Data Analysis for Policy Research Using R Introduction and R Basics

Harold Stolper

- 1. Introductions
- 2. What is R and How Will We Use It?
- 3. Prerequisites, R setup, course goals
- 4. R Projects and Directory Structure
- 5. R Basics
- 6. Assignments and other course responsibilities
- 7. Questions about the syllabus and course expectations?

Introductions

Student introductions

- 1. Preferred name (and pronouns, if comfortable sharing)
- 2. Previous R exposure/experience
- 3. And answer one of these two questions:
 - What's something you would eventually like to learn how to do in R?
 - What's something that you have observed or think is important that people in your field aren't paying attention to?
- 4. (optional) One piece of culture you are excited about right now
 - e.g. music, writing, fashion, a meme, other art, sports, etc.

Teaching Assistants

- ▶ Rodrigo Eyzaguirre (morning section)
- Liam Tay Kearney (afternoon section)

Harold Stolper, instructor

Graduated from SIPA many moons ago, returned to Columbia for my PhD in economics.

Recent background:

- This is my 8th year teaching quant courses at SIPA.
- Previously worked as the economist for a non-profit doing research and advocacy to promote upward mobility for low-income NYers.
- Recent focus on NYPD subway fare evasion enforcement and overpolicing for communities of color, and other topics related to policing, neighborhood change, and transit access.

Transitioned from Stata to R after years of using and teaching Stata.

What is R and How Will We Use It?

What is R?

- R is "an alternative to traditional statistical packages such as SPSS, SAS, and Stata such that it is an extensible, open-source language and computing environment for Windows, Macintosh, UNIX, and Linux platforms." (ICPSR)
- "R is an integrated suite of software facilities for data manipulation, calculation and graphical display." (R-project.org)

How will we use R?

- RStudio is a powerful user interface for R.
 - After installing R and RStudio, we'll be working entirely in the RStudio interface.
 - ▶ We'll be working with R scripts every week! (an R script is more or less a text file that RStudio recognizes as R code)
- R Markdown files are used in RStudio to "both save and execute code generate high quality reports that can be shared with an audience."
 - This lecture was created using R Markdown.
 - Beginning with Assignment 2, everything you submit for this class will be a document generated with R Markdown.
 - But you're workflow should always begin with an R script before writing up your work using R Markdown

Base R vs. user-defined R packages

R uses "packages" as a bundle of code, data and documentation.

There are default base packages that come ready-to-use with R. Some examples:

- base
- stats
- utils

And there are R packages developed and shared by others. Some R packages include:

- tidyverse
- pgplot2

More about these in later weeks...

Installing and loading R packages

You only need to install a package once. To install an R package use

What can you do with R+RStudio+RMarkdown?

Things you can also do using Stata:

- ▶ Data cleaning and manipulation
- ► Statistical analysis and plots

Things you generally can't do in Stata:

- ▶ Generate reports and presentations
- ▶ Generate interactive content
 - Maps
 - Graphs
 - Dashboards

What will we be doing in this class?

We'll be learning how to use R to explore data to inform policy.

That means we'll be spending a lot of time working through R, but also thinking about how/when to use the methods and concepts we've learned in Quant I and II:

- ▶ Research design: understanding how data structure and methods impact analysis and causal inference
- Data wrangling: cleaning and structuring messy data for analysis
- **Exploratory analysis:** identifying and analyzing key factors in your analysis
- **Explanatory analysis:** estimating relationships between variables to inform policy
- ▶ Data visualization & presentation: conveying findings to your target audience
- ▶ Policy writing & interpretation: translating statistical analysis in accessible terms
- ▶ Data advocacy: thinking critically about using data for good

 $\begin{aligned} & \textbf{participation_rate_{st}} = \beta_0 + \beta_1 imputed_replacement_{st} + \beta_2 waiver_active_{st} + \\ & \beta_3 federal_active_{st} + \beta_4 covid_case_rate_{st} + \beta_5 job_opening_rate_{st} + \phi_s + \theta_t + u_{st} \end{aligned}$

Table 2:

Table 2:			
	Dependent variable: participation_rate		
	(1)	(2)	(3)
imputed_replacement	0.044	0.045	0.045
	(0.038)	(0.038)	(0.038)
waiver_active		-0.211	-0.211
		(0.171)	(0.170)
federal active		0.062	0.061
rederal_deave		(0.176)	(0.175)
covid_case_rate			-0.0003
			(0.009)
job_opening_rate			0.004
			(0.068)
Correct R-squared	0.0252	0.0313	0.0316
State FE	Yes	Yes	Yes
Time FE	Yes	Yes	Yes
Observations	918	918	918
Note:	*p<0.1; **p<0.05; ***p<0.01 Robust SEs shown in parentheses.		

Prerequisites, R setup, course goals

Questions for you

https://pollev.com/haroldpoll

R Projects and Directory Structure

Working directory

R looks for files in your working directory

Function getwd() shows the current working directory (also shown at the top of the RStudio console.)

getwd()
#> [1] "I:/My Drive/Teaching/U6614-drive/Lectures-drive/Lecture1"

You can see all files located in your working directory in the "Files/Plots/Packages/Help/Viewer" pane (by default in the lower right)

RStudio interface

So what is the working directory?

When you run code from the **R Console** or an **R Script**, or from **code chunks** in an R Markdown file (.rmd), the working directory is...

- the folder your file is saved in, or ...
- if you are working within an **R Project**, the working directory is the main directory for the project (more on that shortly!)

getwd()

#> [1] "I:/My Drive/Teaching/U6614-drive/Lectures-drive/Lecture1"

For this class we'll be using R projects to keep organized.

What is an R project? Why are we using them?

What is an "R project"?

- A file that keeps all "project" files organized together: input data, R scripts, analytical results, and figures.
- When you open an R project, your working directory is automatically set to the directory where your R project (and related files) lives.

Why will we be asking you to create and work with R projects?

- Projects are important for keeping organized and avoiding file path errors
- ▶ You should have a project for every week that will include R scripts from class, data files, and also R Markdown files that you'll create for assignments.

The path is how we refer to a directory

Absolute file path: a complete list of directories needed to locate a file or folder.

setwd("C:/Users/Harold Stolper/Google Drive/SIPA/R - Data Analysis/Fall 2020/Le

Relative file path: a way of indicating a given file location relative to your working directory (note that they might be the same!)

➤ Assuming your current working directory is in the "lecture2" folder and you want to go up 2 levels to the "Fall 2021" folder, your relative file path would look something like this:

File path shortcuts:

Key	Description		
~	tilde is a shortcut for user's home directory		
	(mine is my name pm)		
/	moves up a level		
//	moves up two level		

^{*}Note that R does not accept backslashes here, only forward slashes.

R Basics

Executing code in R

Three ways to execute commands in R

- 1. Console: type/paste commands to run "on the fly"
- 2. R scripts (.r files)
 - ▶ Just a text file full of R commands
 - Can execute one command at a time, several commands at a time, or the entire script
- 3. Code chunks in R Markdown (.rmd files)
 - Can execute one command at a time, one chunk at a time, or "knit" the entire file into a document (e.g. html or pdf)

Shortcuts for executing commands

Three ways to execute commands in R

- 1. Type/paste commands directly into the "console" (and press ENTER)
- 2. R scripts (.R files)
 - ► Cmd/Ctrl + Enter: execute highlighted line(s)
 - ► Cmd/Ctrl + Shift + Enter (without highlighting any lines): run entire script
- 3. 'code chunks' in RMarkdown (.rmd files)
 - ► Cmd/Ctrl + Enter: execute highlighted line(s) within chunk
 - ► Cmd/Ctrl + Shift + k: "knit" entire document

Assignment

Assignment means assigning a value/set of values to an "object"

- is the assignment operatorin other languagesis the assignment operator
- good practice to put a space before and after assignment operator

```
# Create an object a and assign value
a <- 5
a
#> [1] 5
# Create an object b and assign value
b <- "I'm so excited to be here in the lab again!"
b
#> [1] "I'm so excited to be here in the lab again!"
```

Note 1: comments start with one or more # symbols

Note 2: R is caps sensitive!

Objects and assignment

R stores information in objects (like all "object-oriented" programming languages).

Some objects:

- numbers
- character strings
- vectors
- matrices
- lists
- functions
- plots
- ▶ data frames (the datasets of R!)

Functions

Functions do things to different objects. They often accept arguments – we "pass" arguments to functions.

Functions are also objects themselves that can be "called" to do things like:

- calculate and display statistics
- generate output
- display part or all of objects (e.g. show some data)
- manipulate objects (e.g. create a new column of data)
- extract information from objects (e.g. the number of rows of data)

Base R includes lots of functions. We'll be working with additional packages that include some handy functions.

Let's jump in!

Our goals for today's R workshop example are very modest:

- Create an R project including R script.
- Look around and get our bearings.
- Install and load a package (gapminder).
- ▶ Use base R functions to inspect a data frame included with this package.
- Use some functions to perform some very basic analysis.
- Assign results from our analysis to new objects and display them.

Assignments and other course responsibilities

Assignment 1: submit an R script via CW by 11:59pm next Monday

Create an R script called assignment1.r that includes code and answers (as comments) for the following:

- 0. Create a new R project called assignment1.
 - This is for your internal project management, do not submit your R project file.
- 1. Load the gapminder data using the library function.
 - You'll need to install the gapminder package if you didn't follow along in class today.
- $2. \ \,$ Show the data structure of the gapminder data frame in the gapminder package.
- 3. What is the average gdpPercap across all observations in the data frame?
 - Use ?gapminder to access gapminder documentation and find the units for gdpPercap.
 - How would you interpret this mean? i.e. what is it the mean of?
- 4. Plot year (x-axis) vs. gdpPercap (y-axis).
 - Describe what the plot says about economic growth over time.
- 5. Create a barplot showing the number of observations in each continent.
 - Start by using the table function with continents as its argument.
 - Next pass the object created by this function to the barplot function.

General assignment guidance

- Use blank spaces liberally, code is hard to read and spaces help!
- Use comments liberally throughout your R script to describe your steps.
- Troubleshooting is a skill! Here are some tips and resources:
 - Consult the R script from class for examples.
 - Get used to using R's built in documentation by using ?
 - Use Google liberally for examples that work.
 When you're stuck, focus on finding examples to a
 - When you're stuck, focus on finding examples to get your own code to work, even if you don't feel comfortable with all the syntax just yet.
 - Execute your code line by line as you go, this will help you isolate the source of any errors
- Consulting with others is good! Copying, however, is not the way to learn to code.
 - Copied assignment submissions will result in a 0 for all parties.

Use Ed Discussion for help!

- If you need help troubleshooting errors, posting to Ed Discussion is usually a great place to start (in addition to office hours).
- Your post should provide a reproducible example, including code and a screenshot of the output/error message if applicable.
- ▶ Don't hesitate to post for help troubleshooting code or setup issues... if you're running intro trouble, odds are somebody else is too!
- A teaching team member will reply soon, and you are also encouraged to reply to each others' posts if you have insight about how to resolve the issue.

Quizzes on pre-class lessons

Starting next class, every class will begin with a short Courseworks quiz covering the pre-class lessons:

- ► Typically 10 multiple choice questions in total, ~5 minutes to complete
- Will include 1 question on the Data Primer covering the data to be used next class

Attendance and participation

Recitation

- You must be able to attend one of the Thursday recitation times
 - Early in the semester recitation will be used to review code from class and prep for assignments
 - Later in the semester this time will be used for extra office hours and project meetings

Zoom

- After in-person instruction resumes, whenever possible Zoom links will be shared w/students who are feeling unwell or dealing with COVID related disruptions
 - To request a Zoom link, please email the instructor as soon as possible and briefly explain your circumstances

Participation

Keep in mind that participation-in-class and through Ed Discussion-is worth 10% of your total grade. We want to create our own data community with engagement from everybody in ways they are comfortable with.

