Responsible Data Science

Algorithmic Fairness

Prof. Julia Stoyanovich

Center for Data Science & Computer Science and Engineering New York University

"Bias" in predictive analytics

Statistical

model does not summarize the data correctly

Societal

data does not represent the world correctly

Data, a reflection of the world

Data, a reflection of the world

Changing the reflection won't change the world

Vendors and outcomes

Consider a **vendor** assigning positive or negative **outcomes** to individuals.

Positive Outcomes	Negative Outcomes
offered employment	not offered employment
accepted to school	not accepted to school
offered a loan	denied a loan
offered a discount	not offered a discount

Fairness in classification is concerned with how outcomes are assigned to a population

population

Sub-populations may be treated differently

Sub-populations may be treated differently

		SAT score	
		high	low
Black White	Plack		Θ Θ
	\oplus	Θ Θ	
	White	\oplus	Θ
		\oplus	Θ

positive outcomes

20% of Black

60% of White

Swapping outcomes

positive outcomes

40% of Black

> 40% of White

Two families of fairness measures

Group fairness (here statistical parity)

demographics of the individuals receiving any outcome - positive or negative should be the same as demographics of the underlying population

Individual fairness

any two individuals who are similar with respect to a task should receive similar outcomes

fairness through awareness

Fairness through awareness

[C. Dwork, M. Hardt, T. Pitassi, O. Reingold, R. S. Zemel; ITCS 2012]

Fairness: Individuals who are **similar** for the purpose of classification task should be **treated similarly**.

A task-specific similarity metric is given d(x,y)

 $M: X \rightarrow O$ is a **randomized mapping**: an individual is mapped to a distribution over outcomes

[C. Dwork, M. Hardt, T. Pitassi, O. Reingold, R. S. Zemel; ITCS 2012]

Fairness: Individuals who are **similar** for the purpose of classification task should be **treated similarly**.

A task-specific similarity metric is given d(x,y)

M is a Lipschitz mapping if

$$\forall x, y \in X \quad ||M(x), M(y)|| \le d(x, y)$$

close individuals map to close distributions there always exists a Lipschitz mapping - which?

fairness enforced at this step vendor cannot introduce bias

Find a mapping from individuals to distributions over outcomes that minimizes expected loss, **subject to the Lipschitz condition**. Optimization problem: minimize an arbitrary loss function.

Computed with a linear program of size poly(|X|, |Y|)

the same mapping can be used by multiple vendors

Some philosophical background

[C. Calsamiglia; PhD thesis 2005]

"Equality of opportunity defines an important welfare criterion in political philosophy and policy analysis.

Philosophers define equality of opportunity as the requirement that an individual's well being be independent of his or her irrelevant characteristics. The difference among philosophers is mainly about which

characteristics should be considered irrelevant."

Policymakers, however, are often called upon to address more specific questions: How should admissions policies be designed so as to provide equal opportunities for college? Or how should tax schemes be designed so as to equalize opportunities for income? These are called local distributive justice problems, because each policymaker is in charge of achieving equality of opportunity to a specific issue."

learning fair representations

Learning fair representations

• **Idea**: remove reliance on a "fair" similarity measure, instead **learn** representations of individuals, distances

Fairness and utility

[R. S. Zemel, Y. Wu, K. Swersky, T. Pitassi, C. Dwork; ICML 2013]

Learn a randomized mapping M(X) to a set of K prototypes Z

M(X) should lose information about membership in S $P(Z \mid S = 0) = P(Z \mid S = 1)$

M(X) should preserve other information so that vendor can maximize utility

$$L = A_z \cdot L_z + A_x \cdot L_x + A_y \cdot L_y$$
 group / individual tility fairness

Fairness and utility

$$P_k^+ = P(Z = k \mid x \in X^+)$$

$$P_k^- = P(Z = k \mid x \in X^-)$$

$$L_{z} = \sum_{k} |P_{k}^{+} - P_{k}^{-}| \qquad L_{x} = \sum_{n} (x_{n} - \widehat{x}_{n})^{2}$$

$$L_{y} = \sum_{n} -y_{n} \log \widehat{y}_{n} - (1 - y_{n}) \log (1 - \widehat{y}_{n})$$

$$L_{y} = \sum -y_{n} \log \widehat{y}_{n} - (1 - y_{n}) \log (1 - \widehat{y}_{n})$$

does this make sense?

On the (im)possibility of fairness

[S. Friedler, C. Scheidegger and S. Venkatasubramanian, arXiv:1609.07236v1 (2016)]

Goal: tease out the difference between *beliefs* and *mechanisms* that logically follow from those beliefs.

Main insight: To study algorithmic fairness is to study the interactions between different spaces that make up the decision pipeline for a task

Construct Space (CS) Observed Space (OS) Decision Space (DS)

On the (im)possibility of fairness

[S. Friedler, C. Scheidegger and S. Venkatasubramanian, arXiv:1609.07236v1 (2016)]

Construct Space	Observed Space	Decision Space	
intelligence	SAT score	performance in college	
grit	high-school GPA		
propensity to commit crime	family history	rooidiviom	
risk-averseness	age	recidivism	

define fairness through properties of mappings

Fairness through mappings

[S. Friedler, C. Scheidegger and S. Venkatasubramanian, arXiv:1609.07236v1 (2016)]

Fairness: a mapping from CS to DS is $(\varepsilon, \varepsilon')$ -fair if two objects that are no further than ε in CS map to objects that are no further than ε' in DS.

$$f: CS \rightarrow DS$$

$$d_{CS}(x,y) < \varepsilon \Longrightarrow d_{DS}(f(x),f(y)) < \varepsilon'$$

Construct Space (CS) Observed Space (OS) Decision Space (DS)

WYSWYG

[S. Friedler, C. Scheidegger and S. Venkatasubramanian, arXiv:1609.07236v1 (2016)]

Construct Space (CS) Observed Space (OS) Decision Space (DS)

What you see is what you get (**WYSIWYG**): there exists a mapping from **CS** to **OS** that has low distortion. That is, we believe that OS faithfully represents CS. **This is the individual fairness world view.**

WAE

[S. Friedler, C. Scheidegger and S. Venkatasubramanian, arXiv:1609.07236v1 (2016)]

Construct Space (CS) Observed Space (OS) Decision Space (DS)

We are all equal (WAE): the mapping from CS to OS introduces structural bias - there is a distortion that aligns with the group structure of CS. This is the group fairness world view.

Structural bias examples: SAT verbal questions function differently in the African-American and in the Caucasian subgroups in the US. Other examples?

Fairness and worldviews

The evils of discrimination

Disparate treatment

is the illegal practice of treating an entity, such as a job applicant or an employee, differently based on a **protected characteristic** such as race, gender, age, religion, sexual orientation, or national origin.

Disparate impact

is the result of systematic disparate treatment, where disproportionate adverse impact is observed on members of a protected class.

Ricci v. DeStefano (2009)

Supreme Court Finds Bias Against White Firefighters

By ADAM LIPTAK JUNE 29, 2009

Karen Lee Torre, left, a lawyer who represented the New Haven firefighters in their lawsuit, with her clients Monday at the federal courthouse in New Haven. Christopher Capozziello for The New York Times

What's the right answer?

There is no single answer!

Need transparency and public debate

- Consider harms and benefits to different stakeholders
- Being transparent about which fairness criteria we use, how we trade them off
- Recall "Learning Fair Representations": a typical ML approach

$$L = A_z \cdot L_z + A_x \cdot L_x + A_y \cdot L_y$$
group individual atility fairness fairness

apples + oranges + fairness = ?

Goals and trade-offs

Goals

diversity: pick k=4 candidates, including 2 of each gender, and at least one per race

utility: maximize the total score of selected candidates

		Male		Female	
4	White	A (99)	B (98)	C (96)	D (95)
score = 373	Black	E (91)		G (90)	(-)
7	Asian	I (87)	J (87)	K (86)	L (83)

Beliefs

scores are more informative within a group than across groups - effort is relative to circumstance

it is important to reward effort

FalaahArifKhan

REPRESENTATI

Problem

fairness: picked the best White and male candidates (A, B) but did not pick the best Black (E, F), Asian (I, J), or female (C, D) candidates

[Yang, Gkatzelis, Stoyanovich (2019)]

From beliefs to interventions

[Yang, Gkatzelis, Stoyanovich (2019)]

fairness in risk assessment

New Jersey bail reform

Switching from a system based solely on instinct and experience [...] to one in which judges have access to **scientific**, **objective risk assessment** tools could further the criminal justice system's central goals of increasing public safety, reducing crime, and making the most effective, fair, and efficient use of public resources.

ProPublica's COMPAS study

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica May 23, 2016

A commercial tool **COMPAS May 2016** automatically predicts some categories of future crime to assist in bail and sentencing decisions. It is used in courts in the US.

The tool correctly predicts recidivism 61% of the time.

Blacks are almost twice as likely as whites to be labeled a higher risk but not actually re-offend.

The tool makes the opposite mistake among whites: They are much more likely than blacks to be labeled lower risk but go on to commit other crimes.

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

ProPublica's COMPAS study

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica May 23, 2016 A commercial tool **COMPAS** May 2016 automatically predicts some categories of future crime to assist in bail and sentencing decisions. It is used in courts in the US.

Prediction Fails Differently for Black Defendants

	WHITE	AFRICAN AMERICAN
Labeled Higher Risk, But Didn't Re-Offend	23.5%	44.9%
Labeled Lower Risk, Yet Did Re-Offend	47.7%	28.0%

Overall, Northpointe's assessment tool correctly predicts recidivism 61 percent of the time. But blacks are almost twice as likely as whites to be labeled a higher risk but not actually re-offend. It makes the opposite mistake among whites: They are much more likely than blacks to be labeled lower risk but go on to commit other crimes. (Source: ProPublica analysis of data from Broward County, Fla.)

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Fairness in risk assessment

- A risk assessment tool gives a probability estimate of a future outcome
- Used in many domains:
 - insurance, criminal sentencing, medical testing, hiring, banking
 - also in less-obvious set-ups, like online advertising
- Fairness in risk assessment is concerned with how different kinds of errors are distributed among sub-populations

Calibration

positive outcomes: do recidivate

	risk score				
	0.2	0.6	0.8		
white					
black					

given the output of a risk tool, likelihood of belonging to the positive class is independent of group membership

0.6 means 0.6 for any defendant - likelihood of recidivism why do we want calibration?

COMPAS as a predictive instrument

Predictive parity (also called **calibration**)

an instrument identifies a set of instances as having probability *x* of constituting positive instances, then approximately an *x* fraction of this set are indeed positive instances, over-all and in sub-populations

COMPAS is well-calibrated: in the window around 40%, the fraction of defendants who were re-arrested is ~40%, both over-all and per group.

[plot from Corbett-Davies et al.; KDD 2017]

An impossibility result

If a predictive instrument satisfies predictive parity, but the prevalence of the phenomenon differs between groups, then the instrument cannot achieve equal false positive rates and equal false negative rates across these groups.

Recidivism rates in the ProPublica dataset are higher for the black group than for the white group

Labeled Higher Risk, But Didn't Re-Offend 23.5% 44.9%
Labeled Lower Risk, Yet Did Re-Offend 47.7% 28.0%

efendants

Overall, Northpointe's assessment tool correctly predicts recidivism 61 percent of the time. But blacks are almost twice as likely as whites to be labeled a higher risk but not actually re-offend. It makes the opposite mistake among whites: They are much more likely than blacks to be labeled lower risk but go on to commit other crimes. (Source: ProPublica analysis of data from Broward County, Fla.)

[A. Chouldechova; arXiv:1610.07524v1 (2017)]

Balance

- Balance for the positive class: Positive instances are those who
 go on to re-offend. The average score of positive instances
 should be the same across groups.
- Balance for the negative class: Negative instances are those who do not go on to re-offend. The average score of negative instances should be the same across groups.
- Generalization of: Both groups should have equal false positive rates and equal false negative rates.
- Different from statistical parity!

the chance of making a mistake does not depend on race

[J. Kleinberg, S. Mullainathan, M. Raghavan; ITCS 2017]

Desiderata, re-stated

- For each group, a v_b fraction in each bin **b** is positive
- Average score of positive class same across groups
- Average score of negative class same across groups

can we have all these properties?

[J. Kleinberg, S. Mullainathan, M. Raghavan; ITCS 2017]

Achievable only in trivial cases

- Perfect information: the tool knows who recidivates (score 1) and who does not (score 0)
- Equal base rates: the fraction of positive-class people is the same for both groups

a negative result, need tradeoffs

proof sketched out in (starts 12 min in)

https://www.youtube.com/watch?v=UUC8tMNxwV8

[J. Kleinberg, S. Mullainathan, M. Raghavan; ITCS 2017]

Fairness for whom?

Decision-maker: of those labeled low-risk, how many will recidivate?

Defendant: how likely will I be incorrectly labeled high-risk?

	labeled low-risk	labeled high- risk
did not recidivate	TN	FP
recidivated	FN	TP

based on a slide by Arvind Narayanan

What's the right answer?

There is no single answer!

Need transparency and public debate

- Consider harms and benefits to different stakeholders
- Being transparent about which fairness criteria we use, how we trade them off
- Recall "Learning Fair Representations": a typical ML approach

$$L = A_z \cdot L_z + A_x \cdot L_x + A_y \cdot L_y$$
 group individual fairness fairness utility

apples + oranges + fairness = ?