15

414

CLAIMS

1. A charge control agent for controlling a charged state of powder, characterized by comprising one or more units each represented by the following chemical formula (1) in a molecule:

$$\begin{array}{c}
R \\
N-H \\
0=C \\
(CH_2) m \\
Z_1b \\
Z_1a
\end{array}$$

(in the formula:

R represents -A₁-SO₂R₁;

 $$R_{1}$$ represents OH, a halogen atom, ONa, OK, or \$10\$ $OR_{1a};$ and

R_{1a} and A₁ each independently represent a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure;

in addition, with regard to 1, m, Z_{1a} , and Z_{1b} in the formula:

when 1 represents an integer selected from 2 to 4, Z_{1a} represents nothing or a linear alkylene chain 20 having 1 to 4 carbon atoms, Z_{1b} represents a hydrogen atom, and m represents an integer selected from 0 to 8;

when 1 represents 1 and Z1a represents a linear

10

15

20

alkylene chain having 1 to 4 carbon atoms, Z_{1b} represents a hydrogen atom and m represents an integer selected from 0 to 8;

when 1 represents 1 and Z_{1a} represents nothing, Z_{1b} represents a hydrogen atom and m represents 0;

when 1 represents 0 and Z_{1a} represents a linear alkylene chain having 1 to 4 carbon atoms, the linear alkylene chain may be substituted by a linear or branched alkyl group, or an alkyl group containing a residue having any one of a phenyl structure, a thienyl structure, and a cyclohexyl structure at a terminal thereof, Z_{1b} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8; and

when 1 represents 0 and Z_{1a} represents nothing, Z_{1b} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8;

in addition, when multiple units exist, R, R_1 , R_{1a} , A_1 , Z_{1a} , Z_{1b} , 1, and m each independently have the above meaning for each unit.)

2. A charge control agent according to claim 1, characterized in that the one or more units each represented by the chemical formula (1) are each

15

20

represented by the following chemical formula (2):

$$SO_2R_2$$
 A_2
 $N-H$
 CH_2
 CH_2
 CH_2
 A_2
 CH_2
 CH_2

(in the formula:

 $$R_{2}$$ represents OH, a halogen atom, ONa, OK, or $$OR_{2a}$;$ and

 R_{2a} represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group, and A_2 represents a linear or branched alkylene group having 1 to 8 carbon atoms;

in addition, with regard to 1, m, Z_{2a} , and Z_{2b} in the formula:

when 1 represents an integer selected from 2 to 4, Z_{2a} represents nothing or a linear alkylene chain having 1 to 4 carbon atoms, Z_{2b} represents a hydrogen atom, and m represents an integer selected from 0 to 8;

when 1 represents 1 and Z_{2a} represents a linear alkylene chain having 1 to 4 carbon atoms, Z_{2b} represents a hydrogen atom and m represents an integer selected from 0 to 8;

when 1 represents 1 and Z_{2a} represents nothing,

15

20

8; and

 Z_{2b} represents a hydrogen atom and m represents 0; when 1 represents 0 and Z_{2a} represents a linear alkylene chain having 1 to 4 carbon atoms, the linear alkylene chain may be substituted by a linear or branched alkyl group, or an alkyl group containing a residue having any one of a phenyl structure, a thienyl structure, and a cyclohexyl structure at a terminal thereof, Z_{2b} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to

when 1 represents 0 and Z_{2a} represents nothing, Z_{2b} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8;

in addition, when multiple units exist, R_2 , R_{2a} , A_2 , Z_{2a} , Z_{2b} , 1, and m each independently have the above meaning for each unit.)

3. A charge control agent according to claim 1, characterized in that the one or more units each represented by the chemical formula (1) are each represented by the following chemical formula (3):

10

20

$$R_3c$$
 R_3d
 R_3e
 R_3e

(in the formula, at least one of R_{3a} , R_{3b} , R_{3c} , R_{3d} , and R_{3e} represents SO_2R_{3f} (R_{3f} represents OH, a halogen atom, ONa, OK, or OR_{3f1} . R_{3f1} represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group.), and the others each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an OH group, an NH_2 group, an NO_2 group, $COOR_{3g}$ (R_{3g} represents an H atom, an Na atom, or a K atom.), an acetamide group, an OPh group, an NHPh group, a C_2F_5 group, or a C_3F_7 group;

in addition, with regard to 1, m, Z_{3a} , and Z_{3b} in 15 the formula:

when 1 represents an integer selected from 2 to 4, Z_{3a} represents nothing or a linear alkylene chain having 1 to 4 carbon atoms, Z_{3b} represents a hydrogen atom, and m represents an integer selected from 0 to 8;

when 1 represents 1 and Z_{3a} represents a linear

alkylene chain having 1 to 4 carbon atoms, Z_{3b} represents a hydrogen atom and m represents an integer selected from 0 to 8;

when 1 represents 1 and Z_{3a} represents nothing,

Z_{3b} represents a hydrogen atom and m represents 0;

when 1 represents 0 and Z_{3a} represents a linear

alkylene chain having 1 to 4 carbon atoms, the linear

alkylene chain may be substituted by a linear or

branched alkyl group, or an alkyl group containing a

residue having any one of a phenyl structure, a

thienyl structure, and a cyclohexyl structure at a

aralkyl group which may be substituted by an aryl

group, and m represents an integer selected from 0 to

8; and

linear or branched alkyl group, aryl group, or

terminal thereof, Z_{3b} represents a hydrogen atom, or a

when 1 represents 0 and Z_{3a} represents nothing, Z_{3b} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8;

in addition, when multiple units exist, R_{3a} , R_{3b} , R_{3c} , R_{3d} , R_{3e} , R_{3f} , R_{3f1} , R_{3g} , Z_{3a} , Z_{3b} , 1, and m each independently have the above meaning for each unit.)

25
4. A charge control agent according to claim 1, characterized in that the one or more units each represented by the chemical formula (1) are each

represented by the following chemical formula (4A) or (4B):

$$R_4$$
e

 R_4 c

 R_4 c

 R_4 c

 R_4 b

 R_4 a

 R_4 b

 R_4 b

 R_4 b

 R_4 b

 R_4 c

 R_4 b

 R_4 b

 R_4 c

 R_4 b

 R_4 b

 R_4 c

 R_4

the formula:

(in the formula, at least one of R_{4a}, R_{4b}, R_{4c}, R_{4d}, R_{4e}, R_{4e}, R_{4f}, and R_{4g} represents SO₂R_{4o} (R_{4o} represents OH, a halogen atom, ONa, OK, or OR_{4o1}. R_{4o1} represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group.), and the others each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{4p} (R_{4p} represents an H atom, an Na atom, or a K atom.), an acetamide group, an OPh group, an NHPh 15. group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group; in addition, with regard to 1, m, Z_{4a}, and Z_{4b} in

when 1 represents an integer selected from 2 to 4, Z_{4a} represents nothing or a linear alkylene chain 20 having 1 to 4 carbon atoms, Z_{4b} represents a hydrogen

WO 2005/121904 PCT/JP2005/011001

atom, and m represents an integer selected from 0 to 8;

when 1 represents 1 and Z_{4a} represents a linear alkylene chain having 1 to 4 carbon atoms, Z_{4b} represents a hydrogen atom and m represents an integer selected from 0 to 8;

5

when 1 represents 1 and Z_{4a} represents nothing, Z_{4b} represents a hydrogen atom and m represents 0;

when 1 represents 0 and Z_{4a} represents a linear alkylene chain having 1 to 4 carbon atoms, the linear alkylene chain may be substituted by a linear or branched alkyl group, or an alkyl group containing a residue having any one of a phenyl structure, a thienyl structure, and a cyclohexyl structure at a terminal thereof, Z_{4b} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8; and

when 1 represents 0 and Z_{4a} represents nothing, Z_{4b} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8;

in addition, when multiple units exist, R_{4a} , R_{4b} , R_{4c} , R_{4d} , R_{4e} , R_{4f} , R_{4g} , R_{4o} , OR_{4o1} , R_{4p} , Z_{4a} , Z_{4b} , 1, and m each independently have the above meaning for each

unit)

5

10

15

20

$$\begin{array}{c|c}
R_4 i & R_4 k & R_4 l \\
R_4 i & R_4 n & R_4 n \\
R_4 n & R_4 n & R_4 n \\
0 = C & C & C & C & C & C & C \\
C C H_2) I & C C & C C & C & C & C & C & C \\
\end{array}$$

(in the formula, at least one of R_{4h}, R_{4i}, R_{4j}, R_{4k}, R_{4l}, R_{4m}, and R_{4m} represents SO₂R_{4o} (R_{4o} represents OH, a halogen atom, ONa, OK, or OR_{4o1}. R_{4o1} represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group.), and the others each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{4p} (R_{4p} represents an H atom, an Na atom, or a K atom.), an acetamide group, an OPh group, an NHPh group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group;

in addition, with regard to 1, m, Z_{4c} , and Z_{4d} in the formula:

when 1 represents an integer selected from 2 to 4, Z_{4c} represents nothing or a linear alkylene chain having 1 to 4 carbon atoms, Z_{4d} represents a hydrogen atom, and m represents an integer selected from 0 to

8;

5

when 1 represents 1 and Z_{4c} represents a linear alkylene chain having 1 to 4 carbon atoms, Z_{4d} represents a hydrogen atom and m represents an integer selected from 0 to 8;

when 1 represents 1 and Z_{4c} represents nothing, Z_{4d} represents a hydrogen atom and m represents 0;

when 1 represents 0 and Z_{4c} represents a linear alkylene chain having 1 to 4 carbon atoms, the linear 10 alkylene chain may be substituted by a linear or branched alkyl group, or an alkyl group containing a residue having any one of a phenyl structure, a thienyl structure, and a cyclohexyl structure at a terminal thereof, Z_{4d} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or

aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8; and

when 1 represents 0 and Z_{4c} represents nothing,

Z_{4d} represents a hydrogen atom, or a linear or
branched alkyl group, aryl group, or aralkyl group
which may be substituted by an aryl group, and m
represents an integer selected from 0 to 8;

in addition, when multiple units exist, R_{4h} , R_{4i} , R_{4j} , R_{4k} , R_{4l} , R_{4m} , R_{4n} , R_{4o} , OR_{4o1} , R_{4p} , Z_{4c} , Z_{4d} , l, and m each independently have the above meaning for each unit.)

5. A charge control agent for controlling a charged state of powder, characterized by comprising one or more units each represented by the following chemical formula (5) in a molecule:

$$(CH_2) \text{ i} \qquad (CH_2) \text{ m}$$

$$Z_5 \text{ b} \qquad Z_5 \text{ a} \qquad 0$$

(in the formula:

5

10

15

20

 R_5 represents hydrogen, a group for forming a salt, or R_{5a} , and R_{5a} represents a linear or branched alkyl group having 1 to 12 carbon atoms, or aralkyl group;

in addition, with regard to 1, m, Z_{5a} , and Z_{5b} in the formula:

when 1 represents an integer selected from 2 to 4, Z_{5a} represents nothing or a linear alkylene chain having 1 to 4 carbon atoms, Z_{5b} represents a hydrogen atom, and m represents an integer selected from 0 to 8;

when l represents 1 and Z_{5a} represents a linear alkylene chain having 1 to 4 carbon atoms, Z_{5b} represents a hydrogen atom and m represents an integer selected from 0 to 8;

when 1 represents 1 and Z_{5a} represents nothing, Z_{5b} represents a hydrogen atom and m represents 0; when 1 represents 0 and Z_{5a} represents a linear

10

15

alkylene chain having 1 to 4 carbon atoms, the linear alkylene chain may be substituted by a linear or branched alkyl group, or an alkyl group containing a residue having any one of a phenyl structure, a thienyl structure, and a cyclohexyl structure at a terminal thereof, Z_{5b} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8; and

when 1 represents 0 and Z_{5a} represents nothing, Z_{5b} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8;

in addition, when multiple units exist, R_5 , R_{5a} , Z_{5a} , Z_{5b} , 1, and m each independently have the above meaning for each unit.)

6. A charge control agent according to any one
20 of claims 1 to 5, characterized by further comprising
a unit represented by the following chemical formula
(7) in a molecule:

(in the formula, R_7 represents a linear or branched

alkylene group having 1 to 11 carbon atoms, an alkyleneoxyalkylene group each alkylene of which has 1 to 2 carbon atoms, or an alkylidene group having 1 to 5 carbon atoms which may be substituted by aryl as desired;

in addition, when multiple units exist, R_7 independently has the above meaning for each unit.)

- 7. A charge control agent according to any one of claims 1 to 6, wherein the powder comprises toner 10 for developing an electrostatic charge image.
 - 8. A toner for developing an electrostatic charge image, characterized by comprising at least:
 - a binder resin;

5

- a colorant; and
- the charge control agent according to any one of claims 1 to 6.
 - 9. An image forming method, comprising at least the steps of:

applying a voltage from an outside to a charging
20 member to charge an electrostatic latent imagebearing member;

forming an electrostatic charge image on the charged electrostatic latent image-bearing member;

developing the electrostatic charge image with

toner for developing an electrostatic charge image to
form a toner image on the electrostatic latent imagebearing member;

transferring the toner image on the electrostatic latent image-bearing member onto a recording material; and

fixing the toner image on the recording material under heating, characterized in that the toner for developing an electrostatic charge image according to claim 8 is used.

- 10. An image forming apparatus, comprising at least:
- means for applying a voltage from an outside to a charging member to charge an electrostatic latent image-bearing member;

means for forming an electrostatic charge image on the charged electrostatic latent image-bearing member:

means for developing the electrostatic charge image with toner for developing an electrostatic charge image to form a toner image on the electrostatic latent image-bearing member;

20 means for transferring the toner image on the electrostatic latent image-bearing member onto a recording material; and

means for fixing the toner image on the recording material under heating, characterized in that the toner for developing an electrostatic charge image according to claim 8 is used.