Parametric matrix models

Morten Hjorth-Jensen

Department of Physics and Center for Computing in Science Education, University of Oslo, Norway

qGap Octover 7, 2025

Outline

Quantum control

The three steps of quantum control

- Quantum correlations: Understanding and preparing an initial state
- Quantum dynamics: Controlled evolution towards a desired final state
- Quantum measurements: Measuring and characterizing the final state

Quantum control and this talk

Last week we discussed the so-called Rodeo algorithm as a way to prepare an initial state and/or find the eigenpairs of a system. This week we will look at how to control the time-evolution of a system. In so doing, we will study

- Quantum dynamics: Controlled evolution towards a desired final state
 - The Baker–Campbell–Hausdorff (BCH) formula
 - Combining Exponentials of Non-commuting Operators and the Lie-Trotter formula (Trotterization)
 - Parametric matrix models as a way to compute the Lie-Trotter formula, see https:

```
//www.nature.com/articles/s41467-025-61362-4, Cook, Jammooa. MHJ. Lee and Lee
```

Motivation: Non-commuting Exponentials

- In quantum mechanics and Lie theory, we often encounter operators X and Y that do not commute ($[X, Y] \neq 0$).
- We want to find an effective operator Z such that: $e^X e^Y = e^Z$, for X, Y in a Lie algebra . If X and Y commute, then simply Z = X + Y. If not, Z includes additional correction terms.
- BCH Formula: $Z = \log(e^X e^Y)$ is given by an infinite series in X, Y and their commutators. It provides a systematic expansion to combine exponentials of non-commuting operators .
- Use Cases: Combines two small transformations into one.
 Fundamental in connecting Lie group multiplication with Lie algebra addition, time-evolution with split Hamiltonians, etc.

Commutators and Lie Algebra

- The **commutator** of two operators is [X, Y] = XY YX.
- For a Lie algebra (common for operators in quantum mechanics), commutators of algebra elements remain in the algebra.
- The BCH formula asserts Z can be expressed entirely in terms of X, Y, and nested commutators like [X,[X,Y]], [Y,[X,Y]], etc. no other independent products appear .
- Notation: It's useful to denote $ad_X(Y) := [X, Y]$. Then nested commutators are iterated adjoint actions (e.g. $ad_X^2(Y) = [X, [X, Y]]$, etc.).
- We assume familiarity with basic Lie algebra identities (Jacobi identity: [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0) which will simplify nested commutators.

BCH Expansion: First Terms

For $Z = \log(e^X e^Y)$, the expansion begins:

$$Z = X + Y$$
+ $\frac{1}{2}[X, Y]$
+ $\frac{1}{12}([X, [X, Y]] + [Y, [Y, X]])$
- $\frac{1}{24}[Y, [X, [X, Y]]] + \cdots$

- The series alternates between symmetric and antisymmetric nested commutators at higher orders.
- All higher-order terms involve nested commutators of X and Y only. No ordinary products without commutators appear (ensuring Z lies in the same Lie algebra).
- The coefficients 1/2, 1/12, 1/24,... are fixed numerical values (involving Bernoulli numbers for higher terms). These were first worked out explicitly by Dynkin (1947) in general.

Series Characteristics

- The BCH series is generally infinite. In most cases, there is no closed-form finite expression for Z in terms of a finite number of terms.
- Each increasing order introduces more deeply nested commutators. For example:
 - 1st order: X + Y
 2nd order: [X, Y]
 - 3rd order: [X, [X, Y]], [Y, [X, Y]]
 - 4th order: [*Y*, [*X*, [*X*, *Y*]]], [*X*, [*Y*, [*Y*, *X*]]], etc.
- The number of independent commutator terms grows rapidly with order. (All such terms up to 6th order are listed in the literature, but it becomes cumbersome beyond a few orders.)
- Fortunately, many practical scenarios require only the first few terms for approximation.
- If X and Y are "small" (e.g. small matrices or small time-step in evolution), the series converges and truncating after a few terms can give a good approximation.

Derivation: Outline (up to Third Order)

- **Method:** Compare power series of $e^X e^Y$ and e^Z and solve for Z order-by-order.
- Expand both sides:

$$e^{X}e^{Y} = I + X + Y + \frac{1}{2}(X^{2} + XY + YX + Y^{2}) + \frac{1}{6}(X^{3} + \cdots) + \cdots$$

$$e^{Z} = I + Z + \frac{1}{2}Z^{2} + \frac{1}{6}Z^{3} + \cdots$$

where $Z = X + Y + A_2 + A_3 + \cdots$ (with A_n = terms of order n in X, Y).

- First order: Match linear terms: $Z^{(1)} = X + Y$. So far Z = X + Y.
- next slide

Derivation: Outline (up to Third Order)

- **Second order:** The $e^X e^Y$ expansion has $\frac{1}{2}(XY + YX)$ at order 2. Meanwhile e^Z gives $\frac{1}{2}(X + Y)^2 = \frac{1}{2}(X^2 + XY + YX + Y^2)$. The extra X^2 and Y^2 terms match on both sides, but XY + YX vs XY + YX is already present. However, note that XY + YX cannot simplify to 2XY unless XY = YX. The discrepancy appears at this order .
- Thus, we postulate Z has a second-order correction $A_2 = \frac{1}{2}[X, Y]$ to account for the difference:

$$XY + YX = (X + Y)^2 - X^2 - Y^2 = XY + YX,$$

but including A_2 in Z yields new cross terms when squaring Z:

$$\frac{1}{2}(X+Y+A_2)^2=\frac{1}{2}(X^2+XY+YX+Y^2+[X,Y]).$$

which adds the [X,Y] term we need. So $A_2 = \frac{1}{2}[X,Y]$.

• **Third order:** Now include A_2 and match cubic terms. There will be terms involving X^2Y , XY^2 , etc. The mismatch yields terms [X [X Y]] and [Y [X Y]] By similar (though more involved)