# HW2 RE6091020 汪玄同

# 1. Histogram equalization

(1)下圖為三張測試用原始圖片



下圖為測試圖片經過調亮之後的結果以及他們的 histogram





下圖為經過 histogram equalization 轉換後的結果圖片以及他們的 histogram



下圖為測試圖片經過調暗之後的結果以及他們的 histogram



下圖為經過 histogram equalization 轉換後的結果圖片以及他們的 histogram



(2)使用 local histogram 將整體很暗的圖片中有亮度的地方抓出來 底下為原圖



下圖為經過 local histogram 轉換後的圖片,參數設定為 kernel 大小為  $51\times51$ , $k_0=1.2$ ,  $k_1=0.1$ ,  $k_2=1.5$ , E=3,執行時間約為 15 秒



# (2)Histogram matching 下圖為三張測試圖片以及要將三張圖片轉換的目標 histogram



轉換的目標圖片以及 histogram



下圖為轉換後的結果圖以及 histogram





## 2. Convolution

原圖



(1) Gaussian filter Kernel size 3



Kernel size 5



Kernel size 7



Kernel size 33



(2) Averaging filter Kernel size 3



Kernel size 5



Kernel size 7



Kernel size 33



(3) Unsharp mask filter Kernel size 3



Kernel size 5



Kernel size 7



## (4) Laplacian filter Kernel size 3



(5) Sobel filter 方向為水平(得到方向水平的邊緣) Kernel size 3



## Kernel size 5



Kernel size 7



(6) Sobel filter 方向為垂直(得到方向垂直的邊緣) Kernel size 3



Kernel size 5



#### Kernel size 7







## 3. Convolution-2

### (1) Kernel-1







這個 kernel 把圖片中比較平滑的部分變的更加平滑,使圖片視覺上變得更加清晰,並使邊緣變的更加明顯,但是他 kernel 中的數值和為 2 比 1 高,所以會使原本的圖片亮度變高,改變圖片原本亮度。

### (2) Kernel-2







這個 kernel 使原本的圖片變稍微模糊,他的 kernel 數值和為  $\frac{19}{25}$ ,比1低所以容易使圖片亮度變低,如果把左上和右上的值改完4則可以降低這個問題。

# 4. Image denoising

原圖



下圖從左而右分別為使用 minimum, median, maximum 進行降躁的圖







從圖可看出 median 的效果最好,另兩者會太暗或太亮

## 5. Bilateral filter





左圖為原圖,有圖為使用參數 kernel size=7,  $\sigma_c=16$ ,  $\sigma_s=8$ 得到的圖

#### 6. NLM filter





左圖為原圖,右圖為使用參數 Big window size is 11, Small window size is  $5,\sigma=0.5$ 得到的圖

#### 7. NLM filter improvement

使用的改良方法參考文章

SINGLE-IMAGE DERAINING USING AN ADAPTIVE NONLOCAL MEANS FILTER Jin-Hwan Kim, Chul Leey, Jae-Young Simz, and Chang-Su Kim (2013)

文中目標為將有雨滴的照片修成沒有雨滴的照片,文中將 NLM 修改成專門清除雨滴的演算法,方法為先計算圖片的一階和二階微分,得到一個矩陣

$$\begin{bmatrix} g_x^2(\mathbf{q}) & g_x(\mathbf{q})g_y(\mathbf{q}) \\ g_x(\mathbf{q})g_y(\mathbf{q}) & g_y^2(\mathbf{q}) \end{bmatrix}$$

其中q為圖片中的某一個 pixel 位置,q為一個二維向量,  $g_x^2(q)$ 為位置q對x 軸方向的二階微分, $g_y^2(q)$ 為位置q對y軸方向的二階微分, $g_x(q)g_y(q)$ 為q的 x軸和y軸方向的一階微分相乘。

文中對這個矩陣做奇異值分解,用分解後的矩陣計算某個點是否判斷為雨滴,判斷方式為使用分解後的矩陣計算點q以及附近的其他點是否會組成雨滴的形狀,例如雨滴的形狀會是垂直的橢圓形,若是的話則將點q標記為1 否的話標記為0,下圖為文中原圖和標記後的圖。



由於資料中的圖躁聲是很多很小的點,無法使用上述方式得到哪些像素是躁聲,所以改用計算一個像素q旁邊像素的平均,若像素q的值較旁邊像素平均值太大或太小,則認定為躁聲,下圖左圖為原圖,有圖白色部分為判斷為躁聲的像素。





得到判斷像素是否為躁聲的圖後假設這個圖的矩陣為 $M \perp M(q)$ 為1代表判斷q為躁聲0則不是躁聲。

假設要得到像素q經過 NLM 計算後的值,p為要與q做比較的像素則

$$\begin{array}{lcl} \tilde{B}_{\mathbf{p}} & = & B_{\mathbf{p}} \otimes (\mathbf{1} - R_{\mathbf{p}}) \otimes (\mathbf{1} - R_{\mathbf{q}}) \\ \tilde{B}_{\mathbf{q}} & = & B_{\mathbf{q}} \otimes (\mathbf{1} - R_{\mathbf{p}}) \otimes (\mathbf{1} - R_{\mathbf{q}}) \end{array}$$

其中 $B_p$ ,  $B_q$ 為像素 p, q 附近的點, $R_p$ ,  $R_q$ 則代表想素 p, q 在矩陣 M 附近的點。最後 NLM 式子為

$$\hat{I}(\mathbf{p}) = \frac{\sum_{\mathbf{q}} \exp\left(-\frac{\|\tilde{\mathbf{B}}_{\mathbf{p}} - \tilde{\mathbf{B}}_{\mathbf{q}}\|^{2}}{\sigma^{2} N_{\mathbf{p}, \mathbf{q}}}\right) \left(1 - \mathcal{M}(\mathbf{q})\right) I(\mathbf{q})}{\sum_{\mathbf{q}} \exp\left(-\frac{\|\tilde{\mathbf{B}}_{\mathbf{p}} - \tilde{\mathbf{B}}_{\mathbf{q}}\|^{2}}{\sigma^{2} N_{\mathbf{p}, \mathbf{q}}}\right) \left(1 - \mathcal{M}(\mathbf{q})\right)}$$

下圖左圖為原圖,中間為原本NLM,右圖為改進後的結果



程式碼網址: https://github.com/ss9636970/img\_filters