Scolaire Anis

فرض محروسفي مادة الرياضيات ماك 2013

المستوى: 2 علوم رياضية

مدة الإنجاز: 4 ساعات

الأول () (3)

المستوى P منسوب إلى معلم متعامد ممنظم ومباشر P ($O; \tilde{I}; \tilde{J}$) . نعتبر التطبيق P الذي يربط كل نقطة M من P الحقها $Z' = -i \, \overline{Z} + 2i$ بالنقطة M' ذات اللحق Z' بحيث $Z' = -i \, \overline{Z} + 2i$

N و M التي الحاقها على التوالي $z_{c}=\sqrt{2}+\sqrt{2}i$ و $z_{B}=2$ و $z_{A}=2i$ و النقط $z_{C}=\sqrt{2}+\sqrt{2}i$ و و $z_{B}=2$ و النقط $z_{C}=\sqrt{2}+\sqrt{2}i$ و $z_{C}=2$ و النقط $z_{C}=2$ و

1-حدد النقطة " صورة التطبيق م . 1

-2- أ) بين أن المستقيمين (ON) و (AM') متعامدان.

حب) لتكن (ع) الدائرة التي مركزها () وشعاعها 2 و (' ع) الدائرة التي مركزها 1/4 وشعاعها 2.

 $M \in (\mathcal{C}) \Leftrightarrow M' = (\mathcal{C}')$ بدلالة |z| واستنتج أن: |z'-2i| بدلالة |z'-2i|

. $C' \circ C \circ (\mathscr{C}')$ و ($\mathscr{C}' \circ C \circ (\mathscr{C}')$ و الشكل المثلثي ثم أنشئ ($\mathscr{C}' \circ C \circ (\mathscr{C}')$ و رو رو ج

 θ بدلالة $\theta\in 0$ بدلالة $\theta\in 0$

 $\frac{\pi}{2}$ وزاویته $\Omega(1-i)$ بین أن M هي صورة M بالنوران m الذي مركزه $\Omega(1-i)$ وزاویته $\Omega(1-i)$

. $r(M_n)=B$ اذا علمت ان z من m دات اللحق m دات اللحق m حدد m اذا علمت ان m

التمرين الثاني (رز ق

1) بين أن 163 عدد أولى

(E): 13x-162y=1 المعادلة: \mathbb{Z}^2 المعادلة: (2

(E) عدد حلا خاصا للمعادلة

ب- حل المعادلة (E)

 \mathbb{Z} النظمة: $\begin{cases} x \equiv a & [13] \\ x \equiv b & [162] \end{cases}$ حيث $a \in b$ عددان من $a \in b$ عددان من $a \in b$

(S) النظمة $x_0 = 325b - 324a$ النظمة (S) هو حل النظمة (S)

 $(S) \iff x \equiv x_0 [2106]$ بین آن:

b=3 و a=2 النظمة (S) في الحالة a=2 و a=3

 $x^{25} = 3$ [163] $= 2^{25}$ بحیث: (4) لیکن = 3 الیکن = 3 الیکن = 3

 $x = 3^{13}$ [163] نین آن: 1 = 163 مین آن: 1 = 163

 $x^{25} = 3 [163] \iff x = 3^{13} [163] : 0 \rightarrow 0/7$

025

0,25

0,25

0,50

0,50

0,50

0;50

0,50

0,50

0,50

0,50

7

 $g(x) = \frac{x}{x+1} - \ln(1+x)$: بما يلي $[0,+\infty[$ المعرفة على المجال $[0,+\infty[$ بما يلي $[0,+\infty[$ المعرفة على المجال $[0,+\infty[$

أ) لدرس تغيرات الدالة وعلى المجال]∞+,0]

 $]0, +\infty[$ المجال $]0, +\infty[$ باستنتج إشارة (x) على المجال $]\infty+$

 $f(x)=e^{-x}\ln(1+e^x)$: بعتبر الدالة العددية f المعرفة على \mathbb{R} بما يلي: $f(x)=e^{-x}\ln(1+e^x)$

 $\lim_{x\to\infty} f(x)$ $\lim_{x\to\infty} (1$

 $\lim_{x\to +\infty} f(x) = 0 \quad \text{and} \quad (\cdot)$

 $f'(x) = e^{-x} (\frac{e^x}{1+e^x} - \ln(1+e^x))$: وأن \mathbb{R} وأن ين أن f قابلة للاشتقاق على \mathbb{R} وأن إن أن أن أن أن أن أن أ

د) ادرس تغيرات الدالة على الا

4 - أ بين أن أ تقابل من الله نحو مجال ال يتم تحديده

ب) حدد تغيرات التقابل العكسي f^{-1} على المجال ل

 f^{-1} المعلم المعلم المنحتى (C) الممثل للدالة f^{-1}

 $(\forall n \ge 0)$ - $u_{n:1} = f(u_n)$ و $u_0 = \frac{1}{2}$: المعرفة بما يلي - B

 $f(x) \in \left[\frac{1}{2}, \frac{3}{5}\right]$ فإن $\left[\frac{1}{2}, \frac{3}{5}\right]$ فإن (-1)

 $\frac{1}{2} \le \alpha \le \frac{3}{5}$: أن المعادلة f(x) = x تقبل حلا وحيدا α و أن f(x) = x

f(x)-x: 5) ادرس إشارة (-2)

 $W_n = u_{2n+1}$ $V_n = u_{2n}$: e. ... It is a second of the second o

 $(u_0 \le \alpha$ ان المتتاليتين $(v_n)_n = (v_n)_n$ و $(v_n)_n = (v_n)$ متحاديتين (لاحظ أن

 $\lim_{n\to\infty}u_n=\alpha$ استنتج أن المتتألية $(u_n)_{n\geq 0}$ متقارية و أن (ب

 $(\forall x \in \mathbb{R})$ $f'(x) + f(x) = \frac{1}{1 + e^x}$: نأن (ا- 1 - C)

ب) استنتج الدالة الأصلية F للدالة f على المجال $\mathbb R$ التي تنعدم في (ب

 $f(x_n) = \frac{1}{n}$: بین آنه لکل عدد صحیح طبیعی $n \ge 2$ یوجد عدد حقیقی وحید R_+ من R_+ من (أ- 2

ب) بين أن المتتالية $(x_n)_{n\geq 2}$ تزايدية

 $\lim_{n\to\infty} x_n = +\infty$ ان $\int_{-\infty}^{\infty} x_n = +\infty$ ان غیر مکبوره ثم استنتج آن $(x_n)_{n\geq 2}$

 $v_n = \int_0^x f(x)dx$: v_n | lange $v_n = \int_0^x f(x)dx$ | v_n | lange $v_n = \int_0^x f(x)dx$ | $v_n = \int_0^x f(x)$

 $(\forall n \ge 2); 0 \le v_n \le 2\ln(2)$: نزایدیهٔ و آن : $(v_n)_{n\ge 2}$ نأن $(v_n)_{n\ge 2}$

 $\lim_{n\to\infty}v_n=2\ln(2)$ امتقاربة و أن $(v_n)_{n\geq 2}$ أن (عمر الله عنه)

```
التمرين الاالث: (3,5 ن)
```

تذكير: $(M_3(R),+,\times)$ حلقة واحدية و $(M_1(R),+,*)$ فضاء متجهي حقيقي. $G=R^*\times R$ منايلي: (1) نزود المجموعة $G=R^*\times R$ بقانون التركيب الداخلي $G=R^*\times R$ أُلمعرف بما يلي: $(V(a;b)\in G)(V(c;d)\in G)$ (a;b) (C;d)=(ac;ad+bc)

أ- بين أن القانون T تبادلي وتجميعي

ب- تحقق من أن (1;0) هو العنصر المحايد للفانون T

ج- بین آن (G,T) زمرة تبادلیه

(-1;1)T . . . $T(-1;1) = ((-1)^n; n(-1)^{n+1})$ ین آن: $\mathbb{N}^n - \{1\}$ من $\mathbb{N}^n - \{1\}$

 $E = \left\{ M_{(a;b)} / (a;b) \in G \right\}$ من \mathbb{R}^2 نضع : $M_{(a;b)} = \begin{pmatrix} a & b & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}$: عن \mathbb{R}^2 نضع : \mathbb{R}^2 نصع :

 $(M_3(\mathbb{R}), \times)$ من قرء مستقر من E نأ بين أن E

 $f:G \longrightarrow E$ (E,×) التطبيق: (G,T) نحو $(a;b) \longrightarrow M_{(a;b)}$ نحو (E,×) نحو

E نم $M_{(a;b)}$ کم حدد مقلوب کل مصفوفه $M_{(a;b)}$ من -

 $N' - \{1\}$ on n LLL A'' . Lamp. $A = M_{(-1;1)}$: $a = M_{(-1;1)}$

 $F = \left\{ M_{(a;b)} / (a;b) \in \mathbb{R}^2 \right\} \text{ Leaved of } (3)$

اً - ہین ان (F;+,•) فضاء متجہی حقیقی

س- حدد dim F

 $O, \times \sqrt{}$

7 – ~ . . .

13- 00

 $V = \frac{1}{V_{i,j}} \left(X_{i,j} \right)$

0.2

,

·)

; :