Sensor Fusion for Irregularly Sampled Systems

Taiguara Tupinambás

Laboratório de Modelagem, Análise e Controle de Sistemas Não-Lineares (MACSIN) Programa de Pós-Graduação em Engenharia Elétrica (PPGEE) Universidade Federal de Minas Gerais (UFMG)

21 de Fevereiro, 2019

- 🚺 Motivação
 - Popularização de Redes de Sensores
 - Desafios
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem Irregular

- Motivação
 - Popularização de Redes de Sensores
 - Desafios
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem Irregular

Crescimento do Mercado Global de Sensores

- CAGR de 11.3% a.a. no período 2016-2022
- USD 241 bilhões em 2022

Fonte: Allied Market Research

Tendências

Internet das Coisas

Fonte: Business Insider

Redes Complexas de Sensores

Fonte: Libelium

- Motivação
 - Popularização de Redes de Sensores
 - Desafios
 - Objetivos
- Metodologia
 - Modelo de Amostragem Irregular

Desafios

Falta de sincronização entre os múltiplos sensores da rede pode levar a amostragem irregular sem informação confiável de carimbo de tempo

Soluções:

- Investir em sincronização
- Deslocar os instantes de tempo

Efeitos de se deslocar os instantes de tempo

Efeitos de se deslocar os instantes de tempo

Vale a pena investir em sincronização?

- Qual a relevância do erro para os objetivos da fusão sensorial?
- Quais são os fatores que influenciam o desempenho?

Fusão sensorial resumido ao problema de estimação de estados

- Motivação
 - Popularização de Redes de Sensores
 - Desafios
 - Objetivos
- - Modelo de Amostragem Irregular

Objetivos

- Revisar os métodos de fusão sensorial e o problema de amostragem irregular;
- Discutir os algoritmos e suas adaptaçãos ao modelo de medição amostrado irregularmente, sem carimbo de tempo;
- Desenvolver uma metodologia para estudar os efeitos de desconsiderar os carimbos de tempo;
- 4. Aplicar a metodologia em um sistema linear e outro não-linear, utilizando índices de desempenho que avaliam a precisão e a consistência de estimação;

- Motivação
 - Popularização de Redes de Sensores
 - Desafios
 - Objetivos
- Metodologia
 - Modelo de Amostragem Irregular

Modelo de Amostragem Irregular

Instantes de amostragem modelados por um processo de Poisson:

$$P(N(t) = n) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$$

$$\rho_{h_k}(t) = \lambda e^{-\lambda t}$$

Modelo de Amostragem Irregular

