Logique - Calculabilité - Complexité

Université de Montpellier TD logique n°2 - 2022

Exercice 1 modèles, théories et propriétés

- I. Pour le modèle $(\mathbb{R}, |x-y|=1)$, c'est-à-dire \mathbb{R} avec un prédicat binaire d tel que d(x,y) si et seulement si x et y sont à distance I dans \mathbb{R} , donnez une formule qui exprime |x-y|=2.
- 2. Pour le modèle $(\mathbb{R}, |x-y|=1)$ montrez que la fonction $x \to x+1$ est un automorphisme. En déduire que dans ce modèle on ne peut pas exprimer la propriété x=0.
- 3. Montrez que dans $(\mathbb{R}, |x-y|=1)$ on ne peut pas exprimer la propriété x est un entier.
- 4. Montrez que dans $(\mathbb{Z}, x+y=z)$ on peut exprimer les propriétés x=0 et x est pair.
- 5. Montrez que dans $(\mathbb{Z}, x + y = z)$ on ne peut pas exprimer la propriété x > 0.

Exercice 2 compacité - ordres complétés

Soit $\mathcal{A}=(A,<,a_1,a_2,\dots)$ un modèle dénombrable où chaque élément de A apparaît comme une constante a_i . La relation < est un ordre (partiel) quelconque. On note T la théorie de l'ordre partiel (voir précédents exercices) et on a donc $\mathcal{A}\models T$. Nous allons démontrer qu'on peut étendre l'ordre de A en un (nouvel) ordre total. On appelle $f_{i,j}$ la formule $a_i < a_j \vee a_j < a_i$.

- I. Pour $i \neq j$, trouvez un modèle $A_{i,j}$ de même langage que A tel que $A_{i,j} \models T \cup \{f_{i,j}\}$ et où l'ordre sur $A_{i,j}$ étend celui sur A.
- 2. Trouvez un modèle A_n de même langage que A tel que $A_n \models T \cup \{ \bigwedge_{i \leq n, j \leq n, i \neq j} f_{i,j} \}$ et où l'ordre sur A_n étend celui sur A.
- 3. En déduire qu'on peut étendre l'ordre en un ordre total sur A.

Exercice 3 compacité et \mathbb{Z}

On dispose ici d'une théorie T de l'ordre total strict et d'une fonction S vérifiant $\forall x \ x < S(x)$ et $\neg (\exists x, y \ x < y < S(x))$.

- I. Pour tout n trouver une formule $F_n(a,b)$ qui exprique a+n < b.
- 2. Pour tout n trouver un modèle d'univers $\mathbb Z$ où $F_n(a,b)$ est vrai , a,b étant des constantes du modèle
- 3. Montrez que tout ensemble fini de formules F_n ajouté à la théorie T est cohérent.
- 4. Montrez que l'ensemble infini des formules F_n ajouté à la théorie T est cohérent. Imaginez à quoi ressemble un modèle de cette théorie.