Stærðfræðimynstur í tölvunarfræði

Vika 13

Kafli 13: Mál og vélar

Mál og mállýsingar

- Mál (language)
- Mállýsingar (grammar)
- Samhengisfrjálsar mállýsingar (context free grammars, CFG)
- Samhengisfrjáls mál (context free languages, CFL)
- Margræðar (ambiguous) mállýsingar
- Útleiðslur, vinstri útleiðslur, hægri útleiðslur
- Endanlegar stöðuvélar (finite state automaton, FSA)
- ► Brigðgengar endanlegar stöðuvélar (nondeterministic finite state automaton, NDFSA, **NFA**)
- Löggengar endanlegar stöðuvélar (deterministic finite state automaton, **DFA**)
- Reglulegar segðir (regular expression)
- Regluleg mál (regular language)

Mál (language) er mengi strengja

- ► Táknróf (alphabet, vocabulary) V er endanlegt og ekki tómt mengi staka sem við köllum þá tákn (symbols)
- Strengur (string) yfir táknróf V er endanleg runa staka úr V
- ightharpoonup Tómi strengurinn λ er strengurinn sem inniheldur ekkert tákn
- Mengi allra strengja yfir táknrófið V er táknað með V^*
- ightharpoonup Mál (language) yfir táknróf V er hlutmengi í V^*

Mállýsingar (grammar)

- Skilgreining: Samhengisfrjáls mállýsing (context free grammar) er fernd (V, T, S, P), sem inniheldur táknróf V, endanlegt undirmengi lokatákna (terminal symbols), $T \subseteq V$, byrjunartákn (starting symbol) $S \in V$ og endanlegt mengi reglna (productions) P
- Mengið N = V T er kallað mengi **millitákna** (nonterminal symbols)
- lackbox Í samhengisfrjálsri mállýsingu eru reglurnar allar á sniðinu $m o \omega$ þar sem m er eitt millitákn og ω er strengur í V^*
 - ► Til eru mállýsingar sem eru flóknari en þetta, samhengisháðar mállýsingar, en við munum ekki íhuga þær að neinu marki þar eð þær eru ekki mikið notaðar

Mállýsingar (grammar)

▶ Dæmi: Hér eru reglur fyrir mállýsingu (V, T, S, P) sem framleiðir alla spegilstrengi yfir stafina 0 og 1, þ.e. strengi sem eru eins hvort sem þeir eru lesnir áfram eða aftur á bak

1.
$$A \rightarrow 0A0$$

$$A \rightarrow 1A1$$

$$A \rightarrow 1$$

$$A \rightarrow 0$$

5.
$$A \rightarrow \lambda$$

$$V = \{A, 0, 1\}$$

 $T = \{0, 1\}$
 $S = A$
 $N = \{A\}$

- Dæmi: Mállýsing fyrir einfaldar segðir með tölum í tvíundarkerfi
 - 1. $E \rightarrow N$
 - $2. \quad E \to (E)$
 - 3. $E \rightarrow E + E$
 - 4. $E \rightarrow E E$
 - 5. $E \rightarrow E \times E$
 - 6. $E \rightarrow E \div E$
 - 7. $N \rightarrow 0 N$
 - 8. $N \rightarrow 1 N$
 - 9. $N \rightarrow 0$
 - 10. $N \rightarrow 1$

- Dæmi: Mállýsing fyrir einfaldar segðir með tölum í tvíundarkerfi
 - 1. $E \rightarrow N$
 - $2. \quad E \to (E)$
 - 3. $E \rightarrow E + E$
 - $4. \quad E \rightarrow E E$
 - 5. $E \rightarrow E \times E$
 - 6. $E \rightarrow E \div E$
 - 7. $N \rightarrow 0 N$
 - 8. $N \rightarrow 1 N$
 - $9. N \rightarrow 0$
 - 10. $N \rightarrow 1$

G = (V, T, S, P)

- Dæmi: Mállýsing fyrir einfaldar segðir með tölum í tvíundarkerfi
 - 1. $E \rightarrow N$
 - $2. \quad E \to (E)$
 - 3. $E \rightarrow E + E$
 - 4. $E \rightarrow E E$
 - 5. $E \rightarrow E \times E$
 - 6. $E \rightarrow E \div E$
 - $N \rightarrow 0 N$
 - 8. $N \rightarrow 1 N$
 - $9. N \rightarrow 0$
 - 10. $N \rightarrow 1$

$$G = (V, T, S, P)$$

 φ bar sem
 $V = \{E, N, (,), +, -, \times, \div, 0, 1\}$

Dæmi: Mállýsing fyrir einfaldar segðir með tölum í tvíundarkerfi

1.
$$E \rightarrow N$$

2.
$$E \rightarrow (E)$$

3.
$$E \rightarrow E + E$$

4.
$$E \rightarrow E - E$$

5.
$$E \rightarrow E \times E$$

6.
$$E \rightarrow E \div E$$

7.
$$N \rightarrow 0 N$$

8.
$$N \rightarrow 1 N$$

9.
$$N \rightarrow 0$$

10.
$$N \rightarrow 1$$

Byrjunartákn

$$G=(V,T,S,P)$$

$$\mathsf{bar} \ \mathsf{sem}$$
 $V=\{E,N,(,),+,-,\!\!\!\times,\!\!\div,0,1\}$
 $S=E$

Dæmi: Mállýsing fyrir einfaldar segðir með tölum í tvíundarkerfi

1.
$$E \rightarrow N$$

2.
$$E \rightarrow (E)$$

3.
$$E \rightarrow E + E$$

$$4. \quad E \rightarrow E - E$$

5.
$$E \rightarrow E \times E$$

6.
$$E \rightarrow E \div E$$

7.
$$N \rightarrow 0 N$$

8.
$$N \rightarrow 1 N$$

9.
$$N \rightarrow 0$$

10.
$$N \rightarrow 1$$

Byrjunartákn

Efst til vinstri

$$G=(V,T,S,P)$$

$$\mathsf{bar sem}$$
 $V=\{E,N,(,),+,-,\! imes,\div,0,1\}$
 $S=E$

Dæmi: Mállýsing fyrir einfaldar segðir með tölum í tvíundarkerfi

1.
$$E \rightarrow N$$

2.
$$E \rightarrow (E)$$

3.
$$E \rightarrow E + E$$

4.
$$E \rightarrow E - E$$

5.
$$E \rightarrow E \times E$$

6. $E \rightarrow E \div E$

$$N \rightarrow 0 N$$

8.
$$N \rightarrow 1 N$$

9.
$$N \rightarrow 0$$

10.
$$N \rightarrow 1$$

Byrjunartákn

$$G = (V, T, S, P)$$

par sem

 $V = \{E, N, (,), +, -, \times, \div, 0, 1\}$
 $S = E$
 $T = \{(,), +, -, \times, \div, 0, 1\}$

Millitákn

Dæmi: Mállýsing fyrir einfaldar segðir með tölum í tvíundarkerfi

1.
$$E \rightarrow N$$

2.
$$E \rightarrow (E)$$

3.
$$E \rightarrow E + E$$

4.
$$E \rightarrow E - E$$

5.
$$E \rightarrow E \times E$$

6. $E \rightarrow E \div E$

$$7. N \rightarrow 0 N$$

8.
$$N \rightarrow 1 N$$

9.
$$N \rightarrow 0$$

10.
$$N \rightarrow 1$$

Byrjunartákn

$$G = (V, T, S, P)$$

par sem

 $V = \{E, N, (,), +, -, \times, \div, 0, 1\}$
 $S = E$
 $T = \{(,), +, -, \times, \div, 0, 1\}$

Millitákn

Vinstra megin í reglu

- Dæmi: Mállýsing fyrir einfaldar segðir með tölum í tvíundarkerfi
 - 1. $E \rightarrow N$
 - $2. \quad E \to (E)$
 - 3. $E \rightarrow E + E$
 - 4. $E \rightarrow E E$
 - 5. $E \rightarrow E \times E$
 - 6. $E \rightarrow E \div E$
 - 7. $N \rightarrow 0 N$
 - 8. $N \rightarrow 1 N$
 - 9. $N \rightarrow 0$
 - 10. $N \rightarrow 1$

Útleiðslur (derivations)

- Skilgreining: Fyrir gefna samhengisfrjálsa mállýsingu (V,T,S,P) segjum við að strengur $\beta \in V^*$ sé beint útleiðanlegur frá streng $\alpha \in V^*$ ef $\alpha = lAr$ og $\beta = lwr$ þar sem $A \to w \in P$ er regla í mállýsingunni. Við skrifum þá $\alpha \Rightarrow \beta$ (sem sagt $lAr \Rightarrow lwr$)
- Skilgreining: Fyrir gefna mállýsingu er útleiðsla runa strengja með ⇒ á milli

$$\alpha_0 \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow \cdots \Rightarrow \alpha_n$$

sem byrjar á byrjunartákninu $S=\alpha_0$ og endar á streng α_n þar sem α_n inniheldur aðeins lokatákn og þar sem sérhver strengur α_i , fyrir $i=1,\dots,n$ er beint útleiðanlegur frá α_{i-1}

Útleiðslur (derivations)

- **Dæmi:** Leiðum út spegilstrenginn 0101010 $A \Rightarrow 0A0 \Rightarrow 01A10 \Rightarrow 010A010 \Rightarrow 0101010$
- Dæmi: Gerum ráð fyrir mállýsingu með reglum
 - 1. $X \rightarrow aX$
 - $2. X \rightarrow bY$
 - $3. Y \rightarrow cY$
 - 4. $Y \rightarrow \lambda$
- Hér eru tvær útleiðslur á strengjum í málinu:
 - $\triangleright X \Rightarrow aX \Rightarrow aaX \Rightarrow aabY \Rightarrow aabcY \Rightarrow aabc$
 - $\triangleright X \Rightarrow bY \Rightarrow b$

```
V = \{X, Y, a, b, c\}
T = \{a, b, c\}
S = X
N = \{X, Y\}
```

Mál mállýsingar (language of a grammar)

- Skilgreining: Fyrir gefna samhengisfrjálsa mállýsingu G = (V, T, S, P) er málið, táknað L(G), sem mállýsingin skilgreinir, mengi þeirra strengja, sem eru lokastrengir í útleiðslu samkvæmt mállýsingunni
- Dæmi: Gerum ráð fyrir mállýsingunni

$$X \rightarrow aX$$

$$X \rightarrow bY$$

$$Y \rightarrow cY$$

$$Y \rightarrow \lambda$$

Hvaða strengir eru í málinu sem þessi mállýsing skilgreinir?

Svar: Allir strengir yfir táknrófið $\{a,b,c\}$ sem byrja á núll eða fleiri a, hafa síðan eitt b og síðan núll eða fleiri c, þ.e. strengir á sniðinu $a \dots abc \dots c$ þar sem fjöldinn af a og c er núll eða fleiri, og eitt b er á milli

Mál og mállýsingar

- Dæmi: Hvaða mál er skilgreint með eftirfarandi mállýsingu?
 - 1. $S \rightarrow (S)S$
 - $S \rightarrow \lambda$
- ► Svar: Strengir yfir táknrófið {(,)} með sviga í jafnvægi
- Dæmi: Hvaða mál er skilgreint með eftirfarandi mállýsingu?
 - 1. $S \rightarrow SS$
 - $S \rightarrow (S)$
 - $S \rightarrow \lambda$
- ► Svar: Einnig strengir yfir táknrófið {(,)} með sviga í jafnvægi

Útleiðslutré (derivation tree)

Mállýsing

1.
$$S \rightarrow (S)S$$

2.
$$S \rightarrow \lambda$$

▶ Leiðum út ()()():

$$S \Rightarrow (S)S \Rightarrow ()S \Rightarrow ()(S)S \Rightarrow$$

$$()()S \Rightarrow ()()(S)S \Rightarrow$$

$$()()()S \Rightarrow ()()()$$

EĐA

$$S \Rightarrow (S)S \Rightarrow (S)(S)S \Rightarrow$$

$$(S)(S)(S)S \Rightarrow (S)(S)(S) \Rightarrow$$

$$(S)(S)() \Rightarrow (S)()() \Rightarrow$$

$$()()()$$

Samsvarandi útleiðslutré

Almennt geta verið margar mögulegar útleiðslur fyrir flestar mállýsingar Almennt er aðeins eitt tré mögulegt fyrir þessa mállýsingu

Útleiðslutré (derivation tree)

Mállýsing

1.
$$S \rightarrow SS$$

$$2. S \rightarrow (S)$$

- 3. $S \rightarrow \lambda$
- ► Leiðum út ()()():

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow (S)SS \Rightarrow$$

$$()SS \Rightarrow ()(S)S \Rightarrow ()()S \Rightarrow$$

$$()()(S) \Rightarrow ()()()$$

EĐA

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow SS(S) \Rightarrow$$

$$SS() \Rightarrow S(S)() \Rightarrow S()() \Rightarrow$$

$$(S)()() \Rightarrow ()()()$$

Almennt eru margar mögulegar útleiðslur

Fleiri en eitt tré er mögulegt <u>fyrir þessa</u> <u>mállýsingu</u>

Mállýsingin er því <u>margræð</u> (ambiguous)

Vinstri og hægri útleiðslur (left derivation, right derivation)

- Skilgreining: Útleiðsla þar sem sérhvert skref felst í að beita reglu á það millitákn sem er lengst til vinstri í strengnum er kölluð vinstri útleiðsla (left derivation)
- Sérhverri vinstri útleiðslu samsvarar eitt og aðeins eitt þáttunartré
- Skilgreining: Útleiðsla þar sem sérhvert skref felst í að beita reglu á það millitákn sem er lengst til hægri í strengnum er kölluð hægri útleiðsla (right derivation)
- Sérhverri hægri útleiðslu samsvarar eitt og aðeins eitt þáttunartré

Margræðar mállýsingar

- Skilgreining: Mállýsing er margræð þá og því aðeins að til sé fleiri en eitt þáttunartré fyrir einhvern streng í málinu sem mállýsingin skilgreinir
- Setning: Mállýsing er margræð þá og því aðeins að til sé fleiri en ein vinstri útleiðsla fyrir einnhvern streng í málinu sem mállýsingin skilgreinir
- Setning: Mállýsing er margræð þá og því aðeins að til sé fleiri en ein hægri útleiðsla fyrir einnhvern streng í málinu sem mállýsingin skilgreinir

Mállýsing

1.
$$S \rightarrow (S)S$$

$$S \rightarrow \lambda$$

$$S \Rightarrow$$

Mállýsing

1.
$$S \rightarrow (S)S$$

$$2. S \rightarrow \lambda$$

$$S \Rightarrow (S)S \Rightarrow$$

Mállýsing

1.
$$S \rightarrow (S)S$$

2.
$$S \rightarrow \lambda$$

$$S \Rightarrow (S)S \Rightarrow ()S \Rightarrow$$

Mállýsing

1.
$$S \rightarrow (S)S$$

2.
$$S \rightarrow \lambda$$

$$S \Rightarrow (S)S \Rightarrow ()S \Rightarrow ()(S)S \Rightarrow (S)S \Rightarrow (S)S$$

Mállýsing

1.
$$S \rightarrow (S)S$$

2.
$$S \rightarrow \lambda$$

$$S \Rightarrow (S)S \Rightarrow ()S \Rightarrow ()(S)S \Rightarrow ()(S)S \Rightarrow ()(S)S \Rightarrow ()(S)S \Rightarrow ()(S)S \Rightarrow (S)S \Rightarrow ($$

Mállýsing

1.
$$S \rightarrow (S)S$$

2.
$$S \rightarrow \lambda$$

$$S \Rightarrow (S)S \Rightarrow ()S \Rightarrow$$

$$()(S)S \Rightarrow ()()S \Rightarrow$$

$$()()(S)S \Rightarrow$$

Mállýsing

1.
$$S \rightarrow (S)S$$

2.
$$S \rightarrow \lambda$$

$$S \Rightarrow (S)S \Rightarrow ()S \Rightarrow$$

$$()(S)S \Rightarrow ()()S \Rightarrow$$

$$()()(S)S \Rightarrow ()()()S \Rightarrow$$

Mállýsing

1.
$$S \rightarrow (S)S$$

2.
$$S \rightarrow \lambda$$

Mállýsing

1.
$$S \rightarrow (S)S$$

2.
$$S \rightarrow \lambda$$

Aðeins ein möguleg vinstri útleiðsla fyrir ()()()

Eitt og aðeins eitt mögulegt þáttunartré

Mállýsing

1.
$$S \rightarrow (S)S$$

$$S \rightarrow \lambda$$

$$S \Rightarrow$$

Mállýsing

1.
$$S \rightarrow (S)S$$

$$2. S \rightarrow \lambda$$

$$S \Rightarrow (S)S \Rightarrow$$

Mállýsing

1.
$$S \rightarrow (S)S$$

2.
$$S \rightarrow \lambda$$

$$S \Rightarrow (S)S \Rightarrow (S)(S)S \Rightarrow$$

Mállýsing

1.
$$S \rightarrow (S)S$$

2.
$$S \rightarrow \lambda$$

$$S \Rightarrow (S)S \Rightarrow (S)(S)S \Rightarrow$$

 $(S)(S)(S)S \Rightarrow$

Mállýsing

1.
$$S \rightarrow (S)S$$

2.
$$S \rightarrow \lambda$$

$$S \Rightarrow (S)S \Rightarrow (S)(S)S \Rightarrow$$

 $(S)(S)(S)S \Rightarrow (S)(S)(S) \Rightarrow$

Mállýsing

1.
$$S \rightarrow (S)S$$

2.
$$S \rightarrow \lambda$$

$$S \Rightarrow (S)S \Rightarrow (S)(S)S \Rightarrow$$

$$(S)(S)(S)S \Rightarrow (S)(S)(S) \Rightarrow$$

$$(S)(S)(S) \Rightarrow$$

Mállýsing

1.
$$S \rightarrow (S)S$$

2.
$$S \rightarrow \lambda$$

Aðeins ein möguleg hægri útleiðsla fyrir ()()()

$$S \Rightarrow (S)S \Rightarrow (S)(S)S \Rightarrow$$

$$(S)(S)(S)S \Rightarrow (S)(S)(S) \Rightarrow$$

$$(S)(S)(S)(S) \Rightarrow (S)(S)(S) \Rightarrow$$

Mállýsing

1.
$$S \rightarrow (S)S$$

2.
$$S \rightarrow \lambda$$

Aðeins ein möguleg hægri útleiðsla fyrir ()()()

$$S \Rightarrow (S)S \Rightarrow (S)(S)S \Rightarrow$$

$$(S)(S)(S)S \Rightarrow (S)(S)(S) \Rightarrow$$

$$(S)(S)() \Rightarrow (S)()() \Rightarrow$$

$$()()()$$

Mállýsing

1.
$$S \rightarrow (S)S$$

2.
$$S \rightarrow \lambda$$

Aðeins ein möguleg hægri útleiðsla fyrir ()()()

$$S \Rightarrow (S)S \Rightarrow (S)(S)S \Rightarrow$$

$$(S)(S)(S)S \Rightarrow (S)(S)(S) \Rightarrow$$

$$(S)(S)() \Rightarrow (S)()() \Rightarrow$$

$$()()()$$

Eitt og aðeins eitt mögulegt þáttunartré

- Mállýsing
 - 1. $S \rightarrow SS$
 - $S \rightarrow (S)$
 - $S \rightarrow \lambda$
- Fleiri en ein möguleg vinstri útleiðsla fyrir ()()()

$$S \Rightarrow$$

- Mállýsing
 - 1. $S \rightarrow SS$
 - $S \rightarrow (S)$
 - $S \rightarrow \lambda$
- Fleiri en ein möguleg vinstri útleiðsla fyrir ()()()

$$S \Rightarrow SS \Rightarrow$$

- Mállýsing
 - 1. $S \rightarrow SS$
 - $2. \quad S \to (S)$
 - $S \rightarrow \lambda$
- Fleiri en ein möguleg vinstri útleiðsla fyrir ()()()

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow$$

- Mállýsing
 - 1. $S \rightarrow SS$
 - $2. S \rightarrow (S)$
 - $S \rightarrow \lambda$
- Fleiri en ein möguleg vinstri útleiðsla fyrir ()()()

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow (S)SS \Rightarrow$$

- Mállýsing
 - 1. $S \rightarrow SS$
 - $2. \quad S \to (S)$
 - $S \rightarrow \lambda$
- Fleiri en ein möguleg vinstri útleiðsla fyrir ()()()

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow (S)SS \Rightarrow$$

()SS \Rightarrow

- Mállýsing
 - 1. $S \rightarrow SS$
 - $2. S \rightarrow (S)$
 - $S \rightarrow \lambda$
- Fleiri en ein möguleg vinstri útleiðsla fyrir ()()()

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow (S)SS \Rightarrow$$

() $SS \Rightarrow$ () $(S)S \Rightarrow$

- Mállýsing
 - 1. $S \rightarrow SS$
 - $S \rightarrow (S)$
 - $S \rightarrow \lambda$
- Fleiri en ein möguleg vinstri útleiðsla fyrir ()()()

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow (S)SS \Rightarrow$$

() $SS \Rightarrow$ () $(S)S \Rightarrow$ ()() $S \Rightarrow$

- Mállýsing
 - 1. $S \rightarrow SS$
 - $S \rightarrow (S)$
 - $S \rightarrow \lambda$
- Fleiri en ein möguleg vinstri útleiðsla fyrir ()()()

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow (S)SS \Rightarrow$$

$$()SS \Rightarrow ()(S)S \Rightarrow ()()S \Rightarrow$$

$$()()(S) \Rightarrow$$

- Mállýsing
 - 1. $S \rightarrow SS$
 - $S \rightarrow (S)$
 - $S \rightarrow \lambda$
- Fleiri en ein möguleg vinstri útleiðsla fyrir ()()()

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow (S)SS \Rightarrow$$

$$()SS \Rightarrow ()(S)S \Rightarrow ()()S \Rightarrow$$

$$()()(S) \Rightarrow ()()()$$

- Mállýsing
 - 1. $S \rightarrow SS$
 - $S \rightarrow (S)$
 - 3. $S \rightarrow \lambda$

 $S \Rightarrow$

Fleiri en ein möguleg vinstri útleiðsla fyrir ()()()

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow (S)SS \Rightarrow$$

$$()SS \Rightarrow ()(S)S \Rightarrow ()()S \Rightarrow$$

$$()()(S) \Rightarrow ()()()$$
EDA

S

- Mállýsing
 - 1. $S \rightarrow SS$
 - $S \rightarrow (S)$
 - $S \rightarrow \lambda$
- Fleiri en ein möguleg vinstri útleiðsla fyrir ()()()

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow (S)SS \Rightarrow$$

$$()SS \Rightarrow ()(S)S \Rightarrow ()()S \Rightarrow$$

$$()()(S) \Rightarrow ()()()$$

$$EDA$$

$$S \Rightarrow SS \Rightarrow$$

- Samsvarar fleiri en einu þáttunartré
- Margræð mállýsing

- Mállýsing
 - 1. $S \rightarrow SS$
 - $S \rightarrow (S)$
 - $S \rightarrow \lambda$
- Fleiri en ein möguleg vinstri útleiðsla fyrir ()()()

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow (S)SS \Rightarrow$$

$$()SS \Rightarrow ()(S)S \Rightarrow ()()S \Rightarrow$$

$$()()(S) \Rightarrow ()()()$$

EDA

$$S \Rightarrow SS \Rightarrow (S)S \Rightarrow$$

- Mállýsing
 - 1. $S \rightarrow SS$
 - $S \rightarrow (S)$
 - 3. $S \rightarrow \lambda$
- Fleiri en ein möguleg vinstri útleiðsla fyrir ()()()

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow (S)SS \Rightarrow$$

$$()SS \Rightarrow ()(S)S \Rightarrow ()()S \Rightarrow$$

$$()()(S) \Rightarrow ()()()$$

EĐA

$$S \Rightarrow SS \Rightarrow (S)S \Rightarrow ()S \Rightarrow ()SS \Rightarrow$$

- Mállýsing
 - 1. $S \rightarrow SS$
 - $S \rightarrow (S)$
 - 3. $S \rightarrow \lambda$
- Fleiri en ein möguleg vinstri útleiðsla fyrir ()()()

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow (S)SS \Rightarrow$$

$$()SS \Rightarrow ()(S)S \Rightarrow ()()S \Rightarrow$$

$$()()(S) \Rightarrow ()()()$$

EDA

$$\overline{S \Rightarrow SS \Rightarrow (S)S \Rightarrow ()S \Rightarrow}$$

$$()SS \Rightarrow ()(S)S \Rightarrow$$

- Mállýsing
 - 1. $S \rightarrow SS$
 - $S \rightarrow (S)$
 - $S \rightarrow \lambda$
- Fleiri en ein möguleg vinstri útleiðsla fyrir ()()()

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow (S)SS \Rightarrow$$

$$()SS \Rightarrow ()(S)S \Rightarrow ()()S \Rightarrow$$

$$()()(S) \Rightarrow ()()()$$

EĐA

$$S \Rightarrow SS \Rightarrow (S)S \Rightarrow ()S \Rightarrow ()SS \Rightarrow ()(S)S \Rightarrow ()(S)S \Rightarrow ()SS \Rightarrow ()$$

- Mállýsing
 - 1. $S \rightarrow SS$
 - $S \rightarrow (S)$
 - $S \rightarrow \lambda$
- Fleiri en ein möguleg vinstri útleiðsla fyrir ()()()

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow (S)SS \Rightarrow$$

$$()SS \Rightarrow ()(S)S \Rightarrow ()()S \Rightarrow$$

$$()()(S) \Rightarrow ()()()$$

EDA

$$\overline{S \Rightarrow SS \Rightarrow (S)S \Rightarrow ()S \Rightarrow}$$

$$()SS \Rightarrow ()(S)S \Rightarrow ()()S \Rightarrow$$

$$()()(S) \Rightarrow$$

- Mállýsing
 - 1. $S \rightarrow SS$
 - $S \rightarrow (S)$
 - $S \rightarrow \lambda$
- Fleiri en ein möguleg vinstri útleiðsla fyrir ()()()

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow (S)SS \Rightarrow$$

$$()SS \Rightarrow ()(S)S \Rightarrow ()()S \Rightarrow$$

$$()()(S) \Rightarrow ()()()$$

EDA

$$S \Rightarrow SS \Rightarrow (S)S \Rightarrow ()S \Rightarrow$$

$$()SS \Rightarrow ()(S)S \Rightarrow ()()S \Rightarrow$$

$$()()(S) \Rightarrow ()()()$$

- Mállýsing
 - 1. $S \rightarrow SS$
 - $S \rightarrow (S)$
 - $S \rightarrow \lambda$
- Fleiri en ein möguleg vinstri útleiðsla fyrir ()()()

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow (S)SS \Rightarrow$$

$$()SS \Rightarrow ()(S)S \Rightarrow ()()S \Rightarrow$$

$$()()(S) \Rightarrow ()()()$$

EĐA

$$S \Rightarrow SS \Rightarrow (S)S \Rightarrow ()S \Rightarrow$$

$$()SS \Rightarrow ()(S)S \Rightarrow ()()S \Rightarrow$$

$$()()(S) \Rightarrow ()()()$$

- Samsvarar fleiri en einu þáttunartré
- Margræð mállýsing

Mállýsingin er því <u>margræð</u> (ambiguous)

- Mállýsing
 - 1. $S \rightarrow SS$
 - $S \rightarrow (S)$
 - $S \rightarrow \lambda$
- Fleiri en ein möguleg hægri útleiðsla fyrir ()()():

$$S \Rightarrow SS \Rightarrow SSS \Rightarrow SS(S)$$

\Rightarrow SS() \Rightarrow S(S)() \Rightarrow S()()()

EĐA

$$S \Rightarrow SS \Rightarrow S(S) \Rightarrow S() \Rightarrow$$

$$SS() \Rightarrow S(S)() \Rightarrow S()() \Rightarrow$$

$$(S)()() \Rightarrow ()()()$$

Samsvarar fleiri en einu þáttunartré

Mállýsingin er því <u>margræð</u> (ambiguous)

Páttunartré ræður merkingu (semantics)

- Dæmi: Mállýsing fyrir einfaldar segðir með tölum í tvíundarkerfi
 - 1. $E \rightarrow N$
 - $2. \quad E \to (E)$
 - $E \rightarrow E + E$
 - $4. \quad E \rightarrow E E$
 - 5. $E \rightarrow E \times E$
 - 6. $E \rightarrow E \div E$
 - 7. $N \rightarrow 0 N$
 - 8. $N \rightarrow 1 N$
 - $9. N \rightarrow 0$
 - 10. $N \rightarrow 1$

Hver er merking segðanna?

$$10 - 10 - 10$$
 $(10 - 10) - 10$
 $10 - (10 - 10)$
 $10 \div 10 \div 10$
 $10 - 10 + 10$

Skemmri ritháttur mállýsinga

Dæmi: Mállýsing fyrir einfaldar segðir með tölum í tvíundarkerfi

$$E \rightarrow N \mid (E) \mid E + E \mid E - E \mid E \times E \mid E \div E$$

 $N \rightarrow 0 \mid N \mid 1 \mid N \mid 0 \mid 1$

Backus-Naur Form (BNF)

```
< E > := < N > | (< E >) | < E > + < E > | < E > - < E > | < E > × < E > | < E > ÷ < E > < < N > := 0 < N > | 1 < N > | 0 | 1
```

- Jafngilt samhengisfrjálsum mállýsingum
- ▶ Millitákn eru auðkennd með < ··· >
- Lokatákn eru ekki auðkennd sérstaklega
- Notum ::= í stað →

Var notað af John Backus og Peter Naur í skilgreiningu á forritunarmálinu Algol

Endanlegar stöðuvélar (finite-state machine, finite-state automaton)

- Megináhersla: Endanlegar stöðuvélar sem bera kennsl á strengi í máli
- Löggengar endanlegar stöðuvélar (determininstic finitestate automaton, DFA)
- Brigðgengar endanlegar stöðuvélar (nondeterministic finite-state automaton, NFA)
- Endanlegar stöðuvélar skilgreina regluleg mál (regular language)
- Regluleg mál má einnig skilgreina með reglulegum segðum (regular expression)

Endanlegar stöðuvélar (finite-state machine)

- Skilgreining: Löggeng endanleg stöðuvél $M = (S, I, f, s_0, F)$ samanstendur af endanlegu mengi af stöðum S, endanlegu inntaksstafrófi (táknrófi) I, skiptifalli (transition function) $f: S \times I \to S$ sem tilgreinir næstu stöðu fyrir sérhvert inntak í sérhverri stöðu, byrjunarstöðu (initial state, start state) $s_0 \in S$, og hlutmengi $F \subseteq S$ af lokastöðum (final state, accepting state)
- Við teiknum oftast myndir af okkar stöðuvélum

- Skilgreining: Löggeng endanleg stöðuvél $M = (S, I, f, s_0, F)$ samanstendur af endanlegu mengi af stöðum S, endanlegu inntaksstafrófi (táknrófi) I, skiptifalli (transition function) $f: S \times I \to S$ sem tilgreinir næstu stöðu fyrir sérhvert inntak í sérhverri stöðu, byrjunarstöðu (initial state, start state) $s_0 \in S$, og hlutmengi $F \subseteq S$ af lokastöðum (final state, accepting state)
- Við teiknum oftast myndir af okkar stöðuvélum

- Skilgreining: Löggeng endanleg stöðuvél $M = (S, I, f, s_0, F)$ samanstendur af endanlegu mengi af stöðum S, endanlegu inntaksstafrófi (táknrófi) I, skiptifalli (transition function) $f: S \times I \to S$ sem tilgreinir næstu stöðu fyrir sérhvert inntak í sérhverri stöðu, byrjunarstöðu (initial state, start state) $s_0 \in S$, og hlutmengi $F \subseteq S$ af lokastöðum (final state, accepting state)
- Við teiknum oftast myndir af okkar stöðuvélum

- Skilgreining: Löggeng endanleg stöðuvél $M = (S, I, f, s_0, F)$ samanstendur af endanlegu mengi af stöðum S, endanlegu inntaksstafrófi (táknrófi) I, skiptifalli (transition function) $f: S \times I \to S$ sem tilgreinir næstu stöðu fyrir sérhvert inntak í sérhverri stöðu, byrjunarstöðu (initial state, start state) $s_0 \in S$, og hlutmengi $F \subseteq S$ af lokastöðum (final state, accepting state)
- ▶ Við teiknum oftast myndir af okkar stöðuvélum

```
S = \{s_0, s_1, s_2, s_3\}

I = \{0,1\}

F = \{s_0, s_3\}
```


- Skilgreining: Löggeng endanleg stöðuvél $M = (S, I, f, s_0, F)$ samanstendur af endanlegu mengi af stöðum S, endanlegu inntaksstafrófi (táknrófi) I, skiptifalli (transition function) $f: S \times I \to S$ sem tilgreinir næstu stöðu fyrir sérhvert inntak í sérhverri stöðu, byrjunarstöðu (initial state, start state) $s_0 \in S$, og hlutmengi $F \subseteq S$ af lokastöðum (final state, accepting state)
- Við teiknum oftast myndir af okkar stöðuvélum

TABLE 1		
	j	f
	Input	
State	0	1
s_0	s_0	s_1
<i>s</i> ₁	s_0	s_2
s_2	s_0	s_0
<i>s</i> ₃	s_2	s_1

$S = \{$	$\{s_0, s_1, s_2, s_3\}$
	[0,1]
$F = \frac{1}{2}$	$\{s_0,s_3\}$

Mál skilgreint af löggengri stöðuvél

► Skilgreining: Fyrir gefna stöðuvél $M = (S, I, f, s_0, F)$ skilgreinum við útvíkkunina af fallinu $f: S \times I \to S$ yfir í samsvarandi fall $f: S \times I^* \to S$ á endurkvæman hátt með

$$f(s,x) = \begin{cases} s & \text{ef } x = \lambda \\ f(f(s,c),w) & \text{ef } x = cw \text{ par sem c er einn stafur} \end{cases}$$

Takið eftir að ef x er eins stafs strengur þá skiptir ekki máli hvort við notum upphaflega fallið sem verkar á stafi eða nýja fallið sem verkar á strengi.

- Skilgreining: Við segjum að strengur x sé þekktur eða samþykktur (recognized, accepted) af löggengri stöðuvél $M = (S, I, f, s_0, F)$ ef strengurinn færir vélina frá byrjunarstöðunni í einhverja lokastöðu, þ.e. ef $f(s_0, x) \in F$
- Fyrir gefna stöðuvél $M=(S,I,f,s_0,F)$ táknar L(M) mál þeirra strengja sem stöðuvélin samþykkir

Mál skilgreint af löggengri stöðuvél

- ▶ Dæmi: Skilgreinum stöðuvél fyrir bitastrengi sem byrja á 00.
- **Lausn:**

Mál skilgreint af löggengri stöðuvél

- ▶ Dæmi: Skilgreinum stöðuvél fyrir bitastrengi sem innihalda 00.
- Lausn:

Brigðgengar stöðuvélar (nondeterministic finite-state automaton, NFA)

- Skilgreining: Brigðgeng endanleg stöðuvél $M = (S, I, f, s_0, F)$ samanstendur af endanlegu mengi S af stöðum, endanlegu táknrófi I, skiptifalli $f: S \times I \to \mathbb{P}(S)$, sem tilgreinir mengi af stöðum fyrir sérhverja stöðu og sérhvert inntakstákn, ásamt hlutmengi $F \subseteq S$ af lokastöðum
- ► Athugasemd: Oftast í tölvunarfræðinni er skiptifallið skilgreint sem fall

$$f: S \times I' \to \mathbb{P}(S)$$

þar sem $I' = I \cup \{\lambda\}$, til þess að leyfa tilfærslur frá einni stöðu í aðra án þess að lesa inntakstákn

$$S = \{s_0, s_1, s_2, s_3\}$$

$$S = \{s_0, s_1, s_2, s_3\}$$

 $I = \{0,1\}$

$$S = \{s_0, s_1, s_2, s_3\}$$

 $I = \{0,1\}$
 $F = \{s_0, s_3\}$

$$S = \{s_0, s_1, s_2, s_3\}$$

 $I = \{0,1\}$
 $F = \{s_0, s_3\}$

	f Input		
State	0	1	
s_0	s_0, s_1	<i>s</i> ₃	
s_1	s0	s_1, s_3	
s_2		s_0, s_2	
<i>s</i> ₃	s_0, s_1, s_2	s_1	

Skilgreining: Fyrir gefna brigðgenga stöðuvél $M = (S, I, f, s_0, F)$ er málið L(M)sem vélin skilgreinir mengi þeirra strengja þar sem <u>til er einhver leið geg</u>num vélina sem byrjar í byrjunarstöðunni og endar í einhverri lokastöðu þannig að þessi leið gegnum stöðuvélina gengur í gegnum alla stafi strengsins í röð

Jafngildar löggengar og brigðgengar vélar

- Setning: Fyrir sérhverja löggenga endanlega stöðuvél $M = (S, I, f, s_0, F)$ er til jafngild brigðgeng endanleg stöðuvél, þ.e. stöðuvél sem ber kennsl á sama mál
- > Sönnun: Brigðgenga stöðuvélin er

$$M' = (S, I, f', s_0, F)$$

þar sem

$$f'(s,c) = \{f(s,c)\}$$

Þessi brigðgenga vél ber augljóslega kennsl á sama mál

Jafngildar löggengar og brigðgengar vélar

- ▶ **Setning:** Fyrir sérhverja brigðgenga endanlega stöðuvél $M = (S, I, f, s_0, F)$ er til jafngild löggeng endanleg stöðuvél, þ.e. stöðuvél sem ber kennsl á sama mál
- > Sönnun: Löggenga stöðuvélin er

$$M' = (\mathbb{P}(S), I, f', \{s_0\}, F')$$

þar sem

$$f'(s',c) = \{f(s,c) \mid s \in s'\}$$

og

$$F' = \{ s' \in \mathbb{P}(S) \mid s' \cap F \neq \emptyset \}$$

Þessi löggenga vél ber kennsl á sama mál

Breytum brigðgengri í löggenga

Reglulegar segðir

- Skilgreining: Fyrir gefið táknróf (stafróf, endanlegt mengi) *I*, eru reglulegar segðir yfir *I* skilgreindar á endurkvæman hátt (recursively) með
 - ► Táknið Ø er regluleg segð
 - Táknið λ er regluleg segð
 - ightharpoonup Ef $x \in I$ þá er táknið x regluleg segð
 - ightharpoonup Ef A og B eru reglulegar segðir þá er (AB) regluleg segð
 - ▶ Ef A og B eru reglulegar segðir þá er $(A \cup B)$ regluleg segð
 - Ef A er regluleg segð og n er heiltala, $n \ge 0$, þá er A^n regluleg segð
 - ► Ef A er regluleg segð þá er A* regluleg segð

Reglulegar segðir og mál þeirra

- \blacktriangleright Ø er regluleg segð og $L(\emptyset) = \emptyset$
- $\triangleright \lambda$ er regluleg segð og $L(\lambda) = {\lambda}$
- For Ef $x \in I$ þá er táknið x regluleg segð og $L(x) = \{x\}$
- ► Ef A og B eru reglulegar segðir þá er (AB) regluleg segð og $L((AB)) = \{xy | x \in L(A), y \in L(B)\}$
- ► Ef A og B eru reglulegar segðir þá er $(A \cup B)$ regluleg segð og $L((A \cup B)) = L(A) \cup L(B)$
- ► Ef A er regluleg segð og n er heiltala, $n \ge 0$, þá er A^n regluleg segð og $L(A^0) = \{\lambda\}$, $L(A^{n+1}) = \{xy | x \in L(A), y \in L(A^n)\}$
- ► Ef A er regluleg segð þá er A* regluleg segð og

$$L(A^*) = \bigcup_{n=0}^{\infty} L(A^n)$$

Dæmi

PHY A	-	-	-	-
1 1		4	- 170	3
A				
A 4. 4		_		-

Expression	Strings
10*	a 1 followed by any number of 0s (including no zeros)
(10)*	any number of copies of 10 (including the null string)
$0 \cup 01$	the string 0 or the string 01
$0(0 \cup 1)^*$	any string beginning with 0
(0*1)*	any string not ending with 0

Venjur um sviga í reglulegum segðum

- ▶ Það má bæta við svigum í reglulegum segðum án þess að merkingin breytist
- ► Það má fjarlægja sviga ef það er gert í samræmi við að forgangur aðgerða sé eftirfarandi:
 - 1. Veldishafning og lokun hafa hæstan forgang og eru framkvæmdar fyrst, nema svigar ákvarði annað
 - 2. Samskeyting hefur næsthæstan forgang og er framkvæmd næst, nema svigar ákvarði annað
 - 3. Sammengi hefur lægstan forgang og er framkvæmt síðast, nema svigar ákvarði annað

Regluleg mál

- > Setning: Eftirfarandi mengi mála eru jöfn
 - 1. Mengi þeirra mála sem hægt er að bera kennsl á með löggengri endanlegri stöðuvél
 - 2. Mengi þeirra mála sem hægt er að bera kennsl á með brigðgengri endanlegri stöðuvél
 - 3. Mengi þeirra mála sem hægt er að lýsa með reglulegri segð
- Skilgreining: Mál sem hægt er að lýsa með endanlegri stöðuvél (löggengri eða brigðgengri) eða með reglulegri segð er kallað reglulegt mál

Athugið: Mengi mála er mengi af mengjum af strengjum

Öll regluleg mál eru samhengisfrjáls

- > Setning: Öll regluleg mál eru samhengisfrjáls
- Dæmi: Búum til millitákn samsvarandi sérhverri stöðu

$$ightharpoonup s_0
ightharpoonup 0 s_0 | 0 s_2 | 1 s_1 | \lambda$$

$$ightharpoonup s_1 o 0 s_3 \mid 1 s_4 \mid$$

- $\triangleright s_2 \rightarrow 1 s_4$
- $\triangleright s_3 \rightarrow 0 s_3$
- $ightharpoonup s_4
 ightharpoonup 1 s_3 \mid \lambda$

Sum samhengisfrjáls mál eru ekki regluleg

- **▶ Dæmi:** $\{0^n 1^n | n \in \mathbb{N}\}$
 - $\triangleright A \rightarrow 0A1 \mid \lambda$
- ► Annað dæmi: Málið yfir {(,)} með sviga í jafnvægi
 - $\triangleright S \rightarrow (S)S \mid \lambda$
- Almennt getur endanleg stöðuvél aðeins haft takmarkað minni um fortíðina, þ.e. um einkenni þess hluta strengs sem búið er að ganga yfir
 - Hver staða í vél getur til dæmis samsvarað tilteknum fjölda sviga sem hafa opnast en hafa ekki lokast

Sum mál eru ekki samhengisfrjáls

- ▶ Dæmi: $\{0^n 1^n 2^n \mid n \in \mathbb{N}\}$
- Reyndar er urmull af málum sem ekki eru samhengisfrjáls, en við notum samhengisfrjálsar mállýsingar vegna þess að þær eru þægilegar og nægilega öflugar til að leysa okkar vandamál

Turing vél (Turing machine)

Tape is infinite in both directions.

Only finitely many nonblank cells at any time.

- Allt sem er reiknanlegt er reiknanlegt með Turing vél (Church-Turing thesis)
- Turing vél hefur óendanlega mikið minni og forrit sem er svipað og endanleg stöðuvél
- Ekki verður spurt um Turing vélar á prófi