# L&AC 控制器项目立项报告

## 开发团队

| 姓名  | 班级     | 学号         | 自评分 |  |  |
|-----|--------|------------|-----|--|--|
| 顾志祥 | 物联网 71 | 2175210353 | 90  |  |  |
| 郝天琪 | 计算机 66 | 2160500140 | 90  |  |  |
| 虎文博 | 计算机 62 | 2160500038 | 90  |  |  |
| 周泽华 | 计算机 76 | 2171411570 | 90  |  |  |
| 吴 洋 | 计算机 76 | 2173611803 | 90  |  |  |

2020年2月22日

## 1引言

#### 1.1 标识

L&AC 控制器项目立项报告 V1.1

## 1.2 项目背景

当下社会科技发展愈发迅速,已逐渐步入"万物互联"的时代,智能家电已经进入人们的视野,能用手机、语音控制的冰箱、空调、电视等一系列家电慢慢成为人们的购买需求。但现在绝大多数居民家里的家电并不智能,家电遥控器还经常会"不翼而飞",让人在需要用家电时浪费大量的时间去寻找遥控器,给人们带来极大的不方便。

为了让老旧家电"智能化",让人们不在需要到处找遥控器,我们团队决定 开发一款能远程控制老旧家电设备和配套 APP,让人们不用花大量金钱让能体 验到智能家电的便捷。

#### 1.3 项目概述

项目初步以我们的学生寝室为模板,模拟控制我们寝室里的灯和空调。目标利用手机 APP 远程控制灯和空调的开关,实现对空调状态的调节及其状态显示。

为了确保用户隐私,我们设计了安全的登陆系统。同时在 APP 中加入简单的天气预报功能(提供当前温度及穿衣指数)让用户方便感知室内外温度的差别,方便出行。

## 2项目内容

#### 2.1 项目的主要功能

- (1) 对一般用户来说:
- 注册, 登录, 注销
- 修改个人信息
- 浏览当前天气状况
- 获取穿衣指数建议
- 控制灯具开关及调色
- 控制空掉开关及温度调节
- (2)对系统管理员来说:
- 增加,删除,查询和修改用户信息
- 向系统用户发站内信,以及公告新闻等

### 2.2 项目开发方案

项目分为硬件和配套安卓 APP 开发两部分。系统结构如下图:



硬件部分利用 Arduino 单片机作为中间平台,控制继电器继而控制灯的开关,控制红外发射器向空调发射红外信号以控制空调温度和模式的调节。

物联网平台和 Arduino 之间采用 MQTT 协议进行连接,实现控制数据的上传和下发。然后将物联网云平台与手机 APP 进行连接,利用手机 APP 向 Arduino 发送命令以控制灯和空调。

软件方面通过配置数据库完成用户数据的收集与验证。在软件内部通过调用 函数接口获取当前天气信息,依据内置算法给出当前穿衣指数等提示,为用户出 行提供便利。

#### 2.3 UML 图示



## 2.4 项目开发流程



## 2.5 项目进度安排

|      | :  | 开发阶段 |    | 分析阶段 |    | 设计阶段 |    | 实现阶段 |    |     |     |     |
|------|----|------|----|------|----|------|----|------|----|-----|-----|-----|
|      | 1周 | 2周   | 3周 | 4周   | 5周 | 6周   | 7周 | 8周   | 9周 | 10周 | 11周 | 12周 |
| 需求分析 |    |      |    |      |    |      |    |      |    |     |     |     |
| 功能设计 |    |      |    |      |    |      |    |      |    |     |     |     |
| 系统设计 |    |      |    |      |    |      |    |      |    |     |     |     |
| 环境配置 |    |      |    |      |    |      |    |      |    |     |     |     |
| 代码编写 |    |      |    |      |    |      |    |      |    |     |     |     |
| 測验完善 |    |      |    |      |    |      |    |      |    |     |     |     |
| 报告总结 |    |      |    |      |    |      |    |      |    |     |     |     |

#### 2.6 项目可行性分析

(1)技术可行性:

就目前开发使用的技术来说,系统的目标能够达成; 利用现有的技术在规定的期限内开发共工作基本能完成。

(1)操作可行性:

可达到数据录入迅速、规范、可靠; 用户操作简便灵活、系统响应迅速; 具有易用性、开放性与可视性。

#### 2.7 项目结论

本项目基于 Arduino 单片机,借助物联网平台开发安卓 APP 实现对学生宿舍内灯和空调的远程控制,项目整体框架明晰,分为硬件和软件两部分,开发重点在于物联网平台和 Arduino 与手机 APP 的通信,本项目具有一定实用性,在完成初步目标后,可进一步开发实现对家庭老旧家电的完全远距离控制,具有很好的应用前景。