AR18

CODE: 18BST102 **SET-1**

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Regular/Supplementary Examinations, November-2020

DIFFERENTIAL EQUATIONS AND TRANSFORM THEORY

(Common to EEE, ECE Branches)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the Question must be answered at one place

UNIT-I

1. a) Solve
$$\frac{dy}{dx} = \frac{1}{(1+x^2)} (e^{t\alpha n^{-2}x} - y)$$

b) Solve
$$(D^2 - 4D + 3)y = e^x \cos 2x + \cos 3x$$
 6M

(OR)

2. a) Solve
$$(3x^2y^4 + 2xy)dx + (2x^3y^3 - x^2)dy = 0$$
 6M

b) Solve
$$(D^2 + 2)y = e^{-2x} + \cos 3x$$
 6M

UNIT-II

3. a) Obtain Fourier series expansion of
$$f(x) = e^{\alpha x}$$
 in $(0, 2\pi)$ 6M

6M

$$f(t) = \begin{cases} 0 & tf - 2 \le t \le -1 \\ 1 + t & if - 1 \le t \le 0 \\ 1 - t & if \ 0 \le t \le 1 \\ 0 & if \ 1 \le t \le 2 \end{cases}$$

(OR)

4. Find the Fourier series expansion of
$$f(x) = x + x^2$$
 in $(-\pi, \pi)$ 12M

UNIT-III

5. a) Using Fourier integral, show that
$$e^{-ax} = \frac{2a}{\pi} \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^2 + a^2} d\lambda \ (a > 0, x \ge 0)$$

b) Find the Fourier transform of
$$f(x) = \begin{cases} 0, |x| < a \\ 1, |x| > a \end{cases}$$
 6M

(OR)

6. Find the Fourier sine and cosine transforms of 2e-5x | 5e-2x | 12M

UNIT-IV

7. a) Find the
$$L\{te^{-2t}sint\}$$
 6M

b)
$$L^{-1}\left\{\frac{s+1}{(s^2+2s+2)^2}\right\}$$
 6M

(OR)

8. a) Using Convolution theorem find $L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$ 6M

b) Using Laplace transforms solve
$$y'' - 2y' - 8y = 0; y(0) = 3, y'(0) = 6$$

UNIT-V

9. a) Find
$$Z[(n+1)^2]$$
 6M

b)
$$z = \left[\frac{4z^2 - 2z}{z^3 - 5z^2 + 8z - 4}\right]$$
 6M

(OR)

10. a) Find
$$Z[n\cos\theta]$$
 6M

b) Use Convolution theorem to evaluate $z^{-1} \left[\frac{z^2}{(z-a)(z-b)} \right]$

2 of 2

CODE: 18BST103 ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI

(AUTONOMOUS)

I B.Tech II Semester Regular/Supplementary Examinations, November-2020

DIFFERENTIAL EQUATIONS (Common to CE, ME, CSE, IT Branches)

Time: 3 Hours Max Marks: 60

> Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

UNIT-I

- 1. a) Solve $y(2xy + e^x)dx e^x dy = 0$. 6M
 - b) Obtain the Orthogonal Trajectories for the family of curves 6M $r^n = a^n \cos n\theta$.

(OR)

- 2. a) Solve the differential equation $(1 x^2) \frac{dy}{dx} + xy = y^3 \sin^{-1} x$. 6M
 - b) The temperature of the body drops from 100° C to 75° C in 6M 10 minutes when the surrounding air is at 20°C temperature i) What will be its temperature after half an hour? ii) When will the temperature be 25°C?

UNIT-II

3. a) Solve
$$(D^4 + 10D^2 + 9)y = Cos(2x + 3)$$
.

b) Solve
$$(D^3 + 6D^2 + 9D)y = e^{-3x}$$
 6M

(OR)
4. a) Solve
$$(D^2 - 2D - 3)y = x^3 e^{-3x}$$
6M
b) Solve $(D^2 + 5D - 6)y = \sin 4y \sin y$

b) Solve
$$(\mathbf{D}^2 + 5\mathbf{D} - 6)\mathbf{y} = \mathbf{Sin}4\mathbf{x} \mathbf{Sin}\mathbf{x}$$
 6M

UNIT-III

5. Prove that $\int_0^1 x J_n(\alpha x) J_n(\beta x) dx = \begin{cases} 0, & \text{if } \alpha \neq \beta \\ 1 & \text{if } \alpha = \beta \end{cases}$ if $\alpha = \beta$

(OR)

- 6. a) Express $f(x) = 4x^3 2x^2 3x + 8$ in terms of Legendre's 6M polynomials.
 - b) Prove that $J_{\frac{5}{2}}(\mathbf{x}) = \sqrt{\frac{2}{\pi x}} \left\{ \left(\frac{3-x^2}{x^2} \right) \mathbf{Sinx} \frac{3}{x} \mathbf{Cosx} \right\}$

UNIT-IV

- 7. a) Form the Partial differential equation of all planes having equal intercepts on X and Y axes.
 - b) Solve the Partial differential equation $p^3 + q^3 = 27 \text{ z}$, 6M where $p = \frac{\partial z}{\partial x}$ and $q = \frac{\partial z}{\partial y}$

(OR)

- 8. a) Solve $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$ 6M
 - b) Form the Partial differential equation by eliminating the arbitrary function f from $z = xy + f(x^2 + y^2)$

UNIT-V

- 9. a) Solve $(\mathbf{D}^2 4\mathbf{D}\mathbf{D}^* + 4\mathbf{D}^{*2})\mathbf{z} = \mathbf{e}^{2x+y}$ where $\frac{\partial}{\partial x} \equiv \mathbf{D}$ and $\frac{\partial}{\partial y} \equiv \mathbf{D}^*$ 6M
 - b) Solve $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial x \partial y} 6 \frac{\partial^2 z}{\partial y^2} = xy$

(OR)
10. a) Solve $(\mathbf{D^2} + \mathbf{DD^*} - 6\mathbf{D^{*2}})\mathbf{z} = \mathbf{x} + \mathbf{y}$ where $\frac{\partial}{\partial \mathbf{x}} \equiv \mathbf{D}$ and $\frac{\partial}{\partial \mathbf{v}} \equiv \mathbf{D^*}$ 6M

b) Solve
$$(\mathbf{D}^3 - 7\mathbf{D}\mathbf{D}^{*2} - 6\mathbf{D}^{*3})\mathbf{z} = \mathbf{e}^{\mathbf{x} + 2\mathbf{y}}$$
 where $\frac{\partial}{\partial x} \equiv \mathbf{D}$ and $\frac{\partial}{\partial y} \equiv \mathbf{D}^*$ 6M 2 of 2 ***