Wiener Filter for signal denoising

Laboratory 13, SDP

Objective

Students should design and use a Wiener filter in a denoising application.

Theoretical notions

Exercises

1. Consider the signal x[n] = s[n] + w[n], where s[n] is an autoregressive (AR) random process of order 1, with the difference equation:

$$s[n] = 0.6 \cdot s[n-1] + v[n].$$

The signals w[n] and v[n] are white noises, uncorrelated, with variances $\sigma_w^2 = 1$ and $\sigma_v^2 = 0.64$.

- a. Find the autocorrelation function of the signals s and x, $\gamma_{ss}[m]$ and $\gamma_{xx}[m]$;
- b. Find the Wiener filter of length M=2 for estimating s[n] from x[n];
- c. Find the minimum mean squared error for M=2.
- 2. In Matlab, consider the following signal:

$$s[n] = \sin(2\pi f_1 n) + \sin(2\pi f_2 n),$$

where $f_1 = 0.013$, $f_2 = 0.051$ and n = 0:999.

To the signal s[n] we add a white noise with variance $\sigma_w^2 = 0.25$, the resulting signal being x[n] = s[n] + w[n].

a. Using the function wienerfir(), find the coefficients of the Wiener FIR filter with M=20 and filter the signal x[n] with this filter;

- b. Plot on the same figure the three signals $s[n],\ x[n]$ and the result of the filtering;
 - c. Compute the resulting mean squared error;
- c. Repeat all the above for different values of M=40, 100. What do you notice?

Final questions

1. TBD