

Business Lab for Financial Engineering

Nguyen Minh Duc 20202026

Contents

- Trading Strategy
- Stock Movement as Markov Process

Experiment

Trading Strategy

Just buy low and sell high, simple!

How?

Trading Strategy

Just buy low and sell high, simple!

Then, how to predict the future?

What is a Markov process?

Given the historical states of a random system $X_1, X_2, ..., X_t$, the probability of moving to the next state depends only the current state, i.e., $P(X_{t+1} = x | X_1, X_2, ..., X_t) = P(X_{t+1} = x | X_t)$

2 Stock Movement as a Markov process

We consider the daily return of the stock: $r_t = \frac{P_t}{P_{t-1}} - 1$.

Classify each r_t as

- High Increase (HI): $r_t > Q_{inc}(75\%)$
- Moderate Increase (MI): $Q_{inc}(50\%) \le r_t < Q_{inc}(75\%)$
- Slight Increase (SI): $Q_{inc}(25\%) \le r_t < Q_{inc}(50\%)$
- Neutral (Ne): $Q_{dec}(25\%) \le r_{t} < Q_{inc}(25\%)$
- Slight Decrease (SD): $Q_{dec}(25\%) \leq r_t < Q_{dec}(25\%)$
- Moderate Decrease (MD): $Q_{dec}(25\%) \le r_t < Q_{dec}(25\%)$
- High Decrease (HD): $r_{
 m t} < {
 m Q}_{
 m dec}(25\%)$

2 Stock Movement as a Markov process

We define a hyperparameter: *lookback* – The number of prior prices to consider

The sequence of prices can be encoded as a tuple based on the daily return Example: (HI, SD Ne, HD, MI)

Now, we can use the historical prices to estimate the probability distribution of the next price state

$$P(X_{t+1} = (x_{t+1}, x_{t+2}, \dots, x_{lookback}) \mid X_t = (x_{t-lookback+1}, x_{t-lookback+2}, \dots, x_t))$$

Use prediction in the strategy

$$P[X_{t+1} = (x_{t+1}, x_{t+2}, \dots, x_{lookback}) \mid X_t = (x_{t-lookback+1}, x_{t-lookback+2}, \dots, x_t)]$$

The prediction of future trend is the price state with the highest probability $\hat{X}_{t+1} = \operatorname{argmax}_{x} \left(P[X_{t+1} = x \mid X_{t} = (x_{t-lookback+1}, x_{t-lookback+2}, ..., x_{t})] \right)$

Experiment

Experimental setup

```
perf = markov_benchmark(
    ticker=ticker,
    train_start_date='2010-01-01',
    train_end_date='2022-12-31',
    test_start_date='2023-01-01',
    test_end_date='2023-12-31',
    threshold_to_buy=threshold_to_buy,
    threshold_to_sell=threshold_to_sell,
    lookback=lookback,
    initial_cash=1000,
    num_share_per_trade=1,
)
```

Experiment

2

Experimental results

Table 1: Comparison of Stock Performance Metrics						Sharpe ratio	0.081	0.102			Sharpe ratio	0.135	0.098			Sharpe ratio	-0.011	-0.013	
Ticker	Metric	Markov	Stock	Better	NTAP	Expected return Volatility	$0.001 \\ 0.015$	0.002 0	0	ROP	Expected return Volatility	0.001 0.006	0.001 0.010	1	JNPR	Expected return Volatility	-0.000 0.013	-0.000 0.015	1
ACN	Sharpe ratio Expected return Volatility	0.101 0.001 0.009	0.086 0.001 0.014	1	NVDA	Sharpe ratio Expected return Volatility	0.193 0.004 0.020	0.178 0.005 0.031	1	CRM	Sharpe ratio Expected return Volatility	0.157 0.002 0.013	0.152 0.003 0.019	1	KEYS	Sharpe ratio Expected return Volatility	-0.012 -0.000 0.014	-0.008 -0.000 0.018	0
AMD	Sharpe ratio Expected return Volatility	0.104 0.003 0.024	0.127 0.004 0.030	0	PTC	Sharpe ratio Expected return Volatility	0.090 0.001 0.011	0.122 0.002 0.013	0	STX	Sharpe ratio Expected return Volatility Sharpe ratio	0.080 0.001 0.018	0.107 0.002 0.022 0.132	0	KLAC	Sharpe ratio Expected return Volatility	0.080 0.001 0.013	0.093 0.002 0.022	0
АРН	Sharpe ratio Expected return	0.085 0.001	0.097 0.001	0	QCOM	Sharpe ratio Expected return Volatility	0.064 0.001 0.016	0.075 0.002 0.020	0	NOW	Expected return Volatility Sharpe ratio	0.001 0.013 0.147	0.003 0.020 0.127	0	LRCX	Sharpe ratio Expected return Volatility	0.145 0.002 0.015	0.126 0.003 0.023	1
ADI	Volatility Sharpe ratio	0.010	0.012	1	ROP	Sharpe ratio Expected return Volatility	0.135 0.001 0.006	0.098 0.001 0.010	1	SMCI	Expected return Volatility Sharpe ratio	0.006 0.039 0.101	0.006 0.047 0.118	1	- MCHP	Sharpe ratio Expected return Volatility	0.041 0.001 0.018	0.065 0.001 0.021	0
ADI	Expected return Volatility	$0.001 \\ 0.013$	$0.001 \\ 0.016$	1	CRM	Sharpe ratio 0. Expected return 0.	0.157	0.152	1	SNPS	Expected return Volatility	0.001 0.010	0.002 0.017	0		Sharpe ratio	0.080	0.104	0
AAPL	Sharpe ratio Expected return	$0.117 \\ 0.001$	$0.144 \\ 0.002$	0			0.002 0.013	0.003 0.019		TYL	Sharpe ratio Expected return	0.098 0.001	0.071 0.001	1	MU	Expected return Volatility	0.002 0.019	0.002 0.023	
	Volatility Sharpe ratio	0.010	0.002		STX	Sharpe ratio Expected return Volatility	$0.080 \\ 0.001 \\ 0.018$	0.107 0.002 0.022	0	VRSN	Volatility Sharpe ratio Expected return	0.012 0.021 0.000	0.017 0.011 0.000	1	MSFT	Sharpe ratio Expected return Volatility	0.109 0.001 0.011	0.123 0.002 0.016	0
ANET	Expected return Volatility	0.003 0.025	0.003 0.029	1	NOW	Sharpe ratio Expected return Volatility	0.060 0.001 0.013	0.132 0.003 0.020	0	WDC	Volatility Sharpe ratio Expected return	0.008 0.060 0.001	0.012 0.096 0.002	0	MPWR	Sharpe ratio Expected return Volatility	0.069 0.001 0.017	0.096 0.003 0.030	0
AVGO	Sharpe ratio Expected return Volatility	0.154 0.002 0.010	0.153 0.003 0.020	1	SMCI	Sharpe ratio Expected return Volatility	0.147 0.006 0.039	0.020 0.127 0.006 0.047	1	ZBRA	Volatility Sharpe ratio 2 Expected return Volatility	0.020 0.048 0.001 0.017	0.024 0.020 0.001 0.026	1	MSI	Sharpe ratio Expected return Volatility	0.017 0.053 0.000 0.008	0.074 0.001 0.012	0

Experiment

Case study with NVIDIA

Thank you