Linear Algebra Crash Course

Sungjun Eom

February 11, 2024

Contents

1	Vector Spaces and Subspaces	3
2	Linear Independence	3
3	Basis, Representation and Orthonormalization 3.1 Basis	3
	3.2 Representation	3
	3.2.1 Vector	3
	3.2.2 Matrix	3
	3.3 Orthonormalization	4
	3.3.1 Orthonormal	4
	3.3.2 Gram-Schmidt process	4
4	Linear Algebraic Equation	4
	4.1 Projection	4
	4.2 Least Square Method	6
	4.3 Generalized Inverses	6
5	Similarity Transformation	9
6	Diagonal Form and Jordan Form	9
	6.1 Eigenvalues and Eigenvectors	9
	6.2 Eigendecomposition	9
	6.3 Multiplicities	9
	6.3.1 Algebraic Multiplicities	9
	6.3.2 Geometric Multiplicities	9
	6.4 Generalized Eigenvectors	9
	6.5 Jordan Form	9
7	Functions of a Square Matrix	9
	7.1 Polynomials	9
	7.2 Cayley-Hamilton Theorem	9
	7.3 Exponentials	9
8	Sylvester's Equation	9
	8.1 Solution with a Vec Operator	9
	8.2 Eigenvalues	9

9	Some Useful Formulas	9
	9.1 Ranks	9
	9.2 Diagonal Expansion	
	9.3 Determinants	
10	Special Matrices	9
	10.1 Symmetric Matrices	9
	10.2 Idempotent Matrices	9
11	Quadratic Forms and Positive Definiteness	9
	11.1 Quadratic Forms	9
	11.2 Positive Definiteness	
12	Singular Value Decomposition	9
	12.1 Singular Value	9
	12.2 Singular Value Decomposition	9
13	Norms of Matrices	9
14	Matrix Calculus	9

1. Vector Spaces and Subspaces

2. Linear Independence

If there are only zero α_i for all i which satisfy the equation below, we say a set of vectors $\{x_1, \ldots, x_n\}$ is linearly independent.

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0 \tag{1}$$

3. Basis, Representation and Orthonormalization

3.1 Basis

Basis is a set of linearly independent vectors $\{x_1, \ldots, x_n\}$ which is used to form an n-dimensional space. \iff Basis $\{x_1, \ldots, x_n\}$ spans n-dimensional space.

3.2 Representation

In this subsection, we restrict vectors to arrays. Representation of vectors and representation of matrices are introduced differently in this article.

3.2.1 Vector

x is a vector whose basis is I. Q is a new basis on which we want to represent the vector. \bar{x} is a representation for the vector x with respect to the basis Q.

$$x = Q\bar{x} \tag{2}$$

We assume the basis Q is formed by stacking linearly independent column vectors q_1, q_2, \ldots, q_n .

$$Q := \begin{bmatrix} q_1 & q_2 & \dots & q_n \end{bmatrix}$$

3.2.2 Matrix

A representation of matrix A is \bar{A} . \bar{A}_i means the i^{th} column of the basis Q.

$$Aq_i = Q\bar{A}_i \tag{3}$$

Why does the representation of a matrix look like this? What we really want to do is actually this: to represent y = Ax in another form $\bar{y} = \bar{A}\bar{x}$. So we should start from the equation y = Ax.

$$y = Ax$$
$$Q\bar{y} = AQ\bar{x}$$

Suppose Q is an $n \times n$ matrix. The matrix Q consists of vectors from the basis so the column vectors of the matrix are linearly independent. Then the matrix Q is invertible.

$$\bar{y} = Q^{-1}AQ\bar{x}$$
$$\bar{y} = \bar{A}\bar{x}$$

¹Actually we cannot say Q is a basis. Q is just a matrix made up of vectors of the basis.

We get the equation:

$$\bar{A} = Q^{-1}AQ \tag{4}$$

Next we go forward to get the equation 3.

$$AQ = Q\bar{A}$$

$$A \begin{bmatrix} q_1 & \dots & q_n \end{bmatrix} = Q \begin{bmatrix} \bar{A}_1 & \dots & \bar{A}_n \end{bmatrix}$$

$$\begin{bmatrix} Aq_1 & \dots & Aq_n \end{bmatrix} = \begin{bmatrix} Q\bar{A}_1 & \dots & Q\bar{A}_n \end{bmatrix}$$

If we choose i^{th} column then we get the equation 3 $Aq_i = Q\bar{A}_i$. (Chen, 2014)

3.3 Orthonormalization

3.3.1 Orthonormal

Two vectors v_1 and v_2 are **orthogonal** if and only if

$$v_1^T v_2 = 0$$

If all orthogonal vectors in a set have magnitude one then we say them orthonormal.

$$||v_i|| = 1$$
 or $v_i^T v_i = 1$

3.3.2 Gram-Schmidt process

Suppose we have vectors e_1, e_2, \ldots, e_n which we want to orthonormalize. The following steps are called Gram-Schmidt processs and are used to make orthonormal vectors q_1, q_2, \ldots, q_n .

$$\begin{aligned} v_1 &:= e_1 & q_1 &:= \frac{v_1}{||v_1||} \\ v_2 &:= e_2 - q_1^T e_2 & q_2 &:= \frac{v_2}{||v_2||} \\ v_3 &:= e_3 - q_1^T e_3 - q_2^T e_3 & q_2 &:= \frac{v_3}{||v_3||} \\ & \vdots & & & \\ v_n &:= e_n - \sum_{i=1}^{n-1} q_i^T e_n & q_n &:= \frac{v_n}{||v_n||} \end{aligned}$$

This process incremently removes the effect of former vectors from the current vector and normalizes the current vector.

4. Linear Algebraic Equation

A linear algebraic equation is:

$$\mathbf{y}_{n\times 1} = \mathbf{A}_{n\times m} \mathbf{x}_{m\times 1} \tag{5}$$

4.1 Projection

Let $\{z_1,\ldots,z_n\}$ be an orthonormal basis for \mathbb{R}^n , $\{z_1,\ldots,z_r\}$ be basis for V, and $\{z_{r+1},\ldots,z_n\}$ be basis for V^{\perp} . Next, we form matrices:

$$Z = \begin{bmatrix} z_1 & \dots & z_n \end{bmatrix}_{n \times n}, \quad Z_1 = \begin{bmatrix} z_1 & \dots & z_r \end{bmatrix}_{n \times r}, \quad Z_2 = \begin{bmatrix} z_{r+1} & \dots & z_n \end{bmatrix}_{n \times n-r}$$

C(Z) means a space spanned by column vectors of Z. Then the equations below hold.

$$\mathbb{R}^n = C(Z) = span(\{z_1, \dots, z_n\}), \quad V = C(Z_1) = span(\{z_1, \dots, z_r\}), \quad V^{\perp} = C(Z_2) = span(\{z_{r+1}, \dots, z_n\})$$

Just to be clear, we write relations between them.

$$V \subset \mathbb{R}^n$$
, $V^{\perp} \subset \mathbb{R}^n$, $V \perp V^{\perp}$

Definition of projection: We say a linear mapping $\pi_V : \mathbb{R}^n \to V$ is a projection onto V when the equation below holds.

$$\forall \mathbf{v} \in V, \quad \forall \mathbf{x} \in \mathbb{R}^n, \quad \langle \mathbf{v}, \pi_V(\mathbf{x}) - \mathbf{x} \rangle = 0$$

Definition of projection matrix: P is a projection matrix when the following equation holds.

$$\pi_V(\mathbf{x}) = P\mathbf{x}$$

 $Z_1Z_1^T$ is a projection matrix onto V. Likewise $Z_2Z_2^T$ is a projection matrix onto V^{\perp} . We verify this: For $\forall \mathbf{x} = Z\alpha \in \mathbb{R}^n$,

$$Z_1 Z_1^T \mathbf{x} = Z_1 Z_1^T Z \alpha$$

$$= Z_1 Z_1^T \begin{bmatrix} Z_1 & Z_2 \end{bmatrix} \alpha$$

$$= Z_1 Z_1^T (Z_1 \alpha_1 + Z_2 \alpha_2)$$

$$= Z_1 Z_1^T Z_1 \alpha_1 + Z_1 Z_1^T Z_2 \alpha_2$$

$$= Z_1 \alpha_1$$

We used the fact that $Z_1^T Z_1 = I$. Also, notice that $I - Z_1 Z_1^T$ is a projection matrix onto V^{\perp} and $I - Z_2 Z_2^T$ is a projection matrix onto V.

In the paragraph above, we only consider the case of orthogonal Zs. The next question which arises will be how we form a projection matrix when the matrices don't have orthonormal column vectors. Although a matrix doesn't have orthonormal columns, we can make them be orthonormal. For example, Gram-Schmidt process. So there is always a matrix $A_{r\times r}$ which converts vectors of a matrix $X_{n\times r}$ to be orthonormal.

$$Z_1 = XA$$

Use what we already know:

$$Z_1 Z_1^T = X A A^T X^T$$
 &s

$$I_r = Z_1^T Z_1 = A^T X^T X A$$

$$\iff (A^T)^{-1} A^{-1} = X^T X$$

$$A A^T = (X^T X)^{-1}$$

Finally, we get the equation below.

$$\therefore Z_1 Z_1^T = X(X^T X)^{-1} X^T$$

This is a projection matrix onto V. Likewise, $I - X(X^TX)^{-1}X^T$ is a projection matrix onto V^{\perp} . We conclude that the projection onto V is:

$$\pi_V(x) = X(X^T X)^{-1} X^T x$$

And its projection matrix is:

$$P_{\pi} = X(X^T X)^{-1} X^T$$

One thing we should keep in mind is that a projection matrix is an idempotent matrix. Refer to 10.2.

4.2 Least Square Method

Consider a linear model $y = X\beta + \epsilon$. We want to minimize the square sum of errors $\epsilon^T \epsilon = \epsilon_1^2 + \cdots + \epsilon_n^2$.

$$e^{T}e = (y - X\beta)^{T}(y - X\beta)$$

$$= \langle y - X\beta, y - X\beta \rangle$$

$$= \langle y - X\beta, y - X\beta \rangle$$

$$= \langle y - \pi_{V}(y) + \pi_{V}(y) - X\beta, y - \pi_{V}(y) + \pi_{V}(y) - X\beta \rangle$$

$$= \langle y - \pi_{V}(y), y - \pi_{V}(y) \rangle + 2 \langle y - \pi_{V}(y), \pi_{V}(y) - X\beta \rangle$$

$$+ \langle \pi_{V}(y) - X\beta, \pi_{V}(y) - X\beta \rangle$$

Because $y - \pi_V(y)$ is in V^{\perp} and $\pi_V(y) - X\beta$ is in $V, \langle y - \pi_V(y), \pi_V(y) - X\beta \rangle$ is zero.

$$e^{T}e = \langle y - \pi_{V}(y), y - \pi_{V}(y) \rangle + \langle \pi_{V}(y) - X\beta, \pi_{V}(y) - X\beta \rangle$$

 $\geq \langle \pi_{V}(y) - X\beta, \pi_{V}(y) - X\beta \rangle$

The square sum of errors is minimized when:

$$\pi_V(y) = X\beta = X(X^T X)^{-1} X^T y$$
$$\beta = (X^T X)^{-1} X^T y$$

Figure 1: Visualization of Least Square Method

4.3 Generalized Inverses

Penrose Conditions: There exists a unique solution X for any A.

$$AXA = A \tag{6}$$

$$XAX = X \tag{7}$$

$$(AX)^* = AX \tag{8}$$

$$(XA)^* = XA \tag{9}$$

X is a Moore-Penrose inverse of A (Penrose, 1955). The matrix X satisfying the conditions above is unique. The equation 6 alone is not unique in general but it is sufficient for most cases. We say the matrix X satisfying the equation 6 is a generalized inverse of A (Searle and Khuri, 2017).

5. Similarity Transformation

6. Diagonal Form and Jordan Form

- 6.1 Eigenvalues and Eigenvectors
- 6.2 Eigendecomposition
- 6.3 Multiplicities
- 6.3.1 Algebraic Multiplicities
- 6.3.2 Geometric Multiplicities
- 6.4 Generalized Eigenvectors
- 6.5 Jordan Form

7. Functions of a Square Matrix

- 7.1 Polynomials
- 7.2 Cayley-Hamilton Theorem
- 7.3 Exponentials
- 8. Sylvester's Equation
- 8.1 Solution with a Vec Operator
- 8.2 Eigenvalues
- 9. Some Useful Formulas
- 9.1 Ranks
- 9.2 Diagonal Expansion
- 9.3 Determinants
- 10. Special Matrices
- 10.1 Symmetric Matrices
- 10.2 Idempotent Matrices

11. Quadratic Forms and Positive Definiteness

- 11.1 Quadratic Forms
- 11.2 Positive Definiteness
- 12. Singular Value Decomposition

References

Chi-Tsong Chen. Linear System Theory and design. Oxford university press, 2014.

R. Penrose. A generalized inverse for matrices. *Mathematical Proceedings of the Cambridge Philosophical Society*, 51(3):406–413, 1955. doi: 10.1017/S0305004100030401.

Shayle R. Searle and Andre I. Khuri. Matrix algebra useful for Statistics. Wiley, 2017.