CSE 527 –Introduction to Computer Vision

Homework 04

Anjali Rao

Question 1

Files: q1.m

```
a) The matrix of intrinsic parameters is given by :
```

```
A = [f*sx 0 u/2;
0 f*sy v/2;
0 0 1]
```

b) Using Quaternions to represent the rotation

Transformation matrix (Rotation and translation)

T1 =

1.0e+03 *

```
0.0007 0.0001 -0.0007 7.3706
0.0004 0.0008 0.0004 -4.3260
0.0006 -0.0006 0.0005 -5.1923
0 0 0 0.0010
```


N = Matrix of vertices of the cube after transformation.

```
V1 = 1.0e+07 * (1.1786  0.9530  0.0000)

V2 = 1.0e+07 * (0.9430  0.8149  0.0000)

V3 = 1.0e+07 * (0.9622  0.5560  0.0000)

V4 = 1.0e+07 * (1.1979  0.6942  0.0000)

V5 = 1.0e+07 * (1.3943  0.8252  0.0000)

V6 = 1.0e+07 * (1.1586  0.6870  0.00000)

V7 = 1.0e+07 * (1.1779  0.4282  0.0000)

V8 = 1.0e+07 * (1.4135  0.5663  0.0000)
```

If we consider the points at infinity in the cubes new frame, the points would be at u,v as shown in image below

Question 2

Main difference between the perspective and projective models is that perspective model is dependent only on intrinsic parameters while the projective model depends on the intrinsic and extrinsic

consider the camera as shown in fig below. We consider the world frame on the table at the center of the cross pattern. So for all cases, X=Y=Z=O When the ht of table increases to increases. {w} Table {c} = Camera Frame parameters.

Case 2 $hx = \frac{170}{10.19} = 142$ $hy = \frac{380}{2076} = 137$ Avgh= 140 Case 3 haz 190 z 108 hy 2 300 c 189 dyg h = 132.

Question 3

Files: q3_script.m

ComputeWarpMapping.m

We first choose four images .

1. We align them:

2. We manually select five overlapping features in the first two images. We need minimum 4 points and hence we select five points .

3) Next we compute the projective transformation – we call it homography matrix

H can be obtained using Singular Value decomposition.

4.) We now find the corresponding co-ordinates by multiplying the locations of the second image by the H matrix.

We can visualize the warped image.

5.) Now we finally put together the images.

Varied attempts:

Question 4

Files: q4_script.m

Compute Warp Mapping.m

In this section we have used SIFT instead of manual feature selection.