The University of Western Australia SCHOOL OF MATHEMATICS & STATISTICS

AMO TRAINING SESSIONS

2009 Senior Mathematics Contest Problems

1. In $\triangle ABC$, let M_a , M_b , M_c be the midpoints of sides BC, CA, AB, respectively, and F_a , F_b , F_c be the feet of the altitudes from A, B, C, respectively.

Prove that

$$M_a F_b + M_b F_c + M_c F_a = F_a M_b + F_b M_c + F_c M_a.$$

- 2. Determine all pairs of real numbers (a_0, a_1) such that
 - (i) $a_0 + a_1 = 2008$ and
 - (ii) $x^2 + a_1x + a_0 = 0$ has only non-negative solutions.
- 3. The non-negative real numbers a_1, a_2, a_3, \ldots satisfy the conditions
 - (i) $a_n \geq a_{n+1}$ for $n \in \mathbb{N}$ and
 - (ii) $a_1 + a_2 + \cdots + a_n \leq 1$ for $n \in \mathbb{N}$.

Prove that

$$a_1^2 + 3a_2^2 + 5a_3^2 + \dots + (2n-1)a_n^2 \le 1$$
 for all $n \in \mathbb{N}$.

4. In acute-angled triangle ABC, let H_a and H_c be the feet of the altitudes through A and C, respectively. In $\triangle AH_aC$, let F_b be the foot of the altitude through H_a and, in $\triangle AH_aB$, let F_c be the foot of the altitude through H_a . Further, let P be the intersection of CH_c with F_bF_c .

Prove that $H_cF_cH_aP$ is a rectangle.

5. A set S of integers is called *indifferent* if the difference of any two integers in S does not divide the sum of the same two integers.

What is the largest number of integers that can be chosen from among the numbers $1, 2, 3, \ldots, 2008, 2009$ to form an indifferent set?