***	教		2017–2	018	学年度第	2	学期	课程类别		
	山田							必修[√]		
	师	保性	· 14 / 14 / 14 / 14 / 14 / 14 / 14 / 14	人子	大学数学(理工四学分)			. 考试方式		
	填	授课	!教师:	张三,李四,王五				开卷[]	闭卷[√]	
					试卷类别	(A, B, C)				
	写	考试	讨问:	2018年06月28日				. [B]	共6页	
	考生			学院专业_			<u> </u>	班(级)		
	填写	姓名	, 1	学号				内招[√]	内招[√]外招[]	
			T	T T			I		- N. 15	
:		号	_	<u> </u>	三	四四	五	六	总分	
	得	分								
⊐¦ :	评例	別人								
		一、填空题(共 6 小题,每小题 3 分,共 18 分) 答题须知:本题答案必须写在如下表格中,否则不给分.								
	小是	题			2			3		
i				·						

		, , , , , , , , , , , , , , , , , , , ,	
小题	1	2	3
答案			
小题	4	5	6
答案			

- **1.** 已知 ξ 和 η 相互独立且 $\xi \sim N(1,4), \eta \sim N(2,5), 则 <math>\xi 2\eta \sim N(-3,24)$.
- **2.** 已知随机变量 ξ 的期望和方差各为 $E\xi = 3, D\xi = 2$, 则 $E\xi^2 = ______1$
- **3.** 向量组 $\alpha_1 = (1,1,0), \alpha_2 = (0,1,1), \alpha_3 = (1,0,1),$ 则将向量 $\beta = (4,5,3)$ 表示为 $\alpha_1,\alpha_2,\alpha_3$ 的线性组合为 β =
- **4.** 已知二阶行列式 $\begin{vmatrix} 1 & 2 \\ -3 & x \end{vmatrix} = 0$,则 $x = \underline{\qquad \qquad -6}$
- **6.** 设常数 k > 0,函数 $f(x) = \ln x \frac{x}{e} + k$ 在 $(0, +\infty)$ 内零点的个数为 _____2

二、单选题(共6小题,每小题3分,共18分)

答题须知: 本题答案必须写在如下表格中, 否则不给分.

小题	1	2	3	4	5	6
答案						

- - (A) 总体是随机变量

- (B) 样本是n 元随机变量
- (C) *X*₁, · · · , *X*_n 相互独立
- (D) $X_1 = X_2 = \cdots = X_n$
- **2.** 下列说法不正确的是·····(B)
- (A) 大数定律说明了大量相互独立且同分布的随机变量的均值的稳定性
 - (B) 大数定律说明大量相互独立且同分布的随机变量的均值近似于正态分布
 - (C) 中心极限定理说明了大量相互独立且同分布的随机变量的和的稳定性
 - (D) 中心极限定理说明大量相互独立且同分布的随机变量的和近似于正态分布
- **3.** 二次型 $f = 4x_1^2 2x_1x_2 + 6x_2^2$ 对应的矩阵等于 (C)

$$(A) \begin{pmatrix} 4 & -2 \\ -2 & 6 \end{pmatrix} \qquad (B) \begin{pmatrix} 2 & -2 \\ -2 & 3 \end{pmatrix} \qquad (C) \begin{pmatrix} 4 & -1 \\ -1 & 6 \end{pmatrix} \qquad (D) \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}$$

$$(B) \left(\begin{array}{cc} 2 & -2 \\ -2 & 3 \end{array} \right)$$

$$(C) \left(\begin{array}{cc} 4 & -1 \\ -1 & 6 \end{array} \right)$$

$$(D) \left(\begin{array}{cc} 2 & -1 \\ -1 & 3 \end{array} \right)$$

- **4.** 设矩阵 $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & x & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 其中两个特征值为 $\lambda_1 = 1$ 和 $\lambda_2 = 2$,则 $x = \cdots \in B$) (A) 2(C) 0(D) -1
- **5.** 假设 F(x) 是连续函数 f(x) 的一个原函数,则必有…………(A)
 - (A) F(x) 是偶函数 $\Leftrightarrow f(x)$ 是奇函数
 - (B) F(x) 是奇函数 ⇔ f(x) 是偶函数
 - (C) F(x) 是周期函数 $\Leftrightarrow f(x)$ 是周期函数
 - (D) F(x) 是单调函数 $\Leftrightarrow f(x)$ 是单调函数
- **6.** 在下列等式中, 正确的结果是…………(C)

(A)
$$\int f'(x) \, \mathrm{d}x = f(x)$$

$$(B) \int \mathrm{d}f(x) = f(x)$$

(C)
$$\frac{d}{dx} \left(\int f(x) dx \right) = f(x)$$

(D)
$$d(\int f(x)dx) = f(x)$$

掀

三、计算题(共6小题,每小题8分,共48分)

1. 从正态总体 $N(\mu, \sigma^2)$ 中抽出样本容量为 16 的样本,算得其平均数为 3160,标准 差为 100. 试检验假设 $H_0: \mu = 3140$ 是否成立 ($\alpha = 0.01$).

(2) 选取统计量 $T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$3分

(3) 查表得到 $t_{\alpha} = t_{\alpha}(n-1) = t_{0.01}(15) = 2.947.$ 5分

(4) 计算统计值 $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{3160 - 3140}{100/4} = 0.8$7分

(5) 由于 $|t| < t_a$, 故接受 H_0 , 即假设成立.8分

1—

- 2. 设每发炮弹命中飞机的概率是 0.2 且相互独立, 现在发射 100 发炮弹.
 - (1) 用切贝谢夫不等式估计命中数目 ξ 在 10 发到 30 发之间的概率.
 - (2) 用中心极限定理估计命中数目 ξ 在 10 发到 30 发之间的概率.

AP. $E\xi = np = 100 \cdot 0.2 = 20, D\xi = npq = 100 \cdot 0.2 \cdot 0.8 = 16.$ 2 $\frac{1}{2}$

(1) $P(10 < \xi < 30) = P(|\xi - E\xi| < 10) \ge 1 - \frac{D\xi}{10^2} = 1 - \frac{16}{100} = 0.84.$ 4

(2) $P(10 < \xi < 30) \approx \Phi_0\left(\frac{30-20}{\sqrt{16}}\right) - \Phi_0\left(\frac{10-20}{\sqrt{16}}\right)$ 6 \(\frac{\frac{1}{2}}{2}}\)

 $=2\Phi_0(2.5)-1=2\cdot 0.9938-1=0.9876$ 8 \Rightarrow

3. 利用配方法,将二次型 $f = x_1^2 + 2x_1x_2 - 6x_1x_3 + 2x_2^2 - 12x_2x_3 + 9x_3^2$ 化为标准形 $f = d_1y_1^2 + d_2y_2^2 + d_3y_3^2$.

解.
$$f = x_1^2 + 2x_1x_2 - 6x_1x_3 + 2x_2^2 - 12x_2x_3 + 9x_3^2$$

 $= x_1^2 + 2x_1(x_2 - 3x_3) + (x_2 - 3x_3)^2 + x_2^2 - 6x_2x_3$
 $= (x_1 + x_2 - 3x_3)^2 + x_2^2 - 6x_2x_3$ 3分
 $= (x_1 + x_2 - 3x_3)^2 + x_2^2 - 2x_2 \cdot 3x_3 + (3x_3)^2 - 9x_3^2$
 $= (x_1 + x_2 - 3x_3)^2 + (x_2 - 3x_3)^2 - 9x_3^2$ 6分
令 $y_1 = x_1 + x_2 - 3x_3, y_2 = x_2 - 3x_3, y_3 = x_3$,
则 $f = y_1^2 + y_2^2 - 9y_3^2$ 为标准形.8分

A:
$$A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & -6 & -8 & 2 \end{bmatrix} = 1 \cdot (-1)^{2+1} \begin{bmatrix} 1 & 2 & 3 \\ -1 & -6 & 1 \\ -6 & -8 & 2 \end{bmatrix}$$
4 \(\frac{\frac{1}}{2}\)

 = -\begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & 4 \\ 0 & 4 & 20 \end{bmatrix} = -\begin{bmatrix} -4 & 4 \\ 4 & 20 \end{bmatrix} = -(-4 \cdot 20 - 4 \cdot 4) = 96
8 \(\frac{\frac{1}}{2}\)

5. 求过点 A(1,2,-1), B(2,3,0), C(3,3,2) 的三角形 $\triangle ABC$ 的面积和它们确定的平面方程.

解. 由题设 $\overrightarrow{AB} = (1,1,1), \overrightarrow{AC} = (2,1,3),$ 2分

故
$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 1 \\ 2 & 1 & 3 \end{vmatrix} = (2, -1, -1),$$
4分

三角形 $\triangle ABC$ 的面积为 $S_{\triangle ABC} = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} \sqrt{6}$6分

6. 求不定积分 $\int e^{2x} (\tan x + 1)^2 dx_\circ$

解. 原式 = $\int e^{2x} \sec^2 x \, dx + 2 \int e^{2x} \tan x \, dx$ 2分

 $= \int e^{2x} d(\tan x) + 2 \int e^{2x} \tan x dx \qquad \cdots 4$

 $= e^{2x} \tan x - 2 \int e^{2x} \tan x \, dx + 2 \int e^{2x} \tan x \, dx \qquad \cdots 6$

 $= e^{2x} \tan x + C \qquad \cdots 8$

HIX.

四、证明题(共2小题,每小题8分,共16分)

1. 设事件 A 和 B 相互独立,证明 A 和 \bar{B} 相互独立.

- **2.** 设数列 $\{x_n\}$ 满足 $x_1 = \sqrt{2}$, $x_{n+1} = \sqrt{2 + x_n}$. 证明数列收敛, 并求出极限.
- 证. (1) 事实上,由于 $x_1 < 2$,且 $x_k < 2$ 时

$$x_{k+1} = \sqrt{2 + x_k} < \sqrt{2 + 2} = 2$$
,

由数学归纳法知对所有 n 都有 $x_n < 2$,即数列有上界. 又由于

$$\frac{x_{n+1}}{x_n} = \sqrt{\frac{2}{x_n^2} + \frac{1}{x_n}} > \sqrt{\frac{2}{2^2} + \frac{1}{2}} = 1,$$

所以数列单调增加. 由极限存在准则 II, 数列必定收敛.

……4分

(2) 设数列的极限为 A. 对递推公式两边同时取极限得到

$$A = \sqrt{2 + A}$$
.

解得 A=2,即数列 $\{x_n\}$ 的极限为 2.

.....8分

附录 一些可能用到的数据

$\Phi_0(0.5) = 0.6915$	$\Phi_0(1) = 0.8413$	$\Phi_0(2) = 0.9773$	$\Phi_0(2.5) = 0.9938$
$t_{0.01}(8) = 3.355$	$t_{0.01}(9) = 3.250$	$t_{0.01}(15) = 2.947$	$t_{0.01}(16) = 2.921$
$\chi^2_{0.005}(8) = 22.0$	$\chi^2_{0.005}(9) = 23.6$	$\chi^2_{0.005}(15) = 32.8$	$\chi^2_{0.005}(16) = 34.3$
$\chi^2_{0.995}(8) = 1.34$	$\chi^2_{0.995}(9) = 1.73$	$\chi^2_{0.995}(15) = 4.60$	$\chi^2_{0.995}(16) = 5.14$