

Alzheimer's Disease Diagnosis via Interested Structure Selection in Magnetic Resonance Imaging

Guilin University of Electronic Technology
Chao Ma

machao199271@sina.cn

A new feature selection method

Method

- 1 Image pre-processing: statistical parametric mapping software
- 2 Selecting the interested structures: Ttest
- 3 Classification: collaborative representation based classification

Pre-processing

- 1 Normalization
- 2 Image aligning
- 3. Image segmentation

brain gray matter; brain white matter; cerebrospinal fluid; skull

Selecting the interested structures

- 1 Parceled into 90 anatomical structures using statistical parametric mapping
- 2 Calculated the significance level with T-test
- 3 Got the mean of significance value
- 4. Selected the interested structures

Classification and data

- Alzheimer's disease neuroimaging initiative database
- 50 AD, 50 NC, 55 MCI
- Collaborative representation based classification method

Experiments for different number of interested structures

TABLE II. ACCURACIES OF STRUCTURES WITH DIFFERENT NUMBERS.

Number-of- structures.	NC·vs·AD.				_	NC·vs·MCI.				
a	ACC.	SEN.	SPE.	PAC.	NAC.	ACC.	SEN.	SPE.	PAC.	NAC.
2.1	0.799.	0.811.	0.813.	0.782.1	0.817.	0.708.	0.699.	0.702.,	0.730.	0.699.1
4.1	0.868.1	0.906.	0.904.1	0.832.1	0.913.	0.725.1	0.704.1	0.702.	0.733.,	0.728.
6.1	0.918.	0.898.1	0.899.1	0.939.1	0.886.1	0.720.	0.742.1	0.741.	0.730.	0.713.
8.1	0.921.	0.914.	0.915.	0.940.	0.901.	0.733.	0.721.	0.721.	0.724.	0.741.
10.1	0.918.	0.915.	0.914.	0.940.	0.903.1	0.752.,	0.746.	0.747.,	0.727.,	0.781.
12.1	0.922.	0.924.	0.925.	0.943.	0.915.	0.750.	0.756.	0.759.	0.776.	0.734.
14.1	0.916.	0.918.	0.918.	0.914.	0.918.	0.740.	0.755.	0.754.	0.751.	0.739.
16.	0.907.1	0.909.	0.908.	0.923.1	0.906.	0.764.	0.791.	0.790.	0.786.	0.755.
18.1	0.916.	0.927.1	0.927.1	0.911.	0.924.1	0.716.	0.745.1	0.749.	0.736.	0.703.

Comparison of different classifiers

SVM-support vector machine FLD-fisher linear discriminant CRC-collaborative representation based classification

TABLE III. THE COMPARISON OF SVM, FLD AND CRC.

÷.	NC vs AD.	NC·vs·MCI.	MCI vs·AD.
SVM.	0.828.,	0.715.,	0.822.1
FLD.	0.645.1	0.656.1	0.641.1
CRC.	0.922.	0.750	0.835.

Comparison of different classifiers

TABLE IV. Accuracies of single modality methods and the proposed method.

₽	modality.	AD vs. NC.	MCI·vs.·NC.
Vemuri model II[14].	MRI.,	0.885.,	-,
Vemuri model III[14]	MRI.,	0.893.,	— .a
Mesrob[4]	MRI.,	0.911.1	— .,
Tong[5].	MRI.,	0.917.,	0.792.,
Proposed method.	MRI.	0.922.	0.750.,

TABLE V. ACCURACIES OF MUTI-MODALITY METHODS AND THE PROPOSED METHOD.

₽	modality.	AD vs. NC.	MCI vs.·NC.	4
Hinrichs[15].	MRI+PET.,	0.876.,	-,	
Gray[16].	MRI+PET+CSF+genetic	0.890.,	0.746.	4
Feng L[7]	MRI+PET.	0.944.1	0.788.,	4
Shi SVM[8].	MRI+PET.	0.947.,	0.795.,	4
Shi-SRC[8].	MRI+PET.	0.933.,	0.801.,	4
Proposed method	MRI.	0.922.	0.750.	4

Conclusion

- 1. Used statistical parametric mapping software to pre-process magnetic resonance images
- 2 Selected interested structures based on T-test
- 3 classified images by collaborative representation based classification.

THANK YOU FOR YOUR ATTENTION

