Al Response:

Kinematics is a branch of classical mechanics that describes the motion of object

Key Concepts in Kinematics:

- 1. **Displacement (s)**: The change in position of an object. It is a vector quantit
- 2. **Distance**: The total length of the path traveled by an object, regardless of o
- 3. **Velocity (v)**: The rate of change of displacement with time. It is also a vector \[v = \frac{\Delta t}{\Delta t} \] where \(\Delta s \) is the change in displacement and \(\Delta t \) is the change
- 4. **Speed**: The rate of change of distance with time. It is a scalar quantity and
 \[
 \text{Speed} = \frac{\text{Distance}}{\text{Time}}
 \]
- 5. **Acceleration (a)**: The rate of change of velocity with time, also a vector qual \[a = \frac{\Delta v}{\Delta t} \]
 where \(\Delta v \) is the change in velocity.

Equations of Motion:

In uniformly accelerated motion (constant acceleration), there are three key equa

```
    \( v = u + at \)
    \( v \) = final velocity
    \( u \) = initial velocity
    \( a \) = acceleration
    \( t \) = time
```

- 2. $(s = ut + \frac{1}{2}at^2)$ - (s) = displacement
- 3. \($v^2 = u^2 + 2as$ \)

Graphical Representation:

1. **Position-Time Graphs**: The slope of the graph represents velocity. A straig