Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

Primer Semestre 2015

Curso : Probabilidad y Estadística

Sigla : EYP1113

Profesores : Ricardo Aravena C. y Ricardo Olea O.

Pauta Examen

Problema 1

Un modelo muy usado para ajustar valores extremos, como son el mínimo o máximo, es la distribución $Sev(\mu, \sigma)$. A Usted se le pide realizar una prueba de hipótesis para ver si las temperaturas mínimas registradas entre abril y lo que va de junio de este año ajustan o no dicha distribución. Estos datos registraron una media igual a 7.4 grados con un c.o.v igual a 61.82 %.

Temperaturas Mínimas Santiago de Chile en °C (Abril a Junio 2015)

Considere un nivel de significancia del 5 %.

Nota: Si $Y \sim \text{Sev}(\mu, \sigma)$ con $\Theta_Y = \mathbb{R}$, entonces

$$F_Y(y) = \Phi\left(\frac{y-\mu}{\sigma}\right), \qquad f_Y(y) = \frac{1}{\sigma}\phi\left(\frac{y-\mu}{\sigma}\right), \qquad \mathrm{E}(Y) = \mu - \sigma\gamma, \qquad \mathrm{Var}(Y) = \frac{\sigma^2\pi^2}{6}$$

donde $\Phi(z) = 1 - \exp[-\exp(z)], \ \phi(z) = \exp[z - \exp(z)], \ \gamma \approx 0.5772, \ \pi \approx 3.1416, \ \mu \in \mathbb{R} \ \text{y} \ \sigma > 0.$

Solución

Tenemos que

[0.5 Ptos.]
$$\mu - \sigma \gamma = 7.4$$
 y $\frac{\sigma \pi}{\sqrt{6} (\mu - \sigma \gamma)} = 0.6182$ [0.5 Ptos.]

resolviendo el sistema

[0.5 Ptos.]
$$\mu = 9.458794$$
 y $\sigma = 3.566863$ [0.5 Ptos.]

Alternativa 1: (Cinco intervalos)

La probabilidad estimada para los cinco intervalos se calcula como sigue

$$p_{1} = F_{Y}(0) = 1 - \exp\left[-\exp\left(\frac{0-\mu}{\sigma}\right)\right] = 0.06809136 \quad \textbf{[0.5 Ptos.]}$$

$$p_{2} = F_{Y}(4) - F_{Y}(0) = \exp\left[-\exp\left(\frac{0-\mu}{\sigma}\right)\right] - \exp\left[-\exp\left(\frac{4-\mu}{\sigma}\right)\right] = 0.12653187 \quad \textbf{[0.5 Ptos.]}$$

$$p_{3} = F_{Y}(8) - F_{Y}(4) = \exp\left[-\exp\left(\frac{4-\mu}{\sigma}\right)\right] - \exp\left[-\exp\left(\frac{8-\mu}{\sigma}\right)\right] = 0.29075558 \quad \textbf{[0.5 Ptos.]}$$

$$p_{4} = F_{Y}(12) - F_{Y}(8) = \exp\left[-\exp\left(\frac{8-\mu}{\sigma}\right)\right] - \exp\left[-\exp\left(\frac{12-\mu}{\sigma}\right)\right] = 0.38445946 \quad \textbf{[0.5 Ptos.]}$$

$$p_{5} = 1 - p_{1} - p_{2} - p_{3} - p_{4} = 0.13016172 \quad \textbf{[0.5 Ptos.]}$$

los valores esperado para cada uno de ellos son

Intervalo	Observado Probabilidad Esperado		(O-E)^2/E	
<0	 7	0.06809136	7.898597	0.1022304818
[0-4)	23	0.12653187	14.677697	4.7187730318
[4-8)	35	0.29075558	33.727648	0.0479986111
[8-12)	36	0.38445946	44.597298	1.6573544647
>= 12	15	0.13016172	15.098760	0.0006459774
Total	116	1.00000000	116.000000	6.5270025669

siendo el estadístico de pruebas X^2 igual a 6.527 [0.5 Ptos.]. Al compara con una $\chi^2(5-1-2)$ se tiene que

$$2.5\% < \text{valor-p} < 5\%$$
 [0.5 Ptos.]

Por lo tanto, existe suficiente evidencia para rechazar que las temperaturas mínimas en los últimos 116 días se ajustan a un modelo Sev. [0.5 Ptos.]

Alternativa 2: (Siete intervalos)

La probabilidad estimada para los siete intervalos se calcula como sigue

$$p_{1} = F_{Y}(-4) = 1 - \exp\left[-\exp\left(\frac{-4 - \mu}{\sigma}\right)\right] = 0.06809136 \quad [\textbf{0.5 Ptos.}]$$

$$p_{2} = F_{Y}(0) - F_{Y}(-4) = \exp\left[-\exp\left(\frac{-4 - \mu}{\sigma}\right)\right] - \exp\left[-\exp\left(\frac{0 - \mu}{\sigma}\right)\right] = 0.045376854 \quad [\textbf{0.3 Ptos.}]$$

$$p_{3} = F_{Y}(4) - F_{Y}(0) = \exp\left[-\exp\left(\frac{0 - \mu}{\sigma}\right)\right] - \exp\left[-\exp\left(\frac{4 - \mu}{\sigma}\right)\right] = 0.126531873 \quad [\textbf{0.3 Ptos.}]$$

$$p_{4} = F_{Y}(8) - F_{Y}(4) = \exp\left[-\exp\left(\frac{4 - \mu}{\sigma}\right)\right] - \exp\left[-\exp\left(\frac{8 - \mu}{\sigma}\right)\right] = 0.290755584 \quad [\textbf{0.3 Ptos.}]$$

$$p_{5} = F_{Y}(12) - F_{Y}(8) = \exp\left[-\exp\left(\frac{8 - \mu}{\sigma}\right)\right] - \exp\left[-\exp\left(\frac{12 - \mu}{\sigma}\right)\right] = 0.38445946 \quad [\textbf{0.3 Ptos.}]$$

$$p_{6} = F_{Y}(16) - F_{Y}(12) = \exp\left[-\exp\left(\frac{12 - \mu}{\sigma}\right)\right] - \exp\left[-\exp\left(\frac{16 - \mu}{\sigma}\right)\right] = 0.128246904 \quad [\textbf{0.3 Ptos.}]$$

$$p_{7} = 1 - p_{1} - p_{2} - p_{3} - p_{4} - p_{5} - p_{6} = 0.001914816 \quad [\textbf{0.5 Ptos.}]$$

los valores esperado para cada uno de ellos son

Intervalo	Observado	${\tt Probabilidad}$	Esperado	(O-E)^2/E
< -4	0	0.022714503	2.6348824	2.63488237
[-4 - 0)	7	0.045376854	5.2637151	0.57272956
[0-4)	23	0.126531873	14.6776973	4.71877303
[4-8)	35	0.290755584	33.7276478	0.04799861
[8 - 12)	36	0.384459464	44.5972979	1.65735446
[12 - 16)	15	0.128246904	14.8766409	0.00102291
>= 16	0	0.001914816	0.2221187	0.22211870
Total	116	1.000000000	116.0000000	9.85487964

siendo el estadístico de pruebas X^2 igual a 9.855 [0.5 Ptos.]. Al compara con una $\chi^2(7-1-2)$ se tiene que

$$2.5\% < \text{valor-p} < 5\%$$
 [0.5 Ptos.]

Por lo tanto, existe suficiente evidencia para rechazar que las temperaturas mínimas en los últimos 116 días se ajustan a un modelo Sev. [0.5 Ptos.]

Problema 2

Se ha llevado a cabo un análisis de regresión múltiple que busca explicar el rendimiento de los alumnos/as durante el primer semestre (Y) en función de NEM (X_1) , PSU Lenguaje (X_2) , PSU Matemáticas (X_3) y Test de habilidades sociales (X_4) que corresponde a un puntaje en escala 0 (nada sociable) a 100 (muy sociable). Para una muestra de 34 alumnos/as, se han ajustado varios modelos

Modelo	Variables Incluidas	SCE
0	Constante	245
1	X_1	185
2	X_3	160
3	$X_1 X_3$	138
4	$X_1 X_2$	168
5	$X_1 X_4$	170
6	$X_1 X_2 X_4$	162
7	$X_1 X_2 X_3 X_4$	126

- (a) [3.0 Ptos.] ¿Es significativo el aporte conjunto de X_2 y X_4 ? Puede compararse con más de un modelo. Use $\alpha=5\,\%$
- (b) [3.0 Ptos.] Para el Modelo 3, obtenga el estadístico F y coeficiente de determinación R^2 . Interprete. Use $\alpha = 10\%$

Solución

- (a) Comparación de modelos que incluyen a X_2 y X_4 vs. los que no lo incluyen:
 - 1. $H_0 : Mod_1 \quad vs \quad H_a : Mod_6$ [0.5 Ptos.]

Test F:

$$F = \frac{(185 - 162)/2}{162/30} = 2.1296$$
 [0.5 Ptos.]

Comparando con $F_{0.95}(2, 30) = 3.316$, concluimos que no hay evidencia contra H_0 , es decir, X_2 y X_4 no aportan en presencia de X_1 . [0.5 Ptos.]

2. $H_0 : Mod_3 \quad vs \quad H_a : Mod_7$ [0.5 Ptos.]

Test F:

$$F = \frac{(138 - 126)/2}{126/29} = 1.3809$$
 [0.5 Ptos.]

Comparando con $F_{0.95}(2, 29) = 3.328$, concluimos que no hay evidencia contra H_0 , es decir, X_2 y X_4 no aportan en presencia de X_1 y X_3 . [0.5 Ptos.]

(b) Para el modelo 3, tenemos que

$$F = \frac{(245 - 138)/2}{138/31} = 12.01812$$
 [0.5 Ptos.]

Comparando con $F_{0.90}(2, 31) = 2.482$, concluimos que existe suficiente evidencia contra H_0 , es decir, X_1 y X_3 explican de manera significativa el comportamiento de Y. [1.0 Ptos.]

Por otra parte

$$R^2 = 1 - \frac{SCE}{SCT} = 1 - \frac{138}{245} = 0.4367347$$
 [0.5 Ptos.]

Es decir, el 43.7% de la variabilidad del rendimiento (o de Y) puede ser explicado por el modelo (o equivalentemente, por X_1 -nem y X_3 -PsuMat) [1.0 Ptos.]

Problema 3

Un estudio busca conocer la opinión y valoración que tienen los alumnos respecto al cambio del sistema de toma de ramos (Pucmático vs Banner). Parte de la encuesta utilizada es la que sigue:

- P₁: ¿Cuál es el grupo de prioridad académica? : _____
- P₂: ¿Está de acuerdo con el cambio propuesto?: Si _____ No ____

Si en P_2 su respuesta es Si responda:

• P₃: ¿Cuál es tu valoración del sistema anterior (Pucmático)?: ____ (nota entre 1 y 7)

Un breve resumen estadístico se presenta a continuación: Categoría

P_1 : Grupo	Número de	P_2 :	¿Acuerdo?	P_3 : Valoración	
	Encuestados	Si	No	Promedio	Desviación Estándar
1 a 5	58	22	36	4,3	1,6
6 a 10	82	21	61	4,9	1,0
Total	140	43	97	4,6	1,1

- (a) [2.0 Ptos.] ¿Existe evidencia para un nivel de significancia del 10% que permita afirmar que las proporciones de "acuerdo" con el cambio a Banner difieren según grupo? (Sea explícito, hipótesis, test y valor-p)
- (b) [1.0 Ptos.] Se puede afirmar que las varianzas de las valoraciones son iguales? Use $\alpha = 10\%$.
- (c) [3.0 Ptos.] ¿Existe evidencia que permita afirmar que los de menor prioridad académica (grupo 6 a 10) tenían una mejor valoración del sistema anterior en relación a los alumnos de mejor prioridad académica? (Sea explícito, supuestos, hipótesis, test y valor-p). Use $\alpha = 5 \%$

Solución

(a) Hipótesis:

$$H_0: p_A = p_B \text{ vs } H_a: p_A \neq p_B$$
 [0.5 Ptos.]

Los estimadores son

$$\hat{p}_A = \frac{22}{58} = 0.3793103$$
 y $\hat{p}_B = \frac{21}{82} = 0.2560976$

Bajo H₀ el estadístico de prueba sería

$$Z_0 = \frac{\hat{p}_A - \hat{p}_B}{\hat{p}(1 - \hat{p})\sqrt{\frac{1}{58} + \frac{1}{82}}} \sim \text{Normal}(0, 1)$$

donde

$$\hat{p} = \frac{22 + 21}{58 + 82} = 0.3071429$$
 [0.3 Ptos.]

reemplazando $Z_0 = 1.554$ [0.5 Ptos.], lo que implica un valor-p igual a

valor-p =
$$2 \cdot [1 - \Phi(|1.554|)] = 2 \cdot (1 - 0.94) = 0.12 > 0.10 = \alpha$$
 [0.5 Ptos.]

por tanto, NO se rechaza H₀, es decir, no se puede afirmar que difieran. [0.2 Ptos.]

(b) Hipótesis, por mayor prioridad:

$$H_0: \sigma_A^2 = \sigma_B^2$$
 vs $H_a: \sigma_A^2 \neq \sigma_B^2$ [0.2 Ptos.]

Bajo H_0 se tiene que

$$F = \frac{s_A^2}{s_D^2} = \frac{1.6^2}{1.0^2} = 2.56 \sim F(22 - 1, 21 - 1)$$
 [0.4 Ptos.]

Al comparar con $F_{1-\alpha/2}(21, 20) = 2.12$ [0.2 Ptos.], se tiene que $F > F_{1-\alpha/2}$ por lo cual se rechaza H_0 , es decir, las varianzas difieren. [0.2 Ptos.]

(c) Por (b) se realizará un test de media con con varianzas desconocidas y iguales [0.5 Ptos.]Hipótesis:

$$H_0: \mu_A = \mu_B \text{ vs } H_a: \mu_A < \mu_B$$
 [0.5 Ptos.]

Bajo H₀ se tiene que

$$T = \frac{\overline{X}_n - \overline{Y}_m}{\sqrt{\frac{s_A^2}{n} + \frac{s_B^2}{m}}} \sim t - \text{Student}(\nu)$$
 [0.3 Ptos.]

con

$$\nu = \left[\frac{\left(S_X^2 / n + S_Y^2 / m \right)^2}{\frac{\left(S_X^2 / n \right)^2}{n-1} + \frac{\left(S_Y^2 / m \right)^2}{m-1}} \right] = 35.46767$$
 [0.2 Ptos.]

reemplazando $T_0 = -1.482$ [0.5 Ptos.], lo que implica un valor-p (aproximando por una Normal, ya que $\nu > 30$) igual a

valor-p
$$\approx \Phi(-1.482) = 1 - \Phi(1.482) = 1 - 0.9306 = 0.0694$$
 [0.5 Ptos.]

Como valor-p no es menor que el nivel de significancia $\alpha = 5\%$, no se rechaza H_0 , es decir, no existe evidencia que permite afirmar que los de menor prioridad tenían una mejor valoración. [0.5 Ptos.]

Problema 4

Un grupo de investigadores tiene pensado realizar una encuesta de salud, pero tienen dudas si el tamaño muestral lo calculan a partir de un intervalo de confianza o una prueba de hipótesis. Para ambos casos, los investigadores tomaran como referencia lo reportado en la Encuesta Nacional de Salud 2009 sobre nivel de colesterol total de los chilenos mayores a 15 años, es decir un promedio de 189 mg/dL con un c.o.v igual a 22 %, además del supuesto de Normalidad.

- (a) [3.0 Ptos.] Con un nivel de confianza del 95% y un error de estimación igual a 5 mg/dL, ¿cuál debe ser el tamaño de la muestra?
- (b) [3.0 Ptos.] Para contrastar las siguientes hipótesis

$$H_0: \mu = 189 \text{ vs } H_a: \mu < 189$$

¿Cuál debería ser el tamaño de muestra, si se queré cometer una probabilidad de error tipo I igual a 10% (α) con una potencia del 80% ($1-\beta$), para detectar una diferencia de un 5% con respecto a la media de referencia (Δ)?

Solución

(a) Tenemos que $\sigma = 189 \cdot .22 = 41.58$ [0.5 Ptos.], mientras que el error de estimación está dado por:

$$EE = k_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$$
 [1.0 Ptos.]

Para un nivel de confianza del 95 % y un EE=5, se tiene que

[1.0 Ptos.]
$$n = \left(\frac{41.48 \times 1.96}{5}\right)^2 = 265.6691 \approx 266$$
 [0.5 Ptos.]

(b) Tenemos que $\alpha = 10 \%$, $\beta = 20 \%$, $\sigma = 41.58$ y $\Delta = 189 \cdot 0.05 = 9.45$ [0.5 Ptos.] La potencia para las hipótesis propuesta esta dada por

$$1 - \beta = \Phi\left(k_{\alpha} - \frac{\Delta\sqrt{n}}{\sigma}\right)$$
 [1.0 Ptos.]

despejando y reemplazado

[1.0 Ptos.]
$$n = \left[\frac{(k_{\beta} + k_{\alpha}) \cdot \sigma}{\Delta}\right]^2 = \left[\frac{-(0.84 + 1.28) \cdot 189 \cdot 0.22}{189 \cdot 0.05}\right]^2 = 87.01158 \approx 87$$
 [0.5 Ptos.]