Afiinne ruum

Afiinse ruumi mõiste

Definitsioon

Afiinseks ruumiks nimetatakse paari

$$\mathbf{A} = (V; \mathbf{P}),$$

kus

- 1) V on vektorruum;
- 2) **P** on mingi hulk, mille elemente nimetatakse punktideks, ja vektorite hulk V ning punktide hulk P on seotud järgnevate tingimustega:
- a) igale kahele punktile $A, B \in \mathbf{P}$ vastab parajasti üks vektor $AB \in V$
- b) iga punkti $A \in \mathbf{P}$ ja vektori $\alpha \in V$ korral leidub parajasti üks punkt $B \in P$ nii, et $\alpha = \overrightarrow{AB}$;
- c) iga kolme punkti $A, B, C \in P$ korral kehtib võrdus $\overline{AB} + \overline{BC} = \overline{AC}$.

Afiinse ruumi dimensioon ja koordinaadid

Definitsioon

Afiinse ruumi $\mathbf{A} = (V; \mathbf{P})$ *mõõtmeks e. dimensiooniks* nimetatakse vektorruumi V mõõdet e. dimensiooni.

Definitsioon

Hulka
$$T = \{O; e_1 \dots e_n\} = \{O; B\},\$$

mis koosneb afiinse ruumi $(V; \mathbf{P})$ mingist punktist O ja vektorruumi V baasivektoritest $e_1 \dots e_n$,

nimetatakse selle afiinse ruumi reeperiks e. teljestikuks.

Punkti kohavektor afiinses ruumis

Definitsioon

Vektorit OP nimetatakse punkti P kohavektoriks vaadeldavas reeperis $T = \{O; B\}$. Punkti P koordinaatideks nimetatakse tema kohavektori $\xi = \overline{OP}$ koordinaate $x_1,...x_n$. Sel korral tähistatakse $P(x_1,...x_n)$.

Järeldus

Kui afiinses ruumis on antud punktid $A(x_1,...x_n)$ ja $B(y_1,...y_n)$

siis vektori \overline{AB} koordinaatide leidmiseks tuleb lõpp-punkti B koordinaatidest lahutada alguspunkti A koordinaadid:

$$\overrightarrow{AB} = (y_1 - x_1, y_2 - x_2, ..., y_n - x_n).$$