Прерывание вопросы

1. Цикл прерывания по тактам

1 1 1		1	I '
C4	80DE801040	INT	if PS(W) = 0 then GOTO STOP @ DE
C5	8001401040		if PS(INT) = 0 then GOTO INFETCH @ 01
С6	0800000000		INTS
C7	0088009208	IRQ	~0 + SP → SP, AR
C8	0001009004		IP → DR
C9	0200000000		DR → MEM(AR)
CA	0088009208		~0 + SP → SP, AR
СВ	0001009040		PS → DR
CC	0220001002		LTOL(CR) \rightarrow BR; DR \rightarrow MEM(AR)
CD	00A0020020		$SHL(BR) \rightarrow BR$, AR
CE	0100000000		MEM(AR) → DR
CF	0004009001		DR → IP
D0	0080001420		LTOL(BR + 1) → AR
D1	0100000000		MEM(AR) → DR
D2	0040009001		DR → PS
D3	8001101040		GOTO INFETCH @ 01

С пояснениями

- if PS(W) = 0 then GOTO STOP; Проверка тумблера работа-останов, стоп если останов
- if PS(INT) = 0 then GOTO INFETCH; Если нет прерывания, то на выборку след. команды
- **INTS** ; Сформировать сигнал предоставление прерывания

• ~0 + SP
$$\rightarrow$$
 SP, AR
• IP \rightarrow DR
• DR \rightarrow MEM(AR) ; IP \rightarrow -(SP)

Цикл прерывания (2)

```
~0 + SP → SP, AR
PS → DR ; PS → -(SP)
DR → MEM (AR); а также...
LTOL (CR) → BR; младшие 8 разрядов CR (номер вектора прерывания) записать в BR
```

• SHL (BR) → BR, AR; Вычисляем адрес ячейки с переходом на подпрограмму обработки прерывания, как номер вектора * 2

73

- **MEM (AR)** → **DR**; адрес обработчика прерывания записать в DR ...
- DR → IP ; ... а затем в IP
- LTOL (BR + 1) → AR ; ... выбрать адрес следующей ячейки вектора прерывания, ограничивая результат 8-ю разрядами
- **MEM (AR)** → **DR**; содержимое PS обработчика прерывания записать в DR ...
- DR → PS ; ... а затем установить его в регистр

2. Кол-во устройств:

Если инициация обмена синхронная (возможно ли это в БЭВМ - хз, смотреть выше), то ≤ 256, иначе ≤ 128.

3. Вектор прерывания

Совокупность адреса программы обработки прерывания и регистра состояния (PS)

4. В каком порядке выполняется обработка внешних устройств:

С 1 до N

5. IRET по тактам

J		0010 111001 0 1111
	IRET	DR → PS
		$SP + 1 \rightarrow SP$, AR
		MEM(AR) → DR

6. Расскажи про программный вызов прерывания:

При программном вызове прерывания скипаем проверку регистров состояния и переходим сразу к IRQ, т.е. то же самое что п1 без первых трех проверок, формируется также INTS

7. Что хранится в MR?

Хранит номер вектора прерывания

8. Для чего нужен дефолтный вектор прерывания?

Для того, чтобы после разрешения прерываний(EI) обрабатывать все прерывания других ВУ для которых мы не определили определенные вектора прерывания (подумать о сбросе флага RDY)