

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

MTM3100 - Pré-cálculo

6^a lista de exercícios - Funções

1. Sejam f e g funções dadas como no diagrama abaixo.

As funções f e g são injetoras? E sobrejetoras? Qual é o domínio de g? Qual é o maior subconjunto S do domínio de f tal que $g \circ f$ fica bem definida quando restringimos f a S? Qual é a imagem de $g \circ f : S \to \{\alpha, \beta, \gamma, \delta\}$?

- 2. Suponha que você tem um cupom de R\$50 para comprar um aparelho de celular novo. Além disso, uma determinada loja está oferecendo um desconto de 20% no aparelho que você deseja. Se você pode usar o cupom e o desconto, então qual a composição mais vantajosa, o preço com 20% de desconto menos R\$ 50 ou subtrair R\$ 50 do preço e depois dar o desconto de 20%?
- 3. Numa determinada rodovia a velocidade máxima permitida é de 100 km/h, e a mínima é 60 km/h. A multa M por violar esses limites é de R\$ 50 para cada quilometro acima da velocidade máxima ou abaixo da velocidade mínima. Determine o valor da multa M em função da velocidade x e encontre M(50), M(70) e M(120).
- **4.** Marque V se a função está bem definida ou F caso contrário. Lembre-se que $\mathbb{R}_+ = [0, +\infty)$.
 - (a) $f: \mathbb{R} \to \mathbb{R}_+$ dada por $f(x) = 1 x^2$.
 - **(b)** $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = 1 x^2$
 - (c) $f: [-1,1] \to \mathbb{R}_+$ dada por $f(x) = 1 x^2$.
 - (d) $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = \sqrt{3x 5} 3$.
 - (e) $f: [5/3, \infty) \to \mathbb{R}$ dada por $f(x) = \sqrt{3x 5} 3$.
 - (f) $f: [5/3, \infty) \to [-3, \infty)$ dada por $f(x) = \sqrt{3x 5} 3$.
 - (g) $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = \frac{1}{x^2 x}$.
- **5.** Qual é o maior subconjunto de \mathbb{R} onde a função $f(x) = \sqrt{(-6x+30)(22-2x)^5(6x+4)^8}$ está bem definida?
- **6.** Uma fábrica de peças automotivas tem um custo de operação fixo de R\$8745,00 por mês e gasta R\$35,00 para produzir cada peça. Suponha ainda que a fábrica vende cada peça por R\$86,00 mas paga um total de R\$0,89 em impostos sobre cada peça vendida. Deduza qual é a função lucro $L: \mathbb{N} \to \mathbb{R}$ que associa a cada número natural $n \in \mathbb{N}$ o lucro obtido pela fábrica quando ela produz e vende n peças. Quantas peças, no mínimo, a fábrica precisa produzir (e vender) em um mês para que não fique em prejuízo?

7. Em cada item abaixo, determine o maior subconjunto de $\mathbb R$ onde a função está bem definida.

(a)
$$f(x) = 3x + 2$$
.

(b)
$$f(x) = \frac{x-1}{x^2-4}$$
.

(c)
$$f(x) = \sqrt{x-1}$$
.

(d)
$$f(x) = \frac{1}{\sqrt{x+2}-1}$$
.

(e)
$$f(x) = \frac{x^2 - 3}{|x - 2| - 3}$$
.

(f)
$$f(x) = \sqrt{\frac{-x^2 + 1}{x^2 - 2x - 15}}$$
.

8. Considere a função $f:(0,\infty)\to\mathbb{R}$ dada por

$$f(x) = \frac{625}{25 + x}.$$

A soma $f(x) + f\left(\frac{625}{x}\right)$ é uma constante. Qual?

9. Em cada item, determine as funções f+g, f-g, fg, f/g e 2f e encontre o maior subconjunto $D \subset \mathbb{R}$ onde a cada uma está bem definida.

(a)
$$f(x) = x^2 + 2x e g(x) = 3x^2 - 1$$
.

(b)
$$f(x) = \sqrt{4 - x^2} e g(x) = \sqrt{x + 1}$$
.

(c)
$$f(x) = \frac{2}{x+1} e g(x) = \frac{4}{x+1}$$
.

10. Imagine que um tanque está sendo preenchido de combustível por uma bomba e que o volume V (em litros) de combustível no tanque seja dado em função da profundidade d (em centímetros) por

$$V(d) = 5(735d^2 + 2)^2 - 20.$$

Suponha que a profundidade de combustível, por sua vez, é dada em função do tempo t (em segundos) por

$$d(t) = \frac{1}{7\sqrt{15}}\sqrt{\frac{t}{2}}.$$

Quantos litros de combustível haverá no tanque no tempo t = 6 s?

11. Nos itens abaixo, determine $f \circ g$, $g \circ f$, $f \circ f$ e $g \circ g$ e o maior subconjunto $D \subset \mathbb{R}$ onde a cada uma está bem definida.

(a)
$$f(x) = 2x + 3 e g(x) = 4x - 1$$
.

(b)
$$f(x) = x^2 e g(x) = x + 1.$$

(c)
$$f(x) = x^2 e g(x) = \sqrt{x-3}$$
.

12. Expresse as funções abaixo como $f\circ g$ ou $f\circ g\circ h$ para funções $f,\,g$ e h apropriadas.

(a)
$$F(x) = (x^2 - 1)^4$$
.

(b)
$$F(x) = \sqrt{x+1}$$
.

(c)
$$F(x) = (4 + \sqrt[3]{x+1})^9$$
.

(d)
$$F(x) = \frac{2}{(3-x+x^3)^6}$$
.

13. Seja $\mathbb{N}=\{0,1,2,\ldots\}$ o conjunto dos números naturais e considere a função $f\colon \mathbb{N}\to \mathbb{N}$ tal que $f(0)=1,\, f(1)=35$ e, para todo natural $n\geq 1,\,$ satisfaz:

$$\begin{cases} f(2n) = 2f(n) + 1, \\ f(2n+1) = 2f(n). \end{cases}$$

Quanto vale f(30)?

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

MTM3100 - Pré-cálculo

Gabarito da 6^a lista de exercícios

Funções

- **1.** A função g é injetora e f não. A função g é sobrejetora e f não. O domínio de g é $\{A, B, C, D\}$. O subconjunto S é $\{a, b, c, d\}$. A imagem de $g \circ f$ é $\{\alpha, \beta, \gamma\}$.
- 2. É melhor ter 20% de desconto no preço e depois subtrair R\$50.

3.

$$M(x) = \begin{cases} 50(60 - x) & \text{se } 0 \le x < 60\\ 0 & \text{se } 60 \le x \le 100\\ 50(x - 100) & \text{se } x > 100. \end{cases} M(50) = 500, \quad M(70) = 0, \quad M(120) = 1000.$$

4.

(a) F

(b) V

(c) V

(d) F

(e) V

(f) V

(g) F

- **5.** $(-\infty, 5] \cup [11, +\infty)$
- **6.** L(n) = 50,11n 8745. A fábrica deve produzir e vender ao menos 175 peças no mês para não ficar em prejuízo.

7.

(a) $D(f) = \mathbb{R}$.

(b) $D(f) = \mathbb{R} - \{-2, 2\}.$

(c) $D(f) = [1, \infty).$

(d) $D(f) = [-2, \infty) - \{-1\}.$

(e) $D(f) = \mathbb{R} - \{-1, 5\}.$

(f) $D(f) = (-3, -1] \cup [1, 5).$

8. 25

9.

- (a) $(f+g)(x) = 4x^2 + 2x 1$, $D(f+g) = \mathbb{R}$.
 - $(f-g)(x) = -2x^2 + 2x + 1$, $D(f-g) = \mathbb{R}$.
 - $(fg)(x) = 3x^4 + 6x^3 x^2 2x$, $D(fg) = \mathbb{R}$.
 - $(f/g)(x) = \frac{x^2 + 2x}{3x^2 1}$, $D(f/g) = \mathbb{R} \{-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\}$.
 - $(2f)(x) = 2x^2 + 4x$, $D(2f) = \mathbb{R}$.
- **(b)** $(f+g)(x) = \sqrt{4-x^2} + \sqrt{x+1}$, D(f+g) = [-1, 2].

•
$$(f-g)(x) = \sqrt{4-x^2} - \sqrt{x+1}$$
, $D(f-g) = [-1, 2]$.

•
$$(fg)(x) = \sqrt{4 - x^2}\sqrt{x + 1}$$
, $D(fg) = [-1, 2]$.

•
$$(f/g)(x) = \frac{\sqrt{4-x^2}}{\sqrt{x+1}}$$
, $D(f/g) = (-1, 2]$.

•
$$(2f)(x) = 2\sqrt{4 - x^2}$$
, $D(2f) = [-2, 2]$.

(c) •
$$(f+g)(x) = \frac{6}{x+1}$$
, $D(f+g) = \mathbb{R} - \{-1\}$.

•
$$(f-g)(x) = -\frac{2}{x+1}$$
, $D(f-g) = \mathbb{R} - \{-1\}$.

•
$$(fg)(x) = \frac{8}{(x+1)^2}$$
, $D(fg) = \mathbb{R} - \{-1\}$.

•
$$(f/g)(x) = \frac{1}{2}$$
, $D(f/g) = \mathbb{R} - \{-1\}$.

•
$$(2f)(x) = \frac{4}{x+1}$$
, $D(2f) = \mathbb{R} - \{-1\}$.

10. 105 Litros.

11.

(a) •
$$(f \circ g)(x) = 8x + 1$$
, $D(f \circ g) = \mathbb{R}$.

•
$$(g \circ f)(x) = 8x + 11$$
, $D(g \circ f) = \mathbb{R}$.

•
$$(f \circ f)(x) = 4x + 9$$
, $D(f \circ f) = \mathbb{R}$.

•
$$(g \circ g)(x) = 16x - 5$$
, $D(g \circ g) = \mathbb{R}$.

(b) •
$$(f \circ g)(x) = x^2 + 2x + 1, D(f \circ g) = \mathbb{R}.$$

•
$$(q \circ f)(x) = x^2 + 1$$
, $D(q \circ f) = \mathbb{R}$.

•
$$(f \circ f)(x) = x^4$$
, $D(f \circ f) = \mathbb{R}$.

•
$$(g \circ g)(x) = x + 2$$
, $D(g \circ g) = \mathbb{R}$.

(c) •
$$(f \circ g)(x) = x - 3$$
, $D(f \circ g) = [3, \infty)$.

•
$$(g \circ f)(x) = \sqrt{x^2 - 3}, \ D(g \circ f) = (-\infty, -\sqrt{3}] \cup [\sqrt{3}, \infty).$$

•
$$(f \circ f)(x) = x^4$$
, $D(f \circ f) = \mathbb{R}$.

•
$$(g \circ g)(x) = \sqrt{\sqrt{x-3}-3}, D(g \circ g) = [12, \infty).$$

12. As soluções apresentadas aqui não são únicas.

(a)
$$f(x) = x^4 e g(x) = x^2 - 1$$
.

(b)
$$f(x) = \sqrt{x} e g(x) = x + 1.$$

(c)
$$f(x) = x^9$$
, $g(x) = 4 + \sqrt[3]{x}$ e $h(x) = x + 1$.

(c)
$$f(x) = x^9$$
, $g(x) = 4 + \sqrt[3]{x}$ e $h(x) = x + 1$. (d) $f(x) = \frac{2}{x}$, $g(x) = x^6$ e $h(x) = 3 - x + x^3$.

13.
$$f(30) = 561$$