CMIP6 Model Documentation

Institute: CAS

Model: FGOALS-G3
Topic: Atmosphere

Doc. Generated: 2018-04-12

 $\begin{tabular}{lll} \textbf{Doc. Seeded From:} & N/A \end{tabular}$

Specialization Version: 1.0.2

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key	Properties 1
	1.1	Key Properties
	1.2	Resolution
	1.3	Timestepping
	1.4	Orography
2	Grio	1
4	2.1	Grid
	$\frac{2.1}{2.2}$	
	$\frac{2.2}{2.3}$	
	_	
	2.4	Vertical
3	Dyn	amical Core
	3.1	Dynamical Core
	3.2	Top Boundary 9
	3.3	Lateral Boundary
	3.4	Diffusion Horizontal
	3.5	Advection
	3.6	Tracers
	3.7	Momentum
4	Dod	iation 14
4	nau 4.1	Radiation
	4.1	Shortwave Radiation
	4.3	Shortwave GHG
	4.4	Shortwave Cloud Ice
	4.5	Shortwave Cloud Liquid
	4.6	Shortwave Cloud Inhomogeneity
	4.7	Shortwave Aerosols
	4.8	Shortwave Gases
	4.9	Longwave Radiation
		Longwave GHG
		Longwave Cloud Ice
		Longwave Cloud Liquid
		Longwave Cloud Inhomogeneity
	4.14	Longwave Aerosols
	4.15	Longwave Gases
5	Turl	oulence Convection 30
	5.1	Turbulence Convection
	5.2	Boundary Layer Turbulence
	5.3	Deep Convection
	5.4	Shallow Convection
	J.1	Shellon Collisionoli
6		rophysics Precipitation 35
	6.1	Microphysics Precipitation
	6.2	Large Scale Precipitation
	6.3	Large Scale Cloud Microphysics 35

7	Clo	ud Scheme	37
	7.1	Cloud Scheme	37
	7.2	Optical Cloud Properties	38
	7.3	Sub Grid Scale Water Distribution	39
	7.4	Sub Grid Scale Ice Distribution	40
8	Obs	servation Simulation	41
	8.1	Observation Simulation	41
	8.2	Isscp Attributes	41
	8.3	Cosp Attributes	42
	8.4	Radar Inputs	42
	8.5	Lidar Inputs	43
_	C	avity Waves	4 =
9	Gra	ivity waves	45
9	Gra 9.1	Gravity Waves	45
9			
9	9.1	Gravity Waves	45
	9.1 9.2 9.3	Gravity Waves	45 46
	9.1 9.2 9.3 • Nat	Gravity Waves Orographic Gravity Waves Non Orographic Gravity Waves	45 46 47
	9.1 9.2 9.3 • Nat 10.1	Gravity Waves Orographic Gravity Waves Non Orographic Gravity Waves tural Forcing	45 46 47 49
	9.1 9.2 9.3 Nat 10.1 10.2	Gravity Waves Orographic Gravity Waves Non Orographic Gravity Waves tural Forcing Natural Forcing	45 46 47 49
	9.1 9.2 9.3 Nat 10.1 10.2 10.3	Gravity Waves Orographic Gravity Waves Non Orographic Gravity Waves tural Forcing Natural Forcing Solar Pathways	45 46 47 49 49
	9.1 9.2 9.3 Nat 10.1 10.2 10.3 10.4	Gravity Waves Orographic Gravity Waves Non Orographic Gravity Waves tural Forcing Natural Forcing Solar Pathways Solar Constant	45 46 47 49 49 49
	9.1 9.2 9.3 Nat 10.1 10.2 10.3 10.4 10.5	Gravity Waves Orographic Gravity Waves Non Orographic Gravity Waves tural Forcing Natural Forcing Solar Pathways Solar Constant Orbital Parameters	45 46 47 49 49 49 50

1 Key Properties

Atmosphere key properties

1.1	\mathbf{Kev}	Pro	perties
	,		

Atmosphere key properties

1.1.1 Name *

 $Name\ of\ atmos\ model\ code$

Enter TEXT:

1.1.2 Keywords *

 $Keywords\ associated\ with\ atmos\ model\ code$

Enter COMMA SEPERATED list:

1.1.3 Overview *

Overview of atmos model.

Enter TEXT:

1.1.4 Model Family *

 $Type\ of\ atmospheric\ model.$

AGCM - Atmospheric General Circulation Model
ARCM - Atmospheric Regional Climate Model
Other - please specify:

1.1.5 Basic Approximations *

 $Basic\ approximations\ made\ in\ the\ atmosphere.$

Select MULTIPLE options:

Ш	Primitive equations
	Non-hydrostatic
	Anelastic
	Boussinesq
	Hydrostatic
	Quasi-hydrostatic
П	Other - please specify:

1.2 Resolution

Characteristics of the model resolution

1.2.1 Overview

Overview of characteristics of the model resolution in atmos model.

Enter TEXT:

1.2.2 Horizontal Resolution Name *

This is a string usually used by the modelling group to describe the resolution of the model grid, e.g. T42, N48.

Enter TEXT:

1.2.3 Canonical Horizontal Resolution *

Expression quoted for gross comparisons of resolution, e.g. 2.5 x 3.75 degrees lat-lon.

Enter TEXT:

1.2.4 Range Horizontal Resolution *

Range of horizontal resolution with spatial details, eg. 1 deg (Equator) - 0.5 deg

Enter TEXT:

1.2.5 Number Of Vertical Levels *

Number of vertical levels resolved on the computational grid.

Enter INTEGER value:

1.2.6 High Top *

 $Does \ the \ atmosphere \ have \ a \ high-top? \ High-Top \ atmospheres \ have \ a \ fully \ resolved \ stratosphere \ with \ a \ model \ top \ above \ the \ stratopause.$

Sele	ct either	TRUE	\mathbf{or}	FALSE:
	True			False

1.3 Timestepping

Characteristics of the atmosphere model time stepping

1.3.1 Overview

 $Overview\ of\ characteristics\ of\ the\ atmosphere\ model\ time\ stepping\ in\ atmos\ model.$

Enter TEXT:

1	.3.	2	Timestep	Dyna	mics	×
•		_	Timestep	- , , 110		

 $Timestep\ for\ the\ dynamics\ in\ seconds$

Enter INTEGER value:

1.3.3 Timestep Shortwave Radiative Transfer

Timestep for the shortwave radiative transfer in seconds.

Enter INTEGER value:

1.3.4 Timestep Longwave Radiative Transfer

Timestep for the longwave radiative transfer in seconds.

Enter INTEGER value:

1.4 Orography

Characteristics of the model orography

1.4.1 Overview

Overview of characteristics of the model orography in atmos model.

Enter TEXT:

1.4.2 Type *

 $Type\ of\ orographic\ representation.$

Select SINGLE option:		
	Fixed: present day	
	Fixed: modified - Provide details of modification below	
	Other - please specify:	

1.4.3 Modified

If the orography type is modified describe the adaptation.

Select MULTIPLE options:		
	Related to ice sheets	
	Related to tectonics	
	Modified mean	
	Modified variance if taken into account in model (cf gravity waves)	

	Other - please specify:
1.4.4	Time-varying
Describe	$any\ time\ varying\ orographic\ change$

2 Grid

 $Atmosphere\ grid$

2.1 Grid

 $Atmosphere\ grid$

2.1.1 Name

 $Name\ of\ grid\ in\ atmos\ model.$

Enter TEXT:

2.1.2 Overview

Overview of grid in atmos model.

Enter TEXT:

2.2 Discretisation

 $Atmosphere\ grid\ discretisation$

2.2.1 Overview

Overview of atmosphere grid discretisation in atmos model.

Enter TEXT:

2.2.2 Overview *

Overview description of grid discretisation in the atmosphere

Enter TEXT:

2.3 Horizontal

Atmosphere discretisation in the horizontal

2.3.1 Scheme Type *

Horizontal discretisation type

Select SINGLE option:		
	Spectral	
	Fixed grid	
	Other - please specify:	

2.3.2	Scheme Method *
Horizont	al discretisation method
Sele	ct SINGLE option:
	Finite elements
	Finite volumes
	Finite difference
	Centered finite difference
2.3.3	Scheme Order *
Horizont	al discretisation function order
Sele	ct SINGLE option:
	Second
	Third
	Fourth
	Other - please specify:
2.3.4	Horizontal Pole
	Horizontal Pole al discretisation pole singularity treatment
Horizont	
Horizont	al discretisation pole singularity treatment
Horizont	al discretisation pole singularity treatment ct SINGLE option:
Horizont	al discretisation pole singularity treatment ct SINGLE option: Filter
Horizont	al discretisation pole singularity treatment ct SINGLE option: Filter Pole rotation
Horizont Sele	al discretisation pole singularity treatment et SINGLE option: Filter Pole rotation Artificial island
Horizont Sele	al discretisation pole singularity treatment ct SINGLE option: Filter Pole rotation Artificial island Other - please specify:
Horizont Sele	al discretisation pole singularity treatment et SINGLE option: Filter Pole rotation Artificial island Other - please specify: Grid Type *
Horizont Sele	ct SINGLE option: Filter Pole rotation Artificial island Other - please specify: Grid Type * al grid type
Horizont Sele	ct SINGLE option: Filter Pole rotation Artificial island Other - please specify: Grid Type * al grid type ct SINGLE option:
Horizont Sele	al discretisation pole singularity treatment ct SINGLE option: Filter Pole rotation Artificial island Other - please specify: Grid Type * al grid type ct SINGLE option: Gaussian
Horizont Sele	ct SINGLE option: Filter Pole rotation Artificial island Other - please specify: Grid Type * al grid type ct SINGLE option: Gaussian Latitude-Longitude

2.4 Vertical

 $Atmosphere\ discretisation\ in\ the\ vertical$

2.4.1 Coordinate Type *

 $Type\ of\ vertical\ coordinate\ system$

Select MULTIPLE options:			
	Isobaric - Vertical coordinate on pressure levels		
	Sigma - Allows vertical coordinate to follow model terrain		
	Hybrid sigma-pressure - Sigma system near terrain and isobaric above		
	Hybrid pressure		
	Vertically lagrangian		
	Other - please specify:		

3 Dynamical Core

Characteristics of the dynamical core

3.	1	Dynam	ical	Core

Characteristics of the dynamical core

3.1.1 Name

 $Commonly\ used\ name\ for\ the\ dynamical\ core\ in\ atmos\ model.$

Enter TEXT:

3.1.2 Overview

Overview of characteristics of the dynamical core in atmos model.

Enter TEXT:

3.1.3 Timestepping Type *

 $Time stepping\ framework\ type$

Select	SINGLE option:
	Adams-Bashforth
	Explicit
	Implicit
	Semi-implicit
	Leap frog
	Multi-step
	Runge Kutta fifth order
	Runge Kutta second order
	Runge Kutta third order
	Other - please specify:
3.1.4 F	Prognostic Variables *
List of the	$model\ prognostic\ variables$
Select	MULTIPLE options:
	Surface pressure
	Wind components

Divergence/curl

	Temperature
	Potential temperature
	Total water
	Water vapour
	Water liquid
	Water ice
	Total water moments
	Clouds
	Radiation
	Other - please specify:
3.2 T	op Boundary
Type of	boundary layer at the top of the model
3.2.1	Overview
Overview	of type of boundary layer at the top of the model in atmos model.
	of type of boundary layer at the top of the model in atmos model. • TEXT:
Enter	
Enter 3.2.2	TEXT:
Enter 3.2.2 Top bound	TEXT: Top Boundary Condition *
Enter 3.2.2 Top bound	TEXT: Top Boundary Condition * lary condition
Enter 3.2.2 Top bound	TEXT: Top Boundary Condition * lary condition t SINGLE option:
Enter 3.2.2 Top bound	TEXT: Top Boundary Condition * lary condition t SINGLE option: Sponge layer
Selection	TEXT: Top Boundary Condition * lary condition t SINGLE option: Sponge layer Radiation boundary condition Other - please specify:
Selection 3.2.3	Top Boundary Condition * lary condition t SINGLE option: Sponge layer Radiation boundary condition Other - please specify:
Selection 3.2.3	TEXT: Top Boundary Condition * lary condition t SINGLE option: Sponge layer Radiation boundary condition Other - please specify:
Selection 3.2.3 Top bound Top bound	Top Boundary Condition * lary condition t SINGLE option: Sponge layer Radiation boundary condition Other - please specify:
Selection 3.2.3 Top bound Selection Top bound Top bound Enter	TEXT: Top Boundary Condition * lary condition t SINGLE option: Sponge layer Radiation boundary condition Other - please specify: Top Heat * lary heat treatment
Selection Select	TEXT: Top Boundary Condition * lary condition t SINGLE option: Sponge layer Radiation boundary condition Other - please specify: Top Heat * lary heat treatment TEXT:
Selection 3.2.2	TEXT: Top Boundary Condition * lary condition t SINGLE option: Sponge layer Radiation boundary condition Other - please specify: Top Heat * lary heat treatment TEXT: Top Wind *

3.3 Lateral Boundary

 $Type\ of\ lateral\ boundary\ condition\ (if\ the\ model\ is\ a\ regional\ model)$

3.3.1	Overview
Overview	$of\ type\ of\ lateral\ boundary\ condition\ (if\ the\ model\ is\ a\ regional\ model)\ in\ atmos\ model.$
Ente	r TEXT:
3.3.2	Condition
Type of le	uteral boundary condition
Selec	t SINGLE option:
	Sponge layer
	Radiation boundary condition
	Other - please specify:

3.4 Diffusion Horizontal

 $Horizontal\ diffusion\ scheme$

3.4.1 Overview

Overview of horizontal diffusion scheme in atmos model.

Enter TEXT:

3.4.2 Scheme Name

 $Horizontal\ diffusion\ scheme\ name$

Enter TEXT:

3.4.3 Scheme Method *

 $Horizontal\ diffusion\ scheme\ method$

Select SINGLE option:	
	Iterated Laplacian
	Bi-harmonic
	Other - please specify:

3.5 Advection

Dynamical core advection

3.5.1 Overview

 $Overview\ of\ dynamical\ core\ advection\ in\ atmos\ model.$

Enter TEXT:

Tracer	$advection\ scheme$
3.6.1	Scheme Name
Tracer o	advection scheme name
Sele	ect SINGLE option:
	Heun
	Roe and VanLeer
	Roe and Superbee
	Prather
	UTOPIA
	Other - please specify:
3.6.2	Scheme Characteristics * advection scheme characteristics
Sele	ect MULTIPLE options:
	Eulerian
	Modified Euler
	Lagrangian
	Semi-Lagrangian
	Cubic semi-Lagrangian
	Quintic semi-Lagrangian
	Mass-conserving
	Finite volume
	Flux-corrected
	Linear
	Quadratic
	Quartic
	Other - please specify:
3.6.3	Conserved Quantities *
	advection scheme conserved quantities

Select MULTIPLE options:

3.6

Tracers

11

	Dry mass
	Tracer mass
	Other - please specify:
	Conservation Method *
	lvection scheme conservation method
Selec	et SINGLE option:
Ш	Conservation fixer
	Priestley algorithm
	Other - please specify:
0 7 1	V.T
	Momentum
Moment	$tum\ advection\ scheme$
3.7.1	Scheme Name
Momentu	m advection schemes name
Selec	et SINGLE option:
	VanLeer
	Janjic
	SUPG (Streamline Upwind Petrov-Galerkin)
	Other - please specify:
	Scheme Characteristics *
	m advection scheme characteristics
Selec	et MULTIPLE options:
	2nd order
	4th order
	Cell-centred
	Staggered grid
	Semi-staggered grid
	Other - please specify:

3.7.3	Scheme Staggering Type *
Moment	tum advection scheme staggering type
Sele	ect SINGLE option:
	Arakawa B-grid
	Arakawa C-grid
	Arakawa D-grid
	Arakawa E-grid
	Other - please specify:
3.7.4	Conserved Quantities *
Moment	tum advection scheme conserved quantities
Sele	ect MULTIPLE options:
	Angular momentum
	Horizontal momentum
	Enstrophy
	Mass
	Total energy
	Vorticity
	Other - please specify:
3.7.5	Conservation Method *
Moment	tum advection scheme conservation method
Sele	ect SINGLE option:
	Conservation fixer
	Other - please specify:

4 Radiation

Characteristics of the atmosphere radiation process

4.1 Radiation

Characteristics of the atmosphere radiation process

4.1.1 Name

 $Commonly\ used\ name\ for\ the\ radiation\ in\ atmos\ model.$

Enter TEXT:

4.1.2 Overview

 $Overview\ of\ characteristics\ of\ the\ atmosphere\ radiation\ process\ in\ atmos\ model.$

Enter TEXT:

4.1.3 Aerosols *

Aerosols whose radiative effect is taken into account in the atmosphere model

Selec	Select MULTIPLE options:		
	Sulphate		
	Nitrate		
	Sea salt		
	Dust		
	Ice		
	Organic		
	BC (black carbon / soot)		
	SOA (secondary organic aerosols)		
	POM (particulate organic matter)		
	Polar stratospheric ice		
	NAT (nitric acid trihydrate)		
	NAD (nitric acid dihydrate)		
	STS (supercooled ternary solution aerosol particle)		
	Other - please specify:		

4.2 Shortwave Radiation

 $Properties \ of \ the \ shortwave \ radiation \ scheme$

Overview of properties of the shortwave radiation scheme in atmos model.
Enter TEXT:
4.2.2 Overview *
Overview description of shortwave radiation in the atmosphere
Enter TEXT:
4.2.3 Name
Commonly used name for the shortwave radiation scheme
Enter TEXT:
4.2.4 Spectral Integration *
Shortwave radiation scheme spectral integration
Select SINGLE option:
☐ Wide-band model
Correlated-k
Exponential sum fitting
Other - please specify:
4.2.5 Transport Calculation *
Shortwave radiation transport calculation methods
Select MULTIPLE options:
☐ Two-stream
Layer interaction
Bulk - Highly parameterised methods that use bulk expressions
Adaptive - Exploits spatial and temporal correlations in optical characteristics
Multi-stream
Other - please specify:
4.2.6 Spectral Intervals *
Shortwave radiation scheme number of spectral intervals

4.2.1 Overview

Enter INTEGER value:

4.3 Shortwave GHG

 $Representation\ of\ greenhouse\ gases\ in\ the\ shortwave\ radiation\ scheme$

4.3.1 Overview

 $Overview\ of\ representation\ of\ greenhouse\ gases\ in\ the\ shortwave\ radiation\ scheme\ in\ atmos\ model.$

Enter TEXT:

432	Greenhouse	Gas	Complexity	*
4.0.4	Greennouse	Gas	Complexity	

HCFC-22 - HCFC

 $Complexity\ of\ greenhouse\ gases\ whose\ shortwave\ radiative\ effects\ are\ taken\ into\ account\ in\ the\ atmosphere\ model$

Selec	ct MULTIPLE options:
	CO2 - Carbon Dioxide
	CH4 - Methane
	N2O - Nitrous Oxide
concentra	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence ation of CFC-11
======================================	${ m CFC-12}$ eq - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a ${ m CFC-12}$ ice concentration
concentra	${ m HFC}$ -134a eq - Summarize the radiative effect of other fluorinated gases with a ${ m HFC}$ -134a equivalence ation
	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons
	Explicit other fluorinated gases - Explicit representation of other fluorinated gases e.g. HFCs and PFCs
	O3
	H2O
	H2O Other - please specify:
4.3.3	
	Other - please specify:
$Ozone d\epsilon \ model$	Other - please specify: ODS
$Ozone d\epsilon \ model$	Other - please specify: ODS epleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere
$Ozone d\epsilon \ model$	Other - please specify: ODS epleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere et MULTIPLE options:
$Ozone d\epsilon \ model$	Other - please specify: ODS epleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere et MULTIPLE options: CFC-12 - CFC
$Ozone d\epsilon \ model$	Other - please specify: ODS epleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere et MULTIPLE options: CFC-12 - CFC CFC-11 - CFC
$Ozone d\epsilon \ model$	Other - please specify: ODS Epleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere Ext MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC

	HCFC-141b - HCFC
	HCFC-142b - HCFC
	Halon-1211 - Halon
	Halon-1301 - Halon
	Halon-2402 - Halon
	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:
	Other Flourinated Gases
	urinated gases whose shortwave radiative effects are explicitly taken into account in the atmosphere model
Selec	+ MILITIDIE ontions
_	t MULTIPLE options:
	HFC-134a - HFC
	HFC-134a - HFC
	HFC-134a - HFC HFC-23 - HFC
	HFC-134a - HFC HFC-23 - HFC HFC-32 - HFC
	HFC-134a - HFC HFC-23 - HFC HFC-32 - HFC HFC-125 - HFC
	HFC-134a - HFC HFC-23 - HFC HFC-32 - HFC HFC-125 - HFC HFC-143a - HFC
	HFC-134a - HFC HFC-23 - HFC HFC-32 - HFC HFC-125 - HFC HFC-143a - HFC HFC-152a - HFC
	HFC-134a - HFC HFC-23 - HFC HFC-32 - HFC HFC-125 - HFC HFC-143a - HFC HFC-152a - HFC
	HFC-134a - HFC HFC-23 - HFC HFC-32 - HFC HFC-125 - HFC HFC-143a - HFC HFC-152a - HFC HFC-227ea - HFC HFC-236fa - HFC
	HFC-134a - HFC HFC-23 - HFC HFC-32 - HFC HFC-125 - HFC HFC-143a - HFC HFC-152a - HFC HFC-227ea - HFC HFC-236fa - HFC HFC-245fa - HFC
	HFC-134a - HFC HFC-23 - HFC HFC-32 - HFC HFC-125 - HFC HFC-143a - HFC HFC-152a - HFC HFC-227ea - HFC HFC-236fa - HFC HFC-236fa - HFC HFC-365mfc - HFC
	HFC-134a - HFC HFC-23 - HFC HFC-32 - HFC HFC-125 - HFC HFC-143a - HFC HFC-152a - HFC HFC-227ea - HFC HFC-236fa - HFC HFC-245fa - HFC HFC-365mfc - HFC HFC-365mfc - HFC
	HFC-134a - HFC HFC-23 - HFC HFC-32 - HFC HFC-125 - HFC HFC-143a - HFC HFC-152a - HFC HFC-236fa - HFC HFC-236fa - HFC HFC-365mfc - HFC HFC-365mfc - HFC HFC-43-10mee - HFC

	C5F12 - PFC
	C6F14 - PFC
	C7F16 - PFC
	C8F18 - PFC
	C-C4F8 - PFC
	NF3
	SF6
	SO2F2
	Other - please specify:
4.4 S	hortwave Cloud Ice
Shortwar	ve radiative properties of ice crystals in clouds
4.4.1	Overview
Overview	of shortwave radiative properties of ice crystals in clouds in atmos model.
Enter	TEXT:
4.4.2	General Interactions *
General si	hortwave radiative interactions with cloud ice crystals
Select	t MULTIPLE options:
	Scattering
	Emission/absorption
	Other - please specify:
	Physical Representation *
Physical r	epresentation of cloud ice crystals in the shortwave radiation scheme
Select	t MULTIPLE options:
typically h	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: aundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than spher	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area res
	Ice water path - Integrated ice water path through the cloud kg m-2 $$
	Crystal asymmetry

	Crystal aspect ratio	
	Effective crystal radius	
	Other - please specify:	
4.4.4	Optical Methods *	
Optical r	nethods applicable to cloud ice crystals in the shortwave radiation scheme	
Sele	ct MULTIPLE options:	
	T-matrix - For non-spherical particles	
	Geometric optics - For non-spherical particles	
	Finite difference time domain (FDTD) - For non-spherical particles	
	Mie theory - For spherical particles	
	Anomalous diffraction approximation	
	Other - please specify:	
4.5	Shortwave Cloud Liquid	
Shortwave radiative properties of liquid droplets in clouds		
4.5.1	Overview	
	Overview of shortwave radiative properties of liquid droplets in clouds in atmos model.	
Overvieu		
Overvieu	of shortwave radiative properties of liquid droplets in clouds in atmos model.	
Overview Ente	of shortwave radiative properties of liquid droplets in clouds in atmos model. Per TEXT:	
Overview Ente 4.5.2 General	of shortwave radiative properties of liquid droplets in clouds in atmos model. Per TEXT: General Interactions *	
Overview Ente 4.5.2 General	of shortwave radiative properties of liquid droplets in clouds in atmos model. Per TEXT: General Interactions * shortwave radiative interactions with cloud liquid droplets	
Overview Ente 4.5.2 General	of shortwave radiative properties of liquid droplets in clouds in atmos model. TEXT: General Interactions * shortwave radiative interactions with cloud liquid droplets ct MULTIPLE options:	
Overview Ente 4.5.2 General	of shortwave radiative properties of liquid droplets in clouds in atmos model. TEXT: General Interactions * shortwave radiative interactions with cloud liquid droplets ct MULTIPLE options: Scattering	
Overview Ente 4.5.2 General	of shortwave radiative properties of liquid droplets in clouds in atmos model. Cor TEXT: General Interactions * Shortwave radiative interactions with cloud liquid droplets Cot MULTIPLE options: Scattering Emission/absorption	
Overview Ente 4.5.2 General	of shortwave radiative properties of liquid droplets in clouds in atmos model. Cor TEXT: General Interactions * Shortwave radiative interactions with cloud liquid droplets Cot MULTIPLE options: Scattering Emission/absorption	
Ente 4.5.2 General Sele	of shortwave radiative properties of liquid droplets in clouds in atmos model. BY TEXT: General Interactions * Shortwave radiative interactions with cloud liquid droplets CC MULTIPLE options: Scattering Emission/absorption Other - please specify:	
Ente 4.5.2 General Sele 4.5.3 Physical	of shortwave radiative properties of liquid droplets in clouds in atmos model. BY TEXT: General Interactions * Shortwave radiative interactions with cloud liquid droplets Ct MULTIPLE options: Scattering Emission/absorption Other - please specify: Physical Representation *	
Ente 4.5.2 General Sele 4.5.3 Physical	of shortwave radiative properties of liquid droplets in clouds in atmos model. Cor TEXT: General Interactions * Shortwave radiative interactions with cloud liquid droplets Cot MULTIPLE options: Scattering Emission/absorption Other - please specify: Physical Representation * representation of cloud liquid droplets in the shortwave radiation scheme	
Ente 4.5.2 General Sele 4.5.3 Physical	of shortwave radiative properties of liquid droplets in clouds in atmos model. BY TEXT: General Interactions * Shortwave radiative interactions with cloud liquid droplets CHAULTIPLE options: Scattering Emission/absorption Other - please specify: Physical Representation * representation of cloud liquid droplets in the shortwave radiation scheme CHAULTIPLE options:	

	Liquid water path - Integrated liquid water path through the cloud kg m-2
	Other - please specify:
4.5.4	Optical Methods *
Optical	methods applicable to cloud liquid droplets in the shortwave radiation scheme
Sele	ect MULTIPLE options:
	Geometric optics - For non-spherical particles
	Mie theory - For spherical particles
	Other - please specify:
4.6	Shortwave Cloud Inhomogeneity
Cloud	inhomogeneity in the shortwave radiation scheme
4.6.1	Overview
Overvie	w of cloud inhomogeneity in the shortwave radiation scheme in atmos model.
Ent	er TEXT:
4.6.2	Cloud Inhomogeneity *
Method	for taking into account horizontal cloud inhomogeneity
Sele	ect SINGLE option:
	Monte Carlo Independent Column Approximation - McICA
	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010
	Analytic
	Other - please specify:
4.7	Shortwave Aerosols
Shortw	vave radiative properties of aerosols
4.7.1	Overview
Overvie	w of shortwave radiative properties of aerosols in atmos model.
Ent	er TEXT:
4.7.2	General Interactions *
General	shortwave radiative interactions with aerosols

Select MULTIPLE options:

	Scattering
	Emission/absorption
	Other - please specify:
4.7.3]	Physical Representation *
Physical r	representation of aerosols in the shortwave radiation scheme
Selec	t MULTIPLE options:
	Number concentration
	Effective radii
	Size distribution
	Asymmetry
	Aspect ratio
	Mixing state - For shortwave radiative interaction
	Other - please specify:
4.7.4	Optical Methods *
$Optical\ m$	ethods applicable to aerosols in the shortwave radiation scheme
Selec	t MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left$
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:
4.8 S	hortwave Gases
Shortwave radiative properties of gases	
4.8.1	Overview
Overview	of shortwave radiative properties of gases in atmos model.
Enter	r TEXT:

4.8.2 G	eneral Interactions *		
General sho	ortwave radiative interactions with gases		
Select	Select MULTIPLE options:		
	Scattering		
	Emission/absorption		
	Other - please specify:		
4.9 Lo	ongwave Radiation		
Properties	s of the longwave radiation scheme		
4.9.1 O	verview		
Overview o	f properties of the longwave radiation scheme in atmos model.		
Enter	TEXT:		
4.9.2 O	verview *		
Overview d	escription of longwave radiation in the atmosphere		
Enter	TEXT:		
4.9.3 N	ame		
Commonly	used name for the longwave radiation scheme.		
Enter	TEXT:		
4.9.4 S	pectral Integration *		
Longwave r	adiation scheme spectral integration		
Select	SINGLE option:		
	Wide-band model		
	Correlated-k		
	Exponential sum fitting		
	Other - please specify:		
405 T	manage of Calculation *		
	ransport Calculation * adiation transport calculation methods		
	MULTIPLE options:		
	Two-stream		
	Layer interaction		
	Bulk - Highly parameterised methods that use bulk expressions		

	Adaptive - Exploits spatial and temporal correlations in optical characteristics
	Multi-stream
	Other - please specify:
1.9.6	Spectral Intervals *
Longwave	e radiation scheme number of spectral intervals
Ente	r INTEGER value:
4.10	Longwave GHG
Represe	ntation of greenhouse gases in the longwave radiation scheme
4.10.1	Overview
	of representation of greenhouse gases in the longwave radiation scheme in atmos model.
	r TEXT:
4.10.2	Greenhouse Gas Complexity *
Complexi	ty of greenhouse gases whose longwave radiative effects are taken into account in the atmosphere model
Selec	et MULTIPLE options:
	CO2 - Carbon Dioxide
	CH4 - Methane
	N2O - Nitrous Oxide
concentra	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence ation of CFC-11
quivalen	CFC-12 eq - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a CFC-12 ce concentration
concentra	${ m HFC} ext{-}134a$ eq - Summarize the radiative effect of other fluorinated gases with a ${ m HFC} ext{-}134a$ equivalence ation
	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons
	Explicit other fluorinated gases - Explicit representation of other fluorinated gases e.g. HFCs and PFCs
	O3
	H2O
П	Other - please specify:

4.10.3 ODS

 ${\it Ozone \ depleting \ substances \ whose \ longwave \ radiative \ effects \ are \ explicitly \ taken \ into \ account \ in \ the \ atmosphere \ model}$

Selec	t MULTIPLE options:
	CFC-12 - CFC
	CFC-11 - CFC
	CFC-113 - CFC
	CFC-114 - CFC
	CFC-115 - CFC
	HCFC-22 - HCFC
	HCFC-141b - HCFC
	HCFC-142b - HCFC
	Halon-1211 - Halon
	Halon-1301 - Halon
	Halon-2402 - Halon
	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:
4.10.4	Other Flourinated Gases
Other flou	rinated gases whose longwave radiative effects are explicitly taken into account in the atmosphere model
Selec	t MULTIPLE options:
	HFC-134a - HFC
	HFC-23 - HFC
	HFC-32 - HFC
	HFC-125 - HFC
	HFC-143a - HFC
	HFC-152a - HFC

	HFC-227ea - HFC	
	HFC-236fa - HFC	
	HFC-245fa - HFC	
	HFC-365mfc - HFC	
	HFC-43-10mee - HFC	
	CF4 - PFC	
	C2F6 - PFC	
	C3F8 - PFC	
	C4F10 - PFC	
	C5F12 - PFC	
	C6F14 - PFC	
	C7F16 - PFC	
	C8F18 - PFC	
	C-C4F8 - PFC	
	NF3	
	SF6	
	SO2F2	
	Other - please specify:	
4.11 Longwave Cloud Ice Longwave radiative properties of ice crystals in clouds		
4.11.1	Overview	
	of longwave radiative properties of ice crystals in clouds in atmos model.	
Enter TEXT:		
4.11.2	General Interactions *	
General longwave radiative interactions with cloud ice crystals		
Selec	t MULTIPLE options:	
	Scattering	
	Emission/absorption	
	Other - please specify:	

4.11.3 Physical Reprenstation *

Select MULTIPLE options:

 $Physical\ representation\ of\ cloud\ ice\ crystals\ in\ the\ longwave\ radiation\ scheme$

Selec	t MULTIPLE options:
typically l	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: hundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than sphe	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area res
	Ice water path - Integrated ice water path through the cloud kg m-2
	Crystal asymmetry
	Crystal aspect ratio
	Effective crystal radius
	Other - please specify:
4.11.4	Optical Methods *
Optical m	ethods applicable to cloud ice crystals in the longwave radiation scheme
Selec	t MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:
4.12	Longwave Cloud Liquid
Longway	ve radiative properties of liquid droplets in clouds
4.12.1	Overview
Overview	of longwave radiative properties of liquid droplets in clouds in atmos model.
Ente	r TEXT:
4.12.2	General Interactions *
General le	ongwave radiative interactions with cloud liquid droplets

26

	Scattering	
	Emission/absorption	
	Other - please specify:	
4.12.3	Physical Representation *	
Physical r	representation of cloud liquid droplets in the longwave radiation scheme	
Selec	t MULTIPLE options:	
	Cloud droplet number concentration - CDNC	
	Effective cloud droplet radii	
	Droplet size distribution	
	Liquid water path - Integrated liquid water path through the cloud kg m-2 $$	
	Other - please specify:	
4.12.4	Optical Methods *	
Optical m	ethods applicable to cloud liquid droplets in the longwave radiation scheme	
Selec	t MULTIPLE options:	
	Geometric optics - For non-spherical particles	
	Mie theory - For spherical particles	
	Other - please specify:	
	Longwave Cloud Inhomogeneity	
Cloud in	homogeneity in the longwave radiation scheme	
4.13.1	Overview	
Overview	of cloud inhomogeneity in the longwave radiation scheme in atmos model.	
Enter TEXT:		
4.13.2	Cloud Inhomogeneity *	
Method fo	r taking into account horizontal cloud inhomogeneity	
Selec	t SINGLE option:	
	Monte Carlo Independent Column Approximation - McICA	
	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010	
	Analytic	
	Other - please specify:	

4.14 Longwave Aerosols

Mie theory - For spherical particles $\label{eq:constraint} \mbox{Anomalous diffraction approximation}$

Other - please specify:

 $Longwave\ radiative\ properties\ of\ aerosols$

	T
4.14.1	Overview
Overview	$of\ longwave\ radiative\ properties\ of\ aerosols\ in\ atmos\ model.$
Ente	r TEXT:
4.14.2	General Interactions *
General l	ongwave radiative interactions with aerosols
Selec	t MULTIPLE options:
	Scattering
	Emission/absorption
	Other - please specify:
4.14.3	Physical Representation *
Physical 1	representation of aerosols in the longwave radiation scheme
Selec	t MULTIPLE options:
	Number concentration
	Effective radii
	Size distribution
	Asymmetry
	Aspect ratio
	Mixing state - For shortwave radiative interaction
	Other - please specify:
4.14.4	Optical Methods *
Optical m	nethods applicable to aerosols in the longwave radiation scheme
Selec	t MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles

4.	15	Longwave	Gases
±.	TO	Longwave	Gases

 $Longwave\ radiative\ properties\ of\ gases$

4.15.1 Overview

 $Overview\ of\ longwave\ radiative\ properties\ of\ gases\ in\ atmos\ model.$

Enter TEXT:

.15.2	General Interactions *
eneral	longwave radiative interactions with gases
Sele	ect MULTIPLE options:
	Scattering
	Emission/absorption
	Other - please specify:

5 Turbulence Convection

Atmosphere Convective Turbulence and Clouds

5.1 Turbulence Convection

Atmosphere Convective Turbulence and Clouds

5.1.1 Name

 $Commonly\ used\ name\ for\ the\ turbulence\ convection\ in\ atmos\ model.$

Enter TEXT:

5.1.2 Overview

 $Overview\ of\ atmosphere\ convective\ turbulence\ and\ clouds\ in\ atmos\ model.$

Enter TEXT:

5.2 Boundary Layer Turbulence

Properties of the boundary layer turbulence scheme

5.2.1 Overview

Overview of properties of the boundary layer turbulence scheme in atmos model.

Enter TEXT:

5.2.2 Scheme Name

Boundary layer turbulence scheme name

Vertical profile of Kz

Selec	t SINGLE option:
	Mellor-Yamada
	Holtslag-Boville
	EDMF - Combined Eddy Diffusivity Mass-Flux
	Other - please specify:
	Scheme Type * layer turbulence scheme type
Selec	t MULTIPLE options:
	TKE prognostic
	TKE diagnostic
	TKE coupled with water

	Non-local diffusion
	Monin-Obukhov similarity
	Coastal Buddy Scheme - Separate components for coastal near surface winds over ocean and land
	Coupled with convection
	Coupled with gravity waves
	Depth capped at cloud base - Boundary layer capped at cloud base when convection is diagnosed
	Other - please specify:
5.2.4	Closure Order *
Boundary	layer turbulence scheme closure order
Enter	INTEGER value:
5.2.5	Counter Gradient *
	dary layer turbulence scheme counter gradient
Select	either TRUE or FALSE:
	True
5.3 D	Deep Convection
Propertie	es of the deep convection scheme
5.3.1	Overview
Overview of	of properties of the deep convection scheme in atmos model.
Enter	TEXT:
5.3.2	Scheme Name
Deep conv	ection scheme name
Enter	TEXT:
5.3.3	Scheme Type *
Deep conv	ection scheme type
Select	MULTIPLE options:
	Mass-flux
	Adjustment
	Plume ensemble - Zhang-McFarlane

	Other - please specify:
5.3.4	Scheme Method *
Deep con	nvection scheme method
Sele	ect MULTIPLE options:
	CAPE - Mass flux determined by CAPE, convectively available potential energy.
	Bulk - A bulk mass flux scheme is used
	Ensemble - Summation over an ensemble of convective clouds with differing characteristics
sphere	CAPE/WFN based - CAPE-Cloud Work Function: Based on the quasi-equilibrium of the free tropo-
	TKE/CIN based - TKE-Convective Inhibition: Based on the quasi-equilibrium of the boundary layer
	Other - please specify:
5.3.5	Processes * processes taken into account in the parameterisation of deep convection
Sele	ect MULTIPLE options:
	Vertical momentum transport
	Convective momentum transport
	Entrainment
	Detrainment
	Penetrative convection
	Updrafts
	Downdrafts
	Radiative effect of anvils
	Re-evaporation of convective precipitation
	Other - please specify:
5.3.6	Microphysics
	ysics scheme for deep convection. Microphysical processes directly control the amount of detrainment of drometeor and water vapor from updrafts
Sele	ect MULTIPLE options:
	Tuning parameter based
	Single moment

	Two moment
	Other - please specify:
5.4	Shallow Convection
Proper	ties of the shallow convection scheme
5.4.1	Overview
Overvie	w of properties of the shallow convection scheme in atmos model.
Ent	er TEXT:
5.4.2	Scheme Name
Shallow	convection scheme name
Ent	er TEXT:
5.4.3	Scheme Type *
Shallow	convection scheme type
Sele	ect MULTIPLE options:
	Mass-flux
	Cumulus-capped boundary layer
	Other - please specify:
- 4 4	
5.4.4	Scheme Method *
	convection scheme method
	Same as deep (unified)
	Included in boundary layer turbulence
	Separate diagnosis - Deep and Shallow convection schemes use different thermodynamic closure criteria
	Other - please specify:
5.4.5	Processes *
Physical	processes taken into account in the parameterisation of shallow convection
Sele	ect MULTIPLE options:
	Convective momentum transport
	Entrainment
	Detrainment

	Penetrative convection		
	Re-evaporation of convective precipitation		
	Other - please specify:		
5.4.6	Microphysics		
Microphy	sics scheme for shallow convection		
Selec	Select MULTIPLE options:		
	Tuning parameter based		
	Single moment		
	Two moment		
	Other - please specify:		

6 Microphysics Precipitation

Large Scale Cloud Microphysics and Precipitation

6.1 Microphysics Precipitation

Large Scale Cloud Microphysics and Precipitation

6.1.1 Name

Commonly used name for the microphysics precipitation in atmos model.

 ${f Enter\ TEXT}:$

6.1.2 Overview

 $Overview\ of\ large\ scale\ cloud\ microphysics\ and\ precipitation\ in\ atmos\ model.$

Enter TEXT:

6.2 Large Scale Precipitation

Properties of the large scale precipitation scheme

6.2.1 Overview

Overview of properties of the large scale precipitation scheme in atmos model.

Enter TEXT:

6.2.2 Scheme Name

Commonly used name of the large scale precipitation parameterisation scheme

Enter TEXT:

6.2.3 Hydrometeors *

Precipitating hydrometeors taken into account in the large scale precipitation scheme

Select MULTIPLE options:			
	Liquid rain		
	Snow		
	Hail		
	Graupel		
	Other - please specify:		

6.3 Large Scale Cloud Microphysics

Properties of the large scale cloud microphysics scheme

_	•	-	_	
h	.3		(verview

 $Overview\ of\ properties\ of\ the\ large\ scale\ cloud\ microphysics\ scheme\ in\ atmos\ model.$

Enter TEXT:

6.3.2 Scheme Name

 $Commonly\ used\ name\ of\ the\ microphysics\ parameterisation\ scheme\ used\ for\ large\ scale\ clouds.$

Enter TEXT:

6.3.3 Processes *

Large scale cloud microphysics processes

rge scale cioua microphysics processes			
Select MULTIPLE options:			
	Mixed phase		
	Cloud droplets		
	Cloud ice		
	Ice nucleation		
	Water vapour deposition		
	Effect of raindrops		
	Effect of snow		
	Effect of graupel		
	Other - please specify:		

7 Cloud Scheme

Characteristics of the cloud scheme

7 1	$\alpha_1 \dots 1$	C - 1
7.1	Cloud	Scheme

Characteristics of the cloud scheme

7.1.1 Name

 $Commonly\ used\ name\ for\ the\ cloud\ scheme\ in\ atmos\ model.$

Enter TEXT:

7.1.2 Overview

Overview of characteristics of the cloud scheme in atmos model.

Enter TEXT:

7.1.3 Scheme Type *

Describes the type(s) of cloud scheme: prognostic, diagnostic, other.

Select MULTIPLE options:		
	Prognostic	
	Diagnostic	
	Other - please specify:	

7.1.4 Uses Separate Treatment *

Description for when different cloud schemes are used for different types of clouds e.g. convective, stratiform and boundary layer)

Enter TEXT:

7.1.5 Processes *

Processes included in the cloud scheme

Selec	t MULTIPLE options:
	Entrainment
	Detrainment
	Bulk cloud
	Other - please specify:

7.1.6 Prognostic Variables

List the prognostic variables used by the cloud scheme, if applicable.

Selec	t MULTIPLE options:
	Cloud amount
	Liquid
	Ice
	Rain
	Snow
	Cloud droplet number concentration - To document the use of two-moment cloud microphysics schemes
	Ice crystal number concentration - To document the use of two-moment cloud microphysics schemes
	Other - please specify:
	Atmos Coupling re components that are linked to the cloud scheme
Selec	t MULTIPLE options:
	Atmosphere_radiation
	$Atmosphere_microphysics_precipitation$
	$Atmosphere_turbulence_convection$
	Atmosphere_gravity_waves
	Atmosphere_natural_forcing
	Atmosphere_observation_simulation
	Optical Cloud Properties cloud properties
7.2.1	Overview
Overview	of optical cloud properties in atmos model.
Enter	TEXT:
	Cloud Overlap Method or taking into account overlapping of cloud layers
Selec	t SINGLE option:
	Random

Maximum
Maximum-random - Combination of maximum and random overlap between clouds
Exponential
Other - please specify:
7.2.3 Cloud Inhomogeneity
Method for taking into account cloud inhomogeneity
Enter TEXT:
7.3 Sub Grid Scale Water Distribution
Sub-grid scale water distribution
7.3.1 Overview
Overview of sub-grid scale water distribution in atmos model.
Enter TEXT:
7.3.2 Type *
Sub-grid scale water distribution type
Select SINGLE option:
Prognostic
Diagnostic
7.3.3 Function Name *
Sub-grid scale water distribution function name
Enter TEXT:
7.3.4 Function Order *
Sub-grid scale water distribution function type
Enter INTEGER value:
7.3.5 Convection Coupling *
Sub-grid scale water distribution coupling with convection
Select MULTIPLE options:
Coupled with deep
Coupled with shallow

Not coupled with convection
7.4 Sub Grid Scale Ice Distribution
Sub-grid scale ice distribution
7.4.1 Overview
Overview of sub-grid scale ice distribution in atmos model
Enter TEXT:
7.4.2 Type *
Sub-grid scale ice distribution type
Select SINGLE option:
Prognostic
Diagnostic
7.4.3 Function Name *
$Sub\mbox{-}grid\ scale\ ice\ distribution\ function\ name$
Enter TEXT:
7.4.4 Function Order *
Sub-grid scale ice distribution function type
Enter INTEGER value:
7.4.5 Convection Coupling *
Sub-grid scale ice distribution coupling with convection
Select MULTIPLE options:
Coupled with deep
Coupled with shallow
Not coupled with convection

8 Observation Simulation

Characteristics of observation simulation

O 4	\sim 1	. •	~ :	1 , •
8.1	Observa	tion	Simii	lation
(7.	COUNCI VA	1 1, 1 , , , , ,	. , , , , , , , ,	1461011

Characteristics of observation simulation

8.1.1 Name

 $Commonly\ used\ name\ for\ the\ observation\ simulation\ in\ atmos\ model.$

Enter TEXT:

8.1.2 Overview

 $Overview\ of\ characteristics\ of\ observation\ simulation\ in\ atmos\ model.$

Enter TEXT:

8.2 Isscp Attributes

ISSCP Characteristics

8.2.1 Overview

Overview of issep characteristics in atmos model.

Enter TEXT:

8.2.2 Top Height Estimation Method

 ${\it Cloud\ simulator\ ISSCP\ top\ height\ estimation\ methodUo}$

Select MULTIPLE options:			
	No adjustment		
	IR brightness		
	Visible optical depth		
	Other - please specify:		

8.2.3 Top Height Direction

 $Cloud\ simulator\ ISSCP\ top\ height\ direction$

Select SINGLE option:							
	Lowest altitude level						
	Highest altitude level						
	Other - please specify:						

8.3 Cosp Attributes

 $CFMIP\ Observational\ Simulator\ Package\ attributes$

8.3.1 Overview

 $Overview\ of\ cfmip\ observational\ simulator\ package\ attributes\ in\ atmos\ model.$

Enter TEXT:

8.3.2 Run Configuration

 $Cloud\ simulator\ COSP\ run\ configuration$

Select SINGLE option:						
	Inline					
	Offline					
	Other - please specify:					

8.3.3 Number Of Grid Points

Cloud simulator COSP number of grid points

Enter INTEGER value:

8.3.4 Number Of Sub Columns

Cloud simulator COSP number of sub-cloumns used to simulate sub-grid variability

Enter INTEGER value:

8.3.5 Number Of Levels

Cloud simulator COSP number of levels

Enter INTEGER value:

8.4 Radar Inputs

Characteristics of the cloud radar simulator

8.4.1 Overview

Overview of characteristics of the cloud radar simulator in atmos model.

Enter TEXT:

Enter FLOAT value:									
8.4.3 Type									
Cloud simulator radar type									
Select SINGLE option:									
Surface									
Space borne									
Other - please specify:									
8.4.4 Gas Absorption									
Cloud simulator radar uses gas absorption									
Select either TRUE or FALSE:									
☐ True ☐ False									
8.4.5 Effective Radius									
Cloud simulator radar uses effective radius									
Select either TRUE or FALSE:									
Select either TRUE or FALSE: True False									
Select either TRUE or FALSE:									
Select either TRUE or FALSE: True False									
Select either TRUE or FALSE: True False 8.5 Lidar Inputs									
Select either TRUE or FALSE: True False 8.5 Lidar Inputs Characteristics of the cloud lidar simulator									
Select either TRUE or FALSE: True False 8.5 Lidar Inputs Characteristics of the cloud lidar simulator 8.5.1 Overview									
Select either TRUE or FALSE: True False 8.5 Lidar Inputs Characteristics of the cloud lidar simulator 8.5.1 Overview Overview of characteristics of the cloud lidar simulator in atmos model. Enter TEXT:									
Select either TRUE or FALSE: True False 8.5 Lidar Inputs Characteristics of the cloud lidar simulator 8.5.1 Overview Overview of characteristics of the cloud lidar simulator in atmos model.									
Select either TRUE or FALSE: True False 8.5 Lidar Inputs Characteristics of the cloud lidar simulator 8.5.1 Overview Overview of characteristics of the cloud lidar simulator in atmos model. Enter TEXT: 8.5.2 Ice Types Cloud simulator lidar ice type									
Select either TRUE or FALSE: True False 8.5 Lidar Inputs Characteristics of the cloud lidar simulator 8.5.1 Overview Overview of characteristics of the cloud lidar simulator in atmos model. Enter TEXT: 8.5.2 Ice Types Cloud simulator lidar ice type Select SINGLE option:									
Select either TRUE or FALSE: True False 8.5 Lidar Inputs Characteristics of the cloud lidar simulator 8.5.1 Overview Overview of characteristics of the cloud lidar simulator in atmos model. Enter TEXT: 8.5.2 Ice Types Cloud simulator lidar ice type Select SINGLE option: Ice spheres									
Select either TRUE or FALSE: True False 8.5 Lidar Inputs Characteristics of the cloud lidar simulator 8.5.1 Overview Overview of characteristics of the cloud lidar simulator in atmos model. Enter TEXT: 8.5.2 Ice Types Cloud simulator lidar ice type Select SINGLE option:									

8.4.2 Frequency

8.5.3	Overlap					
$Cloud\ simulator\ lidar\ overlap$						
Select MULTIPLE options:						
	Max					
	Random					
	Other - please specify:					

9 Gravity Waves

Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources

9.1 Gravity Waves

 $Characteristics\ of\ the\ parameterised\ gravity\ waves\ in\ the\ atmosphere,\ whether\ from\ orography\ or\ other\ sources$

9.1.1 Name

Commonly used name for the gravity waves in atmos model.

Enter TEXT:

9.1.2 Overview

Overview of characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources in atmos model.

Enter TEXT:

9.1.3	Sponge Layer *							
$Sponge\ layer\ in\ the\ upper\ levels\ in\ order\ to\ avoid\ gravity\ wave\ reflection\ at\ the\ top.$								
Sele	ect SINGLE option:							
	Rayleigh friction							
	Diffusive sponge layer							
	Other - please specify:							

9.1.4 Background *

 $Background\ wave\ distribution$

Selec	ct SINGLE option:
	Continuous spectrum
	Discrete spectrum
	Other - please specify

9.1.5 Subgrid Scale Orography *

 $Subgrid\ scale\ orography\ effects\ taken\ into\ account.$

Select MULTIPLE options:							
	Effect on drag						
	Effect on lifting						

	Enhanced topography - To enhance the generation of long waves in the atmosphere
	Other - please specify:
9.2	Orographic Gravity Waves
Gravity	waves generated due to the presence of orography
9.2.1	Overview
Overvieu	v of gravity waves generated due to the presence of orography in atmos model.
Ente	er TEXT:
9.2.2	Name
Common	ly used name for the orographic gravity wave scheme
Ente	er TEXT:
9.2.3	Source Mechanisms *
Orograph	nic gravity wave source mechanisms
Sele	ct MULTIPLE options:
	Linear mountain waves
	Hydraulic jump
	Envelope orography
	Low level flow blocking
	Statistical sub-grid scale variance
	Other - please specify:
9.2.4	Calculation Method *
Orograph	nic gravity wave calculation method
Sele	ct MULTIPLE options:
	Non-linear calculation
	More than two cardinal directions
	Other - please specify:
9.2.5	Propagation Scheme *
Orograph	nic gravity wave propogation scheme
Sele	ct SINGLE option:
	Linear theory

	Non-linear theory					
	Includes boundary layer ducting					
	Other - please specify:					
9.2.6	Dissipation Scheme *					
	ic gravity wave dissipation scheme					
Sele	et SINGLE option:					
	Total wave					
	Single wave					
	Spectral					
	Linear					
	Wave saturation vs Richardson number					
	Other - please specify:					
9.3 Non Orographic Gravity Waves Gravity waves generated by non-orographic processes. 9.3.1 Overview						
Gravity 9.3.1	waves generated by non-orographic processes. Overview					
Gravity 9.3.1 Overvieu	waves generated by non-orographic processes.					
Gravity 9.3.1 Overvieu	waves generated by non-orographic processes. Overview of gravity waves generated by non-orographic processes. in atmos model.					
Gravity 9.3.1 Overvieu Ente	waves generated by non-orographic processes. Overview of gravity waves generated by non-orographic processes. in atmos model.					
Gravity 9.3.1 Overvieu Ente 9.3.2 Common	waves generated by non-orographic processes. Overview of gravity waves generated by non-orographic processes. in atmos model. or TEXT: Name					
Gravity 9.3.1 Overvieu Ente 9.3.2 Common	waves generated by non-orographic processes. Overview of gravity waves generated by non-orographic processes. in atmos model. TEXT: Name ly used name for the non-orographic gravity wave scheme					
Gravity 9.3.1 Overvieu Ente 9.3.2 Common Ente	waves generated by non-orographic processes. Overview of gravity waves generated by non-orographic processes. in atmos model. or TEXT: Name ly used name for the non-orographic gravity wave scheme or TEXT:					
Gravity 9.3.1 Overvieu Ente 9.3.2 Common Ente 9.3.3 Non-orog	waves generated by non-orographic processes. Overview of gravity waves generated by non-orographic processes. in atmos model. or TEXT: Name ly used name for the non-orographic gravity wave scheme or TEXT: Source Mechanisms *					
Gravity 9.3.1 Overvieu Ente 9.3.2 Common Ente 9.3.3 Non-orog	waves generated by non-orographic processes. Overview of gravity waves generated by non-orographic processes. in atmos model. or TEXT: Name ly used name for the non-orographic gravity wave scheme or TEXT: Source Mechanisms * traphic gravity wave source mechanisms					
Gravity 9.3.1 Overvieu Ente 9.3.2 Common Ente 9.3.3 Non-orog	waves generated by non-orographic processes. Overview of gravity waves generated by non-orographic processes. in atmos model. or TEXT: Name ly used name for the non-orographic gravity wave scheme or TEXT: Source Mechanisms * raphic gravity wave source mechanisms et MULTIPLE options:					
Gravity 9.3.1 Overvieu Ente 9.3.2 Common Ente 9.3.3 Non-orog	Waves generated by non-orographic processes. Overview of gravity waves generated by non-orographic processes. in atmos model. or TEXT: Name ly used name for the non-orographic gravity wave scheme or TEXT: Source Mechanisms * traphic gravity wave source mechanisms or MULTIPLE options: Convection					

9.3.4 Non-orog	Calculation Method *								
	Select MULTIPLE options:								
	Spatially dependent								
	Temporally dependent								
9.3.5	Propagation Scheme *								
Non-orog	graphic gravity wave propogation scheme								
Sele	ct SINGLE option:								
	Linear theory								
	Non-linear theory								
	Other - please specify:								
9.3.6	Dissipation Scheme *								
Non-orog	graphic gravity wave dissipation scheme								
Sele	ct SINGLE option:								
	Total wave								
	Single wave								
	Spectral								
	Linear								
	Wave saturation vs Richardson number								
	Other - please specify:								

10 Natural Forcing

Natural forcing: solar and volcanic.

10.1 Natural Forcing

Natural forcing: solar and volcanic.

10.1.1 Name

Commonly used name for the natural forcing in atmos model.

Enter TEXT:

10.1.2 Overview

Overview of natural forcing: solar and volcanic. in atmos model.

Enter TEXT:

10.2 Solar Pathways

Pathways for solar forcing of the atmosphere

10.2.1 Overview

Overview of pathways for solar forcing of the atmosphere in atmos model.

Enter TEXT:

10.2.2 Pathways *

Pathways for the solar forcing of the atmosphere model domain

Select MULTIPLE options:

	SW radiation - Shortwave solar spectral irradiance.
tons) and	Precipitating energetic particles - Precipitating energetic particles from the sun (predominantly prothe magnetosphere (predominantly electrons) affect the ionization levels in the polar middle and upper
atmospher	re, leading to significant changes of the chemical composition

L	Cosmic rays -	· Cosmic	rays are	the main	source	of ionization	n in th	ie troposp	here and	lower	stratosph	nere

Other - please specify:

10.3 Solar Constant

Solar constant and top of atmosphere insolation characteristics

10.3.1 Overview

Overview of solar constant and top of atmosphere insolation characteristics in atmos model.

Enter TEXT:

10.3.2	Type *
Time ada	ptation of the solar constant.
Selec	t SINGLE option:
	Fixed
	Transient
10.3.3	Fixed Value
If the sold	er constant is fixed, enter the value of the solar constant (W m-2).
Ente	FLOAT value:
10.3.4	Transient Characteristics
Solar con	stant transient characteristics (W m-2)
Ente	TEXT:
10.4	Orbital Parameters
Orbital 1	parameters and top of atmosphere insolation characteristics
10.4.1	Overview
Overview	of orbital parameters and top of atmosphere insolation characteristics in atmos model.
Ente	· TEXT:
10.4.2	Type *
Type of o	rbital parameter
Selec	t SINGLE option:
	Fixed
	Transient
10.4.3	Fixed Reference Date
Reference	date for fixed orbital parameters (yyyy)
Ente	· INTEGER value:
10.4.4	Transient Method
Description in the contract of the contract	on of transient orbital parameters

Enter TEXT:

Method used for computing orbital parameters.		
Selec	t SINGLE option:	
	Berger 1978	
	Laskar 2004	
	Other - please specify:	
10.5	Insolation Ozone	
Impact o	of solar insolation on stratospheric ozone	
10.5.1	Overview	
Overview	of impact of solar insolation on stratospheric ozone in atmos model.	
Enter TEXT:		
10.5.2	Solar Ozone Impact *	
Does top	of atmosphere insolation impact on stratospheric ozone?	
Select either TRUE or FALSE:		
	True	
10.6	Volcanoes Treatment	
Characte	eristics and treatment of volcanic forcing in the atmosphere	
10.6.1	Overview	
Overview	of characteristics and treatment of volcanic forcing in the atmosphere in atmos model.	
Enter TEXT:		
10.6.2	Volcanoes Characteristics *	
Description of how the volcanic forcing is taken into account in the atmosphere.		
Enter	r TEXT:	
10.6.3	Volcanoes Implementation *	
How volce	anic effects are modeled in the atmosphere.	
Selec	t SINGLE option:	
	High frequency solar constant anomaly	
	Stratospheric aerosols optical thickness	
	Other - please specify:	

10.4.5 Computation Method