

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MATHEMATICS

18MAB201T- TRANSFORMS AND BOUNDARY VALUE PROBLEMS

UNIT - I Partial Differential Equations Tutorial Sheet - 3

		1 utoriai Sheet - 3		
Sl. No. Question		IS	Answer	
Part - A				
1	Solve $(D^3 - 3DD' + 2D'^3)z = 0$		$z = \varphi_1(y+x) + x\varphi_2(y+x) + \varphi_3(y-2x)$	
2	Solve $(D^2 - 5DD' + 6D'^2)z = e^{x+y}$		$z = \varphi_1(y + 2x) + \varphi_2(y + 3x) + \frac{1}{2}e^{x+y}$	
3	Solve $(D^2 - 3DD')$	$+2D^{\prime 2})z=2\cosh(3x+4y)$	$z = \varphi_1(y+x) + \varphi_2$	$(y+2x)+\frac{2}{5}\cosh(3x+4y)$
4	Solve $(D^3 + D^2D')$	$-DD'^2-D'^3)z=3\sin(x+y)$		$\frac{\varphi_2(y-x) + x\varphi_2(y-x)}{3x} \sin(x+y)$
5	Solve $(D^2 - DD' -$	$-6D'^2)z=x^2y$	$z=\varphi_1(y-2x)-$	$+ \varphi_2(y+3x) + \frac{x^4y}{12} + \frac{x^5}{60}$
Part - B				
6	Solve $(D^2 - 2DD')$	$+D'^2)z=x^2y^2e^{x+y}$	$z = x\varphi_1(y+x) + $	$ + \varphi_2(y+x) $ $ \left(\frac{y^2}{12} + \frac{xy}{15} + \frac{x^2}{60}\right) x^4 e^{x+y} $
7	Solve $(D^2 + 4DD')$	$-5D^{\prime 2})z = xy + \sin(2x +$	$z = \varphi_1(y - 5x) +$	$+ \varphi_2(y+x) + \frac{x^3y}{6} - \frac{x^5}{30}$ $\frac{\sin(2x+3y)}{17}$
8	Solve $(4D^2 - 4DL$	$D' + D'^2)z = 16\log(x + 2y)$	$z = x\varphi_1(x+2y) + \varphi$	$o_2(x+2y)+2x^2\log(x+2y)$
9	Solve $(D^2 - 5DD')$	$+6D^{\prime 2})z=y\sin x$	$z = \varphi_1(y+2x) + \varphi$	$2(y+3x)+5\cos x-y\sin x$
10	Solve $(D^2 - DD' -$	$-20D'^2)z=e^{5x+y}\sin(4x-y)$		$+ \varphi_2(y - 4x) + \frac{x}{9}e^{5x+y}$ $\frac{x}{9}\cos(4x - y)$