# Foundations of Machine Learning CentraleSupélec — Fall 2017

# 9. Tree-based approaches

#### **Chloé-Agathe Azencott**

Centre for Computational Biology, Mines ParisTech chloe-agathe.azencott@mines-paristech.fr









### Learning objectives

- Build decision trees:
  - Decide how to grow a tree
  - Decide when to stop growing a tree
- Explain why they are examples of non-metric learning and hierarchical learning.
- Combine decision trees (or other weak learners) to make more powerful classifiers.

### **Decision trees**

### Hierarchical learning

- Single-stage classifiers:
  - Assign a class to object x using a single operation.
  - Use a single set of features for all classes.
  - Difficulties:
    - when classes have **multi-modal** distributions
    - when features are nominal.
- Hierarchical classifiers:

Multiple successive tests.

### **Nominal data**

- Attributes that are
  - Discrete
  - Without any natural notion of similarity/ordering
    - → Non-metric learning.
- Example:

Classify fruit from {color, shape, texture, size}.

# Decision trees: The 20Q game



### Multiclass classification

One-versus-all

Build K classifiers, make them vote.

One-versus-one

Build K (K-1) / 2 classifiers, make them vote.

- Use an algorithm that naturally handles multiple classes.
  - Decision trees and their variants
  - Neural networks (Chap. 11)

# Decision trees: The 20Q game



# Partition of the feature space



$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$
indicator

 $t_4$  • Classification:



$$C_m =$$

• Regression:



### Partition of the feature space



$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

#### • Classification:

 $c_m$  = majority vote in region.

#### • Regression:

c<sub>m</sub> = average value in region.

### Partition of the feature space

- A decision tree is a recursive partition of the training set into smaller and smaller subsets.
- Purity: a node is pure if all samples at that node have the same class label.
- CART: Classification And Regression Trees

Recursive procedure to split a training set and organize it into a tree.

### **CART: Design choices**

- Binary or multi-way splits?
- Which feature(s) to use at each node?
   i.e. how to split?
- When to stop growing a tree?

# Binary vs. non-binary trees

### Binary & multi-value splits

A tree with arbitrary branching factor can always be equivalently represented by a binary tree.

Find a binary tree that's equivalent to:





### Binary & multi-value splits

A tree with arbitrary branching factor can always be equivalently represented by a binary tree.



#### Monothetic trees

- Use 1 feature per node
- The decision boundary is



#### Monothetic trees

- Use 1 feature per node
- The decision boundary is orthogonal to the axes.

• Splitting variable (j) and splitting point (s) define 2 regions:

$$R_l = \{x : x_j \le s\} \text{ and } R_r = \{x : x_j > s\}$$



• Splitting variable (j) and splitting point (s) define 2 regions:

$$R_l = \{x : x_j \le s\} \text{ and } R_r = \{x : x_j > s\}$$

Regression tree: choose j and s to minimize SE:

$$\min_{j,s} \left( \sum_{i:x_i \in R_l(j,s)} (y_i - c_l)^2 + \sum_{i:x_i \in R_r(j,s)} (y_i - c_r)^2 \right)$$

• Splitting variable (j) and splitting point (s) define 2 regions:

$$R_l = \{x : x_j \le s\} \text{ and } R_r = \{x : x_j > s\}$$

Classification tree: choose j and s to minimize impurity.

$$\min_{j,s} \left( \frac{|R_l(j,s)|}{n} \times \operatorname{Imp}(R_l(j,s)) + \frac{|R_r(j,s)|}{n} \times \operatorname{Imp}(R_r(j,s)) \right)$$

Greedy algorithm / local optimization.

• Splitting variable (j) and splitting point (s) define 2 regions:

$$R_l = \{x : x_j \le s\} \text{ and } R_r = \{x : x_j > s\}$$

- Classification tree: choose j and s to maximize the drop in impurity.
- Impurity:
  - Classification error
  - Entropy
  - Gini impurity.

 Minimum probability that a training point will be misclassified at node (s,j)

$$\mathrm{Imp}(R_m) = 1 - \max_k \hat{p}_{mk}$$
 proportion of training instances from class k in Rm

If all examples from one class belong to Rm, then
 Imp(Rm) = ?

 Minimum probability that a training point will be misclassified at node (s,j)

$$\mathrm{Imp}(R_m) = 1 - \max_k \hat{p}_{mk}$$
 proportion of training instances from class k in Rm

If all examples from one class belong to Rm, then
 Imp(Rm) = 0

 Minimum probability that a training point will be misclassified at node (s,j)

$$\mathrm{Imp}(R_m) = 1 - \max_k \hat{p}_{mk}$$
 proportion of training instances from class k in Rm

- If all examples from one class belong to Rm, then
   Imp(Rm) = 0
- If we have 2 balanced classes, and instances are randomly split at (s, j), then Imp(Rm) = ?

 Minimum probability that a training point will be misclassified at node (s,j)

$$\mathrm{Imp}(R_m) = 1 - \max_k \hat{p}_{mk}$$
 proportion of training instances from class k in Rm

- If all examples from one class belong to Rm, then
   Imp(Rm) = 0
- If we have 2 balanced classes, and instances are randomly split at (s, j), then Imp(Rm) = 0.5

Information theory: Shannon's entropy

proportion of training instances from class k in Rm

$$\operatorname{Imp}(R_m) = -\sum_{k} \hat{p}_{mk} \log_2 \hat{p}_{mk}$$

If all examples from one class belong to Rm, then
 Imp(Rm) = ?

Information theory: Shannon's entropy

proportion of training instances from class k in Rm

$$\operatorname{Imp}(R_m) = -\sum_{k} \hat{p}_{mk} \log_2 \hat{p}_{mk}$$

• If all examples from one class belong to Rm, then Imp(Rm) = 0

Information theory: Shannon's entropy

proportion of training instances from class k in Rm

$$\operatorname{Imp}(R_m) = -\sum_{k} \hat{p}_{mk} \log_2 \hat{p}_{mk}$$

- If all examples from one class belong to Rm, then
   Imp(Rm) = 0
- If we have 2 balanced classes, and instances are randomly split at (s, j), then Imp(Rm) = ?

Information theory: Shannon's entropy

proportion of training instances from class k in Rm

$$\operatorname{Imp}(R_m) = -\sum_{k} \hat{p}_{mk} \log_2 \hat{p}_{mk}$$

- If all examples from one class belong to Rm, then
   Imp(Rm) = 0
- If we have 2 balanced classes, and instances are randomly split at (s, j), then Imp(Rm) = 1

$$\mathrm{Imp}(R_m) = \sum_{k=1}^K \hat{p}_{mk} (1 - \hat{p}_{mk}) \quad \text{proportion of training instances from class k in Rm}$$

If all examples from one class belong to Rm, then Imp(Rm) = ?

$$\operatorname{Imp}(R_m) = \sum_{k=1}^K \hat{p}_{mk} (1 - \hat{p}_{mk}) \quad \text{proportion of training instances from class k in Rm}$$

• If all examples from one class belong to Rm, then Imp(Rm) = 0

$$\operatorname{Imp}(R_m) = \sum_{k=1}^K \hat{p}_{mk} (1 - \hat{p}_{mk}) \quad \text{proportion of training instances from class k in Rm}$$

- If all examples from one class belong to Rm, then Imp(Rm) = 0
- If we have 2 balanced classes, and instances are randomly split at (s, j), then Imp(Rm) = ?

$$\mathrm{Imp}(R_m) = \sum_{k=1}^K \hat{p}_{mk} (1 - \hat{p}_{mk}) \quad \text{proportion of training instances from class k in Rm}$$

- If all examples from one class belong to Rm, then Imp(Rm) = 0
- If we have 2 balanced classes, and instances are randomly split at (s, j), then Imp(Rm) = 0.5

$$\operatorname{Imp}(R_m) = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$
$$GI(j, s) = \frac{|R_l(j, s)|}{n} \times \operatorname{Imp}(R_l(j, s)) + \frac{|R_r(j, s)|}{n} \times \operatorname{Imp}(R_r(j, s))$$

- If the split respects the overall distribution:  $\hat{p}_{mk} = \frac{n_k}{n} \ \ \forall k$
- All regions are identically distributed and have Gini impurity:

$$Imp(R_m) = \sum_{k=1}^{K} \frac{n_k}{n} \left( 1 - \frac{n_k}{n} \right) = 1 - \sum_{k=1}^{K} \frac{n_k^2}{n^2}$$

• If the dataset is balanced  $n_k=\frac{n}{K} \quad \forall k$  then  $\mathrm{Imp}(R_m)=1-\frac{1}{\nu}$ 

# Gini impurity (K=2)

$$\operatorname{Imp}(R_m) = \sum_{k=1}^K \hat{p}_{mk} (1 - \hat{p}_{mk})$$

$$GI(j, s) = \frac{|R_l(j, s)|}{n} \times \operatorname{Imp}(R_l(j, s)) + \frac{|R_r(j, s)|}{n} \times \operatorname{Imp}(R_r(j, s))$$

$$x_j \leq s$$

$$x_j \leq s$$

$$n_l = n_l^- + n_l^+$$

$$n_r = n_r^- + n_r^+$$

• Rewrite GI(j, s) using  $n_l, n_l^+, n_l^-, n_r, n_r^+, n_r^-$ 



## Gini impurity (K=2)

$$Imp(R_m) = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

$$GI(j,s) = \frac{|R_l(j,s)|}{n} \times Imp(R_l(j,s)) + \frac{|R_r(j,s)|}{n} \times Imp(R_r(j,s))$$

$$x_j \leq s$$

$$x_j \geq s$$

$$n_l + n_r = n$$

$$n_l^- + n_r^- = n^-$$

$$n_l^+ + n_r^+ = n^+$$

$$n_l = n_l^- + n_l^+$$

$$n_r = n_r^- + n_r^+$$

$$s) = \frac{n_l}{n_l} \left( \frac{n_l^-}{n_l^-} \left( 1 - \frac{n_l^-}{n_l^-} \right) + \frac{n_l}{n_l^+} \left( 1 - \frac{n_l^+}{n_l^+} \right) \right) + \frac{n_r}{n_r} \left( \frac{n_r^-}{n_r^-} \left( 1 - \frac{n_r^-}{n_r^-} \right) + \frac{n_r^+}{n_r^+} \left( 1 - \frac{n_r^+}{n_r^+} \right) \right)$$

$$GI(j,s) = \frac{n_l}{n} \left( \frac{n_l^-}{n_l} \left( 1 - \frac{n_l^-}{n_l} \right) + \frac{n_l^+}{n_l} \left( 1 - \frac{n_l^+}{n_l} \right) \right) + \frac{n_r}{n} \left( \frac{n_r^-}{n_r} \left( 1 - \frac{n_r^-}{n_r} \right) + \frac{n_r^+}{n_r} \left( 1 - \frac{n_r^+}{n_r} \right) \right)$$

$$GI(j,s) = \frac{2}{n} \left( \frac{n_l^- n_l^+}{n_l} + \frac{n_r^- n_r^+}{n_r} \right)$$

# When to stop growing a tree

## When to stop growing a tree

- Large tree might overfit
- Small tree might underfit
- Strategy:
  - grow the tree until a minimum node size (# training points in the region) is reached;
  - prune the tree: cost-complexity pruning.

## When to stop growing a tree

prune the tree: cost-complexity pruning.



α: trade-off between model complexity and goodness of fit.

### **Advantages & drawbacks of trees**

- :-) Trees are easy to explain.
- :-) Trees seem to mirror human-decision making.
- :-) Trees can be displayed graphically and easily interpreted.
- :-) Trees can easily handle quantitative variables.
- :-) Trees naturally handle multi-class problems.

• :-( Trees generally do not have very good **predictive** accuracy.

### **Forests**

## **Building forests**

- Idea: Aggregating many weak learners can substantially increase their performance.
- Ensemble learning

- Wisdom of crowds: Average out the uncorrelated errors of individual classifiers.
- **Example:** Learn a diagonal separation from "staircase" decision boundaries.



- Wisdom of crowds: Average out the uncorrelated errors of individual classifiers.
- **Example:** Learn a diagonal separation from "staircase" decision boundaries.



- Wisdom of crowds: Average out the uncorrelated errors of individual classifiers.
- **Example:** Learn a diagonal separation from "staircase" decision boundaries.



- Wisdom of crowds: Average out the uncorrelated errors of individual classifiers.
- **Example:** Learn a diagonal separation from "staircase" decision boundaries.



- Wisdom of crowds: Average out the uncorrelated errors of individual classifiers.
- **Example:** Learn a diagonal separation from "staircase" decision boundaries.



- Wisdom of crowds: Average out the uncorrelated errors of individual classifiers.
- **Example:** Learn a diagonal separation from "staircase" decision boundaries.



### **Building ensembles**

- Subsample the training data
  - Bagging [Breiman 1996]: bootstrap resampling
  - Boosting [Schapire 1990]: resample based on performance
- Use different features
  - Multiple input representations
  - Feature selection (Chap 11)
- Use different parameters of the learning algorithm.

## **Combining learners**

- Non-trainable combination:
  - Voting (classification)
  - Averaging (regression)
- Trainable combination:
  - Weighted averaging: based on performance on a validation set.
  - Meta-learner: the outputs of the individual learners are features for another learning algorithm.

### **Bagging trees**

#### Bagging:

- Take repeated samples from the training data (bootstrap)
- Build one predictor from each of these samples
- Final prediction: average (regression) or majority vote (classification)

[Breiman 2001]

#### **Random forests**

- Similar to bagging trees
- One trick to decorrelate the trees:

Before splitting, first randomly sample q (out of p) variables among which the one over which to split must be chosen.

Typically  $q = \sqrt{p}$ .

Very good predictive power in practice!

$$y \in \{-1, +1\}$$

#### AdaBoost

[Schapire & Freund 1997]

- weak learners = stumps (only one split)
- Give more weight to the more difficult samples
- At iteration m:
  - learn  $f_m$  from data weighted by  $\{w_i^{m-1}\}_{i=1,...n}$

$$\epsilon_m = \sum_{i=1}^n w_i^m \delta_{f_m(\boldsymbol{x}^i) \neq y^i}$$
 
$$\alpha_m = \frac{1}{2} \log \frac{1 - \epsilon_m}{\epsilon_m}$$
 weighted error

- update weights:  $w_i^m = \underbrace{\frac{1}{Z_m}} w_i^{m-1} \underbrace{\exp\left(-\alpha_m y^i f_m(\boldsymbol{x}^i)\right)}_{\text{exponential loss}}$  such that the weights sum to 1

Final decision function:

$$f: \boldsymbol{x} \mapsto \sum_{m=1}^{N} \alpha_m f_m(\boldsymbol{x})$$

## **Gradient Boosting**

[Friedman 2001]

- At iteration m:
  - learn  $f_m$  that minimizes a loss function for predictor

$$F_m = \sum_{l=1}^{m} \alpha_l f_l = F_{m-1} + \alpha_m f_m$$

by gradient descent

Exponential loss: equivalent to AdaBoost

$$\mathcal{L}(y, f(\boldsymbol{x})) = \exp(-yf(\boldsymbol{x}))$$

– Other possible losses:

• cross-entropy:

ther possible losses: 
$$y \in \{0, 1\}$$
 cross-entropy: 
$$\mathcal{L}(y, f(\boldsymbol{x})) = \log(1 + \exp^{-yf(\boldsymbol{x})}) = \sum_{k=0}^{K-1} y \log(f_k(\boldsymbol{x}))$$
 = logistic loss multiclass multiclass = binomial divergence loss

• least-squares: = binomial divergence loss 
$$\mathcal{L}(y,f(\boldsymbol{x})) = \frac{1}{2}(y-f(\boldsymbol{x}))^2$$

## **Gradient Boosting**

[Friedman 2001]

- At iteration m:
  - learn  $f_m$  that minimizes a loss function for predictor

$$F_m = \sum_{l=1}^{\infty} \alpha_l f_l = F_{m-1} + \alpha_m f_m$$

by gradient descent



#### Summary

- Decision trees are easy to interpret.
- Decision trees elegantly deal with
  - Quantitative variables
  - Multiple classes
  - Multimodal distributions.
- Decision trees have limited predictive power, but this can be addressed thanks to ensemble methods
  - Boosting
  - Bagging
  - Random forests.

#### References

- A Course in Machine Learning. http://ciml.info/dl/v0\_99/ciml-v0\_99-all.pdf
  - Decision trees: Chap 1.3
  - Boosting: Chap 13.2
  - Random forests: Chap 13.3
- The Elements of Statistical Learning. http://web.stanford.edu/~hastie/ElemStatLearn/
  - Decision trees: Chap 9.2
  - Boosting: Chap 10.1 − 10.10
  - − Random forests: Chap 15.1 − 15.2
- A complete tutorial on tree-based modeling

https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-modeling-scratch-in-python/#ten

#### Lab 7

```
# Training data
X_demo = np.concatenate((X1, X2), axis=0)
y_demo = np.concatenate((np.zeros(X1.shape[0]), np.ones(X2.shape[0])))
# Train a DecisionTreeClassifier on the training data
clf = tree.DecisionTreeClassifier(splitter='random').fit(X_demo, y_demo)
```

splitter : string, optional (default="best")

The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split.





```
ypred_dt = [] # will hold the 5 arrays of predictions (1 per tree)
for tree_index in range(5):
    # Initialize a DecisionTreeClassifier
    clf = tree.DecisionTreeClassifier()

# Cross-validate this DecisionTreeClassifier on the toy data
    pred_proba = cross_validate_clf(X, y, clf, folds)

# Append the prediction to ypred_dt
    ypred_dt.append(pred_proba)

# Print the accuracy of DecisionTreeClassifier
    print("%.3f" % metrics.accuracy_score(y, np.where(pred_proba > 0.5, 1, 0)))
```

The features are always randomly permuted at each split. Therefore, the best found split may vary, even with the same training data and max\_features=n\_features, if the improvement of the criterion is identical for several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting, random\_state has to be fixed.

#### **Decision trees**

```
for tree index in range(5):
    # Compute the ROC curve of the current tree
    fpr dt tmp, tpr dt tmp, thresholds = metrics.roc curve(y, ypred dt[tree index], pos label=1)
    # Compute the area under the ROC curve of the current tree
    auc dt tmp = metrics.auc(fpr dt tmp, tpr dt tmp)
    fpr dt.append(fpr dt tmp)
    tpr dt.append(tpr dt tmp)
    auc dt.append(auc dt tmp)
# Plot the first 4 ROC curves
for tree index in range(4):
    plt.plot(fpr dt[tree index], tpr dt[tree index], '-')
# Plot the last ROC curve,
                                              ROC curves
plt.plot(fpr dt[-1], tpr (
                             1.0
         label='DT (AUC =
                                                                         uc dt)))
                             0.8
                          True Positive Rate
 Decision
 trees perform
                             0.6
 poorly on this
 data
                             0.4
                             0.2
```

0.0

0.0

0.2

0.4

False Positive Rate

DT (AUC = 0.54 + /- 0.02)

0.8

1.0

0.6

### **Optimized decision tree**

ROC curves

False Positive Rate

1.0

0.0

0.2



not very good.

1.0

## **Bagging trees**

```
# Initialize a bag of trees
clf = ensemble.BaggingClassifier(n_estimators=5, max_features=X.shape[1])
# Cross-validate the bagging trees on the tumor data
ypred_bt = cross_validate_clf(X, y, clf, folds)
```



Combining 5 trees gives a much better performance than any of the 5 trees!

```
# Number of trees to use
list_n_trees = [5, 10, 20, 50, 80]

# Start a ROC curve plot
fig = plt.figure(figsize=(5, 5))

for idx, n_trees in enumerate(list_n_trees):
    # Initialize a bag of trees with n_trees trees
    clf = ensemble.BaggingClassifier(n_estimators=n_trees)

# Cross-validate the bagging trees on the tumor data
ypred_bt_tmp = cross_validate_clf(X, y, clf, folds)
```

Increasing the number of trees increases the performance, but quickly does not make much of a difference.



```
# Initialize a random forest with 5 trees
                                                              Random forest
clf = ensemble.RandomForestClassifier(n estimators=5)
# Cross-validate the random forest on the tumor data
vpred rf = cross validate clf(X, y, clf, folds)
# Compute the ROC curve of the random forest
fpr rf, tpr rf, thresholds = metrics.roc curve(v, vpred rf, pos label=1)
auc rf = metrics.auc(fpr rf, tpr rf)
# Plot the ROC curve of the 5 decision trees from earlier
fig = plt.figure(figsize=(5, 5))
for tree index in range(4):
    plt.plot(fpr dt[tree index], tpr dt[tree index], '-', color='grey')
plt.plot(fpr dt[-1], tpr dt[-1], '-', color='grey',
        label='DT (AUC = %0.2f (+/- %0.2f))' % (np.mean(auc dt), np.std(auc dt)))
# Plot the ROC curve of the bagging trees (5 trees)
plt.plot(fpr bt, tpr bt, label='BT (AUC=%0.2f)' % auc bt)
```

With few trees, we observe a similar behavior for the random forest as for the bagging trees.

# Plot the ROC curve of the random forest (5 trees)

plt.plot(fpr rf, tpr rf, label='RF (AUC=%0.2f)' % auc rf)



On this data set, the random forest and the bagging trees perform very similarly.

If you have time, try increasing the number of trees to several hundreds.



## **Comparison with linear models**

On this data set, the random forest slightly outperforms the l1-regularized logistic regression.

On data sets with fewer features and more samples, random forests can be much more powerful than linear methods.

