Name and section:	
Instructor's name:	

- Please do not open exam until instructed to begin.
- This exam is to be completed in the allotted time period of 2 hours.
- There are 24 problems which appear on the fronts and backs of the pages of this exam.
- You may earn a total of 100 points.
- Read each question carefully.
- Credit may not be given without sufficient supporting work.
- Simplify answers when possible.
- The use of cell phones, books, or notes are not permitted while taking this exam.
- Calculators are allowed.

1. [4 points] Factor $12x^2 - 16x - 3$.

2. [4 points] Factor 5ax + 10bx - ay - 2by.

3. [4 points] Simplify $\frac{x^3 + 3x^2}{x^2 - 2x - 15}$.

4. [4 points] Simplify $\frac{24x^3}{4x^2 - 16} \div \frac{8x^2}{x^2 - 4x + 4}$.

5. [4 points] Simplify $\frac{3}{x-7} - \frac{x}{x+3}$

6. [4 points] Simplify $\frac{3x+5}{x^2+4x+3} + \frac{-x+5}{x^2+2x-3}$.

7. [4 points] Simplify $\frac{\frac{a}{4b} - \frac{1}{3}}{\frac{5}{4b} - \frac{4}{a}}$.

8. [4 points] Solve $\frac{x-1}{x^2-4} = \frac{2}{x+2} + \frac{4}{x-2}$.

9. [4 points] Triangles A and B are similar.

If z=18 in., y=25 in., and n=9 in., find the length of side p. Leave your answer as a fraction.

10. [4 points] Combine. Assume that all variables represent nonnegative real numbers. $\sqrt{45x} - \sqrt{128x} + \sqrt{72x}$.

11. [4 points] Simplify $\frac{\sqrt{3}+3}{\sqrt{3}-3}$.

12. [4 points] Solve $\sqrt{x+8} - 8 = x$.

13. [4 points] Simplify $\sqrt{-25}$.

14. [4 points] y varies directly as x and inversely as the square of z. If y = 64 when x = 32 and z = 4, find y when x = 75 and z = 5.

15. [4 points] Solve by using the square root property. $(2x+5)^2=81$.

16. [4 points] A company that manufactures bikes makes a daily profit, P, according to the equation $P(x) = -100x^2 + 4200x - 43371$ where P is measured in dollars and x is the number of mountain bikes made per day. Find the number of mountain bikes that must be made each day to produce a zero profit for the company. Round your answer to the nearest whole number.

17. [4 points] A brace for a shelf has the shape of a right triangle. Its hypotenuse is 8 inches long and the two legs are equal in length. How long are the legs of the triangle? Keep answers in simplified radical form.

18. [8 points] Given $f(x) = x^2 + 2x - 3$. Identify the vertex, y-intercept, x-intercept(s), axis of symmetry, and graph the function on the graph paper and label your findings on it.

19. [4 points] Solve |x+2| - 1 = 6.

20. [4 points] Find the distance between (-7, 13) and (-12, 1).

21. [4 points] Find the center and radius, and graph the circle $(x+5)^2 + (y-3)^2 = 4$.

22. [4 points] Determine whether each graph represents a function.

23. [4 points] Given f(x) = 4x - 7, find f(a - 6).

24. [4 points] Find the difference quotient of f; that is find $\frac{f(x+h)-f(x)}{h}$. Assume $h \neq 0$. f(x) = 4x + 3.

Solutions

1. Factor $12x^2 - 16x - 3$.

$$12x^2 - 18x + 2x - 3$$
 2 pts to here $6x(2x - 3) + (2x - 3)$ 3 pts to here $(2x - 3)(6x + 1)$ 4 pts to here

2. Factor 5ax + 10bx - ay - 2by.

$$5x(a+2b) - y(a+2b)$$
 2 pts to here $(a+2b)(5x-y)$ 4 pts to here

3. Simplify $\frac{x^3 + 3x^2}{x^2 - 2x - 15}$.

Partial factoring of only the numerator
Partial factoring of only the denominator
$$\frac{x^2(x+3)}{(x-5)(x+3)}$$
3 pts to here
$$\frac{x^2}{x-5}$$
4 pts to here

4. Simplify $\frac{24x^3}{4x^2-16} \div \frac{8x^2}{x^2-4x+4}$.

Factoring of equivalent of one rational expression	1 pt
$\frac{24x^3}{4(x+2)(x-2)} \cdot \frac{8x^2}{(x-2)^2}$	2 pts to here
$\frac{4(x+2)(x-2)}{4(x+2)(x-2)} \cdot \frac{(x-2)^2}{(x-2)^2}$ $\frac{24x^3}{4(x+2)(x-2)} \times \frac{(x-2)^2}{8x^2}$ $3x(x-2)$	3 pts to here
$\begin{array}{c} 3\dot{x}(x-2) \\ \hline 4(x+2) \end{array}$	4 pts to here

5. Simplify $\frac{3}{x-7} - \frac{x}{x+3}$

$$\frac{3(x+3)}{(x-7)(x+3)} - \frac{x(x-7)}{(x-7)(x+3)}$$
 1 pts to here
$$\frac{3(x+3) - x(x-7)}{(x-7)(x+3)}$$
 2 pts to here
$$\frac{3x+9-x^2+7x}{(x-7)(x+3)}$$
 3 pts to here
$$\frac{-x^2+10x+9}{(x-7)(x+3)}$$
 4 pts to here

6. Simplify $\frac{3x+5}{x^2+4x+3} + \frac{-x+5}{x^2+2x-3}$

$$\frac{(3x+5)(x-1)}{(x+1)(x+3)(x-1)} + \frac{(-x+5)(x+1)}{(x+3)(x-1)(x+1)}$$
 1 pt
$$\frac{3x^2 + 2x - 5 - x^2 + 4x + 5}{(x+3)(x-1)(x+1)}$$
 2 pts to here
$$\frac{2x^2 + 6x}{(x+3)(x-1)(x+1)}$$
 3 pts to here
$$\frac{2x}{(x-1)(x+1)}$$
 4 pts to here

7. Simplify
$$\frac{\frac{a}{4b} - \frac{1}{3}}{\frac{5}{4b} - \frac{4}{a}}$$
.

8. Solve
$$\frac{x-1}{x^2-4} = \frac{2}{x+2} + \frac{4}{x-2}$$
.

$$x-1=2(x-2)+4(x+2)$$
 2 pts to here
 $x-1=6x+4$ 3 pts to here
 $x=-1$ 4 pts to here

9. Triangles A and B are similar.

If z = 18 in., y = 25 in., and n = 9 in., find the length of side p. Leave your answer as a fraction.

$$\frac{\frac{9}{25} = \frac{p}{18} \text{ or } \\ \frac{9}{p} = \frac{25}{18} \text{ or } \\ \frac{25}{9} = \frac{18}{p} \text{ or } \\ \frac{p}{9} = \frac{18}{25} \text{ or } \\ p = \frac{162}{25} \text{ inches or } p = 6\frac{12}{25} \text{ inches } \\ (3 \text{ pts for correct solution, but no units are given)}$$

10. Combine. Assume that all variables represent nonnegative real numbers. $\sqrt{45x} - \sqrt{128x} + \sqrt{72x}$.

$$3\sqrt{5x} - 8\sqrt{2x} + 6\sqrt{2x}$$
 2 pts to here
$$3\sqrt{5x} - 2\sqrt{2x}$$
 4 pts to here

11. Simplify $\frac{\sqrt{3}+3}{\sqrt{3}-3}$.

$$\frac{\sqrt{3}+3}{\sqrt{3}-3} \times \frac{\sqrt{3}+3}{\sqrt{3}+3}$$
 2 pts to here $\frac{3+3\sqrt{3}+3\sqrt{3}+9}{3-9}$ 3 pts to here $\frac{12+6\sqrt{3}}{-6}$ 2 pts to here $-2-\sqrt{3}$ 4 pts to here

12. Solve $\sqrt{x+8} - 8 = x$.

$$\sqrt{x+8} = x+8$$

 $x+8 = x^2 + 16x + 64$ 1 pt to here
 $0 = x^2 + 15x + 56$ 2 pts to here
 $0 = (x+7)(x+8)$ 3 pts to here
 $x = -7$ and $x = -8$ 4 pts to here

13. Simplify $\sqrt{-25}$.

$$\sqrt{-1}\sqrt{25}$$
 1 pts to here $5\sqrt{-1}$ 2 pts to here or $i\sqrt{25}$ 3 pts to here $5i$ 4 pts to here

14. y varies directly as x and inversely as the square of z. If y = 64 when x = 32 and z = 4, find y when x = 75 and z = 5.

$$y = \frac{kx}{z^2}$$

$$64 = \frac{k(32)}{4^2}$$
 1 pt to here
$$64 = 2k$$

$$32 = k$$
 2 pts to here
$$y = \frac{32x}{z^2}$$

$$y = \frac{32(75)}{5^2}$$
 3 pts to here
$$y = 96$$
 4 pts to here

15. Solve by using the square root property. $(2x + 5)^2 = 81$.

$$2x + 5 = \pm 9$$
 1 pt to here
 $2x = 4$
 $x = 2$ 2 pts to here
 $2x = -14$ 3 pts to here
 $x = -7$ 4 pts

16. A company that manufactures bikes makes a daily profit, P, according to the equation $P(x) = -100x^2 + 4200x - 43371$ where P is measured in dollars and x is the number of mountain bikes made per day. Find the number of mountain bikes that must be made each day to produce a zero profit for the company. Round your answer to the nearest whole number.

$$x = \frac{-4200 \pm \sqrt{(4200)^2 - 4(-100)(-43371)}}{2(-100)}$$
 1 pt to here
$$x = \frac{-4200 \pm \sqrt{291600}}{-200}$$
 2 pts to here
$$x = \frac{-4200 \pm 540}{-200} = 18.3 \approx 18 \text{ bikes}$$
 3 pts to here
$$x = \frac{-4200 - 540}{-200} = 23.7 \approx 24 \text{ bikes}$$
 4 pts to here (3 pts if no units)

17. A brace for a shelf has the shape of a right triangle. Its hypotenuse is 8 inches long and the two legs are equal in length. How long are the legs of the triangle? Keep answers in simplified radical form.

$$x^2 + x^2 = 8^2$$
 1 pt to here $x^2 = 32$ 2 pts to here $x = \sqrt{32}$ or $x = \pm \sqrt{32}$ 3 pts to here $x = 4\sqrt{2}$ in. 4 pts to here (3 pts no units)

18. Given $f(x) = x^2 + 2x - 3$. Identify the vertex, y-intercept, x-intercept(s), axis of symmetry, and graph the function on the graph paper and label your findings on it.

vertex $(-1, -4)$	Add 1 pt
x-intercepts $(-3,0)$, $(1,0)$	Add 1 pt for each
y-intercept $(0, -3)$	Add 1 pt
Axis of Symmetry $x = -1$	Add 1 pt
Correct graph	Add 1 pt
All of the points above marked on the graph	Add 2 pts

19. Solve |x+2| - 1 = 6.

$$|x+2| = 7$$

$$x+2=7$$

$$x=5$$

$$x+2=-7$$

$$x=-9$$
1 pt
2 pt
4 pt to here

20. Find the distance between (-7, 13) and (-12, 1).

$$d = \sqrt{(-7 - (-12))^2 + (13 - 1)^2}$$

$$d = \sqrt{(5)^2 + (12)^2}$$
1 pts to here
$$d = \sqrt{25 + 144}$$
2 pts to here
$$d = \sqrt{169}$$
3 pts to here
$$d = 13$$
4 pts to here

21. Find the center and radius, and graph the circle $(x+5)^2 + (y-3)^2 = 4$.

Correct graph Add 2 points Center (-5,3) Add 1 point Radius 2 Add 1 point

22. Determine whether each graph represents a function.

No (1 pt) No (1 pt) Yes (1 pt) Add 1 point if all 3 correct

23. Given f(x) = 4x - 7, find f(a - 6).

$$4(a-6)-7$$
 2 pt
 $4a-24-7$ 3 pts to here
 $4a-31$ 4 pts to here

24. Find the difference quotient of f; that is find $\frac{f(x+h)-f(x)}{h}$. Assume $h \neq 0$. f(x) = 4x + 3.

$$f(x+h) = 4x + 4h + 3$$

$$\frac{(4x+4h+3)-(4x+3)}{h}$$
2 pts to here
$$\frac{4h}{h}$$
3 pts to here
$$4$$
 pts to here