湖南科技大学考试试题纸(A 卷)

(2020-2021 学年度第二学期)

课程名称:_	机器学习概论	_开课单	·位:	数学学院	<u> </u>
授课対象・	数学与计算科学	学院	2018	年级	信息与计算科学 1-4 班

考试时量: 100 分钟 考核方式: 考查 考试方式: 开卷

审核人:______年_____年_____月____日

一、计算题(本大题共 58 分, 第 1 题 12 分, 第 2 题 12 分, 第 3 题 10 分, 第 4 题 24 分)

- 1. 现在假设有一个训练好的二分类器对 10 个正负样本(正例 5 个,负例 5 个)预测,得分按高到低排序得到的最好预测结果为 [1, 1, 1, 0, 1, 0, 1, 0, 0, 0]
 - ①试描绘出该预测结果的 ROC 曲线; (6分,在答题纸上作图,在试题纸上作图不给分)②计算 AUC (6分)

2. 为了测定刀具的磨损速度,我们做这样的实验:经过一定时间(如每隔一小时),测量一次刀具的厚度,得到一组试验数据如下:

顺序编号	0	1	2	3	4	5	6	7
时间 t _i (小时)	0	1	2	3	4	5	6	7
刀具厚度 y _i (毫米)	27.0	26.8	26. 5	26. 3	26. 1	25. 7	25.3	24. 3

利用最小二乘法,根据上面的试验数据建立起 y=at+b 的线性回归模型。(12 分)

3. 利用三元 ECOC 码计算测试示例与 C1、C2、C3、C4 的海明距离, 并根据海明距离预测 出该测试示例的分类。(10 分)

· · · · · · · · · · · · · · · · · · ·								
	f1	f2	f3	f4	f5	f6	f7	
C1	+1	-1	-1	+1	+1	-1	+1	
C2	0	0	-1	0	-1	+1	0	
C3	-1	+1	+1	-1	+1	-1	-1	
C4	0	+1	-1	+1	0	-1	+1	

三元 ECOC 码

测试示例	+1	+1	-1	+1	-1	+1	-1

- 4. 根据样本集 D(P86 表 4.4)上的属性"纹理"数据,
 - ①. 写出该属性上无缺失值的样例子集 \tilde{D} ; (4分)
 - ②. 计算该样例子集D的信息熵(保留到小数点后三位);(8分)
 - ③. 令 \tilde{D}^1 、 \tilde{D}^2 与 \tilde{D}^2 分别表示在属性"纹理"上取值为"清晰"、"稍糊"以及"模糊"的样本子集,分别计算该三个样本子集的信息熵(保留到小数点后三位),(9分)
 - ④. 样本子集Ď上属性"纹理"的信息增益(保留到小数点后三位)。(3分)。

二、证明题(本大题共24分,第小题12分)

- 1. 证明:对于图 5.7 所示的 BP 神经网络,假设隐层和输出层神经元都使用 Sigmoid 函数,有
- 2. 试证明样本空间中任意点 x 到超平面(w,b)的距离公式 (6.2)

三、论述题(18分)

1. 距离是泛函分析中最基本的概念之一,在《机器学习》第三章纠错输出码也应用到了海明距离和欧式距离的概念,试用数学语言阐述距离的定义。