Лабораторная работа №16

Дисциплина - имитационное моделирование

Пронякова О.М.

03 апреля 2025

Российский университет дружбы народов, Москва, Россия

Докладчик

- Пронякова Ольга Максимовна
- студент НКАбд-02-22
- факультет физико-математических и естественных наук
- Российский университет дружбы народов

Создание презентации

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.

Выполнение лабораторной работы

Выполнение лабораторной работы

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением
☐. Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [☐, ☐]. Предлагается две стратегии обслуживания прибывающих автомобилей: 1) автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска; 2) автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска. Исходные данные: ☐ = 1, 75 мин, ☐ = 1 мин, ☐ = 7 мин. 3.2

Построение модели Целью моделирования является определение: • характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего времени пребывания автомобиля на пункте пропуска; наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля: • оптимального количества пропускных пунктов. В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем: • коэффициенты загрузки системы: • максимальные и средние длины очередей: • средние значения времени ожидания обслуживания. Для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами, имеем следующую модель. После запуска симуляции получим отчёт. Составим модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным пунктом (рис.(fig:pic1?)), (рис.(fig:pic2?)), (рис.(fig:pic3?)), (рис.(fig:pic4?)).

Untitled Model 1

```
GENERATE (Exponential(1,0,1,75)); прибытие автомобилей
TEST LE Q$Other1, Q$Other2, Obsl 2 ; длина оч. 1<= длине оч. 2
TEST E Q$Other1,Q$Other2,Obsl 1 ; длина оч. 1= длине оч. 2
TRANSFER 0.5, Obsl 1, Obsl 2 ; длины очередей равны,
; выбираем произв. пункт пропуска
; моделирование работы пункта 1
Obsl 1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punktl ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punktl ; освобождение пункта 1
TERMINATE : автомобиль покипает систему
: моделирование работы пункта 2
Obsl 2 OUEUE Other2 : присоединение к очереди 2
SEIZE punkt2 ; ванятие пункта 2
DEPART Other2 : выход из очереди 2
ADVANCE 4.3 : обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 : генерация фиктивного транвакта,
; указывающего на окончание рабочей непели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Untitled Model 1	21 - PEPOPT					_ X
Ollittled Floder	L.Z.I - KEFOKI					<u>=141 A</u>
	четве	рг, мая 15,	2025 19:08:0	1		
67	ART TIME	END	TIME BLOCKS	FACILITIES	STODACES	
21	0.000	10080		2	O	
	0.000	10000	.000	Ī	•	
	NAME		VALUE			
OBS	L 1		5.000			
	L 2		11.000			
OTH			10000.000			
	ER2		10001.000			
	KT1		10003.000			
PUN	KT2		10002.000			
LABEL	LOC	BLOCK TYPE	ENTRY CO	UNT CURRENT C	OUNT RETRY	-
	1	GENERATE	5853	0	0	
	2	TEST	5853	0	0	
	3	TEST	4162	0	0	
	4	TRANSFER	2431	0	0	
OBSL_1	5	QUEUE	2928	387	0	
	6	SEIZE	2541	0	0	
	7	DEPART	2541	0	0	
	8	ADVANCE	2541	1	0	
	9	RELEASE	2540	0	-	
	10	TERMINATE	2540	0	-	
OBSL_2	11	QUEUE	2925	388	-	
	12	SEIZE	2537	0	0	-

🅌 Untitled Model 1

```
punkt STORAGE 2
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
QUEUE Other ; присоединение к очереди 1
ENTER punkt, 1 ; занятие пункта 1
DEPART Other ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
LEAVE punkt, 1; освобождение пункта 1
TERMINATE : автомобиль покидает систему
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
(7 дней x 24 часа x 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Untitled N	Model 1.3.1	- REPORT	Г									
	011121											
	PUNKT					10000.	000					
LABEL		LOC	BIO	CK TYP	· F	FNITD	v cor	INT	CURRENT	COUNT	RETRY	
LADEL		1		ERATE	_		719	JIV I	CORRENT	O	0	
			OUE				719		66		0	
		2							01		-	
		3	ENT				051			0	0	
		4	DEP				051			0	0	
		5		ANCE			051			2	0	
		6	LEA	-			049			0	0	
		7	TER	MINATE		5	049			0	0	
		8	GEN	ERATE			1			0	0	
		9	TER	MINATE			1			0	0	
UEUE		MAX	CONT.	ENTRY	ENT	RY(0) 2	AVE.C	ONT	. AVE.T	IME	AVE. (-0)	RETR
OTHER		668	668	5719			344.4		607.		607.56	
TORAGE		CAP	DEM	MIN.	MAY	ENTR	TFS 2	17T.	AVE.C.	HTT.	. RETRY	DELAY
PUNKT		2	0	0	2	50		1	2.000	1.00		668
EC XN	PRI	BD:	Γ	ASSE	M C	URRENT	NEX	T	PARAMETI	ER	VALUE	
5721	0	10080	.466	5721		0	1					
5051	0	10081	.269	5051		5	6					
5052	0	10083		5052		5	6					
5722	0	20160		5722		0	8					

Составим таблицу по полученной статистике (рис.(fig:pic5?))

Показатель	стратегия 1	стратегия 2		
	пункт 1	пункт 2	в целом	
Поступило автомобилей	2928	2925	5853	5719
Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0,997	0,996	0,9965	1
Максимальная длина	393	393	786	668
очереди				
Средняя длина очереди	187,098	187,114	374,212	344,466
Среднее время ожидания	644,107	644,823	644,465	607,138

Сравнив результаты моделирования двух систем, можно сделать вывод о том, что первая модель позволяет обслужить большее число автомобилей. Однако мы видим, что разница между обслуженными и поступившими автомобилями меньше для второй модели – значит, продуктивность работы выше. Также для второй модели коэффициент загрузки равен 1 – значит ни один из пунктов не простаивает. Максимальная длина очереди, средняя длина очереди и среднее время ожидания меньше для второй стратегии. Можно сделать вывод, что вторая стратегия лучше

Оптимизация модели двух стратегий обслуживания Изменим модели, чтобы определить оптимальное число пропускных пунктов (от 1 до 4). Будем подбирать под следующие критерии: • коэффициент загрузки пропускных пунктов принадлежит интервалу [0, 5; 0, 95]; • среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3; • среднее время ожидания обслуживания не должно превышать 4 мин. Для обеих стратегий модель с одним пунктом выглядит одинаково (рис.(fig:pic6?)), (рис.(fig:pic7?)).

Untitled Model 1

```
punkt STORAGE 2
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
QUEUE Other ; присоединение к очереди 1
SEIZE punkt ; занятие пункта 1
DEPART Other ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punkt ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
: (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

	PUNKT		•	10000.000			
LABEL		LOC	BLOCK TYPE	ENTRY COUNT	CURRENT COUNT	T RETRY	
211222		1	GENERATE	5744	0	0	
		2	QUEUE	5744	3233	0	
		3	SEIZE	2511	0	0	
		4	DEPART	2511	0	0	
		5	ADVANCE	2511	1	0	
		6	RELEASE	2510	0	0	
		7	TERMINATE	2510	0	0	
		8	GENERATE	1	0	0	
		9	TERMINATE	1	0	0	
PUNKT		2511	1.000	4.014 1	2512 0	0 0	3233
UEUE		MAX C	ONT. ENTRY EN	NTRY(0) AVE.CON	T. AVE.TIME	AVE. (-0)	RETRY
OTHER		3234 3	233 5744	1 1617.676	2838.819	2839.313	0
			DEM MIN MAN	C. ENTRIES AVL	AUF C HTTI	. RETRY	DELAY
STORAGE		CAP.	KEIL PILIV. PIA	. PHILIPPO HAD	. AVE. C. OIL		
STORAGE PUNKT		2 2	2 0 (0
PUNKT	PRI		2 0 (0
PUNKT	PRI 0	2	2 0 (0 1 CURRENT NEXT	0.000 0.00	00 0	0
PUNKT		2 BDT	2 0 0 ASSEM 255 2512	0 1 CURRENT NEXT	0.000 0.00	00 0	0

В этом случае модель не проходит ни по одному из критериев, так как коэффициент загрузки, размер очереди и среднее время ожидания больше. Построим модель для первой стратегии с 3 пропускными пунктами и получим отчет (рис.(fig:pic8?)), (рис.(fig:pic9?)).

Untitled N	lodel 1.6	1 - REPORT										
		15	TER	MINATE		1	829		0		0	
OBSL 3		16	QUE	UE		1	865		3		0	-
_		17	SEI	ZE		1	862		0		0	
		18	DEP	ART		1	862		0		0	
		19	ADV	ANCE		1	862		1		0	
		20	REL	EASE		1	861		0		0	
		21	TER	MINATE		1	861		0		0	
		22	GEN	ERATE			1		0		0	
		23	TER	MINATE			1		0		0	
FACILITY		ENTRIES	UT	IL. A	VE. I	IME	AVAIL.	OWNER	PEND	INTER	RETRY	DI
PUNKT2		1829	0	.717	3	. 952	1	0	0	0	0	
PUNKT3		1862	0	.740	4	.006	1	5534	0	0	0	
PUNKT1		1852	0	.727	3	.957	1	5546	0	0	0	
OUEUE		MAX C	ONT.	ENTRY	ENTRY	(0)	AVE.CO	NT. AVI	E.TIME	E AV	E. (-0)	R
OTHER2		11	0	1829	50		1.11			5	8.482	
OTHER3		13	3	1865	51	3			6.132		8.458	
OTHER1		9	1	1853			0.92		5.055		7.075	
FEC XN	PRI	BDT		ASSEM	CUF	RENT	NEXT	PARA	METER	VA	LUE	
5549	0	10081.	799	5549		0	1					
5534	0	10082.	440	5534	1	9	20					
5546	0	10085.	099	5546		7	8					
5550	0	20160.	000	5550		0	22					

В этом случае среднее количество автомобилей в очереди меньше 3 и коэффициент загрузки в нужном диапазоне, но среднее время ожидания больше 4. Построим модель для первой стратегии с 4 пропускными пунктами (рис.(fig:pic10?)), (рис.(fig:pic11?)).

```
Multipled Model 1
                                                                     _ | _ | ×
 GENERATE (Exponential (1,0,1.75)); прибытие автомобилей
 TRANSFER 0.5.a.b:
 a TRANSFER 0.5, Obsl_1, Obsl_2 ; длины очередей равны,
 b TRANSFER 0.5, Obsl 3, Obsl 4;
 ; выбираем произв. пункт пропуска
 ; моделирование работы пункта 1
 Obsl 1 QUEUE Other1 ; присоединение к очереди 1
 SEIZE punktl ; занятие пункта 1
 DEPART Other1 ; выход из очереди 1
 ADVANCE 4.3 : обслуживание на пункте 1
 RELEASE punktl ; освобождение пункта 1
 TERMINATE ; автомобиль покидает систему
 ; моделирование работы пункта 2
 Obsl 2 QUEUE Other2; присоединение к очереди 2
 SEIZE punkt2 ; занятие пункта 2
 DEPART Other2 : выход из очереди 2
 ADVANCE 4.3 ; обслуживание на пункте 2
 RELEASE punkt2 ; освобождение пункта 2
 TERMINATE ; автомобиль покидает систему
 ; моделирование работы пункта 3
 Obsl 3 QUEUE Other3; присоединение к очереди 3
 SEIZE punkt3 ; ванятие пункта 3
 DEPART Other3 ; выход из очереди 3
 ADVANCE 4,3 ; обслуживание на пункте 3
 RELEASE punkt3 ; освобождение пункта 3
```

TERMINATE : автомобиль покинает систему

Ontroca	10001 1.5.									-15	4.
		25	DEPART	1	413		0		0		-
		26	ADVANCE	1	413		1		0		-
		27	RELEASE	1	412		0		0		
		28	TERMINAT	Ε 1	412		0		0		
		29	GENERATE		1		0		0		
		30	TERMINAT	Ε	1		0		0		
FACILITY		ENTRIES	UTIL.	AVE. TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELAY	
PUNKT4		1413	0.557	3.971	1	5623	0	0	0	0	
PUNKT3		1378	0.545	3.989	1	0	0	0	0	0	
PUNKT2		1366	0.541	3.993	1	0	0	0	0	0	
PUNKT1		1465	0.584	4.018	1	5621	0	0	0	0	
QUEUE		MAX C	ONT. ENTR	Y ENTRY(0)	AVE.CON	IT. AVE	.TIME	AVI	E. (-0)	RETRY	
OTHER4		7	0 141	3 628	0.415	,	2.958		5.325	0	
OTHER3		8	0 137	8 655	0.345	,	2.527		4.816	0	
OTHER2		6	0 136	6 625	0.363	3	2.676	5	4.934	0	
OTHER1		6	0 146	5 590	0.492		3.385		5.667	0	
FEC XN	PRI	BDT	ASS	EM CURRENT	NEXT	PARAM	ETER	VA	LUE		
5624	0	10080.	041 562	4 0	1						
5621	0	10080.	398 562	1 8	9						
5623	0	10082.	255 562	3 26	27						
5625	0	20160.	000 562	5 0	29						

В этом случае все критерии выполнены, поэтому 4 пункта являются оптимальным количеством для первой стратегии. Построим модель для второй стратегии с 3 пропускными пунктами и получим отчет (рис.(fig:pic12?)), (рис.(fig:pic13?)).

Multitled Model 1

```
punkt STORAGE 3;
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
QUEUE Other ; присоединение к очереди 1
ENTER punkt ; занятие пункта 1
DEPART Other ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
LEAVE punkt ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
; запание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Untitled I	Model 1.10.1	- REPOR	г								
											3
LABEL		LOC	BLO	CK TYPE	Ξ	ENTRY	COUNT	CURRENT	COUNT	RETRY	
		1	GENE	ERATE		56	83		0	0	
		2	QUE	JE		56	83		0	0	
		3	ENTE	ER		56	83		0	0	
		4	DEP	ART		56	83		0	0	
		5	ADV	ANCE		56	83		3	0	
		6	LEAV	VE.		56	80		0	0	
		7	TER	MINATE		56	80		0	0	
		8	GEN	ERATE			1		0	0	
		9	TER	MINATE			1		0	0	
OTHER								T. AVE.T			
STORAGE		CAP.	REM.	MIN. N	AX.	ENTRI	ES AVL	. AVE.C	. UTIL	. RETRY	DELAY
PUNKT		3	0	0	3	568	3 1	2.243	0.74	8 0	0
1								I			
FEC XN		BDT		ASSEN	M CUR	RENT	NEXT	PARAMET	ER	VALUE	
5680	-	10080.					-				
5683		10080.	631	5683		5	6				
5685	0	10082.	068	5685		0	1				
5684	0	10085.	592	5684		5	6				
5686	0	20160.	000	5686		0	8				

В этом случае все критерии выполняются, поэтому модель оптимальна/ Построим модель для второй стратегии с 4 пропускными пунктами и получим отчет (рис.(fig:pic14?)), (рис.(fig:pic15?)).

Multitled Model 1

```
punkt STORAGE 4:
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
QUEUE Other ; присоединение к очереди 1
ENTER punkt ; занятие пункта 1
DEPART Other ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
LEAVE punkt ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 : генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Untitled I	Model 1.11.1	- REPOR	Т							>
										_
LABEL		LOC	BLOC	K TYPE	ENTR	Y COUN	T CURRENT	COUNT	RETRY	
		1	GENE	RATE	5	719		0	0	
		2	QUEU	E	5	719		0	0	
		3	ENTE	R	5	719		0	0	
		4	DEPA	RT	5	719		0	0	
		5	ADVA	NCE	5	719		4	0	
		6	LEAV	E	5	715		0	0	
		7	TERM	INATE	5	715		0	0	
		8	GENE	RATE		1		0	0	
		9	TERM	INATE		1		0	0	
OTHER		7	0	5719	4356	0.19	4 0.	341	1.431	. 0
STORAGE		CAP.	REM.	MIN. M	AX. ENTR	IES AV	L. AVE.C	. UTIL	. RETRY	DELAY
PUNKT		4		0		19 1		0.56		0
FEC XN	PRI	BDT		ASSEM	CURRENT	NEXT	PARAMET	ER	VALUE	
5718	0	10082.	346	5718	5	6				
5717	0	10082.	412	5717	5	6				
5719	0	10083.	393	5719	5	6				
5721	0	10084.	393	5721	0	1				
5720	0	10085.	162	5720	5	6				
5722	0	20160.	000	5722	0	8				

Здесь все критерии выполнены при этом время ожидания и среднее число автомобилей меньше, чем в случае второй стратегии с 3 пунктами, однако и загрузка меньше. Можно сделать вывод, что 4 пропускной пункт излишне разгружает систему. В результате анализа наилучшим количеством пропускных пунктов будет 3 при втором типе обслуживания и 4 при первом.

Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss: • модель с двумя очередями; • модель с одной очередью; • изменить модели, чтобы определить оптимальное число пропускных пунктов.