Generalized Pascal's Triangle

by Sven Nilsen, 2019

Pascal's Triangle is a commonly used shape in mathematics. In this paper I interpret Pascal's Triangle as an automaton for N dimensions. This algorithm is useful as a part of simulations for studying observer selection effects in Path Reference Classes.

Pascal's Triangle is often depicted the following way:

I will use a slightly different version:

0		0		0		1		0		0		0
	0		0		1		1		0		0	
0		0		1		2		1		0		0
	0		1		3		3		1		0	
0		1		4		6		4		1		0

Here, the triangle can be thought of as 1-dimensional slices of cells stacked on top of each other, where every odd slice is translated such that each cell's position is in the center between its parents.

For N dimensions, I generalize the same way by moving the cuboid cells:

This algorithm has some significant mathematical properties:

- Counting the number of paths
- No centered parent cell
- Self-similar by translation
- Isomorphic every even time step to unnormalized Gaussian blur