lecture6-naive-bayes

October 29, 2021

1 Lecture 6: Generative Models and Naive Bayes

1.0.1 Applied Machine Learning

Volodymyr KuleshovCornell Tech

2 Part 1: Text Classification

We will now do a quick detour to talk about an important application area of machine learning: text classification.

Afterwards, we will see how text classification motivates new classification algorithms.

3 Review: Classification

Consider a training dataset $\mathcal{D} = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}.$

We distinguish between two types of supervised learning problems depnding on the targets $y^{(i)}$.

- 1. Regression: The target variable $y \in \mathcal{Y}$ is continuous: $\mathcal{Y} \subseteq \mathbb{R}$.
- 2. Classification: The target variable y is discrete and takes on one of K possible values: $\mathcal{Y} = \{y_1, y_2, \dots y_K\}$. Each discrete value corresponds to a *class* that we want to predict.

4 Text Classification

An interesting instance of a classification problem is classifying text. * Includes a lot applied problems: spam filtering, fraud detection, medical record classification, etc. * Inputs x are sequences of words of an arbitrary length. * The dimensionality of text inputs is usually very large, proportional to the size of the vocabulary.

5 Classification Dataset: Twenty Newsgroups

To illustrate the text classification problem, we will use a popular dataset called 20-newsgroups. * It contains ~20,000 documents collected approximately evenly from 20 different online newsgroups. * Each newgroup covers a different topic such as medicine, computer graphics, or religion. * This dataset is often used to benchmark text classification and other types of algorithms.

Let's load this dataset.

.. _20newsgroups_dataset:

The 20 newsgroups text dataset

The 20 newsgroups dataset comprises around 18000 newsgroups posts on 20 topics split in two subsets: one for training (or development) and the other one for testing (or for performance evaluation). The split between the train and test set is based upon a messages posted before and after a specific date.

This module contains two loaders. The first one, :func:`sklearn.datasets.fetch_20newsgroups`, returns a list of the raw texts that can be fed to text feature extractors such as :class:`sklearn.feature_extraction.text.CountVectorizer` with custom parameters so as to extract feature vectors.

The second one, :func:`sklearn.datasets.fetch_20newsgroups_vectorized`, returns ready-to-use features, i.e., it is not necessary to use a feature extractor.

Data Set Characteristics:

	=======
Classes	20
Samples total	18846
Dimensionality	1
Features	text
	=======

```
Usage
```

```
[2]: # The set of targets in this dataset are the newgroup topics: twenty_train.target_names
```

[2]: ['alt.atheism', 'comp.graphics', 'sci.med', 'soc.religion.christian']

```
[3]: # Let's examine one data point print(twenty_train.data[3])
```

From: s0612596@let.rug.nl (M.M. Zwart)

Subject: catholic church poland

Organization: Faculteit der Letteren, Rijksuniversiteit Groningen, NL

Lines: 10

Hello,

I'm writing a paper on the role of the catholic church in Poland after 1989. Can anyone tell me more about this, or fill me in on recent books/articles(in english, german or french). Most important for me is the role of the church concerning the abortion-law, religious education at schools, birth-control and the relation church-state(government). Thanx,

Masja,

"M.M.Zwart"<s0612596@let.rug.nl>

```
[4]: # We have about 2k data points in total print(len(twenty_train.data))
```

2257

6 Feature Representations for Text

Each data point x in this dataset is a squence of characters of an arbitrary length.

How do we transform these into d-dimensional features $\phi(x)$ that can be used with our machine learning algorithms?

- We may devise hand-crafted features by inspecting the data:
 - Does the message contain the word "church"? Does the email of the user originate outside the United States? Is the organization a university? etc.
- We can count the number of occurrences of each word:
 - Does this message contain "Aardvark", yes or no?

- Does this message contain "Apple", yes or no?
- ... Does this message contain "Zebra", yes or no?
- Finally, many modern deep learning methods can directly work with sequences of characters of an arbitrary length.

7 Bag of Words Representations

Perhaps the most widely used approach to representing text documents is called "bag of words".

We start by defining a vocabulary V containing all the possible words we are interested in, e.g.:

$$V = \{\text{church}, \text{doctor}, \text{fervently}, \text{purple}, \text{slow}, ...\}$$

A bag of words representation of a document x is a function $\phi(x) \to \{0,1\}^{|V|}$ that outputs a feature vector

$$\phi(x) = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ \vdots \end{pmatrix} \text{ church doctor fervently purple}$$

of dimension V. The j-th component $\phi(x)_j$ equals 1 if x convains the j-th word in V and 0 otherwise.

Let's see an example of this approach on 20-newsgroups.

We start by computing these features using the sklearn library.

```
[5]: from sklearn.feature_extraction.text import CountVectorizer

# vectorize the training set
count_vect = CountVectorizer(binary=True)
X_train = count_vect.fit_transform(twenty_train.data)
X_train.shape
```

[5]: (2257, 35788)

In sklearn, we can retrieve the index of $\phi(x)$ associated with each word using the expression count_vect.vocabulary_.get(word):

```
[6]: # The CountVectorizer class records the index j associated with each word in V print('Index for the word "church": ', count_vect.vocabulary_.get(u'church')) print('Index for the word "computer": ', count_vect.vocabulary_. 

→get(u'computer'))
```

```
Index for the word "church": 8609
Index for the word "computer": 9338
```

Our featurized dataset is in the matrix X_train. We can use the above indices to retrieve the 0-1 value that has been computed for each word:

```
[7]: # We can examine if any of these words are present in our previous datapoint
     print(twenty_train.data[3])
     # let's see if it contains these two words?
     print('---'*20)
     print('Value at the index for the word "church": ', X_train[3, count_vect.
     →vocabulary_.get(u'church')])
     print('Value at the index for the word "computer": ', X_train[3, count_vect.
     →vocabulary_.get(u'computer')])
     print('Value at the index for the word "doctor": ', X_train[3, count_vect.
      →vocabulary_.get(u'doctor')])
     print('Value at the index for the word "important": ', X_train[3, count_vect.
      →vocabulary_.get(u'important')])
    From: s0612596@let.rug.nl (M.M. Zwart)
    Subject: catholic church poland
    Organization: Faculteit der Letteren, Rijksuniversiteit Groningen, NL
    Lines: 10
    Hello,
    I'm writing a paper on the role of the catholic church in Poland after 1989.
    Can anyone tell me more about this, or fill me in on recent books/articles(
    in english, german or french). Most important for me is the role of the
    church concerning the abortion-law, religious education at schools,
    birth-control and the relation church-state(government). Thanx,
                                                     Masja,
    "M.M.Zwart"<s0612596@let.rug.nl>
    Value at the index for the word "church": 1
    Value at the index for the word "computer": 0
    Value at the index for the word "doctor": 0
    Value at the index for the word "important": 1
```

8 Practical Considerations

In practice, we may use some additional modifications of this techinque:

- Sometimes, the feature $\phi(x)_j$ for the j-th word holds the count of occurrences of word j instead of just the binary occurrence.
- The raw text is usually preprocessed. One common technique is *stemming*, in which we only keep the root of the word.

```
- e.g. "slowly", "slowness", both map to "slow"
```

• Filtering for common *stopwords* such as "the", "a", "and". Similarly, rare words are also typically excluded.

9 Classification Using BoW Features

Let's now have a look at the performance of classification over bag of words features.

Now that we have a feature representation $\phi(x)$, we can apply the classifier of our choice, such as logistic regression.

```
[8]: from sklearn.linear_model import LogisticRegression

# Create an instance of Softmax and fit the data.
logreg = LogisticRegression(C=1e5, multi_class='multinomial', verbose=True)
logreg.fit(X_train, twenty_train.target)
```

```
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. [Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 1.0s finished
```

[8]: LogisticRegression(C=100000.0, multi_class='multinomial', verbose=True)

And now we can use this model for predicting on new inputs.

```
[9]: docs_new = ['God is love', 'OpenGL on the GPU is fast']

X_new = count_vect.transform(docs_new)
predicted = logreg.predict(X_new)

for doc, category in zip(docs_new, predicted):
    print('%r => %s' % (doc, twenty_train.target_names[category]))
```

```
'God is love' => soc.religion.christian
'OpenGL on the GPU is fast' => comp.graphics
```

10 Summary of Text Classification

- Classifying text normally requires specifying features over the raw data.
- A widely used representation is "bag of words", in which features are occurrences or counts of words.
- Once text is featurized, any off-the-shelf supervised learning algorithm can be applied, but some work better than others, as we will see next.

```
# Part 2: Generative Models
```

In this lecture, we are going to look at generative algorithms and their applications to text classification.

We will start by defining the concept of a generative *model*.

11 Review: Supervised Learning Models

A supervised learning model is a function

$$f_{\theta}: \mathcal{X} \to \mathcal{Y}$$

that maps inputs $x \in \mathcal{X}$ to targets $y \in \mathcal{Y}$.

Models have parameters $\theta \in \Theta$ living in a set Θ .

For example, logistic regression is a binary classification algorithm which uses a model

$$f_{\theta}: \mathcal{X} \to [0,1]$$

of the form

$$f_{\theta}(x) = \sigma(\theta^{\top} x) = \frac{1}{1 + \exp(-\theta^{\top} x)},$$

where $\sigma(z) = \frac{1}{1 + \exp(-z)}$ is the *sigmoid* or *logistic* function.

12 Review: Probabilistic Interpretations

Many supervised learning models have a probabilistic interpretation. Often a model f_{θ} defines a probability distribution of the form

$$P_{\theta}(x,y): \mathcal{X} \times \mathcal{Y} \to [0,1]$$
 or $P_{\theta}(y|x): \mathcal{X} \times \mathcal{Y} \to [0,1].$

We refer to these as probabilistic models.

For example, our logistic model defines ("parameterizes") a probability distribution $P_{\theta}(y|x) : \mathcal{X} \times \mathcal{Y} \to [0,1]$ as follows:

$$P_{\theta}(y = 1|x) = \sigma(\theta^{\top}x)$$

$$P_{\theta}(y = 0|x) = 1 - \sigma(\theta^{\top}x).$$

13 Review: Conditional Maximum Likelihood

When a machine learning model defines a conditional model $P_{\theta}(y|x)$, we can maximize the conditional maximum likelihood:

$$\max_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log P_{\theta}(y^{(i)}|x^{(i)}).$$

This says that we should choose parameters θ such that for each input $x^{(i)}$ in the dataset \mathcal{D} , P_{θ} assigns a high probability to the correct target $y^{(i)}$.

In the logistic regression example, we optimize the following objective defined over a binary classification dataset $\mathcal{D} = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}.$

$$\ell(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log P_{\theta}(y^{(i)} \mid x^{(i)})$$
$$= \frac{1}{n} \sum_{i=1}^{n} y^{(i)} \cdot \log \sigma(\theta^{\top} x^{(i)}) + (1 - y^{(i)}) \cdot \log(1 - \sigma(\theta^{\top} x^{(i)})).$$

This objective is also often called the log-loss, or cross-entropy.

This asks the model to outure a large score $\sigma(\theta^{\top}x^{(i)})$ (a score that's close to one) if $y^{(i)} = 1$, and a score that's small (close to zero) if $y^{(i)} = 0$.

14 Discriminative Models

Logistic regression is an example of a discriminative machine learning model because * It directly transforms x into a score for each class y (e.g., via the formula $y = \sigma(\theta^{\top}x)$) * It can be interpreted as defining a conditional probability $P_{\theta}(y|x)$

15 Generative Models

Another approach to classification is to use *generative* models.

• A generative approach first builds a model of x for each class:

$$P_{\theta}(x|y=k)$$
 for each class k.

 $P_{\theta}(x|y=k)$ scores each x according to how well it matches class k.

• A class probability $P_{\theta}(y=k)$ encoding our prior beliefs

$$P_{\theta}(y=k)$$
 for each class k.

These are often just the % of each class in the data.

In the context of spam classification, we would fit two models on a corpus of emails x with spam/non-spam labels y:

$$P_{\theta}(x|y=0)$$
 and $P_{\theta}(x|y=1)$

as well as define priors $P_{\theta}(y=0), P_{\theta}(y=1)$.

 $P_{\theta}(x|y=1)$ scores each x based on how much it looks like spam.

 $P_{\theta}(x|y=0)$ scores each x based on how much it looks like non-spam.

16 Predictions From Generative Models

Given a new x', we return the class that is the most likely to have generated it:

$$\arg \max_{k} P_{\theta}(y = k | x') = \arg \max_{k} \frac{P_{\theta}(x' | y = k) P_{\theta}(y = k)}{P_{\theta}(x')}$$
$$= \arg \max_{k} P_{\theta}(x' | y = k) P_{\theta}(y = k),$$

where we have applied Bayes' rule in the first line.

In the context of spam classification, given a new x', we would compare the probabilities of both models:

$$P_{\theta}(x'|y=0)P_{\theta}(y=0)$$
 vs. $P_{\theta}(x'|y=1)P_{\theta}(y=1)$

We output the class that's more likely to have generated x'.

17 Probabilistic Interpretations

A generative model defines $P_{\theta}(x|y)$ and $P_{\theta}(y)$, thus it also defines a distribution of the form $P_{\theta}(x,y)$.

$$\underbrace{P_{\theta}(x,y): \mathcal{X} \times \mathcal{Y} \to [0,1]}_{\text{generative model}} \qquad \underbrace{P_{\theta}(y|x): \mathcal{X} \times \mathcal{Y} \to [0,1]}_{\text{discriminative model}}$$

Discriminative models don't define any probability over the x's. Generative models do.

We can learn a generative model $P_{\theta}(x,y)$ by maximizing the *likelihood*:

$$\max_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log P_{\theta}(x^{(i)}, y^{(i)}).$$

This says that we should choose parameters θ such that the model P_{θ} assigns a high probability to each training example $(x^{(i)}, y^{(i)})$ in the dataset \mathcal{D} .

18 Generative vs. Discriminative Approaches

What are the pros and cons of generative and discirminative methods?

- If we only care about prediction, we don't need a model of P(x). It's simpler to only model P(y|x) (what we care about).
 - In practice, discriminative models are often be more accurate.
- If we care about other tasks (generation, dealing with missing values, etc.) or if we know the true model is generative, we want to use the generative approach.

More on this later!

Part 3: Naive Bayes

Next, we are going to look at Naive Bayes, a generative classification algorithm.

We will apply Naive Bayes to the text classification problem.

19 Review: Text Classification

An common type of classification problem is classifying text. * Includes a lot applied problems: spam filtering, fraud detection, medical record classification, etc. * Inputs x are sequences of words of an arbitrary length. * The dimensionality of text inputs is usually very large, proportional to the size of the vocabulary.

20 A Generative Model for Text Classification

In binary text classification, we fit two models on a labeled corpus:

$$P_{\theta}(x|y=0)$$
 and $P_{\theta}(x|y=1)$

We also define priors $P_{\theta}(y=0), P_{\theta}(y=1)$.

Each model $P_{\theta}(x|y=k)$ scores x based on how much it looks like class k. The documents x are in **bag-of-words** representation.

How do we choose $P_{\theta}(x|y=k)$?

21 Review: Categorical Distribution

A Categorical distribution with parameters θ is a probability over K discrete outcomes $x \in \{1, 2, ..., K\}$:

$$P_{\theta}(x=j) = \theta_i$$
.

When K=2 this is called the Bernoulli.

22 First Attempt at a Generative Model

Note there is a finite number of x's: each is a binary vector of size d.

A first solution is to assume that P(x|y=k) is a categorical distribution that assigns a probability to each possible state of x:

$$P(x|y=k) = P_k \begin{pmatrix} 0 & \text{church} \\ 1 & \text{doctor} \\ 0 & \text{fervently} \\ \vdots & \vdots \\ 0 & \text{purple} \end{pmatrix} = \theta_{xk} = 0.0012$$

The θ_{xk} is the probability of x under class k. We want to learn these.

23 Problem: High Dimensionality

How many parameters does a Categorical model P(x|y=k) have?

- If the dimensionality d of x is high (e.g., vocabulary has size 10,000), x can take a huge number of values (2^{10000} in our example)
- We need to specify $2^d 1$ parameters for the Categorical distribution.

For comparison, there are $\approx 10^{82}$ atoms in the universe.

24 Naive Bayes: An Example

To deal with high-dimensional x, we choose a simpler model for $P_{\theta}(y|x)$: 1. We define a (Bernoulli) model with one parameter $\psi_{jk} \in [0,1]$ for the occurrence of each word j in class k:

$$P_{\theta}(x_i = 1 \mid y = k) = \psi_{ik}$$

 ψ_{jk} is the probability that a document of class k contains word j.

2. We define the model $P_{\theta}(x|y=k)$ for documents x as the product of the occurrence probabilities of each of its words x_j :

$$P_{\theta}(x|y=k) = \prod_{j=1}^{d} P_{\theta}(x_j \mid y=k)$$

How many parameters does this new model have?

- We have a distribution $P_{\theta}(x_j = 1 \mid y = k)$ for each word j and each distribution has one parameter ψ_{jk} .
- The distribution $P_{\theta}(x|y=k) = \prod_{j=1}^{d} P_{\theta}(x_j \mid y=k)$ is the product of d such one-parameter distributions.
- We have K distributions of the form $P_{\theta}(x|y=k)$.

Thus, we only need Kd parameters instead of $K(2^d-1)!$

25 The Naive Bayes Assumption Machine Learning

The Naive Bayes assumption is a **general technique** that can be used with any d-dimensional x. * We simplify the model for x as:

$$P(x|y) = \prod_{j=1}^{d} P(x_j \mid y)$$

This typically makes the number of parameters linear instead of exponential in d.

^{*} We choose a simple distribution family for $P(x_i \mid y)$.

26 Is Naive Bayes a Good Assumption?

Naive Bayes assumes that words are uncorrelated, but in reality they are. * If spam email contains "bank", it probably contains "account"

As a result, the probabilities estimated by Naive Bayes can be over- under under-confident.

In practice, however, Naive Bayes is a very useful assumption that gives very good classification accuracy!

27 Defining Prior Distributions for Our Model

We still need to define the distribution $P_{\theta}(y=k)$. * This encodes our prior belief about y before we see x. * It can also be learned from data.

Since we have a small number of classes K, we may use a Categorical distribution with parameters $\vec{\phi} = (\phi_1, ..., \phi_K)$ and learn $\vec{\phi}$ from data:

$$P_{\theta}(y=k) = \phi_k$$
.

28 Bernoulli Naive Bayes Model

The Bernoulli Naive Bayes model $P_{\theta}(x, y)$ is defined for binary data $x \in \{0, 1\}^d$ (e.g., bag-of-words documents).

The θ contains prior parameters $\vec{\phi} = (\phi_1, ..., \phi_K)$ and K sets of per-class parameters $\psi_k = (\psi_{1k}, ..., \psi_{dk})$.

The probability of the data x for each class equals

$$P_{\theta}(x|y=k) = \prod_{j=1}^{d} P(x_j \mid y=k),$$

where each $P_{\theta}(x_j \mid y = k)$ is a Bernoullli (ψ_{jk}) .

The probability over y is Categorical: $P_{\theta}(y = k) = \phi_k$.

Formally, we have:

$$P_{\theta}(y) = \text{Categorical}(\phi_1, \phi_2, \dots, \phi_K)$$

$$P_{\theta}(x_j = 1 | y = k) = \text{Bernoullli}(\psi_{jk})$$

$$P_{\theta}(x | y = k) = \prod_{j=1}^{d} P_{\theta}(x_j | y = k)$$

The parameters of the model are $\theta = (\phi_1, ..., \phi_K, \psi_{11}, ..., \psi_{dK})$. There are exactly K(d+1) parameters.

Part 4: Naive Bayes: Learning

We will now turn our attention to learning the parameters of the Naive Bayes model and using them to make predictions.

29 Review: Maximum Likelihood Learning

We can learn a generative model $P_{\theta}(x,y)$ by maximizing the maximum likelihood:

$$\max_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log P_{\theta}(x^{(i)}, y^{(i)}).$$

This seeks to find parameters θ such that the model assigns high probability to the training data.

Let's use maximum likelihood to fit the Bernoulli Naive Bayes model. Note that model parameterss θ are the union of the parameters of each sub-model:

$$\theta = (\phi_1, \phi_2, \dots, \phi_K, \psi_{11}, \psi_{21}, \dots, \psi_{dK}).$$

30 Learning a Bernoulli Naive Bayes Model

Given a dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)}) \mid i = 1, 2, ..., n\}$, we want to optimize the log-likelihood $\ell(\theta) = \log L(\theta)$:

$$\ell = \sum_{i=1}^{n} \log P_{\theta}(x^{(i)}, y^{(i)}) = \sum_{i=1}^{n} \sum_{j=1}^{d} \log P_{\theta}(x_{j}^{(i)}|y^{(i)}) + \sum_{i=1}^{n} \log P_{\theta}(y^{(i)})$$

$$= \sum_{k=1}^{K} \sum_{j=1}^{d} \sum_{i:y^{(i)}=k} \log P(x_{j}^{(i)}|y^{(i)}; \psi_{jk}) + \sum_{i=1}^{n} \log P(y^{(i)}; \vec{\phi})$$
all the terms that involve ψ_{jk} all the terms that involve $\vec{\phi}$

In equality #2, we use Naive Bayes: $P_{\theta}(x,y) = P_{\theta}(y) \prod_{i=1}^{d} P(x_{i}|y)$; in the third one, we change the order of summation.

Each ψ_{jk} for $k=1,2,\ldots,K$ is found in only the following terms:

$$\max_{\psi_{jk}} \ell(\theta) = \max_{\psi_{jk}} \sum_{i: y^{(i)} = k} \log P(x_j^{(i)} | y^{(i)}; \psi_{jk}).$$

Thus, optimization over ψ_{jk} can be carried out independently of all the other parameters by just looking at these terms.

Similarly, optimizing for $\vec{\phi} = (\phi_1, \phi_2, \dots, \phi_K)$ only involves a few terms:

$$\max_{\vec{\phi}} \sum_{i=1}^{n} \log P_{\theta}(x^{(i)}, y^{(i)}; \theta) = \max_{\vec{\phi}} \sum_{i=1}^{n} \log P_{\theta}(y^{(i)}; \vec{\phi}).$$

31 Learning the Parameters ϕ

Let's first consider the optimization over $\vec{\phi} = (\phi_1, \phi_2, \dots, \phi_K)$.

$$\max_{\vec{\phi}} \sum_{i=1}^{n} \log P_{\theta}(y = y^{(i)}; \vec{\phi}).$$

* We have n datapoints, each having one of K classes * We want to learn the most likely class probabilities ϕ_k that generated this data

What is the maximum likelihood ϕ in this case?

Inuitively, the maximum likelihood class probabilities ϕ should just be the class proportions that we see in the data.

Let's calculate this formally. Our objective $J(\vec{\phi})$ equals

$$J(\vec{\phi}) = \sum_{i=1}^{n} \log P_{\theta}(y^{(i)}; \vec{\phi}) = \sum_{i=1}^{n} \log \left(\frac{\phi_{y^{(i)}}}{\sum_{k=1}^{K} \phi_{k}} \right)$$
$$= \sum_{i=1}^{n} \log \phi_{y^{(i)}} - n \cdot \log \sum_{k=1}^{K} \phi_{k}$$
$$= \sum_{k=1}^{K} \sum_{i:y^{(i)} = k} \log \phi_{k} - n \cdot \log \sum_{k=1}^{K} \phi_{k}$$

Taking the derivative and setting it to zero, we obtain

$$\frac{\phi_k}{\sum_l \phi_l} = \frac{n_k}{n}$$

for each k, where $n_k = |\{i : y^{(i)} = k\}|$ is the number of training targets with class k.

Thus, the optimal ϕ_k is just the proportion of data points with class k in the training set!

32 Learning the Parameters ψ_{ik}

Next, let's look at the maximum likelihood term

$$\arg \max_{\psi_{jk}} \sum_{i:y^{(i)}=k} \log P(x_j^{(i)}|y^{(i)};\psi_{jk}).$$

over the word parameters ψ_{jk} .

- Our dataset are all the inputs x for which y = k.
- We seek the probability ψ_{jk} of a word j being present in a x.

What is the maximum likelihood ψ_{jk} in this case?

Each ψ_{ik} is simply the proportion of documents in class k that contain the word j.

We can maximize the likelihood exactly like we did for ϕ to obtain closed form solutions:

$$\psi_{jk} = \frac{n_{jk}}{n_k}.$$

where $|\{i: x_j^{(i)} = 1 \text{ and } y^{(i)} = k\}|$ is the number of $x^{(i)}$ with label k and a positive occurrence of word j.

33 Querying the Model

How do we ask the model for predictions? As discussed earler, we can apply Bayes' rule:

$$\arg\max_{y} P_{\theta}(y|x) = \arg\max_{y} P_{\theta}(x|y)P(y).$$

Thus, we can estimate the probability of x and under each $P_{\theta}(x|y=k)P(y=k)$ and choose the class that explains the data best.

34 Classification Dataset: Twenty Newsgroups

To illustrate the text classification problem, we will use a popular dataset called 20-newsgroups. * It contains ~20,000 documents collected approximately evenly from 20 different online newsgroups. * Each newgroup covers a different topic such as medicine, computer graphics, or religion. * This dataset is widely used to benchmark text classification and other types of algorithms.

Let's load this dataset.

.. _20newsgroups_dataset:

```
The 20 newsgroups text dataset
```

The 20 newsgroups dataset comprises around 18000 newsgroups posts on 20 topics split in two subsets: one for training (or development) and the other one for testing (or for performance evaluation). The split between the train and test set is based upon a messages posted before and after a specific date.

```
This module contains two loaders. The first one, :func:`sklearn.datasets.fetch_20newsgroups`, returns a list of the raw texts that can be fed to text feature extractors such as :class:`sklearn.feature_extraction.text.CountVectorizer` with custom parameters so as to extract feature vectors.

The second one, :func:`sklearn.datasets.fetch_20newsgroups_vectorized`, returns ready-to-use features, i.e., it is not necessary to use a feature extractor.
```

Data Set Characteristics:

	========
Classes	20
Samples total	18846
Dimensionality	1
Features	text
==============	========

Usage

35 Example: Text Classification

Let's see how this approach can be used in practice on the text classification dataset. * We will learn a good set of parameters for a Bernoulli Naive Bayes model * We will compare the outputs to the true predictions.

Let's see an example of Naive Bayes on 20-newsgroups.

We start by computing these features using the sklearn library.

```
[11]: from sklearn.feature_extraction.text import CountVectorizer

# vectorize the training set

count_vect = CountVectorizer(binary=True, max_features=1000)

y_train = twenty_train.target

X_train = count_vect.fit_transform(twenty_train.data).toarray()

X_train.shape
```

[11]: (2257, 1000)

Let's compute the maximum likelihood model parameters on our dataset.

```
[12]: # we can implement these formulas over the Iris dataset
n = X_train.shape[0] # size of the dataset
d = X_train.shape[1] # number of features in our dataset
K = 4 # number of clases
```

```
# these are the shapes of the parameters
psis = np.zeros([K,d])
phis = np.zeros([K])

# we now compute the parameters
for k in range(K):
    X_k = X_train[y_train == k]
    psis[k] = np.mean(X_k, axis=0)
    phis[k] = X_k.shape[0] / float(n)

# print out the class proportions
print(phis)
```

[0.21267169 0.25875055 0.26318121 0.26539654]

We can compute predictions using Bayes' rule.

```
[13]: # we can implement this in numpy
      def nb_predictions(x, psis, phis):
          """This returns class assignments and scores under the NB model.
          We compute \arg \max_y p(y|x) as \arg \max_y p(x|y)p(y)
          # adjust shapes
          n, d = x.shape
          x = np.reshape(x, (1, n, d))
          psis = np.reshape(psis, (K, 1, d))
          # clip probabilities to avoid log(0)
          psis = psis.clip(1e-14, 1-1e-14)
          # compute log-probabilities
          logpy = np.log(phis).reshape([K,1])
          logpxy = x * np.log(psis) + (1-x) * np.log(1-psis)
          logpyx = logpxy.sum(axis=2) + logpy
          return logpyx.argmax(axis=0).flatten(), logpyx.reshape([K,n])
      idx, logpyx = nb_predictions(X_train, psis, phis)
      print(idx[:10])
```

[1 1 3 0 3 3 3 2 2 2]

We can measure the accuracy:

```
[14]: (idx==y_train).mean()
```

[14]: 0.8692955250332299

```
[15]: docs_new = ['OpenGL on the GPU is fast']

X_new = count_vect.transform(docs_new).toarray()
predicted, logpyx_new = nb_predictions(X_new, psis, phis)

for doc, category in zip(docs_new, predicted):
    print('%r => %s' % (doc, twenty_train.target_names[category]))
```

36 Algorithm: Bernoulli Naive Bayes

- Type: Supervised learning (multi-class classification)
- Model family: Products of Bernoulli distributions, categorical priors
- Objective function: Log-likelihood.
- Optimizer: Closed form solution.

^{&#}x27;OpenGL on the GPU is fast' => comp.graphics