北京理工大学 2005-2006 学年第一学期

2005 级硕士研究生〈矩阵分析〉终考试题

一、(10 分)已知矩阵
$$\mathbf{A} = \begin{pmatrix} -1 & 1 & 1 \\ -5 & 21 & 17 \\ 6 & -26 & -21 \end{pmatrix}$$
 的特征矩阵 $\lambda \mathbf{E} - \mathbf{A}$ 等价于

矩阵 $\begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \boldsymbol{\lambda}^2(\boldsymbol{\lambda}+1) \end{pmatrix}$,求 \boldsymbol{A} 的 Jordan 标准形 \boldsymbol{J} 及相似变换矩阵 \boldsymbol{P} 。

二、
$$(12 分)$$
 求矩阵 $\mathbf{A} = \begin{pmatrix} 2 & 2 \\ 1 & 1 \\ 0 & 0 \end{pmatrix}$ 的奇异值分解。

三、(10分) 求矩阵
$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ -2 & 2 & 3 \end{pmatrix}$$
的谱分解。

四、(13 分) 已知矩阵
$$\mathbf{A} = \begin{pmatrix} \frac{1}{2} & -\mathbf{a} \\ -\mathbf{a} & \frac{1}{2} \end{pmatrix}$$
,

- (1) 问当a满足什么条件时,矩阵幂级数 $\sum_{k=1}^{\infty} (2k+1)A^k$ 绝对收敛?
- (2) 取 a=0,求上述矩阵幂级数的和。

五、(10分)已知

$$A = \begin{pmatrix} 3 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix},$$

求矩阵函数 e^{At} , $\sin \pi A$ 。

六、(10 分) 已知向量微分方程 $\frac{dx(t)}{dt} = Ax(t) + f(t)$ 及初始条件 x(0), 求该方程的解,这里

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}, f(t) = \begin{pmatrix} 1 \\ t \end{pmatrix}, x(0) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

七、(10分) 求下列线性方程组的最佳最小二乘解。

$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1 + 2x_2 + 2x_3 = 2 \\ 2x_1 + 3x_2 + 3x_3 = 4 \end{cases}$$

八、 $(10 \, \, \, \, \, \, \,)$ 设 $A \in C^{m \times n}$,证明: 如果 r(A) = n ,则 $A^H A$ 是正定 Hermite 矩阵。

九、(15分)(1)已知 m 阶 Jordan 块

求 J_0 的最小多项式 $\psi_{J_0}(\lambda)$;

(2)设方阵 \boldsymbol{A} 的 Jordan 标准形为 \boldsymbol{J} ,证明: \boldsymbol{A} 与 \boldsymbol{J} 有相同的最小多项式,即

$$\psi_A(\lambda) = \psi_J(\lambda);$$

(3) 证明: 如果A 的最小多项式为

$$\psi_A(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_k)$$
,

则 A 是单纯矩阵,这里 $\lambda_1, \lambda_2, \dots, \lambda_k$ 是 A 的互异特征值。