

TRADENAL STATE AND ACID SOCIEDADES OF RATHICP																	
GAC	CTT	CTG /	ATCT	CAG	AG G	ACCC:	rggg	G TGG	GGAC	AGGG	GCC	PTGG(CAA	GGCT	GCAGCC	:	60
GCT	GGC	AGT (GCT	rggaj	AT GO	GAGG1	CTT	r at	racto	GGGA	ACTO	GAGG	AGC :	raag <i>i</i>	AGGCTC	: 1	120
CTGT	CAG	CTT (STCCT	CAAA1	T C	TAGO	CACT	r GTC	GTĠ	CTT	GGG	CTTC	ACA (CACTO	STCAGA	. 1	180
CACC	TTC	STG (STGGC	CTC	CA CC	GCC1	CAC	TTC	CAGGT	TTG	AAG	CTGG	TC (CACAZ	AGGGAC	: 2	240
ACGG	STGAC	Met					Lei					ı Ala			TTC Phe	2	290
					ATG Met 20											3	38
					CCA Pro											3	886
					TGC Cys											4	134
					CAT His											4	82
					CCT Pro											5	30
					TGT Cys 100											5	78
					AAT Asn										GGT Gly .		26
					CCG Pro										AGC Ser	E	574
					CCC Pro											•	722
CCC Pro	GAG Glu 160	T7G Trp	GTA Val	TGT Cys	GAC Asp	CAG Gln 165	GGA Gly	GTG Val	ACA Thr	CCG Pro	GCG Ala 170	Ile	CAG Gln	CGC Arg	TCC Ser		770
ACG Thr 175	GCG Ala	CAA Gln	GGA Gly	CAC His	CAA Gln 180	Leu	TCT Ser	GCC Ala	CTT Leu	GTC Val 185	Thr	CCT Pro	GCC Ala	TCT Ser	GCT Ala 190		818
GAT	GCT	CCT	TGT	CCA	AAT	TGG	AGC	ACA	GCC	TGG	GGC	ccc	TGC	TCA	ACC		866

Nucleotide Sequence Lucoding Mature HICP and the Amino Acid Sequence of Mature HICP

CAG Gln 1	CTG Leu	TGC Cys	CGG Arg	ACA Thr 5	CCC Pro	TGT Cys	ACC Thr	TGT Cys	CCT Pro 10	TGG Trp	ACA Thr	CCA Pro	CCC Pro	CAG Gln 15	TGC Cys	48
CCA Pro	CAG Gln	GGG Gly	GTA Val 20	CCC Pro	CTG Leu	GTG Val	CTG Leu	GAT Asp 25	GGC Gly	TGT Cys	GGC Gly	TGC Cys	TGT Cys 30	AAA Lys	GTG Val	96
TGT Cys	GCA Ala	CGG Arg 35	AGG Arg	CTG Leu	GGG Gly	GAG Glu	TCC Ser 40	TGC Cys	GAC Asp	CAC His	CTG Leu	CAT His 45	GTC Val	TGC Cys	GAC Asp	144
Pro	Ser 50	Gln	GGC Gly	Leu	Val	Cys 55	Gln	Pro	Gly	Ala	Gly 60	Pro	Gly	Gly	His	192
Gly 65	Ala	Val	TGT Cys	Leu	Leu 70	Asp	Glu	Asp	Asp	Gly 75	Ser	Cys	Glu	Val	Asn 80	240
Gly	Arg	Arg	TAC Tyr	Leu 85	Asp	Gly	Glu	Thr	Phe 90	Lys	Pro	Asn	Cys	Arg 95	Val	288
			TGT Cys 100													336
	Asp	Val 115	Arg	Leu	Pro	Ser	Trp 120	Asp	Cys	Pro	Arg	Pro 125	Lys	Arg	Ile	384
Glu CAG Gln	GTG Val 130	Val 115 CCA Pro	Arg GGA Gly	AAG Lys	Pro TGC Cys	TGC Cys 135	Trp 120 CCC Pro	Asp GAG Glu	Cys TGG Trp	Pro GTA Val	TGT Cys 140	Pro 125 GAC Asp	Lys CAG Gln	Arg GGA Gly	Ile GTG Val	384 432
CAG Gln ACA Thr 145	Asp GTG Val 130 CCG Pro	Val 115 CCA Pro GCG Ala	GGA Gly ATC	AAG Lys CAG Gln	Pro TGC Cys CGC Arg	TGC Cys 135 TCC Ser	Trp 120 CCC Pro ACG Thr	GAG Glu GCG Ala	Cys TGG Trp CAA Gln	GTA Val GGA Gly 155	TGT Cys 140 CAC His	Pro 125 GAC Asp CAA Gln	Lys CAG Gln CTT Leu	Arg GGA Gly TCT Ser	GTG Val GCC Ala 160	
CAG Gln ACA Thr 145 CTT Leu	GTG Val 130 CCG Pro GTC Val	Val 115 CCA Pro GCG Ala ACT Thr	GGA Gly ATC Ile CCT Pro	AAG Lys CAG Gln GCC Ala 165	TGC Cys CGC Arg 150 TCT Ser	TGC Cys 135 TCC Ser GCT Ala	Trp 120 CCC Pro ACG Thr GAT Asp	GAG Glu GCG Ala GCT Ala	TGG Trp CAA Gln CCT Pro	GTA Val GGA Gly 155 TGT Cys	TGT Cys 140 CAC His	Pro 125 GAC Asp CAA Gln AAT Asn	Lys CAG Gln CTT Leu TGG Trp	GGA Gly TCT Ser AGC Ser 175	GTG Val GCC Ala 160 ACA Thr	432
CAG Gln ACA Thr 145 CTT Leu GCC Ala	GTG Val 130 CCG Pro GTC Val	Val 115 CCA Pro GCG Ala ACT Thr	GGA Gly ATC Ile CCT Pro	AAG Lys CAG Gln GCC Ala 165 TGC Cys	TGC Cys CGC Arg 150 TCT Ser	TGC Cys 135 TCC Ser GCT Ala	Trp 120 CCC Pro ACG Thr GAT Asp	GAG Glu GCG Ala GCT Ala TGT Cys 185	TGG Trp CAA Gln CCT Pro 170 GGG Gly	Pro GTA Val GGA Gly 155 TGT Cys CTG Leu	TGT Cys 140 CAC His CCA Pro	Pro 125 GAC Asp CAA Gln AAT Asn	CAG Gln CTT Leu TGG Trp GCC Ala 190	GGA Gly TCT Ser AGC Ser 175 ACC Thr	GTG Val GCC Ala 160 ACA Thr	432
CAG Gln ACA Thr 145 CTT Leu GCC Ala , GTG Val	Asp GTG Val 130 CCG Pro GTC Val TGG Trp TCC Ser	Val 115 CCA Pro GCG Ala ACT Thr GGC Gly AAC Asn 195	GGA Gly ATC Ile CCT Pro	AAG Lys CAG Gln GCC Ala 165 TGC Cys AAC Asn	TGC Cys CGC Arg 150 TCT Ser TCA Ser	TGC Cys 135 TCC Ser GCT Ala ACC Thr	Trp 120 CCC Pro ACG Thr GAT ASP ACC Thr TGC Cys 200	GAG Glu GCG Ala GCT Ala TGT Cys 185 CAA Gln	TGG Trp CAA Gln CCT Pro 170 GGG Gly	Pro GTA Val GGA Gly 155 TGT Cys CTG Leu GAG Glu	TGT Cys 140 CAC His CCA Pro GGC Gly	Pro 125 GAC Asp CAA Gln AAT Asn ATA Ile CAA Gln 205	CAG Gln CTT Leu TGG Trp GCC Ala 190 CGC Arg	GGA Gly TCT Ser AGC Ser 175 ACC Thr	GTG Val GCC Ala 160 ACA Thr CGA Arg	432 480 528

AGT GCT TTC Ser Ala Phe 225

78

...R. James girth, ...R. girth girth girth, girth,

Sey

Alignment of the Modular Domains of HICP with the Modular Domains of Other CCN Family Members

MODULE I : IGFBP Domain

-	100	SCHCAVCLL	IRKIGVCTA	NOTCICMV	TALKGIÇRA	* :
	76 90 91	VCDPSQGLVCQPGAG PG	PCDPHKGLFCDFGSP AN	PCDQSSGLYCDRSAD PN	PCDHTKGLECNFGAS ST	
	61 75 76	KVCARRLGESCDHLH	RVCAKQLGELCTERD	PVCARQRGESCSEMR	KVCAKQLNEDCSKTQ	* * ** ****
-	46 60 61	- POGVPLVLDGCGCC	-PAGVSLVLDGCGCC	AP-GVRSVLDGCSCC	AP-GVGLVRDGCGCC	****
	45.46	CA CHARLE OF LATER PROCE - POGVPLVLDGCGCC KVCARRIGESCDHIH VCDPSQGLVCQPGAG PGGHGAVCLL	HICP QUENTELL OF HITTER PARTY - PAGYSLVLDGCGCC RVCAKQLGELCTERD PCDPHKGLFCDFGSP ANRKIGVCTA	UDCSACCO - CARLILLI AP-GVRSVLDGCSCC PVCARQRGESCSEMR PCDQSSGLYCDRSAD PNNQTGICMV	3 NOV LINCESNOTER OF FACE AP-GVGLVRUGCGCC KVCAKQLNEDCSKTQ PCDHTKGLECNFGAS STALKGICRA	1 = TCF644cn = ct = ct = t
		1	HICE P	CTGF	NOV	CYR61

MODULE II : VWFC Domain

•	101 120 121 135 136 100 101 101 101 101 101 101 101 101 10	** *
	135 136 150 FTC LPLCSEDVRLPSWDC VGC VPLCSMDVRLPSPDC IGC LPRCQLDVLLPGPDC VGC IPLCPQELSLPNLGC	*
	121 NCRVLCRCDDGGFTC SCKYQCTCLDGAVGC NCQYFCTCRDGQIGC NCKHOCTCIDGAVGC	* * * * *
	120 121 DDGSCEVNGRRYLDGETFKP NCR DGAPCVFGGSVYRSGESFQS SCK EGDNCVFDGVIYRNGEKFEP NCQ	EGKPCE INSVITANCES
	HICP	CYR61

MODULE III : TSP1 Domain

240 298 298 298 298 298 298 298 298 298 298	*
265 NONR FCQLEIQRRLC NDNT FCRLEKQSRLC NRNRQCEMVKQTRLC NONPECRLVKETRIC	* .
250 PCSTTCGLGIATRVS ACSKTCGMGISTRVT ACSKSCGMGVSTRVT QCSKSCGTGISTRVT	*
240 PCPNWSTAWG NCLVQTTEWS NCIEQTTEWS KCIVOTTSWS	4
1 HICP 2 CTGF 3 NOV	10117

7.4

edde the definition of the term of the ter

Northern Blot Analysis of HICP Expression in Rat Aorta Smooth Muscle Cells

	Go 1 HR			2 HR		4HR			8 HR			12 HR		
		Н	F	Н	F	Н	F	Н	н*	F	Н	F		
→	-	-	The state of the s	~				•	موده		_			
	-	_	_	-				•	-	•	-	-		

DivÁ Synthesis in Rat Aorta Smooth Muscle Cells

