Lehrgruppe Mathematik BT, EIT, II, MT, WSW, BTC, FZT, LA, MB, MTR, WIW

Name, Vorname	Studiengang Matr. Nr.	

Aufgabe	1	2a	2b	3a	3b	4	5a	5b	5c	6	7	Σ
Soll Pkte.	6	3	3	5	4	6	4	2	3	7	7	50
Ist Pkte.												

Wiederholung der Fachprüfung Mathematik 1, 18.09.2023

Hinweise:

- Alle Antworten sind zu begründen, Rechenwege sind anzugeben, Ergebnisse sind sinnvoll zu vereinfachen.
- Bei den Aufgaben 6 und 7 müssen Sie jeweils genau eine zu bearbeitende Aufgabe auswählen. Bei beiden Aufgaben passt jeweils eine Auswahloption zum Inhalt der Vorlesung Mathematik 1 bis zum Wintersemester 21/22 und eine Option passt zum Inhalt von Mathematik 1 in der Version des Wintersemesters 22/23.
- erlaubte Hilfsmittel: ein bis zwei Nachschlagewerke eigener Wahl, ein selbsterstelltes A4-Blatt mit Formeln und Definitionen
- verbotene Hilfsmittel: Taschenrechner und alle sonstigen elektronischen Geräte, Vorlesungs- und Übungsmitschriften, Lehrbücher

Aufgabe 1.:

Für welches $a \in \mathbb{R}$ gilt

$$\lim_{x \to \infty} (\sqrt{x^2 + a \cdot x + 2} - x) = 3 ?$$

Aufgabe 2.:

Betrachten Sie die Reihe $\sum_{n=0}^{\infty} \left(\frac{\sin(n)+1}{3}\right)^n$.

- (a) Zeigen Sie, dass die Reihe konvergiert.
- (b) Finden Sie ein $c \in \mathbb{R}$ mit $\sum_{n=0}^{\infty} (\frac{\sin(n)+1}{3})^n \le c$. Begründen Sie Ihre Wahl.

Aufgabe 3.:

Betrachten Sie die Funktion $f:[0,3] \to \mathbb{R}$ mit

$$f(x) = e^{x^2 - 4x + 2}.$$

- (a) Ermitteln Sie alle lokalen Extremstellen (Lage und Art) von f im Intervall (0,3).
- (b) Ermitteln Sie alle globalen Extremstellen (Lage und Art) von f im Intervall [0,3].

Aufgabe 4.:

Betrachten Sie für $x \in [0, \frac{\pi}{3}]$ die Gleichung

$$\tan(x) + e^x = 2.$$

Zeigen Sie, dass die Gleichung im angegebenen Intervall **genau** eine reelle Lösung besitzt.

Aufgabe 5.:

Betrachten Sie die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = x^3 - 4x^2 + 7.$$

- (a) Bestimmen Sie das dritte Taylorpolynom von f an der Entwicklungsstelle $x_0 = 2$.
- (b) Geben Sie das zugehörige Restglied an.
- (c) Vergleichen Sie an der Stelle x=5 den Funktionswert von f mit dem Wert des Taylorpolynoms und begründen Sie Ihre Beobachtung.

Aufgabe 6.:

Wählen Sie genau eine Aufgabe zur Bearbeitung aus:

Skizzieren Sie die folgende Menge in der Gaußschen Zahlenebene:

$$\{z \in \mathbb{C} : \frac{z}{\overline{z}} = 1\}.$$

ODER.

Betrachten Sie das lineare Gleichungssystem

mit zwei reellen Parametern α und β . Für welche Wahl der Parameter besitzt das Gleichungssystem

- (a) genau eine Lösung,
- (b) unendlich viele Lösungen,
- (c) keine Lösung?

Aufgabe 7.:

Wählen Sie genau eine Aufgabe zur Bearbeitung aus:

Berechnen Sie

$$\int_{0}^{1} \frac{x^2 - 4x - 4}{x^3 - 2x^2 + 4x - 8} dx.$$

ODER

Berechnen Sie für die Kurve
$$\vec{r}$$
: $[0,1] \to \mathbb{R}^3$ mit $\vec{r}(t) = \begin{pmatrix} \frac{1}{2} \cdot t^2 - 2t + 3 \\ \frac{1}{2} \cdot t^2 + 2t - 5 \\ t \end{pmatrix}$

und die Funktion $f: \mathbb{R}^3 \to \mathbb{R}$ mit f(x, y, z) = z das Kurvenintegral 1. Art $\int_{\vec{r}} f \ ds$.