

计算机组成原理

第3讲

左德承

哈尔滨工业大学计算学部 容错与移动计算研究中心

原码的特点:简单、直观

2.1

但是用原码作加法时,会出现如下问题:

要求	数1	数2	实际操作	结果符号
加法	正	正	加	正
加法	正	负	减	可正可负
加法	负	正	减	可正可负
加法	负	负	加	负

能否 只作加法?

找到一个与负数等价的正数 来代替这个负数 就可使 减 —— 加 3. 补码表示法 2.1

(1) 补的概念

逆时针 • 时钟 顺时针 可见-3可用+9代替 减法——加法 称 + 9 是 - 3 以 12 为模的 补数 记作 - 3 ≡ + 9 (mod 12) 同理 - 4 ≡ + 8 (mod 12) $-5 \equiv +7 \pmod{12}$

结论 2.5

- >一个负数加上"模"即得该负数的补数
- ▶一个正数和一个负数互为补数时 它们绝对值之和即为 模 数
 - 计数器(模 16) 1011 ──0000?

$$\begin{array}{rrr}
 1011 & 1011 \\
 -1011 & +0101 \\
\hline
 0000 & 10000
\end{array}$$

自然去掉

可见-1011 可用 + 0101 代替

记作
$$-1011 \equiv +0101$$
 (mod 2⁴)

同理
$$-011 \equiv +101$$
 (mod 2^3)

$$-0.1001 \equiv +1.0111 \pmod{2}$$

(2) 正数的补数即为其本身

2.1

```
+ 0101 \pmod{2^4}
两个互为补数的数
分别加上模
                  +10000
                                +10000
                  +0101
结果仍互为补数
                              (\text{mod}2^4)
       \therefore + 0101 \equiv + 0101
                                            丢掉
   可见 + 0101 - + 0101
                     - 1011
       ? 0,0101 \rightarrow + 0101
         1,0101 \longrightarrow -1011
          \overline{-1011} = 100000
                                       (mod 2^{4+1})
                     -1011
                                  用 逗号 将符号位
                     1,0101
                                  和数值部分隔开
```

(3) 补码定义

2.1

整数

$$[x]_{\nmid h} = \begin{cases} 0, & x \\ 2^{n} > x \ge 0 \\ 2^{n+1} + x & 0 > x \ge -2^{n} \pmod{2^{n+1}} \end{cases}$$

x 为真值

n 为整数的位数

如
$$x = +1010$$

$$x = -1011000$$

$$[x]_{\stackrel{?}{\not=}} = 2^{7+1} + (-1011000)$$

$$= 100000000$$

$$- 1011000$$

$$1,0101000$$

2024/4/22

小数

$$[x]_{\nmid h} = \begin{cases} x & 1 > x \ge 0 \\ 2 + x & 0 > x \ge -1 \pmod{2} \end{cases}$$

x 为真值

如
$$x = +0.1110$$
 $x = -0.1100000$ $[x]_{\stackrel{}{\mathbb{A}}} = 0.1110$ $[x]_{\stackrel{}{\mathbb{A}}} = 2 + (-0.1100000)$ $= 10.00000000$ -0.1100000 1.0100000 和数值部分隔开

(4) 求补码的快捷方式

2.1

设
$$x = -1010$$
时

$$\mathbf{X}[x]_{\mathbb{R}} = [1,1010]$$

当真值为负时,补码可用原码除符号位外每位取反,末位加1求得

```
(5) 举例
```

2.1

例 6.5 已知
$$[x]_{\stackrel{}{\text{\tiny λ}}} = 0.0001$$
 求 x

解: 由定义得 x = +0.0001

例 6.6 已知
$$[x]_{\stackrel{}{\mathbb{A}}} = 1.0001$$
 $[x]_{\stackrel{}{\mathbb{A}}} \stackrel{?}{\longrightarrow} [x]_{\stackrel{}{\mathbb{B}}}$ 求 x $[x]_{\stackrel{}{\mathbb{B}}} = 1.1111$ 辞: 由定义得 $x = [x]_{\stackrel{}{\mathbb{A}}} - 2$

= 1.0001 - 10.0000

=-0.1111

例 6.7 已知 $[x]_{\stackrel{}{\text{\tiny h}}} = 1,1110$

解: 由定义得

$$x = [x]_{3} - 2^{4+1}$$

$$= 1,1110 - 100000$$

$$= -0010$$

 $[x]_{\stackrel{?}{\rightarrow}}[x]_{\stackrel{}{\oplus}}$

$$[x]_{\text{f}} = 1,0010$$

$$\therefore x = -0010$$

当真值为负时,原码可用补码除符号位外 每位取反,末位加1求得 练习 求下列真值的补码

2.1

真值	$[x]_{ eqh}$	[x]原
x = +70 = 1000110	0, 1000110	0,1000110
x = -70 = -1000110	1,0111010	1,1000110
x = 0.1110	0.1110	0.1110
x = -0.1110	1.0010	1.1110
$x = \boxed{0.0000} [+0]_{\mbox{$?$}} = [-$	- 0]* 0.0000	0.0000
$x = \boxed{-0.0000}$	0.0000	1.0000
x = -1.0000	1.0000	不能表示

由小数补码定义
$$[x]_{\stackrel{}{\mathbb{A}}} = \begin{cases} x & 1 > x \geq 0 \\ 2+x & 0 > x \geq -1 \pmod{2} \end{cases}$$

$$[-1]_{3} = 2 + x = 10.0000 - 1.0000 = 1.0000$$

4. 反码表示法

2.1

(1) 定义

整数

$$[x]_{egin{subarray}{l} [x]_{egin{subarray}{l} [x]$$

= 11111 -1101

= 1,0010

用 逗号 将符号位

和数值部分隔开

小数

$$[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \ge 0 \\ (2-2^{-n}) + x & 0 \ge x > -1 \pmod{2-2^{-n}} \end{cases}$$

x 为真值 n 为小数的位数

如

$$x = +0.1101$$
 $x = -0.1010$
$$[x]_{\overline{\mathbb{Q}}} = 0.1101$$

$$[x]_{\overline{\mathbb{Q}}} = (2-2^{-4}) - 0.1010$$

$$= 1.1111 - 0.1010$$

$$= 1.0101$$
 和数值部分隔开

```
(2) 举例
```

2.1

```
例6.8
          已知 [x]_{\mathbb{R}} = 0,1110 求 x
       由定义得 x = +1110
  解:
例 6.9 已知 [x]_{\mathbb{R}} = 1,1110 求 x
  解: 由定义得 x = [x]_{\mathbb{Z}} - (2^{4+1} - 1)
                           = 1,1110 -111111
                           = -0001
例 6.10 求 0 的反码
  解: 设 x = +0.0000 [+0.0000]<sub>反</sub>= 0.0000
             x = -0.0000 [-0.0000]_{\text{F}} = 1.1111
同理,对于整数 [+0]_{\mathbb{Z}} = 0,0000 [-0]_{\mathbb{Z}} = 1,1111
              \therefore [+0]_{\bowtie} \neq [-0]_{\bowtie}
```

- ▶最高位为符号位,书写上用","(整数)或"."(小数)将数值部分和符号位隔开
- ▶ 对于正数,原码 = 补码 = 反码
- ▶ 对于负数,符号位为1,其数值部分原码除符号位外每位取反末位加1→补码原码除符号位外每位取反→反码

例6.11 设机器数字长为8位(其中1位为符号位)对于整数,当其分别代表无符号数、原码、补码和反码时,对应的真值范围各为多少?

二进制代码	无符号数 对应的真值	原码对应 的真值	补码对应 的真值	反码对应 的真值
00000000	0	+0	<u>±0</u>	+0
00000001	1	+1	+1	+1
00000010	2	+2	+2	+2
•	•	•	•	:
01111111	127	+127	+127	+127
10000000	128	-0	-128	-127
10000001	129	-1	-127	-126
•	•	•	•	•
11111101	253	-125	-3	-2
11111110	254	-126	-2	-1
11111111	255	-127	-1	-0

例 6.12 已知 $[y]_{i}$ 求 $[-y]_{i}$

2.1

解: 设 $[y]_{\uparrow h} = y_0 \cdot y_1 y_2 \cdot \dots \cdot y_n$

$$\langle \mathbf{I} \rangle$$
 $[y]_{\nmid h} = 0. y_1 y_2 ... y_n$

[y]*连同符号位在内, 每位取反, 末位加1

即得[-y]*

$$\left[[-y]_{\nmid h} = 1.\overline{y_1} \overline{y_2} ... \overline{y_n} + 2^{-n} \right]$$

$$\langle \mathbf{II} \rangle \qquad [y]_{\not \uparrow \downarrow} = 1. \ y_1 y_2 \ \cdots y_n$$

[y]_补连同符号位在内,每位取反,末位加 1 即得[-y]_{*}

$$[-y]_{\not \models} = 0.\overline{y_1}\overline{y_2}\cdots\overline{y_n} + 2^{-n}$$

5. 移码表示法

补码表示很难直接判断其真值大小

十进制

补码

$$x = +21$$

$$x = -21$$

$$-10101$$

$$x = +31$$

$$x = -31$$

$$x + 2^5$$

$$+10101 + 100000 = 110101$$

$$-10101 + 100000 = 001011$$

$$+111111 + 1000000 = 11111111$$

$$= 111111$$

-11111 + 100000 = 00000

(1) 移码定义

2.1

$$[x]_{8} = 2^{n} + x (2^{n} > x \ge -2^{n})$$

x 为真值, n 为 整数的位数

移码在数轴上的表示

如
$$x = 10100$$

$$[x]_{8} = 2^5 + 10100 = 1,10100$$

 $x = -10100$

 $[x]_{38} = 2^5 - 10100 = 0,01100$

用 逗号 将符号位 和数值部分隔开

(2) 移码和补码的比较

设
$$x = +1100100$$

$$[x]_{8} = 2^{7} + 1100100 = 1,1100100$$

$$[x]_{4} = 0,1100100$$
设 $x = -1100100$

$$[x]_{8} = 2^{7} - 1100100 = 0,0011100$$

$$[x]_{4} = 1,0011100$$
补码与移码只差一个符号位

(3) 真值、补码和移码的对照表

	1
Z.	J

真值 x (n=5)	[x] _补	[x] _移	[x] _移 对应的 十进制整数
-100000 - 11111	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	0 1
- 11110	100010	000010	2 :
$\begin{array}{ c c c c c c } - & 0 & 0 & 0 & 0 & 1 \\ \pm & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	$egin{array}{c} . \\ 111111 \\ 00000 \end{array}$	$egin{array}{c} \cdot \\ 0 \ 1 \ 1 \ 1 \ 1 \\ 1 \ 0 \ 0 \ 0 \ 0 \end{array}$	3i 32
+ 00001	000001	100001	33
+ 00010	000010	100010	34 :
+ 111110 + 11111	011110 011111	111110 111111	62 63

2024/4/22

 \rightarrow 当 n = 5 时 最小的真值为 $-2^5 = -100000$ $[-100000]_{8} = 2^5 - 100000 = 000000$

可见,最小真值的移码为全 0 用移码表示浮点数的阶码 能方便地判断浮点数的阶码大小

2.2 数的定点表示和浮点表示

2.2 数的定点表示和浮点表示

小数点按约定方式标出

一、定点表示

定点机 小数定点机 整数定点机 原码 $-(1-2^{-n}) \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$ 补码 $-1 \sim +(1-2^{-n})$ $-2^n \sim +(2^n-1)$ 反码 $-(1-2^{-n}) \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$

$$N = S \times r^{j}$$
 浮点数的一般形式 S 尾数 j 阶码 r 基数 (基值) 计算机中 r 取 2、4、8、16 等 当 $r = 2$ $N = 11.0101$ $\checkmark = 0.110101 \times 2^{10}$ 规格化数 $= 1.10101 \times 2^{1}$ $= 1101.01 \times 2^{-10}$ $\checkmark = 0.00110101 \times 2^{100}$

计算机中 S 小数、可正可负 整数、可正可负

1. 浮点数的表示形式

 $S_{\rm f}$ 代表浮点数的符号

n 其位数反映浮点数的精度

m 其位数反映浮点数的表示范围

j_t和 m 共同表示小数点的实际位置