E.coli outbreak - lab notebook

Download datasets & Quality control

78

wget https://d28rh4a8wq0iu5.cloudfront.net/bioinfo/SRR292678sub_S1_L001_R1_001.fastq.gz
wget https://d28rh4a8wq0iu5.cloudfront.net/bioinfo/SRR292678sub_S1_L001_R2_001.fastq.gz

62 - matepair 2

 $\label{thm:condition} wget \ https://d28rh4a8wq0iu5.cloudfront.net/bioinfo/SRR292862_S2_L001_R1_001.fastq.gz \\ wget \ https://d28rh4a8wq0iu5.cloudfront.net/bioinfo/SRR292862_S2_L001_R2_001.fastq.gz \\ \\$

70 - matepair 1

wget https://d28rh4a8wq0iu5.cloudfront.net/bioinfo/SRR292770_S1_L001_R1_001.fastq.gz

K-mer profile and genome size estimation

Guide

(base) anya@anya-laptop:-/Рабочий стол/IB/workshop/project 3\$ jellyfish count -m 31 -o output_jelly -s 10000000 '/home/anya/Рабочий стол/IB

table <- read.csv('output_jelly_histo.txt', header = F)
plot(table[1:948,],type="l")</pre>

table <- read.csv('output_jelly_histo.txt', header = F)
plot(table[4:150,],type="l")
points(table[4:150,])</pre>

sum(as.numeric(table[16:949,1]*table[16:949,2]))
636969672

count bases

at '/home/anya/Рабочий стол/IB/workshop/project 3/SRR292678sub_S1_L001_R1_001.fastq' | paste - - - - | cut -f 2 | tr -d '\n' | wc -c 494941140

```
table <- read.csv('output_jelly_histo.txt', header = F)
plot(table[3:200,],type="l")
points(table[16:125,])

sum(as.numeric(table[16:949,1]*table[16:949,2]))
636969672

max(table[16:150,2]) # 150522 -> 64

all <- sum(as.numeric(table[16:949,1]*table[16:949,2]))/64
# 952651

single <- sum(as.numeric(table[16:125,1]*table[16:125,2]))/64
# 9309610

(sum(as.numeric(table[16:125,1]*table[16:125,2]))/sum(as.numeric(table[16:949,1]*table[16:949,2])))
# 0.93539

n <- (64*90)/(90-31+1) # depth of coverage
genome_size = 494941140/n
```

read size = 90

conda install spades -c bioconda

Assembling E. coli X genome from paired reads

SPAdes manuals

```
spades.py -1 'SRR292678sub_S1_L001_R1_001.fastq' -2 'SRR292678sub_S1_L001_R2_001.fastq' -0 spades_did_this
```

Assess the quality of the resulting assemble

python '/home/anya/miniconda3/bin/quast.py' -s scaffolds.fasta contigs.fasta

QUAST

Quality Assessment Tool for Genome Assemblies by $\underline{\sf CAB}$

27 November 2022, Sunday, 21:30:51

View in Icarus contig browser

All statistics are based on contigs of size >= 500 bp, unless otherwise noted (e.g., "# contigs (>= 0 bp)" and "Total length (>= 0 bp)" include all contigs).

✓ Show heatmap								
Worst Median Best								
Statistics without reference	scaffolds	≡ scaffolds_broken	≡ contigs					
# contigs	221	223	210					
# contigs (>= 0 bp)	372	223	386					
# contigs (>= 1000 bp)	158	159	159					
# contigs (>= 5000 bp)	82	81	81					
# contigs (>= 10000 bp)	67	67	67					
# contigs (>= 25000 bp)	50	50	50					
# contigs (>= 50000 bp)	32	32	32					
Largest contig	300 763	300 763	300 763					
Total length	5 304 595	5 299 555	5 295 721					
Total length (>= 0 bp)	5 336 365	5 299 555	5 334 575					
Total length (>= 1000 bp)	5 259 608	5 259 101	5 259 101					
Total length (>= 5000 bp)	5 081 904	5 076 685	5 076 685					
Total length (>= 10000 bp)	4 977 737	4 977 737	4 977 737					
Total length (>= 25000 bp)	4714504	4714504	4714504					
Total length (>= 50000 bp)	4 035 821	4 035 821	4 035 821					
N50	111860	111 860	111860					
N90	18 506	18 506	18 506					
auN	131 705	131 826	131 921					
L50	14	14	14					
L90	53	53	53					
GC (%)	50.53	50.54	50.56					
Mismatches								
# N's per 100 kbp	33.74	0	0					
# N's	1790	0	0					

Impact of reads with large insert size (Assembling with all three libraries)

 $spades.py \ --pe1-1 \ -/IB/hw3/SRR292678sub_S1_L001_R1_001.fastq.gz \ --pe1-2 \ -/IB/hw3/SRR292678sub_S1_L001_R2_001.fastq.gz \ --mp1-1 -/IB/hw3/SRR292678sub_S1_UD01_R2_001.fastq.gz \ --mp1-1 -/IB$

python '/home/anya/miniconda3/bin/quast.py' -s scaffolds.fasta contigs.fasta

Statistics without reference	scaffolds	≡ scaffolds_broken	≡ contigs
# contigs	90	119	105
# contigs (>= 0 bp)	327	119	369
# contigs (>= 1000 bp)	54	79	79
# contigs (>= 5000 bp)	16	33	33
# contigs (>= 10000 bp)	13	30	30
# contigs (>= 25000 bp)	10	26	26
# contigs (>= 50000 bp)	10	22	22
Largest contig	2815616	698 474	698 474
Total length	5 391 554	5 354 477	5 350 156
Total length (>= 0 bp)	5 437 160	5 354 477	5 403 327
Total length (>= 1000 bp)	5 365 719	5 331 494	5 331 230
Total length (>= 5000 bp)	5 258 076	5 203 203	5 202 939
Total length (>= 10000 bp)	5 238 939	5 184 066	5 183 802
Total length (>= 25000 bp)	5 200 270	5 133 955	5 133 691
Total length (>= 50000 bp)	5 200 270	4 975 765	4 975 501
N50	2815616	335 515	335 515
N90	180 369	79 998	79 998
auN	1 633 387	319 372	319 603
L50	1	6	6
L90	7	20	20
GC (%)	50.57	50.58	50.59
Mismatches			
# N's per 100 kbp	627.52	0.11	0
# N's	33 833	6	0

Genome Annotation

```
conda activate prokka
prokka --outdir prokka --compliant --centre centre --gcode 11 --evalue 1e-04 --genus Escherichia --species Escherichia_coli --quiet ~/IB/hw
```

```
PROKKA_12022022.err PROKKA_12022022.fsa PROKKA_12022022.sqn
PROKKA_12022022.faa PROKKA_12022022.gbk PROKKA_12022022.tbl
PROKKA_12022022.ffn PROKKA_12022022.gff PROKKA_12022022.tsv
PROKKA_12022022.fna PROKKA_12022022.log PROKKA_12022022.txt
```

Finding the closest relative of E. coli X

```
barrnap --quiet -o bout/rrna.fa < scaffolds.fasta > bout/rrna.gff
```

Escherichia coli 55989, NCBI Reference Sequence: NC_011748.1

What is the genetic cause of HUS?

Two shiga toxin were found using Mauve:

stxA 959 nt locus LHMPOLMA 35 location complement(877..1836)

stxB 269 nt locus LHMPOLMA_35 location complement(596..865)

Tracing the source of toxin genes in E. coli X

The most proteins were phage-related

Antibiotic resistance detection

	# Antimicrobial	Class	WGS-predicted phenotype	Match	Genetic background
15	sulfamethoxazole	folate pathway antagonist	Resistant	3	sul1 (sul1_AY115475), sul1 (sul1_DQ914960), su
18	tetracycline	tetracycline	Resistant	3	tet(A) (tet(A)_AJ517790)
20	doxycycline	tetracycline	Resistant	3	tet(A) (tet(A)_AJ517790)
22	ethidium bromide	quaternary ammonium compound	Resistant	1	qacE (qacE_X68232)
23	chlorhexidine	quaternary ammonium compound	Resistant	1	qacE (qacE_X68232)
24	benzylkonium chloride	quaternary ammonium compound	Resistant	1	qacE (qacE_X68232)
25	cetylpyridinium chloride	quaternary ammonium compound	Resistant	1	qacE (qacE_X68232)
29	streptomycin	aminoglycoside	Resistant	3	aph(6)-ld (aph(6)-ld_M28829), aph(3")-lb (aph
60	ceftriaxone	beta-lactam	Resistant	3	blaCTX-M-15 (blaCTX-M-15_AY044436)
66	cefepime	beta-lactam	Resistant	3	blaCTX-M-15 (blaCTX-M-15_AY044436)
69	aztreonam	beta-lactam	Resistant	3	blaCTX-M-15 (blaCTX-M-15_AY044436)
70	ceftazidime	beta-lactam	Resistant	3	blaCTX-M-15 (blaCTX-M-15_AY044436)
74	ampicillin	beta-lactam	Resistant	3	blaTEM-1B (blaTEM-1B_AY458016), blaCTX-M-15 (b
75	cephalothin	beta-lactam	Resistant	3	blaTEM-1B (blaTEM-1B_AY458016)
76	piperacillin	beta-lactam	Resistant	3	blaTEM-1B (blaTEM-1B_AY458016), blaCTX-M-15 (b
77	amoxicillin	beta-lactam	Resistant	3	blaTEM-1B (blaTEM-1B_AY458016), blaCTX-M-15 (b
79	cefotaxime	beta-lactam	Resistant	3	blaCTX-M-15 (blaCTX-M-15_AY044436)
81	ticarcillin	beta-lactam	Resistant	3	blaTEM-1B (blaTEM-1B_AY458016), blaCTX-M-15 (b