Homework 2 Solutions

2.

(a) We can ignore the first moment of Adam by setting $\beta_1 = 0$, which will result in RMSProp. [1 mark]

The final set of hyperparameters are $(\alpha_A = \alpha_R, \beta_1 = 0, \beta_2 = \gamma, \epsilon_A = \epsilon_R)$.

- (b) Dependence of θ_t on the second moment v_t can be reduced by either of the following:
 - i. By setting ϵ_A and α_A to be extremely large values while maintaining the same ratio, we can approximately drown out the effect of v_t on the update to θ_t . This works for any value of β_2 .
 - ii. By setting $\beta_2 = 1$ to have $v_t = 0$ for all t and then setting $\epsilon_A = 1$ will completely remove the effect of v_t on updates to θ_t . While this approach works for the version of Adam presented in this assignment, the actual Adam algorithm has an extra bias correction step " $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ " which would result in a division by zero if $\beta_2 = 1$.

Either approach for reducing the effect of v_t will result in full marks. [1 mark]

Then notice that m_t in Adam and p_t in SGD with momentum both accumulate the gradient using a running average but with different signs, so if we set $\beta_1 = \mu$, then $m_t = -p_t$. This works out since the update rules for θ_t are also different by a sign. [1 mark; 0 if no explanation is made about the different signs; partial marks for a hand-wavy explanation.]

Note that the above statement (if $\beta_1 = \mu$ then $m_t = -p_t$) can be verified by induction. Assume $\beta_1 = \mu$, then the base case is $m_0 = p_0 = 0$. For the induction step we assume $m_{t-1} = -p_{t-1}$, then

$$-m_t = -\mu m_{t-1} - (1-\mu)g_t = \mu p_{t-1} - (1-\mu)g_t = p_t.$$

The final set of hyperparameters are either

$$(\alpha_A = C \cdot \alpha_S, \beta_1 = \mu, \beta_2 \in [0, 1), \epsilon_A = C)$$

for some very large constant C, or

$$(\alpha_A = \alpha_S, \beta_1 = \mu, \beta_2 = 1, \epsilon_A = 1).$$

(c) We can prove the statement $\tilde{m}_t = C \cdot m_t$, $\tilde{v}_t = C^2 \cdot v_t$, and $\tilde{\theta}_t = \theta_t$ for all $t \geq 0$.

Base case is satisfied at initialization, with $\tilde{m}_0 = m_0 = 0$, $\tilde{v}_0 = v_0 = 0$, and we start from the same initialization $\tilde{\theta}_0 = \theta_0$. The induction step assumes $C \cdot \tilde{m}_{t-1} = m_{t-1}$, $C \cdot \tilde{v}_{t-1} = v_{t-1}$, and $\tilde{\theta}_{t-1} = \theta_{t-1}$. Then

$$\tilde{g}_{t} = C \cdot \nabla J(\theta_{0}) = C \cdot g_{t}
\tilde{m}_{t} = \tilde{m}_{t-1} + (1 - \beta_{1})\tilde{g}_{1} = C \cdot m_{t-1} + (1 - \beta_{1})C \cdot g_{t} = m_{t}
\tilde{v}_{t} = \tilde{v}_{t-1} + (1 - \beta_{2})\tilde{g}_{1}^{2} = C^{2} \cdot v_{t-1} + (1 - \beta_{2})C^{2} \cdot g_{1}^{2} = C^{2} \cdot v_{t}
\tilde{\theta}_{t} = \tilde{\theta}_{t-1} - \alpha_{A}\tilde{m}_{t}/(\sqrt{\tilde{v}_{t}}) = \theta_{t-1} - \alpha_{A}Cm_{t}/(C\sqrt{v_{t}}) = \theta_{t}$$

We have proven $\tilde{\theta}_t = \theta_t$ for all $t = 0, 1, 2, \dots$ as part of this statement.

Marking rubric for part (c):

- ullet -0.5 if m_t and v_t are not part of the induction statement.
- \bullet -0.5 if not a formal proof.
- \bullet -0.5 for each other mistake.