Master CSI 1

Théorie de l'Information MHT 813 Examen du 19 décembre 2011

Durée : 3h. Sans documents. Les exercices sont indépendants.

Exercice 1. Une variable aléatoire X prend ses valeurs dans $\mathcal{X} = \{1, 2, 3, 4, 5\}$. On considère deux lois de probabilités $p = (P(X = x))_{x \in \mathcal{X}} = (p_x)_{x \in \mathcal{X}}$ et $q = (P(X = x))_{x \in \mathcal{X}} = (q_x)_{x \in \mathcal{X}}$ ainsi que deux codages $C_1 : \mathcal{X} \to \{0, 1\}^*$ et $C_2 : \mathcal{X} \to \{0, 1\}^*$, donnés par le tableau suivant :

\mathcal{X}	p_x	q_x	$C_1(x)$	$C_2(x)$
1	1/2	1/2	0	0
2	1/4	1/8	10	100
3	1/8	1/8	110	101
4	1/16	1/8	1110	110
5	1/16	1/8	1111	111

- 1) Calculer H(p), H(q), D(p||q) et D(q||p).
- \sim 2) Les codes C_1 et C_2 sont-ils uniquement déchiffrables? Montrez que C_1 est optimal pour la loi p et que C_2 est optimal pour la loi q.
 - 3) Quelle est la longueur moyenne du codage par C_2 si la loi est p? De combien excède-telle la longueur moyenne du codage optimal pour p? Quelle est la longueur moyenne du codage par C_1 si la loi est q? De combien excède-t-elle la longueur moyenne du codage optimal pour q? Réinterprêtez ces valeurs avec les résultats de la question 1).

Exercice 2. Soit le canal représenté par le schéma suivant :

Calculez la capacité de ce canal.

Exercice 3. Soit C le code binaire linéaire défini par la matrice de parité H suivante :

$$H = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

- 1) Quels sont les paramètres de ce code?
- 2) Pour j compris entre 1 et 8, soit C_j le code obtenu à partir de C en supprimant la coordonnée d'indice j. Montrez que $d(C_j) \geq 3$.
- 3) En déduire que le code C ne peut pas corriger deux erreurs, mais peut corriger une erreur et un effacement.
- 4) Un mot de code $c = (c_1, c_2, \ldots, c_8)$ est corrompu par un effacement (en position 7) et une erreur, et le mot résultant est : $x = 010110\epsilon 1$. Retrouvez le mot de code c.

Exercice 4. Soit C le code binaire linéaire défini par la matrice de parité H suivante :

Pour $x \in \{0,1\}^{15}$, on note $\sigma(x) = Hx^t$ le syndrome de x.

- 1) Quels sont les paramètres [n, k, d] de ce code?
- 2) Soit c = 10??11?1?01?010 un mot de code dont les positions 3, 4, 7, 9, 12 ont été effacées. Quels sont les mots de code possibles pour c?
- 3) Soit, pour $1 \le i \le 4$,

$$X_i : \{0, 1\}^4 \to \{0, 1\}$$

 $x = (x_1, x_2, x_3, x_4) \mapsto x_i.$

Soit $A = \{a \in \{0,1\}^4 : a \neq 0000\}$. Montrez que les mots $(X_i(a))_{a \in A}$ de longueur 15, sont de poids 8.

- 4) Soit $(u_1, u_2, u_3, u_4) \in \{0, 1\}^4$ et soit $\phi = u_1 X_1 + u_2 X_2 + u_3 X_4$. En observant que ϕ est une application linéaire, montrez que les mots $(\phi(a))_{a \in A}$ sont de poids 8, sauf si $(u_1, u_2, u_3, u_4) = (0, 0, 0, 0)$.
- 5) En déduire que le code dual C^{\perp} a tous ses mots non nuls de poids 8.
- 6) Un mot $x = (x_1, \ldots, x_{15}) \in \{0, 1\}^{15}$ est choisi aléatoirement et uniformément. Soit $I \subset \{1, 2, \ldots, 15\}$ un ensemble de coordonnées. Soit x_I le mot obtenu en conservant seulement les coordonnées de x d'indice appartenant à I. Soit E_I le nombre de bits d'information que la connaissance de x_I apporte sur $\sigma(x)$. Pour m un entier entre 1 et 15, soit e_m le maximum des E_I pour tous les sous-ensembles I de cardinal m. Calculez e_1, e_2, \ldots, e_{15} .