- 1. Funcția 'id':
- id :: a -> a
- 2. Funcția `const`:
- const :: a -> b -> a
- 3. Funcția `flip`:
- flip :: (a -> b -> c) -> b -> a -> c
- 4. Funcția `(.)` (compoziție de funcții):
- (.) :: (b -> c) -> (a -> b) -> a ->
- 5. Funcția `(\$)`: (aplicare de funcții)
- (\$) :: (a -> b) -> a -> b
- 6. Funcția 'map':
- map :: (a -> b) -> [a] -> [b]
- 7. Funcția 'filter':
- filter :: (a -> Bool) -> [a] -> [a]
- 8. Funcția 'foldr':
- foldr :: (a -> b -> b) -> b -> [a] -> b
- 9. Funcția `foldl`:
- foldl :: (b -> a -> b) -> b -> [a] -> b
- 10. Funcția `zip`:
- zip :: [a] -> [b] -> [(a, b)]
- 11. Funcția `zipWith`:
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
- 12. Funcția 'concat':
- concat :: [[a]] -> [a]

- 13. Funcția 'head':
- head :: [a] -> a
- 14. Funcția 'tail':
- tail :: [a] -> [a]
- 15. Funcția 'init':
- init :: [a] -> [a]
- 16. Funcția `last`:
- last :: [a] -> a
- 17. Funcția 'reverse':
- reverse :: [a] -> [a]
- 18. Funcția `length`:
- length :: [a] -> Int
- 19. Funcția 'take':
- take :: Int -> [a] -> [a]
- 20. Funcția 'drop':
- drop :: Int -> [a] -> [a]
- 21. Funcția 'elem':
- elem :: Eq a => a -> [a] ->
- Bool
- 22. Funcția 'notElem':
- notElem :: Eq a => a -> [a] ->
- Bool
- 23. Funcția 'maximum':
- maximum :: Ord a => [a] -> a
- 24. Funcția 'minimum':
- minimum :: Ord $a \Rightarrow [a] \Rightarrow a$
- 25. Funcția `sum`:
- sum :: Num a => [a] -> a
- 26. Funcția 'product':

- product :: Num a => [a] -> a
- 27. Funcția 'elemIndex':
- elemIndex :: Eq a => a -> [a] -
- > Maybe Int
- 28. Funcția 'elemIndices':
- elemIndices :: Eq a => a -> [a]
- -> [Int]
- 29. Funcția `find`:
- find :: (a -> Bool) -> [a] ->
- Maybe a
- 30. Funcția 'partition':
- partition :: (a -> Bool) -> [a] -
- > ([a], [a])
- **EXERCITII**
- Exemplu 1:
- -- Exemplu 1
- $f1 \times y = (x > y, x + y)$
- Sintetizare:
- f1 :: Ord a => a -> a -> (Bool,
- a)
- x :: Ord a => a
- y :: Ord a => a
- (>) :: Ord a => a -> a -> Bool
- (+) :: Num a => a -> a -> a
- Exemplu 2:
- -- Exemplu 2
- $f2 \times y = x + (head y)$
- Sintetizare:
- f2 :: Num a => a -> [a] -> a
- x :: Num a => a

y :: [a]	f6 x y = x ++ y	foldr :: (a -> b -> b) -> b -> [a]
head :: [a] -> a	Sintetizare:	-> b
(+) :: Num a => a -> a	f6 :: [a] -> [a] -> [a]	Exemplu 10:
Exemplu 3:	x :: [a]	f10 fg x = f(g x)
Exemplu 3	y :: [a]	Sintetizare:
f3 fg x = f(g x) (g (x + 1))	(++) :: [a] -> [a] -> [a]	f10 :: (a -> b) -> (c -> a) -> c -> b
Sintetizare:	Exemplu 7:	f :: a -> b
f3 :: (a -> b -> c) -> (d -> a) ->	f7 xs = filter ($x -> x > 0$) xs	g :: c -> a
d -> c	Sintetizare:	x :: c
f:: a -> b -> c	f7 :: (Num a, Ord a) => [a] ->	Exemplu 11:
g :: d -> a x :: d	[a] xs :: (Num a, Ord a) => [a]	f11 xs = reverse (tail xs)
(+) :: Num d => d -> d -> d	filter :: (a -> Bool) -> [a] -> [a]	Sintetizare:
		f11 :: [a] -> [a]
Exemplu 4:	(>) :: Ord a => a -> Bool	xs :: [a]
Exemplu 4	Exemplu 8:	reverse :: [a] -> [a]
f4 xs = length xs > 0	$f8 xs = map (\x -> x * x) xs$	tail :: [a] -> [a]
Sintetizare:	Sintetizare:	Exemplu 12:
f4 :: [a] -> Bool	f8 :: Num b => [b] -> [b]	f12 fg x y = f(g(x, y))
xs :: [a]	xs :: Num b => [b]	Sintetizare:
length :: [a] -> Int	map :: (a -> b) -> [a] -> [b]	
(>) :: Ord a => Int -> Int -> Bool	(*) :: Num a => a -> a	f12 :: ((a, b) -> c) -> (d -> (a, b)) -> d -> c
Exemplu 5:	Exemplu 9:	f :: (a, b) -> c
·	f9 f g xs = foldr (\x acc -> f (g	g :: d -> (a, b)
f5 x = [x, x + 1, x + 2]	x) acc) [] xs	x :: d
Sintetizare:	Sintetizare:	y :: d
f5 :: Num a => a -> [a]	f9 :: (b -> a -> b) -> (c -> a) -> [c] -> b	Exemplu 13:
x :: Num a => a	f :: b -> a -> b	f13 x = x == reverse x
(+) :: Num a => a -> a	g :: c -> a	Sintetizare:
Exemplu 6:	6	J

xs :: [c]

f13 :: Eq a => [a] -> Bool	Exemplu 17:	map :: (a -> b) -> [a] -> [b]
x :: Eq a => [a]	f17 xs = foldl ($\langle acc x - \rangle$ if even	(*) :: Num a => a -> a -> a
(==) :: Eq a => a -> a -> Bool	x then x:acc else acc) [] xs	Exemplu 21:
reverse :: [a] -> [a]	Sintetizare:	f21 x = map (\y -> (y, y * y)) x
Exemplu 14:	f17 :: Integral a => [a] -> [a]	Sintetizare:
f14 f g x = f (g x) x	xs :: Integral a => [a]	f21 :: Num b => [a] -> [(a, b)]
Sintetizare:	foldl :: (b -> a ->	x :: [a]
	b) -> b -> [a] -> b	map :: (a -> b) -> [a] -> [b]
f14 :: (a -> b -> c) -> (d -> a) -	even :: Integral a => a -> Bool	(*) :: Num a => a -> a -> a
> d -> c	Exemplu 18:	Exemplu 22:
f :: a -> b -> c	f18 x y = zip $(x ++ [y])[y]$	f22 f x y = f (x + y)
g :: d -> a	Sintetizare:	Sintetizare:
x :: d	f18 :: [a] -> a -> [([a], a)]	f22 :: (Num a, Num b) => (a -
Exemplu 15:	x :: [a]	> b) -> a -> a -> b
f15 x y = zipWith ($a b \rightarrow a$,	y :: a	f :: Num a => a -> b
b)) x y	zip :: [a] -> [b] -> [(a, b)]	x :: Num a => a
Sintetizare:	(++) :: [a] -> [a] -> [a]	y :: Num a => a
f15 :: [a] -> [b] -> [(a, b)]	Exemplu 19:	(+) :: Num a => a -> a -> a
x :: [a]	f19 x y = replicate x y	Exemplu 23:
y :: [b]	Sintetizare:	f23 f x y = f (f x) (f y)
zipWith :: (a -> b -> c) -> [a] - > [b] -> [c]	f19 :: Int -> a -> [a]	Sintetizare:
Exemplu 16:	x :: Int	f23 :: (a -> b) -> a -> a -> b
f16 xs = sum [1 _ <- xs]	y :: a	f :: a -> b
Sintetizare:	replicate :: Int -> a -> [a]	x :: a
f16 :: Num a => [b] -> a	Exemplu 20:	y :: a
xs :: [b]	$f20 x = map (\y -> y * y) x$	
sum :: Num a => [a] -> a	Sintetizare:	Exemplu 24:
	f20 :: Num b => [b] -> [b]	f24 x = zip x (tail x)

x :: Num b => [b]

Sintetizare:	Exemplu 3:	(+) :: Num a => a -> a -> a
f24 :: [a] -> [(a, a)]	f3 x y = x : y : []	(-) :: Num a => a -> a -> a
x :: [a]	Sintetizare:	Exemplu 7:
zip :: [a] -> [b] -> [(a, b)]	f3 :: a -> a -> [a]	f7 x y = x : y : []
tail :: [a] -> [a]	x :: a	Sintetizare:
Exemplu 25:	y :: a	f7 :: a -> a -> [a]
f25 fg x = (f x, g x)	Exemplu 4:	x :: a
Sintetizare:	f4 fg x = f(g(gx))	у :: а
f25 :: (a -> b) -> (a -> c) -> a ->	Sintetizare:	Exemplu 8:
(b, c)	f4 :: (a -> b) -> (c -> a) -> c ->	f8 fg x y = f(g(x, y))
f :: a -> b	b	Sintetizare:
g :: a -> c	f :: a -> b	f8 :: ((a, b) -> c) -> (d -> (a, b))
x :: a	g :: c -> a	-> d -> c
Exemplu 1:	x :: c	f :: (a, b) -> c
$f1 x = filter (\y -> y > 0) x$	Exemplu 5:	g :: d -> (a, b)
Sintetizare:	f5 $x = x ++ reverse x$	x :: d
f1 :: (Num a, Ord a) => [a] ->	Sintetizare:	y :: d
[a]	f5 :: [a] -> [a]	Exemplu 9:
x :: (Num a, Ord a) => [a]	x :: [a]	f9 x y = replicate x y
filter :: (a -> Bool) -> [a] -> [a]	(++) :: [a] -> [a]	Sintetizare
(>) :: Ord a => a -> a -> Bool	reverse :: [a] -> [a]	f9 :: Int -> a -> [a]
Exemplu 2:	Exemplu 6:	x :: Int
f2 f x y = (f x, f y)	f6 f x y = f (x + y) (x - y)	y :: a
Sintetizare:	Sintetizare:	replicate :: Int -> a -> [a]
f2 :: (a -> b) -> a -> a -> (b, b)	f6 :: (Num a, Num b) => (a ->	Exemplu 10:
f :: a -> b	a -> c) -> a -> b -> c	f10 f x y = (f x y, f y x)

f :: (Num a, Num b) => a -> a -

x :: (Num a, Num b) => a

y :: (Num a, Num b) => b

> c

x :: a

y :: a

f10 f x y = (f x y, f y x)

Sintetizare:	y :: b	x :: d
f10 :: (a -> b -> c) -> a -> b ->	Exemplu 14:	y :: d
(c, c)	f14 f x = f (f x)	Exemplu 18:
f :: a -> b -> c	Sintetizare:	f18 f x y = f (f x) (f y)
x :: a	f14 :: (a -> a -> b) -> a -> b	Sintetizare:
y :: b	f :: a -> a -> b	f18 :: (a -> b -> c) -> (a -> a) ->
Exemplu 11:	x :: a	a -> a -> c
f11 fg x y = f(g x) (g y)	Exemplu 15:	f :: a -> b -> c
Sintetizare:	f15 f x = f (f (f x))	x :: a -> a
f11 :: (a -> b -> c) -> (d -> a) -	Sintetizare:	y :: a
> d -> d -> c	f15 :: (a -> a) -> a -> a	Exemplu 19:
f :: a -> b -> c	f :: a -> a	f19 f x y = f (f (x, y))
g :: d -> a	x :: a	Sintetizare:
x :: d	Exemplu 16:	f19 :: ((a, b) -> c) -> a -> b -> c
y :: d	·	f :: (a, b) -> c
Exemplu 12:	f16 fg x y = f (g x y)	x :: a
f12 f x y = f (f x) (f y)	Sintetizare:	y :: b
Sintetizare:	f16 :: (a -> b -> c) -> (d -> e -> a) -> d -> e -> c	Exemplu 20:
f12 :: (a -> a -> b) -> a -> a -> b	f :: a -> b -> c	f20 fg x y = f(g x) (g y)
f :: a -> a -> b	g :: d -> e -> a	Sintetizare:
x :: a	x :: d	f20 :: (a -> b -> c) -> (d -> a) -
y :: a	y :: e	> (e -> a) -> d -> e -> c
Exemplu 13:	Exemplu 17:	f :: a -> b -> c
f13 f x y = f (f x y) y	f17 fgxy = f(gx)(gy)	g :: d -> a
Sintetizare:	Sintetizare:	x :: d
f13 :: (a -> b -> c) -> a -> b -> c	f17 :: (a -> b -> c) -> (d -> a) - > d -> d -> c	y :: e
		Exemplu 21:
f :: a -> b -> c	f :: a -> b -> c	f21 fg x y = f(g x y) (g y x)
x :: a	g :: d -> a	

Sintetizare:

y :: a

f25 fg x y = f(g x) (g y)

Sintetizare:

$$g :: c \rightarrow c \rightarrow a$$

f25 :: (a -> b -> c) -> (d -> a) -

> (e -> b) -> d -> e -> c

f::a->b->c

g :: d -> a

$$f22 fgxy = f(gxy)$$

x :: d

Sintetizare:

y :: e

g :: d -> e -> a

x :: d

y :: e

Exemplu 23:

$$f23 f x y = f(x, y)$$

Sintetizare:

x :: a

y :: b

Exemplu 24:

$$f24 f x y = f (f x y) (f y x)$$

Sintetizare:

x :: a