n-dimensionale Polarkoordinaten

Proseminar Mathematik - Themen zur Analysis

Wintersemester 2012/2013

Simon Bischof; 29.11.2012

Inhaltsverzeichnis

1	Motivation
2	Vorgehensweise
3	P_n : Definition und Eigenschaften
	1 Definition
	$2 \qquad P_n(r,\phi_1,\cdots,\phi_{n-1}) \qquad \dots \dots$
	3 Funktionalmatrix und -determinante
4	Integralberechnungen
	1 Inhalt der <i>n</i> -dimensionalen Kugel
	2 Sonstiges
5	Verallgemeinerungen
	1 "Ellipsoidkoordinaten"
	2 verallgemeinerte Zylinderkoordinaten

Motivation

Wenn mehrdimensionale Integrale in der Vorlesung eingeführt werden, d.h.

$$\int_{M} f(x)dx \qquad (x \in \mathbb{R}^{n}, M \subseteq \mathbb{R}^{n}, f : \mathbb{R}^{n} \to \mathbb{R}),$$

ist eine der ersten Funktionen, die integriert wird, $f \equiv 1$. Damit wird der Inhalt (je nach Dimension Fläche, Volumen, \cdots) berechnet.

Für einfache Flächen wie den n-dimensionalen Würfel ist mithilfe des Satzes von Fubini noch leicht machbar (man bekommt den Inhalt 1). Für eine weitere regelmäßige Fläche, die n-dimensionale Kugel $D^n := \{(x_1, \cdots, x_n) \in \mathbb{R}^n | x_1^2 + \cdots + x_n^2 \leq 1\}$, ist das ganze ungleich komplizierter. Fubini liefert

Nach Einführung der Polarkoordinaten lässt sich das Integral mithilfe der Substitutionsregel

viel einfacher berechnen.

Vorgehensweise

Die Polarkoordinaten werden als Funktion P_n vom "Polarkoordinatenraum" in den kartesischen Raum induktiv definiert. Dabei dienen die bekannten Polarkoordinaten im Fall n=2 als Induktionsanfang. Außerdem werde ich immer noch den Fall n=3 explizit angeben, bei dem sich die bekannten Kugelkoordinaten ergeben.

Darauf werden einige Eigenschaften der Funktion P_n bewiesen, insbesondere wird auch die Funktionaldeterminante berechnet, die für die Substitutionsregel wichtig ist.

P_n : Definition und Eigenschaften

- 1 Definition
- 2 $||P_n(r,\phi_1,\cdots,\phi_{n-1})||$
- 3 Funktionalmatrix und -determinante

Integralberechnungen

- ${\bf 1} \quad {\bf Inhalt \ der} \ {\it n}\text{-}{\bf dimensionalen \ Kugel}$
- 2 Sonstiges

Verallgemeinerungen

- $1\quad \text{,} \\ \textbf{Ellipsoidkoordinaten"}$
- 2 verallgemeinerte Zylinderkoordinaten