Fiche d'entraînement : primitives

Déterminer, dans chaque cas, une primitive des fonctions proposées :

1)
$$f_1(x) = x^3 - 2x^2 + 5x - 2$$

2)
$$f_2(x) = 2x^5 - 4x^3 + \frac{2}{3}x^2 - 8x + 7$$

3)
$$f_3(x) = 4x^4 - 2x^3 + \frac{4}{5}x^2 - 4x - 10$$

4)
$$f_4(x) = \frac{-2}{(2x+5)^2}$$

5)
$$f_5(x) = \frac{8}{(-4x+1)^2}$$

6)
$$f_6(x) = \frac{4}{(3x+7)^2}$$

7)
$$f_7(x) = \frac{1}{(5x+4)^2}$$

8)
$$f_8(x) = \frac{x^2 - 5}{x^2}$$

9)
$$f_9(x) = \frac{x^3 + 5x - 1}{x^3}$$

10)
$$f_{10}(x) = x^{-4}$$

11)
$$f_{11}(x) = x^{-6}$$

12)
$$f_{12}(x) = x^{-4} - 2x^{-3} + 5x - 1$$

13)
$$f_{13}(x) = \frac{2x}{\sqrt{x^2 + 5}}$$

14)
$$f_{14}(x) = \frac{5x}{\sqrt{2x^2 + 9}}$$

15)
$$f_{15}(x) = \frac{2x^2 - 4}{3\sqrt{x^3 - 6x}}$$

Solutions

1)
$$F_1(x) = \frac{1}{4}x^4 - \frac{2}{3}x^3 + \frac{5}{2}x^2 - 2x$$

2)
$$F_2(x) = \frac{1}{3}x^6 - x^4 + \frac{2}{9}x^3 - 4x^2 + 7x$$

3)
$$F_3(x) = \frac{4}{5}x^5 - \frac{1}{2}x^4 + \frac{4}{15}x^3 - 2x^2 - 10x$$

4)
$$F_4(x) = \frac{1}{2x+5}$$

$$F_5(x) = \frac{2}{-4x+1}$$

6)
$$F_6(x) = \frac{-4}{3(3x+7)}$$

7)
$$F_7(x) = \frac{-1}{5(5x+4)}$$

8)
$$F_8(x) = x + \frac{5}{x}$$

9)
$$F_9(x) = x - \frac{5}{x} + \frac{1}{2x^2}$$

10)
$$F_{10}(x) = \frac{-1}{3x^3}$$

11)
$$F_{11}(x) = \frac{-1}{5x^5}$$

12)
$$F_{12}(x) = \frac{-1}{3r^3} + \frac{1}{r^2} + \frac{5}{2}x^2 - x$$

13)
$$F_{13}(x) = 2\sqrt{x^2 + 5}$$

14)
$$F_{14}(x) = \frac{5\sqrt{2x^2+9}}{2}$$

15)
$$F_{15}(x) = \frac{4\sqrt{x^3 - 6x}}{9}$$