

University of Cambridge

Systems Research Group (SRG) Department of Computer Science

Distributed Global Scheduling in Datacenters

Smita Vijayakumar

First Year Ph.D. Student sv440@cst.cam.ac.uk

Evangelia Kalyvianaki

Ph.D. Supervisor ek264@cst.cam.ac.uk

Anil Madhavapeddy

Ph.D. Supervisor avsm2@cst.cam.ac.uk

Hybrid

State of the Art Scheduling

Underutilised Datacenter Resources Azure¹ ♦ 60% VMs have <= **20**% CPU usage! Alibaba² Average server CPU 50% * Memory <= **60**% **Underutilisation is expensive!**³ ¹[Resource Central, SOSP,'17] ²/https://github.com/alibaba/clusterdata/ ³[Scalable system scheduling for HPC and big data, JPDC,17]

Examples - Mesos [NSDI'11], Yarn, Apollo [OSDI'14]

- ☑ Global resource view
- **X** Scheduler can be a bottleneck
- **X** Delayed, high volumes of resource updates

Decentralised

Example - Sparrow [NSDI'14]

- **☑** Fast and simple
- **✗** Unsuitable for long running jobs
- **X** Not globally optimal

Queue Example - Hydra [NSDI'19], Medea [EuroSys'18], Borg [EuroSys'15] **Policy-driven job/task placement**

Centralized

Scheduler/

X Centralised or decentralised components

Global Scheduling at Node Level

Challenges

- Occupant of the contract of
- Volume and frequency of updates
- Time from local to global view

Proposed Direction

Up-to-Date Global View at each Node

Inspired by routing protocols

☑ BGP, OSPF, ...

- **☑** Resource data propagation
- **Global view convergence Global view convergence**

Intra-DC Load Balanced Scheduling

Challenges

- **Collision avoidance**
- Minimise inter-DC traffic
- Minimise scheduling time

