pw.md 2025-04-18

Programowanie współbieżne

Karta opisu przedmiotu

Informacje podstawowe

Kierunek studiów: Informatyka analityczna

Ścieżka: -

Jednostka organizacyjna: Wydział Matematyki i Informatyki

Poziom kształcenia: pierwszego stopnia

Forma studiów: studia stacjonarne

Profil studiów: ogólnoakademicki

Obligatoryjność: fakultatywny

Cykl kształcenia: 2022/23

Kod przedmiotu: UJ.WMIIANS.1380.03352.22

Języki wykładowe : polski

Przedmiot powiązany z badaniami naukowymi : Tak

Dyscypliny: Informatyka

Klasyfikacja ISCED: 0613 Tworzenie i analiza oprogramowania i aplikacji

Kod USOS: WMI.TCS.PW.S

Koordynator przedmiotu

Maciej Ślusarek

Prowadzący zajęcia

Maciej Ślusarek, Krzysztof Turowski

Okresy Semestr 4, Semestr 5,

Semestr 6

Forma weryfikacji uzyskanych efektów uczenia się egzamin

Forma prowadzenia i godziny zajęć wykład: 30 ćwiczenia laboratoryjne: 30

Liczba punktów ECTS 6.0

Efekty uczenia się dla przedmiotu

pw.md 2025-04-18

Kod	Efekty w zakresie	Kierunkowe efekty uczenia się	
Wiedzy – Student zna i rozumie:			
W1	podstawowe koncepcje, modele i techniki obliczeń równoległych	IAN_K1_W04, IAN_K1_W08, IAN_K1_W13	egzamin pisemny, zaliczenie
Umiejętności – Student potrafi:			
U1	umiejętność projektowania i analizy algorytmów równoległych dla wybranych problemów i modeli równoległości	IAN_K1_U03, IAN_K1_U05, IAN_K1_U11, IAN_K1_U17, IAN_K1_U21	egzamin pisemny, zaliczenie
umiejętność programowania równoległego W środowisku karty graficznej		IAN_K1_U03, IAN_K1_U05, IAN_K1_U09, IAN_K1_U11	egzamin pisemny, zaliczenie

Bilans punktów ECTS

Forma aktywności studenta	Średnia liczba godzin* przeznaczonych na zrealizowane rodzaje zajęć	
wykład	30	
ćwiczenia laboratoryjne	30	
przygotowanie projektu	30	
samodzielne rozwiązywanie zadań komputerowych	60	
przygotowanie do egzaminu	30	
Łączny nakład pracy studenta	Liczba godzin 180	ECTS 6.0

^{*} godzina (lekcyjna) oznacza 45 minut

Treści programowe

Lp.	Treści programowe	Efekty
		uczenia się
		dla
		przedmiotu

pw.md 2025-04-18

Efekty

Lp.	Treści programowe	uczenia się dla przedmiotu
1.	1. Podstawowe pojęcia programowania współbieżnego 2. Algorytmy w modelu PRAM: własności modelu, parametry złożoności, podstawowe techniki: podwajanie, równoległy prefiks, technika ścieżki Eulera dla drzew 3. Wybrane algorytmy w modelu PRAM - domknięcie przechodnie, najkrótsze ścieżki, BFS, spójne składowe 4. Podstawy programowania w systemie CUDA 5. Algorytmy wielowątkowe w systemie CILK 6. Wątki w standardzie POSIX 7. OpenMP 8. MPI 9. Wybrane algorytmy równoległe (równoległy prefiks, sortowanie, problemy grafowe, operacje na macierzach) w różnych modelach obliczeń współbieżnych.	W1, U1, U2

Informacje rozszerzone

Metody nauczania:

wykład konwencjonalny, ćwiczenia laboratoryjne

Rodzaj zajęć	Formy zaliczenia	Warunki zaliczenia przedmiotu
wykład	egzamin pisemny	Pozytywna ocena z egzaminu. Dopuszczenie do egzaminu pod warunkiem pozytywnej oceny z laboratorium. Końcowa ocena jest średnią ważoną oceny z laboratorium oraz egzaminu.
ćwiczenia laboratoryjne	zaliczenie	Zaliczenie laboratorium na podstawie programów zaliczeniowych oraz projektu

Wymagania wstępne i dodatkowe

Algorytmy i struktury danych 1

Literatura

Obowiązkowa

1. A.Grama, A.Gupta, G.Karypis, V.Kumar, Introduction to Parallel Computing (2'nd ed.), Addison-Wesley, 2003

Dodatkowa

- 1. T.H. Cormen, Ch.E. Leiserson, R.L. Rivest, C. Stein, Wprowadzenie do algorytmów, wydanie III, PWN, 2012
- 2. http://docs.nvidia.com/cuda/cuda-c-programming-guide