

THUẬT TOÁN VÀ SƠ ĐỒ KHỐI

Mục tiêu

- 1. Biết cách biểu diễn bài toán dưới dạng sơ đồ khối
- 2. Nắm được một số thuật toán cơ bản

Nội dung

- 1.Bài toán (problem)
- 2. Giải quyết bài toán bằng máy tính
- 3. Biểu diễn thuật toán
- 4. Một số thuật toán cơ bản

Bài toán

❖ "Bài toán" hay "Vấn đề"

- Vấn đề có nghĩa rộng hơn bài toán
- Bài toán là một loại vấn đề mà để giải quyết phải liên quan ít nhiều đến tính toán: bài toán trong vật lý, hóa học, xây dựng, kinh tế...

Hai loại vấn đề

- Theorema: là vấn đề cần được khẳng định tính đúng sai.
- Problema: là vấn đề cần tìm được giải pháp để đạt được một mục tiêu xác định từ những điều kiện ban đầu nào đó

Bài toán

- ❖Biểu diễn vấn đề-bài toán
 - $A \rightarrow B$
 - · A: Giả thiết, điều kiện ban đầu
 - B: Kết luận, mục tiêu cần đạt
- Giải quyết vấn đề-bài toán
 - Từ A dùng một số hữu hạn các bước suy luận có lý hoặc hành động thích hợp để đạt được B
 - Trong Tin học, A là đầu vào, B là đầu ra

Fast Track SE™

Giải quyết bài toán bằng máy tính

- Các giai đoạn quan trọng
 - Bước 1. Xác định yêu cầu bài toán
 - Bước 2. Phân tích và thiết kế bài toán
 - Lựa chọn phương án giải quyết (thuật toán)
 - Xây dựng thuật toán
 - Bước 3. Lập trình
 - Bước 4. Kiểm thử và hiệu chỉnh chương trình
 - Bước 5. Triển khai và bảo trì

FastTrack SE™

Biểu diễn thuật toán

- * Cách 1: Ngôn ngữ tự nhiên
- * Cách 2: Ngôn ngữ lưu đồ (lưu đồ/sơ đồ khối)
- * Cách 3: Mã giả (pseudocode) gọi là ngôn ngữ mô phỏng chương trình PDL (Programming Description Language).
- Cách 4: Các ngôn ngữ lập trình như C/C++, C# hay Java. Tuy nhiên, không nhất thiết phải sử dụng đúng ký pháp của các ngôn ngữ đó mà có thể được bỏ một số ràng buộc

Biểu diễn thuật toán

❖ Ví dụ 1:

- Bài toán: Đưa ra kết luận về tương quan của hai số a và b (>, < hay =).
 - Đầu vào: Hai số a và b
 - Đầu ra: Kết luận a>b hay a<b hay a=b.

Ý tưởng:

- So sánh a và b rồi đưa ra kết luận
- Thực hiện:
 - B0: Bắt đầu
 - B1: Nhập số a và số b.
 - B2: Nếu a > b, hiển thị "a>b". Kết thúc. Ngược lại sang B3.
 - B3: Nếu a = b, hiển thị "a=b". Ngược lại, hiển thị "a < b".
 - B4: Kết thúc

Lưu đồ thuật toán

A Một số khối trong sơ đồ khối dùng biểu diễn thuật toán

Fast Track SE™

Cấu trúc rẽ nhánh

- * Nếu biểu thức điều kiện đúng (giá trị chân lý là True) thực hiện công việc 1.
- ❖ Nếu biểu thức điều kiện sai (giá trị chân lý là False) thực hiện công việc 2.

Cấu trúc lặp

- Khi biểu thức điều kiện đúng, thực hiện công việc
- Thực hiện công việc khi biểu thức điều kiện còn đúng

Ví dụ 1 – Mô tả bằng lưu đồ thuật toán

- ❖ B0: Bắt đầu
- ❖ B1: Nhập a, b
- ❖ B2: Nếu a > b hiển thị "a>b" và kết thúc Ngược lại sang B3
- ❖ B3: Nếu a = b hiển thị "a=b", Ngược lại, báo "a<b"</p>
- B4: Kết thúc

Ví dụ 2

- Bài toán: Đưa ra tổng, tích, hiệu, thương của hai số a và b.
 - Đầu vào: Hai số a và b
 - Đầu ra: Tổng, tích, hiệu và thương của a và b.

Ý tưởng:

- Tính tổng, tích, hiệu của a và b
- Nếu b khác 0, đưa ra thương
- Nếu b bằng 0, đưa ra thông báo không thực hiện được phép chia

Ví dụ 2 mô tả tuần tự

- ❖ B1: Nhập số a và số b.
- \clubsuit B2: s ← a + b; d ← a b; p ← a * b
- ❖ B3: Hiển thị
 - Tổng là s
 - Hiệu là d
 - Tích là p
- ❖B4: Nếu b = 0, hiển thị "Không thực hiện được phép chia" và kết thúc
- ❖ Ngược lại Hiển thị "Thương là a/b" và kết thúc

Ví dụ 3

- Bài toán: Giải phương trình bậc l
 - Đầu vào: Hai hệ số a, b
 - Đầu ra: Nghiệm của phương trình ax + b = 0
- Ý tưởng:
 - Lần lượt xét a = 0 rồi xét b = 0 để xét các trường hợp của phương trình

Ví dụ 3 mô tả tuần tự

- ❖ B1: Nhập a và b.
- ❖ B2: Nếu a ≠ 0 thì x ← -b/a. Hiển thị "Phương trình có 1 nghiệm duy nhất x".Ngược lại sang B3
- ♣ B3: Nếu b ≠ 0 thì hiển thị "Phương trình vô nghiệm".Ngược lại Hiển thị "Phương trình vô số nghiệm"
- B4: Kết thúc

Ví dụ 4

- Bài toán: Tìm giá trị lớn nhất của một dãy số nguyên có N số
 - Đầu vào: Số số nguyên dương N và N số nguyên a₁, a₂,..., a₀
 - Đầu ra: số nguyên lớn nhất của dãy

❖Ý tưởng:

- Khởi tạo giá trị Max = a₁
- Lần lượt so sánh Max với a; với i=2,3,..., N; nếu a; > Max ta gán giá trị mới
 cho Max

Ví dụ 4 ý tưởng

max	3	5	7	9	2	8	
max=3	3						
max<5		5					
max<7			7				
max<9				9			
max>2					9		
max>8						9	
Kết quả						9	

Ví dụ 4

- ❖ B1: Nhập n và dãy số a₀, a₁, a₂,...,aₙ-₁.
- ❖ B2: Max = a_0 ; i=1 (chỉ số của phần tử tiếp theo).
- ❖ B3: Nếu i <= n-1, sang bước 4 Ngược lại in ra giá trị Max. Kết thúc.
- ❖ B4: Nếu a_i > Max, Max = a_i
- ❖ B5: Tăng i lên 1 đơn vị. Quay lên B3.
- B6: Kết thúc

Một số thuật toán cơ bản

- 1. Xác định một số nguyên có phải là số nguyên tố hay không
- 2. Xác định USCLN, BSCNN của 2 số a và b (BSCNN = (a*b)/USCLN
- 3. Tìm số lớn nhất/ nhỏ nhất trong dãy số
- 4. Sắp xếp dãy số tăng dần hoặc giảm dần

Q&A