Network Layer: Internet Protocol, Version 6 (IPv6)

Lecture 13 | CSE421 – Computer Networks

Department of Computer Science and Engineering School of Data & Science

IPv6

- •Initial motivation:
 - 32-bit address space soon to be completely allocated.

- •Additional motivation:
 - Simpler header format helps speed processing/forwarding
 - header changes to facilitate QoS

Reasons for using IPv6

- Address Availability:
 - IPv4: 4 octets 32 bits
 - 2^32 or 4,294,467,295 IP Addresses.

- IPv6: 16 octets 128 bits
 - 3.4 x 10[^]38 or

340,282,366,920,938,463,463,374,607,431,768,211,456 (340 undecillion) IP Addresses.

• Every atom of every person on Earth could be assigned 7 unique addresses with some to spare (assuming 7×10^{27} atoms per human $\times 6.5$ Billion).

Reasons for Using IPv6

- IPv6 Features:
 - fixed-length 40 byte header
 - no fragmentation allowed

IPv6 Datagram

40 Octets, 8 fields

Extension Headers

Extension Headers

- Basic header simplified for ease of processing
- Additional information carried in extension headers
 - Hop-by-hop options
 - Routing header
 - Fragment header
 - Destination options header
 - Authentication header (AH)
 - Encrypted security payload (ESP) header
- Next Header 0 Next Header 6 TCP Segment Data

 Hop-by-Hop Options Header Header IP Data

 IPv6 Datagram With Two Extension Headers Carrying TCP Segment

- Next Header field says what type of header follows
 - E.g. Fragment Header, TCP, ICMP, etc.

The IPv4 Header

Header Changes between IPv4 and IPv6

- Revised
 - Time to Live (Hop Limit)
 - Addresses increased from 32 bits to 128 bits
 - Protocol (Next Header)
 - Precedence & TOS (Traffic Class)
- Extended
 - Flow Label field added (Recommended read: Page 676 of Forouzan's Book)

IPv6 Address

- 128 bits
- given below is a 128 bit IPv6 address represented in binary format and

2001:0000:3238:DFE1:0063:0000:0000:FEFB

IPv6 Addressing

- IPv6 Representation Rule 1:
 - The leading zeroes in any 16-bit segment do not have to be written. If any 16-bit segment has fewer than four hexadecimal digits, it is assumed that the missing digits are leading zeroes.

```
      2031 : 0000 : 130F : 0000 : 0000 : 09C0 : 876A : 130B

      2031 : 0 : 130F : 0 : 0 : 9C0 : 876A : 130B

      8105 : 0000 : 0000 : 4B10 : 1000 : 0000 : 0000 : 0000 : 0005

      8105 : 0 : 0 : 0 : 4B10 : 1000 : 0 : 0 : 0 : 0 : 5

      0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000
```

IPv6 Addressing

- IPv6 Representation Rule 2:
 - Any single, contiguous string of one or more 16-bit segments consisting of all zeroes can be represented once with a

```
1080:0:0:0:8:800:200C:417A =

FF01:0:0:0:0:0:0:0:101 =

0:0:0:0:0:0:0:0:0:0 =
```

IPv6 Addressing

- IPv6 Representation Rule 2:
 - Any single, contiguous string of one or more 16-bit segments consisting of all zeroes can be represented once with a double colon.

Example: 1843:f01::22::fa

Illegal because the length of the two all-zero strings is ambiguous.

1843:00f0:0000:0000:0022:0000:0000:00fa

1843:00f0:0000:0000:0000:0022:0000:00fa

1843:00f0:0000:0022:0000:0000:0000:00fa

Representing IPv6 addresses

- No more net masks
 - Represented by a "/prefixlen" appended to the end of an address where prefixlen indicates the number of bits in the address that make up the network address
 - Similar to classless address representation in IPv4
 - For example:

2001:db8:abcd:0012::0/64 specifies a subnet with a range of IP addresses from:

2001:db8:abcd:0012:0000:0000:0000:0000 to

2001:db8:abcd:0012:ffff:ffff:ffff.

Network part: 2001:db8:abcd:0012

Host part: ::0

Types of IPv6 addresses

- unicast
 - communicate specified 1 computer
- multicast
 - communicate group of computers
- anycast
 - send group address that can receive multiple computers, but receive 1 computer

Types of IPv6 addresses

- Unlike IPv4, there is no broadcast address.
- •There is an "all nodes multicast" which serves the same purpose.

Unicast Global Addresses

- These are assigned by the IANA and used on public networks.
- They are equivalent to IPv4 global (sometimes called public) addresses.
- •Typically they start at 2000::/3

Unicast addresses

- A unicast address is an address that identifies a single device.
 - Types of Unicast Addresses:

Block prefix	CIDR	Block assignment	Fraction
0000 0000	0000::/8	Special addresses	1/256
001	2000::/3	Global unicast	1/8
1111 110	FC00::/7	Unique local unicast	1/128
1111 1110 10	FE80::/10	Link local addresses	1/1024
1111 1111	FF00::/8	Multicast addresses	1/256

Unicast Global Addresses

Can contain:

- The interface's 48-bit MAC Address.
- An identifier derived from the EUI-64 Address (more later).
- A manually configured address.

Special Addresses

Unspecified Address:

- ::/128
- In a host, it refers to the host itself, and is used when a device does not know its own address
- For addressing purposes within a software.

Loopback Address

- ::1/128
- loopback (same as 127.0.0.1 in many IPv4 implementations)
- In IPv6 there is just one address, not a²⁰ whole block, for this function.

Unique Local Unicast Address

- FC00::/7
- Globally unique,
- But it should be used in local communication.

Link Local Unicast Address

- FE80::/10
 - These addresses refer only to a particular physical network.
 - Routers do not forward datagrams using link-local addresses.
 - They are only for local communication on a particular physical network segment.
 - Automatic address configuration.
 - Neighbor discovery.

	10 bits	38 bits	16 bits	64 bits	
Link local	1111111010	All 0s	All 0s	Interface ID	
FE80::/10	1111111010	All US	All Os	interface ib	

Scope of IPv6 Unicast Addresses

Multicast Addresses

Consisting of all addresses that begin with "1111 1111" i.e "FF"

Multicast Addresses

- Multicast addresses are used to send data to a number of devices on an internetwork simultaneously.
- Each multicast address can be specified for a variety of different scopes
 - allowing a transmission to be targeted to either a wide or narrow audience of recipient devices.

Anycast Addresses

- To provide flexibility in situations where we need a service that is provided by a number of different servers or routers but don't really care which one provides it.
- In routing, anycast allows datagrams to be sent to whichever router in a group of equivalent routers is closest

Anycast Addresses

- There is no special anycast addressing scheme: anycast addresses are the same as unicast addresses.
- An anycast address is created "automatically" when a unicast address is assigned to more than one interface.

Interface part

- Manually give the interface ID part
 - Corp(config-if)#ipv6 address 2001:db8:3c4d:1::1/64

Interface part: Using an EUI-64

- EUI-64(extended unique identifier)
 - How to stretch IEEE 802 MAC addresses from 48 to 64 bits
 - Done by inserting the 16-bit oxFFFE in the middle at the 24th bit of the MAC address
 - To create a 64-bit, unique interface identifier.
 - Corp(config-if)#ipv6 address 2001:db8:3c4d:1::/64 eui-64

Using an EUI-64

Using an EUI-64

• Using EUI-64.

Transition from IPv4 to IPv6

IPv4 to IPv6 Transition

Strategies and mechanisms:

- IPv4 to IPv6 transition is gradual
- IPv6 devices need to communicate to IPv4
- IPv6 needs to communicate over IPv4 links

Transition Techniques

Three categories:

- Dual-stack techniques
- TunnelingTechniques
- Translation techniques

Dual Stack

- Method in which a node has implementation and connectivity to both an IPv4 and IPv6 network.
- The recommended option.

• Involves running IPv4 and IPv6 at the same time

IPv6 Tunneling

- Tunneling is an integration method where an IPv6 packet is encapsulated within another protocol.
- Tunneling encapsulates the IPv6 packet in the IPv4 packet.

IPv6 Tunneling

- When IPv4 is used to encapsulate the IPv6 packet:
 - Protocol type of 41.
 - 20-byte IPv4 header with no options.
 - IPv6 header and payload.
 - Requires dual stacked routers.

NAT Protocol Translation

 Important method of transition to IPv6 by means of a NAT-PT (Network Address Translation – Protocol Translation) enabled device.

When the IPv4 host sends a request packet to the IPv6 server, the NAT-PT device/router strips down the IPv4 packet, removes IPv4 header, and adds IPv6 header and passes it through the Internet. When a response from the IPv6 server comes for the IPv4 host, the router does vice versa.

THE END