Intro

Definition

A function of random variables X_1, \dots, X_n is called *Statistic*.

Definition

The probability distribution of a statistic T is called the sampling distribution of T.

ightharpoonup Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. Let $T = \bar{X}$, then sampling distribution of T is

$$N($$
 ,)

If $T=S^2$ then sampling distribution of S^2 is

$$(n-1)S^2/\sigma^2 \sim$$

Definition

Intro

An *estimator* is a function of random variables X_1, \dots, X_n , $T = W(X_1, \dots, X_n)$.

⊲ Note:

- 1. Estimator is actually a statistic.
- 2. Estimator is also random.
- 3. An *estimate* is a function of realized values of $X_1 = x_1, \dots, X_n = x_n$. $t = W(x_1, \dots, x_n)$
- ightharpoonup Example: $T = \bar{X}$, $\hat{F}_n(x_0) = n^{-1} \sum_{i=1}^n I[X_i \le x_0]$, $T = (\bar{X}, S^2)$.

Methods: MME

How to estimate the parametric function $\tau(\theta)$ using the random sample X_1, \dots, X_n ?: MME, MLE, BE so on Let $X_1, \dots, X_n \stackrel{iid}{\sim} f(x|\theta)$, $\theta = (\theta_1, \dots, \theta_k) \in \Theta$.

Definition

$$j^{th} \quad \text{Population moment:} \quad \mu_j(\pmb{\theta}) = E\left(X^j\right) \qquad \qquad C\mu_j = E\left[(X-\mu)^j\right]$$

$$j^{th} \quad \text{Sample moment:} \quad m_j = \frac{1}{n}\sum_{i=1}^n X_i^j \qquad \qquad Cm_j = \frac{1}{n}\sum_{i=1}^n (X_i-\overline{X})^j$$

⊲ Note:

- 1. μ_j is a function of $\boldsymbol{\theta} = (\theta_1, \cdots, \theta_k)$.
- 2. $E[m_j] = E\left[n^{-1} \sum_{i=1}^n X_i^j\right] = \mu_j$.

Methods: MME

Definition

MME of $\boldsymbol{\theta}=(\theta_1,\cdots,\theta_k)$, denoted by $\tilde{\boldsymbol{\theta}}=(\tilde{\theta}_1,\cdots,\tilde{\theta}_k)$, is defined as a solution of the system of equations

$$m_j = \mu_j(\theta_1, \cdots, \theta_k), \ j = 1, \cdots .l$$

ightharpoonup Example: $X_1, \dots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. Find MME of $\boldsymbol{\theta} = (\mu, \sigma^2)$.

$$m_1 = \overline{X} = \mu$$
, $m_2 = \frac{1}{n} \sum_{i=1}^n X_i^2 = \mu^2 + \sigma^2$.

$$\tilde{\mu} = \bar{X}$$
 and $\tilde{\sigma}^2 = \frac{1}{n} \sum X_i^2 - \bar{X}^2 = \frac{1}{n} \sum (X_i - \bar{X})^2$.

Methods: MME

$$ightharpoonup$$
 Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} \mathsf{Gamma}(\alpha, \beta)$. Find MME of $\boldsymbol{\theta} = (\alpha, \beta)$.

Let
$$S^{*2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
.

$$\theta_1\theta_2 = X, \qquad \theta_1\theta_2^2 = S^2,$$

$$\tilde{\theta}_1 = \frac{X^2}{S^2} \quad \tilde{\theta}_2 = \frac{S^2}{X}.$$

Methods: MMF

⊲ Note:

- 1. MM equations may have multiple solutions or no solution. The solution may fall outside of the parameter space.(Example 7.2.2)
- MME may not be applicable if the population moments do not exist such as Cauchy distribution.
- 3. One may not successful considering the first k-moments.

$$\triangleright$$
 Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} f(x|\beta)$, where

$$f(x|\beta) = \frac{1}{2\beta} e^{-|x|/\beta}.$$

Methods: MLE

Given the sample observation (measurement, data), choose as the estimator of the population parameter the value that makes the observed sample result the most likely, i.e. maximize the *likelihood*

Let X be a single observation from a discrete distribution taking the values { 0,1, 2 }.

The data comes from one of two distributions:

	P(X=0)	P(X=1)	P(X=2)
$\theta = \theta_0$.8	.1	.1
$\theta = \theta_1$.2	.3	.5

then
$$\hat{\theta} = \begin{cases} \theta_0 & \text{if } x = 0 \\ \theta_1 & \text{if } x = 1, 2 \end{cases}$$
.

Methods: MLE

Definition

Let $f(x_1, \dots, x_n | \boldsymbol{\theta})$ be the joint pdf/pmf of X_1, \dots, X_n . For a fixed x_1, \dots, x_n ,

$$L(\boldsymbol{\theta}) = f(x_1, \cdots, x_n | \boldsymbol{\theta})$$

as a function of θ , is called the likelihood function. $\ln[L(\theta)]$ is called the log likelihood function.

With discrete random variable,

$$L(\boldsymbol{\theta}) = P(X_1 = x_1, \cdots, X_n = x_n).$$

$$X_1, \cdots, X_n \stackrel{iid}{\sim} f(x|\boldsymbol{\theta}). \ L(\boldsymbol{\theta}) =$$

Methods: MLE

Definition

Let $f(x_1,\cdots,x_n|\boldsymbol{\theta}),\;\boldsymbol{\theta}\in\Theta$ be the joint pdf/pmf of X_1,\cdots,X_n . Then for a given set of observations (x_1,\cdots,x_n) , the maximum likelihood estimate of $\boldsymbol{\theta}$ is a point $\boldsymbol{\theta}_0=h(x_1,\cdots,x_n)$ satisfying

$$f(x_1, \dots, x_n | \boldsymbol{\theta}_0) = \max_{\boldsymbol{\theta} \in \Theta} f(x_1, \dots, x_n | \boldsymbol{\theta}).$$

The maximum likelihood estimator (MLE) is defined as

$$\hat{\boldsymbol{\theta}} = h(X_1, \cdots, X_n).$$

Methods: MLE

How to find MLE?

- Using differentiation, Direct maximization, Numerical evaluation
 - ▶ Assume $L(\theta)$ is twice differentiable in the interior points of Θ . Then $\hat{\theta}$ maximizes $L(\theta)$ if
 - 1. $\hat{\theta}$ is the unique value satisfying

$$\frac{dL(\theta)}{d\theta} \left(\frac{d \ln[L(\theta)]}{d\theta} \right) \Big|_{\hat{\theta}} = 0$$

$$\frac{d^2 L(\theta)}{d\theta^2} \left(\frac{d^2 \ln[L(\theta)]}{d\theta^2} \right) \Big|_{\hat{\theta}} < 0$$

2. The maximizer does not occur at the boundary.

Methods: MLE

ightharpoonup Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. Known σ and Unknown σ

$$L(\theta,\sigma^2|\mathbf{x}) = (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2}\sum(x_i - \theta)^2 / \sigma^2\right\}$$

$$l(\theta, \sigma^2 | \mathbf{x}) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \sigma^2 - \frac{1}{2} \sum_{i=1}^{n} \left(x_i - \theta \right)^2 / \sigma^2$$

$$0 = \frac{\partial l}{\partial \theta} = \frac{1}{\sigma^2} \sum_{i} (x_i - \theta) \Rightarrow \sum_{i} x_i - n\theta = 0 \Rightarrow \hat{\theta} = \overline{x};$$

$$0 = \frac{\partial l}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i} (x_i - \theta)^2.$$

$$\hat{\sigma}^2 = n^{-1} \sum (x_i - \overline{x})^2.$$

Methods: MLE

ightharpoonup Example: $X_{ij},\ i=1,\cdots,s;\ j=1,\cdots,n$ independently distributed as normal distribution with mean μ_i and variance σ^2 . Find the mle of μ_i and σ^2 .

$$L = (\sqrt{2\pi\sigma^2})^{-ns} \exp\left(-\sum_{i=1}^{s} \sum_{j=1}^{n} \frac{(x_{ij} - \mu_i)^2}{2\sigma^2}\right)$$

$$l = \ln L = -\frac{ns}{2} \ln(2\pi) - \frac{ns}{2} \ln(\sigma^2) - \sum_{i=1}^{s} \sum_{j=1}^{n} \frac{(x_{ij} - \mu_i)^2}{2\sigma^2}$$

$$\frac{\partial l}{\partial (\mu_i)} = \frac{1}{\sigma^2} \sum_{i=1}^{s} \sum_{j=1}^{n} (x_{ij} - \mu_i) = 0, \quad i = 1, 2, \dots, s,$$

$$\frac{\partial l}{\partial (\sigma^2)} = -\frac{ns}{2\sigma^2} + \sum_{i=1}^{s} \sum_{j=1}^{n} \frac{(x_{ij} - \mu_i)^2}{2(\sigma^2)^2} = 0$$

$$\hat{\mu}_i = \overline{X}_{i\bullet}, \quad \hat{\sigma}^2 = \frac{1}{ns} \sum_{i=1}^{s} \sum_{j=1}^{n} (X_{ij} - \overline{X}_{i\bullet})^2$$

Methods: MLE

ightharpoonup Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} Bernoulli(p)$.

$$L(p|\mathbf{x}) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{\sum x_i} (1-p)^{n-\sum x_i}$$

$$l(p|\mathbf{x}) = \sum x_i \log p + (n-\sum x_i) \log (1-p)$$

$$\frac{\partial l}{\partial p} = \frac{\sum x_i}{\hat{p}} - \frac{n-\sum x_i}{1-\hat{p}} = 0 \text{ (if } \hat{p} \notin \{0,1\}). \implies \hat{p} = \overline{x}.$$

Theorem

Let $\hat{\theta}$ be the mle of θ . Then for any parametric function $\tau(\theta)$, the mle of $\tau(\theta)$ is defined to be $\tau(\hat{\theta})$

Methods: MLE

ightharpoonup Example: $X_1,\cdots,X_n\stackrel{iid}{\sim} N(\mu,\sigma^2).$ Find mle of e^μ , μ^2 , σ/μ and $P[X\leq a].$

⊲ Note:

- It is possible that the likelihood equations do not have closed-form solution. May need a numerical method.
- 2. When the likelihood function is not differentiable, we may maximize $L(\theta)$ directly.

Methods: MI F

 \triangleright Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} \mathsf{Gamma}(\alpha, \beta)$.

$$\alpha = \theta 1, \ \beta = \theta 2$$

$$\mathcal{L}(\theta_1, \theta_2 | x_1, \dots, x_n) = \left[\frac{1}{\Gamma(\theta_1)\theta_2^{\theta_1}}\right]^n (x_1 x_2 \cdot \cdot \cdot x_n)^{\theta_1 - 1} \exp\left(-\sum_{i=1}^n x_i / \theta_2\right)$$

The likelihood equations do not have closed-form solution.

Example (Uniform Distribution). Let X_1, \ldots, X_n be iid with the uniform $(0, \theta)$ density, i.e.,

$$f(x; \theta) = \begin{cases} 1/\theta, & 0 < x \le \theta \\ 0, & elsewhere \end{cases}$$

Find the $\hat{\theta}_{MLE}$.

We have

$$L(\theta; x_1, x_2, \dots, x_n) = \frac{1}{\theta^n}, \qquad 0 < x_i \le \theta$$

which is an ever-decreasing function of θ .

 The maximum of such functions cannot be found by differentiation. Note that

$$0 < x_i \le \theta$$
 $\theta \ge \max(x_i)$

• L can be made no larger than $\frac{1}{[\max(x_i)]^n}$ and the unique MLE $\hat{\theta}$ of θ is the nth order statistic $\max(X_i)$.

$$E[\max(X_i)] = n\theta/(n+1).$$

• The MLE of the parameter θ is biased.

$$E[\max(X_i)] = \int_0^\theta x \cdot nf(x) F^{n-1}(x) dx$$

$$= n \int_0^\theta x \cdot \frac{1}{\theta} (\frac{x}{\theta})^{n-1} dx = \frac{n}{n+1} \theta.$$

Methods: Bayes estimation

So far, $X_1, \cdots, X_n \stackrel{iid}{\sim} f(x|\boldsymbol{\theta})$, where $\boldsymbol{\theta}$ is **unknown** and is assumed **fixed**. In **Bayesian** framework, $\boldsymbol{\theta}$ is assumed **random**. The distribution of $\boldsymbol{\theta}$ is called **prior distribution**, denoted by

$$\boldsymbol{\theta} \sim \pi(\boldsymbol{\theta}), \ \boldsymbol{\theta} \in \boldsymbol{\Theta}.$$

 \rhd Example: Machine that stamps out parts for cars. $\theta=$ fraction of defective. On a certain day, 10 pieces are examined.

$$X_i = \begin{cases} 1, & \text{if } i \text{th piece is defective,} \\ 0, & \text{otherwise,} \end{cases}$$

$$i=1,\cdots,10$$
. MME or MLE?

Methods: Bayes estimation

ightharpoonup Example -continued: Now assume that mechanic knows something about heta and gives a statistical model for heta

$$\pi(\theta) = 6\theta(1 - \theta), \ 0 \le \theta \le 1.$$

Prior distribution of θ is ?

- ▶ In Baysian frame, what is the goal of the inference about θ ?
- ▶ Then, How should we use the data $X_1 = x_1, \dots, X_n = x_n$ to achieve the goal ?

Methods: Bayes estimation

The conditional distribution of θ conditioning on $X_1 = x_1, \dots, X_n = x_n$ is called **posterior distribution** of θ .

$$\pi(\boldsymbol{\theta}|x_1,\dots,x_n) = \frac{f(x_1,\dots,x_n,\boldsymbol{\theta})}{m(x_1,\dots,x_n)}$$

$$= \begin{cases} \frac{\pi(\boldsymbol{\theta})f(x_1,\dots,x_n|\boldsymbol{\theta})}{\sum_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}\pi(\boldsymbol{\theta})f(x_1,\dots,x_n|\boldsymbol{\theta})} \\ \frac{\pi(\boldsymbol{\theta})f(x_1,\dots,x_n|\boldsymbol{\theta})}{\int_{\boldsymbol{\theta}\in\boldsymbol{\Theta}}\pi(\boldsymbol{\theta})f(x_1,\dots,x_n|\boldsymbol{\theta})d\boldsymbol{\theta}} \end{cases}$$

ullet Any Bayesian inference is based on this posterior distribution of ullet .

Example 1

Let $X_1, ..., X_n$ be i.i.d. Bernoulli(p).

$$\pi(p) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1} (p \in (0, 1))$$
$$f(\mathbf{x}|p) \sim p^{\sum x_i} (1 - p)^{n - \sum x_i}.$$

We determine the Bayes estimator of p.

$$\pi(p|\mathbf{x}) = \frac{f(\mathbf{x}|p)\pi(p)}{f(\mathbf{x})}$$

$$= \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\sum x_i + \alpha - 1} (1-p)^{n-\sum x_i + \beta - 1}$$

$$= \frac{\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\sum x_i + \alpha - 1} (1-p)^{n-\sum x_i + \beta - 1}}{\int_0^1 \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\sum x_i + \alpha - 1} (1-p)^{n-\sum x_i + \beta - 1} dp}$$

$$= \frac{\Gamma(n+\alpha+\beta)}{\Gamma(\sum x_i + \alpha)\Gamma(n-\sum x_i + \beta)} p^{\sum x_i + \alpha - 1} (1-p)^{n-\sum x_i + \beta - 1}.$$

$$p | \mathbf{x} \sim \text{Beta}(\sum x_i + \alpha, n - \sum x_i + \beta)$$

So the Bayes estimator is

$$E(p|\mathbf{x}) = \frac{\sum x_i + \alpha}{n + \alpha + \beta}.$$

Note: We must choose α and β somehow. (Often used is $\alpha = \beta = 1$ which makes $\pi(p)$ uniform. In that case we are not using prior information about p).

Our prior has mean $\frac{\alpha}{\alpha + \beta}$, so without seeing the data we use this. The MLE is $\frac{\sum x_i}{n}$.

Then the Bayes estimate

$$\frac{\sum x_i + \alpha}{n + \alpha + \beta} = \left(\frac{\alpha + \beta}{n + \alpha + \beta}\right) \left(\frac{\alpha}{\alpha + \beta}\right) + \left(\frac{n}{n + \alpha + \beta}\right) \frac{\sum x_i}{n},$$

a weighted average of the prior mean and the MLE.

Note that

$$\pi(p|\mathbf{x}) = \frac{f(\mathbf{x}|p)\pi(p)}{f(\mathbf{x})} \propto f(\mathbf{x}|p)\pi(p)$$

$$p^{\sum x_i} (1-p)^{n-\sum x_i} p^{\alpha-1} (1-p)^{\beta-1}$$

$$\propto p^{\sum x_i + \alpha - 1} (1 - p)^{n - \sum x_i + \beta - 1}$$
.

$$p | \mathbf{x} \sim \text{Beta}(\sum x_i + \alpha, n - \sum x_i + \beta)$$

Example 2

Let $X_1, ..., X_n$ be i.i.d. Poisson(λ).

$$\pi(\lambda) = \frac{\lambda^{\alpha-1}e^{-\lambda/\beta}}{\Gamma(\alpha)\beta^{\alpha}}, \ 0 < \lambda < \infty; \ Gamma(\alpha,\beta)$$

$$f(\mathbf{x}|\lambda) \sim \frac{e^{-n\lambda} \lambda^{\sum x_i}}{x_1! x_2! \cdots x_n!}$$

We determine the Bayes estimator of λ .

$$\pi(\lambda|\mathbf{x}) = \frac{f(\mathbf{x}|\lambda)\pi(\lambda)}{f(\mathbf{x})} \propto f(\mathbf{x}|\lambda)\pi(\lambda)$$

$$\propto e^{-n\lambda} \lambda^{\sum x_i} \lambda^{\alpha-1} e^{-\lambda/\beta}$$

$$\propto \lambda^{\sum x_i + \alpha - 1} e^{-\lambda (n + \frac{1}{\beta})}$$

$$\sim$$
Gamma($\sum x_i + \alpha$, $\frac{1}{n+1/\beta}$)

$$E(\lambda|X) = \frac{\sum x_i + \alpha}{n + 1/\beta}$$

In each of these examples, the prior and posterior distributions have the same form.

In such cases, the distribution of the prior and sampling distribution of \mathbf{x} are said to be **conjugate**.

Choosing a conjugate prior has the advantage of allowing us to write a closed form expression for the posterior and for the estimator. It makes the computation easier.

Examples of conjugate priors

- Bernoulli model with a Beta prior on 0
- Poisson model with a Gamma prior on $0 < \lambda < \infty$
- Normal model with a Normal prior on $-\infty < \mu < \infty$
- Normal model with an Inverse Gamma prior on $-\infty < \sigma^2 < \infty$ (i.e. a Gamma prior on $0 < \frac{1}{\sigma^2} < \infty$).
- Gamma model with a Gamma prior on $0 < \beta < \infty$

Example 3

Let
$$X_1, \dots, X_n$$
 be i.i.d. $N(\mu, \sigma^2)$.
$$\pi(\mu) \sim N(\eta, \tau^2)$$

$$f(\mathbf{x}|\mu) \sim N(\mu, \sigma^2)$$

Here σ^2 , η , and τ^2 are all assumed to be known. We determine the Bayes estimator of μ .

Mean Squared Error: MSE

- May have more than one choice of the estimator of the parameter.
 - Need to evaluate the estimators so that we can choose the best one.
 - Need a criterion to evaluate the estimator. (Unbiasedness, MSE, Consistency, BLUE, UMVUE)

Definition

An estimator $W(X_1, \cdots, X_n)$ of a parametric function $\tau(\theta)$ is said to be an *unbiased* estimator (UE) if

$$E_{\theta}(W) = \tau(\theta)$$
, for all $\theta \in \Theta$.

Mean Squared Error: MSE

Definition

The function

$$\mathsf{BIAS}_{\theta}(W) = E_{\theta}(W) - \tau(\theta)$$

is called the *bias* of W as an estimator of $\tau(\theta)$.

ightharpoonup Example: $X_1, \dots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. Find an unbiased estimator for μ and σ^2 . What about the MLE of σ^2 ?

Q) If W is an UE of θ , then is $\tau(W)$ UE of $\tau(\theta)$? Yes/No \rhd Example-Continued: S^2 is an UE of σ^2 . Is S unbiased for σ ?

Mean Squared Error: MSE

Definition

The Mean Squared Error (MSE) of an estimator W of a parameter θ is the function of θ defined by

$$\mathsf{MSE}_{\theta}(W) = E_{\theta}(W - \theta)^2.$$

$$\lhd \mathsf{Note} : \mathsf{MSE}_{\theta}(W) = Var_{\theta}(W) + [\mathsf{BIAS}_{\theta}(W)]^2$$

MSE has two components, one that measures precision (variance), and one that measures accuracy (bias).

Example

Let $X_1, ..., X_n$ be i.i.d. $N(\mu, \sigma^2)$. We $E(\overline{X}) = \mu$ and $E(S^2) = \sigma^2$ for all μ and σ^2 , so they are both unbiased.

The MSEs of these estimators are

$$Var(\overline{X}) = \sigma^2 / n$$
, $Var(S^2) = 2\sigma^4 / (n-1)$.

(Recall that $\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$, and that $Var(\chi_v^2) = 2v$).

Which one is better?

MLE
$$\hat{\sigma}^2 = n^{-1}(n-1)S^2$$
, $\tilde{\sigma}^2 = S^2$?

For the MLE (and MOM) estimator of σ^2 ,

$$\hat{\sigma}^2 = \frac{1}{n} \sum (x_i - \overline{x})^2,$$

$$E(\hat{\sigma}^2) = \frac{n-1}{n} E(S^2) = \frac{n-1}{n} \sigma^2.$$

Thus

$$Bias(\hat{\sigma}^2) = E(\hat{\sigma}^2) - \sigma^2 = \frac{n-1}{n}\sigma^2 - \sigma^2 = \frac{-\sigma^2}{n}$$
$$Var(\hat{\sigma}^2) = \left(\frac{n-1}{n}\right)^2 Var(S^2) = 2(n-1)\sigma^4 / n^2$$

Hence,
$$MSE(\hat{\sigma}^2) = Var \ \hat{\sigma}^2 + \left(Bias \ \hat{\sigma}^2\right)^2$$

= $2(n-1)\sigma^4 / n^2 + \left(-\sigma^2 / n\right)^2$
= $\left[\left(2/n\right) - \left(1/n^2\right)\right]\sigma^4 < 2\sigma^4 / (n-1)$

Mean Squared Error: MSE

ightharpoonup Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} \mathsf{Bernoulli}(p)$. With Beta prior, the Bayes estimator is

$$\hat{p}_B = \frac{nX + \alpha}{\alpha + \beta + n}.$$

The MLE of p is $\hat{p} = \bar{X}$. Compare the MSE of two estimators.

$$e$$
.g. α =5, β =20

Mean Squared Error: MSE

Mean Squared Error: MSE

Mean Squared Error: MSE

Definition

Let $f(\mathbf{x}|\theta) = f(x_1, \dots, x_n|\theta)$ be the pdf/pmf of X_1, \dots, X_n . An estimator W is said to be *Uniform Minimum Variance Unbiased Estimator* (UMVUE) for $\tau(\theta)$ if

- 1. $E_{\theta}(W) = \tau(\theta)$
- 2. $Var_{\theta}(W) < \infty$
- 3. For any other UE of $\tau(\theta)$, say \tilde{W} ,

$$Var_{\theta}(W) \leq Var_{\theta}(\tilde{W})$$
 for all $\theta \in \Theta$

⊲ Note: UMVUE may not exist. If it does, it is essentially unique.

Then, how to get the UMVUE?

- 1. Using Cramér-Rao Lower Bound (CRLB)
- 2. Using complete and sufficient statistic and Rao-Blackwell, Lehmann-Scheffe Theorem.
- ▶ Idea of using CRLB; Show that for any UE, \tilde{W} , of $\tau(\theta)$,

$$Var_{\theta}(\tilde{W}) \geq c(\theta)$$
 for all $\theta \in \Theta$

and if we can find an UE, W, such that

$$Var_{\theta}(W) = c(\theta)$$
 for all $\theta \in \Theta$

then we can conclude W is the UMVUE of $\tau(\theta)$.

UMVUE: CRLB

Theorem

Let $f(\mathbf{x}|\theta)$ be the pdf/pmf of X_1, \dots, X_n . Assume

- 1. Θ is an open space(subset) of R.
- 2. $\{\mathbf{x}: f(\mathbf{x}|\theta) > 0\}$ does not depend on θ .
- 3. $\partial f(\mathbf{x}|\theta)/\partial \theta$ exist on Θ
- 4. For any estimator \tilde{W} with $E_{\theta}\tilde{W}^2<\infty$, for all $\theta\in\Theta$, we have

$$\frac{\partial}{\partial \theta} E_{\theta} \tilde{W} = \begin{cases} \int \tilde{W} \left[\frac{\partial}{\partial \theta} f(\mathbf{x}|\theta) \right] d\mathbf{x} \\ \sum \tilde{W} \left[\frac{\partial}{\partial \theta} f(\mathbf{x}|\theta) \right] \end{cases}$$

5.

$$E_{\theta} \left[\left(\frac{\partial \ln f(\mathbf{x}|\theta)}{\partial \theta} \right)^{2} \right] < \infty$$

UMVUE: CRLB

Theorem (Continued)

Then for any UE of a differentiable parametric function $\tau(\theta)$,

$$Var_{\theta}(W) \ge \frac{\left[\tau(\theta)'\right]^2}{E_{\theta}\left[\left(\frac{\partial \ln f(\mathbf{x}|\theta)}{\partial \theta}\right)^2\right]}.$$

⊲ Note:

▶ The five conditions are called CR regularity conditions.

$$I_n(\theta) = E_{\theta} \left[\left(\frac{\partial \ln f(\mathbf{x}|\theta)}{\partial \theta} \right)^2 \right]$$

is called the information number or fisher information of the sample.

Under regularity conditions,

$$1 = \int_{-\infty}^{\infty} f(x; \theta) dx = \int_{S} f(x; \theta) dx \Rightarrow 0 = \int_{S} \frac{\partial f(x; \theta)}{\partial \theta} dx.$$

$$\Rightarrow 0 = \int_{S} \frac{\partial f(x;\theta)/\partial \theta}{f(x;\theta)} f(x;\theta) dx,$$

$$\Rightarrow 0 = \int_{S} \frac{\partial \ln f(x;\theta)}{\partial \theta} f(x;\theta) dx \qquad (1)$$

$$\Rightarrow E \left[\frac{\partial \ln f(X; \theta)}{\partial \theta} \right] = 0; \tag{2}$$

We differentiate (1) again,

$$0 = \int_{S} \frac{\partial^{2} \ln f(x;\theta)}{\partial \theta^{2}} f(x;\theta) dx + \int_{S} \frac{\partial \ln f(x;\theta)}{\partial \theta} \frac{\partial \ln f(x;\theta)}{\partial \theta} f(x;\theta) dx.$$

Let
$$I(\theta) = E\left[\left(\frac{\partial \ln f(X;\theta)}{\partial \theta}\right)^2\right],$$
 (3)

we call $I(\theta)$ Fisher information.

$$I(\theta) = -\int_{-\infty}^{\infty} \frac{\partial^2 \ln f(x;\theta)}{\partial \theta^2} f(x;\theta) dx. \tag{4}$$

Fisher information $I(\theta)$ is also

$$I(\theta) = Var \left(\frac{\partial \ln f(X; \theta)}{\partial \theta} \right).$$

$$I(\theta) = E\left[\left(\frac{\partial \ln f(X;\theta)}{\partial \theta}\right)^{2}\right] = E\left[-\frac{\partial^{2} \ln f(X;\theta)}{\partial \theta^{2}}\right]$$

We call
$$\left(\frac{\partial \ln f(X;\theta)}{\partial \theta}\right)$$
 the score function.

Proof: The proof is an application of the Cauchy-Schwartz inequality, which says that $\left\lceil Cov(Y,Z) \right\rceil^2 \leq (VarY)(VarZ)$ or

$$\frac{\left[Cov(Y,Z)\right]^2}{VarZ} \leq VarY.$$

We let
$$Y \equiv W(\mathbf{X})$$
 and $Z \equiv \frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta)$.

First we show that

$$\frac{d}{d\theta} E_{\theta} W(\mathbf{X}) = E_{\theta} \left[W(\mathbf{X}) \frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta) \right],$$

which is a covariance from (2)

$$E_{\theta} \left[\frac{\partial}{\partial \theta} \log f \left(\mathbf{X} \middle| \theta \right) \right] = 0.$$

When

$$\frac{\partial^2 \ln f(\mathbf{x}|\theta)}{\partial \theta^2}$$

exist, then

$$I_n(\theta) = -E_{\theta} \left[\left(\frac{\partial^2 \ln f(\mathbf{x}|\theta)}{\partial \theta^2} \right) \right]$$

- ► The five conditions are usually satisfied with exponential family.
- ▶ If $X_1, \dots, X_n \stackrel{iid}{\sim} f(x|\theta)$ then

$$Var_{\theta}(W) \ge \frac{\left[\tau(\theta)'\right]^2}{nE_{\theta}\left[\left(\frac{\partial \ln f(x|\theta)}{\partial \theta}\right)^2\right]}.$$

Here

$$I_n(\theta) = nE_{\theta} \left[\left(\frac{\partial \ln f(x|\theta)}{\partial \theta} \right)^2 \right]$$
$$= -nE_{\theta} \left[\left(\frac{\partial^2 \ln f(x|\theta)}{\partial \theta^2} \right) \right]$$
$$\doteq nI_1(\theta)$$

Proof:

$$I_{n}(\theta) = Var\left(\frac{\partial \ln f(\theta; \mathbf{X})}{\partial \theta}\right) = Var\left(\sum_{i=1}^{n} \frac{\partial \ln f(X_{i}; \theta)}{\partial \theta}\right) = nI(\theta).$$

ightharpoonup Example: $X_1, \dots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, σ^2 in known. Find the CRLB and the UMVUE.

$$f(x,\theta) = \frac{1}{\sqrt{2\pi}\sigma_0} \exp\{-\frac{(x-\theta)^2}{2\sigma_0^2}\}.$$

$$\ln f(x,\theta) = -\ln(\sqrt{2\pi}\sigma_0) - \frac{(x-\theta)^2}{2\sigma_0^2}.$$

$$\frac{\partial \ln f(x,\theta)}{\partial \theta} = \frac{x-\theta}{\sigma_0^2}, \quad \frac{\partial^2 \ln f(x,\theta)}{\partial \theta^2} = -\frac{1}{\sigma_0^2}.$$

$$I(\theta) = \frac{1}{\sigma_0^2}$$
. CRLB=?, UMVUE=?

ightharpoonup Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} \mathsf{Poisson}(\lambda)$. Find the CRLB and the UMVUE.

$$I_{n}(\lambda) = nI(\lambda) = -nE_{\lambda} \left[\frac{\partial^{2}}{\partial \lambda^{2}} \log \left(\frac{e^{-\lambda} \lambda^{X}}{X!} \right) \right]$$
$$= -nE_{\lambda} \left[\frac{\partial^{2}}{\partial \lambda^{2}} \left(-\lambda + X \log \lambda - \log X! \right) \right] = \frac{n}{\lambda}.$$

CRLB=?, UMVUE=?

Theorem

 $X_1, \cdots, X_n \stackrel{iid}{\sim} f(x|\theta)$. Let W be an unbiased estimator of $\tau(\theta)$. Then $Var_{\theta}(W)$ attains the CRLB if and only if

$$a(\theta)[W - \tau(\theta)] = \frac{\partial}{\partial \theta} \ln[f(x_1, \dots, x_n | \theta)]$$

for some function $a(\theta)$.

ightharpoonup Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} N(\mu, ^2)$. UMVUE of μ , μ^2 ?

ightharpoonup Example: $X_1, \cdots, X_n \stackrel{iid}{\sim} \mathsf{Uniform}(0, \theta)$.

The Cramer-Rao inequality is not applicable to this pdf.

(See the Leibniz rule, Theorem 2.4.1, Page 69)

UMVUE: Complete Sufficient Statistics

Theorem (Rao-Blackwell)

Let W be any unbiased estimator of $\tau(\theta)$ and let T be a sufficient statistic for θ . Define $\phi(T) = E_{\theta}(W|T)$. Then

$$E_{\theta}[\phi(T)] = \tau(\theta)$$

and

$$Var_{\theta}[\phi(T)] \leq Var_{\theta}[W]$$

for all θ . That is, $\phi(T)$ is a uniformly better unbiased estimator of $\tau(\theta)$ than W.

Proof:
$$E[Y] = E[E(Y|X)]$$

$$var[Y] = var[E(Y|X)] + E[Y - E(Y|X)]^2$$

UMVUE: Complete Sufficient Statistics

ullet Properties of the best unbiased estimator or UMVUE If W is a best estimator of au(heta), then W is unique.

Proof: Suppose W' is another best unbiased estimator, and consider the estimator $W^* = \frac{1}{2}(W + W')$. Note that $E_{\theta}W^* = \tau(\theta)$ and

$$egin{aligned} \operatorname{Var}_{ heta} W^* &= \operatorname{Var}_{ heta} \left(rac{1}{2}W + rac{1}{2}W'
ight) \ &= rac{1}{4} \operatorname{Var}_{ heta} W + rac{1}{4} \operatorname{Var}_{ heta} W' + rac{1}{2} \operatorname{Cov}_{ heta}(W, W') \ &\leq rac{1}{4} \operatorname{Var}_{ heta} W + rac{1}{4} \operatorname{Var}_{ heta} W' + rac{1}{2} [(\operatorname{Var}_{ heta} W)(\operatorname{Var}_{ heta} W')]^{1/2} \ &= \operatorname{Var}_{ heta} W. \end{aligned}$$

we can have equality only if $W' = a(\theta)W + b(\theta)$.

$$E_{\theta}W' = E_{\theta}W \qquad Var_{\theta}W = Var_{\theta}W'$$

Hence $a(\theta) = 1$, $b(\theta) = 0$ and W = W', showing that W is unique.

UMVUE: Complete Sufficient Statistics

Theorem (Lehmann-Scheffe)

Let X_1, \dots, X_n have joint pmf/pdf $f(\mathbf{x}:\theta)$, $\theta \in \Theta$. Suppose T is a complete and sufficient statistic. If $\phi(T)$ is an unbiased estimator of $\tau(\theta)$ and it is a function of T only then $\phi(T)$ is the UMVUE of $\tau(\theta)$.

⊲ Note:

- 1. If we can find an unbiased estimator $\phi(T)$ of $\tau(\theta)$ which is a function of CSS T only then it is the UMVUE
- 2. For any unbiased estimator of $\tau(\theta)$, W, E(W|T) is the UMVUE of $\tau(\theta)$.

Example

Let $X_1, X_2, ..., X_n$ be i.i.d. $N(\mu, \sigma^2)$, where both μ and σ^2 are unknown.

Then $\left(\sum X_i, \sum X_i^2\right)$ is a complete sufficient statistic (and thus so is (\overline{X}, S^2)).

Since S^2 is unbiased for σ^2 , and is a function of the complete sufficient statistic, it is UMVUE.

Example

Let $X_1, X_2, ..., X_n$ be i.i.d. $Unif(0, \theta)$. $Y = X_{(n)}$ is a complete sufficient statistic.

The density of Y is

$$f_{Y}(y) = \frac{ny^{n-1}}{\theta^{n}}, \ 0 < y < \theta.$$

So $EY = \frac{n}{n+1}\theta$. Hence $\frac{n+1}{n}X_{(n)}$ is an unbiased estimator of θ . Since $X_{(n)}$ is complete and sufficient, this is the UMVUE.

UMVUE: Complete Sufficient Statistics

ightharpoonup Example: $X_1,\cdots,X_n\stackrel{iid}{\sim} {\sf Binomial}(k,\theta).$ Find the UMVUE of θ and $k\theta(1-\theta)^{k-1}.$

$$\tau(\theta) = P(X = 1) = k\theta(1 - \theta)^{k-1}$$

The CSS $\sum_{i=1}^{n} X_i \sim Binomial(kn, \theta)$.

An UE
$$I(X_1 = 1) = \begin{cases} 1 & \text{if } X_1 = 1 \\ 0 & \text{otherwise} \end{cases}$$

An UE
$$I(X_1 = 1) = \begin{cases} 0 & \text{otherwise} \end{cases}$$

The CSS
$$\sum_{i=1}^{n} X_i \sim Binomial(kn, \theta)$$
.

An UE $I(X_1 = 1) = \begin{cases} 1 & \text{if } X_1 = 1 \\ 0 & \text{otherwise} \end{cases}$.

$$\phi(\sum X_i) = E[I(X_1 = 1)|\sum X_i] = \dots = \frac{k \left(\sum_{i=1}^{n} X_i\right) - 1}{nk}$$

$$\sum_{i=1}^{n} X_i$$

$$\phi\left(\sum X_{i}\right) = E\left[I\left(X_{1}=1\right)\middle|\sum X_{i}=t\right]$$

$$= P\left[\left(X_{1}=1\middle|\sum X_{i}=t\right)\right]$$

$$= \frac{P\left[X_{1}=1 \text{ and } \sum X_{i}=t\right]}{P\left[\sum X_{i}=t\right]}$$

$$= \frac{P\left[X_{1}=1 \text{ and } \sum_{i=2}^{n} X_{i}=t-1\right]}{P\left[\sum_{i=1}^{n} X_{i}=t\right]}$$

$$= \frac{P\left[X_{1}=1\right]P\left[\sum_{i=2}^{n} X_{i}=t-1\right]}{P\left[\sum_{i=1}^{n} X_{i}=t\right]}$$

$$=\frac{\left[k\theta(1-\theta)^{k-1}\right]\left[\binom{(n-1)k}{t-1}\theta^{t-1}(1-\theta)^{(n-1)k-(t-1)}\right]}{\binom{nk}{t}\theta^{t}(1-\theta)^{nk-t}}$$

$$= \frac{k \binom{(n-1)k}{t-1}}{\binom{nk}{t}} = \frac{k \binom{(n-1)k}{\left(\sum_{i=1}^{n} X_{i}\right) - 1}}{\binom{nk}{t}}$$

is UMVUE.

Decision Theory: Loss function optimality

- ▶ Data: X
- ▶ Model(Distribution): $f(\mathbf{x}|\boldsymbol{\theta})$, $\boldsymbol{\theta} \in \Theta$
- ► Action space: \mathcal{A} Point estimation: $\mathcal{A} = \Theta$ Testing: $\mathcal{A} = \{ \text{Reject } H_0, \text{ Accept } H_0 \}$
- ▶ Loss function: $L(\theta, a)$
- lackbox Decision rule: $\delta(\mathbf{x})$: Sample space $o \mathcal{A}$
- Risk function: Expected loss

$$R(\boldsymbol{\theta}, \delta) = E[L(\boldsymbol{\theta}, \delta(\mathbf{X}))] = \int L(\boldsymbol{\theta}, \delta(\mathbf{x})) f(\mathbf{x}|\boldsymbol{\theta}) dx$$

▶ Goal: Find $\delta(\mathbf{x})$ that has small risk somehow.

Decision Theory: Loss function optimality

Definition

A real valued function $L(\boldsymbol{\theta}, a)$ satisfying

- 1. $L(\boldsymbol{\theta}, a) \geq 0$ for all θ , a
- 2. $L(\boldsymbol{\theta}, a) = 0$ for $a = \theta$

is called a *loss function* of the action a.

Definition

Let $\delta(\mathbf{X})$ be an estimator of a parametric function $\tau(\boldsymbol{\theta})$. Then

$$R(\boldsymbol{\theta}, \delta) = E[L(\boldsymbol{\theta}, \delta(\mathbf{X}))]$$

is called the *risk function* of $\delta(\mathbf{X})$ in estimating $\tau(\boldsymbol{\theta})$.

Decision Theory: Loss function optimality

1. Squared error loss

$$L(\theta, \delta(\mathbf{X})) = (\delta(\mathbf{X}) - \theta)^2, \ R(\theta, \delta) = E[(\delta(\mathbf{X}) - \theta)^2]$$

2. Absolute error loss

$$L(\theta, \delta(\mathbf{X})) = |\delta(\mathbf{X}) - \theta|, \ R(\theta, \delta) = E[|\delta(\mathbf{X}) - \theta|]$$

3. Stein's loss

$$L(\theta, \delta(\mathbf{X})) = \frac{\delta(\mathbf{X})}{\theta} - 1 - \ln\left(\frac{\delta(\mathbf{X})}{\theta}\right)$$

Decision Theory: Loss function optimality

Definition

1. An estimator $\delta_1(\mathbf{X})$ is said to be at least as good as another estimator $\delta_2(\mathbf{X})$ if

$$R(\theta, \delta_1(\mathbf{X})) \le R(\theta, \delta_2(\mathbf{X}))$$

for all $\theta \in \Theta$.

2. An estimator $\delta_1(\mathbf{X})$ is better than $\delta_2(\mathbf{X})$ if

$$R(\theta, \delta_1(\mathbf{X})) \le R(\theta, \delta_2(\mathbf{X}))$$

for all $\theta \in \Theta$ and

$$R(\theta, \delta_1(\mathbf{X})) < R(\theta, \delta_2(\mathbf{X}))$$

for at least one $\theta \in \Theta$.

Decision Theory: Loss function optimality

 \triangleright Example: $X_1, \dots, X_n \stackrel{iid}{\sim} \mathsf{Bernoulli}(p)$.

$$L(\theta, \delta(\mathbf{X})) = (\delta(\mathbf{X}) - \theta)^2. \ \delta_1(\mathbf{X}) = \bar{X},$$

$$\delta_2(\mathbf{X}) = \frac{n\bar{X} + \sqrt{n/4}}{n + \sqrt{n}}.$$

Figure 7.3.1 (page 333)

$$ightharpoonup$$
 Example: $X_1, \dots, X_n \stackrel{iid}{\sim} N(\mu, 1)$. $L(\theta, \delta(\mathbf{X})) = (\delta(\mathbf{X}) - \theta)^2$. $\delta_1(\mathbf{X}) = c$, $\delta_2(\mathbf{X}) = \bar{X}$.

Decision Theory: Loss function optimality

ightharpoonup Example: $X_1,\cdots,X_n\stackrel{iid}{\sim} N(\mu,\sigma^2)$. Estimation of σ^2 using different loss function. We restrict our estimator of the form $\delta_b(\mathbf{X})=bS^2$. The loss function considered are squared error loss, Stein's loss.

Let
$$Y = \sum_{i=1}^{n} (X_i - \bar{X})^2$$
,
Since $Y / \sigma^2 \sim \chi^2(n-1)$, $E(Y) = (n-1)\sigma^2$, $var(Y) = 2(n-1)\sigma^4$
 $E[(cY - \sigma^2)^2] = var(cY) + [E(cY) - \sigma^2]^2$
 $= 2c^2(n-1)\sigma^4 + [c(n-1)-1]^2\sigma^4 = [(n^2-1)c^2 - 2(n-1)c + 1]\sigma^4$
arg min $E[(cY - \sigma^2)^2] = 1/(n+1)$

Decision Theory: Loss function optimality

▶ In general, there does not exist an estimator $\delta(\mathbf{X})$ such that for any other estimator $\tilde{\delta}(\mathbf{X})$ we have

$$R(\theta, \delta(\mathbf{X})) \le R(\theta, \tilde{\delta}_2(\mathbf{X}))$$

for all $\theta \in \Theta$.

- ➤ To define the best estimator w.r.t. the given loss function, we can proceed two ways.
 - 1. Restrict attention to a smaller class of estimators such as unbiased estimators or linear estimators
 - 2. Define a criterion for comparing estimators such minimax or Bayes rule

Decision Theory: Loss function optimality

Definition

An estimator $\delta(\mathbf{X})$ is called a *minimax estimator* if

$$\max_{\theta \in \Theta} R(\theta, \delta(\mathbf{X})) \leq \max_{\theta \in \Theta} R(\theta, \tilde{\delta}(\mathbf{X}))$$

for all other estimator $\tilde{\delta}(\mathbf{X})$.

Definition

The *Bayes risk* of an estimator $\delta(\mathbf{X})$ w.r.t. prior distribution $\pi(\theta)$ is defined as

$$B(\pi, \delta(\mathbf{X})) = E_{\pi} \left[R(\theta, \delta(\mathbf{X})) \right] = \int R(\theta, \delta(\mathbf{X})) \pi(\theta) d\theta$$

Decision Theory: Loss function optimality

Definition

An estimator $\delta(\mathbf{X})^{\pi}$ is said to be a *Bayes estimator* w.r.t. prior distribution $\pi(\theta)$ if it minimizes Bayes risk over all estimators.

$$B(\pi, \delta(\mathbf{X})^{\pi}) = \inf_{\tilde{\delta}} B(\pi, \tilde{\delta}(\mathbf{X}))$$

Note that

That is

$$B(\pi, \delta(\mathbf{X})^{\pi} = \int_{\Theta} R(\theta, \delta)\pi(\theta) d\theta = \int_{\Theta} \left(\int_{\mathcal{X}} L(\theta, \delta(\mathbf{x})) f(\mathbf{x}|\theta) d\mathbf{x} \right) \pi(\theta) d\theta.$$

$$= \int_{\mathcal{X}} \left[\int_{\Theta} L(\theta, \delta(\mathbf{x}))\pi(\theta|\mathbf{x}) d\theta \right] m(\mathbf{x}) d\mathbf{x}.$$

Theorem

Consider a point estimation problem for a real-valued parameter θ . The Bayes estimator is $E(\theta|\mathbf{X})$ for squared error loss and median of $\pi(\theta|\mathbf{X})$ for absolute error loss.

Decision Theory: Loss function optimality

ightharpoonup Example: $X_1, \cdots, X_n \overset{iid}{\sim} \mathsf{Bernoulli}(p)$. $\theta \sim \mathsf{Uniform}(0,1)$. Find the Bayes estimator with squared error loss function.

$$E(p|\mathbf{x}) = \frac{\sum x_i + \alpha}{n + \alpha + \beta}.$$
 $\alpha = \beta = 1$

Homework: p355~364

7.6, 7.7, 7.10, 7.24, 7.37, 7.44, 7.45(a)&(c), 7.48