DL-Lite Full: a sub-Language of OWL 2 Full for the web-scale Open Data for Powerful Meta-modeling and Query Answering (Appendixes)

Zhenzhen Gu^a, Songmao Zhang^b, Cungen Cao^a

^aInstitute of Computing Technology, Chinese Academy of Sciences, Beijing, China ^bAcademy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing, China

Appendix A: Interpretations under ν -semantics and u-semantics

Figure 1: Interpretation of roles, classes, axioms and assertions w.r.t a ν -interpretation \mathcal{V} (a) and w.r.t a ν -interpretation \mathcal{U} (b), where $P,A,a,b\in \mathbb{N}$, $C(\gamma)$ (resp. $R(\gamma)$) denotes the set of names occurring in the class (resp. role) positions of DL-Lite Full class or role γ .

Syntax	Semantics		
P	$\mathcal{R}^{\mathcal{V}}(P^{\mathcal{V}})$		
P^{-}	$\{(x,y) (y,x)\in\mathcal{R}^{\mathcal{V}}(P^{\mathcal{V}})\}$		
$\neg S$	$\Delta^{\mathcal{V}} \times \Delta^{\mathcal{V}} - \mathcal{R}^{\mathcal{V}}(S)$		
A	$C^{\mathcal{V}}(A^{\mathcal{V}})$		
$\exists S$	$\{x \exists y.(x,y)\in\mathcal{R}^{\mathcal{V}}(S)\}$		
$\exists S.B$	$\{x \exists y.(x,y)\in\mathcal{R}^{\mathcal{V}}(S)\land y\in C^{\mathcal{V}}(B)\}$		
$\neg B$	$\Delta^{\mathcal{V}} - C^{\mathcal{V}}(B)$		
$B \sqsubseteq_{c} C$	$C^{\mathcal{V}}(B) \subseteq C^{\mathcal{V}}(C)$		
$S \sqsubseteq_r R$	$\mathcal{R}^{\mathcal{V}}(S) \subseteq \mathcal{R}^{\mathcal{V}}(R)$		
P(a,b)	$(a^{\mathcal{V}}, b^{\mathcal{V}}) \in \mathcal{R}^{\mathcal{V}}(P^{\mathcal{V}})$		
(a)			

Syntax	Semantics		
$B \sqsubseteq_{c} C$	$c^{\mathcal{U}} \in \Delta^{\mathcal{C}}$ for each $c \in C(B) \cup C(C)$, $p^{\mathcal{U}} \in \Delta^{\mathcal{R}}$ for each		
	$p \in R(B) \cup R(C)$, and $C^{\mathcal{U}}(B) \subseteq C^{\mathcal{U}}(C)$		
$S \sqsubseteq_r R$	$p^{\mathcal{U}} \in \Delta^{\mathcal{R}}$ for each $p \in R(S) \cup R(R)$, $\mathcal{R}^{\mathcal{U}}(S) \subseteq \mathcal{R}^{\mathcal{U}}(R)$		
P(a,b)	$P^{\mathcal{P}} \in \Delta^{\mathcal{R}}, (a^{\mathcal{U}}, b^{\mathcal{U}}) \in \mathcal{R}^{\mathcal{U}}(P^{\mathcal{U}})$		
Inductive definition of $C^{\mathcal{U}}(B)$, $C^{\mathcal{U}}(B)$, $\mathcal{R}^{\mathcal{U}}(S)$ and $\mathcal{R}^{\mathcal{U}}(R)$			
P	$\mathcal{R}^{\mathcal{U}}(P^{\mathcal{U}})$		
P^-	$\{(x,y) (y,x)\in\mathcal{R}^{\mathcal{U}}(P^{\mathcal{U}})\}$		
$\neg S$	$\Delta^{\mathcal{U}} \times \Delta^{\mathcal{U}} - \mathcal{R}^{\mathcal{U}}(S)$		
A	$C^{\mathcal{U}}(A^{\mathcal{U}})$		
$\exists S$	$\{x \exists y.(x,y)\in\mathcal{R}^{\mathcal{U}}(S)\}$		
$\exists S.B$	$\{x \exists y.(x,y)\in\mathcal{R}^{\mathcal{U}}(S)\land y\in\mathcal{C}^{\mathcal{U}}(B)\}$		
$\neg B$	$\Delta^{\mathcal{U}} - C^{\mathcal{U}}(B)$		
	(b)		

For a tuple \vec{u} , we use $|\vec{u}|$ and $\vec{u}[i]$ to denote the length and the i-th element of \vec{u} , respectively. For a query Q and tuple \vec{u}' with length $|\vec{u}|$, we use $Q[\vec{u}'/\vec{u}]$ to denote the result of replacing each occurrence of $\vec{u}'[i]$ in Q with $\vec{u}[i]$ for $1 \le i \le |\vec{u}|$. And if $|\vec{u}| = |\text{head}(Q)|$, we use $Q(\vec{u})$ as an abbreviation of $Q[\text{head}(Q)/\vec{u}]$. Interpretation of MQs is defined as below.

Figure 2: Interpretation (a) and semantic conditions (b) of preserved-names w.r.t a *u*-interpretation.

class A	$A^{\mathcal{U}}$	$C^{\mathcal{U}}(A^{\mathcal{U}})$		
Class	$\in \Delta^C$	$=\Delta^C$		
Property	$\in \Delta^C$	$=\Delta_u^{\mathcal{R}}$		
SymmetricProperty	$\in \Delta^C$	$\subseteq \Delta^{\mathcal{R}}$		
AsymmetricProperty	$\in \Delta^C$	$\subseteq \Delta^{\mathcal{R}}$		
role P	$P^{\mathcal{U}}$	$\mathcal{R}^{\mathcal{U}}(P^{\mathcal{U}})$		
type	$\in \Delta^{\mathcal{R}}$	$\subseteq \Delta^{\mathcal{U}} \times \Delta^{\mathcal{C}}$		
subClassOf	$\in \Delta^{\mathcal{R}}$	$\subseteq \Delta^C \times \Delta^C$		
equivalentProperty	$\in \Delta^{\mathcal{R}}$	$\subseteq \Delta^C \times \Delta^C$		
disjointWith	$\in \Delta^{\mathcal{R}}$	$\subseteq \Delta^C \times \Delta^C$		
domain	$\in \Delta^{\mathcal{R}}$	$\subseteq \Delta^{\mathcal{R}} \times \Delta^{\mathcal{C}}$		
range	$\in \Delta^{\mathcal{R}}$	$\subseteq \Delta^{\mathcal{R}} \times \Delta^{\mathcal{C}}$		
subPropertyOf	$\in \Delta^{\mathcal{R}}$	$\subseteq \Delta^{\mathcal{R}} \times \Delta^{\mathcal{R}}$		
equivalentProperty	$\in \Delta^{\mathcal{R}}$	$\subseteq \Delta^{\mathcal{R}} \times \Delta^{\mathcal{R}}$		
inverseOf	$\in \Delta^{\mathcal{R}}$	$\subseteq \Delta^{\mathcal{R}} \times \Delta^{\mathcal{R}}$		
propertyDisjointWith	$\in \Delta^{\mathcal{R}}$	$\subseteq \Delta^{\mathcal{R}} \times \Delta^{\mathcal{R}}$		
(a)				

iff $| x, y \in \Delta^C, C^{\mathcal{U}}(x) \subseteq C^{\mathcal{U}}(y)$ $(x,y) \in \mathcal{R}^{\mathcal{U}}(\mathsf{subClassOf}^{\mathcal{U}})$ iff $| x, y \in \Delta^C, C^{\mathcal{U}}(x) = C^{\mathcal{U}}(y)$ $(x, y) \in \mathcal{R}^{\mathcal{U}}$ (equivalentProperty $^{\mathcal{U}}$) $(x,y) \in \mathcal{R}^{\mathcal{U}}(\mathsf{disjointWith}^{\mathcal{U}})$ $x, y \in \Delta^C, C^{\mathcal{U}}(x) \cap C^{\mathcal{U}}(y) = \emptyset$ $x \in \Delta^{\mathcal{R}}, y \in \Delta^{\mathcal{C}}$ $(x,y) \in \mathcal{R}^{\mathcal{U}}(\mathsf{domain}^{\mathcal{U}})$ iff $\{o|(o,e)\in\mathcal{R}^{\mathcal{U}}(x)\}\subseteq C^{\mathcal{U}}(y)$ $x \in \Delta^{\mathcal{R}}, y \in \Delta^{\mathcal{C}}$ $(x,y) \in \mathcal{R}^{\mathcal{U}}(\mathsf{range}^I)$ iff $\{e|(o,e)\in\mathcal{R}^{\mathcal{U}}(x)\}\subseteq C^{\mathcal{U}}(y)$ $x, y \in \Delta^{\mathcal{R}}, \mathcal{R}^{\mathcal{U}}(x) \subseteq \mathcal{R}^{\mathcal{U}}(y)$ $(x,y) \in \mathcal{R}^{\mathcal{U}}(\mathsf{subPropertyOf}^{\mathcal{U}})$ $(x,y) \in \mathcal{R}^{\mathcal{U}}(\text{equivalentProperty}^{\mathcal{U}})$ $x, y \in \Delta^{\mathcal{R}}, \mathcal{R}^{\mathcal{U}}(x) = \mathcal{R}^{\mathcal{U}}(y)$ iff $(x,y) \in \mathcal{R}^{\mathcal{U}}(\text{propertyDisjointWith}^{\mathcal{U}})$ $x, y \in \Delta^{\mathcal{R}}, \mathcal{R}^{\mathcal{U}}(x) \cap \mathcal{R}^{\mathcal{U}}(y) = \emptyset$ iff $x, y \in \Delta^{\mathcal{R}}, \mathcal{R}^{\mathcal{U}}(x) = \mathcal{R}^{\mathcal{U}}(y)^{-1}$ $(x,y) \in \mathcal{R}^{\mathcal{U}}(\mathsf{inverseOf}^{\mathcal{U}})$ iff $s \in C^{\mathcal{U}}(SymmetricProperty^{\mathcal{U}})$ $\mathcal{R}^{\mathcal{U}}(x) = \mathcal{R}^{\mathcal{U}}(x)^{-1}$ iff $x \in C^{\mathcal{U}}(Asymmetric Property^{\mathcal{U}})$ $\mathcal{R}^{\mathcal{U}}(x) \cap \mathcal{R}^{\mathcal{U}}(x)^{-} = \emptyset$ (b)

Semantics of MQs. Let $l \in \{v, u\}$. For a MQ Q and l-interpretation I, a binding π of Q over I is a function that maps each variable in Q to an element in Δ^I and each name a in Q to a^I . We write $I, \pi \models_l Q$ if $(\pi(y), \pi(z)) \in \mathcal{R}^I(\pi(x))$ for each $x(y,z) \in \mathsf{body}(Q)$. We write $I \models_l Q$ if there exists a binding π of Q over I such that $I, \pi \models_l Q$ holds. For a DL-Lite Full KB \mathcal{K} , a tuple \vec{u} such that $|\vec{u}| = |\mathsf{head}(Q)|$ and for each $1 \le i \le |\vec{u}|$, if $\mathsf{head}(Q)[i] \in \mathsf{N}$ then $\vec{u}[i] = \mathsf{head}(Q)[i]$, is called a certain answer of Q over \mathcal{K} if $I \models_l Q(\vec{u})$ for each l-model I of \mathcal{K} . We use $\mathsf{ans}_l(Q,\mathcal{K})$ to denote the set of all the certain answers of Q over \mathcal{K} .

Preprint submitted to Elsevier June 22, 2020

Email addresses: guzhenzhen@ict.ac.cn (Zhenzhen Gu), smzhang@math.ac.cn (Songmao Zhang), cgcao@ict.ac.cn (Cungen Cao)

Appendix B: Proofs of the results in the paper

Proof of Theorem 1.

PROOF. $(1. \Rightarrow)$ If \mathcal{K} is ν -satisfiable then it has a ν -model \mathcal{V} . Next, we show $\tau_{dl}(\mathcal{K})$ is satisfiable. From \mathcal{V} , an interpretation $I=(\Delta^I,\cdot^I)$ for $\tau_{dl}(\mathcal{K})$ can be constructed by setting (a) $\Delta^I=\Delta^\mathcal{V}$; (b) for each $a\in\mathbb{N},\ a^I=a^\mathcal{V}$; (c) for each $P\in\mathbb{R},\ P^I=\mathcal{R}^\mathcal{V}((v_r^-(P))^\mathcal{V})$; and (d) for each $A\in\mathbb{C},\ A^I=\mathcal{C}^\mathcal{V}((v_c^-(A))^\mathcal{V})$. I and \mathcal{V} obey the same principles to interpret class and role constructors. Thus it holds that $(\clubsuit)\ (\tau_r(R))^I=\mathcal{R}^\mathcal{V}(R)$ for each DL-Lite Full role R and $(\tau_c(C))^I=\mathcal{C}^\mathcal{V}(C)$ for each DL-Lite Full class C. For each axiom or assertion α in $\tau_{dl}(\mathcal{K})$, if there exists α' in \mathcal{K} such that $\alpha=\tau(\alpha')$ then by (\clubsuit) and $\mathcal{V}\models\alpha',\ I\models\alpha$ holds. Otherwise, α is an individual assertion A(a) satisfying that there exists gr(P,a,A) in \mathcal{K} such that $P\sqsubseteq_r^*$ type holds. $a^I\in\mathcal{C}^\mathcal{V}(A^\mathcal{V})$ holds. Then by (\clubsuit) , $a^I\in\mathcal{V}_c(A)^I$ holds, i.e., $I\models A(a)$ holds. So I satisfies all the axioms and assertions in $\tau_{dl}(\mathcal{K})$. Therefore, $\tau_{dl}(\mathcal{K})$ is satisfiable.

(1. \Leftarrow) If $\tau_{dl}(\mathcal{K})$ is satisfiable. Then it has a canonical model I^{-1} . From I, a ν -interpretation $\mathcal{V} = (\Delta^{\mathcal{V}}, \cdot^{\mathcal{V}}, C^{\mathcal{V}}, \mathcal{R}^{\mathcal{V}})$ can be constructed by setting (a) $\Delta^{\mathcal{V}} = \Delta^{I}$; (b) for each $a \in \mathbb{N}$, $a^{\mathcal{V}} = a$; (c) for each $o \in \Delta^{\mathcal{V}}$, if $o \in \mathbb{N} - \{\text{type}\}$ then $\mathcal{R}^{\mathcal{V}}(o) = v_r(o)^I$, else if o = type then $\mathcal{R}^{\mathcal{V}}(\text{type}) = v_r(\text{type})^I \cup \{(o,e)|e \in \mathbb{N} \land o \in v_c(e)^I\}$, else $\mathcal{R}^{\mathcal{V}}(o) = \emptyset$; and (d) for each $o \in \Delta^{\mathcal{V}}$, $C^{\mathcal{V}}(o) = \{e|(o,e) \in \mathcal{R}^{\mathcal{V}}(\text{type})\}$. \mathcal{V} and I obey the same principles to interpret class and role constructors. Then from the construction of \mathcal{V} , we can get that (*) for each DL-Lite Full class C, $C^{\mathcal{V}}(C) = (\tau_c(C))^I$ holds, and for each DL-Lite Full role R, if $R \neq \text{type}$ and $R \neq \text{type}^-$ then $\mathcal{R}^{\mathcal{V}}(R) = (\tau_r(R))^I$ otherwise $(\tau_r(R))^I \subseteq \mathcal{R}^{\mathcal{V}}(R)$. The meta-role type just occurs in the right-hands of role inclusion axioms. Thus, for each axiom or individual assertion α in \mathcal{K} , from $I \models \tau(\alpha)$ and (*), $\mathcal{V} \models_{\mathcal{V}} \alpha$ holds. So \mathcal{V} is a ν -model of \mathcal{K} . Therefore \mathcal{K} is ν -satisfiable.

(2) If \mathcal{K} is not ν -satisfiable, then by (1), $\tau_{dl}(\mathcal{K})$ is not satisfiable and this conclusion holds trivially. Next, we assume that \mathcal{K} is ν -satisfiable. And by (1), $\tau_{dl}(\mathcal{K})$ is also satisfiable.

Let $\vec{u} \in \operatorname{ans}_{\nu}(Q, \mathcal{K})$. Next, we show $\vec{u} \in \operatorname{ans}(\tau_{dl}(Q), \tau_{dl}(\mathcal{K}))$. Let I be a canonical model of $\tau_{dl}(\mathcal{K})$. Then from I, a ν -model \mathcal{V} of \mathcal{K} can be constructed using the way presented in $(1. \Leftarrow)$. So there exists a binding π of $Q(\vec{u})$ over \mathcal{V} such that $\mathcal{V}, \pi \models_{\mathcal{V}} Q(\vec{u})$. From π , a binding π' of $\tau_{dl}(Q(\vec{u}))$ over I can be constructed by setting $\pi'(x) = \pi(x)$ for each variable x in $\tau_{dl}(Q(\vec{u}))$ and $\pi'(a) = a^I$ for each individual a in $\tau_{dl}(Q(\vec{u}))$. Then by (\clubsuit) and the construction of $\mathcal{V}, I, \pi' \models \tau_{dl}(Q(\vec{u}))$ holds. $\tau_{dl}(Q(\vec{u})) = \tau_{dl}(Q)$ (head $(\tau_{dl}(Q))/\vec{u})$ holds. Thus $\vec{u} \in \operatorname{ans}(\tau_{dl}(Q), \tau_{dl}(\mathcal{K}))$ holds. Hence the inclusion $\operatorname{ans}_{\mathcal{V}}(Q, \mathcal{K}) \subseteq \operatorname{ans}(\tau_{dl}(Q), \tau_{dl}(\mathcal{K}))$ holds. $\operatorname{ans}(\tau_{dl}(Q), \tau_{dl}(\mathcal{K})) \subseteq \operatorname{ans}_{\mathcal{V}}(Q, \mathcal{K})$ can be proved analogously. Thus $\operatorname{ans}_{\mathcal{V}}(Q, \mathcal{K}) = \operatorname{ans}(\tau(Q), \tau(\mathcal{K}))$ holds. \square

Proof of Lemma 1.

PROOF. Let $\mathcal{A}_o = \mathcal{A} \cup \{ \text{type}(a,A) | \text{gr}(P,a,A) \in \mathcal{A} \land P \sqsubseteq_r^* \text{type} \}$, i.e., the ABox obtained by materializing the non-standard use of type in the original KB. Then for each CQ Q, $\text{ans}_v(Q,(\emptyset,\mathcal{A}_o)) = \text{ans}(\tau_{dl}(Q),(\emptyset,\tau_{dl}(\mathcal{A})))$ holds trivially, since: $\tau_{dl}(\mathcal{A}) =$

 $\{v_c(A)(a)| \mathsf{type}(a,A) \in \mathcal{A}_o\} \cup \{v_r(P)(a,b)| P(a,b) \in \mathcal{A}_o \land P \neq \mathsf{type}\}$

Thus, the equation in the lemma can be proved by showing the following equation holds:

$$\bigcup_{Q \in \mathsf{RefType}(Q,\mathcal{T})} \mathsf{ans}_{\nu}(Q,(\emptyset,\mathcal{A})) = \bigcup_{Q \in Q} \mathsf{ans}_{\nu}(Q,(\emptyset,\mathcal{A}_o))$$

 (\subseteq) Let $Q \in \mathsf{RefType}(Q, \mathcal{T})$. And let $\vec{u} \in \mathsf{ans}_{\nu}(Q, (\emptyset, \mathcal{A}))$. Next, we show that (\clubsuit) there exists $Q' \in Q$ such that $\vec{u} \in \mathsf{ans}_{\nu}(Q', (\emptyset, \mathcal{A}_o))$. If $Q \in Q$ then (\spadesuit) holds trivially, since $\mathcal{A} \subseteq \mathcal{A}_o$. Otherwise, there exists a query Q':

$$\bigwedge_{l=1}^{n} \alpha_l \wedge \bigwedge_{i=1}^{m} \mathsf{type}(x_i, A_i) \rightarrow q(\vec{x})$$

in *Q* such that $P_k \sqsubseteq_r^*$ type for each $1 \le k \le m$ and *Q* is the query:

$$\bigwedge_{l=1}^{n} \alpha_l \wedge \bigwedge_{i=1}^{m} P_i(x_i, A_i) \rightarrow q(\vec{x})$$

Next we prove $\vec{u} \in \operatorname{ans}_{\nu}(Q', (\emptyset, \mathcal{A}))$. For \vec{u} , there exists a function f that maps all the variables in $Q(\vec{u})$ to names and all the atoms in $(Q(\vec{u}))f$ occur in \mathcal{A} . For each $P_i(a_i, A_i)$ in $(Q(\vec{u}))f$, $type(a_i, A_i)$ occurs in \mathcal{A}_o . Thus all the atoms in $(Q'(\vec{u}))f$ occur in \mathcal{A}_o . So $\vec{u} \in \operatorname{ans}_{\nu}(Q', (\emptyset, \mathcal{A}_o))$ holds. Hence (\clubsuit) holds. Therefore the (\subseteq) direction holds.

 (\supseteq) Let $Q \in Q$. And let $\vec{u} \in ans_{\nu}(Q, (\emptyset, \mathcal{A}_{\varrho}))$. In the following, we show that (*) there exists $Q' \in \mathsf{RefType}(Q, \mathcal{T})$ such that $\vec{u} \in \operatorname{ans}_{\nu}(Q', (\emptyset, \mathcal{A}))$. If $\vec{u} \in \operatorname{ans}_{\nu}(Q, (\emptyset, \mathcal{A}))$, then (*) holds trivially, since $\mathcal{A} \subseteq \mathcal{A}_o$ and $Q \in \mathsf{RefType}(Q, \mathcal{T})$. Otherwise, let $S \subseteq \mathcal{A}_{o} - \mathcal{A}$ such that $\vec{u} \in \mathsf{ans}_{v}(Q, (\emptyset, \mathcal{A} \cup S))$ and there does not exist $S' \subseteq S$ satisfying $\vec{u} \in \mathsf{ans}_{\nu}(Q, (\emptyset, \mathcal{A} \cup S'))$. Suppose $S = \bigcup_{i=1}^{n} \{ \text{type}(a_i, A_i) \}.$ Then for each $1 \le i \le n$, there exists $gr(P_i, a, A_i) \in \mathcal{A}$ such that $P_i \sqsubseteq_r^* type$. For \vec{u} , there exists a function f that maps all the variables in $Q(\vec{u})$ to names and all the atoms in $(Q(\vec{u}))f$ occur in $\mathcal{A} \cup \mathcal{S}$. Let Q' be the query obtained by replacing the atom type (x, A_i) in Q with $gr(P_i, x, A_i)$ if $x = a_i$, $f(x) = a_i$, or x occurs in the k-th position of head(Q) and $\vec{u}[k] = a_i$, for $1 \le i \le n$. Then all the atoms in $(Q'(\vec{u}))f$ occur in \mathcal{A} . So $\vec{u} \in \mathsf{ans}_{\nu}(Q', (\emptyset, \mathcal{A}))$ holds. Thus the (\supseteq) direction holds. П

Proof of Theorem 2.

PROOF. (1) By Lemma 1 and Definition 6, the following equation holds trivially:

$$\bigcup_{Q \in \mathsf{Violates}_{\nu}(\mathcal{T})} \mathsf{ans}_{\nu}(Q, (\emptyset, \mathcal{A})) = \bigcup_{q \in \mathsf{Violates}(\tau_{dl}(\mathcal{T}))} \mathsf{ans}(q, (\emptyset, \tau_{dl}(\mathcal{A})))$$

By Theorem 1, \mathcal{K} is ν -satisfiable iff $\tau_{dl}(\mathcal{K})$ is satisfiable. And $\tau_{dl}(\mathcal{K})$ is satisfiable iff $\bigcup_{q \in \mathsf{Violates}(\tau_{dl}(\mathcal{T}))} \mathsf{ans}(q, (\emptyset, \tau_{dl}(\mathcal{R}))) = \emptyset$. Thus this conclusion holds. (2) For each CQ Q, the corresponding equation can be proved analogous to (1).

Proof of Theorem 3.

¹A DL-Lite_R KB *O* has a canonical interpretation *I* satisfying that (1) $a^{I} = a$ for each $a \in \mathbb{N}$; (2) *O* is satisfiable iff *I* satisfies *O*; and (3) if *O* is satisfiable then for each conjunctive query q, $\vec{u} \in \mathsf{ans}(q, O)$ iff *I* satisfies $q(\vec{u})$. If *O* is satisfiable then *I* is called a canonical model of *O*.

PROOF. (\subseteq) Let $\vec{u} \in \mathsf{ans}_{\nu}(Q, \mathcal{K})$. Next, we show there exists $\theta \in \text{fullBind}(Q, \mathcal{K})$ such that $\vec{u} \in \text{ans}_{\nu}(Q\theta, \mathcal{K})$. Let \mathcal{V} be a ν model of \mathcal{K} constructed from a canonical model of $\tau_{dl}(\mathcal{K})$ by the approach presented in the $(1. \Leftarrow)$ direction of the proof of Theorem 1. Then we can get that (\spadesuit) for each $o \in \Delta^{\mathcal{V}} - N$, $C^{\mathcal{V}}(o) = \mathcal{R}^{\mathcal{V}}(o) = \emptyset$. For \vec{u} , there exists a binding π of $Q(\vec{u})$ over \mathcal{V} such that $\mathcal{V}, \pi \models_{\mathcal{V}} O(\vec{u})$. From π and \vec{u} , we can construct a full MV-Binding θ of O over K. For each role variable x of O, if x occurs in the i-th position of head(Q) then set $\theta_r(x) = \vec{u}[i]$, otherwise from (\spadesuit), we know there exists $n \in \mathbb{N}$ such that $\pi(x) =$ n, and then set $\theta_r(x) = n$. And for each class variable x of $Q\theta_r$, if x occurs in the i-th position of head(Q) then set $\theta_c(x) = \vec{u}[i]$, otherwise by (\spadesuit), we know there exists $n \in \mathbb{N}$ such that $\pi(x) = n$, and then set $\theta_c(x) = n$. Next, we prove $\vec{u} \in ans_v(Q\theta, \mathcal{K})$. Let π' be a binding of $Q\theta(\vec{u})$ over \mathcal{V} such that $\pi'(x) = \pi(x)$ for each variable x in $Q\theta(\vec{u})$ and $\pi'(a) = a$ for each name a in $Q\theta(\vec{u})$. Then $V, \pi' \models_{V} Q\theta(\vec{u})$ holds, since $(Q\theta(\vec{u}))\pi' = (Q(\vec{u}))\pi$ holds. Thus $\vec{u} \in \mathsf{ans}_{\nu}(Q\theta,\mathcal{K})$ holds. Therefore the relation $\mathsf{ans}_{\nu}(Q,\mathcal{K}) \subseteq$ $\bigcup_{\theta \in \mathsf{fullBind}(Q,\mathcal{K})} \mathsf{ans}_{\nu}(Q\theta,\mathcal{K}) \text{ holds.}$

(2) Let $\theta \in \text{fullBind}(Q, \mathcal{K})$ and $\vec{u} \in \text{ans}_{\nu}(Q\theta, \mathcal{K})$. Next, we show $\vec{u} \in \text{ans}_{\nu}(Q, \mathcal{K})$. Let \mathcal{V} be an arbitrary ν -model of \mathcal{K} . Then there exists a binding π of $(Q\theta)(\vec{u})$ over \mathcal{V} such that $\mathcal{V}, \pi \models_{\nu} (Q\theta)(\vec{u})$. From π , a binding π' of $Q(\vec{u})$ over \mathcal{K} can be constructed by the settings that (a) for each variable x occurring in $Q(\vec{u})$, if $x \in \text{dom}(\theta_r)$ (resp. $x \in \text{dom}(\theta_c)$) then set $\pi'(x) = (\theta_r(x))^{\mathcal{V}}$ (resp. $\pi'(x) = (\theta_c(x))^{\mathcal{V}}$); and (b) for each name a occurring in $Q(\vec{u})$, set $\pi'(a) = a^{\mathcal{V}}$. Obviously $\mathcal{V}, \pi' \models_{\nu} Q(\vec{u})$ holds. Thus $\vec{u} \in \text{ans}_{\nu}(Q, \mathcal{K})$ holds. Therefore $\text{ans}_{\nu}(Q, \mathcal{K}) \supseteq \bigcup_{\theta \in \text{fullBind}(Q, \mathcal{K})} \text{ans}_{\nu}(Q\theta, \mathcal{K})$ holds.

Proof of Lemma 2.

PROOF. Under ν -semantics, it holds trivially that $\vec{u} \in \operatorname{ans}(Q,(\emptyset,\mathcal{A}))$ iff there exists a function f such that f maps each variable in $Q(\vec{u})$ to a name in \mathcal{A} and all the atoms in $Q(\vec{u})f$ occur in \mathcal{A} . Then this lemma holds.

Proof of Lemma 3.

PROOF. (1) (\supseteq) By Definition 10, i.e., the definition of extensions of partial MV-Bindings, this direction of the equation in this lemma holds. (\subseteq) Let θ be an arbitrary full MV-Binding of Q over \mathcal{K} . Next, we construct a partial MV-Binding θ of Q over \mathcal{T} such that $\theta \in \text{extPBind}(\theta, Q, \mathcal{K})$ holds. For each role variable x of Q, set $\theta_r(x) = \theta_r(x)$ iff $\theta_r(x) \in \mathsf{N}^{rr}_{\mathcal{T}} \cup \{\text{type}\}$. Then $Q\theta_r$ and $Q\theta_r$ have the same class variables. For each class variable x of $Q\theta_r$, set $\theta_c(x) = \theta_c(x)$ iff $\theta_c(x) \in \mathsf{N}^{rc}_{\mathcal{T}}$. Then by Definition $10, \theta \in \text{extPBind}(\theta, Q, \mathcal{K})$ holds. Thus the direction (\subseteq) holds.

- (2) According to the algorithm PerfectRef, we can get that (\spadesuit) for a CQ q and atom A(x) (resp. P(x, y)), if A (resp. P) does not occur in the right hands of any inclusion axioms in a DL-Lite_{\mathcal{R}} TBox \mathcal{T} , then this query atom will not be extended by the inclusion axioms in \mathcal{T} to generate new queries, i.e., it will be occur in each query in PerfectRef(q, \mathcal{T}).
- (\subseteq .1) Let $\theta \in \mathsf{extPBind}(\vartheta, Q, \mathcal{K})$ and $\vec{u} \in \mathsf{ans}_{\nu}(Q\theta, \mathcal{K})$. Next, we show there exists $Q' \in \mathsf{PerfectRef}^{mq}_{\nu}(Q\vartheta, \mathcal{T})$ such that $\vec{u} \in \mathsf{ans}_{\nu}(Q', (\emptyset, \mathcal{A}))$. By Theorem 2, there exists $q \in \mathsf{ans}_{\nu}(Q', (\emptyset, \mathcal{A}))$

PerfectRef_v^{cq}(Q\theta,\mathcal{T}) such that $\vec{u} \in \operatorname{ans}_v(Q,(\emptyset,\mathcal{A}))$. Let $\theta' = (\theta'_r,\theta'_c)$ be a tuple of functions satisfying that (a) $\operatorname{dom}(\theta'_r) = \operatorname{dom}(\theta_r) - \operatorname{dom}(\theta_r)$ and for each $x \in \operatorname{dom}(\theta'_r)$, $\theta'_r(x) = \theta_r(x)$ holds and (b) $\operatorname{dom}(\theta'_c) = \operatorname{dom}(\theta_c) - \operatorname{dom}(\theta_c)$ and for each $x \in \operatorname{dom}(\theta'_c)$, $\theta'_c(x) = \theta_c(x)$ holds. Obviously θ' is a full MV-Binding of $Q\theta$ over \mathcal{K} that maps the class (resp. role) variables of $Q\theta$ to the names not occurring in $N^{rc}_{\mathcal{T}}$ (resp. $N^{rr}_{\mathcal{T}}$). For q, by (\spadesuit) and Definition 6 and 9, i.e., the definition of PerfectRef_v^{cq} and PerfectRef_v^{mq}, we can get that there exists $Q' \in \operatorname{PerfectRef}_v^{mq}(Q\theta,\mathcal{T})$ such that $q = Q'\theta'$. Thus $\vec{u} \in \operatorname{ans}_v(Q'\theta',(\emptyset,\mathcal{A}))$. Then by Theorem 3, $\vec{u} \in \operatorname{ans}_v(Q',(\emptyset,\mathcal{A}))$ holds. Thus the first inclusion holds.

 $(\subseteq .2)$ Let $Q' \in \mathsf{PerfectRef}_v^{mq}(Q\vartheta,\mathcal{T})$. And let $\vec{u} \in \mathsf{ans}_v(Q',(\emptyset,\mathcal{A}))$. Next, we show $\vec{u} \in \mathsf{ans}_v(Q,\mathcal{K})$. By Theorem 3, there exists a full MV-Binding θ of Q' over (\emptyset,\mathcal{A}) such that $\vec{u} \in \mathsf{ans}_v(Q'\theta,(\emptyset,\mathcal{A}))$ holds. Let θ' be a full MV-Binding of Q over \mathcal{K} such that (a) $\mathsf{dom}(\theta'_r) = \mathsf{dom}(\vartheta_r) \cup \mathsf{dom}(\theta_r)$ and for each $x \in \mathsf{dom}(\theta'_r)$, if $x \in \mathsf{dom}(\vartheta_r)$ then $\theta'_r(x) = \vartheta_r(x)$, otherwise $\theta'_r(x) = \theta_r(x)$; and (2) $\mathsf{dom}(\theta'_c) = \mathsf{dom}(\vartheta_c) \cup \mathsf{dom}(\theta_c)$ and for each $x \in \mathsf{dom}(\theta'_c)$, if $x \in \mathsf{dom}(\vartheta_c)$ then $\theta'_c(x) = \vartheta_c(x)$ otherwise $\theta'_c(x) = \theta_c(x)$. Then by Definition 9, i.e., the definition of PerfectRef_v^{mq}, $Q'\theta \in \mathsf{PerfectRef}_v^{rq}(Q\theta', \mathcal{T})$ holds. Then by Theorem 2 and $\vec{u} \in \mathsf{ans}_v(Q'\theta, (\emptyset, \mathcal{A}))$, $\vec{u} \in \mathsf{ans}_v(Q, \mathcal{K})$ holds. Thus the second inclusion relation holds.

Proof of Theorem 4.

PROOF. By Theorem 3 and Lemma 3, the following equation and inclusions hold:

$$\begin{aligned} \mathsf{ans}_{\nu}(Q,\mathcal{K}) &= \bigcup_{\theta \in \mathsf{fullBind}(Q,\mathcal{K})} \mathsf{ans}_{\nu}(Q\theta,\mathcal{K}) \\ &= \bigcup_{\theta \in \mathsf{partBind}(Q,\mathcal{T})} \bigcup_{\theta \in \mathsf{extPBind}(\theta,Q,\mathcal{K})} \mathsf{ans}_{\nu}(Q\theta,\mathcal{K}) \\ &\subseteq \bigcup_{\theta \in \mathsf{partBind}(Q,\mathcal{T})} \bigcup_{Q' \in \mathsf{PerfectRef}^{\mathit{ma}}_{\mu}(Q\theta,\mathcal{T})} \mathsf{ans}_{\nu}(Q',(\emptyset,\mathcal{A})) \\ &\subseteq \bigcup_{\theta \in \mathsf{partBind}(Q,\mathcal{T})} \mathsf{ans}_{\nu}(Q,\mathcal{K}) \\ &\subseteq \mathsf{ans}_{\nu}(Q,\mathcal{K}) \end{aligned}$$

Thus the following equation holds, i.e., this theorem holds:

$$\begin{aligned} &\mathsf{ans}_{\nu}(Q,\mathcal{K}) = \\ &\bigcup_{\vartheta \in \mathsf{partBind}(Q,\mathcal{T})} \bigcup_{\mathcal{Q}' \in \mathsf{PerfectRef}^{mq}_{\mu}(Q\vartheta,\mathcal{T})} \mathsf{ans}_{\nu}(Q',(\emptyset,\mathcal{A})) \end{aligned}$$

Proof of Lemma 4.

PROOF. Conjunctive query answering over databases has AC^0 data complexity. By Lemma 2, this theorem holds.

Proof of Theorem 5.

PROOF. By Definition 6 and Theorem 2, the complexity results of ν -satisfiability checking and CQ answering hold trivially. If Q has meta-variables, then it has no more than $2^{2|Q|}(2|\mathcal{T}|+2)^{2|Q|}$ partial MV-Bindings over \mathcal{T} . Then by Theorem 4, Definitions 9 and 6 and Lemma 4, the complexity results for meta-query answering holds.

Proof of Lemma 5.

PROOF. (1) \mathcal{K} is u-satisfiable, so it has a u-model $\mathcal{U} = (\Delta^{\mathcal{U}}, \Delta^{\mathcal{R}}, \Delta^{\mathcal{C}}, {}^{\mathcal{U}}, \mathcal{R}^{\mathcal{U}}, C^{\mathcal{U}})$. From \mathcal{U} , a ν -interpretation $\mathcal{V} = (\Delta^{\mathcal{V}}, {}^{\mathcal{V}}, \mathcal{R}^{\mathcal{V}}, C^{\mathcal{V}})$ can be constructed by setting (a) $\Delta^{\mathcal{V}} = \Delta^{\mathcal{U}}$; (b) for each $a \in \mathbb{N}$, $a^{\mathcal{V}} = a^{\mathcal{U}}$; (c) for each $o \in \Delta^{\mathcal{V}}$, if $o \in \Delta^{\mathcal{R}}$ then $\mathcal{R}^{\mathcal{V}}(o) = \mathcal{R}^{\mathcal{U}}(o)$, otherwise $\mathcal{R}^{\mathcal{V}}(o) = \emptyset$, and if $o \in \Delta^{\mathcal{C}}$ then $C^{\mathcal{V}}(o) = C^{\mathcal{U}}(o)$, otherwise $C^{\mathcal{V}}(o) = \emptyset$. \mathcal{U} and \mathcal{V} obey the same principles to interpret class and role constructors. Thus (\bullet) $\mathcal{R}^{\mathcal{V}}(R) = \mathcal{R}^{\mathcal{U}}(R)$ holds for each DL-Lite Full role R and $C^{\mathcal{V}}(C) = C^{\mathcal{U}}(C)$ holds for each DL-Lite Full class C. Then we can further obtain that \mathcal{V} satisfies all the axioms and assertions in \mathcal{K} . So \mathcal{V} is a ν -model of \mathcal{K} . Thus \mathcal{K} is ν -satisfiable.

(2) If \mathcal{K} is not u-satisfiable then this conclusion holds directly. Suppose \mathcal{K} is u-satisfiable. Let \mathcal{U} be an arbitrary u-models of \mathcal{K} . From \mathcal{U} , a v-model \mathcal{V} of \mathcal{K} can be constructed by the approach presented in (1). Then $\mathcal{V} \models_{\mathcal{V}} \alpha$ holds. Then by the restriction put on α and (\spadesuit) in (1), $\mathcal{U} \models_{u} \alpha$ holds. Based on the arbitrary feature of \mathcal{U} , $\mathcal{K} \models_{u} \alpha$ holds.

(3) If \mathcal{K} is not u-satisfiable then this conclusion holds trivially. We assume \mathcal{K} is u-satisfiable. Let $\vec{u} \in \mathsf{ans}_{\mathcal{V}}(Q,\mathcal{K})$. And let \mathcal{U} be an arbitrary u-models of \mathcal{K} . Then from \mathcal{U} , a ν -model \mathcal{V} of \mathcal{K} can be constructed by the way in (1). Then there exists a binding π of $Q(\vec{u})$ over \mathcal{V} such that $\mathcal{V}, \pi \models_{\mathcal{V}} Q(\vec{u})$ holds. Obviously, π is also a binding of $Q(\vec{u})$ over \mathcal{U} . Then by (\spadesuit) in (1), $\mathcal{U} \models_{\mathcal{U}} Q(\vec{u})$ holds. So $\vec{u} \in \mathsf{ans}_{\mathcal{U}}(Q,\mathcal{K})$ holds. Thus, we can further obtain that $\mathsf{ans}_{\mathcal{V}}(Q,\mathcal{K}) \subseteq \mathsf{ans}_{\mathcal{U}}(Q,\mathcal{K})$.

Proof of Lemma 6.

PROOF. (1) Let $\mathcal{K} = (\mathcal{T}_m \cup \mathcal{T}_o, \mathcal{A}_m \cup \mathcal{A}_o)$ and $\mathcal{K}_{u \to v} = (\mathcal{T}, \mathcal{A})$. If \mathcal{K} is v-satisfiable, the following conclusion holds trivially. For a preserved-class C_p , $\mathcal{K} \models_v type(a, C_p)$ iff there exists $gr(P, a, b) \in \mathcal{A}_p$ such that $P \sqsubseteq_r^*$ type and $\mathcal{K} \models_v b \sqsubseteq_c C_p$ or $\mathcal{K} \models_v \exists P \sqsubseteq_c C_p$. And for a preserved-role P_p , $\mathcal{K} \models_v P_p(a, b)$ iff there exists $gr(S, a, b) \in \mathcal{A}_m$ such that $\mathcal{K} \models_v S \sqsubseteq_r P_p$. The names occurring in \mathcal{T}_m do not used as individuals in \mathcal{A}_m . Thus we can get that $\mathcal{T}'_o = \mathcal{T} - \mathcal{T}_m - \mathcal{T}_o$, i.e., the set of axioms added to \mathcal{K} according to the individual assertions of preserved-names implied by \mathcal{K} , do not contain the names occurring in \mathcal{T}_m . Thus $\mathcal{K}_{u \to v}$ is still a DL-Lite Full KB, since its TBox is $\mathcal{T}_m \uplus (\mathcal{T}_o \cup \mathcal{T}'_o)$ which satisfies the conditions in Definition 2.

(2) This conclusion holds by the following facts. Let \mathcal{K} be a DL-Lite Full KB. (a) For each axiom or assertion α , if $\mathcal{K} \models_{\nu} \alpha$ then $\mathcal{K} \models_{u} \alpha$; (b) For an axiom or assertion α , if $\mathcal{K} \models_{u} \alpha$, then for each axiom or assertion α' , if $\mathcal{K} \cup \{\alpha\} \models_{u} \alpha'$ then $\mathcal{K} \models_{u} \alpha'$; (c) For the axioms (assertions) with the forms in Figure 3 and u-entailed by \mathcal{K} , then the corresponding assertions (axioms) are u-entailed by \mathcal{K} . For example, $\mathcal{K} \models_{u} \text{subClassOf}(A, B)$ iff $\mathcal{K} \models_{u} A \sqsubseteq_{c} B$.

Proof of Theorem 6.

PROOF. We first claim that for a ν -satisfiable DL-Lite Full KB \mathcal{K} , let \mathcal{V} be a ν -model of \mathcal{K} constructed from a canonical model of the DL-Lite \mathcal{K} KB $\tau_{dl}(\mathcal{K})$ by the way presented in $(1. \Leftarrow)$ in the Proof of Theorem 1. Then \mathcal{V} satisfies that (a) $a^{\mathcal{V}} = a$ for each $a \in \mathbb{N}$; and (b) by Theorem 1 and 3, it can be easily proved that for each meta-query Q, $\vec{u} \in \mathsf{ans}_{\nu}(Q,\mathcal{K})$ iff $\mathcal{V} \models_{\nu} Q(\vec{u})$. In the following, we call \mathcal{V} a canonical ν -model of \mathcal{K} .

Lemma 6 indicates that \mathcal{K} and $\mathcal{K}_{u\to v}$ are u-semantic equivalent, i.e., they have the same u-models. By Lemma 5, we just need to prove that (1) if $\mathcal{K}_{u\to v}$ is u-satisfiable then $\mathcal{K}_{u\to v}$ is v-satisfiable; and (2) if Q is a MQ without non-distinguished meta-variables, $\mathsf{ans}_v(Q,\mathcal{K}_u)\subseteq \mathsf{ans}_u(Q,\mathcal{K}_{u\to v})$ holds.

(1) $\mathcal{K}_{u \to v}$ is v-satisfiable, thus it has a canonical v-model $\mathcal{V} = (\Delta^{\mathcal{V}}, {}^{\mathcal{V}}, \mathcal{R}^{\mathcal{V}}, C^{\mathcal{V}})$. From \mathcal{V} , we construct a u-interpretation $\mathcal{U} = (\Delta^{\mathcal{U}}, \Delta^{\mathcal{R}}, \Delta^{\mathcal{C}}, {}^{\mathcal{U}}, \mathcal{R}^{\mathcal{U}}, C^{\mathcal{U}})$ by setting (a) $\Delta^{\mathcal{U}} = \Delta^{\mathcal{V}}$; (b) set $\Delta^{\mathcal{R}} = C^{\mathcal{V}}$ (Property), and for each name a used as role in $\mathcal{K}_{u \to v}$, add a to $\Delta^{\mathcal{R}}$; (c) set $\Delta^{\mathcal{C}}_u = C^{\mathcal{V}}$ (Class), and for each name a used as class in $\mathcal{K}_{u \to v}$, add a to $\Delta^{\mathcal{R}}$; (d) set $a^{\mathcal{U}} = a$ for each $a \in \mathbb{N}$; (e) for each $o \in \Delta^{\mathcal{R}}$, set $\mathcal{R}^{\mathcal{U}}(o) = \mathcal{R}^{\mathcal{V}}(o)$; and (f) for each $o \in \Delta^{\mathcal{C}}$, if o = Property then set $C^{\mathcal{U}}(o) = \Delta^{\mathcal{R}}$, else if o = Class then set $C^{\mathcal{U}}(o) = \Delta^{\mathcal{C}}$, else set $C^{\mathcal{U}}(o) = C^{\mathcal{V}}(o)$. In order to make \mathcal{U} satisfy the semantic conditions of meta-names listed in Appendix A, we need to make the extra setting:

- For each $(o, e) \in \Delta^{C} \times \Delta^{C}$, if $C^{\mathcal{U}}(o) \subseteq C^{\mathcal{U}}(e)$ and $(o, e) \notin \mathcal{R}^{\mathcal{U}}(\mathsf{subClassOf}^{\mathcal{U}})$ then add (o, e) to $\mathcal{R}^{\mathcal{U}}(\mathsf{subClassOf})$; if $C^{\mathcal{U}}(o) = C^{\mathcal{U}}(e)$ and $(o, e) \notin \mathcal{R}^{\mathcal{U}}(\mathsf{equivalentClass})$ then add (o, e) to $\mathcal{R}^{\mathcal{U}}(\mathsf{equivalentClass})$; and if $C^{\mathcal{U}}(o) \cap C^{\mathcal{U}}(e) = \emptyset$ and $(o, e) \notin \mathcal{R}^{\mathcal{U}}(\mathsf{disjointWith})$ then add (o, e) to $\mathcal{R}^{\mathcal{U}}(\mathsf{disjointWith})$;
- For each $(o, e) \in \Delta^{\mathcal{R}} \times \Delta^{\mathcal{R}}$, if $\mathcal{R}^{\mathcal{U}}(o) \subseteq \mathcal{R}^{\mathcal{U}}(e)$ and $(o, e) \notin \mathcal{R}^{\mathcal{U}}(\text{subPropertyOf})$ then add (o, e) to $\mathcal{R}^{\mathcal{U}}(\text{subPropertyOf})$; if $\mathcal{R}^{\mathcal{U}}(o) = \mathcal{R}^{\mathcal{U}}(e)$ and $(o, e) \notin \mathcal{R}^{\mathcal{U}}(e)$ equivalentProperty) then add (o, e) to $\mathcal{R}^{\mathcal{U}}(e)$ equivalentProperty); if $\mathcal{R}^{\mathcal{U}}(o) \cap \mathcal{R}^{\mathcal{U}}(e) = \emptyset$ and $(o, e) \notin \mathcal{R}^{\mathcal{U}}(e)$ propertyDisjoint) then add (o, e) to $\mathcal{R}^{\mathcal{U}}(e)$ and $(o, e) \notin \mathcal{R}^{\mathcal{U}}(e)$ and $(o, e) \notin \mathcal{R}^{\mathcal{U}}(e)$ inverseOf) then add (o, e) to $\mathcal{R}^{\mathcal{U}}(e)$ inverseOf);
- For each $(o, e) \in \Delta^{\mathcal{R}} \times \Delta^{\mathcal{C}}$, if $\{x | (x, y) \in \mathcal{R}^{\mathcal{U}}(o)\} \subseteq C^{\mathcal{U}}(e)$ and $(o, e) \notin \mathcal{R}^{\mathcal{U}}(\text{domain})$ then add (o, e) to $\mathcal{R}^{\mathcal{U}}(\text{domain})$; and if $\{y | (x, y) \in \mathcal{R}^{\mathcal{U}}(o)\} \subseteq C^{\mathcal{U}}(e)$ and $(o, e) \notin \mathcal{R}^{\mathcal{U}}(range)$ then add (o, e) to $\mathcal{R}^{\mathcal{U}}(range)$;
- For each $o \in \Delta^{\mathcal{R}}$, if $\mathcal{R}^{\mathcal{V}}(o) = \{(y,x)|(x,y) \in \mathcal{R}^{\mathcal{V}}(o)\}$ and $o \notin C^{\mathcal{U}}(SymmetricProperty)$, then add o to $C^{\mathcal{U}}(SymmetricProperty)$; and if $\mathcal{R}^{\mathcal{V}}(o) \cap \{(y,x)|(x,y) \in \mathcal{R}^{\mathcal{V}}(o)\} = \emptyset$ and $o \notin C^{\mathcal{U}}(AsymmetricProperty)$, then add o to $C^{\mathcal{U}}(AsymmetricProperty)$.

Then \mathcal{U} satisfies the semantic conditions of preserved-names listed in Appendix A. So it is a u-interpretation. \mathcal{U} and \mathcal{V} obey the same rules to interpret the class and role constructors. Thus, we can get that (*) for each DL-Lite Full class C, if C is not a preserved-class then $C^{\mathcal{U}}(C) = C^{\mathcal{V}}(C)$ otherwise $C^{\mathcal{V}}(C) \subseteq C^{\mathcal{U}}(C)$, and for each DL-Lite Full Role R, if R is not a preserved-role or inverse of a preserved-role then $R^{\mathcal{U}}(R) = R^{\mathcal{V}}(R)$ otherwise $R^{\mathcal{V}}(R) \subseteq R^{\mathcal{U}}(R)$. preserved-names do not occur in the left-hands of inclusion axioms. So for each axiom or individual assertion α , by $\mathcal{V} \models_{\mathcal{V}} \alpha$ and (*), $\mathcal{U} \models_{\mathcal{U}} \alpha$ holds. So \mathcal{U} is a u-model of \mathcal{K} . Thus \mathcal{K} is u-satisfiable.

(2) We first prove that (\spadesuit) for each assertion α with the form $P_p(a,b)$ or $\mathsf{type}(a,A_p)$, where P_p is a preserved-role except type and A_p is a preserved-class, then if $\mathcal{K}_{u\to v}\models_u \alpha$ then $\mathcal{K}_{u\to v}\models_v \alpha$. Assume (A) $\mathcal{K}_{u\to v}\nvDash_v \alpha$. Let \mathcal{V} be a canonical v-model of $\mathcal{K}_{u\to v}$. Suppose α is an assertion subClassOf(A, B). Then $(A,B)\notin\mathcal{R}^{\mathcal{V}}(\mathsf{subClassOf})$. Let \mathcal{T} be the TBox of $\mathcal{K}_{u\to v}$, and let $\mathcal{H}'=\{\mathsf{type}(o_A,A)\}$ where o_A is an ordinary name not occurring in $\mathcal{K}_{u\to v}$. Obviously $(\mathcal{T},\mathcal{H}')$ is v-satisfiable, since

 $\mathcal{T} \nvDash_{v} A \sqsubseteq_{c} B$ implies $\mathcal{T} \nvDash_{v} A \sqsubseteq_{c} \neg A$. Let \mathcal{V}' be a canonical v-model of $(\mathcal{T}, \mathcal{H}')$. We assume $(\Delta^{\mathcal{V}} - \mathsf{N}) \cap (\Delta^{\mathcal{V}'} - \mathsf{N}) = \emptyset$, i.e., \mathcal{V}' and \mathcal{V} do not share any anonymous element. From \mathcal{V} and \mathcal{V}' , we construct another v-interpretation \mathcal{V}'' by setting (a) $\Delta^{\mathcal{V}''} = \Delta^{\mathcal{V}} \cup \Delta^{\mathcal{V}'}$; (b) $a^{\mathcal{V}''} = a$ for each $a \in \mathsf{N}$; and (c) $C^{\mathcal{V}''}(o) = C^{\mathcal{V}}(o) \cup C^{\mathcal{V}'}(o)$ and $\mathcal{R}^{\mathcal{V}''}(o) = \mathcal{R}^{\mathcal{V}}(o) \cup \mathcal{R}^{\mathcal{V}'}(o)$ for each $o \in \Delta^{\mathcal{V}''}$. It can be trivially validate that \mathcal{V}'' is a v-model of \mathcal{K} . And $C^{\mathcal{V}''}(A) \nsubseteq C^{\mathcal{V}''}(B)$ holds. From \mathcal{V}'' , a u-model \mathcal{U} can be constructed using the way presented in (1). By the settings (§), we can get that $(A, B) \notin \mathcal{R}^{\mathcal{V}''}$ (subClassOf). This contradicts with that \mathcal{U} is a u-model of $\mathcal{K}_{u \to v}$. So assumption (A) does not hold. Thus $\mathcal{K}_{u \to v} \models_{v} \mathsf{subClassOf}(A, B)$ holds. The other forms of α can be proved analogously.

Let $\vec{u} \in \text{ans}_u(Q, \mathcal{K}_{u \to v})$. We prove $\vec{u} \in \text{ans}_v(Q, \mathcal{K}_{u \to v})$. Let S be the set of all the atoms in $Q(\vec{u})$ with the forms $P_p(a,b)$ or type (a, C_p) , where P_p is a preserved-role except type and C_p is a preserved-class except Class and Property. Then all the atoms in S do not contain variables and $K_{u\to v} \models_u \alpha$ holds for each $\alpha \in S$. Thus (\bigstar) $\mathcal{K}_{u \to v} \models_{v} \alpha$ holds for each $\alpha \in S$. Let Q' be the query $\land_{\alpha \in \mathsf{body}(Q(\vec{u})) - \mathcal{S}} \to q()$. Then by (\bigstar) , $\vec{u} \in$ $\operatorname{ans}_{u}(Q, \mathcal{K}_{u \to v})$ can be proved by showing $() \in \operatorname{ans}_{v}(Q', \mathcal{K}_{u \to v}),$ i.e., Q' is true over $\mathcal{K}_{u\to v}$. Let \mathcal{V} be a canonical v-model of $\mathcal{K}_{u\to\nu}$. Then a *u*-model \mathcal{U} of $K_{u\to\nu}$ can be constructed using the way presented in (1). Thus there exists a binding π of Q' over \mathcal{U} such that $\mathcal{U}, \pi \models_u Q'$. Q' does not contain atoms with the forms $P_p(a, b)$ or type (a, C_p) , where P_p is a meta-role except type and C_p is a preserved-class except Class and Property. From the construction of \mathcal{U} , we can get that π is also a binding of Q' over \mathcal{V} . Thus $() \in \mathsf{ans}_{\nu}(Q', \mathcal{K}_{u \to \nu})$ holds. Hence $\vec{u} \in \mathsf{ans}_{\nu}(Q, \mathcal{K}_{u \to \nu})$. Therefore $\operatorname{ans}_u(Q, \mathcal{K}_{u \to v}) \subseteq \operatorname{ans}_v(Q, \mathcal{K}_{u \to v})$ holds.

Proof of Lemma 7.

PROOF. This lemma holds according to the following facts. Let $\mathcal{K} = (\mathcal{T}, \mathcal{A}_m \cup \mathcal{A}_o)$ be an asserted DL-Lite Full KB. (a) For a DL-Lite Full axiom α , $\mathcal{K} \models_{\nu} \alpha$ iff $\tau_{dl}(\mathcal{T}) \models \tau(\alpha)$; (b) For an assertion $P_p(a,b)$ such that P_p is a preserved-role except type, then $\mathcal{K} \models_{\nu} P_p(a,b)$ iff there exists $\operatorname{gr}(P,a,b) \in \mathcal{A}_m$ such that $P \sqsubseteq_r^* P_p$ w.r.t. \mathcal{T} ; (c) For an assertion $\operatorname{type}(a,C_p)$ such that C_p is a preserved-class except, then $\mathcal{K} \models_{\nu} \operatorname{type}(a,C_p)$ iff there exists $\operatorname{gr}(P,a,b) \in \mathcal{A}_m$ such that $P \sqsubseteq_r^* \operatorname{type}(a,C_p)$ iff there exists $\operatorname{gr}(P,a,b) \in \mathcal{A}_m$ such that $P \sqsubseteq_r^* \operatorname{type}(a,C_p)$ iff there $\mathcal{K} \models_{\nu} \exists P \sqsubseteq_c C_p$.

Proof of Theorem 7.

PROOF. By Lemma 7, Theorem 6 and Theorem 5, this theorem holds trivially. \Box