POLITECNICO DI MILANO

Software Engineering 2 Project myTaxiService

Project Plan Document

Simone Guidi

Matteo Imberti

Contents

1	Fun	action Point Estimation	3
	1.1	Internal Logic Files	3
	1.2	External Logic Files	3
	1.3	External Inputs	3
		1.3.1 External Inquiries	4
		1.3.2 External Outputs	4
	1.4	Resuming	4
	1.5	COCOMO Estimation	4
2	Tas	k Scheduling	6
3	Res	ources Allocation	6
4	Ris	k Management	6

1 Function Point Estimation

1.1 Internal Logic Files

The system includes a number of ILFs that will be used to store the information about users, reservations and taxi requests. The system stores information about users, it saves: an username, email, password, name, surname, phone number and date of birth as a String. Taxi Drivers also have availability time and status which are also String. To manage the taxis, the system stores their position. Reservation are composed of a start position, end position and a scheduled time and a reference to a taxi. Taxi requests are composed of a start position and a reference to a taxi. The system also stores a data structure for the queue management.

ILF	Complexity	FP
User	Average	10
Reservation	Average	10
Request	Low	7
Queue management	High	15
Total:		42

1.2 External Logic Files

The system has to manage the conversion between GPS coordinate and addresses using the data obtained from external geo-map APIs.

ELF	Complexity	FP
Coordinates	Low	5
Total:		5

1.3 External Inputs

The client application allows the user to perform the following interactions with the system:

EI	Complexity	FP
Login/Logout	Low	2 x 3
Register/Edit	Average	2 x 4
Request Taxi	High	6
Reserve Taxi	High	6
Set Availability	Low	3
Accept Taxi Request	Low	3
Total:		32

1.3.1 External Inquiries

EQ	Complexity	FP
Uer Profile	Low	3
Incoming Taxi	Average	4
Reservation status	Low	3
Total:		10

1.3.2 External Outputs

EO	Complexity	FP
Notifications	Low	3
Total:		3

1.4 Resuming

Function Type	Value
Internal Logic Files	42
External Logic Files	5
External Inputs	32
External Inquiries	10
External Outputs	3
Total:	92

1.5 COCOMO Estimation

To evaluate the COCOMO II and determine the effort required to complete the software project we also use an online tool that helps us to do some calculus (http://csse.usc.edu/tools/COCOMOII.php). We add the report of that site and the choice made about the Scale Driver to obtain that result.

COCOMO II - Constructive Cost Model

Software Size Sizing Method Function Points ▼								
Unadjusted								
Function 92 Language	Java		▼					
Points								
Software Scale Drivers								
Precedentedness	Low	•	Architecture / Risk Resolution	Nominal	•	Process Maturity	High	•
Development Flexibility	Low	•	Team Cohesion	Very High	•			
Software Cost Drivers								
Product			Personnel			Platform		
Required Software Reliability	High 1	•	Analyst Capability	Nominal	•	Time Constraint	Nominal	•
Data Base Size	High 1	•	Programmer Capability	High	•	Storage Constraint	Nominal	•
Product Complexity	Nominal	•	Personnel Continuity	Low	•	Platform Volatility	Low	•
Developed for Reusability	Low	•	Application Experience	Nominal	•	Project		
Documentation Match to Lifecycle Needs	Nominal 1	•	Platform Experience	Nominal	•	Use of Software Tools	Nominal	•
			Language and Toolset Experience	Nominal	_			<u></u>
			Language and Toolset Expenence	INUITIIII	•	Multisite Development	High	•
						Required Development Schedule	Nominal	•
Maintenance Off ▼								

Software Labor Rates

Cost per Person-Month (Dollars) 2000

Results

Software Development (Elaboration and Construction)

Effort = 16.1 Person-months Schedule = 9.2 Months Cost = \$32132

Total Equivalent Size = 4876 SLOC

Acquisition Phase Distribution

Phase	Effort (Person- months)	Schedule (Months)	Average Staff	Cost (Dollars)
Inception	1.0	1.1	0.8	\$1928
Elaboration	3.9	3.4	1.1	\$7712
Construction	12.2	5.7	2.1	\$24421
Transition	1.9	1.1	1.7	\$3856

Software Effort Distribution for RUP/MBASE (Person-Months)

continue Enert Blott Button for the milbride (1 ereen mentile)							
Phase/Activity	Inception	Elaboration	Construction	Transition			
Management	0.1	0.5	1.2	0.3			
Environment/CM	0.1	0.3	0.6	0.1			
Requirements	0.4	0.7	1.0	0.1			
Design	0.2	1.4	2.0	0.1			
Implementation	0.1	0.5	4.2	0.4			
Assessment	0.1	0.4	2.9	0.5			
Deployment	0.0	0.1	0.4	0.6			

2 Task Scheduling

3 Resources Allocation

4 Risk Management

Potential Risk:

Risk	Probability	Effects	Solution
Loss of data	Low	Catastrophic	Avoided by uploading
			project data on github
			$\operatorname{platform}$
Resources illness	Moderate	Serious	Partially avoided by
			allowing working at
			$_{ m home}$