MT e Problemas de decisão

Como vimos no início do curso, a solução de um problema de decisão é um algoritmo que, para toda instância do problema, fornece a resposta correta. Pela tese de Church-Turing, traduzimos essa afirmação como: existe uma máquina de Turing que para em estado final quando a resposta for sim, e em estado não final quando a resposta for não. Ou seja, um problema de decisão é solucionável se a linguagem de todas as suas instâncias para as quais a resposta é sim for uma linguagem recursiva.

A implicação disso, como discutimos anteriormente, é que precisamos definir uma representação para um problema de decisão, usando algum alfabeto. Essa representação deve ser tal que:

- Toda instância do problema deve ser representada por ao menos uma palavra de Σ^* .
- Toda palavra de Σ^* representa uma única instância do problema.
- Sempre é possível verificar se uma palavra representa ou não uma instância.

Usaremos a notação $R\langle i \rangle$ para denotar a representação de uma instância i de um problema de decisão P. Se essa instância consistir em vários valores de parâmetros, então esse serão separados por vírgula como $R\langle v_1, v_2, ..., v_n \rangle$.

Dessa forma, a MT que solucione um problema de decisão será denotada esquematicamente por:

As saídas, nesse caso, representam a parada da máquina em um estado final ou não para a palavra de entrada.

Exemplo: Considere o problema de decisão de determinar se uma palavra $w \in L(G)$ para uma GLC G.

Nesse caso, precisamos representar tanto a palavra quanto a própria gramática para serem entregues ao algoritmo solucionador. A representação da gramática requer a representação das variáveis, terminais e regras. A mesma representação dos terminais pode ser usada na representação da palavra.

Assim, representamos uma variável X_i em unário 1^i . Naturalmente, escolhemos 1 para representar a variável de partida. Cada terminal a_j é representado por $1^{|V|+j}$. As regras, por sua vez, são traduções diretas dos respectivos códigos usando o 0 como separador. Ou seja, uma regra r: $X_i \to a_j X_i$ é representada por $R\langle r \rangle = 1^i 01^{|V|+j} 01^i$.

Como as variáveis e terminais são representados em unário, só precisamos saber quantos elementos pertencem a cada um desses conjuntos na representação da gramática. As regras podem ser separadas por 00 e colocadas em sequência. Logo, a representação de uma gramática seria: $R\langle (V,\Sigma,R,P) \rangle = 1^{|V|} 01^{|\Sigma|} 0R\langle r_1 \rangle 00R\langle r_2 \rangle ... 00R\langle r_{|R|} \rangle$.

Por fim, a representação de uma instância R(G, w) = R(G)000R(w). Sendo que a representação da palavra será a sequência dos terminais que a compõe separados por 0s.

Agora considere a instância desse problema "determinar se $aba \in L(H)$ " em que a (regras da) gramática são mostradas abaixo.

 $A \rightarrow aAa \mid B$ $B \rightarrow aB \mid CC$ $C \rightarrow b \mid \lambda$

As variáveis seriam representadas por A:1, B:11, C:111; os terminais $a:1^4$, $b:1^5$; e a regra

1 of 4 04/04/2021 22:19

 $A \rightarrow aAa$ representada por $R(r_1) = 101^40101^4$.

Seguindo essa lógica, a instância seria representada por:

$$R(H, aba) = 1^3 01^2 0 R(r_1) 00 R(r_2) 00 R(r_3) 00 R(r_4) 00 R(r_5) 00 R(r_6) 0001^4 01^5 01^4$$
.

Uma MT (algoritmo) que solucione o problema seria como:

Logo, a MT M, se existir, seria capaz de reconhecer a linguagem $\{R(G, w) | w \in L(G)\}$.

Similarmente ao posto acima, poderíamos questionar se uma palavra pertencia pode ser reconhecida por uma máquina de Turing; ou seja, se ela pertence à sua linguagem. O problema de decisão, no caso, seria, dadas uma MT M e uma palavra w, $w \in L(M)$? Assim como criamos uma representação para uma GLC e uma palavra, teríamos que definir também uma representação para MTs. Isso nos leva a um conceito importante: o de máquinas de Turing universais.

O poder das máquinas de Turing é tamanho que elas são capazes de simular quaisquer outras MTs, inclusive elas próprias. Esse poder computacional ficou bastante evidente quando demonstramos que as diferentes variantes eram equivalentes à MT padrão.

Para solucionar problemas de decisão envolvendo MTs, precisamos definir uma representação para elas. Somente dessa forma podemos simulá-las por outra máquina. A simulação de uma MT requer essencialmente duas informações: quais são os estados finais; e suas transições. Logo, a representação de uma MT requer a representação dessas duas informações.

Seja $M = (Q, \Sigma, \Gamma, \langle, \sqcup, \delta, i, F)$ uma MT arbitrária. Podemos representar os estados de Q e os símbolos do alfabeto de fita como:

Estado	Representação	
$e_1 = i$	1	
e_2	11	
:	:	
e_n	1^n	

Símbolo de Γ	Representação	
$a_1 = \langle$	1	
$a_2 = \sqcup$	11	
:	:	
a_k	$\mathtt{1}^k$	

Assim, podemos representar os estados finais por:

•
$$R\langle F \rangle = R\langle f_1 \rangle 0 R\langle f_2 \rangle 0 ... 0 R\langle f_{|F|} \rangle$$

As transições, por sua vez, podem ser representadas por:

•
$$t_i: \delta(e, a) = [e', b, d] \Rightarrow R(t_i) = R(e) 0 R(a) 0 R(e') 0 R(b) 0 R(d)$$

As movimentações do cabeçote podem ser representadas por D:1 e E:11.

Logo, a representação da máquina seria:

•
$$R\langle M \rangle = R\langle F \rangle 00R\langle t_1 \rangle 00R\langle t_2 \rangle 00...00R\langle t_s \rangle$$

A representação da palavra faz uso da representação dos símbolos do alfabeto de fita, já que $\Sigma \subset \Gamma$.

2 of 4

Por fim, a representação de uma instância de um problema de decisão envolvendo uma MT e uma palavra seria:

• $R\langle M, w \rangle = R\langle M \rangle 000 R\langle w \rangle$

Segue um exemplo de representação de MT.

Exemplo: Obtenha uma representação para a MT abaixo e a palavra ab.

Estado	Representação	Símbolo	Representação
1	1	(1
2	11	П	11
		а	111
		b	1111

$$R\langle M \rangle = 101100101^301001101^4011$$

$$R\langle M, w \rangle = 101100101^301001101^40110001^301^4$$

Arr Uma **máquina de Turing universal** (MTU) é uma MT que simula qualquer outra MT. Ou seja, Uma MTU é aquela que recebe como entrada uma representação, $R\langle M,w\rangle$ de uma MT M e uma palavra w de entrada para essa máquina, e simula a computação de M com w.

Uma MTU U será especificada com 3 fitas. A primeira contém a entrada de U, ou seja, R(M, w). A segunda fita fará o papel da fita de M. E a terceira funcionará como o registrador de M, isto é, armazenará a representação do estado atual de M. O algoritmo abaixo descreve o funcionamento da MTU U.

- 1. copie $R\langle w \rangle$ na fita 2 e posicione cabeçote no início;
- 2. escreva R(i) na fita 3 e posicione cabeçote no início;
- 3. ciclo
 - 3.1 seja R(a) a representação sob o cabeçote da fita 2;
 - 3.2 seja $R\langle e \rangle$ a representação sob o cabeçote da fita 3;
 - 3.3 procure $R\langle e \rangle 0 R\langle a \rangle 0 R\langle e' \rangle 0 R\langle a' \rangle 0 R\langle d \rangle$ na fita 1;
 - 3.4 se encontrou então
 - 3.4.1 substitua $R\langle e \rangle$ por $R\langle e' \rangle$ na fita 3 e volte cabeçote da fita 3 ao seu início;
 - 3.4.2 substitua $R\langle a \rangle$ por $R\langle a' \rangle$ na fita 2;
 - 3.4.3 mova cabeçote da fita 2 na direção d
 - 3.5 senão
 - 3.5.1 se e é estado final então pare em estado final

senão

pare em estado não final

fimse

fimse

fimciclo.

Em resumo, inicialmente U copia a palavra de entrada de M na fita 2. Depois escreve o estado *i* de M na fita 3, e finalmente simula as transições M, olhando o estado na fita 3 e o símbolo (palavra) na fita 2.

3 of 4 04/04/2021 22:19

公

A linguagem reconhecida pela máquina universal U é portanto $\{R\langle M,w\rangle | w \in L(M)\}$.

Se a máquina M reconhecesse por parada, então poderíamos simplificar sua representação, eliminando a representação dos estados finais. Nesse caso, a linguagem dessa MTU U_p (para diferenciá-la da máquina em que M é padrão) seria:

• $L(U_p) = \{R\langle M, w \rangle | M \text{ para ao computar } w\}$

Em outras palavras, U_p para com R(M, w) se, e somente se, M para com w.

Vamos usar essa representação para identificar linguagens que não são LRec; ou seja, não são decidíveis, e posteriormente para definir a fronteira do que pode ou não ser computado pela MT.

4 of 4 04/04/2021 22:19