Übungen 7 - Differentialrechnung 11.1.2023

Aufgabe 1: Extremwerte und begleitende Eigenschaften

aus http://www.mathe-online.at/tests/anwdiff/minmax.html

a) Welche der angegebenen Funktionen besitzen an der Stelle x=0 ein **lokales Minimum** und welche ein **lokales Maximum**?

$(1+x^2)^{1/2}$	cosx	$x^2 e^x$	$-x^4e^{-x}$
sin ² x	$e^x + e^{-x}$	$(1+x^2)^{-1}$	e ^{-x²}

b) Welche Eigenschaften haben differenzierbare Funktionen?

Eine Stelle x , an $\operatorname{der} f'(x) = 0$ ist, kann	ì	Eine Stelle x , an $\operatorname{der} f'(x) = 0$ ist, ist mit Sicherheit		
eine Nullstelle sein eine lokale Extremstelle sein eine Sattelstelle sein eine Wendestelle sein		eine Nullstelle ein lokales Extremum eine Sattelstelle eine Wendestelle		
$\mathrm{Sei}f\colon R o R$ differenzierbar. An jeder Maximumstelle x gilt	rlokalen	$\mathrm{Sei}f\colon R o R$ differenzierbar. An Minimumstelle x gilt	ieder lokalen	
f'(x) = 0 f'(x) = 0 und $f''(x) < 0f'(x) = 0$ und $f''(x) > 0$		f(x) = f'(x) = 0 f''(x) < 0 f''(x) > 0		
f'(x) = f''(x) = 0		$f''(x) \neq 0$		

Aufgabe 2: Kurvendiskussion

$$f(x) = \frac{e^{\frac{-1}{x}}}{x}$$

Zusammenfassung Kurvendiskussion:

- 1. Definitionsbereich/ Definitionslücken (hebbar?)/ Bildbereich
- 2. Symmetrie
- 3. Nullstellen
- 4. Pole (Vorzeichenwechsel?)
- 5. Ableitungen (bis 3.Ableitung sinnvoll)
- 6. Extremwerte (lokale Minima/ Maxima)
- 7. Wendepunkte, Sattelpunkte
- 8. Monotonieverhalten
- 9. Asymptoten (Verhalten für $x \to \pm \infty$)
- 10. Stetigkeit $(\lim_{x \to 0} f(x) = f(x_0))$
- + parallele Erstellung einer Zeichnung

3

Aufgabe 3: Extremwertproblem "Schnellster Weg von A nach C"

Eine Person befindet sich mit einem Boot im Punkt A (eines stillen Gewässers) genau 1 km vom nächsten Punkt B der geradlinigen Küste entfernt und möchte zu einem Punkt C an der Küste gelangen, der vom Punkt B genau 1 km entfernt ist.

Mit dem Boot bewegt sich die Person mit 3 km/h und an Land zu Fuß mit 5 km/h. Welchen Punkt X muss die Person an der Küste ansteuern, damit sie möglichste schnell am Punkt C ankommt?

Wie lange würde die Person bei C unter alleiniger Verwendung des Bootes mindestens benötigen?

4

Aufgabe 4:

Berechnen Sie die nachfolgenden Grenzwerte mit Hilfe der Regeln von Bernoulli-l'Hospital:

$$\lim_{x\to 0}\frac{\sin(2x)}{x^2}$$

Klausuraufgabe zu Bernoulli-l'Hospital:

b) Berechnen Sie die nachfolgenden Grenzwerte mit Verwendung der Regeln von Bernoulli l'Hospital:

(1)
$$\lim_{x\to 0} \frac{x-\ln(x+1)}{1-\cos x}$$