S 333.955 E30aifs 2002

AQUATIC INVERTEBRATES AND HABITAT AT A FIXED STATION ON THE BEAVERHEAD RIVER, MADISON COUNTY, MONTANA

July 13, 2001

STATE DOCUMENTS COLLECTIO.

13 2003

MONTANIA STATE LIBRARY 1515 F CT AVERARY

A report to the Montana Department of Environmental Quality Helena, Montana

INTRODUCTION

This report is one of 38 brief interpretive summaries of data assembled as part of a statewide, multi-year study conducted by the Montana Department of Environmental Quality (MT DEQ). Each report discusses information generated from a single benthic invertebrate sample collection and habitat evaluation at a fixed station established on a gauged river or high-order tributary. The present treatise focuses on the aquatic community sampled on the Beaverhead River at Twin Bridges, Montana on July 13, 2001. The sample site was located by GPS reading at 45° 32' 43" N, 112° 20' 08" W. lving within the Montana Valley and Foothill Prairie Ecoregion (Woods et al. 1998). The sample was collected by personnel of MT DEQ. Sampling effort consisted of a composite of a single Hess sample and a one-minute kicknet collection (Bukantis 1998). Habitat parameters were evaluated using the MT DEO Macroinvertebrate Habitat Assessment Field Form for streams with riffle/run prevalence. Invertebrate samples were processed and animals identified by Rhithron Associates, Inc. Analysis of invertebrate assemblages was accomplished by applying the revised method (Bollman 1998) for streams of Western Montana's ecoregions. The method uses a multimetric battery to evaluate disturbance to biotic integrity.

The revised bioassessment metric battery and its scoring criteria have not been evaluated for application to higher-order streams and rivers; to date, no bioassessment method has been contrived for these waterways in Montana. Thus, the method used here is likely to have limitations in its applicability to the sites in this study. For example, 24 of the riverine or high-order waterways sampled for the fixed station study were located within Western Montana ecoregions and were sampled between July 23 and August 25, 2001. Mean water temperature for these sites at the time of sampling was 19.8°C (median = 19.4°). Temperatures ranged from 15.5°C (Kootenai River near Libby) to 25.3°C (Jefferson River near Three Forks). Ninety-eight sites from Western Montana were used to assemble the revised metric battery and to test it for sensitivity in detecting impairment, to establish scoring criteria, and to improve robustness of bioassessment. These 98 sites were mainly second and third order streams; the sampling season roughly corresponded to that of the fixed-station study. Mean water temperature for these sites at the time of sampling was 15°C (median = 14°C). Natural variations in benthic community composition and structure along longitudinal and thermal gradients are well known phenomena. Thus, scores and classifications were established for much smaller systems with significantly lower water temperatures; impairment classifications and use support designations in this study must be interpreted with care. Results from the application of other metric batteries may be found in the Appendix.

RESULTS AND DISCUSSION

Table 1 itemizes the nine evaluated habitat parameters and shows the assigned scores for each, as well as the integrated score and condition category.

Overall habitat condition scored sub-optimally. The riffle was perceived to be marginally developed, and benthic substrate was judged monotonous. Substrate particles were rated as moderately embedded, and some fine sediment deposition was noted. Small areas of rip-rap altered the right bank. The left bank of the river was observed to be eroding badly; a park was located on this side of the river, with grassy banks and obvious disruption of vegetative cover. The right bank did not exhibit erosion, and willows and

other vegetation protected that streambank well. The riparian zone width was somewhat limited on both sides of the channel.

Flow conditions were judged optimal.

Table 1. Stream and riparian habitat assessment for a fixed station on the Beaverhead River. July 2001.

Max, possible score	Parameter	Beaverhead River at Twin Bridges
10	Riffle development	5
10	Benthic substrate	4
20	Embeddedness	6
20	Channel alteration	14
20	Sediment deposition	15
20	Channel flow status	19
20	Bank stability: left / right	2 / 9
20	Bank vegetation: left / right	2 / 10
20	Vegetated zone: left / right	8 / 6
160	Total	100
	Percent of maximum CONDITION*	62.5 SUB-OPTIMAL

^{*}Condition categories: Optimal > 80% of maximum score; Sub-optimal 75 - 56%; Marginal 49 - 29%; Poor <23%. Adapted from Platkin et al. 1998.

Table 2. Metric values, scores, and bioassessment for a fixed station on the Beaverhead River. The revised bioassessment metric battery (Bollman 1998) was used for the evaluation. July 2001.

	Beaverhead River at Twin Bridges			
METRICS	METRIC VALUES	METRIC SCORES		
Ephemeroptera richness	4	2		
Plecoptera richness	0	0		
Trichoptera richness	5	3		
Number of sensitive taxa	0	0		
Percent filterers	16.5	1		
Percent tolerant taxa	61.5	0		
	TOTAL SCORE (max.=18)	6		
	PERCENT OF MAX.	33		
	Impairment classification	MODERATE		
	USE SUPPORT	PARTIAL		

Bioassessment results are given in Table 2. When this bioassessment method is applied to these data, scores indicate that this site on the Beaverhead River is moderately impaired and only partially supports designated uses.

The elevated biotic index value (5.16) and low mayfly taxa richness suggest that water quality may have been impaired by warm temperatures or nutrient enrichment. Since the measured water temperature at the time of sampling was 18.1°C, which is below the mean of other riverine sites visited for the fixed stations study, nutrient enrichment seems the more likely impact. Enrichment also seems to be indicated by the abundance of the caddisfly *Hydroptila* sp., which is typically associated with beds of filamentous algae. In addition to blooms of filamentous algae, nutrient enrichment can also be associated with anoxic sediments, which appear to be present at this site, since hemoglobin-bearing chironomids *Chironomus* sp., *Cryptochironomus* sp., *Microtendipes* sp. and *Phaenopsectra* sp. were all present in the collection. Sixty-one percent of animals in the assemblage were tolerant to saprobic conditions.

Twelve "clinger" taxa and 5 caddisfly taxa were present, suggesting that fine sediment deposition may have created some limitations to available hard substrate habitats at the site. Twenty-four percent of the fauna were in taxa oriented toward fine sediment. The absence of stoneflies may have resulted from water quality impairment, but may also have been associated with disruptions to reach-scale habitat features such as streambank stability, channel integrity, or riparian zone function.

All expected functional components were represented in the sample, but predators were extremely rare, suggesting a dearth of instream habitat diversity or availability. Scrapers were also somewhat limited in numbers; this may reflect habitat limitation by embeddedness, fine sediment deposition, and/or filamentous algae contamination.

CONCLUSIONS

- Evidence of degraded water quality by nutrient enrichment can be discerned in the
- Limited benthic habitats may limit the predator and scraper fauna. Fine sediment deposition, embeddedness of substrate, and/or filamentous algae blooms may be associated with instream habitat limitations.
- While the impairment classification assigned to the site appears to be appropriate
 given the tolerance characteristics and taxonomic composition of the assemblage,
 the bioassessment score appears to over-estimate impairment. In particular, the
 contribution of filter-feeders seems to be appropriate for a riverine environment,
 and the proportion of tolerant taxa is only moderately elevated over expectations
 for the site.

LITERATURE CITED

Bollman, W. 1998. Improving Stream Bioassessment Methods for the Montana Valleys and Foothill Prairies Ecoregion. Master's (M.S.) Thesis. University of Montana. Missoula, Montana.

Bukantis, R. 1998. Rapid bioassessment macroinvertebrate protocols: Sampling and sample analysis SOP's. Working draft, April 22, 1997. Montana Department of Environmental Quality. Planning Prevention and Assistance Division. Helena, Montana

Woods, A.J., Omernik, J. M. Nesser, J.A., Shelden, J., and Azevedo, S. H. 1999. Ecoregions of Montana. (Color poster with map, descriptive text, summary tables, and photographs): Reston, Virginia. US Geological Survey.

APPENDIX

Taxonomic data and summaries

Beaverhead River

July 2001

Aquatic Invertebrate Taxonomic Data

Site Name: Beaverhead River at Twin Bridges	Date: 7/13/01			
Site ID: M08BEAVR0I	Approx. percent of s	sample used; 4		
Taxon	Quantity	Percent	HBI	FFG
Imma. Tubificid with cap. setae	6	1.76	10	CG
Sphaeriidae	2	0.59	8	CF
Physidae	14	4.12	8	SC
Acari	22	0.59	5	PA
Total Mise. Taxa	24	7.06		
Acentrella turbida	1	0.29	4	CG
Baetis tricaudatus	70	20.59	4	CG
Leptophlebia sp.	1	0.29	3	CG
Tricorythodes minutus	61	17.94	4	CG
Total Ephemeroptera	133	39.12		
Brachycentrus occidentalis	14	4.12	2	CF
Helicopsyche borealis	3	0.88	3	SC
Hydropsyche sp.	6	1.76	5	CF
Hydroptila sp.	43	12.65	6	PH
Mayatrichia sp.	2	0.59	6	SC
Total Trichoptera	68	20.00		
Hygrotus sp.	1	0.29	5	PR
Optioservus sp.	10	2.94	5	SC
Zaitzevia sp.	1	0.29	5	CG
Total Coleoptera	12	3.53		
Hemerodromia sp.	1	0.29	6	PR
Simulium sp.	30	8.82	5	CF
Total Diptera	31	9.12		
Chironomus sp.	3	0.88	10	CG
Cricotopus (Cricotopus) Gr.	3	0.88	7	CG
Cricotopus Trifascia Gr.	22	6.47	7	CG
Cryptochironomus sp.	1	0.29	8	PR
Eukiefferiella Devonica Gr.	4	1.18	8	CG
Microtendipes sp.	3	0.88	6	CF
Orthocladius sp	12	3.53	6	CG
Parametriocnemus sp.	3	0.88	5	CG
Paratanytarsus sp.	2	0.59	6	UN
Phaenopsectra sp.	I	0.29	7	SC
Polypedilum sp.	2	0.59	6	SH
Synendotendipes sp.	10	2.94	6	CG
Tanytarsus sp.	1	0.29	6	CF
Thienemannimyia Gr.	1	0.29	5	PR
Tvetema sp.	4	1.18	5	CG
Total Chironomidae	72	21.18		
	and Total 340	100,00		

Aquatic Invertebrate Summary

Site Name: Beaverhead River at Twin Bridges		Date: 7/13/0
SAMPLE TOTAL	340	
EPT abundance	201	
TAXA RICHNESS	33	
Number EPT taxa	9	
Percent EPT	59 12	

TAXONOMIC COMPOSITION

GROUP	PERCENT	#TAXA	ABUNDANCE
Misc Taxa	7 06	4	24
Odonata	0.00	0	0
Ephemeroptera	39 12	4	133
Plecoptera	0.00	0	0
Hemiptera	0.00	0	0
Megaloptera	0 00	0	0
Trichoptera	20 00	5	68
Lepidoptera	0 00	0	0
Coleoptera	3 53	3	12
Diptera	9.12	2	31
Chironomidae	21 18	15	72

FUNCTIONAL COMPOSITION

GROUP	PERCENT	#TAXA	ABUNDANCE
Predator	1 18	4	4
Parasite	0 59	1	2
Gatherer	59 12	14	201
Filterer	16 47	6	56
Herbivore	0 00	0	0
Piercer	12 65	1	43
Scraper	8 82	5	30
Shredder	0 59	1	2
Xylophage	0,00	0	0
Omnivore	0.00	0	0
Unknown	0 59	1	2

COMMUNITY TOLERANCES

Sediment tolerant taxa	3
Percent sediment tolerant	23 82
Sediment sensitive taxa	0
Percent sediment sensitive	0.00
Metals tolerance index (McGuire)	4 3 7
Cold stenotherm taxa	0
Percent cold stenotherms	0.00

Site ID: M08BEAVR01

DOMINANCE		
TAXON	ABUNDANCE	PERCENT
Baetis tricaudatus	70	20 59
Tricorythodes minutus	61	17 94
Hydroptila sp	43	12 65
Simulium sp	30	8 82
Cricotopus Trifascia Gr	22	6 47
SUBTOTAL 5 DOMINANTS	226	66 47
Physidae	14	4 12
Brachycentrus occidentalis	14	4 12
Orthocladius sp	12	3 53
Optioservius sp	10	2 94
Synendotendipes sp	10	2 94
TOTAL DOMINANTS	286	84 12
SAPROBITY		
Hilsenhoff Biotic Index		5 16
DIVERSITY		
Shannon H (loge)		2 64
Shannon H (log2)		3 80
Simpson D		0 11
VOLTINISM		
TYPE	ABUNDANCE	PERCENT
Multivoltine	145	42 50

VULTINISM			
TYPE		ABUNDANCE	PERCENT
Multivoltine		145	42 50
Univoltine		170	49 85
Semivoltine		26	7 65
TAXA CHARAG	CTERS		
	#TAXA	ABUNDANCE	PERCENT
Tolerant	12	209	61 47
Intolerant	0	0	0.00
Clinger	12	137	40 29

BIOASSESSMENT INDICES

B-IBI (Karr et al.)			
METRIC	VALUE	5	CORE
Taxa richness	33		3
E richness	4		1
P richness	0		l l
T richness	5		3
Long-lived	3		3
Sensitive richness	0		l
%tolerant	61 47		l
^a / _o predators	1 18		1
Clinger richness	12		3
%dominance (3)	51.18		3
		TOTAL COORE	20

TOTAL SCORE
MONTANA DEO METRICS (Bukantis 1998)

MONTANA DEQ METRICS (Bukantis 1998)						
VALUE	Plane Scoremans	Valleys and Footbills	Mountain Ecoregons			
			2			
33	3	3	3			
9	3	0	0			
5 16	2	1	0			
20 59	3	3	3			
75 59	2	1	1			
59 12	3	2	2			
3 80	3					
9.41	1	0	0			
4	2					
42 50	2					
8.8		3				
	24	13	9			
XIMUM	80 00	54 17	42.86			
ASS	SLIGHT	SLIGHT	MODERATE			
	VALUE 33 9 5 16 20 59 75 59 59 12 3 80 9 41 4 42 50 8 8 XIMUM	VALUE Plans Ecoregans 33	VALUE Plans Ecoregavas Valkos and Footbills 33			

Montana DEQ metric batteries

