DATA STRUCTURES (AND ALGORITHMS)

Hash tables: Coalesced chaining, Open adressing

Lect. PhD. Diana-Lucia Miholca

2023 - 2024

Babeş - Bolyai University

Faculty of Mathematics and Computer Science

In previous lecture...

- Hash tables
 - Direct-address table
 - Introduction to hash tables
 - Separate chaining

Today

- Coalesced chaining
- Open addressing

Hash tables - recap

Hash function

Hash tables - recap

Hash function

$$h: U \to \{0, 1, ..., m-1\}$$

Collision

Hash tables - recap

Hash function

$$h: U \to \{0, 1, ..., m-1\}$$

Collision

$$h(x) = h(y)$$

Separate chaining - example

- = m = 10
- h(k) = k % m

Collision resolution by coalesced chaining: each element is stored inside the table and has associated the index of the *next* element.

Collision resolution by coalesced chaining: each element is stored inside the table and has associated the index of the *next* element.

When adding a new element and the index it hashes to is occupied:

- the element is added at any empty index and
- the next indexes are set so as to find it starting from its hashing index

Collision resolution by coalesced chaining: each element is stored inside the table and has associated the index of the *next* element.

When adding a new element and the index it hashes to is occupied:

- the element is added at any empty index and
- the next indexes are set so as to find it starting from its hashing index
- Since elements are in the table, α can be at most 1.

Collision resolution by coalesced chaining: each element is stored inside the table and has associated the index of the *next* element.

When adding a new element and the index it hashes to is occupied:

- the element is added at any empty index and
- the next indexes are set so as to find it starting from its hashing index

Since elements are in the table, α can be at most 1.

$$\alpha = n/m$$

Coalesced chaining - example

Consider a hash table that uses coalesced chaining for collision resolution, with:

- m = 16
- the division method for hashing

Insert in the hash table, in the given order, the following elements: 76, 12, 109, 43, 22, 18, 55, 81, 91, 27, 13, 16, 39.

What is the hash value for 12? What is the hash value for 16?

Coalesced chaining - example

Consider a hash table that uses coalesced chaining for collision resolution, with:

- m = 16
- the division method for hashing

Insert in the hash table, in the given order, the following elements: 76, 12, 109, 43, 22, 18, 55, 81, 91, 27, 13, 16, 39.

What is the hash value for 12? What is the hash value for 16?

Let's compute the hash value for every element (key):

Key	76	12	109	43	22	18	55	81	91	27	13	16	39
Hash	12	12	13	11	6	2	7	1	11	11	13	0	7

Example

- Initially, the hash table is empty
 - The first empty position is 0 and all next indexes are -1.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

firstEmpty = 0

- 76 is added at index 12
- 12 should also be added at index 12. Since it is already occupied, we add 12 at index *firstEmpty* (0) and set the *next* of 76 to 0. Then we reset *firstEmpty* to the next empty position.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
12												76			
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1

firstEmpty = 1

Example

Key	76	12	109	43	22	18	55	81	91	27	13	16	39
Hash	12	12	13	11	6	2	7	1	11	11	13	0	7

We need to update *firstEmpty* every time we occupy it.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
12	81	18				22	55				43	76	109		
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1	-1	-1

firstEmpty = 3

When adding 91, we add it at index *firstEmpty* and set the *next* link at index 11 to 3.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
12	81	18	91			22	55				43	76	109		
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	3	0	-1	-1	-1

firstEmpty = 4

Example

The final hash table:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
12	81	18	91	27	13	22	55	16	39		43	76	109		
8	-1	-1	4	-1	-1	-1	9	-1	-1	-1	3	0	5	-1	-1

firstEmpty = 10

Coalesced chaining - Representation

 A hash table with coalesced chaining is represented in the following way:

Coalesced chaining - Representation

 A hash table with coalesced chaining is represented in the following way:

Representation of a hash table with coalesced chaining:

<u>HashTable:</u>

T: TKey[]

next: Integer[] m: Integer

firstEmpty: Integer

h: TFunction

For simplicity, in the following, we will consider only the keys.

Adding a key to a hash table with coalesced chaining:

subalgorithm insert (ht, k) is:

//pre: ht is a HashTable, k is a TKey

//post: k was added into ht

Adding a key to a hash table with coalesced chaining:

```
subalgorithm insert (ht, k) is:
//pre: ht is a HashTable, k is a TKey
//post: k was added into ht
  index \leftarrow ht.h(k)
  if ht.T[index] = NULL_{TKev} then //NULL_{TKev} means empty position
     ht.T[index] \leftarrow k
     if index = ht.firstEmpty then
         changeFirstEmpty()
      end-if
  else
     if ht.firstEmpty = ht.m then
        @resize, rehash and update firstEmpty
     end-if
     ht.T[ht.firstEmpty] \leftarrow k
//continued on the next slide...
```

Adding a key to a hash table with coalesced chaining:

```
current ← index

while ht.next[current] ≠ -1 execute

current ← ht.next[current]

end-while

ht.next[current] ← ht.firstEmpty

ht.next[ht.firstEmpty] ← - 1

changeFirstEmpty(ht)

end-if

end-subalgorithm
```


end-subalgorithm

```
Adding a key to a hash table with coalesced chaining:

current ← index

while ht.next[current] ≠ -1 execute

current ← ht.next[current]

end-while

ht.next[current] ← ht.firstEmpty

ht.next[ht.firstEmpty] ← - 1

changeFirstEmpty(ht)

end-if
```

```
Complexity: \Theta(1) on average (under SUH assumption), \Theta(n) - in the worst case
```

Coalesced chaining - ChangeFirstEmpty

```
Updating the first empty position in a hash table with coalesced chaining:
```

```
subalgorithm changeFirstEmpty(ht) is:

//pre: ht is a HashTable

//post: the value of ht.firstEmpty is set to the next free position
ht.firstEmpty ← ht.firstEmpty + 1
while ht.firstEmpty < ht.m and ht.T[ht.firstEmpty] ≠ NULL<sub>TKey</sub>

execute
ht.firstEmpty ← ht.firstEmpty + 1
end-while
end-subalgorithm
```


Coalesced chaining - ChangeFirstEmpty

Updating the first empty position in a hash table with coalesced chaining:

```
subalgorithm changeFirstEmpty(ht) is:

//pre: ht is a HashTable

//post: the value of ht.firstEmpty is set to the next free position
ht.firstEmpty ← ht.firstEmpty + 1
while ht.firstEmpty < ht.m and ht.T[ht.firstEmpty] ≠ NULL<sub>TKey</sub>
execute
ht.firstEmpty ← ht.firstEmpty + 1
end-while
end-subalgorithm
```


Remove and search will be discussed in Seminar 5.

Open addressing

Collision resolution by open addressing: each element is stored inside table and there are no links.

Open addressing

Collision resolution by open addressing: each element is stored inside table and there are no links.

When adding a new element, we will:

- successively generate candidate positions
- check (probe) their availability and
- place the element in the first available one

Open addressing

In order to generate multiple positions, the hash function is extended with an additional parameter, *i*, which is the *probe number* and starts from 0.

$$h: U \times \{0, 1, ..., m-1\} \rightarrow \{0, 1,, m-1\}$$

For an element k, positions from the *probe sequence* < h(k,0), h(k,1), h(k,2), ..., h(k,m-1) > will be successively examined.

The *probe sequence* should be a permutation of $\{0, ..., m-1\}$, so that eventually every slot is probed.

Open addressing - Linear probing

A first scheme for defining the hash function is to use **linear probing**:

$$h(k, i) = (h'(k) + i) \mod m \ \forall i = 0, ..., m - 1$$

- where h'(k) is a *simple* hash function
 - For example: $h'(k) = k \mod m$
 - The *probe sequence* for linear probing is: < h'(k), h'(k) + 1, h'(k) + 2, ..., m 1, 0, 1, ..., h'(k) 1 >

Consider a hash table that uses open addressing for collision resolution, with:

- m = 16
- linear probing with $h'(k) = k \mod m$
- Insert into the table, in the given order, the following elements: 76, 12, 109, 43, 22, 18, 55, 81, 91, 27, 13, 16, 39.
- Let's compute the value of the hash function for every element (key) when i = 0:

Key	76	12	109	43	22	18	55	81	91	27	13	16	39
Hash	12	12	13	11	6	2	7	1	11	11	13	0	7

The final hash table:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
27	81	18	13	16		22	55	39			43	76	12	109	91

The final hash table:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
27	81	18	13	16		22	55	39			43	76	12	109	91

Disadvantages of linear probing:

The final hash table:

	1												
27	81	18	13	16	22	55	39		43	76	12	109	91

- Disadvantages of linear probing:
 - Primary clustering long runs of occupied slots
 - There are only *m* distinct probe sequences (once you have the starting position everything is fixed)
- Q

Advantages of linear probing:

The final hash table:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
27	81	18	13	16		22	55	39			43	76	12	109	91

- Disadvantages of linear probing:
 - Primary clustering long runs of occupied slots
 - There are only m distinct probe sequences (once you have the starting position everything is fixed)

Advantages of linear probing:

- Probe sequence is always a permutation
- Can benefit from caching

Open addressing - Quadratic probing

In case of **quadratic probing** the hash function becomes:

$$h(k,i) = (h'(k) + c_1 * i + c_2 * i^2) \mod m \ \forall i = 0,...,m-1$$

- where h'(k) is a *simple* hash function
 - for example: $h'(k) = k \mod m$ and c_1 and c_2 are constants; c_2 should not be 0

Considering a simplified version of h(k, i) with $c_1 = 0$ and $c_2 = 1$ the probe sequence would be:

$$< h'(k), h'(k) + 1, h'(k) + 4, h'(k) + 9, h'(k) + 16, ... >$$

Open addressing - Quadratic probing

The values of m, c_1 and c_2 should be chosen so that the probe sequence is a permutation.

If m is a prime number only the first half of the probe sequence is unique \Rightarrow once the hash table is half full, there is no guarantee that an empty index will be found.

For example, for m = 17, $c_1 = 3$, $c_2 = 1$ and k = 13, the probe sequence is

< 13, 0, 6, 14, 7, 2, 16, 15, 16, 2, 7, 14, 6, 0, 13, 11, 11 >

Open addressing - Quadratic probing

If m is a power of 2 and $c_1 = c_2 = 0.5$, the probe sequence will always be a permutation.

For example for m = 8 and k = 3:

- $h(3,0) = (3 \% 8 + 0.5 * 0 + 0.5 * 0^2) \% 8 = 3$
- $h(3,1) = (3 \% 8 + 0.5 * 1 + 0.5 * 1^2) \% 8 = 4$
- $h(3,2) = (3 \% 8 + 0.5 * 2 + 0.5 * 2^2) \% 8 = 6$
- $h(3,3) = (3 \% 8 + 0.5 * 3 + 0.5 * 3^2) \% 8 = 1$
- $h(3,4) = (3 \% 8 + 0.5 * 4 + 0.5 * 4^2) \% 8 = 5$
- $h(3.5) = (3 \% 8 + 0.5 * 5 + 0.5 * 5^2) \% 8 = 2$
- $h(3,6) = (3 \% 8 + 0.5 * 6 + 0.5 * 6^2) \% 8 = 0$
- $h(3,7) = (3 \% 8 + 0.5 * 7 + 0.5 * 7^2) \% 8 = 7$

Open addressing - Quadratic probing

If m is a prime number of the form 4 * j + 3, $c_1 = 0$ and $c_2 = (-1)^i$ (so the probe sequence is +0, -1, +4, -9, etc.) the probe sequence is a permutation.

E For example for m = 7 and k = 3:

•
$$h(3,0) = (3 \% 7 + 0^2) \% 7 = 3$$

•
$$h(3,1) = (3 \% 7 - 1^2) \% 7 = 2$$

•
$$h(3,2) = (3 \% 7 + 2^2) \% 7 = 0$$

•
$$h(3,3) = (3 \% 7 - 3^2) \% 7 = 1$$

•
$$h(3,4) = (3\%7 + 4^2)\%7 = 5$$

•
$$h(3,5) = (3 \% 7 - 5^2) \% 7 = 6$$

•
$$h(3,6) = (3 \% 7 + 6^2) \% 7 = 4$$

Open addressing - Quadratic probing - Example

Consider a hash table that uses open addressing for collision resolution, with:

- m = 16
- quadratic probing with $h'(k) = k \mod m$ and $c_1 = c_2 = 0.5$.

Insert into the table, in the given order, the following elements: 76, 12, 109, 43, 22, 18, 55, 81, 91, 27, 13, 16, 39.

Open addressing - Quadratic probing - example

The final hash table:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
13	81	18	16		91	22	55	39		27	43	76	12	109	

Open addressing - Quadratic probing - example

The final hash table:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
13	81	18	16		91	22	55	39		27	43	76	12	109		

- Disadvantages of quadratic probing:
 - Secondary clustering if two elements have the same initial probe positions, their whole probe sequence will be identical: $h(k_1, 0) = h(k_2, 0) \Rightarrow h(k_1, i) = h(k_2, i)$.
 - There are only *m* distinct probe sequences
 - The performance is sensitive to the values of m, c_1 and c_2 .

Open addressing - Double hashing

Double hashing uses a hash function of form:

$$h(k, i) = (h'(k) + i * h''(k)) \% m \forall i = 0, ..., m - 1$$

 where h'(k) and h''(k) are simple hash functions; h''(k) should never return 0.

For a key, k, the initial probe goes to position h'(k) and the successive probe positions are offset from previous positions by the amount h''(k), modulo m.

Open addressing - Double hashing

Similar to quadratic probing, not every combination of m and h'' will produce a complete permutation.

h''(k) must be relatively prime to m. This can be ensured by:

- Choosing m as a power of 2 and designing h'' in such a way that it always returns an odd number.
- Choosing m as a prime number and designing h" in such a way that it always returns a value from the {1, m-1}.

Open addressing - Double hashing

For example:

$$h'(k) = k\%m$$

$$h''(k) = 1 + k\%(m-1)$$

- For m = 11 and k = 36 we have:
 - h'(36) = 3h''(36) = 7
- The probe sequence is: < 3, 10, 6, 2, 9, 5, 1, 8, 4, 0, 7 >

Open addressing - Double hashing - example

Consider a hash table that uses open addressing with double hashing for collision resolution, with:

- m = 17
- h'(k) = k%m and h''(k) = 1 + (k%16)
- Insert into the table, in the given order, the following elements: 75, 12, 109, 43, 22, 18, 55, 81, 92, 27, 13, 16, 39.
- Values of the two hash functions for each element:

key	75	12	109	43	22	18	55	81	92	27	13	16	39
h' (key)	7	12	7	9	5	1	4	13	7	10	13	16	5
h''(key)	12	13	14	12	7	3	8	2	13	12	14	1	8

Open addressing - Double hashing - example

The final hash table:

			4										
16	18	55	109	22	75	43	27	39	12	81	13	92	

The main advantage of double hashing is that even if $h(k_1,0) = h(k_2,0)$ the probe sequences will be different if $k_1 \neq k_2$.

- For example:
 - 75: < 7, 2, 14, 9, 4, 16, 11, 6, 1, 13, 8, 3, 15, 10, 5, 0, 12 >
 - 109: < 7, 4, 1, 15, 12, 9, 6, 3, 0, 14, 11, 8, 5, 2, 16, 13, 10 >

Since for every (h'(k), h''(k)) pair we have a separate probe sequence, double hashing generates $\approx m^2$ different permutations.

Open addressing - representation

 A hash table with open addressing for collision resolution is represented in the following way:

Representation of a hash table with open addressing:

HashTable:

Open addressing - representation

 A hash table with open addressing for collision resolution is represented in the following way:

Representation of a hash table with open addressing:

HashTable:

T: TKey[] m: Integer

h: TFunction

Open addressing - insert

Adding an element

 $\textbf{subalgorithm} \ insert(ht, \ e) \ \textbf{is:}$

//pre: ht is a HashTable, e is a TKey

//post: e was added in ht

Open addressing - insert

Adding an element

```
subalgorithm insert(ht, e) is:
//pre: ht is a HashTable, e is a TKey
//post: e was added in ht
   i \leftarrow 0
   pos \leftarrow ht.h(e, i)
   while i < ht.m and ht.T[pos] \neq NULL_{TKev} execute
   //NULL<sub>TKev</sub> means empty space
       i \leftarrow i + 1
       pos \leftarrow ht.h(e, i)
   end-while
   if i = ht.m then
       @resize and rehash and compute the position for e (pos) again
   end-if
   ht.T[pos] \leftarrow e
end-subalgorithm
```

Open addressing - search

What should the search operation do?

Open addressing - search

Searching for an element

function search(ht, e) is:

//pre: ht is a HashTable, e is a TKey

//post: search = true if $e \in ht$ and search = false, otherwise

Open addressing - search

Searching for an element

```
function search(ht, e) is:
//pre: ht is a HashTable, e is a TKey
//post: search = true if e \in ht and search = false, otherwise
   i \leftarrow 0
   pos \leftarrow ht.h(e, i)
   found ← false
   while i < ht.m and ht.T[pos] \neq NULL_{TKev} and NOT(found) execute
       if ht.T[pos] = e then
          found ← true
       else
          i \leftarrow i + 1
          pos \leftarrow ht.h(e, i)
      end-if
   end-while
   if found then
       search ← true
   else
       search ← false
  end-if
end-function
```


How can we remove an element from the hash table?

How can we *remove* an element from the hash table?

We cannot just mark the position empty (by storing *NULL*_{TKey} into it) - *search* might not find other elements

How can we *remove* an element from the hash table?

We cannot just mark the position empty (by storing *NULL*_{TKey} into it) - *search* might not find other elements

** Remove is usually implemented to mark the deleted position with a special value, DELETED.

- How can we *remove* an element from the hash table?
 - We cannot just mark the position empty (by storing *NULL*_{TKey} into it) *search* might not find other elements
 - Remove is usually implemented to mark the deleted position with a special value, DELETED.
- How does the usage of the value DELETED affect the implementation of the *insert* and *search* operation?

Open addressing - insert - considering DELETED

Adding an element

```
subalgorithm insert(ht, e) is:
//pre: ht is a HashTable, e is a TKey
//post: e was added in ht
   i \leftarrow 0
   pos \leftarrow ht.h(e, i)
   while i < ht.m and ht.T[pos] \neq NULL_{TKev} and ht.T[pos] \neq DELETED execute
      i \leftarrow i + 1
      pos \leftarrow ht.h(e, i)
   end-while
   if i = ht.m then
       @resize and rehash and compute the position for e (pos)again
   end-if
   ht.T[pos] \leftarrow e
end-subalgorithm
```


Removing an element

function remove(ht, e) is:

//pre: ht is a HashTable, e is a TKey

//post: ht' = ht - e, remove = true if $e \in ht$ and remove = false, otherwise

P

Removing an element

```
function remove(ht, e) is:
//pre: ht is a HashTable, e is a TKey
//post: ht' = ht - e, remove = true if e \in ht and remove = false, otherwise
   i \leftarrow 0
   pos \leftarrow ht.h(e, i)
   found ← false
   while i < ht.m and ht.T[pos] \neq NULL_{TKev} and NOT(found) execute
       if ht.T[pos] = e then
          found ← true
          ht.T[pos] ← DELETED
       else
          i \leftarrow i + 1
          pos \leftarrow ht.h(e, i)
      end-if
   end-while
//continued on the next slide...
```


Open addressing - Performance

- **Theorem:** In a hash table with open addressing with load factor $\alpha = n/m$ ($\alpha < 1$), the *average* number of probes is at most
 - for insert and unsuccessful search

$$\frac{1}{1-\alpha}$$

for successful search

$$\frac{1}{\alpha} * ln \frac{1}{1-\alpha}$$

- If α is constant, the average complexity is $\Theta(1)$
- \nearrow Worst case complexity is $\Theta(n)$

Containers represented using hash tables

Hash tables are used for representing the following containers:

- ADT Map (Sorted Map)
 - Python's dictionaries ({:}), Java HashMap, unordered_map in C++ STL
- ADT MultiMap (Sorted MultiMap)
 - HashMultimap in Guava (Google Core Libraries for Java) unordered_multimap in C++ STL
- ADT Set
 - HashSet in Java Collections API, Python's sets ({})
- ADT Bag
 - HashMultiset in Guava (for Java)

Hash table - Applications

Real-world applications of hash tables:

Programming languages

 Implementation of built-in data types (dict in Python, HashMap in Java)

Compilers

 For storing the programming language's keywords and for mapping the variables names with memory locations

File system

 For mapping file names to the the file path and to the physical location of that file on the disk

Password Verification:

· For storing hashed passwords

Data Integrity Checks

To generate checksums on data files

- David M. Mount, Lecture notes for the course Data Structures (CMSC 420), at the Dept. of Computer Science, University of Maryland, College Park, 2001
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms, Third Edition, The MIT Press. 2009
- Narasimha Karumanchi, Data Structures and Algorithms Made Easy: Data Structures and Algorithmic Puzzles, Fifth Edition, 2016
- Clifford A. Shaffer, A Practical Introduction to Data Structures and Algorithm Analysis, Third Edition, 2010

Thank you

