Домашнее задание по компьютерным сетям

Чванов Александр

Февраль 2023

Задача 1. Давайте посчитаем время через которое последний пакет придет к приемнику. Сначала он должен подождать пока наступет его очередь $(P-1)\frac{L}{R}$ и потом он должен пройти $N\frac{L}{R} \Longrightarrow$ итоговое время $(N+P-1)\frac{L}{R}$

Задача 2.
$$\frac{5\text{Mb}}{\min(R_1,R_2,R_3)} = \frac{5\text{Mb}}{200\text{Kbit/s}} = \frac{5\text{Kbit}*8*1024}{200\text{Kbit/s}} = 204.8s$$

Задача 3. Заметим, что одновременно данные могут передавать не более 20 пользователей. Тогда вероятность равна $\sum_{k=12}^{20} \binom{60}{i} 0.2^k (1-0.2)^{60-k} \approx 0.55$

Задача 4. Вспомним формулу из первого задания. $(3+\frac{x}{S}-1)\frac{S+80}{R}=\frac{(2S+X)(S+80)}{SR}=\frac{2S^2+S(160+X)+80X}{SR}.$ Оставим только часть зависимую от S. $2S+80\frac{x}{S}$. Возьмем производную и получим, что минимум достигается в $\sqrt{40X}$. Тогда положим S ближайшим целым числом к $\sqrt{40X}$

Задача 5. а) Так как задеркжка передачи это $\frac{L}{R}$, общая задержка $\frac{IL}{R(1-I)} + \frac{L}{R} = \frac{L}{R}(\frac{I}{1-I} + 1) = \frac{L}{R(1-I)}$.

б) Пусть
$$x = \frac{L}{R}$$
. $\frac{L}{R(1-I)} = \frac{x}{1-I} = \frac{x}{1-ax}$