## ACÁMICA

#### TEMA DEL DÍA

### Análisis Exploratorio de Datos

¡Cerramos el primer tema de nuestra carrera! Ya viste todos los ingredientes por separado, es hora de darles una mirada integradora.



## **Agenda**

Daily

Explicación: Paradoja de Simpson

Break

Hands-on training

Consultas Entrega 01

Cierre



# **Daily**





#### **Daily**

#### Sincronizando...

#### **Bitácora**



¿Cómo te ha ido? ¿Obstáculos? ¿Cómo seguimos?

#### Challenge



¿Cómo te ha ido? ¿Obstáculos? ¿Cómo seguimos?



## Repaso de la bitácora





Un buen Análisis Exploratorio de Datos no pierde de vista las particularidades del problema en el que estamos trabajando.1

## **ABC** del Análisis Exploratorio de Datos

- 1. Fijarse tipos de datos y qué valores toman.
- 2. Métricas básicas del dataset
- 3. Graficar la distribución de los datos (histograma de cada columna, etc.).
- 4. Explorar valores faltantes y outliers<sup>2</sup>
- 5. Graficar features vs. features. Explorar correlaciones.

#### Repaso: ¡Un poco de todo!



# Paradoja de Simpson







#### Paradoja de Simpson

| <b>Hospital A</b>   | Número de pacientes | Número de pacientes que salvan | Supervivencia |
|---------------------|---------------------|--------------------------------|---------------|
| Pacientes No Graves |                     |                                |               |
| Pacientes Graves    |                     |                                |               |
| Total               | 1000                | 900                            | 90%           |

#### Paradoja de Simpson

| <b>Hospital A</b>   | Número de pacientes | Número de pacientes que salvan | Supervivencia |
|---------------------|---------------------|--------------------------------|---------------|
| Pacientes No Graves |                     |                                |               |
| Pacientes Graves    |                     |                                |               |
| Total               | 1000                | 900                            | 90%           |

| <b>Hospital B</b>   | Número de pacientes | Número de pacientes que salvan | Supervivencia |
|---------------------|---------------------|--------------------------------|---------------|
| Pacientes No Graves |                     |                                |               |
| Pacientes Graves    |                     |                                |               |
| Total               | 1000                | 800                            | 80%           |

¿Conviene ir al Hospital A porque la probabilidad de supervivencia es mayor?



# ¡Necesitamos más datos para decidir!

#### Paradoja de Simpson

| <b>Hospital A</b>   | Número de pacientes | Número de pacientes que salvan | Supervivencia |
|---------------------|---------------------|--------------------------------|---------------|
| Pacientes No Graves | 900                 | 870                            | 96.6%         |
| Pacientes Graves    | 100                 | 30                             | 30%           |
| Total               | 1000                | 900                            | 90%           |

| <b>Hospital B</b>   | Número de pacientes | Número de pacientes que salvan | Supervivencia |
|---------------------|---------------------|--------------------------------|---------------|
| Pacientes No Graves | 600                 | 590                            | 98.3%         |
| Pacientes Graves    | 400                 | 210                            | 52.5%         |
| Total               | 1000                | 800                            | 80%           |

#### Paradoja de Simpson: ¡CUIDADO CON ESTOS VALORES!

| <b>Hospital A</b>   | Número de pacientes | Número de pacientes que salvan | Supervivencia |
|---------------------|---------------------|--------------------------------|---------------|
| Pacientes No Graves | 900                 | 870                            | 96.6%         |
| Pacientes Graves    | 100                 | 30                             | 30%           |
| Total               | 1000                | 900                            | 90%           |

| <b>Hospital B</b>   | Número de pacientes | Número de pacientes que salvan | Supervivencia |
|---------------------|---------------------|--------------------------------|---------------|
| Pacientes No Graves | 600                 | 590                            | 98.3%         |
| Pacientes Graves    | 400                 | 210                            | 52.5%         |
| Total               | 1000                | 800                            | 80%           |

### Paradoja de Simpson: MÁS INFORMACIÓN AQUÍ

| <b>Hospital A</b>   | Número de pacientes | Número de pacientes que salvan | Supervivencia |
|---------------------|---------------------|--------------------------------|---------------|
| Pacientes No Graves | 900                 | 870                            | 96.6%         |
| Pacientes Graves    | 100                 | 30                             | 30%           |
| Total               | 1000                | 900                            | 90%           |

| <b>Hospital B</b>   | Número de pacientes | Número de pacientes que salvan | Supervivencia |
|---------------------|---------------------|--------------------------------|---------------|
| Pacientes No Graves | 600                 | 590                            | 98.3%         |
| Pacientes Graves    | 400                 | 210                            | <b>52.5</b> % |
| Total               | 1000                | 800                            | 80%           |

## **Proyecto 1**





## Encontrá tu próxima casa en Properati



¡Bienvenido/a a tu primer flujo de trabajo de Data Science!

**Q** Buscar

Para realizar el proyecto debes usar como referencia el contenido de las bitácoras, de los notebooks trabajados y las presentaciones vistas en clase.

También te será de mucha utilidad consultar la documentación de las librerías y de la comunidad (Stack Overflow y Google).

## Flujo de trabajo

- PARTE 1 Pensando como un/a Data Scientist.
- PARTE 2 Análisis Exploratorio de Datos.
- PARTE 3 Primer Modelo de Machine Learning.

# ¡Hoy empezaremos a trabajar en la Parte 1 y 2!

## Recursos





#### **Análisis Exploratorio de Datos (EDA)**

- Exploratory Data Analysis: Baby Steps
- Exploratory data analysis in Python

#### Para la próxima

- Continúa trabajando en el proyecto y/o resolviendo notebooks anteriores.
- Lee la bitácora 09 y carga las dudas que tengas al Trello
- Resuelve el Challenge.

En el encuentro que viene uno/a de ustedes será seleccionado/a para mostrar cómo resolvió el challenge de la bitácora. De esta manera, ¡aprendemos todos/as de (y con) todas/as, así que vengan preparados/as.

## ACAMICA