Aula 18

Aula passada

- Modelo Hardcore
- Gibbs Sampling (ou Glauber Dynamics)
- Gerando q-colorações

Aula de hoje

- Otimização
- Caixeiro viajante
- Hill Climbing
- Distribuição de Boltzman
- Simulated Annealing
- De volta ao caixeiro

Otimização

- Considere conjunto S e função f que avalia cada elemento, $f:S \to R$
- Problema: encontrar elemento(s) de S que minimizam (ou maximizam) f

$$S^{o} = \{e \mid e = arg min_{s \in S} f(s)\}$$

- Ideia 0: enumerar elementos de S, encontrar valores mínimos
 - funciona apenas se |S| é pequeno (ex. 10°)
- Ideia 1: criar uma *estrutura* sobre os elementos de S, procurar utilizando a estrutura
 - estrutura é um grafo, vértices são elementos de S

Caixeiro Viajante

- Considere *n* pontos no plano
 - $v_i = (x_i, y_i) \rightarrow \text{coordenadas de cada ponto}$
- Considere a distância euclideana entre pares de pontos
- Problema: encontrar percurso com menor comprimento
 - percurso é permutação dos pontos que passa por todos
- S = todas as permutações; f = soma das distância entre pares consecutivos na permutação
- Exemplo: n = 4

•
$$P_1 = 1,2,3,4$$
 $f(P_1) = d(1,2)+d(2,3)+d(3,4)$

•
$$P_2 = 4.2,1,3$$
 $f(P_2) = d(4,2)+d(2,1)+d(1,3)$

•
$$P_3 = 1,4,3,2$$

- Qual é o menor percurso?
 - número de percursos é n!

Grafo do Caixeiro Viajante

- Cada permutação é um vértice do grafo
- Aresta entre P_i e P_j sse P_i e P_j diferem em apenas um par de elementos \longrightarrow
 - uma única troca entre as duas permutações

um custo: f(v)

Explorando o Grafo

 Como explorar o grafo em busca do ótimo?

Algoritmo guloso

- 1) Começar em um vértice qualquer (Escolhe umo 2) Avaliar qualidade de todos os vizinhos
- 3) Transicionar para vizinho de menor valor
- 4) Repetir enquanto puder
- Algoritmo conhecido como Hill Climbing
 - sobe (desce) gulosamente pela montanha
- Problema: mínimos (ou máximos) locais
- · vértice cujos vizinhos são todos superiores

MCMC to the Rescue

- Cada ousta de grafo mas direcismendo virous 2 oustas de ida Ideias: Não ser tão guloso assim; usar aleatoriedade para controlar a gula!
 - permite transicionar para vizinho superior a outros, e também superior a vértice atual

- Construir uma CM finita, irredutível e aperiódica
 - - garante que todos os estados serão visitados
- Mas com qual distribuição estacionária?

π_{v} inversamente proporcional a f(v)

- vértices com menor valor serão visitados com maior probabilidade
- Usar *Metropolis-Hasting* para construir CM com π_s

Distribuição de Boltzman

- Conjunto S e função f que avalia cada elemento
- Considere parâmetro T > 0, chamado de temperatura

• Probabilidade associado ao elemento
$$s$$
 dada por forse maxim z quando T e muito pequeno, $\frac{f(s)}{T}$ Constante de normalização $Z = \sum_{s \in S} e^{-\frac{f(s)}{T}}$

- Para um T fixo, menor f(s) maior π_s , exponencialmente
 - valores menores de f(s) tem probabilidade bem maiores
- Para problema de maximização, trocar sinal da exponencial

$$\widehat{u}_{s} = \underbrace{e^{+f(s)}}_{\neq \pm} \qquad Z = \underbrace{\sum_{s \in S} e^{+f(s)}}_{s \in S}$$

Distribuição de Boltzman

• O que acontece quando *T* é muito pequeno?

$$\pi_s = \frac{e^{-\frac{f(s)}{T}}}{Z}$$

Aumenta as diferenças entre π_{ij}

- Mínimo se destaca mais
- Seja $\alpha(T)$ a probabilidade de um elemento X escolhido
- aleatoriamente com probabilidade π ser mínimo en entre limina de la composición de appropriado en entre e
- Boa notícia: probabilidade de escolher algum elemento mínimo vai a um troblema: To depende elemento es muda es probabilidade π_s como distribuição estacionária

Simulated Annealing Técnica para construir uma sequência de CM para resolver

- problema de máximo/mínimo global
 - usando mecânica de *Metropolis-Hasting* e distribuição de Boltzman com diferentes valores para T
- Escolher $T_1 > T_2 > T_3 \dots$ com $T_i \to 0$ quando i \to infinito sequencia de passes a recode temperatura T_i
- Escolher N_1, N_2, N_3, \dots e vértice inicial qualquer Amostrar CM com T_1 por N_1 passos, depois mudar para T_2 e amostrar por N_2 passos, e assim por diante
 - (T_1, N_1) , (T_2, N_2) , ... chamado de annealing (agenda de resfriamento)
- Ideia: "resfriar" enquanto gera amostras, ficando mais difícil voltar para valores mais longes de ótimo

Figueiredo 2018

Simulated Annealing

- (T_1, N_1) , (T_2, N_2) , ... chamado de annealing
- Escolha do annealing é fundamental para garantir convergência correta do método
 - se resfriar muito rápido, CM pode ficar presa em mínimo local
- **Teorema:** se T_i decresce devagar o suficiente, então $P[X_t \text{ ser \'otimo }] \rightarrow 1$ quando $t \rightarrow \text{ infinito}$

Problemas

- (1) devagar o suficiente depende do problema em questão
- (2) devagar o suficiente pode ser muito lento para ser usado na prática

Estratégias de Resfriamento

- Como T deve decrescer com o número de passos na CM?
- Ideia: definir temperatura para cada passo
 - $N_i = 1$ para todo i
- T(t): temperatura a ser usada no passo t
- Funções geralmente usadas, para um $T_o > 0$ e $0 < \beta < 1$

$$T(t) = T_0 \beta^t$$
 Exponencial

$$T(t) = T_0 - \beta t$$
 - Linear

$$T(t) = \frac{a}{\log(t+b)}$$

Não sabemos a ¿

e la posia um problema

especiáreo

Logarítmico

- Prova se convergência global se *a* for grande o suficiente e *b* constante
- na prática, muito lento (t tem que crescer muito)

Estratégias de Resfriamento

- Estratégia de resfriamento no exemplo anteriores era fixa
 - não depende das amostras geradas
- Ideia: Estratégia de resfriamento adaptativa (dinâmica)
 - usa valores das amostras para resfriar
 - ex. usar diferença $f(X_t) f(X_{t-1})$, variação em T ser proporcional a diferença
- Adiciona outra camada de complexidade
- Na prática, pode funcionar bem
 - sem muitas garantias teóricas

Voltando ao Caixeiro Viajante

- Considerar permutações como vértices da CM
- Transição entre permutações: inverter parte da permutação
 - escolher i < j em [1, n], inverter permutação atual entre os indices i e j Iscolher 2 indices de permitações emplo modé-la de lugar.
- Exemplo

```
i = 3, j = 6
                                   ▶ 126543789
123456789
8 1 7 2 5 9 7 3 4 i = 2, j = 4
                                   \triangleright 827159734
```

• Objetivo é redefinir (inverter) pares de arestas

Voltando ao Caixeiro Viajante

- Escolher i e j uniformemente, tal que i < j
 - $P[(i, j)] = 1/(n(n-1)/2) \rightarrow combinação de$ *n*dois a dois
- Definir π_s de acordo com distribuição de Boltzman
- Montar CM via Metropolis-Hasting, com T > 0
- Probabilidade de transição de s para s'
 - CM original é simétrica (grafo é regular)
 - (i, j) definem a transição (define quem é s')

$$P_{s,s'} = \frac{2}{n(n-1)} \quad \min\{e^{\frac{f(s)-f(s')}{T}}, 1\} \quad \text{se s != s'}$$

- Se f(s') for menor, então aceita com probabilidade 1
 - escolha uniforme entre os s' melhores que s
- Se f(s') for maior, aceita com probabilidade que diminui com a diferença

Figueiredo 2018

Voltando ao Caixeiro Viajante

- Como definir agenda de resfriamento?
 - $(T_1, N_1), (T_2, N_2), (T_3, N_3), \dots$
- Não temos muita teoria para isto (infelizmente)
 - usar uma das estratégias anteriores
- Na prática, tentativa e erro usando experiência adquirida
 - começar com instâncias pequenas
- Exemplo interativo na web: http://toddwschneider.com/posts/traveling-salesmanwith-simulated-annealing-r-and-shiny/

Ainda é tema de muita pequisa em diferentes áreas (física, computação, matemática, engenharia, etc)