16.2 A 40nm 64kb 26.56TOPS/W 2.37Mb/mm² RRAM Binary/Compute-in-Memory Macro with 4.23× Improvement in Density and >75% Use of Sensing Dynamic Range

Samuel D. Spetalnick¹, Muya Chang¹, Brian Crafton¹, Win-San Khwa², Yu-Der Chih³, Meng-Fan Chang², Arijit Raychowdhury¹

¹Georgia Institute of Technology, Atlanta, GA ²TSMC Corporate Research, Hsinchu, Taiwan ³TSMC Design Technology, Hsinchu, Taiwan

Compute-in-Memory (CIM) using emerging nonvolatile (eNVM) memory technologies, such as resistive random-access memory (RRAM), has been shown by several implemented macros to be an energy-efficient alternative to traditional von Neumann architectures [1-6]. Since moving data on- and off-chip has a high energy cost, area efficiency is important to the practical utility of CIM with RRAM. Many systems demonstrated so far have not reported area efficiency or addressed the challenges CIM with RRAM presents with respect to practical area-constrained integrated circuits.

Figure 16.2.1 shows the topology of the implemented RRAM macro and presents three challenges. (1) As suggested above, peripheral area overhead for eNVM-based CIM S systems can be significant due to the requirement for high-precision analog-to-digital converters (ADCs) to accommodate reduced sensing margin when multiple states are represented on the bitline (BL), and due to the need for level shifters (LSs) and isolation devices to enable safe high-voltage (HV) RRAM writes. To reduce ADC area and power, $\stackrel{\circ}{\otimes}$ the readout circuit should maximize the portion of the available voltage headroom which $\stackrel{\smile}{\cong}$ is used for representing output states. (2) The macro should support various gapplications, which may require different operations (binary vs. MAC) and levels of $\vec{\Xi}$ accuracy and may be optimized at different RRAM operating points. (3) The array macro Simust be compatible with large integrated systems by including all necessary biasing, having a compact digital interface, and having the ability to power-down with several granularity levels to support power states. The implemented power-switchable macro integrates 8× 1-to-4b read channels, one shared self-biasing and reference-generating $\stackrel{\square}{=}$ circuit per macro, full read and write drivers, and all LSs into a 0.027mm² layout, 16.2× smaller than a similar-featured same-technology array [6]. Using estimated area in the highest-density CIM with RRAM macro recently reported in ISSCC, [4], this macro is 1.56× and 4.23× denser before and after normalizing to the 40nm node.

Figure 16.2.2 details the voltage-regulating current-sense topology designed to address the first two challenges. Sufficient voltage gain A_0 provides immunity to process, voltage and temperature (PVT) variation, while sufficient effective regulating transconductance A_0G_0 allows RRAM cells to be measured as current sources with ideal current-domain CIM state separation. The explicit current-sensing resistor enables constant, PVT-tolerant current-voltage translation, while the flexible choice of BL target voltage V_{BLTGT} (broken out off-chip for ease of testing) enables compatibility with a wide range of RRAM cell resistances. Analysis of the effects of mismatch in the three critical sensing components motivates geometric matching of the amplifiers and sense resistors to allow read channels to share references. This macro supports a < 6ns binary read mode, 1-to-4b low-power precise cell drift monitoring mode as in [6], 1-to-4b output CIM mode, and 200ns power switching.

Efigure 16.2.3 shows transistor-level implementation of the read channels. The BL regulator is implemented as a two-transistor gain-enhanced follower with the voltageregulator is implemented as a two-transistor gain-enhanced follower with the voltage-Ögain and transconductance elements each a single device. All the bias current for each gchannel flows into the RRAM cell load which counteracts the ILEAK due to off-state 3 measured cells during CIM (increasing effective dynamic range). Since I_{BIAS} flows into To extend the usable maximum RRAM resistance range to ~100k Ω and allow for low-power cell drift monitoring, the bias size if T. ៊ីthe RRAM cell(s), the maximum measurable resistance is roughly limited to V_{BLTGT}/I_{BIAS}. 불 low-bias modes. When no wordline (WL) is selected, negligible current (in order of 10nA) 중 flows through a diode-connected device to allow the BL to remain in near-regulation. Post-layout simulation shows arbitrarily large and linear state separation, and 5.3ns Batency to adequate binary state separation. Low ADC kickback to support shared low-Epower reference generation is achieved by adding sampling transistors at the comparator inputs. With reduced capacitive loading on the input gates, input common-mode range (ICMR) maximum is reduced due to parasitic common-mode feedback during operation. 발The addition of PMOSCAPs restores ICMR, resulting in a compact design with > 6.25× reduction in simulated kickback charge. The reference generator uses common-centroid poly resistors for even step size and allows controllable step- and start-voltage using two IDACs for flexibility to application sensing requirements.

Figure 16.2.4 motivates and shows the implementation of the split write/read WL driver architecture for area-efficient WL drive across two power domains. Level-shifting WL drivers are needed to support HV (>1.5V) WL drive during write, but write speeds are set by the RRAM technology and are at least 100ns. The slower write WL driver is distinct from the faster read WL driver and uses a full decoder-tree in the HV domain. Using pass-transistor logic and a final-drive buffer, the HV driver requires only 10 differential-output LSs (vs. 256 LS without decoder). The separate sub-nanosecond read driver chains each incorporate only a single HV stage, with a thick-oxide NMOS chosen for best speed/area tradeoff. Area is reduced 5× vs. individual LS for each WL at slightly improved overall speed. The read WL drivers are enabled as a block with a single LS, and each WL is individually controlled with a one-hot select signal. During read, the write WL drivers are isolated from the WLs by separately power-gating the decoder tree (ensuring the final drive NMOS is off) and power-gating the final drive PMOS. Post-layout transients confirm sub-1ns read WL driver performance and sub-10ns write WL driver performance.

Figure 16.2.5 shows the measured performance of the read and write circuits. To show readout circuit performance, the reference-ladder is calibrated using an off-chip port then swept through known values to accurately measure on-chip voltages. Linear CIM read with 45-to-75mV state separation (average 3.8mV loss in separation per each additional on-state cell) and >75% usage of available ADC dynamic range is demonstrated using binary cells programmed iteratively with a single pass using a threshold. Binary read of one-shot (no readback/iteration) programmed cells is shown to be robust to cell-resistance variation and voltage shifts due to high open-loop gain in the self-biasing and readout circuits. The readout circuit allows for wide voltage-domain state separation from limited cell-resistance-domain separation, and one-shot write voltages of 1.7V, 2.6V, and 3.1V for SET (LRS), RESET (HRS), and FORM are shown to successfully program cells for binary read.

Figure 16.2.6 shows the area efficiency, measured energy efficiency, and comparison to other works. The 9 WL (parallel) 1×1b MAC operation shows 26.56/5.63 peak/average TOPS/W achieved at 0.83V AV_DD and 64MHz. Peak efficiency is sensitive to bias/leakage power, and the shown worst-case figure of 200 μ W results in nominally worse efficiency compared to prior work [6]. Average efficiency is improved 36% (vs. 4.15TOPS/W), and calibrated simulation shows that biasing the cells for read consumes over 80% of power. The utility of the staged power-on/off is confirmed by measurement. The area-optimized RRAM-based CIM macro achieves 2.37Mb/mm², estimated to be 56% denser than a prior design in 22nm, here with a smaller-capacity sub-array [4]. Compared to similar works in 40nm or larger nodes [2, 6], the effective density is approximately 12.5-to-16.2× higher. This is due to the HV-domain WL signal encoding and the compact readout circuit with >45mV state separation. The readout circuits with biasing represent 2.8% of the total area (9.6% of array area) due to the minimized 2-transistor + bias implementation, with no energy overhead compared to the biased RRAM cells (excepting the single bias arm per macro).

Chip micrograph and chip characteristics are shown in Fig. 16.2.7.

Acknowledgement:

SS, MC, BC, and AR were supported by the Semiconductor Research Corporation under the Center for Brain-Inspired Computing (C-BRIC) under Grant 2777.004 and 2777.005, and the Applications and Systems-driven Center for Energy-Efficient Integrated Nano Technologies (ASCENT) under Grant 2776.079. The authors would also like to thank TSMC for technical discussions and chip fabrication support.

References:

- [1] C. Xue et al., "A 22nm 2Mb ReRAM Compute-in-Memory Macro with 121-28TOPS/W for Multibit MAC Computing for Tiny Al Edge Devices," *ISSCC*, pp. 244-246, 2020.
- [2] C. Xue et al., "A 1Mb Multibit ReRAM Computing-In-Memory Macro with 14.6ns Parallel MAC Computing Time for CNN Based Al Edge Processors," *ISSCC*, pp. 338-390, 2019
- [3] W. -H. Chen et al., "A 65nm 1Mb nonvolatile computing-in-memory ReRAM macro with sub-16ns multiply-and-accumulate for binary DNN AI edge processors," *ISSCC*, pp. 494-496, 2018.
- [4] C. Xue et al., "A 22nm 4Mb 8b-Precision ReRAM Computing-in-Memory Macro with 11.91 to 195.7TOPS/W for Tiny Al Edge Devices," *ISSCC*, pp. 245-247, 2021.
- [5] Q. Liu et al., "Fully Integrated Analog ReRAM Based 78.4TOPS/W Compute-In-Memory Chip with Fully Parallel MAC Computing," *ISSCC*, pp. 500-502, 2020.
- [6] J. -H. Yoon et al., "A 40nm 64Kb 56.67TOPS/W Read-Disturb-Tolerant Compute-in-Memory/Digital RRAM Macro with Active-Feedback-Based Read and In-Situ Write Verification," *ISSCC*, pp. 404-406, 2021.

implemented macro.

Figure 16.2.3: Transistor-level schematics and performance simulations of the readout components including voltage-regulating read circuit, flash ADC with reduced | Figure 16.2.4: Split read/write WL driver motivation, schematics, simulations, and kickback, bias circuit, and reference generator.

Figure 16.2.5: Measured behavior of the memory macro detailing performance of Figure 16.2.6: Measured power and energy efficiency results, area breakdown, and

Figure 16.2.1: Design goals for a practical RRAM macro and topology of the Figure 16.2.2: Voltage-regulating current-sense readout circuit topology, details about matching requirements, and the supported readout operating modes.

operating waveforms

CIM read and robust binary read and showing distribution of required write voltages. comparison to other CIM RRAM macro implementations.

ISSCC 2022 PAPER CONTINUATIONS

Technology	40nm CMOS
Memory	Foundry 1T1R RRAM
Macro Size	0.027mm ²
Capacity	64Kb
AVDD	0.83 – 1.1V
Write Voltages	
SET	1.6 – 2.2V
RESET	2.6 – 3.0V
FORM	3.1 – 3.3V
Modes	Binary
	CIM (4-bit ADC)
	Monitoring
Bias Power:	
@ 0.83V	113uW – 201uW
@ 1.1V	189uW – 339uW
Energy Eff.:	@ 0.83V:
Binary	461fJ/CeII
CIM	26.56TOPS/Watt
	I

Figure 16.2.7: Die micrograph and chip characteristics.