Übungsblatt 06 Stochastik 2

Abgabe von: Linus Mußmächer

15. Juni 2023

6.1 Zentralübung

 (X_n) konvergiert $\mathbb P$ stochastisch gegen X=0. Sei dazu $\varepsilon>0$ (und o.B.d.A. < 1) beliebig. Dann existiert ein $N\in\mathbb N$ mit $\frac{1}{N}<\varepsilon$ und es gilt $|X_n-X|\geq \varepsilon \Leftrightarrow X_n=n$ für alle $n\geq N$. Somit folgt $\lim_{n\to\infty}\mathbb P(|X_n-X|\geq \varepsilon)=\lim_{n\to\infty}\mathbb P(X_n=n)=\lim_{n\to\infty}\frac{1}{n}=0$.

 (X_n) konvergiert nicht in L_p , denn wäre sie L_p -konvergent gegen eine Grenzvariable \tilde{X} , dann wäre (X_n) auch stochastisch konvergent gegen \tilde{X} und aufgrund der Eindeutigkeit des Grenzwertes folgt $X = \tilde{X}$. Wir zeigen daher, dass (X_n) nicht in L_p gegen X konvergieren kann. Es ist X = 0, also $|X_n - X|^p = X_p^p$. Dann gilt

$$\mathbb{E}[|X_n - X|^p] = \mathbb{E}[X_n^p] = (1 - \frac{1}{n}) \cdot 0^p + \frac{1}{n} \cdot n^p = n^{p-1}$$

wobei $n^{p-1}=1 \to 1$ für p=1 und $n^{p-1} \to \infty$ für p>1 gilt. Die L_p -Konvergenz ist also für kein p gegeben.

Die fast sichere Konvergenz kann nicht entschieden werden. Wie oben muss (X_n) , falls \mathbb{P} -fast sicher konvergent, gegen X konvergieren. Sind die X_n unabhängig verteilt, so gilt für beliebiges $\varepsilon > 0$ (und o.B.d.A. < 1)

$$\mathbb{P}(\bigcup_{k=n}^{\infty} \{|X_k - X| \ge \varepsilon\}) = \mathbb{P}(\bigcup_{k=n}^{\infty} \{X_k = k\}) = \sum_{k=n}^{\infty} k = n^{\infty} \mathbb{P}(\{X_k = k\}) = \sum_{k=n}^{\infty} \frac{1}{k}$$

und diese Summe kann für $k\to\infty$ nicht gegen 0 konvergieren, da dann die harmonische Reihe beschränkt wäre. Also gilt für unabhängige X_n , dass X_n nicht fast sicher konvergiert.

Für abhängige X_n lassen sich allerdings fast sicher konvergente Beispiele formulieren. Wir wollen dazu $X_n=0 \Rightarrow X_{n+1}=0$ festlegen und im Fall $X_n=n$ verlangen, dass $X_{n+1}=n+1$ mit bedingter Wahrscheinlichkeit $\frac{n}{n+1}$ und $X_{n+1}=0$ mit bedingter Wahrscheinlichkeit $\frac{1}{n+1}$. Dann erfüllt die Folge (X_n) alle Forderungen und es gilt $X_{n+1}\neq 0 \Rightarrow X_n\neq 0$ für alle n, also $\bigcup_{k=n}^{\infty}\{X_k=k\}=\bigcup_{k=n}^{\infty}\{X_k\neq 0\}\subseteq\{X_n\neq 0\}=\{X_n=n\}$ und somit

$$\mathbb{P}(\bigcup_{k=n}^{\infty} \{|X_k - X| \ge \varepsilon\}) = \mathbb{P}(\bigcup_{k=n}^{\infty} \{X_k = k\}) \le \mathbb{P}(\{X_n = n\}) = \frac{1}{n} \to 0$$

und die X_n sind fast sicher konvergent.

6.2

 $X_n \xrightarrow{\mathbb{P}} X$: Für alle $\varepsilon, \delta > 0$ existiert ein $n_0 \in \mathbb{N}$, sodass für alle $n \geq n_0$ gilt $\mathbb{P}(|X_n - X| \geq \varepsilon) < \delta$. Insbesondere für $\varepsilon = \delta$!

- 6.3
- 6.4
- (b) Keine Lebesguedichte, da nur Punktmasse