In [1]: **import** pandas **as** pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns In [3]: dt=pd.read_csv("iris_dataset.csv") dt.head(10) $sepal_length \quad sepal_width \quad petal_length \quad petal_width$ Out[4]: target 0 5.1 3.5 1.4 0.2 Iris-setosa 1 3.0 1.4 4.9 0.2 Iris-setosa 2 4.7 3.2 1.3 0.2 Iris-setosa 3 3.1 1.5 4.6 0.2 Iris-setosa 4 5.0 3.6 1.4 0.2 Iris-setosa 5.4 3.9 1.7 0.4 Iris-setosa 6 4.6 1.4 0.3 Iris-setosa 7 5.0 1.5 3.4 0.2 Iris-setosa 8 4.4 2.9 1.4 0.2 Iris-setosa 4.9 3.1 1.5 0.1 Iris-setosa dt.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 150 entries, 0 to 149 Data columns (total 5 columns): Non-Null Count Dtype Column sepal_length 150 non-null float64 150 non-null float64 sepal_width petal_length 150 non-null float64 petal_width 150 non-null float64 target 150 non-null object dtypes: float64(4), object(1) memory usage: 6.0+ KB **Univariate Analysis** sns.distplot(dt["sepal_length"]) In [6]: C:\Users\HP\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level flexibility) or tion for histograms). warnings.warn(msg, FutureWarning) <AxesSubplot:xlabel='sepal_length', ylabel='Density'> Out[6]: 0.4 0.3 Density 0.1 0.0 7 5 sepal_length In [7]: sns.distplot(dt["sepal_width"]) C:\Users\HP\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function with similar flexibility) or `histplot tion for histograms). warnings.warn(msg, FutureWarning) <AxesSubplot:xlabel='sepal_width', ylabel='Density'> Out[7]: 1.4 1.2 1.0 Density 8.0 0.4 0.2 2.5 3.0 3.5 2.0 4.0 4.5 1.5 5.0 sepal_width In [8]: sns.distplot(dt["petal_length"]) C:\Users\HP\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function with similar flexibility) or `histplot tion for histograms). warnings.warn(msg, FutureWarning) <AxesSubplot:xlabel='petal_length', ylabel='Density'> 0.25 0.20 Density 0.15 0.10 0.05 0.00 2 4 petal_length sns.distplot(dt["petal_width"]) C:\Users\HP\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function with similar flexibility) or `histplot tion for histograms). warnings.warn(msg, FutureWarning) <AxesSubplot:xlabel='petal_width', ylabel='Density'> Out[9]: 0.7 0.6 0.5 Density 8.0 0.3 0.2 0.1 0.0 -0.5 0.5 1.5 1.0 2.0 2.5 0.0 3.0 3.5 petal_width **Bivariate Analysis** sns.boxplot(y="sepal_length", x="target", data=dt) In [12]: <AxesSubplot:xlabel='target', ylabel='sepal_length'> Out[12]: 8.0 7.5 7.0 sepal_length 6.5 6.0 5.5 5.0 4.5 Iris-versicolor Iris-virginica Iris-setosa target sns.boxplot(x="target", y="sepal_width", data=dt) <AxesSubplot:xlabel='target', ylabel='sepal_width'> Out[13]: 4.0 sepal_width 2.5 2.0 Iris-versicolor Iris-setosa Iris-virginica target sns.boxplot(x="target", y="petal_length", data=dt) <AxesSubplot:xlabel='target', ylabel='petal_length'> Out[14]: 6 5 petal_length 3 2 1 Iris-virginica Iris-setosa Iris-versicolor target sns.boxplot(x="target", y="petal_width", data=dt) <AxesSubplot:xlabel='target', ylabel='petal_width'> Out[15]: 2.5 2.0 1.5 betal width 0.5 0.0 Iris-versicolor Iris-setosa Iris-virginica target dt.isnull().sum() In [16]: sepal_length sepal_width 0 petal_length 0 petal_width 0 target 0 dtype: int64 In [17]: #no null values Splitting data In [23]: from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score logreg=LogisticRegression() from sklearn.model_selection import train_test_split predictors=dt.drop(["target"], axis=1) target=dt["target"] In [24]: x_train, x_test, y_train, y_test=train_test_split(predictors, target, test_size=0.3, random_state=0) logreg.fit(x_train,y_train) LogisticRegression() Out[25]: y_pred=logreg.predict(x_test) In [26]: acc_logreg=round(accuracy_score(y_pred,y_test),2)*100 In [27]: print("Accuracy:", acc_logreg) In [28]: Accuracy: 98.0