## APUNTS

La primera meitat del 2n curs

AUTOR: EDUARDO PÉREZ MOTATO

# Índex

| 1 Bases de Dades Relacionals |                                   |         | Dades Relacionals                                       | 1             |
|------------------------------|-----------------------------------|---------|---------------------------------------------------------|---------------|
| <b>2</b>                     | Equacions Diferencials Ordinàries |         |                                                         |               |
|                              | 2.0                               |         | lucció                                                  | <b>2</b><br>3 |
|                              | 2.1                               |         | cions diferencials de 1r ordre                          |               |
|                              |                                   | 2.1.1   | Existència i unicitat i continuïtat de les solucions    |               |
|                              |                                   | 2.1.2   | Alguns mètodes analítics de resolució d'EDO de 1r ordre |               |
|                              |                                   | 2.1.3   | Mètodes qualitatius: Camps de direccions                |               |
|                              |                                   | 2.1.4   | Equacions diferencials autònomes                        | 6             |
|                              | 2.2                               |         | nes d'equacions diferencials ordinaries lineals i EDOs  | O             |
|                              |                                   |         | re superior                                             | 8             |
|                              |                                   | 2.2.1   | Equacions lineals de segon ordre                        |               |
|                              |                                   |         | _1-1                                                    |               |
| 3                            | Mo                                | delitza | ció i Inferència                                        | 8             |
| 4                            | Tèc                               | niques  | de Disseny d'Algoritmes                                 | 9             |
| 5                            | Visualització 3D                  |         |                                                         | 10            |
|                              | 5.1                               | Rotac   | ions                                                    | 11            |
|                              |                                   | 5.1.1   | L'espai euclidià estàndard 3-dimensional                | 11            |
|                              |                                   | 5.1.2   | Moviments rígids i grup ortogonal                       |               |
|                              |                                   | 5.1.3   |                                                         |               |
|                              |                                   | 5.1.4   | Representació de $SO(3)$ via l'espai projectiu          |               |
|                              | 5.2                               | Els au  | Els quaternions                                         |               |
|                              |                                   | 5.2.1   | Definició i primeres propietats:                        | 20            |

## Bases de Dades Relacionals

## Horari

- Dimarts 11-13h.
- Dijous 11-13h.

## Equacions Diferencials Ordinàries

### 2.0 Introducció

Les equacions diferencials són una eina molt important de modelització.

**Definició:** Les equacions diferencials són equacions que relacionen una funció (incògnita) amb les seves derivades.

**Definició:** Si la funció és d'una variable  $u:I\subset\mathbb{R}\to\mathbb{R}\mid\mid t\mapsto u(t)$  es diuen Equacions Diferencials Ordinàries.

**Definició:** Si la funció és de diverses variables  $u: \Omega \subset \mathbb{R}^n \to \mathbb{R}$  Es diuen Equacions de Derivades Parcials.

### 2.1 Equacions diferencials de 1r ordre

**Definició:** Una equació diferencial ordinària de primer ordre per una funció y(x) és una equació

$$F(x, y, y') = 0$$

**Definició:** La forma explícita d'una equació diferencial ordinària de 1r ordre és

$$\frac{dy}{dx} = y'(x) = f(x, f(x)) \tag{1}$$

**Definició:** La equació (1) es diu autònoma si f no depèn explícitament de x o sigui, és de la forma

$$y'(y) = f(y)$$

**Definició:** Una solució de (1) és una funció y(x) diferenciable definida en un interval  $I: \forall x \in I$  es satisfà (1).

En general, les solucions d'una EDO de 1r ordre formen una família uniparamètrica de funcions d'un paràmetre constant. Aquesta expressió s'anomena solució general de l'EDO de 1r ordre.

**Definició:** Una equació diferencial de primer ordre amb una condició inicial s'anomena problema de valor inicial i es de la forma

$$\begin{cases} y' = f(x,y) \\ y(x_0) = y_0 \end{cases}$$
 (2)

La solució d'un problema de valor inicial s'anomena solució particular de l'equació.

**Definició:** Una solució d'equilibri de y' = f(x, y) és una solució de la forma  $y(x) = y^*$  on  $y^*$  és una constant. Ha de cumplir que  $y' = f(x, y) \iff f(x, y^*) = 0 \ \forall x \in \text{dom } f(x, y) \text{ estigui ben definit.}$ 

Si l'equació és autònoma (y' = f(y)) les solucions d'equilibri y(x) = y estan donades pels zeros de f i estan definides  $\forall x \in \mathbb{R}$ .

#### 2.1.1 Existència i unicitat i continuïtat de les solucions

**Teorema (Picardo-Gindelof)** Sigui  $\mathcal{R}$  una regió rectangular del pla xy definida per  $R = \{(x,y) | a \leq x \leq b, c \leq y \leq d\}$  que conté el punt  $(x_0,y_0)$ . Suposem que f i que  $\frac{\partial f}{\partial y}$  són contínues a  $\mathcal{R}$ .

Aleshores existeix una única solució y(x) definida a un interval  $I_0 = (x_0 - h, x_0 + h), h > 0$  contingut a [a, b] del problema de valor inicial (2).

A més a més si denotem la solució de l'anterior sistema per  $y(x; x_0, y_0)$  es compleix que  $y(x; x_0, y_0)$  és una funció continua respecte  $x_0, y_0$ .

- Per assegurar unicitat és suficient amb què f sigui de Lipschitz respecte a la variable y
  - Que sigui de Lipschitz significa que  $\exists L>0: |f(x,y)-f(x,z)|< L\,|y-z|\,(c,d)\,\,\forall (y,z,c,d)$

Com a consequència del teorema anterior tenim

**Teorema** Si f i  $\frac{\partial f}{\partial y}$  són contínues a  $\mathbb{R}$  aleshores dues corbes solució de y' = f(x,y) diferents no es poden tallar a  $\mathbb{R}$ .

Un altre teorema útil és el seguent

**Teorema (de Peano)** Si f és contínua, existeix solució del sistema.

### 2.1.2 Alguns mètodes analítics de resolució d'EDO de 1r ordre

### 1. EDO separable o de variable separada.

Una edo de variables separades és de la forma

$$y' = g(x) h(y)$$

Si  $h(y) \not\equiv 0$  llavors podem fer  $\frac{1}{h(y)}y'(x) = g(x)$ Integrant respecte a x tenim

$$\int \frac{1}{h(y(x))} y'(x) dx = \int g(x) dx$$

Denotem per H una primitiva de  $\frac{1}{h(y)}$  i per G una primitiva de g(x), llavors tenim

$$H(y(x)) = G(x) + C$$

Llavors  $y(x) = H^{-1}(G(x) + C)$ .

Si  $h(y) \equiv 0$ , llavors  $y(x) = y^*$ , és a dir, té una solució d'equilibri.

### 2. EDO lineal.

Una EDO de 1r ordre lineal és de la forma

$$y'(x) = a(x)y(x) + b(x)$$
(3)

on a(x) i b(x) són funcions arbitràries.

Si  $b(x) \equiv 0$  llavors és una equació de variable separada. S'anomena l'equació homogènia associada a l'equació lineal.

$$y'(x) = a(x)y(x) \tag{4}$$

**Proposició** Sigui  $y_1(x)$  i  $y_2(x)$  dues solucions de l'equació lineal (3). Aleshores  $y_1(x) - y_2(x)$  és solució de l'equació homogènia associada (4).

**Corol · lari:** La solució general de (3) és igual que una solució particular de (4)

$$y(x) = y_{\text{homogénia}}(x) + y_{\text{particular}}(x)$$

Per trobar  $y_p(x)$  farem servir el "mètode de variació de les constants". Buscarem una solució particular de la forma

$$y_p(x) = C(x)e^{-\int a(x)dx}$$

Volem que es compleixi  $y'_p + a(x)y_p = b_x$ , això passa si

$$b(x) = C'(x)e^{-\int a(x)dx} \Rightarrow C(x) = \int b(x)e^{\int a(x)dx}dx$$

### 3. EDO homogènia.

Una equació homogènia (de primer grau) és de la forma

$$y' = f\left(\frac{y}{x}\right) \leftarrow \frac{\text{Canvi de variable per}}{\text{transformar-la en variables separades}}$$
 (5)

Es tracta d'un tipus d'equacions que fent un canvi de variable es transforma en una equació de variables separades. El canvi de variable serà  $u(x) = \frac{y(x)}{x} \Leftrightarrow y(x) = xu(x)$ 

$$y'(x) = u(x) + xu'(x) = f(u(x)) \to u'(x) = \frac{f(u(x)) - u(x)}{x}$$

### 2.1.3 Mètodes qualitatius: Camps de direccions

Tenim y' = f(x, y). Sigui y(x) la solució d'aquesta equació que passa per  $(x_0, y_0)$ . Sabem llavors que  $y(x_0) = y_0$  i  $y'(x_0) = f(x_0, y_0)$ .

A cada punt del pla (x, y) li podem associar un valor f(x, y) que representarem dibuixant el punt (x, y) un petit segment que tingui pendent f(x, y). Obtenim així el camp de direccions.

També podem fer f(x,y) = m, que defineix un conjunt de corbes al pla (x,y) al llarg de les quals tots els vectors pendents han de ser m, es diuen isoclines.

#### 2.1.4 Equacions diferencials autônomes

Son de la forma

$$y' = f(y)$$

Aquestes no depèn de manera explícita de la variable independent. Aquestes equacions són de variables separades i els seus equilibris son zeros de la funció f.

Teorema (Comportament asintotic d'equacions diferencials autònomes) Donada una equació diferencial autònoma y' = f(y), on f és contínua, aleshores

- Si y(x) una solució de l'equació autònoma, aleshores per qualsevol constant  $C \in \mathbb{R}$  també és solució  $y_c(x) := y(x+c)$ .
- Si y(x) és una solució de l'equació autònoma que no és un equilibri, és dir no es constant, aleshores no canvia de monotonia.
- Una solució acotada de l'equació autònoma tendeix (quan  $x \to \pm \infty$ ) a una solució d'equilibri.
- Si f(a) = 0, f(b) = 0 i f(y) > 0 per a  $y \in (a,b)$  i  $y(x_0) \in (a,b)$  aleshores  $\lim_{x \to -\infty} y(x) = a$  i  $\lim_{x \to \infty} y(x) = b$ . Si f(a) = 0, f(b) = 0 i f(y) < 0 per a  $y \in (a,b)$  i  $y(x_0) \in (a,b)$  aleshores  $\lim_{x \to -\infty} y(x) = b$  i  $\lim_{x \to \infty} y(x) = a$ .

# 2.2 Sistemes d'equacions diferencials ordinaries lineals i EDOs d'ordre superior

Una EDO d'ordre n és una equació de la forma  $F(x, y, y', \dots, y^{(n)}) = 0$ . La forma estandard és

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$$
(6)

Una solució de l'equació es una funció real y(x) definida a un interval I, n vegades diferenciable i que  $\forall x \in I$  és compleix (6).

L'equació (6) és equivalent a un sistema d'equacions de primer ordre  $\vec{z}' = f(x, \vec{z})$ 

Una equació diferencial lineal d'ordre n és una EDO de la forma

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = f(x)$$

Quan  $f(x) \equiv 0$  l'equació s'anomena homogenia.

### 2.2.1 Equacions lineals de segon ordre

$$y'' + a(x)y' + b(x)y = f(x)$$
(7)

La homogènia associada és

$$y'' + a(x)y' + b(x)y = 0 (8)$$

Com en el cas de les líneals de primer ordre, la solució general de (7) és la suma de la solució de la homogènia (8) i una solució particular de la no homogènia (7).

Anem a veure com solucionar la homogènia

**Proposició** Siguin  $y_1(x)$  i  $y_2(x)$  dues solucions de (8), aleshores  $y(x) = Ay_1(x) + By_2(x)$  també és solució (7) per constants A i B qualssevol.

## Modelització i Inferència

## Horari

- Dilluns 11-13h.
- Dimecres 11-13h.

# Tècniques de Disseny d'Algoritmes

### Horari

- Dilluns 9-11h.
- Dijous 9-11h.

## Visualització 3D

#### 5.1Rotacions

### L'espai euclidià estàndard 3-dimensional

Treballem a l'espai 3-dimensional en el qual vivim i que identifiquem amb  $\mathbb{R}^3$ .

Notació. En l'espai euclidià tenim l'origen a  $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$  i un punt arbitrari P = $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = (x, y, z) \in \mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ . Ambdues notacions (vertical i horitzontal) són vàlides malgrat representar diferents conceptes tècnicament.

**Definició:** La norma euclidiana d'un vector  $V \in \mathbb{R}$  es defineix com

$$||V|| = \sqrt{x^2 + y^2 + z^2} \in \mathbb{R}_+$$

que compleix  $\forall V, W \in \mathbb{R}^3, \forall \lambda \in \mathbb{R}$ •  $\|V + W\| \leq \|V\| + \|W\|$ •  $\|\lambda V\| = |\lambda| \|V\|$ •  $\|V\| = 0 \iff V = 0$ Aquesta norma mass

Aquesta norma mesura la <u>distància euclidiana</u> entre dos punts  $P_1$  i  $P_2$  per

$$\mathcal{D}(P_1, P_2) := \|P_1 - P_2\| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$
 que compleix les seguents propietats

• 
$$\mathcal{D}(P_1, P_3) \leq \mathcal{D}(P_1, P_2) + \mathcal{D}(P_2, P_3)$$

• 
$$\mathcal{D}(P_1, P_2) = \mathcal{D}(P_2, P_1)$$

• 
$$\mathcal{D}(P_1, P_2) = \mathcal{D}(P_2, P_1)$$
  
•  $\mathcal{D}(P_1, P_2) = 0 \iff P_2 = P_1$ 



Demostracio Recordem el teorema de Pitàgores.



Com



Aleshores, veiem que  $\|V\|$  és exactament aplicar el teorema de Pitàgores dos cops, tal que



$$V_{2} \begin{cases} d^{2} = V_{1}^{2} + V_{2}^{2} \\ L^{2} = d^{2} + V_{3}^{2} \end{cases} \Rightarrow L^{2} = V_{1}^{2} + V_{2}^{2} + V_{3}^{2} = ||V||^{2}$$

Com la norma d'un vector  $V \in \mathbb{R}^3$  correspon a la seva longitud, de forma equivalent la distància entre dos punts a  $\mathbb{R}^3$  correspon a la longitud del segment que uneix aquests punts:

$$P_{1} \qquad P_{2}$$

$$\leftarrow \parallel P_{2} - P_{1} \parallel$$

Si tenim  $P_1$  i  $P_2$  punts que defineixen un segment, la longitud  $\mathcal{D}\left(P_1,P_2\right)=$  $||P_2 - P_1||$ 

Per tant, la distància euclidiana entre dos punts és la que coneixem!

Aquesta norma (i distància) euclidiana prové d'una estructura que a més de les longituds conté la noció d'ortogonalitat:

**Definició:** Anomenem producte escalar a  $\mathbb{R}^3$  la funció

$$\langle \dots, \dots \rangle : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$$

$$\langle V, W \rangle \mapsto \langle V, W \rangle = V_1 W_1 + V_2 W_2 + V_3 W_3 \text{ que \'es}$$
• Bilineal:  $\langle V + \lambda \bar{V}, W \rangle = \langle V, W \rangle + \lambda \langle \bar{V}, W \rangle$  ídem si  $V \leftrightsquigarrow W$ 
• Simètrica:  $\langle V, W \rangle = \langle W, V \rangle$ 

- Definit positiu:  $\langle V, V \rangle > 0$  si  $V \neq 0$

Observem que  $\forall V \in \mathbb{R}^3$ ,  $||V|| = \sqrt{\langle V, V \rangle}$ : la norma es pot definir en funció del producte escalar.

Recíprocament, veiem fàcilment la Identitat de Polarització

$$\langle V, W \rangle = \frac{1}{2} (\|V + W\|^2 - \|V\|^2 - \|W\|^2) \, \forall V, W \in \mathbb{R}^3$$

### Exercici Arribar a la Identitat de Polarització a partir d'allò.

El producte escalar permet definir la noció d'ortogonalitat. Per veure això, necessitem primer el resultat següent:

### Teorema (Desigualtat de Cauchy-Schwartz)

$$\forall V, W \in \mathbb{R}^3, |\langle V, W \rangle| \le ||V|| \, ||W||$$

A més, la igualtat s'assoleix només si  $\exists \lambda \in \mathbb{R} : V = \lambda W$ 

**Demostracio** Fixem  $V, W \in \mathbb{R}^3$  qualsevol. Aleshores definim  $\forall \lambda \in \mathbb{R}$  $\mathcal{P}(\lambda) := \|V + \lambda W\|^2 \ge 0$ 

Observem que  $\mathcal{P}(\lambda) = \langle V + \lambda W, V + \lambda W \rangle = \|V\|^2 + 2\lambda \langle V, W \rangle + \lambda^2 \|W\|^2 \Rightarrow \mathcal{P}$  és un polinomi en  $\lambda$  de grau 2. Llavors  $\Delta = 4 \left( \langle V, W \rangle^2 - \|V\|^2 \|W\|^2 \right)$  ha de ser  $\leq 0$ , ja que  $\mathcal{P} \geq 0$ .

Deduïm que  $\Delta \leq 0 \iff \langle V, W \rangle^2 - \|V\|^2 \|W\|^2 \leq 0 \iff \langle V, W \rangle^2 \leq \|V\|^2 \|W\|^2$ 

Si 
$$\Delta = 0$$
 això implica que  $\exists \lambda_0 \in \mathbb{R} : \mathcal{P}(\lambda_0) = 0$ , aleshores  $\mathcal{P}(\lambda_0) = 0 \iff \|V + \lambda_0 W\| = 0 \iff V = -\lambda_0 W$ 

Com a conseqüència, obtenim que el número

$$\frac{\langle V, W \rangle}{\|V\| \|W\|} \in [-1, 1] \quad \forall V, W \in \mathbb{R}^3 \setminus \{0\}$$
$$(\iff |\langle V, W \rangle| \le \|V\| \|W\|)$$

**Definició:** L'únic  $\theta \in [0, \pi]$  :  $\cos \theta = \frac{\langle V, W \rangle}{\|V\| \|W\|}$  s'anomena angle euclidià entre V i W.

L'angle és efectivament l'angle que coneixem.

Si 
$$V = (1,0,0)$$
 i  $W = (\cos \alpha, \sin \alpha, 0)$  obtenim que  $\cos \theta = \frac{\langle V,W \rangle}{\|V\| \|W\|} = \frac{\cos \alpha}{1 \times 1} = \cos \alpha \Rightarrow \theta = \alpha$ 

**Definició:** Diem que V i W són ortogonals si  $\langle V, W \rangle = 0$  o, de forma equivalent, si l'angle entre V i W és  $\frac{\pi}{2}$ .

Notació:. Denotem dos vectors ortogonals entre si com  $V \perp W$ 

Un conjunt de 3 vectors és base ortogonal si  $\langle U, V \rangle = \langle V, W \rangle = \langle U, W \rangle = 0$ , És base ortonormal, si és base ortogonal i a més ||U|| = ||V|| = ||W|| = 1.

 $\mathbb{R}^3$  admet una estructura addicional que permet multiplicar dos vectors:

**Definició:**  $\forall V, W \in \mathbb{R}^3$ , definim el seu producte vectorial

$$V \wedge W = \begin{pmatrix} V_2 W_3 - V_3 W_2 \\ V_3 W_1 - V_1 W_3 \\ V_1 W_2 - V_2 W_1 \end{pmatrix} \in \mathbb{R}^3$$

que compleix

- Bilinealitat:  $(U + \lambda V) \wedge W = U \wedge W + \lambda V \wedge W$ ídem a la dreta.
- Antisimètria:  $V \wedge W = -W \wedge V$

Veiem fàcilment que  $\forall V, W \in \mathbb{R}^3 \ \langle V \wedge W, V \rangle = 0 = \langle V \wedge W, W \rangle$  Més enllà

**Proposició**  $\forall U, V, W \in \mathbb{R}^3, \langle U, V \wedge W \rangle = \det(U, V, W)$ 

### 5.1.2 Moviments rígids i grup ortogonal

Observar un objecte que es desplaça és equivalent que desplaçar-se observant aquest objecte fix. La visió 3D utilitza l'observació d'un mateix objecte des de 2 punts de vista  $\neq$  (un per cada ull). Però això equival estrictament a l'observació d'un mateix objecte desplaçant-se a l'espai.

Per això primer estudiarem aquestes transformacions de l'espai que preserven un objecte (s'anomenen moviments rígids). Són transformacions que preserven les distàncies entre qualsevol parell de punts de l'objecte.

Comencem estudiant un conjunt particular de transformació a l'espai.

**Definició:** El grup ortogonal és el conjunt d'aplicacions lineals que preserven el producte escalar:

$$O(3) := \left\{ M \in \mathcal{M}_3(\mathbb{R}) \,|\, \langle MV, MW \rangle = \langle V, W \rangle \,\forall V, W \in \mathbb{R}^3 \right\}$$

Si 
$$M \in O(3)$$
 i  $V \in \mathbb{R}^3$ ,  $||MV|| = ||V||$   
Si  $M \in O(3)$  i  $V \perp W \Rightarrow MV \perp MW$ 

Com  $\forall V, W \in \mathbb{R}^3$ ,  $\langle MV, MW \rangle = V^t M^t MW$  per tant,

$$M \in O(3) \Leftrightarrow M^t M = \mathbb{I}_3$$

Al final obtenim

$$O(3) = \left\{ M \in \mathcal{M}_3 \left( \mathbb{R} \right) | M^t M = \mathbb{I}_3 \right\}$$

**Proposició** Si  $M \in O(3)$ , llavors  $\det(M) = \pm 1$ 

**Definició:** Es defineix el grup especial ortogonal

$$SO(3) := \{ M \in O(3) | \det M = 1 \}$$

Per construcció els elements de SO(3) són aquestes transformacions lineals que preserven les bases ortogonals positives. És a dir, són aquestes que preserven l'orientació i més concretament,  $(Me_1, Me_2, Me_3)$  compleix

- 1.  $(Me_1, Me_2, Me_3)$  és una base ortogonal
- 2.  $\det(Me_1, Me_2, Me_3) = \det M = 1$  i doncs  $\langle Me_1 \wedge Me_2, Me_3 \rangle = 1 \Rightarrow Me_3 = Me_1 \wedge Me_2$

Un exemple de 
$$M \in O(3) \setminus SO(3)$$
 és la matriu  $M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 

Aquestes transformacions de  $O(3) \setminus SO(3)$  canvien l'orientació no corresponen al context de la visió 3D com no podem canviar l'orientació d'un objecte desplaçant-ho a l'espai. Per això tindrem especial èmfasi en el subgrup SO(3)!



O(3) i SO(3) són grups (noció d'àlgebra) el que diu el següent:

- Si  $M, N \in O(3)$  (o SO(3)),  $MN \in O(3)$ .
- $\mathbb{I}_3 \in O(3)$ .
- Si  $M \in O(3)$ , aleshores M és invertible i  $M^{-1} \in O(3)$ .

Més generalment,

**Definició:** Un conjunt G és un grup Si

- ∃ operació interna · : G · G → G
   ∀g<sub>1</sub>, g<sub>2</sub>, g<sub>3</sub> ∈ G, (g<sub>1</sub> · g<sub>2</sub>) · g<sub>3</sub> = g<sub>1</sub> · (g<sub>2</sub> · g<sub>3</sub>)
   ∃e ∈ G tal que e · g = g · e = g (element neutre)
   ∀g ∈ G, ∃g<sup>-1</sup> ∈ G tal que g · g<sup>-1</sup> = g<sup>-1</sup>g = e (inversa)

**Teorema** Sigui  $f: \mathbb{R}^3 \to \mathbb{R}^3$  una aplicació que preserva les distàncies  $\forall P, Q \in \mathbb{R}^{3}, \mathcal{D}(f(P), f(Q)) = \mathcal{D}(P, Q) \Leftrightarrow \|f(Q) - f(P)\| = \|Q - P\|$ Aleshores  $\exists P_o \in \mathbb{R}^3, M \in O(3)$  tal que  $\forall P \in \mathbb{R}^3, f(P) = P_o + MP$ 

**Definició:** Si a més f preserva l'orientació, obtenim que  $M \in SO(3)$ . Un tal f s'anomena moviment rígid i correspon al fet de desplaçar un objecte a  $\mathbb{R}^3$  (o de forma equivalent, canviar de punt de vista).

#### Grup de rotacions 5.1.3

Ara l'objectiu és entendre millor l'estructura dels grups O(3) i SO(3), i observar que el subgrup SO(3) està compost de les rotacions. Primer observem que si treballem a l'espai euclidià de dimensió n (on  $n \in \mathbb{N}$ ), és a dir, treballem a  $\mathbb{R}^n$  amb el producte escalar  $\langle V,W\rangle=\sum\limits_{i=1}^n V_iW_i\;\forall V,W\in\mathbb{R}^n$  podem definir  $O(n) = \{ M \in \mathcal{M}_n(\mathbb{R}) | M^t M = \mathbb{I}_n \} \text{ i } SO(n) = \{ M \in O(n) | \det M = 1 \}$ Per entendre la dimensió 3, necessitem entendre primer les dimensions inferiors.

- n = 1:  $M = (a) \in O(1) \iff M^t M = \mathbb{I}_1 = 1 \iff (a^2) = 1$   $\iff a = \pm 1 \iff M = \pm \mathbb{I}_1$ Deduïm que  $O(1) = \{ \pm \mathbb{I}_1 \}$  i  $SO(1) = \{ \mathbb{I}_1 \}$
- n = 2

**Proposició** Sigui  $M \in O(2)$ .  $\exists ! \theta \in [0, 2\pi)$  tal que

$$M = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \text{ o } M = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$$

Això genera una rotació d'angle  $\theta$  en el primer cas i en el segon una simetria d'un eix horitzontal compost amb una rotació d'angle  $\theta$ .

En particular, si  $M \in SO(2), \exists ! \theta \in [0, 2\pi)$  tal que

$$M = R_{\theta} := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

• n = 3

**Proposició** Sigui  $M \in O(3)$ . Aleshores  $\exists B \in SO(3), \exists \theta \in [0, 2\pi)$  tal que

$$BMB^{-1} = \begin{pmatrix} \pm 1 & 0 & 0\\ 0 & \cos \theta & -\sin \theta\\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$

Geomètricament, això significa que si  $M = \mathcal{M}_{Can}(L)$ ,  $\exists \mathcal{B} = (U, V, W)$  i  $\exists \theta \in [0, 2\pi)$  tal que  $B = P_{Can \to \mathcal{B}}$  i  $BMB^{-1} = Mat_{\mathcal{B}}(L) = \begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$ 

Com  $B \in SO(3)$ , vol dir que la base  $\mathcal{B}$  és base ortonormal positiva (és a dir, té la mateixa orientació que la base canònica  $\Leftrightarrow \det(u, v, w) = 1$ )

- Cas on  $\pm 1 = 1$ :

$$U = L(U)$$

$$L(V) = \cos \theta V + \sin \theta W$$

$$L(W) = -\sin \theta V + \cos \theta W$$

Llavors L és una rotació d'eix U i d'angle  $\theta$ .

- Cas on  $\pm 1 = -1$ :

$$U = -L(U)$$

$$L(V) = \cos \theta V - \sin \theta W$$

$$L(W) = \sin \theta V + \cos \theta W$$

L és la composició d'una simetria  $\bot$  al pla  $U^\bot=Vect(V,W)$  i de la rotació d'angle  $\theta$  i eix U

Teorema (de les rotacions d'Euler) Sigui  $M \in SO(3)$ . Llavors  $\exists B \in SO(3)$  i  $\theta \in [0, 2\pi)$  tal que

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{pmatrix}$$

Per això, SO(3) rep el nom de grup de les rotacions.

En particular, i <u>no és gens evident</u>, si componem dues rotacions a l'espai, obtenim una tercera.

Cas particular: Si U = U',  $R_{\theta_1,U'} \circ R_{\theta_2,U} = R_{\theta,U}$ . Això és evident, però  $R_{\theta_1,U} \circ R_{\theta_2,V} = R_{\theta,W}$  i és molt difícil obtenir  $\theta$  i W.

### 5.1.4 Representació de SO(3) via l'espai projectiu

Associem a cada punt  $p \neq 0$  de la bola B de radi  $\pi$  la rotació d'eix  $\frac{p}{\|p\|}$  d'angle  $\|p\|$  i a p = 0 associem la rotació Identitat  $\mathbb{I}_3$ .

Com  $\forall p \in \mathbb{R}^3$  tal que  $||p|| = \pi$  ( $\Leftrightarrow p \in \partial B$ ), tenim que  $R_{\frac{p}{\pi},\pi} = R_{\frac{-p}{\pi},\pi}$ , en tenim prou amb B per representar SO(3).

Acabem de definir una aplicació

$$\Omega: B \left(= B^3(0,\pi)\right) \longrightarrow SO(3)$$

$$p \longmapsto R_{\frac{p}{\|p\|},\|p\|}$$

Injectiva? No, perquè  $\Omega((0,0,\pi)) = \Omega(0,0,-\pi)$ .

Però ho és quasi:  $\forall p, q$  tal que  $||p|| < \pi$  i  $||q|| < \pi$ , tenim que  $\Omega(p) \neq \Omega(q)$ .

A més si  $||p|| = ||q|| = \pi$ ,  $\Omega(p) = -\Omega(q)$ .

Exaustiva? Sí.

Al final, si enganxem els parells de punts antipodals (parells de la forma (p,-p) amb  $||p||=\pi\iff p\in\partial B$ ) obtenim un espai quocient que representa rotacions:

$$SO(3) = B / \{p = -p \text{ si } p \in \partial B\}$$

Aquest espai s'anomena espai projectiu de dim 3 i es denota  $\mathbb{R}P^3$ .

Existeixen corbes tancades a  $B^3$  que es poden contractar en un punt.



Existeixen corbes que no es poden contractar en un punt.



Existeixen doble corbes que si es poden contractar en un punt.



Expliquem aquesta última observació:



### 5.2 Els quaternions

En aquest nou capítol, denotarem la base ortonormal estandard  $(e_1, e_2, e_3)$  a  $\mathbb{R}^3$  com (i, j, k).

Es a dir, que  $i = e_1$ ,  $j = e_2$  i  $k = e_3$ .

### 5.2.1 Definició i primeres propietats:

**Definició:** Un <u>quaternion</u> q és la suma (formal) d'un escalar  $q_0 \in \mathbb{R}$  i d'un vector  $Q := (q_1, q_2, q_3) \in \mathbb{R}^3$ . És a dir, que  $q = q_0 + Q$ . Farem servir  $\mathbb{H}$  (de Hamilton) per el conjunt dels quaternions que es pot identificar a  $\mathbb{R}^4$  via l'identificació:

$$H \longrightarrow \mathbb{R}^4$$

$$q = q_0 + q_1 i + q_2 j + q_3 k \longmapsto (q_0, q_1, q_2, q_3)$$

Denotarem també que  $q = q_0 + q_1i + q_2j + q_3k$ .

Donats dos quaternions  $p = p_0 + p_1 i + p_2 j + p_3 k$  i  $q = q_0 + q_1 i + q_2 j + q_3 k$  i  $\lambda \in \mathbb{R}$ , definim:

- La suma de quaternions com  $p+q=(p_0+q_0)+(p_1+q_1)i+(p_2+q_2)j+(p_3+q_3)k\in\mathbb{H}$
- El producte per un escalar com  $\lambda p = \lambda p_0 + \lambda p_1 i + \lambda p_2 j + \lambda p_3 k \in \mathbb{H}$
- El producte de quaternions com  $pq=\underbrace{p_0q_0-\langle P,Q\rangle}_{\in\mathbb{R}}+\underbrace{p_0Q+q_0P+P\wedge Q}_{\in\mathbb{R}^3}$   $pq\in\mathbb{H}$

$$\forall p, q \in \mathbb{H},$$

$$pq - qp = (p_0q_0 - \langle P, Q \rangle) + (p_0Q + q_0P + P \wedge Q)$$
$$- (q_0p_0 - \langle Q, P \rangle) - (q_0P + p_0Q + Q \wedge P)$$
$$= 2 \langle P, Q \rangle$$

$$i^{2} = ii$$

$$= (0 + 1i + 0j + 0k)(0 + 1i + 0j + 0k)$$

$$= pq \text{ amb } p_{0} = q_{0} = 0, p_{1} = q_{1} = 1, p_{2} = q_{2} = p_{3} = q_{3} = 0$$

$$= 0 - \langle P, Q \rangle + P \wedge Q$$

$$= 0 - 1 + 0$$

$$= -1$$

De la mateixa manera, es pot veure que  $j^2 = k^2 = -1$ .

$$ij = (0 + 1i + 0j + 0k)(0 + 0i + 1j + 0k)$$
$$= 0 - \langle P, Q \rangle + P \wedge Q$$
$$= 0 - 0 + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
$$= k$$

De la mateixa manera, es pot veure que  $ij=k=-ji,\,jk=i=-kj$  i ki=j=-ik.

Al final, hem obtingut les regles de Hamilton, fonamentals per calcular amb quaternions:

$$\begin{cases} i^2 = j^2 = k^2 = -1 \\ ij = k = -ji \\ jk = i = -kj \\ ki = j = -ik \end{cases}$$

En particular, veiem que  $\mathbb H$  és un  $\mathbb R$ -espai vectorial de dimensió 4, amb base (1,i,j,k) amb producte que no és conmutatiu:  $ij\neq ji!$  En canvi:

**Proposició** El producte sobre  $\mathbb H$  és associatiu i distributiu respecte l'addicció.

$$1q = q i 0 q = 0$$