

EE/CE 453/352: Digital Signal Processing Saad Baig

Homework 1 SOLUTION

Question 1 [3 pts]: Use the following input sequences to compute the requested sequence:

$$y[n] = b[3-n] + c[n]$$

For indices where the input sequences are not specified, consider values to be zero. Clearly specify the index range of nonzero values for each output.

$$b[n] = \{2 \ 4 \ 3 \ -5 \ -2 \ 1 \ 6 \ 1 \ -3 \ -2 \ 2\}$$
 $-8 \le n \le 2$
 $c[n] = \{-1 \ 2 \ -3 \ 4 \ -1 \ 2 \ -3 \ 4\}$ $-6 \le n \le 1$

Solution:

n	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11
b[-n]					2	-2	-3	1	6	1	-2	-5	3	4	2			
b[3-n]								2	-2	-3	1	6	1	-2	-5	3	4	2
c[n]	-1	2	-3	4	-1	2	-3	4										
y[n]	-1	2	-3	4	-1	2	-3	6	-2	-3	1	6	1	-2	-5	3	4	2

Question 2 [5 pts]: Consider the following system properties discussed in class:

- 1) Memoryless
- 2) Causality
- 3) Linearity
- 4) Time Invariance
- 5) Stability

Determine which of these properties hold and which do not hold for each of the following systems (justify your answers):

a)
$$y[n] = x[2-n]$$

b)
$$y[n] = nx[-n]$$

Solution:

Property	System (a)	System (b)
Memory	System has memory: $y[n] = x[-n+2]$	System has memory: $y[n] = nx[-n]$
Causality	Non-causal because if $n = -1$: y[-1] = x[1+2] = x[3]	Non-causal because if $n = -1$: y[-1] = -x[1]

	Which means there is a value before	Which means there is a value before				
	n = 0.	n = 0.				
Linearity	System is linear:	System is linear:				
	$\alpha y_1[n] + \beta y_2[n]$	$\alpha y_1[n] + \beta y_2[n]$				
	$=\alpha x_1[-n+2]$	$= \alpha n x_1 [-n]$				
	$+\beta x_2[-n+2]$	$+\beta nx_2[-n]$				
Time- invariance	System is time-variant:	System is time-variant:				
	$y[n-k] \neq x[-n+2-k]$	$y[n-k] \neq nx[-n-k]$				
	$\rightarrow y[n-k] = x[-(n-k)+2]$	$\rightarrow y[n-k] = (n-k)x[-(n-k)]$				
	=x[-n+2+k]	= (n-k)x[-n+k]				
Stability	System is stable because time reversal	System is unstable: If $x[n] = u[n]$ then: $y[n] = nu[-n]$				
	or shifting does not change the max					
	and min value of signal:					
	x[-n+2] < B					

Question 3 [2 pts]: Consider the following system properties discussed in class:

- 1) Causality
- 2) Stability

Determine which of these properties hold and which do not hold for each of the LTI systems whose impulse response is given below (justify your answers):

a)
$$h[n] = \delta[n] - \delta[n-1] + \delta[n+1]$$

b)
$$h[n] = (0.2)^n u[n]$$

Solution:

Property	System (a)	System (b)
Causality	Non-causal because of $\delta[n+1]$. $h[n] \neq 0, \qquad n < 0$	System is causal (step function starts at 0).
Stability	System is stable (completely summable).	System is stable as $(0.2)^n$ converges. $\sum_{n=-\infty}^{\infty} h[n] = \frac{0.2}{1-0.2} = \frac{1}{4} < \infty$

Question 4 [5 pts]: A LTI system has an impulse response:

$$h[n] = \delta[n] + 0.5\delta[n-1] + 0.25\delta[n-2]$$

Compute and hand-sketch the output y[n] for the following inputs:

a)
$$x[n] = \delta[n] + 2\delta[n-4] - 0.5\delta[n-6]$$

b)
$$x[n] = \delta[n] - 0.5\delta[n-1]$$

Solution:

a)
$$x[n] = \delta[n] + 2\delta[n-4] - 0.5\delta[n-6]$$

 $y[n] = x[n] + 0.5x[n-1] + 0.25x[n-2]$
 $y[n] = \{\delta[n] + 2\delta[n-4] - 0.5\delta[n-6]\} + 0.5\{\delta[n-1] + 2\delta[n-5] - 0.5\delta[n-7]\} + 0.25\{\delta[n-2] + 2\delta[n-6] - 0.5\delta[n-8]\}$
 $y[n] = \delta[n] + 0.5\delta[n-1] + 0.25\delta[n-2] + 2\delta[n-4] + \delta[n-5] + 0.5\delta[n-6] - 0.25\delta[n-7] - 0.125\delta[n-8]$

b)
$$x[n] = \delta[n] - 0.5\delta[n-1]$$

$$y[n] = x[n] + 0.5x[n-1] + 0.25x[n-2]$$

$$y[n] = \delta[n] - 0.5\delta[n-1] + 0.5\{\delta[n-1] - 0.5\delta[n-2]\} + 0.25\{\delta[n-2] - 0.5\delta[n-3]\}$$
$$y[n] = \delta[n] - 0.125\delta[n-3]$$

Question 5 [15 pts]: Consider the systems represented by the following Linear, Constant Coefficient Difference Equations (LCCDEs):

1)
$$y[n] + y[n-2] = x[n] + x[n-2] + x[n-3]$$

2)
$$y[n] - 2x[n-2] = x[n-1] + 2x[n]$$

3)
$$y[n] + 2y[n-2] = x[n] + 3x[n-2] + y[n-3]$$

- a) Identify which of these systems are FIR and IIR systems.
- b) For IIR systems, draw the block diagrams for Direct Form I and Direct Form II realizations.
- c) In part (b), make an attempt to minimize the number of adder blocks needed. (Hint: notice the coefficients of LCCDE).

Solution:

- a) Systems 1 and 3 are IIR, and system 2 is FIR
- b) For system 1:

For system 3:

c) For system 1:

For system 3:

