习题课四

一、问答题

- 1. 若f(x)在 x_0 连续,g(x)在 x_0 间断,能否断定 f(x)+g(x) 在 x_0 间断? f(x)g(x)呢?
- 3. 若|f(x)|在 x_0 连续,能否断定 f(x)在 x_0 连续?
- 4. 分段函数是否一定有间断点?

二、选择题

- 1. 函数 $f(x) = \frac{x}{a+e^{bx}}$ 在($-\infty$, $+\infty$) 内连续,且 $\lim_{x\to-\infty} f(x) = 0$,则常数 a,b 满足()
 - (A) a < 0, b < 0; (B) a > 0, b > 0;
 - (C) $a \le 0, b > 0$; (D) $a \ge 0, b < 0$.
- 2. 若 f(x)在 x_0 连续, $\lim_{x \to x_0^+} f(x) = 5$,则 $f(x_0) = ($)
 - (A) 5

- (B) \mathcal{X}_0
- (C) 无定义
- (D) -5
- 3. 设 $f(x) = \begin{cases} \ln(\cos x)x^{-2}, & x \neq 0 \\ a & x = 0 \end{cases}$ 在 x = 0 处连续,则a = ()
 - (A) 0; (B) 1; (C) ∞ ; (D) $-\frac{1}{2}$.

4. 设
$$f(x) = \begin{cases} \cos x + x \sin \frac{1}{x^2} & x < 0 \\ 2 & x = 0, \\ x + 1 & x > 0 \end{cases}$$
 见 $x = 0$ 是 $f(x)$ 的()

- (A) 连续点
- (B) 第一类不可去间断点
- (C) 可去间断点 (D)第二类间断点
- 5. 设 f(x), $\phi(x)$ 在 $(-\infty, +\infty)$ 内有定义, f(x) 连续, 且 $f(x) \neq 0$, $\phi(x)$ 有间断点,则
- (A) $\phi(f(x))$ 必有间断点; (B) $[\phi(x)]^2$ 必有间断点;
- (C) $f(\phi(x))$ 必有间断点; (D) $\frac{\phi(x)}{f(x)}$ 必有间断点

三、填空题

1. 已知
$$f(x) = \begin{cases} \frac{\sqrt{1-ax}-1}{x}, & x < 0 \\ ax+b, & 0 \le x \le 1 \end{cases}$$
, 在所定义的区间上连续,则 $a =$ _____; $arctan \frac{1}{x-1}, x > 1$

四. 问 a, b 取何值时,下列函数在定义域内连续:

$$1.f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x > 0\\ \sin(ax+b) & x \le 0 \end{cases}$$

$$2.f(x) = \lim_{n \to \infty} \frac{x^{2n-1} + ax^2 + bx}{x^{2n} + 1}$$

五、求下列极限

$$1.\lim_{x \to \infty} \left(\frac{x^3 + 5}{x^3 + 1} \right)^{2 - x^3}$$

$$2.\lim_{x\to 1} (2-x)^{\sec\frac{\pi}{2}x}$$

$$3.\lim_{x\to 0} \left(e^{x^2} + \cos x - 1\right)^{\frac{1}{x^2}}$$

六、证明题

- 1. 证明方程 $x-2\sin x=a(a>0)$ 至少有一个正实根。
- 2. 证明方程 $\frac{a_1}{x-\lambda_1} + \frac{a_2}{x-\lambda_2} + \frac{a_3}{x-\lambda_3} = 0$, 其中 a_1 , a_2 , $a_3 > 0$, $\lambda_1 < \lambda_2 < \lambda_3$, 在 (λ_1, λ_2) 和 (λ_2, λ_3) 内至少各有一个实根。
- 3. 证明: 当 n 为奇数时,方程 $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$ 至 少有一个实根。
- 4. 设函数 f(x)在 $(-\infty, +\infty)$ 内连续,且 f(f(x)) = x,证明在 $(-\infty, +\infty)$ 内至 少有一个 x_0 满足 $f(x_0) = x_0$ 。
- 5. 讨论函数 $f(x) = \lim_{n \to +\infty} \frac{x + x^2 e^{nx}}{1 + e^{nx}}$ 的连续性。
- 6. 设f(x)在点x。连续,且f(x)。)>0,试证:存在x。的某邻域,使得在此邻域内有kf(x)>f(x)。,其中k>1。
- 7. 设 $f(x) = \begin{cases} \frac{1}{e^{x-1}}, x > 0, & 求 f(x)$ 的间断点,并说明其类型。 $\ln(1+x), -1 < x < 0. \end{cases}$