FLS 6441 - Methods III: Explanation and Causation

Week 1 - Review

Jonathan Phillips

February 2019

Learning from Data

▶ Why aren't case studies enough?

- Why aren't case studies enough?
 - ► If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?

- Why aren't case studies enough?
 - If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?
 - ► Yes! But that's not sufficient

- Why aren't case studies enough?
 - If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?
 - ► Yes! But that's not sufficient
- ► The problem is that there are many variables that could explain success

- Why aren't case studies enough?
 - If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?
 - ► Yes! But that's not sufficient
- The problem is that there are many variables that could explain success
- And detailed case studies can help us identify plausible hypotheses

- Why aren't case studies enough?
 - If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?
 - Yes! But that's not sufficient
- ► The problem is that there are many variables that could explain success
- And detailed case studies can help us identify plausible hypotheses
- ▶ But the only way to *confirm* the hypothesis is to verify that:

- Why aren't case studies enough?
 - If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?
 - ► Yes! But that's not sufficient
- ► The problem is that there are many variables that could explain success
- And detailed case studies can help us identify plausible hypotheses
- ▶ But the only way to *confirm* the hypothesis is to verify that:
 - 1. In other cases, the presence of the condition also produces the same outcome (if not, the explanation is not sufficient)

- Why aren't case studies enough?
 - If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?
 - ► Yes! But that's not sufficient
- The problem is that there are many variables that could explain success
- And detailed case studies can help us identify plausible hypotheses
- ▶ But the only way to *confirm* the hypothesis is to verify that:
 - 1. In other cases, the presence of the condition also produces the same outcome (if not, the explanation is not sufficient)
 - 2. The absence of the condition does not produce the same outcome (if not, the explanation is not necessary)

Learning from Data

► For example, we could look at India and conclude large Asian countries produce successful democracies

- ► For example, we could look at India and conclude large Asian countries produce successful democracies
 - ► But...China

- ► For example, we could look at India and conclude large Asian countries produce successful democracies
 - ► But...China
 - But...Costa Rica

- ► For example, we could look at India and conclude large Asian countries produce successful democracies
 - ► But...China
 - But...Costa Rica
- Only by looking at other cases, particularly 'control' cases (small non-Asian countries) can we understand if this explanation is plausible

Learning from Data

► Even when we compare multiple cases:

- ► Even when we compare multiple cases:
- Correlation is not causation

- ► Even when we compare multiple cases:
- Correlation is not causation
 - ► If we look hard enough we can always find correlations

- ► Even when we compare multiple cases:
- Correlation is not causation
 - If we look hard enough we can always find correlations
 - ▶ By chance...

- ► Even when we compare multiple cases:
- Correlation is not causation
 - If we look hard enough we can always find correlations
 - ► By chance...
 - Due to complex social patterns...

- Even when we compare multiple cases:
- Correlation is not causation
 - ► If we look hard enough we can always find correlations
 - ► By chance...
 - ▶ Due to complex social patterns...
 - ▶ But we cannot conclude that there is a causal effect of *D* on *Y*

- Even when we compare multiple cases:
- ► Correlation is not causation
 - If we look hard enough we can always find correlations
 - ► By chance...
 - Due to complex social patterns...
 - ► But we cannot conclude that there is a causal effect of D on Y
- ► More data will not help

- Even when we compare multiple cases:
- Correlation is not causation
 - If we look hard enough we can always find correlations
 - ► By chance...
 - ► Due to complex social patterns...
 - ► But we cannot conclude that there is a causal effect of *D* on *Y*
- ► More data will not help
- ► The problem is the *type* of data; it does not allow us to answer the causal question

Divorce rate in Maine

correlates with

Per capita consumption of margarine

Worldwide non-commercial space launches

correlates with

Sociology doctorates awarded (US)

US crude oil imports from Norway

correlates with

Drivers killed in collision with railway train

Letters in Winning Word of Scripps National Spelling Bee

correlates with

Number of people killed by venomous spiders

Figure 1. Correlation between Countries' Annual Per Capita Chocolate Consumption and the Number of Nobel Laureates per 10 Million Population.

Learning from Data

► Why isn't correlation enough?

- Why isn't correlation enough?
 - For prediction, correlation is fine: If we know a country has chocolate consumption of 10kg/yr/capita we can confidently predict it will have about 25 Nobel Laureates

- Why isn't correlation enough?
 - For prediction, correlation is fine: If we know a country has chocolate consumption of 10kg/yr/capita we can confidently predict it will have about 25 Nobel Laureates
 - But for intervention, correlation does not help: forcing people to eat more chocolate does nothing on its own to produce more Nobel Laureates

Learning from Data

- Why isn't correlation enough?
 - chocolate consumption of 10kg/yr/capita we can confidently predict it will have about 25 Nobel Laureates
 But for *intervention*, correlation does not help: forcing people

For prediction, correlation is fine: If we know a country has

- But for intervention, correlation does not help: forcing people to eat more chocolate does nothing on its own to produce more Nobel Laureates
- ► So if we want to provide policy-relevant advice, we need to know more than just correlation

- Why isn't correlation enough?
 - For explanation, correlation also fails it is no explanation to say that Switzerland has the most Nobel Laureates because it has the highest chocolate consumption
 - Explanation means identifying the direct and local factors that generate Nobel Laureates

Learning from Data

► Why isn't correlation enough?

- Why isn't correlation enough?
 - ► People are **strategic**, so their behaviour changes

- Why isn't correlation enough?
 - ► People are **strategic**, so their behaviour changes
- ► The Lucas Critique: Correlations fall apart when we intervene with policy
 - ► The data shows no-one lies on their tax forms

- Why isn't correlation enough?
 - People are strategic, so their behaviour changes
- ► The Lucas Critique: Correlations fall apart when we intervene with policy
 - ► The data shows no-one lies on their tax forms
 - So let's abandon tax checks; the government wants to save money

- Why isn't correlation enough?
 - ► People are **strategic**, so their behaviour changes
- ► The Lucas Critique: Correlations fall apart when we intervene with policy
 - The data shows no-one lies on their tax forms
 - So let's abandon tax checks; the government wants to save money
 - ► But reducing checks reduces the chances of getting caught

Learning from Data

- Why isn't correlation enough?
 - ► People are **strategic**, so their behaviour changes
- ► The Lucas Critique: Correlations fall apart when we intervene with policy
 - The data shows no-one lies on their tax forms
 - So let's abandon tax checks; the government wants to save money
 - But reducing checks reduces the chances of getting caught
 - Citizens start to lie on their tax forms

Learning from Data

- Why isn't correlation enough?
 - ► People are **strategic**, so their behaviour changes
- ► The Lucas Critique: Correlations fall apart when we intervene with policy
 - ► The data shows no-one lies on their tax forms
 - So let's abandon tax checks; the government wants to save money
 - But reducing checks reduces the chances of getting caught
 - Citizens start to lie on their tax forms
- ► That means we need to understand what *causes* people to lie on tax forms, so we can better understand their behaviour

Learning from Data

► To accumulate knowledge, we have to ask specific types of questions:

Learning from Data

► To accumulate knowledge, we have to ask specific types of questions:

Specifically, about the effects of causes

Learning from Data

To accumulate knowledge, we have to ask specific types of questions:

Specifically, about the effects of causes

Causes of Effects	Effects of Causes
What caused Y?	Does X cause Y?
Why did the United States grow faster than Bolivia in the twentieth century?	Did the more permanent colonial settlement of the United States compared to Bolivia affect their subsequent growth rates?

- ➤ So we need to learn about the **causal mechanisms** that drive behaviour and shape outcomes
- ► The problem is not data *quality*, but how the data were generated
- ► We need data generated in ways that reveal the causal mechanism what would happen if we changed a variable, keeping everything else the same

- ► So the type of questions we are asking are NOT "What caused Y?"
 - eg. Why did the United States grow faster than Bolivia in the twentieth century?
- ▶ But "Does X affect Y?"
 - eg. Did the more permanent colonial settlement of the United States compared to Bolivia affect their subsequent growth rates?
- ► These are called "Effects of Causes" questions (not "Causes of Effects" questions)

Causal Inference

► A focus on a single explanatory variable *X* requires us to clearly define this 'treatment'

- ► AND to clearly define a control
 - What is the opposite of investing \$1bn in education?
 - No investment, or investing it elsewhere?
- ► Define treatment:

$$D_i = \begin{cases} 1, & \text{if treated} \\ 0, & \text{if not treated} \end{cases}$$

- Defining our outcome is also crucial:
 - Can we measure our outcome of interest?
 - Is that outcome the end of the causal chain?
 - Tempting to look at many outcomes, but the risk of cherry-picking
 - ► All outcomes are probabilistic
 - If we study 20 outcomes, on average one will show a significant effect even with no real causal effect

Causal Inference

► Learning about causal effects requires us to specify the 'unit' - what is being affected?

- ► Countries? Political Parties? Individuals?
- ▶ eg. How does segregation affect attitudes to redistribution?
 - Treatment at the community/societal level
 - Outcome at the individual level
 - Measurement needed at the individual level
- ► Units are **time-specific**: the same person 10 minutes later is a different unit

- We want to know how some variable affects another variable
- eg. how a proportional representation electoral system affects investment in education
 - The unit here is any political system where both electoral system and education can vary independently of other units, i.e. countries
 - The treatment is a change to a PR electoral system (vs FPTP)
 - ► The **outcome** is the level of (public?) investment in education

- ► Causality is complex, eg. for $X \rightarrow Y$:
 - 1. Many factors influence a single outcome $(X1, X2 \rightarrow Y)$
 - Parliamentarism also influences investment in education
 - 2. Equifinality: Many routes to the same outcome $(X1 + X2 \text{ or } X3 + x4 \rightarrow Y)$
 - Ghana and Iceland spend the same on education, but in very different ways
 - 3. Reverse causation $(Y \rightarrow X)$
 - ► A highly educated population might prefer a PR system
 - 4. Non-linear impact of one variable on another $(X \Rightarrow Y)$
 - A mixed electoral system may have no effect, but a full PR system might lead to a big jump in investment
 - 5. General equilibrium effects treatment affects many other variables $(X \rightarrow Y1, Y2 \rightarrow Y1)$
 - Public investment in education rises, but private investment falls by the same amount

- 6. Context matters $(X|Z \rightarrow Y)$
 - ► PR has a different effect in British vs French legacy education systems
- 7. Treatments cannot be replicated $(X1 \rightarrow Y1, X2 \rightarrow Y2)$
 - ► Some countries apply open list PR, others closed list etc.
- 8. Spillovers between units $(X_T \rightarrow X_C \rightarrow Y)$
 - When New Zealand switched to PR, Australia was a natural comparator, but to compete for students, Australia also raised education investment
- 9. Learning, demonstration effects and history matter $(X_{t=1} \rightarrow Y1, X_{t=2} \rightarrow Y2)$
 - New Zealand adopted PR because it saw that education improved in Japan
- 10. Social complications eg. emotion, irrationality, chaos theory $(X \rightarrow Y1, X \rightarrow Y2)$
 - ► New Zealand introduced PR because of an off-hand remark by one person in a campaign

Causal Inference

► The **causal effect** of treatment is how each unit's outcome differs when it is treated and not treated

Causal Inference

- ► The **causal effect** of treatment is how each unit's outcome differs when it is treated and not treated
- ► This means comparing the **potential outcomes** for unit *i*:

$$Y_{Di} = \begin{cases} Y_{1i} \text{ Potential Outcome if unit i treated} \\ Y_{0i} \text{ Potential Outcome if unit i not treated} \end{cases}$$

► Treatment Effect = $Y_{1i} - Y_{0i}$

Causal Inference

► We are relying on **counterfactuals**

- ► We are relying on **counterfactuals**
 - What would have happened to the same unit if the treatment had not happened?

- ▶ We are relying on counterfactuals
 - What would have happened to the same unit if the treatment had not happened?
 - Would World War I still have happened if Archduke Franz Ferdinand had not been assassinated in 1914?

- We are relying on counterfactuals
 - What would have happened to the same unit if the treatment had not happened?
 - Would World War I still have happened if Archduke Franz Ferdinand had not been assassinated in 1914?
 - Would people have voted for Brexit if the campaign had been better regulated?

- We are relying on counterfactuals
 - What would have happened to the same unit if the treatment had not happened?
 - Would World War I still have happened if Archduke Franz Ferdinand had not been assassinated in 1914?
 - Would people have voted for Brexit if the campaign had been better regulated?
 - Would Brazil have won the 2014 World Cup if Neymar had not been injured?

- We are relying on counterfactuals
 - What would have happened to the same unit if the treatment had not happened?
 - Would World War I still have happened if Archduke Franz Ferdinand had not been assassinated in 1914?
 - Would people have voted for Brexit if the campaign had been better regulated?
 - Would Brazil have won the 2014 World Cup if Neymar had not been injured?
- ► To explain a class of events not a single event we need multiple counterfactual comparisons

Causal Inference

Potential Outcomes Example

	Investment in Education if PR	Investment in Education if NOT PR	
	Y ₁	Y ₀	Treatment Effect
Brasil	8	4	4
Argentina	10	7	3
Bolivia	2	4	-2
Colombia	11	11	0
Peru	6	2	4

Causal Inference

► The Fundamental Problem of Causal Inference

- No units can receive both treatment and control
- So we can never observe both Y₁ and Y₀ for the same unit

Causal Inference

Potential Outcomes Example

	PR Sys- tem?	Investment in Education if PR system	Investment in Education if FPTP system	
	Di	Y ₁	Y ₀	Treatment Effect
Brasil	1	8	?	?
Argentina	1	10	?	?
Bolivia	0	?	4	?
Colombia	0	?	11	?
Peru	0	?	2	?

Causal Inference

We can't even look at the change in countries that switch to a PR system

- What if all countries had started to invest more in education at the same time, for different reasons?
- ► The potential outcome for Country X in time 1 is different to at time 2
- ➤ So we need to consider the **counterfactual** what would have happened if the country had **not** switched to a PR system?
- So we can only estimate the effect by comparing across units
- ► That is why we are doing causal **inference**, not causal proof

Causal Inference

➤ So we need to consider the exact **counterfactual** - what would have happened if the country had **not** switched to a PR system?

- ➤ So we need to consider the exact counterfactual what would have happened if the country had not switched to a PR system?
 - ► This is **impossible** to know

- So we need to consider the exact counterfactual what would have happened if the country had not switched to a PR system?
 - ► This is **impossible** to know
 - We can only estimate the effect by comparing across units in some way

- So we need to consider the exact counterfactual what would have happened if the country had not switched to a PR system?
 - ► This is **impossible** to know
 - We can only estimate the effect by comparing across units in some way
 - ► That is why we are doing causal **inference**, not causal proof

- ► To compare across units we need counterfactuals: **control** units that do not receive treatment
- Control units can never be perfect substitutes
- Causal Inference is all about identifying a plausible counterfactual
 - Plausible means that the potential outcomes of the control unit are the same as those of the treated unit

- The comparability of treatment and control units depends on how they got to be treated
 - On the treatement assignment mechanism
- If we 'treated' an outlier like Búzios in Rio, could we find a comparable control unit?
- Comparisons are easier where the treatment assignment mechanism is independent of potential outcomes
 - This makes it more likely that potential outcomes are 'balanced' and comparable

Causal Inference

► The rest of the course is mostly about the types of treatment assignment mechanisms that avoid these biases and provide plausible counterfactuals

- Controlled Experiments where we control the treatment assignment
 - Field Experiments
 - Survey Experiments
 - Lab Experiments

- 2. **Natural Experiments** where the assignment mechanism creates balanced potential outcomes
 - Randomized natural experiments
 - Regression Discontinuities
 - Instrumental Variables

- 3. **Observable Studies:** What if no suitable treatment assignments are available?
 - No historical examples of natural experiments
 - Not feasible or ethical to run a field experiment
 - Remember the purpose of using these specific treatment assignment mechanisms is to achieve comparable potential outcomes
 - One alternative way of making potential outcomes comparable is to selectively use Observable Data
 - Difference-in-Differences
 - Controlling for confouding variables
 - Matching

Causal Inference

Analysis Types and Assumptions

Week	Assumption:	Researcher Controls Treatment Assign- ment?	Treatment Assign- ment Inde- pendent of Potential Outcomes	SUTVA	Additional Assump- tions
	Controlled Experiments				
1	Field Experiments	V	V	V	
2	Survey and Lab Experiments	√	√	√	Controlled Environment for treatment exposure
	Natural Experiments				
3	Randomized Natural Experiments	х	√	√	
4	Instrumental Variables	Х	√	√	First stage and Exclusion Re- striction (Instrument explains treatment but not outcome)
5	Regression Discontinuity	X	√	√	Continuity of covariates; No manipulation; No compounding discontinuities
	Observational Studies				
6	Difference-in-Differences	x	х	√	No Time-varying confounders; Parallel Trends
7	Controlling for Confounding	Х	Х	✓	Blocking all Back-door paths
8	Matching	X	Х	√	Overlap in sample characteristics

- 4. **Small-N studies:** Some research questions have few units available
 - How do we learn about the political economy of development with few units?
 - ▶ We can at least avoid some key biases:
 - Comparative Case Studies
 - Process Tracing

- But how much can we learn from a causal analysis?
- Is this an accurate representation of what would happen in the real-world?
 What was the policy problem (/academic question) you were
 - trying to solve?

 What details differ? For context of how treatment was applied
 - What details differ? Eg. context of how treatment was applied
- Generalizability to other units (External validity)
 - Would the same thing happen in another country? Next year?
 - ► Look out for variation in treatment, context, spillovers, learning etc.
- Any generalization requires assumptions

- We will try to identify abstract, portable processes
 - Causal Mechanisms
- ► **Portable:** If the weather affects election turnout ONLY in Acre, is that a useful causal mechanism?
- ► **Abstract:** If unions are good at mobilizing support, but so are churches, the mechanism is collective action, not union organization
- We still need to define the scope conditions in which we think this causal mechanism will operate as expected

- Examples of Causal Mechanisms:
 - Citizens
 - Electoral Accountability
 - ► Client Power
 - ► Collective Action
 - Social Trust/Sanctioning
 - Wealth Effects
 - Elites
 - Violence/Coercion
 - Brokerage/Patronage
 - Persuasion/Framing
 - ► Incumbency Power
 - Institutions
 - ► Power Devolution/Median Voter
 - Network Effects
 - ► Evolutionary Selection
 - Conversion/Layering/Drift/Replacement

- ► Examples of Causal Mechanisms:
 - Citizens
 - Electoral Accountability Class 5
 - ► Client Power Class 6
 - ► Collective Action Class 11
 - Social Trust/Sanctioning Class 4
 - Wealth Effects
 - Elites
 - Violence/Coercion Class 8
 - Brokerage/Patronage Class 9
 - Persuasion/Framing
 - ► Incumbency Power Class 7
 - Institutions
 - Power Devolution/Median Voter Class 3
 - Network Effects
 - ► Evolutionary Selection
 - ► Conversion/Layering/Drift/Replacement Class 12