| Comenzado en  | Saturday, 4 de March de 2023, 13:00 |
|---------------|-------------------------------------|
| Estado        | Terminados                          |
| Finalizado en | Saturday, 4 de March de 2023, 14:28 |
| Tiempo        | 1 hora 28 mins                      |
| empleado      |                                     |
| Calificación  | <b>70.00</b> de un total de 100.00  |

Correcta

Puntúa 15.00 sobre 15.00

Se tienen tres cargas (**Q** = 5.00 nC) formando un triángulo equilátero de 1.50 m de lado.



a) El campo eléctrico resultante (en N/C) en el **punto "p"**, que es el punto medio del lado del triángulo, tiene un valor de:

## Respuesta:

169

**~** 

b) La energía potencial eléctrica (en nJ) del sistema de partículas es de:

# Respuesta:

-150



c) Considerando potencial cero en el infinito, el potencial (en V) en el **punto "p"** del sistema de partículas es de:

# Respuesta:

69.3

~

Parcialmente correcta

Puntúa 15.00 sobre 20.00

Un electrón en un monitor de computadora entra a medio camino entre dos placas paralelas con cargas opuestas como en la figura. La rapidez inicial del electrón es  $5.10 \times 10^{7}$  (+i) m/s y su desviación vertical en el punto "d" es 4.70 mm.



a) Calcular la magnitud del campo eléctrico entre las placas (en kN/C) (8 puntos)

#### Respuesta =

13.9



b) Calcular la magnitud de la aceleración del electrón (en 10<sup>15</sup> m/s²) (7 puntos)

## Respuesta =

2.45



c) Determine la magnitud de la densidad de la carga superficial en las placas (en nC/m²) (5 puntos)

#### Respuesta =

247 **123** 



#### Pregunta 3

Incorrecta

Puntúa 0.00 sobre 10.00

Una partícula de masa 3.00  $\mu$ g y carga 7.50 nC, se mueve del punto  $\bf{\it A}$  al punto  $\bf{\it B}$  y solamente el campo eléctrico actúa durante su movimiento. En el punto  $\bf{\it A}$  tiene una velocidad de 45.0 m/s. En el punto  $\bf{\it B}$  tiene una velocidad de 120 m/s. Determine la diferencia de potencial  $V_B - V_A$  (en kV)

# Respuesta =

2.48

×

Correcta

Puntúa 10.00 sobre 10.00

a) El momento dipolar de un dipolo, dentro de un campo eléctrico de 300 N/C, se encuentra inicialmente perpendicular a un campo eléctrico, pero se hace rotar en la misma dirección que el campo. Si el momento tiene una magnitud de  $2.00 \times 10^{-9}$  C.m, el trabajo (en nJ) realizado por el campo es:

### Respuesta =





b) Si en un instante la magnitud del momento de torsión que se ejerce sobre el dipolo es de 3.00 x 10<sup>-7</sup> Nm, el ángulo (en grados) que forma la recta que une a las cargas del dipolo con el campo eléctrico es:

#### Respuesta =

30.0



### Pregunta 5

Correcta

Puntúa 15.00 sobre 15.00

Una varilla uniformemente cargada (de largo 5.00 m, y carga por unidad de longitud de 6.00 nC/m) está doblada en la forma de un cuadrante de circulo. Cuál es la magnitud del campo eléctrico (en N/C) en el centro del círculo?

# Respuesta =

26.6



#### Pregunta 6

Correcta

Puntúa 15.00 sobre 15.00

a) Un cilindro macizo no conductor, largo de radio R=15.0~cm y longitud L, tiene una densidad uniforme de  $4.50~\mu C/m^3$ . Deje constancia en su procedimiento y utilice la Ley de Gauss para calcular el campo eléctrico (en kN/C) a una distancia r=12.0~cm. (8 puntos)

# Respuesta =

30.5



b) Utilizando la Ley de Gauss y dejar constancia en su procedimiento, calcule el campo eléctrico (en kN/C) a una distancia r = 25.0 cm (7 puntos)

# Respuesta =

22.9



Incorrecta

Puntúa 0.00 sobre 15.00

Una carga positiva  $Q = 6.00 \, nC$  está distribuida uniformemente en una esfera aislada de radio  $R = 12.0 \, cm$ , centrada en el origen de coordenadas. Utilizando la Ley de Gauss y dejando constancia de su aplicación:

a) Calcular el flujo eléctrico (en N/Cm²) a través de otra esfera concéntrica con radio 5.00 cm

# Respuesta =



×

b) Calcular la magnitud del campo eléctrico (en  $N/Cm^2$ ) producido por la esfera de radio 12.0 cm en el punto y = 5.00 cm es:

# Respuesta =





c) Si ahora se coloca una carga puntual  $q = + 1.20 \, nC$  en el punto  $y = 18.0 \, cm$ , calcular la magnitud del campo resultante en el punto  $y = 15.0 \, cm$  (en kN/C) :

# Respuesta =



×

→ Problema 16 (Ejercicio 61- Serway-Jewett, 7a Edición)

Ir a...

Clave Primer Examen Parcial