Лекція №12

Інтерференція, дифракція та поляризація світла

Викл Коваль В.В.

ФОК

2021p.

Питання

Інтерференція монохроматичного світла від двох джерел. Умови інтерференційного мінімуму й максимуму. Когерентність. Принцип Гюйгенса-Френеля. Метод зон Френеля. Поляризація, дисперсія світла

- Геометрична оптика

$$n = \frac{c}{v} = \sqrt{\varepsilon \mu}$$

$$\mu = 1$$

$$n = \sqrt{\varepsilon}$$

$$n_{21} = \frac{n_2}{n_1}$$

Закон прямолінійного поширення світла

ЗАКОНИ ВІДБИВАННЯ І ЗАЛОМЛЕННЯ СВІТЛА НА ГРАНИЦІ ПОДІЛУ ДВОХ ДІЕЛЕКТРИЧНИХ СЕРЕДОВИЩ

Закони відбивання

$$\alpha = \beta$$

Закони заломлення

$$\frac{\sin \alpha}{\sin \gamma} = n_{21}$$

$$(n_1 > n_2)$$

$$\frac{\sin \gamma}{\sin \alpha} = \frac{n_1}{n_2} > 1$$

$$\gamma = \pi/2$$

$$\sin \alpha_{cp} = n_{21}$$

Явище повного відбивання використовується у світловодах

Згідно з теорією кольорового зору Юнга-Гемгольца (1821-1894) відчуття будь-якого кольору можна отримати змішуванням спектрально чистих випромінювань червоного, зеленого та синього кольорів.

Теорія передбачає, що в оці є тільки три типи світлочутливих приймачів. Коли усі рецептори збуджені в однаковому степені, ми маємо відчуття білого кольору, а коли усі рецептори не збуджені - чорного.

Накладання червоного, зеленого та синього кольорів виглядає як біла пляма. Накладання червоного та синього дає фіолетовий колір, зеленого та синього - бірюзовий, червоного та зеленого - жовтий

Інтерференція світлових хвиль

• Когерентність

$$\Delta\omega$$

$$\omega - \Delta \omega / 2$$

$$\omega + \Delta \omega/2$$

$$\omega - \Delta \omega / 2$$

$$\omega + \Delta \omega / 2$$

$$2\pi$$

$$\tau_{\kappa o \varepsilon} = \frac{2\pi}{\Delta \omega}$$

$$l_{\kappa o \varepsilon} = v \tau_{\kappa o \varepsilon} = \frac{2\pi v}{\Delta \omega}$$

${f V}$ - фазова швидкість хвилі

Так, для видимого сонячного випромінювання, яке має суцільний спектр частот від 4 ·10¹⁴ до 8·10¹⁴ Гц

$$\tau_{\kappa o \epsilon} = 10^{-14} c$$
 $l_{\kappa o \epsilon} = 10^{-6} M$

Для випромінювання лазера безперервної дії

$$\tau_{\kappa o \varepsilon} = 10^{-5} c \qquad l_{\kappa o \varepsilon} = 10^{3} M$$

Методи отримання когерентного світла

В основі класичних методі лежить метод розділення світла від одного джерела на два або кілька світлових пучків.

- 1. Метод Юнга
- 2. Біпризма Френеля
- 3. Дзеркала Ллойда та інші.

$$l_1$$
 $L = nl$ $\Delta = L_2 - L_1 = n_2 l_2 - n_1 l_1$

$$\Delta = \lambda k$$
 , де $k = 1,2,3...$ $\Delta = (2k+1)\frac{\lambda}{2}$

Aocsid Hohla

AJOCIIIO HOHZA

$$r_1^2 = L^2 + \left(y - \frac{d}{2}\right)^2$$

$$r_2^2 = L^2 + \left(y + \frac{d}{2}\right)^2$$

$$r_2^2 - r_1^2 = (r_2 + r_1)(r_2 - r_1) = 2yd$$

$$(r_2 + r_1) \approx 2L$$

$$\left(r_2 - r_1\right) = \frac{2yd}{2L} = \frac{yd}{L}$$

$$\Delta = n \cdot (r_2 - r_1) = n \frac{yd}{l}$$

Координати максимумів

$$y_{\text{max}} = \pm \frac{mL\lambda}{d}, \quad (m = 0, 1, 2, ...)$$

Координати мінімумів

$$y_{\min} = \pm (2m+1)\frac{L\lambda}{2d}, \quad (m = 0,1,2,...)$$

Ширина інтерференційної смуги -

відстань між сусідніми мінімумами

$$\Delta y = \frac{L}{d} \lambda$$

Дослід Юнга

HTEPOEPEHLIA CBITIA B TOHKIM TIJIBKAN

$$\Delta = nr_2 - r_1$$

$$r_1 = AD \qquad r_1 = AC\sin\alpha$$

$$AC = 2d \cdot tg\gamma$$

$$r_2 = AB + BC = 2AB = \frac{2d}{\cos\gamma}$$

$$\Delta = \frac{2dn}{\cos \gamma} - 2d \cdot tg\gamma \cdot \cos \alpha$$

$$\sin \alpha = n \sin \gamma$$
, $\cos \alpha = \sqrt{1 - \sin^2 \alpha}$

$$\frac{\sin\alpha}{\sin\gamma} = n_{21}$$

$$\sin \gamma = \frac{\sin \alpha}{n}, \quad \cos \gamma = \sqrt{1 - \sin^2 \gamma} = \frac{\sqrt{n^2 - \sin^2 \alpha}}{n}$$

$$\Delta = \frac{2dn^2}{\sqrt{n^2 - \sin^2 \alpha}} - \frac{2d \cdot \sin^2 \alpha}{\sqrt{n^2 - \sin^2 \alpha}} = 2d\sqrt{n^2 - \sin^2 \alpha}$$

$$\Delta = 2d\sqrt{n^2 - \sin^2 \alpha}$$

$$\Delta = 2d\sqrt{n^2 - \sin^2\alpha} - \frac{\lambda}{2}$$

Кільця Ньютона

-це колоподібні максимуми та мінімуми, які з'являються навколо точки дотику випуклої лінзи та плоско паралельної пластинки при проходженні світла через лінзу і пластинку.

-Ньютон спостерігав цю картину як у білому, так і монохроматичному світлі.

-пояснення дав Юнг, виходячи у припущенні хвильової природи світла

Кільця Ньютона

$$R^2 = (R-b)^2 + r^2 \approx R^2 - 2Rb + r^2$$

$$b^2 \ll 2Rb$$

$$b = \frac{r^2}{2R}$$

$$\Delta = 2b + \frac{\lambda}{2} = \frac{2r^2}{2R} + \frac{\lambda}{2}$$

$$\Delta = 2k \frac{\lambda}{2}$$

 $\Delta = 2k\frac{\lambda}{2}$ - умова максимумів. Радіуси світлих кілець Ньютона

$$r = \sqrt{R(2k-1)\frac{\lambda}{2}}$$

$$\Delta = (2k+1)\frac{\lambda}{2}$$
 - умова мінімумів.

Радіуси темних кілець (мінімумів) $r = \sqrt{kR\lambda}$

Принцип Гюйгенса - Френеля

$$dE = K \frac{\alpha_0 dS}{r} \cos(\omega t - kr + \alpha_0)$$

$$E = \int_{S} K(\varphi) \frac{\alpha_0}{r} \cos(\omega t - kr + \alpha_0) dS$$

Розрізняють два випадки дифракції світла:

Дифракція Френеля Дифракція Фраунгофера

Зони Френеля

$$\lambda << h$$

$$h = \frac{bm\lambda}{2(a+b)}$$

$$r_m^2 = a^2 - (a - h)^2$$

$$P \qquad r_m^2 = 2ah - h^2$$

$$P r_m^2 = 2ah - h^2$$

$$r_m^2 = \left(b + m\frac{\lambda}{2}\right)^2 - \left(b + h\right)^2$$

$$r_m^2 = bm\lambda - 2bh - h^2$$

$$r_m = \sqrt{2ah} = \sqrt{\frac{ab}{(a+b)}} m\lambda$$

$$S_m = 2\pi Rh \qquad \Delta S_m = S_m - S_{m-1}$$

$$\Delta S_m = 2\pi R \left(\frac{bm\lambda}{2(a+b)} - \frac{b(m-1)\lambda}{2(a+b)} \right) = \frac{\pi Rb\lambda}{a+b} (m-m+1) = \frac{\pi Rb\lambda}{a+b}$$

Амплітуда результуючих коливань в точці Р дорівнює

$$A_1 > A_2 > A_3 > A_4 > \dots > A_m > A_{m+1} > \dots$$

 $A = A_1 - A_2 + A_3 - A_4 + \dots + A_m$

$$A_{m} = \frac{A_{m-1} + A_{m+1}}{2}$$

Амплітуда, створювана у точці *P* усією хвильовою поверхнею, дорівнює половині амплітуди від однієї центральної зони.

$$A = \frac{A_1}{2}$$

Дифракція Френеля від круглого отвору

Отвір залишить відкритими *m* зон Френеля

$$A = \frac{A_1 + A_m}{2}$$
 m — непарне (максимум) $A = \frac{A_1 - A_m}{2}$ m — парне (мінімум)

Дифракція від круглого диску

Диск закриє т перших зон Френеля

У випадку непрозорого круглого диску дифракційна картина має вигляд низки світлих і темних концентричних кілець.

$$A = A_{m+1} - A_{m+2} + A_{m+3} - \dots = \frac{A_{m+1}}{2} + \left(\frac{A_{m+1}}{2} - A_{m+2} + \frac{A_{m+3}}{2}\right) + \dots$$

В центрі картини знаходиться світла пляма (пляма Пуассона)

Дифракція Фраунгофера від щілини в паралельних променях

$$BC = b; l >> b$$

$$\Delta = b \sin \varphi$$

$$b \sin \varphi = k \lambda$$

$$b\sin\varphi = \left(2k+1\right)\frac{\lambda}{2}$$

Анімація показує експеримент з дифракцією Фраунгофера на одній щілині. Ширина *b* щілини змінюється у діапазоні 500-1500 нм, довжина хвилі світла - 600 нм.

Анімація показує експеримент з дифракцією Фраунгофера на двох щілинах, за умови, що ширина кожної щілини *b* змінюється, а відстань між щілинами *d* залишається сталою. З анімації видно, що при зменшенні *b* ширина дифракційної картини збільшується, а її яскравість зменшується. При цьому період інтерференційних смуг не змінюється.

Анімація показує експеримент з дифракцією Фраунгофера на двох щілинах, за умови, що ширина щілин *b* залишається сталою (1000 нм), а відстань між щілинами *d* змінюється у діапазоні 1000-10000 нм. Довжина світлової хвилі - 600 нм. Частота розміщення дифракційних смуг збільшується пропорційно відстані *d* між щілинами, в той час як ширина дифракційної картини не змінюється і залежить тільки від *b*.

Дифракційна решітка

Формула Вульфа - Бреггів

$$\lambda \ge 2d_{\max}$$

$$\Delta = CD + DE = 2d \sin \theta$$

Формула Вульфа-Бреггів для дифракційних максимумів:

$$k\lambda = 2d \sin \theta,$$
$$(k = \pm 1; \pm 2, \pm 3...)$$

Взаємодія світла з речовиною

Поглинання світла (абсорбція)

Закон поглинання світла (закон Бугера)

$$I = I_0 e^{-\mu x}$$

$$I, I_0$$

Розсіювання світла. Закон Релея

 $0,1\lambda$

$$I_{po3} \sim \frac{1}{\lambda^4}$$

$$I = \left| \vec{S} \right| = \frac{dW}{dS \cdot dt}$$

Дисперсія світла

$$D = \frac{d\mathbf{v}}{d\lambda}$$

$$[D] = c^{-1} \qquad c = const$$

$$v = c/n$$

Величини
$$egin{aligned} D_{\lambda} = rac{dn}{d\lambda} \ D_{v} = rac{dn}{dv} \end{aligned}$$
 дисперсія речовини

1 немає дисперсії

$$D = \frac{d\mathbf{v}}{d\lambda} = 0$$

$$v = c = const \implies D = \frac{dv}{d\lambda} = 0$$

2 Нормальною дисперсією

$$\frac{dv}{d\lambda} > 0$$
 $\frac{dn}{dv} > 0$ $\frac{dn}{d\lambda} < 0$

3 Аномальною дисперсією

$$\frac{dv}{d\lambda} < 0$$
 $\frac{dn}{d\lambda} > 0$ $\frac{dn}{dv} < 0$

Поляризація світла

 $ec{E}$ $ec{H}$

Лінійно поляризована електромагнітна хвиля (зображено синім кольором) та хвиля колової поляризації (зображено червоним).

Неполяризоване світло

Лінійно поляризоване світло

$$I_{\max}$$

$$P = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}}$$

$$I_{\min} = 0$$
 $P = 1$

$$I_{\text{max}} = I_{\text{min}}$$
 $P = 0$

Механічна модель явища проходження світлової хвилі через дві пластинки турмаліну

СПОСОБИ ОТРИМАННЯ ПОЛЯРИЗОВАНОГО СВІТЛА

1 Поляризація світла при відбиванні від поверхні діелектриків. Закон Брюстера (1815)

$$tg\,i_{\mathit{Bp}}=n_{21}$$

Поляризація світла при його відбиванні

В одноосному кристалі один із променів, які утворюються при подвійному променезаломленні, підкоряється законам заломлення світла, тому називається звичайним променем (о). Другий промінь називають незвичайним променем (е). Ці промені поляризовані у взаємно перпендикулярних площинах.

Оптично анізотропні кристали використовують для створення поляризаторів – приладів, які поляризують світло.

Нижня грань призми повністю поглинає відбитий від площини склеювання звичайний промінь. Клей — канадський бальзам.

3 Дихроїзм

3AKOH MAJIHOCA

$$I_0 = \frac{1}{2} I_{npup}$$

 I_{npup}

 I_0

$$I \sim E^2$$
 тоді $I = I_0 \cos^2 \varphi$

Площина поляризації поляризатора

$$E = E_0 \cos \varphi$$

Виведення закону Малюса

Проходження світла через два поляроїди.

у у ' – напрямки поляризації поляроїдів

$$I = I_0 \cos^2 \phi$$

$$I = \frac{1}{2} I_{npup} \cos^2 \varphi$$

У випадку поглинання, закон Малюса набуде вигляду

$$I = I_0(1-k)\cos^2\varphi$$

Закон Малюса. Проходження лінійно поляризованої електромагнітної хвилі через поляризатор

Штучна анізотропія

Ефект Керра

Фотопружність (п'єзоелектричний ефект)

SACTOCYBALLIA IDDIAJNEOBALIOTO CENTURA

При відбиванні світла від зразка змінюється його стан поляризації. Це явище лежить в основі **еліпсометрії.**

Мікроскопія з використанням принципів еліпсометрії

Оптично активні речовини

$$\varphi = \alpha d$$

 α

$$\varphi = [\alpha] C d$$

[lpha] - питома стала обертання.

Штучна оптична активність Ефект Фарадея

$$\varphi = V lH$$

Ваші питання?!