UGA CSCI 4150/6150 Caleb Ashmore Adams

1 Generally Useful Math

Trig Properties

$$\sin^2 x + \cos^2 x = 1 \qquad \frac{d}{dx} \sin x = \cos x$$

$$\tan x = \frac{\sin x}{\cos x} \qquad \frac{d}{dx} \cos x = -\sin x$$

$$\frac{d}{dx} \tan x = \sec^2 x \qquad \frac{d}{dx} \cot x = -\csc^2 x$$

$$\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx} \arccos x = \frac{-1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx} \arctan x = \frac{1}{1 + x^2}$$

Log & Exp Properties

$$\frac{x}{dx}b^{x} = b^{x} \ln x \qquad \log(\frac{1}{x}) = -\log x$$

$$\log_{a} x = \frac{\log_{b} x}{\log_{a} x} \qquad \frac{d}{dx}e^{ax} = ae^{ax}$$

$$\frac{d}{dx}a^{x} = a^{x} \ln a \qquad \frac{d}{dx} \ln x = \frac{1}{x}$$

$$x^{0} = 1 \qquad x^{n} \cdot x^{m} = x^{n+m} \qquad x^{-n} = \frac{1}{x^{n}}$$

$$\log_{a} x^{n} = n\log_{a} x \qquad \frac{e^{-nx}}{e^{x}} = e^{-(n+1)x}$$

$$\log_{a}(\frac{x}{y}) = \log_{a} x - \log_{a} y$$

$$\log_{a}(xy) = \log_{a} x + \log_{a} y$$

Useful Series

$$r^0 + r^1 + r^2 + r^3 = \frac{r^n - 1}{r - 1}$$
 for an alternating series the following will work to start:
$$\sum_{n=0}^{\infty} (-1)^n \text{ or } \sum_{n=0}^{\infty} (-1)^{n+1}$$

In Class Terminology

the relative error formula:
$$\frac{|x-\hat{x}|}{x}$$

 $x' = f(t,x)$
this was represed strangely in class:
If $x'' = xx'$ then $x''' = xx'' + x'x'$

2 Base Conversion

Decimal to Binary

For this simply find the place of the largest binary number that (of the form 2^n) that is within the number. Successivley subtract these numbers while keeping track of their place to generate the binary number.

Binary to Decimal

point then the power is negative counting from zero. This generates a sum of the form: $2^n + \dots + 2^2 + 2^1 + 2^{-1} + 2^{-2} + \dots + 2^{-m}$ Where n is the most significant digit and m is the least. The 2^{-1} term is the beginning of the floating point numbers.

For this notice that each place in the decimal number has a corresponding power

of 2. If the decimal number has a floating

Binary to Octal

Simply follow the table:
$$000 \rightarrow 0.001 \rightarrow 1.002 \rightarrow 2.003 \rightarrow 3.004 \rightarrow 4.005 \rightarrow 5.006 \rightarrow 6.007 \rightarrow 7.000$$

Binary to Hex

This identical to the Octal method, the $K_4 = hf(t + \tilde{h}, x + K_3)$ Hex symbols range from 0 to F and binary from 0000 to 1111. Simply count up un binary and there is a simple conversi-

One & Two's Complement

3 IEEE Floating Points

Definitions

s =signed bit, c =based exponent, F =fraction. The general form for this is $(-1)^{s} \cdot 2^{c-127} \cdot 1.F$, for both |s| = 1For single precision: |c| = 8, |F| = 23For double precision: |c| = 11, |F| = 52

Converting to IEEE Format

A number will have the form $D_n...D_1D_0.F_0F_1...F_m$, to start we need to shift the values left (normalize) so that the number is now of the form: $D_n.F_0F_1...F_{m+(n-1)}$.

Example

TODO

4 Loss of Significance

Loss of Precision Theorem

The general form of the theorem is as

x and y are floating point numbers such that x > y > 0, the theorem states that given: $2^{-p} \le 1 - \frac{y}{x} \le 2^{-q}$

there are at most p and at least q digits lost in the subtraction x - y.

practically speaking, we view the equation as: E(x) = f(x) - g(x). If we notice this approaches 0 we have a concern of loss of precision at that point. to find that point we typically view the max loss acceptable

as 1, so we set the euqation to $\frac{g(x)}{f(x)} = \frac{1}{2}$. We find the x = z values that cause the

 $E(z) > \frac{1}{2}$ and use a Taylor method there and use the normal formula elsewhere. We're just avoiding the loss of precision as x approaches z.

Rationalizing Numerators

In some cases we want to rationalize a numerator to avoid a loss of significance. The general form for radicals in a demonitor is:

$$\sqrt[k]{x^n + r} + c \cdot \frac{\sqrt[k]{x^n + r - c}}{\sqrt[k]{x^n + r - c}} = \frac{x^n + r - 2c}{\sqrt[k]{x^n + r - c}}$$

5 Taylor, Maclaurin, & Euler

Runge-Kutta Methods

This is the 4th order (RK4) Runge-Kutta method for the Initial Value Problem

$$x(t+h) = x(t)\frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4)$$

where the following are values of K_n :
 $K_1 = hf(t,x)$
 $K_2 = hf(t + \frac{1}{2}h, x + \frac{1}{2}K_1)$

$$K_3 = hf(t + \frac{1}{2}h, x + \frac{1}{2}K_2)$$

 $K_4 = hf(t + h, x + K_3)$

first, the K_n values are calculated in succession. They the K_n values are filled into the first formula above.