

Obtención, caracterización, modificación y funcionalidad de polisacáridos útiles para la industria

Guía de Trabajos Prácticos 2020

Departamento de Industrias - Facultad de Ciencias Exactas y Naturales

TRABAJO PRÁCTICO

REOLOGIA DE MATERIALES SÓLIDOS

Introducción

Existen numerosas formas de evaluar las propiedades sólidas de los materiales polisacarídicos. Los ensayos con grandes deformaciones y las propiedades de fractura de materiales sólidos y semisólidos son muy importantes para la evaluación de su respuesta al procesamiento, manipuleo, almacenamiento, uso.

Muchos de los ensayos usados involucran el someter al material a esfuerzos, lo cual determina una deformación que se mide, o bien deformar controladamente el material y evaluar el esfuerzo requerido.

Entre los aparatos más comúnmente usados para estos ensayos se encuentran las máquinas universales de testeo las cuales pueden, controlar las deformaciones y sensar los esfuerzos necesarios para producirlas.

Objetivos de la práctica

Que los alumnos:

- se familiaricen con el uso de una máquina universal de testeo para la evaluación.
- comprendan los métodos aplicados en los ensayos de compresión y la forma de obtención de curvas fuerza- distancia o esfuerzo-deformación.
- fijen los contenidos teóricos involucrados.

Materiales

Geles de pectina de bajo metoxilo constituidos a partir de soluciones 2% m/v de pectina con agregado de 30 mg de Ca²⁺ por g de ácido urónico.

Equipo

Se utilizará:

- Máquina universal de testeo Instron modelo 3345 (USA) dotada de una celda de carga de 100 N y de un equipo informático de adquisición y tratamiento de datos (Figura 1a).
- Punta de compresión de 36 mm de diámetro (Figura 1b).

Facultad de Ciencias Exactas y Naturales

Figura 1. a) Máquina universal de testeo Instron 3345; b) Cabezal de compresión.

Ensayo de compresión

Se realizará un ensayo de compresión del material. Se obtendrán curvas de fuerza vs. distancia, las cuales se convertirán a curvas de esfuerzo o stress normal (σ) vs. deformación relativa o strain normal (ε) aplicando las siguientes expresiones:

$$\sigma = F/A_0$$

$$\epsilon = h/h_0$$

donde

F: fuerza

A₀: área de la sección transversal inicial de la muestra (compresión).

h: distancia de avance sobre la muestra

h₀: altura inicial de la muestra.

• **Módulo de Young (E):** Para muchos materiales se observa que en la porción inicial del test la relación entre el esfuerzo y la deformación del espécimen muestra un comportamiento lineal que cumple con la Ley de Hooke. La pendiente en esta región donde el esfuerzo es proporcional a la deformación se conoce como Módulo elástico o de Young:

$$E = \sigma/\epsilon$$

- Esfuerzo a la ruptura (σ_r): Es el máximo esfuerzo que el espécimen soporta durante el test.
- **Deformación a la ruptura** (ε_r): Es la deformación en el punto de ruptura de la muestra.
- Resistencia o firmeza del material: Es el cociente entre el esfuerzo y la deformación a la ruptura de la muestra:

• Firmeza =
$$\sigma_{r} / \varepsilon_{r}$$

Metodología

Se trabajará con el cabezal de compresión (Figura 1b).

Compresión de cilindros:

- a) Se utilizarán cilindros de gel de las dimensiones 20 mm de diámetro y 20 mm de altura.
- b) Se seleccionarán las condiciones de trabajo:

Velocidad de deformación: 10 mm/min Porcentaje de compresión: 70%

c) Se colocará la muestra entre la base y el cabezal. Ajustar la distancia a cero.

Análisis de los resultados

- 1) A partir de los gráficos fuerza vs. distancia obtenidos grafique las curvas de esfuerzo vs. deformación y describa su comportamiento.
- 2) Calcule e informe los parámetros: Módulo de Young, esfuerzo a la ruptura, deformación a la ruptura y firmeza.

BIBLIOGRAFÍA GENERAL

- Nielsen L. E and Landel R. F., Mechanical properties of polymers and composites. Marcel Dekker, Inc., New York, 1994. Capítulo 4.
- Rosenthal A.J. 1999. Food texture: measurement and perception. Aspen Publishers Inc., Maryland., USA.