

Implementing integrated machine learning strategies to accelerate high accuracy fracture growth simulators

John Walding

Supervisor: Dr. Adriana Paluszny Rodriguez

Agenda

- Motivation
- Introduction
- Background: SIF
- Problem Specification
- Implementation

- Testing Strategy
- Results
- Conclusion
- Future Developments

Motivation

- Fracture Simulation is of great importance to many fields
 - Hydraulic Fracturing
 - Mineral Extraction
 - Medical Osteology
- FDEMs are very accurate but can be slow
- Is it possible to improve time efficiency without loss of accuracy?

Introduction

- ML has been applied to fracture problems before
- Can be effective for certain criteria
- Often limited by:
 - Restricted dimensionality
 - Graph theoretic approach
- Not currently applicable to real world problems

Imperial College London

Source: (Hunter, et al., 2019)

Introduction

- Avoid aforementioned limitations by accelerating an FDEM
- Calculation of SIF required before fracture tip evolution
- SIF computation requires solution of several PDEs computationally complex
- Fracture tip evolution is well understood and simple by comparison
- Is it possible to predict the SIF without the preceding computation?

Background: SIF

- Most important quantity for this project is Stress Intensity Factor (SIF)
- The SIF is a theoretical construct that encodes the stress state at a tip
- SIF has three elements:
 - K_I opening damage positive definite
 - K_{II} in-plane shearing
 - K_{III} out-of-plane shearing

• K_I is often dominant, K_{II} and K_{III} are harder to predict

Problem Specification

- Two factors relevant to an accelerator:
 - Time efficiency
 - Accuracy
- For an ML method, time efficiency applies to training and execution
 - Training time of diminished importance
 - Execution time almost guaranteed to be superior to current algorithm
- Therefore primary objective is accuracy retention

Problem Specification

- This is a regression problem
- Fracture tip evolution is determined by the current configuration
 - Therefore configuration history information is not necessary
- Inter-fracture geometric data is important for interactions
- Data is gathered from runs of the Imperial College Geomechanics Toolkit (ICGT)

<u>Implementation</u>

- Feed forward neural network selected
- Python implementation chosen for ML libraries
- PyTorch used for the ML aspects
- Little attention given to hyperparameters at this stage
- Input data formatted as a CSV
- Data split as 80:10:10 for training: validation: testing

Testing Strategy

- Testing strategy designed for hyperparameter optimisation
- Optimal configuration infeasible to ascertain
- Heuristic approach taken
 - Hyperparameters tested in order of expected significance
 - Order investigated with preliminary testing

- Will not result in optimal configuration, but adequate
- Hyperparameters tested are:
 - Feature set
 - Model architecture
 - Optimiser
 - Criterion function
 - Activation function
- Further hyperparameters left as defaults

Testing Conclusions

- Feature Set: position vector,
 orientation vector, old SIF
- Architecture: see diagram
- Optimiser: Adam
- Criterion Function: L1Loss
- Activation Function: LeakyReLU

Results - $\overline{K_L}$

Results - K_{II}

Results - $\overline{K_{III}}$

Conclusions

- ML acceleration of an FDEM is viable
- K_I easier to predict than K_{II} and K_{III}
- Further inter-fracture geometric data must be incorporated into feature set
- Outputs currently returned with insufficient accuracy for immediate practical implementation

- Increased dataset size
- Improved hyperparameter optimisation scheme
- Addition of fracture interaction index – see diagram
- Implementation of binary measure for fracture interaction

Thank you for your attention

Any questions?