

j/w G. Boccali, A. Laretto, S. Luneia; EPTCS.397.1 🕻 .

j/w G. Boccali, A. Laretto, S. Luneia; EPTCS.397.1 🔁 .

Actually, there is more to this story:

j/w G. Boccali, A. Laretto, S. Luneia; EPTCS.397.1 ይ .

Actually, there is more to this story:

 Boccali, G., Laretto, A., _____, & Luneia, S. "Completeness for categories of generalized automata." LIPIcs.CALCO.2023.20 ;

j/w G. Boccali, A. Laretto, S. Luneia; EPTCS.397.1 🚨 .

Actually, there is more to this story:

- Boccali, G., Laretto, A., _____, & Luneia, S. "Completeness for categories of generalized automata." LIPIcs.CALCO.2023.20 \(\subseteq \);
- Boccali, G., Femić, B., Laretto, A., _____, & Luneia, S. "The semibicategory of Moore automata." arXiv:2305.00272

A theory of abstract automata

Let \boldsymbol{K} be a strict 2-category with all finite weighted limits.

Let ${\bf K}$ be a strict 2-category with all finite weighted limits.

Fix a 0-cell C, an endo-1-cell $f:C\to C$ and consider as building blocks of our theory

Let ${\bf K}$ be a strict 2-category with all finite weighted limits.

Fix a 0-cell C, an endo-1-cell $f:C\to C$ and consider as building blocks of our theory

• the inserter $u: I(f, 1_C) \to C$ or 'object of algebras' for f;

Let **K** be a strict 2-category with all finite weighted limits.

Fix a 0-cell C, an endo-1-cell $f:C\to C$ and consider as building blocks of our theory

- the inserter $u: I(f, 1_C) \to C$ or 'object of algebras' for f;
- for every $b: B \to C$ the comma object C/b (equipped with its canonical projection $C/b \to C$);

Let **K** be a strict 2-category with all finite weighted limits.

Fix a 0-cell C, an endo-1-cell $f:C\to C$ and consider as building blocks of our theory

- the inserter $u: I(f, 1_C) \to C$ or 'object of algebras' for f;
- for every $b: B \to C$ the comma object C/b (equipped with its canonical projection $C/b \to C$);
- the comma object $(f/b) \rightarrow C$.

Then, the object of (f, b)-Mealy machines is the pullback on the left of

Then, the object of (f, b)-Mealy machines is the pullback on the left of

Then, the object of (f, b)-Mealy machines is the pullback on the left of

and the object of (f, b)-Moore machines is the pullback on the right.

Then, the object of (f, b)-Mealy machines is the pullback on the left of

and the object of (f, b)-Moore machines is the pullback on the right.

As such, Mly and Mre are parametric functors of type

$$\mathbf{K}(C,C)^{op} \times \mathbf{K}/C \longrightarrow \mathbf{K}/C$$

If K = Cat and $b : 1 \rightarrow C$ is a single object, these definitions specialize to

If K = Cat and $b : 1 \rightarrow C$ is a single object, these definitions specialize to

 the category of Mealy automata, where objects and morphisms are of the form

If K = Cat and $b : 1 \rightarrow C$ is a single object, these definitions specialize to

 the category of Mealy automata, where objects and morphisms are of the form

$$\begin{array}{cccc}
e & \stackrel{d}{\longleftarrow} Fe & \stackrel{s}{\longrightarrow} b \\
\varphi & & & F\varphi & \\
e' & \stackrel{d}{\longleftarrow} Fe & \stackrel{s}{\longrightarrow} b
\end{array}$$

 the category of Moore automata, where objects and morphisms are of the form

$$\begin{array}{cccc}
e & \stackrel{d}{\longleftarrow} Fe, e & \stackrel{s}{\longrightarrow} b \\
\varphi & & & & \\
e' & \stackrel{d}{\longleftarrow} Fe', e' & \stackrel{s}{\longrightarrow} b
\end{array}$$

In particular, if $F_A : \mathbf{K} \to \mathbf{K}$ is the functor depending on an object A (an 'Alphabet') Mealy and Moore automata are respectively diagrams of the form (E, d, s):

$$E \stackrel{d}{\longleftarrow} A \otimes E \stackrel{s}{\longrightarrow} B$$

In particular, if $F_A : \mathbf{K} \to \mathbf{K}$ is the functor depending on an object A (an 'Alphabet') Mealy and Moore automata are respectively diagrams of the form (E, d, s):

$$E \stackrel{d}{\longleftarrow} A \otimes E \stackrel{s}{\longrightarrow} B$$

and of the form

$$E \stackrel{d}{\longleftarrow} A \otimes E, E \stackrel{s}{\longrightarrow} B$$

In particular, if $F_A : \mathbf{K} \to \mathbf{K}$ is the functor depending on an object A (an 'Alphabet') Mealy and Moore automata are respectively diagrams of the form (E, d, s):

$$E \stackrel{d}{\longleftarrow} A \otimes E \stackrel{s}{\longrightarrow} B$$

and of the form

$$E \stackrel{d}{\longleftarrow} A \otimes E, E \stackrel{s}{\longrightarrow} B$$

This is (a flavour of) what people usually call 'Mealy' and 'Moore' automata.

In particular, if $F_A : \mathbf{K} \to \mathbf{K}$ is the functor depending on an object A (an 'Alphabet') Mealy and Moore automata are respectively diagrams of the form (E, d, s):

$$E \stackrel{d}{\longleftarrow} A \otimes E \stackrel{s}{\longrightarrow} B$$

and of the form

$$E \stackrel{d}{\longleftarrow} A \otimes E, E \stackrel{s}{\longrightarrow} B$$

This is (a flavour of) what people usually call 'Mealy' and 'Moore' automata.

- $d: A \otimes E \rightarrow E$ is an action of A on E (a dynamical system);
- s is an output function (think of $B = \{0, 1\}$ or B = [0, 1], etc.)

If **K** is monoidal closed, $F_A = A \otimes -$ is colimit-preserving and its algebras coincide with the coalgebras of its right adjoint [A, -]. This allows a number of deductions:

If **K** is monoidal closed, $F_A = A \otimes -$ is colimit-preserving and its algebras coincide with the coalgebras of its right adjoint [A, -]. This allows a number of deductions:

• If **K** has countable sums, $d: A \otimes E \to E$ is an action of $A^* := \sum_n A^n$, and s extends similarly:

This is called the canonical extension of (E, d, s).

 If (K,⊗) is monoidal and T : K → K is a commutative monad over it, we can lift the monoidal structure of K making the free functor F : K → Kl(T) strong monoidal.

 If (K,⊗) is monoidal and T: K → K is a commutative monad over it, we can lift the monoidal structure of K making the free functor F: K → Kl(T) strong monoidal.

Machines in $\mathbf{Kl}(T)$ are non-deterministic versions of the ones in \mathbf{K} .

Take *T* the powerset monad on **Set**, or a distribution/probability monad like the one of finite distributions –whose algebras are convex sets, and free algebras affine simplices).

If K is cocomplete (e.g., locally presentable), so are
 Mly(A, B), Mre(A, B) for every A, B – with colimits created by the forgetful into K and connected limits created by the functor in the commæ.

If K is cocomplete (e.g., locally presentable), so are
 Mly(A, B), Mre(A, B) for every A, B – with colimits created by the
 forgetful into K and connected limits created by the functor in
 the commæ.

In particular, the terminal objects of $\mathbf{Mly}(A,B)$, $\mathbf{Mre}(A,B)$ are respectively

$$[A^+, B] \qquad [A^*, B]$$

 $(A^+ = \text{free semigroup on } A; A^* = \text{free monoid on } A).$

If K is cocomplete (e.g., locally presentable), so are
 Mly(A, B), Mre(A, B) for every A, B – with colimits created by the forgetful into K and connected limits created by the functor in the commæ.

In particular, the terminal objects of $\mathbf{Mly}(A, B)$, $\mathbf{Mre}(A, B)$ are respectively

$$[A^+, B] \qquad [A^*, B]$$

 $(A^+ = \text{free semigroup on } A; A^* = \text{free monoid on } A).$

Observe that this can be deduced from the fact that when ${\bf K}$ is closed, we can characterize automata coalgebraically, see some work of Jacobs.

(Semi)bicategories of automata

When **K** is Cartesian, Mly(A, B) is the hom-category of a bicategory.¹

The slickest way to see this is the following:

When **K** is Cartesian, Mly(A, B) is the hom-category of a bicategory.¹

The slickest way to see this is the following:

• consider the monoidal category ${\bf K}$ as a bicategory $\Sigma {\bf K}$ with a single object;

When **K** is Cartesian, Mly(A, B) is the hom-category of a bicategory.¹ The slickest way to see this is the following:

- consider the monoidal category ${\bf K}$ as a bicategory $\Sigma {\bf K}$ with a single object;
- define the bicategory $C(\mathbf{K})$ as the bicategory $\mathbf{Psd}(\mathbf{N}, \Sigma \mathbf{K})$ of pseudofunctors and lax natural transformations. Then, a 1-cell in $C(\mathbf{K})$ consists of a pair $(E, x) : E \otimes A \xrightarrow{x} B \otimes E$.

When **K** is Cartesian, Mly(A, B) is the hom-category of a bicategory.¹ The slickest way to see this is the following:

- consider the monoidal category ${\bf K}$ as a bicategory $\Sigma {\bf K}$ with a single object;
- define the bicategory C(K) as the bicategory Psd(N, ∑K) of pseudofunctors and lax natural transformations. Then, a 1-cell in C(K) consists of a pair (E, x) : E ⊗ A → B ⊗ E.

Evidently, if (\mathbf{K}, \otimes) is Cartesian, the universal property of products splits every x as $\langle s, d \rangle$ where (d, s) fit in the previous span.

When **K** is Cartesian, Mly(A, B) is the hom-category of a bicategory.¹ The slickest way to see this is the following:

- consider the monoidal category ${\bf K}$ as a bicategory $\Sigma {\bf K}$ with a single object;
- define the bicategory C(K) as the bicategory Psd(N, ∑K) of pseudofunctors and lax natural transformations. Then, a 1-cell in C(K) consists of a pair (E, x) : E ⊗ A → B ⊗ E.

Evidently, if (\mathbf{K}, \otimes) is Cartesian, the universal property of products splits every x as $\langle s, d \rangle$ where (d, s) fit in the previous span.

Clearly, $C(\mathbf{K})$ exists for every monoidal category!

A tale of bicategories

When **K** is Cartesian, Mly(A, B) is the hom-category of a bicategory.¹

The slickest way to see this is the following:

- consider the monoidal category ${\bf K}$ as a bicategory $\Sigma {\bf K}$ with a single object;
- define the bicategory $C(\mathbf{K})$ as the bicategory $\mathbf{Psd}(\mathbf{N}, \Sigma \mathbf{K})$ of pseudofunctors and lax natural transformations. Then, a 1-cell in $C(\mathbf{K})$ consists of a pair $(E, x) : E \otimes A \xrightarrow{x} B \otimes E$.

Evidently, if (\mathbf{K}, \otimes) is Cartesian, the universal property of products splits every x as $\langle s, d \rangle$ where (d, s) fit in the previous span.

Clearly, $C(\mathbf{K})$ exists for every monoidal category!

¹This motivates the compact notation $(E, x) : A \rightarrow B$ to refer to a Mealy machine valued in **K**.

The situation is not as straightforward for Moore automata, as there are no identity 1-cells.

The situation is not as straightforward for Moore automata, as there are no identity 1-cells.

We investigate the situation in arXiv:2305.00272 ₺ outlining that

The situation is not as straightforward for Moore automata, as there are no identity 1-cells.

We investigate the situation in arXiv:2305.00272 ₺ outlining that

- A semibicategory is 'like a bicategory, but without identity 1-cells'
- There exists a semibicategory Mre of Moore-type automata, a functor

$$J: Mre \longrightarrow Mly$$

and a right adjoint $Mly(A, B) \rightarrow Mre(A, B)$, altogether forming the components of a local adjunction.

The situation is not as straightforward for Moore automata, as there are no identity 1-cells.

We investigate the situation in arXiv:2305.00272 ₺ outlining that

- A semibicategory is 'like a bicategory, but without identity 1-cells'
- There exists a semibicategory **Mre** of Moore-type automata, a functor

$$J: Mre \longrightarrow Mly$$

and a right adjoint $Mly(A, B) \rightarrow Mre(A, B)$, altogether forming the components of a local adjunction.

In 1974, R. Guitart produced a span representation for Mealy automata:

The category \mathbf{Mac}^s is the sub-bicategory of $\mathbf{Span}(\mathbf{Cat})$ where the left leg is a discrete optibration.

In 1974, R. Guitart produced a span representation for Mealy automata:

The category \mathbf{Mac}^s is the sub-bicategory of $\mathbf{Span}(\mathbf{Cat})$ where the left leg is a discrete optibration.

There is a strict equivalence of bicategories between

In 1974, R. Guitart produced a span representation for Mealy automata:

The category \mathbf{Mac}^s is the sub-bicategory of $\mathbf{Span}(\mathbf{Cat})$ where the left leg is a discrete optibration.

There is a strict equivalence of bicategories between

 the 1- and 2-full sub-bicategory of Mac^s spanned by monoids (=one-object categories);

In 1974, R. Guitart produced a span representation for Mealy automata:

The category \mathbf{Mac}^s is the sub-bicategory of $\mathbf{Span}(\mathbf{Cat})$ where the left leg is a discrete optibration.

There is a strict equivalence of bicategories between

- the 1- and 2-full sub-bicategory of Mac^s spanned by monoids (=one-object categories);
- the 2-full sub-bicategory of **Mly** (over **Set**) whose 1-cells are Mealy automata between monoids such that the representation of A^* on E in $E \stackrel{d^*}{\longleftrightarrow} A^* \otimes E \stackrel{s^*}{\longleftrightarrow} B$ induces a functor $\Sigma : \mathcal{E}[d^*] \to B$, when B is a monoid.

Machines valued in a bicategory

You can't just 'is just' me and expect me to believe you

A monoidal category is $just^{TM}$ a bicategory with a single object.

You can't just 'is just' me and expect me to believe you

A monoidal category is $just^{TM}$ a bicategory with a single object.

But then, do the definition given above make sense when instead of ${\bf K}$ we consider a bicategory ${\mathbb B}$ with more than one object?

You can't just 'is just' me and expect me to believe you

A monoidal category is $just^{TM}$ a bicategory with a single object.

But then, do the definition given above make sense when instead of ${\bf K}$ we consider a bicategory ${\mathbb B}$ with more than one object?

This idea is not *entirely* new; it resembles old (and obscure) work of Bainbridge, modeling the state space of abstract machines as a functor, of which one can take the left/right Kan extension along an 'input scheme'. See work of Petrişan et al.

A bimachine is a span in...

Definition

Let $\mathbb B$ be a bicategory; a bicategorical Moore (biMoore) machine in $\mathbb B$ is a diagram of 2-cells

$$e \Longleftrightarrow e \circ i, e \Longrightarrow o$$

between 1-cells $e, i, o.^2$

²A 1-cell of states (états), of inputs, and of outputs.

A bimachine is a span in...

Definition

Let $\mathbb B$ be a bicategory; a bicategorical Moore (biMoore) machine in $\mathbb B$ is a diagram of 2-cells

$$e \longleftarrow e \circ i, e \longrightarrow o$$

between 1-cells e, i, o.2

The fact that this span exists, coherces the types of i, o, e in such a way that i must be an endomorphism of an object A.

$$A \xrightarrow{i} A$$
, $A \xrightarrow{i} A \xrightarrow{i} A$, $A \xrightarrow{i} A \xrightarrow{i} A \xrightarrow{i} A$,...

all make sense.

²A 1-cell of states (états), of inputs, and of outputs.

A bimachine is a span in...

Definition

Let $\mathbb B$ be a bicategory; a bicategorical Moore (biMoore) machine in $\mathbb B$ is a diagram of 2-cells

$$e \Longleftrightarrow e \circ i, e \Longrightarrow o$$

between 1-cells e, i, o.2

The fact that this span exists, *coherces the types* of i, o, e in such a way that i must be an endomorphism of an object A.

$$A \xrightarrow{i} A$$
, $A \xrightarrow{i} A \xrightarrow{i} A$, $A \xrightarrow{i} A \xrightarrow{i} A \xrightarrow{i} A$,...

all make sense.

In the monoidal case, the fact that an input 1-cell stands on a different level from an output was completely obscured by the fact that every 1-cell is an endomorphism.

²A 1-cell of states (états), of inputs, and of outputs.

Everything will be made a Kan extension

Recall that the terminal objects of Mly(A, B), Mre(A, B) are respectively $[A^+, B]$, $[A^*, B]$.

³With the obvious choice of morphisms, *mutatis mutandis*.

Everything will be made a Kan extension

Recall that the terminal objects of $\mathbf{Mly}(A,B)$, $\mathbf{Mre}(A,B)$ are respectively $[A^+,B],[A^*,B]$.

Analogously, given that a biMoore of fixed input and output i,o consists of a way of filling the dotted arrows in

with 1- and 2-cells, we have

³With the obvious choice of morphisms, *mutatis mutandis*.

Everything will be made a Kan extension

Recall that the terminal objects of $\mathbf{Mly}(A, B)$, $\mathbf{Mre}(A, B)$ are respectively $[A^+, B]$, $[A^*, B]$.

Analogously, given that a biMoore of fixed input and output i,o consists of a way of filling the dotted arrows in

with 1- and 2-cells, we have

The terminal object of the category of biMoore machines³ is the right extension of $o: A \to B$ along the free monad $i^{\sharp}: A \to A$.

³With the obvious choice of morphisms, *mutatis mutandis*.

Examples

biMoore in Cat

Regarding **Cat** as a strict 2-category, a biMoore machine is a functor $E: \mathcal{C} \to \mathcal{D}$ closing a span $\mathcal{C} \xleftarrow{I} \mathcal{C} \xrightarrow{O} \mathcal{D}$ with suitable 2-cells.

biMoore in Cat

Regarding **Cat** as a strict 2-category, a biMoore machine is a functor $E: \mathcal{C} \to \mathcal{D}$ closing a span $\mathcal{C} \xleftarrow{I} \mathcal{C} \xrightarrow{O} \mathcal{D}$ with suitable 2-cells.

If $\mathcal{D} = \mathbf{Set}$, states and output are presheaves, and E is acted by an endofunctor; in this case, the behaviour of the terminal machine can be described as a known object:

biMoore in Cat

Regarding **Cat** as a strict 2-category, a biMoore machine is a functor $E: \mathcal{C} \to \mathcal{D}$ closing a span $\mathcal{C} \xleftarrow{I} \mathcal{C} \xrightarrow{O} \mathcal{D}$ with suitable 2-cells.

If $\mathcal{D} = \mathbf{Set}$, states and output are presheaves, and E is acted by an endofunctor; in this case, the behaviour of the terminal machine can be described as a known object: unpacking the end that defined $Ran_{I^{\natural}}O$ we obtain the functor

$$A \longmapsto [\mathcal{C}, \mathbf{Set}](\mathcal{C}(A, I^{\natural}_{-}), O)$$

sending an object A to the set of natural transformations $\alpha:\mathcal{C}(A,I^{\natural}{}_{-})\Rightarrow \mathcal{O};$ to each generalised A-element of $I^{\natural}\mathcal{C}$ corresponds an element of the output space $\Upsilon_{\mathcal{C}}(u)\in\mathcal{OC}.$

In the bicategory **Prof** of profunctors, a biMoore machine $E: I \rightarrow O$ consists of a digraph I of inputs, and parallel profunctors E, O of states and output.

In the bicategory **Prof** of profunctors, a biMoore machine $E: I \rightarrow O$ consists of a digraph I of inputs, and parallel profunctors E, O of states and output.

In the special case of $\{0,1\}$ -enriched profunctors (i.e., relations), the Kan extension of behaviour reduces to the maximal E such that $E\subseteq O$ and $E\circ I^{\natural}\subseteq E$ (here \circ is the relational composition).

In the bicategory **Prof** of profunctors, a biMoore machine $E: I \rightarrow O$ consists of a digraph I of inputs, and parallel profunctors E, O of states and output.

In the special case of $\{0,1\}$ -enriched profunctors (i.e., relations), the Kan extension of behaviour reduces to the maximal E such that $E\subseteq O$ and $E\circ I^{\natural}\subseteq E$ (here \circ is the relational composition). So $R=\operatorname{Ran}_{I^{\natural}}O$ is the relation defined as

$$(a,b) \in R \iff \forall a' \in A.((a',a) \in I^{\natural} \Rightarrow (a',b) \in O).$$

In the bicategory **Prof** of profunctors, a biMoore machine $E: I \rightarrow O$ consists of a digraph I of inputs, and parallel profunctors E, O of states and output.

In the special case of $\{0,1\}$ -enriched profunctors (i.e., relations), the Kan extension of behaviour reduces to the maximal E such that $E\subseteq O$ and $E\circ I^{\natural}\subseteq E$ (here \circ is the relational composition). So $R=\operatorname{Ran}_{I^{\natural}}O$ is the relation defined as

$$(a,b) \in R \iff \forall a' \in A.((a',a) \in I^{\natural} \Rightarrow (a',b) \in O).$$

This relation expresses *reachability* of *b* from *a*:

$$a R b \iff \left((a' = a) \lor (a' \xrightarrow{I} a_1 \xrightarrow{I} \dots \xrightarrow{I} a_n \xrightarrow{I} a) \Rightarrow a' O b \right)$$

New maps

Definition (Intertwiner between bicategorical machines)

Consider two bicategorical Mealy machines $(e, \delta, \sigma)_{A,B}, (e', \delta', \sigma')_{A',B'}$ on different bases.

Definition (Intertwiner between bicategorical machines)

Consider two bicategorical Mealy machines $(e, \delta, \sigma)_{A,B}$, $(e', \delta', \sigma')_{A',B'}$ on different bases.

An intertwiner $(u,v):(e,\delta,\sigma)\hookrightarrow(e',\delta',\sigma')$ consists of a pair of 1-cells $u:A\to A',v:B\to B'$ and a triple of 2-cells ι,ϵ,ω disposed as

such that

Definition (Intertwiner between bicategorical machines)

Consider two bicategorical Mealy machines $(e, \delta, \sigma)_{A,B}, (e', \delta', \sigma')_{A',B'}$ on different bases.

An intertwiner $(u,v):(e,\delta,\sigma) \hookrightarrow (e',\delta',\sigma')$ consists of a pair of 1-cells $u:A \to A', v:B \to B'$ and a triple of 2-cells ι,ϵ,ω disposed as

such that

$$\boxed{\delta} \begin{array}{c} \iota \\ \hline \\ \epsilon \end{array} = \boxed{ \quad \epsilon \quad \delta' \rangle \quad \text{and} \quad \boxed{ } \begin{array}{c} \iota \\ \hline \\ \epsilon \end{array} } = \boxed{ \quad \omega \quad \sigma \rangle \; ; }$$

When it is spelled out in the case when $\mathbb B$ has a single 0-cell, this notion does not reduce to any previously known one.

When it is spelled out in the case when $\mathbb B$ has a single 0-cell, this notion does not reduce to any previously known one.

An intertwiner between (monoidal) machines $(E,d,s)_{I,O}$ and $(E',d',s')_{I',O'}$ consists of a pair of objects $U,V\in\mathcal{K}$, such that

When it is spelled out in the case when \mathbb{B} has a single 0-cell, this notion does not reduce to any previously known one.

An intertwiner between (monoidal) machines $(E,d,s)_{I,O}$ and $(E',d',s')_{I',O'}$ consists of a pair of objects $U,V\in\mathcal{K}$, such that

1. there exist morphisms

$$\iota: I' \otimes U \to V \otimes I, \epsilon: E' \otimes U \to V \otimes E, \omega: O' \otimes U \to V \otimes O;$$

When it is spelled out in the case when \mathbb{B} has a single 0-cell, this notion does not reduce to any previously known one.

An intertwiner between (monoidal) machines $(E, d, s)_{I,O}$ and $(E', d', s')_{I',O'}$ consists of a pair of objects $U, V \in \mathcal{K}$, such that

1. there exist morphisms

$$\iota: I' \otimes U \to V \otimes I, \epsilon: E' \otimes U \to V \otimes E, \omega: O' \otimes U \to V \otimes O;$$

2. the following two identities hold:

$$\epsilon \circ (d' \otimes U) = (V \otimes d) \circ (\epsilon \otimes I) \circ (E' \otimes \iota)$$
$$\omega \circ (s' \otimes U) = (V \otimes s) \circ (\epsilon \otimes I) \circ (E' \otimes \iota)$$

Intertwiner 2-cells

Intertwiners between machines support a notion of higher morphisms:

Intertwiner 2-cells

Intertwiners between machines support a notion of higher morphisms:

Definition (2-cell between machines)

Let $(u,v),(u',v'):(e,\delta,\sigma)\hookrightarrow (e',\delta',\sigma')$ be two parallel intertwiners; a 2-cell $(\varphi,\psi):(u,v)\Rightarrow (u',v')$ consists of a pair of 2-cells $\varphi:u\Rightarrow u',\psi:v\Rightarrow v'$ such that

$$\frac{\varphi}{\iota} = \frac{\iota}{\varphi}$$

This notion is *not* trivial in the monoidal case!

Intertwiner 2-cells

Intertwiners between machines support a notion of higher morphisms:

Definition (2-cell between machines)

Let $(u,v),(u',v'):(e,\delta,\sigma)\hookrightarrow (e',\delta',\sigma')$ be two parallel intertwiners; a 2-cell $(\varphi,\psi):(u,v)\Rightarrow (u',v')$ consists of a pair of 2-cells $\varphi:u\Rightarrow u',\psi:v\Rightarrow v'$ such that

$$\begin{array}{cccc}
\varphi \\
\iota \\
& = & \\
\hline
\psi
\end{array} = \begin{bmatrix}
\epsilon \\
\hline
\psi
\end{array}$$

This notion is *not* trivial in the monoidal case!

Intertwiner 2-cells

Intertwiners between machines support a notion of higher morphisms:

Definition (2-cell between machines)

Let $(u,v),(u',v'):(e,\delta,\sigma)\hookrightarrow (e',\delta',\sigma')$ be two parallel intertwiners; a 2-cell $(\varphi,\psi):(u,v)\Rightarrow (u',v')$ consists of a pair of 2-cells $\varphi:u\Rightarrow u',\psi:v\Rightarrow v'$ such that

This notion is *not* trivial in the monoidal case!

Vistas

Let $T: \textbf{Set} \to \textbf{Set}$ be a monad, and $\mathcal V$ a quantale.

Let $T : \mathbf{Set} \to \mathbf{Set}$ be a monad, and \mathcal{V} a quantale.

Tholen, Clementino et al. build locally thin bicategories of (T,\mathcal{V}) -matrices and (T,\mathcal{V}) -categories providing a unified description of the categories of topological spaces, approach spaces, metric and ultrametric, probabilistic-metric closure spaces...

Let $T : \mathbf{Set} \to \mathbf{Set}$ be a monad, and \mathcal{V} a quantale.

Tholen, Clementino et al. build locally thin bicategories of (T, \mathcal{V}) -matrices and (T, \mathcal{V}) -categories providing a unified description of the categories of topological spaces, approach spaces, metric and ultrametric, probabilistic-metric closure spaces...

BiMoore and biMealy machines, when instantiated in (T, \mathcal{V}) -**Prof**, a 2-categorical way to look at topological, (ultra)metric ways to study behaviour of a state machine

Let $T : \mathbf{Set} \to \mathbf{Set}$ be a monad, and \mathcal{V} a quantale.

Tholen, Clementino et al. build locally thin bicategories of (T,\mathcal{V}) -matrices and (T,\mathcal{V}) -categories providing a unified description of the categories of topological spaces, approach spaces, metric and ultrametric, probabilistic-metric closure spaces...

BiMoore and biMealy machines, when instantiated in (T, \mathcal{V}) -**Prof**, a 2-categorical way to look at topological, (ultra)metric ways to study behaviour of a state machine The reachability relation becomes topological, (ultra)metric, probabilistic, sequential... according to suitable choices of T and \mathcal{V} .

Rabin-Scott, and profunctors

Nondeterminism via Kleisli construction is a powerful tool.

Rabin-Scott, and profunctors

Nondeterminism via Kleisli construction is a powerful tool.

If automata in the Kleisli category of the powerset monad are nondeterministic automata in Set, biMoore/biMealy in **Prof** must be nondeterministic.

Rabin-Scott, and profunctors

Nondeterminism via Kleisli construction is a powerful tool.

If automata in the Kleisli category of the powerset monad are nondeterministic automata in Set, biMoore/biMealy in **Prof** must be nondeterministic.

Conjecture

One can address nondeterministic biMoore automata in $\mathbb B$ as deterministic bicategorical automata in a proarrow equipment, porting all the paraphernalia (minimisation, behaviour, and bisimulation) into a bigger conceptual framework.

The En(i)d

The Enid is a simphonic prog rock band from Southampthon; suggested listening: Ærie Færie Nonsense and Trippin the Light Fantastic.