Machine learning notes: week 5

Lars Yencken

Notes: neural network training

Cost function

- We have L layers in the network, each with s_l units
 - E.g. s_L is the size of the output layer
- Our hypothesis: $h_{\Theta}(x) \in \mathcal{R}^K$
- Cost function $J(\Theta)$ is the sum of two components:

 - \sum_k of the logistic regression cost over outputs y_k Regularization term: $\frac{\lambda}{2m}\sum_{l=1}^{L-1}\sum_{i=1}^{s_l}\sum_{j=1}^{s_l+1}(\Theta_{j,i}^{(l)})^2$, ignoring the bias terms $\Theta_{i,0}^{(l)}$
- To minimise it, we need to calculate $\frac{\delta}{\delta\Theta_{\cdot}^{(l)}}J(\Theta)$

Backpropagation

• $\delta_i^{(l)}$ represents the error of node j in layer l

-
$$\delta_j^{(4)} = a_j^{(4)} - y_j = (h_{\Theta}(x))_j - y_j$$

– There is no $d^{(1)}$ term for the input layer

•
$$\frac{\delta}{\delta\Theta_{i,j}^{(l)}}J(\Theta) = a_j^{(l)}d_i^{(l+1)}$$

• See notes for direct algorithm

Implementation: unrolling

- fminunc and other optimising methods assume heta is a vector
 - This means we need to pack our matrices $\Theta^{(i)}$ into a vector
 - thetaVec = [Theta1(:); Theta2(:); Theta3(:)];
 - Use reshape() to get the original structure back

Gradient checking

- There's lots of ways to get the backpropagation algorithm wrong
- We can compare our gradient calculation with a numeric graident estimation
 - The estimation comes from $\frac{d}{d\Theta}J(\Theta)=\frac{J(\Theta+\epsilon)-J(\Theta-\epsilon)}{2\epsilon}$
- ullet Do this on the unrolled version of Θ and compare to our more efficiently calculated gradient
 - The answers should be the same up to a few decimal places
 - Don't leave this running when training your network it's too expensive!

Initial values of Θ

- We need to break symmetry, otherwise our network becomes degenerate
 - Think about it, the order of internal nodes is basically arbitrary
- Instead, pick a random number in $[-\epsilon,\epsilon]$ for each $\Theta_{i,j}^{(l)}$

Big picture

- Picking an architecture (hidden layer? number of nodes?)
 - Input and output layer sizes are already fixed by your problem
 - More hidden units is better, but more expensive; up until $3-4\times$ your input feature space size is ok
- $J(\Theta)$ is no longer convex and can get stuck in local optima; not such a big problem in practice