On Wars, Sanctions and Sovereign Default

Javier Bianchi¹

César Sosa-Padilla²

The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

¹Minneapolis Fed

²University of Notre Dame & NBER

- February–April 2022
 - \bullet Following the invasion of Ukraine, Russia faced a freezing of its international reserves (\approx 30% of its GDP)
 - The goal was to hinder the financing of the war, but Russia was still allowed to use reserves to make debt payments
 - On April 4, 2002, the US Treasury blocked these payments, and Russia failed to meet its obligations
 - A few days later, Russia was declared in default

- February–April 2022
 - \bullet Following the invasion of Ukraine, Russia faced a freezing of its international reserves (\approx 30% of its GDP)
 - The goal was to hinder the financing of the war, but Russia was still allowed to use reserves to make debt payments
 - On April 4, 2002, the US Treasury blocked these payments, and Russia failed to meet its obligations
 - A few days later, Russia was declared in default
- This paper: we explore the role of restrictions on international reserves as economic sanctions and develop a simple model that can account for these events

Figure 1: Default probabilities for Russian gov't bonds in 2022

Figure 2: Russian Foreign Reserves in 2022

Overview of the paper (1)

What we do

- Simple model of restrictions on int'l reserves as economic sanctions
- Two countries: debtor, Russia (sanctioned); creditor, US/West (sanctioning)
- Sanctioned country:
 - chooses default/repayment, borrowing and reserve accumulation
- Sanctioning country:
 - can impose restrictions on the use of use of reserves (by the other country)
 - ullet welfare decreasing in the utility of the sanctioned country o **geopolitical externality**
- Solve for the Stackelberg-Nash equilibrium

Overview of the paper (1)

What we do

- Simple model of restrictions on int'l reserves as economic sanctions
- Two countries: debtor, Russia (sanctioned); creditor, US/West (sanctioning)
- Sanctioned country:
 - chooses default/repayment, borrowing and reserve accumulation
- Sanctioning country:
 - can impose restrictions on the use of use of reserves (by the other country)
 - \bullet welfare decreasing in the utility of the sanctioned country \to geopolitical externality
- Solve for the Stackelberg-Nash equilibrium

Under what conditions would the sanctioning country choose hard enough restrictions that will trigger a default by the sanctioned country?

Overview of the paper (2)

What we find

- For a low geopolitical externality, the optimal restriction involves squeezing the resources up to the point at which the sanctioned country is indifferent between repaying and defaulting

 "soft" restrictions
- ullet For a high geopolitical externality, the optimal restriction becomes a complete freezing of reserves and this induces a foreign default ullet "hard" restrictions

Overview of the paper (2)

What we find

- For a low geopolitical externality, the optimal restriction involves squeezing the resources up to the point at which the sanctioned country is indifferent between repaying and defaulting

 "soft" restrictions
- ullet For a high geopolitical externality, the optimal restriction becomes a complete freezing of reserves and this induces a foreign default ullet "hard" restrictions
- May sound surprising because default decision is optimal and so restrictions beyond the "soft" one do not actually hurt the foreign country
- <u>Key:</u> geopolitical externality is tilted towards the war period and a default reduces the foreign utility in that period

A Model of Financial Sanctions and

Sovereign Default

Elements of the Model

- Model of the strategic interactions that result from international sanctions and the possibility of sovereign default
- Two countries: foreign (Russia) and the home (US/West).
 - Same utility function, u(c); same discount factor, β
 - Home country has geopolitical externality
- There are also financial intermediaries with discount rate r
- Discrete time; infinite horizon
- Assume: (i) no uncertainty, and (ii) $\beta(1+r)=1$

Foreign Country (Russia)

- Starts period 0 with a portfolio (a_0^*, b_0^*) and receives constant income y^*
- Reserves (a*) are one-period non-negative, risk-free assets that may be subject to restrictions (sanctions)
- Debt (b^*) is long-term with a maturity parameter δ . A bond issued in period t promises to pay: $\kappa[1,(1-\delta),(1-\delta)^2,(1-\delta)^3,\dots]$

Budget constraint under Repayment:

$$c_t^* + g_t^* + \frac{a_{t+1}^*}{1+r} + \kappa b_t^* = a_t^* + y^* + q(a_{t+1}^*, b_{t+1}^*)[b_{t+1}^* - (1-\delta)b_t^*]$$

ullet $g_t^* \equiv$ fixed war expenditures. Ass. the war last only one period, $g_t^* = 0 \, orall t > 0$

Foreign Country – Sanctions

$$c_t^* + g_t^* + \frac{a_{t+1}^*}{1+r} + \kappa b_t^* = a_t^* + y^* + q(a_{t+1}^*, b_{t+1}^*)[b_{t+1}^* - (1-\delta)b_t^*]$$
 (1)

Two additional constraints in t=0:

1. A restriction on the use of reserves:

$$\frac{a_1^*}{1+r} \ge \underline{a} \tag{2}$$

- Assume $\underline{a} \leq a_0^*$, Russia cannot be forced to \uparrow its reserves
- Encompasses the case $\underline{a} = a_0^* \kappa b_0^*$, which restricts reserves for purposes other than debt repayments
- Harshest punishment: $\underline{a} = a_0^*$, reserves can't be used at all and interest payments can't be repatriated
- 2. Russia cannot issue new bonds:

$$b_1^* \le b_0^* (1 - \delta) \tag{3}$$

Foreign Country – Value of Default

Two costs of default:

- Income cost, ϕ^D : captures direct income costs of defaulting (above and beyond those coming from *other sanctions*) as well as reputational concerns
- Financial exclusion: lasts 1 period (the war period). This is w/o lost of generality

Budget constraint under default:

$$c_0^* + g^* = y^* - \phi^D$$

already assumes harshest sanction: $\underline{a} = a_0^*$. Also w/o lost of generality

Value of default:

$$V_D^*(a_0^*) = u(y^* - \phi^D - g^*) + \frac{\beta}{1 - \beta}u(y^* + ra_0^*)$$
 (4)

Foreign Country - Value of Repayment

- Assumption 1. (Binding reserve constraint) The foreign country's initial gross positions and government spending satisfy: $g^* + \kappa b_0^* a_0^* > (1 \beta)(1 \delta)b_0^*$.
- This guarantees that (2) and (3) bind.

Value of Repayment:

$$V_R^*(a^*, b^*; \underline{a}) = \left\{ u(c^*) + \frac{\beta}{1 - \beta} u \left(y^* + (1 - \beta) \left[\underline{a}(1 + r) - (1 - \delta)b^* \right] \right) \right\}$$
 subject to
$$c^* = y^* + (a^* - \underline{a}) - \kappa b^* - g^*$$

- the cont. value already imposes no-default for $t \geq 1$ (which holds cond. on repayment in t=0)

Foreign Country – Default Decision

Default decision. The decision to default at time 0 is as follows:

$$d^{*}(a^{*}, b^{*}; \underline{a}) = \begin{cases} 0 & \text{if } V_{R}^{*}(a^{*}, b^{*}; \underline{a}) \geq V_{D}^{*}(a) \\ 1 & \text{if } V_{R}^{*}(a^{*}, b^{*}; \underline{a}) < V_{D}^{*}(a) \end{cases}$$

Assumption 2. (Def. costs) We assume ϕ^D is such that the government chooses

- 1. to repay when there are no restrictions on the use of reserves , and
- 2. to default when the harshest possible reserve restriction is imposed ($\underline{a}=a_0^*$).

Foreign Country - Default Decision

Default decision. The decision to default at time 0 is as follows:

$$d^{*}(a^{*}, b^{*}; \underline{a}) = \begin{cases} 0 & \text{if } V_{R}^{*}(a^{*}, b^{*}; \underline{a}) \geq V_{D}^{*}(a) \\ 1 & \text{if } V_{R}^{*}(a^{*}, b^{*}; \underline{a}) < V_{D}^{*}(a) \end{cases}$$

Assumption 2. (Def. costs) We assume ϕ^D is such that the government chooses

- 1. to repay when there are no restrictions on the use of reserves , and
- 2. to default when the harshest possible reserve restriction is imposed $(\underline{a} = a_0^*)$.

Lemma 1. (Threshold sanction, \hat{a}) Suppose Assumption 2 holds. Let (a^*, b^*) be the initial financial position, then there exists a restriction on the use of reserves $0 \le \hat{a} \le a_0^*$ such that $V^R(a^*, b^*; \underline{a}) \ge V^D(a^*)$ if and only if $\underline{a} \le \hat{a}$.

Home Country (US/West)

Preferences:

$$W = \sum_{t=0}^{\infty} \beta^t u(c_t) - \eta u(c_0^*)$$

- $\eta > 0$ measures the intensity with which **H** wishes to punish **F** during the war
- Note: we use $u(c_0^*)$, but the <u>key</u> is for the geopolitical externality to be relatively more important during the war period
- Home's portfolio: αb_0^* and other net-foreign-assets k_0 .
- Given constant income y and constant return on its portfolio (1 + r), Home's consumption is

$$c_t = y + (1 - \beta) [\alpha b_0^* (1 - d^*) + k_0], \quad \forall t \ge 0$$

Home Country - Welfare

$$W(\underline{a}; d^*) = \frac{1}{1-\beta} u \left(y + (1-\beta)(\alpha b_0^*(1-d^*) + k_0) \right) - \eta u(c_0^*(\underline{a}, d^*))$$
 (6)

- $c_0^*(\underline{a}, d^*) \equiv \text{consump.}$ available to **F** as a function of \underline{a} and its default decision d^* .
- **H**'s welfare is entirely determined by the **F**'s default decision and by $c_0^*(\underline{a}, d^*)$
- H can alter both with its sanctions, a
- <u>Trade-off:</u> imposing restrictions reduces the geopolitical externality, but it may trigger a default, which implies fewer resources for H.

Equilibrium

Stackelberg-Nash eqm. H moves first by setting \underline{a} , F moves second by choosing d^*

Equilibrium

Stackelberg-Nash eqm. H moves first by setting \underline{a} , F moves second by choosing d^*

Definition 1. (Stackelberg-Nash equilibrium) A Stackelberg Nash equilibrium is a policy for the home country $\underline{\mathbb{A}}$ and a best response for the foreign country $\mathbb{D}^*(\underline{a})$ such that

$$\underline{\mathbb{A}} = \operatorname{argmax}_{\underline{a}} W(\underline{a}; \mathbb{D}^*(\underline{a})),$$

where

$$\mathbb{D}^{*}(\underline{a}) = \begin{cases} 0 & \text{if } V_{R}\left(a^{*}, b^{*}; \underline{a}\right) \geq V_{D}\left(a^{*}\right), \\ 1 & \text{if } V_{R}\left(a^{*}, b^{*}; \underline{a}\right) < V_{D}\left(a^{*}\right), \end{cases}$$

and V_R , V_D and W were defined in (4), (5), and (6), respectively.

Equilibrium

Stackelberg-Nash eqm. H moves first by setting \underline{a} , F moves second by choosing d^*

Definition 1. (Stackelberg-Nash equilibrium) A Stackelberg Nash equilibrium is a policy for the home country $\underline{\mathbb{A}}$ and a best response for the foreign country $\mathbb{D}^*(\underline{a})$ such that

$$\underline{\mathbb{A}} = \operatorname{argmax}_{\underline{a}} W(\underline{a}; \mathbb{D}^*(\underline{a})),$$

where

$$\mathbb{D}^{*}(\underline{a}) = \begin{cases} 0 & \text{if } V_{R}(a^{*}, b^{*}; \underline{a}) \geq V_{D}(a^{*}), \\ 1 & \text{if } V_{R}(a^{*}, b^{*}; \underline{a}) < V_{D}(a^{*}), \end{cases}$$

and V_R , V_D and W were defined in (4), (5), and (6), respectively.

- Solve by backward induction.
- Distinguish the payoffs when F defaults and when it repays (which is a function of \underline{a})

Home Country's Optimal Policy

Let us define the payoff function $\tilde{W}(\underline{a}) = W(\underline{a}; d^*(a, b; \underline{a}))$. We have that

$$\tilde{W}(\underline{a}) = \begin{cases} \frac{1}{1-\beta}u(y + (1-\beta)(\alpha b_0^* + k_0)) - \eta u(y^* - g^* + a_0^* - \underline{a} - \kappa b_0^*) & \text{if } \underline{a} \leq \hat{a}.\\ \frac{1}{1-\beta}u(y + (1-\beta)k_0) - \eta u(y^* - g^* - \phi^D) & \text{if } \underline{a} > \hat{a}. \end{cases}$$

Home Country's Optimal Policy

Let us define the payoff function $\tilde{W}(\underline{a}) = W(\underline{a}; d^*(a, b; \underline{a}))$. We have that

$$\tilde{W}(\underline{a}) = \begin{cases} \frac{1}{1-\beta} u(y + (1-\beta)(\alpha b_0^* + k_0)) - \eta u(y^* - g^* + a_0^* - \underline{a} - \kappa b_0^*) & \text{if } \underline{a} \leq \hat{a}. \\ \frac{1}{1-\beta} u(y + (1-\beta)k_0) - \eta u(y^* - g^* - \phi^D) & \text{if } \underline{a} > \hat{a}. \end{cases}$$

- $\tilde{W}(\underline{a})$ is strictly increasing in \underline{a} if $\underline{a} \leq \hat{a}$ while it is independent of \underline{a} if $\underline{a} > \hat{a}$.
- $\tilde{W}(\underline{a})$ features in general a discontinuity at $\underline{a} = \hat{a}$.
- It follows that H's policy satisfies $\underline{a} \geq \hat{a}$. In particular, the solution is either $\underline{a} = \hat{a}$ or any $\underline{a} > \hat{a}$.

Home Country's Optimal Policy

Let us define the payoff function $\tilde{W}(\underline{a}) = W(\underline{a}; d^*(a, b; \underline{a}))$. We have that

$$\tilde{W}(\underline{a}) = \begin{cases} \frac{1}{1-\beta} u(y + (1-\beta)(\alpha b_0^* + k_0)) - \eta u(y^* - g^* + a_0^* - \underline{a} - \kappa b_0^*) & \text{if } \underline{a} \leq \hat{a}. \\ \frac{1}{1-\beta} u(y + (1-\beta)k_0) - \eta u(y^* - g^* - \phi^D) & \text{if } \underline{a} > \hat{a}. \end{cases}$$

- $\tilde{W}(\underline{a})$ is strictly increasing in \underline{a} if $\underline{a} \leq \hat{a}$ while it is independent of \underline{a} if $\underline{a} > \hat{a}$.
- $\tilde{W}(\underline{a})$ features in general a discontinuity at $\underline{a} = \hat{a}$.
- It follows that H's policy satisfies <u>a</u> ≥ â.
 In particular, the solution is either <u>a</u> = â or any <u>a</u> > â.
- In other words: conditional on inducing F to repay, H squeezes F's resources up to the point at which it becomes indifferent between repaying and defaulting.
- When the geopol. externality η is low, the outcome is that the H induces repayment. However, if η is large, it's optimal for H to induce default.

Equilibrium - Proposition 1

Proposition 1. (Threshold externality, $\hat{\eta}$) There exists a threshold

$$\hat{\eta} = \frac{u(y + (1 - \beta)(\alpha b_0^* + k_0)) - u(y + (1 - \beta)k_0)}{(1 - \beta)\left[u(y^* - g^* + a_0^* - \hat{a} - \kappa b_0^*)\right] - u(y^* - g^* - \phi^D)} > 0$$

such that:

- if $\eta \leq \hat{\eta}$, the home country chooses $\underline{a} = \hat{a}$ and the foreign country repays, and
- if $\eta > \hat{\eta}$, the home country sets $\underline{a} > \hat{a}$ and the foreign country defaults.

Discussion of Proposition 1

- Proposition 1 underscores how the model can account for the evolution of the motivating facts: first "soft" restrictions, then "hard" ones.
- Theoretically, the finding that a creditor may find it optimal to push the debtor into default is perhaps surprising
 - ightarrow subtle because the decision to default by F is optimal, which means that restrictions larger than \hat{a} do not actually hurt F
- <u>Crucial feature:</u> H suffers more from current than future F utility flows (externality tilted towards present, war period).
- Show in an Appendix that if the H were to face a constant geopolitical externality over time, it would never be optimal to trigger a default. It would choose $\eta = \hat{\eta}$.

A Simple Calibration

A Numerical Example

Goal: gauge the quant. effects of the geopol. external. and argue that under plausible params. the model can account for the events surrounding the Russian default

- Parameterize F using Russian data and H using US data
- ullet Log utility for both countries. 1 period =1 year
- Normalize y = 1, make $y^* = y/14$.
- World interest rate r=0.01 and $\beta=1/(1+r)$
- Russian portfolio: $a_0^*=0.3y^*$, $b_0^*=.2y^*$, $\delta=0.14$ (maturity ≈ 6.8 yrs.)
- US initial portfolio: $k_0 = -0.6y$; $\alpha = 0.5$ (Russian debt held by foreigners)
- Given previous parameters:
 - Set g^* to min. value that satisfies Assumption 1
 - Set ϕ^D so that $\hat{a} = a_0^* \kappa b_0^*$

A Numerical Example - Parameter Values

Income in H	У	1
Income in F	<i>y</i> *	<i>y</i> /14
World interest rate	r	0.01
Discount factor	β	1/(1 + r)
Initial Reserves in F	a_0^*	$0.3 y^*$
Initial Debt in <i>F</i>	b_0^*	$0.2 y^*$
Coupon decay rate	δ	0.138
Other net-foreign-assets in H	k_0	-0.6 y
H's exposure to F 's debt	α	0.50
Default cost	ϕ^D	$0.13 y^*$
War spending	g^*	$0.28 y^*$
Geopolitical externality	$\{\eta^{Low}, \eta^{High}\}$	{0.03, 0.05}

Results - Value Functions and Thresholds

Figure 3: Value functions for Home and Foreign Countries

- ullet Low η : squeeze but don't trigger default; High η : trigger default
- $\hat{\eta} = 0.04 \rightarrow H$ is willing to suffer a 0.01% decline in permanent consumption to reduce the utility of F to its level under default

Conclusions

Conclusions

- Present a simple model to think about the implications of restrictions on the use of international reserves as economic sanctions
- We find that soft restrictions come at no cost for the sanctioning country—they
 restrict resources available to the sanctioned country without negative
 consequences for the sanctioning country.
- However, hard restrictions (e.g. a complete freezing of reserves) can trigger a default.
- Even though the decision to default is an optimal response by the sanctioned country, we show that a complete freezing of reserves may be optimal when the geopolitical externality is high

Conclusions (2)

- Extensions:
 - Income uncertainty; preference shocks (e.g. a shifter in the geopolitical externality)
 - Interact with other sanctions: trade (most clear case)
 - Discrete vs. Continuous punishment technologies

• Exciting research topic. Lots to explore. **Congrats** again to the *Kiel Institute* on this new venture!

