Б.Г.ЗИВ В.А.ГОЛЬДИЧ

Б. Г. ЗивВ. А. Гольдич

Дидактические материалы по алгебре

для 9 класса

издание 9-е, стереотипное

Петроглиф С.-Петербург 2013 УДК 373.167.1:512 ББК 22.14я72 3 59

Рецензенты:

Заведующий кабинетом математики Санкт-Петербургского Университета Педагогического Мастерства Л. А. Жигулев; Методист кабинета математики Санкт-Петербургского Университета Педагогического Мастерства Б. Г. Некрасов

Рекомендовано кабинетом математики
Санкт-Петербургского
Университета Педагогического Мастерства
в качестве учебного пособия для средней школы

Издание осуществлено при участии ООО «Виктория плюс»

Зив Б. Г., Гольдич В. А.

3 59 Дидактические материалы по алгебре для 9 класса. / Б.Г. Зив, В.А. Гольдич — 9-е изд. —СПб.: «Петроглиф»: «Виктория плюс», 2013. —144 с.: ил. — ISBN 978-5-98712-009-5, ISBN 978-5-89173-801-0

Данное пособие содержит самостоятельные и контрольные работы по курсу «Алгебра» для 9 класса, составленные в полном соответствии со школьной программой. Пособие может быть использовано как в обычных школах, так и в математических гимназиях и лицеях.

УДК 373.167.1:512 ББК 22.14я72

ISBN 978-5-98712-009-5 (Петроглиф) ISBN 978-5-89173-801-0 (Виктория плюс)

- © Б. Г. Зив, В. А. Гольдич, 2001
- © Е. Т. Киселев, художественное оформление, 2001
- © ООО «Петроглиф», 2013

Предисловие

Данная книга рассчитана на всех желающих улучшить свои знания по алгебре и составлена в полном соответствии со школьной программой.

В пособии представлено 19 самостоятельных работ, 4 практические работы на повторение и 6 контрольных работ. Сборник несколько отличается от обычных дидактических материалов тем, что самостоятельные работы в нем приведены в восьми вариантах, четырех уровней сложности. Чем мы руководствовались? Не секрет, что в последние годы очень существенно возросла сложность вступительных экзаменов в ВУЗы. Одновременно отмечается процесс упрощения содержания школьных учебников математики. Мы полагаем, что уже в средних классах — в 10-м и 11-м на это может просто не хватить времени — необходимо показывать ученикам более содержательные задачи.

Какова же структура наших дидактических материалов?

I уровень сложности (Вариант 1 — Вариант 2) — это минимум того, что должен знать ученик, — база.

II уровень сложности (Вариант 3 — Вариант 4) — «твердая четверка».

III уровень сложности (Вариант 5 — Вариант 6) — «на пятерку».

IV уровень сложности (Вариант 7 — Вариант 8) — для тех, кто всерьез увлечен математикой.

Если подходить к использованию книги формально, то рекомендуется следующее:

I или II уровень — для базовой школы;

II или III уровень — для гимназий;

III или IV уровень — для лицеев или математических школ.

Следует иметь в виду, что все самостоятельные и контрольные работы составлены избыточно. Учителю ни в коем случае не следует считать, что объем работ должен быть именно таким — мы лишь хотели предоставить ему возможность выбора.

Все контрольные составлены в четырех равноценных вариантах.

Вообще, структура книги полностью повторяет "Задачи к урокам геометрии" Б. Г. Зива, а значит, может быть использована как задачник.

Надеемся, что наша книга поможет учителям и детям успешно заниматься математикой.

Рекомендации

Весьма удачным дополнением к дидактическим материалам для 7-11 классов являются книги серии «Математика. Элективные курсы» А. Х. Шахмейстера.

По существу это энциклопедия различных методов решения задач, которые чаще всего встречаются непосредственно в школьном курсе.

Это прекрасные самоучители, которые позволят ученикам и абитуриентам без репетитора подготовиться к экзаменам. Естественная логика построения материала «от простого к сложному» позволит учителю использовать эти книги с учениками различного уровня подготовки. Желательно, чтобы работа с материалами этой серии книг была постоянной и планомерной, тогда она даст наибольший эффект.

Книги серии:

Дроби.

Корни.

Уравнения.

Дробно-рациональные неравенства.

Системы уравнений.

Иррациональные уравнения и неравенства.

Множества. Функции. Последовательности. Прогрессии Логарифмы.

Тригонометрия.

Построение графиков функций элементарными методами. Уравнения и неравенства с параметрами.

Задачи с параметрами на экзаменах.

Введение в математический анализ.

Комплексные числа.

Комбинаторика. Статистика. Вероятность.

Геометрические задачи на экзаменах.

Б. Г. Зив

Самостоятельные работы

1. Деление многочленов.

Решение алгебраических уравнений

Вариант 1

- 1. Найдите частное:
 - a) $(x^2-5x+6):(x-2),$
 - 6) $(3x^2-2x-1):(3x+1),$
 - B) $(2x^3 7x^2 + x 20) : (x 4)$.
- 2. Найдите частное и остаток при делении P(x) на Q(x): $P(x) = x^3 19x 30$; $Q(x) = x^2 + 1$.
- 3. Сократите дробь $\frac{2x^2-3x-2}{3x^2+x-14}$.
- 4. Решите уравнения:
 - a) $x^3 + 2x^2 x 2 = 0$,
 - 6) $x^4 + 2x^3 11x^2 12x + 36 = 0$.

- 1. Найдите частное:
 - a) $(x^2-4x+3):(x-3),$
 - 6) $(4x^2-x-3):(4x+3),$
 - B) $(3x^3 + 5x^2 + 4x + 12) : (x+2)$.

- 2. Найдите частное и остаток при делении P(x) на Q(x): $P(x) = x^3 + 6x^2 + 11x + 6; \ Q(x) = x^2 1.$
- 3. Сократите дробь $\frac{3x^2+7x+4}{5x^2+7x+2}$.
- 4. Решите уравнения:
 - a) $x^3 + 2x^2 + x + 2 = 0$,
 - 6) $x^4 + 4x^3 2x^2 12x + 9 = 0$.

- 1. Найдите частное:
 - a) $(9x^2 7x 2) : (x 1)$,
 - 6) $(x^3 + 9x^2 + 23x + 15) : (x^2 + 8x + 15).$
- 2. Найдите частное и остаток при делении P(x) на Q(x): $P(x) = x^3 + 3x^2 18x 40; \ Q(x) = x + 2.$
- 3. Сократите дробь $\frac{x^3 6x^2 + 11x 6}{x^3 5x^2 + 6x}.$
- 4. Решите уравнения:
 - a) $2x^3 4x^2 x 15 = 0$.
 - 6) $x^4 x^3 13x^2 + x + 12 = 0$.

- 1. Найдите частное:
 - a) $(8x^2 5x 3) : (8x + 3)$,
 - 6) $(2x^3 x^2 5x 2) : (x^2 x 2)$.
- 2. Найдите частное и остаток при делении P(x) на Q(x): $P(x) = x^3 5x^2 26x + 120; \ \ Q(x) = x + 2.$
- 3. Сократите дробь $\frac{x^3 + 5x^2 + 6x}{x^3 + 6x^2 + 11x + 6}.$
- 4. Решите уравнения:
 - a) $x^3 + 9x^2 + 11x 21 = 0$,
 - 6) $x^4 x^3 7x^2 + x + 6 = 0$.

- 1. Найдите частное:
 - a) $(2x^3 5x^2 x + 1) : (x^2 3x + 1)$,
 - 6) $(5x^4 + 9x^3 2x^2 4x 8) : (5x^2 + 4x + 4)$.
- 2. При каких a и b P(x) делится без остатка на Q(x)? $P(x) = 2x^3 5x^2 + ax + b; \ Q(x) = x^2 4.$
- 3. Сократите дробь $\frac{x^4 8x^3 + 15x^2 + 4x 20}{x^3 5x^2 x + 5}.$
- 4. Решите уравнение, если известно, что один из его корней равен 3. $x^3 + ax^2 5x + 6 = 0$.
- 5. Решите уравнение $x^4 6x^3 + 7x^2 + 6x 8 = 0$.

Вариант 6

- 1. Найдите частное:
 - a) $(x^3 x^2 8x + 12) : (x^2 + x 6)$,
 - 6) $(2x^4 3x^3 7x^2 + 6x + 8) : (2x^2 x 4)$.
- 2. При каких a и b P(x) делится без остатка на Q(x)? $P(x) = 3x^3 + ax^2 + bx + 9$; $Q(x) = x^2 9$.
- 3. Сократите дробь $\frac{x^3 + 2x^2 x 2}{x^4 9x^3 + 9x^2 + 41x 42}$.
- 4. Решите уравнение, если известно, что один из его корней равен (-3). $x^3 x^2 + ax + 12$.
- 5. Решите уравнение $x^4 + 3x^3 + 4x^2 + 6x + 4 = 0$.

- 1. Найдите частное $(6x^4+5x^3-74x^2+11x+12):(x^2+x-12).$
- 2. Сократите дробь $\frac{4x^3 8x^2 + 3x 6}{12x^3 + 4x^2 + 9x + 3}.$
- 3. Найдите все числа a и b, при которых P(x) делится нацело на Q(x). $P(x)=4x^5+ax^4-11x^3+23x^2+bx+2;$ $Q(x)=x^2+x-2.$
- 4. Решите уравнение $2x^4 9x^3 + 4x^2 + 21x 18 = 0$.

5. Число $1+\sqrt{3}$ является корнем уравнения $x^4+ax^3+bx^2+2x+2=0$, где a и b — рациональные числа. Найдите a и b и решите уравнение.

Вариант 8

- 1. Найдите частное $(10x^4 + 21x^3 55x^2 72x + 36) : (x^2 + x 6).$
- 2. Сократите дробь $\frac{x^3 16x^2 + 51x 36}{x^3 3x^2 2x 6}.$
- 3. Найдите все числа a и b, при которых P(x) делится нацело на Q(x). $P(x)=2x^5-9x^4+8x^3+ax^2+bx+12;$ $Q(x)=x^2-x-6.$
- 4. Решите уравнение $6x^4 x^3 7x^2 + x + 1 = 0$.
- 5. Число $1-\sqrt{2}$ является корнем уравнения $x^4+x^3+ax^2+bx-2=0$, где a и b рациональные числа. Найдите a и b и решите уравнение.

2. Уравнения, сводящиеся к алгебраическим

Вариант 1

Решите уравнения 1-5:

1.
$$5\left(\frac{x+2}{x-2}\right)^2 - 3\left(\frac{x+2}{x-2}\right) - 2 = 0$$
,

2.
$$\frac{x}{x+1} - \frac{x}{x+2} = \frac{x^2 - 2}{x^2 + 3x + 2}$$
.

- 3. $2x^3 + 7x^2 + 7x + 2 = 0$.
- 4. $2x^3 + 12x^2 + 13x + 15 = 0$.
- 5. $(1-2x)(4x^2+2x+1) = (2-2x)(4+4x)(x+2)$.

Вариант 2

Решите уравнения 1-5:

1.
$$3\left(\frac{x-1}{x+3}\right)^2 - 5\left(\frac{x-1}{x+3}\right) + 2 = 0.$$

2.
$$\frac{3}{2x-1} + \frac{2x-1}{x-1} = \frac{1}{2x^2 - 3x + 1}$$
.

3.
$$x^3 + x^2 - 4x - 4 = 0$$
.

4.
$$2x^3 - 4x^2 - x - 15 = 0$$
.

5.
$$(8x-16)(x^2-1) = (4x^2-2x+1)(2x+1)$$
.

Решите уравнения 1-4:

1.
$$x^3 - 5x^2 - 5x + 1 = 0$$
.

$$2. \ \frac{x}{x+3} + \frac{4}{x+1} = 2.$$

3.
$$7\left(x+\frac{1}{x}\right) = 9 + 2\left(x^2 + \frac{1}{x^2}\right)$$
.

4.
$$\frac{x+5}{5-x} + \frac{x-5}{x+5} = \frac{5}{25-x^2}$$
.

5. При каких a уравнение имеет единственное решение? $(2a-5)x^2-2(a-1)x+3=0.$

Вариант 4

Решите уравнения 1-4:

1.
$$2x^3 + 3x^2 + 3x + 2 = 0$$
.

2.
$$\frac{1}{x-1} - \frac{2}{x+2} = 1$$
.

3.
$$7\left(2x+\frac{1}{2x}\right)-2\left(4x^2+\frac{1}{4x^2}\right)=9.$$

4.
$$\frac{x+3}{3-x} + \frac{x-3}{x+3} = \frac{3}{9-x^2}$$
.

5. При каких a уравнение имеет единственное решение? $(a-3)x^2 + (a+12)x + a + 21 = 0$.

Вариант 5

Решите уравнения 1-5:

1.
$$6x^3 - x^2 - 20x + 12 = 0$$
.

2.
$$x^2 - 8 + \frac{x+2}{x^2+4x+4} = \frac{x^3-21}{x+2}$$
.

3.
$$2x^4 + x^3 - 6x^2 + x + 2 = 0$$
.

4.
$$\frac{6}{(x+1)(x+2)} + \frac{8}{(x-1)(x+4)} = 1.$$

5.
$$x^3 - x^2 + xa - a^2 + a^3 = 0$$
.

Решите уравнения 1-5:

1.
$$6x^3 - 13x^2 + 4 = 0$$
.

2.
$$x^2 + \frac{x-2}{x^2-4x+4} = \frac{x^2-3}{x-2}$$
.

3.
$$2x^4 + x^3 - 11x^2 + x + 2 = 0$$
.

4.
$$\frac{6}{(x-1)(x+3)} - \frac{24}{(x-2)(x+4)} = 1.$$

5.
$$x^3 - x^2 - xa - a^2 - a^3 = 0$$
.

Вариант 7

Решите уравнения 1-5:

1.
$$18x^3 + 9x^2 - 5x - 2 = 0$$
.

2.
$$x^4 + x^3 - 10x^2 + x + 1 = 0$$
.

3.
$$x^4 - 22x^2 - 5x + 2 = 0$$

4.
$$x^4 - 5x^2 - 4x + 13 = 0$$
.

5.
$$x^4 - 6ax^2 + 8a\sqrt{a}x - 3a^2 = 0$$
.

Вариант 8

Решите уравнения 1-5:

1.
$$36x^3 - 27x^2 - x + 2 = 0$$
.

2.
$$6x^4 + 25x^3 + 12x^2 - 25x + 6 = 0$$
.

3.
$$x^4 - 9x^2 + 3x - 1 = 0$$
.

4.
$$x^4 - 3x^2 - 2x + 5 = 0$$
.

5.
$$x^4 - 6ax^2 - 8a\sqrt{a}x - 3a^2 = 0$$
.

3. Системы нелинейных уравнений

Вариант 1

Решите системы 1-5:

1.
$$\begin{cases} x + y = -5 \\ xy = 4, \end{cases}$$
2.
$$\begin{cases} x + y = 6 \\ x^2 - y^2 = 12, \end{cases}$$

3.
$$\begin{cases} x^2 + y^2 = 20 \\ xy = 8, \end{cases}$$

4.
$$\begin{cases} \frac{1}{x} - \frac{1}{y} = 8\\ \frac{2}{x} - \frac{1}{y} = 13, \end{cases}$$

5.
$$\begin{cases} x & y \\ \frac{x}{y} + \frac{y}{x} = \frac{34}{15} \\ x^2 + y^2 = 34. \end{cases}$$

Вариант 2

Решите системы 1-5:

1.
$$\begin{cases} x + y = -1 \\ xy = -6, \end{cases}$$
2.
$$\begin{cases} x - y = 2 \\ x^2 - y^2 = 8, \end{cases}$$

3.
$$\begin{cases} x^2 + y^2 = 68 \\ xy = 16, \end{cases}$$

4.
$$\begin{cases} \frac{3}{x} - \frac{2}{y} = 7\\ \frac{1}{x} + \frac{1}{y} = -1, \end{cases}$$

5.
$$\begin{cases} \frac{x}{y} + \frac{y}{x} = \frac{26}{5} \\ x^2 - y^2 = 24. \end{cases}$$

Вариант 3

Решите системы 1-5:

1.
$$\begin{cases} x + y = -8 \\ x^2 + y^2 + 6x + 2y = 0, \end{cases}$$

2.
$$\begin{cases} x^4 - y^4 = 15 \\ x^2 - y^2 = 3, \end{cases}$$

3.
$$\begin{cases} x^2 + y^2 + xy = 7 \\ x + y + xy = 5, \end{cases}$$

4.
$$\begin{cases} \frac{1}{xy} + \frac{1}{x+y} = \frac{1}{2} \\ x^2y + xy^2 = -2, \end{cases}$$

5.
$$\begin{cases} \frac{1}{x-y} + x^2 = 1\\ \frac{x^2}{x-y} = -.2 \end{cases}$$

Вариант 4

Решите системы 1–5:

1.
$$\begin{cases} 2x - y = 1 \\ 2x^2 - y^2 + x + y = -11, \end{cases}$$

2.
$$\begin{cases} x^4 - y^4 = 15 \\ x^2 + y^2 = 5, \end{cases}$$

3.
$$\begin{cases} x^2 + y^2 + xy = 13 \\ x + y + xy = 7, \end{cases}$$

4.
$$\begin{cases} \frac{1}{x} + \frac{1}{y} = \frac{3}{4} \\ \frac{x^2 + y^2}{x + y} = \frac{10}{3}, \end{cases}$$

5.
$$\begin{cases} \frac{1}{2x - y^2} + y = 1\\ \frac{y}{2x - y^2} = -6. \end{cases}$$

Решите системы 1-5:

1.
$$\begin{cases} x - y = a \\ xy = 2a^2, \end{cases}$$

2.
$$\begin{cases} \frac{x+y}{x-y} + \frac{x-y}{x+y} = \frac{13}{6} \\ xy = 5, \end{cases}$$

3.
$$\begin{cases} 3x^2y = 2x - y \\ 2xy^2 = y - x, \end{cases}$$

4.
$$\begin{cases} x^2 + 2xy + y^2 - 4x - 4y - 45 = 0 \\ x^2 - 2xy + y^2 - 2x + 2y - 3 = 0, \end{cases}$$

5.
$$\begin{cases} 10(x^4 + y^4) = -17(x^3y + xy^3) \\ x^2 + y^2 = 5. \end{cases}$$

Вариант 6

Решите системы 1-5:

1.
$$\begin{cases} x - y = 3a \\ xy = 4a^2, \end{cases}$$

2.
$$\begin{cases} \frac{x+y}{x-y} + 6\frac{x-y}{x+y} = 5\\ xy = 2, \end{cases}$$

3.
$$\begin{cases} x^2 - 2xy = 2x - 3y \\ y^2 - 3xy = 4x - 6y, \end{cases}$$

4.
$$\begin{cases} (x+y+1)^2 + (x+y)^2 = 25 \\ x^2 - y^2 = 3, \end{cases}$$

5.
$$\begin{cases} x^4 + x^2y^2 + y^4 = 91 \\ x^2 + xy + y^2 = 13. \end{cases}$$

Решите системы 1-5:
1.
$$\begin{cases} 7-x+y-xy=0\\ 5-y+x-xy=0, \end{cases}$$
2.
$$\begin{cases} x^2-3xy+2y^2=0\\ |y|x+y|x|=2, \end{cases}$$
3.
$$\begin{cases} 2x^2+3y^2-2xy=3\\ x^2-xy+2y^2=2, \end{cases}$$
4.
$$\begin{cases} 2x^2-y^2+xy+3y-2=0\\ x^2+y^2=1, \end{cases}$$
5.
$$\begin{cases} x^2-2xy+2y^2+2x-8y+10=0\\ 2x^2-7xy+3y^2+13x-4y-7=0. \end{cases}$$

Вариант 8

1.
$$\begin{cases} x+y=5xy \\ x-y=xy, \end{cases}$$
2.
$$\begin{cases} x^2-5xy+4y^2=0 \\ |y|y-x|x|=15, \end{cases}$$
3.
$$\begin{cases} x^2-3y^2+3xy=1 \\ 2x^2-xy+y^2=2, \end{cases}$$
4.
$$\begin{cases} 2x^2-y^2-xy-3y-2=0 \\ x^2-y^2=1, \end{cases}$$
5.
$$\begin{cases} 2x^2+2xy+y^2-6x-2y+5=0 \\ 3x^2-xy-y^2+2x+7y-10=0. \end{cases}$$

4. Решение задач с помощью уравнений

Вариант 1

1. Скорый поезд был задержан у семафора на 16 мин и ликвидировал опоздание на перегоне в 80 км, двигаясь со скоростью на 10 км/ч больше, чем по расписанию. Определите скорость поезда по расписанию.

- 2. Найдите два последовательных натуральных числа, сумма квадратов которых равна 365.
- 3. Два крокодила съели обед за 4 ч. За какое время съест обед каждый крокодил по отдельности, если первый крокодил может это сделать на 6 ч быстрее, чем второй?

- 1. Лыжнику необходимо было пробежать расстояние в 30 км. Начав бег на 3 мин позже намеченного срока, лыжник бежал со скоростью больше предполагавшейся на 1 км/ч и прибежал к месту назначения вовремя. Определите скорость, с которой бежал лыжник.
- 2. Найдите два натуральных числа, если одно из них на 5 больше другого, а сумма их квадратов равна 377.
- 3. Два муравьеда могут съесть всех обитателей муравейника за 6 ч. За какое время справится с этой задачей каждый из них по отдельности, если первому для этого потребуется на 9 ч меньше, чем второму?

- 1. Имеется сталь двух сортов с содержанием никеля 5% и 40%. Сколько нужно взять каждого сорта стали, чтобы получить 140 т стали с содержанием никеля 30%.
- 2. Катер прошел 18 км по течению реки, а затем 20 км против течения, затратив на весь путь 2 ч. Найдите скорость течения реки, если собственная скорость катера 20 км/ч.
- 3. Две машинистки вместе напечатали 65 страниц, причем первая работала на 1 ч больше второй. Однако вторая печатает в час на 2 страницы больше первой, поэтому она напечатала на 5 страниц больше. Сколько страниц в час печатает каждая машинистка?

- 1. Имеется сталь двух сортов, один из которых содержит 5%, а другой 10% никеля. Сколько тонн каждого из этих сортов нужно взять, чтобы получить сплав, содержащий 8% никеля, если во втором сплаве никеля на 4 т больше, чем в первом?
- 2. Моторная лодка 7 ч шла по течению реки и 6 ч против течения. Найдите скорость течения реки, если скорость лодки в стоячей воде равна 10 км/ч и за все путешествие лодка прошла 132 км.
- 3. Каждая из двух машинисток перепечатывала рукопись в 72 страницы. Первая печатает 6 страниц за то же время, за какое вторая печатает 5 страниц. Сколько печатает каждая в час, если первая закончила работу на 1,5 ч раньше второй?

- 1. На уборке снега работают две машины. Первая может убрать всю улицу за 1 ч, а вторая за 45 мин. Начав уборку одновременно, обе машины проработали вместе 20 мин, после чего первая сломалась. Сколько нужно времени, чтобы вторая закончила работу?
- 2. По двум сторонам прямого угла, по направлению к его вершине, движутся два тела. В начальный момент тело A отстояло от вершины прямого угла на 60 м, а тело B на 80 м. Через 3 с расстояние между A и B стало равно 70 м, а еще через 2 с 50 м. Найдите скорость каждого тела.
- 3. Имеются два сплава золота и железа. Сначала взяли 117 кг первого сплава и 468 кг второго, переплавили и получили новый сплав с 10% содержания золота. Затем переплавили 186 кг первого и 279 кг второго получился сплав с 9% содержания золота. Определите процентное содержание золота в первоначальных сплавах.

- 1. Одна бригада может построить хранилище за 12 дней, вторая бригада за 9 дней. После того как первая бригада проработала 5 дней, к ней присоединилась вторая, и они вместе закончили работу. Сколько дней работали бригады вместе?
- 2. От морской пристани одновременно отходят два корабля по двум взаимно перпендикулярным направлениям. Через 30 мин после их отплытия кратчайшее расстояние между ними было 15 км, а еще через 15 мин оказалось, что первый корабль находится от пристани на 4,5 км дальше другого. Найдите скорость кораблей.
- 3. Имеются два раствора, содержащих воду и кислоту. В первом 4% воды. Сначала в первый раствор долили 1/4 л второго, а потом еще пол-литра второго. В первом случае воды стало 32%, а во втором 46%. Найдите процентное содержание воды во втором растворе.

- 1. Автомобиль проезжает расстояние от A до B за 1 ч. Автомобиль выехал из A, и одновременно из B вышел пешеход. Автомобиль встретил пешехода, довез его до A, а затем прибыл в B, затратив на весь путь 2 ч 40 мин. За какое время может пройти путь от A до B пешеход?
- 2. Из одного пункта выходят две дороги под углом в 60 градусов друг к другу. Сначала по одной из них выходит первый пешеход, а через час по другой дороге второй пешеход. Через 2 ч после выхода второго пешехода расстояние между ними равнялось $\sqrt{73}$ км, а еще через час 12 км. Найдите скорость каждого пешехода.

3. В момент, когда два бассейна были пустыми, 4 трубы одинаковой производительности были подключены для заполнения первого бассейна. Когда первый бассейн был заполнен на 1/6 своего объема, первую трубу переключили на заполнение второго бассейна. Когда первый бассейн был заполнен на 1/2 своего объема, еще две трубы переключили для заполнения второго бассейна. После этого оба бассейна наполнились доверху одновременно. Найдите отношение объемов бассейнов.

- 1. Из A выехал первый велосипедист, а через 15 мин вслед за ним выехал второй, который догнал первого велосипедиста на расстоянии 10 км от A. Когда второй велосипедист проехал отметку $50\,\mathrm{km}$ от A, первый отставал от него на $20\,\mathrm{km}$. Найдите скорость каждого велосипедиста.
- 2. По двум дорогам, угол между которыми равен 45 градусам, два пешехода начинают движение одновременно по направлению к точке пересечения дорог. В начальный момент расстояние между пешеходами равно $\sqrt{17}$ км, а через час $\sqrt{10}$ км. Найдите скорости пешеходов, если один из них достиг перекрестка за 4 ч, а другой за 5 ч.
- 3. В момент, когда два бассейна были пустыми, семь труб одинаковой производительности были подключены для заполнения первого бассейна. Когда первый бассейн был заполнен на 1/4 своего объема, три трубы переключили для заполнения второго бассейна. Когда первый бассейн был заполнен на 1/2 своего объема, еще две трубы переключили для заполнения второго бассейна. После этого оба бассейна наполнились доверху одновременно. Найдите отношение объемов бассейнов.

5. Степень с целым показателем

Вариант 1

1. Вычислите:

a)
$$\left(\frac{1}{3}\right)^{-1} - \left(-\frac{6}{7}\right)^{0} + \left(\frac{1}{2}\right)^{2} : 2,$$

6) $\frac{(-3^{2})^{3} \cdot 9}{3^{2} \cdot 3^{3}},$ B) $(2^{-1} + 9)^{-1}.$

2. Представьте в виде степени числа a

$$(a \cdot a^2 \cdot a^3) : (a : a^2)^{-1}$$
.

3. Представьте выражение в виде Ax^my^n , где $A\in\mathbb{R}$, m и $n\in\mathbb{Z}$ $(xy\neq 0)$

$$\left(-\frac{7x^2}{3y^4}\right)^{-2} \cdot \left(\frac{9y^2}{49x^4}\right)^{-2}.$$

4. Выполните действия и вычислите при $a=\frac{1}{2};\ b=\frac{1}{3}$ $(a^{-1}+b^{-1})\cdot(a^{-1}-b^{-1})\cdot(a^{-2}+b^{-2}).$

- 5. Решите уравнение $4x^{-2} + 7x^{-1} + 3 = 0$.
- 6. Решите неравенство $(x-2)^{-1} > (x-2,5)^0$.

Вариант 2

1. Вычислите:

a)
$$\left(\frac{1}{2}\right)^{-1} - \left(-\frac{3}{4}\right)^{0} + \left(\frac{1}{3}\right)^{2} : 3,$$

6) $\frac{(-2^{3})^{2} \cdot 16}{2^{2} \cdot (-2)^{3}},$ B) $(3^{-1} + 2^{2})^{-1}.$

 $oldsymbol{2}$. Представьте в виде степени числа $oldsymbol{a}$

$$(a^3:a)^2:(a^2:a^3)^2.$$

3. Представьте выражение в виде Ax^my^n , где $A\in\mathbb{R},$ m и $n\in\mathbb{Z}$

$$\left(\frac{x^3y^{-2}}{9y^2}\right)^{-2} \cdot \left(\frac{x^2y^{-3}}{6y^3}\right)^2.$$

4. Выполните действия и вычислите при
$$a=\frac{1}{2};\ b=\frac{1}{3}$$
 $(a^{-1}+b^{-1})(a^{-2}-a^{-1}b^{-1}+b^{-1})(a^{-3}-b^{-3}).$

- 5. Решите уравнение $3x^{-2} 5x^{-1} + 2 = 0$.
- 6. Решите неравенство $(x-1)^{-1} < (x-3)^0$.

1. Вычислите:

a)
$$2^3 + 3 \cdot \left(\frac{1}{2}\right)^0 - 2^{-2} \cdot 4 + \left((-2)^2 : \frac{1}{2}\right) \cdot 2,$$

6) $\frac{(-2^2)^3 \cdot (-4)^{-2}}{(-2)^3 \cdot (-2)^2},$ B) $\frac{(-1)^5 \cdot (3^4 + 3^2)}{(-9)^3}.$

2. Представьте в виде степени числа a

$$(a^2:a^3)^2\cdot(a^3\cdot a^4)^{-2}$$
.

3. Представьте выражение в виде Ax^my^n , где $A\in\mathbb{R},$ m и $n\in\mathbb{Z}$

$$\left(\frac{1}{6}x^{-1}y^3\right)^{-2} \cdot \left(\frac{x^2}{y^2}\right)^{-2} \cdot \left(-\frac{2x^2}{y^2}\right)^{-4}.$$

- 4. Выполните действия $\frac{x^{-2}-y^{-2}}{x^{-1}+y^{-1}}:\frac{x^{-1}\cdot y^{-1}}{(y-x)^{-1}}.$
- 5. Решите уравнение $x^{-4} 5x^{-2} + 4 = 0$.
- 6. Решите неравенство $(3x-1)^{-2} > \left(\frac{25}{4}\right)^{-1}$.

Вариант 4

1. Вычислите:

a)
$$((0,1)^2)^0 + \left(\left(\frac{1}{7}\right)^{-1}\right)^2 \cdot \frac{1}{49} \cdot \left(\left(2^2\right)^3 : 2^5\right),$$

6)
$$\frac{\left(\frac{1}{2}\right)^3 \cdot 2^{-2} \cdot 8}{\left(-2^3\right)^2 \cdot 16} \cdot \left(2^2\right)^3$$
, b) $\frac{(-1)^7 \cdot (5^4 + 5^2)}{(-25)^3}$.

2. Представьте в виде степени числа b

$$((b^{-2})^{-2})^{-2}:(b:b^{-1})^2.$$

3. Представьте выражение в виде Ax^my^n , где $A\in\mathbb{R},$ m и $n\in\mathbb{Z}$

$$\left(\frac{1}{2}x^{-2}y^3\right)^{-3}:(x^{-2}:y^{-8}).$$

- 4. Выполните действия $\frac{x^{-2}-y^{-2}}{x^{-1}-y^{-1}} \cdot \frac{(x-y)^{-1}}{(xy)^{-1}}$.
- 5. Решите уравнение $x^{-4} 3x^{-2} 4 = 0$.
- 6. Решите неравенство $(2x+1)^{-2} < \left(\frac{49}{16}\right)^{-1}$.

Вариант 5

1. Вычислите
$$\frac{4^{-4} \cdot 64^3 \cdot 16^{-2} - 40 \cdot (0,3)^{-1} \cdot \left(3\frac{1}{3}\right)^{-2}}{9 \cdot 0,7^0 - \left(\frac{3}{5}\right)^0}.$$

2. Упростите
$$\frac{a^{-2}-a^{-1}b^{-1}+b^{-2}}{a^{-3}+b^{-3}}:\left(\frac{a+b}{ab}\right)^{-2}.$$

3. Упростите выражение

$$(4a^{-12} - 81b^{-4}): \left(\frac{2}{a^6} + \frac{b^{-2}}{9^{-1}}\right): \left(\sqrt{2}a^{-3} - 3b^{-1}\right)$$

и найдите его значение при $a=\sqrt{2};\ b=6.$

- 4. Найдите все целые числа n, удовлетворяющие равенству $2^{-1} \cdot 2^n + 4 \cdot 2^n = 9 \cdot 2^5$.
- 5. Решите уравнение $(2x+1)^{-2} 3(2x+1)^{-1} 4 = 0$.
- 6. Решите неравенство $(x+2)^{-3} < 27$.

1. Вычислите
$$\frac{128\cdot 8^{-1}\cdot 3^6+6^8}{4^2\cdot 9^3\cdot \left(\frac{1}{5}\right)^{-1}}:\left(\frac{1}{29}\right)^{-1}.$$

2. Упростите
$$\frac{(ab^{-3}-a^{-3}b)^{-1}\cdot(a^{-2}+b^{-2})}{(b^{-2}-a^{-2})^{-1}}.$$

3. Упростите выражение

$$(2a^{-3} - b^{-2}) \cdot \left(\frac{a^{-3}}{2^{-1}} + \frac{1}{b^2}\right) \cdot \left(\frac{1}{b^4} + 4a^{-6}\right)$$

и найдите его числовое значение при $a=b=\sqrt{2}$.

- 4. Найдите все целые числа n, удовлетворяющие равенству $3^{-1} \cdot 3^n + 4 \cdot 3^n = 13 \cdot 3^7$.
- 5. Решите уравнение $\left(\frac{x+4}{2}\right)^{-4} + \left(2 + \frac{x}{2}\right)^{-2} 2 = 0.$
- 6. Решите неравенство $(x-3)^{-3} > 125$.

Вариант 7

- 1. Вычислите $\frac{3^8 \cdot 9^{-2} \cdot 5^4 + 9 \cdot 125 \cdot \left(\frac{1}{5}\right)^{-1}}{(3 \cdot 5)^4 \cdot 3^{-3}}.$
- 2. Упростите и вычислите при $a = \frac{2}{3}$; b = -4

$$\frac{a^{-1} - 27b^3a^{-4}}{a^{-1} + 3a^{-2}b + 9a^{-3}b^2}.$$

- 3. Выполните действия $\frac{a^3b^{-1}-a^{-1}b^3}{ab^{-1}+a^{-1}b}\cdot\left(\frac{a^2-b^2}{ab}\right)^{-1}$.
- 4. Сравните 3^{34} и 2^{51} .
- 5. Постройте график уравнения

$$y = \left((x-2)^3 \cdot (x-1)^{-2} \cdot \left(\frac{x-2}{x-1} \right)^{-2} \right)^2.$$

6. Найдите все целые значения n, удовлетворяющие системе неравенств

$$\begin{cases} \frac{1}{5} < 2^n < 4 \\ 3^n > 2. \end{cases}$$

1. Вычислите
$$\frac{6\cdot\left(\frac{1}{15}\right)^{-1}}{(2^{-3})^2\cdot\left(\frac{1}{8}\right)^{-4}\cdot\sqrt{16^{-1}}+243\cdot\left(-\frac{1}{3}\right)^5}.$$

2. Упростите и вычислите при $a = \frac{3}{2}; b = -\frac{2}{3}$

$$\frac{8a + 27b^3a^{-2}}{4a^{-2} - 6ba^{-3} + 9b^2a^{-4}}.$$

3. Выполните действия

$$\frac{(a^{-3} + 3a^{-2}b^{-1} + 3a^{-1}b^{-2} + b^{-3}) \cdot (a^{-1} - b^{-1})^3 \cdot a^2b^2}{a^{-4} - 2a^{-2}b^{-2} + b^{-4}}.$$

- 4. Сравните 2^{30} и 3^{20} .
- 5. Постройте график уравнения

$$y = \left((x+2)^3 \cdot (x+1)^{-2} \cdot \left(\frac{x+2}{x+1} \right)^{-2} \right)^2.$$

6. Найдите все целые значения n, удовлетворяющие системе неравенств

$$\begin{cases} 1 < \left(\frac{2}{3}\right)^n < 3\\ \left(\frac{3}{4}\right)^n < 1,5. \end{cases}$$

6. Корень натуральной степени

Вариант 1

- 1. Вычислите $\sqrt[3]{8 \cdot 125 \cdot 512}$.
- 2. Вынесите множитель из-под знака корня $\sqrt[3]{54a^3b^5c^6}$.
- 3. Внесите множитель под знак корня

$$3ab\sqrt[4]{rac{1}{27}a^2b}$$
 при $a,b>0.$

4. Установите область определения выражения

$$\frac{\sqrt[3]{x-3}}{x^2-4}.$$

5. Освободитесь от иррациональности в знаменателе

$$\frac{1}{\sqrt[3]{2}+1}.$$

- 6. Сравните $\sqrt[3]{26}$ и 3.
- 7. Выполните действия $\sqrt[3]{\sqrt{3}-2} \cdot \sqrt[9]{26+15\sqrt{3}}$.

Вариант 2

- 1. Вычислите $\sqrt[5]{32 \cdot 243}$.
- 2. Вынесите множитель из-под знака корня $\frac{1}{2}ac\sqrt[3]{32a^3c^7}$.
- 3. Внесите множитель под знак корня

$$\frac{xy}{2z}\sqrt[3]{\frac{4z^4}{3x^2y^3}}.$$

4. Установите область определения выражения

$$\frac{\sqrt[5]{3x-1}}{9-x^2}$$
.

5. Освободитесь от иррациональности в знаменателе

$$\frac{1}{\sqrt[3]{3}-1}.$$

- 6. Сравните $\sqrt[4]{17}$ и 2.
- 7. Выполните действия $\sqrt{2+\sqrt{5}}\cdot \sqrt[6]{17\sqrt{5}-38}$.

Вариант 3

- 1. Вычислите $\sqrt[3]{54 \cdot 32} \sqrt[4]{8 \cdot 162} + \sqrt[3]{42\frac{7}{8}}$.
- 2. Вынесите множитель из-под знака корня и освободите подкоренное выражение от знаменателя

$$6x^3y^2 \cdot \sqrt[4]{\frac{7m^5}{162x^{11}y^7}}.$$

3. Внесите множитель под знак корня

$$\frac{2m}{3n^2}\sqrt[4]{\frac{9n^2}{4m^3}}.$$

4. Установите область определения выражения

$$\sqrt[12]{x-5} + \sqrt[8]{5-x}$$
.

5. Освободитесь от иррациональности в знаменателе

$$\frac{1}{\sqrt[3]{3}+\sqrt[3]{5}}.$$

- 6. Сравните $\sqrt[3]{30}$ и $\sqrt{11}$.
- 7. Найдите значение выражения $3m^3 + 9m 8$ при $m = \sqrt[3]{3} \sqrt[3]{rac{1}{3}}.$

Вариант 4

- 1. Вычислите $\sqrt[4]{648 \cdot 1250} \sqrt[3]{256 \cdot 54} \sqrt[5]{7\frac{19}{32}}$.
- 2. Вынесите множитель из-под знака корня и освободите подкоренное выражение от знаменателя

$$2m^2n\sqrt[3]{rac{5a^4}{128m^7n^5}}.$$

3. Внесите множитель под знак корня

$$\frac{5a}{b} \sqrt[4]{\frac{b^3}{25a^2}} \quad (a > 0; \ b > 0).$$

4. Установите область определения выражения

$$\sqrt[4]{7-x} + \sqrt[3]{2x-14}$$
.

5. Освободитесь от иррациональности в знаменателе

$$\frac{1}{\sqrt[4]{3} + \sqrt[4]{2}}$$
.

- 6. Сравните $\sqrt[4]{15}$ и $\sqrt{3}$.
- 7. Найдите значение выражения $a^3 12a 20$ при $a = \sqrt[3]{4} + 2\sqrt[3]{2}$.

Вариант 5

1. Выполните действия

$$\left(\sqrt[3]{108x^4y^{-1}} - \sqrt[3]{32x^{-2}y^5}\right) : \sqrt[3]{4xy^2}.$$

2. Сократите дроби:

a)
$$\frac{a-b}{\sqrt[3]{a}-\sqrt[3]{b}}$$
, 6) $\frac{a-b}{\sqrt[3]{a-b}}$.

3. Установите область определения выражения

$$\frac{\sqrt[4]{x-3} - \sqrt[6]{x^2 - 9x - 22}}{x^2 - 21x + 20}.$$

- 4. Упростите $\frac{\sqrt[4]{-xy^4} + y\sqrt[4]{x^4y}}{xy} + \sqrt[4]{y}$.
- 5. Внесите множитель под знак корня

$$\left(\sqrt{5}-3\right)\cdot\sqrt[4]{\dfrac{1}{\left(\sqrt{5}-3\right)^2}}.$$

- 6. Сравните $a = \sqrt[3]{5\sqrt{2} 7}$ и $b = \frac{1}{\sqrt{3 + 2\sqrt{2}}}$.
- 7. Решите уравнение

$$5\sqrt{x+1} = 6 - \sqrt[12]{x^3 + 3x^2 + 3x + 1}.$$

Вариант 6

1. Выполните действия

$$\left(a^2c^3\sqrt[5]{\frac{243c^{-4}}{a^{-5}}} + \frac{c}{a^{-1}}\sqrt[5]{\frac{32a^{10}}{c^{-6}}}\right):\sqrt[5]{c^{-4}}.$$

2. Сократите дроби:

a)
$$\frac{a+b}{\sqrt[3]{a}+\sqrt[3]{b}}$$
, 6) $\frac{a+b}{\sqrt[3]{a+b}}$.

3. Установите область определения выражения

$$\frac{\sqrt[6]{x+4} + \sqrt[8]{x^2 - 4x - 5}}{x^2 + 8x + 15}.$$

- 4. Упростите $\frac{\sqrt[8]{-ab^8} b\sqrt[8]{a^8b}}{ab} \sqrt[8]{b}$.
- 5. Внесите выражение под знак корня

$$\left(\sqrt[4]{3}-2\right)\cdot\sqrt[9]{\frac{1}{(\sqrt[4]{3}-2)^3}}.$$

- 6. Сравните $a = \sqrt{4 + 2\sqrt{3}}$ и $b = \sqrt[3]{6\sqrt{3} + 10}$.
- 7. Решите уравнение $4\sqrt[4]{x^3} x\sqrt{x} = 3$.

1. Выполните действия

3. Освободитесь от иррациональности в знаменателе

$$\frac{1}{\sqrt[3]{3}+\sqrt{2}}$$
.

4. Решите уравнение

$$\sqrt[4]{(x^2 - 2x + 1)^2} + \sqrt[4]{(x^2 + 4x + 4)^2} = 3.$$

- 5. Расположите числа $\sqrt[5]{4}, \sqrt[6]{3\sqrt[5]{3}}, \sqrt[10]{25}$ в порядке возрастания.
- 6. Решите уравнение $x^3 3x^2 + 3x = 3$.
- 7. Докажите, что $\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}$ рациональное число.

Вариант 8

1. Выполните действия

$$\left(\frac{a}{2\sqrt{a}} \cdot \frac{x}{2\sqrt{x}} : \left(\sqrt[3]{\frac{a^2}{x}} \cdot a^{-1} \cdot \sqrt{x}\right)^6\right) \cdot \left(\sqrt{\frac{1}{4}a^2\sqrt{\frac{a}{x}}}\right)^{-1}.$$

- 2. Сократите дробь $\frac{1 \sqrt{b} + \sqrt[4]{b} \sqrt[4]{b^3}}{\sqrt{b} b}$.
- 3. Освободитесь от иррациональности в знаменателе

$$\frac{1}{\sqrt[3]{2}-\sqrt{3}}.$$

4. Решите уравнение

$$\sqrt[4]{(x^2+6x+9)^2} + \sqrt[4]{(x^2-2x+1)^2} = 2.$$

- 5. Расположите числа $\sqrt[16]{64}, \sqrt[10]{7\sqrt[4]{7}}, \sqrt[4]{2\sqrt{rac{5}{4}}}$ в порядке возрастания.
- 6. Решите уравнение $2x^3 + 3x^2 + 3x + 1 = 0$.
- 7. Докажите, что $\sqrt[3]{5\sqrt{2}+7} \sqrt[3]{5\sqrt{2}-7}$ рациональное число.

Степень с рациональным показателем

Вариант 1

1. Вычислите:

a)
$$8^{\frac{2}{3}} - 16^{\frac{1}{4}} + 9^{\frac{1}{2}}$$

ычислите: a)
$$8^{\frac{2}{3}} - 16^{\frac{1}{4}} + 9^{\frac{1}{2}}$$
, 6) $\left(\left(\frac{3}{5}\right)^{-3}\right)^{\frac{2}{3}}$: $(1,5)^{-2}$.

- 2. Упростите $\sqrt[3]{x\sqrt{x^{-3}}}:x^{-\frac{1}{6}}$.
- 3. Упростите $4b^{\frac{1}{2}} + \left(b^{\frac{1}{2}} 2\right)^2$.
- 4. Сократите дроби:

a)
$$\frac{a-b}{a^{\frac{1}{3}}-b^{\frac{1}{3}}}$$
,

$$6) \frac{3m^{\frac{1}{2}} + m^{\frac{3}{4}}}{m - 9m^{\frac{1}{2}}}.$$

5. Решите уравнения:

a)
$$x^{\frac{3}{2}} = 64$$
,

б)
$$y^{\frac{7}{8}} \cdot y^{\frac{9}{8}} = 4.$$

Вариант 2

1. Вычислите:

вычислите: a)
$$36^{\frac{3}{2}}+64^{\frac{2}{3}}-625^{\frac{1}{2}},$$
 б) $\left(\left(\frac{5}{2}\right)^{-2}\right)^{\frac{3}{2}}\cdot(0,6)^{-2}.$

- 2. Упростите $\sqrt[4]{a\sqrt[4]{a^{-1}}} \cdot a^{\frac{5}{16}}$.
- 3. Упростите $12b^{\frac{1}{2}} + \left(6 b^{\frac{1}{2}}\right)^2$.
- 4. Сократите дроби:

a)
$$\frac{a+b}{a^{\frac{1}{3}}+b^{\frac{1}{3}}}$$
,

6)
$$\frac{4m^{\frac{1}{3}}-m^{\frac{2}{3}}}{16m^{\frac{1}{3}}-m}$$
.

5. Решите уравнения:

a)
$$x^{\frac{4}{3}} = 16$$
,

$$6) y^{\frac{3}{4}} \cdot y^{\frac{5}{4}} = 36.$$

1. Вычислите:

a)
$$9^{-0.5} - \left(\frac{1}{8}\right)^{-\frac{4}{3}} + (0.25)^{-1.5}$$
,

- 6) $\sqrt[4]{9} \cdot \sqrt[3]{9}$.
- 2. Выполните действия $2bc\sqrt[3]{4b^2c^2} \cdot \frac{1}{2}b^2\sqrt[6]{4bc^2}$.
- 3. Упростите $\left(x^{\frac{1}{2}}-2\right)^2-\left(1+2x^{\frac{1}{4}}\right)\cdot\left(1-2x^{\frac{1}{4}}\right)$.
- 4. Сократите дроби:

a)
$$\frac{x-9x^{\frac{1}{2}}}{2x^{\frac{1}{4}}+6}$$

a)
$$\frac{x-9x^{\frac{1}{2}}}{2x^{\frac{1}{4}}+6}$$
, 6) $\frac{a-b}{a^{\frac{2}{3}}+a^{\frac{1}{3}}b^{\frac{1}{3}}+b^{\frac{2}{3}}}$.

5. Решите уравнения:

a)
$$x^{\frac{10}{3}} = 1024$$

a)
$$x^{\frac{10}{3}} = 1024$$
, 6) $y^{3,74} \cdot y^{0,26} = 16$.

Вариант 4

1. Вычислите:

a)
$$(0.04)^{-1.5} \cdot (0.125)^{-\frac{1}{3}} - \left(\frac{1}{121}\right)^{-\frac{1}{2}}$$
,

- 6) $\sqrt[3]{9} \cdot \sqrt[6]{27}$
- 2. Выполните действия $6a^2b\sqrt{3ab}\cdot \sqrt[5]{27a^2b^3}$.
- 3. Упростите $2\left(a^{\frac{1}{4}}+1\right)\left(a^{\frac{1}{4}}-1\right)+\left(1-a^{\frac{1}{2}}\right)^2$.
- 4. Сократите дроби:

a)
$$\frac{k-16k^{\frac{1}{2}}}{3k^{\frac{1}{4}}+12},$$

a)
$$\frac{k-16k^{\frac{1}{2}}}{3k^{\frac{1}{4}}+12}$$
, 6) $\frac{x+y}{x^{\frac{2}{3}}-x^{\frac{1}{3}}y^{\frac{1}{3}}+y^{\frac{2}{3}}}$.

5. Решите уравнения:

a)
$$x^{2,5} = 243$$
,

$$6) \ a^{1,57} \cdot a^{6,43} = 81.$$

- 1. Вычислите $0.0016^{-\frac{3}{4}} + 0.04^{-\frac{1}{2}} 0.216^{-\frac{2}{3}} \cdot 9$.
- 2. Выполните действия:

a)
$$\sqrt[3]{a^{-\frac{3}{2}}b^{-1}\sqrt{a^3b^{-2}}}$$
, 6) $\frac{a^{-\frac{1}{2}}\sqrt[3]{b}}{a^{-1}}\cdot (16a^{\frac{1}{2}}b^{-\frac{4}{3}})^{\frac{1}{4}}$.

- 3. Выполните действия $\left(a^{1,8}+1\right)\left(a^{\frac{6}{5}}+a^{\frac{3}{5}}+1\right)\left(a^{0,6}-1\right)$.
- 4. Сократите дробь $\frac{a^{0.75}-b^{0.5}}{a^{\frac{1}{8}}+b^{\frac{1}{12}}}$.
- 5. a) выразите x через y, если $y = x^{-\frac{2}{3}} + 1$,
 - б) решите уравнение $x^{-0.75} = 0.027$.

- 1. Вычислите $0.008^{-\frac{2}{3}} + 0.064^{-\frac{1}{3}} 0.0625^{-\frac{3}{4}}$.
- 2. Выполните действия:

a)
$$\frac{\sqrt{a\sqrt{a\sqrt{a}}}}{\sqrt[8]{a^{-1}}}$$
, 6) $\left(\frac{\sqrt[3]{a^{-1}}}{a^{-1}\sqrt{\frac{1}{a^{-1}}}} \cdot a^{-\frac{8}{9}}\right)^{-1,5}$.

3. Выполните действия

$$\left(b^{\frac{7}{4}}-2\right)\left(b^{3,5}+2b^{1,75}+4\right)\left(8+b^{5,25}\right).$$

- 4. Сократите дробь $\frac{x^{\frac{8}{7}}-y^{0,8}}{x^{\frac{12}{7}}+y^{\frac{6}{5}}}.$
- 5. a) выразите x через y, если $y = x^{-\frac{3}{4}} + 2$,
 - б) решите уравнение $\frac{1}{x^{-\frac{3}{5}}} = 0.125.$

Вариант 7

- 1. Вычислите $-0.3^{0} \cdot \left(\left(\frac{6}{5}\right)^{-4}\right)^{-0.25} \cdot (0.36)^{-0.5} \cdot \sqrt{(0.0001)^{-1}}$.
- 2. Выполните действия:

$$\text{a)} \ \sqrt[3]{\frac{b^{\frac{1}{2}}}{\sqrt{27b^3}} \cdot \left(\frac{1}{b^{-2}}\right)^{\frac{1}{8}}}, \qquad \text{6)} \ \frac{c^{\frac{4}{5}} \cdot \sqrt[3]{a^{-2}}}{\sqrt[5]{c^{-1}}} \cdot \left(8a^{-2}c\right)^{-\frac{1}{3}}.$$

3. Упростите выражения:

a)
$$\frac{8c^{\frac{1}{2}}}{c-y} - \frac{4}{c^{\frac{1}{2}}-y^{\frac{1}{2}}}$$
, 6) $\frac{c-27}{c^{\frac{2}{3}}-9} - \frac{3c^{\frac{1}{3}}+18}{c^{\frac{1}{3}}+3}$.

4. Решите уравнение
$$\frac{\sqrt[3]{x}-1}{\sqrt[3]{x}+1} + \frac{\sqrt[3]{x^2}+1}{\sqrt[3]{x^2}-1} = 2.$$

1. Вычислите

$$(-0,2)^0 \cdot \left(\left(\frac{5}{6}\right)^4\right)^{-0,25} \cdot (1,2)^{-1} \cdot \sqrt{(0,01)^{-3}}.$$

2. Выполните действия:

a)
$$\sqrt{\frac{x^{-2}\sqrt{x^3}}{a^{-1}}} \cdot \sqrt[3]{\frac{x}{a^{-3}}},$$
 6) $\frac{a^{-\frac{2}{5}}\sqrt{c^3}}{\sqrt[5]{a^3}} \cdot (32a^5c^{-1})^{\frac{1}{5}}.$

3. Упростите выражения:

a)
$$\frac{10a^{\frac{1}{2}}}{b-a} + \frac{5}{b^{\frac{1}{2}} + a^{\frac{1}{2}}},$$
 6) $-\frac{2y^{\frac{1}{3}} + 8}{y^{\frac{1}{3}} - 2} - \frac{y+8}{y^{\frac{2}{3}} - 4}.$

4. Решите уравнение
$$\frac{\sqrt[3]{x^4} - 1}{\sqrt[3]{x^2} + 1} + \frac{\sqrt[3]{x^4} - \sqrt[3]{x^2}}{\sqrt[3]{x^2} - 1} = 7.$$

8. Упражнения на все действия над радикалами и степенями

Вариант 1

1. Выполните действия:

a)
$$\left(\frac{x^{\frac{1}{2}}+2}{x^{\frac{1}{2}}-2} + \frac{x^{\frac{1}{2}}-2}{x^{\frac{1}{2}}+2} - \frac{16}{x-4}\right)^{-2}$$
,

6)
$$\left(a^{\frac{1}{4}}-b^{-\frac{1}{4}}\right):\left(\frac{b}{a^{\frac{3}{4}}}-\frac{b^{\frac{3}{4}}}{a}\right).$$

2. Решите уравнения:

a)
$$2^{x^2-6x-2,5}=16\sqrt{2}$$
,

$$6) \ 2^{x+3} + 2^{x+1} = 80,$$

B)
$$10^x = 7$$
.

Вариант 2

1. Выполните действия:

a)
$$\left(\frac{a^{\frac{1}{2}}+1}{a^{\frac{1}{2}}-1}+\frac{a^{\frac{1}{2}}-1}{a^{\frac{1}{2}}+1}-\frac{4}{a-1}\right)^{-3}$$
,

$$\text{ 6) } \left(\frac{a}{b^{\frac{5}{4}}} - \frac{a^{\frac{3}{4}}}{b}\right) \cdot \left(b^{-\frac{1}{4}} - a^{-\frac{1}{4}}\right)^{-1}.$$

2. Решите уравнения:

a)
$$2^{-x^2+7x}=4^{x+2}$$
,

$$6) \ 3^{x+2} - 3^{x+1} = 18,$$

B)
$$10^x = 0.7$$
.

Вариант 3

1. Выполните действия:

a)
$$\left(\frac{a^{\frac{1}{4}} + 4}{a^{\frac{1}{4}} - 4} + \frac{a^{\frac{1}{4}} - 4}{a^{\frac{1}{4}} + 4} - \frac{64}{a^{\frac{1}{2}} - 16}\right)^{-3}$$
,

6)
$$\left(\frac{a^{\frac{3}{2}} + b^{\frac{3}{2}}}{a^{\frac{1}{2}} + b^{\frac{1}{2}}} - (a+b)\right) : \frac{b^{\frac{1}{2}} - a^{\frac{1}{2}}}{a^{\frac{1}{2}}b^{\frac{1}{2}}}.$$

2. Решите уравнения:

a)
$$\left(\frac{4}{9}\right)^x \cdot \left(\frac{27}{8}\right)^{x-1} = 1$$
,

6)
$$4^{x-1} + 4^x + 4^{x+1} = 84$$
,

B)
$$2 \cdot 10^x = 5$$
.

Вариант 4

1. Выполните действия:

a)
$$\left(\frac{2+x^{\frac{1}{4}}}{2-x^{\frac{1}{4}}}-\frac{2-x^{\frac{1}{4}}}{2+x^{\frac{1}{4}}}\right)\cdot\frac{4-\sqrt{x}}{\sqrt[4]{x^3}},$$

6)
$$\left(\frac{x^{\frac{3}{2}} - y^{\frac{3}{2}}}{x^{\frac{1}{2}} - y^{\frac{1}{2}}} - (x + y)\right) \cdot \sqrt{xy}$$
.

2. Решите уравнения:

a)
$$\left(\frac{5}{6}\right)^{x-1} \cdot \left(\frac{4}{5}\right)^x = \frac{16}{45}$$
,

6)
$$5^{x+1} + 5^{x-1} - 5^x = 105$$
,

B)
$$4 \cdot 10^x = 7$$
.

1. Выполните действия:

a)
$$\left(\frac{x^{\frac{1}{2}} - y^{\frac{1}{2}}}{xy^{\frac{1}{2}} + x^{\frac{1}{2}}y} + \frac{x^{\frac{1}{2}} + y^{\frac{1}{2}}}{xy^{\frac{1}{2}} - x^{\frac{1}{2}}y}\right) \cdot \frac{x^{\frac{3}{2}}y^{\frac{1}{2}}}{x + y} - \frac{2y}{x - y},$$
6)
$$\left(\frac{\sqrt[3]{mn^2} + \sqrt[3]{m^2}n}{\sqrt[3]{m^2} + 2\sqrt[3]{mn} + \sqrt[3]{n^2}} - 2\sqrt[3]{n} + \frac{m - n}{\sqrt[3]{m^2} - \sqrt[3]{n^2}}\right) : (\sqrt[6]{m} + \sqrt[6]{n}).$$

- 2. Решите уравнения:
 - a) $16^x 3 \cdot 4^x 4 = 0$,
 - 6) $2^x \cdot 27^{5-x} = 2^3 \cdot 3^6$,
 - B) $10^{2x-3} = 9$.

Вариант 6

1. Выполните действия:

a)
$$\left(\frac{m-n}{m^{\frac{3}{4}}+m^{\frac{1}{2}}n^{\frac{1}{4}}}-\frac{m^{\frac{1}{2}}-n^{\frac{1}{2}}}{m^{\frac{1}{4}}+n^{\frac{1}{4}}}\right)\cdot\left(\frac{n}{m}\right)^{-\frac{1}{2}},$$
6)
$$\left(\frac{a+x}{a^{\frac{2}{3}}-x^{\frac{2}{3}}}+\frac{a^{\frac{1}{3}}x^{\frac{2}{3}}-a^{\frac{2}{3}}x^{\frac{1}{3}}}{a^{\frac{2}{3}}-2a^{\frac{1}{3}}x^{\frac{1}{3}}+x^{\frac{2}{3}}}-x^{\frac{1}{6}}\cdot(a^{\frac{1}{6}}-x^{\frac{1}{6}})\right):$$

$$:(a^{\frac{1}{6}}-x^{\frac{1}{6}}).$$

- 2. Решите уравнения:
 - a) $25^x 4 \cdot 5^x = 5$,
 - 6) $6^{2x+4} = 3^{3x} \cdot 2^{x+8}$
 - B) $10^{5-3x} = 7$.

Вариант 7

1. Выполните действия:

a)
$$\left(\frac{\sqrt[4]{a^3} - b}{\sqrt[4]{a} - \sqrt[3]{b}} - 3\sqrt[12]{a^3b^4}\right)^{-\frac{1}{2}} \cdot \left(\frac{\sqrt[4]{a^3} + b}{\sqrt[4]{a} + \sqrt[3]{b}} - \sqrt[3]{b}\right)$$
 при $\sqrt[4]{a} - \sqrt[4]{b} < 0$,

6)
$$\frac{\sqrt{a^3} + \sqrt{b^3}}{\sqrt[3]{(a^2 - ab)^2}} : \frac{\sqrt[3]{a - b}}{(a\sqrt{a} - b\sqrt{b}) \cdot \sqrt[3]{a^2}}.$$

2. Решите уравнения:

a)
$$3^x + 3^{1-x} = 4$$
,

$$6) \ 6^{2x+4} = 3^{3x} \cdot 2^{x+8}.$$

B)
$$\frac{3^x}{3} = 5^{x-1}$$
.

Вариант 8

1. Выполните действия:

а)
$$\left(\frac{(a^{\frac{3}{2}}-\sqrt{8})(a^{\frac{1}{2}}+\sqrt{2})}{a+\sqrt{2a}+2}\right)^2+\sqrt{(a^2+2)^2-8a^2}$$
 при $0< a<\sqrt{2},$

6)
$$\frac{x-1}{\sqrt[4]{x^3} + \sqrt{x}} \cdot \frac{\sqrt{x} + \sqrt[4]{x}}{\sqrt{x} + 1} \cdot \sqrt[4]{x} + 1$$
.

2. Решите уравнения:

a)
$$2^x + 2^{1-x} = 3$$
,

6)
$$2^x \cdot 27^{5-x} = 2^3 \cdot 3^6$$
,

B)
$$7^x \cdot 7 = 3^{x+1}$$
.

9. Область определения функции. Возрастание и убывание функции

Вариант 1

1. Найдите область определения функции:

a)
$$f(x) = \frac{1}{x-1} - \sqrt{x}$$
, 6) $f(x) = \sqrt{x^2 - 7x - 8}$.

- 2. Принадлежит ли точка A(2;-1) графику функции $y=3x^2-4x+1?$
- 3. Постройте график и найдите промежутки убывания и возрастания функции:

a)
$$y = 4 - 2x$$
, 6) $y = x^2 - 4x$.

4. Постройте график функции y = |x-2| + |x+2|.

- 1. Найдите область определения функции:
 - a) $f(x) = \frac{1}{x} + \sqrt{x+1}$, 6) $f(x) = \sqrt{9-8x-x^2}$.
- 2. Принадлежит ли точка B(1;-2) графику функции $y=5x^2+x-8$?
- 3. Постройте график и найдите промежутки убывания и возрастания функции:
 - a) y = 3x 5, 6) $y = 2x x^2$.
- 4. Постройте график функции y = |x-2| |x+2|.

Вариант 3

1. Найдите область определения функции:

a)
$$f(x) = \frac{\sqrt{x}}{x^2 - 3x + 2}$$
, 6) $f(x) = \sqrt{\frac{x}{x^2 - x - 6}}$.

- 2. Найдите промежутки убывания и возрастания функции:
 - a) $f(x) = -2x^2 + x + 1$, 6) f(x) = |x + 1| 2.
- 3. Найдите координаты точек пересечения графиков $y = 2x^2 + 5x + 4$ и y = 2x + 3.
- 4. Постройте график функции: $y = -|x^2 6x + 5|$.

Вариант 4

1. Найдите область определения функции:

a)
$$f(x) = \frac{\sqrt{1-x}}{x^2 + 5x + 4}$$
, 6) $f(x) = \sqrt{\frac{x^2 - 2x - 15}{x}}$.

- 2. Найдите промежутки убывания и возрастания функции:
 - a) $f(x) = 3x^2 3x + 2$, 6) f(x) = -|x + 3| + 4.
- 3. Найдите координаты точек пересечения графиков $y = -x^2 + 4x + 5$ и y = x + 1.
- 4. Постройте график функции $y = |x^2 x 6|$.

- 1. Найдите координаты точек пересечения графиков $y=x^2-7x+6$ и $y=2x^2-5x+3$.
- 2. Постройте график и найдите промежутки убывания и возрастания функции:
 - а) если $x\geqslant 1$, то $f(x)=x^2-4x+5;$ если x<1, то f(x)=x+1,
 - $6) \ y = 3 |x 1|.$
- 3. Найдите область определения функции:

a)
$$f(x) = \sqrt{\frac{x^2 - 4x + 4}{x^2 - 9}}$$
,

6)
$$f(x) = \sqrt{\frac{x^2 + 9x + 20}{6 - 5x - x^2}}$$

B)
$$f(x) = \sqrt{\frac{1}{2} - \left| \frac{3}{5 - x} \right|}$$
.

- 1. Найдите координаты точек пересечения графиков $y=-x^2-4x+8$ и $y=x^2+6x-4$.
- 2. Постройте график и найдите промежутки убывания и возрастания функции:
 - а) если $x \geqslant 0$, то f(x) = 3 + 0.5x; если x < 0, то $f(x) = -x^2 2x + 3$,
 - $6) \ \ y = |x+2| 3.$
- 3. Найдите область определения функции:

a)
$$f(x) = \sqrt{\frac{16 - x^2}{x^2 + 2x + 1}}$$
,

6)
$$f(x) = \sqrt{\frac{9 - 8x - x^2}{x^2 + 6x + 8}}$$

B)
$$f(x) = \sqrt{7 - \frac{|x-2|}{3x+5}}$$
.

- 1. Принадлежит ли точка $A(-2\sqrt{2};1-\sqrt{2})$ графику функции $f(x)=\sqrt{3-x}$?
- 2. Найдите область определения функции:

a)
$$f(x) = \sqrt{\frac{x^2 - 7|x| + 10}{-x^2 + 6x - 9}}$$
,

6)
$$f(x) = \sqrt{\frac{x^2 + 3x + 2}{x - 2}} + \sqrt{x^2 + x - 2}$$

- B) $f(x) = \sqrt{\sin x} + \sqrt{16 x^2}$.
- 3. Постройте графики функций:

a)
$$y = |4 - 2|x|$$
,

6)
$$y = |x^2 - x| + x - 1$$
.

Вариант 8

- 1. Принадлежит ли точка $A(-4\sqrt{3};2-\sqrt{3})$ графику функции $f(x)=\sqrt{7-x}$?
- 2. Найдите область определения функции:

a)
$$f(x) = \sqrt{\frac{-x^2 + 20x - 100}{x^2 - 5|x| + 4}}$$
,

6)
$$f(x) = \sqrt{-x^2 + 7x - 10} + \sqrt{\frac{x^2 - 5x + 6}{7 - x}}$$

B)
$$f(x) = \sqrt{-\cos x} + \sqrt{4 - x^2}$$
.

3. Постройте графики функций:

a)
$$y = \sqrt{x^2 - 2|x| + 1}$$
, 6) $y = x^2 - |x - x^2|$.

10. Четность и нечетность функции.

Функция
$$y=rac{k}{x}$$

Вариант 1

1. Выясните, является ли функция четной или нечетной:

a)
$$f(x) = 3x^4 - 1$$
, 6) $f(x) = 5x^3 - 2x$,

6)
$$f(x) = 5x^3 - 2x$$

B)
$$f(x) = \frac{x^2 + 1}{3x}$$
.

- 2. Не строя графиков функций, найдите точки их пересечения $y = -\frac{12}{x}$ и y = x - 7.
- 3. Постройте графики функций:

a)
$$y = \frac{4}{x} + 1$$
,

6)
$$y = -\frac{1}{x-2} + 2$$
.

Вариант 2

1. Выясните, является ли функция четной или нечетной:

a)
$$f(x) = 7x^3$$
,

a)
$$f(x) = 7x^3$$
, 6) $f(x) = 17x^2 - 5x^4$,

B)
$$f(x) = \frac{2x^3}{x^2 + 1}$$
.

- 2. Не строя графиков функций, найдите точки их пересечения $y = \frac{8}{x}$ и y = x + 2.
- 3. Постройте графики функций:

a)
$$y = -\frac{x}{4} - 1$$
,

a)
$$y = -\frac{x}{4} - 1$$
, 6) $y = \frac{2}{x+2} - 1$.

Вариант 3

1. Исследуйте функции на четность:

a)
$$f(x) = \frac{1}{7x - 5}$$

a)
$$f(x) = \frac{1}{7x - 5}$$
, 6) $f(x) = x^2 - x^4 + 2|x|$,

B)
$$f(x) = \frac{3x^2}{x^3 - x}$$
.

2. Решите систему графически

$$\begin{cases} y = -\frac{2}{x} \\ y = -x - 1 \end{cases}$$

3. Постройте графики функций:

a)
$$y = -\frac{1}{x+2} + 3$$
, 6) $y = \sqrt[3]{x-1} + 2$.

Вариант 4

1. Исследуйте функции на четность:

a)
$$f(x)=rac{1}{2x+2},$$
 6) $f(x)=2x^3-x|x|,$ B) $f(x)=rac{2x-7x^3}{5x^2+x^4}.$

2. Решите систему графически

$$\begin{cases} y = \frac{2}{x} \\ y = x + 1. \end{cases}$$

3. Постройте графики:

a)
$$y = \frac{1}{x-2} - 1$$
, 6) $y = \sqrt[3]{x+2} - 1$.

Вариант 5

1. Определите четность функций:

a)
$$f(x) = x^2 - 3x|x|$$
, 6) $f(x) = x^6 - 3|x|$,

2. Не строя графиков функций, найдите координаты точек их пересечения:

a)
$$y = \frac{1}{x+1} + 2$$
; $y = x^2 + 2x + 3$,

6)
$$y = \frac{x^2 - 4x - 12}{x + 2}$$
; $y = \frac{8}{x + 1}$.

3. Постройте графики функций:

a)
$$y = \frac{x+1}{x-1}$$
, 6) $y = \left| \frac{x+1}{x-1} \right|$.

- 1. Определите четность функций:
 - a) $f(x) = x^4 4x^2|x|$, 6) $f(x) = x|x| 5x^3$.
- 2. Не строя графиков функций, найдите координаты точек их пересечения:

a)
$$y = \frac{3}{x+1} + 2$$
; $y = x^2 - 2x + 3$,

6)
$$y = \frac{x^2 - 9x + 18}{3 - x}$$
; $y = \frac{6}{x - 1}$.

3. Постройте графики функций:

a)
$$y = \frac{x-1}{x+1}$$
, 6) $y = \left| \frac{x-1}{x+1} \right|$.

Вариант 7

- 1. Напишите уравнение оси симметрии графика функции $f(x) = x^3 6x^2 + 12x 8$.
- 2. Определите четность функций:

a)
$$f(x) = \sqrt[3]{x^4 - x^2 + 1}$$
, 6) $f(x) = \sqrt{2x^2 - x^2|x| + 3}$.

3. Постройте графики функций:

4. Сколько решений в зависимости от параметра a имеет уравнение $\frac{2x-3}{|x+1|}=a$?

Вариант 8

- 1. Напишите уравнение оси симметрии графика функции $f(x) = x^3 + 6x^2 + 12x + 8.$
- 2. Определите четность функций:

a)
$$f(x) = \sqrt[3]{x^7 - 2x^5}$$
, 6) $f(x) = \sqrt{x|x| + 4x^3}$.

3. Постройте графики функций:

4. Сколько решений в зависимости от параметра a имеет уравнение $\frac{2x+1}{|x-1|} = a$?

11. Неравенства и уравнения, содержащие степень

Вариант 1

- 1. Решите неравенства:
 - a) $x^4 > 625$,

- 6) $\sqrt{2-x} \ge 3$.
- 2. Решите уравнения:

 - a) $\sqrt{x-3} = \sqrt{5-x}$, B) $\sqrt{-x^2+2x+24} = -x-4$,
 - 6) $\sqrt{x} = x 6$,
- r) $\sqrt{2x+1} \sqrt{2x-4} = 1$.
- 3. Решите неравенство $\sqrt{6x+7} > x$.

Вариант 2

- 1. Решите неравенства:
 - a) $x^4 \le 81$,

- 6) $\sqrt{x-4} < 3$.
- 2. Решите уравнения:

 - a) $\sqrt{7-2x} = \sqrt{2x+3}$, B) $\sqrt{-x^2-x+30} = 2x-10$,
 - 6) $\sqrt{x} = x 2$.
- r) $\sqrt{4-x} \sqrt{1-x} = 1$.
- 3. Решите неравенство $\sqrt{x-3} > x-5$.

- 1. Решите неравенства:
 - a) $x^6 \le 64$,

- f) $\sqrt{25-x^2} < 4$.
- 2. Решите уравнения:
 - a) $\sqrt{12-x} = -x$,
 - 6) $\sqrt{-x^2+2x+8} = -x+4$
 - B) $\sqrt{4x+1} + \sqrt{3x-2} = 5$,
 - Γ) $(2-x)\sqrt{x^2-x-20}=12-6x$.

3. Решите неравенство
$$\frac{\sqrt{8-2x-x^2}}{x+10} \leqslant \frac{\sqrt{8-2x-x^2}}{2x+9}$$
.

- 1. Решите неравенства:
 - a) $x^6 > 729$,

- б) $\sqrt{169 x^2} < 12$.
- 2. Решите уравнения:
 - a) $\sqrt{x+2} = -x$,
 - $6) \ \sqrt{-3x^2 + 2x + 21} = -x + 3,$
 - B) $\sqrt{2x+5} + \sqrt{x+6} = 3$,
 - r) $(x+1)\sqrt{x^2-x-6}=6x+6$.
- 3. Решите неравенство $\frac{\sqrt{6-x-x^2}}{x+4} \leqslant \frac{\sqrt{6-x-x^2}}{-2x+5}$.

Вариант 5

- 1. Решите уравнения:
 - a) $\sqrt{x^2-5x+6}(x^2-2x-1)=0$,
 - 6) $8\sqrt{12+16x-16x^2}+4x-4x^2=33$,
 - B) $\sqrt{x^2 + x + 4} + \sqrt{x^2 + x + 1} = \sqrt{2x^2 + 2x + 9}$.
- 2. Решите неравенства:
 - a) $(x-1)\sqrt{4-x^2} \le 0$,
 - 6) $\sqrt{2x-1} + \sqrt{x+3} < 3$,
 - B) $\sqrt{3x+1} + \sqrt{x-4} < \sqrt{4x+5}$.
- 3. Решите уравнение $\sqrt{x^2+6x+2}-\sqrt{x^2+x+1}=5x+1$.

- 1. Решите уравнения:
 - a) $(x^2 + 2x 4)\sqrt{x^2 + 7x + 10} = 0$,
 - 6) $6\sqrt{81x^2 + 54x + 45} + 6x + 9x^2 = 35$,
 - B) $\sqrt{x^2 + x + 7} + \sqrt{x^2 + x + 2} = \sqrt{3x^2 + 3x + 19}$.

- 2. Решите неравенства:
 - a) $(x+1)\sqrt{x^2-4} \ge 0$,
 - 6) $\sqrt{5x-4} + \sqrt{3x+1} < 3$,
 - B) $\sqrt{7x-13}-\sqrt{3x-19}>\sqrt{5x-27}$.
- 3. Решите уравнение $\sqrt{x^2 + 5x + 2} \sqrt{x^2 + x + 1} = 4x + 1$.

- 1. Решите уравнения:
 - a) $\sqrt{4x-2} + \sqrt{3x-3} = \sqrt{x+1}$,
 - 6) $6\sqrt{x^2-3x+2}+\sqrt{-x^2+4x-3}=\sqrt{-x^2+3x-2}$
 - B) $(\sqrt{x+1} + \sqrt{x-2})(x-3\sqrt{x-2}+2) = 9.$
- 2. Решите неравенства:
 - a) $\sqrt{5x-2x^2+3} \le 3-x$,
 - 6) $\sqrt{3x^2 + 5x + 7} \sqrt{3x^2 + 5x + 2} > 1$,

$$\mathrm{B}) \ \frac{x}{\sqrt{1-x}+\sqrt{x}}-\frac{x}{\sqrt{1-x}-\sqrt{x}}>\frac{2}{\sqrt{x}}.$$

3. При каких значениях параметра a уравнение $\sqrt{x^2+6x+8}=\sqrt{a-3x}$ имеет единственное решение при x<0?

- 1. Решите уравнения:
 - a) $\sqrt{x+2} + \sqrt{2x-3} = \sqrt{3x+3}$,
 - 6) $\sqrt{x^2 3x + 2} + \sqrt{2x x^2} = \sqrt{-x^2 + 5x 6}$
 - B) $(\sqrt{x+2} \sqrt{x-1})(x+3\sqrt{x-1}+3) = 9.$
- 2. Решите неравенства:
 - a) $\sqrt{3x^2 + 5x 2} \le 2 + x$,
 - 6) $\sqrt{2x^2 + 5x 2} \sqrt{2x^2 + 5x 9} > 1$,
 - B) $\frac{2}{2+\sqrt{4-x^2}} \frac{2}{2-\sqrt{4-x^2}} > \frac{1}{x}$.
- 3. При каких значениях параметра a уравнение $\sqrt{x^2-4x+3}=\sqrt{3x-a}$ имеет единственное решение при x>0?

12. Радианная мера угла

Вариант 1

- 1. Определите знак выражения $a=\frac{\sin 2.5 \cdot \cos 5}{\operatorname{tg} 3}$.
- 2. Какие значения может принимать выражение $1-2\cos x$?
- 3. Упростите $a^2 \cdot \sin \frac{\pi}{2} + 2ab \cdot \cos \pi b^2 \cdot \sin \frac{3\pi}{2}$.
- 4. Постройте угол $\alpha = \frac{11\pi}{4}$ и вычислите значения его тригонометрических функций.
- 5. Что больше $\sin 1.8$ или tg 2.8?
- 6. Возможно ли равенство $\sin \alpha = \frac{\sqrt{8}}{3}$?
- 7. Решите уравнения:

a)
$$\cos\left(x - \frac{\pi}{3}\right) = 1$$
, 6) $\sin 2x = 0$.

- 1. Определите знак выражения $m = \frac{\sin 4 \cdot \lg 5}{\sin 6}$.
- 2. Какие значения может принимать выражение $2 4\cos x$?
- 3. Упростите $a^2 \cdot \sin \frac{\pi}{2} 2ab \cdot \cos \frac{\pi}{2} + b^2 \cdot \sin \frac{3\pi}{2}$.
- 4. Постройте угол $\alpha = \frac{7\pi}{3}$ и вычислите значения его тригонометрических функций.
- 5. Что больше $\frac{2}{3}$ или $\cos 2.3$?
- 6. Возможно ли равенство $\cos \alpha = \frac{\sqrt[3]{3}}{\sqrt{2}}$?
- 7. Решите уравнения:
 - a) $\sin 2x = 1$, 6) $\cos \left(x + \frac{\pi}{4} \right) = 0$.

- 1. Решите неравенство $\frac{2x-1}{\operatorname{tg} 2 \cdot \cos 5,5} > 0.$
- 2. Какие значения может принимать выражение $0.25 + 3\cos^2 x$?
- 3. Упростите $a^2 \sin^2 \frac{3\pi}{2} 2ab \cdot \cos \pi + b^2 \cdot \operatorname{ctg} \frac{\pi}{4}$.
- 4. Постройте положительный угол x, меньший чем 2π , если $\sin x = -\frac{2}{3}$ и $\cos x > 0$.
- 5. Сравните с помощью чертежа $\sin 418^{\circ}$ и $\sin 135^{\circ}$.
- 6. Возможно ли равенство $\cos \alpha = \frac{1}{\sin 16^{\circ}}$?
- 7. Установите область определения

$$y = \frac{1}{\sin\left(x + \frac{\pi}{4}\right) + 1}.$$

- 1. Решите неравенство $\frac{1-3x}{\sin 4 \cdot \cos 5} > 0.$
- 2. Какие значения может принимать выражение $0.3-4\sin^2 x$?
- 3. Упростите $a^2 \sin^2 \frac{3\pi}{2} + 2ab \cdot \cos \pi + b^2 \cdot \operatorname{ctg} \frac{\pi}{4}$.
- 4. Постройте положительный угол x, меньший чем 2π , если $\cos x = -\frac{3}{5}$ и $\lg x > 0$.
- 5. Сравните с помощью чертежа $\sin 415^\circ$ и $\sin 195^\circ$.
- 6. Возможно ли равенство $\cos \alpha = \frac{\pi}{3}$?
- 7. Установите область определения

$$y = \frac{5}{\cos\left(x - \frac{\pi}{3}\right) - 1}.$$

1. Установите область определения

$$f(x) = \sqrt{\frac{\sin x - 1}{\sin 4.6 \cdot \cos 3}}.$$

- 2. Найдите наибольшее и наименьшее значения выражения $\frac{\cos^3 \alpha}{\cos \alpha}$.
- 3. Упростите $\operatorname{ctg}^2 \frac{\pi}{6} + 2 \cos \frac{\pi}{3} + \operatorname{tg} \frac{\pi}{4} \operatorname{tg}^2 \frac{\pi}{3} + \cos^2 \frac{\pi}{6}$.
- 4. При каких значениях x на отрезке $\left[0;\frac{\pi}{2}\right]$ разность $\frac{\sqrt{3}}{2}-\cos x$ положительна?
- 5. Решите неравенство $\frac{\cos x}{\sin 2.9 \sin 3} > 0 \ x \in [0; 2\pi].$
- 6. При каком значении a возможно равенство $\sin x = a^2 1$?
- 7. Решите уравнение $\frac{\sin^2 x \sin x}{x \frac{\pi}{2}} = 0.$

Вариант 6

1. Установите область определения

$$f(x) = \sqrt{\frac{\cos x - 1}{\sin 5 \cdot \cos 2}}.$$

- 2. Найдите наибольшее и наименьшее значения выражения $\frac{\sin \alpha \cdot \cos \alpha}{\sin \alpha}$.
- 3. Упростите $\operatorname{ctg}^2 \frac{\pi}{4} + \cos \frac{\pi}{3} \sin^2 \frac{\pi}{3} + \sin^2 \frac{\pi}{6}$.
- 4. При каких значениях x на отрезке $\left[0;\frac{\pi}{2}\right]$ разность $\frac{\sqrt{3}}{2}-\cos x$ отрицательна?
- 5. Решите неравенство $\frac{\sin x}{\cos 4.1 \cos 4} < 0, x \in [0; 2\pi].$

- 6. При каком значении a возможно равенство $\cos x = a^2 + 1$?
- 7. Решите уравнение $\frac{\cos^2 x + \cos x}{x \pi} = 0.$

1. Установите область определения

$$y = \sqrt{\sin x} + \sqrt{-\cos x} \quad x \in [0; 2\pi].$$

2. Какие значения может принимать выражение

$$\frac{1}{3-2\cos\alpha}$$
?

3. Найдите значение выражения

$$\frac{1.5 - \sin^2\frac{\pi}{6} + 3\cos^2\frac{\pi}{4}}{2\sin\frac{\pi}{3}}.$$

- 4. При каких значениях $\alpha \in [0; 2\pi]$ выражение $\sin \alpha \cos \alpha$ положительно?
- 5. Решите неравенство $\frac{\sin 2x 1}{\sin 3.9 \sin 3.7} \le 0.$
- 6. Возможно ли равенство $\cos \alpha = a^2 a 1$?
- 7. Решите уравнение $\frac{\cos^2 x \cos x 2}{x 3\pi} = 0.$

Вариант 8

1. Установите область определения

$$y = \sqrt{-\sin x} + \sqrt{\cos x} \quad x \in [0; 2\pi].$$

2. Какие значения может принимать выражение

$$\frac{3}{4+3\sin\alpha}$$
?

3. Найдите значение выражения

$$\frac{0.3 - \sin^2 \frac{\pi}{6} - \cos^2 \frac{\pi}{3} + 4 \operatorname{tg} \frac{\pi}{4}}{2 \sin \frac{\pi}{6} + 1}.$$

- 4. При каких значениях $\alpha \in [0; 2\pi]$ выражение $\sin \alpha \cos \alpha$ отрицательно?
- 5. Решите неравенство $\frac{\cos \frac{x}{2} + 1}{\cos 5, 2 \cos 4, 9} \le 0.$
- 6. Возможно ли равенство $\sin \alpha = \frac{a}{a-1}$?
- 7. Решите уравнение $\frac{\sin^2 x 4\sin x + 3}{2x 5\pi} = 0.$

13. Тригонометрические тождества

Вариант 1

- 1. Дано: $\cos \alpha = -0.6; \ \frac{\pi}{2} < \alpha < \pi$. Найдите $\operatorname{tg} \alpha$.
- 2. Упростите выражения:

a)
$$-\frac{\operatorname{tg}(-\alpha)}{\operatorname{sec}\alpha} + \frac{\cos(-\alpha)}{\operatorname{tg}\alpha}$$
, 6) $\frac{2\sin^2\alpha - 1}{\sin\alpha - \cos\alpha}$.

- 3. Докажите тождество $\cos \alpha \cdot (\sec^2 \alpha 1) = \frac{\sin \alpha}{\cot \alpha}$.
- 4. Найдите наибольшее и наименьшее значения выражения $y=2\sin^2 x + 3\cos^2 x.$
- 5. Решите уравнения:

a)
$$\sin^2 x = 1 + \cos^2 x$$
, 6) $\operatorname{tg} x \cdot \operatorname{ctg} x = \cos x$.

- 1. Дано: $\sin \alpha = -\frac{12}{13}; \;\; \pi < \alpha < \frac{3\pi}{2}.$ Найдите $\operatorname{ctg} \alpha.$
- 2. Упростите выражения:

a)
$$-\frac{\cot(-\alpha)}{\csc\alpha} - \frac{\sin(-\alpha)}{\cot\alpha}$$
, 6) $\frac{\cos^3\alpha - \sin^3\alpha}{1 + \sin\alpha \cdot \cos\alpha}$.

- 3. Докажите тождество $\sin \alpha \cdot (\csc^2 \alpha 1) = \frac{\cos \alpha}{\operatorname{tg} \alpha}$.
- 4. Найдите наибольшее и наименьшее значения выражения $y = 3 \sin^2 \alpha 2 \cos^2 \alpha$.

- 5. Решите уравнения:
 - a) $\sin x + \cos^2 x = 2 \sin^2 x$,
 - 6) $\frac{\operatorname{tg} x \cdot \operatorname{ctg} x}{\cos x} + 1 = 0.$

- 1. Дано: $\lg \alpha = -1\frac{7}{8}$; $450^\circ < \alpha < 540^\circ$. Найдите $\cos \alpha$ и $\sin \alpha$.
- 2. Упростите:

a)
$$\frac{\sin \alpha}{1 + \cos(-\alpha)} - \frac{\sin(-\alpha)}{1 - \cos \alpha}$$
,

6)
$$\frac{1}{\cos^2 \alpha} - \frac{1}{\cot^2 \alpha} - \frac{\sin^2 \alpha}{\tan^2 \alpha}$$
.

- 3. Дано: $\sin \alpha + \cos \alpha = \frac{5}{7}$. Найдите $\operatorname{tg} \alpha \cdot \cos^2 \alpha$.
- 4. Найдите $\frac{\sin \alpha + \cos \alpha}{\sin \alpha \cos \alpha}$, если $\operatorname{tg} \alpha = \frac{5}{4}$.
- 5. Решите уравнения:

a)
$$8\sin^2 x - 2\cos x = 5$$
; $0 < x < \frac{\pi}{2}$,

$$6) \ \frac{1+\cos x}{\sin x} = 0.$$

Вариант 4

- 1. Дано: $\cot \beta = -\frac{24}{7}; \ 630^{\circ} < \beta < 720^{\circ}.$ Найдите $\cos \beta$ и $\sin \beta.$
- 2. Упростите:

a)
$$\frac{\cos(-\alpha)}{1+\sin\alpha} + \frac{\cos\alpha}{1+\sin(-\alpha)}$$
,

6)
$$(\operatorname{ctg} \alpha - \operatorname{cos} \alpha) \cdot \left(\frac{\sin^2 \alpha}{\cos \alpha} + \operatorname{tg} \alpha\right)$$
.

3. Дано: $\sin \alpha \cdot \cos \alpha = \frac{1}{4}$. Найдите $\sin \alpha + \cos \alpha$.

4. Найдите
$$\frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha}$$
, если $\operatorname{tg} \alpha = \frac{4}{5}$.

5. Решите уравнения:

Решите уравнения:
a)
$$3\sin x = 2\cos^2 x; \ \frac{\pi}{2} < x < \pi, \ \ 6) \ \frac{\sin\frac{x}{2} - 1}{1 + \cos x} = 0.$$

Вариант 5

1. Вычислите
$$\frac{\cos{(-\alpha)}-\cot{(-\alpha)}}{1-\sin{(-\alpha)}}$$
, если $\cos{\alpha}=0.5$ и $-\frac{\pi}{2}<\alpha<0.$

2. Упростите:

a)
$$\frac{\sec^2 \alpha - \operatorname{tg}^2 \alpha}{\cos^2 \alpha} - \operatorname{tg}^2 \alpha$$
,

6)
$$\frac{\operatorname{ctg}^2\alpha - \cos^2\alpha}{\operatorname{ctg}^2\alpha} + \frac{\sin\alpha \cdot \cos\alpha}{\operatorname{ctg}\alpha}.$$

3.
$$\sin \alpha + \cos \alpha = \rho$$
. Найдите $\sin^4 \alpha + \cos^4 \alpha$.

4. Найдите
$$\frac{3\sin^2\alpha+12\sin\alpha\cdot\cos\alpha+\cos^2\alpha}{\sin^2\alpha+\sin\alpha\cdot\cos\alpha-2\cos^2\alpha}, \text{ если } tg\,\alpha=2.$$

5. Решите уравнения:

a)
$$\sin x \cdot \operatorname{ctg} x + \cos x \cdot \operatorname{tg} x = 0$$
; $\frac{\pi}{2} < x < \pi$,

$$6) \ \frac{\sin x}{1 - \cos x} = 0.$$

Вариант б

1. Вычислите
$$\frac{\sin \alpha - \mathrm{tg} \, (-\alpha)}{1 + \cos \, (-\alpha)}$$
, если $\sin \alpha = -0.5$ и $-\frac{\pi}{2} < \alpha < 0$.

2. Упростите:

a)
$$(\operatorname{ctg} \alpha - \operatorname{cos} \alpha) \cdot \left(\frac{\sin^2 \alpha}{\cos \alpha} + \operatorname{tg} \alpha\right)$$
,

6)
$$\frac{1-\operatorname{tg}^2\alpha}{\operatorname{tg}\alpha-\operatorname{ctg}\alpha}$$
.

3. $\sin \alpha - \cos \alpha = m$. Найдите $\sin^4 \alpha + \cos^4 \alpha$.

4. Найдите
$$\frac{2sin^2\alpha-\sin\alpha\cdot\cos\alpha}{3\sin^2\alpha+2\cos^2\alpha}$$
, если $\lg\alpha=3$.

5. Решите уравнения:

a)
$$\cos x \cdot \operatorname{tg} x - \sin x \cdot \operatorname{ctg} x = 0$$
 $\frac{\pi}{2} < x < \pi$,

$$6) \frac{\sin x}{1 + \cos x} = 0.$$

Вариант 7

- 1. Вычислите $\cos{(-\alpha)}+\cos{\alpha}\cdot {\rm tg}^2{(-\alpha)},$ если ${\rm tg}\,\alpha=2$ и $\pi<\alpha<\frac{3\pi}{2}.$
- 2. Докажите, что $\frac{\sin^2 x}{\sin x \cos x} \frac{\sin x + \cos x}{\operatorname{tg}^2 x 1} = \sin x + \cos x.$

3. Упростите
$$\sqrt{\frac{1+\sin\alpha}{1-\sin\alpha}}+\sqrt{\frac{1-\sin\alpha}{1+\sin\alpha}},$$
 если $\frac{\pi}{2}<\alpha<\pi.$

- 4. $\sin \alpha + \cos \alpha = m$. Найдите $\sin^6 \alpha + \cos^6 \alpha$.
- 5. Найдите $\frac{\sin^2\alpha + \sin\alpha \cdot \cos\alpha + 3}{\sin^2\alpha \cos^2\alpha}$, если $\operatorname{tg}\alpha = 2$.
- 6. Решите уравнения:
 - a) $\sin^3 x \cdot (1 \cot x) \cos^3 x \cdot (1 \cot x) = 0; \frac{\pi}{2} < x < \pi,$
 - 6) $(1 + \sin x) \cdot (\lg x 1) = 0; 0 < x < 2\pi.$

- 1. Вычислите $\operatorname{tg}(-\alpha) \cdot \operatorname{ctg} \alpha + \sin^2(-\alpha)$, если $\operatorname{tg} \alpha = -\frac{3}{4}$.
- 2. Докажите, что

$$\frac{\sin\alpha + \cos\alpha}{1 - \mathrm{tg}^2\,\alpha} - \frac{\sin^2\alpha}{\cos\alpha - \sin\alpha} = \cos\alpha + \sin\alpha.$$

- 3. Упростите $\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}}-\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}},$ если $\pi<\alpha<\frac{3\pi}{2}.$
- 4. $\sin \alpha \cos \alpha = \rho$. Найдите $\sin^6 \alpha + \cos^6 \alpha$.
- 5. Найдите $\frac{2\sin^2\alpha-\sin\alpha\cdot\cos\alpha+4}{\cos^2\alpha-\sin^2\alpha}$, если $\operatorname{tg}\alpha=-2$.
- 6. Решите уравнения:
 - a) $\sin^3 x \cdot (1 + \operatorname{ctg} x) + \cos^3 x \cdot (1 + \operatorname{tg} x) = 0; \frac{3\pi}{2} < x < 2\pi,$
 - 6) $(1 \cos x) \cdot (\cot x + 1) = 0$; $0 < x < 2\pi$.

14. Формулы сложения

Вариант 1

- 1. Дано: $\sin \alpha = -0.6$; $\pi < \alpha < \frac{3\pi}{2}$. Вычислите $\cos \left(\frac{\pi}{3} \alpha \right)$.
- 2. Упростите:
 - a) $\sin(\alpha + \beta) \cos\alpha \cdot \sin\beta$,
 - 6) $\frac{\sin 38^{\circ} \cdot \cos 12^{\circ} + \cos (-38^{\circ}) \cdot \sin 12^{\circ}}{\cos 40^{\circ} \cdot \cos 10^{\circ} + \sin (-40^{\circ}) \cdot \sin 10^{\circ}}.$
- 3. Дано: $\lg \alpha = \frac{2}{5}$; $\lg \beta = \frac{1}{3}$. Вычислите $\lg (\alpha + \beta)$.
- 4. Решите уравнение $\sin 2x \cdot \cos x + \cos 2x \cdot \sin x = 0$.

Вариант 2

- 1. Дано: $\cos\alpha=-\frac{8}{17};\ \pi<\alpha<\frac{3\pi}{2}.$ Вычислите $\sin\left(\frac{\pi}{3}+\alpha\right).$
- 2. Упростите:
 - a) $\cos(\alpha \beta) \sin\alpha \cdot \sin\beta$,
 - 6) $\frac{\cos 65^{\circ} \cdot \cos 40^{\circ} \sin 65^{\circ} \cdot \sin(-40^{\circ})}{\sin 17^{\circ} \cdot \cos 8^{\circ} + \cos 17^{\circ} \cdot \sin 8^{\circ}}.$
- 3. Дано: $\lg \alpha = \frac{2}{5}$; $\lg \beta = \frac{1}{3}$. Вычислите $\lg(\alpha \beta)$.
- 4. Решите уравнение $\cos 2x \cdot \cos x \sin 2x \cdot \sin x = 1$.

- 1. Дано: $\lg \alpha = -\frac{5}{12}; \ \frac{3\pi}{2} < \alpha < 2\pi.$ Вычислите $\sin \left(\alpha \frac{\pi}{4}\right)$.
- 2. Упростите:
 - a) $\cos 2\alpha + \sin 2\alpha \cdot \operatorname{tg} \alpha$,

6)
$$\frac{\sin\frac{3\pi}{8} \cdot \sin\frac{\pi}{8} - \cos\left(-\frac{3\pi}{8}\right) \cdot \cos\frac{\pi}{8}}{\operatorname{tg}\left(\frac{\pi}{4} + \alpha\right)}.$$

- 3. Докажите, что $\operatorname{tg} \alpha \cdot \operatorname{tg} \beta + (\operatorname{tg} \alpha + \operatorname{tg} \beta) \cdot \operatorname{ctg} (\alpha + \beta) = 1.$
- 4. Решите уравнение $\cos x = 2\sin\left(\frac{\pi}{6} x\right)$.

1. Дано:
$$\operatorname{ctg} \alpha = -\frac{7}{24}$$
; $\frac{\pi}{2} < \alpha < \frac{3\pi}{2}$. Вычислите $\sin \left(\frac{\pi}{4} + \alpha \right)$.

2. Упростите:

a)
$$\sin 2\alpha + \cos 2\alpha \cdot \operatorname{ctg} \alpha$$
,
6) $\frac{\cos \frac{5\pi}{6} \cdot \cos \frac{\pi}{3} + \sin \frac{5\pi}{6} \cdot \sin \frac{\pi}{3}}{\operatorname{tg}\left(\frac{3\pi}{4} - \alpha\right)}$.

- 3. Докажите, что $(\operatorname{tg} \alpha \operatorname{tg} \beta) \cdot \operatorname{ctg} (\alpha \beta) \operatorname{tg} \alpha \cdot \operatorname{tg} \beta = 1$.
- 4. Решите уравнение $\cos x = 2\cos\left(\frac{\pi}{2} x\right)$.

Вариант 5

1. Упростите
$$\frac{\sqrt{2}\cos\alpha - 2\cos\left(\frac{\pi}{4} + \alpha\right)}{2\sin\left(\frac{\pi}{4} + \alpha\right) - \sqrt{2}\sin\alpha}.$$

- 2. Вычислите sin 75°, не пользуясь таблицей.
- 3. Упростите $\frac{\sin \alpha + \cos \alpha}{\sqrt{2}}$.
- 4. Дано: $\lg \alpha = -\frac{1}{2}, \ \lg \beta = 3; \ \frac{\pi}{2} < \alpha < \pi, \ 0 < \beta < \frac{\pi}{2}.$ Найдите $\alpha + \beta$.
- 5. Решите уравнение $\sin\left(\frac{\pi}{6} + x\right) + \sin\left(\frac{\pi}{6} x\right) = 1$.

1. Упростите
$$\frac{\sin\alpha + 2\sin\left(\frac{\pi}{3} - \alpha\right)}{2\cos\left(\frac{\pi}{6} - \alpha\right) - \sqrt{3}\cos\alpha}$$

- 2. Вычислите cos 15°, не пользуясь таблицей.
- 3. Упростите $\frac{\sin \alpha \sqrt{3} \cos \alpha}{2}$.
- 4. Дано: $\lg \alpha = \frac{5}{4}$, $\lg \beta = 9$; $0 < \alpha < \frac{\pi}{2}$, $0 < \beta < \frac{\pi}{2}$. Найдите $\alpha + \beta$.

5. Решите уравнение $\cos (120^{\circ} - x) + \cos (120^{\circ} + x) = 1$.

Вариант 7

- 1. Упростите $\cos 75^{\circ} \cdot \operatorname{ctg} 30^{\circ} + \sin 75^{\circ}$.
- 2. Дано: $\sin\left(\frac{\pi}{4}-\alpha\right)=-\frac{\sqrt{2}}{10},\,\pi<\alpha<\frac{3\pi}{2}.$ Найдите $\sin\alpha$.
- 3. Докажите, что $\sin(\alpha + \beta) \cdot \sin(\alpha \beta) = \sin^2 \alpha \sin^2 \beta$.
- 4. Докажите, что $\operatorname{tg} 3\alpha \operatorname{tg} 2\alpha \operatorname{tg} \alpha = \operatorname{tg} 3\alpha \cdot \operatorname{tg} 2\alpha \cdot \operatorname{tg} \alpha$.
- 5. Решите уравнение $\sqrt{3}\sin x + \cos x 2 = 0$.

Вариант 8

- 1. Упростите $\sin 15^{\circ} + \operatorname{tg} 30^{\circ} \cdot \cos 15^{\circ}$.
- 2. Дано: $\cos\alpha=\frac{1}{9},\;\cos{(\alpha+\beta)}=-\frac{2}{7},\;0<\alpha<\frac{\pi}{2},\;0<\beta<\frac{\pi}{2}.$ Найдите $\cos\beta.$
- 3. Докажите, что $\cos(\alpha + \beta) \cdot \cos(\alpha \beta) = \cos^2 \alpha \sin^2 \beta$.
- 4. Докажите, что $\lg 5\alpha \lg 3\alpha \lg 2\alpha = \lg 2\alpha \cdot \lg 3\alpha \cdot \lg 5\alpha$.
- 5. Решите уравнение $\sin x \sqrt{3}\cos x 2 = 0$.

15. Синус и косинус двойного угла

- 1. Запишите по формуле двойного угла $\sin 23^{\circ}$.
- 2. Вычислите $\sin 2\alpha$, если $\cos \alpha = -\frac{4}{5}$; $\frac{\pi}{2} < \alpha < \pi$.
- 3. Упростите:
 - a) $\cos^4 2\alpha \sin^4 2\alpha$, 6) $1 2\sin^2 15^\circ$.
- 4. Вычислите $\frac{1}{1 \lg 15^{\circ}} \frac{1}{1 + \lg 15^{\circ}}$.
- 5. Решите уравнения:
 - $a) \sin 2x + 2\sin x = 0,$
 - 6) $\cos^2 x 4\sin^2 \frac{x}{2} \cdot \cos^2 \frac{x}{2} = 1.$

- 1. Запишите по формуле двойного угла $\cos 15^{\circ}$.
- 2. Вычислите $\cos 2\alpha$, если $\sin \alpha = -\frac{1}{3}$.
- 3. Упростите:
 - a) $4\sin^4 \alpha + \sin^2 2\alpha$, 6) $\cos^2 \frac{\pi}{8} 1$.
- 4. Вычислите $\frac{\operatorname{tg} \frac{\pi}{12}}{1 + \operatorname{tg} \frac{\pi}{12}} + \frac{\operatorname{tg} \frac{\pi}{12}}{1 \operatorname{tg} \frac{\pi}{12}}.$
- Решите уравнения:
 - a) $\sin 2x + 4\cos x = 0$,
 - 6) $4\sin^2 2x \cdot \cos^2 2x \cos^2 4x = 1$.

Вариант 3

- 1. Сократите дробь $\frac{1+\sin 2\alpha}{\sin \alpha + \cos \alpha}$.
- 2. Вычислите $\sin{(2\alpha+\beta)}$, если $\cos{\alpha}=\frac{2}{3}$; $\sin{\beta}=\frac{1}{2}$; $\frac{3\pi}{2} < \alpha < 2\pi$; $\frac{\pi}{2} < \beta < \pi$.
- 3. Вычислите $\operatorname{ctg} 15^{\circ} + \operatorname{tg} 15^{\circ}$.
- 4. Докажите, что $\sin 2\alpha \operatorname{tg} \alpha = \cos 2\alpha \cdot \operatorname{tg} \alpha$.
- 5. Упростите $\frac{\operatorname{tg} 2\alpha \cdot \operatorname{tg} \alpha}{\operatorname{tg} 2\alpha \operatorname{tg} \alpha}.$
- 6. Решите уравнения:
 - a) $2\sin^2 x = \cos 2x; \ \pi \leqslant x \leqslant \frac{3\pi}{2},$
 - 6) $2 \operatorname{tg} 3x + \sin 3x = 0$.

- 1. Сократите дробь $\frac{1-\sin 2\alpha}{\sin \alpha \cos \alpha}$.
- 2. Вычислите $\cos(2\alpha \beta)$, если $\operatorname{tg} \alpha = \frac{3}{5}$; $\sin \beta = \frac{2\sqrt{6}}{7}$; $\pi < \alpha < \frac{3\pi}{2}; \ \frac{\pi}{2} < \beta < \pi.$

- 3. Упростите $tg 55^{\circ} tg 35^{\circ}$.
- 4. Докажите, что $\operatorname{ctg} \alpha \sin 2\alpha = \cos 2\alpha \cdot \operatorname{ctg} \alpha$.
- 5. Упростите $\frac{\operatorname{tg}\alpha}{\operatorname{tg}2\alpha-\operatorname{tg}\alpha}$.
- 6. Решите уравнения:

a)
$$2\cos^2 x + \cos 2x = 0; -\pi \leqslant x \leqslant -\frac{\pi}{2},$$

6) $3 \lg 2x + \sin 2x = 0$.

Вариант 5

- 1. Упростите $1 8\sin^2\alpha \cdot \cos^2\alpha$.
- 2. $\lg \alpha = -0.75$, $\lg \beta = 2.4$; $\frac{\pi}{2} < \alpha < \pi$, $0 < \beta < \frac{\pi}{2}$. Найдите $\sin (\alpha + 2\beta)$.
- 3. Упростите $\left(\frac{\cos\alpha}{1+\sin\alpha}+\frac{\cos\alpha}{1-\sin\alpha}\right)\cdot\sin2\alpha$.
- 4. Упростите $\sqrt{(\cot^2\alpha-\tan^2\alpha)\cdot\cos2\alpha}\cdot\tan2\alpha$, если $\frac{\pi}{4}<\alpha<\frac{\pi}{2}$.
- 5. Дано: $\sin \alpha + \cos \alpha = \frac{1}{2}$. Найдите $\sin 2\alpha$.
- 6. Решите уравнения:
 - a) $\sin\left(\frac{\pi}{4} x\right) \cdot \sin\left(\frac{\pi}{4} + x\right) = \frac{1}{2}$,
 - 6) $\cos 2x + 5\sin x 4 = 0$.

- 1. Упростите $0.125 \cos^2 \alpha + \cos^4 \alpha$.
- 2. $\lg \alpha = -0.75$, $\lg \beta = 2.4$; $\frac{\pi}{2} < \alpha < \pi$, $0 < \beta < \frac{\pi}{2}$. Найдите $\cos{(2\alpha + \beta)}$.
- 3. Упростите $\left(\frac{\sin\alpha}{1+\cos\alpha}+\frac{\sin\alpha}{1-\cos\alpha}\right)\cdot\sin2\alpha$.
- 4. Упростите $\sqrt{(\cot \alpha \cot \alpha) \cdot 2 \cot 2\alpha} \cdot \cot 2\alpha + 2$, если $\frac{\pi}{2} < \alpha < \frac{3\pi}{4}$.

- 5. $\sin \frac{\alpha}{2} \cos \frac{\alpha}{2} = 1,4$. Найдите $\sin \alpha$.
- 6. Решите уравнения:

a)
$$\operatorname{ctg} x - \operatorname{ctg} 2x = 2$$
; $\pi < x < \frac{3\pi}{2}$,

6) $\cos 2x + 5\cos x + 4 = 0$.

Вариант 7

- 1. Дано: $\frac{\sin 3\alpha}{\sin \alpha} = 2.2$. Найдите $\sin 2\alpha$ и $\cos 2\alpha$.
- 2. Докажите, что $\frac{\sin^3 \alpha + \sin 3\alpha}{\cos^3 \alpha \cos 3\alpha} = \cot \alpha$.
- 3. Докажите, что $8\cos 10^{\circ} \cdot \cos 20^{\circ} \cdot \cos 40^{\circ} = \cot 10^{\circ}$.
- 4. Найдите наибольшее и наименьшее значения функции $u = \sin^4 x + \cos^4 x$.

5. Упростите
$$\sqrt{\left(1-tg^2\frac{\alpha}{2}\right)\cdot\left({\rm ctg}^2\,\frac{\alpha}{2}-1\right)},$$
 если $\pi<\alpha<\frac{3\pi}{2}.$

6. Решите уравнения:

a)
$$\frac{\cos 2x}{1 + \log x} = 0; -\pi < x < \frac{\pi}{2},$$

б) $\sin 2x = \cos^4 \frac{x}{2} - \sin^4 \frac{x}{2}$. В ответе запишите сумму решений x, удовлетворяющих условию $0 \leqslant x \leqslant \pi$.

- 1. Дано: $\frac{\cos 3\alpha}{\sin \alpha} = \frac{39}{41}$. Найдите $\sin 2\alpha$ и $\cos 2\alpha$.
- 2. Докажите, что $\frac{\cos \alpha \cos 3\alpha}{\sin \alpha + \sin 3\alpha} = \operatorname{tg} \alpha$.
- 3. Докажите, что $\sin 10^{\circ} \cdot \cos 20^{\circ} \cdot \cos 40^{\circ} = \frac{1}{8}$.
- 4. Найдите наибольшее и наименьшее значения функции $y = \sin^6 x + \cos^6 x.$

5. Упростите
$$\sqrt{(1+tg^2\alpha)\cdot({\rm ctg}^2\,\alpha+1)}\cdot\sin2\alpha$$
, если $\frac{\pi}{2}<\alpha<\frac{3\pi}{4}$.

6. Решите уравнения:

a)
$$\frac{\cos 2x}{\operatorname{tg} x - 1} = 0; -\frac{\pi}{2} < x < 2\pi,$$

б) $\sin 4x = \sqrt{2} \left(\cos^4 x - \sin^4 x\right)$. В ответе запишите сумму решений x, удовлетворяющих условию $0 \leqslant x \leqslant \frac{\pi}{2}$.

16. Формулы приведения

- 1. 1) Приведите к тригонометрическим функциям острых положительных углов, сохранив наименование функции:
 - a) $\sin 304^{\circ}$,
- б) $\cos 3.6\pi$.
- Приведите к тригонометрическим функциям острых положительных углов, изменив наименование приводимых функций:
 - a) $tg 278^{\circ}$,
- б) $\sin(-3,1) \pi$.
- 3) Вычислите:
 - a) $\sin 930^{\circ}$,
- $6) \ \text{tg} \frac{5\pi}{6}.$
- 2. Упростите $\sin{(2\pi-\alpha)} + \cos{\left(\frac{3\pi}{2}+\alpha\right)} + \tan{(\pi-\alpha)} + \cot{\left(\frac{\pi}{2}-\alpha\right)}$.
- 3. Упростите $\sin 80^\circ \cdot \cos 350^\circ \sin 190^\circ \cdot \cos 280^\circ \operatorname{tg} 200^\circ \cdot \operatorname{ctg} 340^\circ.$
- 4. Найдите значение $\sin\left(\alpha-\frac{3\pi}{2}\right)$, если $\sin\alpha=-\frac{2}{3}$; $\frac{3\pi}{2}<\alpha<2\pi$.
- 5. Решите уравнение $\cos{(\pi + x)} = -\cos{\left(\frac{\pi}{2} x\right)};$ $\pi < x < \frac{3\pi}{2}.$

- 1. 1) Приведите к тригонометрическим функциям острых положительных углов, сохранив наименование функции:
 - a) $\cos 317^{\circ}$,
- б) $\sin 1.9\pi$.
- 2) Приведите к тригонометрическим функциям острых положительных углов, изменив наименование приводимых функций:
 - a) $ctg 138^{\circ}$,
- б) $\cos 5.6\pi$.
- 3) Вычислите:
 - a) $\cos(-480^\circ)$, 6) $\cot\left(-\frac{5\pi}{3}\right)$.
- 2. Упростите

$$\sin\left(\alpha + \frac{\pi}{2}\right) - \sin\left(\alpha - \frac{\pi}{2}\right) + 3\cos\alpha - 3\cos\left(2\pi - \alpha\right).$$

3. Упростите

$$tg 18^{\circ} \cdot tg 288^{\circ} + \sin 32^{\circ} \cdot \sin 148^{\circ} - \sin 302^{\circ} \cdot \sin 122^{\circ}$$
.

- 4. Найдите значение $\cos\left(\alpha-\frac{3\pi}{2}\right)$, если $\cos\alpha=-\frac{2}{3};$ $\frac{\pi}{2}<\alpha<\pi.$
- 5. Решите уравнение $\sin\left(x-\frac{\pi}{2}\right)=-\sin\left(x-\pi\right);$ $\frac{\pi}{2}< x<\pi.$

- 1. 1) Приведите к тригонометрическим функциям острых положительных углов, сохранив наименование функции:
 - a) ctg 2.
- б) sin 6.
- 2) Приведите к тригонометрическим функциям острых положительных углов, изменив наименование приводимых функций:
 - a) $\cos 5.6\pi$,
- б) tg 10.

3) Вычислите:

a)
$$\cos 855^{\circ}$$
, 6) $\cot \frac{11\pi}{6}$.

2. Упростите

$$1 + \sin(x - 2\pi) \cdot \cos\left(x - \frac{3\pi}{2}\right) - \tan(\pi - x) \cdot \tan\left(\frac{3\pi}{2} - x\right) - 2\cos^2 x.$$

- 3. Вычислите $8 \sin 510^{\circ} \cdot \cos (-300^{\circ}) \cdot \lg 240^{\circ}$.
- 4. $A,\ B$ и C углы треугольника. Докажите, $\sin\frac{A+B}{2}=\cos\frac{C}{2}.$
- 5. Решите уравнение $\sin^2\left(\frac{3\pi}{2} x\right) + 2\cos(2\pi x) = 3.$

Вариант 4

1. 1) Приведите к тригонометрическим функциям острых положительных углов, сохранив наименование функции:

б)
$$tg(-3)$$
.

- 2) Приведите к тригонометрическим функциям острых положительных углов, изменив наименование приводимых функций:
 - a) $\sin 2$,

6)
$$\cos(-3)$$
.

Вычислите:

a)
$$tg \frac{74\pi}{3}$$
,

6) ctg
$$\frac{-20\pi}{3}$$
.

2. Упростите

$$\sin^2(\pi - x) + \operatorname{tg}^2(\pi - x) \cdot \operatorname{tg}^2\left(\frac{3\pi}{2} + x\right) - \sin\left(\frac{\pi}{2} + x\right) \cdot \cos(x - 2\pi).$$

- 3. Вычислите $10 \cot 315^{\circ} \cdot \sin (-150^{\circ}) \cdot \cos 225^{\circ}$.
- 4. A, B и C углы треугольника. Докажите, $\sin(A+B) = \sin C$.

5. Решите уравнение

$$\sin^2\left(\frac{3\pi}{2} - x\right) + \sin^2\left(2\pi - x\right) + \cos\left(2\pi - x\right) = 0.$$

Вариант 5

1. Упростите $\frac{\sin{(2\pi-\alpha)}\cdot tg\left(\frac{\pi}{2}-\alpha\right)\cdot ctg\left(\frac{3\pi}{2}-\alpha\right)}{\cos{(2\pi+\alpha)}\cdot tg\left(\pi+\alpha\right)}$

- 2. Докажите, что $\sin 390^{\circ} \cdot \sin 510^{\circ} + \cos 570^{\circ} \cdot \cos 870^{\circ} + \operatorname{tg} 600^{\circ} \cdot \operatorname{tg} 1110^{\circ} = 2.$
- 3. Сравните:
 - a) $tg 250^{\circ}$ и $tg 240^{\circ}$, 6) $sin 172^{\circ}$ и $sin 175^{\circ}$.
- 4. Упростите $\operatorname{tg}\left(\frac{3\pi}{2} \alpha\right) \cdot \left(\sin\frac{5\pi}{14} \cos\frac{\pi}{7}\right)$.
- 5. Решите уравнение $2 \cot (\pi x) \cot 450^\circ \cot (2\pi x) = 0;$ $-\frac{3\pi}{2} < x < 0.$

Вариант 6

1. Упростите $\frac{\sin{(\pi-\alpha)}\cdot\sin{\left(\frac{3\pi}{2}-\alpha\right)}\cdot \operatorname{tg}\left(\frac{\pi}{2}-\alpha\right)}{\sin{\left(\frac{\pi}{2}+\alpha\right)}\cdot \operatorname{tg}\left(\frac{3\pi}{2}+\alpha\right)\cdot \operatorname{tg}\left(2\pi-\alpha\right)}.$

2. Докажите, что

$$\sin 450^{\circ} \cdot \cos 675^{\circ} + \operatorname{tg} 562^{\circ} \cdot \operatorname{tg} 788^{\circ} + \frac{1}{\cos 660^{\circ} \cdot \cos 1200^{\circ}} = -2,5.$$

- 3. Сравните:
 - а) $\sin 250^{\circ}$ и $\sin 260^{\circ}$, б) $\cot 250^{\circ}$ и $\cot 240^{\circ}$.
- 4. Упростите $\operatorname{ctg}\left(\frac{3\pi}{2} + \alpha\right) \cdot \left(\cos\frac{\pi}{17} \sin\frac{15\pi}{34}\right)$.
- 5. Решите уравнение $\sin(x+45^\circ) \sin(225^\circ + x) = 2\sin 495^\circ;$ $80^\circ < x < 100^\circ.$

1. Докажите тождество

$$\frac{\cos^2\left(\frac{3\pi}{2} + \alpha\right)}{\operatorname{tg}^2\left(\alpha - 2\pi\right)} + \frac{\cos^2\left(-\alpha\right)}{\operatorname{tg}^2\left(\alpha - \frac{3\pi}{2}\right)} = 1.$$

- 2. Упростите $tg 100^{\circ} + \frac{\sin 530^{\circ}}{1 + \cos 640^{\circ}}$.
- 3. Найдите значение выражения

$$\frac{\sin\left(\alpha - \frac{3\pi}{2}\right) \cdot \sin\left(\alpha - \pi\right)}{\cot\left(2\pi - \alpha\right)},$$

если
$$\operatorname{ctg}\left(\alpha-\pi\right)=\frac{3}{4};\,0<\alpha<\frac{\pi}{2}.$$

- 4. Известно, что $\cos{(45^{\circ} + \alpha)} + \cos{(45^{\circ} \alpha)} = m$. Найдите $\cos{(45^{\circ} + \alpha)} \cos{(45^{\circ} \alpha)}$.
- 5. Решите уравнение

$$\sin\left(\frac{\pi}{2} + 2x\right) + 4\cos\left(\frac{3\pi}{2} - x\right) + 5\cos 10\pi = 0;$$
$$-2\pi < x < -\pi.$$

Вариант 8

1. Докажите тождество

$$\frac{1 - \operatorname{ctg}^{2}\left(\alpha - 270^{\circ}\right)}{\operatorname{ctg}\left(\alpha + 90^{\circ}\right)} \cdot \frac{\operatorname{tg}\left(\alpha - 90^{\circ}\right)}{1 - \operatorname{ctg}^{2}\left(\alpha - 360^{\circ}\right)} = 1.$$

- 2. Упростите $ctg 0.4\pi \frac{\cos 1.1\pi}{1 \cos 0.6\pi}$.
- 3. Найдите значение выражения

$$\frac{\operatorname{tg}\left(\pi+\alpha\right)\cdot\operatorname{ctg}\left(\pi-\alpha\right)+2\sin\frac{\pi}{2}}{\sin\left(\alpha-\frac{3\pi}{2}\right)},$$
если $\cos\left(\alpha-\frac{3\pi}{2}\right)=-\frac{3}{5};\ 0<\alpha<\frac{\pi}{2}.$

- 4. Известно, что $\cos{(30^{\circ} + \alpha)} + \cos{(60^{\circ} \alpha)} = a$. Найдите $\cos{(30^{\circ} + \alpha)} \cos{(60^{\circ} \alpha)}$.
- 5. Решите уравнение $\sin\left(\frac{\pi}{2} + 2x\right) \cos(\pi + x) = \cos\frac{7\pi}{2};$ $-\frac{\pi}{2} < x < 0.$

17. Арифметическая прогрессия

Вариант 1

- 1. Последовательность задана формулой $c_n = 2n^2 5n + +1$. Принадлежат ли этой последовательности следующие числа:
 - a) -2? 6) 26?
- 2. a_n арифметическая прогрессия. $a_2=2; a_4=6$. Найдите a_6 .
- 3. Найдите разность арифметической прогрессии, если $a_8-a_5=-21,3.$
- a_n арифметическая прогрессия. $d=6; S_{10}=340.$ Найдите a_1 и $a_{10}.$
- $5.\ a_n$ арифметическая прогрессия. $a_6=rac{3}{4}; a_{10}=1rac{3}{4}.$ Найдите $S_6.$

- 1. Последовательность задана формулой $c_n = -3n^2 + +7n + 4$. Принадлежат ли этой последовательности следующие числа:
 - a) 8? б) 32?
- 2. a_n арифметическая прогрессия. $a_2=-3;\,a_4=1.$ Найдите d.
- 3. Найдите разность арифметической прогрессии, если $a_{10}-a_3=-78,4.$
- $4.\ a_n$ арифметическая прогрессия. $a_1=10;\ S_{14}=1050.$ Найдите a_{14} и d.

5. a_n — арифметическая прогрессия. $a_3 = -1; a_5 = 3$. Найдите S_{10} .

Вариант 3

- 1. Между числами (-5) и 7 вставьте три числа, которые вместе с данными числами образуют арифметическую прогрессию.
- $2. \ a_n$ арифметическая прогрессия. $a_1=1,2;\ a_4=1,8.$ Найдите $S_6.$
- 3. a_n арифметическая прогрессия. $a_4 = \frac{5}{14}$. Найдите S_7 .
- 4. a_n арифметическая прогрессия. $a_1 + a_5 = 26$; $a_2 a_4 = 160$. Найдите S_6 , если a_n возрастает.
- $5. \ a_n$ арифметическая прогрессия. $a_1+a_2+a_3=2;$ $a_1^2+a_2^2+a_3^2=rac{14}{9}.$ Найдите a_1,a_2 и $a_3.$

Вариант 4

- 1. Между числами (-28) и 12 вставьте четыре числа, которые вместе с данными числами образуют арифметическую прогрессию.
- 2. a_n арифметическая прогрессия. $a_2 = -5$; $a_6 a_4 = 6$. Найдите S_{10} .
- 3. a_n арифметическая прогрессия. $a_4+a_6=14$. Найдите S_9 .
- 4. a_n убывающая арифметическая прогрессия. $a_1a_3=-5; S_3=6$. Найдите S_7 .
- 5. a_n арифметическая прогрессия. $a_1+a_3+a_5=-12; a_1a_3a_5=80.$ Найдите $a_1.$

Вариант 5

1. Найдите формулу n-ого члена последовательности 19: 32: 45: 58: 71 . . .

- 2. a_n арифметическая прогрессия. $a_1 = 1$. При каком d $a_1a_3 + a_2a_3$ имеет минимальное значение?
- 3. $n \in \mathbb{N}$. Решите уравнение $3^3 3^5 3^7 \dots 3^{2n-1} = 27^5$.
- 4. a_n арифметическая прогрессия. $a_1=35,8;\ a_2=35,5.$ Найдите наибольшее значение суммы первых членов прогрессии.
- 5. Найдите сумму всех трехзначных натуральных чисел, делящихся на 11 и на 3 одновременно.

- 1. Найдите формулу n-ого члена последовательности $99;74;49;24;-1\dots$
- 2. a_n арифметическая прогрессия. $a_7 = 9$. При каком d $a_1 a_2 a_7$ имеет минимальное значение?
- 3. $n \in \mathbb{N}$. Решите уравнение $2^2 2^4 2^6 \dots 2^n = (0.25)^{-8}$.
- 4. a_n арифметическая прогрессия. $a_1=-41,3;$ $a_2=-39,9.$ Найдите наименьшее значение суммы первых членов прогрессии.
- 5. Найдите сумму всех трехзначных натуральных чисел, которые при делении на 4 дают остаток, равный 3.

- 1. Найдите наибольший член последовательности $c_n = -n^3 + 25n 1$.
- 2. $x \in \mathbb{N}$. Решите уравнение

$$\frac{x-1}{x^2} + \frac{x-2}{x^2} + \frac{x-3}{x^2} + \ldots + \frac{1}{x^2} = \frac{1}{15}.$$

- 3. Даны две арифметические прогрессии: 17;21... и 16;21... Найдите сумму первых ста чисел, встречающихся в обеих прогрессиях.
- 4. Числа $\frac{1}{17}$; $\frac{1}{15}$; $\frac{1}{13}$ являются членами некоторой арифметической прогрессии с возрастающими номерами. Каково наибольшее возможное значение разности такой прогрессии?

5. При каких значениях параметра a уравнение $x\left(x^{12}-ax^6+a^2\right)=0$ имеет 5 корней, являющихся последовательными членами арифметической прогрессии?

Вариант 8

- 1. Найдите наибольший член последовательности $c_n = -n^3 + 18n$.
- 2. $x \in \mathbb{N}$. Решите уравнение

$$\frac{x-1}{x} + \frac{x-2}{x} + \frac{x-3}{x} + \ldots + \frac{1}{x} = 3.$$

- 3. Даны две арифметические прогрессии: 2; 7; 12... и 3; 10; 17... Найдите сумму первых пятидесяти чисел, встречающихся в обеих прогрессиях.
- 4. Числа $\frac{1}{21}$; $\frac{1}{19}$; $\frac{1}{17}$ являются членами некоторой арифметической прогрессии с возрастающими номерами. Каково наибольшее возможное значение разности такой прогрессии?
- 5. При каких значениях параметра a уравнение $x^4 + (a-3)x^2 + (a+10)^2 = 0$ имеет 4 корня, являющихся последовательными членами арифметической прогрессии?

18. Геометрическая прогрессия

- 1. Найдите формулу общего члена геометрической прогрессии $b_n,$ если $b_1=-\frac{1}{32};$ $b_2=-\frac{1}{16}.$
- b_n геометрическая прогрессия. $b_1=72; q=rac{1}{3}.$ Найдите $b_5.$
- 3. b_n геометрическая прогрессия. $b_1 = \sqrt{2}; b_7 = \sqrt{128}.$ Найдите $b_8.$
- 4. Между числами 24 и $\frac{3}{32}$ вставьте три числа так, чтобы они вместе с данными числами составили геометрическую прогрессию.

- 5. b_n геометрическая прогрессия. $b_4=9; b_5=27.$ Найдите $S_5.$
- 6. Сколько нужно взять последовательных натуральных чисел, кратных 3, начиная с 3, чтобы их сумма была равна 165?

- 1. Найдите формулу общего члена геометрической прогрессии b_n , если $b_1 = 64$; $b_2 = -32$.
- $2. \ b_n$ геометрическая прогрессия. $b_1=144; q=rac{1}{2}.$ Найдите $b_7.$
- 3. b_n геометрическая прогрессия. $b_1 = \sqrt{3}; b_5 = \sqrt{243}.$ Найдите $b_6.$
- 4. Между числами 15 и $\frac{3}{125}$ вставьте три числа так, чтобы они вместе с данными числами составили геометрическую прогрессию.
- $5.\,\,\,b_n$ геометрическая прогрессия. $b_4=rac{1}{25};b_5=rac{1}{125}.$ Найдите $S_5.$
- 6. Сколько нужно взять последовательных натуральных чисел, кратных 7, начиная с 7, чтобы их сумма была равна 252?

- 1. b_n геометрическая прогрессия. $b_2=37\frac{1}{3}; b_6=2\frac{1}{3}.$ Найдите b_1 и q.
- $2.\ b_n$ геометрическая прогрессия. $b_2=24.5; b_5=196.$ Найдите b_3 и $b_4.$
- $3. \ b_n$ геометрическая прогрессия. $q=1,5; b_1=4; S_n=52,75.$ Найдите n.
- 4. b_n геометрическая прогрессия. $b_5 b_3 = 360$; $b_4 b_2 = 180$. Найдите b_1 и q.
- 5. b_n возрастающая геометрическая прогрессия. $b_1b_2b_3 = 64$; $b_1 > 0$; $b_1 + b_2 + b_3 = 14$. Найдите S_5 .

6. b_n — геометрическая прогрессия. n=52. Сумма членов, стоящих на нечетных местах, равна 28, а сумма членов, стоящих на четных местах, равна 7. Найдите q.

Вариант 4

- 1. b_n геометрическая прогрессия. $b_3=-1; b_6=3\frac{3}{8}.$ Найдите b_1 и q.
- 2. b_n геометрическая прогрессия. $b_2 = \frac{1}{3}; b_7 = 81$. Найдите $b_3; b_4; b_5$ и b_6 .
- 3. b_n геометрическая прогрессия. $q=2;\ b_1=\frac{1}{3};\ S_n=5.$ Найдите n.
- 4. b_n геометрическая прогрессия. $b_6 b_4 = 1700$; $b_5 b_3 = 340$. Найдите b_1 и q.
- $5. \ b_n$ возрастающая геометрическая прогрессия. $b_2b_4=36;\ b_1>0;\ b_2+b_4=20.$ Найдите $S_4.$
- 6. b_n геометрическая прогрессия. n=1990. Сумма членов, стоящих на нечетных местах, равна 138, а сумма членов, стоящих на четных местах, равна 69. Найдите q.

- 1. b_n геометрическая прогрессия. $b_1b_5=12; \frac{b_2}{b_4}=3.$ Найдите $b_2.$
- $2. \ b_n$ геометрическая прогрессия. $b_1+b_3=8,5;$ $b_3+b_5=rac{17}{32}.$ Найдите b_1 и q.
- 3. b_n геометрическая прогрессия. $b_4 b_1 = 78;$ $b_1 + b_2 + b_3 = 39.$ Найдите $S_4.$
- 4. b_n геометрическая прогрессия. n=9. $b_1+b_2+b_3=21$; $b_4+b_5+b_6=168$. Найдите $b_7+b_8+b_9$.

- 5. b_n геометрическая прогрессия. $b_1 + b_2 = 3 (b_2 + b_3)$; $b_1 + b_2 + b_3 = 26$. Найдите S_6
- 6. x_1, x_2, x_3, x_4 отрицательные члены геометрической прогрессии. x_1, x_2 корни уравнения $x^2+9x+a=0; x_3, x_4$ корни уравнения $x^2-36x+b=0$. Найдите a и b.

- 1. b_n геометрическая прогрессия. $b_1+b_2+b_3=21;$ $b_1^2+b_2^2+b_3^2=189.$ Найдите b_1 и q.
- 2. b_n геометрическая прогрессия. $b_1 + b_2 + b_3 = 168$; $b_4 + b_5 + b_6 = 21$. Найдите b_1 и q.
- 3. b_n возрастающая геометрическая прогрессия. $b_1+b_2+b_3=26; b_1b_2b_3=216.$ Найдите $S_4.$
- 4. b_n геометрическая прогрессия. n=9. $b_1+b_2+b_3=26$; $b_4+b_5+b_6=702$. Найдите $b_7+b_8+b_9$.
- 5. b_n геометрическая прогрессия. $b_1+b_2=4\,(b_2+b_3)\,;$ $b_1+b_2+b_3=63.$ Найдите S_6
- 6. x_1, x_2, x_3, x_4 положительные члены геометрической прогрессии. x_1, x_2 корни уравнения $x^2 + 12x + a = 0; x_3, x_4$ корни уравнения $x^2 + 3x + b = 0$. Найдите a и b.

- 1. При каких x числа 32^x ; 6^{x^2+1} и 3^{5x} являются последовательными членами геометрической прогрессии?
- 2. b_n геометрическая прогрессия. $b_1+b_4=140;$ $b_2+b_3=60.$ Найдите $b_1,b_2,b_3,b_4.$
- 3. b_n геометрическая прогрессия. $S_5=1{,}5S_3;\ b_5=4b_3;\ q>0$. Найдите b_4 .
- 4. b_n геометрическая прогрессия. $b_1+b_2+b_3=21;$ $b_1^2+b_2^2+b_3^2=169.$ Найдите b_1 и q.

- 5. Найдите сумму n чисел вида: $1 + 11 + 111 + \dots$
- 6. Решите уравнение $x^3 + 3x^2 6x + a = 0$, зная, что три его различных корня образуют геометрическую прогрессию.

- 1. При каких x числа 5^{5x} ; $10^{\frac{3x^2+3}{4}}$ и 32^x являются последовательными членами геометрической прогрессии?
- 2. b_n геометрическая прогрессия. $b_1 + b_4 = 252$; $b_2 + b_3 = 60$. Найдите b_1, b_2, b_3, b_4 .
- $3. \ b_n$ геометрическая прогрессия. $b_2+b_4=rac{10}{3}; b_3+b_5=10.$ Найдите $b_4.$
- 4. b_n геометрическая прогрессия. $b_1+b_2+b_3=14;$ $b_1^2+b_2^2+b_3^2=84.$ Найдите b_1 и q.
- 5. Найдите сумму 100 чисел вида: $9 + 99 + 999 + \dots$
- 6. Решите уравнение $x^3 + 3x^2 6x + a = 0$, зная, что три его различных корня образуют геометрическую прогрессию.

19. Бесконечно убывающая геометрическая прогрессия. Смешанные задачи на прогрессии

- 1. $10; -8; \dots$ бесконечно убывающая геометрическая прогрессия. Найдите S.
- 2. Сумма бесконечно убывающей геометрической прогрессии равна $14; q=-rac{2}{7}.$ Найдите b_1 и $b_2.$
- 3. Превратите в обыкновенную дробь: a) 1, (6), 6) 4, 2 (3).
- 4. x; y; z образуют геометрическую прогрессию. (x-1); y; (z-1) образуют арифметическую прогрессию. (x-1); (y-2); (z-4) образуют геометрическую прогрессию. Найдите x, y и z.

- 1. $-6; 4; \dots$ бесконечно убывающая геометрическая прогрессия. Найдите S.
- 2. Сумма бесконечно убывающей геометрической прогрессии равна $18; q=-rac{5}{9}.$ Найдите b_1 и $b_2.$
- 3. Превратите в обыкновенную дробь:
 - a) 2,(3), 6) 1,1(6).
- 4. x; y; z образуют геометрическую прогрессию. (x+1); (y+1); z образуют арифметическую прогрессию. (x+5); (y+1); z образуют геометрическую прогрессию. Найдите x, y и z.

Вариант 3

- 1. Превратите в обыкновенную дробь:
 - a) 0,(27), 6) 4,1(54).
- 2. В бесконечно убывающей геометрической прогрессии $b_1 = -\sqrt{2}; b_2 = 1.$ Найдите S.
- 3. В бесконечно убывающей геометрической прогрессии $S=1,6; b_2=-rac{1}{2}.$ Найдите $b_1.$
- 4. Числа 3; x; y составляют возрастающую арифметическую прогрессию. Числа 3; x-6; y составляют геометрическую прогрессию. Найдите x.

- 1. Превратите в обыкновенную дробь:
 - a) 0,(72), 6) 3,2(45).
- 2. В бесконечно убывающей геометрической прогрессии $b_1 = \sqrt{3}; b_2 = -1$. Найдите S.
- 3. В бесконечно убывающей геометрической прогрессии $b_1+b_2+b_3=3; b_1+b_3+b_5=5{,}25.$ Найдите S.
- 4. Числа 27; x; y составляют убывающую арифметическую прогрессию. Числа 27; x-6; y составляют геометрическую прогрессию. Найдите y.

- 1. В бесконечно убывающей геометрической прогрессии $b_2=21; S=112.$ Найдите $b_1.$
- 2. В бесконечно убывающей геометрической прогрессии $S=1,5; b_1^2+b_2^2+b_3^2+\ldots=1,125.$ Найдите q.
- 3. В бесконечно убывающей геометрической прогрессии $S=192; b_1+b_2+b_3=189.$ Найдите b_1 и q.
- 4. Три различных числа образуют геометрическую прогрессию, а их попарные суммы, взятые в некотором порядке, образуют арифметическую прогрессию. Найдите q исходной прогрессии.
- 5. a_n арифметическая прогрессия. $S_{10}=30.\ a_4; a_7; a_5$ образуют геометрическую прогрессию. Найдите d. (d не равно 0.)

Вариант 6

- 1. В бесконечно убывающей геометрической прогрессии $b_2 = 15$; S = 80. Найдите b_1 и q.
- 2. В бесконечно убывающей геометрической прогрессии $S=9;\ b_1^2+b_2^2+b_3^2+\ldots=40,5.$ Найдите $b_1^3+b_2^3+b_3^3+\ldots$
- 3. В бесконечно убывающей геометрической прогрессии $S=81; b_1+b_2+b_3=78.$ Найдите b_1 и q.
- 4. Три различных числа образуют геометрическую прогрессию, домноженные на 1, 2 и 3 соответственно, образуют арифметическую прогрессию. Найдите q исходной прогрессии.
- 5. a_n арифметическая прогрессия. $S_{13}=130.$ $a_4;$ $a_{10};$ a_7 образуют геометрическую прогрессию. Найдите d, если d не равно 0.

Вариант 7

1. Найдите q бесконечно убывающей геометрической прогрессии, у которой каждый член относится к сумме всех последующих, как 2 к 3.

- 2. Решите уравнение $x^2-2x^3+4x^4-8x^5+\ldots=2x+1,$ если его левая часть представляет собой сумму бесконечно убывающей геометрической прогрессии.
- 3. В бесконечно убывающей геометрической прогрессии $b_2+b_8=\frac{325}{128};\ b_2+b_6-\frac{65}{32}=b_4.$ Найдите $b_1^2+b_2^2+\ldots$
- 4. x;y;z арифметическая прогрессия. $x>0;\ y>0;$ $z>0.\ x;\frac{y}{3};z$ убывающая геометрическая прогрессия. Найдите q.
- $5. \ x>0; \ y>0; \ z>0; \ t>0. \ x;y;z;$ арифметическая прогрессия. y;z;t геометрическая прогрессия. $x+y+z=12; \ y+z+t=19.$ Найдите x,y,z,t.

- 1. Найдите q бесконечно убывающей геометрической прогрессии, у которой каждый член в четыре раза больше суммы всех последующих членов.
- 2. Решите уравнение $x^2 + 3x^3 + 9x^4 + 27x^5 + \ldots = 1 3x$, если его левая часть представляет собой сумму бесконечно убывающей геометрической прогрессии.
- 3. В бесконечно убывающей геометрической прогрессии $b_1-b_5=1{,}92;\ b_1+b_3=2{,}4.$ Найдите $\dfrac{S^2}{b_1^2+b_2^2+\dots}.$
- 4. x;y;z арифметическая прогрессия. $x>0;\ y>0;$ $z>0.\ x;\frac{y}{3};z$ возрастающая геометрическая прогрессия. Найдите q.
- $5. \ x>0; \ y>0; \ z>0; \ t>0. \ x;y;z;$ арифметическая прогрессия. y;z;t геометрическая прогрессия. $x+y+z=54; \ y+z+t=90.$ Найдите x,y,z,t.

Проверочные работы на повторение

Проверочная работа № 1

Вариант 1

- $\overline{1}$. Вычислите $0.2+0.8\cdot\left(0.65-rac{1}{24}-4rac{7}{15}:2
 ight)$.
- 2. Упростите и вычислите $\left(\frac{64a^{\frac{1}{6}}\cdot a^{-\frac{17}{5}}}{a^{-\frac{7}{30}}}\right)^{-\frac{1}{6}}$ при a=25.
- 3. Докажите равенство

$$\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}=2.$$

4. Упростите выражение

$$\frac{x^{\frac{3}{2}} - y^{\frac{3}{2}}}{x + y + \sqrt{xy}} + \frac{x - y}{\sqrt{x} - \sqrt{y}} - 2\sqrt{x}; \quad x, y > 0; \ x \neq y.$$

5.* Упростите выражение

$$4\cos^4\alpha - \sin^2 2\alpha - \cos 4\alpha - 2\cos 2\alpha.$$

6. Найдите
$$\cos\left(\alpha+\frac{\pi}{3}\right)$$
, если $\sin\alpha=-\frac{3}{5};\ \pi<\alpha<\frac{3\pi}{2}.$

- 1. Вычислите $\left(2\frac{5}{72}\cdot2-5\frac{4}{45}+0.2\right):0.75+0.25.$
- 2. Упростите и вычислите $\left(\frac{a^{\frac{6}{7}} \cdot a^{-\frac{2}{3}}}{6a^{-\frac{17}{21}}}\right)^{-\frac{1}{2}}$ при a=0,96.
- 3. Докажите равенство $\sqrt{4\sqrt{2} + 2\sqrt{6}} = \sqrt[4]{2} \cdot \left(\sqrt{3} + 1\right)$.

4. Упростите выражение

$$\left(\frac{a^{\frac{3}{2}} + b^{\frac{3}{2}}}{a - b} - \frac{a - b}{a^{\frac{1}{2}} + b^{\frac{1}{2}}}\right) \cdot \frac{a - b}{\sqrt{ab}}; \quad a, b > 0; \ a \neq b.$$

- 5. Упростите выражение $\frac{2 \operatorname{tg} \alpha}{1 \operatorname{tg}^2 \alpha} \cdot \cos 2\alpha \sin 2\alpha$.
- 6. Найдите $\sin 2\alpha$ и $\lg 2\alpha$, если $\cos \alpha = -\frac{5}{13}; \ \frac{\pi}{2} < \alpha < \pi$.

Вариант 3

- 1. Вычислите $\left(-6\frac{2}{15}-1\frac{1}{2}+5\frac{1}{6}\right):0.5+0.5.$
- 2. Упростите и вычислите $\left(\frac{9a^{-\frac{5}{24}}}{a^{\frac{1}{8}}, a^{\frac{5}{2}}}\right)^{\frac{1}{3}}$ при a=24.
- 3. Докажите равенство

$$\sqrt{3-\sqrt{5}}\cdot\left(3+\sqrt{5}\right)\cdot\left(\sqrt{10}-\sqrt{2}\right)=8.$$

4. Упростите выражение

$$\left(\frac{1}{\sqrt{y}} - \frac{1}{\sqrt{x}}\right)^{-1} \cdot \frac{x^{-1} + y^{-1}}{\sqrt{x} - \sqrt{y}} - \frac{2}{(\sqrt{x} - \sqrt{y})^2};$$

 $x, y > 0; x \neq y.$

- 5. Упростите выражение $1+\cos{(\pi-\alpha)}\cdot\sin{\left(lpha-rac{3\pi}{2}
 ight)}-rac{1+\cos{2lpha}}{2}.$
- 6. Найдите $\sin\left(\alpha+\frac{\pi}{6}\right)$, если $\cos\alpha=-\frac{3}{5};\;\frac{\pi}{2}<\alpha<\pi.$

- 1. Вычислите $0.9 + 0.1 : \left(\frac{5}{36} + 12\frac{7}{15} \cdot \frac{1}{6} 2.3\right)$.
- 2. Упростите и вычислите $\left(\frac{a^{\frac{1}{5}} \cdot a^{\frac{2}{3}}}{0,2 \cdot a^{\frac{4}{5}}}\right)^{-\frac{5}{3}}$ при a=125.
- 3. Докажите равенство $\sqrt[4]{7 + \sqrt{48}} = \sqrt{2} \cdot \frac{\sqrt{3} + 1}{2}$.

4. Упростите выражение

$$\frac{a^{-1} + b^{-1}}{\left(a^{\frac{1}{2}} + b^{\frac{1}{2}}\right)^2} + \frac{2}{\left(\sqrt{a} + \sqrt{b}\right)^3} \cdot \left(a^{-\frac{1}{2}} + b^{-\frac{1}{2}}\right); \ a, b > 0.$$

- 5. Упростите выражение $\frac{2\sin 1 \sin 2}{2\sin 1 + \sin 2} \cdot 4 \text{ tg}^{-2} \frac{1}{2}$.
- 6. Найдите $\cos 2\alpha$ и $\operatorname{tg} 2\alpha$, если $\sin \alpha = \frac{12}{12}$; $\frac{\pi}{2} < \alpha < \pi$.

Проверочная работа № 2

Вариант 1

1. Решите уравнения:

a)
$$x^4 - 8x^2 = 9$$
,

a)
$$x^4 - 8x^2 = 9$$
, 6) $\frac{x+6}{6-x} + \frac{x-6}{6+x} = \frac{6}{36-x^2}$.

2. Решите системы уравнений:

a)
$$\begin{cases} x + 5y = 11 \\ 7x - y = 5, \end{cases}$$
 6)
$$\begin{cases} \frac{x}{y} + \frac{y}{x} = \frac{34}{15} \\ x^2 + y^2 = 34. \end{cases}$$

- 3. Найдите сумму первых девятнадцати членов арифметической прогрессии, если известно, что $a_4 + a_8 +$ $+a_{12} + a_{16} = 224.$
- 4. Скорость первой машины на 10 км/ч больше скорости второй машины, и поэтому на путь в 560 км она затрачивает времени на 1 ч меньше, чем вторая машина. Найдите скорость первой машины.

Вариант 2

1. Решите уравнения:

a)
$$x^6 + 7x^3 - 8 = 0$$
, 6) $\frac{x+4}{4-x} + \frac{x-4}{4+x} = \frac{4}{16-x^2}$.

2. Решите системы уравнений:

a)
$$\begin{cases} 3x + 9y = 1 \\ x + 2y = 3, \end{cases}$$
 6)
$$\begin{cases} \frac{x}{y} + \frac{y}{x} = \frac{26}{5} \\ x^2 - y^2 = 24. \end{cases}$$

- 3. Знаменатель геометрической прогрессии равен 2. Сумма пяти первых членов равна 7,75. Найдите третий член прогрессии.
- 4. Половину пути мотоциклист ехал со скоростью 45 км/ч, затем задержался у переезда на 10 минут, после чего он увеличил скорость на 15 км/ч, чтобы наверстать потерянное время. Какое расстояние проехал мотоциклист?

1. Решите уравнения:

a)
$$x^8 - 17x^4 + 16 = 0$$
,

6)
$$\frac{x+5}{5-x} + \frac{x-5}{5+x} = \frac{5}{25-x^2}$$
.

2. Решите системы уравнений:

a)
$$\begin{cases} 5x + 9y = 3 \\ -4x + 3y = 18, \end{cases}$$
 6)
$$\begin{cases} \frac{x-1}{y} + \frac{y}{x-1} = 2 \\ x^2 + xy = 6. \end{cases}$$

- 3. Сумма трех первых членов арифметической прогрессии равна 9. Сумма их квадратов 35. Найдите эти три члена прогрессии.
- 4. По течению реки катер прошел за 7 часов столько же километров, сколько он проходит за 8 часов против течения. Собственная скорость катера 30 км/ч. Найдите скорость течения реки.

Вариант 4

1. Решите уравнения:

a)
$$(x+1)^4 + x^2 + 2x + 1 = 0$$
,

6)
$$\frac{x+3}{3-x} + \frac{x-3}{3+x} = \frac{3}{9-x^2}$$
.

2. Решите системы уравнений:

a)
$$\begin{cases} x + 3y = 7 \\ 7x + y = 1, \end{cases}$$
 6)
$$\begin{cases} \frac{x+y}{x-y} + \frac{x-y}{x+y} = 5,2 \\ xy = 6. \end{cases}$$

- 3. В возрастающей геометрической прогрессии сумма первых четырех членов равна 30, а сумма второго и третьего равна 12. Найдите разность между третьим и вторым членами этой прогрессии.
- 4. Машина выехала со скоростью 50 км/ч. Через полчаса вслед за ней выехала другая машина, которая догнала ее через 2,5 ч. Найдите скорость второй машины.

Проверочная работа № 3

Вариант 1

1. Решите неравенства:

a)
$$\frac{4}{x+2} > 3-x$$
, 6) $x^3 - x > x - x^2$.

2. Установите область определения функции

$$f(x) = \sqrt{x^2 - x - 20} + \sqrt{6 - x}.$$

3. Решите систему неравенств

$$\begin{cases} 2(x-1) - 3(x-4) > x+5 \\ \frac{3x-4}{x^2+4x+4} \ge 0. \end{cases}$$

- 4. В арифметической прогрессии 59; 55; 51 . . . Найдите сумму всех ее положительных членов.
- 5. Определите, верно ли неравенство

$$\frac{\operatorname{tg}(170^{\circ} + x) - \operatorname{tg} x}{1 + \operatorname{tg}(170^{\circ} + x) \cdot \operatorname{tg} x} < 0.$$

Вариант 2

1. Решите неравенства:

a)
$$x \le 3 - \frac{1}{x-1}$$
, 6) $(x+8) \cdot (x-1)^2 \cdot (x-5) < 0$.

2. Установите область определения функции

$$f(x) = \sqrt{x - x^2} + \sqrt{3x - x^2 - 2}$$
.

3. Решите систему неравенств

$$\left\{ \begin{array}{l} \frac{x^2 + 10x + 25}{4x - 5} \geqslant 0\\ (x - 2) \cdot (x^2 - 6x + 9) \leqslant 0. \end{array} \right.$$

- 4. В арифметической прогрессии $a_n=0.7n-35.1$. Найдите наименьший положительный член этой прогрессии.
- 5. Определите, верно ли неравенство

$$\cos (140^{\circ} + x) \cdot \cos x + \sin (140^{\circ} + x) \cdot \sin x > 0.$$

Вариант 3

1. Решите неравенства:

a)
$$x+3 < -\frac{1}{x+1}$$
, 6) $x^3 - x^2 - 3x + 3 > 0$.

2. Установите область определения функции

$$f(x) = \frac{1}{\sqrt{14 + 5x - x^2}} + \sqrt{x^2 - x - 20}.$$

3. Решите систему неравенств

$$\left\{ \begin{array}{l} \frac{x}{3} - \frac{4}{3} \leqslant \frac{4}{x} \\ \frac{1}{x} > -1 \\ x^2 + 3x + 1 > 0. \end{array} \right.$$

- 4. В арифметической прогрессии -63; -58; -53... Найдите сумму всех ее отрицательных членов.
- 5. Определите, верно ли неравенство

$$\frac{1 - \operatorname{tg} x \cdot \operatorname{tg} (250^{\circ} - x)}{\operatorname{tg} (250^{\circ} - x) + \operatorname{tg} x} < 0.$$

Вариант 4

1. Решите неравенства:

a)
$$x \leqslant 7 - \frac{16}{x+1}$$
,

6)
$$(x^2-1)\cdot(x^2+x+1)\cdot(x+5)^3>0$$
.

2. Установите область определения функции

$$f(x) = \sqrt{\frac{\sqrt{17 - 15x - 2x^2}}{x + 3}}.$$

3. Решите систему неравенств

$$\begin{cases} \frac{1}{3x} < 1\\ x + \frac{4}{x} \geqslant \frac{4x}{3}\\ 9x^2 - 9x + 1 < 0. \end{cases}$$

- 4. В арифметической прогрессии $a_n = 37,7-0,3n$. Найдите наибольший отрицательный член этой прогрессии.
- 5. Определите, верно ли неравенство $\sin{(290^{\circ} x)} \cdot \cos{x} + \cos{(290^{\circ} x)} \cdot \sin{x} < 0.$

Проверочная работа № 4

- 1. Дана функция $y = f(x) = x^2 + 2x 8$.
 - 1) Постройте график функции y = f(x).
 - 2) Укажите интервалы знакопостоянства функции y = f(x).
 - 3) Укажите промежутки монотонности функции y = f(x).
 - 4) Найдите множество значений функции y = f(x) на промежутке $(-\infty; -3]$.
 - 5) Постройте графики функций:

a)
$$y = |f(x)|$$
, 6) $y = f(|x|)$.

- 2. Постройте график функции $y = \frac{2x^2 x 3}{x + 1}$.
- 3. Найдите координаты точек графика функции $y=rac{x^2+3}{r},$ отстоящих от оси ординат на 1,5.

4. Найдите множество значений функции

$$y = 5 - 6\sin\frac{x}{2} \cdot \cos\frac{x}{2}.$$

- 5. Определите знак выражения $a=rac{\sin 2-\sin 1,9}{\mathop{
 m tg} 5}.$
- 6. Изобразите фигуру, ограниченную графиками функций $y=x^2$ и y=2x+3. Укажите координаты точки этой фигуры, которая имеет наибольшую ординату (точки границы фигуры считаются принадлежащими этой фигуре).

- 1. Дана функция $y = f(x) = -x^2 + 2x + 8$.
 - 1) Постройте график функции y = f(x).
 - 2) Укажите интервалы знакопостоянства функции y = f(x).
 - 3) Укажите промежутки монотонности функции y = f(x).
 - 4) Найдите множество значений функции y = f(x) на промежутке $[2; +\infty)$.
 - 5) Постройте графики функций:

a)
$$y = |f(x)|$$
, 6) $y = f(|x|)$.

- 2. Постройте график функции $y = \frac{3x^2 + x 2}{x + 1}$.
- 3. Найдите координаты тех точек графика функции $y=rac{3x^2+x-2}{x+1},$ у которых абсцисса равна ординате.
- 4. Найдите множество значений функции

$$y = \frac{\cos^2 x - \sin^2 x - 5}{3}.$$

- 5. Определите знак выражения $m = \frac{\text{tg } 5.5 \text{tg } 5.4}{\cos 3.5}$.
- 6. Изобразите фигуру, ограниченную графиками функций $y=-rac{3}{x}$ и y=x+4. Укажите координаты точки этой

фигуры, которая имеет наименьшую ординату (точки границы фигуры считаются принадлежащими этой фигуре).

Вариант 3

- 1. Дана функция $y = f(x) = x^2 + 2x 3$.
 - 1) Постройте график функции y = f(x).
 - 2) Укажите интервалы знакопостоянства функции y = f(x).
 - 3) Укажите промежутки монотонности функции y = f(x).
 - 4) Найдите множество значений функции y = f(x) на промежутке $[2; +\infty)$.
 - 5) Постройте графики функций:

a)
$$y = |f(x)|$$
,

б)
$$y = f(|x|).$$

- 2. Постройте график функции $y = \frac{2x^2 5x + 2}{2 x}$.
- 3. Найдите координаты точек графика функции $y=rac{2x^2-1}{x},$ которые отстоят от оси ординат на 2,5.
- 4. Найдите множество значений функции

$$y = \frac{2 - \cos^2 \frac{x}{2} + \sin^2 \frac{x}{2}}{4}.$$

- 5. Определите знак выражения $m=rac{\cos 2-\cos 3}{\cot 4.8}.$
- 6. Изобразите фигуру, ограниченную графиками функций $y=x^2$ и y=6-x. Укажите координаты точки этой фигуры, которая имеет наименьшую абсциссу (точки границы фигуры считаются принадлежащими этой фигуре).

Вариант 4

1. Дана функция $y = f(x) = -x^2 + 2x + 3$.

- 1) Постройте график функции y = f(x).
- 2) Укажите интервалы знакопостоянства функции y = f(x).
- 3) Укажите промежутки монотонности функции y = f(x).
- 4) Найдите множество значений функции y = f(x) на промежутке $(-\infty; 0]$.
- 5) Постройте графики функций:

a)
$$y = |f(x)|,$$
 6) $y = f(|x|).$

- 2. Постройте график функции $y = \frac{3x^2 x 4}{x + 1}$.
- 3. Найдите координаты точек графика функции $y = x^2 7x 9$, у которых абсцисса равна ординате.
- 4. Найдите множество значений функции

$$y = \frac{2\cos^2 x - 5}{5}.$$

- 5. Определите знак выражения $ho = rac{ {
 m tg}\, 5{,}9 {
 m tg}\, 6}{\cos 2}.$
- 6. Изобразите фигуру, ограниченную графиками функций $y=\frac{2}{x}$ и y=3-x. Укажите точку этой фигуры, имеющую наибольшую абсциссу (точки границы фигуры считаются принадлежащими этой фигуре).

Контрольные работы

1. Алгебраические уравнения. Системы алгебраических уравнений

Вариант 1

- 1. Решите уравнение $x^3 + 3x^2 4 = 0$.
- 2. Решите системы:

a)
$$\begin{cases} x^2 + y^2 = 41 \\ y - x = 1, \end{cases}$$
 6)
$$\begin{cases} \frac{x}{y} - \frac{y}{x} = \frac{5}{6} \\ x^2 - y^2 = 5. \end{cases}$$

- 3. Катер должен пройти AB со средней скоростью за 4 ч. Однако первую половину пути катер шел на 2 км/ч медленнее, а вторую половину на 2 км/ч быстрее, потому на весь путь затратил на 3 мин больше. Найдите среднюю скорость.
- 4. Решите уравнение $\frac{x^3 27}{x^2 + 4x 21} + \frac{(x 7)^2}{x^2 49} = 0.$

Вариант 2

- 1. Решите уравнение $x^3 3x^2 + 4 = 0$.
- 2. Решите системы:

a)
$$\begin{cases} x^2 + y^2 = 41 \\ y + x = 9, \end{cases}$$
 6)
$$\begin{cases} \frac{x+y}{x-y} + 6\frac{x-y}{x+y} = 5 \\ 5y^2 - x^2 = 1. \end{cases}$$

3. Катер прошел 45 км по течению реки и 22 км против течения, затратив на весь путь 5 ч. Найдите скорость

катера в стоячей воде, зная, что скорость течения реки равна 2 км/ч.

4. Решите уравнение $\frac{(x-10)^2}{x^2-13x+30}+\frac{x^3+27}{x^2-9}=0.$

Вариант 3

1. Решите системы:

a)
$$\begin{cases} x^2 - xy + y^2 = 7 \\ y + x = 5, \end{cases}$$
 6)
$$\begin{cases} \frac{1}{2x - y} + y = -5 \\ \frac{y}{2x - y} = 6. \end{cases}$$

- 2. Решите уравнение $\frac{2x}{x-1} + \frac{3}{x-2} = 6$.
- 3. Решите уравнение $x^3 x^2 17x 15 = 0$.
- 4. Две трубы наполняют бассейн за 1 ч 12 мин. Одна труба может наполнить бассейн на 1 ч быстрее другой. Найдите время, за которое наполнила бы бассейн каждая из труб в одиночку.

Вариант 4

1. Решите системы:

a)
$$\begin{cases} x^2 + xy + y^2 = 7 \\ y + x = 3, \end{cases}$$
 6)
$$\begin{cases} \frac{1}{2x + y} + x = 3 \\ \frac{x}{2x + y} = -4. \end{cases}$$

- 2. Решите уравнение $\frac{4}{x+1} + \frac{3x}{x-2} = -1$.
- 3. Решите уравнение $x^3 + 3x^2 6x 8 = 0$.
- 4. Через первый кран бассейн заполняется на 3 ч медленнее, чем через второй. За какое время заполняется бассейн через каждый кран, если вместе они заполняют его за 6 ч 40 мин.

Степень с рациональным показателем

Вариант 1

1. При каких x определено выражение

$$5(x+2)^{\frac{1}{2}} + (4-x)^{-\frac{1}{2}}$$
?

2. Вычислите

$$(-1)^{21} - 81^{\frac{3}{4}} + (2^{\frac{2}{3}} \cdot 2^{\frac{1}{2}})^6 - 16^{\frac{5}{4}} + \left(-\frac{1}{4}\right)^{-3}$$
.

- 3. Сравните значения выражений:
 - а) $\sqrt[6]{47}$ и $\sqrt[3]{7}$.
- в) $0.8^{-2.7}$ и $0.8^{-1.4}$.
- б) $\sqrt[3]{2\sqrt{2}}$ и $\sqrt[6]{7}$, г) $(1,06)^{-5}$ и 1.
- 4. Найдите числовое значение выражения

$$\left(rac{(a^{-3}+1)\cdot 2^{-1}}{a^{-1}+1}:\left(-rac{a}{31}
ight)^{-1}
ight)^{-1}$$
 при $a=-5.$

5. Вычислите:

a)
$$\sqrt[4]{14+6\sqrt{5}} \cdot \sqrt{3-\sqrt{5}}$$
,

6)
$$(\sqrt{2} - \sqrt{3}) \cdot \sqrt{5 + 2\sqrt{6}}$$
.

Выполните действия

$$\left(\frac{1}{(a^{\frac{1}{2}}+b^{\frac{1}{2}})^{-2}}-\left(\frac{a^{\frac{1}{2}}-b^{\frac{1}{2}}}{a^{\frac{3}{2}}-b^{\frac{3}{2}}}\right)^{-1}\right)^2\cdot(ab)^{-\frac{1}{2}}.$$

Вариант 2

1. При каких x определено выражение

$$3(x+7)^{\frac{1}{2}} + (5-x)^{-\frac{1}{2}}$$
?

2. Вычислите

$$(-1)^{18} + 32^{\frac{4}{5}} + 8 \cdot 27^{\frac{1}{3}} - \frac{1}{27} \cdot (3^{\frac{1}{4}} \cdot 3^{\frac{1}{3}})^{12} - \left(-\frac{1}{6}\right)^{-3}$$

- 3. Сравните значения выражений:
- а) $\sqrt[8]{26}$ и $\sqrt[4]{5}$, в) $3^{-2,7}$ и $3^{-1,4}$, б) $\sqrt[5]{3\sqrt{3}}$ и $\sqrt[10]{28}$, г) $0.7^{-1,5}$ и 1.

4. Найдите числовое значение выражения

$$rac{a^{-2}-b^{-2}}{(a-b)^{-2}} \cdot rac{a^2b^2}{a^{-2}+b^{-2}}$$
 при $a=-rac{1}{2};\ b=1.$

5. Вычислите:

a)
$$\sqrt[6]{31+10\sqrt{6}} \cdot \sqrt[3]{5-\sqrt{6}}$$
,

6)
$$(\sqrt{5} - \sqrt{6}) \cdot \sqrt{11 + 2\sqrt{30}}$$
.

6. Выполните действия

$$2\sqrt{xy}\cdot\left(\frac{x^{\frac{3}{2}}+y^{\frac{3}{2}}}{x-x^{\frac{1}{2}}y^{\frac{1}{2}}+y}+2xy\cdot\frac{x^{-\frac{1}{2}}-y^{-\frac{1}{2}}}{x-y}\right):\left(\frac{\sqrt{x}+\sqrt{y}}{2\sqrt{xy}}\right)^{-1}.$$

Вариант 3

1. При каких x определено выражение

$$5x^{\frac{1}{2}} - (2-x)^{-\frac{1}{5}}$$
?

2. Вычислите

$$(-1)^{2n} + 5 \cdot \left(\frac{25}{36}\right)^{-\frac{1}{2}} + \frac{1}{2^{15}} \cdot (2^{\frac{3}{5}} \cdot 2^{\frac{2}{3}})^{15} - (-3)^3 - 289^{\frac{1}{2}}.$$

3. Сравните значения выражений:

а)
$$\sqrt[5]{6}$$
 и $\sqrt[10]{35}$,

в)
$$3,7^{-2,4}$$
 и $3,7^{-3,4}$,

б)
$$\sqrt[4]{2\sqrt{3}}$$
 и $\sqrt[8]{13}$, г) 1 и $\frac{9^{\frac{9}{4}}}{4}$.

г)
$$1$$
 и $\frac{9^{\frac{9}{4}}}{4}$

4. Найдите числовое значение выражения

$$\frac{(a^{-3} - b^{-3})(-19)^{-1}}{\left(\frac{1}{a^{-2}} + \left(\frac{1}{b}\right)^{-3}\right) : \left(-\frac{1}{23}\right)^{-1}}; \quad a = -2, \quad b = -3.$$

5. Вычислите:

a)
$$\sqrt[3]{5\sqrt{2}-7} \cdot \sqrt{3+2\sqrt{2}}$$
,

6)
$$(\sqrt{6} - \sqrt{7}) \cdot \sqrt{13 + 2\sqrt{42}}$$
.

6. Выполните действия

$$\left(\frac{1}{(a^{\frac{1}{2}}+b^{\frac{1}{2}})^{-2}}-\frac{a^{\frac{3}{2}}+b^{\frac{3}{2}}}{a^{\frac{1}{2}}+b^{\frac{1}{2}}}\right)^2\cdot\left(\frac{27a^{-3}}{64b^{-6}}\right)^{-\frac{1}{3}}.$$

1. При каких х определено выражение

$$3(x-1)^{\frac{1}{2}} + (10-x)^{-\frac{1}{3}}$$
?

Вычислите

$$(-1)^{2n+1} + 7 \cdot \left(\frac{49}{64}\right)^{-\frac{1}{2}} - \left(5^{\frac{2}{3}}\right)^3 + (-7)^2 - 125^{\frac{2}{3}}.$$

3. Сравните значения выражений:

а)
$$\sqrt[7]{11}$$
 и $\sqrt[14]{119}$, в) $6,1^{-4,5}$ и $6,1^{-5,1}$,

в)
$$6,1^{-4,5}$$
 и $6,1^{-5,1}$

б)
$$\sqrt[3]{2\sqrt[4]{3}}$$
 и $\sqrt[6]{7}$, г) 1 и $\left(\frac{5}{7}\right)^{1,7}$.

г) 1 и
$$\left(\frac{5}{7}\right)^{1,7}$$

4. Найдите числовое значение выражения

$$\frac{(a^{-3}-1)\cdot b^{-1}}{a^{-2}-a^{-1}}+\left((-a)^{-1}\right)^{-2}$$
 при $a=-3$ и $b=-2$.

5. Вычислите:

a)
$$\frac{\sqrt[3]{6\sqrt{3}-10}}{\sqrt{4-2\sqrt{3}}}$$
,

a)
$$\frac{\sqrt[3]{6\sqrt{3}-10}}{\sqrt{4-2\sqrt{3}}}$$
, 6) $(2\sqrt{3}-\sqrt{13})\cdot\sqrt{25+4\sqrt{39}}$.

6. Выполните действия

$$\left(\left(\frac{x^{\frac{1}{2}}-y^{\frac{1}{2}}}{(x^{\frac{3}{2}}-y^{\frac{3}{2}})}\right)^{-1}+(xy)^{\frac{1}{2}}\right):(x^{\frac{1}{2}}+y^{\frac{1}{2}}).$$

3. Степенная функция

Вариант 1

1. Найдите области определения функций:

a)
$$f(x) = \frac{x}{x+2} + \sqrt{16 - x^2}$$
,

6)
$$f(x) = \sqrt[4]{\frac{x^2 - 20x + 100}{4 - 3x - x^2}}$$
.

2. Исследуйте функции на четность и нечетность:

a)
$$f(x) = \frac{x^3}{x^2 - 1}$$
, 6) $f(x) = x^2|x| - |x|x^4$.

3. Постройте графики функций:

a)
$$y = \frac{1}{x-1}$$
,
b) $y = \frac{2x+3}{x+1}$.

Для каждой функции найдите по графику промежутки возрастания и убывания.

4. Решите уравнения:

a)
$$\sqrt{10-x^2}=1$$
, 6) $\sqrt{9+5x-2x^2}=3-x$.

Вариант 2

1. Найдите области определения функций:

a)
$$f(x) = \sqrt{10x - x^2} - \frac{x+1}{x}$$
,

6)
$$f(x) = \sqrt[6]{\frac{x^2 - 6x - 7}{x^2 - 4x + 4}}$$
.

2. Исследуйте функции на четность и нечетность:

a)
$$f(x) = \frac{x^2 + 1}{x^4 + 5}$$
, 6) $f(x) = x|x| - 3x^5$.

3. Постройте графики функций:

a)
$$y = \frac{1}{x+2}$$
, 6) $y = \frac{1}{x-2} + 1$,
B) $y = \frac{2x-3}{x-1}$.

Для каждой функции найдите по графику промежутки возрастания и убывания.

4. Решите уравнения:

a)
$$\sqrt{x^2 - 9} = 4$$
, 6) $\sqrt{8 - 2x - x^2} + x = -4$.

Вариант 3

1. Исследуйте функции на четность и нечетность:

a)
$$f(x) = x^4 - 3x^2 + 1$$
,

$$f(x) = -2x|x| + 4x^3.$$

2. Найдите области определения функций:

a)
$$f(x) = \sqrt[3]{\frac{x^2}{5 - 3x - 2x^2}}$$

6)
$$f(x) = \sqrt{\frac{x^2 - 5x + 4}{x^2 + 2x + 1}}$$
.

3. Постройте графики функций:

a)
$$y = \sqrt{x-1}$$
,

B)
$$y = 1 - \sqrt{x - 2}$$
.

6)
$$y = \sqrt{x+1} - 2$$
,

Найдите промежутки, на которых y(x) > 0; y(x) < 0.

4. Решите уравнения:

a)
$$\sqrt{x+2} = x$$
, 6) $\sqrt{4x-3} = \frac{3x-1}{\sqrt{3x-5}}$.

Вариант 4

1. Исследуйте функции на четность и нечетность:

a)
$$f(x) = 3x^3 - x^7$$
,

6)
$$f(x) = -x^2|x| - 3x^6$$
.

2. Найдите области определения функций:

a)
$$f(x) = \sqrt[7]{\frac{x^6}{2x^2 + 7x + 5}}$$

6)
$$f(x) = \sqrt{\frac{4x^2 + 12x + 9}{-x^2 + 6x - 5}}$$
.

3. Постройте графики функций:

a)
$$y = \sqrt{x+1}$$
,

B)
$$y = 1 - \sqrt{x+2}$$
.

6)
$$y = \sqrt{x-1} + 2$$
,

Найдите промежутки, на которых y(x) > 0; y(x) < 0.

4. Решите уравнения:

a)
$$\sqrt{x-1} = x-3$$
, 6) $\sqrt{4x-11} = \frac{2x-2}{\sqrt{3x+7}}$.

4. Основные тригонометрические тождества

Вариант 1

1. Упростите выражения:

a)
$$\frac{\sin \alpha}{1 + \cos \alpha} + \frac{\sin \alpha}{1 - \cos \alpha}$$
,

6)
$$\cos^4 \alpha - \cos^2 \alpha + \sin^2 \alpha$$
,

$$\mathrm{B)} \ \frac{\mathrm{tg}^2 \, \alpha}{1 + \mathrm{tg}^2 \, \alpha} \cdot \frac{1 + \mathrm{ctg}^2 \, \alpha}{\mathrm{ctg}^2 \, \alpha}.$$

2. Вычислите значения тригонометрических функций, если:

a)
$$\sin \alpha = -\frac{2}{7}$$
; $\pi < \alpha < \frac{3\pi}{2}$,

6)
$$\operatorname{ctg} \alpha = -3\frac{3}{7}; \frac{\pi}{2} < \alpha < \pi.$$

3. Докажите тождество

$$-\operatorname{ctg}(-\alpha) - \frac{\sin(-\alpha)}{1 + \cos(-\alpha)} = \frac{1}{\sin \alpha}.$$

4. Найдите значение выражения

$$\frac{2\sin^2 x + 3\sin x \cdot \cos x - 1}{\sin^2 x - 2\cos^2 x}, \text{ при tg } x = 2.$$

- 5. $\sin \alpha + \cos \alpha = \frac{2}{5}$. Найдите значение выражения $\sin^3 \alpha + \cos^3 \alpha$.
- 6. Решите уравнение $2\cos^2 x 3\sin x = 0$; $0 < x < \frac{\pi}{2}$.

Вариант 2

1. Упростите выражения:

$$\mathrm{a)}\ \frac{1-\sin x}{\cos x}-\frac{\cos x}{1+\sin x},$$

6)
$$\sin^2 \alpha + \sin^2 \alpha \cdot \cos^2 \alpha + \cos^4 \alpha$$
,

$$\mathrm{B)} \ \frac{-\sin(-\alpha)-\mathrm{tg}(-\alpha)}{1+\cos(-\alpha)}.$$

2. Вычислите значения тригонометрических функций, если:

a)
$$\cos \alpha = \frac{3}{5}$$
; $\frac{3\pi}{2} < \alpha < 2\pi$,

6)
$$tg \alpha = -\frac{3}{4}; \frac{\pi}{2} < \alpha < \pi.$$

3. Докажите тождество

$$1 + (\operatorname{ctg}^2 \alpha - \operatorname{tg}^2 \alpha) \cdot \cos^2 \alpha = \operatorname{ctg}^2 \alpha.$$

4. Найдите значение выражения $\frac{\sin^2 x - 5\sin x \cdot \cos x + 2}{2\sin^2 x + \cos^2 x}, \text{ при tg } x = -2.$

- 5. $\sin \alpha \cos \alpha = \frac{1}{2}$. Найдите значение выражения $\sin^4 \alpha + \cos^4 \alpha$.
- 6. Решите уравнение $2\sin^2 x + 3\cos x = 0; \ \frac{\pi}{2} < x < \pi.$

Вариант 3

1. Упростите выражения:

a)
$$\frac{\sin \alpha}{1 - \cos \alpha} - \frac{1 + \cos \alpha}{\sin \alpha}$$
,

6)
$$(\operatorname{tg}^2 \alpha - \sin^2 \alpha) \cdot \frac{\operatorname{ctg}^2 \alpha}{\sin^2 \alpha}$$

B)
$$\cos(-\alpha) + \cos \alpha \cdot \operatorname{tg}^2(-\alpha)$$
.

Вычислите значения тригонометрических функций, если:

a)
$$\sin \alpha = -\frac{15}{17}$$
; $\frac{3\pi}{2} < \alpha < 2\pi$,

$$6) \cot \alpha = 2; \ \pi < \alpha < \frac{3\pi}{2}.$$

3. Докажите тождество

$$\frac{1}{1 + \lg^2 x} + \sin^4 x + \sin^2 x \cdot \cos^2 x = 1.$$

4. Найдите значение выражения

$$\frac{2\sin^2 x - \sin x \cdot \cos x - 1}{\sin^2 x + 2\cos^2 x}$$
, при tg $x = 3$.

- 5. $\sin \alpha \cos \alpha = \frac{4}{5}$. Найдите значение выражения $\sin^3 \alpha \cos^3 \alpha$.
- 6. Решите уравнение $\sin x + 2\cos^2 x = 1$; $-\frac{\pi}{2} < x < 0$.

1. Упростите выражения:

a)
$$\frac{\sin\alpha}{1+\cos\alpha}+\frac{1+\cos\alpha}{\sin\alpha}$$
,

6)
$$\frac{1}{(\sin(-\alpha)\cdot \operatorname{tg}(-\alpha)+\cos\alpha)^2}+\sin^2(-\alpha),$$

- B) $\sin^3 \alpha \cdot (1 + \operatorname{ctg} \alpha) + \cos^3 \alpha \cdot (1 + \operatorname{tg} \alpha)$.
- 2. Вычислите значения тригонометрических функций, если:

a)
$$\cos \alpha = -\frac{5}{13}$$
; $\frac{\pi}{2} < \alpha < \pi$,

6)
$$tg \alpha = -\frac{4}{3}; \frac{3\pi}{2} < \alpha < 2\pi.$$

3. Докажите тождество

$$\frac{1 - 2\sin^2\alpha}{\cos\alpha + \sin\alpha} + \frac{1 - 2\cos^2\alpha}{\sin\alpha - \cos\alpha} = 2\cos\alpha.$$

4. Найдите значение выражения

$$\frac{3-2\sin\alpha\cdot\cos\alpha+2\cos^2\alpha}{2\sin^2\alpha+\cos^2\alpha}$$
, при $\cot\alpha=-2$.

- 5. $\sin \alpha + \cos \alpha = \frac{1}{3}$. Найдите значение выражения $\sin^4 \alpha + \cos^4 \alpha$.
- 6. Решите уравнение $\cos x + 2\sin^2 x = 1$; $-\pi < x < -\frac{\pi}{2}$.

5. Формулы сложения. Формулы приведения

Вариант 1

1. Упростите:

a)
$$\sin\left(\frac{\pi}{2} + 2\alpha\right) + \cos\left(\frac{3\pi}{2} + 2\alpha\right) \cdot \operatorname{tg}\left(\pi + \alpha\right)$$
,

6)
$$-\cos 10^{\circ} + \cos 11^{\circ} \cdot \cos 21^{\circ} + \cos 69^{\circ} \cdot \cos 79^{\circ}$$
.

2. Вычислите
$$\frac{\operatorname{tg} 26^{\circ} + \operatorname{ctg} 71^{\circ}}{1 + \operatorname{tg} 334^{\circ} \cdot \operatorname{tg} 19^{\circ}}$$
.

3. Упростите
$$\frac{2\cos^2\alpha - 1}{\operatorname{tg}\left(\frac{\pi}{4} - \alpha\right) \cdot \sin^2\left(\frac{\pi}{4} + \alpha\right)}.$$

4. Установите область определения функции f(x) =

$$= \sqrt{-\left(\cos(\pi+2x)\cdot\sin\left(\frac{3\pi}{2}+x\right)+\sin(\pi+x)\cdot\sin(2\pi-2x)\right)^2}.$$

5. Постройте график функции

$$y = \cos^2\left(\frac{\pi}{2} + 2x\right) + \sin^2\left(\frac{3\pi}{2} - 2x\right).$$

Вариант 2

1. Упростите:

a)
$$-\sin\left(\frac{3\pi}{2}+2x\right)-\sin\left(\pi-2x\right)\cdot\cot\left(\pi+x\right)$$
,

6) $\sin 15^{\circ} \cdot \cos 40^{\circ} - \sin 75^{\circ} \cdot \cos 50^{\circ} + \sin 25^{\circ}$.

2. Вычислите
$$\frac{\operatorname{tg} 14^{\circ} - \operatorname{ctg} 46^{\circ}}{\operatorname{tg} 194^{\circ} \cdot \operatorname{tg} 44^{\circ} + 1}.$$

3. Упростите
$$\frac{2\cos^2\alpha - 1}{2\cot\left(\frac{\pi}{4} - \alpha\right)\cdot\cos^2\left(\frac{\pi}{4} + \alpha\right)}.$$

4. Установите область определения функции f(x) =

$$= \sqrt{-\left(\sin\left(\pi - 4x\right) \cdot \sin\left(\frac{\pi}{2} + x\right) + \sin\left(\frac{3\pi}{2} - 4x\right) \cdot \cos\left(\frac{3\pi}{2} + x\right)\right)^2}.$$

5. Постройте график функции $y = \operatorname{tg} x \cdot \operatorname{ctg} x$.

1. Упростите:

a)
$$-\cos\left(\frac{3\pi}{2}-2\alpha\right)+\cos\left(2\pi-2\alpha\right)\cdot\operatorname{ctg}\left(\pi+\alpha\right)$$
,

- 6) $tg 18^{\circ} \cdot tg 288^{\circ} + \sin 32^{\circ} \cdot \sin 148^{\circ} \sin 302^{\circ} \cdot \sin 122^{\circ}$.
- 2. Вычислите $\frac{1 \operatorname{tg} 74^{\circ} \cdot \operatorname{ctg} 14^{\circ}}{\operatorname{tg} 74^{\circ} \operatorname{tg} 104^{\circ}}$.
- 3. Упростите $\frac{\sin\left(\frac{\pi}{4} \alpha\right) \cdot \sin\left(\frac{\pi}{4} + \alpha\right)}{\sin 3\alpha \cdot \cos \alpha \cos 3\alpha \cdot \sin \alpha}.$
- 4. Установите область определения функции $f(x) = \sqrt{-\left(\cos\left(4\pi + x\right)\cdot\sin\left(\frac{\pi}{2} + 5x\right) \sin\left(2\pi x\right)\cdot\sin\left(\pi 5x\right)\right)^2}.$
- 5. Постройте график функции $y = \operatorname{tg} 2x \cdot \operatorname{ctg} 2x$.

Вариант 4

1. Упростите:

a)
$$\sin(\pi - 2\alpha) + \sin(\frac{3\pi}{2} + 2\alpha) \cdot \operatorname{tg}(\pi + \alpha)$$
,

- 6) $\sin 20^{\circ} + \sin 13^{\circ} \cdot \sin 57^{\circ} \sin 33^{\circ} \cdot \sin 77^{\circ}$.
- 2. Вычислите $\frac{\cot 40^{\circ} + \tan 160^{\circ}}{\tan 50^{\circ} \cdot \cot 70^{\circ} + 1}$.
- 3. Докажите, что

$$\frac{\sin\left(80^{\circ} + \alpha\right)}{4\sin\left(20^{\circ} + \frac{\alpha}{4}\right) \cdot \sin\left(70^{\circ} - \frac{\alpha}{4}\right)} = \cos\left(40^{\circ} + \frac{\alpha}{4}\right).$$

4. Установите область определения функции $f(x) = \sqrt{-\left(\sin\left(\pi-4x\right)\cdot\left(-\sin\left(\frac{3\pi}{2}+x\right)\right)+\cos\left(4\pi+4x\right)\cdot\left(-\sin\left(\pi+x\right)\right)\right)^2}$.

5. Постройте график функции

$$y = \sin^2(-3x) + \cos^2(-3x).$$

6. Прогрессии

Вариант 1

- 1. Между числами 17 и (-3) вставьте три числа, которые вместе с данными числами образуют арифметическую прогрессию.
- 2. b_n геометрическая прогрессия. $b_1 = \frac{1}{81}$; q = 3. Найдите номер члена прогрессии, равного 27.
- a_n арифметическая прогрессия. $a_7=21;\ S_7=105.$ Найдите a_1 и d.
- 4. Найдите q возрастающей геометрической прогрессии b_n , у которой $b_1=3;\ b_7-b_4=168.$
- 5. b_n бесконечно убывающая геометрическая прогрессия. $b_1b_3b_5=8;\ b_2+b_4=-5.$ Найдите S.

Вариант 2

- 1. Между числами 24 и (-4) вставьте пять чисел, которые вместе с данными числами образуют арифметическую прогрессию.
- 2. b_n геометрическая прогрессия. $b_1=\frac{1}{128};\ q=2.$ Найдите номер члена прогрессии, равного 32.
- 3. a_n арифметическая прогрессия. $a_{10}=51;\ S_{10}=285.$ Найдите a_1 и d.
- 4. Найдите q геометрической прогрессии b_n , у которой $b_1 b_4 = 0.6$; $S_3 = 0.2$.
- 5. b_n бесконечно убывающая геометрическая прогрессия. $b_1b_3b_5=-64;\ b_2+b_4=10.$ Найдите S.

- 1. Найдите седьмой член геометрической прогрессии $64; -16; 4; \dots$
- 2. Найдите номер члена арифметической прогрессии, равного 26, если первый член прогрессии равен 2, а ее разность равна 3.

- 3. Сумма бесконечно убывающей геометрической прогрессии b_n на 16 больше ее первого члена, а $b_1+b_2=24$. Найдите b_8 .
- 4. Найдите сумму всех двузначных чисел, кратных 5.
- 5. x; y; z составляют геометрическую прогрессию. x; y-8; z составляют арифметическую прогрессию. x+y+z=-7. Найдите x,y и z.

- 1. Найдите восьмой член геометрической прогрессии -32; 16; -8; . . .
- 2. Найдите номер члена арифметической прогрессии, равного 48, если третий член прогрессии равен (-6), а ее разность равна 2.
- 3. В бесконечно убывающей геометрической прогрессии b_n с положительными членами $b_1+b_2+b_3=10,$ 5. S=12. Найдите b_1 и q.
- 4. Найдите сумму всех четных двузначных чисел, делящихся на 3 без остатка.
- 5. x; y; z составляют геометрическую прогрессию. x; y+8; z составляют арифметическую прогрессию. x+y+z=7. Найдите x,y и z.

7. Итоговая контрольная работа (3-4 часа)

Вариант 1

1. Докажите, что значение выражения

$$\left(\frac{\left(a^{\frac{1}{4}}+b^{\frac{1}{4}}\right)^2+\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)^2}{a+(ab)^{\frac{1}{2}}}-2\right)^2:\frac{1-2\sqrt{a}+a}{a}$$

не зависит от значений a и b.

- 2. Решите уравнение $\frac{2-x^2}{(2-x)^2} \frac{1}{2} = \frac{1}{8-2x(4-x)}.$
- 3. Решите неравенство $7 \frac{16}{x+1} \geqslant x$.
- 4. Бассейн наполняется из двух труб за 7,5 ч. Если открыть только первую трубу, то бассейн наполнится на 8 ч быстрее, чем если открыть только вторую трубу. Сколько времени будет наполнять бассейн вторая труба?
- 5. Докажите тождество

$$\sin 4\alpha + \cos 4\alpha \cdot \operatorname{ctg} 2\alpha = \frac{1 - \operatorname{tg}^2 \alpha}{2 \operatorname{tg} \alpha}.$$

- 6. Решите уравнение $\sqrt{x+3} + \sqrt{3x-2} = 7$.
- 7. Первый член арифметической прогрессии равен 2. При каком значении разности прогрессии произведение ее пятого и седьмого членов имеет наименьшее значение?
- 8. Постройте график функции $y=x^2-\frac{|x|}{x}$.

1. Упростите
$$\left(\frac{4\sqrt{x}}{\sqrt{4x+1}} - \sqrt{4x+1}\right) \cdot \left(1 - 2\sqrt{x}\right)^{-2}$$
.

2. Решите систему уравнений

$$\begin{cases} xy + y + x = 11 \\ x^2y + xy^2 = 30. \end{cases}$$

3. Установите область определения

$$y = \sqrt[4]{x^3 - 3x^2 + 2x} + \frac{1}{\sqrt[3]{x - 3}} + \frac{x + 1}{x - 4}.$$

4. Бригада рабочих должна была изготовить 360 деталей. Изготавливая ежедневно на 4 детали больше, чем предполагалось по плану, бригада выполнила задание на 1 день раньше срока. Сколько дней затратила бригада на выполнение задания?

- $5. \, \cos \alpha = -rac{5}{13}; \, rac{\pi}{2} < \alpha < \pi. \,$ Найдите $\sin 2 \alpha$ и $\, \, {
 m tg} \, lpha.$
- 6. Найдите число членов геометрической прогрессии, в которой второй член равен 6, разность между пятым и четвертым членами равна удвоенному третьему члену. Сумма всех членов равна 381.
- 7. Решите уравнение $\sqrt{2x^2 + 8x + 7} x = 2$.
- 8. Постройте график функции $y = x^2 \frac{x^2}{|x|}$.

1. Докажите, что значение выражения

$$\left(\frac{m^{\frac{1}{2}}+n^{\frac{1}{2}}}{m^{\frac{1}{2}}-n^{\frac{1}{2}}}-\frac{m^{\frac{1}{2}}-n^{\frac{1}{2}}}{m^{\frac{1}{2}}+n^{\frac{1}{2}}}\right):\frac{\left(\sqrt{m}-\sqrt{n}\right)^{-1}}{m-\frac{1}{2}+n^{-\frac{1}{2}}}$$

не зависит от значений m и n.

- 2. Решите уравнение $\frac{3-x^2}{\left(3-x\right)^2} \frac{1}{3} = \frac{2}{27-3x\left(6-x\right)}$.
- 3. Решите неравенство $1 + \frac{2}{x-1} > \frac{1}{x}$.
- 4. Две бригады вместе могут выполнить задание за 12 дней. Если одна бригада сделает половину работы, а затем вторая вторую половину, то вся работа будет закончена за 25 дней. Сколько дней нужно каждой бригаде в отдельности для выполнения всей работы?
- 5. Докажите тождество $\sin \alpha \cdot (1 + \operatorname{tg} \alpha \cdot \operatorname{tg} \frac{\alpha}{2}) = \operatorname{tg} \alpha$.
- 6. Решите уравнение $\sqrt{x+10} + \sqrt{x-2} = 6$.
- 7. Первый член арифметической прогрессии равен 2. При каком значении разности прогрессии произведение четвертого и седьмого членов имеет наименьшее значение?
- 8. Постройте график функции $y = 1 x \cdot |x|$.

1. Упростите
$$\left(\frac{1}{\sqrt{x}+\sqrt{y}}\right)^{-2}-\left(\frac{\sqrt{x}-\sqrt{y}}{x\sqrt{x}-y\sqrt{y}}\right)^{-1}$$
.

2. Решите систему уравнений

$$\begin{cases} x^2 + xy = 12 \\ y^2 + xy = 13. \end{cases}$$

3. Установите область определения функции

$$y = \frac{1}{x} + \sqrt[3]{x+3} + \sqrt{\frac{x-5}{x^2 - x - 6}}.$$

- 4. Для перевозки 60 т груза затребовано некоторое количество машин. В связи с тем что на каждую машину погрузили на 0,5 т меньше, дополнительно были затребованы еще 4 машины. Сколько машин было затребовано первоначально?
- 5. $\sin \alpha = \frac{12}{13}; \, \frac{\pi}{2} < \alpha < \pi$. Найдите $\cos 2\alpha$ и $\lg 2\alpha$.
- 6. В возрастающей геометрической прогрессии сумма первого и последнего членов равна 66, произведение второго и предпоследнего членов равно 128, сумма всех членов равна 126. Найдите число членов прогрессии.
- 7. Решите уравнение $x + \sqrt{2x^2 7x + 5} = 1$.
- 8. Постройте график функции $y = 2x + x \cdot |x|$.

ОТВЕТЫ, УКАЗАНИЯ, РЕШЕНИЯ

Самостоятельные работы

1. Деление многочленов.

Решение алгебраических уравнений

Вариант 1

1. a)
$$x-3$$
; **6)** $x-1$; **B)** $2x^2+x+5$. **2.** $P(x)=Q(x)x-20x-30$. **3.** $\frac{2x+1}{3x+7}$. **4. a)** $\{-2,-1,1\}$; **6)** $\{-3,2\}$.

Вариант 2

1. a)
$$x-1$$
; b) $x-1$; b) $3x^2-x+6$. 2. $P(x)=Q(x)(x+6)+12x+12$. 3. $\frac{3x+4}{5x+2}$. 4. a) $\{-2\}$; 6) $\{-3;1\}$.

Вариант 3

1. a)
$$9x+2$$
; **6)** $x+1$. **2.** $P(x)=Q(x)(x^2+x-20)$. **3.** $\frac{x-1}{x}$.

4. a)
$$\{3\}$$
; **6)** $\{3;1;-1;4\}$.

Вариант 4

1. a)
$$x-1$$
; **6)** $2x+1$. **2.** $P(x)=Q(x)(x^2-7x-12)+144$.

3.
$$\frac{x}{x+1}$$
. 4. a) $\{-7;1;-3\}$; 6) $\{-2;-1;1;3\}$

1. a)
$$2x+1$$
; **6)** x^2+x-2 . **2.** $a=-8$; $b=20$. **3.** $\frac{x^2-4x+4}{x-1}$.

4.
$$a = -2$$
; $\{-2; 1; 3\}$. **5.** $\{-1; 1; -2; 3\}$.

1. a)
$$x-2$$
; 6) x^2-x-2 .

2.
$$a = -1$$
; $b = -27$.

3.
$$\frac{x+1}{x^2-10x+21}$$
. **4.** $a=-8$; $\{-3,2\}$. **5.** $\{-2,-1\}$.

Вариант 7

$$\overline{1.6x^2} - x - 1.2. \frac{x-2}{3x+1}$$
. 3. $a = -5$; $b = -13$.

4. $\{-1,5;1;2;3\}$. 5. $a=-2;\ b=-3;\ \{-1;1-\sqrt{3};1;1++\sqrt{3}\}$. У к а з а н и е: подставьте $x=1+\sqrt{3}$ в уравнение. После преобразований получится: $\sqrt{3}(2+a)++(a+b+5)=0$. Так как a и b рациональные числа, то a+2=0 и a+b+5=0, таким образом, $a=-2,b=-3\dots$

Вариант 8

1.
$$10x^2 + 11x - 6$$
. 2. $\frac{x^2 - 13x + 12}{x^2 - 2}$. 3. $a = 27$; $b = -76$.

4.
$$\left\{-1; -\frac{1}{3}; \frac{1}{2}; 1\right\}$$
. **5.** $a = -5$; $b = -7$; $\left\{-2; -1; 1 - \sqrt{2}; 1 + \sqrt{2}\right\}$.

2. Уравнения, сводящиеся к алгебраическим

Вариант 1

1.
$$\left\{-\frac{6}{7}\right\}$$
. 2. $\{2\}$. 3. $\left\{-2;-1;-\frac{1}{2}\right\}$. 4. $\{-5\}$.

5.
$$\left\{-\frac{3}{4}; \frac{5}{4}\right\}$$
.

$$\frac{1}{1.} \{9\}$$
. **2.** $\left\{-\frac{3}{4}\right\}$. **3.** $\{-2; -1; 2\}$. **4.** $\{3\}$. **5.** $\left\{-\frac{5}{4}; \frac{3}{4}\right\}$.

1.
$$\{3 - 2\sqrt{2}; -1; 3 + 2\sqrt{2}\}$$
. 2. $\left\{\frac{-3 - \sqrt{33}}{2}; \frac{-3 + \sqrt{33}}{2}\right\}$.

3.
$$\left\{\frac{1}{2}; 2\right\}$$
 . **4.** $\left\{\frac{1}{4}\right\}$. **5.** $\{2,5; 4\}$.

Вариант 4

1.
$$\{-1\}$$
. **2.** $\{-1 - \sqrt{7}; -1 + \sqrt{7}\}$. **3.** $\left\{\frac{1}{4}; 1\right\}$. **4.** $\left\{\frac{1}{4}\right\}$. **5.** $\{-22; 3; 6\}$.

Вариант 5

1.
$$\left\{-2; \frac{2}{3}; \frac{3}{2}\right\}$$
. **2.** $\{1; 3\}$. **3.** $\left\{-2; -\frac{1}{2}; 1\right\}$.

4.
$$\left\{-3; 0; \frac{-3-\sqrt{73}}{2}; \frac{-3+\sqrt{73}}{2}\right\}$$
.

5. $\overset{\smile}{a}=0;\; x=0,\; \text{или}\; x=1.\;\; \overset{\smile}{a}<0\; \text{или}\; a>0\;\;\{1-a\}.$ У казание: $(x^3+a^3)-(x^2-ax+a^2)=0;\; (x^2-ax+a^2)(x+a-1)=0.$

Вариант 6

1.
$$\left\{-\frac{1}{2}; \frac{2}{3}; 2\right\}$$
. **2.** $\left\{-1\right\}$. **3.** $\left\{\frac{1}{2}; 2; \frac{-3-\sqrt{5}}{2}; \frac{-3+\sqrt{5}}{2}\right\}$.

4. $\{0; -2\}$. **5.** a = 0, x = 0 или x = 1. a < 0 или a > 0, x = a + 1.

Вариант 7

1.
$$\left\{-\frac{2}{3}; -\frac{1}{3}; \frac{1}{2}\right\}$$
. 2. $\left\{-2 \pm \sqrt{3}; \frac{3 \pm \sqrt{5}}{2}\right\}$.

3.
$$\left\{ \frac{5 \pm \sqrt{21}}{2}; \frac{-5 \pm \sqrt{17}}{2} \right\}$$
. У казание: разложите

на множители методом неопределенных коэффициентов. $(x^2 - 5x + 1)(x^2 + 5x + 2) = 0...$ 4. Нет действительных корней. 5. Если a < 0, решений нет. $\{-3\sqrt{a}; \sqrt{a}\}$.

У казание:
$$x^4-6ax^2+8a\sqrt{ax}-3a^2=(x^4-2ax^2+a^2)-(4ax^2-8a\sqrt{ax}+4a^2)=(x^2-a)^2-4a(x^2-2\sqrt{ax}+a)=$$
 $=(x^2-a)^2-4a(x-\sqrt{a})^2=(x-\sqrt{a})^2((x+\sqrt{a}^2)-4a)=$ $=(x-\sqrt{a})^2(x^2+2\sqrt{ax}-3a)=(x-\sqrt{a})^2(x-\sqrt{a})(x+3\sqrt{a}).$

1.
$$\left\{-\frac{1}{4}; \frac{1}{3}; \frac{2}{3}\right\}$$
. 2. $\left\{-3; -2; \frac{1}{3}; \frac{1}{2}\right\}$. 3. $\left\{\frac{3 \pm \sqrt{5}}{2}; \frac{3 \pm \sqrt{13}}{2}\right\}$.

4. Решений нет. У к а з а н и е: $x^4 - 3x^2 - 2x + 5 = (x^2 - 2)^2 + (x - 1)^2$. **5.** $\{-\sqrt{a}; 3\sqrt{a}\}$.

3. Системы нелинейных уравнений

Вариант 1

1.
$$(-4;-1);$$
 $(-1;-4).$ **2.** $(4;2).$ **3.** $(-2;-4);$ $(-4;-2);$ $(2;4);$ $(4;2).$ **4.** $\left(\frac{1}{5};-\frac{1}{3}\right).$ **5.** $(-3;-5);$ $(-5;-3);$ $(3;5);$ $(5;3).$

Вариант 2

$$\overline{\mathbf{1.} (-3;2); (2;-3)}$$
. **2.** $(3;1)$. **3.** $(-2;-8); (-8;-2); (2;8); (8;2)$. **4.** $\left(1;-\frac{1}{2}\right)$. **5.** $(-5;-1); (5;1)$.

Вариант 3

1.
$$(-4; -4); (-6; -2)$$
. **2.** $(-2; -1); (-2; 1); (2; -1); (2; 1)$.

3.
$$(1; 2); (2; 1)$$
. **4.** $(-1; -1); (2; -1); (-1; 2)$.

5.
$$(-\sqrt{2}; 1-\sqrt{2}); (\sqrt{2}; 1+\sqrt{2}).$$

1.
$$(-1; -3); (4,5; 8)$$
. **2.** $(-2; -1); (-2; 1); (2; -1); (2; 1)$.

3.
$$(1;3);(3;1)$$
. **4.** $(2;4);(4;2)$. **5.** $(\frac{17}{4};3);(\frac{13}{6};-2)$.

1.
$$(2a; a); (-a; -2a)$$
. 2. $(-5; -1); (5; 1)$. 3. $(0; 0); (\frac{1}{3}; \frac{1}{2}); (-\frac{1}{3}; -\frac{1}{2})$. 4. $(4; 5); (6; 3); (-3; -2); (-1; -4)$. 5. $(2; -1); (-1; 2); (-2; 1); (1; -2)$.

Вариант 6

1.
$$(4a; a); (-a; -4a)$$
. 2. $(-2; -1); (2; 1); \left(-\sqrt{6}; -\frac{\sqrt{6}}{3}\right);$ $\left(\sqrt{6}; \frac{\sqrt{6}}{3}\right)$. 3. $(0; 0); (1; 1); (1, 6; -3, 2)$. 4. $(2; 1);$ $\left(-\frac{19}{8}; -\frac{13}{8}\right)$. 5. $(-3; -1); (-1; -3); (1; 3); (3; 1)$.

Вариант 7

1.
$$(3;2);(-2;-3)$$
. 2. $(1;1);\left(\sqrt{2};\frac{\sqrt{2}}{2}\right)$. 3. $(0;1);(0;-1);$ $(-1;-1);(1;1)$. 4. $(1;0);(0;1);(-1;0);\left(-\frac{3}{5};\frac{4}{5}\right)$. У казание: решите $2x^2+yx-y^2+3y-2=0$ относительно x , считая y параметром. $D=y^2-8(-y^2+3y-2)=9y^2-24y+16=(3y-4)^2; $x=-y+1;$ $x=0,5y+1\dots$ 5. $(2;3)$. У казание: первое уравнение можно представить в виде: $(x-y+1)^2+(y-3)^2=0$.$

1.
$$(0;0)$$
; $\left(\frac{1}{2};\frac{1}{3}\right)$. 2. $(-4;-1)$. 3. $(-1;-1)$; $(-1;0)$; $(1;0)$; $(1;1)$. 4. $(1;0)$; $(-1;0)$; $\left(-\frac{5}{3};\frac{4}{3}\right)$. 5. $(2;-1)$.

4. Решение задач с помощью уравнений

Вариант 1

1. 50 км/ч. **2.** 13, 14. **3.** 6 ч и 12 ч.

Вариант 2

1. 25 км/ч. **2.** 11 и 16. **3.** 9 ч и 18 ч.

Вариант 3

1. 40 т и 100 т. **2.** 4 км/ч. **3.** 5 стр./ч и 7 стр./ч.

Вариант 4

1. 40 т и 60 т. **2.** 2 км/ч. **3.** 9,6 стр./ч и 8 стр./ч.

Вариант 5

1. 10 мин. **2.** 6 м/с и 8 м/с. **3.** 6% и 11%.

Вариант 6

1. 3 дня. 2. 24 км/ч и 18 км/ч. 3. 60%.

Вариант 7

 $\overline{{f 1.}\ 5}$ ч. ${f 2.}\ 3$ км/ч и 4 км/ч. ${f 3.}\ {rac{V_2}{V_1}}={rac{29}{18}}.$

Вариант 8

 $\overline{{f 1.}\ 20}$ км/ч и 40 км/ч. ${f 2.}\ \sqrt{2}$ км/ч и 1 км/ч. ${f 3.}\ \frac{V_2}{V_1}\!=\!\frac{23}{16}.$

5. Степень с целым показателем

$$\overline{\mathbf{1. a)}} \ 2\frac{1}{8}; \ \mathbf{6)} \ -27; \ \mathbf{B)} \ \frac{2}{19}. \ \mathbf{2.} \ a^5. \ \mathbf{3.} \ \frac{49}{9} x^4 y^4. \ \mathbf{4.} \ -65.$$

5.
$$x_1 = -\frac{4}{3}$$
; $x_2 = -1$. **6.** $(2; 2,5) \cup (2,5; 3)$.

Вариант 2
1. а)
$$1\frac{1}{27}$$
; б) -32 ; в) $\frac{3}{73}$. 2. a^6 . 3. $\frac{9}{4}x^{-2}y^{-4}$. 4. -665 .

5.
$$x_1 = \frac{3}{2}$$
; $x_2 = 1$. **6.** $(-\infty; 1) \cup (2; 3) \cup (3; +\infty)$.

1. a) 26; **6**)
$$\frac{1}{8}$$
; b) $\frac{10}{81}$. **2.** a^{-16} . **3.** $\frac{9}{4}x^{-10}y^6$. **4.** -1.

5.
$$x = -1$$
, $x = -\frac{1}{2}$, $x = -\frac{1}{2}$, $x = 1$.

6.
$$\left(-\frac{1}{2}; \frac{1}{4}\right) \cup \left(\frac{1}{3}; \frac{7}{6}\right)$$
.

Вариант 4

1. a) 3; **6**)
$$\frac{1}{64}$$
; **B**) $\frac{26}{625}$. **2.** b^{-12} . **3.** $8x^8y^{-1}$. **4.** $\frac{x+y}{x-y}$.

5.
$$x = \pm \frac{1}{2}$$
. **6.** $\left(-\infty; -1\frac{3}{8}\right) \cup \left(\frac{3}{8}; +\infty\right)$.

Вариант 5

1. -1. **2.**
$$\frac{a+b}{ab}$$
. **3.** 1. **4.** $n=6$. **5.** $x_1=-1$; $x_2=-\frac{3}{8}$.

6.
$$(-\infty; -2) \cup \left(-1\frac{2}{3}; +\infty\right)$$
.

Вариант 6

1. 1. **2.**
$$\frac{1}{ab}$$
. **3.** $\frac{3}{16}$. **4.** $n = 8$. **5.** $x_1 = -2$; $x_2 = -6$.

6.
$$\left(3; 3\frac{1}{5}\right)$$
.

Вариант 7

1. 30. **2.** 19. **3.** ab. **4.**
$$3^{34} > 2^{51}$$
. Решение: $3^{34} = (3^{17})^2 = 9^{17} \ 2^{51} = (2^{17})^3 = 8^{17}$. Отсюда $3^{34} > 2^{51}$.

5. Парабола $y=(x-2)^2$ с двумя "выколотыми" точками (1;1) и (2;0). **6.** n=1.

1. 6. **2.** $2\frac{1}{4}$. **3.** b^2-a^2 . **4.** $3^{20}>2^{30}$. **5.** Парабола $y=(x+2)^2$ с двумя "выколотыми" точками (-1;1) и (-2;0). **6.** n=-1.

6. Корень натуральной степени

Вариант 1

1. 80. **2.** $3abc^2 \cdot \sqrt[3]{2b^2}$. **3.** $\sqrt[4]{3a^6b^5}$. **4.** $x \neq \pm 2$. **5.** $\frac{\sqrt[3]{4} - \sqrt[3]{2} + 1}{3}$. **6.** $\sqrt[3]{26} < 3$. **7.** -1.

Вариант 2

1. 6. **2.**
$$a^2c^3\sqrt[3]{4c}$$
. **3.** $\sqrt[3]{\frac{1}{6}xz}$. **4.** $x \neq \pm 3$. **5.** $\frac{\sqrt[3]{9} + \sqrt[3]{3} + 1}{2}$. **6.** $\sqrt[4]{17} > 2$. **7.** 1.

Вариант 3

1.
$$9\frac{1}{2}$$
. 2. $m\sqrt[4]{56mxy}$. 3. $\sqrt[4]{\frac{4m}{9n^6}}$. 4. $x = 5$. 5. $\frac{\sqrt[3]{9} - \sqrt[3]{15} + \sqrt[3]{25}}{8}$. 6. $\sqrt{11} > \sqrt[3]{30}$. 7. 0.

Вариант 4

1. 4,5. **2.**
$$\frac{a}{4mn} \cdot \sqrt[3]{20am^2n}$$
. **3.** $\sqrt[4]{\frac{25a^2}{b}}$. **4.** $(-\infty; 7]$. **5.** $(\sqrt[4]{3} - \sqrt[4]{2}) \cdot (\sqrt{3} + \sqrt{2})$. **6.** $\sqrt[4]{15} > \sqrt{3}$. **7.** 0.

1.
$$\frac{3x}{y} - \frac{2y}{x}$$
. 2. a) $\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}$; 6) $\sqrt[3]{(a-b)^2}$.

3.
$$[11;20) \cup (20;+\infty)$$
. **4.** $\frac{\sqrt[4]{-x}}{x}$. **5.** $-\sqrt{3-\sqrt{5}}$. **6.** $a=b$. **7.** $x=0$.

1.
$$5a^3c^3$$
. **2.** a) $\sqrt[3]{a^2} - \sqrt[3]{ab} + \sqrt[3]{b^2}$; **6**) $\sqrt[3]{(a+b)^2}$

1.
$$5a^3c^3$$
. **2. a)** $\sqrt[3]{a^2} - \sqrt[3]{ab} + \sqrt[3]{b^2}$; **6)** $\sqrt[3]{(a+b)^2}$. **3.** $[-4;-3) \cup (-3;-1] \cup [5;+\infty)$. **4.** $\frac{\sqrt[8]{-a}}{a}$. **5.** $\sqrt[3]{\left(\sqrt[4]{3}-2\right)^2}$.

6.
$$a = b$$
. **7.** $x_1 = 1$; $x_2 = 3\sqrt[3]{3}$.

Вариант 7

1.
$$31a\sqrt{ax}$$
. 2. $\frac{1}{\sqrt[6]{a}(1-\sqrt{a})}$. 3. $(\sqrt[3]{3}-\sqrt{2})\cdot(3\sqrt[3]{3}+2\sqrt[3]{9}+$
+4). 4. $-2 \le x \le 1$. 5. $\sqrt[6]{3\sqrt[5]{3}} < \sqrt[5]{4} < \sqrt[10]{25}$.

6.
$$x = \sqrt[3]{2} + 1$$
. Решение: $x^3 - 3x^2 + 3x - 1 = 2$; $(x - 1)^3 = 2$; $x - 1 = \sqrt[3]{2}$; $x = \sqrt[3]{2} + 1$.

7. Пусть
$$\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=a;\ a^3=2+\sqrt{5}+2-\sqrt{5}+3\sqrt[3]{4-5}\cdot a;\ a^3=4-3a;\ a^3+3a-4=0;\ a^3-1+3a-3=0;\ (a-1)(a^2-a+1)+3(a-1)=0;\ (a-1)(a^2+a+4)=0.$$
 Отсюда $a=1$ — рациональное число $(a^2+a+4\neq 0).$

1.
$$\frac{a}{2x}\sqrt[4]{ax^3}$$
. 2. $\frac{1+\sqrt[4]{b}}{\sqrt{b}}$; $(b \neq 1)$.

3.
$$\frac{-(\sqrt[3]{2}+\sqrt{3})(\sqrt[3]{16}+3\sqrt[3]{4}+9)}{23}$$
. 4. \emptyset .

$$\mathbf{5.} \ \sqrt[4]{2\sqrt{\frac{5}{4}}} < \ \sqrt[10]{7\sqrt[4]{7}} < \ \sqrt[16]{64}.$$

6.
$$x=-\frac{1}{2}$$
. Решение: $x^3+3x^2+3x+1=-x^3$; $(x+1)^3=-x^3$. Отсюда $x+1=-x$ и $x=-\frac{1}{2}$.

7. Пусть
$$\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}=a$$
, тогда $a^3=5\sqrt{2}+7-5\sqrt{2}+7-3\sqrt[3]{1}\cdot a$; $a^3=14-3a$; $a^3+3a-14=0$; $a^3-8+3a-6=0$; $(a-2)(a^2+2a+4)+3(a-2)=0$; $(a-2)(a^2+2a+7)=0$. Отсюда $a=2$ — рациональное число. $(a^2+2a+7\neq 0)$.

Степень с рациональным показателем

Вариант 1

1. a) 5; **6**)
$$6\frac{1}{4}$$
. **2.** 1. **3.** $b+4$. **4.** a) $a^{\frac{2}{3}}+b^{\frac{2}{3}}+a^{\frac{1}{3}}\cdot b^{\frac{1}{3}}$.

6)
$$\frac{1}{m^{\frac{1}{4}}-3}$$
. **5. a)** $x=16$; **6)** $y=2$.

Вариант 2

1. a) 207; **6**)
$$\frac{8}{45}$$
. **2.** $a^{\frac{1}{2}}$. **3.** $36 + b$. **4.** a) $a^{\frac{2}{3}} + b^{\frac{2}{3}} - a^{\frac{1}{3}} \cdot b^{\frac{1}{3}}$.

6)
$$\frac{1}{4+m^{\frac{1}{3}}}$$
. **5. a**) $x=8$; **6**) $y=6$.

Вариант 3

1. a)
$$-7\frac{2}{3}$$
; **6)** $3\sqrt[6]{3}$. **2.** $2b^3c^2\sqrt[6]{b^5}$. **3.** $x+3$.

4. a)
$$\frac{1}{2}x^{\frac{1}{2}}(x^{\frac{1}{4}}-3)$$
; **6)** $a^{\frac{1}{3}}-b^{\frac{1}{3}}$. **5.** a) $x=8$; **6)** $y=2$.

Вариант 4

1. a) 239; **6)**
$$3\sqrt[6]{3}$$
. **2.** $18a^2b^2\sqrt[10]{3a^9b}$. **3.** $a-1$.

4. a)
$$\frac{k^{\frac{1}{2}} \cdot (k^{\frac{1}{4}} - 4)}{3}$$
; **6)** $x^{\frac{1}{3}} + y^{\frac{1}{3}}$. **5. a)** $x = 9$;

6)
$$a = \sqrt{3}$$
.

Вариант 5

1. 105. **2. a)**
$$\frac{1}{\sqrt[3]{b^2}}$$
; **6)** $2\sqrt[8]{a^5}$. **3.** $a^{3,6} - 1$.

4.
$$(a^{\frac{1}{8}} - b^{\frac{1}{12}})(a^{\frac{1}{2}} + a^{\frac{1}{4}} \cdot b^{\frac{1}{6}} + b^{\frac{1}{3}})$$
. **5. a)** $x = (y - 1)^{-\frac{3}{2}}$; **6)** $x = \frac{10\,000}{81}$.

6)
$$x = \frac{10000}{81}$$
.

1. 19,5. **2.** a)
$$a$$
; **6**) $a \sqrt[12]{a}$. **3.** $b^{10,5} - 64$.

4.
$$\frac{x^{\frac{4}{7}} - y^{\frac{2}{5}}}{x^{\frac{8}{7}} - x^{\frac{4}{7}} \cdot y^{\frac{2}{5}} + y^{\frac{4}{5}}}$$
. **5. a)** $x = (y - 2)^{-\frac{4}{3}}$; **6)** $\frac{1}{32}$.

1. -200. 2. a)
$$\frac{1}{\sqrt[4]{9b}}$$
; 6) $\frac{1}{2}\sqrt[3]{c^2}$. 3. a) $\frac{4}{c^{\frac{1}{2}} + u^{\frac{1}{2}}}$;

б) $c^{\frac{1}{3}}$ - 3. **4.** x = 8. У казание: необходимо ввести обозначение $x^{\frac{1}{3}} = t \geqslant 0$.

Вариант 8

1. 1000. **2.** a)
$$\frac{a}{\sqrt[12]{x}}$$
; **6**) $2c \sqrt[10]{c^3}$. **3.** a) $\frac{5}{b^{\frac{1}{2}} - a^{\frac{1}{2}}}$;

б) $-(y^{\frac{1}{3}}+2)$. **4.** x=8. У казание: необходимо ввести обозначение $x^{\frac{1}{3}} = y \geqslant 0$.

Упражнения на все действия над радикалами и степенями

Вариант 1

1. a) 0,25; **6**)
$$\frac{a}{b}$$
. **2.** a) $x_1 = -1$, $x_2 = 7$; **6**) $x = 3$; **B**) $x = \lg 7$.

Вариант 2

1. a)
$$\frac{1}{8}$$
; **6**) $\frac{a}{b}$. **2.** a) $x_1 = 1, x_2 = 4$; **6**) $x = 1$; **B**) $x = \lg 0.7$.

Вариант 3

1. a)
$$\frac{1}{8}$$
; 6) $\frac{ab}{\sqrt{a}-\sqrt{b}}$. **2.** a) $x=3$; 6) $x=2$; b) $x=\lg 2,5$.

Вариант 4

1. a)
$$\frac{8\sqrt{x}}{x}$$
; **6)** xy . **2.** a) $x = 3$; **6)** $x = 2$; **B)** $x = \lg 1.75$.

1. a) 2; **6)**
$$\sqrt[6]{m} - \sqrt[6]{n}$$
. **2. a)** $x = 1$; **6)** $x = 3$; **B)** $x = \frac{3}{2} + \frac{1}{2} \lg 9$.

B)
$$x = \frac{3}{2} + \frac{1}{2} \lg 9.$$

1. a)
$$\sqrt[4]{m} - \sqrt[4]{n}$$
; **6**) $\sqrt[6]{a}$. **2.** a) $x = 1$; **6**) $x = 4$; **B**) $x = \frac{5 - \lg 7}{3}$.

Вариант 7

1. a)
$$-\sqrt[4]{a}$$
; 6) $a^2 + ab + b^2$. **2.** a) $x_1 = 0$, $x_2 = 1$; 6) $x = 4$; B) $x = 1$.

Вариант 8

1. a)
$$6 - 4a$$
; **6**) \sqrt{x} . **2.** a) $x_1 = 0, x_2 = 1$; **6**) $x = 3$; **B**) $x = -1$.

9. Область определения функции. Возрастание и убывание функции

Вариант 1

1. a)
$$D(f) = [0;1) \cup (1;\infty)$$
; **6)** $D(f) = (-\infty;-1] \cup [8;+\infty)$.

2. Нет. **3. a)** убывает; **б)** при $x \in (-\infty; 2]$ f(x) убывает; при $x \in [2; +\infty)$ f(x) возрастает. **4.** f(x) = |x-2| + |x+2| (см. рис. 1).

Вариант 2

1. a)
$$D(f) = [-1; 0) \cup (0; +\infty)$$
; 6) $D(f) = [-9; 1]$. 2. Ia.

3. а) возрастает; **б**) при $x \in (-\infty; 1]$ f(x) возрастает; при $x \in [1; +\infty)$ f(x) убывает. **4.** f(x) = |x-2| - |x+2| (см. рис. 2).

1. а)
$$D(f)=[0;1)\cup(1;2)\cup(2;+\infty);$$
 б) $D(f)=(-2;0]\cup(3;+\infty).$ 2. а) при $x\in\left(-\infty;\frac{1}{4}\right]$ $f(x)$ возрастает; при $x\in\left[\frac{1}{4};+\infty\right)$ $f(x)$ убывает; б) при

Рис. 1.

Рис. 2.

 $x\in (-\infty;-1]$ f(x) убывает; при $x\in [-1;+\infty)$ f(x) возрастает. **3.** $(-1;1);\left(-\frac{1}{2};2\right)$. **4.** $y=-|x^2-6x+5|$ (см. рис. 3).

Вариант 4

1. а) $D(f)=(-\infty;-4)\cup(-4;-1)\cup(-1;1];$ б) $D(f)==[-3;0)\cup[5;+\infty).$ 2. а) при $x\in(-\infty;0,5]$ f(x) убывает; при $x\in[0,5;+\infty)$ f(x) возрастает; б) при $x\in(-\infty;-3]$ f(x) возрастает; при $x\in[-3;+\infty)$ f(x) убывает. 3. (-1;0); (4;5). 4. $f(x)=|x^2-x-6|$ (см. рис. 4).

Рис. 3.

Рис. 4.

- **1.** (-3;36);(1;0). **2. a)** см. рис. 5; **6)** см. рис. 6.
- **3.** a) $D(f) = (-\infty; -3) \cup \{2\} \cup (3; +\infty);$ **6)** $D(f) = (-6; -5] \cup [-4; 1);$ **B)** $D(f) = (-\infty; -1] \cup [11; +\infty).$

Рис. 6.

- **1.** (1;3);(-6;-4). **2. a)** cm. puc. 7; **6)** cm. puc. 8.
- **3.** a) $D(f) = [-4; -1) \cup (1; 4];$ 6) $D(f) = [-9; -4) \cup (-2; 1];$

$$\mathbf{B}) \ D(f) = \left(-\infty; -\frac{5}{3}\right) \cup \left[-\frac{3}{2}; +\infty\right).$$

Рис. 7.

Рис. 8.

1. Het. **2. a)** $D(f) = [-5; -2] \cup [2; 3) \cup (3; 5];$ **6)** $D(f) = \{-2\} \cup (2; +\infty);$ **B)** $D(f) = [-4; -\pi] \cup [0; \pi].$ **3. a)** y = |4-2|x|| (cm. puc. 9). **6)** $y = |x^2 - x| + x - 1$ (cm. puc. 10).

Вариант 8

1. Да. **2.** a) $D(f) = (-4; -1) \cup (1; 4) \cup \{10\};$ **6)** $D(f) = \{2\} \cup [3; 5];$ в) $D(f) = \left[-2; -\frac{\pi}{2}\right] \cup \left[\frac{\pi}{2}; 2\right].$ **3.** a) $f(x) = \sqrt{x^2 - 2|x| + 1}$ (см. рис. 11). **6)** $f(x) = x^2 - |x - x^2|$ (см. рис. 12).

Рис. 11.

Рис. 12.

10. Четность и нечетность функции

Вариант 1

- **1.** a) четная; **6**) нечетная; **B**) нечетная. **2.** (3; -4); (4; -3).
- **3. a)** см. рис. 13; **б)** см. рис. 14.

Рис. 14.

- **1.** a) нечетная; **6**) четная; **B**) нечетная. **2.** (2;4); (-4;-2).
- **3. a)** см. рис. 15; **б)** см. рис. 16.

Рис. 15.

Рис. 16.

- 1. а) общего вида; б) четная; в) нечетная.
- **2.** (-2;1);(1;-2). **3. а)** см. рис. 17; **б)** см. рис. 18.

Рис. 17.

Рис. 18.

- 1. а) общего вида; б) нечетная; в) нечетная.
- **2.** (1;2);(-2;-1). **3. a)** см. рис. 19; **6)** см. рис. 20.

Рис. 19.

Рис. 20.

- 1. а) общего вида; б) четная; 2. а) (0;3); б) (7;1).
- **3. а)** см. рис. 21; **б)** см. рис. 22.

Рис. 21.

Рис. 22.

Вариант б

- **1.** a) четная; **6)** нечетная. **2.** a) (2;3); **6)** (4;2).
- 3. а) см. рис. 23; б) см. рис. 24.

Рис. 23.

Рис. 24.

1. x=2. **2. a**) четная; **б**) четная. **3. a**) см. рис. 25; **б**) см. рис. 26. **4.** Если $a\geqslant 2$, то решений нет; если $-2\leqslant a<2$, то 1 решение; если a<-2, то 2 решения.

Рис. 25.

Рис. 26.

Вариант 8

1. x=-2. **2. a)** нечетная; **б)** общего вида. **3. a)** см. рис. 27; **б)** см. рис. 28. **4.** Если a>2, то 2 решения; если $-2< a \leqslant 2$, то 1 решение; если $a \leqslant -2$, то решений нет.

Рис. 27.

Рис. 28.

11. Неравенства и уравнения, содержащие степень

Вариант 1

1. a)
$$x < -5$$
; $x > 5$; 6) $x \le -7$. **2.** a) $x = 4$; 6) $x = 9$; b) $x = -4$; r) $x = 4$. **3.** $\left[-\frac{7}{6}; 7 \right]$.

Вариант 2

1. a)
$$-3 \le x \le 3$$
; **6)** $4 \le x < 13$. **2.** a) $x = 1$; **6)** $x = 4$; **B)** $x = 5$; **r)** $x = 0$. **3.** [3; 7).

Вариант 3

1. a)
$$-2 \le x \le 2$$
; **6**) $-5 \le x < -3$; $3 < x \le 5$. **2.** a) $x = -4$; **6**) $x = 1$; $x = 4$; **B**) $x = 2$; **r**) $x = -7$; $x = 8$. **3.** $[-4;1] \cup \{2\}$.

Вариант 4

1. a)
$$x < -3$$
; $x > 3$; 6) $-13 \le x < -5$; $5 < x \le 13$.

2. a)
$$x = -1$$
; 6) $x = -1$; $x = 3$; B) $x = -2$; r) $x = -6$; $x = 7$. **3.** $\left[\frac{1}{3}; 2\right] \cup \{-3\}$.

Вариант 5

1. a)
$$x = 1 - \sqrt{2}$$
; $x = 2$; $x = 3$; 6) $x = 0.5$; B) $x = -1$; $x = 0$. **2.** a) $[-2;1] \cup \{2\}$; 6) $\left[\frac{1}{2};1\right)$; B) $[4;5)$.

3.
$$x=-\frac{1}{5}; \ x=\frac{2-2\sqrt{22}}{21}.$$
 У казание: домножьте правую и левую части уравнения на $(\sqrt{x^2+6x+2}+\sqrt{x^2+x+1}),$ после чего вынесите за скобки общий множитель $(5x+1).$

1. a)
$$x = -5$$
; $x = -1 + \sqrt{5}$; $x = -2$; 6) $x = -\frac{1}{3}$;
B) $x = -2$; $x = 1$. 2. a) $\{-2\} \cup [-2; +\infty)$; 6) $\left[\frac{4}{5}; 1\right)$;

B)
$$\left[\frac{19}{3};9\right)$$
. **3.** $x=-\frac{1}{4};\ x=\frac{1-\sqrt{13}}{6}$.

1. а)
$$x=1$$
; **6)** $x=1$; **в)** $\frac{5+3\sqrt{5}}{2}$. Указание: домножьте правую и левую части уравнения на $(\sqrt{x+1}-\sqrt{x-2})$. **2. а)** $\left[-\frac{1}{2};\frac{1}{2}\right]\cup\{3\}$; **6)** $(-2;-1]\cup\cup\left[-\frac{2}{3};\frac{1}{3}\right]$; **в)** $\left(\frac{1}{2};1\right)$. **3.** $a\in\left\{-\frac{49}{4}\right\}\cup(-12;-6)\cup[8;+\infty)$.

Решение: ... $x^2 + 9x + 8 - a = 0$. 1) $D = 0 \dots a = -\frac{49}{4}$.

- 2) Т. к. $x^2 + 6x + 8 \ge 0, x \le -4$ или $x \ge -2$; то есть f(-4)f(-2) < 0 (тогда один из корней не будет подходить). (16 - 36 - a)(4 - 18 - a) < 0; -12 < a < -6.
- 3) Кроме того, один из корней может быть отрицательным или 0, то есть $(8 - a) \le 0$; $a \ge 8$.

Вариант 8

1. a)
$$x = 2$$
; b) $x = 2$; b) $x = \frac{3 + 3\sqrt{5}}{2}$. **2.** a) $\{-2\} \cup \cup \left[\frac{1}{3}; 1, 5\right]$; b) $\left(-4, 5; \frac{-5 - \sqrt{97}}{4}\right] \cup \left[\frac{-5 + \sqrt{97}}{4}; 1, 5\right)$; b) $[-2; 0) \cup (0; 2]$. **3.** $a \in \left\{-\frac{37}{4}\right\} \cup (-9; -3) \cup [3; +\infty)$.

Радианная мера угла

1.
$$a < 0$$
. 2. $[-1;3]$. 3. $(a-b)^2$. 4. $\sin \frac{11\pi}{4} = \frac{\sqrt{2}}{2}$; $\cos \frac{11\pi}{4} = -\frac{\sqrt{2}}{2}$; $\tan \frac{11\pi}{4} = -1$; $\cot \frac{11\pi}{4} = -1$. 5. $\sin 1.8 > 1$; $\cot 2.8$. 6. Да, возможно.

7. a)
$$x = 2\pi k + \frac{\pi}{3} k \in \mathbb{Z};$$

6)
$$x=\frac{\pi k}{2}, \ k\in\mathbb{Z}.$$

1.
$$m < 0$$
. **2.** $[-2; 6]$. **3.** $a^2 - b^2$. **4.** $\sin \frac{7\pi}{3} = \frac{\sqrt{3}}{2}$, $\cos \frac{7\pi}{3} = \frac{1}{2}$, $\tan \frac{7\pi}{3} = \sqrt{3}$, $\cot \frac{7\pi}{3} = \frac{1}{\sqrt{3}}$. **5.** $\frac{2}{3} > \cos 2,3$. **6.** Her. **7. a)** $x = \frac{\pi}{4} + \pi k$, $k \in \mathbb{Z}$; **6)** $x = \frac{\pi}{4} + \pi k$, $k \in \mathbb{Z}$.

Вариант 3

1.
$$x < \frac{1}{2}$$
. **2.** $[0,25;3,25]$. **3.** $(a+b)^2$.

5.
$$\sin 418^{\circ} > \sin 135^{\circ}$$
. **6.** Het. **7.** $x \neq -\frac{3\pi}{4} + 2\pi k, \ k \in \mathbb{Z}$.

Вариант 4

1.
$$x > \frac{1}{3}$$
. **2.** $[-3,7;0,3]$. **3.** $(a-b)^2$. **5.** $\sin 415^\circ > \sin 195^\circ$.

6. Her. **7.**
$$x \neq \frac{\pi}{3} + 2\pi k, \ k \in \mathbb{Z}$$
.

Вариант 5

1. $x = \frac{\pi}{2} + 2\pi k, \ k \in \mathbb{Z}$. **2.** Наибольшее значение равно 1, наименьшего значения не существует. **3.** 2,75.

4.
$$\frac{\pi}{6} < x \leqslant \frac{\pi}{2}$$
. **5.** $\left[0; \frac{\pi}{2}\right) \cup \left(\frac{3\pi}{2}; 2\pi\right]$. **6.** $-\sqrt{2} \leqslant a \leqslant \sqrt{2}$.

7.
$$x = \pi k, \ k \in \mathbb{Z}; \ x = \frac{\pi}{2} + 2\pi n, \ n \in \mathbb{Z}; \ n \neq 0.$$

Вариант 6

1. $x=2\pi k,\ k\in\mathbb{Z}$. **2.** Наибольшего и наименьшего значений не существует. **3.** 1. **4.** $0\leqslant x<\frac{\pi}{6}$. **5.** $(\pi;2\pi)$. **6.** a=0.

7.
$$x = \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z}; \ x = \pi + 2\pi n, \ n \in \mathbb{Z}; \ n \neq 0.$$

1.
$$\left[\frac{\pi}{2};\pi\right]$$
. 2. $\left[\frac{1}{5};1\right]$. 3. $\frac{11\sqrt{3}}{12}$. 4. $\frac{\pi}{4}<\alpha<\frac{5\pi}{4}$. 5. $x=\frac{\pi}{4}+\pi k,\ k\in\mathbb{Z}$. 6. Возможно при $-1\leqslant a\leqslant 0$ и $1\leqslant a\leqslant 2$. 7. $x=\pi+2\pi k,\ k\in\mathbb{Z};\ k\neq 1$.

Вариант 8

$$\overline{\mathbf{1.}\left[\frac{3\pi}{2}; 2\pi\right]}$$
 . **2.** $\left[\frac{3}{7}; 3\right]$. **3.** 1,9. **4.** $0 < \alpha < \frac{\pi}{4}; \frac{5\pi}{4} < \alpha < 2\pi$.

5.
$$x=2\pi+4\pi k,\ k\in\mathbb{Z}$$
 . **6.** Возможно при $a\leqslant\frac{1}{2}$.

7.
$$x = \frac{\pi}{2} + 2\pi k, \ k \in \mathbb{Z}, \ k \neq 1.$$

13. Тригонометрические тождества

Вариант 1

1.
$$-\frac{4}{3}$$
. 2. a) $\csc \alpha$; 6) $\sin \alpha + \cos \alpha$. 4. $y_{\text{наиб.}} = 3$; $y_{\text{наим.}} = 2$.

5. а)
$$\frac{\pi}{2} + \pi k, \ k \in \mathbb{Z};$$
 б) нет решений.

Вариант 2

1.
$$\frac{5}{12}$$
. 2. a) $\sec \alpha$; 6) $\cos \alpha - \sin \alpha$. 4. $y_{\text{наиб.}} = 3$; $y_{\text{наим.}} = -2$.

5. a)
$$\frac{\pi}{2} + 2\pi k, \ k \in \mathbb{Z};$$
 6) нет решений.

Вариант 3

1.
$$-\frac{8}{17}$$
; $\frac{15}{17}$. 2. a) $\frac{2}{\sin \alpha}$; 6) $\sin^2 \alpha$. 3. $-\frac{12}{49}$. 4. 9. 5. a) $\frac{\pi}{3}$; 6) нет решений.

$$\frac{}{1.-\frac{24}{25};\frac{7}{25}}$$
. 2. a) $\frac{2}{\cos\alpha}$; 6) $\cos^2\alpha$.3. $\pm\frac{1}{2}\sqrt{6}$. 4. $-\frac{1}{9}$.

5. а)
$$\frac{5\pi}{6}$$
; **б)** нет решений.

1.
$$-\frac{\sqrt{3}}{3}$$
. 2. a) 1; 6) 1. 3. $\frac{1-p^4+2p^2}{2}$. 4. $9\frac{1}{4}$. 5. a) $\frac{3\pi}{4}$; 6) $\pi(2k+1)$, $k \in \mathbb{Z}$.

Вариант 6

1.
$$-\frac{\sqrt{3}}{3}$$
. 2. a) $\cos^2 \alpha$; 6) $- \operatorname{tg} \alpha$. 3. $\frac{2m^2 - m^4 + 1}{2}$. 4. $\frac{15}{29}$. 5. a) $\frac{5\pi}{4}$; 6) $2\pi k$, $k \in \mathbb{Z}$.

Вариант 7

1.
$$-\sqrt{5}$$
. 3. $-2 \operatorname{tg} \alpha$. 4. $\frac{4-3 \left(m^2-1\right)^2}{4}$. 5. 7. 6. a) $\frac{3\pi}{4}$; 6) $\frac{\pi}{4}$; $\frac{5\pi}{4}$.

Вариант 8

1.
$$-\frac{16}{25}$$
. 3. $-2 \operatorname{ctg} \alpha$. 4. $\frac{4-3(1-p^2)}{4}$. 5. -10 . 6. a) $\frac{7\pi}{4}$; 6) $\frac{3\pi}{4}$; $\frac{7\pi}{4}x$.

14. Формулы сложения

Вариант 1

1.
$$-\frac{4+3\sqrt{3}}{10}$$
. 2. a) $\sin \alpha \cdot \cos \beta$; 6) $\cot 40^{\circ}$. 3. $\frac{11}{13}$. 4. $\frac{\pi k}{3}$, $k \in \mathbb{Z}$.

1.
$$-\frac{8\sqrt{3}+15}{34}$$
. 2. a) $\cos \alpha \cdot \cos \beta$; 6) $\operatorname{ctg} 25^{\circ}$. 3. $\frac{1}{17}$. 4. $\frac{2\pi k}{3}$, $k \in \mathbb{Z}$.

1.
$$-\frac{17\sqrt{2}}{26}$$
. 2. a) 1; 6) 0. 4. $\pi k, k \in \mathbb{Z}$.

Вариант 4

1.
$$\frac{17\sqrt{2}}{50}$$
. **2. a)** $\operatorname{ctg} \alpha$; **6)** 0 . **4.** $\pi k, \ k \in \mathbb{Z}$.

Вариант 5

1.
$$\operatorname{tg} \alpha$$
. **2.** $\frac{\sqrt{2}}{4} \left(1 + \sqrt{3} \right)$. **3.** $\sin \left(x + \frac{\pi}{4} \right)$. **4.** $\frac{5\pi}{4}$. **5.** $2\pi k$, $k \in \mathbb{Z}$.

Вариант 6

1.
$$\sqrt{3} \operatorname{ctg} \alpha$$
. **2.** $\frac{\sqrt{2} + \sqrt{6}}{4}$. **3.** $\sin \left(\alpha - \frac{\pi}{3}\right)$. **4.** $\frac{3\pi}{4}$. **5.** $\pi(2k + 1)$, $k \in \mathbb{Z}$.

Вариант 7

1.
$$\sqrt{2}$$
. 2. -0.6 . У казание: $\sin \alpha = \sin \left(\frac{\pi}{4} - \left(\frac{\pi}{4} - \alpha\right)\right)$.

4. У казание:
$$\operatorname{tg}(\alpha\pm\beta)=\frac{\operatorname{tg}\alpha\pm\operatorname{tg}\beta}{1\mp\operatorname{tg}\alpha\cdot\operatorname{tg}\beta}$$
; отсюда: $\operatorname{tg}\alpha\pm\operatorname{tg}\beta=\operatorname{tg}(\alpha\pm\beta)\,(1\pm\operatorname{tg}\alpha\operatorname{tg}\beta)$. В нашем случае $\operatorname{tg}3\alpha-\operatorname{tg}2\alpha-\operatorname{tg}\alpha=\operatorname{tg}\alpha\cdot(1+\operatorname{tg}3\alpha\cdot\operatorname{tg}2\alpha-1)=\operatorname{tg}\alpha\cdot\operatorname{tg}2\alpha\cdot\operatorname{tg}3\alpha$. 5. $\frac{\pi}{3}+2\pi k$,

$$k \in \mathbb{Z}$$
. У к а з а н и е: $\sqrt{3} \sin x + \cos x - 2 = 0$, $\frac{\sqrt{3}}{2} \cdot \sin x + \frac{1}{2} \cos x = 1$, $\sin \frac{\pi}{3} \cdot \sin x + \cos \frac{\pi}{3} \cdot \cos x = 1$, $\cos \left(x - \frac{\pi}{3} \right) = 1$, $x - \frac{\pi}{3} = 2\pi k$, $x = \frac{\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$.

Вариант 8

1.
$$\frac{\sqrt{6}}{3}$$
. 2. $\frac{58}{63}$. У казание: $\cos \beta = \cos((\alpha + \beta) - \alpha)$.

4. См. указание к задаче 4 из варианта 7. **5.** $\frac{5\pi}{6} + 2\pi k, \ k \in \mathbb{Z}$.

15. Синус и косинус двойного угла

Вариант 1

- **1.** $2\sin 11^{\circ}30' \cdot \cos 11^{\circ}30'$. **2.** $-\frac{24}{25}$. **3. a)** $\cos 4\alpha$; **6)** $\frac{\sqrt{3}}{2}$.
- **4.** $\frac{\sqrt{3}}{3}$. **5. a)** $\pi k, \ k \in \mathbb{Z};$ **6)** $\pi k, \ k \in \mathbb{Z}$.

Вариант 2

1.
$$\cos^2 7^{\circ} 30' - \sin^2 7^{\circ} 30'$$
. **2.** $\frac{7}{9}$. **3. a)** $4 \sin^2 \alpha$; **6)** $\frac{\sqrt{2} - 1}{2}$.

4.
$$\frac{\sqrt{3}}{3}$$
. **5. a)** $\frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$; **6)** $\frac{\pi}{8} + \frac{\pi k}{4}$, $k \in \mathbb{Z}$.

Вариант 3

1.
$$\sin \alpha + \cos \alpha$$
. 2. $\frac{4\sqrt{15}-1}{18}$. 3. 4. 5. $\sin 2\alpha$. 6. a) $\frac{7\pi}{6}$;

6)
$$\frac{\pi k}{3}$$
, $k \in \mathbb{Z}$.

Вариант 4

1.
$$\sin \alpha - \cos \alpha$$
. **2.** $\frac{30\sqrt{6} - 40}{119}$. **3.** $2 \operatorname{tg} 20^{\circ}$. **5.** $\cos 2\alpha$.

6. a)
$$-\frac{2\pi}{3}$$
; **6**) $\frac{\pi k}{2}$, $k \in \mathbb{Z}$.

Вариант 5

1.
$$\cos 4\alpha$$
. **2.** $\frac{837}{845}$. **3.** $4\sin \alpha$. **4.** -2 . **5.** $-\frac{3}{4}$. **6.** a) πk , $k \in \mathbb{Z}$;

6)
$$\frac{\pi}{2}+2\pi k,\ k\in\mathbb{Z}$$
.

1.
$$\frac{1}{8}\cos 4\alpha$$
. 2. $-\frac{253}{325}$. 3. $4\cos \alpha$. 4. 4. 5. -0.96 . 6. a) $\frac{13\pi}{12}$, $\frac{17\pi}{12}$; 6) $\pi (2k+1)$, $k \in \mathbb{Z}$.

1. Решение: $\frac{3\sin\alpha-4\sin^3\alpha}{\sin\alpha}=2$, 2. Отсюда: $3-4\sin^2\alpha=\frac{11}{5}$; $\sin^2\alpha=\frac{1}{5}$; $\cos^2\alpha=\frac{4}{5}$; $\sin\alpha=\pm\frac{1}{\sqrt{5}}$; $\cos\alpha=\pm\frac{2}{\sqrt{5}}$. $\sin2\alpha=2\left(\pm\frac{1}{\sqrt{5}}\right)\left(\pm\frac{2}{\sqrt{5}}\right)=\pm\frac{4}{5}$; $\cos2\alpha=\pm\frac{4}{5}-\frac{1}{5}=\frac{3}{5}$. 2. Решение: $\frac{\sin^3\alpha+3\sin\alpha-4\sin^3\alpha}{\cos^3\alpha-4\cos^3\alpha+3\cos\alpha}=\pm\frac{3\sin\alpha-3\sin^3\alpha}{3\cos\alpha-3\cos^3\alpha}=\frac{3\sin\alpha(1-\sin^2\alpha)}{3\cos\alpha(1-\cos^2\alpha)}=\tan\alpha\cdot\frac{\cos^2\alpha}{\sin^2\alpha}=\pm\cot\alpha$. 4. $y_{\text{наиб.}}=1$; $y_{\text{наим.}}=\frac{1}{2}$. У казание: представьте правую часть данной функции в виде $y=1-\frac{1}{2}\sin^22x$. 5. $2\cot\alpha$. 6. а) $-\frac{3\pi}{4}$; $\frac{\pi}{4}$; 6) $\frac{3\pi}{2}$.

Вариант 8

1. $\pm \frac{9}{41}; \frac{40}{41}$. У к а з а н и е: см. решение примера 1 из варианта 7. 2. У к а з а н и е: см. решение примера 2 из варианта 7. 4. $y_{\text{наи6.}}=1;\;y_{\text{наим.}}=\frac{1}{4}$. У к а з а н и е: представьте правую часть данной функции в виде $y=1-0.75\sin^2 2x.$ 5. -2. 6. а) $-\frac{\pi}{4}; \frac{3\pi}{4}; \frac{7\pi}{4};$ 6) $\frac{3\pi}{4}$.

16. Формулы приведения

Вариант 1

1. 1) a) $-\sin 56^{\circ}$; **6**) $\cos 0.4\pi$; **2**) a) $-\operatorname{ctg} 8^{\circ}$; **6**) $\cos 0.4\pi$; **3**) a) $-\frac{1}{2}$; **6**) $-\frac{\sqrt{3}}{2}$; **2.** 0. **3.** 2. **4.** $\frac{\sqrt{5}}{2}$. **5.** $\frac{5\pi}{4}$.

Вариант 2

1. 1) a) $\cos 43^{\circ}$; 6) $-\sin 0.1\pi$; 2) a) $-\tan 48^{\circ}$; 6) $\sin 0.1\pi$;

3) a)
$$-\frac{1}{2}$$
; 6) $\frac{\sqrt{3}}{3}$. 2. $2\cos\alpha$. 3. 0. 4. $-\frac{\sqrt{5}}{3}$. 5. $\frac{3\pi}{4}$.

- 1. 1) a) $-\operatorname{ctg}(\pi-2)$; 6) $-\sin 2\pi-6$; 2) a) $\sin 0.1\pi$;
- **6)** $\operatorname{ctg}(3.5\pi 10)$; **3) a)** $-\frac{\sqrt{2}}{2}$; **6)** $-\sqrt{3}$. **2.** $\sin^2 x$. **3.** $2\sqrt{3}$.
- **5.** $2\pi k$, $k \in \mathbb{Z}$.

Вариант 4

- **1.** 1) a) $-\cos(4-\pi)$; 6) $tg(\pi-3)$; 2) a) $\cos(\frac{\pi}{2}-2)$;
- **6**) $-\sin(\frac{\pi}{2}-1)$; **3**) **a**) $-\sqrt{3}$; **6**) $\frac{\sqrt{3}}{3}$. **2.** $2\sin^2 x$. **3.** $-\frac{5\sqrt{2}}{2}$.
- **5.** $\pi (2k+1), k \in \mathbb{Z}$.

Вариант 5

- **1.** 1. **3.** a) $tg 250^{\circ} > tg 240^{\circ}$; **6**) $sin 172^{\circ} > sin 175^{\circ}$.
- **4.** 0. У казание: нужно учесть, что $\frac{5\pi}{14} + \frac{\pi}{7} = \frac{\pi}{2}$. Отсюда $\sin \frac{5\pi}{14} = \cos \frac{\pi}{7}$. **5.** $-\frac{\pi}{4}$.

Вариант 6

- 1. $-\cos \alpha$. 3. a) $\sin 260^{\circ} < \sin 250^{\circ}$; 6) $\cot 240^{\circ} > \cot 250^{\circ}$.
- **4.** 0. **5.** 90°.

Вариант 7

2.
$$\frac{1}{\sin 10^{\circ}}$$
. **3.** $\frac{16}{25}$. **4.** $\pm \sqrt{2-m^2}$. **5.** $-\frac{3\pi}{2}$.

Вариант 8

2.
$$\frac{1}{\cos 0.1\pi}$$
. **3.** 0. **4.** $\pm \sqrt{2-a^2}$. **5.** $-\frac{\pi}{3}$.

17. Арифметическая прогрессия

1. а) да. **6)** да. **2.** 10. **3.**
$$d = -7,1$$
. **4.** 7; 61. **5.** $S_6 = \frac{3}{4}$.

1. а) да. **6)** нет. **2.** 2. **3.** d = -11, 2. **4.** 140; 10. **5.** $S_{10} = 40.$

Вариант 3

$$\overline{\mathbf{1.} -2}; 1; 4. \ \mathbf{2.} \ S_6 = 10, 2. \ \mathbf{3.} \ S_7 = 2, 5. \ \mathbf{4.} \ S_6 = 87.$$

5.
$$a_1 = \frac{1}{3}$$
; $a_2 = \frac{2}{3}$; $a_3 = 1$.

Вариант 4

1.
$$-20$$
; -12 ; -4 ; 4 . **2.** $S_{10} = 55$. **3.** $S_9 = 63$. **4.** $S_7 = -28$.

5.
$$a_1 = -10$$
 или $a_1 = 2$.

Вариант 5

1.
$$13n + 6$$
. **2.** $d = -\frac{5}{4}$. **3.** $n = 4$. **4.** 2154. **5.** 15147.

Вариант 6

1.
$$124 - 25n$$
. **2.** $d = \frac{33}{20}$. **3.** $n = 7$. **4.** -630 . **5.** 1265 .

Вариант 7

1.
$$a_3 = 47$$
. **2.** $x = 7$. **3.** 101100. **4.** $\frac{2}{3315}$. **5.** $\frac{8}{65}$.

Вариант 8

1.
$$a_2 = 28$$
. **2.** $x = 15$. **3.** 43725 . **4.** $\frac{2}{6783}$. **5.** -7 ; $\frac{100}{7}$.

18. Геометрическая прогрессия

1.
$$b_n = -\frac{1}{32}2^{n-1}$$
. **2.** $b_5 = \frac{8}{9}$. **3.** $b_8 = \pm 16$.

4.
$$\left(-6; \frac{3}{2}; -\frac{3}{8}\right); \left(6; \frac{3}{2}; \frac{3}{8}\right)$$
. **5.** $S_5 = \frac{121}{3}$. **6.** 10.

1.
$$b_n = 64 \cdot \left(-\frac{1}{2}\right)^{n-1}$$
 2. $b_7 = \frac{9}{4}$ **3.** $b_6 = \pm 27$.
4. $\left(-3; \frac{3}{5}; -\frac{3}{25}\right); \left(3; \frac{3}{5}; \frac{3}{25}\right)$ **5.** $S_5 = 6\frac{6}{25}$ **6.** 8.

Вариант 3

1.
$$b_1 = \pm \frac{224}{3}$$
; $q = \pm \frac{1}{2}$. **2.** $b_3 = 49$; $b_4 = 98$. **3.** $n = 5$. **4.** $b_1 = 30$; $q = 2$. **5.** $S_5 = 62$. **6.** $q = 0.25$.

Вариант 4

1.
$$b_1 = -\frac{4}{9}$$
; $q = -\frac{3}{2}$. **2.** $b_3 = 1$; $b_4 = 3$; $b_5 = 9$; $b_6 = 27$. **3.** $n = 4$. **4.** $b_1 = \frac{17}{20}$; $q = 5$. **5.** $S_4 = \frac{80}{2}$. **6.** $q = 0.5$.

Вариант 5

1.
$$b_2 = \pm 6$$
. **2.** $b_1 = 8$; $q = \frac{1}{4}$. **3.** $S_4 = 120$. **4.** 1344. **5.** $S_6 = 0$ или $S_6 = \frac{726}{27}$. **6.** $a = 18$; $b = 288$.

Вариант 6

1.
$$b_1=3; q=2$$
 или $b_1=12; q=0,5$. 2. $b_1=96; q=\frac{1}{2}$. 3. $S_4=80$. 4. 18954 . 5. $S_6=0$ или $S_6=63\frac{63}{64}$.

6.
$$a = 32; b = 2.$$

1.
$$x=0.5$$
 или $x=2$. **2.** $(5;15;45;135)$ или $(135;45;15;5)$. **3.** $b_4=0.5$. **4.** $b_1=3;q=2$ или $b_1=12;q=0.5$. **5.** $\frac{1}{81}\left(10^{n+1}-9n-1\right)$. У казание: $1+11+111+1111+\dots=\left(\underbrace{1+10+100+\dots+10\dots0}\right)+\dots+\left(\underbrace{1+10+100+\dots+10\dots0}\right)$

$$= \frac{1(10^{n} - 1)}{10 - 1} + \frac{1(10^{n-1} - 1)}{10 - 1} + \frac{1(10^{n-2} - 1)}{10 - 1} + \dots$$

$$+ \frac{1(10^{1} - 1)}{10 - 1} = \frac{1}{9} (10^{n} + 10^{n-1} + \dots + 10 - n + 1) =$$

$$= \frac{1}{81} (10^{n+1} - 9n - 1) \cdot \mathbf{6} \cdot x = -4; \ x = -1; \ x = 2.$$

У казание: примените теорему Виета для кубического уравнения.

Вариант 8

1.
$$x=\frac{1}{3}$$
 или $x=3$. **2.** $(2;10;50;250)$ или $(250;50;10;2)$. **3.** $b_4=3$. **4.** $b_1=2$; $q=2$ или $b_1=8$; $q=0,5$. P е ш е н и е: $b_1+b_1q+b_1q^2=14$ (1). $b_1^2+b_1^2q^2+b_1^2q^4=84$ (2). Разделим (2) на $(1)^2$, получится: $\frac{(1+q^2+q^4)}{(1+q+q^2)^2}=\frac{3}{7}$; заметим, что $1+q^2+q^4=1+2q^2+q^4-q^2=(1+q+q^2)$ (1-q+q²). Тогда $7-7q+7q^2=3+3q+3q^2$, $q=\frac{1}{2}$; $q=2\dots$ **5.** $\frac{1}{9}\left(10^{101}-901\right)$. **6.** $x=-2$; $x=1$; $x=4$.

19. Бесконечно убывающая геометрическая прогрессия. Смешанные задачи на прогрессии

Вариант 1

1.
$$S = \frac{50}{9}$$
. **2.** $b_1 = 18; b_2 = -\frac{36}{7}$. **3. a)** $1\frac{2}{3}$; **6)** $4\frac{7}{30}$; **4.** $x = 2; y = 4; z = 8$.

1.
$$S = -\frac{9}{5}$$
. **2.** $b_1 = 28$; $b_2 = -\frac{140}{9}$. **3.** a) $2\frac{1}{3}$; **6)** $1\frac{1}{6}$. **4.** $x = 4$; $y = 2$; $z = 1$.

1. a)
$$\frac{3}{11}$$
; **6)** $4\frac{17}{110}$. **2.** $S = -2(\sqrt{2} - 1)$. **3.** $b_1 = 2$. **4.** $x = 15$.

Вариант 4

1. a)
$$\frac{8}{11}$$
; **6)** $3\frac{27}{110}$. **2.** $S = 1.5(\sqrt{3} - 1)$. **3.** $b_1 = \frac{8}{3}$. **4.** $y = 3$.

Вариант 5

1.
$$b_1 = 84$$
; $q = 0.25$ или $b_1 = 28$; $q = 0.75$. **2.** $q = \frac{1}{3}$.

3.
$$b_1 = 144; \ q = \frac{1}{4}$$
. **4.** $q = -2$ или $q = -\frac{1}{2}$. **5.** $d = 70$.

Вариант 6

1.
$$b_1 = 60$$
; $q = 0.25$ или $b_1 = 20$; $q = 0.75$. **2.** $q = \frac{1458}{7}$.

3.
$$b_1 = 54$$
; $q = \frac{1}{3}$. **4.** $q = \frac{1}{3}$. **5.** $d = 70$.

Вариант 7

1.
$$q = 0.6$$
. **2.** $x = -\frac{1}{3}$. **3.** $\frac{100}{3}$. **4.** $q = 3 - 2\sqrt{2}$. **5.** $x = 2$; $y = 4$; $z = 6$; $t = 9$.

1.
$$q=0,2$$
. **2.** $x=\frac{1}{4}$ или $x=\frac{1}{2}$. **3.** $\frac{3\pm\sqrt{5}}{32}$. **4.** $q=2+\sqrt{3}$. **5.** $x=6;\ y=18;\ z=30;\ t=50$.

5.
$$x = 6$$
; $y = 18$; $z = 30$; $t = 50$.

Проверочные работы на повторение

Проверочная работа № 1

Вариант 1

1. -1,1. 2.
$$\frac{5}{2}$$
. 4. 0. 5. 1. Решение: $4\cos^4\alpha - \sin^2 2\alpha - \cos^2 2\alpha + \sin^2 2\alpha - 2\cos 2\alpha = 4\cos^4\alpha - \cos^2 2\alpha - -2\cos 2\alpha = 4\cos^4\alpha - \cos^2 2\alpha - 1 + 1 = 4\cos^4\alpha - (\cos 2\alpha + 1)^2 + 1 = 4\cos^4\alpha - 4\cos^4\alpha + 1 = 1$.
6. $\frac{-4 + 3\sqrt{3}}{10}$.

Вариант 2

1.
$$-0.75$$
. 2. $\frac{5}{2}$. 4. $\sqrt{a} + \sqrt{b}$. 5. 0. 6. $\sin 2\alpha = -\frac{120}{169}$; $\tan 2\alpha = \frac{120}{119}$.

Вариант 3

$$\overline{\mathbf{1.}} - 4\frac{13}{30}$$
. **2.** $\frac{1}{4}$. **4.** $\frac{1}{\sqrt{xy}}$. **5.** 1. **6.** $\frac{4\sqrt{3} - 3}{10}$.

Вариант 4

$$\frac{1}{1.}$$
 -0,3. **2.** $\frac{1}{25}$. **4.** $\frac{1}{ab}$. **5.** 4. **6.** $\cos 2\alpha = -\frac{119}{169}$; $\operatorname{tg} 2\alpha = \frac{120}{119}$.

Проверочная работа № 2

$$\overline{\mathbf{1. \ a)}} \pm 3; \, \mathbf{6)} \, \frac{1}{4}. \, \mathbf{2. \ a)} \, (1;2); \, \mathbf{6)} \, (-3;-5); (-5;-3); (3;5); (5;3). \, \mathbf{3.} \, 1064. \, \mathbf{4.} \, 80 \, \text{km/ч}.$$

1. a) 1; -2; **6**)
$$\frac{1}{4}$$
. **2.** a) $\left(\frac{25}{3}; -\frac{8}{3}\right)$; **6**) $(-5; -1)$; $(5; 1)$. **3.** 1. **4.** 60 км.

Вариант 3

1. a)
$$\pm 1; \pm 2;$$
 6) $\frac{1}{4}$. **2.** a) $(-3;2);$ 6) $(2;1); \left(-\frac{3}{2}; -\frac{5}{2}\right)$.

3. 1; 3; 5 или 5; 3; 1. **4.** 2 км/ч.

Вариант 4

1. a)
$$-1$$
; **6**) $\frac{1}{4}$. **2.** a) $\left(-\frac{1}{5}; \frac{12}{5}\right)$; **6**) $(3; 2)$; $(-3; -2)$. **3.** 4. **4.** 60 км/ч.

Проверочная работа № 3

Вариант 1

1. a)
$$(-2;-1) \cup (2;+\infty)$$
; **6)** $(-2;0) \cup (1;+\infty)$.

2.
$$(-\infty; -4] \cup [5; 6]$$
. **3.** $\left[\frac{4}{3}; \frac{5}{2}\right)$. **4.** 465. **5.** Верно.

Вариант 2

1. а)
$$\{2\} \cup (-\infty; 1)$$
; **6)** $(-8; 1) \cup (1; 5)$. **2.** $\{1\}$. **3.** $\{-5; 3\} \cup (-5; 4)$; **2** . **4.** $a_{51} = 0, 6$. **5.** Нет, неверно.

Вариант 3

1. a)
$$(-\infty; -2) \cup (-2; -1);$$
 6) $(-\sqrt{3}; 1) \cup (\sqrt{3}; +\infty).$

2.
$$[5;7)$$
. **3.** $\left(-\infty; \frac{-3-\sqrt{5}}{2}\right) \cup (0;6]$. **4.** -429 . **5.** Нет, неверно.

$$\overline{\mathbf{1. a}}$$
 $(-\infty; -1) \cup \{3\}; \ \mathbf{6}$ $(-5; -1) \cup (1; +\infty)$. **2.** $(-3; 1]$.

3.
$$\left(\frac{1}{3}; \frac{3+\sqrt{5}}{6}\right)$$
. 4. $a_{126}=-0,1$. 5. Да, верно.

Проверочная работа № 4

Вариант 1

- **1. 2)** y > 0 при x < -4; x > 2. y < 0 при -4 < x < 2;
- 3) функция возрастает на промежутке $[-1;+\infty)$ и убывает на промежутке $(-\infty;-1]$; 4) $[-5;+\infty)$. 2. Прямая y=2x-3 с "выколотой" точкой x=-1. 3. (-1,5;-3,5) и (1,5;3,5). 4. [2;8]. 5. a>0. 6. (3;9).

Вариант 2

- **1. 2)** y > 0 при -2 < x < 4. y < 0 при x < -2; x > 4;
- 3) функция возрастает на промежутке $(-\infty;1]$ и убывает на промежутке $[1;+\infty)$; 4) $(-\infty;8]$. 2. Прямая y=3x-2 с "выколотой" точкой x=-1. 3. (-1;-1) и (1;-1). 4. $\left[-2;-\frac{4}{3}\right]$. 5. m<0. 6. (-3;1).

Вариант 3

- **1. 2)** y > 0 при x < -3; x > 1. y < 0 при -3 < x < 1;
- 3) функция возрастает на промежутке $[1;+\infty)$ и убывает на промежутке $(-\infty;-1]$. 4) $[-5;+\infty)$. 2. Прямая y=-2x+1 с "выколотой" точкой x=2. 3. (-2,5;-4,6) и (2,5;4,6); 4. $\left[\frac{1}{4};\frac{3}{4}\right]$. 5. m<0. 6. (-3;9).

- **1. 2)** y > 0 при -1 < x < 3. y < 0 при x < -1; x > 3;
- 3) функция возрастает на промежутке $(-\infty;1]$ и убывает на промежутке $[1;+\infty)$; 4) $(-\infty;3]$. 2. Прямая y=3x-4 с "выколотой" точкой x=-1. 3. (-1;-1) и (9;9). 4. $\left[-1;-\frac{3}{5}\right]$. 5. p>0. 6. (2;1).

ОТВЕТЫ, УКАЗАНИЯ, РЕШЕНИЯ

Контрольные работы

1. Алгебраические уравнения. Системы алгебраических уравнений

Вариант 1

- **1.** $\{-2;1\}$. **2. a)** (-5;-4);(4;5); **6)** (-3;-2);(3;2).
- **3.** 18 км/ч. **4.** $\{-2 \pm \sqrt{2}\}$.

Вариант 2

- $\overline{\mathbf{1.} \{-1;2\}}$. **2. а)** (5;4); (4;5); **б)** (-2;-1); (2;1). **3.** 13 км/ч.
- **4.** $\{1 \pm \sqrt{2}\}.$

Вариант 3

- **1. a)** (2;3);(3;2); **6)** $(-1,75;-3);(-\frac{7}{6};-2).$ **2.** $\left\{\frac{5}{4};3\right\}.$
- **3.** $\{-3; -1; 5\}$. **4.** 2 чи 3 ч.

Вариант 4

- **1. a)** (1;2);(2;1); **6)** $\left(-1;\frac{9}{4}\right);(4;-9).$ **2.** $\left\{-\frac{5}{2};1\right\}.$
- **3.** $\{-4; -1; 2\}$. **4.** 15 чи 12 ч.

2. Степень с рациональным показателем

- **1.** $-2 \le x < 4$. **2.** 4. **3.** a) $\sqrt[3]{7} > \sqrt[6]{47}$; **6**) $\sqrt[3]{2\sqrt{2}} > \sqrt[6]{7}$;
- **B)** $0.8^{-2.7} > 0.8^{-1.4}$; **r)** $1 > (1.06)^{-5}$. **4.** 10. **5. a)** 2; **6)** -1.
- **6.** \sqrt{ab} .

1.
$$-7 \leqslant x < 5$$
. **2.** 176. **3.** a) $\sqrt[8]{26} > \sqrt[4]{5}$; **6**) $\sqrt[10]{28} > \sqrt[5]{3\sqrt{3}}$;

B)
$$3^{-1,4} > 3^{-2,7}$$
; **r)** $0,7^{-1,5} > 1$. **4.** $\frac{27}{80}$. **5. a)** $\sqrt[3]{19}$; **6)** -1 .

6.
$$x + y$$
.

Вариант 3

1.
$$0 \le x < 2$$
, $x > 2$. **2.** 33. **3.** a) $\sqrt[5]{6} > \sqrt[10]{35}$; **6**) $\sqrt[4]{2\sqrt{3}} < < \sqrt[8]{13}$; B) $3,7^{-2,4} > 3,7^{-3,4}$; r) $\frac{9^{\frac{9}{4}}}{4} > 1$. **4.** $\frac{1}{216}$. **5.** a) 1; **6**) -1 . **6.** $\frac{12a^2}{b}$.

Вариант 4

1.
$$1 \le x < 10$$
. **2.** 6. **3.** a) $\sqrt[14]{119} > \sqrt[7]{11}$; **6**) $\sqrt[6]{7} > \sqrt[3]{2\sqrt[4]{3}}$;

B)
$$6,1^{-4,5} > 6,1^{-5,1}$$
; **r)** $\left(\frac{5}{7}\right)^{1,7} < 1$. **4.** $10\frac{1}{6}$. **5. a)** 1; **6)** -1 .

6.
$$\sqrt{x} + \sqrt{y}$$
.

3. Степенная функция

Вариант 1

- **1.** a) $[-4; -2) \cup (-2; 4]$; 6) $(-4; 1) \cup \{10\}$. **2.** a) нечетная;
- **б)** четная. **3. а)** см. рис. 29; **б)** см. рис. 30; **в)** см. рис. 31.
- **4. a)** $\{-3;3\}$; **6)** $\{0\}$.

Вариант 2

- **1.** a) (0; 10]; **6)** $(-\infty; -1] \cup [2; +\infty]$. **2.** a) четная; **6)** нечетная. **3.** a) см. рис. 32; **6)** см. рис. 33; в) см. рис. 34. **4.** a) $\{-5; 5\}$; **6)** $\{-4\}$.
- **1.7** (3,3), 3) (

- **1.** a) четная. **6**) нечетная. **2.** a) $(-\infty; -2,5) \cup (-2,5;1) \cup (1;+\infty)$; **6**) $(-\infty; -1) \cup (-1;1] \cup [4;+\infty)$.
- 3. а) см. рис. 35; б) см. рис. 36; в) см. рис. 37.
- **4. a**) {2}; **b**) {7}.

Рис. 31.

Рис. 33.

Рис. 30.

Рис. 32.

Рис. 34.

Рис. 35.

Рис. 36.

Рис. 37.

Рис. 38.

Рис. 39.

Вариант 4

1. a) нечетная. **6)** четная. **2. a)** $(-\infty; -2,5) \cup$ $\cup (-2,5;-1) \cup (-1;+\infty);$ 6) $\{-1,5\} \cup (1;5).$ 3. a) cm. рис. 38; **б**) см. рис. 39; **в**) см. рис. 40. **4. а**) $\{5\}$; **6)** {3}.

Основные тригонометрические тождества

1. a)
$$\frac{2}{\sin \alpha}$$
; **6)** $\sin^4 \alpha$; **B)** $\tan^2 \alpha$. **2. a)** $\cos \alpha = -\frac{3\sqrt{5}}{7}$; $\tan \alpha = -\frac{3\sqrt{5}}{7}$

$$= \frac{2}{3\sqrt{5}}; \operatorname{ctg} \alpha = \frac{3\sqrt{5}}{2}; \mathbf{6}) \sin \alpha = \frac{7}{25}; \cos \alpha = -\frac{24}{25}; \operatorname{tg} \alpha = -\frac{7}{24}. \mathbf{4.} 4,5. \mathbf{5.} \frac{71}{125}. \mathbf{6.} \frac{\pi}{6}.$$

1. a) 0; **6**) 1; **B**)
$$\operatorname{tg} \alpha$$
. **2.** a) $\sin \alpha = -\frac{4}{5}$; $\operatorname{tg} \alpha = -\frac{4}{3}$; $\operatorname{ctg} \alpha = -\frac{3}{4}$; **6**) $\cos \alpha = -\frac{4}{5}$; $\sin \alpha = \frac{3}{5}$; $\operatorname{ctg} \alpha = -\frac{4}{3}$. **4.** $2\frac{2}{3}$. **5.** $\frac{23}{32}$. **6.** $\frac{2\pi}{3}$.

Вариант 3

1. a) 0; 6) 1; b)
$$\frac{1}{\cos \alpha}$$
. **2.** a) $\cos \alpha = \frac{8}{17}$; $\tan \alpha = -\frac{15}{8}$; $\cot \alpha = -\frac{8}{15}$; 6) $\sin \alpha = -\frac{1}{\sqrt{5}}$; $\cos \alpha = -\frac{2}{\sqrt{5}}$; $\tan \alpha = \frac{1}{2}$.

4. $\frac{5}{11}$. **5.** $\frac{118}{125}$. **6.** $-\frac{\pi}{6}$.

Вариант 4

1. a)
$$\frac{2}{\sin \alpha}$$
; **6**) 1; **B**) $\sin \alpha + \cos \alpha$; **2.** a) $\sin \alpha = \frac{12}{13}$; $\tan \alpha = \frac{12}{5}$; $\cot \alpha = -\frac{12}{5}$; $\cot \alpha = -\frac{3}{4}$; $\cot \alpha = -\frac{3}{4}$. **4.** 4,5. **5.** $\frac{49}{81}$. **6.** $-\frac{2\pi}{3}$.

5. Формулы сложения. Формулы приведения

Вариант 1

1. а) 1; **6)** 0. **2.** 1. **3.** 2. **4.**
$$\frac{\pi}{2} + \pi k$$
, $k \in \mathbb{Z}$. **5.** Прямая $y = 1$.

1. а)
$$-1;$$
 6) 0. **2.** $-\frac{\sqrt{3}}{3}.$ **3.** 1. **4.** $\frac{\pi k}{3},\ k\in\mathbb{Z}.$ **5.** Прямая $y=1$ с "выколотыми" точками: $\frac{\pi n}{2},\ n\in\mathbb{Z}.$

1. a)
$$\operatorname{ctg} \alpha$$
; 6) 0. **2.** $-\sqrt{3}$. **3.** $\frac{1}{2}\operatorname{ctg} 2\alpha$. **4.** $\frac{\pi}{8} + \frac{\pi k}{2}$, $k \in \mathbb{Z}$.

5. Прямая
$$y=1$$
 с "выколотыми" точками: $\dfrac{\pi n}{4},\,n\in\mathbb{Z}$.

Вариант 4

1. а)
$$\operatorname{tg} \alpha;$$
 6) 0. **2.** $\frac{\sqrt{3}}{3}$. **4.** $\frac{\pi k}{5}$, $k \in \mathbb{Z}$. **5.** Прямая $y = 1$.

6. Прогрессии

Вариант 1

1. 12; 7; 2. **2.**
$$n = 8$$
. **3.** $a_1 = 9$; $d = 2$. **4.** $q = 2$. **5.** $S = \frac{16}{3}$.

Вариант 2

1. 20; 16; 8; 4; 0. **2.**
$$n = 13$$
. **3.** $a_1 = 6$; $d = 5$. **4.** $q = -2$.

5.
$$S = -\frac{32}{3}$$
.

Вариант 3

1.
$$b_7 = \frac{1}{64}$$
. **2.** $n = 9$. **3.** $b_8 = \frac{1}{8}$. **4.** 945. **5.** $(-1;3;-9)$; $(-9;3;-1)$.

Вариант 4

1.
$$b_8 = \frac{1}{4}$$
. **2.** $n = 30$. **3.** $b_1 = 6$; $q = 0.5$. **4.** 810. **5.** $(1; -3; 9)$; $(9; -3; 1)$.

7. Итоговая контрольная работа

2.
$$\frac{1}{3}$$
 и 1. **3.** $(-\infty; -1) \cup \{3\}$. **4.** 20 ч. **6.** 6. **7.** $-\frac{5}{12}$.

$$\mathbf{1.} - \frac{1}{\sqrt{4x+1}}$$
. $\mathbf{2.} \ (5;1) \ ; \ (1;5) \ ; \ (2;3) \ ; \ (3;2)$. $\mathbf{3.} \ [0;1] \cup [2;3) \cup \cup (3;4) \cup (4;+\infty)$. $\mathbf{4.} \ 9$ дней. $\mathbf{5.} \ \sin 2\alpha = -\frac{120}{169}$; $\operatorname{tg} 2\alpha = \frac{120}{119}$. $\mathbf{6.} \ n=7$. $\mathbf{7.} \ -1$.

Вариант 3

2.
$$\frac{1}{2}$$
 и 1. **3.** $(-\infty;0)\cup(1;+\infty)$. **4.** 20 дней; 30 дней. **6.** 6. **7.** $-\frac{1}{2}$.

1.
$$\sqrt{xy}$$
. 2. $\left(\frac{12}{5}; \frac{13}{5}\right)$; $\left(-\frac{12}{5}; -\frac{13}{5}\right)$. 3. $(-2;0) \cup (0;3) \cup \cup (5; +\infty)$. 4. 20 машин. 5. $\cos 2\alpha = -\frac{119}{169}$; $\operatorname{tg} 2\alpha = \frac{120}{119}$. 6. $n = 6$. 7. 1.

Содержание

Пρ	едисловие		3
			Ответы
Самостоятельные работы		5	100
1.	Деление многочленов. Решение		
	алгебраических уравнений	5	100
2.	Уравнения, сводящиеся к алгебраическим		
3.	Системы нелинейных уравнений		
4.	Решение задач с помощью уравнений		
5.	Степень с целым показателем		
6.	Корень натуральной степени		
7.	Степень с рациональным показателем		
8.	Упражнения на все действия над радикалами		
	и степенями	30	110
9.	Область определения функции. Возрастание		
	и убывание функции	33	111
10.	Четность и нечетность функции.		
	Функция $y = \frac{k}{x}$	37	115
11.	Неравенства и уравнения, содержащие		
	степень	40	119
12.	Радианная мера угла	43	120
	Тригонометрические тождества		
	Формулы сложения		
15.	Синус и косинус двойного угла	53	125
16.	Формулы приведения	57	126
	Арифметическая прогрессия		
	Геометрическая прогрессия		
	Бесконечно убывающая геометрическая		
	прогрессия. Смешанные задачи		
	на програссии	60	130

Проверочные работы		
на повторение	73	132
Проверочная работа № 1	73	$\dots 132$
Проверочная работа № $2\dots$	75	132
Проверочная работа № $3\dots$	77	133
Проверочная работа № $4\dots$	79	134
Контрольные работы83		
1. Алгебраические уравнения. Системы		
алгебраических уравнений	83	135
2. Степень с рациональным показателем	85	$\dots 135$
3. Степенная функция	87	136
4. Основные тригонометрические тождества	90	138
5. Формулы сложения. Формулы приведения		
6. Прогрессии	95	140
7. Итоговая контрольная работа	96	140

Зив Борис Германович Гольдич Владимир Анатольевич ДИДАКТИЧЕСКИЕ МАТЕРИАЛЫ ПО АЛГЕБРЕ ДЛЯ 9 КЛАССА

Редактор А.С. Пивоварова Компьютерная верстка Л.Н.Соловьева Художник Е.Т.Киселев Корректор Н.В.Евстигнеева

По вопросам приобретения просьба обращаться:

ИЗЛАТЕЛЬСТВО «ПЕТРОГЛИФ»

Тел.: (812) 943-8076; E-mail: spb@petroglyph.ru

ИЗДАТЕЛЬСТВО «ВИКТОРИЯ ПЛЮС»

В Санкт-Петербурге: (812) 292-3660, 292-3661

В Москве (филиал): (499) 488-3005

E-mail: victory@mailbox.alkor.ru; www.victory.sp.ru

издательство минмо

119002, Москва, Б. Власьевский пер., 11.

Тел.: (495) 241-7285; факс: (499) 795-1015. E-mail: biblio@mccme.ru

Подписано к печати 25.10.2013 г. Формат 60×90/16. Бумага офсетная. Печать офсетная. Объем 9 п.л. Тираж 4000 экз. Заказ № 386.

Налоговая льгота — ОКП 005-93-95-3005

Отпечатано в соответствии с оригинал-макетом в ОАО «Петроцентр» ОП «Пушкинская типография» 196601 Санкт-Петербург, г. Пушкин, Средняя ул., д. 3/8. Тел. (812) 313-7