MATH50003 Numerical Analysis

III.2 Cholesky factorisation

Dr Sheehan Olver

Part III

Numerical Linear Algebra

- 1. Structured matrices such as banded
- 2. LU and PLU factorisations for solving linear systems
- 3. Cholesky factorisation for symmetric positive definite
- 4. Orthogonal matrices such as Householder reflections
- 5. QR factorisation for solving least squares

LU factorisation:

$$A = LU$$

PLU factorisation:

$$A = P^{\mathsf{T}}LU$$

Cholesky factorisation: for sym. pos. lef;

$$A = LL^{\top}$$

but ding of L is not al 1.

III.2.4 Cholesky factorisations $A = LL^{T}$

Symmetric positive definite matrices have Cholesky factorisations

SPV

Definition 16 (positive definite). A square matrix $A \in \mathbb{R}^{n \times n}$ is *positive definite* if for all $\boldsymbol{x} \in \mathbb{R}^n, x \neq 0$ we have

$$\boldsymbol{x}^{\top} A \boldsymbol{x} > 0$$

Motivation: How to prove A is SPD?

Proposition 5 (conjugating positive definite). If $A \in \mathbb{R}^{n \times n}$ is positive definite and $V \in \mathbb{R}^{n \times n}$ is non-singular then

$$V^{\top}AV$$

is positive definite.

For
$$\vec{x} \neq 0$$
, $\vec{w} := V \vec{x} \neq 0$

we have
$$\vec{x} = \vec{v} + \vec{v} + \vec{v} = \vec{v} + \vec{v} + \vec{v} = \vec{v} = \vec{v} + \vec{v} = \vec{v} = \vec{v} + \vec{v} = \vec{v$$

Proposition 6 (diag positivity). If $A \in \mathbb{R}^{n \times n}$ is positive definite then its diagonal entries are positive: $a_{kk} > 0$.

Lemma 4 (subslice positive definite). If $A \in \mathbb{R}^{n \times n}$ is positive definite then $A[2:n,2:n] \in \mathbb{R}^{(n-1)\times(n-1)}$ is also positive definite.

Proof

$$V''$$
 $A = \begin{bmatrix} x & w \\ \overline{y} & k \end{bmatrix}$ then for $x \neq 0$
 $x \neq 0$

Theorem 6 (Cholesky and SPD). A matrix A is symmetric positive definite if and only if it has a Cholesky factorisation

$$A = LL^{\top}$$

where L is lower triangular with positive diagonal entries.

Proof (holosky) SYD If
$$A = LLT$$
 then

AT = A SYM

AT = A SYM

 $\overrightarrow{X}TA \overrightarrow{X} = \overrightarrow{X}TLT(L\overrightarrow{X}) = ||L\overrightarrow{X}||^2 > 0$

Shows Induction. If $A \in \mathbb{R}^{N\times 1}$ SPD then

$$\Delta = \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

For
$$n > 1$$
, Write

$$A = \begin{bmatrix} \alpha & \sqrt{1} & \sqrt{1}$$

Example 14 (Cholesky by hand).

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$