<u>t</u> 32

Aus Abschnitt 8.5.7 mit 71 71e; Tp = TP,e

G1.(8-150)
$$\eta_A = \eta_{Ke} \cdot \eta_{therm} \cdot \eta_T \cdot \eta_P$$

Hinweis: An Stelle von η_G tritt hierbei η_P = 0,7

G1. (8-145)
$$\eta_{\text{therm}} = \eta_{\text{C}} - \eta_{\text{g}}$$

G1. (8-1466)
$$\eta_C$$
 = 1 - T_0/T

Mit
$$\eta_{\mathrm{Ke}}$$
 = 0,88...0,93 und η_{g} = 0,5...0,7 Geschätzt: η_{Ke} = 0,9 und η_{g} = 0,6

Aus U 26 T = T₇ = t₇ + 273 = 375 + 273 = 648 K
T₀ = T_{5,s} = t_{5,s} + 273 = 183 + 273 = 456 K

$$\eta_{T}$$
 = η_{e} = 0,5

Ausgewertet:

$$\eta_{\rm C} = 1 - 456/648 = 0,296 \approx 0,3$$

$$\eta_{A} = 0,9.0,18.0,5.0,7 = 0,081.0,7 = 0,0567$$

$$\eta_{A} \approx 0.057 = 5.7 \%$$
 (sehr wenig!)