## Hurtownie danych

Wielowymiarowy model danych - warstwa fizyczna

dr inż. Bernadetta Maleszka

# Modelowanie hurtowni danych przypomnienie

- Model biznesowy
  - Efekt analizy strategicznej
  - Identyfikacja miar i wymiarów dla poszczególnych procesów biznesowych
- Model logiczny (wymiarowy)
  - Model abstrakcyjny, konceptualny
  - Encje i atrybuty (reprezentowane w modelu relacyjnym jako tabele i powiązania między nimi)

# Modelowanie hurtowni danych przypomnienie

- Model fizyczny
  - Wybór sposobu składowania danych
  - Formaty danych
  - Strategie partycjonowania
  - Wybór indeksów
  - Wybór materializowanych perspektyw



### Fizyczny projekt i rozwój bazy danych

- projektowanie bazy danych
- identyfikacja kluczy
- przygotowanie strategii agregacji danych
- tworzenie strategii indeksowania
- przygotowanie strategii podziału (partycjonowania)
- planowanie pojemności (strategia gromadzenia)
- tworzenie obiektów bazy danych

### Warstwa fizyczna

aplikacje użytkownika

przechowywanie danych

- filtracja danych
  - transformacja
  - ładowanie
- źródła danych
  - ekstrakcja



### Ekstrakcja ze źródeł danych

- zintegrowany proces pozyskania danych z różnych źródeł
- dostępność danych
- wydajność procesu ekstrakcji (bez zakłócania funkcjonowania systemów źródłowych)
- weryfikacja poprawności danych
- automatyzacja procesu

### Filtracja

- Odczyt danych z systemów źródłowych
  - identyfikacja nadejścia danych i weryfikacja ich źródła
  - weryfikacja kompletności danych
  - wczytanie do struktur pomocniczych
  - przechowywanie danych źródłowych do momentu zakończenia procesu ładowania
  - dokumentacja procedury (logi operacji, listy kontrolne)
- Transformacja
  - konwersja danych ze struktur tymczasowych (ang. TSA Temporary Storage Area)
    - konwersja typów i wartości
    - kategoryzacja wartości
    - sprawdzenie poprawności

### Filtracja

- Integracja
  - relacje pomiędzy danymi z różnych źródeł
  - agregacja danych
- Czyszczenie
  - sprawdzenie poprawności merytorycznej danych z różnych źródeł
  - reguły kontrolne, np. sumy krzyżowe, zgodność sum, kompletność relacji
  - reguły naprawcze dla wykrytych niespójności
- Ładowanie danych
  - przepisanie danych z TSA do stałych struktur HD CRD (ang. Central Repository of Data)
  - działania sterowane metadanymi procesu

# Przechowywanie danych - Centralne repozytorium danych

- Implementacja relacyjna
  - model gwiazdy, płatka śniegu, konstelacji faktów
  - perspektywy zmaterializowane
  - partycjonowanie danych
- Implementacja wielowymiarowa
  - wielowymiarowe kostki
  - selekcja i wycinanie (ang. slice & dice)
  - zwijanie (ang. roll-up, drill-up)
  - drążenie (ang. drill-down, drill-through)
  - obracanie (ang. pivoting)

### Przechowywanie danych - Data Marts

- Hurtownie tematyczne kopia wybranych danych z CRD
- Mniejsze dane -> lepsza wydajność, możliwość rozproszenia, częściej model wielowymiarowy
- Zakres wyodrębnionych danych definiowany przez potrzeby użytkowników:
  - sprawozdawcze
  - raportowe
  - monitorowanie poziomu realizacji planu
  - analityczne (analiza statystyczna lub eksploracja danych)
  - CRM
  - itp...

### Widoki/Perspektywy zmaterializowane

- Problem:
  - Duża tabela faktów + mniejsze wymiary
  - Optymalizacja odczytu, a złączenia kosztowne
- Cel:
  - Przyspieszenie odczytu
- Rozwiązanie
  - Unikanie wielokrotnego wykonywania tych samych operacji
  - Widok zmaterializowany

### Widok zmaterializowany

```
CREATE MATERIALIZED VIEW Nazwa_widoku AS SELECT ... FROM ... WHERE Warunek
```

#### Zapytania do widoku:

```
SELECT ... FROM Nazwa_widoku WHERE P_1;
SELECT ... FROM Nazwa_widoku WHERE P_2;
...
SELECT ... FROM Nazwa_widoku WHERE P_N;
```

### Widoki zmaterializowane

#### Korzyści:

- Dla zwykłego widoku niejawne wykonanie dla każdego zapytania
- Wyniki widoku zmaterializowanego przechowywane są fizycznie w systemie
- Można użyć tabeli tymczasowej

#### Ograniczenia:

- Niebezpieczeństwo niespójności danych (opóźnienie dla automatycznego odświeżania)
- Wyniki oparte na nieaktualnych danych
- Czy w HD te aspekty są ważne?

## Optymalizacja z wykorzystaniem widoków zmaterializowanych

- Perspektywa zmaterializowana przechowuje wyniki czasochłonnych zapytań analitycznych
- Wydajne, jeśli odpowiedź na zapytanie identyczne lub podobne do zapytania definiującego perspektywę
- Dane w tabelach źródłowych perspektywy nie ulegają modyfikacji
- Sposoby:
  - przepisywanie zapytań
  - indeksowanie

### Indeksowanie

- Indeks połączeniowy (ang. join index)
  - łączy z sobą rekordy z różnych tabel posiadające tę samą wartość atrybutu połączeniowego
  - posiada strukturę B-drzewa zbudowanego na atrybucie połączeniowym tabeli
  - liście indeksu zawierają wspólne wartości atrybutu połączeniowego tabel wraz z listami adresów rekordów w każdej z łączonych tabel
- Indeks bitmapowy (ang. bitmap index)
  - wykorzystanie pojedynczych bitów do zapamiętania informacji o tym, że dana wartość atrybutu występuje w określonym rekordzie tabeli
  - mapa bitowa reprezentująca każdą unikalną wartość atrybutu
  - każdy bit mapy odpowiada jednemu rekordowi w tabeli
  - zbiór map bitowych dla danego atrybutu
  - ▶ B-drzewo z mapami bitowymi w liściach

### Indeksowanie

- Bitmapowy indeks połączeniowy (ang. bitmap join index)
  - połączenie indeksu połączeniowego i bitmapowego
  - tworzenie tylu map bitowych ile jest wartości unikalnych atrybutu
  - każda mapa opisuje rekordy z tabeli
  - struktura B-drzewa, w którego liściach znajdują się mapy bitowe opisujące łączone rekordy

### Partycjonowanie

- Fizyczny podział danych na niewielkie, łatwe w zarządzaniu podzbiory, nazywane partycjami
- Każda partycja stanowi odrębny segment w bazie danych
- Partycje mogą być opcjonalnie dzielone na subpartycje
- Partycjonowanie umożliwia równoległą realizację poleceń DML



### Metody partycjonowania

#### Partycjonowanie zakresowe

podział według przynależności wartości kolumny-klucza do predefiniowanych przedziałów

#### Partycjonowanie haszowe

podział według wartości funkcji haszowej (modulo) wyliczanej dla kolumnyklucza

#### Partycjonowanie wg listy

podział według przynależności wartości kolumny-klucza do predefiniowanych list wartości

### Metody partycjonowania

#### Partycjonowanie dwupoziomowe zakresowo-haszowe

 rozdział rekordów na partycje wg zakresów, a następnie na subpartycje wg wartości funkcji haszowej

#### Partycjonowanie dwupoziomowe zakresowo-listowe

 rozdział rekordów na partycje wg zakresów, a następnie na subpartycje wg przynależności do list wartości

### Zalety partycjonowania

- zrównoleglenie operacji dostępu do dysku, zapytań SQL do różnych partycji
- równoważenie obciążenie dysków
- przyspieszenie działania poprzez zapytania do konkretnej partycji
- bezpieczeństwo danych w razie awarii sprzętowych
- po awarii niezbędne odtworzenie partycji, a nie całej tabeli
- Wady?

### Odświeżanie danych

- Zapewnienie zgodności danych w hurtowni z danymi źródłowymi
- Wykrywanie zmian w danych źródłowych:
  - monitor zmian
- Klasyfikacja źródeł danych:



### Propagacja aktualizacji

- Nanoszenie zmian na wszelkie potworzone materializacje np. agregacje, hurtownie tematyczne, czy kostki OLAP
- Strategie:
  - Aktualizacja opóźniona (na żądanie, przy pierwszym użyciu po zmianie danych w hurtowni):
    - dłużej trwa pierwsze zapytanie,
    - nie musimy odświeżać tych perspektyw, których nie użyjemy.
  - Aktualizacja natychmiastowa (podczas odświeżania hurtowni):
    - dłużej trwa wsadowe przetwarzanie procesu aktualizacji,
    - przerzucamy kosztowne procesy na godziny nocne,
    - część aktualizacji może okazać się zbędna.

### Prezentacja

- Mechanizmy dostępu i uprawnień użytkowników
- Wybór najlepszego rodzaju OLAP:
  - ROLAP
  - MOLAP
  - HOLAP
- Interfejs
- Raporty i zestawienia statyczne i dynamiczne

### Typy OLAP

- On-Line Analytical Processing przetwarzanie informacji z wykorzystaniem wielowymiarowej bazy danych
- bezpośrednie przetwarzanie analityczne
  - wielowymiarowe (MOLAP, ang. multidimensional OLAP)
  - relacyjne (ROLAP, ang. relational OLAP)
  - hybrydowe (HOLAP, ang. hybrid OLAP)



### **MOLAP**

- wielowymiarowe OLAP
- wielowymiarowy format danych i agregacji
- zapytania wykonują się szybko
- wymaga największej przestrzeni na dysku



### **ROLAP**

- dane i agregacje są przechowywane w RSZBD
- najwolniejsze odpowiedzi na zapytania
- zwykle najwolniejsze przetwarzanie
- można tworzyć indeksowane widoki
- można tworzyć dodatkowe tabele do przechowywania agregacji podczas ETL
- najbardziej użyteczny tryb dla dużej liczby danych
- wspomaga rozwiązania real-time OLAP



### **HOLAP**

- dane zarządzane przez RSZDB
- agregacje tworzone w formacie wielowymiarowym
- dobry wybór, gdy przestrzeń na dysku jest wąskim gardem
- dobra wydajność dla częstych odwołań do agregacji



### Typy OLAP



### Typy systemów OLAP - podsumowanie

| Тур                                    | MOLAP                                  | ROLAP          | HOLAP               |
|----------------------------------------|----------------------------------------|----------------|---------------------|
| Miejsce<br>przechowywania<br>danych    | baza wielowymiarowa                    | baza relacyjna | baza relacyjna      |
| Miejsce<br>przechowywania<br>agregacji | baza wielowymiarowa                    | baza relacyjna | baza wielowymiarowa |
| Czas przetwarzania (*)                 | krótki                                 | bardzo długi   | krótki              |
| Wymagane miejsce (*) (rozmiar)         | średnio                                | dużo           | mało                |
| Opóźnienie w odświeżaniu danych (*)    | wysokie (wymagane procesowanie kostki) | niskie         | średnie             |
| Czas odpowiedzi na zapytanie (*)       | krótki                                 | długi          | średni              |

<sup>(\*)</sup> w porównaniu do pozostałych typów

### Inne typy OLAP

- Desktop OLAP (DOLAP) systemy niewielkiej, "osobistej" skali
- Real-time OLAP (RTOLAP) systemy czasu rzeczywistego
- Web-based OLAP (WOLAP) systemy dostępne w publicznej sieci

## Hurtownie danych

Dziękuję za uwagę

dr inż. Bernadetta Maleszka