

ML FOR HUMAN DATA ANALYTICS: A.Y. 24/25

Michele Rossi michele.rossi@unipd.it

Francesca Meneghello (labs) francesca.meneghello.1@unipd.it

Università degli Studi di Padova

ML4HDA

- A course on Applied ML for Human Sensing Systems
 - Centered around human-generated signals
- Master Degrees
 - Data science (DM)
 - ICT for Internet and Multimedia (DEI)
- Teacher
 - Prof. Michele Rossi theory & apps
 - https://www.dei.unipd.it/~rossi/

Michele Rossi

Lab. classes

- Lab classes (14 hours)
 - Will be held in presence
 - how-to:
 - install & use environments
- Lab. classes for self study
 - Preliminary material 1/2 videos
 - + supporting material
 - Advanced Phyton machine learning
 - Deep learning

Francesca Meneghello

Eleonora Cicciarella

Course material

- Course material
 - ML for HUMAN DATA ANALYTICS 2024/2025
 - Integrated Moodle platform
 - https://stem.elearning.unipd.it/
 - Slides
 - Video lessons (no videos for the labs)
 - Lab classes (14 hours)
 - preliminary material
 - videos of assignments
 - software with solutions

https://stem.elearning.unipd.it/course/view.php?id=9864

ML for HUMAN DATA ANALYTICS 2024-2025

Teaching approach

- Teaching mode
 - All the theoretical lessons will be live in the classroom
 - Recorded for online view
 - Posted later for offline view/study
- Lab activity
 - In presence, in the lab
 - Lab experiences
 - will not be recorded
 - will not be streamed
 - Project assignments, software & solutions
 - will be posted for offline use

HDA Selling Points (1/2)

Unsupervised learning techniques

- Clustering, classification
- Seldom studied in MS level courses
- Very important for applications
- Will be key to future research/developments

Neural networks

- Theoretical lessons (architectures, learning)
- Lab. activity + hands-on activity
 - Set up and use environments (mainly Phyton, TensorFlow)
 - Learn to code your neural network (CNN, RNN, etc.)
 - Case studies based on real datasets

HDA Selling Points (2/2)

Usually

- Focus of basic machine learning courses is on i.i.d. data samples
- Problems are typically: regression, classification

This course

- Is often concerned about modeling complex data sequences
- Some (spatio-temporal) correlation exists among data points

Our focus is on (temporal/spatial) pattern analysis

- For correlated data (space, time)
- Often such data is generated by sensing applications

Exams (1/2)

Project based

- Project assignment from instructors
- Design/implement a machine learning model
 - Testing it on a public dataset
 - Testing it on own-collected data from wearable sensors

Outcome

- Written project report (max. 15 pages)
- Python implementation of the processing pipeline
- Power Point presentation (small demo at exam is appreciated)

Groups

Max. 2 students per group

Guidelines about: public database, task to be performed and project report structure will be provided when we start the laboratory activity

Exams (2/2)

Exam dates for a.y. 24/25

- 28-29 January 2025
- 18-19 February 2025
- 18-19 June 2025
- 2-3 July 2025
- 18-19 Sept 2025

Enrolment on an exam

https://uniweb.unipd.it/

Exam mode

- Upload technical report in pdf (template will be provided)
- Upload your code in advance
- Present your work using slides (20 minutes)

TOPICS

ML4HDA in a nutshell

Tools

- Dimensionality reduction: PCA
- Unsupervised Clustering: K-means, SOM, GNG, DB-SCAN
- Neural networks:
 - Feed Forward (FFNN), Convolutional (CNN),
 - Recurrent Neural Networks (RNN), Autoencoders, Spiking Nets
 - Implementation tricks: batch normalization, dropout, inception layers, attention mechanism, autoencoders
- Times series analysis: RNN, RNN+attention, transformer model

Applications

- ECG signals, pulse oximeter (blood oxygenation), speech analysis
- Inertial signals (motion analysis)
 - authentication, activity recognition (heterogeneous data)
- Medical images

Human sensing

Modeling ECG signals

- Useful for many reasons
 - Efficient TX in resource limited systems
 - Automated detection of arrhythmia
 - User identification / authentication

Statistical modeling of time series

- How to reliably decode words and sentences (speech)
 - CNN, RNN, attention mechanism

Automatic speech recognition

- How to decode voice
 - Feature extraction
 - Cepstral features
- The tools
 - CNN, RNN
 - Attention mechanism

Inertial signals

- Accelerometer and Gyroscope signals
 - From Inertial Measurement Units (IMU)
 - Chest-band, wrist-band, smart watches, smart phones, etc.

Applications

- User authentication
- Activity recognition

Course structure

- 1) Tools: dimensionality reduction & clustering
 - Apps: Electrocardiography (ECG) signal
- 2) Tools: Neural networks (CNN, RNN, autoencoders, residual networks, attention mechanism/transformers)

Apps:

- ECG signal
- speech analysis
- inertial signal (motion analysis)
- medical images: lymphoma classification

Spiking Neural Networks: Motivations

Deep Learning models are getting bigger and bigger

- Long training times
- Huge requirements in terms of energy consumption
- Implementation on energyconstrained devices is infeasible
- Need for efficient DL architectures

Spiking Neural Networks: Motivations

GPT-3, contains 175 billion learnable parameters, estimated to consume roughly 190,000 kWh to train (12 Million USD\$ in energy bills)

Imagine we wanted to train the brain as an ANN:

Simon Thorpe, Embedded Systems Research Group 2021

```
8.6^{10} \cdot 7.0^3 \cdot 1.0^3 = 600 \text{ PetaFLOPS}
neurons synapses time resolution (ms)
```

- Most powerful existing supercomputer: 442 PetaFLOPS at 30MW
- Meanwhile, our brains operate within ~12-20 W of power

Can we take inspiration from the brain?

Spiking Neural Networks

- Biological neurons communicate via action potentials, or spikes
- The form of the action potential does not carry any information
- It is the number of spikes and their timing which matter
- Event-based processing

LABORATORIES

Lab. Classes

Will use several tools

- Guided coding sessions to build machine learning apps
 - Build everything from scratch (simple applications)
 - Use some popular libraries (more complex projects)

TensorFlow Dupyter

Lab 0 – preparatory material

- For self-study
 - Guided coding sessions to build machine learning apps
 - You will learn to:
 - use Jupyter notebooks and JupyterLab
 - use math and NumPy Python libraries
 - define your own functions in Python

Lab 1 – Oct. 29

- Machine learning tools for dimensionality reduction: PCA and clustering
 - The challenge:
 - ECG and PPG signals dimensionality reduction
 - You will learn to:
 - implement a dimensionality reduction algorithm based on PCA from sketch and using the implementation from Python libraries
 - implement a dimensionality reduction algorithm based on clustering
 - use Scikit-learn Python library

Lab 2 – Nov. 12

- CNN based classifier
 - The challenge:
 - hand gesture recognition
 - You will learn to:

- Label: rock Label: paper Label: scissors
- implement a CNN based classifier using TensorFlow
- train the classifier and test its performance

Lab 2a – optional for self study

- FFNN based classifier
 - Step-by-step implementation
 - The challenge:
 - classification of cat images
 - You will learn to:
 - implement a feed forward neural network classifier, defining the model, the forward and backward propagation steps and the update rule – TensorFlow is not used here!
 - train the classifier and test its performance

Lab 3 – Nov. 19

- CNN based autoencoder
 - The challenge:
 - image dimensionality reduction and denoising
 - You will learn to:
 - implement a CNN based autoencoder using TensorFlow
 - use the autoencoder to denoise noisy images

Lab 4 – Nov. 27

- Inception-V4 network for classification
 - The challenge:
 - metastatic tissue identification
 - You will learn to:
 - implement the basic building blocks of Inception-v4
 - combine them to shape the classifier

Lab 5 – Dec. 4

CNN-RNN based classifier

- The challenge:
 - abnormal heart rhythm recognition
- You will learn to:
 - use Pandas Python library to handle data structures in Python
 - use Scikit-learn and SciPy Python libraries
 - preprocess the input data & implement a caching
 - implement a CNN-RNN based classifier using TensorFlow
 - train the classifier and test its performance using different metrics

Lab 6 – Dec. 11

- Attention mechanisms & sequence-to-sequence
 - The challenge:
 - neural machine translation
 - You will learn to:
 - integrate attention mechanism into a neural network architecture
 - use attention to create complex deep learning models
 - define custom tf.keras.layer.Layers and tf.keras.Model through the sub-classing strategy.
 - implement the encoder and decoder blocks, integrating an attention mechanism in the decoder part
 - train the model through the teacher-forcing approach on an Italian-English dataset
 - assess the performance of the translator on real sentences

Lab 6a – optional for self study

Transformers

- The challenge:
 - neural machine translation

You will learn to:

- focus on the attention mechanism
- define custom tf.keras.layer.Layers and tf.keras.Model through the sub-classing strategy
- implement the encoder and decoder blocks, integrating an attention mechanism into the decoder part
- train the model through the teacher-forcing approach on an Italian-English dataset
- assess the performance of the translator on real sentences

Lab 7 – Dec. 18

- Spiking neural networks
 - The challenge:
 - classification task
 - You will learn to:
 - implement a spiking neural network in snnTorch
 - assess the performance of the classifier

ML FOR HUMAN DATA ANALYTICS: A.Y. 24/25

Michele Rossi michele.rossi@unipd.it

Francesca Meneghello (labs) francesca.meneghello.1@unipd.it

Università degli Studi di Padova