Analysis II

Sommersemester 2014

Prof. Dr. D. Lenz

Blatt 11

Abgabe Donnerstag 26.06.2011

- (1) Sei (X, d) ein zusammenhängender and lokal wegzusammenhängender metrischer Raum. Zeigen Sie, (X, d) ist wegzusammenhängend.
- (2) Sei (K, d) ein kompakter metrischer Raum. Sei (f_n) eine Folge von reellwertigen stetigen Funktionen auf K, die monoton gegen eine stetige, reelwertige Funktion f auf K konvergiert. Zeigen Sie, dass (f_n) gleichmäßig gegen f konvergiert.
- (3) Gegeben sei der Raum

$$Y := \{(y, \sin(1/y)) \mid y > 0\} \cup \{(0, 0)\} \subseteq \mathbb{R}^2$$

mit der, durch die Euklidische Metrik auf \mathbb{R}^2 , induzierten Metrik d. Zeigen Sie, (Y, d) ist zusammenhängend aber nicht wegzusammenhängend.

- (4) Sei $U \subseteq \mathbb{R}^N$ offen, $f: U \to \mathbb{R}$ und $p \in U$. Zeigen Sie:
 - (a) Ist f stetig in p, so ist f auch richtungsstetig in p.
 - (b) Ist f richtungsstetig in p, so ist f auch partiell stetig in p.

Zusatzaufgabe

Sei (X, d) ein metrischer Raum, $A \subset X$ abgeschlossen und $K \subset X$ kompakt mit $K \cap A = \emptyset$. Zeigen sie, dass eine stetige Funktion $f: X \to \mathbb{R}$ existiert mit der Eigenschaft f(x) = 0 für $x \in A$ und f(x) = 1 für $x \in K$.

Viel Erfolg!