第四章 二阶矩过程、平稳过程和随机分析 习题

- 1、设 $X_n=\sum_{k=1}^N\sigma_k\sqrt{2}\cos(\alpha_kn-U_k)$,其中 σ_k 和 α_k 为正常数, $U_k\sim U(0,2\pi)$,且相互独立, $k=1,2,\cdots,N$,试计算 $\{X_n,n=0,\pm 1,\cdots\}$ 的均值函数和相关函数,并说明其是否是平稳过程。
- 2、设有随机过程 $X(t) = A\cos(\omega t + \pi \eta(t))$,其中 $\omega > 0$ 为常数, $\{\eta(t), t \ge 0\}$ 是泊松过程, A是与 $\eta(t)$ 独立的随机变量,且 $P\{A = -1\} = P\{A = 1\} = 1/2$ 。
 - (1) 试画出此过程的样本函数,并问样本函数是否连续?
 - (2) 试求此过程的相关函数,并问该过程是否均方连续?
- 3、设 $\{X(t), t \ge 0\}$ 是一实的零初值正交增量过程,且 $X(t) \sim N(\mu, \sigma^2 t)$ 。令 Y(t) = 2X(t) 1, $t \ge 0$ 。试求过程 $\{Y(t), t \ge 0\}$ 的相关函数 $R_v(s, t)$ 。
- 4、设有随机过程 $X(t) = 2Z\sin(t + \Theta)$, $-\infty < t < +\infty$,其中 Z 、 Θ 是相互独立的随机变量, $Z \sim N(0,1)$, $P(\Theta = \pi/4) = P(\Theta = -\pi/4) = 1/2$ 。问过程 X(t) 是否均方可积过程? 说明理由。
- 5、设随机过程 $\xi(t) = X \cos 2t + Y \sin 2t$, $-\infty < t < +\infty$,其中随机变量 X 和 Y 独立同分布。
 - (1) 如果 $X \sim U(0,1)$, 问过程 $\xi(t)$ 是否平稳过程? 说明理由;
 - (2) 如果 $X \sim N(0,1)$, 问过程 $\xi(t)$ 是否均方可微? 说明理由。
- 6、设随机过程 $\{X(t); -\infty < t < +\infty\}$ 是一实正交增量过程,并且 $E\{X(t)\} = 0$,及满足: $E\{[X(t) X(s)]^2\} = |t s|, \quad -\infty < s, t < +\infty;$
 - 令: $Y(t) = X(t) X(t-1), -\infty < t < +\infty$, 试证明Y(t) 是平稳过程。
- 7、设 $\xi(t) = X \sin(Yt); t \ge 0$,而随机变量 $X \setminus Y$ 是相互独立且都服从[0,1] 上的均匀分布,试求此过程的均值函数及相关函数。并问此过程是否是平稳过程,是否连续、可导?
- 8、设 $\{X(t), t \in R\}$ 是连续平稳过程,均值为 m ,协方差函数为 $C_X(\tau) = ae^{-b|\tau|}$,其中: $\tau \in R$, a,b>0 。对固定的 T>0 ,令 $Y = T^{-1} \int_0^T X(s) ds$,证明: $E\{Y\} = m$, $Var(Y) = 2a[(bT)^{-1} (bT)^{-2}(1 e^{-bT})]$ 。
- 9、设 $(X,Y) \sim N(0,0,\sigma_1^2,\sigma_2^2,\rho)$, 令 X(t) = X + tY , 以及 $Y(t) = \int_0^t X(u) du$, $Z(t) = \int_0^t X^2(u) du$,对于任意 $0 \le s \le t$,

- (1) $\Re E\{X(t)\}\$, $E\{Y(t)\}\$, $E\{Z(t)\}\$, Cov(X(s),X(t)), Cov(Y(s),Y(t));
- (2) 证明 X(t) 在 t > 0 上均方连续、均方可导;
- (3) 求Y(t)及Z(t)的均方导数。
- 10、 设随机过程 $\{X(t); -\infty < t < +\infty\}$ 是均值为零、自相关函数为 $R_X(\tau)$ 的实平稳正态过程。设 X(t) 通过线性全波检波器后,其输出为 $Y(t) = \left|X(t)\right|$,试求:
 - (1) 随机过程Y(t) 的相关函数 $R_{Y}(\tau)$, 并说明其是否为平稳过程;
 - (2) 随机过程Y(t) 的均值和方差;
 - (3) 随机过程Y(t) 的一维概率分布密度函数 $f_{Y}(y)$ 。