12

PHOTOGRAPHING LENS SYSTEM

Patent number:

JP9236740

Publication date:

1997-09-09

Inventor:

KUDO YOSHINOBU

Applicant:

MINOLTA CO LTD

Classification:

- international:

G02B13/00; G02B13/00; (IPC1-7): G02B13/00

- european:

Application number:

JP19960043276 19960229

Priority number(s):

JP19960043276 19960229

Report a data error here

Abstract of JP9236740

PROBLEM TO BE SOLVED: To provide a practical photographing lens system whose focus deviating image is improved over the wide range of photographing distances from infinity to the closest range. SOLUTION: This lens system is composed, in order from the object side, of a first group Gr1; composed of a first positive meniscus lens L1 whose convex surface confronts the object side, a second positive meniscus lens L2 whose convex surface con-fronts the object side, a third negative meniscus lens L3 whose convex surface confronts the object side, a diaphragm A, an apodization filter F, a fourth lens L4 of biconcave shape and a fifth lens L5 of biconvex shape; and a second group Gr2 composed of a sixth lens L6 of biconvex shape. m1, m2 typically represent the movement of the first group and the second group at the time of focusing from a focusing state at infinity to a focusing state at the closest photographing distance. The photographing lens system performs aberration correction at a close distance by moving the whole system while widening an interval d13 between the first group Gr1 and the second group Gr2 at the time of focusing from the focusing state at infinity to the focusing state at the close range.

Data supplied from the esp@cenet database - Worldwide

r _ ' 1

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-236740

(43)公開日 平成9年(1997)9月9日

(51) Int.Cl.⁶

識別記号 庁内整理番号

FΙ

技術表示箇所

G 0 2 B 13/00

G 0 2 B 13/00

審査請求 未請求 請求項の数3 OL (全 15 頁)

(21)出願番号

特願平8-43276

(22)出願日

平成8年(1996)2月29日

(71)出願人 000006079

ミノルタ株式会社

大阪府大阪市中央区安土町二丁目3番13号

大阪国際ビル

(72) 発明者 工藤 吉信

大阪市中央区安土町二丁目3番13号 大阪

国際ビル ミノルタ株式会社内

(54) 【発明の名称】 撮影レンズ系

(57)【要約】

【課題】 撮影距離が無限遠から近接までの広い範囲に わたって、焦点はずれ像が改良された実用的な撮影レン ズ系を提供する。

【解決手段】 物体側から順に、物体側に凸面を向けた正メニスカス形状の第1レンズL1、物体側に凸面を向けた正メニスカス形状の第2レンズL2、物体側に凸面を向けた負メニスカス形状の第3レンズL3、絞りA、後述するアポダイゼイションフィルターF、両凹形状の第4レンズL4、両凸形状の第5レンズL5からなる第1群Gr1と、両凸形状の第6レンズL6からなる第2群Gr2と、から構成される。m1,m2は、無限遠合焦状態から近接撮影距離合焦状態へフォーカシングする際の第1群及び第2群の移動を模式的に表している。この撮影レンズ系は、無限遠合焦状態から近接合焦状態へフォーカシングする際、第1群Gr1と第2群Gr2との間隔d13を広げながら全系を物体側へ移動させて、近距離収差補正を行う。

特開平9-236740

【特許請求の範囲】

ď

i

【請求項1】 複数のレンズ群と、前記複数のレンズ群 のいずれかに配置された絞りと、前記絞り近傍に配置さ れたアポダイゼイションフィルターと、を有する撮影レ ンズ系であって、

無限遠合焦状態から近接撮影距離合焦状態へのフォーカシングに際して、少なくとも1つのレンズ群間隔を変化させながら全系を物体側に移動させることを特徴とする撮影レンズ系。

【請求項2】 物体側から順に、第1群と、第2群と、からなり、前記第1群に、絞りと該絞り近傍に配置されたアボダイゼイションフィルターとを備えた撮影レンズ系であって、

無限遠合焦状態から近接撮影距離合焦状態へのフォーカシングに際して、前記第1群と前記第2群との間隔を広げながら、全系を物体側に移動させることを特徴とする撮影レンズ系。

【請求項3】 物体側から順に、第1群と、第2群と、第3群と、からなり、前記第1群あるいは前記第2群のいずれか一方に、絞りと該絞り近傍に配置されたアボダイゼイションフィルターとを備えた撮影レンズ系であって

無限遠合焦状態から近接撮影距離合焦状態へのフォーカシングに際して、前記第1群と前記第2群との間隔を狭め、前記第2群と前記第3群との間隔を広げながら、全系を物体側に移動させることを特徴とする撮影レンズ系。

【発明の詳細な説明】

[0001]

【発明が属する技術分野】本発明は、撮影レンズ系、さらに詳しくはカメラの撮影レンズとして好適な、近接距離収差補正(いわゆるフローティング)機構を有する撮影レンズ系に関する。

[0002]

【従来の技術】一般に、撮影レンズ系の性能は、焦点面での結像性能により評価されている。このため従来より、撮影レンズ系では、結像性能を向上させるべく諸収差の補正に関して数多くの提案が行われている。

【0003】しかしながら、カメラの撮影レンズとして 使用される撮影レンズ系の場合、結像性能だけでなく、 焦点はずれ像の見え方も非常に重要である。例えば、画 像の中心に人物を配したポートレート写真や近接撮影さ れた花の写真等では、主要な被写体以外の背景となる部 分の焦点はずれ像の見え方により写真画像の印象が大き く左右されることになる。

【0004】このような焦点はずれ像の見え方としては、例えば、ポートレート写真における頭髪を例にした場合、頭髪がススキの穂のように幅広くボケる状態、1本の頭髪が2本あるかのようにボケる状態(2線ボケとも呼ばれる)、頭髪の芯を残しつつ全体にふわりとボケ

る状態など様々な状態が知られているが、3番目に示した全体にふわりとボケる状態が良好であるとされている。

【0005】特に、撮影倍率が1/4~1/2程度のマクロレンズを用いて、近接被写体を撮影する場合、主要な被写体以外の背景は、ほとんどの場合焦点はずれ像となるので、焦点はずれ像の見え方は特に重要である。

【0006】焦点はずれ像の改良を目的としたレンズ系としては、米国特許3.843.235号公報に、光軸中心から光軸と垂直な方向に離れるに従って次第に透過光量が減少するように構成されたフィルター(アボダイゼイションフィルター)を配置したレンズ系が提案されおり、物体側から順に、両凸レンズ、両凹レンズ、絞り、アボダイゼイションフィルター、両凸レンズから成るトリプレット構成のレンズ系の例が開示されている。この公報に記載されたレンズ系によれば、アボダイゼイションフィルターにより焦点はずれ像の強度分布が改変(以下、このような効果をアボダイゼイションという)されて、焦点はずれ像が改良されるとしている。

[0007]

【発明が解決しようとする課題】しかしながら、上記公報に記載されたレンズ系は、無限遠合焦状態の焦点はずれ像の改良の効果を提案しているものの、アポダイゼイションフィルターを有する構成において、フォーカシングの際のレンズ群の移動については提案されていない。 【0008】本発明は、上記課題に鑑み、撮影距離が無限遠から近接までの広い範囲にわたって、焦点はずれ像が改良された撮影レンズ系を提供することを目的とす

[0009]

る。

【課題を解決するための手段】上記目的を達成するため、請求項1記載の撮影レンズ系は、複数のレンズ群と、前記複数のレンズ群のいずれかに配置された絞りと、前記絞り近傍に配置されたアポダイゼイションフィルターと、を有する撮影レンズ系であって、無限遠合焦状態から近接撮影距離合焦状態へのフォーカシングに際して、少なくとも1つのレンズ群間隔を変化させながら全系を物体側に移動させることを特徴とする。

【0010】また、請求項2記載の撮影レンズ系は、物体側から順に、第1群と、第2群と、からなり、前記第1群に、絞りと該絞り近傍に配置されたアポダイゼイションフィルターとを備えた撮影レンズ系であって、無限遠合焦状態から近接撮影距離合焦状態へのフォーカシングに際して、前記第1群と前記第2群との間隔を広げながら、全系を物体側に移動させることを特徴とする。

【0011】また、請求項3記載の撮影レンズ系は、物体側から順に、第1群と、第2群と、第3群と、からなり、前記第1群あるいは前記第2群のいずれか一方に、絞りと該絞り近傍に配置されたアポダイゼイションフィルターとを備えた撮影レンズ系であって、無限遠合焦状

(3)

特開平9-236740

態から近接撮影距離合焦状態へのフォーカシングに際して、前記第1群と前記第2群との間隔を狭め、前記第2群と前記第3群との間隔を広げながら、全系を物体側に移動させることを特徴とする。

[0012]

ď

ī

【発明の実施の形態】以下、本発明を実施した撮影レン ズ系を図面を参照しつつ説明する。

[実施形態の撮影レンズ系のレンズ配置] 図1~図5は、第1~5の実施形態の撮影レンズ系のレンズ構成図に対応し、無限遠合焦状態でのレンズ配置を示している。第1~第5実施形態の撮影レンズ系は、何れもレンズ群中に後述するアポダイゼイションフィルターを配置し、無限遠合焦状態から近接撮影距離合焦状態へフォーカシングする際、少なくとも1つのレンズ群間隔を変化させながら全系を物体側に移動させる近距離収差補正、いわゆるフローティングを行う撮影レンズ系である。図1~図5に示した矢印m1~m3は、図示の無限遠合焦状態から最近接撮影距離合焦状態へフォーカシングする際の、各レンズ群の移動の様子を模式的に示したものである。

【0013】第1の実施形態の撮影レンズ系は、物体側から順に、物体側に凸面を向けた正メニスカス形状の第1レンズL1、物体側に凸面を向けた正メニスカス形状の第2レンズL2、物体側に凸面を向けた負メニスカス形状の第3レンズL3、絞りA、後述するアポダイゼイションフィルターF、両凹形状の第4レンズL4、両凸形状の第5レンズL5からなる第1群Gr1と、両凸形状の第6レンズL6からなる第2群Gr2と、から構成される。第1の実施形態の撮影レンズ系は、無限違合焦状態から近接撮影距離合焦状態へフォーカシングする際、第1群Gr1と第2群Gr2との間隔(図1では軸上面間隔d13に対応)を広げながら全系を物体側へ移動させて、近距離収差補正を行っている。

【0014】第2の実施形態の撮影レンズ系は、物体側から順に、物体側に凸面を向けた正メニスカス形状の第1レンズL1、両凸形状の第2レンズL2、両凹形状で物体側面を第2レンズL2の像側と接合してなる第3レンズL3、物体側に凸面を向けた負メニスカス形状の第4レンズL4、絞りA、後述するアボダイゼイションフィルターF、物体側に凹面を向けた負メニスカス形状の第5レンズL5、両凸形状の第6レンズL6からなる第1群Gr1と、両凸形状の第7レンズL7からなる第2群Gr2と、から構成される。第2の実施形態の撮影レンズ系は、無限遠合焦状態から近接撮影距離合焦状態へフォーカシングする際、第1群Gr1と第2群Gr2との間隔(図2では軸上面間隔d14に対応)を広げながら全系を物体側へ移動させて、近距離収差補正を行っている。

【0015】第3の実施形態の撮影レンズ系は、物体側から順に、物体側に凸面を向けた正メニスカス形状の第

1レンズL1、物体側に凸面を向けた正メニスカス形状の第2レンズL2、物体側に凸面を向けた負メニスカス形状の第3レンズL3からなる第1群Gr1と、絞りA、後述するアボダイゼイションフィルターF、両凹形状の第4レンズL4、両凸形状の第5レンズL5からなる第2群Gr2と、両凸形状の第6レンズL6からなる第3群Gr3と、から構成される。第3の実施形態の撮影レンズ系は、無限違合焦状態から近接撮影距離合焦状態へフォーカシングする際、第1群Gr1と第2群Gr2との間隔(図3では軸上面間隔d6に対応)を狭め、かつ第2群Gr2と第3群Gr3との間隔(図3では軸上面間隔d13に対応)を広げながら全系を物体側へ移動させて、近距離収差補正を行っている。

【0016】第4の実施形態の撮影レンズ系は、物体側 から順に、物体側に凸面を向けた正メニスカス形状の第 1レンズ L 1、物体側に凸面を向けた正メニスカス形状 の第2レンズL2、物体側に凸面を向けた負メニスカス 形状の第3レンズL3からなる第1群Gr1と、絞り A、後述するアポダイゼイションフィルターF、両凹形 状の第4レンズL4、両凸形状の第5レンズL5、両凸 形状の第6レンズL6からなる第2群Gr2と、両凹形 状の第7レンズレ7、物体側に凸面を向けた負メニスカ ス形状の第8レンズL8、両凸形状の第9レンズL9か らなる第3群Gr3と、から構成される。第4の実施形 態の撮影レンズ系は、無限遠合焦状態から近接撮影距離 合焦状態へフォーカシングする際、第1群Gr1と第2 群Gr2との間隔(図4では軸上面間隔d6に対応)を狭 め、かつ第2群Gr2と第3群Gr3との間隔(図4では 軸上面間隔 d 1 5 に対応)を広げながら全系を物体側へ 移動させて、近距離収差補正を行っている。

【0017】第5の実施形態の撮影レンズ系は、物体側から順に、物体側に凸面を向けた正メニスカス形状の第1レンズL1、物体側に凸面を向けた正メニスカス形状の第2レンズL2、物体側に凸面を向けた負メニスカス形状の第3レンズL3、絞りA、後述するアポダイゼイションフィルターF、両凹形状の第4レンズL4、両凸形状の第5レンズL5、両凸形状の第6レンズL6からなる第1群Gr1と、両凹形状の第7レンズL7、物体側に凸面を向けた負メニスカス形状の第8レンズL8、両凸形状の第9レンズL9からなる第2群Gr2と、から構成される。第5の実施形態の撮影レンズ系は、無限遠合焦状態から近接撮影距離合焦状態へフォーカシングする際、第1群Gr1と第2群Gr2との間隔(図5では軸上面間隔 d15に対応)を広げながら全系を物体側へ移動させて、近距離収差補正を行っている。

【0018】上記各実施形態は、いずれも撮影レンズ系中にアポダイゼイションフィルターを配置している。なお、アポダイゼイションフィルターは、各図において、1枚の平板として図示している。このアポダイゼイションフィルターの詳細な構成については後述する。

ť

ď

【0019】近接被写体に対する結像状態では、絞りより像側の正のレンズ群へ入射する軸上光束の入射高が高くなり、球面収差が大きくアンダーになる傾向がある。また、軸外光束は無限遠合焦状態の場合よりも各レンズ群の光軸近傍の低い位置を通過するため、外方性のコマ収差を発生させる。

【0020】これらの近接被写体に対する結像状態に特有の諸収差を補正するためには、適切な軸上面間隔を補正してフローティングを行い、近接撮影距離で発生する収差の変動を抑制する必要がある。

【0021】上記第1,第2及び第5の実施形態の撮影レンズ系では、物体側から順に、第1群と、第2群と、からなり、前記第1群に、絞りと該絞り近傍に配置されたアボダイゼイションフィルターとを備えた撮影レンズ系において、無限遠合焦状態から近接撮影距離合焦状態へのフォーカシングに際して、前記第1群と前記第2群との間隔を広げるフローティング機構を採用している。【0022】このような、フローティング機構を採用することにより、アポダイゼイションフィルターを有する撮影レンズ系においても、近接撮影距離で発生する収差を良好に補正することができ、無限遠合焦状態から近接撮影距離合焦状態の広い範囲にわたって、焦点はずれ像が改良された実用的な撮影レンズ系を実現することができる。

【0023】また、上記第3及び第4の実施形態の撮影レンズ系では、物体側から順に、第1群と、第2群と、第3群と、からなり、第2群の最も物体側に、絞りと該絞り近傍に配置されたアボダイゼイションフィルターとを備えた撮影レンズ系において、無限遠合焦状態から近接撮影距離合焦状態へのフォーカシングに際して、前記第1群と前記第2群との間隔を狭め、前記第2群と前記第3群との間隔を広げるフローティング機構を採用している。

【0024】このような、フローティング機構を採用することにより、先の各実施形態の場合と同様に、アボダイゼイションフィルターを有する撮影レンズ系においても、近接撮影距離で発生する収差を良好に補正することができ、無限遠合焦状態から近接撮影距離合焦状態の広い範囲にわたって、焦点はずれ像が改良された撮影レンズ系を実現することができる。

【0025】また、この第3及び第4の実施形態の撮影レンズ系は、3群構成であるため、2群構成の第1、第2及び第5の実施形態の撮影レンズ系よりも、より高い倍率まで、近距離収差を補正することができる。そのため、2群構成の場合よりも撮影倍率が大きい領域においても使用することができる。

【0026】なお、第3及び第4の実施形態は、アボダイゼイションフィルターを、いずれも第2群に配置した実施形態であるが、アボダイゼイションフィルターを第1群に配置しても、同一の効果を得ることができる。

【0027】 [焦点はずれ像改良方法の原理]次に、焦点はずれ像改良の原理について図面を参照して説明する。図6は、焦点はずれ像の説明を行うための模式図である。図6において、Pは点光源、Lは光軸対称の円形開口を有する無収差のレンズ系しを示している。点光源Pは、レンズ系しにより、共役な焦点面で点像P'を形成する。また、焦点面から光軸方向に Δ だけ離れた面Sでは、大きさのある焦点はずれ像P''を形成する。

【0028】なお、実際の撮影の際の結像関係は、点光源Pとレンズ系Lとの距離が変化することにより、像面上の点像P'が焦点はずれ像P''となるが、以下の説明では、簡単のために点光源Pの光軸上の位置を固定し、点像P'を含む焦点面に対して平行な面Sにおける焦点はずれ像P''について議論することとする。

【0029】レンズ系Lの開口の透過率分布が一定である場合、すなわち、図7に示すように光軸から開口の有効半径h1までの範囲で透過率で(h)が一定値である場合には、像面S上での点光源Pの像P''は強度が一様である錯乱円となる。

【0030】一方、レンズ系Lの開口に、図8に示すような光軸中心から光軸と垂直な方向に離れるに従って透過率 τ (h)が減少し、有効半径h1で0となるような吸収を与えた場合、像面S上での点光源Pの像P"は強度分布が透過率分布と相似する円形像となる。すなわち、透過率 τ (h)が図8のような分布を有する場合、点光源Pの焦点はずれ像P"は、光軸近傍の中心が明るく、周辺にいくに従って強度が減少した像となる。

【0031】一般の被写体は、輝度の異なる点光源の集合体と考えられるため、開口の透過率で(h)が図8のような分布を有するレンズ系の焦点はずれ像は、中心に芯を残しつつふわりとボケることになり、良好な焦点はずれ像を得ることができる。以上が、アボダイゼイションによる焦点はずれ像の改良の原理である。

【0032】アボダイゼイションの特徴としては、その 焦点はずれ像に対する効果が面Sの位置、デフォーカス 量、前ボケ後ボケ、等を問わないことが挙げられる。す なわち、図6からも明らかなように、面Sがいずれの位 置にあっても、点光源Pの焦点はずれ像P''は、レンズ 系Lの有効径を透過するかぎり、光軸近傍の中心が明る く、周辺にいくに従って強度が減少した像となる。

【0033】さらに、アボダイゼイションによる焦点はずれ像の改良について、レスポンス関数を用いて説明する。図9は、レンズ系の開口が、以下の式(A)で表されるような一定の透過率 τ (h)を有する場合(a)と、以下の式(B)で表されるような光軸中心から光軸と垂直な方向に離れるに従って減少する透過率 τ (h)を有する場合(b)とにおいて、焦点面から Δ だけ離れた面での焦点はずれ像のレスポンス関数を示すグラフである。

 $\tau(h) = 1 \cdot \cdot \cdot \cdot (A)$

 $\tau(h) = 1 - h^2 \cdot \cdot \cdot \cdot (B)$

4,

ť

また、図9のグラフにおいて、横軸は空間周波数s、縦軸は空間周波数s=0でレスポンスが1となるように正規化したレスポンス値を表す。

【0034】レスポンス関数は、OTF (optical trans fer function)とも呼ばれ、被写体のスペクトルと像のスペクトルとの間の周波数伝達特性を示すものである。 焦点はずれ像のレスポンス関数は、瞳での焦点はずれによる波面収差を計算し、瞳関数を求めた後、この瞳関数から点像強度分布を求め、さらにこの点像強度分布をフーリエ変換することにより導出される。

【0035】図9のグラフからも分かるように、レンズ系の開口の透過率が一定の値である場合のレスポンス関数は、空間周波数の低周波成分において急激に減少した後、空間周波数s=s1近傍で一旦負の値を採り、さらに空間周波数s=s2近傍で正の値となる特性(a)を示している。

【0036】一方、レンズ系の開口の透過率が光軸中心から光軸と垂直な方向に離れるに従って減少する場合のレスポンス関数は、空間周波数の低周波成分においてゆるやかに単調減少し、空間周波数s=s2近傍でわずかに負の値をとった後、再び正の値となる特性(b)を示している。

【0037】一般に、空間周波数の低周波成分は像の概略構成を形成し、高周波成分は低周波成分により形成された像の概略構成を修正する作用を有する。また、レスポンス関数が負の値をとる状態は偽解像と呼ばれ、実際の画像では黒い部分が白くなり、白い部分が黒くなるネガボジ反転の現象が発生している状態に相当する。

【0038】透過率が一定である(a)の特性に基づく 画像は、低周波成分の減少が大きく、像の概略構成があまり再現されていないと考えられる。また、空間周波数 s=s1近傍の負の値となる範囲が大きいため、偽解像 の状態となる空間周波数範囲が広い。さらに、高周波成分でのレスポンス関数の振動が顕著であることから、非常に不自然な像を形成しているといえる。

【0039】一方、光軸から離れるに従って透過率が減少する(b)の特性に基づく画像は、低周波成分の減少が小さく、像の概略構成がより再現されている。また、 偽解像の範囲も小さく、高周波成分でのレスポンス関数の振動も小さい。

【0040】以上より、光軸中心から光軸と垂直な方向に離れるに従って透過率が減少するような開口を有するレンズ系の場合、一定の透過率の開口のレンズ系よりも、焦点はずれ像での画像の骨組みがはっきりしており、また自然にボケているということができる。換言す

 τ (h) = I (h) / I0=exp($-\alpha \cdot h^2/2r$) · · · · · (G)

上記式(G)は、ガウス分布を示している。図10のような平凹レンズを実際に製作した場合、上記式(E)において、二項展開による近似を行っているため、完全なガウス分布とはならず、ガウス分布からわずかに外れた

れば、レスポンス関数が(b)の特性を有するレンズ系の焦点はずれ像は、中心に芯を残しつつふわりとボケている状態であるといえる。

【0041】このように、レスポンス関数の面からも、アポダイゼイションにより、焦点はずれ像が改良されていることが分かる。

【0042】[アポダイゼイションフィルター]次に、アポダイゼイションフィルターについて説明する。上述した第1~第5の実施形態で使用しているアポダイゼイションフィルターは、光吸収を有する物質(NDガラス)を使用して製作されている。

【0043】一般に、光束がレンズを透過する場合、レンズの表面反射による影響を無視すれば、透過光強度 I は以下の式(C)で表される。

I0:入射光強度、

α:吸収係数、

t:レンズの厚さ、

である。

(5)

【0044】上記式(C)において、吸収係数αはレンズ媒質により決定される定数であるから、一定強度の入射光に対する透過光強度 I は、レンズの厚みのみにより決定されることになる。

【0045】この特性を利用して、光軸中心から光軸と垂直な方向に離れるに従って透過率が減少するような吸収を有するレンズを製作することができる。すなわち、図10に示すように、吸収係数αが大きなレンズ材料を用いて、平凹形状のレンズを製作すれば、そのレンズは光軸中心から光軸と垂直な方向に離れるに従って厚みが増大するので、レンズの中心から周辺に向かって吸収を有するレンズとなる。

【0046】以下、このような、平凹形状のレンズの透過率分布を示す。図10において、レンズの凹面の曲率半径をr、光軸から高さhでのレンズの厚みをtとすれば、厚みtは幾何学的な計算から以下の式(D)で表される。

 $t = r - \sqrt{(r^2 - h^2) \cdot \cdot \cdot \cdot \cdot (D)}$

上記式において、rと比較してhが小さいとして二項展開 すれば、厚さtは、以下の式(E)に近似できる。

 $t = h^2/2r \cdot \cdot \cdot \cdot (E)$

これを(C)式に代入すれば、以下の式(F)を得る。 I (h) = $I0 \cdot exp(-\alpha \cdot h^2/2r) \cdot \cdot \cdot \cdot \cdot \cdot$ (F)

透過率τ(h)は、入射光強度 I 0と透過光強度 I との比であるから、以下の式 (G) 得る。

略ガウス分布となる。すなわち、図10のような平凹形 状のレンズを、吸収係数αの媒質で作成すれば、透過率 τ(h)は略ガウス分布となることがわかる。

【0047】図6において、レンズ系Lの透過率で(h)

ť

r

が略ガウス分布である場合、前述したように面Sに形成される点光源Pの焦点はずれ像P''の強度分布も、透過率分布と相似した略ガウス分布となる。

【0048】ところで、ガウス分布のフーリエ変換は負の値を持たないことが知られている。したがって、ガウス分布である焦点はずれ像P''の点像強度分布をフーリエ変換したレスポンス関数は、正の値のみを有することになる。

【0049】上述の平凹レンズは、略ガウス分布の透過率を有しているため、この平凹レンズを含むレンズ系においては、焦点はずれ像のレスポンス関数は正の値を採る部分が大部分となり、偽解像が発生する空間周波数の範囲が非常に小さい。また、レスポンス関数も単調減少となることから、自然な焦点はずれ像を得ることができる

【0050】以上のように、NDガラスを使用することにより、アポダイゼイションの効果を得ることができるレンズを製作することができる。しかしながら、(G)式からも分かるように、透過率で(h)は平凹形状のレンズの凹面の曲率半径の関数であるため、所望の透過率分布を得るためには曲率半径の値は、制限されてしまう。このことは、光学系の設計上の自由度を大きく制限する

ことになり、好ましくない。

【0051】そこで、第1~第5の実施形態では、前述の平凹レンズの凹面と曲率半径が同じ凸面を有する平凸レンズを用いて凹面と凸面とを接合することにより、アボダイゼイションフィルターとしている。このような平凸レンズの材料は、平凹レンズと屈折率、アッベ数が同一で、ただ吸収係数のみが異なるガラスを材料とすることが望ましい。平凹レンズと平凸レンズとの屈折率、アッベ数が同一であれば、両者の接合面で光束が屈折されることがなく、アボダイゼイションフィルターは、透過率分布のみを与える平板フィルターとして取り扱うことができる。

【0052】以下の表に、アポダイゼイションフィルターを作成した実施例を示す。また、図11に実施例のアポダイゼイションフィルターの断面図を示す。図11中、アポダイゼイションフィルターは、平凹レンズ1と平凸レンズ2とを接合してなり、有効半径は15.5mmである。さらに、図12のアポダイゼイションフィルターの透過率で(h)の設計データのグラフを示す。

【0053】 【表1】

《アポダイゼイションフィルター》

【曲》 Bi	平半径]	[触上	面間隔)	[]	国折率]	[アッケ	ヾ数]	[10 0	係數]
		Tı	0.35	N1	1.507	νı	59.0	a	0.55
R2	20.5	T2	9.28	N2	1.507	ν 2	59.0	-	
R3	œ								

【0054】なお、アボダイゼイションフィルターは、上記構成の他に、透明ガラス平板に所定の分布を有するように吸収物質を蒸着したり、透明ガラス平板に感光材料を塗布して所定の濃度となるように露光したりすることによっても得ることができる。これらの方法で作成されたアボダイゼイションフィルターは、フィルターの厚みを薄くすることができるというメリットを有している。しかしながら、これらの方法により作成されたアボダイゼイションフィルターは、吸収物質及び感光材料の膜圧が透過率分布に従って入射高によって異なるため光束の位相変化が発生するという欠点がある。また、光束は吸収物質及び感光材料により散乱されたり、反射されたりする問題も発生する。

【0055】[撮影レンズ系が満足すべき条件]次に、本発明にかかる撮影レンズ系が満足すべき条件について説明する。

0. $1 < \phi f / \phi < 2$. $0 \cdot \cdot \cdot \cdot \cdot \cdot (1)$ ただし、

φf:第1群の屈折力、

φ:全系の屈折力、

である。

【0056】条件式(1)は、物体側から順に、第1群

と、第2群と、からなり、前記第1群に、絞りと該絞り 近傍に配置されたアボダイゼイションフィルターとを備 えた撮影レンズ系であって、第1群と第2群との間隔を 変化させて全系を物体側に移動させるフローティングを 行う撮影レンズ系において、第1群が満足すべき条件で ある。条件式(1)の下限値を越えると、全系の球面収 差が補正不足となり望ましくない。逆に、条件式(1) の上限値を越えると、全系の球面収差が補正過剰となり 望ましくない。

[0057]

-0.3<φb/φ<5.0・・・・(2) ただし、

φb: 第2群の屈折力、

である。

【0058】条件式(2)は、第1群が前記条件式

(1)を満足する条件下で、第2群が満足すべき条件である。条件式(2)の下限値を越えると、全系の球面収差が補正過剰となるとともにコマ収差が補正不足となり望ましくない。逆に、条件式(2)の上限値を越えると、球面収差が補正不足となるとともにコマ収差が補正過剰となり望ましくない。

[0059]

(7)

特開平9-236740

1. $01 < If/Ib < 3.00 \cdot \cdot \cdot \cdot (3)$ ただし、

If:第1群の無限遠合焦状態から近接撮影距離合焦状 態へのフォーカシングの際の移動量、

Ib:第2群の無限遠合焦状態から近接撮影距離合焦状 態へのフォーカシングの際の移動量、 である。

【0060】条件式(3)は、前記条件式(1)及び (2)を満足する条件下で、全系の外方性コマ収差を補 正するために満足すべき条件である。条件式(3)の下 限値を越えると、全系において、外方性コマ収差が補正 不足となり望ましくない。逆に、条件式(3)の上限値 を越えると、外方性コマ収差の補正効果が強くなりす ぎ、他の収差補正に対するバランスが崩れて、他の収差 を悪化させ望ましくない。また、条件式(3)の上限値 を越えると、レンズ全長が大きくなりすぎるとともに、 周辺光量を確保するためにレンズ外径を大きくしなけれ ばならず望ましくない。

[0061]

 $0.5 < \phi 1/\phi < 1.5 \cdot \cdot \cdot \cdot (4)$ ただし、

φ1: 第1群の屈折力、

である。

ť

【0062】条件式(4)は、物体側から順に、第1群 と、第2群と、第3群と、からなり、前記第1群あるい は前記第2群のいずれか一方に、絞りと該絞り近傍に配 置されたアポダイゼイションフィルターとを備えた撮影 レンズ系であって、無限遠合焦状態から近接撮影距離合 焦状態へのフォーカシングに際して、前記第1群と前記 第2群との間隔及び前記第2群と前記第3群との間隔 を、それぞれ変化させながら全系を物体側に移動させる フローティングを行う撮影レンズ系において、第1群が 満足すべき条件である。条件式(4)の下限値を越える と、全系の球面収差が補正過剰となるとともにレンズ系 の全長が長くなるので望ましくない。逆に、条件式

(4)の上限値を越えると、全系の球面収差が補正不足 となり望ましくない。

[0063]

 $-2.0 < \phi 2/\phi < 1.5 \cdot \cdot \cdot \cdot (5)$

ただし、

φ2:第2群の屈折力、

である。

【0064】条件式(5)は、第1群が前記条件式

 $0.5 < (ra-rb) / (ra+rb) < 15.0 \cdot \cdot \cdot \cdot \cdot (9)$

ra:アポダイゼイションフィルターより像側が、両凹レ ンズ、正レンズ、正レンズから構成されるときの両凹レ ンズの物体側面の曲率半径、

rb:アポダイゼイションフィルターより像側が、両凹レ ンズ、正レンズ、正レンズから構成されるときの両凹レ

(4)を満足する条件下で、第2群が満足すべき条件で ある。条件式(5)の下限値を越えると、コマ収差が補 正不足となり望ましくない。逆に、条件式(5)の上限 値を越えると、全系のコマ収差が補正過剰となるととも に、フローティング量が大きくなり全系が大型化してし まうため望ましくない。

[0065]

 $-0.5 < \phi 3/\phi < 3.0 \cdot \cdot \cdot \cdot \cdot (6)$ ただし、

-- φ3: 第3群の屈折力、

である。

【0066】条件式(6)は、前記条件式(4)及び (5)を満足する条件下で、全系の球面収差とコマ収差 とを補正するために満足すべき条件である。条件式 (6)の下限値を越えると、球面収差が補正過剰となる とともにコマ収差が補正不足となり望ましくない。逆 に、条件式(6)の上限値を越えると、全系の球面収差 が補正不足となるとともにコマ収差が補正過剰となり望 ましくない。また、条件式(6)の上限値を越えるとフ ローティング量も増大して、全系が大型化してしまう。 [0067]

1. $01 < I1 / I3 < 2.50 \cdot \cdot \cdot \cdot (7)$

1. $01 < 12/13 < 2.50 \cdot \cdot \cdot \cdot (8)$ ただし、

I1: 第1群の無限遠合焦状態から近接撮影距離合焦状 態へのフォーカシングの際の移動量、

12: 第2群の無限遠合焦状態から近接撮影距離合焦状 態へのフォーカシングの際の移動量、

13:第3群の無限遠合焦状態から近接撮影距離合焦状 態へのフォーカシングの際の移動量、 である。

【0068】条件式(7)及び(8)は、前記条件式 (4), (5)及び(6)を満足する条件下で、全系の 外方性コマ収差を補正するために満足すべき条件であ る。条件式(7)及び(8)の下限値を越えると、全系 において、外方性コマ収差が補正不足となり望ましくな い。逆に、条件式(7)及び(8)の上限値を越える と、外方性コマ収差の補正効果が強くなりすぎ、他の収 差補正に対するバランスが崩れて、他の収差を悪化させ 望ましくない。また、条件式(7)及び(8)の上限値 を越えると、レンズ全長が大きくなりすぎ望ましくな 11.

[0069]

ンズの像側面の曲率半径、 である。

【0070】条件式(9)は、アポダイゼイションフィ ルターを有する撮影レンズ系において、アポダイゼイシ ョンフィルターより像側が、両凹レンズ、正レンズ、正 レンズから構成されるときの両凹レンズのshape factor (8)

である。条件式(9)の下限値を越えると、全系の球面 収差及び像面湾曲が補正過剰となり、その補正が困難と なる。逆に、上限値を越えると強い下方性コマ収差が発 生し、補正困難となる。

【0071】ところで、アポダイゼイションの効果を軸外光束にまで及ぼすためには、全系の軸外光束のケラレを極力少なくすることが必要である。軸外光束のケラレを発生させないようにするためは、アポダイゼイションフィルターは、絞り近傍に配置することが望ましい。アポダイゼイションフィルターを絞りから離して配置した場合、画角の大きい軸外光束はアポダイゼイションフィルターにより一部がケラレて像面に到達してしまう。アポダイゼイションフィルターにより一部がケラレた光束の焦点はずれ像は、ケラレていない側はアポダイゼイションの効果により良好であるが、ケラレた側は従来と同様に振る舞う。この結果、非対称な焦点はずれ像が形成されることになり非常に不自然となる。

【0072】また、アポダイゼイションフィルターを有する撮影レンズ系においては、像高y',最大像高Ymaxとしたときに、y'=0.5Ymaxにおいて、像面照度8

《実施例 1》 f=135.0

FNO=2.8

0%以上を満足することが必要である。y'=0.5 Ymxにおいて、像面照度が80%を下回ると、軸外光束対する有効なアポダイゼイションの効果が得られないだけでなく、不自然な焦点はずれ像が発生することになり望ましくない。

特開平9-236740

[0073]

【実施例】以下、本発明にかかる撮影レンズ系を、コンストラクションデータ、収差図等を挙げて、更に具体的に示す。なお、以下に挙げる実施例1~5は、前述した第1~第5の実施形態にそれぞれ対応しており、第1~第5の実施形態を表すレンズ配置図は、対応する実施例1~5のレンズ構成をぞれぞれ示している。

【 0074】各実施例において、ri(i=1,2,3...)は物体側から数えてi番目の面の曲率半径、di(i=1,2,3...)は物体側から数えてi番目の軸上面間隔を示し、Ni(i=1,2,3...)は、 $\nu i(i=1,2,3...)$ は物体側から数えてi番目のレンズまたはフィルターの d線に対する屈折率、アッベ数を示す。

【0075】 【表2】

1-13	3.0	FN0-2.5					
[#	李半径] 54,492	[輪上	西州縣)	(8	折率〕	[アゥ	べ数]
		d1	10.001	N1	1.72000	ν1	50.31
r2 r3	591.895 49.709	d2	0.250				
		d3	10.501	N2	1.71700	V 2	47.86
T4	78.066 676.833	d4	3.300				
r5	35.170	d5	2.801	N3	1.75520	v 3	27.51
r6	∞(絞り)	d6	6.000				
r7	ω(s ξη)	d7	2.000				
r 8		d8	8.000	N4	1.51823	ν4	58.96
r9	∞	d 9	7.000				
r10	-390.274	d10	2.840	N5	1.66755	v 5	41.98
r11	60.015 84.000	d11	6.005				
r12	-906.832	d12	6.010	N6	1.71700	ν6	47.86
r13		d13	1.000				
r14	154.940	d14	5.006	N7	1.66608	v 7	47.95
r15	-174.855						

[0076]

【表3】

(9)

特開平9-236740

	《実施例 2》 f=135.0	FNO=2 . 8		
	[曲率半径] r1 74,529	[軸上面階隔]	【眉折串】	[アッペ數]
	r2 501,457	d1 8.105	N1 1.74400	v1 44.93
	r3 58.729	d2 0.400		
	r4 -342.594	d3 16.878	N2 1.62280	ν2 56.88
	r5 68,127	d4 3.608	N3 1.61659	v3 36.61
	r6 751.659	d5 4.912		
	r7 41.653	d6 3.228	N4 1.74000	V4 28.24
	r8 ∞(仮り)	d7 5.400		
	rg co	d8 1.350		
	r10 co	d9 8.000	N5 1.51823	⊌ 5 58.96
	r11 -39.421	d10 8.740		
	r12 -44.979	d11 8.890	N6 1.71736	ν6 29.50
	r13 129.471	d12 0.270		
	r14 -197.719	d13 6.005	N7 1.60311	ν7 60.74
	r15 1000.000	d14 0.300		
	r16 -400.000	d15 4.000	N8 1.66608	ν8 47.95
[0077]			[± 4]	
100111			【表4】	
100777	《実施例 3》 f=135.0	FN0=2 . 8	(374)	
100111		[賴上面商稿]	【屈折率】	[アッペ数]
	f=135.0 [曲率半径]	[輸上面間隔] d1 13.018		[アッペ数] レ1 52.14
	f=135.0 [曲率半径] r1 54.303	[帕上面間隔] d1 13.018 d2 0.250	【磨折率】 N1 1.72000	ν1 52.14
	f=135.0 [曲率半径] r1 54.303 r2 1157.220	[輸上面商籍] d1 13.018 d2 0.250 d3 8.022	【屈折率】	
	f=135.0 [曲率半径] r1 54.303 r2 1157.220 r3 46.959	[輸上面間隔] d1 13.018 d2 0.250 d3 8.022 d4 3.000	【磨折率】 N1 1.72000 N2 1.69350	ν1 52.14
	f=135.0 [曲率半径] f1 54.303 r2 1157.220 r3 46.959 r4 102.841	[輸上面商籍] d1 13.018 d2 0.250 d3 8.022 d4 3.000 d5 4.025	【磨折率】 N1 1.72000	ν1 52.14 ν2 51.83
	f=135.0 [曲率半径] f1 54.303 r2 1157.220 r3 46.959 r4 102.841 r5 560.397	[輸上面間隔] d1 13.018 d2 0.250 d3 8.022 d4 3.000 d5 4.025 d6 9.000	【磨折率】 N1 1.72000 N2 1.69350	ν1 52.14 ν2 51.83
	f=135.0 [曲率半径] f1 54.303 r2 1157.220 r3 46.959 r4 102.841 r5 560.397 r6 35.170	[輸上面商籍] d1 13.018 d2 0.250 d3 8.022 d4 3.000 d5 4.025 d6 9.000 d7 2.000	【瘤折率】 N1 1.72000 N2 1.69350 N3 1.75520	ν1 52.14 ν2 51.83
	f=135.0 [曲率半径] f1 54.303 r2 1157.220 r3 46.959 r4 102.841 r5 560.397 r6 35.170 r7 ∞(絞り)	[輸上面間隔] d1 13.018 d2 0.250 d3 8.022 d4 3.000 d5 4.025 d6 9.000 d7 2.000 d8 8.000	【磨折率】 N1 1.72000 N2 1.69350	v1 52.14 v2 51.83 v3 27.51
	f=135.0 [曲率半径] f1 54.303 f2 1157.220 f3 46.959 f4 102.841 f5 560.397 f6 35.170 f7 ∞(较り) f8 ∞	[輸上面商籍] d1 13.018 d2 0.250 d3 8.022 d4 3.000 d5 4.025 d6 9.000 d7 2.000 d8 8.000 d9 7.000	【瘤折率】 N1 1.72000 N2 1.69350 N3 1.75520	v1 52.14 v2 51.83 v3 27.51
	f=135.0 [曲率半径] f1 54.303 r2 1157.220 r3 46.959 r4 102.841 r5 560.397 r6 35.170 r7 ∞(较り) r8 ∞	[輸上面間隔] d1 13.018 d2 0.250 d3 8.022 d4 3.000 d5 4.025 d6 9.000 d7 2.000 d8 8.000	【磨折率】 N1 1.72000 N2 1.69350 N3 1.75520	ν1 52.14 ν2 51.83 ν3 27.51 ν4 58.96
	f=135.0 [曲率半径] r1 54.303 r2 1157.220 r3 46.959 r4 102.841 r5 560.397 r6 35.170 r7 ∞(絞り) r8 ∞ r9 ∞ r10 -113.347	[輸上面間無] d1 13.018 d2 0.250 d3 8.022 d4 3.000 d5 4.025 d6 9.000 d7 2.000 d8 8.000 d9 7.000 d10 2.839	【磨折率】 N1 1.72000 N2 1.69350 N3 1.75520	ν1 52.14 ν2 51.83 ν3 27.51 ν4 58.96
	f=135.0 [曲率半径] f1 54.303 r2 1157.220 r3 46.959 r4 102.841 r5 560.397 r6 35.170 r7 ∞(较り) r8 ∞ r9 ∞ r10 -113.347 r11 47.730	[輸上面商籍] d1 13.018 d2 0.250 d3 8.022 d4 3.000 d5 4.025 d6 9.000 d7 2.000 d8 8.000 d9 7.000 d10 2.839 d11 6.004	【瘤折率】 N1 1.72000 N2 1.69350 N3 1.75520 N4 1.51823	ν1 52.14 ν2 51.83 ν3 27.51 ν4 58.96 ν5 44.93
	f=135.0 [曲率半径] r1 54.303 r2 1157.220 r3 46.959 r4 102.841 r5 560.397 r6 35.170 r7 ∞(絞り) r8 ∞ r9 ∞ r10 -113.347 r11 47.730 r12 73.206	[輸上面間隔] d1 13.018 d2 0.250 d3 8.022 d4 3.000 d5 4.025 d6 9.000 d7 2.000 d8 8.000 d9 7.000 d10 2.839 d11 6.004 d12 6.009	【瘤折率】 N1 1.72000 N2 1.69350 N3 1.75520 N4 1.51823	ν1 52.14 ν2 51.83 ν3 27.51 ν4 58.96 ν5 44.93
	f=135.0 [曲率半径] f1 54.303 r2 1157.220 r3 46.959 r4 102.841 r5 560.397 r6 35.170 r7 ∞(较り) r8 ∞ r9 ∞ r10 -113.347 r11 47.730 r12 73.206 r13 -195.000	輸上面間隔 13.018 d2	【四折率】 N1 1.72000 N2 1.69350 N3 1.75520 N4 1.51823 N5 1.74400 N6 1.71700	v1 52.14 v2 51.83 v3 27.51 v4 58.96 v5 44.93 v6 47.86

[0079]

(10)

特開平9-236740

《実施例 4》 f=135.0	FNO=2.8		
[曲率半径]	[軸上面開隔]	[屈折率]	[アッペ数]
r1 57.222	d1 13.001	N1 1.72000	ν1 52.14
r2 1463.443	d2 0.250		
r3 49.023	d3 8.000	N2 1.71300	2 53.93 ע
r4 110.073	d4 2.300		
r5 343.160	d5 4.000	N3 1.75690	⊌3 29.69
r6 35.170	d6 11.000		
r7 ∞	d7 8.000	N4 1.51823	v4 58.96
r8 ∞	d8 1.000		
r9 ∞(較り)	d9 7.000		
r10 -57.450	d10 2.829	NS 1.66755	v5 41.98
r11 80.714	d11 5.000	110 11.00700	
r12 280.558	0	N6 1.67003	ν6 47.15
r13 -88.734		10 1.01000	
r14 81.658	d13 0.230	N7 1.72900	ν7 53.48
r15 -195.000	d14 6.000	R1 1.12500	9 7 33.40
r16 -1589.850	d15 1.000	NO 1 72000	ν8 52.14
r17 79.868	d16 2.002	NB 1.72000	V B 32.14
r18 185.821	d17 2.000		
r19 111.926	d18 3.502	N9 1.66998	9 39.23
r20 142.970	d19 2.000		
r21 -150.321	d20 5.501	N10 1.66892	v 10 45.01
		【表6】	
•			

(11)

特開平9-236740

《実施例 5》 f=100.0	FNO=2.8		
[曲率半径]	[執上面而爲]	[超折率]	[アッペ数]
r1 48.604	d1 12.000	N1 1.72000	1 50.31
r2 749.732	d2 0.185		
r3 37.876	d3 7.000	N2 1.72000	ν2 54.71
г4 92.244	d4 2.083		
r5 250.110		N3 1.75690	3 29,69
r6 28.052		11,7000	
17 ° 00		N4 1.51823	4 58.96 ب
r8 co	d7 8.000	N4 1.51823	. 74 30.90
19 ∞(較り)	d8 1,000		
r10 -48.249	d9 5,000		
r11 76.499	d10 2.095	N5 1.66755	ν5 41.98
r12 423.582	d11 3.704		
r13 -74.053	d12 4.000	N6 1.67003	v6 47.15
Α	d13 0.170		
r14 60.477	d14 5.000	N7 1.72900	ν7 53.48
r15 -144.444	d15 0.741		
r16 -1178.162	d16 1.484	N8 1.72000	v8 52.14
r17 59.160	d17 1.481		
r18 122.825	d18 2.594	N9 1.66998	ν9 39.23
r19 82.907	d19 1.481		
r20 105.903		N10 1.71700	v 10 47.86
r21 -93.071	4.0 0.00		

【0080】また、以下の表に各実施例における、無限 遠合焦状態から近接撮影距離合焦状態へのフォーカシン グの際の、各レンズ群間の軸上面間隔の変化と物体側へ の移動量をフローティングデータとして示す。なお、最 フローティングデータ

近接倍率 β は、実施例1, 2では $\beta = 1/4$ 、実施例3 ~5では $\beta = 1/2$ である。

【0081】 【表7】

【表8】

		. 物体侧移動量			
	辞間隔変化 (四~近接)	第1群	第2群	第3群	
実施例1	d13: 1.000~9.358	41.79	33.43		
実施例 2	d14: 0.300~11.760	38.48	26.75		
実施例3	d6: 9.000~6.960 d13: 1.000~9.180	40.90	42.94	34.76	
実施例 4	d6: 11.000~8.130 d13: 1.000~21.100	57.44	60.31	40.21	
実施例5	d15: 0.741~15.194	48.18	33.72		

【0082】さらに、以下の表に各実施例のレンズ群の屈折力を示す。

[0083]

(12)

特開平9-236740

レンズ群屈折力

	ø1	ø2	ø 3
実施例1	0.00277	0.00806	
実施例 2	0.00597	0.00233	
実施例3	0.00747	-0.00878	0.00806
実施例4	0.00700	0.00630	-0.00180
実施例 5	0.01084	-0.00012	

【0084】図13~図17は、それぞれ前記実施例1 ~5に対応する収差図である。各図中、上図は無限遠合

焦状態、下図は近接撮影距離合焦状態での収差を示し、 各収差図は、左から順に、球面収差、非点収差、歪曲に 対応する。球面収差図において、実線ははは線に対する 球面収差、点線SCは正弦条件をそれぞれ表す。また、 非点収差図において、点線DMと実線DSはメリディオ ナル面とサジタル面での非点収差をそれぞれ表してい

【0085】また、実施例1,2,5は条件式(1)~ (3)、実施例3,4は条件式(4)~(8)をそれぞ れ満足する。さらに、実施例1と3は、条件式(9)も 満足している。以下の表にそれぞれの条件式の値を示

[0086]

【表9】

各実施例の条件式の値

	実施例 1	実施例 2	実施例3	実施例4	実施例 5
条件式 (1)	0.37	0.80			1.46
条件式 (2)	1.09	0.31		-	-0.02
条件式 (3)	1.25	2.56			1.43
条件式(4)			1.01	0.95	
条件式 (5)			-0.91	0.85	
条件式(8)			1.09	-0.24	
条件式 (7)			1.18	1.43	
条件式 (8)	-		1.24	1.50	
条件式 (9)	1.36		2.45		

[0087]

【発明の効果】以上説明したように、本発明にかかる撮 影レンズ系によれば、無限遠合焦状態から近接撮影距離 合焦状態の広い範囲にわたって、焦点はずれ像が改良さ れた実用的な撮影レンズ系を実現することができる。

【0088】したがって、例えば本発明にかかる撮影レ ンズ系をカメラの撮影レンズとして適用した場合、焦点 はずれ像が美しい写真画像を提供することができる。

【図面の簡単な説明】

【図1】実施例1の撮影レンズ系の無限遠合焦状態のレ ンズ配置図

【図2】実施例2の撮影レンズ系の無限遠合焦状態のレ ンズ配置図

【図3】実施例3の撮影レンズ系の無限遠合焦状態のレ ンズ配置図

【図4】実施例4の撮影レンズ系の無限遠合焦状態のレ ンズ配置図

【図5】実施例5の撮影レンズ系の無限遠合焦状態のレ

ンズ配置図

- 【図6】焦点はずれ像の改良を説明する模式図
- 【図7】通常の光学系の透過率分布を表すグラフ
- 【図8】アポダイゼイション光学系の透過率分布を表す グラフ

【図9】通常の光学系とアポダイゼイション光学系との レスポンス関数のグラフ

【図10】アポダイゼイションフィルターの構成を説明 する断面図

【図11】アポダイゼイションフィルターの一例を示す 断面図

【図12】アポダイゼイションフィルターの透過率を一 例を示すグラフ

【図13】実施例1の撮影レンズ系の収差図

【図14】実施例2の撮影レンズ系の収差図

【図15】実施例3の撮影レンズ系の収差図

【図16】実施例4の撮影レンズ系の収差図

【図17】実施例5の撮影レンズ系の収差図

(13)

特開平9-236740

Gr3:第3群 【符号の説明】 A:絞り Gr1:第1群 F:アポダイゼイションフィルター Gr2:第2群 【図1】 · 【図2】 【図7】 r (h) 【図10】 d5 d4 d6 d8 d10 d12 **∠**m2 /m 2 【図3】 【図4】 04 d6/d9 d11 d12 d13 【図5】 【図6】

(14)

特開平9-236740

.

(15)

特開平9-236740

