

UNIT - 4

Orthogonalization, Eigen Values and Eigen Vectors

```
Chapter 3-3.4 (Gilbert Strang)
Chapter 5-5.1, 5.2 (Gilbert Strang)
Chapter 2-2.13 to 2.15 (B S Grewal)
Chapter 28-28.9 (B S Grewal)
```


Book: Gilbert Strang

- 3.4 Orthogonal Bases and Gram-Schmidt
- 5.1 –Introduction to Eigenvalues and Eigenvectors
- 5.2- Diagonalization of a matrix

Book – B S Grewal

- 2.13- Eigenvalues
- 14. -Properties of Eigenvalues
- 15.-Cayley- Hamilton Theorem 28.9-
- **Determination of**
 - **Eigenvalues by Iteration**

Orthogonal Bases and Gram-Schmidt

The three topics basic to this section are

- 1.The definition and properties of an orthogonal matrix Q
- 2.The solution of Qx = b (both m=n and m > n)
- 3. The Gram-Schmidt process and A
- = QR factorization

Definition:

In an <u>orthogonal basis</u>, every vector is perpendicular to every other vector.

The coordinate axes are mutually orthogonal.

Mutually perpendicular unit vectors, are

Mutually perpendicular unit vectors are called **Orthonormal** vectors.

- For the vector space R²,
- 1. The set (2, 0), (0, 2) is an orthogonal basis.
- 2. The set (1, -2), (2, 1) is an orthogonal basis.
 - 3. The set (1, 0), (0, 1) is an orthonormal basis.

- A matrix with Orthonormal columns will be called Q.
- A square matrix with Orthonormal columns is called an <u>Orthogonal matrix</u> denoted by Q.

Ex: Rotation matrix, any permutation matrix

Note: The size of Q has to be square or tall.

Properties of Q

- If Q (square or rectangular) has orthonormal columns, then Q^TQ =I.
- An orthogonal matrix is a square matrix with orthonormal columns. Then Q^T is Q⁻¹.

 If Q is rectangular then Q^T is left inverse of Q.

Multiplication by any Q preserves length.
 The norms of x and Qx are equal.

 Also, Q preserves inner products and angles, since (Q x)^T (Qy) = x^TQ^TQy= x^Ty. If $q_1,q_2...q_n$ are orthonormal basis of R^n then any vector b from R^n can be expressed as $b = x_1q_1 + x_2q_2 + + x_n q_n$ Eqn(1) Multiply both sides by q_1^T . Then $q_1^Tb = x_1$. Similarly, $x_2 = q_2^Tb$,, $x_n = q_n^Tb$.

Hence, b= $(q_1^Tb)q_1 + (q_2^Tb)q_2 + + (q_n^Tb)q_n$ = sum of one dimensional projections on to q_i 's.

The matrix form of equation (1) is Qx = b and the solution of this system of equations is

$$x = Q^{-1}b = Q^{T}b$$

The rows of a square matrix are orthonormal whenever the columns are.

Orthonormal columns Orthonormal rows

$$Q = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & -2/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \end{bmatrix}.$$

Rectangular Matrices with Orthonormal Columns

- If Q has orthonormal columns, the least- squares problem becomes easy.
- $Q^TQx = Q^Tb$ are the normal equations for the best solution -in which $Q^TQ = I$.
- $x = Q^Tb$
- p=Qx the projection of b is $_1(q^Tp)q + ... _n + (q^Tp)q$
- $p = QQ^Tb$, the projection matrix is $P = QQ^T$.

The Gram-Schmidt Process

 It is a process of converting linearly independent vectors into orthonormal vectors.

- Consider any 3 independent vectors a, b, c.
- Then the first orthonormal q_1 = a/norm(a).

- If 'b' is perpendicular to the vector 'a' then q₂=b/norm(b) otherwiseB=b-(q₁ b)q₁ and q₂=B/norm(B).
- If 'c' is perpendicular to the plane spanned by the vectors a and b then
- $q_3 = c/norm(c)$

otherwise C=c-
$$(q_1^Tc)q_1^-(q_2^Tc)q_2$$
 and q_3 =C/norm(C).

- This is the one idea of the whole Gram-Schmidt process, to subtract from every new vector its components in the directions that are already settled.
- That idea is used over and over again.
 When there is a fourth vector, we subtract away its components in the directions of q₁, q₂, q₃.

The Factorization A=QR

- We started with a matrix A, whose columns were a, b, c.
- We ended with a matrix Q, whose columns are q₁, q₂, q₃.
- A and Q are of order m by n when the n vectors are in m-dimensional space.

The whole factorization is

$$A = \begin{bmatrix} a & b & c \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} q_1^T a & q_1^T b & q_1^T c \\ q_2^T b & q_2^T c \end{bmatrix} .$$

$$A = Q R$$

Eigen values and Eigen vectors

Definition:

Let A be a square matrix of order n. If there exists a real or complex number λ and a non zero vector x such that $Ax = \lambda x$ then x is called the **Eigen vector of A** and λ is its corresponding **Eigen value**.

Note:

- The vector x is in the null space of A- λ I.
- The number λ is chosen so that A- λ I has a null space.
- A- λ I must be singular.
- Det(A- λ I)=0 is called the characteristic equation of A and roots of this equation are called characteristic roots or Eigen values or Latent roots.

Corresponding to 'n' distinct Eigen values we get 'n' independent Eigen vectors. But when 2 or more eigen values are equal, it may or may not be possible to get linearly independent Eigen vectors corresponding to repeated roots.

Properties of Eigen Values and Eigen vectors

- If λ is an Eigen value of A with x as the corresponding Eigen vector then λ² is an Eigen value of A² with the same Eigen vector x.
- For a given Eigen vector x, there corresponds only one Eigen value λ.
- For a given Eigen value there corresponds infinitely many Eigen vectors.

- λ = 0 is an Eigen value of A, if and only if A is singular i.e det(A)=0.
- If λ is an Eigen value of A with x as the Eigen vector then 1/λ is an Eigen value of A-1 provided A-1 exists.
- A and its transpose A^Thave the same Eigen values.

- The Eigen values of a diagonal matrix are just the diagonal elements of the matrix.
- The Eigen values of an idempotent matrix are either zero or unity.
- The sum of the Eigen values of a matrix is the sum of the elements of the principal diagonal.
- The product of the Eigen values of a matrix A is equal to its determinant.

Procedure to find eigenvalues and eigenvectors

- Compute the determinant of A λ I. With a λ subtracted along the diagonal, this determinant is a polynomial of degree n. It starts with (- λ)ⁿ.
- Find the roots of this polynomial. The n roots are the eigenvalues of A.

For each eigenvalue λ , solve the equation $(A - \lambda I)x = 0$.

Since the determinant of A - λ I is zero, there are solutions other than x = 0. Those are the eigenvectors.

The Cayley-Hamilton Theorem

Statement:

Every square matrix satisfies its own characteristic equation.

Example: Let
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$$

The characteristic

polynomial is
$$p(t)=det(A-tI)=t^2-4t+2=0$$
 and hence it can be verified

that

$$A^2 - 4A + 2I = 0$$
.

Note

If a matrix is invertible then we can find its inverse using Cayley-Hamilton

Theorem.

[1] 1]

eorem. $A = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$

Using Cayley-Hamilton theorem, A^2 -4A+2I=(0). Therefore $A^{-1}=(4I-A)/2$.

Rayleigh's Power Method

 It is an iterative method of computing the numerically largest Eigen value of a matrix.

Procedure

- Let A be a square matrix of order n.
- Choose a initial vactor x₀.
- Compute Ax_0 and express $Ax_0 = \lambda_1 x_1$ where λ_1 is the numerically largest value in Ax_0 .

- Compute Ax_1 and express $Ax_1 = \lambda_2 x_2$ where λ_2 is the numerically largest value in Ax_1 .
- Repeat the procedure until the 2 consecutive values of λ are almost the same.

Diagonalization of a Matrix

Suppose the n by n matrix A has n linearly independent eigenvectors.

If these eigenvectors are the c^{Λ} olumns of a matrix S, then S⁻¹ AS is a diagonal matrix Λ . The eigenvalues of A are on the diagonal of Λ

- If the matrix A has no repeated eigenvalues then its n eigenvectors are automatically independent.
- Therefore any matrix with distinct Eigen values can be diagonalized.
- The diagonalizing matrix S is not unique.
 An eigenvector x can be multiplied by a constant, and remains an eigenvector.

- Diagonalizability of A depends on enough eigenvectors.
- Invertibility of A depends on non zero eigen values.

Powers and Products

If A is diagonalizable then A=S∧S⁻¹.

• So $A^K = S \wedge^K S^{-1}$.

 Diagonalizable matrices share the same eigenvector matrix S if and only if AB = BA.