Theoretical task 2

due January 31 9:00 (Tuesday).

Remark: solutions should be **given in printed or written form** on the lecture on January 31. All solutions should be short, mathematically precise and contain proof unless qualitative explanation / intuition is needed. Late solutions should be sent to v.v.kitov@yandex.ru and can be written in any clear and understandable format - latex, handwritten/scanned or other. Late submissions will be penalized by 50%, identical solutions will not be graded. The title of your e-mail should be "ICL homework <homework number> - <your first name and last name>"

- 1. Suppose your training set consists of N samples and you generate bootstrap pseudosample of the same size.
 - (a) What is the probability, that a particular observation (object) will not appear in the whole bootstrap pseudosample?
 - (b) What is the limit of this probability as $N \to \infty$?
- 2. Suppose we project feature vectors $x_1, x_2, ...x_N$ on linear subspace of lower dimension $K \leq D$, so that the projection of x_n is p_n and orthogonal complement (or equivalently speaking error of approximation) is $h_n = x_n p_n$, n = 1, 2, ...N. Suppose, that by looking at all possible subspaces of given dimensionality K we select the subspace so that the squared sum of L_2 norms of orthogonal complements is minimized:

$$||h_1||^2 + ||h_2||^2 + ||h_N||^2 \to \min$$

Prove that this is equivalent to maximizing the squared sum of L_2 projections:

$$||p_1||^2 + ||p_2||^2 + ||p_N||^2 \to \max$$

3. Consider M classifiers $f_1(x), ... f_M(x)$, performing binary classification. Suppose each of the models makes mistakes independently with probability p < 0.5. Prove that probability of incorrect classification by majority voting $p(\text{incorrect }y|x) \stackrel{M \to \infty}{\longrightarrow} 0$.

Hint: you may make use of central limit theorem.

- 4. Suppose, you perform binary classification with score of the positive class, compared to the score of the negative class being equal to the discriminant function $g(x) = w^T x$ and classification made by the rule $\hat{y}(x) = sign(w^T x)$. Suppose that to measure positive class probability you use heuristics $p(y = +1|x) = \sigma(w^T x)$, where $\sigma(u) = 1/(1 + e^{-u})$ is so called sigmoid function.
 - (a) explain why maximum posterior probability classifier $\widehat{y}(x) = \arg\max_{y \in \{+1, -1\}} p(y|x)$ will give the same classes as $\widehat{y}(x) = sign(w^T x)$
 - (b) estimation of w using maximum likelihood estimation $\widehat{w} = \arg \max_{w} p(y_1, ... y_N | x_1 ... x_N)$, given that all objects are independently and identically distributed, is equivalent to finding w with logistic loss minimization:

$$\widehat{w} = \arg\min_{w} \sum_{n=1}^{N} \mathcal{L}(M_n), \quad \mathcal{L}(M) = \ln(1 + e^{-M}), M_n = w^T x_n y_n$$

Hint: you may use sketch of proof of (b) in the "logistic regression" section of lecture slides about linear classifiers. You need to write down all the details of the proof.

1