

By Team F:

Tyler Dubuke, Matt Fortmeyer, Jeremy Hoffman, Elsa Luthi, Amanda Pennie, Michael Prindle, and Sylvia van der Weide

ARM - Cortex: Background and Summary

- ARM Product Family: ARM's three largest product families are the Cortex-A family, the Cortex-R family, and the Cortex-M family
- "Neoverse" Compute
- "Machine Learning" Al and Machine Learning
- "SecurCore" security applications
- Cortex families scalable performance across a wide variety of chips

ARM Cortex - A Series

- "A" for "Application" designed for performance-intensive applications running on a variety of systems
- The largest Cortex family; 16 chips as of the time of writing
- Smallest chip: Cortex-A5 low cost, low power applications such as mobile computing
- Largest chip: Cortex-A76 "laptop-class performance with smartphone efficiency"
- Cortex-A76E "world's first autonomous -class processor with integrated safety"
 - Used for autonomous vehicles

ARM Cortex - R Series

- "R" for "Real-time" designed for difficult real time applications and applications that are safety critical
 - Medical devices
 - Robotics
 - Avionics (fly-by-wire)
- Smallest ARM product family 5 chips
- Smallest chip: Cortex-R4 with deterministic microarchitecture and built in error handling, used for Hard Disk controllers and Automobile displays (i.e. dashboard)
- Largest chip: Cortex-R52 higher performance safety critical applications
 - Advanced Driver Assistance Systems and Medical Robotics

ARM Cortex - M Series

- "M" for "Microcontroller" Introduced by ARM to compete within the busy MCU market
- Used for traditional MCU applications
 - Household appliances
 - Displays
 - o Game consoles
- Smallest chip: Cortex-M0 low power, low cost,
 high battery life
 - Used for wearables and environmental sensors.
- Largest chip: Cortex-M35P high performance, increased security
 - Used for medical devices, industrial control, and large-scale smart lighting

ARMv8 Overview

- Current ARM instruction set architecture
 - Introduced in 2011
- Introduced 64-bit operating capabilities
- Maintains backwards compatibility with ARMv7
- Has two main execution states
 - o AArch32
 - AArch64
- Introduced hardware acceleration for cryptography
- Larger physical addresses
 - Processor can access beyond 4GB of physical memory

AArch32 vs AArch64

- 32-bit and 64-bit execution states
- AArch32 uses the traditional ARM exception handling model
- AArch64 has a simplified exception handling model
- AArch32 and AArch64 applications can run side
 by side on the same operating system
- Can change between the two states at the exception entry and exception exit points

ARMv8 Processors

- Two popular processors implement the ARMv8-A ISA
- Cortex-A53
 - Mid-range, low power processor
 - Extremely power efficient
- Cortex-A57
 - Higher end processor
 - Used for more intense processing
- These processors can be deployed independently or paired with each other for increased performance

NEON

- Expanded in ARMv8
 - Originally introduced in ARMv7
- Advanced SIMD Architecture designed for the ARM Cortex-A series
 - Single instruction stream, multiple data streams
- Primarily used for graphics, audio/video decoding, and UI processing

What is RISC?

- ARM (Advanced RISC Machine)
- Reduced Instruction Set Computer
- ARM processors are RISC
- 32-bit instruction set
- 3-data address instructions
- 16 General purpose registers
- The simplified design of RISC enables them to be more efficient at multi -core processing and easier coding for developers
- They do not have the same computing throughput as products of the x86 line, but sometimes can exceed the performance on applications that exist on both architectures

What is THUMB?

- A subset of RISC instructions
- 16-bit instruction set
- 2-data address instructions
- 8 General purpose registers
- Greater code density
- If used properly can lead to even better performance and power efficiency

What is JAZELLE?

- 8-bit instruction set
- Is an extension that allows arm processors to execute Java bytecode
- Not much information on how this is implemented in the ARM

Naming Scheme

Product Family	Feature	Example Use Cases
Cortex-A	Highest Performance Supreme performance at optimal power	Automotive Mobile Medical
Cortex-R	Real-Time Processing Reliable mission-critical performance	Automotive Industrial Cameras
Cortex-M	Lowest Power, Lower Cost Reliable mission-critical performance	Automotive Smart devices Secure embedded applications
Neoverse	Maximum Performance, Maximum Efficiency Revolutionary compute performance	Cloud Computing Edge Computing Network Infrastructure
Machine Learning	Efficiency Uplift for All Devices Project Trillium for unmatched versatility and scalability	Artificial intelligence Augmented reality Edge computing
SecurCore	Tamper Resistant Powerful solutions for security applications	Advanced payment systems SIM Smart cards

Naming Scheme (Before 2006)

- Prior to 2006, ARM had 5 different core families
 - ARM7, ARM8, ARM9, ARM10 and ARM11
- These cores had certain tags in their name which denoted certain features
 - ARMXX names tell you which family
 - ARM**9**20T
 - F'-core has a VFP (vector floating point) unit
 - ARM1136J(**F**)-S
 - o T'-core is able to use thumb encoding
 - ARM1020**T**
 - o T2'-core is able to use thumb2 encodings
 - ARM1156**T2**(F)-S
 - 'J'-core is able to use jazelle encodings
 - ARM1136**J**(F)-S

Naming Scheme (After 2006)

- After 2006, ARM started developing their cortex line
- Naming schemes now only include the letter denoting its family because VFP and Thumb are included in every model
 - Microcontroller
 - Cortex-M3
 - Real-time
 - Cortex-R4
 - Application
 - Cortex-A35

Benchmarks

ARM has increased the smartphone's CPU by 100x and GPU performance by 300x since 2009 bringing desktop-class PC performance into our hands.

ARM Cortex-A (mobile application) processor product line spans several generations and three main product tiers

Benchmarks (Cortex A)

Benchmarks (Cortex A)

flagship CPU in the Cortex-A9

Cortex-A53 delivered more performance than the

cycle.

Benchmarks (Cortex A)

Performance In formation

Relative Performance*

*Represents attainable speeds in 130, 90, 65, or 45nm processes

Performance Information

- Past 30 years significant increase in technology
 - Functionality and competition
 - Cost
- Old computers
- Early phones
 - Contact list
 - Calling
 - Calculator
 - o SMS
- Moore's Law

Performance In formation

Smartphones

- Always connected to the internet
- Cloud access
- Flash
- Apps
- Current Technology
 - Multi-core
- Power efficient processing
- Issues
 - Batteries
 - Implementation
 - Transistors

Microprocessors for Laptops

GOAL:

- "Always On, Always Connected"
- Long battery life
- Low power usage
- Lightweight

Snapdragon 850 Mobile Compute Platform

- Announced at Computex in 2018
- Partnership between Qualcomm and Samsung to integrate Snapdragon X20 and Qualcomm AI into a device
- Stays connected via WiFi or LTE for constant access
- Battery life of 25 hours of continuous usage
- Allow for Windows 10 systems

Pinebook

64-bit ARM based open source notebook

Specifications:

- 1.2 GHz QuadCore ARM Cortex A52
- 2 GB RAM
- 16 GB Flash
- Linux OS
- 2.3 lbs
- 10000 mAH battery

COST: \$99

ASUS NovaGo TP370QL 2 - in - 1

Windows 10 OS

Specifications:

- Qualcomm® Snapdragon 835 Mobile Processor
- 4GB RAM
- 256GB storage
- 3.1 lbs, 0.6 inches thin
- 22 hours of video playback
- WiFi and 1Gps LTE connection

COST: \$699

Microprocessors for smartphones and tablets

- Requirements
 - Small
 - Low Power
 - Handles hardware well
- Solution
 - System on a chip (SoC)

What is a System on a Chip?

- A single chip that integrates all the components of a computer within a single integrated circuit
- They are smaller and consume less energy than multi-chip systems
- Examples
 - Qualcomm Snapdragon
 - Samsung Exynos

Questions?

