Medición del flujo de neutrinos cósmicos ultra energéticos mediante detectores de superficie

 $\begin{array}{c} {\sf Pablo\ Pieroni^1} \\ {\sf Directores:\ Ricardo\ Piegaia^1} \quad {\sf Jaime\ Alvarez-Mu\~niz^2} \end{array}$

¹Departamento de Física - Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Argentina.

²Departamento de Física de Partículas - Instituto Galego de Física de Altas Enerxías Universidad de Santiago de Compostela, España.

14 de marzo de 2016

Parte I

Detección de neutrinos ultra energéticos con un arreglo de antenas de radio

Motivación

Las lluvias atmosféricas emiten señales de radio.

¿Por qué un arreglo de antenas de radio?

- ullet La amplitud del pulso posee información calorimétrica $o E_{prim}$
- ullet Los tiempos de arribo guardan información sobre la distribución longitudinal de la lluvia $o X_{max}$
- Casi 100 % de tiempo de operación.
- Bajo costo relativo.

GRANE

Propone desplegar 90000 antenas en Tianshian, China para desarrollar búsquedas de neutrinos cósmicos ultra energéticos.

Esta parte de la tesis

Estimar el desempeño de un arreglo de 90000 antenas de radio al detectar UHEvs

Motivación

Las lluvias atmosféricas emiten señales de radio.

¿Por qué un arreglo de antenas de radio?

- ullet La amplitud del pulso posee información calorimétrica $o E_{prim}$
- ullet Los tiempos de arribo guardan información sobre la distribución longitudinal de la lluvia $o X_{max}$
- Casi 100 % de tiempo de operación.
- Bajo costo relativo.

GRAND

Propone desplegar 90000 antenas en Tianshian, China para desarrollar búsquedas de neutrinos cósmicos ultra energéticos.

Esta parte de la tesis

Estimar el desempeño de un arreglo de 90000 antenas de radio al detectar UHE ν s

Motivación

Las lluvias atmosféricas emiten señales de radio.

¿Por qué un arreglo de antenas de radio?

- ullet La amplitud del pulso posee información calorimétrica $o E_{prim}$
- ullet Los tiempos de arribo guardan información sobre la distribución longitudinal de la lluvia $o X_{max}$
- Casi 100 % de tiempo de operación.
- Bajo costo relativo.

GRAND

Propone desplegar 90000 antenas en Tianshian, China para desarrollar búsquedas de neutrinos cósmicos ultra energéticos.

Esta parte de la tesis:

Estimar el desempeño de un arreglo de 90000 antenas de radio al detectar UHE ν s.

Emisión de radio en lluvias atmosféricas Origen

Aproximación ZHS

Emisión de radio en lluvias atmosféricas

Dos mecanismos efectivos

- Efecto geomagnético
 - Efecto Askaryan

Emisión de radio en lluvias atmosféricas

Dos mecanismos efectivos

- Efecto geomagnético
- Efecto Askaryan

Emisión de radio en lluvias atmosféricas Huella y estructura temporal

Emisión de radio en lluvias atmosféricas

Huella y estructura temporal

Emisión de radio en lluvias atmosféricas Huella y estructura temporal

Geometría del cono Cherenkov Eventos ES

Huella del cono sobre el suelo

$$w^2(d) = (\tan^2\theta_{cher} - \tan^2(\theta - \frac{\pi}{2}))(\frac{d}{\sin\theta} - l_{max})^2 - \tan(\theta - \frac{\pi}{2})\frac{h_{max}}{\sin\theta}(\frac{d}{\sin\theta} - l_{max}) - \frac{h_{max}^2}{\sin^2\theta}$$

Modelo de juguete

Resultado

Modelo de juguete

Cadena de simulación

Representación del detector

Disparo local

Fuentes

- lonosférico
- Proveniente de la ciudad
- Galáctico
- Intrínseco

Intensidad

Nivel de disparo local entre 40 μ V/m y 25 μ V/m

Caracterización

Capacidad de disparo

Mostrar cortes en distintas variables

Espacio de parámetros simulado

Cálculo de exposición

Fórmula

$$\mathcal{E}(E_{\nu}) = 2\pi \, \text{TA} \int_{0}^{\infty} \int_{\theta^{cut}}^{\theta^{max}} \int_{0}^{E_{\nu}} \int_{0}^{E_{\tau}} \epsilon(x_{d}, \theta, E_{sh}) \frac{e^{-\frac{\left(k_{d}\right)}{\lambda(E_{\tau})}}}{\lambda(E_{\tau})} \frac{dI(x_{d})}{dx_{d}} P(E_{sh}|E_{\tau})$$

$$P(E_{\tau}|E_{\nu}, \theta) \sin \theta \cos \theta dE_{sh} dE_{\tau} d\theta dx_{d}$$

- Tiempo de medición y área del detector.
- Eficiencia de detección
- Probabilidad de decaimiento de un au a altura x_d
- ullet Probabilidad que un au de energía $E_{ au}$ produzca una lluvia de energía E_{sh}
- Interacción en la tierra
- Ángulo sólido

Cálculo de exposición

Fórmula

$$\mathcal{E}(E_{\nu}) = 2\pi \, \text{TA} \int_{0}^{\infty} \int_{\theta^{cut}}^{\theta^{max}} \int_{0}^{E_{\nu}} \int_{0}^{E_{\tau}} \epsilon(\mathbf{x}_{d}, \theta, \mathbf{E}_{sh}) \frac{e^{-\frac{l(\mathbf{x}_{d})}{\lambda(E_{\tau})}}}{\lambda(E_{\tau})} \frac{dl(\mathbf{x}_{d})}{d\mathbf{x}_{d}} P(E_{sh}|E_{\tau})$$

$$P(E_{\tau}|E_{\nu}, \theta) \sin \theta \cos \theta dE_{sh} dE_{\tau} d\theta d\mathbf{x}_{d}$$

- Tiempo de medición y área del detector.
- Eficiencia de detección.
- Probabilidad de decaimiento de un au a altura x_d
- Probabilidad que un τ de energía E_{τ} produzca una lluvia de energía E_{sh}
- Interacción en la tierra
- Ángulo sólido

Cálculo de exposición

Fórmula

$$\mathcal{E}(E_{\nu}) = 2\pi \, \text{TA} \int_{0}^{\infty} \int_{\theta^{cut}}^{\theta^{max}} \int_{0}^{E_{\nu}} \int_{0}^{E_{\tau}} \epsilon(x_{d}, \theta, E_{sh}) \frac{e^{-\frac{\left(x_{d}\right)}{\lambda(E_{\tau})}}}{\lambda(E_{\tau})} \frac{dI(x_{d})}{dx_{d}} P(E_{sh}|E_{\tau})$$

$$P(E_{\tau}|E_{\nu}, \theta) \sin \theta \cos \theta dE_{sh} dE_{\tau} d\theta dx_{d}$$

- Tiempo de medición y área del detector.
- Eficiencia de detección.
- ullet Probabilidad de decaimiento de un au a altura x_d .
- Probabilidad que un au de energía $E_{ au}$ produzca una lluvia de energía E_{sh}
- Interacción en la tierra
- Ángulo sólido

Cálculo de exposición

Fórmula

$$\mathcal{E}(E_{\nu}) = 2\pi TA \int_{0}^{\infty} \int_{\theta^{cut}}^{\theta^{max}} \int_{0}^{E_{\nu}} \int_{0}^{E_{\tau}} \epsilon(x_{d}, \theta, E_{sh}) \frac{e^{-\frac{l(x_{d})}{\lambda(E_{\tau})}}}{\lambda(E_{\tau})} \frac{dl(x_{d})}{dx_{d}} P(E_{sh}|E_{\tau})$$

$$P(E_{\tau}|E_{\nu}, \theta) \sin \theta \cos \theta dE_{sh} dE_{\tau} d\theta dx_{d}$$

- Tiempo de medición y área del detector.
- Eficiencia de detección.
- Probabilidad de decaimiento de un τ a altura x_d .
- Probabilidad que un τ de energía E_{τ} produzca una lluvia de energía E_{sh} .
- Interacción en la tierra
- Ángulo sólido

Cálculo de exposición

Fórmula

$$\mathcal{E}(E_{\nu}) = 2\pi \, \text{TA} \int_{0}^{\infty} \int_{\theta^{cut}}^{\theta^{max}} \int_{0}^{E_{\nu}} \int_{0}^{E_{\tau}} \epsilon(\mathbf{x}_{d}, \theta, \mathbf{E}_{sh}) \frac{e^{-\frac{(\mathbf{x}_{d})}{\lambda(E_{\tau})}}}{\lambda(E_{\tau})} \frac{dI(\mathbf{x}_{d})}{d\mathbf{x}_{d}} P(E_{sh}|E_{\tau})$$

$$P(E_{\tau}|E_{\nu}, \theta) \sin \theta \cos \theta dE_{sh} dE_{\tau} d\theta d\mathbf{x}_{d}$$

- Tiempo de medición y área del detector.
- Eficiencia de detección.
- Probabilidad de decaimiento de un τ a altura x_d .
- Probabilidad que un τ de energía E_{τ} produzca una lluvia de energía E_{sh} .
- Interacción en la tierra.
- م الماد منام منا

Cálculo de exposición

Fórmula

$$\mathcal{E}(E_{\nu}) = 2\pi TA \int_{0}^{\infty} \int_{\theta^{cut}}^{\theta^{max}} \int_{0}^{E_{\nu}} \int_{0}^{E_{\tau}} \epsilon(x_{d}, \theta, E_{sh}) \frac{e^{-\frac{(k_{d})}{\lambda(E_{\tau})}}}{\lambda(E_{\tau})} \frac{dI(x_{d})}{dx_{d}} P(E_{sh}|E_{\tau})$$

$$P(E_{\tau}|E_{\nu}, \theta) \sin \theta \cos \theta dE_{sh} dE_{\tau} d\theta dx_{d}$$

- Tiempo de medición y área del detector.
- Eficiencia de detección.
- Probabilidad de decaimiento de un τ a altura x_d .
- Probabilidad que un τ de energía E_{τ} produzca una lluvia de energía E_{sh} .
- Interacción en la tierra.
- Ángulo sólido.

Topografía del detector

Cálculo de la eficiencia

Cálculo de la eficiencia

Cálculo de la eficiencia

Eficiencias de identificación

Límite diferencial en 3 años de exposición

Cálculo del límite

Se asume un flujo:
$$\Phi_{\nu} = k E_{\nu}^{-2} \Rightarrow k(E_{\nu}) = \frac{2,4}{E_{\nu} + \Delta} \int_{\nu}^{E_{\nu} + \Delta} \tilde{E}_{\nu}^{-2} \mathcal{E}(\tilde{E}_{\nu}) d\tilde{E}_{\nu}$$

Desempeño - L $= 250 \mathrm{\ km}$

Rate de eventos Topografía - L=250 kmModelo Regular Bordes densos Panal de abeja Cosmogénico - proton, FRII 45.3 52.2 52.5 34.1 39.4 39.5 Cosmogénico - proton, Fermi-LAT Cosmogénico - proton, SFR 10.3 11.8 11.9 Cosmogénico - Híbrido 5.8 - 14.96.7 - 17.26.7 - 17.3Cosmogénico - iron, FRII 3.2 3.6 3.7 IceCube extrapolado E^{-2} 13.1 15.1 15.2 12.9 14.9 15 IceCube extrapolado Best fit

Desempeño - L $= 500 \mathrm{\ km}$

Rate de eventos Topografía - $L=500~\mathrm{km}$ Modelo Regular Panal de abeja Bordes densos Cosmogénico - proton, FRII 185.8 193 191.3 Cosmogénico - proton, Fermi-LAT 140.3 146.0 144.8 Cosmogénico - proton, SFR 42.1 43.8 43.4 23.9 - 61.324.8 - 63.7 24.6 - 63.2Cosmogénico - Híbrido 13.0 13.4 Cosmogénico - iron, FRII 13.3 IceCube extrapolado E^{-2} 53.6 55.5 55 IceCube extrapolado Best fit 52.4 53.8 53.3