Package 'mrbayes'

August 19, 2024

```
Type Package
Title Bayesian Summary Data Models for Mendelian Randomization Studies
Version 0.5.2
Description Bayesian estimation of inverse variance weighted (IVW),
     Burgess et al. (2013) <doi:10.1002/gepi.21758>, and MR-Egger, Bowden
     et al. (2015) <doi:10.1093/ije/dyv080>, summary data models for
     Mendelian randomization analyses.
License GPL-3
URL https://github.com/okezie94/mrbayes,
     https://okezie94.github.io/mrbayes/,
     https://mrcieu.r-universe.dev/mrbayes
BugReports https://github.com/okezie94/mrbayes/issues
Depends R (>= 3.6.0)
Imports DescTools, methods, Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1),
     rstan (>= 2.18.1), rstantools (>= 2.4.0)
Suggests MendelianRandomization, rjags (>= 4-9), testthat
LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0),
     RcppParallel (>= 5.0.1), rstan (>= 2.18.1), StanHeaders (>=
     2.18.0)
Biarch true
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
SystemRequirements GNU make
NeedsCompilation yes
Author Okezie Uche-Ikonne [aut] (<a href="https://orcid.org/0000-0002-8461-8099">https://orcid.org/0000-0002-8461-8099</a>),
     Frank Dondelinger [aut] (<a href="https://orcid.org/0000-0003-1816-6300">https://orcid.org/0000-0003-1816-6300</a>),
     Tom Palmer [aut, cre] (<https://orcid.org/0000-0003-4655-4511>)
Maintainer Tom Palmer <remlapmot@hotmail.com>
Repository CRAN
Date/Publication 2024-08-19 11:50:02 UTC
```

2 mrbayes-package

Contents

	mrbayes-package .																														2
	bmi_insulin																														
	dodata																														4
	mrinput_mr_format																														5
	mr_egger_rjags																														6
	mr_egger_stan																														7
	mr_format																														9
	mr_ivw_rjags																														10
	mr_ivw_stan																														11
	mr_radialegger_rjag	;s .																													12
	mr_radialegger_stan	١.																													14
	mvmr_egger_rjags																														
	mvmr_egger_stan .																														18
	mvmr_format																														19
	mvmr_ivw_rjags .																													. :	20
	mvmr_ivw_stan																														22
Index																														:	24
mrba	yes-package	mrb	ау	es:	В	aye	esi	an	im	pl	em	ien	ta	tio	n	of	th	e I	VV	Vι	ını	d l	M	R-I	Ед	ge	r	me	ode	els	
		for	two	2-S	an	ıple	e N	1er	ıde	elio	an	ra	nd	lon	niz	at	ioi	n a	na	lν.	ses	S									

Description

Bayesian implementation of the IVW and MR-Egger models and their radial and multivariate versions for two-sample Mendelian randomization analyses.

Author(s)

Maintainer: Tom Palmer <remlapmot@hotmail.com> (ORCID)

Authors:

- Okezie Uche-Ikonne <okezieikonne@gmail.com> (ORCID)
- Frank Dondelinger <f.dondelinger@lancaster.ac.uk> (ORCID)

References

Stan Development Team (2019). RStan: the R interface to Stan. R package version 2.19.2. https://mc-stan.org

bmi_insulin 3

See Also

Useful links:

```
• https://github.com/okezie94/mrbayes
```

• https://okezie94.github.io/mrbayes/

• https://mrcieu.r-universe.dev/mrbayes

• Report bugs at https://github.com/okezie94/mrbayes/issues

bmi_insulin

Dataset from Richmond et. al 2017 investigating the association of BMI on insulin resistance

Description

A two-sample summary level dataset, Richmond et al. (2017) doi:10.1101/155739, containing 14 single nucleiodtide polymorphisms (SNPs) which have genotype-phenotype associations (BMI) and genotype-outcome associations (insulin) with their respective standard errors.

Usage

bmi_insulin

Format

A data frame with 14 rows and 44 columns:

rsid SNP RSID number

beta.exposure The genotype-BMI associations

beta.outcome The genotype-outcome associations

se.exposure The standard errors of the genotype-phenotype associations

se.outcome The standard errors of the genotype-outcome associations

Details

bmi_insulin.

References

Richmond, R. et al., Investigating the role of insulin in increased adiposity: Bi-directional Mendelian randomization study. bioRxiv, 2017, doi:10.1101/155739.

4 dodata

dodata	Dataset from Do et al., Nat Gen, 2013 containing summary level data
	on associations of genotypes with lipid traits and the risk of coronary heart diseases

Description

A summary-level dataset, from Do et al. (2013) doi:10.1038/ng.2795, containing 185 single nucle-odtide polymorphisms (SNPs) which have genotype-phenotype associations and standard errors for LDL-C, HDL-C, Triglycerides, and genotype-outcome associations for coronary heart disease with their respective standard errors.

Usage

dodata

Format

A data frame with 185 rows and 21 columns with the following variables:

rsid RSID number

a1 Allele 1

a2 Allele 2

chr Chromosome

pos Genomic position

Idlcbeta The genotype-low-density lipoprotein cholestrol associations

hdlcbeta The genotype-high-density lipoprotein cholestrol associations

tgbeta The genotype-triglyceride associations

chdbeta The genotype-coronary heart disease associations, on the log odds ratio scale

Idlcp2 P-value for genotype-LDL-C associations

hdlcp2 P-value for genotype-HDL-C associations

tgp2 P-value for genotype-triglyceride associations

chdp2 P-value for genotype-coronary heart disease associations

Idlcz Z-score for genotype-LDL-C associations

Idlese The standard errors of the genotype-low-density lipoprotein cholestrol associations

hdlcz Z-score for genotype-HDL-C associations

hdlcse The standard errors of the genotype-high-density lipoprotein cholestrol associations

tgz Z-score for genotype-triglyceride associations

tgse The standard errors of the genotype-triglyceride cholestrol associations

chdz Z-score for genotype-coronary heart disease associations

chdse The standard errors of the genotype-coronary heart disease associations

mrinput_mr_format 5

Details

dodata.

References

Do, R. et al., Common variants associated with plasma triglycerides and risk for coronary artery disease. Nature Genetics, 2013, 45, 1345-1352, doi:10.1038/ng.2795.

mrinput_mr_format

Convert an object of class MRInput from the MendelianRandomization package to the mrbayes mr_format class

Description

Creates a data.frame with class mr_format from an object of class MRInput generated by MendelianRandomization::mr_in

Usage

```
mrinput_mr_format(dat)
```

Arguments

dat

Object from MendelianRandomization::mr_input.

Value

Object of class mr_format, the mrbayes format

```
if (requireNamespace("MendelianRandomization", quietly = TRUE)) {
dat <- MendelianRandomization::mr_input(
    bx = bmi_insulin$beta.exposure,
    bxse = bmi_insulin$se.exposure,
    by = bmi_insulin$beta.outcome,
    byse = bmi_insulin$se.outcome,
    snps = bmi_insulin$rsid
)
dat <- mrinput_mr_format(dat)
head(dat)
class(dat)
}</pre>
```

6 mr_egger_rjags

mr_egger_rjags	Bayesian implementation of the MR-Egger multivariate model with
	choice of prior distributions fitted using JAGS.

Description

Bayesian implementation of the MR-Egger multivariate model with choice of prior distributions fitted using JAGS.

Usage

```
mr_egger_rjags(
  object,
  prior = "default",
  betaprior = "",
  sigmaprior = "",
  n.chains = 3,
  n.burn = 1000,
  n.iter = 5000,
  seed = NULL,
  rho = 0.5,
  ...
)
```

Arguments

object	A data object of class mr_format.
prior	A character string for selecting the prior distributions;
	 "default" selects a non-informative set of priors;
	"weak" selects weakly informative priors;
	 "pseudo" selects a pseudo-horseshoe prior on the causal effect;
	"joint" selects a joint prior on the intercept and slope.
betaprior	A character string in JAGS syntax to allow a user defined prior for the causal effect.
sigmaprior	A character string in JAGS syntax to allow a user defined prior for the residual standard deviation.
n.chains	Numeric indicating the number of chains used in the MCMC estimation, the default is 3 chains.
n.burn	Numeric indicating the burn-in period of the Bayesian MCMC estimation. The default is 1000 samples.
n.iter	Numeric indicating the number of iterations in the Bayesian MCMC estimation. The default is 5000 iterations.
seed	Numeric indicating the random number seed. The default is the rjags default.
rho	Numeric indicating the correlation coefficient input into the joint prior distribution. The default value is 0.5 .
	Additional arguments passed through to rjags::jags.model().

mr_egger_stan 7

Value

An object of class eggerjags containing the following components:

AvgPleio The mean of the simulated pleiotropic effect

CausalEffect The mean of the simulated causal effect

StandardError Standard deviation of the simulated causal effect

sigma The value of the residual standard deviation

CredibleInterval The credible interval for the causal effect, which includes the lower (2.5%), median (50%) and upper intervals (97.5%)

samples Output of the Bayesian MCMC samples

Priors The specified priors

References

Bowden et. al., Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. International Journal of Epidemiology 2015. 44(2): p. 512-525. doi:10.1093/ije/dyv080

Examples

```
if (requireNamespace("rjags", quietly = TRUE)) {
  fit <- mr_egger_rjags(bmi_insulin)
  summary(fit)
  plot(fit$samples)
# 90% credible interval
  fitdf <- do.call(rbind.data.frame, fit$samples)
  cri90 <- sapply(fitdf, quantile, probs = c(0.05, 0.95))
  print(cri90)
}</pre>
```

mr_egger_stan

Bayesian inverse variance weighted model with a choice of prior distributions fitted using Stan

Description

Bayesian inverse variance weighted model with a choice of prior distributions fitted using Stan.

Usage

```
mr_egger_stan(
  data,
  prior = 1,
  n.chains = 3,
  n.burn = 1000,
  n.iter = 5000,
```

8 mr_egger_stan

```
seed = 12345,
rho = 0.5,
...
)
```

Arguments

data	A data of class mr_format.
prior	An integer for selecting the prior distributions;
	• 1 selects a non-informative set of priors;
	 2 selects weakly informative priors;
	 3 selects a pseudo-horseshoe prior on the causal effect;
	 4 selects joint prior of the intercept and causal effect estimate.
n.chains	Numeric indicating the number of chains used in the HMC estimation in rstan, the default is 3 chains.
n.burn	Numeric indicating the burn-in period of the Bayesian HMC estimation. The default is 1000 samples.
n.iter	Numeric indicating the number of iterations in the Bayesian HMC estimation. The default is 5000 iterations.
seed	Numeric indicating the random number seed. The default is 12345.
rho	Numeric indicating the correlation coefficient input into the joint prior distribution. The default is 0.5 .
	Additional arguments passed through to rstan::sampling().

Value

An object of class rstan::stanfit.

References

Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. International Journal of Epidemiology, 2015, 44, 2, 512-525. doi:10.1093/ije/dyv080.

Stan Development Team (2020). "RStan: the R interface to Stan." R package version 2.19.3, https://mc-stan.org/.

```
if (requireNamespace("rstan", quietly = TRUE)) {
# Note we recommend setting n.burn and n.iter to larger values
suppressWarnings(egger_fit <- mr_egger_stan(bmi_insulin, n.burn = 500, n.iter = 1000, refresh = 0L))
print(egger_fit)
}</pre>
```

mr_format 9

mr_format Organises the summary level data for use in the Bayesian MR func- tions	mr_format	
--	-----------	--

Description

Organises the summary level data for use in the Bayesian MR functions

Usage

```
mr_format(rsid, xbeta, ybeta, xse, yse)
```

Arguments

rsid	A vector of genetic variants used for analysis, if unspecified a vector is automatically generated.
xbeta	A numeric vector of the instrument-phenotype associations.
ybeta	A numeric vector of the instrument-outcome associations.
xse	The standard errors of the instrument-phenotype associations xbeta.
yse	The standard errors of the instrument-outcome associations ybeta.

Value

A formatted data frame for analysis of class mr_format.

```
data(bmi_insulin)
dat <- mr_format(
    rsid = bmi_insulin[,"rsid"],
    xbeta = bmi_insulin[,"beta.exposure"],
    ybeta = bmi_insulin[,"beta.outcome"],
    xse = bmi_insulin[,"se.exposure"],
    yse = bmi_insulin[,"se.outcome"]
)
class(dat)</pre>
```

10 mr_ivw_rjags

mr_ivw_rjags	Bayesian inverse variance weighted model with a choice of prior distributions fitted using JAGS.

Description

Bayesian inverse variance weighted model with a choice of prior distributions fitted using JAGS.

Usage

```
mr_ivw_rjags(
  object,
  prior = "default",
  betaprior = "",
  n.chains = 3,
  n.burn = 1000,
  n.iter = 5000,
  seed = NULL,
  ...
)
```

Arguments

object	A data object of class mr_format.
prior	A character string for selecting the prior distributions;
	 "default" selects a non-informative set of priors; "weak" selects weakly informative priors; "pseudo" selects a pseudo-horseshoe prior on the causal effect.
betaprior	A character string in JAGS syntax to allow a user defined prior for the causal effect.
n.chains	Numeric indicating the number of chains used in the MCMC estimation, the default is 3 chains.
n.burn	Numeric indicating the burn-in period of the Bayesian MCMC estimation. The default is 1000 samples.
n.iter	Numeric indicating the number of iterations in the Bayesian MCMC estimation. The default is 5000 iterations.
seed	Numeric indicating the random number seed. The default is the rjags default.
	Additional arguments passed through to rjags::jags.model().

Value

An object of class ivwjags containing the following components:

CausalEffect The mean of the simulated causal effects

mr_ivw_stan 11

StandardError Standard deviation of the simulated causal effects

CredibleInterval The credible interval for the causal effect, which indicates the lower (2.5%), median (50%) and upper intervals (97.5%)

samples Output of the Bayesian MCMC samples with the different chains

Priors The specified priors

References

Burgess, S., Butterworth, A., Thompson S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genetic Epidemiology, 2013, 37, 7, 658-665 doi:10.1002/gepi.21758.

Examples

```
if (requireNamespace("rjags", quietly = TRUE)) {
  fit <- mr_ivw_rjags(bmi_insulin)
  print(fit)
  summary(fit)
  plot(fit$samples)
# 90% credible interval
  fitdf <- do.call(rbind.data.frame, fit$samples)
  cri90 <- quantile(fitdf$Estimate, probs = c(0.05, 0.95))
  print(cri90)
}</pre>
```

mr_ivw_stan

Bayesian inverse variance weighted model with a choice of prior distributions fitted using RStan.

Description

Bayesian inverse variance weighted model with a choice of prior distributions fitted using RStan.

Usage

```
mr_ivw_stan(
   data,
   prior = 1,
   n.chains = 3,
   n.burn = 1000,
   n.iter = 5000,
   seed = 12345,
   ...
)
```

12 mr_radialegger_rjags

Arguments

data	A data of class mr_format.
prior	An integer for selecting the prior distributions;
	 1 selects a non-informative set of priors; 2 selects weakly informative priors; 3 selects a pseudo-horseshoe prior on the causal effect.
n.chains	Numeric indicating the number of chains used in the HMC estimation in rstan, the default is 3 chains.
n.burn	Numeric indicating the burn-in period of the Bayesian HMC estimation. The default is 1000 samples.
n.iter	Numeric indicating the number of iterations in the Bayesian MCMC estimation. The default is 5000 iterations.
seed	Numeric indicating the random number seed. The default is 12345.
• • •	Additional arguments passed through to rstan::sampling().

Value

An object of class rstan::stanfit.

References

Burgess, S., Butterworth, A., Thompson S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genetic Epidemiology, 2013, 37, 7, 658-665 doi:10.1002/gepi.21758.

Stan Development Team (2020). "RStan: the R interface to Stan." R package version 2.19.3, https://mc-stan.org/.

Examples

```
if (requireNamespace("rstan", quietly = TRUE)) {
   suppressWarnings(ivw_fit <- mr_ivw_stan(bmi_insulin, refresh = 0L))
   print(ivw_fit)
   rstan::traceplot(ivw_fit)
}</pre>
```

 $\begin{tabular}{ll} mr_radialegger_rjags & Bayesian \ radial \ MR-Egger \ model \ with \ a \ choice \ of \ prior \ distributions \\ fitted \ using \ JAGS. \end{tabular}$

Description

Bayesian radial MR-Egger model with a choice of prior distributions fitted using JAGS.

mr_radialegger_rjags 13

Usage

```
mr_radialegger_rjags(
  object,
  prior = "default",
  betaprior = "",
  sigmaprior = "",
  n.chains = 3,
  n.burn = 1000,
  n.iter = 5000,
  seed = NULL,
  rho = 0.5,
  ...
)
```

Arguments

object	A data object of class mr_format.
prior	A character string for selecting the prior distributions;
	 "default" selects a non-informative set of priors; "weak" selects weakly informative priors; "pseudo" selects a pseudo-horseshoe prior on the causal effect; "joint" selects a joint prior on the intercept and slope.
betaprior	A character string in JAGS syntax to allow a user defined prior for the causal effect.
sigmaprior	A character string in JAGS syntax to allow a user defined prior for the residual standard deviation.
n.chains	Numeric indicating the number of chains used in the MCMC estimation, the default is 3 chains.
n.burn	Numeric indicating the burn-in period of the Bayesian MCMC estimation. The default is 1000 samples.
n.iter	Numeric indicating the number of iterations in the Bayesian MCMC estimation. The default is 5000 iterations.
seed	Numeric indicating the random number seed. The default is the rjags default.
rho	Numeric indicating the correlation coefficient input into the joint prior distribution. The default is \emptyset . 5.
	Additional arguments passed through to rjags::jags.model().

Value

An object of class radialeggerjags containing the following components:

AvgPleio The mean of the simulated pleiotropic effect

CausalEffect The mean of the simulated causal effect

StandardError Standard deviation of the simulated causal effect

14 mr_radialegger_stan

sigma The mean of the simulted residual standard deviation

CredibleInterval The credible interval for the causal effect, which includes the lower (2.5%), median (50%) and upper intervals (97.5%)

samples Output of the Bayesian MCMC samples

Prior The specified priors

References

Bowden, J., et al., Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression. International Journal of Epidemiology, 2018. 47(4): p. 1264-1278. doi:10.1093/ije/dyy101.

Examples

```
if (requireNamespace("rjags", quietly = TRUE)) {
  fit <- mr_radialegger_rjags(bmi_insulin)
  summary(fit)
  plot(fit$samples)
# 90% credible interval
  fitdf <- do.call(rbind.data.frame, fit$samples)
  cri90 <- quantile(fitdf$Estimate, probs = c(0.05, 0.95))
  print(cri90)
}</pre>
```

mr_radialegger_stan

Bayesian inverse variance weighted model with a choice of prior distributions fitted using RStan.

Description

Bayesian inverse variance weighted model with a choice of prior distributions fitted using RStan

Usage

```
mr_radialegger_stan(
  data,
  prior = 1,
  n.chains = 3,
  n.burn = 1000,
  n.iter = 5000,
  rho = 0.5,
  seed = 12345,
  ...
)
```

mr_radialegger_stan 15

Arguments

data	A data of class mr_format.
prior	An integer for selecting the prior distributions;
	• 1 selects a non-informative set of priors;
	 2 selects weakly informative priors;
	 3 selects a pseudo-horseshoe prior on the causal effect;
	• 4 selects joint prior of the intercept and causal effect estimate.
n.chains	Numeric indicating the number of chains used in the HMC estimation in rstan, the default is 3 chains.
n.burn	Numeric indicating the burn-in period of the Bayesian HMC estimation. The default is 1000 samples.
n.iter	Numeric indicating the number of iterations in the Bayesian HMC estimation. The default is 5000 iterations.
rho	Numeric indicating the correlation coefficient input into the joint prior distribution. The default is $\emptyset.5$.
seed	Numeric indicating the random number seed. The default is 12345.
	Additional arguments passed through to rstan::sampling().

Value

An object of class rstan::stanfit.

References

Bowden, J., et al., Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression. International Journal of Epidemiology, 2018. 47(4): p. 1264-1278. doi:10.1093/ije/dyy101.

Stan Development Team (2020). "RStan: the R interface to Stan." R package version 2.19.3, https://mc-stan.org/.

```
if (requireNamespace("rstan", quietly = TRUE)) {
# Note we recommend setting n.burn and n.iter to larger values
suppressWarnings({
   radegger_fit <- mr_radialegger_stan(bmi_insulin, n.burn = 500, n.iter = 1000, refresh = 0L)
})
print(radegger_fit)
}</pre>
```

16 mvmr_egger_rjags

mvmr_egger_rjags	Bayesian implementation of the MVMR-Egger model with choice of
	prior distributions fitted using JAGS.

Description

Bayesian implementation of the MVMR-Egger model with choice of prior distributions fitted using JAGS.

Usage

```
mvmr_egger_rjags(
  object,
  prior = "default",
  betaprior = "",
  sigmaprior = "",
  orientate = 1,
  n.chains = 3,
  n.burn = 1000,
  n.iter = 5000,
  seed = NULL,
  rho = 0.5,
  ...
)
```

Arguments

object	A data object of class mvmr_format.
prior	A character string for selecting the prior distributions;
	 "default" selects a non-informative set of priors;
	"weak" selects weakly informative priors;
	 "pseudo" selects a pseudo-horseshoe prior on the causal effect;
betaprior	A character string in JAGS syntax to allow a user defined prior for the causal effect.
sigmaprior	A character string in JAGS syntax to allow a user defined prior for the residual standard deviation.
orientate	Numeric value to indicate the oriented exposure
n.chains	Numeric indicating the number of chains used in the MCMC estimation, the default is 3 chains.
n.burn	Numeric indicating the burn-in period of the Bayesian MCMC estimation. The default is 1000 samples.
n.iter	Numeric indicating the number of iterations in the Bayesian MCMC estimation. The default is 5000 iterations.
seed	Numeric indicating the random number seed. The default is the rjags default.

mvmr_egger_rjags 17

rho	Numeric indicating the correlation coefficient input into the joint prior distribution. The default value is 0.5 .
	Additional arguments passed through to rjags::jags.model().

Value

An object of class mveggerjags containing the following components:

AvgPleio The mean of the simulated pleiotropic effect

CausalEffect The mean of the simulated causal effect

StandardError Standard deviation of the simulated causal effect

sigma The value of the residual standard deviation

CredibleInterval The credible interval for the causal effect, which includes the lower (2.5%), median (50%) and upper intervals (97.5%)

samples Output of the Bayesian MCMC samples

Priors The specified priors

References

Bowden et. al., Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. International Journal of Epidemiology 2015. 44(2): p. 512-525. doi:10.1093/ije/dyv080

```
if (requireNamespace("rjags", quietly = TRUE)) {
## Not run:
dat <- mvmr_format(</pre>
  rsid = dodata$rsid,
  xbeta = cbind(dodata$ldlcbeta,dodata$hdlcbeta,dodata$tgbeta),
  ybeta = dodata$chdbeta,
  xse = cbind(dodata$ldlcse,dodata$hdlcse,dodata$tgse),
  yse = dodata$chdse
fit <- mvmr_egger_rjags(dat)</pre>
summary(fit)
plot(fit$samples)
# 90% credible interval
fitdf <- do.call(rbind.data.frame, fit$samples)</pre>
cri90 \leftarrow sapply(fitdf, quantile, probs = c(0.05, 0.95))
print(cri90)
## End(Not run)
```

18 mvmr_egger_stan

mvmr_egger_stan	Bayesian implementation of the MVMR-Egger model with choice of prior distributions fitted using RStan.
	prior distributions jured using Taxian

Description

Bayesian implementation of the MVMR-Egger model with choice of prior distributions fitted using RStan.

Usage

```
mvmr_egger_stan(
   data,
   prior = 1,
   n.chains = 3,
   n.burn = 1000,
   n.iter = 5000,
   seed = 12345,
   rho = 0.5,
   orientate = 1,
   ...
)
```

Arguments

An integer for selecting the prior distributions; • 1 selects a non-informative set of priors; • 2 selects weakly informative priors; • 3 selects a pseudo-horseshoe prior on the causal effect; n. chains Numeric indicating the number of chains used in the HMC estimation in rstan, the default is 3 chains. n. burn Numeric indicating the burn-in period of the Bayesian HMC estimation. The default is 1000 samples. n. iter Numeric indicating the number of iterations in the Bayesian HMC estimation. The default is 5000 iterations. seed Numeric indicating the random number seed. The default is 12345. rho Numeric indicating the correlation coefficient input into the joint prior distribution. The default is 0.5. orientate Numeric value to indicate the oriented exposure. Additional arguments passed through to rstan::sampling().	data	A data of class mvmr_format.
 2 selects weakly informative priors; 3 selects a pseudo-horseshoe prior on the causal effect; n. chains Numeric indicating the number of chains used in the HMC estimation in rstan, the default is 3 chains. n. burn Numeric indicating the burn-in period of the Bayesian HMC estimation. The default is 1000 samples. n. iter Numeric indicating the number of iterations in the Bayesian HMC estimation. The default is 5000 iterations. seed Numeric indicating the random number seed. The default is 12345. rho Numeric indicating the correlation coefficient input into the joint prior distribution. The default is 0.5. orientate Numeric value to indicate the oriented exposure. 	prior	An integer for selecting the prior distributions;
 3 selects a pseudo-horseshoe prior on the causal effect; n. chains Numeric indicating the number of chains used in the HMC estimation in rstan, the default is 3 chains. n. burn Numeric indicating the burn-in period of the Bayesian HMC estimation. The default is 1000 samples. n. iter Numeric indicating the number of iterations in the Bayesian HMC estimation. The default is 5000 iterations. seed Numeric indicating the random number seed. The default is 12345. rho Numeric indicating the correlation coefficient input into the joint prior distribution. The default is 0.5. orientate Numeric value to indicate the oriented exposure. 		• 1 selects a non-informative set of priors;
 n. chains Numeric indicating the number of chains used in the HMC estimation in rstan, the default is 3 chains. n. burn Numeric indicating the burn-in period of the Bayesian HMC estimation. The default is 1000 samples. n. iter Numeric indicating the number of iterations in the Bayesian HMC estimation. The default is 5000 iterations. seed Numeric indicating the random number seed. The default is 12345. rho Numeric indicating the correlation coefficient input into the joint prior distribution. The default is 0.5. orientate Numeric value to indicate the oriented exposure. 		• 2 selects weakly informative priors;
the default is 3 chains. n.burn Numeric indicating the burn-in period of the Bayesian HMC estimation. The default is 1000 samples. n.iter Numeric indicating the number of iterations in the Bayesian HMC estimation. The default is 5000 iterations. seed Numeric indicating the random number seed. The default is 12345. rho Numeric indicating the correlation coefficient input into the joint prior distribution. The default is 0.5. orientate Numeric value to indicate the oriented exposure.		• 3 selects a pseudo-horseshoe prior on the causal effect;
default is 1000 samples. n.iter Numeric indicating the number of iterations in the Bayesian HMC estimation. The default is 5000 iterations. seed Numeric indicating the random number seed. The default is 12345. rho Numeric indicating the correlation coefficient input into the joint prior distribution. The default is 0.5. orientate Numeric value to indicate the oriented exposure.	n.chains	
The default is 5000 iterations. seed Numeric indicating the random number seed. The default is 12345. rho Numeric indicating the correlation coefficient input into the joint prior distribution. The default is 0.5. orientate Numeric value to indicate the oriented exposure.	n.burn	•
rho Numeric indicating the correlation coefficient input into the joint prior distribution. The default is 0.5. orientate Numeric value to indicate the oriented exposure.	n.iter	•
tion. The default is 0.5. orientate Numeric value to indicate the oriented exposure.	seed	Numeric indicating the random number seed. The default is 12345.
r	rho	
Additional arguments passed through to rstan::sampling().	orientate	Numeric value to indicate the oriented exposure.
		Additional arguments passed through to rstan::sampling().

Value

An object of class rstan::stanfit.

mvmr_format 19

References

Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. International Journal of Epidemiology, 2015, 44, 2, 512-525. doi:10.1093/ije/dyv080.

Stan Development Team (2020). "RStan: the R interface to Stan." R package version 2.19.3, https://mc-stan.org/.

Examples

```
if (requireNamespace("rstan", quietly = TRUE)) {
# Note we recommend setting n.burn and n.iter to larger values
dat <- mvmr_format(
    rsid = dodata$rsid,
    xbeta = cbind(dodata$ldlcbeta,dodata$hdlcbeta,dodata$tgbeta),
    ybeta = dodata$chdbeta,
    xse = cbind(dodata$ldlcse,dodata$hdlcse,dodata$tgse),
    yse = dodata$chdse
)
suppressWarnings(mvegger_fit <- mvmr_egger_stan(dat, n.burn = 500, n.iter = 1000, refresh = 0L))
print(mvegger_fit)
}</pre>
```

mvmr_format

Organises the summary level data for use in the Bayesian MR functions

Description

Organises the summary level data for use in the Bayesian MR functions

Usage

```
mvmr_format(rsid, xbeta, ybeta, xse, yse)
```

Arguments

rsid	A vector of genetic variants used for analysis, if unspecified a vector is automatically generated.
xbeta	A matrix of multiple instrument-phenotypes associations.
ybeta	A numeric vector of the instrument-outcome associations.
xse	The matrix for corresponding standard errors of the instrument-phenotypes associations xbeta.
yse	The standard errors of the instrument-outcome associations ybeta.

Value

A formatted data frame for analysis of class mvmr_format.

20 mvmr_ivw_rjags

Examples

```
data(dodata)
dat <- mvmr_format(
    rsid = dodata$rsid,
    xbeta = cbind(dodata$ldlcbeta,dodata$hdlcbeta,dodata$tgbeta),
    ybeta = dodata$chdbeta,
    xse = cbind(dodata$ldlcse,dodata$hdlcse,dodata$tgse),
    yse = dodata$chdse
)
class(dat)</pre>
```

mvmr_ivw_rjags

Bayesian multivariate inverse variance weighted model with a choice of prior distributions fitted using JAGS.

Description

Bayesian multivariate inverse variance weighted model with a choice of prior distributions fitted using JAGS.

Usage

```
mvmr_ivw_rjags(
  object,
  prior = "default",
  betaprior = "",
  n.chains = 3,
  n.burn = 1000,
  n.iter = 5000,
  seed = NULL,
  ...
)
```

Arguments

object A data object of class mvmr_format.

prior A character string for selecting the prior distributions;

- "default" selects a non-informative set of priors;
- "weak" selects weakly informative priors;
- "pseudo" selects a pseudo-horseshoe prior on the causal effect.

betaprior A character string in JAGS syntax to allow a user defined prior for the causal

effect.

n. chains
Numeric indicating the number of chains used in the MCMC estimation, the

default is 3 chains.

n.burn Numeric indicating the burn-in period of the Bayesian MCMC estimation. The

default is 1000 samples.

mvmr_ivw_rjags 21

n.iter	Numeric indicating the number of iterations in the Bayesian MCMC estimation. The default is 5000 iterations.
seed	Numeric indicating the random number seed. The default is the rjags default.
	Additional arguments passed through to rjags::jags.model().

Value

An object of class mvivwjags containing the following components:

CausalEffect The mean of the simulated causal effects

StandardError Standard deviation of the simulated causal effects

CredibleInterval The credible interval for the causal effect, which indicates the lower (2.5%), median (50%) and upper intervals (97.5%)

samples Output of the Bayesian MCMC samples with the different chains

Priors The specified priors

References

Burgess, S., Butterworth, A., Thompson S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genetic Epidemiology, 2013, 37, 7, 658-665 doi:10.1002/gepi.21758.

```
if (requireNamespace("rjags", quietly = TRUE)) {
dat <- mvmr_format(
    rsid = dodata$rsid,
    xbeta = cbind(dodata$ldlcbeta,dodata$hdlcbeta,dodata$tgbeta),
    ybeta = dodata$chdbeta,
    xse = cbind(dodata$ldlcse,dodata$hdlcse,dodata$tgse),
    yse = dodata$chdse
)

fit <- mvmr_ivw_rjags(dat)
print(fit)
summary(fit)
plot(fit$samples)
# 90% credible interval
fitdf <- do.call(rbind.data.frame, fit$samples)
cri90 <- sapply(fitdf, quantile, probs = c(0.05, 0.95))
print(cri90)
}</pre>
```

22 mvmr_ivw_stan

mvmr_ivw_stan	Bayesian multivariate inverse variance weighted model with a choice of prior distributions fitted using RStan.

Description

Bayesian multivariate inverse variance weighted model with a choice of prior distributions fitted using RStan.

Usage

```
mvmr_ivw_stan(
  data,
  prior = 1,
  n.chains = 3,
  n.burn = 1000,
  n.iter = 5000,
  seed = 12345,
  ...
)
```

Arguments

data	A data of class mvmr_format.
prior	An integer for selecting the prior distributions;
	 1 selects a non-informative set of priors; 2 selects weakly informative priors; 3 selects a pseudo-horseshoe prior on the causal effect.
n.chains	Numeric indicating the number of chains used in the HMC estimation in rstan, the default is 3 chains.
n.burn	Numeric indicating the burn-in period of the Bayesian HMC estimation. The default is 1000 samples.
n.iter	Numeric indicating the number of iterations in the Bayesian MCMC estimation. The default is 5000 iterations.
seed	Numeric indicating the random number seed. The default is 12345.
• • •	Additional arguments passed through to rstan::sampling().

Value

An object of class rstan::stanfit.

mvmr_ivw_stan 23

References

Burgess, S., Butterworth, A., Thompson S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genetic Epidemiology, 2013, 37, 7, 658-665 doi:10.1002/gepi.21758.

Stan Development Team (2020). "RStan: the R interface to Stan." R package version 2.19.3, https://mc-stan.org/.

```
if (requireNamespace("rstan", quietly = TRUE)) {
dat <- mvmr_format(
    rsid = dodata$rsid,
    xbeta = cbind(dodata$ldlcbeta,dodata$hdlcbeta,dodata$tgbeta),
    ybeta = dodata$chdbeta,
    xse = cbind(dodata$ldlcse,dodata$hdlcse,dodata$tgse),
    yse = dodata$chdse
)
suppressWarnings(mvivw_fit <- mvmr_ivw_stan(dat, refresh = 0L))
print(mvivw_fit)
rstan::traceplot(mvivw_fit)
}</pre>
```

Index

```
* datasets
    bmi_insulin, 3
    dodata, 4
bmi_insulin, 3
dodata, 4
{\tt MendelianRandomization::mr\_input,5}
mr_egger_rjags, 6
mr_egger_stan, 7
mr_format, 6, 8, 9, 10, 12, 13, 15
mr_ivw_rjags, 10
mr_ivw_stan, 11
mr_radialegger_rjags, 12
mr_radialegger_stan, 14
mrbayes (mrbayes-package), 2
mrbayes-package, 2
mrinput_mr_format, 5
mvmr_egger_rjags, 16
mvmr_egger_stan, 18
mvmr_format, 16, 18, 19, 20, 22
mvmr_ivw_rjags, 20
mvmr_ivw_stan, 22
rjags::jags.model(), 6, 10, 13, 17, 21
rstan::sampling(), 8, 12, 15, 18, 22
rstan::stanfit, 8, 12, 15, 18, 22
```