Example 1.1.1. Suppose Skippy records the outdoor temperature every two hours starting at 6 a.m. and ending at 6 p.m. and summarizes the data in the table below:

time (hours after 6 a.m.)	outdoor temperature in degrees Fahrenheit
0	64
2	67
4	75
6	80
8	83
10	83
12	82

- 1. Explain why the recorded outdoor temperature is a function of the corresponding time.
- 2. Is time a function of the outdoor temperature? Explain.
- 3. Let *f* be the function which matches time to the corresponding recorded outdoor temperature.
 - (a) Find and interpret the following:

•
$$f(2+4)$$

•
$$f(2+4)$$
 • $f(2) + f(4)$ • $f(2) + 4$

$$f(2) + 4$$

- (b) Solve and interpret f(t) = 83.
- (c) State the range of f. What is lowest recorded temperature of the day? The highest?

- 2. Let $h(t) = -t^2 + 3t + 4$. (a) Find and simplify the following: i. h(-1), h(0) and h(2).
 - ii. h(2x) and 2h(x). iii. h(t+2), h(t) + 2 and h(t) + h(2).
- iii. h(t + 2), h(t) + 2 and h(t)(b) Solve h(t) = 0.

Example 1.1.4. Consider the graph below.

- 1. (a) Explain why this graph suggests that w is a function of v, w = F(v).
 - (b) Find F(0) and solve F(v) = 0.
 - (c) Find the domain and range of F using interval notation. Find the extrema of F, if any exist.
- 2. Does this graph suggest v is a function of w? Explain.

In Exercises 1 - 2, determine whether or not the mapping diagram represents a function. Explain your reasoning. If the mapping does represent a function, state the domain, range, and represent the function as a set of ordered pairs.

In Exercises 3 - 4, determine whether or not the data in the given table represents y as a function of x. Explain your reasoning. If the mapping does represent a function, state the domain, range, and represent the function as a set of ordered pairs.

3.

х	у
-3	3
-2	2
-1	1
0	0
1	1
2	2
3	3

4.

у
0
1
-1
2
-2
3
-3

- 5. Suppose W is the set of words in the English language and we set up a mapping from W into the set of natural numbers \mathbb{N} as follows: word \to number of letters in the word. Explain why this mapping is a function. What would you need to know to determine the range of the function?
- 6. Suppose L is the set of last names of all the people who have served or are currently serving as the President of the United States. Consider the mapping from L into $\mathbb N$ as follows: last name \to number of their presidency. For example, Washington \to 1 and Obama \to 44. Is this mapping a function? What if we use full names instead of just last names? (**HINT:** Research Grover Cleveland.)
- 7. Under what conditions would the time of day be a function of the outdoor temperature?

In Exercises 58 - 61, determine whether or not the graph suggests y is a function of x. For the ones which do, state the domain and range.

58.

59.

60.

61.

In Exercises 68 - 71, determine whether or not the graph suggests T is a function of t. For the ones which do, state the domain and range.

68.

69.

70.

71.

