UNIVERSIDADE EVANGÉLICA DE GOIÁS

PROCESSOS E THREADS

Sistemas Operacionais Prof. Jeferson Silva Engenharia de Software

PROCESSO

Pode ser definido como um programa em execução que possui um espaço de memória e recursos próprios.

THREAD

Pode ser definida como uma unidade básica de processamento que compartilha recursos com outros threads dentro de um processo.

PROCESSOS

Em sistemas operacionais, um processo é definido como um programa em execução que possui seu próprio espaço de endereçamento, um conjunto de registradores, uma pilha e outros recursos associados.

Um processo é a unidade básica de alocação de recursos do sistema operacional e é gerenciado pelo kernel.

INICIALIZAÇÃO DE PROCESSOS

Um processo pode ser iniciado por um usuário, por um outro processo ou por um serviço do sistema operacional.

Quando um processo é iniciado, ele é colocado na fila de processos pronto para ser executado pelo sistema operacional.

Quando é sua vez de ser executado, o sistema operacional aloca os recursos necessários, incluindo a CPU, e inicia a execução do processo.

CONTROLE DE PROCESSOS

O kernel do sistema operacional é responsável por gerenciar os processos, incluindo a criação, escalonamento, sincronização e comunicação entre eles.

O kernel também é responsável por garantir a segurança e a proteção dos recursos do sistema, impedindo que um processo acesse indevidamente o espaço de endereçamento ou recursos de outro processo.

EXEMPLOS DE PROCESSOS

Um editor de texto:

- *Quando um usuário inicia um editor de texto, é criado um processo que executa o editor de texto.
- Esse processo pode ter várias threads, como uma thread para a interface gráfica e uma thread para o processamento de arquivos.

EXEMPLOS DE PROCESSOS

Um navegador da web:

- Quando um usuário inicia um navegador da web, é criado um processo que executa o navegador.
- Esse processo pode ter várias threads, como uma thread para a interface gráfica e uma thread para o carregamento de páginas da web.

PROCESSOS X THREADS

O processo pode ter um ou mais threads em execução, que compartilham o mesmo espaço de endereçamento e recursos do processo.

TIPOS DE PROCESSOS

Processos de usuário:

Programas criados e executados pelo usuário.

Processos de sistema:

Programas executados pelo sistema operacional, como gerenciadores de impressão e serviços de rede.

PROCESSOS DE USUÁRIO

Trata-se de um processo que é iniciado por um usuário ou por um aplicativo em nome do usuário.

Esse tipo de processo é executado no modo de usuário, que possui privilégios limitados em relação ao modo kernel.

PROCESSOS DE USUÁRIO

São independentes e contém informações sobre o programa em execução, como o código, dados, pilha, registradores, etc.

Cada processo de usuário tem seu próprio espaço de endereçamento virtual, que é isolado dos demais processos, o que garante a segurança e a proteção dos dados entre os diferentes processos em execução no sistema.

CONTROLE DOS PROCESSOS DE USUÁRIO

Os processos de usuário são gerenciados pelo kernel do sistema operacional, que é responsável por criar, destruir e gerenciar os recursos associados a cada processo.

O kernel também é responsável por garantir que cada processo de usuário tenha acesso apenas aos recursos a que tem permissão.

VANTAGEM DOS PROCESSOS DE USUÁRIO

Os processos de usuário permitem que os usuários executem aplicativos e programas em um ambiente protegido e isolado, sem afetar a estabilidade ou a segurança do sistema operacional.

Isso significa que, se um aplicativo ou processo de usuário falhar, o restante do sistema operacional ainda poderá funcionar normalmente.

PROCESSOS DE SISTEMA

É iniciado pelo sistema operacional ou por um serviço do sistema operacional em vez de ser iniciado diretamente pelo usuário.

Esse tipo de processo geralmente é executado com privilégios elevados, no modo kernel do sistema operacional, para que possa acessar e controlar diretamente os recursos de hardware do computador.

PROCESSOS DE SISTEMA

São responsáveis por gerenciar tarefas críticas do sistema operacional, como o gerenciamento de memória, gerenciamento de dispositivos, gerenciamento de arquivos e serviços de rede.

Eles também podem ser responsáveis por executar tarefas de manutenção e segurança, como verificação de vírus, backup e atualizações do sistema.

EXECUÇÃO DOS PROCESSOS DE SISTEMA

São geralmente executados em segundo plano e não têm uma interface de usuário.

Eles são gerenciados pelo kernel do sistema operacional e podem ser iniciados automaticamente quando o sistema operacional é iniciado, ou em resposta a um evento específico do sistema, como uma conexão de rede.

EXEMPLOS DE PROCESSOS DE SISTEMA

Sistema de gerenciamento de janelas

Serviço de impressão

Serviço de segurança

Gerenciador de tarefas

THREADS

Uma thread em sistemas operacionais é uma unidade básica de execução em um processo.

Uma forma de dividir um processo em várias tarefas menores e simultâneas que podem ser executadas de forma independente.

Cada thread compartilha o mesmo espaço de endereçamento do processo pai e pode acessar diretamente os recursos compartilhados do processo.

THREADS

As threads são consideradas leves, pois compartilham o mesmo espaço de endereçamento e outros recursos com o processo pai, isso as torna mais eficientes em termos de utilização de recursos do sistema em comparação com a criação de processos independentes.

Além disso, as threads podem ser facilmente criadas e destruídas pelo processo pai, facilitando o trabalho com tarefas simultâneas.

COMPOSIÇÃO DE THREAD

Cada thread é composta por um conjunto de instruções executáveis, um contexto de execução (que inclui os valores dos registradores da CPU e outras informações necessárias para a execução da thread) e uma pilha separada.

A pilha é usada para armazenar informações relacionadas à execução da thread, como variáveis locais, ponteiros de retorno e informações de controle de exceção.

THREADS

As threads podem ser executadas em paralelo em processadores de múltiplos núcleos ou processadores com hyper-threading, o que pode melhorar o desempenho e a eficiência do processo pai.

No entanto, a execução simultânea de várias threads também pode levar a problemas de sincronização e concorrência, que precisam ser gerenciados cuidadosamente pelo processo pai.

VANTAGEM DAS THREADS

As threads são amplamente utilizadas em sistemas operacionais modernos para executar tarefas simultâneas, como execução de código em segundo plano, operações de entrada e saída, execução de tarefas de interface do usuário e outras tarefas que exigem processamento simultâneo.

Os processos podem estar em diferentes estados, dependendo de sua atividade e do que está acontecendo no sistema.

Os estados de processos são usados pelos sistemas operacionais para gerenciar e controlar o ciclo de vida dos processos.

Novo: O processo foi criado, mas ainda não foi iniciado pela CPU.

Pronto: O processo está pronto para ser executado, mas ainda não está sendo executado pela CPU.

Executando: A CPU está executando o processo.

Bloqueado: O processo está temporariamente inativo porque está aguardando a conclusão de uma operação de entrada/saída ou outro evento externo.

Suspenso: O processo está temporariamente inativo porque foi interrompido ou suspenso pelo sistema operacional ou pelo usuário.

Terminado: O processo foi concluído e já não está mais em execução.

