实验日期 2025年3月1日

实验名称 示波器实验(虚拟仿真)

- 一、实验预习(本实验为虚拟仿真项目,虚拟仿真和选课是同一个系统,用户名和密码一样,默认为学号,登录后可修改,请务必牢记)
- 1. 示波器的基本结构主要有哪些?

京波器基本结构主要有示波管,放大年旅,衰减年统,打糊和畛 系统及电派等组成,示波管包含阳极,阳极,第一、第二阳极, 偏转校,荧光屏等

2. 李萨如图形形成原理是什么?如何利用李萨如图形测量待测信号频率?

准不同的信号分别输入 X轴轮 Y轴输入端, 见两个信号初相信 恒定步骤率相同或简单的整数 化时, 荧光屏上会显示 稳定的攀如图形。

1

二. 实验现象及原始数据记录(李萨如图形藏图或拍照附在报告中) 实验模式

1. 测量示波器自备方波输出信号的周期(时基分别为 0.1、0.2、0.5ms/DIV)。

表 1 方波信号频率测量

选择时基(ms/DIV)	0.1	0.2	0.5	
方波信号 (Hz)	/000	/000	1000	

2. 用示波器测量信号发生器输出的方波信号频率,输出信号标称频率为 200Hz-2KHz, 间隔 200Hz。

表 2 信号发生器输出的方波信号频率测量

标称频率 (kHz)	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
时基 (ms/DIV)	0.5	0.5	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.05
格数(估读一位)	/D, [©]	5.0	8.4	6.4	10.0	8.4	7.2	6.4	5.8	10.0
测量周期 (ms)	5	2.5	1.68	1.28	1	0.84	0.72	0-64	0.58	0.5
测量频率(Hz)	200	400	575	181	/00V	סמו	1389	1562	1724	2005

- 3. 三角波信号的测量。
- (1) 选择信号发生器输出三角波,频率分别为 500、1K、1.5K、2K Hz;
- (2) 测量各个频率下三角波的上升时间、下降时间和周期。

表 3 不同频率下三角波信号测量

频率(Hz)	500	1000	1500	2000
三角波信号上升时间 (ms)	1	0.5	0.34	0.26
三角波信号下降时间 (ms)	1	0.5	0.34	0.26
三角波信号周期 (ms)	2	1	0.68	0.52

4. 观察李萨如图形并测频率。