SHAKE THE FUTURE.

Rapport du Comité de Suivi Individuel

Young Jun Kim^(1,2), David Le Touzé⁽¹⁾

(1) Ecole Centrale de Nantes, France, (2) Bureau Veritas, France

09th / 10 / 2019

General information

Affiliation

School : École Centrale de Nantes (ECN)

Lab : LHEEA

Team: H2I (Hydrodynamique, Interfaces et Interactions)

Date of admission

01/01/2018 (1 year 10 months)

Financement

CIFRE contract from Bureau Veritas (BV) and ECN

Encadrants de thèse

David Le Touzé (Directeur)
Benjamin Bouscasse (Co-encadrant)

Objective

Numerical improvement and validation of a naval hydrodynamics CFD solver in view of performing fast and accurate simulation of complex ship-wave interaction.

Numerical Improvement

Efficiency

Naval applications

What makes the problem complicated?

Two-phase incompressible viscous (Newtonian) flow solver.

There are many important issues.

The most critical issue is interface (discontinuity).

Governing equations

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (u\alpha) + \nabla \cdot (u_r\alpha(1-\alpha)) = 0$$

$$\frac{\partial(\rho u)}{\partial t} + \nabla \cdot (\rho u u) - \nabla \cdot (\mu(\nabla u)) - \nabla u \cdot \nabla \mu = \nabla p_d - (g \cdot x) \nabla \rho$$

VOF, density, mass flux, dynamic pressure, viscosity

Preliminary study: Interface treatment

The interface treatment schemes

Interface capturing scheme: How to define(capture) the free surface.

• Interface advection scheme: How to move interface in time.

• Interface boundary condition: How to define the physical properties at the interface.

Aaveraged/Aanalytic 90 0.0 8 0.0 60

0.5

Grid 1

Grid 2

Periodic wave propagation test

The interface capturing scheme is VOF.

Interface boundary conditions	Interface advection
Averaged Two-Phase Model	Compressive VOF+MULES
Averaged Two-Phase Model	IsoAdvector
GFM (Ghost Fluid Method)	Compressive VOF+MULES
GFM (Ghost Fluid Method)	IsoAdvector

Grid 5

Inlet

——Analytic

Grid 3

← Ghost Fluid Method & Iso

Grid 4 Ref

Air

ALE

Outlet

Preliminary study: Waves

Wave generation and absorption.

$$\chi = (1 - w)\chi + w\chi^{Target}$$

Figure 1.1. Schematic view of the NWT for a parametric study on the relaxation schemes.

Explicit Relaxation method is used to generate wave.

Various outlet conditions are studied

Increased viscosity & artificial damping source

$$\frac{\partial(\rho u)}{\partial t} + \nabla \cdot (\rho u u) - \nabla \cdot ((\mu + \mu_{add})(\nabla u)) - \nabla u \cdot \nabla \mu = \nabla p_d - (\mathbf{g} \cdot \mathbf{x}) \nabla \rho + \mathbf{S}$$

$$\mathbf{S} = (0, 0, \rho(C_1 + C_2 u_z) w u_z)$$

Relaxation to incident wave & no wave (calm water).

Mesh streatched outlet

Preliminary study: Waves

Wave generation and absorption.

If the condition of outlet is different to the incoming wave, it makes wave reflection and phase shift.

Indicent wave outlet condition gives most stable and precise wave propagation.

Figure 2.1. The first-order harmonic amplitudes and phase differences with respect to different outlet.

Figure 2.2. Evolution of reflection coefficients for different outlets.

Numerical Improvement Higher-order schemes

Higher-order scheme.

The higher-order schemes are believed to have the advectage on high-order accuracy

Spatial scheme

The temporal schemes are studied first, beacuse it is more simple.

Diagonally Implicit Runge-Kutta (DIRK) method

$$\dot{y} = f(t, y(t)) \tag{1}$$

$$y(t^{(n,i)}) = y^{(i)} = y^{(n)} + ha_{ii}f(t^{(n,i)}, y(t^{(n,i)})) + h\sum_{j=1}^{i-1} a_{ij}f(t^{(n,j)}, y(t^{(n,j)}))$$
Diagonally implicit
$$t^{(n,i)} = t^{(n)} + h\tau_{i}$$
(2)

$$y^{(n+1)} = y^{(n)} + h \sum_{j=1}^{s} b_{j} f(t^{(n,j)}, y(t^{(n,j)}))$$

$$-\tau_{1} - a_{11} - a_{21} - a_{22} - a_{33} - a_{33} - a_{33} - a_{33} - a_{34}$$

$$(3)$$

Only SA DIRKs are used. Singly Diagonally IRK SDIRK Stiffly accurate

	SDIRK Stiffly accurate					
	$ au_1$	γ	0	0	0	
	$ au_2$	a_{21}	γ	0	0	
	$ au_3$	a_{31}	a_{32}	γ	0	
_	1	a_{41}	a_{42}	a_{43}	γ	_
		a_{41}	a_{42}	a_{43}	γ	
٦						
	0	0	0	0	0	
_	$ au_2$	a_{21}	γ	0	0	
	$ au_3$	a_{31}	a_{32}	γ	0	
	1	a_{41}	a_{42}	a_{43}	γ	
		a_{41}	a_{42}	a_{43}	γ	
		ES	DIRK	SA		

Explicit first SDIRK

Fig. 1. Four-stage SDIRK, SDIRK_SA, ESDIRK and ESDIRK_SA 14

Table 2
Names and the properties of solvers

Code name	Identification name	Order	Implicit stage
Euler	Implicit Euler	1	1
OFCN	OpenFOAM CN	2	1
RKCN	ESDIRK2_SA	2	1
RK221	$SDIRK2_S$	2	2
RK331	SDIRK3_SA	3	3
RK334	ESDIRK3_SA	3	2
RK431	ESDIRK[3](4)_SA	3	3

, RK431						
0	0	0	0	0		
2γ	γ	γ	0	0		
c_3	$(c_3 - a_{32} - \gamma)$	a_{32}	γ	0		
1	$(1 - b_2 - b_3 - \gamma)$	b_2	b_3	γ		
	$(1-b_2-b_3-\gamma)$	b_2	b_3	γ		

$$a_{32} = \frac{c_3(c_3 - 2\gamma)}{4\gamma} \quad b_2 = \frac{-2 + 3c_3 + 6\gamma(1 - c_3)}{12\gamma(c_3 - 2\gamma)} \quad b_3 = \frac{1 - 6\gamma + 6\gamma^2}{3c_3(c_3 - 2\gamma)} \quad c_3 = \frac{3 - 20\gamma + 24\gamma^2}{4 - 24\gamma + 24\gamma^2}$$

	RKC	1			RK221	
0	0 0.5	0		γ	$\gamma \ 1-\gamma$	0
1			_	1	$1 - \gamma$	γ
	0.5	0.5			$1 - \gamma$	γ
				$\gamma = (2 - \sqrt{2})/2$		

RK331

γ	γ	0	0
$\frac{(1+\gamma)}{2}$	$\frac{(1+\gamma)}{2} - \gamma$	γ	0
1	$-\frac{(6\gamma^{2}-16\gamma+1)}{4}$	$\frac{(6\gamma^2-20\gamma+5)}{4}$	γ
	$-\frac{(6\gamma^2-16\gamma+1)}{4}$	$\frac{(6\gamma^2-20\gamma+5)}{4}$	γ

 $\gamma = 0.43586652150845899941601945.$

RK334

0	0	0	0
2γ	γ	γ	0
1	$(1-b_2-\gamma)$	b_2	γ
	$(1 - b_2 - \gamma)$	b_2	γ

 $b_2 = (1 - 2\gamma)/(4\gamma)$ and $\gamma = (3 + \sqrt{3})/6$.

Taylor-Green vortex simulation

Analytic solution

$$-\pi \le x, y \le \pi$$

$$u = -\sin(x)\cos(y)e^{-2vt}$$

$$v = \cos(x)\sin(y)e^{-2\nu t}$$

$$p = \frac{\rho}{4} \left[\cos(2x) + \cos(2y) \right] e^{-4\nu t}$$

$$w = -2\sin(x)\sin(y)e^{-2vt}$$
 vortisity

Computational conditions

Re =
$$\frac{U_{\text{max}}L}{v} = 10$$
 $L = 2\pi$ $U_{\text{max}} = 1$

Taylor-Green vortex simulation

Table 3

The computational conditions of Taylor-Green vortex benchmark, Re = 10

maximum error of pressure	Time-step Number of cell per reference length L			L	
		$Dx04 \sim Dx64$	Dx128	Dx256	Dx512
	0.004		07-		Spatial
Spatial Convergence of velocity	0.01		О	О	
All spatial schemes are linear	0.02		О	О	
Spatial convergence of veloicty	0.04		0	0	
Euler OFCN	0.08		О	О	
- Second order	0.1		0 1	0	
Temporal error dominant	0.125		О	О	
Spatial error dominant	0.2		0	0	
10^{-4}	0.25		О	О	
	0.4		0	0	
10^{-6} 10^{-3} 10^{-2} 10^{-1}			Temporal		
cell size $(\Delta x, \Delta y)$					12

Temporal convergence of veloicty, Dx128

→ RK331

-□-OFCN,RKCN -▽-RK334

——Euler

-**←** CN095

Table 3 The computational conditions of Taylor-Green vortex benchmark, Re=10

Time-step	Number of cell per reference length L				
	$Dx04 \sim Dx64$	Dx128	Dx256	Dx512	
0.004		0	- T ⊙ -	→ Sp	
0.01		0	01		
0.02		О	О		
0.04		0	0		
0.08		0	01		
0.1		0	0		
0.125		О	0		
0.2		0	0		
0.25		0	0		
0.4		0	0		
	·	Temporal			

Unstable pressure

This can be remedied using off-centering

$$\frac{y^{(n+1)} - y^{(n)}}{h} = C_{CN} f(t^{(n+1)}, y(t^{(n+1)})) + (1 - C_{CN}) f(t^{(n)}, y(t^{(n)}))$$

$$C_{CN} = 1/(1 + C_{oc})$$
(37)

- Temporal error dominant condition
 The order of convergence is achieved.
- → Spatial error dominant condition

Table 3 The computational conditions of Taylor-Green vortex benchmark, Re=10

Time-step	Number of cell per reference length L				
	$Dx04 \sim Dx64$	Dx128	Dx256	Dx512	
0.004		07	- - • • - • • • • • • • • • • • • • • •	- - → Spa	
0.01		0	01		
0.02		О	0		
0.04		0	0		
0.08		0	0		
0.1		0	0		
0.125		0	0		
0.2		0	0		
0.25		0	0		
0.4		0	0		

Temporal

Periodic wave propagation

	Case	$\lambda/\Delta x$	$H/\Delta z$	$T/\Delta t$
	Grid 1	25	5	100
	Grid 2	50	10	200
Refere	nce Grid 3	100	20	400
	Grid 4	200	40	800
	Grid 3 dt100	100	20	100
	Grid 3 dt200	100	20	200
	Grid 3 dt400	100	20	400
	Grid 3 dt800	100	20	800
	Grid 3 dt1600	100	20	1600

Efficiency =
$$\frac{Accuracy}{Computational\ cost}$$

Averaged normalized wave amplitude from 1-10 periods

(Computation time) x (nCore)

Periodic wave propagation

ltem	Unit	H0.1	H0.05	H0.01
Depth (D)	[m]	1.0	1.0	1.0
Wave length	[m]	1.0	1.0	1.0
Wave period (T)	[sec]	0.76179	0.79049	0.79991
Wave height (H)	[m]	0.1	0.05	0.01
Wave steepness	H/L	10%	5%	1%
1 st order Amp	[m]	0.047413	0.024751	0.004998
2 nd order Amp	[m]	0.008294	0.001995	0.000079
3 rd order Amp	[m]	0.002263	0.000243	0.000002
4 th order Amp	[m]	0.000744	0.000035	-

Efficiency =
$$\frac{Accuracy}{Computational\ cost}$$

Averaged normalized wave amplitude from 1-10 periods

(Computation time) x (nCore)

Case	$\lambda/\Delta x$	$H/\Delta z$	$T/\Delta t$
Grid 1	25	5	100
Grid 2	50	10	200
Grid 3	100	20	400
Grid 4	200	40	800
Grid 3 dt100	100	20	100
Grid 3 dt200	100	20	200
Grid 3 dt400	100	20	400
Grid 3 dt800	100	20	800
Grid 3 dt1600	100	20	1600

Periodic wave propagation

Black dotted line is reference OFCN095 case

Only spatial convergence cases are plotted here to estimate the spatial error.

Grid 1 Grid 2 Grid 3 Grid 4 Grid 3 dt100 Grid 3 dt200 Grid 3 dt400 Grid 3 dt800 Grid 3 dt1600

 $\lambda/\Delta x$

Case

 $H/\Delta z$

 $T/\Delta t$

Periodic wave propagation

The efficient solvers are RKCN and RK221

Higher-order rate of convergences are not observed.

Better stability is observed with SDIRK_SA type methods

If the wave amplitudes are small, we can use courser mesh

Code name	Identification name	Order	Implicit stage
Euler	Implicit Euler	1	1
OFCN	OpenFOAM CN	2	1
RKCN	ESDIRK2_SA	2	1
RK221	SDIRK2_S	2	2
RK331	SDIRK3_SA	3	3
RK334	ESDIRK3_SA	3	2
RK431	ESDIRK[3](4)_SA	3	3

Periodic wave propagation with moving mesh

Case	$\lambda/\Delta x$	$H/\Delta z$	$T/\Delta t$
Grid 1	25	5	100
Grid 2	50	10	200
Grid 3	100	20	400
Grid 4	200	40	800
Grid 3 dt100	100	20	100
Grid 3 dt200	100	20	200
Grid 3 dt400	100	20	400
Grid 3 dt800	100	20	800
Grid 3 dt1600	100	20	1600

Error increased compare to the static mesh cases

DIRK type methods are more efficient then classical OFCN

Future works

To do a FSI simulation it is good to use SWENSE to control the number of cell.

$$\chi = \chi_I + \chi_C$$

= incident wave component + complimentary component

1. CALM buoy in regular / irregular wave

2. KCS with waves & with forward speed

MOERI Container Ship (KCS)

| Description | Geometry and Conditions | Test Program | Links and References |

Higher-order spatial schemes

Future works

WENO & WENO reconstruction method.

$$p_{\mathit{WENO},i} = \overline{\Phi}_i + \sum_{k=1}^K \widetilde{a}_k \Omega_k \quad - p_{\mathit{weno}} = \sum_{m=1}^{N_{\mathit{si}}} w_m p_i^{(m)} \quad - p_i^{(m)} = \overline{\Phi}_i + \sum_{k=1}^K a_k^{(m)} \Omega_k$$

Need careful formulation also needs to estimate its efficiency.

Articles

- 1. A paper on the higher-order temporal scheme (ongoing).
- 2. A paper on the interface treatment schemes (Not ready yet).

3.4.1. Application of ALE formulation

The consideration of moving mesh to VOF convection equation write: The additional term, mesh flux (ϕ_{mesh}) , is also adapted to *Predictor & Corrector* algorithm.

$$\frac{V_{P^{(n+1)}}^{(i)}\alpha_{P^{(n+1)}}^{(i)} - V_{P^{(n+1)}}^{(n)}\alpha_{P^{(n+1)}}^{(n)}}{h} + \sum_{f} (\phi_{mesh}\alpha_{f})^{(i)} + a_{ii}\sum_{f} (\phi_{f}\alpha_{f})^{(i)} + \sum_{f=1}^{i-1} a_{ij}\sum_{f} (\phi_{f}\alpha_{f})^{(j)} = 0.$$
(32)

The application of SCL formulation to momentum equation yields Eq. (33), where the **R** is equal to Eq. (24).

$$\frac{(V\rho\mathbf{u})_{P}^{(i)} - (V\rho\mathbf{u})_{P}^{(n)}}{h} + \sum_{f} \left[(\rho\phi_{mesh})^{(i)}\mathbf{u}_{f}^{(i)} \right] + a_{ii}\mathbf{R}^{(i)} + \sum_{j=1}^{i-1} a_{ij}\mathbf{R}^{(j)}$$
(33)

Preliminary study: Waves

Wave generation and absorption.

Figure 1.1. Schematic view of the NWT for a parametric study on the relaxation schemes.

 $L^{\text{pure}} = 7\lambda$

 $L^{\mathrm{inlet}} = 1.5\lambda$

 $L^{\text{outlet}} = 1.5, 3 \text{ and } 6\lambda$

Explicit Relaxation method (to incident wave & no wave). Increased viscosity & artificial damping source

$$\frac{\partial(\rho \boldsymbol{u})}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}\boldsymbol{u}) - \nabla \cdot ((\mu + \mu_{add})(\nabla \boldsymbol{u})) - \nabla \boldsymbol{u} \cdot \nabla \mu = \nabla p_d - (\boldsymbol{g} \cdot \boldsymbol{x})\nabla \rho + \boldsymbol{S}$$
$$\boldsymbol{S} = (0, 0, \rho(C_1 + C_2 u_z)wu_z)$$

Figure 2.2. Evolution of reflection coefficients for different outlets.

27

Figure 2.1. The first-order harmonic amplitudes and phase differences with respect to different outlet.