Activity — Reproducible Analysis with R

Understanding the data

There are 1682 students in the data. These students have a total of 1193 unique teachers and 760 unique schools.

Let's take a peek at the data:

school_id	teach_id	child_id	lit_pretest	math_pretest	lit_posttest	math_posttest	ses	female	black
0194	0194T03	0194021C	24.88	12.92	35.07	23.89	-0.33	0	0
0089	0089T04	0089013C	29.44	20.07	40.35	29.75	0.77	1	0
0343	0343T01	0343024C	33.35	31.59	67.49	52.89	0.17	1	0
0282	0282T02	0282017C	29.45	25.65	30.71	29.47	0.98	0	0
0855	0855T01	$0855020\mathrm{C}$	42.50	34.97	40.71	34.78	0.06	0	0
0155	0155T01	0155009C	31.67	29.11	49.47	55.58	0.84	0	0

Let's see how many times each of the top 10 most common schools show up in the data

```
data %>%
  count(school_id, sort = TRUE) %>%
  slice(1:10) %>%
  kable()
```

$school_{\underline{}}$	_id	n
0404		7
0011		6
0058		6
0105		6
0229		6
0458		6
0626		6
0635		6
0776		6
0808		6

Relationship between lit and math pretests

Positive relationship between pretests

Growth

Histograms of growth

Lit Growth

Math Growth

Relationship between growth

Predicting math growth based on covariates

```
##
## Call:
## lm(formula = math_growth ~ ses + female + black + hisp + asian,
##
       data = data_with_growth)
##
## Residuals:
##
       Min
                 1Q
                     Median
  -1.03070 -0.19678 -0.03289 0.15373 2.18556
##
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.42888
                          0.01176 121.528
                                            <2e-16 ***
              -0.02348
                          0.01014 -2.315
                                            0.0207 *
## ses
               -0.00540
                          0.01481
                                   -0.365
                                            0.7155
## female
              -0.03991
## black
                          0.02243
                                   -1.780
                                            0.0753 .
               0.04734
                          0.02054
                                    2.305
                                            0.0213 *
## hisp
               0.01108
                          0.03347
                                    0.331
                                            0.7407
## asian
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.287 on 1512 degrees of freedom
```

```
## (164 observations deleted due to missingness)
## Multiple R-squared: 0.01254, Adjusted R-squared: 0.00927
## F-statistic: 3.839 on 5 and 1512 DF, p-value: 0.001847
For example, the model finds that the coefficient on SES is -0.02. This tells us that...
```

Ideas for things to add

- \bullet Model lit growth as well
- Only some covariates were included, can you include other covariates?
- Can you turn the insights from the model into crisp visualizations?