Machine Learning II

Souhaib Ben Taieb

University of Mons

Teaching staff

Souhaib BEN TAIEB (Instructor)

Instructor

Big Data and Machine Learning Lab De Vinci Building, second floor, room 2.15 souhaib.bentaieb@umons.ac.be

Sukanya PATRA (TA)

PhD candidate
De Vinci Building, ground floor
sukanya.patra@umons.ac.be

Victor DHEUR (TA)

PhD candidate
De Vinci Building, ground floor
victor.dheur@umons.ac.be

S-INFO-075: Machine Learning II

- ► This course will be taught in English (lectures, labs, communications, emails, etc)
- Prerequisites
 - ► Machine learning I (S-INFO-256)
 - ► Probability and Statistics
 - ► Multivariate calculus
 - ► Linear algebra
 - Optimization
- **▶** Course Webpage
 - ► https://github.com/bsouhaib/ML2-2023
 - Lecture notes, project details, etc.
- ▶ Moodle
 - ▶ https://moodle.umons.ac.be/course/view.php?id=2786
 - Forum for asking questions, project submission, etc.

About the course

- Objectives
 - Learn advanced topics in machine learning
 - ► Learn how to do research/development in machine learning
- ▶ Content
 - ► (First few weeks) Standard lectures and labs
 - ► (Following weeks) Journal club with seminars given by **researchers** and **students**
 - ► Papers, online recorded lectures, book chapters, etc.
- ► Seminar preparation and presentation
 - ► Everyone read a selected machine learning paper
 - One person presents the paper
 - Everyone participate to the critical discussion

Project

- ► Read a selected machine learning paper
- ► Write a report (including experiments, and necessary proofs)
- ► Prepare a lecture, covering the necessary background and discussing the paper
- More details to be announced later

Assessment

- ► Oral exam (E) (open book): 60%
- ► Project (*P*): **40%**
- ► Final mark:
 - ▶ If $E \ge 50\%$ and $P \ge 50\%$
 - Final mark = $E \times 0.6 + P \times 0.4$
 - ► Otherwise:
 - Final mark = min(E, P)

Topics covered in Machine Learning I

- ► Introduction to machine learning (supervised, unsupervised, semi-supervised, ...)
- ► Supervised learning framework (components of learning, KNN, training and testing errors, model selection, cross-validation, optimal predictions, bias and variance tradeoff, ...)
- ► Linear regression (least squares, MLE, variable selection, nonlinear effects, ...)
- ► Linear classification (logistic regression, discriminant analysis)
- ► The bootstrap
- ► Tree-based methods (regression and classification trees, bagging, random forests, boosting)
- ▶ Dimension reduction and principal component analysis
- ► High-dimensional regression (ridge, lasso, ...)
- ► (Python: Pandas and Scikit-learn)