© Laurent Garcin MP Dumont d'Urville

Devoir à la maison $n^{\circ}02$

• Le devoir devra être rédigé sur des copies *doubles*.

def suite(x,n):

- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

```
p,q,S=0,0,0
     l=[]
      for _ in range(n):
           if S>x:
                 q + = 1
                 s = 2 * q - 1
           else:
                 p + = 1
                 s=2*p
           S + = (-1) * * s / s
           l.append(s)
     return l
>>> suite(-1,70)
[1, 2, 3, 5, 4, 7, 9, 6, 11, 13, 8, 15, 17, 10, 19, 21, 12, 23, 25, 14, 27, 16, 29, 31,
 4 18, 33, 35, 20, 37, 39, 22, 41, 43, 24, 45, 47, 26, 49, 28, 51, 53, 30, 55, 57, 32,
 4 59, 61, 34, 63, 65, 36, 67, 69, 38, 71, 73, 40, 75, 42, 77, 79, 44, 81, 83, 46, 85,
 1.b Tant que S_n > x, on lui ajoute des termes d'indices impairs (i.e. négatifs) de la suite u_n jusqu'à ce que S_n \le x.
Sinon on ajoute à S_n des termes d'indices pairs (i.e. positifs) jusqu'à ce que S_n > x. Comme (u_n) converge vers 0, on peut
raisonnablement penser que (S_n) converge vers x.
2 On raisonnement par récurrence sur n.
Initialisation : Comme S_0 = 0, on a les deux cas suivants.
Si x < 0, alors p_1 = 0, q_1 = s_1 = 1 et S_1 = -1. On a donc bien \{s(1)\} = \{1\} = \emptyset \cup \{2q_1 - 1\}, p_1 + q_1 = 1 et S_1 = u_{s(1)}.
Si x \ge 0, p_1 = 1, s_1 = 2, q_1 = 0 et S_1 = 1/2. A nouveau, \{s(1)\} = \{2\} = \{2p_1\} \cup \emptyset, p_1 + q_1 = 1 et S_1 = u_{s(1)}.
Hérédité: Supposons que pour un entier n \ge 1, on ait \{s(1), ..., s(n)\} = \{2, ..., 2p_n\} \cup \{1, ..., 2q_1 - 1\}, p_n + q_n = n et
S_n = u_{s(1)} + \cdots + u_{s(n)}. Deux cas se présentent à nouveau.
Si S_n > x, alors p_{n+1} = p_n, q_{n+1} = 1 + q_n, s_{n+1} = 2q_{n+1} - 1 et S_{n+1} = S_n + u_{s_{n+1}}. Ainsi
\{s(1),\ldots,s(n+1)\}=\{s(1),\ldots,s(n)\}\cup\{2q_{n+1}-1\}=\{2,\ldots,2p_n\}\cup\{1,\ldots,2q_{n+1}-1\}=\{2,\ldots,2p_{n+1}\}\cup\{1,\ldots,2q_{n+1}-1\}
      p_{n+1} + q_{n+1} = p_n + q_n + 1 = n + 1
              S_{n+1} = S_n + u_{S_{n+1}} = u_{S(1)} + \dots + u_{S(n)} + u_{S_{n+1}}
Si S_n \le x, p_{n+1} = 1 + p_n, q_{n+1} = q_n, s_{n+1} = 2p_{n+1} et S_{n+1} = S_n + u_{s_{n+1}}. Ainsi
\{s(1), \dots, s(n+1)\} = \{s(1), \dots, s(n)\} \cup \{2p_{n+1}\} = \{2, \dots, 2p_{n+1}\} \cup \{1, \dots, 2q_n - 1\} = \{2, \dots, 2p_{n+1}\} \cup \{1, \dots, 2q_{n+1} - 1\}
       p_{n+1} + q_{n+1} = p_n + q_n + 1 = n + 1
               S_{n+1} = S_n + u_{S_{n+1}} = u_{S(1)} + \dots + u_{S(n)} + u_{S_{n+1}}
```

Par récurrence, on a donc bien le résultat voulu.

Remarquons alors que $\{2, \dots, 2p_n\}$ et $\{1, \dots, 2q_n - 1\}$ étant disjoints,

$$card{s(1), ..., s(n)} = card{2, ..., 2p_n} + card{1, ..., 2q_n - 1} = p_n + q_n = n$$

Notamment, si s(n) = s(p), alors $\{s(1), \dots, s(n)\} = \{s(1), \dots, s(p)\}$ puis n = p, ce qui prouve que s est injective.

© Laurent Garcin MP Dumont d'Urville

3 3.a Soit (u_n) une suite d'entiers convergeant vers ℓ . Il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$, $|u_n - \ell| \leq \frac{1}{3}$. Mais alors pour $(n, p) \in \mathbb{N}^2$ tel que $n \geq N$ et $p \geq N$,

$$|u_n - u_p| \le |u_n - \ell| + |\ell - u_p| \le \frac{1}{3} + \frac{1}{3} = \frac{2}{3} < 1$$

Comme u_n et u_p sont deux entiers, $u_n = u_p$. Ainsi (u_n) est constante à partir du rang N.

3.b La suite (p_n) est clairement croissante. Comme on a supposé (p_n) majorée, elle converge. Elle est donc constante à partir d'un certain rang n_0 . Pour tout $n \ge n_0$, on a donc $p_n = p_{n+1}$, ce qui signifie que $S_n > x$. De plus, pour tout $n \ge n_0$, $q_{n+1} = q_n$ de sorte que $q_n = n - n_0 + q_{n_0}$. De plus, $s_{n+1} = 2q_{n+1} - 1$ donc

$$\mathbf{S}_n = \mathbf{S}_{n_0} + \sum_{k=n_0}^{n-1} u_{s_{k+1}} = \mathbf{S}_{n_0} - \sum_{k=n_0}^{n-1} \frac{1}{2q_{k+1} - 1} = \mathbf{S}_{n_0} - \sum_{k=n_0}^{n-1} \frac{1}{2k - 2n_0 + 2q_{n_0} + 1}$$

La série $\sum_{k\geq n_0} \frac{1}{2k-2n_0+2q_{n_0}+1}$ diverge vers $+\infty$ car $\frac{1}{2k-2n_0+2q_{n_0}+1}$ $\sim \frac{1}{2k}$. Ainsi (S_n) diverge vers $-\infty$, ce qui contredit le fait que $S_n > x$ pour tout $n \geq n_0$.

3.c La suite (p_n) est croissante et non majorée : elle diverge vers $+\infty$.

Comme précédemment, la suite (q_n) est croissante. Si elle était majorée, elle convergerait et serait donc constante à partir d'un certain rang n_0 . On aurait donc $S_n \le x$, $p_n = n - n_0 + p_{n_0}$ et $s_{n+1} = 2p_{n+1}$ pour tout $n \ge n_0$ puis

$$S_n = S_{n_0} + \sum_{k=n_0}^{n-1} \frac{1}{2k - 2n_0 + 2p_{n_0} + 2} \xrightarrow[n \to +\infty]{} + \infty$$

Ceci contredit le fait que $S_n \le x$ pour $n \ge n_0$. Ainsi (q_n) est croissante et non majorée : elle diverge vers $+\infty$.

Soit $M \in \mathbb{N}$. Considérons l'ensemble $A_M = \{n \in \mathbb{N}, \ p_n \geq M\}$. Comme (p_n) diverge vers $+\infty$, A_M n'est pas vide. Posons alors $N = \min A_M$. Si N = 0, alors $p_0 = M = 0$. Sinon $p_N \geq M$ et $p_{N-1} < M$ par définition de N. Comme p_{N-1} et M sont des entiers, $p_{N-1} + 1 \leq M$. Or $p_N = p_{N-1}$ ou $p_N = p_{N-1} + 1$. Le premier cas est impossible puisque $p_{N-1} < M \leq p_N$. Ainsi $p_N = p_{N-1} + 1$ puis $p_N \leq M \leq p_N$ i.e. $M = p_N$. L'application $p: n \mapsto p_n$ est donc surjective de \mathbb{N} sur \mathbb{N} . Il en est de même de l'application $q: n \mapsto q_n$. Comme $p_0 = q_0 = 0$, $\mathbb{N}^* \subset p(\mathbb{N}^*)$ et $\mathbb{N}^* \subset q(\mathbb{N}^*)$. Puisque pour tout $n \in \mathbb{N}^*$,

$${s(1), \dots, s(n)} = {2, \dots, 2p_n} \cup {1, \dots, 2q_n - 1}$$

on a donc

$$s(\mathbb{N}^*) = 2p(\mathbb{N}^*) \cup (2q(\mathbb{N}^*) - 1) \supset (2\mathbb{N}^*) \cup (2\mathbb{N}^* - 1) = \mathbb{N}^*$$

Ainsi *s* est surjective de \mathbb{N}^* sur \mathbb{N}^* . Finalement, *s* est une bijection de \mathbb{N}^* sur \mathbb{N}^* .

6 6.a Soit $n \in \mathbb{N}$.

 $\overline{\text{Si S}}_n > x$, alors $u_{s_{n+1}} < 0$ car $s_{n+1} = 2q_{n+1} - 1$ est impair. Ainsi

$$u_{S_{n+1}} \le S_{n+1} - x = S_n - x + u_{S_{n+1}} \le S_n - x$$

On en déduit que

$$|S_{n+1} - x| \le \max\{|S_n - x|, |u_{S_{n+1}}|\}$$

Si $S_n \le x$, alors $u_{S_{n+1}} > 0$ car $s_{n+1} = 2p_{n+1}$ est pair. Ainsi

$$S_n - x \le S_{n+1} - x = S_n - x + u_{S_{n+1}} \le u_{S_{n+1}}$$

On en déduit à nouveau que

$$|S_{n+1} - x| \le \max\{|S_n - x|, |u_{S_{n+1}}|\}$$

Finalement, dans les deux cas

$$|S_{n+1} - x| \le \max\{|S_n - x|, |u_{S_{n+1}}|\}$$

i.e.

$$|S_{n+1} - x| \le |S_n - x|$$
 ou $|S_{n+1} - x| \le |u_{S(n+1)}|$

6.b

6.c Comme (p_n) et (q_n) divergent vers $+\infty$, il existe des entiers n_1 et n_2 tels que $p_n \ge 1$ pour tout $n \ge n_1$ et et $n_2 \ge 1$ tout $n \ge n_2$. Il suffit alors de poser $n_0 = \max\{n_1, n_2\}$.

6.d Soit $n \in \mathbb{N}$. D'après la question **6.a**,

$$|S_{n+1} - x| \le \max\{|S_n - x|, |u_{S_{n+1}}|\}$$

Comme $s_{n+1}=2p_{n+1}$ ou $s_{n+1}=2q_{n+1}-1, |u_{s_{n+1}}| \leq \max\{|u_{2p_{n+1}}|, |u_{2q_{n+1}-1}|\}$. Finalement, $|S_{n+1}-x| \leq v_n$. Comme $p_{n+2}=p_{n+1}$ ou $p_{n+2}=1+p_{n+1}$, la décroissance de la suite $(|u_n|)$ montre que

$$|u_{2p_{n+2}}| \le |u_{2p_{n+1}}| \le v_n$$

De même, comme $q_{n+2} = q_{n+1}$ ou $q_{n+2} = 1 + q_{n+1}$,

$$|u_{2a_{n+2}-1}| \le |u_{2a_{n+1}-1}| \le v_n$$

Finalement,

$$v_{n+1} = \max\{|\mathbf{S}_{n+1} - x|, |u_{2p_{n+2}}|, |u_{2q_{n+2}-1}|\} \le v_n$$

La suite $(v_n)_{n \ge n_0}$ est décroissante et positive : elle converge.

La question **6.b** permet de construire une application $\phi:\,\mathbb{N}\to\mathbb{N}$ strictement croissante telle que

$$\forall n \in \mathbb{N}, |S_{\varphi(n)+1} - x| \le |u_{s(\varphi(n)+1)}|$$

Comme $\lim_{n \to +\infty} s(n) = +\infty$, $\lim_{n \to +\infty} |u_{s(\varphi(n)+1)}| = 0$. Ainsi, $\lim_{n \to +\infty} |S_{\varphi(n)+1} - x| = 0$. Comme (p_n) et (q_n) divergent vers $+\infty$, on a également $\lim_{n \to +\infty} |u_{2p_{\varphi(n)+2}}| = 0$ et $\lim_{n \to +\infty} |u_{2q_{\varphi(n)+2}-1}| = 0$. Finalement, $\lim_{n \to +\infty} v_{\varphi(n)+1} = 0$. Ainsi 0 est valeur d'adhérence de (v_n) . Comme (v_n) converge, elle converge nécessairement vers 0.

6.e Puisque $|S_n - x| \le v_n$ pour tout $n \ge n_0$, (S_n) converge vers x i.e. $\sum_{n=1}^{+\infty} u_{s(n)} = x$.

7

$$\ln(n) - \ln(n-1) = -\ln\left(1 - \frac{1}{n}\right) = \frac{1}{n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

On en déduit que la série $\sum_{n>2} \ln(n) - \ln(n-1) - \frac{1}{n}$ converge. Notons S sa somme. Alors

$$\lim_{n \to +\infty} \sum_{k=2}^{n} \ln(k) - \ln(k-1) - \frac{1}{k} = S$$

ou encore

$$\ln n - \sum_{k=2}^{n} \frac{1}{k} \xrightarrow[n \to +\infty]{} S$$

et enfin

$$\sum_{k=1}^{n} \frac{1}{k} = \lim_{n \to +\infty} \ln n + \gamma + o(1)$$

en posant $\gamma = 1 - S$.

8 Remarquons que

$$\sum_{k=1}^{n} \frac{1}{2k-1} = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{2k} = \sum_{k=1}^{2n} \frac{1}{k} - \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k}$$

D'une part,

$$\sum_{k=1}^{2n} \frac{1}{k} = \ln(2n) + \gamma + o(1)$$

et d'autre part

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1)$$

On en déduit que

$$\sum_{k=1}^{n} \frac{1}{2k-1} = \frac{1}{n+1} \ln n + \ln 2 + \frac{\gamma}{2} + o(1)$$

© Laurent Garcin MP Dumont d'Urville

9. 9.a On raisonne par récurrence. La formule est vraie pour n = 0 en convenant que $S_0 = 0$. Supposons qu'il existe $n \in \mathbb{N}$ tel que

$$S_n = \sum_{k=1}^{p_n} \frac{1}{2k} - \sum_{k=1}^{q_n} \frac{1}{2k - 1}$$

Si $S_n > x$, alors $p_{n+1} = p_n$, $q_{n+1} = 1 + q_n$ et

$$S_{n+1} = S_n + u_{S_{n+1}} = S_n + u_{2q_{n+1}-1} = \sum_{k=1}^{p_n} \frac{1}{2k} - \sum_{k=1}^{q_n} \frac{1}{2k-1} - \frac{1}{2q_{n+1}-1} = \sum_{k=1}^{p_{n+1}} \frac{1}{2k} - \sum_{k=1}^{q_{n+1}} \frac{1}{2k-1}$$

Sinon, $p_{n+1} = 1 + p_n$, $q_{n+1} = q_n$ et

$$S_{n+1} = S_n + u_{S_{n+1}} = S_n + u_{2p_{n+1}} = \sum_{k=1}^{p_n} \frac{1}{2k} - \sum_{k=1}^{q_n} \frac{1}{2k-1} + \frac{1}{2p_{n+1}} = \sum_{k=1}^{p_{n+1}} \frac{1}{2k} - \sum_{k=1}^{q_{n+1}} \frac{1}{2k-1}$$

Par récurrence,

$$\forall n \in \mathbb{N}, \ S_n = \sum_{k=1}^{p_n} \frac{1}{2k} - \sum_{k=1}^{q_n} \frac{1}{2k-1}$$

9.b On a vu prédemment que les suites (p_n) et (q_n) divergeaint vers $+\infty$. A l'aide des questions précédentes, on a donc

$$\sum_{k=1}^{p_n} \frac{1}{2k} = \frac{1}{2} \ln(p_n) + \frac{1}{2}\gamma + o(1)$$

$$\sum_{k=1}^{q_n} \frac{1}{2k-1} = \frac{1}{n \to +\infty} \ln(q_n) + \ln 2 + \frac{\gamma}{2} + o(1)$$

de sorte que

$$S_n = \frac{1}{2} \ln \frac{p_n}{q_n} - \ln 2 + o(1)$$

On conclut en remarquant que $p_n + q_n = n$.

9.c On sait que (S_n) converge vers x. On en déduit avec la question précédente que

$$h_n = \frac{p_n}{n - p_n} \xrightarrow[n \to +\infty]{} 4e^{2x}$$

puis que

$$p_n = \frac{nh_n}{1 + h_n \sim \frac{4e^{2x}n}{1 + 4e^{2x}}}$$

ou encore

$$p_n = \frac{n}{1 + 4e^{2x}} + o(n)$$

On en déduit que

$$q_n = n - p_n = \frac{n}{1 + 4e^{2x}} + o(n)$$

ou encore

$$q_n \sim \frac{n}{1 + 4e^{2x}}$$

9.d D'une part

$$\sum_{k=1}^{n} |u_k| = \sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{\sim} \ln n$$

D'autre part,

$$\sum_{k=1}^{n} |u_{s(k)}| = \sum_{k=1}^{p_n} \frac{1}{2k} + \sum_{k=1}^{q_n} \frac{1}{2k-1}$$

On montre comme précédemment que

$$\sum_{k=1}^{n} |u_{s(k)}| = \frac{1}{n \to +\infty} \frac{1}{2} \ln(p_n q_n) + \gamma + \ln 2 + o(1)$$

A fortiori

$$\sum_{k=1}^{n} |u_{s(k)}| \underset{n \to +\infty}{\sim} \frac{1}{2} \ln(p_n q_n)$$

© Laurent Garcin MP Dumont d'Urville

Or la question précédente montre l'existence d'une constante C > 0 telle que $p_n q_n \sim Cn^2$. On en déduit sans peine que $\ln(p_n q_n) \sim 2 \ln n$ puisque

$$\frac{\sum_{k=1}^{n} |u_{s(k)}|}{\sum_{k=1}^{n} |u_{k}|} = 1$$

Soit (a_n) une suite complexe telle que $\sum a_n$ converge absolument. Soit (u_n) une suite complexe bornée. Alors $a_n u_n = \mathcal{O}(|a_n|)$. Or $\sum |a_n|$ est une série à termes positifs convergente donc $\sum a_n u_n$ converge. Ainsi (a_n) vérifie la propriété (P_1) .

11 11.a La série télescopique $\sum a_{n+1} - a_n$ converge absolument donc converge. On en déduit que la suite (a_n) converge. 11.b En convenant que $U_{-1} = 0$,

$$\sum_{n=0}^{N} a_n u_n = \sum_{n=0}^{N} a_n (U_n - U_{n-1})$$

$$= \sum_{n=0}^{N} a_n U_n - \sum_{n=0}^{N} a_n U_{n-1}$$

$$= \sum_{n=0}^{N} a_n U_n - \sum_{n=1}^{N} a_n U_{n-1}$$

$$= \sum_{n=0}^{N} a_n U_n - \sum_{n=0}^{N-1} a_{n+1} U_n$$

$$= a_N U_N + \sum_{n=0}^{N-1} (a_n - a_{n+1}) U_n$$

Pour montrer que (a_n) vérifie la propriété (P_2) , il suffit de montrer que $\sum a_n u_n$ converge. Comme $\sum u_n$ converge, (U_n) converge. De plus, (a_n) converge donc $(a_n U_n)$ converge. De plus, (U_n) est bornée. Ainsi $(a_n - a_{n+1})U_n = \mathcal{O}(|a_n - a_{n+1})$. Comme $\sum |a_n - a_{n+1}|$ est une série à termes positifs convergente, $\sum (a_n - a_{n+1})U_n$ converge. L'égalité prédédente montre que $\sum a_n u_n$ converge.

12 Il sufit de poser $u_n = \begin{cases} |a_n|/a_n & \text{si } a_n \neq 0 \\ 1 & \text{si } a_n = 0 \end{cases}$ de sorte que $|u_n| = 1$ et $a_n u_n = |a_n|$. Comme (u_n) est bornée, on a montré par contraposition que si (a_n) vérifie (P_1) , alors $\sum a_n$ converge absolument. La réciproque a été prouvé à la question $\mathbf{10}$.

Les suites (a_n) vérifiant (P_1) sont celles telles que $\sum a_n$ converge absolument.

```
>>> exemple(6)
[(1, 0.5, 2.8125), (2, 0.25, 3.0), (3, 0.125, 3.0703125), (4, 0.0625, 3.0984375), (4, 0.0625, 3.121875), (4, 0.0625, 3.1419642857142858)]
```

13.b Supposons qu'il existe $N \in \mathbb{N}$ tel que $\forall n > N$, $A_{n-1} < p_{n-1}$. On a donc $p_n = p_{n-1}$ et $\varepsilon_n = \varepsilon_{n-1}$ pour tout n > N. Ainsi

$$A_n = A_N + \sum_{k=N+1}^{n} a_k = A_N + \frac{9}{4} \sum_{k=N+1}^{n} \frac{1}{(k+1)} \xrightarrow[n \to +\infty]{} + \infty$$

car la série harmonique diverge. Mais $A_{n-1} < p_{n-1} = p_N$ pour tout n > N, ce qui est contradictoire. Ainsi il existe n > N tel que $A_{n-1} \ge p_{n-1}$ i.e. $p_n = 1 + p_{n-1}$.

On peut alors définir la suite (n_k) de l'énoncé par récurrence.

MP Dumont d'Urville © Laurent Garcin

13.c Il est clair que $p_{n_k} = k$ et $\varepsilon_k = \frac{1}{2^k}$.

p + = 1e=e/2l.append(k)

A+=e/(k+1)

La suite (ε_n) est décroissante et minorée par 0: elle converge. Comme la suite extraite $(\varepsilon_{n_k})_{k\in\mathbb{N}}$ converge vers 0, (ε_n) converge elle-même vers 0.

Pour tout $k \in \mathbb{N}^*$, $A_{n_k-1} \ge p_{n_k-1} = p_{n_{k-1}} = k-1$ donc $A_{n_k-1} \xrightarrow[n \to +\infty]{} +\infty$. Ainsi $\sum a_n \varepsilon_n$ diverge.

```
def indices(n):
    p, e, A=0, 1, 9/4
    k=0
    l=[0]
    while len(l)<n:</pre>
         k + = 1
         if A>=p:
             p + = 1
              e=e/2
              l.append(k)
         A = 9/(4*(k+1))*e
    return l
>>> indices(6)
[0, 1, 2, 3, 4, 3352]
def indexer(n):
    p, e, A=0, 1, 1
    k = 0
    l=[k]
    while k<=n:</pre>
         k + = 1
         if A>=p:
```

return l >>> indexer(1000) [0, 1, 2, 51]