Crear DataFrames agrupados

pandas tiene una clase de objetos llamados GroupedDataFrame que permite agrupar las filas (o columnas) de un DataFrame.

- Un ejemplo podría ser un conjunto de datos asociados a individuos para el que que queramos distinguir entre hombres y mujeres a la hora de calcular indicadores.
- Otro caso podría ser el de mediciones asociadas a instantes de tiempo, y queremos calcular resúmenes para cada hora del día.

Para crear dataframes agrupados, usaremos el método groupby . (ver User guide, Group by: splitapply-combine)

```
import pandas as pd
import numpy as np
from os import path

DATA_DIRECTORY = path.join('...', '...', 'data')
```

Consideremos el siguiente DataFrame:

	Х	Υ	Z
0	а	0	8
1	а	1	9
2	а	2	10
3	а	3	11
4	b	4	12
5	b	5	13
6	С	6	14
7	С	7	15

Agrupamos según los valores de la columna X

```
agrupados = df.groupby('X')
```

Podemos iterar un GroupedDataFrame para recorrer los grupos:

```
for n, g in agrupados:
    print(f'Nombre del grupo: {n}')
    print(g)
```

```
Nombre del grupo: a
  X
     Y
          \mathbf{Z}
 a 0 8
1 a 1 9
2 a 2 10
3 a 3 11
Nombre del grupo: b
  X Y Z
4 b 4 12
5 b 5 13
Nombre del grupo: c
  X
     \mathbf{Y} \mathbf{Z}
6 c 6 14
7 c 7 15
```

Podemos aplicarle métodos preparados para GroupedDataFrame como mean, sum o describe

agrupados.mean()

	Υ	Z
Х		
а	1.5	9.5
b	4.5	12.5
С	6.5	14.5

Nos devuelve el valor de la media por grupos de las dos columnas Y y Z.

agrupados.sum()

	Υ	Z
X		
а	6	38
b	9	25
С	13	29

agrupados.describe()

								Υ								Z
	count	mean	std	min	25%	50%	75%	max	count	mean	std	min	25%	50%	75%	max
Х																
а	4.0	1.5	1.290994	0.0	0.75	1.5	2.25	3.0	4.0	9.5	1.290994	8.0	8.75	9.5	10.25	11.0
b	2.0	4.5	0.707107	4.0	4.25	4.5	4.75	5.0	2.0	12.5	0.707107	12.0	12.25	12.5	12.75	13.0
С	2.0	6.5	0.707107	6.0	6.25	6.5	6.75	7.0	2.0	14.5	0.707107	14.0	14.25	14.5	14.75	15.0

Podemos especificar más de una columna para crear los grupos.

Para ilustrarlo, cargamos el DataFrame de flights que contiene todos los vuelos que salieron de los tres aeropuertos de NYC en 2013.

		flights = flights.h	_	_	(path.join(DATA_DII	RECTORY, 'fl	ights.featl	ner'))							
	year	month	day	dep_time	sched_dep_time	dep_delay	arr_time	sched_arr_time	arr_delay	carrier	flight	tailnum	origin	dest	air_time
0	2013	1	1	517.0	515	2.0	830.0	819	11.0	UA	1545	N14228	EWR	IAH	227.0
1	2013	1	1	533.0	529	4.0	850.0	830	20.0	UA	1714	N24211	LGA	IAH	227.0
2	2013	1	1	542.0	540	2.0	923.0	850	33.0	AA	1141	N619AA	JFK	MIA	160.0
3	2013	1	1	544.0	545	-1.0	1004.0	1022	-18.0	В6	725	N804JB	JFK	BQN	183.(
4	2013	1	1	554.0	600	-6.0	812.0	837	-25.0	DL	461	N668DN	LGA	ATL	116.0

Agrupamos los vuelos para hacer recuentos desglosados por mes y por aeropuerto de origen

```
agrupados = flights.groupby(['month', 'origin'])
```

Aplicamos el método size para hacer el recuento de filas (vuelos) por grupo:

month	origin	
1	EWR	9893
	JFK	9161
	LGA	7950
2	EWR	9107
	JFK	8421
	LGA	7423
3	EWR	10420
	JFK	9697
	LGA	8717
4	EWR	10531
	JFK	9218
	LGA	8581
5	EWR	10592
	JFK	9397
	LGA	8807
6	EWR	10175
	JFK	9472
	LGA	8596
7	EWR	10475
	JFK	10023
	LGA	8927

8	EWR	10359
	JFK	9983
	LGA	8985
9	EWR	9550
	JFK	8908
	LGA	9116
10	EWR	10104
	JFK	9143
	LGA	9642
11	EWR	9707
	JFK	8710
	LGA	8851
12	EWR	9922
	JFK	9146
	LGA	9067
dtype:	int64	

Podemos crear grupos al especificar una función que se aplica a los valores del index

Para ilustrarlo, cargamos el fichero mompean

```
mompean = pd.read_csv(path.join(DATA_DIRECTORY, 'mompean.csv'), parse_dates=['FechaHora'], index_col='FechaHora')
mompean.head()
```

	NO	NO2	SO2	03	TMP	HR	NOX	DD	PRB	RS	VV	C6H6	C7H8	XIL	PM10	Ruido
FechaHora																
2010-01-01 00:00:00	4.0	7.0	17.0	NaN	NaN	NaN	14.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	5.0	56.0
2010-01-01 01:00:00	6.0	12.0	18.0	NaN	NaN	NaN	21.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	15.0	58.0
2010-01-01 02:00:00	6.0	17.0	17.0	NaN	NaN	NaN	26.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	12.0	60.0
2010-01-01 03:00:00	5.0	10.0	18.0	NaN	NaN	NaN	18.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	2.0	57.0
2010-01-01 04:00:00	4.0	8.0	19.0	NaN	NaN	NaN	14.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	5.0	55.0

Queremos crear grupos que correspondan a las distintas horas del día, para ver si hay diferencias en el patrón horario de contaminación.

Para ello, pasamos a groupby una función que se aplique a las etiquetas de las filas (index) y que extraiga la hora de un objeto de tipo dtime

```
agrupados = mompean.groupby(lambda x: x.hour)
```

Hemos usado una función anónima. Aplicamos el método mean

agrupados.mean()

	NO	NO2	SO2	03	ТМР	HR	NOX	DD	PRB	RS	vv	С6Н6	C7H8	XIL	PM10	Ruide
FechaHora																
0	9.618014	27.402604	7.516146	53.871709	NaN	NaN	42.020890	NaN	NaN	NaN	NaN	NaN	NaN	NaN	24.416717	57.28003
1	7.779196	25.304997	7.399091	51.332306	NaN	NaN	37.115698	NaN	NaN	NaN	NaN	NaN	NaN	NaN	22.790531	55.935533
2	6.599348	22.842077	7.323167	49.531390	NaN	NaN	32.844795	NaN	NaN	NaN	NaN	NaN	NaN	NaN	21.687349	54.259800
3	4.858891	19.067700	7.234885	48.993829	NaN	NaN	26.410005	NaN	NaN	NaN	NaN	NaN	NaN	NaN	20.119487	53.249424
4	4.147523	16.349483	7.184957	48.060045	NaN	NaN	22.607512	NaN	NaN	NaN	NaN	NaN	NaN	NaN	18.802399	52.396618
5	4.095316	15.585240	7.150509	45.970250	NaN	NaN	21.786220	NaN	NaN	NaN	NaN	NaN	NaN	NaN	17.874605	51.65307
6	5.992364	18.083174	7.177069	41.162830	NaN	NaN	27.149168	NaN	NaN	NaN	NaN	NaN	NaN	NaN	17.907378	53.046959
7	12.616621	25.141144	7.252747	33.026404	NaN	NaN	44.355586	NaN	NaN	NaN	NaN	NaN	NaN	NaN	20.484621	56.916923
8	18.700545	30.695095	7.376575	27.968004	NaN	NaN	59.242234	NaN	NaN	NaN	NaN	NaN	NaN	NaN	24.919906	59.568129
9	34.211874	36.715686	7.711188	26.932959	NaN	NaN	89.038399	NaN	NaN	NaN	NaN	NaN	NaN	NaN	32.868169	60.270978
10	26.159482	32.184573	7.810072	39.895430	NaN	NaN	72.175290	NaN	NaN	NaN	NaN	NaN	NaN	NaN	34.702703	60.947096
11	13.300164	25.110716	7.697393	55.724283	NaN	NaN	45.379716	NaN	NaN	NaN	NaN	NaN	NaN	NaN	29.696712	61.313124
12	9.329697	22.087810	7.825563	65.378219	NaN	NaN	36.264249	NaN	NaN	NaN	NaN	NaN	NaN	NaN	27.035784	61.997700
13	8.356833	20.896150	7.995197	71.142339	NaN	NaN	33.565618	NaN	NaN	NaN	NaN	NaN	NaN	NaN	25.787697	62.338168
14	7.735246	19.927721	8.148641	75.562849	NaN	NaN	31.660531	NaN	NaN	NaN	NaN	NaN	NaN	NaN	24.944570	62.381679
15	7.167794	18.990257	8.609205	78.299637	NaN	NaN	29.848714	NaN	NaN	NaN	NaN	NaN	NaN	NaN	23.915736	61.678380
16	6.474696	17.648714	8.834398	80.232617	NaN	NaN	27.457645	NaN	NaN	NaN	NaN	NaN	NaN	NaN	23.579356	60.812404
17	6.404491	18.028950	9.035134	80.065624	NaN	NaN	27.702922	NaN	NaN	NaN	NaN	NaN	NaN	NaN	24.367599	60.751149
18	6.553600	20.003249	9.063149	77.836409	NaN	NaN	29.928803	NaN	NaN	NaN	NaN	NaN	NaN	NaN	24.708589	61.22035;
19	7.001896	23.205038	8.684084	73.640817	NaN	NaN	33.828548	NaN	NaN	NaN	NaN	NaN	NaN	NaN	24.993455	61.569678
20	8.330986	25.681203	8.342933	69.847144	NaN	NaN	38.321506	NaN	NaN	NaN	NaN	NaN	NaN	NaN	25.506697	61.81226
21	10.382592	28.194685	7.983729	65.330907	NaN	NaN	43.979393	NaN	NaN	NaN	NaN	NaN	NaN	NaN	26.555189	61.72226
22	11.746273	29.620222	7.777807	60.919373	NaN	NaN	47.500678	NaN	NaN	NaN	NaN	NaN	NaN	NaN	26.788431	60.70367!
23	12.008955	29.771235	7.646823	56.430933	NaN	NaN	48.046676	NaN	NaN	NaN	NaN	NaN	NaN	NaN	25.949129	58.908046

Podemos aplicar más de una función en groupby

Pasamos una lista de funciones

```
agrupados = mompean.groupby([lambda x: x.dayofweek, lambda x: x.hour])
```

Calculamos la media desglosada por grupo:

agrı	upados.mean()															
		NO	NO2	SO2	03	ТМР	HR	NOX	DD	PRB	RS	vv	С6Н6	C7H8	XIL	PM10
FechaHora	FechaHora												1	•		
0	0	7.562380	25.581574	7.512287	55.924303	NaN	NaN	37.084453	NaN	NaN	NaN	NaN	NaN	NaN	NaN	22.472486
	1	6.180077	23.312261	7.435606	53.521912	NaN	NaN	32.668582	NaN	NaN	NaN	NaN	NaN	NaN	NaN	20.853890
·	2	5.517241	21.136015	7.361742	51.169323	NaN	NaN	29.501916	NaN	NaN	NaN	NaN	NaN	NaN	NaN	20.20683
	3	4.126437	17.105364	7.229167	50.878486	NaN	NaN	23.373563	NaN	NaN	NaN	NaN	NaN	NaN	NaN	18.842505
·	4	3.624521	14.111111	7.143939	50.537849	NaN	NaN	19.616858	NaN	NaN	NaN	NaN	NaN	NaN	NaN	17.838710
•••	•••	•••						•••								
6	19	5.676245	18.860153	8.581132	77.117296	NaN	NaN	27.421456	NaN	NaN	NaN	NaN	NaN	NaN	NaN	22.644612
	20	6.545977	20.641762	8.330189	73.753479	NaN	NaN	30.588123	NaN	NaN	NaN	NaN	NaN	NaN	NaN	22.718336
·	21	7.767754	23.921305	7.835539	68.711155	NaN	NaN	35.700576	NaN	NaN	NaN	NaN	NaN	NaN	NaN	23.905303
	22	8.694818	26.278311	7.667297	63.896414	NaN	NaN	39.462572	NaN	NaN	NaN	NaN	NaN	NaN	NaN	23.990512
•	23	9.168906	27.220729	7.655955	59.272908	NaN	NaN	41.084453	NaN	NaN	NaN	NaN	NaN	NaN	NaN	23.339658

168 rows × 16 columns

Realizar operaciones sobre GroupedDataFrames

Podemos realizar tres tipos de operaciones que se traducen en tres verbos

- aggregate: se trata de resumir cada grupo calculando uno o varios indicadores, por ejemplo su media o su media y desviación típica
- transform: se trata de calcular para cada grupo una o varias columnas con el mismo index que el grupo, por lo tanto con el mismo número de filas y las mismas etiquetas. Por ejemplo puedo, dentro de cada grupo, normalizar los valores respecto a la media y la desviación típica del grupo.
- filter: se trata de seleccionar grupos que cumplen un determinado criterio

Consideramos el DataFrame:

	Х	Υ	Z	
0	а	0	8	
1	а	1	9	
2	а	2	10	
3	а	3	11	
4	b	4	12	
5	b	5	13	
6	С	6	14	
7	С	7	15	

Agrupamos según los valores de x y aplicamos el método agg, pasándole la función para calcular el indicador.

```
df.groupby('X').agg(np.mean)
```

	Υ	Z
Х		
а	1.5	9.5
b	4.5	12.5
С	6.5	14.5

Ya vimos que se puede obtener el mismo resultado sin usar agg

df.groupby('X').mean()

 X

 a
 1.5
 9.5

 b
 4.5
 12.5

 c
 6.5
 14.5

Usar agg permite, por una parte, aplicar más de una función

df.groupby('X').agg([np.mean, np.std])

		Υ	Υ		
	mean	std	mean	std	
Х					
а	1.5	1.290994	9.5	1.290994	
b	4.5	0.707107	12.5	0.707107	
С	6.5	0.707107	14.5	0.707107	

Por otra parte, permite usar nuestras propias funciones.

Para ilustrarlo, modificamos df para introducir datos faltantes

```
df.loc[[0, 2, 5], 'Y'] = np.NaN
df.loc[6, 'Z'] = np.NaN
df
```

	Х	Υ	Z		
0	а	NaN	8.0		
1	а	1.0	9.0		
2	а	NaN	10.0		
3	а	3.0	11.0		
4	b	4.0	12.0		
5	b	NaN	13.0		
6	С	6.0	NaN		
7	С	7.0	15.0		

Calculamos el número de datos faltantes por columna, desglosándolo por grupos

```
df.groupby('X').agg(lambda x: x.isna().sum())
```

```
    Y
    Z

    X
    ...

    a
    2
    0

    b
    1
    0

    c
    0
    1
```

Cargamos el conjunto de datos de vuelos que salieron en 2013 de uno de los tres aeropuertos de NYC
<pre>flights = pd.read_feather(path.join(DATA_DIRECTORY, 'flights.feather'))</pre>

Queremos obtener el número de vuelos cancelados por hora (tienen NaN en la columna dep_time)

flights.groupby('hour').agg(lambda x: x.isna().sum())

	year	month	day	dep_time	sched_dep_time	dep_delay	arr_time	sched_arr_time	arr_delay	carrier	flight	tailnum	origin	dest	air_ti
hour															
1.0	0	0	0	1	0	1	1	0	1	0	0	1	0	0	
5.0	0	0	0	9	0	9	9	0	13	0	0	6	0	0	
6.0	0	0	0	425	0	425	454	0	504	0	0	127	0	0	5
7.0	0	0	0	289	0	289	305	0	346	0	0	102	0	0	3
8.0	0	0	0	442	0	442	465	0	508	0	0	161	0	0	5
9.0	0	0	0	327	0	327	343	0	381	0	0	128	0	0	3
10.0	0	0	0	290	0	290	303	0	338	0	0	96	0	0	3
11.0	0	0	0	296	0	296	314	0	344	0	0	61	0	0	3
12.0	0	0	0	388	0	388	404	0	437	0	0	80	0	0	4
13.0	0	0	0	429	0	429	456	0	499	0	0	90	0	0	4
14.0	0	0	0	566	0	566	611	0	684	0	0	170	0	0	6
15.0	0	0	0	670	0	670	733	0	806	0	0	222	0	0	8
16.0	0	0	0	840	0	840	891	0	957	0	0	249	0	0	Ę
17.0	0	0	0	660	0	660	691	0	759	0	0	150	0	0	7
18.0	0	0	0	626	0	626	667	0	711	0	0	289	0	0	
19.0	0	0	0	861	0	861	898	0	934	0	0	283	0	0	9
20.0	0	0	0	636	0	636	656	0	678	0	0	232	0	0	6
21.0	0	0	0	409	0	409	418	0	430	0	0	62	0	0	4
22.0	0	0	0	78	0	78	81	0	81	0	0	3	0	0	
23.0	0	0	0	13	0	13	13	0	19	0	0	0	0	0	

Así obtenemos el número de valores faltantes para todas las columnas. Como solamente nos interesan las de dep time, modificamos nuestra petición

```
flights.groupby('hour' )['dep_time'].agg(lambda x: x.isna().sum())
```

```
hour
1.0
5.0
6.0
         425
7.0
         289
8.0
        442
9.0
         327
10.0
         290
11.0
         296
12.0
         388
13.0
         429
14.0
         566
15.0
        670
16.0
         840
         660
17.0
18.0
         626
19.0
        861
20.0
        636
21.0
         409
```

22.0 78 23.0 13 Name: dep_time, dtype: int64

Para aplicar funciones diferentes a diferentes columnas:

Hasta el momento, hemos obtenido los mismos indicadores para las diferentes columnas. Es posible especificar funciones diferentes para distintas columnas, usando un dictionario.

								Υ	Z
	count	mean	std	min	25%	50%	75%	max	Z
Х									
а	2.0	2.0	1.414214	1.0	1.50	2.0	2.50	3.0	9.5
b	1.0	4.0	NaN	4.0	4.00	4.0	4.00	4.0	12.5
С	2.0	6.5	0.707107	6.0	6.25	6.5	6.75	7.0	15.0