## Лабораторная работа № 4 Задание №1

- 1. Создать таблицу значений функции f(x), разбив отрезок [0,6] на n равных частей точками  $x_i$   $(i=\overline{0,n})$ . Для полученной таблично заданной в равноотстоящих узлах функции f(x), выполнить следующие действия при n=6 и n=10:
  - **а)** построить интерполяционный многочлен Лагранжа  $L_n(x)$ , проиллюстрировать графически (изобразить точки  $(x_i, f(x_i))$  и графики функций f(x) и  $L_n(x)$  на одном чертеже);
  - **б)** создать таблицу конечных разностей функции f(x) по точкам  $(x_i, f(x_i))$ ,  $i = \overline{0, n}$ ;
  - в) построить второй интерполяционный многочлен Ньютона  $P_n(x)$ , проиллюстрировать графически;
  - г) построить интерполяционный многочлен Ньютона  $Np_n(x)$  с помощью функции Interpolating Polynomial пакета Mathematica, проиллюстрировать графически;
  - д) вычислить значения функции f(x) и всех построенных интерполяционных многочленов  $L_n(x)$ ,  $P_n(x)$  и  $Np_n(x)$  в точке x=2,4316;
  - е) построить график погрешности интерполирования многочленом Ньютона  $R_n(x) = |f(x) Np_n(x)|$  на отрезке [0,6], найти максимум погрешности  $R_n(x)$  на отрезке [0,6] с помощью функции **FindMaximum** пакета **Mathematica**;
  - ж) исследовать зависимость погрешности интерполирования  $R_n(x)$  от числа узлов интерполяции (степени многочлена n).

#### (для N=6)

Функция:

$$f(x) = \exp\left(x - \frac{x^2}{4}\right) \cdot th\left(\frac{x^3}{11} + \frac{1}{3}\right).$$

Таблица значений функции f(x) для равностоящих узлов:

- 0. 0.321513
- 1. 0.847855
- 2. 2.13629
- 3. 2.10102
- 4. 0.999991
- 5. 0.286505
- 6. 0.0497871

#### А) Интерполяционный многочлен Лагранжа и его график:

 $0.321513 - 1.13038 \, x + 2.43962 \, x^2 - 0.827529 \, x^3 + 0.026763 \, x^4 + 0.0198283 \, x^5 - 0.00195986 \, x^6$ 



- 0.32
- 0.53
- 0.76
- -2.09
- 2.34
- -1.15-2.56
- -1.41

- 0.85
- 1.29
- -1.32
- 0.26
- 1.20 -1.36

- 2.14
- -0.04
- -1.07
- 1.45

- 2.10
- -1.10
- 0.39 0.48
- 0.09

- 1.00 0.29
- -0.71-0.24
- 0.05
- В) Интерполяционный многочлен Ньютона и его график

 $0.321513 - 1.13038 \, x + 2.43962 \, x^2 - 0.827529 \, x^3 + 0.026763 \, x^4 + 0.0198283 \, x^5 - 0.00195986 \, x^6$ 



Г) Интерполяционный многочлен Ньютона, построенный с помощью функции InterpolatingPolynomial, и его график

 $0.321513 - 1.13038 \, x + 2.43962 \, x^2 - 0.827529 \, x^3 + 0.026763 \, x^4 + 0.0198283 \, x^5 - 0.00195986 \, x^6$ 



f[2.4316]

Lagrang [2.4316]

NewT[2.4316]

Np[2.4316]

- 2.40655
- 2.31605
- 2.31605
- 2.31605
- Е) График погрешности интерполирования многочленом Ньютона и максимум погрешности на отрезке [0,6]



$$\label{eq:findMaximum} \texttt{FindMaximum}\left[\left\{ \texttt{R}\left[x\right]\text{, a} \Leftarrow x \Leftarrow b\right\}\text{, } x\right]$$

найти максимум

$$\{0.260681, \{x \rightarrow 0.398872\}\}$$

### (для N=10)

Функция:

$$f(x) = \exp\left(x - \frac{x^2}{4}\right) \cdot th\left(\frac{x^3}{11} + \frac{1}{3}\right).$$

Таблица значений функции f(x) для равностоящих узлов:

- 0. 0.321513
- 0.6 0.564545
- 1.2 1.05291
- 1.8 1.87865
- 2.4 2.40318
- 3. 2.10102
- 3.6 1.43302
- 4.2 0.810583
- 4.8 0.382893
- 5.4 0.151072
- 6. 0.0497871

## А) Интерполяционный многочлен Лагранжа и его график:

 $0.321513 - 3.94488\,x + 19.9019\,x^2 - 36.6729\,x^3 + 36.1106\,x^4 - 20.7358\,x^5 + 7.29855\,x^6 - 1.60185\,x^7 + 0.214312\,x^8 - 0.0160188\,x^9 + 0.000513301\,x^{10} + 0.00051301\,x^{10} + 0.00051301\,x^{10}$ 



#### Б) Таблица конечных разностей

| 0.32 0.24 0.25 0.09 -0.73 0.84 0.03 -1.94 4.67 -7.90   0.56 0.49 0.34 -0.64 0.11 0.87 -1.91 2.73 -3.23 3.36 |       |
|-------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                             | 11.26 |
|                                                                                                             |       |
| 1.05 $0.83$ $-0.30$ $-0.53$ $0.99$ $-1.04$ $0.82$ $-0.50$ $0.14$                                            |       |
| 1.88 $0.52$ $-0.83$ $0.46$ $-0.05$ $-0.21$ $0.33$ $-0.36$                                                   |       |
| 2.40  -0.30  -0.37  0.41  -0.26  0.11  -0.03                                                                |       |
| 2.10 -0.67 0.05 0.15 -0.15 0.08                                                                             |       |
| 1.43 -0.62 0.19 0.00 -0.07                                                                                  |       |

0.81 -0.43 0.20

0.38 -0.23 0.13

0.15 -0.10

0.05

## В) Интерполяционный многочлен Ньютона и его график

-0.07

 $0.321513 - 3.94488\,x + 19.9019\,x^2 - 36.6729\,x^3 + 36.1106\,x^4 - 20.7358\,x^5 + 7.29855\,x^6 - 1.60185\,x^7 + 0.214312\,x^8 - 0.0160188\,x^9 + 0.000513301\,x^{10} + 0.00051301\,x^{10} + 0.000513301\,x^{10} + 0.000513301\,x^{10$ 



## Г) Интерполяционный многочлен Ньютона, построенный с помощью функции InterpolatingPolynomial, и его график

 $0.321513 - 3.94488\,x + 19.9019\,x^2 - 36.6729\,x^3 + 36.1106\,x^4 - 20.7358\,x^5 + 7.29855\,x^6 - 1.60185\,x^7 + 0.214312\,x^8 - 0.0160188\,x^9 + 0.000513301\,x^{10} + 0.00051301\,x^{10} + 0.00051301\,x^{10}$ 



Д) Значения функции f(x) и всех построенных многочленов в точке x=2.4316

f[2.4316]

Lagrang[2.4316]

NewT[2.4316]

Np[2.4316]

- 2.40655
- 2.4066
- 2.4066
- 2.4066

Е) График погрешности интерполирования многочленом Ньютона и максимум погрешности на отрезке [0,6]



FindMaximum[ $\{R[x], a \le x \le b\}, x$ ]

найти максимум

 $\{0.0461276, \{x \rightarrow 0.812717\}\}$ 

## Задание №2

- **2.** Создать таблицу значений функции f(x) (1.1 1.16), разбив отрезок [0, 6] на n частей неравноотстоящими точками  $x_i$  вида  $x_i = \frac{a+b}{2} + \frac{b-a}{2} \cdot t_i$ , где  $t_i$  корни многочлена Чебышёва  $T_{n+1}(t)$  ( $i=\overline{0,n}$ ). Для полученной таблично заданной функции f(x), выполнить следующие действия при n=6 и n=10:
  - а) создать таблицу разделенных разностей функции f(x) по точкам  $(x_i, f(x_i)), i = \overline{0,n};$
  - **б)** построить интерполяционный многочлен Ньютона  $Pnr_n(x)$  для неравноотстоящих узлов, проиллюстрировать графически (изобразить точки  $(x_i, f(x_i))$  и графики функций f(x) и  $Pnr_n(x)$  на одном чертеже);
  - в) построить интерполирующую функцию  $Intf_n(x)$  с помощью функции **Interpolation** пакета **Mathematica**, проиллюстрировать графически;
  - г) вычислить значения функции f(x) и построенных интерполяционных многочленов  $Pnr_n(x)$  и  $Intf_n(x)$  в точке x = 2,4316;
  - д) найти максимумы абсолютных погрешностей интерполирования функции f(x) многочленом Ньютона  $Pnr_n(x)$  и функцией  $Intf_n(x)$  на отрезке [0,6] с помощью функции **FindMaximum** пакета **Mathematica**.

Функция:

$$f(x) = \exp\left(x - \frac{x^2}{4}\right) \cdot th\left(\frac{x^3}{11} + \frac{1}{3}\right).$$

## Таблица значений функции f(x) для равностоящих узлов:

0.331 0.031 0.271 0.416 0.733 0.643 1.378 1.274 2.155 2.287 3. 2.101 3.845 1.16 4.622 0.487 5.267 0.188 5.729 0.084 5.969 0.053

### А) Таблица конечных разностей

| 0.32 | 0.41  | 0.34  | 0.07  | -0.23 | 0.09  | 0.00  | -0.01 | 0.01  | -0.00 | 0.00 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| 0.56 | 0.81  | 0.47  | -0.49 | 0.04  | 0.09  | -0.06 | 0.02  | -0.00 | 0.00  |      |
| 1.05 | 1.38  | -0.42 | -0.41 | 0.32  | -0.11 | 0.02  | -0.00 | 0.00  |       |      |
| 1.88 | 0.87  | -1.15 | 0.36  | -0.02 | -0.02 | 0.01  | -0.00 |       |       |      |
| 2.40 | -0.50 | -0.51 | 0.32  | -0.08 | 0.01  | -0.00 |       |       |       |      |
| 2.10 | -1.11 | 0.06  | 0.12  | -0.05 | 0.01  |       |       |       |       |      |
| 1.43 | -1.04 | 0.27  | 0.00  | -0.02 |       |       |       |       |       |      |
| 0.81 | -0.71 | 0.27  | -0.05 |       |       |       |       |       |       |      |
| 0.38 | -0.39 | 0.18  |       |       |       |       |       |       |       |      |
| 0.15 | -0.17 |       |       |       |       |       |       |       |       |      |
| 0.05 |       |       |       |       |       |       |       |       |       |      |

## Б) Интерполяционный многочлен Ньютона и его график

 $0.321513 - 3.94488 \, x + 19.9019 \, x^2 - 36.6729 \, x^3 + 36.1106 \, x^4 - 20.7358 \, x^5 + 7.29855 \, x^6 - 1.60185 \, x^7 + 0.214312 \, x^8 - 0.0160188 \, x^9 + 0.000513301 \, x^{10} + 0.00051301 \, x^{10} + 0.000513301 \, x^{10} + 0.00051301 \, x^{10} + 0.000513$ 



# B) График интерполяционной функции IntF(x), построенной с помощью функции Interpolation



 $\Gamma$ ) Значения функции f(x) и всех построенных многочленов в точке x=2.4316

f[2.4316]

Pnr[2.4316]

IntF[2.4316]

- 2.40655
- 2.4066
- 2.40385
- Д) Максимумы абсолютных погрешностей интерполирования функции f(x) многочленом Ньютона

#### Задание №3

**3.** Сравнить результаты заданий 1 и 2 для равноотстоящих и неравноотстоящих узлов и сделать выводы о зависимость погрешности интерполирования от числа узлов и их расположения на отрезке.

При построении интерполяционных многочленов на равностоящих точках при увеличении числа узлов абсолютная погрешность может возрасти, в то время как при построении многочленов на неравноотстоящих точках абсолютная погрешность уменьшается.

## Задание №4

а) построить интерполяционный кубический сплайн дефекта 1  $S_3(x)$  для функции f(x), проиллюстрировать графически (изобразить точки  $(x_i, f(x_i))$  и графики функций f(x) и  $S_3(x)$  на одном чертеже); Show[ListPlot[table, PlotStyle  $\rightarrow$  { Red, PointSize[0.02]}], Plot[f[x], {x, 0, 6}, [пока·· [диаграмма разброс··· [стиль графика [кра··· [размер точки [график функции PlotStyle  $\rightarrow$  Red], Plot[Spl[x], {x, 0, 6}, PlotStyle  $\rightarrow$  Blue], AxesLabel  $\rightarrow$  {"x", "y"}]



б) выполнить интерполяцию сплайном Sf(x) с помощью функции Interpolation[data, Method-> "Spline"], проиллюстрировать графически;



в) построить интерполяционный кубический сплайн Spl с помощью функции SplineFit[data,Cubic] (предварительно загрузить пакет сплайн-интерполяции командой Needs["Splines"]), проиллюстрировать графически



 $\Gamma$ ) Вычислить значения функции f(x) и построенных интерполяционных сплайнов в точке  $x \ \square \ 2,4316$ 

{2.40655, 2.40741, 2.40749, 2.407}

## Задание №5

А) Апроксимировать с помощью метода наименьших квадратов функцию f(x) многочленом первой степени Q1(x), проиллюстрировать графически



Б) Апроксимировать с помощью метода наименьших квадратов функцию f(x) многочленом второй степени Q2(x), проиллюстрировать графически



В) Найти многочлены наилучшего среднеквадратичного приближения третьей и четвертой степеней Q3(x), Q4(x) с помощью функции Fit пакета Mathematica, проиллюстрировать графически



Г) Вычислить значения функции f(x) и построенных многочленов Q1(X), Q2(X), Q3(X), Q4(X) в точке x=2.4316

{2.40655, 1.08352, 1.75448, 1.90135, 2.11535}

Д) Сравнить результаты, полученные в пунктах а, б и в, изобразив на одном чертеже точки (xi, f(xi)) и график функций Q1(X), Q2(X), Q3(X), Q4(X)

