Serge Sharoff

Cross-lingual embeddings for related languages

Centre for Translation Studies University of Leeds

14 June 2018

Outline

- Rationale for Language Adaptation
 - Universal Dependencies
 - Multilingual terminology
 - Limitations of resources
- - Cross-lingual word embeddings
 - Weigted Levenshtein Distance
- - Syncretism across related languages
 - Impact of prediction
- - Similarity across the forms
 - Cross-lingual prediction methods

• 100 languages needed to cover 85% world's population

 100 languages needed to cover 85% world's population 98-100. Balochi, Belarusian and Konkani, ≈8M speakers

 100 languages needed to cover 85% world's population 98-100. Balochi, Belarusian and Konkani, ≈8M speakers 40. Ukrainian, 30M native speakers (8. in Europe)

 100 languages needed to cover 85% world's population 98-100. Balochi, Belarusian and Konkani, ≈8M speakers 40. Ukrainian, 30M native speakers (8. in Europe)

Roger Bacon, (c1250)

Roger Bacon, (c1250)

Grammatica una et eadem est secundum substanciam in omnibus linguis, licet accidentaliter varietur.

Roger Bacon, (c1250)

Grammatica una et eadem est secundum substanciam in omnibus linguis, licet accidentaliter varietur.

Grammar is one and the same in its substance in all languages, even if it accidentally varies.

Roger Bacon, (c1250)

Grammatica una et eadem est secundum substanciam in omnibus linguis, licet accidentaliter varietur.

Grammar is one and the same in its substance in all languages, even if it accidentally varies.

Joakim Nivre, (c2015)

Roger Bacon, (c1250)

Grammatica una et eadem est secundum substanciam in omnibus linguis, licet accidentaliter varietur.

Grammar is one and the same in its substance in all languages, even if it accidentally varies.

Joakim Nivre, (c2015)

Grammar is the same in its substance in all languages, even if the annotation accidentally varies.

Roger Bacon, (c1250)

Grammatica una et eadem est secundum substanciam in omnibus linguis, licet accidentaliter varietur.

Grammar is one and the same in its substance in all languages, even if it accidentally varies.

Joakim Nivre, (c2015)

Grammar is the same in its substance in all languages, even if the annotation accidentally varies.

 \rightarrow UD annotated corpora for 47 languages (Version 2.0)

Roger Bacon, (c1250)

Grammatica una et eadem est secundum substanciam in omnibus linguis, licet accidentaliter varietur.

Grammar is one and the same in its substance in all languages, even if it accidentally varies.

Joakim Nivre, (c2015)

Grammar is the same in its substance in all languages, even if the annotation accidentally varies.

- \rightarrow UD annotated corpora for 47 languages (Version 2.0)
 - Balochi and Konkani not covered yet

Roger Bacon, (c1250)

Grammatica una et eadem est secundum substanciam in omnibus linguis, licet accidentaliter varietur.

Grammar is one and the same in its substance in all languages, even if it accidentally varies.

Joakim Nivre, (c2015)

Grammar is the same in its substance in all languages, even if the annotation accidentally varies.

- \rightarrow UD annotated corpora for 47 languages (Version 2.0)
 - Balochi and Konkani not covered yet

BUT Farsi and Hindi are


```
Stuttgart tagset (German) vs Penn tagset (English)
1 Ich
                                                    ich
                                                                                                PPER
                                                                                                                                   PRON
                                                                                                                                                                           Case=Nom|Num=Sing|Person=1|Type=Pers
2 kann
                                                    können
                                                                                                VMFIN AUX
                                                                                                                                                                           Num=Sing|Person=1|Tense=Pres|VerbForm=Final Preserved | Preserved 
                                                                                                 PPER
                                                                                                                                    PRON
                                                                                                                                                                           Case=Acc|Gender=Neut|Num=Sing|Person=3|7
3 es
                                                    es
                                                                                                ADV
                                                                                                                                    ADV
4 nur
                                                    nur
5 empfehlen empfehlen VVINF
                                                                                                                                    VERB
                                                                                                                                                                           VerbForm=Inf
                                                                                                                                    PUNCT
6.
1 I
                                                                                                 PRP
                                                                                                                                   PRON
                                                                                                                                                                           Case=Nom|Num=Sing|Person=1|Type=Pers
2 ca
                                                                                                 MD
                                                                                                                                    AUX
                                                                                                                                                                           Tense=Pres|VerbForm=Fin
                                                    can
3 n't
                                                                                                 RB
                                                                                                                                    PART
                                                    not
4 thank
                                                    thank
                                                                                                VB
                                                                                                                                    VERB
                                                                                                                                                                           VerbForm=Inf
                                                                                                                                    PRON
5 you
                                                                                                 PRP
                                                                                                                                                                           Case=Acc|Person=2|Tupe=Pers
                                                    you
6 enough
                                                                                                RB
                                                                                                                                    ADV
                                                    enough
7.
                                                                                                                                    PUNCT
```

• 1,293,271 term entries over 164 subject domains

- 1,293,271 term entries over 164 subject domains
- Top 10 domains cover 859,181 terms Min 1stQ Median 3rdQ Max 435 1676 7457 150900 1

- 1,293,271 term entries over 164 subject domains
- Top 10 domains cover 859,181 terms Min 1stQ Median 3rdQ Max 435 1676 7457 150900

Largest subject domain: id2841

acceptable risk risque acceptable acébrochol acebrochol

acute aigu

Bayes' theorem théorème de Bayes

- 1,293,271 term entries over 164 subject domains
- Top 10 domains cover 859,181 terms
 Min 1stQ Median 3rdQ Max
 1 435 1676 7457 150900

Largest subject domain: id2841

acceptable risk risque acceptable

acebrochol acébrochol

acute aigu

Bayes' theorem théorème de Bayes

Two smallest subject domains: id4206, id360

acquisition cost coût d'achat reverse osmosis osmose inverse

• 5,551 term entries of 1,293,271 available in 24 languages

• 5,551 term entries of 1,293,271 available in 24 languages

Language count:	Min	1stQ	Median	3rdQ	Max
	0	2	3	8	25

• 5,551 term entries of 1,293,271 available in 24 languages

Min 1stQ Median 3rdQ Max Language count: 25

Pre-1990 languages

da de el fr it nΙ en es pt 461,133 692,844 401,754 965,785 471,205 957,818 520,751 512,050 401,708

• 5.551 term entries of 1.293,271 available in 24 languages

Min 1stQ Median 3rdQ Max Language count: 25

Pre-1990 languages

da de el fr it nΙ en es pt 461,133 692,844 401,754 965,785 471,205 957,818 520,751 512,050 401,708

2004/07 languages

cs et hu pl ro sk sl Slav bg 33,311 29,382 36,165 33,899 57,725 39,613 35,930 43,706 **16,728**

• 5,551 term entries of 1,293,271 available in 24 languages

Pre-1990 languages

da de el en es fr it nl pt 461,133 692,844 401,754 965,785 471,205 957,818 520,751 512,050 401,708

2004/07 languages

bg cs et hu pl ro sk sl **Slav** 33,311 29,382 36,165 33,899 57,725 39,613 35,930 43,706 **16,728**

• second reading \rightarrow drugie czytanie (Polish term hunting),

• 5,551 term entries of 1,293,271 available in 24 languages

Min 1stQ Median 3rdQ Max Language count: 25

Pre-1990 languages

da de e fr nΙ en es pt 461,133 692,844 401,754 965,785 471,205 957,818 520,751 512,050 401,708

2004/07 languages

bg cs et hu pl ro sk sl Slav 33,311 29,382 36,165 33,899 57,725 39,613 35,930 43,706 **16,728**

- second reading→drugie czytanie (Polish term hunting),
- \rightarrow Similar terms: druhé čtení (cs) or второ четене (bg)

Languages	UD	Wiki	PEMT
Romance			
Catalan	442K	181 M	
French	367K	667 M	432K
Italian	266K	433 M	329K
Portuguese	454K	222 M	321K
Romanian	109K	63 M	
Spanish	853K	530 M	265K
Slavonic			
Belarusian	2K	20 M	
Bulgarian	124K	55 M	
Czech	1671K	110 M	183K
Polish	70K	227 M	213K
Russian	928K	420 M	266K
Slovenian	136K	321 M	
Ukrainian	10K	161 M	

Languages	UD	Wiki	PEMT
Romance			
Catalan	442K	181 M	
French	367K	667 M	432K
Italian	266K	433 M	329K
Portuguese	454K	222 M	321K
Romanian	109K	63 M	
Spanish	853K	530 M	265K
Slavonic			
Belarusian	2K	20 M	
Bulgarian	124K	55 M	
Czech	1671K	110 M	183K
Polish	70K	227 M	213K
Russian	928K	420 M	266K
Slovenian	136K	321 M	
Ukrainian	10K	161 M	

Languages	UD	Wiki	PEMT
Romance			
Catalan	442K	181 M	
French	367K	667 M	432K
Italian	266K	433 M	329K
Portuguese	454K	222 M	321K
Romanian	109K	63 M	
Spanish	853K	530 M	265K
Slavonic			
Belarusian	2K	20 M	
Bulgarian	124K	55 M	
Czech	1671K	110 M	183K
Polish	70K	227 M	213K
Russian	928K	420 M	266K
Slovenian	136K	321 M	
Ukrainian	10K	161 M	

 Variation in annotation Only in Czech: Style=Arch|Coll|Slng|Vrnc|Vulg... NameTupe = Geo|Giv|Sur|Nat...Inconsistencies: Polarity=Pos and Hyph=Yes

UD	Wiki	PEMT
442K	181 M	
367K	667 M	432K
266K	433 M	329K
454K	222 M	321K
109K	63 M	
853K	530 M	265K
2K	20 M	
124K	55 M	
1671K	110 M	183K
70K	227 M	213K
928K	420 M	266K
136K	321 M	
10K	161 M	
	442K 367K 266K 454K 109K 853K 2K 124K 1671K 70K 928K 136K	442K 181M 367K 667M 266K 433M 454K 222M

Variation in annotation
 Only in Czech:
 Style=Arch|Coll|Slng|Vrnc|Vulg...
 NameType=Geo|Giv|Sur|Nat...
 Inconsistencies:
 Polarity=Pos and Hyph=Yes

Tagsets are sparse: 685 uk vs 710 ru 440 ro vs 221 fr

Languages	UD	Wiki	PEMT
Romance			
Catalan	442K	181 M	
French	367K	667 M	432K
Italian	266K	433 M	329K
Portuguese	454K	222 M	321K
Romanian	109K	63 M	
Spanish	853K	530 M	265K
Slavonic			
Belarusian	2K	20 M	
Bulgarian	124K	55 M	
Czech	1671K	110 M	183K
Polish	70K	227 M	213K
Russian	928K	420 M	266K
Slovenian	136K	321 M	
Ukrainian	10K	161 M	

- Variation in annotation
 Only in Czech:
 Style=Arch|Coll|Slng|Vrnc|Vulg...
 NameType=Geo|Giv|Sur|Nat...
 Inconsistencies:
 Polarity=Pos and Hyph=Yes
- Tagsets are sparse:
 685 uk vs 710 ru
 440 ro vs 221 fr
- 45 single examples in ru vs 237 in uk: колотыми V,Aspect=Imperf,Case=Inst, Num=Plur,Tense=Past,Voice=Passive найпотужнішої
 ADJ,Case=Gen,Degree=Sup,Gender=Fem

Outline

- Rationale for Language Adaptation
 - Universal Dependencies
 - Multilingual terminology
 - Limitations of resources
- Detection of cognates
 - Cross-lingual word embeddings
 - Weigted Levenshtein Distance
- - Syncretism across related languages
 - Impact of prediction
- - Similarity across the forms
 - Cross-lingual prediction methods

• Earlier vector models (Rapp, 1995; Fung, McKeown, 1997)

- Earlier vector models (Rapp, 1995; Fung, McKeown, 1997)
- Predicting multi-word expressions (Sharoff, et al, 2006)

- Earlier vector models (Rapp, 1995; Fung, McKeown, 1997)
- Predicting multi-word expressions (Sharoff, et al. 2006)
- Linear transform or MLP for monolingual embeddings

$$\min_{W} \sum ||We_i - f_i||^2$$

Cross-lingual word embeddings (Mikolov, 2013)

- Earlier vector models (Rapp, 1995; Fung, McKeown, 1997)
- Predicting multi-word expressions (Sharoff, et al, 2006)
- Linear transform or MLP for monolingual embeddings

$$\min_{W} \sum ||We_i - f_i||^2$$

 SGD (Mikolov, et al 2013), CCA (Faruqui, et al 2014), multivariate regression (Dinu, et al 2014), regression with orthogonalisation constraints (Artetxe, et al 2016)

• Dictionary of word forms (if no lemmatisation)

- Dictionary of word forms (if no lemmatisation)
- Alignment of parallel corpora: Europarl, UN, OPUS (subtitles): little for pl-ru

- Dictionary of word forms (if no lemmatisation)
- Alignment of parallel corpora: Europarl, UN, OPUS (subtitles): little for pl-ru
- Small (2-5kW) bilingual dictionaries from iWiki links:
 - (sv) Slaget om Filippinen

 - (pl) Wskaźnik jakości życia (ru) Индекс качества жизни
 - (sk) Karneval zvierat
 - (sk) Práva zvierat

- (de) Schlacht um die Philippinen
- (pl) Z zycia marionetek (ru) Из жизни марионеток

 - (ru) Карнавал животных
 - (ru) Права животных

- Dictionary of word forms (if no lemmatisation)
- Alignment of parallel corpora:
 Europarl, UN, OPUS (subtitles): little for pl-ru
- Small (2-5kW) bilingual dictionaries from iWiki links:
 (sv) Slaget om Filippinen
 (pl) Z życia marionetek
 (pl) Wskaźnik jakości życia
 (ru) Индекс качества жизни
 (sk) Karneval zvierat
 (ru) Карнавал животных
 (sk) Práva zvierat
 (ru) Права животных
- Many non-cognates: Sk: zviera (animal);
 Ru: зверь (wild animal) vs животное (animal)

- Dictionary of word forms (if no lemmatisation)
- Alignment of parallel corpora: Europarl, UN, OPUS (subtitles): little for pl-ru
- Small (2-5kW) bilingual dictionaries from iWiki links: (sv) Slaget om Filippinen (de) Schlacht um die Philippinen (pl) Z życia marionetek (ru) Из жизни марионеток (pl) Wskaźnik jakości życia (ru) Индекс качества жизни (sk) Karneval zvierat (ru) Карнавал животных (sk) Práva zvierat (ru) Права животных
- Many non-cognates: Sk: zviera (animal); Ru: зверь (wild animal) vs животное (animal)
- Lists of geonames and persons: filtering by frequency Alapajevsk, Alarich, Alasdair MacIntyre, Alaska, Alassio, Alastair G.W. Cameron, Alata, Alathfar, Alatri, Alatyr

 Baseline Levenshtein distance (LD): Philippinen \rightarrow Filippinen : 1 del, 1 sub $(\frac{2}{11})$ $Schlacht \rightarrow Slaget : 2 del, 2 sub (\frac{4}{8})$

- Baseline Levenshtein distance (LD): Philippinen \rightarrow Filippinen : 1 del, 1 sub $(\frac{2}{11})$ Schlacht \rightarrow Slaget : 2 del, 2 sub $(\frac{4}{8})$
- Weighted Levenshtein Distance (WLD) for cognates
 Sch la ch t
 S la ge t

- Baseline Levenshtein distance (LD): Philippinen \rightarrow Filippinen : 1 del, 1 sub $(\frac{2}{11})$ Schlacht \rightarrow Slaget : 2 del, 2 sub $(\frac{4}{9})$
- Weighted Levenshtein Distance (WLD) for cognates
 Schlacht
 Slaget
- Alignment probabilities: $p(sch \rightarrow s) = 0.7$; $p(l \rightarrow s) = 0$

- Baseline Levenshtein distance (LD): Philippinen \rightarrow Filippinen: 1 del, 1 sub $(\frac{2}{11})$ Schlacht \rightarrow Slaget: 2 del, 2 sub $(\frac{4}{9})$
- Weighted Levenshtein Distance (WLD) for cognates
 Schlacht
 Slaget
- Alignment probabilities: $p(sch \rightarrow s) = 0.7$; $p(I \rightarrow s) = 0$

$$WLD = \frac{\sum_{(e,f) \in al(s_e,s_f)} (1 - p(f|e))}{\max(len(s_e), len(s_f))}$$
(1)

- Baseline Levenshtein distance (LD): Philippinen \rightarrow Filippinen : 1 del, 1 sub $(\frac{2}{11})$ Schlacht \rightarrow Slaget : 2 del, 2 sub $(\frac{4}{9})$
- Weighted Levenshtein Distance (WLD) for cognates
 Schlacht
 Slaget
- Alignment probabilities: $p(sch \rightarrow s) = 0.7$; $p(I \rightarrow s) = 0$

$$WLD = \frac{\sum_{(e,f) \in al(s_e,s_f)} (1 - p(f|e))}{\max(len(s_e), len(s_f))}$$
(1)

 Also WLD works across charsets: marionetek życ Øia марионеток жизни

- Baseline Levenshtein distance (LD):
 Philippinen → Filippinen : 1 del, 1 sub (²/₁₁)
 Schlacht → Slaget : 2 del, 2 sub (⁴/_o)
- Weighted Levenshtein Distance (WLD) for cognates
 Schlacht
 Slaget
- Alignment probabilities: $p(sch \rightarrow s) = 0.7$; $p(I \rightarrow s) = 0$

$$WLD = \frac{\sum_{(e,f) \in al(s_e,s_f)} (1 - p(f|e))}{\max(len(s_e), len(s_f))}$$
(1)

 Also WLD works across charsets: marionetek życ Øia марионеток жизни

• Two alignment cycles: most likely cognate pairs

Cross-lingual spaces (Mikolov et al., 2013):

$$\min_{\mathbf{W}} \sum ||\mathbf{W}\mathbf{e}_i - f_i||^2 \tag{2}$$

Integration of WLD into embeddings

Cross-lingual spaces (Mikolov et al., 2013):

$$\min_{W} \sum ||We_i - f_i||^2 \tag{2}$$

Orthogonality constraint (Artetxe et al., 2016):

$$W = V \times U^{T} \tag{3}$$

Integration of WLD into embeddings

• Cross-lingual spaces (Mikolov et al.,2013):

$$\min_{\mathbf{W}} \sum ||\mathbf{W}e_i - f_i||^2 \tag{2}$$

• Orthogonality constraint (Artetxe et al., 2016):

$$W = V \times U^{T} \tag{3}$$

when V and U come from SVD factorisation of $F \times E^T$

• Cross-lingual spaces (Mikolov et al.,2013):

$$\min_{\mathsf{W}} \sum ||\mathsf{W}e_i - f_i||^2 \tag{2}$$

• Orthogonality constraint (Artetxe et al., 2016):

$$W = V \times U^{T} \tag{3}$$

when V and U come from SVD factorisation of $F \times E^T$

• Dictionary can be produced by:

$$score(s_e, s_f) = \alpha \cos(v_e, v_f) + (1 - \alpha)WLD(s_e, s_f)$$
 (4)

Cross-lingual spaces (Mikolov et al., 2013):

$$\min_{\mathsf{W}} \sum ||\mathsf{W}e_i - f_i||^2 \tag{2}$$

Orthogonality constraint (Artetxe et al., 2016):

$$W = V \times U^{T} \tag{3}$$

when V and U come from SVD factorisation of $F \times E^T$

Dictionary can be produced by:

$$score(s_e, s_f) = \alpha \cos(v_e, v_f) + (1 - \alpha)WLD(s_e, s_f)$$
 (4)

Refinement for building cross-lingual spaces:

Integration of WLD into embeddings

Cross-lingual spaces (Mikolov et al., 2013):

$$\min_{\mathsf{W}} \sum ||\mathsf{W}e_i - f_i||^2 \tag{2}$$

• Orthogonality constraint (Artetxe et al., 2016):

$$W = V \times U^{T} \tag{3}$$

when V and U come from SVD factorisation of $F \times E^T$

Dictionary can be produced by:

$$score(s_e, s_f) = \alpha \cos(v_e, v_f) + (1 - \alpha)WLD(s_e, s_f)$$
 (4)

- Refinement for building cross-lingual spaces:
 - Large dictionary of reliable cognates via (4)

Integration of WLD into embeddings

• Cross-lingual spaces (Mikolov et al.,2013):

$$\min_{\mathbf{W}} \sum ||\mathbf{W}e_i - f_i||^2 \tag{2}$$

• Orthogonality constraint (Artetxe et al., 2016):

$$W = V \times U^{T} \tag{3}$$

when V and U come from SVD factorisation of $F \times E^T$

Dictionary can be produced by:

$$score(s_e, s_f) = \alpha \cos(v_e, v_f) + (1 - \alpha)WLD(s_e, s_f)$$
 (4)

- Refinement for building cross-lingual spaces:
 - 1 Large dictionary of reliable cognates via (4)
 - 2 Re-alignment of spaces using this dictionary

Evaluation of cognate detection for en-it

Vectors from (Dinu, et al. 2014)

TM as in Mikolov et al. (2013b)	0.349
CCA as in Faruqui and Dyer (2014)	0.378
Orth as in Artetxe et al. (2016)	0.393
GC as in Dinu et al. (2014)	0.377

Evaluation of cognate detection for en-it

Vectors from (Dinu, et al. 2014)

TM as in Mikolov et al. (2013b)	0.349
CCA as in Faruqui and Dyer (2014)	0.378
Orth as in Artetxe et al. (2016)	0.393
GC as in Dinu et al. (2014)	0.377

Predicting morphology

Evaluation of cognate detection for en-it

Vectors from (Dinu, et al. 2014)

TM as in Mikolov et al. (2013b)	0.349
CCA as in Faruqui and Dyer (2014)	0.378
Orth as in Artetxe et al. (2016)	0.393
GC as in Dinu et al. (2014)	0.377
GC+Orth+LD	0.501
GC+Orth+WLD	0.531

Predicting morphology

Evaluation of cognate detection for en-it

Vectors from (Dinu, et al. 2014))
TM as in Mikolov et al. (2013b)	0.349
CCA as in Faruqui and Dyer (2014)	0.378
Orth as in Artetxe et al. (2016)	0.393
GC as in Dinu et al. (2014)	0.377
GC+Orth+LD	0.501
GC + Orth + WLD	0.531
Vectors from (Bojanowski, et al.	2016)
FT+Orth	0.529
FT+Orth+GC	0.477
FT+Orth+GC+WLD	0.616

Evaluation of cognate detection for en-it

Vectors from (Dinu, et al. 2014))
TM as in Mikolov et al. (2013b)	0.349
CCA as in Faruqui and Dyer (2014)	0.378
Orth as in Artetxe et al. (2016)	0.393
GC as in Dinu et al. (2014)	0.377
GC+Orth+LD	0.501
GC + Orth + WLD	0.531
Vectors from (Bojanowski, et al.	2016)
FT+Orth	0.529
FT+Orth+GC	0.477
FT+Orth+GC+WLD	0.616
FT+Orth (cognates)	0.562
FT+Orth+GC (cognates)	0.601
FT+Orth+GC+WLD (cognates)	0.681

Evaluation of cognate detection for en-it

Vectors from (Dinu, et al. 2014))
TM as in Mikolov et al. (2013b)	0.349
CCA as in Faruqui and Dyer (2014)	0.378
Orth as in Artetxe et al. (2016)	0.393
GC as in Dinu et al. (2014)	0.377
GC+Orth+LD	0.501
GC + Orth + WLD	0.531
Vectors from (Bojanowski, et al.	2016)
FT+Orth	0.529
FT+Orth+GC	0.477
FT+Orth+GC+WLD	0.616
FT+Orth (cognates)	0.562
FT+Orth+GC (cognates)	0.601
FT+Orth+GC+WLD (cognates)	0.681
Adversarial NN (Conneau et al, 2017)	0.451
CSLS cost (Joulin et al, 2018)	0.453

en-it State-of-the-art (Artetxe, et al 2016) 0.393
Weighted Levenshtein Distance 0.531

```
en-it

State-of-the-art (Artetxe, et al 2016) 0.393
Weighted Levenshtein Distance 0.531

en-it When selecting cognates only (45%)
This removes questionable translation equivalents:

absolve / esimere or abysmally / malo ('bad(ly)')
State-of-the-art (Artetxe, et al 2016) 0.601
Weighted Levenshtein Distance 0.692
```

0.393 State-of-the-art (Artetxe, et al 2016) en-it Weighted Levenshtein Distance 0.531en-it When selecting cognates only (45%)

This removes questionable translation equivalents:

absolve / esimere or abysmally / malo ('bad(ly)') State-of-the-art (Artetxe, et al 2016) 0.601

Weighted Levenshtein Distance 0.692

• Producing cross-lingual Panslavonic embeddings:

	sl-hr	sl-cs	sl-pl	sl-ru	ru-uk	cs-sk
SOTA:	0.429	0.611	0.584	0.566	0.929	0.814
With WLD:	0.840	0.763	0.751	0.662	0.945	0.910

0.393 State-of-the-art (Artetxe, et al 2016) en-it Weighted Levenshtein Distance 0.531

en-it When selecting cognates only (45%)

This removes questionable translation equivalents:

absolve / esimere or abysmally / malo ('bad(ly)') State-of-the-art (Artetxe, et al 2016) 0.601

Weighted Levenshtein Distance 0.692

Producing cross-lingual Panslavonic embeddings:

	sl-hr					
SOTA:	0.429	0.611	0.584	0.566	0.929	0.814
With WLD:	0.840	0.763	0.751	0.662	0.945	0.910

 In-family embedding spaces are better than multilingual ones: Success in NER Shared task at BSNLP'17

Outline

- Rationale for Language Adaptation
 - Universal Dependencies
 - Multilingual terminology
 - Limitations of resources
- - Cross-lingual word embeddings
 - Weigted Levenshtein Distance
- Predicting morphology
 - Syncretism across related languages
 - Impact of prediction
- - Similarity across the forms
 - Cross-lingual prediction methods

Prediction from cross-lingual embeddings

Syncretism: one form can serve several syntactic functions
 Fr:je/il anticipe vs Es:yo anticipo/el anticipa

Prediction from cross-lingual embeddings

Syncretism: one form can serve several syntactic functions
 Fr:je/il anticipe vs Es:yo anticipo/el anticipa

Syncretism: one form can serve several syntactic functions
 Fr:je/il anticipe vs Es:yo anticipo/el anticipa

Forms of	Russ	sian	Ukrainian	
green	Masc Fem		Masc	Fem
Nominative	зелёный	зелёная	зелений	зелена
Genitive	зелёного	зелён ой	зеленого	зеленої
Dative	зелёному	зелён ой	зелен ому	зеленій
Instrumental	зелёным	зелён ой	зеленим	зеленою
Locative	зелёном	зелён ой	зелен ому	зеленій

Prediction from cross-lingual embeddings

Syncretism: one form can serve several syntactic functions
 Fr:je/il anticipe vs Es:yo anticipo/el anticipa

Forms of	Russ	sian	Ukrainian		
green	Masc Fem		Masc	Fem	
Nominative	зелёный	зелёная	зелений	зелена	
Genitive	зелёного	зелён ой	зеленого	зеленої	
Dative	зелёному	зелён ой	зелен ому	зеленій	
Instrumental	зелёным	зелён ой	зеленим	зеленою	
Locative	зелёном	зелён ой	зелен ому	зеленій	

• **Problem:** Cross-lingual mappings between the forms are not one-to-one even across closely related languages

Prediction of morphology

RQ Do embeddings knows about morphology? Does this knowledge remain after the linear transform?

Prediction of morphology

- RQ Do embeddings knows about morphology? Does this knowledge remain after the linear transform?
 - (Linzen, et al, 2016), (Belinkov, et al, 2017): predicting properties from embeddings

Prediction of morphology

- RQ Do embeddings knows about morphology? Does this knowledge remain after the linear transform?
 - (Linzen, et al, 2016), (Belinkov, et al, 2017): predicting properties from embeddings

```
ru зелёному=( -0.047 -0.032 -0.101 0.007 0.021 -0.046 0.0066 0.095...)
   \rightarrowCase=Dat|Gender=Masc,Neut|Number=Sing
```

Prediction of morphology

- RQ Do embeddings knows about morphology? Does this knowledge remain after the linear transform?
 - (Linzen, et al, 2016), (Belinkov, et al, 2017): predicting properties from embeddings

```
ru зелёному=( -0.047 -0.032 -0.101 0.007 0.021 -0.046 0.0066 0.095...)
```

$$\rightarrow$$
Case=Dat|Gender=Masc,Neut|Number=Sing

$$\rightarrow$$
Case=Dat,Loc|Gender=Masc,Neut|Number=Sing

Prediction of morphology

- RQ Do embeddings knows about morphology?

 Does this knowledge remain after the linear transform?
 - (Linzen, et al, 2016), (Belinkov, et al, 2017): predicting properties from embeddings
 - ru зелёному=(-0.047 -0.032 -0.101 0.007 0.021 -0.046 0.0066 0.095...)
 →Case=Dat|Gender=Masc,Neut|Number=Sing
- uk зеленому=(-0.044 -0.062 -0.137 -0.035 -0.019 0.058 0.106 0.017...) →Case=Dat,Loc|Gender=Masc,Neut|Number=Sing
 - Direct prediction and by using cross-lingual embedding for training: Cs→Sk, Ru→Uk

Prediction results: Language adaptation

- Prediction is by Multi-layer Perceptron (300, 75, tanh)
- training on the original UD lexicon
- T using cross-lingual embedding by transfer from related languages: $Cs \rightarrow Sk$. $Ru \rightarrow Uk$

	POS	$Tags_O$	$Tags_{\mathcal{T}}$	$Train_{\mathcal{O}}$	$Train_{\mathcal{T}}$	$MLP_{\mathcal{O}}$	$MLP_{\mathcal{T}}$
Slovak	adj	23	202	1061	10778	45%	52%
	nouns	45	78	3537	8919	31%	43%
	verbs	30	61	1333	4695	49%	54%
Ukrainian	adj	45	54	1394	6235	40%	47%
	nouns	47	58	4187	14054	50%	58%
	verbs	32	54	2123	5765	55%	59%

Impact of prediction

Proportion of OOV words in the lexicons

	Cs	Ru	Pl	Sk	Ве	Uk	
Train	108257	97749	19344	19100	1628	5080	
Test	32461	26567	4778	5425	662	271	
00V #	7891	8034	2327	3385	436	192	
00V %	24.31%	30.24%	48.70%	62.40%	65.86%	70.85%	

Proportion of OOV words in the lexicons

	Cs	Ru	Pl	Sk	Ве	Uk	
Train	108257	97749	19344	19100	1628	5080	
Test	32461	26567	4778	5425	662	271	
00V #	7891	8034	2327	3385	436	192	
00V %	24.31%	30.24%	48.70%	62.40%	65.86%	70.85%	

• Predicting OOV as open-class words (Noun, Verb, Adj, Adv, X)

Impact of prediction

OOV % | 24.31% 30.24%

Proportion of OOV words in the lexicons										
Cs Ru Pl Sk Be Uk										
Train	108257	97749	19344	19100	1628	5080				
Test	32461	26567	4778	5425	662	271				
00V #	7891	8034	2327	3385	436	192				

48.70% 62.40%

Predicting OOV as open-class words (Noun, Verb, Adj, Adv, X)

Precision of UDPipe POS taggers							
PI (Cs) Sk (Cs) Sk (Ru) Be (Ru) Uk (Ru)							
Baseline (train only)	70.33	79.82	79.82	58.79	70.01		
With added lexicon	82.34	83.03	81.42	71.20	82.79		

65.86% 70.85%

Future cross lingual morphology prediction

• Signals beyond embeddings: endings, morphology clusters ой is a strong signal in Russian (60% adjectives) Signals differ: ій,ої,ою in Ukrainian

Future cross lingual morphology prediction

- Signals beyond embeddings: endings, morphology clusters ой is a strong signal in Russian (60% adjectives) Signals differ: ій,ої,ою in Ukrainian
- Variational Autoencoder: inference of regularities

uture cross lingual morphology prediction

- Signals beyond embeddings: endings, morphology clusters ой is a strong signal in Russian (60% adjectives)
 Signals differ: iй,oï,oю in Ukrainian
- Variational Autoencoder: inference of regularities

• Adversarial training: faking similarities

Future cross lingual morphology prediction

- Signals beyond embeddings: endings, morphology clusters ой is a strong signal in Russian (60% adjectives)
 Signals differ: ій,ої,ою in Ukrainian
- Variational Autoencoder: inference of regularities

- Adversarial training: faking similarities
- Proper transfer learning:
 train on related languages with morph prediction

Outline

- Rationale for Language Adaptation
 - Universal Dependencies
 - Multilingual terminology
 - Limitations of resources
- - Cross-lingual word embeddings
 - Weigted Levenshtein Distance
- - Syncretism across related languages
 - Impact of prediction
- Terminology augmentation
 - Similarity across the forms
 - Cross-lingual prediction methods

Similarity across the forms

Single-word terms								
English	Polish	Slovenian						
minority	mniejszość	manjšina						
homelessness	bezdomność	brezdomstvo						
admissibility	dopuszczalność	dopustnost						
drug, narcotic	narkotyk	droga, narkotik						

Similarity across the forms

Single-word terms								
English	Polish	Slovenian						
minority	mniejszość	manjšina						
homelessness	bezdomność	brezdomstvo						
admissibility	dopuszczalność	dopustnost						
drug, narcotic	narkotyk	droga, narkotik						

Multiword terms		
English	Polish	Slovenian
Graham's salt	sól Grahama	grahamova sol
Maddrell's salt	sól Maddrella	maddrellova sol
sodium hexametaphosphate	heksametafosforan sodu	natrijev heksametafosfat
sodium metaphosphate	metafosforan sodu	natrijev metafosfat
glassy sodium polyphosphate	szklisty polifosforan sodu	steklast natrijev polifosfat

Single-word term augmentation

 Test set: single-word terms in the shared set Corpus: combined Wikipedias and Europarl

 Test set: single-word terms in the shared set Corpus: combined Wikipedias and Europarl

	bg		cs		s	
Test #	2229		2186		2194	
Found #	792		862		766	
	Orth	WLD	Orth	WLD	Orth	WLD
prec@1	0.225	0.480	0.413	0.541	0.251	0.433
prec@5	0.393	0.595	0.580	0.668	0.422	0.555
prec@10	0.458	0.621	0.633	0.701	0.490	0.584
recall@1	0.220	0.467	0.397	0.519	0.234	0.408
recall@5	0.383	0.576	0.557	0.644	0.395	0.527
recall@10	0.447	0.604	0.609	0.678	0.460	0.555

• Embedding spaces: good for single-word terms

- Embedding spaces: good for single-word terms
- Problems with OOV and morphology in MWEs: pl: metafosforan sodu (Case=Gen)

- Embedding spaces: good for single-word terms
- Problems with OOV and morphology in MWEs: pl: metafosforan sodu (Case=Gen)
- Terms contain cognates and non-cognates sl: natrijev metafosfat

Embedding spaces: good for single-word terms

- Problems with OOV and morphology in MWEs:
- pl: metafosforan sodu (Case=Gen)
- Terms contain cognates and non-cognates sl: natrijev metafosfat
- Word-level MT: same OOV problems, small training set

- Embedding spaces: good for single-word terms
- Problems with OOV and morphology in MWEs:
 pl: metafosforan sodu (Case=Gen)
- Terms contain cognates and non-cognates sl: natrijev metafosfat
- Word-level MT: same OOV problems, small training set
- Character-level MT: term/morphology hallucination

- Embedding spaces: good for single-word terms
- Problems with OOV and morphology in MWEs: pl: metafosforan sodu (Case=Gen)
- Terms contain cognates and non-cognates sl: natrijev metafosfat
- Word-level MT: same OOV problems, small training set
- Character-level MT: term/morphology hallucination
- (Iwai, et al, 2017): term inference on a graph information processing, information retrieval, data retrieval \rightarrow data processing

• Domain relevance and specialised corpora

- Domain relevance and specialised corpora
- Vast search space in comparison to single words

- Domain relevance and specialised corpora
- Vast search space in comparison to single words

BUT Regular term formation via compounding

- Domain relevance and specialised corpora
- Vast search space in comparison to single words
- **BUT** Regular term formation via compounding
 - Prediction with embeddings, morphology and syntax

- Domain relevance and specialised corpora
- Vast search space in comparison to single words
- **BUT** Regular term formation via compounding
 - Prediction with embeddings, morphology and syntax

Term variation

brass plate company dummy company front company letterbox company money box company paper company shell company shell corporation

compagnie écran entreprise boîte aux lettres filiale sans support matériel société boîte aux lettres société boîte à lettres société coquille société de façade société fantôme société fictive

• Cross-lingual embeddings can be improved via cognates

- Cross-lingual embeddings can be improved via cognates
- They can be used in downstream tasks:
 POS tagging, NER or terminology extraction

- Cross-lingual embeddings can be improved via cognates
- They can be used in downstream tasks: POS tagging, NER or terminology extraction
- Problems with multi-word expressions and terms

- Cross-lingual embeddings can be improved via cognates
- They can be used in downstream tasks: POS tagging, NER or terminology extraction
- Problems with multi-word expressions and terms

- Cross-lingual embeddings can be improved via cognates
- They can be used in downstream tasks: POS tagging, NER or terminology extraction
- Problems with multi-word expressions and terms

Jelinek vs Church

- Cross-lingual embeddings can be improved via cognates
- They can be used in downstream tasks:
 POS tagging, NER or terminology extraction
- Problems with multi-word expressions and terms

Jelinek vs Church

Jelinek: Every time I fire a linguist, the performance goes up

- Cross-lingual embeddings can be improved via cognates
- They can be used in downstream tasks: POS tagging, NER or terminology extraction
- Problems with multi-word expressions and terms

Jelinek vs Church

Jelinek: Every time I fire a linguist, the performance goes up

Church: Fire everybody and buy more data

- Cross-lingual embeddings can be improved via cognates
- They can be used in downstream tasks:
 POS tagging, NER or terminology extraction
- Problems with multi-word expressions and terms

Jelinek vs Church

Jelinek: Every time I fire a linguist, the performance goes up

Church: Fire everybody and buy more data

• Share information across tasks and languages

- Cross-lingual embeddings can be improved via cognates
- They can be used in downstream tasks:
 POS tagging, NER or terminology extraction
- Problems with multi-word expressions and terms

Jelinek vs Church

Jelinek: Every time I fire a linguist, the performance goes up

Church: Fire everybody and buy more data

- Share information across tasks and languages
- Place for linguistics: what is shared?
 UD annotation or Term structure

