# **MACHINE LEARNING LAB**

## **MINIPROJECT - PYTORCH**

# Juan Fernando Espinosa

303158

## 1. DATA PRE-PROCESSING

```
In [20]: import torch
from torch.autograd import Variable
from sklearn.model_selection import train_test_split
import torch.nn.functional as F
import torch.utils.data as Data
import pandas as pd
import numpy as np
from collections import Counter
import math
import matplotlib.pyplot as plt
```

#### Out[21]:

|   | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free<br>sulfur<br>dioxide | total<br>sulfur<br>dioxide | density | рН   | sulphates | al |
|---|------------------|---------------------|----------------|-------------------|-----------|---------------------------|----------------------------|---------|------|-----------|----|
| 0 | 7.0              | 0.27                | 0.36           | 20.7              | 0.045     | 45.0                      | 170.0                      | 1.0010  | 3.00 | 0.45      |    |
| 1 | 6.3              | 0.30                | 0.34           | 1.6               | 0.049     | 14.0                      | 132.0                      | 0.9940  | 3.30 | 0.49      |    |
| 2 | 8.1              | 0.28                | 0.40           | 6.9               | 0.050     | 30.0                      | 97.0                       | 0.9951  | 3.26 | 0.44      |    |
| 3 | 7.2              | 0.23                | 0.32           | 8.5               | 0.058     | 47.0                      | 186.0                      | 0.9956  | 3.19 | 0.40      |    |
| 4 | 7.2              | 0.23                | 0.32           | 8.5               | 0.058     | 47.0                      | 186.0                      | 0.9956  | 3.19 | 0.40      |    |

### **Data normalization**

#### Out[22]:

|   | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free<br>sulfur<br>dioxide | total<br>sulfur<br>dioxide | density  | р       |
|---|------------------|---------------------|----------------|-------------------|-----------|---------------------------|----------------------------|----------|---------|
| 0 | 0.307692         | 0.186275            | 0.216867       | 0.308282          | 0.106825  | 0.149826                  | 0.373550                   | 0.267785 | 0.25454 |
| 1 | 0.240385         | 0.215686            | 0.204819       | 0.015337          | 0.118694  | 0.041812                  | 0.285383                   | 0.132832 | 0.52727 |
| 2 | 0.413462         | 0.196078            | 0.240964       | 0.096626          | 0.121662  | 0.097561                  | 0.204176                   | 0.154039 | 0.49090 |
| 3 | 0.326923         | 0.147059            | 0.192771       | 0.121166          | 0.145401  | 0.156794                  | 0.410673                   | 0.163678 | 0.42727 |
| 4 | 0.326923         | 0.147059            | 0.192771       | 0.121166          | 0.145401  | 0.156794                  | 0.410673                   | 0.163678 | 0.42727 |

### Check number of classes in the dataset

```
In [23]: test_classes = Wine.quality
  output = len(set(test_classes))
  print('Number of classes:', output)
```

Number of classes: 7

## 2. INITIALIZATION OF THE REGRESSION

#### Partition of the dataset

### Initialization of the regression and the layer structure

Considering the given info: input / 3 FC layers / output.

```
In [57]: network = torch.nn.Sequential(
                 torch.nn.Linear(11, 64), # input
                 torch.nn.Sigmoid(),
                 torch.nn.Linear(64, 64), # First hidden layer
                 torch.nn.Sigmoid(),
                 torch.nn.Linear(64, 64), # Second hidden layer
                 torch.nn.Sigmoid(),
                 torch.nn.Linear(64, 64), # Third hidden layer
                 torch.nn.Sigmoid(),
                 torch.nn.Linear(64, 1),
         optimizer = torch.optim.Adam(network.parameters(), lr=0.01)
         loss = torch.nn.MSELoss()
         batch sizeT = 5
         epochs = 200
         # Transform Numpy array to Tensor variables.
         X = torch.from numpy(X train)
         y = torch.from_numpy(y_train)
         datasets = torch.utils.data.TensorDataset(X, y)
         loader = Data.DataLoader(
             dataset=datasets,
             batch size = batch sizeT,
             shuffle=True, num workers=0,)
         plt.ion()
         loss array = []
         for epoch in range(epochs):
             for step, (batch X, batch y) in enumerate(loader): # for each t
         raining step
                 X temporal = Variable(batch X)
                 y temporal = Variable(batch y)
                 prediction = network(X temporal.float()) # input x and
         predict based on x
                 losse = loss(prediction, y temporal.float())
                 loss array.append(losse.data)
                 optimizer.zero grad() # It is required to clear the gradie
         nts
                 losse.backward()
                                         # backpropagation
                 optimizer.step()
             print(f"{epoch+1} epoch | loss = {losse}")
         plt.plot(loss array)
         1 epoch | loss = 0.8605697751045227
```

```
1 epoch | loss = 0.8605697751045227
2 epoch | loss = 0.11455386132001877
3 epoch | loss = 1.528577446937561
4 epoch | loss = 0.27014482021331787
```

```
loss = 0.6668551564216614
5 epoch
6 epoch
          loss = 0.6890454292297363
7 epoch
          loss = 0.3706584572792053
8 epoch
          loss = 1.1950761079788208
9 epoch
          loss = 0.4285852313041687
10 epoch
           loss = 0.954093337059021
11 epoch
           loss = 0.24326680600643158
12 epoch
           loss = 0.4730881154537201
13 epoch
           loss = 0.3541933000087738
14 epoch
           loss = 0.44385847449302673
15 epoch
           loss = 0.8166089057922363
16 epoch
           loss = 2.9025466442108154
17 epoch
           loss = 0.6668533086776733
18 epoch
           loss = 0.4962048828601837
19 epoch
           loss = 0.0025077499449253082
20 epoch
           loss = 1.849060297012329
           loss = 1.5592761039733887
21 epoch
22 epoch
           loss = 1.6630982160568237
23 epoch
           loss = 1.714152455329895
24 epoch
           loss = 0.230685293674469
25 epoch
           loss = 0.03535465523600578
26 epoch
           loss = 0.8107268214225769
27 epoch
           loss = 1.2157328128814697
28 epoch
           loss = 1.5101038217544556
29 epoch
           loss = 0.3343123495578766
30 epoch
           loss = 0.6873752474784851
31 epoch
           loss = 1.1954193115234375
32 epoch
           loss = 0.0270451121032238
33 epoch
           loss = 0.3883790969848633
34 epoch
           loss = 0.06888662278652191
35 epoch
           loss = 0.0005603685276582837
36 epoch
           loss = 0.3156583905220032
37 epoch
           loss = 1.2889164686203003
38 epoch
           loss = 1.1580111980438232
39 epoch
           loss = 0.22049792110919952
40 epoch
           loss = 2.6846518516540527
41 epoch
           loss = 0.7522990107536316
           loss = 0.5706974267959595
42 epoch
43 epoch
           loss = 0.261165052652359
44 epoch
           loss = 0.40251773595809937
45 epoch
           loss = 0.2242138832807541
46 epoch
           loss = 0.9314168095588684
47 epoch
           loss = 0.22414565086364746
48 epoch
           loss = 0.9176021218299866
49 epoch
           loss = 0.7638780474662781
50 epoch
           loss = 0.0028948106337338686
51 epoch
           loss = 0.5321009159088135
52 epoch
           loss = 1.2428784370422363
53 epoch
           loss = 0.9163723587989807
54 epoch
           loss = 0.5898261666297913
           loss = 0.4830879271030426
55 epoch
           loss = 0.24286368489265442
56 epoch
57 epoch
           loss = 1.6315722465515137
           loss = 0.692040741443634
58 epoch
```

```
59 epoch
           loss = 1.925269603729248
60 epoch
           loss = 0.28427496552467346
61 epoch
           loss = 0.0937444418668747
62 epoch
           loss = 2.5331013202667236
63 epoch
           loss = 0.8991101384162903
64 epoch
           loss = 1.0247712135314941
65 epoch
           loss = 3.6971747875213623
66 epoch
           loss = 2.026449203491211
67 epoch
           loss = 0.23425765335559845
68 epoch
           loss = 1.2255176305770874
69 epoch
           loss = 0.7042745351791382
70 epoch
           loss = 1.2265645265579224
71 epoch
           loss = 0.671364426612854
72 epoch
           loss = 0.6342029571533203
73 epoch
           loss = 0.77750563621521
74 epoch
           loss = 0.9502670764923096
75 epoch
           loss = 1.5697063207626343
76 epoch
           loss = 0.7003514170646667
77 epoch
           loss = 1.5580167770385742
78 epoch
           loss = 0.22607126832008362
79 epoch
           loss = 0.35795092582702637
80 epoch
           loss = 0.8999313712120056
81 epoch
           loss = 0.9837948679924011
82 epoch
           loss = 0.4139083921909332
83 epoch
           loss = 0.9482316970825195
84 epoch
           loss = 0.6772665977478027
85 epoch
           loss = 1.9016300439834595
86 epoch
           loss = 0.3681350350379944
87 epoch
           loss = 0.03665259853005409
88 epoch
           loss = 2.004359722137451
89 epoch
           loss = 0.2541216015815735
90 epoch
           loss = 0.2849070429801941
91 epoch
           loss = 1.2846436500549316
92 epoch
           loss = 0.7482082843780518
93 epoch
           loss = 0.2360309362411499
94 epoch
           loss = 2.052640199661255
95 epoch
           loss = 0.6938400864601135
96 epoch
           loss = 0.8212472796440125
97 epoch
           loss = 1.7859586477279663
98 epoch
           loss = 0.7033320665359497
99 epoch
           loss = 0.23627635836601257
100 epoch
            loss = 2.897874593734741
101 epoch
            loss = 2.9971020221710205
102 epoch
            loss = 0.3665236234664917
            loss = 1.2920193672180176
103 epoch
104 epoch
            loss = 0.4079608619213104
105 epoch
            loss = 0.1761009842157364
106 epoch
            loss = 1.1633164882659912
107 epoch
            loss = 0.3938685357570648
108 epoch
            loss = 5.083630084991455
            loss = 0.7193038463592529
109 epoch
110 epoch
            loss = 0.3603970408439636
111 epoch
            loss = 0.2737374007701874
112 epoch
            loss = 2.854562282562256
```

```
113 epoch
            loss = 0.22720478475093842
114 epoch
            loss = 0.6885574460029602
            loss = 1.791379451751709
115 epoch
116 epoch
            loss = 0.22285780310630798
117 epoch
            loss = 0.0039308457635343075
118 epoch
            loss = 0.287149578332901
119 epoch
            loss = 0.7214820384979248
120 epoch
            loss = 1.2532192468643188
121 epoch
            loss = 0.5286235809326172
            loss = 0.33730852603912354
122 epoch
123 epoch
            loss = 0.25996914505958557
124 epoch
            loss = 0.008113938383758068
125 epoch
            loss = 0.12829157710075378
126 epoch
            loss = 3.1530728340148926
127 epoch
            loss = 0.26047855615615845
            loss = 0.9153937101364136
128 epoch
129 epoch
            loss = 0.3646056652069092
130 epoch
            loss = 1.7094879150390625
131 epoch
            loss = 1.677517294883728
132 epoch
            loss = 0.22596386075019836
133 epoch
            loss = 2.200864553451538
            loss = 2.7689766883850098
134 epoch
135 epoch
            loss = 0.08124992251396179
136 epoch
            loss = 1.346655011177063
            loss = 0.27256277203559875
137 epoch
138 epoch
            loss = 0.25988879799842834
139 epoch
            loss = 3.6680846214294434
140 epoch
            loss = 0.9796450734138489
141 epoch
            loss = 1.5555717945098877
142 epoch
            loss = 0.27516230940818787
143 epoch
            loss = 0.675903856754303
144 epoch
            loss = 1.075715184211731
145 epoch
            loss = 0.04179537296295166
146 epoch
            loss = 0.1924344301223755
147 epoch
            loss = 0.2332366406917572
            loss = 0.736602783203125
148 epoch
149 epoch
            loss = 0.5185887813568115
150 epoch
            loss = 0.6671059131622314
151 epoch
            loss = 0.24717862904071808
152 epoch
            loss = 0.5947138071060181
153 epoch
            loss = 8.516144589520991e-06
154 epoch
            loss = 1.0305638313293457
155 epoch
            loss = 2.672248601913452
156 epoch
            loss = 0.9592097997665405
            loss = 1.4985147714614868
157 epoch
158 epoch
            loss = 0.2226729393005371
159 epoch
            loss = 0.8525935411453247
160 epoch
            loss = 0.25773024559020996
161 epoch
            loss = 2.051586627960205
162 epoch
            loss = 0.8440478444099426
163 epoch
            loss = 0.5479058623313904
164 epoch
            loss = 0.7232239842414856
165 epoch
            loss = 1.1365852355957031
            loss = 0.22714947164058685
166 epoch
```

```
167 epoch
           loss = 0.6758930683135986
168 epoch
           loss = 0.41186419129371643
169 epoch
           loss = 0.6925145387649536
170 epoch
           loss = 1.9722868204116821
171 epoch
           loss = 1.3260842561721802
172 epoch
           loss = 0.26249146461486816
173 epoch
           loss = 1.3600261211395264
174 epoch
           loss = 0.5844133496284485
           loss = 0.7529309391975403
175 epoch
176 epoch
           loss = 2.6761536598205566
177 epoch
           loss = 0.3040260970592499
           loss = 0.032547734677791595
178 epoch
179 epoch
           loss = 0.2937135696411133
180 epoch
           loss = 0.7880871891975403
181 epoch
           loss = 0.288226842880249
182 epoch
           loss = 0.7215981483459473
           loss = 0.3783431649208069
183 epoch
184 epoch
           loss = 0.9255162477493286
185 epoch
           loss = 1.780129075050354
186 epoch
           loss = 3.0108718872070312
187 epoch
           loss = 0.31547626852989197
           loss = 0.26069578528404236
188 epoch
           loss = 0.7221987843513489
189 epoch
190 epoch
           loss = 0.30328133702278137
191 epoch
           loss = 0.6055524349212646
192 epoch | loss = 0.0031095927115529776
193 epoch
           loss = 1.17967689037323
194 epoch
           loss = 0.2249920666217804
195 epoch
           loss = 0.24989885091781616
           loss = 1.7622992992401123
196 epoch
197 epoch
           loss = 0.20433947443962097
198 epoch
           loss = 0.002308703726157546
199 epoch
           loss = 0.26140064001083374
           loss = 0.9518703818321228
200 epoch
```

Out[57]: [<matplotlib.lines.Line2D at 0x12f3f6b90>]



```
In [59]: X_testing = torch.from_numpy(X_test)
    y_testing = torch.from_numpy(y_test)
    prediction = network(X_testing.float())
    losse = loss(prediction, y_testing.float())

print("The test loss is {:.2}".format(losse.data.item()))
```

The test loss is 0.77

#### **Observations**

- 1. Although the RMSE of the prediction is **low** it lacks to predict correctly the quality for which each wine belongs.
- 2. By searching for a solution of why the behavior is poor the description of the target column "quality" explicitly mentioned that the values are based on **sensory data** which could be named as perception results, therefore the prediction is not easy to execute.
- 3. It is always good practice to execute **cross-validation** for all hyperparameters. While executing the model it is not possible to have certainty of which combination of nodes in hidden layers, batch size, etc., is the optimal.
- 4. Moreover, for curiosity, I tested the model with different activation functions. **Leaky ReLu** returns a RMSE around 0.7 (Cross-validated | hyperparameters: batch size, # nodes in hidden layers) which is slightly lower in comparison with the Sigmoid function presented in the model above. Additionally, the convergence of the loss is better. (check 4. Tests)

### 3. BIBLIOGRAPHY

1. P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.

- 2. Phillips, B. (2018, December 15). Simple Regression with Neural Networks in PyTorch. Retrieved from https://medium.com/@benjamin.phillips22/simple-regression-with-neural-networks-in-pytorch-313f06910379.
- 3. Tsvetkov, V. (2019, September 17). A comprehensive intro to PyTorch. Retrieved from https://blog.tensorpad.com/a-comprehensive-intro-to-pytorch/.

### 4. TESTS

Leaky-ReLu as activation function

```
In [68]: network = torch.nn.Sequential(
                 torch.nn.Linear(11, 150), # input
                 torch.nn.LeakyReLU(),
                 torch.nn.Linear(150, 150), # First hidden layer
                 torch.nn.LeakyReLU(),
                 torch.nn.Linear(150, 150), # Second hidden layer
                 torch.nn.LeakyReLU(),
                 torch.nn.Linear(150, 150), # Third hidden layer
                 torch.nn.LeakyReLU(),
                 torch.nn.Linear(150, 1),
         optimizer = torch.optim.Adam(network.parameters(), lr=0.01)
         loss = torch.nn.MSELoss()
         batch sizeT = 64
         epochs = 100
         # Transform Numpy array to Tensor variables.
         X = torch.from numpy(X train)
         y = torch.from_numpy(y_train)
         datasets = torch.utils.data.TensorDataset(X, y)
         loader = Data.DataLoader(
             dataset=datasets,
             batch size = batch sizeT,
             shuffle=True, num workers=0,)
         plt.ion()
         loss array = []
         for epoch in range(epochs):
             for step, (batch X, batch y) in enumerate(loader): # for each t
         raining step
                 X temporal = Variable(batch X)
                 y temporal = Variable(batch y)
                 prediction = network(X temporal.float()) # input x and
         predict based on x
                 losse = loss(prediction, y temporal.float())
                 loss array.append(losse.data)
                 optimizer.zero grad() # It is required to clear the gradie
         nts
                 losse.backward()
                                         # backpropagation
                 optimizer.step()
             print(f"{epoch+1} epoch | loss = {losse}")
         plt.plot(loss array)
```

```
1 epoch | loss = 0.5057490468025208
2 epoch | loss = 0.9134839177131653
3 epoch | loss = 0.8051160573959351
4 epoch | loss = 0.4858332574367523
```

```
loss = 0.8255210518836975
5 epoch
6 epoch
          loss = 0.6772353649139404
7
 epoch
          loss = 1.1681170463562012
8 epoch
          loss = 0.8066381812095642
9 epoch
          loss = 0.950116753578186
10 epoch
           loss = 0.6099951863288879
11 epoch
           loss = 0.6362884044647217
12 epoch
           loss = 0.7095951437950134
13 epoch
           loss = 0.7884309887886047
14 epoch
           loss = 0.5140870809555054
15 epoch
           loss = 0.9416120648384094
16 epoch
           loss = 1.026793360710144
17 epoch
           loss = 0.9579735398292542
18 epoch
           loss = 0.7208535075187683
19 epoch
           loss = 0.5793512463569641
20 epoch
           loss = 0.7516117691993713
21 epoch
           loss = 0.8176302313804626
22 epoch
           loss = 1.067955732345581
23 epoch
           loss = 0.7560921907424927
24 epoch
           loss = 0.7811601161956787
25 epoch
           loss = 0.8453911542892456
26 epoch
           loss = 0.8882365822792053
27 epoch
           loss = 0.7066816687583923
28 epoch
           loss = 0.7036915421485901
29 epoch
           loss = 0.8689120411872864
30 epoch
           loss = 0.5448341369628906
31 epoch
           loss = 0.9946936368942261
32 epoch
           loss = 0.9161320924758911
33 epoch
           loss = 0.8449593782424927
34 epoch
           loss = 1.0660035610198975
35 epoch
           loss = 0.7410057783126831
36 epoch
           loss = 0.5122541785240173
37 epoch
           loss = 0.6275328993797302
38 epoch
           loss = 0.9769017696380615
39 epoch
           loss = 0.7311204671859741
40 epoch
           loss = 1.0889606475830078
41 epoch
           loss = 1.0274133682250977
42 epoch
           loss = 0.7508194446563721
43 epoch
           loss = 0.6605762839317322
44 epoch
           loss = 0.7440598607063293
45 epoch
           loss = 0.8548521399497986
46 epoch
           loss = 1.0203204154968262
47 epoch
           loss = 1.0871562957763672
48 epoch
           loss = 0.6453996300697327
49 epoch
           loss = 0.6241939067840576
50 epoch
           loss = 0.7334551811218262
51 epoch
           loss = 0.6328409314155579
52 epoch
           loss = 0.7638850808143616
53 epoch
           loss = 0.9388380646705627
54 epoch
           loss = 0.7914954423904419
           loss = 0.8595948815345764
55 epoch
56 epoch
           loss = 0.8168482780456543
57 epoch
           loss = 0.608056902885437
           loss = 0.6956735849380493
58 epoch
```

```
59 epoch
           loss = 0.8480135202407837
60 epoch
           loss = 0.6677202582359314
61 epoch
           loss = 0.6973062753677368
62 epoch
           loss = 1.2552589178085327
63 epoch
           loss = 1.4543849229812622
64 epoch
           loss = 0.6765437722206116
65 epoch
           loss = 0.6892909407615662
66 epoch
           loss = 0.4258921444416046
67 epoch
           loss = 1.1097345352172852
68 epoch
           loss = 1.0656335353851318
69 epoch
           loss = 0.7291654348373413
70 epoch
           loss = 0.6026569604873657
71 epoch
           loss = 1.180633783340454
72 epoch
           loss = 0.7922965884208679
73 epoch
           loss = 0.732864260673523
74 epoch
           loss = 0.4980090856552124
75 epoch
           loss = 0.5979751348495483
76 epoch
           loss = 0.5923035144805908
77 epoch
           loss = 1.3493902683258057
78 epoch
           loss = 0.9289383292198181
79 epoch
           loss = 0.7724866271018982
80 epoch
           loss = 0.620320737361908
81 epoch
           loss = 1.0752524137496948
82 epoch
           loss = 0.8210203051567078
83 epoch
           loss = 0.6196243166923523
84 epoch
           loss = 0.8014512658119202
85 epoch
           loss = 0.7797408699989319
86 epoch
           loss = 1.0861241817474365
87 epoch
           loss = 0.664879322052002
88 epoch
           loss = 0.5390986204147339
89 epoch
           loss = 0.6471565365791321
           loss = 0.5595607161521912
90 epoch
91 epoch
           loss = 0.5940065383911133
92 epoch
           loss = 1.0776687860488892
93 epoch
           loss = 1.2231833934783936
           loss = 0.6032888889312744
94 epoch
95 epoch
           loss = 1.0783177614212036
96 epoch
           loss = 1.2006195783615112
97 epoch
           loss = 0.7854986190795898
98 epoch
           loss = 0.4510979652404785
99 epoch
          loss = 0.5238127112388611
100 epoch | loss = 0.7707371711730957
```

Out[68]: [<matplotlib.lines.Line2D at 0x12778fdd0>]



```
In [69]: loss_test = []
    X_testing = torch.from_numpy(X_test)
    y_testing = torch.from_numpy(y_test)
    prediction = network(X_testing.float())
    losse = loss(prediction, y_testing.float())

print("The test loss is {:.2}".format(losse.data.item()))
```

The test loss is 0.75