Multiple Regression I: Basics

CLPS2908: Multivariate Statistical Techniques
Feb 5, 2019

Beginnings

- Situation:
 - $Y_i = \text{outcome/criterion/dependent variable (DV)}$ i = 1...n $X_i = \text{predictor/independent variable (IV)}$ i = 1...n
- Find a way to predict Y_i from X_i : $Y_i = f(X_i)$
- Different scales, imperfect measurement, but if at least some degree of linear relationship (correlation), then:

$$f(X_i) = a + b(X_i) + \varepsilon_i = \widehat{Y}_i$$

- Find best b.
 - Criterion = minimize prediction errors
 - Prediction error = $Y_i \hat{Y}_i$

Prediction errors = Residuals

Variance Partition of

$$ightharpoonup SS_{total} = SS_{predicted} + SS_{residual}$$

$$SS_{total} = \sum (Y_i - \overline{Y})^2$$

$$SS_{\text{predicted}} = \sum_{i} (\hat{Y}_i - \overline{Y})^2$$

$$SS_{\text{residual}} = \sum (Y_i - \hat{Y}_i)^2$$

SS_{total} =
$$\sum (Y_i - \overline{Y})^2$$

SS_{predicted} = $\sum (\hat{Y}_i - \overline{Y})^2$
SS_{predicted} = $\sum (Y_i - \overline{Y})^2$
 $R^2 = \frac{SS_{pred}}{SS_{total}}$

Maximize prediction portion by minimizing residuals (error)

From Univariate to Multivariate

$$Y_i = a + b(X_i) + \varepsilon$$
 single X (= univariate)
 $\mathbf{y} = \mathbf{X} \cdot \boldsymbol{\beta} + \mathbf{e}$ multiple X_{ii} $(j = 1...$

 $\mathbf{y} = \mathbf{X} \cdot \boldsymbol{\beta} + \mathbf{e}$ multiple X_{ij} (j = 1...p), still single Y_i

 $n \times 1$ $n \times p$ $p \times 1$ $n \times 1$ (p + 1) instead if you have intercept)

Goal: minimize residual squared error (e'e):

Deriving Multivariate Equation

$$\mathbf{X}'\mathbf{e} = 0$$

(1) Assumption in the least-squres solution

$$e = Y - \hat{Y}$$

(2) The definition of error (residuals)

$$\hat{\mathbf{Y}} = \mathbf{X}\mathbf{b}$$

(3) The regression equation

$$e = Y - Xb$$

(4) by substituting $\hat{\mathbf{Y}}$ from (3) in (2)

$$X'(Y - Xb) = 0$$

(5) By substituting e from (4) in (1)

$$X'Y - X'Xb = 0$$

(6) By multiplying out (5)

$$X'Y = X'Xb$$

(7) Rearranging (6)

$$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\mathbf{b}$$

(8) Dividing both sides by X'X

$$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \mathbf{b}$$

(9) Solving for b

Major Complication

Predictors are correlated

- In the equation, each variable's contribution (its β weight) is <u>adjusted for</u> other variables' contributions (their β weights); β weights are mutually dependent and are "semi-partial."
- Each predictor's zero-order correlation with Y is not adjusted for any other variables; thus it will differ from its regression-based ("semi-partial") correlation.
- "Shared variance problem"

(= shared predictive variance)

Even greater challenge: When there is near collinearity;
 when there are suppressor effects → Thursday

regression coefficients will often (although not always) change depending on the variables included in our regression equation. This development certainly does not argue for the scientific respectability of our findings, however, nor does it bods well for the scientific respectability of multiple regression. If our conclusions change depending on the variables we include in our analyses, then knowledge and conclusions depend on our skill and honesty in selecting variables for analysis. Research findings should be more constant and less ephemeral if they are to form the basis for understanding, knowledge, and theory. Furthermore, this change in findings and conclusions means that, to some extent, we can find what we want by choosing the variables to include in our regression.

Keith, T. Z. (2006). *Multiple regression and beyond*. Boston, MA: Pearson.

Multiple Regression II: Expansions

CLPS2908: Multivariate Statistical Techniques
Feb 7, 2019

Expansions

- Methods of Entry
- Interactions
- Understand difference between zero-order and (semi-)partial correlations
- Clarify "suppressor" effects
 - Usual explanation; better approach
 - Weak and strong cases
 - SPSS output examples, Excel calculation file

- Backward, Stepwise as Model testing; Forward
 - R² change (F test)

When more than one METHOD subcommand is specified, each METHOD subcommand is applied to the equation that resulted from the **previous** METHOD subcommands.

Interactions (often "Moderators")

- CASE 1: Group variable
 - e.g., does an experimental manipulation have an impact on the relationship between two variables?

$$Y = b_0 + b_1 X_1 + b_2 G + b_3 G X_1$$

$$1. G = 0$$

$$Y(0) = b_0 + b_1 X_1$$

$$2. G = 1$$

$$Y(1) = b_0 + b_1 X_1 + b_2 + b_3 X_1 =$$

$$= (b_0 + b_2) + (b_1 + b_3) X_1$$

If b_2 substantial \rightarrow different intercepts; if b_3 substantial \rightarrow different slopes

Interactions

Centering of the continuous IVs allows comparisons of the predictors' "solo main effects" at the *mean* of the other IV rather than at the 0 point.

- CASE 2: Additional continuous variable X₂
 - 1. Center/standardize the data
- 2. COMPUTE X12IA = $X_1 \times X_2$
- $Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_1 X_2$ (1) For all $X_2 \ge 1SD$, set X_2 to 1 $Y(\ge 1) = b_0 + b_1 X_1 + b_2 + b_3 X_1 =$ $= (b_0 + b_2) + (b_1 + b_3) X_1$ (2) For all $X_2 \le 1SD$, set X_2 to -1 $Y(\le 1) = b_0 + b_2 X_1 b_1 b_3 X_1 =$ $= (b_0 b_1) + (b_2 b_3) X_1$

3. **Graph** $Y = f(X_t)$ pattern

at +/-1SD of X_2

3D graphic software....

2. Fully partial (or "partial") variance component (r^2_p) = proportion of red area (unique X_1 contribution) out of Y area not accounted for by other variables.

1. Semi-partial (or "part") variance component (r^2_{sp}) = proportion of red area (unique X_1 contribution) out of total Y area.

3

Shared Variance & Suppression

Separately calculated

Predicting
blame from
various
other
ascriptions

Model 1	Semi-partial	squared	total shared
has_choice	0.611	0.373	
has_soul	0.445	0.198	
			0.029
	R^2	0.60	

Model 2	Semi-partial	squared	total shared
has_choice	0.138	0.019	
has_soul	0.269	0.072	
folk_fw	0.392	0.154	0.505
	R^2	0.75	

Suppressor Effects

Suppression of what? Standard: X2 suppresses residual variance in Y, or nonexplaining variance in X1

Clinton

Clinton

Can be interpreted as a moderator effect: those who read the *Star* article (→ dropping opinion) and then watched the TV announcement had a not-as-bad opinion as the ones who only read the *Star* article.

Clinton

Other Examples

- ► How is HEAD Start (see http://eclkc.ohs.acf.hhs.gov/hslc/hs/about) related to scholastic achievement?
 - (Zero-order correlation is negative (as if participating in the program lowered achievement)
 - Add poverty as a predictor →
 - Controlling for poverty, HEAD Start's semi-partial correlation is now positive
 - Suppressor effect: HEAD Start's positive correlation with poverty (poor kids are more likely to go into HEAD start) suppresses its predictive power (poor kids have lower achievement) → need to control for poverty.

- r_{xy} = zero-order correlation, "structure coefficient"
- r_{sp} = semi-partial correlation of X_i with Y holding all other X_i constant
- Shows change once other predictors are introduced
- When squared → allows calculation of all shared variance components.
- Walking through example in SPSS
- Excel suppression calculator

Mediation (Simple version)

Test for Mediation:

- 1. Show that $\beta(IV) \rightarrow DV$
- 2. Show that β (Med) \rightarrow DV
- 3. Show that $\beta(IV) \rightarrow 0$ When $\beta(Med)$ controlled for

More sophisticated versions: Andrew Hayes...