

Laboratório de Programação Competitiva

Profa. Silvia Brandão

2024.1

Aula de Hoje

Tópicos Avançados em Algoritmos: Geometria Computacional

- -Geometria Computacional em Python: Pontos, linhas, polígonos, interseções.
- -Manipulação de pontos, linhas e polígonos em Python.
- -Resolução de problemas envolvendo interseções em geometria computacional.

Geometria Computacional

A Geometria Computacional é um ramo da matemática e da ciência da computação que estuda algoritmos e estruturas de dados para resolver problemas geométricos. Seus conceitos fundamentais incluem:

- **1. Objetos Geométricos**: Trabalha com pontos, retas, segmentos, polígonos, círculos e sólidos, analisando suas propriedades e relações.
- **2. Algoritmos Geométricos**: Desenvolve métodos eficientes para realizar operações como interseção, união, triangulação e determinação de distância entre objetos.
- **3. Aplicações**: É amplamente aplicada em áreas como gráficos por computador, robótica, visão computacional, CAD (design assistido por computador) e modelagem 3D.
- **4. Complexidade Computacional**: Estuda a eficiência dos algoritmos, buscando minimizar o tempo e o espaço necessários para resolver problemas.
- **5. Problemas Clássicos**: Inclui questões como o problema do fecho convexo, triangulação de polígonos, e a busca de caminhos mais curtos em grafos.

Em resumo, a Geometria Computacional combina matemática e computação para resolver problemas práticos e teóricos relacionados à forma e à estrutura no espaço.

Primitivas gráficas

GL_QUADS

Uma série de

conectados.

do primeiro triângulo, cada vértice adicional forma um novo triângulo com

dois últimos

pontos fornecidos

Após o desenho

triângulos

GL_QUAD_STRIP

(convexo)

- Uma série de triângulos com um único vértice em comum
- O vértice comum é o primeiro vértice fornecido

Primitivas Gráficas - Polígonos

- Áreas formadas por várias linhas conectadas
 - Arestas do polígono não podem se cruzar
 - Não pode haver no lugar de um segmento de reta, uma curva qualquer

• Devem ser polígonos convexos

Polígonos convexos:

- Tomando dois pontos A e B dentro de um polígono
- Se o segmento AB sempre estiver inteiramente no interior do polígono, independentemente da localização dos pontos A e B

Primitivas Gráficas - Python

MultiLineString	35	MULTILINESTRING ((10 10, 20 20, 10 40), (40 40, 30 30, 40 20, 30 10))
MultiPolygon		MULTIPOLYGON (((30 20, 45 40, 10 40, 30 20)), ((15 5, 40 10, 10 20, 5 10, 15 5)))
		MULTIPOLYGON (((40 40, 20 45, 45 30, 40 40)),
		((20 35, 10 30, 10 10, 30 5, 45 20, 20 35),
		(30 20, 20 15, 20 25, 30 20)))

Primitivas Gráficas - Python

```
pip install shapely
                      [10] from shapely import Point, LineString, Polygon
                           Point(5.2, 52.1)
                          LineString([(0, 0), (1, 2)])
                      [14] Polygon([(0, 0), (0, 1), (1, 1), (1, 0)])
                           coords = ((0., 0.), (0., 1.), (1., 1.), (1., 0.), (0., 0.))
                           polygon = Polygon(coords)
                           print(f'Área = {polygon.area}')
                           print(f'Perimetro = {polygon.length}')
```

- Biblioteca do Python mais comumente usada para manipulação de pontos e operações geométricas básicas - shapely
- Criação de Linhas entre dois pontos LineString([(0, 0), (1, 1)])
- Interseção de Polígonos poly1 e poly2 poly1.intersection(poly2)
- Coordenadas de um ponto p p = Point(2, 3); p.coords
- Cálculo da Área de um Polígono poly.area
- Verificação de Interseção de duas linhas line1.intersects(line2)
- União de dois polígonos poly1 e poly2 poly1.union(poly2)
- Cálculo da distância entre dois pontos point1 e point2 point1.distance(point2)
- Verificação de Contenção (se um ponto p está dentro de um polígono poly) poly.contains(p)
- Simplificação da geometria de um polígono poly.simplify(tolerance)

Clique no link: https://colab.research.google.com/drive/1kVYyU95eS1y _THBCEtlig_auUFtyr3tM?usp=sharing

Geometria Computacional

Diagrama de Voronoi:

- ferramenta matemática utilizada para dividir um espaço em regiões, de forma que cada região contenha um ponto central específico;
- técnica desenvolvida pelo matemático russo Georgy Voronoi, no final do século XIX;
- amplamente aplicada em diversas áreas, incluindo a engenharia.

Diagrama de Voronoi

Exemplos de aplicação:

- Análise de tráfego: o diagrama de Voronoi pode ser utilizado para dividir uma área em regiões de influência de cada ponto de tráfego, auxiliando no planejamento de rotas e na análise de congestionamentos;
- 2. Planejamento urbano: o diagrama de Voronoi pode ser utilizado para determinar a área de influência de cada equipamento urbano, como escolas, hospitais e postos de saúde, facilitando o planejamento e a distribuição desses recursos.
- 3. Mecânica de materiais granulares

Figura – Sistema granular bidimensional e bidisperso, perturbado por um intruso. Em (a) A circunferência maior representa o intruso, o espaço atrás do intruso é a cavidade, as linhas vermelhas representam as cadeias de forças do sistema, as setas externas indicam o movimento da bandeja e a seta sobre o intruso, apesar de este ser fixo, indica o seu "deslocamento relativo" com referencial na caixa. Em (b) temos, em laranja os grãos, em azul o intruso e a tesselação de Voronoi de uma pequena região próxima ao intruso. Obs: as duas figuras retratam o sistema em momentos diferentes.

Exercícios: módulo shapely

- 9. Implemente o desenho do galo usando apenas as primitivas gráficas.
- 10. Implemente o desenho do quadro do barquinho e faça a coloração da paisagem

Galo

Entrega pelo portifólio (notebook), no Google Colab.

Vale nota

Referências

- CORMEN, Thomas H. et al. **Introduction to algorithms**. MIT press, 2009.
- CLUBE DO QGIS. https://clubedogis.com.br/blog/qgis-o-que-e-o-que-faz-e-para-que-serve/
 - O QGIS fornece ferramentas diferentes para manipular dados espaciais como **visualização, edição e análise.** Além disso, é possível fazer análises espaciais e temporais, acessar banco de dados, utilizar funções conectadas com a internet, visualização 3D dos mapas e, ainda, realizar análises multicritério.
- Transforme seu VScode em uma ferramenta poderosa para Dados Geográficos.
 https://www.dio.me/articles/transforme-seu-vscode-em-uma-ferramenta-poderosa-para-dados-geográficos
- **Geometria do Projeto Computacional.** https://primer.dynamobim.org/pt-br/05_Geometry-for-Computational-Design/5_geometry-for-computational-design.html. Não se preocupe com a teoria do Dynamo Primer. É um guia abrangente para a programação visual no Autodesk Dynamo. E, que não será usado por nós.
- IMPA. Introdução a Geometria Computacional. https://impa.br/wp-content/uploads/2017/04/18_CBM_91_06.pdf
- Geometry. https://shapely.readthedocs.io/en/stable/geometry.html