Final

SDS384

Spring 2021

This exam has 4 short and 4 long questions. You will have to answer <u>all short questions</u>, <u>three long questions</u>. The assigned points are noted next to each question; the total number of points is 50. Please upload your answers in latex by 11:59 pm Sunday May 16th. Use the latex file format provided.

Read each question carefully, **show your work** and **clearly present your answers**. Note, the exam is printed two-sided - please don't forget the problems on the even pages!

Good Luck!

Name: _			
rim.:.l.			
${f UTeid}:$			

1 Short questions (17 points)

Please answer all of the short questions.

1. (5 pts) Suppose X_1, \ldots, X_n are i.i.d random variables with mean μ and variance σ^2 . Let $T_n = \sum_{j=1}^n z_{nj} X_j$ where z_{nj} are given numbers. Let $\mu_n = E[T_n]$ and $\sigma_n^2 = \text{var}(T_n)$. Show that

$$\frac{T_n - \mu_n}{\sigma_n} \stackrel{d}{\to} N(0, 1),$$

provided $\max_{j \le n} \frac{z_{nj}^2}{\sum_{j=1}^n z_{nj}^2} \to 0$ as $n \to \infty$.

- 2. (5 pts) Let X_1, \ldots, X_n be independent and suppose that $X_n = \sqrt{n}$ with probability 1/2 and $-\sqrt{n}$ with probability 1/2, for $n = 1, 2, \ldots$. Find the asymptotic distribution of \bar{X}_n .
- 3. (4 pts) Consider a function class with functions of the following form:

$$f_{\alpha}(x) = \begin{cases} 1 & \text{If } \sin(\alpha x) > 0\\ 0 & \text{o.w.} \end{cases}$$
 (1)

Consider a set of datapoints $\{10^{-i}, i = 1, ..., n\}$. Show that any set of labeling $y_i, i = 1, ..., n$ can be achieved by using

$$\alpha = \pi \left(1 + \sum_{i=1}^{n} (1 - y_i) 10^i \right).$$

Using this, what do you think the VC dimension of this function class is?

4. (3 pts) Consider a r.v. X such that for all $\lambda \in \Re$

$$E[e^{\lambda X}] \le e^{\frac{\lambda^2 \sigma^2}{2} + \lambda \mu}$$

Prove that $E[X] = \mu$.

2 Long questions (33 points)

Please answer any three of the long questions.

- 1. (11 pts) Look at the seminar paper "Probability Inequalities for Sums of Bounded Random Variables" by Wassily Hoeffding. It should be available via lib.utexas. edu. You can assume that n is a multiple of m (the degree of the kernel). Assume that the kernel is bounded, i.e. $|h(X_1, \ldots, X_m) \theta| \leq b$, where $\theta = E[h(X_1, \ldots, X_m)]$.
 - (a) (4 pts) Read and reproduce the proof of equation 5.7 for large sample deviation of order m U statistics.
 - (b) (7 pts) Also prove Bernstein's inequality (see below) for U statistics. This is buried in the paper, you will have to find the bits and pieces and put them together. The Bernstein inequality is given by:

$$P(|U_n - \theta| \ge \epsilon) \le a \exp\left(-\frac{n\epsilon^2/m}{c_1\sigma^2 + c_2\epsilon}\right),$$

where $\sigma^2 = \text{var}(h(X_1, \dots, X_m))$ and a, c_1, c_2 are universal constants.

- 2. (11 pts) Consider a random undirected network, where $A_{ij} = A_{ji} \stackrel{iid}{\sim} Bernoulli(p_n)$ for $1 \leq i < j \leq n$. $A_{ii} = 0$ for $1 \leq i \leq n$. The degree of a node is defined as $d_i = \sum_j A_{ij}$. Consider the regime where $np_n/\log n \to \infty$. Hint: remember, not all concentration inequalities work in this regime.
 - (a) (5 pts) Show that the degree of a fixed node concentrates around its expectation $(n-1)p_n$. Obtain the tail bound explicitly.
 - (b) (4 pts) Can you obtain a uniform error bound on the degrees? That is, can you show that $\max_i \frac{|d_i (n-1)p_n|}{(n-1)p_n}$ goes to zero in probability? If not, show why not. If yes, obtain the tail bound.
 - (c) (2 pts) Denote by $d_{(n)}$ the maximum degree. Using the last two questions, show that the maximum degree also concentrates. Obtain the tail bound explicitly.
- 3. (11 pts) We will go back to finding the covering number of infinite dimensional ellipses in this problem. Given a collection of positive numbers $\{\mu_j, j = 1 \dots d\}$, consider the ellipse

$$\mathcal{E}_d = \{ \theta \in \mathcal{R}^d : \sum_i \theta_i^2 / \mu_i^2 \le 1 \},$$

3

specified by the sequence $\mu_j = j^{-2\beta}$ for some parameter $\beta > 1/2$.

- (a) (5 pts) Obtain an upper bound on the ϵ packing number of \mathcal{E}_d under an appropriate distance metric. What metric do you think you should use?
- (b) (6 pts) Now consider an infinite-dimensional ellipse \mathcal{E} , specified by the sequence $\mu_j = j^{-2\beta}$ for some parameter $\beta > 1/2$. Show that

$$\log N(\epsilon; \mathcal{E}, ||.||_{\ell_2}) \le C \left(\frac{1}{\epsilon}\right)^{1/\beta},$$

where $\|\theta - \theta'\|_{\ell_2}^2 = \sum_{i=1}^{\infty} (\theta_i - \theta_i')^2$ is the squared ℓ_2 -norm on the space of square summable sequences.

- 4. (11 pts) Consider a random undirected network, where $A_{ij} = A_{ji} \stackrel{iid}{\sim} Bernoulli(p)$ for $1 \le i < j \le n$. $A_{ii} = 0$ for $1 \le i \le n$. Let T denote the number of triangles in this graph.
 - (a) (6 pts) Show that the variance of T is

$$\binom{n}{3}(p^3-p^6)+c_1\binom{n}{4}(p^5-p^6),$$

where c_1 is a universal constant.

(b) (5 pts) Now use the Efron Stein inequality to obtain an upper bound on the variance. Use the true variance as a guideline to get a tight upper bound.