Operációs rendszerek

2. Konzultáció 2025. 04. 21.

Készítette:

Hevele István Bsc Programtervező informatikus I68U3H

1. Feladat:

Elkészítettem a megadott feladatokat "First Come First Served", "Shortest Job First" és "Round Robin" (továbbiakban: FCFS, SJF, RR) ütemezési algoritmusok használatával.

1. ábra (A befejezés-, várakozás- és átl. várakozás ideje, processz végrehajtás sorrendje)

A) a) b)						
	FCFS	P1	P2	Р3	P4	P5
	Érkezés	0	1	3	9	12
	CPU idő	3	8	2	20	5
	Indulás	0	3	11	13	33
	Befejezés	3	11	13	33	38
	Várakozás	0	2	8	4	21
	AVG vár.			7 ms		

A) d) Végrehajtási sorrend: P1 - P2 - P3 - P4 - P5

B.1) a) b)

SJF	D4	P2	P3	P4	P5
SUF	P1	F2	rə	F4	Fo
Érkezés	0	1	3	9	12
CPU idő	3	8	2	20	5
Indulás	0	5	3	18	13
Befejezés	3	13	5	38	18
Várakozás	0	4	4 0		1
AVG vár.			2,8 ms		

B.1) d) Végrehajtási sorrend: P1 - P3 - P2 - P5 - P4

B.2) a)

SJF	Érkezés idő	CPU idő	Kezdési idő	Befejezési idő	Várakozási idő
F1	0	3	0	3	0
F2	1	5	5	10	4
F3	3	2	3	5	0
F4	9	5	10	15	1
F5	12	5	15	20	3

B.2) b) AVG Várakozási idő: 1,6 ms

B.2) d) <u>Végrehajtási sorrend:</u> F1 - F3 - F2 - F4 - F5

C) a) b)

RR: 5 ms	P1	P2	P3	P4	P5
Érkezés	0	1	3	9	12
CPU idő	3	8,3	2	20,15,10,5	5
Indulás	0	3,10	8	13,23,33,38	18
Befejezés	3	8,13	10	18,33,38,43	23
Várakozás	0	2,2	2,2 5		6
AVG vár.			4,8 ms		

C) d) Végrehajtási sorrend: P1 - P2 - P3 - P2 - P4 - P5 - P4 - P4 - P4

2. ábra (aktív- és várakozó processzek futásának menete)

3. ábra (aktív- és várakozó processzek futásának menete)

2. Feladat:

Ebben a feladatban, a megadott algoritmusok paraméterének megfelelően ábrázoltam a Gantt diagram segítségével az aktív- és a várakozó processzek futásának menetét, határoztam meg a processzek végrehajtási sorrendjét, kiemelkedő hangsúlyt fektetve, a RR sajátos, időosztásos folyamatütemezésére.

4. ábra (aktív/várakozó processzek és végrehajtási sorrend)

FCFS	CPU BURST: 9	ms		
P1	0			
P2		9		
P3			18	
P4				27
Várakozik	P2 - P3	P3, P4	P4	-
	•	•	•	•

5. ábra (aktív/várakozó processzek)

6. ábra (5. ábra végrehajtási sorrendje)

Végrehajtási sorrend: P1 - P2 - P3 - P1 - P2 - P4 - P3 - P1 - P2 - P4 - P3 - P4

3. Feladat

A harmadik feladatban, mint alapján határoztam meg a megadott algoritmusok processz teljesítmény paramétereit.

A következő képleteket alkalmaztam az értékek kiszámításához:

<u>Befejezési idő</u> = Indulási idő + CPU idő <u>Várakozási idő</u> = Indulási idő - Érkezési idő <u>Válasz idő</u> = Indulási idő - Érkezési idő <u>Átfutási idő</u> = Befejezési idő - Indulási idő Körülfordulási idő = Befejezési idő - Érkezési idő

7. **ábra** (processzek teljesítmény paraméterei)

Metrika	FCFS	RR: 4 ms
CPU kihasználtság	100%	100%
Körülfordulási idő AVG	17,5 ms	27,5 ms
Várakozási idő	8,5 ms	18,5 ms
Válaszidő AVG	8,5 ms	3,0 ms

8. ábra (kontextusváltás (cs) darab száma és ütemezés (sch) időpontjai (ms))

algoritmus	CS	SCH (ms)	
FCFS	4	0, 9, 18, 27	
RR (4ms)	13	0, 4, 8, 12, 16, 20,	24, 28, 29, 30, 34, 35, 36

4. Feladat:

Az adott folyamatok és paramétereik alapján elkészítettem az ütemezést Round-Robin (RR) algoritmus nélkül, illetve RR-nal, külön táblázatokban. Minden óraütemre meghatároztam a folyamatok sorrendjét (előtte/utána), lépésről lépésre levezettem a folyamatot az 1. óraütéstől a 201. óraütésig. A táblázatokat beépített függvényekkel töltöttem fel, majd képletek segítségével, fordított számításokkal azonosítottam 50 offsetet, amelyet a 100. és 200. óraütésnél az A, B és C folyamatok p_uspri és p_cpu értékeivel támasztottam alá.

9. **ábra** (ütemezés RR nélkül, sorrend, 100. ütem)

88	94	88	50	0	60	0	Α	Α
89	94.5	89	50	0	60	0	Α	Α
90	95	90	50	0	60	0	Α	Α
91	95.5	91	50	0	60	0	Α	Α
92	96	92	50	0	60	0	Α	Α
93	96.5	93	50	0	60	0	Α	Α
94	97	94	50	0	60	0	Α	Α
95	97.5	95	50	0	60	0	Α	Α
96	98	96	50	0	60	0	Α	Α
97	98.5	97	50	0	60	0	Α	Α
98	99	98	50	0	60	0	Α	Α
99	99.5	99	50	0	60	0	Α	Α
100	100	100	50	0	60	0	Α	Α
101	100	100	50.5	1	60	0	Α	В
102	100	100	51	2	60	0	В	В
103	100	100	51.5	3	60	0	В	В
104	100	100	52	4	60	0	В	В
105	100	100	52.5	5	60	0	В	В
106	100	100	53	6	60	0	В	В
107	100	100	53.5	7	60	0	В	В
108	100	100	54	8	60	0	В	В

10. **ábra** (ütemezés RR nélkül, sorrend, 200. ütem)

190	100	100	95	90	60	0	В	В
191	100	100	95.5	91	60	0	В	В
192	100	100	96	92	60	0	В	В
193	100	100	96.5	93	60	0	В	В
194	100	100	97	94	60	0	В	В
195	100	100	97.5	95	60	0	В	В
196	100	100	98	96	60	0	В	В
197	100	100	98.5	97	60	0	В	В
198	100	100	99	98	60	0	В	В
199	100	100	99.5	99	60	0	В	В
200	100.5	101	99.5	99	60	0	В	Α
201	100.5	101	100	100	60	0	Α	В

11. ábra (ütemezés RR-nal, sorrend, 100. ütem)

88	65	30	64.5	29	74.5	29	С	Α
89	65	30	65	30	74.5	29	Α	В
90	65	30	65	30	75	30	В	С
91	65.5	31	65	30	75	30	С	Α
92	65.5	31	65.5	31	75	30	Α	В
93	65.5	31	65.5	31	75.5	31	В	С
94	66	32	65.5	31	75.5	31	С	Α
95	66	32	66	32	75.5	31	Α	В
96	66	32	66	32	76	32	В	С
97	66.5	33	66	32	76	32	С	Α
98	66.5	33	66.5	33	76	32	Α	В
99	66.5	33	66.5	33	76.5	33	В	С
100	67	34	66.5	33	76.5	33	С	Α
101	67	34	67	34	76.5	33	Α	В
102	67	34	67	34	77	34	В	С
103	67.5	35	67	34	77	34	С	Α
104	67.5	35	67.5	35	77	34	Α	В
105	67.5	35	67.5	35	77.5	35	В	С
106	68	36	67.5	35	77.5	35	С	Α
107	68	36	68	36	77.5	35	Α	В
108	68	36	68	36	78	36	В	С

12. ábra (ütemezés RR-nal, sorrend, 200. ütem)

194	82.5	65	82.5	65	92	64	Α	В
195	82.5	65	82.5	65	92.5	65	В	С
196	83	66	82.5	65	92.5	65	С	Α
197	83	66	83	66	92.5	65	Α	В
198	83	66	83	66	93	66	В	С
199	83.5	67	83	66	93	66	С	Α
200	83.5	67	83.5	67	93	66	Α	В
201	83.5	67	83.5	67	93.5	67	В	С

3.) C

Képlet: $p_uspri = p_nice + (p_cpu / 2) + offset$

RR nélkül

100. óraütés:

A:
$$p \ cpu = 50$$
, $p \ usrpri = (50/2) + 50 = 25 + 50 = 75$

B:
$$p \ cpu = 49$$
, $p \ usrpri = (49/2) + 50 = 24.5 + 50 = 74.5$

C:
$$p_cpu = 1$$
, $p_usrpri = 10 + (1/2) + 50 = 10 + 0.5 + 50 = 60.5$

200. óraütés:

A:
$$p \ cpu = 100$$
, $p \ usrpri = (100 / 2) + 50 = 50 + 50 = 100$

B:
$$p_cpu = 99$$
, $p_usrpri = (99 / 2) + 50 = 49.5 + 50 = 99.5$

C:
$$p \ cpu = 1$$
, $p \ usrpri = 10 + (1/2) + 50 = 10 + 0.5 + 50 = 60.5$

Round Robinnal:

100. óraütés:

A:
$$p \ cpu = 34$$
, $p \ usrpri = (34/2) + 50 = 17 + 50 = 67$

B:
$$p_cpu = 33$$
, $p_usrpri = (33 / 2) + 50 = 16.5 + 50 = 66.5$

C:
$$p \ cpu = 33$$
, $p \ usrpri = 10 + (33/2) + 50 = 10 + 16.5 + 50 = 76.5$

200. óraütés:

A:
$$p \ cpu = 67$$
, $p \ usrpri = (67/2) + 50 = 33.5 + 50 = 83.5$

B:
$$p_cpu = 67$$
, $p_usrpri = (67 / 2) + 50 = 33.5 + 50 = 83.5$.

C:
$$p_cpu = 66$$
, $p_usrpri = 10 + (66 / 2) + 50 = 10 + 33 + 50 = 93$