MÉTODOS ESTATÍSTICOS - L.EIC

EXERCÍCIOS - 2022/2023

Folha 4

(Intervalos de Confiança para a Média e Diferença de Médias)

1. [Adaptado de (*)]

Um farmacologista mediu a concentração cerebral de dopamina numa amostra de ratos. A concentração média obtida foi de $1\,269\,ng/g$ e o desvio padrão de $145\,ng/g$.

Qual o erro padrão obtido para a média, considerando:

(a) Uma amostra de 8 ratos?

$$se = 51,26524$$

(b) Uma amostra de 30 ratos?

$$se = 26,47326$$

- 2. Considerar o exercício anterior e suponha que a variável em estudo é normalmente distribuída. Determinar para cada um dos casos (amostra de 8 e 30 ratos) um intervalo de confiança a 95% para a média. Comparar os dois intervalos e comentar o resultado.
 - (a) Uma amostra de 8 ratos?

$$X \sim N(\mu; \sigma^2); \quad \overline{X} \sim N(\mu; \sigma^2/n)$$

População normal com σ^2 desconhecida $\Rightarrow T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$; n = 8

$$I.C._{(95\%)} =]1147;1391[$$

(b) Uma amostra de 30 ratos?

$$X \sim N(\mu; \sigma^2); \quad \overline{X} \sim N(\mu; \sigma^2/n)$$

População normal com σ^2 desconhecida $\Rightarrow T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$; n = 30

$$I.C._{(95\%)} =]1214; 1324[$$

3. [Adaptado de (*)]

Supor que estamos a planear uma experiência para testar o efeito de uma dieta no aumento de peso de uma população de perus. Seja Y a variável que representa o aumento de peso em 3 semanas relativo a essa dieta. Experiências anteriores sugerem que o desvio padrão de Y é aproximadamente $80\,\mathrm{g}$.

Determinar quantos perus deverão constituir a amostra da experiência se se pretender que o erro padrão da média seja não superior a $20\,\mathrm{g}$.

$$se_{\overline{Y}} = \frac{s_Y}{\sqrt{n}} \le 20 \quad \Rightarrow \quad n \ge 16$$

4. Sabe-se, por experiência passada, que o desvio padrão relativo ao tempo necessário para a recuperação total das pessoas que sofrem de uma determinada doença, é de 15 dias. Depois de analisar uma amostra de 16 doentes obteve-se um tempo médio de 85 dias para recuperar um doente.

Estimar, com um nível de confiança de 95%, o tempo médio (em dias), necessário para um doente que sofra da doença recuperar totalmente.

$$X \sim N(\mu; 15^2)$$

População normal com σ^2 conhecida $\Rightarrow \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

$$I.C._{(95\%)} =]77;93[$$

5. [Adaptado de (*)]

Numa experiência integrada num estudo sobre o desenvolvimento da glândula timo, os investigadores pesaram as glândulas de cinco embriões de frangos após 14 dias de incubação. Os pesos da *glândula timo* (em mg) foram os seguintes:

Para estes dados, a média é 31.7 mg, e o desvio padrão 8.7 mg.

(a) Calcular o erro padrão da média.

$$se_{\overline{X}} = 3.890758$$

(b) Construir um intervalo de confiança a 90% para a média da população.

Como a amostra é pequena... assumimos que a população é normal!

$$X \sim N(\mu; \sigma^2)$$
 ; $\overline{X} \sim N(\mu; \sigma^2/n)$

População normal com σ^2 desconhecida \Rightarrow $T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$; n = 5

$$I.C._{(90\%)} =]23.4;40.0[$$

6. Considerar os dados seguintes (exercício 4 da Folha 1), referentes a uma amostra das medições do perímetro cefálico (em cm) de 35 recém nascidos do sexo masculino.

2

33.1	33.4	34.8	33.8	34.7	34.3	35.6
34.5	34.6	34.1	33.9	33.6	34.6	35.2
33.7	35.8	34.2	34.0	34.7	35.2	34.3
33.4	36.0	34.5	36.1	35.1	35.1	34.6
33.7	34.9	34.2	34.2	34.2	35.3	34.2

```
Dados auxiliares: \left[\sum_{i=1}^{35} x_i = 1207.6 \quad \sum_{i=1}^{35} x_i^2 = 41684.32\right]
```

Determinar um intervalo de confiança a 95% para o perímetro cefálico médio da população.

```
Usando o software R:
PC=read.csv2("DadosFolha1.csv")
PC <- PC$Ex4
PC<-PC[!is.na(PC)]</pre>
Dados<-read.csv("DadosFicha1.csv")</pre>
PC<-Dados$Ex4
PC<-PC[!is.na(PC)]</pre>
# 10 CASO:
# caso de não se assumir uma distribuição específica para a população
mean(PC)-qnorm(0.975,0,1)*sd(PC)/sqrt(length(PC)) # 34.25736
mean(PC)+qnorm(0.975,0,1)*sd(PC)/sqrt(length(PC)) # 34.74835
]34.25, 34.75[
# no 1o caso:
mean(PC)-qnorm(0.975,0,1)*sd(PC)/sqrt(length(PC))
## [1] 34.25736
mean(PC)+qnorm(0.975,0,1)*sd(PC)/sqrt(length(PC))
## [1] 34.74835
# 20 CASO:
# assumindo, após avaliação da normalidade, que a população é
# normalmente distribuída
mean(PC)-qt(0.975,length(PC)-1)*sd(PC)/sqrt(length(PC)) # 34.24831
mean(PC)+qt(0.975,length(PC)-1)*sd(PC)/sqrt(length(PC)) # 34.75741
# Alternativa para o 2o CASO:
t.test(PC,conf.level = 0.95) # 34.24831 34.75741
]34.24, 34.76[
```

no 20 caso
mean(PC)-qt(0.975,34)*sd(PC)/sqrt(length(PC))

[1] 34.24831

mean(PC)+qt(0.975,34)*sd(PC)/sqrt(length(PC))

[1] 34.75741

- 7. O nível de ácido úrico X (mg/dl) numa determinada população de homens adultos e saudáveis tem uma distribuição normal de valor esperado μ mg/dl e desvio padrão $\sigma = 1$ mg/dl. Recolheu-se uma amostra de dimensão 100, cujos níveis de ácido úrico apresentaram valor médio igual a 5.5 mg/dl.
 - (a) Determinar um intervalo de confiança a 99% para μ .

$$X \sim N(\mu, 1)$$

$$I.C._{(99\%)} = [5.5 - \Delta, 5.5 + \Delta] = 5.24, 5.76[$$

(b) Admitir agora que se tem $X \sim N(5.5, 1)$. Calcular a dimensão da amostra de modo a que seja pelo menos igual a 0.9, a probabilidade da média da amostra se situar entre 5 e 6 mg/dl.

$$X \sim N(5.5, 1)$$

$$n \ge 11$$

8. A distribuição dos diâmetros dos caules nas plantas de determinada espécie tem distribuição normal. Uma amostra de 5 plantas apresentou os seguintes diâmetros (em mm):

$$25.4$$
 25.2 25.3 25.0 25.4

Construir um intervalo de confiança a 98% para o diâmetro médio dos caules das plantas da espécie em causa.

$$X \sim N\left(\mu; \sigma^2\right)$$

$$\bar{x} = \frac{1}{5} \sum x_i = \mathbf{25.26}$$

$$s^2 = \frac{1}{4} \sum_{i} (x_i - \bar{x}_i)^2 = \frac{1}{4} \left[(25.4 - 25.26)^2 + (25.2 - 25.26)^2 + (25.3 - 25.26)^2 + (25.0 - 25.26)^2 + (25.4 - 25.26)^2 \right]$$

$$s^2 = \frac{1}{4} \sum (x_i - \bar{x})^2 = \frac{1}{4} [0.112] = 0.028$$

$$s = 0.167332$$

População normal com σ^2 desconhecida $T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$; n = 5

$$gl = n - 1 = \mathbf{4}$$

$$1 - \alpha = 0.98 \quad \Rightarrow \quad \alpha/2 = 0.01$$

$$t_{\alpha/2,gl} \equiv t_{0.01,4} = \mathbf{3.7469}$$

$$\bar{x} \pm t_{\alpha/2,gl} \times \frac{s}{\sqrt{n}} = 25.26 \pm 3.7469 \times \frac{0.167332}{\sqrt{5}}$$

$$\text{I.C.}_{(98\%)} =]24.97961, 25.54039[$$

Este intervalo tem que estar contido no intervalo depois de arredondado, e então, com 2 casas decimais,

$$I.C._{(98\%)} =]24.97, 25.55[$$

```
D<-c(25.4,25.2,25.3,25.0,25.4)

mean(D)-qt(0.99,4)*sd(D)/sqrt(length(D))

## [1] 24.9796

mean(D)+qt(0.99,4)*sd(D)/sqrt(length(D))

## [1] 25.5404
```

9. Uma amostra aleatória retirada de uma população normal, produziu os intervalos de confiança seguintes, com graus de confiança distintos para a média dessa população:

(a) Qual o valor da média amostral?

Os intervalos de confiança são centrados na média amostral. Assim, apenas temos que calcular o ponto médio dos intervalos. Nos dois casos obtemos o valor 29.97, que é portanto o valor da média amostral.

(b) Qual dos dois intervalos corresponde a um menor grau de confiança?

A amplitude do primeiro intervalo é menor do que a do segundo, e assim, é aquele que corresponde a um menor grau de confiança.

10. Numa amostra de doentes com uma determinada doença, verificou-se que o tempo médio de vida, após o diagnóstico, foi de 7 anos.

Admitindo que o tempo de vida médio destes doentes segue uma distribuição normal de média μ e desvio padrão $\sigma=1$ ano, indicar o tamanho da amostra para ter pelo menos 95% de confiança de que o erro de estimação seja inferior a 0.05.

$$n \ge 1536.64...$$
 (n ≥ 1537)

11. Dois grupos de frangos, escolhidos aleatoriamente e de modo independente, foram submetidos a duas dietas diferentes. Após 2 semanas, observou-se o aumento de peso dos frangos, obtendo-se os seguintes valores (em gramas):

	Dieta 1	Dieta 2
\bar{x}	165	180
s	42	56

Determinar o erro padrão e o erro padrão ponderado de $\overline{X}_1 - \overline{X}_2$, considerando as dimensões das amostras tal como indicado, e comentar os resultados obtidos:

(a) $n_1 = 10 e n_2 = 15$

Erro padrão:

se = 19.63330504

Erro padrão ponderado:

 $se_p = 20.81317866$

(b) $n_1 = 25 e n_2 = 25$.

Erro padrão:

se = 14

Erro padrão ponderado:

 $se_p = 14$

12. Considerar os dados do exercício anterior e supor que o aumento de peso para cada dieta pode ser considerado como tendo uma distribuição normal.

Construir um intervalo de confiança a 95% para a diferença entre os aumentos de peso médios das populações correspondentes.

(a) $n_1 = 10 \text{ e } n_2 = 15$

Não foi utilizado o erro padrão ponderado, pois não se assumiram variâncias iguais. Como as amostras são pequenas, assumimos populações normais.

```
xb1=165
xb2=180
n1=10
n2=15
s1=42
s2 = 56
se1=sqrt(s1^2/n1)
se2=sqrt(s2^2/n2)
se=sqrt(se1^2 + se2^2)
gl=(se1^2+se2^2)^2/(se1^4/(n1-1)+se2^4/(n2-1))
gla=n1+n2-2
# IC com quantil calculado com gl não aproximado no R
IC = c(xb1-xb2 - qt(0.975,g1)*se, xb1-xb2 + qt(0.975,g1)*se)
## [1] -55.65613 25.65613
# IC com quantil calculado com gl aproximado (gla) no R
ICa = c(xb1-xb2 - qt(0.975,gla)*se, xb1-xb2 + qt(0.975,gla)*se)
## [1] -55.61459 25.61459
# IC com quantil visto nas tabelas utilizando gl aproximado (gla)
ICt = c(xb1-xb2 - 2.0687*se, xb1-xb2 + 2.0687*se)
ICt
## [1] -55.61542 25.61542
```

Portanto, pelas tabelas, obtém-se:

$$I.C._{(95\%)} =] - 55.62, 25.62[$$

(b) $n_1 = 25 \text{ e } n_2 = 25.$

Assumimos populações normais, pois as amostras são pequenas.

```
xb1=165
xb2=180
n1 = 25
n2 = 25
s1=42
s2 = 56
se1=sqrt(s1^2/n1)
se2=sqrt(s2^2/n2)
se=sqrt(se1^2 + se2^2)
gl=(se1^2+se2^2)^2/(se1^4/(n1-1)+se2^4/(n2-1))
gla=n1+n2-2
# IC com quantil calculado com gl não aproximado no R
IC = c(xb1-xb2 - qt(0.975,g1)*se, xb1-xb2 + qt(0.975,g1)*se)
## [1] -43.20601 13.20601
# IC com quantil calculado com gl aproximado (gla) no R
ICa = c(xb1-xb2 - qt(0.975,gla)*se, xb1-xb2 + qt(0.975,gla)*se)
## [1] -43.14889 13.14889
# IC com quantil visto nas tabelas utilizando gl aproximado (gla)
ICt = c(xb1-xb2 - 2.0687*se, xb1-xb2 + 2.0687*se)
ICt
## [1] -43.9618 13.9618
Portanto, pelas tabelas, obtém-se:
```

13. Foram medidos os níveis de destruição dos pulmões em 9 indivíduos não fumadores e em 12 indivíduos fumadores, tendo-se obtido os resultados seguintes:

 $I.C._{(95\%)} =] - 43.97, 13.97[$

fumadores (x)	18.1	6.0	10.8	11.0	7.7	17.9	8.5	13.0	18.9			
não fumadores (y)	16.6	13.9	11.3	26.5	17.4	15.3	15.8	12.3	18.6	12.0	24.1	16.5

Construir um intervalo de confiança a 95% para a diferença das médias dos níveis de destruição dos pulmões nos dois grupos. O que se pode concluir?

Utilizando o \mathbf{R} :

```
F<-c(18.1,6.0,10.8,11.0,7.7,17.9,8.5,13.0,18.9)
NF<-c(16.6,13.9,11.3,26.5,17.4,15.3,15.8,12.3,18.6,12.0,24.1,16.5)

ep=sqrt(sd(F)^2/length(F)+sd(NF)^2/length(NF))
mean(F)-mean(NF)-qt(0.975,length(F)+length(NF)-2)*ep
```

[1] -8.649664

$$mean(F)-mean(NF)+qt(0.975,length(F)+length(NF)-2)*ep$$

[1] 0.1329978

$$I.C._{(95\%)} =] - 8.65, 0.14[$$

Como zero (0) pertence ao intervalo de confiança, não podemos concluir, com uma confiança de 95%, que os níveis médios de destruição dos pulmões sejam diferentes nas populações de fumadores e não fumadores.

14. Pretende-se testar se a altura média μ_1 , dos pais numa dada população difere significativamente da altura média μ_2 dos respetivos filhos.

Para tal, foi selecionada uma amostra de 12 pais e respetivos filhos adultos, tendo-se registado as seguintes alturas (em cm):

altura do pai (x_i)	190	184	183	182	181	178	175	174	170	168	165	164
altura do filho (y_i)	189	186	180	179	187	182	183	171	170	178	174	165

Dados auxiliares:

$$\sum_{i=1}^{12} x_i = 2114 \quad \sum_{i=1}^{12} y_i = 2144 \quad \sum_{i=1}^{12} x_i^2 = 373160 \quad \sum_{i=1}^{12} y_i^2 = 383666 \quad \sum_{i=1}^{12} (x_i - y_i)^2 = 330$$

(a) Construir um intervalo de confiança a 95% para $\mu_1 - \mu_2$. O que se pode concluir?

Amostras emparelhadas. Amostras pequenas.

Assumimos normalidade na diferença de alturas entre pais e filhos.

Utilizando o R:

$$I.C._{(95\%)} =] - 5.56, 0.56[$$

Uma vez que $0 \in I.C.$ não é possível concluir, com 95% de confiança, que a altura média dos pais seja significativamente diferente da altura média dos respetivos filhos.

(b) Como se poderia obter a partir desta amostra um intervalo de confiança com o dobro da precisão? As conclusões seriam as mesmas?

Para se ter o dobro da precisão, o intervalo de confiança teria que ter metade da amplitude, isto é, utilizando o \mathbf{R} , seria:

I.C. =
$$]-4.03, -0.97[$$

o que diminuiria o grau de confiança (para cerca de 70%).

Neste caso a conclusão seria diferente uma vez que este intervalo não contém 0. Agora poder-se-ia concluir, com uma confiança inferior a 95% (cerca de 70%), que a média das alturas dos filhos é superior à dos pais (I.C. negativo).

```
Pais<-c(190,184,183,182,181,178,175,174,170,168,165,164)
Filhos<-c(189,186,180,179,187,182,183,171,170,178,174,165)

D=Pais-Filhos
ep=sqrt(sd(D)^2/length(D))

# (a)
mean(D)-qt(0.975,length(D)-1)*ep

## [1] -5.559146

mean(D)+qt(0.975,length(D)-1)*ep

## [1] 0.5591462

#(b)
mean(D)-0.5*qt(0.975,length(D)-1)*ep

## [1] -4.029573

mean(D)+0.5*qt(0.975,length(D)-1)*ep

## [1] -0.9704269
```

^(*) Statistics for the Life Sciences, Samuels, Witmer & Schaffner, PrenticeHall, (2012)