80. Let X be a continuous random variable with density function f(x) = 2x, $0 \le x \le 1$. Find the moment-generating function of X, M(t), and verify that E(X) = M'(0) and that $E(X^2) = M''(0)$.

91. Use the mgf to show that if X follows an exponential distribution, cX (c > 0) does also.

1. Let X_1, X_2, \ldots be a sequence of independent random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma_i^2$. Show that if $n^{-2} \sum_{i=1}^n \sigma_i^2 \to 0$, then $\overline{X} \to \mu$ in probability.

10. A six-sided die is rolled 100 times. Using the normal approximation, find the probability that the face showing a six turns up between 15 and 20 times. Find the probability that the sum of the face values of the 100 trials is less than 300.

16. Suppose that X_1, \ldots, X_{20} are independent random variables with density functions

$$f(x) = 2x, \qquad 0 \le x \le 1$$

Let $S = X_1 + \cdots + X_{20}$. Use the central limit theorem to approximate $P(S \le 10)$.

23. An irregularly shaped object of unknown area A is located in the unit square $0 \le x \le 1, 0 \le y \le 1$. Consider a random point distributed uniformly over the square; let Z = 1 if the point lies inside the object and Z = 0 otherwise. Show that E(Z) = A. How could A be estimated from a sequence of n independent points uniformly distributed on the square?

[R problem] 5.30

- **30.** Generate a sequence $U_1, U_2, \ldots, U_{1000}$ of independent uniform random variables on a computer. Let $S_n = \sum_{i=1}^n U_i$ for n = 1, 2, ..., 1000. Plot each of the following versus n:
 - **a.** S_n
 - **b.** S_n/n

 - **c.** $S_n n/2$ **d.** $(S_n n/2)/n$ **e.** $(S_n n/2)/\sqrt{n}$

Explain the shapes of the resulting graphs using the concepts of this chapter.

