Universidade Federal do Paraná

Programa de Pós-Graduação em Desenvolvimento Econômico

Econometria I

Professor: Victor Oliveira

Exercícios

1) Considere o modelo linear $y_i=\theta_0z_i+\varepsilon_i$, em que θ_0 e z_i são escalares. As condições de ortogonalidade são

$$\mathbb{E}[x_i(y_i - \theta_0 z_i)] = 0 \tag{1}$$

e a função objetivo associada ao estimador de GMM é denotada por $Q_n(\theta)$.

Assuma que $\theta_0 > 0$ e considere a reparametrização $\lambda = \frac{1}{\theta}$, em que as condições de ortogonalidade são

$$\mathbb{E}[x_i(z_i - \lambda_0 y_i)] = 0 \tag{2}$$

e a função objetivo associada ao estimador de GMM é denotada por $\widetilde{Q}_n(\theta)$.

- a) Escreva as funções objetivo $Q_n(\theta)$ e $\widetilde{Q}_n(\theta)$ usando a mesma matriz de ponderação W.
- b) Quando $Q_n(\theta) = \widetilde{Q}_n\left(\frac{1}{\theta}\right)$? Quando $\widetilde{Q}_n(\lambda) = Q_n\left(\frac{1}{\lambda}\right)$?
- c) O que se conclui do item b)?
- 2) Considere um modelo de escolha discreta. Suponha que os parâmetros desse modelo sejam estimados por mínimos quadrados ordinários, ou seja, temos um modelo de probabilidade linear. Mostre que nesse caso a variância é heterocedástica.
- 3) Um amigo economista lhe diz que a suposição de que as observações (y,x_i) são iid implicam que a regressão $y_i = x_i'\beta + e_i$ é homocedástica. Você concorda com seu amigo? Como você explicaria sua posição?
- 4) Seja $\{X_i\}_{1 \le i \le n}$ um vetor de variáveis iid e seja $X = \sum_{i=1}^{n} X_i$. Prove que $\mathbb{E}[X_1|X] = \frac{X}{n}$.
- 5) Suponha o modelo linear

$$y_i = x_i \beta + e_i \tag{3}$$

$$\mathbb{E}(e_i|x_i) = 0 \tag{4}$$

Considere o estimador $\beta=\dfrac{\displaystyle\sum_{i=1}^n x_i^3 y_i}{\displaystyle\sum_{i=1}^n x_i^4}.$ Encontre a distribuição assintótica de $\sqrt{n}(\widehat{\beta}-\beta)$ quando $n\to\infty.$

6) Sejam x_1, \ldots, x_n uma amostra aleatória de variáveis aleatórias independentes e identicamente distribuídas (i.i.d.). Sendo a função de verossimilhança

$$L(x;\theta) = \prod_{i=1}^{n} \theta x_i^{-2} \mathbb{I}_{[\theta,+\infty)}(x_i)$$
 (5)

em que $\mathbb I$ é a função indicadora. Obtenha o estimador de máxima verossimilhança para $\theta.$

7) Considere o modelo de regressão

$$y = X\beta + u, \quad u \sim \mathcal{N}(0, \sigma^2 I_n)$$
 (6)

em que y e u denotam vetores $n \times 1$, β indica um vetor $k \times 1$ e X representa uma matriz $n \times k$. Assume-se que a variável explicativa X está correlacionada com o termo de erro u. Mostre que o estimador de MQO, denotado por $\hat{\beta}$, é inconsistente.

8) Um pesquisador está considerando duas especificações para estimar a relação entre X e Y como segue:

$$\log Y = \beta_1 + \beta_2 \log X + U \tag{7}$$

$$\log \frac{Y}{X} = \alpha_1 + \alpha_2 \log X + V \tag{8}$$

em que o tamanho da amostra é n. Usando as mesmas n observações das variáveis Y e X, o pesquisador ajusta as duas especificações usando mínimos quadrados ordinários (OLS), como segue:

$$\widehat{\log Y} = \widehat{\beta}_1 + \widehat{\beta}_2 \log X \tag{9}$$

$$\widehat{\log \frac{Y}{X}} = \widehat{\alpha}_1 + \widehat{\alpha}_2 \log X \tag{10}$$

- a) Determine se (8) pode ser escrito como uma versão restrita de (7).
- b) Usando as expressões para as estimativas, escreva $\widehat{\beta}_2$ em termos de $\widehat{\alpha}_2$.
- c) Usando as expressões para as estimativas, escreva $\widehat{\beta}_1$ em termos de $\widehat{\alpha}_1$.
- d) Determine a relação entre a estatística t usando $\hat{\beta}_2$ e a estatística t usando $\hat{\alpha}_2$.
- 9) Considere os seguintes modelos

$$Y = X\beta + \varepsilon \tag{11}$$

$$Y = X\beta + Z\gamma + \varepsilon \tag{12}$$

Denote o estimador de β na equação (11) por $\hat{\beta}^{(1)}$. Encontre $\mathbb{E}\left[\hat{\beta}^{(1)}|X,Z\right]$ se o modelo correto é o (12).

- 10) Seja Y um vetor $n \times 1$, X uma matriz $n \times k$ e Z = XB, em que B é uma matriz $k \times k$. Denote por $\hat{\beta}$ e por \hat{e} o estimador de MQO e o resíduo da regressão de Y sobre X. Da mesma forma, denote por $\widetilde{\beta}$ e por \widetilde{e} o estimador de MQO e o resíduo da regressão de Y sobre Z. Qual a relação entre $\hat{\beta}$ e $\widetilde{\beta}$ e entre \hat{e} e \widetilde{e} ?
- 11) Suponha que encontramos $\hat{\beta}$ como uma estimativa de $\beta \in \mathbb{R}$, tal que $\sqrt{n} \left(\hat{\beta} \beta \right) \stackrel{D}{\to} \mathcal{N}(0, V)$ quando $n \to \infty$. Temos um estimador consistente \hat{V} de V e o parâmetro de interesse é $\theta = \beta^2$. Encontre a distribuição assintótica de $\hat{\theta} = \hat{\beta}^2$ e o erro-padrão assintótico válido.
- 12) Suponha o modelo

$$y_i = \beta_1 + x'_{1i}\beta_2 + x'_{2i}\beta_3 + e_i \tag{13}$$

$$\mathbb{E}[x_i e_i] = 0 \tag{14}$$

Apresente a dedução da estatística de teste para $H_0: \beta_2 - \beta_3 = 1$ contra $H_1: \beta_2 - \beta_3 \neq 1$.

13) Suponha o modelo

$$y_i = x'_{1i}\beta_1 + x'_{2i}\beta_2 + e_i \tag{15}$$

$$\mathbb{E}[x_i e_i] = 0 \tag{16}$$

Deduza o teste de Wald de H_0 : $\beta_1 = \beta_2$ contra H_1 : $\beta_1 \neq \beta_2$.

- 14) Alguém lhe conta que $\hat{\beta}_1 = 1.0$, $\hat{\beta}_2 = 0.8$ e que os erros-padrão são ep $(\hat{\beta}_1) = 0.07$ e ep $(\hat{\beta}_2) = 0.07$. Escreva um intervalo de confiança de 95% para $\theta = \beta_1 \beta_2$ como função de $\hat{\beta}_1$, $\hat{\beta}_2$, ep $(\hat{\beta}_1)$, ep $(\hat{\beta}_2)$ e $\hat{\rho}$, em que $\hat{\rho}$ é a correlação estimada entre $\hat{\beta}_1$ e $\hat{\beta}_2$.
- 15) Dizemos que o estimador de MQO é não viesado e consistente. Explique a diferença entre esses dois conceitos.
- 16) Seja o modelo linear

$$y_i = x_{1i}\beta_1 + x_{2i}\beta_2 + e_i (17)$$

$$\mathbb{E}(x_i e_i) = 0 \tag{18}$$

Considere a restrição

$$\frac{\beta_1}{\beta_2} = 2 \tag{19}$$

Encontre uma expressão explícita para o estimador de mínimos quadrados restrito (CLS) $\widetilde{\beta} = \left(\widetilde{\beta}_1, \widetilde{\beta}_2\right)$ de $\beta = (\beta_1, \beta_2)$ sob (19). Derive a distribuição assintótica de $\widetilde{\beta}_1$ sob a suposição de que a restrição é verdadeira.

17) Seja a seguinte regressão

$$\ln(\text{salário}) = \beta_0 + \beta_1(\text{tenure}) + u \tag{20}$$

A partir das informações abaixo

- a) calcule a estimativa por MQO de β_0 e β_1 (dica: note que $\sum_{i=1}^n X_i = n\bar{X}$)
- b) encontre também a estatística t associada a cada parâmetro
- c) construa um intervalo de confiança de 95% para β_0 e β_1

Tabela 1—Dados Estatísticos

Variável	N	Média	Desvio-padrão	Mínimo	Máximo
ln salário	2231	1.87	0.57	0.0049	3.70
tenure	2231	5.98	5.51	0.0000	25.92
$tenure^2$	2231	66.08	102.54	0.0000	671.67
ln (salário) ²	2231	3.85	2.35	0.0001	13.75
$\ln(\text{salário}) \times \text{tenure}$	2231	12.15	12.62	0.0049	75.72

Tabela 2—Resultados da Regressão

Variável	Coeficiente	Erro-padrão	t	P > t	IC
tenure constante		$0.002 \\ 0.017$		$0.0000 \\ 0.0000$	

Tabela 3—Informações Adicionais

N	2231
F(1,2229)	220.510
Prob>F	0.000
R^2	0.090
R^2 ajustado	0.090
Erro Quadrático Médio	0.547

- 18) Suponha que $X \sim \text{Poisson}(\lambda)$, com $x = 0, 1, 2, \dots$ e $\lambda > 0$. Sabendo que $f(x; \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}$, pede-se:
 - a) Monte a função de verossimilhança.
 - b) Monte a função de log-verossimilhança.
 - c) Mostre que a matriz de informação de Fisher é $I(\lambda) = \frac{n}{\lambda}$.
 - d) Derive a estatística LR.
- 19) Sejam X_1, X_2, \ldots, X_n uma amostra iid de variáveis aleatórias com função densidade de probabilidade

$$f(x;\theta) = \frac{2x}{\theta} e^{-x^2/\theta}$$
 (21)

com x > 0. Derive a estatística LR.

- 20) Se $\mathbb{E}(X_i) = \mu$ e var $(X_i) = \sigma^2$, e as observações são iid, o que lei dos grandes números e o teorema central do limite afirma sobre $\bar{X} = \frac{\displaystyle\sum_{i=1}^n X_i}{n}$?
 Os seguintes test
- 21) Os seguintes testes estatísticos são válidos? $H_0: \mu_X = 100 \text{ e } H_0: \bar{X} = 100.$
- 22) Seja o modelo de regressão abaixo sem intercepto. Se soubermos que a função de regressão populacional é

$$y_i = \beta_1 x_i + u_i \tag{22}$$

- a) O que é $\mathbb{E}(y_i|x_i)$?
- b) O que é $\mathbb{E}(y_i|x_i=0)$?
- c) Derive o estimador de MQO para β_1 .
- d) Derive ao estimador de MM para β_1 .
- 23) No modelo estrutural,

$$y = X\beta + e \tag{23}$$

$$X = Z\Gamma + U \tag{24}$$

com Γ uma matriz $L \times K$ (com $L \ge K$). Afirmamos que β é identificado se rank $(\Gamma) = K$. Explique por que isso é verdade. Isto é, mostre que se rank $(\Gamma) < K$ então β não pode ser identificado.

24) Seja o modelo

$$y_i = x_i \beta + e_i, \quad \mathbb{E}(e_i | x_i) = 0 \tag{25}$$

em que x_i e β são univariados.

- a) Mostre que $\mathbb{E}(x_i e_i) = 0$ e $\mathbb{E}(x_i^2 e_i) = 0$.
- b) Seria $z_i = \begin{pmatrix} x_i & x_i^2 \end{pmatrix}$ um instrumento válido para a estimação de β ?
- c) Defina o estimador MQ2E de β usando z_i como instrumento para x_i . Como ele difere do MQO. Qual procedimento você recomenda? Seja específico.
- 25) Das variáveis (y_i^*, x_i^*, x_i) somente o par (y_i, x_i) é observado. Neste caso, dizemos que y_i^* é uma variável latente. Suponha que

$$y_i^* = x_i'\beta + e_i, \quad \mathbb{E}(x_i e_i) = 0 \tag{26}$$

$$y_i^* = y_i + u_i \tag{27}$$

em que u_i é um erro de mensuração que satisfaz:

$$\mathbb{E}(x_i u_i) = 0 \tag{28}$$

$$\mathbb{E}(y_i^* u_i) = 0 \tag{29}$$

- a) Interprete os pressupostos acima.
- b) β é o coeficiente da projeção linear de y_i em x_i ?
- c) $\hat{\beta}$ é consistente quando $n \to \infty$?
- d) Encontre a distribuição assintótica de $\sqrt{n}(\hat{\beta} \beta)$ quando $n \to \infty$?
- e) Suponha agora que você tenha observações sobre (y_i^*, y_i, x_i) . Qual estimador você recomendaria e por quê?
- 26) Considere o modelo de regressão

$$y_i = x_i' \theta_0 + u_i, \quad i = 1, \dots, n$$
 (30)

em que $x_i \in \mathbb{R}^d$ pode ser particionado em dois subvetores $x_1^{(1)} \in \mathbb{R}^{d_1}$ e $x_2^{(1)} \in \mathbb{R}^{d_2}$ (com $d = d_1 + d_2$) com os correspondentes coeficientes $\theta_{0,1}$ e $\theta_{0,2}$. Suponha que o objeto de interesse seja $\theta_{0,1}$. Suponha que x_1 é endógeno e que um vetor de instrumentos $z_i \in \mathbb{R}^{d_z}$

está disponível, de modo que $\mathbb{E}[z_i u_i] = 0$ e $\mathbb{E}[z_i x_i^{(2)}] = 0$. Assuma que os dados sejam iid. Se $d_1 \leq d_2 \leq d$ o sistema não é identificado. Além disso, z_i é não correlacionado com $x_i^{(2)}$. Mostre que $\theta_{0,1}$ pode, no entanto, ser consistentemente estimado propondo um estimador consistente $\hat{\theta}_1$ de $\theta_{0,1}$ e derive sua distribuição limite.

27) Seja X uma distribuição bivariada com média μ e matriz de covariância Σ , em que

$$\mu = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad e \quad \Sigma = \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} \tag{31}$$

Seja $Y = X'\beta + \varepsilon$, em que ε segue uma distribuição normal padrão e é independente de X. Finalmente, $\beta = (-1, 2)'$.

- a) Compute $\mathbb{E}(Y)$.
- b) Compute var(Y).
- c) Compute a correlação entre Y e ε .
- 28) Seja $Y = X\beta + \varepsilon$, em que X e β são particionados como $X = (X_0|X_1)$ e $\beta' = (\beta'_0|\beta'_1)$ respectivamente. β_0 tem p_0 componentes e β_1 tem $p p_0$ componentes. Mostre que $\|Y\|^2 = \|P_0Y\|^2 + \|(P P_0)Y\|^2 + \|Y PY\|^2$.
- 29) Considere uma amostra iid $\{y_i, x_i\}_{i=1}^n$, i = 1, ..., n, em que y_i e x_i são escalares. Considere o modelo de projeção

$$x_i = y_i \gamma + u_i \tag{32}$$

$$\mathbb{E}(y_i u_i) = 0 \tag{33}$$

e defina o estimador de interesse como $\theta = \frac{1}{\gamma}$.

- a) Proponha um estimador $\hat{\gamma}$ para γ .
- b) Proponha um estimador $\widehat{\theta}$ para θ .
- c) Encontre a distribuição assintótica de $\hat{\theta}$.
- d) Encontre a expressão para o erro padrão assintótico para $\hat{\theta}$.
- 30) Seja o modelo de regressão $Y = X\beta + \varepsilon$ com $\mathbb{E}(\varepsilon_i|x_i) = 0$. Assuma $\theta = \frac{1}{\beta_1}$ em que $\beta_!$ é o primeiro elemento de β . Seja $\widehat{\beta}$ o estimador de MQO de β e \widehat{V} o estimador da variância de $\widehat{\beta}$. Encontre um intervalo de confiança de 95% assintoticamente válido para θ (escreva uma fórmula explícita em termos de $\widehat{\beta}$ e de \widehat{V}).

31) Seja o modelo de regressão $Y = X\beta + \varepsilon$ com $\mathbb{E}(\varepsilon_i|x_i) = 0$. Sabe-se que o verdadeiro β satisfaz a restrição $R\beta = 0$, sendo R uma matriz $q \times k$ com q < k. Considere o estimador

$$\widetilde{\beta} = \widehat{\beta} - (X'X)^{-1}R' \left[R(X'X)^{-1}R' \right]^{-1} R\widehat{\beta}$$
(34)

Mostre que $\widetilde{\beta}$ é um estimador não viesado para β .

- 32) Seja a variável y_i gerada por $y_i = x_i^2 + \varepsilon_i$ em que ε_i é independente de x_i , $\mathbb{E}(\varepsilon_i) = 0$ e $\mathbb{E}(\varepsilon_i^2) = \sigma^2$. Suponha que $\mathbb{E}(x_i) = 0$, e seja $\mu_2 = \mathbb{E}(x_i^2)$, $\mu_3 = \mathbb{E}(x_i^3)$ e $\mu_4 = \mathbb{E}(x_i^4)$. Usando uma amostra aleatória de (y_i, x_i) , suponha que você estime (por MQO) uma equação linear $\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i + \widehat{e}_i$. Encontre uma expressão para β_0 e β_1 em termos dos momentos de ε_i
- 33) Seja o seguinte modelo de painel

$$y_{it} = \mu_i + e_{it} \tag{35}$$

com $\mathbb{E}(e_{it}^2) = \sigma^2$, em que $\mathbb{E}(\mu_i e_{it}) = 0$, $i = 1, \dots, n, t = 1, \dots, T$.

- a) Mostre que para o estimador de GMM para μ_i é \bar{y}_i , o estimador de efeitos fixos.
- b) Encontre o estimador de GMM $\hat{\sigma}^2$ para σ^2 .
- 34) Assuma o modelo

$$y_i = z_i \beta + e_i \tag{36}$$

$$\mathbb{E}(z_i e_i) \neq 0 \tag{37}$$

em que (y_i, z_i) são iid e $\mathbb{E}(e_i) = 0$.

- a) Dizemos que z_i é "exógeno" ou "endógeno" para β ?
- b) O estimador $\hat{\beta} = \frac{\displaystyle\sum_{i=1}^n z_i y_i}{\displaystyle\sum_{i=1}^n z_i^2}$ é consistente para β ?
- c) Considere o estimador $\widetilde{\beta}=\frac{\displaystyle\sum_{i=1}^n y_i}{\displaystyle\sum_{i=1}^n z_i}$. Existe uma condição (além de $\mathbb{E}(z_ie_i)=0$) sob a qual $\widetilde{\beta}$

qual $\widetilde{\beta}$ é consistente para β ?

- d) Explique sua descoberta em (c) mostrando que você pode escrever $\hat{\beta}$ como um estimador de IV válido. Explique a restrição de identificação.
- 35) Seja o modelo linear $Y = Z\beta + e$ e considere os seguintes estimadores para β :
 - $\widehat{\beta}_1$ obtido por MQ2E usando X_1 como instrumento.
 - $\widehat{\beta}_2$ obtido por MQ2E usando X_2 como instrumento.
 - $\widetilde{\beta}$ obtido por GMM usando os instrumentos $X = \begin{pmatrix} X_1 & X_2 \end{pmatrix}$ e matriz de ponderação $\Omega = \begin{pmatrix} \left(X_1' X_1 \right)^{-1} \lambda & 0 \\ 0 & \left(X_2' X_2 \right)^{-1} (1 \lambda) \end{pmatrix} \text{ para } \lambda \in (0, 1).$

Encontre uma expressão para $\widetilde{\beta}$ que é uma média ponderada de $\widehat{\beta}_1$ e de $\widehat{\beta}_2$.

36) Você tem uma amostra aleatória do modelo

$$y_i = x_i \beta_1 + x_i^2 \beta_2 + \varepsilon_i \tag{38}$$

$$\mathbb{E}(e_i|x_i) = 0 \tag{39}$$

em que y_i é o salário por hora e x_i é a idade. Como você testaria a hipótese de que o salário esperado para um trabalhador de 40 anos é \$ 20 por hora. Detalhe a dedução do teste.

37) O modelo é

$$y_i = z_i \beta + x_\gamma + \varepsilon_i \tag{40}$$

$$\mathbb{E}(\varepsilon_i|x_i) = 0 \tag{41}$$

Logo, z_i é potencialmente endógeno e x_i é exógeno. Assuma que $x_i \in \mathbb{R}$ e $z_i \in \mathbb{R}$. Alguns podem sugerir estimar (β, γ) por GMM usando o par $(x_i \ x_i^2)$ como instrumentos. Isso é possível? Sob quais condições, se há alguma (além das descritas acima), este é um estimador válido?

38) Considere o modelo

$$y_i = x_i'\beta + e_i \tag{42}$$

$$\mathbb{E}(e_i|x_i) = 0 \tag{43}$$

$$z_i = (x_i'\beta)\gamma + u_i \tag{44}$$

$$z_i = (x_i'\beta)\gamma + u_i \tag{44}$$

$$\mathbb{E}(u_i|x_i) = 0 \tag{45}$$

O objetivo é estimar γ . Mostre que $\hat{\gamma}$ é consistente para γ . Quais condições são necessárias?

39) Considere as projeções abaixo

$$y_i = x_i \gamma_1 + e_i \tag{46}$$

$$y_i = x_i \beta_1 + x_i^2 \beta_2 + u_i \tag{47}$$

Estabeleça duas condições sob as quais $\gamma_1 = \beta_1$.

- 40) Derive a expressão para a matriz de variância-covariância do estimador de MQO.
- 41) Considere a estimação de um modelo com densidade

$$f(y_i) = e^{-(y_i - \boldsymbol{x}_i'\boldsymbol{\beta})} \exp\left(-e^{-(y_i - \boldsymbol{x}_i'\boldsymbol{\beta})}\right)$$
(48)

em que $-\infty < y < \infty$ e $\mathbb{E}[y_i|\mathbf{x}_i] = c + \mathbf{x}_i'\boldsymbol{\beta}$ com $c \approx 0,57$.

- a) Deduza o estimador de máxima verossimilhança para β .
- b) Encontre a distribuição limite para β , supondo que a densidade esteja especificada corretamente.
- c) Apresente um estimador alternativo para β a partir do método dos momentos.
- 42) Considere o modelo

$$y_i = m(x_i) + e_i (49)$$

$$m(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \ldots + \beta_p x^p$$
 (50)

$$\mathbb{E}(z_i e_i) = 0 \tag{51}$$

$$z_i = (1, x_i, \dots, x_i^p)' \tag{52}$$

$$g(x) = \frac{d}{dx}m(x) \tag{53}$$

com observações iid. A ordem p do polinômio é conhecida. Como interpretar a função m(x) dado o pressuposto de projeção em (51)? Como interpretar g(x)?

43) Suponha que você tenha um estimador não viesado de um vetor de parâmetros. Suponha também que você tenha estimado o vetor de parâmetros com uma amostra muito grande e, invocando o teorema do limite central, descobriu que a distribuição amostral de seus parâmetros estimados é

$$\widehat{\beta} = \begin{pmatrix} \widehat{\beta}_1 \\ \widehat{\beta}_2 \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} -2 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 & 1 \\ 1 & 9 \end{pmatrix} \right) \tag{54}$$

- a) Teste a hipótese de que os dois parâmetros são iguais.
- b) Use uma estatística de Wald para testar a hipótese de que $\beta_1 = \beta_2 = -1$. Você rejeita a hipótese?
- c) Construa uma estatística de teste para a hipótese de que $\beta_1 + \beta_2 = 1$. Você rejeita a hipótese?
- d) Se a hipótese em b) é verdadeira, então a hipótese em c) é verdadeira. Por que as estatísticas de teste são diferentes?
- 44) Considere o seguinte modelo, $y_i \sim \mathcal{N}(\alpha + \beta x_i, \sigma^2)$, em que os y_i 's são independentes.
 - a) Derive o estimador de MQO de α sob a restrição de que $\beta=1.$
 - b) Encontre o valor esperado e a variância desse estimador quando a restrição for verdadeira e quando for falsa.
 - c) Como as expressões encontradas em (b) se comparam àquelas obtidas para o estimador de MQO quando não há restrição?
- 45) Prove que sob a presença de heterocedasticidade condicional, MQG é assintoticamente mais eficiente que MQO (ou seja, ambos são consistentes, mas a variância assintótica de MQG é menor do que para MQO).
- 46) Considere o modelo de regressão linear

$$y_i = x_i' \theta_0 + u_i, \quad i = 1, \dots, n$$
 (55)

Assuma que os dados são iid e que o modelo é homocedástico. Derive o teste para H_0 : $\theta_{0,1}^2 - \theta_{0,2}^2 = 5$ e $\theta_{0,2} + \theta_{0,3} = 1$ versus H_1 : $\theta_{0,1}^2 - \theta_{0,2}^2 \neq 5$ e $\theta_{0,2} + \theta_{0,3} \neq 1$.