Rede

Por André Rodrigues da Cruz, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP – campus São Paulo) ■ Brazil

Timelimit: 1

A região montanhosa do Pico Cristalino é famosa pela quantidade de nascentes e qualidade da águra mineral que de lá se origina. Diversas cachoeiras com fluxos torrenciais embelezam a natureza com suas florestas naturais e campos abertos preservados. Alguns estudiosos são capazes de afirmar que as águas possuem qualidades medicinais.

A população dos diversos vilarejos que rodeiam a região, sempre preocupados com os cuidados em relação aos recursos naturais e a qualidade de vida dos que ali habitam, resolveram construir uma rede de distribuição de água. Com isso, se suprirá as necessidades da comunidade a um menor custo possível com os canais.

A ideia é que dado um conjunto de possibilidades de conexões entre a fonte e os vilarejos, se escolha uma configuração em que a água chegue a todas as localidadades, gastando-se o menor investimento possível (encanamento, bombeamento, etc.). Para tal, foi modelado como um grafo não direcionado e ponderado com as possíveis conexões em que a água trafegará pela rede. Os vértices representam a fonte e os vilarejos. As arestas modelam as possibilidades de conexões, cujos pesos representam o custo de implementar aquela conexão. Deseja-se então como resultado, uma rede de água que tenha o menor custo de implementação que garanta que todos os vilarejos sejam atendidos.

Por exemplo, se o conjunto de possibilidades é como descrito pela Figura 1, a solução deve ser implementada como aquela dada pela configuração indicada pela Figura 2 em um custo total de 16.

Figura 1: Exemplo de conjunto de possibilidades para a rede de água.

Figura 2: Solução ótima de rede de água para o exemplo.

Entrada

A entrada possui um caso de teste e descreve um grafo não direcionado ponderado e conexo, representando um conjunto de possibilidades para a rede de água. Na primeira linha do caso de teste há, separados por um espaço, um inteiro N ($1 \le N \le 100$) que indica o número de vilarejos da região e um inteiro M ($1 \le M \le N(N-1)/2$) que indica o número de possíveis conexões que podem existir na rede de água. Depois, seguem-se M linhas com os inteiros distintos M ($1 \le N \le N$), N ($1 \le N \le N$) e N ($1 \le N \le N$) e N ($1 \le N \le N$), where N is a um custo N0.

Saída

A saída do caso de teste deve apresentar um inteiro que representa o menor custo total possível para se construir a rede de água desejada.

Exemplos de Entrada	Exemplos de Saída
6 9 1 2 3 1 3 9 2 3 1 2 4 2 3 4 3 3 5 5 4 5 3 4 6 7 5 6 8	16
5 7 1 2 35 1 3 40 2 3 25 2 4 10 3 4 20 3 5 15 4 5 30	80
4 6 1 2 50 1 3 10 1 4 30 2 3 10 2 4 10 3 4 10	30

Problema gerado para a Maratona de Programação InterIF. Formatado por Rafael Stoffalette João