Genomic Signal Processing and Data Science Prof. Haris Vikalo April 11, 2022

Homework Set #5

EE 381V HW# 5

Due: 04/25/22

- 1. Problem 1 [Haplotype assembly (6 points).] Assume that a genome of a diploid organism was sequenced using a high-throughput sequencing device. Sequencing was erroneous (with error rate p_e = 0.005), and performed at coverage c = 20. After SNP calling and genotyping, data is organized in a SNP fragment matrix R (which you can download from http://www.ece.utexas.edu/~hvikalo/ee381v/SNP_Fragment_Matrix.txt). The dimension of R is 80 × 194, implying that there are n = 80 reads and the length of the haplotypes is m = 194. Relying on matrix factorization ideas, reconstruct the haplotypes and find the corresponding minimum error correction (MEC) score. Please submit your code. Remark: To initialize the haplotype sequence in an alternating minimization algorithm, you may want to consider singular value decomposition of the SNP fragment matrix.
- 2. Problem 2 [Gene clustering (6 points).] Data set YeastCycle.xls (which you can download from http://www.ece.utexas.edu/~hvikalo/ee381v/YeastCycle.xls) contains expressions of 678 genes from the yeast cell data, measured in experiments performed on yeast cell samples which were acquired every 20 minutes.
 - (a) Perform the singular value decomposition of the data, i.e., factorize $X = \Theta \Sigma V^T$. Plot the entries of the first two rows of $F = \Sigma V^T$ as a function of time (there are 12 time steps) on the same plot. Are there any patterns?
 - (b) Use k-means clustering to cluster the genes for k = 3, 4, 5, 6. Is there evidence that one of these numbers of clusters is better than another?
 - (c) For the clustering with k=4 clusters, plot the cluster means obtained in (b) as a function of time on a single plot. Are there any patterns?
- 3. **Problem 3** [Hierarchical clustering (5 points).] Perform a hierarchical clustering (i.e., give the cluster tree) of the genes (a, b, c, d, e), where their pairwise distances are given by

	a	b	c	d	е
a	0	3	8	7	8
b	3	0	4	8	8
c	8	4	0	5	6
d	7	8	5	0	6
е	8	8	6	6	0

Complete this task using (a) single-link, and (b) complete-link hierarchical clustering method.

- 4. **Problem 4** [Graph representation of genes (3 points).] The expression of one gene may have a regulatory effect on another gene. Gene regulation can be represented by a graph where the genes are vertices in a graph, and where a directed edge conects gene A to gene B if gene A directly regulates gene B (that is, binds to its promoter region or inhibits its translation).
 - (a) If given a graph described above, how can we tell if a gene directly regulates itself? This type of regulation is known as autoregulation.
 - (b) How can we detect if a gene indirectly regulates itself?
 - (c) How can we augment this graph to represent the extent to which one gene directly regulates another? How do we represent a gene negatively regulating another one?