Package 'bsreg'

October 12, 2022

0000001 12, 2022				
Type Package				
Title Bayesian Spatial Regression Models				
Version 0.0.2				
Date 2022-02-25				
Author Nikolas Kuschnig [aut, cre] (https://orcid.org/0000-0002-6642-2543)				
Maintainer Nikolas Kuschnig <nikolas.kuschnig@wu.ac.at></nikolas.kuschnig@wu.ac.at>				
Description Fit Bayesian models with a focus on the spatial econometric models.				
Depends R (>= $3.5.0$)				
Imports R6, Matrix, stats, graphics, utils, grDevices				
Suggests stochvol, coda				
License GPL-3 file LICENSE				
Encoding UTF-8				
LazyData true				
RoxygenNote 7.1.2				
NeedsCompilation no				
Repository CRAN				
Date/Publication 2022-02-25 14:40:02 UTC				
R topics documented:				

bsreg-package	
bm	
cigarettes	3
coda	4
sample	
set_mh	
set_NG	
set_options	7
set_SAR	
set_SV	
tune	C
us_states	. 1

2 bm

Index 12

bsreg-package

Bayesian Spatial Regression Models

Description

Fit Bayesian models with a focus on the spatial econometric models.

bm

Fit a Bayesian model

Description

Fit a Bayesian model

Usage

```
bm(x, ...)
## S3 method for class 'formula'
bm(
 Х,
  data = NULL,
  n_save = 1000L,
 n_burn = 500L,
 options = set_options(),
 mh = set_mh(),
 verbose = TRUE,
 W,
 X_SLX,
  type = c("lm", "slx", "sar", "sem", "sdm", "sdem", "sv"),
)
## S3 method for class 'bm'
bm(x, n\_save = 1000L, n\_burn = 0L, verbose = TRUE, ...)
blm(...)
bslx(...)
bsar(...)
bsem(...)
```

cigarettes 3

```
bsdm(...)
bsdem(...)
bsv(...)
```

Arguments

x Formula or bm object to sample with.

... Not used.

data A data. frame containing the variables in the model.

n_save, n_burn Integer scalar. Number of draws for the burn-in period and to store for inference.

options Settings for the prior setup. See set_options.

mh Settings to tune the Metropolis-Hastings step. See set_mh.

verbose Logical scalar. Whether to print status updates.

W Numeric matrix (or function to construct one) with the spatial connectivities.

X_SLX Numeric matrix with explanatory variables that should be lagged spatially.

type Character scalar used to specify the desired model.

Value

Returns a list with draws from the specified Bayesian model and an object to obtain further samples.

Examples

```
N <- 100L
beta <- 1:5
X <- matrix(rnorm(N * 5), N, 5)
y <- X %*% beta + rnorm(N)
bm(y ~ X, n_burn = 100, n_draw = 100)
# Reproduce the linear model in Kuschnig (2022)
blm(log(sales) ~ log(price / cpi) + log(ndi / cpi) + factor(name) + factor(year), data = cigarettes)</pre>
```

cigarettes

Cigarette demand

Description

Panel dataset on cigarette demand in 46 US states from 1963 until 1992, see Baltagi and Levin (1992) and Baltagi and Li (2004). Extended with longitude and latitude from the us_states dataset.

4 coda

Usage

cigarettes

Format

A data.frame object.

References

Baltagi, B. H. and Levin, D. (1992). Cigarette taxation: raising revenues and reducing consumption, *Structural Change and Economic Dynamics*, **3(2)**, 321-335. doi: 10.1016/0954349X(92)90010-4. Baltagi, B. H. and Li, D. (2004). Prediction in the panel data model with spatial correlation. *Advances in Spatial Econometrics*, 283-295. Springer, Berlin. doi: 10.1007/9783662056172_13.

coda

Methods for coda Markov chain Monte Carlo objects

Description

Methods to convert parameter and/or coefficient draws to coda's mcmc format for further processing.

Usage

```
as.mcmc.bm(x, ...)
```

Arguments

x A bm object, obtained from bm.

... Other parameters for as.mcmc.

Value

Returns a coda mcmc object.

sample 5

sample	Obtain draws from a Bayesian model sampler

Description

Obtain draws from a Bayesian model sampler

Usage

```
sample(x, n\_save = 1000L, n\_burn = 0L, mh = set\_mh(), verbose = TRUE)
```

Arguments

x Bayesian model
 n_save, n_burn Integer scalar with number of draws to save / burn.
 mh Settings to tune the Metropolis-Hastings step. See set_mh.
 verbose Logical scalar. Whether to print status updates.

Value

Returns a numeric matrix with stored draws. The Bayesian model is modified in place.

set_mh	Settings to tune a Metropolis-Hastings step
Set_IIII1	settings to tune a metropous-rastings step

Description

Settings to tune a Metropolis-Hastings step

Usage

```
set_mh(adjust_burn = 0.8, acc_target = c(0.2, 0.45), acc_change = 0.01)
```

Arguments

adjust_burn	Numeric scalar with the percentage of burn-in that should be used to tune the MH step.
acc_target	Numeric vector with the lower and upper bound of the target acceptance rate for the MH step.
acc_change	Numeric scalar with the percentage adjustment to the proposal scale for tuning.

Value

Returns a list with settings to tune the Metropolis-Hastings step of a Bayesian model.

6 set_NG

Examples

```
set_mh(0.5, c(0.1, 0.5), .05)
```

set_NG

Set up a Normal-Gamma prior

Description

Set up a Normal-Gamma prior

Usage

```
set_NG(
 mu = 0,
 precision = 1e-08,
 shape = 0.01,
 rate = 0.01,
 beta = NULL,
  sigma = NULL
)
set_SNG(
  lambda_a = 0.01,
  lambda_b = 0.01,
  theta_scale = 0,
  theta_a = 1,
  lambda = 1,
  tau = 10,
  theta = 0.1
)
set_HS(lambda = 1, tau = 1, zeta = 1, nu = 1)
```

Arguments

mu Numeric scalar or vector with the prior mean of 'beta'.

precision Numeric scalar or matrix with the prior precision of 'beta'. Not used for shrink-

age priors.

shape, rate Numeric scalars with the prior shape and rate of 'sigma'.

lambda_a, lambda_b

Numeric scalars with the prior shape and rate of 'lambda'.

theta_scale Numeric scalar with the proposal scale of 'theta'. Defaults to zero for a fixed

value.

theta_a Numeric scalar with the prior rate of 'theta'.

lambda, tau, theta, zeta, nu, beta, sigma

Numerics with starting values for the respective parameter.

set_options 7

Value

Returns a list with priors and settings.

set_options

Set up Bayesian model priors and settings

Description

Set up Bayesian model priors and settings

Usage

```
set_options(
  type = c("Independent", "Conjugate", "Shrinkage", "Horseshoe"),
  NG = set_NG(),
  SNG = set_SNG(),
  HS = set_HS(),
  SAR = set_SAR(),
  SLX = set_SLX(),
  SEM = set_SEM(),
  SV = set_SV(),
  ...
)
```

Arguments

type	Character scalar with the prior type for the nested linear model.
NG	Settings for the Normal-Gamma prior (independent or conjugate). See set_NG.
SNG	Settings for the Normal-Gamma shrinkage prior (Polson and Scott, 2010). See ${\tt set_NG}$.
HS	Settings for the Horseshoe shrinkage prior (Makalic and Schmidt, 2015). See ${\tt set_NG}$.
SAR	Settings for the spatial autoregressive setup. See set_SAR.
SLX	Settings for the spatially lagged explanatory setup. See set_SAR . Note that settings for the spatial term 'theta' are provided to NG instead.
SEM	Settings for the spatial error setup. See set_SAR.
SV	Settings for the stochastic volatility setup. See set_SV.
	Used to provide custom prior elements.

Value

Returns a list with priors and settings for a Bayesian model.

Examples

```
set_options("Shrinkage", SNG = set_SNG(lambda_a = 1, lambda_b = 1))
```

set_SAR

 set_SAR

Set up a spatial prior

Description

Set up a spatial prior

Usage

```
set_SAR(
  lambda_a = 1.01,
  lambda_b = 1.01,
  lambda = 0,
  lambda_scale = 0.1,
  lambda_min = -1,
  lambda_max = 1 - 1e-12,
 delta_a = 1.01,
 delta_b = 1.01,
 delta = 1,
 delta_scale = 0,
 delta_min = 1e-12,
 delta_max = Inf
)
set_SLX(
  lambda_a = 1.01,
  lambda_b = 1.01,
  lambda = 0,
  lambda_scale = 0.1,
  lambda_min = -1,
 lambda_max = 1 - 1e-12,
 delta_a = 1.01,
 delta_b = 1.01,
  delta = 1,
 delta_scale = 0,
 delta_min = 1e-12,
 delta_max = Inf
)
set_SEM(
  lambda_a = 1.01,
  lambda_b = 1.01,
  lambda = 0,
  lambda_scale = 0.1,
  lambda_min = -1,
  lambda_max = 1 - 1e-12,
  delta_a = 1.01,
```

set_SV 9

```
delta_b = 1.01,
  delta = 1,
  delta_scale = 0,
  delta_min = 1e-12,
  delta_max = Inf
)
```

Arguments

```
lambda_a, lambda_b
```

Numeric scalars with the prior shapes of the connectivity strength 'lambda'.

lambda_min, lambda_max

Numeric scalars with upper and lower bounds for 'lambda'.

delta_a, delta_b

Numeric scalars with the prior shapes of the connectivity parameter 'delta'.

delta_scale Numeric scalar with the proposal scale of 'delta'. Defaults to zero for a fixed value.

delta_min, delta_max

Numeric scalars with upper and lower bounds for 'delta'.

Value

Returns a list with priors and settings.

set_SV

Set up a volatility prior

Description

Set up a volatility prior

Usage

```
set_SV(
    priors,
    mu = 0,
    phi = 0.5,
    sigma = 1,
    nu = Inf,
    rho = 0,
    beta = 0,
    latent0 = 0
)
```

10 tune

Arguments

Value

Returns a list with priors and settings.

tune

Burn-in and tune a Bayesian model sampler

Description

Burn-in and tune a Bayesian model sampler

Usage

```
tune(x, n_burn = 1000L, mh = set_mh(), verbose = TRUE)
burn(x, n_burn = 1000L, verbose = TRUE)
```

Arguments

x Bayesian model
 n_burn Integer scalar with number of draws to save / burn.
 mh Settings to tune the Metropolis-Hastings step. See set_mh.
 verbose Logical scalar. Whether to print status updates.

Value

Modifies the Bayesian model in place and returns it invisibly.

us_states 11

 us_states

United States Historical States

Description

Polygons of US state boundaries for the period 1960–2000. Subset from Siczewicz (2011). Licensed under CC BY-NC-SA 2.5 by the Atlas of Historical County Boundaries.

Usage

us_states

Format

A data. frame object.

Source

https://publications.newberry.org/ahcbp/

References

Siczewicz, P. (2011) U.S. Historical States and Territories (Generalized 0.01 deg). Dataset. Atlas of Historical County Boundaries, edited by Long, J. H. . Chicago: The Newberry Library, 2011. Available online from https://publications.newberry.org/ahcbp/.

Index

```
\ast datasets
    cigarettes, 3
    us_states, 11
as.mcmc, 4
as.mcmc.bm(coda), 4
blm (bm), 2
bm, 2, 4
bsar (bm), 2
bsdem(bm), 2
bsdm (bm), 2
bsem(bm), 2
bslx (bm), 2
bsreg-package, 2
bsv (bm), 2
burn (tune), 10
cigarettes, 3
coda, 4
data.frame, 3
mcmc, 4
sample, 5
set_HS (set_NG), 6
set_mh, 3, 5, 5, 10
set_NG, 6, 7
set\_options, 3, 7
set_SAR, 7, 8
set\_SEM (set\_SAR), 8
set_SLX (set_SAR), 8
set_SNG (set_NG), 6
set_SV, 7, 9
specify_priors, 10
tune, 10
us\_states, 11
```