Московский авиационный институт (технический университет) Кафедра 813 – компьютерная математика

Отчет о лабораторной работе по курсу «Численные методы»

Лабораторная работа №1

«Приближенное вычисление значения функции (суммы ряда) с использованием разложения функции в ряд»

Выполнил:

Студент гр. 8-Т3О-302Б-16 Дедела А. С.

Проверил: Михайлов И. Е.

Оглавление

<u> Цель работы</u>	3
Метод расчета	
Блок-схема алгоритма	
Код программы	
Результаты работы программы и анализ результатов	
Зыводы	
Список литературы	7
1 71	

Цель работы

Целью работы является получение навыков решения задач вычислительной математики с помощью ЭВМ на примере нахождения суммы ряда.

Вариант 4

$$\sum_{k=0}^{\infty} \left(-1\right)^k \frac{(2k)!}{\left[\left(2k\right)!\right]^2} x^{2k} = \sqrt{\frac{1+\sqrt{1+16x^2}}{2(1+16x^2)}}; \qquad |x| < \frac{1}{4}$$

Метод расчета

Расчет производится последовательным прибавлением каждого очередного слагаемого к сумме. В начале расчета сумма должна быть обнулена. Количество членов ряда выбирается таким образом, чтобы погрешность, вычисляемая как модуль разности правых и левых частей выражения, не превышала $\varepsilon = 10^{-15}$.

Пример 1

		Сумма N		
N	N-й член суммы	членов ряда		Точность
0	1	1	$\varepsilon =$	0,0000000000000001
1	-0.374700060000000006	0.62529993999999989		Параметр
2	0.27300026243000708	0.898300202430007	x =	0,2499
3	-0.22504507236758664	0.67325513006242033		Истинное значение
4	0.19575307634730496	0.86900820640972531	True value =	0.776996865078002
5	-0.17549353106047319	0.69351467534925215		
33132	6.71810425885964E-15	0.776996865078008		
33133	-6.71262955019266E-15	0.776996865078001		

Пример 2

		Сумма N		
N	N-й член суммы	членов ряда		Точность
0	1	1	$\varepsilon =$	0,000000000000001
1	-0.0054	0.9946		Параметр
2	5.67E-05	0.9946567	x =	0,03
3	-6.73596E-07	0.994656026404		Истинное значение
4	8.444007E-09	0.994656034848007	True value =	0.994656034740329
5	-1.0909657044E-10	0.994656034738911		
6	1.437099368796E-12	0.994656034740348		
7	-1.918764541854E-14	0.994656034740328		

Блок-схема Main

Блок схема функции Calculate

Код программы

```
using System;
using System.Diagnostics;
namespace Lab_1
    class Program
    {
        private static double OriginalFunc(double x)
            return Math.Sqrt((1 + Math.Sqrt(1 + 16 * x * x)) / (2 * (1 + 16 * x * x)));
        }
        private static double Calculate(double x, double E = 0.1)
            if (Math.Abs(x) >= 0.25) throw new ArgumentOutOfRangeException(nameof(x));
            var original = OriginalFunc(x);
            Console.WriteLine($"Истинное значение: {original}");
            Stopwatch sw = new Stopwatch();
            sw.Start();
            var sum = 0.0;
            long k = 0;
            double sumMember = 1;
            do
            {
                sum += sumMember;
                ++k;
                var sign = k \% 2 == 0 ? 1 : -1;
                sumMember *= (4.0 * k - 3.0) / (2.0 * k - 1.0) * (4.0 * k - 2.0) / (2.0 * k - 1.0)
k) * (4.0 * k - 1.0) / (2.0 * k - 1.0) * (4.0 * k) / (2.0 * k) * x * x;
                sumMember *= sign;
            } while (Math.Abs(original - sum) >= E);
            sw.Stop();
            Console.WriteLine($"Время вычислений: {sw.Elapsed.ToString()}");
            Console.WriteLine($"Итераций(k): {k}");
            return sum;
        }
        static void Main(string[] args)
            var res = Calculate(0.2499, 1e-15);
            Console.WriteLine($"OTBET: {res:F15}");
            Console.ReadKey();
        }
    }
}
```

Результаты работы программы и анализ результатов

Результат работы программы полностью совпал с тестовым примером. Это говорит о том, что программа может использоваться для вычисления других вариантов с заданной точностью и в заданном диапазоне значений функции.

Выводы

Вычисление значения функции на компьютере невозможно никаким иным способом, кроме разложения её в ряд. Именно так считаются встроенные библиотечные функции, например *sin* или *cos*. Таким образом, написанная нами программа, позволяет создавать свои библиотечные функции любого вида.

Список литературы

- 1. **Косарев В.И.** 12 лекций по вычислительной математике (вводный курс). М.: Физматкнига. 2013. 240 с.
- 2. **Эндрю Троелсен** Язык программирования С# 5.0 и платформа .NET 4.5. М.: ООО "И. Д. Вильямс". 2013. 1312 с.