UNIWERSYTET OPOLSKI

Wydział Matematyki, Fizyki i Informatyki Instytut Informatyki

Praca iżynierska

Natalia Szymczak

Aplikacja mobilna dla posiadaczy koni

Mobile Aplication for horse owner

Praca wykonana pod kierunkiem dr Jacka Iwańskiego

OPOLE 2022

Streszczenie:				
Abstract:				
Keywords:				
Klasyfikacja tematyczna wg MSC 2020:				

Spis treści

1	$\mathbf{W}\mathbf{p}$	rowadzenie
	1.1	Geneza powstania pracy
	1.2	Przegląd istniejących rozwiązań
	1.3	Cel pracy
2	Pro	jekt aplikacji
	2.1	Wymagania funkcjonalne i niefunkcjonalne
	2.2	Baza danych
		2.2.1 Model konceptualny
		2.2.2 Model logiczny
		2.2.3 Model fizyczny
	2.3	Przypadki użycia
		2.3.1 Diagram przypadków użycia
		2.3.2 Scenariusze przypadków użycia
	2.4	Diagramy stanów
	2.5	Diagramy aktywności
	2.6	Diagram klas
	$\frac{2.5}{2.7}$	Architektura aplikacji
	۵.,	Titelinvekvara aprikacji
3	Imp	olementacja
	3.1	Środowisko programistyczne
	3.2	Technologie użyte w pracy
	3.3	Wykorzystane wzorce projektowe
	3.4	Model architektoniczny MVVM
	3.5	Interfejs użytkownika
	3.6	Wybrane aspekty implementacyjne
4	Tes	ty aplikacji
	4.1	Unit testy
	4.2	Test case
	4.3	Baza błędów
5	Pod	Isumowanie
6	Bib	liografia

7	Spis rysunków	10
8	Spis listingów	11
9	Spis tabel	12
10	Opis zawartości APD	13

Wstęp

Wprowadzenie

1.1 Geneza powstania pracy

1.2 Przegląd istniejących rozwiązań

Na rynku dostępne jest wiele aplikacji dedykowanych właścicielom koni. Wiele aplikacji poświęconych jest monitoriwaniu treningów. Jest to funkcjonalność, której nie ma w stworzonej aplikacji, więc aplikacje tego typu nie będą analizowane. Przygotowane aplikacje zawierają podobne funkcjonalności do aplikacji "HorseApp". Oprócz opisu działania aplikacji oraz analizy podobieństw, przeanalizowane zostaną mocne i słabe strony każdej z aplikacji.

FEI HorseApp Lician Horse Ridely The equestrian

1.3 Cel pracy

Projekt aplikacji

2.1 Wymagania funkcjonalne i niefunkcjonalne

Funkcjonalności aplikacji mobilnej oraz desktopowej nie są takie same mimo iż są podłączone do jednej bazy, więc czerpią z tego samego źródła informacji. Pomimo różnic niektóre funkcjonalności pokryją się w obu tych produktach.

Wymagania funkcjonalne które muszą spełniać obie aplikacje:

- logowanie do aplikacji,
- resetowanie hasła przez e-mail,

Aplikacja mobilna będzie służyć użytkownikom głównie do zapisu aktualnych wydarzeń z życia stajni. Jej głównym celem jest szybkie zapisanie informacji o aktywnościach koni i ich wizytach u lekarzy bądź kowali. Można w niej także szybko sprawdzić przygotowany plan żywienia, oraz daty zbliżających się zawodów.

Wymagania funkcjonalne dla aplikacji mobilnej:

- zarządzanie aktywnościami (dodawanie, edytowanie, usuwanie)
- wyświetlanie dodanych aktywności oraz ich szczegółowych informacji,
- planowanie wizyt,
- zarządzanie wizytami (dodawanie, edytowanie, usuwanie)
- wyświetlanie szczegółów wizyt,
- zapisywanie zdjęć z wizyt lekarzy,
- przypomnienia o wizytach,
- sprawdzenie/wybór planu żywienia,
- sprawdzenie dat zawodów,

- potwierdzanie udziału w zawodach,
- udostępnianie swojego konia innym użytkownikom aplikacji

Aplikacja desktop-owa przeznaczona jest zarówno dla użytkowników posiadających swoje konie jak i dla osób zarządzających klubem jeździeckim. W aplikacji desktop-owej posiadacze koni będą mogli obejrzeć zgromadzone informacje w przystępniejszej formie na dużym ekranie, stworzyć plan żywienia swojego konia, jak także przeanalizować statystki swoich koni. Osoby zarządzające klubem będą miały możliwość dodawania nowych użytkowników i koni jak także sprawdzania statystyk wszystkich koni klubowych.

Wymagania funkcjonalne dla aplikacji desktopowej:

- zarzadzanie kontami użytkowników,
- tworzenie planów żywienia,
- zarządzanie końmi,
- tworzenie statystyk aktywności,
- przeglądanie historii wizyt,
- planowanie zawodów

Jakiś krótki tekst

Wymagania niefunkcjonalne:

- 2.2 Baza danych
- 2.2.1 Model konceptualny
- 2.2.2 Model logiczny
- 2.2.3 Model fizyczny
- 2.3 Przypadki użycia
- 2.3.1 Diagram przypadków użycia
- 2.3.2 Scenariusze przypadków użycia
- 2.4 Diagramy stanów
- 2.5 Diagramy aktywności
- 2.6 Diagram klas
- 2.7 Architektura aplikacji

Jaka baza jakie połączenie itp.

Implementacja

- 3.1 Środowisko programistyczne
- 3.2 Technologie użyte w pracy
- 3.3 Wykorzystane wzorce projektowe
- 3.4 Model architektoniczny MVVM
- 3.5 Interfejs użytkownika
- 3.6 Wybrane aspekty implementacyjne

jeden viewmodel obsługuje dwa widoki (dodawanie aktywności i szczegóły aktywności) kontrolki

Testy aplikacji

- 4.1 Unit testy
- 4.2 Test case
- 4.3 Baza błędów

Podsumowanie

Rozdział 6 Bibliografia

Rozdział 7 Spis rysunków Rozdział 8 Spis listingów Rozdział 9 Spis tabel

Rozdział 10 Opis zawartości APD