Exploiting Multiple Symmetry-Broken SCF Solutions to Describe Ground and Excited States of Transition-Metal Complexes

Bang C. Huynh¹ Alex J. W. Thom¹
¹Department of Chemistry, University of Cambridge, United Kingdom

Low-Lying UHF Solutions and NOCI Wavefunctions of Model Octahedral $[VF_6]^{3-}$

Figure 1. Energy and symmetry of low-lying UHF solutions and NOCI wavefunctions constructed from them in octahedral $[VF_6]^{3-}$. $[S_{M_S}]$: symmetry-conserved UHF set S with \hat{S}_z eigenvalue M_S . $[S_{M_S}]$: spatial or spin symmetry-broken UHF set S with \hat{S}_z eigenvalue M_S .

 $\Gamma[A \oplus B \oplus C]$: a specific NOCI set of symmetry Γ constructed from all of A, B, and C. $\Gamma[A, B, C]$: multiple NOCI sets of symmetry Γ constructed from all non-trivial combinations of A, B, and C.

Introduction

Transition-metal complexes are strongly correlated as they have many low-energy electronic states that exhibit high degrees of degeneracy. Figure 2 gives such states for octahedral d^2 as an example.

Figure 2. All electronic terms of a true d^2 system in an octahedral field.

The non-linear HF equations for these complexes therefore admit multiple low-lying solutions that are degenerate or nearly degenerate.

We have located these solutions using SCF metadynamics and investigated their symmetry properties in a model octahedral $[VF_6]^{3-}$ system (Figure 1).

Symmetry Breaking in HF

Degenerate eigenfunctions of the spinless Hamiltonian must transform as a single irreducible representation (irrep) of the underlying point group \mathcal{B} , the spin rotation group SU(2), or the time reversal group \mathcal{T} .

HF wavefunctions do not have to obey this due to their approximate nature. Thus, consider a set of degenerate HF solutions $S = \{ ^w \Psi \mid w = 1, 2, \ldots \}$ and a group \mathcal{G} :

- if S spans a single irrep in \mathcal{G} , then S is symmetry-conserved in \mathcal{G} ;
- if S spans multiple irreps in \mathcal{G} , then S is symmetry-broken in \mathcal{G} .

HF solutions break symmetry to become lower in energy and possibly recover some electron correlation. Restoring symmetry of symmetry-broken HF solutions allows us to form physically meaningful wavefunctions while incorporating said correlation.

References

For a symmetry-broken set S, solving the generalised eigenvalue equation

 $m{H}m{A} = m{S}m{A}m{E}$ where $(m{H})_{wx} = \langle^w\Psi|\hat{\mathscr{H}}|^x\Psi
angle$ and $(m{S})_{wx} = \langle^w\Psi|^x\Psi
angle$

gives coefficients
$$A_{wm}$$
 such that the NOCI wavefunctions

$$^{m}\Phi=\sum{}^{w}\Psi A_{wm}$$

Non-Orthogonal Configuration Interaction (NOCI)

restore symmetry and can be used to approximate corresponding electronic terms.

UHF vs. NOCI: Jahn-Teller Distortion

Figure 3 shows that:

- the symmetry-broken UHF A_1 and A_1' solutions fail to exhibit minima expected for the $T_{1q}\otimes e_q$ Jahn-Teller distortion;
- the ${}^3T_{1g}[A_1 \oplus A_1']$ NOCI wavefunctions do show the expected minima and give the correct degeneracy splitting.

Figure 3. State energy in the $T_{1g}\otimes e_g$ Jahn-Teller distortion of octahedral $[VF_6]^{3-}$. Dashed curves: symmetry-broken UHF A_1 or A_1' solutions. Solid curves: ${}^3T_{1g}[A_1\oplus A_1']$ NOCI wavefunctions.

Solution Topology: Euclidean Representation of State Distances

^{1.} Thom, A. J. W. & Head-Gordon, M. *Physical Review Letters* **101**, 193001 (November 2008).

Thom, A. J. W. & Head-Gordon, M. *The Journal of Chemical Physics* **131,** 124113 (September 2009).

^{3.} Huynh, B. C. & Thom, A. J. W. (Manuscript in preparation).