Boosting: Wisdom of the Crowd

Christian Peters January 29, 2021

 \rightarrow The idea behind boosting

 \rightarrow The idea behind boosting

 \rightarrow How simple rules lead to powerful algorithms

 \rightarrow The idea behind boosting

 \rightarrow How simple rules lead to powerful algorithms

 \rightarrow What is AdaBoost and why is it so successful?

Let's talk about training a model

What we have learned so far...

 \cdot We have to pick a hypothesis class ${\cal H}$

- \cdot We have to pick a hypothesis class ${\cal H}$
- \cdot \mathcal{H} can't be too complex (VC dim needs to be finite)

- \cdot We have to pick a hypothesis class ${\cal H}$
- \mathcal{H} can't be too complex (VC dim needs to be finite)
- · We need enough training data (more than some threshold $m_{\mathcal{H}}$)

- \cdot We have to pick a hypothesis class ${\cal H}$
- \mathcal{H} can't be too complex (VC dim needs to be finite)
- · We need enough training data (more than some threshold $m_{\mathcal{H}}$)
- Then we use ERM to pick the best $h \in \mathcal{H}$ that minimizes the empirical error

What we have learned so far...

- \cdot We have to pick a hypothesis class ${\cal H}$
- \mathcal{H} can't be too complex (VC dim needs to be finite)
- · We need enough training data (more than some threshold $m_{\mathcal{H}}$)
- Then we use ERM to pick the best $h \in \mathcal{H}$ that minimizes the empirical error

But there is one problem...

The problem with ERM

ERM can be hard.

The problem with ERM

ERM can be hard.

- Depending on $\ensuremath{\mathcal{H}},$ the optimization problem can become arbitrarily complex

The problem with ERM

ERM can be hard.

- Depending on H, the optimization problem can become arbitrarily complex
- e.g. implementing ERM for halfspaces in the non-separable case is computationally hard (chapter 9)

ERM can be hard.

- Depending on \mathcal{H} , the optimization problem can become arbitrarily complex
- e.g. implementing ERM for halfspaces in the non-separable case is computationally hard (chapter 9)
- For many interesting classes, it is infeasible to implement ERM
 - Solving the optimization problem takes forever

ERM can be hard.

- Depending on \mathcal{H} , the optimization problem can become arbitrarily complex
- e.g. implementing ERM for halfspaces in the non-separable case is computationally hard (chapter 9)
- · For many interesting classes, it is infeasible to implement ERM
 - Solving the optimization problem takes forever

...so what can we do?

- Problem: Simple classes can be too "weak" to estimate all relationships in the data
 - ightarrow Can lead to underfitting and poor performance

- Problem: Simple classes can be too "weak" to estimate all relationships in the data
 - → Can lead to underfitting and poor performance
- Approximation error is high (\rightarrow B/C tradeoff)

- Problem: Simple classes can be too "weak" to estimate all relationships in the data
 - → Can lead to underfitting and poor performance
- Approximation error is high (\rightarrow B/C tradeoff)
- · Still, these classes can be useful for us
 - · If the resulting hypothesis is at least better than random

Idea: Use simpler hypothesis classes where ERM isn't hard.

- Problem: Simple classes can be too "weak" to estimate all relationships in the data
 - → Can lead to underfitting and poor performance
- Approximation error is high (\rightarrow B/C tradeoff)
- · Still, these classes can be useful for us
 - · If the resulting hypothesis is at least better than random

Let's call ERM on a simple class a **weak learner**. We will formally define it later...

Why not combine many weak learners? Can this give us an efficient strong learner?

· This theoretical question is the origin of boosting

- This theoretical question is the origin of boosting
- It was first raised in 1988 by Kearns and Valiant [3]

- · This theoretical question is the origin of boosting
- It was first raised in 1988 by Kearns and Valiant [3]
- The first (practical) answer was given in 1995 by Freund and Schapire [2]
 - \rightarrow It is YES!

- · This theoretical question is the origin of boosting
- It was first raised in 1988 by Kearns and Valiant [3]
- The first (practical) answer was given in 1995 by Freund and Schapire [2]
 - → It is YES!
- The result is AdaBoost, a widely popular and award winning algorithm
 - · We will take a look at this later...

Why not combine many weak learners? Can this give us an efficient strong learner?

- · This theoretical question is the origin of boosting
- It was first raised in 1988 by Kearns and Valiant [3]
- The first (practical) answer was given in 1995 by Freund and Schapire [2]
 - \rightarrow It is YES!
- The result is AdaBoost, a widely popular and award winning algorithm
 - · We will take a look at this later...

But first, let's get back to weak learning.

Weak Learnability

Remember, that a strong PAC learner for a class $\mathcal{H}...\,$

Remember, that a strong PAC learner for a class $\mathcal{H}...\,$

· ...if it is presented with $m>m_{\mathcal{H}}(\epsilon,\delta)$ examples

Remember, that a strong PAC learner for a class $\mathcal{H}...$

- · ...if it is presented with $m>m_{\mathcal{H}}(\epsilon,\delta)$ examples
- · ...has to find a hypothesis $h \in \mathcal{H}$

Remember, that a strong PAC learner for a class $\mathcal{H}...$

- · ...if it is presented with $m>m_{\mathcal{H}}(\epsilon,\delta)$ examples
- ...has to find a hypothesis $h \in \mathcal{H}$
- ...such that $L_{(\mathcal{D},f)}(h)<\epsilon$ for every D and f with confidence $1-\delta$ (if RA holds)

Remember, that a strong PAC learner for a class $\mathcal{H}...$

- · ...if it is presented with $m > m_{\mathcal{H}}(\epsilon, \delta)$ examples
- ...has to find a hypothesis $h \in \mathcal{H}$
- ...such that $L_{(\mathcal{D},f)}(h) < \epsilon$ for every D and f with confidence 1δ (if RA holds)

In weak learning, we only want the error to be less than 50%.

An algorithm A is a $\gamma\text{-weak-learner}$ for a class $\mathcal{H}\text{,}$ if...

An algorithm A is a $\gamma\text{-weak-learner}$ for a class $\mathcal{H}\text{,}$ if...

• ...for every $\delta \in (0,1)$ there exists a threshold $m_{\mathcal{H}}(\delta) \in \mathbb{N}$, such that

An algorithm A is a $\gamma\text{-weak-learner}$ for a class $\mathcal{H}\text{,}$ if...

- ...for every $\delta \in (0,1)$ there exists a threshold $m_{\mathcal{H}}(\delta) \in \mathbb{N}$, such that
- · ...if trained on at least $m>m_{\mathcal{H}}(\delta)$ examples

An algorithm A is a $\gamma\text{-weak-learner}$ for a class $\mathcal{H}\text{,}$ if...

- ...for every $\delta \in (0,1)$ there exists a threshold $m_{\mathcal{H}}(\delta) \in \mathbb{N}$, such that
- · ...if trained on at least $m > m_{\mathcal{H}}(\delta)$ examples
- · ...it will find a hypothesis h, such that

An algorithm A is a γ -weak-learner for a class \mathcal{H} , if...

- ...for every $\delta \in (0,1)$ there exists a threshold $m_{\mathcal{H}}(\delta) \in \mathbb{N}$, such that
- · ...if trained on at least $m > m_{\mathcal{H}}(\delta)$ examples
- · ...it will find a hypothesis h, such that
- · ... $L_{(\mathcal{D},f)}(h) < \frac{1}{2} \gamma$ with confidence 1δ

An algorithm A is a γ -weak-learner for a class \mathcal{H} , if...

- ...for every $\delta \in (0,1)$ there exists a threshold $m_{\mathcal{H}}(\delta) \in \mathbb{N}$, such that
- · ...if trained on at least $m > m_{\mathcal{H}}(\delta)$ examples
- · ...it will find a hypothesis h, such that
- · ... $L_{(\mathcal{D},f)}(h) < \frac{1}{2} \gamma$ with confidence 1δ
- \cdot ...for every labeling function f and every distribution \mathcal{D} (if RA holds)

An algorithm A is a γ -weak-learner for a class \mathcal{H} , if...

- ...for every $\delta \in (0,1)$ there exists a threshold $m_{\mathcal{H}}(\delta) \in \mathbb{N}$, such that
- · ...if trained on at least $m > m_{\mathcal{H}}(\delta)$ examples
- · ...it will find a hypothesis h, such that
- · ... $L_{(\mathcal{D},f)}(h) < \frac{1}{2} \gamma$ with confidence 1δ
- ...for every labeling function f and every distribution \mathcal{D} (if RA holds)

Lets look at an example (Decision Stumps)

Spam detection with decision stumps

Made with Excalidraw

Figure 1: This is a Decision Stump.

¹D_i are sample weights

- Decision Stumps partition the instance space ${\mathcal X}$ along a single dimension

¹D_i are sample weights

- Decision Stumps partition the instance space ${\mathcal X}$ along a single dimension
- · This is the hypothesis class:

¹D_i are sample weights

- Decision Stumps partition the instance space ${\mathcal X}$ along a single dimension
- · This is the hypothesis class:

$$\mathcal{H}_{DS} = \{ \mathbf{x} \mapsto \operatorname{sign} (\theta - x_i) \cdot b : \ \theta \in \mathbb{R}, i \in [d], b \in \{\pm 1\} \}$$

¹D_i are sample weights

- Decision Stumps partition the instance space ${\mathcal X}$ along a single dimension
- · This is the hypothesis class:

$$\mathcal{H}_{DS} = \{ \mathbf{x} \mapsto \operatorname{sign} (\theta - x_i) \cdot b : \theta \in \mathbb{R}, i \in [d], b \in \{\pm 1\} \}$$

• ERM has to find the best threshold θ and the best dimension $i \in [d]$ such that the training error is minimized:

¹D_i are sample weights

- Decision Stumps partition the instance space ${\mathcal X}$ along a single dimension
- · This is the hypothesis class:

$$\mathcal{H}_{DS} = \{ \mathbf{x} \mapsto \operatorname{sign} (\theta - x_i) \cdot b : \theta \in \mathbb{R}, i \in [d], b \in \{\pm 1\} \}$$

• ERM has to find the best threshold θ and the best dimension $i \in [d]$ such that the training error is minimized:

$$\min_{j \in [d]} \min_{\theta \in \mathbb{R}} \left(\sum_{i: y_i = 1}^m D_i \mathbb{1}_{[x_{i,j} > \theta]} + \sum_{i: y_i = -1}^m D_i \mathbb{1}_{[x_{i,j} \le \theta]} \right)$$

9

¹D_i are sample weights

- Decision Stumps partition the instance space ${\mathcal X}$ along a single dimension
- · This is the hypothesis class:

$$\mathcal{H}_{DS} = \{ \mathbf{x} \mapsto \operatorname{sign} (\theta - x_i) \cdot b : \theta \in \mathbb{R}, i \in [d], b \in \{\pm 1\} \}$$

• ERM has to find the best threshold θ and the best dimension $i \in [d]$ such that the training error is minimized:¹

$$\min_{j \in [d]} \min_{\theta \in \mathbb{R}} \left(\sum_{i:y_i=1}^m D_i \mathbb{1}_{\left[x_{i,j} > \theta\right]} + \sum_{i:y_i=-1}^m D_i \mathbb{1}_{\left[x_{i,j} \leq \theta\right]} \right)$$

This can be solved in $\mathcal{O}(dm)$!

¹D_i are sample weights

Wisdom of the crowd

Wisdom of the crowd

So now we know what a weak learner is.

But how can weak learners be used to build something powerful?

Wisdom of the crowd

So now we know what a weak learner is. But how can weak learners be used to build something powerful?

AdaBoost

• AdaBoost invokes the weak learner T times on the training data using different sample weights $(D_1^{(t)},...,D_m^{(t)}),\ t=1,...,T$

- AdaBoost invokes the weak learner T times on the training data using different sample weights $(D_1^{(t)},...,D_m^{(t)}), t=1,...,T$
- \cdot In every iteration t, the weak learner finds a hypothesis h_t

- AdaBoost invokes the weak learner T times on the training data using different sample weights $(D_1^{(t)},...,D_m^{(t)}), t=1,...,T$
- \cdot In every iteration t, the weak learner finds a hypothesis h_t
- Then, AdaBoost does a weighted majority vote:

$$h(x) = \operatorname{sign}\left(\sum_{t=1}^{T} w_t h_t(x)\right)$$

- AdaBoost invokes the weak learner T times on the training data using different sample weights $(D_1^{(t)},...,D_m^{(t)}), t=1,...,T$
- \cdot In every iteration t, the weak learner finds a hypothesis h_t
- · Then, AdaBoost does a weighted majority vote:

$$h(x) = \operatorname{sign}\left(\sum_{t=1}^{T} w_t h_t(x)\right)$$

Let's look at this in more detail...

- 1. Invoke the weak learner on the training data weighted by $D^{(t)}$
 - In iteration t=1, we use equal weights $D_i^{(t)}=\frac{1}{m}$

- 1. Invoke the weak learner on the training data weighted by $\mathcal{D}^{(t)}$
 - In iteration t=1, we use equal weights $D_i^{(t)}=\frac{1}{m}$
- 2. Compute a weight for the resulting hypothesis h_t like this:

$$w_t = \frac{1}{2} \log \left(\frac{1}{\epsilon_t} - 1 \right)$$

• ϵ_t is the (weighted) training error of h_t

- 1. Invoke the weak learner on the training data weighted by $\mathcal{D}^{(t)}$
 - In iteration t=1, we use equal weights $D_i^{(t)}=\frac{1}{m}$
- 2. Compute a weight for the resulting hypothesis h_t like this:

$$w_t = \frac{1}{2} \log \left(\frac{1}{\epsilon_t} - 1 \right)$$

- ϵ_t is the (weighted) training error of h_t
- 3. Update the weights $D_i^{(t)}$ like this

$$D_{i}^{(t+1)} = \frac{D_{i}^{(t)} \exp(-w_{t}y_{i}h_{t}(\mathbf{x}_{i}))}{\sum_{j=1}^{m} D_{j}^{(t)} \exp(-w_{t}y_{j}h_{t}(\mathbf{x}_{j}))}$$

A step by step example²

²Taken from the book *Boosting: Foundations and Algorithms* written by Freund and Schapire [4]. You can read it for free at https://mitpress.mit.edu/books/boosting

A step by step example

A step by step example

A step by step example

- In the previous example, the training error was efficiently reduced to zero
 - · If the weak learner is efficient, then AdaBoost is efficient

- In the previous example, the training error was efficiently reduced to zero
 - · If the weak learner is efficient, then AdaBoost is efficient
- What about the general case?

- In the previous example, the training error was efficiently reduced to zero
 - · If the weak learner is efficient, then AdaBoost is efficient
- · What about the general case?

$$L_{S}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{[h(\mathbf{x}_{i}) \neq y_{i}]} \le e^{-2\gamma^{2}T}$$

AdaBoost training error

- In the previous example, the training error was efficiently reduced to zero
 - · If the weak learner is efficient, then AdaBoost is efficient
- · What about the general case?

$$L_{S}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{[h(\mathbf{x}_{i}) \neq y_{i}]} \le e^{-2\gamma^{2}T}$$

The training error of AdaBoost decreases exponentially in T

AdaBoost training error

- In the previous example, the training error was efficiently reduced to zero
 - · If the weak learner is efficient, then AdaBoost is efficient
- · What about the general case?

$$L_{S}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{[h(\mathbf{x}_{i}) \neq y_{i}]} \le e^{-2\gamma^{2}T}$$

• The training error of AdaBoost decreases exponentially in T

...but what about the out of sample error?

$$L(B,T) = \left\{ x \mapsto \operatorname{sign}\left(\sum_{t=1}^{T} w_t h_t(x)\right) : \ w \in \mathbb{R}^T, \ h_t \in B \right\}$$

• The AdaBoost hypothesis is part of the following class:

$$L(B,T) = \left\{ x \mapsto \operatorname{sign}\left(\sum_{t=1}^{T} w_t h_t(x)\right) : \ w \in \mathbb{R}^T, \ h_t \in B \right\}$$

• It can be shown that VC dim of L(B,T) is in $\mathcal{O}(T \cdot \text{VCdim}(B))$

$$L(B,T) = \left\{ x \mapsto \operatorname{sign}\left(\sum_{t=1}^{T} w_t h_t(x)\right) : \ w \in \mathbb{R}^T, \ h_t \in B \right\}$$

- It can be shown that VC dim of L(B,T) is in $\mathcal{O}(T \cdot \text{VCdim}(B))$
- For decision stumps, VC dim is finite

$$L(B,T) = \left\{ x \mapsto \text{sign}\left(\sum_{t=1}^{T} w_t h_t(x)\right) : w \in \mathbb{R}^T, h_t \in B \right\}$$

- It can be shown that VC dim of L(B,T) is in $\mathcal{O}(T \cdot \text{VCdim}(B))$
- · For decision stumps, VC dim is finite
 - \Rightarrow VC dim of AdaBoost hypothesis is finite! L(B,T) is learnable!

$$L(B,T) = \left\{ x \mapsto \text{sign}\left(\sum_{t=1}^{T} w_t h_t(x)\right) : w \in \mathbb{R}^T, h_t \in B \right\}$$

- It can be shown that VC dim of L(B,T) is in $\mathcal{O}(T \cdot \text{VCdim}(B))$
- · For decision stumps, VC dim is finite
 - \Rightarrow VC dim of AdaBoost hypothesis is finite! L(B,T) is learnable!
- T controls model complexity (→ B/C tradeoff)
 - But what about overfitting?

Conclusion

· Boosting originated from a theoretical question

- · Boosting originated from a theoretical question
- \cdot Lead to widely used algorithms

- · Boosting originated from a theoretical question
- · Lead to widely used algorithms
- The principles have been adapted and expanded

- · Boosting originated from a theoretical question
- · Lead to widely used algorithms
- · The principles have been adapted and expanded
 - e.g. Gradient Tree Boosting is one of the most popular ML algorithms today [1]

- · Boosting originated from a theoretical question
- · Lead to widely used algorithms
- The principles have been adapted and expanded
 - e.g. Gradient Tree Boosting is one of the most popular ML algorithms today [1]

If you don't know where to start – try boosting.

References i

T. Chen and C. Guestrin.

Xgboost: A scalable tree boosting system.

CoRR, abs/1603.02754, 2016.

Y. Freund and R. E. Schapire.

A decision-theoretic generalization of on-line learning and an application to boosting.

Journal of Computer and System Sciences, 55(1):119 – 139, 1997.

M. Kearns and L. G. Valiant.

Learning boolean formulae or finite automata is as hard as factoring.

Technical Report TR 14-88, Harvard University Aiken Computation Laboratory, 1988.

References ii

S. Shalev-Shwartz and S. Ben-David.

Understanding Machine Learning - From Theory to Algorithms.

Cambridge University Press, 2014.