Lecture: Week 11 - 1

James Won-Ki Hong, Seyeon Jeong, Jian Li

Dept. of Computer Science & Engineering POSTECH

http://dpnm.postech.ac.kr/~jwkhong jwkhong@postech.ac.kr

Outline

- Fast Packet Processing Methods
- Datapath Composition
- OpenStack Introduction

Software Packet Switching

❖ NFV

- Virtualizes network functions and decouples them from specialized H/W
 - Reduce costs and time to market
 - Allows a network function to run as a VM on commodity equpment (server virtualization)
- Server virtualization needs software-based data plane for packet processing (Virtual switch)
 - This concept involves several potential performance bottlenecks
 - Large amounts of CPU consumed by packet processing leave much less CPU for executing the network function
- We need to improve the performance through fast packet processing methods in S/W or H/W

DPDK

DPDK (Data Plane Development Kit)

- Existing networking stack in Linux
 - Separates packet processing into kernel space (TCP/IP) and user space (App.)
 - Involves per-packet CPU interrupts (frequent context switching)
 - High resource consumption due to data copy b/w kernel and user space
- A set of software libraries for high speed packet processing
 - Packet processing in user space, not kernel networking stack
 - Support for CPU affinity, huge page, multi-queue, etc.

DPDK

DPDK Features

- Environment Abstraction Layer (EAL)
- Poll Mode Drivers (PMD)
- Memory Manager
- Buffer Manager
- Queue Manager
- Packet Flow Classification

- -c CPU_core_mask (hex)
- -n #_of_memory_ channels

Open vSwitch

Open vSwitch (OVS)

- A multi-layer virtual (software) switch under Apache 2.0
- Supports various networking services and SDN control mechanism through management protocols
 - Support for IPv6, tunneling, NIC bonding, etc.
 - OpenFlow, OVSDB, NetFlow, sFlow, (R)SPAN, etc.
- Key components
 - kernel module : forwarding, de/encapsulation, cache lookup
 - ovs-vswitchd : overall forwarding logic management (from remote)
 - ovsdb-server : an access to configuration details (ovsdb)

Open vSwitch

Open vSwitch

- Packet forwarding
 - If any matching rule exists (cached), packets go through kernel module → Fast path
 - Otherwise, delay packets and look up matching rules in ovs-vswitchd → Slow path
- Performance degradation in slow path
 - Throughput, PPS, delay
 - Due to memory copy b/w kernel and user, lookup event handling, ...

Source: http://openvswitch.org/support/ovscon2014/17/1630-accelerating-with-dpdk.pptx

OVS-DPDK

Open vSwitch with DPDK (OVS-DPDK)

- Started as Intel DPDK vSwitch
- Upstreamed to OVS and stably supported since OVS 2.4

Features

- DPDK-based implementation
 - Running based on EAL setups
- vHost-user port (Virtual switch ←→ VM virtual NIC)
- Multi-queue support in vHost-user
- Tunneling support : VxLAN, GRE, Geneve
- QoS support
 - VLAN / MPLS
 - Ingress / egress policing
- DPDK statistics

OVS-DPDK

9/11

OVS-DPDK Details

- Implements the fast path in user space using DPDK
- Consists of three types of threads
 - Packet reception
 - Gets packets from all relevant interfaces
 - Flow classification / lookup
 - Performs based on packet header information
 - Packet transmission
 - Forwards packets to the relevant interfaces
- Uses a shared memory (RING) for inter-process/thread communication

SDN / NFV

SR-IOV

SR-IOV (Single Root I/O Virtualization)

- Enables VMs to share physical NIC resources
 - A NIC and its driver should provide a mechanism to segment the resources
- Virtual Function (VF)
 - Packet transmission channel to bypass the hypervisor (VM Manager, VMM)
 - Shares the common PCI resources (Physical Function, PF)
- To handle requests from multiple VFs,
 - A NIC handles single queue (Single Root) or multiple queues (Multi Root)

SR-IOV

Hybrid Approach

- SR-IOV and virtual switching can be used simultaneously within a host server
 - VM 0, 1: on a datapath that bypasses the vSwitch
 - VM 2, 3: on a datapath that go through the vSwitch fabric

