

# Machine Learning and Intelligent Systems

Ensemble Methods

Maria A. Zuluaga

Jan 12, 2023

EURECOM - Data Science Department

### **Table of contents**

```
Recap
Bagging
   Bagging
   Out-of-Bag Error
   Random Forests
Boosting
   AdaBoost
   Gradient Boosting Trees
Boosting, Kaggle competitions & Reproducibility
Wrap-up
```

# Recap

## **Bias-Variance Decomposition**

$$\mathbb{E}_{\mathbf{x},y,\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x})-y)^2] = \underbrace{\mathbb{E}_{\mathbf{x},\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x})-\bar{h}(\mathbf{x}))^2]}_{\text{Variance}} + \underbrace{\mathbb{E}_{\mathbf{x},y}[(\bar{y}(\mathbf{x})-y)^2]}_{\text{Noise}} + \underbrace{\mathbb{E}_{\mathbf{x}}[(\bar{h}(\mathbf{x})-\bar{y}(\mathbf{x}))^2]}_{\text{Bias}^2}$$

**Noise:** The error associated to the data. It measures ambiguity due to your data distribution and feature representation. You can never beat this.

Variance: Error caused from sensitivity to fluctuations in the training set. How much does the model change if it is trained in a different dataset. High variance can cause an algorithm to model noise from the training data rather than the intended targets (overfitting)

Bias: The inherent error that you obtain from the model even with infinite training data. This is due to the classifier being biased to a particular solution (e.g. linear classifier)



### **Bias-Variance Trade-off**

- The bias-variance trade-off suggests that reducing one of the two, bias or variance, comes at the cost of an increase in the other term
- Question: Is it possible to reduce one of them without sacrificing the other one?
- Short answer: Yes
- How? Instead of learning a single model, we will learn multiple models and combine them
- In this lecture, we will see two different strategies to combine such models
  - Bagging: Models are combined in parallel
  - Boosting: Models are combined sequentially

# Bagging

## **Reducing Variance**

Goal: Reduce the variance without affecting the bias

$$\mathbb{E}_{\mathbf{x},y,\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x})-y)^2] = \underbrace{\mathbb{E}_{\mathbf{x},\mathcal{D}}[(h_{\mathcal{D}}(\mathbf{x})-\bar{h}(\mathbf{x}))^2]}_{\text{Variance}} + \underbrace{\mathbb{E}_{\mathbf{x},y}[(\bar{y}(\mathbf{x})-y)^2]}_{\text{Noise}} + \underbrace{\mathbb{E}_{\mathbf{x}}[(\bar{h}(\mathbf{x})-\bar{y}(\mathbf{x}))^2]}_{\text{Bias}^2}$$

Reducing variance, in this context, accounts to  $h_{\mathcal{D}}(\mathbf{x}) \to \bar{h}(\mathbf{x})$ 

We will achieve this by averaging multiple models

# Weak Law of Large Numbers

For a set of i.i.d. random variables  $\mathbf{x}_i$  with mean  $\bar{\mathbf{x}}$ 

$$\frac{1}{M} \sum_{i=1}^{M} \mathbf{x}_i \to \bar{\mathbf{x}} \quad \text{as } M \to \infty$$

Idea: Apply the weak law of large numbers to classifiers:

- 1. M datasets available  $\mathcal{D}_1, \ldots, \mathcal{D}_M$  drawn from  $\mathcal{P}^N$
- 2. Train a classifier on each dataset and then average.

#### Ensemble of classifiers:

$$H = rac{1}{M} \sum_{i=1}^{M} h_{\mathcal{D}_i}(\mathbf{x}) 
ightarrow ar{h}(\mathbf{x}) \qquad \text{as } M 
ightarrow \infty$$

Problem: There is only one training dataset available

# Solution: Bagging

- Proposed by Leo Breiman in 1994
- The term bagging is an abbreviation to bootstrap aggregating
- The core idea behind bagging is to take repeated bootstrap samples from the training set D.
- Bootstrap sampling: Given a set  $\mathcal{D}$  containing N training samples, create  $\mathcal{D}'$  by drawing N samples at random with replacement from  $\mathcal{D}$ .

# Solution: Bagging

- Proposed by Leo Breiman in 1994
- The term bagging is an abbreviation to bootstrap aggregating
- The core idea behind bagging is to take repeated bootstrap samples from the training set D.
- Bootstrap sampling: Given a set  $\mathcal{D}$  containing N training samples, create  $\mathcal{D}'$  by drawing N samples at random with replacement from  $\mathcal{D}$ .

### **Algorithm**

- 1. Create M bootstrap samples  $\mathcal{D}_1, \ldots, \mathcal{D}_M$
- 2. Train a classifier on each  $\mathcal{D}_i$
- 3. Classify new instance by majority vote or average



# **Analysis**

- In bagging,  $h_{\mathcal{D}}(\mathbf{x}) \nrightarrow \bar{h}(\mathbf{x})$
- The weak law of large numbers cannot be applied because the i.i.d. condition does not hold
- Despite this, they are efficient at reducing the variance



## **Out-of-Bag Error**

- Bagging provides and unbiased estimate of the test error
- Idea: Exploit the sample points that are not selected for a given classifier. These points are denoted the out-of-bag (OOB) set (or instance)
- Advantage: No need to reduce the training set to get an idea of the generalization error

## **Out-of-Bag Error**

- Bagging provides and unbiased estimate of the test error
- Idea: Exploit the sample points that are not selected for a given classifier. These points are denoted the out-of-bag (OOB) set (or instance)
- Advantage: No need to reduce the training set to get an idea of the generalization error

### **Algorithm**

- 1. Find all models that are not trained by the OOB instance.
- 2. Take the majority vote of these models' result for the OOB instance, compared to the true value of the OOB instance.
- 3. Estimate the OOB error for all instances in the OOB dataset.



Source: Wikipedia

# Bagging: Summary

### **Advantages:**

- Easy to implement
- Reduces variance keeping bias unaltered
- As prediction is the average of many classifiers, we can obtain a score and a variance that can be interpreted as uncertainty
- Out of bag error

# Bagging: Summary

### **Advantages:**

- Easy to implement
- Reduces variance keeping bias unaltered
- As prediction is the average of many classifiers, we can obtain a score and a variance that can be interpreted as uncertainty
- Out of bag error

### **Disadvantages:**

- Computationally more expensive
- Correlated training sets

# Wikipedia Facts: Bootstrapping

- Instatistics, bootstrapping is any test or metric that relies onrandom sampling with replacement.
- As a metaphor, means to better oneself by one's own unaided efforts. In use in 1922
- This metaphor spawned additional metaphors for a series of self-sustaining processes that proceed without external help.

"Pull yourself out with your own bootstraps"



Source: Wikipedia

### **Random Forests**

### Limitations of bagging:

- Often the decision trees look very similar.
- If one or more features are very informative, they will be selected by almost every tree in the bag, reducing the diversity (and potentially increasing the bias).

#### **Solution: Random forests**

- Ensemble method specifically designed for decision tree classifiers
- One of most (if not the most) famous bagging algorithm also proposed by Leo Breiman.
- Among the easiest to use ML algorithms
- Idea: Reduce correlation between trees in the bag without increasing variance too much

### **Randomness of Forests**

The Randon Forests algorithm introduces two sources of randomness:

- 1. Bagging: Each tree is grown using a bootstrap sample of the training data
- 2. **Random vector method:** At each node, best split is chosen from a random sample of k < D attributes

The random vector method alleviates the correlation among bootstrap samples

## **Algorithm**

- 1. For b = 1 to B:
  - 1.1 Sample M datasets  $\mathcal{D}_1, \dots \mathcal{D}_M$  from  $\mathcal{D}$  with replacement (bootstrap samples)
  - 1.2 Grow a random forest tree  $T_b$  to the bootstrap data (i.e.  $\mathcal{D}_1, \dots \mathcal{D}_M$ ) by repeating the following steps:
    - 1.2.1 Select k variables at random from the D features
    - 1.2.2 Pick the best variable/split-point among k
    - 1.2.3 Split the node into two child nodes
    - 1.2.4 Repeat until reaching a leaf node
- 2. Output the ensemble of trees  $\{T_b\}_1^B$
- 3. Prediction: Average for regression, majority voting for classification

**Important:** Once k variables are selected at a given node, it will not be possible to select splits using the remaining D - k features for that branch.

### Tips

- The RF only has two hyper-parameters *M* and *k*. It is quite insensitive to these. A good choice for these is:
  - For k:  $k = \sqrt{D}$  for classification;  $k \approx \frac{D}{3}$  for regression.
  - For M: as large as possible
  - Important: Smaller k implies more randomness, less tree correlation and more bias

### **Tips**

- The RF only has two hyper-parameters *M* and *k*. It is quite insensitive to these. A good choice for these is:
  - For k:  $k = \sqrt{D}$  for classification;  $k \approx \frac{D}{3}$  for regression.
  - For M: as large as possible
  - Important: Smaller k implies more randomness, less tree correlation and more bias
- Decision trees do not require a lot of preprocessing.
  - The features can be of different scale, magnitude, or slope.
  - Advantageous in scenarios with heterogeneous data, which is recorded in completely different units

# **Limitations of Bagging and Random Forests**

- Bagging: Significant correlation between trees that are learnt on different training datasets
- Random Forests try to resolve this by doing random feature sampling, but some correlation still remains
- All B trees are given the same weight when taking the average

**Solution:** Boosting methods try to force classifiers to learn on different parts of the feature space, and take their weighted average

Boosting

# **Boosting**

- ullet Context: Hypothesis class  ${\cal H}$ , whose set of classifiers has a large bias and high training error
- Question: Can weak learners ∈ H be combined to generate a strong learner?
   Michael Kearns (Prof. at UPenn) in his ML course project [1988]
- Answer: Yes Robert Schapire [1990]

# **Boosting**

- Context: Hypothesis class  $\mathcal{H}$ , whose set of classifiers has a large bias and high training error
- Question: Can weak learners  $\in \mathcal{H}$  be combined to generate a strong learner? Michael Kearns (Prof. at UPenn) in his ML course project [1988]
- Answer: Yes
   Robert Schapire [1990]

#### **Definitions**

Weak learner One whose error rate is only slightly better than random guessing (< 0.5). Strong learner One who is arbitrarily well-correlated with the true classification

## High-level idea

• Sequentially construct weak classifiers and combine them to obtain a complex decision boundary (i.e. a strong classifier)

$$H(\mathbf{x}) = \sum_{t=1}^{T} \alpha_t h_t(\mathbf{x}) \tag{1}$$

• At each iteration t, the classifier  $\alpha_t h_t(\mathbf{x})$  is added to the ensemble

# High-level idea

 Sequentially construct weak classifiers and combine them to obtain a complex decision boundary (i.e. a strong classifier)

$$H(\mathbf{x}) = \sum_{t=1}^{T} \alpha_t h_t(\mathbf{x}) \tag{1}$$

- At each iteration t, the classifier  $\alpha_t h_t(\mathbf{x})$  is added to the ensemble
- At test time, all classifiers are evaluated and return the weighted sum

$$H(\mathbf{x}^*) = \operatorname{sign}\left(\sum_{t=1}^T \alpha_t h_t(\mathbf{x}^*)\right)$$

 Analogous to gradient descent: Instead of updating model parameters at each iteration, functions are added to the ensemble

### **AdaBoost**

- Adaboost (Freund and Schapire, 1996) is one of the most used boosting algorithms, which
  is the short for Adaptive Boosting
- Each base classifier is trained using a weighted form of the dataset
- The weighting coefficient associated to each point depends on the performance of the previous classifiers
- Misclassified points get more weight
- Predictions are done through a combined majority weighted scheme (or averaging)

### **AdaBoost**

- Adaboost (Freund and Schapire, 1996) is one of the most used boosting algorithms, which
  is the short for Adaptive Boosting
- Each base classifier is trained using a weighted form of the dataset
- The weighting coefficient associated to each point depends on the performance of the previous classifiers
- Misclassified points get more weight
- Predictions are done through a combined majority weighted scheme (or averaging)
- We will look into the version proposed by Freidman et al (2000), which minimizes the exponential loss:

$$\mathcal{L}(H) = \sum_{i=1}^{N} \exp(-y_i H(\mathbf{x}_i))$$



# AdaBoost Algorithm Setup

**Setup:** The training set  $\mathcal{D}$  is composed of N inputs  $\mathbf{X} \in \mathbb{R}^D$  with corresponding binary labels  $\mathbf{y} \in \{-1, +1\}$ .

Initialization: Each data point  $x_i$  is given an associated weighting parameter  $w_i^1 = \frac{1}{N}$ 

Training Algorithm: We will suppose there is a procedure in place to train a base classifier using the weighted  $\mathcal{D}$  to obtain a a weak classifier  $h_m(\mathbf{x})$ 

Weak Classifier: The error rate of a weak classifier  $h_m(\mathbf{x})$  is calculated empirically over the training data:

$$\epsilon(h_m(\mathbf{x})) = \frac{1}{N} \sum_{i=1}^N \delta(h_m(\mathbf{x}_i) \neq \mathbf{y}_i) < \frac{1}{2}$$

# AdaBoost Algorithm (Friedman et al, 2000)

- 1. Initialize weights  $w_i^1 = \frac{1}{N}$
- 2. For m = 1, ..., M:
  - 2.1 Train a weak classifier  $h_m(\mathbf{x})$  that minimizes the weighted sum error for misclassified points:

$$\epsilon_m = \sum_{i=1}^N w_i^m \delta(h_m(\mathbf{x}_i) 
eq \mathbf{y}_i)$$

# AdaBoost Algorithm (Friedman et al, 2000)

- 1. Initialize weights  $w_i^1 = \frac{1}{N}$
- 2. For m = 1, ..., M:
  - 2.1 Train a weak classifier  $h_m(\mathbf{x})$  that minimizes the weighted sum error for misclassified points:

$$\epsilon_m = \sum_{i=1}^N w_i^m \delta(h_m(\mathbf{x}_i) \neq \mathbf{y}_i)$$

- 2.2 If  $\epsilon_m < \frac{1}{2}$ :
  2.2.1 Compute  $\alpha_m = \frac{1}{2} \log \left( \frac{1 \epsilon_m}{\epsilon_m} \right)$

# AdaBoost Algorithm (Friedman et al. 2000)

- 1. Initialize weights  $w_i^1 = \frac{1}{N}$
- 2. For m = 1, ..., M:
  - 2.1 Train a weak classifier  $h_m(\mathbf{x})$  that minimizes the weighted sum error for misclassified points:

$$\epsilon_m = \sum_{i=1}^N w_i^m \delta(h_m(\mathbf{x}_i) \neq \mathbf{y}_i)$$

- 2.2 If  $\epsilon_m < \frac{1}{2}$ :
  2.2.1 Compute  $\alpha_m = \frac{1}{2} \log \left( \frac{1 \epsilon_m}{\epsilon_m} \right)$ 
  - 2.2.2 Add to the ensemble:  $H_m = H_{m-1} + \alpha_m h_m(\mathbf{x})$

# AdaBoost Algorithm (Friedman et al, 2000)

- 1. Initialize weights  $w_i^1 = \frac{1}{N}$
- 2. For m = 1, ..., M:
  - 2.1 Train a weak classifier  $h_m(x)$  that minimizes the weighted sum error for misclassified points:

$$\epsilon_m = \sum_{i=1}^N w_i^m \delta(h_m(\mathbf{x}_i) \neq \mathbf{y}_i)$$

- 2.2 If  $\epsilon_m < \frac{1}{2}$ :
  - 2.2.1 Compute  $\alpha_m = \frac{1}{2} \log \left( \frac{1 \epsilon_m}{\epsilon_m} \right)$
  - 2.2.2 Add to the ensemble:  $H_m = H_{m-1} + \alpha_m h_m(\mathbf{x})$
  - 2.2.3 Update the data weights coefficients:

$$w_i^{(m+1)} = w_i^m \exp[-\alpha_m y_i h_m(\mathbf{x}_i)]$$

and normalize so that  $\sum_{i} w_{i}^{(m+1)} = 1$ 

# AdaBoost Algorithm (Friedman et al, 2000)

- 1. Initialize weights  $w_i^1 = \frac{1}{N}$
- 2. For m = 1, ..., M:
  - 2.1 Train a weak classifier  $h_m(\mathbf{x})$  that minimizes the weighted sum error for misclassified points:

$$\epsilon_m = \sum_{i=1}^N w_i^m \delta(h_m(\mathbf{x}_i) \neq \mathbf{y}_i)$$

- 2.2 If  $\epsilon_m < \frac{1}{2}$ :
  - 2.2.1 Compute  $\alpha_m = \frac{1}{2} \log \left( \frac{1 \epsilon_m}{\epsilon_m} \right)$
  - 2.2.2 Add to the ensemble:  $H_m = H_{m-1} + \alpha_m h_m(\mathbf{x})$
  - 2.2.3 Update the data weights coefficients:

$$w_i^{(m+1)} = w_i^m \exp[-\alpha_m y_i h_m(\mathbf{x}_i)]$$
 and normalize so that  $\sum_i w_i^{(m+1)} = 1$ 

3. Make predictions using the final model:

$$H(\mathbf{x}^*) = \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m h_m(\mathbf{x}^*)\right)$$

## **Analysis**

#### Weak classifiers:

The selected weight for each new weak classifier is always positive

$$\epsilon_m < \frac{1}{2} \Rightarrow \frac{1}{2} \log \left( \frac{1 - \epsilon_m}{\epsilon_m} \right) > 0$$

• The smaller the classification error, the bigger its associated weight  $\alpha$  and the weak classifier will have more impact in the final strong classifier.

## **Analysis**

#### Weak classifiers:

The selected weight for each new weak classifier is always positive

$$\epsilon_m < \frac{1}{2} \Rightarrow \frac{1}{2} \log \left( \frac{1 - \epsilon_m}{\epsilon_m} \right) > 0$$

• The smaller the classification error, the bigger its associated weight  $\alpha$  and the weak classifier will have more impact in the final strong classifier.

#### Weighted training points:

• The weights of the data points are multiplied by  $\exp[-\alpha_m y_i h_m(\mathbf{x}_i)]$ .

$$\exp[-\alpha_m \mathbf{y}_i \mathbf{h}_m(\mathbf{x}_i)] = \begin{cases} \exp[-\alpha_m], & \text{if } h_m(\mathbf{x}_i)] = \mathbf{y}_i \\ \exp[\alpha_m], & \text{if } h_m(\mathbf{x}_i)] \neq \mathbf{y}_i \end{cases}$$

 The weights of correctly classified points are reduced and the weights of misclassified points increase. Misclassified points will receive more attention in the next iteration.

# Example





# Example



 ${\sf Gradient\ Boosting} = {\sf Gradient\ Descent} \, + \, {\sf Boosting}$ 

 ${\sf Gradient\ Boosting} = {\sf Gradient\ Descent} \, + \, {\sf Boosting}$ 

### Key idea:

- Fit an additive model (ensemble)  $\sum_{m} \alpha_{m} h_{m}$  in an iterative manner
- At each iteration, introduce a weak learner to compensate the shortcomings of existing weak learners.

 $\mathsf{Gradient}\ \mathsf{Boosting} = \mathsf{Gradient}\ \mathsf{Descent}\ +\ \mathsf{Boosting}$ 

### Key idea:

- Fit an additive model (ensemble)  $\sum_{m} \alpha_{m} h_{m}$  in an iterative manner
- At each iteration, introduce a weak learner to compensate the shortcomings of existing weak learners.
- Recall: In Adaboost, shortcomings are identified by high-weight data points.

 $\mathsf{Gradient}\ \mathsf{Boosting} = \mathsf{Gradient}\ \mathsf{Descent}\ +\ \mathsf{Boosting}$ 

### Key idea:

- Fit an additive model (ensemble)  $\sum_{m} \alpha_{m} h_{m}$  in an iterative manner
- At each iteration, introduce a weak learner to compensate the shortcomings of existing weak learners.
- **Recall:** In Adaboost, *shortcomings* are identified by high-weight data points.
- **Gradient Boosting:** *Shortcomings* are identified by gradients.

 ${\sf Gradient\ Boosting} = {\sf Gradient\ Descent\ } + \ {\sf Boosting}$ 

### Key idea:

- Fit an additive model (ensemble)  $\sum_{m} \alpha_{m} h_{m}$  in an iterative manner
- At each iteration, introduce a weak learner to compensate the shortcomings of existing weak learners.
- **Recall:** In Adaboost, *shortcomings* are identified by high-weight data points.
- **Gradient Boosting:** *Shortcomings* are identified by gradients.

Both high-weight data points and gradients provide information on how to improve the global model (ensemble)

#### Intuition

#### Game:

- You are given a set of points  $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$ . Your task is to fit a model  $H(\mathbf{x})$  to minimize the square loss
- To get started, they give you a model *H*.
- You check the provided model. It is good, but not perfect:

$$H(\mathbf{x}_1) = 0.7 \Rightarrow \mathbf{y}_1 = 0.65$$
  
 $H(\mathbf{x}_2) = 4.1 \Rightarrow \mathbf{y}_2 = 4.2...$ 

• Your goal: To improve *H* 

#### Intuition

#### Game:

- You are given a set of points  $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$ . Your task is to fit a model  $H(\mathbf{x})$  to minimize the square loss
- To get started, they give you a model *H*.
- You check the provided model. It is good, but not perfect:

$$H(\mathbf{x}_1) = 0.7 \Rightarrow y_1 = 0.65$$
  
 $H(\mathbf{x}_2) = 4.1 \Rightarrow y_2 = 4.2...$ 

• Your goal: To improve *H* 

#### Rules of the Game:

- 1. You cannot change anything in H (i.e. re-train)
- 2. You can add an additional model to H, so that the new prediction would be H(x) + h(x)

## Intuition - A simple solution to the game

You wish to improve your model such that:

$$H(\mathbf{x}_1) + h(\mathbf{x}_1) = y_1$$

$$H(\mathbf{x}_2) + h(\mathbf{x}_2) = y_2$$

$$\dots$$

$$H(\mathbf{x}_N) + h(\mathbf{x}_N) = y_N$$

or equivalently:

$$h(\mathbf{x}_1) = \mathbf{y}_1 - H(\mathbf{x}_1)$$

$$h(\mathbf{x}_2) = \mathbf{y}_2 - H(\mathbf{x}_2)$$

$$\dots$$

$$h(\mathbf{x}_N) = \mathbf{y}_N - H(\mathbf{x}_N)$$

Is it possible to train a regression tree that accomplishes the goal?

#### **Intuition - Residuals**

Idea: To train the regression tree h to fit the **residuals** 

**Residuals:** the parts were the existing model  $H(\cdot)$  cannot do well, i.e.  $y_i - H(\mathbf{x}_i)$ 

#### **Intuition - Residuals**

Idea: To train the regression tree h to fit the **residuals** 

**Residuals:** the parts were the existing model  $H(\cdot)$  cannot do well, i.e.  $y_i - H(\mathbf{x}_i)$ 

This means that the new training set looks like:

$$\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i - H(\mathbf{x}_i))\}_{i=1}^N$$

#### **Intuition - Residuals**

Idea: To train the regression tree h to fit the **residuals** 

**Residuals:** the parts were the existing model  $H(\cdot)$  cannot do well, i.e.  $y_i - H(\mathbf{x}_i)$ 

This means that the new training set looks like:

$$\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i - H(\mathbf{x}_i))\}_{i=1}^N$$

The role of the learned h is to compensate the shortcoming of existing model  $H(\cdot)$ .

If the new model H(x) + h(x) is still not satisfactory, more trees can be added in an iterative fashion

Our final aim is to minimize the residuals. For such purpose, we can pick a convenient loss such as the sum of squared errors:

$$\mathcal{L}(H) = \frac{1}{2} \sum_{i=1}^{N} (\mathbf{y}_i - H(\mathbf{x}))^2$$

Our final aim is to minimize the residuals. For such purpose, we can pick a convenient loss such as the sum of squared errors:

$$\mathcal{L}(H) = \frac{1}{2} \sum_{i=1}^{N} (\mathbf{y}_i - H(\mathbf{x}))^2$$

Notice that  $H(x_1), H(x_2), \ldots, H(x_N)$  are just numbers, so we can treat  $H(x_i)$  as parameters and take derivatives.

Our final aim is to minimize the residuals. For such purpose, we can pick a convenient loss such as the sum of squared errors:

$$\mathcal{L}(H) = \frac{1}{2} \sum_{i=1}^{N} (\mathbf{y}_i - H(\mathbf{x}))^2$$

Notice that  $H(x_1), H(x_2), \ldots, H(x_N)$  are just numbers, so we can treat  $H(x_i)$  as parameters and take derivatives.

In such scenario, it is easy to proof that:

$$-\frac{\partial \mathcal{L}}{\partial H} = \mathbf{y}_i - H(\mathbf{x})$$

Our final aim is to minimize the residuals. For such purpose, we can pick a convenient loss such as the sum of squared errors:

$$\mathcal{L}(H) = \frac{1}{2} \sum_{i=1}^{N} (\mathbf{y}_i - H(\mathbf{x}))^2$$

Notice that  $H(x_1), H(x_2), \ldots, H(x_N)$  are just numbers, so we can treat  $H(x_i)$  as parameters and take derivatives.

In such scenario, it is easy to proof that:

$$-\frac{\partial \mathcal{L}}{\partial H} = \mathbf{y}_i - H(\mathbf{x})$$

which are nothing else but the residuals!

We can interpret the residuals as negative gradients

$$H(\mathbf{x}_i)^{(m+1)} \longleftarrow H(\mathbf{x}_i)^{(m)} + h(\mathbf{x}_i)$$

$$H(\mathbf{x}_i)^{(m+1)} \longleftarrow H(\mathbf{x}_i)^{(m)} + h(\mathbf{x}_i)$$
  
 $H(\mathbf{x}_i)^{(m+1)} \longleftarrow H(\mathbf{x}_i)^{(m)} + y_i - H(\mathbf{x}_i)$ 

$$H(\mathbf{x}_{i})^{(m+1)} \longleftarrow H(\mathbf{x}_{i})^{(m)} + h(\mathbf{x}_{i})$$

$$H(\mathbf{x}_{i})^{(m+1)} \longleftarrow H(\mathbf{x}_{i})^{(m)} + y_{i} - H(\mathbf{x}_{i})$$

$$H(\mathbf{x}_{i})^{(m+1)} \longleftarrow H(\mathbf{x}_{i})^{(m)} - 1 \cdot \frac{\partial \mathcal{L}}{\partial H}$$

$$H(\mathbf{x}_{i})^{(m+1)} \longleftarrow H(\mathbf{x}_{i})^{(m)} + h(\mathbf{x}_{i})$$

$$H(\mathbf{x}_{i})^{(m+1)} \longleftarrow H(\mathbf{x}_{i})^{(m)} + y_{i} - H(\mathbf{x}_{i})$$

$$H(\mathbf{x}_{i})^{(m+1)} \longleftarrow H(\mathbf{x}_{i})^{(m)} - 1 \cdot \frac{\partial \mathcal{L}}{\partial H}$$

From the gradient descent lecture, this looks just like:

$$\theta^{(\tau+1)} \longleftarrow \theta^{(\tau)} - \alpha \nabla_{\theta} J_i(\theta)$$

$$H(\mathbf{x}_{i})^{(m+1)} \longleftarrow H(\mathbf{x}_{i})^{(m)} + h(\mathbf{x}_{i})$$

$$H(\mathbf{x}_{i})^{(m+1)} \longleftarrow H(\mathbf{x}_{i})^{(m)} + y_{i} - H(\mathbf{x}_{i})$$

$$H(\mathbf{x}_{i})^{(m+1)} \longleftarrow H(\mathbf{x}_{i})^{(m)} - 1 \cdot \frac{\partial \mathcal{L}}{\partial H}$$

From the gradient descent lecture, this looks just like:

$$\theta^{(\tau+1)} \longleftarrow \theta^{(\tau)} - \alpha \nabla_{\theta} J_i(\theta)$$
$$\theta_j^{(\tau+1)} \longleftarrow \theta_j^{(\tau)} - \alpha \frac{\partial J}{\partial \theta_j}$$

In the setup of regression with the squares loss:

 $\bullet \ \ \mathsf{residual} \Leftrightarrow \mathsf{negative} \ \mathsf{gradient} \\$ 

In the setup of regression with the squares loss:

- ullet residual  $\Leftrightarrow$  negative gradient
- fit h to residual  $\Leftrightarrow$  fit h to negative gradient

In the setup of regression with the squares loss:

- residual ⇔ negative gradient
- fit h to residual  $\Leftrightarrow$  fit h to negative gradient
- ullet update H based on residual  $\Leftrightarrow$  update H based on negative gradient

We are actually updating the model using gradient descent

# **Gradient Boosting Regression Trees Algorithm**

- 1. Set a learning rate  $\alpha$
- 2. Train an initial model  $H_0$
- 3. For m = 1, ..., M
  - 3.1 For every training point, estimate the negative gradient:

$$-g(\mathbf{x}_i) = \frac{\partial \mathcal{L}}{\partial H(\mathbf{x}_i)}$$

- 3.2 Obtain  $h_m$  that minimizes the negative gradient  $g(\mathbf{x}_i)$
- 3.3 Update *H*:

$$H_{m+1} = H_m + \alpha h_m$$

## **Negative Gradients**

In general, negative gradients ⇔ residuals.

This parallel holds only when using the squared loss. However, we may be interested in using other loss functions which are better fitted to the targeted problem.

**Solution:** Update always by negative gradient rather than residuals

Boosting, Kaggle competitions &

Reproducibility

Wrap-up

# Wrap-up

- We introduced ensembles techniques, which are some of the best out of the box methods in ML
- We saw two techniques to build them: bagging and boosting
- Bagging: Methods are built in parallel.
- Bagging's most famous algorithm: Random forests
- Boosting: Methods are built sequentially.
- Boosting's notable algorithms: Adaboost and Gradient Boosting Trees

## **Key Concepts**

- Bagging
- Boosting
- Gradient Descent over functions
- Out-of-Bag Error
- Negative Gradient



# Further Reading and Useful Material

| Source                                   | Notes          |
|------------------------------------------|----------------|
| The Elements of Statistical Learning     | Ch. 10, 15, 16 |
| Pattern Recognition and Machine Learning | Ch. 14         |