પ્રશ્ન 1(અ) [3 ગુણ]

High K FINFET ના ફાયદા લખો.

જવાબ:

ફાયદો	વર્ણન
ઓછો leakage current	સાટું ગેટ કંટ્રોલ પાવર consumption ઘટાડે છે
સુધારેલી performance	વધુ ડ્રાઇવ કરંટ અને ઝડપી switching
વધુ સારી scalability	Moore's law scaling ચાલુ રાખવાની મંજૂરી આપે છે

• High K dielectric: ગેટ leakage નોંધપાત્ર રીતે ઘટાડે છે

• 3D structure: ચેનલ પર વધુ સારું electrostatic control

• ઓછી પાવર: static અને dynamic power બંને ઘટાડે છે

મેમરી ટ્રીક: "High Performance, Low Power, Better Control"

પ્રશ્ન 1(બ) [4 ગુણ]

વ્યાખ્યા કરો: (1) pinch off point (2) Threshold Voltage.

જવાબ:

મુખ્ય MOSFET Parameters:

30 18	વ્યાખ્યા	મહત્વ
Pinch-off Point	ચેનલ સંપૂર્ણ deplete થતું સ્થાન	Saturation region માં પ્રવેશ દર્શાવે છે
Threshold Voltage	Conducting channel બનાવવા માટે લઘુતમ VGS	ON/OFF switching point નિર્ધારે છે

• Pinch-off point: VDS = VGS - VT, ચેનલ શૂન્ચ પહોળાઈ સુધી સંકુચિત થાય છે

• Threshold voltage: Enhancement MOSFET માટે સામાન્ય રીતે 0.7V

• મહત્વપૂર્ણ parameters: બંને MOSFET operating regions નિધરિ છે

મેમરી ટ્રીક: "Threshold Turns ON, Pinch-off Points to Saturation"

પ્રશ્ન 1(ક) [7 ગુણ]

MOSFET transistor નું બંધારણ દોરો અને સમજાવો.

જવાબ:

ડાયાગ્રામ:

બંધારણના ઘટકો:

ยะร	સામગ્રી	รเช้
Gate	Polysilicon/Metal	ચેનલ formation કંટ્રોલ કરે છે
Gate oxide	SiO2	Gate ને substrate થી અલગ કરે છે
Source/Drain	n+ doped silicon	Current ના પ્રવેશ/બહાર નીકળવાના સ્થળો
Substrate	p-type silicon	Body connection પૂરું પાડે છે

- **યેનલ formation: Oxide-semiconductor interface** પર થાય છે
- Enhancement mode: VGS > VT હોય ત્યારે **ચેનલ બને છે**
- ચાર-terminal device: Gate, Source, Drain, Body connections

મેમરી ટ્રીક: "Gate Controls, Oxide Isolates, Source-Drain Conducts"

પ્રશ્ન 1(ક OR) [7 ગુણ]

Full Voltage Scaling અને Constant Voltage Scaling ની સરખામણી કરો.

જવાબ:

સરખામણી કોષ્ટક:

Parameter	Full Voltage Scaling	Constant Voltage Scaling
Supply voltage	α વડે scale down	સ્થિર રહે છે
Gate oxide thickness	α વડે scale down	a વડે scale down
Channel length	α વડે scale down	a વડે scale down
Power density	સ્થિર રહે છે	α² વડે વધે છે
Performance	મધ્યમ સુધારો	વધુ સારી performance
Reliability	વધુ સારી	High fields ને કારણે નબળી

- Full scaling: બધા dimensions અને voltages પ્રમાણસર scale કરાય છે
- Constant voltage: ફક્ત physical dimensions scale કરાય છે, voltage અપરિવર્તિત
- Trade-off: Performance vs power vs reliability

મેમરી ટ્રીક: "Full scales All, Constant keeps Voltage"

પ્રશ્ન 2(અ) [3 ગુણ]

રેસિસ્ટિવ લોડ ઇનવર્ટર દોરો. જુદા જુદા ઓપરેશન રીજન માટે ઇનપુટ વોલ્ટેજની રેન્જ લખો.

જવાબ:

સર્કિટ ડાયાગ્રામ:

ઓપરેટિંગ રીજન કોષ્ટક:

રીજન	ઇનપુટ વોલ્ટેજ રેન્જ	આઉટપુટ સ્થિતિ
Cut-off	Vin < VT	Vout = VDD
Triode	VT < Vin < VDD-VT	ટ્રાન્ઝિશન
Saturation	Vin > VDD-VT	Vout ≈ 0V

મેમરી ટ્રીક: "Cut-off High, Triode Transition, Saturation Low"

પ્રશ્ન 2(બ) [4 ગુણ]

N channel MOSFET ની VDS-ID અને VGS-ID લાક્ષણિકતાઓ દોરો અને સમજાવો.

જવાબ:

VDS-ID લાક્ષણિકતાઓ:

લાક્ષણિકતાઓ કોષ્ટક:

લાક્ષણિકતા	રીજન	વર્તન
VDS-ID	Triode	VDS સાથે Linear વૃદ્ધિ
VDS-ID	Saturation	સ્થિર ID (square law)
VGS-ID	Sub-threshold	Exponential વૃદ્ધિ
VGS-ID	VT Gue	Square law relationship

• Triode region: ID વડે VDS સાથે linearly વધે છે

• Saturation: ID VDS થી સ્વતંત્ર, VGS પર આધારિત

• Square law: Saturation $\rm Hi~ID~_{\propto}~(VGS-VT)^2$

મેમરી ટ્રીક: "Linear in Triode, Square in Saturation"

પ્રશ્ન 2(ક) [7 ગુણ]

ડિપ્લેશન લોડ NMOS ઇનવર્ટર સર્કિટ દોરો અને તેની કાર્યપદ્ધતિ સમજાવો.

જવાલ:

સર્કિટ ડાયાગ્રામ:

ઓપરેશન કોષ્ટક:

ઇનપુટ	M1 સ્થિતિ	ML સ્થિતિ	આઉટપુટ
Low (0V)	Cut-off	Active load	High (VDD)
High (VDD)	Saturated	Linear	Low

- Depletion load: હંમેશા conducting, current source તરીકે કાર્ય કરે છે
- વધુ સારી performance: Resistive load કરતાં higher output voltage swing
- Gate connection: Depletion operation માટે ML નું gate source સાથે જોડાયેલું
- સુધારેલું noise margin: Enhancement load કરતાં વધુ સારું VOH

મેમરી ટ્રીક: "Depletion Always ON, Enhancement Controls Flow"

પ્રશ્ન 2(અ OR) [3 ગુણ]

CMOS ઇનવર્ટર ના કાયદા વર્ણવો.

જવાબ:

કાયદા કોષ્ટક:

ફાયદો	લાલ
શૂન્ય static power	Steady state માં કોઈ current નહીં
સંપૂર્ણ voltage swing	આઉટપુટ 0V થી VDD સુધી swing કરે છે
ઉચ્ચ noise margins	વધુ સારી noise immunity

- Complementary operation: એક transistor હંમેશા OFF
- ઉચ્ચ input impedance: Gate isolation ઉચ્ચ impedance પૂરું પાડે છે
- ઝડપી switching: ઓછા parasitic capacitances

મેમરી ટ્રીક: "Zero Power, Full Swing, High Immunity"

પ્રશ્ન 2(બ OR) [4 ગુણ]

નોઇસ માર્જિન વિગતવાર દોરો અને સમજાવો.

જવાબ:

વોલ્ટેજ ટ્રાન્સફર લાક્ષણિકતાઓ:

નોઇસ માર્જિન Parameters:

Parameter	Formula	સામાન્ય મૂલ્ય
NMH	VOH - VIH	VDD ना 40%
NML	VIL - VOL	VDD ना 40%

- **High noise margin**: **Positive noise** સામે immunity
- Low noise margin: Negative noise સામે immunity
- વધુ સારા CMOS: અન્ય logic families કરતાં higher noise margins

મેમરી ટ્રીક: "High goes Higher, Low goes Lower"

પ્રશ્ન 2(ક OR) [7 ગુણ]

N MOS ઇનવર્ટર ની VTC દોરો અને સમજાવો.

જવાબ:

વોલ્ટેજ ટ્રાન્સફર લાક્ષણિકતાઓ:

ઓપરેટિંગ રીજન કોષ્ટક:

રીજન	Vin રેન્જ	M1 સ્થિતિ	Vout
1	0 थी VT	Cut-off	VDD
II	VT थी VT+VTL	Saturation	ઘટતું
III	VT+VTL थी VDD	Triode	નીચું

• Region I: M1 OFF, કોઈ current flow નહીં, Vout = VDD

• Region II: M1 saturation मां, तीव्र transition

• Region III: M1 triode માં, ધીમેથી ઘટાડો

• Load line: Operating point intersection નિર્ધારે છે

મેમરી ટ્રીક: "Cut-off High, Saturation Sharp, Triode Low"

પ્રશ્ન 3(અ) [3 ગુણ]

Generalized મલ્ટીપલ ઇનપુટ NOR gate નું બાંધકામ ડિપ્લેશન NMOS લોડ સાથે દોરો અને સમજાવો.

જવાબ:

સર્કિટ ડાયાગ્રામ:

સત્ય કોષ્ટક:

ઇનપુટ્સ	รìย์ ยनนูટ High?	આઉટપુટ Y
	ના	High (1)
รìย์ High	હા	Low (0)

• Parallel NMOS: કોઈપણ input HIGH હોય તો output LOW થાય છે

• NOR operation: Y = (A+B+C)'

• Depletion load: Pull-up current પૂરું પાડે છે

મેમરી ટ્રીક: "Parallel Pulls Down, Depletion Pulls Up"

પ્રશ્ન 3(બ) [4 ગુણ]

AOI અને OAI ના તફાવત લખો.

જવાબ:

સરખામણી કોષ્ટક:

Parameter	AOI (AND-OR-Invert)	OAI (OR-AND-Invert)
Logic function	Y = (AB + CD)'	Y = ((A+B)(C+D))'
NMOS structure	Series-parallel	Parallel-series
PMOS structure	Parallel-series	Series-parallel
જટિલતા	મધ્યમ	મધ્યમ

• AOI: AND terms ORed ਪછੀ inverted

• OAI: OR terms ANDed ਪછੀ inverted

• CMOS implementation: Dual network structure

• Applications: Single stage भां complex logic functions

મેમરી ટ્રીક: "AOI: AND-OR-Invert, OAI: OR-AND-Invert"

પ્રશ્ન 3(ક) [7 ગુણ]

EX-OR gate CMOS ની મદદથી અને લોજીક ફંક્શન Z = (AB +CD)' NMOS લોડની મદદથી અમલમાં મૂકો.

જવાબ:

EX-OR CMOS Implementation:

Z = (AB + CD)' NMOS Implementation:

લોજીક Implementation કોષ્ટક:

સર્કિટ	ફંક્શન	Implementation
EX-OR	A⊕B	Complementary CMOS
AOI	(AB+CD)'	Series-parallel NMOS

- EX-OR: Efficient implementation માટે transmission gates જરૂરી
- AOI function: Natural NMOS implementation

મેમરી ટ્રીક: "EX-OR needs Transmission, AOI uses Series-Parallel"

પ્રશ્ન 3(અ OR) [3 ગુણ]

Generalized મલ્ટીપલ ઇનપુટ NAND gate નું બાંધકામ ડિપ્લેશન NMOS લોડ સાથે દોરો અને સમજાવો.

જવાબ:

સર્કિટ ડાયાગ્રામ:

```
VDD — ML (Depletion Load)

— Y = (ABC)'

A — M1

B — M2 ← Series Connection

C — M3

GND
```

ઓપરેશન કોષ્ટક:

સ્થિતિ	Ground તરફ પાથ	આઉટપુટ Y
अधा inputs HIGH	સંપૂર્ણ પાથ	Low (0)
ອ ì ຢ input LOW	તૂટેલો પાથ	High (1)

- Series NMOS: બધા inputs HIGH હોવા જરૂરી output LOW કરવા માટે
- NAND operation: Y = (ABC)'
- Depletion load: હંમેશા pull-up current પૂરું પાડે છે

ਮੇਮਰੀ ਟ੍ਰੀਡ: "Series Needs All, NAND Says Not-AND"

પ્રશ્ન 3(બ OR) [4 ગુણ]

((P+R)(S+T))' લોજીક ફંક્શન CMOS લોજીકની મદદથી અમલીકરણ કરો.

જવાબ:

CMOS Implementation:

સત્ય કોષ્ટક Implementation:

PMOS Network	NMOS Network	ઓપરેશન
(P+R)'+(S+T)'	(P+R)(S+T)	Complementary
P'R' + S'T'	PS + PT + RS + RT	De Morgan's law

- PMOS: Groups વિથિન parallel, groups વચ્ચે series
- NMOS: Groups વિથિન series, groups વચ્ચે parallel
- Dual network: Complementary operation સુનિશ્ચિત કરે છે

ਮੇਮਣੀ ਟ੍ਰੀਡ: "PMOS does Opposite of NMOS"

પ્રશ્ન 3(ક OR) [7 ગુણ]

SR latch circuit ની કાર્યપદ્ધતિ વર્ણવો.

જવાબ:

SR Latch સર્કિટ:

સત્ય કોષ્ટક:

S	R	Q(n+1)	Q'(n+1)	સ્થિતિ
0	0	Q(n)	Q'(n)	Hold
0	1	0	1	Reset
1	0	1	0	Set
1	1	0	0	અમાન્ય

- **Set operation**: S=1, R=0 થી Q=1 થાય છે
- Reset operation: S=0, R=1 થી Q=0 થાય છે
- Hold state: S=0, R=0 પહેલાની state જાળવે છે
- અમાન્ય state: S=1, R=1 ટાળવી જોઈએ
- Cross-coupled: એક gate નું output બીજાના input માં જાય છે

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Set Sets, Reset Resets, Both Bad"

પ્રશ્ન 4(અ) [3 ગુણ]

ચિપ ફેબ્રિકેશન માં Etching methods ની સરખામણી કરો.

જવાબ:

Etching Methods સરખામણી:

પદ્ધતિ	หลเร	ફાયદા	નુકસાન
Wet Etching	રાસાયણિક	ઉચ્ચ selectivity, સરળ	Isotropic, undercut
Dry Etching	ભૌતિક/રાસાયણિક	Anisotropic, યોક્કસ	જટિલ સાધનો
Plasma Etching	Ion bombardment	Directional control	સપાટીને નુકસાન

• Wet etching: પ્રવાહી રસાયણો વાપરે છે, બધી દિશાઓમાં હુમલો

• Dry etching: ગેસ/plasma વાપરે છે, વધુ સારું directional control

• Selectivity: એક સામગ્રીને બીજા કરતાં etch કરવાની ક્ષમતા

ਮੇਮરੀ ਟ੍ਰੀs: "Wet is Wide, Dry is Directional"

પ્રશ્ન 4(બ) [4 ગુણ]

ટૂંક નોંધ લખો : Lithography

જવાબ:

Lithography Process Steps:

સ્ટેપ	પ્રક્રિયા	હેતુ
Resist coating	Photoresist नुं spin-on	પ્રકાશ-સંવેદનશીલ layer
Exposure	Mask દ્વારા UV light	Pattern transfer
Development	Exposed resist દૂર કરવું	Pattern પ્રગટ કરવું
Etching	અસુરક્ષિત material દૂર કરવું	Features अनाववा

• Pattern transfer: Mask થી silicon wafer પર

• Resolution: Minimum feature size નિર્ધારે છે

• Alignment: Multiple layer processing માટે મહત્વપૂર્ણ

• UV wavelength: ટૂંકી wavelength વધુ સારું resolution આપે છે

મેમરી ટ્રીક: "Coat, Expose, Develop, Etch"

પ્રશ્ન 4(ક) [7 ગુણ]

Regularity, Modularity and Locality સમજાવો.

જવાબ:

ડિઝાઈન સિદ્ધાંતો કોષ્ટક:

સિદ્ધાંત	વ્યાખ્યા	ફાયદા	ઉદાહરણ
Regularity	સમાન structures નું પુનરાવર્તન	સરળ design, testing	Memory arrays
Modularity	Hierarchical design blocks	Reusability, maintainability	Standard cells
Locality	સંબંધિત functions નું જૂથ	ઓછું interconnect	Functional blocks

Implementation વિગતો:

- Regularity: સમાન cell બારંબાર વાપરવાથી design complexity ઘટે છે
- Modularity: Well-defined interfaces સાથે top-down design
- Locality: Wire delays અને routing congestion ઘટાડે છે
- Design benefits: ઝડપી design cycle, વધુ સારી testability
- Manufacturing: Regular patterns દ્વારા સુધારેલી yield

Mermaid Diagram:

મેમરી ટ્રીક: "Regular Modules with Local Connections"

પ્રશ્ન 4(અ OR) [3 ગુણ]

Design Hierarchy વ્યાખ્યાયિત કરો.

જવાબ:

Design Hierarchy Levels:

ક્તર	વિવરણ	ઘટકો
System	સંપૂર્ણ chip functionality	Processors, memories
Module	મુખ્ય functional blocks	ALU, cache, I/O
Cell	મૂળભૂત logic elements	Gates, flip-flops

• Top-down approach: System નાના modules માં વિભાજિત

- Abstraction levels: દરેક level નીચેની details છુપાવે છે
- Interface definition: Levels વચ્ચે સ્પષ્ટ boundaries

મેમરી ટ્રીક: "System to Module to Cell"

પ્રશ્ન 4(બ OR) [4 ગુણ]

VLSI design flow chart દોરો અને સમજાવો.

જવાબ:

VLSI Design Flow:

Design Flow કોષ્ટક:

તબક્કો	ઇનપુટ	આઉટપુટ	સાદ્યનો
Architecture	Specifications	Block diagram	High-level modeling
Logic	Architecture	Gate netlist	HDL synthesis
Circuit	Netlist	Transistor sizing	SPICE simulation
Layout	Circuit	Mask data	Place & route

મેમરી ટ્રીક: "Specify, Architect, Logic, Circuit, Layout, Fabricate, Test"

પ્રશ્ન 4(ક OR) [7 ગુણ]

ટૂંક નોંધ લખો : 'VLSI Fabrication Process'

જવાબ:

મુખ્ય Fabrication Steps:

પ્રક્રિયા	હેતુ	પરિણામ
Oxidation	SiO2 layer વૃદ્ધિ	Gate oxide formation
Lithography	Pattern transfer	Device areas વ્યાખ્યા
Etching	અનાવશ્યક material દૂર કરવું	Device structures બनाववा
lon Implantation	Dopants ઉમેરવા	P/N regions બનાવવા
Deposition	Material layers ઉમેરવા	Metal interconnects
Diffusion	Dopants	Junction formation

Process Flow:

- Wafer preparation: સ્વચ્છ silicon substrate
- Device formation: બિનેક steps દ્વારા transistors બનાવવા
- Interconnect: Connections માટે metal layers ઉમેરવા
- Passivation: પૂર્ણ થયેલા circuit ની સુરક્ષા
- Testing: Packaging પહેલાં functionality verify કરવી

Clean Room જરૂરિયાતો:

- Class 1-10: અત્યંત સ્વચ્છ વાતાવરણ જરૂરી
- Temperature control: ચોક્કસ process control
- Chemical purity: ઉચ્ચ-ગ્રેડ materials જરૂરી

મેમરી ટ્રીક: "Oxidize, Pattern, Etch, Implant, Deposit, Diffuse"

પ્રશ્ન 5(અ) [3 ગુણ]

વેરીલોગ પ્રોગ્રામિંગની જુદી જુદી પદ્ધતિ સરખાવો.

જવાબ:

Verilog Modeling Styles:

શૈલી	વિવરણ	ઉપયોગ
Behavioral	Algorithm description	High-level modeling
Dataflow	Boolean expressions	Combinational logic
Structural	Gate-level description	Hardware representation

- Behavioral: Always blocks, if-else, case statements વાપરે છે
- Dataflow: Boolean operators સાથે assign statements વાપરે છે
- Structural: Gates ਅਜੇ modules explicitly instantiate sਦੇ છੇ

મેમરી ટ્રીક: "Behavior Describes, Dataflow Assigns, Structure Connects"

પ્રશ્ન 5(બ) [4 ગુણ]

બિહેવિયરલ પદ્ધતિ થી NAND gate નો વેરીલોગ પ્રોગ્રામ લખો.

જવાબ:

```
module nand_gate_behavioral(
    input wire a, b,
    output reg y
);

always @(a or b) begin
    if (a == 1'b1 && b == 1'b1)
        y = 1'b0;
    else
        y = 1'b1;
end
endmodule
```

કોડ સમજૂતી:

- Always block: Inputs બદલાય ત્યારે execute થાય છે
- Sensitivity list: બધા input signals સમાવે છે
- Conditional statement: NAND logic implement ຣ ຂ છે
- Reg declaration: Procedural assignment માટે જરૂરી

મેમરી ટ્રીક: "Always watch, IF both high THEN low ELSE high"

પ્રશ્ન 5(ક) [7 ગુણ]

4X1 multiplexer ની સર્કિટ દોરો. Case સ્ટેટમેંટ થી આ સર્કિટ નો વેરીલોગ પ્રોગ્રામ બનાવો.

જવાબ:

4X1 Multiplexer સર્કિટ:

Verilog sìs:

```
module mux_4x1_case(
   input wire [1:0] sel,
   input wire i0, i1, i2, i3,
   output reg y
);

always @(*) begin
   case (sel)
   2'b00: y = i0;
```

```
2'b01: y = i1;
2'b10: y = i2;
2'b11: y = i3;
default: y = 1'bx;
endcase
end
```

સત્ય કોષ્ટક:

S1	S0	આઉટપુટ Y
0	0	10
0	1	I1
1	0	12
1	1	13

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Case Selects, Default Protects"

પ્રશ્ન 5(અ OR) [3 ગુણ]

ઉદાહરણ સાથે Testbench વ્યાખ્યાયિત કરો.

જવાબ:

Testbench વ્યાખ્યા:

Testbench એ Verilog module છે જે design under test (DUT) ને stimulus પૂરું પાડે છે અને **તેના response ને** monitor કરે છે.

ઉદાહરણ Testbench:

```
module test_and_gate;
  reg a, b;
  wire y;

and_gate dut(.a(a), .b(b), .y(y));

initial begin
    a = 0; b = 0; #10;
    a = 0; b = 1; #10;
    a = 1; b = 0; #10;
    a = 1; b = 1; #10;
  end
endmodule
```

• DUT instantiation: Design under test નું instance બનાવે છે

- Stimulus generation: Input test vectors પૂરા પાડે છે
- કોઈ ports નહીં: Testbench top-level module છે

મેમરી ટ્રીક: "Test Provides Stimulus, Monitors Response"

પ્રશ્ન 5(બ OR) [4 ગુણ]

ડેટા ફ્લો પદ્ધતિ થી Half Adder નો વેરીલોગ પ્રોગ્રામ લખો.

જવાબ:

```
module half_adder_dataflow(
    input wire a, b,
    output wire sum, carry
);

assign sum = a ^ b; // XOR for sum
assign carry = a & b; // AND for carry
endmodule
```

લોજીક Implementation:

- Sum: Inputs વચ્ચે XOR operation
- Carry: Inputs વચ્ચે AND operation
- Assign statement: Dataflow มเว้ continuous assignment
- Boolean operators: ^ (XOR), & (AND)

સત્ય કોષ્ટક:

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

મેમરી ટ્રીક: "XOR Sums, AND Carries"

પ્રશ્ન 5(ક OR) [7 ગુણ]

Encoder નું કાર્ય લખો. if..else વડે 8X3 Encoder નો વેરીલોગ કોડ બનાવો.

જવાબ:

Encoder รเช่:

Encoder 2ⁿ input lines ਜੇ n output lines માં convert sਦੇ છે. 8X3 encoder 8 inputs ਜੇ 3-bit binary output માં convert sਦੇ છે.

Priority કોષ્ટક:

ઇનપુટ	Binary આઉટપુટ
17	111
16	110
15	101
14	100
13	011
12	010
I1	001
10	000

Verilog sìs:

```
module encoder 8x3(
   input wire [7:0] i,
    output reg [2:0] y
);
always @(*) begin
   if (i[7])
       y = 3'b111;
    else if (i[6])
       y = 3'b110;
    else if (i[5])
       y = 3'b101;
    else if (i[4])
       y = 3'b100;
    else if (i[3])
       y = 3'b011;
    else if (i[2])
        y = 3'b010;
    else if (i[1])
        y = 3'b001;
    else if (i[0])
        y = 3'b000;
        y = 3'bxxx;
end
```

endmodule

- Priority encoding: ઉચ્ચ index inputs ને priority
- If-else chain: Priority logic implement sè છે
- Binary encoding: Active input ને binary representation માં convert કરે છે

મેમરી ટ્રીક: "Priority from High to Low, Binary Output Flows"