Deep learning -- Hello world

Junjie Cao @ DLUT Spring 2018

Example Application

Handwriting Digit Recognition

MNIST Data: http://yann.lecun.com/exdb/mnist/ "Hello world" for deep learning

Keras provides data sets loading function: http://keras.io/datasets/

Step 3.1: Configuration

model.compile(loss='mse', optimizer=SGD(lr=0.1), metrics=['accuracy'])
$$w \leftarrow w - \eta \partial L / \partial w$$
 0.1

Step 3.2: Find the optimal network parameters

```
Training Labels (digits) (Images)
```


Step 3.2: Find the optimal network parameters

https://www.tensorflow.org/versions/r0.8/tutorials/mnist/beginners/index.html

Save and load models

http://keras.io/getting-started/faq/#how-can-i-save-a-keras-model

How to use the neural network (testing):

```
case 1: print('Total loss on Testing Set:', score[0])
print('Accuracy of Testing Set:', score[1])
case 2: result = model.predict(x test)
```

Three Steps for Deep Learning

Deep Learning is so simple

Outline

Introduction of Deep Learning

"Hello World" for Deep Learning

Tips for Deep Learning

Recipe of Deep Learning

Do not always blame Overfitting

Recipe of Deep Learning

YES Good Results on Different approaches Testing Data? for different problems. YES e.g. dropout for good results on testing data Good Results on Training Data? Neural **Network**

Recipe of Deep Learning

Choosing Proper Loss

Demo

Square Error

Cross Entropy

Several alternatives: https://keras.io/objectives/

Choosing Proper Loss

When using softmax output layer, choose cross entropy

Recipe of Deep Learning

model.fit(x_train, y_train, batch_size=100, nb_epoch=20)

Mini-batch

We do not really minimize total loss!

Mini-batch NN NN NN Mini-batch NN Randomly initialize network parameters

- Pick the 1st batch $L' = l^1 + l^{31} + \cdots$ Update parameters once
- Pick the $2^{\rm nd}$ batch $L^{\prime\prime}=l^2+l^{16}+\cdots$ Update parameters once
- Until all mini-batches have been picked

one epoch

Repeat the above process

Mini-batch

model.fit(x_train, y_train, batch size=100, nb epoch=20)

100 examples in a mini-batch

Repeat 20 times

- Pick the 1st batch $L' = l^1 + l^{31} + \cdots$ Update parameters once
- Pick the $2^{\rm nd}$ batch $L'' = l^2 + l^{16} + \cdots$ Update parameters once
- Until all mini-batches have been picked

one epoch

Mini-batch

Original Gradient Descent

With Mini-batch

The colors represent the total loss.

Mini-batch is Faster

Not always true with parallel computing.

Shuffle the training examples for each epoch

Recipe of Deep Learning

Hard to get the power of Deep ...

Vanishing Gradient Problem

Learn very slow

Learn very fast

Almost random

Already converge

based on random!?

- Max(dy/dx) = 0.25 => Slow convergence rate (withbasic SGD), even vanishing gradient :
 - every time the gradient signal flows through a sigmoid gate, its magnitude always diminishes by one quarter (or more)

ReLU

-10

Rectified Linear Unit (ReLU)

0.2

0.0

-10

Reason:

- 1. Fast to compute
- 2. Biological reason
- 3. Infinite sigmoid with different biases
- 4. Vanishing gradient problem

ReLU

ReLU

But => Dying ReLUs

ReLU - variant

Leaky ReLU

Parametric ReLU

α also learned by gradient descent

Recipe of Deep Learning

Learning Rates

Set the learning rate η carefully

Learning Rates

Set the learning rate η carefully

Learning Rates

- Popular & Simple Idea: Reduce the learning rate by some factor every few epochs.
 - At the beginning, we are far from the destination, so we use larger learning rate
 - After several epochs, we are close to the destination, so we reduce the learning rate
 - E.g. 1/t decay: $\eta^t = \eta/\sqrt{t+1}$
- Learning rate cannot be one-size-fits-all
 - Giving different parameters different learning rates

Adagrad

Original: $w \leftarrow w - \eta \partial L / \partial w$

Adagrad: $w \leftarrow w - \eta_w \partial L / \partial w$

Parameter dependent learning rate

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} \xrightarrow{\text{constant}} g^i \text{ is } \frac{\partial L}{\partial w} \text{ obtained at the i-th update}$$

Summation of the square of the previous derivatives

Adagrad

$$w_1 = \frac{g^0}{0.1}$$

 W_2 20.0

Learning rate:

Learning rate:

$$\frac{\eta}{\sqrt{0.1^2}} = \frac{\eta}{0.1} \longrightarrow \frac{\eta}{\sqrt{20^2}} = \frac{\eta}{20}$$

$$\frac{\eta}{\sqrt{0.1^2 + 0.2^2}} = \frac{\eta}{0.22} \longrightarrow \frac{\eta}{\sqrt{20^2 + 10^2}} = \frac{\eta}{22}$$

- Observation: 1. Learning rate is smaller and smaller for all parameters
 - 2. Smaller derivatives, larger learning rate, and vice versa

Not the whole story

- Adagrad [John Duchi, JMLR'11]
- RMSprop
 - https://www.youtube.com/watch?v=O3sxAc4hxZU
- Adadelta [Matthew D. Zeiler, arXiv'12]
- "No more pesky learning rates" [Tom Schaul, arXiv'12]
- AdaSecant [Caglar Gulcehre, arXiv'14]
- Adam [Diederik P. Kingma, ICLR'15]
- Nadam
 - http://cs229.stanford.edu/proj2015/054_report.pdf

Recipe of Deep Learning

Hard to find optimal network parameters

In physical world

Momentum

Momentum

Still not guarantee reaching global minima, but give some hope

Adam

RMSProp (Advanced Adagrad) + Momentum

```
model.compile(loss='categorical crossentropy',
                                                   optimizer=SGD(lr=0.1),
                                                  metrics=['accuracy'])
model.compile(loss='categorical crossentropy',
                                                   optimizer=Adam(),
                                                   metrics=['accuracy'])
                                                     Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
                                                     and for a slightly more efficient (but less clear) order of computation. q_t^2 indicates the elementwise
                                                     square q_t \odot q_t. Good default settings for the tested machine learning problems are \alpha = 0.001,
                                                     \beta_1 = 0.9, \, \beta_2 = 0.999 and \epsilon = 10^{-8}. All operations on vectors are element-wise. With \beta_1^t and \beta_2^t
                                                      we denote \beta_1 and \beta_2 to the power t.
                                                      Require: \alpha: Stepsize
                                                     Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
                                                     Require: f(\theta): Stochastic objective function with parameters \theta
                                                      Require: \theta_0: Initial parameter vector
                                                       m_0 \leftarrow 0 (Initialize 1<sup>st</sup> moment vector)
                                                        v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
                                                        t \leftarrow 0 (Initialize timestep)
                                                        while \theta_t not converged do
                                                          g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
                                                          m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate)
                                                          v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
                                                          \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
                                                          \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
                                                          \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
                                                        return \theta_t (Resulting parameters)
```

Recipe of Deep Learning

Panacea for Overfitting

- Have more training data
- Create more training data (?)

Dropout

- > Each time before updating the parameters
 - Each neuron has p% to dropout

Dropout

Training:

- > Each time before updating the parameters
 - Each neuron has p% to dropout
 - The structure of the network is changed.
 - Using the new network for training

For each mini-batch, we resample the dropout neurons

Dropout

Testing:

> No dropout

- If the dropout rate at training is p%, all the weights times 1-p%
- Assume that the dropout rate is 50%. If a weight w = 1 by training, set w = 0.5 for testing.

Dropout - Intuitive Reason

Training

Dropout (腳上綁重物)

Testing

No dropout (拿下重物後就變很強)

Dropout - Intuitive Reason

Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

No dropout

Train a bunch of networks with different structures

Ensemble

- ➤ Using one mini-batch to train one network
- >Some parameters in the network are shared

More about dropout

- More reference for dropout [Nitish Srivastava, JMLR'14] [Pierre Baldi, NIPS'13][Geoffrey E. Hinton, arXiv'12]
- Dropout works better with Maxout [lan J. Goodfellow, ICML'13]
- Dropconnect [Li Wan, ICML'13]
 - Dropout delete neurons
 - Dropconnect deletes the connection between neurons
- Annealed dropout [S.J. Rennie, SLT'14]
 - Dropout rate decreases by epochs
- Standout [J. Ba, NISP'13]
 - Each neural has different dropout rate

Demo

```
model = Sequential()
                          model.add( Dense( input dim=28*2
                                             output dim=500 ))
500
                          model.add( Activation('sigmoid')
                                   model.add( dropout(0.8) )
                          model.add( Dense( output dim=500
500
                          model.add( Activation('sigmoid')
                                   model.add( dropout(0.8) )
          Softmax
                          model.add( Dense(output dim=10 ) )
                          model.add( Activation('softmax')
                     y<sub>10</sub> ...
            y<sub>2</sub>
```

. . .

Recipe of Deep Learning YES Good Results on Regularization Testing Data? YES **Dropout** Good Results on **Training Data?** Network Structure CNN is a very good example! (next lecture)

Concluding Remarks

Recipe of Deep Learning

Thanks