Soutenance

Projet electif R
Nathan SIMON & Antoine LE BOULCH

Partie 1

- Problème du sac à dos (Knapsack problem)
 - Maximiser la somme des utilités du contenu du sac sans dépasser une limite de poids

Objet	Masse	Utilité
Pompe	0,2	1,5
Démonte-pneus	0,1	1,5
Gourde	1	2
Chambre à air	0,2	0,5
Clé de 15	0,3	1
Multi-tool	0,2	1,7
Pince multiprise	0,4	0,8
Couteau suisse	0,2	1,5
Compresses	0,1	0,4
Désinfectant	0,2	0,6
Veste de pluie	0,4	1
Pantalon de pluie	0,4	0,75
Crème solaire	0,4	1,75
Carte IGN	0,1	0,2
Batterie Portable	0,5	0,4
Téléphone mobile	0,4	2
Lampes	0,3	1,8
Arrache Manivelle	0,4	0
Bouchon valve chromé bleu	0,01	0,1
Maillon rapide	0,05	1,4
Barre de céréales	0,4	0,8
Fruits	0,4	
Rustines	0,05	
Nustilles	0,03	1,5

Partie 1

• Nombre de possibilités au total pour n allant de 0 à 23: 8 388 608.

rmq:

pour n = 0: 1 possibilité

n = 23 : 1 possibilité

Brute force (exact)

- Dans ce cas, il faudra calculer toutes les possibilités
 - ne dépendra pas ou peu du poids max du sac
 - dépendra de n
 - complexité en O~2^n

source image: https://www.sfeir.dev/front/comprendre-la-complexite-des-algorithmes/

Branch (exact)

- Complexité varie en fonction du nombre d'objets ET du poids max
 - Si une branche dépasse le poids max, elle est « coupée » et n' engendrera plus d'autres calculs.

source img: https://www.baeldung.com/cs/branch-and-bound

Dynamique (exact)

• Algo le plus performant dans notre cas

	← Maximum Weights ← ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ►									
1		0	1	2	3	4	5	6	7	8
Items with Weights and Profits	0	0	0	0	0	0	0	0	0	0
	1 (1, 2)	0	1	1	1	1	1	1	1	1
	2 (3,4)	0	1	1	4	6	6	6	6	6
	3 (5,7)	0	1	1	4	6	7	9	9	11
	4 (7,10)	0	1	1	4	6	7	9	10	(12)

Glouton (approché)

- Calcul du ratio : $\frac{valeur}{\sqrt{poids}}$
- Va trier les objets par ratio décroissant
- Va les ajouter jusqu'à atteindre la limite de poids

Partie 2

- Problème des wagons
 - à résoudre en dimensions d=1, d=2 et d=3
 - online et offline

- First fit
 - toutes dimensions
 - Va placer le bloc dans la première place disponible
- Best fit
 - toutes dimensions
 - Va placer le bloc dans la place qui va minimiser l'espace restant dans le volume/surface/longueur
- Skyline
 - 2D
 - fait en sorte de minimiser l'augmentation de la skyline

Online	Nb wagons	occupation	Temps (s)
D 1	45	0.914	~> 0
D 2	33	0.714	0.001
D 3			

Offline	Nb wagons	occupation	temps
D 1	44	935	0
D 2	29	0.80	0
D 3			

exemple 2D offline

Fin

Merci pour votre attention