Quad 2-Input NAND Gate with Schmitt-Trigger Inputs

High-Performance Silicon-Gate CMOS

The SL74HCT132 is identical in pinout to the LS/ALS132. The SL74HCT132 may be used as a level converter for interfacing TTL or NMOS outputs to High Speed CMOS inputs.

- TTL/NMOS Compatible Input Levels
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 4.5 to 5.5 V
- Low Input Current: 1.0 μA

LOGIC DIAGRAM

PIN ASSIGNMENT

AI [1.	14	v_{cc}
BI [13	B4
Yı 🛚	3	12	Λ4
A2 [4	II	¥4
R2 [5	Ki	Bã
¥2 [ń	9	43
CNID [7	δ	¥3

FUNCTION TABLE

Inputs		Output
A	В	Y
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$V_{\rm IN}$	DC Input Voltage (Referenced to GND)	-1.5 to V_{CC} +1.5	V
V_{OUT}	DC Output Voltage (Referenced to GND)	-0.5 to V_{CC} +0.5	V
I_{IN}	DC Input Current, per Pin	±20	mA
I_{OUT}	DC Output Current, per Pin	±25	mA
I_{CC}	DC Supply Current, V _{CC} and GND Pins	±50	mA
P_{D}	Power Dissipation in Still Air, Plastic DIP+ SOIC Package+	750 500	mW
Tstg	Storage Temperature	-65 to +150	°C
$T_{\rm L}$	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package)	260	°C

^{*}Maximum Ratings are those values beyond which damage to the device may occur.

Functional operation should be restricted to the Recommended Operating Conditions.

SOIC Package: : - 7 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	4.5	5.5	V
$V_{\rm IN}, V_{ m OUT}$	DC Input Voltage, Output Voltage (Referenced to GND)	0	V_{CC}	V
T_{A}	Operating Temperature, All Package Types	-55	+125	°C
t_r, t_f	Input Rise and Fall Time (Figure 1)	ı	no limit [*]	ns

^{*}When $V_{IN} \approx 0.5 V_{CC}$, $I_{CC} >$ quiescent current.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range $GND \leq (V_{IN} \text{ or } V_{OUT}) \leq V_{CC}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

⁺Derating - Plastic DIP: - 10 mW/°C from 65° to 125°C

$\begin{picture}(100,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){10$

			V_{CC}	Guaranteed Limit			
Symbol	Parameter	Test Conditions	V	25 °C to -55°C	≤85 °C	≤125 °C	Unit
V _T +max	Maximum Positive- Going Input Threshold Voltage	V_{OUT} =0.1 V I_{OUT} $\leq 20 \mu A$	4.5 5.5	1.9 2.1	1.9 2.1	1.9 2.1	V
V _T +min	Minimum Positive- Going Input Threshold Voltage	V_{OUT} =0.1 V I_{OUT} $\leq 20 \mu\text{A}$	4.5 5.5	1.2 1.4	1.2 1.4	1.2 1.4	V
V _T -max	Maximum Negative- Going Input Threshold Voltage	$\begin{aligned} &V_{\text{OUT}} = &V_{\text{CC}} - 0.1 \text{ V} \\ & I_{\text{OUT}} \leq 20 \mu\text{A} \end{aligned}$	4.5 5.5	1.2 1.4	1.2 1.4	1.2 1.4	V
V _T -min	Minimum Negative- Going Input Threshold Voltage	$\begin{aligned} & V_{\text{OUT}} = V_{\text{CC}} - 0.1 \text{ V} \\ & I_{\text{OUT}} \le 20 \mu\text{A} \end{aligned}$	4.5 5.5	0.5 0.6	0.5 0.6	0.5 0.6	V
V _H max Note	Maximum Hysteresis Voltage	V_{OUT} =0.1 V or V_{CC} -0.1 V I_{OUT} $\leq 20 \mu\text{A}$	4.5 5.5	1.4 1.5	1.4 1.5	1.4 1.5	V
V _H min Note	Minimum Hysteresis Voltage	V_{OUT} =0.1 V or V_{CC} -0.1 V I_{OUT} $\leq 20 \mu\text{A}$	4.5 5.5	0.4 0.4	0.4 0.4	0.4 0.4	V
V_{OH}	Minimum High-Level Output Voltage	$V_{IN} \le V_T$ -min or V_T +max $ I_{out} \le 20 \mu A$	4.5 5.5	4.4 5.4	4.4 5.4	4.4 5.4	V
		$V_{IN} \le V_T$ -min or V_T +max $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5	3.98	3.84	3.7	
V _{OL}	Maximum Low-Level Output Voltage	$ V_{IN} \ge V_T + max $ $ I_{OUT} \le 20 \mu\text{A} $	4.5 5.5	0.1 0.1	0.1 0.1	0.1 0.1	V
		$ \begin{aligned} & V_{\rm IN} \!\! \geq V_{\rm T} \!\! + \!\! \max \\ & \mid I_{\rm OUT} \mid \leq 4.0 \mathrm{mA} \\ & \mid I_{\rm OUT} \mid \leq 5.2 \mathrm{mA} \end{aligned} $	4.5	0.26	0.33	0.4	
I_{IN}	Maximum Input Leakage Current	V _{IN} =V _{CC} or GND	5.5	±0.1	±1.0	±1.0	μΑ
I_{CC}	Maximum Quiescent Supply Current (per Package)	$V_{IN}=V_{CC}$ or GND $I_{OUT}=0\mu A$	5.5	1.0	10	40	μА
ΔI_{CC}	Additional Quiescent Supply Current	$\begin{aligned} &V_{IN} = 2.4 \text{ V, Any One Input} \\ &V_{IN} = V_{CC} \text{ or GND, Other} \\ &Inputs \end{aligned}$		≥-55°C		5°C to 25°C	mA
		I _{OUT} =0μA	5.5	2.9		2.4	

Note. $V_H min > (V_{T_+} min) - (V_{T_-} max); V_H max = (V_{T_+} max) + (V_{T_-} min).$

$\textbf{AC ELECTRICAL CHARACTERISTICS}(V_{CC}\!\!=\!\!5.0\,\text{V} \pm 10\%, C_L\!\!=\!\!50\text{pF}, Input\ t_r\!\!=\!\!t_f\!\!=\!\!6.0\ ns)$

		Gu			
Symbol	Parameter	25 °C to -55°C	≤85°C	≤125°C	Unit
$t_{\rm PLH}, t_{\rm PHL}$	Maximum Propagation Delay, Input A or B to Output Y (Figures 1 and 2)	25	31	38	ns
t_{TLH}, t_{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 2)	15	19	22	ns
C_{IN}	Maximum Input Capacitance	10	10	10	pF

	Power Dissipation Capacitance (Per Gate)	Typical @25°C,V _{CC} =5.0 V	
C_{PD}	Used to determine the no-load dynamic power consumption: $P_D=C_{PD}V_{CC}^2f+I_{CC}V_{CC}$	27	pF

Figure 1. Switching Waveforms

Figure 2. Test Circuit

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com