Feedbacks: Oceans and El Niño

EES 3310/5310
Global Climate Change
Jonathan Gilligan

Class #9: Monday Sept. 10 2018

Feedback Mathematics

Stefan-Boltzmann Feedback Bare rock:

- $I_{\text{out}} = \epsilon \sigma T^4$
- $f_{SB} = -3.2 \text{ Wm}^{-2} \text{K}^{-1}$
- Forcing: $Q_{\text{forcing}} = I_{\text{in}} I_{\text{out}} = +1 \text{ Wm}^{-2}$
- $\Delta T = -Q_{\text{forcing}}/f$

$$\Delta T = \frac{-1 \text{ Wm}^{-2}}{-3.2 \text{ Wm}^{-2} \text{K}^{-1}} = +0.32 \text{ K}$$

Positive & Negative Feedback

Positive & Negative Feedback

- Total feedback: $f = f_0 + f_1 + f_2 + \cdots$
- $f_0 = f_{SB}$: Stefan-Boltzmann
- Other feedbacks f₁, f₂, ...:
 - Positive $(f_i > 0)$: amplifies temperature change
 - Warmings → hotter
 - $\circ \ \, Coolings \, \to \, colder$
 - Negative $(f_i < 0)$: diminishes temperature change
 - Warmings → milder
 - $\circ \ \, Coolings \, \to milder$

Amplification

$$a=rac{f_0}{f}=rac{f_0}{f_0+f_1+f_2+\cdots}$$
 $f_0=f_{\mathsf{SB}}=\mathsf{Stefan ext{-}Boltzmann}$ feedback

$$\Delta T = \frac{-Q_{\text{forcing}}}{f - Q_{\text{forcing}}}$$

$$= a \times \frac{-Q_{\text{forcing}}}{f_0}$$

- a > 1: net feedback is positive:
 - more severe warmings, coolings.
- a < 1: net feedback is negative:
 - milder warmings, coolings.

Normal Conditions

El Niño

Aug.-Sept. 2015

Aug.-Sept. in 2016

Jul. in 2017

Aug.-Sept. in 2018

Historical Record

Recent Times

Climate Connection

- El Niño phase:
 - Hotter sea-surface
 - More evaporation
 - Bigger greenhouse effect
 - Higher global air temperatures
 - Incoming heat goes into air more than ocean
- La Niña phase:
 - Cooler sea-surface
 - Less water vapor
 - Smaller greenhouse effect
 - Cooler global air temperatures
 - Incoming heat mostly absorbed by ocean

Biosphere Feedbacks

Hydrological Cycle

- Transpiration in plants:
 - Roots take water from ground
 - Leaves emit water vapor
 - This can be a significant source of water vapor

Hydrological Cycle

- Transpiration occurs through "stomata" in leaves
- Tradeoff stomata:
 - Allow plant to get CO₂
 - Cause plant to lose water
- More CO₂ in atmosphere:
 - Fewer stomata
 - Less transpiration

Albedo

- Trees have dark leaves
- Boral forests (near arctic) expand as temperature rises, decrease albedo
- If tropical/temperate forests turn to grassland, albedo rises (cooling)

Forests vs. Grasslands

Carbon Cycle

- Dead organic matter in ground (leaves, roots, etc.) stores carbon
- Warming temperatures accelerate decomposition
 - Bacterial/fungal metabolism
- Huge amounts of dead organic matter in arctic tundra & permafrost
 - Concerns about runaway greenhouse gas emission as ground thaws & warms