2021 AMC 10A Problems/Problem 11

Contents

- 1 Problem
- 2 Solution 1 (Factor)
- 3 Solution 2 (Vertical Subtraction)
- 4 Solution 3 (Answer Choices)
- 5 Video Solution (Simple and Quick)
- 6 Video Solution
- 7 Video Solution
- 8 Video Solution by TheBeautyofMath
- 9 See Also

Problem

For which of the following integers b is the base-b number 2021_b-221_b not divisible by 3?

(A) 3

- **(B)** 4
- **(C)** 6
- **(D)** 7
- **(E)** 8

Solution 1 (Factor)

We have

$$2021_b - 221_b = (2021_b - 21_b) - (221_b - 21_b)$$
$$= 2000_b - 200_b$$
$$= 2b^3 - 2b^2$$
$$= 2b^2(b-1),$$

which is divisible by 3 unless $b \equiv 2 \pmod{3}$. The only choice congruent to 2 modulo 3 is $\pmod{8}$

~MRENTHUSIASM

Solution 2 (Vertical Subtraction)

Vertically subtracting $2021_b - 221_b$, we see that the ones place becomes 0, and so does the b^1 place. Then, we perform a carry (make sure the carry is in base b). Let b-2=A. Then, we have our final number as

$$1A00_{h}$$

Now, when expanding, we see that this number is simply $b^3-(b-2)^2$.

Now, notice that the final number will only be congruent to

$$b^3 - (b-2)^2 \equiv 0 \pmod{3}$$
.

If either $b\equiv 0\pmod 3$, or if $b\equiv 1\pmod 3$ (because note that $(b-2)^2$ would become $\equiv 1\pmod 3$, and b^3 would become $\equiv 1\pmod 3$ as well, and therefore the final expression would become $1-1\equiv 0\pmod 3$. Therefore, b must be $\equiv 2\pmod 3$. Among the answers, only 8 is $\equiv 2\pmod 3$, and therefore our answer is $\boxed{(\mathbf E)\ 8}$.

~icecreamrolls8

Solution 3 (Answer Choices)

By the definition of bases, we have

$$2021_b - 221_b = (2b^3 + 2b + 1) - (2b^2 + 2b + 1).$$

For values b_1^- and b_2^- such that $b_1 \equiv b_2 \pmod 3$, we get

$$(2b_1^3 + 2b_1 + 1) - (2b_1^2 + 2b_1 + 1) \equiv (2b_2^3 + 2b_2 + 1) - (2b_2^2 + 2b_2 + 1) \pmod{3}.$$

Note that answer choices $(\mathbf{A}), (\mathbf{B}), (\mathbf{C}), (\mathbf{D}), (\mathbf{E})$ are congruent to 0, 1, 0, 1, 2 modulo 3, respectively. So, (\mathbf{A}) and (\mathbf{C}) are either both correct or both incorrect. Since there is only one correct answer, (\mathbf{A}) and (\mathbf{C}) are both incorrect. Similarly, (\mathbf{B}) and (\mathbf{D}) are both incorrect. This leaves us with (\mathbf{E}) 8, the answer choice with a unique residue modulo 3.

~emerald_block ~MRENTHUSIASM

Video Solution (Simple and Quick)

https://youtu.be/1TZ1uI9z8fU

~ Education, the Study of Everything

Video Solution

https://www.youtube.com/watch?v=XBfRVYx64dA&list=PLexHyfQ8DMuKqltG3cHT7Di4jhVl6L4YJ&index=10

~North America Math Contest Go Go Go

Video Solution

https://youtu.be/zYluBXDhJJA

~savannahsolver

Video Solution by TheBeautyofMath

https://youtu.be/t-EEP2V4nAE

~IceMatrix

See Also

2021 AMC 10A (Problems · Answer Key · Resources (http://www.artofproblemsolving.com/community/c1 3))	
Preceded by Problem 10	Followed by Problem 12
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25	
All AMC 10 Problems and Solutions	

The problems on this page are copyrighted by the Mathematical Association of America (http://www.maa.org)'s American

Mathematics Competitions (http://amc.maa.org).

Retrieved from "https://artofproblemsolving.com/wiki/index.php?title=2021_AMC_10A_Problems/Problem_11&oldid=168933"

Copyright © 2022 Art of Problem Solving