Rao Fu 10/June/2025

Solow Model X Machine Learning Presentation

Briefly describe the contents of the presentation or the purpose of the meeting. Tell your audience what to expect.

Background overview

As a Development Economist, I strive to find out why some nations flourish faster and why are some lagging behind. Thanks to machine learning, I am now able to combine all countries' historical data with the hope to resolve a pattern based on Solow Model.

What Solow Tells Us:

Economic growth depends on how much we invest, how fast our population grows, and how quickly we improve technology (human capital).

Solow Model

FIGURE 2.7 GDP PER WORKER YERSUS POPULATION GROWTH RATES

Research Question:

What are the roles of **investment**, **population growth and human capital** in economic development?

Investment Share → **Higher GDP Per Capita**

Population Growth → **Lower GDP Per Capita**

Education (HC) → **Higher GDP Per Capita**

Data Sources:

- Investment Nominal share within GDP for each country by year (1990-2040, S&P Global);
- GDP Per Capita for each country by year (1990 2055, S&P Global);
- Population Growth (1990- 2055, S&P Global);
- Average Years of Schooling (1950-2040, Our World in Data).

Data Prep:

- Data Reshaping from wide to long format;
- Drop NA;
- Merge 4 datasets together by Country and Year;
- Target: GDP Per Capita
- Feature: Avg. years of schooling, investment rate, population growth rate → MaxMinScaler

Linear Regression (actual data 1990-2024 with all countries)

R²: 0.512

Coefficients:

(population_growth): 1.8

(schooling):4.92

(investment_rate): 0.38

Linear Regression (actual data 1990-2024 with country segmentation)

Developed: NL,UK, AUS

Late industrializers: JP, SGP

Developing: CHN,BRA, ARG,

IND

R²: 0.512 (developed)

Coefficients:

(population_growth): -0.19

(schooling):0.90

(investment_rate): -0.08

R²: -0.170(Late Industrializers)

R²: 0.63(Developing)

Coefficients:

(population_growth): -1.75

(schooling):=1.35

(investment_rate): -1.38

KNN Regression (actual data 1990-2024 with all countries)

KNN score: 0.54

Decision Tree (actual data 1990-2024 with all countries) R²: 0.47 Prediction (Segmented Country 2024-2040)

R²: -4.79 (developed)

R²: 0.525 (Late

Industrializers)

R²:0.925 (developing)

Linear Regression (actual data 1990-2024 with all countries)

R²: 0.512

Coefficients:

(population_growth): 1.8

(schooling):4.92

(investment_rate): 0.38

After optimization:

Bagging & Pasting:

R²=0.597

Random Forest: R²=0.631

Gradient Boosting:

R²=0.563

Adaboost: R²=0.551

Linear Regression (actual data 1990- 2024 with country segmentation)

Before optimization:

R²: 0.512 (developed)

Coefficients:

(population_growth): -0.19

(schooling):0.90

(investment_rate): -0.08

R²: -0.170(Late Industrializers)

R²: 0.63(Developing)

Coefficients:

(population_growth): -1.75

(schooling):=1.35

(investment_rate): -1.38

After optimization:

Developed

Bagging & Pasting: **R**²=0.770

Random Forest: R²=0.779

Gradient Boosting: R²=0.719

Adaboost: R²=0.774

Late Industrializers

Bagging & Pasting: R²=-0.124

Random Forest: R2=-1.647

Gradient Boosting: R²=-5.314

Adaboost: R²=0.653

Developing:

Bagging & Pasting: R²=0.783

Random Forest: R²=0.725

Gradient Boosting: R²=0.448

Adaboost: R²=0.653