Probabilistic Radiomics:

Ambiguous Diagnosis with Controllable Shape Analysis

Jiancheng Yang^{1,2,3}, Rongyao Fang¹, Bingbing Ni^{1,2,3}, Yamin Li¹, Yi Xu¹, Linguo Li¹ ¹Shanghai Jiao Tong University, ²SJTU Al Institute, ³Shanghai Institute for Advanced Communication and Data Science

Analysis of CNN Failures

Saliency maps visualized by CAM technique, using a 3D DenseNet on LIDC Lung Nodule dataset.

CNNs are classifying voxels, rather than lesions.

Failure (a), the model predicts "benign" on a benign nodule correctly. However, the "correct" prediction comes from the voxels apart from lesions.

Failure (b), the model outputs "benign" on a malignant nodule **incorrectly**. However, it is indeed predicted as malignant within the lesion voxels.

A Probabilistic Radiomics framework is proposed for controllable and explainable Computer-Aided Diagnosis (CADx).

DenseSharp*: Instantiation of Probabilistic Radiomics Framework

Backbone: DenseSharp [1]

A 3D CNN based on DenseNet, which learns both nodule classification and segmentation results in a multi-task learning fashion. The auxiliary segmentation task enables a learning of classbetter ification task.

Non-local Shape Analysis

| Features from the lesion | region are cropped and regarded as **feature clouds**. The feature clouds are then proclessed by Non-local Shape **Analysis Module**, mimicking a light-weight variant of **Self-Attention** transformer [2].

Probabilistic

Radiomics

(Proposed)

Ambiguity PriorNet

To deal with the ambiguous labels from multiple experts, probabilistic **Ambiguity PriorNet**, is developed to model the prior distribution of expert annotations, with reparameterization technique to enable back-prop [3].

Conventional Radiomics, CNNs & Proposed Probabilistic Radiomics

Comparison of conventional Radiomics Analysis (top), conventional CNN-based Deep **Learning** (middle), and the proposed **Probabilistic Radiomics** framework (bottom).

	Method	Pros	Cons			
	Conventional Radiomics Analysis	Grey-box interpretability: Only corresponds to the user-delineated VOIs.	Insufficient expressiveness of hand-crafted features.			
	Conventional CNN-based Deep Learning	End-to-end learnable representation.	Black-box interpretability: Prone to the CNN failures (a) and (b).			

End-to-end learnable representation. Only corresponds to the user-delineated VOIs. Capability to model the label ambiguity.

Results

				Benign	Malignant	Benign	Malignant	Benign	Malignant
Method	AUC	Accuracy (%)		-0.8	0.8		0.8		-0.8
3D DPN [4]	-	88.28	DenseNet		-0.4		-0.4		-0.6 -0.4 -0.2
3D DPN ensemble [4]	-	90.44		Malignant Score: 0.6161		Malignant Score: 0.0148		Malignant Score: 0.5487	
3D CNN w. MTL [5]	-	80.08	DenseSharp -	Benign	Malignant	Benign	Malignant	Benign	Malignant
3D CNN w. sparse MTL [5]	-	91.26			-0.8 -0.6 -0.4 -0.2	-0.	-0.8 -0.6 -0.4 -0.2		-0.8 -0.6
3D DenseNet	0.9218	87.82							0.4
DenseSharp [1]	0.9393	89.26		Malignant Score: 0.9057		Malignant Score: 0.0139		Malignant Score: 0.5702	
DenseSharp [†] (LowAmbig-trained)	0.9480	90.87	DenseSharp ⁺	Benign	Malignant -0.8 -0.6 -0.4	Benign	Malignant 0.8 0.6 0.4	Benign	Malignant Output Out
<i>DenseSharp</i> ⁺ (HighAmbig-trained)	0.9566	91.52		_	Score: 0.7750 Malignant		Score: 0.0023	i	t Score: 0.0758

Lung nodule classification on LIDC-IDRI dataset. With the ability to model label ambiguity, the DenseSharp⁺ directly trains on the **5-mode** labels, rather than prior studies using binary labels. The metrics are 5-fold cross-validated in binary classification on LowAmbig dataset.

LowAmbig: 1,183 nodules with ≥3 radiologists' consistent diagnosis. HighAmbig: all 2,635 nodules.

Saliency map visualization of 3D DenseNet, DenseSharp, and DenseSharp⁺. Even though MTL fashion of DenseSharp does help the model to better locate the lesions than, both DenseNet and *DenseSharp* not only activate the features within lesions, but also activate that within the background, which not precisely utilizes the features of lesions themselves (the "correct evidences"). As a comparison, DenseSharp⁺ only adapts the features upon lesions.

References

[1] W. Zhao, J. Yang, et al.: 3D Deep Learning from CT Scans Predicts Tumor Invasiveness of Subcentimeter Pulmonary Adenocarcinomas. Cancer Research, 2018. [2] J. Yang, Q. Zhang, B. Ni, et al.: Modeling Clouds with Self-Attention and Gumbel Subset Sampling. CVPR, 2019. [3] D.P. Kingma, M. Welling: Auto-encoding Variational Bayes. ICLR, 2014.

[4] W. Zhu, C. Liu, et al.: Deeplung: 3D Deep Convolutional Nets for Automated Pulmonary Nodule Detection and Classi-

fication. WACV, 2017. [5] S. Hussein, K. Cao, et al.: Risk Stratification of Lung Nodules using 3D CNN-

based Multi-Task Learning. MICCAI, 2017.

CONTACT **Related Study**

DenseSharp

