

Konzepte und Funktionsweise von Big Data Stream Processing-Frameworks

am Beispiel der Verkehrsüberwachung und -analyse

Inhalt

- Big Data Stream Processing
 - Konzepte
 - Funktionen
- Ein konkretes Beispiel: Verkehrsüberwachung und –analyse
 - Konzepte
 - Funktionen
 - Technologie

Big Data Stream Processing

Intuitive Einführung

Big Data Stream Processing

Konzepte

Speicher. Approximation Datenduelle-Verarbeitung Durchsatz Datenz Echtzeit

Big Data Stream Processing

Funktionen

Funktion	Batch	Streaming
Datenquelle		
Datenaufnahme		
Updates		
Verarbeitungsmodell		
Antwortgnauigkeit		
Latenz		

Demo

Funktionen

Sliding-Window Verarbeitung

Generische Funktionen

KI Komponente

- •Liest Daten
- Filtert pro Typ
- •Iteriert zum Trainieren
- •Klassifizieren
- Schreibt Daten

Offline-

Datenanalyse Komponente

- Datenvisualisierung
- Konvertiert Daten
- Speichert Daten

Daten-Cache

Komponente

Echtzeit-

Datenanalyse

Komponente

- Speichert Daten
- Liest Daten
- Partitioniert Daten
- Ordnet Daten zeitlich an
- •Filtert doppelte Daten
- Schreibt Daten

Datenaufnahme Komponente

•Empfängt Daten

Generische Funktionen

Demo Technologie

Demo Technologie

Fazit

In einer realen Anwendung (China, Shenzen, Bantian Viertel, 8 Kreuzungen, 28 ampelgeregelte Straßenspuren):

- Daten werden von Kameras und Induktionsschleifen jede Sekunde erfasst (280 Kafka Nachrichten/s)
- Verarbeitungsschritte (SELECT FROM WHERE ML etc.) sequentiell sequenziert
- Daten werden sofort und inkrementell verarbeitet (z.B. Zählen der Anzahl der vorbeifahrenden Autos, Warteschlangenlänge, Fluss, Überlastungsindex)
- Verarbeitung mit niedriger Latenz (0.03s/ampel) und hohem Durchsatz (28 Ampelregelungssignale/s)

Konzepte und Funktionsweise von Big Data Stream Processing-Frameworks

am Beispiel der Verkehrsüberwachung und -analyse