<< Lab4 - 배열 연습>>

*Problem: Sparse Matrix

- 데이터: 아래 "matrix A" 를 데이터 화일(hw1.txt)로 작성하여 배열에 저장하여 사용한다.
- 문제: original matrix 를 열 우선 matrix, 행 우선 matrix 로 만들어 출력하고, transpose, 및 fast transpose 를 실행하여 출력한다.

•			2		4	5
0	15	0	0	22	0	-15 0 0 0 0 0
1	0	11	3	0	0	0
2	0	0	0	-6	0	0
	0	0	0	0	0	0
4 5	91	0	0	0	0	0
5	0	0	28	0	0	0

10 : : 1		
'Original	matrix	Α´

(row)) (col)	(value)
6	6	8
0	0	15
0	3	22
0	5	-15
1	1	11
1	2	3
2	3	-6
4	0	91
5	2	28

Sparse Matrix 'a'

(col) (row) (value)

6	6	8
0	0	15
0	4	91
1	1	11
2	1	3
2	1 5 0	28
3	0	22
2 2 3 3 5	2	-6
5	0	-15

Sparse Matrix 'b'

- 알고리즘
- 1) Open Data file (Lab4.txt); 배열(A-matrix)에 저장 및 출력 1; (original data 출력)
- 2) 행 우선 배열(row major Bmatrix)에 저장 및 **출력 2 (0 이 아닌 데이터)** for (i =0; i<row; i++) {
 for (j =0; j<col; j++) {
 Amatrix[] → Bmatirx[] //0 이 아닌 데이터만 "행 우선"
 배열로 출력
- 3) Transpose (행우선 -> 열우선) //2 의 결과물(행우선)을 열우선 배열로 출력

Bmatrix → BtransMatrix 로 생성 및 출력 3 강의노트 transpose 알고리즘 참조

4) Fast Transpose (열우선 -> 행우선) //3 의 결과물을(열우선) 다시 행우선 배열로(Bmatrix) 출력

BtransMatrix → Bmatrix 로 생성 및 **출력 4** 강의노트 fast transpose 알고리즘 참조

* 구현 결과

```
1) Original Matrix : A
15 0 0 22 0 -15
0 11 3 0 0 0
0 0 0 -6 0 0
0 0 0 0 0 0
91 0 0 0 0 0
0 0 28 0 0 0
2) (matrix B) - row major
0 0 15
0 3 22
0 5 -15
1 1 11
1 2 3
2 3 -6
4 0 91
5 2 28
3) (Btrans) - Transposed matrix B, column major

0 0 15

0 4 91

1 1 11

2 1 3

2 5 28

3 0 22

3 2 -6

5 0 -15
 4) (matix B) - Fast transpose (Btrans -> B)
   0 0 15
0 3 22
0 5 -15
1 1 11
1 2 3
2 3 -6
4 0 91
5 2 28
```