Kapitel 1

Maße

In diesem Abschnitt werden wir uns drei Fragen stellen:

- Was können wir messen?
- Wie können wir messen?
- Wie können wir Maße ökonomisch definieren?

1.1 Mengensysteme

Definition 1.1.1. Sei Ω eine beliebige Menge. Dann heißt $\mathfrak{C} \subseteq 2^{\Omega}$ ein Mengensystem (über Ω).

Definition 1.1.2 (Semiring). Sei \mathfrak{T} ein nichtleeres Mengensystem über Ω . Dann heißt \mathfrak{T} Semiring (im weiteren Sinn), falls

1. Durchschnittsstabilität:

$$A, B \in \mathfrak{T} \Rightarrow A \cap B \in \mathfrak{T}$$

2. Leiterbildung:

$$A, B \in \mathfrak{T}, A \subseteq B \Rightarrow \exists n \in \mathbb{N} : C_1, ..., C_n \in \mathfrak{T} : \forall i \neq j : C_i \cap C_j = \varnothing, A \setminus B = \bigcup_{i=1}^n C_i$$

gilt zusätzlich für die Leiter

$$\forall k = 1, ..., n : A \cup \bigcup_{i=1}^{k} C_i \in \mathfrak{T},$$

so spricht man von einem Semiring im engeren Sinn.

Definition 1.1.3 (Ring). Sei \Re ein nichtleeres Mengensystem über Ω . \Re heißt Ring, falls

1. Differenzenstabilität:

$$A, B \in \mathfrak{R} \Rightarrow B \setminus A \in \mathfrak{R}$$

2. Vereinigungsstabilität:

$$A, B \in \mathfrak{R} \Rightarrow A \cup B \in \mathfrak{R}$$

Definition 1.1.4 (Sigmaring). Sei \mathfrak{R}_{σ} ein nichtleeres Mengensystem über Ω . \mathfrak{R}_{σ} heißt Sigmaring, falls

1. Differenzenstabilität:

$$A, B \in \mathfrak{R}_{\sigma} \Rightarrow B \setminus A \in \mathfrak{R}_{\sigma}$$

2. Sigma-Vereinigungsstabilität:

$$A_n \in \mathfrak{R}_{\sigma} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathfrak{R}_{\sigma}$$

Definition 1.1.5 (Algebra). Sei $\mathfrak A$ ein nichtleeres Mengensystem über Ω . $\mathfrak A$ heißt Ring, falls

1. Abgeschlossenheit bzgl. Komplementbildung:

$$A \in \mathfrak{A} \Rightarrow A^c \in \mathfrak{A}$$

2. Vereinigungsstabilität:

$$A, B \in \mathfrak{A} \Rightarrow A \cup B \in \mathfrak{A}$$

Definition 1.1.6 (Dynkin System). Sei \mathfrak{D} ein nichtleeres Mengensystem über Ω . \mathfrak{D} heißt Dynkin-System (im weiteren Sinn), falls

1. Sigmaadditivität:

$$A_i \in \mathfrak{D}: A_i \ \operatorname{disjunkt} \Rightarrow \bigcup_{i \in \mathbb{N}} A_i \in \mathfrak{D}$$

2. Differenzenstabilität:

$$\forall A, B \subseteq \Omega : A, B \in \mathfrak{D} \Rightarrow B \setminus A \in \mathfrak{D}$$

Ist zusätzlich noch

$$\Omega \in \mathfrak{D}$$

erfüllt, so spricht man von einem Dynkin-System im engeren Sinn.

1.2 Maße und Inhalte

Definition 1.2.1. Ein Inhalt μ auf einem Mengensystem \mathfrak{C} heißt endlich, wenn für alle $A \in C$:

$$\mu(A) < \infty$$

Definition 1.2.2. Ein Maß μ auf C heißt sigmaendlich, wenn für jedes $A \in C$ Mengen $A_n \in C$, $n \in \mathbb{N}$ existieren mit $\mu(A_n) < \infty$, $A \subseteq \bigcup_{n \in \mathbb{N}} A_n$.

Definition 1.2.3. Ein Inhalt μ auf C heißt totalendlich, wenn

$$\Omega \in C \wedge \mu(\Omega) < \infty$$

Definition 1.2.4. Ein Inhalt μ auf C heißt total sigmaendlich, wenn es $A_n \in C, n \in \mathbb{N}$ gibt mit $\mu(A_n) < \infty$ und $\Omega \subseteq \bigcup_{n \in \mathbb{N}} A_n$.

Definition 1.2.5. $A \in C$ hat sigmaendliches Ma β (A ist sigmaendlich), wen es $A_n \in C, n \in \mathbb{N}$: $\mu(A_n) < \infty$ und $A \subseteq \bigcup A_n$.

Definition 1.2.6. μ heißt Wahrscheinlichkeitsmaß, wenn $\mu(\Omega) = 1$.

Beispiel 1.2.1. Sei $\Omega \neq \emptyset$ endlich, $C = 2^{\Omega}, \mu(A) = \frac{|A|}{|\Omega|}$.

Beispiel 1.2.2. Sei $\Omega = \{1, 2, 3, 4, 5, 6\}$, also ein "fairer Würfel".

Beispiel 1.2.3. Sei $\Omega = \{(1,1),(1,2),...,(2,1),(2,2),...,(6,6)\}$, also würfeln mit zwei Würfeln, Würfel sind unterscheidbar.

Definition 1.2.7. Sei $\Omega \neq \emptyset$ beliebige Menge und $\mathscr S$ eine Sigmaalgebra über Ω . Dann heißt $(\Omega,\mathscr S)$ Messraum.

Definition 1.2.8. Sei μ ein Maß auf $\mathscr S$ und $(\Omega,\mathscr S)$ Messraum. Dann heißt $(\Omega,\mathscr S,\mu)$ Maßraum.

Beispiel 1.2.4. $(\Omega, 2^{\Omega}, \mu), \Omega \neq \emptyset$ endlich, $C = 2^{\Omega}, \mu(A) = \frac{|A|}{|\Omega|}$ ist der Laplace-Wahrscheinlichkeitsraum.

Satz 1.2.9. Seien μ_n Inhalte auf \mathscr{C} , und existiere $\mu(A) = \lim_{n \to \infty} \mu_n(A)$. Dann ist μ ein Inhalt.

Beweis 1.2.10. $A = \sum_{i=1}^k A_i$, $\mu(A) = \sum_{i=1}^k \mu_n(A_i)$, für $n \to \infty$ gehen beide Seiten gegen μ , stimmt also.

Satz 1.2.11 (Satz von Vitali-Hahn Saks:). Wenn $\mathscr C$ ein Sigmaring ist und μ_n endliche Maße und für alle $A \in \mathscr C$: $\mu(A) = \lim_{n \to \infty} \mu_n(A)$, dann ist μ auch ein Maß.

Beweis 1.2.12. noch nicht, Eigenschaften fehlen noch.

Satz 1.2.13. Sei μ ein Inhalt/Maß auf einem Ring. Dann gilt:

1. Monotonie:

$$A, B \in \mathcal{R}, A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$$

2. Additions theorem:

$$\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$$

3. Allgemeineres Additionstheorem:

$$\begin{split} \mu\left(\bigcup_{i=1}^n A_i\right) &= \sum_{J\subseteq\{1,\dots,n\}, J\neq\varnothing} (-1)^{|J|-1} \mu\left(\bigcap_{i\in J} A_i\right) \\ &= \sum_{k=1}^n (-1)^{k-1} S_k \quad f\ddot{u}r \ S_k = \sum_{i\le i_1<\dots< i_k\le n} \mu\left(\bigcap_{k=1}^n A_{i_k}\right) \end{split}$$

4. Subadditivität:

$$\mu\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} \mu(A_i)$$

Beweis 1.2.14. 1. Es gilt:

$$B = A \cup (B \setminus A) \Rightarrow \mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$$

Nun ist außerdem mit $\mu(A) < \infty$:

$$\mu(B \setminus A) = \mu(B) - \mu(A)$$

2. Für $A, B \in \mathcal{R}$:

$$\mu(B \setminus A) = \mu(B \setminus (A \cap B)) = \mu(B) - \mu(A \cap B) (\text{ wenn } \mu(A \cap B) < \infty)$$

$$\Rightarrow \mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$$

Außerdem (Zusatz für zwei Mengen):

$$\mu(A \cup B \cup C) = \mu((A \cup B) \cup C) = \mu(A) + \mu(B) + \mu(C) - \mu(A \cap B) - \mu(A \cap C) - \mu(B \cap C) + \mu(A \cap B \cap C)$$

3. Es gilt:

$$A, B \in \mathcal{R} : \mu(A \cup B) = \mu(A \cup (B \setminus A)) = mu(A) + \mu(B \setminus A) \le \mu(A) + \mu(B)$$
$$\Rightarrow \mu\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} \mu(A_i)$$

4. Induktion (wahrscheinlich)

Satz 1.2.15. Sei μ Inhalt auf \mathcal{R} , A_n , $n \in \mathbb{N}$, $A \subseteq \mathcal{R}$, dann gilt:

$$\sum_{n\in\mathbb{N}} A_n \subseteq A \Rightarrow \sum_{n\in\mathbb{N}} \mu(A_n) \le \mu(A)$$

1.2.1 Beweis:

Es gilt:

$$\sum_{n=1}^{N} A_n \subseteq A \Rightarrow \mu\left(\sum_{n=1}^{N} A_n\right) \le \mu(A)$$

$$\Rightarrow \sum_{n=1}^{N} \mu(A_n) \le \mu(A)$$

Für $n \to \infty$:

$$\sum_{n\in\mathbb{N}}\mu(A_n)\leq\mu(A)$$

1.2.2 Folgerungen für Maße

Satz 1.2.16. Sei μ ein Maß auf \mathcal{R} :

1. Stetigkeit von unten:

$$A_n \uparrow A, A_n, A \in \mathcal{R}$$

$$\Rightarrow \mu(A) = \lim_{n \to \infty} \mu(A_n)$$

2. Stetigkeit von oben:

$$A_n \downarrow A, A_n, A \in \mathcal{R} \land \mu(A_1) < \infty$$

$$\Rightarrow \mu(A) = \lim_{n \to \infty} \mu(A_n)$$

Beweis 1.2.17. 1. Sei $B_1 = A_1$ und $B_n = A_n \setminus A_{n-1}$. Nun sind B_n disjunkt und $A_n = \sum_{i=1}^n B_i$. Nun gilt:

$$\mu(A_n) \sum_{i=1}^n \mu(B_i)$$

und:

$$A = \sum_{i=1}^{\infty} B_i$$

$$\Rightarrow \mu(A) = \sum_{i=1}^{\infty} \mu(B_i) = \lim_{n \to \infty} \sum_{i=1}^{n} \mu(B_i) = \lim_{n \to \infty} \mu(A_n)$$

2.

$$\mu(A) = \lim_{n \to \infty} \mu(A_n)$$

$$\mu(A_1 \setminus A) = \lim_{n \to \infty} \mu(A_1 \setminus A_n) = \lim_{n \to \infty} \mu(A_1) - \lim_{n \to \infty} \mu(A_n)$$

1.2.3 Eigenschaften von Maßen (Inhalten) auf Ringen(Semiringen)

Satz 1.2.18. Sei μ ein Maß auf dem Ring \mathcal{R} , $A_n \uparrow A$, $A_n, A \in \mathcal{R}$. Dann gilt

$$\mu(A) = \lim_{n \to \infty} \mu(A_n)$$

Entsprechendes für $A_n \downarrow A$.

Satz 1.2.19. Sei μ Inhalt auf Ring \mathscr{R} ist genau dann ein Ma β , wenn μ stetig von unten ist.

 \square .

 \Box .

Beweis 1.2.20. Seien $A_n, A \in \mathcal{R}, A = \sum_{n \in \mathbb{N}} A_n, A_n$ paarweise disjunkt. Sei

$$B_n = \sum_{i=1}^n A_i$$

Nun gilt $B_n \uparrow A$. μ ist nun stetig von unten, also

$$\mu(A) = \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \mu(\sum_{i=1}^n A_i) = \lim_{n \to \infty} \sum_{i=1}^n \mu(A_i) = \sum_{i=1}^\infty \mu(A_i)$$

Satz 1.2.21. Sei μ ein endlicher Inhalt auf einem Ring \mathscr{R} . Dann ist μ genau dann ein Ma β , wenn er stetig von oben bei Ø ist, also

$$A_n \downarrow \varnothing \Rightarrow \mu(A_n) \to 0.$$

Beweis 1.2.22. Sei $A_n,A\in\mathcal{R},A=\sum_{n=1}^\infty A_n$. Z: $\mu(A)=\sum_{n=1}^\infty \mu(A_n)$. Nämlich:

$$A = \sum_{i=1}^{n} A_i \cup \sum_{i=n+1}^{\infty}$$

$$\infty \qquad \qquad n$$

$$B_n := \sum_{i=n+1}^{\infty} \Rightarrow B_n = A \setminus (\sum_{i=1}^n A_i) \in \mathcal{R}$$

Nun gilt:

$$\mu(A) = \sum_{i=1}^{n} \mu(A_i) + \mu(B_n)$$

Nun gilt:

$$\lim_{n \to \infty} B_n = \bigcap_{n \in \mathbb{N}} B_n = \bigcap_{n \in \mathbb{N}} A \setminus \left(\bigcup_{i=1}^n A_i\right) = A \setminus \left(\bigcup_{n \in \mathbb{N}} \bigcup_{i=1}^n A_i\right) = \emptyset$$

Also $B_n \downarrow \emptyset$. Also:

$$\mu(A) = \lim_{n \to \infty} \left(\sum_{i=1}^{n} A_i + \mu(B_n) \right) = \sum_{i=1}^{\infty} +0$$

Bemerkung 1.2.1. Dieses Argument kann auch umgedreht werden. Dies werden wir später zumindest einmal benutzen.

Satz 1.2.23. Sei μ ein Maß auf dem Ring(Semiring) \mathcal{R} , $A_n, A \in \mathcal{R}$ mit

$$A \subseteq \bigcup_{n \in \mathbb{N}} A_n$$

so gilt

$$\mu(A) \leq \sum_{n \in \mathbb{N}} \mu(A_n)$$
. (μ ist abzählbar-, bzw sigmasubadditiv)

Beweis 1.2.24. Sei $B_n = A \cap \bigcup_{i=1}^n A_i = \bigcup_{i=1}^n A \cap A_i$. Es gilt also $B_n \uparrow A$. Aus der endlichen Subadditivität erhalten wir:

$$\mu(B_n) \le \sum_{i=1}^n \mu(A_i \cap A) \le \sum_{i=1}^n \mu(A_i) \le \sum_{i=1}^\infty \mu(A_i)$$
$$\Rightarrow \mu(A) = \lim_{n \to \infty} \mu(B_n) \le \sum_{i=1}^\infty \mu(A_i)$$

Satz 1.2.25. Sei μ ein Maß auf dem Sigmaring \mathscr{R} und A_n eine Folge von Mengen aus \mathscr{R} . Dann gilt:

$$\limsup_{n\to\infty}A_n=\bigcap_{n\in\mathbb{N}}\bigcup_{k\geq n}A_k$$

Satz 1.2.26. Lemma von Borel Cantelli:

Sei μ ein Maß auf einem Sigamring \mathscr{R} . Ist $\sum_{n\in\mathbb{N}}\mu(A_n)<\infty$ für $A_n\in\mathscr{R}$, so gilt:

$$\mu(\limsup_{n\to\infty} A_n) = 0$$

Beweis 1.2.27. Sei $\epsilon > 0$ beliebig. Es gilt:

$$\mu(\limsup A_n) \le \mu\left(\bigcup_{k \ge n_0} A_k\right) \le \sum_{k \ge n_0} \mu(A_k) \le \epsilon$$

 \Box .

Bemerkung 1.2.2. Als Hausübung: Ist μ endliches Maß auf einem Sigmaring, so gilt

$$\mu(\limsup_{n\to\infty} A_n) \ge \limsup_{n\to\infty} \mu(A_n)$$

Beispiel 1.2.5 (Additionstheorem). Die Anzahl der Permutationen von n Elementen ohne Fixpunkt.

$$\mathbb{P}(\text{kein Fixpunkt}) = 1 - \mathbb{P}(\text{Fixpunkt}) = 1 - \mathbb{P}\left(\bigcup A_i\right)$$

mit $A_i = [i \text{ ist Fixpunkt }]$

$$\mathbb{P}\left(\bigcup A_{i}\right) = \sum_{i=1}^{n} \mathbb{P}(A_{i}) - \sum_{1 \leq i_{1} \leq i_{2} \leq n} \mathbb{P}(A_{i_{1}} \cap A_{i_{2}}) + \sum \mathbb{P}(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{2}}) - \dots$$

Es gilt:

$$\mathbb{P}(A_i) = \frac{(n-1)!}{n!}$$

$$\mathbb{P}(A_i \cap A_0) = \frac{(n-2)!}{n!}$$

$$\mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k}) = \frac{(n-k)!}{n!}$$

Jetzt: (was auch immer S_k ist...)

$$S_k = \frac{(n-k)!}{n!} \left(\begin{array}{c} n \\ k \end{array} \right) = \frac{1}{k!}$$

Damit:

$$\mathbb{P}\left(\bigcup A_i\right) = \sum_{k=1}^n (-1)^{k-1} \frac{1}{k!}$$

$$\Rightarrow \mathbb{P}(\text{kein Fixpunkt}) = 1 - \sum_{k=1}^n (-1)^{k-1} \frac{1}{k!} = \sum_{k=0}^n (-1)^k \frac{1}{k!} \ n \xrightarrow{\to} \infty \ \frac{1}{e}$$

1.2.4 Bedingte Wahrscheinlichkeit

Definition 1.2.28. Sei $(\Omega, \mathcal{S}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Nun heißt $A, B \in \mathcal{S}$ Ereignisse. Gilt $\mathbb{P}(B) \neq 0$ so heißt

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

die bedingte Wahrscheinlichkeit.

Definition 1.2.29. Ereignisse A und B heißen unabhängig, wenn

$$P(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

Definition 1.2.30. Allgemeiner heißen Ereignisse $A_1, ..., A_n$ unabhängig, wenn

$$\mathbb{P}\left(\bigcap_{i=1}^{n} A_i\right) = \prod_{i=1}^{n} \mathbb{P}(A_i).$$

Definition 1.2.31. Ereignisse $A_1, ..., A_n$ heißen paarweise unabhängig, wenn:

$$\forall i, j \in \{1, ..., n\} : i \neq j \Rightarrow \mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j).$$

Bemerkung 1.2.3. Es gilt:

$$\mathbb{P}(A \cap B) = \mathbb{P}(B)\mathbb{P}(A|B) = \mathbb{P}(A)\mathbb{P}(B|A)$$

und:

$$\mathbb{P}(A_i\cap\ldots\cap A_n)=\mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\mathbb{P}(A_3|A_1\cap A_2)...P(A_n|A_1\cap\ldots\cap A_n)$$

Dies ist das Multiplikationstheorem für Wahrscheinlichkeiten.

Beispiel 1.2.6 (Bedingte Wahrscheinlichkeiten (Multiplikationstheorem)). In einer Urne liegen zwei schwarze und drei weiße Kugeln. Es wird 3-mal ohne Zurücklegen gezogen, wobei das Ziehen der Laplace-Wahrscheinlichkeit folgt. Nun ist

$$\mathbb{P}(\text{Alle 3 Kugeln weiß}) = \mathbb{P}(A_1 \cap A_2 \cap A_3)$$

wobei $A_i = ,i$ -te Kugel ist weiß". Also

$$\mathbb{P}(A_1 \cap A_2 \cap A_3) = \mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\mathbb{P}(A_3|A_1 \cap A_2)$$

mit

$$P(A_1) = \frac{3}{5}$$

$$P(A_2|A_1) = \frac{2}{4} = \frac{1}{2}$$

$$P(A_3|A_2 \cap A_1) = \frac{1}{3}$$

und damit

$$\mathbb{P}(\text{Alle 3 Kugeln weiß}) = \frac{1}{10}$$

Beispiel 1.2.7. Selbe Voraussetzungen wie im vorigen Beispiel. Nun ist

$$\begin{split} \mathbb{P}(\text{genau 2 Kugeln weiß}) &= \mathbb{P}(\text{wws}) + \mathbb{P}(\text{wsw}) + \mathbb{P}(\text{sww}) \\ &= \mathbb{P}(A_1 \cap A_2 \cap A_3^c) + \mathbb{P}(A_1 \cap A_2^c + A_3) + \mathbb{P}(A_1^c \cap A_2 \cap A_3) \\ &= \frac{3}{5} \frac{2}{4} \frac{2}{3} + \frac{3}{5} \frac{2}{4} \frac{2}{3} + \frac{2}{5} \frac{3}{4} \frac{2}{3} = 3 \cdot \frac{12}{60} = \frac{3}{5}. \end{split}$$

Dieses Beispiel kann analog auf jede Anzahl an Kugeln fortgesetzt werden.

Satz 1.2.32 (Borel-Cantelli II). Sei $(\Omega, \mathscr{S}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Sei $A_n \in \mathscr{S}$ eine Folge unabhängiger Ereignisse.

Ist nun

$$\sum_{n=0}^{\infty} \mathbb{P}(A_n) = \infty$$

so folgt

$$\mathbb{P}(\limsup_{n\to\infty} A_n) = 1$$

Beweis 1.2.33. Definition des lim sup war:

$$\limsup_{n \to \infty} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k > n} A_k$$

und damit nach den de Morgan'schen Regeln:

$$(\limsup_{n \to \infty} A_n)^c = \bigcup_{n \in \mathbb{N}} \bigcap_{k \ge n} A_k^c$$

Betrachten wir nun $\bigcap_{k>n} A_k^c$. Die A_k^c sind nun auch unabhängig. (siehe Übung) Also:

$$\bigcap_{k \ge n} A_k^c = \lim_{N \to \infty} \bigcap_{k=n}^N A_k^c$$

$$\Rightarrow \mathbb{P}\left(\bigcap_{k \ge n} A_k^c\right) = \lim_{N \to \infty} \prod_{k=n}^\infty \mathbb{P}(A_k^c) = \prod_{k=n}^\infty \mathbb{P}(A_k^c) = \prod_{k=n}^\infty (1 - \mathbb{P}(A_k))$$

mit $1 + x \le e^x$ folgt

$$\prod_{k=n}^{\infty} (1 - \mathbb{P}(A_k)) \le \prod_{k=n}^{\infty} e^{-\mathbb{P}(A_k)} = e^{-\sum_{k \ge n}^{\infty} \mathbb{P}(A_k)} = \lim_{n \to \infty} -e^{-n} = 0$$

Damit:

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty}A_{k}\right)\leq\sum_{n=1}^{\infty}\mathbb{P}\left(\bigcap_{k=n}^{\infty}A_{k}\right)=\sum_{n=1}^{\infty}0=0$$

 \Box .

Satz 1.2.34 (Fortsetzungssatz für Maßfunktionen). Sei μ ein Maß auf einem Ring \Re . Dann gilt:

- 1. μ kann zu einem Maß $\widetilde{\mu}$ auf dem erzeugten Sigmaring fortgesetzt werden.
- 2. Wenn μ sigmaendlich ist, dann ist $\widetilde{\mu}$ eindeutig bestimmt.

Bemerkung 1.2.4. Wir werden $\widetilde{\mu}$ im Folgenden immer mit μ bezeichnen, da es nicht wichtig ist, ob wir auf einem Ring oder auf dem erzeugten Sigmaring arbeiten.

Bemerkung 1.2.5. Die Motivation für diesen Satz ist das klassische Ausschöpfungs-, bzw Exhaustionsprinzip, das z.B. Archimedes und Eudoxos bearbeitet haben. Dabei wurde die Fläche eines Kreises durch Rechtecke approximiert. Damit ist (A ist die Fläche des Kreises, B die Fläche der Vierecke)

$$\mu^+(A) = \inf\{\mu(B) : A \subseteq B, B \in \mathfrak{R}\}\$$

$$\mu^{-}(A) = \sup{\{\mu(B) : B \subseteq A, B \in \mathfrak{R}\}}$$

wenn $\mu^+(A) = \mu^-(A)$, dann ist A messbar (im Sinn von Jordan). Dann μ^* das Jordon-Maß.

$$\mu^*(A) = \inf\left(\sum_{n \in \mathbb{N}} \mu(B_n)\right), B_n \in \mathfrak{R}, A \subseteq \bigcup_{n \in \mathbb{N}} B_n$$
$$= \inf\left\{\sum_{n \in \mathbb{N}} \mu(B_n) : B_n \in \mathfrak{R}, A \subseteq \sum_{n \in \mathbb{N}} B_n\right\}$$

Die letzte Gleichheit folgt durch Zeigen von \leq und \geq .

Definition 1.2.35. Das Maß von einem Maß μ erzeugte Maß

$$\mu^*(A) = \inf\{\sum_{n \in \mathbb{N}} \mu(B_n) : B_n \in \mathfrak{R}, A \subseteq \sum_{n \in \mathbb{N}} B_n\}$$

heißt äußeres Maß oder Jordan-Maß. Hierbei wird

$$\inf \varnothing = \infty$$

gesetzt.

Definition 1.2.36. *Ist* $\mu(\Omega) < \infty$, *so ist*

$$\mu_*(A) = \mu(\Omega) - \mu^*(A^c)$$

das innere Maß.

Definition 1.2.37 (vorläufige Definition). A heißt messbar, falls

$$\forall E \in \mathfrak{R} : \mu(E) = \mu^*(E \cap A) + \mu^*(E \setminus A).$$

Definition 1.2.38. A heißt messbar, wenn

$$\forall B \subseteq \Omega : \mu^*(B) = \mu^*(B \cap A) + \mu^*(B \setminus A).$$

Satz 1.2.39 (Eigenschaften von äußeren Maßfunktionen). Sei μ ein Maß und μ^* das von μ erzeugte äußere Maß. Dann gilt:

- 1. $\mu^*(A) \geq 0$
- 2. $\mu^*(\emptyset) = 0$
- 3. Monotonie:

$$A \subseteq B \subseteq \Omega \Rightarrow \mu^*(A) \le \mu^*(B)$$

4. Sigmasubadditivität:

$$A \subseteq \bigcup_{n \in \mathbb{N}} A_n \subseteq \Omega$$

$$\Rightarrow \mu^*(A) \le \sum_{n \in \mathbb{N}} \mu^*(A_n)$$

Definition 1.2.40. Eine Funktion $\mu^*: 2^{\Omega} \to [0, \infty]$ heißt eine äußere Maßfunktion, wenn sie die Eigenschaften 1.-4. besitzt.

Bemerkung 1.2.6. Will man zeigen, dass μ^* ein äußeres Maß ist, so muss man nur 1.,2. und 4. zeigen, 3. folgt dann automatisch.

Beweis 1.2.41. Eigenschaften 1. und 2. sind klar. Bleibt also noch 4. zu zeigen, 3. folgt ja automatisch.

Sei also $A \subseteq \bigcup_{n \in \mathbb{N}} A_n$. Zu zeigen ist nun, dass

$$\mu^*(A) \le \sum_{n \in \mathbb{N}} \mu^*(A_n)$$

wenn $\sum_{n\in\mathbb{N}}\mu^*(A_n)=\infty$, so sind wir fertig. Sei also $\sum_{n\in\mathbb{N}}\mu^*(A_n)<\infty$. Dann ist

$$\mu^*(A_n) = \inf\{\sum_{k \in \mathbb{N}} \mu(B_k) : A_n \subseteq \bigcup B_k, B_k \in \mathfrak{R}\}$$

Sei $\epsilon > 0$. Für $B_{nk} \in \mathfrak{R} : A_n \subseteq \bigcup_{k \in \mathbb{N}} B_{nk}$ und $\sum_{k \in \mathbb{N}} \mu(B_{nk}) \le \mu^*(A_n) + \frac{\epsilon}{2}$. Nun ist

$$\bigcup_{n\in\mathbb{N}} A_n \subseteq \bigcup_{n\in\mathbb{N}} \bigcup_{k\in\mathbb{N}} B_{nk}$$

und damit

$$\mu^* \left(\bigcup_{n \in \mathbb{N}} A_n \right) \le \sum_{n \in \mathbb{N}} \sum_{k \in \mathbb{N}} \mu(B_n k) \le \sum_{n \in \mathbb{N}} (\mu^*(A_n) + \frac{\epsilon}{2^n}) = \sum_{n \in \mathbb{N}} \mu^*(A_n) + \epsilon$$
$$\Rightarrow \mu \left(\bigcup_{n \in \mathbb{N}} A_N \right) \le \sum_{n \in \mathbb{N}} \mu^*(A_n)$$

 \Box .

Beispiel 1.2.8. Sei $|\Omega| \ge 3$ und

$$\mu^*(A) = \begin{cases} 0 : A = \varnothing \\ 1 : A \notin \{\varnothing, \Omega\}, A \subseteq \Omega \\ 2 : A = \Omega \end{cases}$$

Definition 1.2.42. $A \subseteq \Omega$ heißt messbar (μ^* -messbar), wenn

$$\forall B \subseteq \Omega : \mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c).$$

Bemerkung 1.2.7. Um die Messbarkeit von A zu zeigen, genügt es zu zeigen, dass

$$\mu^*(B) > \mu^*(B \cap A) + \mu^*(B \cap A^c),$$

da die Ungleichung "≤" trivialerweise immer erfüllt ist.

Definition 1.2.43. m_{μ^*} bezeichnet das System aller μ^* -messbaren Mengen. Ist klar, um welches Ma β μ^* es sich handelt (oder das egal ist), so schreiben wir einfach m.

Satz 1.2.44. 1. m ist eine Sigmaalgebra, $\mu^*|_m$ ein Ma β .

2. Wenn μ^* von einem Maß μ auf einem Ring \mathfrak{R} erzeugt wird und $\mu^*(B) = \mu(B)$, so folgt $\mathfrak{R} \subseteq m$.

Beweis 1.2.45. Wir beweisen zunächst 2.:

Sei $B \subset \Omega, A \in \mathfrak{R}B_n \in \mathfrak{R}, B \subseteq \bigcup_{n \in \mathbb{N}} B_n, \mu^*(B) < \infty$. Dann ist

$$\sum_{n \in \mathbb{N}} \mu(B_n) = \sum_{n \in \mathbb{N}} \mu\left((B_n \cap A) \cup (B_n \cap A^c)\right)$$

$$= \sum_{n \in \mathbb{N}} (\mu(B_n \cap A) + \mu(B_n \setminus A))$$

$$= \sum_{n \in \mathbb{N}} \mu(B_n \cap A) + \sum_{n \in \mathbb{N}} \mu(B_n \setminus A)$$

$$\geq \mu^*(B \cap A) + \mu^*(B \cap A^c)$$

$$\Rightarrow \mu^*(B) \geq \mu^*(B \cap A) + \mu^*(B \setminus A)$$

Sei nun $A \in \mathfrak{R}, A \subseteq \bigcup A_n, A_n \in \mathfrak{R}$.

$$\mu(A) \le \sum \mu(A_n)$$

wurde schon gezeigt. Sei jetzt $A_1 = A$, $A_n = \emptyset$ für n > 1. Dann folgt

$$\mu^*(A) \ge \mu(A),$$

A ist also messbar.

Für 1. erste Behauptung: m ist Algebra und $\mu^*|_m$ ist additiv. Wir wollen zeigen:

$$A_1, A_2 \text{ messbar} \Rightarrow A_1 \cup A_2 \text{ messbar}$$

$$A \text{ messbar} \Rightarrow A^c \text{ messbar}$$

Das zweite folgt direkt daraus, dass $A^{cc}=A$ und die Definition von "messbar" diesbezüglich symmetrisch ist.

Für das erste sei $B \subseteq \Omega$. Nun ist A_1 messbar, also

$$\mu^*(B) = \mu^*(B \cap A_1) + \mu^*(B \cap A_1^c)$$

und mit

$$\mu^*(B \cap A_1) = \mu^*(B \cap A_1 \cap A_2) + \mu^*(B \cap A_1 \cap A_2^c)$$
$$\mu^*(B \cap A_1^c) = \mu^*(B \cap A_1^c \cap A_2) + \mu^*(B \cap A_1^c \cap A_2^c)$$

ergibt sich:

$$\mu^*(B) = \mu^*(B \cap A_1 \cap A_2) + \mu^*(B \cap A_1 \cap A_2^c) + \mu^*(B \cap A_1^c \cap A_2) + \mu^*(B \cap A_1^c \cap A_2^c)$$

$$\geq \mu^* ((B \cap A_1 \cap A_2) \cup (B \cap A_1 \cap A_2^c) \cup (B \cap A_1^c \cap A_2)) + \mu^*(B \cap (A_1 \cup A_2)^c)$$

$$= \mu^*(B \cap (A_1 \cup A_2)) + \mu^*(B \cap (A_1 \cup A_2)^c)$$

Damit ist m tatsächlich eine Algebra.

Um nachzuweisen, dass $\mu^*|_m$ additiv ist, seien $A_1, A_2 \in m$, $A_1 \cup A_2 = \emptyset$. Über die Messbarkeit von A_1 erhalten wir:

$$\mu^*(A_1 \cup A_2) = \mu^*((A_1 \cup A_2) \cap A_1) + \mu^*((A_1 \cup A_2) \cap A_1^c) = \mu^*(A_1) + \mu^*(A_2)$$

 \square .

 \Box .

 \Box .

Nun bleibt noch zu zeigen, dass m Sigmaalgebra ist, seien also $A_n \in m, A_n$ disjunkt, $B \subseteq \Omega$. Z:

$$\mu^*(B) \ge \mu^* \left(B \cap \bigcup_{n \in \mathbb{N}} A_n \right) + \mu^* \left(B \setminus \bigcup_{n \in \mathbb{N}} A_n \right)$$

Wir wissen schon:

$$\mu^*(B) = \mu^* \left(B \cap \bigcup_{n=1}^N A_n \right) + \mu^* \left(B \setminus \bigcup_{n=1}^N A_n \right)$$

$$\geq \mu^* \left(B \cap \bigcup_{n=0}^N A_n \right) + \mu^* \left(B \setminus \bigcup_{n \in \mathbb{N}} A_n \right)$$

$$= \sum_{n=1}^N \mu^*(B \cap A_n) + \mu^* \left(B \setminus \bigcup_{n \in \mathbb{N}} A_n \right)$$

Für $n \to \infty$ erhalten wir also

$$\mu^*(B) \ge \sum_{n \in \mathbb{N}} \mu^*(B \cap A_n) + \mu^* \left(B \setminus \bigcup_{n \in \mathbb{N}} A_n \right) \ge \mu^* \left(\bigcup_{n \in \mathbb{N}} (B \cap A_n) \right) + \mu^* \left(B \setminus \bigcup_{n \in \mathbb{N}} A_n \right)$$

Beweis 1.2.46 (Fortsetzungssatz für Maßfunktionen).