

HYPERLIPIDEMIA

I. PATHOPHYSIOLOGY

DEFINITION

- A. INHERITED HYPERLIPIDEMIA
- B. ACQUIRED HYPERLIPIDEMIA

II. COMPLICATIONS

- A. ATHEROSCLEROSIS
- B. PANCREATITIS
 C. STEATOSIS
- D. SOFT TISSUE DEPOSITION

III. DIAGNOSIS AND TREATMENT

- A. STATIN REQUIREMENT
- B. TREATMENT APPROACH
- C. LIPID-LOWERING MEDICATIONS

I. PATHOPHYSIOLOGY

1. LDL

- Pathophysiology of ↑LDL:
 - ↑ Atherosclerotic plaque formation

2. HDL

- o Pathophysiology of ↓HDL:
 - ↑ Atherosclerotic plaque formation

3. Triglycerides

- Pathophysiology of ↑TG:
 - ↑ Risk of tissue deposition, such as pancreatitis and NAFLD

Hyperlipidemia is associated with either:

- 1. 个LDL
- 2. ↓HDL
- 3. 个Triglycerides

A. INHERITED HYPERLIPIDEMIA

• Inherited hyperlipidemia is more commonly seen in the younger patient population

1. Type I

• Pathophysiology:

- O Autosomal recessive disorder leading to ↓Lipoprotein lipase activity (LPL) → ↓Break down of triglycerides of chylomicrons and VLDL → ↑↑↑Triglycerides in blood
 - → ↑ Risk of hepatomegaly and pancreatitis

• Fun fact:

 O When obtaining a lipid panel → The blood sample has a creamy layer on top signifying increased triglycerides

Type 1 (AR) Chylomicrons LPLI THTG

2. Type II

• Pathophysiology:

 O <u>Autosomal dominant</u> disorder leading to a <u>defect in LDL receptor</u> → ↓LDL-R on hepatocytes available → ↑LDL in the blood → ↑Accelerated Atherosclerosis

3. Type III

• Pathophysiology:

- Autosomal recessive disorder leading to a defect in Apo-E protein
 - →Inability to uptake chylomicron remnants and VLDL
 - → ↑Triglycerides and total cholesterol
 - → ↑Accelerated atherosclerosis

4. Type IV

• Pathophysiology:

- <u>Autosomal dominant</u> disorder leading to <u>↑ Hepatic synthesis of VLDL</u>
 - → ↑↑Triglycerides in the blood
 - → ↑Risk of pancreatitis and possibility of premature atherosclerosis

Type II (AD)

Type III (AR)

Type IV (AD)

Table 1. Types of Inherited Hyperlipidemia.

	Pattern of Inheritance	Pathophysiology		Remarks
Туре І	Autosomal recessive	Defect in lipoprotein lipase	↑chylomicrons → ↑↑↑ TG	Blood samples have a creamy layer on top
Туре ІІ	Autosomal dominant	Defects in LDL receptors	↑LDL → ↑↑↑cholesterol	LDL receptors take up LDL in the liver
Туре III	Autosomal recessive	Defect in ApoE protein	↑ VLDL and ↑chylomicron → ↑TG and ↑cholesterol	ApoE proteins take up chylomicron remnants and VLDL
Type IV	Autosomal dominant	↑hepatic synthesis of VLDL	↑VLDL → ↑↑TG	

F

B. Acquired Hyperlipidemia

1. Diabetes Mellitus Related

• Pathophysiology:

O Insulin resistance → ↓Effectiveness of insulin → ↓LPL activity
 → ↓Breakdown of VLDLs → ↑VLDLs lead to increased
 triglycerides and ↑LDL formation → ↑Accelerated
 atherosclerosis

DM-related

3. Nephrotic Syndrome Related

• Pathophysiology:

○ Podocyte damage → ↑ Albuminuria → ↓Serum albumin →
 ↑Synthesis of liver proteins → ↑VLDL and LDL →
 ↑ Accelerated atherosclerosis

Nephrotic syndrome related

2. Hypothyroid Related

Pathophysiology:

 ↓T3 and T4 → LDL- R down-regulation → ↓LDL uptake → ↑LDL → ↑Accelerated atherosclerosis

Hypothyroid related

4. Medications

- Beta-Blocker
- Oral Contraceptives
- Thiazide Diuretics

II. COMPLICATIONS

A. ATHEROSCLEROSIS

15:42

• Pathophysiology:

 ↑↑LDL → ↑Atherosclerotic plaques → Luminal narrowing of blood vessel → Ischemia of organ affected

■ Myocardium: CAD or MI

CNS: TIA or CVA

■ Lower extremity: PAD or ALI

B. PANCREATITIS

17:58

• Pathophysiology:

↑↑TG (> 1000 mg/dL) → Activate pancreatic enzymes →
 Massive pancreatic inflammation

Pancreatitis

C. STEATOSIS

19:01

• Pathophysiology:

↑LDL and ↑TG → Steatosis occurs which triggers
inflammation → Steatohepatitis occurs which triggers fibrosis

→ Cirrhosis of the liver

Steatosis

D. SOFT TISSUE DEPOSITION

 Deposition of cholesterols or triglycerides into different soft tissues

o Xanthomas: Deposition into tendons

o Xanthelasma: Deposition into nasal side of eyelids

o Corneal arcs: Deposition into the cornea

III. DIAGNOSIS AND TREATMENT

FIGURE 1. APPROACH TO DIAGNOSIS AND TREATMENT OF HYPERLIPIDEMIA.

A. STATIN REQUIREMENT

- Four reasons for initiating statin therapy:
 - ASCVD: Do they have evidence of CAD, MI, TIA, CVA, PAD or ALI?
 - (+) ASCVD → Statin therapy
 - o LDL > 190? → Statin therapy
 - \circ LDL > 70 + 40-75 y/o + **DM**? → Statin therapy
 - o LDL > 70 + 40-75 y/o + **ASCVD risk** ≥ **7.5%**? → Statin therapy

ASCVD Risk:

- Purpose: Calculates the 10-year risk of stroke or MI
- Mnemonic: SAD CHF
 - Smoking
 - o Age (> 45/M or > 55/F)
 - o Diabetes
 - o Cholesterol 个
 - Hypertension
 - Family history

B. TREATMENT APPROACH

1. Lifestyle Modification

- Change the modifiable risk factors:
 - ↓Weight
 - o Diet
 - o Exercise
 - Quit smoking

2. Initiate High-Intensity Statin Therapy

- Indications discussed in statin requirements
- Agents used:
 - o Atorvastatin 40/80
 - o Rosuvastatin 20/40

Obtain Baseline CK and LFTs

- Statins can cause rhabdomyolysis and hepatitis as adverse effects
 - → Obtain baseline CK and LFTs
- The patient presents with hepatic features such as jaundice and RUQ pain or rhabdomyolysis such as dark urine and muscle pain
 - → Repeat CK and LFTs
- If there is ↑CK, urine myoglobin, and LFTs
 - → **Stop statin** and restart on a **↓Dose statin** such as moderate intensity

3. Add Ezetimibe

• If statin is maxed and LDL remains ↑↑ → Add Ezetimibe

4. Add Bile Acid Sequestrant or PCSK9-Inhibitor

 If statin and ezetimibe are maxed and LDL remains ↑↑ → Add Bile Acid or PCSK9-inhibitor

C. LIPID-LOWERING MEDICATIONS

a) Statins

- Primary drug class
- Examples: Atorvastatin, Rosuvastatin
- Main effect: ↓↓LDL
- Mechanism of action: inhibits HMG-CoA
 - o HMG-CoA is needed in cholesterol synthesis
- Pitfalls:
 - o 个LFTs
 - ↑rhabdomyolysis

- b) Bile Acid Sequestrants

- Example: Cholestyramine
- Main effect: ↓LDL
- MOA: Inhibits <u>bile acid absorption</u> → Loss of bile acid in stool
- Pitfalls:
 - o ↑Diarrhea

c) Ezetimibe

- Primary drug class
- Main effect: ↓↓LDL
- MOA: Inhibits <u>cholesterol absorption</u> → Loss of cholesterol in stool
- Pitfalls:
 - o 个Diarrhea

d) Fibrates -

- Examples: Gemfibrozil, Fenofibrate
- Main effect: ↓↓TG
 - o Patient is on statin with the LDL goal reached, but **not** the
- MOA: ↑Lipoprotein lipase
 - ↑Conversion of TG to free fatty acids
- Pitfalls:
 - ↑LFTs and ↑rhabdomyolysis (if added to statins)
 - ↑Gallstones

e) Niacin

- Main effect: ↓TG and ↑HDL
- MOA: ↓Lipolysis
- Pitfalls:
 - Flushing
 - Niacin causes ↑Prostaglandin pathway stimulation
 - Treat with Aspirin
 - o ↑Uric acid → Gout

f) PCSK-9 Inhibitors -

- Example: Evolocumab
- Main effect: ↓↓↓↓LDL
- MOA: Inhibits LDL-R breakdown
- → ↑LDL uptake by the liver
- Pitfalls:
 - o Very expensive

Table 2. Drug Classes used to treat Dyslipidemia.

Drug class	Main effect	Mechanism	Pitfalls	
Statins (Atorvastatin, Rosuvastatin)	↓↓LDL	HMG-CoA inhbitor	↑ LFTs and Rhabdomyolysis	
Bile Acid Sequestrants (Cholestyramine)	↓LDL	Inhibit Bile absorption	个Diarrhea (cholesterol malabsorption)	
Ezetimibe	↓LDL	Inhibit Cholesterol absorption		
Fibrates (Gemfibrozil, Fenofibrate)	↓↓TG	↑Lipoprotein Lipase	↑LFTs and Rhabdomyolysis (if added to statins) ↑gallstones	
Niacin	↓TG ↑HDL	↓Lipolysis	Flushing (PG mediated)→Rx w/ ASA ↑uric acid→ gout	
PCSK-9 Inhibitors (Evolocumab)	↓↓↓LDL	↓LDL-R breakdown	\$ \$ \$	

