3

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 INFORMATION THEORY, CODING AND CRYPTOGRAPHY SEMESTER - 7

	Hours]			
				[Full Marks: 70

			Barrier to bear hope of the	
		GROUP - A	Bridge Library	
	(Multiple (hoice Type Que	stions)	4
		한 학생 기능한 하다. 17 - '''' 제한 제한 중에 기		W
. Cho	ose correct answer from the g	ven alternatives	for any ten of the follow	ing:
				$10 \times 1 = 1$
1	A (7, 4) Linear Block Code	with minimum	listance guarantees em	ro r de tection
	of			
	a) ≤ 4 bits	b) ≤	3 bits	- 1 <u></u>
	c) ≤ 2 bits	d) No	me of these.	
T)	Gaussian channel is charact	erised by a distri	bution represented by	
	a) $p(x) = \frac{1}{\sqrt{2\pi a}} e^{-x^2/2a}$			
	b) $p(x) = \frac{1}{\sqrt{2\pi a}} e^{-x^2/2a}$			
	4810			
	c) $p(x) = \frac{\sqrt{2\pi}}{6} e^{-x^2/26}$			3
	d) $p(x) = \sqrt{2\pi\sigma} e^{-x^2/2}$	25 ²		
111)	The binary Hamming Codes	경쟁하다 보이는 하고객 20		
44)	그림 얼룩이 되지 않았다. 하루 (10일) 없는다			
	a) $(n, k) = (2^m + 1, 2^m)$			
	b) $(n, k) = (2^m - 1, 2^m)$			
	c) $(n, k) = (2^m - 1, 2^m)$		경기 등이 되는 경기 등에 되었다. 항 그렇게 되었습니다. 그는 것은 것이 되었다.	
	d) $(n, k) = (2^{m-1}, 2^{m-1})$	1 - m)		
iv)	Which of the following expre	ssion is incorrect		Santa Cara
	a) $H(y/x) = H(x, y)$	H(x)		
	b) $I(x, y) = H(x) - H(x)$	y/x)		
	c) H(x,y)=H(x,y)+	H (y)		er egyete er er er er Er er
	d) $I(x, y) = H(y) - H(y)$			

7]	For GF (23), the elements in t	he set are	· 大學 · · · · · · · · · · · · · · · · · ·
	a) { 1, 2, 3, 4, 5, 6, 7.}		
	c) {0, 1, 2, 3}	d)	{ 0, 1, 2, 3, 4, 5, 6, 7 }.
vi)	Entropy represents		
ž.	amount of information	b)	rate of information
is ner	c) measure of uncertainty	d)	probability of message.
711)	100110 ⊕ 011011, when ⊕ r	epresent	modulo-2 addition for binary
	yicids		
	a) 100111	b)	111101
	c) 000001	- d)	011010.
ч щ)	In a binary system, the coding	efficiency	increases on probability of occ
3 11	of O, approaches 0.5.	a same	And American Charles Commencer
	a) True		
	b) False.		
x)	A polynomial is called monic if		
	a) odd terms are unity	b)	
			leading coefficient is zero.
d	If $m = 4$, then what will be the l		
	a) 16 c) 17	b)	15
		d)	none of these.
d)	Consider the Code $C = \{000$ minimum distance is	0, 0101,	1010, 1111 } for which comp
	a) 1	b)	
	c) 3	d)	
CH)	The generator polynomial of a c		de a factor of
رس	a) $X^n + 1$	yene code b)	$X^{(n+1)}+1$
	c) $X^{(n+2)} + 1$	d)	none of these.
3 3. 			Γ100 T
		n training	010
(111)	Consider the parity check n	natrix <i>F</i>	$f = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ and the received

b) (100)

d) (101).

77504 (10/12)

c)

(110)

(111)

CB/B_SCH(BCB-NEW)/SEM-7/EC-703/08/(09)

5

GROUP - B

(Short Answer Type Questions)

	* · · · · · · · · · · · · · · · · · · ·	Answer any three of the following. $3 \times 5 =$	15
2.	a)	Draw the block diagram of a typical message information communication	on
•		andre de la completa de la completa El system. La completa de la completa	2
	b)	Define Forward Error Correction and Automatic Request for Retransmission.	3
3.	a)	What is systematic format of a code word.	2
	b)	Explain 'Source Coding' and 'Channel Coding'.	3
4.	a)	A code has the parity check matrix	
		$H = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$	
		Assuming that a vector (111011) is received,	
	• • • • • • • • • • • • • • • • • • • •	Determine whether the received vector is a valid code.	3
	b)	If 'not', determine what is the probable code vector originally transmitted.	If
		'yes', conform.	2
5.	a)	Discuss the scheme of syndrome decoding of BCH Codes.	4
	b)	What is the distance of t-error correcting Reed-Solomon Code.	1
6.	a)	Consider the primitive polynomial $p(Z) = Z^4 + Z + 1$ over GF (2). Use this	to
		construct the expansion field GF (16).	3
	b)	Let $\alpha = 7$ be the primitive element, the element of GF (16) as a power of α as	nd
		find out the corresponds minimal polynomial.	2
7.	a)	What do you mean by Quantum Cryptography?	2
	b)	Write some application of cryptography in network security.	2

GROUP - C

(Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

. a) Consider a systematic (8, 4) code whose parity-check equations are

$$v_0 = u_1 + u_2 + u_3$$

$$v_1 = u_0 + u_1 + u_2$$

$$v_2 = u_0 + u_1 + u_3$$

$$v_3 = u_0 + u_2 + u_3$$

where v_0 , v_1 , v_2 and v_3 are message digits and v_0 , v_1 , v_2 , v_3 are paritycheck digits.

Find the generator and parity-check matrix for the code.

- Show that minimum distance of the code is 4.

4+1=5

b) Design the syndrome circuit for which the parts-generate matrix is given by

$$G = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

5

c) Prove the following:

If C be an (n, k') linear code units parity-check matrix H. For each code vector of Hamming weight l, these exists l columns of H such that the vector sum of these l columns is equal to the zero vector. Conversely, if there exists l columns of H whose vector sum is the zero vector, there exists a code vector of Hamming weight l is C. 3 + 2 = 5

- 9. a) In a (7, 4) cyclic code, if the generator polynomial $g(x) = 1 + x + x^3$, find the generator matrix and convert it into systematic form.
 - b) Find the parity polynomial and show that the polynomial divides $X^n + 1$.
 - c) Consider the message vector polynomial $u(x) = 1 + x^2 + x^3$ and find the encoding circuit and complete code vector.
 - d) Now, find the error pattern and coset leaders for code vector v = (1001011) and received vector r = (1011011).

77504 (10/12)

TECHECE-NEW)/SEM-7/EC-703/08/(09)

- 10. Explain the terms and their significance: Entropy, Mutual information and Self-information and Channel capacity. 4 × 2
 - **b**) State the Channel capacity of a white, band-limited Gaussian channel, Derive an expression of noisy channel when bandwidth tends to be very long.

11. A discrete memoryless source has five symbols x_1, x_2, x_3, x_4 and x_5 with probabilities of occurrence $P(x_1) = 0.4$, $P(x_2) = 0.19$, $P(x_3) = 0.16$, $P(x_4) = 0.15$ and $P(x_5) = 0.1$.

Construct the Huffman Code and determine

- a entropy
- average code length b)
- c) code efficiency. -

5+4+(2+2+2)

12. Explain with block diagram, the secrecy and authentication algorithm is secured.

Given N = 119 and public key $P_{ii} = 5$, find the private key P_{ii} . Also calculate the ciphertext C. In the Diffie-Hellman key exchange algorithm let the prime number q = 353 and its primitive root $\alpha = 3$. For A and B select their secret keys $X_A = 97$ and $X_B = 233$. Compute the public key Y_A and Y_B . 6 + 4 + 5

13. a) Given the polynomial $p(X) = X^3 + X + 1$. Construct the field GF (2³) 5

- **b**) Construct a double error-correcting BCH Code over GF (2³) and determine the value of n and k. 5
- Construct the (15, 7) double error correcting BCH code and code word c) $C(X) = X^8 + X^7 + X^6 + X^4 + 1$. Determine the outcome of a decoder when C(X) incurs the error pattern $e(X) = X^7 + X^2 + 1$.
- 14. Write short notes on the following:
 - For a valid and correctly received code word, a)

 $CH^T = 0.$

When C is the code word and H is the parity-check matrix.

5

bì RSA algorithm. 5

Shannon's theorems (three) in communication. c)

1 + 2 + 2

END

77504 (10/12)