Introduction to Simulation - Lecture 13

Convergence of Multistep Methods

Jacob White

Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy

Outline

Small Timestep issues for Multistep Methods

Local truncation error

Selecting coefficients.

Nonconverging methods.

Stability + Consistency implies convergence

Next Time Investigate Large Timestep Issues

Absolute Stability for two time-scale examples.

Oscillators.

Basic Equations

General Notation

Nonlinear Differential Equation:

$$\frac{d}{dt}x(t) = f(x(t), u(t))$$

Multistep coefficients

 $t_{l-3} t_{l-2} t_{l-1} t_{l}$

Solution at discrete points

Time discretization

Basic Equations

Common Algorithms

Multistep Equation:
$$\sum_{j=0}^{k} \alpha_j \hat{x}^{l-j} = \Delta t \sum_{j=0}^{k} \beta_j f\left(\hat{x}^{l-j}, u\left(t_{l-j}\right)\right)$$

Forward-Euler Approximation:
$$x(t_l) \approx x(t_{l-1}) + \Delta t f(x(t_{l-1}), u(t_{l-1}))$$

FE Discrete Equation:
$$\hat{x}^l - \hat{x}^{l-1} = \Delta t f(\hat{x}^{l-1}, u(t_{l-1}))$$

Multistep Coefficients:
$$k = 1$$
, $\alpha_0 = 1$, $\alpha_1 = -1$, $\beta_0 = 0$, $\beta_1 = 1$

BE Discrete Equation:
$$\hat{x}^l - \hat{x}^{l-1} = \Delta t f(\hat{x}^l, u(t_l))$$

BE Discrete Equation:
$$\hat{x}^l - \hat{x}^{l-1} = \Delta t \ f\left(\hat{x}^l, u\left(t_l\right)\right)$$
Multistep Coefficients: $k = 1, \ \alpha_0 = 1, \ \alpha_1 = -1, \ \beta_0 = 1, \ \beta_1 = 0$

Trap Discrete Equation:
$$\hat{x}^{l} - \hat{x}^{l-1} = \frac{\Delta t}{2} \left(f\left(\hat{x}^{l}, u\left(t_{l}\right)\right) + f\left(\hat{x}^{l-1}, u\left(t_{l-1}\right)\right) \right)$$

Multistep Coefficients:
$$k = 1$$
, $\alpha_0 = 1$, $\alpha_1 = -1$, $\beta_0 = \frac{1}{2}$, $\beta_1 = \frac{1}{2}$

Basic Equations

Definitions and Observations

Multistep Equation:
$$\sum_{j=0}^{k} \alpha_j \hat{x}^{l-j} = \Delta t \sum_{j=0}^{k} \beta_j f\left(\hat{x}^{l-j}, u\left(t_{l-j}\right)\right)$$

- 1) If $\beta_0 \neq 0$ the multistep method is implicit
- 2) A k step multistep method uses k previous x's and f's
- 3) A normalization is needed, $\alpha_0 = 1$ is common
- 4) A k-step method has 2k + 1 free coefficients

How does one pick good coefficients?

Want the highest accuracy

Simplified Problem for Analysis

Scalar ODE:
$$\frac{d}{dt}v(t) = \lambda v(t), \ v(0) = v_0 \qquad \lambda \in \mathbb{C}$$

Why such a simple Test Problem?

- Nonlinear Analysis has many unrevealing subtleties
- Scalar is equivalent to vector for multistep methods.

$$\frac{d}{dt}x(t) = Ax(t) \text{ multistep discretization} \qquad \sum_{j=0}^{k} \alpha_j \hat{x}^{l-j} = \Delta t \sum_{j=0}^{k} \beta_j A \hat{x}^{l-j}$$
Let $Ey(t) = x(t)$
$$\sum_{j=0}^{k} \alpha_j \hat{y}^{l-j} = \Delta t \sum_{j=0}^{k} \beta_j E^{-1} A E \hat{y}^{l-j}$$

Decoupled Equations

$$\sum_{j=0}^{k} \alpha_j \hat{y}^{l-j} = \Delta t \sum_{j=0}^{k} \beta_j \begin{bmatrix} \lambda_1 \\ \ddots \\ \lambda_n \end{bmatrix} \hat{y}^{l-j}$$

Simplified Problem for Analysis

 $Re(\lambda)$

$$\frac{d}{dt}v(t) = \lambda v(t), \ v(0) = v_0$$

Scalar ODE:
$$\frac{d}{dt}v(t) = \lambda v(t), \ v(0) = v_0 \qquad \lambda \in \mathbb{C}$$
Scalar Multistep formula:
$$\sum_{j=0}^k \alpha_j \hat{v}^{l-j} = \Delta t \sum_{j=0}^k \beta_j \lambda \hat{v}^{l-j}$$

Must Consider ALL $\lambda \in \mathbb{C}$

Convergence Analysis

Convergence Definition

Definition: A multistep method for solving initial value problems on [0,T] is said to be convergent if given any initial condition

$$\max_{l \in \left[0, \frac{T}{\Delta t}\right]} \left\| \hat{v}^l - v(l\Delta t) \right\| \to 0 \text{ as } \Delta t \to 0$$

Convergence Analysis

Order-p convergence

Definition: A multi-step method for solving initial value problems on [0,T] is said to be order p convergent if given any λ and any initial condition

$$\max_{l \in \left[0, \frac{T}{\Delta t}\right]} \left\| \hat{v}^l - v(l\Delta t) \right\| \le C(\Delta t)^p$$

for all Δt less than a given Δt_0

Forward- and Backward-Euler are order 1 convergent Trapezoidal Rule is order 2 convergent

Convergence Analysis

For FE and BE, $Error \propto \Delta t$ For Trap, $Error \propto (\Delta t)^2$

Convergence Analysis

Two Conditions for Convergence

1) Local Condition: "One step" errors are small (consistency)

Typically verified using Taylor Series

2) Global Condition: The single step errors do not grow too quickly (stability)

All one-step (k=1) methods are stable in this sense. Multi-step (k > 1) methods require careful analysis.

Convergence Analysis

Global Error Equation

Multistep formula:

$$\sum_{j=0}^{k} \alpha_j \hat{v}^{l-j} - \Delta t \sum_{j=0}^{k} \beta_j \lambda \hat{v}^{l-j} = 0$$

Exact solution Almost satisfies Multistep Formula:

$$\sum_{j=0}^{k} \alpha_{j} v(t_{l-j}) - \Delta t \sum_{j=0}^{k} \beta_{j} \frac{d}{dt} v(t_{l-j}) = e^{l}$$

Local Truncation Error (LTE)

Global Error: $E^l \equiv v(t_l) - \hat{v}^l$

Difference equation relates LTE to Global error

$$(\alpha_0 - \lambda \Delta t \beta_0) E^l + (\alpha_1 - \lambda \Delta t \beta_1) E^{l-1} + \dots + (\alpha_k - \lambda \Delta t \beta_k) E^{l-k} = e^l$$

Convergence Analysis

Consistency for Forward Euler

Forward-Euler definition

$$\hat{v}^{l+1} - \hat{v}^l - \Delta t \lambda \hat{v}^l = 0$$

$$\tau \in \lceil l\Delta t, (l+1)\Delta t \rceil$$

Substituting the exact v(t) and expanding

$$v((l+1)\Delta t) - v(l\Delta t) - \Delta t \frac{dv(l\Delta t)}{dt} = \frac{(\Delta t)^2}{2} \frac{d^2v(\tau)}{dt^2}$$

$$\frac{d}{dt}v = \lambda v$$

where e^l is the LTE and is bounded by

$$\left|e^{l}\right| \leq C(\Delta t)^{2}$$
, where $C = 0.5 \max_{\tau \in [0,T]} \left|\frac{d^{2}v(\tau)}{dt^{2}}\right|$

Convergence Analysis

Global Error Equation

Forward-Euler definition

$$\hat{v}^{l+1} = \hat{v}^l + \Delta t \lambda \hat{v}^l$$

Using the LTE definition

$$v((l+1)\Delta t) = v(l\Delta t) + \Delta t \lambda v(l\Delta t) + e^{l}$$

Subtracting yields global error equation

$$E^{l+1} = (I + \Delta t\lambda)E^l + e^l$$

Using magnitudes and the bound on e^l

$$\left| E^{l+1} \right| \le \left| I + \Delta t \lambda \right| \left| E^{l} \right| + \left| e^{l} \right| \le \left(1 + \Delta t \left| \lambda \right| \right) \left| E^{l} \right| + C \left(\Delta t \right)^{2}$$

Convergence Analysis

A helpful bound on difference equations

A lemma bounding difference equation solutions

If
$$|u^{l+1}| \le (1+\varepsilon)|u^l| + b$$
, $u^0 = 0$, $\varepsilon > 0$
Then $|u^l| \le \frac{e^{\varepsilon l}}{\varepsilon}|b|$
To prove, first write u^l as a power series and sum

$$\left|u^{l}\right| \leq \sum_{j=0}^{l-1} \left(1+\varepsilon\right)^{j} \left|b\right| = \frac{1-\left(1+\varepsilon\right)^{l}}{1-\left(1+\varepsilon\right)} \left|b\right|$$

One-step Methods

Convergence Analysis

A helpful bound on difference equations cont.

To finish, note
$$(1+\varepsilon) \le e^{\varepsilon} \Longrightarrow (1+\varepsilon)^l \le e^{\varepsilon l}$$

$$\left|u^{l}\right| \leq \frac{1 - \left(1 + \varepsilon\right)^{l}}{1 - \left(1 + \varepsilon\right)} \left|b\right| = \frac{\left(1 + \varepsilon\right)^{l} - 1}{\varepsilon} \left|b\right| \leq \frac{e^{\varepsilon l}}{\varepsilon} \left|b\right|$$

One-step Methods

Convergence Analysis

Back to Forward Euler Convergence analysis.

Applying the lemma and cancelling terms

$$\left| E^{l+1} \right| \le \left(1 + \Delta t \left| \lambda \right| \right) \left| E^{l} \right| + C \left(\Delta t \right)^{2} \le \frac{e^{l\Delta t \left| \lambda \right|}}{\Delta t \left| \lambda \right|} C \left(\Delta t \right)^{2}$$

Finally noting that $l\Delta t \leq T$,

$$\max_{l \in [0,L]} \left| E^l \right| \le e^{|\lambda|T} \frac{C}{|\lambda|} \Delta t$$

Convergence Analysis

Observations about the forward-Euler analysis.

$$\max_{l \in [0,L]} \left| E^l \right| \le e^{|\lambda|T} \frac{C}{|\lambda|} \Delta t$$

- forward-Euler is order 1 convergent
- Bound grows exponentially with time interval.
- C related to exact solution's second derivative.
- The bound grows exponentially with time.

Convergence Analysis

Exact and forward-Euler(FE) Plots for Unstable Reaction.

Forward-Euler Errors appear to grow with time

Note error grows exponentially with time, as bound predicts

Forward-Euler Errors don't always grow with time

Convergence Analysis

forward-Euler errors for solving circuit equation.

Error does not always grow exponentially with time! **Bound is conservative**

Making LTE Small

Exactness Constraints

Local Truncation Error:
$$\sum_{j=0}^{k} \alpha_{j} v(t_{l-j}) - \Delta t \sum_{j=0}^{k} \beta_{j} \frac{d}{dt} v(t_{l-j}) = e^{l}$$
Can't be from
$$\frac{d}{dt} v(t) = \lambda v(t)$$
LTE

If
$$v(t) = t^p \Rightarrow \frac{d}{dt}v(t) = pt^{p-1}$$

$$\sum_{j=0}^{k} \alpha_{j} \underbrace{\left(\left(k-j\right) \Delta t\right)^{p} - \Delta t}_{j=0} \sum_{j=0}^{k} \beta_{j} \underbrace{p\left(\left(k-j\right) \Delta t\right)^{p-1}}_{q} = e^{k}$$

$$\underbrace{\frac{d}{dt} v\left(t_{k-j}\right)}_{q}$$

Making LTE Small

Exactness Constraints Cont.

$$\sum_{j=0}^{k} \alpha_{j} \left(\left(k - j \right) \Delta t \right)^{p} - \Delta t \sum_{j=0}^{k} \beta_{j} p \left(\left(k - j \right) \Delta t \right)^{p-1} =$$

$$\left(\Delta t \right)^{p} \left(\sum_{j=0}^{k} \alpha_{j} \left(l - j \right)^{p} - \sum_{j=0}^{k} \beta_{j} p \left(l - j \right)^{p-1} \right) = e^{k}$$

If
$$\left(\sum_{j=0}^{k} \alpha_{j} ((k-j))^{p} - \sum_{j=0}^{k} \beta_{j} p(k-j)^{p-1}\right) = 0$$
 then $e^{k} = 0$ for $v(t) = t^{p}$

As any smooth v(t) has a locally accurate Taylor series in t:

$$\underline{\mathbf{if}} \quad \left(\sum_{j=0}^{k} \alpha_j (k-j)^p - \sum_{j=0}^{k} \beta_j p (k-j)^{p-1}\right) = 0 \text{ for all } p \le p_0$$

Then
$$\left(\sum_{j=0}^{k} \alpha_j v(t_{l-j}) - \sum_{j=0}^{k} \beta_j \frac{d}{dt} v(t_{l-j})\right) = e^l = C(\Delta t)^{p_0+1}$$

Making LTE Small

Exactness Constraint k=2

Example

Exactness Constraints:
$$\left(\sum_{j=0}^{k} \alpha_{j} (k-j)^{p} - \sum_{j=0}^{k} \beta_{j} p (k-j)^{p-1}\right) = 0$$

For k=2, yields a 5x6 system of equations for Coefficients

Making LTE Small

Exactness Constraint k=2
Example Continued

Exactness
Constraints for k=2

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & -1 & -1 & -1 \\ 4 & 1 & 0 & -4 & -2 & 0 \\ 8 & 1 & 0 & -12 & -3 & 0 \\ 16 & 1 & 0 & -32 & -4 & 0 \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Forward-Euler
$$\alpha_0 = 1$$
, $\alpha_1 = -1$, $\alpha_2 = 0$, $\beta_0 = 0$, $\beta_1 = 1$, $\beta_2 = 0$,
FE satisfies $p = 0$ and $p = 1$ but not $p = 2 \Rightarrow LTE = C(\Delta t)^2$ Backward-Euler $\alpha_0 = 1$, $\alpha_1 = -1$, $\alpha_2 = 0$, $\beta_0 = 1$, $\beta_1 = 0$, $\beta_2 = 0$,
BE satisfies $p = 0$ and $p = 1$ but not $p = 2 \Rightarrow LTE = C(\Delta t)^2$ Trap Rule $\alpha_0 = 1$, $\alpha_1 = -1$, $\alpha_2 = 0$, $\beta_0 = 0.5$, $\beta_1 = 0.5$, $\beta_2 = 0$,
Trap satisfies $p = 0,1$, or 2 but not $p = 3 \Rightarrow LTE = C(\Delta t)^3$

Making LTE Small

Exactness Constraint k=2 example, generating methods

First introduce a normalization, for example $\alpha_0 = 1$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & -1 \\ 1 & 0 & -4 & -2 & 0 \\ 1 & 0 & -12 & -3 & 0 \\ 1 & 0 & -32 & -4 & 0 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \\ -4 \\ -8 \\ -16 \end{bmatrix}$$

Solve for the 2-step method with lowest LTE

$$\alpha_0 = 1$$
, $\alpha_1 = 0$, $\alpha_2 = -1$, $\beta_0 = 1/3$, $\beta_1 = 4/3$, $\beta_2 = 1/3$

Satisfies all five exactness constraints $LTE = C(\Delta t)^5$

Solve for the 2-step explicit method with lowest LTE

$$\alpha_0 = 1$$
, $\alpha_1 = 4$, $\alpha_2 = -5$, $\beta_0 = 0$, $\beta_1 = 4$, $\beta_2 = 2$
Can only satisfy four exactness constraints $LTE = C(\Delta t)^4$

Making LTE Small

LTE Plots for the FE, Trap, and "Best" Explicit (BESTE).

Making LTE Small

Global Error for the FE, Trap, and "Best" Explicit (BESTE).

Timestep

Making LTE Small

Global Error for the FE, Trap, and "Best" Explicit (BESTE).

Stability of the method

Difference Equation

Why did the "best" 2-step explicit method fail to Converge?

Multistep Method Difference Equation

$$(\alpha_{0} - \lambda \Delta t \beta_{0}) E^{l} + (\alpha_{1} - \lambda \Delta t \beta_{1}) E^{l-1} + \dots + (\alpha_{k} - \lambda \Delta t \beta_{k}) E^{l-k} = e^{l}$$

$$v(l\Delta t) - \hat{v}^{l}$$
LTE

Global Error

We made the LTE so small, how come the Global error is so large?

An Aside on Solving Difference Equations

Consider a general kth order difference equation

$$a_0 x^l + a_1 x^{l-1} + \dots + a_k x^{l-k} = u^l$$

Which must have k initial conditions

$$x^{0} = x_{0}, \ x^{-1} = x_{1}, \ \cdots, \ x^{-k} = x_{k}$$

As is clear when the equation is in update form

$$x^{1} = -\frac{1}{a_{0}} \left(a_{1} x^{0} + \dots + a_{k} x^{-k+1} - u^{1} \right)$$

Most important difference equation result

x can be related to u by
$$x^{l} = \sum_{j=0}^{l} h^{l-j} u^{j}$$

An Aside on Difference Equations Cont.

If
$$a_0 z^k + a_1 z^{k-1} + \dots + a_k = 0$$
 has distinct roots $\zeta_1, \zeta_2, \dots, \zeta_k$

Then
$$x^l = \sum_{j=0}^l h^{l-j} u^j$$
 where $h^l = \sum_{j=1}^k \gamma_j (\varsigma_j)^l$

To understand how h is derived, first a simple case

Suppose
$$x^{l} = \zeta x^{l-1} + u^{l}$$
 and $x^{0} = 0$
 $x^{1} = \zeta x^{0} + u^{1} = u^{1}, \quad x^{2} = \zeta x^{1} + u^{2} = \zeta u^{1} + u^{2}$
 $x^{l} = \sum_{i=0}^{l} \zeta^{l-i} u^{i}$

An Aside on Difference Equations Cont.

Three important observations

If $|\varsigma_i| < 1$ for all i, then $|x^l| \le C \max_j |u^j|$ where C does not depend on l

If $|\varsigma_i| > 1$ for any i, then there exists a bounded u^j such that $|x^l| \to \infty$

If $|\varsigma_i| \le 1$ for all i, and if $|\varsigma_i| = 1$, ς_i is distinct then $|x^l| \le Cl \max_j |u^j|$

Stability of the method

Difference Equation

Multistep Method Difference Equation

$$(\alpha_0 - \lambda \Delta t \beta_0) E^l + (\alpha_1 - \lambda \Delta t \beta_1) E^{l-1} + \dots + (\alpha_k - \lambda \Delta t \beta_k) E^{l-k} = e^l$$

Definition: A multistep method is stable if and only if

As
$$\Delta t \to 0$$
 $\max_{l \in \left[0, \frac{T}{\Delta t}\right]} \left\| E^l \right\| \le C \frac{T}{\Delta t} \max_{l \in \left[0, \frac{T}{\Delta t}\right]} \left\| e^l \right\|$ for any e^l

Theorem: A multistep method is stable if and only if The roots of $\alpha_0 z^k + \alpha_1 z^{k-1} + \dots + \alpha_k = 0$ are either Less than one in magnitude or equal to one and distinct

Stability of the method

Stability Theorem "Proof"

Given the Multistep Method Difference Equation

$$(\alpha_0 - \lambda \Delta t \beta_0) E^l + (\alpha_1 - \lambda \Delta t \beta_1) E^{l-1} + \dots + (\alpha_k - \lambda \Delta t \beta_k) E^{l-k} = e^l$$
If the roots of
$$\sum_{j=0}^k \alpha_j z^{k-j} = 0$$
 are either

- less than one in magnitude
- equal to one in magnitude but distinct

Then from the aside on difference equations

$$||E^l|| \le Cl \max_l ||e^l||$$

From which stability easily follows.

Stability of the method

Stability Theorem "Proof"

Stability of the method

The BESTE Method

Best explicit 2-step method

$$\alpha_0 = 1$$
, $\alpha_1 = 4$, $\alpha_2 = -5$, $\beta_0 = 0$, $\beta_1 = 4$, $\beta_2 = 2$

Stability of the method

Dahlquist's First Stability
Barrier

For a stable, explicit k-step multistep method, the maximum number of exactness constraints that can be satisfied is less than or equal to k (note there are 2k coefficients). For implicit methods, the number of constraints that can be satisfied is either k+2 if k is even or k+1 if k is odd.

Convergence Analysis

Conditions for convergence, stability and consistency

1) Local Condition: One step errors are small (consistency)

Exactness Constraints up to p_0 (p_0 must be > 0)

$$\Rightarrow \max_{l \in [0, \frac{T}{\Delta t}]} \|e^l\| \le C_1 (\Delta t)^{p_0 + 1} \text{ for } \Delta t < \Delta t_0$$

2) Global Condition: One step errors grow slowly (stability)

roots of $\sum_{j=0}^{k} \alpha_j z^{k-j} = 0$ inside or simple on unit circle

$$\Rightarrow \max_{l \in \left[0, \frac{T}{\Delta t}\right]} \left\| E^l \right\| \leq C_2 \frac{T}{\Delta t} \max_{l \in \left[0, \frac{T}{\Delta t}\right]} \left\| e^l \right\|$$

Convergence Result: $\max_{l \in [0, \frac{T}{\Delta t}]} ||E^l|| \le CT (\Delta t)^{p_0}$

Summary

Small Timestep issues for Multistep Methods

Local truncation error and Exactness.

Difference equation stability.

Stability + Consistency implies convergence.

Next time

Absolute Stability for two time-scale examples.

Oscillators.

Maybe Runge-Kutta schemes