

# CVA – credit value adjustment



# План презентации



- ✓ Откуда берется Credit Value Adjustment (CVA)
- ✓ Как считается СVA (модели, EAD, PD итд.)
- ✓ Цели расчета CVA
- ✓ Как CVA деск управляет кредитным риском по деривативам
- ✓ PnL explain, PnL predict отчеты
- ✓ Вопросы и ответы

# Откуда берется Credit Value Adjustment (CVA)



#### Типичная деривативная сделка



# Сценарии стоимости сделки в предположении дефолта через 6 месяцев



#### Потери равны рыночной стоимости сделки (Mark-to-Market)



Банк несёт риск дефолта контрагента по заключенным деривативам

# Рынок деривативов



Суммарный номинал всех открытых внебиржевых деривативов в мире, трлн. дол.



Нужен учет риска дефолта контрагента по сделкам с деривативами





#### Как считается CVA





Момент дефолта клиента  $t_i$ 

CVA считается как ожидаемая приведённая стоимость будущих потерь Банка при дефолте клиента

Банк не получает от клиента справедливую стоимость дериватива

Клиент  $-MtM^+(t_i)$  $RR \cdot MtM^+(t_i)$ 

Банк

Банк получает от клиента только Recovery Rate (RR)

$$Profit(t_i) = -MtM^+(t_i) + RR \cdot MtM^+(t_i) = -(1 - RR) \cdot MtM^+(t_i)$$

Discounted Profit 
$$(t_0) = -e^{-rt_i} \cdot (1 - RR) \cdot MtM^+(t_i)$$

Expected Discounting Profit 
$$(t_0) = -\mathbb{E}\left[e^{-rt_i} \cdot (1 - RR) \cdot MtM^+(t_i)\right]$$

*Profit* взвешивается на  $PD(t_{i-1}, t_i)$  — вероятность дефолта между моментами времени  $t_{i-1}$  и  $t_i$ :

$$CVA = -(1 - RR) \cdot \sum_{t_i} \mathbb{E}\left[e^{-rt_i} \cdot MtM^+(t_i)\right] \cdot PD(t_{i-1}, t_i)$$

# CVA считается по всем деривативам на внебиржевом рынке



### Виды инструментов:

Форварды

Опционы (ванильные, экзотические)

Свопы (процентные, валютно-процентные...) и т.д.

#### Базовые активы:

Акции

Процентные ставки

Валюты

Товары и т.д.

#### Способы поставки базовых активов:

Расчетные инструменты

Поставочные инструменты

# Моделирование рыночных факторов



#### **FX Black-Scholes**

Fx forward, Fx swap, Fx option, Asian Fx forward, Asian Fx barrier option **FX Dupire** 

Fx barrier option

#### **Hull-White 1F**

Cap/Floor (vanilla, digital, barrier)
IRS, CIRS, IRS range accrual, IR swaption,
IR FRA, IR Asian FRA, CIR swaption

#### **EQ Black-Scholes**

Eq forward, Eq option, Eq asian option, Eq digital option

#### **EQ** Dupire

Eq barrier option

#### **Com Black-Scholes**

Asian com bar option, Asian com option, Option on portfolio of options

#### Gabillon

Com swap



# Interest Rate

время





$$\frac{dFX}{FX} = (r_{\text{dom}}(t) - r_{\text{for}}(t))dt + \sigma(t)dW$$

$$\frac{dFX}{FX} = (r_{\text{dom}}(t) - r_{\text{for}}(t))dt + \sigma(\mathbf{FX}, t)dW$$

$$dr_t = \alpha(\theta_t - r_t)dt + \sigma_t dW$$

$$S(t) = \frac{S(0) - D(0)}{P(0,t)}X(t) + D(t)$$
, where  $\frac{dX(t)}{X(t)} = \sigma_X(t)dW(t)$ 

$$\frac{dS_t}{S_t} = (r(t) - q(t))dt + \sigma(t)dW$$

$$dF(t,T) = F(t,T)(e^{-\beta(T-t)}\boldsymbol{\sigma}_{S}dW_{S}(t) + (1 - e^{-\beta(T-t)})\boldsymbol{\sigma}_{L}dW_{L}(t))$$

# Как считается Exposure at Default (EAD)





# Типичные временные профили Exposure at Default (EAD)





#### **FX форвард**

Со временем разброс возможных значений для курса увеличивается

#### Процентный своп

С течением времени разброс возможных значений процентной ставки увеличивается, но выплат становится меньше





#### **FX** опцион

T.к. MtM всегда положительный, то EAD = MtM

# CIRS (fixed/fixed) с амортизацией

С течением времени из-за амортизации размеры выплат и соответственно exposure становятся все меньше



# Как уменьшить CVA: неттинг между сделками







# Как уменьшить CVA: маржирование и обеспечение



# Ежедневное маржирование









#### Exposure для портфеля сделок











$$Exposure_t = Max (Mtm_t - collateral, 0)$$

<sup>•</sup> Threshold (порог) – уровень Exposure, ниже которого вариационная маржа не заносится

# PD можно рассчитать через Credit Default Swap (CDS)



CDS (credit default swap) – дериватив, страхующий от дефолта по долгам



#### Goldman Sachs



$$PV_1 = \sum_{i} \left[ e^{-rt_i} \cdot \left( 1 - RR_{cpty} \right) \cdot N \right] \cdot \mathbf{PD}(t_{i-1}, t_i)$$

$$PV_2 = \sum_{i} [e^{-rt_i} \cdot 1/4 \cdot S \cdot N] \cdot (1 - \mathbf{PD}(t_i))$$

$$PV_1 = PV_2$$



N – номинал CDS'а

*R* – Recovery Rate Контрагента

S – CDS spread, т.е. процентная ставка по CDS

 $PD(t_{i-1},t_i)$  – вероятность дефолта на интервале  $[t_{i-1},t_i]$ 

 $PD(t_i)$  – вероятность отсутствия дефолта до момента  $t_i$ 

# PD считаем через внутренние рейтинги, если нет CDS



CDS Клиента = CDS Russia + spread

CDS Russia 220bp \_\_\_\_



Хеджируем

| + spread | Внутренний<br>рейтинг<br>Клиента | Вер-ть<br>дефолта |
|----------|----------------------------------|-------------------|
| -17 bp   | 1                                | 0.02%             |
| -16 bp   | 2                                | 0.037%            |
|          |                                  |                   |
| 0 bp     | 8                                | 0.28%             |
| +9 bp    | 9                                | 0.35%             |
| +17 bp   | 10                               | 0.47%             |
|          |                                  |                   |
| +4351 bp | 25                               | 58%               |
| +7481 bp | 26                               | 100%              |

Диверсифицируем

# Пример расчета CVA для процентного свопа





$$Swap's MTM(0) = \sum_{i=1}^{4} (FloatFlows_i - FixedFlows_i)$$



Swap CVA = 
$$-\sum_{j=1}^{n} \underbrace{E(Swaption\ MTM_{j})}_{EAD} (1 - RR)PD(T_{j-1}, T_{j})$$

Линейный инструмент, с точки зрения CVA, становится нелинейным

# Цели расчета CVA

16



#### 1) Рекомендация Базеля, регуляторное требование по МСФО, РСБУ

#### 2) Корректнее считать Р&L трейдинга

Так как CVA – это ожидаемые потери по деривативу, то требуется учитывать эти потери отчете о прибылях и убытках (в P&L трейдинга)

# Bank's P&L, \$m (when CVA = \$2m)



#### 3) Не терять деньги на ОТС сделках

Чтобы не терять деньги при заключении деривативов, мы добавляем размер CVA к стоимости сделки для клиента. Таким образом, CVA – это поправка к стоимости сделки на размер кредитного риска контрагента

#### Client's price, \$m



# CVA деск





### CVA деск





### Как управлять кредитным риском по деривативам?





$$CVA = (1 - RR) \cdot \sum_{t_i} \mathbb{E}\left[e^{-rt_i} \cdot MtM^+(t_i)\right] \cdot PD(t_{i-1}, t_i)$$

#### 1) Требуется понимать риски

Рыночный риск чувствительность CVA к факторам:

Кредитный риск чувствительность CVA к CDS spread

FX

Eq price

Eq vol итд.

CVA FX delta, CVA Equity delta, CVA Eq vega, CVA CS01

#### 2) Требуется хеджировать эти риски

$$P\&L_{cva}$$
 деска =  $MtM_{\mathrm{хеджирующие}}$  сделки —  $CVA_{\mathrm{портфеля}}$ 

FX delta Equity delta Eq vega CS01

CVA FX delta CVA Equity delta CVA Eq vega CVA CS01



Динамическое управление CVA-резервом позволяет снизить волатильность P&L

### Как CVA деск управляет кредитным риском по деривативам





### Как CVA деск управляет кредитным риском по деривативам





CVA-резерв активно управляется на портфельном уровне CVA-деском

# Участие Блока Риски в расчете CVA





Развитие и поддержка системы NumerixCVA (Центр риск-моделирования финансовых рынков)

Ответственные за публикацию CVA в отчете о прибылях и убытках по РСБУ, МСФО (Центр контроля цен - IPV)

Контроль, мониторинг и выставление лимитов CVA деска (Отдел контроля рыночных рисков)

| FX Exposure, m RUB |      |             |       |       |       |  |
|--------------------|------|-------------|-------|-------|-------|--|
| Limit type         |      | CVA reserve | Hedge | Total | Limit |  |
| FX Delta           | RUB  | 343         | -291  | 52    | 200   |  |
|                    | Hard | 744         | -593  | 151   | 400   |  |
|                    | Soft | 44          | -65   | -21   | 400   |  |
| FX Vega            |      | 2,1         | -2,1  | 0,0   | 4     |  |

# DVA – поправка на кредитный риск Банка



Как Банк включает в цену кредитный риск на контрагента (CVA), так и контрагент желает учесть вероятность дефолта Банка

**Debt Valuation Adjustment (DVA)** – поправка, учитывающая влияние кредитного риска Банка на справедливую стоимость инструмента. Считается аналогично, только рассматриваются ситуации, когда МtM положительный со стороны Клиента. При расчете DVA используется вероятность дефолта Банка.

**Bilateral CVA (BCVA)** – поправка, учитывающая как влияние кредитного риска контрагента, так и кредитного риска Банка на справедливую стоимость инструмента.

«Обычный» CVA иногда обозначается как UCVA (unilateral CVA)

$$BCVA = UCVA - DVA$$

BCVA отражается в отчетности МСФО и РСБУ и деск хеджирует чувствительности DVA к рыночным факторам

### Как анализировать изменения в CVA день ото дня



#### 19-е сентября



BCVA1

20-е сентября

BCVA1 (19 383 980)

#### PnL explain report



#### PnL predict report

#### 20-е сентября



- + CVA греки за 20-е
- + Изменения рыночных данных между 20 и 21



21-е сентября

?

#### Резюме



CVA - это поправка на размер кредитного риска контрагента

Является обязательным компонентом для внебиржевых деривативов

Включается в стоимость деривативов для клиентов

Имеет нефиксированный Exposure, который зависит от эволюции рыночных риск-факторов

Позволяет учитывать обеспечение и неттинг сделок внутри соглашений

Требуется для корректного расчета P&L, активного управления кредитным риском, контроля лимитов рыночных рисков и выполнения требований регулятора

# **Appendix**



### Опцион на портфель опционов





Основное требование к модели: прайсинг опциона на портфель должен быть в соответствии с прайсингом портфеля дочерних опционов:

Отдельные симуляции для каждого опциона Неттинг между отдельными симуляциями AMC

#### Проверки:

1) Strike = 0.

Опцион на портфель равен портфелю опционов

- 2) Strike ->  $\infty$
- 3) Call Put = Portfolio DiscStrike
- 4) Mtm, греки в NxCVA = Mtm, греки в Murex для набора сделок

# Вероятность дефолта до момента времени Т или за период



$$\begin{array}{c|c}
PD = \lambda dt \\
\hline
 & \downarrow \\
0 & dt & T
\end{array}$$

$$\lambda dt + (1 - \lambda dt)\lambda dt + (1 - \lambda dt)^2\lambda dt + \dots = \lambda dt \frac{1 - (1 - \lambda dt)^{\frac{T}{dt}}}{1 - (1 - \lambda dt)} = 1 - e^{-\lambda T}$$

Вероятность дефолта к моменту T:  $PD = 1 - e^{-\lambda T}$ 

Значит вероятность задефолтить на участке  $[t_{i-1};t_i]$  равна  $(e^{-\lambda t_{i-1}})*\lambda(t_i-t_{i-1})$ 

# Упрощенный расчет CVA на примере облигации



CVA: бескупонная облигация на 1 год



Корпоративная облигация (с риском дефолта)

$$P(0) = N \cdot DF(0,T) \cdot ((1 - PD) + RR \cdot PD) = N \cdot DF(0,T) \cdot (e^{-\lambda T} + RR \cdot (1 - e^{-\lambda T}))$$

Государственная облигация (предположим без риска дефолта)

$$P_G(0) = N \cdot DF(0,T)$$

$$N$$
 – номинал  $\lambda$  – интенсивность дефолта  $PD$  – вероятность дефолта  $NPD$  – вероятность выживания  $R$  – recovery rate

$$P(0) - P_G(0) = -N \cdot DF(0,T) \cdot (1 - e^{-\lambda T}) \cdot (1 - RR)$$

$$EAD \qquad PD \qquad LGD$$

$$CVA$$

B CVA для облигации особого смысла не имеет Это тривиально, так как бонд всегда имеет положительную стоимость

# Вероятности дефолта можно рассчитать через облигации



#### Однолетняя облигация



N – номинал облигации  $\lambda$  – интенсивность дефолта PD – вероятность дефолта NPD – вероятность выживания R – recovery rate

$$P(T) = N \cdot (1 - PD) \cdot 1 + N \cdot PD \cdot RR$$

PD – вероятность дефолта с интенсивностью дефолта  $\lambda$ 

$$PD = \lambda dt$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad PD(T) = 1 - e^{-\lambda T}$$

$$0 \quad dt \quad T$$

$$P(0) = N \cdot e^{-rT} \cdot \left( e^{-\lambda T} + RR \cdot \left( 1 - e^{-\lambda T} \right) \right)$$

Зная P(0) получаем  $\lambda$ 

# Wrong way risk



**Wrong Way Risk (WWR)** – риск, возникающий, когда вместе с ростом стоимости инструмента ухудшается кредитное качество контрагента.

#### Специфический WWR

кредитное качество контрагента и стоимость инструмента зависят от одних факторов, связанных со спецификой деятельности самой компании

#### Общий WWR

кредитное качество контрагента связано с теми же общими макроэкономическими факторами, которые оказывают влияние на стоимость инструмента

#### Примеры

**Контрагент является эмитентом базового актива** Покупка страховки (например, put опциона или CDS) на компанию у самой же компании или дочерней компании

# Один из эмитентов в корзине базовых активов является контрагентом

Использование акций компании в качестве обеспечения по сделке с этой же компанией

# Эмитент базового актива из той же страны и индустрии, что и контрагент

Покупка страховки (например, put опциона или CDS) на банк у другого банка

# Базовый актив скоррелирован с теми же рыночными факторами, что и контрагент

Покупка валютного USDRUB свопа, обменивающего рубли на доллары, у компании, получающей выручку в рублях

# CVA vs Expected Loss по кредитам



Расчет EL по кредитам и CVA по деривативам схожи по структуре, но отличаются по смыслу и способу моделирования EAD, PD и LGD

### Расчёт EL по кредитам



Упрощенный расчет EAD, например не учитывает временную структуру

Не моделирует динамику PD, определяется по внутренним методикам Банка

Создаются резервы, активное управление не предполагается

#### Расчёт CVA по деривативам



Моделируется уровень EAD: учитывает временную структуру, учитывается эволюция рыночных факторов Учитывается PD в каждом временном интервале Предполагается возможность активного управления: хеджирование кредитного риска