chacun ayant de 1 à 3 substituants C₁-C₄alkyle ou C₁-C₁alcoxy:

X signifie CI. Br ou I:

Y signifie H;

a signifie un nombre 2 ou 3 et r signifie 0 ou 1, la somme q+r étant égale à 3; et Me[®] signifie un cation de métal alcalin ou un ammonium quaternaire.

- 2. Un procédé selon la revendication 1, où R_w signifie l'hydrogène.
- Un procédé selon les revendications 1 et 2, où R_v signifie un groupe C₁-C₄alkyle.
 - 4. Un procédé selon la revendication 3, où R, signifie un groupe méthyle.
- 5. Un procédé selon la revendication 1, où la diphosphine ditertiaire contient au moins un groupe chiral et signifie un 50 stéréoisomère ou une paire de diastéréoisomères.
 - 6. Un procédé selon la revendication 1, où les groupes phosphine contiennent deux groupes hydrocarbonés identiques ou différents, non substitués ou substitués ayant de 1 à 20 atomes de carbone.
- 55 7. Un procédé selon la revendication 1, où les diphosphines contiennent deux restes identiques ou différents parmi le groupe suivant: un groupe C_1 - C_{12} alkyle linéaire ou ramifié; C_5 - C_{12} cycloalkyle non substitué ou substitué par un groupe C₁-C₆alkyle ou C₁-C₆alcoxy, C₅-C₁₂cycloalkyl-CH₂-, phényle et benzyle; et phényle et benzyle substi-

tués chacun par un halogène, un groupe C_1 - C_6 haloalkyle, $(C_1$ - C_{12} -alkyl)₃Si, $(C_5H_5)_3$ Si, C_1 - C_6 haloalcoxy, -NH₂, phényl₂N-, benzyl₂-N-, morpholinyle, pipéridinyle, pyrrolidinyle, $(C_1$ - C_{12} alkyl)₂N-, -ammonium- X_1 Θ , -SO₃M₁, -CO₂M₁, -PO₃M₁ ou par -COO- C_1 - C_6 alkyle; où M₁ signifie un métal alcalin ou l'hydrogène et X_1 Θ signifie l'anion d'un acide monobasique, et M₁ signifie de préférence H, Li, Na ou K.

8. Un procédé selon la revendication 1, où les groupes phosphine sont des restes de formule

où m et n signifient chacun indépendamment de l'autre, un nombre entier de 2 à 10 et la somme m+n est égale à 4 à 12.

9. Un procédé selon la revendication 1, où les groupes phosphine sont des restes de formule

où R_{16} signifie un groupe C_1 - C_4 alkylène, de préférence C_2 - ou C_3 -alkylène, et R_{14} et R_{15} signifient chacun indépendamment de l'autre, l'hydrogène, un groupe C_1 - C_6 alkyle, C_1 - C_6 alcoxy, C_1 - C_6 haloalkyle, C_5 - ou C_6 -cycloalkyle, ou phényle qui est non substitué ou substitué par un groupe C_1 - C_4 alkyle, C_1 - C_4 alcoxy, C_1 - C_4 haloalkyle ou par un halogène, ou benzyle qui est non substitué ou substitué par un groupe C_1 - C_4 alkyle, C_1 - C_4 alcoxy, C_1 - C_4 haloalkyle ou par un halogène.

10. Un procédé selon la revendication 1, où la ferrocényldiphosphine correspond à la formule II

$$R_1 R_2 P - R_5 - PR_3 R_4 \tag{II},$$

οù

5

10

15

20

25

30

35

40

45

50

55

 $R_1,\,R_2,\,R_3$ et R_4 signifient chacun indépendamment des autres, un reste hydrocarboné ayant de 1 à 20 atomes de carbone qui est non substitué ou substitué par un groupe $C_1\text{-}C_6$ alkyle, $C_1\text{-}C_6$ alcoxy, un halogène, un groupe $C_1\text{-}C_6$ haloalkyle, $(C_1\text{-}C_{12}\text{alkyl})_3\text{Si},\,(C_6\text{H}_5)_3\text{Si},\,C_1\text{-}C_6\text{haloalcoxy},\, \text{-NH}_2,\,\text{phényl}_2\text{N-},\,\text{benzyl}_2\text{-N-},\,\text{morpholinyle},\,\text{pipéridinyle},\,\text{pyrrolidinyle},\,(C_1\text{-}C_{12}\text{alkyl})_2\text{N-},\,\text{-ammonium-}X_1^{\ominus},\,\text{-}SO_3M_1,\,\text{-}CO_2M_1,\,\text{-}PO_3M_1\,\text{ou par -}COO\text{-}C_1\text{-}C_6\text{alkyle},\,\text{où}\,\,M_1\,\,\text{signifie}\,\,\text{un métal alcalin ou l'hydrogène et}\,\,X_1^{\ominus}\,\,\text{signifie}\,\,\text{l'anion}\,\,\text{d'un acide monobasique};\,\,R_1\,\,\text{et}\,\,R_2\,\,\text{ensemble}\,\,\text{et}\,\,R_3\,\,\text{et}\,\,R_4\,\,\text{ensemble}\,\,\text{forment}\,\,\text{un reste}\,\,C_1\text{-}C_4\text{alkylène}\,\,\text{qui est non substitué}\,\,\text{ou substitué}\,\,\text{par un groupe}\,\,\text{chaloalkyle},\,\,C_5\text{-ou}\,\,C_6\text{-cycloalkyle},\,\,\text{par un groupe}\,\,\text{phényle}\,\,\text{qui est non substitué}\,\,\text{pur un groupe}\,\,\text{chaloalkyle}\,\,\text{ou par un halogène},\,\,\text{ou par un halogène};\,\,\text{et}\,\,$

R₅ signifie un reste de formule

5

Fe CHR6

Fe CHR6

10

15

Fe CHR6

Fe CHR6

30

CHR6

Fe CHR6

Ou Fe CHR6

$$Fe$$
 CHR6

 Fe CHR6

où R_6 signifie l'hydrogène, un groupe C_1 - C_8 alkyle, C_1 - C_4 fluoroalkyle, phényle ou phényle ayant de 1 à 3 substituants C_1 - C_4 alkyle ou C_1 - C_4 alcoxy.

- 11. Un procédé selon la revendication 10, où R₁, R₂, R₃ et R₄ sont des restes identiques ou différents parmi le groupe suivant: un groupe C₁-C₆alkyle; cyclopentyle et cyclohexyle qui sont non substitués ou ont de 1 à 3 substituants C₁-C₄alkyle ou C₁-C₄alcoxy; et benzyle et spécialement phényle qui sont non substitués ou ont de 1 à 3 substituants C₁-C₄alkyle, C₁-C₄alcoxy, F, Cl, C₁-C₄fluoroalkyle ou C₁-C₄fluoroalcoxy.
- 12. Un procédé selon la revendication 10, où les ligands diphosphiniques DIP sont ceux de formule III

οù

35

40

Re signifie l'hydrogène et spécialement un groupe méthyle; et

A représente des groupes identiques ou différents -P(R)₂, où R signifie un groupe C_1 - C_6 alkyle, cyclohexyle, phényle, benzyle, ou phényle ou benzyle chacun ayant de 1 à 3 substituants C_1 - C_4 alkyle, amino disubstitué, C_1 - C_4 alcoxy, -CF₃ ou C_1 - C_4 alcoxy partiellement ou complètement fluoré.

- 13. Un procédé selon la revendication 12, où la diphosphine de formule III est chirale et R₆ signifie un groupe C₁-C₄alkyle, ou phényle ou benzyle chacun ayant de 1 à 3 substituants C₁-C₄alkyle ou C₁-C₄alcoxy, A représente des groupes identiques ou différents -P(R)₂, où R signifie un groupe C₃-C₆alkyle ramifié, cyclohexyle, phényle, benzyle, ou phényle ou benzyle chacun ayant de un à trois substituants C₁-C₄alkyle, C₁-C₄dialkylamino, C₁-C₄alcoxy, -CF₃ ou C₁-C₄alcoxy partiellement ou complètement fluoré.
- 14. Un procédé selon la revendication 13, où R dans le groupe P(R)2, signifie un groupe phényle ou phényle substitué.
- 15. Un procédé selon la revendication 1, où les diphosphines sont choisies parmi le groupe suivant:

la {(R)-1-[(S)-2-(diphénylphosphino)ferrocényl]}éthyl-di(3,5-diméthyl-phényl)phosphine,

la{(R)-1-[(S)-2-(diphénylphosphino)ferrocényl]}éthyl-di(3,5-diméthyl-4-N,N-dipropylaminophényl)phosphine, la {(R)-1-[(S)-2-(diphénylphosphino)ferrocényl]}éthyl-di(3,5-di-iso-propyl-4-N,N-diméthylaminophényl)phosphine,

la {(R)-1-[(S)-2-(diphénylphosphino)ferrocényl]}éthyl-di(3,5-di-iso-propyl-4-N,N-dibenzylylaminophényl) phosphine,

la {(R)-1-[(S)-2-(diphénylphosphino)ferrocényl}}éthyl-di(3,5-diméthyl-4-N,N-dibenzylylaminophényl)phosphine

la {(R)-1-[(S)-2-(diphénylphosphino)ferrocényl]}éthyl-di(3,5-diméthyl-4-(1'-pyrrolo)phényl)phosphine,

la {(R)-1-[(S)-2-(diphénylphosphino)ferrocényl]}éthyl-di(3,5-diméthyl-4-N,N-dipentylaminophényl)phosphine, la {(R)-1-[(S)-2-(diphénylphosphino)ferrocényl]}éthyl-di(3,5-diméthyl-4-N,N-diméthylaminophényl)phosphine.

la {(R)-1-[(S)-2-di(4-méthoxyphényl)phosphino)ferrocényl]}éthyl-di(3,5-diméthyl-4-N,N-diméthylaminophényl)phosphine, et spécialement

la {(R)-1-[(S)-2-(diphénylphosphino)ferrocényl]}éthyl-di(3,5-diméthyl-phényl)-phosphine.

16. Un procédé selon la revendication 1, où les catalyseurs sont ceux de formule lb

où DIP est comme défini à la revendication 1.

17. Un procédé selon la revendication 1, où les imines sont des imines de formule IV

$$\begin{array}{c}
R_8 \\
CH = N - R_{10}
\end{array}$$
(IV),

οù

5

10

15

20

25

30

35

40

45

50

55

R₁₀ signifie un groupe C₁-C₁₂alkyle linéaire ou ramifié, cycloalkyle ayant de 3 à 8 atomes de carbone dans le cycle; un groupe hétérocycloalkyle lié via un atome de carbone et ayant de 3 à 8 atomes dans le cycle et 1 ou 2 hétéroatomes parmi le groupe O, S et NR₁₁; un groupe C₇-C₁₆aralkyle lié via un atome de carbone alkylique, ou un groupe C₁-C₁₂alkyle substitué par ledit groupe cycloalkyle ou hétérocycloalkyle ou hétéroarule.

ou dans lequel R_{10} signifie un groupe C_6 - C_{12} aryle, ou C_4 - C_{11} hétéroaryle lié via un atome de carbone du cycle et ayant 1 ou 2 hétéroatomes dans le cycle; R_{10} étant non substitué ou substitué par -CN, -NO₂, F, Cl, un

groupe C_1 - C_{12} alkyle, C_1 - C_{12} alcoxy, C_1 - C_{12} alkylthio, C_1 - C_6 haloalkyle, -OH, C_6 - C_{12} aryle ou -aryloxy ou -aryloxe, C_7 - C_{16} aralkyle ou -aralcoxy ou -aryloxe, amino secondaire ayant de 2 à 24 atomes de carbone, -CONR₁₂R₁₃ ou par -COOR₁₂, et les restes aryle et les groupes aryle dans les groupes aralkyle, aralcoxy et aralkylthio étant à leur tour non substitués ou substitués par -CN, -NO₂, F, CI, un groupe C_1 - C_4 alkyle, -alcoxy, -alkylthio, -OH, -CONR₁₂R₁₃ ou par -COOR₁₂;

R₁₂ et R₁₃ signifient chacun indépendamment de l'autre, l'hydrogène, un groupe C₁-C₁₂alkyle, phényle ou benzyle, ou bien

 R_{12} et R_{13} signifient ensemble un groupe tétra- ou penta-méthylène ou 3-oxapentylène; R_{11} indépendamment a la même signification que celle donnée pour R_{12} ;

 R_8 et R_9 signifient chacun indépendamment de l'autre, un atome d'hydrogène, un groupe C_1 - C_{12} alkyle ou cycloalkyle ayant de 3 à 8 atomes de carbone dans le cycle, chacun d'entre eux étant non substitué ou substitué par -OH, C_1 - C_{12} alcoxy, phénoxy, benzyloxy, amino secondaire ayant de 2 à 24 atomes de carbone, -CONR₁₂R₁₃ ou par -COOR₁₂; un groupe C_6 - C_{12} aryle ou C_7 - C_{16} aralkyle chacun d'entre eux étant non substitué ou substitué comme R_{10} , ou -CONR₁₂R₁₃ ou -COOR₁₂, où R_{12} et R_{13} sont tels que définis plus haut; ou bien

 R_{10} est tel que défini plus haut et R_8 et R_9 signifient ensemble un groupe alkylène ayant de 2 à 5 atomes de carbone qui est éventuellement interrompu par 1 ou 2 restes -O-, -S- ou -NR₆-, et/ou non substitué ou substitué par =O ou comme indiqué plus haut pour R_8 et R_9 dans la signification du groupe alkyle, et/ou condensé avec les groupes benzène, pyridine, pyrimidine, furanne, thiophène ou pyrrole; ou bien

 R_9 est tel que défini plus haut et R_8 et R_{10} signifient ensemble un groupe alkylène ayant de 2 à 5 atomes de carbone qui est éventuellement interrompu par 1 ou 2 restes -O-, -S- ou -NR₁₁, et/ou non substitué ou substitué par =O ou comme indiqué plus haut pour R_8 et R_9 dans la signification du groupe alkyle, et/ou condensé avec les groupes benzène, pyridine, pyrimidine, furanne, thiophène ou pyrrole.

25 18. Un procédé selon la revendication 17, où R₈ et R₉ sont différents l'un de l'autre.

5

10

15

20

35

40

- 19. Un procédé selon la revendication 17, où, dans la formule IV, R₁₀ signifie un groupe 2,6-di-C₁-C₄alkyl-phen-1-yle, R₈ signifie un groupe C₁-C₄alkyle, et R₉ signifie un groupe C₁-C₄alkyle, C₁-C₄alcoxyméthyle ou C₁-C₄alcoxyéthyle.
- 20. Un procédé selon la revendication 17, où les imines sont des imines des formules

CH₃
$$N = C - CH_2OCH_3$$
 CH_3 (VIc).

- 21. Un procédé selon la revendication 1, où le rapport molaire de l'imine au catalyseur d'iridium est de 1 000 000 à 10.
- 22. Un procédé selon la revendication 21, où le rapport molaire de l'imine au catalyseur d'iridium est de 500 000 à 20.
- 55 23. Un procédé selon la revendication 21, où le rapport molaire de l'imine au catalyseur d'iridium est de 200 000 à 100.
 - 24. Un procédé selon la revendication 21, où le rapport molaire de l'imine au catalyseur d'iridium est de 100 000 à 100.

- 25. Un procédé selon la revendication 1, où la température de réaction est comprise entre -20 et 100°C.
- 26. Un procédé selon la revendication 1, où la pression d'hydrogène est comprise entre 2 x 10⁵ et 1,5 x 10⁷ Pa.
- 5 27. Un procédé selon la revendication 1, où la réaction est effectuée en présence d'un solvant.