## MTH210 — Discrete Mathematics II

 $\mathrm{James\ Li} - 501022159$ 

Professor: M. Delcourt

 $Email: \ mdel court @torontomu.ca$ 

## Content by Week

| 1 | Sequences and Series 1.1 Sums and Products | <b>2</b><br>2 |
|---|--------------------------------------------|---------------|
| 2 | Placeholder                                | 3             |
| 3 | Placeholder                                | 3             |
| 4 | Placeholder                                | 3             |
| 5 | Placeholder                                | 3             |
| 6 | Placeholder                                | 3             |
| 7 | Placeholder                                | 3             |
| 8 | Placeholder                                | 3             |

## 1 Sequences and Series

A **sequence** is an ordered set of numbers.

 $2,4,6,8,10\ldots$  is an example of a sequence of positive numbers.  $a_1,a_2,a_3,\ldots,a_n$  denotes an infinite sequence.

- A sequence is defined **analytically** if each term  $a_i$  is defined by some function  $f(i) = a_i$
- A sequence is defined **recursively** if the first k terms are given **explicitly** and the rest are given through a recursive function  $a_n = f(a_{n-1}, a_{n-2}, \dots, a_{n-k})$  for n > k.
- Even if two sequences are equal for small indexes, does not indicate that they don't diverge at some further point.

A **series** is the sum of all the terms in a sequence.

If m and n are integers and  $m \leq n$ , the symbol  $\sum_{k=m}^{n} a_k$  is the summation from k, defined as:

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + a_{m+2} + \dots + a_n$$

- We call k the **index** of the summation.
- m is the **lower limit** of the summation.
- n is the **upper limit** of the summation.

## 1.1 Sums and Products

If m and n are integers and  $m \le n$ , the symbol  $\prod_{k=m}^{n} a_k$  is read as product from k equals m to n of a sub k, it can be written as:

$$\prod_{k=m}^{n} a_k = a_m \cdot a_{m+1} \cdot a_{m+2} \times \dots \times a_n$$

**Theorem 1.1.** The following properties hold for any integer  $n \ge m$ , given  $a_m, \ldots$  and  $b_m, \ldots$  sequences of real numbers.

• 
$$\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (a_k + b_k)$$

• 
$$c \cdot \sum_{k=m}^{n} a_k = \sum_{k=m}^{n} (c \cdot a_k)$$
, given some constant  $c$ 

$$\bullet \ (\prod_{k=m}^{n} a_k) \cdot (\prod_{k=m}^{n} b_k) = \prod_{k=m}^{n} (a_k \cdot b_k)$$

**Theorem 1.2.** The binomial theorem, also called n choose r is computed by using the following formula for  $0 \le r \le n$ :

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

- 2 Placeholder
- 3 Placeholder
- 4 Placeholder
- 5 Placeholder
- 6 Placeholder
- 7 Placeholder
- 8 Placeholder