The 3-SAT Decision Problem Exhaustive Search Implementations Team Satisfaction

Christopher Wood, Eitan Romanoff, Ankur Bajoria

March 24, 2013

Agenda

- 1 Problem Statement
- 2 Exhaustive Search Algorithm
- 3 Sequential Program Demo

Boolean Satisfiability

Boolean satisfiability is an NP-complete decision problem defined as:

$$SAT: \phi \rightarrow \{YES, NO\}$$

Input: Boolean formula ϕ on n variables.

Output: *YES* if there exists a variable truth assignment to the variables in ϕ that will cause it to evaluate to true, *NO* otherwise.

$$\phi$$
 is satisfiable \Leftrightarrow $SAT(\phi) = YES$

3- $SAT \in NP$

- **A** special case of *SAT* that fixes the format of ϕ .
- Each input formula is in 3-CNF form:
 - The conjunction (Boolean AND) of arbitrarily many clauses, where each clause is the disjunction (Boolean OR) of exactly three literals (a literal is a Boolean variable or its negation).

$$(x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$$

■ SAT reduces to 3-SAT, so 3-SAT \in NP.

Exhaustive Search for 3-SAT

Input: 3-*CNF* formula ϕ_n on n variables

Output: YES or NO

```
1: C \leftarrow 2^n \times n Boolean matrix (all possible variable configurations)
```

2: **for**
$$r = 0 \rightarrow 2^n - 1$$
 do

3: **for**
$$i = 0 \to n-1$$
 do

4: Assign
$$C[r][i]$$
 to each literal of variable i in ϕ_n

5: end for

6: **if** *evaluate*(
$$\phi_n$$
) = *TRUE* **then**

7: **return** YES

8: end if

9: end for

10: return NO

Algorithm 1: Exhaustive search for 3-SAT.

- Exhaustive Search Algorithm

Exhaustive Search for 3-SAT (continued)

The Sequential Solver

Demo time!

EQUATIONHERE