Definition 37.14. We say that a family \mathcal{B} of subsets of E is a basis for the topology \mathcal{O} , if \mathcal{B} is a subset of \mathcal{O} , and if every open set U in \mathcal{O} can be obtained as some union (possibly infinite) of sets in \mathcal{B} (agreeing that the empty union is the empty set).

For example, given any metric space (E, d), $\mathcal{B} = \{B_0(a, \rho) \mid a \in E, \rho > 0\}$. In particular, if $d = \| \|_2$, the open intervals form a basis for \mathbb{R} , while the open disks form a basis for \mathbb{R}^2 . The open rectangles also form a basis for \mathbb{R}^2 with the standard topology. See Figure 37.13.

It is immediately verified that if a family $\mathcal{B} = (U_i)_{i \in I}$ is a basis for the topology of (E, \mathcal{O}) , then $E = \bigcup_{i \in I} U_i$, and the intersection of any two sets $U_i, U_j \in \mathcal{B}$ is the union of some sets in the family \mathcal{B} (again, agreeing that the empty union is the empty set). Conversely, a family \mathcal{B} with these properties is the basis of the topology obtained by forming arbitrary unions of sets in \mathcal{B} .

Definition 37.15. A subbasis for \mathcal{O} is a family \mathcal{S} of subsets of E, such that the family \mathcal{B} of all finite intersections of sets in \mathcal{S} (including E itself, in case of the empty intersection) is a basis of \mathcal{O} . See Figure 37.13.

Figure 37.13: Figure (i.) shows that the set of infinite open intervals forms a subbasis for \mathbb{R} . Figure (ii.) shows that the infinite open strips form a subbasis for \mathbb{R}^2 .

The following proposition gives useful criteria for determining whether a family of open subsets is a basis of a topological space.

Proposition 37.8. Given a topological space (E, \mathcal{O}) and a family \mathcal{B} of open subsets in \mathcal{O} the following properties hold:

- (1) The family \mathcal{B} is a basis for the topology \mathcal{O} iff for every open set $U \in \mathcal{O}$ and every $x \in U$, there is some $B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq U$. See Figure 37.14.
- (2) The family \mathcal{B} is a basis for the topology \mathcal{O} iff
 - (a) For every $x \in E$, there is some $B \in \mathcal{B}$ such that $x \in B$.