Higher: Bonding and Structure

Bonding Continuum
Covalent bonding
Covalent bonding
Diagram:
Pure covalent bonding
Covalent bonding in which there is difference in
between the atoms in the bond. Electrons are
shared between the atoms.
Diagram:

Polar covalent bonding

Covalent bonding i	n which there is a	diffe	rence in
·	between the atom	ns in the bond.	Electrons are
found	to the		
atom in the bond.			
Diagram:			
Ionic bonding			
Electrostatic attrac	tion between		
ions. The difference	e in	is so	
that electrons are f	ully	from the	
	atom to the		
atom.			

	lonic bonding	Polar covalent	Pure covalent bond
Elements			
Electronegativity difference			
Electron location			

 $A - CaCl_2$ $B - CaBr_2$ $C - CaF_2$

Polar covalent bonds vs polar covalent molecules

A molecule can have polar covalent bonds but this does not necessarily mean the molecule itself is polar.

Polar molecules:

- E.g.

Non-polar molecules:

E.g.

OR

- E.g.

Sort these molecules into polar and non-polar

- Silicon tetrafluoride
- Phosphorus chloride
- Sulfur hydride
- Carbon monoxide

Intermolecular Forces
Intramolecular forces:
Intermolecular forces:
There are three types of intermolecular forces, also called forces:
•
London dispersion forces London dispersion forces

Diagram:	
Permanent dipole-permanent dipole interactions	
Permanent dipole-permanent dipole interactions	
Diagram:	
Hydrogen bonding Hydrogen bonding	

?

Strength of intermolecular forces:

_____>____>

Which type of intermolecular force is it?

- A) Hydrogen chloride
- B) Carbon dioxide
- C) Carbon monoxide
- D) Silicon tetrachloride
- E) Nitrogen hydride
- F) Ethanol

Properties due to bonding

Properties of molecular substances can be explained and predicted by looking at the intermolecular forces present. When comparing different substances it is important to compare substances with similar number of electrons to eliminate the effect of London Dispersion Forces (unless this is the only force present).

Melting and boiling points

When a substance is heated to melt or boil ...

London dispersion forces and the Noble gases:

Noble gas	Melting point
Helium	
Neon	
Argon	
Kyrpton	

Hydrogen bonding and anomalies:

Group 6 hydrid	de Boiling point
Oxygen	
Sulfur	
Selenium	
Tellurium	

Comparing compounds (boiling points):

Butane = propanone =

Explain why iodine monochloride has a higher melting point than bromine.

Viscosity

Viscosity is ...

A marble is dropped into a tube of ethanol and another is dropped into a tube of propanone. Explain what would happen.

Solubility/miscibility
Soluble:
nsoluble:
Miscibility:
Substances that are(,
solvents such as
Substances that are are soluble in
solvents such as
Explain why carbon tetrachloride is less soluble in water than carbon trichloride.