BdGハミルトニアン

金沢彰太郎

平成30年6月23日

目 次

1	導入	2
2	計算·結果	4
	2.1 1の場合	4
	2.2 2の場合	9
	2.3 3の場合	13

1 導入

BdG における分散関係と状態密度を求めることを目標にする。BdG ハミルトニアンは以下の式で表される。

$$\mathcal{H} = \int \vec{\Psi}^{\dagger}(x, y) \hat{H} \vec{\Psi}(x, y) dr \tag{1}$$

ここで

$$\int dr = \int dx dy \tag{2}$$

である。

$$\vec{\Psi} = \begin{bmatrix} \psi_{\uparrow} \\ \psi_{\downarrow} \\ \psi_{\uparrow}^{\dagger} \\ \psi_{\downarrow}^{\dagger} \end{bmatrix} \tag{3}$$

ハミルトン演算子は次のようである。

$$\hat{H} = \begin{pmatrix} \hat{h}(r) & \hat{\Delta}(r) \\ -\hat{\Delta}^*(r) & -\hat{h}^*(r) \end{pmatrix} \tag{4}$$

ただし

$$\hat{H} \in \mathbb{C}^{4 \times 4} \tag{5}$$

$$\hat{\Delta}(r), \hat{h}(r) \in \mathbb{C}^{2 \times 2} \tag{6}$$

$$\hat{h} = \left[-\frac{\hbar^2}{2m} \nabla^2 - \mu_F \right] \hat{\sigma}_0 \tag{7}$$

 $\hat{\sigma}_0$: 単位行列

$$\nabla^2 = \partial x^2 + \partial y^2 \tag{8}$$

である。 $\hat{\Delta}(r)$ の中身を次の三通りで考えていく。

$$\hat{\Delta}(r) = \begin{cases}
(i) \quad \Delta_0(i\sigma_2) & s\text{-wave} \\
(ii) \quad \Delta_0 \frac{i\partial x}{k_F} \hat{\sigma}_1 & p_x\text{-wave} \\
(iii) \quad \Delta_0 \frac{1}{k_F} (\partial x + i\partial y) \hat{\sigma}_1 & p_x + ip_y\text{-wave}
\end{cases} \tag{9}$$

図 1: 考える系

図1の系を考える。y方向には境界条件が課されている。

$$\vec{\Psi} = \frac{1}{\sqrt{L_y}} \sum_{k_y} \vec{\Psi}_{k_y}(x) e^{ik_y y} \tag{10}$$

1.(i) の $\hat{\Delta}$ を使う

①H をフーリエ変換しましょう!y を波数に変換して一旦固定して x の関数として考えます。 ヒント: (1) に (2) を代入しましょう。

②離散化しましょう

$$\mathcal{H} \to \tilde{\mathcal{H}}$$
 (11)

$$\tilde{\mathcal{H}} = \vec{\Psi} \hat{H} \vec{\Psi} \tag{12}$$

$$\vec{\Psi} = \begin{bmatrix} \psi_{1\uparrow} \\ \psi_{1\downarrow} \\ \psi_{1\uparrow}^{\dagger} \\ \psi_{1\downarrow}^{\dagger} \\ \psi_{2\uparrow} \\ \psi_{2\downarrow} \\ \vdots \end{bmatrix}$$

$$(13)$$

$$\tilde{H} = \begin{pmatrix} \hat{H} & & & \\ & \hat{H} & & \\ & & \hat{H} & \\ & & & \ddots \end{pmatrix} \tag{14}$$

$$\frac{\hbar^2}{2m} = t \tag{15}$$

とする。

③ 差分近似しましょう

$$\partial_x \psi_i \to ?$$
 (16)

$$\partial_x^2 \psi_i \to ? \tag{17}$$

(18)

刻み幅は 1 ④ \hat{H} を対角化しましょう。数値計算 2 (ii) の $\hat{\Delta}$ を使う 3(iii) の $\hat{\Delta}$ を使う

2 計算・結果

2.1 1の場合

$$\mathcal{H} = \int \vec{\Psi}^{\dagger}(x,y)\hat{H}\vec{\Psi}(x,y)dr \tag{19}$$

に

$$\vec{\Psi} = \frac{1}{\sqrt{L_y}} \sum_{k_y} \vec{\Psi}_{k_y}(x) e^{ik_y y}$$
 (20)

を代入していく。ここで

$$\vec{\Psi}^{\dagger} = \frac{1}{\sqrt{L_y}} \sum_{k_y'} \vec{\Psi}_{k_y'}^{\dagger}(x) e^{-ik_y'y}$$
(21)

であるから

$$\mathcal{H} = \int \frac{1}{\sqrt{L_y}} \sum_{k_y'} \vec{\Psi}_{k_y'}^{\dagger}(x) e^{-ik_y'y} \hat{H} \frac{1}{\sqrt{L_y}} \sum_{k_y} \vec{\Psi}_{k_y}(x) e^{ik_y y}(x, y) dr$$
 (22)

$$= \frac{1}{L_y} \int \sum_{k'_y} \vec{\Psi}_{k'_y}^{\dagger}(x) e^{-ik'_y y} \hat{H} \sum_{k_y} \vec{\Psi}_{k_y}(x) e^{ik_y y}(x, y) dr$$
 (23)

(24)

となる。下線部について計算していく。

$$\tilde{H} = \begin{pmatrix} \hat{h}(r) & \hat{\Delta}(r) \\ -\hat{\Delta}^*(r) & -\hat{h}^*(r) \end{pmatrix}$$
(25)

$$= \begin{pmatrix} (-\frac{\hbar^2}{2m}\nabla^2 - \mu_F)\hat{\sigma}_0 & \Delta_0(i\sigma_2) \\ -\Delta_0^*(\sigma_2^*) & (\frac{\hbar^2}{2m}\nabla^2 + \mu_F)\hat{\sigma}_0^* \end{pmatrix}$$
 (26)

ここで $\hat{\sigma}_0$ 、 $\hat{\sigma}_2$ はパウリ行列であり、

$$\hat{\sigma_0} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \hat{\sigma_2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \tag{27}$$

である。

$$\tilde{H} = \begin{pmatrix} \left(-\frac{\hbar^2}{2m} \nabla^2 - \mu_F \right) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \Delta_0 i \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \\ -\Delta_0^* \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} & \left(\frac{\hbar^2}{2m} \nabla^2 + \mu_F \right) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$$
(28)

$$= \begin{pmatrix} \xi & 0 & 0 & \Delta_0 \\ 0 & \xi & -\Delta_0 & 0 \\ 0 & -\Delta_0^* & -\xi & 0 \\ \Delta_0^* & 0 & 0 & -\xi \end{pmatrix}$$
 (29)

ここで

$$-\frac{\hbar^2}{2m}\nabla^2 - \mu_F = \xi \tag{30}$$

とした。式24の下線部は

$$\int \sum_{k_{y}} \sum_{k_{y}'} \left(\psi_{\uparrow}^{\dagger} e^{-ik_{y}'y} \quad \psi_{\downarrow}^{\dagger} e^{-ik_{y}'y} \quad \psi_{\uparrow} e^{-ik_{y}'y} \quad \psi_{\downarrow} e^{-ik_{y}'y} \right) \begin{pmatrix} \xi & 0 & 0 & \Delta_{0} \\ 0 & \xi & -\Delta_{0} & 0 \\ 0 & -\Delta_{0}^{*} & -\xi & 0 \\ \Delta_{0}^{*} & 0 & 0 & -\xi \end{pmatrix} \begin{bmatrix} \psi_{\uparrow} e^{ik_{y}y} \\ \psi_{\downarrow} e^{ik_{y}y} \\ \psi_{\uparrow}^{\dagger} e^{ik_{y}y} \\ \psi_{\uparrow}^{\dagger} e^{ik_{y}y} \end{bmatrix} dxdy$$

$$= \int \sum_{k_{y}} \sum_{k_{y}'} \psi_{\uparrow}^{\dagger} e^{-ik_{y}'y} (\xi \psi_{\uparrow} e^{ik_{y}y} + \Delta_{0}^{*} \psi_{\uparrow}^{\dagger} e^{ik_{y}y})$$

$$+ \psi_{\downarrow}^{\dagger} e^{-ik_{y}'y} (\xi \psi_{\downarrow} e^{ik_{y}y} - \Delta_{0}^{*} \psi_{\uparrow}^{\dagger} e^{ik_{y}y})$$

$$+ \psi_{\uparrow} e^{-ik_{y}'y} (-\Delta_{0} \psi_{\downarrow}^{*} e^{ik_{y}y} - \nabla' \psi_{\uparrow}^{*} e^{ik_{y}y})$$

$$+ \psi_{\downarrow} e^{-ik_{y}'y} (\Delta_{0} \psi_{\uparrow}^{*} e^{ik_{y}y} - \nabla' \psi_{\downarrow}^{*} e^{ik_{y}y})$$

$$+ \psi_{\downarrow} e^{-ik_{y}'y} (\Delta_{0} \psi_{\uparrow}^{*} e^{ik_{y}y} - \nabla' \psi_{\downarrow}^{*} e^{ik_{y}y})$$

第一項について

$$\int \sum_{k_y} \sum_{k_y'} \psi_{\uparrow}^{\dagger} e^{-ik_y'y} (\xi \psi_{\uparrow} e^{ik_y y} + \Delta_0^* \psi_{\downarrow}^{\dagger} e^{ik_y y}) dx dy$$
(32)

$$= \int \sum_{k_y} \sum_{k_y'} \psi_{\uparrow}^{\dagger} e^{-ik_y'y} \left[\left(-\frac{\hbar^2}{2m} \nabla^2 - \mu_F \right) \psi_{\uparrow} e^{ik_yy} + \Delta_0^* \psi_{\downarrow}^{\dagger} e^{ik_yy} \right] dxdy \tag{33}$$

(34)

 $abla^2$ の計算を行う。

$$\nabla^2 \psi_{\uparrow} e^{ik_y y} = (\partial_x^2 + \partial_y^2) \psi_{\uparrow} e^{ik_y y} \tag{35}$$

$$= \partial_x^2 \psi_{\uparrow} e^{ik_y y} + \partial_y^2 \psi_{\uparrow} e^{ik_y y} \tag{36}$$

$$=e^{ik_yy}\partial_x^2\psi_{\uparrow} - k_y^2e^{ik_yy}\psi_{\uparrow} \tag{37}$$

であるから

$$\int \sum_{k_y} \sum_{k_y'} \psi_{\uparrow}^{\dagger} e^{-ik_y'y} \left[\left\{ -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} - k_y^2 \right) - \mu_F \right\} \psi_{\uparrow} e^{ik_y y} + \Delta_0^* \psi_{\downarrow}^{\dagger} e^{ik_y y} \right] dx dy \tag{38}$$

ここで

$$\int \sum_{k_y} \sum_{k_y'} \psi^{\dagger} e^{-ik_y' y} e^{ik_y y} \psi dy = L_y \sum_{k_y} \psi^{\dagger} \psi$$
(39)

を用いて

$$\int \sum_{k_y} L_y \left[\psi_{\uparrow}^{\dagger} \left\{ -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} - k_y^2 \right) - \mu_F \right\} \psi_{\uparrow} + \psi_{\uparrow}^{\dagger} \Delta_0^* \psi_{\downarrow}^{\dagger} \right] dx \tag{40}$$

従って升は

$$\mathcal{H} = \int \sum_{k_y} \left[\psi_{\uparrow}^{\dagger} \left\{ -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} - k_y^2 \right) - \mu_F \right\} \psi_{\uparrow} + \psi_{\uparrow}^{\dagger} \Delta_0^* \psi_{\downarrow}^{\dagger} \right]$$
(41)

$$+ \psi_{\downarrow}^{\dagger} \left\{ -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} - k_y^2 \right) - \mu_F \right\} \psi_{\downarrow} - \psi_{\downarrow}^{\dagger} \Delta_0^* \psi_{\uparrow}^{\dagger}$$
 (42)

$$-\psi_{\uparrow}^{\dagger} \left\{ -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} - k_y^2 \right) - \mu_F \right\} \psi_{\uparrow}^{\dagger} - \psi_{\uparrow} \Delta_0 \psi_{\downarrow}^{\dagger}$$
 (43)

$$-\psi_{\downarrow} \left\{ -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} - k_y^2 \right) - \mu_F \right\} \psi_{\downarrow}^{\dagger} + \psi_{\downarrow} \Delta_0 \psi_{\uparrow} dx$$
 (44)

積分 \int を和記号 \sum にして x を離散化していく。刻み幅を 1 とすると

$$\int dx \to \sum_{i=1}^{L_y+1} \Delta x = \sum_{i=1}^{L_y+1} \tag{45}$$

となる。また波動関数を

$$\psi(x) \to \psi_i$$
 (46)

と離散化する。すると光は

$$\mathcal{H} = \sum_{i=1}^{L_y+1} \sum_{k_y} \left[\psi_{i\uparrow}^{\dagger} \left\{ -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} - k_y^2 \right) - \mu_F \right\} \psi_{i\uparrow} + \psi_{i\uparrow}^{\dagger} \Delta_0^* \psi_{i\downarrow}^{\dagger} \cdots \right] dx \tag{47}$$

$$= \sum_{i=1}^{L_y+1} \sum_{k_y} \left[-\frac{\hbar^2}{2m} (\psi_{i\uparrow}^{\dagger} \frac{\partial^2}{\partial x^2} \psi_{i\uparrow}) + (\frac{\hbar^2 k_y^2}{2m} - \mu_F) \psi_{i\uparrow}^{\dagger} \psi_{i\uparrow} + \psi_{i\uparrow}^{\dagger} \Delta_0^* \psi_{i\downarrow}^{\dagger} \cdots \right] dx \tag{48}$$

ここで $\frac{\partial^2}{\partial x^2} \psi_{i\uparrow}$ を差分近似する。関数を次のように近似する。

$$\frac{\partial^2}{\partial x^2}f(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \tag{49}$$

刻み幅1でxをiで書けば

$$\frac{\partial^2}{\partial x^2} f(i) = f(i+1) - 2f(i) + f(i-1) \tag{50}$$

これより 光 は

$$\mathcal{H} = \sum_{i=1}^{L_y+1} \sum_{k_y} \left[\left\{ \frac{\hbar^2}{2m} (k_y^2 + 2) - \mu \right\} \psi_{i\uparrow}^{\dagger} \psi_{i\uparrow} - \Lambda \psi_{i\uparrow}^{\dagger} \psi_{i+1\uparrow} - \Lambda \psi_{i\uparrow}^{\dagger} \psi_{i-1\uparrow} + \psi_{i\uparrow}^{\dagger} \Delta_0^* \psi_{i\downarrow}^{\dagger} \cdots \right] dx \tag{51}$$

ここで

$$\Lambda = \frac{\hbar^2}{2m} \tag{52}$$

とおいた。

$$\varepsilon_{k_y} = \frac{\hbar^2}{2m} (k_y^2 + 2) - \mu \tag{53}$$

とすると全体の H は行列で書けて三つ分書くと

となる。ここから $\mathcal H$ を数値計算で対角化していく。 $\mathcal H$ を数値計算で対角化していく。 N=1000、 k_y を横軸として変化させて縦軸に固有値をプロットし分散関係を描いた。結果は以下のようになった。

図 2: 分散関係

次にグリーン関数を用いて状態密度を求める。まずグリーン関数は

$$G = (E + i\delta - H)^{-1} \tag{55}$$

であり、表面の状態密度は

$$\rho = -\frac{1}{\pi} Im(G_{11} + G_{22}) \tag{56}$$

で求められる。E を $-3\sim3$ で動かして ρ をプロットした。この時 $\delta=10^{-3}$ とした。以下に結果を示す。

図 3: 状態密度

ここからエネルギーが -1~1 では状態がないことが分かる。

2.2 2の場合

(2) 前回までに行った計算を p_x – wave に対して行う。すなわち $\hat{\Delta}(r)$ を以下のようにする。

$$\hat{\Delta}(r) = \Delta_0 \frac{i\partial x}{k_F} \hat{\sigma}_1 \tag{57}$$

このとき

$$\hat{\sigma_1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{58}$$

である。従って

$$\tilde{H} = \begin{pmatrix} \left(-\frac{\hbar^2}{2m} \nabla^2 - \mu_F \right) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \frac{\Delta_0}{k_F} \begin{pmatrix} 0 & i\partial x \\ i\partial x & 0 \end{pmatrix} \\ -\left(\frac{\Delta_0}{k_F} \right)^* \begin{pmatrix} 0 & -i\partial x \\ -i\partial x & 0 \end{pmatrix} & \left(\frac{\hbar^2}{2m} \nabla^2 + \mu_F \right) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$$
(59)

$$= \begin{pmatrix} \xi & 0 & 0 & \eta \\ 0 & \xi & \eta & 0 \\ 0 & \eta' & -\xi & 0 \\ \eta' & 0 & 0 & -\xi \end{pmatrix}$$
 (60)

となる。ここで

$$-\frac{\hbar^2}{2m}\nabla^2 - \mu_F = \xi$$

$$\frac{\Delta_0}{k_F} i\partial x = \eta$$
(61)

$$\frac{\Delta_0}{k_F} i \partial x = \eta \tag{62}$$

$$\left(\frac{\Delta_0}{k_F}\right)^* i\partial x = \eta' \tag{63}$$

とおいた。前回との違いは η とその中にxの微分が入っていることなので、この項を検討していく。例えば

$$\psi_{\downarrow}e^{-ik_{y}'y}\eta\psi_{\uparrow}e^{ik_{y}'y}\tag{64}$$

は

$$\psi_{\downarrow}e^{-ik_{y}^{'}y}\eta\psi_{\uparrow}e^{ik_{y}^{'}y} = \psi_{\downarrow}e^{-ik_{y}^{'}y}\frac{\Delta_{0}}{k_{E}}i\partial x\psi_{\uparrow}e^{ik_{y}^{'}y}$$

$$\tag{65}$$

$$= \psi_{\downarrow} e^{-ik_{y}'y} \frac{\Delta_{0}}{k_{F}} i e^{ik_{y}'y} \partial x \psi_{\uparrow}$$
 (66)

となる。 $\partial x\psi_{\uparrow}$ を中心差分を用いて離散化していく。

$$\frac{\partial}{\partial x}f(x) = \frac{f(x+h) - f(x-h)}{2h} \tag{67}$$

刻み幅1でxをiで書けば

$$\frac{\partial}{\partial x}f(i) = \frac{f(x+i) - f(x-i)}{2} \tag{68}$$

であるからこれより 光は

$$\mathcal{H} = \sum_{i=1}^{L_y+1} \sum_{k_y} \left[\left\{ \frac{\hbar^2}{2m} (k_y^2 + 2) - \mu \right\} \psi_{i\uparrow}^{\dagger} \psi_{i\uparrow} - \Lambda \psi_{i\uparrow}^{\dagger} \psi_{i+1\uparrow} - \Lambda \psi_{i\uparrow}^{\dagger} \psi_{i-1\uparrow} + \frac{\Delta_0}{2k_F} i \psi_{i\uparrow}^{\dagger} \psi_{i+1\uparrow}^{\dagger} - \frac{\Delta_0}{2k_F} i \psi_{i\uparrow}^{\dagger} \psi_{i-1\uparrow}^{\dagger} \cdots \right] dx$$
(69)

ここで

$$\Lambda = \frac{\hbar^2}{2m} \tag{70}$$

とおいた。

$$\varepsilon_{k_y} = \frac{\hbar^2}{2m} (k_y^2 + 2) - \mu \tag{71}$$

$$\frac{\Delta_0}{2k_F} i = \zeta \tag{72}$$

$$\left(\frac{\Delta_0}{k_F}\right)^* i = \zeta' \tag{73}$$

$$\frac{\Delta_0}{2k_F}i = \zeta \tag{72}$$

$$\left(\frac{\Delta_0}{k_F}\right)^* i = \zeta' \tag{73}$$

とすると全体の H は行列で書けて三つ分書くと

$$\mathcal{H} = \begin{bmatrix} \psi_{1\uparrow}^{\dagger} \\ \psi_{1\downarrow}^{\dagger} \\ \psi_{1\uparrow}^{\dagger} \\ \psi_{2\uparrow}^{\dagger} \\ \psi_{3\uparrow}^{\dagger} \\ \psi_{3\uparrow}^{\dagger} \\ \psi_{3\downarrow}^{\dagger} \end{bmatrix}^{T} \begin{bmatrix} \varepsilon_{k_{y}} & 0 & 0 & 0 & -\Lambda & 0 & 0 & -\zeta & 0 & 0 & 0 & 0 \\ 0 & \varepsilon_{k_{y}} & 0 & 0 & 0 & -\Lambda & -\zeta & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\varepsilon_{k_{y}} & 0 & 0 & \zeta^{*} & \Lambda & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\varepsilon_{k_{y}} & \zeta^{*} & 0 & 0 & \Lambda & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\varepsilon_{k_{y}} & \zeta^{*} & 0 & 0 & \Lambda & 0 & 0 & 0 & -\zeta \\ 0 & -\Lambda & 0 & 0 & \zeta & \varepsilon_{k_{y}} & 0 & 0 & 0 & -\Lambda & 0 & 0 & -\zeta \\ 0 & -\Lambda & \zeta & 0 & 0 & \varepsilon_{k_{y}} & 0 & 0 & 0 & -\Lambda & -\zeta & 0 \\ 0 & -\zeta^{*} & \Lambda & 0 & 0 & 0 & -\varepsilon_{k_{y}} & \zeta^{*} & 0 & 0 & \Lambda \\ -\zeta^{*} & 0 & 0 & \Lambda & 0 & 0 & 0 & -\varepsilon_{k_{y}} & \zeta^{*} & 0 & 0 & \Lambda \\ 0 & 0 & 0 & 0 & -\Lambda & \zeta & 0 & 0 & \varepsilon_{k_{y}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\Lambda & \zeta & 0 & 0 & \varepsilon_{k_{y}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\Lambda^{*} & \zeta & 0 & 0 & \varepsilon_{k_{y}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\zeta^{*} & \Lambda & 0 & 0 & -\varepsilon_{k_{y}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\zeta^{*} & \Lambda & 0 & 0 & -\varepsilon_{k_{y}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\zeta^{*} & \Lambda & 0 & 0 & -\varepsilon_{k_{y}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\zeta^{*} & \Lambda & 0 & 0 & -\varepsilon_{k_{y}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\zeta^{*} & \Lambda & 0 & 0 & -\varepsilon_{k_{y}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\zeta^{*} & \Lambda & 0 & 0 & -\varepsilon_{k_{y}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\zeta^{*} & \Lambda & 0 & 0 & -\varepsilon_{k_{y}} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\zeta^{*} & \Lambda & 0 & 0 & -\varepsilon_{k_{y}} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\zeta^{*} & \Lambda & 0 & 0 & -\varepsilon_{k_{y}} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\zeta^{*} & \Lambda & 0 & 0 & -\varepsilon_{k_{y}} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\zeta^{*} & \Lambda & 0 & 0 & -\varepsilon_{k_{y}} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\zeta^{*} & \Lambda & 0 & 0 & -\varepsilon_{k_{y}} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\zeta^{*} & \Lambda & 0 & 0 & -\varepsilon_{k_{y}} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\zeta^{*} & \Lambda & 0 & 0 & -\varepsilon_{k_{y}} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\zeta^{*} & \Lambda & 0 & 0 & -\varepsilon_{k_{y}} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\zeta^{*} & \Lambda & 0 & 0 & -\varepsilon_{k_{y}} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\zeta^{*} & \Lambda & 0 & 0 & -\varepsilon_{k_{y}} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\zeta^{*} & \Lambda & 0 & 0 & -\varepsilon_{k_{y}} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\zeta^{*} & \Lambda & 0 & 0 & -\varepsilon_{k_{y}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -\zeta^{*} & \Lambda & 0 & 0 & 0 & -\varepsilon_{k_{y}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -$$

となる。ここから \mathcal{H} を数値計算で対角化していく。また k_F は

$$\mu = \frac{\hbar^2 k_F^2}{2m} \tag{75}$$

から求める。先と同様に ${\cal H}$ を数値計算で対角化していく。N=1000、 k_y を横軸として変化させて縦軸に固有値 をプロットし分散関係を描いた。結果は以下のようになった。

図 4: 分散関係

次にグリーン関数を用いて状態密度を求めた。端には電子が存在しており、その間にエネルギー状態があるが、 周りにはないことが分かる。

次に E を -3~3 で動かして ρ をプロットした。この時 $\delta=10^{-3}$ とした。以下に結果を示す。

図 5: 表面の状態密度

ここからエネルギーが $-1\sim1$ では状態があることが分かる。これは(1)の結果とは異なる点である。また内部を

$$\rho = -\frac{1}{\pi} Im(G_{201,202} + G_{202,202}) \tag{76}$$

で求めると

図 6: 内部の状態密度

のようになり、0付近では(1)と同じように状態がない。

3の場合 2.3

(2) 前回までに行った計算を p_x-ip_ywave に対して行う。すなわち $\hat{\Delta}(r)$ を以下のようにする。

$$\hat{\Delta}(r) = \Delta_0 \frac{\partial x + i \partial y}{k_F} \hat{\sigma}_1 \tag{77}$$

このとき

$$\hat{\sigma_1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{78}$$

である。従って

$$\tilde{H} = \begin{pmatrix}
(-\frac{\hbar^{2}}{2m}\nabla^{2} - \mu_{F}) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \frac{\Delta_{0}}{k_{F}} \begin{pmatrix} 0 & \partial x + i\partial y \\ \partial x + i\partial y & 0 \end{pmatrix} \\
-\left(\frac{\Delta_{0}}{k_{F}}\right)^{*} \begin{pmatrix} 0 & \partial x - i\partial y \\ \partial x - i\partial y & 0 \end{pmatrix} & (\frac{\hbar^{2}}{2m}\nabla^{2} + \mu_{F}) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\
= \begin{pmatrix} \xi & 0 & 0 & \eta \\ 0 & \xi & \eta & 0 \\ 0 & \eta' & -\xi & 0 \\ \eta' & 0 & 0 & -\xi \end{pmatrix} \tag{80}$$

$$= \begin{pmatrix} \xi & 0 & 0 & \eta \\ 0 & \xi & \eta & 0 \\ 0 & \eta' & -\xi & 0 \\ \eta' & 0 & 0 & -\xi \end{pmatrix}$$
 (80)

となる。ここで

$$-\frac{\hbar^2}{2m}\nabla^2 - \mu_F = \xi \tag{81}$$

$$\frac{\Delta_0}{k_F}(\partial x + i\partial y) = \eta \tag{82}$$

$$\left(\frac{\Delta_{0}}{k_{F}}\right)^{*}\left(-\partial x + i\partial y\right) = \eta' \tag{83}$$

とおいた。前回との違いは η とその中にxの微分が入っていることなので、この項を検討していく。例えば

$$\psi_{\uparrow}^{\dagger} e^{-ik_{y}'y} \eta \psi_{\downarrow}^{\dagger} e^{ik_{y}'y} \tag{84}$$

は

$$\psi_{\uparrow}^{\dagger} e^{-ik_{y}^{'}y} \eta \psi_{\downarrow}^{\dagger} e^{ik_{y}^{'}y} = \psi_{\uparrow}^{\dagger} e^{-ik_{y}^{'}y} \frac{\Delta_{0}}{k_{F}} (\partial x + i\partial y) \psi_{\downarrow}^{\dagger} e^{ik_{y}^{'}y}$$

$$\tag{85}$$

$$= \left(\psi_{\uparrow}^{\dagger} e^{-ik_{y}'y} e^{ik_{y}'y} \frac{\partial}{\partial x} \psi_{\downarrow}^{\dagger} - k_{y} \psi_{\uparrow}^{\dagger} e^{-ik_{y}'y} e^{ik_{y}'y} \psi_{\downarrow}^{\dagger}\right) \frac{\Delta_{0}}{k_{F}}$$

$$(86)$$

となる。 $\partial x\psi_{\uparrow}$ を中心差分を用いて離散化していく。

$$\frac{\partial}{\partial x}f(x) = \frac{f(x+h) - f(x-h)}{2h} \tag{87}$$

刻み幅1でxをiで書けば

$$\frac{\partial}{\partial x}f(i) = \frac{f(x+i) - f(x-i)}{2} \tag{88}$$

であるからこれより 升の前回からの変更点は例えば

$$\mathcal{H} = \int \sum_{i=1}^{L_y+1} \sum_{k_y} \frac{\Delta_0}{k_F} \left\{ \psi_{i\uparrow}^{\dagger} \frac{1}{2} \left(\psi_{i+1\downarrow}^{\dagger} - \psi_{i-1\downarrow}^{\dagger} \right) - k_y \psi_{i\uparrow}^{\dagger} \psi_{i\downarrow}^{\dagger} \right\}$$
(89)

ここで

$$\Lambda = \frac{\hbar^2}{2m} \tag{90}$$

$$\varepsilon_{k_y} = \frac{\hbar^2}{2m} (k_y^2 + 2) - \mu \tag{91}$$

$$\frac{\Delta_0}{2k_F} = C \tag{92}$$

(93)

とすると全体の H は行列で書けて三つ分書くと

$$\mathcal{H} = \begin{bmatrix} \psi_{1\uparrow}^{\dagger} \\ \psi_{1\downarrow}^{\dagger} \\ \psi_{1\uparrow}^{\dagger} \\ \psi_{2\uparrow}^{\dagger} \\ \psi_{2\downarrow}^{\dagger} \\ \psi_{2\uparrow}^{\dagger} \\ \psi_{3\uparrow}^{\dagger} \\ \psi_{3\downarrow}^{\dagger} \\ \psi_{3\uparrow}^{\dagger} \\ \psi_{3\downarrow}^{\dagger} \\ \psi_{3\uparrow}^{\dagger} \\ \psi_{3\downarrow}^{\dagger} \\ \psi_{3\downarrow}^{\dagger} \\ \psi_{3\downarrow}^{\dagger} \\ \psi_{3\downarrow}^{\dagger} \\ \psi_{3\uparrow}^{\dagger} \\ \psi_{3\downarrow}^{\dagger} \\ \psi_{3\downarrow}^$$

となる。ここから \mathcal{H} を数値計算で対角化していく。また k_F は

$$\mu = \frac{\hbar^2 k_F^2}{2m} \tag{95}$$

から求める。先と同様に $\mathcal H$ を数値計算で対角化していく。N=1000、 k_y を横軸として変化させて縦軸に固有値をプロットし分散関係を描いた。結果は以下のようになった。

図 7: 分散関係

拡大すると分かるように上と下から一本ずつ線が出て交わり、反対側に行っていることが分かる。 次にグリーン関数を用いて状態密度を求めた。

次に E を $-3\sim3$ で動かして ρ をプロットした。この時 $\delta=10^{-3}$ 、 $k_y=\frac{\pi}{4}$ とした。以下に結果を示す。内部について

$$\rho = -\frac{1}{\pi} Im(G_{201,202} + G_{202,202}) \tag{96}$$

で求めると

図 8: 内部の状態密度

のようになり、0付近では(1)と同じように状態がない。また表面は以下のような結果となった。

図 9: 表面の状態密度:左端

図 10: 表面の状態密度:右端

ここからエネルギーが $-1\sim1$ では状態があることが分かる。これは(1)の結果とは異なる点である。また図 7 を見ると各波数に対して二本の状態密度が出てもいいように思える。しかし実際には一本しか観測されないのは左側と右側それぞれに対して一本ずつあり、図 7 ではそれが合わさって見えるためだと考えられる。それぞれがどのような一本かを見るため $k_y=-\frac{\pi}{4}$ としてプロットした。すると左側では以下のようになった。

図 11: 表面の状態密度:左端

すなわち、左側の状態では左下から右上に直線的に伸びていることが分かった。