Deadline: Friday, June 27th 2025

1. Algorithm Overview (20%)

DBSCAN (**Density-Based Spatial Clustering of Applications with Noise**) is a density-based clustering algorithm that identifies clusters as areas of high point density and labels points in low-density regions as noise (outliers).

• Cluster Identification:

DBSCAN groups points that are closely packed together (points with many nearby neighbors). It starts from an arbitrary point and retrieves all points density-reachable from it. If this point has at least min_samples neighbors within a radius eps, it becomes a core point and forms a cluster. Points within eps of a core point are added to the cluster, and the process continues recursively. Points that do not belong to any cluster are labeled as noise.

Key Parameters:

- **eps (epsilon):** Defines the neighborhood radius around a point. Points within this distance are considered neighbors.
- **min_samples:** The minimum number of points required (including the point itself) to form a dense region (cluster).

• Strengths:

- Can find clusters of arbitrary shape (not just spherical).
- Automatically detects and labels outliers as noise.
- Does not require specifying the number of clusters in advance.

• Limitations:

- Struggles with datasets containing clusters of varying densities.
- Sensitive to parameter selection (eps and min_samples).
- Can be less efficient on very large datasets.

Deadline: Friday, June 27th 2025

2. Algorithm Comparison (40%)

Visualizations

• **Figure 1:** DBSCAN on make_moons – Correctly identifies two crescent clusters and noise.

• **Figure 2:** k-Means on make_moons – Fails to capture the curved structure.

Deadline: Friday, June 27th 2025

• **Figure 3:** Hierarchical Clustering on make_moons – Somewhat better than k-Means, but still imperfect.

Deadline: Friday, June 27th 2025

• **Figure 4:** DBSCAN on make_blobs – Struggles with clusters of varying density, merges/splits clusters incorrectly.

• **Figure 5:** k-Means on make_blobs – Accurately separates spherical clusters.

Deadline: Friday, June 27th 2025

• **Figure 6:** Hierarchical Clustering on make_blobs – Performs similarly to k-Means.

Analysis

Deadline: Friday, June 27th 2025

- **DBSCAN outperforms** k-Means and Hierarchical Clustering on non-spherical data (make_moons), successfully finding clusters and labeling noise.
- **DBSCAN struggles** on data with clusters of varying densities (make_blobs), as a single eps value cannot accommodate all cluster types. It may merge dense clusters or split sparse ones incorrectly.
- **k-Means** is efficient and effective for well-separated, spherical clusters but fails with non-spherical or noisy data.
- **Hierarchical Clustering** is flexible with cluster shapes but less scalable and sensitive to linkage choices.

Trade-offs:

- Use DBSCAN for data with arbitrary shapes and noise.
- Use k-Means or Hierarchical Clustering for well-separated, similarly dense, spherical clusters.
- Parameter tuning and understanding of data distribution are critical for DBSCAN.

3. Table Update (20%)

Compare and contrast characteristics for all three algorithms:

Feature	k-Means	Hierarchical Clustering	DBSCAN
Definition	Partitioning algorithm that assigns points to k clusters based on centroids	Builds a hierarchy of clusters using distance metrics	Density-based algorithm that groups points in high-density regions and marks low-density points as noise
Approach	Iteratively minimizes variance within k clusters	Agglomerative (bottom-up) or divisive (top-down)	Uses density reachability with parameters eps and min_samples to form clusters
Number of Clusters	Requires predefined k	Can be determined from dendrogram but subjective	Automatically determined by data density
Cluster Shape	Prefers spherical clusters	Works well with various shapes but can be unstable	Handles arbitrary/non- spherical shapes effectively

Deadline: Friday, June 27th 2025

Initialization	Randomly selects k initial centroids	No initialization needed	No centroid initialization starts with arbitrary points
Result	Hard assignments— each point belongs to a single cluster	Hierarchical structure (tree/dendrogram)	Hard assignments with explicit noise identification
Interpretability	Moderate—cluster assignments but no hierarchy	High—dendrogram can be analyzed	Moderate - clusters defined by density, no hierarchy
Strengths	Simple, fast and efficient on large datasets	Can capture hierarchical relationships	Handles arbitrary shapesRobust to noiseNo predefined cluster count needed
Limitations	Sensitive to initial centroids and k choice	Computationally expensive for large datasets	- Parameter-sensitive - Struggles with varying densities - Scalability challenges

4. Code Documentation & Submission Quality (20%)

k to GitHub repository / code here>

https://github.com/Anjali-Sindha/Anjali-Sindha-Machine-Learning-Al-Bioinforma---BINF-5507-0TA