

(54) FLAT MOTOR

(11) 62-100161 (A) (43) 9.5.1987 (19) JP
 (21) Appl. No. 60-237116 (22) 23.10.1985
 (71) SHIN ETSU CHEM CO LTD(1) (72) DAIKI EBIHARA(1)
 (51) Int. Cl'. H02K41/02

PURPOSE: To miniaturize and simplify a device, and to simplify maintenance work by utilizing the interaction of a permanent magnet and an electromagnet and moving a body in the extent of a two-dimensional plane.

CONSTITUTION: Electromagnets 11 at each position in a stator 10 are magnetized at every other electromagnet, and the electromagnets 11 on lines except the nearest line also suck and hold a mover 13 and make it rest. When changing the direction of polarity of the electromagnets excited, the mover 13 is shifted only by an $x \times 1/2$ step in the direction of the arrow X and rests in the same manner as the electromagnets on the nearest line. The mover 13 is transferred only by a $y \times 1/2$ step in the direction of the arrow Y by altering the electromagnets 11 even in movement in the direction of the arrow Y. Accordingly, the mover 13 can be locomoted and made to rest at the steps of $x/2$ in breadth and $y/2$ in length on the surface of the stator 10 by repeating the operation of movement in said X and Y directions.

not wtr!

(54) PLATE-SHAPED LINEAR PULSE MOTOR

(11) 62-100162 (A) (43) 9.5.1987 (19) JP
 (21) Appl. No. 60-239146 (22) 24.10.1985
 (71) OMRON TATEISI ELECTRONICS CO (72) TETSUO MAEDA
 (51) Int. Cl'. H02K41/03

PURPOSE: To eliminate the need for a special pre-load mechanism by conventional pre-load plate and spring by disposing moving pieces to traveling guides and a pre-loading magnetic attraction means to one traveling guide.

CONSTITUTION: With a magnetic attraction means 4, a magnetic unit in which magnetic poles 42, 43 are stuck integrally is mounted and fixed into a recessed section 18, aligning N and S magnetic poles for a permanent magnet 41 in the direction of traveling of a moving piece 3, and magnetic paths are formed among the N pole and S pole 41 and the end surfaces of both magnetic members 42, 43 and the moving piece 3. The moving piece 3 is pre-loaded to a traveling guide 16 at predetermined pressure at all times by suction force by the magnetic attraction means 4 disposed to the guide 16, and the guide 16 is made stably to travel as a traveling reference guide.

(54) PROTECTIVE DEVICE FOR GATE TURN-OFF THYRISTOR

(11) 62-100163 (A) (43) 9.5.1987 (19) JP
 (21) Appl. No. 61-231193 (22) 1.10.1986
 (71) HITACHI LTD (72) MASAYUKI HIROSE(1)
 (51) Int. Cl'. H02M1/06, H03K17/72

PURPOSE: To protect a gate turn-OFF thyristor (GTO) from overcurrents without depending upon the fusing of a fuse, etc. by conducting gate turn-OFF by OFF pulses when the value of abnormal currents on a short-circuit failure, etc. extends over the controllable anode current value or less of the GTO even on abnormal currents.

CONSTITUTION: When the anode currents of a GTO 11 abnormally increase and a current detector 31 outputs an abnormal-current decision signal, a gate control section 51 outputs an OFF-pulse generating signal to a gate pulse generator 41 for the GTO 11, the gate pulse generator 41 conducts the OFF pulses of the GTO 11 of abnormal currents, the GTO 11 is turned OFF after a certain time passes, and abnormal currents are interrupted. When anode currents after a certain time passes do not reach zero, ON pulses are conducted through GTOs 11~16 for an inverter section, the GTOs 11~16 are turned-OFF simultaneously, and abnormal currents are shunted.

31/92-20012.00

- For more records, click the Records link at page end.
- To change the format of selected records, select format and click **Display Selected**.
- To print/save clean copies of selected records from browser click **Print/Save Selected**.
- To have records sent as hardcopy or via email, click **Send Results**.

<input checked="" type="checkbox"/> Select All	<input type="checkbox"/> Clear Selections	Print/Save Selected	Send Results	Format
Display Selected				Full

1. 2/9/1
02183261 FLAT MOTOR

PUB. No.: 62 -100161 [JP 62100161 A]

Published: May 09, 1987 (19870509)

Inventor: EBIHARA DAIKI

SHINPO KIYOUTAROU

Applicant: SHIN ETSU CHEM CO LTD [000206] (A Japanese Company or Corporation), JP (Japan)

EBIHARA DAIKI [000000] (An Individual), JP (Japan)

Application No.: 60-237116 [JP 85237116]

Filed: October 23, 1985 (19851023)

International Class: 4] H02K-041/02

JAPIO Class: 43.1 (ELECTRIC POWER -- Generation)

Journal: Section: E, Section No. 546, Vol. 11, No. 306, Pg. 158, October 06, 1987 (19871006)

Journal: Section: E, Section No. 546, Vol. 11, No. 306, Pg. 158, October 06, 1987 (19871006)

ABSTRACT

PURPOSE: To miniaturize and simplify a device, and to simplify maintenance work by utilizing the interaction of a permanent magnet and an electromagnet and moving a body in the extent of a two-dimensional plane.

CONSTITUTION: Electromagnets 11 at each position in a stator 10 are magnetized at every other electromagnet, and the electromagnets 11 on lines except the nearest line also suck and hold a mover 13 and make it rest. When changing the direction of polarity of the electromagnets excited, the mover 13 is shifted only by an $xX1/2$ step in the direction of the arrow X and rests in the same manner as the electromagnets on the nearest line. The mover 13 is transferred only by a $yX1/2$ step in the direction of the arrow Y by altering the electromagnets 11 even in movement in the direction of the arrow Y. Accordingly, the mover 13 can be locomoted and made to rest at the steps of $x/2$ in breadth and $y/2$ in length on the surface of the stator 10 by repeating the operation of movement in said X and Y directions.

JAPIO (Dialog® File 347): (c) 1999 JPO & JAPIO. All rights reserved.

<input checked="" type="checkbox"/> Select All	<input type="checkbox"/> Clear Selections	Print/Save Selected	Send Results	Format
Display Selected				Full

© 1998 The Dialog Corporation plc

⑪ 公開特許公報 (A) 昭62-100161

⑥Int.Cl.
H 02 K 41/02識別記号 廷内整理番号
Z-7740-5H

⑪公開 昭和62年(1987)5月9日

審査請求 未請求 発明の数 1 (全4頁)

⑫発明の名称 平面モータ

⑬特 願 昭60-237116

⑭出 願 昭60(1985)10月23日

⑮発明者 海老原 大樹 東京都練馬区関町南3-14-21
 ⑯発明者 新保 恒太郎 東京都千代田区大手町2丁目6番1号 信越化学工業株式会社内
 ⑰出願人 信越化学工業株式会社 東京都千代田区大手町2丁目6番1号
 ⑱出願人 海老原 大樹 東京都練馬区関町南3-14-21
 ⑲代理人 弁理士 山本 亮一

明細書

1. 発明の名称

平面モータ

2. 特許請求の範囲

1) それぞれ平面上に密接配設した電磁石のステータと、永久磁石のムーバとなりなり。該電磁石の鉄心の上下端面はそれぞれ長方形または正方形をなし、上端面を縱横に分割して形成した横の長さx、縦の長さyの小長方形または辺の長さzの小正方形を、交互に突極部と凹部となし、下端面は上端面よりそれぞれ $x \times 3/4$ 、 $y \times 3/4$ 、 $z \times 3/4$ だけ外方に張出し、該永久磁石は断面が該小長方形または小正方形と同じ形状の平板であり、かつ調りあう永久磁石は磁化軸の方向が常に逆であることを特徴とする平面モータ。

2) 該永久磁石が希土類永久磁石である特許請求の範囲第1項記載の平面モータ。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、物体を平面上の任意位置に移動でき

る平面モータに関するものである。

(従来の技術)

テーブル上の物体を任意位置に移動させる装置としては、らせんの送りねじを利用したものが従来使用されている。

たとえば第7図に示すように、Xテーブル1の裏面に固定したナット2にらせんを刻んだX送りねじ3を嵌合させ、X駆動モータ4によりX送りねじ3を回転させると、Xテーブル1は矢印X方向に往復させることができる。このXテーブル1を同様の構造のYテーブル5の上に設置し、YテーブルのY送りねじ6の方向をX送りねじ3に対し直角方向に向けると、Y駆動モータ7の回転によりXテーブル1を矢印Yの方向に往復させることができ。駆動モータ4、7を同時に回転させれば、Xテーブル上の物体8を平面上で任意の位置に移動させ得る。

(発明が解決しようとする問題点)

しかしながら、上記従来の方法には、

1) 駆動モータ、送りねじ等の機構が複雑で装置

が大型となり、調整も困難である。

2) 給油等の保守が面倒である。

という欠点があった。

(問題点を解決するための手段)

本発明は上記問題点を解決するため、永久磁石と電磁石の相互作用を利用し、物体を2次元平面の広がり内に移動できる装置を完成したもので、これはそれぞれ平面上に密接配設した電磁石のステータと、永久磁石のムーバとなりなり、該電磁石の鉄心の上下端面はそれぞれ長方形または正方形をなし、上端面を縦横に分割して形成した横の長さ x 、縦の長さ y の小長方形（図面では35個）を、縦横に交互に突極部と凹部とする（図面では突極部18個、凹部17個）。第3図は工作上の便のため内部の突極部6個を省略した場合のものである。鉄心の下端面は上端面より横縦の長さがそれぞれ $x \times 3/4$ 、 $y \times 3/4$ だけ長い長方形をなす。

以下に本発明を、例示する図面によって詳細に説明するが、本発明はこれに限定されるものでは

ない。

第1図において、ステータ10は電磁石11を平面上に密接して配設したものである。電磁石は第2図(a)に拡大して示すように、鉄心12の上端面が長方形をなし、第2図(b)に示すように、縦横に分割して形成した横の長さ x 、縦の長さ y の小長方形（図面では35個）を、縦横に交互に突極部と凹部とする（図面では突極部18個、凹部17個）。第3図は工作上の便のため内部の突極部6個を省略した場合のものである。鉄心の下端面は上端面より横縦の長さがそれぞれ $x \times 3/4$ 、 $y \times 3/4$ だけ長い長方形をなす。

ステータ10上に載置するムーバ13は、断面が電磁石上端面の小長方形と等しい長方形である平板の永久磁石を、平面上に密接して配設し、全表面を補助材14で被覆してなるが、隣りあう磁石は磁化軸の方向を常に逆方向とするため、ムーバの表面は、第4図に示すように、常に異種の磁極が隣接している（当然裏面も異種の磁極が隣接している）。かかるムーバ13をステータ10の上に、第1

図に示すように載置する。第1図のA-A'線を通る断面図である第5図(a)において、電磁石の鉄心の下端面は上端面より横の長さが $x \times 3/4$ だけ長い長方形であるため、各電磁石の上端面間の隙間は $x \times 3/2$ となる。したがって奇数番目の電磁石E_{1,1}、E_{1,3}、E_{1,5}、…の突極部に対してはムーバ13の各永久磁石一個が正対しているが、偶数番目の電磁石E_{1,2}、E_{1,4}、E_{1,6}、…の突極部に対しては二つの永久磁石が半分づつ各突極部に対向している。したがって奇数番目の電磁石E_{1,1}、E_{1,3}、E_{1,5}、…のみを励磁すると、これらの電磁石は一つおきに励磁コイルが逆方向に巻かれているので、奇数番目のすべての電磁石E_{1,1}、E_{1,3}、E_{1,5}、…の突極部が、これに正対するムーバ13の永久磁石を吸引し、ムーバは安定して静止保持される。

つぎに第5図(b)に示すように、奇数番目の電磁石E_{1,1}、E_{1,3}、E_{1,5}、…の励磁を止め、偶数番目の電磁石E_{1,2}、E_{1,4}、E_{1,6}、…を励磁すると、これらの電磁石の励磁コイルも一つお

きに逆方向に巻かれているので、各突極部とこれに對向するムーバの永久磁石との間に図面のX矢印方向の力が働き、ムーバ13は $x \times 1/2$ だけ移動して第5図(c)の状態となって静止保持される。

つぎに偶数番目の電磁石E_{1,2}、E_{1,4}、E_{1,6}、…の励磁を止め、奇数番目の電磁石E_{1,1}、E_{1,3}、E_{1,5}、…を第5図(d)のように励磁すると、ムーバはふたたびX矢印方向の力を受け $x \times 1/2$ だけ移動して静止する。

以上はステータの最手前行の電磁石E_{1,1}、E_{1,3}、E_{1,5}、E_{1,7}、E_{1,9}、…により生じたX方向の力であるが、2行目の電磁石E_{1,1}、E_{1,3}、E_{1,5}、E_{1,7}、E_{1,9}、…、3行目の電磁石E_{1,1}、E_{1,3}、E_{1,5}、E_{1,7}、E_{1,9}、…によっても同様にしてX矢印の方向の力を生ずる。

すなわち第6図に示すように、ステータ10の各位置の電磁石11が一つおきに磁化され（これは第5図(a)の場合で、突極部の極性をS、Nで示

す）。最手前行以外の行の電磁石もムーバを吸引保持して静止させる。第5図(b)の場合は、励磁される電磁石が実線矢印の方向に変り、最手前行の電磁石と同様にムーバをX矢印の方向に $\times \times 1/2$ ステップだけ移動して静止させる。

第6図のY矢印の方向の移動も、点線矢印の方向に励磁される電磁石を変えることにより、ムーバをY矢印の方向に $\times \times 1/2$ ステップだけ移動して静止させる。

したがって前記X、Y方向の移動の操作を繰り返すことによって、ムーバ13をステータ10の面上で横に $\times /2$ 、縦に $y/2$ のステップで移動静止させることができある。

上下端面および永久磁石の断面が正方形の場合も同様にして $z/2$ のステップで縦横に移動させることができる。

またムーバを構成する永久磁石としては希土類永久磁石を使用することにより、小型で強力な移動力、保持力をもつモータを得ることができる。

(発明の効果)

本発明によれば、従来法に比べ装置が小型かつ簡単となり、動作が迅速なうえ取り扱い易く、給油等の保守作業が簡単化されるという効果が得られる。

4. 図面の簡単な説明

第1図は本発明のモータの斜視図を、第2図(a)は本発明のモータの電磁石の斜視図を、(b)は本発明のモータの電磁石の平面図を、第3図は本発明のモータの他の例の電磁石の平面図を、第4図は本発明のムーバの平面図の一部を、第5図(a)、(b)、(c)、(d)は第1図のA-A'線を通る断面図を、第6図はステータを構成する電磁石の配置図を、第7図は従来の物体移動装置の斜視図を示す。

- 1…Xテーブル、 2…ナット、
- 3…X送りねじ、 4…X駆動モータ、
- 5…Yテーブル、 6…Y送りねじ、
- 7…Y駆動モータ、 8…物体、
- 10…ステータ、 11…電磁石、 12…鉄心、
- 13…ムーバ、 14…補助材。

第1図

第2図

第3図

S	N	S	N	S	N
N	S	N	S	N	S
S	N	S	N	S	N
N	S	N	S	N	S
S	N	S	N	S	N
N	S	N	S	N	S
S	N	S	N	S	N
N	S	N	S	N	S

第4図

