

2023~2024 学年秋季学期《大学物理实验》

实验报告

得 分	评阅人			

题	目:	实验八 声波衰减系数的测量
学	院:	<u>先进制造学院</u>
专业班	级:	智能制造工程 221 班
学生姓	名:	<u>朱紫华</u>
学	号:	5908122030
指导老	师:	全祖赐老师

二〇二三年十一月制

一、实验目的

测出声波在空气中声强衰减系数。

二、实验原理

1. 声强与声压之间的关系

声波在介质传播过程中,其能量随着传播距离的增加而逐渐减弱的现象称为声波的衰减。声功率是指声源在单位时间内辐射的总声能量,常用w表示,单位为瓦。声功率是表示声源特性的一个物理量,声功率越大,表示声源单位时间内发射的声能量越大,引起的噪声越强。声强是指在声场中垂直于声波传播方向上,单位时间内通过单位面积的声能,常以I表示,单位为瓦/平方米。声波在媒介中传播时,声强衰减如下式所示:

$$I_d = I_0 e^{\alpha d} \tag{1}$$

式中¹⁰表示入射初始声强,¹⁴为深入媒质 ⁴ 距离处的声强, ^a为衰减系数。目前,在声学测量中,声强和声功率通常不易直接测量,往往要根据测出的声压通过换算来求得,故常用声压来衡量声音的强弱。声波在大气中传播时,引起空气质点的振动,从而使空气密度发生变化。在声波所达到的各点上,气压时而比无声时的压强高,时而比无声时的压强低,某一瞬间介质中的压强相对于无声波时压强的改变量称为声压,记为 ^P,单位是帕斯卡。在自由声场中,声波传播方向上某点声强 ^I 与声压 ^P、媒介特性阻抗 ^Z 存在如下关系:

$$I = \frac{P^2}{2Z} \tag{2}$$

2. 声压与电压关系

超声换能器的核心部件是压电陶瓷片。压电陶瓷片是用多晶体结构的压电材料(如钛酸钡),在一定的温度下经极化处理制成的。它具有压电效应。在简单情况下,压电材料受到与极化方向一致的应力F时,在极化方向上产生一定的电场强度E。它们之间有一简单的线性关系E=gF。反之,当在压电材料的极化方向上加电场E时,材料的伸缩形变S与电场E也有线性关系S=kE,比例系数S、k 称为压电常数,它与材料性质有关。

由于 *E* 和 *F* 、 *S* 和 *E* 之间具有简单的线性关系,因此,能将正弦交流信号变成压电材料纵向长度的伸缩,使压电陶瓷成为声波的波源。反过来,也可以使声压变化转变为电压的变化,即用压电陶瓷片作为声频信号的接收器。压电陶瓷超声换能器产生的超声波频率比较单纯,方向性强,基本上是一个平面波,这对于提高测量的精密度是有利的。

$$P = kU \tag{3}$$

3. 衰减系数的确定

由声强与声压的关系:

$$I = \frac{P^2}{2Z}$$

在声波传播时,声强衰减如下式所示:

$$I_d = I_0 e^{\alpha d}$$

声压与电压关系

$$P = kU$$

$$U_d^2 = U_0^2 e^{\alpha d} \tag{4}$$

对其两边取对数则有:

$$2\ln U_d = \alpha d + \ln U_0^2 \tag{5}$$

式中为 α 为衰减系数,可看出电压对数的两倍 2lnU_d 与衰减系数 α 成线性关系。若测得 n 组电压数值,作如上处理。(1) 式求得斜率即求得衰减系数 α 。

三、实验仪器:

声速测定仪、数字示波器、函数信号发生器、信号连接线

四、实验内容和步骤

1、调节信号源,示波器至最佳状态

信号源频率处于换能器共振频率附近,示波器显示信号波形大小合适,位置居中。

2、将接收换能器从相距发射器 20mm 左右开始往后移动,连续捕捉极大电压峰值,并记下各自相应的峰峰电压值和接收换能器位置。

五、实验数据与处理

次	峰值	峰值电压	21nU	次	峰值	峰值电压	21nU
数	距离 (mm)	(V)		数	距离 (mm)	(V)	
1	20. 56	27. 4	6. 62	11	67. 02	8. 6	4. 3.
2	25. 08	22. 2	6. 20	12	71. 53	7. 8	4. 11
3	29.83	18.0	5. 78	13	76. 08	7. 0	3. 89
4	33.85	16. 2	5. 57	14	80. 39	6. 6	3. 77
5	39. 14	14. 2	5. 30	15	85. 12	6. 6	3. 77
6	43. 78	13. 4	5. 19	16	90.00	6. 6	3. 77
7	48. 29	11. 4	4. 86	17	94. 24	6. 2	3. 65
8	53.01	10.6	4. 72	18	99. 09	6. 2	3. 65
9	57.82	9.6	4. 52	19	103. 85	6. 2	3. 65
10	62. 17	9.0	4. 39	20	108. 73	5. 8	3. 52

由图可知,声波衰减系数 $\alpha=0.0327$

六、误差分析

- 1、读数存在误差
- 2、空气介质受到外界环境的干扰
- 3、信号发生器发射的信号具有一定的不稳定性
- 4、示波器的测量数据存在误差
- 5、有些数据没能在峰值处读数

七、实验总结:

本次实验最主要的就是要调到正确的共振频率,单纯的选择 37KHz,调出来的图形峰值只会有几百毫伏,而我们组,把频率精确到小数点后三位,调出波形的峰值远超其他组。剩下的操作就并无难度了,只是单纯的读峰值,有意思的是,到后面时峰值逐渐趋于平缓,然后突然下降。

八、附上原始数据

