1	
考试座位号	
#4,	
ulp	
课序号	
mK.	
المحت	
NT	
##	
中	
X	
HK-	
出	
4	
孙	
1件	
红	
女	
RX.	
专业班线	
=	
111	
1	
学院	
作	

阿

豐

K

内

张

華

倒

勤奋求学 诚信考试 昆 明 理 工 大 学 试 卷(A)

考试科目: 高等数学 A (2) 考试日期: 2017-06-22 命题教师: 命题小组

题号	-01	=	Ξ	四	总分
评分'					
阅卷人					

- 一、 填空题 (每题 4 分, 共 40 分):
- 1. 向量 \bar{c} 是同时垂直于向量 \bar{a} = (1,1,1) , \bar{b} = (0,1,0) 的单位向量, 则

 $\vec{c} = \underline{}$

2.设向量 $\bar{a} = (2,5,-1)$, $\bar{b} = (1,6,2)$,

则当 λ,μ 满足条件 _____ 时,向量 $\lambda a + \mu b$ 与z 轴垂直;

- 3. 两平行平面 2x-y-2z+2=0 与 2x-y-2z-10=0 间的距离 $d=_{-}$;
- 4. 函数 $f(x,y) = \begin{cases} (x^2 + y^2) \ln(x^2 + y^2), & x^2 + y^2 \neq 0, \\ 1, & x^2 + y^2 = 0 \end{cases}$

则 $\lim_{\substack{x\to 0\\y\to 0}} f(x,y) = ____;$

- 6. 设 f(x,y) 连续,改变二次积分的积分次序:

$$\int_{0}^{\infty} dx \int_{x}^{\sqrt{x}} f(x, y) dy = \underline{\qquad};$$

- 7. 设f(x,y)连续, 化积分 $\int_{x}^{x} dx \int_{x^2}^{x} f(x,y)dy$ 为极坐标下的二次积分,
- 则 $\int_0^1 dx \int_{x^2}^x f(x,y)dy = \underline{\hspace{1cm}};$
- 8. 计算对弧长的积分 $\int_L (x+y)ds$, 其中 L 为连接点(1,0) 到点(0,1) 的直线

2016 级 高等数学 A(2)试卷 A 卷 第 1 页 共 4 页

段.则 $\int_L (x+y)ds = _____;$

9. 计算对坐标的曲线积分 $\oint_L \frac{-ydx + xdy}{x^2 + y^2}$, 其中 L 为圆周 $x^2 + y^2 = R^2$ (R > 0)

接逆时针方向.则 $\oint_L \frac{-ydx + xdy}{x^2 + y^2} = \underline{\qquad}$

10. 计算对面积的曲面积分 $\iint_{\Sigma} (2x+2y+z-3)dS$,其中 Σ 为平面

- 二、 计算题 (每题 7分, 共 14分):
- 11. 求过直线 $L: \begin{cases} x+2z-4=0 \\ 2y-z+8=0 \end{cases}$,且与向量 $\bar{s}=(1,1,1)$ 平行的平面方程;

12. 设 $z = (x^2 + y^2)e^y$, 求 dz;

三、 计算题 (每题 7 分, 共 28 分):

13. 设 z=z(x,y) 由方程 F(x-az,y-bz)=0 确定, F 具有连续偏导数,且

$$aF_u + bF_v \neq 0$$
. i.e. $a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = 1$;

14. 求曲线 $\begin{cases} z = x^2 + y^2 \\ x + y + z = 4 \end{cases}$ 到原点的最长与最短距离;

15. 计算 $\iint_D e^{-y^2} d\sigma$, 其中 D 是以(0,0) , (0,1) , (1,1) 为顶点的三角形闭区域;

16.计算 $\int_{1,1)}^{(2,3)} (2x+y)dx + (x-2y)dy$;

鶭

2x+2y+z==在2 计等中的部分则 [[(次+1) = 1])。 数的分类的(0,0)=d ([LD=x 整的子的新标页基 命

18. $\iint_{\Sigma} (x-2x^2) dydz + 8xydzdx + (4x^2 - 4xz)dxdy, 其中$

K

 Σ 为曲面 $z=x^2+y^2$ 与平面 z=1 所围立体 Ω 的边界曲面的外侧;

氏

 $\lim_{x \to y} f(x, y) = \frac{1}{1 + 1}$

练

19.利用重积分计算由曲面 $z = a + \sqrt{a^2 - x^2 - y^2} (a > 0)$ 与 $z = \sqrt{x^2 + y^2}$ 所围立体 Ω 的体积.

益

计算列组长的积分 $\int_{\mathbb{R}} (x+y)ds$,其中 L 为连接点(L0)

[ŵz