Convolutional Neural Networks

Course 3, Module 3, Lesson 5

ConvNets For Self-Driving Cars

Code at: https://github.com/kujason/avod

Code at: https://github.com/oandrienko/fast-semantic-segmentation

Learning Objectives

- Learn how a neural network can use crosscorrelation in its hidden layers instead of general matrix multiplication, to form ConvNets
- Learn the advantages of using ConvNets over traditional neural networks for processing images

ConvNets

- Used for processing data defined on grid
- 1D time series data, 2D images, 3D videos
- Two major type of layers:
 - 1. Convolution Layers
 - 2. Pooling Layers
- Example: VGG 16

Fully Connected VS Convolutional Layers

$$h_n = g(W^T h_{n-1}) + b)$$

Fully Connected VS Convolutional Layers

$$h_n = g(W * h_{n-1}) + b)$$

Cross Correlation

•	Width: horizontal dimension	
	of input volume	

- Height: vertical dimension of input volume
- **Depth:** number of channels of input volume

 Padding size: essential to retain shape!

Cross Correlation

Cross Correlation two filters **Output** -1 1 -1 -1 0 1

Cross Correlation

Output Volume Shape

- Filters are size $m \times m$
- Number of filters = K
- Stride = S, Padding = P

$$W_{out} = \frac{W_{in} - m + 2 \times P}{S} + 1$$

$$\boldsymbol{H_{out}} = \frac{\boldsymbol{H_{in}} - \boldsymbol{m} + 2 \times \boldsymbol{P}}{\boldsymbol{S}} + 1$$

$$D_{out} = K$$

Pooling Layers: Max Pooling

Output invariant to small translation of the input

 $\max(21, 8, 12, 19) = 21$

21	8	8	12
12	19	9	7
8	10	4	3
18	9	10	9

21	12
18	10

Output Volume Shape

- Pool size $n \times n$
- Stride = **S**

$$W_{out} = \frac{W_{in} - n}{S} + 1$$

$$H_{out} = \frac{H_{in} - n}{S} + 1$$

$$D_{out} = D_{in}$$

Pooling Layers: Max Pooling

$$\max(21, 8, 12, 19) = 21$$

Advantages of ConvNets

- Convolutional neural networks are by design, a natural choice to process images
- Convolutional layers have <u>less parameters</u> than fully connected layers, reducing the chances of overfitting
- Convolutional layers use the same parameters to process every block of the image. Along with pooling layers, this leads to translation invariance, which is particularly important for image understanding

Summary

- ConvNets were one of the first neural network models to perform well at a time where other feedforward architectures failed
- ConvNets were one of the first neural network models to solve important commercial applications, such as handwritten digit recognition in the early 1990s [LeCun et. al.]
- Next: 2D Object Detection