HW1: Rotations

EE106A/206A Fall 2018

Due: Thursday, September 6, 2018 at 11:59 PM on Gradescope

1 Multiple Rotation Matrices

- a) You are given the rotation matrices: R_{AB} , R_{CB} . Write and expression for R_{CA} .
- b) You are given the rotation matrices: R_{AB} , R_{CA} . Write and expression for R_{BC} .
- c) You are given the rotation matrices: R_{AB} , R_{BC} . Write and expression for R_{AA} .
- d) You are given the rotation matrices: \mathbf{R}_{AB}^{-1} , \mathbf{R}_{BC}^{T} . Write and expression for \mathbf{R}_{AC} .

Euler Angles

Consider two initially overlapping frames, A and B. Frame B is then rotated about the Z axis by $\pi/4$ radians.

- a) Sketch the coordinate frames A and B after the rotation.
- b) Write the rotation matrix R_{AB} that will take a point from the B frame and represent it in the A frame.
- c) Write the rotation matrix R_{BA} .
- d) What are the coordinates in frame A of a point with coordinates $p_B = [0, 0, 1]^T$ given with respect to frame B?
- e) What are the coordinates in frame B of a point with coordinates $\mathbf{p}_A = [0, 0, 1]^T$ given with respect to frame A?

Multiple Euler Angles

A frame is rotated first about the Z axis by angle $\frac{\pi}{2}$, then about the mobile Y axis by an angle of $\frac{\pi}{2}$, then about the mobile X axis an angle of $\frac{\pi}{2}$.

- a) Draw the frame before and after the rotation. Label all axes.
- b) Write the net rotation matrix.

A frame is rotated first about the Z axis by angle $\frac{\pi}{2}$, then about the original Y axis by an angle of $\frac{\pi}{2}$, then about the original X axis an angle of $\frac{\pi}{2}$.

- c) Draw the frame before and after the rotation. Label all axes.
- d) Write the net rotation matrix.

4 Properties of Rotations

State whether each transformation matrix below is a valid rotation. Justify.

a)
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

b)
$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

a)
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 b) $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ c) $\begin{bmatrix} \frac{1}{2} & \sqrt{2} \\ -\sqrt{2} & 0 \end{bmatrix}$

Axis Angle Notation

- a) Use the Rodrigues formula to show that a rotation of θ radians about the Y axis results in the same rotation matrix as the Euler Y equation.
- b) Use the Rodrigues formula to find the rotation matrix for a rotation of $\frac{\pi}{4}$ about the axis given by the vector [1, 2, 3].

1