MAP 433 : Introduction aux méthodes statistiques. Cours 2

4 Septembre 2015

Aujourd'hui

- 1 Estimation ponctuelle et précision d'estimation
- **2** Echantillonnage et méthodes empiriques (2/2)
 - Estimation uniforme
 - Estimation de fonctionnelles
- 3 Modélisation statistique
 - Expérience statistique
 - Expériences dominées
 - Modèle de densité

Cours précédent (rappel)

A partir de l'observation d'un *n*-échantillon de loi (de fonction de répartition) inconnue,

$$X_1, \ldots, X_n \sim_{\mathsf{i.i.d.}} F$$
,

estimer F.

■ Fonction de répartition empirique :

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{X_i \leq x\}}, \quad x \in \mathbb{R}.$$

■ Pour tout $x_0 \in \mathbb{R}$, $\widehat{F}_n(x_0) \stackrel{\mathbb{P}}{\to} F(x_0)$ par la loi des grands nombres.

Vers la précision d'estimation

- On a $\forall x_0 \in \mathbb{R}$, $\widehat{F}_n(x_0) \stackrel{\mathbb{P}}{\to} F(x_0)$. Questions (auxquelles on a répondu) :
 - *n* information et α risque donnés \rightarrow quelle précision ε ?
 - risque α et précision ε donnés \rightarrow quel nombre minimal de données n nécessaires ?
 - quel risque prend-on si l'on suppose une précision ε avec n données?
- Plusieurs approches :
 - non-asymptotique naïve (Bienaymé-Techbyshev)
 - non-asymptotique (concentration exponentielle)
 - approche asymptotique (via des théorèmes limites)

Observation finale

Comparaison des longueurs des 3 intervalles de confiance :

- Tchebychev (non-asymptotique) $\frac{2}{\sqrt{n}}\frac{1}{2}\frac{1}{\sqrt{\alpha}}$
- Hoeffding (non-asymptotique) $\frac{2}{\sqrt{n}}\sqrt{\frac{1}{2}\log\frac{2}{\alpha}}$
- TCL (asymptotique) $\frac{\frac{2}{\sqrt{n}}\widehat{F}_n(x_0)^{1/2}(1-\widehat{F}_n(x_0))^{1/2}\Phi^{-1}(1-\alpha/2).$
- La longueur la plus petite est (sans surprise!) celle fournie par le TCL. Mais Hoeffding comparable au TCL en n et α (dans la limite $\alpha \to 0$).

Estimation uniforme

Estimation uniforme

■ On « sait » estimer $F(x_0)$, pour un x_0 donné. Qu'en est-il de l'estimation globale de F:

$$(F(x), x \in \mathbb{R})$$
?

- 3 résultats pour passer de l'estimation en un point à l'estimation globale :
 - Glivenko-Cantelli (convergence uniforme)
 - Kolmogorov-Smirnov (vitesse de convergence, asymptotique)
 - Inégalité de DKW (vitesse de convergence, non-asymptotique)

Estimation uniforme

Glivenko-Cantelli

 X_1, \ldots, X_n i.i.d. de loi F, \widehat{F}_n leur fonction de répartition empirique.

Théorème (Glivenko-Cantelli)

$$\sup_{x\in\mathbb{R}}\left|\widehat{F}_n(x)-F(x)\right|\overset{\mathrm{p.s.}}{\to}0,\quad \textit{quand } n\to\infty.$$

Estimation uniforme

Glivenko-Cantelli

Supposons que F est continue. Soit $k \in \mathbb{N}$.

- Comme F est continue, il existe des points $-\infty = x_{k,0} < x_{k,1} < \cdots < x_{k,k} = \infty$ tels que $F(x_{k,i}) = i/k$.
- Comme F et \hat{F}_n sont monotones nous avons pour $x \in [x_{k,i-1}, x_{k,i}]$

$$\hat{F}_n(x) - F(x) \le \hat{F}_n(x_{k,i}) - F(x_{k,i-1}) = \hat{F}_n(x_{k,i}) - F(x_{k,i}) + 1/k$$

et

$$\hat{F}_n(x) - F(x) \ge \hat{F}_n(x_{k,i-1}) - F(x_{k,i})$$

= $\hat{F}_n(x_{k,i-1}) - F(x_{k,i-1}) - 1/k$;

ce qui implique

$$\sup_{x\in\mathbb{R}}|\hat{F}_n(x)-F(x)|\leq \sup_i|\hat{F}_n(x_{k,i})-F(x_{k,i})|+1/k$$

Estimation uniforme

Glivenko-Cantelli

Supposons que F est continue. Soit $k \in \mathbb{N}$.

- Comme F est continue, il existe des points $-\infty = x_{k,0} < x_{k,1} < \cdots < x_{k,k} = \infty$ tels que $F(x_{k,i}) = i/k$.
- Comme F et \hat{F}_n sont monotones nous avons pour $x \in [x_{k,i-1}, x_{k,i}]$

$$\hat{F}_n(x) - F(x) \le \hat{F}_n(x_{k,i}) - F(x_{k,i-1}) = \hat{F}_n(x_{k,i}) - F(x_{k,i}) + 1/k$$

et

$$\hat{F}_n(x) - F(x) \ge \hat{F}_n(x_{k,i-1}) - F(x_{k,i})$$

= $\hat{F}_n(x_{k,i-1}) - F(x_{k,i-1}) - 1/k$;

ce qui implique

$$\sup_{x\in\mathbb{R}}|\hat{F}_n(x)-F(x)|\leq \sup_i|\hat{F}_n(x_{k,i})-F(x_{k,i})|+1/k$$

Estimation uniforme

Kolmogorov-Smirnov

Théorème (Kolmogorov-Smirnov)

Si F est continue,

$$\sqrt{n}\sup_{x\in\mathbb{R}}\left|\widehat{F}_n(x)-F(x)\right|\stackrel{d}{
ightarrow}\mathbb{B},\quad ext{quand } n
ightarrow\infty.$$

B v.a. dont la loi est connue et ne dépend pas de F.

Difficile.. théorème limite fonctionnel!

Estimation uniforme

Inégalité de DKW

 X_1, \ldots, X_n i.i.d. de loi F continue, \widehat{F}_n leur fonction de répartition empirique.

Proposition (Inégalité de Dvoretzky-Kiefer-Wolfowitz)

Pour tout $\varepsilon > 0$.

$$\mathbb{P}\left[\sup_{x\in\mathbb{R}}\left|\widehat{F}_n(x)-F(x)\right|\geq\varepsilon\right]\leq2\exp\left(-2n\varepsilon^2\right).$$

- Résultat difficile (théorie des processus empiriques).
- Permet de construire des régions de confiance avec des résultats similaires au cadre ponctuel :

$$\mathbb{P}\left[\forall x \in \mathbb{R}, F(x) \in \left[\widehat{F}_n(x) \pm \sqrt{\frac{1}{2n}\log\frac{2}{\alpha}}\right]\right] \geq 1 - \alpha.$$

Estimation de fonctionnelles

Estimation de fonctionnelles

- Objectif: estimation d'une caractéristique scalaire de la loi inconnue $F \equiv$ estimation d'une fonctionnelle T(F) à valeurs dans \mathbb{R} .
- Exemples
 - <u>Déjà vu</u> : valeur en un point $T(F) = F(x_0)$
 - Fonctionnelle régulière :

$$T(F) = h\left(\int_{\mathbb{R}} g(x)dF(x)\right),$$

où $g, h : \mathbb{R} \to \mathbb{R}$ sont régulières

Principe méthode de substitution : si $F \rightsquigarrow T(F)$ est "régulière", un estimateur "naturel" est $T(\widehat{F}_n)$

Estimation de fonctionnelles

Estimation de fonctionnelles régulières

- Principe: si $F \rightsquigarrow T(F)$ est régulière, alors $T(\widehat{F}_n)$ est un bon estimateur de T(F) (estimateur par substitution).
- Cas où $T(F) = h(\int_{\mathbb{R}} g(x) dF(x))$
- Formule de calcul :

$$\int_{\mathbb{R}} g(x)d\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n g(X_i).$$

Estimateur par substitution ou plug-in de T(F):

$$T(\widehat{F}_n) = h\Big(n^{-1}\sum_{i=1}^n g(X_i)\Big)$$

MAP 433 : Introduction aux méthodes statistiques. Cours 2

Echantillonnage et méthodes empiriques (2/2)

Estimation de fonctionnelles

Exemples

■ Moyenne : $T(F) = m(F) = \int_{\mathbb{R}} x dF(x)$.

$$T(\widehat{F}_n) = m(\widehat{F}_n) = \int_{\mathbb{R}} x d\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}_n.$$

Variance :

$$T(F) = \sigma^{2}(F) = \int_{\mathbb{R}} (x - m(F))^{2} dF(x)$$
$$= \int_{\mathbb{R}} x^{2} dF(x) - \left(\int_{\mathbb{R}} x dF(x) \right)^{2}.$$

$$T(\widehat{F}_n) = \sigma^2(\widehat{F}_n) = \int_{\mathbb{R}} (x - m(\widehat{F}_n))^2 d\widehat{F}_n(x)$$
$$= \frac{1}{n} \sum_{n=1}^{n} (X_i - \bar{X}_n)^2 = \frac{1}{n} \sum_{n=1}^{n} X_{i,n}^2 - (\bar{X}_n)^2.$$

Estimation de fonctionnelles

Exemple

- On modélise les arrivées d'évènements dans un système à évènements discrets (file d'attente, fiabilité)
- On observe $X_1, X_2, ..., X_n$ les intervalles de temps entre n arrivées successives.
- Modèle :
 - (i) $\{(X_i)\}_{i=1}^n$ sont indépendantes et identiquement distribuées,
 - (ii) Les variables X_i sont distribuées suivant une loi exponentielle de paramètre θ , de densité

$$p_{\theta}(x) = \theta e^{-\theta x} \mathbb{1}_{\mathbb{R}^+}(x), \quad \theta \in \mathbb{R}^+$$

Absence de mémoire : $\mathbb{P}_{\theta}(X > x + y | X > x) = \mathbb{P}_{\theta}(X > y)$

Estimation de fonctionnelles

Problème : estimer θ

■ Pour tout $k \in \mathbb{N}$, $\mathbb{E}_{\theta}[X^k] = k!\theta^{-k}$ et donc

$$\theta = \left(k!/\mathbb{E}_{\theta}[X^k]\right)^{1/k} = h_k(\mathbb{E}_{\theta}[X^k]).$$

Estimateur par substitution

$$\hat{\theta}_n = (k!)^{1/k} \left(n^{-1} \sum_{i=1}^n X_i^k \right)^{-1/k}$$

■ Meilleur choix de *k*?

Estimation de fonctionnelles

Exemples de fonctionnelles : quantiles

Quantiles :

F est continue et strictement croissante \Longrightarrow le **quantile d'ordre** p, 0 , de la loi <math>F est défini comme solution de

$$F(q_p) = p$$
 $(q_p = F^{-1}(p)).$

Cas général (F n'est pas strictement \uparrow ou n'est pas continue) :

$$q_p(F) = \frac{1}{2} (\inf\{x, F(x) > p\} + \sup\{x, F(x) < p\}).$$

La médiane :

$$\mathrm{med}(F) = q_{1/2}(F).$$

Les **quartiles** = $\{ med(F), q_{1/4}(F), q_{3/4}(F) \}.$

Estimation de fonctionnelles

Quantiles empiriques

Quantile ("théorique") d'ordre p:

$$T(F) = q_p(F) = \frac{1}{2} (\inf\{x, F(x) > p\} + \sup\{x, F(x) < p\}).$$

Avantage : les quantiles sont bien définis **pour toute loi** *F*.

Quantile empirique d'ordre p:

$$T(\widehat{F}_n) = \widehat{q}_{n,p} = \frac{1}{2} \big(\inf\{x, \, \widehat{F}_n(x) > p\} + \sup\{x, \, \widehat{F}_n(x) < p\} \big).$$

Estimation de fonctionnelles

Quantiles empiriques

Expression explicite du quantile empirique d'ordre p:

$$\widehat{q}_{n,p} = \left\{ \begin{array}{ll} X_{(k)} & \text{si} \quad p \in \left((k-1)/n, k/n\right) \\ \frac{1}{2} \left(X_{(k)} + X_{(k+1)}\right) & \text{si} \quad p = k/n \end{array} \right.$$

pour $k=1,\ldots,n$, où les $X_{(i)}$ sont les statistiques d'ordre associées à l'échantillon (X_1,\ldots,X_n) :

$$X_{(1)} \leq \cdots \leq X_{(i)} \leq \cdots \leq X_{(n)}.$$

En particulier, la médiane empirique :

$$M_n = \operatorname{med}(\widehat{F}_n) = \left\{ egin{array}{ll} X_{((n+1)/2)} & ext{pour } n ext{ impair} \\ rac{1}{2} \left(X_{(n/2)} + X_{(n/2+1)}
ight) & ext{pour } n ext{ pair} \end{array}
ight.$$

Estimation de fonctionnelles

Le boxplot

$$egin{aligned} X_* &= \min\{X_i : |X_i - \hat{q}_{n,1/4}| \leq 1,5 \mathcal{I}_n\}, \ X^* &= \max\{X_i : |X_i - \hat{q}_{n,3/4}| \leq 1,5 \mathcal{I}_n\}. \end{aligned}$$

Intervalle interquartile :

$$\mathcal{I}_n = \hat{q}_{n,3/4} - \hat{q}_{n,1/4}.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 2

Echantillonnage et méthodes empiriques (2/2)

Estimation de fonctionnelles

Estimation de fonctionnelles

Convergence de l'estimateur par substitution

$$T(F) = h\left(\int_{\mathbb{R}} g(x)dF(x)\right) \quad ext{et} \quad T(\hat{F}_n) = h\left(\int_{\mathbb{R}} g(x)d\hat{F}_n(x)\right)$$

Théorème (Convergence)

si $g,h:\mathbb{R}\to\mathbb{R}$, h continue et $\mathbb{E}\left|g(X)\right|<\infty$, alors

$$T(\widehat{F}_n) \stackrel{\mathbb{P}}{\longrightarrow} T(F)$$

Estimation de fonctionnelles

Delta-méthode : cas scalaire

Théorème

Soit $\phi: \mathbb{D}_{\phi} \subset \mathbb{R} \mapsto \mathbb{R}$ une fonction définie sur un sous-ensemble ouvert de \mathbb{R} et différentiable au point μ . Soit $(T_n)_{n\geq 0}$ une suite de v.a. à valeurs dans \mathbb{D}_{ϕ} et $(r_n)_{n\geq 0}$ une suite croissante telle que $\lim_{n\to\infty} r_n = \infty$. Si $r_n(T_n - \mu) \stackrel{d}{\to} T$, alors

$$r_n\{\phi(T_n)-\phi(\mu)\}\stackrel{d}{\to}\phi'(\mu)T$$
.

MAP 433 : Introduction aux méthodes statistiques. Cours 2

Echantillonnage et méthodes empiriques (2/2)

Estimation de fonctionnelles

Preuve

■ La fonction ϕ est différentiable au point μ ;

$$\phi(t) = \phi(\mu) + \phi'(\mu)(t - \mu) + (t - \mu)\psi(t).$$

Estimation de fonctionnelles

Preuve

■ La fonction ϕ est différentiable au point μ ;

$$\phi(t) = \phi(\mu) + \phi'(\mu)(t - \mu) + (t - \mu)\psi(t).$$

Donc,

$$r_n\{\phi(T_n) - \phi(\mu)\} = \phi'(\mu)r_n\{T_n - \mu\} + r_n\{T_n - \mu\}\psi_\mu(T_n).$$

Estimation de fonctionnelles

Preuve

■ La fonction ϕ est différentiable au point μ ;

$$\phi(t) = \phi(\mu) + \phi'(\mu)(t - \mu) + (t - \mu)\psi(t).$$

Donc,

$$r_n\{\phi(T_n) - \phi(\mu)\} = \phi'(\mu)r_n\{T_n - \mu\} + r_n\{T_n - \mu\}\psi_\mu(T_n).$$

■ Comme ψ est continue en μ , $T_n \xrightarrow{\mathbb{P}} \mu \Rightarrow \psi(T_n) \xrightarrow{\mathbb{P}} \psi(\mu)$.

Estimation de fonctionnelles

Preuve

■ La fonction ϕ est différentiable au point μ ;

$$\phi(t) = \phi(\mu) + \phi'(\mu)(t - \mu) + (t - \mu)\psi(t).$$

Donc,

$$r_n\{\phi(T_n) - \phi(\mu)\} = \phi'(\mu)r_n\{T_n - \mu\} + r_n\{T_n - \mu\}\psi_\mu(T_n).$$

- Comme ψ est continue en μ , $T_n \xrightarrow{\mathbb{P}} \mu \Rightarrow \psi(T_n) \xrightarrow{\mathbb{P}} \psi(\mu)$.
- Comme $r_n(T_n \mu) \stackrel{d}{\rightarrow} T$, on conclut par le Lemme de Slutsky.

Estimation de fonctionnelles

Vitesse de convergence de l'estimateur de substitution : Etape 1

$$T(F) = h\left(\int_{\mathbb{R}} g(x)dF(x)\right)$$
 et $T(\hat{F}_n) = h\left(\int_{\mathbb{R}} g(x)d\hat{F}_n(x)\right)$

■ TCL:

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^n g(X_i) - \int_{\mathbb{R}} g(x)dF(x)\right) \stackrel{d}{\to} \mathcal{N}\left(0, \operatorname{Var}\left[g(X)\right]\right),$$

où X est une v.a. de loi F et

$$\begin{aligned} \mathsf{Var}\big[g(X)\big] &= \mathbb{E}\left[g(X)^2\right] - \left(\mathbb{E}[g(X)]\right)^2 \\ &= \int_{\mathbb{R}} g(x)^2 dF(x) - \left(\int_{\mathbb{R}} g(x) dF(x)\right)^2. \end{aligned}$$

Estimation de fonctionnelles

Vitesse de convergence de l'estimateur de substitution : Etape 2

$$T(F) = h\left(\int_{\mathbb{R}} g(x)dF(x)\right)$$
 et $T(\hat{F}_n) = h\left(\int_{\mathbb{R}} g(x)d\hat{F}_n(x)\right)$

TCL:

$$\sqrt{n}\left(n^{-1}\sum_{i=1}^n g(X_i) - \int_{\mathbb{R}} g(x)dF(x)\right) \stackrel{d}{\to} \mathcal{N}\left(0, \operatorname{Var}[g(X)]\right),$$

■ Delta-méthode

$$\sqrt{n}\{T(F_n) - T(F)\} \stackrel{d}{\to} \mathcal{N}\left(0, \{h'(\mathbb{E}[g(X)])\}^2 \operatorname{Var}[g(X)]\right)$$
car si $Z \sim \mathcal{N}(0, \sigma^2)$, $aZ \sim \mathcal{N}(0, a^2\sigma^2)$.

MAP 433 : Introduction aux méthodes statistiques. Cours 2

Echantillonnage et méthodes empiriques (2/2)

Estimation de fonctionnelles

Conclusion

Proposition

 $Si \mathbb{E}[g(X)^2] < +\infty$ et h continûment différentiable, alors

$$\sqrt{n}(T(\widehat{F}_n)-T(F))\stackrel{d}{\to} \mathcal{N}(0,v(F)),$$

$$o\grave{u}\ v(F) = h'\big(\mathbb{E}\big[g(X)\big]\big)^2 \mathrm{Var}\big[g(X)\big].$$

Pour construire un intervalle de confiance, il faut encore remplacer v(F) par $v(\widehat{F}_n)$. On montre que $v(\widehat{F}_n) \stackrel{\mathbb{P}}{\to} v(F)$ et, via le lemme de Slutsky,

$$\sqrt{n} \frac{T(\widehat{F}_n) - T(F)}{v(\widehat{F}_n)^{1/2}} \stackrel{d}{\to} \mathcal{N}(0,1).$$

On en déduit un intervalle de confiance asymptotique comme précédemment.

Estimation de fonctionnelles

Le cas de la dimension d > 1

■ Il s'agit de fonctionnelles de la forme

$$T(F) = h\left(\int_{\mathbb{R}} g_1(x)dF(x), \ldots, \int_{\mathbb{R}} g_k(x)dF(x)\right)$$

où $h: \mathbb{R}^k \to \mathbb{R}$ continûment différentiable.

■ Exemple : le coefficient d'asymétrie

$$T(F) = \frac{\int_{\mathbb{R}} (x - m(F))^3 dF(x)}{\sigma^{3/2}(F)},$$

m(F) = moyenne de F, $\sigma^2(F)$ = variance de F.

 Outil: Version multidimensionnelle du TCL et de la « méthode delta ». Estimation de fonctionnelles

Méthode « delta » multidimensionnelle

■ TCL multidimensionnel : $(\boldsymbol{X}_n)_{n\geq 1}$ vecteurs aléatoires dans \mathbb{R}^k , i.i.d., de moyenne $\boldsymbol{\mu} = \mathbb{E}[\boldsymbol{X}_1]$ et de matrice de variance-covariance $\boldsymbol{\Sigma} = \mathbb{E}\left[(\boldsymbol{X}_1 - \boldsymbol{\mu})(\boldsymbol{X}_1 - \boldsymbol{\mu})^T\right]$ bien définie. Alors $\bar{\boldsymbol{X}}_n = \frac{1}{n}\sum_{i=1}^n \boldsymbol{X}_i$ vérifie :

$$\sqrt{n}\big(\overline{\boldsymbol{X}}_n - \boldsymbol{\mu}\big) \overset{d}{\to} \mathcal{N}\big(0, \boldsymbol{\Sigma}\big).$$

■ Méthode « delta » multidimensionnelle : Si, de plus, $h : \mathbb{R}^k \to \mathbb{R}$ continûment différentiable, alors

$$\sqrt{n}(h(\overline{\boldsymbol{X}}_n) - h(\boldsymbol{\mu})) \stackrel{d}{\to} \mathcal{N}(0, \nabla h(\boldsymbol{\mu}) \Sigma \nabla h(\boldsymbol{\mu})^T).$$

Estimation de fonctionnelles

Application : coefficient d'asymétrie

■ Coefficient d'asymétrie : on a

$$T(F) = h\left(\int_{\mathbb{R}} x dF(x), \int_{\mathbb{R}} x^2 dF(x), \int_{\mathbb{R}} x^3 dF(x)\right)$$

avec

$$h(\alpha,\beta,\gamma) = \frac{\gamma - 3\alpha\beta + 2\alpha^3}{(\beta - \alpha^2)^{3/2}}.$$

$$T(\widehat{F}_n) = h\left(\frac{1}{n}\sum_{i=1}^n X_i, \frac{1}{n}\sum_{i=1}^n X_i^2, \frac{1}{n}\sum_{i=1}^n X_i^3\right).$$

On applique le TCL multidimensionnel avec $\boldsymbol{X}_i = (X_i, X_i^2, X_i^3)^T$ et $\boldsymbol{\mu} = \left(\int_{\mathbb{R}} x dF(x), \int_{\mathbb{R}} x^2 dF(x), \int_{\mathbb{R}} x^3 dF(x)\right)^T$, puis la méthode « delta » avec h.

Estimation de fonctionnelles

Limites de l'approche empirique

L'estimation de T(F) par $T(\widehat{F}_n)$ n'est pas toujours possible :

- La fonctionnelle $F \rightsquigarrow T(F)$ n'est pas « régulière »,
- La paramétrisation $F \rightsquigarrow T(F)$ ne donne pas lieu à une forme analytique simple. \rightarrow autres approches.

Exemple. Hypothèse : F admet une densité f par rapport à le mesure de Lebesgue, continue (= pp à une fonction continue f).

$$T(F) = f(x_0), x_0 \in \mathbb{R} \text{ (donné)}.$$

On ne peut pas prendre comme estimateur $\widehat{F}'_n(x_0)$ car \widehat{F}_n n'est pas différentiable (constante par morceaux...)

Estimation de fonctionnelles

Limites de l'approche empirique

L'estimation de T(F) par $T(\widehat{F}_n)$ n'est pas toujours souhaitable :

Souvent on dispose d'information a priori supplémentaire : F appartient à une sous-classe particulière de distributions, et il y a des choix plus judicieux que l'estimateur par substitution.

Estimation de fonctionnelles

Conclusion

- L'approche empirique, basée sur \widehat{F}_n permet d'estimer une distribution inconnue F ou une fonctionnelle $T(F) \in \mathbb{R}$ à partir d'un n-échantillon, mais
 - reste très générale, pas toujours adaptée.
 - restreinte à la situation d'un *n*-échantillon.
- Formalisation de la notion d'expérience statistique
 - incorporation d'information de modélisation supplémentaire.
 - construction de méthodes d'estimation de décision systématiques.
 - comparaison et optimalité des méthodes.

Consiste à identifier :

Des observations

$$x_1, x_2, \ldots, x_n$$

considérées comme des réalisations de variables aléatoires $Z = (X_1, \dots, X_n)$ de loi \mathbb{P}^Z .

Une famille de lois

$$\{\mathbb{P}_{\theta}, \, \theta \in \Theta\}$$
.

■ Une problématique "estimer" le paramètre θ ou bien prendre une décision sur une propriété relative à θ (test).

- Approche générale empirique :
 - $\theta = F$, Θ est l'ensemble de toutes les lois (s'il s'agit de l'estimation de F);
 - $\theta = F$, Θ est l'ensemble de toutes les lois vérifiant une hypothèse très générale, par exemple, la bornitude d'un moment (s'il s'agit de l'estimation de T(F)).
- Approche paramétrique : on suppose que F appartient à une famille de lois connue indexée par un paramètre θ de dimension finie : $\theta \in \Theta \subset \mathbb{R}^d$.
 - **Exemple** : $\Theta = \mathbb{R}$,

$$X_i = \theta + \xi_i, \quad i = 1, \ldots, n,$$

 ξ_i v.a. i.i.d. de densité connue f sur \mathbb{R} et $\mathbb{E}(X_i) = \theta$. Question : en utilisant cette information supplémentaire, peut-on construire un estimateur plus performant que l'estimateur \bar{X}_n basé sur l'approche empirique?

■ En écrivant

$$X_i = \theta + \xi_i, \quad i = 1, \ldots, n,$$

 ξ_i v.a. i.i.d. de densité connue f, nous précisons la forme de la loi \mathbb{P}_{θ} de (X_1, \dots, X_n) :

$$\mathbb{P}_{\theta}\left[A\right] = \int_{A} \left(\prod_{i=1}^{n} f(x_{i} - \theta)\right) dx_{1} \dots dx_{n},$$

pour tout $A \in \mathcal{B}(\mathbb{R}^n)$.

Definition

Une expérience (un modèle) statistique ${\mathcal E}$ est le triplet

$$\mathcal{E} = (\mathfrak{Z}, \mathcal{Z}, \{ \mathbb{P}_{\theta}, \theta \in \Theta \}),$$

avec

- $(\mathfrak{Z}, \mathcal{Z})$ espace mesurable (souvent $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$),
- $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$ famille de probabilités définies simultanément sur le même espace $(\mathfrak{Z}, \mathcal{Z})$,
- θ est le paramètre (inconnu), et Θ est l'ensemble des paramètres.

Experience engendrée par (X_1, \ldots, X_n)

On observe

$$Z = (X_1, \ldots, X_n), \qquad X_i = \theta + \xi_i,$$

 ξ_i v.a. i.i.d. de densité connue f.

lacksquare La famille de lois $ig\{ \mathbb{P}^n_{ heta}, heta \in \Theta = \mathbb{R} ig\}$ est définie sur $\mathfrak{Z} = \mathbb{R}^n$ par

$$\mathbb{P}_{\theta}^{n}\left[A\right] = \int_{A} \left(\prod_{i=1}^{n} f(x_{i} - \theta)\right) dx_{1} \dots dx_{n},$$

pour $A \in \mathcal{Z} = \mathcal{B}(\mathbb{R}^n)$ (et \mathbb{P}^Z est l'une des \mathbb{P}^n_{θ}).

Expérience engendrée par l'observation Z :

$$\mathcal{E}^{n} = (\mathbb{R}^{n}, \mathcal{B}(\mathbb{R}^{n}), \{\mathbb{P}_{\theta}^{n}, \theta \in \Theta\}).$$

Expérience (modèle) paramétrique, non-paramétrique

- Si Θ est un sous-ensemble de \mathbb{R}^d : expérience (=modèle) paramétrique.
- Sinon (par exemple si le paramètre θ est un élément d'un espace fonctionnel) : expérience (=modèle) non-paramétrique.

Expériences dominées

■ On fait une hypothèse minimale de « complexité » sur le modèle statistique. But : ramener l'étude de la famille

$$\{\mathbb{P}_{\theta},\,\theta\in\Theta\}$$

à l'étude d'une famille de fonctions

$$\{z \in \mathfrak{Z} \leadsto f(\theta, z) \in \mathbb{R}_+, \, \theta \in \Theta\}$$
.

■ Via la notion de domination. Si μ, ν sont deux mesures σ -finies sur \mathfrak{Z} , alors μ domine ν (notation $\nu \ll \mu$) si

$$\mu[A] = 0 \Rightarrow \nu[A] = 0.$$

Théorème de Radon-Nikodym

Théorème

Si $\nu \ll \mu$, il existe une fonction positive

$$z \rightsquigarrow p(z) \stackrel{notation}{=} \frac{d\nu}{d\mu}(z),$$

définie μ -p.p., μ - intégrable, telle que

$$\nu[A] = \int_A p(z)\mu(dz) = \int_A \frac{d\nu}{d\mu}(z)\mu(dz), \quad A \in \mathcal{Z}.$$

Expérience dominée

Definition

Une expérience statistique $\mathcal{E} = (\mathfrak{J}, \mathcal{Z}, \{ \mathbb{P}_{\theta}, \theta \in \Theta \})$ est dominée par la mesure σ -finie μ définie sur \mathfrak{J} si

$$\forall \theta \in \Theta : \mathbb{P}_{\theta} \ll \mu.$$

On appelle densités de la famille $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$ la famille de fonctions (définies μ - p.p.)

$$z \rightsquigarrow \frac{d \mathbb{P}_{\theta}}{d \mu}(z), \ z \in \mathfrak{Z}, \ \theta \in \Theta.$$

Modèle de densité (paramétrique)

- On observe un *n*-échantillon de v.a.r. X_1, \ldots, X_n .
- La loi des X_i appartient à $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$, famille de probabilités sur \mathbb{R} , dominée par une mesure $(\sigma$ -finie) $\mu(dx)$ sur \mathbb{R} .
- La loi de $(X_1, ..., X_n)$ s'écrit

$$\mathbb{P}^n_{\theta}(d\mathsf{x}_1\cdots d\mathsf{x}_n) = \mathbb{P}_{\theta}(d\mathsf{x}_1)\otimes\cdots\otimes\mathbb{P}_{\theta}(d\mathsf{x}_n)$$

$$\ll \mu(d\mathsf{x}_1)\otimes\cdots\otimes\mu(d\mathsf{x}_n)$$

$$\stackrel{\mathsf{notation}}{=} \mu^n(d\mathsf{x}_1\cdots d\mathsf{x}_n)$$

Modèle de densité (paramétrique)

■ Densité du modèle : on part de

$$f(\theta, x) = \frac{d \mathbb{P}_{\theta}}{d\mu}(x), \ \ x \in \mathbb{R}$$

et

$$\frac{d\mathbb{P}_{\theta}^{n}}{d\mu^{n}}(x_{1},\ldots,x_{n})=\prod_{i=1}^{n}f(\theta,x_{i}), \ x_{1},\ldots,X_{n}\in\mathbb{R}.$$

■ L'expérience statistique engendrée par $(X_1, ..., X_n)$ s'écrit :

$$\mathcal{E}^n = \Big(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \big\{ \mathbb{P}^n_{\theta}, \theta \in \Theta \big\} \Big), \ \Theta \subset \mathbb{R}^d.$$

Exemple 1 : modèle de densité gaussienne univariée

 $X_i \sim \mathcal{N}(m, \sigma^2)$, avec

$$\theta = (m, \sigma^2) \in \Theta = \mathbb{R} \times \mathbb{R}_+ \setminus \{0\}.$$

$$\mathbb{P}_{\theta}(dx) = f(\theta, x)dx = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right) dx$$
$$\ll \mu(dx) = dx.$$

Puis

$$\frac{d \mathbb{P}_{\theta}^{n}}{d\mu^{n}}(x_{1},\ldots,x_{n}) = \prod_{i=1}^{n} f(\theta,x_{i})$$

$$= (2\pi\sigma^{2})^{-n/2} \exp\left(-\frac{1}{2\sigma^{2}}\sum_{i=1}^{n}(x_{i}-\mathbf{m})^{2}\right),$$

avec $x_1, \ldots, x_n \in \mathbb{R}$.

Exemple 2 : modèle de Bernoulli

• $X_i \sim \text{Bernoulli}(\theta)$, avec $\theta \in \Theta = [0, 1]$.

$$\mathbb{P}_{\theta}(dx) = (1 - \theta) \, \delta_0(dx) + \theta \, \delta_1(dx)$$

$$\ll \mu(dx) = \delta_0(dx) + \delta_1(dx) \, \text{ (mesure de comptage)}.$$

Puis

$$\frac{d \mathbb{P}_{\theta}}{d \mu}(x) = (1 - \theta) \mathbb{1}_{\{x = 0\}} + \theta \mathbb{1}_{\{x = 1\}} = \theta^{x} (1 - \theta)^{1 - x}$$

avec $x \in \{0, 1\}$, et

$$\frac{d\mathbb{P}_{\theta}^{n}}{d\mu^{n}}(x_{1},\cdots,x_{n})=\prod_{i=1}^{n}\theta^{x_{i}}(1-\theta)^{1-x_{i}},$$

avec
$$x_i \in \{0, 1\}$$
.

Exemple 3 : temps de panne arrêtés

- On observe X_1, \ldots, X_n , où $X_i = Y_i \wedge T$, avec Y_i lois exponentielles de paramètre θ et T temps fixe (censure).
- $lacksymbol{\blacksquare}$ Cas $1:T=\infty$ (pas de censure). Alors $heta\in\Theta=\mathbb{R}_+\setminus\{0\}$ et

$$\mathbb{P}_{\theta}(dx) = \theta \exp(-\theta x) \mathbb{1}_{\{x \ge 0\}} dx \ll \mu(dx) = dx$$

et

$$\frac{d\mathbb{P}_{\theta}^{n}}{d\mu^{n}}(x_{1},\ldots,x_{n}) = \theta^{n} \exp\left(-\theta \sum_{i=1}^{n} x_{i}\right),$$

avec $x_i \in \mathbb{R}_+$.

■ Cas 2 : Comment s'écrit le modèle dans la cas où $T < \infty$ (présence de censure)? Comment choisir μ ?