FK and IK of four axes

CY

November 11, 2024

1 FK

$${}^{b}T_{1} = \begin{bmatrix} \frac{\sqrt{2}}{2}\cos\theta_{1} & -\frac{\sqrt{2}}{2}\sin\theta_{1} & \frac{\sqrt{2}}{2} & l_{x} \\ \sin\theta_{1} & \cos\theta_{1} & 0 & l_{g}^{leg} \\ -\frac{\sqrt{2}}{2}\cos\theta_{1} & \frac{\sqrt{2}}{2}\sin\theta_{1} & \frac{\sqrt{2}}{2} & l_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}T_{2} = \begin{bmatrix} 0 & 0 & -1 & d_{1} \\ -\cos\theta_{2} & \sin\theta_{2} & 0 & 0 \\ \sin\theta_{2} & \cos\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}T_{3} = \begin{bmatrix} 0 & 0 & 1 & d_{g}^{leg} \\ \frac{\sqrt{2}}{2}\sin(\theta_{3}) - \frac{\sqrt{2}}{2}\cos(\theta_{3}) & \frac{\sqrt{2}}{2}\sin(\theta_{3}) + \frac{\sqrt{2}}{2}\cos(\theta_{3}) & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{3}T_{4} = \begin{bmatrix} \cos\theta_{4} & -\sin\theta_{4} & 0 & d_{3} \\ \sin\theta_{4} & \cos\theta_{4} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{4}T_{5} = \begin{bmatrix} 1 & 0 & 0 & d_{4} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{b}T_{5} = {}^{b}T_{1} \cdot {}^{1}T_{2} \cdot {}^{2}T_{3} \cdot {}^{3}T_{4} \cdot {}^{4}T_{5}$$

2 IK

$$bT_0^{-1}bT_5 = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_x \\ r_{21} & r_{22} & r_{23} & p_y \\ r_{31} & r_{32} & r_{33} & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

with

$$bT_0 = \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} & l_x \\ 0 & 1 & 0 & l_y^{\text{leg}} \\ -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} & l_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$bT_0^{-1} = \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} l_x + \frac{\sqrt{2}}{2} l_z \\ 0 & 1 & 0 & -l_y^{\text{leg}} \\ \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} l_x - \frac{\sqrt{2}}{2} l_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Figure 1: THEMIS Leg Frame Attachment. All joints are in zero position..

However, the result is still too complicated to handle. One trick by observation is that we can intentionally add an offset of $\pi/4$ to θ_3 so that the frames are aligned, i.e., $\theta_3 = \theta'_3 - \pi/4$, which can simplify the computation significantly. Substituting θ_3 with θ'_3 yields

$$r_{11} = c_1 s_{34} + s_1 s_2 c_{34} \tag{1}$$

$$r_{21} = s_1 s_{34} - c_1 s_2 c_{34} \tag{2}$$

$$r_{31} = -c_2 c_{34} \tag{3}$$

$$r_{12} = c_1 c_{34} - s_1 s_2 s_{34} \tag{4}$$

$$r_{22} = s_1 c_{34} + c_1 s_2 s_{34} \tag{5}$$

$$r_{32} = c_2 s_{34} \tag{6}$$

$$r_{13} = c_2 s_1 \tag{7}$$

$$r_{23} = -c_1 c_2 \tag{8}$$

$$r_{33} = s_2$$
 (9)

$$px = c_1(d_1 + d_3s_3 + d_4s_{34}) - s_1(-c_2d_2^{\text{leg}} - s_2(d_3c_3 + d_4c_{34}))$$
(10)

$$py = s_1(d_1 + d_3s_3 + d_4s_{34}) + c_1(-c_2d_2^{\text{leg}} - s_2(d_3c_3 + d_4c_{34}))$$
(11)

$$pz = d_2^{\text{leg}} s_2 - c_2 (d_3 c_3 + d_4 c_{34}) \tag{12}$$

2.1 Soving θ_2

• Equation

$$\sin \theta = r33, \quad r33 \in [-1, 1]$$
$$\cos \theta = \pm \sqrt{1 - r33^2}$$

• Solution

$$\theta = \operatorname{atan2}(r33, \pm \sqrt{1 - r33^2})$$

- Two Solutions

$$\theta_2 = \theta$$

or

$$= 180^{\circ} - \theta$$

- Singularity at the Boundary

When
$$\theta_2 = \pm 90^{\circ}$$
, $|a| = 1$

2.2 Soving θ_1

By (7) and (8), we can obtain

$$\theta_1 = \operatorname{atan2}(r33/c2, -r23/c2)$$

where θ_2 does not reach 90 degrees, $c2 \neq 0$...

2.3 Soving θ_4 and θ_3

$$k_8 = d_3 s_3 + d_4 s_{34} = A,$$

$$k_9 = d_3c_3 + d_4c_{34} = B$$

where where

$$B = \frac{d_2^{\text{leg}} \cdot s_2 - p_z}{c_2}$$

$$A = \frac{p_x + s_1 \cdot \left(-c_2 \cdot d_2^{\text{leg}} - s_2 \cdot B\right)}{c_1} - d_1$$

Sum of squares of them yields

$$k_8^2 + k_9^2 = d_3^2 + d_4^2 + 2d_3d_4c_4 \Rightarrow c_4 = \frac{k_8^2 + k_9^2 - d_3^2 - d_4^2}{2d_3d_4},$$

which solves

$$\theta_4 = \operatorname{atan2}\left(-\sqrt{1-c_4^2}, c_4\right),\,$$

$$\theta_3' = \operatorname{atan2}((d_3 + d_4c_4)k_8 - d_4s_4k_9, (d_3 + d_4c_4)k_9 + d_4s_4k_8) \Rightarrow \theta_3 = \theta_3' - \frac{\pi}{4},$$

since $\theta_4 \leq 0$.