Representation of Quivers

Chanelle Lee Student ID: 200646370 Supervisor: William Crawley-Boevey

November 15, 2014

Contents

1	Introduction	;
2	Homological Algebra	4
	2.1 Chain Complexes	4

Chapter 1

Introduction

Chapter 2

Homological Algebra

2.1 Chain Complexes

Definition 2.1.1. A chain complex C consists of a sequence of \mathbb{R} -modules C_i and homomorphisms of the form,

$$\dots \xrightarrow{C}_2 \xrightarrow{\delta_2} C_1 \xrightarrow{\delta_1} C_0 \xrightarrow{\delta_0} C_{-1} \xrightarrow{\delta_{-1}} C_{-2} \xrightarrow{\cdot} \dots$$

such that $\delta_{n-1}\delta_n=0$ for all n, i.e. the composition of any two consecutive maps is zero. The maps δ_n are called the *differentials* of C.

Remark 2.1.2. It is convention that the map δ_n starts at C_n .

Definition 2.1.3. If C is a chain complex then its *homology* is defined to be,

$$H_n(C) = \frac{Ker(\delta_n : C_n \to C_{n-1})}{Im(\delta_{n+1} : C_{n+1} \to C_n)} = \frac{Z_n(C)}{B_n(C)}.$$