Лабораторная работа №2 (теоретическая часть)

Садиев Абдурахмон, 674 группа

17.05.2020

Задача 2.2

Условие:

Рассмотрим задачу предсказание числа заболевших некоторой болезнью от некоторых экологических анализов. Гарантируется, что предсказание описывается линейной моделью.

Так как проведение анализов не является бесплатным, то стоит вопрос о том какие из анализов являются лишними (на уровне значимости $\alpha = 0.05$) для предсказания линейной модели.

Требуется:

- 1. Записать задачу формально;
- 2. Провести отбор приизнаков линейной модели.

Все выкладки должны быть сделаны аналитически, без использования компьютера.

Решение

Данные

Данные предоставленны на странице курса: целевая переменная соответствует столбцу $y \in \mathbb{R}^n$, матрица признаков $X^* \in \mathbb{R}^{n \times k}$, где n = 30, а k = 10. Будем обозначать $x_1, x_2, x_3, x_4, x_5, x_7, x_7, x_8, x_9, x_{10}$ признаками (независимые переменные).

Модель линейной регрессии

Как известно, в модели линейной регрессии предполагается, что

$$y = X^*\beta + \varepsilon$$
,

где $\beta \in \mathbb{R}^{k+1}$ - параметры модели, а ε есть случайная ошибка модели, причем $\mathbb{E}(\varepsilon) = 0.X \in \mathbb{R}^{n \times (k+1)}$ есть матрица X^* с добавленном столбцом из единичек (для константного параметра мо) Тогда задача решается с помощью метода наименьших квадратов:

$$||X\beta - y||_2^2 \to \min_{\beta}$$

. Праметры вычисляются по формуле $\hat{\beta} = \left(X^TX\right)^{-1}X^Ty$, а оценка целевой переменной нашей моделью $\hat{y} = X\left(X^TX\right)^{-1}X^Ty$.

Отбор признаков модели

Для отбора признаков воспользуемся критерием Фишера (частным F-тест). Данный критерий помогает определить стоит ли добавлять переменную в нашу модель, то есть мы будем добавлять переменные (усложнять модель).

Для применения критерия Фишера введем необходимые понятия:

1. (Explained Sum of Squares): $ESS = \sum_{i=1}^{n} (\hat{y}_i - \overline{y}_i)^2$, \overline{y} есть среднее значение y. ESS измеряет степень вариации смоделированных значений и сравнивается с общей суммой квадратов, которая измеряет степень вариации наблюдаемых данных, и с остаточной суммой квадратов, которая измеряет степень вариации погрешностей моделирования. Физический смысл: доля изменчивости, объясняемая линейной зависимостью.

- 2. Выше мы говорили, что будем добавлять признаки. Тогда возникает вопрос о пересчете показателя. Пусть $x_1, x_2, ..., x_{k'}$ переменные, на которых построена модель линейной регресси. для этой модели посчитана Explained Sum of Squares: ESS.Пусть x_{new} переменная, которую мы хотим добавить. Обозначим ESS_{new} как Explained Sum of Squares для модели, построеннаяной на переменых $x_1, x_2, ..., x_{k'}, x_{new}$. Тогда величина отвечающая за вклад переменной x_{new} в объясняющую способность модели есть $Con_{new} = ESS_{new} ESS$. Важное свойство: чем больше Con_{new} , тем значительнее вклад пременной. Теперь стоит задуматься, как мы опеределим порог для принятия решения о достаточности велечины Con_{new} . Иначе говоря, значим признак x_{new} или нет. В этом поможет критерий Фишера.
- 3. Residual Sum of Squares: $RSS = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$

Наш критерий проверяет следующую гипотизу H_0 против альтернативы H1:

- 1. H_0 : Con_{new} не достаточно велик. (переменная не значима)
- 2. H_1 : Con_{new} достаточно велик.(переменная значима)

Если быть более формальным, то

- 1. H_0 : $\beta_{new} = 0$
- 2. H_1 : $\beta_{new} \neq 0$

Для этого определим статистику:

$$T = \frac{Con_{new}(n - k' - 2)}{RSS_{new}},$$

где RSS_{new} - Residual Sum of Squares для модели, построеннаяной на переменых $x_1, x_2, ..., x_{k'}, x_{new}$. Для данной статистики найдено нулевое распределение: $T \sim \mathcal{F}(1, n-k'-2)$ - распределение Фишера со степенями свободы 1, n-k'-2.

Поскольку $Con_{new} = ESS_{new} - ESS \ge 0$, то у нас будет правостороняя альтернатива. Правило принятия решения будет выглядеть таким образом:

нулевая гипотеза
$$H_0$$
 отклоняется $\Leftrightarrow Con_{new} > \mathcal{F}(1, n-k'-2)_{(1-\alpha)}$,

где $\mathcal{F}(1,n-k'-2)_{(1-lpha)}$ - 1-lpha квантиль распределения Фишера.

Таким образом, мы имеем

- 1. нулевая гипотеза: H_0 : $\beta_{new} = 0$
- 2. альтернатива: H_1 : $\beta_{new} \neq 0$
- 3. статистика: $T = \frac{Con_{new}(n-k'-2)}{RSS_{new}}$
- 4. нулевое распределение: $T \sim \mathcal{F}(1, n k' 2)$

Алгоритм отбора признаков модели

1. Выберем признак, имеющий наибольшую корреляцию с целевой переменной. (Наибольшее значение коэффициента Пирсона)

$$r_{x_i,y} = \frac{\sum_{j=1}^{n} ((x_i)_j - \overline{x_i})(y_j - \overline{y})}{\sqrt{\sum_{j=1}^{n} ((x_i)_j - \overline{x_i})^2 \sum_{j=1}^{n} (y_j - \overline{y})^2}}, n = 30$$

- 2. Проверяем на значимость выбранный признак при помощи критерия. Согласно ему, если статистические данные не противоречат гипотезе, алгоритм закончен (нет значимых признаков). В противном случае добавляем это признак в модель.
- 3. Далее считаем для оставшихся переменных статистику T и выбираем переменную с максимальным значением статистики.
- 4. Проверяем на значимоть выбранный признак при помощи критерия. Согласно ему, если статистические данные не противоречат гипотезе, алгоритм закончен (больше нет значимых признаков). В противном случае добавляем это признак в модель. И возвращаемся к пункту 3.

Переменная	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}
r_{x_iy}	-0.245	0.086	0.786	0.186	0.010	-0.355	0.020	0.110	-0.134	0.096

Таблица 1: Коэффициент Пирсона между x_i и y.

Вычисление

Согласно приведенному алгоритму найдем значения коэффициента Пирсона. Как мы видим, максимальное значение соответствует переменной x_3 . Тогда определим модель линейной регрессии, как $y=\beta_0+\beta_3x_3$. Согласно пункту о модели линейной регрессии вычислим параметры модели с помощью метода наименьших квадратов : $\beta_0=1.78, \beta_3=3.16$. Теперь рассчитаем значение статистики для переменной x_3 : $Con(x_3)=190.27, T=45.14$. Согласно таблицам $\mathcal{F}(1,28)_{(1-\alpha)}=4.20$, тогда $\mathcal{F}(1,28)_{(1-\alpha)}< T$, то есть признак x_3 значим.

Tеперь для оставшихся признаков нужно рассчитать значение статистики T. Как мы видим макси-

Переменная	x_1	x_2	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}
Статистика Т	6.25	0.35	0.89	0.36	0.63	0.22	0.09	0.02	0.06

Таблица 2: Значение статистики Т для оставшихся переменных.

мальное значение статистики сооответствует переменной x_1 . Теперь проверим его значимость: находим $\mathcal{F}(1,27)_{(1-\alpha)}=4.21$. Сравнивая $\mathcal{F}(1,27)_{(1-\alpha)}< T$, получаем, что признак x_1 значим, следовательно, добавляем его в модель. То есть мы усложняем нашу модель: $y=\beta_0+\beta_1x_1+\beta_3x_3$, где $\beta_0=1.73,\beta_1=-0.74,\beta_3=3.20$.

Снова считаем значение статистики T для нового набора оставшихся переменных.

Переменная	x_2	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}
Статистика T	0.42	1.67	0.07	0.90	0.34	0.22	0.02	-0.01

Таблица 3: Значение статистики T для оставшихся переменных.

Мы видем, что максимальное значение соответствует x_4 . Теперь применяем критерий для проверки значимости переменной x_4 . Квантить: $\mathcal{F}(1,26)_{(1-\alpha)}=4.23$, сравниваем: $\mathcal{F}(1,26)_{(1-\alpha)}>T=1.67$. Статистические данные гипотизе не противоречат. Таким образом, нетолько x_2 , но и остальные из оставшихся не значимы.

Вывод

Используя частный F-тест, мы выяснили, что только x_1 и x_3 признаки значимы. Это хорошо с экономической точки зрения, поскольку мы можем умешьнить количество проводимых анализов.