Simple Linear Regression (SLR)

Simple linear regression model

• Notation:

- o m: number of training examples
- o x: input variable
- o y: output variable
- o xⁱ: ith input variable
- o yⁱ: ith output variable
- \circ (x^i, y^i) : i^{th} training example

• Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

• Cost (loss) functions:

o Squared error (SE) cost function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Sum squared error (SSE) cost function:

$$J(\theta_0, \theta_1) = \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

o Mean squared error (MSE) cost function:

$$J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

- o Root mean squared error (RMSE) cost function:
 - For classification problem, RMSE is not a good choice for loss function

$$J(\theta_0, \theta_1) = \sqrt{\frac{\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2}{m}}$$

Simple Linear Regression (SLR)

• General gradient descent algorithm for simple linear regression:

Repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1); \text{ (for } j = 0, 1)$$

}

• Gradient descent algorithm using SE loss function in SLR:

Repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left[(1) \times \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) \right]$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} [(x^i) \times (h_{\theta}(x^{(i)}) - y^{(i)})]$$

}

- Note:
 - We have a cost function and we want to minimize the cost function to obtain an optimal solution for the hypothesis function \rightarrow Use gradient descent algorithm to continuously finding θ_0 , θ_1 values that are closest to the min $J(\theta_0, \theta_1)$
 - o The α value is called: learning rate.
 - It determines the aggressiveness of the learning algorithm
 - If α is too small \rightarrow gradient descent can be slow
 - If α is too big \rightarrow gradient descent can overshoot the minimum. It may fail to converge, or even diverge

Example of the squared-error loss function

Simple Linear Regression (SLR)

Example of different hypothesis base on different set of (θ_0, θ_1)

- For SLR, when we plot the cost function $J(\theta_0, \theta_1)$, the resulting graph is a convex function (has only 1 global minimum). Because of this, another approach from using gradient descent is to set the partial derivative with respect to θ_0 , θ_1 to be 0 in order to find the minimum.
- Another approach to find the hypothesis function would be using Pearson's R correlation coefficient (PCC):

$$\begin{split} \theta_0 &= \overline{y} - \theta_1 \overline{x} \\ \theta_1 &= r \left(\frac{s_y}{s_x} \right) \\ r &= \frac{\sum_{i=1}^m \left(z_{x^{(i)}} \right) \left(z_{y^{(i)}} \right)}{m-1} \\ s_x &= \sqrt{\frac{\sum_{i=1}^m \left(x^{(i)} - \overline{x} \right)^2}{m-1}} \qquad s_y &= \sqrt{\frac{\sum_{i=1}^m \left(y^{(i)} - \overline{y} \right)^2}{m-1}} \\ z_{x^{(i)}} &= \frac{x^{(i)} - \overline{x}}{s_x} \qquad z_{y^{(i)}} &= \frac{y^{(i)} - \overline{y}}{s_y} \\ \overline{x} &= \frac{\sum_{i=1}^m x^{(i)}}{m} \qquad \overline{y} &= \frac{\sum_{i=1}^m y^{(i)}}{m} \end{split}$$

Before deciding whether we should apply SLR or not, if we compute the Pearson's R correlation coefficient and find that $|\mathbf{r}| \ge \frac{2}{\sqrt{m}}$, then we can say that a linear relationship exists