Störfunktion s(x)	Ansatz y _p
e ^x	$Ae^{\lambda x}$, falls s(x) keine Lösung der Dif erentialgleichung
	Axe ^x , falls s(x) Lösung der Diferentialgleichung
sinωx	$A \sin \omega x + B \cos \omega x$
COSωX	$A \sin \omega x + B \cos \omega x$
$e^{\lambda x} \sin \omega x$	$Ae^{\lambda x} \sin \omega x + Be^{\lambda x} \cos \omega x$
$e^{\lambda x} \cos \omega x$	$Ae^{\lambda x} \sin \omega x + Be^{\lambda x} \cos \omega x$
$P_n(x)$	$A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x + A_0$
	$(A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x + A_0)e^{\lambda x}$, falls $e^{\lambda x}$ keine Lösung
$P_n(x)e^{\lambda x}$	der Dif erentialgl.
	$x(A_nx^n + A_{n-1}x^{n-1} + \cdots + A_1x + A_0)e^{\lambda x}$, falls $e^{\lambda x}$ Lösung
	der Dif erentialgl.
$P_n(x) \sin \omega x$	$(A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x + A_0) \sin \omega x$
	$+(B_n x^n + B_{n-1} x^{n-1} + \dots + B_1 x + B_0) \cos \omega x$
$P_n(x) \cos \omega x$	$(A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x + A_0) \sin \omega x$
	$+(B_n x^n + B_{n-1} x^{n-1} + \dots + B_1 x + B_0) \cos \omega x$
$P_n(x)e^{\lambda x} \sin \omega x$	$(A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x + A_0)e^{\lambda x} \sin \omega x$
	$+(B_{n}x^{n} + B_{n-1}x^{n-1} + \cdots + B_{1}x + B_{0})e^{\lambda x}\cos{\omega x}$
$P_n(x)e^{\lambda x}\cos \omega x$,	$(A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x + A_0)e^{\lambda x} \sin \omega x$
$\omega = 0$	$+(B_{n}x^{n} + B_{n-1}x^{n-1} + \cdots + B_{1}x + B_{0})e^{\lambda x}\cos{\omega x}$