1 Auswertung

Zur Auswertung der Daten wurde Peak-o-Mat verwendet. Im Programm haben wir den Nullpunkt angepasst und den Sattel entfernt(< 3 u/e). Da der Massenfilter eine endliche Länge besitzt, werden kleine m/q in diesem Rauschen dargestellt. Bei kleinen Massen ist die Schwingung innerhalb des Quadrupolmassenfilters klein und damit die Spannungen klein. Der Massenfilter schafft es nicht für endlich viele Schwingungen unerwünschte Massen heraus zu filtern. Peak-o-Mat lieferte dann die Maxima und führte zu den Tabellen 4,5 und 6. Die Partialdrücke würde aus dem Verhältnis der Peaks zueinander errechnet, dabei auftretende Prozente wurden gerundet. Der Ausgangsdruck war immer 1.0 *10⁻⁵. Dies änderte sich nur bei Argon auf 9,6*10⁻⁶. Daher ist der Fehler maximal 4 % der Partialdrücke. Bei Ethanol und Acethon hat der Druck sich nicht verändert. Wir untersuchten zuerst Argon, dann Acethon und zum Schluss Ethanol. Diese Reihenfolge könnte bei der nachfolgenden Messung, durch nicht 100 % entlüften, einfluss haben

Figure 1: Quadrupolmessung von Argon

Figure 2: Quadrupolmessung von Acethon

Figure 3: Quadrupolmessung von Ethanol

2 Diskussion

Argon kann nicht innerhalb des Versuchsaufbau "zerfallen", wobei hingegen Acethon und Ethanol in Untergruppen zerfallen kann z.B. in Methan Acethylen Athylen, Ammoniak, Methanol, Prophan, Prophen... dazu kommt noch Luftbestandteile wie Kohlenmonooxid, Stickstoff, Sauerstoff und Neon. Diese doch lange Liste führ zu einer Auswahl an Ionen die wir detektiert haben. Der Fehler der Partialdrücke ist auf 4% geschätzt da nur bei einer Messung der Druck abgefallen ist.

m/q	p [10^-7]mbar	Ionen
18	1,41	Wasser
20	18,8	Argon
28	1,5	Stickstoff / Kohlenmonooxid
40	72,2	Argon /Kohlenmonooxid

Figure 4: Quadrupolmessung von Argon, mögliche Ionen

m/q	p[10^-7]mbar	Ionen
12	1,8	Methan, Acetlyen, Kohlenmonooxid, Athylen
13	1,8	Methan, Ammoniak, Acethylen, Athylen
14	5,3	Methan, Ammoniak, Acethylen, Athylen
15	20,8	Methan, Ammoniak, Acethylen, Athylen, Acethon
16	6,2	Methan, Ammoniak, Wasser, Athylen, Kohlenstoffmonooxid
18	5,3	Ammoniak, Wasser, Methanol
20	1,3	Wasser, Neon, Methanol
21	0,2	Neon
26	5,5	Acethylen, Athylen, Äthan
27	3,3	Acethylen, Athylen, Äthan
28	20,5	Acethylen, Athylen, Äthan, Kohlenstoffmonooxid, Stickstoff
29	1,5	Stickstoff, Kohlenstoffmonooxid, Athylen, Äthan
40	1,1	Argon, Prophan, Prophan
43	1,9	Prophan, Äthanol, Butan, Acethon

Figure 5: Quadrupolmessung von Acethon, mögliche Ionen

m/q	p[10^-7]mbar	Ionen	
12	2	Methan, Acetlyen, Kohlenmonooxid, Athylen	
13	1,2	Methan, Ammoniak, Acethylen, Athylen	
14	2,9	Methan, Ammoniak, Acethylen, Athylen	
15	8,5	Methan, Ammoniak, Acethylen, Athylen, Acethon	
16	5,2	Methan, Ammoniak, Wasser, Athylen, Kohlenstoffmonooxid	
17	2,2	Methan, Ammoniak, Wasser	
18	8,5	Ammoniak, Wasser, Methanol	
25	1,7	Acethylen, Athylen, Äthan	
26	9,5	Acethylen, Athylen, Äthan	
27	7,9	Acethylen, Athylen, Äthan	
28	23,8	Acethylen, Athylen, Äthan, Kohlenstoffmonooxid, Stickstof	
29	8	Stickstoff, Kohlenstoffmonooxid, Athylen, Äthan	
30	1,2	Kohlenstoffmonooxid, Äthan, Stickoxid	
31	19,8	Stickoxid, Methanol	
42	1,4	Prophen, Prophan	
43	4,6	Prophan, Äthanol, Butan, Acethon	
46	1,4	Kohlenstoffmonooxid, Äthan, Stickstoffoxid	

Figure 6: Quadrupolmessung von Ethanol, mögliche Ionen