

## WEST Search History

[Hide Items](#) | [Restore](#) | [Clear](#) | [Cancel](#)

DATE: Wednesday, February 02, 2005

| <u>Hide?</u>                                              | <u>Set Name</u> | <u>Query</u>                                                                            | <u>Hit Count</u> |
|-----------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------|------------------|
| <i>DB=PGPB,USPT,USOC,EPAB,JPAB,DWPI; PLUR=YES; OP=ADJ</i> |                 |                                                                                         |                  |
| <input type="checkbox"/>                                  | L1              | tamura-T\$.in.                                                                          | 8783             |
| <input type="checkbox"/>                                  | L2              | oto-N\$.in. or suzuki-N\$.in. or mizuno-K\$.in. L1                                      | 12951            |
| <input type="checkbox"/>                                  | L3              | oto-N\$.in. or suzuki-N\$.in. or mizuno-K\$.in.                                         | 17323            |
| <input type="checkbox"/>                                  | L4              | yamamoto-N\$.in. or suzuki-N\$.in. or mizuno-K\$.in.                                    | 24242            |
| <input type="checkbox"/>                                  | L5              | (L1 or L4) and (biochip or array)                                                       | 682              |
| <input type="checkbox"/>                                  | L6              | (L1 or L4) and (biochip or microarray or array)                                         | 697              |
| <input type="checkbox"/>                                  | L7              | L6 and hybridiz\$                                                                       | 62               |
| <input type="checkbox"/>                                  | L8              | L7 and biopolymer                                                                       | 20               |
| <input type="checkbox"/>                                  | L9              | L8 and visual\$                                                                         | 7                |
| <input type="checkbox"/>                                  | L10             | probe similarity score                                                                  | 0                |
| <input type="checkbox"/>                                  | L11             | similarity score                                                                        | 1108             |
| <input type="checkbox"/>                                  | L12             | biochip or microarray                                                                   | 16282            |
| <input type="checkbox"/>                                  | L13             | L12 same biopolymer                                                                     | 1                |
| <input type="checkbox"/>                                  | L14             | L11 and L12                                                                             | 62               |
| <input type="checkbox"/>                                  | L15             | L14 and biopolymer                                                                      | 13               |
| <input type="checkbox"/>                                  | L16             | L15 and (imag\$ and visual\$)                                                           | 9                |
| <input type="checkbox"/>                                  | L17             | L16 and hybridiz\$                                                                      | 9                |
| <input type="checkbox"/>                                  | L18             | L12 and biopolymer                                                                      | 1568             |
| <input type="checkbox"/>                                  | L19             | L18 and hybridiz\$                                                                      | 1399             |
| <input type="checkbox"/>                                  | L20             | L19 and (similar\$ scor\$ or percent homology or percent identity or sequence identity) | 491              |
| <input type="checkbox"/>                                  | L21             | L20 and (display\$ and imag\$ and visual\$)                                             | 295              |
| <input type="checkbox"/>                                  | L22             | L21 and (different same color)                                                          | 26               |
| <input type="checkbox"/>                                  | L23             | L22 and (different same (valu\$ or depth))                                              | 20               |
| <input type="checkbox"/>                                  | L24             | L23 and spot imag\$                                                                     | 1                |
| <input type="checkbox"/>                                  | L25             | L23 and statistic\$                                                                     | 20               |
| <input type="checkbox"/>                                  | L26             | L25 and matrix                                                                          | 18               |
| <input type="checkbox"/>                                  | L27             | L26 and (hybridization level or hybridization profile)                                  | 1                |
| <input type="checkbox"/>                                  | L28             | L25 and storage unit                                                                    | 1                |
| <input type="checkbox"/>                                  | L29             | L25 and (data near storage)                                                             | 7                |

FILE 'MEDLINE, BIOTECHDS, EMBASE, BIOSIS, SCISEARCH, CANCERLIT, CAPLUS,  
BIOTECHNO' ENTERED AT 16:01:12 ON 02 FEB 2005

L1        18530 S (IDENTITY OR SIMILAR? OR HOMOLOG?) (10A) (PROBE OR OLIGOMER O  
L2        261 S L1 AND (BLAST OR SIMOTH-WATERSON OR ALGORITHM)  
L3        5 S L2 AND (VISUAL? OR GRAPH?)  
L4        104 S L2 AND (HYBRIDIZ?)  
L5        11 S L4 AND (DISPLAY OR VISUAL? OR GRAPH? OR REPRESENTATION OR CO

=> s biochip same (probe or oliomer or biopolymer or oligonucleotide)  
MISSING OPERATOR 'SAME (PROBE'  
The search profile that was entered contains terms or  
nested terms that are not separated by a logical operator.

=> s biochip (6a) (probe# or oliomer# or biopolymer# or oligonucleotide#)  
L6        426 BIOCHIP (6A) (PROBE# OR OLIMER# OR BIOPOLYMER# OR OLIGONUCLEOTI  
DE#)

=> s l6 an(Blast or Smith-Waterson or algorithm)  
<-----User Break----->

(FILE 'HOME' ENTERED AT 16:00:23 ON 02 FEB 2005)

FILE 'MEDLINE, BIOTECHDS, EMBASE, BIOSIS, SCISEARCH, CANCERLIT, CAPLUS, BIOTECHNO' ENTERED AT 16:01:12 ON 02 FEB 2005

L1        18530 S (IDENTITY OR SIMILAR? OR HOMOLOG?) (10A) (PROBE OR OLIGOMER O  
L2        261 S L1 AND (BLAST OR SIMOTH-WATERSON OR ALGORITHM)  
L3        5 S L2 AND (VISUAL? OR GRAPH?)  
L4        104 S L2 AND (HYBRIDIZ?)  
L5        11 S L4 AND (DISPLAY OR VISUAL? OR GRAPH? OR REPRESENTATION OR CO  
L6        426 S BIOCHIP (6A) (PROBE# OR OLIGOMER# OR BIOPOLYMER# OR OLIGONUCLE

FILE 'MEDLINE, BIOTECHDS, EMBASE, BIOSIS, SCISEARCH, CANCERLIT, CAPLUS, BIOTECHNO' ENTERED AT 16:27:42 ON 02 FEB 2005

L7        6955782 S (IDENTITY OR SIMILAR? OR HOMOLOG? OR SIMILARITY SCORE)  
L8        18530 S L1 (10A) (PROBE OR OLIGOMER OR OLIGONUCLEOTIDE OR BIOPOLYMER)  
L9        261 S L8 AND (BLAST OR SMITH-WATERSON OR ALGORITHM)  
L10      39 S L9 AND (BIOCHIP OR ARRAY OR CHIP OR MICROARRAY OR HYBRIDIZAT  
L11      26 DUP REM L10 (13 DUPLICATES REMOVED)

FILE 'STNGUIDE' ENTERED AT 16:40:03 ON 02 FEB 2005

FILE 'MEDLINE, BIOTECHDS, EMBASE, BIOSIS, SCISEARCH, CANCERLIT, CAPLUS, BIOTECHNO' ENTERED AT 16:45:11 ON 02 FEB 2005

L12      0 S PROBE VERSUS PROBE  
L13      2142 S PROBE (5A) COMPARISON  
L14      31 S L13 AND ALGORITHM  
L15      10 S L14 AND (IDENTITY OR SIMILAR? OR HOMOLOG? OR SIMILARITY SCOR  
L16      510538 S (BLAST OR SMITH-WATERSON OR ALGORITHM)  
L17      17831 S L16 AND (ARRAY OR MICROARRAY OR BIOCHIP OR CHIP OR HYBRIDIZA  
L18      33 S L17 AND (LEVEL (3A) HYBRIDIZ?)  
L19      3139 S L17 AND (DISPLAY? OR GRAPH? OR CLUSTER?)  
L20      3 S L18 AND (CLUSTER?)

FILE 'STNGUIDE' ENTERED AT 16:55:13 ON 02 FEB 2005

=>

123:331092

TITLE: DNA sequence recognition by hybridization to short oligomers

AUTHOR(S): Milosavljevic, Aleksandar

CORPORATE SOURCE: Center Biol. Biotechnology, Argonne National Lab., Argonne, IL, 60439-4833, USA

SOURCE: Journal of Computational Biology (1995), 2(2), 355-70

CODEN: JCOBEM; ISSN: 1066-5277

PUBLISHER: Liebert

DOCUMENT TYPE: Journal

LANGUAGE: English

AB A format 1 technol. for performing massive hybridization expts. has been developed as part of the sequencing by hybridization (SBH) project. Arrays of tens of thousands of clones are interrogated with short oligomer probes to determine sets of oligomers that are present in individual clones. SBH requires highly discriminative hybridizations with a large number of probes. One of the main uses of a reconstructed DNA sequence is in a similarity search against databases of known DNA. The authors argue that sequence reconstruction, even partial, should not be performed for this particular purpose; the authors provide and information-theoretic proof that the oligomer lists obtained from hybridization expts. should be used directly for similarity searches. The authors propose a similarity search method that takes full advantage of the subword structure of pos. identified oligomers within a clone. The method tolerates error in hybridization expts., requires fewer probes than necessary for sequencing, and is computationally efficient. To enable direct sequence recognition, the authors apply the recently developed method of sequence comparison that is based on minimal length encoding and algorithmic mutual information. The method has been tested on both real and simulated data and has led to a correct identification of clones based on hybridizations with 109 short oligomer probes. The method is applicable to hybridization data that comes from both format 1 and format 2 (sequencing chip) hybridization expts. The sequence recognition method can provide targeting information for large-scale DNA sequencing by gel-based methods or by hybridization.

**Computers & Chemistry**

Volume 23, Issues 3-4 , 15 June 1999, Pages 251-262

**This Document**

► **Abstract**

**Actions**

- [Cited By](#)
- [Save as Citation Alert](#)
- [E-mail Article](#)
- [Export Citation](#)

[Home](#) [Search](#) [Journals](#) [Books](#) [Abstract Databases](#) [My Profile](#) [Alerts](#)

 [Help](#)

[Feedback](#) | [Terms & Conditions](#) | [Privacy Policy](#)

Copyright © 2005 Elsevier B.V. All rights reserved. ScienceDirect® is a registered trademark of Elsevier B.V.

An algorithm for the assembly of robust physical maps based on a combination of multi-level hybridization data and fingerprinting data.  
AUTHOR: Sasinowska H; Sasinowski M  
CORPORATE SOURCE: Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, USA.. heather@math.clemson.edu  
SOURCE: Computers & chemistry, (1999 Jun 15) 23 (3-4) 251-62.  
Journal code: 7607706. ISSN: 0097-8485.  
PUB. COUNTRY: ENGLAND: United Kingdom  
DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)  
LANGUAGE: English  
FILE SEGMENT: Priority Journals  
ENTRY MONTH: 200001  
ENTRY DATE: Entered STN: 20000114  
Last Updated on STN: 20000114  
Entered Medline: 20000104

AB We have developed an **algorithm** which combines data obtained from restriction digestion experiments and **hybridization** experiments to construct robust physical maps of whole chromosomes. The **algorithm** has been incorporated into a program which accepts **hybridization** data consisting of an unordered **hybridization** matrix and fingerprinting data containing band coordinates for each clone. The combined data is used to produce a non-redundant, ordered matrix which can be further reduced to represent a minimum tile coverage of the chromosome. In addition, the method also takes into account multi-level **hybridization** events which allows for an improved treatment of the **hybridization** data. The program is evaluated against several other contig building programs using simulated and real data sets. Finally, it is applied to construct a physical map of the 4.1 Mb genome of Ochrobactrum anthropi based on 1387 clones and 70 probes, as well as 624 fingerprints.

| => FIL STNGUIDE                            | SINCE FILE | TOTAL   |
|--------------------------------------------|------------|---------|
| COST IN U.S. DOLLARS                       | ENTRY      | SESSION |
| FULL ESTIMATED COST                        | 99.10      | 331.93  |
| DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) | SINCE FILE | TOTAL   |
| CA SUBSCRIBER PRICE                        | ENTRY      | SESSION |
|                                            | -1.46      | -8.76   |

FILE 'STNGUIDE' ENTERED AT 16:55:13 ON 02 FEB 2005  
USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT  
COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY, JAPAN SCIENCE  
AND TECHNOLOGY CORPORATION, AND FACHINFORMATIONSZENTRUM KARLSRUHE

FILE CONTAINS CURRENT INFORMATION.  
LAST RELOADED: Jan 28, 2005 (20050128/UP).

=>

|                              |                                                                                                                                     |      |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------|
| <input type="checkbox"/> L30 | L25 and hybridization                                                                                                               | 20   |
| <input type="checkbox"/> L31 | ((biopolymer or probe) near (biochip or microarray))                                                                                | 188  |
| <input type="checkbox"/> L32 | L31 and ((display\$ or visual\$) same hybridiz\$)                                                                                   | 14   |
| <input type="checkbox"/> L33 | (display\$ or visual\$) same (percent identity or percent homology or sequence identity or sequence similarity or similarity score) | 3047 |
| <input type="checkbox"/> L34 | L33 same (hybridization)                                                                                                            | 105  |
| <input type="checkbox"/> L35 | L34 and (graphic\$)                                                                                                                 | 11   |
| <input type="checkbox"/> L36 | L33 and (different near color)                                                                                                      | 57   |
| <input type="checkbox"/> L37 | L36 and (image)                                                                                                                     | 36   |
| <input type="checkbox"/> L38 | L31 and L33                                                                                                                         | 23   |
| <input type="checkbox"/> L39 | (display\$ or visual\$)near(percent identity or percent homology or sequence identity or sequence similarity or similarity score)   | 130  |
| <input type="checkbox"/> L40 | L39 and hybridiz\$                                                                                                                  | 101  |
| <input type="checkbox"/> L41 | L40 and (biochip or microarray)                                                                                                     | 21   |
| <input type="checkbox"/> L42 | L41 and (biopolymer or probe)                                                                                                       | 21   |
| <input type="checkbox"/> L43 | L39 and (biochip or microarray)                                                                                                     | 21   |
| <input type="checkbox"/> L44 | L33 and (biochip or microarray)                                                                                                     | 467  |
| <input type="checkbox"/> L45 | L44 and hybridization                                                                                                               | 436  |
| <input type="checkbox"/> L46 | L45 and ((Imag\$ or matrix or graphic\$) same (different near color))                                                               | 1    |
| <input type="checkbox"/> L47 | L45 and ((Imag\$ or matrix or graphic\$) and (different near color))                                                                | 6    |
| <input type="checkbox"/> L48 | BLAST same (imag\$ or graphic\$ or visual\$)                                                                                        | 4304 |
| <input type="checkbox"/> L49 | L48 same (biochip or micrarray)                                                                                                     | 5    |
| <input type="checkbox"/> L50 | 6188783.pn. or 5812272.pn. or 6471916.pn. or 6284465.pn.                                                                            | 8    |
| <input type="checkbox"/> L51 | 6349144.pn. or 4852183.pn. or 6306643.pn. or 6228575.pn.                                                                            | 8    |
| <input type="checkbox"/> L52 | (identity or similarity) near score                                                                                                 | 2210 |
| <input type="checkbox"/> L53 | L52 same probe\$                                                                                                                    | 12   |
| <input type="checkbox"/> L54 | L52 and l48                                                                                                                         | 22   |
| <input type="checkbox"/> L55 | L54 and prob\$                                                                                                                      | 21   |
| <input type="checkbox"/> L56 | L52 and (BLAST or smith-waterson or algorithm)                                                                                      | 1790 |
| <input type="checkbox"/> L57 | L52 same (probe or oligonucleotide or biopolymer or oligomer)                                                                       | 18   |

END OF SEARCH HISTORY