2019年度 期末試験問題・解答

試験実施日 2019 年 8 月 1 日 2 時限

出題者記入欄

試 験 科 目 名 ベクトル解析		出題者名佐藤弘康				
試 験 時 間 <u>60</u> 分	平常授業	日 木 曜日 2 時限				
持ち込みについて 可	√(\ □)	可、不可のいずれかに○印をつけ 持ち込み可のものを○で囲んでください				
教科書 ・ 参考書 ・ ノート (手書きのみ ・ コピーも可) ・ 電卓 ・ 辞書 その他 ()						
本紙以外に必要とする用紙 解答用紙 <u>0</u> 枚 計算用紙 <u>0</u> 枚						
通信欄						

受験者記入欄

学 科	学 年		学	籍	番	号	氏	名
		1						

採点者記入欄

	3 1 3 A A A A A A A A A A A A A A A A A
採 点 欄	評価

$$\int_{C_2} \varphi_2 \, ds$$

を求めなさい.

関する線積分

佐藤 弘康

- 曲線 $C_1: \mathbf{r}_1(t) = t \mathbf{i} + t^2 \mathbf{j} \ (0 \le t \le 1)$ に対し、次の問に 答えなさい.
 - (1) スカラー場 $\varphi_1(x,y,z) = xy + yz + zx$ の曲線 C_1 に 沿った線積分

$$\int_{C_1} \varphi_1 \, dt$$

を求めなさい.

(2) ベクトル場 $\mathbf{A}_1(x,y,z) = y \mathbf{i} - z \mathbf{j} + x \mathbf{k}$ の曲線 C_1 に沿った線積分

$$\int_{C_1} \boldsymbol{A}_1 \cdot d\boldsymbol{r}_1$$

を求めなさい.

- |3| 次の空欄に当てはまる最も適切なものを
 - **(ア)** スカラー **(イ)** スカラー場 **(ウ)** 0
 - (エ) ベクトル (オ) ベクトル場 (カ) 0 (零ベクトル)
 - (キ) 一般には定義不可能

の中から選びなさい、ただし、ここで「ベクトル場」と いうとき、3次元空間内の曲線に沿ったベクトル場や曲面 上のベクトル場を指す場合もある(スカラー場について も同様).

- ベクトル関数 r(t) の微分 r'(t) は であり, 定積分 $\int_a^b \boldsymbol{r}(t) dt$ は
- ベクトル場 A の面積分 $\int_{S} A \cdot dS$ は ある.
- スカラー場の発散の面積分は である.
- スカラー場 φ の勾配の回転 $\mathrm{rot}(\mathrm{grad}\varphi)$ の線積分 であり、ベクトル場 A の回転の発散 である. $\operatorname{div}(\operatorname{rot}\varphi)$ の面積分は

点 (1,2,3) を始点とし、(3,2,1) を終点とする線分を C_2 とする. このとき, 次の間に答えなさい.

(1) C_2 のパラメータ表示をひとつ答えなさい.

4 次の各間に答えなさい.

(1) 3 点 (4,0,0), (1,1,1), (0,0,2) を頂点とする三角形 の周とその内部を S_1 とすると, S_1 は空間内の平面の一部である。この平面の方程式を求めなさい.

(2) 方程式

 $2x+y+z=2, \quad x\geqq 0, y\geqq 0, z\geqq 0$

で定まる平面を S_2 とする.この方程式を

$$z = f(x, y)$$

と変形して, S_2 をグラフ曲面と考えるとき, 関数 f(x,y) の定義域 D_2 は, 不等式

$$\leq x \leq$$
, $\leq y \leq$

を満たす点 (x,y) の全体である.

空欄に当てはまる数、または式を答えなさい.

(3) xy 平面内の領域 $D_3: 0 \le x \le 1, 0 \le y \le \frac{1}{3} - \frac{x}{3}$ で定義 されたベクトル関数

$$r_3(x,y) = x i + y j + (1 - x - 3y) k$$

をパラメータ表示とする曲面を S_3 とする. このとき、スカラー場 $\varphi(x,y,z)=2x+3y+z$ の面積分

$$\int_{S_2} \varphi \, dS_3$$

を求めなさい.

(4) (1)(2)(3) の各平面 S_i の周をそれぞれ C_i とする. このとき、ベクトル場

$$\mathbf{A}(x, y, z) = (2y + z)\mathbf{i} + (z - x)\mathbf{j} + (2x + 3z)\mathbf{k}$$

を C_i (i=1,2,3) のいずれかで線積分すると、その値は 0 になる、ストークスの定理

$$\int_C \boldsymbol{A} \cdot d\boldsymbol{r} = \int_S \text{rot} \boldsymbol{A} \cdot d\boldsymbol{S}$$

を活用して、どの C_i に沿った線積分が 0 になるか考察しなさい.