

Data Collection

- ☐ The Movie Database (TMDb)
- ☐5000 Movies
- ■8 Variables

Hypothesis 1

Different factors affect movies'

revenue according to a linear

relationship.

Hypothesis 1: Preprocessing

- Select 7 variables: revenue, budget, production company, release quarter, runtime, vote average, vote count
- Eliminate missing data
- Choose data from year 2012 to year 2015
- Remain 458 movie data

Hypothesis 1: Relationship among variables

> cor(x)

	revenue	budget	production_company	release_quarter	runtime	vote_average	vote_count
revenue	1.000000000	0.72919591	0.268809408	0.001578318	0.26158648	0.258322178	0.77613431
budget	0.729195909	1.00000000	0.303253177	-0.055162857	0.31963125	0.041490950	0.58952558
production_company				0.012813545	0.06413295	0.002363084	0.21063118
release_quarter	0.001578318	-0.05516286	0.012813545	1.000000000	0.13597366	0.235057612	0.01974299
runtime	0.261586476	0.31963125	0.064132955	0.135973658	1.00000000	0.356350478	0.37028139
vote_average	0.258322178	0.04149095	0.002363084	0.235057612	0.35635048	1.000000000	0.42499480
vote count	0.776134310	0.58952558	0.210631185	0.019742992	0.37028139	0.424994796	1.00000000

Hypothesis 1: Multiple Linear Regression

```
> fit<-lm(revenue~budget+production company+factor(release quarter)+runtime+vote average+vote count,data=x)
> summarv(fit)
Call:
lm(formula = revenue ~ budget + production company + factor(release quarter) +
   runtime + vote average + vote count, data = x)
Residuals:
      Min
             10 Median 30
                                               Max
-546781577 -58857399 -4629406 46116471 901052683
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
              3.093e+07 6.920e+07 0.447 0.655091
(Intercept)
                      1.827e+00 1.454e-01 12.569 < 2e-16 ***
budget
production company 1.184e+07 1.331e+07 0.889 0.374287
factor(release quarter)2 4.316e+07 1.838e+07 2.348 0.019293 *
factor(release quarter)3 -1.127e+06 1.730e+07 -0.065 0.948105
factor(release quarter)4 2.855e+07 1.857e+07 1.538 0.124770
                 -1.689e+06 4.885e+05 -3.457 0.000598 ***
runtime
                    1.408e+07 1.023e+07 1.376 0.169455
vote average
                      7.200e+04 4.851e+03 14.844 < 2e-16 ***
vote count
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 132800000 on 448 degrees of freedom
Multiple R-squared: 0.7286, Adjusted R-squared: 0.7238
F-statistic: 150.4 on 8 and 448 DF, p-value: < 2.2e-16
```

Hypothesis 1: Homoscedasticity & Normality

- ✓ Equal variances assumption does NOT hold.
- ✓ The residuals are NOT normally distributed.

Hypothesis 1: Multiple Linear Regression With Log Transformation On Revenue And Budget

```
> fit<-lm(log(revenue)~log(budget)+production company+factor(release quarter)+runtime+vote average+vote count,data=x)
> summary(fit)
Call:
lm(formula = log(revenue) ~ log(budget) + production company +
   factor(release quarter) + runtime + vote_average + vote_count,
   data = x
Residuals:
          10 Median 30
   Min
-2.4366 -0.4002 0.0449 0.4314 2.0046
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
                   7.9698360 0.8150435 9.778 < 2e-16 ***
(Intercept)
log(budget)
           0.5691405 0.0414548 13.729 < 2e-16 ***
production company 0.1664532 0.0669745 2.485 0.013307 *
factor(release quarter)2 0.2128106 0.0903399 2.356 0.018920 *
factor(release quarter)3 0.1364737 0.0856947 1.593 0.111965
factor(release quarter)4 0.1583921 0.0918846 1.724 0.085431 .
                 -0.0092760 0.0024168 -3.838 0.000142 ***
runtime
                  0.1466406 0.0508486 2.884 0.004118 **
vote average
             0.0002596 0.0000229 11.340 < 2e-16 ***
vote count
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6572 on 448 degrees of freedom
Multiple R-squared: 0.6715, Adjusted R-squared: 0.6656
F-statistic: 114.5 on 8 and 448 DF, p-value: < 2.2e-16
```

Hypothesis 1: Homoscedasticity& Normality

- ✓ Equal variances assumption valid.
- ✓ The residuals are NORMALLY distributed.

Hypothesis 1: Evaluate Multicollinearity

```
> vif(fit)
                       GVIF Df GVIF^(1/(2*Df))
log(budget)
                   1.730199 1
                              1.315370
production company 1.157884 1 1.076050
factor(release quarter) 1.179594 3
                             1.027911
runtime
                 1.317103 1
                              1.147651
                   1.540106 1
                             1.241010
vote average
                   1.876520 1 1.369861
vote count
```

[✓] VIF values are acceptable.

Hypothesis 1: Detect Outliers, High-leverage Points and Influential Observations

Hypothesis 1: New Multiple Linear Regression

```
> x<-read.table("C:/Users/admin/Desktop/variables.csv", header=TRUE, sep=",")
> fit<-lm(log(revenue)~log(budget)+production company+factor(release quarter)+runtime+vote average+vote count,data=x)
> summary(fit)
Call:
lm(formula = log(revenue) ~ log(budget) + production company +
   factor(release quarter) + runtime + vote average + vote count,
    data = x)
Residuals:
    Min
              10 Median
                                       Max
-1.55176 -0.38863 0.05274 0.43582 1.33437
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
(Intercept)
                       6.863e+00 7.879e-01 8.710 < 2e-16 ***
log(budget)
                      6.189e-01 3.971e-02 15.587 < 2e-16 ***
production company 1.713e-01 6.317e-02 2.712 0.00695 **
factor(release quarter)2 1.956e-01 8.500e-02 2.302 0.02182 *
factor(release quarter)3 1.170e-01 8.049e-02 1.454 0.14670
factor(release quarter)4 1.380e-01 8.702e-02 1.586 0.11340
runtime
                       -9.916e-03 2.266e-03 -4.376 1.51e-05 ***
vote average
                  1.966e-01 4.879e-02 4.029 6.61e-05 ***
                        2.529e-04 2.203e-05 11.481 < 2e-16 ***
vote count
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6138 on 440 degrees of freedom
Multiple R-squared: 0.7133, Adjusted R-squared: 0.7081
F-statistic: 136.9 on 8 and 440 DF, p-value: < 2.2e-16
```

Hypothesis 1: Homoscedasticity & Normality

- ✓ Equal variances assumption valid.
- ✓ The residuals are NORMALLY distributed.

Hypothesis 1: Model Optimization

Best Subset Model Selection

- Optimality Criteria
 - 1. Regression Subset Selection
 - 2. Adjusted r_p²-Criterion
 - 3. C_p-Criterion
 - 4. Bayesian information criterion

Number of Variables

Number of Variables

Hypothesis 1: Model Optimization

Cross Validation

Hypothesis 1: Conclusion

✓
$$\log(y) = 0.6189 \log(x_1) + 0.1713x_2 + 0.1956 x_3 - 0.009916 x_4 + 0.1966 x_5 + 0.0002529 x_6 + 6.863$$

y: revenue x_1 : budget

 x_3 : factor(release quarter2)

 x_5 : vote average

 x_2 : production company

 x_4 : runtime

 x_6 : vote count

✓ Since our model has demonstrated over-fitting, this implies that a more sufficient non-linear model is needed to appropriately to model the data relationship.

Hypothesis 2

Revenue Depends On Genres

Hypothesis 2: Summary Statistics

Summary statistics by groups-count, mean & standard deviation

Hypothesis 2: Homogeneity of Variance

Check Equality of Variances					
Without Log Transformation	With Log Transformation				
Equal variance assumption does NOT hold	Equal variance assumption valid				
> bartlett.test(category\$revenue ~ category\$genres)	> bartlett.test(category\$revenue_log ~ category\$genres)				
Bartlett test of homogeneity of variances	Bartlett test of homogeneity of variances				
data: category\$revenue by category\$genres Bartlett's K-squared = 102.6, df = 7, p-value < 2.2e-16	data: category\$revenue_log by category\$genres Bartlett's K-squared = 5.681, df = 7, p-value = 0.5775				

Hypothesis 2: Boxplot

Hypothesis 2: One-way ANOVA

• F test

 There do appear to be SIGNIFICANT DIFFERENCES among the genres in terms of revenue.

Normality

✓ The residuals are NORMALLY distributed.

Hypothesis 2: Scheffe Test vs. Tukey Test

	Scheffe Test	Tukey Test
Group 1	Adventure, Animation, Science	Adventure, Animation, Science Fiction, Action
Group 2	Horror, Romance, Drama, Cor	nedy Horror, Romance, Drama, Comedy
Group 3	Action	
	<pre>sage: ricolae' was built under R version 3.4.2 n <- scheffe.test(fit, "genres", alpha = 0.05) n</pre>	> TukeyHSD(fit) Tukey multiple comparisons of means 95% family-wise confidence level Fit: aov(formula = revenue_log ~ genres, data = category) \$genres
\$parameters test n	232 2.049195 18.62398 5.480522 3.787396 0.9981355 ame.t ntr alpha enres 8 0.05	diff lwr upr p adj Adventure-Action 0.360384801 -0.4457391 1.16650875 0.8710404 Animation-Action 0.229156019 -0.5769679 1.03527997 0.9884399 Comedy-Action -0.960624555 -1.7667485 -0.15450061 0.0078267 Drama-Action -0.956274921 -1.7623989 -0.15015097 0.0082875
Smeans Action Adventure Animation Comedy	revenue_log	7 19.82519 Science Fiction-Action 0.193813059 -0.6123109 0.99993701 0.9958256 4 20.13219 Animation-Adventure -0.131228782 -0.9373527 0.67489517 0.9996628 4 20.01664 Comedy-Adventure -1.321009356 -2.1271333 -0.51488541 0.0000290
Drama Horror Romance Science Fic	18.03502 0.9682944 30 16.30685 20.56966 17.32811 18.253 18.12134 0.7824412 30 16.54988 19.52933 17.62235 18.138 18.05627 1.0591694 30 16.22344 20.16291 17.32909 18.087	8 18.44772 Horror-Adventure -1.316659722 -2.1227837 -0.51053577 0.0000314 7 18.58211 Horror-Adventure -1.230337294 -2.0364612 -0.42421334 0.0001376 6 18.57875 Romance-Adventure -1.295406508 -2.1015305 -0.48928256 0.0000455
\$comparison NULL \$groups	revenue_log groups	Drama-Animation -1.185430940 -1.9915549 -0.37930699 0.0002872 Horror-Animation -1.099108512 -1.9052325 -0.29298456 0.0011039 Romance-Animation -1.164177726 -1.9703017 -0.35805378 0.0004034 Science Fiction-Animation -0.035342959 -0.8414669 0.77078099 1.0000000 Drama-Comedy 0.004349634 -0.8017743 0.81047358 1.0000000
Adventure Animation Science Fic Action Horror Romance	19.35168 a 19.22045 a tion 19.18511 a 18.99130 ab 18.12134 b 18.05627 b	Horror-Comedy 0.090672062 -0.7154519 0.89679601 0.9999721 Romance-Comedy 0.025602848 -0.7805211 0.83172680 1.00000000 Science Fiction-Comedy 1.154437614 0.3483137 1.96056156 0.0004706 Horror-Drama 0.086322429 -0.7198015 0.89244638 0.9999801 Romance-Drama 0.021253214 -0.7848707 0.82737716 1.0000000
Drama Comedy attr(,"clas [1] "group"	18.03502 b 18.03067 b	Science Fiction-Drama 1.150087981 0.3439640 1.95621193 0.0005039 Romance-Horror -0.065069214 -0.8711932 0.74105473 0.9999971 Science Fiction-Horror 1.063765552 0.2576416 1.86988950 0.0018649 Science Fiction-Romance 1.128834767 0.3227108 1.93495872 0.0007015

Hypothesis 3

- Vote Score Depends On Genres
- Drama Has Higher Vote Score Than The Others

Hypothesis 3: Summary Statistics

Summary Statistics of Vote Scores								
Genres	Action	Adventure	Animation	Comedy	Drama	Horror	Romance	Science Fiction
Sample mean	6.20	6.45	6.29	6.06	6.73	6.08	6.68	6.48
Sample SD	0.71	0.76	0.61	0.75	0.71	0.80	0.85	0.66

Hypothesis 3: Homogeneity of Variance

```
> bartlett.test(category$score ~ category$genres)

Bartlett test of homogeneity of variances

data: category$score by category$genres

Bartlett's K-squared = 6.4562, df = 7, p-value = 0.4876
```

✓ Equal variance assumption valid

Hypothesis 3: One-way ANOVA

• F test

✓ There do appear to be SIGNIFICANT

DIFFERENCES among the genres in terms of vote average scores.

Normality

✓ The residuals are NORMALLY distributed.

Hypothesis 3: Inference On Two Population Variances (σ^2_{drama} & $\sigma^2_{the\ others}$)

```
> var.test(drama$score,others$score)

F test to compare two variances

data: drama$score and others$score
F = 0.88278, num df = 68, denom df = 406, p-value = 0.5367
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
    0.6273313    1.3034151
sample estimates:
ratio of variances
    0.8827772
```

 \checkmark At α=0.05, we DO NOT have sufficient evidence to reject null hypothesis(H_0 : $\sigma_1^2 = \sigma_2^2$) and use EQUAL variance t test.

Hypothesis 3: Inference On Two Population Means (μ_{drama} & $\mu_{the\ others}$)

✓ We conclude that the average score of drama is HIGHER than the average score
of others.

R Code

```
Hypothesis 1:
x<-read.table("C:/Users/admin/Desktop/variables.csv", header=TRUE, sep=",")
library(car)
#####Evaluate Correlation#####
cor(x)
#####Construct Multiple Linear Regression#####
fit<-lm(revenue~budget+production company+factor(release quarter)+runtime+vote average+vote count,data=x)
summary(fit)
par(mfrow=c(2,2))
plot(fit)
#####Do Log Transformation#####
fit<-lm(log(revenue)~log(budget)+production company+factor(release quarter)+runtime+vote average+vote count,data=x)
summary(fit)
par(mfrow=c(2,2))
plot(fit)
#####Evaluate Multicollinearity####
vif(fit)
#####Detect Outliers, High-leverage Points and Influential Observations#####
influencePlot(fit, id.method = "identify", main="Influence Plot", sub="Circle size is proportional to cook's distance")
#####Construct New Multiple Linear Regression After Deleting Outliers, High-leverage Points and Influential Observations#####
x<-read.table("C:/Users/admin/Desktop/variables new.csv", header=TRUE, sep=",")
fit<-lm(log(revenue)~log(budget)+production company+factor(release quarter)+runtime+vote average+vote count, data=x)
summary(fit)
par(mfrow=c(2,2))
plot(fit)
```

```
#####Optimize the Model####
library(leaps)
best.subset <- regsubsets(log(revenue)~., x , nvmax=6)</pre>
best.subset.summary <- summary(best.subset)</pre>
best.subset.summary$outmat
best.subset.bv.adjr2 <- which.max(best.subset.summary$adjr2)
best.subset.bv.adir2
best.subset.by.cp <- which.min(best.subset.summary$cp)
best.subset.bv.cp
best.subset.by.bic <- which.min(best.subset.summary$bic)</pre>
best.subset.bv.bic
par(mfrow=c(2,2))
plot(best.subset$rss, xlab="Number of Variables", ylab="RSS", type="1")
plot(best.subset.summarv$adjr2, xlab="Number of Variables", vlab="Adjusted RSg", type="1")
points(best.subset.by.adjr2, best.subset.summary$adjr2[best.subset.by.adjr2], col="red", cex =2, pch =20)
plot(best.subset.summary$cp, xlab="Number of Variables", ylab="CP", type="1")
points(best.subset.by.cp, best.subset.summary$cp[best.subset.by.cp], col="red", cex =2, pch =20)
plot(best.subset.summarv$bic, xlab="Number of Variables", vlab="BIC", type="1")
points(best.subset.by.bic, best.subset.summary$bic[best.subset.by.bic], col="red", cex =2, pch =20)
#####Cross-validation for 5-variable model#####
CVlm(data = x, form.lm=formula(log(revenue)~log(budget)+production company+runtime+vote average+vote count), m = 5)
#####Cross-validation for 6-variable model#####
CVlm(data = x, form.lm=formula(log(revenue)~log(budget)+production company+factor(release quarter)+runtime+vote average+vote count), m = 5)
```

```
Hypothesis 2:
category <- read.table("C:/Users/admin/Desktop/genre.csv", header=TRUE, sep=",")</pre>
boxplot(revenue ~ genres, category, xlab="Genres", ylab="Revenue")
#####Test of Homogeneity of Variance#####
bartlett.test(category$revenue ~ category$genres)
category$revenue log <- log(category$revenue)</pre>
boxplot(revenue log ~ genres, category, xlab="Genres", ylab="Revenue log")
bartlett.test(category$revenue log ~ category$genres)
#####One-way ANOVA: F test####
fit <- aov(revenue log ~ genres, data = category)
summary(fit)
par(mfcol=c(2,2))
plot(fit)
library(agricolae)
comparison <- scheffe.test(fit, "genres", alpha = 0.05)</pre>
comparison
TukevHSD(fit)
```

```
Hypothesis 3:
category <- read.table("C:/Users/admin/Desktop/genrel.csv", header=TRUE, sep=","
boxplot(score ~ genres, category, xlab="Genres", ylab="Score")
#####Summary Statistics#####
action=category[2:111,]
adventure=category[112:147,]
animation=category[148:187,]
comedy=category[188:265,]
drama=category[266:334,]
horror=category[335:409,]
romance=category[410:442,]
sciencefiction=categorv[443:476,]
mean(genres$score)
sd(genres$score)
#####Test of Homogeneity of Variance#####
bartlett.test(categorv$score ~ categorv$genres)
#####One-way ANOVA: F test#####
fit <- aov(score ~ genres, data = category)
summary(fit)
par(mfrow=c(2,2))
plot(fit)
#####Inference for Two Sample Variances####
drama=category[266:334,]
others=category[-c(266:334),]
var.test(drama$score,others$score)
#####Inference for Two Sample Means#####
t.test(drama$score,others$score,alternative='greater',var.equal=TRUE)
```