

(https://www.bigdatauniversity.com)

COLLABORATIVE FILTERING

Recommendation systems are a collection of algorithms used to recommend items to users based on information taken from the user. These systems have become ubiquitous can be commonly seen in online stores, movies databases and job finders. In this notebook, we will explore recommendation systems based on Collaborative Filtering and implement simple version of one using Python and the Pandas library.

Table of contents

- 1. Acquiring the Data
- 2. Preprocessing
- 3. Collaborative Filtering

Acquiring the Data

To acquire and extract the data, simply run the following Bash scripts:

Dataset acquired from <u>GroupLens (http://grouplens.org/datasets/movielens/)</u>. Lets download the dataset. To download the data, we will use <u>!wget</u> to download it from IBM Object Storage.

Did you know? When it comes to Machine Learning, you will likely be working with large datasets. As a business, where can you host your data? IBM is offering a unique opportunity for businesses, with 10 Tb of IBM Cloud Object Storage:

<u>Sign up now for free (http://cocl.us/ML0101EN-IBM-Offer-CC)</u>

Стор. 1 з 14 06.02.2020, 21:12

```
In [1]: | !wget -O moviedataset.zip https://s3-api.us-geo.objectstorage.softlayer.net/cf-c
       ourses-data/CognitiveClass/ML0101ENv3/labs/moviedataset.zip
       print('unziping ...')
       !unzip -o -j moviedataset.zip
        --2020-02-06 20:04:09-- https://s3-api.us-geo.objectstorage.softlayer.net/cf-
       courses-data/CognitiveClass/ML0101ENv3/labs/moviedataset.zip
       Resolving s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstora
       ge.softlayer.net)... 67.228.254.196
       Connecting to s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objects
       torage.softlayer.net) | 67.228.254.196 | :443... connected.
       HTTP request sent, awaiting response... 200 OK
       Length: 160301210 (153M) [application/zip]
       Saving to: 'moviedataset.zip'
       moviedataset.zip
                          in 7.4s
        2020-02-06 20:04:17 (20.7 MB/s) - 'moviedataset.zip' saved [160301210/16030121
       unziping ...
       Archive: moviedataset.zip
          inflating: links.csv
         inflating: movies.csv
         inflating: ratings.csv
          inflating: README.txt
          inflating: tags.csv
```

Now you're ready to start working with the data!

Preprocessing

First, let's get all of the imports out of the way:

```
In [2]: #Dataframe manipulation library
import pandas as pd
#Math functions, we'll only need the sqrt function so let's import only that
from math import sqrt
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

Now let's read each file into their Dataframes:

```
In [4]: #Storing the movie information into a pandas dataframe
    movies_df = pd.read_csv('movies.csv')
    #Storing the user information into a pandas dataframe
    ratings_df = pd.read_csv('ratings.csv')
```

Let's also take a peek at how each of them are organized:

Стор. 2 з 14 06.02.2020, 21:12

```
In [5]: #Head is a function that gets the first N rows of a dataframe. N's default is 5.
          movies_df.head()
Out[5]:
              movield
                                             title
                                                                                  aenres
                                   Toy Story (1995) Adventure|Animation|Children|Comedy|Fantasy
           0
                    1
                   2
                                                                  Adventure|Children|Fantasy
           1
                                    Jumanji (1995)
           2
                   3
                            Grumpier Old Men (1995)
                                                                         Comedy|Romance
           3
                             Waiting to Exhale (1995)
                                                                   Comedy|Drama|Romance
                   4
```

Comedy

So each movie has a unique ID, a title with its release year along with it (Which may contain unicode characters) and several different genres in the same field. Let's remove the year from the title column and place it into its own one by using the handy <a href="mailto:extract(http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.str.extract.html/pandas.Series.str.extract), function that Pandas has.

Let's remove the year from the title column by using pandas' replace function and store in a new year column.

5 Father of the Bride Part II (1995)

```
In [6]: #Using regular expressions to find a year stored between parentheses
#We specify the parantheses so we don't conflict with movies that have years in
their titles
movies_df['year'] = movies_df.title.str.extract('(\d\d\d\d\))', expand=False)
#Removing the parentheses
movies_df['year'] = movies_df.year.str.extract('(\d\d\d\d\d\)', expand=False)
#Removing the years from the 'title' column
movies_df['title'] = movies_df.title.str.replace('(\d\d\d\d\d\))', '')
#Applying the strip function to get rid of any ending whitespace characters that
may have appeared
movies_df['title'] = movies_df['title'].apply(lambda x: x.strip())
```

Let's look at the result!

```
In [7]: movies_df.head()
Out[7]:
                                          title
               movield
                                                                                  genres
                                                                                          year
            0
                                               Adventure|Animation|Children|Comedy|Fantasy
                     1
                                      Toy Story
                                                                                          1995
            1
                     2
                                                                Adventure|Children|Fantasy
                                       Jumanji
                                                                                          1995
            2
                     3
                              Grumpier Old Men
                                                                        Comedy|Romance 1995
            3
                               Waiting to Exhale
                                                                  Comedy|Drama|Romance 1995
                     5 Father of the Bride Part II
                                                                                 Comedy 1995
```

With that, let's also drop the genres column since we won't need it for this particular recommendation system.

```
In [8]: #Dropping the genres column
movies_df = movies_df.drop('genres', 1)
```

Here's the final movies dataframe:

Стор. 3 з 14 06.02.2020, 21:12

```
In [9]: movies_df.head()
Out[9]:
               movield
                                         title year
           0
                                     Toy Story
                    1
                                              1995
           1
                    2
                                              1995
                                      Jumanji
           2
                    3
                             Grumpier Old Men 1995
           3
                              Waiting to Exhale 1995
                    4
                    5 Father of the Bride Part II 1995
```

Next, let's look at the ratings dataframe.

```
In [10]: ratings_df.head()
Out[10]:
              userld movield rating
                                     timestamp
                                2.5 1204927694
           0
                         169
            1
                   1
                        2471
                                3.0 1204927438
                       48516
                   1
                                5.0 1204927435
                        2571
                                3.5 1436165433
                      109487
                                4.0 1436165496
```

Every row in the ratings dataframe has a user id associated with at least one movie, a rating and a timestamp showing when they reviewed it. We won't be needing the timestamp column, so let's drop it to save on memory.

```
In [11]: #Drop removes a specified row or column from a dataframe
    ratings_df = ratings_df.drop('timestamp', 1)
```

Here's how the final ratings Dataframe looks like:

```
In [12]: ratings_df.head()
Out[12]:
               userld movield rating
            0
                   1
                         169
                                 2.5
            1
                   1
                        2471
                                 3.0
                       48516
                   1
                                 5.0
            3
                   2
                         2571
                                 3.5
                      109487
                                 4.0
```

Collaborative Filtering

Стор. 4 з 14 06.02.2020, 21:12

Now, time to start our work on recommendation systems.

The first technique we're going to take a look at is called **Collaborative Filtering**, which is also known as **User-User Filtering**. As hinted by its alternate name, this technique uses other users to recommend items to the input user. It attempts to find users that have similar preferences and opinions as the input and then recommends items that they have liked to the input. There are several methods of finding similar users (Even some making use of Machine Learning), and the one we will be using here is going to be based on the **Pearson Correlation Function**.

The process for creating a User Based recommendation system is as follows:

- · Select a user with the movies the user has watched
- Based on his rating to movies, find the top X neighbours
- Get the watched movie record of the user for each neighbour.
- Calculate a similarity score using some formula
- · Recommend the items with the highest score

Let's begin by creating an input user to recommend movies to:

Notice: To add more movies, simply increase the amount of elements in the userInput. Feel free to add more in! Just be sure to write it in with capital letters and if a movie starts with a "The", like "The Matrix" then write it in like this: 'Matrix, The'.

Out[13]:

	title	rating
0	Breakfast Club, The	5.0
1	Toy Story	3.5
2	Jumanji	2.0
3	Pulp Fiction	5.0
4	Akira	4.5

Add movield to input user

With the input complete, let's extract the input movies's ID's from the movies dataframe and add them into it.

We can achieve this by first filtering out the rows that contain the input movies' title and then merging this subset with the input dataframe. We also drop unnecessary columns for the input to save memory space.

Стор. 5 з 14 06.02.2020, 21:12

```
In [14]: #Filtering out the movies by title
    inputId = movies_df[movies_df['title'].isin(inputMovies['title'].tolist())]
    #Then merging it so we can get the movieId. It's implicitly merging it by title.
    inputMovies = pd.merge(inputId, inputMovies)
    #Dropping information we won't use from the input dataframe
    inputMovies = inputMovies.drop('year', 1)
    #Final input dataframe
    #If a movie you added in above isn't here, then it might not be in the original
    #dataframe or it might spelled differently, please check capitalisation.
    inputMovies
```

Out[14]:

	movield	title	rating	
0	1	Toy Story 3		
1	2	Jumanji	i 2.0	
2	296	Pulp Fiction		
3	1274	Akira	4.5	
4	1968	Breakfast Club, The	5.0	

The users who has seen the same movies

Now with the movie ID's in our input, we can now get the subset of users that have watched and reviewed the movies in our input.

```
In [15]: #Filtering out users that have watched movies that the input has watched and sto
    ring it
    userSubset = ratings_df[ratings_df['movieId'].isin(inputMovies['movieId'].tolist
    ())]
    userSubset.head()
```

Out[15]:

	userld	movield	rating
19	4	296	4.0
441	12	1968	3.0
479	13	2	2.0
531	13	1274	5.0
681	14	296	2.0

We now group up the rows by user ID.

```
In [16]: #Groupby creates several sub dataframes where they all have the same value in th
    e column specified as the parameter
    userSubsetGroup = userSubset.groupby(['userId'])
```

lets look at one of the users, e.g. the one with userID=1130

Стор. 6 з 14 06.02.2020, 21:12

In [17]: userSubsetGroup.get_group(1130)

Out[17]:

	userId	movield	rating
104167	1130	1	0.5
104168	1130	2	4.0
104214	1130	296	4.0
104363	1130	1274	4.5
104443	1130	1968	4.5

Let's also sort these groups so the users that share the most movies in common with the input have higher priority. This provides a richer recommendation since we won't go through every single user.

```
In [18]: #Sorting it so users with movie most in common with the input will have priority
    userSubsetGroup = sorted(userSubsetGroup, key=lambda x: len(x[1]), reverse=Tru
    e)
```

Now lets look at the first user

```
In [19]: userSubsetGroup[0:3]
Out[19]: [(75,
                 userId movieId rating
          7507
                  75 1 5.0
                  75
                          2
          7508
                                3.5
                 75 296
75 1274
75 1968
          7540
                                5.0
         7633 75
7673 75
9083 106
9084 106
9115 106
9198 106
                                4.5
                               5.0), (106, userId movieId rating
                        1
2
                                2.5
                                3.0
                         296
                                3.5
                       1274
                                3.0
                       1968
                106
          9238
                                3.5), (686, userId movieId rating
          61336 686 1
                                 4.0
          61337
                 686
                           2
                                 3.0
                         296
          61377 686 296
61478 686 1274
61569 686 1968
                                 4.0
                                 4.0
                                 5.0)]
```

Стор. 7 з 14 06.02.2020, 21:12

Similarity of users to input user

Next, we are going to compare all users (not really all !!!) to our specified user and find the one that is most similar. we're going to find out how similar each user is to the input through the **Pearson Correlation Coefficient**. It is used to measure the strength of a linear association between two variables. The formula for finding this coefficient between sets X and Y with N values can be seen in the image below.

Why Pearson Correlation?

Pearson correlation is invariant to scaling, i.e. multiplying all elements by a nonzero constant or adding any constant to all elements. For example, if you have two vectors X and Y,then, pearson(X, Y) == pearson(X, 2 * Y + 3). This is a pretty important property in recommendation systems because for example two users might rate two series of items totally different in terms of absolute rates, but they would be similar users (i.e. with similar ideas) with similar rates in various scales.

$$r = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}}$$

The values given by the formula vary from r = -1 to r = 1, where 1 forms a direct correlation between the two entities (it means a perfect positive correlation) and -1 forms a perfect negative correlation.

In our case, a 1 means that the two users have similar tastes while a -1 means the opposite.

We will select a subset of users to iterate through. This limit is imposed because we don't want to waste too much time going through every single user.

```
In [20]: userSubsetGroup = userSubsetGroup[0:100]
```

Now, we calculate the Pearson Correlation between input user and subset group, and store it in a dictionary, where the key is the user Id and the value is the coefficient

Стор. 8 з 14 06.02.2020, 21:12

```
In [21]: #Store the Pearson Correlation in a dictionary, where the key is the user Id and
         the value is the coefficient
         pearsonCorrelationDict = {}
         #For every user group in our subset
         for name, group in userSubsetGroup:
             #Let's start by sorting the input and current user group so the values aren'
         t mixed up later on
             group = group.sort_values(by='movieId')
             inputMovies = inputMovies.sort_values(by='movieId')
             #Get the N for the formula
             nRatings = len(group)
             #Get the review scores for the movies that they both have in common
             temp_df = inputMovies[inputMovies['movieId'].isin(group['movieId'].tolist
         ())]
             #And then store them in a temporary buffer variable in a list format to faci
         litate future calculations
             tempRatingList = temp_df['rating'].tolist()
             #Let's also put the current user group reviews in a list format
             tempGroupList = group['rating'].tolist()
             #Now let's calculate the pearson correlation between two users, so called, x
             Sxx = sum([i**2 for i in tempRatingList]) - pow(sum(tempRatingList),2)/float
             Syy = sum([i**2 for i in tempGroupList]) - pow(sum(tempGroupList),2)/float(n)
             Sxy = sum( i*j for i, j in zip(tempRatingList, tempGroupList)) - sum(tempRat
         ingList)*sum(tempGroupList)/float(nRatings)
             #If the denominator is different than zero, then divide, else, 0 correlatio
         n.
             if Sxx != 0 and Syy != 0:
                pearsonCorrelationDict[name] = Sxy/sqrt(Sxx*Syy)
             else:
                 pearsonCorrelationDict[name] = 0
```

Стор. 9 з 14 06.02.2020, 21:12

```
In [22]: | pearsonCorrelationDict.items()
Out[22]: dict_items([(75, 0.8272781516947562), (106, 0.5860090386731182), (686, 0.83205
                           02943378437), (815, 0.5765566601970551), (1040, 0.9434563530497265), (1130, 0.
                            2891574659831201), (1502, 0.8770580193070299), (1599, 0.4385290096535153), (16
                            25, 0.716114874039432), (1950, 0.179028718509858), (2065, 0.4385290096535153),
                            (2128, 0.5860090386731196), (2432, 0.1386750490563073), (2791, 0.8770580193070
                            262819713973)\,,\,\, (3040\,,\,\, 0.89514359254929)\,,\,\, (3186\,,\,\, 0.6784622064861935)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3186\,,\,\, 0.6784622064861935)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3186\,,\,\, 0.6784622064861935)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3186\,,\,\, 0.6784622064861935)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3186\,,\,\, 0.6784622064861935)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3186\,,\,\, 0.6784622064861935)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3186\,,\,\, 0.6784622064861935)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3186\,,\,\, 0.6784622064861935)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3186\,,\,\, 0.6784622064861935)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3186\,,\,\, 0.6784622064861935)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3271\,,\,\, 0.89514359254929)\,,\,\, (3271\,,\,\, 0.89514492929)\,,\,\, (3271\,,\,\, 0.89514492929)\,,\,\, (3271\,,\,\, 0.89514492929)\,,\,\, (3271\,,\,\, 0.89514492929)\,,\,\, (3271\,,\,\, 0.89514492929)\,,\,\, (3271\,,\,\, 0.89514492929)\,,\,\, (3271\,,\,\, 0.89514492929)\,,\,\, (3271\,,\,\, 0.89514492929)\,,\,\, (3271\,,\,\, 0.89514492929)\,,\,\, (3271\,,\,\, 0.89514492929)\,,\,\, (3271\,,\,\, 0.89514492929)\,,\,\, (3271\,,\,\, 0.89514492929)\,,\,\, (3271\,,\,\, 0.89514492929)\,,\,\, (3271\,,\,\, 0.89514492929)\,,\,\, (3271\,,\,\, 0.89514492929)\,,\,\, (3271\,,\,\, 0.89514492929)\,,\,\, (3271\,,\,\, 0.89514492929)\,,\,\, (3271\,,\,\, 0.89514492929)\,,\,\, (3271\,,\,\, 0.89514492929)\,,\,\, (3271\,,\,\, 0.8951492929)\,,\,\, (3271\,,\,\, 0.8951492929)\,,\,\, (3271\,,\,\, 0.8951492929)\,,\,\, (3271\,,\,\, 0.8951492929)\,,\,\, (3271\,,\,\, 0.8951492929)\,,\,\, (3271\,,\,\, 0.8951492929)\,,\,\, (3271\,,\,\, 0.8951492929)\,,\,\, (3271\,,\,\, 0
                            26989594817970664), (3429, 0.0), (3734, -0.15041420939904673), (4099, 0.058600
                            90386731196), (4208, 0.29417420270727607), (4282, -0.4385290096535115), (4292,
                            5), (4725, -0.08006407690254357), (4818, 0.4885967564883424), (5104, 0.7674257
                            0.04728779924109591), (6207, 0.9615384615384616), (6366, 0.6577935144802716),
                            0.11720180773462363), (7641, 0.7161148740394331), (7996, 0.626600514784504),
                            (8008, -0.22562131409856986), (8086, 0.6933752452815365), (8245, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0), (8572, 0.0
                            0.8600261451922278), (8675, 0.5370861555295773), (9101, -0.08600261451922278),
                            (9358, 0.692178738358485), (9663, 0.193972725041952), (9994, 0.503027272865958
                            7), (10248, -0.24806946917841693), (10315, 0.537086155529574), (10368, 0.46880
                            72309384945), (10607, 0.41602514716892186), (10707, 0.9615384615384616), (1086
                            3, 0.6020183016345595), (11314, 0.8204126541423654), (11399, 0.51726060011187
                            2), (11769, 0.9376144618769914), (11827, 0.4902903378454601), (12069, 0.0), (1
                            2120, 0.9292940047327363), (12211, 0.8600261451922278), (12325, 0.961678311508
                            1544), (12916, 0.5860090386731196), (12921, 0.6611073566849309), (13053, 0.960
                            7689228305227), (13142, 0.6016568375961863), (13260, 0.7844645405527362), (133
                            66, 0.8951435925492911), (13768, 0.8770580193070289), (13888, 0.25087260300212
                            72), (13923, 0.3516054232038718), (13934, 0.17200522903844556), (14529, 0.7417
                            901772340937), (14551, 0.537086155529574), (14588, 0.21926450482675766), (1498
                            4, 0.716114874039432), (15137, 0.5860090386731196), (15157, 0.903584106498597
                            4), (15466, 0.7205766921228921), (15670, 0.516015687115336), (15834, 0.2256213
                            1409856986), (16292, 0.6577935144802716), (16456, 0.7161148740394331), (16506,
                            0.5481612620668942), (17246, 0.48038446141526137), (17438, 0.709316988616438)
                            7), (17501, 0.8168748513121271), (17502, 0.8272781516947562), (17666, 0.768923
                            8340176859), (17735, 0.7042381820123422), (17742, 0.3922322702763681), (17757,
                            0.64657575013984)\,,\,\,(17854,\,\,0.537086155529574)\,,\,\,(17897,\,\,0.8770580193070289)\,,\,\,(1897,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.8770580193070289)\,,\,\,(1997,\,\,0.877058019070289)\,,\,\,(1997,\,\,0.877058019070289)\,,\,\,(1997,\,\,0.877058019070289)\,,\,\,(1997,\,\,0.87705801907029)\,,\,\,(1997,\,\,0.87705801907029)\,,\,\,(1997,\,\,0.87705801907029)\,,\,\,(1997,\,\,0.877058
                            7944, 0.2713848825944774), (18301, 0.29838119751643016), (18509, 0.13222147133
                           69862)])
In [23]: pearsonDF = pd.DataFrame.from_dict(pearsonCorrelationDict, orient='index')
                           pearsonDF.columns = ['similarityIndex']
                           pearsonDF['userId'] = pearsonDF.index
                           pearsonDF.index = range(len(pearsonDF))
                            pearsonDF.head()
```

Out[23]:

	similarityIndex	userld
0	0.827278	75
1	0.586009	106
2	0.832050	686
3	0.576557	815
4	0.943456	1040

The top x similar users to input user

Now let's get the top 50 users that are most similar to the input.

Ctop. 10 3 14 06.02.2020, 21:12

Now, let's start recommending movies to the input user.

0.943456

1040

Rating of selected users to all movies

We're going to do this by taking the weighted average of the ratings of the movies using the Pearson Correlation as the weight. But to do this, we first need to get the movies watched by the users in our **pearsonDF** from the ratings dataframe and then store their correlation in a new column called _similarityIndex". This is achieved below by merging of these two tables.

```
In [25]: topUsersRating=topUsers.merge(ratings_df, left_on='userId', right_on='userId', h
    ow='inner')
    topUsersRating.head()
```

Out[25]:

	similarityIndex	userld	movield	rating
0	0.961678	12325	1	3.5
1	0.961678	12325	2	1.5
2	0.961678	12325	3	3.0
3	0.961678	12325	5	0.5
4	0.961678	12325	6	2.5

Now all we need to do is simply multiply the movie rating by its weight (The similarity index), then sum up the new ratings and divide it by the sum of the weights.

We can easily do this by simply multiplying two columns, then grouping up the dataframe by movield and then dividing two columns:

It shows the idea of all similar users to candidate movies for the input user:

```
In [26]: #Multiplies the similarity by the user's ratings
    topUsersRating['weightedRating'] = topUsersRating['similarityIndex']*topUsersRat
    ing['rating']
    topUsersRating.head()
```

Out[26]:

	similarityIndex	userld	movield	rating	weightedRating
0	0.961678	12325	1	3.5	3.365874
1	0.961678	12325	2	1.5	1.442517
2	0.961678	12325	3	3.0	2.885035
3	0.961678	12325	5	0.5	0.480839
4	0.961678	12325	6	2.5	2.404196

Стор. 11 з 14 06.02.2020, 21:12

```
In [27]: #Applies a sum to the topUsers after grouping it up by userId
    tempTopUsersRating = topUsersRating.groupby('movieId').sum()[['similarityIndex
    ','weightedRating']]
    tempTopUsersRating.columns = ['sum_similarityIndex','sum_weightedRating']
    tempTopUsersRating.head()
```

Out[27]:

sum_similarityIndex sum_weightedRating

movield		
1	38.376281	140.800834
2	38.376281	96.656745
3	10.253981	27.254477
4	0.929294	2.787882
5	11.723262	27.151751

```
In [28]: #Creates an empty dataframe
    recommendation_df = pd.DataFrame()
    #Now we take the weighted average
    recommendation_df['weighted average recommendation score'] = tempTopUsersRating
    ['sum_weightedRating']/tempTopUsersRating['sum_similarityIndex']
    recommendation_df['movieId'] = tempTopUsersRating.index
    recommendation_df.head()
```

Out[28]:

weighted average recommendation score movield

movield		
1	3.668955	1
2	2.518658	2
3	2.657941	3
4	3.000000	4
5	2.316058	5

Now let's sort it and see the top 20 movies that the algorithm recommended!

Out[29]:

weighted average recommendation score movield

movield		
5073	5.0	5073
3329	5.0	3329
2284	5.0	2284
26801	5.0	26801
6776	5.0	6776
6672	5.0	6672
3759	5.0	3759
3769	5.0	3769
3775	5.0	3775
90531	5.0	90531

Ctop. 12 3 14 06.02.2020, 21:12

Out[30]:

year	title	movield	
1994	Bandit Queen	2284	2200
1987	Year My Voice Broke, The	3329	3243
1947	Fun and Fancy Free	3759	3669
1974	Thunderbolt and Lightfoot	3769	3679
1946	Make Mine Music	3775	3685
2001	Son's Room, The (Stanza del figlio, La)	5073	4978
2001	War Photographer	6672	6563
2001	Lagaan: Once Upon a Time in India	6776	6667
1992	Dragon Inn (Sun lung moon hak chan)	26801	9064
2011	Shame	90531	18106

Advantages and Disadvantages of Collaborative Filtering

Advantages

- Takes other user's ratings into consideration
- Doesn't need to study or extract information from the recommended item
- Adapts to the user's interests which might change over time

Disadvantages

- Approximation function can be slow
- There might be a low of amount of users to approximate
- Privacy issues when trying to learn the user's preferences

Стор. 13 з 14 06.02.2020, 21:12

Want to learn more?

IBM SPSS Modeler is a comprehensive analytics platform that has many machine learning algorithms. It has been designed to bring predictive intelligence to decisions made by individuals, by groups, by systems – by your enterprise as a whole. A free trial is available through this course, available here: SPSS Modeler (http://cocl.us/ML0101EN-SPSSModeler)

Also, you can use Watson Studio to run these notebooks faster with bigger datasets. Watson Studio is IBM's leading cloud solution for data scientists, built by data scientists. With Jupyter notebooks, RStudio, Apache Spark and popular libraries pre-packaged in the cloud, Watson Studio enables data scientists to collaborate on their projects without having to install anything. Join the fast-growing community of Watson Studio users today with a free account at Watson Studio (https://cocl.us/ML0101EN_DSX)

Thanks for completing this lesson!

Author: Saeed Aghabozorgi (https://ca.linkedin.com/in/saeedaghabozorgi)

<u>Saeed Aghabozorgi (https://ca.linkedin.com/in/saeedaghabozorgi)</u>, PhD is a Data Scientist in IBM with a track record of developing enterprise level applications that substantially increases clients' ability to turn data into actionable knowledge. He is a researcher in data mining field and expert in developing advanced analytic methods like machine learning and statistical modelling on large datasets.

Copyright © 2018 <u>Cognitive Class (https://cocl.us/DX0108EN_CC)</u>. This notebook and its source code are released under the terms of the <u>MIT License (https://bigdatauniversity.com/mit-license/)</u>.

Стор. 14 з 14 06.02.2020, 21:12