Transformée de Laplace

I désigne l'intervalle $]0, +\infty[$.

Toutes les fonctions f considérées sont continuse de I dans \mathbb{C} et intégrable sur]0,1].

On note A(f) l'ensemble des réels x tels que la fonction $t \to f(t)e^{-xt}$ soit intégrable sur I.

On pose pour un tel \boldsymbol{x} ,

$$L(f)(x) = \int_0^\infty f(t)e^{-xt}dt$$

La fonction L(f) s'appelle transformée de Laplace de f.

Première partie : Propriétés de A(f). Premiers exemples.

1. Lorsque A(f) est non vide on note $\alpha(f)$ sa borne inférieure (éventuellement égale à $-\infty$).

Montrer que tout si $a \in A(f)$ alors $[a, \infty] \subset A(f)$

Il en résulte facilement et nous l'admettrons que A(f) est l'un des deux intervalles $[\alpha(f), +\infty[$ et $]\alpha(f), +\infty[$.

- 2. Calculer A(f) et $\alpha(f)$ dans les exemples suivants : $f(t) = e^{-t^2}$, $f(t) = \frac{1}{1+t^2}$, $f(t) = e^{at}$ ($a \in \mathbb{C}$).
- 3. Dans le dernier exemple calculer L(f). En déduire la transformée de Laplace des fonctions \sin et \cos .

Deuxième partie : Propriétés de $\mathcal{L}(f)$

1. Continuité, limites.

- (a) Montrer que $f(t)e^{-xt}$ est dominée par une fonction intégrable, sur tout intervalle de la forme $[a, +\infty[$ inclus dans A(f).
- (b) En déduire que L(f) est continue
- (c) Déterminer la limite en $+\infty$ de L(f)

2. Comportement aux bornes.

Dans cette question on suppose que f possède une limite finie en 0 et en $+\infty$.On note l et l' ces limites.

- (a) Montrer que $]0, +\infty[\subset A(f)]$.
- (b) Si $l \neq 0$, démontrer $L(f)(x) \sim \frac{l}{x}$.
- (c) Par une méthode analogue, étudier le comportement quand $x \to 0$ lorsque l' est non nulle.
- (d) Donner une condition suffisante sur f pour que L(f) ait une limite finie en zéro.

3. Dérivation.

(a) On note $f_1: t \to tf(t)$. Démontrer que pour tout $a > \alpha(f)$, l'intégrale $L(f_1)(a)$ est bien convergente. indication : on choisira $\alpha(f) < b < a$ et on utilisera la définition de $\alpha(f)$

1

- (b) Démontrer que L(f) est de classe C^1 sur $]\alpha(f), +\infty[$ et que $L(f)'=-L(f_1).$
- (c) Démontrer enfin que L(f) est une fonction de classe C^{∞} sur $\alpha(f)$, ∞

4. Transformée d'une dérivée.

Dans cette question on suppose que f est de classe C^1 et que $\forall x \in A(f), f(t)e^{-xt} \to 0$ quand $t \to \infty$. Montrer que sur $A(f) \cap A(f')$ on a L(f')(x) = xL(f)(x) - f(0).

5. Développement en série entière.

Soit $a > \alpha(f)$.

Démontrer qu'il existe des coefficients (b_n) que l'on exprimera à l'aide de f, tels que l'on ait, pour $|h| < a - \alpha(f)$ l'égalité :

$$L(f)(a+h) = \sum_{n=0}^{\infty} b_n h^n$$

On dit que L(f) est développable en série entière.

6. Transformée de Laplace d'une série entière.

Soit (a_n) une suite complexe, on note R le rayon de convergence de la série $\sum a_n x^n$. On suppose R non nul. Autrement dit on suppose que la série converge absolument pour tout x positif plus petit que R

- (a) soit r < R. Démontrer qu'il existe un réel M (dépendant de r) tel que pour tout n on ait $|a_n| \le \frac{M}{r^n}$
- (b) Montrer que la fonction $f(t) = \sum_{0}^{\infty} \frac{a_n}{n!} t^n$ est définie et continue sur $\mathbb R$
- (c) Montrer que $\alpha(f) \leq R$ et donner l'expression de L(f) comme somme d'une série sur $]R, +\infty[$.

Troisième partie : Applications.

1. Calcul de l'intégrale de Dirichlet $\int_0^\infty \frac{\sin t}{t} dt$.

Soit
$$f(t) = \frac{1 - \cos t}{t^2}$$
.

- (a) Calculer L(f)''(x).
- (b) En utilisant le comportement en $+\infty$ de L(f)' et L(f) déterminer l'expression de L(f)' puis de L(f) sur $]0, = \infty[$.
- (c) Montrer $L(f)(0) = \int_0^\infty \frac{\sin t}{t} dt$ et conclure.
- 2. Une application aux équations différentielles.

Il est admis que la transformation de Laplace est injective. Autrement dit deux fonctions distinctes ont des transformées de Laplace différentes.

- (a) Soit a un réel. Trouver une fonction dont la transformée de Laplace est $x\mapsto \frac{1}{x-a}$.
- (b) En déduire une fonction dont la tranformée de Laplace est $x\mapsto \frac{1}{(x-a)^2}$. (on utilisera la deuxième partie)
- (c) On considère l'équation différentielle $y'' 2y' + y = e^t + t$. Soit f la solution vérifiant les conditions f(0) = f'(0) = 0. Trouver la tranformée de Laplace de f. En déduire f

2