

Figure 1 – Signal and background contributions of the large window mass selection of the dimuon pair (left), and the results of the A_{fb} measurement differentially in bins of $|\Delta\eta|$ (right). The sensitivity to different $\sin\theta_{\mathrm{eff}}^{\ell}$ values is overlaid, highlighting the strength of differential selection.

free parameters in blue, and the higher-order, BSM sensitive, contributions in purple.

$$m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_\mu} \left(1 + \Delta r \right) \tag{1}$$

In recent years, LHCb has produced significant EW precision measurements, offering complimentary results to those produced by other LHC-based experiments due to the unique phase-space coverage, which gives differing sensitivities to PDF uncertainties than central measurements. This section will briefly share the two most recent measurements: the measurement of $\sin\theta_{\rm eff}^{\ell}$ and the measurement of the Z boson mass.

3.1 Measurement of $sin\theta_{eff}^{\ell}$ with the LHCb Detector

The weak mixing angle, θ_W , is directly linked to the parameters of EW theory via Equation 2 and provides a relation between U(1) and SU(2) gauge couplings.

$$sin\theta_W = \left(1 - \frac{m_W^2}{m_Z^2}\right) \tag{2}$$

The recently published LHCb measurement 9 leverages the connection of $\sin\theta_{\rm eff}^\ell$ (which is directly correlated to $\sin\theta_W$) to the forward-backward asymmetry ($A_{\rm fb}$) of leptons produced in the decay of Z bosons. The muon pair final state provides an extremely clean sample of Z boson decays, allowing the measurement of $A_{\rm fb}$ in bins of $|\Delta\eta|$ of the muon pair. Visualization of the signal and background processes in the dimuon mass spectra, and the subsequent $\sin\theta_{\rm eff}^\ell$ sensitivity of $A_{\rm fb}$ measured in bins of $|\Delta\eta|$ are provided in Figure 1.

The observed results of the effective weak mixing angle are $\sin \theta_{\rm eff}^{\ell} = 0.23152 \pm 0.00044$ (stat.) ± 0.00005 (syst.) ± 0.00022 (theory). The uncertainties from proton PDFs are significantly smaller than in central experiments, offering exciting prospects for future high-luminosity LHC runs.

3.2 Measurement of the Z Boson Mass

Building on the measurement of $\sin \theta_{\text{eff}}^{\ell}$, LHCb has made the first measurement of the Z boson mass (m_Z) at a pp collider. Similar to the $\sin \theta_{\text{eff}}^{\ell}$ measurement, the very clean signal environment of the dimuon mass spectrum allows for a precise measurement of m_Z .

The analysis selection is allowed to remain simple, necessitating precision gains to arise from accurate understanding of the LHCb detector and the produced dataset. Numerous energy