Tutorial KVJ

Pertemuan 4

Pokok Pembahasan: *Double Integral*

- 1. Definisi
- 2. Koordinat Polar
- 3. Aplikasi
- 4. Metode Substitusi

Definisi *Double Integral*

Let's see the pattern~

Variabel Tunggal

$$\lim_{n\to\infty} \sum_{i=1}^{n} f(x_i) \Delta x = \int_{a}^{b} f(x) \, dx = \text{area under the curve}$$

Variabel Jamak

$$\lim_{m,n\to\infty} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}^*, y_{ij}^*) \Delta A = \iint_R f(x, y) dA = volume \ under \ the \ plane$$

Definisi

Integral ganda f atas region R adalah

$$\iint_R f(x,y) \ dA = \lim_{m,n\to\infty} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}^*,y_{ij}^*) \Delta A$$

asalkan nilai limitnya ada.

Akibatnya, jika $f(x,y) \ge 0$, maka **volume** V yaitu daaerah di bawah permukaan z = f(x,y) dan diatas **region** R adalah

$$V = \iint_R f(x, y) \ dA.$$

Q: Gimana cara ngitung integralnya?

Summation of *slicing*! Misal kita *slice* pada sumbu yz:

 $S(x) \rightarrow Luas daerah satu slice plane yz pada titik x$

$$S(x) = \int_{y_{min}(x)}^{y_{max}(x)} f(x, y) dy$$

$$\iint_{R} f(x,y)dA = \int_{x_{min}}^{x_{max}} S(x) dx$$

$$\iint_{R} f(x,y)dA = \int_{x_{min}}^{x_{max}} \int_{y_{min}(x)}^{y_{max}(x)} f(x,y) dy dx$$

Tampak Samping

Tampak Atas

Generally speaking.. ada dua pendekatan penyelesaian:

Tipe 1 : Slice yz

$$\iint_D f(x,y)dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y)dydx.$$

Tipe 2 : Slice xz

$$\iint_D f(x,y)dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y)dxdy.$$

Contoh Soal

Rectangular Region

Tentukan volume di bawah bidang z dengan:

$$z = 1 - x^2 - y^2$$
 Region $R: 0 \le x \le 1; 0 \le y \le 2$

Solusi: Misal kita pakai Tipe I

$$V = \int_0^1 \int_0^2 1 - x^2 - y^2 \, dy \, dx$$

$$= \int_0^1 -2x^2 - \frac{2}{3} \, dx$$

$$= -\frac{2}{3}x^3 - \frac{2}{3}x|_0^1$$

$$= -\frac{4}{3}$$

Trivia~

Untuk region berbentuk persegi panjang, urutan pengintegrasian bisa langsung dituker-tuker (kalo mau/butuh)!

Teorema (Fubini)

Jika f kontinu pada persegi panjang

$$R = \{(x, y) \mid a \le x \le b, \ c \le y \le d\}$$

maka.

$$\iint_{R} f(x,y)dA = \int_{a}^{b} \int_{c}^{d} f(x,y)dydx = \int_{c}^{d} \int_{a}^{b} f(x,y)dxdy.$$

Mengapa bisa demikian? Cermati pendekatan penyelesaian Tipe I dan Tipe II untuk region persegi panjang

Contoh Soal

Non-rectangular Region

Tentukan volume dari tetrahedron berikut!

Solusi: Step 1 - Cari f(x,y)

$$plane \ ax + by + cz = d \quad \rightarrow \quad z = c_1 x + c_2 y + c_3$$

$$z = f(x, y) = c_1 x + c_2 y + c_3$$

$$f(0,0) = 1 \rightarrow 1 = c_3$$

$$f(1,0) = 0 \rightarrow c_1 + 1 = 0 \rightarrow c_1 = -1$$

$$f(1,0) = 0 \rightarrow c_2 + 1 = 0 \rightarrow c_2 = -1$$

$$f(x,y) = 1 - x - y$$

Step 2 - Analisis bidang xy

Persamaan garis antara yang melewati

$$m = \frac{\Delta y}{\Delta x} = -1$$

$$y - y_1 = m(x - x_1)$$

$$y = 1 - x \dots (dipakai untuk Tipe 1)$$

$$x = 1 - y \dots (dipakai untuk Tipe 2)$$

Step 3 - Kalkulasi Integral

Cara 1 - Tipe I (*slice* yz)

$$V = 1 - x$$
Region R

$$\int_{D}^{b} f(x, y) dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) dy dx.$$

$$V = \int_{0}^{1} \int_{0}^{1-x} 1 - x - y dy dx$$

$$= \int_{0}^{1} y - xy - \frac{y^{2}}{2} \Big|_{0}^{1-x} dx$$

$$= \int_{0}^{1} \frac{1}{2} - x + \frac{x^{2}}{2} dx$$

Cara 2 - Tipe II (slice xz)

$$\begin{array}{ll}
y \\
1 \\
R = 1 - y \\
Region R
\end{array}$$

$$V = \int_0^1 \int_0^{1-y} 1 - x - y \, dx \, dy \\
= \int_0^1 x - \frac{x^2}{2} - xy \Big|_0^{1-y} dy \\
= \int_0^1 \frac{1}{2} - y + \frac{y^2}{2} \, dy \\
= \frac{1}{6}$$

Double Integral de n ga n Koordinat Polar

Apa perbedaannya?

Cartesian Coordinate

$$dA = dxdy$$

$$\iint_R f(x,y) \, dA = \iint_R f(x,y) \, dx dy$$

Polar Coordinate

$$x = r cos \theta$$

$$y = rsin\theta$$

$$dA = rdrd\theta$$

$$\iint_R f(x,y)\,dA = \iint_R f(r\,\cos\, heta,\,r\,\sin\, heta)\,r\,dr\,d heta.$$

Contoh Soal

Hitung $\iint_{\mathbb{R}} x dA$.

Dengan domain region

$$D=\{(r, heta)|1\leq r\leq 2,\, -rac{\pi}{2}\leq heta\leq rac{\pi}{2}\}$$
 ,

Step 2 : Kalkulasi Integral

$$\iint_{R} x dA = \iint_{R} r \cos\theta \ r \ dr \ d\theta$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{1}^{2} r^{2} \cos\theta \ dr d\theta$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{3} r^{3} \cos\theta \Big|_{1}^{2} d\theta$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{7}{3} \cos\theta \ d\theta$$

$$= \frac{7}{3} \sin\theta \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= \frac{14}{3}$$

Aplikasi *Double Integral*

Mass and Average Value

Aplikasi double integral pada Mass and Average Value dapat kita pahami secara bertahap dengan kasus-kasus berikut.

1) Find area of region
$$R$$
 Area(R) = $\iint dA$

R=Region that you are integrating

dA= tiny chunk of area (can be dydx or dxdy)

Mass

Dengan konsep yang sama sekarang kita memberikan nilai/fungsi density pada tiap luasan integral.

Mass of a (flat) object with density
$$\delta = \frac{\text{mass}}{\text{unit area}}$$

$$\Delta m = \delta \Delta A$$

$$Mass = \iint_{R} \delta \, dA$$

Average Value

2) Average value of
$$f$$
.
Average of $f = \bar{f} = \frac{1}{\operatorname{Area}(R)} \iint_R f \, dA$

Weighted average of *f* with density δ .

$$\frac{1}{\operatorname{Mass}(R)} \iint_{R} f \delta \, dA$$

Contoh Kasus Penerapan Averague Value

TABLE 15.1 Mass and first moment formulas for thin plates covering a region R in the xy-plane

Mass:
$$M = \iint_R \delta(x, y) dA$$
 $\delta(x, y)$ is the density at (x, y)

First moments:
$$M_x = \iint_R y \delta(x, y) dA$$
, $M_y = \iint_R x \delta(x, y) dA$

Center of mass:
$$\overline{x} = \frac{M_y}{M}$$
, $\overline{y} = \frac{M_x}{M}$

ContohSoal

 Let R be the quarter of the unit circle in the first quadrant with density δ(x, y) = y. (* Representasi parametrik lingkaran

$$x = r\cos\theta y = r\sin\theta$$

-Analisis bidang xy

kita dapat menggunakan double integral pada koordinat polar. Sehingga batas batasnya menjadi $0 \le r \le 1$ and $0 \le \theta \le \pi/2$. Menggunakan representasi parametrik nilai δ =rsin θ .

Kalkulasi Integral untuk mencari Mass

$$M = \iint_{R} \delta dA$$
$$= \int_{0}^{\pi/2} \int_{0}^{1} (r \sin \theta) r dr d\theta$$
$$= \int_{0}^{\pi/2} \int_{0}^{1} r^{2} \sin \theta dr d\theta.$$

Inner: $\frac{1}{3}r^3\sin\theta\Big|_0^1 = \frac{1}{3}\sin\theta$.

Outer: $-\frac{1}{3}\cos\theta\Big|_0^{\pi/2} = \frac{1}{3}$.

The region has mass 1/3.

Lanjutan Contoh Soal

-Find the Center of Mass

The center of mass (x_{cm}, y_{cm}) is described by

$$x_{cm} = \frac{1}{M} \iint_{R} x \delta \, dA$$
 and $y_{cm} = \frac{1}{M} \iint_{R} y \delta \, dA$.

$$x_{cm} = \frac{1}{M} \iint_{R} x \delta \, dA$$
$$= 3 \int_{0}^{\pi/2} \int_{0}^{1} (r \cos \theta) (r \sin \theta) r \, dr \, d\theta$$
$$= \int_{0}^{\pi/2} \int_{0}^{1} 3r^{3} \cos \theta \sin \theta \, dr \, d\theta.$$

Inner: $\frac{3}{4}r^4\cos\theta\sin\theta\Big|_0^1 = \frac{3}{4}\cos\theta\sin\theta$.

Outer:
$$\frac{3}{4} \frac{1}{2} (\sin \theta)^2 \Big|_0^{\pi/2} = \frac{3}{8} = x_{cm}$$
.

$$y_{cm} = \frac{1}{M} \iint_{R} y \delta \, dA$$
$$= 3 \int_{0}^{\pi/2} \int_{0}^{1} (r \sin \theta) (r \sin \theta) r \, dr \, d\theta$$
$$= \int_{0}^{\pi/2} \int_{0}^{1} 3r^{3} \sin^{2} \theta \, dr \, d\theta.$$

Inner:
$$\frac{3}{4}r^4 \sin^2 \theta \Big|_0^1 = \frac{3}{4} \sin^2 \theta.$$

Outer:
$$\frac{3}{4} \left(\frac{\theta}{2} - \frac{1}{4} \sin(2\theta) \right) \Big|_{0}^{\pi/2} = \frac{3\pi}{16} = y_{cm}.$$

TABLE 15.2 Second moment formulas for thin plates in the xy-plane

Moments of inertia (second moments):

About the x-axis:
$$I_x = \iint y^2 \delta(x, y) dA$$

About the y-axis:
$$I_y = \iint x^2 \delta(x, y) dA$$

About a line
$$L$$
:
$$I_L = \iint r^2(x, y) \delta(x, y) dA,$$

where
$$r(x, y) = \text{distance from } (x, y) \text{ to } L$$

About the origin
$$I_0 = \iint (x^2 + y^2)\delta(x, y) dA = I_x + I_y$$
 (polar moment):

Radii of gyration: About the x-axis:
$$R_x = \sqrt{I_x/M}$$

About the y-axis: $R_y = \sqrt{I_y/M}$

About the y-axis:
$$R_y = \sqrt{I_y/M}$$

About the origin: $R_0 = \sqrt{I_0/M}$

Contoh Soal

1. Let R be the triangle with vertices $(0,0), (1,0), (1,\sqrt{3})$ and density $\delta=1$. Find the polar moment of inertia.

-Analisis Bidang xy

Batas Batas Integral yang didapat

$$x = 1 \Leftrightarrow r \cos \theta = 1 \Leftrightarrow r = \sec \theta$$
.

Kalkulasi Integral

$$I = \iint_R r^2 \delta \, dA = \iint_R r^2 \, r \, dr \, d\theta = \iint_R r^3 \, dr \, d\theta.$$

$$I = \int_0^{\pi/3} \int_0^{\sec \theta} r^3 \, dr \, d\theta.$$

Outer integral: Use $\sec^4 \theta = \sec^2 \theta \sec^2 \theta = (1 + \tan^2 \theta) d(\tan \theta) \Rightarrow$ the outer integral is

 $I = \int_0^{\pi/3} \int_0^{\sec \theta} r^3 dr d\theta.$

 $\frac{1}{4} \left(\tan \theta + \frac{\tan^3 \theta}{3} \right) \Big|_0^{\pi/3} = \frac{1}{4} \left(\sqrt{3} + \frac{(\sqrt{3})^3}{3} \right) = \frac{\sqrt{3}}{2}.$

Inner integral: $\frac{\sec^4 \theta}{4}$.

The polar moment of inertia is $\frac{\sqrt{3}}{2}$.

Subsitusi double integral

Subsitusi double integral

Jika region G pada bidang-uv ditransformasi ke region R pada bidang-xy yang memenuhi persamaan

$$x = g(u, v), \qquad y = h(u, v).$$

$$\iint_{R} f(x,y)dx\,dy = \iint_{G} f(g(u,v),h(u,v))|J(u,v)|du\,dv$$

Definisi (Jacobian)

Determinan Jacobian atau Jacobian dari transformasi koordinat x = g(u, v), y = h(u, v) adalah

$$J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v}.$$

Contoh soal

$$\iint_D e^{2x+3y} \cdot \cos(x-3y) \, dx dy,$$

where p is the region bounded by the parallelogram with vertices (0,0), $(1,\frac{1}{3})$, $(\frac{4}{3},\frac{1}{9})$, and $(\frac{1}{3},-\frac{2}{9})$.

$$\int \int_{0}^{\infty} e^{3x+3y} dx dy$$

$$dgn basos (0,0), (1, 1/3), (4/3) \frac{1}{9}, (1/3) \frac{1}{2} \frac{1}{9}.$$

$$\int \int_{R} f(x,y) dx dy \cdot \int_{0}^{\infty} f((g(u,v), h(u,v))) \left[J(u,v)\right] du dv$$

• mencari jacobian
misal $u = 2x+3y$ don $v = x-3y$

$$u = 2x+3y \int_{0}^{\infty} x^{2} \int_{0$$

Contoh soal

 $\iint_{R}^{\frac{1}{3}} \frac{x-2y}{3x-y} dA$, where R is the parallelogram enclosed by the lines x-2y=0, x-2y=4, 3x-y=1, and 3x-y=8

$$\iint_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad batos \quad x-2y=0, \quad x-2y=4, \quad 3x-y=1, \quad dan \quad 3x-y=8$$

$$\iint_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad batos \quad x-2y=0, \quad x-2y=4, \quad 3x-y=1, \quad dan \quad 3x-y=8$$

$$\iint_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad batos \quad x-2y=0, \quad x-2y=4, \quad 3x-y=1, \quad dan \quad 3x-y=8$$

$$\lim_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad batos \quad x-2y=0, \quad x-2y=4, \quad 3x-y=1, \quad dan \quad 3x-y=8$$

$$\lim_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad batos \quad x-2y=0, \quad x-2y=1, \quad dan \quad 3x-y=8$$

$$\lim_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad batos \quad x-2y=0, \quad x-2y=1, \quad dan \quad 3x-y=8$$

$$\lim_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad batos \quad x-2y=0, \quad x-2y=1, \quad dan \quad 3x-y=8$$

$$\lim_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad batos \quad x-2y=0, \quad x-2y=1, \quad dan \quad 3x-y=8$$

$$\lim_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad batos \quad x-2y=0, \quad x-2y=1, \quad dan \quad 3x-y=8$$

$$\lim_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad batos \quad x-2y=0, \quad x-2y=1, \quad dan \quad 3x-y=8$$

$$\lim_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad batos \quad x-2y=0, \quad x-2y=1, \quad dan \quad 3x-y=8$$

$$\lim_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad batos \quad x-2y=0, \quad x-2y=1, \quad dan \quad 3x-y=8$$

$$\lim_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad batos \quad x-2y=0, \quad x-2y=1, \quad dan \quad 3x-y=1$$

$$\lim_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad dan \quad x-2y=0, \quad x-2y=1, \quad dan \quad x-2y=1$$

$$\lim_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad dan \quad x-2y=1, \quad dan \quad 3x-y=1$$

$$\lim_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad dan \quad x-2y=1, \quad dan \quad 3x-y=1$$

$$\lim_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad dan \quad x-2y=1$$

$$\lim_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad dan \quad x-2y=1$$

$$\lim_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad dan \quad x-2y=1$$

$$\lim_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad dan \quad x-2y=1$$

$$\lim_{R} \frac{x-2y}{3x-y} dA \qquad dgn \quad dan \quad da$$

* transformasis

$$x - 2y = 0$$
 $x - 2y = 0$
 $x - 2y = 0$

 $3\left(\frac{2}{5}V - \frac{1}{5}u\right) - \left(\frac{1}{5}V - \frac{3}{5}u\right) = 1$

$$\frac{1}{5}\int_{0}^{4} u \ln(8) - u \ln(1)^{-0} du$$

$$\frac{\ln (8)}{5} \int_{0}^{4} u \, du$$

$$\frac{\ln (8)}{5} \left[\frac{u^{2}}{2} \right]_{0}^{4} = \frac{\ln (8)}{5} \left[8 - 0 \right]$$

$$= 8 \ln (8)$$

 $= \frac{2}{8 \ln (8)}$

$$\frac{1}{5} \begin{pmatrix} 4 & u \ln (8) & du \\ 0 & u \ln (8) & du \end{pmatrix}$$

$$\frac{\ln (8)}{5} \begin{pmatrix} 4 & u & du \\ 0 & u & du \end{pmatrix}$$

Quiz Materi 1-2

1. Tentukan luas bidang R yang memiliki titik-titik sudut A(0, 0), B(2, 5), C(6, 3), D(4, -5), dan E(0, -4)!

Hint: Gunakan konsep luas dari interpretasi determinan yang sudah pernah dipelajari di kelas, ya!

1. Tentukan persamaan bidang yang melewati titik A(2,0,2), B(0,4,4), dan C(1,1,0)!

Hint: Ada hubungannya dengan vektor normal! Gunakan cross product dan dot product.

Gambar untuk Nomor 1

Quiz materi 5-6

Jika $Φ = xy^2 + 6 z^3 x^2$, carilah ∇Φ dan |∇Φ| pada titik (6,2,2)

Carilah nilai maksimum dan minimum dari f(x,y): 6x+4y pada lingkaran $x^2+y^2=36$

Quiz Materi 8

Find moment inertia of the halfdisk with mass density $\delta(x, y) = \frac{1}{\sqrt{x^2 + y^2}}$

- a. About the x axis
- b. About the origin

$$D=\{(r, heta)|1\leq r\leq 2,\, -rac{\pi}{2}\leq heta\leq rac{\pi}{2}\}$$
 ,

Pengerjaan Quiz

- Dikerjakan seperti latihan soal biasa
- Dikumpulkan di form pengumpulan tugas
 https://tinyurl.com/PengumpulanTugasKVJ (diisi pertemuan 4)
- Waktunya sampai jam 10.30 + toleransi pengumpulan 15 menit
- Format nama file NIU_Nama_Quiz1