

微功率低功耗无线数传模块 YL-10T 规格书

目录

— ,	模块概述	2
Ξ,		2
三、	尺寸结构	
四、	管脚定义	2
五、	技术参数	3
六、	参数配置	3
七、	参数说明	4
八、	工作模式	4
	(一) 普通模式:	4
	(二) 浅休眠模式 (YL-10T-H):	5
	(三) 深休眠模式 (YL-10T-L):	
九、	通讯模式	6
十、	测试说明	6
+-	·、 AT 命令	8
十二	.、 天线选择	8
十三		
十四	l、 应用领域	9

一、 模块概述

YL-10T 是我公司推出的 10mW 微功率串口无线数传模块。基于 A7129 无线方案,GFSK 调制方式,半双工通讯。内有单片机自带收发程序,用户无需自己编程,即可实现数据透传(所发即所收),不改变用户数据和协议。支持 1200~57600bps 等常用的波特率,TTL 接口,支持 8N1/8E1/801 三种数据格式。

模块是全向广播的,只要在通讯范围内,均可轻松实现一对一、一对多、多点组网等多种通讯应用。通过上位机软件或者单片机命令,都可以灵活配置无线模块的频率、串口/空中速率、串口校验方式等基本参数。

模块具有体积小、接收灵敏度高、抗干扰能力强、功耗小、距离远、传输速度快等优点,使用简单方便,非常适合电池供电的项目做无线通讯使用。

二、 模块特点

- ▶ 微功率发射,标准 10mW。
- ▶ 调制方式是高斯频移键控(GFSK)。
- ▶ 470-510MHz 免申请频段,可定做其他频段。
- ▶ 接收灵敏度在速率 9.6K 高达-115dBm, 传输距离可以达到 700 米以上。
- ▶ 低接收电流,在全速监听下,电流低至 3mA,业内最低。
- ▶ TTL 接口,焊接 2.54 排针方便客户嵌入式开发。
- ▶ 可编程的数据速率: 1200/2400/4800/9600/19200/38400/57600 bps,可定制。
- ▶ 生产免调试,宽电压范围工作: 3.3V 或 5V。
- ▶ 使用简单,用户无需编写关 RF 方面的软件直接操作 USART 接口即可。

三、 尺寸结构

四、 管脚定义

序号	名称	功能		
1	GND	电源地		
2	VCC	电源输入 3.3V 或 5V		
3	EN	EN=1, 休眠模式; EN=0, 工作模式		
4	RXD	数据输入,接用户的 TXD		
5	TXD	数据输出,接用户的 RXD		
6	AUX	信号输出,唤醒用户 MCU		
7	SET	SET=1,工作模式; SET=0,设置模式		
注音. EN TYI	注音, EN TYD BYD ALIX SET 都是 3 3V 由平 加里田户县 5V 的 MCU 为了稳定 建议做由平转换			

注意:EN,TXD,RXD,AUX,SET 都是 3.3V 电平,如果用户是 5V 的 MCU,为了稳定,建议做电平转换。

注:

- (1) 工作模式——发送与接收数据;
- (2) 休眠模式——有两种休眠模式:

YL-10T-L: 射频芯片和 MCU 主时钟停止工作, 功耗达到最小(3uA);

YL-10T-H: 射频芯片简短休眠, MCU 主时钟停止但打开部分外设, 平均功耗达到 330uA。

- (3) 设置模式——修改工作频率、无线传输速率和串口传输速率、校验方式等。
- (4) "1"表示引脚"悬空"或接"高电平", "0"表示引脚"接地"或接"低电平"。

五、 技术参数

通讯距离: 0.5-1km 调制方式: GFSK 接口类型: TTL接口

工作频率: 470-510MHz 计量频段

发射功率: 10mW

接收灵敏度: -115dBm@9600bps

发射电流: 30mA 接收电流: 4.5mA

休眠电流: 3uA(深睡眠)、330uA(浅睡眠)

通信速率: 1200/2400/4800/9600/19200/38400/57600 bps

工作电压: 直流 3.3V/5 V 工作温度: -40℃~85℃

工作湿度: 10%~90%相对湿度,无冷凝

六、 参数配置

图中所显示的参数值,即为模块出厂的默认参数。客户需要根据实际的应用需求修改相关参数。参数不同对模块的通讯效果影响很大,具体参考"参数说明"章节。

七、 参数说明

图例	名称	说明
Usart Open BaudRate Parity NO V A	打开端口	此处用于打开模块连接电脑时对应的 COM 口,必须选择与模块串口相同的波特率和校验方式,才能够正确连接模块,否则会连接超时(Time Out)。
RF_frequency 490.00 MHz	载 波 频率	470~510MHz 内任意设置(需要与天线相匹配);立即生效。相互通信的模块必须使用相同的频率。通过使用不同的频率可以建立多条通讯线路,从而允许同一个地方多套设备同时使用,但相邻的频率最好相隔 1MHz 以上。遇到干扰时也可以修改频率避开干扰。
RF_Datarate 9600 ▼ Bps C	空 中速率	可选 1200/2400/4800/9600/19200/38400/57600bps; 相互通讯的模块必须使用相同的空中速率。 空中速率越高,延迟越小,但模块接收灵敏度越低,抗干扰能力越差, 距离越近。
Serial Port Config BaudRate 9600	串 口 速率	可选 1200/2400/4800/9600/19200/38400/57600bps; 与模块连接的设备必须采用相同的串口速率; 串口速率越高,延迟越小,但单位时间进入模块的数据量越大,可能 导致模块无法及时处理,造成数据溢出。
Parity NO 🔻	串 口校验	可选 8N1/8E1/8O1; 断电重启后生效。 与模块连接的设备必须采用同样的串口校验,否则数据会乱码; 模块数据位是 8 位的,有些设备是 7 位或者 9 位,注意区分。 模块在设置模式下串口参数自动变为 9600bps,8N1
ProductID(ID:1 ID:2 ID:3 ID:4)	模 块 ID	可配置 1~65536 个 ID 号;立即生效。 相同 ID 号的模块才可以相互通讯,可用于分组。 标准模式、中心模式、节点模式均有效。
Write All	写 参数	写入模块参数
Read All	读 参数	读取模块参数

八、 工作模式

模块有普通模式和休眠模式,其中休眠模式有分为浅休眠和深休眠。只有普通模式才可以正常收发数据。

(一) 普通模式:

在普通模式下, GND、VCC 接到电源上, TXD、RXD 分别接到用户 MCU 上的 RXD、TXD ,EN 脚接地,AUX 脚接到客户端的外部中断脚,用来唤醒用户设备。这样用户设备就可以休眠,然后打开外部中断唤醒,等待无线模块接收到数据,通过 AUX 脚拉低来唤醒用户设备,AUX 会提前 2ms 拉低,留出足够的时间给用户设备唤醒并打开串口接收从模块过来数据。

普通模式接线示意图

普通模式下 TXD 和 AUX 时序图

(二) 浅休眠模式 (YL-10T-H):

在应用的时候给 EN 脚高电平使模块进入浅休眠模式,模块的串口可以接收唤醒网络命令,并在 AUX 脚上给出低电平告诉客户端模块正在唤醒网络,直到整个无线网络唤醒 AUX 才会变成高电平。 RF 可以监听空中有无 RF 唤醒命令并通过 AUX 脚给出低电平来唤醒用户 MCU,直到客户端唤醒模块到普通模式 AUX 脚变成高电平。

(三) 深休眠模式 (YL-10T-L):

在应用的时候给 EN 脚高电平使模块进入深度休眠,模块的串口和无线都不会监听数据。给 EN 脚低电平则使模块进入普通模式,等待 2ms 后才可以收发数据。

休眠模式接线示意图

浅休眠模式下 RXD 和 EN 时序图

模式切换

EN 脚状态	SET 脚状态	模式
0	0	设置
0	1	工作
1	0	设置
1	1	休眠

注:

- 1代表断开或高电平,0代表接地或低电平;
- 设置模式与休眠模式不能直接进行切换,必须先进入工作模式,然后再进行切换。
- 进入设置模式时,模块的串口参数自动变成 9600, N, 8, 1,退出设置模式后恢复到原来的设置。

九、 通讯模式

单个模块发出的无线信号是广播的,只要接收端在信号覆盖范围内都可以收到属于自己的信号。两个模块之间通信则是半双工的,可以完成点对点,一点对多点的通讯结构。第二种方式首先需要设 1 个主站,其余为从站,所有站点都必须设置一个唯一的地址。通信的协调由主站控制,主站采用带地址码的数据帧发送数据或命令,所有从站全部都接收,并将接收到的地址码与本机地址码比较,地址不同则将数据丢掉,不做响应,若地址码相同,则将接收的数据传送出去。同一个频点通信网络中,必须保证在任何一个瞬间,只有一个电台处于发送状态,以免相互干扰。可通过设置不同的载波频率将模块分组,以实现同一个区域内多个网络并存。

十、 测试说明

虽然模块出厂前经过测试,但还是建议用户拿到模块后,先连接到电脑用串口助手发送数据,确定模块能通讯后,再修改合适的参数接到用户设备上使用。测试步骤如下:

1. 电脑安装 USB 转串口驱动,或者用我公司提供的驱动;

USB 转 TTL 驱动下载: http://www.rf-module.cn/updow/201578115240834.rar

2. 通过 USB 转串口数据线连接模块和电脑,如果没有数据线,可从我公司购买:

3. 打开电脑的"设备管理器",查看电脑给模块分配的端口号:

4. 打开串口调试助手,选择模块端口号及对应的串口参数,打开端口。

串口调试助手下载地址: http://www.rf-module.cn/updow/2015521112540916.rar

5. 在串口调试助手输入框内输入数据,点击"发送",模块就会自动把数据发出去。

6. 多测试不同的模块参数,从而了解模块在不同参数下的通讯效果。

十一、 AT 命令

模块可以通过 AT 命令读取或修改参数,需要以设置模式接线。命令格式如下:

同步	命令码	ID码	频率设置	空中	串口	串口	CRC	结束
头				速率	速率	校验		码
0XAF	MM	N1 N2 N3 N4	X1 X2 X3	RR	YY	ZZ	CS	0X0A
	0XF1	用户	X1=频率/12.8 的整数转 16	0=1200	1=1200	0=	校验位	
	写参数	自定义	进制	1=2400	2=2400	无校验	为前面	
	命令		X2=频率/12.8 的余数*65536	2=4800	3=4800	1=	所有数	
			转 16 进制的高位	3=9600	4=9600	奇校验	据之和	
	0XF2		X3=频率/12.8 的余数*65536	4=19200	5=19200	2=	的低 8	
	读参数		转 16 进制的低位	5=38400	6=38400	偶校验	位	
	命令		比如 490MHz:	6=57600	7=57600			
			490/12.8=38.28125					
			整数 38 转 16 进制为 26					
			余数 0.28125*65536=18432					
			转 16 进制为 4800					
			因此 X1=26,X2=48,X3=00					
			频率=					
			12.8* (X1+(X2X3)/65536)					
			其中 X1 和 X2X3 要先转换成					
			10 进制					

功能	举例
写参数 (默认参数)	发码: AF F1 34 75 C5 8C 26 48 05 03 04 00 14 0A
	回码: AF F1 34 75 C5 8C 26 48 05 03 04 00 14 0A
读参数	发码: AF F2 00 00 00 00 00 00 00 00 00 A1 0A
	回码:AF F2 N1 N2 N3 N4 X1 X2 X3 RR YY ZZ CS 0A

十二、 天线选择

天线系统是无线通讯的重要组成部分,良好的天线系统,能够极大提高无线通讯效果,事半功倍。

提示:在允许安装的情况下,建议尽量采用高增益天线,天线安装时与地平线垂直效果最佳。如果自行配置天线,需要注意频率匹配,阻抗 50Ω ,驻波比越小越好。

十三、 常见问题分析

距离不远

1. 环境复杂,障碍物多,改用大功率模块或高增益天线,天线架高或者引至室外;

或者误码

率高

- 2. 天气不好,比如雾霾、沙尘、雨雪等,改用大功率模块或高增益天线;
- 3. 天线不匹配,模块和天线必须匹配频率,有条件的尽量使用好天线;
- 4. 天线安装不正确,天线与地平面垂直,离地高度两米左右时效果最佳;
- 5. 传输速度过快,速率越快灵敏度越低,尽量采用低速传输;
- 6. 可能受到干扰,远离干扰源,或者修改通讯频道;

无法通讯

1. 接口不匹配,模块是 TTL 接口的,注意与其他接口区别开来;

或者无法 | 读写模块 |

参数

- 2. 接线不正确,不同接口有不同接法,参照管脚定义说明;
- 读写模块 3. 接触不良或者虚焊,可能线材老化了,重新接好电源线、信号线,尽可能焊死;
 - 4. 参数不匹配,注意设备与模块之间串口参数保持一致,模块与模块之间无线参数保持一致;
 - 5. 数据量太大了,模块传输能力有限,避免单位时间内灌入大量数据,建议分包发送;
 - 6. 模块损坏,建议拿到模块后先连接电脑用串口助手检验模块是否可以通讯:
 - 7. 用户设备损坏,用有线连接监测用户设备是否正常;

十四、 应用领域

- ✓ 无线排队设备,酒店电子门锁、生物识别门禁管理系统;
- ✔ 温室大棚数据采集,农田节水灌溉;
- ✔ 医疗和电子仪器仪表自动化控制;
- ✔ 智能教学设备、婴儿监护、医病房呼叫系统;
- ✓ 家庭电器和灯光智能控制;
- ✓ 防盗报警智能卡,铁路机车远程检测;
- ✓ 水、电、煤气,暖气自动抄表收费系统或无功补偿及电网监测;
- ✓ 无线会议表决、打分系统, PDA 终端、无线点菜系统;
- ✓ LED 屏无线传输文字,图片和无线控制;
- ✔ 电子衡器、无线吊秤、车辆监测、老化设备检测;
- ✓ 工业设备数据无线传输以及工业环境监测;
- ✓ 视频监控云台控制,门禁考勤读卡器;
- ✓ 气象/油井/水利设备信息采集以及自然环境检测;
- ✓ 矿井下井人员考勤定位系统: 瓦斯检测报警:
- ✔ 仪器、货物、医疗设备等重要资产和重要人员的区域定位;
- ✓ 物流的供应链管理;
- ✓ 风力发电路灯无线控制,太阳能光伏逆变器的数据监控;