DIFFERENTIAL GEOMETRY I SUMMARY

YANNIS BÄHNI

Abstract. This is a rough summary of the course *Differential Geometry I* held at *ETH Zurich* by *Prof. Dr. William J. Merry* in autumn 2018. The main focus of this summary is to give a neat preparation for the oral exam.

Contents

The Category of Smooth Manifolds																						1
----------------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

The Category of Smooth Manifolds

Definition 1.1 (Topological Manifold). Let $n \in \mathbb{N}$. A topological space M is said to be a topological manifold of dimension n, iff

- (i) M is locally Euclidean of dimension n, that is, for every $x \in M$ there exist an open subset $U \subseteq M$ and a function $\varphi : U \to \mathbb{R}^n$ such that $\varphi(U) \subseteq \mathbb{R}^n$ is open and $\varphi : U \to \varphi(U)$ is a homeomorphism. Every such pair (U, φ) is called a **chart on** M about x.
- (ii) *M* is Hausdorff and has at most countably many connected components.
- (iii) M is paracompact, that is, every open cover of M admits a locally finite open refinement.

Definition 1.2 (Smooth Atlas). A smooth atlas for a topological manifold M is a collection $(U_{\alpha}, \varphi_{\alpha})_{\alpha \in A}$ of charts on M such that

- (i) $(U_{\alpha})_{\alpha \in A}$ is an open cover for M.
- (ii) For all $\alpha, \beta \in A$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$, the function

$$\varphi_{\alpha} \circ \varphi_{\beta}^{-1} : \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$$

is smooth. The function $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$ is called a **transition function**.

(Yannis Bähni) ETH Zurich, Rämistrasse 101, 8092 Zurich *E-mail address*: yannis.baehni@uzh.ch.