1272.
$$y = x + \sin x$$
. 1273. $y = x + |\sin 2x|$.

1274.
$$y = \cos \frac{\pi}{x}$$
. 1275. $y = \frac{x^2}{2^x}$.

1276.
$$y = x^n e^{-x}$$
 $(n > 0, x \ge 0)$. 1277. $y = x^2 - \ln x^2$.

1278.
$$f(x) = x\left(\sqrt{\frac{3}{2}} + \sin \ln x\right)$$
, если $x > 0$ и $f(0) = 0$.

1279. Доказать, что при увеличении числа сторон n периметр p_n правильного n-угольника, вписанного в окружность, возрастает, а периметр P_n правильного n-угольника, описанного около этой окружности, убывает. Пользуясь этим, доказать, что p_n и P_n имеют общий предел при $n \to \infty$.

1280. Доказать, что функция $\left(1+\frac{1}{x}\right)^x$ возрастает на интервалах $(-\infty,-1)$ и $(0,+\infty)$.

1281. Доказать, что целая рациональная функция $P(x) = a_0 + a_1 x + \ldots + a_n x^n \quad (n \geqslant 1, \ a_n \neq 0)$ является монотонной (в строгом смысле!) в интервалах $(-\infty, -x_0)$ и $(x_0, +\infty)$, где x_0 — достаточно большое положительное число.

1282. Доказать, что рациональная функция

$$R(x) = \frac{a_0 + a_1 x + \ldots + a_n x^n}{b_0 + b_1 x + \ldots + b_m x^m} \quad (a_n b_m \neq 0),$$

отличная от тождественной постоянной, монотонна (в строгом смысле!) в интервалах (— ∞ , — x_0) и (x_0 , + ∞), где x_0 — достаточно большое положительное число.

1283. Производная монотонной функции обязательно ли является монотонной? Рассмотреть пример: $f(x) = x + \sin x$.

1284. Доказать, что если $\phi(x)$ — монотонно возрастающая дифференцируемая функция и

$$|f'(x)| \leqslant \varphi'(x)$$
 при $x \geqslant x_0$,

OT

$$|f(x) - f(x_0)| \le \varphi(x) - \varphi(x_0)$$
 при $x \ge x_0$.

Дать геометрическую интерпретацию этого факта. 1285. Пусть функция f(x) непрерывна в промежутке $a \le x < +\infty$ и сверх того f'(x) > k > 0 при x > a, где k— постоянная.