$$\langle 0 | \, \mathbf{T} \hat{\Phi}(x) \hat{\Phi}(y) \hat{\Phi}^4(z) \, | 0 \rangle \,, \qquad \frac{6!}{2^3 \times 3!} \, = \, 15 \text{ pairings} \,$$

$x \bullet \longrightarrow y $	3 terms	8 symmetries
$x \bullet \qquad \qquad z \qquad \qquad y$	12 terms	2 symmetries

For each diagram, $\# \text{terms} \times \# \text{symmetries} = 4!$.

$$\langle 0 | \, {f T} \hat{\Phi}(x) \hat{\Phi}(y) \hat{\Phi}^4(z_1) \hat{\Phi}^4(z_2) \, | 0 \rangle \,, \qquad {10! \over 2^5 \times 5!} \, = \, 945 \, \, {\rm pairings}$$

$x \longrightarrow y \qquad \qquad$	9 terms	2×8^2 symmetries
$x \longrightarrow y$ $y \longrightarrow z_1 \longrightarrow z_2$	72 terms	16 symmetries
$x \longrightarrow y z_1 \longrightarrow z_2$	24 terms	2×24 symmetries
$x \longrightarrow z_1 \qquad y \qquad z_2$	$2 \times 36 \text{ terms}$	16 symmetries
$x \longrightarrow z_1 \qquad z_1 \qquad y$	$2 \times 12^2 \text{ terms}$	4 symmetries
$x \longrightarrow z_1 \qquad y$	$2 \times 12^2 \text{ terms}$	4 symmetries
$x \longrightarrow z_1 \longrightarrow z_2 \longrightarrow y$	$2 \times 96 \text{ terms}$	6 symmetries

For each diagram, $\# \text{terms} \times \# \text{symmetries} = 2 \times (4!)^2$.