Plenum 3/5

5.4: Jérasjon av funksjoner

b.)
$$E_1(p,q) = 1000 e^{-\frac{q}{p} - \beta(p+q)}$$
 $E_2(p,q) = 1000 e^{-\frac{q}{p} - \beta(p+q)}$
 $E_3(p,q) = 1000 e^{-\frac{q}{p} - \beta(p+q)}$

$$E_{2}(p_{1}q) = 1000 e^{-\frac{q}{p} - \beta(p+q)}$$

a)
$$\frac{V15}{9 \text{ fort}}$$
 $p^* = \frac{9}{1+\alpha q}$

Tilsu:

$$q^* = \frac{p}{1+\beta p}$$

Firmal: max p 1000 e = - \frac{1}{9} - \pi (p+q)

pris attenpoisel

Salgninntekt

Deriver of sett like 0:

$$1000e^{-\frac{1}{4}-\alpha(p+q)}+p 10706e^{-\frac{1}{4}-\alpha(p+q)}$$
 $(-\frac{1}{4}-\alpha)=0$

$$|-p(\frac{1+\alpha q}{q})=0$$

$$p^* = p = \frac{q}{1 + \alpha a}$$

 $p^* = p = \frac{q}{1 + \alpha q}$ $p^* = p = \frac{q}{1 + \alpha q}$ make find the material in the set, the set in the set in

Helt tilsværende avg. for Firma 2 gir at

1) Ang. C): Honfor vil

2,5

(ovre-nedre) rand + nedre gi et tall

i [nedre, ovre]? E[0,1)

rand $\in [0,1]$, si vil (ovre-nedre) rand $\in [0, ovre-nedre]$.

Da vil nedre + (ovre-nedre) rand $\in [nedre, ovre-nedre+nedre]$

da A = { punkter i terrenget }. Ser på avhildningen F definert ved at et punkt i

terrenget p sendes på det punktet i kernenget som punktet
på learlet tilsvarende p ligger boddrett overfor. Fer en

kontraksjon siden kartet er mindre enn terrenget og I tillegg

er F en avbildning fra A til A.

J-Banachs filespunktteoren

F har et unikt fikspunkt, des at det fins ett, og bare ett, punket i terrenget det punktet på leartet ligger loddrett overfor.

5.7: O movendte og implisitte funksjoner

3.)
$$\underline{V15}$$
: $x^3 + y^3 + y = 1$, $y = f(x)$ som oppfyller ligningen $f'(x_0)$?

La
$$g(x,y) = x^3 + y^3 + y - 1$$
. Hvis (x_0, y_0) er på kurven, så er $g(x_0, y_0) = 0$. J tillegg:

 $\frac{\partial g}{\partial y}(x_0, y_0) = 3y_0^2 + 1 \pm 0$.

 $\frac{\partial g}{\partial y}(x_0, y_0) = 3y_0^2 + 1 \pm 0$.

Da gir Implisitt funksjonsteoren at det fins en funk. f(x) (=y) s.a. g(x, f(x)) = 0. Ders.

$$x^3 + f(x)^3 + f(x) - 1 = 0$$
, så
 $x^3 + f(x)^3 + f(x) = 1$, attså er ligningen oppfytt

(for all \times i en omegn om \times_{δ}).

$$\int_{0}^{\infty} dx \cdot (x_{0}) = \frac{\partial f}{\partial x}(x_{0}, y_{0}) = -\frac{\partial f}{\partial x}(x_{0}, y_{0}) = -\frac{3x_{0}^{2}}{3y_{0}^{2} + 1}$$

4) VIS: Fins
$$g(x,y)$$
, snegn $(-1,2)$ s.a. $g(-1,2)=0$ og

 $f(x,y,g(x,y))=-4$. $\frac{\partial g}{\partial x}(-1,2)$, $\frac{\partial g}{\partial y}(-1,2)$?

Ref: $h(x,y,z)=f(x,y,z)+4$

Vil attså finne $g(x,y)$ i onegn om $(-1,2)$ s.a.

 $g(-1,2)=0$ og

 $h(x,y,g(x,y))=f(x,y,g(x,y))+4$
 $\frac{\partial h}{\partial z}=xy^2e^z+1$, så $\frac{\partial h}{\partial z}(-1,z,0)=-3\neq 0$

Tillegg: $\frac{\partial h}{\partial x}=y^2e^z$ $\frac{\partial h}{\partial x}=2xye^z$; kontinuerlige.

Fra Implistt funksjonsteuren (R³ dpur delnergde av seg selv) fins $g(x,y)$ def. i en onegn om $(-1,2)$ med $g(-1,2)=0$

(må til for at (x) shal hdde) og sa.

 $h(x,y,g(x,y))=h(x,y,g(x,y))=0$, dus.

 $f(x,y,g(x,y))=h(x,y,g(x,y))-4=0-4=-4$
 $\frac{\partial g}{\partial x}(-1,2)=-\frac{\partial h}{\partial x}(-1,2,0)=-\frac{4}{-3}=\frac{4}{3}$

 $\frac{\partial g}{\partial y}(-1,2) = -\frac{\partial h}{\partial y}(-1,2,0) = -\frac{4}{3}$

Finn: Stigningstall til tangent til

$$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = | i (x_{0}, y_{0}), y_{0} \neq 0.$$

$$(x_{0}, y_{0}) \quad \text{Implisit derivation} :$$

$$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = | TENK;$$

$$y(x)$$

$$\frac{2x}{a^2} - \frac{2y}{b^2} = 0$$

$$\frac{2y}{b^2}y'(x) = \frac{2x}{a^2}$$

$$y'(x) = \frac{xb^2}{ya^2}$$

$$y'(x_o) = \frac{x_o b^2}{y_o a^2}$$