Zad. 1. Korzystając z intrpretacji geometrycznej (nie ze wzoru Newtona-Lebniza), oblicz poniższe całki.

(a)
$$\int_{0}^{4} (8-2x) dx$$
(b)
$$\int_{-1}^{2} (-|x|) dx$$
(c)
$$\int_{-2}^{-1} |x+1| - 1 dx$$
(d)
$$\int_{-3}^{3} \sqrt{9-x^2} dx$$
(e)
$$\int_{-6}^{3} \sqrt{24-2x-x^2} dx$$
(f)
$$\int_{-1}^{1} f(x) dx, \text{ where}$$

$$f(x) = \begin{cases} 2+\sqrt{1-x^2} & , -1 \le x < 1 \\ -3 & , 1 \le x < 3 \\ x-3 & 3 \le x \le 5 \end{cases}$$

Zad. 2. Wiedząc, że $\int_1^4 f(x)dx = 8$ oraz $\int_1^6 f(x)dx = 5$, oblicz poniższe całki.

(a)
$$\int_{1}^{4} (-3f(x))dx$$
 (b) $\int_{6}^{1} 3f(x) dx$ (c) $\int_{6}^{4} 12f(x)dx$ (d) $\int_{4}^{6} 3f(x)dx$

Zad. 3. Oblicz wykorzystując wzory na całki z funkcji elementarnych

(a)
$$\int \frac{1}{x\sqrt{x}} dx$$
 (b) $\int \frac{(x^2+1)^2}{x^3} dx$ (c) $\int \frac{1}{x^3} (1-\sin x) dx$ (d) $\int (2^x \cdot 3^x) dx$ (e) $\int \frac{5t^6-\sqrt{t}}{t^2} dt$ (f) $\int (3\sin x - 4\cos 5x) dx$ (g) $\int \frac{\cos(2x)}{\sin^2 x \cos^2 x} dx$ (g) $\int \frac{\cos(2x)}{\cos^2 x \cos^2 x} dx$ (g) $\int \frac{\cos(2x)}{\cos(2x)} dx$

Zad. 4. Oblicz używając całkowania przez części

(a)
$$\int (x-7)\sin x \, dx$$
 (b) $\int_0^{\pi/2} 3x \cos x \, dx$ (c) $\int (x^2-4x)\sin x \, dx$ (d) $\int_0^2 (2x+1)e^x \, dx$ (e) $\int (8x^2-12x+5)e^x \, dx$ (f) $\int x \arctan x \, dx$ (f) $\int x \arctan x \, dx$ (g) $\int_1^e \ln^2 x \, dx$

2

Zad. 5. Oblicz wykorzystując całkowanie przez podstawienie

(a)
$$\int_{1}^{2} \frac{1}{1-4x} dx$$

(f)
$$\int_{0}^{1} xe^{-x^2} dx$$

$$(k) \int \frac{\sin x}{1 + 3\cos x} \ dx$$

(b)
$$\int \frac{12x}{\sqrt{1-3x^2}} \ dx$$

(g)
$$\int \frac{2 \operatorname{tg} x}{\cos^2 x} \ dx$$

(1)
$$\int \frac{x^3}{(x+1)^{10}} dx$$

(c)
$$\int e^{\sin x} \cos x \ dx$$

(h)
$$\int_{0}^{8} t\sqrt{t+1}dt$$

(d)
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$

(i)
$$\int_{-\infty}^{\infty} \frac{\ln(\ln x)}{x} dx$$

(n)
$$\int \frac{\sin x}{\cos^3 x} \ dx$$

(e)
$$\int x^4 \cdot \sqrt[4]{2x^5 + 10} \ dx$$

$$(j) \int \frac{1}{5 + \sqrt{x}} dx$$

(o)
$$\int \frac{\sqrt{x}}{1+\sqrt{x}} dx$$

Ead. 6. Oblicz
(a)
$$\int \frac{\ln x}{x(\ln^2 x + 1)} dx$$
(b)
$$\int \sqrt{x} \cdot \ln x dx$$
(c)
$$\int \frac{(x-1)^2}{x^2 + 1} dx$$
(d)
$$\int e^x \cos x dx$$
(e)
$$\int e^x \cos x dx$$
(f)
$$\int e^x \cos x dx$$

(g)
$$\int e^x \cos x dx$$

(m)
$$\int \ln^3 x \ dx$$

(b)
$$\int \sqrt{x} \cdot \ln x \ dx$$

(h)
$$\int \arctan \sqrt{x} \, dx$$

(n)
$$\int e^{\sin^2 x} \cdot \sin 2x \ dx$$

(c)
$$\int \frac{(x-1)^2}{x^2+1} dx$$

(i)
$$\int_0^1 e^{e^x + x} dx$$

(o)
$$\int \frac{e^x}{\sqrt{1 - 4e^{2x}}} dx$$

(d)
$$\int \frac{1}{(x^2+1) \arctan x} dx$$

(c)
$$\int \frac{(x-1)^2}{x^2+1} dx$$
 (i) $\int_0^1 e^{e^x+x} dx$ (o) $\int \frac{e^x}{\sqrt{1-4e^{2x}}} dx$ (d) $\int \frac{1}{(x^2+1) \arctan tg x} dx$ (j) $\int 2e^x \left(1 - \frac{e^{-x}}{x}\right) dx$ (p) $\int \frac{\sqrt{x}}{1+\sqrt{x}} dx$

(p)
$$\int \frac{\sqrt{x}}{1+\sqrt{x}} dx$$

(e)
$$\int_{0}^{1} x^{2}e^{x^{3}}dx$$

$$\text{(k)} \int \frac{x \ln x}{(1+x^2)^2} \, dx$$

(q)
$$\int 3^x \sin x \, dx$$

(f)
$$\int_{0}^{\infty} \frac{2 \operatorname{ctg} x}{\sin^2 x} dx$$

(k)
$$\int \frac{x \ln x}{(1+x^2)^2} dx$$
 (q)
$$\int 3^x \sin x dx$$

(l)
$$\int \frac{1}{\sin x \cos x \ln^2(\operatorname{tg} x)} dx$$
 (r)
$$\int \frac{e^x}{\sqrt{1-4e^{2x}}} dx$$

(r)
$$\int \frac{e^x}{\sqrt{1 - 4e^{2x}}} dx$$

Zad. 7. Oblicz wykorzystując rozkład na ułamki proste.

(a)
$$\int \frac{3}{2x+1} dx$$

(e)
$$\int \frac{2-3x}{3x^2+2x+1} dx$$

(e)
$$\int \frac{2-3x}{3x^2+2x+1} dx$$
 (i) $\int \frac{3x}{(x-1)(x^2+2)} dx$

(b)
$$\int \frac{1}{(1-3x)^4} dx$$

$$(f) \int \frac{5}{x^2 + 3x} dx$$

(b)
$$\int \frac{1}{(1-3x)^4} dx$$
 (f) $\int \frac{5}{x^2+3x} dx$ (j) $\int \frac{13x}{(x-2)(x^2+2x+5)} dx$ (c) $\int \frac{2}{x^2-2x+40} dx$ (g) $\int \frac{2x+1}{x^2-4} dx$ (k) $\int \frac{6x^5+4x^2+7}{x^3+x} dx$

(c)
$$\int \frac{2}{x^2 - 2x + 40} dx$$

(g)
$$\int \frac{2x+1}{x^2-4} dx$$

(k)
$$\int \frac{6x^5 + 4x^2 + 7}{x^3 + x} \, dx$$

(d)
$$\int \frac{x}{x^2 - 6x + 10} dx$$

(d)
$$\int \frac{x}{x^2 - 6x + 10} dx$$
 (h) $\int \frac{x^2}{(x+1)(x+2)^2} dx$ (l) $\int \frac{x^3 - x^2 + 3x + 2}{x^3 - x^2 + 2x} dx$

Zad. 8. Oblicz wykorzystując podstawienia trygonometryczne

(a)
$$\int \sin^7 x \ dx$$

(d)
$$\int \frac{1}{\cos^3 x} \ dx$$

(a)
$$\int \sin^7 x \ dx$$
 (d) $\int \frac{1}{\cos^3 x} \ dx$ (g) $\int \frac{\sin x}{\cos^2 x + \cos x + 1} \ dx$ (b) $\int \cos^5 x \cdot \sin^4 x \ dx$ (e) $\int \frac{\sin^3 x}{1 + \cos x} \ dx$ (h) $\int \frac{1}{5 + 4\cos x} \ dx$

(b)
$$\int \cos^5 x \cdot \sin^4 x \ dx$$

(e)
$$\int \frac{\sin^3 x}{1 + \cos x} dx$$

$$(h) \int \frac{1}{5 + 4\cos x} dx$$

(c)
$$\int \frac{\cos^3 x}{2 - \sin x} \ dx$$

(c)
$$\int \frac{\cos^3 x}{2 - \sin x} dx$$
 (f) $\int \frac{1}{\sin^2 x + 4\cos^2 x} dx$ (i) $\int \frac{1 - \cos x}{4 + 5\sin x} dx$

(i)
$$\int \frac{1 - \cos x}{4 + 5\sin x} \ dx$$

Zad. 9. Oblicz pole obszaru ograniczonego przez podane krzywe

(a)
$$y = x^3$$
, $y = 4x$

(b)
$$y = 1 - x^2$$
, $y = \frac{1}{2}x^2 - x + \frac{1}{2}$,

(c)
$$xy = 2$$
, $y = 2x$, $y = \frac{x}{2}$, w pierwszej ćwiartce układu współrzędnych

(d)
$$x = y^2 - 4$$
, $y = x - 2$

(e)
$$xy = 6$$
, $3x - 2y = 0$, $x - 6y = 0$

(f)
$$y = \frac{1}{1+x^2}$$
, $y = \frac{x^2}{2}$,

(g)
$$y = \sin x$$
, $y = \cos x$, $x = \frac{\pi}{4}$, $x = \frac{5\pi}{4}$,

(h)
$$y = e^x$$
, $y = e^{-x}$, $x = 2$,

(i)
$$y = \ln x$$
, $y = 1$, $y = \ln (2e^2 - x)$

(j)
$$y = \operatorname{arctg} x$$
, $y = \pi$, $0 \le x \le 1$

(k)
$$y = \ln(x+6)$$
, $y = 3 \ln x$, $y = 0$, $x = 0$

Zad. 10. Oblicz objętość bryły powstałej przez obrót obszaru R dookoła osi OX i OY.

(a)
$$R: y = e^x, x = 0, y = 0, x = e$$

(b)
$$R: y = \ln x, y = 0, x = \frac{1}{e}, x = e$$

(c)
$$R: f(x) = \begin{cases} 1 & \text{for } x \in \langle -1, 0 \rangle \\ e^x & \text{for } x \in \langle 0, 1 \rangle \\ e & \text{for } x \in \langle 1, 4 \rangle \end{cases}$$
, $y \ge 0, -1 \le x \le 4$

(d)
$$R: y = x^2, y = \sqrt{x}$$

(e)
$$R: 0 \le x \le \pi, y = 0, y = \cos x$$

(f)
$$R: 0 \le x \le \sqrt{5}, \ 0 \le y \le \frac{2}{\sqrt{x^2 + 4}}$$

(g)
$$R: 1 \le x \le 4, \ \frac{4}{x} \le y \le 5 - x$$

Zad. 11. Oblicz długość wykresu funkcji

(a)
$$y = \ln(1 - x^2), \quad x \in \left[0, \frac{1}{2}\right]$$

(b)
$$y = \frac{1}{2}(e^x + e^{-x}), \quad x \in [0, 1]$$

(c)
$$y = \sqrt{(2x+1)^3}$$
, $x \in [0,3]$