

৯ম শ্রেণি রসায়ন

আলোচ্য বিষয়

অধ্যায় ৩ - পদার্থের গঠন

অনলাইন ব্যাচ সম্পর্কিত যেকোনো জিজ্ঞাসায়,

ব্যবহারবিধি

দেখে নাও এই অধ্যায় থেকে কোথায় কোথায় প্রশ্ন এসেছে এবং সৃজনশীল ও বহুনির্বাচনীর গুরুত্ব।

🖈 কুইক টিপস

সহজে মনে রাখার এবং দ্রুত ক্যালকুলেশন করতে সহায়ক হবে।

? বহুনির্বাচনী (MCQ)

বিগত বছর গুলোতে বোর্ড, স্কুল, কলেজ এবং বিশ্ববিদ্যালয়ে আসা বহুনির্বাচনী দেখে নাও উত্তরসহ।

🧠 সৃজনশীল (CQ)

পরীক্ষায় আসার মতো গুরুত্বপূর্ণ সৃজনশীল দেখে নাও উত্তরসহ।

厚 প্র্যাকটিস

পরীক্ষায় আসার মতো গুরুত্বপূর্ণ সমস্যাগুলো প্র্যাকটিস করে নিজেকে যাচাই করে নাও।

🤪 উত্তরমালা

প্র্যাকটিস সমস্যাগুলোর উত্তরগুলো মিলিয়ে নাও।

🛨 উদাহরণ

টপিক সংক্রান্ত উদাহরণসমূহ।

ᢧ সূত্রের আলোচনা

সূত্রের ব্যাপারে বিস্তারিত জেনে নাও।

🦰 টাইপ ভিত্তিক সমস্যাবলী

সম্পূর্ণ অধ্যায়ের সুসজ্জিত আলোচনা।

এক নজরে..

কোন সালে বোর্ডে কয়টি প্রশ্ন এসেছে

বোর্ড	ঢাকা	রাজশা	হী কুমিল্ল	া যশোর	চট্টগ্রাম	বরিশাল	সিলেট	দিনাজপুর	ময়মনসিংহ
সাল									
২০২১	٩	٩	C	৮	<mark></mark>	¢	Č	৯	¢
২০২০	২	_	১	O	২	২	১	٥	O
২০১৯	8	২	১	২	১	¢	১	٥	_
২০১৮				সম্মিলিত বে	ার্ড: ১				
২০১৭	২	8	O	_	১	_	১	১	_
২০১৬	O	১	২	২	১	২	չ	১	_

সূত্রের আলোচনা

কৌণিক ভরবেগ, $mvr = \frac{nh}{2\pi}$

m= ইল্রকট্রনের ভর

 ${f r}=$ ইলেকট্রন যে কক্ষপথে ঘুরবে তার ব্যাসার্ধ

v = ইলেকট্রন যে কক্ষপথে ঘুরবে সেই কক্ষপথে ইলেকট্রনের বেগ

h = প্লাংক ধ্রুবক

n = প্রধান শক্তিস্তর সংখ্যা

শোষিত বা বিকিরিত শক্তির পরিমাপ, $holdsymbol{v}=rac{hc}{oldsymbol{\lambda}}$

c = আলোর বেগ

h = প্লাংক ধ্রুবক

λ = শোষিত বা বিকিরিত শক্তির তরঙ্গদৈর্ঘ্য

υ = শোষিত বা বিকিরিত শক্তির কম্পাংক

মৌলের একটি পরমাণুর ভর মৌলের আপেক্ষিক পারমাণবিক ভর= একটি কার্বন–১২ আইসোটোপের পারমাণবিক ভরের <u>১</u> অংশ

আইসোটোপের শতকরা হার থেকে মৌলের আপেক্ষিক ভর= $\frac{p \times m + q \times n}{100}$ কোনো মৌলের দুইটি আইসোটোপ থাকলে,

p= প্রথম আইসোটপের ভর সংখ্যা

m= প্রথম আইসোটপের শতকরা পরিমাণ

q= দ্বিতীয় আইসোটপের ভর সংখ্যা

n= দ্বিতীয় আইসোটপের শতকরা পরিমাণ

লাল-সবুজে দাগানো মূল বই এর পাঠ্য:

🗆 মৌল :

- যে পদার্থকে রাসায়নিক উপায়ে বিশ্লেষণ করলে সেই পদার্থ ব্যতিত অন্য কোনো পদার্থ পাওয়া যায় না তাকে
 মৌলিক পদার্থ বলে।

🗅 মৌলের প্রতীক :

প্রতিটি মৌলকে প্রকাশ করতে আলাদা আলাদা প্রতীক ব্যবহার করা হয়।

🕨 কোনো মৌলের ইংরেজি বা ল্যাটিন নামের সংক্ষিপ্ত রূপকে প্রতীক বলে।

মৌলের প্রতীক লেখায় বেশ কিছু নিয়ম অনুসরণীয়

- ১. মৌলের ইংরেজি নামের ১ম অক্ষর দিয়ে প্রতীক লিখতে হয় এবং ইংরেজি বর্ণমালার বড় হাতের অক্ষর দ্বারা প্রকাশ করতে হয়।
- ২. দুই বা ততোধিক মৌলের ইংরেজি নামের প্রথম অক্ষর একই হলে ১ম মৌলের নাম ইংরেজি ১ম অক্ষর এবং অন্যগুলোর ক্ষেত্রে প্রতীকটি দুই অক্ষরে লেখা হয়।
- ৩. কিছু মৌলের প্রতীক ল্যাটিন নাম থেকে নেওয়া হয়।

মৌল	প্রতীক	নাম (বৈদেশিক)
কার্বন	С	(Carbon)
কোবাল্ট	Со	(Cobalt)
সোডিয়াম	Na	(Natrium)
কপার	Cu	(Cuprium)

🗆 অণু-পরমাণু

- পরমাণু হলো মৌলিক পদার্থের ক্ষুদ্রতম কণা। এতে মৌলের গুনাগুণ বিদ্যমান থাকে। নাইট্রোজেনের পরমানুতে নাইট্রোজেনের ধর্ম বিদ্যমান থাকে, এভাবে প্রতিটি মৌলের পরমাণুতে তার ধর্ম গুনাগুণ বিদ্যমান থাকে।
- দুই বা ততোধিক সংখ্যক পরমাণু পরস্পরের সাথে রাসায়নিক বন্ধন এর মাধ্যমে যুক্ত থাকলে তাকে অণু বলে। পরমাণুগুলো এককভাবে পরিবেশে বিরাজ করতে পারে না। এজন্য এরা অণু গঠন করে।
- $ilde{} ilde{}$ একই মৌলের একাধিক পরমাণুর পরস্পরের সাথে যুক্ত হলে তাকে মৌলের অণু বলে। যেমন 0_2 ।
- ightarrow ভিন্ন সৌলের পরমাণু পরস্পর যুক্ত হলে তাকে যৌগের অণু বলে। যেমন $H_2 0$ ।

🗆 সংকেত :

🕨 কোনো মৌলের বা যৌগের অনুর সংক্ষিপ্তরূপকেই সংকেত বলে।

একটি অণুকে সংক্ষিপ্ত রূপে প্রকাশ করতেই মুলত সংকেত ব্যবহার করা হয়। যেমনঃ হাইড্রোজেনের একটি অণুকে প্রকাশ করতে H_2 ব্যবহৃত হয়। অর্থাৎ হাইড্রোজেনের অণুতে ২টি হাইড্রোজেন পরমাণু (H) রয়েছে।

পরমাণুর কণিকা :

পরমাণু ইলেকট্রন, প্রোটন ও নিউট্রন এই ৩টি কণিকা নিয়ে গঠিত।

- 🕨 পরমাণু ইলেকট্রন, প্রোটন ও নিউট্রন এই ৩টি কণিকা নিয়ে গঠিত।
- 🕨 পরমাণুর যে মূল কণিকা ঋণাত্মক আধানবিশিষ্ট হয়, তাকে ইলেকট্রন বলে।
- এটি ঋণাত্মক আধানবিশিষ্ট, এ আধানের পরিমাণ $-1.60 imes 10^{-19}$ কুলম্ব। একে e^- প্রতীক দ্বারা প্রকাশ করা হয়।
- এর আপেক্ষিক আধান -1 ও আপেক্ষিক ভর 0।
- ullet ইলেক্ট্রনের ভর প্রোটন ও নিউট্রনের তুলনায় 1840 গুণ কম। এর প্রকৃত ভর $9.11 imes 10^{-28} g$ ।
- 🕨 পরমাণুর যে মূল কণিকা ধনাত্মক আধানবিশিষ্ট হয়, তাকে প্রোটন বলে।
- এটি ধনাত্মক আধানবিশিষ্ট। এ আধানের পরিমাণ $+1.67 imes 10^{-19}$ কুলম্ব। একে P প্রতীক দ্বারা প্রকাশ করা হয়।
- এর আপেক্ষিক আধান +1 ও আপেক্ষিক ভর 1।
- প্রোটনের প্রকৃত ভর $1.673 imes 10^{-24} g$ ।
- 🕨 পরমাণুর যে মূল কণিকায় কোনো আধান থাকে না তাকেই নিউট্রন বলে।
- এতে কোনো আধান $0,\,n$ প্রতীক দ্বারা প্রকাশ করা হয়।
- এর আপেক্ষিক আধান 0, আপেক্ষিক ভর 1।
- ullet প্রকৃত ভর $1.675 imes 10^{-24} g$ ।

Note: H ছাড়া সকল মৌলের পরমাণুতেই নিউট্রন থাকে।

🛘 পারমাণবিক সংখ্যা ও ভরসংখ্যা :

- কোনো মৌলের একটি পরমাণুর নিউক্লিয়াসে উপস্থিত প্রোটনের সংখ্যাকে ঐ মৌলের পারমাণবিক সংখ্যা
 বলা হয়।
- পরমাণুর পারমাণবিক সংখ্যা দ্বারা ঐ পরমাণুকে চেনা যায়। পারমাণবিক সংখ্যাই হলো পরমাণুর আসল পরিচয়। পারমাণবিক সংখ্যা বা প্রোটন সংখ্যাকে z দ্বারা প্রকাশ করা হয়।
- 🗲 কোনো পরমাণুতে উপস্থিত প্রোটন ও নিউট্রন সংখ্যার যোগফলকে ঐ পরমাণুর ভরসংখ্যা বলে।

 একে নিউক্লিয়াস সংখ্যাও বলা হয়। ভরসংখ্যাকে A দিয়ে প্রকাশ করা হয়। ভরসংখ্যা থেকে প্রোটন সংখ্যা বিয়োগ করলে নিউট্রন সংখ্যা পাওয়া যায়। এদেরকে এভাবে প্রকাশ করা হয়।

ভরসংখ্যা (A) \longrightarrow 12C পারমাণবিক সংখ্যা (Z) \longrightarrow 6C এখানে, পারমাণবিক সংখা/প্রোটন সংখ্যা (Z)=6 ভরসংখ্যা (A)=12 ইলেকট্রন সংখ্যা = 6 নিউট্রন সংখ্যা = (12-6)=6

আণবিক ভর, পারমাণবিক ভর :

আমরা জানি, প্রোটন ও নিউট্রন সংখ্যার যোগফলই হলো ভরসংখ্যা। এক্ষেত্রে ভরসংখ্যাকে অবশ্যই পূর্ণসংখ্যা হবে। কিন্তু Cu, Cl ইত্যাদি বিভিন্ন মৌলের পারমাণবিক ভর দশমিকে হয়। এটি হলো আপেক্ষিক পারমাণবিক ভর।

আপেক্ষিক পারমাণবিক ভর একটি মাত্রাবিহীন ভৌত রাশি।

• কোনো মৌলের আপেক্ষিক পারমাণবিক ভর = মৌলের একটি পরমাণুর ভর একটি কার্বন–১২ আইসোটোপের পারমাণবিক ভরের <u>১</u> অংশ

 $\mathcal{C}-12$ আইসোটোপের পারমাণবিক ভরের $\frac{1}{12}$ অংশ হচ্ছে $1.66 imes 10^{-24} g$ ।

যেমন: Al এর একটি পরমাণুর ভর $4.482 imes 10^{-23} g$

Al এর আপেক্ষিক পারমাণবিক ভর কত ?

 \Rightarrow Al এর ১টি পরমাণুর ভর $4.482 imes 10^{-23} g$

 $\therefore Al$ এর আপেক্ষিক পারমাণবিক ভর = $\frac{4.482 \times 10^{-23} g}{1.66 \times 10^{-24} g} = 27$

- আপেক্ষিক আণবিক ভর :
- কোনো মৌলিক বা যৌগিক পদার্থের অণুতে যে পরমাণুগুলো থাকে তাদের আপেক্ষিক পারমাণবিক ভর নিজ নিজ পরমাণু সংখ্যা দ্বারা গুণ করে যোগ করে যে যোগফল পাওয়া যায়, তাকেই আপেক্ষিক আণবিক ভর বলে।

যেমন: H_2SO_4 এর আপেক্ষিক আণবিক ভর $= (1 \times 2) + 32 + (16 \times 4) = 98$

🔲 গড় আপেক্ষিক ভর :

যে মৌলের একাধিক আইসোটোপ আছে সেই মৌলের সকল আইসোটোপের প্রকৃতিতে প্রাপ্ত শতকরা হার থেকে মৌলের গড় আপেক্ষিক ভর নির্ণয় করা হয়। এক্ষেত্রে কয়েকটি ধাপ অনুসরণ করতে হয়।

- মৌলের প্রত্যেকটি আইসোটোপের ভর সংখ্যা এবং প্রকৃতিতে প্রাপ্ত ঐ আইসোটোপের শতকরা পরিমাণ গুণ দিতে হবে।
- প্রাপ্ত গুণফলকে যোগ করে 100 দ্বারা ভাগ করতে হবে।

 \therefore মৌলের গড় আপেক্ষিক পারমাণবিক ভর $=rac{P imes m+q imes n}{100}$ এখানে,

р = আইসোটোপের ভর সংখ্যা

m = আইসোটোপের শতকরা পরিমাণ

q = অপর আইসোটোপের ভর সংখ্যা

n = অপর আইসোটোপের শতকরা পরিমাণ

উদাহরণ : ক্লোরিনের গড় আপেক্ষিক ভর কত ?

 \Rightarrow আমরা জানি, প্রকৃতিতে প্রাপ্ত 35_{Cl} এর শতকরা পরিমাণ 75%

এবং প্রকৃতিতে প্রাপ্ত 37_{Cl} এর শতকরা পরিমাণ 25%

$$\therefore Cl$$
 এর গড় আপেক্ষিক ভর= $\frac{35 \times 75 + 37 \times 25}{100} = 35.5$ (Ans.)

পরমাণু মডেল

রাদারফোর্ড পরমাণু মডেল: 1911 সালে বিজ্ঞানী রাদারফোর্ড পরমাণুর গঠন সম্পর্কে একটি মডেল প্রদান করেন। <mark>আলফা কণা বিচ্ছুরণ</mark> পরীক্ষার উপর নির্ভর করে তিনি এ মডেল প্রদান করেন। মডেলটি নিম্নে বর্ণনা করা হলো :

- পরমাণুর কেন্দ্রের নাম নিউক্লিয়াস। নিউক্লিয়াসের ভেতর প্রোটন ও নিউট্রন থাকে এবং নিউক্লিয়াস বাইরে ইলেকট্রন
 অবস্থান করে। আপেক্ষিকভাবে ইলেকট্রনের ভর শূন্য ধরায় নিউক্লিয়াসের ভেতরে অবস্থিত প্রোটন এবং নিউট্রনের
 ভরই পরমাণুর ভর হিসেবে বিবেচনা করা হয়।
- নিউক্লিয়াস অতিক্ষুদ্র এবং পরমাণুর অধিকাংশই ফাকা।
- সৌরজগতের মতো ইলেকট্রনগুলোও পরমাণুর চারপাশে ঘুরতে থাকে। পরমাণুর নিউক্লিয়াসে প্রোটনসংখ্যা এবং ইলেকট্রনসংখ্যা সমান হওয়ায় পরমাণুর সামগ্রিক চার্জ শূন্য হয়।
- ধনাত্মক চার্জযুক্ত নিউক্লিয়াসের প্রতি ধনাত্মক চার্জবিশিষ্ট ইলেকট্রন এক ধরনের আকর্ষণ অনুভব করে। এই আকর্ষণ বল কেন্দ্রমুখী এবং এ কেন্দ্রমুখী বলের কারণে সৌরজগতের মতো নিউক্লিয়াসের চারদিকে ইলেকট্রন ঘুরতে থাকে।

রাদারফোর্ড পরমাণু মডেলের সীমাবদ্ধতা : রাদারফোর্ড সর্বপ্রথম গ্রহনযোগ্য মডেল প্রদান করলেও তার মডেলে বেশ কিছু সীমাবদ্ধতা ছিল:

- এ মডেলে ইলেকট্রনের আকার বা আকৃতি সম্বন্ধে কোনো ধারণা নেই।
- একের অধিক ইলেকট্রন বিশিষ্ট <mark>প</mark>রমাণু কীভাবে নিউক্লিয়ানের চারদিকে ঘুরবে তার কোনো ধারণা এ মডেলে নেই।
- এখানে সৌরজগতের গ্রহ ও সূর্যের সাথে ইলেকট্রন ও নিউক্লিয়াসের তুলনা দেওয়া হয়েছে। কিন্তু সৌরজগতের গ্রহসমূহ চার্জবিহীন, অপরদিকে ইলেকট্রন চার্জযুক্ত।
- ম্যাক্সওয়েলের তত্ত্বমতে ইলেকট্রন ঘূর্ণনের সময় শক্তি বিকিরণ করবে এবং এক সময় নিউক্লিয়াসে পতিত হবে। এতে পরমাণু একটি অস্থায়ী অবস্থা প্রাপ্ত হয়। কিন্তু বাস্তবে তা ঘটেনা।

Note: রাদারফোর্ড পরমাণু মডেলকে সৌরমডেল বলা হয়

বোর পরমাণু মডেল: ১৯১৩ সালে বিজ্ঞানী নীলস বোর একটি পরমাণু মডেল প্রদান করেন। এ মডেলে তিনি রাদারফোর্ডের ব্রুটিগুলো সংশোধন করেন। এ মডেলে ছিল –

• পরমাণুর নিউক্লিয়াসকে কেন্দ্র করে ঘুরতে থাকা নিউক্লিয়াস একটি বা নির্দিষ্ট ব্যাসার্ধের কতগুলো বৃত্তাকার কক্ষপথে অবস্থান করে। এ কক্ষপথগুলোকে শেল/অরবিট বা স্থির কক্ষপথ বলে। এগুলোর n দ্বারা প্রকাশ করা হয়। এখানে,

```
n=1 হলে K শক্তিস্তর
```

n=2 হলে L শক্তিস্তর

n=3 হলে M শক্তিস্তর

n=4 হলে N শক্তিস্তর ইত্যাদি।

এ মডেলে কোন শক্তিস্তর ইলেকট্রনের কৌণিক ভরবেগ, $mvr=rac{nh}{2\pi}$

এখানে

m= ইলেকট্রনের ভর $(9.11 \times 10^{-31} Kg)$

r = কক্ষপথের ব্যাসার্ধ

v= কক্ষপথে ইলেকট্রনের বেগ

h = প্লাঙ্ক ধ্রুবক $(6.626 \times 10^{-34} m^2 kg/s)$

n= প্রধান শক্তিস্তর।

ইলেকট্রন প্রদক্ষিনের সময় নিম্ন শক্তিস্তর থেকে উচ্চ শক্তিস্তরে যেতে শক্তি শোষণ করে।

বোর পরমাণু মডেলের সীমাবদ্ধতা : বোর মডেল সর্বোচ্চ গ্রহণযোগ্যতা পেলেও এতেও কিছু ত্রুটি পরিলক্ষিত হয়।

- এ মডেলের সাহায্যে একাধিক ইলেকট্রনবিশিষ্ট পরমাণুর পারমাণবিক বর্ণালি ব্যাখ্যা করা যায় না।
- বোর মডেল অনুসারে এক শক্তিস্তর থেকে অন্য শক্তিস্তরে গমন করলে ১টি মাত্র রেখা পাবার কথা। কিন্তু শক্তিশালী অণুবীক্ষণ যন্ত্র দ্বারা পরীক্ষা করলে অসংখ্য ক্ষুদ্র রেখার সমষ্টি দেখা যায়, যার ব্যাখ্যা বোর মডেলে নেই।
- বোর পরমাণু মডেলে শুধুমাত্র বৃত্তাকার কক্ষপথের উল্লেখ আছে। কিন্তু পরবর্তীতে আবিষ্কৃত হয়েছে পরমাণুতে উপবৃত্তাকার কক্ষপথও রয়েছে।

রাদারফোর্ডের পরমাণু মডেল ও বোরের পরমাণু মডেলের বৈসাদৃশ্য:

	রাদারফোর্ডের পরমাণু মডেল	বোরের পরমাণু মডেল
٥١	রাদারফোর্ডের পরমাণু মডেল সাধারণ বলবিজ্ঞানের উপর প্রতিষ্ঠিত।	বোরের পরমাণু মডেলের মূল ভিত্তি হলো প্লাংকের পরমাণু মতবাদ।
২।	রাদারফোর্ডের পরমাণু মডেল অনুযায়ী, পরমাণুর নিউক্লিয়াসকে কেন্দ্র করে যেকোনো ব্যাসার্ধের বৃত্তাকার কক্ষপথে ইলেকটনগুলো আবর্তন করতে পারে।	বোরের পরমাণু মডেল অনুযায়ী, ইলেকট্রনগুলি ইচ্ছামতো যেকোনো ব্যাসার্ধের বৃত্তাকার কক্ষপথে আবর্তন করার পরিবর্তে, কতগুলি নির্দিষ্ট ও সুস্থিত কক্ষপথে আবর্তন করে।
०।	তড়িৎ গতিবিদ্যা অনুযায়ী নিউক্লিয়াসের চারদিকে আবর্তনশীল ইলেকট্রন ক্রমশ শক্তি বর্জন করবে। ফলে ইলেকট্রন্টি ক্রমহ্রাসমান ব্যাসার্ধের কুন্ডলীপথে আবর্তন করতে করতে নিউক্লিয়াসের উপর গিয়ে পড়বে। সুতরাং রাদারফোর্ডের পরমাণু মডেল দ্বারা পরমাণুএ সুস্থিতি ব্যাখা করা যায় না।	বোরের পরমাণু মডেল অনুযায়ী নির্দিষ্ট শক্তিসম্পন্ন স্থায়ী কক্ষপথে ঘূর্ণনের সময় ইলেকট্রনগুলি কোনো শক্তি বিকিরণ করে না।সুতরাং শক্তি হারিয়ে ইলেকট্রনের নিউক্লিয়াসে গিয়ে পড়ার কোনো সম্ভাবনা থাকে না। অর্থাৎ এই মডেল পরমাণুর সুস্থিতি ব্যাখা করতে সমর্থ হয়।
81	এই মডেল অনুসারে, পরমাণুর মধ্যে ইলেকট্রনের নিরবিচ্ছিন্ন শক্তি বিকিরণের ফলে নিরবিচ্ছিন্ন পারমাণবিক বর্ণালি পাওয়ার কথা। কিন্তু বাস্তবে পরমাণুর রেখা বর্ণালি পাওয়া যায়। অর্থাৎ রাদারফোর্ডের মডেল দ্বারা পরমাণুর রেখা বর্ণালির উৎপত্তি ব্যাখা করা যায় না।	এই মডেলের স্বীকার্য অনুযায়ী, উচ্চ শক্তিসম্পন্ন সক্ষথেকে নিম্ন শক্তিসম্পন্ন কক্ষে ইলেকট্রন স্থানান্তরের ফলে শক্তি নির্গত হয়। দুটি কক্ষপথের শক্তির পার্থক্য নির্দিষ্ট। তাই নির্গত শক্তির কম্পাঙ্কও নির্দিষ্ট এবং এর ফলে পরমাণু রেখা বর্ণালির সৃষ্টি হয়। সুতরাং, বোরের তত্ত্ব দ্বারা পরমাণুর রেখা বর্ণালির উৎপত্তি ব্যাখা করা যায়।
¢۱	এই মডেলের সাহায্যে কক্ষপথের ব্যাসার্ধ, ইলেকট্রনের গতিবেগ, শক্তি ও বর্ণালীতে উৎপন্ন রেখার কম্পাংক নির্ণয় করা যায় না।	এই মডেলের সাহায্যে কক্ষপথের ব্যাসার্ধ, ইলেকট্রনের গতিবেগ, শক্তি ও বর্ণালীতে উৎপন্ন রেখার কম্পাংক নির্ণয় করা যায়।

শক্তিস্তরে ইলেকট্রন বিন্যাস

বোর মডেলে যে কক্ষপথের কথা বলা হয়, তাকে প্রধান শক্তিস্তর বলা হয়। প্রতিটি প্রধান শক্তিস্তরের ইলেকট্রন ধারণক্ষমতা $2n^2$ সূত্র মেনে চলে।

K শক্তিস্তরে $n=1,2n^2=(2 imes1)$ টি =2 টি ইলেকট্রন

l শক্তিস্তরে $n=2,2n^2=(2\times 2^2)$ টি =8 টি ইলেকট্রন

M শক্তিস্তরে $n=3,2n^2=(2 imes 3^2)$ টি =18 টি ইলেকট্রন

K শক্তিস্তরে $n=4,2n^2=(2 imes 4^2)$ টি =32 টি ইলেকট্রন

> উপশক্তিস্তর :

প্রধান শক্তিস্তর n দ্বারা চিহ্নিত করা হয়। এই শক্তিস্তরগুলো আবার উপশক্তিস্তরে বিভিন্ন থাকে। এদের l দ্বারা চিহ্নিত করা হয়। l এর মান 0 থেকে n-1 পর্যন্ত। এদেরকে <mark>অরবিটাল</mark> বলা হয়। এদের s,p,d,f ইত্যাদি নামে আখ্যায়িত করা হয়।

n=1 হলে, l=0 অরবিটাল একটি:1s

n=2 হলে, l=0,1 অরবিটাল দুইটি: 2s,2p

n=3 হলে, l=0,1,2 অরবিটাল তিনটি: 3s,3p,3d

n=4 হলে, l=0,1,2,3 অরবিটাল চারটি: 4s,4p,4d,4f ইত্যাদি

প্রতিটি অরবিটালে ইলেকট্রন সংখ্যা হচ্ছে : 2(2l+1)

প্রতিটি পূর্ণ শক্তিস্তরে ইলেকট্রন সংখ্যা $2n^2$

🗲 ইলেকট্রন বিন্যাসের নীতিমালা :

পরমাণুর ইলেকট্রন বিন্যাসে বেশ কিছু নীতি মেনে চলে। এগুলো হল:

- ইলেকট্রন প্রথমে সর্বনিম্ন শক্তির অরবিটালে প্রবেশ করে ক্রমান্বয়ে উচ্চশক্তির অরবিটালে প্রবেশ করে।
- যে অরবিটালে (n+l) এর মান কম এবং সেই অরবিটালে ইলেকট্রন আগে প্রবেশ করে। অপরদিকে (n+l) এর মান বেশি হলে অরবিটালের শক্তি বেশি হয় এবং ইলেকট্রন পরে প্রবেশ করে।
- নিয়ম অনুযায়ী অরবিটালের ক্রমবর্ধমান শক্তি:

1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < 5d < 6p < 7s < 5f < 6d < 7p < 8s

• s উপশক্তিস্তরে সর্বোচ্চ 2 টি ইলেকট্রন, p উপশক্তিস্তরে 6 টি, d উপশক্তিস্তরে সর্বোচ্চ 14 টি ইলেকট্রন থাকতে পারে। এই নীতিতে কয়েকটি ইলেকট্রন বিন্যাস :

$$K(19) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$$

 $Fe(26) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$

ব্যাতিক্রম নিয়ম :

একই উপশক্তিস্তর p ও d এর অরবিটালগুলো অর্ধপূর্ণ (p^3,d^5) বা সম্পুর্ণ (p^6,d^{10}) হলে ইলেকট্রন বিন্যাস অধিক সুস্থিত হয়। তাই Cr,Cu ইত্যাদি কয়েকটি ব্যাতিক্রমী মৌলের 3d অরবিটাল সুস্থিত অর্ধপুর্ণ হওয়ার আকাঙ্ক্ষায় 4s অরবিটাল থেকে ইলেকট্রন 3d অরবিটালে যেতে দেখা যায়।

আইসোটোপ, আইসোটোন ও আইসোবার

- যে সকল পরমাণুর প্রোটন সংখ্যা সমান কিন্তু ভরসংখ্যা ও নিউট্রন সংখ্যা ভিন্ন তাদেরকে একে অপরের
 আইসোটোপ বলে। উদাহরণ: ½C , ½C
- ightarrow যে সকল পরমাণুর নিউট্রন সংখ্যা সমান কিন্তু ভরসংখ্যা ও প্রোটন সংখ্যা ভিন্ন তাদেরকে একে অপরের **আইসোটোন** বলে। উদাহরণ: $^{38}_{18}Ar$, $^{39}_{19}K$
- ightarrow যে সকল পরমাণুর ভরসংখ্যা সমান কিন্তু অন্যান্য সংখ্যা ভিন্ন থাকে তাদেরকে **আইসোবার** বলে। উদাহরণ: $^{40}_{18}Ar$, $^{40}_{19}K$

🗅 তেজস্ক্রিয় আইসোটোপের ব্যবহার :

 যেসব আইসোটোপের নিউক্লিয়াস স্বতঃস্ফূর্তভাবে ভেঙ্গে আলফা, বিটা, গামা রিশ্মি ইত্যাদি নির্গত করে তাদের তেজস্ক্রিয় আইসোটোপ বলে।

এখন পর্যন্ত **3000** এর বেশি আইসোটোপ সম্বন্ধে জানা আছে। বিভিন্নক্ষেত্রে এখন এই তেজস্ক্রিয় আইসোটোপ ব্যবহার করা হচ্ছে –

- * $^{99}Tc \rightarrow ^{99}Tc + \gamma \Rightarrow$ রোগাক্রান্ত স্থান নির্ণয়ে
- * $^{153}Sr/^{89}Sn \Rightarrow$ হাড়ের ব্যাথায়

- * $^{60}Co \Rightarrow$ ক্যান্সার কোষকলাধংসে ও টিউমার নির্ণয় ও নিরাময়ে
- * $^{32}P\Rightarrow$ রক্তের লিউকোমিয়া রোগের চিকিৎসায়।
- ^{238}Pu ⇒ হার্টে পেইসমেকার বসাতে।

এছাড়াও থাইরয়েড ক্যান্সার নিরাময়ে ^{131}I , ফসলের পুষ্টিতে তেজস্ক্রিয় নাইট্রোজেন ও ফসফরাস প্রদান করা হয়।

তবে তেজস্ক্রিয় আইসোটোপ আমাদের ক্ষতির কারণ হয়ে দাঁড়াচ্ছে। আলফা, বিটা, গামা রশ্মি নির্গত হয়ে কোষের জিনগত পরিবর্তন ঘটিয়ে ক্যান্সার সৃষ্টি করতে পারে।

জ্ঞানমূলক প্রশ্নোত্তর

১। পারমাণবিক সংখ্যা কাকে বলে ? [চ. বো. '১৫]

উত্তর: কোনো মৌলের একটি পরমাণুর নিউক্লিয়াসে বিদ্যমান প্রোটনের সংখ্যাকে ঐ মৌলের পারমাণবিক সংখ্যা বলে। ২। পারমাণুর ভর সংখ্যা কাকে বলে ? [চ. বো. '১৫; দি. বো. '১৫]

উত্তর: কোনো মৌলের পরমাণুর নিউক্লিয়াসে উপস্থিত প্রোটন ও নিউট্রনের মোট সংখ্যাকে সে মৌলের পারমাণুর ভর সংখ্যা বলে।

৩। পারমাণবিক ভর কাকে বলে ? [রাজউক উত্তরা মডেল কলেজ, ঢাকা]

উত্তর: কোনো একটি পরমাণুর ভর এবং একটি কার্বন-12 পরমাণু ভরের $\frac{1}{12}$ অংশের অনুপাতকে ঐ মৌলের পারমাণবিক ভর বলে।

৪। আইসোটোপ কাকে বলে ? [সরকারি বিজ্ঞান কলেজ সংযুক্ত হাই স্কুল, ঢাকা]

উত্তর: যেসব মৌলের পরমাণুসমূহে<mark>র পা</mark>রমাণবিক সংখ্যা একই কিন্তু ভর সংখ্যা ভিন্ন তাদেরকে পরস্পরের আইসোটোপ বলে।

৫। তেজস্ক্রিয়তা কাকে বলে ? [বগুড়া ক্যান্টনমেন্ট পাবলিক স্কুল ও কলেজ, বগুড়া]

উত্তর: তেজস্ক্রিয় মৌল থেকে তেজস্ক্রিয় রশ্মি নির্গমনের ঘটনাকে তেজস্ক্রিয়তা বলে।

৬। তেজস্ক্রিয় আইসোটোপ কী ? [বরিশাল ক্যাডেট কলেজ, বরিশাল]

উত্তর: যে সকল আইসোটোপের নিউক্লিয়াস স্বতঃস্ফূর্তভাবে (নিজে নিজেই) ভেঙ্গে আলফা রশ্মি, বিটা রশ্মি, গামা রশ্মি ইত্যাদি নির্গত করে তাদেরকে তেজস্ক্রিয় আইসোটোপ বলে।

৭। lpha-কণা কী ? [রাজশাহী ক্যাডেট কলেজ, রাজশাহী]

উত্তর: lpha-কণা হলো দ্বি-ধনাত্মক হিলিয়াম নিউক্লিয়াস ($^4_2He^{2+}$)।

৮। মৌল কী ?

উত্তর: যে পদার্থকে ভাঙলে সেই পদার্থ ছাড়া অন্য কোনো পদার্থ পাওয়া যায় না তাকে মৌল বা মৌলিক পদার্থ বলে। ৯। কৃত্রিম মৌল কাকে বলে ?

উত্তর: যেসব মৌল প্রকৃতিতে পাওয়া যায় না, গবেষণাগারে তৈরি করা হয় সেসব মৌলকে কৃত্রিম মৌল বলে।

১০। মানুষের শরীরে কয় ধরনের ভিন্ন ভিন্ন মৌল রয়েছে ?

উত্তর: মানুষের শরীরে ২৬ ধরনের ভিন্ন ভিন্ন মৌল রয়েছে।

১১। পরমাণু কী ?

উত্তর: পরমাণু হলো মৌলিক পদার্থের ক্ষুদ্রতম কণা যার মধ্যে মৌলের গুনাগুণ থাকে।

১২। প্রতীক কী ?

উত্তর: প্রতীক হলো রাসায়নিক মৌল প্রকাশের বর্ণ বা চিহ্ন যা ইংরেজি বর্ণমালার এক বা একাধিক বর্ণ নিয়ে গঠিত হয়। ১৩। হাইড্রোজেনের কয়টি আইসোটোপ ?

উত্তর: হাইড্রোজেনের 7 টি আইসোটোপ (1H , 2H , 3H , 4H , 5H , 6H , 7H) বিদ্যমান। এর মধ্যে তিনটি স্থায়ী। ১৪। অরবিট কী ?

উত্তর: পরমাণুর যে সকল স্থির কক্ষপথে ইলেকট্রনগুলো নিউক্লিয়াসকে কেন্দ্র করে আবর্তন করে তাদেরকে অরবিট

বলে।

১৫। চার্জবিহীন মূল কণিকা কোনটি ?

উত্তর: চার্জবিহীন মূল কণিকা নিউট্রন।

১৬। ব্রেইন ক্যান্সার নিরাময়ে কোন আইসোটোপ ব্যবহার করা হয় ?

উত্তর: ব্রেইন ক্যান্সার নিরাময়ে ইরিডিয়াম আইসোটোপ ব্যবহার করা হয়।

১৭। পরমাণুর স্থায়ী কণিকাসমূহের নাম লিখ।

উত্তর: পরমাণুর স্থায়ী কণিকাসমূহ হলো ইলেকট্রন, প্রোটন ও নিউট্রন।

১৮। পৃথিবীর বয়স নির্ধারণে কোন পরমাণুর আইসোটোপ ব্যবহার করা হয় ?

উত্তর: পৃথিবীর বয়স নির্ধারণে C-12 পরমাণুর আইসোটোপ ব্যবহার করা হয়।

১৯। পোল্ট্রি ফার্মে ব্যাকটেরিয়াজনিত রোগের উদ্ভব ঠেকাতে কোন রশ্মি ব্যবহৃত হয় ?

উত্তর: পোলট্রি ফার্মে ব্যাকটেরিয়াজনিত রোগের উদ্ভব ঠেকাতে গামারশ্মি ব্যবহৃত হয়।

২০। কোন রশ্মিটি জীবন্ত কোষের ক্ষতি সাধন করতে পারে ?

উত্তর: গামা (γ) রশ্মি জীবন্ত কোষের ক্ষতি সাধন করতে পারে।

অনুধাবনমূলক প্রশ্নোত্তর

প্রশ্ন ১। পরমাণুর কেন্দ্রে অবস্থিত প্রোটন সমূহ পরস্পরকে বিকর্ষণ করে কেন ?

উত্তর: পরমাণুর কেন্দ্রে অবস্থিত নিউক্লিয়াস প্রোটন ও নিউট্রন কণিকার সমন্বয়ে গঠিত হয়। ধনাত্মক আধানযুক্ত প্রোটন পরস্পরকে বিকর্ষণ করার কথা থাকলেও তা হয় না। প্রোটন ও নিউট্রনের সমন্বয়ে নিউক্লিয়াসে একটি নিউক্লিওবলের সৃষ্টি হয়। এ নিউক্লিয়াসে প্রোটন বিকর্ষণ বল অপেক্ষা বেশী এইজন্য নিউক্লিয়াসে একাধিক প্রোটন থাকা সত্ত্বেও বিকর্ষণ করে না।

প্রশ্ন ২। 4f অরবিটাল সম্ভব কিন্তু 2d অরবিটাল সম্ভব নয় কেন ?

উত্তর: 4f এর ক্ষেত্রে : এখানে প্রধান শক্তিস্তর n=4 এই শক্তি স্তরের উপস্তর l=0,1,2,3 হয়। অর্থাৎ ৪র্থ শক্তিস্তরে s,p,d,f উপস্তর বিদ্যমান। সূতরাং 4f অরবিটাল সম্ভব।

2d এর ক্ষেত্রে : এখানে প্রধান শক্তিস্তরের (n=2) এর শক্তিস্তরের উপস্তর l=0,1 , l=0 হলে s এবং l=1 হলে p হয়। d এর জন্য l=2 হওয়া প্রয়োজন। এই শক্তিস্তরে d বিদ্যমান নেই। তাই 2d অরবিটাল সম্ভব নয়।

প্রশ্ন ৩। অরবিট ও অরবিটালের মধ্যে পার্থক্য লেখ।

উত্তর:

অরবিটাল	অরবিট
১। অরবিটাল সমূহকে s,p,d,f দ্বারা প্রকাশ করা হয়।	১। এদের K, L, M, N দ্বারা প্রকাশ করা হয়।
২। ১ টি অরবিটালে সর্বোচ্চ ২ টি ইলেকট্রন থাকতে পারে।	২। ১ টি অরবিটে $2n^2$ সংখ্যক ইলেকট্রন থাকে।
৩। অরবিটাল বিভিন্ন আকৃতির হয়।	৩। প্রতিটি অরবিট গোলাকার।

প্রশ্ন ৪। আইসোটোন কী ? উদাহরণ দাও।

উত্তর: যে সকল মৌলের নিউট্রন সংখ্যা সমান কিন্তু ভরসংখ্যা ও প্রোটন সংখ্যা ভিন্ন তাদেরকে আইসোটোন বলে। যেমন $^{34}_{34}Si,~^{31}_{15}P,~^{32}_{16}S$ এরা পরস্পরের আইসোটোন। এদের শুধু নিউট্রন সংখ্যা একই।

প্রশ্ন ৫। 🛂 Na+ এ থেকে তুমি কী বুঝ ?

উত্তর: Na হচ্ছে সোডিয়ামের প্রতীক। এর ডানের উপরে +1 থাকায় বুঝা যায়, এটি ধনাত্মক আধানযুক্ত ক্যাটায়ন। বামের উপরে 23 দ্বারা বুঝানো হয়, Na এর পারমাণবিক ভর সংখ্যা 23। বামের নীচের 11 দ্বারা সোডিয়ামের

পারমাণবিক সংখ্যা প্রকাশ করা হয়। প্রশ্ন ৬। অণু ও পরমাণুর মধ্যেকার পার্থক্য লেখ। উত্তর:

অণু	পরমাণু
১. অণুর স্বাধীন অস্তিত্ব আছে।	১. পরমাণুর স্বাধীন অস্তিত্ব নেই।
২. এরা রাসায়নিক বিক্রিয়ায় অংশগ্রহণ করে না।	২. এরা রাসায়নিক বিক্রিয়ায় অংশগ্রহণ করে।
৩. অণুকে ভাঙলে পরমাণু পাওয়া যায়।	৩. পরমাণুকে ভাঙলে ইলেকট্রন, প্রোটন ও নিউট্রন পাওয়া যায়।

প্রশ্ন ৭। H পরমাণুর M শেলে আবর্তনশীল ইলেকট্রনের গতিবেগ নির্ণয় কর।

[নিউক্লিয়াস থেকে M শেলের দূরত্ব $47.61986 \times 10^{-14} m$] উত্তর: আমরা জানি,

$$mvr = \frac{nh}{2\pi}$$

$$\exists 1, v = \frac{nh}{2\pi mr}$$

$$= \frac{3 \times 6.026 \times 10^{-34}}{2 \times 3.1416 \times 9.11 \times 10^{-31} \times 47.61986 \times 10^{-14}}$$

$$\therefore v = 72.98 \times 10^7 ms^{-1}$$
(Ans.)

$$m = 9.11 \times 10^{-31} \text{kg}$$

 $h = 6.626 \times 10^{-34} m^2 kg/s$
 $n = 3$
 $v = ?$

প্রশ্ন ৮। কৃষিক্ষেত্রে ফসফরাসের আইসোটোপের ভূমিকা ব্যাখ্যা কর। [কু. বো. '১৭]

উত্তর: ফসফরাসের তেজস্ক্রিয় রশ্মি ব্যবহার করে কৃষিক্ষেত্রে নতুন নতুন উন্নত মানের বীজ উদ্ভাবন করা হচ্ছে এবং এর মাধ্যমে ফলনের মানের উন্নতি ও পরিমাণ বাড়ানো হচ্ছে। তেজস্ক্রিয় ³²P যুক্ত ফসফেট দ্রবণ উদ্ভিদের মূলধারায় সূচিত করা হয়। গাইগার কাউন্টার ব্যবহার করে পুরো উদ্ভিদে এর চলাচল চিহ্নিত করে কী কৌশলে উদ্ভিদে বেড়ে উঠে তা ফসফরাস ব্যবহার করে জানা যায়।

প্রশ্ন ৯। ${}^1_1H, {}^2_1H$ পরমাণু দুটির ভর সংখ্যার ভিন্নতার কারণ ব্যাখ্যা দাও। $\,$ [চ. বো. '১৬]

উত্তর: ${}_1^1H, {}_1^2H$ হাইড্রোজেনের দুটি পরমাণুকে নির্দেশ করে। পরমাণু দুটির ভর সংখ্যা ভিন্ন। আমরা জানি, একটি মৌলের যে কোনো পরমাণুর পারমাণবিক সংখ্যা নির্দিষ্ট ও অপরিবর্তনীয়। কিন্তু পরমাণুর নিউক্লিয়াসে উপস্থিত নিউট্রন সংখ্যার তারতম্যের কারণে ভর সংখ্যা আলাদা হয়। ${}_1^1H$ এবং ${}_1^2H$ পরমাণু দুটির পারমাণবিক সংখ্যা একই কিন্তু নিউট্রন সংখ্যা যথাক্রমে 0 ও 1। এ কারণে পরমাণু দুটির ভর সংখ্যার ভিন্নতা দেখা যায়।

প্রশ্ন ১০। উদাহরণসহ আইসোটোপের সংজ্ঞা দাও। [ঢা. বো. '১৫]

উত্তর: একই মৌলের যেসব পরমাণুর প্রোটন সংখ্যা সমান কিন্তু ভর সংখ্যা ভিন্ন তাদেরকে পরস্পরের আইসোটোপ বলা হয়। একই মৌলের এসব পরমাণু পর্যায় সারণিতে একই স্থানের জন্য নির্দিষ্ট হওয়ায় এদেরকে আইসোটোপ নামকরণ করা হয়েছে। যেমন- হাইড্রোজেন মৌলের তিনটি আইসোটোপ হলো- প্রোটিয়াম $\binom{1}{1}H$), ডিউটেরিয়াম $\binom{2}{1}H$) ও ট্রিটিয়াম $\binom{3}{1}H$) যাদের প্রোটন সংখ্যা একই (1) কিন্তু ভর সংখ্যা যথাক্রমে 1, 2 ও 3।

প্রশ্ন ১১। K এর 19 তম ইলেকট্রন 3d অরবিটালে প্রবেশ না করে 4s অরবিটালে যায় কেন – ব্যাখ্যা কর।

[ভিকারুন্নেসা নূন স্কুল এন্ড কলেজ ,ঢাকা]

উত্তর: আউফবাউ নীতি অনুসারে, ইলেকট্রন প্রথমে নিম্নশক্তিস্তর অরবিটালে এবং পরে উচ্চশক্তির অরবিটালে গমন করে। দুটি অরবিটালের মধ্যে কোনটি নিম্নশক্তির আর কোনটি উচ্চশক্তির তা (n+l) এর মানের ওপর নির্ভর করে। যার (n+l) এর মান কম সেটি নিম্নশক্তির অরবিটাল। 3d এবং 4s অরবিটালের জন্য (n+l) এর মান নিম্নরূপ :

3d অরবিটালে : n=3, l=2 $\therefore n+l=3+2=5$ 4s অরবিটালে : n=4, s=0 $\therefore n+l=4+0=4$

সুতরাং, 3d এর চেয়ে 4s অরবিটালের শক্তি কম (4s < 3d) হওয়ায় পটাসিয়ামের 19তম ইলেকট্রন 3d অরবিটালে স্থান গ্রহণ করে। ফলে, K(19) এর ইলেকট্রন বিন্যাস হয় -

 $K(19) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$

প্রশ্ন ১২। আইসোটোপ ও আইসোবারের মধ্যে পার্থক্য লিখ। [সেন্ট জোসেফ উচ্চ মাধ্যমিক বিদ্যালয়, ঢাকা] উত্তর:

আইসোটপ	আইসোবার
১. যেসব পরমাণুর প্রোটন সংখ্যা সমান, কিন্তু ভর সংখ্যা ভিন্ন হয়, সেসব পরমাণুকে পরস্পরের আইসোটোপ বলে।	১. যেসব পরমাণুর ভর সংখ্যা অর্থাৎ নিউক্লিয়াসে প্রোটন ও নিউট্রনের মোট সংখ্যা সমান হয়, কিন্ত প্রোটন সংখ্যা ভিন্ন হয়, তাদেরকে আইসোবার বলে।
২. একই মৌলের পরমাণু।	২. ভিন্ন ভিন্ন মৌলের পরমাণু।
৩. উদাহরণ : ¼H, ¼H, ¾H	৩. উদাহরণ : $^{64}_{29}Cu$, $^{64}_{30}Zn$ ।

প্রশ্ন ১৩। কপারের ইলেকট্রন বিন্যাস সাধারণ নিয়ম মানে না কেন ?

উত্তর: সাধারণভাবে দেখা যায় যে, সমশক্তিসম্পন্ন অরবিটালসমূহ অর্ধপূর্ণ বা সম্পূর্ণ পূর্ণ হলে সে ইলেকট্রন বিন্যাস অধিকতর সুস্থিতি অর্জন করে। এক্ষেত্রে $d^{10}s^1$ এবং d^5s^1 ইলেকট্রন বিন্যাসবিশিষ্ট মৌল অধিকতর স্থায়ী হয়। কপার (Cu) এর ইলেকট্রন বিন্যাসে ($1s^22s^22p^63s^23p^63d^{10}4s^1$) সুস্থিতির জন্য $3d^94s^2$ এর পরিবর্তে $3d^{10}4s^1$ হয়। এজন্য কপারের ইলেকট্রন বিন্যাস সাধারণ নিয়ম মানে না।

প্রশ্ন ১৪। অক্সিজেনের আপেক্ষিক পারমাণবিক ভর 16 বলতে কী বুঝায় ?

উত্তর: কোনো মৌলের একটি পরমাণুর ভরকে প্রমাণ হিসেবে ধরে তার সাপেক্ষে অপর কোনো মৌলের একটি পরমাণু কতগুণ ভারী এই আপেক্ষিক রাশিকে সংশ্লিষ্ট মৌলের আপেক্ষিক পারমাণবিক ভর বলা হয়। অক্সিজেনের আপেক্ষিক পারমাণবিক ভর 16 বলতে বোঝায় যে, অক্সিজেনের একটি পরমাণুর ভর হাইড্রোজেনের একটি পরমাণুর ভরের 16 গুণ (হাইড্রোজেন স্কেল অনুসারে)।

প্রশ্ন ১৫। পরমাণুর আপেক্ষিক পারমাণবিক ভর হিসাব করার সময় কার্বন-12 আইসোটোপ ব্যবহারের সুবিধা কী ? উত্তর: পরমাণুর আপেক্ষিক পারমাণবিক ভর নির্ণয়ে কার্বন-12 আইসোটোপ ব্যবহারের সুবিধা হলো-

- ১. কার্বন-12 আইসোটোপ অত্যন্ত সহজলভ্য পদার্থ।
- ২. এ আইসোটোপ অধিক সংখ্যক যৌগ গঠনে অংশ নিতে পারে।
- ৩. হাইড্রোজেন, অক্সিজেন প্রভৃতি গ্যাসীয় মৌলের পরিবর্তে কার্বন কঠিন মৌল হওয়ায় এর সংরক্ষণ ও ব্যবহার অত্যন্ত সুবিধাজনক।

প্রশ্ন ১৬। একই মৌলের ভিন্ন ভরসংখ্যা বিশিষ্ট পরমাণু পাওয়া সম্ভব-ব্যাখ্যা কর।

উত্তর: একটি মৌলের যেকোনো পরমাণুর পারমাণবিক সংখ্যা নির্দিষ্ট ও অপরিবর্তনীয়। কিন্তু পরমাণুর নিউক্লিয়াসে উপস্থিত নিউট্রন সংখ্যার তারতম্যের কারণে একই মৌলের পরমাণুগুলোর ভরসংখ্যা পরিবর্তিত হয়। এভাবেই একই পারমাণবিক সংখ্যাবিশিষ্ট মৌলের ভিন্ন ভরসংখ্যা বিশিষ্ট পরমাণু পাওয়া যায়। যেমন- হাইড্রোজেন মৌলের একই পারমাণবিক সংখ্যা (1) কিন্তু ভিন্ন ভরসংখ্যা বিশিষ্ট (1, 2, 3) তিনটি আইসোটোপ (¼H, ¼H, ¾H) পাওয়া যায়।

🔽 বহুনির্বাচনী (MCQ)

০১। মানবশরীরে মোট কতটি ভিন্ন ভিন্ন মৌল আছে? [ব. বো. ' ২১]

(ক) 20 (খ) 26 (গ) 98 (ঘ) 118 উত্তর: খ

ব্যাখা: মানব্দেহে মোট 26 ধরণের ভিন্ন ভিন্ন মৌল আছে।

০২। আমাদের শরীরে মোট	কত ধরণের মৌল আছে? [ফ	য. বো. ' ২১; চ. বো. ' ২১]		
(ক) 18	(খ) 22	(গ) 26	(ঘ) 32	উত্তর: গ
০৩। মানব্দেহে বিদ্যমান মৌ	ালের সংখ্যা কতটি? [দি. বো.	. ' ২১]		
(ক) 118	(খ) 98	(গ) 63	(ঘ) 26	উত্তর: ঘ
০৪। মৌলিক পদার্থের ক্ষুদ্র	তম কণিকার নাম কি? [চ. বে	বা. ' ২১]		
(ক) অণু	(খ) পরমাণু	(গ) প্রোটন	(ঘ) ইলেকট্ৰন	উত্তর: খ
০৫। নাইট্রোজেন অণুতে ক	তটি পরমাণু বিদ্যমান? [চ. ৫	বা. ' ২১]		
(ক) 1	(খ) 2	(গ) 3	(ঘ) 4	উত্তর: খ
ব্যাখা: একই মৌলের এব	চাধিক পরমাণু পরস্পরের স <u>া</u>	থে যুক্ত হলে তাকে মৌলের	অণু বলে। 2টি নাইট্রোজেন	৷ পরমাণু
(N)যুক্ত হয়ে নাইট্রোজেন	মৌলের অণু (N_2) গঠন করে	ব।		
০৬। টাংস্টেনের সঠিক ল্যা	টিন নাম নিচের কোনটি? [সি	'. বো. ' ২১]		
(ক) Cuprum	(খ) Wolfram	(গ) Stibium	(ঘ) Ferrum	উত্তর: খ
০৭। টাংস্টেন মৌলের প্রতী	ক কোনটি? [ব. বো. ' ২১]			
(ক) Ti	(খ) W	(গ) Th	(ঘ) Te	উত্তর: খ
০৮। মার্কারী এর ল্যাটিন না	াম কোনটি?			
(ক) Hydrugyrun	(খ) hydrargyrum	(গ) Hydrurgyrum	(ঘ) Hydrergyrum	উত্তর: খ
০৯। Kalium কোন মৌলের	ব ল্যাটিন নাম? [চ. বো. ' ১৭			
(ক) সোডিয়াম	(খ) ক্যালসিয়াম	(গ) মারকারী	(ঘ) পটাশিয়াম	উত্তর: ঘ
১০। নিচের কোনটি ঠিক ন	য়?			
	(খ) টিন: Sb		(ঘ) পটাশিয়াম: K	উত্তর: খ
১১। মৌলের কোন প্রতীকা	ট ল্যাটিন ভাষা থেকে গৃহীত	হয়নি? [ব. বো. ' ২১]		
(ক) Ca	(খ) K	(গ) Pb	(ঘ) Na	উত্তর: ক
	প্রতীকে I নেই? [উদয়ন উচ্চ :		(=)	<u> </u>
(ক) আয়োডিন	(খ) ইনডিয়াম	(গ) হারাডয়াম	(ঘ) আয়রন	উত্তর: ঘ
ব্যাখা: আয়রনের প্রতীবে	^চ I নেই। আয়রনের প্রতীক Fe	e. উল্লেখ্য,		
আয়োডিনের প্রতীক I				
ইরিডিয়ামের প্রতীক Ir				
ইনডিয়ামের প্রতীক In				
১৩। মৌলের কোন প্রতীকর্নি	ট ল্যাটিন ভাষা থেকে গৃহীত	হয়েছে? [রা. বো. ' ২১]		
(ক) Na	(খ) N	(গ) Ni	(ঘ) Mn	উত্তর: ক
১৪। পটাশিয়াম মৌলের প্রর্	তীক কোনটি? [ঢা. বো. ' ১৭]			
(ক) P	(খ) Po	(গ) K	(ঘ) Ka	উত্তর: গ
ব্যাখা: পটাশিয়াম মৌলে	র প্রতীক K। পটাশিয়াম এর	ল্যাটিন নাম Kalium এর প্র	াথম অক্ষর দ্বারা এর প্রতী	ক লেখা
হয়।				
১৫। ল্যাটিন ভাষা থেকে গর্	হীত প্ৰতীক কোনটি? [ঢা. বো	. ' \$8]		
(ক) N	(খ) Ca	. ্গ) Co	(ঘ) K	উত্তর: ঘ
	ক কোনটি? [কু. বো. ' ২১]	• ,	. ,	
(ক) Sn	(খ) Pb	(গ) Si	(ঘ) Ag	উত্তর: ঘ

১৭। টাংস্টেন মৌলের ল্যাটি	টন নাম কি? [রা. বো. ' ২১]			
(ক) Stannum	(খ) Plumbum	(গ) Technetium	(ঘ) Wolfram	উত্তর: ঘ
১৮। ইলেকট্রনের প্রকৃত আ	াধান কোনটি? [কু. বো. ' ২১]]		
(ক) +1 কুলম্ব	(খ) $+1.6 imes 10^{-19}$ কুলম্ব	(গ) -1.6×10^{-19} কুলম্ব	(ঘ) -1 কুলম্ব	উত্তর: গ
১৯। প্রোটনের আপেক্ষিক ব	আধান কত?			
(ক) -1		(খ) 0		
(গ) +1		(ঘ) $+1.6 \times 10^{-19}$ কুলম্ব		উত্তর: গ
২০। ইলেকট্রনের আপেক্ষি	ক আধান কত?			
(ক) -1	(খ) -9.11×10^{-28}	(গ) -1.6×10^{-19}	(ঘ) 1	উত্তর: খ
২১। ইলেকট্রনের প্রতীক বে	চানটি?			
(ক) e	(খ) e ⁺	(গ) E ⁻	(ঘ) E_n^-	উত্তর: ক
২২। পরমাণুর ঋণাত্নক কণি	ীকা কোনটি?			
(ক) প্রোটন	·	(গ) ইলেকট্রন	(ঘ) নিউক্লিয়াস	উত্তর: গ
	কৃত ভর কত? [সি. বো. ' ২১	••		
(ক) 1.673 × 10 ⁻²⁴ g	(খ) 1.673 × 10 ⁻²⁴ g	(গ) 9.11 × 10 ⁻²⁸ g	(ঘ)9.11 × 10 ⁻³¹ g	উত্তর: গ
২৪। নিচের কোন মৌলের গ	পরমাণুতে ইলেকট্রন সংখ্যা 1	0 ও নিউট্রন 12 সংখ্যা রয়েে	ছ? [কু. বো. ' ১৭]	
$(\Phi)_{11}^{23}Na^{+}$	(খ) 23 Na	(গ) ¹⁷ ₈ 0 ²⁻	(ঘ) ¹⁷ ₈ 0	উত্তর: ক
 মৌলটির ভরসংখ্যা= / প্রোটন সংখ্যা/ পারমাণ আয়নটির আধান= ±I আয়নটির ইলেকট্রন স্ব 	ণবিক সংখ্যা= Z ৷			
২৫। Al^{3+} আয়নে ইলেকট্র (ক) 10	ন সংখ্যা কত? [ম. বো. ' ২১; (খ) 13	কু. বো. ' ১৭] (গ) 16	(ঘ) 27	উত্তর: ক
২৬। Al^{3+} আয়নে নিউট্রন		(1) 10	(4) 27	00N. Y
(ক) 14 টি	_	(গ) 10 টি	(ঘ) 16 টি	উত্তর: ক
	উট্রন সংখ্যা ও Al পরমাণুর বি য সংখ্যা=ভর সংখ্যা-প্রোটন স =27-13=14			
২৭। K^+ আয়নে ইলেকট্রন	সংখ্যা কত? [জামালপুর জে	লা স্কুল, জামালপুর]		
(ক) 18	(খ) 19	(গ) 20	(ঘ) 39	উত্তর: ক
২৮। $^{56}_{26}Fe^{3+}$ এ ইলেকট্ৰন ১	নংখ্যা কতটি? [রাজুক উত্তরা	মডেল কলেজ]		
(ক) 3	(খ) 13	(গ) 23	(ঘ) 33	উত্তর: গ
২৯। ${\it O}^{2-}$ এর নিউট্রন সংখ			•	
(ক) 7	(খ) 16	(গ) ৪ টি	(ঘ) 9 টি	উত্তর: গ
	লেকট্ৰন আছে? [কু. বো. ' ২			
(ক) 21	(খ) 24	(গ) 27	(ঘ) 28	উত্তর: ক
$\alpha \in C^{2+}$ or $\delta C = \delta = 3$	शास्त्र कि ता '८० ता	at ' \al		

(গ) 1S²2S² 2p⁶ 3S² 3p⁶ 4s³

উত্তর: ক

(ক) 18টি	(খ) 11টি	(গ) 12টি	(ঘ) 20টি	উত্তর: ক
	অনুযায়ী কোন বলের কারণে			
(ক) কেন্দ্ৰবিমুখী বল	(খ) অভিকর্ষ বল	(গ) মহাক্ষ বল	(ঘ) কেন্দ্ৰমুখী বল	উত্তর: ঘ
	নিউক্লিয়াসের প্রতি ঋণাত্মব য়ী এবং এই কেন্দ্রমুখী বলের রে।		- :	
৩৩। পরমাণুর সৌর মডেল	বা সোলার সিস্টেম মডেল প্র	দান করা হয়-		
(ক) ১৯১০ সালে	(খ) ১৯১১ সালে	(গ) ১৯১৩ সালে	(ঘ) ১৯০৮ সালে	উত্তর: খ
৩৪। 'M' শক্তিস্তরে সর্বোচ্চ	করটি ইলেকট্রন থাকতে পারে	র? [ঢা. বো. ' ২১]		
(ক) 2	(খ) ৪	(গ) 18	(ঘ) 32	উত্তর: গ
৩৫। 'K' শক্তিস্তরে সর্বোচ্চ ব	করটি ইলেকট্রন থাকতে পারে	র? [চ. বো. ' ২১]		
(ক) 32	(খ) 18	(গ) ৪	(ঘ) 2	উত্তর: ঘ
৩৬। নিম্নের কোন মৌলটির	ইলেকট্রন বিন্যাস $2n^2$ সুত্রবে	ক সমর্থন করে না?		
(ক) F	(খ) Na	(গ) Cl	(ঘ) K	উত্তর: খ
৩৭। পরমাণুর N প্রধান শত্তি	ক্ টস্তরে পরমাণুর ইলেকট্রন ধা	রণ ক্ষমতা কত?		
(ক) 2	(খ) ৪	(গ) 18	(ঘ) 32	উত্তর: ঘ
৩৮। পরমাণুর দ্বিতীয় শেলে	সর্বোচ্চ ইলেকট্রন ধারণ ক্ষম	্যতা কতটি?		
(ক) ৪ টি	(খ) 16 টি	(গ) 12 টি	(ঘ) 18 টি	উত্তর: ক
৩৯। পরমাণর কোন শেলে য	সর্বোচ্চ 1৪টি ইলেকট্রন থাকে	তে পারে?		
(ক) L	(খ) M	(গ) N	(ঘ) O	উত্তর: খ
	্ র্বাচ্চ ইলেকট্রন ধারণ ক্ষমতা			
(ক) 2, 4, 6, 8		(গ) 2, 8, 18, 32	(ঘ) 1, 5, 7, 15	উত্তর: গ
৪১। পরমাণর তৃতীয় শেলে	সর্বোচ্চ ইলেকট্রন ধারণ ক্ষম	তা কতটি?		
(ক) 10	(খ) 2	(গ) ৪	(ঘ) 18	উত্তর: ঘ
৪২। Zn এর পারমাণবিক স	াংখ্যা কত?			
(ক) 32	(খ) 30	(গ) 23	(ঘ) 21	উত্তর: খ
৪৩। আয়রনের পারমাণবিব	চ সংখ্যা কত? [য. বো. ' ১৬ <u>]</u>			
(ক) 56 ৪৪। কোনটি ফসফরাসের ই	(খ) 46 লেকট্রন বিন্যাস?	(গ) 36	(ঘ) 26	উত্তর:ঘ
(ক) 2, 8, 2	(খ) 2, 8, 4	(গ) 2, 8, 5	(ঘ) 2, 8, 3	উত্তর: গ
৪৫। ক্লোরিন পরমাণুর ইলে	কট্রন বিন্যাস হচ্ছে-			
(ক) 2, 4, 6, 1	(খ) 2, 8, 5, 2	(গ) 2, 8, 8	(ঘ) 2, 8, 7	উত্তর: ঘ
৪৬। স্ক্যান্ডিয়ামের M শক্তিস্ত	ররে করটি ইলেকট্রন রয়েছে?	?		
(ক) ৪টি	(খ) 5টি	(গ) 9টি	(ঘ) 2 টি	উত্তর: গ
৪৭। স্ক্যান্ডিয়ামের ইলেকট্রন	ন বিন্যাস কোনটি?			
(ক) 2, 8, 9, 2	(খ) 8, 6, 11	(গ) 2, 8, 8, 3	(ঘ) 2, 8, 10, 1	উত্তর: ক
৪৮। ₂₁ Z মৌলটির সঠিক ই	লেকট্রন বিন্যাস- [সম্মিলিত.	বোর্ড. ' ১৮]		
(\Rightarrow) $1S^22S^2$ $2p^6$ $3S^2$ $3p^6$	•	(খ) 1S ² 2S ² 2p ⁶ 3S ² 3p ⁶	$3d^3$	

(되) $1S^22S^2 2p^6 3S^2 3p^3 4s^1 3d^5$

৪৯। কোবাল্টের M কক্ষপথে কতটি ইলেকট্রন থাকে? [দি. বো. ' ২০]

(খ) 15

- (ঘ) 18
- উত্তর: খ

৫০। ক্যালসিয়াম মৌলের ইলেকট্রন বিন্যাসের শক্তিস্তর কয়টি? [ঢা. বো. ' ২০]

(本) 2

(খ) 3

- (ঘ) 5
- উত্তর: গ

৫১। পরমাণুর প্রধান শক্তিস্তরকে কোনটি দ্বারা চিহ্নিত করা হয়?

- (খ) c

(ঘ) n

উত্তর: ঘ

৫২। পরমাণুর উপশক্তিস্তরকে সাধারণত কোনটি দ্বারা চিহ্নিত করা হয়?

(ক) n

- (খ) m
- (গ) |

(ঘ) k

উত্তর: গ

৫৩। পরমাণুতে কোন অরবিটালটি অসম্ভব?

- (**क**) 3s
- (খ) 3p
- (গ) 3d
- (ঘ) 3f

উত্তর: ঘ

ব্যাখা: 3f অরবিটালের ক্ষে্রে প্রধান শক্তিস্তর n=3

- ∴ I=0 থেকে (n-1) পর্যন্ত
 - = 0 থেকে (3-1) পর্যন্ত
 - =0 থেকে 2 পর্যন্ত
 - =0, 1, 2
 - =s, p, d

সুতরাং n=3 এর জন্য 3s, 3p, 3d অরবিটাল সম্ভব কিন্তু 3f সম্ভব নয়।

৫৪। পরমাণুতে কোন অরবিটালটি অসম্ভব?

- (ক) 1s
- (খ) 4p
- (গ) 3d
- (되) 2d
- উত্তর: ঘ

৫৫। পরমাণুর N শেলে কয়টি উপশক্তিস্তর থাকে?

(ঘ) 4

উত্তর: ঘ

(খ) 2

৫৬। d উপশক্তিস্তরের জন্য l এর মান কত?

(ক) 1

(খ) 2

(গ) 3

(গ) 3

(ঘ) 4

উত্তর: খ

৫৭। পরমাণুর M শেলে কয়টি উপশক্তিস্তর থাকে?

(ক) 1

(খ) 2

- (গ) 3
- (ঘ) 4

উত্তর: গ

সৃজনশীল (CQ)

δ١

- (ক) পারমাণবিক সংখ্যা কি?
- (খ) আইসোটোপ বলতে কি বোঝ?
- (গ) পরমাণুতে ইলেকট্রনের অবস্থান নির্ণয়ে উপরের কোন মডেল্টি কার্যকরী ব্যাখা কর।
- (ঘ) ও মডেলের মধ্যে তুলনামূলক সাফল্য বিশ্লেষণ কর।

- (**ক**) কোনো মৌলের পরমাণুতে প্রোটনের সংখ্যাকে তার পারমাণবিক সংখ্যা বলে। যেমন- H এর পারমাণবিক সংখ্যা 1।
- (খ) যে সকল পরমাণুর প্রোটন সংখ্যা সমান কিন্তু ভরসংখ্যা ও নিউট্রন সংখ্যা ভিন্ন তাদেরকে একে অপরের আইসোটপ বলে।

উদাহরণ- হাইড্রোজেনের সাতটি আইসোটোপ (1H , 2H , 3H , 4H , 5H , 6H , 7H আছে। এর মধ্যে তিনটি প্রকৃতিতে পাওয়া যায়, অন্যগুলো ল্যাবরেটরিতে প্রস্তুত করা হয়।

- (গ) পরমাণুতে ইলেক্ট্রনের অবস্থান নির্ণয়ে উদ্দীপকের B মডেলটি অর্থাৎ নীলস বোরের পরমাণু মডেল্টি কার্যকরী। কেননা, এ মডেলের স্বীকার্যসমূহ থেকে পরমাণুতে ইলেকট্রনের সঠিক অবস্থান ও কার্যাবলী প্রকাশ পায়। নীলস বোরের পরমাণু মডেল অনুসারে-
- নিউক্লিয়াসকে কেন্দ্র করে কতগুলি অনুমোদিত বৃত্তাকার কক্ষপথে ইলেকট্রনসমূহ ঘুরতে থাকে। এই কক্ষপথগুলোকে শক্তিস্তর বা অরবিট বলে। শক্তিস্তরসমূহকে পর্যায়ক্রমিকভাবে K, L, M, N, O দ্বারা প্রকাশ করা হয়। একটি নির্দিষ্ট শক্তিস্তরে থাকাকালে ইলেকট্রনসমূহ শক্তি শোষণ বা বিকিরণ করে না।
- ইলেকট্রন শক্তি শোষণ করে নিম্ন শক্তিস্তর থেকে উচ্চ শক্তিস্তরে যেতে পারে কিংবা শক্তি বিকিরণ করে উচ্চ শক্তিস্তর থেকে নিম্ন শক্তিস্তরে নামতে পারে

সুতরাং বোরের পরমাণু মডেলে পরমাণুতে ইলেকট্রনের সুস্পষ্ট অবস্থান তুলে ধরা হয়েছে।

- **(ঘ)** উদ্দীপকের A মডেলটি হলো রাদারফোর্ডের পরমাণু মডেল এবং B মডেলটি হলো বোর পরমাণু মডেল। নিম্নে A ও B মডেলের তুলনামূলক আলোচনা করা হলো।
- রাদারফোর্ডের পরমাণু মডেল পরমাণুর গঠন সম্পর্কে প্রথমে ধারণা দেয়। বোর পরমাণু মডেল রাদারফোর্ডের পরমাণু মডেলের উপর প্রতিষ্ঠিত। এই মডেল রাদারফোর্ডের পরমাণু মডেলের সীমাবদ্ধতা দয়ু করেছে।
- রাদারফোর্ডের মডেলে বলা হয়েছে, পরমাণুতে ইলেকট্রন নিউক্লিয়াসকে কেন্দ্র করে ঘূর্ণায়মান। বোর মডেলে তা স্বীকার করে নেওয়া হয়েছে।
- রাদারফোর্ডের মডেল অনুযায়ী, পরমাণুর কেন্দ্র ধনাত্মক আধানযুক্ত। বোরের মডেলেও একই কথা বলা হয়েছে।
- রাদারফোর্ডের মডেলে নিউক্লিয়াসের চতুর্দিকে ঘূর্ণায়মান ইলেকট্রনের কক্ষপথের আকার, আকৃতি সম্পর্কে কোনো ধারণা দেওয়া হয়নি। বোর মডেলে বলা হয়, ইলেকট্রনগুলো নির্দিষ্ট শক্তিসম্পন্ন কতগুলো স্থায়ী গোলাকার কক্ষপথে আবর্তন করছে।
- রাদারফোর্ডের মডেলে বিভিন্ন কক্ষপথে ইলেকট্রনের স্থানান্তর সম্পর্কে কোনো ধারণা দেওয়া হয়নি। কিন্তু বোরের মডেলে বলা হয়, ইলেকট্রনগুলো সবসময় নির্দিষ্ট শক্তির কক্ষপথে অবস্থান করে।
- রাদারফোর্ডের পরমাণু মডেলে রেখা বর্ণালির কোনো ধারণা দেওয়া হয়নি। বোর মডেলে পরমাণুর রেখা বর্ণালির উৎপত্তি ব্যাখা করা হয়েছে।
- ২। কিছু মৌলের পারমাণবিক সংখ্যাসহ প্রতীক দেওয়া হলো- $_{11}A$, $_{19}Z$, $_{24}Y$, $_{29}X$
- (ক) অরবিট কি?
- (খ) $_4Be$ এবং $_{12}Mg$ এর যোজনী একই কেন? ব্যাখা কর।
- (গ) উদ্দীপকের কোন কোন মৌলের রাসায়নিক ধর্মের মিল রয়েছে? ব্যাখা কর।
- (ঘ) উদ্দীপকের কোন কোন মৌলের ইলেকট্রন বিন্যাসের ক্ষেত্রে ভিন্নতা পরিলক্ষিত হয় যুক্তিসহ ব্যাখা কর।

- (**ক**) পরমাণুর নিউক্লিয়াসের চারদিকে বৃত্তাকার কতগুলো স্থির কক্ষপথ আছে যাতে অবস্থান নিয়ে ইলেকট্রনসমূহ ঘুরতে থাকে। এগুলোকে শক্তিস্তর বা অরবিট বলা হয়।
- **(খ)** Be এবং Mg উভয়ই ধাতব মৌল। ধাতব মৌলের ক্ষেত্রে সর্বশেষ কক্ষপথের ইলেকট্রন সংখ্যাকে মৌলের যোজনী বলে।

Be এবং Mg এর ইলেকট্রন বিন্যাস-

$$_4Be \rightarrow 1s^2 2s^2$$

$$_{12}Mg \rightarrow 1s^2 2s^22p^6 3s^2$$

উভয় মৌলের সর্বশেষ শক্তিস্তরে দুইটি করে ইলেকট্রন বিদ্যমান। তাই উভয় মৌলের যোজনী 2

(গ) উদ্দীপকের A, Z, Y, X মৌলগুলো হলো যথাক্রমে সোডিয়াম, পটাশিয়াম, ক্রোমিয়াম এবং কপার। উদ্দীপকের মৌলসমূহের মধ্যে সোডিয়াম এবং পটাশিয়াম এর মধ্যে রাসায়নিক মিল রয়েছে। সোডিয়াম এবং পটাশিয়ামের ইলেকট্রন বিন্যাস নিম্নরূপ-

$$_{11}Na \rightarrow 1s^2 2s^22p^6 3s^1$$

$$_{19}K \rightarrow 1s^2 2s^22p^6 3s^23p^6 4s^1$$

ইলেকট্রন বিন্যাস থেকে দেখা যায় যে, Na এবং K উভয় মৌলের সর্বশেষ শক্তিস্তরে ১টি করে ইলেকট্রন রয়েছে। সোডিয়াম ও পটাশিয়াম রাসায়নিক বিক্রিয়ার সোময় সহজেই যোজ্যতা স্তরের একটি ইলেকট্রন ত্যাগ করে যথাক্রমে এবং আয়ন তৈরী করে। অর্থাৎ উভয় মৌল একইরূপে রাসায়নিক বিক্রিয়া প্রদান করে। সূতরাং বলা যায় যে, উদ্দীপকের Na এবং K মৌল দুটি একইরূপে রাসায়নিক ধর্ম প্রদর্শন করে।

্ঘ) উদ্দীপকের উল্লিখিত মৌলসমূহের মধ্যে Y এবং X ইলেকট্রন বিন্যাসের ক্ষেত্রে অর্থাৎ ক্রোমিয়াম এবং কপারের ইলেকট্রন বিন্যাসে ভিন্নতা দেখা যায়। সাধারণ নিয়ম অনুযায়ী ক্রোমিয়াম এবং কপারের ইলেকট্রন বিন্যাস হওয়া উচিত নিম্নরূপ-

$$_{24}Cr \rightarrow 1s^2 2s^22p^6 3s^13p^63d^4 4s^2$$

$$_{29}Cu \rightarrow 1s^2 2s^22p^6 3s^23p^63d^9 4s^1$$

এই ইলেকট্রন বিন্যাসটি ভুল, কারণ তা অস্থিতিশীল।

আমরা জানি, ইলেকট্রন বিন্যাসের ক্ষেত্রে দেখা যায় যে, একই শক্তিস্তরে উপশক্তিস্তর p ও d এর অরবিটালগুলো অর্ধেক পুর্ণ $(p^3,\ d^5)$ বা সম্পূর্ণরূপে $(p^6,\ d^{10})$ পূর্ণ হলে সেই ইলেকট্রন বিন্যাসটি অধিকতর স্থায়ী গঠন অর্জন করে। ব্যতিক্রমধর্মী নিয়ম অনুযায়ী ক্রোমিয়াম, কপার এর সঠিক ইলেকট্রন বিন্যাস নিম্নরূপ-

$$_{24}Cr \rightarrow 1s^2 2s^22p^6 3s^13p^63d^4 4s^2$$

$$_{29}Cu \rightarrow 1s^2 2s^22p^6 3s^23p^63d^9 4s^1$$

তাই ক্রোমিয়াম এবং কপারের ক্ষেত্রে থেকে ১টি ইলেকট্রন অরবিটালে প্রবেশ করে।

৩। নিচের ছকে A ও B মৌল দুটির পারমাবিক সংখ্যা ও ভর সংখ্যা দেওয়া হলো:

মৌল	পারমাণবিক সংখ্যা	ভর সংখ্যা
А	17	35
В	7	14

এখানে, A ও B প্রচলিত কোনো মৌলের প্রতীক নয়।

- (ক) পারমাণবিক সংখ্যা কাকে বলে?
- (খ) N শেলের বিভিন্ন উপস্তর ও তাদের ইলেকট্রন ধারণ ক্ষমতা দেখাও।
- **(গ)** A মৌলের পরমাণুতে কয়টি ইলেকট্রন, প্রোটন ও নিউট্রন রয়েছে?
- (**ঘ**) B মৌলটির কোনো আইসোটোপ না থাকলে এর একটি পরমাণুর ভর নির্ণয় কর।

- (**ক**) কোনো মৌলের পরমাণুতে প্রোটনের সংখ্যাকে তার পারমাণবিক সংখ্যা বলে। যেমন- H এর পারমাণবিক সংখ্যা 1।
- (খ) N শেল হলো চতুর্থ শক্তিস্তর। N শেলের উপস্তর হল ৪টি। যথা:
- 4s উপস্তরের ইলেকট্রন সংখ্যা ২টি।
- 4p উপস্তরের ইলেকট্রন সংখ্যা ২টি।
- 4d উপস্তরের ইলেকট্রন সংখ্যা ২টি।
- 4f উপস্তরের ইলেকট্রন সংখ্যা ২টি।
- (গ) উদ্দীপকের মৌলটি হলো ক্লোরিন, কারণ এর পারমাণবিক সংখ্যা 17 ও ভরসংখ্যা 35। কোনো মৌলের প্রোটন সংখ্যাকে ঐ মৌলের পারমাণবিক সংখ্যা বলে। সুতরাং ক্লোরিনের প্রোটন সংখ্যা= 17

পরমাণুর নিউক্লিয়াসে যতটি ধনাত্মক আধান বা প্রোটন থাকে কক্ষপথগুলোতে ঠিক ততটি ঋণাত্মক আধান বা ইলেক্ট্রন থাকে। সুতরাং ক্লোরিনের ইলেকট্রন সংখ্যা=17

ভরসংখ্যা হলো প্রোটন সংখ্যা ও নিউট্রন সংখ্যার যোগফল। তাই ভরসংখ্যা থেকে প্রোটন সংখ্যা বিয়োগ করলে নিউট্রন সংখ্যা পাওয়া যাবে।

সুতরাং ক্লোরিনের নিউট্রন সংখ্যা= 35-17=18

অতএব, মৌলের তথা ক্লোরিনের পরমাণুতে ১৭টি ইলেক্ট্রন, ১৭টি প্রোটন এবং ১৮টি নিউট্রন আছে।

্ঘ) B মৌলটির পারমাণবিক সংখ্যা 7 ও ভরসংখ্যা 14। সুতরাং B মৌলটি হলো নাইট্রোজেন। নাইট্রোজেনের ভরসংখ্যা এবং আপেক্ষিক পারমাণবিক সংখ্যা সমান কারণ, নাইট্রোজেনের কোনো আইসোটোপ নেই।

N এর আপেক্ষিক পারমাণবিক ভর = $\frac{N}{4}$ এর একটি পরমাণুর ভর $\frac{1}{4}$ আইসোটোপের ভরের $\frac{1}{12}$ আংশ

এখানে, একটি কার্বন-12 আইসোটোপের ভরের $\frac{1}{12}$ অংশ= $1.66 imes 10^{-24} \mathrm{g}$

N এর একটি পরমাণুর ভর = N এর আপেক্ষিক পারমাণবিক ভর x একটি কার্বন-12 আইসোটোপের ভরের $\frac{1}{12}$ অংশ

=
$$14 \times 1.66 \times 10^{-24}$$
g
= 2.32×10^{-23} g

৪। নিচের আইসোটোপগুলো লক্ষ্য কর।

- (ক) প্রতীক কাকে বলে?
- (খ) পরমাণুতে কখন বর্ণালীর সৃষ্টি হয়- ব্যাখা কর।
- (গ) এর আপেক্ষিক আণবিক ভর নির্ণয় কর।
- (ঘ) আইসোটোপগুলো আমাদের জীবনে গুরুত্বপূর্ণ ভূমিকা রাখে- ব্যাখা কর।

- (**ক**) মৌলের নামের সংক্ষিপ্ত রূপকে প্রতীক বলে। যেমন- সোডিয়ামের প্রতীক Na।
- (খ) বর্ণালি দুই ধরণের। যথা- ১। শোষণ বর্ণালি ও ২। বিকিরণ বর্ণালি ইলেকট্রন যখন নিম্ন শক্তিস্তর থেকে উচ্চ শক্তিস্তরে যায় তখন শক্তি শোষণ করে। তখন শোষণ বর্ণালি পাওয়া যায়। আবার যখন উচ্চ শক্তিস্তর থেকে নিম্ন শক্তিস্তরে আসে তখন শক্তি বিকিরণ করে। তখন বিকিরণ বর্ণালি পাওয়া যায়।
- (গ) উদ্দীপকের A পরমাণুটি হচ্ছে ^{32}P । ফসফরাসের পারমাণবিক ভর 32। নিচে ফসফরাসের ভর নির্ণয় করা হলো=

P এর ১টি পরমাণুর ভর
$$-rac{ frac{1}{2}}{ frac{32g}{6.02 imes 10^{23}}}$$
 = $5.315 imes 10^{-25} ext{g}$

P এর আপেক্ষিক পরমাণুর ভর - $\dfrac{$ এর একটি পরমাণুর ভর $\dfrac{}{$ একটি কার্বন $_{-12}$ আইসোটোপের ভরের $\dfrac{1}{12}$ অংশ $\dfrac{}{1.66\times10^{-24}}=32.02$

ফসফরাসের ১টি অণুতে ৪টি পরমাণু বিদ্যমান।

- ∴ P এর আপেক্ষিক আণবিক ভর= 32.02x4= 128.08
- (ঘ) উদ্দীপকের আইসোটোপগুলোর মধ্যে A ফসফরাসের আইসোটোপ, B আয়োডিনের আইসোটোপ এবং C কোবাল্ট এর আইসোটোপ। এই আইসোটোপগুলো আমাদের জীবনে গুরুত্বপূর্ণ ভূমিকা পালন করে। চিকিৎসা ক্ষেত্রে:
- I. রক্তের লিউকোমিয়া রোগের চিকিৎসায় ³²P ব্যবহার করা হয়।
- II. থাইরয়েড ক্যানসার নিরাময়ের জন্য রোগীকে পরিমাণমতো তেজষ্ক্রিয় আইসোটোপ ¹³¹I সমৃদ্ধ দ্রবণ পান করানো
- III. টিউমারের উপস্থিতি নির্ণয় ও নিরাময়ে ⁶⁰Co ব্যবহার করা হয়। এ থেকে নির্গত গামা রশ্মি ক্যানসারকে কোষকলাকে ধ্বংস করে।

কৃষিক্ষেত্রে: উদ্ভিদ তেজষ্ক্রিয় ফসফরাসের (^{32}P) মূলের মাধ্যমে গ্রহণ করে এবং তা উদ্ভিদের শরীরের বিভিন্ন অংশে শোষিত হয়। এসকল তেজষ্ক্রিয় আইসোটোপ থেকে তেজষ্ক্রিয় অশ্মি নির্গত হয়। গাইগার মূলার কাউন্টার ব্যবহার করে এ তেজষ্ক্রিয় রশ্মি শনাক্ত ও পরিমাপ করা হয়। এর ব্যবহারের মাধ্যমে জমিতে নাইট্রোজেন ও ফসফরাসের পরিমাণ জানা যায়। এছাড়া এর মাধ্যমে জমিতে আরো কি পরিমাণ নাইট্রোজেন ও ফসফরাস প্রয়োজন তারো হিসেব করা হয়। খাদ্য সংরক্ষণে ও ক্ষতিকর পোকামাকড ধ্বংস করতে ^{60}Co ব্যবহার করা হয়।

৫। নিচের আইসোটোপগুলো লক্ষ্য কর:

- (ক) আইসোটোপ কি?
- (খ) পরমাণু কেন চার্জ নিরপেক্ষ অবস্থায় থাকে?
- (গ) উদ্দীপকের আইসোটোপের মধ্যে কোনটি রোগ নির্ণয় এবং কোনটি রোগ নিরাময়ে ব্যবহার করা হয় আলোচনা কর।
- ্ঘ) উদ্দীপকের কোনো আইসোটোপ কৃষিক্ষেত্রে ভূমিকা রাখে কিনা তা উল্লেখ করে কৃষিক্ষেত্রে আইসোটোপের প্রয়োগ সম্পর্কে আলোচনা কর।

- (ক) যে সকল পরমাণুর প্রোটন সংখ্যা সমান কিন্তু ভরসংখ্যা ও নিউট্রন সংখ্যা ভিন্ন তাদেরকে একে অপরের আইসোটপ বলে। যেমন: ${}^1_1 H$ ও ${}^2_1 H$ পরস্পরের আইসোটোপ।
- (খ) ইলেকট্রন, প্রোটন ও নিউট্রন হচ্ছে পরমাণুর তিনটি স্থায়ী মৌলিক কণিকা। পরমাণুর কেন্দ্রে নিউক্লিয়াসে প্রোটন ও নিউট্রন থাকে। প্রোটন ধনাত্মক চার্জযুক্ত কিন্তু নিউট্রন চার্জ নিরপেক্ষ। অপরদিকে পরমাণুর নিউক্লিয়াসের বাইরে বিভিন্ন কক্ষপথে ঋণাত্মক চার্জযুক্ত ইলেকট্রন থাকে। নিউক্লিয়াসে যতটি ধনাত্মক চার্জযুক্ত প্রোটন থাকে নিউক্লিয়াসের বাইরে বিভিন্ন কক্ষপথে ঠিক ততটি ঋণাত্মক চার্জযুক্ত ইলেকট্রন থাকায় প্রোটন অ ইলেকট্রনের চার্জ অর্থাৎ ধনাত্মক ও ঋণাত্মক চার্জ পরস্পরকে প্রশমিত করে। তাই পরমাণু চার্জ নিরপেক্ষ।
- (গ) উদ্দীপকে উল্লেখিত আইসোটোপগুলোর মধ্যে ^{99}Tc রোগ নির্ণয়ে এবং $^{32}P,^{60}Co,^{131}I$ রোগ নিরাময়ে ব্যবহৃত হয়। নিচে উদ্দীপকে উল্লেখিত তেজষ্ক্রিয় আইসোটোপগুলোর রোগ নির্ণয় ও রোগ নিরাময়ে ব্যবহার সম্পর্কে আলোচনা করা হলো

রোগ নির্ণয়ে: আইসোটোপ ব্যবহার করে রোগাক্রান্ত স্থানের ছবি তোলা সম্ভব। এ পদ্ধতিতে ইঞ্জেকশান এর মাধ্যমে তেজদ্ধিয় আইসোটোপ টেকনেশিয়াম-99 (^{99}Tc) কে শরীরের ভেতরে প্রবেশ করানো হয়। এই আইসোটোপ যখন শরীরের নির্দিষ্ট স্থানে জমা হয় তখন ঐ তেজদ্ধিয় আইসোটোপ গামা রশ্মি বিকিরণ করে, তখন বাইরে থেকে গামা রশ্মি শনাক্তকরণ ক্যামেরা দিয়ে সেই স্থানের ছবি তোলা সম্ভব। এই তেজদ্ধিয় আইসোটোপ টেকনেশিয়াম-99 এর লাইফটাইম 6 ঘন্টা। তাই সামান্য সময়েই এর তেজদ্ধিয়তা শেষ হয়ে যায় বলে এটি অনেক নিরাপদ।

রোগ নিরাময়ে:

- I. থাইরয়েড ক্যানসার নিরাময়ে তেজষ্ক্রিয় আইসোটোপ ¹³¹I সমৃদ্ধ দ্রবণ রোগীকে পান করানো হয়। এ থেকে নির্গত বিটা রশ্মি থাইরয়েডের ক্যানসার কোষকে ধ্বংস করে।
- II. টিউমারের উপস্থিতি নির্ণয় ও নিরাময়ে ⁶⁰Co ব্যবহার করা হয়। এ থেকে নির্গত গামা রশ্মি ক্যানসারকে কোষকলাকে ধ্বংস করে।
- III. রক্তের লিউকোমিয়া রোগের চিকিৎসায় ³²P ব্যবহার করা হয়।
- **(ঘ)** উদ্দীপকের আইসোটোপগুলোর মধ্যে ³²P কৃষিক্ষেত্রে ব্যবহৃত হয়। কৃষিক্ষেত্রে আইসোটোপের প্রয়োগ নিচে উল্লেখ করা হলো-

ফসলের পুষ্টিতে: ফসলের সঠিক উৎপাদন নিশ্চিত করতে জমিতে কি পরিমাণ সার দিতে হবে তা সম্পর্কে নিশ্চিত করতে হবে। তেজষ্ক্রিয় আইসোটোপ ব্যবহার করে জমিতে নাইট্রোজেন ও ফসফরাসের পরিমাণ নির্ণয় করে জমিতে আরো কি পরিমাণ নাইট্রোজেন ও ফসফরাস প্রয়োজন তা হিসাব করা যায়।

ক্ষতিকর পোকামাকড় নিয়ন্ত্রণ করতে: ফসলের জন্য ক্ষতিকারক পোকামাকড় ধ্বংস করতে জমিতে কীটনাশক দেওয়া হয় যা পরিবাশ ও আমাদের শরীরের জন্য ক্ষতিকর। এ কীটনাশক ক্ষতিকারক পোকামাকড়ের সাথে সাথে অনেক উপকারী পোকামাকড়ও ধ্বংস করে। তেজদ্ক্রিয় আইসোটোপ সমৃদ্ধ কীটনাশক ব্যবহারের মাধ্যমে জানা সম্ভব হয়েছে সর্বনিম্ন কতটুক পরিমাণ কীটনাশক একটি ফসলের জন্য ব্যবহার করা যাবে।

ফসলের মনোন্নয়নে: বিভিন্ন ধরণের নিয়ন্ত্রিত তেজষ্ক্রিয় রশ্মি ব্যবহারের মাধ্যমে উদ্ভিদ কোষের জিনগত পরিবর্তন ঘটিয়ে উন্নত মানের ফসলে পরিণত ক্করা হয়।

ঙ৷

- (ক) পারমাণবিক সংখ্যা বলতে কি বুঝ?
- (খ) পরমাণুং আয়নের মধ্যে পার্থক্য দেখায়।
- (গ) পর্যায়সারণীতে খ চিত্রে উল্লেখিত মৌলের অবস্থান নির্ণয় কর।
- (ঘ) 'ক' অপজেক্ষা 'খ' চিত্রটি পরমাণুতে ইলেকট্রনের অবস্থান সম্পর্কিত ধারণাকে অধিকতর গ্রহণযোগ্য করেছে। যুক্তি দাও।

- (**ক**) কোনো মৌলের পরমাণুর নিউক্লিয়াসে বিদ্যমান প্রোটনের সংখ্যাকে ঐ মৌলের পারমাণবিক সংখ্যা বলে। যেমন- H এর পারমাণবিক সংখ্যা 1।
- (খ) পরমাণু ও আয়নের মধ্যকার পার্থক্য নিচে দেওয়া হলোছ

	পরমাণু	আয়ন
51	মৌলিক পদার্থের ক্ষুদ্রতম কণা হলো পরমাণু	ধনাত্মক বা ঋণাত্মক আধান বিশিষ্ট পরমাণু বা যৌগমূলক কে আয়ন বলে
২।	প্রত্যেক মৌলের প্রতীক দ্বারা ঐ মৌলের পরমাণুকে বোঝানো হয়। যেমন- H দ্বারা হাইড্রোজেনের পরমাণু বোঝায়।	আয়ন দেখে বোঝা যায় ঐ মৌলের পরমাণুটি ধনাত্মক নাকি ঋণাত্মক আধানবিশিষ্ট। যেমন- Na^+ দ্বারা বোঝা যায় সোডিয়াম পরমাণুটি ধনাত্মক চার্জযুক্ত।
৩।	মৌলের পরমাণুসমুহ ইলেকট্রন ত্যাগ বা গ্রহণ করে ধনাত্মক বা ঋণাত্মক আয়নে পরিণত হয়।	আয়নসমূহ ইলেকট্রন গ্রহণ বা বর্জন করে চার্জ নিরপেক্ষ পরমাণুতে পরিণত হয়।

(গ) উদ্দীপকের 'খ' চিত্রে বিদ্যমান পরমাণুটিতে ১৭টি ইলেকট্রন বিদ্যমান।

আম্রাজানি, ইলেকট্রনের সমান সংখ্যক প্রোটন পরমাণুর নিউক্লিয়াসে বিদ্যমান। উদ্দীপকের 'খ' চিত্রের পরমাণুটির ইলেকট্রন সংখ্যা ১৭। অর্থাৎ পরমাণুটির প্রোটন সংখ্যা ১৭। সুতরাং মৌলটি হবে ক্লোরিন যাকে দ্বারা প্রকাশ করা হয়। কোনো মৌলের যতটি শক্তিস্তরে ইলেকট্রন বিন্যস্ত থাকে সক্তিস্তরে সে সংখ্যাই হলো ঐ মৌলের প্ররযায়। সাধারণভাবে সর্ববহিঃস্থ শক্তিস্তরে অবস্থিত ইল্রকট্রন সংখ্যাই কোনো নির্দিষ্ট পর্যায়ে উক্ত মৌলের গ্রুপ কিন্তু সর্ববহিঃস্থ স্তরে দুটির বেশি ইলেকট্রন থাকলে সে ক্ষেত্রে সর্ববহিঃস্থ শক্যিস্তরের উপস্থিত ক্লোরিনের ইলেকট্রন বিন্যাস হলো-

$$_{17}Cl \rightarrow 1s^2 2s^22p^6 3s^23p^5$$

ক্লোরিনের সর্ববহিঃস্থ শক্তিস্তর এবং শেষ শক্তিস্তরে ইলেকট্রন আছে 2+5=7টি। সুতরাং, পর্যায় সারণীতে ক্লোরিনের অবস্থান ৩য় পর্যায়ে গ্রুপ 10+7=17 তে

(ঘ) উদ্দীপকের 'ক' মডেলটি হলো রাদারফোর্ডের পরমাণু মডেল। অপরদিকে, 'খ' মডেলটি হলো বোর পরমাণু মডেল। পরমাণুতে ইলেকট্রনের অবস্থান সম্পর্কিত ধারণা রাদারফোর্ডের পরমাণু মডেলের চেয়ে বোর পরমাণু মডেলকে অধিকতর গ্রহণযোগ্য করে তুলেছে। নিম্নে তা ব্যাখা করা হলো-

 রাদারফোর্ডের পরমাণু মডেল অনুসারে, সৌরজগতে সূর্যকে কেন্দ্র করে গ্রহ-উপগ্রহগুলো যেমন ঘুরছে, পরমাণুতে ইলেকট্রনগুলোও তেমন নিউক্লিয়াসকে কেন্দ্র করে ঘুরছে। কিন্তু ম্যাক্সওয়েলের তত্ত্ব অনুসারে এটি অসম্ভব। কারণ ইলেকট্রনসমূহ অবিরাম ঘুরলে রাদারফোর্ডের পরমাণু মডেল অস্থায়ী অবস্থাপ্রাপ্ত হয়।

এখানে ইলেকট্রনের শক্তিস্তরের আকার সম্পর্কে কোনো কথা বলা হয়নি। কিন্তু বোরের পারমাণবিক মডেলে পরমাণুর শক্তিস্তরের আকার বৃত্তাকার বলা হয়েছে।

- b. রাদারফোর্ডের পরমাণু মডেলে শক্তি শোষণ করলে বা শক্তি বিকিরণ করলে পরমাণুর গঠনে কি ধরণের পরিবর্তন ঘটে সে কথা বলা হয়নি। কিন্তু বোর পরমাণু বলা হয়েছে পরমাণু শক্তি শোষণ করলে ইলেকট্রন নিম্ন শক্তিস্তর থেকে উচ্চ শক্তিস্তরে ওঠে। আবার পরমাণু শক্তি বিকিরণ করলে ইলেকট্রন উচ্চ শক্তিস্তর থেকে নিম্ন শক্তিস্তরে নেমে আসে।
- **৭।** X=...... $3s^23p^6$ $4s^1$ [এখানে X প্রতীকি অর্থে ব্যবহার করা হয়েছে, প্রচলিত কোনোমৌলের প্রতীক নয়।]
- (ক) পারমাণবিক সংখ্যা কাকে বলে?
- (খ) চিকিৎসা ক্ষেত্রে তেজিষ্ক্রিয় আইসোটোপ গুরুত্বপূর্ণ ব্যাখা কর।
- (গ) X মৌলটির পূর্ণ ইলেকট্রন বিন্যাস উল্লেখ করে মৌলটির প্রোটন, নিউট্রন ও ইলেকট্রন সংখ্যা লিখো।
- (ঘ) মৌলটির সর্বশেষ ইলেকট্রন 3d অরবিটালে না গিয়ে 4s অরবিটালে যায় কেন? বিশ্লেষণ কর।

সমাধান:

- (**ক**) কোনো মৌলের পরমাণুর নিউক্লিয়াসে বিদ্যমান প্রোটনের সংখ্যাকে ঐ মৌলের পারমাণবিক সংখ্যা বলে। যেমন- H এর পারমাণবিক সংখ্যা 1।
- (খ) টিউমারের উপস্থিতি নির্ণয় ও তা নিরাময়ে তেজষ্ক্রিয় আইসোটোপ ব্যবহার করা হয়। ^{60}Co থেকে নির্গত গামা রশ্মি নিক্ষেপ করে ক্যান্সার কোষকলাকে ধ্বংস করা হয়। এছাড়াও রক্তের লিউকোমিয়া রোগের চিকিৎসায় ^{32}P ব্যবহার করা হয়। থাইরয়েড ক্যান্সার কোষকে ধ্বংস করতে ^{131}I ব্যবহার করা হয়।
- (গ) X মৌলটির পূর্ণাঙ্গ ইলেক্ট্রন বিন্যাস, $X=1s^22s^2\ 2p^6\ 3s^23p^64s^1$ সুতরাং, মৌলটির ইলেকট্রন সংখ্যা=19 মৌলটির প্রোটন সংখ্যা=19 অর্থাৎ মৌলটির পারমাণবিক সংখ্যা=19 পারমাণবিক সংখ্যা বিশিষ্ট মৌলটি হলো, পটাশিয়াম; যার ভরসংখ্যা, 39 সুতরাং পটাশিয়াম এর নিউট্রন সংখ্যা= ভরসংখ্যা-পারমাণবিক সংখ্যা

=39-19

=20

(ঘ) পরমাণুতে ইলেকট্রন প্রথমে সর্বনিম্ন শক্তির অরবিটালে প্রবেশ করে এবং পরে ক্রমান্বয়ে উচ্চশক্তির অরবিটালে প্রবেশ করে। অর্থাৎ যে অরবিটালের শক্তি কম সেই অরবিটালে ইলেকট্রন আগে প্রবেশ করবে এবং যে অরবিটালের শক্তি বেশি সেই অরবিটালে ইলেক্ট্রন পরে প্রবেশ করবে। অরবিটালের মধ্যে কোনটির শক্তি কম আর কোনটির শক্তি বেশি তে অরবিটালের দুটি প্রধান শক্তিস্তরের মান (n) এবং উপশক্তিস্তরের মান (l) এর যোগফলের উপর নির্ভর করে। যে অরবিটালের দুটি প্রধান কম সেই অরবিটালের শক্তি কম এবং সেই অরবিটালে ইলেকট্রন আগে প্রবেশ করবে। অপরদিকে (n+l) এর মান যে অরবিটালের বেশি তার শক্তিও বেশি এবং সেই অরবিটালে ইলেকট্রন পরে প্রবেশ করবে। 3d অরবিটালের জন্য n=3 এবং ।=2 অতএব (n+l) এর মান (3+2)=5 । আবার 4s অরবিটালের জন্য n=4, l=0। অতএব (n+l) এর মান (4+0)=4। কাজেই 3d অরবিটালের চেয়ে 4s অরবিটাল কম শক্তি সম্পন্ন। তাই ইলেকট্রন প্রথম 4s অরবিটালে এবং পরে 3d অরবিটালে প্রবেশ করবে।

৮। প্রকৃতিতে মৌলটির দুটি আইসোটোপ রয়েছে, যথা- ^{63}A ও ^{65}A । প্রকৃতিতে প্রাপ্ত ^{63}A এর শতকরা পরিমাণ 75% এবং ^{65}A এর শতকরা পরিমাণ 25% [এখানে A প্রতীকি অর্থে ব্যবহার করা হয়েছে, প্রচলিত কোনোমৌলের প্রতীক নয়।]

- (ক) আইসোটোপ কাকে বলে?
- (খ) ${}^{16}_{8}M$ ও ${}^{18}_{8}M$ পরস্পর আইসোটোপ কেন?
- (গ) A মৌলটির আপেক্ষিক পারমাণবিক ভর নির্ণয় কর।
- (**ঘ**) 'A মৌলটির ইলেক্ট্রন বিন্যাস স্বাভাবিক নিয়ম মেনে চলেনা'- কারণসহ ব্যাখা কর।

সমাধান:

- (**ক**) যে সকল পরমাণুর প্রোটন সংখ্যা সমান কিন্তু ভরসংখ্যা ও নিউট্রন সংখ্যা ভিন্ন তাদেরকে একে অপরের আইসোটোপ বলে।
- (খ) একই পারমাণবিক সংখ্যা কিন্তু ভিন্ন ভিন্ন পারমাণবিক ভরবিশিষ্ট পরমাণুকে পরস্পরের আইসোটোপ বলে। $^{16}_8 M$ ও $^{18}_8 M$ উভয়ের পারমাণবিক সংখ্যা একই অর্থাৎ 8। কিন্তু ভরসংখ্যা ভিন্ন ভিন্ন 16 এবং 18। তাই $^{16}_8 M$ ও $^{18}_8 M$ পরস্পর আইসোটোপ।
- (গ) ^{63}A আইসোটোপের আণবিক ভর= 63 এবং প্রকৃতিতে প্রাপ্ত শতকরা পরিমাণ= 75% ^{65}A আইসোটোপের আণবিক ভর= 65 এবং প্রকৃতিতে প্রাপ্ত শতকরা পরিমাণ= 25%

$$\therefore$$
 A এর গড় আপেক্ষিক পারমাণবিক ভর= $\frac{63 \times 75 + 65 \times 25}{100} = \frac{4725 + 1625}{100} = \frac{6350}{100} = 63.5$

(घ) 'গ' হতে পাই, A যৌগটির পারমাণবিক ভর 63.5। অর্থাৎ, A যৌগটি হলো কপার (Cu) যার আণবিক ভর 63.5। আমরা জানি, Cu এর পারমাণবিক সংখ্যা 29 অর্থাৎ, Cu পরমাণুতে ইলেকট্রন সংখ্যা 29 Cu এর ইলেকট্রন বিন্যাস নিমনরূপ

$$Cu \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$$

এক্ষেত্রে, ইলেক্ট্রন স্বাভাবিক নিয়ম অনুসারে 4s অরবিটাল পূর্ণ করে 3d অরবিটালে যাওয়ার কথা। অর্থাৎ $3d^9$ $4s^2$ হওয়ার কথা ছিল।

কিব্রু, 3d অরবিটালটি পূর্ণ অবস্থায় ($3d^{10}$) অধিক স্থিতিশীল বলে 3d অরবিটালটিকে স্থিতিশীল করতে $4s^2$ থেকে একটি ইলেকট্রন 3d-তে এসে $3d^{10}4s^1$ বিন্যাস অর্জন করে, যা স্বাভাবিক নিয়মের ব্যতিক্রম। অতএব, A মৌলটির ইলেক্ট্রন বিন্যাস স্বাভাবিক নিয়ম মেনে চলে না।

৯।

- (ক) অরবিট কাকে বলে?
- (খ) প্রোটিয়ামের নিউট্রন সংখ্যা শূন্য ব্যাখা কর।
- (গ) উদ্দীপকের পরমাণুর সর্বশেষ কক্ষপথের ইলেকট্রনের কৌণিক ভরবেগ নির্ণয় কর।
- (ঘ) উদ্দীপকের বিকিরিত তরঙ্গের দৈর্ঘ্য নির্ণয় কর।

- (**ক**) পরমাণুতে যে সকল ইলেকট্রন থাকে সেগুলো নিউক্লিয়াসকে কেন্দ্র করে নির্দিষ্ট ব্যাসার্ধের কতগুলো অনুমোদিত কক্ষপথে ঘোরে। এগুলোকে অরবিট বলে।
- (খ)প্রোটিয়াম হলো হাইড্রোজেনের একটি আইসোটোপ যার প্রতীক হলো- H প্রোটিয়ামের প্রোটন সংখ্যা, Z=1 ভরসংখ্যা, A=1

09/1/4)1, A-

∴ নিউট্ৰন সংখ্যা =A-Z

=1-1 =0

প্রোটিয়ামের নিউট্রন সংখ্যা শুন্য।

(গ) বোর পরমাণু মডেল অনুসারে, কোনো শক্তিস্তরে ইলেকট্রনের কৌণিক ভরবেগ,

 $mvr = \frac{nh}{2\pi}$

এখানে.

উদ্দীপকের পরমাণুর সর্বশেষ কক্ষপথ, n=3

উদ্দীপকের পরমাণুর সর্বশেষ কক্ষপথের ইলেকট্রনের কৌণিক ভরবেগ

$$= \frac{nh}{2\pi} = \frac{3 \times 6.626 \times 10^{-34}}{2 \times 3.1416} = 3.16 \times 10^{-34} m^2 kg/s$$

অতএব উদ্দীপকের পরমাণুর সর্বশেষ কক্ষপথে কৌণিক ভরবেগ

$$3.16 \times 10^{-34} m^2 kg/s$$

(ঘ) আমরা জানি,

ইলেকট্রন উচ্চ শন্তিস্তুর থেকে নিম্ন শক্তিস্তরে গেলে বিকিরিত শক্তি,

$$\Delta E = h \mathbf{v}$$

বা,
$$\Delta E = h \frac{c}{\lambda}$$

বা,
$$3.03 \times 10^{-19} = \frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{3}$$

বা,
$$\lambda = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{3.03 \times 10^{-19}}$$

∴
$$\lambda$$
= 6.56× 10⁻⁷m

অতএব, উদ্দীপকের বিকিরিত তরঙ্গের দৈর্ঘ্য $6.56 imes 10^{-7} \mathrm{m}$

এখানে,

 ΔE = 3.03×10^{-19} J প্লাংকের ধ্রুবক, h= $6.626 \times 10^{-34} m^2 kg/s$ আলোর বেগ, c= $3 \times 10^8 \text{m/s}^2$