STOR 320.1 Tidy Data

Introduction

- Read Chapter 9
- Functions From tidyr Package

>library(tidyr)

- pivot_longer()
- pivot_wider()
- separate()
- unite()
- complete()

Tidy Data Definition

- For Tidy Data:
 - Each Variable Must Have Its Own Column
 - Each Observation Must Have Its Own Row
 - Each Value Must Have Its Own Cell

Problem

- Most Data is Not Tidy
- Reason: Data Collectors Often Don't Know How Data Should Be Recorded Since They Don't Analyze the Data
- Common Problems
 - A Variable Spread Across Multiple Columns
 - A Observation is Spread Across Multiple Rows

"Tidy datasets are all alike, but every messy dataset is messy in its own way." — Hadley Wickham

Untidy Data Example 1

 Multiple Columns for One Variable

J

Problem

- Multiple Treatment Data
- Variables "Control", "Cond1", and "Cond2" are Measuring the Same Thing Under Different Treatments
- The Name of the Variable Whose Values Form the Column Names Can Be Called "Treatment"
- The Name of the Variable Whose Values are Spread Over the Cells Can Be Called "Outcome"

Longer

```
tidy1a=untidy1 %>%
  pivot_longer(control:cond2, names_to = "Treatment",
values_to = "Outcome")
tidy1a
```

subject <dbl></dbl>		Treatment <chr></chr>	Outcome <dbl></dbl>
1	М	control	7.9
1	М	cond1	12.3
1	М	cond2	10.7
2	F	control	6.3
2	F	cond1	10.6
2	F	cond2	11.1
3	F	control	9.5
3	F	cond1	13.1
3	F	cond2	13.8
4	М	control	11.5
4	М	cond1	13.4
4	M	cond2	12.9

Longer by index

```
tidy1b=untidy1 %>%
  pivot_longer(3:5, names_to="Treatment",values_to="Outcome")
tidy1b
```

	sex <chr></chr>	Treatment <chr></chr>	Outcome <dbl></dbl>
1	М	control	7.9
1	М	cond1	12.3
1	М	cond2	10.7
2	F	control	6.3
2	F	cond1	10.6
2	F	cond2	11.1
3	F	control	9.5
3	F	cond1	13.1
3	F	cond2	13.8
4	М	control	11.5
4	М	cond1	13.4
4	М	cond2	12.9

Process

subject <dbl></dbl>	sex <chr></chr>	Treatment <chr></chr>	Outcome <dbl></dbl>	
1	М	control	7.9	
1	М	cond1	12.3	
1	М	cond2	10.7	K
2	F	control	6.3	
2	F	cond1	10.6	
2	F	cond2	11.1	
3	F	control	9.5	
3	F	cond1	13.1	
3	F	cond2	13.8	
4	М	control	11.5	
4	М	cond1	13.4	
4	M	cond2	12.9	

pivot_longer vs.
gather()

Longer

```
ggplot(tidy1b)+
  geom_point(aes(x=Treatment,y=Outcome,color=sex),size=4) +
  theme_minimal()
```


Untidy Data Example 2

Problem

- ## # A tibble: 4 x 5

 ## subject sex '0.3' '0.6' '0.8'

 ## <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> = 10.7

 ## 2 2 F 6.3 10.6 11.1

 ## 3 3 F 9.5 13.1 13.8

 ## 4 4 M 11.5 13.4 12.9
- Repeated Measures Data
- Variables "0.3", "0.6", and "0.8" are Measuring the Same Thing Under Different Drug Strengths
- The Name of the Variable Whose Values Form the Column Names Can Be Called "Dosage"
- The Name of the Variable Whose Values are Spread Over the Cells Can Be Called "Outcome"

Longer

```
tidy2b=untidy2 %>%
  gather(`0.3`:`0.8`, key="Dosage", value="Outcome", convert=T)
glimpse(tidy2b)
```

Longer

Untidy Data Example 3

Multiple rows

```
untidy3=tribble(
    ~Pack, ~Type, ~Measure, ~Value,
    1, "Regular", "Count", 15,
    1, "Regular", "Percent Blue", 0.2,
    2, "Peanut", "Count", 12,
    2, "Peanut", "Percent Blue", 0.3,
    )
    untidy3
```

Problem

Less Common

- Column "Measures" Contains Variable Names
- Column "Value" Contains the Output of the Different Variables
- Notice Values are of Different Units (Count vs Percentage)
- Wider Does the Opposite of Longer

Wider

```
```{r}
tidy3=untidy3 %>%
pivot_wider(names_from=Measure,values_from=Value)
tidy3
```
```

Process

```
## # A tibble: 4 x 4
                            Pack Type Measure
                                                   Value
                          <dbl> <chr> <chr>
                                                   <dbl>
                               1 Regular Count
                       ## 2 1 Regular Percent Bly
                       ## 3 2 Peanut Count
                            2 Peanut Percent Blue
                       ## 4
## # A tibble: 2 x 4
     Pack Type Count `Percent
                                  Blue
                                  <dbl>
   <dbl> <dbl> <dbl>
                      15
                                    0.2
        1 Regular
        2 Peanut
                                    0.3
## 2
```

Wider

```
tidy3 %>%
 mutate(nBlue=Count*`Percent Blue`) %>%
 select(-Count, - `Percent Blue`)
## # A tibble: 2 x 3
## Pack Type nBlue
## <dbl> <chr> <dbl>
## 1 1 Regular 3
## 2 2 Peanut 3.6
```

Untidy Data Example 4

```
untidy4=tribble(
   ~Pack, ~Type, ~PropBlue, ~Date,
1, "Regular", "3/15", "9-28-2018",
2, "Regular", "2/15", "9-30-2018",
3, "Peanut", "4/12", "9-28-2018",
4, "Peanut", "5/13", "9-30-2018",
)
untidy4
```

Problem

- Very Uncommon
- The Variable "PropBlue" Contains Two Numeric Variables
- The Variable "Date" Contains Three Numeric Variables
- We Must Separate Both of These Variables Into Multiple Columns

Separating

```
``{r}
tidy4a=untidy4 %>%
 separate(PropBlue, into=c("nBlue", "Total"), sep="/") %>%
 separate(Date, into=c("M","D","Y"),sep="-")
glimpse(tidy4a)
                                                         Rows: 4
Columns: 7
$ Pack <dbl> 1, 2, 3, 4
$ Type <chr> "Regular", "Regular", "Peanut", "Peanut"
$ nBlue <chr> "3", "2", "4", "5"
$ Total <chr> "15", "15", "12", "13"
$ M
        <chr> "9", "9", "9", "9"
        <chr> "28", "30", "28", "30"
$ D
$ Y
        <chr> "2018", "2018", "2018", "2018"
```

```
```{r}
 £ ≥
tidy4b=untidy4 %>%
 separate(PropBlue, into=c("nBlue","Total"),convert=T) %>%
 separate(Date, into=c("M","D","Y"),convert=T)
qlimpse(tidy4b)
 Rows: 4
 Columns: 7
 $ Pack <dbl> 1, 2, 3, 4
 $ Type <chr> "Regular", "Regular", "Peanut", "Peanut"
$ nBlue <int> 3, 2, 4, 5
$ Total <int> 15, 15, 12, 13
 $ M
 <int> 9, 9, 9, 9
 $ D
 <int> 28, 30, 28, 30
 <int> 2018, 2018, 2018, 2018
 $ Y
```

## Separating



## Untidy Data Example 5

untidy5

```
A tibble: 4 x 4
Pack Type Day Month
<dbl> <chr> <dbl> <dbl> <dbl> <dbl>
1 1 Regular 1 8
2 2 Regular 2 8
3 3 Regular 3 9
4 4 Regular 4 9
```

## Uniting

- Absolutely Silly
- Uniting Does the Opposite of Separating

```
tidy5=untidy5 %>%
 unite(swag, Day, Month, sep=":(")
tidy5
```

```
A tibble: 4 x 3
Pack Type swag
<dbl> <chr> <chr>
1 1 Regular 1:(8
2 2 Regular 2:(8
3 3 Regular 3:(9
4 4 Regular 4:(9
```

- Two Ways
  - Explicitly: Defined to Be Missing Using NA
  - Implicitly: Absent From Data
- There is not a Uniform Way to Handle Either of These Problems
- Rule: Either Convert All Explicitly Missing to Implicitly Missing or Convert All Implicitly Missing to Explicitly Missing

## Example

```
A tibble: 14 x 3
##
 year quarter
 wage
 <dbl> <dbl>
##
 <dbl>
##
 10.5
##
 10.5
 3
 3
##
 10.5
##
 11
 5
##
 11
##
 6
 3
 11.2
##
 3
 1
 11.2
##
 3
 2
 11.2
##
 9
 3
 3
 12
 3
 4
 10
 NA
 11
 4
 12
 2
 NA
 3
 13
 13.0
 13.0
 4
```

Notice:





```
in the state of the state
```

#### Implicit to Explicit

year <dbl></dbl>	<b>quarter</b> <chr></chr>	wage <dbl></dbl>
1	1	10.50
1	2	10.50
1	3	10.50
1	4	11.00
2	1	NA
2	2	11.00
2	3	11.23
2	4	NA
3	1	11.23
3	2	11.23
3	3	12.00
3	4	NA
4	1	12.00
4	2	NA
4	3	13.04
4	4	13.04

#### Explicit to Implicit

```
missing %>%
 pivot_wider(names_from=quarter,values_from=wage) %>%
 pivot_longer(2:5,names_to='quarter',values_to='wage',values_drop_na = T)
```

	<b>quarter</b> <chr></chr>	wage <dbl></dbl>
1	1	10.50
3	1	11.23
4	1	12.00
1	2	10.50
2	2	11.00
3	2	11.23
1	3	10.50
2	3	11.23
3	3	12.00
4	3	13.04
1	4	11.00
4	4	13.04

Complete Function

```
missing %>%
 complete(year, quarter)
```

```
A tibble: 16 x 3
 year quarter wage
 <dbl>
 <dbl> <dbl>
 10.5
 10.5
 10.5
 11
 NA
 11
 3 11.2
 NA
 1 11.2
 2 11.2
 12
 NA
 12
 NA
 13.0
 13.0
16
 4
```

## Tidy data Training

Now, let us

## PRACTICE

Download the Rmd for Tutorial 5 to Your Computer from the Course Website and open the file in RStudio