

Neural Networks for Inverse Kinematics Problems in Robotics

Franziska Schwaiger and Thomas Brunner Technische Universität München 10 March 2021

Motivation - Inverse Kinematics

Determining the joint variables corresponding to an end-effector position and orientation

Complex problem: nonlinear, closed-form solution only for few cases

Problem can be ill-posed: single, multiple, infinite or no solutions

Motivation - Inverse Kinematics

Classical approaches:

analytical solution \rightarrow not always possible numerical solution \rightarrow expensive, limited to few solutions

Can we use neural networks to learn inverse kinematics?

Methods - Dataset

Joint orientations from a normal distribution: $\theta_i \sim \mathcal{N}(\mu = 0, \sigma = 0.2)$

10⁶ samples of joint configurations and TCP coordinates

$$x_{\text{TCP}} = \sum_{i=1}^{N} l_i \cos \left(\sum_{j=1}^{i} \theta_j \right)$$

$$y_{\text{TCP}} = \sum_{i=1}^{N} l_i \sin \left(\sum_{j=1}^{i} \theta_j \right)$$

Methods - Hyperparameter Search

Compare performance of networks in fair setting

Hyperparameter search using Ray Tune and Scikit Optimize

Train 100 samples using subset of original dataset (10⁴ samples)

TABLE I
RANGES OF INN HYPERPARAMETERS USED DURING HYPERPARAMETER SEARCH.

	Learning rate	# Subnet layers	# Coupling layers	# Neurons per layer	Weight decay
Min	0.0001	3	6	100	0.00001
Max	0.005	7	10	300	0.001

TABLE II
RANGES OF CVAE HYPERPARAMETERS USED DURING HYPERPARAMETER SEARCH.

	Learning rate	# Layers	# Neurons per layer	Weight decay
Min	0.0001	3	200	0.00001
Max	0.01	15	500	0.001

Recap: Model Architectures

Conditional Variational Autoencoder (cVAE)

Invertible Neural Network (INN)

Recap: Evaluation

Average mismatch between true posterior and predicted posterior

$$e_{posterior} = MMD(\tilde{p}(x|y_{gt}), p_{gt}(x|y_{gt}))$$

2. Average re-simulation error

$$e_{resim} = E_{x \sim \tilde{p}(x|y_{qt})}(||f(x) - y_{gt}||_2^2)$$

Results

Average mismatch between true posterior and predicted posterior

Results
Average re-simulation error

Results

Fig. 4. Area of the convex hull of the 0.97 percentile of the re-simulated end-effector coordinates with the ground truth end-effector position at (x, y) = [5.00, 0.53] and 1000 samples. Number of DoF: 10.

Fig. 6. Arm configuration of a planar manipulator with 10 revolute joints and end-effector position at (x, y) = [5.00, 0.53]. 1000 samples are drawn from each model's predicted posterior $\tilde{p}(x|y_{gt})$, one random sample configuration is highlighted. $e_{posterior} = 0.057$ for the cVAE and $e_{posterior} = 0.025$ for the INN.

Conclusion

- Evaluation of INN and cVAE through simulation experiments in the context of inverse kinematics
- Finding best set of hyperparameters via Bayesian Optimization
- cVAE performed better on average re-simulation error
- INN performed better in estimating the posterior distribution of the joint angles
- INN: additional unsupervised backward training to match performance of cVAE

References

[1] Lynton Ardizzone, Jakob Kruse, Sebastian J. Wirkert, Daniel Rahner, Eric W. Pellegrini, Ralf S. Klessen, Lena Maier-Hein, Carsten Rother, and Ullrich Köthe. Analyzing inverse problems with invertible neural networks. CoRR, abs/1808.04730, 2018

[2] Kihyuk Sohn, Xinchen Yan, and Honglak Lee. 2015. Learning structured output representation using deep conditional generative models. In Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2 (NIPS'15). MIT Press, Cambridge, MA, USA, 3483–3491.

[3] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. 2010. Robotics: Modelling, Planning and Control. Springer Publishing Company, Incorporated.

[4] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. CoRR, abs/1605.08803, 2016.

[5] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander J. Smola. A kernel method for the two-sample problem. CoRR, abs/0805.2368, 2008.

[6] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. CoRR, abs/1411.1784, 2014.

Questions

Dataset with degenerated configurations (std=1.0)

Results for HPO

TABLE III
HYPERPARAMETERS FOR CVAE TRAINED ON A PLANAR ROBOT WITH REVOLUTE JOINTS

DoF	Learning rate	# Layers	# Neurons per layer	Weight decay	# Trainable parameters
4	0.009	3	230	0.0002	217128
6	0.0041	3	200	0.00001	166814
8	0.0001	3	500	0.00001	1022020
10	0.00063	5	400	0.00029	1303226

TABLE IV
HYPERPARAMETERS FOR INN TRAINED ON A PLANAR ROBOT WITH REVOLUTE JOINTS

DoF	Learning rate	# Subnet layers	# Coupling layers	# Neurons per layer	Weight decay	# Trainable parameters
4	0.0009	5	9	100	0.00008	1108872
6	0.001	5	7	180	0.0003	2772084
8	0.0014	4	9	115	0.0004	997884
10	0.002	5	7	170	0.0005	2494380

INN: Affine Coupling Layers

$$\mathbf{v}_1 = \mathbf{u}_1 \odot \exp(s_2(\mathbf{u}_2)) + t_2(\mathbf{u}_2)$$

$$\mathbf{v}_2 = \mathbf{u}_2 \odot \exp(s_1(\mathbf{v}_1)) + t_1(\mathbf{v}_1),$$

$$\mathbf{u}_2 = (\mathbf{v}_2 - t_1(\mathbf{v}_1)) \odot \exp(-s_1(\mathbf{v}_1))$$

$$\mathbf{u}_1 = (\mathbf{v}_1 - t_2(\mathbf{u}_2)) \odot \exp(-s_2(\mathbf{u}_2)).$$

Additional example

Fig. 4. Area of the convex hull of the 97th percentile of the re-simulated end-effector coordinates with the ground truth end-effector position at (x, y) = [3.42, 0.68] and 1000 samples. Number of DoF: 6.

Fig. 6. Arm configuration of a planar manipulator with 6 revolute joints and end-effector position at (x,y) = [3.42,0.68]. 1000 samples are drawn from each model's predicted posterior $\tilde{p}(x|y_{gt})$, one random sample configuration is highlighted. $e_{posterior} = 0.012$ for the cVAE and $e_{posterior} = 0.0068$ for the INN.

Loss for cVAE:

$$L_y = -KL[q_{w_{enc}}(z|x,y)||p(z) \sim N(0,1)]$$

$$L_x = E_{q_{w_{enc}}(z|x,y)}[\log(p_{w_{dec}}(x|z,y))]$$

Loss for INN:

$$L_{y} = MSE(y_{i}, f_{y}(x_{i}))$$

$$[y, z] = [f_{y}(x), f_{z}(x)]$$

$$L_{x} = MSE(x_{i}, [f_{y}^{-1}(y_{i}), f_{z}^{-1}(f_{z}(x_{i}))])$$

$$L_{p(z)} = MMD(p(f_{z}(x_{i})), p(z) \sim N(0, 1))$$

$$L_{p(x)} = MMD(p([f_{y}^{-1}(y_{i}), f_{z}^{-1}(p(z))]), p(x))$$