$$8 \times \longrightarrow \frac{1}{x^2+1}$$
 $\frac{2}{2}$: Sterig out R (mitters directem $\epsilon - \delta$ - Benseis)

WH:
$$\int stering out R$$
, wenn $\forall x_0 \in \mathbb{R}$:
$$\forall x_0 \in \mathbb{R} \text{ wit } |x_0| < \delta$$

$$\Rightarrow | f(x) - f(x_0)| < \epsilon$$

Unsere Aufgate: mussen passendes 5 angiten!
(5 darf datei von xo und & attangen)

Sei xo∈ R und E>0 cecieig,

$$\left| \begin{array}{c} f(x) - f(x_0) \right| = \left| \frac{1}{x^2 + 1} - \frac{1}{x_0^2 + 1} \right| = \frac{\left| x_0^2 - x^2 \right|}{\left(x_0^2 + 1 \right) \left(x^2 + 1 \right)} \right|$$
wollen das duck ε
alsocalizen, depin
missen wir das
$$\left[x^2 + 1 \ge 1 \right] = \frac{\left| (x_0 - x)(x_0 + x_1) \right|}{\left| x_0^2 + 1 \right|}$$
voliable x loswerden
$$\left[x - x \right] \left(|x_0 - x| + |x_0| \right)$$

$$\left[x - x \right] \left(|x_0 - x| + |x_0| \right)$$

$$\left[x - x \right] \left(|x_0 - x| + |x_0| \right)$$

$$\leq \delta \frac{|\times_0| + |\times|}{|\times_0| + 1} = :$$

Wie weiter alsochadren ?! Versuche Alsochadrung aus der Yar. $|x-x_0| < \delta$ zu behommen

aus ungehebre
$$\Delta$$
 - Ungl: $||x|-|x_0|| \le |x-x_0| < \delta$
 $\Rightarrow -\delta \le |x|-|x_0| \le \delta$
 $\Rightarrow |x| \le \delta + |x_0|$

$$\frac{\delta + 2\delta |\times 0|}{\times_0^2 + 1} = \delta \cdot \frac{1 + 2|\times 0|}{\times_0^2 + 1} = \frac{4}{3} \cdot \frac{4}{3} \times \frac{1}{3} = \frac{4}$$

- Notice
$$\delta \leq \frac{\varepsilon}{1+2|x_0|}$$
, denn dann giet $\frac{x_0^2+1}{x_0^2+1}$

$$\frac{1+2|x_0|}{x_0^2+1} \leq \frac{\varepsilon}{x_0^2+1} = \varepsilon$$

=) wake
$$\delta := \min \left\{ 1, \frac{\varepsilon}{\frac{1+2|x_0|}{x_0^2+1}} \right\} \mod \left| f(x) - f(x_0) \right|$$
expired