

Business Background

- Location is a known important factor for a business to attract customers
- Successful coffee shops offer some insights on the characteristics of their locations
- By building a predictive model, we can predict if a location will be suitable to establish a new coffee shop
- Predictive model will give the factors that are important in getting high customer traffic to the business

Data Source

- Foursquare provides free open-source data about venues such as coffee shops
- The location in study is an area in the West of Kuala Lumpur, Malaysia

Batu Caves FRIM Selangor Forest Park Taman Ehson Kepong ersimpangam Menjalara Damansara Hentian Sebelah Penc Damai egambut n Jejantas Sungai Buloh ebuhraya Sprint Jalan Duta Sentul **Bukit Tunku** Mont Kiara Damansara Kota Damansara Desa Sri Inrtanda Taman Duta Mutiara Damansa Bukit Kiara Sri Hartamas Taman Tun Kuala L Bukit Damansara Dr Ismail Taman SA Bandar Utama Bukit Persekutuan Damansara Bukit Kiara Leaflet | Data by @ OpenStreet Damansara

Coffee Shop Location Search

- The two most popular coffee shop chains in the city are Starbucks and the Coffee Bean & Tea Leaf
- We search for these two chains to collect data for training
- Use the Foursquare's "search" API to identify their ID's and geo-locations (red circles)
- Search Radius = 4 km

Customer Traffic Data

- The search API only provides the locations and unique ID for each venue
- Customer traffic data is obtained by querying for the venue's details using the "venue" API on Foursquare
 - https://api.foursquare.com/v2/venues/{venueID}
- There is not an exact data for customer traffic but the returned venue details has a "ratingSignals" field which can be used as a substitute

	name	distance	category1	category2	neighborhood	address	lat	Ing	id	rating	rating Signals
0	Starbucks	849	food	coffeeshop_	NaN	Kepong Village Mall	3.1926	101.6329	53bcab74498e7e4a348ba0f9	7.3	73
1	Starbucks Reserve	66	food	coffeeshop_	The Waterfront	GF-03, The Waterfront	3.1869	101.6282	5a20e400a8eb607c63dfe67a	8.0	22
2	Starbucks	3219	food	coffeeshop_	NaN	AEON Metro Prima Shopping Centre	3.2138	101.6388	4b5713d9f964a5207e2528e3	7.1	282
3	Starbucks	3763	food	coffeeshop_	Mutiara Damansara	The Curve	3.1575	101.6113	4b0d1050f964a520894323e3	7.9	538

Data Cleaning

- Venues returned by Foursquare are not all accurate
- Manual search on Google Maps found that some shops did not exist
- Some shops were duplicates
- Data had to be manually cleaned because there was not a hard-rule to identify the false data
- The cleaned data set has 22 coffee shops

Features for Traffic Modeling

- Features for modeling are the counts of different businesses that are nearby a coffee shop location
- Use the "explore" API to search for nearby venues within 120 m radius and loop the search for all 22 coffee shops in the data set

Neighbors Example

	name	category1
0	Indulge	food
1	ICHIRO Sushi Bar	food
2	Garrett Popcorn	food
3	Tonkatsu by Ma Maison	food
4	The Fish Bowl	food
5	Seaweed Club	food
6	KOM'S by KomPassion	food

All Neighbor Categories					
1. Arts & Entertainment	5. Nightlife				
2. Building	6. Parks & Outdoors				
3. Education	7. Shops				
4. Food	8. Travel				

	arts_entertainment	building	education	food	nightlife	parks_outdoors	shops	travel
id								
53ace690498ee1246590366b	7	4	0	38	4	3	99	0
4b61623ef964a520b0112ae3	10	4	1	28	4	5	102	0
533a4b93498ea0140dda4c88	6	3	0	17	12	1	27	0
4b0e8c7bf964a520625823e3	5	2	0	48	0	3	104	2
4b0d1050f964a520894323e3	5	4	0	51	1	5	105	2

Features Table

A table of count of neighbors in each category where each row is a coffee shop

Target Variable Preprocessing

- The rating count data represents customer traffic however there will be some issues to use the raw values directly in the model:
 - rating count is highly inaccurate because not all customers reported a rating, so
 its raw values may be perceived as detailed variations by a model
 - rating count does not have an upper limit and it continues to increase over time, so after some level a higher number is no longer relevant

• To address the issues above, the rating count is transformed into 3 levels of customer traffic:

- rating count < 50 is Low Traffic (score 0)
- rating count 51-149 is Medium Traffic (score 1)
- rating count 150+ is High Traffic (score 2)

	ratingCount	traffic
id		
53ace690498ee1246590366b	121	1
4b61623ef964a520b0112ae3	622	2
533a4b93498ea0140dda4c88	93	1
4b0e8c7bf964a520625823e3	241	2
4b0d1050f964a520894323e3	538	2

Decision Tree Classification Model

- A decision tree is chosen for the classification model because it offers the ability to show the split of the features which can tell the important features to predict
- To maximize the available data (22 samples) a leave-one-out cross validation approach was used to generate the test accuracy
- The overall accuracy = 54%

	precision	recall	f1-score
low	0.50	0.40	0.44
medium	0.56	0.62	0.59
high	0.44	0.44	0.44

Result Discussion

- Decision Tree showed that the number of shops took the top position in predicting customer traffic, followed by nightlife.
- A leaf node with 5 samples of "high" (left most) is a pure node with the highest samples of high traffic compared to other leaf nodes. The path to get to this node is:
 - If the number of nearby shops >= 13, and
 - number of nearby nightlife venues >= 5, and
 - number of nearby education venues >= 1, then the customer traffic will be high
- It is quite easy to understand the above path in real-life situation. If a coffee shop is surrounded by many shops, near nightlife attractions and a college, then it can attract a wide spectrum of customers from daytime shoppers, night goers and students.

Future Application

- Use the model to predict the traffic outcome for a given new location
- OR
- Use Foursquare to search all locations in the city for shops, nightlife, and education and apply a kmeans clustering to find clusters which satisfy the criteria and place a new coffee shop there

Conclusion

- A decision tree classifier model was built to predict customer traffic using open-source data collected from Starbucks and The Coffee Bean & Tea Leaf locations around west of Kuala Lumpur area
- The model gave a reasonable quality prediction despite the limited amount of data and data quality issues in the Foursquare open-source database
- Among the key factors that drove customer traffic are the number of neighboring shops, nightlife attractions, and educational places
- Further improvement to the model can be done by collecting more data from additional sources such as Google Maps and conducting more rigorous data cleaning