$\frac{\mathrm{INM460} \ / \ \mathrm{IN3060}}{\mathrm{Computer \ Vision \ Mathematics \ Worksheet}}$

Drs Greg Slabaugh and Sepehr Jalali City University London

This worksheet contains a set of questions related to mathematics for computer vision.

Question 1

Let two 2D points be $\mathbf{p} = [1, 1]^T$ and $\mathbf{q} = [3, 4]^T$, and let c = 3 be a scalar value.

1.1

What is the distance d between \mathbf{p} and \mathbf{q} ?

1.2

Find a vector \mathbf{t} , that starts at \mathbf{p} and ends at \mathbf{q} .

1.3

Find $\hat{\mathbf{t}}$, a normalised version of \mathbf{t} .

1.4

What is $c\hat{\mathbf{t}}$?

1.5

What is the element-wise product of \mathbf{p} and \mathbf{q} ?

1.6

What is the dot product of \mathbf{p} and \mathbf{q} ?

1.7

Let us homogenise **p** by adding a w = 1 value, i.e., $\mathbf{p} = [1, 1, 1]^T$. In homogeneous coordinates, is the 2D point $\mathbf{p} = [1, 1, 1]^T$ the same as a 2D homogeneous point $\mathbf{r} = [2, 2, 2]^T$?

Question 2

Let two 2D points in homogeneous coordinates be
$$\mathbf{p}_1 = [-1, 0, 1]^T$$
, $\mathbf{p}_2 = [0, -1, 1]^T$ and $\mathbf{p}_3 = [1, 0, 1]^T$. Let a matrix $\mathbf{A} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 1 \end{bmatrix}$ and a matrix

$$\mathbf{B} = \left[\begin{array}{ccc} 0 & 1 & 3 \\ 1 & 1 & 3 \\ 0 & 0 & 1 \end{array} \right].$$

2.1

What is $\mathbf{A} - \mathbf{B}$?

2.2

What is the element-wise product $\mathbf{A} \cdot * \mathbf{A}$?

2.3

What is **AB**, the matrix multiplication of **A** with **B**?

2.4

What is \mathbf{Ap}_1 ?

2.5

What is Ap_2 ?

2.6

What is \mathbf{Ap}_3 ?

2.7

 \mathbf{A} is a special type of transformation matrix. On a 2D graph, draw points \mathbf{p}_1 , \mathbf{p}_2 , and \mathbf{p}_3 , and draw lines between the points to form a triangle. On the same graph, draw $\mathbf{A}\mathbf{p}_1$, $\mathbf{A}\mathbf{p}_2$, and $\mathbf{A}\mathbf{p}_3$, and draw lines between the points to form a triangle. Based on the transformed shape, describe the effect the transformation \mathbf{A} has on points.

Question 3

Let four 2D points be $\mathbf{p}_1 = [0,0]^T$, $\mathbf{p}_2 = [2,3]^T$, $\mathbf{p}_3 = [3,2]^T$, $\mathbf{p}_4 = [5,5]^T$.

3.1

Write four linear equations in the form xm + b = y using the x and y values of the four points.

3.2

Express your four equations in matrix form, $\mathbf{Ac} = \mathbf{d}$, where $\mathbf{c} = [m, b]^T$ denote the slope and intercept for a line.

3.3

Use the pseudoinverse in Matlab to find the optimal c of the best fitting line through the points. Write Matlab code to display the points, and the line.

3.4

The question above is looking for a line y = mx + b that passes through the points by finding the best m and b given the points. What if instead of a line, our task was to compute the best curve for the equation $y = a_1x + a_2x^2 + a_3x^3$? Can this be solved using linear least squares? If so, determine the solution as above.

Question 4

Let a single-variate function $f(x) = 4x^3 + 5x^2 + 2x + 7$, and a multi-variate function $g(x,y) = 3x^2 + xy - y^3 + 2$.

4.1

What is the derivative $\frac{df}{dx}$?

4.2

What is the partial derivative $\frac{\partial g}{\partial x}$?

4.3

What is the gradient of g(x,y)? Evaluate the gradient at a point $[4,5]^T$.

4.4

What is the second partial derivative $\frac{\partial^2 g}{\partial y^2}$?

4.5

What is the Laplacian of g(x, y)?

4.6

Find the Taylor series expansion of f(x) around a point x = 0.

4.7

What is the integral $\int f(x)dx$?