Molecular Graph Convolutions: Moving Beyond Fingerprints

S. Kearnes, V. Pande, et al.

Reese Pathak Anvita Gupta

11/14/16, CS273B

Outline

Computer-aided drug design

Data and problem statement

Modelling strategy

Model performance and evaluation

Why computational drug design?

- experimental techniques (alone) are labor intensive, time consuming, expensive
- computational techniques have predicted better drug candidates (HIV, flu, etc.)
- places focus on biological understanding of disease
- turns drug design into a data problem
- hastens drug discovery timeline

Background (1)

terminology for the molecular graph

recall your (high school) chemistry

IBUPROFEN

- electronic features, bond degree, donator/acceptor, etc.
- complex structural features, aromaticity, resonance, etc.
- ▶ three dimensional features, **chirality**, **bond angle**, *etc*.

Background (2)

example featurization of cheminformatic data

► Morgan fingerprint (Rogers & Hahn 2010)

Input: a chemical structure with k atoms

- 1. each atom receives a unique integer identifier in $\{1, 2, \dots, k\}$
- 2. for each atom, store current neighbor identifiers in array
- for each atom hash array values to a single new integer identifier
- 4. go back to step 1 (repeat 2-3 times)
- modifications exist for considering bond degree, isotopes, charge, electronic activity, etc.
- yes, this (crude) algorithm really is the state of the art!

Outline

Computer-aided drug design

Data and problem statement

Modelling strategy

Model performance and evaluation

Problem formulation

- ► **Given:** chemical compounds and associated structural information
- ► **Predict:** whether or not a drug candidate will successfully bind a target protein
- computational view is multi-task binary classification

Dataset

- ▶ Same dataset from Ramsundar et al., 2016
- 259 assays against different target proteins from 4 different sources:
 - 1. PCBA Pubchem Bioassay
 - 2. MUV Maximum Unbiased Validation
 - 3. DuDE Database of Useful Decoy Drugs
 - 4. Tox21 Training data from Tox21 Challenge
- ▶ 60-20-20 split between training, validation, and test sets
- Some things to consider:
 - Class imbalance?
 - Duplicates (or very similar compounds) in training and test?

Outline

Computer-aided drug design

Data and problem statement

Modelling strategy

Model performance and evaluation

Model Setup

- ► **Goal:** learn higher order features from Molecular Graph
- Successive convolution of atom and pair features, followed by ReLU activations.
- ► Results in a new molecular graph with (hopefully) better learned features

Molecular graph model

Model takes in multiple inputs for a single molecule

- ightharpoonup a $N \times n_a$ matrix of atom-specific features, A
- ▶ a $N \times N \times n_p$ tensor of pairwise features, P
- ▶ N, the number of atoms in molecule
- \triangleright n_a , the number of features computed per atom
- $ightharpoonup n_p$, the number of features aggregated per pair of atoms

Input Featurization (1)

► Featurization of Atoms by:

Feature	Description			
Atom type ^a	H, C, N, O, F, P, S, Cl, Br, I, or metal (one-hot or null)	11		
Chirality	R or S (one-hot or null)	2		
Formal charge	Integer electronic charge	1		
Partial charge	Calculated partial charge	1		
Ring sizes	For each ring size (3-8), the number of rings that include this atom	6		
Hybridization	sp, sp ² , or sp ³ (one-hot or null)	3		
Hydrogen bonding	Whether this atom is a hydrogen bond donor and/or acceptor (binary values)	2		
Aromaticity	Whether this atom is part of an aromatic system	1		
		27		

Input Featurization (2)

► Featurization of Atoms by:

Feature	Description			
Atom type ^a	H, C, N, O, F, P, S, Cl, Br, I, or metal (one-hot or null)	11		
Chirality	R or S (one-hot or null)	2		
Formal charge	Integer electronic charge	1		
Partial charge	Calculated partial charge	1		
Ring sizes	For each ring size (3-8), the number of rings that include this atom	6		
Hybridization	sp, sp ² , or sp ³ (one-hot or null)	3		
Hydrogen bonding	Whether this atom is a hydrogen bond donor and/or acceptor (binary values)	2		
Aromaticity	Whether this atom is part of an aromatic system	1		
		27		

Input Featurization (3)

► Featurization of Pair Information (Bonds) by:

Feature	Description		
Bond type ^a	Single, double, triple, or aromatic (one-hot or null)	4	
Graph distance ^a	For each distance (1–7), whether the shortest path between the atoms in the pair is less than or equal to that number of bonds (binary values)	7	
Same ring	Whether the atoms in the pair are in the same ring	1	
		12	

Input Featurization (4)

► Featurization of Pair Information (Bonds) by:

Feature	Description		
Bond type ^a	Single, double, triple, or aromatic (one-hot or null)	4	
Graph distance ^a	For each distance (1–7), whether the shortest path between the atoms in the pair is less than or equal to that number of bonds (binary values)	7	
Same ring	Whether the atoms in the pair are in the same ring	1	
		12	

Model architecture

- ► A and P are manually featurized inputs
- Weave modules are modified convolutional layers
- only final atom features are used for the final FC layers
 - ► the rationale for this is unclear, technical issue?
- technical details:
 - ► trained with Adagrad, batch size 96, learning rate of 0.003
 - TensorFlow

Model Constraints

- Atom Table A and Pair Table P should always satisfy a few constraints:
 - Property 1 Output of model should be invariant to the order that the atom and bond information is encoded in the input.
 - 2. **Property 2** If the inputs are permuted with a permutation operator Q, then at every layer x, y, A^x and P^y are permuted with Q as well
 - Invariance to order of atom/bond information continues at every level
 - 3. **Property 3** Symmetry of Pair Values– for all layers y, $P_{(a,b)}^{y} = P_{(b,a)}^{y}$

Invariant Preserving Operations (1)

- ▶ Goal is to compute A and P at new level y based on previous levels $x_1, x_2, ... x_n$
- \rightarrow $A \rightarrow A$
 - ► For a particular atom *a*, calculate row in new *A* matrix:
 - $A_{a}^{y} = f(A_{a}^{x_{1}}, A_{a}^{x_{2}}, ..., A_{a}^{x_{n}})$
- ightharpoonup P
 ightharpoonup P

$$P_{a,b}^{y} = f(P_{a,b}^{x_1}, P_{a,b}^{x_2}, ..., P_{a,b}^{x_n})$$

► Function *f* and weights are same for every atom—referred to as a convolution!

Invariant Preserving Operations (2)

- $\triangleright P \rightarrow A$
 - $A_{a}^{y} = g(f(P_{a,b}^{x}), f(P_{a,c}^{x}), ..., f(P_{a,N}^{x})) = \sum_{i} f(P_{a,i}^{x})$
 - ▶ Marginalize over all atoms that a bonds to
- \triangleright $A \rightarrow P$
 - $P_{a,b}^{y} = g(f(A_a^{x}), f(A_b^{x}))$
 - Better than simply adding the features from A_a^x to A_b^x because gives learnable parameters

Constructing Weave Module

- Weave module is composed of at least one of each of these operations
- Construction ensures that atom and pair features from one level both contribute to atom and pair features of next level

Molecular Level Features

- ► Take 11 Histograms (one for each feature, each data point is an atom)
- Concatenate this histograms into set of features
- Fuzzy Set
 - membership in each bin given by how much of distribution lies to its right

Outline

Computer-aided drug design

Data and problem statement

Modelling strategy

Model performance and evaluation

Model evaluation metrics

Comparison against four baselines:

- maximum similarity (Jaccard similarity),
- ▶ logistic regression,
- random forest model,
- pyramid multitask neural network (PMTNN)

Classification accuracy metrics:

- median ROC AUC
- ▶ ∆ median ROC AUC (relative to PMTNN)
- ▶ 95% Wilson score interval

Model performance

Authors: "our model is *statistically indistinguishable* from the PMTNN for the PCBA, MUV, and Tox21 dataset groups" (emphasis added)

Model	PCBA $(n = 128)$				MUV $(n = 17)$			Tox21 (n = 12)		
	Median AUC	$_{\Delta { m AUC}}^{ m Median}$	Sign Test 95% CI	Median AUC	$egin{array}{l} { m Median} \\ { m \Delta AUC} \end{array}$	Sign Test 95% CI	Median AUC	$egin{array}{l} { m Median} \\ { m \Delta AUC} \end{array}$	Sign Test 95% CI	
MaxSim	0.754	-0.137	(0.00, 0.04)	0.638	-0.136	(0.01, 0.27)	0.728	-0.131	(0.00, 0.24)	
LR	0.838	-0.059	(0.04, 0.13)	0.736	-0.070	(0.10, 0.47)	0.789	-0.073	(0.01, 0.35)	
RF	0.804	-0.092	(0.02, 0.10)	0.655	-0.135	(0.01, 0.27)	0.802	-0.047	(0.01, 0.35	
PMTNN	0.905			0.869			0.854			
W ₂ N ₂ -simple	0.905	-0.003	(0.27, 0.44)	0.849	0.012	(0.36, 0.78)	0.866	0.003	(0.39, 0.86)	
W_2N_2 -sum	0.898	-0.011	(0.16, 0.31)	0.818	-0.014	(0.17, 0.59)	0.848	-0.010	(0.09, 0.53)	
W_2N_2 -RMS	0.902	-0.007	(0.20, 0.35)	0.851	-0.026	(0.13, 0.53)	0.854	-0.007	(0.05, 0.45)	
W_1N_2	0.905	-0.007	(0.20, 0.35)	0.840	-0.002	(0.26, 0.69)	0.849	-0.009	(0.09, 0.53)	
W_2N_1	0.908	-0.003	(0.30, 0.46)	0.858	-0.016	(0.17, 0.59)	0.867	-0.002	(0.19, 0.68)	
W_2N_2	0.909	0.000	(0.42, 0.59)	0.847	-0.004	(0.22, 0.64)	0.862	0.004	(0.32, 0.81)	
W_2N_3	0.906	-0.001	(0.38, 0.55)	0.838	-0.013	(0.26, 0.69)	0.861	0.000	(0.25, 0.75)	
W_2N_4	0.908	-0.001	(0.37, 0.54)	0.836	-0.008	(0.17, 0.59)	0.858	0.001	(0.39, 0.86)	
W_2N_{∞}	0.897	-0.008	(0.12, 0.25)	0.841	-0.025	(0.10, 0.47)	0.846	-0.006	(0.14, 0.61)	
W_3N_2	0.906	0.000	(0.44, 0.61)	0.875	0.010	(0.31, 0.74)	0.859	0.004	(0.47, 0.91)	
W_4N_2	0.907	-0.001	(0.33, 0.50)	0.856	-0.007	(0.22, 0.64)	0.862	0.004	(0.32, 0.81)	

Deeper networks share similar performance statistics

No architecture improves the SOTA

no significant improvement with deeper architectures

Simple vs. Full Featurization

- ► Adding the full feature set gives little improvement
- Atom type and bond type seem to give majority of predictive capability
- Why better than Morgan Fingerprint?

Loss of Information in Molecular Level Features

- Performs slightly better with respect to Δ median auROC
- Not as much better as we would expect with such a complicated binning technique
- Why is this step needed? Artificially imposed on CNN, which should be able to learn and predict from its own generated features

Interpretability of Features

► Comparable visualization for the Weave modules would help test if model is actually learning

Class imbalance

some of the data offered by the authors indicate potential class imbalance in the data set

- ► the authors get > 0.98 ROC AUC on *all* models on the DUD-E data set
- ▶ logistic regression gets at least 0.84 ROC AUC on data sets
- authors do not report PRC AUC
- authors do not describe removing examples from train set based on molecular similarity

Suggestions for Extensions

- Might avoid artificial combining of features with RNN
 - Accepts variable length input!
- Would like to see more detail on which specific proteins model did better/worse on
- Extension to 3D model of drugs? Basic principles would apply
- Feature importance testing (we suspect features are not very predictive)