CNN/RNN

O2 Convolutional Neural Network

- 01. 이미지와 Convolution 연산
- 02. Convolutional Neural Network
- 03. 대표적인 CNN 모델

01

이미지와 Convolution 연산

❷ Fully-connected Layer와 이미지 데이터

- FC Layer는 1차원 데이터를 요구
- 이미지를 단순하게 1차원으로 바꾸면 2차원 상에서 가지는 정보를 포기해야 함
 - 이미지 내 사물 간의 거리 관계 등
 - 색의 변화 → 특히 세로로 변하는 상황
- 즉, <mark>공간 정보(Spatial Information)</mark>가 무너짐

Convolutional Neural Network

- 따라서 이미지 처리에 특화된 딥러닝 모델이 등장
- CNN의 대표적인 구성 요소
 - Convolutional Layer
 - Pooling Layer
 - 분류기(Classifier): Fully-connected layer로 구성

- CNN을 구현하는 핵심 연산
- 커널과 Convolution 연산
 - 전통적인 이미지 처리 분야에서 커널(또는 필터)이란 것이 존재
 - 이미지와 커널 간의 Convolution 연산으로 처리

- 2차원 이미지 데이터: 행렬로 표현 가능
 - 행렬의 각 원소는 해당 위치의 이미지 픽셀값
- Convolution 커널: 행렬로 표현 가능
- Convolution 연산은 2차원 상에서 연산이 이루어지므로 이미지 데이터를 변형 없이 그대로 사용 가능

7	2	8	8	4
3	6	6	6	2
1	6	3	0	5
0	3	8	5	2
3	9	4	3	6

5	9	1
3	8	3
3	4	6

이미지

커널

결과

$$7 \times 5 + 2 \times 9 + 8 \times 1 + 3 \times 3 + 6 \times 8 + 6 \times 3 + 1 \times 3 + 6 \times 4 + 3 \times 6 = 181$$

*

7	2	8	8	4
3	6	6	6	2
1	6	3	0	5
0	3	8	5	2
3	9	4	3	6

5	9	1
3	8	3
3	4	6

이미지

커널

결과

$$2 \times 5 + 8 \times 9 + 8 \times 1 + 6 \times 3 + 6 \times 8 + 6 \times 3 + 6 \times 3 + 3 \times 4 + 0 \times 6 = 204$$

*

7	2	8	8	4
3	6	6	6	2
1	6	3	0	5
0	3	8	5	2
3	9	4	3	6

5	9	1
3	8	3
3	4	6

이미지

커널

결과

$$8 \times 5 + 8 \times 9 + 4 \times 1 + 6 \times 3 + 6 \times 8 + 2 \times 3 + 3 \times 3 + 0 \times 4 + 5 \times 6 = 227$$

*

7	2	8	8	4
3	6	6	6	2
1	6	3	0	5
0	3	8	5	2
3	9	4	3	6

5	9	1
3	8	3
3	4	6

이미지

커널

결과

 $3 \times 5 + 6 \times 9 + 6 \times 1 + 1 \times 3 + 6 \times 8 + 3 \times 3 + 0 \times 3 + 3 \times 4 + 8 \times 6 = 195$

*

7	2	8	8	4
3	6	6	6	2
1	6	3	0	5
0	3	8	5	2
3	9	4	3	6

 5
 9
 1

 3
 8
 3

 3
 4
 6

이미지

커널

결과

$$6 \times 5 + 6 \times 9 + 6 \times 1 + 6 \times 3 + 3 \times 8 + 0 \times 3 + 3 \times 3 + 8 \times 4 + 5 \times 6 = 203$$

*

7	2	8	8	4
3	6	6	6	2
1	6	3	0	5
0	3	8	5	2
3	9	4	3	6

5	9	1
3	8	3
3	4	6

이미지

커널

결과

$$6 \times 5 + 6 \times 9 + 2 \times 1 + 3 \times 3 + 0 \times 8 + 5 \times 3 + 8 \times 3 + 5 \times 4 + 2 \times 6 = 166$$

*

7	2	8	8	4
3	6	6	6	2
1	6	3	0	5
0	3	8	5	2
3	9	4	3	6

5	9	1
3	8	3
3	4	6

이미지

커널

결과

$$1 \times 5 + 6 \times 9 + 3 \times 1 + 0 \times 3 + 3 \times 8 + 8 \times 3 + 3 \times 3 + 9 \times 4 + 4 \times 6 = 179$$

*

7	2	8	8	4
3	6	6	6	2
1	6	3	0	5
0	3	8	5	2
3	9	4	3	6

5	9	1
3	8	3
3	4	6

이미지

커널

결과

$$6 \times 5 + 3 \times 9 + 0 \times 1 + 3 \times 3 + 8 \times 8 + 5 \times 3 + 9 \times 3 + 4 \times 4 + 3 \times 6 = 206$$

*

7	2	8	8	4
3	6	6	6	2
1	6	3	0	5
0	3	8	5	2
3	9	4	3	6

5	9	1
3	8	3
3	4	6

이미지

커널

결과

$$3 \times 5 + 0 \times 9 + 5 \times 1 + 8 \times 3 + 5 \times 8 + 2 \times 3 + 4 \times 3 + 3 \times 4 + 6 \times 6 = 150$$

*

○ Convolution 연산 용어

181	204	227
195	203	166
179	206	150

Feature Map (Activation Map)

- 연산 결과: Feature Map 또는 Activation Map이라 부름
- 커널과 이미지가 겹치는 영역: 수용 영역(Receptive Field)

❷ 컬러 이미지의 Convolution 연산

- 앞선 예시는 이미지의 채널이 1개 → 흑백 이미지
- 컬러 이미지는 채널이 3개
- 이 경우 커널도 채널을 3개로 준비

☑ 컬러 이미지의 Convolution 연산

각 채널 별로 Convolution 연산을 수행하고 각 결과를 더해서 하나의 Feature Map을 생성

✓ Convolution 연산 확장

- 지금까지는 커널을 한 개만 사용 → Feature Map도 한 개
- 커널을 여러 개 두면 Feature Map도 여러 개 생성

Convolutional Neural Network

Convolutional Layer

Stanford CS231n 2021 Spring

- 지금까지 사용한 커널들은 학습 가능한 커널
 - 즉 커널 행렬의 각 값들이 가중치(Weight)
- 이러한 커널들로 이루어진 Layer를 Convolutional Layer라고 부름
 - 이 Layer들을 쌓아서 CNN을 구성

☑ Layer 역할

Stanford CS231n 2021 Spring

- 이미지가 가지는 특정 Feature를 뽑아내도록 커널을 학습
- 커널에 따라 추출하는 Feature를 다르게 학습
- 이미지 내의 대각선, 원형, 색조 등등이 이러한 Feature에 해당

Stride

- Convolution 연산 과정을 조절하기 위한 Hyperparameter
- 커널이 이미지 내에서 이동하는 칸수를 조절
- 지금까지 Convolution 연산에서 보여준 예시는 모두 1칸
- 위의 그림은 Stride가 2칸일 경우의 예시

Padding = 1

Padding = 2

- 지금까지 예시는 Convolution 연산 결과 Feature Map 사이즈가 계속 줄어듦
- Padding을 추가하여 Feature Map 사이즈가 줄어드는 현상 방지
- 또한 이미지의 테두리 정보도 균일하게 활용

© Convolutional Layer 의의

- 왜 이미지 특징을 잘 뽑아내는가?
 - Convolution 연산은 하나의 커널이 픽셀 간의 정보를 보게 만듦
 - 하나의 커널이 이미지 전체 영역을 보고 학습

Parameter Sharing

- 커널이 가진 Parameter를 이미지의 모든 영역에서 공유
- Parameter 개수를 FC Layer에 비해 극적으로 줄임 → 과적합 방지에 유리

⊘ Convolutional Layer 활성화 함수

2	0	-1	9	1
-2	2	2	6	-3
-2	6	4	5	9
7	5	6	-3	8
1	7	5	6	7

2	0	0	9	1
0	2	2	6	0
0	6	4	5	9
7	5	6	0	8
1	7	5	6	7

- Convolution 연산 또한 선형 연산
 - 모두 곱셈과 덧셈으로만 이루어짐
- 따라서 FC Layer처럼 비선형성을 추가하기 위해 활성화 함수를 사용
 - CNN은 주로 ReLU 함수 사용

Pooling Layer

- CNN에서 거의 항상 같이 쓰이는 Layer
- 주 역할: Feature Map의 사이즈를 줄여서 Parameter 개수를 줄이는 것 → 과적합 조절

Pooling Layer – Max Pooling

12	29	2	5
21	12	17	25
18	15	2	19
17	23	16	5

29	25
23	19

- 주어진 이미지나 Feature Map을 겹치지 않는 영역으로 분할
- 위 그림은 각 영역의 크기가 2x2가 되도록 분할
- 각 영역에서 최대값을 뽑아내어 새로운 Feature Map을 구성

Pooling Layer – Average Pooling

12	29	2	5
21	12	17	25
18	15	2	19
17	23	16	5

18.5	12.25
18.25	10.5

Max Pooling과 거의 동일하나, 각 영역의 <mark>평균값</mark>을 계산하여 새로운 Feature Map을 구성

Pooling Layer

- 일반적으로 Max Pooling을 많이 사용
 - Feature Map에 존재하는 Feature 중 가장 영향력이 큰 Feature만 사용
- Feature Map의 채널이 여러 개면 각 채널별로 Pooling 연산 수행
- · 추가 Pooling Layer
 - Global Average Pooling: 전체 Feature Map에서 하나의 평균값을 계산
 - Global Max Pooling: 전체 Feature Map에서 하나의 최대값을 계산
 - 둘다마찬가지로 채널 별로 연산
 - 여기선 Global Average Pooling을 많이 사용

✔ 분류기 (Classifier)

- CNN은 일반적으로 이미지 분류 목적으로 사용
- Feature Map을 Fully-connected Layer에 통과시켜 분류를 수행
- 이를 위해 Feature Map을 1차원으로 변형

03

대표적인 CNN 모델

⊘ LeNet (1990)

우편번호 인식을 위한 모델

✔ AlexNet (2012)

- 2012년 ImageNet Challenge 우승 → 기존 모델의 성능을 큰 폭으로 상회
- ReLU 활성화 함수 소개
- 딥러닝 모델 학습에 GPU를 활용 → 이후로 사실상 모든 딥러닝 모델은 GPU로 학습

VGGNet (2014)

- 커널 사이즈를 모두 3x3으로 통일
- Parameter 수 증가를 억제하면서 모델 층을 더 많이 쌓을 수 있게 됨
- 층이 많을수록(즉, 모델이 깊을수록) 일반적으로 성능이 향상됨

ResNet (2015)

- Layer 개수를 최대 152개까지 늘림
- 깊은 모델에서 필연적으로 나타나는 현상: Vanishing Gradient
- Vanishing Gradient (기울기 소실)
 - 역전파 과정에서 기울기 값이 점점 작아지다
 0에 수렴하면서 발생
 - 모델 학습에 오랜 시간이 걸리거나 아예 학습이 멈추게 됨

Residual Connection

- Vanishing Gradient 문제를 해결하기 위한 구조
- 이를 통해 Layer 개수를 극적으로 늘림
- 기존 Convolutional Layer들을 우회하는 연결
 - 입력 Feature Map이 우회로를 통과하여 Convolutional Layer의 Feature Map과 더해짐
 - 기울기 값이 **항상 1 이상이 되어** 기울기 소실 문제를 방지

❷ 분류 작업이 아닌 경우에 사용하는 모델은?

- 지금까지 나온 모델은 모두 분류 모델
- 분류 작업이 아닌 경우에 사용하는 모델은?
 - 일반적으로 분류 모델과 유사하게 CNN을 구성
 - 모델의 출력값, 손실 함수, 데이터셋 구성 등이 완전히 다르게 이루어짐
 - 예) YOLO, R-CNN, U-Net 등

크레딧

/* elice */

코스 매니저 김창환

콘텐츠 제작자 김창환

강사 김창환

감수자

디자이너 강혜정

연락처

TEL

070-4633-2015

WEB

https://elice.io

E-MAIL

contact@elice.io

