

Span and Linear Independence Example

Source: Span and linear independence example (video) | Khan Academy

Problem Setup

$$\begin{cases}
\frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \end{bmatrix} = S & \text{Span}(s) = \mathbb{R}^3? \\
\text{Linearly Independent}
\end{cases}$$

$$\begin{cases}
\frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 2C_1 \\ 1 \end{bmatrix} + C_1 \begin{bmatrix} 2C_2 \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} 1 \\ 2C_2 \end{bmatrix} + C_3 \begin{bmatrix} 1 \\ 2C_2 \end{bmatrix} \end{bmatrix}$$

$$\begin{cases}
\frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \end{bmatrix} + C_1 \begin{bmatrix} 2C_2 \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} 1 \\ 2C_2 \end{bmatrix} + C_3 = C_3 = C_4 \\
-C_1 + C_2 = C_3 = C_4 + C_3 = C_4 + C_5 = C_5 = C_4 + C_5 = C_5 = C_5
\end{cases}$$

$$\begin{cases}
\frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix}$$

We are given three 3D vectors:

•
$$ec{v}_1 = egin{bmatrix} 1 \ -1 \ 2 \end{bmatrix}$$

•
$$ec{v}_2 = egin{bmatrix} 2 \ 1 \ 3 \end{bmatrix}$$

•
$$ec{v}_3 = egin{bmatrix} -1 \ 0 \ 2 \end{bmatrix}$$

We're asked two questions:

- 1. Do these vectors span \mathbb{R}^3 ?
- 2. Are these vectors linearly independent?

of Goal 1: Do the Vectors Span \mathbb{R}^3 ?

The Definition

A set of vectors **spans** \mathbb{R}^3 if **any vector** in \mathbb{R}^3 (say $egin{bmatrix} a \\ b \\ c \end{bmatrix}$) can be written as a

linear combination of them. In other words, we can construct any linear combinations from that 3 vectors.

So we ask:

Can we find scalars $c_1,c_2,c_3\in\mathbb{R}$ such that:

$$c_1ec{v}_1+c_2ec{v}_2+c_3ec{v}_3=egin{bmatrix} a \ b \ c \end{bmatrix}$$
?

Example 2 Set Up the System

Expanding the linear combination:

$$c_1 egin{bmatrix} 1 \ -1 \ 2 \end{bmatrix} + c_2 egin{bmatrix} 2 \ 1 \ 3 \end{bmatrix} + c_3 egin{bmatrix} -1 \ 0 \ 2 \end{bmatrix} = egin{bmatrix} a \ b \ c \end{bmatrix}$$

Which gives the system:

•
$$c_1 + 2c_2 - c_3 = a$$

•
$$-c_1 + c_2 = b$$

•
$$2c_1 + 3c_2 + 2c_3 = c$$

Elimination Method (Step-by-Step)

Span(s) =
$$\mathbb{R}^{3}$$
?

Linearly Independent

 $a_{1} = \frac{1}{12} =$

Correction: $c_3 = 1/11 (3c - 5a + b)$

We solve this using elimination:

Step 1: Eliminate c_1 from 2nd Equation

Add the first and second equations:

$$(-c_1+c_2)+(c_1+2c_2-c_3)=b+a\Rightarrow 3c_2-c_3=a+b$$

Step 2: Eliminate c_1 from 3rd Equation

Subtract $2 \times$ first equation from third:

$$(2c_1 + 3c_2 + 2c_3) - 2(c_1 + 2c_2 - c_3) = c - 2a$$

 $\Rightarrow -c_2 + 4c_3 = c - 2a$

Step 3: Eliminate c_2

Multiply the new equation from Step 2 by 3 and add to the Step 1 result:

$$3(-c_2+4c_3)+(3c_2-c_3)=3(c-2a)+(a+b) \ \Rightarrow 11c_3=3c-5a+b \Rightarrow c_3=rac{3c-5a+b}{11}$$

Step 4: Back-substitute for c_2 and c_1

From $3c_2 - c_3 = a + b$:

$$c_2=\frac{a+b+c_3}{3}$$

Then use:

$$c_1 = a - 2c_2 + c_3$$

lephs So for **any** $a,b,c\in\mathbb{R}$ (any linear combinations), we can always solve for $c_1,c_2,c_3.$

 \checkmark Therefore, the three vectors span \mathbb{R}^3 .

Goal 2: Are the Vectors Linearly Independent?

Vectors are linearly independent if the only solution to:

$$c_1 \vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3 = \vec{0}$$

is:

$$c_1 = c_2 = c_3 = 0$$

of Test the Zero Vector

Now set:

•
$$a = b = c = 0$$

Our previously derived formulas become:

•
$$c_3 = \frac{3(0) - 5(0) + 0}{11} = 0$$
 \checkmark

•
$$c_2 = \frac{0+0+0}{3} = 0$$

•
$$c_1 = 0 - 2(0) + 0 = 0$$

So the **only** solution to the zero vector combination is the trivial one.

Therefore, the vectors are linearly independent.

- We have **exactly 3 vectors** in \mathbb{R}^3
- They span \mathbb{R}^3
- They are linearly independent

lpha This means they form a **basis** for \mathbb{R}^3 . Like the ultimate trio—each one contributes **a unique direction**. There's **zero redundancy**, and you can build anything in 3D from just them. $\Theta \clubsuit$

- Span: The three vectors can be linearly combined to form any vector in \mathbb{R}^3 .
- **Linear independence**: The only way to get the zero vector is by setting all coefficients to zero.
- These vectors form a **basis** for \mathbb{R}^3 .
- Geometrically, they're like 3 arrows shooting off in different directions together, they fill the whole space.
- If you have exactly 3 vectors that span \mathbb{R}^3 , they **must** be linearly independent (and vice versa, if they're linearly independent, they span it!).