

Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Unidade Acadêmica de Matemática Disciplina: Álgebra Linear I

Semestre: 2018.2 Turno: Tarde

1^A PROVA

Nome:	Matrícula:
Professor:	Nota:

Q1[2,5]. Dadas as matrizes
$$M = \begin{bmatrix} 1 & 1 & 1 & 3 \\ 1 & -1 & 2 & 2 \\ 1 & 1 & -1 & 1 \end{bmatrix}$$
, $D = \begin{bmatrix} 1 & -2 & -1 & 6 \\ 0 & 2 & 1 & 8 \end{bmatrix}$ e $E = \begin{bmatrix} x^2 & y^3 \\ 13 & 16 \\ z & 9 \end{bmatrix}$. Calcule

- (a) (1,0 pontos) os valores de $x, y \in \mathbb{R}$ tais que $MD^T = E$
- (b) (0,5 ponto) $C = DD^T I$ (onde I é a identidade de ordem 2)
- (c) (1,0 ponto) det C

 $\mathbf{Q2}[1,5]$. Encontre o(s) valor(es) de $k \in \mathbb{R}$ tal que o sistema linear

$$\begin{cases} x + y + kz = -1 \\ x + ky + z = k \\ kx + y + z = 0 \end{cases}$$

seja impossível.

Q3[2,5]. Dadas as matrizes
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$
, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ e $A = \begin{bmatrix} 2 \\ -4 \\ 6 \end{bmatrix}$.

Determine, se existir:

- (a) (1,5 pontos) A inversa da matrix A.
- (b) (1,0 ponto) A solução do sistema linear AX = B

Q4[1,5]. Calcule o determinante da matriz
$$A = \begin{bmatrix} -2 & 3 & 1 & 7 \\ 0 & -1 & 0 & 1 \\ 3 & -4 & 5 & 1 \\ 1 & 0 & -2 & -1 \end{bmatrix}$$

Q5[2,0]. Classifique as afirmações dadas abaixo em Verdadeira ou Falsa. Justifique sua resposta.

- (a) (0.5 ponto) Se AB = 0, então BA = 0.
- (b) (0,5 ponto) Se B é uma matriz invertível e $AB^{-1} = B^{-1}A$, então AB = BA.
- (c) (0,5 ponto) Se A e B são matrizes invertíveis, então $(A^{-1}B)^{-1} = B^{-1}A$.
- (d) (0,5 ponto) Se x_1 e x_2 são soluções do sistema de equações lineares AX = B, então $x_1 x_2$ é solução do sistema AX = 0.