$11n_{56} (K11n_{56})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{22} - u^{21} + \dots - u^3 + b, -u^{22} + u^{21} + \dots + a + 1, u^{23} - 2u^{22} + \dots - 2u + 1 \rangle$$

$$I_2^u = \langle -u^3 + b + u + 1, -u^4 - u^3 + u^2 + a + u, u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 29 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{22} - u^{21} + \dots - u^3 + b, -u^{22} + u^{21} + \dots + a + 1, u^{23} - 2u^{22} + \dots - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{22} - u^{21} + \dots + 2u - 1 \\ -u^{22} + u^{21} + \dots - 5u^{4} + u^{3} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{20} - u^{19} + \dots - u + 1 \\ u^{22} - u^{21} + \dots - u^{3} + u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{22} - u^{21} + \dots - 4u^{3} + u^{2} \\ u^{22} - u^{21} + \dots + 2u^{2} - u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{8} - u^{6} + u^{4} + 1 \\ u^{10} - 2u^{8} + 3u^{6} - 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{11} + 2u^{9} - 2u^{7} + u^{3} \\ -u^{11} + 3u^{9} - 4u^{7} + 3u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{11} + 2u^{9} - 2u^{7} + u^{3} \\ -u^{11} + 3u^{9} - 4u^{7} + 3u^{5} - u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$=8u^{22}-10u^{21}-40u^{20}+65u^{19}+85u^{18}-190u^{17}-61u^{16}+307u^{15}-81u^{14}-264u^{13}+228u^{12}+59u^{11}-203u^{10}+86u^{9}+76u^{8}-58u^{7}-12u^{6}-8u^{5}+26u^{4}-7u^{3}+3u^{2}+8u-10$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{23} - 7u^{22} + \dots - 7u + 1$
c_2	$u^{23} + 35u^{22} + \dots + 11u + 1$
c_3, c_7	$u^{23} - u^{22} + \dots + 128u + 64$
<i>C</i> ₅	$u^{23} - 2u^{22} + \dots - 108u - 36$
c_6,c_{10}	$u^{23} + 2u^{22} + \dots - 2u - 1$
c ₈	$u^{23} + 24u^{21} + \dots + 2u + 1$
<i>c</i> ₉	$u^{23} + 12u^{22} + \dots + 2u + 1$
c_{11}	$u^{23} + 6u^{22} + \dots - 18u - 7$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{23} - 35y^{22} + \dots + 11y - 1$
c_2	$y^{23} - 87y^{22} + \dots + 15y - 1$
c_3, c_7	$y^{23} + 39y^{22} + \dots + 28672y - 4096$
<i>C</i> 5	$y^{23} + 12y^{22} + \dots + 10296y - 1296$
c_6, c_{10}	$y^{23} - 12y^{22} + \dots + 2y - 1$
<i>C</i> ₈	$y^{23} + 48y^{22} + \dots + 2y - 1$
<i>C</i> 9	$y^{23} + 24y^{21} + \dots + 6y - 1$
c_{11}	$y^{23} + 12y^{22} + \dots + 282y - 49$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.797336 + 0.702236I		
a = -1.35368 + 0.49960I	-9.64155 - 2.65369I	-2.71409 + 2.86915I
b = -0.843379 + 0.494457I		
u = 0.797336 - 0.702236I		
a = -1.35368 - 0.49960I	-9.64155 + 2.65369I	-2.71409 - 2.86915I
b = -0.843379 - 0.494457I		
u = 1.027390 + 0.366873I		
a = 0.534979 + 0.341386I	-1.85876 - 1.44380I	-2.27537 + 0.68239I
b = -0.263822 + 0.275329I		
u = 1.027390 - 0.366873I		
a = 0.534979 - 0.341386I	-1.85876 + 1.44380I	-2.27537 - 0.68239I
b = -0.263822 - 0.275329I		
u = 0.255023 + 0.855822I		
a = -0.831897 - 0.002920I	-12.76380 + 5.09874I	-3.17808 - 1.98307I
b = 0.09815 - 2.48508I		
u = 0.255023 - 0.855822I		
a = -0.831897 + 0.002920I	-12.76380 - 5.09874I	-3.17808 + 1.98307I
b = 0.09815 + 2.48508I		
u = -1.079080 + 0.536804I		
a = -0.144531 + 0.926453I	-0.53628 + 5.30661I	1.77241 - 5.11876I
b = 0.323737 + 0.843029I		
u = -1.079080 - 0.536804I		
a = -0.144531 - 0.926453I	-0.53628 - 5.30661I	1.77241 + 5.11876I
b = 0.323737 - 0.843029I		
u = -1.141520 + 0.416414I		
a = 0.33767 - 2.48715I	-5.57676 + 2.33070I	-7.43736 - 2.84176I
b = -1.03478 - 2.11364I		
u = -1.141520 - 0.416414I		
a = 0.33767 + 2.48715I	-5.57676 - 2.33070I	-7.43736 + 2.84176I
b = -1.03478 + 2.11364I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.693757 + 0.359279I		
a = 0.576016 + 0.850672I	-0.87588 - 1.51254I	-2.24997 + 5.09221I
b = -0.158914 - 0.203116I		
u = 0.693757 - 0.359279I		
a = 0.576016 - 0.850672I	-0.87588 + 1.51254I	-2.24997 - 5.09221I
b = -0.158914 + 0.203116I		
u = 1.146720 + 0.479206I		
a = -1.60133 - 1.31891I	-5.12386 - 5.67209I	-6.64054 + 5.01271I
b = 0.29675 - 1.85371I		
u = 1.146720 - 0.479206I		
a = -1.60133 + 1.31891I	-5.12386 + 5.67209I	-6.64054 - 5.01271I
b = 0.29675 + 1.85371I		
u = -0.401701 + 0.617973I		
a = 0.562564 + 0.078186I	1.43616 - 0.72615I	6.25783 + 0.91942I
b = 0.450330 - 0.386164I		
u = -0.401701 - 0.617973I		
a = 0.562564 - 0.078186I	1.43616 + 0.72615I	6.25783 - 0.91942I
b = 0.450330 + 0.386164I		
u = -1.235200 + 0.278047I		
a = -0.73735 + 2.60704I	-17.5522 - 1.4869I	-8.02521 - 0.25180I
b = 1.07712 + 1.98419I		
u = -1.235200 - 0.278047I		
a = -0.73735 - 2.60704I	-17.5522 + 1.4869I	-8.02521 + 0.25180I
b = 1.07712 - 1.98419I		
u = -0.718932	2 72242	4 44000
a = -1.72386	-2.53646	-1.61890
b = -1.61562		
u = 1.182790 + 0.567983I		
a = 2.25195 + 2.10373I	-15.5409 - 10.3372I	-6.00224 + 5.46879I
b = 0.17909 + 3.14085I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.182790 - 0.567983I		
a = 2.25195 - 2.10373I	-15.5409 + 10.3372I	-6.00224 - 5.46879I
b = 0.17909 - 3.14085I		
u = 0.113951 + 0.644421I		
a = -0.232464 - 0.843186I	-2.25261 + 1.36983I	-3.69794 - 1.43293I
b = -0.316473 + 1.333070I		
u = 0.113951 - 0.644421I		
a = -0.232464 + 0.843186I	-2.25261 - 1.36983I	-3.69794 + 1.43293I
b = -0.316473 - 1.333070I		

II. $I_2^u = \langle -u^3 + b + u + 1, -u^4 - u^3 + u^2 + a + u, u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} + u^{3} - u^{2} - u \\ u^{3} - u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4} - u^{2} - u \\ -1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{4} + u^{3} - u^{2} - u \\ u^{3} - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} \\ u^{3} - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^4 3u^2 3u 3$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^{6}$
c_{2}, c_{4}	$(u+1)^6$
c_{3}, c_{7}	u^6
c_5, c_8, c_{10}	$u^6 - u^5 - u^4 + 2u^3 - u + 1$
c_6	$u^6 + u^5 - u^4 - 2u^3 + u + 1$
c_9,c_{11}	$u^6 - 3u^5 + 5u^4 - 4u^3 + 2u^2 - u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^6$
c_3, c_7	y^6
c_5, c_6, c_8 c_{10}	$y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1$
c_9, c_{11}	$y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.002190 + 0.295542I		
a = -0.685196 + 1.063260I	-3.53554 - 0.92430I	-6.79748 + 1.68215I
b = -1.258210 + 0.569162I		
u = 1.002190 - 0.295542I		
a = -0.685196 - 1.063260I	-3.53554 + 0.92430I	-6.79748 - 1.68215I
b = -1.258210 - 0.569162I		
u = -0.428243 + 0.664531I		
a = 0.917982 + 0.270708I	0.245672 - 0.924305I	-1.96974 + 0.88960I
b = -0.082955 - 0.592379I		
u = -0.428243 - 0.664531I		
a = 0.917982 - 0.270708I	0.245672 + 0.924305I	-1.96974 - 0.88960I
b = -0.082955 + 0.592379I		
u = -1.073950 + 0.558752I		
a = -0.732786 + 0.381252I	-1.64493 + 5.69302I	-5.23279 - 6.15196I
b = -0.158836 + 1.200140I		
u = -1.073950 - 0.558752I		
a = -0.732786 - 0.381252I	-1.64493 - 5.69302I	-5.23279 + 6.15196I
b = -0.158836 - 1.200140I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^6)(u^{23}-7u^{22}+\cdots-7u+1)$
c_2	$((u+1)^6)(u^{23}+35u^{22}+\cdots+11u+1)$
c_3, c_7	$u^6(u^{23} - u^{22} + \dots + 128u + 64)$
C4	$((u+1)^6)(u^{23}-7u^{22}+\cdots-7u+1)$
<i>C</i> 5	$(u^6 - u^5 - u^4 + 2u^3 - u + 1)(u^{23} - 2u^{22} + \dots - 108u - 36)$
c_6	$(u^6 + u^5 - u^4 - 2u^3 + u + 1)(u^{23} + 2u^{22} + \dots - 2u - 1)$
<i>c</i> ₈	$(u^6 - u^5 - u^4 + 2u^3 - u + 1)(u^{23} + 24u^{21} + \dots + 2u + 1)$
<i>C</i> 9	$ (u^6 - 3u^5 + 5u^4 - 4u^3 + 2u^2 - u + 1)(u^{23} + 12u^{22} + \dots + 2u + 1) $
c_{10}	$(u^6 - u^5 - u^4 + 2u^3 - u + 1)(u^{23} + 2u^{22} + \dots - 2u - 1)$
c_{11}	$ (u6 - 3u5 + 5u4 - 4u3 + 2u2 - u + 1)(u23 + 6u22 + \dots - 18u - 7) $

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y-1)^6)(y^{23} - 35y^{22} + \dots + 11y - 1)$
c_2	$((y-1)^6)(y^{23} - 87y^{22} + \dots + 15y - 1)$
c_3, c_7	$y^6(y^{23} + 39y^{22} + \dots + 28672y - 4096)$
c_5	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)$ $\cdot (y^{23} + 12y^{22} + \dots + 10296y - 1296)$
c_6,c_{10}	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)(y^{23} - 12y^{22} + \dots + 2y - 1)$
<i>c</i> ₈	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)(y^{23} + 48y^{22} + \dots + 2y - 1)$
<i>c</i> 9	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)(y^{23} + 24y^{21} + \dots + 6y - 1)$
c_{11}	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)(y^{23} + 12y^{22} + \dots + 282y - 49)$