Math 116: Problem Set 4

Owen Jones

2/5/2024

- 1. $x = 2 + 7k_1 = 3 + 10k_2 \Rightarrow 7k_1 10k_2 = 1$. By inspection, $k_1 = 3 + 10t$, $k_2 = 2 + 7t$. Thus, $k_1 = 2 \pmod{70}$.
- 2. $x \equiv 1 \pmod{3}, x \equiv 2 \pmod{4}, x \equiv 3 \pmod{5}$. $x \equiv 28 \pmod{60}$ by brute force, but solvable by system of equations. Smallest group is 28. Second smallest group is 88.
- 3. $123 \equiv 23 \pmod{100}$. $\phi(100) = 100 50 20 + 10 = 40$. $23^{40} \equiv 1 \pmod{100}$. $123^{562} \equiv 23^2 \pmod{100} \Rightarrow 123^{562} \equiv 29 \pmod{100}$.
- 4. (a) $7 \equiv 3 \pmod{4}$. $\phi(4) = 2$. Thus, $7^7 \equiv 3 \pmod{4}$.
 - (b) $\phi(10) = 10(\frac{1}{2})(\frac{4}{5}) = 4$. Thus, $7^{7^7} \equiv 7^3 \pmod{10}$ by part (a). $7^3 = 343 \Rightarrow 7^{7^7} \equiv 3 \pmod{10}$.
- 5. (a) $\phi(1) = 1, \phi(2) = 1, \phi(5) = 4, \phi(10) = 4 \Rightarrow \sum_{\substack{1 \le d \le n \\ d \mid n}} \phi(d) = 10.$
 - (b) $\phi(1) = 1, \phi(2) = 1, \phi(3) = 2, \phi(4) = 2, \phi(6) = 2, \phi(12) = 4 \Rightarrow \sum_{\substack{1 \le d \le n \\ d \mid n}} \phi(d) = 12.$
 - (c) $\sum_{\substack{1 \le d \le n \\ d \mid n}} \phi(d) = n$
- 6. (a) If a and n are coprime, then $a^{\phi(n)} \equiv 1 \pmod{n}$ by Euler's Theorem. Since such an integer $\phi(n)$ exists, $k \leq \phi(n)$ because any k larger cannot be the smallest k s.t $a^k \equiv 1 \pmod{n}$.
 - (b) If t is a multiple of k, there exists some q s.t t = kq. It follows if $a^k \equiv 1 \pmod{n} \Rightarrow (a^k)^q = a^t \equiv 1^q \pmod{n} \Rightarrow a^t \equiv 1 \pmod{n}$.
 - (c) If $a^t \equiv 1 \pmod n$ then $a^{qk+r} \equiv 1 \pmod n$. Thus, $a^r \cdot a^{qk} \equiv 1 \pmod n$. However, $a^{qk} \equiv 1 \pmod n$ by part b. Thus, $a^r \equiv 1 \pmod n$. Since k is the smallest possible positive integer s.t $a^k \equiv 1 \pmod n$ and $0 \le r < k$, r must be equal to 0 because $a^0 = 1$ for all a coprime to n.

- 7. First we show $a_iy_iz_i \equiv a_i \pmod{m_i}$. Because $y_i \equiv z_i^{-1} \pmod{m_i}$ \Rightarrow there exists some k_i s.t $y_i = z_i^{-1} + m_ik_i$. Thus, $a_iy_iz_i = a_iz_i^{-1}z_i + a_iz_im_i = a_i + a_iz_im_i \Rightarrow a_iy_iz_i \equiv a_i \pmod{m_i}$. Next we show, $a_iy_iz_i \equiv 0 \pmod{m_j}$. $m_j \mid z_im_i$ because $m_j \mid M$ and $M = z_im_i$. By HW3 Q6b, $\gcd(m_i, m_j) = 1$ and $m_j \mid z_im_i \Rightarrow m_j \mid z_i$. Thus, $a_iy_iz_i \equiv 0 \pmod{m_j}$. Because $x = \sum_{i=1}^n a_iy_iz_i$ and addition is well defined in modulo arithmetic, $\sum_{i=1}^n a_iy_iz_i \equiv a_i + (n-1) \cdot 0 \pmod{m_i}$. Hence, $x \equiv a_i \pmod{m_i}$.
- 8. (a) $x^2 \equiv 3 \pmod{13}, x^2 \equiv 1 \pmod{11}$ $\Rightarrow x \equiv \pm 4 \pmod{13}, x \equiv \pm 1 \pmod{11}$ $x = \pm (4 \cdot 66 + 65) \equiv 43,100 \pmod{143}$ $x = \pm (4 \cdot 66 - 65) \equiv 87,56 \pmod{143}$ $\Rightarrow x = 43,100,87,56$ (b) $x^2 \equiv 0 \pmod{11}, x^2 \equiv 12 \pmod{13}$ $\Rightarrow x \equiv 0 \pmod{11}, x \equiv \pm 5 \pmod{13}$
 - $\Rightarrow x \equiv 0 \pmod{11}, x \equiv \pm 5 \pmod{13}$ $x = \pm 5 \cdot 66 \equiv 44, 99 \pmod{143}$ $\Rightarrow x = 44, 99$
- 9. Assume to the contrary there exists some x s.t $x^2 \equiv -1 \pmod p$. Because $p \equiv 3 \pmod 4 \Rightarrow \frac{p-1}{2} \equiv 1 \pmod 4$ i.e $\frac{p-1}{2}$ is an odd integer. $(x^2)^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{2}} \pmod p \Rightarrow x^{p-1} \equiv -1 \pmod p$. However, $x^{p-1} \equiv 1 \pmod p$ by Fermat's Little Theorem, so we obtain a contradiction. Hence, $x^2 \not\equiv -1 \pmod p$.
- 10. Assume for the sake of contradiction that m is a common multiple of a and b, but $\operatorname{lcm}(a,b) \nmid m$. Division with remainder leaves quotient q with remainder r for integers q and $\operatorname{lcm}(a,b) > r$. Because both a and b divide m and $\operatorname{lcm}(a,b)$ then a and b divide a linear combination of m and $\operatorname{lcm}(a,b)$. Thus, $a \mid r$ and $b \mid r$. However, $r < \operatorname{lcm}(a,b)$, but by the definition of least common modulo, a and b can't both divide anything less than $\operatorname{lcm}(a,b)$. Hence, we obtain a contradiction, so $\operatorname{lcm}(a,b) \mid m$.
- 11. (a) Let p be prime, and suppose for the sake of contradiction $p \mid n$ and $p \mid k$. It follows $n = pq_1$ and $k = pq_2$ for integers q_1 and q_2 . Thus, $pg \mid a$ and $pg \mid b$. However, g is the greatest common divisor of a and b, but g < pg because p > 1. Thus, we obtain a contradiction, so n and k must be coprime.
 - (b) ngk is a multiple of a because there exists an integer k s.t ak = ngk. Similarly, ngk is a multiple of b because there exists an integer n s.t an = ngk. Because ngk is a multiple of a and b, ngk is a common multiple of a and b.
 - (c) If m is a common multiple of a and b, then $a \mid m$ and $b \mid m$. Let m = gq for some integer q. We claim $n \mid q$ and $k \mid q$. Because $a \mid m$ there exists some integer q_1 s.t $q_1ng = gq$. Cancelling g on both sides, we obtain $q_1n = q$. Since q is a multiple of n, then $n \mid q$. We

- use the same approach to show $k \mid q$. Since n and k are coprime, lcm(n,k) = nk. By 10, $nk \mid q \Rightarrow gnk \mid m$.
- 12. Suppose x and x' are both valid solutions. By transitivity $x \equiv x' \pmod{n_1}$ and $x \equiv x' \pmod{n_2}$. Thus $n_1 \mid (x x')$ and $n_2 \mid (x x')$. It follows (x x') is a common multiple of n_1 and n_2 . Thus, $\operatorname{lcm}(n_1, n_2) \mid (x x')$. Hence, $x \equiv x' \pmod{l}$.
- 13. (a) Let $g = \gcd(a, b)$. Because $g \mid a$ and $g \mid b$, it follows $g \mid r$. Thus, g is a divisor of both b and r. Suppose d is some divisor of both b and r. It follows d divides a linear combination of b and r. Thus, $d \mid a$. However, $d \leq g$ because g is the $\gcd(a, b)$. Hence, because g also divides b and c, $\gcd(a, b) = \gcd(b, c)$
 - (b) The Euclidean Algorithm terminates after n steps when we obtain $r_{n-1} = q_n r_n + 0$. Inductively, we can show $gcd(a, b) = gcd(r_n, 0) = r_n$.
- 14. $x \equiv 26663845164692 \pmod{41852119381815}$
- 15. $x \equiv 7543804279237 \pmod{24547393284917}$

2/1/24, 11:08 AM Chinese Remainder

```
In [1]:
          import numpy as np
          import math as m
 In [2]:
          def Chinese_Remainder(a_1,a_2,n_1,n_2):
              y_1, y_2 = extended(n_1, n_2)[1:]
              return (a_1*y_2*n_2+a_2*y_1*n_1)%(n_1*n_2)
 In [3]:
          def extended(a, b):
              x_0, y_0, x_1, y_1 = 0, 1, 1, 0
              while a != 0:
                  q, r = b//a, b%a
                  m, n = x_0-x_1*q, y_0-y_1*q
                  b,a, x_0,y_0, x_1,y_1 = a,r, x_1,y_1, m,n
              gcd = b
              return gcd, x_0, y_0
 In [4]:
          m.gcd(5123389,8168835)
 Out[4]: 1
 In [5]:
          Chinese_Remainder(2226599,8023037,5123389,8168835)
 Out[5]: 26663845164692
 In [8]:
          5123389*8168835
 Out[8]: 41852119381815
 In [9]:
          Chinese_Remainder(155,2479,277,3463)
 Out[9]: 213722
In [10]:
          Chinese_Remainder(213722,3419,277*3463,4051)
Out[10]: 1222299496
In [11]:
          Chinese_Remainder(1222299496,5758,277*3463*4051,6317)
Out[11]: 7543804279237
In [12]:
          277*3463*4051*6317
Out[12]: 24547393284917
 In []:
```