Partícula en un Campo electromagnético

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

29 de agosto de 2024

Agenda

1 Fuerza de Lorentz una una fuerza generalizada

El potencial vector

• Una partícula de masa m y carga q, moviéndose con velocidad \mathbf{v} , en presencia de un campo eléctrico $\mathbf{E}(\mathbf{r},t)$ y un campo magnético $\mathbf{B}(\mathbf{r},t)$, está sujeta a fuerza de Lorentz $\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c}\times\mathbf{B}\right)$

- Una partícula de masa m y carga q, moviéndose con velocidad \mathbf{v} , en presencia de un campo eléctrico $\mathbf{E}(\mathbf{r},t)$ y un campo magnético $\mathbf{B}(\mathbf{r},t)$, está sujeta a fuerza de Lorentz $\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c}\times\mathbf{B}\right)$
- Consideremos una partícula con una energía potencial función de su posición y velocidad en coordenadas cartesianas: $V(\mathbf{r}, \dot{\mathbf{r}})$.

- Una partícula de masa m y carga q, moviéndose con velocidad \mathbf{v} , en presencia de un campo eléctrico $\mathbf{E}(\mathbf{r},t)$ y un campo magnético $\mathbf{B}(\mathbf{r},t)$, está sujeta a fuerza de Lorentz $\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c}\times\mathbf{B}\right)$
- Consideremos una partícula con una energía potencial función de su posición y velocidad en coordenadas cartesianas: $V(\mathbf{r}, \dot{\mathbf{r}})$.
- El Lagrangiano, en coordenadas cartesianas, es $\mathcal{L} = T(\dot{\mathbf{r}}) V(\mathbf{r}, \dot{\mathbf{r}})$, donde $T(\dot{\mathbf{r}}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) = \frac{1}{2}mv^2$ y $V(\mathbf{r}, \dot{\mathbf{r}})$, genérico

3/7

- Una partícula de masa m y carga q, moviéndose con velocidad \mathbf{v} , en presencia de un campo eléctrico $\mathbf{E}(\mathbf{r},t)$ y un campo magnético $\mathbf{B}(\mathbf{r},t)$, está sujeta a fuerza de Lorentz $\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c}\times\mathbf{B}\right)$
- Consideremos una partícula con una energía potencial función de su posición y velocidad en coordenadas cartesianas: $V(\mathbf{r}, \dot{\mathbf{r}})$.
- El Lagrangiano, en coordenadas cartesianas, es $\mathcal{L} = T(\dot{\mathbf{r}}) V(\mathbf{r}, \dot{\mathbf{r}})$, donde $T(\dot{\mathbf{r}}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) = \frac{1}{2}mv^2$ y $V(\mathbf{r}, \dot{\mathbf{r}})$, genérico
- La ecuación de Lagrange es $\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}_i}\right) \frac{\partial \mathcal{L}}{\partial x_i} = 0$

- Una partícula de masa m y carga q, moviéndose con velocidad \mathbf{v} , en presencia de un campo eléctrico $\mathbf{E}(\mathbf{r},t)$ y un campo magnético $\mathbf{B}(\mathbf{r},t)$, está sujeta a fuerza de Lorentz $\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c}\times\mathbf{B}\right)$
- Consideremos una partícula con una energía potencial función de su posición y velocidad en coordenadas cartesianas: $V(\mathbf{r}, \dot{\mathbf{r}})$.
- El Lagrangiano, en coordenadas cartesianas, es $\mathcal{L} = T(\dot{\mathbf{r}}) V(\mathbf{r}, \dot{\mathbf{r}})$, donde $T(\dot{\mathbf{r}}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) = \frac{1}{2}mv^2$ y $V(\mathbf{r}, \dot{\mathbf{r}})$, genérico
- La ecuación de Lagrange es $\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}_i}\right) \frac{\partial \mathcal{L}}{\partial x_i} = 0$
- Con lo cual $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{x}_i} \frac{\partial V}{\partial \dot{x}_i} \right) + \frac{\partial V}{\partial x_i} = 0 \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{x}_i} \right) = -\frac{\partial V}{\partial x_i} + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial V}{\partial \dot{x}_i} \right)$

- Una partícula de masa m y carga q, moviéndose con velocidad \mathbf{v} , en presencia de un campo eléctrico $\mathbf{E}(\mathbf{r},t)$ y un campo magnético $\mathbf{B}(\mathbf{r},t)$, está sujeta a fuerza de Lorentz $\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c}\times\mathbf{B}\right)$
- Consideremos una partícula con una energía potencial función de su posición y velocidad en coordenadas cartesianas: $V(\mathbf{r}, \dot{\mathbf{r}})$.
- El Lagrangiano, en coordenadas cartesianas, es $\mathcal{L} = T(\dot{\mathbf{r}}) V(\mathbf{r}, \dot{\mathbf{r}})$, donde $T(\dot{\mathbf{r}}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) = \frac{1}{2}mv^2$ y $V(\mathbf{r}, \dot{\mathbf{r}})$, genérico
- La ecuación de Lagrange es $\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}_i}\right) \frac{\partial \mathcal{L}}{\partial x_i} = 0$
- Con lo cual $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{x}_i} \frac{\partial V}{\partial \dot{x}_i} \right) + \frac{\partial V}{\partial x_i} = 0 \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{x}_i} \right) = -\frac{\partial V}{\partial x_i} + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial V}{\partial \dot{x}_i} \right)$
- Es decir: $m\ddot{x}_i = F_i \Rightarrow F_i \equiv -\frac{\partial V}{\partial x_i} + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial V}{\partial \dot{x}_i}\right)$

- Una partícula de masa m y carga q, moviéndose con velocidad \mathbf{v} , en presencia de un campo eléctrico $\mathbf{E}(\mathbf{r},t)$ y un campo magnético $\mathbf{B}(\mathbf{r},t)$, está sujeta a fuerza de Lorentz $\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c}\times\mathbf{B}\right)$
- Consideremos una partícula con una energía potencial función de su posición y velocidad en coordenadas cartesianas: $V(\mathbf{r}, \dot{\mathbf{r}})$.
- El Lagrangiano, en coordenadas cartesianas, es $\mathcal{L} = T(\dot{\mathbf{r}}) V(\mathbf{r}, \dot{\mathbf{r}})$, donde $T(\dot{\mathbf{r}}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) = \frac{1}{2}mv^2$ y $V(\mathbf{r}, \dot{\mathbf{r}})$, genérico
- La ecuación de Lagrange es $\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}_i}\right) \frac{\partial \mathcal{L}}{\partial x_i} = 0$
- Con lo cual $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{x}_i} \frac{\partial V}{\partial \dot{x}_i} \right) + \frac{\partial V}{\partial x_i} = 0 \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{x}_i} \right) = -\frac{\partial V}{\partial x_i} + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial V}{\partial \dot{x}_i} \right)$
- Es decir: $m\ddot{x}_i = F_i \Rightarrow F_i \equiv -\frac{\partial V}{\partial x_i} + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial V}{\partial \dot{x}_i}\right)$
- Las fuerzas generalizadas dependen de coordenadas y velocidades.

- Una partícula de masa m y carga q, moviéndose con velocidad \mathbf{v} , en presencia de un campo eléctrico $\mathbf{E}(\mathbf{r},t)$ y un campo magnético $\mathbf{B}(\mathbf{r},t)$, está sujeta a fuerza de Lorentz $\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c}\times\mathbf{B}\right)$
- Consideremos una partícula con una energía potencial función de su posición y velocidad en coordenadas cartesianas: $V(\mathbf{r}, \dot{\mathbf{r}})$.
- El Lagrangiano, en coordenadas cartesianas, es $\mathcal{L} = T(\dot{\mathbf{r}}) V(\mathbf{r}, \dot{\mathbf{r}})$, donde $T(\dot{\mathbf{r}}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) = \frac{1}{2}mv^2$ y $V(\mathbf{r}, \dot{\mathbf{r}})$, genérico
- La ecuación de Lagrange es $\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}_i}\right) \frac{\partial \mathcal{L}}{\partial x_i} = 0$
- Con lo cual $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{x}_i} \frac{\partial V}{\partial \dot{x}_i} \right) + \frac{\partial V}{\partial x_i} = 0 \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{x}_i} \right) = -\frac{\partial V}{\partial x_i} + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial V}{\partial \dot{x}_i} \right)$
- Es decir: $m\ddot{x}_i = F_i \Rightarrow F_i \equiv -\frac{\partial V}{\partial x_i} + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial V}{\partial \dot{x}_i}\right)$
- Las fuerzas generalizadas dependen de coordenadas y velocidades.
- La fuerza de Lorentz constituye una fuerza generalizada

$$\begin{array}{ll} \nabla \cdot \mathbf{E} = 4\pi\rho & \nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0 \\ \nabla \cdot \mathbf{B} = 0 & \nabla \times \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c} \mathbf{J} \end{array}$$

Consideremos las ecuaciones de Maxwell

$$\begin{array}{ll} \nabla \cdot \mathbf{E} = 4\pi\rho & \nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0 \\ \nabla \cdot \mathbf{B} = 0 & \nabla \times \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c} \mathbf{J} \end{array}$$

• Claramente $\nabla \cdot \mathbf{B} = 0 \Rightarrow \mathbf{B} = \nabla \times \mathbf{A}$, con $\mathbf{A}(\mathbf{r},t)$ un potencial vector

$$\begin{array}{ll} \nabla \cdot \mathbf{E} = 4\pi\rho & \nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0 \\ \nabla \cdot \mathbf{B} = 0 & \nabla \times \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c} \mathbf{J} \end{array}$$

- Claramente $\nabla \cdot {f B} = 0 \Rightarrow {f B} =
 abla imes {f A}$, con ${f A}({f r},t)$ un potencial vector
- Con lo cual $\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial}{\partial t} (\nabla \times \mathbf{A}) = 0 \Rightarrow \nabla \times \left(\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right) = 0$

- Claramente $\nabla \cdot {f B} = 0 \Rightarrow {f B} =
 abla imes {f A}$, con ${f A}({f r},t)$ un potencial vector
- Con lo cual $\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial}{\partial t} (\nabla \times \mathbf{A}) = 0 \Rightarrow \nabla \times \left(\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right) = 0$
- Entonces $\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} = -\nabla \varphi \Rightarrow \mathbf{E} = -\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$

$$\begin{array}{ll} \nabla \cdot \mathbf{E} = 4\pi\rho & \nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0 \\ \nabla \cdot \mathbf{B} = 0 & \nabla \times \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c} \mathbf{J} \end{array}$$

- Claramente $\nabla \cdot {f B} = 0 \Rightarrow {f B} =
 abla imes {f A}$, con ${f A}({f r},t)$ un potencial vector
- Con lo cual $\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial}{\partial t} (\nabla \times \mathbf{A}) = 0 \Rightarrow \nabla \times (\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}) = 0$
- Entonces $\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} = -\nabla \varphi \Rightarrow \mathbf{E} = -\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$
- La fuerza de Lorentz será $\mathbf{F} = q \left[-\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} + \frac{\mathbf{v}}{c} \times (\nabla \times \mathbf{A}) \right]$

- Claramente $\nabla \cdot \mathbf{B} = 0 \Rightarrow \mathbf{B} = \nabla \times \mathbf{A}$, con $\mathbf{A}(\mathbf{r},t)$ un potencial vector
- Con lo cual $\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial}{\partial t} (\nabla \times \mathbf{A}) = 0 \Rightarrow \nabla \times (\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}) = 0$
- Entonces $\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} = -\nabla \varphi \Rightarrow \mathbf{E} = -\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$
- La fuerza de Lorentz será $\mathbf{F} = q \left[-\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} + \frac{\mathbf{v}}{c} \times (\nabla \times \mathbf{A}) \right]$
- o también $\mathbf{F} = q \left[-\nabla \varphi + \frac{1}{c} \nabla (\mathbf{A} \cdot \mathbf{v}) \frac{1}{c} (\mathbf{v} \cdot \nabla) \mathbf{A} \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right]$

$$\begin{array}{ll} \nabla \cdot \mathbf{E} = 4\pi\rho & \nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0 \\ \nabla \cdot \mathbf{B} = 0 & \nabla \times \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c} \mathbf{J} \end{array}$$

- Claramente $\nabla \cdot \mathbf{B} = 0 \Rightarrow \mathbf{B} = \nabla \times \mathbf{A}$, con $\mathbf{A}(\mathbf{r},t)$ un potencial vector
- Con lo cual $\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial}{\partial t} (\nabla \times \mathbf{A}) = 0 \Rightarrow \nabla \times \left(\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right) = 0$
- Entonces $\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} = -\nabla \varphi \Rightarrow \mathbf{E} = -\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$
- La fuerza de Lorentz será $\mathbf{F} = q \left[-\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} + \frac{\mathbf{v}}{c} \times (\nabla \times \mathbf{A}) \right]$
- o también $\mathbf{F} = q \left[-\nabla \varphi + \frac{1}{c} \nabla (\mathbf{A} \cdot \mathbf{v}) \frac{1}{c} (\mathbf{v} \cdot \nabla) \mathbf{A} \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right]$
- Donde $\mathbf{v} \times (\nabla \times \mathbf{A}) = \nabla (\mathbf{A} \cdot \mathbf{v}) (\mathbf{v} \cdot \nabla) \mathbf{A}$

$$\begin{array}{ll} \nabla \cdot \mathbf{E} = 4\pi\rho & \nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0 \\ \nabla \cdot \mathbf{B} = 0 & \nabla \times \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c} \mathbf{J} \end{array}$$

- Claramente $\nabla \cdot \mathbf{B} = 0 \Rightarrow \mathbf{B} = \nabla \times \mathbf{A}$, con $\mathbf{A}(\mathbf{r},t)$ un potencial vector
- Con lo cual $\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial}{\partial t} (\nabla \times \mathbf{A}) = 0 \Rightarrow \nabla \times (\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}) = 0$
- Entonces $\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} = -\nabla \varphi \Rightarrow \mathbf{E} = -\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$
- La fuerza de Lorentz será $\mathbf{F} = q \left[-\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} + \frac{\mathbf{v}}{c} \times (\nabla \times \mathbf{A}) \right]$
- o también $\mathbf{F} = q \left[-\nabla \varphi + \frac{1}{c} \nabla (\mathbf{A} \cdot \mathbf{v}) \frac{1}{c} (\mathbf{v} \cdot \nabla) \mathbf{A} \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right]$
- Donde $\mathbf{v} \times (\nabla \times \mathbf{A}) = \nabla (\mathbf{A} \cdot \mathbf{v}) (\mathbf{v} \cdot \nabla) \mathbf{A}$
- Como $\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t} = \sum_{i=1}^{3} \frac{\partial \mathbf{A}}{\partial x_{i}} \dot{x}_{i} + \frac{\partial \mathbf{A}}{\partial t} = (\mathbf{v} \cdot \nabla)\mathbf{A} + \frac{\partial \mathbf{A}}{\partial t}$

$$\begin{array}{ll} \nabla \cdot \mathbf{E} = 4\pi\rho & \nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0 \\ \nabla \cdot \mathbf{B} = 0 & \nabla \times \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c} \mathbf{J} \end{array}$$

- Claramente $\nabla \cdot \mathbf{B} = 0 \Rightarrow \mathbf{B} = \nabla \times \mathbf{A}$, con $\mathbf{A}(\mathbf{r},t)$ un potencial vector
- Con lo cual $\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial}{\partial t} (\nabla \times \mathbf{A}) = 0 \Rightarrow \nabla \times \left(\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right) = 0$
- Entonces $\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} = -\nabla \varphi \Rightarrow \mathbf{E} = -\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$
- La fuerza de Lorentz será $\mathbf{F} = q \left[-\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} + \frac{\mathbf{v}}{c} \times (\nabla \times \mathbf{A}) \right]$
- o también $\mathbf{F} = q \left[-\nabla \varphi + \frac{1}{c} \nabla (\mathbf{A} \cdot \mathbf{v}) \frac{1}{c} (\mathbf{v} \cdot \nabla) \mathbf{A} \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right]$
- Donde $\mathbf{v} \times (\nabla \times \mathbf{A}) = \nabla (\mathbf{A} \cdot \mathbf{v}) (\mathbf{v} \cdot \nabla) \mathbf{A}$
- Como $\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t} = \sum_{i=1}^{3} \frac{\partial \mathbf{A}}{\partial x_{i}} \dot{x}_{i} + \frac{\partial \mathbf{A}}{\partial t} = (\mathbf{v} \cdot \nabla)\mathbf{A} + \frac{\partial \mathbf{A}}{\partial t}$
- Tendremos $\mathbf{F} = q \left[-\nabla \left(\varphi \frac{1}{c} \mathbf{A} \cdot \mathbf{v} \right) \frac{1}{c} \frac{\mathrm{d} \mathbf{A}}{\mathrm{d} t} \right]$ $\Rightarrow F_i = q \left[-\frac{\partial}{\partial x_i} \left(\varphi - \frac{1}{c} \mathbf{A} \cdot \mathbf{v} \right) - \frac{1}{c} \frac{dA_i}{\mathrm{d} t} \right]$

- Claramente $\nabla \cdot \mathbf{B} = 0 \Rightarrow \mathbf{B} = \nabla \times \mathbf{A}$, con $\mathbf{A}(\mathbf{r},t)$ un potencial vector
- Con lo cual $\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial}{\partial t} (\nabla \times \mathbf{A}) = 0 \Rightarrow \nabla \times \left(\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right) = 0$
- Entonces $\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} = -\nabla \varphi \Rightarrow \mathbf{E} = -\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$
- La fuerza de Lorentz será $\mathbf{F} = q \left[-\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} + \frac{\mathbf{v}}{c} \times (\nabla \times \mathbf{A}) \right]$
- o también $\mathbf{F} = q \left[-\nabla \varphi + \frac{1}{c} \nabla (\mathbf{A} \cdot \mathbf{v}) \frac{1}{c} (\mathbf{v} \cdot \nabla) \mathbf{A} \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right]$
- Donde $\mathbf{v} \times (\nabla \times \mathbf{A}) = \nabla (\mathbf{A} \cdot \mathbf{v}) (\mathbf{v} \cdot \nabla) \mathbf{A}$
- Como $\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t} = \sum_{i=1}^{3} \frac{\partial \mathbf{A}}{\partial x_{i}} \dot{x}_{i} + \frac{\partial \mathbf{A}}{\partial t} = (\mathbf{v} \cdot \nabla)\mathbf{A} + \frac{\partial \mathbf{A}}{\partial t}$
- Tendremos $\mathbf{F} = q \left[-\nabla \left(\varphi \frac{1}{c} \mathbf{A} \cdot \mathbf{v} \right) \frac{1}{c} \frac{d\mathbf{A}}{dt} \right]$ $\Rightarrow F_i = q \left[-\frac{\partial}{\partial x_i} \left(\varphi - \frac{1}{c} \mathbf{A} \cdot \mathbf{v} \right) - \frac{1}{c} \frac{dA_i}{dt} \right]$
- Como $\frac{\partial V}{\partial x_i} = q \frac{\partial}{\partial x_i} \left(\varphi \frac{1}{c} \mathbf{A} \cdot \mathbf{v} \right)$ y $\frac{\partial V}{\partial \dot{x}_i} = -\frac{q}{c} A_i$

ullet Finalmente el potencial será $V=q\left(arphi-rac{1}{c}{f A}\cdot{f v}
ight)$

- Finalmente el potencial será $V = q \left(\varphi \frac{1}{c} \mathbf{A} \cdot \mathbf{v} \right)$
- El Lagrangeano $\mathcal{L}=\mathcal{T}(\dot{\mathbf{r}})-V(\mathbf{r},\dot{\mathbf{r}})\equiv \frac{1}{2}mv^2-q\varphi+rac{q}{c}\mathbf{A}\cdot\mathbf{v}$

- ullet Finalmente el potencial será $V=q\left(arphi-rac{1}{c}{f A}\cdot{f v}
 ight)$
- El Lagrangeano $\mathcal{L}=T(\dot{\mathbf{r}})-V(\mathbf{r},\dot{\mathbf{r}})\equiv rac{1}{2}mv^2-qarphi+rac{q}{c}\mathbf{A}\cdot\mathbf{v}$
- La función energía $E=\sum_j rac{\partial \mathcal{L}}{\partial \dot{x_j}} \dot{x_j} \mathcal{L} = rac{1}{2} m v^2 + q arphi$

- ullet Finalmente el potencial será $V=q\left(arphi-rac{1}{c}{f A}\cdot{f v}
 ight)$
- El Lagrangeano $\mathcal{L}=\mathcal{T}(\dot{\mathbf{r}})-V(\mathbf{r},\dot{\mathbf{r}})\equiv \frac{1}{2}mv^2-q\varphi+rac{q}{c}\mathbf{A}\cdot\mathbf{v}$
- La función energía $E=\sum_j rac{\partial \mathcal{L}}{\partial \dot{x_j}} \dot{x_j} \mathcal{L} = rac{1}{2} m v^2 + q arphi$
- La función de energía $E \neq T(\dot{\mathbf{r}}) + V(\mathbf{r}, \dot{\mathbf{r}})$, ya a que $V = V(\mathbf{r}, \dot{\mathbf{r}})$ depende de la velocidad de la partícula.

- ullet Finalmente el potencial será $V=q\left(arphi-rac{1}{c}{f A}\cdot{f v}
 ight)$
- ullet El Lagrangeano $\mathcal{L}=\mathcal{T}(\dot{\mathbf{r}})-V(\mathbf{r},\dot{\mathbf{r}})\equiv rac{1}{2}mv^2-qarphi+rac{q}{c}\mathbf{A}\cdot\mathbf{v}$
- La función energía $E=\sum_j rac{\partial \mathcal{L}}{\partial \dot{x_j}} \dot{x_j} \mathcal{L} = rac{1}{2} m v^2 + q arphi$
- La función de energía $E \neq T(\dot{\mathbf{r}}) + V(\mathbf{r}, \dot{\mathbf{r}})$, ya a que $V = V(\mathbf{r}, \dot{\mathbf{r}})$ depende de la velocidad de la partícula.
- La función energía E se conserva dado que $\frac{\partial \mathcal{L}}{\partial t} = 0$

5/7

- ullet Finalmente el potencial será $V=q\left(arphi-rac{1}{c}\mathbf{A}\cdot\mathbf{v}
 ight)$
- ullet El Lagrangeano $\mathcal{L}=\mathcal{T}(\dot{\mathbf{r}})-V(\mathbf{r},\dot{\mathbf{r}})\equiv rac{1}{2}mv^2-qarphi+rac{q}{c}\mathbf{A}\cdot\mathbf{v}$
- La función energía $E=\sum_j rac{\partial \mathcal{L}}{\partial \dot{x_j}} \dot{x_j} \mathcal{L} = rac{1}{2} m v^2 + q arphi$
- La función de energía $E \neq T(\dot{\mathbf{r}}) + V(\mathbf{r}, \dot{\mathbf{r}})$, ya a que $V = V(\mathbf{r}, \dot{\mathbf{r}})$ depende de la velocidad de la partícula.
- ullet La función energía E se conserva dado que $rac{\partial \mathcal{L}}{\partial t}=0$
- La función de energía E no depende del potencial vector A y, por tanto, tampoco depende del campo magnético B.

- Finalmente el potencial será $V=q\left(arphi-rac{1}{c}\mathbf{A}\cdot\mathbf{v}
 ight)$
- El Lagrangeano $\mathcal{L}=T(\dot{\mathbf{r}})-V(\mathbf{r},\dot{\mathbf{r}})\equiv rac{1}{2}mv^2-qarphi+rac{q}{c}\mathbf{A}\cdot\mathbf{v}$
- La función energía $E=\sum_j rac{\partial \mathcal{L}}{\partial \dot{x_j}} \dot{x_j} \mathcal{L} = rac{1}{2} m v^2 + q arphi$
- La función de energía $E \neq T(\dot{\mathbf{r}}) + V(\mathbf{r}, \dot{\mathbf{r}})$, ya a que $V = V(\mathbf{r}, \dot{\mathbf{r}})$ depende de la velocidad de la partícula.
- La función energía E se conserva dado que $\frac{\partial \mathcal{L}}{\partial t} = 0$
- La función de energía E no depende del potencial vector A y, por tanto, tampoco depende del campo magnético B.
- La fuerza magnética no realiza trabajo ya que siempre es perpendicular a la velocidad de la partícula.

• El momento conjugado p_i asociado con la coordenada x_i es

$$p_i = \frac{\partial \mathcal{L}}{\partial \dot{x}_i} = m\dot{x}_i + \frac{q}{c}A_i(\mathbf{r},t) \Rightarrow \mathbf{p} = m\mathbf{v} + \frac{q}{c}\mathbf{A}(\mathbf{r},t)$$

- El momento conjugado p_i asociado con la coordenada x_i es $p_i = \frac{\partial \mathcal{L}}{\partial \dot{x}_i} = m \dot{x}_i + \frac{q}{c} A_i(\mathbf{r}, t) \Rightarrow \mathbf{p} = m \mathbf{v} + \frac{q}{c} \mathbf{A}(\mathbf{r}, t)$
- El momento conjugado depende de la velocidad y de la posición.

- El momento conjugado p_i asociado con la coordenada x_i es $p_i = \frac{\partial \mathcal{L}}{\partial \dot{x}_i} = m \dot{x}_i + \frac{q}{c} A_i(\mathbf{r}, t) \Rightarrow \mathbf{p} = m \mathbf{v} + \frac{q}{c} \mathbf{A}(\mathbf{r}, t)$
- El momento conjugado depende de la velocidad y de la posición.
- Sean los campos $\mathbf{B}(\mathbf{r},t)$ y $\mathbf{E}(\mathbf{r},t)$ que derivan de $\mathbf{A}(\mathbf{r},t)$ y $\varphi(\mathbf{r},t)$.

- El momento conjugado p_i asociado con la coordenada x_i es $p_i = \frac{\partial \mathcal{L}}{\partial \dot{x}_i} = m\dot{x}_i + \frac{q}{c}A_i(\mathbf{r},t) \Rightarrow \mathbf{p} = m\mathbf{v} + \frac{q}{c}\mathbf{A}(\mathbf{r},t)$
- El momento conjugado depende de la velocidad y de la posición.
- Sean los campos $B(\mathbf{r},t)$ y $E(\mathbf{r},t)$ que derivan de $A(\mathbf{r},t)$ y $\varphi(\mathbf{r},t)$.
- Consideremos la **transformación de calibre**: $\mathbf{A} \rightarrow \mathbf{A}' = \mathbf{A} + \nabla \Lambda \quad \mathbf{y} \quad \varphi \quad \rightarrow \quad \varphi' = \varphi \frac{1}{c} \frac{\partial \Lambda}{\partial t} \text{ donde } \Lambda(\mathbf{r},t) \text{ es un campo escalar arbitrario}$

- El momento conjugado p_i asociado con la coordenada x_i es $p_i = \frac{\partial \mathcal{L}}{\partial \dot{x}_i} = m\dot{x}_i + \frac{q}{c}A_i(\mathbf{r},t) \Rightarrow \mathbf{p} = m\mathbf{v} + \frac{q}{c}\mathbf{A}(\mathbf{r},t)$
- El momento conjugado depende de la velocidad y de la posición.
- Sean los campos $\mathbf{B}(\mathbf{r},t)$ y $\mathbf{E}(\mathbf{r},t)$ que derivan de $\mathbf{A}(\mathbf{r},t)$ y $\varphi(\mathbf{r},t)$.
- Consideremos la **transformación de calibre**: $\mathbf{A} \rightarrow \mathbf{A}' = \mathbf{A} + \nabla \Lambda \quad \mathbf{y} \quad \varphi \quad \rightarrow \quad \varphi' = \varphi \frac{1}{c} \frac{\partial \Lambda}{\partial t} \text{ donde } \Lambda(\mathbf{r},t) \text{ es un campo escalar arbitrario}$
- Entonces, los campos eléctrico y magnético son invariantes bajo esta transformación $\mathbf{B}' = \nabla \times \mathbf{A}' = \nabla \times \mathbf{A} + \nabla \times \nabla \Lambda = \nabla \times \mathbf{A} = \mathbf{B}$ $\mathbf{E}' = -\nabla \varphi' \frac{1}{c} \frac{\partial \mathbf{A}'}{\partial t} = -\nabla \varphi + \frac{1}{c} \nabla \left(\frac{\partial \Lambda}{\partial t} \right) \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \frac{1}{c} \frac{\partial}{\partial t} (\nabla \Lambda) = \mathbf{E}$ $\mathbf{E} = -\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial \mathbf{A}}$

- El momento conjugado p_i asociado con la coordenada x_i es $p_i = \frac{\partial \mathcal{L}}{\partial \dot{x}_i} = m\dot{x}_i + \frac{q}{c}A_i(\mathbf{r},t) \Rightarrow \mathbf{p} = m\mathbf{v} + \frac{q}{c}\mathbf{A}(\mathbf{r},t)$
- El momento conjugado depende de la velocidad y de la posición.
- Sean los campos $B(\mathbf{r},t)$ y $E(\mathbf{r},t)$ que derivan de $A(\mathbf{r},t)$ y $\varphi(\mathbf{r},t)$.
- Consideremos la **transformación de calibre**: $\mathbf{A} \rightarrow \mathbf{A}' = \mathbf{A} + \nabla \Lambda \quad \mathbf{y} \quad \varphi \quad \rightarrow \quad \varphi' = \varphi \frac{1}{c} \frac{\partial \Lambda}{\partial t} \text{ donde } \Lambda(\mathbf{r},t) \text{ es un campo escalar arbitrario}$
- Entonces, los campos eléctrico y magnético son invariantes bajo esta transformación $\mathbf{B}' = \nabla \times \mathbf{A}' = \nabla \times \mathbf{A} + \nabla \times \nabla \Lambda = \nabla \times \mathbf{A} = \mathbf{B}$ $\mathbf{E}' = -\nabla \varphi' \frac{1}{c} \frac{\partial \mathbf{A}'}{\partial t} = -\nabla \varphi + \frac{1}{c} \nabla \left(\frac{\partial \Lambda}{\partial t} \right) \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \frac{1}{c} \frac{\partial}{\partial t} (\nabla \Lambda) = \mathbf{E}$ $\mathbf{E} = -\nabla \varphi \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$
- El Lagrangiano de una partícula en un campo electromagnético bajo una transformación de calibre, es $\mathcal{L}' = \frac{1}{2} m v^2 q \varphi' + \frac{q}{c} \mathbf{A}' \cdot \mathbf{v} = \frac{1}{2} m v^2 q \varphi + \frac{q}{c} \frac{\partial \Lambda}{\partial t} + \frac{q}{c} \mathbf{A} \cdot \mathbf{v} + \frac{q}{c} \nabla \Lambda \cdot \mathbf{v} \\ = \mathcal{L} + \frac{q}{c} \left(\frac{\partial \Lambda}{\partial t} + \nabla \Lambda \cdot \mathbf{v} \right) = \mathcal{L} + \frac{q}{c} \frac{d \Lambda}{d t}$

 Una transformación de calibre implica la adición al Lagrangiano de la derivada total con respecto al tiempo de una function de las coordenadas y el tiempo.

- Una transformación de calibre implica la adición al Lagrangiano de la derivada total con respecto al tiempo de una function de las coordenadas y el tiempo.
- Las ecuaciones de movimiento que se derivan de $\mathcal L$ son invariantes bajo una transformación de calibre.

- Una transformación de calibre implica la adición al Lagrangiano de la derivada total con respecto al tiempo de una function de las coordenadas y el tiempo.
- Las ecuaciones de movimiento que se derivan de $\mathcal L$ son invariantes bajo una transformación de calibre.
- La invarianza de los campos **B** y **E** bajo una transformación de calibre implica que la fuerza de Lorentz es también invariante.

- Una transformación de calibre implica la adición al Lagrangiano de la derivada total con respecto al tiempo de una function de las coordenadas y el tiempo.
- Las ecuaciones de movimiento que se derivan de $\mathcal L$ son invariantes bajo una transformación de calibre.
- La invarianza de los campos B y E bajo una transformación de calibre implica que la fuerza de Lorentz es también invariante.
- Las ecuaciones de Maxwell son invariantes bajo una transformación de calibre, esto indica la existencia de una simetría fundamental en el electromagnetismo: la simetría de calibre

- Una transformación de calibre implica la adición al Lagrangiano de la derivada total con respecto al tiempo de una function de las coordenadas y el tiempo.
- Las ecuaciones de movimiento que se derivan de $\mathcal L$ son invariantes bajo una transformación de calibre.
- La invarianza de los campos B y E bajo una transformación de calibre implica que la fuerza de Lorentz es también invariante.
- Las ecuaciones de Maxwell son invariantes bajo una transformación de calibre, esto indica la existencia de una simetría fundamental en el electromagnetismo: la simetría de calibre
- Si $\mathcal{L}' = \mathcal{L} + \delta \mathcal{L}$, donde $\delta \mathcal{L}$ es la transformación infinitesimal $\delta \mathcal{L} = \frac{d\Lambda}{dt}$ que deja invariantes las ecuaciones de movimiento.

- Una transformación de calibre implica la adición al Lagrangiano de la derivada total con respecto al tiempo de una function de las coordenadas y el tiempo.
- Las ecuaciones de movimiento que se derivan de $\mathcal L$ son invariantes bajo una transformación de calibre.
- La invarianza de los campos B y E bajo una transformación de calibre implica que la fuerza de Lorentz es también invariante.
- Las ecuaciones de Maxwell son invariantes bajo una transformación de calibre, esto indica la existencia de una simetría fundamental en el electromagnetismo: la simetría de calibre
- Si $\mathcal{L}' = \mathcal{L} + \delta \mathcal{L}$, donde $\delta \mathcal{L}$ es la transformación infinitesimal $\delta \mathcal{L} = \frac{d\Lambda}{dt}$ que deja invariantes las ecuaciones de movimiento.
- Por el teorema de Noether sabemos que debe existir una cantidad conservada asociada a tal simetría.

- Una transformación de calibre implica la adición al Lagrangiano de la derivada total con respecto al tiempo de una function de las coordenadas y el tiempo.
- Las ecuaciones de movimiento que se derivan de $\mathcal L$ son invariantes bajo una transformación de calibre.
- La invarianza de los campos **B** y **E** bajo una transformación de calibre implica que la fuerza de Lorentz es también invariante.
- Las ecuaciones de Maxwell son invariantes bajo una transformación de calibre, esto indica la existencia de una simetría fundamental en el electromagnetismo: la simetría de calibre
- Si $\mathcal{L}' = \mathcal{L} + \delta \mathcal{L}$, donde $\delta \mathcal{L}$ es la transformación infinitesimal $\delta \mathcal{L} = \frac{d\Lambda}{dt}$ que deja invariantes las ecuaciones de movimiento.
- Por el teorema de Noether sabemos que debe existir una cantidad conservada asociada a tal simetría.
- La simetría de calibre de las ecuaciones de Maxwell implica la conservación de la carga eléctrica