Confusion Matrix

- Let True positive (TP) = no. of positive-examples correctly predicted.
- False negative (FN) = no. of positive-examples wrongly predicted as negative.
- False positive (FP) = no. of negative-examples wrongly predicted as positive.
- True negative (TN) = no. of negative-examples correctly predicted.

	Predicted O	Predicted 1
Actual O	TN	FP
Actual 1	FN	TP

Confusion Matrix

- Consider the confusion matrix given below for a binary classifier predicting the presence of a disease
- The classifier made a total of 150 predictions
 Out of those 150 cases, the classifier predicted
 "yes" 100 times, and "no" 50 times.
- In reality, 100 patients in the sample have the disease, and 50 patients do not.

	Predicted No	Predicted Yes
Actual No	45	5
Actual Yes	5	95

	Predicted O	Predicted 1
Actual O	TN	FP
Actual 1	FN	TP

 Accuracy: Overall, how often is the classifier correct?

• Accuraccy =
$$\frac{1N+17}{TN+FP+FN+TP}$$

= $\frac{45+95}{150}$ = 93.33%

	Predicted No	Predicted Yes
Actual No	45	5
Actual Yes	5	95

	Predicted O	Predicted 1
Actual 0	TN	FP
Actual 1	FN	TP

- Misclassification Rate: Overall, how often is it wrong?
- Missclassification Rate = $\frac{FN+FP}{TN+FP+FN+TP}$

$$=\frac{5+5}{150}=6.67\%$$

	Predicted No	Predicted Yes
Actual No	45	5
Actual Yes	5	95

	Predicted O	Predicted 1
Actual O	TN	FP
Actual 1	FN	TP

- True Positive Rate: When it's actually yes, how often does it predict yes?
- · also known as "Sensitivity" or "Recall"

• True Positive rate =
$$\frac{TP}{Actual Yes}$$

$$=\frac{95}{100}=95\%$$

	Predicted No	Predicted Yes
Actual No	45	5
Actual Yes	5	95

	Predicted O	Predicted 1
Actual O	TN	FP
Actual 1	FN	TP

 False Positive Rate: When it's actually no, how often does it predict yes?

• False Positive rate =
$$\frac{FP}{Actual\ No}$$

$$=\frac{5}{50}=10\%$$

	Predicted No	Predicted Yes
Actual No	45	5
Actual Yes	5	95

	Predicted O	Predicted 1
Actual O	TN	FP
Actual 1	FN	TP

- True Negative Rate: When it's actually no, how often does it predict no?
- · also known as "Specificity"

• True Negative rate =
$$\frac{TN}{Actual\ No}$$

$$=\frac{45}{50}=90\%$$

	Predicted No	Predicted Yes
Actual No	45	5
Actual Yes	5	95

	Predicted O	Predicted 1
Actual O	TN	FP
Actual 1	FN	TP

 Precision: When it predicts yes, how often is it correct?

•
$$Precision = \frac{TP}{Predicted Yes}$$

$$=\frac{95}{100}=95\%$$

	Predicted No	Predicted Yes
Actual No	45	5
Actual Yes	5	95

	Predicted O	Predicted 1
Actual O	TN	FP
Actual 1	FN	TP

 Prevalence: How often does the yes condition actually occur in our sample?

• Prevalence =
$$\frac{Actual\ Yes}{Total}$$
$$= \frac{100}{150} = 66.67\%$$

	Predicted No	Predicted Yes
Actual No	45	5
Actual Yes	5	95

	Predicted O	Predicted 1
Actual O	TN	FP
Actual 1	FN	TP