Lab 1

Linear Regression Using Gradient Descent Method

권용혜 (<u>robotmany@kw.ac.kr</u>)

남건욱 (ngotic@kw.ac.kr)

실습 과제 (1)

 팡운대학교의 남건육 조교는 만사가 다 귀찮다. 어느 날, 남건육 조교는 수 강생이 59명에 달하는 과목의 기말고사 채점을 맡게 됐다. 남건육 조교는 수강생 30명의 시험지를 채점하다가 귀찮음을 느끼며 산책을 나갔다. 사과 나무에 앉아 시간을 허비하던 중 떨어지는 사과를 보며 생각을 했다.

"중간 고사 성적과 기말 고사 성적은 선형적인 관계가 있지 않을까?"

Linear Regression 모델을 생성하고 지금까지 채점한 수강생 30명의 기말고사 성적과 중간고사 성적을 이용하여 나머지 수강생 29명의 기말고사 성적은 중간고사 성적을 이용하여 예측해보자!

실습 과제 (2)

남건육 조교가 채점한 수강생 30명의 중간고사 성적과 기말고사 성적

실습 과제 (3)

남건육 조교가 채점한 수강생 30명의 중간고사 성적과 기말고사 성적

실습 과제 (4)

나머지 29 명의 학생도 30명의 수강생들의 정보를 이용하여 생성한 linear regression 모델로 잘 예측됐으면 좋겠다!

수강생 59명의 중간고사 성적과 기말고사 성적

실습 과제 (5)

Materials

- train.txt
 - 남건육 조교가 채점한 수강생 30명의 중간/기말고사 성적이 나열된 파일
- test.txt
 - 남건육 조교가 채점하지 않은 나머지 수강생 29명의 중간/기말고사 성적이 나열된 파일
- https://github.com/developer0hye/ML_Lab/tree/master/Lab01-LinearRegression

Conditions

- C++ 이용
- Gradient Descent 기법 이용하여 linear regression 모델의 파라미터 학습
 - Cost function 은 MSE(Mean Squared Error)

실습 과제 (6)

Criterions

- train.txt 파일의 중간/기말고사 성적으로 학습된 linear regression 모델을 이용하여 test.txt 파일의 중간고사 성적을 입력 받아 기말고사 성적을 예측
- 예측된 기말고사 성적과 실제 기말고사 성적의 차이가 10 이하인 경우, 정답으로 판단
- 정답의 수를 기준으로 성능 평가

실습 과제 (7)

- Linear Regression Model
 - -Y=mX+c
 - X: 중간고사 성적
 - Y: 중간고사 성적을 통해 예측되는 기말고사 성적
- Cost function

$$E = rac{1}{n} \sum_{i=0}^n (y_i - (mx_i + c))^2 \qquad D_m = rac{1}{n} \sum_{i=0}^n 2(y_i - (mx_i + c))(-x_i) \ D_m = rac{-2}{n} \sum_{i=0}^n x_i (y_i - ar{y}_i)$$

$$D_c = rac{-2}{n} \sum_{i=0}^n (y_i - ar{y}_i)$$

Gradient Descent

$$m=m-L imes D_m$$
 $c=c-L imes D_c$

$$c = c - L \times D_c$$

E: Cost function

x;: i번째 학생의 중간고사 성적

y;: i번째 학생의 기말고사 성적

mx;+c: i번째 학생의 중간고사 성적을 통해 예측되는 기말고사 성적

Dm: E 를 m 으로 미분한 식

Dc: E 를 c로 미분한 식

L: Learning Rate

실습 과제 (8)

MSE Cost Graph on Train dataset

$$E = rac{1}{n} \sum_{i=0}^n (y_i - (mx_i + c))^2$$

남건육 조교가 채점한 수강생 30명의 중간고사 성적과 기말고사 성적

실습 과제 (9)

■ 결국 남건육 조교는 귀찮음을 극복하고 성실히 채점을 마쳤다고 한다.

