```
In [274...
           import pandas as pd # to use or generate dataframe
           import seaborn as sns # for pretty plots
           import numpy as np # for matrix manipulation
           import matplotlib.pyplot as plt
           from sklearn.preprocessing import StandardScaler
          %cd C:\\Users\\emper\\OneDrive\\Desktop\\DSTI\\Pratical-Intro-to-Data-Science\\F
In [276...
         C:\Users\emper\OneDrive\Desktop\DSTI\Pratical-Intro-to-Data-Science\Final-Project
           Let's do classification by East west
  In [ ]:
           Model Classification data = pd.read csv("model classification.csv")
In [333...
In [337...
           Model_Classification_data.describe()
Out[337...
                          year
                                   AvgTemp
                                                       af
                                                                   rain
                                                                                 sun
           count 28154.000000 28154.000000 28154.000000 28154.000000 27880.000000 28154.000
                   1979.320345
                                    9.454912
                                                 3.431306
                                                              72.044807
                                                                                          53.974
           mean
                                                                           118.450276
                                                 5.176972
                                                                                           2.542
             std
                     27.199292
                                    4.509328
                                                              48.048325
                                                                            63.196272
             min
                   1890.000000
                                   -4.650000
                                                 0.000000
                                                               0.000000
                                                                             2.800000
                                                                                          50.218
                   1962.000000
                                                              38.400000
                                                                                          51.911
            25%
                                    5.750000
                                                 0.000000
                                                                            64.800000
            50%
                   1982.000000
                                    9.050000
                                                 0.000000
                                                              61.700000
                                                                           111.950000
                                                                                          53.356
            75%
                   2000.000000
                                   13.300000
                                                 5.000000
                                                              94.000000
                                                                           163.600000
                                                                                          55.846
                   2023.000000
                                   22.450000
                                                 31.000000
                                                             568.800000
                                                                           350.300000
                                                                                          60.139
            max
In [335...
           from sklearn.model_selection import train_test_split
           from sklearn.ensemble import RandomForestClassifier
           from sklearn.metrics import classification report, confusion matrix
           from sklearn.preprocessing import OneHotEncoder
           from sklearn.compose import ColumnTransformer
           from sklearn.pipeline import Pipeline
In [340...
          # New function: classify based on longitude
           def assign region(lon):
               if lon >= -2.5765: # Midpoint between max (1.727) and min (-6.880)
                   return 'Eastern Half'
               else:
                   return 'Western Half'
           # Apply the new function
           Model_Classification_data['Region_Label'] = Model_Classification_data['lon'].app
           # Drop unneeded columns including 'region' and 'latitude'
In [342...
           features = Model_Classification_data.drop(columns=['station', 'year','lat', 'reg
```

-		1	г.	\neg	- 71	-		
()	11	_		-<	71	-)		
\cup	u			$_{\sim}$	-	\leq	٠	

		station	year	month	AvgTemp	af	rain	sun	lat	lon	region	Re
	0	aberporth	1957	Jan	6.25	2.0	80.6	55.6	52.140	-4.57	Wales	V
	1	aberporth	1957	Feb	5.85	2.0	85.1	105.2	52.140	-4.57	Wales	٧
	2	aberporth	1957	Mar	9.80	0.0	83.1	98.3	52.140	-4.57	Wales	٧
	3	aberporth	1957	Apr	8.75	0.0	7.4	181.1	52.140	-4.57	Wales	V
	4	aberporth	1957	May	10.50	0.0	54.1	268.7	52.140	-4.57	Wales	V
	•••	•••			•••							
2	28149	yeovilton	2023	Mar	7.90	2.0	113.2	55.7	51.006	-2.64	South West England	٧
2	28150	yeovilton	2023	Apr	9.15	4.0	59.6	137.3	51.006	-2.64	South West England	٧
2	28151	yeovilton	2023	May	13.00	0.0	68.4	231.1	51.006	-2.64	South West England	٧
2	28152	yeovilton	2023	Jun	17.70	0.0	22.8	254.9	51.006	-2.64	South West England	٧
2	28153	yeovilton	2023	Jul	16.80	0.0	96.0	132.5	51.006	-2.64	South West England	٧

28154 rows × 11 columns

```
In [344... Group_by_Label = Model_Classification_data.groupby('Region_Label')
Group_by_Label['station'].count()
```

Out[344... Region_Label

Eastern Half 14096 Western Half 14058

Name: station, dtype: int64

```
In [346... Group_by_Label['station'].count().plot(kind= 'bar', title= 'Distribution of the
```

Out[346... <Axes: title={'center': 'Distribution of the Station by Region'}, xlabel='Regio n_Label'>


```
# One-hot encode 'month'
categorical_features = ['month']
numeric_features = features.drop(columns=categorical_features).columns.tolist()

preprocessor = ColumnTransformer(
    transformers=[
        ('cat', OneHotEncoder(), categorical_features),
    ],
    remainder='passthrough' # Leave numeric features unchanged
)
```

```
In [350...
          # Step 1: Map each station to its most common Region_Label (usually one per stat
          station_to_region = Model_Classification_data.groupby('station')['Region_Label']
          # Step 2: Stratified split of station names based on their region
          train stations, test stations = train test split(
              station_to_region.index,
              test size=0.3,
              stratify=station_to_region,
              random state=42
          )
          # Step 3: Split the actual data using station names
          train_data = Model_Classification_data[Model_Classification_data['station'].isin
          test_data = Model_Classification_data[Model_Classification_data['station'].isin(
          # Step 4: Define features and target
          X_train = train_data.drop(columns=['station', 'year', 'lat', 'Region_Label', 're
          y_train = train_data['Region_Label']
          X_test = test_data.drop(columns=['station', 'year', 'lat', 'Region_Label', 'regi
          y_test = test_data['Region_Label']
```

```
])
          clf_pipeline.fit(X_train, y_train)
          y_pred = clf_pipeline.predict(X_test)
In [354...
          #Let's set the evaluation metrix
          # Evaluation
          report = classification_report(y_test, y_pred, output_dict=True)
          conf_matrix = confusion_matrix(y_test, y_pred)
In [356...
          #Let's plot the confusion matrix
          plt.figure(figsize=(6, 5))
          sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',
                      xticklabels=clf_pipeline.classes_,
                      yticklabels=clf_pipeline.classes_)
          plt.xlabel('Predicted')
          plt.ylabel('Actual')
          plt.title('Confusion Matrix (No Region Feature)')
```

plt.tight_layout()

In [358...

plt.savefig("confusion_matrix_no_region.png")

report_df = pd.DataFrame(report).transpose()
report_df_rounded = report_df.round(2)

from IPython.display import display

display(report_df_rounded)

Confusion Matrix (No Region Feature) 4000 - 3500 Eastern Half 4039 526 - 3000 - 2500 - 2000 - 1500 Western Half 0 3713 - 1000 - 500 - 0 Eastern Half Western Half Predicted

	precision	recall	f1-score	support
Eastern Half	1.00	0.88	0.94	4565.00
Western Half	0.88	1.00	0.93	3713.00
accuracy	0.94	0.94	0.94	0.94
macro avg	0.94	0.94	0.94	8278.00
weighted avg	0.94	0.94	0.94	8278.00

```
In [360...
          # Make sure your pipeline is already fitted
          # clf_pipeline.fit(X_train, y_train)
          # Get feature importances
          importances = clf_pipeline.named_steps['classifier'].feature_importances_
          # Get full feature names after preprocessing
          feature_names = clf_pipeline.named_steps['preprocessor'].get_feature_names_out()
          # Combine into a DataFrame
          feature_importance_df = pd.DataFrame({
               'Feature': feature_names,
               'Importance': importances
          }).sort_values(by='Importance', ascending=False)
          # PLot
          plt.figure(figsize=(10, 6))
          plt.barh(feature_importance_df['Feature'], feature_importance_df['Importance'])
          plt.gca().invert_yaxis()
          plt.xlabel('Feature Importance')
          plt.title('Random Forest Feature Importances')
          plt.tight_layout()
          plt.show()
```



```
In [ ]:
```

Let's Look at Happiness Vs Earnings

```
In [278...
         # Step 1: Load both files
          happiness = pd.read_csv('Happiness_only.csv')
          earnings = pd.read csv('Weekly earning by boroughs.csv')
In [280...
          # Step 2: Inspect columns (quick check)
          print(happiness.columns)
          print(earnings.columns)
         Index(['Area Codes', 'Area names', 'Borough', 'Unnamed: 3',
                'Per cent in each category on 11 point scale3:', 'Medium', 'High',
                'Very High', 'Means', 'Unnamed: 9', 'Unnamed: 10', 'Unnamed: 11',
                'Unnamed: 12', 'Unnamed: 13', 'Unnamed: 14', 'Unnamed: 15',
                'Unnamed: 16', 'Unnamed: 17', 'Unnamed: 18', 'Unnamed: 19',
                'Unnamed: 20', 'Unnamed: 21', 'Unnamed: 22', 'Unnamed: 23',
                'Unnamed: 24'],
               dtype='object')
         Index(['Borough', 'Code', 'N of jobs (thousands)', 'Median',
                'Annual percent change', 'Mean', 'Unnamed: 6', 'Unnamed: 7',
                'Unnamed: 8', 'Unnamed: 9', 'Unnamed: 10', 'Unnamed: 11', 'Unnamed: 12',
                'Unnamed: 13', 'Unnamed: 14', 'Unnamed: 15', 'Unnamed: 16',
                'Unnamed: 17', 'Unnamed: 18', 'Unnamed: 19'],
               dtype='object')
In [282...
         # Step 3: Rename important columns correctly
          # Adjust depending on the new actual names
          happiness = happiness.rename(columns={
               'Borough': 'borough', # if it's already 'borough', no change needed
               'Means': 'average happiness'
          })
          earnings = earnings.rename(columns={
               'Borough': 'borough', # if it's already 'borough', no change needed
               'Median': 'median earnings'
          })
In [284...
          # Step 4: Clean borough names to avoid merge issues (remove spaces, lowercase)
          happiness['borough'] = happiness['borough'].str.strip().str.lower()
          earnings['borough'] = earnings['borough'].str.strip().str.lower()
          #Keep only earnings where borough is in happiness list
In [286...
          earnings = earnings[earnings['borough'].isin(happiness['borough'])]
In [288...
          #Now select and merge
          happiness_clean = happiness[['borough', 'average_happiness']]
          earnings_clean = earnings[['borough', 'median_earnings']]
In [290...
          # Step 6: Merge the datasets on 'borough'
          happiness_vs_earnings = pd.merge(happiness_clean, earnings_clean, on='borough',
In [292...
         happiness_vs_earnings.head(50)
```

	borough	average_happiness	median_earnings
0	NaN	7.46	NaN
1	NaN	7.46	NaN
2	NaN	7.46	NaN
3	NaN	7.46	NaN
4	NaN	7.45	NaN
5	NaN	7.45	NaN
6	NaN	7.45	NaN
7	NaN	7.45	NaN
8	NaN	7.34	NaN
9	NaN	7.34	NaN
10	NaN	7.34	NaN
11	NaN	7.34	NaN
12	county durham ua	7.37	555.7
13	darlington ua	7.46	558.8
14	hartlepool ua	7.48	566.9
15	middlesbrough ua	7.28	543.6
16	northumberland ua	7.44	575.6
17	redcar and cleveland ua	7.46	544.3
18	stockton-on-tees ua	7.56	544.6
19	gateshead	7.25	562.8
20	newcastle upon tyne	7.2	593.8
21	north tyneside	7.26	604.4
22	south tyneside	7.2	546.3
23	sunderland	7.27	547.5
24	NaN	7.39	NaN
25	NaN	7.39	NaN
26	NaN	7.39	NaN
27	NaN	7.39	NaN
28	blackburn with darwen ua	7.34	528.1
29	blackpool ua	7.3	523
30	cheshire east ua	7.77	648
31	cheshire west and chester ua	7.49	605.6
32	halton ua	7.31	585.5

borough	average_happiness	median_earnings

33	warrington ua	7.47	636
34	bolton	7.41	550.2
35	bury	7.53	626.8
36	manchester	7.31	565
37	oldham	7.19	579.3
38	rochdale	7.31	579.7
39	salford	7.23	611
40	stockport	7.41	633.2
41	tameside	7.26	579
42	trafford	7.4	664.7
43	wigan	7.31	586.4
44	lancashire	7.55	580.9
45	burnley	7.52	567.4
46	chorley	7.79	624.7
47	fylde	7.78	549.3
48	hyndburn	7.64	574.6
49	lancaster	7.58	551.4

In [294... happiness_vs_earnings.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 494 entries, 0 to 493
Data columns (total 3 columns):

Column Non-Null Count Dtype
--- ---0 borough 354 non-null object
1 average_happiness 410 non-null object
2 median_earnings 354 non-null object

dtypes: object(3)
memory usage: 11.7+ KB

```
In [296... happiness_vs_earnings.to_csv('happiness_vs_earnings.csv', index=False)
```

```
In [298... happiness_vs_earnings = pd.read_csv('happiness_vs_earnings.csv')
```

```
In [300... happiness_vs_earnings.info()
```

```
<class 'pandas.core.frame.DataFrame'>
         RangeIndex: 494 entries, 0 to 493
         Data columns (total 3 columns):
                                Non-Null Count Dtype
             Column
         --- -----
                                 -----
                                 354 non-null
          0
              borough
                                                object
             average_happiness 410 non-null object
          1
              median_earnings
                                 354 non-null
                                                object
         dtypes: object(3)
         memory usage: 11.7+ KB
          happiness vs earnings['average happiness'] = pd.to numeric(happiness vs earnings
In [304...
          happiness_vs_earnings['median_earnings'] = pd.to_numeric(happiness_vs_earnings[
In [306...
          happiness_vs_earnings.info()
In [308...
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 494 entries, 0 to 493
         Data columns (total 3 columns):
             Column
                                Non-Null Count Dtype
             -----
                                 -----
         ---
          0
             borough
                                 354 non-null
                                                object
              average_happiness 409 non-null
                                                 float64
          1
              median_earnings
                                                 float64
          2
                                353 non-null
         dtypes: float64(2), object(1)
         memory usage: 11.7+ KB
In [310...
          happiness_vs_earnings.describe()
Out[310...
                 average_happiness median_earnings
          count
                        409.000000
                                        353.000000
          mean
                          7.482421
                                        624.545892
             std
                          0.197820
                                         72.884827
            min
                          6.890000
                                        488.700000
           25%
                          7.370000
                                        571.300000
            50%
                          7.460000
                                        607.400000
           75%
                          7.600000
                                        663.700000
                          8.210000
                                        843.300000
            max
In [314...
          key columns = ['average happiness', 'median earnings']
In [320...
          plt.figure(figsize=(10, 5))
          happiness_vs_earnings.boxplot(column=key_columns, color='red')
          plt.title("Boxplot of Weather Quantitative Variables")
          plt.ylabel("Value")
          plt.grid(True)
          plt.tight_layout()
          plt.show()
```


median_earnings

In [322... sns.pairplot(happiness_vs_earnings[key_columns])

average_happiness

Out[322... <seaborn.axisgrid.PairGrid at 0x1ceaedd59a0>

In [324... #Let's use Scatter Plot Heatmap to see the correlation index between the variable
correlation = happiness_vs_earnings[key_columns].corr().round(2)
sns.heatmap(correlation, annot = True)

Out[324... <Axes: >


```
In []: In
```