Identificación

Asignatura: Probabilidad y Estadística		Sigla: MAT-041	<código interno=""></código>		
Créditos UTFSM: 4 Prerrequisitos: MAT-023		Examen: No			
Créditos SCT:			tiene		
Hrs. Cat. Sem.: 6	Hrs. Ayud. Sem.: 2	Hrs	. Lab. Sem.: 0		
Eje formativo: Ciências Básicas de la Ingeniería					
Tiempo de dedicación	Tiempo de dedicación a la asignatura:				

Descripción

Asignatura teórico práctica de carácter básico que entrega los fundamentos teóricos de los métodos estadísticos y de la Teoría de la Probabilidad, potenciando la aplicación de ambos referentes en el análisis de datos y en la construcción de modelos que permitan inferir el comportamiento de dichos datos. El desarrollo de la asignatura contempla el uso de herramientas de software estadísticos para resolver problemas reales.

Requisitos de entrada

- Manejo de cálculo diferencial de funciones de varias variables.
- Manejo de cálculo integral de funciones reales de variable real.

Competencias a las que contribuye

COMPETENCIAS ESPECIFICAS

 Manejar los distintos métodos estadísticos y su aplicabilidad en la solución de problemas reales como contribución de la estadística a la sólida formación científica tecnológica distintiva de la USM.

COMPETENCIAS GENERALES/TRANSVERSALES//DISTINTIVAS

- Desarrollar la creatividad para resolver problemas de índole no determinística.
- Contribuir a la eficiencia en la gestión a través del análisis estadístico de problemas reales.

Objetivos (Resultados del aprendizaje): Al aprobar la asignatura, el estudiante será capaz de:

- 1. Reconocer los conceptos básicos de la estadística y de las probabilidades y su aporte específico en la resolución de problemas
- 2. Solucionar problemas reales de índole no determinística aplicando métodos estadísticos.
- 3. Manejar variables aleatorias y técnicas de estimación, valorando su aplicabilidad en la construcción de modelos estadísticos para resolver problemas reales.
- 4. Aplicar pruebas de hipótesis para validar la representatividad de modelos.
- 5. Desarrollar procedimientos estadísticos con apoyo de software especializados

Contenidos temáticos			sultade	os del A	Aprendiz	zaje
		1	2	3	4	5
Introducción, concepto probabilidad, población, representación y tratamiento.	nuestra, modelos, recolección,					Х
	estreo aleatorio simple, muestreo muestreo doble, muestreo emático.		Х			Х
3. Estadística descriptiva univariada y bivariada.						Х
4. Probabilidad: conceptos probabilidad condicional, te	s generales, propiedades, orema de Bayes.	Х	Х			Х
	cretas y continuas: Bernoulli, poisson, geométrica, uniforme, gamma, beta entre otras.	×		Х		X

6. Esperanza, varianza, propiedades, función generadora de momentos.	Х				Х
7. Transformaciones de variables aleatorias.	Χ				Χ
8. Vectores aleatorios, distribuciones multinomial y normal multivariada.			X		Х
9. Transformaciones de vectores aleatorios, distribución de sumas, productos, cuocientes, máximos, mínimos.	Χ		Χ		х
10. Convergencia de variables aleatorias, teoremas limites	Χ		Χ		Χ
11. Distribuciones asociadas a la normal: chi-cuadrado, student, Fisher.			Х		Х
12. Inferencia estadística: conceptos generales.					Χ
13. Métodos de estimación puntual, propiedades de los estimadores.		Х	Х		Х
14. Estimación por intervalos de confianza.		Χ	Χ		Χ
15. Prueba de hipótesis.		Χ	Χ	Χ	Χ
16. Pruebas de bondad de ajuste e independencia.			Χ	X	Χ
17. Introducción a modelos de regresión lineal.					X
18. Elementos de control de calidad		Χ			X

Evaluación

	Res	Resultados del Aprendizaje			
	1		2	3	4
Certamen 1	x		Х		
Certamen 2			Х	х	
Certamen 3					х
Tarea Individual 1	x				
Tarea Individual 2			X		
Tarea grupal 1				х	
Tarea grupal 2					х
Laboratorios/talleres			X	х	х
Proyecto			Х	х	х

Calificación

[SE DEFINEN Y DESCRIBEN CRITERIOS Y FÒRMULAS A APLICAR PARA DETERMINAR LA NOTA FINAL]

Nota final =

Dedicación a la asignatura

actividad	Hrs./Semana	Nro Semanas	Total
Cátedra	3	16	48
Ayudantía	2	14	28
Laboratorio/Taller	-		
Tareas individuales	2	4	8
Tareas en equipo	3	4	12
Proyecto	4	8	32
Estudio en terreno	4	1	4
Estudio Individual/Grupal	1	16	16
Otras: reunión con	0,5	8	4
profesor			
		TOTAL	152

Bibliografía

- R. Acevedo, "El Desarrollo de Proyectos Informáticos", Ecogestión, 1996
- E. Yourdon, "Modern Structured Analysis", Prentice-Hall, 1995
- R. Pressman, "Ingeniería de Software: un enfoque práctico", McGraw-Hill, 1993
- J. Bravo, "La Nueva Visión", 1998
- K. Kendall; J.E. Kendall, "Análisis y Diseño de Sistemas", Prentice-Hall, 1996
- Kovacevic, "Sistemas de Información", Editorial Universidad Católica de Chile, 1990
- J. Martin; J. Odell, "Análisis y Diseño Orientado a Objetos", Prentice-Hall, 1994

Elaborado	Observaciones
Aprobado	