Contrôle continu 1 - Mathématiques

Groupe MP1 - 6 Mars 2023

Durée : 45 minutes Le barème est donné à titre indicatif.

Présentation et Rédaction [2 pts]

Exercice 1 [4 pts]

- 1. Donner le développement limité à l'ordre 4 en 0 de la fonction f définie sur $]-1,+\infty[$ par $f(x)=\frac{1}{1+x}$.
- 2. Donner le développement limité à l'ordre 2 en 0 de la fonction g définie sur $[-1, +\infty[$ par $g(x) = \sqrt{1+x}$.
- 3. Soit E un espace vectoriel et F et G deux sous-espaces vectoriels de E. Montrer que $F \cap G$ est un sous-espace vectoriel de E.
- 4. Étant donnés deux sous-espaces vectoriels F et G d'un espace vectoriel E, rappeler la définition de F + G en recopiant et complétant l'égalité suivante sur votre copie :

$$F + G = \{ \}.$$

Exercice 2 [8 pts]

Soit f et g les fonctions définies par $f(x) = e^{x^2} \cos(x)$ pour $x \in \mathbb{R}$ et $g(x) = \sin(2x) \ln(1+x)$ pour $x \in [-1, +\infty[$.

- 1. Déterminer le développement limité à l'ordre 4 en 0 de la fonction f.
- 2. (a) Déterminer une équation de la tangente à la courbe représentative de f au point d'abscisse 0.
 - (b) Déterminer la position de la courbe représentative de f par rapport à sa tangente au point d'abscisse 0.
- 3. Déterminer un équivalent simple en 0 de $f(x) 1 \frac{x^2}{2}$.
- 4. Montrer que le développement limité à l'ordre 3 en 0 de g est donné par

$$g(x) = 2x^2 - x^3 + o(x^3)$$
 en 0.

- 5. En déduire les valeurs de g(0), g'(0), g''(0) et g'''(0) (sans calculer les dérivées successives de g).
- 6. Déterminer, si elle existe, la valeur de la limite suivante

$$\lim_{x \to 0} \frac{e^{x^2} \cos(x) - 1 - \frac{x^2}{2}}{\sin(2x)\ln(1+x)}.$$

Exercice 3 [6+1 pts]

- 1. Dire si les ensembles suivants (munis des lois + et \cdot usuelles, rappelées en cours) sont des espaces vectoriels. Justifier la réponse.
 - (a) $E_1 = \{(x, y, z) \in \mathbb{R} \mid yz = 0\},\$
 - (b) $E_2 = \{(x, y, z) \in \mathbb{R} \mid z + x = 0\},\$
 - (c) $E_3 = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(x) = f'(x), \ \forall x \in \mathbb{R} \}.$
- 2. On considère $F = \{(x, y, z) \in \mathbb{R} \mid z + x = 0\}$ et $G = \{(a, a, 0) \mid a \in \mathbb{R}\}$. On admet que F et G sont des sous-espaces vectoriels de \mathbb{R}^3 .
 - (a) Montrer que $F \cap G = \{0_E\}$.
 - (b) Montrer que F et G sont supplémentaires dans \mathbb{R}^3 .
 - (c) (Bonus) Soit u = (0,0,1). Déterminer $u_F \in F$ et $u_G \in G$ tels que $u = u_F + u_G$. Cette écriture est-elle unique?

Correction

Proposée par J. Le Clainche

Correction exercice 1

1. Au voisinage de 0, on a

$$f(x) = 1 - x + x^2 - x^3 + x^4 + o(x^4).$$

2. Au voisinage de 0, on a

$$g(x) = 1 + \frac{x}{2} - \frac{x^2}{8} + o(x^2).$$

3. Montrons que $F \cap G$ est un sous-espace vectoriel de E.

• On a $0_E \in F$ et $0_E \in G$ car F et G sont des sous-espaces vectoriels de E. Ainsi $0_E \in F \cap G$ et donc $F \cap G \neq \emptyset$.

• Soient $u, v \in F \cap G$ et $\lambda \in \mathbb{R}$.

D'une part, on a $u, v \in F$ et F étant un sous-espace vectoriel de E, on a $\lambda u + v \in F$

D'autre part, on a de même $\lambda u + v \in G$.

Ainsi, $\lambda u + v \in F \cap G$ donc $F \cap G$ est stable par combinaison linéaire.

Finalement on a montré que $F \cap G$ est non-vide et stable par combinaison linéaire donc $F \cap G$ est un sous-espace vectoriel de E.

4. On a

$$F + G = \{ f + g \mid f \in F, g \in G \}.$$

Correction exercice 2

1. Au voisinage de 0, on a $e^y = 1 + y + \frac{y^2}{2} + o(y^2)$ et par substitution, on a donc $e^{x^2} = 1 + x^2 + \frac{x^4}{2} + o(x^4)$ en 0. Au voisinage de 0, on a $\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$.

Par produit de développements limités, on obtient alors

$$f(x) = (1 + x^2 + \frac{x^4}{2})(1 - \frac{x^2}{2} + \frac{x^4}{24}) + o(x^4) = 1 + \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$$
 en 0.

2. (a) On a montré que f(x) = 1 + o(x) au voisinage de 0, donc la tangente à la courbe représentative de f au point d'abscisse 0 a pour équation y = 1.

(b) De plus, la fonction admet un $DL_2(0)$ donné par $f(x) = 1 + \frac{x^2}{2} + o(x^2)$. Comme 2 est pair et $\frac{1}{2}$ est positif, alors la courbe représentative de f est au-dessus de sa tangente en 0.

3. Au voisinage de 0, on a $f(x) - 1 - \frac{x^2}{2} = \frac{x^4}{24} + o(x^4)$. Or une fonction est équivalente en 0 au premier terme non nul de son développement limité en 0.

Ainsi,
$$f(x) - 1 - \frac{x^2}{2} \sim \frac{x^4}{24}$$
 en 0.

4. Au voisinage de 0, on a $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o\left(x^3\right)$ et $\sin(y) = y - \frac{y^3}{6} + o\left(y^3\right)$. Par substitution, on a donc $\sin(2x) = 2x - \frac{8x^3}{6} + o(x^3)$ en 0.

Ainsi, par produit, on obtient

$$g(x) = (2x - \frac{8x^3}{6})(x - \frac{x^2}{2} + \frac{x^3}{3}) + o(x^3) = 2x^2 - x^3 + o(x^3).$$

5. La fonction g est 3 fois dérivable en 0. D'après la formule de Taylor-Young, au voisinage de 0

$$g(x) = g(0) + g'(0)x + \frac{g''(0)}{2}x^2 + \frac{g'''(0)}{6}x^3 + o(x^3).$$

Ainsi, par unicité du DL de g en 0 à l'ordre 3, on a g(0) = 0, g'(0) = 0, g''(0) = 4 et g'''(0) = -6.

2

6. D'après les questions précédentes, on a $e^{x^2}\cos(x) - 1 - \frac{x^2}{2} \sim \frac{x^4}{24}$ et $\sin(2x)\ln(1+x) \sim 2x^2$ en 0. Ainsi, par quotient d'équivalents, on a

$$\frac{e^{x^2}\cos(x) - 1 - \frac{x^2}{2}}{\sin(2x)\ln(1+x)} \sim \frac{x^2}{48} \text{ en } 0$$

et donc
$$\lim_{x\to 0} \frac{e^{x^2}\cos(x)-1-\frac{x^2}{2}}{\sin(2x)\ln(1+x)} = \lim_{x\to 0} \frac{x^2}{48} = 0.$$

Correction exercice 3

- 1. (a) Soient u = (0, 1, 0) et v = (0, 0, 1), on a clairement $u \in E_1$ et $v \in E_1$ (car $0 \times 1 = 0$). Or $u + v = (0, 1, 1) \notin E_1$ (car $1 \times 1 \neq 0$) donc E_1 n'est pas stable pour l'addition et n'est donc pas un sous-espace vectoriel de \mathbb{R}^3 .
 - (b) On a 0 + 0 = 0 donc $0_{\mathbb{R}^3} = (0, 0, 0) \in E_2 \neq \emptyset$
 - Soient $u_1=(x_1,y_1,z_1)$ et $u_2=(x_2,y_2,z_2)$ deux éléments de E_2 et $\lambda\in\mathbb{R}$.

On pose $v = u_1 + \lambda u_2 = (x, y, z)$.

On a
$$z + x = (z_1 + \lambda z_2) + (x_1 + \lambda x_2) = z_1 + x_1 + \lambda(z_2 + x_2) = 0$$
 car $u_1, u_2 \in E_2$

Donc $v \in E_2$ et E_2 est stable par combinaison linéaire.

Ainsi E_2 est non-vide et stable par combinaison linéaire donc E_2 est un sous-espace vectoriel de \mathbb{R}^3 .

- (c) Soit $f_0 = 0_{\mathcal{F}(\mathbb{R},\mathbb{R})}$ la fonction nulle sur \mathbb{R} . On a $f_0'(x) = 0 = f_0(x)$ pour tout $x \in \mathbb{R}$ et donc $f_0 \in E_3 \neq \emptyset$.
 - Soient $f, g \in E_3$ et $\lambda \in \mathbb{R}$. Pour $x \in \mathbb{R}$, on a

$$(\lambda f + q)'(x) = \lambda f'(x) + q'(x) = \lambda f(x) + q(x) = (\lambda f + q)(x).$$

Ainsi $\lambda f + g \in E_3$ et E_3 est stable par combinaisons linéaires

On a donc montré que E_3 est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R},\mathbb{R})$.

- 2. (a) Soit $u=(x,y,z)\in F\cap G$. On a $u\in G$ donc il existe $a\in\mathbb{R}$ tel que $x=a,\ y=a$ et z=0. De plus, $u\in F$ donc x=-z=0 et finalement, on a $u=(0,0,0)=0_{\mathbb{R}^3}$ et donc $F\cap G=\{0_{\mathbb{R}^3}\}$.
 - (b) On raisonne par analyse-synthèse pour montrer que $F+G=\mathbb{R}^3$

Analyse

Soit $u = (x, y, z) \in \mathbb{R}^3$, on suppose que $u = u_F + u_G$ avec $u_F = (\alpha, \beta, -\alpha) \in F$ et $u_G = (a, a, 0) \in G$.

On a alors
$$\begin{cases} x = a + \alpha \\ y = a + \beta \\ z = -\alpha \end{cases} \iff \begin{cases} \alpha = -z \\ a = x - \alpha = x + z \\ \beta = y - a = y - x - z \end{cases}$$

Synthèse

Soit $u = (x, y, z) \in \mathbb{R}^3$, on pose $u_F = (-z, y - x - z, z)$ et $u_G = (x + z, x + z, 0)$.

- \rightarrow On a $u = u_F + u_G$,
- \rightarrow Clairement, $u_F \in F$ et $u_G \in G$.

On a donc $\mathbb{R}^3 = F + G$.

On a donc montré que F et G sont supplémentaires dans \mathbb{R}^3 .

(c) On considère u=(0,0,1), en utilisant la question précédente, on trouve que u=(-1,-1,1)+(1,1,0) avec $u_F=(-1,-1,1)\in F$ et $u_G=(1,1,0)\in G$.

Cette écriture est unique car F et G sont en somme directe.