3. 統計的パターン認識

- 3.1 パターン認識とは
- 3.2 統計的パターン認識の考え方
- 3.3 生成モデルの学習
- 3.4 識別モデルの学習
- 3.5 統計的音声認識の概要

3.1 パターン認識とは

- パターン認識の定義
 - 人間が五感によって知覚することができる信号を、 予め持っている概念の一つに対応させる技術

3.1 パターン認識とは

- パターン認識の難しさの分類
 - 1入力1出力
 - 最も基本的な設定
 - 1つのベクトルを引数とするクラス毎の識別関数を設定 し、最大値を出力するものを求める
 - 複数入力1出力
 - 入力が不定長の場合は、識別関数の構造に工夫が必要
 - 1入力複数出力
 - 出力毎に識別器を作成すればよい
 - 複数入力複数出力
 - 探索処理が必要になり、最も複雑

音声認識

3.2 統計的パターン認識の考え方

- 1入力1出力のパターン認識
 - 入力:特徴ベクトル(d次元空間上の点)
 - ・出力: クラス $\omega_1,...,\omega_c$ のいずれか

3.2 統計的パターン認識の考え方

- 統計的パターン認識
 - 事後確率 $P(\omega_i \mid \mathbf{x})$ が最大となるクラス $\hat{\omega}$ を求める
- 生成モデル
 - 事後確率の式をベイズの定理で求めやすい確率に変形する

$$\hat{\omega} = \underset{\omega_i}{\operatorname{arg max}} P(\omega_i | \boldsymbol{x})$$

$$= \underset{\omega_i}{\operatorname{arg max}} \frac{p(\boldsymbol{x} | \omega_i) P(\omega_i)}{p(\boldsymbol{x})}$$

$$= \underset{\omega_i}{\operatorname{arg max}} p(\boldsymbol{x} | \omega_i) P(\omega_i)$$

- ・ 識別モデル
 - 事後確率の値を関数の形を仮定して求める

3.2 統計的パターン認識の考え方

3.3 生成モデルの学習

• 最尤推定法

パラメータhetaのモデルが データhetaを生成する確率

- 学習データ D に対する尤度 $P(D; \theta)$ が最大になるようにモデルのパラメータ θ を定める
- 事前確率の推定
 - 学習データ中のクラス ω_i のデータの個数 n_i を、 全データ数 n で割ったものが最尤推定値

$$P(\omega_i) = \frac{n_i}{n}$$

3.3 生成モデルの学習

- 尤度関数の推定
 - 正規分布を仮定し、学習データから求まる平均と共 分散行列をそのパラメータとする

3.4 識別モデルの学習

• 対数線型モデルで事後確率の値を推定

$$P(\omega_i | \boldsymbol{x}) = \frac{1}{Z} \exp(\langle \boldsymbol{\theta}, \Phi(\boldsymbol{x}, \omega_i) \rangle)$$

- 素性関数 $\Phi(\mathbf{x}, \omega_i)$
 - 特徴とクラスの間にある関係が成り立つときに1となる
- 正規化係数 *Z*
 - 全クラスに対する計算結果の和を Z とすることで、事後 確率の値を全クラスに対して足すと1となる

3.5 統計的音声認識の概要

図 3.12 音声認識システムの構成