	Name:
	Vorname:
Biol 🖵	Studiengang:
Pharm 🖵	
BWS 🖵	

Basisprüfung Winter 2010

Organische Chemie I+II

für Studiengänge
Biologie (Biologische Richtung)
Pharmazeutische Wissenschaften
Bewegungswissenschaften und Sport
Prüfungsdauer: 3 Stunden

Unleserliche Angaben werden nicht bewertet! Bitte auch allfällige Zusatzblätter mit Namen anschreiben.

Bitte freilassen:

Teil OC I	Punkte (max 50)	Teil OCII	Punkte (max 50)
Aufgabe 1		Aufgabe 6	
Aufgabe 2		Aufgabe 7	
Aufgabe 3		Aufgabe 8	
Aufgabe 4		Aufgabe 9	
Aufgabe 5			
Total OC I		Total OC II	
Note OC I		Note OC II	
	-	Note OC	

1. Aufgabe (9.5 Pkt)

a) 1 Pkt.	Zeichnen Sie die Strukturformel von:	
	8-Brom-9-isopropyl-2-vinyl-9 <i>H</i> -purin	
b) 1 Pkt.	Zeichnen Sie die Strukturformel (inkl. Stereochemie) von:	
D) II KL	(1S,3S)-4-Benzyl-5-cyanocyclopent-4-en-1,3-dicarbonsäure	
	(13,33)-4-benzyi-5-cyanocyclopent-4-en-1,3-dicarbonsadre	
c) 4.5 Pkt.	Benennen Sie die folgenden Verbindungen nach IUPAC	
	(wo erforderlich inkl. stereochemische Deskriptoren!)	
	OH CI	
HO_	HO	
"//	F	
d) 3 Pkt	Zu welcher Substanzklasse gehören die folgenden Verbindungen?	
u) o i ki	OH	
	NH NH	
ĺ		
L		
·	NH ₂	
	OH	
	Punkte Aufgabe 1	
	- Tanke Adigabe 1	

2. Aufgabe (5.5 Pkt)

2. Auigabe (5.5 PKI)	
a) 2 Pkt. Tragen Sie in den folgenden Lewisformeln die fehlenden Formallad	ungen ein:
H H H H	H
b) 1 1/2 Pkt. Zeichnen Sie je eine weitere möglichst gute Grenzstruktur der unte Verbindungen	enstehenden
N O +	
N	
c) 2 Pkt. Geben Sie die Bindungsgeometrie und Hybridisierung an den num Atomen an.	nmerierten
Bindungsgeometrie Hybridisierung	
© NH ₂ 1	
Pun	kte Aufgahe 2
Pun	kte Aufgabe 2

3. Aufgabe (12.5 Pkt)

a) 2 1/2 Pkt Liegt bei den fo Wenn ja, um welche Art von	lgenden Strukturen Isomerie vor? Isomerie handelt es sich?		
CI CI CI CI CI	CI CI CI CI CI CI	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
НООНОН	НО ОН ОН	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
OH OH	OH OH	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
		Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
(H)	•	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
		Übertrag Aufgabe 3	

Aufgabe 3 (Fortsetzung)

	gebenen Moleküle sind chiral? ng besteht zwischen a und c sowie zwisch	nen b und d?	
OH A Chiral	b c	OH	
Moleküle a und c sind Enantiomere Diastereoisomere identisch	Moleküle b und o Enantiomere Diastereoisomere identisch	d sind	
c) 5.5 Pkt. Die Fischerprojek	ction einer Altrarsäure ist unten angegebe	en.	
1 _{COOH} H 2 OH HO 3 H HO 4 H HO 5 H 6COOH	2) HOOC 5 4 3 2 1 COOH	3) 1 _{COOH} 2 3 4 4 5 6 COOH	
Altrarsäure	Perspektivformel	Enantiomeres	
c1) 1/2 Pkt. Handelt es sich	um D- oder L-Altrarsäure?	D L	
c2) 1 1/2 Pkt. Zeichnen Sie Perspektivformel (Keilst	das in der Fischerprojektion angegebene richformel ergänzen).	e Molekül als	
c3) 1/2 Pkt. Zeichnen Sie die Fischerprojektion des zur dargestellten Altrarsäure enantiomeren Moleküls (Projektion ergänzen).			
	c4) 1 Pkt. Bezeichnen Sie die absolute Konfiguration für die stereogenen Zentren C2 und C4 in der abgebildeten Altrarsäure mit CIP Deskriptoren. C2: R S S S S		
c5) 2 Pkt. Wieviele Stereois	omere mit dieser Konstitution gibt es?		
		Übertrag Aufgabe 3	

Aufgabe 3 (Fortsetzung).

4. Aufgabe (16.5 Pkt)

Aufgabe 4 (Fortsetzung).

L	b) 5 Pkt. (je ½ für richtige Wa Welche der beiden Säuren Welcher Effekt ist dafür ha	ist stärker? (an		
	Vichtgste Effekte:		(, , , , , , , , , , , , , , , , , , ,	
	. Elektronegativität des direkt	an das Proton o	gebunden Atoms.	
2 2 5 6	 Atomgrösse/Polarisierbarkei Hybridisierung des durch De σ-Akzeptor = -I Effekt π-Akzeptor Effekt (-M) π-Donor Effekt (+M) Solvatation (Wechselwirkung Wasserstoffbrücken 	t des direkt an d protonierung er	das Proton gebunden Atoms. ntstehenden lone pairs	
			wichtigster Effekt (1-8)	
	⊕ H₃C—C≡N-H	⊕N-H	(1-0)	
	H_3N OH	\\	O L OH	
		⊕ M ⊦		
		Ш		
	Ů	$\overset{\circ}{\downarrow}$		
	SH	OH		
	COOH COOH		OOH	
		COOH		
	$\bigcup_{HO}^{O} \bigvee_{N} \bigvee_{N}$	O HO N		
			Übertrag Aufgabe 4	

Aufgabe 4 (Fortsetzung).

c) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle bevorzugt protoniert? Zeichnen Sie die konjugate Säure und begründen Sie ihre Antwort.

Begründung

Begründung

d) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle deprotoniert?Zeichnen Sie die konjugate Base und begründen Sie ihre Antwort.

Begründung:

Begründung:

Punkte Aufgabe 4

5. Aufgabe (6 Pkt)

5. Aufgabe (6 Pkt)		
a) 2 Pkt. Wie gross ist die freie Reaktionsenthalpie des Gleichgewichts 3 in		
kJ/mol		
bei 25 °C ? (keine Punkte ohne Lösungsweg!)		
κ ₁		
1) $COOH$ Ph $K_1 = 10$		
СООН		
$\begin{array}{c} K_2 \\ \hline \end{array}$ Ph COOH $K_1 = 1000$		
2) COOH N = 1000		
Ρh		
ΔG_3		
3) ΔG°(3)=kJ/mol?		
Ph Berechnung/Lösungsweg:		
Borosimung/Losungowog.		
b) 2 Pkt. Zeichnen Sie die Konformere von (R)-2-Brombutan in der Newman-		
Projektion. Zeichnen Sie qualitativ ein Energieprofil $[E(\Theta)]$ der Rotation um die		
C(2)-C(3) Bindung (Θ = Diederwinkel C(1)-C(2)-C(3)-C(4), d.h. Θ =0°, wenn die		
Bindungen C(1)-C(2) und C(3)-C(4) verdeckt stehen).		
c)2 Pkt. Das Keto-Enol Gleichgewicht von Cyclohexanon liegt bei 25° bei etwa		
100000 : 1. Der pK _a der Protonen α zur Carbonylgruppe im Keton wird zu		
$pK_a(C-H) = 19$ geschätzt. Was ist der pK_a des OH Protons in der Enolform?		
(keine Punkte ohne Lösungsweg!) OH		
$K_{\rm T} = 10^{-5}$		
in der reinen flüssigen Substanz		
ohne Lösungsmittel		
Keton Enol		
Antwort: pK _a (OH im Enol) =		
Berechnung, Lösungsweg:		
Punkte Aufgabe 5		
	-	

2 Stufen

6. Aufgabe (a-f= je 2.5 Pkt; total 15 Pkt)

Wie würden Sie die nachstehenden Umwandlungen durchführen? Geben Sie **alle** benötigten Reagenzien, Lösungsmittel und allenfalls Katalysatoren an!

Bemerkung: eine Stufe beinhaltet auch die entsprechende Aufarbeitung!

Punkte Aufgabe 6

CH₃

7. Aufgabe (a-e=je 3 Pkt; Struktur: 2.5 Pkt, Typ: 0.5 Pkt; total 15 Pkt)

Welche Hauptprodukte erwarten Sie bei den fo welchen Reaktionstyp, bzw. um welche Namer (Wo erforderlich, Stereochemie angeben!). a) NaBH ₄ CH ₃ OH als Lösungsmittel 20 min 20°		
b) CH ₃ K tert-BuO DMSO, 8 h 50° CI 1 Equiv. Pyridin CH ₂ Cl ₂ als Lsgsm. 16 h 23°	Тур:	
d) COCH ₃ 80% HNO ₃ , 4 h 20°	Тур:	
e) 1) Mg, Et ₂ O 2) 3-Hexanon 3) H ₃ O ⁺ , H ₂ O	Тур:	
	Punkte Aufgabe 7	

8. Aufgabe (a=8 Pkt, b=2 Pkt; total 10 Pkt)

a) Formulieren Sie einen detaillierten Mechanismus für folgende Umsetzung!	
H ₂ N-OH + H Ph EtOH/H ₂ O 1 h, 100°	
Mechanismus:	
b) Ist der neugebildete Heterocyclus aromatisch? ja: nein:	
Begründung (ohne befriedigende Begründung gibt es keine Punkte):	
Punkte Aufgabe 8	

9. Aufgabe (*a=4 Pkt,b=2x3 Pkt; total 10Pkt*)

a) Formulieren Sie einen detaillierten Mechanismus für folgende Umsetzung!

Mechanismus:

b) Wie lautet die Regel von *Markownikow*? Geben Sie ein Anwendungsbeispiel!

Regel:

Anwendungsbeispiel:

Punkte Aufgabe 9