

CONTENTS OF THIS PRESENTATION

Why you should choose us for your real estate purchase:

- 1. A short overview about the used Model
- 2. The price situation in the area
- 3. Two cases as examples:
 - a. First case: Finding the ideal home for a family of four.
 - O. Second case: Finding a solid investment opportunity in real estate.
- 4. Thank you slide
- 5. Appendix with some data

OLS Regression and Sklearn Linear Regression Model

- Based on the 'King County House Price Dataset'
- Contains 21 different variables (e.g. price, number of bedrooms,...) for 21,597 houses
- The dataset was splitted into a train and a test set
- Aim was to find the best predictors for the house price
- Found 6 predictors to work best from the original variables and added 2 more.

OLS Regression Results

Dep. Variable:	log_price	R-squared:	0.745
Model:	OLS	Adj. R-squared:	0.745
Method:	Least Squares	F-statistic:	9001.
Date:	Tue, 09 Jun 2020	Prob (F-statistic):	0.00
Time:	20:27:50	Log-Likelihood:	-2044.4
No. Observations:	21596	AIC:	4105.
Df Residuals:	21588	BIC:	4169.
Df Model:	7		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-29.0305	0.461	-62.971	0.000	-29.934	-28.127
bathrooms	0.0907	0.004	22.420	0.000	0.083	0.099
sqft_living	0.0001	4.11e-06	34.354	0.000	0.000	0.000
grade	0.1775	0.003	65.410	0.000	0.172	0.183
yr_built	-0.0041	7.98e-05	-51.404	0.000	-0.004	-0.004
lat	1.3176	0.014	97.279	0.000	1.291	1.344
sqft_living15	0.0001	4.29e-06	23.834	0.000	9.39e-05	0.000
reno_yes	-14.4783	0.230	-62.904	0.000	-14.929	-14.027
reno no	-14.5522	0.231	-63.005	0.000	-15.005	-14.100

1.976	Durbin-Watson:	409.895	Omnibus:
844.156	Jarque-Bera (JB):	0.000	Prob(Omnibus):
4.94e-184	Prob(JB):	0.063	Skew:
2.41e+19	Cond. No.	3.960	Kurtosis:

The Price Situation

As you can see in the heatmap, the prices are **varying strongly**. The **highest prices** are located in the **urban areas** especially in Seattle and are declining towards the **outskirts** and **rural areas**.

- Owning a home equal to roughly 4x 6x your household income puts you in the middle class.
- In Seattle the median income in 2015 was 80000 \$ per year and household.
 - → Middle class houses range from 320000 to 480000 \$.

*https://www.financialsamurai.com/the-ideal-house-size-and-layout-to-raise -a-family/

First Case: A family of four

The ideal house for a **family of four** should have at least a square footage of **2200** or more*, **4 bedrooms**, optimally a **2nd bathroom**. It should have the **same size** of the surrounding houses and should be in a **good condition**.

The number of houses with matching features was: 258

First Case: A family of four (Part1)

So the data was filtered again and sorted the results after the price. We found a house for 265000 \$ with 2920 sqft of living space and additional 5250 sqft of land space.

On top there is an Elementary and a High School within the neighborhood.

BUT! WHAT IF?

What if you don't want to live in the outskirts but in the city?

First Case: A family of four (Part2)

An additional filter was added to look exclusively at houses in Seattle. We found a house for 290000.00 \$ with 2240 sqft of living space and additional 8162 sqft of land space.

There is an Elementary School within the neighborhood as well.

Second Case: Investing in real estate

This time we looked for cheap houses with average feature values and bad conditions that have not been renovated.

- Based on our prediction **6 houses** were identified as potential investments.
- Additionally we compared the price of the house with the average house price of a defined area.
- → The most lucrative house would cost 335,000 \$ and is 108,277.78 \$ cheaper than the average house price in the area (9 houses located in the area).

Outlook

THANKS

Does anyone have any questions?

eike.rogall@gmail.com github.com/rogall-e neuefische.de

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**. **Please keep this slide for attribution.**

Appendix

Correlation heatmap:

- the darker the color the stronger the correlation
- Red: positiv correlation
- Blue: negativ correlation

Appendix

OLS Regression Res	ults		
Dep. Variable:	log_price	R-squared:	0.771
Model:	OLS	Adj. R-squared:	0.771
Method:	Least Squares	F-statistic:	3032.
Date:	Wed, 10 Jun 2020	Prob (F-statistic):	0.00
Time:	10:22:38	Log-Likelihood:	-859.03
No. Observations:	21596	AIC:	1768.
Df Residuals:	21571	BIC:	1968.
Df Model:	24		

Covariance type.	HOHIODGG	•				
	coef	std err	t	P> t	[0.025	0.975]
const	-87.2950	8.315	-10.498	0.000	-103.594	-70.996
bedrooms	-0.0219	0.003	-8.706	0.000	-0.027	-0.017
bathrooms	0.0680	0.004	16.584	0.000	0.060	0.076
sqft_living	3.173e-05	4.2e-06	7.549	0.000	2.35e-05	4e-05
sqft_lot	-1.572e-05	2.1e-06	-7.475	0.000	-1.98e-05	-1.16e-05
floors	0.0738	0.005	16.308	0.000	0.065	0.083
view	0.0774	0.002	31.114	0.000	0.073	0.082
grade	0.1233	0.009	13.984	0.000	0.106	0.141
sqft_above	1.125e-05	3.26e-06	3.452	0.001	4.86e-06	1.76e-05
yr_built	-0.0035	9.12e-05	-38.124	0.000	-0.004	-0.003
zipcode	-0.0007	4.15e-05	-16.414	0.000	-0.001	-0.001
lat	1.3967	0.013	103.776	0.000	1.370	1.423
long	-0.1636	0.016	-9.921	0.000	-0.196	-0.131
sqft_living15	0.0001	6.15e-06	20.594	0.000	0.000	0.000
sqft_lot15	-6.368e-05	3.08e-06	-20.674	0.000	-6.97e-05	-5.76e-05
sqft_basement_new	2.052e-05	3.64e-06	5.640	0.000	1.34e-05	2.77e-05
rating_grade_condition	0.0102	0.002	4.088	0.000	0.005	0.015
sqft_total	1.625e-05	2.1e-06	7.734	0.000	1.21e-05	2.04e-05
sqft_total15	6.331e-05	3.07e-06	20.598	0.000	5.73e-05	6.93e-05
living_ratio	0.1801	0.015	11.645	0.000	0.150	0.210
lot_ratio	-0.0024	0.002	-1.386	0.166	-0.006	0.001
month	0.0025	0.001	2.796	0.005	0.001	0.004
year	0.0641	0.006	10.851	0.000	0.052	0.076
reno_yes	-43.6074	4.157	-10.489	0.000	-51.756	-35.458
reno_no	-43.6876	4.158	-10.507	0.000	-51.837	-35.538
condition_2	0.0334	0.052	0.639	0.523	-0.069	0.136
condition_3	0.0959	0.055	1.747	0.081	-0.012	0.204
condition_4	0.0763	0.066	1.149	0.251	-0.054	0.207
condition_5	0.0723	0.080	0.900	0.368	-0.085	0.230

 Omnibus:
 33.3.16
 Durbin-Watson:
 1.987

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 651.740

 Skew:
 -0.014
 Prob(JB):
 3.00e-142

 Kurtosis:
 3.851
 Cond. No.
 1.03e+16

OLS Regression Results

Dep. Variable:	log_price	R-squared:	0.745
Model:	OLS	Adj. R-squared:	0.745
Method:	Least Squares	F-statistic:	9001.
Date:	Tue, 09 Jun 2020	Prob (F-statistic):	0.00
Time:	20:27:50	Log-Likelihood:	-2044.4
No. Observations:	21596	AIC:	4105.
Df Residuals:	21588	BIC:	4169.
Df Model:	7		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-29.0305	0.461	-62.971	0.000	-29.934	-28.127
bathrooms	0.0907	0.004	22.420	0.000	0.083	0.099
sqft_living	0.0001	4.11e-06	34.354	0.000	0.000	0.000
grade	0.1775	0.003	65.410	0.000	0.172	0.183
yr_built	-0.0041	7.98e-05	-51.404	0.000	-0.004	-0.004
lat	1.3176	0.014	97.279	0.000	1.291	1.344
sqft_living15	0.0001	4.29e-06	23.834	0.000	9.39e-05	0.000
reno_yes	-14.4783	0.230	-62.904	0.000	-14.929	-14.027
reno_no	-14.5522	0.231	-63.005	0.000	-15.005	-14.100

Omnibus:	409.895	Durbin-Watson:	1.976
Prob(Omnibus):	0.000	Jarque-Bera (JB):	844.156
Skew:	0.063	Prob(JB):	4.94e-184
Kurtosis:	3.960	Cond. No.	2.41e+19

The Data of the two Models:

- 1. On the left the OLS Regression Model with all features:
 - a. $R^2 = 0.771$
 - b. Some features with high p-values
- 2. On the right the OLS Regression Model with the strongest features:
 - a. $R^2 = 0.745$
- 3. On the bottom the Sklearn Model after splitting the data in Test and Train sets:
 - a. $R^2 = 0.745$
 - RSME = 0.27

Root Mean squared error (RMSE): 0.27 R**2: 0.75