Planche nº 5. Les symboles Σ et Π

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1. (IT)

(Cet exercice est consacré aux sommes de termes consécutifs d'une suite arithmétique ou d'une suite géométrique.)

$$\textbf{1) (*) Calculer } \sum_{i=3}^{n} i, \ n \in \mathbb{N} \setminus \{0,1,2\}, \ \sum_{i=1}^{n} (2i-1), \ n \in \mathbb{N}^*, \ \text{et } \sum_{k=4}^{n+1} (3k+7), \ n \in \mathbb{N} \setminus \{0,1,2\}.$$

2) (*) Calculer le nombre 1, 1111... =
$$\lim_{n \to +\infty} 1, \underbrace{11...1}_{n}$$
 et le nombre 0, 9999... = $\lim_{n \to +\infty} 0, \underbrace{99...9}_{n}$.

3) (*) Calculer
$$\underbrace{1-1+1-...+(-1)^{n-1}}_{n}$$
, $n \in \mathbb{N}^*$.

4) (*) Calculer
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{2^k}$$
.

5) (***) Pour
$$x \in [0,1]$$
 et $n \in \mathbb{N}^*$, on pose $S_n(x) = \sum_{k=1}^n (-1)^{k-1} \frac{x^k}{k}$. Déterminer $\lim_{n \to +\infty} S_n(x)$.

6) (**) On pose
$$u_0 = 1$$
 et, pour $n \in \mathbb{N}$, $u_{n+1} = 2u_n - 3$.

a) Calculer la suite
$$(u_n - 3)_{n \in \mathbb{N}}$$

b) Calculer
$$\sum_{k=0}^{n} u_k$$
.

Exercice nº 2. (IT)

(Cet exercice est consacré aux sommes télescopiques.)

Calculer les sommes suivantes :

1) (**)
$$\sum_{k=1}^{n} \frac{1}{k(k+1)}$$
 et $\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}$

2) (**)
$$\sum_{k=0}^{n} k \times k!$$
 et $\sum_{k=1}^{n} \frac{k}{(k+1)!}$

3) (***) Calculer
$$S_p = \sum_{k=1}^n k^p$$
 pour $n \in \mathbb{N}^*$ et $p \in \{1,2,3,4\}$ (dans chaque cas, chercher un polynôme P_p de degré $p+1$ tel que $P_p(x+1) - P_p(x) = x^p$).

4) (***) Soient
$$n \in \mathbb{N}$$
 et $\theta \in \mathbb{R}$. Calculer $C_n = \sum_{k=0}^n \cos(k\theta)$. (Indication : calculer $2\sin\left(\frac{\theta}{2}\right)C_n$ (on donne $2\sin\alpha\cos b = \sin(\alpha+b) + \sin(\alpha-b)$.)

Exercice no 3. (IT)

Calculer les sommes suivantes :

1) (**)
$$\sum_{1 \le i < j \le n} 1$$
.

2) (**)
$$\sum_{1 \leqslant i,j \leqslant n} j \text{ et } \sum_{1 \leqslant i < j \leqslant n} j.$$

3) (*)
$$\sum_{1\leqslant i,j\leqslant n}ij.$$

4) (***) Pour
$$n \in \mathbb{N}^*$$
, on pose $u_n = \frac{1}{n^5} \sum_{k=1}^n \sum_{h=1}^n (5h^4 - 18h^2k^2 + 5k^4)$. Déterminer $\lim_{n \to +\infty} u_n$.

Exercice nº 4. (IT)

- 1) (*) Calculer $\prod_{k=1}^n \left(1 + \frac{1}{k}\right)$, $n \in \mathbb{N}^*$.
- $\textbf{2) (***)} \ \mathrm{Calculer} \ \prod_{k=1}^n \cos \frac{\alpha}{2^k}, \ \alpha \in]0, 2\pi[, \ n \in \mathbb{N}^* \ (\mathrm{indication} : \mathrm{on \ sait \ que \ pour \ tout \ r\'eel} \ x, \ \sin(2x) = 2\sin(x)\cos(x).)$