Imagine que hay una cantidad a la que por ahora llamaremos COSA, que vale

$$COSA = -6\phi_1^2 - 6\phi_2^2 - 6\phi_3^2 - \sqrt{2}\phi_1\phi_2 - \sqrt{2}\phi_2\phi_3$$

a) Obtenga la matriz A que cumpla

$$COSA = \begin{pmatrix} \phi_1 & \phi_2 & \phi_3 \end{pmatrix} \mathbf{A} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix}$$

b) Diagonalice **A**. Es decir, encuentre una matriz **M** de vectores propios y sus valores propios correspondientes de manera que

$$\begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix} = \mathbf{M} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}$$

c) Muestre que

$$COSA = -5\psi_1^2 - 6\psi_2^2 - 7\psi_3^2$$

a) A debe ser una matriz 3×3 . Operando

$$\begin{aligned} &\text{COSA} = \begin{pmatrix} \phi_1 & \phi_2 & \phi_3 \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix} = \begin{pmatrix} \phi_1 & \phi_2 & \phi_3 \end{pmatrix} \begin{pmatrix} A_{11}\phi_1 + A_{12}\phi_2 + A_{13}\phi_3 \\ A_{21}\phi_1 + A_{22}\phi_2 + A_{23}\phi_3 \\ A_{31}\phi_1 + A_{32}\phi_2 + A_{33}\phi_3 \end{pmatrix} \\ &= A_{11}\phi_1^2 + A_{12}\phi_1\phi_2 + A_{13}\phi_1\phi_3 + A_{21}\phi_1^2 + A_{22}\phi_1\phi_2 + A_{23}\phi_1\phi_3 + A_{31}\phi_1^2 + A_{32}\phi_1\phi_2 + A_{33}\phi_1\phi_3 \\ &= A_{11}\phi_1^2 + A_{22}\phi_2^2 + A_{33}\phi_3^2 + (A_{12} + A_{21})\phi_1\phi_2 + (A_{13} + A_{31})\phi_1\phi_3 + (A_{23} + A_{32})\phi_2\phi_3 \\ &= -6\phi_1^2 - 6\phi_2^2 - 6\phi_3^2 - \sqrt{2}\phi_1\phi_2 - \sqrt{2}\phi_2\phi_3 \end{aligned}$$

Igualando término a término encontramos

$$A_{11} = A_{22} = A_{33} = -6$$

 $A_{12} + A_{21} = A_{23} + A_{32} = -\sqrt{2}$
 $A_{13} + A_{31} = 0$

Suponemos que la matriz es simétrica, con lo que nos aseguramos de que es diagonalizable, por lo que $A_{12} = A_{21}$, $A_{13} = A_{31}$ y $A_{23} = A_{32}$. De manera que obtenemos

$$A_{11} = A_{22} = A_{33} = -6$$

$$A_{12} = A_{21} = \frac{-\sqrt{2}}{2} = \frac{-1}{\sqrt{2}}$$

$$A_{13} = A_{31} = 0$$

$$A_{23} = A_{32} = \frac{-\sqrt{2}}{2} = \frac{-1}{\sqrt{2}}$$

Nuestra matriz **A** queda:

$$A = \begin{pmatrix} -6 & -1/\sqrt{2} & 0\\ -1/\sqrt{2} & -6 & -1/\sqrt{2}\\ 0 & -1/\sqrt{2} & -6 \end{pmatrix}$$

b) Se pide diagonalizar la matriz A

Esta matriz es simétrica, por lo que debe tener una serie de vectores propios, \mathbf{v}_1 , \mathbf{v}_2 y \mathbf{v}_3 y valores propios correspondientes, λ_1 , λ_2 y λ_3

$$\mathbf{A} \ \mathbf{v}_1 = \lambda_1 \ \mathbf{v}_1$$

$$\mathbf{A} \mathbf{v}_2 = \lambda_2 \mathbf{v}_2$$

$$\mathbf{A} \ \mathbf{v}_3 = \lambda_3 \ \mathbf{v}_3$$

Para encontrarlos, supongamos que las \mathbf{v}_i son de la forma

$$\mathbf{v}_i = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Entonces, se debe cumplir que

$$\begin{pmatrix} -6 & -1/\sqrt{2} & 0\\ -1/\sqrt{2} & -6 & -1/\sqrt{2}\\ 0 & -1/\sqrt{2} & -6 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix} = \lambda \begin{pmatrix} x\\ y\\ z \end{pmatrix}$$

$$\begin{pmatrix} -6x - \frac{1}{\sqrt{2}}y \\ -\frac{1}{\sqrt{2}}x - 6y - \frac{1}{\sqrt{2}}z \\ -\frac{1}{\sqrt{2}}y - 6z \end{pmatrix} = \begin{pmatrix} \lambda x \\ \lambda y \\ \lambda z \end{pmatrix}$$

Pasando al primer miembro y operando

$$\begin{pmatrix} -(6+\lambda)x - \frac{1}{\sqrt{2}}y \\ -\frac{1}{\sqrt{2}}x - (6+\lambda)y - \frac{1}{\sqrt{2}}z \\ -\frac{1}{\sqrt{2}}y - (6+\lambda)z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Obtenemos el siguiente sistema de ecuaciones

$$\begin{cases} -(6+\lambda)x & -\frac{1}{\sqrt{2}}y & = 0\\ -\frac{1}{\sqrt{2}}x & -(6+\lambda)y & -\frac{1}{\sqrt{2}}z & = 0\\ -\frac{1}{\sqrt{2}}y & -(6+\lambda)z & = 0 \end{cases}$$

Este es un sistema compatible indeterminado. El determinante de la matriz de los coeficientes debe valer cero

$$\begin{vmatrix} 6+\lambda & 1/\sqrt{2} & 0\\ 1/\sqrt{2} & 6+\lambda & 1/\sqrt{2}\\ 0 & 1/\sqrt{2} & 6+\lambda \end{vmatrix} = 0$$

Desarrollando el determinante llegamos finalmente a la ecuación

$$(6 + \lambda)(\lambda^2 + 12\lambda + 35) = 0$$

Que nos da las soluciones (valores propios)

$$\lambda_1 = -5; \lambda_2 = -6 \text{ y } \lambda_3 = -7$$

Ahora hallamos los vectores propios correspondientes

Para
$$\lambda_1 = -5$$
:

Sustituyendo λ por $\lambda_1=-5$ y multiplicando las ecuaciones por -1, el sistema de ecuaciones queda

$$\begin{cases} x + \frac{1}{\sqrt{2}}y & = 0\\ \frac{1}{\sqrt{2}}x + y + \frac{1}{\sqrt{2}}z & = 0\\ \frac{1}{\sqrt{2}}y + z & = 0 \end{cases}$$

Que nos da, dejando indeterminado a y, pero eligiendo el valor y = 1:

$$x = \frac{-1}{\sqrt{2}}y; y = 1; z = \frac{-1}{\sqrt{2}}y$$

El vector propio tendría la forma, donde N es la constante de normalización, para hacer su módulo igual a la unidad

$$\mathbf{v}_1 = N \begin{pmatrix} -1/\sqrt{2} \\ 1 \\ -1/\sqrt{2} \end{pmatrix}$$

Para hallar el valor de la constante de normalización, hallamos el módulo del vector sin la constante

$$|\mathbf{v}_1| = \sqrt{\left(\frac{-1}{\sqrt{2}}\right)^2 + 1^2 + \left(\frac{-1}{\sqrt{2}}\right)^2} = \sqrt{\frac{1}{2} + 1 + \frac{1}{2}} = \sqrt{2}$$

Dividiendo \mathbf{v}_1 entre su módulo obtenemos el vector unidad correspondiente

$$\mathbf{v}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1/\sqrt{2} \\ 1 \\ -1/\sqrt{2} \end{pmatrix} = \boxed{\begin{pmatrix} -1/2 \\ 1/\sqrt{2} \\ -1/2 \end{pmatrix}}$$

Para $\lambda_2 = -6$:

Sustituyendo λ por $\lambda_1 = -6$ y multiplicando las ecuaciones por -1, el sistema de ecuaciones queda

$$\begin{cases} \frac{1}{\sqrt{2}}y & = 0\\ \frac{1}{\sqrt{2}}x & +\frac{1}{\sqrt{2}}z & = 0\\ \frac{1}{\sqrt{2}}y & = 0 \end{cases}$$

Que nos da, dejando indeterminado a x, pero eligiendo el valor x = 1:

$$x = 1$$
; $y = 0$; $z = -x$

El vector propio tendría la forma, donde N es la constante de normalización, para hacer su módulo igual a la unidad

$$\mathbf{v}_2 = N \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

Para hallar el valor de la constante de normalización, hallamos el módulo del vector sin la constante

$$|\mathbf{v}_2| = \sqrt{(-1)^2 + 0^2 + 1^2} = \sqrt{2}$$

Dividiendo \mathbf{v}_2 entre su módulo obtenemos el vector unidad correspondiente

$$\mathbf{v}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\0\\1 \end{pmatrix} = \begin{bmatrix} -1/\sqrt{2}\\0\\1/\sqrt{2} \end{bmatrix}$$

Para $\lambda_3 = -7$:

Sustituyendo λ por $\lambda_3 = -7$, el sistema de ecuaciones queda

$$\begin{cases} x & -\frac{1}{\sqrt{2}}y & = 0\\ -\frac{1}{\sqrt{2}}x & +y & -\frac{1}{\sqrt{2}}z & = 0\\ & -\frac{1}{\sqrt{2}}y & +z & = 0 \end{cases}$$

Que nos da, dejando indeterminado a y, pero eligiendo el valor y=1: $x=\frac{-1}{\sqrt{2}}\,y;\,y=1;\,z=\frac{-1}{\sqrt{2}}\,y$

$$x = \frac{-1}{\sqrt{2}}y; y = 1; z = \frac{-1}{\sqrt{2}}y$$

El vector propio tendría la forma, donde N es la constante de normalización, para hacer su módulo igual a la unidad

$$\mathbf{v}_3 = N \begin{pmatrix} 1/\sqrt{2} \\ 1 \\ 1/\sqrt{2} \end{pmatrix}$$

Para hallar el valor de la constante de normalización, hallamos el módulo del vector sin la constante

$$|\mathbf{v}_3| = \sqrt{\left(\frac{1}{\sqrt{2}}\right)^2 + 1^2 + \left(\frac{1}{\sqrt{2}}\right)^2} = \sqrt{\frac{1}{2} + 1 + \frac{1}{2}} = \sqrt{2}$$

Dividiendo \mathbf{v}_3 entre su módulo obtenemos el vector unidad correspondiente

$$\mathbf{v}_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1/\sqrt{2} \\ 1 \\ 1/\sqrt{2} \end{pmatrix} = \begin{bmatrix} 1/2 \\ 1/\sqrt{2} \\ 1/2 \end{bmatrix}$$

COMPROBACIÓN - Los vectores propios deben ser ortogonales:

Comprobamos que la base formada por los vectores propios es ortogonal:

$$\mathbf{v}_{1} \cdot \mathbf{v}_{2} = \begin{pmatrix} -1/2 & 1/\sqrt{2} & -1/2 \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix} = \frac{-1}{2} \cdot \frac{-1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cdot 0 + \frac{-1}{2} \cdot \frac{1}{\sqrt{2}} = \frac{1-1}{2\sqrt{2}} = 0$$

$$\mathbf{v}_{1} \cdot \mathbf{v}_{3} = \begin{pmatrix} -1/2 & 1/\sqrt{2} & -1/2 \end{pmatrix} \begin{pmatrix} 1/2 \\ 1/\sqrt{2} \\ 1/2 \end{pmatrix} = \frac{-1}{2} \cdot \frac{1}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + \frac{-1}{2} \cdot \frac{1}{2} = \frac{-1}{4} + \frac{1}{2} - \frac{1}{4} = \frac{-1+2-1}{4} = 0$$

$$\mathbf{v}_{2} \cdot \mathbf{v}_{3} = \begin{pmatrix} -1/\sqrt{2} & 0 & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1/2 \\ 1/\sqrt{2} \\ 1/2 \end{pmatrix} = \frac{-1}{\sqrt{2}} \cdot \frac{1}{2} + 0 \cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{-1+0+1}{2\sqrt{2}} = 0$$

La matriz formada por los vectores propios es

$$\mathbf{M} = \begin{pmatrix} -1/2 & -1/\sqrt{2} & 1/2 \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ -1/2 & 1/\sqrt{2} & 1/2 \end{pmatrix}$$

c) Se puede utilizar la matriz M hallada anteriormente para obtener un vector ψ a partir de ϕ

$$\phi = M \psi$$

La ecuación anterior nos permite expresar ϕ en la función de ψ

$$\begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix} = \begin{pmatrix} \frac{-1}{2} & \frac{-1}{\sqrt{2}} & \frac{1}{2} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{-1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \psi_1 - \frac{1}{\sqrt{2}} \psi_2 + \frac{1}{2} \psi_3 \\ \frac{1}{\sqrt{2}} \psi_1 + \frac{1}{\sqrt{2}} \psi_3 \\ -\frac{1}{2} \psi_1 + \frac{1}{\sqrt{2}} \psi_2 + \frac{1}{2} \psi_3 \end{pmatrix}$$

Los vectores en la base formada por los vectores propios de A son

$$\phi_1 = -\frac{1}{2} \psi_1 - \frac{1}{\sqrt{2}} \psi_2 + \frac{1}{2} \psi_3$$

$$\phi_2 = \frac{1}{\sqrt{2}} \psi_1 + \frac{1}{\sqrt{2}} \psi_3$$

$$\phi_3 = -\frac{1}{2} \psi_1 + \frac{1}{\sqrt{2}} \psi_2 + \frac{1}{2} \psi_3$$

Para calcular COSA en la nueva base, desarrollamos los cinco términos por separado

$$-6 \phi_1^2 = -6 \left(-\frac{1}{2} \psi_1 - \frac{1}{\sqrt{2}} \psi_2 + \frac{1}{2} \psi_3 \right)^2 = -\frac{3}{2} \psi_1^2 - 3 \psi_2^2 - \frac{3}{2} \psi_3^2 - \frac{6}{\sqrt{2}} \psi_1 \psi_2 + 3 \psi_1 \psi_3 + \frac{6}{\sqrt{2}} \psi_2 \psi_3$$

$$-6 \phi_2^2 = -6 \left(-\frac{1}{\sqrt{2}} \psi_1 + \frac{1}{\sqrt{2}} \psi_3 \right)^2 = -3 \psi_1^2 - 3 \psi_3^2 - 6 \psi_1 \psi_3$$

$$-6 \phi_3^2 = -6 \left(-\frac{1}{2} \psi_1 + \frac{1}{\sqrt{2}} \psi_2 + \frac{1}{2} \psi_3 \right)^2 = -\frac{3}{2} \psi_1^2 - 3 \psi_2^2 - \frac{3}{2} \psi_3^2 + \frac{6}{\sqrt{2}} \psi_1 \psi_2 + 3 \psi_1 \psi_3 - \frac{3}{\sqrt{2}} \psi_2 \psi_3$$

$$-\sqrt{2} \phi_1 \phi_2 = -\sqrt{2} \left(-\frac{1}{2} \psi_1 - \frac{1}{\sqrt{2}} \psi_2 + \frac{1}{2} \psi_3 \right) \left(\frac{1}{\sqrt{2}} \psi_1 + \frac{1}{\sqrt{2}} \psi_3 \right) = \frac{1}{2} \psi_1^2 - \frac{1}{2} \psi_3^2 + \frac{1}{\sqrt{2}} \psi_1 \psi_2 + \frac{1}{\sqrt{2}} \psi_2 \psi_3$$

$$-\sqrt{2} \phi_2 \phi_3 = -\sqrt{2} \left(\frac{1}{\sqrt{2}} \psi_1 + \frac{1}{\sqrt{2}} \psi_3 \right) \left(-\frac{1}{2} \psi_1 + \frac{1}{\sqrt{2}} \psi_2 + \frac{1}{2} \psi_3 \right) = \frac{1}{2} \psi_1^2 - \frac{1}{2} \psi_3^2 - \frac{1}{\sqrt{2}} \psi_1 \psi_2 - \frac{1}{\sqrt{2}} \psi_2 \psi_3$$

Agrupamos términos por separado.

Empezamos por los que contienen ψ_1^2 , ψ_2^2 y ψ_3^2

$$\left(-\frac{3}{2} - 3 - \frac{3}{2} + \frac{1}{2} + \frac{1}{2}\right)\psi_1^2 + (-3 - 3)\psi_2^2 + \left(-\frac{3}{2} - 3 - \frac{3}{2} - \frac{1}{2} - \frac{1}{2}\right)\psi_3^2 = -5\psi_1^2 - 6\psi_2^2 - 7\psi_3^2$$

Comprobamos que se anulan los términos cruzados

$$\left(-\frac{6}{\sqrt{2}} + \frac{6}{\sqrt{2}} + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\right)\psi_1\psi_2 + (3 - 6 + 3)\psi_1\psi_3 + \left(\frac{6}{\sqrt{2}} - \frac{3}{\sqrt{2}} + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\right)\psi_2\psi_3 = 0$$

Por tanto

$$COSA = \boxed{-5\,\psi_1^2 - 6\,\psi_2^2 - 7\,\psi_3^2}$$