Introduction to Neural Networks

Robert Stengel

Robotics and Intelligent Systems, MAE 345, Princeton University, 2015

Learning Objectives

- Natural and artificial neurons
- Natural and computational neural networks
 - Linear network
 - Perceptron
 - Sigmoid network
 - Radial basis function
- Applications of neural networks
- Supervised training
 - Left pseudoinverse
 - Steepest descent
 - Back-propagation

Copyright 2015 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html

Applications of Computational Neural Networks

- Classification of data sets
- Nonlinear function approximation
 - Efficient data storage and retrieval
 - System identification
- Nonlinear and adaptive control systems

Neurons

- Biological cells with significant electrochemical activity
- ~10-100 billion neurons in the brain
- Inputs from thousands of other neurons
- Output is scalar, but may have thousands of branches

- Afferent (sensor) neurons send signals from organs and the periphery to the central nervous system
- Efferent (motor) neurons issue commands from the CNS to effector (e.g., muscle) cells
- Interneurons send signals between neurons in the central nervous system
- Signals are ionic, i.e., chemical (neurotransmitter atoms and molecules) and electrical (charge)

3

Activation Input to Soma Causes Change in Output Potential

- Stimulus from
 - Receptors
 - Other neurons
 - Muscle cells
 - Pacemakers (c.g. cardiac sino-atrial node)
- When membrane potential of neuronal cell exceeds a threshold
 - Cell is polarized
 - Action potential pulse is transmitted from the cell
 - Activity measured by amplitude and firing frequency of pulses
 - Saltatory conduction along axon
 - Myelin Schwann cells insulate axon
 - Signal boosted at Nodes of Ranvier
- Cell depolarizes and potential returns to rest

Some Recorded Action Potential Pulse Trains

Electrochemical Signaling at Axon Hillock and Synapse

7

Synaptic Strength Can Be Increased or Decreased by Externalities

- Synapses: learning elements of the nervous system
 - Action potentials enhanced or inhibited
 - Chemicals can modify signal transfer
 - Potentiation of preand post-synaptic cells
- Adaptation/Learning (potentiation)
 - Short-term
 - Long-term

Cardiac Pacemaker and EKG Signals

9

Impulse, Pulse-Train, and Step Response of a LTI 2nd-Order Neural Model

Multipolar Neuron

11

Mathematical Model of Neuron Components

Synapse effects represented by weights (gains or multipliers)

Neuron firing frequency is modeled by linear gain or nonlinear element

The Neuron Function

- Vector input, u, to a single neuron
 - Sensory input or output from upstream neurons
 - Linear operation produces scalar, r
 - Add bias, b, for zero adjustment
- Scalar output, u, of a single neuron (or node)
 - Scalar linear or nonlinear operation, s(r)

$$r = \mathbf{w}^T \mathbf{u} + b$$

$$u = s(r)$$

13

Layout of a Neural Network

Input-Output Characteristics of a Neural Network Layer

Single layer

- Number of inputs = n
 - $dim(u) = (n \times 1)$
- Number of nodes = m
 - $\dim(r) = \dim(b) = \dim(s) = (m \times 1)$

$$r = Wu + b$$
 $u = s(r)$

$$\mathbf{W} = \begin{bmatrix} \mathbf{w}_1^T \\ \mathbf{w}_2^T \\ \\ \mathbf{w}_n^T \end{bmatrix}$$

15

Two-Layer Network

Two layers

- Number of nodes in each layer need not be the same
- Node functions may be different, e.g.,
 - Sigmoid hidden layer
 - Linear output layer

$$\mathbf{y} = \mathbf{u}_{2}$$

$$= \mathbf{s}_{2} (\mathbf{r}_{2}) = \mathbf{s}_{2} (\mathbf{W}_{2} \mathbf{u}_{1} + \mathbf{b}_{2})$$

$$= \mathbf{s}_{2} [\mathbf{W}_{2} \mathbf{s}_{1} (\mathbf{r}_{1}) + \mathbf{b}_{2}]$$

$$= \mathbf{s}_{2} [\mathbf{W}_{2} \mathbf{s}_{1} (\mathbf{W}_{1} \mathbf{u}_{0} + \mathbf{b}_{1}) + \mathbf{b}_{2}]$$

$$= \mathbf{s}_{2} [\mathbf{W}_{2} \mathbf{s}_{1} (\mathbf{W}_{1} \mathbf{x} + \mathbf{b}_{1}) + \mathbf{b}_{2}]$$

16

Is a Neural Network Serial or Parallel?

3rd-degree power series 4 coefficients Express as a neural network?

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

$$= a_0' + a_1' r + a_2' r^2 + a_3' r^3$$

$$= a_0' + a_1' (c_1 x + b_1) + a_2' (c_1 x + b_2)^2 + a_3' (c_1 x + b_3)^3$$

$$= w_0 + w_1 s_1(u) + w_2 s_2(u) + w_3 s_3(u)$$

17

Is a Neural Network Serial or Parallel?

Power series is serial, but it can be expressed as a parallel neural network (with dissimilar nodes)

18

Linear Neural Network

- · Outputs provide linear scaling of inputs
- Equivalent to matrix transformation of a vector, y = Wx + b
- Therefore, linear network is easy to train (left pseudoinverse)
- MATLAB symbology

Idealizations of Nonlinear Neuron Input-Output Characteristic

Step function ("Perceptron")

Logistic sigmoid function

Sigmoid with two inputs, one output

Perceptron Neural Network

Each node is a step function

Weighted sum of features is fed to each node Each node produces a linear classification of the input space

Perceptron Neural Network

Weights adjust slopes
Biases adjust zero crossing points

Single-Layer, Single-Node Perceptron Discriminants

$$u = s(\mathbf{w}^T \mathbf{x} + b) = \begin{cases} 1, & (\mathbf{w}^T \mathbf{x} + b) > 0 \\ 0, & (\mathbf{w}^T \mathbf{x} + b) \le 0 \end{cases}$$

Two inputs, single step function Discriminant

$$w_1 x_1 + w_2 x_2 + b = 0$$
or $x_2 = \frac{-1}{w_2} (w_1 x_1 + b)$

$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

23

Three inputs, single step function Discriminant

$$w_1 x_1 + w_2 x_2 + w_3 x_3 + b = 0$$

$$or \quad x_3 = \frac{-1}{w_3} (w_1 x_1 + w_2 x_2 + b)$$

Single-Layer, Multi-Node Perceptron Discriminants

Multi-Layer Perceptrons Can Classify With Boundaries or Clusters

Classification capability of multi-layer perceptrons
Classifications of classifications
Open or closed regions

STRUCTURE	TYPES OF DECISION REGIONS	PROBLEM	CLASSES WITH MESHED REGIONS	MOST GENERAL REGION SHAPES
SINGLE LAYER	HALF PLANE BOUNDED BY HYPERPLANE	A B A	B	
TWO LAYER	CONVEX OPEN OR CLOSED REGIONS	A B	8	
THREE LAYER	ARBITRARY (Complexity Limited By Number of Nodes)	(B)	B	

Sigmoid Activation Functions

Alternative sigmoid functions

Logistic function: 0 to 1

■ Hyperbolic tangent: -1 to 1

Augmented ratio of squares: 0 to 1

Smooth nonlinear functions

$$u = s(r) = \frac{1}{1 + e^{-r}}$$

$$u = s(r) = \tanh r = \frac{1 - e^{-2r}}{1 + e^{-2r}}$$

$$u = s(r) = \frac{r^2}{1 + r^2}$$

27

Sigmoid Neural Network

Where...

R = # Inputs S = # Neurons

Single Sigmoid Layer is Sufficient ...

- Sigmoid network with single hidden layer can approximate any continuous function
- Additional sigmoid layers not needed to characterize simple functions
- Typical sigmoid network contains
 - Single sigmoid hidden layer (nonlinear fit)
 - Single linear output layer (scaling)

29

Typical Sigmoid Neural Network Output

Classification is not limited to linear discriminants

Sigmoid network can approximate a continuous nonlinear function to arbitrary accuracy with a single hidden layer

Thresholded Neural Network Output

Threshold gives "yes/no" output

31

Training Error and Cost for a Single Linear Neuron

- Training error: difference between network output and target output
- Quadratic error cost

$$\varepsilon = \hat{y} - y_T$$

$$J = \frac{1}{2}\varepsilon^2 = \frac{1}{2}(\hat{y} - y_T)^2 = \frac{1}{2}(\hat{y}^2 - 2\hat{y}y_T + y_T^2)$$

Linear Neuron Gradient

$$\hat{y} = r = \mathbf{w}^T \mathbf{x} + b$$

$$\frac{d\hat{y}}{dr} = 1$$

$$\varepsilon = \hat{y} - y_T$$

$$J = \frac{1}{2}\varepsilon^2 = \frac{1}{2}(\hat{y} - y_T)^2 = \frac{1}{2}(\hat{y}^2 - 2\hat{y}y_T + y_T^2)$$

- Training (control) parameter, p
 - Input weights, \mathbf{w} ($n \times 1$)
 - Bias, **b** (1 x 1)

$$\mathbf{p} = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \\ \dots \\ p_{n+1} \end{bmatrix}$$

Optimality condition

$$\frac{\partial J}{\partial \mathbf{p}} = \mathbf{0}$$

Gradient

$$\frac{\partial J}{\partial \mathbf{p}} = (\hat{y} - y_T) \frac{\partial y}{\partial \mathbf{p}} = (\hat{y} - y_T) \frac{\partial y}{\partial r} \frac{\partial r}{\partial \mathbf{p}}$$
where
$$\frac{\partial r}{\partial \mathbf{p}} = \begin{bmatrix} \frac{\partial r}{\partial p_1} & \frac{\partial r}{\partial p_2} & \dots & \frac{\partial r}{\partial p_{n+1}} \end{bmatrix} = \frac{\partial (\mathbf{w}^T \mathbf{x} + b)}{\partial \mathbf{p}} = \begin{bmatrix} \mathbf{x}^T & 1 \end{bmatrix}$$

33

Steepest-Descent Learning for a Single Linear Neuron

Gradient

$$\frac{\partial J}{\partial \mathbf{p}} = (\hat{y} - y_T) \begin{bmatrix} \mathbf{x}^T & 1 \end{bmatrix} = \begin{bmatrix} (\mathbf{w}^T \mathbf{x} + b) - y_T \end{bmatrix} \begin{bmatrix} \mathbf{x}^T & 1 \end{bmatrix}$$

Steepest-descent algorithm

$$\eta$$
 = learning rate
 k = iteration index(epoch)

$$\mathbf{p}_{k+1} = \mathbf{p}_k - \eta \left(\frac{\partial J}{\partial \mathbf{p}} \right)_k^T = \mathbf{p}_k - \eta \left(\hat{\mathbf{y}}_k - \mathbf{y}_{T_k} \right) \begin{bmatrix} \mathbf{x}_k \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}_{k+1} = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}_{k} - \eta \left[\left(\mathbf{w}_{k}^{T} \mathbf{x}_{k} + b_{k} \right) - y_{T_{k}} \right] \begin{bmatrix} \mathbf{x}_{k} \\ 1 \end{bmatrix}$$

Backpropagation for a Single Linear Neuron

- Training set (n members)
 - Target outputs, $y_T (1 \times n)$
 - Feature set, X (m x n)

- Initialize w and b
 - Random set
 - Prior training result
- Estimate w and b recursively
 - Off line (random or repetitive sequence)
 - On line (measured training features and target)
- ... until ∂J/∂p ~ 0

$$\begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}_{k+1} = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}_{k} - \eta \left[\left(\mathbf{w}_{k}^{T} \mathbf{x}_{k} + b_{k} \right) - y_{T_{k}} \right] \begin{bmatrix} \mathbf{x}_{k} \\ 1 \end{bmatrix}$$

35

Firing 0.8 Rate 0.6 0.4 0.2 Activation Signal

Neuron output is discontinuous

$$y = s(r) = \begin{cases} 1, & r > 0 \\ 0, & r \le 0 \end{cases}$$

- Binary target output
 - $y_T = 0$ or 1, for classification

$$(\hat{y}_k - y_{T_k}) = \begin{cases} 1, & y_k = 1, & y_{T_k} = 0 \\ 0, & y_k = y_{T_k} \\ -1, & y_k = 0, & y_{T_k} = 1 \end{cases}$$

Steepest-Descent Algorithm for a Single-Step Perceptron

Training Variables for a **Single Sigmoid Neuron**

Input-output characteristic and 1st derivative

$$y = s(r) = \frac{1}{1 + e^{-r}}$$

Training error and quadratic error cost

 $\varepsilon = \hat{y} - y_T$

$$\frac{dy}{dr} = \frac{ds(r)}{dr} = \frac{e^{-r}}{\left(1 + e^{-r}\right)^{2}} = e^{-r}s^{2}(r)$$

$$= \left[\left(1 + e^{-r}\right) - 1 \right]s^{2}(r) = \left[\frac{1}{s(r)} - 1 \right]s^{2}(r)$$

$$= \left[\frac{1 - s(r)}{s(r)} \right]s^{2}(r) = \left[1 - s(r) \right]s(r) = \left(1 - y\right)y$$

$$\varepsilon = y - y_{T}$$

$$J = \frac{1}{2}\varepsilon^{2} = \frac{1}{2}(\hat{y} - y_{T})^{2} = \frac{1}{2}(\hat{y}^{2} - 2\hat{y}y_{T} + y_{T}^{2})$$

$$\text{Control parameter}$$

$$p = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix} = \begin{bmatrix} p_{1} \\ p_{2} \\ \dots \\ p_{n+1} \end{bmatrix}$$

$$\mathbf{p} = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \\ \dots \\ p_{n+1} \end{bmatrix}$$

37

Training a Single **Sigmoid Neuron**

$$\frac{\partial J}{\partial \mathbf{p}} = (\hat{\mathbf{y}} - \mathbf{y}_T) \frac{\partial \mathbf{y}}{\partial \mathbf{p}} = (\hat{\mathbf{y}} - \mathbf{y}_T) \frac{\partial \hat{\mathbf{y}}}{\partial r} \frac{\partial r}{\partial \mathbf{p}}$$
where
$$r = \mathbf{w}^T \mathbf{x} + b$$

$$\frac{d\hat{\mathbf{y}}}{dr} = (1 - \hat{\mathbf{y}}) \hat{\mathbf{y}}$$

$$\frac{\partial r}{\partial \mathbf{p}} = \begin{bmatrix} \mathbf{x}^T & 1 \end{bmatrix}$$

$$\mathbf{p}_{k+1} = \mathbf{p}_k - \eta \left(\frac{\partial J}{\partial \mathbf{p}}\right)_k^T$$
or

$$\begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}_{k+1} = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}_{k} - \eta (\hat{y}_{k} - y_{T}) (1 - \hat{y}) \hat{y}_{k} \begin{bmatrix} \mathbf{x}_{k} \\ 1 \end{bmatrix}$$

$$\frac{\partial J}{\partial \mathbf{p}} = (\hat{y} - y_T)(1 - \hat{y})\hat{y} \begin{bmatrix} \mathbf{x}^T & 1 \end{bmatrix}$$

See Supplemental Material for training multiple sigmoids

MATLAB Network Training Algorithms

```
Backpropagation training functions that use Jacobian derivatives
   These algorithms can be faster but require more memory than gradient
   backpropation. They are also not supported on GPU hardware.

    Levenberg-Marquardt backpropagation.
    Bayesian Regulation backpropagation.

   trainbr
Backpropagation training functions that use gradient derivatives
   These algorithms may not be as fast as Jacobian backpropagation.
   They are supported on GPU hardware with the Parallel Computing Toolbox.
  trainbfg - BFGS quasi-Newton backpropagation. - Conjugate gradient backpropagation with Powell-Beale restarts. - Conjugate gradient backpropagation with Fletcher-Reeves updates. traincep - Conjugate gradient backpropagation with Polak-Ribiere updates.
  traingd — Conjugate gradient backpropagation with Polak-Ribiere updat traingda — Gradient descent backpropagation.

traingdm — Gradient descent with adaptive lr backpropagation.

traingdm — Gradient descent with momentum.

Gradient descent with momentum.

Gradient descent with momentum & adaptive lr backpropagation.

Trainoss traincp — RPROP backpropagation.

Scaled conjugate gradient backpropagation.
Supervised weight/bias training functions

    Batch training with weight & bias learning rules.
    Cyclical order weight/bias training.

   trainb
   trainc

    Random order weight/bias training.
    Sequential order weight/bias training.

   trains
Unsupervised weight/bias training functions

    Unsupervised batch training with weight & bias learning rules.
    Unsupervised random order weight/bias training.

   trainru
```

39

Radial Basis Function

Unimodal, axially symmetric function, e.g., exponential

$$s(r) = e^{-|ar|^n}, \quad r = \sqrt{\left(\mathbf{x} - \mathbf{x}_{center}\right)^T \left(\mathbf{x} - \mathbf{x}_{center}\right)}$$
$$s(r) = e^{-|ar|}$$
$$s(r) = e^{-|ar|^2}$$

Mimics stimulus field of a neuron receptor

Radial Basis Function Network

Array of RBFs typically centered on a fixed grid

http://en.wikipedia.org/wiki/Radial_basis_function_network

41

Sigmoid vs. Radial Basis Function Node

Sigmoid function

Radial basis functions

- Considerations for selecting the basis function
 - Prior knowledge of surface to be approximated
 - Global vs. compact support
 - Number of neurons required
 - Training and untraining issues

42

Next Time: Neural Networks

43

Supplementary Material

Impulse, Pulse-Train, and Step Response of a LTI 2nd-Order Neural Model

45

Microarray Training Set

Microarray Training Data

- First row: Target classification
- 2nd-5th rows: Up-regulated genes
- 6th-10th rows: Down-regulated genes

```
Lab Analysis of Tissue Samples
  11111111111111000000000000000000...
          00000000];
Normalized Data: Up-Regulated in Tumor
  U22055 =
             [138 68
                         93
                              62
                                   30
                                         81
                                             121
                                                        82
                                                             24
                                                                        -48
                                                                             38
                                                                                  75
              82
                   118
                         55
                             103
                                   102
                                        87
                                              62
                                                   69
                                                        14
                                                             101
                                                                   25
                                                                        47
                                                                             48
                                                                                        ...
              59
                    62
                        116
                              54
                                   96
                                         90
                                             130
                                                   70
                                                        75
                                                             74
                                                                   35
                                                                       149
                                                                             97
                                                                                  21
              14
                   -51
                         -3
                              -81
                                   57
                                         -4
                                              16
                                                        -73
                                                              -4
                                                                        -28
                                                                             -9
                                                                                  -13
              25
                    25
                         19
                              -21
                                    3
                                         19
                                             34];
Normalized Data: Up-Regulated in Normal
  M96839 =
              [3
                   -23
                         3
                              12
                                         n
                                                             32
                                                                        -13
                                                                             -16
                    24
                         18
                              19
                                        -13
                                             -20
                                                        -22
                                                              6
                                                                   -5
                                                                        -12
                                                                             9
                                                                                  28
                                                                                        ...
              20
                    -9
                         30
                              -15
                                   18
                                         1
                                              -16
                                                   12
                                                         -9
                                                              3
                                                                   -35
                                                                        23
                                                                             3
                                                                                   5
                                                                                        ...
                              19
              33
                    29
                         47
                                        34
                                                        49
                                                             20
                                                                   10
                                                                        36
                                                                             70
                                                                                  50
                                   32
                                              20
              15
                    45
                         56
                              41
                                   31
                                        40];
```


Neural Network Classification Example

- ~7000 genes expressed in 62 microarray samples
 - Tumor = 1
 - Normal = 0
- 8 genes in strong feature set
 - 4 with Mean Tumor/Normal > 20:1
 - 4 with Mean Normal/Tumor > 20:1
 - and minimum variance within upregulated set

Dukes Stages: A -> B -> C -> D

Neural Network Training Results: Tumor/Normal Classification, 8 Genes, 4 Nodes

- Training begins with a random set of weights
- Adjustable parameters
 - Learning rate
 - Target error
 - Maximum # of epochs
- Non-unique sets of trained weights

Binary network output (0,1) after rounding

Zero classification errors

Class	ifica	tion	=									
Colu	ımns	s 1 t	hrou	igh 1	13							
1	1	1	1	1	1	1	1	1	1	1	1	1
Colu	ımns	s 14	thro	ugh	26							
1	1	1	1	1	1	1	1	1	1	1	1	1
Colu	ımns	s 27	thro	ugh	39							
1	1	1	1	1	1	1	1	1	1	1	1	1
Colu	ımns	s 40	thro	ugh	52							
1	0	0	0	0	0	0	0	0	0	0	0	0
Colu	ımns	s 53	thro	ugh	62							
0	0	0	0	Ō	0	0	0	0	0	4	19	

Neural Network Training Results: Tumor Stage/Normal Classification 8 Genes, 16 Nodes

- 0 = Normal
- 1 = Adenoma
- 2 = A Tumor
- 3 = B Tumor
- 4 = C Tumor
- 5 = D Tumor

Target =

One classification error

Classification = Columns 1 through 13 2 1 3 3 3 3 3 3 3 3 Columns 14 through 26 3 3 3 3 3 3 Columns 27 through 39 4 4 4 5 5 5 Columns 40 through 52 0 0 0 0 0 0 0 0 0 0 0 Columns 53 through 60 50

0 0 0 0 0 0

Ranking by EWS *t* Values (Top and Bottom 12)

24 transcripts selected from 12 highest and lowest t values for EWS vs. remainder

Sort by EWS t Value	EWS	BL	NB	RMS
Image ID Transcript Description	t Value	t Value	t Value	t Value
770394 Fc fragment of IgG, receptor, transporter, alpha	12.04	-6.67	-6.17	-4.79
1435862 antigen identified by monoclonal antibodies 12E7, F21 and O13	9.09	-6.75	-5.01	-4.03
377461 caveolin 1, caveolae protein, 22kD	8.82	-5.97	-4.91	-4.78
814260 follicular lymphoma variant translocation 1	8.17	-4.31	-4.70	-5.48
491565 Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain	7.60	-5.82	-2.62	-3.68
841641 cyclin D1 (PRAD1: parathyroid adenomatosis 1)	6.84	-9.93	0.56	-4.30
1471841 ATPase, Na+/K+ transporting, alpha 1 polypeptide	6.65	-3.56	-2.72	-4.69
866702 protein tyrosine phosphatase, non-receptor type 13	6.54	-4.99	-4.07	-4.84
713922 glutathione S-transferase M1	6.17	-5.61	-5.16	-1.97
308497 KIAA0467 protein	5.99	-6.69	-6.63	-1.11
770868 NGFI-A binding protein 2 (ERG1 binding protein 2)	5.93	-6.74	-3.88	-1.21
345232 lymphotoxin alpha (TNF superfamily, member 1)	5.61	-8.05	-2.49	-1.19
786084 chromobox homolog 1 (Drosophila HP1 beta)	-5.04	-1.05	9.65	-0.62
796258 sarcoglycan, alpha (50kD dystrophin-associated glycoprotein)	-5.04	-3.31	-3.86	6.83
431397	-5.04	2.64	2.19	0.64
825411 N-acetylglucosamine receptor 1 (thyroid)	-5.06	-1.45	5.79	0.76
859359 quinone oxidoreductase homolog	-5.23	-7.27	0.78	5.40
75254 cysteine and glycine-rich protein 2 (LIM domain only, smooth muscle)	-5.30	-4.11	2.20	3.68
448386	-5.38	-0.42	3.76	0.14
68950 cyclin E1	-5.80	0.03	-1.58	5.10
774502 protein tyrosine phosphatase, non-receptor type 12	-5.80	-5.56	3.76	3.66
842820 inducible poly(A)-binding protein	-6.14	0.60	0.66	3.80
214572 ESTs	-6.39	-0.08	-0.22	4.56
295985 ESTs	-9.26	-0.13	3.24	2.95

Repeated for BL vs. remainder, NB vs. remainder, and RMS vs. remainder

51

MATLAB Program for Neural Network Analysis with Leave-One-Out Validation Initialization(1)

MATLAB Program for Neural Network Analysis with Leave-One-Out Validation - Initialization(2)

```
% Validation Sample and Leave-One-Out Training Set

MisClass = 0;
iSamLog = [];
iRepLog = [];
ErrorLog = [];
OutputLog = [];
SizeTarget = size(Target);
SizeTD = size(TrainingData);

% Preprocessing of Training Data
[TrainingData,minp,maxp,tn,mint,maxt] = premnmx(TrainingData,Target);
```

premnmx has been replaced by mapminmax in MATLAB

53

MATLAB Program for Neural Network Analysis with Leave-One-Out Validation - Initialization(3)

MATLAB Program for Neural Network Analysis with Leave-One-Out Validation -Training(1)

```
for i = 1:Repeats
                       minmax(ReducedData);
            Neurons =
                       [12,4];
           Nodes =
                       {'logsig', 'purelin'};
            Beta
                       0.5;
            Epochs =
                       200;
           Trainer =
                       'trainbr';
                       newff(Range, Neurons, Nodes, Trainer);
           Net.trainParam.show
                                       100;
            Net.trainParam.lr
           Net.trainParam.epochs =
                                      Epochs;
           Net.trainParam.goal
                                   = 0.001;
            [Net, TrainingRecord]
                                    = train(Net,ReducedData,ReducedTarget);
           NetOutput
                           sim(Net, ReducedData);
            Rounded
                           round(NetOutput);
            Error
                           ReducedTarget - Rounded:ar
```

newff has been replaced by netfit

55

MATLAB Program for Neural Network Analysis with Leave-One-Out Validation -Training(2)

```
Validation with Single Sample
    NovelOutput
                         sim(Net, ValidSample);
    LengthNO
                         length(NovelOutput):
    NovelRounded = round(NovelOutput);
                   = max(NovelRounded,zeros(LengthNO,1));
= min(NovelRounded,ones(LengthNO,1));
    NovelRounded
    NovelRounded
If no actual output is greater than 0.5, choose the largest
for k = 1:SizeNO(2)
    if (isequal(NovelRounded,zeros(LengthNO,1)))
                             = max(NovelOutput);
        NovelRounded(j,1)
    end
    AbsDiff
                         abs(NovelOutput - NovelRounded);-
```

MATLAB Program for Neural Network Analysis with Leave-One-Out Validation -Training(3)

```
If two rounded outputs are "1", choose the one whose actual output is
જ
        closest to "1"
            for j = 1:(LengthNO - 1)
                if NovelRounded(j) == 1
                    for k = (j + 1):LengthNO
                        if NovelRounded(k) == 1
                             if (AbsDiff(j) < AbsDiff(k))</pre>
                                 NovelRounded(k) = 0;
                                 NovelRounded(j) = 0;
                             end
                        end
                    end
                end
            end
            NovelError
                                 Target(:,iSam) - NovelRounded;
```

57

MATLAB Program for Neural Network Analysis with Leave-One-Out Validation - Training(4)

```
if (~isequal(NovelError,zeros(LengthNO,1)))
             MisClass = MisClass + 1;
iSamLog = [iSamLog iSam];
                         = [iRepLog i];
= [ErrorLog NovelError];
             iRepLog
             ErrorLog
             OutputLog = [OutputLog NovelOutput];
        end
    end
end
MisClass
iSamLog
iRepLog
ErrorLog
OutputLog
Trials
             = iSam * Repeats
```


Two parameter vectors for 2-layer network

$$\mathbf{p}_{1,2} = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}_{1,2} = \begin{bmatrix} p_1 \\ p_2 \\ \dots \\ p_{n+1} \end{bmatrix}_{1,2}$$

$$= \begin{bmatrix} \mathbf{y} - \mathbf{u}_2 \\ = \mathbf{s}_2(\mathbf{r}_2) = \mathbf{s}_2(\mathbf{W}_2\mathbf{u}_1 + \mathbf{b}_2) \\ = \mathbf{s}_2[\mathbf{W}_2\mathbf{s}_1(\mathbf{r}_1) + \mathbf{b}_2] \\ = \mathbf{s}_2[\mathbf{W}_2\mathbf{s}_1(\mathbf{W}_1\mathbf{u}_0 + \mathbf{b}_1) + \mathbf{b}_2] \\ = \mathbf{s}_2[\mathbf{W}_2\mathbf{s}_1(\mathbf{W}_1\mathbf{v}_1 + \mathbf{b}_2) + \mathbf{b}_2]$$

Training a **Sigmoid Network**

Output vector

$$\hat{\mathbf{y}} = \mathbf{u}_{2}$$

$$= \mathbf{s}_{2} (\mathbf{r}_{2}) = \mathbf{s}_{2} (\mathbf{W}_{2} \mathbf{u}_{1} + \mathbf{b}_{2})$$

$$= \mathbf{s}_{2} [\mathbf{W}_{2} \mathbf{s}_{1} (\mathbf{r}_{1}) + \mathbf{b}_{2}]$$

$$= \mathbf{s}_{2} [\mathbf{W}_{2} \mathbf{s}_{1} (\mathbf{W}_{1} \mathbf{u}_{0} + \mathbf{b}_{1}) + \mathbf{b}_{2}]$$

$$= \mathbf{s}_{2} [\mathbf{W}_{2} \mathbf{s}_{1} (\mathbf{W}_{1} \mathbf{x} + \mathbf{b}_{1}) + \mathbf{b}_{2}]$$

59

Training a **Sigmoid Network**

$$\mathbf{p}_{1,2k} = \mathbf{p}_{1,2k} - \eta \left(\frac{\partial J}{\partial \mathbf{p}_{1,2}} \right)_{k}^{T}$$

where

$$\frac{\partial J}{\partial \mathbf{p}_{1,2}} = (\hat{\mathbf{y}} - \mathbf{y}_T) \frac{\partial \mathbf{y}}{\partial \mathbf{p}_{1,2}} = (\hat{\mathbf{y}} - \mathbf{y}_T) \frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{r}_{1,2}} \frac{\partial \mathbf{r}_{1,2}}{\partial \mathbf{p}_{1,2}}$$
where
$$\mathbf{r}_{1,2} = \mathbf{W}_{1,2} \mathbf{u}_{0,1} + \mathbf{b}_{1,2}$$

$$\frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{r}_2} = \mathbf{I}; \quad \frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{r}_1} = \begin{bmatrix} (1 - \hat{\mathbf{y}}_1) \hat{\mathbf{y}}_1 & 0 & \dots & 0 \\ 0 & (1 - \hat{\mathbf{y}}_2) \hat{\mathbf{y}}_2 & \dots & 0 \\ \dots & \dots & \dots & 0 \\ 0 & 0 & \dots & (1 - \hat{\mathbf{y}}_n) \hat{\mathbf{y}}_n \end{bmatrix}$$

$$\frac{\partial \mathbf{r}_1}{\partial \mathbf{p}_1} = \begin{bmatrix} \mathbf{x}^T & 1 \end{bmatrix}; \quad \frac{\partial \mathbf{r}_2}{\partial \mathbf{p}_2} = \begin{bmatrix} \mathbf{u}_1^T & 1 \end{bmatrix}$$

60

Algebraic Training of a Neural Network

Ferrari, S. and Stengel, R., Smooth Function Approximation Using Neural Networks (pdf), *IEEE Trans. Neural Networks*, Vol. 16, No. 1, Jan 2005, pp. 24-38 (with S. Ferrari).

61

Algebraic Training for Exact Fit to a Smooth Function

- Smooth functions define equilibrium control settings at many operating points
- Neural network required to fit the functions

Ferrari and Stengel

Results for Network Training

- 45-node example
- Algorithm is considerably faster than search methods

Algorithm:	Time (Scaled):	Flops:	Lines of code (MATLAB [®]):	Epochs:	Final error:
Algebraic	1	2 × 10 ⁵	8	1	0
Levenberg- Marquardt	50	5 × 10 ⁷	150	6	10-26
Resilient Backprop.	150	1 × 10 ⁷	100	150	0.006