江泽坚实变函数论习题解答

梧桐 凤凰

Ultra, dream

2016年6月13日

目录

第一章	集合及其基数	1
1.1	集合及其运算	1
1.2	集合的基数	5
1.3	可数集合	5
1.4	不可数集合	8
第二章	n 维空间中的点集	10
2.1	聚点、内点、边界点、Bolzano-Weierstrass 定理	10
2.2	开集、闭集与完备集	11
2.3	p 进位表数法	19
2.4	一维开集、闭集、完备集的构造	20
2.5	点集间的距离	23
第三章	测度理论	26
3.1	开集的体积	26
3.2	点集的外测度	28
3.3	可测集合及测度	31
3.4	乘积空间	41
第四章	可测函数	42
4.1	可测函数的定义及其简单性质	42
4.2	Egoroff 定理	46
4.3	可测函数的结构 Lusin定理	47
4.4	依测度收敛	48
第五章	积分理论	49
5.1	非负函数的积分	49
5.2	可积函数	56
5.3	Fubini定理	65
5.4	微分与不定积分	67

1.1 集合及其运算

1. 证明 $(B-A) \cup A = B$ 的充要条件是 $A \subset B$.

证明. 充分性由 $A \subset B$, $(B-A) \cup A = (B \cap A^c) \cup (B \cap A) = B \cap (A \cup A^c) = B$ 可知。必要性由 $(B-A) \cup A = B \Rightarrow A \subset B$ 可知

2. 证明 $A - B = A \cap B^c$.

证明.

$$x \in A - B \iff x \in A \coprod x \notin B$$

$$\iff x \in A \coprod x \in B^c$$

$$\iff x \in A \cap B^c$$

3. 证明定理 4中的(3),(4),定理 6(De Morgen 公式)中的第二式和定理 9.

证明. 定理 4(3)

$$x \in \bigcap_{\lambda \in \Lambda} A_{\lambda} \Rightarrow \forall \lambda \in \Lambda, \ x \in A_{\lambda} \subset B_{\lambda}$$
$$\Rightarrow x \in \bigcap_{\lambda \in \Lambda} B_{\lambda}$$

定理 4(4)

$$x \in \bigcup_{\lambda \in \Lambda} (A_{\lambda} \cup B_{\lambda}) \iff \exists \lambda \in \Lambda, \ x \in A_{\lambda} \cup B_{\lambda}$$
$$\iff \exists \lambda \in \Lambda, \ x \in A_{\lambda} \quad \vec{\boxtimes} \quad \exists \lambda \in \Lambda, \ x \in B_{\lambda}$$
$$\iff x \in \left(\bigcup_{\lambda \in \Lambda} A_{\lambda}\right) \cup \left(\bigcup_{\lambda \in \Lambda} B_{\lambda}\right)$$

定理6

$$x \in \left(\bigcap_{\lambda \in \Lambda} A_{\lambda}\right)^{c} \iff \exists \lambda \in \Lambda, \ x \notin A_{\lambda}$$
$$\iff \exists \lambda \in \Lambda, \ x \in A_{\lambda}^{C}$$
$$\iff x \in \left(\bigcup_{\lambda \in \Lambda} A_{\lambda}^{C}\right)$$

定理9

由 $A_n \subset A_{n+1}$ 得 $\bigcap_{i=m}^{\infty} A_i = A_m$ 且

$$\liminf_{n} A_{n} = \bigcup_{m=1}^{\infty} \bigcap_{i=m}^{\infty} A_{i} = \bigcup_{m=1}^{\infty} A_{m}$$

又设 $\bigcup_{i=m}^{\infty} A_i = S_m 则 S_{m-1} \subset S_m$ 于是

$$\limsup_{n} A_n = \bigcap_{m=1}^{\infty} S_m = S_1 = \liminf_{n} A_n$$

得到

$$\lim_{n} A_n = \bigcup_{n=1}^{\infty} A_n$$

 $A_{n+1} \subset A_n$ 同理

4. 证明 $(A - B) \cup B = (A \cup B) - B$ 的充要条件是 $B = \emptyset$.

证明. 若
$$B = \emptyset$$
 , 则 $(A - B) \cup B = A - B = A$, $(A \cup B) - B = A - B = A$ 反之,若 $(A - B) \cup B = (A \cup B) - B$,则 $(A \cap B^c) \cup B = (A \cup B) \cap B^c$,推出 $B \subset B^c$, $B = \emptyset$

5. 设 $S = \{1, 2, 3, 4\}$, $\mathscr{A} = \{\{1, 2\}, \{3, 4\}\}$,求 $\mathscr{F}(\mathscr{A})$, 又如果 $S = \{\frac{1}{n}; n = 1, 2, 3, \ldots\}$, $\mathscr{A}_0 = \{\{\frac{1}{n}; n \Rightarrow 5\}\}$, $\mathscr{A}_1 = \{\{1\}, \{\frac{1}{3}\}, \ldots, \{\frac{1}{2i+1}\}, \ldots\}$ 问 $\mathscr{F}(\mathscr{A}_0)$ 和 $\mathscr{F}(\mathscr{A}_1)$ 是什么?

证明.

$$\mathscr{F}(\mathscr{A}) = \{\varnothing, S, \{1, 2\}, \{3, 4\}\}$$
$$\mathscr{F}(\mathscr{A}_0) = \{\varnothing, S, \mathscr{A}_0, \{\frac{1}{n}; n 为偶数\}\}$$

设 $A = \{\frac{1}{n}; n$ 为奇数 $\}, B = \{\frac{1}{n}; n$ 为偶数 $\}$

$$\mathscr{F}(\mathscr{A}_1) = \big\{\varnothing, S\big\} \cup \big\{A'; \ A' \subset A\big\} \cup \big\{A' \cup B; \ A' \subset A\big\}$$

6. 对于 S 的子集 A ,定义 A 的示性函数为

$$\varphi_A(x) = \begin{cases} 1, & \text{\pm x} \in A, \\ 0, & \text{\pm x} \notin A, \end{cases}$$

证明: 如果 $A_1, A_2, \ldots, A_n, \ldots$ 是 S 的子集的序列,则

$$\varphi_{\lim \inf_{n} A_{n}}(x) = \liminf_{n} \varphi_{A_{n}}(x),$$

$$\varphi_{\lim \sup_{n} A_{n}}(x) = \limsup_{n} \varphi_{A_{n}}(x).$$

证明. $\liminf_n \varphi_{A_n}(x)$ 是指 $\forall x \in A$,数列 $\{\varphi_{A_n}(x)\}$ 的下极限,即数列极限点的最小值。一般的,数列 $\{x_n\}$ 的极限点 x 定义为: 任给 x 的领域,总有数列中无穷多项位于其中。于是

$$arphi_{\liminf_{n}A_{n}}(x)=1\iff x\in\liminf_{n}A_{n}$$

 \iff 只有有限个 n ,使得 $arphi_{A_{n}}(x)=0$
 \iff $\{arphi_{A_{n}}(x)\}$ 不以 0 为极限点
 \iff $\liminf_{n}arphi_{A_{n}}(x)=1$

同样

7. 设 f(x) 是定义于 E 上的实函数, a 为一常数, 证明

$$E[x; f(x) > a] = \bigcup_{n=1}^{\infty} E\left[x; f(x) \ge a + \frac{1}{n}\right],$$

$$E[x; f(x) \ge a] = \bigcap_{n=1}^{\infty} E\left[x; f(x) > a - \frac{1}{n}\right].$$

证明.

$$x \in E[x; f(x) > a] \iff f(x) > a$$

$$\iff \exists n_0, f(x) \ge a + \frac{1}{n_0}$$

$$\iff \exists n_0, x \in E\left[x; f(x) \ge a + \frac{1}{n_0}\right]$$

$$\iff x \in \bigcup_{n=1}^{\infty} E\left[x; f(x) \ge a + \frac{1}{n}\right]$$

$$\begin{aligned} x \in E\left[x; f(x) \geq a\right] &\iff f(x) \geq a \\ &\iff \forall \, n, \, f(x) > a - \frac{1}{n} \\ &\iff \forall \, n, \, x \in E\left[x; f(x) > a - \frac{1}{n}\right] \\ &\iff x \in \bigcap_{n=1}^{\infty} E\left[x; f(x) > a - \frac{1}{n}\right] \end{aligned}$$

8. 如果实函数序列 $\{f_n(x)\}_{n=1}^\infty$ 在 E 上收敛于 f(x) ,则对于任意常数 a 都有

$$E[x; f(x) \le a] = \bigcap_{k=1}^{\infty} \liminf_{n} E\left[x; f_n(x) \le a + \frac{1}{k}\right]$$
$$= \bigcap_{k=1}^{\infty} \liminf_{n} E\left[x; f_n(x) \le a + \frac{1}{k}\right]$$

证明. 注意到

$$\liminf_{n} E\left[x; f_n(x) < a + \frac{1}{k}\right] \subset \liminf_{n} E\left[x; f_n(x) \leqslant a + \frac{1}{k}\right]$$

于是只需证

$$E[x; f(x) \leqslant a] \subset \bigcap_{k=1}^{\infty} \liminf_{n} E\left[x; f_n(x) < a + \frac{1}{k}\right]$$
(1.1)

$$\bigcap_{k=1}^{\infty} \liminf_{n} E\left[x; f_n(x) \leqslant a + \frac{1}{k}\right] \subset E[x; f(x) \leqslant a]$$
(1.2)

下证 (1.1),首先有

$$\bigcap_{k=1}^{\infty} \liminf_{n} E\left[x; f_n(x) < a + \frac{1}{k}\right] = \bigcap_{k=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} E\left[x; f_n(x) < a + \frac{1}{k}\right]$$

 $\forall x \in E[x; f(x) \leq a], f(x) \leq a, \exists \exists \exists x \geq 1$

$$f(x) < a + \frac{1}{k+1}$$

又 $\{f_n(x)\}_{n=1}^{\infty}$ 收敛于 f(x), 于是 $\exists m \geq 1$, 使 $\forall n \geq m$, 有

$$f_n(x) - f(x) < \frac{1}{k} - \frac{1}{k+1}$$

于是

$$f_n(x) = (f_n(x) - f(x)) + f(x) < a + \frac{1}{k}$$

得

$$x \in \bigcap_{k=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} E\left[x; f_n(x) < a + \frac{1}{k}\right]$$

$$\forall \ x \in \bigcap_{k=1}^{\infty} \liminf_n \ E\left[x; f_n(x) \leqslant a + rac{1}{k}
ight]$$
 成立

$$\forall k \geq 1, \exists m \geq 1, \forall n \geq m, \ fiftig f_n(x) \leq a + \frac{1}{k}$$

这里令 $n \to \infty$,得

$$f(x) \leqslant a + \frac{1}{k}$$

又由 k 任意

$$f(x) \leqslant a$$

于是 $x \in E[x; f(x) \leq a]$

1.2 集合的基数

1. 用解析式给出 (-1,1) 和 $(-\infty,\infty)$ 之间的一个一一对应.

证明.

$$f(x) = \tan \frac{\pi}{2} x$$

2. 证明只要 a < b,就有 $(a,b) \sim (0,1)$.

证明.

$$f(x) = \frac{x - a}{b - a}$$

3. 证明平面上的任何不带圆周的圆上的点所作成的点集都是和整个平面上的点所作成的点集对等的,进而证明平面上的任何非空的开集(开集的定义见数学分析或本书第二章\$2)中的点所作成的点集和整个平面上的点所作的点集对等.

证明. 设B为平面上以a为半径的开圆盘,以圆心为极点建立极坐标系,则

$$B = \{(r, \theta); 0 \le r < a, 0 \le \theta < 2\pi\}$$

于是

$$f((r,\theta)) = \left(\tan \frac{\pi}{2a}r, \theta\right)$$

为 B 到 \mathbb{R}^2 的一一对应,于是 $B \sim \mathbb{R}^2$ 任给平面上的开集 U , 取 $x \in U$, 则有圆 $B(x,r) \subset U \subset \mathbb{R}^2$ 又由 $B(x,r) \sim \mathbb{R}^2$ 得 $U \sim \mathbb{R}^2$

1.3 可数集合

1. 证明平面上坐标为有理数的点构成一可数集合.

证明. 先证明有限个可数集的乘积可数.设 $\{A_n\}_{n=1}^N$ 为 N 个可数集,记

$$\prod_{i=1}^{N} A_i = \{(x_{1j_1}, x_{2j_2}, \dots, x_{Nj_N}); \ x_{ij_i} \in A_i\}$$

其中 j_i 表示 x_{ij_i} 在 A_i 中的标号,记

$$f(\alpha) = \prod_{i=1}^{N} p_i^{j_i}$$
 p_i 为不同的质数, $\alpha = (x_{1j_1}, x_{2j_2}, \dots, x_{Nj_N})$

则 $f(\alpha)$ 为 $\prod\limits_{i=1}^{N}A_{i}$ 到 \mathbb{N} 的一个子集的一一对应,于是 $\prod\limits_{i=1}^{N}A_{i}$ 可数. $\mathbb{Q}^{2}=\mathbb{Q}\times\mathbb{Q}$,而 \mathbb{Q} 可数,于是得结论.

2. 以数直线上的互不相交的开区间为元素的任意集合至多含有可数多个元素.

证明. 设 $\mathscr{S} = \{I_{\lambda}; \lambda \in \Lambda\}, I_{\lambda}$ 为不交区间. 则 $\forall \lambda \in \Lambda$, 取 $r_{\lambda} \in I_{\lambda}$, 且 $r_{\lambda} \in \mathbb{Q}$. 则

$$\alpha \neq \beta \Rightarrow r_{\alpha} \neq r_{\beta}$$
.

于是这个对应为 $\mathscr S$ 到 $\mathbb O$ 的一个子集的一一对应. $\mathscr S$ 至多可数.

3. 所有系数为有理数的多项式组成一可数集合.

证明. 设所有有理系数多项式组成的集合为 S, 又 B_n 为所有有理系数 n 次多项式的集合.

显然有 B_n 到 \mathbb{Q}^n 的一一对应. 事实上,将 n 次有理多项式中次数从高到低的项的系数组成一个 \mathbb{Q}^n 中的 n 阶向量. 而 \mathbb{Q}^n 作为有限个可数集的乘积可数. 于是 B_n 可数.而

$$S = \bigcup_{n=1}^{\infty} B_n$$

于是 *S* 可数. □

4. 如果 f(x) 是 $(-\infty, \infty)$ 上的单调函数,则 f(x) 的不连续点最多有可数个.

证明. 设 S 为单调函数 f(x) 的全体不连续点, 则 $\forall x \in S$, 记

$$f(x-0) = \lim_{x \to x^{-}} f(x) < \lim_{x \to x^{+}} f(x) = f(x+0)$$

考虑开区间 (f(x-0), f(x+0)). 成立

$$x_1 \neq x_2 \Rightarrow (f(x_1 - 0), f(x_1 + 0)) \cap (f(x_2 - 0), f(x_2 + 0)) = \emptyset$$

事实上,这由 $x_1 < x_2 \Rightarrow f(x_1 + 0) \leqslant f(x_2 - 0)$ 可知.

于是上述给出 S 到数直线上开区间组成的集合的某个子集的一一对应.后者由第 2 题是至多可数的,于是 S 至多可数.

5. 设 A 是一无穷集合. 证明必有 $A^* \subset A$, 使 $A^* \sim A$ 且 $A - A^*$ 可数.

证明. A 无穷, 取 A 一可数子集 B, 不妨设 A — B 也为无穷集合. 事实上, 若已找出 A 的可数子集 B^* , 取 B 为 B^* 中所有的偶数项即可.

则

$$(A-B) \cup B = A \sim (A-B)$$

取 $A^* = A - B$ 即可

证明. 记 \mathscr{A} 是 A 中有限子集构成的集合, \mathscr{A}_n 是其中元素个数为 n 有限子集构成的集合. 则

$$\mathscr{A} = \bigcup_{n=1}^{\infty} \mathscr{A}_n$$

将 A 中元素按自然数编号,则 \mathcal{A}_n 中的元素与 \mathbb{N}^n 的某个子集中的向量有一一对应。于是,由后者可数, \mathcal{A}_n 可数.于是 \mathcal{A} 可数

7. 若 A 是由非退化的(即左右端点不相等的)开区间组成的不可数无穷集合,则有 $\delta > 0$ 使 A 中有无穷多个区间的长度大于 δ .

证明. 反证法.

若 $\forall n \in \mathbb{N}^*$, A中只有有限个区间的区间长度大于 $\frac{1}{n}$.记 B_n 为A中区间长度大于 $\frac{1}{n}$ 的区间合集.则 $\bigcup_{n=1}^{\infty} B_n$ 是可数集.

$$A - \bigcup_{n=1}^{\infty} B_n \neq \emptyset$$

取 $(a,b) \in A - \bigcup_{n=1}^{\infty} B_n$, 则

$$\exists n_0, s.t. b - a > \frac{1}{n_0}, (a, b) \in B_{n_0} \subset \bigcup_{n=1}^{\infty} B_n$$

矛盾.

8. 如果空间中的长方体

$$I = \{(x, y, z); a_1 < x < a_2, b_1 < y < b_2, c_1 < z < c_2\}$$

中的 $a_1, a_2, b_1, b_2, c_1, c_2(a_1 < a_2, b_1 < b_2, c_1 < c_2)$ 都是有理数, 则称 I 为有理长方形. 证明全体有理长方形构成一可数集合.

证明.

$$f(\alpha) = (a_1, a_2, b_1, b_2, c_1, c_2)$$

其中 $\alpha \in I$. 则 $f(\alpha)$ 为 I 到 \mathbb{Q}^6 的某个子集的一一对应. 后者可数, 于是 I 可数.

1.4 不可数集合

1. 证明 [0,1] 上的全体无理数构成一不可数无穷集合.

证明. 若 $\mathbb{P} \cap [0,1]$ 可数,则由 $\mathbb{Q} \cap [0,1]$ 可数得 [0,1] 可数.矛盾.

2. 证明全体代数数(即整系数多项式的零点)构成一可数集合,进而证明必存在超越数.

证明. 由 1.3.3 知, $\mathbb{Q}[x]$ 可数. $\mathbb{Z}[x] \subset \mathbb{Q}[x]$. 于是, $\mathbb{Z}[x]$ 可数. 记

$$\mathbb{Z}[x] = \{z_1, z_2, z_3, \ldots\}$$

令 A_n 为 z_n 的零点,则 A_n 有限. 有代数数 $S = \bigcup_{n=1}^{\infty} A_n$ 可数. 又 \mathbb{R} 不可数, 于是超越数 $\mathbb{R} - S$ 非空.

3. 证明如果 a 是可数基数, 则 $2^{a} = c$.

证明. 一方面, 任给 \mathbb{N} 的子集 A, 考虑 A 的示性函数 $\varphi_A(n)$. 使

$$\varphi_A(n) = \begin{cases} 1 & n \in A \\ 0 & n \notin A \end{cases}$$

于是考虑 $f(A) = 0.\varphi_A(0)\varphi_A(1)...$ 于是其为 N 的幂集到 [0,1] 的某个子集的一一对应.于是 $2^a \le c$. 另一方面, $\forall x \in (0,1)$,考虑 $(0,1) \cap \mathbb{Q}$ 中的子集

$$A_x = \{r; r \leqslant x, r \in (0,1) \cap \mathbb{Q}\}\$$

于是上述给出了 (0,1) 到可数集合 $(0,1) \cap \mathbb{Q}$ 幂集的某个子集的一一对应. $2^a \geq c$.

4. 证明如果 $\overline{\overline{A \cup B}} = c$. 则 $\overline{\overline{A}}$. $\overline{\overline{B}}$ 中至少一个为 c.

证明. 证法一. 反证法.

由 $\overline{A \cup B} = c$ 知 $A \cup B$ 有与 \mathbb{R}^2 上点的一个一一对应, 记作 φ 有

$$\varphi(A \cup B) = \mathbb{R}^2$$

若 $\overline{B} < c$, $\overline{\overline{A}} < c$. 设 $\varphi(B) = U$, $\varphi(A) = V$, 则 $\mathbb{R}^2 = U \cup V$, 且 $\overline{\overline{U}} < c$, $\overline{\overline{V}} < c$. 设 P_x 为 \mathbb{R}^2 上的点到 x 轴 X 的投影, P_y 是到 y 轴 Y 的投影, 则

$$P_r(U) \neq X$$

否则,就有 X 到 U 的某个子集的一一对应, $\overline{\overline{U}} \geq c$,矛盾. 于是存在 x^* 使 $\forall y, (x^*,y) \notin U$. 同样存在 y^* 使 $\forall x, (x,y^*) \notin V$. 于是有

$$(x^*, y^*) \notin U \cup V \subset \mathbb{R}^2$$

矛盾.

证法二. 如上,若 $\overline{\overline{A}} < c$,证 $\overline{\overline{B}} = c$.

不妨设 $A \cap B = \emptyset$. 考虑直线 l_x : x = a. 则 A 与直线 l_x 上的点不能一一对应,于是对于任意 a 有 $(a, y_a) \notin \varphi(A)$,于是.

$$\forall a \in \mathbb{R}, (a, y_a) \in \varphi(B)$$

有
$$c \leqslant \overline{\overline{B}}$$
, 又 $\overline{\overline{B}} \leqslant \overline{\overline{A \cup B}} \leqslant c$ 知 $\overline{\overline{B}} = c$

5. 设F是[0,1]上全体实函数所构成的集合,证明 $\overline{\overline{F}}=2^c$

证明. 任给 $f \in F$, 有集合 $\{(x,f(x)); x \in [0,1]\}$ 与之一一对应. 而后者是 \mathbb{R}^2 的子集,于是 $\overline{F} \leqslant 2^c$ 另一方面,考虑 [0,1] 的任意子集 A 的示性函数 $\varphi_A(x)$, 满足

$$\varphi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

则 $\varphi_A \in F$ 且显然是唯一的. 于是 $2^c \leqslant \overline{F}$ 综上, $\overline{\overline{F}} = 2^c$

第二章 n 维空间中的点集

2.1 聚点、内点、边界点、Bolzano-Weierstrass 定理

1. 证明 $P_0 \in E'$ 的充要条件是对于任意含有 P_0 的邻域 $N(P,\delta)$ (不一定以 P_0 为中心)中. 恒有异于 P_0 的点 P_1 属于 E (事实上这样的 P_1 其实还是有无穷多个).而 P_0 为 E 内点的充要条件则是有含有 P_0 的邻域 $N(P,\delta)$ (同样, 不一定以 P_0 为中心)存在, 使 $N(P,\delta) \subset E$.

证明. 第一个必要性. $P_0 \in N(P, \delta)$, 则令 r 充分小, 有 $N(P_0, r) \subset N(P, \delta)$. 而 $P_0 \in E'$, 于是 $N(P_0, r) \cap E$ 有无穷多个点. 于是 $N(P, \delta)$ 中有异于 P_0 的点.

第一个充分性. 取 $\delta_1 = 1, P_1 \in N(P_0, 1) \cap E$. 由数学归纳法, 对于任意正整数 n 可作 $P_{n+1} \neq P_0 \in E, \delta_{n+1} < \frac{1}{n+1}$ 使

$$N(P_0, \delta_{n+1}) \cap \{P_1, \dots, P_n\} = \emptyset, P_{n+1} \in N(P_0, \delta_{n+1}).$$

则有 P_0, \ldots, P_{n+1} 互相不同, 且 $\rho(P_0, P_{n+1}) < \frac{1}{n+1}$. 于是数列 $\{P_n\}_{n=1}^{\infty}$ 满足 $\rho(P_0, P_n) \to 0$, $(n \to \infty)$. $P_0 \in E'$

第二个必要性. P_0 为内点, 于是有 $N(P_0, \delta) \subset E$.

第二个充分性. 若 $P_0 \in N(P, \delta) \subset E$, 取 r 充分小, 有

$$N(P_0, r) \subset N(P, \delta) \subset E$$
.

于是 P_0 为内点.

2. 设 $\mathbb{R}^n = \mathbb{R}^1$ 是全体实数, E_1 是 [0,1] 上的全部有理点, 求 E'_1 , \bar{E}_1 .

证明.

$$E_1' = [0, 1], \quad \bar{E}_1 = [0, 1]$$

事实上, $\forall x \in [0,1], \forall \delta > 0, N(x,\delta)$ 中有无穷多个有理数属于 [0,1]. 反过来 $\forall x \notin [0,1], \exists \delta_0 > 0$, 使 $N(x,\delta_0) \cap [0,1] = \emptyset$. 于是 $E_1' = [0,1]$

$$\bar{E}_1 = E \cup E_1' = [0, 1]$$

3. 设 $\mathbb{R}^n = \mathbb{R}^2$ 是普通的 xy 平面. $E_2 = \{(x,y); x^2 + y^2 < 1\}, 求 <math>E_2', \bar{E}_2$.

证明.

$$E_2' = \bar{E}_2 = \{(x, y); x^2 + y^2 \le 1\}$$

事实上,考虑极坐标系.

$$E_2 = \{(r, \theta); r < 1, \theta \le 0\}$$

以及 $\forall \theta, \alpha \leq 1, \ \{(\alpha - \frac{1}{n}, \theta)\}_{n=1}^{\infty} \subset E_2. \ \hat{\pi} \ (\alpha - \frac{1}{n}, \theta) \to (\alpha, \theta). \ \hat{\tau} \neq \{(x, y); x^2 + y^2 \leq 1\} \subset E'.$ 另一方面, $\forall r' > 1, \exists \delta > 0, \ \hat{\tau} \in N((r', \theta), \delta) \cap E_2 = \emptyset. \ \hat{\tau} \neq 0$,于是反方向包含成立.

4. 设 $\mathbb{R}^n = \mathbb{R}^2$ 是普通的 xy 平面. E_3 是函数

$$y = \begin{cases} \sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

的图形上的点所作成的集合. 求 E_3' .

证明.

$$E_3' = E_3 \cup \{(0, y); -1 \le y \le 1\}$$

事实上, $\forall y \in [-1,1]$, 取

$$x_n = \frac{1}{\arcsin y + 2n\pi}$$

则 $(x_n, y) \to (0, y)$. 且 $(x_n, y) \in E_3$.

而 $\forall (x,y) \in E - \{(0,0)\}, \text{ 由 } f(x)$ 连续, 有 $(x,y) \in E'_3$.

另一方面, 若 $x \notin E_3 \cup \{(0,y); -1 \le y \le 1\}$, 同样由连续性, 必有 $\delta > 0, N(x,y), \delta) \cap E_3 = \emptyset$.

5. 证明当 $E \in \mathbb{R}^n$ 中的不可数无穷点集时, E' 不可能是有限集.

证明. 反证法.

若 E' 有限, 则 E - E' 为不可数无穷集. 又 E - E' 为孤立集, 可数. 矛盾.

2.2 开集、闭集与完备集

1. 证明点集 F 为闭集的充要条件是 $\overline{F} = F$.

证明. F 是闭集, 则 $F' \subset F$, $\bar{F} = F \cup F' = F$. 反过来, $\bar{F} = F$, $\bar{F} = F \cup F' = F$. 得到 $F' \subset F$, F 是闭集.

2. 设 f(x) 是 $(-\infty, \infty)$ 上的实值连续函数, 证明对于任意常数 $a, \{x; f(x) > a\}$ 都是开集, $\{x; f(x) \geqslant a\}$ 都是闭集.

证明. 先证 $\{x; f(x) \ge a\}$ 是闭集.

事实上, 任给 $\{x_n\}_{n=1}^{\infty} \subset \{x; f(x) \ge a\}, x_n \to x (n \to \infty)$. 由 f(x) 连续,

$$f(x_n) \to f(x), \ f(x_n) \geqslant a \Rightarrow f(x) \geqslant a.$$

于是, $x \in \{x; f(x) \ge a\}$.

同理 $\{x; f(x) \leq a\}$ 是闭集.于是 $\{x; f(x) > a\}$ 为开集.

3. 证明任何邻域 $N(P,\delta)$ 都是开集而且 $\overline{N(P,\delta)}=\{P';\rho(P',P)\leqslant\delta\}$. (\bar{N} 通常称为一闭邻域.) 证明. 先证 $\forall\,\alpha\in\mathbb{R}$

$$\rho(\alpha X, \alpha Y) = |\alpha| \rho(X, Y), \ \alpha X = (\alpha x_1, \dots, \alpha x_n), \alpha Y = (\alpha y_1, \dots, \alpha y_n)$$

事实上

$$\rho(\alpha X, \alpha Y) = \left\{ \sum_{i=1}^{n} (\alpha x_i - \alpha y_i)^2 \right\}^{\frac{1}{2}}$$
$$= |\alpha| \left\{ \sum_{i=1}^{n} (x_i - y_i)^2 \right\}^{\frac{1}{2}}$$
$$= |\alpha| \rho(X, Y)$$

再证 $\rho(X,Y) = \rho(X-Y,0) = \|X-Y\|$ 事实上

$$\rho(X,Y) = \left\{ \sum_{i=1}^{n} (x_i - y_i)^2 \right\}^{\frac{1}{2}} = \rho(X - Y, 0)$$

另外由此可以推出

$$\|\alpha X\| = |\alpha| \|X\| \tag{2.1}$$

下证 $N(P,\delta)$ 是开集. 任给 $Q \in N(P,\delta)$, 有 $\rho(Q,P) < \delta$. 取 $\delta' < \delta - \rho(Q,P)$. 则 $\forall P' \in N(Q,\delta')$, 有

$$\rho(P', P) \leqslant \rho(P', Q) + \rho(Q, P)$$
$$< \delta - \rho(Q, P) + \rho(Q, P)$$
$$= \delta$$

于是 $N(Q, \delta') \subset N(P, \delta)$, 由 Q 任意.知 $N(P, \delta)$ 为开集.

再证 $\{P'; \rho(P', P) \leq \delta\}$ 是闭集. 于是

$$\overline{N(P,\delta)} \subset \overline{\{P'; \rho(P',P) \leqslant \delta\}} \subset \{P'; \rho(P',P) \leqslant \delta\}$$

事实上, 对于任意 $\{P_n\}_{n=1}^{\infty} \subset \{P'; \rho(P', P) \leqslant \delta\}$, 且 $P_n \to K$. 于是 $\forall \varepsilon > 0, \exists N, \forall n > N$. 有

$$\rho(K, P) \leqslant \rho(K, P_n) + \rho(P_n, P) \leqslant \varepsilon + \delta$$

由 ε 任意, $\rho(K,P) \leqslant \delta, K \in \{P'; \rho(P',P) \leqslant \delta\}.$

于是 $\{P'; \rho(P', P) \leq \delta\}$ 为闭集.

再证
$$\{P'; \rho(P', P) \leq \delta\} \subset \overline{N(P, \delta)}$$
. 于是

$$\overline{N(P,\delta)} = \{P'; \rho(P',P) \leqslant \delta\}$$

事实上,任给 $Q \in \{P'; \rho(P', P) \leq \delta\}$,有 $\rho(Q, P) \leq \delta$. 令 $P_k = \frac{1}{k}P + \left(1 - \frac{1}{k}\right)Q$, $\forall k \in \mathbb{N}^*$. 有

$$\rho(P_k, P) = \rho\left(\frac{1}{k}P + \left(1 - \frac{1}{k}\right)Q, P\right)$$

$$= \left\|\left(1 - \frac{1}{k}\right)(P - Q)\right\|$$

$$= \left|1 - \frac{1}{k}\right|\|P - Q\|$$

$$= \left|1 - \frac{1}{k}\right|\rho(P, Q)$$

$$< \delta$$

于是 $\{P_k\}_{k=1}^{\infty} \subset N(P,\delta)$. 又由

$$\rho(P_k, Q) = \rho\left(\frac{1}{k}P + \left(1 - \frac{1}{k}\right)Q, Q\right)$$
$$= \left\|\frac{1}{k}(P - Q)\right\|$$
$$\leq \frac{\delta}{k}$$

4. 设 Δ 是一有限闭区间, $F_n(n=1,2,3,\cdots)$ 都是 Δ 的闭子集, 证明如果 $\bigcap_{n=1}^{\infty} F_n = \varnothing$, 则必有正整数 N , 使 $\bigcap_{n=1}^{N} F_n = \varnothing$.

证明. 令 $U_n = F_n^c$, 则由 $\bigcap_{n=1}^{\infty} F_n = \emptyset$, 得

$$\bigcup_{n=1}^{\infty} U_n = \bigcup_{n=1}^{\infty} F_n^c = \left(\bigcap_{n=1}^{\infty} F_n\right)^c = X$$

于是 $\{U_n\}_{n=1}^{\infty}$ 为 Δ 的开覆盖, 于是有有限子覆盖,不妨设

$$\Delta \subset \bigcup_{n=1}^{N} U_n$$

则

$$\varnothing = \left(\bigcup_{n=1}^{N} U_n\right)^c \cap \Delta = \bigcap_{n=1}^{N} F_n \cap \Delta = \bigcap_{n=1}^{N} F_n$$

5. 设 $E \subset \mathbb{R}^n$. \mathscr{M} 是一族完全覆盖 E 的开邻域, 则有 \mathscr{M} 中的可数(或有限)多个邻域 N_1, \cdots, N_m, \cdots 它们也完全覆盖了 E. (Lindelof定理)

证明. $\forall P \in E$, 有 $N_P \in \mathcal{M}$ 使 $P \in N_P$. 由 N_p 为开邻域, 知 $\exists \delta > 0$. 使

$$P \in N(P, \delta) \subset N_P$$

于是考虑集

$$\mathscr{B} = \{ N(Q, r); Q \in \mathbb{Q}^n, r \in \mathbb{Q} \}$$

其为可数集. 且有 $N(Q_P, r_P) \in \mathcal{B}$ 使

$$P \in N(Q_P, r_P) \subset N(P, \delta) \subset N_P$$

于是

$$E \subset \bigcup_{P \in E} N(Q_P, r_P) = \bigcup_{i=1}^{\infty} N(Q_i, r_i) \subset \bigcup_{i=1}^{\infty} N_i$$

6. 证明 \mathbb{R}^n 中任何开集 G 都可表成 $G = \bigcup\limits_{i=1}^\infty I_i^{(n)}$ 其中 $I_i^{(n)} = \{P; P = (x_1, \dots, x_n), c_j^{(i)} < x_j < d_j^{(i)}, j = 1, \dots, n\}.$

证明. G 为开集, $\forall P \in G$, 有 $\delta_P > 0$. 使

$$G = \bigcup_{P \in G} N(P, \delta_P)$$

对每个 $N(P, \delta_P), P = (\tilde{x}_1, \dots, \tilde{x}_n)$. 取

$$I_P^{(n)} = \left\{ Q; Q = (x_1, \dots, x_n), -\frac{\delta_P}{\sqrt{n}} + \tilde{x}_j < x_j < \tilde{x}_j + \frac{\delta_P}{\sqrt{n}}, j = 1, \dots, n \right\}.$$

则 $\forall Q \in I_P^{(n)}$

$$\rho(Q, P) = \left\{ \sum_{j=1}^{n} (x_j - \tilde{x}_j)^2 \right\}^{\frac{1}{2}}$$

$$< \left\{ \sum_{j=1}^{n} \frac{\delta^2}{n} \right\}^{\frac{1}{2}}$$

$$= \delta$$

于是 $P \in I_P^{(n)} \subset N(P, \delta_P)$. 有

$$G = \bigcup_{P \in G} I_P^{(n)} \subset \bigcup_{P \in G} N(P, \delta_P) = G$$

由5. 得

$$G = \bigcup_{i=1}^{\infty} I_i^{(n)}$$

7. 试根据 Borel 有限覆盖定理证明 Bolzano-Weierstrass 定理.

证明, 反证法.

若有有界无穷集 $E, E' = \emptyset$. 有 $\bar{E} = E \cup E' = E$. E 为闭集.且

$$\forall P \in E, \exists \delta_P > 0, N(P, \delta_P) \cap E = \{P\}$$

于是 $\{N(P,\delta_P)\}_{P\in E}$ 为 E 的开覆盖,有有限子覆盖 $\{N(P_i,\delta_i)\}_{i=1}^N$. 于是

$$E = E \cap \bigcup_{i=1}^{N} N(P_i, \delta_i) = \bigcup_{i=1}^{N} E \cap N(P_i, \delta_i)$$
$$= \bigcup_{i=1}^{N} \{P_i\}$$
$$= \{P_1, \dots, P_n\}$$

与 E 无穷矛盾.

8. 证明 \mathbb{R}^n 中任何非空开集的基数都是 c.

证明. 设 G 为开集, $\exists P \in G$, 有 $N(P,\delta) \subset G$. 记 $P = (\tilde{x}_1, \dots, \tilde{x}_n)$, 则

$$\{P'; p' = (x_1, \tilde{x}_2, \dots, \tilde{x}_n), -\delta + \tilde{x}_1 < x_1 < \tilde{x}_1 + \delta\} \subset N(P, \delta)$$

且其与 \mathbb{R} 上的一个开区间一一对应. 于是, $c \leqslant \overline{\overline{G}}$.

又
$$G \subset \mathbb{R}^n$$
, $\overline{\overline{\mathbb{R}^n}} = c$. 于是 $\overline{\overline{G}} \leqslant c$.

9. 证明对任意 $E \subset \mathbb{R}^n$, \overline{E} 都是 \mathbb{R}^n 中包含 E 的最小的闭集.

证明. \bar{E} 是包含 E 的闭集. 又设闭集 F 有 $E \subset F, E' \subset F'$. 有

$$\bar{E} = E \cup E' \subset F \cup F' = \bar{F} = F$$

于是 $\bar{E} \subset F$.

10. 对于在 \mathbb{R}^1 上定义的实函数 f(x), 令

$$\omega(f,x) = \lim_{\delta \to 0^+} \sup_{|x'-x| < \delta} f(x') - \lim_{\delta \to 0^+} \inf_{|x'-x| < \delta} f(x')$$

证明对任意 $\varepsilon > 0$, $\{x; \omega(f, x) \ge \varepsilon\}$ 都是闭集, 进而证明 f(x) 的全体不连续点作成一 F_{σ} 集.

证明. 先证

$$\omega(f,x) = \lim_{\delta \to 0^{+}} \sup_{|x'-x| < \delta} f(x') - \lim_{\delta \to 0^{+}} \inf_{|x'-x| < \delta} f(x')
= \lim_{\delta \to 0} \sup_{x',x'' \in N(x,\delta)} |f(x'') - f(x')|$$
(2.2)

事实上, 首先有 $\forall \delta > 0$

$$\sup_{x',x'' \in N(x,\delta)} |f(x'') - f(x')| = \sup_{|x'-x| < \delta} f(x') - \inf_{|x'-x| < \delta} f(x')$$

记

$$\lim_{\delta \to 0^+} \sup_{|x'-x| < \delta} f(x') = M, \quad \lim_{\delta \to 0^+} \inf_{|x'-x| < \delta} f(x') = m$$

则 $\forall \varepsilon > 0, \exists \Delta > 0, \forall \delta < \Delta,$ 使

$$M - m - \varepsilon < \sup_{x', x'' \in N(x, \delta)} |f(x'') - f(x')| = \sup_{|x' - x| < \delta} f(x') - \inf_{|x' - x| < \delta} f(x') < M - m + \varepsilon$$

由 ε 任意. (2.2) 得证

再证

$$\forall \varepsilon > 0, \quad \{x; \omega(f, x) < \varepsilon\}$$
 是开集 (2.3)

事实上, $\forall x \in \{x; \omega(f, x) < \varepsilon\}$, 有

$$\lim_{\delta \to 0} \sup_{x'.x'' \in N(x,\delta)} |f(x'') - f(x')| < \varepsilon$$

于是存在 $\eta > 0$, 使得 $\exists \Delta_1, \forall \delta < \Delta_1$, 有

$$\sup_{x',x'' \in N(x,\delta)} |f(x'') - f(x')| \leqslant \varepsilon - \eta$$

考虑 $N(x, \delta_1)$, 其中 $\delta_1 < \Delta_1$. $\forall y \in N(x, \delta_1)$, 有

$$\omega(f, y) = \lim_{\delta \to 0} \sup_{y', y'' \in N(y, \delta)} |f(y'') - f(y')| \leqslant \varepsilon - \eta < \varepsilon$$

于是 $N(x, \delta_1) \subset \{x; \omega(f, x) < \varepsilon\}$. 由 x 任意, (2.3) 成立.

于是 $\{x; \omega(f, x) \ge \varepsilon\}$ 是闭集.

又由函数连续的定义

$$f(x)$$
 在 x_0 连续 $\iff \omega(f,x_0)=0$

于是 f(x) 所有不连续点作成的集合 K 满足

$$K = \bigcup_{n=1}^{\infty} \left\{ x; \omega(f, x) \geqslant \frac{1}{n} \right\}$$

其为 F_{σ} 集.

11. 于 $E \subset \mathbb{R}^n$ 及实数 α . 定义 $\alpha E = \{(\alpha x_1, \dots, \alpha x_n); (x_1, \dots, x_n) \in E\}$. 证明当 E 为开集时 αE 为开集 αE 为开集 αE 为闭集 αE

证明. E 为开集, 下证 αE 为开集(此时要求 $\alpha \neq 0$).

 $\forall \alpha P \in \alpha E$, 有 $P \in E$, 又 E 为开集, 有 $N(P, \delta) \subset E$.

考虑 $N(\alpha P, |\alpha|\delta), \forall \alpha Q \in N(\alpha P, |\alpha|\delta),$ 有

$$|\alpha|\rho(Q,P) = \rho(\alpha P, \alpha Q) < |\alpha|\delta$$

则 $\rho(Q, P) < \delta, Q \in N(P, \delta), \alpha Q \in \alpha E$. 于是

$$N(\alpha P, |\alpha|\delta) \subset \alpha E$$

由 P 任意, αE 为开集.

E 为闭集, $\alpha = 0$. $\alpha E = \{0\}$ 为单点集, 也是闭集.

下设 $\alpha \neq 0$. 对任意 $\{\alpha P_n\}_{n=1}^{\infty} \subset \alpha E$, 且 $\alpha P_n \to \alpha P$. 有 $\{P_n\}_{n=1}^{\infty} \subset E$

且

$$\rho(P_n, P) = \frac{1}{|\alpha|} \rho(\alpha P_n, \alpha P) \to 0$$

于是 $P \in E$, $\alpha P \in \alpha E$. 于是 αE 为闭集.

12. 设 f(P) 是定义在 \mathbb{R}^n 上的实函数. 证明 f(P) 在 \mathbb{R}^n 上连续的充要条件是对于 \mathbb{R}^1 中的任何开集 $G, f^{-1}(G) \stackrel{def}{=} \{P; f(P) \in G\}$ 都是 \mathbb{R}^n 中的开集.

证明. 函数连续当且仅当 $\forall P \in \mathbb{R}^n$. 满足

$$\forall \varepsilon > 0, \exists \delta > 0. \forall P' \in N(P, \delta), f(P') \in N(f(P), \varepsilon)$$

必要性. G 为 \mathbb{R}^1 中的开集, $\forall P \in f^{-1}(G)$, 有 $f(P) \in G, \exists \varepsilon > 0$ 使

$$f(P) \in N(f(p), \varepsilon) \subset G$$

于是 $\exists \delta > 0$,使 $\forall P' \in N(P, \delta)$,有

$$f(P') \in N(f(P), \varepsilon) \subset G$$

于是 $P' \in f^{-1}(G)$. 得到 $N(P, \delta) \subset f^{-1}(G)$. 于是 $f^{-1}(G)$ 为开集.

充分性. $\forall P \in \mathbb{R}^n$. 有 $\forall \varepsilon > 0, N(f(P), \varepsilon)$ 是 \mathbb{R}^1 中开集,设为 G. 则 $f^{-1}(G)$ 为 \mathbb{R}^n 上开集. 于是 $\exists \delta > 0, N(P, \delta) \subset f^{-1}(G)$. 则

$$\forall P' \in N(P, \delta), f(P') \in N(f(P), \varepsilon)$$

于是 f(P) 在 \mathbb{R}^n 上连续.

13. \mathbb{R}^n 上的实函数 f(P) 称为是下半连续的, 如果对任意 $P \in \mathbb{R}^n$ 都有 $f(P) \leqslant \liminf_{Q \to P} f(Q) \stackrel{def}{===} \lim_{\delta \to 0^+} \left(\inf_{\rho(P,Q) \leqslant \delta} f(Q)\right)$. 证明 f(P) 下半连续等价于对任意实数 α , $\{P; f(P) \leqslant \alpha\}$ 都是 \mathbb{R}^n 中的闭集, 也等价于

 $\{(P,y); P \in \mathbb{R}^n, f(P) \leq y\}$ 是 \mathbb{R}^{n+1} 中的闭集.

证明. 先证 f(P) 下连续, 当且仅当 $\forall P \in \mathbb{R}^n$ 成立

$$\forall \varepsilon > 0, \exists \delta > 0, f(P) - \varepsilon \leqslant \inf_{\rho(Q,P) < \delta} f(Q)$$

事实上. 必要性由

$$f(P) \leqslant \liminf_{Q \to P} f(Q) = \lim_{\delta \to 0^+} \left(\inf_{\rho(P,Q) \leqslant \delta} f(Q) \right)$$

和极限的定义可知. 充分性由

$$f(P) - \varepsilon \leqslant \inf_{\rho(Q, P) < \delta} f(Q) \leqslant \lim_{\delta \to 0^+} \left(\inf_{\rho(P, Q) \leqslant \delta} f(Q) \right) = \liminf_{Q \to P} f(Q)$$

以及 ε 任意可知.

下证第一个等价.

必要性. 任给 $\{P_n\}_{n=1}^{\infty} \subset \{P; f(P) \leq \alpha, \}$ 使 $P_n \to P$. 且令 n 充分大. 于是 $\forall \varepsilon > 0, \exists \delta > 0$,

$$f(P) - \varepsilon \leqslant \inf_{\rho(P,Q) < \delta} f(Q) \leqslant f(P_n) \leqslant \alpha$$

由 ε 任意知, $f(P) \leq \alpha, P \in \{P; f(P) \leq \alpha\}$.

充分性. 由 $\{P; f(P) \leq \alpha\}$ 为闭集知, $\{P; f(P) > \alpha\}$ 为开集.于是 $\forall \varepsilon > 0, \exists \delta > 0$

$$P \in N(P, \delta) \subset \{Q; f(Q) > f(P) - \varepsilon\}$$

有

$$f(P) - \varepsilon \leqslant \inf_{Q \in N(P,\delta)} f(Q) = \inf_{\rho(Q,P) < \delta} f(Q)$$

下证第二个等价.

必要性. 任给

$$\{(P_n, y_n)\}_{n=1}^{\infty} \subset \{(P, y); P \in \mathbb{R}^n, f(P) \leq y\}, \quad (P_n, y_n) \to (P, y)$$

有 $P_n \to P, y_n \to y$. 于是 $\forall \varepsilon > 0, \exists N, \forall n > N$

$$f(P_n) \leqslant y_n \leqslant y + \varepsilon$$

又由 $\{P; f(P) \leq y + \varepsilon\}$ 为闭集, 有 $f(P) \leq y + \varepsilon$. 由 ε 任意, $f(P) \leq y$. 于是

$$(P,y) \in \{(P,y); P \in \mathbb{R}^n, f(P) \leqslant y\}$$

充分性. $\forall \alpha, \mathbf{n} \{P_n\}_{n=1}^{\infty} \subset \{P; f(P) \leq \alpha\}$. 设 $P_n \to P'$, 则

$$f(P_n) \leqslant \alpha, \quad (P_n, \alpha) \to (P', \alpha)$$

又由 $\{(P,\alpha); P \in \mathbb{R}^n, f(P) \leq \alpha\}$ 为闭集.

$$(P', \alpha) \in \{(P, \alpha); P \in \mathbb{R}^n, f(P) \leqslant \alpha\}$$

于是 $f(P') \leq \alpha, P' \in \{P; f(P) \leq \alpha\}.$

14. 设 $A, B \in \mathbb{R}^n$ 中的有界闭集, $0 < \lambda < 1$, 证明

$$\lambda A + (1 - \lambda)B \xrightarrow{def} \{x; x = (x_1, \dots, x_n), \overline{\uparrow}(y_1, \dots, y_n) \in A,$$
$$(z_1, \dots, z_n) \in B, \overline{\psi} \ x_i = \lambda y_i + (1 - \lambda)z_i, i = 1, \dots, n\}$$

为有界闭集. 举例说明当 A, B 无界时, $\lambda A + (1 - \lambda)B$ 可以不是闭集.

证明. A, B 有界, 不妨设 $\forall P \in A, Q \in B$. $||P|| \leq M, ||Q|| \leq M$. 则

$$\|\lambda P + (1 - \lambda)Q\| \leqslant \lambda \|P\| + (1 - \lambda)\|Q\| \leqslant M$$

于是 $\lambda A + (1 - \lambda)B$ 有界.任取

$$\{K_n; K_n = \lambda P_n + (1 - \lambda)Q_n\}_{n=1}^{\infty} \subset \lambda A + (1 - \lambda)B, \ \rho(K_n, K) \to 0 \ (n \to \infty)$$

由 $\|P_n\| \leqslant M, \|Q_n\| \leqslant M$ 知, 取两次收敛子列, 有 $P_{n_j} \to P, Q_{n_j} \to Q$.则令 j 充分大, $\forall \, \varepsilon > 0$,

$$||K - (\lambda P + (1 - \lambda)Q)|| \leq \lambda ||P_{n_j} - P|| + (1 - \lambda)||Q_{n_j} - Q|| + ||K - (\lambda P_{n_j} + (1 - \lambda)Q_{n_j})||$$

$$< \varepsilon$$

于是 $K = \lambda P + (1 - \lambda)Q$. 又由 A, B 均为闭集, $P \in A, Q \in B$. $K \in \lambda A + (1 - \lambda)B$. 于是 $\lambda A + (1 - \lambda)B$ 为闭集.

取
$$A = \{(x,1); \forall x \in \mathbb{R}\}, B = \{(0,0)\}, 则$$

$$\lambda A + (1 - \lambda)B = \{(x, y); x \in \mathbb{R}, y > 0\}$$

为开集.

2.3 p 进位表数法

1. 证明由 (0,1) 开区间中的实数 x 组成的实数序列的全体作成一基数为 c 的集合. 进而证明由任何实数组成的实数序列的全体所作成的集合的基数也是 c.

证明. 记 $\mathscr S$ 为由 (0,1) 开区间中的实数 x 组成的实数序列的全体作成的集合. $\forall l \in \mathscr S$,

$$l = \{\xi_1, \xi_2, \dots, \xi_m, \dots\}, \quad \forall \ \xi_m \in (0, 1)$$

由本节定理, ξ_m 与序列

$$\zeta_m = \{e_{m1}, e_{m2}, \dots, e_{mn}, \dots\}, \quad \forall e_{mn} \in \{0, 1\}$$

一一对应. 于是 l 可唯一表为无穷矩阵形式

$$l = \begin{cases} e_{11} & e_{12} & \dots & e_{1n} & \dots \\ e_{21} & e_{e2} & \dots & e_{2n} & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots \\ e_{m1} & e_{22} & \dots & e_{mn} & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots \end{cases}$$

用对角线法,考虑

$$m = \{e_{11}, e_{12}, e_{21}, e_{13}, e_{22}, e_{31}, \ldots\}$$

 $l \vdash m - -$ 对应,于是有 $\overline{\mathscr{G}} = c$.

又由实数与 (0,1) 一一对应, 第二个结论显然.

2. 证明区间 [0,1] 上的全体连续函数所作成的集合的基数是 c, 同样 [0,1] 上的左连续的单调函数的全体所构成的集合的基数是 c.

证明. 设 [0,1] 上的全体连续函数所作成的集合为 C([0,1]), 则设

$$\varphi_c(x) = c, \ c \in [0, 1]$$

于是 $\varphi_c \in C([0,1]), c \mapsto \varphi_c$ 是 [0,1] 到 C([0,1]) 的单映射, $c \leqslant \overline{C([0,1])}$. 另一方面, 任取 $\varphi \in C([0,1])$. 定义其到 \mathbb{Q}^2 的幂集的一个映射 f 为

$$f(\varphi) = \{(r,s); r \in [0,1], s < f(r)\}$$

下证其为单射.

事实上, 若 $\varphi_1 \neq \varphi_2$, 有 $x_0 \in [0,1], \varphi_1(x_0) \neq \varphi_2(x_0)$, 不妨设 $\varphi_1(x_0) < \varphi_2(x_0)$. 由 φ_1, φ_2 连续, 有 $r_0 \in \mathbb{Q}$ 使 $\varphi_1(r_0) < \varphi_2(r_0)$. 于是有 $s_0 \in \mathbb{Q}$, 使 $\varphi_1(r_0) < s_0 < \varphi_2(r_0)$. 则

$$(r_0, s_0) \in f(\varphi_2), \quad (r_0, s_0) \notin f(\varphi_1)$$

于是 $f(\varphi_1) \neq f(\varphi_2)$, f 为单射. 于是 $\overline{\overline{C([0,1])}} \leqslant 2^a = c$.

又设S为[0,1]上的左连续的单调函数的全体所构成的集合.则令

$$\rho_c(x) = x + c, c \in [0, 1]$$

于是 $c \mapsto \rho_c$ 构成 [0,1] 到 S 的单射. $c \leqslant \overline{\overline{S}}$.

另一方面. 令 S_1 表示 S 中的单增函数. 任取 $\rho_1, \rho_2 \in S_1, \rho_1 \neq \rho_2$. 有 $x_0 \in [0,1]$, 使 $\rho_1(x_0) \neq \rho_2(x_0)$. 不 妨设 $\rho_1(x_0) < \rho_2(x_0)$. 由左连续, 有 $r_0 \in \mathbb{Q}, r_0 < x_0$, 使

$$\rho_1(r_0) < \rho_1(x_0) < \rho_2(r_0) < \rho_2(x_0)$$

于是有 $s_0 \in \mathbb{Q}, \rho_1(r_0) < s_0 < \rho_2(r_0)$. 同上, 可得 $\overline{\overline{S_1}} \leqslant 2^a = c$.

又设 S_2 为 S 中单减函数. $\rho(x)\mapsto -\rho(x)$ 为 S_2 到 S_1 的一一对应. $\overline{\overline{S_2}}=\overline{\overline{S_1}}$. 于是

$$\overline{\overline{S}} = \overline{\overline{S_1 \cup S_2}} \leqslant c$$

2.4 一维开集、闭集、完备集的构造

1. 证明全体有理数所构成的集合不是 G_{δ} 集, 即不能表成可数多个开集的交.

证明. 先说明, 对任意开区间 $\delta = (a,b)$, 必有有理数 g_0, g_1 , 使

$$q_0 \in (a_0, b_0) = \delta_0, \quad q_1 \in (a_1, b_1) = \delta_1$$

其中 $a_i, b_i \in \mathbb{R}, \delta_i$ 为开区间且 $\delta_i \subset \delta$. 且满足

$$\bar{\delta}_0 \cap \bar{\delta}_1 = \varnothing, \quad \bar{\delta}_i \subset \delta$$

记 $m\delta = |b-a|$ 为区间 δ 的长度. 则可令 $m\delta_i < \frac{m\delta}{2}$.

若
$$Q = \bigcup_{i=1}^{\infty} G_i$$
.

考虑 $G_1 \cap (0,1)$, 其为非空开集, 必有开区间 $\delta \subset G_1 \cap (0,1)$, 且 $m\delta < 1$. 由上述讨论, 有有理数 q_0,q_1 , 以及开区间 δ_0,δ_1 满足

$$q_{i_1} \in \delta_{i_1}$$
 $\bar{\delta}_{i_1} \subset \delta \cap G_1$
 $m\delta_{i_1} < \frac{1}{2}$ $\bar{\delta}_0 \cap \bar{\delta}_1 = \varnothing$

其中 $i_1 \in \{0,1\}$

同样考虑 $G_2 \cap \delta_{i_1}$, 有有理数 q_{i_10}, q_{i_11} , 开区间 $\delta_{i_10}, \delta_{i_11}$ 满足

$$\begin{aligned} q_{i_1i_2} &\in \delta_{i_1i_2} & & \bar{\delta}_{i_1i_2} \subset \delta_{i_1} \cap G_2 \\ m\delta_{i_1i_2} &< \frac{1}{2^2} & & \bar{\delta}_{i_10} \cap \bar{\delta}_{i_11} = \varnothing \end{aligned}$$

其中 $i_2 \in \{0,1\}$

如此进行下去,有有理数 $q_{i_1i_2...i_n}$ 以及开区间 $\delta_{i_1i_2...i_n}$ 满足

$$q_{i_1 i_2 \dots i_n} \in \delta_{i_1 i_2 \dots i_n} \qquad \bar{\delta}_{i_1 i_2 \dots i_n} \subset \delta_{i_1 \dots i_{n-1}} \cap G_n$$

$$m \delta_{i_1 i_2 \dots i_n} < \frac{1}{2^n} \qquad \bar{\delta}_{i_1 i_2 \dots i_{n-1} 0} \cap \bar{\delta}_{i_1 i_2 \dots i_{n-1} 1} = \varnothing$$

其中 $i_1, i_2, \ldots, i_n \in \{0, 1\}$.

在上述作法下,对每一组 0-1 序列 $\{i_1,i_2,\ldots,i_n\ldots\}$ 对应一组闭区间套 $\bar{\delta}_{i_1}\supset\bar{\delta}_{i_1i_2}\supset\cdots\bar{\delta}_{i_1,i_2,\ldots,i_n}\supset$从而有唯一

$$z_{i_1,i_2,...,i_n,...} \in \bigcap_{n=1}^{\infty} \bar{\delta}_{i_1,i_2,...,i_n}$$

对不同的0-1序列对应不同点,记

$$Z = \{z_{i_1, i_2, \dots, i_n, \dots}\}$$

则 $\overline{\overline{Z}} = c.$ (上节定理)

另一方面. Z 中的任意点

$$z_{i_1,i_2...,i_n...} \in \bigcap_{n=1}^{\infty} \bar{\delta}_{\{i_1,i_2,...,i_n...} \subset \bigcap_{n=1}^{\infty} G_n \cap (0,1)$$

于是 $Z \subset (0,1)$, 有

$$c = \overline{\overline{Z}} \leqslant \bigcap_{n=1}^{\infty} G_n \leqslant c.$$

于是
$$\bigcap_{n=1}^{\frac{\infty}{0}} G_n = c$$
. 与 $\bigcap_{n=1}^{\infty} G_n = a$ 矛盾. 所以全体有理数所构成的集合不是 G_δ 集.

2. 证明 [0,1] 上全体无理数所作成的集合不是 F_{σ} 集.

证明. 若
$$\mathbb{P} \cap [0,1] = \bigcup_{n=1}^{\infty} F_n$$
, 则

$$\mathbb{Q}\cap [0,1]=[0,1]\cap \bigcap_{n=1}^{\infty} F_n^c,$$

后者由上题可知势不小于 c. 矛盾.

3. 证明不可能有在 [0,1] 上定义的在有理点处都连续在无理点处都不连续的实函数.

证明. 由 2.2.10, f(x) 的不连续点为 F_{σ} 集. 与上题矛盾.

4. 证明 \mathbb{R}^1 中的全体开集构成一基数为 c 的集合. 从而 \mathbb{R}^1 中全体闭集也构成一基数为 c 的集合.

证明. 设 \mathbb{R}^1 中的全体开集作成集合 \mathcal{I} . 设

$$\mathscr{B} = \left\{ N(x, \frac{1}{n}); x \in \mathbb{Q}, n \in \mathbb{N}^* \right\}$$

则 \forall G ∈ \mathcal{T} , 有

$$G = \bigcup_{i=1}^{\infty} B_i, \quad B_i \in \mathscr{B}$$

事实上, $\forall x \in G$, $\exists B_x \in \mathcal{B}$, 使 $x \in B_x \subset G$.

$$G = \bigcup_{x \in G} = \bigcup_{i=1}^{\infty} B_i \subset G$$

罗可数,于是有 罗到 罗的幂集的单射.于是

$$\overline{\overline{\mathcal{T}}} \leqslant 2^{\mathscr{B}} = c$$

又
$$\forall a \in R, (a, a+1) \in \mathcal{F}.$$
 于是 $c \leqslant \overline{\overline{\mathcal{F}}}.$

5. 设 $F \subset \mathbb{R}^1$ 是非空有界完备集合. 证明:存在 \mathbb{R}^1 上连续函数 f 满足:

$$0 \leqslant f(t) \leqslant 1, \ \forall \ t \in \mathbb{R}^1 \tag{1}$$

$$f(t_1) \leqslant f(t_2), \ \forall \ t_1 \leqslant t_2 \tag{2}$$

$$\{f(t): t \in F\} = [0,1] \tag{3}$$

证明. 设 $F \subset \mathbb{R}^1$ 是非空有界完备集合.

若有闭区间 $[c,d] \subset F$, 则定义 f(t) 为

$$f(t) = \begin{cases} 0, & t < a \\ \frac{t-a}{b-a}, & t \in [a, b] \\ 1, & b < t \end{cases}$$

则上述 f(t) 满足三个条件且连续.

设不存在闭区间 $[c,d] \subset F$. 由本节定理 4, 考虑

$$F = [a, b] - \bigcup_{i=1}^{\infty} G^{i}$$

其中 G_i 为彼此没有公共端点的不交开区间,且与闭区间无公共端点.将其排成序列 $\{G_1,G_2,\ldots,G_n,\ldots\}$.记 $G_i=(a_i,b_i)$

 $\forall x \in F$. 定义 $\tau(x) = \{e_1, e_2, \dots, e_n, \dots\}, e_n \in \{0, 1\}$. 其中若 $x < a_1$, 记 $e_1 = 0$. 若 $x > b_1$, 记 $e_1 = 1$.

又若 $x < a_1$, 令 $i_2 = \min\{i; b_i < a_1\}$, 则若 $x < a_{i_2}$, 记 $e_2 = 0$. 若 $x > b_{i_2}$, 记 $e_2 = 1$.

若 $x < b_1$, 令 $i_2 = \min\{i; b_1 < a_i\}$, 则若 $x < a_{i_2}$, 记 $e_2 = 0$. 若 $x > b_{i_2}$, 记 $e_2 = 1$.

这样进行下去,由于 F 中没有闭区间,于是对于 x,有唯一的 $\tau(x)$ 与之对应.考虑 $\varphi(x) = 0.e_1e_2...e_n...$ 其中 $0.e_1e_2...e_n...$ 为 [0,1] 上数的二进制表示,则其为单调递增函数.又设

$$\Phi(x) = \begin{cases}
0, & x < a \\
\sup_{y \le x} \varphi(y), & x \ge a
\end{cases}$$

于是 $\Phi(x)$ 单调递增, 且 $\Phi([a,b]) = [0,1]$. 由数学分析结论知 $\Phi(x)$ 连续. 易证其为满足条件的函数. \Box

2.5 点集间的距离

1. 证明定理 2. 设 E 是一点集, d > 0, U 是所有到 E 的距离小于 d 的点 P 作成的点集, 即

$$U = \{P; \rho(P, E) < d\},\$$

则 U 是开集, 且 $U \supset E$.

证明. $\forall P \in U, \rho(P, E) < d$. 设 $\rho(P, E) \leq d - \delta$. 于是 $\forall \varepsilon > 0, \exists K \in E$, 使

$$\rho(P, K) \leqslant d - \delta + \varepsilon$$

于是 $\forall Q \in N(P, \frac{\delta}{2})$. 有

$$\begin{split} \rho(Q,E) &\leqslant \rho(Q,K) \\ &\leqslant \rho(Q,P) + \rho(P,K) \\ &< \frac{\delta}{2} + d - \delta + \varepsilon \\ &= d - \frac{\delta}{2} + \varepsilon \end{split}$$

由 ε 任意, $\rho(Q, E) \leqslant d - \frac{\delta}{2} < d \Rightarrow Q \in U$. 于是 $N(P, \frac{\delta}{2}) \subset U$. U 为开集. $\forall \ P \in E, \rho(P, E) = 0 < d \text{. 于是 } E \subset U.$

2. 证明任何闭集都可表为可数多个开集的交.

证明. 任给闭集F

$$F = \bigcap_{n=1}^{\infty} U_n, \ U_n = \left\{ P; \rho(P, F) < \frac{1}{n} \right\}$$

 U_n 为开集由上题可知.

事实上,
$$\forall P \in F, \rho(P, F) = 0 < \frac{1}{n}, \forall n.$$
 于是 $F \subset \bigcap_{n=1}^{\infty} U_n$.

另一方面. 任给 $P \in \bigcap_{n=1}^{\infty} U_n$. 则 $\forall n, \rho(P, F) < \frac{1}{n}$. 于是 $\rho(P, F) = 0$. 又由 F 为闭集, 于是 $\exists Q \in F$, 使

$$\rho(P,Q) = 0 \Rightarrow P = Q \in F$$

于是
$$\bigcap_{n=1}^{\infty} U_n \subset F$$
.

3. 举例说明定理 1 中的 A, B 都无界时结论不成立.即证存在 A, B 为无界闭集, 不存在 $P \in A, Q \in B$, 使 $\rho(P,Q) = \rho(A,B)$.

证明. 记 \mathbb{R}^2 中的闭集 A, B

$$A = \{(x, e^x); x \in \mathbb{R}\}$$
$$B = \{(x, 0); x \in \mathbb{R}\}$$

令 $P_n = (-n, e^{-n}) \in A, \ Q_n = (-n, 0) \in B.$ 则 $\rho(P_n, Q_n) = e^{-n} \to 0$. 于是 $\rho(A, B) = 0$. 而 $A \cap B = \emptyset$. 于是定理 1 结论不成立.

4. 取消定理 3 中 F_1, F_2 无界的限制. 即证明对任意两个非空闭集 $F_1, F_2, F_1 \cap F_2 = \emptyset$, 有开集 $G_1 \supset F_1, G_2 \supset F_2, G_1 \cap G_2 = \emptyset$.

证明. 考虑.

$$U_n = \left\{ P; \rho(P, F_1) < \frac{1}{n} \right\}, V_n = \left\{ P; \rho(P, F_2) < \frac{1}{n} \right\},$$

则 U_n, V_n 为开集. 若 $\forall n, U_n \cap V_n \neq \emptyset$, 则由

$$U_{n+1} \cap V_{n+1} \subset U_n \cap V_n$$

知 $\forall n, \exists P \in U_n \cap V_n$. 于是 $\rho(P, F_1) < \frac{1}{n}$. 又由定理 1. 有 $K_n \in F_1$, 使

$$\rho(P, K_n) < \frac{1}{n}$$

令 $n \to \infty$, 有 $\rho(P, K_n) \to 0$. 于是有 $P \in F_1$. 同样有 $P \in F_2$ 与 $F_1 \cap F_2 = \emptyset$ 矛盾. 于是有 $N, U_N \cap V_N = \emptyset$ 成立.

5. 设 $E \subset \mathbb{R}^n$, $E \neq \emptyset$, $P \in \mathbb{R}^n$, 证明 $\rho(P, E)$ 是 P 在 \mathbb{R}^n 上一致连续的函数.

证明. 考虑 \mathbb{R}^n 中的任意两点 P,Q. 由 $\rho(P,E)$ 定义可知, $\forall \varepsilon > 0, \exists K \in E$, 使

$$\rho(P, K) < \rho(P, E) + \varepsilon$$

于是

$$\begin{split} \rho(Q,E) &< \rho(Q,K) \\ &< \rho(P,K) + \rho(P,Q) \\ &< \rho(P,E) + \rho(P,Q) + \varepsilon \end{split}$$

有 $\rho(Q, E) - \rho(P, E) < \rho(P, Q) + \varepsilon$. 由 ε 任意, 有 $\rho(Q, E) - \rho(P, E) \leqslant \rho(P, Q)$. 同样 $\rho(P, E) - \rho(Q, E) \leqslant \rho(P, Q)$. 于是

$$|\rho(Q, E) - \rho(P, E)| \le \rho(P, Q)$$

由数学分析结论,一致连续得证.

6. 证明对于在 \mathbb{R}^n 中任意两个不相交的非空闭集 F_1, F_2 , 都有 \mathbb{R}^n 上的连续函数 f(P), 使 $0 \leq f(P) \leq 1$ 且在 $F_1 \perp f(P) \equiv 0$, 在 $F_2 \perp f(P) \equiv 1$.

证明. 令

$$f(P) = \frac{\rho(P, F_2)}{\rho(P, F_1) + \rho(P, F_2)}$$

于是由上题, f(P) 连续. 且易验证其满足题中条件.

3.1 开集的体积

1. 对 \mathbb{R}^n 中点 $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n),$ 记 $x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n).$ 设 $G \in \mathbb{R}^n$ 中开集, $x \in \mathbb{R}^n$. 令 $\tilde{G} = \{x + y; y \in G\}$. 那么 G 也是开集. 证明 $|G| = |\tilde{G}|$.

证明. \tilde{G} 为 G 所作的平移, 于是也为开集. 设 $G = \bigcup_{i=1}^{\infty} G_i$. G_i 为不交左开右闭区间.则令 $\tilde{G}_i = \{x+y; y \in G\}$

$$\tilde{G} = \bigcup_{i=1}^{\infty} \tilde{G}_i$$

且 \tilde{G}_i 为不交左开右闭区间. $|G_i| = |\tilde{G}_i|$. 于是

$$|G| = \sum_{i=1}^{\infty} |G_i| = \sum_{i=1}^{\infty} |\tilde{G}_i| = |\tilde{G}|$$

2. 设 I 是 \mathbb{R}^2 中的一个开区间, G 是 I 绕原点旋转 $\frac{\pi}{6}$ 后得到的集合. 那么 G 是 \mathbb{R}^2 中开集. 证明: |G|=|I|.

证明. 由 1. 体积有平移不变性, 于是考虑下图.

开区间 I 的边长记为 a,b. 记旋转角为 θ .

图中矩形 ABDC 表旋转后的开集 G, 考虑经分割平移后的开区间 A'BD'C', 记作 I'. 有

$$|G| = |I'| = \frac{a}{\cos \theta} \cdot b \cos \theta = ab = |I|$$

取
$$\theta = \frac{\pi}{6}$$
 即得本题结论.

3. 设 $G \in \mathbb{R}^n$ 中的开集. 令

$$m^*G = \inf \left\{ \sum_{j=1}^{\infty} |I_j|; \ I_j$$
是开区间, $j = 1, 2, \cdots, \mathbb{L} \bigcup_{j=1}^{\infty} I_j \supset G \right\};$
$$m_*G = \sup \left\{ \sum_{j=1}^{k} |F_j|; \ k$$
是正整数, $F_j, j = 1, 2, \cdots, k$ 是互不相交的含于 G 的闭区间 $\}$

证明: $m^*G = m_*G$.

证明. 对任意开区间族 $\{I_j\}_{j=1}^{\infty}$, 满足 $\bigcup_{j=1}^{\infty}I_j\supset G$. 有

$$|G| \leqslant \left| \bigcup_{j=1}^{\infty} I_j \right| \leqslant \sum_{j=1}^{\infty} |I_j|$$

于是 $|G| \leq m^*G$.

又令 $G = \bigcup_{j=1}^{\infty} G_j$, 其中 G_j 为不交左开右闭区间. 则 $\forall \varepsilon > 0$, 取开区间 $U_j \supset G_j$, 使

$$|U_j| < |G_j| + \frac{\varepsilon}{2j}$$

于是

$$\sum_{j=1}^{\infty} |U_j| < \sum_{j=1}^{\infty} |G_j| + \varepsilon = |G| + \varepsilon$$

于是 $|G| \ge m^*G$. 推出 $|G| = m^*G$.

又对任意有限个不交闭区间 $\{F_j\}_{j=1}^k$, 满足 $F_j\subset G$. 有开区间 V_j 使 $F_j\subset V_j\subset G$. 且诸 V_j 不交. 于是

$$\sum_{j=1}^{k} |F_j| \leqslant \sum_{j=1}^{k} |V_j| = \left| \bigcup_{j=1}^{k} V_j \right| \leqslant |G|$$

有 $m_*G \leq |G|$.

同上 $\forall \varepsilon > 0$, 取闭区间 $K_j \subset G_j$, 使

$$|K_j| > |G_j| - \frac{\varepsilon}{2j}$$

于是

$$|G| - \varepsilon < \sum_{j=1}^{\infty} |K_j|$$

于是有正整数 k 使 $|G| - \varepsilon < \sum_{j=1}^{k} |K_j|$. 于是 $m_*G = |G|$.

4. 设 $G \in \mathbb{R}^2$ 中开集, $\tilde{G} \in G$ 绕原点旋转 θ 后得到的集合. 易见, \tilde{G} 也是开集. 证明: $|G| = |\tilde{G}|$.

证明. 令 $G=\bigcup\limits_{i=1}^{\infty}G_{i}$. $\forall\, \varepsilon>0$, 有开区间 $V_{i}\supset G_{i}$ 使 $|V_{i}|<|G_{j}|+rac{\varepsilon}{2^{i}}$. 于是

$$|G| \leqslant \sum_{i=1}^{\infty} |V_i| \leqslant |G| + \varepsilon$$

又记 \tilde{V}_i 为 V_i 旋转 θ 后的开集, 于是由 2. 知 $|\tilde{V}_i| = |V_i|$. 且

$$|\tilde{G}| \leqslant \sum_{i=1}^{\infty} |\tilde{V}_i| = \sum_{i=1}^{\infty} |V_i| \leqslant |G| + \varepsilon$$

由 ε 任意, $|\tilde{G}| \leq |G|$. 同样考虑反方向的旋转, $|G| \leq |\tilde{G}|$. 于是 $|G| = |\tilde{G}|$

3.2 点集的外测度

1. 设 $E \subset \mathbb{R}^n$. 证明:

$$m^*E = \inf \left\{ \sum_{k=1}^{\infty} |I_k|; I_k$$
是开区间. $k = 1, 2, \cdots, 且 \bigcup_{k=1}^{\infty} I_k \supset E \right\}.$

证明. 由 m^*E 的定义, $\bigcup_{k=1}^{\infty} I_k$ 是包含 E 的开集. 有

$$m^*E \leqslant \left| \bigcup_{k=1}^{\infty} I_k \right| \leqslant \sum_{k=1}^{\infty} |I_k|$$

又 $\forall \varepsilon > 0$,有开集 $G \supset E$,使

$$|G| < m^*E + \frac{\varepsilon}{2}$$

由 2.1.3. 有开区间 $\{I_j\}_{j=1}^\infty$ 使 $\bigcup_{j=1}^\infty I_j \supset G \supset E$. 且

$$\sum_{j=1}^{\infty} |I_j| < |G| + \frac{\varepsilon}{2} < m^*E + \varepsilon$$

又由 ε 任意. 结论得证.

2. 证明: 若 $E \subset \mathbb{R}^n$ 有界, 则 $m^*E < +\infty$.

证明. E 有界, 有常数 M 使 $\forall P \in E, |P| < M$. 于是

$$E \subset \prod_{i=1}^{n} (-M, M)$$

后者为开区间,于是

$$m^*E \leqslant \left| \prod_{i=1}^n (-M, M) \right| = 2^n \cdot M^n < +\infty$$

Μ

3. 证明 \mathbb{R}^n 中任何可数点集的外测度都是 0.

证明. 设 $E = \{r_i\}_{i=1}^{\infty}$, 则 $\forall \varepsilon > 0, \forall r_i$, 有开区间 I_i 使

$$r_i \in I_i, |I_i| < \frac{\varepsilon}{2^i}$$

于是

$$m^*E \leqslant m^* \left(\bigcup_{i=1}^{\infty} I_i\right) \leqslant \sum_{i=1}^{\infty} \frac{\varepsilon}{2^i} < \varepsilon$$

由 ε 任意, $m^*E=0$.

4. 设 $E \in \mathbb{R}^1, 0 \leq \mu \leq m^*E$. 证明: 存在 $F \subset E$ 使得 $m^*F = \mu$.

$$f(x + \Delta x) = m^*(E \cap (-x - \Delta x, x + \Delta x))$$

$$\leqslant m^*(E \cap (-x - \Delta x, -x]) + m^*(E \cap (-x, x)) + m^*(E \cap [x, x + \Delta x))$$

$$= f(x) + 2\Delta x$$

对 $\Delta x < 0$ 可证得类似等式, 于是

$$|f(x + \Delta x) - f(x)| \le 2\Delta x$$

于是 f(x) 连续(事实上一致连续)

若
$$\mu = m^*E = +\infty$$
, 取 $F = E$. 若 $\mu < +\infty$, 则有 m 使 $f(m) = \mu$. 取 $F = E \cap (-m, m)$ 即可.

5. 设 f 是区间 [a.b] 上的连续函数. 证明: \mathbb{R}^2 中点集 $\{(x, f(x)); a \leq x \leq b\}$ 的外测度为 0.

证明. f 在 [a,b] 上连续, 于是一致连续.有

$$\forall \frac{\varepsilon}{b-a} > 0, \exists \delta > 0. \forall |x' - x''| < \delta, |f(x') - f(x'')| < \frac{\varepsilon}{b-a}$$

将区间 [a,b] n 等分,使 $\frac{b-a}{n} < \delta$. 记第 i 个区间为 I_i

$$I_i = \left\lceil \frac{i-1}{n}(b-a), \frac{i}{n}(b-a) \right\rceil$$

考虑 \mathbb{R}^2 上区间 V_i

$$V_i = I_i \times \left[\inf_{x \in I_i} f(x), \sup_{x \in I_i} f(x) \right]$$

有 $|V_i| \leqslant \frac{b-a}{n} \cdot \frac{\varepsilon}{b-a} = \frac{\varepsilon}{n}$. 于是成立

$$m^* \{(x, f(x)); a \leqslant x \leqslant b\} \leqslant m^* \left(\bigcup_{i=1}^n V_i\right) \leqslant \sum_{i=1}^n |V_i| \leqslant \varepsilon$$

由 ε 任意,结论成立.

6. 对于 $E \subset \mathbb{R}^n$ 及 $\alpha > 0$, 令

$$\alpha E = \{(\alpha x_1, \alpha x_2, \cdots, \alpha x_n); (x_1, x_2, \cdots, x_n) \in E\}.$$

证明: $m^*(\alpha E) = \alpha^n m^* E$.

证明. 首先令 I_k 表开区间, 有

$$E \subset \bigcup_{k=1}^{\infty} I_k \iff \alpha E \subset \bigcup_{k=1}^{\infty} \alpha I_k$$

 $\mathbb{E} |\alpha I_k| = \alpha^n |I_k|.$

由 3.2.1 有开区间族 $\{I_k\}_{k=1}^{\infty}$ 使 $E \subset \bigcup_{k=1}^{\infty} I_k$, 且

$$\sum_{k=1}^{\infty} |I_k| < m^* E + \varepsilon$$

于是

$$m^*(\alpha E) \leqslant \left| \bigcup_{k=1}^{\infty} \alpha I_k \right| \leqslant \alpha^n \sum_{k=1}^{\infty} |I_k| < \alpha^n m^* E + \alpha^n \varepsilon$$

由 ε 任意

$$m^*(\alpha E) \leqslant \alpha^n m^* E$$

同样有

$$m^*E \leqslant \frac{1}{\alpha^n} m^*(\alpha E)$$

于是 $m^*(\alpha E) = \alpha^n m^* E$. $m^* E = +\infty$ 时显然.

7. 设 $m^*E > 0$. 证明: 存在 $x \in E$ 满足对任意的 $\delta > 0$ 都有

$$m^*(E \cap N(x,\delta)) > 0,$$

这里, $N(x,\delta)$ 是以 x 为心, 以 δ 为半径的领域.

证明. 反证法.

若 $\forall x \in E, \exists \delta_x > 0, m^*(E \cap N(x, \delta_x)) = 0$. 由 Lindelof 定理

$$E \subset \bigcup_{x \in E} N(x, \delta_x) \Rightarrow E \subset \bigcup_{i=1}^{\infty} N(x_i, \delta_i)$$

于是

$$m^*E \leqslant m^* \left(\bigcup_{i=1}^{\infty} N(x_i, \delta_i) \cap E \right) \leqslant \sum_{i=1}^{\infty} m^* \left(N(x_i, \delta_i) \cap E \right) = 0$$

矛盾.

8. 试就二维空间 \mathbb{R}^2 证明外测度在旋转变换下是不变的.

证明. 任给 \mathbb{R}^2 中集合 E, 任给开集 $U \supset E$, 记 \tilde{U} 为 U 旋转 θ 后的集合. 由 3.1.4 有 \tilde{U} 也为开集, 且

$$\tilde{U}\supset \tilde{E},\; |\tilde{U}|=|U|.$$

对于集合 $E, \forall \varepsilon > 0$ 存在开集 $G \supset \oplus |G| < m^*E + \varepsilon$. 有

$$m^* \tilde{E} \leq |\tilde{G}| = |G| \leq m^* E + \varepsilon.$$

于是 $m^*\tilde{E} \leq m^*E$. 考虑反方向旋转, 又有 $m^*E \leq m^*\tilde{E}$ 于是 $m^*\tilde{E} = m^*E$.

9. $\forall n > 1$, 证明:存在 \mathbb{R}^n 的不相交的子集 A, B 使得 $m^*(A \cup B) \neq m^*A + m^*B$.

证明. 类似本节例的证明.

考虑 \mathbb{R}^n 上开区间 $(0,1) \times \prod_{i=1}^n (0,1)$, 取 (0,1) 中每个点 x_1 , 作点集

$$R_{x_1} = \{(\tilde{x}_1, \dots, \tilde{x}_n); \tilde{x}_1 - x_1$$
是有理数, $\tilde{x}_i \in (0, 1), \forall i > 1\}$

于是易证 $x_1 \neq y_1, R_{x_1} \cap R_{y_1} = \emptyset$. 于是 $(0,1) \times \prod_{i=1}^n (0,1)$ 可分为互不相交的 R_{x_1} 的并. 同样取出 $S \subset (0,1)$ 且记

$$S_k = \{(t + r_k, \tilde{x}_2, \cdots, \tilde{x}_n); t \in S, \tilde{x}_i \in (0, 1), \forall i > 1\}$$

完全相似于例的证明,有 $E_1 = \bigcup_{i=1}^k S_k, E_2 = S_{k+1},$ 且

$$m^*(E_1 \cup E_2) \neq m^*E_1 + m^*E_2.$$

3.3 可测集合及测度

1. 举例说明两个不可测集的并、交、差既可以是不可测的,也可以是可测的.

证明. 用上节例的记号, S, S_k 不可测, 于是 S^c 也不可测.

 $S \cup S = S$ 不可测, $S \cup S^c = R$ 可测. $S \cap S = S$ 不可测, $S \cap S^c = \emptyset$ 可测. $S_1 \cup S_2 - S_2 = S_1$ 不可测, $S - S = \emptyset$ 可测.

2. 举例说明定理 6 去掉条件 " $m*E < +\infty$ ", 结论可以不成立.

证明. 取 $E_j = (j, +\infty), T = \mathbb{R}$. 则 E_j 可测, $E_j \supset E_{j+1}$, 且

$$E = \bigcap_{j=1}^{\infty} E_j = \emptyset$$

于是 $m^*(T \cap E) = 0$, $\lim_{k \to \infty} m^*(T \cap E_k) = +\infty$. 二者不等.

3. 证明: 对 \mathbb{R}^n 中任意两个可测集 A, B 都有

$$m(A \cup B) + m(A \cap B) = mA + mB.$$

证明. 由 $A \cap B^c \cup B \cap A^c \cup A \cap B = A \cup B$. 三者可测且两两不交, 于是

$$m(A \cup B) = m(A \cap B^c) + m(B \cap A^c) + m(A \cap B)$$

于是

$$m(A \cup B) + m(A \cap B) = m(A \cap B^c) + m(A \cap B) + m(B \cap A^c) + m(B \cap A)$$
$$= mA + mB.$$

4. 证明: 对 \mathbb{R}^n 中任何可测集合序列 $\{E_k\}_{k=1}^{\infty}$ 都有

$$m(\liminf_{k\to\infty} E_k) \leqslant \liminf_{k\to\infty} mE_k$$

而且如果存在 k_0 使得 $m(\bigcup_{k=k_0}^{\infty} E_k) < +\infty$, 则还有

$$m(\limsup_{k\to\infty} E_k) \geqslant \limsup_{k\to\infty} mE_k.$$

证明. 考虑 $F_k = \bigcap_{i=k}^{\infty} E_k$, 则 F_k 可测, $F_k \subset F_{k+1}$ 且

$$\liminf_{k \to \infty} E_k = \bigcup_{k=1}^{\infty} \bigcap_{i=k}^{\infty} E_k = \bigcup_{k=1}^{\infty} F_k$$

于是

$$m\left(\liminf_{k\to\infty} E_k\right) = \lim_{k\to\infty} mF_k = \lim_{k\to\infty} m\left(\bigcap_{i=k}^{\infty} E_k\right) \leqslant \liminf_{k\to\infty} mE_k$$

最后一个不等号由 $\forall k, \bigcap_{i=k}^{\infty} E_k \subset E_k, m\left(\bigcap_{i=k}^{\infty} E_k\right) \leqslant mE_k$. 可知.

考虑
$$G_k = \bigcup_{i=k}^{\infty} E_k$$
, 则 G_k 可测, $G_k \supset G_{k+1}$ 且

$$\limsup_{k \to \infty} E_k = \bigcap_{k=1}^{\infty} \bigcup_{i=k}^{\infty} E_k = \bigcap_{k=1}^{\infty} G_k$$

且存在 k_0 使得 $mG_k = m(\bigcup_{k=k_0}^{\infty} E_k) < +\infty$, 于是

$$m\left(\limsup_{k\to\infty} E_k\right) = \lim_{k\to\infty} mG_k = \lim_{k\to\infty} m\left(\bigcup_{i=k}^{\infty} E_k\right) \geqslant \limsup_{k\to\infty} mE_k$$

最后一个不等号由
$$\forall k, \bigcup_{i=k}^{\infty} E_k \supset E_k, m\left(\bigcup_{i=k}^{\infty} E_k\right) \geqslant mE_k$$
. 可知.

5. 设 $\{E_k\}_{k=1}^{\infty}$ 是 \mathbb{R}^n 中一列可测集合,且 $\sum\limits_{k=1}^{\infty} mE_K < +\infty$,那么 $m(\limsup\limits_{k \to \infty} E_k) = 0$.

证明. 令
$$G_m = \bigcup_{k=m}^{\infty} E_k$$
, 则 G_k 可测, $G_k \supset G_{k+1}$, $G_1 < +\infty$. 于是

$$m(\limsup_{k\to\infty} E_k) = m\left(\bigcap_{m=1}^{\infty} G_m\right) = \lim_{m\to\infty} mG_m \leqslant \lim_{m\to\infty} \sum_{k=m}^{\infty} mE_k = 0.$$

6. 证明 Cantor 集合的测度为 0, 并在 [0,1] 上作一个测度大于零的无处稠密的完备集. 进而证明存在 开集 G 使得 $m\bar{G} > mG$.

证明. 考虑 Cantor 集的补集 B, 则

$$B = \bigcup_{i=1}^{\infty} \bigcup_{k=1}^{2^{i-1}} I_k^{(i)}$$

 $I_k^{(i)}$ 表示第 i 次去掉的第 k 个区间,则

$$\left|I_k^{\;(i)}\right|<\frac{1}{3^i}$$

于是

$$m^*B = \sum_{i=1}^{\infty} \sum_{k=1}^{2^{i-1}} \frac{1}{3^i} = \frac{1}{2} \cdot \sum_{i=1}^{\infty} \frac{2^i}{3^i} = 1$$

有 $m^*C = m^*([0,1]) - m^*B = 0.$

在 Cantor 集的构造过程中. 去掉的开区间长度改为原区间的 $\frac{1}{6}$. 那么第 n 次手续后剩余的区间总长度为 $\left(\frac{5}{6}\right)^n \to 0$. 于是其为无处稠密集.

又设如此去掉的开集为
$$G$$
, 则有 $m\bar{G}=1$, $mG=\frac{1}{2}$.

7. 证明 \mathbb{R}^1 中存在不是 *Borel* 集的可测子集.

证明. 先证明全体 Borel 集作成的集合 $\mathscr F$ 基数为 c.

首先由 2.4.4, \mathbb{R}^1 中所有开集作成的集合 \mathcal{M} 势为 c. Borel 集为 \mathcal{M} 中元素取至多可数次并和补运算之后生成的集合. 于是 \mathscr{F} 中的元素与 \mathcal{M} 中开集组成的一个序列 A 和并与补按运算顺序排成的序列 B 有一一对应的关系. 即 \forall F \in \mathscr{F} , 有唯一单射

$$F \mapsto A \times B$$

所有 A 作成的集合记为 \mathscr{A} , 则 \mathscr{A} 与实数作成的序列全体对等. 由 2.3.1, $\overline{\mathscr{A}} = c$. 所有 B 作成的集合记为 \mathscr{B} , 则 \mathscr{B} 与 0-1 序列的全体等价, 由 2.3 例, $\overline{\mathscr{B}} = c$. 于是 $\overline{\mathscr{F}} = \overline{\mathscr{A} \cup \mathscr{B}} = c$.

在证明可测集作成的集合 \mathfrak{M} 基数为 2^c . 于是 $\mathfrak{M} \supseteq \mathscr{F}$. 命题得证.

事实上, 考虑 Cantor 集的任意子集 E, 有 $m^*E=0$. 于是 E 可测, 而 Cantor 集基数为 c. 于是 $\overline{\overline{\mathfrak{M}}} \geqslant 2^c$. 又 $\overline{\overline{\mathfrak{M}}} \leqslant 2^c$ 显然.于是 $\overline{\overline{\mathfrak{M}}} = 2^c$.

8. 对 $E \subset \mathbb{R}^n$,记

$$m_*E = \sup\{mF; F \subset E$$
是有界闭集}

并称之为 E. 如果 E 是有界集合,则 E 可测当且经当 $m^*E = m_*E$.

证明. 必要性.

由定理 9. 有
$$F = \bigcap_{i=1}^{\infty} F_i$$
, 使 $F \subset E$ 为闭集, 且 $m(E - F) = 0$. 于是

$$0 = m(E - F) = m(E \cap F^c) = m\left(\bigcap_{i=1}^{\infty} E \cap F_i^c\right)$$

 $\diamondsuit F_k = \bigcup_{i=1}^k F_i$, \boxminus

$$\bigcap_{i=1}^{k} E \cap F_{i}^{c} = E - F_{k} \supset \bigcap_{i=1}^{k+1} E \cap F_{i}^{c} \supset E - F_{k+1}, m(E - F_{1}) < mE < +\infty.$$

以及定理6. 得

$$0 = m(E - F) = \lim_{k \to \infty} m(E - F_k) = mE - \lim_{k \to \infty} mF_k.$$

于是 $mE = \lim_{k \to \infty} mF_k$, 又对于任意含于 E 的有界闭集 K, 成立 $mK \leq mE$. 知

$$mE = m^*E = \sup\{mF; F \subset E$$
是有界闭集}

充分性.

 $\forall n$,有闭集 $F_n \subset E$ 使 $m^*F_n > m^*E - \frac{1}{n}$. 于是

$$m^*(E - F_n) < \frac{1}{n}.$$

令
$$F = \bigcup_{n=1}^{\infty} F_n$$
, 有 $\forall n > 0$.

$$m^*(E - F) \le m^*(E - F_n) < \frac{1}{n}$$
.

于是 $m^*(E-F) = 0, E-F$ 可测. 又 F 为 F_{σ} 集, 可测. 知 $E = (E-F) \cup F$ 可测.

9. 设 $E \subset \mathbb{R}^n$, 那么 E 可测当且仅当对任意正数 ε , 存在开集 $G \supset E$ 及闭集 $F \subset E$ 使得 $m(G - F) < \varepsilon$. 证明. 必要性.

先设 $mE < +\infty$, 由测度定义, $\forall \varepsilon > 0$, 有包含 E 的开集 G 使

$$mG = |G| < mE + \varepsilon$$

移项得 $m(G-E) < \varepsilon$.

又若 $mE = \infty$, 则设 $E_k = E \cap N(0,k)$, 得 $E = \bigcup_{k=1}^{\infty} E_k$. 于是有开集 $G_k \supset E_k$ 使

$$m(G_k - E_k) < \frac{\varepsilon}{2^{k+1}}.$$

令 $G = \bigcup_{k=1}^{\infty} G_k$, 其为开集. 且

$$m(G-E) \leqslant m\left(\bigcup_{k=1}^{\infty} (G_k - E_k)\right) \leqslant \sum_{k=1}^{\infty} m(G_k - E_k) < \frac{\varepsilon}{2}.$$

同样考虑 E^c . 有包含 E^c 的开集 \tilde{G} 使 $m(\tilde{G}-E^c)<\frac{\varepsilon}{2}$. 令 $F=\tilde{G}^c$, 有

$$m(E-F) = m(\tilde{G} - E^c) < \frac{\varepsilon}{2}$$

于是

$$m(G - F) = m(G - E) + m(E - F) < \varepsilon.$$

充分性.

 $\forall k > 0$, 有开集 G_k 使

$$m^*(G_k - E) \leqslant m(G_k - F_k) < \frac{1}{k}.$$

考虑 $G = \bigcap_{k=1}^{\infty} G_k$, 有

$$m^*(G - E) \le m^*(G_k - E) < \frac{1}{k}.$$

令 $k \to \infty$, 有 $m^*(G - E) = 0$. 于是 G - E 可测. E = G - (G - E) 可测.

10. 设 $E \subset \mathbb{R}^n$, 那么 E 可测当且仅当对任意正数 ε , 存在可测集合 E_1 及 E_2 使得 $E_1 \subset E \subset E_2$ 且 $m(E_2 - E_1) < \varepsilon$.

证明. 书上题目有误.已改正.

必要性由上题知.

充分性.

 $\forall T \subset \mathbb{R}^n$

$$m^*T \le m^*(T \cap E) + m^*(T \cap E^c)$$

 $\le m^*(T \cap E_2) + m^*(T \cap E_1^c)$
 $\le m^*(T \cap E_1) + m^*(T \cap (E_2 - E_1)) + m^*(T \cap E_1^c)$
 $= m^*T + \varepsilon$

由 ε 任意 $, m^*T = m^*(T \cap E) + m^*(T \cap E^c).$ 于是 E 可测.

11. 设
$$E_k \subset E_{k+1} \subset \mathbb{R}^n, k = 1, 2, 3, \cdots$$
 证明: $m^* \left(\bigcup_{k=1}^{\infty} E_k \right) = \lim_{k \to \infty} m^* E_k$.

证明. $\forall k$, 存在 \mathbb{R}^n 中 G_δ 集 G_k 使 $E_k \subset G_k$, 且 $m^*E_k = mG_k$. 于是

$$m^* \left(\liminf_{k \to \infty} E_k \right) \leqslant m^* \left(\liminf_{k \to \infty} G_k \right) \leqslant \liminf_{k \to \infty} mG_k = \liminf_{k \to \infty} m^* E_k$$

第二个不等式用 4. 的结论.又由 E_k 单调增, 于是 $\lim_{k\to\infty}\inf E_k = \bigcup_{k=1}^{\infty}E_k$, $\lim_{k\to\infty}\inf m^*E_k = \lim_{k\to\infty}m^*E_k$. 于是

$$m^* \left(\bigcup_{k=1}^{\infty} E_k \right) \leqslant \lim_{k \to \infty} m^* E_k.$$

又由 $\forall k, E_k \subset \bigcup_{k=1}^{\infty} E_k$. 有

$$m^* \left(\bigcup_{k=1}^{\infty} E_k \right) \geqslant \lim_{k \to \infty} m^* E_k.$$

于是结论得证.

12. 设 $E \in \mathbb{R}^n$ 中可测子集, $\alpha > 0$, 那么

$$\alpha E \stackrel{def}{=} \{(\alpha x_1, \alpha x_2, \cdots, \alpha x_n); (x_1, x_2, \cdots, x_n) \in E\}$$

也是可测的, 并且 $m(\alpha E) = \alpha^n m E$.

证明. $\forall \alpha T \subset \mathbb{R}^n$. 有

$$m^*(\alpha T) = \alpha^n \cdot m^* T$$

= $\alpha^n (m^* (T \cap E) + m^* (T \cap E^c))$
= $m^* (\alpha T \cap \alpha E) + m^* (\alpha T \cap (\alpha E)^c)$

于是由 αT 任意, αE 可测且 $m(\alpha E) = m^*(\alpha E) = \alpha^n m^* E = \alpha^n m E$.

13. 设 $\boldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ 是二阶方阵, 用 $\det \boldsymbol{A}$ 表示 \boldsymbol{A} 的行列式, \mathbb{R}^2 中点都看成列向量. 对 $\boldsymbol{x} = \begin{pmatrix} \xi \\ \eta \end{pmatrix}$. 令 $\boldsymbol{A}\boldsymbol{x} = \begin{pmatrix} a_{11}\xi + a_{12}\eta \\ a_{21}\xi + a_{22}\eta \end{pmatrix}$. 设 $E \subset \mathbb{R}^2$ 可测, 令 $\tilde{E} = \{\boldsymbol{A}\boldsymbol{x}; \boldsymbol{x} \in E\}$. 证明: $m\tilde{E} = |\det \boldsymbol{A}| mE$.

证明. 先考虑 $\det A \neq 0$, 即 A 为非退化线性变换. 于是有逆变换.

记 $I_0 = \{(x,y); 0 < x < 1, 0 < y < 1\}$. 若能证得 $m(\mathbf{A}(I_0)) = |\det \mathbf{A}|$. 就有对任意开区间 I. 成立 $m(\mathbf{A}(I)) = |\det \mathbf{A}| mI$. 若可证得 $\mathbf{A}(I_0)$ 仍为开集, 则对于任意 \mathbb{R}^2 中开集 G. 成立 $m\mathbf{A}(G) = |\det \mathbf{A}| mG$. 事实上 $\forall \varepsilon > 0$, 有开区间 G_i 满足 $G \subset \bigcup_{i=1}^{\infty} G_i$ 且

$$\sum_{i=1}^{\infty} mG_i \leqslant mG + \varepsilon.$$

有 $\boldsymbol{A}(G) \subset \bigcup_{i=1}^{\infty} \boldsymbol{A}(G_i)$, 且

$$m\mathbf{A}(G) \leqslant \sum_{i=1}^{\infty} m\mathbf{A}(G_i) \leqslant \sum_{i=1}^{\infty} |\det \mathbf{A}| mG_i \leqslant |\det \mathbf{A}| \cdot mG + |\det \mathbf{A}| \cdot \varepsilon$$

于是由 ε 任意, $m\mathbf{A}(G) = |\det \mathbf{A}|mG$.

再考虑任意 \mathbb{R}^2 中可测集 E. $\forall k$, 有开集 $G_k \supset E$ 使

$$mG_k \leqslant mE + \frac{1}{k}$$

于是对 $\boldsymbol{A}(E)$ 有 $\boldsymbol{A}(G_k) \supset \boldsymbol{A}(E)$ 且

$$m\mathbf{A}(E) \leqslant m\mathbf{A}(G_k) \leqslant |\det \mathbf{A}| mG_k \leqslant |\det \mathbf{A}| mE + \frac{|\det \mathbf{A}|}{k}.$$

令 $k \to \infty$. 有 $m\mathbf{A}(E) = |\det \mathbf{A}| mE$. 即本题的结论.

下证
$$m(\mathbf{A}(I_0)) = |\det \mathbf{A}|$$
. 且 $\mathbf{A}(I_0)$ 为开集.

记 $A(I_0) = (u, v)$. 由线性代数相关知识, A 可分为有限个下列初等变换的乘积.

$$(i) u = y, v = x$$

(ii)
$$u = \beta x, \ v = y$$

$$(iii) u = x + y, v = y$$

考虑
$$(i)$$
. $\mathbf{A}(I_0) = \{(u, v); 0 < u < 1, 0 < v < 1\} = I_0$. 其为开集, 且

$$m(\mathbf{A}(I_0)) = |\det \mathbf{A}| = 1.$$

考虑
$$(ii)$$
. $\mathbf{A}(I_0) = \{(u, v); 0 < u < \beta, 0 < v < 1\} = I_0$. 其为开集,且

$$m(\mathbf{A}(I_0)) = |\det \mathbf{A}| = \beta.$$

考虑 (iii). $\mathbf{A}(I_0) = \{(u, v); 0 < u - v < 1, 0 < v < 1\} = I_0$. 其为开集,且 $|\det \mathbf{A}| = 1$. 考虑下图.

由外测度的平移不变性知 $m(\mathbf{A}(I_0)) = 1$.

于是 $\mathbf{A} = \mathbf{A}_1 \cdots \mathbf{A}_n$. 其中 \mathbf{A}_i 为上述三种变换之一. 由数学归纳法.有

$$m(\mathbf{A}(I_0)) = m(\mathbf{A}_1(\mathbf{A}_2(\cdots(\mathbf{A}_n(I_0))\cdots)))$$
$$= |\det \mathbf{A}_1| |\det \mathbf{A}_2| \cdots |\det \mathbf{A}_n|$$
$$= |\det \mathbf{A}|$$

于是 $m(\mathbf{A}(I_0)) = |\det \mathbf{A}|$ 得证.

若
$$|\det \mathbf{A}| = 0$$
, 则 $\mathbf{A}(E)$ 为 \mathbb{R} 中子集, $m(\mathbf{A}(E)) = 0$.

14. 设 f 是复平面 $\mathbb{C} = \mathbb{R}^2$ 中单位圆盘 $D = \{z \in \mathbb{C}; |z| < 1\}$ 上单叶解析函数. $\Omega = \{f(z); z \in D\}$. 证明: $m\Omega = \int_{\partial D} \left|f'(z)\right|^2 \mathrm{d}z$.

证明. 题目有误,最后应该作周线积分.

由复变函数论以及数学分析的知识, 令 z = x + iy, f(z) = u(x,y) + iv(x,y) 于是有雅可比行列式

$$|J| = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} = |f'(z)|^2$$

以及

$$\int_{\partial D} |f'(z)|^2 dz = \int_{x^2 + y^2 < 1} |J| dx dy = \int_{u + iv \in \Omega} du dv$$

于是原积分被转化为重积分,由重积分的定义,对任意包含区域 Ω 的开集 G 有

$$\int_{u+iv\in\Omega} \mathrm{d}u\mathrm{d}v \leqslant |G|$$

且 $\forall \varepsilon > 0$,有含于G的开集U使

$$|U| < \int_{u+iv \in \Omega} \mathrm{d}u \mathrm{d}v + \varepsilon$$

于是

$$\int_{\partial D} |f'(z)|^2 dz = \int_{u+iv \in \Omega} du dv$$
$$= \inf\{|G|; G 为包含 \Omega 的开集\}$$
$$= mG.$$

15 证明: $\overline{\mathfrak{M}} = 2^c$. 即 \mathbb{R}^n 中全体可测子集构成的集合与 \mathbb{R}^n 的全体子集构成的集合拥有相同的基数.

证明. n = 1 的情况已在 3.3.7 中证明.下面考虑 n > 1 的情况.

任取 \mathbb{R}^1 中的子集 A, mA = 0. 于是 $A \in \mathfrak{M}$. 于是 $\overline{\overline{\mathfrak{M}}} \geqslant 2^c$ 又 $\overline{\overline{\mathfrak{M}}} \leqslant 2^c$ 显然.于是 $\overline{\overline{\mathfrak{M}}} = 2^c$.

16. 证明: 对 \mathbb{R}^n 中任何闭集 E 都存在完备集合 $F \subset E$ 使得 mF = mE.

证明. 证明中需要凝聚点的概念.

若 $\forall \delta > 0, E \cap N(x, \delta)$ 是不可数集,则称 $x \to E$ 的凝聚点. E凝聚点的全体记作K(E).

对任意不可数闭集 E, D = E - K(E) 为可数集.

事实上, $\forall x \in D$, 可作领域 $N(q_x, r_x)$, 其中 $q_x \in \mathbb{R}^n$, $r_x \in \mathbb{R}$. 使 $x \in N(q_x, r_x)$ 且 $E \cap N(q_x, r_x)$ 可数. 于是 $D \cap N(q_x, r_x)$ 可数.由 Linderlof 定理

$$D \subset \bigcup_{x \in D} N(q_x, r_x) \cap D \Rightarrow D \subset \bigcup_{i=1}^{\infty} N(q_i, r_i) \cap D$$

于是 D 可数.

再证 K(E) 是完备集合.

为此, 先证 $K(E)' \subset K(E)$. $\forall x_0 \in K(E)'$, 有 $\forall \delta > 0$, $\exists y_0 \in K(E) \cap N(x_0, \delta)$. 于是有 $\delta_0 > 0$, 使 $N(y, \delta_0)$ 中包含 E 的不可数个点, 且 $N(y, \delta_0) \subset N(x_0, \delta)$. 于是 $s_0 \in K(E)$.

再证 $K(E) \subset K(E)'$. $\forall x_0 \in K(E), \forall \delta > 0$, 令

$$E_{\delta} = E \cap N(x_0, \delta)$$

则 E_{δ} 不可数. 又由 $E_{\delta} \cap K(E_{\delta})$ 不可数且 $E_{\delta} \subset E$. 于是 E_{δ} 的凝聚点必为 E 的凝聚点. 于是 $N(x_0, \delta) \cap K(E)$ 不可数. $x_0 \in K(E)'$.

又若 E 为不可数闭集,则 $E = K(E) \cup (E - K(E))$. 其中 K(E) 为完备集合且 E - K(E) 为可数集. 于是由 3.2.3, m(E - K(E)) = 0. 有 mE = mK(E).

若 E 为可数集, 则 $E = \emptyset \cup E.\emptyset$ 为完备集合, 且 $m\emptyset = mE = 0$.

17. 设 A 和 B 是 \mathbb{R}^1 中两个有界闭集, $x_0, y_0 \in \mathbb{R}^1$. 令 $A_1 = A \cap (-\infty, x_0]$, $A_2 = A \cap [x_0, +\infty)$, $B_1 = B \cap (-\infty, y_0]$, $B_2 = B \cap [y_0, +\infty)$. 证明: $m(A+B) \ge m(A_1+B_1) + m(A_2+B_2)$. 此处"+"表示两个点集的向量和.

证明. A_1, B_1, A_2, B_2 , 都是有界闭集, 于是 $2 \cdot (\frac{1}{2}A_i + \frac{1}{2}B_i)$, i = 1, 2. 也为有界闭集(2.2.14).于是可测.对于任意 $p \in A_i + B_i$, 有 $a \in A_i$, $b \in B_i$, 使 p = a + b. 于是 $p \in A + B$. 又由 $(A_1 + B_1) \cap (A_2 + B_2) = \{(x_0, y_0)\}$ 或 \varnothing . 于是有

$$m(A+B) \ge m((A_1+B_1) \cup (A_2+B_2))$$

$$= m((A_1+B_1) \cup (A_2+B_2)) + m((A_1+B_1) \cap (A_2+B_2))$$

$$= m(A_1+B_1) + m(A_2+B_2)$$

最后一步用了 3.3.3.

18. 设 A 和 B 都是 \mathbb{R}^1 中有限个没有公共端点的有界闭区间之并. 证明: $m(A+B) \geqslant mA+mB$.

$$A_1 = A \cap (-\infty, x_0] = A,$$
 $A_2 = A \cap [x_0, \infty) = \{x_0\}$
 $B_1 = B \cap (-\infty, y_0] = B,$ $B_2 = B \cap [y_0, \infty) = \{y_0\}$

由上题有

$$m(A+B) \geqslant m(A_1 + B_1) + m(A_2 + B_2)$$

= $m(A + \{y_0\}) + m(B + \{x_0\})$
= $mA + mB$

19. 设 A 和 B 都是 \mathbb{R}^1 中有界闭集. 证明:对 $0 < \lambda < 1, m(\lambda A + (1 - \lambda)B) \geqslant \lambda mA + (1 - \lambda)mB$.

证明. λA , $(1 - \lambda)B$ 也为有界闭集, 于是由上题和 3.3.12 有

$$m(\lambda A + (1 - \lambda)B) \ge m(\lambda A) + m((1 - \lambda)B) = \lambda mA + (1 - \lambda)mB.$$

20. 设 $E \subset \mathbb{R}^1$ 可测, 且 mE > 0. 证明: E 有不可测的子集.

证明. 由 $E = \bigcup_{n=1}^{\infty} (E \cap [-n, n])$ 可知, $\exists n_0$, 使得

$$mE_0 > 0, (E_0 = E \cap [-n_0, n_0])$$

对 $x \in E_0$. 作 $E_x = \{t \in E_0, t - x \in \mathbb{Q}\}$. 得

$$E_0 = \bigcup_{x \in E_0} E_x$$

设 $x_1, x_2 \in E_0$. 若 $x_1 - x_2 \in \mathbb{Q}$. 则 $E_{x_1} = E_{x_2}$, 否则有 $E_{x_1} \cap E_{x_2} = \emptyset$. 从而存在由不同的 E_x 中都取一个点组成的点集 $W, W \subset E_0$. 记 $\{r_n\} = Q \cap [-2n_0, 2n_0]$. 有

$$(W + \{r_k\} \cap (W + \{r_j\}) = \varnothing, k \neq j$$

于是

$$\bigcup_{n=1}^{\infty} (W + \{r_n\}) \subset [-3n_0, 3n_0], E_0 \subset \bigcup_{n=1}^{\infty} (W + \{r_n\})$$

若W可测.则 $W+\{r_n\}$ 可测.有

$$0 < mE_0 \le \sum_{n=1}^{\infty} m(W + \{r_n\}) = \sum_{n=1}^{\infty} mW \le 6n_0$$

若 mW=0, 则 $mE_0=0$. 矛盾.若 mW>0, 则 $\sum\limits_{n=1}^{\infty}mW=+\infty$. 同样矛盾. 于是 W 不可测.

3.4 乘积空间

1. 举例说明对 \mathbb{R}^{p+q} 中的可测集 E, 确实有可能存在 $x \in \mathbb{R}^p$ 使 E_x 不是 \mathbb{R}^q 中的可测集.

证明. 设 S 为 3.2 例中的集合. 令 $E = \{(0,y); y \in S\}, E$ 为线段, 于是 mE = 0. 又 $E_0 = S$, 不可测.

2. 试在二维平面 \mathbb{R}^2 中作一开集 G, 使 G 的边界点所构成的集合的测度大于零.(提示:参考 3.3.6)

证明. 令 G 为 3.3.6 中的开集, 记 $E = G \times (0,1)$. 于是 E 为 \mathbb{R}^2 中开集. 且

$$m(\partial E) = m\left((\bar{G} - G) \times (0, 1)\right) > 0$$

3. 设 $E \subset \mathbb{R}^{p+q}$ 是 Borel 集. 证明: 对任意的 $x \in \mathbb{R}^p$ 及 $y \in \mathbb{R}^q$, 截口 E_x 和 E_y 都是 Borel 集.

证明. 任意 \mathbb{R}^{p+q} 中左开右闭区间 I,I_x 为 \mathbb{R}^q 中左开右闭区间, 且

$$\forall y \in (I^c)_x \iff (x,y) \in I^c \iff (x,y) \notin I \iff y \in (I_x^c)$$

于是 $(I^c)_x = (I_x^c)$.

对一列左开右闭区间 $\{I_n\}_{n=1}^{\infty}$.

$$\forall y \in \left(\bigcup_{n=1}^{\infty} I_n\right)_x \iff (x,y) \in \bigcup_{n=1}^{\infty} I_n \iff \exists n_0, (x,y) \in I_{n_0} \iff y \in \bigcup_{n=1}^{\infty} (I_n)_x$$

于是 $\left(\bigcup_{n=1}^{\infty} I_n\right)_x = \bigcup_{n=1}^{\infty} (I_n)_x$. 同样对交也有相应结论.

任意 \mathbb{R}^{p+q} 中开集 G,G 可表为可数个左开右闭区间之并, 于是 G_x 也为开集. 由上, 任给 Borel 集 E, 其为开集取至多可数次并和补. 同样对应的 E_x 为开集取至多可数次并和补. 为 Borel 集.

4. 设 n > 1. 证明: \mathbb{R}^n 中存在不是 Borel 集的可测子集.

证明. 类似 3.3.7 的证明. \mathbb{R}^n 中所有的开集与实数对等. 于是其中所有 Borel 集与实数对等. 又考虑 \mathbb{R}^1 中的任意子集 E, mE = 0. 于是易得所有可测集基数为 2^c .

4.1 可测函数的定义及其简单性质

1. 证明 E 上两个简单函数的和与乘积都还是 E 上的简单函数.

证明. 设 $\varphi_1(x)$ 与 $\varphi_2(x)$ 都是 E 上的简单函数,则

$$\varphi_1(x) + \varphi_2(x) = \sum_{i=1}^m c_i^{(1)} \varphi_{E_i^{(1)}}(x) + \sum_{j=1}^n c_j^{(2)} \varphi_{E_j^{(2)}}(x) = \sum_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}} \left[c_i^{(1)} + c_j^{(2)} \right] \varphi_{E_i^{(1)} \cap E_j^{(2)}}(x).$$

且

$$\varphi_1(x) \cdot \varphi_2(x) = \sum_{\substack{1 \le i \le m \\ 1 \le j \le n}} \left[c_i^{(1)} \cdot c_j^{(2)} \right] \varphi_{E_i^{(1)} \cap E_j^{(2)}}(x).$$

于是二者是简单函数.

2. 证明当 f(x) 既是 E_1 上又是 E_2 上的非负可测函数时, f(x) 也是 $E_1 \cup E_2$ 上的非负可测函数.

证明.
$$(E_1 \cup E_2)[x; f(x) \geqslant a] = E_1[x; f(x) \geqslant a] \cup E_2[x; f(x) \geqslant a]$$
. $\forall x \in E_1 \cup E_2, f(x) \geqslant 0$.

3. 设 $mE < +\infty$, f(x) 是 E 上的几乎处处有限的非负可测函数,证明对任意 $\varepsilon > 0$, 都有闭集 $F \subset E$, 使 $m(E - F) < \varepsilon$, 而在 $F \perp f(x)$ 是有界的.

证明. 令 $E_k=E[x;0\leqslant f(x)\leqslant k], E_\infty=E[x;f(x)=+\infty].$ 则

$$E = \left(\bigcup_{k=1}^{\infty} E_k\right) \cup E_{\infty}, E_k \subset E_{k+1}$$

且 $mE_{\infty} = 0, mE_k \to mE$. 于是 $\forall \varepsilon > 0$, 有 k_0 , 使 $m(E - E_{k_0}) < \frac{\varepsilon}{2}$, 又由 E_{k_0} 可测,由 3.3.9 有闭集 $F \subset E_{k_0}$, 使 $m(E_{k_0} - F) < \frac{\varepsilon}{2}$. 于是

$$m(E-F)<\varepsilon$$

$$\forall x \in F, f(x) < k_0.$$

4. 设 $f_n(x)$ 是可测集合 E 上的非负可测函数序列.证明: 如果对任意 $\varepsilon > 0$, 都有 $\sum_{n=1}^{\infty} mE[x; f_n(x) > \varepsilon] < +\infty$, 则必有

$$\lim_{n \to \infty} f_n(x) = 0 \quad a.e. \not = E.$$

又问这一命题的逆命题是否成立?

证明. 首先由 3.3.5 以及上极限的定义

$$mE\left[x; \lim_{k \to \infty} f_k(x) > \frac{1}{n}\right] \leqslant m\left(\limsup_{k \to \infty} E\left[x; f_k(x) > \frac{1}{n}\right]\right) = 0$$

于是

$$mE\left[x; \lim_{k \to \infty} f_k(x) > 0\right] = m\left(\bigcup_{n=1}^{\infty} E\left[x; \lim_{k \to \infty} f_k(x) > \frac{1}{n}\right]\right)$$

$$\leq \sum_{n=1}^{\infty} mE\left[x; \lim_{k \to \infty} f_k(x) > \frac{1}{n}\right]$$

$$= 0$$

有 $\lim_{n\to\infty} f_n(x) = 0$ a.e.于E.

逆命题一般不成立.

如设
$$f_n(x) = \left| \chi_{\left[\frac{1}{n},1\right]}(x) - 1 \right|, \chi(x)$$
 为示性函数. $E = [0,1]$. 则

$$mE\left[x; \lim_{k \to \infty} f_k(x) > 0\right] \leqslant \lim_{n \to \infty} m\left[0, \frac{1}{n}\right] = 0$$

于是 $\lim_{n\to\infty} f_n(x) = 0$ a.e.于E. 而取 $\varepsilon = \frac{1}{2}$.

$$\sum_{n=1}^{\infty} mE[x; f_n(x) > \varepsilon] = \sum_{n=1}^{\infty} mE\left[0, \frac{1}{n}\right] = \sum_{n=1}^{\infty} \frac{1}{n} = +\infty$$

5. 设 $mE < +\infty$, f(x) 在 E 上非负可测,证明对于任意 y, $E_y \stackrel{def}{=\!=\!=\!=} E[x; f(x) = y]$ 都是可测的,进而证明使 $mE_y > 0$ 的 y 最多有可数多个.

证明. $E_y = E[x; f(x) \geqslant y] \cap E[x; f(x) \leqslant y]$ 可测.

任给 $k \in \mathbb{N}^*$, 设 $M_k = \{y; mE_y > \frac{1}{k}\}$. 则若存在 k_0 使 M_{k_0} 有无穷多个点,设 $\{y_i\}_{i=1}^{\infty} \subset M_{k_0}$, 则 $y_i \neq y_j \Rightarrow E_{y_i} \cap E_{y_j} = \varnothing$. 于是

$$mE \geqslant m\left(\bigcup_{i=1}^{\infty} E_{y_i}\right) \geqslant \sum_{i=1}^{\infty} \frac{1}{k_0} = +\infty$$

与 $mE < +\infty$ 矛盾.于是所有使 $mE_y > 0$ 的 y 作成的集合 M, 有

$$M = \bigcup_{k=1}^{\infty} M_k$$

其中 M_k 为空集或有限集,于是 M 可数.

6. 证明如果 f(x) 是 \mathbb{R}^n 上的连续函数,则 f(x) 在 \mathbb{R}^n 的任何可测子集 E 上都可测.

证明. 任给 $x_0 \in \mathbb{R}^n[x; f(x) < a]$, 由 f(x) 连续, $\exists \delta > 0$ 使

$$N(x_0, \delta) \subset \mathbb{R}^n[x; f(x) < a]$$

于是 $\mathbb{R}^n[x; f(x) < a]$ 为开集.又任给可测子集 $E. E[x; f(x) < a] = E \cap \mathbb{R}^n[x; f(x) < a]$ 可测,于是 f(x) 在 E 上可测.

7. 设 f(x) 是 \mathbb{R}^1 中可测子集 E 上的单调函数,证明 f(x) 在 E 上可测.

证明. 先设 f(x) 是单调增函数.

任给 a. 令 $x_0 = \inf E[x; f(x) \ge a]$. 若 x_0 不存在,则 $E[x; f(x) \ge a] = \emptyset$ 可测. 若 $x_0 = -\infty$, 有 $E[x; f(x) \ge a] = E$ 可测.若 $x_0 > -\infty$, 则 $E[x; f(x) \ge a] = E \cap [x_0, +\infty]$ 可测.

若
$$f(x)$$
 单调减,则 $-f(x)$ 单调增,可测.于是 $f(x)$ 可测.

8. 证明 \mathbb{R}^n 中可测子集 E 上的函数 f(x) 可测的充要条件是存在 E 上的一串简单函数 $\psi_m(x)$, 使

$$f(x) = \lim_{m \to \infty} \psi_m(x) \quad (x \in E).$$

证明. 充分性.

简单函数 $\psi_m(x)$ 可测. 事实上,存在 E 的有限多个可测子集 E_1, E_2, \cdots, E_n 及 n 个常数 c_i 使

$$\psi_m(x) = \sum_{i=1}^n c_i \chi_{E_i}(x)$$

而集合示性函数 $\chi_{E_i}(x)$ 可测.

于是 $f(x) = \lim_{m \to \infty} \psi_m(x)$ 可测.

必要性.

f(x) 可测,则 $f^+(x)$, $f^-(x)$ 可测.于是有简单函数列 $\psi_m^+(x) \to f^+(x)$, $\psi_m^-(x) \to f^-(x)$. 令 $\psi_m(x) = \psi_m^+(x) - \psi_m^-(x)$. 则其为简单函数,且由

$$|\psi_m(x) - f(x)| = |\psi_m^+(x) - \psi_m^-(x) - (f^+(x) - f^-(x))| \le |\psi_m^+(x) - f^+(x)| + |\psi_m^-(x) - f^-(x)|$$

$$\exists f(x) = \lim_{m \to \infty} \psi_m(x).$$

9. 证明: 当 $f_1(x)$ 是 $E_1 \subset \mathbb{R}^p$ 上的可测函数, $f_2(y)$ 是 $E_2 \subset \mathbb{R}^q$ 中的可测函数,且 $f_1(x) \cdot f_2(y)$ 在 $E = E_1 \times E_2$ 上几乎处处有意义时, $f_1(x) f_2(y)$ 是 E 上的可测函数.

证明. 将 $f_1(x)$ 看作 E 上的函数,即 $f_1(x) = f_1((x,y))$.则 $E[(x,y); f_1(x) \ge a] = E[x; f_1(x) \ge a] \times E_2$ 可测.于是 $f_1(x)$ 在 E 上可测.同样 $f_2(y)$ 在 E 上可测.于是 $f_1(x)f_2(y)$ 在 E 上可测.

10. 证明: 如果 f(x) 是定义于 \mathbb{R}^n 上的可测子集 E 上的函数, 则 f(x) 在 E 上可测的充要条件是对 \mathbb{R}^1 中任意 Borel 集合 B,

$$f^{-1}(B) \stackrel{def}{=\!=\!=\!=} E[x; f(x) \in B]$$

都是 E 的可测子集, 如果 f(x) 还是连续的, 则 $f^{-1}(B)$ 还是 Borel 集.

证明. 必要性.

用 \mathcal{B}_1 表示 \mathbb{R}^1 中使 $f^{-1}(B)$ 是 E 可测子集的 B 所作成的集合族, 下证其为包含全体 \mathbb{R}^1 开集的 σ – 代数 .于是有 \mathbb{R}^1 中所有 Borel 集合构成的集合族 $\mathcal{B} \subset \mathcal{B}_1$. 结论得证.

先考虑开区间 (a,b), 则

$$f^{-1}((a,b)) = E[x; a < f(x) < b] = E[x; f(x) > a] \cap E[x; f(x) < b]$$

可测. $\forall G$ 为开集, 有 $G = \bigcup_{i=1}^{\infty} (a_i, b_i)$ 以及

$$f^{-1}(G) = \bigcup_{i=1}^{\infty} f^{-1}((a_i, b_i))$$

可测.于是 $G \in \mathcal{B}_1$. 又有 $\emptyset \in \mathcal{B}_1$.

又若 $A \in \mathcal{B}_1$. 则

$$f^{-1}(A^c) = E[x; f(x) \notin A] = E \cap (E[x; f(x) \in A])^c$$

可测. 于是 $A^c \in \mathcal{B}_1$.

又若 $\{A_n\}_{n=1}^{\infty} \subset \mathcal{B}_1$. 则

$$f^{-1}\left(\bigcup_{n=1}^{\infty} A_n\right) = \bigcup_{n=1}^{\infty} f^{-1}(A_n)$$

可测.于是 $\bigcup_{n=1}^{\infty} A_n \in \mathcal{B}_1$.

于是 \mathcal{B}_1 是包含全体 \mathbb{R}^1 开集的 σ – 代数.

充分性. $[a, +\infty] \in \mathcal{B}$, 于是 $E[x; f(x) \ge a] = f^{-1}([a, +\infty])$ 可测.

若 f(x) 连续. 记 $\mathcal{B}_2 = \{B; f^{-1}(B)$ 为 Borel 集}. 则任给开集 $G \subset \mathbb{R}^1, G \in \mathcal{B}_2.\emptyset \in \mathcal{B}_2, E \in \mathcal{B}_2.$ 又 若 $A \in \mathcal{B}_2$, 则 $f^{-1}(A^c) = E \cap (f^{-1}(A))^c$ 为 Borel 集. $A^c \in \mathcal{B}_2$. 若 $\{A_n\}_{n=1}^{\infty} \subset \mathcal{B}_2$, 则 $f^{-1}(\bigcup_{n=1}^{\infty} A_n) = \bigcup_{n=1}^{\infty} f^{-1}(A_n)$ 为 Borel 集. $\bigcup_{n=1}^{\infty} A_n \in \mathcal{B}_2$. 于是 \mathcal{B}_2 是包含全体 \mathbb{R}^1 开集的 $\sigma -$ 代数. $\mathcal{B} \subset \mathcal{B}_2$.

11. 设 f(x) 是 E 上的可测函数, g(y) 是 \mathbb{R}^1 上的连续函数. 证明 g[f(x)] 是 E 上的可测函数.

证明. 任给 \mathbb{R}^1 中开集 G. 由 g(x) 连续, 于是 $g^{-1}(G)$ 为开集. 又 f(x) 可测, 于是 $f^{-1}\left(g^{-1}(G)\right)$ 可测. 于是 $(g \circ f)^{-1}(G)$ 可测.说明 f(g(x)) 是 E 上的可测函数.

12. 证明: 如果 $f(x) = f(x_1, \dots, x_n)$ 是 \mathbb{R}^n 上的可微函数, 则

$$\frac{\partial}{\partial x_i} f(x_1, \dots x_n), i = 1, 2, \dots, n$$

都是 \mathbb{R}^n 上的可测函数.

证明.

$$\frac{\partial}{\partial x_i} f(x_1, \dots, x_n) = \lim_{n \to \infty} n \cdot \left[f\left(x_1 + \frac{1}{n}, x_2, \dots, x_n\right) - f\left(x_1, \dots, x_n\right) \right]$$

而 f(x) 可微. 于是 $f\left(x_1 + \frac{1}{n}, x_2, \dots, x_n\right)$, $f(x_1, \dots, x_n)$ 连续. 于是可测. 由定理 5 推论 2 得证. \Box

4.2 Egoroff 定理

1. 举例说明 Egoroff 定理中的条件 $mE < +\infty$ 一般来说是不能取消的.

证明. 考虑可测函数列

$$f_n(x) = \chi_{(0,n)}(x), \quad n = 1, 2, \dots, x \in (0, \infty)$$

其在 $(0,\infty)$ 上处处收敛于 $f(x) \equiv 1$. 而在 $(0,\infty)$ 中任一个有限测度集外均不一致收敛于 $f(x) \equiv 1$. \Box

2. 设 $mE < +\infty, f_n(x), n = 1, 2, \cdots$ 都是 E 上的几乎处处有限的可测函数, 并且 $\lim_{n \to \infty} f_n(x) = 0$ a.e., 证明必有 E 的可测子集序列 $\{E_n\}$, 使 $E_n \subset E_{n+1}, n = 1, 2, \cdots$,

$$\lim_{n \to +\infty} mE_n = mE,$$

而在每一 E_n 上, $\{f_n(x)\}$ 都一致收敛于零.

证明. 由 Egoroff 定理, $\forall \delta_n = \frac{1}{n}$, 有可测子集 e_n 使 $me_n < \delta_n$. 且在 $F_n = E - e_n$ 上有 $\{f_n(x)\}$ 一致收敛于零. 于是考虑集合

$$E_n = \bigcup_{k=1}^n F_k.$$

 $E_n \subset E$, 可测. 且在其上 $\{f_n(x)\}$ 一致收敛于零. 又有 $\forall n$,

$$0 \leqslant mE - mE_n = m(E - E_n) \leqslant m(E - F_n) < \frac{1}{n}.$$

于是
$$\lim_{n \to +\infty} mE_n = mE$$
.

3. 设 $mE < +\infty$, $f_n(x)$ 是 E 上的几乎处处有限的可测函数. $n = 1, 2, \cdots$. $\lim_{n \to \infty} f_n(x) = 0$ a.e. 于 E. 证 明必有 $\{f_n(x)\}$ 的子序列 $\{f_{n_i}(x)\}$ 在 E 上几乎处处绝对收敛. 进而证明有非负实数序列 $\{t_n\}_{n=1}^{\infty}$, 使 $\sum_{n=1}^{\infty} t_n = +\infty$ 而 $\sum_{n=1}^{\infty} |t_n f_n(x)| < +\infty$ a.e. 于 E.

证明. 不妨去掉 E 中使 $f_n(x) = +\infty$ 的点.

由上题, 存在 $\{E_n\}$ 使 $E_n \subset E_{n+1}$ 且在每个 E_k 上, $\{f_n(x)\}$ 一致收敛于零. 于是可找到一列数 $n_1 < n_2 \cdots < n_k \cdots$ 使 $\forall x \in E_k, n > n_k$ 有 $|f_n(x)| < \frac{1}{2^k}$.

令 $G = \bigcup_{k=1}^{\infty} E_k$. 由上题, $m(E - G) = 0, \forall x \in G, \exists k_0$ 使 $x \in E_{k_0}$. 于是

$$\sum_{k=1}^{\infty} |f_{n_k}(x)| = \sum_{k=1}^{k_0} |f_{n_k}(x)| + \sum_{k=k_0+1}^{\infty} |f_{n_k}(x)| < +\infty$$

于是 $\sum_{n=1}^{\infty} f_{n_k}(x)$ 在 E 上几乎处处绝对收敛.

令 $t_{n_k}=1, t_{n'}=0 (\forall n'\neq n_k)$ 于是 $\sum_{n=1}^{\infty}t_n=+\infty$ 且

4. 取消上题中 $mE < +\infty$ 的限制.

证明. 设 $E_1 = E \cap N(0,1)$. 由上题可知, 有 $F_1 \subset E_1$, 且 $m(E_1 - F_1) = 0$. 有 n 的子列 n_i 使 $\sum_{i=1}^{\infty} f_{n_i^{(1)}}(x)$ 在 F_1 上绝对收敛. 又设 $E_k = E \cap N(0,k)$. 有 $F_k \subset E_k$ 使得 $m(E_k - F_k) = 0$ 且有 $n_i^{(k-1)}$ 的子列 $n_i^{(k)}$ 使得 $\sum_{i=1}^{\infty} f_{n_i^{(k)}}(x)$ 在 F_k 上绝对收敛.

取
$$\eta_i=\eta_i^{(i)}$$
, 则有 $\sum\limits_{i=1}^\infty f_{n_i^{(k)}}(x)$ 在 $F=\bigcup\limits_{k=1}^\infty (x)$ 上绝对收敛. 又 \forall k , 有

$$m(E-F) \leqslant m(E-E_k) + m(E_k) - F_k \leqslant mE - mE_k$$

4.3 可测函数的结构 Lusin定理

1. 若 E 是有界可测集, f(x) 在 E 上几乎处处有限, 则 f(x) 可测的充要条件是有一串在整个空间上连续的函数 $\Phi_n(x)$, 使

$$\lim_{n\to\infty} \Phi_n(x) = f(x) \text{ a.e.} \exists E$$

试就空间维数为一时证明之.

证明. 必要性.

E 有界可测, f(x) 在 E 上几乎处处有限. 则对 1, 有 $F_1 \subset E$ 使 $m(E-F_1) < 1$ 且 f(x) 是 F_1 上连续函数.

一般对 n+1, 令 $U_n=\bigcup_{m=1}^n F_m$, 有 $F_{n+1}\subset E-U_n$, 且 $m(E-F_{n+1})<\frac{1}{n+1}$. f(x) 是 F_{n+1} 上连续函数.

由定理 2 的证明, 对 U_n , 将 f(x) 扩张成 \mathbb{R}^1 上的连续函数 $\Phi_n(x)$. 则断言 $\lim_{n\to\infty}\Phi_n(x)=f(x)$ a.e.于E.

事实上, $\forall n, \ m\left(E - \bigcup_{n=1}^{\infty} F_n\right) < \frac{1}{n}$. 于是 $m\left(E - \bigcup_{n=1}^{\infty} F_n\right) = 0$. 又 $\forall x \in \bigcup_{n=1}^{\infty} F_n$. 有 n_0 使 $\forall n > n_0, \Phi_n(x) = f(x)$. 于是 $\lim_{n \to \infty} \Phi_n(x) = f(x)$ a.e.于E.

充分性.

由连续函数可测,上节推论2即得结论.

2. 证明有界闭集上的任何连续函数都是有界的.

证明. f(x) 在有界闭集 F 上连续. $\forall x \in F$, 有 $\delta_x > 0$ 使 $\forall x' \in E \cap N(x, \delta_x)$ 有

$$|f(x') - f(x)| < 1$$

又 $F \subset \bigcup_{x \in F} N(x, \delta_x)$,于是由有限覆盖定理,有 m > 0 使 $F \subset \bigcup_{i=1}^m N(x_i, \delta_i)$. 于是有 $f^{\to}(F) \subset \bigcup_{i=1}^m N(f(x_i), 1)$. 后者有界.

4.4 依测度收敛

证明. 由不等式

$$|f_n(x) + g_n(x) - (f(x) + g(x))| \le |f_n(x) - f(x)| + |g_n(x) - g(x)|$$

有 $\forall \delta > 0$,

$$E[x; |f_n(x) + g_n(x) - (f(x) + g(x))| \ge \delta] \subset E\left[x; |f_n(x) - f(x)| \ge \frac{\delta}{2}\right] \cup E\left[x; |g_n(x) - g(x)| \ge \frac{\delta}{2}\right]$$

由 $f_n(x) \Rightarrow f(x) \mp E, g_n(x) \Rightarrow g(x) \mp E$, 而上式后者测度在 $n \to \infty$ 时为 0. 于是 $f_n(x) + g_n(x) \Rightarrow f(x) + g(x) \mp E$.

2. 设 $|f_n(x)| \leq K$ a.e.于 $E, n \geq 1$, 且 $f_n(x) \Rightarrow f(x)$ 于 E. 证明 $|f(x)| \leq K$ a.e.于E.

证明. $f_n(x) \Rightarrow f(x) \mp E$, 于是有 $f(x) = \lim_{i \to \infty} f_{n_i}(x)$ a.e. 于 E. 对于每个 $n, |f_n(x)| > K$ 的集合记作 E_n , 则 $m\left(\bigcup_{n=1}^{\infty} E_n\right) = 0$.

又记
$$f(x) = \lim_{i \to \infty} f_{n_i}(x)$$
 在 $E - B$ 上成立且 $mB = 0$. 于是有 $\forall x \in \left(E - \bigcup_{n=1}^{\infty} E_n - B\right)$,

$$|f(x)| = \left| \lim_{i \to \infty} f_{n_i}(x) \right| \leqslant K$$

$$\mathbb{H} \ m \left(\bigcup_{n=1}^{\infty} E_n \cup B \right) = 0$$

3. 举例说明 $mE = +\infty$ 时, 定理 1 不成立.

证明. 同上节反例,设 $f_n(x) = \chi_{(0,n)}(x)$. 其中 $\chi_{(0,n)}$ 为 (0,n) 的示性函数. $E = (0,+\infty)$. 则有 $|f_n(x)| \le 1$, 且令 f(x) = 1 有

$$f(x) = \lim_{n \to \infty} f_n(x)$$
 a.e. $\mp E$

而取 $\delta = \frac{1}{n}, \forall n$ 有 $mE\left[x; |f(x) - f_n(x)| \geqslant \frac{1}{2}\right] = m\{(n, +\infty)\} = +\infty$. 于是

$$\lim_{n \to \infty} mE\left[x; |f(x) - f_n(x)| \geqslant \frac{1}{2}\right] = +\infty$$

定理不成立.

5.1 非负函数的积分

1. 试就 [0,1] 上的Dirichlet 函数 D(x) 和Riemann函数 R(x) 计算 $\int_{[0,1]} D(x) dx$ 和 $\int_{[0,1]} R(x) dx$ 证明.

$$D(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$$

取分划 $D: E_1 = \mathbb{Q} \cap [0,1], E_2 = [0,1] - E_1$. 有 $s_D = S_D = 0$. 于是 $\int_{[0,1]} D(x) dx = 0$

$$R(x) = \begin{cases} \frac{1}{n}, & x = \frac{n}{m}, m, m \leq m,$$

同样取上述分划D, 有 $s_D=S_D=0$. 于是 $\int_{[0,1]}R(x)\;dx=0$

2. 证明定理 1(*iii*) 中的第一式.

证明. 设 $\varepsilon > 0$, 则由 E 的分划 D_1, D_2 使

$$\int_{E} f(x) \, dx - \frac{\varepsilon}{2} < s_{D_1}(f); \, \int_{E} g(x) \, dx - \frac{\varepsilon}{2} < s_{D_2}(g)$$

其中 $s_{D_1}(f), s_{D_2}(g)$ 是小和数,合并分划为 D,则当 $s_D(f+g)$ 是 f(x)+g(x) 的小和数时

$$\int_{E} [f(x) + g(x)] dx \geqslant s_D(f+g) \geqslant s_D(f) + s_D(g) \geqslant s_{D_1}(f) + s_{D_2}(g) \geqslant \int_{E} f(x) dx + \int_{E} g(x) dx - \varepsilon$$

由 ε 任意

$$\int_E [f(x) + g(x)] \ dx \geqslant \int_E f(x) \ dx + \int_E g(x) \ dx$$

3. 补做定理 $5 + \int_E f(x) dx = +\infty$ 的情形的详细证明.

证明. 若 $\int_E f(x) \ dx = +\infty$. 有 $\forall M > 0$, 存在 m,k 使

$$\int_{E_m} \{f(x)\}_k \, dx > M$$

而 $\{f_n(x)\}_k$ 和 $\{f(x)\}_k$ 在 E_m 上满足已证情形. 于是有

$$\lim_{n \to \infty} \int_E f_n(x) \ dx \geqslant \lim_{n \to \infty} \int_{E_m} \{f_n(x)\}_k \ dx = \int_{E_m} \{f(x)\}_k \ dx > M$$

由 M 任意, $\lim_{n\to\infty}\int_E f_n(x) dx = +\infty$

4. 证明: 如果 f(x) 是 E 上的非负函数, $\int_E f(x) dx = 0$ 则 f(x) = 0 a.e.于E.

证明. $\forall n,$ 设 $E_n = E[x; f(x) > \frac{1}{n}],$ 由

$$0 = \int_{E} f(x) \ dx \geqslant \int_{E_{n}} f(x) \ dx \geqslant \frac{mE_{n}}{n}$$

得 $mE_n=0$, 于是

$$mE[x; f(x) \neq 0] = m\left(\bigcup_{n=1}^{\infty} E_n\right) = 0$$

5. 证明: 当 $mE < +\infty$ 时, E 上的非负可测函数 f(x) 的积分 $\int_E f(x) dx < +\infty$ 的充要条件是 $\sum_{k=0}^\infty 2^k m E[x; f(x) \geqslant 2^k] < +\infty.$

证明. 必要性.

$$\begin{split} \int_{E} f(x) \; dx &= \int_{E[x;f(x)<1]} f(x) \; dx + \int_{E[x;f(x)\geqslant 1]} f(x) \; dx \\ &\geqslant \int_{E[x;f(x)\geqslant 1]} f(x) \; dx \\ &= \int_{E} \sum_{k=0}^{\infty} \chi_{E[x;2^{k}\leqslant f(x)\leqslant 2^{k+1}]}(x) f(x) \; dx \\ &= \sum_{k=0}^{\infty} \int_{E} \chi_{E[x;2^{k}\leqslant f(x)\leqslant 2^{k+1}]}(x) f(x) \; dx \\ &\geqslant \sum_{k=0}^{\infty} 2^{k} m E\left[x;2^{k}\leqslant f(x)\leqslant 2^{k+1}\right] \\ &= \frac{1}{2} \sum_{k=0}^{\infty} 2^{k} m E\left[x;2^{k}\leqslant f(x)\right] + \frac{1}{2} m E[x;f(x)>1] \end{split}$$

于是有 $\sum_{k=0}^{\infty} 2^k mE\left[x; 2^k \leqslant f(x)\right] < +\infty.$

充分性.

$$\int_{E} f(x) dx = \int_{E[x; f(x) < 1]} f(x) dx + \sum_{k=0}^{\infty} \int_{E} \chi_{E[x; 2^{k} \le f(x) \le 2^{k+1}]}(x) f(x) dx$$

$$\leq mE[x; f(x) < 1] + \sum_{k=0}^{\infty} 2^{k+1} mE\left[x; 2^{k} \le f(x) < 2^{k+1}\right]$$

$$= mE + \sum_{k=0}^{\infty} 2^{k} mE[x; f(x) \ge 2^{k}]$$

$$< +\infty$$

如果 f(x), g(x) 都是 E 上的非负可测函数, 并且对于任意常数 α 都有

$$mE[x; f(x) \geqslant \alpha] = mE[x; g(x)] \geqslant \alpha$$

则

$$\int_{E} f(x) \ dx = \int_{E} g(x) \ dx.$$

证明. 若有 a 使 $mE[x; f(x) \geqslant a] = mE[x; g(x) \geqslant a] = +\infty$, 则有

$$\int_{E} f(x) \ dx = \int_{E} g(x) \ dx = \infty$$

下设 $\forall a, mE[x; f(x) \ge a] < +\infty$. 于是对任意 a < b, 有

$$\begin{split} mE[x; a \leqslant f(x) < b] &= mE[x; f(x) \geqslant a] - mE[x; f(x) \geqslant b] \\ &= mE[x; g(x) \geqslant a] - mE[x; g(x) \geqslant b] \\ &= mE[x; a \leqslant g(x) < b] \end{split}$$

对每个正整数 k 以及 $j=0,1,\cdots,k2^{k-1}$ 令

$$E_{k,j} = E\left[x; \frac{j}{w^k} \le f(x) < \frac{k+1}{2^k}\right]; E_{k,k2^k} = E[x; f(x) \ge k]$$

于是 $E = \bigcup_{i=0}^{k2^k} E_{k,j}$. 由定理 8 的证明: 令 $\psi_k(x) = \sum_{j=0}^{k2^k} \frac{j}{2^k} \chi_{E_{k,j}}(x)$.

有 $f(x) = \lim_{k \to \infty} \psi_k(x)$. 且 $\psi_k(x)$ 是递增简单函数列. 同样定义

$$E'_{k,j} = E\left[x; \frac{j}{w^k} \leqslant g(x) < \frac{k+1}{2^k}\right]; E'_{k,k2^k} = E[x; g(x) \geqslant k]$$

以及

$$\psi'_k(x) = \sum_{j=0}^{k2^k} \frac{j}{2^k} \chi_{E'_{k,j}}(x)$$

同样有 $g(x) = \lim_{k \to \infty} \psi_k'(x)$. 且 $\psi_k'(x)$ 是递增简单函数列.于是

$$\int_{E} f(x) \, dx = \lim_{k \to \infty} \int_{E} \psi_{k}(x) \, dx = \lim_{k \to \infty} \sum_{j=0}^{k2^{k}} \frac{j}{2^{k}} m E_{k,j}$$
$$= \lim_{k \to \infty} \sum_{j=0}^{k2^{k}} \frac{j}{2^{k}} m E'_{k,j} = \int_{E} g(x) \, dx$$

7. 设 $mE < +\infty, f(x)$ 是 E 上的有界非负可测函数, $0 \le f(x) < M$,

$$0 = y_0^{(n)} < y_1^{(n)} < \dots < y_{k_n}^{(n)} = M, n = 1, 2, \dots$$

使

$$\max \left\{ y_i^{(n)} - y_{i-1}^{(n)}; i = 1, 2, \cdots, k_n \right\} = l_n \to 0 (n \to +\infty),$$

$$E_i^{(n)} = E\left[x; y_{i-1}^{(n)} \leqslant f(x) < y_i^{(n)} \right], \xi_i^{(n)} \in E_i^{(n)}, i = 1, 2, \cdots, k; n = 1, 2, 3, \cdots$$

证明:

$$\int_{E} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{k_n} f\left(\xi_i^{(n)}\right) m E_i^{(n)}$$

证明. 由积分定义, 可得不等式

$$\sum_{i=1}^{k_n} y_{i-1}^{(n)} \cdot mE_i^{(n)} \leqslant \int_E f(x) \, dx \leqslant \sum_{i=1}^{k_n} y_i^{(n)} \cdot mE_i^{(n)}$$

$$\leqslant \sum_{i=1}^{k_n} y_{i-1}^{(n)} \cdot mE_i^{(n)} + l_n \sum_{i=1}^{k_n} mE_i^{(n)}$$

$$= \sum_{i=1}^{k_n} y_{i-1}^{(n)} \cdot mE_i^{(n)} + l_n mE.$$

由 $l_n \to 0$ 且

$$\sum_{i=1}^{k_n} y_{i-1}^{(n)} \cdot mE_i^{(n)} \leqslant \sum_{i=1}^{k_n} f\left(\xi_i^{(n)}\right) \cdot mE_i^{(n)} \leqslant \sum_{i=1}^{k_n} y_i^{(n)} mE_i^{(n)}$$

于是

$$\int_{E} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{k_n} f\left(\xi_i^{(n)}\right) m E_i^{(n)}.$$

8. 设 $mE<+\infty, f(x)$ 是 E 上的非负可测函数, $\int_E f(x)\ dx<+\infty, e_n=E[x;f(x)\geqslant n]$,证明 $\lim_{n\to\infty}n\cdot me_n=0$.

证明.

$$\int_{E} f(x) \ dx \geqslant \int_{E} \sum_{n=1}^{\infty} \chi_{E[x; n \leqslant f(x) < n+1]}(x) f(x) \ dx \geqslant \sum_{n=1}^{\infty} n \cdot m E[x; n \leqslant f(x) < n+1]$$

由 $\int_E f(x) dx < +\infty$, 于是 $\forall \varepsilon > 0$, $\exists n_0$ 使

$$\varepsilon > \sum_{n=n_0}^{\infty} n \cdot mE[x; n \leqslant f(x) < n+1] \geqslant n_0 \sum_{n=n_0}^{\infty} mE[x; n \leqslant f(x) < n+1] = n_0 \cdot mE[x; f(x) \geqslant n_0]$$

于是
$$\lim_{n\to\infty} n \cdot me_n = 0$$
.

9. 设 f(x) 是 E 上的非负可测函数, $\int_E f(x) dx < +\infty$, 对任意 r > 0, 令

$$F(r) = \int_{E[x;||x|| \leqslant r]} f(x) \ dx$$

证明 F(r) 是 $(0,\infty)$ 上的连续函数.

证明. f(x) 非负可测,于是有递增简单函数列 $\psi_k(x)$,使 $f(x) = \lim_{k \to \infty} \psi_j(x)$. 于是 $\forall \varepsilon > 0, \exists k$. 使

$$\int_{E} [f(x) - \psi_k(x)] dx = \int_{E} f(x) dx - \int_{E} \psi_k(x) dx < \frac{\varepsilon}{2}.$$

设 $\psi_k(x) < M$, 则可取 $h < \frac{\varepsilon}{4M}$, 有

$$\begin{split} F(r+h) - F(r) &= \int_{E[x;r\leqslant \|x\|< r+h]} f(x) \ dx \\ &= \int_{E[x;r\leqslant \|x\|< r+h]} [f(x) - \psi_k(x)] \ dx + \int_{E[x;r\leqslant \|x\|< r+h]} \psi_k(x) \ dx \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon \end{split}$$

于是F(r)连续.

10. 证明: 如果非负可测函数 f(x) 在 E 上的积分 $\int_E f(x) \ dx < +\infty$, 则对于任意 $c,0 \le c \le \int_E f(x) \ dx$, 都有 E 的可测子集 E_1 , 使 $\int_{E_1} f(x) \ dx = c$.

证明. 由上题证明可知, 当 $r \to 0$ 时, 有 $F(r) \to 0$. 于是定义 F(0) = 0. 则 F(r) 为 $[0, +\infty]$ 上的连续函数. 且值域为 $[0, \int_E f(x) dx]$. 由连续函数中值定理. $\forall \, 0 \leqslant c \leqslant \int_E f(x) dx$. 有 r_0 使 $F(r_0) = c$. 于是取

$$E_1 = E[x; ||x|| < r_0]$$

即可

11. 设 $mE < +\infty$, E_1, E_2, \cdots , E_m 是 E 的 m 个可测子集, 正整数 $k \leq m$. 证明: 如果 E 中每一个点至 少属于 k 个 E_i , 则有 i 使 $mE_i \geqslant \frac{k}{m}mE$.

证明. $\forall x \in E, \sum_{i=1}^{m} \chi_{E_i}(x) \geqslant k$. 于是

$$\int_{E} \sum_{i=1}^{m} \chi_{E_{i}}(x) \ dx \geqslant kmE.$$

若 $\forall i, mE_i < \frac{k}{m}mE$

$$\int_{E} \sum_{i=1}^{m} \chi_{E_{i}}(x) \ dx = \sum_{i=1}^{m} \int_{E} \chi_{E_{i}}(x) \ dx < kmE.$$

矛盾.

12. 设 $mE < + = \infty, f(x) > 0$ 且在 E 上可测. 证明对任意 $\delta > 0$, 都有 d > 0, 使只要 $E_1 \subset E, mE_1 \geqslant \delta$ 便有 $\int_{E_1} f(x) dx \geqslant d$.

证明. 反证法.

mE = 0 时, 结论显然成立.

$$S = \bigcap_{i=1}^{\infty} \bigcup_{k=1}^{\infty} E_k,$$

则 $mS \geqslant \delta$, 且

$$\int_{S} f(x) \ dx = \int_{E} \chi_{S}(x) f(x) \ dx \leqslant \int_{E} f(x) \chi_{\bigcup_{k=n}^{\infty} E_{k}}(x) \ dx \leqslant \sum_{k=n}^{\infty} \frac{1}{2^{k}} = \frac{1}{2^{n-1}}$$

令 $n \to \infty$, 有 $\int_S f(x) \ dx = 0$. 于是 f(x) = 0 a.e. 于 S. 与 f(x) > 0. 矛盾.

于是
$$\forall \delta > 0.\exists k$$
, 使 $\forall mE_1 \geq \delta$. 有 $\int_{E_1} f(x) dx \geq \frac{1}{2^k}$.

13. 设 $mE < +\infty$, f(x) 是 E 上的有界非负可测函数, 证明有 [0, mE] 上的非负单调不增函数 g(y), 使对任意常数 a 都有

$$mE[x;f(x)\geqslant a]=m\left\{y;0\leqslant y\leqslant mE,g(g)\geqslant a\right\}$$

进而证明

$$\int_{E} f(x) \ dx = \int_{[0,mE]} g(y) \ dy$$

证明. 令 $\mu(s) = mE[x; f(x) \ge s], g(y) = \inf\{s\mu(s) \le y\}.$ 则有 g(y) 非负且单调不增.

事实上, 若 $y_1 < y_2$. 有 $\{s; \mu(s) \leq y_1\} \subset \{s; \mu(s) \leq y_2\}$. 于是 $g(y_1) \geqslant g(y_2)$.

下证, $\forall a$, 设 $mE[x; f(x) \ge a] = \mu(a) = y_0$. 则有

$$\{y; 0 \le y \le mE, \ g(y) \ge a\} = [0, y_0) \vec{\boxtimes} [0, y_0]$$

 $\forall y < y_0$, 往证 $g(y) \ge a$. 事实上, 若 g(y) < a, 有 $\varepsilon > 0$, s > 0. 使 $s = a - \varepsilon$, 且 $\mu(s) \le y$. 而由 $E[x; f(x) \ge a] \subset E[x; f(x) \ge s]$, 有 $y_0 = \mu(a) \le \mu(s) \le y$. 矛盾.

 $\forall y > y_0$. 往证 g(y) < a, 若 $g(y) \ge a$. 下面推出矛盾.

首先有 $\mu(s)$ 右连续. 事实上, 若 $h \to 0$. 有 $\mu(s-h) - \mu(s) = mE[x; s > f(x) \ge s - h] \to 0$.

此时考虑递增数列 $S_n \to a$. 由 $g(y) \ge a$, 有 $\mu(s_n) > y$. 于是 $y_0 = \mu(a) = \lim_{n \to \infty} \mu(s_n) \ge y$. 与 $y > y_0$ 矛盾.

于是有 $m\{y; 0 \le y \le mE, g(y) \ge a\} = y_0 = mE[x; f(x) \ge a]$ 类似 6 题证明, 且注意到 f(x).g(x) 值域相同, 得第二个等式.

14. 设 $f_n(x)$, $n = 1, 2, 3, \cdots$ 都是 E 上的非负可测函数, $f_n(x) \ge f_{n+1}(x)$ ($x \in E$, $n = 1, 2, 3, \cdots$), $f(x) = \lim_{n \to \infty} f_n(x)$ 并且有 n_0 使 $\int_E f_{n_0}(x) dx < +\infty$. 证明

$$\int_{E} f(x) \ dx = \lim_{n \to \infty} \int_{E} f_n(x) \ dx.$$

举例说明当 $\int_E f(x) dx$ 恒为 $+\infty$ 时, 上述结论不成立.

证明. 令 $g_k(x) = f_{n_0}(x) - f_{n_0+k}(x)$, 则 $g_k(x)$ 满足levi 定理条件, 且 $\lim_{k\to\infty} g_k(x) = f_{n_0}(x) - f(x)$. 有

$$\int_{E} f_{n_0}(x) dx - \int_{E} f(x) dx = \int_{E} f_{n_0}(x) dx - \lim_{k \to \infty} \int_{E} f_{n_0+k}(x) dx$$
$$= \int_{E} f_{n_0}(x) dx - \lim_{n \to \infty} \int_{E} f_n(x) dx$$

由 $\int_E f_{n_0}(x) dx < +\infty$, 得结论

令 $f_n(x) = \chi_{[n,+\infty)}(x)$, 则 $f(x) = \lim_{n \to \infty} f_n(x) = 0$. 于是 $\int_E f(x) dx = 0$. 且

$$\lim_{n\to\infty} \int_E f_n(x) \ dx = +\infty.$$

15. 设 f(x) 是 E 上的非负可测函数, 如果对任意 m, 都有

$$\int_{E} [f(x)]^{m} dx = \int_{E} f(x) dx < +\infty,$$

则 f(x) 几乎处处等于一可测集合的示性函数.

证明. 因为 $\forall k \in N$, 有

$$mE\left[x; f(x) \geqslant 1 + \frac{1}{k}\right] \left(1 + \frac{1}{k}\right)^n \leqslant \int_E f^n(x) \ dx = \lambda \quad (n \in \mathbb{N})$$

于是 $mE\left[x;f(x)\leqslant 1+\frac{1}{k}\right]=0$. 有 $mE\left[x;f(x)>1\right]=0$. 于是 $f(x)\leqslant 1$, a.e. 于 E. 从而又有

$$\lim_{n \to \infty} f^{n}(x) = \begin{cases} 1, & f(x) = 1\\ 0, & f(x) < 1 \end{cases}$$

故令 $E_1 = E[x; f(x) = 1]$, 由上题

$$mE_1 = \int_E \chi_{E_1}(x) \ dx = \int_E \lim_{n \to \infty} f^n(x) \ dx = \lim_{n \to \infty} \int_E f^n(x) \ dx = \int_E f(x) \ dx = \lambda.$$

于是 $f(x) = \chi_{E_1}(x)$ a.e. 于 E.

16. 证明: 如果 f(x) 是 E 上的可测函数, 则对于任意常数 $\alpha > 0$ 都有

$$mE[x; |f(x)| \geqslant a] \leqslant \frac{1}{a} \int_{E} |f(x)| dx,$$

$$mE[x; f(x) \geqslant a] \leqslant e^{-a} \int_{E} \exp f(x) dx$$

证明. f(x) 可测. 有 |f(x)| 非负可测

$$\int_{E} |f(x)| \ dx \geqslant \int_{E[x;|f(x)|\geqslant a]} |f(x)| \ dx \geqslant a \cdot mE[x;|f(x)|\geqslant a]$$

同除 a, 则得到结论.

又 $f(x) \geqslant a \Leftrightarrow e^{f(x)} \geqslant e^a$, 且 $e^{f(x)}$ 可测性也可由此得到. 于是

$$\int_{E} e^{f(x)} dx \geqslant \int_{E[x:f(x)\geqslant a]} e^{f(x)} dx \geqslant e^{a} \cdot mE[x;e^{f(x)}\geqslant e^{a}] = e^{a} \cdot mE[x;f(x)\geqslant a]$$

17. 证明: 如果 f(x) 是 \mathbb{R}^1 上的非负可测函数,则对于任意常数 a,b,c,t,a < b,c > 0 都有

$$\int_{[a,b]} f(cx+t) \ dx = \frac{1}{c} \int_{[ca+t,cb+t]} f(x) \ dx$$

证明. ∀ a, 成立

$$E[x; f(x+t) \geqslant a] = E\left[\frac{x}{c} - t; f(x) \geqslant a\right] = \frac{1}{c}E[x; f(x) \geqslant a] - t$$

可测.

最后一部分表示可测集的伸缩和平移. 于是由第三章, 有

$$mE[x; f(cx+t) \geqslant a] = \frac{1}{c} \cdot E[x; f(x) \geqslant a]$$

又有 f(cx+t) 和 f(x) 值域相同, 类似第6题证明, 有

$$\int_{[a,b]} f(cx+t) \ dx = \frac{1}{c} \int_{[ca+t,cb+t]} f(x) \ dx$$

5.2 可积函数

1. 设 $mE < +\infty$, f(x) 在 E 上可测且几乎处处有限,

$$E_n = E[x; n-1 \le f(x) < n], n = 0, \pm 1, \pm 2, \cdots,$$

证明: f(x) 在 E 上可积的充要条件是

$$\sum_{-\infty}^{\infty} |n| m E_n < +\infty.$$

证明. f(x) 在 E 上可积 \Leftrightarrow $\int_{E} |f(x)| dx < +\infty$. 必要性.

$$\sum_{n=1}^{\infty} (n-1)mE_n + \sum_{n=-\infty}^{0} |n|mE_n \leqslant \int_{E^+} f(x) \ dx + \int_{E^-} |f(x)| \ dx \leqslant \int_{E} |f(x)| \ dx$$

于是

$$\sum_{n=-\infty}^{+\infty} |n| m E_n \leqslant \int_E |f(x)| \ dx + mE < +\infty$$

充分性.

$$\int_{E} |f(x)| \, dx = \int_{E^{+}} f(x) \, dx + \int_{E^{-}} |f(x)| \, dx$$

$$\leqslant \sum_{n=1}^{\infty} |n| m E_{n} + \sum_{m=-\infty}^{0} |n - 1| m E_{n}$$

$$\leqslant \sum_{-\infty}^{\infty} |n| m E_{n} + m E < +\infty$$

2. 证明 $\frac{\sin x}{x}$, $\frac{1}{x}$ 分别在 $(0,\infty)$ 和 (0,1) 上不可积.

证明.

$$\int_{(0,\infty)} \left(\frac{\sin x}{x}\right)^+ dx \geqslant \sum_{k=1}^{\infty} \int_{[2k\pi,(2k+1)\pi]} \frac{\sin x}{x} dx$$

$$= \sum_{k=1}^{\infty} \int_{2k\pi}^{(2k+1)\pi} \frac{\sin x}{x} dx$$

$$= \sum_{k=1}^{\infty} \frac{1}{(2k+1)\pi} \int_{2k\pi}^{(2k+1)\pi} \sin x dx$$

$$= \sum_{k=1}^{\infty} \frac{2}{(2k+1)\pi}$$

$$= \infty$$

于是其在(0,1)上不可积.

$$\int_{(0,1)} \frac{1}{x} dx \geqslant \sum_{n=1}^{\infty} \int_{\left[\frac{1}{n+1}, \frac{1}{n}\right]} \frac{1}{x} dx$$

$$= \sum_{n=1}^{\infty} \int_{\frac{1}{n+1}}^{\frac{1}{n}} \frac{1}{x} dx$$

$$= \ln \prod_{n=1}^{\infty} \frac{n+1}{n}$$

$$= \infty$$

于是其在 (0,1) 上不可积.

3. 设 f(x) 在Riemann意义上的反常积分 $\int_{a^+}^b f(x)\ dx$ 是绝对收敛的,证明 f(x) 在 [a,b] 上可积且 $\int_{[a,b]} f(x)\ dx = \int_{a^+}^b f(x)\ dx$.

证明. 由 $\int_{a^+}^b f(x) \ dx$ 绝对收敛, 有 $\int_{a^+}^b |f(x)| \ dx < +\infty$

$$\begin{split} \int_{[a,b]} |f(x)| \; dx &= \int_{[a,b]} \lim_{n \to \infty} \chi_{[a+\frac{1}{n},b]}(x) |f(x)| \; dx \\ &= \lim_{n \to \infty} \int_{[a,b]} \chi_{[a+\frac{1}{n},b]}(x) |f(x)| \; dx \\ &= \lim_{n \to \infty} \int_{a+\frac{1}{n}}^{b} |f(x)| \; dx = \int_{a+}^{b} |f(x)| \; dx < +\infty \end{split}$$

于是 |f(x)| 在 [a,b] 上可积.

设 $f_n(x)=\chi_{[a+\frac{1}{n},b]}(x)f(x)$. 则 $|f_n(x)|\leqslant |f(x)|,\lim_{n\to\infty}f_n(x)=f(x)$. 由控制收敛定理

$$\int_{[a,b]} f(x) \ dx = \lim_{n \to \infty} \int_{[a,b]} \chi_{[a+\frac{1}{n},b]}(x) f(x) \ dx = \int_{a^+}^b f(x) \ dx$$

4. 设 $mE < +\infty$, 证明如果 $f_n(x)$, $n = 1, 2, 3, \cdots$ 都是 E 上的可积函数且在 E 上一致收敛于 f(x), 则 f(x) 也在 E 上可积, 并且

$$\int_{E} f(x) \ dx = \lim_{n \to \infty} \int_{E} f_n(x) \ dx$$

证明. 由 $f_n(x)$ 一致收敛于 f(x) 和 $mE < +\infty$ 得, $\forall x \in E, \forall \varepsilon, \exists N, \forall n > N$,

$$\int_{E} |f_n(x) - f(x)| \, dx < \varepsilon$$

于是

$$\int_{E} |f(x)| \, dx \le \int_{E} |f_n(x) - f(x)| \, dx + \int_{E} |f_n(x)| \, dx < +\infty$$

于是 f(x) 可积. 又由

$$\left| \int_{E} f_n(x) \ dx - \int_{E} f(x) \ dx \right| \le \int_{E} |f_n(x) - f(x)| \ dx < \varepsilon$$

得 $\int_E f(x) dx = \lim_{n \to \infty} \int_E f_n(x) dx$.

5. 设 $\mathscr F$ 是一族在 E 上可积的函数, $\sup_{f\in\mathscr F}\int_E|f(x)|\ dx<=\infty$. 证明 $\mathscr F$ 是积分等度绝对连续族的充要条件是对任意 $\varepsilon>0$,都有 N 使

$$\sup_{f \in \mathscr{F}} \int_{E[x;|f(x)| \ge N]} |f(x)| \ dx \le \varepsilon.$$

证明. 必要性.

 \mathscr{F} 是积分等度连续. 于是 $\forall \, \varepsilon > 0$, $\exists \, \delta$, 使 $\forall \, mA < \delta$, 有 $\forall \, f \in \mathscr{F}$, $\int_A |f(x)| \, dx < \varepsilon$. 设 $\sup_{f \in \mathscr{F}} \int_E |f(x)| \, dx = c$. 于是令 N 充分大, 使 $\frac{c}{N} < \delta$, 有

$$mE[x;|f(x)|\geqslant N]\leqslant \frac{1}{N}\int_{mE[x;|f(x)|\geqslant N]}|f(x)|\ dx\leqslant \frac{c}{n}<\delta$$

于是

$$\sup_{f \in \mathscr{F}} \int_{mE[x;|f(x)| \ge N]} |f(x)| \ dx \le \varepsilon$$

充分性.

 $\forall \epsilon$, 取 N, 使

$$\sup_{f \in \mathscr{F}} \int_{E[x;|f(x)| \ge N]} |f(x)| \ dx \le \frac{\varepsilon}{2}.$$

又取 $\delta = \frac{\varepsilon}{2N}$, 则 $mA < \delta$,

$$\sup_{f \in \mathscr{F}} \int_{A} |f(x)| \ dx = \sup_{f \in \mathscr{F}} \int_{A \cap E[x;|f(x)| < N]} |f(x)| \ dx + \sup_{f \in \mathscr{F}} \int_{E[x;|f(x)| \geqslant N]} |f(x)| \ dx < \varepsilon$$

其中

$$m(A \cap E[x; |f(x)| < N]) \le mA < \delta$$

于是 罗 是积分等度连续族.

6. 证明

$$\int_{(0,1)} \frac{x^p}{1-x} \ln(\frac{1}{x}) dx = \sum_{k=1}^{\infty} \frac{1}{(p+k)^2} (p > -1),$$

$$\int_{(0,\infty)} \frac{\sin ax}{e^x - 1} dx = \pi \left(\frac{1}{e^{2a\pi}} - \frac{1}{2a\pi} + \frac{1}{2} \right) (a > 0)$$

证明.

$$\frac{x^p}{1-x}\ln\left(\frac{1}{x}\right) = \sum_{k=1}^{\infty} x^{p+q}\ln\left(\frac{1}{k}\right)$$

又

$$\int_0^1 x^{p+k} \ln\left(\frac{1}{k}\right) dx = \frac{1}{(p+k+1)} x^{p+k+1} \ln\left(\frac{1}{k}\right) \Big|_0^1 + \int_0^1 \frac{1}{p+k+1} x^{p+k} dx = \frac{1}{(p+k+1)^2}$$

于是
$$x^{p+k} \ln \left(\frac{1}{x}\right)$$
 在 $(0,1)$ 上可积, 且 $\int_{[0,1]} x^{p+k} \ln \left(\frac{1}{k}\right) dx = \frac{1}{(p+k+1)^2}$.

$$\int_{[0,1]} \frac{x^p}{1-x} \ln\left(\frac{1}{x}\right) dx = \sum_{k=1}^{\infty} \int_{[0,1]} x^{p+k-1} \ln\left(\frac{1}{x}\right) dx = \sum_{k=1}^{\infty} \frac{1}{(p+k)^2}$$

下证第二个式子.

$$\frac{1}{e^x - 1} = \sum_{n=1}^{\infty} e^{-nx}.$$

于是

$$\int_{(0,\frac{\pi}{a})} \sum_{n=1}^{\infty} e^{-nx} \sin ax \ dx = \sum_{n=1}^{\infty} \int_{(0,\frac{\pi}{a})} e^{-n} \sin ax \ dx$$

又在 $(\frac{\pi}{a}, +\infty)$ 上,

$$\left| \sum_{n=1}^{\infty} e^{-nx} \sin x \right| \leqslant \sum_{n=1}^{\infty} e^{-nx} = \frac{1}{e^x - 1}$$

而后者在 $\left(\frac{\pi}{a}, +\infty\right)$ 上可积, 于是由控制收敛定理

$$\int_{\left(\frac{\pi}{a},+\infty\right)} \sum_{n=1}^{\infty} e^{-nx} \sin ax \ dx = \sum_{n=1}^{\infty} \int_{\left(\frac{\pi}{a},+\infty\right)} e^{-nx} \sin ax \ dx$$

于是

$$\int_{(0,+\infty)} \sum_{n=1}^{\infty} e^{-nx} \sin ax \ dx = \int_{(a,\frac{\pi}{a})} \sum_{n=1}^{\infty} e^{-nx} \sin ax \ dx + \int_{(\frac{\pi}{a},+\infty)} \sum_{n=1}^{\infty} e^{-nx} \sin ax \ dx$$

$$= \sum_{n=1}^{\infty} \int_{(0,+\infty)} e^{-nx} \sin ax \ dx$$

$$= \sum_{n=1}^{\infty} \frac{a}{n^2 + a^2}$$

由 Fourier 级数知识,

$$\sum_{n=1}^{\infty} \frac{a}{n^2 + a^2} = \pi \left(\frac{1}{e^{2a\pi} - 1} - \frac{1}{2a\pi} + \frac{1}{2} \right)$$

7. 证明

$$\begin{split} \lim_{n\to\infty} \int_{(0,\infty)} \frac{dt}{\left(1+\frac{1}{n}\right)^n t^{1/n}} &= 1\\ \lim_{n\to\infty} \int_{(0,n)} \left(1-\frac{x}{n}\right)^n x^{a-1} \, dx &= \int_{(0,\infty)} e^{-x} x^{a-1} \, dx. \end{split}$$

证明.令

$$f_n(t) = \frac{1}{\left(1 + \frac{t}{n}\right)^2 t^{1/n}}$$

有 $f_n(t) \to e^{-t}$.

又当 $t \in (0,1)$ 时,有

$$|f_n(t)| < t^{-\frac{1}{n}} \leqslant t^{-\frac{1}{2}}$$

当 $t \in (1, \infty)$ 时, 有

$$|f_n(x)| \le \left(1 + \frac{t}{n}\right)^{-n} \le \left(\frac{n(n-1)}{2} \cdot \frac{t^2}{n^2}\right)^{-1} \le 4t^{-2}$$

$$F(t) = \begin{cases} t^{-\frac{1}{2}}, & t \in (0,1) \\ 4t^{-2} & t \in (1,+\infty) \end{cases}$$

有 F(t) 在 $(0,\infty)$ 上Riemann绝对可积. 于是其在 $(0,+\infty)$ 上可积. 由控制收敛定理

$$\lim_{n \to \infty} \int_{(0,\infty)} \frac{dt}{\left(1 + \frac{1}{n}\right)^n t^{1/n}} = \lim_{n \to \infty} \int_{(0,+\infty)} f_n(t) dt$$
$$= \int_{(0,+\infty)} e^{-t} dt$$
$$= \int_0^{+\infty} e^{-t} dt$$
$$= 1$$

第二个等式. 令

$$f_n(x) = \chi_{(0,n)}(x) \left(1 - \frac{x}{n}\right)^n x^{a-1}$$

有 $f_n(x) \leq f_{n+1}(x)$. 且 $f_n(x) \to e^{-x}x^{a-1}$. 取 a 使得 $\int_0^\infty e^{-x}x^{a-1} dx < +\infty$. 有

$$\lim_{n \to \infty} \int_{(0,n)} \left(1 - \frac{x}{n} \right)^n x^{a-1} dx = \lim_{n \to \infty} \int_{(0,\infty)} f_n(x) dx$$

$$= \int_{(0,\infty)} \lim_{n \to \infty} f_n(x) dx$$

$$= \int_{(n,\infty)} e^{-x} x^{a-1} dx$$

$$= \int_0^\infty e^{-x} x^{a-1} dx < +\infty$$

若有 a 使 $\int_0^\infty e^{-x} x^{a-1} dx = +\infty$. 由Fatou引理.

$$\liminf_{n \to \infty} \int_{(0,n)} \left(1 - \frac{x}{n} \right)^n x^{a-1} \, dx \geqslant \int_{(0,\infty)} e^{-x} x^{a-1} \, dx = +\infty$$

$$\sum_{n=1}^{\infty} \int_{E} |f_n(x)| \ dx < +\infty$$

证明 $\sum_{n=1}^{\infty} f_n(x)$ 在 E 上几乎处处绝对收敛, 其和函数在 E 上可积, 并且

$$\int_E \sum_{n=1}^{\infty} f_n(x) \ dx = \sum_{n=1}^{\infty} \int_E f_n(x) \ dx.$$

证明. 做函数

$$F(x) = \sum_{k=1}^{\infty} |f_k(x)|$$

由Lebesgue基本定理,有

$$\int_{E} F(x) dx = \sum_{k=1}^{\infty} \int_{E} |f_k(x)| dx < +\infty$$

于是 F 可积. 所以 F 在 E 上几乎处处有限. 于是 $\sum\limits_{k=1}^{\infty}f_k(x)$ 在 E 上几乎处处绝对收敛. 记和函数为 f(x) 有

于是 f 在 E 上可积

令
$$g_m(x) = \sum_{k=1}^m f_k(x)$$
. 有

$$|g_m(x)| \leq \sum_{k=1}^{\infty} |f_k(x)| \leq F(x)$$

于是由控制收敛定理

$$\int_{E} f(x) \ dx = \int_{E} \lim_{m \to \infty} g_{m}(x) \ dx = \lim_{m \to \infty} \int_{E} g_{m}(x) \ dx = \sum_{k=1}^{\infty} \int_{E} f_{k}(x) \ dx$$

9. 将 [0,1] 中全体有理数排成序列 $\{r_n\}_{n=1}^{\infty}$, 证明

$$\sum_{n=1}^{\infty} \frac{\cos nx}{n^2|x-r_n|^{1/2}}$$

是在 [0,1] 上几乎处处收敛的.

证明. 令

$$f_n(x) = \frac{\cos nx}{n^2 |x - r_n|^{1/2}}$$

有

$$\sum_{n=1}^{\infty} \int_{[0,1]} |f_n(x)| \, dx = \sum_{n=1}^{\infty} \int_{[0,1]} \left| \frac{1}{n^2 |x - r_n|^{1/2}} \right| \, dx$$

$$\leqslant \sum_{n=1}^{\infty} \frac{1}{n^2} \cdot 2 \left(\sqrt{1 - r_n} - \sqrt{r_n} \right)$$

$$\leqslant \sum_{n=1}^{\infty} \frac{2}{n^2} < +\infty$$

10. 设 $mE < +\infty$, 证明在 $E \perp f_n(x) \Rightarrow 0$ 的充要条件是

$$\lim_{n \to \infty} \int_E \frac{f_n^2(x)}{1 + f_n^2(x)} dx = 0.$$

证明. 首先, $f_n(x) \iff f_n^2 \Rightarrow 0$. 这由

$$\begin{split} E\left[x;\left|f^2(x)\right| > \frac{1}{n}\right] \subset E\left[x;\left|f(x)\right| > \frac{1}{\sqrt{n}}\right] \\ E\left[x;\left|f(x)\right| > \frac{1}{n}\right] \subset E\left[x;\left|f^2(x)\right| > \frac{1}{n^2}\right] \end{split}$$

可知.

又有 $f_n^2(x) \Rightarrow 0 \iff \lim_{n \to \infty} \frac{f_n^2(x)}{1 + f_n^2(x)} = 0$ a.e. 于 E.

必要性.

 $\forall \varepsilon > 0, \delta > 0$,有 $N, \forall n > N$,有 $mE\left[x; \left|f_n^2(x)\right| > \varepsilon\right] < \delta$. 设 $mE[x; f_n^2(x) > \varepsilon] = E_\delta$. 于是在 $E - E_\delta$. 有 $\frac{f_n^2(x)}{1 + f_n^2(x)} < \varepsilon$. 由 δ, ε 任意,得结论.

充分性.

 $\forall \varepsilon > 0, \delta > 0$. 有 $E_{\delta} \subset E$. 使 $mE_{\delta} < \delta$. 且 $\frac{f_n^2(x)}{1 + f_n^2(x)} < \varepsilon$. 于是 $f_n^2(x) \Rightarrow 0$. 于是取 $\forall \varepsilon > 0$, 取 $\delta < \frac{\varepsilon}{2}$.

当
$$n$$
 充分大, 有 $\frac{f_n^2(x)}{1+f_n^2(x)} < \frac{\varepsilon}{2mE}$. 于是

$$\int_{E} \frac{f_{n}^{2}(x)}{1 + f_{n}^{2}(x)} \ dx \leqslant \int_{E - E_{\delta}} \frac{f_{n}^{2}(x)}{1 + f_{n}^{2}(x)} \ dx + \int_{E_{\delta}} \frac{f_{n}^{2}(x)}{1 + f_{n}^{2}(x)} \ dx < \varepsilon$$

有

$$\lim_{n\to\infty} \int_E \frac{f_n^2(x)}{1 + f_n^2(x)} \ dx = 0$$

充分性由 5.1.4 可知.

11. 设 f(x,t) 当 $|t-t_0| < \delta$ 时是 x 在 [a,b] 上可积的函数, 并且有常数 K 使

$$\left| \frac{\partial}{\partial t} f(x, t) \right| \le K \quad (|t - t_0| < \delta, x \in [a, b]).$$

证明

$$\frac{d}{dt} \int_{a}^{b} f(x,t) dx = \int_{a}^{b} \frac{\partial}{\partial t} f(x,t) dx.$$

证明. $ma, b < \infty, h_k \rightarrow 0$. 记

$$f_k(x) = \frac{f(x, t + h_k) - f(x, t)}{h_k}.$$

则

$$|f_k(x)| = \left| \frac{f(x, t + h_k) - f(x, t)}{h_k} \right| = \left| \frac{\partial f(x', t')}{\partial t} \right| \le k.$$

且 $\lim_{k\to\infty} f_k(x) = \frac{\partial}{\partial t} f(x,t)$. 由有界收敛定理

$$\int_a^b \frac{\partial}{\partial t} f(x,t) dt = \lim_{k \to \infty} \int_a^b \frac{f(x,t+h_k) - f(x,t)}{h_k} dt = \frac{d}{dt} \int_a^b f(x,t) dt$$

12. 证明: 如果 f(x) 在 $E \subset \mathbb{R}^1$ 上可积, 则对于任意 $\varepsilon > 0$, 都有 \mathbb{R}^1 上的连续函数 g(x), 使

$$\int_{E} |f(x) - g(x)| \, dx < \varepsilon.$$

如果 E 还是有界的,则上述 g(x) 还可以要求是 x 的多项式.

证明. 由 $\int_E |f(x)| \; dx < +\infty,$ 知 $\forall \; \varepsilon > 0,$ 有简单函数 $\varphi(x)$ 使

$$\int_{E} |f(x) - \varphi(x)| \ dx < \frac{\varepsilon}{2}$$

不妨令 $\varphi(x)$ | < M, 由Lusin定理, 有连续函数 g(x) 使

$$mE[x; |\varphi(x) - g(x)| > 0] < \frac{\varepsilon}{4M}$$

有

$$\begin{split} \int_{E} |\varphi(x) - g(x)| \ dx &= \int_{E[x; |\varphi(x) - g(x)| > 0]} |\varphi(x) - g(x)| \ dx \\ &\leqslant 2M \cdot mE[x; |\varphi(x) - g(x)| > 0] \\ &< \frac{\varepsilon}{2} \end{split}$$

于是

$$\int_{E} |f(x) - g(x)| \ dx \leqslant \int_{E} |f(x) - \varphi(x)| \ dx + \int_{E} |\varphi(x) - g(x)| \ dx < \varepsilon$$

若 $mE < +\infty$, 则对连续函数 g(x). 有 x 多项式 P(x) 使 $|g(x) - P(x)| < \frac{\varepsilon}{mE}$. 则易得结论.

13. 证明: 如果 f(x) 在 $(a-\varepsilon,b+\varepsilon)$ 上可积, $\varepsilon > 0$ 为一常数, 则

$$\lim_{h \to 0} \int_{a}^{b} |f(x+h) - f(x)| \ dx = 0$$

(积分连续性)

证明. $\forall \eta > 0$, 由上题. 可令 $f(x) = f_1(x) + f_2(x)$. 其中 $f_1(x)$ 在 $(a - \varepsilon, b + \varepsilon)$ 上连续. $f_2(x)$ 满足

$$\int_{(a-\varepsilon,b+\varepsilon)} |f_2(x)| \, dx < \frac{\eta}{4}$$

 $f_1(x)$ 在 [a,b] 上一致连续. 有 δ 使 $|h| < \delta$ 时

$$\int_{[a,b]} |f_1(x+h) - f_1(x)| \, dx < \frac{\eta}{2}$$

于是

$$\int_{[a,b]} |f(x+h) - f(x)| dx \le \int_{[a,b]} |f_1(x+h) - f_1(x)| dx + \int_{[a,b]} |f_2(x+h) - f_2(x)| dx$$

$$< \frac{\eta}{2} + \int_{[a+h,b+h]} |f_2(x)| dx + \int_{[a,b]} |f_2(x)| dx$$

$$< \eta$$

其中第二个不等式用了 5.1.17 的结论. 于是由 η 任意, 结论得证.

14. 设 f(x) 在 E 上可积, $E_n \subset E, n = 1, 2, \cdots$ 是 E 的一串收敛的可测子集, 证明

$$\lim_{n \to \infty} \int_{E_n} f(x) \ dx = \int_{\lim_{n \to \infty} E_n} f(x) \ dx$$

证明. 记 $f_n(x) = \chi_{E_n}(x) f(x)$. 由 1.1.6. 有 $\lim_{n \to \infty} f_n(x) = \chi_{\lim_{n \to \infty} E_n}(x) f(x)$. 又由 $|\chi_{E_n}(x) f(x)| \leq |f(x)|$. 且 f(x) 在 E 上可积. 由控制收敛定理, 有

$$\int_{E} \chi_{\lim_{n \to \infty} E_n}(x) f(x) \ dx = \int_{\lim_{n \to \infty} E_n} f(x) \ dx = \lim_{n \to \infty} \int_{E} f_n(x) \ dx = \lim_{n \to \infty} \int_{E_n} f(x) \ dx$$

15. 利用Fatou引理给出 $\lim_{n\to\infty} f_n(x) = f(x)$ a.e.情况下的Lebesgue控制收敛定理的一个更直接更初等的证明.

证明. 由 $F(x) + f_n(x)$ 非负可测且 F(x) 在 E 上可积, 有

$$\int_{E} \liminf_{n \to \infty} (F(x) + f_n(x)) \ dx \le \liminf_{n \to \infty} \int_{E} (F(x) + f_n(x)) \ dx$$

有

$$\int_{E} F(x) \ dx + \int_{E} \liminf_{n \to \infty} f_n(x) \ dx \le \int_{E} F(x) \ dx + \liminf_{n \to \infty} \int_{E} f_n(x) \ dx$$

于是

$$\int_{E} f(x) \ dx = \int_{E} \liminf_{n \to \infty} f_n(x) \ dx \leqslant \liminf_{n \to \infty} \int_{E} f_n(x) \ dx$$

考虑 $F(x) - f_n(x)$ 且 $\liminf_{n\to\infty} f_n(x) = -\limsup_{n\to\infty} f_n(x)$ 得

$$\int_{E} f(x) \ dx \geqslant \limsup_{n \to \infty} \int_{E} f_n(x) \ dx$$

得结论.

5.3 Fubini定理

1. 证明推论 3

证明. f(z) 在 \mathbb{R}^{p+q} 上可测, 于是 |f(z)| 非负可测, 于是由推论 2

$$\int_{\mathbb{R}^{p+q}} |f(x,y)| \ dxdy = \int_{\mathbb{R}^p} \ dx \int_{\mathbb{R}^q} |f(x,y)| \ dy < +\infty$$

于是 f(x,y) 在 \mathbb{R}^{p+q} 上可积.

2. 证明当 f(x) 在 \mathbb{R}^p 上可积, g(y) 在 \mathbb{R}^q 上可积时, f(x)g(y) 在 \mathbb{R}^{p+q} 上可积.

证明. 由 4.1.9. f(x)g(y) 在 \mathbb{R}^{p+q} 上可测, 于是考虑 |f(x)g(y)|. 由推论 2

$$\int_{\mathbb{R}^{p+q}} |f(x)g(y)| \ dx = \int_{\mathbb{R}^p} |f(x)| \ dx \int_{\mathbb{R}^q} |g(y)| \ dy < +\infty$$

3. 设 f(x,y) 在 \mathbb{R}^{p+q} 上非负可测. 证明: 如果对每一 $x \in \mathbb{R}^p$, f(x,y) 都在 \mathbb{R}^q 上几乎处处有限, 则几乎对所有 $y \in \mathbb{R}^q$, f(x,y) 都在 \mathbb{R}^p 上几乎处处有限.

证明. 几乎对于所有 $x \in \mathbb{R}^p$, $|\chi_{E[f(x,y)=+\infty]}(x,y)f(x,y)|$ 关于 y 可积. 事实上

$$\int_{\mathbb{R}^q} \left| \chi_{E[f(x,y)=+\infty]}(x,y) f(x,y) \right| dy = 0$$

于是有

$$\int_{\mathbb{R}^p} dx \int_{\mathbb{R}^q} \left| \chi_{E[f(x,y) = +\infty]}(x,y) f(x,y) \right| dy = 0$$

于是其在 \mathbb{R}^p 上可积, 有

$$0 = \int_{\mathbb{R}^q} dy \int_{\mathbb{R}}^p \left| \chi_{E[f(x,y) = +\infty]}(x,y) f(x,y) \right| dx$$

由 5.1.4 有几乎对所有 $y \in \mathbb{R}^q$

$$\int_{\mathbb{R}^p} \left| \chi_{E[f(x,y) = +\infty]}(x,y) f(x,y) \right| dx = 0$$

于是 $mE[f(x,y)=+\infty]=0, f(x,y)$ 在 \mathbb{R}^p 上几乎处处有限.

4. 设 f(x,y) 在 $E = \{(x,y); 0 \le x \le 1, 0 \le y \le 1\}$ 上可积, 证明

$$\int_0^1 \left(\int_0^x f(x, y) \, dy \right) \, dx = \int_0^1 \left(\int_y^1 f(x, y) \, dx \right) \, dy$$

证明.

$$\begin{split} \int_0^1 \left(\int_0^x f(x,y) \; dy \right) \; dx &= \int_0^1 \left(\int_9^x f(x,y) \; dy \right) \; dx \\ &= \int_0^1 \left(\int_0^1 \chi_{E[(x,y);y \leqslant x]}(x,y) f(x,y) \; dx \right) \; dx \\ &= \int_0^1 \; dy \int_0^1 \chi_{E[(x,y);y \leqslant x]}(x,y) f(x,y) \; dx \\ &= \int_0^1 \left(\int_y^1 f(x,y) \; dx \right) \; dy \end{split}$$

5. 设 f(x), g(x) 都在 [a,b] 上连续, $f(x) \leq g(x)$ ($a \leq x \leq b$), 证明

$$E\{(x,y); a \leqslant x \leqslant b, f(x) \leqslant y \leqslant g(x)\}$$

是 \mathbb{R}^2 中的可测集合, 并且对于任意在 E 上连续的 h(x,y), 都有

$$\int_E h(z) dz = \int_a^b dx \int_{f(x)}^{g(x)} h(x, y) dy.$$

证明. $E[(x,y); a \le x \le b, f(x) \le y \le g(x)]$. 是 \mathbb{R}^2 中的有界闭集,于是可测.又 h(x,y) 在 E 上连续,于是有界可测.

$$\int_{E} h(z) \ dz = \int_{a}^{b} \ dx \int_{\mathbb{R}} \chi_{E[(x,y);a \leqslant x \leqslant b,f(x) \leqslant y \leqslant g(x)]}(x,y)h(x,y) \ dy = \int_{a}^{b} \ dx \int_{f(x)}^{g(x)} h(x,y) \ dy$$

6. 证明

$$f(x,y) = \begin{cases} \frac{xy}{(x^2 + y^2)^2}, & \exists x^2 + y^2 > 0, \\ 0, & \exists x = y = 0, \end{cases}$$

在 $E = \{(x,y); -1 \le x \le 1, -1 \le y \le 1\}$ 上是不可积的. 但此时推论1中的两个累次积分都存在且相等.

证明.

$$\int_{E} |f(x,y)| \ dxdy = \lim_{n \to \infty} \int_{E-N(0,1/n)} |f(x,y)| \ dxdy = +\infty$$

又

$$\int_{-1}^1 \, dx \int_{-1}^1 \frac{xy}{x^2 + y^2} \, dy = 0 = \int_{-1}^1 \, dy \int_{-1}^1 \frac{xy}{x^2 + y^2} \, dx$$

7. 证明: 如果

$$f(x,y) = \frac{y^2 - x^2}{(x^2 + y^2)^2} \quad (0 < x < 1, 0 < y < 1),$$

则

$$\int_0^1 dx \int_0^1 f(x,y) \ dy \neq \int_0^1 dy \int_0^1 f(x,y) \ dx.$$

这是否与Fubini定理相冲突?

证明.

$$\int_0^1 dx \int_0^1 f(x,y) dy = \int_0^1 dx \int_0^1 \frac{y^2 - x^2}{(x^2 + y^2)^2} dy$$
$$= -\int_0^1 \frac{1}{x^2 + 1} dx$$
$$= -\frac{\pi}{4}$$

$$\int_0^1 dy \int_0^1 f(x,y) dx = \int_0^1 dy \int_0^1 \frac{y^2 - x^2}{(x^2 + y^2)^2} dx$$
$$= \int_0^1 \frac{1}{y^2 + 1} dy$$
$$= \frac{\pi}{4}$$

二者不相等. 不冲突, 因为二者并不可积.

5.4 微分与不定积分

1. 证明: 如果 f(x), g(x) 都是 [a.b] 上的有界变差函数,则 f(x) + g(x), f(x)g(x) 也都是 [a,b] 上的有界变差函数.

证明.

$$V_{f+g}(\Delta) = \sum_{i=1}^{n} |f(x_i) + g(x_i) - f(x_{i-1}) - g(x_{i-1})| \le V_f(\Delta) + V_g(\Delta) \le 2M$$

f, g 有界, 于是不妨设 $f(x) \leq N, g(x) \leq N$.

$$V_{fg}(\Delta) \leqslant \sum_{i=1}^{n} |f(x_i)||g(x_i) - g(x_{i-1})| + \sum_{i=1}^{n} |g(x_{i-1})||f(x_i) - f(x_{i-1})| \leqslant 2MN$$

2. 证明: 当 f'(x) 在 [a,b] 上处处存在且有界时, f(x) 是在 [a,b] 上绝对连续的.

证明. 设 $f'(x) \leq M$, 则令 $\delta = \frac{\varepsilon}{M}$, 对任意一组分点 $a_1 < b_1 \leq a_2 < b_2 \leq \cdots \leq a_n < b_n$. 只要 $\sum_{i=1}^{n} (b_i - a_i) < \delta$. 有

$$\sum_{i=1}^{n} |f(b_i) - f(a_i)| \leqslant \sum_{i=1}^{n} |f'(\xi_i)| |b_i - a_i| < M \frac{\varepsilon}{M} = \varepsilon$$

于是 f(x) 在 [a,b] 上绝对连续.

3. 在 \mathbb{R}^1 中的可测集合 E 及定点 x_0 , 称 $\lim_{\delta \to 0^+} m(E \cap (x_0 - \delta, x_0 + \delta))/2\delta$ 为 E 在 x_0 处的密度, 记为 $d_E(x_0)$. 证明 $d_E(x) = 1$ a.e.于 E 和 $d_E(x) = 0$ a.e.于 E^c .

证明. 令 $f(x)=\chi_E(x), F(x)=\int_a^x f(x)\ dx.$ a.e. 于 E. 有

$$d_E(x) = F'(x) = f(x) = \chi_E(x)$$
. a.e. $\pm E$

于是结论得证.

4. 证明: 当 f(x) 在 [a,b] 上绝对连续时, $\int_a^b |f'(x)| dx = V_a^b(f)$.

证明. f(x) 绝对连续,于是为有界变差函数.有

$$\int_{a}^{b} |f'(x)| \, dx \leqslant V_{a}^{b}(f)$$

又对 [a,b] 上任一分划 $\Delta: a = x_0 < x_1 < \vdots < x_n = b$. 有

$$V(\Delta) = \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| = \sum_{i=1}^{n} \left| \int_{x_{i-1}}^{x_i} f'(t) \, dt \right| \le \int_a^b |f'(x)| \, dx$$

于是

$$V_a^b(f) \leqslant \int_a^b |f'(x)| dx$$

结论得证.

5. 证明不可能有 \mathbb{R}^1 中的可测集 E, 使对一切 $x \in [0,1]$ 都有

$$m\left([0,x]\cap E\right) = \frac{1}{2}x.$$

证明.

$$m([0,x] \cap E) = \int_0^x \chi_E(t) dt = \frac{1}{2}x$$

有 $\chi_E(x) = \frac{1}{2}$. a.e. 于 E. 矛盾.

6. 设 y(t) 是 [a,b] 上的可测函数,

$$\begin{split} \sup_{[a,b]} \operatorname{ess} |y(t)| & \xrightarrow{\operatorname{de} f} \inf \left\{ \sup_{t \in [a,b] - E} |y(t)|; E \subset [a,b], mE = 0 \right\} < + \infty \\ & Y(x) = \int_a^x y(t) \; dt, a \leqslant x \leqslant b. \end{split}$$

证明:

$$\sup_{x',x''\in[a,b]}\left|\frac{Y(x')-Y(x'')}{x'-x''}\right|=\sup_{[a,b]}\operatorname{ess}|y(t)|.$$

证明. 由 $\sup_{[a,b]} \operatorname{ess} |y(t)|$ 定义, $\forall \varepsilon > 0$,有 E, mE = 0. 使得

$$\sup_{t \in [a,b]-E} |y(t)| < \sup_{[a,b]} \operatorname{ess}|y(t)| + \varepsilon$$

于是 $\forall x', x'' \in [a.b]$ 有

$$|Y(x') - Y(x'')| = \left| \int_{x''}^{x'} y(t) dt \right| \le \int_{x''}^{x'} |y(t)| dt$$

$$= \int_{[x'', x'] - E} |y(t)| dt$$

$$\le \sup_{[a,b]} |y(t)| \cdot |x' - x''|$$

$$< \left[\sup_{[a,b]} \operatorname{ess} |y(t)| + \varepsilon \right] \cdot |x' - x''|$$

于是由 ε 任意性.

$$\sup_{x',x''\in[a,b]}\left|\frac{Y(x')-Y(x'')}{x'-x''}\right|\geqslant \sup_{[a,b]}\operatorname{ess}|y(t)|$$

结论得证.

7. 设 f(x) 在 [a,b] 上可积, 并且

$$\int_{a}^{b} x^{n} f(x) dx = 0, n = 0, 1, 2, 3, \dots$$
$$F(x) = \int_{a}^{x} f(t) dt, a \leq x \leq b.$$

证明:对于任意多项式 P(x) 都有

$$\int_{a}^{b} F(x)P(x) dx = 0$$

进而证明 f(x) = 0, a.e.于[a, b]

证明. P(x) 绝对连续, 由分部积分

$$\int_{a}^{b} F(x)P(x) \ dx = P(x)F(x) \Big|_{a}^{b} - \int_{a}^{b} P(x)f(x) \ dx = 0$$

又 F(x) 连续. 有多项式 Q(x) 使 $|F(x) - Q(x)| < \varepsilon$. 于是

$$\int_{a}^{b} F^{2}(x) dx \leqslant \varepsilon(b-a) \int_{a}^{b} F(x)Q(x) = \varepsilon(b-a)$$

于是 $F^2(x) \equiv 0$. a.e. 于 [a.b]. $F(x) \equiv 0$ a.e. 于 [a.b]. 于是 $f(x) \equiv 0$. a.e. 于 [a.b].

8. 证明

$$F(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

在 [-1,1] 上处处可微, 但 F(x) 不在 [-1,1] 上绝对连续.

证明. 考虑 $\lim_{x\to 0} \frac{F(x)}{x} = 0$, 可知 F(x) 在 [-1.1] 上处处可微. 取

$$b_k = \frac{1}{\frac{\pi}{2} + 2k\pi}, \quad a_k = \frac{1}{2k\pi}$$

有 $|f(b_k) - f(a_k)| = 1$. 而当 k 充分大, 可以使 $|b_k - a_k|$ 小于任意实数.

9. 证明: 如果 f(x) 在 [a,b] 上绝对连续, $E \subset [a,b], mE = 0, f(E) \xrightarrow{def} \{f(x); x \in E\}, 则 mf(E) = 0.$ 证明. 由 f(x) 在 [a,b] 上绝对连续,则 $\exists \, \delta > 0, \forall \, \varepsilon > 0$,当

$$\sum_{i=1}^{\infty} |b_i - a_i| < \delta \quad \not \exists \sum_{i=1}^{\infty} |f(b_i) - f(a_i)| < \varepsilon$$

对上述 δ , 可找到开集 G 使 $G \supset E$ 且

$$mG < \frac{\delta}{2}$$

于是考虑 G 的组成区间 $[c_i, d_i)$, 有 $f([c_i, d_i)) = [f(a_i), f(d_i)]$, 且 $|b_i - a_i| \leq |c_i - d_i|$. 有

$$\sum_{i=1}^{\infty} |b_i - a_i| \leqslant \sum_{i=1}^{\infty} |c_i - d_i| \leqslant mG < \delta$$

于是

$$\sum_{i=1}^{\infty} |f(b_i) - f(a_i)| \leqslant mf(G) < \varepsilon$$

又 $f(E) \subset f(G)$. 于是 $mf(E) \leq mf(G) < \varepsilon$. 由 ε 任意. mf(E) = 0.

10. 设 f(x) 在 [a,b] 上连续, g(x) 在 [a,b] 上可积, 且 $g(x) \ge 0$. 证明: 必有 $\xi \in [a,b]$ 使

$$\int_a^b f(x)g(x) \ dx = f(\xi) \int_a^b g(x) \ dx.$$

证明. $f \in [a,b]$ 上连续, 于是设 f([a,b]) = [c,d]. 由

$$cg(x) = f(x)g(x) \leqslant dg(x)$$

并积分,有

$$c\int_a^b g(x) dx \leqslant \int_a^b f(x)g(x) dx \leqslant d\int_a^b g(x) dx$$

由 g(x) 在 [a.b] 可积, 若 $\int_a^b g(x) dx \neq 0$, 则

$$c \leqslant \frac{\int_a^b f(x)g(x) \ dx}{\int_a^b g(x) \ dx} \leqslant d$$

由 f 连续, 有 ξ 使

$$f(\xi) = \frac{\int_a^b f(x)g(x) dx}{\int_a^b g(x) dx}$$

于是得结论.

若 $\int_a^b g(x) \ dx = 0$. 则 g(x) = 0 a.e. 于 [a,b]. 有 f(x)g(x) a.e. 于 [a,b], 于是 $\forall \xi \in [a,b]$.

$$\int_{a}^{b} f(x)g(x) \ dx = 0 = f(\xi) \int_{a}^{b} g(x) \ dx$$

11. 设 f(x) 在 [a,b] 上可积, g(x) 在 [a,b] 上单调且绝对连续. 证明: 必有 $\xi \in [a,b]$ 使

$$\int_{a}^{b} f(x)g(x) \ dx = g(a) \int_{a}^{\xi} f(x) \ dx + g(b) \int_{\xi}^{b} f(x) \ dx$$

进而证明上述事实对任何在 [a,b] 上单调的有限函数 g 都成立.

证明. 作函数 $F(x) = \int_a^x f(t) dt$, 由分部积分公式

$$\int_{a}^{b} f(x)g(x) \ dx = F(b)g(b) - F(a)g(a) - \int_{a}^{b} F(x)g'(x) \ dx$$

因为 F(x) 是绝对连续函数, 且 g'(x) a.e. [a,b]. 于是由上题得, 存在 $\xi \in [0,b]$ 使得

$$\int_{a}^{b} F(x)g'(x) \ dx = F(\xi) \int_{a}^{b} g'(x) \ dx = F(\xi)[g(b) - g(a)]$$

将上式代入前一式,得到

$$\int_{a}^{b} f(x)g(x) dx = g(a)[F(xi) - F(a)] + g(b)[F(b) - F(a)]$$
$$= g(a) \int_{a}^{\xi} f(x) dx + g(b) \int_{\xi}^{b} f(x) dx$$

若 g(x) 单调递增,可以作一列单调上升的绝对函数列 $\{g_n(x) \notin g_n(a) = g(a), g_n(b) = g(b) \ (n = 1, 2, \cdots)$. 且有

$$\lim_{n \to \infty} g_n(x) = g(x), \quad \text{a.e.}[a, b]$$

事实上,将 [a,b]n等分. 令 $h_n = \frac{b-a}{n}$ 以及 $x_{n,k} = a + kh_n, 0 \leqslant k \leqslant n$. 作函数列

$$g_n(x) = \begin{cases} g(x), & z = x_{n,k}, \quad k = 0, 1, \dots, n (n \in \mathbb{N}), \\ \text{线性联结} & x \in [x_{n,k_{n-1}}, x_{n_k}] \end{cases}$$

当x是g连续点时,有

$$|g(x) - g_n(x)| \le |g(x_{n,k-1}) - g(x_{n,k})|, \quad x_{n,k-1} \le x \le x_{n,k}$$

对于 $g_n(x)$, 由已证结论, 存在 $\xi_n \in [a,b]$, 使得.

$$\int_{a}^{b} f(x)g_{n}(x) dx = g_{n}(a) \int_{a}^{\xi_{n}} f(x) dx + g_{n}(x) \int_{\xi_{n}}^{b} f(x) dx$$

这里不妨假设数列 $\{\xi_n\}$ 以 $\xi \in [a,b]$ 为极限, 否则可取子列. 于是令 $n \to \infty$ 即可.

12. 设 $\{f_k(x)\}_{k=1}^{\infty}$ 是区间 [a,b] 上一列单调不减函数, 且

$$\lim_{n \to \infty} V_a^b \left(f_0 - \sum_{k=1}^n f_k \right) = 0$$

证明: $f'_0(x) = \text{ a.e.} \mp [a, b].$

证明.

$$\int_{a}^{b} |f'_{0}(x) - \int_{k=1}^{\infty} f'_{k}(x)| dx = \int_{a}^{b} |f'_{0}(x) - \lim_{n \to \infty} \sum_{k=1}^{n} f'_{k}(x) dx$$
$$= \int_{a}^{b} \lim_{n \to \infty} |f'_{0}(x) - \sum_{k=1}^{n} f'_{k}(x)| dx$$

由Fatou 引理

$$\leqslant \lim_{n \to \infty} \inf \int_{a}^{b} |f'_{0}(x) - \sum_{k=1}^{n} f'_{k}(x)| dx$$

$$= \lim_{n \to \infty} \inf \int_{a}^{b} \left| \left(f_{0}(x) - \sum_{k=1}^{n} f_{k}(x) \right)' \right| dx$$

$$\leqslant \lim_{n \to \infty} \inf V_{a}^{b} \left(f_{0}(x) - \sum_{k=1}^{n} f_{k}(x) \right)$$

由 $f_k(x)$ 单调不减

$$= \lim_{n \to \infty} V_a^b \left(f_0 - \sum_{k=1}^n f_k \right)$$
$$= 0$$

于是
$$f_0'(x) = \sum_{k=1}^{\infty} f_k'(x)$$
, a.e. 于 $[a, b]$

13. 试证明存在闭区间 [0,1] 上严格递增函数 f(x) 满足: f(0) = 0, f(1) = 1 且 f'(x) = 0, a.e.于[0,1]. 证明.记 $(0,1) \cap \mathbb{Q} = \{r_n\}$.并作函数列

$$f_n(x) = \begin{cases} 0, & 0 \le x < r_n. \\ \frac{1}{2^n} & r_n \le x \le 1 \end{cases}$$
 $(n = 1, 2, \cdots)$

易知 $f_n(x)$ 在 [0,1] 上递增,且 $f_n'(x)=0$,a.e. [0,1]. 再作函数

$$f(x) = \sum_{n=1}^{\infty} f_n(x), \quad 0 \leqslant x \leqslant 1$$

显然, f(x) 在 [a,b] 上严格递增, 且 $0 \le f(x) \le 1$. 从而根据上题可知

$$f'(x) = \sum_{n=1}^{\infty} f'_n(x) = 0$$
, a.e.[0,1]

事实上,由

$$\lim_{n \to \infty} V_a^b \left(f - \sum_{k=1}^n f_k \right) = 0$$

可得结论.

14. 设 $\{f_k(x)\}_{k=1}^{\infty}$ 是区间 [a,b] 上一列绝对连续函数,且 $\sum_{k=1}^{\infty} f_k(x)$ 处处收敛于函数 f(x). 证明: 如果 $\sum_{k=1}^{\infty} V_a^b(f_k) < +\infty$,则 f(x) 在 [a,b] 上也绝对连续.

证明.

$$\sum_{k=1}^{\infty} \left| \int_{a}^{b} f'_{k}(x) \ dx \right| \leqslant \sum_{k=1}^{\infty} \mathcal{V}_{a}^{b}(f_{k}) < +\infty$$

令 $F(x) = \sum_{k=1}^{\infty} f'_k(x)$, 则 F(x) 是 [a,b] 上的可积函数, 且有

$$\lim_{n \to \infty} \int_{c}^{x} \sum_{k=1}^{n} f'_{k}(t) dt = \int_{c}^{x} F(t) dt$$

c为 [a,b]上任一数.

又每个 $f_k(x)$ 都绝对连续, 有

$$f_k(x) = \int_c^x f'_k(t) dt + f_k(c), \quad x \in [a, b]$$

从而可知

$$\sum_{k=1}^{n} f_k(x) = \int_{c}^{x} \sum_{k=1}^{n} f'_k(t) dt + \sum_{k=1}^{n} f_k(c), \quad n = 1, 2, \dots$$

$$\sum_{k=1}^{\infty} f_k(x) = \int_{c}^{x} F(t) dt + \sum_{k=1}^{n} f_k(c)$$

上式左端等于 f(x), 于是

$$f(x) = \int_{c}^{x} F(t) dt + \sum_{k=1}^{n} f_{k}(c)$$

由此可知, f(x) 是 [a,b] 上的绝对连续函数.

15. 设 $\{f_k(x)\}_{k=0}^{\infty}$ 是区间 [a,b] 上一列有界变差函数,且 $\lim_{k\to\infty} V_a^b(f_0-f_k)=0$. 试问:是否有 $f_0'(x)=\lim_{k\to\infty} f_k'(x)$ a.e.于[a,b]? 请证明你的结论.