Formulario para evaluación escrita de la asignatura Circuitos Eléctricos 3 (Hoja 1)

Ecuaciones asociadas a las aproximaciones de Butterworth y Chebyshev								
$\left H\left(jw\right)\right _{dB}=$	$=20 \cdot \log(H(jv))$	w $ H(j) $	$\left H\left(jw\right) \right = \left(1 + B_n \bullet w^{2n}\right)^{-1/2}$		$\left H(jw) \right = \left(1 + \varepsilon^2 \cdot C_n^2(w)\right)^{-1/2}$			
$\left H\left(jw_X\right) \right _{dB} = -20n \cdot \log\left(w_X\right) - 10\log\left(B_n\right)$					w_c	$w_x = \frac{w_c}{w}$	$w_{x3} = 1/2\sqrt{B_n}$	
$S_X = S_{W_3}$	$S_X = S_{W_C}$	$S_{X} = \frac{W_{3}}{S}$	$S_X = \frac{W_C}{S}$	$H(S_X) = \frac{1}{B(S_X)}$				

Poli	nomios de Butterworth	Polinomios de Chebyshev			
n	$B(S_X)$	C _n (w)=cos(n*cos ⁻¹ (w)) para w≤1			
1	(S _X +1)	$C_n(w) = \cosh(n^*\cosh^{-1}(w))$ para w>1			
2	$(S_x^2+1.414 S_X+1)$	$a = (1/N)^* senh^{-1}(1/E)$			
3	$(S_x^2 + S_x + 1) (S_x + 1)$	σ_{Xk} =senh(a)*sen(((2k+1)*Pi)/2N)			
4	$(S_x^2 + 0.756S_x + 1) (S_x^2 + 1.848S_x + 1)$	$w_{Xk} = \cosh(a)^* \cos(((2k+1)^*Pi)/2N)$			
5	$(S_x^2 + 0.618S_x + 1) (S_x^2 + 1,618S_x + 1) (S_x + 1)$	$K_{C}=1/(E^{*}2^{(N-1)})$			
6	$(S_x^2 + 0.518S_x + 1) (S_x^2 + 1.414S_x + 1) (S_x^2 + 1.932S_x + 1)$				
7	$(S_x^2 + 0.445S_x + 1) (S_x^2 + 1.247S_x + 1) (S_x^2 + 1.802S_x + 1) (S_x + 1)$				
8	$(S_x^2 + 0.39S_x + 1) (S_x^2 + 1,111S_x + 1) (S_x^2 + 1,166S_x + 1) (S_x^2 + 1,962S_x + 1)$				
9	$(S_x^2 + 0.343S_x + 1) (S_x^2 + S_x + 1) (S_x^2 + 1.523S_x + 1) (S_x^2 + 1.879S_x + 1) (S_x + 1)$				
10	$(S_x^2 + 0.313S_x + 1) (S_x^2 + 0.908S_x + 1) (S_x^2 + 1.414S_x + 1) (S_x^2 + 1.782S_x + 1) (S_x^2 + 1.975S_x + 1)$				

Formulario para evaluación escrita de la asignatura Circuitos Eléctricos 3 (Hoja 2)

Standard 5 Percent Tolerance Resistor Values