Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра автоматизированных систем управления (АСУ)

Отчет по практической работе №4

«Измерение свойств системы»

По дисциплине «Теория систем и системный анализ»

Выполнилі	и студент(ы) гр. 430-2
	Колпакова К.И.
	Лузинсан А.А.
	Швоева Д.С.
«»	2022 г.
Проверила	
	Аверьянова А.М.
« »	2022 г.

Оглавление

Введение	3
1. Основная часть	4
1.1 Наименование системы	4
1.2 Измерение свойств системы с помощью различных типов шкал	4
1.2.1 Измерение свойств с помощью номинальной шкалы	4
1.2.2 Измерение свойств с помощью ранговой шкалы	5
1.2.3 Измерение свойств с помощью шкал интервалов	6
1.2.4 Измерение свойств с помощью шкал отношений	7
1.2.5 Измерение свойств с помощью абсолютной шкалы	8
1.3 Интеграция измерений	8
1.3.1 Выбор частных критериев, определение их важности, измерение	
объектов по критериям	8
1.3.2 Нормирование оценок важности и значений критериев	9
1.3.3 Определение интегральной оценки	10
Заключение	12
Использованные источники	13

Введение

Цель: получить практические навыки в измерении свойств системы с помощью различных типов шкал, а также в интеграции измерений.

Задачи:

- 1. Научиться измерять свойства с помощью разных типов шкал;
- 2. Научиться осуществлять интеграцию измерений по нескольких свойствам.

1. Основная часть

1.1 Наименование системы

Нашей командой была выбрана новая система – «Мультиварка».

Назначение данной системы: приготовление / подогрев еды.

В данной системе можно выделить основные подсистемы:

- 1. Внешние элементы (включают в себя: дисплей, крышку, шнур питания, фильтр для сбора конденсата, чаша);
- 2. Внутренние или же технические элементы (нагревательный элемент, трёхконтурное запирающее устройство, температурный регулятор, замок безопасность)

1.2 Измерение свойств системы с помощью различных типов шкал

1.2.1 Измерение свойств с помощью номинальной шкалы

Было выбрано четыре свойства свойств системы «Мультиварка», которые можно измерять с помощью номинальной шкалы:

- Наименование («RMC-M25», «PMC 0578AD», «MPC-6032», «RMC-M90»);
 - Компания-изготовитель («Redmond», «Polaris», «Midea»);
 - Управление («Кнопочное», «Сенсорное»);
 - Тип покрытия («Тефлоновое», «Керамическое»).

Описания свойств мультиварок приведен в таблице 1.1

Таблица 1.1 – Измерение свойств мультиварок с помощью номинальной шкалы

Объект	Наименование	Компания- изготовитель	Управление	Тип покрытия
o1	RMC-M25	Redmond	Кнопочное	Тефлоновое
o2	PMC 0578AD	Polaris	Кнопочное	Тефлоновое
о3	MPC-6032	Midea	Кнопочное	Тефлоновое
o4	RMC-M90	Redmond	Сенсорное	Керамическое

По каждому измеряемому свойству с помощью символа Кронекера были

записаны результаты проверки совпадения свойства для каждой пары объектов. Сравнение свойств мультиварок приведено в таблице 1.2.

Таблица 1.2 – Сравнение совпадения свойств мультиварок

	Символ Кронекера					
Свойство	δ_{12}	δ_{13}	δ_{14}	δ_{23}	δ_{24}	δ_{34}
Наименование	0	0	0	0	0	0
Компания-						
изготовитель	0	0	1	0	0	0
Тип покрытия	1	1	0	1	0	0
Управление	1	1	0	1	0	0

По каждому измеряемому свойству были определены частоты для каждого класса эквивалентности и выявлена мода. Результаты представлены в таблице 1.3.

Таблица 1.3 – Вычисление частот и медианы

Свойство	Класс эквивалентости	Частота	Мода
	RMC-M25	1/4	
Наименование	PMC 0578AD	1/4	
Паименование	MPC-6032	1/4	_
	RMC-M90	1/4	
T/	Redmond	2/4	
Компания - изготовитель	Polaris	1/4	Redmond
изготовитель	Midea	1/4	
V	Кнопочное	3/4	1/
Управление	Сенсорное	1/4	Кнопочное
T	Тефлоновое	3/4	Taller
Тип покрытия	Керамическое	1/4	Тефлоновое

1.2.2 Измерение свойств с помощью ранговой шкалы

Было выбрано два свойства системы, которые можно измерять с помощью ранговой шкалы. По каждому измеряемому i-му свойству для нескольких конкретных систем o_i были определены ранги r_{ii} и выявлена медиана. Ранжирование

мультиварок приведено в таблице 1.4.

Таблица 1.4 – Измерение свойств мультиварок с помощью ранговой шкалы

	Ранги				Медиана
Свойство	o1	o2	о3	o4	
Универсальность	2	4	1	3	01,04
Надёжность	3	2	1	4	01,02

1.2.3 Измерение свойств с помощью шкал интервалов

Было выбрано 2 свойства системы, которые можно измерять с помощью шкалы интервалов. Для каждого свойства указаны единицы измерения и по каждому измеряемому свойству перечислены шкальные значения для нескольких конкретных объектов. Измерение свойств мультиварок с помощью шкал приведено в таблице 1.5.

Таблица 1.5 – Измерение свойств мультиварок с помощью шкал интервалов

Свойства	o1	o2	03	o4
Диапазон температур нагревания, Со	125	125	120	135

По каждому измеряемому свойству для различных пар объектов было определено «на сколько» один объект лучше другого. Результаты по каждому свойству представлены в виде таблицы 1.6.

Таблица 1.6 — Сравнение мультиварок по свойству «Диапазон температур нагревания, C^{o} »

Объект	o1	o2	03	o4
o1	0	0	5	-
02	0	0	5	-
03	-	-	0	-
o4	10	10	15	0

1.2.4 Измерение свойств с помощью шкал отношений

Было выбрано 3 свойства системы, которые можно измерять с помощью шкалы отношений. Выбранные свойства имеют разную направленность изменения значений с точки зрения оптимальности. Для каждого свойства указаны единицы измерения. По каждому измеряемому свойству перечислены шкальные значения для нескольких конкретных объектов. Измерение свойств мультиварок с помощью шкал отношений приведено в таблице 1.7

Таблица 1.7 – Измерение свойств радиоприемников с помощью шкал отношений

Свойство	o1	o2	о3	o4
Мощность, ВТ	860	750	860	860
Цена, руб	46971	41900	31173	91990
Вес, кг	3,4	3,8	3,7	3,5

По каждому измеряемому свойству для различных пар объектов определено «во сколько» один объект лучше другого. Результаты по каждому свойству представлены в виде таблицах 1.8-1.10.

Таблица 1.8 – Сравнение мультиварок по свойству «Объём чаши, л.»

Объекты	o1	o2	03	o4
o1	1,00	1,15	1,00	1,00
o2	-	1,00	-	-
о3	1,00	1,15	1,00	1,00
o4	1,00	1,15	1,00	1,00

Таблица 1.9 – Сравнение мультиварок по свойству «Цена, руб»

Объекты	o1	o2	03	o4
o1	1,00	-	-	1,96
o2	1,12	1,00	-	2,20
03	1,50	1,34	1,00	2,95
04	-	-	-	1,00

Таблица 1.10 – Сравнение мультиварок по свойству «Вес, кг»

Объекты	o1	o2	03	o4
o1	1,00	1,12	1,09	1,03
o2	-	1,00	-	-
03	-	1,03	1,00	-
o4	-	1,09	1,06	1,00

1.2.5 Измерение свойств с помощью абсолютной шкалы

Было выбрано 1 свойство системы, которое можно измерять с помощью абсолютной шкалы. Для этого свойства указана единица измерения. По этому измеряемому свойству перечислены шкальные значения для нескольких конкретных объектов. Результаты представлены в виде таблице 1.11.

Таблица 1.11 – Измерение свойств мультиварок с помощью абсолютной шкалы

Свойства	o1	02	о3	o4
Количество программ, шт	16	56	12	17

1.3 Интеграция измерений

1.3.1 Выбор частных критериев, определение их важности, измерение объектов по критериям

Было выбрано три частных критерия для сравнения объектов, измеряемых по шкалам интервалов, отношений и абсолютной шкале. Приведены конкретные значения по каждому критерию. По каждому частному критерию определен диапазон значений (минимальное и максимальное значения). Диапазон определён не по множеству оцениваемых объектов, а задан максимально и минимально возможными значениями по всему множеству подобных объектов. Оценена важность каждого критерия по 10-балльной шкале. Результаты представлены в виде таблицы 1.12.

Таблица 1.12 – Измерение объектов по множеству частных критериев

Критерий	Важн	Абсолю				Максимал	Минимальн
	ость	тные				ьное	ое значение
		значени				значение	
		Я					
		o1	o2	03	o4		
Диапазон	6	125	125	120	135	200	100
температур							
нагревания, °С							
Цена, руб	8	46971	4190	311	9199	200000	3000
			0	73	0		
Количество	4	16	56	12	17	90	1
программ, шт							

1.3.2 Нормирование оценок важности и значений критериев

Были определены весовые коэффициенты критериев путем нормирования. Для этого определена сумма оценок важности критериев (в баллах) и поделена каждая оценка на эту сумму. Таким образом, сумма весовых коэффициентов стала равна 1:

$$\sum_{1}^{m} w_i = 1$$

Далее были нормированы значения критериев. В случае, когда чем больше значение критерия, тем оно должно оцениваться выше, была использована формула:

$$q_i(x_j) = \frac{q_i^{ab}(x_j) - q_i^{min}}{q_i^{max} - q_i^{min}}$$

где q_i^{min} , q_i^{max} — соответственно минимальное и максимальное значения диапазона значений і-го критерия.

В случае, когда чем меньше значение критерия, тем оно должно оцениваться выше, была использована формула:

$$q_i(x_j) = \frac{q_i^{max} - q_i^{ab}(x_j)}{q_i^{max} - q_i^{min}}$$

Результаты представлены в таблице 1.13.

Таблица 1.13 – Результаты нормирования объектов

T/	Весовой	Нормированные значения				
Критерий	коэффициент	o1	o2	03	o4	
Диапазон температур нагревания, °C	0,33	0,25	0,25	0,2	0,35	
Цена, руб	0,44	0,78	0,80	0,86	0,55	
Количество программ, шт	0,22	0,17	0,62	0,12	0,18	

1.3.3 Определение интегральной оценки.

Были вычислены интегральные оценки объектов методом аддитивной свертки, используя формулу средневзвешенного арифметического:

$$\tilde{q}(x_j) = \sum_{i=1}^m v_i q_i(x_j), j = \overline{1,n}$$

Далее, вычислены интегральные оценки объектов методом мультипликативной свертки, используя формулу средневзвешенного геометрического:

$$\tilde{q}(x_j) = \prod_{i=1}^m v_i q_i (x_j)^{v_j}, j = \overline{1,n}$$

И наконец, вычислены интегральные оценки объектов методом идеальной точки, используя формулу взвешенной суммы расстояний от идеальной точки:

$$\tilde{q}(x_j) = \sqrt{\sum_{i=1}^{m} v_i (q_i(x_0) - q_i(x_j))^2}, j = \overline{1, n}$$

Идеальным значением по каждому критерию является наилучшее значение. Учитывая, что все оценки нормированы, т.е. находятся в интервале [0, 1], наилучшим значением можно считать 1: $q_i(x_0) = 1$.

Результаты оценки объектов различными методами внесены в таблицу 1.14. Для каждого метода определён объект с наилучшей интегральной оценкой.

Таблица 1.14 – Результаты оценки объектов по множеству критериев

Метод интеграции	Интегр	Наилучший			
	o1	o2	03	o4	объект
Аддитивная свертка	0,47	0,58	0,48	0,40	02
Мультипликативная свертка	0,38	0,51	0,34	0,37	02
Метод идеальной точки	0,60	0,49	0,63	0,62	o2

Заключение

В ходе выполнения практической работы были получены навыки в измерении свойств системы с помощью различных типов шкал, а также в интеграции измерений. В результате были измерены свойства с помощью разных типов шкал и осуществлены интеграции измерений по нескольким свойствам.

Использованные источники

- 1. Основы теории систем и системного анализа: Учебное пособие /Силич М. П., Силич В. А. 2013. 342 с. [Электронный ресурс] Режим доступа: https://edu.tusur.ru/publications/5452, дата обращения: 04.10.2020.
- 2. Силич, М. П. Теория систем и системный анализ: Методические указания к выполнению практических работ для студентов направления подготовки 231000.62 «Программная инженерия» (бакалавриат) часть 1 [Электронный ресурс] / М. П. Силич. Томск: ТУСУР, 2013. 32 с. Режим доступа: https://edu.tusur.ru/publications/5450, дата обращения: 04.10.2020.