TCP and UDP Protocols

Prof SRN Reddy, IGDTUW

Functions of Transport layer

- To provide an interface for network applications to access the network
- To provide an interface for accepting data from different applications on the source computer and sending that data to the recipient applications on different destination computers (Multiplexing).
- Similarly on the destination computer, the incoming data from different remote computers need to be directed to the correct applications for that data was meant for (De-multiplexing).
- It treats each packet independently for final delivery, because each packet for final delivery belongs to different Applications on different destination computers.
- It has protocol/mechanisms for loss-free delivery of data to destination applications.
- Transport layer provides mechanisms for error checking, flow control, and retransmission of lost data.
- Two major protocols at the Transport layer,
 - Transmission Control Protocol (TCP)
 - User Datagram Protocol (UDP)

TCP Layered Architecture

Transmission Control Protocol (TCP)

- It is a connection oriented protocol, which means the devices should open a connection before transmitting data and should close the connection gracefully after transmitting the data.
- It assure reliable delivery of data to the destination.
- It provides extensive error checking mechanisms such as flow control and acknowledgment of data.
- Sequencing of data
- Delivery of data is guaranteed
- It is comparatively slow because of these extensive error checking mechanisms
- Multiplexing and Demultiplexing is supporting
- Retransmission of lost packets is supported

User Datagram Protocol (UDP)

- It is a Datagram oriented protocol with no overhead for opening a connection (using three-way handshake), maintaining a connection, and closing (terminating) a connection.
- It is efficient for broadcast/multicast type of network transmission.
- It has only the basic error checking mechanism using checksums.
- There is no sequencing of data in User Datagram Protocol (UDP).
- The delivery of data cannot be guaranteed in User Datagram Protocol (UDP).
- User Datagram Protocol (UDP) is faster, simpler and more efficient than TCP. It
- It is less robust then TCP
- Multiplexing and Demultiplexing is possible in User Datagram Protocol (UDP) using UDP port numbers.

TCP connection.

- A connection oriented protocol establishes connection between virtual path between source and destination. All segment belonging to the message are sent over this virtual path.
- TCP connection are virtual, not physical. It operates at higher level.
- It use the services of IP to deliver individual segment to the receiver, but it controls the connection itself.
- If a segment is lost or corrupted, it retransmits.
- If a segment arrives out of order, TCP holds it until the missing segments arrive
- Connection-oriented transmission requires three phases:
 - Connection establishment,
 - data transfer,
 - connection termination.

Connection Establishment

- TCP transmits data in full duplex mode. When two TCPs in two machines are connected, they are able to send segments to each other simultaneously.
- This implies that each party must initialize communication and get approval from the other party before any data are transferred.
- This connection establishment in TCP is called three way hand shaking

3 way Handshaking

- The client sends a SYN (synchronize) packet to the server, which has a random sequence number.
- The server sends back a SYN-ACK packet, containing a random sequence number and an ACK number acknowledging the client's sequence number.
- The client sends an ACK number to the server, acknowledging the server's sequence number.
- The sequence numbers on both ends are synchronized. Both ends can now send and receive data independently

Data transfer

- After connection establishment the data transfer in TCP takes place.
- The data transfer takes place in bidirectional.
- Where the client and server can both send data and acknowledgments.
- The acknowledgments are piggybacked with data
- It uses buffer to store the stream of data coming from the sending application.

Connection termination.

- Any of the two parties involved in exchanging data can close the connection, although it is usually initiated by the client.
- Most of the implementation today allow two options for connection termination they are:
 - 1.way handshaking
 - 2. Four way handshaking with a half -close option.

The TCP Segment Header

Encapsulation and Decapsulation

Encapsulation: Encapsulate certain data
Happen at Source node
Adds the header to the payload/ message
and transmit the packet

Decapsulation: opening up encapsulated data back
Done at destination
Removes the header from the packet and creates the original message back

Multiplexing and Demultiplexing

Multiplexing: Many to one Happens at Source Node

De-Multiplexing: one to Many Happens at Destination Node

Flow Control

- Used to maintain the balance between production and consumption rates.
- If the items are produced faster than they can be consumed, the consumer can be overwhelmed and needs to discard some items.
- If the items are produced slower than they can be consumed, the consumer should wait; the system becomes less efficient.
- Flow control is used to prevent losing the data items at the consumer site

Pushing or Pulling

- Delivery of items from a producer to a consumer can occur in one of the two ways: pushing or pulling.
- Pushing: If the sender delivers items whenever they are produced without the prior request from the consumer
- pulling: If the producer delivers the items after the consumer has requested them

TCP Error Control Methods

Checksum

Acknowledgment

Time out

Error control and its Functions

- Detect and discard corrupted packets.
- Keep track of lost and discarded packets and resend them.
- Recognize duplicate packets and discard them.
- Buffer out-of-order packets until the missing packets arrive.

Sequence Numbers

- Error control requires that the sending transport layer knows which packet is to be resent
- Receiving transport layer knows which packet is a duplicate, or which packet has arrived out of order.
- This can be done if the packets are numbered.
- Sequence Number field is added to packet by the transport layer
- When a packet is corrupted or lost, the receiving transport layer can inform the sending transport layer to resend that packet using the sequence number.
- The receiving transport layer can also detect duplicate packets if two received packets have the same sequence number.
- The out-of-order packets can be recognized by observing gaps in the sequence numbers.

Acknowledgment

- The receiver side can send an acknowledgement (ACK) for each or a collection of packets that have arrived safe
- The receiver can simply discard the corrupted packets.
- The sender can detect lost packets if it uses a timer.
- When a packet is sent, the sender starts a timer; when the timer expires, if an ACK does not arrive before the timer expires, the sender resends the packet.
- Duplicate packets can be silently discarded by the receiver. Out-of- order packets can be either discarded or stored until the missing ones arrives.

UDP

- UDP is a transport protocol that creates a process-to-process communication.
- UDP is a (mostly) unreliable and connectionless protocol that requires little overhead and offers fast delivery.
- The UDP packet is called a user datagram.
- UDP's only attempt at error control is the checksum.
- UDP has no flow-control mechanism.
- A user datagram is encapsulated in the data field of an IP datagram.
- UDP uses multiplexing to handle outgoing user datagrams from multiple processes on one host.
- UDP uses demultiplexing to handle incoming user datagrams that go to different processes on the same host.

UDP Header

Source port number: This is the port number used by the process running on the source host. It is 16 bits long.

Destination port number: This is the port number used by the process running on the destination host. It is also 16 bits long.

Encapsulation and Decapsulation

Multiplexing and demultiplexing

Differences are-

Properties	TCP	UDP
Header	Dynamic header (20 – 60 B)	Static header of 8 Bytes
Max segment	any size or 2^30 B	short message 65536 Bytes
Flow Control	Yes, Window and seq. no.	NO
Checksum	Compulsory	Optional
Connection nature	TCP+ IP = connection oriented	UDP+ IP= connection less
Error control	Own mechanism	Depends on ICMP (No self feature)
Support multicast	NO	YES
Support broadcast	NO	Yes
Examples service	HTTP,SMTP,FTP,TELNET	TFTP,DNS,SNMP

TCP vs UDP

Transport Layer Protocols

UDP

- Fast when compared with TCP
- * Not a reliable Protocol
- * Less Overhead
- * No Connection Establishment
- * No Acknowledgment
- * Streaming

Application Layer

Transport Layer
TCP or UDP

Network Layer

Datalink layer

Physical layer

TCP

- * Slow when compared to UDP
- * Reliable Protocol
- * More Overhead
- Connection Establishment Required
- * Acknowledgment
- * Resend lost data

References

- https://www.omnisecu.com/tcpip/transmission-control-protocoltcp.php
- file:///C:/Users/S%20R%20N%20REDDY/Downloads/tcptransmissioncontrolprotocol-copy-150311124141-conversiongate01.pdf
- B.A. Forouzan, "TCP/ IP Protocol Suit", 4th Edition [Online Edition]

Q&A

Thanks