

<u>Course</u> > <u>Unit 1:</u> ... > <u>2 Nulls</u>... > 6. Subs...

6. Subspaces Introduction to vector spaces and subspaces

plane through the origin, or a line

You've got the idea.

Video

Download video file

Transcripts

Download SubRip (.srt) file

Download Text (.txt) file

Subspaces are subsets of vector spaces that are by themselves vector spaces.

Example 6.1 Subspaces of \mathbb{R}^2 (it turns out that this is the complete list):

- **{0}** (the set containing only the origin),
- any line through the origin,
- the whole plane \mathbb{R}^2 .

Example 6.2 Subspaces of \mathbb{R}^3 (again, the complete list):

- **{0**},
- any line through the origin,
- any plane through the origin,
- the whole space \mathbb{R}^3 .

Example problem

1/1 point (graded)

The set of linear combinations of the vectors $\begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$ is a subspace of \mathbb{R}^3 .

0. The zero vector is obtained by taking the zero combination:

$$0egin{pmatrix}1\\3\\0\end{pmatrix}+0egin{pmatrix}1\\4\\5\end{pmatrix}=egin{pmatrix}0\\0\\0\end{pmatrix}$$

1. If a vector **v** can be written as a linear combination of the two vectors:

$$\mathbf{v}=aegin{pmatrix}1\3\0\end{pmatrix}+begin{pmatrix}1\4\5\end{pmatrix},$$

then so can **cv**:

$$c\mathbf{v} = caegin{pmatrix}1\3\0\end{pmatrix} + cbegin{pmatrix}1\4\5\end{pmatrix}.$$

2. If two vectors **v** and **w** can be written as a linear combination of the two vectors:

$$\mathbf{v}=a_1egin{pmatrix}1\3\0\end{pmatrix}+b_1egin{pmatrix}1\4\5\end{pmatrix}, \qquad \mathbf{w}=a_2egin{pmatrix}1\3\0\end{pmatrix}+b_2egin{pmatrix}1\4\5\end{pmatrix}$$

then so can $\mathbf{v} + \mathbf{w}$:

$$\mathbf{v}+\mathbf{w}=(a_1+a_2)egin{pmatrix}1\3\0\end{pmatrix}+(b_1+b_2)egin{pmatrix}1\4\5\end{pmatrix}.$$

This vector space is what kind of subspace of \mathbb{R}^3 ?

- The point $\{0\}$
- A line through the origin.
- A plane through the origin.
- $^{\circ}$ The whole space \mathbb{R}^3 .

Solution:

The linear combinations of the two vectors $\begin{pmatrix} 1\\3\\0 \end{pmatrix}$ and $\begin{pmatrix} 1\\4\\5 \end{pmatrix}$ forms a plane in \mathbb{R}^3 , because these two vectors do not lie on the same line through the origin.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Subspaces concept check

1/1 point (graded)

Is the plane below a subspace of \mathbb{R}^3 ?

