

芯片码率控制 **使用说明**

文档版本 03

发布日期 2019-07-25

版权所有 © 上海海思技术有限公司 2019。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形 式传播。

商标声明

(上) AISILICON 、海思和其他海思商标均为海思技术有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产品、 服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不做任何明 示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导, 本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

上海海思技术有限公司

地址: 深圳市龙岗区坂田华为总部办公楼邮编: 518129

网址: http://www.hisilicon.com

客户服务邮箱: support@hisilicon.com

前言

概述

本文档主要介绍芯片码率控制的参数意义和使用方法。对码率控制中常见的问题,特别是低码率场景的参数调节方法做了专题介绍。

□ 说明

- 未有特殊说明, Hi3559CV100与 Hi3559AV100内容一致。
- 未有特殊说明, Hi3556AV100 与 Hi3519AV100 内容一致。
- 未有特殊说明,Hi3516DV300、Hi3516AV300、Hi3559V200、Hi3556V200 与 Hi3516CV500 内容一致。
- 未有特殊说明, Hi3516EV300、Hi3518EV300、Hi3516DV200 与 Hi3516EV200 内容一致。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
Hi3559A	V100ES
Hi3559A	V100
Hi3559C	V100
Hi3519A	V100
Hi3556A	V100
Hi3516C	V500
Hi3516D	V300
Hi3516A	V300
Hi3559	V200
Hi3556	V200
Hi3516E	V200
Hi3516E	V300

产品名称	产品版本
Hi3518E	V300
Hi3516D	V200

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 软件开发工程师

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

文档版本 03 (2019-07-25)

第3次正式版本发布

3.10 小节涉及修改

文档版本 02 (2019-01-30)

第2次正式版本发布

1.3 小节,修改表 1-6。

1.4 小节, 修改表 1-8。

文档版本 01 (2018-12-10)

第1次正式版本发布

新增 1.5 小节和 3.8 小节。

1.4、3.7 和 3.10 小节涉及修改。

文档版本 00B04 (2018-11-15)

第4次临时版本发布

增加 Hi3516EV300/Hi3516EV200/ Hi3518EV300 相关内容。

1.3 小节, 表 1-6 涉及修改。

1.4 小节、2.3 小节、2.4 小节说明更新。

3.3 小节,涉及更新。

添加 QVBR 相关内容。

文档版本 00B03 (2018-06-15)

第3次临时版本发布

1.1 小节, 修改表 1-1

1.2 小节,修改表 1-3

1.3 小节,修改表 1-5

2.3 小节涉及修改

文档版本 00B02 (2018-01-15)

新增 1.2 小节, 1.3 和 3.7 小节涉及修改

文档版本 00B01 (2017-04-28)

第1次临时发布

目录

前	<u> </u>	i
1 和	码率控制参数的意义和使用方法	1
	1.1 CBR 参数说明及使用方法	1
	1.2 VBR 参数说明及使用方法	3
	1.3 AVBR 参数说明及使用方法	4
	1.4 QVBR 参数说明及使用方法	6
	1.5 CVBR 参数说明及使用方法	8
	1.6 宏块级码率控制参数说明及使用方法	11
	1.7 码率过高丢帧参数及使用说明	12
	1.8 超大帧策略高级参数及使用说明	13
2 G	GOP 结构参数的意义和使用方法	14
	2.1 单参考 P 帧 GOP 结构属性说明及使用方法	14
	2.2 双参考 P 帧 GOP 结构属性说明及使用方法	14
	2.3 智能 P 帧 GOP 结构属性说明及使用方法	15
	2.4 B 帧 GOP 结构参数说明及使用方法	16
3 犁	码率控制专题	17
	3.1 码率更稳定	17
	3.2 图像质量提升	17
	3.3 调节呼吸效应	18
	3.4 限制 I 帧幅度	18
	3.5 减少运动拖影和色度拖影	19
	3.6 码率控制的起始 QP	19
	3.7 VBR、AVBR 和 QVBR 的差异	20
	3.8 VBR、AVBR、CBR 和 CVBR 的差异	20
	3.9 低码率场景	20
	3.10 注音事项	21

表格目录

表 1-1 CBR 属性	1
表 1-2 CBR 高级参数—帧级	1
表 1-3 VBR 属性	3
表 1-4 VBR 高级参数—帧级	3
表 1-5 AVBR 属性	∠
表 1-6 AVBR 高级参数—帧级	5
表 1-7 QVBR 属性	7
表 1-8 QVBR 高级参数—帧级	7
表 1-9 CVBR 属性	9
表 1-10 CVBR 高级参数—帧级	9
表 1-11 宏块级码率控制参数	12
表 1-12 码率过高丢帧参数	13
表 1-13 超大帧策略高级参数	13
表 2-1 单参考 P 帧编码 GOP 结构参数	14
表 2-2 双参考 P 帧编码 GOP 结构参数	14
表 2-3 SmartP/ AdvSmartP 智能 P 帧编码 GOP 结构参数	15
表 2-4 B 帧编码 GOP 结构参数	16
表 3-1 码率更稳定方法	17
表 3-2 提升图像质量方法	18
表 3-3 调节呼吸效应方法	18
表 3-4 限制 I 帧幅度方法	18
表 3-5 减少运动拖影和色度拖影的方法	19
表 3-6 CVRR 的 MinIOn 和 MinPOn 参数推差值	22

码率控制参数的意义和使用方法

1.1 CBR 参数说明及使用方法

CBR 参数说明如表 1-1 和表 1-2 所示。

表1-1 CBR 属性

参数	说明	应用场景	备注
u32Gop	I帧间隔。	一般设置为输出帧率的整数 倍	略
u32StatTime	统计时间, 以秒为单 位。	一般场景设置为(Gop/输出帧率)即可;关注长期码率稳定,短期波动不在意的可以设置大一些,例: DVR 存盘。设大可以提高重编码判决的门槛,重编码次数会减少,但是码率波动会加大。	略
u32SrcFrameRate	输入帧率。	帧率控制	略
fr32DstFrameRate	输出帧率。	帧率控制	略
u32BitRate	目标码率。	略	略

表1-2 CBR 高级参数—帧级

参数	说明	应用场景	备注
u32MinIprop	最小 IP 比,默认 1	接口暂不生效	略

参数	说明	应用场景	备注
u32MaxIprop	最大 IP 比,默认 20	控制 I 帧占比,限制静止场景 I 帧过大,可能会引起呼吸效应。如果 I 帧大小超出 u32MaxIprop倍 P 帧,则 I 帧 QP 会增加,从而限制 I 帧大小。	略
u32MaxQp	最大 QP 建议值: [40, 51]	限制最差的图像质量,当 QP 调整到这个值的时候,不会再往上调,可能会导致码率上冲。关注码率的场景设置成 51, 关注质量的场景根据需要设置。	略
u32MinQp	最小 QP 建议值: [10, 20]	限制最好的图像质量,当 QP 调整到这个值的时候,不会再往下调,可能会导致码率不足;主要用于节省简单静止场景下的码率	略
u32MaxIQp	最大 I 帧 QP 建议值: [35, 45]	对于静止场景, I 帧 QP 对于图像 质量影响很大,限制 I 帧 QP 的 最大值,对于保持图像静止部分 的图像质量有帮助。	略
u32MinIQp	I 帧最小 QP 静止纹理非常复 杂场景,建议 [20,25] 正常场景建议等 于 u32MinQp	限制 I 帧的最小 QP, 主要为了控制 I 帧占比	略
s32MaxReEncodeT imes	最大重编次数,取值范围[0,3], 默认2 建议不要关闭重编码,对保证码率 稳定十分有效	一般场景默认值就足够	略
bQpMapEn	QpMap 使用相对 QP 方式,用于 AdaptiveROI 方式 使能。	使用智能分析和编码结合,通过 QpMap 设置相对 QP 的方式,根 据智能分析的结果调节 CU 级码 率控制。 此标志有效时,编码器解析 MPI 发送图像接口中的 QpMap 并配 置给编码逻辑。	略

参数	说明	应用场景	备注
enQpMapMode (仅 H.265 编码)	在编码 CU 块大于 16x16 且对应多个 QP 时,编码 QP 的 选择方式。	对于一个 CU 对应多个 QP 的情况,编码 CU 使用的 QP 支持最大、最小、平均值三种选择方式。	略
	bQpMapEn 为 HI_TRUE 时有效。		

1.2 VBR 参数说明及使用方法

VBR 参数如表 1-3 和表 1-4 所示。

表1-3 VBR 属性

参数	说明	应用场景	备注
u32Gop	I帧间隔	一般设置为输出帧率的 整数倍	略
u32StatTime	统计时间,以秒为单位。	与 CBR 一致	略
u32SrcFrameRate	输入帧率	帧率控制	略
fr32TargetFrmRate	输出帧率	帧率控制	略
u32MaxBitRate	最大码率	略	略

表1-4 VBR 高级参数—帧级

参数	说明	应用场景	备注
s32ChangePos	开始调节的码率 [80,90] 如果对码率超出很敏感, 建议设置 80,对码率超出 不敏感,建议设置 90	略	略
u32MinIprop	最小 IP 比,默认 1	与 CBR 用法一致	略
u32MaxIprop	最大 IP 比,默认 20	与 CBR 用法一致	略
s32MaxReEncodeT imes	最大重编次数,取值范围 [0,3] 默认 2	与 CBR 用法一致	略

参数	说明	应用场景	备注
bQpMapEn	QpMap 使用相对 QP 方式,用于 AdaptiveROI 方式使能。	使用智能分析和编码结合,通过 QpMap 设置相对 QP的方式,根据智能分析的结果调节 CU 级码率控制。 此标志有效时,编码器解析 MPI 发送图像接口中的 QpMap 并配置给编码逻辑。	略
enQpMapMode (仅 H265 编码)	在编码 CU 块大于 16x16 且对应多个 QP 时,编码 QP 的选择方式。 bQpMapEn 为 HI_TRUE 时有效。	对于一个 CU 对应多个 QP 的情况,编码 CU 使用 的 QP 支持最大、最小、 平均值三种选择方式。	略
u32MaxQp u32MaxIQp u32MinQp u32MinIQp	根据不同码率和场景设置合适的 QP。 u32MinIQp 限制 I 帧最小 Qp; u32MinQp 限制其他 帧类型的最小 Qp。 建议值: MinQP [24,32] MaxQP [40,51]	最大 QP 影响图像质量;最小 QP 影响 VBR 最低码率。 设置最大 QP 来平衡编码压力上升的时候图像质量优先还是限制最大码率优先。 设置最小 QP 来平衡编码压力下降时图像质量优先还是降低码率优先。	略

1.3 AVBR 参数说明及使用方法

□ 说明

此小节 Hi3556AV100/Hi3559V200/Hi3556V200 不支持。

AVBR 参数如表 1-5 和表 1-6 所示。

表1-5 AVBR 属性

参数	说明	应用场景	备注
u32Gop	I帧间隔。	一般设置为输出帧率的整 数倍	略
u32StatTime	统计时间,以秒为单位。	与 CBR 一致	略
u32SrcFrameRate	输入帧率。	帧率控制	略

参数	说明	应用场景	备注
fr32DstFrameRate	输出帧率。	帧率控制	略
u32MaxBitRate	最大码率。	略	略

表1-6 AVBR 高级参数—帧级

参数	说明	应用场景	备注
s32ChangePos	开始调节的码率,建议范 围: [80,90]	略	略
	如果对码率超出很敏感, 建议设置 80		
	对码率超出不敏感,建议 设置 90		
u32MinIprop	最小 IP 比,默认 1	与 CBR 用法一致	略
u32MaxIprop	最大 IP 比,默认 100	与 CBR 用法一致	略
s32MaxReEncodeT imes	最大重编次数,取值范围 [0,3],默认2	与 CBR 用法一致	略
bQpMapEn	QpMap 使用相对 QP 方式,用于 AdaptiveROI 方式使能。	使用智能分析和编码结合,通过 QpMap 设置相对 QP 的方式,根据智能分析的结果调节 CU 级码率控制。 此标志有效时,编码器解析 MPI 发送图像接口中的 QpMap 并配置给编码逻辑。	略
enQpMapMode (仅 H265 编码)	在编码 CU 块大于 16x16 且对应多个 QP 时,编码 QP 的选择方式。 bQpMapEn 为 HI_TRUE 时有效。	对于一个 CU 对应多个 QP 的情况,编码 CU 使用的 QP 支持最大、最小、平均值三种选择方式。	略
s32MinStillPercent	场景静止时,最小目标码率的百分比; 建议值: [5,50]	设置越小,静止场景码率下降越显著; 设置为 100 时不启动内部码率调节机制,码率控制效果与 VBR 相同	略
u32MaxStillQP	静止场景 I 帧 QP 的最大值;	目标码率降低过大会带 来静止场景 QP 升高,图 像质量变差,此时可以使	略

参数	说明	应用场景	备注
	建议值: [30, 40]	用这个变量限制静止场 景 I 帧 QP 的最大值;	
u32MinStillPSNR	保留,暂不使用	略	略
u32MaxQp u32MinQp u32MaxIQp u32MinIQp	根据不同码率和场景设置合适的 QP。 u32MinIQp 限制 I 帧最小Qp; u32MaxIQp 限制 I 帧最大Qp; u32MinQp 限制其他帧类型的最小 Qp; u32MaxQp 限制其他帧类型的最大 Qp。 建议值: MinQP [24,32] MaxQP [40,51]	最大 QP 影响图像质量;最小 QP影响 VBR 最低码率。 设置最大 QP 来平衡编码压力上升的时候图像质量优先还是限制最大码率优先。 设置最小 QP 来平衡编码压力下降时图像质量优先还是降低码率优先。	略
u32MinQpDelta	用于调节帧级最小 Qp 和 宏块级最小 Qp 的差值。例如 P 帧: FrameLevelMinQp = u32MinQpDelta + u32MinQp。 取值范围[0, 4]。 建议有需要调节的客户在[1, 4]范围内调节。	在图像内容比较简单时,码控会降低 Qp 值,当帧级 Qp 调节到FrameLevelMinQp,帧级码率控制就不再下调 Qp,但是 CU/宏块级码率控制依然生效,图像中平坦区域 Qp 能够下调到更小值。u32MinQpDelta 默认为 0,表示帧级和 CU/宏块级码率控制采用相同的最小Qp。	略
u32MotionSensitivi ty	运动敏感度,该值越大表示码率控制对运动的变化反应更快,但同时对噪声也更敏感。	略	略

1.4 QVBR 参数说明及使用方法

QVBR 参数如表 1-7 和表 1-8 所示。

表1-7 QVBR 属性

参数	说明	应用场景	备注
u32Gop	I帧间隔。	一般设置为输出帧率的整 数倍	略
u32StatTime	统计时间,以秒为单位。	与 CBR 一致	略
u32SrcFrameRate	输入帧率。	帧率控制	略
fr32DstFrameRate	输出帧率。	帧率控制	略
u32TargetBitRate	目标码率。	略	略

表1-8 QVBR 高级参数—帧级

参数	说明	应用场景	备注
u32MinIprop	最小 IP 比,默认 1	与 CBR 用法一致	略
u32MaxIprop	最大 IP 比,默认 100	与 CBR 用法一致	略
s32MaxReEncodeT imes	最大重编次数,取值范围 [0,3],默认2	与 CBR 用法一致	略
bQpMapEn	QpMap 使用相对 QP 方式,用于 AdaptiveROI 方式使能。	使用智能分析和编码结合,通过 QpMap 设置相对 QP的方式,根据智能分析的结果调节 CU 级码率控制。 此标志有效时,编码器解析 MPI 发送图像接口中的 QpMap 并配置给编码逻辑。	略
enQpMapMode (仅 H265 编码)	在编码 CU 块大于 16x16 且对应多个 QP 时,编码 QP 的选择方式。 bQpMapEn 为 HI_TRUE 时有效。	对于一个 CU 对应多个 QP 的情况,编码 CU 使用 的 QP 支持最大、最小、 平均值三种选择方式。	略
u32MaxQp u32MinQp u32MaxIQp u32MinIQp	根据不同码率和场景设置合适的 QP。 u32MinIQp 限制 I 帧最小Qp; u32MaxIQp 限制 I 帧最大Qp; u32MinQp 限制其他帧类	最大 QP 影响图像质量; 最小 QP 影响 VBR 最低码率。 设置最大 QP 来平衡编码 压力上升的时候图像质 量优先还是限制最大码 率优先。 设置最小 QP 来平衡编码	略

参数	说明	应用场景	备注
	型的最小 Qp; u32MaxQp 限制其他帧类 型的最大 Qp。 建议值: MinQP [24,32] MaxQP [40,51]	压力下降时图像质量优 先还是降低码率优先。	
s32BitPercentUL s32BitPercentLL	设置码率动态浮动的范围。 最大码率=TargetBitRate*s32BitPercentUL/100最小码率 TargetBitRate*s32BitPercentLL/100建议值:s32BitPercentUL[100,125]s32BitPercentLL [45,100]	QVBR 码控算法会实时判断当前场景的图像复杂程度,主动调整目标码率;这组参数将动态码率限制在一个范围,在场景简单时向下调整目标码率,在场景复杂时向上调整目标码率。	略
s32PsnrFluctuateU L s32PsnrFluctuateL L	触发动态调整码率的 PSNR(图像质量客观评价指标)范围参数。 建议值: s32PsnrFluctuateUL[30,37] s32PsnrFluctuateLL [21,27]	当实时统计的 PSNR 值大于等于 s32PsnrFluctuateUL 时,认为当前图像质量较好,可以向下调整码率; 当实时统计的 PSNR 值小于等于 s32PsnrFluctuateLL 时,认为当前图像质量较差,可以上相调整码率; 在实时统计的 PSNR 值在这两个参数区间,不调整码率。	当 PSNR 值超 [s32Psnr Fluctuate LL-4, s32PsnrF luctuate UL+4]∩ [20,40] 时 PSNR 不作率最率小间 地种是一种的。

1.5 CVBR 参数说明及使用方法

CVBR 参数如表 1-9 和表 1-10 所示。

表1-9 CVBR 属性

参数	说明	应用场景	备注
u32Gop	I 帧间隔。	一般设置为输出帧率的整 数倍	略
u32StatTime	统计时间,以秒为单位。	与 CBR 一致	略
u32SrcFrameRate	输入帧率。	帧率控制	略
fr32DstFrameRate	输出帧率。	帧率控制	略
u32MaxBitRate	最大短期码率(单位: kbps)。 建议值: 1.5 倍长期最大 码率	增加该值可改善大运动场景的质量	略
u32ShortTermStat Time	短期码率的统计时间(单位:秒)。 建议值:3	较小值可以让图像质量对 码率的反应更加迅速,反 之则图像质量变化更加平 稳。	略
u32LongTermStatT ime	长期码率的统计时间:最大值 1440,单位由高级属性 u32LongTermStatTimeUn it 确定,默认为分钟(即 60 秒),算法尽量使该统计时间内的平均码率不超过 u32LongTermMaxBitrate。建议值: 1440	如需长期统计时间小于 1440 秒,则降低该值	略
u32LongTermMax Bitrate u32LongTermMin Bitrate	长期统计时间内最大码率和最小码率(单位: kbps):编码器尽可能使长期统计时间内的平均码率在该范围内。	如果需要尽量节省码率,u32LongTermMinBitrate 可设为 0。如果需要最终平均码率为固定植,可将u32LongTermMaxBitrate 和u32LongTermMinBitrate 同时设为该固定植	略

表1-10 CVBR 高级参数—帧级

参数	说明	应用场景	备注
u32MinIprop	最小 IP 比,默认 1	与 CBR 用法一致	略
u32MaxIprop	最大 IP 比, 默认 100	与 CBR 用法一致	略

参数	说明	应用场景	备注
s32MaxReEncodeT imes	最大重编次数,取值范围 [0,3],默认 2	与 CBR 用法一致	略
bQpMapEn	QpMap 使用相对 QP 方式,用于 AdaptiveROI 方式使能。	使用智能分析和编码结合,通过 QpMap 设置相对 QP的方式,根据智能分析的结果调节 CU 级码率控制。 此标志有效时,编码器解析 MPI 发送图像接口中的 QpMap 并配置给编码逻辑。	略
enQpMapMode (仅 H265 编码)	在编码 CU 块大于 16x16 且对应多个 QP 时,编码 QP 的选择方式。 bQpMapEn 为 HI_TRUE 时有效。	对于一个 CU 对应多个 QP 的情况,编码 CU 使用 的 QP 支持最大、最小、 平均值三种选择方式。	略
u32MaxQp u32MinQp u32MaxIQp u32MinIQp	根据不同码率和场景设置合适的 QP。 u32MinIQp 限制 I 帧最小Qp; u32MaxIQp 限制 I 帧最大Qp; u32MinQp 限制其他帧类型的最小 Qp; u32MaxQp 限制其他帧类型的最大 Qp。 建议值: MinQP [24,32] MaxQP [40,51]	最大 QP 影响图像质量;最小 QP 影响 VBR 最低码率。 设置最大 QP 来平衡编码压力上升的时候图像质量优先还是限制最大码率优先。 设置最小 QP 来平衡编码压力下降时图像质量优先还是降低码率优先。	略
u32MinQpDelta u32MaxQpDelta	u32MinQpDelta 用于调节帧级最小 Qp 和 宏块级最小 Qp 的差值。 例如 P 帧: FrameLevelMinQp = u32MinQp+ u32MinQpDelta。 取值范围[0, 4]。 建议有需要调节的客户 在[1, 4]范围内调节。	在图像内容比较简单时,码控会降低 Qp 值,当帧级 Qp 调节到 FrameLevelMinQp,帧级码率控制就不再下调 Qp,但是 CU/宏块级码率控制依然生效,图像中平坦区域 Qp 能够下调到更小值。u32MinQpDelta 默认为 0,表示帧级和 CU/宏块级码率控制采用相同的最小Qp。	略

参数	说明	应用场景	备注
	u32MaxQpDelta 用于调节帧级最大 Qp 和 宏块级最大 Qp 的差值。 例如 P 帧: FrameLevelMaxQp = u32MaxQp- u32MaxQpDelta。 取值范围[0, 4]。 建议有需要调节的客户 在[1, 4]范围内调节。	在图像内容比较复杂时,码控会升高 Qp 值,当帧级 Qp 调节到FrameLevelMaxQp,帧级码率控制就不再升高 Qp,但是 CU/宏块级码率控制依然生效,图像中强纹理区域 Qp 能够升高到更大值。u32MaxQpDelta 默认为 0,表示帧级和 CU/宏块级码率控制采用相同的最大 Qp。	
u32ExtraBitPercent	编码器输出码流最大透支 bit 数相对于长期最大码率的百分比。 在码率不足时,为保证图像质量,编码器会通过透支一定的 bit 数以提升图像质量,这部分透支的码率会在编码压力较小时进行偿还。取值范围[0,1000] 默认值:5	客户可以根据实际存储 设备的情况,配置该透支 百分比。 ExtraBits(允许透支总 bit 数) = u32ExtraBitPercent *u32LongTermMaxBitrate *u32LongTermStatTime *u32LongTermStatTimeUnit	略
u32LongTermStatT imeUnit	码率长期统计时间参数(u32LongTermStatTime)的单位,本变量单位是秒(s),如配置u32LongTermStatTimeUnit=60,u32LongTermStatTime=3,代表长期统计时间为3分钟。 取值范围:[1,1800]; 默认值:60	u32LongTermStatTimeUni t 的默认值为 60,即客户 配置的 u32LongTermStatTime 单 位为分钟(60 秒),如客户 长期统计时间较长,可以 把单位适配成 半小时 (1800 秒)。	略

1.6 宏块级码率控制参数说明及使用方法

宏块级码率控制参数如表 1-11 所示。

表1-11 宏块级码率控制参数

参数	说明	应用场景	备注
u32ThrdI[16] u32ThrdP[16] u32ThrdB[16]	基于纹理的宏块级码率控制参数: I、P、B 帧 madi 阈值。 H264 默认值:	纹理级码率控制使平坦 区域 QP 减少,细节区域 QP 增加,使主观图像质 量更好。	略
	I: [0, 0, 0, 0, 3, 3, 5, 5, 8, 8, 8, 15, 15, 20, 25, 25];	前 8 级为减 QP 方向;后 8 级为加 QP 方向:	
	P: [0, 0, 0, 0, 3, 3, 5, 5, 8, 8, 8, 15, 15, 20, 25, 25]	对于减 QP 方向,设置为 0 表示关闭当前级;	
	B: [0, 0, 0, 0, 3, 3, 5, 5, 8, 8, 8, 15, 15, 20, 25, 25] H265 默认值:	对于加 QP 方向,设置 255 表示关闭当前级;	
	I: [0, 0, 0, 0, 3, 3, 5, 5, 8, 8, 8, 15, 15, 20, 25, 25];		
	P: [0, 0, 0, 0, 3, 3, 5, 5, 8, 8, 8, 15, 15, 20, 25, 25];		
	B: [0, 0, 0, 0, 3, 3, 5, 5, 8, 8, 8, 15, 15, 20, 25, 25];		
u32DirectionThrd	在基于纹理宏块级码率控制时,用于控制加减方向。 取值范围:[0,16]。	例如: u32DirectionThrd=7 表 示: Thrd 的前 7 个参数 用于 QP 减方向;后 9 个参数用于 QP 加方向。	略
u32RowQpDelta	基于行的宏块级码率控制, 默认值为 2。行级码率控制 增加码率稳定性。设置为 0 表示关闭基于行的宏块级 码率控制。	行级码率控制,设置越大一帧之内 QP 调整的幅度越大,码率也更稳定。	略
s32FirstFrameStart Qp	第一帧的起始 Qp 值。	第一帧的起始 QP,编码器内部会根据经验值推算一个合适的 QP,但是客户可以根据产品的实际场景调整。	略

1.7 码率过高丢帧参数及使用说明

码流过高丢帧参数如表 1-12 所示。

表1-12 码率过高丢帧参数

参数	说明	应用场景	备注
bFrmLostOpen	码率过冲丢帧开关	当码率超过阈值时开启丢 帧,保证码率平稳。	略
u32FrmLostBpsThr	码率过冲阈值: 丢帧阈值建议设为目标 码率的1.2倍或最大码率	略	略
enFrmLostMode	丢帧方式选择,丢帧方式可以选择正常丢帧或者编码为 PSkip 帧。	当码率过冲时丢帧或编 PSkip 帧	略
u32EncFrmGaps	非 0 值表示连续丢帧最大个数。 设置为 0 时表示连续丢帧,不计算个数。	保证连续丢帧时的流畅度。	略

1.8 超大帧策略高级参数及使用说明

超大帧策略高级参数如表 1-13 所示。

表1-13 超大帧策略高级参数

参数	说明	应用场景	备注
enSuperFrmMode	超大帧策略	三种模式可以选择: 重编、丢帧、正常输 出	略
u32SuperIFrmBitsThr	I 帧编码 bit 数阈值	略	略
u32SuperPFrmBitsThr	P 帧编码 bit 数阈值	略	略
u32SuperBFrmBitsThr	B 帧编码 bit 数阈值	略	略
enRcPriority	超大帧重编优先级 1: 按照目标码率分配重编码 bit 数; 2: 按照超大帧阈值分配重编码 bit 数。	略	略

2 GOP 结构参数的意义和使用方法

2.1 单参考 P 帧 GOP 结构属性说明及使用方法

单参考 P 帧编码 GOP 结构参数如表 2-1 所示。

表2-1 单参考 P 帧编码 GOP 结构参数

参数	说明	应用场景	备注
s32IPQpDelta	IP 帧 QP 差值,用于调节呼吸效应 建议值: [2, 6]	用于调节呼吸效应及控制 I 帧大小。	略

2.2 双参考 P 帧 GOP 结构属性说明及使用方法

□ 说明

此小节 Hi3559AV100ES/Hi3556AV100/Hi3559V200/Hi3556V200 不支持。

双参考 P 帧编码 GOP 结构参数如表 2-2 所示。

表2-2 双参考 P 帧编码 GOP 结构参数

参数	说明	应用场景	备注
u32SPInterval	Special P 帧间隔。 建议值:[4, 10]	在一个 GOP 中,按照固定间隔编码一些质量更好的 P帧,称为 Special P帧。通过时域参考的相关性,提升编码整体图像质量。 使用双参考 P 帧模式将在编码端和解码端各增加一个帧存 DDR,但不增加系统端到端延时。	略

参数	说明	应用场景	备注
s32SPQpDelta	Special P 帧相对普通 P 帧的 QP 差值,用于优 化图像质量。 建议值: [2,4]	略	略
s32IPQpDelta	I 帧相对普通 P 帧的 QP 差值,用于调节呼吸效应。 建议值: [2,6]	用于调节呼吸效应及控制 I 帧大小。	略

2.3 智能 P 帧 GOP 结构属性说明及使用方法

□ 说明

此小节 Hi3559AV100ES 不支持, Hi3519AV100/Hi3556AV100/Hi3516CV500/Hi3516DV300/Hi3559V200/Hi3556V200/Hi3516EV200 不支持 AdvSmartP。

SmartP/AdvSmartP智能P帧编码GOP结构参数如表2-3所示。

表2-3 SmartP/AdvSmartP 智能 P 帧编码 GOP 结构参数

参数	说明	应用场景	备注
u32BgInterval	长期参考帧间隔。 建议值: Gop的 10~30倍	在码流中周期性的插入长期参考帧,利用时域相关性提升编码图像质量。 对于镜头固定安装,相对静止的场景可以提升编码性能。 一般设置为 Gop 的整数倍,并与码率统计时间相匹配。 使用 SmartP 帧模式将在编码端和解码端各增加一个帧存 DDR,但不增加系统端到端延时。	略
s32BgQpDelta	长期参考帧相对 于普通 P 帧的 QP 差值。 建议值: [2,10]	用于调节长期参考帧的质量及调节长期参考帧的大小。	略

参数	说明	应用场景	备注
s32ViQpDelta	虚拟 I 帧相对于普通 P 帧的 QP 差值。 建议值:[2,4]	虚拟 I 帧仅参考长期参考帧,可以独立解码。用于错误恢复或播放器Seek。在SmartP 帧编码模式下,虚拟 I 帧的间隔等于 u32Gop。 s32ViQpDelta 用于调节虚拟 I 帧的质量及调节虚拟 I 帧的大小,将虚拟 I 帧采用更好的图像质量编码,可以提升编码性能。	略

2.4 B 帧 GOP 结构参数说明及使用方法

□ 说明

此小节

Hi3559AV100ES/Hi3556AV100/Hi3516CV500/Hi3516DV300/Hi3559V200/Hi3556V200/Hi3516EV200不支持。

B 帧编码 GOP 结构参数如表 2-4 所示。

表2-4 B 帧编码 GOP 结构参数

参数	说明	应用场景	备注
u32BFrmNum	相邻两个 P 帧之间 插入 B 帧个数。 建议值:[1,2]	B 帧采用双向参考方式,能够最大限度的利用前后两帧的相关性,提升编码性能,降低码率;使用 B 帧将在编码端和解码端各增加一个帧存 DDR;编码端和解码端各增加 u32BFrmNum 个帧间隔的延迟。	略
s32BQpDelta	B 帧相对 P 帧的 QP 差值,用于降低 码率。 建议值: [-4, -2]	B 帧本身不被其他帧参考,所以 B 帧可以适当降低图像质量。建 议这个变量设置为负值,适当增 加 B 帧 QP,已达到节约码率的 作用。	略
s32IPQpDelta	I 帧相对普通 P 帧 的 QP 差值,用于调 节呼吸效应。 建议值: [2,6]	用于调节呼吸效应及控制 I 帧大小。	略

3 码率控制专题

3.1 码率更稳定

码率更稳定方法参见表 3-1。

表3-1 码率更稳定方法

方法	对应参数设置	副作用
增加行级码率控制 调整幅度	VENC_RC_PARAM_S:: u32RowQpDelta,从默认值 2 增加到 3~5	u32QpDelta 设置过大,虽然静止或 小运动场景码率会看起来十分平 稳,但是大运动场景会让调整 QP 的反应变慢,大运动码率波动反而 变大,建议设置不要超过 5。
设置码率超出阈值 丢帧,设置连续丢 帧个数	VENC_FRAMELOST_S:: bFrmLostOpen= HI_TRUE; VENC_ FRAMELOST_S:: u32FrmLostBpsThr= 丢帧阈值; VENC_ FRAMELOST_S:: enFrmLostMode= FRMLOST_NORMAL 或 FRMLOST_PSKIP; VENC_ FRAMELOST_S:: u32EncFrmGaps= 连续丢帧间隔	当码率控制不住时通过丢帧来降低码率,视频流畅性降低;丢帧阈值建议为目标码率的1.1倍~1.2倍;连续丢帧间隔建议为2或3。

3.2 图像质量提升

提升图像质量方法参见表 3-2 所示。

表3-2 提升图像质量方法

方法	对应参数设置	副作用
设置最大 QP	VENC_PARAM_H264_CBR_S::u32MaxQp VENC_PARAM_H265_CBR_S::u32MaxQp VENC_PARAM_H264_VBR_S::u32MaxQp VENC_PARAM_H265_VBR_S::u32MaxQp	限制最大 QP 能够有效的保护图像质量, 但是容易产生码率过冲。

3.3 调节呼吸效应

调节呼吸效应方法参见表 3-3。

表3-3 调节呼吸效应方法

方法	对应参数设置	副作用
设置 IP 帧之间的 QP 差值,正数表 示 I 帧 QP 小于 P 帧 QP	VENC_GOP_NORMALP_S:: s32IPQPDelta VENC_GOP_DUALP_S:: s32IPQPDelta VENC_GOP_BIPREDB_S:: s32IPQPDelta	s32IPQPDelta 的默认值与纹理级码率 控制有一定关联,当纹理级打开时默 认值为 6;当纹理级关闭时默认值为 2; 调节呼吸效应 s32IPQPDelta 应在默认 值的基础上适当增加或减少。
设置去除呼吸效 应参数	VENC_DEBREATHEFFECT_S:: s32Strength0 VENC_DEBREATHEFFECT_S:: s32Strength1	原则上,对不同的场景,呼吸效应的改善要做到最佳,需要同时调节参数s32Strength0和s32Strength1。但是考虑到多场景的适应性,建议客户使用默认值。

∭ ië ⊞

此小节中配置去除呼吸效应参数的方法 Hi3516EV200 不支持。

3.4 限制 I 帧幅度

限制 I 帧幅度参见表 3-4。

表3-4 限制 I 帧幅度方法

方法	对应参数设置	副作用
置 IP 帧比例的最大值, 当 IP 帧比例超出这个值 的时候内部会有算法限 制 I 帧大小	VENC_PARAM_H264_CBR_S::u32 MaxIprop; VENC_PARAM_H265_CBR_S::u32 MaxIprop	通常情况下静止场景 I 帧多分配一些码流可以改善图像质量,IP 帧比例的最大值设置过大会降低图像质量。

方法	对应参数设置	副作用
设置 I 帧最小 QP	VENC_PARAM_H264_CBR_S::u32 MinIQp; VENC_PARAM_H265_CBR_S::u32 MinIQp	这种方法对 I 帧的限制较强, 容易产生码率不足, 而且不同场景下合适的 I 帧QP 不同, MinIQp 经验值不容易得到。
设置超大帧重编,一般 I 帧阈值设置为能容忍的最大值, P 帧阈值设置成 I 帧的一半	VENC_SUPERFRAME_CFG_S::enSu perFrmMode = SUPERFRM_REENCODE; VENC_SUPERFRAME_CFG_S::u32 SuperIFrmBitsThr VENC_SUPERFRAME_CFG_S::u32 SuperPFrmBitsThr	重编次数过多会浪费芯片性能和带宽。

3.5 减少运动拖影和色度拖影

运动拖影主要发生在纹理比较平坦的区域,减少运动拖影可以调整纹理级宏块码率控制参数。减少色度拖影可以调整色度量化参数偏移,参见表 3-5。

表3-5 减少运动拖影和色度拖影的方法

方法	对应参数设置	副作用
调整宏块级码率控制参数	VENC_RC_PARAM_S:: u32ThrdP[16]	通常情况纹理简单的静止区域更容易出现拖影,通过纹理级码率控制可以降低简单区域的 QP,减少拖影,但是纹理复杂的区域会相应减少比特分配,降低图像质量。
减小 chroma_qp_offset,对色度拖影问题适用	VENC_H264_TRANS_S:: chroma_qp_index_offset; VENC_H265_TRANS_S:: cb_qp_offset VENC_H265_TRANS_S:: cr_qp_offset	降低色度 QP, 使色度质量更好; 副作用是色度分配更多比特必然导致亮度少分配比特数。
增加 3DNR 去噪强度	-	对图像细节的保留程度会减弱。

3.6 码率控制的起始 QP

当前码率控制算法内部包含起始 QP 的经验算法。该算法选择典型场景根据码率、分辨率等计算合适的起始 QP,但是不能得到适应每个场景的绝对合适的起始 QP 值。

- 如果起始 OP 选择偏大,会导致编码的最初一段时间内码率不足,图像质量稍差;
- 如果起始 QP 选择偏小,会导致编码的最初一段时间码率超出。
- 如果客户觉得我们算法计算的经验值不合适,可以通过 VENC_RC_PARAM_S::s32FirstFrameStartQp 配置合适的起始 QP 值。该接口在创建 通道后,开始第一帧编码之前调用有效。

3.7 VBR、AVBR 和 QVBR 的差异

- VBR 的运行机制:运动场景等编码压力大的时候,通过调节 StartQp 使码率不超出最大码率;静止等编码压力小的时候,StartQp 钳位到 MinQp,此时码率会低于最大码率,达到节省码流的目的;
- AVBR 的运行机制:编码增加运动检测方法,在运动时调高目标码率,并控制 StartQp 使码率不超出最大码率:静止时调低目标码率,达到节省码流的目的;
- QVBR 的运行机制:利用 PSNR 客观图像评价指标,动态调整码率,在 PSNR 较小时主动升高目标码率, PSNR 较大时主动降低目标码率,达到节省码率和保证图像质量的双重目的。
- CVBR 的运行机制:设置了瞬时,短期与长期码率的限制,在场景简单时存储码率,存储的码率用于提升复杂场景的图像质量,从而保证图像质量的长期平稳。
- VBR 和 AVBR 的差异: VBR 是被动节省码率而 AVBR 是主动节省码率;在静止时 AVBR 使用的 QP 可以高于 MinQp,从而在静止时节省更多码率。QVBR 可主动向上向下双向动态调整码率,从而保证编码图像质量平稳。

3.8 VBR、AVBR、CBR 和 CVBR 的差异

- CVBR 和 VBR 的差异: CVBR 与 VBR 一样追求较平稳的图像质量,但增加了在不同统计时间内的码率限制,以分别满足传输带宽和储存空间的限制
- CVBR 和 AVBR 的差异: CVBR 输出码率的变化不依赖于运动检测,而是根据场景情况带来的编码压力自动变化;同时,CVBR 追求在编码压力变化时达到较平稳的图像质量,使用长期码率的统计,并在长期码率满足用户要求的前提下,对目标码率进行调整,以尽量满足图像质量平稳的要求。
- CVBR 和 CBR 的差异: CBR 的输出不区分场景,即在场景简单时不会降低码率,场景复杂时不能使用额外码率。而 CVBR 的码率根据场景而自动变化,即在场景简单时会降低码率,场景复杂时能使用额外码率,最终达到更稳定质量,且平均码率不超过目标码率的效果。

3.9 低码率场景

● 降低 ISP 模块 AE 的灵敏度,增大 AE 反应延迟,避免光线明暗变化后 AE 的频繁调节。

建议参数:

适当增加AE从亮到暗及从暗到亮调节的延迟。

适当降低 AE 变化敏感度。

● 增加 3DNR 去噪强度,适当增加 TF 和 SF 强度;适当降低 Sharpen 强度,降低图像细节。

建议参数:

适当增大 SF (空域滤波强度)和 TF (时域滤波强度);调整的时候注意保持 SF 大约是 TF 的 4 倍。

● 设置较大的 Gop,同时码率统计时间 u32StatTime 与 Gop 值设置相匹配。使用 SmartP/AdvSmartP 模式,u32BgInterval 应该与 u32StatTime 相匹配。

建议参数:

Gop 设置为帧率的 $4\sim10$ 倍,例如帧率 30fps,Gop 设置为 $120\sim300$,u32StatTime 设置为 $4\sim10$ 秒。

• 适当降低帧率,或者设置编码 PSkip 的方式降低帧率。

建议参数:

目标帧率设置为 15fps;

VENC FRAMELOST S:: enFrmLostMode= FRMLOST PSKIP;

VENC_FRAMELOST_S:: u32EncFrmGaps= 2;

- 打开基于纹理的宏块级码率控制,设置推荐参数即可。
- 对于固定安装摄像头等偏静止场景,建议使用 SmartP/AdvSmartP 模式编码;对于 镜头有运动但对延时要求不高的场景建议使用 BipredB 模式编码;对于其他场景建 议使用 DualP 模式编码。

3.10 注意事项

注意事项如下:

- u32Gop:最好设置为编码帧率的整数倍,如果不是整数倍,I帧的分布在时间上会不均匀,导致瞬时码率波动;中高码率下Gop可以等于编码帧率;低码率下Gop需要适当加大。
- u32StatTime: 设置为(Gop/编码帧率)的整数倍,例如帧率25fps,Gop50,统计时间应该设为2秒、4秒等;统计时间与Gop不匹配会导致瞬时码率不稳定,导致图像质量也不稳定;一般场景设置为Gop的1倍即可,关注长期码率稳定,短期波动不在意的可以设置大一些。点播场景如果使用请求I帧接口会造成短时间码率过冲,增加统计时间可以减少码率过冲造成的QP变化,使图像质量更稳定。
- u32SrcFrameRate: 设置为 VI 的帧率,编码内部帧率控制会校验时间戳来计算是否丢帧,时间戳是 VI 采集的时候打上的,因此 u32SrcFrameRate 要与 VI 实际的帧率保持一致; u32SrcFrameRate 如果与 VI 实际帧率不一致,实际码率与目标码率会不一致。
- u32MaxIprop: 对超出 P 帧大小 u32MaxIprop 倍的 I 帧进行限制,这个功能可以有效抑制静止场景下 I 帧的大小;
- u32MaxQp、u32MaxIQp: 对最大 QP 进行限制。偏重码率,不在意质量的建议值 51; 关注质量,不在意码率上冲的可以设置为[40,51]; u32MinQp、u32MinIQp: 对最小 QP 进行限制。希望在图像静止或小运动的时候节省码率, CBR 建议设置为[10, 20]; VBR 建议设置为[24,32]。

- 超大帧丢帧是丢弃已经编码的当前帧;码率过冲丢帧是丢弃下一帧。两种丢帧方法不矛盾,可以配合使用。
- ROI 和 OSD 保护可能会影响到码率控制,如果在低码率场景设置了面积较大、QP 值较小的 ROI 或 OSD 保护,会降低整体图像质量;也可能会造成码率过冲。
- CVBR 模式中,对于较简单场景,最终码率有可能低于 u32LongTermMinBitrate。
- CVBR 的 MinIQp 和 MinPQp 对码率控制的效果有影响。如果 MinIQp 和 MinPQp 设置过小,则简单静止场景码率始终无法节省,复杂运动场景也无法使用更多码率编码,导致 CVBR 的效果接近 CBR。如果 MinIQp 和 MinPQp 设置过大,会影响图像质量,码率始终低于 u32LongTermMaxBitrate,不能完全使用码率额度,造成图像质量不够好。MinIQp 和 MinPQp 的一组推荐值如表 3-6,具体针对不同场景使用时客户可以在此基础上调整。

表3-6 CVBR 的 MinIQp 和 MinPQp 参数推荐值

协议	分辨率	码率区间(Mbps)	MinIQp	MinPQp
H.264	1920x1080	[6, 7]	23	25
		[4, 6]	25	27
		[2, 4]	27	29
H.265	1920x1080	[4, 6]	23	25
		[2, 4]	25	27
		[1, 2]	27	29
	2560x1440	[9, 11]	23	25
		[6, 9]	25	27
		[3, 6]	27	29