MA 1024. HOMEWORK 4 DUE: FRIDAY APRIL 11

Assigned Problems:

Section 12.10: 2, 8, 10,(18) 24

Section 13.1: 4, 6, 12, 16, 24, 26, 32

Recommended Problems: (only hand in the subset listed above)

Section 12.10: 1-25

Section 13.1: 1-34

12.10
(13)
$$f(x_1y) = 8xy - 2x^2 - y^4$$

 $f_x(x_1y) = 8y - 4x$
 $f_y(x_1y) = 8x - 4y^3$

so
$$f_x = 0 \Rightarrow 4x = 8y$$
 or $8x = 16y$.

Substituting into $f_y = 0$ we find:

 $16y - 4y^3 = 0$
 $4y(4 - y^2) = 0 \Rightarrow y = 0$ or $y = \pm 2$.

Critical physical are $(0,0)$, $(4,2)$ and $(-4,-2)$.

 $f_{xx} = -4 = A$
 $f_{xy} = 8 = B$
 $f_{yy} = -12y^2 = C$.

CRIT PTS	A	В	C	Δ	type of extremum
(0,0)	- 4-	8	0	-64	saddle
(4,2)	_4	8	_ 48	128	local max
(-4,-2)	- 4	8	1000 - 48	128	1(
	1		•		· ·

avea of each square is
$$\triangle A_i = 1$$
.

So
$$\iint_{\mathcal{R}} x^2 + y^2 dA \approx \sum_{i=1}^{6} f(x_i^*, y_i^*) \triangle A_i$$

$$= f(1,1) + f(2,1) + f(1,2) + f(2,2) + f(1,3) + f(2,3)$$

$$\int_{0}^{1} \int_{0}^{1} e^{x+y} dx dy = \int_{0}^{1} \left[e^{x+y} \right]_{0}^{1} dy = \int_{0}^{1} e^{1+y} - e^{y} dy$$

$$= \left[e^{1+\gamma} - e^{\gamma}\right]_0^1 = \left(e^2 - e\right) - \left(e^1 - 1\right)$$

$$= e^2 - 2e - 1$$

$$= (e-1)^2$$

(32) ①
$$\iint_{Sin \times cosy} dx dy = \iint_{-\frac{\pi}{2}} \left[-\cos x \cos y \right]_{0}^{\frac{\pi}{2}} dy = \int_{2\cos y}^{\frac{\pi}{2}} dy = \left[2\sin y \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 4$$

(2)
$$\int_{0}^{\pi} \int_{-\pi}^{\pi} \sin x \cos y \, dy \, dx = \int_{0}^{\pi} \left[\sin x \sin y \right]_{-\frac{\pi}{2}}^{\pi} dx = \int_{0}^{\pi} 2 \sin x \, dx = \left[-2 \cos x \right]_{0}^{\pi} = 4.$$