ElasticTree: Saving Energy in Data Center Networks

Brandon Heller*, Srini Seetharaman†, Priya Mahadevano, Yiannis Yiakoumis*, Puneet Sharmao, Sujata Banerjeeo, Nick McKeown*, Nsdi. Vol. 10, 2010.

[PDF] Elastictree: Saving energy in data center networks.

<u>B Heller, S Seetharaman, P Mahadevan, Y Yiakoumis</u>... - Nsdi, 2010 - usenix.org

☆ 저장 99 인용 1301회 인용 관련 학술자료 전체 29개의 버전 ≫

Networks are a shared resource connecting critical IT infrastructure, and the general practice is to always leave them on. Yet, meaningful energy savings can result from improving a network's ability to scale up and down, as traffic demands ebb and flow. We present ElasticTree, a network-wide power 1 manager, which dynamically adjusts the set of active network elements—links and switches—to satisfy changing data center traffic loads. We first compare multiple strategies for finding minimum-power network subsets across a range of ...

[PDF] usenix.org

22.12.06.
Cloud Computing
Sohee Kim

1. Introduction

- Data centers consume huge amounts of energy
- Most efforts to reduce energy consumption in Data centers is focused on servers and cooling,
 which account for about 70% of a data center's total power budget
- Networking elements are responsible for 10~20% of power usage in a data center
 - 3 billion kWh in 2006[US] by networking elements -> rising
 - This paper focus on reducing growing energy cost (network power consumption)
- Data centers are typically provisioned for peak workload
- During lower traffic, most of the network components are idle, still using power

- Traffic collected from 292 servers hosting an E-commerce application over a 5 days period
- The traffic peaks during the day and falls at night
- Even though traffic varies significantly with time, the associated switches draw a constant power

1. Introduction

Data Center Networks

✓ Typical Data Center Network (2N)

Pod 2

Pod 1

- In a typical DCN(2N tree) One failure can cut the effective bisection bandwidth in half, while two failures can disconnect servers.
- Richer, mesh-like topologies (like the fat-tree) handle failures more gracefully
 - With more components and more paths, the effect of any individual component failure becomes manageable
- This can be used in improving energy efficiency, by dynamically varying the number of active network elements
- It can be thought as a control knob to tune between <u>energy efficiency</u>, <u>performance</u> and <u>fault tolerance</u>

1. Introduction

Energy Proportionality

- Unfortunately, today's network elements are not energy proportional
 - Fixed overheads such as fans, switch chips, and transceivers waste power at low loads.
- However, maximum efficiency can be realized by a combination of improved components and improved component management.
- ⇒ Choice: To manage today's non energy-proportional network components more intelligently
- ⇒ The Strategy is simple
 - ⇒ Turn off the links and switches that we don't need to keep available only as much networking capacity as required
- ElasticTree is a network-wide energy optimizer that continuously monitors data center traffic conditions
- ✓ It can reduce the energy consumed by a data center network by up to 60% by simply turning off unneeded links and switches
- ✓ The challenge is to save energy without affecting <u>performance</u> or <u>fault</u>

 <u>tolerance</u> in a way that <u>scales to data centers</u> with a hundred thousand nodes

Make this graph look like this!

ElasticTree

- It is a network-wide power manager, which dynamically adjusts the set of active network elements-links and switches- to satisfy changing data center traffic loads
- It consists of three logical modules : Optimizer, Routing, Power Control

1. Optimizer

- To find the minimum power network subset which satisfies current traffic conditions
- Inputs : topology, traffic matrix, a power model for each switch, desired fault tolerance properties
- Outputs: a set of active components to both the power control and routing modules

2. Routing

Choosing paths for all flows then pushes routes into the network

3. Power Control

Toggles the power states of ports, line cards, and entire switches

Optimizers

- A range of methods to compute a minimum-power network subset in Elastic Tree
- Role is to find minimum-power network subset which satisfies current traffic conditions
- There are 3 different methods for computing a minimum power network subset
 - 1. Formal Model
 - 2. Greedy-Bin Packing
 - 3. Topology-aware Heuristic
- Each method achieves different tradeoffs between <u>scalability(확장성)</u> and <u>optimality(최적성)</u>
- Methods can be further improved by considering a data center's traffic history

Type	Quality	Scalability	Input	Торо
Formal	Optimal ³	Low	Traffic Matrix	Any
Greedy	Good	Medium	Traffic Matrix	Any
Topo-	OK	High	Port Counters	Fat
aware				Tree

Optimizers

1. Formal Model

- Extension of the standard multi-commodity flow (MCF) problem with additional constraints which force flows to be assigned to only active links and switches
- The constraints include <u>link capacity</u>, <u>flow conservation</u> and <u>demand satisfaction</u>
- Minimize $\sum (Link + Switch Power)$
 - The optimization goal is to minimize the total network power, while satisfying all constraints
- The model outputs a subset of the original topology, plus the routes taken by each flow to satisfy the traffic matrix.

Type	Quality	Scalability	Input	Topo
Formal	Optimal ³	Low	Traffic Matrix	Any
Greedy	Good	Medium	Traffic Matrix	Any
Topo-	OK	High	Port Counters	Fat
aware				Tree

Optimizers

2. Greedy Bin-Packing

- The greedy bin-packing heuristic improves on the formal model's scalability
- Greedy bin-packer evaluates possible paths and chooses the leftmost one with sufficient capacity.
- Repeated for all flows
- Solutions within a bound of optimal are not guaranteed, but in practice, high quality subsets result.

Type	Quality	Scalability	Input	Topo
Formal	Optimal ³	Low	Traffic Matrix	Any
Greedy	Good	Medium	Traffic Matrix	Any
Topo-	OK	High	Port Counters	Fat
aware				Tree

Optimizers

3. Topology-Aware Heuristic

- Leverages regularity of fat tree topology to quickly find network subsets
- Unlike the other methods, it does not compute the set of flow routes, and assumes perfectly divisible flows.
- Intuition: "An edge switch doesn't care which aggregation switches are active, instead, how many are active"

Type	Quality	Scalability	Input	Topo
Formal	Optimal ³	Low	Traffic Matrix	Any
Greedy	Good	Medium	Traffic Matrix	Any
Topo- aware	OK	High	Port Counters	Fat Tree

❖ 3 Optimizers

Outputs a network topology subset, used by the control software

Scalability

The topology-aware heuristic approach is not fundamentally unscalable, especially considering that the number of operations increases linearly with the number of hosts.

Power consumed by ElasticTree × 100 % of original network power = Power consumed by original fat tree

== the overall power saved by turning off switches and links

3. POWER SAVING ANALYSIS

- Small tests performed on prototypes
- Larger networks tested through simulations
- Considered power usage:
 - Number of switches powered on
 - Number of ports enabled on them
- Ignored power usage:
 - Running servers hosting ElasticTree modules
 - Cooling components:
 - additional energy for cooling servers
 - decreased energy for cooling switches

✓ Fat Tree Configuration

Vendor	Model	k	Virtual Switches	Ports	Hosts
HP	5400	6	45	270	54
Quanta	LB4G	4	20	80	16
NEC	IP8800	4	20	80	16

Traffic Patterns > Energy, performance and robustness

Uniform Demand, Varying Locality

- 28K-node, k=48 fat tree
- Near = Highly localized

- Power savings as a function of demand, with varying traffic locality
 - Near traffic is the best-case
 - Far traffic is the worst-case

Simulation on real traffic data

- E-commerce website, 292 servers
- 5-day period, k=12 fat tree

- Energy savings for production data center traces
- 70% of the traffic leaves the data center
- Energy savings ranging from 25-62%

3. POWER SAVING ANALYSIS

Robustness Analysis

- Network topology must be prepared for:
 - Traffic surges
 - Network failures
- Adding a minimum spanning tree (MST)
 to the power optimized topology
 enables one failure with no loss of
 connectivity
- Additional energy cost decreases with the size of the topology

Figure 11: Power cost of redundancy

- Each +1 increment in redundancy has an additive cost, but a multiplicative benefit;
 - MST+2, the failures would have to happen in the same pod to disconnect a host.
- > The added cost of fault tolerance is low

Figure 12: Power consumption in a robust data center network with safety margins, as well as redundancy. Note "greedy+1" means we add a MST over the solution returned by the greedy solver.

The additional power cost incurred is minimal, while improving the network's ability to absorb unexpected traffic surges.

4. Performance

✓ Dropped packets

Figure 15: <u>Drops</u> vs overload with varying safety margins

- No drops for small overloads (up to 100 Mbps), followed by a steadily increasing drop percentage as overload increases
- As expected, increasing the safety margin defers the point at which performance degrades

✓ Latency

Figure 16: <u>Latency</u> vs overload with varying safety margins

Latency shows a trend similar to drops, except when overload increases to 200 Mbps, the performance effect is more pronounced

- Safety margin: the amount of capacity reserved at every link by the optimizer
 - A higher safety margin provides
 performance insurance, by delaying
 the point at which drops start to occur,
 and average latency starts to degrade
- Traffic overload : the amount each host sends and receives beyond the original traffic matrix

⇒ Given these plots, a network operator can choose the safety margin that best balances the competing goals of performance and energy efficiency.

5. Conclusion

ElasticTree

- Introduces energy proportionality in today's non-energy proportional networks
 (which through data-center-wide traffic management and control)
- A first step toward a more efficient data center network.
- 3 Algorithms Formal model, Greedy Bin-Packing and Topology-aware Heuristic
 - ⇒ applied on E-commerce data center, and found that power consumption can be reduced
- The highly flexible system allows for balancing between <u>performance</u>, <u>robustness</u> and <u>energy</u>
- Initial results (covering analysis, simulation, and hardware prototypes) suggest very significant power benefits for networks with varying utilization
- ElasticTree's ability to respond to sudden increases in traffic is currently limited by the switch boot delay, but this limitation can be addressed, relatively simply, by adding a sleep mode to switches
- During periods of low to mid utilization, and for a variety of communication patterns (as is often observed in data centers),
 ElasticTree can maintain the robustness and performance, while lowering the energy bill

Thank You ©