Trabalho Prático Nº1 – Protocolo de Camada de Transporte

Carlos Gustavo Silva Pereira a
96867, Cláudio Alexandre Freitas Bessa a
97063, João Miguel Ferreira Loureiro a
97257

Universidade do Minho - Licenciatura em Engenharia Informática

Índice

1		stões
	1.1	Pergunta 1
		Pergunta 2
	1.3	Pergunta 3
	1.4	Pergunta 4 9
	1.5	Pergunta 5
2	Cone	clusão1

Resumo: O estudo dos protocolo que compõe a camada de transporte é um dos pilares da comunicação por computadores. Este documento aborda noções importantes relativas ao transporte de dados numa rede demonstrando a relevância dos protocolos TCP e UDP em diferentes contextos. Para este trabalho utilizamos auxiliamo-nos de uma maquina virtual com o sistema operativo Xubuntu e os softwares CORE, para emulação de uma rede, e o Wireshark, para visualização das trocas de pacotes.

Palavras-chave: Protocolo de Camada de Transporte, Comunicação por Computadores, Segmentos, Pacotes e Datagrama

1 Questões

1.1 Pergunta 1

De que forma as perdas e duplicações de pacotes afetaram o desempenho das aplicações? Que camada lidou com esses problemas: transporte ou aplicação? Responda com base nas experiências feitas e nos resultados observados.

Resposta: Após a verificação de ambos os *pings* nos diferentes ambientes da topologia, verificamos que o computador *Grilo* foi mais lento, uma vez que essa rede tinha associada uma determinada probabilidade de perda e duplicações. A camada que lida com estes tipos de problemas é a camada da aplicação.

```
40087/Portatil1.conf# ping ~ 10 10.2.2.1 | tee file-ping-output PPNG 10.2.2.1 (10.2.2.1) 85(84) bytes of data.
64 bytes from 10.2.2.1 : icmp.secp1 ttl=61 time=0.530 ms
64 bytes from 10.2.2.1: icmp.secp2 ttl=61 time=0.276 ms
64 bytes from 10.2.2.1: icmp.secp3 ttl=61 time=0.276 ms
64 bytes from 10.2.2.1: icmp.secp3 ttl=61 time=0.2775 ms
64 bytes from 10.2.2.1: icmp.secp3 ttl=61 time=0.2775 ms
64 bytes from 10.2.2.1: icmp.secp3 ttl=61 time=0.2875 ms
64 bytes from 10.2.2.1: icmp.secp3 ttl=61 time=0.285 ms
64 bytes from 10.2.2.1: icmp.secp3 ttl=61 time=0.285 ms
64 bytes from 10.2.2.1: icmp.secp3 ttl=61 time=0.274 ms
64 bytes from 10.2.2.1: icmp.secp3 ttl=61 time=0.278 ms
64 bytes from 10.2.2.1: icmp.secp3 ttl=61 time=0.288 ms
64 bytes from 10.2.2.1: ic
```

Figura 1. Resultados obtidos em Portatil1

4 Gustavo Pereira, Cláudio Bessa, João Loureiro

Figura 2. Resultados obtidos em Grilo

1.2 Pergunta 2

Obtenha a partir do Wireshark, ou desenhe manualmente, um diagrama temporal para a transferência do ficheiro file1 por FTP realizada em A.3. Foque-se apenas na transferência de dados [ftp-data] e não na conexão de controlo (o FTP usa mais que uma conexão em simultâneo). Identifique, se aplicável, as fases de início de conexão, transferência de dados e fim de conexão. Identifique também os tipos de segmentos trocados e os números de sequência usados tanto nos dados como nas confirmações.

Resposta: A transferência do file1 utilizando o protocolo FTP exige um número relativamente baixo de trocas de pacotes, como se conclui através dos diagramas.

Na Figura 3, correspondente à transferência Servidor1-Portátil1, vê-se representada a fase de conexão nos primeiros picos. Observa-se também que a transferência do ficheiro exige mais trocas de pacotes, resultando no pico mais alto do diagrama. O último pico representa o fim da conexão ("Goodbye."). Durante todo o processo de comexão e transferência são trocados segmentos TCP e FTP.

 ${\bf Figura~3.}$ Gráfico do Wiresharkutilizando TCP (segmentos a vermelhos) e FTP (segmentos a verde) no Portátil1

∇			*(veth1.2.e5	- + X					
<u>F</u> i	le <u>E</u> dit <u>V</u> iew <u>G</u> o <u>C</u>	apture <u>A</u> nalyze <u>S</u>	tatistics Telephony <u>V</u>	/ireless <u>T</u> ools	<u>H</u> elp					
			Q 🗢 🔿 警 🖥		■ • • • •					
Ĭ,	ftp									
Vo.		Source	Destination	Protocol L						
	12 13.410823185	10.2.2.1	10.1.1.1	FTP	86 Response: 220 (vsFTPd 3.0.3)					
	18 18.250074248	10.1.1.1	10.2.2.1	FTP	82 Request: USER anonymous					
	20 18.250265439	10.2.2.1	10.1.1.1	FTP	100 Response: 331 Please specify the password.					
	24 22.251708145	10.1.1.1	10.2.2.1	FTP	79 Request: PASS a96867					
	26 22.253171749	10.2.2.1	10.1.1.1	FTP	89 Response: 230 Login successful.					
	28 22.253680890	10.1.1.1	10.2.2.1	FTP	72 Request: SYST					
		10.2.2.1	10.1.1.1	FTP	85 Response: 215 UNIX Type: L8					
	35 27.919226536		10.2.2.1	FTP FTP	71 Request: PWD					
	37 27.919561554 41 30.303436004	10.2.2.1 10.1.1.1	10.1.1.1 10.2.2.1	FTP	100 Response: 257 "/" is the current directory 88 Request: PORT 10,1,1,1,179,21					
	42 30.303613081		10.2.2.1	FTP	117 Response: 200 PORT command successful. Consider using					
	44 30.303963260		10.2.2.1	FTP	72 Request: LIST					
	48 30.304506182	10.2.2.1	10.1.1.1	FTP	105 Response: 150 Here comes the directory listing.					
		10.2.2.1	10.1.1.1	FTP	90 Response: 226 Directory send OK.					
	60 34.442806114		10.2.2.1	FTP	74 Request: TYPE I					
	61 34.442951343		10.1.1.1	FTP	97 Response: 200 Switching to Binary mode.					
	63 34.443130714	10.1.1.1	10.2.2.1	FTP	89 Request: PORT 10,1,1,1,147,195					
	64 34.443284820	10.2.2.1	10.1.1.1	FTP	117 Response: 200 PORT command successful. Consider using					
	66 34.443629358	10.1.1.1	10.2.2.1	FTP	78 Request: RETR file1					
	70 34.444169155	10.2.2.1	10.1.1.1	FTP	130 Response: 150 Opening BINARY mode data connection for					
	77 34.445220893	10.2.2.1	10.1.1.1	FTP	90 Response: 226 Transfer complete.					
		10.1.1.1	10.2.2.1	FTP	72 Request: QUIT					
	83 40.357207223	10.2.2.1	10.1.1.1	FTP	80 Response: 221 Goodbye.					

 $\textbf{Figura 4.} \ \textit{Wireshark} \ \text{Portátil} \ 1$

 ${\bf Figura\,5.}$ Gráfico do Wireshark utilizando TCP (segmentos a vermelhos) e FTP (segmentos a verde) no Grilo

1.3 Pergunta 3

Obtenha a partir do Wireshark, ou desenhe manualmente, um diagrama temporal para a transferência do ficheiro file1 por TFTP realizada em A.4. Identifique, se aplicável, as fases de início de conexão, transferência de dados e fim de conexão. Identifique também os tipos de segmentos trocados e os números de sequência usados tanto nos dados como nas confirmações.

Resposta: No caso da transferência por TFTP, não há uma fase de autenticação, simplesmente uma conexão ao servidor e pedido de transferência de ficheiro, pelo que o diagrama apresenta apenas um pico correspondente a estas ações.

NOTA: na Figura 9 observam-se dois picos que correspondem ao procedimento experimental executado duas vezes (duas transferências do mesmo *file1*).

Durante o processo foram trocados segmentos do tipo:

- Read Request
- Data
- Acknowledgement

Figura 6. Wireshark Grilo

Figura 7. Gráfico Wireshark utilizando TFTP Portátil 1

14 22.002349805		224.0.0.5	OSPF	78 Hello Packet
15 24.002410690	10.2.2.254	224.0.0.5	OSPF	78 Hello Packet
16 25.759901253	fe80::200:ff:feaa:10	ff02::5	OSPF	90 Hello Packet
17 26.002730454	10.2.2.254	224.0.0.5	OSPF	78 Hello Packet
18 26.931507508		10.2.2.1	TFTP	56 Read Request, File: file1, Transfer type: octet
19 26.973042643	10.2.2.1	10.1.1.1	TFTP	270 Data Packet, Block: 1 (last)
20 26.973278289	10.1.1.1	10.2.2.1	TFTP	46 Acknowledgement, Block: 1
21 28.003106716	10.2.2.254	224.0.0.5	OSPF	78 Hello Packet
22 30.003179228	10.2.2.254	224.0.0.5	OSPF	78 Hello Packet
23 32.003452135	10.2.2.254	224.0.0.5	0SPF	78 Hello Packet
24 32 166145887	00.00.00 22.00.10	00.00.00 22.00.14	ARD	42 Who has 10 2 2 12 Tell 10 2 2 254

Figura 8. Wireshark Portátil 1

Figura 9. Gráfico Wireshark utilizando TFTP Grilo

	16 26.005748847	10.2.2.254	224.0.0.5	OSPF	78 Hello Packet
	17 26.531523735	10.4.4.1	10.2.2.1	TFTP	56 Read Request, File: file1, Transfer type: octet
	18 26.531842436	10.2.2.1	10.4.4.1	TFTP	270 Data Packet, Block: 1 (last)
L	19 26.537355914	10.4.4.1	10.2.2.1	TETP	46 Acknowledgement, Block: 1
	20 27.304222659	fe80::200:ff:feaa:10	ff02::5	0SPF	90 Hello Packet
	21 28.006046277	10.2.2.254	224.0.0.5	OSPF	78 Hello Packet
	22 30.006474048	10.2.2.254	224.0.0.5	0SPF	78 Hello Packet
	23 31.588013531	00:00:00_aa:00:10	00:00:00_aa:00:14	ARP	42 Who has 10.2.2.1? Tell 10.2.2.254
	24 31.588159702	00:00:00 aa:00:14	00:00:00 aa:00:10	ARP	42 Who has 10.2.2.254? Tell 10.2.2.1
	25 31.588166198	00:00:00 aa:00:10	00:00:00 aa:00:14	ARP	42 10.2.2.254 is at 00:00:00:aa:00:10
	26 31.588191442	00:00:00 aa:00:14	00:00:00 aa:00:10	ARP	42 10.2.2.1 is at 00:00:00:aa:00:14
	27 32.006902735	10.2.2.254	224.0.0.5	OSPF	78 Hello Packet
	28 34.007438350	10.2.2.254	224.0.0.5	OSPF	78 Hello Packet
	29 36.007957242	10.2.2.254	224.0.0.5	OSPF	78 Hello Packet
	30 37.271421828	fe80::200:ff:feaa:10	ff02::5	OSPF	90 Hello Packet
	31 38.008329983	10.2.2.254	224.0.0.5	OSPF	78 Hello Packet
	32 39.845936672	10.4.4.1	10.2.2.1	TFTP	56 Read Request, File: file1, Transfer type: octet
	33 39.846188995	10.2.2.1	10.4.4.1	TFTP	270 Data Packet, Block: 1 (last)
	34 39.851432682	10.4.4.1	10.2.2.1	TFTP	46 Acknowledgement, Block: 1
	35 40.009487100	10.2.2.254	224.0.0.5	0SPF	78 Hello Packet
	36 42.009859307	10.2.2.254	224.0.0.5	0SPF	78 Hello Packet

 ${\bf Figura\, 10.}\ {\it Wireshark}\ {\it Grilo}$

```
Multicast; ulsableu
mtftp variables
client-port:
                0.0.0.0
mcast-ip:
 listen-delay:
timeout-delay: 2
Last command: ---
tftp> get file1
Overwite local file [y/n]? y
timeout: retrying...
timeout: retrying...
tftp> get file1
Overwite local file [y/n]? y
tftp> quit
root@Grilo:/tmp/pycore.43599/Grilo.conf#
```

Figura 11. Timeouts Grilo

1.4 Pergunta 4

Compare sucintamente as quatro aplicações de transferência de ficheiros que usou, tendo em consideração os seguintes aspetos: (i) identificação da camada de transporte; (ii) eficiência; (iii) complexidade; (iv) segurança.

Resposta:

Protocolos	Uso de camada	Eficiência	Complexidade	Segurança
Fiotocolos	transporte (i)	(ii)	(iii)	(iv)
SFTP	TCP	Baixa	Alta	Alta
SF 11			Alta	Encriptação de dados
FTP	TCP	Médio	Média	Baixa
FIF				Autenticação, fácil descodificação de informação
TFTP	UDP	Alta	Baixo	Baixa
нттр	TCP	Alta	Baixa	Muito baixa
11111			Daixa	Sem autenticação

O UDP provou ser mais rápido e eficiente uma vez que comparativamente ao TCP não reenvia pacotes previamente perdidos. Justificando alguns acontecimentos, entre eles a alta eficiência do protocolo TFTP em relação aos outros testados para este relatório.

Nota: Relativamente à baixa segurança do FTP, podemos verificar isso através de 4, onde conseguimos visualizar a password do usuário.

1.5 Pergunta 5

Com base no trabalho realizado, construa uma tabela informativa identificando, para cada aplicação executada (ping, traceroute, telnet, ftp, tftp, wget/lynx, nslookup, ssh, etc.), qual o protocolo de aplicação, o protocolo de transporte, a porta de atendimento e o overhead de transporte.

Aplicações	Protocolo de	Protocolo de	Porta de	Overhead de Transporte
Aplicações	Aplicação	Transporte	Atendimento	(em bytes)
HTTP	HTTP	TCP	80	20
FTP	FTP	TCP	21	20
TFTP	TFTP	UDP	69	8
Telnet	Telnet	TCP	23	20
Nslookup	DNS	UDP	53	8
Ping				_
Traceroute	DNS	UDP	33434	8

2 Conclusão

Com este estudo, tivemos a oportunidade de interiorizar os conceitos lecionados nas aulas teóricas fortificando as bases de Redes de Computadores e revisitamos os nossos conhecimentos associados ao uso de ferramentas como CORE e o Wireshark.

Passamos a ter uma noção um pouco mais aprofundada das as vantagens e desvantagens associadas à utilização dos diferentes protocolos TCP e UDP em contextos diferentes e aplicações de transferência de ficheiros entre *hosts* como SFTP, FTP, TFTP e HTTP.

O protocolo TCP provou ser menos eficiente, necessitando de mais recursos e sendo mais lento comparativamente ao UDP, estando associado aplicações onde se busca maior fiabilidade e segurança em troca de velocidade, uma vez que este garante a chegada do pacote esperando sempre a chegada de uma mensagem ACK antes do envio do pacote seguinte.

Por outro lado, com UDP, é possível uma transferência mais rápida e eficiente abdicando da garantia de que o pacote chega ao destino, sendo assim um protocolo menos fiável. Geralmente é utilizado em serviços de streaming e VoIP onde a perca de um pacote não compromete totalmente a informação transmitida.