MATH 391 Worksheet 4 F2019

Numerical Differentiation - Higher Order Formulas

Use the difference formula $f''(x_0) \approx \frac{f(x_0 - h) - 2f(x_0) + f(x_0 + h)}{h^2}$ and the table below to approximate f''(1.3) with h = 0.1 and h = 0.01. Given that the data were generated from $f(x) = 3xe^x - \cos(x)$, find the actual error.

	x	1.20	1.29	1.30	1.31	1.40
ſ	f(x)	11.59006317	13.78176310	14.04275818	14.30741266	16.86187272

Use the method of undetermined coefficients to derive a difference formula for $f''(x_0)$ that uses the points

a.
$$x_0, x_0 + h, x_0 + 2h$$

b.
$$x_0 - 2h$$
, $x_0 - h$, x_0 , $x_0 + h$, $x_0 + 2h$

What is the order of each formula?

Use the method of undetermined coefficients to derive a difference formula for $f^{(4)}(x_0)$ that uses the points

a.
$$x_0, x_0 + h, x_0 + 2h, x_0 + 3h, x_0 + 4h$$
 b. $x_0 - 2h, x_0 - h, x_0, x_0 + h, x_0 + 2h$

b.
$$x_0 - 2h, x_0 - h, x_0, x_0 + h, x_0 + 2h$$

What is the order of each formula?

How well does $\frac{2+h}{2h^2} f(x+h) - \frac{2}{h^2} f(x) + \frac{2-h}{2h^2} f(x-h)$ approximate f'(x) + f''(x)?

Find an order two difference formula that approximates (a(x)y'(x))' without using the derivative of a(x).

Let u(x,y) be a function of two variables with as many partial derivatives as needed.

Find a second order centered difference formula $\Delta_h u(x,y)$ that approximates the Laplacian $\Delta u(x,y) = u_{xx}(x,y) + u_{yy}(x,y)$.

What is the error of approximation $E(x, y, h) = \Delta u(x, y) - \Delta_h u(x, y)$

Richardson Extrapolation

07. If f(x) is smooth at and around x_0 , then

$$f'(x_0) = \Phi_0(h) - c_0 h^2 - c_1 h^4 - c_2 h^6 - \cdots$$

where
$$\Phi_0(h) = \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$
, $c_0 = \frac{f'''(x_0)}{3!}$, $c_1 = \frac{f^{(5)}(x_0)}{5!}$, $c_2 = \frac{f^{(7)}(x_0)}{7!}$, ... **a.** Use Richardson extrapolation to find a 2^{nd} order approximation $\Phi_1(h)$ in terms of

- $\Phi_0(h)$ and $\Phi_0(h/2)$
- Use Richardson extrapolation a second time to find a 4^{th} order approximation $\Phi_2(h)$ in terms of $\Phi_0(h)$, $\Phi_0(h/2)$ and $\Phi_0(h/4)$
- Evaluate $\Phi_0(h)$, $\Phi_1(h)$ and $\Phi_2(h)$, if $f(x)=x+\mathrm{e}^x$, $x_0=0$, h=0.1, h=0.01, and h=0.001. Compare the computed values with the exact value f'(0)=2
- Let f(x) be a smooth function at and around x_0 , and define

$$\Phi_{0}(h) = \frac{f(x_{0} + h) - 2f(x_{0}) + f(x_{0} - h)}{h^{2}}$$

- Show that $\Phi_0(h)$ is an approximation of $f''(x_0)$, and find its order.
- Use Richardson's extrapolation to derive a 4^{th} order difference formula for $f''(x_0)$