TECHNISCHE UNIVERSITÄT BERLIN INSTITUT FÜR MATHEMATIK Dr. D. Peschka, A. Selahi

Numerical Mathematics II for Engineers Homework assignment 5: Domains and boundaries.

Programming assignments can be solved in MATLAB/Python/Julia.

Use sparse matrices where appropriate!

Deadline: submit before/during the lecture on November 25, 2019.

1. Exercise: Poisson problem on general domains

10 points

For $\bar{\Omega} \subset [0,L]^2 \subset \mathbb{R}^2$ and given functions $f,g:\mathbb{R}^2 \to \mathbb{R}^2$ consider the Poisson problem

$$-\Delta u = f \quad \text{in } \Omega, \qquad u = g \quad \text{on } \partial\Omega.$$
 (1)

Introduction: Consider a function $b = is_in_domain(x,y,L)$, where x,y are arrays of coordinates and L the box size. The function returns an array of booleans indicating b(i,j)=true if $(x(i,j),y(i,j))\in \bar{\Omega}$. Assume $is_in_domain(x,y,L)=false$ if $x \leq 0$ or $y \leq 0$ or $x \geq L$ or $y \geq L$ are satisfied.

We define a grid $\bar{\Omega}_h = \bar{\Omega} \cap B_h$ with box $B_h = \{(ih, jh) \in \mathbb{R}^2 : 0 \leq i, j \leq N+1\}$ and $h = \frac{L}{N+1}$. For the lambda function is_in_domain = $\mathbb{Q}(x,y,L)$ (x-L/2).^2 + (y-L/2).^2 <= 1, L = 2.2, N = 6 the points in $\bar{\Omega}_h$ are shown below as black dots, while other points $B_h \setminus \bar{\Omega}$ are hollow. If with (ih, jh) also $((i \pm 1)h, jh)$ and $(ih, (j \pm 1)h)$ are in $\bar{\Omega}_h$, then (ih, jh) is in Ω_h (red dots), while other points in $\bar{\Omega}_h$ are in Γ_h (blue dots) so that $\bar{\Omega}_h = \Omega_h \cup \Gamma_h$.

Consider the provided template function a05ex01_get_laplace that already creates the underlying mesh. When called with the function, it generates a $N+2\times N+2$ boolean array bar_omega_h and provides the lexicographical ordering ix as an $N+2\times N+2$ integer array (zero for points outside $\bar{\Omega}_h$). The goal of the following steps is to generate $N+2\times N+2$ boolean arrays for Ω_h , Γ_h (to slice/pick elements from arrays).

Furthermore, we will generate the index arrays of points and their direct neighbors, to create the 5-point stencil and the equations on the boundary. Therefore, extend the functionality of the function a05ex01_get_laplace as follows:

- a) Check for points contained in $\bar{\Omega}_h$ if all their direct neighbors are in $\bar{\Omega}_h$. If so, set omega_h(i,j)=true, otherwise set gamma_h(i,j)=true.
- b) Similar to the previous assignment: Create ix_xpy,ix_xmy,ix_xyp,ix_xym containing indices of neighbors $i \pm 1, j$ and $i, j \pm 1$ of ix(i,j) valid for all points in Ω_h .
- c) Based on ix_xpy,ix_xmy,ix_xyp,ix_xym and using omega_h,gamma_h, create the index arrays ii,jj and value arrays as to create the discrete operator Lh using the MATLAB command Lh=sparse(ii,jj,aa). Return the results as specified in the function interface.
- d) Use is_in_domain for $\bar{\Omega}=\{(x,y)\in (0,L)^2: (x-\frac{L}{2})^2+(y-\frac{L}{2})^2\leq 1\}$ for L=2.2. Solve numerically for f=1,g=0 and plot the solution for N=256. For the sample solution solve_laplace_domain.m does the job.
- e) Log-log-plot $||R_h u u_h||_{\infty,h}$ vs h and determine the order of convergence.
- f) Experiment with more complicated domains $\bar{\Omega}_h$ and solve for different f, g. Plot the corresponding solutions.

2. Exercise: Boundary conditions

8 points

Let $\Omega = (0,1)$ with $f : [0,1] \to \mathbb{R}$, $c \in \mathbb{R}$ with $c \ge 0$ and $g_i, \alpha_i, \beta_i \in \mathbb{R}$ for i = 0,1 given. Consider the Poisson problem

$$-u'' + cu = f \quad \text{in } \Omega, \tag{2}$$

with one of the following sets of boundary conditions

- i) Robin boundary conditions $\alpha_0 u(0) + \beta_0 u'(0) = g_0$, $\alpha_1 u(1) + \beta_1 u'(1) = g_1$,
- ii) Periodic boundary conditions.
- a) Which cases (boundary condition + data) require a solvability condition?
- b) Write a function [x,u]=a05ex04solvePDE(N,f,data,flag) returning the grid $x=(x_0,..,x_{N+1})^{\top}\in\mathbb{R}^{N+2}$ with $x_j=hj$ for j=0,...,N+1 and h=1/(N+1) and the discrete solution $\mathbf{u}=(u_0,..,u_{N+1})^{\top}\in\mathbb{R}^{N+2}$. The right-hand-side input is $\mathbf{f}=(f_0,..,f_{N+1})^{\top}\in\mathbb{R}^{N+2}$ with $f_j=f(x_j)$ and $\mathtt{data=[c,g0,g1,alpha0,alpha1,beta0,beta1]}$. The flag can be flag=1 for Robin and flag=2 for periodic boundary conditions. Choose the discretization of the problem and discuss your choice. When necessary, solve the extended system from the lecture.
- c) Choose i) with $\alpha_i = 0$, $\beta_i = 1$, $g_0 = -1/2$, $g_1 = 2$ and f(x) = q for $q \in \mathbb{R}$ and solve. Plot the solution for N = 500. Which q satisfies the solvability condition?

d) Choose ii) with $f(x) = 1 + \sin(2\pi x)$ and c = 1. Plot the solution for N = 500 and determine the order of convergence (experimental or using the exact solution).

3. Exercise (optional): Stability

4 points

Consider the alternative 9-point compact difference stencil

$$\Delta_h = \frac{1}{3h^2} \begin{pmatrix} 1 & 1 & 1\\ 1 & -8 & 1\\ 1 & 1 & 1 \end{pmatrix} \tag{3}$$

and assume $u_h: \bar{\Omega}_h \to \mathbb{R}$ with $\Delta_h u_h \geq 0$.

- a) Prove the discrete maximum principle for this operator.
- b) Show (by example or by proof) that $\Delta_h R_h((x-x_0)^2+(y-y_0)^2)=4$. Indicate how you would show stability for this operator.
- c) Use the operator from exercise 1 (5-point stencil) and derive a bound for $|||L_h^{-1}|||_{\infty,h}$ with the disc domain (radius 1). Try to experimentally verify/challenge this bound.
- d) Write a program for exercise 1 which checks if Ω_h is discretely connected.

total sum: 18 (+4) points