

Comics day!

In two years you will be an expert in automatic extraction of information from texts and images...

Check list for Day 1

- open, readlines, strip, sys.argv (module: sys)
- str, int, float, list, dict (Try to use '+' and 'len' with different types)
- slices, .append(x), .insert(i,x), .count(x), .reverse(), max(),
 sum(),
- for, in, range, if, ==, else, Booleans (not, or, and),
- dictionaries (.iterkeys(),.itervalues(),.iteritems())
- <, >, +, -, *, /, **, math.log, math.sqrt (module: math)
- def, return

- Toolbox: Functions. Topics: Data conversion, representing text, from folders to BOW. Modules: glob. Reading: PP9, PP10, PP13, and PP14. Exercise: Install NLTK and text2bigrams.py.
- Toolbox: Classes. Topic: Handwritten digit recognition and BOWs in scikits. Modules: scikits.
 Reading: PP18 and PP19. Check this out: <a href="http://scikit-learn.org/stable/auto-examples/neighbors/plot-classification.html#example-neighbors-plot-classification-py and https://thenewcircle.com/s/post/1152/scikit-learn_machine_learning_in_python Exercise: Nearest neighbor using lists.
- Toolbox: arrays, matrices. Topic: Nearest neighbor using scipy. Modules: numpy, scipy. Reading: http://www.engr.ucsb.edu/~shell/che210d/numpy.pdf
 Exercise: Implement and evaluate Rocchio on both texts and images, including error analysis (exam).
- Topic: Implementing (averaged) perceptron. Reading: http://scikit-learn.org/stable/modules/linear_model.html Exercise: Implement stochastic gradient descent.
- Topic: Evaluation against gold data. Modules: pylab. Reading: http://matplotlib.org/users/pyplot_tutorial.html
 https://thenewcircle.com/s/post/1133/advanced_matplotlib_tutorial_with_library_author_john_h_unter_Exercise: Learning curves on your own document classification dataset (exam).
- Toolbox: scipy.stats, pandas. Topic: Naïve Bayes, distributional assumptions. Reading: http://pandas.pydata.org/ Exercise: Statistical analysis of features in 20 newsgroups (oral presentation). Implement feature selection.
- Toolbox: PIL. Topic: Image Processing. Reading: CV1, CV2, CV9. Exercise: Rank images by brightness (exam).
- Toolbox: scikits, pyfaces. Topic: Face recognition and clustering. Reading: CV6, http://pyfaces.blogspot.dk/ Exercise: Reading groups present a face recognition experiment in class. Implementation and dataset of your own choice.
- Toolbox: scikits, theano. Topic: Dimensionality reduction. Reading: http://scikit-learn.org/stable/modules/decomposition.html Exercise: Train auto-encoder (neural network) to learn low-dimensional representations.

Unix cd, mkdir, ls, mv, rm, sudo, tail, more, grep

THESE CAUSE MOMENTARY POCKETS
OF HIGHER-PRESSURE AIR TO FORM,

WHICH ACT AS LENSES THAT DEFLECT INCOMING COSMIC RAYS, FOCUSING THEM TO STRIKE THE DRIVE PLATTER AND FLIP THE DESIRED BIT.

I LEARNED IT LAST NIGHT! EVERYTHING IS SO SIMPLE! HELLO WORLD IS JUST Print "Hello, world!" I DUNNO...
DYNAMIC TYPING?
WHITESPACE?

COME JOIN US!
PROGRAMMING
IS FUN AGAIN!
IT'S A WHOLE
NEW WORLD
UP HERE!

BUT HOW ARE
YOU FLYING?

I JUST TYPED
import antigravity
THAT'S IT?

... I ALSO SAMPLED
EVERYTHING IN THE
MEDICINE CABINET
FOR COMPARISON.

BUT I THINK THIS
18 THE PYTHON.

"You have to solve this problem by yourself. You can't call tech support."

Exercise I Write a line-to-BOW script (like crashcourse-bow.py) taking only frequent words into account; e.g, words with more than *m* occurrences.


```
\Theta \Theta \Theta
                                a crashcourse-bow.py
from __future__ import division
from collections import Counter
import sys
lines=[l.strip().split() for l in open(sys.argv[1]).readlines()]
words=Counter(open(sys.argv[1]).read().split())
print list(words.iterkeys())
dataset=
for l in lines:
    representation=□
    for w in words:
        if w in 1:
             representation.append(1)
        else:
             representation.append(0)
    dataset.append(representation)
print dataset
```



```
glob(pathname):
    """Return a list of paths matching a pathname pattern.

The pattern may contain simple shell-style wildcards a la fnmatch.
    """
    return list(iglob(pathname))
```

```
>>> import glob
>>> for file in glob.glob("*.jpg"):
... print file
...
image.jpg
Horoscope.jpg
jinu.jpg
>>> 

AppleScript: Automating with folder
>>> 

Company of the comp
```

Exercise II Write a file-to-BOW script using import glob.

Exercise III Write a file-to-BOW script with TF-IDF scores.

seg1.txt (missiles	masks	aryan	guns	WILLIESSES	reported	SHVCI	suv	august
segiitat t	0.239441	0	0.153457	0.195243	0	0.237029	0	0.195243	0.237029	0.140004	0.195243	0.237029	0
seg13.txt	0	0	0	0	0	0	0	0	0	0	0	0	0
seg14.txt	0	0.192197	0	0	0	0	0	0	0	0	0	0	0.172681
seg15.txt	0	0	0	0	0	0	0	0	0	0	0	0	0.149652
seg16.txt	0	0	0	0	0	0	0	0	0	0	0	0	0
seg17.txt	0	0	0	0	0	0	0	0	0	0	0	0	0
seg18.txt	0	0.158432	0	0	0	0	0	0	0	0	0	0	0
seg19.txt	0	0	0	0.19725					0	0.141447	0	0	0.155038
seg2.txt	0	0	0		2072		v.1	N_{\perp}	0	0	0	0	0
seg20.txt	0	0.234323	0		w_{i} =	= U , ,	×log	$\left(\frac{1}{1}\right)$	0	0	0	0	0
seg21.txt	0	0	0		.,,	.,,	.70	`df ; '	0	0	0	0	0
seg22.txt	0	0	0	U	0.137027	·	0.12/303	, ,	0	0	0	0	0
seg23.txt	0	0	0	0	0	0	0	0	0	0.180656	0	0	0
seg24.txt	0	0	0	$log_{10}(x)$					0	0.117966	0	0	0
seg25.txt	0	0	0	_ ':					0	0	0	0	0
seg26.txt	0	0	0						0	0	0	0	0
seg27.txt	0	0	0.235418	_ +		4	6	8	10 x 0	0	0	0	0
seg28.txt	0	0	0	_ [/	-	4	0		. 0	0	0	0	0
seg29.txt	0	0	0	[/					0	0	0	0	0.142329
seg3.txt	0	0	0						0	0	0	0	0
seg30.txt 0	0.078262	0	0	_					0	0	0	0	0
seg31.txt	0	0	0.213409						0	0	0	0	0
seg32.txt	0	0	0	_					0	0	0	0	0

Term fr	requency	Docum	ent frequency	Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
l (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df}_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times \text{tf}_{t,d}}{\max_t(\text{tf}_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{N-\mathrm{d}f_t}{\mathrm{d}f_t}\}$	u (pivoted unique)	1/u (Section 6.4.4)	
b (boolean)	$\begin{cases} 1 & \text{if } tf_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^\alpha, \alpha < 1$	
L (log ave)	$\frac{1+\log(tf_{t,d})}{1+\log(ave_{t\in d}(tf_{t,d}))}$					

$$tf(t,d) = 0.5 + \frac{0.5 \times f(t,d)}{\max\{f(w,d) : w \in d\}}$$

it was ... ah, words can't describe!

Exercise IV Problems where BOW don't cut it?

are you sure? that's what they do **Exercise V and VI** From documents to bigram representations, and BOW using external dictionaries...