Mass Spectrometry with M_3C

Néstor F. Aguirre

January 20, 2015

Contents

1	Introduction									
2	2 Basics of Microcanonical Metropolis Monte-Carlo									
3 Goals										
4	Example 1: Fluoromethane (guided tour)									
	4.1	Stochastic search for isomers	8							
	4.2	Geometry refinement	13							
	4.3	Calculation of Vibrational Frequencies	14							
	4.4	M3C execution	16							
		4.4.1 Input file description	16							
		4.4.2 Single-point-energy calculation	19							
		4.4.3 Scan-energy calculation	22							
		4.4.4 Mass spectrum calculation								
5	Exa	ample 2. Difluoromethane	26							

1 Introduction

Figure 1: Schematic diagram of a mass spectrometer

A mass spectrometer consists of three components: an ion source, a mass analyzer, and a detector, as shown in Figure (1). The ionizer converts the sample (which may be solid, liquid, or gas) into ions by bombarding it with electrons (electron ionization). Only some of the collisions are energetic enough to knock one or more electrons out of the sample producing positive ions on the gas phase. This may cause some of the sample's molecules to break into charged fragments. An extraction system removes ions from the sample, which are then trajected through the mass analyzer. The differences in masses of the fragments allows the mass analyzer to sort the ions by their mass/charge ratio, by accelerating them with an electric or magnetic field, until the fragments reach the detector. Results are displayed a spectrum of the relative abundance of detected ions as a function of the mass/charge ratio into a "stick diagram". The atoms or molecules in the sample can be identified by correlating known masses to the identified masses or through a characteristic fragmentation pattern. In summary, the mass spectrum shows the mass of the ionized molecule and the masses of its corresponding ionic fragments.

When a highly energetic electron hits a neutral molecule, some of its energy is transferred to this molecule. If the transferred energy excess the *ionization energy* (IE) of the neutral molecule, then the ionization by ejection of one electron occurs, generating a molecular ion in an excited state.

$$M + e^- \longrightarrow M^{+*} + 2e^- \tag{1}$$

This is the most desirable process. However there are several processes in competition that complicate this situation in practice. Some of them are shown in Figure (2). In principle, only unimolecular reactions are possible for the gaseous ions formed under the usual mass spectrometry operating conditions. As the energy of the electrons increases, the number of channels, abundance and variety of the ionized species will also increase, which gives rise to a fingerprint of the parent molecule's spectrum.

Ionization of the sample molecules with 70 eV electrons produces molecular ions whose internal energy values (E) typically cover a broad range from 0 eV up to 20 eV. The nature and extent of these reactions depend only on the ion's structure and internal energy irrespective of the ionization method.

Figure 2: Processes under electron ionization conditions. Taken from: Jürgen H. Gross. Mass Spectrometry. A Textbook. Springer; 2nd ed. 2011 edition. Chapter 2, page 24.

The electron impact ionization of a molecule is a process which takes place in approximately 10^{-16} s and initially yields the exited molecular ion. The process is much more rapid than the time of one vibration, which is about 10^{-14} s. The distances between atoms thus do not change during the ionization. Thus, this ionization/excitation process can be seen as a vertical transition. After the ionization, the energy is distributed over the various molecule's degrees of freedom in a statistical fashion.

The fast exchange of internal energy occurs not only between the various degrees of freedom of the same electronic state but also between all the degrees of freedom of all the electronic states. These exchanges lead to the conversion of electronic energy acquired during ionization into vibrational and rotational energy of the ground electronic state of the molecular ion. It can be shown experimentally that the statistical energy distribution is carried out within a time span corresponding to a few vibrations, that is less than 10^{-10} s. Note that this time span is very short with respect to the time spent in the spectrometer source, at least 10^{-7} s. Then, fragmentation can be studied independently of the excitation process. Thus the probabilities of the various possible decompositions of an ion depend only on its structure and internal energy, and not on the method used for the initial ionization , or on the structure of the precursor for, or formation mechanism of, the ion undergoing decomposition. S. Weerasinghe *et. al.* (*J. Chem. Phys.* **98** (1993) 4967) have shown that the dynamical evolution of a complicated many-body system is mainly guided by the accessible phase-space. Then, statistical mechanics provides the appropriate theoretical framework for conducting this kind of simulations.

Figure 3: Schematic diagram of the fragmentation process induced by the electron impact ionization

2 Basics of Microcanonical Metropolis Monte-Carlo

The statistical Microcanonical Metropolis Monte-Carlo (M_3C) method is a theoretical approach that allows to describe the unimolecular decompositions of ions and hence their mass spectra. A better comprehension of the fragmentation mechanisms is the main goal. This theoretical description is based on the following premises:

- 1. There is no change of position or kinetic energy of the nuclei while the ionization and excitation processes take place ("vertical transition").
- 2. The molecular ion will access to as many low-lying excited electronic states as necessary. Radiationless transitions then will result in transfer of electronic energy into vibrational, rotational or translational energy.
- 3. These low-lying excited electronic states will not be repulsive; hence, the molecular ions will not dissociate immediately, but rather remain together for a time long enough for the excess electronic energy to become randomly distributed over all internal degrees of freedom.
- 4. The deposited energy on the ion depends only on its structure and the experimental setup details. Thus, the probabilities of the different decomposition channels will not depend on the method used for the initial ionization.
- 5. The fragmentation channels are determined by the configuration of maximum entropy which is energetically accessible. It depends only on its structure and internal energy. Rearrangements of the ions would occur in the same fashion.

This description is focused on the fragmentation processes itself, irrespective of the excitation mechanism that leads to fragmentation. Furthermore the initial state of the system corresponds to an excited molecule where its excess of energy (E) is given by an unknown

energy deposited function f(E), which contains all the information about the associated experimental details. The main information provided for the methodology developed in this work are the breaking-curves. Then, the mass spectrum can be obtained by summing the breaking-down curves over the distribution of internal energy imparted to the molecular ions by the electronic ionization process.

Let's do a short introduction of the statistical theory underlying this implementation. This tutorial is focused on how to get the mass spectra of two different molecules.

In the theory of thermodynamics several ensembles can be considered. A particular ensemble is defined by a set of magnitudes. In the microcanonical ensemble the physical system under study (atoms, molecules, clusters, spins...) has a fixed energy E.

In this ensemble, an isolated system at equilibrium is characterized by its microcanonical entropy, given by the Boltzmann's formula $S = k_b \ln \Omega(E)$, where the number of accessible micro-states into a semiclassical description is proportional to the micro-canonical density of states (DOS),

$$\Omega(E) = \int d\Gamma \, \delta \left[\mathcal{H}(\Gamma) - E \right] \tag{2}$$

here $\mathscr{H}(\Gamma)$ represents the Hamiltonian of the system, and Γ its phase space, which consists of all the possible values of position and momentum variables. It is clear that the most important quantity in the microcanonical description is the DOS.

In our specific case, after some assumptions, Equation (2) can be factorized as follows:"

$$\Omega(E) \approx \frac{1}{\mathcal{N}} \sum_{i=1}^{N_c} \sum_{j=1}^{N_v} \sum_{k=1}^{\mathcal{N}} \Omega'(E, \mathbf{c}_i, \mathbf{E}_{v,ij}, \mathcal{R}_{ik}, \boldsymbol{\theta}_{ik}, \mathbf{J}_{ik})$$
(3)

This means that the total DOS can be seen as an average of the instantaneous DOS (iDOS) $\Omega'(E, \mathcal{X})$ which is a function of the system's state vector

$$\mathcal{X} = (\mathbf{c}, \mathbf{E}_v, \mathcal{R}, \boldsymbol{\theta}, \mathbf{J}) \tag{4}$$

Here **c** represents the composition of the system (number of molecules and their identity) and $\mathbf{E}_v, \mathcal{R}, \boldsymbol{\theta}, \mathbf{J}$ the vibrational energy, position (Cartesian coordinates of their centers of mass), orientation and angular momentum for the complete set of molecules or fragments.

The exact mathematical representation of $\Omega'(E, \mathcal{X})$ is not important here, since the most important point that we have to keep in mind is how to generate the minimum number of state-vectors, in order to obtain a good approximation for the DOS according to the Equation (3). Here it is where we take advantage of the stochastic sampling methods. In particular, we use the Markov Chain Monte Carlo sampling algorithm (see Figure (4)).

The microcanonical average of a quantity $f(\Gamma)$ is expressed as,

$$\left\langle f(\Gamma) \right\rangle = \frac{\int d\Gamma \ f(\Gamma)}{\int d\Gamma}$$
 (5)

However, several components of the phase-space Γ can be integrated out, which allows to express this average in the space of the system's state-vectors as follows

$$\left\langle f(\boldsymbol{\mathcal{X}}) \right\rangle = \sum_{k=1}^{N} P(\boldsymbol{\mathcal{X}}_k) f(\boldsymbol{\mathcal{X}}_k),$$
 (6)

Simulation progress 1 2 3 N $\Omega(E)$ $\Omega(E)$ $\Omega(E)$ $\Omega(E)$ $\Omega(E)$ $\Omega(E)$ $\Omega(E)$ $\Omega(E)$ $\Omega(E)$

Figure 4: Schematic representation of the N-state Markov Chain sampling used to explore the state-vector space \mathcal{X} .

where the probability density of finding the system in the configuration \mathcal{X}_k is:

$$P(\mathcal{X}_k) = \Omega(E, \mathcal{X}_k) / \Omega(E)$$
(7)

This probability function can be used as the weighting factor in a microcanonical Markov chain Monte Carlo simulation to calculate averages according to equation (6). In this method we move in small steps $\{\mathcal{X}_1, \mathcal{X}_2, \cdots, \mathcal{X}_k, \cdots, \mathcal{X}_N\}$ (Markov chain) towards the most important region of the phase space, *i.e.* highest values for the $\Omega(E, \mathcal{X}_k)$. In the kth-step we generate a candidate \mathcal{X}_{k+1} which will be accepted or rejected depending of the acceptance ratio $p_E(\mathcal{X}_k \to \mathcal{X}_{k+1})$, given by

$$p_E(\boldsymbol{\mathcal{X}}_k \to \boldsymbol{\mathcal{X}}_{k+1}) = \min\left(1, \frac{P(E, \boldsymbol{\mathcal{X}}_{k+1})}{P(E, \boldsymbol{\mathcal{X}}_k)}\right)$$
(8)

It is important to highlight, that this expression for the acceptance ratio is specially convenient, because it does not depend on the normalization constant $\Omega(E)$. Then, the acceptance ratio can be simplified to

$$p_E(\boldsymbol{\mathcal{X}}_k \to \boldsymbol{\mathcal{X}}_{k+1}) = \min\left(1, \frac{\Omega(E, \boldsymbol{\mathcal{X}}_{k+1})}{\Omega(E, \boldsymbol{\mathcal{X}}_k)}\right)$$
(9)

At the end of the simulation, after the equilibration of the system (burn-in period), if we generate N randomly state-vectors (accepted or rejected) according to equation (8), expected values can be approximated by a simple arithmetic average, as follows

$$\left\langle f(\boldsymbol{\mathcal{X}}) \right\rangle = \frac{1}{N} \sum_{k=1}^{N} f(\boldsymbol{\mathcal{X}}_k),$$
 (10)

where errors in $\langle f(\boldsymbol{\mathcal{X}}) \rangle$ scale as $1/\sqrt{N}$. Figure (4) represents a schematic representation of this algorithm, note the removing of the burn-in period.

In summary, the theoretical description behind this method/implementation is a specific random way to move in the state-vectors space until a region of maximum entropy is reached, where the physical observables are measured by performing a statistical average in this region. In the current version of M_3C the available observables includes: channels/species distributions, energy components distributions, temperature and heat capacity among others. Additionally, by providing a deposited energy function f(E) it is possible also to calculate channels' or species' branching ratios and the associated mass spectra.

3 Goals

Figure 5: Data from NIST Standard Reference Database 69: NIST Chemistry WebBook. NIST Mass Spec Data Center, S.E. Stein, director, "Mass Spectra" in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov, (retrieved January 3, 2015).

In this tutorial we will show you how to build a mass spectrum from scratch. The minimum information that M3C needs is the electronic energy, molecular geometry and vibrational frequencies for all possible molecules (local minima) which are involved in the fragmentation process. As more molecules you consider, better results you will obtain. So, taking into account that the most expensive computational part corresponds to obtain these parameters, we will dedicate an important part of this tutorial to show, how to use the scripts provided by the M3C program, to carry out this task.

We have chosen two related systems to illustrate how M3C works: fluoromethane (also called methyl fluoride) CH₃F and difluoromethane CH₂F₂. The experimental mass spectra for these two molecules are shown on the Figure (5). The most remarkable difference between them is that in the second one, the molecular ion peak does not corresponds to the base peak (the most abundant ion), in contrast with the first one. After reading this tutorial you will be able to clarify the origin of this effect.

4 Example 1: Fluoromethane (guided tour)

Our main hypothesis is that fragmentation process occurs in two steps:

$$CH_{3}F(E_{0}) + e^{-}(\varepsilon) \rightarrow CH_{3}F^{+}(E_{0} + E) + 2e^{-}$$

$$CH_{3}F^{+}(E_{0} + E) \rightarrow H_{2}C^{+} + HF$$

$$\rightarrow H_{2} + HCF^{+}$$

$$\rightarrow H + HC + HF^{+}$$

$$\rightarrow \cdots$$

$$(11)$$

The first one corresponds to the electronic ionization, which leads to the associated cation with an energy excess E. E is distributed according to a specific energy deposited function f(E) which we assume contains all information about the experimental conditions. The second one is the cation's fragmentation process itself. We suppose that the first step is much faster that the second one, therefore the measured fragmentation patterns when the fragments reach the detectors depend mainly on the fragmentation process. This means, simulating the mass spectrum for the CH_3F is equivalent to simulating the fragmentation process of its cation CH_3F^+ , convoluted by an energy deposited function f(E).

The first step in our simulation is to get all geometries for the possible fragments and their isomers. First we will make a stochastic search by using a molecular electronic structure code, these calculations will be done by using a semi empirical method, due its high computational time consuming. Then, the first guess of molecular structures will be refined at DFT-B3LYP/6-311+G* level of theory. The vibrational frequencies will be obtained at the end by using the same level of theory. Once all structures and vibrational frequencies are available for all possible fragments, they will be used to build the M3C input file.

At the end of this document you will find a step-by-step summary without descriptions. We recommend you follow these steps first and them return to this document to understand their meaning.

4.1 Stochastic search for isomers

How many fragments can we get by the fragmentation of the CH_3F^+ molecule? This is a combinatorial problem which is equivalent to get the different combinations of the three elements $\{H,C,F\}$ with repetitions (maximum one for C and F, and three for H). M_3C offers an automatic way to calculate it by using the command M3C.fragments, as follows:

```
user@hostname$ M3C.fragments H3,C,F
H, C, F, H2, HC, HF, CF, H3, H2C, H2F, HCF, H3C, H3F, H2CF, H3CF
```

Fifteen possible fragments are obtained. Here, we could discard some of them by chemical arguments of stability or based on the peaks which appear in the experimental mass spectrum. This could be very important for molecular systems which consist of a vast number of particles, because search for isomers it is the most expensive computational part of this methodology. However, we are going to continue considering all possible combinations for this system.

Now, it is neccesary to build trial geometries, one for each fragment. To do it you can use any of the free available molecular editors in the web, as **avogadro**¹, **molden** ², **pymol** ³, among others. Figure (6) shows the trial geometries we used. Note that these geometries do not necessarily correspond to stable molecules, these only are an initial guess. These geometries are stored in the directory **init**.

Figure 6: Trial geometries used to represent the possible fragments in the fragmentation of the CH₃F⁺ molecule.

The procedure can begin with any structure for the fragments. It is submitted to $GAMESS^4$ program optimization. The minimum energy structure obtained is then stored. The initial structure (without optimization) is then subject to an operation called a kick, each atom is moved a random distance in a random direction. The constraints are the maximum distance the atoms are going to be moved and the maximum radius allowed of the system $R_{\rm sys}$ (systemRadius), to generate a configuration where their atoms are non-overlapping. Each atom is kicked to a position within a sphere of radius R (randomWalkStepRadius) around its initial position, where R is the maximum kick distance. After all the atoms are randomly moved in this way, quantum mechanical optimization is carried out again. This algorithm is typically referred to as the random walker algorithm. Figure (7) shows an example of the trajectories obtained by a system of three particles after thousands steps.

Figure 7: Example of the trajectories followed by 3 particles with different masses by using the random walker algorithm described in the text.

For each step, there are two possible results: the structure can go back to some previous state or it can go to a different structure. Then at the end of the algorithm, a filter removes duplicate isomers. If this procedure is repeated enough times, eventually all isomeric structures for the molecule will be found.

¹http://avogadro.cc/wiki/Main_Page

²http://www.cmbi.ru.nl/molden/

³http://www.pymol.org/

⁴http://www.msg.ameslab.gov/gamess/

The controlling parameter in the operation of stochastic searching is the size of the kick. Small kicks will result in return to the kicked isomer. It is easy to start with a small kick and gradually increase it to see when isomerization starts to occur with some reasonable probability. This probability will become larger with further increase of the kick size. With very large kicks, molecules often break into separate pieces. These pieces do not usually come back together into the optimization process to form bonds and the optimization usually stops at some point. With experience, one can fairly readily find the range of kick size, which gives a reasonable probability of isomerization and yet does not cause fragmentation to occur too frequently.

M3C offers a way to execute the above explained algorithm in an automatic way by interfacing with GAMESS through the command M3C-gamess.geniso. M3C-gamess.geniso requires three files as parameters: 1) A GAMESS template to control the geometry optimizations, 2) A M3C input file to control each step of the geometries' random search, and 3) and a file containing the charges, multiplicities and initial geometries to use. We will describe briefly each one:

• GAMESS template. First we need a GAMESS template for the optimization processes like the following. For each step, variables @CHARGE, @MULT and @GEOMETRY will be substituted by the corresponding charge, multiplicity and by the geometry block respectively. In this example geometry optimization is carried out at the PM3 semiempirical level.

Input File 1: GAMESS template for geometry optimization at PM3 level (pm3.optg-GAMESS.inp)

• M3C input file. This input file will control the generation of the next non-overlapping geometry. The input file is divided in blocks, in the GOPTIONS block you can change the system radius and the maximum kick distance. The REACTOR block defines a geometric-translational operation (type=T). The reactor will read the geometry from products.xyz, it will modify it in a random way and it will save it by using the same file name. FRAGMENTS_DATABASE block defines the parts of the molecule that will be moved, in this case it will correspond to the atoms, however, as it will be shown later, it also can be molecules. M3C is case sensitive for input files, comments start with # and length units in angstroms.

Input File 2: M3C input file for random walker algorithm (reactorT.m3c)

```
BEGIN GOPTIONS

systemRadius = 2.0
overlappingRadius = 0.3

randomWalkStepRadius = 1.5
useRandomWalkers = TRUE

END GOPTIONS

BEGIN REACTOR
type = T

reactives = file:products.xyz
```

```
excitationEnergy = 10.0
14
15
    geomProductsFile = products.xyz
END REACTOR
16
17
18
    BEGIN FRAGMENTS_DATABASE
19
                                                  geomFile
20
21
              # Label
                          Z M L SYM
                                                                          Eelec
                                                       Angs
22
                          0
                             1
1
1
                                 0
                                                     C.xyz
                                                                     0.00000
                                       0
24
                    Н
                                 0
                                                     H.xyz
                                                                     0.000000
                                                     F.xyz
                          0
     END FRAGMENTS_DATABASE
```

• Configuration file. This file presents a simple table format. The first column is the file with the initial trial geometry, the second one is the charge (@CHARGE) and the last one the multiplicity (@MULT). Each row represents an electronic configuration for a chosen stoichiometry as given in the XYZ file. In this file, we have included only fragments with charge up to one and the lowest multiplicity state, in order to obtain better results. It could include states with higher multiplicity.

Input File 3: Configuration file (fragments.inp)

```
XYZfile
 2 3
                        charge
             F.xyz
                             0
                                         2
           C.xyz
CF.xyz
             H.xyz
                             0
                             0
           HC.xyz
                             0
         HCF.xyz
10
                             0
12
13
         H2F.xyz
H2C.xyz
                             0
14
15
        H2CF.xyz
                             0
         H3.xyz
H3F.xyz
H3C.xyz
                             0
\frac{16}{17}
                             0
                                         1
2
                             0
18
19
           C.xyz
CF.xyz
20
                             1
           H.xyz
HF.xyz
                             1
23
         HC.xyz
HCF.xyz
24
                             1
26
27
         H2.xyz
H2F.xyz
                             1
         H2C.xyz
        H2CF.xyz
H3.xyz
30
         H3F.xyz
32
          H3C.xyz
                                         2
        H3CF.xyz
```

Once the above files have been prepared, the command M3C-gamess.geniso can be executed as follows

```
user@hostname$ ls
CH3F+.m3c fragments.inp
                                  init
user@hostname$ M3C-gamess.geniso fragments.inp ../pm3.optg-GAMESS.inp ../reactorT.m3c 10 init results
                                           HF, HC, HCF, H2 ... OK
H3F, H3C, F, C ... OK
HCF, H2, H2F, H2C ... OK
... OK
Running: F, C, CF,
Running: H2F, H2C, H2CF,
Running: CF, H, HF,
Running: H2CF, H3, H3F,
                                   H,
H3,
HC,
H3C,
                                                                                 Time elapsed: Oh
                                                                                  Time elapsed: Oh 13m
                                                                                  Time elapsed: Oh
                                                                                                          7m 49s
                                                                                        elapsed: Oh 13m
                                                                                           Total: 0h 38m 51s
user@hostname$ ls
CH3F+.m3c fragments.inp
                                           results
                                   init
```

In this example, ten random configurations have been generated for each stoichiometry, and all successful optimizations have been stored into directory results. Geometry files are coded with the format <label>.q<charge>.m<mult>.xyz. Total elapsed time was around forty minutes.

All optimized geometries can be easily visualized by using the command M3C.viewXYZ as follows

where one should get a diagram like the one shown in Figure (8).

1	2	3	4	5	6	7	8
CF.q0.m2-1	CF.q1.m1-1	C.q0.m1-1	C.q1.m2-1	F.q0.m2-1	F.q1.m1-1	H2CF.q0.m2-1	H2CF.q1.m1-1
9	10	11	12	13	14	15	16
H2C.q0.m1-1	H2C.q1.m2-1	H2F.q0.m2-10	H2F.q0.m2-1	H2F.q0.m2-9	H2F.q1.m1-10	H2.q0.m1-10	H2.q1.m2-10
17	18	19	20	21	22	23	24
H3CF.q1.m2-1	H3CF.q1.m2-2	H3C.q0.m2-10	H3C.q0.m2-3	H3C.q0.m2-4	H3C.q0.m2-8	H3C.q1.m1-10	H3C.q1.m1-1
CO CO	(m)	33	_ ,	3	3	3	<i>→</i> 20
25	26	27	28	29	30	31	32
25 H3C.q1.m1-3 33 H3F.q1.m2-6	26 H3C.q1.m1-4 34 H3.q0.m2-1	27 H3C.q1.m1-9 35 H3.q0.m2-2	28 H3F.q0.m1-1 36 H3.q0.m2-3	29 H3F.q0.m1-2 37 H3.q0.m2-4	30 H3F.q1.m2-1 38 H3.q0.m2-7	31 H3F.q1.m2-2 39 H3.q1.m1-10	32 H3F.q1.m2-3 40 HCF.q0.m1-1

Figure 8: First set of molecules obtained by the random-walkers algorithm, as implemented in M3C-gamess.genisocommand.

As it is possible to appreciate in Figure (8), there are molecules separated into two or more pieces. Such structures were not rejected by the program automatically. So, we have to

remove these molecules by hand. The molecules that have been removed appear highlighted in red. After that, we obtain the set of molecules shown in Figure (9).

1	2	3	4	5	6	7	8
CF.q0.m2-1	CF.q1.m1-1	C.q0.m1-1	C.q1.m2-1	F.q0.m2-1	F.q1.m1-1	H2CF.q0.m2-1	H2CF.q1.m1-1
9	10	11	12	13	14	15	16
H2C.q0.m1-1	H2C.q1.m2-1	H2F.q1.m1-10	H2.q0.m1-10	H2.q1.m2-10	H3CF.q1.m2-1	H3C.q0.m2-10	H3C.q1.m1-1
17	18	19	20	21	22	23	24
H3.q0.m2-2	H3.q0.m2-4	H3.q0.m2-7	H3.q1.m1-10	HCF.q0.m1-1	HCF.q1.m2-1	HC.q0.m2-10	HC.q1.m1-10
25 HF.q0.m1-10	26 HF.q1.m2-10	27 H.q0.m2-1	28 H.q1.m0-1				

Figure 9: Filtered set of molecules obtained by the random-walkers algorithm with N = 10 trials, after removal of molecules separated into two or more pieces.

For each stoichiometry, we do not know how many isomers exist in advance. Then, one could increase the number of the steps in the random-walkers algorithm, in order to verify that the number of isomers not change. Specifically we use fifty steps with the following command,

Total elapsed time was around three hours and a half (*i.e.* it scales approximately linearly). The final set of molecules we obtained after filtering are show in Figure 10. By using 50 steps, it has emerged one more isomer for the H2CF.q0.m2 and H2CF.q1.m1, H3CF.q1.m2 and HCF.q1.m2 configurations. We will continue our exercise taking this last set of molecules.

4.2 Geometry refinement

The semiempirical results provide just a preliminary overview of the interactions in the molecules. For this reason, the set of filtered molecules or local minima must be refined using a higher level of theory, in our case we employ DFT-B3LYP. M3C offers a way to do it automatically by interfacing with GAMESS through the command M3C-gamess.optg. M3C-gamess.optg requires one file as parameter: A GAMESS template to control the geometry optimizations. We use the following file for a geometry optimization at the B3LYP/6-311+G* level of theory.

1 1 10 10 10	2 CF =1 =1 10	3	4	5	6	7	8
CF.q0.m2-10	CF.q1.m1-10	C.q0.m1-1	C.q1.m2-1	F.q0.m2-1	F.q1.m1-1	H2CF.q0.m2-1	H2CF.q0.m2-2
9	10	11	12	13	14	15	16
H2CF.q1.m1-1	H2CF.q1.m1-6	H2C.q0.m1-10	H2C.q1.m2-10	H2F.q1.m1-10	H2.q0.m1-10	H2.q1.m2-10	H3CF.q1.m2-1
17 H3CF.q1.m2-2	18 H3C.q0.m2-14	19 H3C.q1.m1-13	20 H3.q0.m2-1	21 H3.q0.m2-31	22 H3.q1.m1-10	23 HCF.q0.m1-10	24 HCF.q1.m2-10
	•			•			
25 HCF.q1.m2-11	26 HC.q0.m2-10	27 HC.q1.m1-10	28 HF.q0.m1-10	29 HF.q1.m2-10	30 H.q0.m2-1	31 H.q1.m0-1	

Figure 10: Filtered set of molecules obtained by the random-walkers algorithm with N = 50 trials, after removal of molecules separated into two or more pieces.

Input File 4: GAMESS template for geometry optimization at B3LYP level (b3lyp.optg-GAMESS.inp)

```
$\text{scontrl dfttyp=b3lyp runtyp=optimize} \\
\text{maxit=200 icharg=@CHARGE mult=@MULT } \text{send} \\
\text{sbasis gbasis=N311 ngauss=6 diffsp=.T. ndfunc=1 } \text{send} \\
\text{statpt projct=.f. nstep=200 } \text{send} \\
\text{system timlim=600000 memory=2500000 } \text{send} \\
\text{sdata} \\
\text{b3lyp} \\
\text{c1} \\
\text{@GEOMETRY} \\
\text{10} \\
\text{send} \\
```

Then, the M3C-gamess.optg command is executed as follows:

```
user@hostname$ M3C-gamess.optg ../../b3lyp.optg-GAMESS.inp
             CF.q0.m2-10, CF.q1.m1-10,

H2CF.q1.m1-1, H2CF.q1.m1-6,

H3CF.q1.m2-2, H3C.q0.m2-14,

HCF.q1.m2-11, HC.q0.m2-10,
                                                          ... , H2CF.q0.m2-1, H2CF.q0.m2-2 ... OK
                                                                                                                          Time elapsed: Oh
Running:
                                                         ..., H2.q1.m2-10, H3CF.q1.m2-1 ... OK
..., HCF.q0.m1-10, HCF.q1.m2-10 ... OK
..., H.q1.m0-1
                                                                                                                          Time elapsed: Oh
                                                                                                                                                     1m 37s
                                                                                                                          Time elapsed: Oh
Time elapsed: Oh
Running:
                                                                                                                                                     1m 38s
                                                                                                                                     Total: Oh 11m
user@hostname$ ls
CF.q0.m2-10.xyz C.q1.m2-1.xyz
CF.q0.m2-10.xyz0 F.q0.m2-1.xyz
                          C.q1.m2-1.xyz0
                                                                  HCF.q1.m2-11.xyz0 HF.q1.m2-10.xyz
                                                                                               HF.q1.m2-10.xyz0
                                                                  HC.q0.m2-10.xyz
                          H2CF.q0.m2-1.xyz
H2CF.q0.m2-1.xyz0
                                                                  HF.q0.m1-10.xyz
HCF.q1.m2-11.xyz
                                                                                               H.q1.m0-1.xyz0
HF.q0.m1-10.xyz0
C.q0.m1-1.xyz0
```

Total elapsed time is around ten minutes. The original geometry files are renamed with the extension .xyz0, and the refined geometries are saved with the extension .xyz, by substitution of the original ones. Again, there are some molecules that are separated in several fragments during B3LYP optimization. Consequently, these fragments have to be filtered again. Figure (11) shows the final obtained geometries.

In this case the molecule $\mbox{H2CF.q0.m2-2}$ and the two \mbox{H}_3 isomers $\mbox{H3.q0.m2-1}$ and $\mbox{H3.q0.m2-31}$ have disappeared because they have been fragmented in several pieces during the optimization process. The rest of the molecules have been kept qualitatively invariant.

4.3 Calculation of Vibrational Frequencies

M3C offers a way to do it automatically by interfacing with GAMESS through the command M3C-gamess.freqs. M3C-gamess.optg not requires one file as parameter: A GAMESS

Figure 11: Refined geometries at B3LYP/6-311+G* level of theory. See Figure (10)

template to control the vibrational frequency calculation. We use the following file. Note that the frequencies are computed at the same level of theory as the one for the geometry optimization.

Input File 5: GAMESS template for frequency calculations at B3LYP level (b3lyp.freqs-GAMESS.inp)

```
$ $contrl dfttyp=B3LYP runtyp=hessian
maxit=100 icharg=@CHARGE mult=@MULT $end
$ $basis gbasis=N311 ngauss=6 diffsp=.T. ndfunc=1 $end
$ $system timlim=600000 memory=2500000 $end
$ $data
B3LYP
c1
@GEDMETRY
$ $end
```

Then, the M3C-gamess.freqs command is executed as follows:

```
user@hostname$ M3C-gamess.freqs ../../b3lyp.freqs-GAMESS.inp
    Running:
                  CF.q0.m2-10,
                                   CF.q1.m1-10,
                                                            H2CF.q0.m2-1, H2CF.q1.m1-1
                                                                                                                              3m 24s
                                                                                                        Time elapsed:
                H2CF.q1.m1-6, H2C.q0.m1-10,
H3C.q0.m2-14, H3C.q1.m1-13,
                                                           H3CF.q1.m2-1,
HC.q0.m2-10,
                                                                                                                                   3s
                                                                            H3CF.q1.m2-2
                                                                                             ... OK
                                                                                                        Time elapsed:
                                                                                                                         0h
                                                                              HC.q1.m1-10
                                                                                             ... OK
                                                                                                                         0 h
                                                                                                                              3m 16s
    Running:
                                                                                                        Time elapsed:
                                                    . . .
    Running:
                 HC.q1.m1-10,
                                  HF.q0.m1-10,
                                                                                                        Time elapsed:
Total:
                                                                                                                         0 h
    user@hostname$ ls
    CF.q0.m2-10.rxyz
CF.q0.m2-10.xyz
                          C.q1.m2-1.rxyz
                                                          {\tt HC.q1.m1-10.rxyz}
                                                                                H.q0.m2-1.rxyz
11
                          C.q1.m2-1.xyz
                                                          HC.q1.m1-10.xyz
                                                                                H.q0.m2-1.xyz
                                                                                  HF.q1.m2-10.xyz
HF.q1.m2-10.xyz0
                          F.q1.m1-1.xyz
F.q1.m1-1.xyz0
    C.q0.m1-1.xyz
                                                          HC.q0.m2-10.xyz
                                                          HC.q0.m2-10.xyz0
    C.q0.m1-1.xyz0
```

Total elapsed time is around fifteen minutes. Execution of the command generate the geometry files with the extension .rxyz. These files basically follow the same format than .xyz files, except that in the second line the value of the energy is given in atomic units (it is not only a simple comment!) and the calculated vibrational frequencies are added at the end of the file. The following is an example of the obtained .rxyz file for the molecule ${\tt H3CF.q1.m2-1}$

```
user@hostname$ cat H3CF.q1.m2-1.rxyz
3
4
5
6
7
8
9
10
11
12
    Energy = -139.2622305495
C -0.9974192169 0.0295075834
                                                   -0.9233579316
          -1.8353908681
                               -0.3882844951
                                                  -1.1760712533
-0.4806615335
           -0.4374983257
                               0.9277189337
                                -0.8796467265
                                                   0.1345235654
                               -0.0379892954
          -1.4868576935
     FREQUENCIES
    3202.42
2556.83
     2210.40
     1461.60
     1285.89
     1093.38
     1060.52
     967.56
     725.60
```

The number of vibrational frequencies are automatically fixed with the right number of internal degrees of freedom (3N-6 or 3N-5 for lineal molecules)

4.4 M3C execution

M3C can be executed by two different ways: 1) single-point energy calculation and 2) energy-scan calculation. We will describe both cases. However we will dedicate a first part to describe the input file and how to build it.

4.4.1 Input file description

The M3C input file consists of several text blocks:

• GOPTIONS

This block provides global control information for the calculation.

- systemRadius. Maximum system radius in angstroms $R_{\rm sys}$.
- overlappingRadius. Around each fragment, we consider a semi-hard sphere of a given radius r (sum of covalent radii of their atoms). Hence, around each fragment there is a volume which is forbidden for all other fragments. This parameter controls the maximum overlapping of the fragments. Typical values range from 0.1 to 0.4 angstroms.
- useRandomWalkers. TRUE activates the use of random-walkers algorithm for sampling the configurational space. FALSE (default value) activates the completely random sampling search.
- randomWalkStepRadius. If useRandomWalkers=TRUE, this parameter modifies the maximum kick distance used in the random-walkers algorithm (given in angstroms).

• ENERGY_RANGE

- grid. Grid representing the excitation energies to be used. The format consists of three values: <min energy>:<max energy>:<number of points>. Energy values should be given in eV.

• MARKOV CHAIN

- task. Allows to customize the Markov chain itself, by defining its irreducible part. It means that this irreducible part will be used cyclically up reach the chosen number of events (see numberOfEvents parameter). The format consists of several operations (reactors) separated by commas. Available operations are:
 - * T: Translational reactor. Changes the fragments' coordinates.
 - * V: Vibrational reactor. Changes the vibrational energies.
 - * R: Rotational reactor. Changes the rotational energies, by sampling new angular momentum values.
 - * S:n:m: Changes the chemical composition of the fragments. Parameters n and m represent the minimum and maximum values in the change of the number of fragments. For example, S:-1:1 will change the number of fragments in -1, 0 or 1.
- burnInFraction. Represents the burn-in period given in percentage of the chosen number of events (see numberOfEvents parameter)
- reactives. Label of the initial state. See FRAGMENTS_DATABASE block.
- excitationEnergy. Excitation energy given in eV. It will be taken into account
 when a single point calculation is carried out. Otherwise, it will be substituted
 internally by the appropriate value in the energy range which have been defined
 in the block ENERGY_RANGE.
- tracking. Track the calculation step-by-step through energy (energy), DOS values (weight) or neither of them (none). It is relevant only when a single-point calculation is carried out. See *output file* section for details.
- numberOfExperiments. Controls the number of replicas or experiments to perform. Each replica will consist of a different set of vibrational energies, angular momenta and electronic states which are chosen in a randomly way. At the end of the calculation, all observables will be reported with their errors which are estimated from the replicas' standard deviation.
- historyFileFrequency. Stores the calculated observables each historyFileFrequency steps.
- energyHistoryFile. File name where the track record of energy components will be saved.
- weightHistoryFile. File name where the track record of statistical weights (logarithm of the DOS) will be saved.
- histogramFile. File name where the histograms of several calculated observables will be saved.
- FRAGMENTS_DATABASE This block consists in a table that contains as many rows as number of molecules or fragments are going to be considered in the process. Each row in the table contains the following information:
 - Label. Represents a unique identifier for the molecule. The format is <group label>(<specifier label>). The program will sort the molecules in several

groups where each of those groups is identified by a group label. Additionally inside each group, each molecule is identified by a specifier label. This is specially advantageous to study observables which are to be discriminated by groups of molecules. For example: In a mass spectrum, a particular line represents the molecule A. However, this line is not a single signal but a superposition of signals produced by isomers or excited states of the same molecule A. In this sense, it is advantageous to label these isomers or excited states as A(s1), A(s2), A(tc), and so on, where the specifier label is arbitrary but useful for the user.

- Charge(Z) Assigns the charge of the molecule.
- Multiplicity (M) Assigns the multiplicity of the electronic state of the molecule.
- Rotational symmetry number Assigns the rotational symmetry number of the molecule. This is not relevant for this tutorial.
- Geometry file in RXYZ format, where coordinates are given in angstroms and frequencies in cm^{-1}
- Electronic energy given in eV
- Maximum vibrational energy allowed. This value is determined by the energy of the lowest transition state available, whereby the molecule can be breaking up, specifically by its energy barrier. This value may be written directly in the table (given in eV).

One simple way to estimate this value is to suppose that the reverse activation barrier is very small, then the maximum vibrational energy is equivalent to the difference between the electronic energy of the molecule and the electronic energy of the fragmentation products. In this case, you can write directly in the table, the chosen fragmentation channel. For example: A(s1)+B(st).

Generating this table may be too boring. So, you can use the command M3C.makeDB, to get a first version. The command reads the XYZ files available into the current directory, it will extract the relevant information and finally, it will print all this information in the right format.

The following is the M3C input file that we used to describe the fragmentation of CH₃F⁺ molecule. It is important to point out that one row into the FRAGMENTS_DATABASE has been commented (H2Fp(s)). This is because, in particular this molecule shows two imaginary frequencies, indicating that the structure is a second order transition state and therefore it can not be included in our description.

Input File 6: M3C input file to describe the fragmentation of CH₃F⁺ molecule (CH3F+.m3c)

```
BEGIN GOPTIONS
systemRadius = 8.0
overlappingRadius = 0.4

useRandomWalkers = FALSE
randomWalkStepRadius = 1.0
END GOPTIONS

BEGIN ENERGY_RANGE
grid = 0.0:30.0:91
END ENERGY_RANGE
END ENERGY_RANGE
BEGIN MARKOV_CHAIN
```

```
task = V,T,S:0,V,T,S:1:-1
15
             burnInFraction = 0.1
16
             reactives = H3CFp(dt)
excitationEnergy = 10.0
17
18
19
20
             tracking = energy
             numberOfExperiments = 3
numberOfEvents = 20000
23
            historyFileFrequency = 100
        energyHistoryFile = energy.dat
weightHistoryFile = weight.dat
histogramFile = histogram.dat
END MARKOV_CHAIN
25
26
29
        BEGIN FRAGMENTS_DATABASE
31
32
                          Label Z M L SYM
                                                                                                        geomFile
33
                                                                                H.q0.m2-1.rxyz
C.q0.m1-1.rxyz
F.q0.m2-1.rxyz
H2.q0.m1-10.rxyz
HC.q0.m2-10.rxyz
HF.q0.m1-10.rxyz
34
35
                                                                                                                                          -13.572100
-1027.790000
-2713.690000
                           C(s)
                         F(d)
H2(s)
                                             0
                                                                                                                                          -31.833900
-1046.730000
-2732.950000
                                                                                                                                                                                            H(d)+H(d)
                                                                                                                                                                                            H(d)+C(s)
H(d)+F(d)
                          HC(d)
                                             0
                                                   2
39
                          HF(s)
                                                                                   CF.q0.m1-10.rxyz

H2C.q0.m1-10.rxyz

HCF.q0.m1-10.rxyz

HCF.q0.m1-10.rxyz

H3C.q0.m2-14.rxyz

H2CF.q0.m2-11.rxyz
                                                                                                                                          -3748.880000
-1064.370000
-3765.840000
-1083.470000
                       CF(d)
H2C(s)
                                                  2
                                             0
                                                                                                                                                                                            C(s)+F(d)
                                                                                                                                                                                        H(d)+HC(d)
H(d)+CF(d)
H2(s)+HC(d)
41
                       HCF(s)
H3C(d)
                                             0
43
                     H2CF(d)
                                             0
                                                   2
                                                                                                                                           -3783.830000
                                                                                                                                                                                        H2(s)+CF(d)
45
46
47
                                                                                          H.q1.m0-1.rxyz
C.q1.m2-1.rxyz
                                                                                                                                           0.000000
-1018.080000
                         Hp
Cp(d)
                                             1
1
                                                   0
48
49
                        Fp(s)
H2p(d)
                                                                                      F.q1.m1-1.rxyz
H2.q1.m2-10.rxyz
                                                                                                                                          -2692.420000
-16.298600
                                                                                                                                                                                         Hp+H(d)
H(d)+Cp(d)
Hp+F(d)
Cp(d)+F(d)
Hp+H2(s)
                                                                                                                                          -16.298600
-1035.860000
-2716.870000
-3739.460000
-35.977900
                                                                                     HC.q1.m1-10.rxyz
HF.q1.m2-10.rxyz
CF.q1.m1-10.rxyz
50
                       HCp(s)
HFp(d)
                                             1
                                                   1
2
1
1
                                                          0
                                                                    1
                        CFp(s)
53
                        H3p(s)
                                                                                      H3.q1.m1-10.rxyz
                H3p(s)
H2Cp(d)
H2Fp(s)
HCFp(dC)
HCFp(dF)
H3Cp(s)
H2CFp(st)
H2CFp(st)
H3CFp(dt)
H3CFp(dt)
                                                                                                                                                                                       H2(s)+Cp(d)
0.000
                                                                                    H2C.q1.m2-10.rxyz
H2F.q1.m1-10.rxyz
54
55
                                                                                                                                           -1054.540000
-2737.320000
                                                   2
                                                                     1
                                                                                                                                                                                       H(d)+CFp(s)
H(d)+CFp(s)
                                                                                                                                           -3755.850000
-3753.040000
56
57
                                                   2
                                                          0
                                                                                    HCF.q1.m2-10.rxyz
HCF.q1.m2-11.rxyz
                                                                                    H3C.q1.m1-13.rxyz
H2CF.q1.m1-1.rxyz
H2CF.q1.m1-6.rxyz
                                                                                                                                           -1073.720000
-3774.770000
-3770.520000
                                                                                                                                                                                   H(d)+H2Cp(d)
H2(s)+CFp(s)
H(d)+HCFp(dC)
58
                                                   1
1
1
59
60
                                                                                    H3CF.q1.m2-1.rxyz
H3CF.q1.m2-2.rxyz
                                                                                                                                           -3789.520000
-3789.280000
62
                                                                                                                                                                                 H(d)+H2CFp(st)
        END FRAGMENTS_DATABASE
```

4.4.2 Single-point-energy calculation

First we are going to do a single-point-energy calculation. The excitation energy is that provided in the input file (see variable excitationEnergy, 10 eV). M3C is executed with the following command:

```
user@hostname$ M3C -i CH3F+.m3c > CH3F+.out
user@hostname$ cat CH3F+.out
          | BEGIN MOLECULE DATABASE INITIALIZATION |
5
6
7
8
9
         10
11
                                                                         3.53353 ] amu*angs**2
                                                         1.76695
                                   1.30619
-1083.4700000
                                                     A
eV
                        Eelec =
                                   15.0349997
                    Mass = (fr, fv) = (
13
14
                                                     amu
                                      3
                      maxEvib =
                                       4.9061000
                                                     еV
16
17
18
19
          | END MOLECULE DATABASE INITIALIZATION |
20
          | MARKOV CHAIN |
```

```
reactives = H3CFp(dt)
excitationEnergy = 5
numberOfEvents =
26
27
                                                                   5.00000 eV
28
29
                                                                      20000
                        numberOfExperiments =
                                             task = V,T,S:0,V,T,S:1:-1
30
                geometryHistoryFilePrefix = geom
freqBlockingCheck = track = energy
34
      # ENERGY HISTORY
36
37
38
                                                                       vib
                          trans
                                                elec
                                                                                            rot
                                                                                                                  tot
                                                                                                                             formula
                        eV
                                                eV
                                                                                                                  еV
40
                                      -3787.41000
-3787.41000
-3787.49000
                       0.48928
                                                                 1.82981
                                                                                       0.57091
                                                                                                       -3784.52000
                                                                                                                             H3Cp(s)+F(d)
                                                                                                                             H3Cp(s)+F(d)
H2Cp(d)+HF(s)
H(d)+H2CFp(st)
       pT
pT
                       1.19822
1.13463
                                                                                                      -3784.52000
-3784.52000
42
                                                                 1.68792
                                                                                       0.00387
       a۷
44
                       0.20951
                                       -3788.34210
                                                                  2.26303
                                                                                       1.34957
                                                                                                       -3784.52000
46
47
48
      # Channels histogram #-----
49
50
                                     1
                       item
                                                                                        aver
                                                                                                      desv
51
52
53
54
                    H2Cp+HF
                                     0.043
                                                   0.022
                                                                 0.030
                                                                                       0.032
                                                                                                     0.009
                    H3Cp+F
H+H2CFp
                                    0.957
                                                   0.978
                                                                  0.965
                                                                                       0.967
                                                                                                     0.009
                                                   0.000
                                                                  0.005
                                                                                       0.002
                                                                                                     0.002
55
56
                                                    1
                                                                  2
                                  item
                                                                                3
                                                                                                  aver
                                                                                                                desv
                    H(d)+H2CFp(st)
                                               0.000
                                                             0.000
                                                                                                 0.002
                                                                                                               0.002
                                                                           0.005
59
60
                    H3Cp(s)+F(d)
H2Cp(d)+HF(s)
                                               0.957
0.043
                                                             0.978
                                                                           0.965
                                                                                                0.967
                                                                                                               0.009
61
62
63
64
      # Species histogram
                    item
----
F
                                                                                    aver
----
0.483
65
66
                                                 ___2
                                                                                                   desv
                                                                                                  0.004
                                                              0.482
0.015
67
68
                                  0.479
0.021
                                                0.489
                    H2CFp
                                  0.000
0.000
0.021
                                                0.000
0.000
0.011
                                                                                                  0.001
0.001
0.004
69
                                                              0.003
                                                                                    0.001
                    н
Н2Ср
70
                                                                                    0.001
                                                               0.015
                                                                                    0.016
71
72
73
74
75
76
77
78
79
                                  0.479
                                                0.489
                                                               0.482
                                                                                    0.483
                                                                                                  0.004
                    нзср
                           item
                                        1
                                                      2
                                                                                           aver
                                                                                                         desv
                    H(d)
                                        0.000
                                                      0.000
                                                                    0.003
                                                                                         0.001
                                                                                                        0.001
                                        0.000
0.479
0.479
                                                      0.000
0.489
0.489
                                                                    0.003
0.482
0.482
                                                                                         0.001
0.483
0.483
                    H2CFp(st)
                                                                                                        0.004
                    H3Cp(s)
F(d)
HF(s)
                                        0.021
                                                      0.011
                                                                    0.015
                                                                                         0.016
                                                                                                        0.004
                    H2Cp(d)
                                        0.021
                                                      0.011
                                                                                          0.016
83
        Temperature (eV)
85
86
87
                                         2
                           ____1
                                                            3
                                                                                            desv
                                                                              aver
88
89
                           0.179
                                         0.175
                                                       0.177
                                                                             0.007
                                                                                           0.000
90
91
92
93
      # Markov chain statistics
      # Reactor type (ACCEPTED)
94
95
                          S:1:-1
                                              0.00078
                                             0.81750
0.17265
96
98
                              S:0
                                             0.00907
99
      # Reactor type (REJECTED)
100
                         S:1:-1
V
101
                                             0.28086
                                             0.44400
0.27514
105
      # Reactor status
a.ACCEPTED
e.REJECTED(E<0)
106
                                             0.03695
                                              0.22360
                                             0.37082
108
           p.ACCEPTED (p<PI)
            r.REJECTED
```

In the above frame, the main parts of the output file are also shown. First the program shows details about each molecule that have been loaded from the FRAGMENTS_DATABASE

block (Lines 5-22). The same is done for block MARKOV_CHAIN (Lines 24-35). Then, details of the simulation steps are shown (Lines 37-47). Here, because the variable tracking was chosen as energy, this block shows the energy components of the system for each step of the simulation, actually, each 100 steps (see historyFile frequency variable). Otherwise, if tracking = weight, the statistical-weights will be reported. After line 48, several calculated observables are shown. Among them, the probability for each fragmentation channel, by grouping them according with their group label (lines 52-57) and without it (lines 59-64). The probability for each specie is also shown in the same fashion (lines 69-77 and lines 79-87).

The results described above can be easily analyzed by using the M3C.analysis command. For example: We may generate a plot by typing the following command, to analyze the energy components through the simulation. See Figure (12).

Figure 12: Energy components through the Markov chain, for the three numerical experiments. Each experiment is represented by different color.

It may also be possible to display histograms which correlate the energy components, by using the following commands See Figure (13).

```
user@hostname$ M3C.analysis CH3F+.m3c ecorr Et.vs.Ev user@hostname$ M3C.analysis CH3F+.m3c ecorr Er.vs.Ev user@hostname$ M3C.analysis CH3F+.m3c ecorr Er.vs.Et
```

It may also be possible to display histograms with the probabilities of the channels or fragments, by using the following commands. See Figure (14))

```
user@hostname$ M3C.analysis CH3F+.m3c species user@hostname$ M3C.analysis CH3F+.m3c channels
```


Figure 13: Histogram that represents the correlation between some energy component pairs.

Figure 14: Species/channels probabilities

4.4.3 Scan-energy calculation

To carry out a scan-energy calculation, M3C provides the command M3Cp. M3C.p will perform as many calculations as energy values have been defined in ENERGY_RANGE block. M3C.p is executed as follows

```
user@hostname$ M3C.p -i CH3F+.m3c -n 8
                 0.00000,
                                                    2.00000,
                                                                 2.33333
\frac{4}{5} \frac{6}{7}
   Running:
                 2.66667,
                              3.00000,
                                                    4.66667,
                                                                 5.00000
                                                                          ... OK
                                                                                       Time elapsed: Oh
                                                                                                            0m 56s
                26.66667,
                             27.00000,
                                                   28.66667,
                                                                          ... OK
   Running:
                                                               29.00000
                                                                                       Time elapsed: Oh
                                                                                                            2 m
                29.33333,
                             29.66667,
```

Total elapsed time is around of fifteen minutes. Execution of the command generates the directory CH3F+.data, which contains a lot of irrelevant information, because it will be handled by the M3C.analysis program. For example, the following commands produce Figure (15), which represents the probabilities for all channels and species/fragments in the fragmentation process as a function of the internal energy. The identity for each channel or fragment have been omitted for clarity.

```
user@hostname$ M3C.analysis CH3F+.m3c C.vs.E
user@hostname$ M3C.analysis CH3F+.m3c S.vs.E
```

4.4.4 Mass spectrum calculation

Having reached this point, it is important to point out, that in order to build the mass spectrum of this molecule, the only result we need from the above theoretical description

Figure 15: Species/channels probabilities as a function of the excitation energy.

is the breaking curve including all generated positive ions. This curve may be obtained by typing the next command, which selects only singly charged fragments. See upper panel in Figure (16).

user@hostname\$ M3C.analysis CH3F+.m3c S.vs.E "p"

The next step is getting a deposited energy function from somewhere.

From a theoretical point of view, there are some ways to obtain this function, for example by carrying out stopping power calculations (See for example J. Postma, et. al.. ApJ 708 (2010) 435), however this kind of methodologies are too computationally expensive and normally infeasible for most molecules. There are some approximations where valence electrons in molecule are seen as an electron gas, thus the transferred energy by the electronic projectile can be expressed as a function of an effective friction coefficient which it depends of the electronic density of the molecule [See for example Schlathölter et. al. Phys. Rev. Lett. 82 (1999) 73]. This is a matter we will not treat here. However, if you have a deposited energy function, you may use it to get the mass spectrum based on the M3C breaking curves. This is already implemented.

From the experimental point of view, a variety of methodologies have been employed to estimate this function, for example, processing results of coincident two-electron energy analysis, from photo electron spectra or from breakdown graphs [See for example G. G. Meisels et. al. J. Chem. Phys. 56 (1972) 793]. When breakdown graphs are used, the incident electron is varied to effect changes in excitation energy, and the relative abundance of fragment ions at each energy which is measured. Breakdown graphs so obtained are multiplied by a series of assumed energy deposition functions. The function which gives the best fit to the mass spectrum observed with 70 eV electrons is then assumed correct one. This approach does not give unique results since different shapes will give almost indistinguishable results.

In this tutorial we will use a similar strategy like that used in experiments which is based on the breaking curves. Our advantage is that we do not need several trials by varying the electron projectile, because we already have the breaking curves. The strategy we are going to use is take the percentage for each ion from the experimental mass spectrum and use them to estimate the best deposited energy function that fits with. Its shape is the only criteria we may use to decide if the obtained function is right or not. We hope obtaining a broad distribution which it has only one maximum and covering a range of energies between 0 up to 20 eV. Mathematical details about fitting process will not be given here.

The input file for the fitting process is as follows, which should be added at the end of the main input file.

Input File 7: Input file blocks to configure the fitting method

```
BEGIN EXPERIMENTAL_BRANCHING_RATIOS
                  error = absolute
diagram = S.vs.E
 3
                     Fragment
                                   Intensity
                                                      error
                              Ср
                                              0.5
                             НСр
                                                         0.0
                                                                  13.0
14.0
11
                            H3Cr
                                                         0.0
                                                                  15.0
12
13
                                                         0.0
                                                                  32.0
14
15
                                                         0.0
                                           100.0
17
18
19
                             HFr
                                              0.0
                                                         0.0
                                                                  20.0
                                              0.0
                                                         0.0
20
21
      END EXPERIMENTAL_BRANCHING_RATIOS
22
      BEGIN FIT_BRANCHING_RATIOS
     method = NNLS
basis = 60,60
eDistfile = edist.out
BRfile = fitBR.out
END FIT_BRANCHING_RATIOS
24
25
```

Basically, it contains the peaks' size from experimental mass spectrum. Figure (5). Finally, mass spectrum for the CH₃F molecule and its deposited energy function can be visualized by typing the following commands. See Figure (16).

```
user@hostname$ M3C.analysis CH3F+.m3c fit_sfE user@hostname$ M3C.analysis CH3F+.m3c fit_sBR
```

The deposited energy function for the CH_3F molecule shows a sharp peak around 2 eV and it drops off markedly in intensity at higher internal energies (see Figure 16). The breakdown graph for this molecule shows the molecular ion (CH_3F^+) as the dominant one up to 2 eV of internal energy and with the H_2CF^+ fragment ion dominating from 2 eV to 3 eV. This is the reason why these two ions are the highest peaks of the spectrum. The next peak in intensity which corresponds to the ion H_3C^+ , due to its breakdown curve which presents a broad band extending from 3 eV up to 10 eV that compensates the low contribution from the deposited energy distribution in this region. The rest of the ions do not contribute in a significant way.

As it is possible to appreciate, we found a relatively good agreement with the experiment. However the associated peak to H_2CF^+ is underestimated. It is a consequence that its probability distribution (Figure 16, upper panel, magenta line) is not enough wide, because the H_3C^+ molecule gets more stable above 4 eV. It may be due to the low level of theory we use in the electronic structure calculations or to the reduced number of excited states we use

to represent the different fragments. These are the two possible ways that one may follow to improve these results.

Figure 16: Upper panel, probabilities of singly-charged fragments (breakdown curves). Middle panel, fitted deposited energy function. Lower panel, theoretical mass spectrum for fluoromethane CH₃F.

5 Example 2. Difluoromethane

As in the previous example, our main hypothesis is that fragmentation process occurs in two steps:

$$CH_{2}F_{2}(E_{0}) + e^{-}(\varepsilon) \rightarrow CH_{2}F_{2}^{+}(E_{0} + E) + 2e^{-}$$

$$CH_{2}F_{2}^{+}(E_{0} + E) \rightarrow H_{2}C^{+} + F_{2}$$

$$\rightarrow H_{2}CF^{+} + F$$

$$\rightarrow C + HF + HF^{+}$$

$$\rightarrow \cdots$$
(12)

This means, simulating the mass spectrum for the CH_2F_2 is equivalent to simulating the fragmentation process of its cation $CH_2F_2^+$, convoluted by an energy deposited function f(E).

First, how many fragments can we get by the fragmentation of the CH₂F₂⁺ molecule?

```
1 User@hostname$ M3C.fragments H2,C,F2
2 H, C, F, H2, HC, HF, CF, F2, H2C, H2F, HCF, HF2, CF2, H2CF, H2F2, HCF2, H2CF2
```

As it is possible to appreciate, there are 17 possible fragments. However, the good news is that we already calculated eleven of these in the previous example. Then we have to search for isomers only for F₂, HF₂, CF₂, H₂F₂, HCF₂ and H₂CF₂. Then, here we go

```
user@hostname$ ls
CH3F+.m3c fragme
                  fragments.inp init
     user@hostname$ M3C-gamess.geniso fragments.inp ../pm3.optg-GAMESS.inp ../reactorT.m3c 10 init results
                                                      HF2, CF2, F2, H2CF2 ... OK
                                                                                                   Time elapsed: Oh 10m 48s
     Running:
                         HCF2,
     Running:
                  H2F2,
                                     HF2
                                                                                                   Time elapsed: Oh 5m 3s
Total: Oh 15m 51s
     user@hostname$ M3C-gamess.geniso fragments.inp ../pm3.optg-GAMESS.inp ../reactorT.m3c 50 init results
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
                                                                        F2, H2CF2 ... OK ... OK
                  CF2, F2,
H2F2, HCF2,
                             F2, H2F2, HCF2, HF2, CF2,
                                                                                                   Time elapsed: Oh 49m 46s
                                                                                                   Time elapsed: Oh 21m 22s
Total: 1h 11m 8s
     Running:
                                     HF2
      ser@hostname$ ls
     CH2F2+.m3c fragments.inp init results
     user@hostname$ cd results
     <REMOVE MOLECULES WHICH ARE SEPARATED IN TWO OR MORE PIECES>
     user@hostname$ M3C-gamess.optg ../../b3lyp.optg-GAMESS.inp
     Running: CF2.q0.m1-10, CF2.q1.m2-1, ..., H2F2.q1.m2-1, HCF2.q0.m2-1 ... OK Running: HCF2.q1.m1-12, HCF2.q1.m1-1, ... OK
                                                                                                         Time elapsed: Oh 8m 38s
                                                                                                         Time elapsed: Oh 2m 19s
Total: Oh 10m 57s
     <REMOVE MOLECULES WHICH ARE SEPARATED IN TWO OR MORE PIECES>
    user@hostname$ M3C-gamess.freqs ../../b3lyp.freqs-GAMESS.inp
Running: CF2.q0.m1-10, CF2.q1.m2-1, ..., HCF2.q1.m1-1, HF2.q1.m1-1 ... OK Time elapsed: Oh 11m 31s
Total: Oh 11m 31s
30
31
32
33
    HCF2.q1.m1-1.xyz ... OK
HF2.q1.m1-1.xyz ... OK
     user@hostname$ gwenview
```

The obtained molecules for each step in above commands execution are shown in Figure (17).

Then finally by using the M3C input file which is shown later, we can obtain the breaking curves, the deposited energy function and the experimental mass spectrum which are shown in Figure (18), after typing the following commands:

```
user@hostname$ M3C.p -i CH2F2+.m3c -n 8
                              0.33333,
                                                   2.00000
    Running:
                  0.00000,
                                                                2.33333
                                                                                      Time elapsed: Oh
                                                                5.00000
                                                   4.66667,
                                                                                      Time elapsed: Oh
    Running:
    Running:
                 26.66667,
                             27.00000,
                                                  28.66667,
                                                              29.00000 ... OK
                                                                                      Time elapsed: Oh
                                                                                           elapsed: Oh 1m 22s
Total: Oh 15m 49s
                 29.33333,
                             29.66667
                                                                             OK
    user@hostname$ M3C.analysis CH2F2+.m3c S.vs.E "puser@hostname$ M3C.analysis CH2F2+.m3c fit_sfE
10
    user@hostname$ M3C.analysis
                                                      Trial geometries
                                                       2
                                              3
                                                             4
            Н
                          C
                                         F
                                                       F2
                                                                                     CF2
                                                                                                   H2F2
                                                                                                                  HCF2
          H2CF2
                                      Searching isomers at PM3 level, N = 10
       CF2.q0.m1-1
                      CF2.q1.m2-1
                                     F2.q0.m1-10
                                                    F2.q1.m2-1
                                                                                 H2F2.q1.m2-1
                                                                  H2CF2.q1.m2-1
       HF2.q1.m1-1
                                      Searching isomers at PM3 level, N = 50
                      CF2.q1.m2-1
                                     F2.q0.m1-10
                                                    F2.q1.m2-1
                                                                  H2CF2.q1.m2-1
                                                                                 H2CF2.q1.m2-2
                                                                                                H2F2.q1.m2-1
      CF2.q0.m1-10
                              10
                     HCF2.q1.m1-1
                                Final set of molecules at B3LYP/6-311+G* level
```

Figure 17: Stocastic search for isomers step by step.

H2CF2.q1.m2-1

HCF2.q0.m2-1

HF2.q1.m1-1

F2.q1.m2-1

CF2.q0.m1-10

CF2.q1.m2-1

F2.q0.m1-10

The broad of the deposited energy function for CH_2F_2 is approximately twice than the one obtained for CH_3F , even if its maximum is at 3 eV too. The breakdown graph for this molecule shows the molecular ion $(CH_2F_2^+)$ as the dominant one up to 1.5 eV of internal energy and with several fragment ions that compete between 2 eV and 10 eV, in contrast with the breakdown graph of molecule CH_3F (see Figures 16 and 18). These fragments

dominate the mass spectrum, because they are the most abundant over this region, where deposited energy function has its most significant contribution. The most intense peaks are those with highest probability in the breakdown graph, HCF_2^+ and $H_2CF_2^+$. They are followed by the $H_2CF_2^+$ (molecular ion) and HCF_2^+ , and the last one corresponding to CF_2^+ , in which although it has a breakdown curve as broad as the previous one, its contribution is significantly reduced when it is weighted with the deposited energy function. The rest of ionic fragments does not have a significant contribution because they only exist for high excitation energies.

In general, we found a relatively good agreement with the experiment though we have used electronic energy calculations at a low level of theory. Again, it is important to highlight, that one way to improve these results is by increasing the number of isomers and electronic states for each fragment with more accurate electronic calculations.

Acknowledgments

I would like to thank Dr. Sergio Díaz-Tendero for his critical reading and effort to helping me to improve this tutorial. I am especially grateful to Dr. M. Merced Montero-Campillo for the english revision of this document.

If you find any errata or have any suggestions to improve this tutorial, please contact me at nestor.aguirre@uam.es

```
BEGIN GOPTIONS
                        systemRadius = 8.0
                        overlappingRadius = 0.4
                        useRandomWalkers = FALSE
                        randomWalkStepRadius = 1.0
                END GOPTIONS
                BEGIN ENERGY_RANGE
               grid = 0:30:91 # dE = 1.0 eV
END ENERGY_RANGE
 10
11
12
                BEGIN RMJJ
 13
                       task = V,T,S:0,V,T,S:1:-1
burnInFraction = 0.1
 14
15
 16
                        reactives = H2CF2p(d)
                        excitationEnergy =
                                                                                        5.0 # eV
 19
20
21
22
                       tracing = none
numberOfExperiments = 3
numberOfEvents = 20000
23
24
25
                        historyFileFrequency = 100
               energyHistoryFile = energy.dat
weightHistoryFile = weight.dat
histogramFile = histogram.dat
END RMJJ
26
27
28
29
30
                BEGIN FRAGMENTS_DATABASE
                                                                                 Z M L SYM
                                                                                                                                                                                                                                                                  Eelec
                                                   Label
                                                                                                                                  geomFile
                                                                                                                                                                                                                                                                                                                                       maxVib
33
34
35
                                               H(d)
C(s)
                                                                                                                                                      H.q0.m2-1.rxyz
C.q0.m1-1.rxyz
                                                                                                                                                                                                                                      -13.572100
-1027.790000
                                                                           0
                                                                                                                                          \begin{array}{c} C\cdot \hat{q}0\cdot m1-1\cdot rxyz\\ F\cdot q0\cdot m2-1\cdot rxyz\\ H2\cdot q0\cdot m1-10\cdot rxyz\\ HC\cdot q0\cdot m2-10\cdot rxyz\\ HF\cdot q0\cdot m1-10\cdot rxyz\\ F2\cdot q0\cdot m2-10\cdot rxyz\\ F2\cdot q0\cdot m2-10\cdot rxyz\\ H2C\cdot q0\cdot m1-10\cdot rxyz\\ H2C\cdot q0\cdot m1-10\cdot rxyz\\ HCF\cdot q0\cdot m1-10\cdot rxyz\\ HCF\cdot q0\cdot m1-10\cdot rxyz\\ CF2\cdot q0\cdot m1-10\cdot rxyz\\ CF2\cdot q0\cdot m1-10\cdot rxyz\\ H2C\cdot q0\cdot m2-14\cdot rxyz\\ H2C\cdot q0\cdot m2-14\cdot rxyz\\ H2C\cdot q0\cdot m2-1\cdot rxyz\\ H2\cdot q0\cdot m2-1\cdot rxyz
36
37
38
                                            F(d)
H2(s)
HC(d)
                                                                                                                                                                                                                                    -2713.690000
-31.833900
-1046.730000
                                                                           0
                                                                                                                                                                                                                                                                                                                      H(d)+C(s)
                                                                                                                                                                                                                                                                                                                     H(d)+F(d)
C(s)+F(d)
F(d)+F(d)
                                                                           0 0
                                            HF(s)
CF(d)
39
                                                                                                                                                                                                                                      -2732.950000
40
41
42
                                                                                                 0 0
                                                                                                                                                                                                                                     -3748.880000
-5428.820000
                                         F2(s)
H2C(s)
                                                                           0
                                                                                                                                                                                                                                     -1064.370000
                                                                                                                                                                                                                                                                                                                  H(d)+HC(d)
                                         HCF(s)
CF2(s)
H3C(d)
                                                                           0
                                                                                     1 0
1 0
2 0
                                                                                                                                                                                                                                     -3765.840000
-6467.770000
-1083.470000
                                                                                                                                                                                                                                                                                                                  H(d)+CF(d)
F(d)+CF(d)
 45
                                                                                                                                                                                                                                                                                                               H2(s)+HC(d)
                                                                                  2
                                                                                                                                                                                                                                     -3783.830000
-6484.500000
 46
47
48
49
                                                                                                                                         H.Qf2.q0.m2-1.rxyz

C.q1.m2-1.rxyz
C.q1.m2-1.rxyz
F.q1.m1-1.rxyz
H2.q1.m2-10.rxyz
HC.q1.m1-10.rxyz
HF.q1.m2-10.rxyz
GF.q1.m1-10.rxyz
GF.q1.m1-10.rxyz
H3.q1.m1-10.rxyz
H3.q1.m1-10.rxyz
H3.q1.m1-10.rxyz
H2C.q1.m2-10.rxyz
H2F.q1.m1-10.rxyz
H2F.q1.m1-11.rxyz
H2F.q1.m2-11.rxyz
H2F.q1.m2-11.rxyz
H7F.q1.m2-11.rxyz
H7F.q1.m1-1.rxyz
H7F.q1.m1-1.rxyz
H7F.q1.m1-1.rxyz
H7F.q1.m1-1.rxyz
H3GF.q1.m1-1.rxyz
H3GF.q1.m1-1.rxyz
H3GF.q1.m1-1.rxyz
H3GF.q1.m1-1.rxyz
H3GF.q1.m2-1.rxyz
                                       Hp
Cp(d)
Fp(s)
H2p(d)
HCp(s)
HFp(d)
                                                                     1 0
                                                                                         Ω
                                                                                                            1
                                                                                                                                                                                                                                           0.000000
 50
51
52
                                                                         1 2
1 1
1 2
                                                                                                0 0
                                                                                                                                                                                                                                     -1018.080000
-2692.420000
-16.298600
                                                                                                                                                                                                                                                                                                             Hp+H(d)
H(d)+Cp(d)
Hp+F(d)
Cp(d)+F(d)
Fp(s)+F(d)
Hp+H2(s)
H2(s)+Cp(d)
                                                                                                                                                                                                                                     -1035.860000
-2716.870000
53
54
55
56
57
58
                                         CFp(s)
F2p(d)
                                                                                                  0
                                                                                                                                                                                                                                      -3739.460000
                                                                           1 2
1 1
1 2
                                                                                             0
                                                                                                                                                                                                                                     -5413.010000
-35.977900
-1054.540000
                                          H3p(s)
                                  H2Cp(d)
H2Fp(s)
HCFp(dC)
                                                                                           1 0
                                                                                                                   1
59
60
                                                                                                       0
                                                                                                                        1
                                                                                                                                                                                                                                     -2737.320000
-3755.850000
                                                                                                                                                                                                                                                                                                               0.000
H(d)+CFp(s)
                                                                                      2
                                                                                                                                                                                                                                                                                                           H(d)+CFp(s)
F(d)+HFp(d)
F(d)+CFp(s)
H(d)+H2Cp(d)
                                                                                                 0
61
                                  HCFp(dF)
                                                                                                                                                                                                                                      -3753.040000
62
63
64
                                      HF2p(s)
CF2p(d)
H3Cp(s)
                                                                                                                                                                                                                                      -5432.360000
                                                                                                                                                                                                                                      -6456.410000
-1073.720000
65
66
67
68
                             H2CFp(st)
H2CFp(s)
H2F2p(s)
H3CFp(dt)
H3CFp(d)
                                                                                                                                                                                                                                                                                                       H2(s)+CFp(s)
H(d)+HCFp(dC)
HF(s)+CFp(s)
                                                                                                                                                                                                                                      -3774.770000
                                                                           1 1 0
1 1 0
1 1 0
1 2 0
1 2 0
1 2 0
                                                                                                                                                                                                                                      -3770.520000
-6475.650000
                                                                                                                                                                                                                                                                                                    H(d)+H2CFp(st)
                                                                                                                                                                                                                                      -3789.520000
69
70
71
                                                                                                                                         H3CF.q1.m2-2.rxyz
H2CF2.q1.m2-1.rxyz
                                                                                                                                                                                                                                      -3789 280000
                                                                                                                                                                                                                                                                                                    H(d)+H2CFp(st)
                               H2CF2p(d)
                                                                                                                                                                                                                                                                                                        H(d)+HCF2p(s)
                END FRAGMENTS_DATABASE
 72
73
74
75
76
77
78
79
80
                BEGIN EXPERIMENTAL_BRANCHING_RATIOS
                                            error = absolute
diagram = S.vs.E
                                                                                                BR error
                                                                                                                                               q/n
                                                                                                                                               12.0
 81
82
                                                                         Ср
                                                                                             0.9
                                                                                                                          0.0
                                                                                             2.4
0.5
0.2
                                                                     НСр
                                                                                                                           0.0
                                                                                                                                               13.0
                                                                                                                                               14.0
                                                                  H2Cp
                                                                     HFp
                                                                                                                           0.0
                                                                                                                                               20.0
                                                                     CFp
                                                                                         10.6
                                                                                                                           0.0
                                                                                                                                               31.0
                                                                                         4.2
 87
88
                                                              H2CFp
                                                                                                                           0.0
                                                                                                                                               33.0
                                                                  CF2p
                                                                                                                           0.0
                                                                                                                                               50.0
                                                                                          36.6
                                                           H2CF2p
91
                                                                  H2p
                                                                                             0.0
                                                                                                                          0.0
                                                                                                                                                   2.0
                END EXPERIMENTAL_BRANCHING_RATIOS
94
               BEGIN FIT_BRANCHING_RATIOS
method = NNLS
basis = 60,60
eDistfile = edist.out
BRfile = fitBR.out
END FIT_BRANCHING_RATIOS
95
96
97
                                                                                                                                                                                                                                    29
```


Figure 18: Upper panel, probabilities of singly-charged fragments (breakdown curves). Middle panel, fitted deposited energy function. Lower panel, theoretical mass spectrum for diMethylFluoride $\mathrm{CH}_2\mathrm{F}_2$.

STEP BY STEP TUTORIAL. MASS SPECTRUM OF CH3F MOLECULE Operating system: QUBuntu

```
DEPENDENCIES
 1) jmol (version >= 12.2)
  This is already installed on QUBuntu
2) gnuplot (version >= 4.2)
  This is already installed on QUBuntu
3) gawk (version >= 3.1)
  This is not installed on QUBuntu
  $ sudo apt-get install gawk
4) gwenview or other image viewer for displaying a collection
     of images
      This is not installed on QUBuntu
  $ sudo apt-get install gwenview
5) Download the following files from moodle:
          M3C-1.0-intelc-14.0.3-i686.tar.gz
          gamess-i686.tar.gz
user@hostname:~$ cd $HOME
user@hostname:~$ 1s
gamess.tar.gz M3C-1.0-intelc-14.0.3-i686.tar.gz
Installing GAMESS
user@hostname:~$ tar xfz gamess-i686.tar.gz
user@hostname:~$ 1s
gamess gamess-i686.tar.gz M3C-1.0-intelc-14.0.3-i686.tar.gz
user@hostname:~$ mv gamess .gamess
user@hostname:~$ vim .bashrc
<APPEND THE NEXT LINE>
export PATH=$HOME/.gamess:$PATH
Installing M3C
user@hostname:~$ tar xfz M3C-1.0-intelc-14.0.3-i686.tar.gz
user@hostname:~$ 1s
gamess-i686.tar.gz M3C M3C-1.0-intelc-14.0.3-i686.tar.gz
user@hostname:~$ mv M3C .M3C
user@hostname:~$ vim .bashrc
<APPEND THE NEXT TWO LINES>
export M3C_HOME=$HOME/.M3C/
export PATH=$M3C_HOME/bin:$PATH
Work space Setup.
<OPEN A NEW TERMINAL WINDOW>
user@hostname:~$ cp -r .M3C/examples/ M3C-examples
user@hostname:~$ 1s
gamess-i686.tar.gz M3C-1.0-intelc-14.0.3-i686.tar.gz M3C-examples
user@hostname:~$ cd M3C-examples/
user@hostname:~/M3C-examples$ 1s
b3lyp.optg-GAMESS.inp diMethylFluoride b3lyp.freqs-GAMESS.inp methylFluoride pm3.optg-GAMESS.inp reactorT.m3c
The tutorial itself.
user@hostname:~/M3C-examples$ cd methylFluoride/
```

user@hostname:~/M3C-examples/methylFluoride\$ ls

```
user@hostname$ M3C.fragments H3,C,F
H, C, F, H2, HC, HF, CF, H3, H2C, H2F, HCF, H3C, H3F, H2CF, H3CF
user@hostname:~/M3C-examples/methylFluoride$ cd init
user@hostname:~/M3C-examples/methylFluoride/init$ M3C.viewXYZ
CF.xyz ... OK
C.xyz ... OK
F.xyz ... OK
H2CF.xyz ... OK
H2C.xyz ... OK
H2F.xyz ... OK
H2.xvz ... OK
H3CF.xyz ... OK
H3C.xyz ... OK
H3F.xvz ... OK
H3.xvz ... OK
HCF.xyz ... OK
HC.xyz ... OK
HF.xyz ... OK
H.xyz ... OK
user@hostname:~/M3C-examples/methylFluoride/init$ ls
CF.gif C.gif F.gif H2CF.gif H2C.gif H2F.gif H2.gif H3CF.gif H3C.gif H3F.gif H3.gif HCF.gif HC.gif HF.gif H.gif
CF.xyz C.xyz F.xyz H2CF.xyz H2C.xyz H2F.xyz H2.xyz H3CF.xyz H3CF.xyz H3C.xyz H3F.xyz H3F.xyz HCF.xyz HC.xyz HF.xyz H.xyz
user@hostname:~/M3C-examples/methylFluoride/init$ gwenview . &
user@hostname:~/M3C-examples/methylFluoride/init$ cd ...
user@hostname:~/M3C-examples/methylFluoride$ M3C-gamess.geniso fragments.inp ../pm3.optg-GAMESS.inp ../reactorT.m3c 5 init results
Running:
                                   F.
                                                        C ... OK
H ... OK
                                                                                   Time elapsed: Oh Om Os
                                                                                   Time elapsed: Oh Om 23s
                                 CF.
Running.
                                 HF.
                                                       HC ... OK
                                                                                    Time elapsed: Oh Om 37s
Running.
                                HCF.
                                                       H2 ... OK
                                                                                   Time elapsed: Oh Om 48s
Running.
                               H2F.
                                                     H2C ... OK
                                                                                    Time elapsed: Oh 2m 33s
Running:
Running:
                              H2CF.
                                                       нз ... ок
                                                                                   Time elapsed: Oh 1m 6s
Running:
                               H3F,
                                                     H3C ... OK
                                                                                    Time elapsed: Oh 7m 55s
Running:
                                  F.
                                                      C ... OK
                                                                                    Time elapsed: Oh Om 1s
Running:
                                 CF,
                                                         H ... OK
                                                                                    Time elapsed: Oh Om 45s
                                 HF.
                                                       HC ... OK
                                                                                    Time elapsed: Oh 1m 47s
Running:
                                HCF,
                                                       H2 ... OK
                                                                                    Time elapsed: Oh 1m 9s
Running:
Running:
                               H2F,
                                                      H2C ... OK
                                                                                    Time elapsed: Oh 2m 17s
Running:
                              H2CF,
                                                       нз ... ок
                                                                                    Time elapsed: Oh 3m 1s
Running:
                               H3F,
                                                     H3C ... OK
                                                                                   Time elapsed: Oh 3m 43s
                                                            ... OK
Running:
                              H3CF
                                                                                   Time elapsed: Oh 1m 37s
                                                                                                             Total • Oh 27m 42s
user@hostname:~/M3C-examples/methylFluoride$ 1s
CH3F+.m3c fragments.inp init results
user@hostname:~/M3C-examples/methylFluoride$ cd results/
user@hostname:~/M3C-examples/methylFluoride/results$ 1s
CF.q0.m2-1.xvz
                                  H2CF.q1.m1-1.xyz H2F.q1.m1-1.xyz H3C.q1.m1-1.xyz H3.q0.m2-2.xyz HC.q1.m1-1.xyz
                                                                                                                                                                                                                  history-F.g0.m2
                                                                                                                                                                                                                                                           history-H2F.g1.m1
                                                                                                                                                                                                                                                                                                 history-H3F.q1.m2 history-HF.q0.m1
                                    H2CF.q1.m1-2.xyz H2.q0.m1-1.xyz
                                                                                                          H3C.q1.m1-4.xyz H3.q0.m2-3.xyz
                                                                                                                                                                                                                                                          history-H2.q0.m1
history-H2.q1.m2
                                                                                                                                                                                                                                                                                                 history-H3.q0.m2
history-H3.q1.m1
CF.q1.m1-1.xyz
                                                                                                                                                                              HF.q0.m1-1.xyz
                                                                                                                                                                                                                   history-F.q1.m1
                                                                                                                                                                                                                                                                                                                                        history-HF.q1.m2
C.q0.m1-1.xyz
                                    H2CF.q1.m1-3.xyz H2.q1.m2-1.xyz
                                                                                                          H3C.q1.m1-5.xyz H3.q0.m2-5.xyz
                                                                                                                                                                               HF.q1.m2-1.xyz
                                                                                                                                                                                                                   history-H2CF.q0.m2
                                                                                                                                                                                                                                                                                                                                        history-H.q0.m2
C.q1.m2-1.xyz
                                    H2C.q0.m1-1.xyz
                                                                       H3CF.q1.m2-1.xyz H3F.q0.m1-1.xyz H3.q1.m1-1.xyz
                                                                                                                                                                               history-CF.q0.m2
                                                                                                                                                                                                                  history-H2CF.q1.m1
                                                                                                                                                                                                                                                          history-H3CF.q1.m2
                                                                                                                                                                                                                                                                                                  history-HCF.q0.m1
                                                                                                                                                                                                                                                                                                                                        history-H.q1.m0
F.q0.m2-1.xyz
                                    H2C.q1.m2-1.xyz
                                                                       H3CF.q1.m2-2.xyz H3F.q1.m2-1.xyz HCF.q0.m1-1.xyz history-CF.q1.m1 history-H2C.q0.m1
                                                                                                                                                                                                                                                          history-H3C.q0.m2
                                                                                                                                                                                                                                                                                                  history-HCF.q1.m2
                                                                                                                                                                                                                                                                                                                                        H.q0.m2-1.xyz
F.q1.m1-1.xyz
                                    H2F.q0.m2-1.xyz
                                                                       H3C.q0.m2-1.xyz H3F.q1.m2-2.xyz HCF.q1.m2-1.xyz history-C.q0.m1
                                                                                                                                                                                                                  history-H2C.q1.m2
                                                                                                                                                                                                                                                          history-H3C.q1.m1
                                                                                                                                                                                                                                                                                                  history-HC.q0.m2
                                                                                                                                                                                                                                                                                                                                        H.q1.m0-1.xyz
H2CF.q0.m2-1.xyz H2F.q0.m2-2.xyz
                                                                       H3C.q0.m2-3.xyz H3.q0.m2-1.xyz HC.q0.m2-1.xyz history-C.q1.m2 history-H2F.q0.m2
                                                                                                                                                                                                                                                        history-H3F.q0.m1
                                                                                                                                                                                                                                                                                                 history-HC.q1.m1
user@hostname:~/M3C-examples/methylFluoride/results$ rm -rf history-*
user@hostname:~/M3C-examples/methylFluoride/results$ 1s
CF.q0.m2-1.xyz F.q0.m2-1.xyz F.q0.m2-1.xyz H2CF.q1.m1-2.xyz H2F.q0.m2-1.xyz H2.q1.m2-1.xyz H3.q0.m2-3.xyz H3F.q0.m1-1.xyz H3.q0.m2-2.xyz HCF.q0.m1-1.xyz HF.q0.m1-1.xyz H2.q1.m2-1.xyz H3.q1.m2-1.xyz H3.q0.m2-3.xyz H2.q1.m2-1.xyz H3.q0.m2-3.xyz H2.q1.m2-1.xyz H3.q0.m2-3.xyz H2.q1.m2-1.xyz H3.q0.m2-3.xyz H2.q1.m2-1.xyz H3.q0.m2-3.xyz H2.q1.m2-1.xyz H3.q0.m2-3.xyz H2.q1.m2-1.xyz H3.q1.m2-1.xyz H3.q0.m2-3.xyz H2.q1.m2-1.xyz H3.q0.m2-3.xyz H3.
C.q1.m2-1.xyz H2CF.q1.m1-1.xyz H2C,q1.m2-1.xyz H2.q0.m1-1.xyz H3C.q0.m2-1.xyz H3C.q1.m1-5.xyz H3.q0.m2-1.xyz H3.q1.m1-1.xyz H3
user@hostname:~/M3C-examples/methylFluoride/results$ M3C.viewXYZ
CF.q0.m2-1.xyz ... OK
CF.g1.m1-1.xvz ... OK
C.q0.m1-1.xyz ... OK
C.q1.m2-1.xyz ... OK
F.q0.m2-1.xyz ... OK
F.q1.m1-1.xyz ... OK
H2CF.q0.m2-1.xyz ... OK
H2CF.q1.m1-1.xyz ... OK
H2CF.q1.m1-2.xyz ... OK
H2CF.q1.m1-3.xyz ... OK
H2C.q0.m1-1.xyz ... OK
H2C.q1.m2-1.xyz ... OK
H2F.q0.m2-1.xyz ... OK
H2F.q0.m2-2.xyz ... OK
```

CH3F+.m3c fragments.inp init

H2F.q1.m1-1.xyz ... OK H2.q0.m1-1.xyz ... OK

```
H2.q1.m2-1.xyz ... OK
H3CF.q1.m2-1.xyz ... OK
H3CF.q1.m2-2.xyz ... OK
H3C.q0.m2-1.xyz ... OK
H3C.q0.m2-3.xyz ... OK
H3C.q1.m1-1.xyz ... OK
H3C.q1.m1-4.xyz ... OK
H3C.q1.m1-5.xyz ... OK
H3F.q0.m1-1.xyz ... OK
H3F.q1.m2-1.xyz ... OK
H3F.q1.m2-2.xyz ... OK
H3.q0.m2-1.xvz ... OK
H3.q0.m2-2.xvz ... OK
H3.q0.m2-3.xyz ... OK
H3.q0.m2-5.xyz ... OK
H3.q1.m1-1.xyz ... OK
HCF.g0.m1-1.xvz ... OK
HCF.q1.m2-1.xvz ... OK
HC.q0.m2-1.xyz ... OK
HC.q1.m1-1.xyz ... OK
HF.q0.m1-1.xyz ... OK
HF.q1.m2-1.xyz ... OK
H.q0.m2-1.xyz ... OK
H.q1.m0-1.xyz ... OK
user@hostname:~/M3C-examples/methylFluoride/results$ 1s
CF.q0.m2-1.gif F.q0.m2-1.gif
                                              H2CF.q1.m1-2.gif H2F.q0.m2-1.gif H2.q1.m2-1.gif
                                                                                                                       H3C.q0.m2-3.gif H3F.q0.m1-1.gif H3.q0.m2-2.gif HCF.q0.m1-1.gif HF.q0.m1-1.gif
CF.q0.m2-1.xvz F.q0.m2-1.xvz
                                              H2CF.q1.m1-2.xyz H2F.q0.m2-1.xyz H2.q1.m2-1.xyz
                                                                                                                       H3C.q0.m2-3.xyz H3F.q0.m1-1.xyz H3.q0.m2-2.xyz HCF.q0.m1-1.xyz HF.q0.m1-1.xyz
                                              H2CF.q1.m1-3.gif H2F.q0.m2-2.gif H3Cf.q1.m2-1.gif H3C.q1.m1-1.gif H3F.q1.m2-1.gif H3.q0.m2-3.gif HCF.q1.m2-1.gif HF.q1.m2-1.gif
CF.a1.m1-1.aif F.a1.m1-1.aif
CF.q1.m1-1.xyz F.q1.m1-1.xyz
                                              H2CF.q1.m1-3.xyz H2F.q0.m2-2.xyz H3CF.q1.m2-1.xyz H3C.q1.m1-1.xyz H3F.q1.m2-1.xyz H3.q0.m2-3.xyz HCF.q1.m2-1.xyz HF.q1.m2-1.xyz
                     H2CF.q0.m2-1.gif H2C.q0.m1-1.gif
                                                                       H2F.q1.m1-1.gif H3CF.q1.m2-2.gif H3C.q1.m1-4.gif H3F.q1.m2-2.gif H3.q0.m2-5.gif Hc.q0.m2-1.gif
C.a0.m1-1.aif
                                                                                                                                                                                                                   H.a0.m2-1.aif
                     H2CF.q0.m2-1.xyz H2C.q0.m1-1.xyz
                                                                      H2F.q1.m1-1.xyz H3CF,q1.m2-2.xyz H3C,q1.m1-4.xyz H3F,q1.m2-2.xyz H3.q0.m2-5.xyz HC.q0.m2-1.xyz H2.q0.m1-1.gif H3C.q0.m2-1.gif H3C.q1.m1-5.gif H3.q0.m2-1.gif H3.q1.m1-1.gif HC.q1.m1-1.gif
C.q0.m1-1.xvz
                                                                                                                                                                                                                   H.q0.m2-1.xyz
C.ql.m2-1.gif H2CF.ql.m1-1.gif H2C.ql.m2-1.gif H2.q0.m1-1.gif H3C.q0.m2-1.gif H3C.q1.m1-5.gif H3.q0.m2-1.xyz H2.q1.m1-1.gif H2.q1.m1-1.gif H2.q0.m1-1.xyz H2.q0.m2-1.xyz H2.q1.m1-1.xyz H2.q1.m2-1.xyz H2
user@hostname:~/M3C-examples/methylFluoride/results$ gwenview . &
<REMOVE MOLECULES WHICH ARE SEPARATED IN TWO OR MORE PIECES>
user@hostname:~/M3C-examples/methylFluoride/results$ rm H2CF.q1.m1-2.* H2CF.q1.m1-3.* H2F.q0.m2-1.* H2F.q0.m2-2.* H3.q0.m2-2.*
user@hostname:~/M3C-examples/methylFluoride/results$ rm H3.q0.m2-3.* H3C.q0.m2-3.* H3C.q1.m1-4.* H3C.q1.m1-5.* H3F.q*
user@hostname:~/M3C-examples/methylFluoride/results$ rm *.gif
user@hostname:~/M3C-examples/methylFluoride/results$ ls
CF.q0.m2-1.xyz C.q1.m2-1.xyz H2CF.q0.m2-1.xyz H2CF.q0.m2-1.xyz H2C.q1.m2-1.xyz H2.q1.m2-1.xyz H3.q0.m2-5.xyz HCF.q1.m2-1.xyz HF.q0.m1-1.xyz H.q1.m0-1.xyz
CF.q1.m1-1.xyz F.q0.m2-1.xyz H2CF.q1.m1-1.xyz H2F.q1.m1-1.xyz H3CF.q1.m2-1.xyz H3C.q1.m1-1.xyz H3.q1.m1-1.xyz HC.q0.m2-1.xyz HF.q1.m2-1.xyz
C.q0.m1-1.xyz F.q1.m1-1.xyz H2C.q0.m1-1.xyz H2.q0.m1-1.xyz H3CF.q1.m2-2.xyz H3.q0.m2-1.xyz HCF.q0.m1-1.xyz HC.q1.m1-1.xyz HC.q1.m1-1.xyz H2.q0.m2-1.xyz
user@hostname:~/M3C-examples/methylFluoride/results$ cp -r ../results ../results.backup
user@hostname:~/M3C-examples/methylFluoride/results$ M3C-gamess.optg ../../b31yp.optg-GAMESS.inp
                                        CF.q1.m1-1 ... OK
Running:
                   CF.q0.m2-1,
                                                                      Time elapsed: Oh 1m 7s
Running:
                    C.q0.m1-1,
                                          C.q1.m2-1 ... OK
                                                                       Time elapsed: Oh Om Os
Running:
                    F.q0.m2-1,
                                          F.q1.m1-1 ... OK
                                                                       Time elapsed: Oh Om Os
Running:
                H2CF.q0.m2-1,
                                      H2CF.q1.m1-1 ... OK
                                                                       Time elapsed: Oh 3m 36s
                                       H2C.q1.m2-1 ... OK
Running:
                  H2C.q0.m1-1,
                                                                       Time elapsed: Oh Om 47s
                                         H2.q0.m1-1 ... OK
Running:
                  H2F.q1.m1-1,
                                                                       Time elapsed: Oh Om 19s
                   H2.q1.m2-1,
                                      H3CF.q1.m2-1 ... OK
                                                                       Time elapsed: Oh 8m 31s
Running:
Running:
                 H3CF.q1.m2-2,
                                       H3C.q0.m2-1 ... OK
                                                                       Time elapsed: Oh 3m 59s
Running:
                  H3C.q1.m1-1,
                                         H3.q0.m2-1 ... OK
                                                                       Time elapsed: Oh 1m 51s
Running:
                   H3.q0.m2-5,
                                         H3.q1.m1-1 ... OK
                                                                       Time elapsed: Oh Om 23s
Running:
                  HCF.q0.m1-1,
                                       HCF.q1.m2-1 ... OK
                                                                       Time elapsed: Oh 2m 2s
Running:
                   HC.q0.m2-1,
                                        HC.q1.m1-1 ... OK
                                                                       Time elapsed: Oh Om 29s
                                         HF.q1.m2-1 ... OK
Running:
                   HF.q0.m1-1.
                                                                       Time elapsed: Oh Om 19s
                                         H.q1.m0-1 ... OK
Running.
                   H.q0.m2-1,
                                                                       Time elapsed: Oh Om Os
                                                       ... OK
                                                                       Time elapsed: Oh Om Os
Running.
                                                                                        Total · Oh 23m 23s
user@hostname:~/M3C-examples/methvlFluoride/results$ 1s
CF.q0.m2-1.xyz C.q1.m2-1.xyz H2CF.q0.m2-1.xyz
                                                                       H2C.q1.m2-1.xyz H2.q1.m2-1.xyz
                                                                                                                          H3C.q0.m2-1.xyz H3.q0.m2-5.xyz
                                                                                                                                                                            HCF.q1.m2-1.xyz HF.q0.m1-1.xyz H.q1.m0-1.xyz
                                                                                                                          H3C.q0.m2-1.xyz0 H3.q0.m2-5.xyz0
CF.q0.m2-1.xyz0
                       C.q1.m2-1.xyz0 H2CF.q0.m2-1.xyz0
                                                                       H2C.q1.m2-1.xyz0 H2.q1.m2-1.xyz0
                                                                                                                                                                            HCF.q1.m2-1.xyz0 HF.q0.m1-1.xyz0 H.q1.m0-1.xyz0
CF.q1.m1-1.xyz F.q0.m2-1.xyz H2CF.q1.m1-1.xyz
                                                                       H2F.q1.m1-1.xyz H3CF.q1.m2-1.xyz
                                                                                                                          H3C.q1.m1-1.xyz
                                                                                                                                                   H3.q1.m1-1.xyz
                                                                                                                                                                            HC.q0.m2-1.xyz
                                                                                                                                                                                                    HF.q1.m2-1.xyz
CF.q1.m1-1.xyz0 F.q0.m2-1.xyz0 H2CF.q1.m1-1.xyz0 H2F.q1.m1-1.xyz0 H3CF.q1.m2-1.xyz0 H3C.q1.m1-1.xyz0 H3.q1.m1-1.xyz0
                                                                                                                                                                            HC.q0.m2-1.xyz0
                                                                                                                                                                                                    HF.q1.m2-1.xyz0
                      F.q1.m1-1.xyz H2C.q0.m1-1.xyz
                                                                       H2.q0.m1-1.xyz H3CF.q1.m2-2.xyz H3.q0.m2-1.xyz
C.q0.m1-1.xyz
                                                                                                                                                   HCF.q0.m1-1.xyz
                                                                                                                                                                            HC.q1.m1-1.xyz
                                                                                                                                                                                                    H.q0.m2-1.xyz
C.q̂0.m1-1.xyz0 F.q̂1.m1-1.xyz0 H2C.q̂0.m1-1.xyz0 H2C.q̂0.m1-1.xyz0 H2.q̂0.m1-1.xyz0 H3CF.q̂1.m2-2.xyz0 H3.q̂0.m2-1.xyz0 HCF.q̂0.m1-1.xyz0 HC.q̂1.m1-1.xyz0 H.q̂0.m2-1.xyz0
user@hostname:~/M3C-examples/methylFluoride/results$ M3C.viewXYZ
CF.q0.m2-1.xyz ... OK
```

CF.q0.m2-1.xyz ... OK CF.q1.m1-1.xyz ... OK C.q0.m1-1.xyz ... OK C.q1.m2-1.xyz ... OK F.q0.m2-1.xyz ... OK F.q1.m1-1.xyz ... OK

```
H2CF.q1.m1-1.xyz ... OK
H2C.q0.m1-1.xyz ... OK
H2C.q1.m2-1.xyz ... OK
H2F.q1.m1-1.xyz ... OK
H2.q0.m1-1.xyz ... OK
H2.q1.m2-1.xyz ... OK
H3CF.q1.m2-1.xyz ... OK
H3CF.q1.m2-2.xyz ... OK
H3C.q0.m2-1.xyz ... OK
H3C.q1.m1-1.xyz ... OK
H3.q0.m2-1.xyz ... OK
H3.q0.m2-5.xvz ... OK
H3.q1.m1-1.xyz ... OK
HCF.g0.m1-1.xvz ... OK
HCF.q1.m2-1.xyz ... OK
HC.q0.m2-1.xvz ... OK
HC.q1.m1-1.xvz ... OK
HF.q0.m1-1.xyz ... OK
HF.q1.m2-1.xyz ... OK
H.q0.m2-1.xyz ... OK
H.q1.m0-1.xyz ... OK
user@hostname:~/M3C-examples/methylFluoride/results$ gwenview . &
<REMOVE MOLECULES WHICH ARE SEPARATED IN TWO OR MORE PIECES>
user@hostname:~/M3C-examples/methylFluoride/results$ rm H3.q0.m2-1.*
user@hostname:~/M3C-examples/methvlFluoride/results$ ls
                                                   H2C.q0.m1-1.gif H2F.q1.m1-1.xyz0 H3CF.q1.m2-1.xyz H3C.q1.m1-1.gif HCF.q0.m1-1.gif HC.q0.m2-1.xyz0 HF.q1.m2-1.xyz
CF.q0.m2-1.gif
                C.q0.m1-1.xyz0 F.q1.m1-1.xyz
C.q1.m2-1.qif F.q1.m1-1.xyz0
                                                                                      H3CF.q1.m2-1.xyz0 H3C.q1.m1-1.xyz
                                                                                                                                            HC.q1.m1-1.gif
CF.q0.m2-1.xvz
                                F.q1.m1-1.xyz0
H2CF.q0.m2-1.qif
                                                   H2C.q0.m1-1.xyz
                                                                    H2.q0.m1-1.qif
                                                                                                                          HCF.q0.m1-1.xyz
                                                                                                                                                             HF.q1.m2-1.xvz0
                                                                                      H3CF.q1.m2-2.qif
                                                                                                                          HCF.q0.m1-1.xvz0
                C.q1.m2-1.xyz
                                                   H2C.q0.m1-1.xvz0
                                                                    H2.q0.m1-1.xyz
                                                                                                         H3C d1 m1-1 xvz0
                                                                                                                                            HC.q1.m1-1.xyz
CF a0 m2-1 xvz0
                                                                                                                                                             H a0 m2-1 aif
                C.q1.m2-1.xyz0 H2CF.q0.m2-1.xyz
                                                                    H2.q0.m1-1.xvz0
                                                                                      H3CF.q1.m2-2.xvz
                                                                                                         H3.q0.m2-5.xvz
                                                                                                                                            HC.q1.m1-1.xvz0
CF.a1.m1-1.aif
                                                   H2C.q1.m2-1.qif
                                                                                                                           HCF.q1.m2-1.qif
                                                                                                                                                            H.q0.m2-1.xvz
                                H2CF.q0.m2-1.xvz0
                                                   H2C.q1.m2-1.xvz
                                                                                      H3CF.q1.m2-2.xvz0
                                                                                                         H3.q0.m2-5.xvz0
CF.q1.m1-1.xvz
                F.q0.m2-1.qif
                                                                    H2.q1.m2-1.qif
                                                                                                                          HCF.gl.m2-1.xvz
                                                                                                                                            HF.g0.m1-1.gif
                                                                                                                                                             H.q0.m2-1.xvz0
CF.q1.m1-1.xyz0 F.q0.m2-1.xyz
                                H2CF.q1.m1-1.qif
                                                   H2C.q1.m2-1.xyz0 H2.q1.m2-1.xyz
                                                                                      H3C.q0.m2-1.qif
                                                                                                         H3.q1.m1-1.qif
                                                                                                                           HCF.q1.m2-1.xyz0 HF.q0.m1-1.xyz
                                                                                                                                                             H.a1.m0-1.aif
C.q0.m1-1.gif
                F.q0.m2-1.xyz0 H2CF.q1.m1-1.xyz
                                                   H2F.q1.m1-1.qif
                                                                   H2.q1.m2-1.xyz0
                                                                                      H3C.q0.m2-1.xyz
                                                                                                         H3.q1.m1-1.xyz
                                                                                                                          HC.q0.m2-1.gif
                                                                                                                                            HF.q0.m1-1.xyz0 H.q1.m0-1.xyz
C.q0.m1-1.xyz
                F.q1.m1-1.qif H2CF.q1.m1-1.xyz0 H2F.q1.m1-1.xyz H3CF.q1.m2-1.qif H3C.q0.m2-1.xyz0 H3.q1.m1-1.xyz0
                                                                                                                          HC.q0.m2-1.xyz
                                                                                                                                            HF.q1.m2-1.qif
                                                                                                                                                            H.q1.m0-1.xyz0
user@hostname:~/M3C-examples/methylFluoride/results$ cp -r ../results ../results.backup2
{\tt user@hostname: \sim/ M3C-examples/methylFluoride/results \$ M3C-gamess.freqs ../../b3lyp.freqs-GAMESS.inp} \\
Running:
             CF.q0.m2-1,
                             CF.q1.m1-1 ... OK
                                                   Time elapsed: Oh 2m 1s
Running:
              C.q0.m1-1,
                              C.q1.m2-1 ... OK
                                                   Time elapsed: Oh Om 13s
Running:
              F.q0.m2-1,
                              F.q1.m1-1 ... OK
                                                   Time elapsed: Oh Om 14s
Running:
            H2CF.q0.m2-1,
                           H2CF.q1.m1-1 ... OK
                                                   Time elapsed: Oh 8m 3s
Running:
            H2C.a0.m1-1.
                            H2C.q1.m2-1 ... OK
                                                   Time elapsed: 0h 2m 23s
                             H2.q0.m1-1 ... OK
Running.
            H2F.q1.m1-1,
                                                   Time elapsed: Oh 1m 19s
                           H3CF.q1.m2-1 ... OK
                                                   Time elapsed: Oh 9m 4s
             H2.q1.m2-1,
Running.
                            H3C.q0.m2-1 ... OK
            H3CF.q1.m2-2,
                                                   Time elapsed: Oh 11m 11s
Running.
            H3C.q1.m1-1.
                             H3.q0.m2-5 ... OK
Running:
                                                   Time elapsed: Oh 2m 11s
                            HCF.q0.m1-1 ... OK
Running:
             H3.q1.m1-1,
                                                   Time elapsed: Oh 2m 24s
Running:
             HCF.q1.m2-1,
                             HC.q0.m2-1 ... OK
                                                   Time elapsed: Oh 3m 31s
Running:
             HC.q1.m1-1,
                             HF.q0.m1-1 ... OK
                                                   Time elapsed: Oh Om 52s
Running:
             HF.q1.m2-1,
                              H.q0.m2-1 ... OK
                                                   Time elapsed: Oh Om 49s
                                       ... OK
Running:
              H.q1.m0-1
                                                   Time elapsed: Oh Om 3s
                                                               Total: 0h 44m 18s
user@hostname:~/M3C-examples/methylFluoride/results$ ls
CF.q0.m2-1.gif C.q0.m1-1.xyz0 F.q1.m1-1.xyz
                                                   H2C.q0.m1-1.rxyz H2.q0.m1-1.gif
                                                                                       H3CF.q1.m2-1.xyz0 H3C.q1.m1-1.xyz HCF.q0.m1-1.xyz HC.q1.m1-1.rxyz H.q0.m2-1.gif
CF.q0.m2-1.rxyz
                C.q1.m2-1.qif F.q1.m1-1.xyz0
                                                   H2C.q0.m1-1.xyz H2.q0.m1-1.rxyz
                                                                                       H3CF.q1.m2-2.gif H3C.q1.m1-1.xyz0 HCF.q0.m1-1.xyz0 HC.q1.m1-1.xyz H.q0.m2-1.rxyz
CF.q0.m2-1.xyz
                C.q1.m2-1.rxyz H2CF.q0.m2-1.gif
                                                   H2C.q0.m1-1.xyz0 H2.q0.m1-1.xyz
                                                                                       H3CF.q1.m2-2.rxyz H3.q0.m2-5.rxyz
                                                                                                                           HCF.q1.m2-1.gif HC.q1.m1-1.xyz0 H.q0.m2-1.xyz
CF.q0.m2-1.xvz0
                C.q1.m2-1.xyz H2CF.q0.m2-1.rxyz H2C.q1.m2-1.gif H2.q0.m1-1.xyz0
                                                                                       H3CF.q1.m2-2.xyz H3.q0.m2-5.xyz
                                                                                                                           HCF.q1.m2-1.rxyz HF.q0.m1-1.gif H.q0.m2-1.xyz0
                                                                                                                           HCF.q1.m2-1.xyz HF.q0.m1-1.rxyz H.q1.m0-1.gif
CF.g1.m1-1.gif
                C.q1.m2-1.xyz0 H2CF.q0.m2-1.xyz
                                                   H2C.q1.m2-1.rxyz H2.q1.m2-1.gif
                                                                                       H3CF.q1.m2-2.xyz0 H3.q0.m2-5.xyz0
                F.q0.m2-1.gif H2CF.q0.m2-1.xyz0
                                                                                                         H3.q1.m1-1.gif
                                                                                                                           HCF.q1.m2-1.xyz0 HF.q0.m1-1.xyz H.q1.m0-1.rxyz
CF.q1.m1-1.rxvz
                                                  H2C.q1.m2-1.xyz H2.q1.m2-1.rxyz
                                                                                       H3C.q0.m2-1.gif
                F.q0.m2-1.rxyz H2CF.q1.m1-1.gif
                                                                                       H3C.q0.m2-1.rxyz
                                                                                                         H3.q1.m1-1.rxyz
                                                                                                                           HC.q0.m2-1.qif
                                                   H2C.q1.m2-1.xyz0 H2.q1.m2-1.xyz
                                                                                                                                             HF.g0.m1-1.xvz0 H.g1.m0-1.xvz
CF.g1.m1-1.xvz
CF.a1.m1-1.xvz0 F.a0.m2-1.xvz
                                H2CF.q1.m1-1.rxyz H2F.q1.m1-1.qif H2.q1.m2-1.xyz0
                                                                                       H3C.q0.m2-1.xvz
                                                                                                          H3.q1.m1-1.xvz
                                                                                                                           HC.q0.m2-1.rxvz
                                                                                                                                             HF.g1.m2-1.gif H.g1.m0-1.xvz0
                                                                                       H3C.q0.m2-1.xvz0
                F.a0.m2-1.xvz0 H2CF.a1.m1-1.xvz
                                                   H2F.q1.m1-1.rxyz H3CF.q1.m2-1.qif
C.q0.m1-1.gif
                                                                                                         H3.q1.m1-1.xvz0
                                                                                                                           HC.q0.m2-1.xvz
                                                                                                                                             HF.q1.m2-1.rxvz
                F.al.m1-1.aif H2CF.al.m1-1.xvz0
                                                  H2F.a1.m1-1.xvz H3CF.a1.m2-1.rxvz H3C.a1.m1-1.aif
                                                                                                         HCF.q0.m1-1.qif
C.q0.m1-1.rxvz
                                                                                                                           HC.q0.m2-1.xvz0
                                                                                                                                             HF.q1.m2-1.xvz
                F.q1.m1-1.rxyz H2C.q0.m1-1.qif
                                                  H2F.q1.m1-1.xyz0 H3CF.q1.m2-1.xyz H3C.q1.m1-1.rxyz HCF.q0.m1-1.rxyz HC.q1.m1-1.qif
                                                                                                                                             HF.q1.m2-1.xyz0
C.q0.m1-1.xvz
user@hostname:~/M3C-examples/methylFluoride/results$ cat H3CF.q1.m2-2.rxyz
Energy = -139.2622142579
    0.5063172279 -0.2100414032 -0.1685057135
    -0.2546710826 0.7995943914
                                  0.0969352537
    0.1557351925 -1.1353725153
                                  0.4524849110
```

FREQUENCIES 9 3202.02 2555.74

0.7554782499

-0.3594035325

H 1.3649855324 -0.2706254204 0.6195076992

-1 2172639004

H2CF.q0.m2-1.xvz ... OK

```
2212.72
1461.16
1285.72
1092.85
1056.26
966.02
733.31
user@hostname:~/M3C-examples/methylFluoride/results$ grep -H "^I" *.rxyz
H2F.q1.m1-1.rxyz:I
H2F.q1.m1-1.rxyz:I
<THIS MOLECULE HAS TWO IMAGINARY FREQUENCIES, THEN YOU HAVE TO DELETE THEIR RELATED FILES>
user@hostname:~/M3C-examples/methylFluoride/results$ rm H2F.q1.m1-1.*
user@hostname:~/M3C-examples/methylFluoride/results$ cp -r ../results ../results.backup3
user@hostname:~/M3C-examples/methylFluoride/results$ cp ../CH3F+.m3c .
user@hostname:~/M3C-examples/methylFluoride/results$ M3C.makeDB CH3F+.m3c
BEGIN FRAGMENTS DATABASE
                  Label Z M L SYM
                                                    geomFile
                 H(d1)
                          0 2 0
                                            H.q0.m2-1.rxyz
                                                                    -13.572100
                 C(s1)
                          0 1 0
                                    1
                                             C.q0.m1-1.rxyz
                                                                   -1027.790000
                F(d1)
                          0 2 0
                                    1
                                             F.q0.m2-1.rxyz
                                                                   -2713.690000
                          0 1 0
0 2 0
                                                                                        H(d1)+H(d1)
                H2(s1)
                                    1
                                             H2.q0.m1-1.rxyz
                                                                     -31.833900
                                                                   -1046.730000
                                                                                        H(d1)+C(s1)
                HC (d1)
                                    1
                                             HC.q0.m2-1.rxyz
                HF(s1)
                                             HF.q0.m1-1.rxyz
                          0 1 0
                                    1
                                                                    -2732.950000
                                                                                        H(d1)+F(d1)
                          0 2 0
                                                                    -3748.880000
                CF (d1)
                                    1
                                             CF.q0.m2-1.rxyz
                                                                                        C(s1)+F(d1)
                                                                    -1064.370000
               H2C (s1)
                          0 1 0
                                    1
                                            H2C.q0.m1-1.rxyz
                                                                                       H(d1)+HC(d1)
                          0 1 0
               HCF(s1)
                                            HCF.q0.m1-1.rxyz
                                                                    -3765.840000
                                                                                       H (d1) +CF (d1)
               H3C (d1)
                          0 2 0
                                            H3C.q0.m2-1.rxvz
                                                                    -1083.470000
                                                                                      H2(s1)+HC(d1)
                          0 2 0
              H2CF (d1)
                                           H2CF.q0.m2-1.rxvz
                                                                    -3783.830000
                                                                                      H2(s1)+CF(d1)
                               Ö
                 Hp(1)
                                              H.q1.m0-1.rxyz
                                                                       0.000000
                                                                    -1018.080000
                Cp (d1)
                                              C.q1.m2-1.rxyz
                Fp(s1)
                                              F.q1.m1-1.rxyz
                                                                    -2692.420000
               H2p(d1)
                          1 2
                                             H2.q1.m2-1.rxyz
                                                                      -16.298600
                                                                                        Hp(1)+H(d1)
               HCp(s1)
                                             HC.q1.m1-1.rxyz
                                                                    -1035.860000
                                                                                       H(d1)+Cp(d1)
               HFp(d1)
                          1 2 0
                                             HF.q1.m2-1.rxyz
                                                                    -2716.870000
                                                                                        Hp(1)+F(d1)
               CFp(s1)
                          1 1 0
                                             CF.q1.m1-1.rxyz
                                                                    -3739.460000
                                                                                       Cp (d1) +F (d1)
               H3p(s1)
                          1 1 0
                                   1
                                             H3.q1.m1-1.rxyz
                                                                     -35.977800
                                                                                       Hp(1)+H2(s1)
                          1 2 0
                                                                    -1054.540000
              H2Cp (d1)
                                            H2C.q1.m2-1.rxyz
                                                                                      H2(s1)+Cp(d1)
              HCFp(d1)
                          1 2 0
                                            HCF.q1.m2-1.rxyz
                                                                    -3753.040000
                                                                                      Cp(d1)+HF(s1)
                                                                    -1073.720000
                                                                                     H(d1)+H2Cp(d1)
              H3Cp(s1)
                               0
                                            H3C.q1.m1-1.rxyz
             H2CFp(s1)
                         1 1 0
1 2 0
                                    1
                                           H2CF.q1.m1-1.rxyz
                                                                    -3774.770000
                                                                                     H2(s1)+CFp(s1)
             H3CFp(d1)
                                           H3CF.q1.m2-1.rxvz
                                    1
                                                                    -3789 280000
                                                                                     H(d1)+H2CFp(s1)
                         1 2 0
                                           H3CF.q1.m2-2.rxyz
                                                                    -3789.520000
                                                                                    H(d1)+H2CFp(s1)
             H3CFp(d2)
                                    1
END FRAGMENTS DATABASE
THE NEXT STEP IS TO REPLACE THE PREVIOUSLY GENERATED BLOCK BY THE EQUIVALENT ONE IN THE CH3F+.m3c FILE>
<THE M3C FILE IS READY TO BE EXECUTED>
user@hostname:~/M3C-examples/methylFluoride/results$ M3C -i CH3F+.m3c
Input file = CH3F+.m3c
Blocks input file
> BEGIN GOPTIONS
     systemRadius = 8.0
     overlappingRadius = 0.4
     useRandomWalkers = FALSE
START TIME: Wed Jan 14 16:10:45 2015
                       GOptions:zero =
               GOptions:systemRadius =
                                              8.00000 A
       GOptions:randomWalkStepRadius =
                                              1.00000 A
                 GOptions:printLevel =
                 GOptions:debugLevel =
                                          1
```

| FRAGMENTS DATABASE INITIALIZATION |

```
name = H(d1)
                                 0.00000 0.00000 0.00000 ] amu*angs**2
0.00000 0.00000 0.00000 ] a.u.
     Moments of inertia = [
     Moments of inertia = [
                Radius =
                 Eelec =
                  Eelec = -0.4987653 a.u.
Mass = 1.000000
                            -13.5721000 eV
                 Eelec =
               fir, fv) = ( 0 0 )
maxEvib = 0.0000000 eV
     | END FRAGMENTS DATABASE INITIALIZATION |
                           reactives = H3CFp(d1)
                    excitationEnergy = 10.00000 eV
numberOfEvents = 10000
                  numberOfExperiments =
           numberOIExperiments = 
    task = V,T,S:0,V,T,S:1:-1
geometryHistoryFilePrefix = geom
               freqBlockingCheck = track = energy
# ENERGY HISTORY
         rot tot
eV eV
                                                                                                 formula
 aV
                                                                       1.07732
                                                                               -3779.28000
                                                                                                 H3Cp(s1)+F(d1)
                                                                                 -3779.28000
                                                                                                 H3Cp(s1)+F(d1)
                                                                       1.07732
 рТ
                                                                       1.07732
                                                                                 -3779.28000
                                                                                                  H3Cp(s1)+F(d1)
 rs
         1.57511
 rV
                                                                      1.67559
                                                                                 -3779.28000
                                                                                                 H3Cp(s1)+F(d1)
# Channels histogram
                     1 2
                                               aver
                                                         desv
             ----
                                                ----
                                                         ----
                                           0.108
         H3Cp+F
H+H2Cp+F
                      0.121
                                0.095
                                                         0.013
                                          0.578
0.315
                     0.606
                             0.549
                                                         0 029
         H2+HCp+F 0.273
                                                      0.042
                                 ___1
                                             2
                                                          aver
                         item
                                                                     desv
                                                     0.315
0.578
0.108
          H2(s1)+HCp(s1)+F(d1)
                                 0.273
                                           0.356
          H(d1)+H2Cp(d1)+F(d1)
                                 0.606
                                            0.549
                                                                     0.029
          H3Cp(s1)+F(d1)
                                 0.121
                                            0.095
                                                           0.108
 ELAPSED TIME: 0 h 0 m 16 s
 END TIME: Wed Jan 14 16:11:01 2015
user@hostname$ M3C.analysis CH3F+.m3c energy
user@hostname$ M3C.analysis CH3F+.m3c ecorr Et.vs.Ev
user@hostname$ M3C.analysis CH3F+.m3c ecorr Er.vs.Ev
user@hostname$ M3C.analysis CH3F+.m3c ecorr Er.vs.Et
user@hostname$ M3C.analysis CH3F+.m3c species
user@hostname$ M3C.analysis CH3F+.m3c channels
<CHANGE "tracking = energy" BY "tracking = none" IN CH3F+.m3c FILE IN ORDER TO SAVE EXECUTION TIME>
user@hostname:~/results$ M3C.p -i CH3F+.m3c
Running: 0.00000, 1.00000 ... OK
                                         Time elapsed: Oh Om 12s
Running:
           2.00000,
                      3.00000 ... OK
                                         Time elapsed: Oh Om 22s
Running:
           4.00000,
                      5.00000 ... OK
                                         Time elapsed: Oh Om 21s
                      7.00000 ... OK
Running:
           6.00000,
                                         Time elapsed: Oh Om 23s
                     9.00000 ... OK
Running:
           8.00000,
                                         Time elapsed: Oh Om 25s
Running: 10.00000, 11.00000 ... OK
                                         Time elapsed: Oh Om 40s
          12.00000, 13.00000 ... OK
                                         Time elapsed: Oh Om 35s
Running:
         14.00000, 15.00000 ... OK
                                         Time elapsed: Oh Om 40s
Running:
Running: 16.00000, 17.00000 ... OK Time elapsed: 0h 0m 45s
Running: 18.00000, 19.00000 ... OK Time elapsed: 0h 0m 50s
```

file name = H.g0.m2-1.rxvz

```
Running: 20.00000, 21.00000 ... OK
Running: 22.00000, 23.00000 ... OK
                                            Time elapsed: 0h 0m 50s
Time elapsed: 0h 0m 57s
                       25.00000 ... OK
27.00000 ... OK
Running:
           24.00000,
                                             Time elapsed: Oh Om 57s
Running:
           26.00000,
                                             Time elapsed: Oh Om 54s
Running:
           28.00000,
                       29.00000 ... OK
                                             Time elapsed: Oh Om 57s
Running:
           30.00000
                                 ... OK
                                             Time elapsed: Oh Om 32s
                                                    Total: 0h 10m 20s
user@hostname:~/M3C-examples/methylFluoride/results$ M3C.analysis CH3F+.m3c fit_sBR
### ERROR ### M3CfitBR: HCFp has not been mapped.

Remove it from the input file
user@hostname:~/M3C-examples/methylFluoride/results$ M3C.analysis CH3F+.m3c fit_sBR
user@hostname:~/M3C-examples/methylFluoride/results$ M3C.analysis CH3F+.m3c fit_sfE user@hostname:~/M3C-examples/methylFluoride/results$ M3C.analysis CH3F+.m3c S.vs.E "p"
```

RESULT

