Hinweis. Die Aufgaben sind aus Staatsexamina früherer Jahre entnommen. Die in Klammern angegebene Punktzahl ist die Punktzahl die damals erreicht werden konnte und ist nur zu Ihrer Orientierung angegeben.

- **Aufgabe 3.1** (F15T2A4). (a) Die Gruppe G operiere transitiv auf einer Menge Ω mit $|\Omega| > 1$. Man zeige: Hat jedes Element aus G mindestens einen Fixpunkt, dann ist G eine Vereinigung der Konjugierten hUh^{-1} , $h \in G$, einer echten Untergruppe U von G. (8 PUnkte)
- (b) Für n > 1 sei $G = \mathbf{GL}_n(\mathbb{C})$ die Gruppe der invertierbaren $n \times n$ -Matrizen über den komplexen Zahlen. Man gebe eine echte Untergruppe U von G and, so dass G die Vereinigung der Konjugierten von U ist. (Hinweis: Betrachte die Operation von G auf den 1-dimensionaln Unterräumen von \mathbb{C}^n .) (10 Punkte)

Aufgabe 3.2 (F02T3A2). Sei G eine endliche Gruppe und $U \subset G$ eine Untergruppe vom Index n. Durch die Wirklung von G auf G/U wird ein Gruppenhomomorphismus $\varphi: G \to \mathfrak{S}_n$ definiert (dies muss nicht gezeigt werden).

- (a) Zeigen Sie: $Ker(\varphi) \subset U$.
- (b) Sei p der kleinste Primteiler von |G| und [G:U]=p. Zeigen Sie: U ist normal in G.

(5 Punkte)

Aufgabe 3.3 (F07T2A1). Betrachten Sie die folgenden vier nicht abelschen Gruppen der Ordnung 24

$$\mathfrak{S}_4$$
, D_{12} , $D_6 \times \mathbb{Z} / \mathbb{Z} 2$, $S_3 \times \mathbb{Z} / \mathbb{Z} 2 \times \mathbb{Z} / \mathbb{Z} 2$.

Dabie sind \mathfrak{S}_n die symmetrische Gruppe auf n Elementen, D_n die Diedergruppe mit 2n Elementen, $\mathbb{Z}/\mathbb{Z}2$ die zyklische Gruppe der Ordnung 2.

- (a) Bestimmen Sie die Anzahl der Elemente der Ordnung 2 in allen vier Gruppen.
- (b) Bestimmen Sie (mit Begründung), welche der vier Gruppen zueinander isomorph sind (und welche nicht).

(6 Punkte)

Aufgabe 3.4 (H10T2A2). Eine echte Untergruppe U einer Gruppe G heißt maximal, wenn G die einzige Untergruppe von G ist, die U echt enthält.

Zeigen Sie für jede natürliche Zahl $n \geqslant 4$: Jede maximale Untergruppe der symmetrischen Gruppe \mathfrak{S}_n hat Ordnung $\geqslant n$.

(Tipp: Man unterscheide die Fälle, in denen eine maximale Untegruppe von \mathfrak{S}_n transitiv bzw. nicht transitiv operiert.) (6 Punkte)

Aufgabe 3.5 (H10T2A3). Die Automorphismengruppe Aut(G) einer Gruppe G sei zyklisch. Zeigen Sie, dass G abelsch ist. (6 Punkte)