Lecture # 10.1 CHE331A

- Basics of reactions and ideal reactors
- Design/Analysis of CSTRs, PFRs, PBRs, Batch and Semibatch in terms of conversions and molar flow rates or concentrations
- Collection and Analysis of Rate Data

GOUTAM DEO
CHEMICAL ENGINEERING DEPARTMENT
IIT KANPUR

Batch Reactor

$$-r_A = k. C_A^2$$

$$t_R = \frac{1}{k. C_{A0}} \frac{(1+\varepsilon)X}{(1-X)} - \varepsilon \ln \frac{1}{1-X}$$

$$t_T = t_R + t_C + t_F + t_E$$

Semi-Batch Reactor

$$\frac{dC_A}{dt} = r_A - \frac{C_A \cdot \dot{v}_0}{V(t)}; \quad \frac{dC_B}{dt} = r_B + \frac{(C_{B0}^{in} - C_B)\dot{v}_0}{V(t)}; \quad \frac{dC_C}{dt} = r_C - \frac{C_C \dot{v}_0}{V(t)}$$

There are a number of ways we analyze Rate data

- ▶ Purpose is to:
 - Determine rates of different species → rate of disappearance, formation
 - Develop rate laws → dependency on concentration/pressure of the different species
 - Determine values of rate constant and (apparent) activation energy
- Methods used for analysis:
 - Differential method
 - Integral method
 - Methods of half-life
 - Least-square method

Data analysis procedure to determine rate data usually depends on the type of reaction

- ► Homogeneous reactions:
 - Often obtained using a batch reactor
 - Obtain concentration versus time data
- Heterogeneous (gas-solid) reactions:
 - Often obtained using a PBR operating in the differential mode
 - Obtain rate versus partial pressure data
- Assume a rate law, then apply mole balance equation
- Determine parameters associated with the rate law

Batch Reactor data analysis can be done in three ways

- ▶ Differential method, integral method or nonlinear regression
- ► For irreversible reactions it is possible to determine the reaction order and specific rate constants
 - \circ Single reactant dependent, e.g., $-r_A = k \cdot C_A^{\alpha}$
 - Multiple concentration dependent (method of excess), $-r_A = k \cdot C_A^{\alpha} C_B^{\beta}$

Excess B so that $C_B \sim constant$: $-r_A = k' \cdot C_A^{\alpha}$, $k' = k \cdot C_B^{\beta} \approx k \cdot C_{BO}^{\beta}$

Similarly take excess A so that $-r_A = k. C_A^{\alpha} C_B^{\beta} = k''. C_B^{\beta}$, $k'' \approx k. C_{A0}^{\alpha}$

Differential method of analysis involves differentiating concentration versus time data

- ▶ Mole balance for a batch reactor: $r_A = \frac{dC_A}{dt}$
- ► Rate law: $-r_A = k \cdot C_A^{\alpha}$ \Rightarrow $-\frac{dC_A}{dt} = k \cdot C_A^{\alpha}$
- ► Thus,

$$ln\left(-\frac{dC_A}{dt}\right) = lnk + \alpha . lnC_A$$

- ▶ Plotting $ln\left(-\frac{dC_A}{dt}\right)$ versus lnC_A \rightarrow slope = α
- ▶ k obtained from specific values of $-\frac{dC_A}{dt}$ and C_A
- ▶ Thus, from the C_A versus t data we need to determine

The differential of concentration versus time

- - Graphical differentiation
 - Numerical differentiation
 - Differentiation of a polynomial fit
- Graphical method:
 - Disparities in data can be seen and remedial actions can be taken
 - $_{\circ}$ Involves plotting of $-\frac{\Delta C_A}{\Delta t}$ versus t
 - $_{\circ}$ Equal-area differentiation to obtain $\frac{dC_A}{dt}$

time (min)	C(EG)	∆ (†)	∆(C)	ΔC/Δt	D(CEG)/dt
0	0				0.315
		0.5	0.145	0.29	
0.5	0.145				0.265
		0.5	0.125	0.25	
1	0.270				0.225
		0.5	0.106	0.212	
1.5	0.376				0.200

