Lycée de garçons 2

Composition de fin d'année

Epreuve de Mathématiques

Exercice n°2:(10 poins)

a. Calculer les fractions suivantes:

$$A = 1 + \frac{3}{4} \times \frac{2}{3} - \frac{1}{6} \div \frac{3}{4} \text{ et } B = 7 - \frac{3}{2} \times \frac{3}{5}$$

b. Ecrire les expressions suivantes sans radicale au dénominateur

$$A = \frac{3}{\sqrt{2} + 1} \qquad \text{et} \qquad B = \frac{-3\sqrt{5}}{2\sqrt{5} + 4}$$

c. Pour $x = \frac{4}{5}$, calculer $A = x^3 - 3x^2 + 5x + 3$ et

$$B = \frac{x^3 - 1}{(x - 1)(x^2 + x + 1)}$$

d. Résoudre les équations suivantes : (x-3)(x+3) = 0 et

$$(x+5)(x-5) = -16$$
;

Exercice n°2: (10 poins)

On a représenté ci-contre :

- la droite d'équation y = x,
- la courbe représentative d'une fonction *f* définie sur [1;8].

(Les questions posées seront résolues par <u>lecture graphique</u>).

Classe: 5D₂

1. Répondre par vrai ou faux aux questions suivantes :

		7
nº	Affirmation	vrai ou faux
1.	1 a pour image 0 par la fonction f	
2.	0 a pour image 1 par la fonction f	
3.	7 est un antécédent de 4 par la fonction f	
4.	3 est un antécédent de 4 par la fonction f	
5.	f(3) = 4	
6.	f(2) = 5	
7.	f(3) > f(5)	
8.	2,5 a trois antécédents par la fonction f)
9.	0,5 a un seul antécédent par la fonction f	
10.	L'équation $f(x) = 3$ a au moins une solution dans l'intervalle [1; 8]	
11.	L'équation $f(x) = x$ a au moins une solution dans l'intervalle [1; 8]	
12.	f est croissante sur l'intervalle [1;8]	
13.	Si x appartient à l'intervalle [4; 5], alors $f(x) \le x$	
14.	Si a et b appartiennent à l'intervalle [3; 5] et si $a < b$, alors $f(a) < f(b)$	

2. Résoudre graphiquement l'inéquation : f(x) - f(3) > 0. On donnera la solution sous forme d'un intervalle.

Avec nos souhaits de réussite Le : 01-06-2014 Prof : M^{ed} Salem/Béve

Lycée de garçons 2

Composition de fin d'année

Epreuve de Mathématiques

Exercice $n^{\circ}2$: (10 poins)

a. Calculer les fractions suivantes:

A = 1 +
$$\frac{3}{4}$$
 × $\frac{2}{3}$ - $\frac{1}{6}$ ÷ $\frac{3}{4}$ et B = $\left(7 - \frac{3}{2}\right)$ × $\left(\frac{28}{7} + \frac{3}{5}\right)$

b. Ecrire les expressions suivantes sans radicale au dénominateur

A =
$$\frac{3}{\sqrt{2}+1}$$
 et B = $\frac{-3\sqrt{5}}{2\sqrt{5}+4}$

c. Pour $x = \frac{3}{5}$ calculer $A = x^3 - 3x^2 + 5x + 3$ et

$$B = \frac{x^2 - 1}{(x - 1)(x^2 + x + 1)}$$

d. Résoudre les équations suivantes : (x-3)(x+3) = 0 et

$$(x+5)(x-5) = -16$$
;

Exercice n°2: (10 poins)

On a représenté ci-contre :

- la droite d'équation y = x,
- la courbe représentative d'une fonction f définie sur [1; 8].

(Les questions posées seront résolues par lecture graphique).

Classe: 5D₂

1. Répondre par vrai ou faux aux questions suivantes :

		7
nº	Affirmation	vrai ou faux
1.	1 a pour image 0 par la fonction f	
2.	0 a pour image 1 par la fonction f	
3.	7 est un antécédent de 4 par la fonction f	
4.	3 est un antécédent de 4 par la fonction f	//
5.	f(3) = 4	
6.	f(2) = 5))
7.	f(3) > f(5)	
8.	2,5 a trois antécedents par la fonction f	
9.	0,5 a un seul antécédent par la fonction f	
10.	L'équation $f(x) = 3$ a au moins une solution dans l'intervalle [1; 8]	
11.	L'équation $f(x) = x$ a au moins une solution dans l'intervalle [1;8]	
12.	f est croissante sur l'intervalle [1;8]	
13.	Si <i>x</i> appartient à l'intervalle [4 ; 5], alors $f(x) \le x$	
14.	Si a et b appartiennent à l'intervalle [3 ; 5] et si $a < b$, alors $f(a) < f(b)$	

2. Résoudre graphiquement l'inéquation : f(x) - f(3) > 0. On donnera la solution sous forme d'un intervalle.14

Avec nos souhaits de réussite Le: 01-06-2014 Prof: $M^{\in d}$. Salem/Béye