

SEQUENCE LISTING

<110> Rothman, James
Mayhew, Mark
Hoe, Mee

<120> KDEL RECEPTOR INHIBITORS

<130> 31488

<140> US 09/124,671
<141> 1998-07-29

<160> 42

<170> FastSEQ for Windows Version 3.0

<210> 1
<211> 46
<212> PRT
<213> Ratus ratus

<400> 1
Gly Asp Leu Ala Pro Gln Met Leu Arg Glu Leu Gln Glu Thr Asn Ala
1 5 10 15
Ala Leu Gln Asp Val Arg Glu Leu Leu Arg Gln Gln Val Lys Glu Ile
20 25 30
Thr Phe Leu Lys Asn Thr Val Met Glu Cys Asp Ala Cys Gly
35 40 45

<210> 2
<211> 46
<212> PRT
<213> Homo sapiens

<400> 2
Ser Asp Leu Gly Pro Gln Met Leu Arg Glu Leu Gln Glu Thr Asn Ala
1 5 10 15
Ala Leu Gln Asp Val Arg Asp Trp Leu Arg Gln Gln Val Arg Glu Ile
20 25 30
Thr Phe Leu Lys Asn Thr Val Met Glu Cys Asp Ala Cys Gly
35 40 45

<210> 3
<211> 46
<212> PRT
<213> Mus musculus

<400> 3
Gly Glu Gln Thr Lys Ala Leu Val Thr Gln Leu Thr Leu Phe Asn Gln
1 5 10 15

Ile Leu Val Glu Leu Arg Asp Asp Ile Arg Asp Gln Val Lys Glu Met
20 25 30
Ser Leu Ile Arg Asn Thr Ile Met Glu Cys Gln Val Cys Gly
35 40 45

<210> 4
<211> 46
<212> PRT
<213> Homo sapiens

<400> 4
Gly Glu Gln Thr Lys Ala Leu Val Thr Gln Leu Thr Leu Phe Asn Gln
1 5 10 15
Ile Leu Val Glu Leu Arg Asp Asp Ile Arg Asp Gln Val Lys Glu Met
20 25 30
Ser Leu Ile Arg Asn Thr Ile Met Glu Cys Gln Val Cys Gly
35 40 45

<210> 5
<211> 46
<212> PRT
<213> Homo sapiens

<400> 5
Gly Asp Phe Asn Arg Gln Phe Leu Gly Gln Met Thr Gln Leu Asn Gln
1 5 10 15
Leu Leu Gly Glu Val Lys Asp Leu Leu Arg Gln Gln Val Lys Glu Thr
20 25 30
Ser Phe Leu Arg Asn Thr Ile Ala Glu Cys Gln Ala Cys Gly
35 40 45

<210> 6
<211> 46
<212> PRT
<213> Xenopus laevis

<400> 6
Gly Asp Val Ser Arg Gln Leu Ile Gly Gln Ile Thr Gln Met Asn Gln
1 5 10 15
Met Leu Gly Glu Leu Arg Asp Val Met Arg Gln Gln Val Lys Glu Thr
20 25 30
Met Phe Leu Arg Asn Thr Ile Ala Glu Cys Gln Ala Cys Gly
35 40 45

<210> 7
<211> 27
<212> PRT
<213> Homo sapiens

<400> 7
Gln Lys Leu Gln Asn Leu Phe Ile Asn Phe Cys Leu Ile Leu Ile Cys
1 5 10 15
Leu Leu Leu Ile Cys Ile Ile Val Met Leu Leu

<210> 8
<211> 9
<212> PRT
<213> papillomavirus

<400> 8
Leu Leu Leu Gly Thr Leu Asn Ile Val
1 5

<210> 9
<211> 9
<212> PRT
<213> papillomavirus

<400> 9
Leu Leu Met Gly Thr Leu Gly Ile Val
1 5

<210> 10
<211> 9
<212> PRT
<213> papillomavirus

<400> 10
Thr Leu Gln Asp Ile Val Leu His Leu
1 5

<210> 11
<211> 9
<212> PRT
<213> papillomavirus

<400> 11
Gly Leu His Cys Tyr Glu Gln Leu Val
1 5

<210> 12
<211> 9
<212> PRT
<213> papillomavirus

<400> 12
Pro Leu Lys Gln His Phe Gln Ile Val
1 5

<210> 13
<211> 115
<212> PRT
<213> Artificial Sequence

<220>

<223> chimeric rat comp

<400> 13

Met Gly Lys Phe Thr Val Val Ala Ala Leu Leu Leu Leu Gly Ala
1 5 10 15
Val Arg Ala Glu Gly Ser Ser Leu Gly Gly Asp Leu Ala Pro Gln Met
20 25 30
Leu Arg Glu Leu Gln Glu Thr Asn Ala Ala Leu Gln Asp Val Arg Glu
35 40 45
Leu Leu Arg Gln Gln Val Lys Glu Ile Thr Phe Leu Lys Asn Thr Val
50 55 60
Met Glu Cys Asp Ala Cys Gly Met Gln Pro Ala Arg Thr Pro Gly Thr
65 70 75 80
Ser Pro Gln Pro Gln Pro Lys Pro Gln Pro Gln Pro Gln Pro Gln Pro
85 90 95
Lys Pro Gln Pro Lys Pro Glu Pro Glu Gly Thr Gly Ser Ser Glu Lys
100 105 110
Asp Glu Leu
115

<210> 14

<211> 387

<212> DNA

<213> Artificial Sequence

<220>

<223> chimeric rat COMP-KDEL

<400> 14

aagcttacca tggaaaagtt cactgtggtg gcggcgccgt tgctgctgct gggcgccgtg 60
cggggccgagg gatccagcct gggtgagac ctagccccac agatgcttcg agaactccag 120
gagactaatg cggcgtgcgca agacgtgaga gagctttgcg gacagcaggt caaggagatc 180
accttcctga agaatacggt gatggaatgt gacgcttgcg gaatgcagcc cgcacgcacc 240
cccggtacta gtccgcagcc gcagccgaaa ccgcagccgc agccgcagcc gcagccgaaa 300
ccgcagccga aaccggaaacc ggaaggtaacc ggatcatcag aaaaagatga gttgtaggcg 360
gccgcagaat tccatatgca tctcgag 387

<210> 15

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> chimeric rat COMP-KDEL

<400> 15

Met Gly Lys Phe Thr Val Val Ala Ala Leu Leu Leu Leu Gly Ala
1 5 10 15
Val Arg Ala Glu Gly Ser Ser Leu Gly Gly Asp Cys Cys Pro Gln Met
20 25 30
Leu Arg Glu Leu Gln Glu Thr Asn Ala Ala Leu Gln Asp Val Arg Glu
35 40 45
Leu Leu Arg Gln Gln Val Lys Glu Ile Thr Phe Leu Lys Asn Thr Val

50 55 60
Met Glu Cys Asp Ala Cys Gly Met Gln Pro Ala Arg Thr Pro Gly Thr
65 70 75 80
Ser Pro Gln Pro Gln Pro Lys Pro Gln Pro Gln Pro Gln Pro Gln Pro
85 90 95
Lys Pro Gln Pro Lys Pro Glu Pro Gly Thr Gly Ser Ser Glu Lys
100 105 110
Asp Glu Leu
115

<210> 16
<211> 387
<212> DNA
<213> Artificial Sequence

<220>
<223> chimeric rat COMP-KDEL

<400> 16
aagcttacca tgggaaagtt cactgtgtg gcggcggcgt tgctgctgct gggcgccgtg 60
cggggccgagg gatccagcct gggtgtggagac ttttgccac agatgcttcg agaactccag 120
gagactaatg cggcgctgca agacgtgaga gagctttgc gacagcaggt caaggagatc 180
accttcctga agaatacggt gatggaatgt gacgcttgcg gaatgcagcc cgcacgcacc 240
cccggtacta gtccgcagcc gcagccgaaa ccgcagccgc agccgcagcc gcagccgaaa 300
ccgcagccga aaccggaacc ggaaggtaacc ggatcatcag aaaaagatga gttgttaggcg 360
gccgcagaat tccatatgca tctcgag 387

<210> 17
<211> 105
<212> PRT
<213> Artificial Sequence

<220>
<223> chimeric mouse TSP3-KDEL

<400> 17
Met Gly Lys Phe Thr Val Val Ala Ala Ala Leu Leu Leu Leu Gly Ala
1 5 10 15
Val Arg Ala Glu Gly Ser Ser Leu Gly Gly Asp Cys Cys Lys Ala Leu
20 25 30
Val Thr Gln Leu Thr Leu Phe Asn Gln Ile Leu Val Glu Leu Arg Asp
35 40 45
Asp Ile Arg Asp Gln Val Lys Glu Met Ser Leu Ile Arg Asn Thr Ile
50 55 60
Met Glu Cys Gln Val Cys Gly Pro Gln Pro Gln Pro Lys Pro Gln Pro
65 70 75 80
Gln Pro Gln Pro Gln Pro Lys Pro Gln Pro Lys Pro Glu Pro Glu Gly
85 90 95
Thr Gly Ser Ser Glu Lys Asp Glu Leu
100 105

<210> 18
<211> 357

<212> DNA
<213> Artificial Sequence

<220>
<223> chimeric mouse TSP3-KDEL

<400> 18

aagcttacca tggaaaagtt cactgtggtg gcggcggcgt tgctgctgct	60
cggccgagg gatccagcct gggtgagac ttttgtaagg cattggtcac ccagctcacc	120
ctcttcaacc agatcctagt ggagcttcgg gacgacatcc gagaccaggt gaaggaaatg	180
tcactcatcc ggaacaccat catggagttt cagttgtgcg gtccgcagcc gcagccgaaa	240
ccgcagccgc agccgcagcc gcagccgaaa ccgcagccga aaccggaaacc ggaagggtacc	300
ggatcatcag aaaaagatga ttgttaggcg gccgcagaat tccatatgca tctcgag	357

<210> 19

<211> 109

<212> PRT

<213> Artificial Sequence

<220>

<223> chimeric mouse TSP3-KDEL

<400> 19

Met Gly Lys Phe Thr Val Val Ala Ala Leu Leu Leu Leu Gly Ala	
1 5 10 15	
Val Arg Ala Glu Gly Ser Ser Leu Gly Gly Asp Cys Cys Gly Glu Gln	
20 25 30	
Thr Lys Ala Leu Val Thr Gln Leu Thr Leu Phe Asn Gln Ile Leu Val	
35 40 45	
Glu Leu Arg Asp Asp Ile Arg Asp Gln Val Lys Glu Met Ser Leu Ile	
50 55 60	
Arg Asn Thr Ile Met Glu Cys Gln Val Cys Gly Pro Gln Pro Gln Pro	
65 70 75 80	
Lys Pro Gln Pro Gln Pro Gln Pro Lys Pro Gln Pro Lys Pro	
85 90 95	
Glu Pro Glu Gly Thr Gly Ser Ser Glu Lys Asp Glu Leu	
100 105	

<210> 20

<211> 369

<212> DNA

<213> Artificial Sequence

<220>

<223> chimeric mouse TSP3-KDEL

<400> 20

aagcttacca tggaaaagtt cactgtggtg gcggcggcgt tgctgctgct	60
cggccgagg gatccagcct gggtgagac ttttgtgggg agcagaccaa ggcattggtc	120
acccagctca cccttcaa ccagatccta gtggagcttc gggacgacat ccgagaccag	180
gtgaaggaaa tgtcactcat ccggAACACC atcatggagt gtcaggtgt cggtccgcag	240
ccgcagccga aaccgcagcc gcagccgcag ccgcagccga aaccgcagcc gaaaccggaa	300
ccgaaaggta ccggatcatc agaaaaagat gagttgttagg cggccgcaga attccatatg	360

catctcgag

369

<210> 21
<211> 109
<212> PRT
<213> Artificial Sequence

<220>
<223> chimeric Xenopus laevis TSP4-KDEL

<400> 21
Met Gly Lys Phe Thr Val Val Ala Ala Ala Leu Leu Leu Leu Gly Ala
1 5 10 15
Val Arg Ala Glu Gly Ser Ser Leu Gly Gly Asp Cys Cys Gly Asp Val
20 25 30
Ser Arg Gln Leu Ile Gly Gln Ile Thr Gln Met Asn Gln Met Leu Gly
35 40 45
Glu Leu Arg Asp Val Met Arg Gln Gln Val Lys Glu Thr Met Phe Leu
50 55 60
Arg Asn Thr Ile Ala Glu Cys Gln Ala Cys Gly Pro Gln Pro Gln Pro
65 70 75 80
Lys Pro Gln Pro Gln Pro Gln Pro Lys Pro Gln Pro Lys Pro
85 90 95
Glu Pro Glu Gly Thr Gly Ser Ser Glu Lys Asp Glu Leu
100 105

<210> 22
<211> 369
<212> DNA
<213> Artificial Sequence

<220>
<223> chimeric Xenopus laevis TSP4-KDEL

<400> 22
aagcttacca tggaaaagtt cactgtggtg gcggcggcgt tgctgctgct gggcgccgtg 60
cggcccgagg gatccagcct gggtgagac tggcgtggtg acgtcagcag acagttgatt 120
ggccagataa cccaaatgaa tcagatgctg ggagagctcc gagatgtcat gagacagcag 180
gtgaaagaga ccatgttctt gagaaacacc attgcagaat gccaggcctg tggcccgcag 240
ccgcagccga aaccgcagcc gcagccgcag ccgcagccga aaccgcagcc gaaaccggaa 300
ccggaaggtt ccggatcatc agaaaaagat gagttgttagg cggccgcaga attccatatg 360
catctcgag 369

<210> 23
<211> 109
<212> PRT
<213> Artificial Sequence

<220>
<223> chimeric human COMP-KDEL

<400> 23
Met Arg Tyr Met Ile Leu Gly Leu Leu Ala Leu Ala Ala Val Cys Ser

1	5	10	15
Ala Ala Lys Lys Gly Ser Ser Leu Gly Gly Asp Cys Cys Ser Asp Leu			
20	25	30	
Gly Pro Gln Met Leu Arg Glu Leu Gln Glu Thr Asn Ala Ala Leu Gln			
35	40	45	
Asp Val Arg Asp Trp Leu Arg Gln Gln Val Arg Glu Ile Thr Phe Leu			
50	55	60	
Lys Asn Thr Val Met Glu Cys Asp Ala Cys Gly Pro Gln Pro Gln Pro			
65	70	75	80
Lys Pro Gln Pro Gln Pro Gln Pro Lys Pro Gln Pro Lys Pro			
85	90	95	
Glu Pro Glu Gly Thr Gly Ser Ser Glu Lys Asp Glu Leu			
100	105		

<210> 24

<211> 372

<212> DNA

<213> Artificial Sequence

<220>

<223> chimeric human COMP-KDEL

<400> 24

aagcttacca tggaaaggta catgattta ggcttgctcg cccttgcggc agtctgcagc	60
gctgccaaaa aaggatccag cctgggtgga gactgttgtt cagacctggg cccgcagatg	120
cttcggaaac tgcaggaaac caacgcggcg ctgcaggacg tgccggactg gctgcggcag	180
caggtcaggg agatcacgtt cctgaaaaac acggtgatgg agtgtgacgc gtgcgggccc	240
cagccgcagc cgaaaccgca gccgcagccg cagccgcagc cgaaaccgca gccgaaaccg	300
gaaccggaag gtaccggatc atcagaaaaa gatgagttgt aggccggcgc agaattccat	360
atgcatctcg ag	372

<210> 25

<211> 90

<212> PRT

<213> Artificial Sequence

<220>

<223> chimeric human PLB-KDEL

<400> 25

Met Arg Tyr Met Ile Leu Gly Leu Leu Ala Leu Ala Ala Val Cys Ser			
1	5	10	15
Ala Ala Lys Lys Gly Ser Ser Leu Gly Gly Asp Cys Cys Gln Lys Leu			
20	25	30	
Gln Asn Leu Phe Ile Asn Phe Cys Leu Ile Leu Ile Cys Leu Leu Leu			
35	40	45	
Ile Cys Ile Ile Val Met Leu Leu Pro Gln Pro Gln Pro Lys Pro Gln			
50	55	60	
Pro Gln Pro Gln Pro Gln Pro Lys Pro Gln Pro Lys Pro Glu Pro Glu			
65	70	75	80
Gly Thr Gly Ser Ser Glu Lys Asp Glu Leu			
85	90		

<210> 26
<211> 315
<212> DNA
<213> Artificial Sequence

<220>
<223> chimeric human PLB-KDEL

<400> 26

aagcttacca	tggaaaggta	catgattta	ggcttgctcg	cccttcggc	agtctgcagc	60
gctgccaaaa	aaggatccag	cctgggtgga	gactgttgc	aaaagctaca	aatctattt	120
atcaatttct	gtctcatctt	aatatgtctc	ttgtctatct	gtatcatcgt	gtatgttctc	180
ccgcagccgc	agccaaacc	gcagccgcag	ccgcagccgc	agccgaaacc	gcagccgaaa	240
ccggaaccgg	aaggtaaccgg	atcatcagaa	aaagatgagt	tgtaggcggc	cgcagaattc	300
catatgcata	tcgag					315

<210> 27

<211> 109
<212> PRT
<213> Artificial Sequence

<220>

<223> chimeric human TSP3-KDEL

<400> 27

Met	Arg	Tyr	Met	Ile	Leu	Gly	Leu	Leu	Ala	Leu	Ala	Ala	Val	Cys	Ser	
1									5				10			15
Ala	Ala	Lys	Lys	Gly	Ser	Ser	Leu	Gly	Gly	Asp	Cys	Cys	Gly	Glu	Gln	
													20	25	30	
Thr	Lys	Ala	Leu	Val	Thr	Gln	Leu	Thr	Leu	Phe	Asn	Gln	Ile	Leu	Val	
													35	40	45	
Glu	Leu	Arg	Asp	Asp	Ile	Arg	Asp	Gln	Val	Lys	Glu	Met	Ser	Leu	Ile	
												50	55	60		
Arg	Asn	Thr	Ile	Met	Glu	Cys	Gln	Val	Cys	Gly	Pro	Gln	Pro	Gln	Pro	
											65	70	75	80		
Lys	Pro	Gln	Pro	Gln	Pro	Gln	Pro	Gln	Pro	Lys	Pro	Gln	Pro	Lys	Pro	
											85	90	95			
Glu	Pro	Glu	Gly	Thr	Gly	Ser	Ser	Glu	Lys	Asp	Glu	Leu				
											100	105				

<210> 28

<211> 372
<212> DNA
<213> Artificial Sequence

<220>

<223> chimeric human TSP3-KDEL

<400> 28

aagcttacca	tggaaaggta	catgattta	ggcttgctcg	cccttcggc	agtctgcagc	60
gctgccaaaa	aaggatccag	cctgggtgga	gactgttgc	gggagcagac	caaggcattt	120
gtcaccccagc	tcacccttctt	caaccagatc	ctagtggagc	tgcgggacga	catccgagac	180
caggtgaagg	aatgtcact	catccgaaac	accatcatgg	agtgtcaggt	gtgcggccg	240

cagccgcagc cgaaaccgca gccgcagccg cagccgcagc cgaaaccgca gccgaaaccg
gaaccggaag gtaccggatc atcagaaaaa gatgagttgt aggcggccgc agaattccat
atgcatctcg ag

300
360
372

<210> 29
<211> 109
<212> PRT
<213> Artificial Sequence

<220>
<223> chimeric human TSP4-KDEL

<400> 29

Met	Arg	Tyr	Met	Ile	Leu	Gly	Leu	Leu	Ala	Leu	Ala	Ala	Val	Cys	Ser
1														15	
Ala	Ala	Lys	Lys	Gly	Ser	Ser	Leu	Gly	Gly	Asp	Cys	Cys	Gly	Asp	Phe
		20						25						30	
Asn	Arg	Gln	Phe	Leu	Gly	Gln	Met	Thr	Gln	Leu	Asn	Gln	Leu	Leu	Gly
		35						40						45	
Glu	Val	Lys	Asp	Leu	Leu	Arg	Gln	Gln	Val	Lys	Glu	Thr	Ser	Phe	Leu
		50						55						60	
Arg	Asn	Thr	Ile	Ala	Glu	Cys	Gln	Ala	Cys	Gly	Pro	Gln	Pro	Gln	Pro
		65						70						80	
Lys	Pro	Gln	Pro	Gln	Pro	Gln	Pro	Gln	Pro	Lys	Pro	Gln	Pro	Lys	Pro
														85	
Glu	Pro	Glu	Gly	Thr	Gly	Ser	Ser	Glu	Lys	Asp	Glu	Leu			
								100				105			

<210> 30
<211> 372
<212> DNA
<213> Artificial Sequence

<220>
<223> chimeric human TSP4-KDEL

<400> 30

aagcttacca tggaaaggta catgattta ggcttgctcg cccttgcggc agtctgcagc
gctgccaaa aaggatccag cctgggtgga gactgttgtg gggactttaa ccggcagttc
ttgggtcaaa tgacacaatt aaaccaactc ctgggagagg tgaaggacct tctgagacag
caggttaagg aaacatcatt tttgcgaaac accatagctg aatgccaggc ttgcggtcgg
cagccgcagc cgaaaccgca gccgcagccg cagccgcagc cgaaaccgca gccgaaaccg
gaaccggaag gtaccggatc atcagaaaaa gatgagttgt aggcggccgc agaattccat
atgcatctcg ag

60
120
180
240
300
360
372

<210> 31
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> peptide that binds to erd2 receptor

<400> 31
Tyr Thr Ser Glu Lys Asp Glu Leu
1 5

<210> 32
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> peptide that binds to erd2 receptor

<400> 32
Leu Asn Tyr Phe Asp Asp Glu Leu
1 5

<210> 33
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> alpha-five integrin binding motif

<400> 33
Cys Asp Cys Arg Gly Asp Cys Phe Cys
1 5

<210> 34
<211> 134
<212> PRT
<213> Artificial Sequence

<220>
<223> KDEL/myc

<400> 34
Met Gly Lys Phe Thr Val Val Ala Ala Ala Leu Leu Leu Leu Gly Ala
1 5 10 15
Val Arg Ala Glu Gly Ser Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu
20 25 30
Tyr His Pro Asn Ser Thr Cys Gly Ser Ser Leu Gly Gly Asp Cys Cys
35 40 45
Pro Gln Met Leu Arg Glu Leu Gln Glu Thr Asn Ala Ala Leu Gln Asp
50 55 60
Val Arg Glu Leu Leu Arg Gln Gln Val Lys Glu Ile Thr Phe Leu Lys
65 70 75 80
Asn Thr Val Met Glu Cys Asp Ala Cys Gly Met Gln Pro Ala Arg Thr
85 90 95
Pro Gly Thr Ser Pro Gln Pro Gln Pro Lys Pro Gln Pro Gln Pro Gln
100 105 110
Pro Gln Pro Lys Pro Gln Pro Lys Pro Glu Pro Glu Gly Thr Gly Ser
115 120 125

Ser Glu Lys Asp Glu Leu

130

<210> 35

<211> 444

<212> DNA

<213> Artificial Sequence

<220>

<223> KDEL-myc

<400> 35

aagcttacca tggaaaagtt cactgtggtg gcggcgccgt tgctgctgt gggcgccgtg	60
cgggccgagg gatccgaaca aaaacttatt tctgaagaag acttgtacca cccaaactca	120
acatgcggat ccagcctggg tggagactgt tgtccacaga tgcttcgaga actccaggag	180
actaatgcgg cgctgcaaga cgtgagagag ctcttgcgac agcaggtaa ggagatcacc	240
ttcctgaaga atacgggtat ggaatgtgac gcttgcggaa tgcagcccc acgcacccccc	300
ggtactagtc cgcagccgca gccgaaacctg cagccgcagc cgcagccgca gccgaaacctg	360
cagccgaaac cggaaccgga aggtaccgga tcatcagaaa aagatgagtt gtaggcggcc	420
gcagaattcc atatgcatct cgag	444

<210> 36

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> human myc tag

<400> 36

Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu

1

5

10

<210> 37

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<223> recognition sequence of KDEL receptor

<400> 37

Lys Asp Glu Leu

1

<210> 38

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<223> binds to KDEL receptor

<223> Xaa= any amino acid

<400> 38
Xaa Asp Glu Leu
1

<210> 39
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> binds to KDEL receptor

<400> 39
Ser Glu Lys Asp Glu Leu
1 5

<210> 40
<211> 4
<212> PRT
<213> Ratus ratus

<400> 40
Gly Asp Leu Ala
1

<210> 41
<211> 4
<212> PRT
<213> Ratus ratus

<220>
<221> VARIANT
<222> (0)...(0)

<400> 41
Gly Asp Cys Cys
1

<210> 42
<211> 4
<212> PRT
<213> Mus musculus

<400> 42
Gly Glu Gln Thr
1