LECTURE NOTE 06

Linhui Xie

December 1, 2022

6 Basics for optimization

6.1 Introduction

• Optimization problem:

minimize
$$f(\boldsymbol{x})$$
 subject to $\boldsymbol{x} \in \Omega$

- $\circ \Omega$: constraint set or feasible set.
- \circ f(x) is called the objective function or <u>cost function</u>;
- $\Omega = \mathbb{R}^n$: unconstrained minimization.
- $\Omega \subset \mathbb{R}^n$ explicitly given: set **constrained** minimization.
- $\Omega = \{ \boldsymbol{x} \in \mathbb{R}^n : g(\boldsymbol{x}) = 0, h(\boldsymbol{x}) \leq 0 \}$: functional **constrained** minimization.
- \circ Solution to the problem: a minimizer, x^* .
- Global minimizer: $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \Omega \setminus \{\mathbf{x}^*\}$.
- Local minimizer: there exists $\varepsilon > 0$ such that $f(x^*) \le f(x)$ for all $x \in \Omega$ and $||x x^*|| < \varepsilon$.
- Strict global minimizer: $f(x^*) < f(x)$ for all $x \in \Omega \setminus \{x^*\}$.
- Strict local minimizer: there exists $\varepsilon > 0$ such that $f(\mathbf{x}^*) < f(\mathbf{x})$ for all $\mathbf{x} \in \Omega \setminus \{\mathbf{x}^*\}$ and $\|\mathbf{x} \mathbf{x}^*\| < \varepsilon$.
- THEOREM 4.2 Theorem of Weierstrass: If f is continuous and Ω is closed and bounded, then a global minimizer exists.

6.2 Conditions: Necessary and Sufficient

- Two types of conditions: necessary and <u>sufficient</u>, that characterize minimizers.
- Necessary condition \Leftarrow : If x^* is a minimizer, then x^* satisfies this particular condition.
- Sufficient condition \implies : If x^* satisfies this particular condition, then x^* is a minimizer.
- A necessary condition limits the set of candidates for minimizers.
- A sufficient condition guarantees that a point is a minimizer.
- In this course, consider conditions that are based on **gradients** and **Hessians** and apply these conditions to local minimizers.

6.3 Reminder methods of proof

1. By direct method,

$$S_1 \Longrightarrow S_2$$
.

2. By contraposition,

$$\begin{array}{ccc} S_1 & \Longrightarrow & S_2, \\ & & \updownarrow \\ (\text{ NOT } S_2) & \Longrightarrow & (\text{ NOT } S_1). \end{array}$$

3. By contradiction,

$$S_1 \implies S_2,$$

$$\updownarrow$$
NOT $\left(S_1, \text{ AND } (\text{NOT } S_2)\right).$

6.4 Conditions for local minimizers

• An unconstrained problem, with assumption $f \in \mathcal{C}^1$, a real valued function on \mathbb{R}^n :

minimize
$$f(\boldsymbol{x})$$
 subject to $\boldsymbol{x} \in \mathbb{R}^n$.

 \blacktriangle THEOREM If x^* is a local minimizer, then

$$\nabla f\left(\boldsymbol{x}^*\right) = \mathbf{0}.$$

• An constrained problem, with assumption $f \in \mathcal{C}^1$, a real valued function on Ω :

minimize
$$f(x)$$
 subject to $x \in \Omega$.

 \spadesuit COROLLARY 6.1 If x^* is a local minimizer and an interior point of Ω , then

$$\nabla f\left(\boldsymbol{x}^*\right) = \mathbf{0}.$$

interior point
$$x^*$$
 is a local minimizer, $\xrightarrow{\text{FONC}}$ $\nabla f(x^*) = 0$.

- Proof of theorem (by contraposition): suppose $\nabla f(x^*) \neq 0$.
 - Since $-\nabla f(\mathbf{x}^*)$ points in the direction of decreasing f, there will be some points close to \mathbf{x}^* that have smaller f value.
 - Specifically, consider $\boldsymbol{x}_{\alpha} = \boldsymbol{x}^* \alpha \nabla f\left(\boldsymbol{x}^*\right), \alpha > 0.$
 - From an equation derived by Taylor's formula,

$$f\left(\boldsymbol{x}_{\alpha}\right) = f\left(\boldsymbol{x}^{*}\right) - \alpha \left\|\nabla f\left(\boldsymbol{x}^{*}\right)\right\|^{2} + o(\alpha).$$

$$f\left(\boldsymbol{x}_{\alpha}\right) < f\left(\boldsymbol{x}^{*}\right).$$

$$\nabla f\left(\boldsymbol{x}^{*}\right) \neq \boldsymbol{0}, \qquad \Longrightarrow \qquad \boldsymbol{x}^{*} \text{ is definitely not a local minimizer.}$$

$$S_{1} \qquad S_{2}$$

$$\boldsymbol{x}^{*} \text{ is a local minimizer,} \qquad \Longrightarrow \qquad \nabla f\left(\boldsymbol{x}^{*}\right) = \boldsymbol{0}.$$

6.5 Feasible directions

- We only consider a nonzero vector $\mathbf{d} \in \mathbb{R}^n$.
- \boldsymbol{d} is a <u>feasible direction</u> at $\boldsymbol{x} \in \Omega$ if there exists $\alpha_0 > 0$ such that $\boldsymbol{x} + \alpha \boldsymbol{d} \in \Omega$ for all $\alpha \in [0, \alpha_0]$.
- At an *interior* point, all directions are feasible.
- At a boundary point, only some directions "point interior points of" the set are feasible.

• d_1 is a feasible direction, whereas d_2 is not a feasible direction.

6.6 First order necessary conditions

• THEOREM 6.1 (FONC) If x^* is a local minimizer, then

$$\boldsymbol{d}^{\top} \nabla f\left(\boldsymbol{x}^{*}\right) \geq \boldsymbol{0}$$

for all feasible directions d.

 \boldsymbol{x}^* is a local minimizer, $\xrightarrow{\text{FONC}} \boldsymbol{d}^\top \nabla f(\boldsymbol{x}^*) \geq 0$, for all feasible \boldsymbol{d} .

- x_1 does not satisfy FONC, but x_2 satisfies FONC.
- If x^* is a local minimizer, then the *directional derivative* of f in any feasible direction must be ≥ 0 (since the function must be increasing in that direction).
- General case: $d^{\top}\nabla f(x^*) \geq 0$ for all feasible directions d.

• Example: consider the constrained problem

minimize
$$f(\boldsymbol{x})$$
 subject to $\boldsymbol{x} \in \Omega$

where $f \in \mathcal{C}^2$, $f : \mathbb{R}^2 \to \mathbb{R}$, $\Omega = \left\{ \boldsymbol{x} = [x_1, x_2]^\top : x_1 \ge 1 \right\}$, $\boldsymbol{x}^* = [1, 2]^\top$, and gradient $\nabla f(\boldsymbol{x}^*) = [1, 1]^\top$. Determine the type of minimizer for the given point \boldsymbol{x}^* .

Short answer,

• For
$$\boldsymbol{x}^* = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, exists a feasible direction $\boldsymbol{d} = \begin{bmatrix} 1 \\ -5 \end{bmatrix}$,
$$\exists \ \alpha_0 = 1 > 0, \text{ s.t. } \boldsymbol{x}^* + \alpha \boldsymbol{d} = \begin{bmatrix} 1 + \alpha \\ 2 - 5\alpha \end{bmatrix} \in \Omega, \text{ for all } \alpha \in [0, \alpha_0].$$

• However,

$$\boldsymbol{d}^{\top} \nabla f(\boldsymbol{x}^*) = \begin{bmatrix} 1 & -5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = -4 < 0$$

violates the FONC.

$$egin{aligned} S_1 & S_2 \ m{x}^* & ext{is a local minimizer,} & \xrightarrow{ ext{FONC}} & m{d}^ op \nabla f(m{x}^*) \geq 0, ext{ for all feasible } m{d}. \end{aligned}$$

• Based on truth table and by contraposition,

$$S_1 \Rightarrow S_2, \iff \neg S_2 \Rightarrow \neg S_1.$$

$$\neg S_2 \qquad \qquad \neg S_1$$

$$\boldsymbol{d}^\top \nabla f(\boldsymbol{x}^*) < 0, \text{ for some } \boldsymbol{d}, \implies \boldsymbol{x}^* \text{ is definitely not a local minimizer.}$$

[Ref]: Edwin K.P. Chong, Stanislaw H. Żak, "PART II UNCONSTRAINED OPTIMIZATION" in "An introduction to optimization", 4th Edition, John Wiley and Sons, Inc. 2013.