2 Discrete Random Variables

2.1 Random Variables

Slide 1

Random Variables

Chance experiments: Recall, we defined the sample space Ω = all possible (elementary) outcomes ω , and probability function Pr(E) for events $E \subseteq \Omega$.

Definition 2.1: Random variable (r.v.). a real-valued function $X(\omega)$ of outcomes, that is, a function

$$X:\Omega\to\Re$$
.

Discrete r.v: If *X* takes only finintly or countably many values (often, the integers).

Example: rolling two dice, with, e.g., $\omega = (\bullet, \bullet)$. Define $X = \text{sum of the two dice. Then, } X(\omega) = 4, \text{ etc.}$ Or $Y = \text{difference. Then } Y(\omega) = -2, \text{ etc.}$

Events of special interest are then, e.g., $A = \{X = 4\}$, that is, the event of all possible outcomes ω that are mapped to $X(\omega) = 4$.

Example (ctd.): $\{X = 4\} = \{(\textcircled{0}), (\textcircled{0}), (\textcircled{0})\}.$

2.2 Independent Random Variables

Slide 2

Independent R.V.'s

Use prob function Pr(A) with $A = \{X = x\}$ for a r.v. X. It's important and common enough to give it a name :-)

Probability (mass) function (p.m.f.):

$$p_X(a) = \Pr(X = a)$$

(or just p(a) when X is clear from the context).

(Cumulative) Distribution function: we often use

$$F_X(a) = \Pr(X \le a)$$

Note, for an integer-valued r.v., $p_X(a) = F_X(a) - F_X(a-1)$.

Joint prob function: Similarly for a pair (X, Y) of (jointly distributed) r.v.'s we define

$$p_{X,Y}(a,b) = \Pr\left((X=a) \cap (Y=b) \right)$$

For short, we often write just Pr(X = a, Y = b).

Proof: this is just the law of total probability with $E_b = \{Y = b\}$. The rest is just about notation:

$$p_X(a) = \Pr(X = a) = \sum_b \Pr\{(X = a) \cap (Y = b)\} = \sum_b p_{X,Y}(a,b)$$

Example: rolling two dice, X = sum of the faces,

$$p_X(2) = \Pr\{(\mathbf{O}, \mathbf{O})\} = \frac{1}{36}, p_X(3) = \frac{2}{36} \text{ etc.}$$

Let Y = difference of the faces,

$$p_{X,Y}(2,0) = p_{X,Y}(3,1) = p_{X,Y}(3,-1) = \dots = p_{X,Y}(12,0) = \frac{1}{36}$$

Slide 4

Def 2.2: Independent r.v.'s. using the definition of independent events we say *X* and *Y* are independent iff

$$p_{X,Y}(x, y) =$$

$$Pr(X = x, Y = y) = Pr(X = x) \cdot Pr(Y = y)$$

$$= p_X(x) \cdot p_Y(y)$$

for all values x and y, using independence of the events $A = \{X = x\}$ and $B = \{Y = y\}$.

Mutually independent r.v's: Similarly, $X_1, ..., X_k$ are *mutually independent* if for any $I \subseteq \{1, ..., k\}$ we have

$$p_{X_1...X_k}(x_1,\ldots,x_k) = \Pr\left(\bigcap_{i\in I} X_i = x_i\right) = \prod_{i\in I} p_{X_i}(x_i)$$

Example: 2 dice with X_1 = first die, X_2 = 2nd die.

$$p_{X_1,X_2}(1,3) = \frac{1}{36} = p_{X_1}(1) \cdot p_{X_2}(3) = \frac{1}{6} \cdot \frac{1}{6}$$

2.3 Expectations

Slide 5

Expectation

The concept of r.v's is so useful because they attach numeric values to chance experiments, which can then be manipulated and summarized as real numbers.

Def 2.3: Expectation. The expectation of a discrete r.v. *X* is the average value, averaging over all possible values *x*, weighted with the corresponding probability

$$E(X) = \sum_{x} x \cdot p_X(x).$$

If the sum does not converge, we say the expectation is "unbounded".

Slide 3

Lemma 2.0: $p_X(a) = \sum_b p_{X,Y}(a,b)$

Slide 6

Example 1: back to 2 dice, and X = sum of the two dice.

$$E(X) = \frac{1}{36} \cdot 2 + \dots + \frac{2}{36} \cdot 11 + \frac{1}{36} \cdot 12 = 7$$

Example 2: Consider another r.v. Y with $Pr(Y = 2^i) = 1/2^i$, i = 1, 2, ... Find E(Y)?

$$EY = \sum_{i=1}^{\infty} 2^i \cdot \frac{1}{2^i} = \infty.$$

We say *Y* has no expectation.

2.4 Linearity of Expectations

Slide 7

Slide 8

Linearity of Expectation

Being defined as a sum, expectations inherit any properties of sums, e.g.

Lemma 2.2: for any constants a, b,

$$E(aX + b) = aE(X) + b.$$

This is easily proven by writing out the sum, factoring a and noting $\sum_i b p_X(i) = b \sum_i p_X(i) = b \cdot 1$.

In other words, for a linear function $g(\cdot)$

$$E[g(x)] = g(EX)$$

2.5 Examples

Slide 9

Examples

For the following calculations we will need the identities

$$\sum_{i=1}^{k} j^2 = \frac{k(k+1)(2k+1)}{6} \text{ and } \sum_{i=1}^{k} j = \frac{k(k+1)}{2}.$$

2.1: roll a fair k-sided die with the numbers 1 through k. Let X = number that appears. Find E(X) = ?

Solution: $E(X) = \sum_{j=1}^{k} j \frac{1}{k} = \frac{k+1}{2}$

2.9a: rolling the k-sided die twice, let X_1 and X_2 denote the number that appears. Find $E[\max(X_1, X_2)]$?

Solution: Let $M = \max(X_1, X_2)$. First find

$$F_M(j) = \Pr(X_1 \le j, X_2 \le j) = (j/k)^2$$

and therefore

$$p_M(j) = F_M(j) - F_M(j-1) = \frac{j^2 - (j-1)^2}{k^2} = \frac{2j-1}{k^2}.$$

$$\implies E(M) = \sum_{j=1}^{k} j \frac{2j-1}{k^2} = \frac{2}{k^2} \sum_{j=1}^{k} j^2 - \frac{1}{k^2} \sum_{j=1}^{k} j = \dots$$

2.6 Jensen's Inequality

Slide 10

Jensen's Inequality

Theorem 2.1: Linearity of Expectation. For r.v.'s X_1, \ldots, X_n , consider a (new, derived) r.v. $Y = \sum_{i=1}^{n} X_i$. Then

$$E(Y) = E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i)$$

Proof: for n = 2 variables X, Y with prob function p(i, j). Recall the law of total probability for r.v.'s, $\sum_{i} p_{X,Y}(i, j) = p_X(i)$.

Definition 2.4: Convex functions. A function $f : \mathbb{R} \to \mathbb{R}$ is *convex* if for any x_1, x_2 and $0 \le \lambda \le 1$

$$f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2)$$

function betw x_1, x_2 line segment betw $(x_1, f(x_1)), (x_2, f(x_2))$

If f is twice differentiable, f is convex \iff f" $(x) \ge 0$.

$$E(X + Y) = \sum_{i} \sum_{j} (i + j) p(i, j) = \sum_{i} \sum_{j} i p(i, j) + \sum_{j} \sum_{i} \text{Theorem 2.4: Jensen's Inequality.} \text{ If } f(\cdot) \text{ is a } convex \text{ function,}$$

$$= \sum_{i} \sum_{j} p(i, j) + \sum_{j} \sum_{i} p(i, j)$$

$$E[f(X)] \ge f(E[X])$$

Slide 11

Why is this true? Let $\bar{x} = EX$.

 $= \sum_{i} p_X(i) + \sum_{i} j p_Y(j) = E(X) + E(Y)$

By Lemma 2.2,

$$E[g(x)] = g(\bar{x}) = f(\bar{x})$$

for the linear function g(x).

We have

$$g(x) \le f(x) \implies E[f(x)] \ge E[g(x)] = f(\bar{x}).$$

(formal) Proof of Th 2.4: \rightarrow book.

In short, use a Taylor series expansion, using the mean-value form of the remainder.

2.7 Binomial R.V's

Slide 12

Binomial R.V's

Bernoulli r.v.: a binary r.v. $Y \in \{0, 1\}$ with

$$p_Y(y) = \begin{cases} p & \text{for } y = 1 \text{ "success"} \\ (1-p) & \text{for } y = 0 \text{ "failure"} \end{cases}$$

We write $Y \sim \text{Bern}(p)$. Note: $E(Y) = p \cdot 1 + (1 - p) \cdot 0 = p$.

Binomial experiments: Many experiments can be described as counting the number of successes $(Y_i = 1)$ in a fixed number (n) of Bernoulli trials. For example,

- Flipping n coins, and counting X = # heads;
- Treating *n* patients, and recording *X* = # of patients who respond;
- Observing change in stock price over *n* days, and recording *X* = # days it rises; etc.

All these have a common structure, and we can argue for a prob function for X.

Slide 13

Binomial experiments: Binom r.v. X arise when we

- repeat a basic (Bernoulli) experiment with $Y_i \in \{0, 1\}$,
- independently, with always the same $p_{Y_i}(1) = p$ (success), i.e., $Y_i \sim \text{Bern}(p)$,
- a *fixed* number of times (n),
- and $X = \sum Y_i$ counts the number of successes.

We write $X \sim \text{Bin}(n, p)$.

To find $p_X(j)$ note

$$\Pr\{\underbrace{(1,\ldots,1)}_{[j \text{ times}]}, \underbrace{0,\ldots,0}_{[n-j \text{ times}]})\} = p^{j}(1-p)^{n-j}$$

and same for any other sequence of j successes and n - j failures.

• There are $\binom{n}{i}$ such sequences.

Slide 14

Prob Function & Expectation of a Bin r.v.

Definition 2.5: Binomial r.v. $X \sim \text{Bin}(n, p)$ if

$$p_X(j) = \binom{n}{j} p^j (1-p)^{n-j}$$

Result: if $X \sim \text{Bin}(n, p)$, then E(X) = np

Proof: By Theorem 2.1.,

$$E(X) = \sum_{i=1}^{n} E(Y_i) = n \cdot p.$$

2.8 Examples

Slide 15

Example

A family has *n* children with probability αp^n $n \ge 1$, where $\alpha \le (1 - p)/p$.

1. Let X = # of children. i.e., $p_X(n) = \alpha p^n$ for $n \ge 1$. What proportion of families has no children? That is, find $p_X(0)$.

Recall a geometric series $S = \sum_{n \ge 0} q^n = \frac{1}{1-q}$, for 0 < q < 1. Then use

$$p_x(0) = 1 - \sum_{n \ge 1} \alpha p^n =$$

$$= 1 - \alpha p \sum_{\ell \ge 0} p^\ell = 1 - \frac{\alpha p}{1 - p}.$$

Slide 16

2. If each child is equally likely to be a boy or a girl (independently of each other), what proportion of families consist of k boys (and any number of girls)? That is, letting Y = # boys, find p_Y(k).

Solution: We will use:

1. Law of total probability, $p_Y(k) = \sum_n \Pr(Y = k \mid E_n) \Pr(E_n)$, with $E_n = \{X = n\}$.

2. Recall again
$$S = \sum_{n \ge 0} q^n = \frac{1}{1-q}$$
,
 $\implies \frac{dS}{dq} = \sum_{i \ge 1} i q^{i-1} = (1-q)^{-2}$, and in general

$$\frac{d^{\ell}S}{dq^{\ell}} = \sum_{i>\ell} i(i-1)\cdots(i-\ell+1) \, q^{(i-\ell)} = \ell! \, (1-q)^{-(\ell+1)}.$$

We will this with q = (p/2) and $\ell = k$.

Find $p_{X|Y}(x \mid Y = 1)$.

Solution: First find $p_Y(1) = .2 + .3 = .5$, giving

$$p_{X|Y}(x \mid Y = 1) = \frac{p(x, 1)}{p_Y(1)} = \begin{cases} 2/5 = 0.4 & \text{for } x = 0\\ 3/5 = 0.6 & \text{for } x = 1. \end{cases}$$

Slide 17

- For the law of total prob use $Pr(E_n) = p_X(n)$.
- Note that for given $n, X \sim \text{Bin}(n, 1/2)$. That is, $\Pr(Y = k \mid E_n) = \binom{n}{k} (1/2)^n \text{ for } n \ge k \text{ (and 0 for } n < k).$

We get for $k \ge 1$:

$$\Pr(Y = k) = \sum_{n \ge k} \Pr(Y = k \mid E_n) \cdot \Pr(E_n) = \sum_{n \ge k} \binom{n}{k} (1/2)^n \cdot \alpha p^n$$

$$= \frac{\alpha}{k!} \left(\frac{p}{2}\right)^k \sum_{n \ge k} n(n-1) \cdots (n-k+1) \left(\frac{p}{2}\right)^{(n-k)}$$

$$= \frac{\alpha}{k!} \left(\frac{p}{2}\right)^k (k!) \left(1 - \frac{p}{2}\right)^{-(k+1)} = \alpha (p/2)^k \left(1 - \frac{p}{2}\right)^{-(k+1)}$$
Example: rolling two dice: $Y =$ number on 1st die, and $Y =$ sum of the numbers on both. Then

And $p_Y(0) = 1 - \sum_{k \ge 1} p_Y(k)$.

Conditional Expectation 2.10

Slide 20

Conditional Expectation

Since cond probabilities are probabilities \implies can define expectation, as before

Definition 2.6: Conditional expectation.

$$E(Y\mid Z=z)=\sum_{y}y\,p_{Y\mid Z}(y\mid z)$$

Note that $E(Y \mid Z = z)$ is a number $\in \Re$.

X = sum of the numbers on both. Then

$$E(X \mid Y = 2) = \sum_{x} x \Pr(X = x \mid Y = 2) = \sum_{x=3}^{8} x \cdot \frac{1}{6} = \frac{11}{2}$$

For later reference, recall that $E(X \mid Y = 2) = 5.50$ is a number. If we were not told Y = 2, we would just have

$$\sum_{x=Y+1}^{Y+6} \dots = 3.50 + Y.$$

Conditional Distribution 2.9

Slide 18

Conditional Distribution

Recall the definition of conditional probabilities $Pr(A \mid B)$.

We use conditional probabilities for $A = \{Y = y\}$ and $B = \{X = x\}$ to define a conditional distribution and expectations.

Definition: Conditional distribution. we call

$$p_{Y|X}(Y = y \mid X = x) =$$

$$= \Pr(Y = y \mid X = x) = \frac{\Pr(Y = y, X = x)}{\Pr(X = x)} =$$

$$= \frac{p_{Y,X}(y, x)}{p_X(x)}$$

the conditional distribution of Y given X.

Then $p_{Y|X}$ is a probability mass function.

"Conditional prob's are *probabilities*" \implies all results for prob's apply.

Slide 21

Lemma 2.5: the average conditional expectation = expectation,

$$E(X) = \sum_{y} E(X \mid Y = y) p_Y(y).$$

Proof: Use the law of total prob with $E_v = \{Y = y\}$ to get

$$p_X(x) = \sum_{y} \Pr(X = x \mid Y = y) p_Y(y)$$

and therefore

$$E(X) = \sum_{x} x p_X(x) = \sum_{x} \left\{ \sum_{y} x \Pr(X = x \mid Y = y) p_Y(y) \right\}$$
$$= \sum_{y} \left\{ p_Y(y) \sum_{x} x \Pr(X = x \mid Y = y) \right\}$$
$$= \sum_{y} p_Y(y) E(X \mid Y = y)$$

Slide 19

Example

For r.v.'s X and Y let p(x, y) denote the joint probability function, with

$$p(0,0) = .4$$
 $p(0,1) = .2$
 $p(1,0) = .1$ $p(1,1) = .3$

Slide 22

Conditional expectation as a r.v.

Recall that a r.v. $Y: \Omega \to \Re$ is a real-valued function, and we use Y = y to indicate a specific realization $y \in \Re$.

A second (and different) definition of conditional expectation is as

In $E(X \mid Y = y)$, if we remove the = y, we are left with a function of the r.v. Y:

Example: Recall the 2 dice, Y = 1st die, and X = sum of the two.

a value
$$\in \Re$$

$$E(X \mid Y = 2) = 5.5$$

$$\{ \text{i.i.}, \dots, \text{iii} \} \mapsto \Re$$

$$E(X \mid Y = 2) = 5.5$$

$$\{ \text{o.i.}, \dots, \text{iii} \} \mapsto \Re$$

$$E(X \mid Y = 1) \text{ and } E(X \mid Y = 2).$$

$$\{ \text{o.i.}, \dots, \text{o.i.} \} \mapsto \Re$$

$$E(X) = \pi \sum_{i=1}^{\infty} j q^{j-1} = \pi \frac{d}{da} \sum_{i=1}^{\infty} q^{i} = \pi \frac{da}{da} \sum_{i=1}^{\infty} q^{i} = \pi \frac{d$$

Slide 23

Definition 2.7: Conditional expectation. $E(X \mid Y)$ is a r.v., which takes value $E(X \mid Y = y)$ when Y = y.

i.e. $W = E(X \mid Y)$ is a r.v., not a value! It's a mapping $\Omega \to \mathfrak{R}$.

Theorem 2.7: E(X) = E[E(X | Y)]

Proof: $E(X \mid Y) = f(Y)$ with f(Y) = f(y) when Y = y

$$\implies E[E(X \mid Y)] = E[f(Y)] =$$

$$= \sum_{y} f(y) p_{Y}(y)$$

$$= \sum_{y} E(X \mid Y = y) p_{Y}(y) = E(X).$$

The last equality is by Lemma 2.5.

2.11 Examples

Slide 24

Example

We repeatedly roll a fair die. Let X = # of rolls until the first (including the \blacksquare itself), and Y = # of rolls until the first \blacksquare .

(a) Find $p_X(x)$, $p_{X|Y}(x \mid Y = 1)$ and $p_{X|Y}(x \mid Y = 2)$.

$$p_{X}(j) = (1-\pi)^{j-1}\pi,$$

$$p_{X|Y}(X=j \mid Y=1) = (1-\pi)^{j-2}\pi, j=2,...,$$

$$p_{X|Y}(X=j \mid Y=2) = \begin{cases} \tilde{\pi} & j=1\\ (1-\tilde{\pi})(1-\pi)^{j-3}\pi, & j\geq 3 \end{cases}$$

$$\bullet, \bigotimes, \bullet, \cdots \bullet, \boxminus$$

Slide 25

$$E(X) = \pi \sum_{j=1}^{\infty} j q^{j-1} = \pi \frac{d}{dq} \sum_{j=0}^{\infty} q^{j} = \frac{\pi}{(1-q)^2} = \frac{1}{\pi}$$

(see also later discussion on the geometric distribution). Next

$$E(X \mid Y = 1) = \pi \sum_{j=2}^{\infty} j \, q^{j-2} = \pi \sum_{\ell=1}^{\infty} (\ell+1) \, q^{\ell-1} =$$

$$= \pi \sum_{\ell=1}^{\infty} \ell \, q^{\ell-1} + \pi \sum_{\ell=1}^{\infty} q^{\ell-1} = EX + 1$$

For the last equality use $\pi q^{\ell-1} = p_X(\ell)$. Similarly,

$$E(X \mid Y = 2) = \tilde{\pi} \cdot 1 + (1 - \tilde{\pi}) \sum_{j=3}^{\infty} j \, q^{j-3} \pi =$$

$$\tilde{\pi} + (1 - \tilde{\pi}) \sum_{\ell=1}^{\infty} (\ell + 2) q^{\ell-1} \pi = \tilde{\pi} + (1 - \tilde{\pi})(EX + 2)$$

2.12 **Example: Recursive Function Calls**

Slide 26

Example 4: Recursive function calls

Setup: a function includes Y_1 recursive calls to itself. If $Y_1 \sim \text{Bin}(n, p)$, find the expected total # of calls to the function?

Calls in generation *i*: Let Y_i = number of calls in generation *i* (spawned by another call in generation i - 1).

Let $X_k = \#$ of calls spawned by the k-th call in the (i - 1)-st generation, $k = 1, ..., Y_{i-1}$.

Then also $X_k \sim \text{Bin}(n, p)$, and therefore

$$E(Y_i \mid Y_{i-1} = y_{i-1}) = \sum_{k=1}^{y_{i-1}} E(X_k \mid Y_{i-1} = y_{i-1}) = \sum_k np = y_{i-1} \cdot np$$

Example 4: Recursive function calls

Expectation $E(Y_i)$: Using Theorem 2.7 we get

$$E(Y_i) = E\{E(Y_i \mid Y_{i-1})\} = E(Y_{i-1}np) = np E(Y_{i-1})$$

and therefore, starting with $Y_0 = 1$, by induction $E(Y_i) = (np)^i$.

Total # calls:

$$E\left(\sum_{i=1}^{\infty} Y_i\right) = \sum_{i=1}^{\infty} E(Y_i) = \sum_{i} (np)^i.$$

If np < 1, the expected total # calls converges; otherwise it diverges (and our program crashes . . .).

2.13 Geometric Distribution

Slide 28

Geometric Distribution

An important detail about binomial experiments is the fixed number of repetitions (of the binary experiment). This is violated, for example, if we flip a coin until we see a head.

Definition 2.8: Goemetric r.v. A geometric r.v. with parameter *p* is defined by the probability distribution

$$Pr(X = n) = (1 - p)^{n-1}p.$$

It arises, for example, if we count the # coin flips until the first head.

Lemma 2.8: Memoryless property.

$$Pr(X = n + k \mid X > k) = Pr(X = n)$$

Proof: exercise. Use $Pr(X > k) = (1 - p)^k$ (need k failures for X > k).

For later reference, $Pr(X \ge k) = (1 - p)^{k-1}$

Slide 29

Mean of Geom(p)

Lemma 2.9: If X > 0 is a discrete r.v., then

$$E(X) = \sum_{i=1}^{\infty} \Pr(X \ge i)$$

Proof:

$$\sum_{i=1}^{\infty} \Pr(X \ge i) = \sum_{i=1}^{\infty} \left(\sum_{j=i}^{\infty} \Pr(X = j) \right) =$$

$$= \sum_{j=1}^{\infty} \sum_{i=1}^{j} \Pr(X = j) = \sum_{j=1}^{\infty} j \Pr(X = j) = E(X)$$

E(X): expectation of a Geom(p) r.v. X:

$$E(X) = \sum_{i=1}^{\infty} \Pr(X \ge i) = \sum_{i=1}^{\infty} (1-p)^{i-1} = \frac{1}{1 - (1-p)} = 1/p.$$

2.14 Example: Coupon Collector's Problem

Slide 30

Example (5): Coupon Collector's Problem

The following setup is encountered in many problems. The coupon collector is just the traditional story around it.

Setup: Assume each box of cereal includes a coupon, randomly chosen from *n* possible coupons.

How many boxes to get a complete set of all *n* coupons?

Let X_i = number of boxes bought while you had i - 1 coupons. Then $X = \sum_{i=1}^{n} X_i$ is the total number of boxes you need.

Geometric r.v: $X_i \sim \text{Geom}(p_i), p_i = \frac{n-(i-1)}{n}$

(since you already have i-1 coupons), and therefore $E(X_i) = 1/p_i = n/(n-i+1)$.

$$E(X) = E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \frac{n}{n-i+1} = n \underbrace{\sum_{i=1}^{n} \frac{1}{i}}_{H(n)}.$$

Slide 31

Coupon Collector (ctd.)

Lemma 2.10: $H(n) = \ln n + \Theta(1)$

Proof: noting $\frac{1}{k+1} \le \frac{1}{x} \le \frac{1}{k}$ for $k \le x \le k+1$,

$$\ln n = \int_{x=1}^{n} \frac{1}{x} dx \le \sum_{k=1}^{n-1} \frac{1}{k} < \sum_{k=1}^{n} \frac{1}{k} = 1 + \sum_{k=2}^{n} \frac{1}{k} \le 1 + \int_{x=1}^{n} \frac{1}{x} = 1 + \ln n$$

$$\implies \ln n \le H(n) \le \ln n + 1.$$

2.15 Example: Expected Run Time of Quicksort 2.16 Poisson distribution

Slide 32

Example (6): Expected Run Time of Quicksort

Quicksort: recursively sort a list $S = \{x_1, \dots, x_n\}$:

- If $|S| \le 1$, return S, otherwise
- Randomly select $y \in S$ ("pivot"), let $S_1 = \{x \in S : x < y\} \text{ and } S_2 = \{x \in S : x \ge y\}.$
- Return quicks(S_1) \cup {y} \cup quicks(S_2).

Claim: with random y, # of comparisons is

$$2n \ln n + O(n)$$
.

Slide 33

Proof

First some observations:

- Let y_1, \ldots, y_n denote the ordered elements x_1, \ldots, x_n ; let $X_{ij} = \begin{cases} 1 & \text{if } x_i, x_j \text{ are compared} \\ 0 & \text{otherwise} \end{cases}$ and similarly Y_{ij} .
- Total # comparisons $X = \sum_{i < j} X_{ij} = \sum Y_{ij}$.
- Note $EX_{ij} = Pr(X_{ij} = 1)$, and same for Y_{ij} .
- $Y_{ij} = 1 \iff y_i \text{ or } y_j \text{ is the first pivot selected from}$

$$\implies \Pr(Y_{ij} = 1) = \frac{2}{j-i+1}$$

Slide 34

We have

$$E(X) = \sum_{i=1}^{n-1} \sum_{j>i} EX_{ij} = \sum_{i=1}^{n-1} \sum_{j>i} EY_{ij} =$$

$$= \sum_{i=1}^{n-1} \sum_{j>i} \frac{2}{j-i+1} = \sum_{k=2}^{n} \sum_{i=1}^{n+1-k} \frac{2}{k} = \sum_{k=2}^{n} (n+1-k) \frac{2}{k}$$

$$= 2(n+1) \sum_{k=2}^{n} \frac{1}{k} - 2(n-1) = (2n+2) \sum_{k=1}^{n} \frac{1}{k} - 2(n-1)$$

Recall $\sum_{k=1}^{n} \frac{1}{k} = H(n) = \ln n + \Theta(1) \implies EX = 2n \ln n + \Theta(n)$.

Slide 35

Poisson Distribution

Note: this is §5.3 in the book.

Definition 5.1: Poisson distribution. A discrete r.v. X with

$$p_X(j) = \frac{e^{-\lambda} \lambda^j}{j!}$$
, for $j = 0, 1, 2, ...$

We write $X \sim \text{Poi}(\lambda)$.

General setup: Poisson probabilities are good approximations for probabilities in many problems. For example:

Poisson probabilties can be used as an approximation for Binomial probabilities with large n and small p (such that npremains moderate):

If $X \sim \text{Bin}(n, p)$ with $np = \lambda$ (or $p = \lambda/n$) and large n, then $p_X(i) \approx e^{-\lambda} \frac{\lambda^i}{i!}$, i.e., approximated by Poi(λ) probabilities.

Proof: exercise, problem 7¹

2.17 Examples

Slide 36

Examples

1. The probability of a "three of a kind" in poker is approximately p = 1/50.

Use the Poisson approximation to estimate the probability you will get at least one "three of a kind" if you play n = 20hands.

That is, letting X = # hands with three of a kind, find $Pr(X \ge 1)$.

Solution: use the Poi approx with $\lambda = np = 2/5$ to get

$$Pr(X \ge 1) = 1 - p_X(0) \approx 1 - e^{-\lambda} = 1 - e^{-0.4} = 0.33.$$

Slide 37

- **2.** Let $N_t = \#$ of earthquakes in the western portion of the United States in t weeks. Assume $N_t \sim \text{Poi}(\lambda t)$, with $\lambda = 2$. That is earthquakes occur at a rate of $\lambda = 2$ per week.
 - (a) Find the probability of ≥ 3 earthquakes in 2 weeks. Solution: Let $X = N_2 \sim \text{Poi}(4)$. Then

$$Pr(X \ge 3) = 1 - p_X(0) - p_X(1) - p_X(2) = \dots = 1 - 13e^{-4}.$$

¹problem # reference in the video is outdated

(b) Letting $Y = \text{time until next earthquake, find } Pr(Y \le t)$.

Hint: Find first $Pr(Y > t) = Pr(N_t = 0) = \dots$

Solution: Use $N_t \sim \text{Poi}(\lambda t)$ to get

$$Pr(Y > t) = p_{N_t}(0) = e^{-\lambda t} \implies Pr(Y \le t) = 1 - e^{-\lambda t}.$$

Note: Did you notice that the r.v. *Y* here is not a discrete r.v? We will talk more about this in Chapter 8.

2.18 More Properties of Poi R.V's

Slide 38

More Properties of Poi R.V's

Problem 2. is an example for a (very common) application of Poisson r.v.'s to represent the number of certain events:

- (1) For a *short time interval h* the probability of observing an event is proportional to the length of the interval, i.e. $\approx \lambda h$;
- (2) prob of ≥ 2 events in a short interval $\rightarrow 0$ as $h \rightarrow 0$; and
- (3) # of events in non-overlapping intervals are independent.

Let N_t = # events in a time interval t and assume

- **(1)** $Pr(N_h = 1) = \lambda h + o(h);$
- (2) $Pr(N_h \ge 2) = o(h)$;
- (3) For any *n* non-overlapping time intervals the numbers of events in those intervals are independent.

Under these assumptions $N_t \sim \text{Poi}(\lambda t)$.

Slide 39

Sums of Poi r.v.'s

Lemma 5.2: Sums of Poi r.v.'s. If $X_i \sim \text{Poi}(\mu_i)$, i = 1, ..., n, independently, then $S = \sum_{i=1}^n X_i \sim \text{Poi}(\sum_{i=1}^n \mu_i)$.

Proof: For $n = 2 \rightarrow$ problem 9². By induction we get the desired result for n > 2.

²problem # given in the video is outdated