Inhaltsverzeichnis

1	Einle	eitung	1
	1.1	Motivation	1
	1.2	Ziel der Arbeit	1
2	The	oretische Grundlagen	3
	2.1	Machine Learning	3
	2.2	Klassifikation	5
	2.3	Decision Tree Klassifikator	6
		2.3.1 Generelle Funktionsweise und Eigenschaften	6
		2.3.2 Erstellung eines Decision Trees	8
		2.3.3 Grundlegende Parameter	11
		2.3.4 Optimierung von Decision Trees	12
	2.4	Ensemble Methoden	12
		2.4.1 Die Ensemble-Idee	12
		2.4.2 Bagging und Boosting	13
		2.4.3 Entscheidungsfindung im Ensemble	13
	2.5	Random Forest Klassifikator	14
		2.5.1 Generelle Funktionsweise und Eigenschaften	14
		2.5.2 Erstellung eines Random Forests	15
		2.5.3 Grundlegende (Hyper-)Parameter	16
	2.6	Erfolgsmessung von Klassifikatoren	17
	2.7	Underfitting, Overfitting und der Curse of Dimensionality	19
	2.8	Besonderheiten bei der Klassifikation von Zeitreihen	20
	2.9	Random Walk Theorie und Markteffizienzhypothese	21
	2.10	Relevante Literatur	22
3	Meth	hodik	25
	3.1	Vorgehen	25
	3.2	Tool-Stack und Bibliotheken	29
	3.3	Datengrundlage	29
Lit	eratu	ırverzeichnis	31

1 Einleitung

1.1 Motivation

1.2 Ziel der Arbeit

Random Forests (Breiman, 2001) gehören zu den mächtigsten Machine Learning Algorithmen (Gron, 2017). In verschiedenen Domänen wurde ihre praktische Anwendbarkeit unter Beweis gestellt. Einige Beispiele sind Anwendungen in der Chemoinformatik (Svetnik u. a., 2003), Ökologie (Prasad u. a. 2006; Cutler u. a. 2007), 3D-Objekterkennung (Shotton u. a., 2011) und Bioinformatik (Diaz-Uriarte u. Alvarez, 2006) sowie ein Data Science Hackathon zur Luftqualitätsvorhersage (http://www.kaggle.com/c/dsg-hackathon) (Tang u. a., 2018). Howard u. Bowles (2012) bezeichnen Random Forests als den erfolgreichsten Allzweck-Algorithmus der neueren Zeit.

Derzeit sind Random Forests noch nicht ausreichend für die Finanzdomäne erforscht. Insbesondere die Wahl von Hyperparametern – die häufig willkürlich oder über Heuristiken gesetzt werden – stellt eine vielversprechende Forschungsfrage da. Eine Gegenüberstellung der Anwendbarkeit von von Random Forests für verschiedene Fragen, wie der Stock Price Prediction oder dem Credit Scoring, hat noch nicht stattgefunden.

Diese Arbeit hat das Ziel, die Anwendung von Decision Trees und Random Forests in der Finanzdomäne kritisch zu evaluieren und, wo sinnvoll, mittels Hyperparametern zu optimieren.

Ziele (DT=Decision Tree, RF=Random Forest):

- Forschungsfrage: Können DT und RF Klassifikatoren sinnvoll (besser als Dummy Classifier oder besser als Markt Index Performance) in der Finanzdomäne eingesetzt werden?
- Unterfrage 1: Können DT und RF sinnvoll für Credit Scoring (Anwendung 1) und Aktienempfehlungen (Anwendung 2) eingesetzt werden?
- Unterfrage 2: Wie sollten die Hyperparameter jeweils für DT und RF pro Anwendungsfall gesetzt werden?
- Unterfrage 2.5: Kann Pruning in Anwendung 1 und Anwendung 2 zur Vermeidung von Overfitting des DT beitragen?
- Unterfrage 3: Wie unterscheiden sich DT und RF Algorithmen bzw. wann eignet sich welcher Klassifikator?
- Unterfrage 3.5: Ist Meta Random Forest sinnvoll? Soft Voting vs Hard Voting?

- Unterfrage 4: Lassen sich relevante Effekte aus der realen Welt (Christmas Effekt, Dividendenausschüttung, Jahresabschluss-Veröffentlichung, etc.) in den Modellen wiederfinden?
- Unterfrage 5: Sind die Ergebnisse mit der Markteffizienzhypothese vereinbar?
- Unterfrage 6: Welche Einschränkungen gibt es bei der Anwendung von DT und RF Klassifikatoren in der Finanzdomäne?

Einschränkungen: Diese Arbeit untersucht nur binäre Klassifikation (keine Regression) und vernachlässigt sämtliche Transaktionskosten (da diese variabel sind etc.)

2 Theoretische Grundlagen

2.1 Machine Learning

Machine Learning bedeutet, einen Computer so zu programmieren, dass ein bestimmtes Leistungskriterium anhand von Beispieldaten oder Erfahrungswerten aus der Vergangenheit optimiert wird (Alpaydın, 2008). Diese Programme führen für ein gegebenen Input nicht immer zum selben Ergebnis, sondern lernen – ähnlich wie der Mensch – anhand von Beispielen. Deshalb eignet sich Machine Learning für Probleme, für die der Mensch keine simplen Regeln verfassen und in einem Algorithmus automatisieren kann. Stattdessen löst der Mensch solche Probleme anhand von Erfahrungen, teilweise anhand von Intuition. Ein Beispiel ist die Diagnose von Krebszellen. Fachärzte durchlaufen eine jahrelange Ausbildung und analysieren eine Vielzahl von Beispielbildern, um eine Einschätzung über neue Zellen treffen zu können. Eine solche Diagnose kann nicht mit einem simplen Algorithmus automatisiert werden, da jedes Zellenbild einzigartig ist. Es ist nicht realistisch, in einem Algorithmus alle Eventualitäten programmatisch abzudecken. Machine Learning hingegen ermöglicht es, den menschlichen Lernprozess nachzubilden und somit komplexe Diagnosen zu erstellen. Vorteile gegenüber dem Menschen sind dabei die Objektivität, da der Computer keinen Emotionen unterliegt, und die Fähigkeit, große Mengen an Daten in einem Bruchteil der Zeit, die ein Mensch benötigen würde, zu vergleichen.

Machine Learning gliedert sich in die drei Bereiche des Supervised-, Unsupervised- und Reinforcement Learnings. Reinforcement Learning umfasst Modelle, die durch Feedback im Form von Belohnungen und Bestrafungen lernen (Russell u. Norvig, 2009). Beim Unsupervised Learning werden die Modelle mit Daten trainiert, die zuvor nicht mit einer Klasse betitelt wurden. Stattdessen werden Ähnlichkeiten unter den Datensätzen gesucht, um sie zum Beispiel in Cluster einzuteilen. Diese Arbeit beschäftigt sich ausschließlich mit dem dritten Bereich, dem Supervised Learning. Hier wird das Modell mit Datensätzen trainiert, die jeweils sowohl den Input als auch den gewünschten Output enthalten. Die Aufgabe des Modells ist es anschließend, für unbekannte Datensätze anhand des Inputs deren Output zu bestimmen.

Technisch gesehen lernt ein Machine Learning Programm, indem es eine Funktion

$$f(X|\Theta) = \hat{y}, \quad f \in F \tag{2.1}$$

aus dem Funktionenraum F bildet und durch Training mit Beispieldaten die Parameter Θ optimiert. Der Funktionenraum F umfasst alle Funktionen, die ein Modell erlernen kann, und ist vom gewählten Lernalgorithmus abhängig. Die Beispieldaten sind eine Stichprobe χ mit n Datensätzen in der Form

$$\chi = \{ (X_1, y_1), ..., (X_n, y_n) \}. \tag{2.2}$$

Dabei steht X für einen *m*-dimensionalen Input-Vektor der Form

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}, \tag{2.3}$$

der als Informationsgrundlage zur Bestimmung von \hat{y} dient. Die Variable \hat{y} bezeichnet das Ergebnis der Funktion für einen gegebenen Input-Vektor X. Die Optimierung von $f(X|\Theta)$ bezieht sich hier auf die Suche jener Parameter Θ , welche die genaueste Näherung für die tatsächliche Funktion $f^*(X)$ und somit auch für die tatsächliche Klasse y erzielen (Alpaydın, 2008). Ist die Variable \hat{y} numerisch, so spricht man von Regression. Ein Beispiel für eine Regression ist die Vorhersage der Temperatur in Grad Celsius. Dabei enthält die Ergebnismenge der Funktion unendlich viele Elemente, zum Beispiel die reellen Zahlen. Ist die Variable \hat{y} kategorisch, so spricht man von Klassifikation. Im Spezialfall einer binären Klassifikation gilt zudem

$$\hat{y} = \begin{cases} 1, & \text{wenn } X \text{ eine positive Instanz ist} \\ 0, & \text{wenn } X \text{ eine negative Instanz ist.} \end{cases}$$
 (2.4)

Welche Instanzen positiv und welche negativ sind, ist vom Anwender zu definieren. Ein Anwendungsbeispiel für eine binäre Klassifikation ist die Bestimmung, ob eine gegebene Pflanze für den Menschen giftig ist oder nicht. Bei der Klassifikation ist die Menge der möglichen Werte von \hat{y} endlich. In binären Fall kann \hat{y} , wie in Gleichung 2.4 gezeigt, genau zwei Werte annehmen.

Nach dem Training trifft das Modell Aussagen über Instanzen, die außerhalb von χ liegen. Die Generalisierungsfähigkeit des Modells mit Parametern Θ wird anhand der Abweichungen zwischen \hat{y} und y für alle i Instanzen eines Validierungs-Datensets χ_{val} mittels einer Fehlerfunktion

$$E(\Theta|\chi_{val}) = \sum_{i} Diff(\hat{y}, y)$$
 (2.5)

berechnet. Für die Diff-Funktion gibt es zahlreiche Methoden, deren Eignung vom konkreten Anwendungsfall abhängt (Alpaydın, 2008). Die in dieser Arbeit verwendeten Methoden sind in Kapitel 3, "Methodik", erläutert. Das finale Modell verwendet anschließend jene Funktion, die die geringsten Abweichungen auf χ_{val} erreicht, also die beste Generalisierung aufweist. Um die erwartete Fehlerrate des finalen Modells zu bestimmen, werden die Abweichungen auf einem Test-Datenset χ_{test} – wie in Abschnitt 2.6 – herangezogen. Die Aufgabe von Machine Learning ist es also, jene Parameter Θ_{opt} zu finden, welche die Fehlerfunktion minimieren, also

$$\Theta_{opt} = \underset{\Theta}{\operatorname{argmin}} E(\Theta|\chi). \tag{2.6}$$

An dieser Stelle sei auf einen grundlegenden Trade-Off im Machine Learning hingewiesen: die Komplexität der Funktion, bedingt durch die Mächtigkeit des Funktionenraumes F, die Menge an Daten in χ und der Generalisierungsfehler sind voneinander abhängig (Alpaydın, 2008). Steigende Komplexität führt bei gleichbleibender Datenbasis zu einem höheren Generalisierungsfehler, kann aber bei größerer Datenbasis zu einem niedrigeren

Generalisierungsfehler führen. Wenn die Datenmenge ceteris paribus steigt, nimmt der Generalisierungsfehler ab, und vice versa (Alpaydın, 2008).

Der Schwerpunkt dieser Arbeit liegt auf der Klassifikation. Deshalb wird diese in der folgenden Sektion genauer betrachtet.

2.2 Klassifikation

Klassifikation bezeichnet das Zuweisen einer Klasse \hat{y} zu einem gegebenen Input-Vektor X. Ein Beispiel ist die Bestimmung der Kreditwürdigkeit eines Bankkunden, bekannt als das Credit Scoring Problem (Abdou u. Pointon, 2011). Die Bank hat bei der Vergabe eines Kredites das Ziel, das Ausfallrisiko zu minimieren und den erwarteten Gewinn zu maximieren. Dazu werden von Kredit-Antragsstellern Datenpunkte wie Vermögen, Gehalt, Kredithistorie und Alter erhoben. Die gesammelten Daten dienen anschließend als Trainingsdaten für einen Machine Learning Algorithmus. Dieser erstellt ein Modell, das für die historischen Daten optimiert ist. Dieses Modell klassifiziert dann die Kreditwürdigkeit der Antragssteller. Dadurch wird die Bank bei der Kreditentscheidung unterstützt. In manchen Fällen wird die Entscheidung anhand von Schwellenwerten komplett automatisiert (Abdou u. Pointon, 2011).

Das vorangegangene Beispiel beinhaltet typische Elemente einer Klassifikation: Instanzen, Features und Klassen. Eine Instanz ist im Beispiel ein Kunde. Jede Instanz wird durch dieselben Attribute – aber womöglich mit unterschiedlichen Ausprägungen – beschrieben. Diese Attribute werden als Features, Φ , bezeichnet. Die Ausprägungen der Features für eine gegebene Instanz dienen als Input-Vektor X für die Klassifizierung, wie in Gleichung 2.1 dargestellt. Aufgrund der grundlegenden Bedeutung der Features stellen deren Berechnung (Feature Extraction) und Auswahl (Feature Selection) zentrale Schritte im Machine Learning dar, den das Kapitel 3 vertieft. Die möglichen kategorischen Werte der Ergebnis-Variable y, genannt Klassen, könnten im Beispielfall "Kunde mit hohem Risiko" und "Kunde mit geringem Risikoßein. Das Ergebnis einer Klassifikation ist die Klasse der betrachteten Instanz, im Beispiel die Kreditwürdigkeit eines Kunden.

Ein simpler Klassifikator könnte unter anderem anhand von folgender Regel handeln:

$$IF(Salary > 100.000 \land Credit Amount < 200.000), THEN Class = "Low Risk".$$
 (2.7)

Basierend auf dem Gehalt des Kunden und der Kreditsumme, schätzt das Modell das Risiko der Kreditvergabe ein. In der Realität reichen diese zwei Kriterien allerdings häufig nicht aus, um eine fundierte Entscheidung zu treffen. Bankangestellte prüfen ebenfalls die Kredithistorie, die Lebenssituation, den Arbeitsvertrag, den persönlichen Eindruck sowie weitere – möglicherweise auch die Persönlichkeit betreffende – Faktoren. Sofern diese Faktoren als Features in den Daten vorhanden sind, eignet sich der Klassifikator diese in der Trainingsphase an und ergänzt sie in das Entscheidungsmodell. Bis zu einem gewissen Punkt erhöht das Hinzufügen von Features und Regeln den Erfolg des Modells, wie in Abschnitt 2.7 dargestellt, bevor die zunehmende Komplexität die Generalisierungsfähigkeit vermindert.

Diese Bachelorarbeit beschränkt sich auf binäre Klassifikatoren, also Klassifikatoren mit genau zwei Klassen. Konkret werden Decision Tree und Random Forest Klassifikatoren sowie einige Abwandlungen dergleichen untersucht. Es folgen nun die theoretischen Grundlagen der Erstellung, Anwendung und Erfolgsmessung dieser Modelle.

2.3 Decision Tree Klassifikator

2.3.1 Generelle Funktionsweise und Eigenschaften

Die Induktion von Decision Trees (Quinlan, 1986) gehört zu den simpelsten aber erfolgreichsten Machine Learning Algorithmen (Russell u. Norvig, 2009). Gupta u. a. (2017) nennen unter anderem die medizinische Diagnostik, intelligente Fahrzeuge, das Credit Scoring (siehe Abschnitt 2.2) und die industrielle Qualitätskontrolle als Anwendungsbereiche. Außerdem bilden Decision Trees die Grundlage für das später behandelte Random Forest Ensemble. Ein Decision Tree funktioniert nach dem Teile-und-Herrsche Prinzip. Die Trainings-Stichprobe $\chi_{training}$ wird nach einem festgelegten Kriterium in Teilmengen geteilt. Die entstandenen Teilmengen wiederum werden nach der gleichen Prozedur aufgeteilt. Diese Rekursion findet so lange statt, bis ein definiertes Endkriterium erfüllt ist und der Decision Tree zur Klassifikation bereit ist. Nachfolgend wird zuerst der Aufbau eines Decision Trees erklärt, sowie anschließend dessen Erstellung und Optimierung.

Anknüpfend an das das Beispiel der Kreditvergabe zeigt Abbildung 2.1 einen möglichen Decision Tree für diesen Anwendungsfall.

Ein Decision Tree besteht aus der Wurzel, internen Knoten, Ästen und externen Knoten, genannt Blätter. Die Wurzel ist der einzige interne Knoten, der keinen Vorgänger hat. Ein interner Knoten ist ein Knoten, der Nachfolger hat. Interne Knoten testen jeweils ein bestimmtes Feature Φ der betrachteten Instanz X auf dessen Wert. Äste sind die Verbindungen zwischen Knoten. Jeder Ast bildet eine Wertemenge ab, die im vorgelagerten internen Knoten festgelegt wurde. Ein Blatt ist ein Knoten ohne Nachfolger. Blätter repräsentieren, im Fall der Klassifikation, die Klassen (Quinlan, 1986). In dieser Arbeit werden binäre Decision Trees betrachtet, die genau zwei Klassen kennen. Auch finden ausschließlich univariate Bäume Anwendung, das heißt interne Knoten testen jeweils nur auf ein Feature, und nicht auf mehrere.

Die Klassifikation einer Instanz beginnt in der Wurzel des Decision Trees. Dort wird die Instanz auf ein Feature getestet und, je nach Wert dieses Features, entweder an den linken oder an den rechten Nachfolger der Wurzel weitergeleitet. Diese Prüfung mit Weiterleitung findet solange statt, bis die Instanz an einem Blatt angekommen ist. Dort wird der Instanz die Klasse des Blattes zugewiesen, wodurch diese Instanz klassifiziert ist (Russell u. Norvig, 2009). Der Graph aller Knoten, die die Instanz durchwandert hat, nennt sich Pfad.

Eine vorteilhafte Eigenschaft des Decision Trees ist die Best Case Laufzeit-Komplexität für die Klassifizierung von $\mathcal{O}(\log_2(n))$, die erreicht wird, wenn die Baumstruktur balanciert ist. Die Variable n steht für die Anzahl der Instanzen, mit denen der Decision Tree erstellt wurde, also $|\chi_{training}|$. Im Worst Case liegt die Komplexität bei $\mathcal{O}(n)$. Das ist der Fall, wenn für jedes ϕ_{opt} an jedem internen Knoten die Instanzen $X \in \chi_{training}$ so aufgeteilt werden, dass eine einzige Instanz als Blatt deklariert wird und die restlichen n-1 Instanzen in einen weiteren internen Knoten einfließen. Dort wiederholt sich der Vorgang rekursiv solange, bis

Abbildung 2.1 Beispielhafter Decision Tree für den Anwendungsfall der Kreditvergabe

alle Instanzen einem Blatt zugewiesen wurden und der Decision Tree fertig erstellt ist.

Ein weiterer Vorteil von Decision Trees ist, dass sie eine Menge von geordneten, simplen Regeln darstellen und somit für den Menschen leicht verständlich sind, wie die Regel aus dem Abschnitt 2.2 zeigt. So lässt sich zum Beispiel die Regel

$$IF(Capital > 75.000 \land Salary \leq 42.500 \land CreditAmount > 300.000),$$

 $THEN\ Class = "HighRisk"$ (2.8)

aus der Abbildung 2.1 herleiten. Diese Verständlichkeit macht den Decision Tree zu einem sogenannten White Box Modell, dessen Entscheidungen für den Menschen nachvollziehbar sind. Black Box Modelle, wie der Random Forest oder neuronale Netze, hingegen treffen schwer- oder nicht-rekonstruierbare Entscheidungen (Gron, 2017). Wegen dieser Vorteile ist der Decision Tree Klassifikator sehr beliebt und wird in manchen Fällen den exakteren aber komplexeren Methoden vorgezogen (Alpaydin, 2008).

Im Gegensatz zu einigen statistischen Modellen wie der linearen oder exponentiellen Regression, gibt es im Funktionenraum F von Decision Trees stets eine Funktion $f(X|\Theta)$, die

die Klassen aller Trainings-Instanzen korrekt abbildet. Ein Decision Tree kann prinzipiell beliebig viele Regeln definieren und somit jede Instanz aus $\chi_{training}$ korrekt abbilden. Diese Eigenschaft bringt allerdings einen Nachteil mit sich. Decision Trees sind für Overfitting (siehe Abschnitt 2.7) anfällig. Denn falls der Decision Tree, ohne Kontrolle der Baumstruktur, für jede Instanz einen eigenen Blattknoten anlegt, erzielt er zwar auf $\chi_{training}$ ein optimales Ergebnis, ist jedoch nicht zur Generalisierung und somit nicht zum Lernen fähig. Entsprechende Gegenmaßnahmen, um die Baumstruktur zu kontrollieren, finden sich im Unterabschnitt 2.3.2.

2.3.2 Erstellung eines Decision Trees

Die Induktion anhand des ID3-Algorithmus führt zu einem von mehreren äquivalenten Decision Trees. Es gibt mehr als einen Decision Tree, der die Regeln einer gegebenen Stichprobe $\chi_{training}$ kodiert (Quinlan, 1986). Nach Ockhams Rasiermesser ist es erstrebenswert, den Baum mit der geringsten Komplexität den anderen vorzuziehen (siehe Unterabschnitt 2.3.4). Diesen zu suchen ist jedoch ein NP-vollständiges Problem (Quinlan, 1986). Stattdessen bietet sich eine lokale Suche über Heuristiken an. Die nachfolgenden Lernalgorithmen sind vom Greedy-Typ: Von der Wurzel aus wählt der Algorithmus in jedem Schritt die in der aktuellen Position beste Aufteilung der Instanzen, um den Decision Tree iterativ zu erstellen (Alpaydın, 2008). Es folgt eine Beschreibung dieser Aufteilung sowie, anschließend, der Güte einer gegebenen Aufteilung.

Beginnend mit allen Trainingsinstanzen $\chi_{training}$ an der Wurzel, entsteht der Decision Tree durch rekursive Aufteilungen derselben an seinen internen Knoten. Eine Aufteilung bezeichnet hier das Bilden von Teilmengen der betrachteten Trainingsinstanzen an einem internen Knoten K_0 , um pro Teilmenge einen Ast sowie einen weiteren Knoten K_1 zu generieren. Eine Aufteilung erfolgt stets anhand des optimalen Features ϕ_{opt} . Es sind zwei Fälle zu unterscheiden: entweder ist das Feature diskret oder es ist numerisch. Ist das Feature diskret, wird für jede Ausprägung dieses Features ein Ast generiert. Ist das Feature numerisch, wird es diskretisiert. Dazu werden ein oder mehrere Schwellenwerte festgelegt, die entsprechende Teilmengen definieren. Weist ein Feature ϕ_i zum Beispiel die Werte $[v_{start}, v_{end}]$ auf, könnte der Algorithmus die Schwellenwerte $\{s_1, s_2\}$ so wählen, dass gilt

$$v_{start} < s_1 < s_2 < v_{end}. \tag{2.9}$$

Die entstehenden Teilmengen wären dann

$$V_{1} = \{v | v < s_{1}\},\$$

$$V_{2} = \{v | v \ge s_{1} \land v < s_{2}\} \text{ und}$$

$$V_{3} = \{v | v \ge s_{2}\}$$

$$(2.10)$$

und würden zu drei entsprechenden Ästen führen. Der Spezialfall von genau einem Schwellenwert, wodurch sich zwei Teilmengen ergeben, wird als binäre Aufteilung bezeichnet (Alpaydın, 2008). Binäre Aufteilungen führen graphisch gesehen zu Hyperrechtecken, die die Instanzen voneinander abgrenzen.

Die Anzahl der möglichen Aufteilungen ist gleich der Anzahl der vorhandenen Features, m. Die möglichen Aufteilungen unterscheiden sich hinsichtlich ihres Einflusses auf den finalen Decision Tree. Deshalb wird die Güte der möglichen Aufteilungen verglichen, um die sinnvollste Aufteilung zu identifizieren.

Als Kriterium für die Güte der Aufteilung verwendet der ID3-Algorithmus die aus ihr resultierende Änderung in Entropie, bezeichnet als Information Gain (IG) (Quinlan, 1986). Die Entropie H liegt per Definition zwischen Null und Eins und trifft eine Aussage über die Homogenität einer gegebenen Menge an n Instanzen. In der Informationstheorie bezeichnet die Entropie "die minimale Anzahl an Bits, die nötig sind, um die Klassifikationsgenauigkeit einer Instanz zu codieren"(Alpaydın, 2008). An jedem Knoten K wird die Entropie berechnet mit (Shannon, 1948)

$$H(K) = -\sum_{v} p_i \log_2(p_i),$$
 (2.11)

wobei w die möglichen Ausprägungen von Φ_{opt} bezeichnet. Die Variable p_i bezeichnet die relative Häufigkeit der Klasse y_i innerhalb der Instanzen, deren Ausprägung von Φ_{opt} gleich w ist. Besitzen alle Instanzen innerhalb der Ausprägungen w dieselbe Klasse, so ist die Entropie Null (da $\log_2(1)=0$) und der Knoten bekommt keine Nachfolger sondern ist ein Blatt. Besitzt jedoch mindestens eine Instanz eine andere Klasse, so ist die Entropie größer als Null. Dann sucht ID3 nach jener Aufteilung, welche den größten IG mit sich bringt. Angenommen die Aufteilung erfolgt anhand von Feature ϕ_j . Dann ergibt sich der IG zwischen einem Knoten K_d der Tiefe d und seinen potenziellen Nachfolgern $K_d|\phi_j$ der Tiefe d+1 aus

$$IG(K_d, K_d | \phi_i) = H(K_d) - H(K_d | \phi_i).$$
 (2.12)

Weiterhin angenommen, dass ϕ_j k Ausprägungen vorweist, dann folgt die Entropie der potenziellen Nachfolger der Tiefe d+1 aus

$$H(K_d|\phi_j) = \sum_k P(\phi_j = v_k) H(K_d|\phi_j = v_k),$$
 (2.13)

wobei $P(\phi_j = v_k)$ die Wahrscheinlichkeit bezeichnet, dass ϕ_j den Wert v_k annimmt, und $H(K_d|\phi_j = v_k)$ die erwartete Entropie an jenem Knoten in Tiefe d+1 bezeichnet, an welchen eben diese Instanzen mit der Ausprägung v_k gelangen. Diese erwartete Entropie ergibt sich wiederum aus der Gleichung 2.11.

Da ID3 den *IG* maximiert, minimiert er die erwartete Anzahl an Schritten, die von der Wurzel bis zum Blatt nötig sind, also die Tiefe des Baumes. Eine minimale Tiefe wiederum bedeutet eine geringere Komplexität und ist nach Ockhams Rasiermesser den Alternativen vorzuziehen. Außerdem beschleunigt eine geringe Tiefe die Klassifikation, da die Instanz weniger Knoten und somit weniger Tests durchlaufen muss. Da der beschriebene Greedy-Algorithmus nur lokal sucht, ist das Ergebnis allerdings nicht zwangsläufig das globale Optimum.

Die Instanzen an allen internen Knoten in jeder Tiefe d werden nach dem beschriebenen Procedere aufgeteilt und den entstandenen Nachfolger-Knoten in Tiefe d+1 zugewiesen. Dort ruft sich der Algorithmus rekursiv auf. Sobald alle Instanzen an einem Knoten dieselbe Klasse aufweisen, wird dieser Knoten ein Blatt und die Instanzen werden nicht weiter aufgeteilt. Dem Blatt wird die Mehrheitsklasse seiner Instanzen zugewiesen. Pseudocode zur Erstellung eines Decision Trees ist in Algorithmus ?? zu finden. Die Laufzeitkomplexität zur Erstellung des Modells liegt bei $\mathcal{O}(m \times n \log_2{(n)})$, da an jedem Knoten alle m Features

verglichen werden Gron (2017).

Russell u. Norvig (2009) weisen darauf hin, dass Features mit einem starken Verzweigungsfaktor nach dem ID3-Verfahren bevorzugt werden. Ein Beispiel dafür ist ein Zeitstempel, der für jede Instanz aus $\chi_{training}$ einzigartig ist. Dann würde eine Aufteilung anhand dieses Features stets zu einer erwarteten Entropie von Null führen, und würde somit stets den größtmöglichen IG erzielen. Der ID3-Algorithmus würde dieses Feature bevorzugen. Das würde zu starkem Overfitting führen, da das Modell nicht zur Generalisierung befähigt würde, also nicht lernt. Solchen stark-verzweigenden Features kann mit einer Bestrafung basierend auf dem Verzweigungsfaktor, zum Beispiel mithilfe des Gain Ratios, entgegengewirkt werden (Russell u. Norvig, 2009). Ein Nachfolger des ID3-Algorithmus namens C4.5 berücksichtigt den Gain Ratio bei der Erstellung des Decision Trees (Gupta u. a., 2017).

Tabelle 2.1 (Hyper-)Parameter eines Decision Trees und deren Bedeutung

Name	Тур	Beschreibung	Zweck (Beispiele)
Maximale Anzahl an betrachteten Features	Н	Beschränkung der Features, die pro Knoten verglichen werden	Beschleunigung des Trainings
Maximale Tiefe	Н	Begrenzung der Tiefe des Decision Trees	Reduktion von Overfitting
Aufteilungskriterium	Н	Kriterium zur Auswahl von Φ_{opt} für eine Aufteilung an Knoten K, z.B. IG oder Gini Index	Messung der Reinheit von Instanzen
Minimale Anzahl an Instanzen für Aufteilung	Н	Schwellenwert bezüglich der Anzahl an Instanzen für eine weitere Aufteilung der Instanzen	Reduktion von Overfitting
Minimale Anzahl an Instanzen für Blatt	Н	Schwellenwert bezüglich der Anzahl an Instanzen für die Erstellung eines neuen Blattes	Reduktion von Overfitting
Maximale Anzahl an Blättern	Н	Begrenzung der Menge an Blättern im Decision Tree	Reduktion von Overfitting
Minimaler Unreinheits- reduktion für Aufteilung	Н	Schwellenwert bezüglich des IG für eine weitere Aufteilung der Instanzen	Reduktion von Overfitting
Gewichtung der Instanzen in $\chi_{training}$	Н	Gewichtung der Beispieldaten für das Training	Hervorhebung repräsentativer Instanzen bzw. Unterdrückung von Ausreißern
Tiefe	P	Tiefe des Decision Trees, Anzahl der Stufen von Wurzel bis zum entferntesten Blatt	Beurteilung der finalen Struktur
Anzahl an Blättern	P	Anzahl der Blätter im finalen Decision Tree	Beurteilung der finalen Struktur
Anzahl an internen Knoten	P	Anzahl an Knoten mit Nachfolgern (inklusive Wurzel, exklusive Blätter)	Beurteilung der finalen Struktur
Signifikanzen der Features	Р	Bedeutung jedes Features Φ_i bei der Klassifizierung, z.B. berechnet anhand des IG durch Φ_i	Identifizierung der einfluss- reichsten Features
Anzahl der Features	Р	Anzahl der Features, auf die die internen Knoten des Decision Trees testen	Beurteilung der finalen Struktur
Anzahl der Klassen	Р	Anzahl der Klassen, die die Blätter des Decision Trees abbilden	Beurteilung der finalen Struktur

2.3.3 Grundlegende Parameter

Ein Machine Learning Algorithmus optimiert die Parameter Θ , um die Fehlerrate des Klassifikators zu minimieren (siehe Abschnitt 2.1). Die optimalen Werte, Θ_{opt} , resultieren also aus dem Trainingsprozess und sind erst im Nachhinein bekannt. Neben diesen Parametern gibt es Hyperparameter, die vom Anwender zu Beginn zu setzen sind. Einige dieser Hyperparameter beeinflussen die finalen Parameter Θ_{opt} , zum Beispiel indem sie den Wertebereich einschränken. Die Tabelle 2.1 orientiert sich an der Implementierung von Scikit-learn (Pedregosa u. a., 2011) und gibt einen Überblick über grundlegende Parameter (Typ in der Tabelle ist "P") sowie Hyperparameter (Typ in der Tabelle ist "H") von Decision Trees und deren Bedeutung.

2.3.4 Optimierung von Decision Trees

Nach Erstellung ist ein Decision Tree oft zu komplex und neigt zu Overfitting (Gron, 2017). Eine Methode zur Reduzierung von Overfitting ist das Pruning, also das Kürzen des Baumes. Es wird zwischen Prepruning und Postpruning unterschieden. Prepruning findet noch während der Erstellung des Decision Trees statt. Ein Ansatz für Prepruning ist es, eine Bedingung für Aufteilungen an jedem Knoten zu definieren. Dadurch soll verhindert werden, dass Entscheidungen, die auf zu wenigen Instanzen basieren, die Varianz des Klassifikators erhöhen und somit die Generalisierung verschlechtern (Alpaydın, 2008). So könnte man festlegen, dass eine weitere Aufteilung nur dann stattfindet, wenn mindestens fünf Prozent der Trainingsinstanzen aus $\chi_{training}$ zu diesem Knoten gelangt sind. Andernfalls wird dieser Knoten zu einem Blatt, betitelt mit der Mehrheitsklasse.

Postpruning hingegen verändert den Baum, nachdem er komplett erstellt wurde. Die Decision Tree Pruning-Methode versucht jene Teilbäume zu identifizieren, welche für das Overfitting verantwortlich sind. Dazu wird vor dem Erstellen des Decision Trees eine Pruning-Menge $\chi_{pruning} \subsetneq \chi$ festgelegt, welche nicht in das Training einfließt. Das Training findet stattdessen mit den Instanzen aus $\chi \setminus \chi_{pruning}$ statt. Anschließend erfolgen pro Teilbaum zwei Messungen von Fehlerraten auf $\chi_{pruning}$. In der ersten Version klassifiziert der Decision Tree in seiner finalen Form die Instanzen aus $\chi_{pruning}$, ohne Veränderung des betrachteten Teilbaums. In der zweiten Version wird der jeweils betrachtete Teilbaum mit seiner Mehrheitsklasse ersetzt, also als Blatt simuliert. Ist der Fehler in der zweiten Version nicht signifikant schlechter als jener in der ersten Version, so wird der betrachtete Teilbaum dauerhaft in ein Blatt umgewandelt. Damit verringert sich die Komplexität und somit das Overfitting des Decision Trees (Russell u. Norvig, 2009). In der Praxis hat sich Postpruning als zielführender als Prepruning herausgestellt (Alpaydın, 2008).

2.4 Ensemble Methoden

2.4.1 Die Ensemble-Idee

Nach dem No-free-lunch Theorem ist kein Lernalgorithmus besser als ein anderer, sofern die durchschnittliche Fehlerrate über alle möglichen diskreten Funktionen betrachtet wird (Whitley u. Watson, 2005). Es gibt also keinen einzigen Lernalgorithmus, der in jedem Anwendungsfall das genaueste Modell erzeugt (Alpaydın, 2008). Ist der beste Klassifikator in einer gegebenen Situation gesucht, so wird dieser beispielsweise mit einem Validierungs-Datenset χ_{val} ermittelt. Eine Alternative, die die Auswahl eines einzigen besten Klassifikators umgeht, ist das Ensemble Learning. Die Idee dabei ist es, die – nicht zu 100% ausmerzbaren – Fehler an einer Instanz X_i von einzelnen Klassifikatoren durch andere Klassifikatoren, die X_i korrekt abbilden, überzukompensieren (Russell u. Norvig, 2009). Die einzelnen Basisklassifikatoren verhalten sich dann komplementär zueinander. Das Ziel ist es, dadurch die Fehlerrate insgesamt im Ensemble zu reduzieren.

Ein Ensemble ist ein Klassifikator, der aus mindestens zwei individuellen Klassifikatoren besteht. Die individuellen Klassifikatoren werden als Basisklassifikatoren bezeichnet. Als Basisklassifikatoren eigenen sich Modelle, die eine niedrigere Fehlerrate als zufälliges Raten erreichen. Ist dieses Kriterium erfüllt, so führt zum Beispiel das nachfolgend behandelte Boosting zu Ensembles mit "beliebig hoher Treffergenauigkeit" (Freund u. Schapire, 1997).

Um eine möglichst große Fehlerreduktion im Vergleich zu den einzelnen Basisklassifikatoren zu erreichen, ist es nötig, diese Basisklassifikatoren maximal unterschiedlich zu machen, sie also zu dekorrelieren. Zur Messung der Dekorrelierung von Decision Trees schlägt Tin Kam Ho (1998) zum Beispiel die Metrik Tree Agreement vor. Für die Dekorrelierung gibt es verschiedene Ansätze. So können zum Beispiel verschiedene Lernalgorithmen genutzt werden, dieselben Lernalgorithmen mit unterschiedlichen Hyperparametern belegt werden oder die Basisklassifikatoren mit unterschiedlichen Repräsentationen der Input-Daten trainiert werden (Alpaydın, 2008). Eine weitere Möglichkeit zur Dekorrelierung der Basisklassifikatoren ist das Variieren der Trainingsdaten. Dazu gehören die Ansätze des Bagging und Boosting. Diese behandelt der nachfolgende Unterabschnitt 2.4.2.

2.4.2 Bagging und Boosting

Zwei verbreitete Methoden zur Dekorrelierung von Basisklassifikatoren in Ensembles sind das Bagging und das Boosting. Beide Methoden können sowohl auf Klassifikatoren als auch auf Regressions-Modelle angewendet werden (Alpaydın, 2008). Bagging steht für Bootstrap Aggregation. Nach dieser Methode werden für jeden Basisklassifikatoren mit dem Bootstrap-Algorithmus zufällige Instanzen aus χ ausgewählt. Das heißt, der jeweilige Basisklassifikatoren β_i wird mit der Stichprobe $\chi_i \subset \chi$ trainiert, wobei $|\chi_i| = |\chi|$. Diese Auswahl erfolgt mit Wiederholung, eine Instanz aus χ kann also mehrmals in χ_i vorkommen oder auch gar nicht. Die Wahrscheinlichkeit, dass eine Instanz χ nicht in die Bootstrap-Stichprobe χ_i kommt ist Alpaydın (2008)

$$P(X \in \chi_i) = (1 - \frac{1}{|\chi|})^{|\chi|} \approx e^{-1} = 36.8\%$$
 (2.14)

Das heißt im Umkehrschluss, dass χ_i ungefähr 100% - 36,8% = 63,2% der Instanzen aus χ enthält. Im Gegensatz zum Boosting entstehen die Stichproben χ_i beim Bagging unabhängig voneinander.

Boosting bedeutet Verstärken. Dabei sind die Stichproben nicht unabhängig voneinander, sondern werden der Reihe nach gebildet. Die Idee von Boosting ist es, die Stichprobe χ_{i+1} dahingehend anzupassen, dass sie jene Instanzen aus χ_i bevorzugt, welche von dem darauf trainierten Basisklassifikatoren nicht erfolgreich gelernt wurden. Der Basisklassifikatoren β_{i+1} soll also von den Fehlern seines Vorgängers β_i lernen. Somit sollen die Basisklassifikatoren ihre Schwächen untereinander ausgleichen. Um den Bedarf nach einer sehr großen Datenmenge zum Boosting zu beseitigen, entwarfen Freund u. Schapire (1997) die Variante AdaBoost, oder ausgeschrieben Adaptive Boosting. Außerdem ist AdaBoost im Gegensatz zu seinen Vorgängern dazu in der Lage, beliebig viele Basisklassifikatoren zu kombinieren (Alpaydin, 2008).

2.4.3 Entscheidungsfindung im Ensemble

Die Entscheidung, welche Klasse einer neuen Instanz X zugewiesen wird, trifft ein Ensemble auf Basis der Entscheidungen seiner Basisklassifikatoren. Ein Ensemble E, bestehend aus den n Basisklassifikatoren $\{\beta_1,...,\beta_n\}$ unter Verwendung von Kombinationsmethode Ψ , kann als

Vorhersagefunktion für Instanz X als

$$E(X|\{\beta_1, ..., \beta_n\}, \Psi) = \hat{y}$$
(2.15)

formalisiert werden. Für Ψ lassen sich einstufige und mehrstufige Kombinationsmethoden unterscheiden (Alpaydın, 2008). Diese Arbeit beschränkt sich auf einstufige Methoden. Eine einstufige Methode ist die nachfolgend beschriebene Voting-Methode.

Wenn $\{\hat{y}_1,...,\hat{y}_n\}$ die Ergebnisse von $\{\beta_1,...,\beta_n\}$ sind, dann ergibt sich nach der Voting-Methode Ψ_{voting} die Entscheidung des Ensembles \hat{y}_E allgemein (im Sinne von sowohl für Klassifikation als auch für Regression gültig) mit

$$\hat{y}_E = \Psi_{voting}(\hat{y}_1, ..., \hat{y}_n). \tag{2.16}$$

Handelt es sich bei $\{\hat{y}_1,...,\hat{y}_n\}$ um die vorhergesagten Klassen, so nennt man dies Hard Voting. Handelt es sich dabei jedoch um die Wahrscheinlichkeiten für die positive Klasse, so spricht man von Soft Voting Gron (2017). Im Spezialfall, dass das Ensemble als Klassifikator verwendet wird, entspricht das finale Ergebnis der nächstgelegenen – gemessen an der Distanz zu \hat{y}_E – Klasse. Das heißt in einer binären Klassifikation mit den Klassen $y \in \{0,1\}$ ergibt sich das Ergebnis \hat{y}_{Class} mit

$$\hat{y}_{Class} = \begin{cases} 1(\text{positiv}), & \text{wenn } 0 \leqslant \hat{y}_E < 0.5\\ 0(\text{negativ}), & \text{wenn } 0.5 \leqslant \hat{y}_E \leqslant 1. \end{cases}$$
 (2.17)

Die Annahme bezüglich Ψ_{voting} ist, dass alle Basisklassifikatoren $\{\beta_1,...,\beta_n\}$ gleich gewichtet sind, und zwar mit einem Gewicht von $\frac{1}{n}$. In der Literatur finden sich Vorschläge, wie man die Basisklassifikatoren gewichten kann. Ein solches Vorgehen ist es, die Basisklassifikatoren auf einem Validierungs-Datenset χ_{val} zu bewerten, um sie im Ensemble dann anhand ihrer Treffgenauigkeit zu gewichten (Alpaydın, 2008).

An dieser Stelle sei, alternativ zur Voting-Methode, die geschachtelte Generalisierung von Wolpert (1992) erwähnt. Dessen Idee ist es, die Kombination von $\hat{y}_1, ..., \hat{y}_n$ nicht durch eine (gewichtete) Summe zu vollziehen, sondern selbst wiederum durch eine lernende Funktion Ψ_{sg} zu entwerfen. Das finale Ergebnis eines Ensembles, das eine solche Kombinationsfunktion verwendet, lautet dann

$$\hat{y}_E = \Psi_{sg}(\hat{y}_1, ..., \hat{y}_n | \Theta). \tag{2.18}$$

Ein Lernalgorithmus sucht die optimalen Parameter Θ_{opt} , sodass die Fehlerfunktion minimiert wird, wie in Abschnitt 2.1 beschrieben. Die Kombinationsfunktion Ψ_{sg} soll also die Schwächen der einzelnen Basisklassifikatoren lernen, um diese bei der finalen Kombination zu berücksichtigen (Alpaydın, 2008). Da nun sowohl die Base Classifer, die $\{\hat{y}_1,...,\hat{y}_n\}$ erzeugen, als auch die Kombinationsfunktion Ψ_{sg} selbst anhand von Daten lernen, findet eine geschachtelte Generalisierung statt.

2.5 Random Forest Klassifikator

2.5.1 Generelle Funktionsweise und Eigenschaften

Ein Random Forest ist ein Ensemble, das Decision Trees als Basisklassifikatoren nutzt. Trotz ihrer vergleichsweise simplen Struktur gehören Random Forests zu den mächtigsten Machine

Learning Algorithmen (Gron, 2017). Durch das Einführen von Zufälligkeit ist ein Random Forest robuster als ein einzelner Decision Tree. Die Zufälligkeit entsteht durch Bagging und durch zufällige Auswahl jener Attribute, die für einen Split überhaupt erst betrachtet werden. Diese Zufälligkeit hilft dabei, unkorrelierte Decision Trees zu generieren, die ihre Schwächen gegenseitig ausgleichen und somit komplementär zueinander sind.

Die Klassifikation durch einen Random Forest erfolgt nach der Voting-Methode (siehe Unterabschnitt 2.4.3). Die Decision Trees aus dem Random Forest klassifizieren die Instanz nach dem in Abschnitt 2.3.1 dargelegten Procedere. Die Ergebnisse fließen als gleich-gewichtete Stimmen in den Random Forest ein. Die am häufigsten vorkommende Klasse ist das Ergebnis der Klassifizierung.

Der Funktionenraum F eines Random Forests enthält – wie auch der von Decision Trees – stets eine Funktion f, die die Klassen aller Trainings-Instanzen korrekt abbildet. Der entscheidende Unterschied zu Decision Trees jedoch ist die Lösung des Overfitting-Problems. Mithilfe des Gesetzes der großen Zahlen hat Breiman (2001) bewiesen, dass bei Random Forests kein Overfitting auftritt. Der Generalisierungsfehler eines Random Forests hängt von der Güte der einzelnen Decision Trees ab als auch von der Korrelation dergleichen ab (Breiman, 2001).

Eine vorteilhafte Eigenschaft ergibt sich aus der Tatsache, dass der Random Forest Bagging verwendet. Wie in Kapitel 2.4.2 gezeigt, enthalten die Stichproben, auf denen die Basisklassifikatoren trainiert werden, durchschnittlich 63,2% der Instanzen aus χ . Die restlichen 36,8% der Instanzen aus χ werden als out-of-bag (OOB) bezeichnet. Diese OOB Instanzen können zur Erfolgsmessung verwendet werden, noch bevor ein Validierungs- oder Test-Datenset zum Einsatz kommt. Die gemessene Fehlerrate nennt sich in dem Fall OOB Error (Gron, 2017).

2.5.2 Erstellung eines Random Forests

Ein Random Forest entsteht durch das Trainieren von n Decision Trees auf den Trainingssets $\{\chi_1, \chi_n\}$, welche mittels Bagging (siehe Kapitel 2.4.2) aus χ generiert werden.

Eine Besonderheit dabei ist, dass nicht alle Features für die Aufteilung an Knoten K betrachtet werden. Stattdessen erwägt der Random Forest Algorithmus eine zufällige (engl. random), echte Untermenge der Features. Von den i Attributen der Daten wird eine Untermenge von j Attributen zufällig ausgewählt. Für diese j Attribute werden im nächsten Schritt jeweils die Information Gains berechnet, die aus ihren Aufteilungen (siehe Unterabschnitt 2.3.2) resultieren würden. Das Attribut mit dem höchsten Information Gain wird für den betrachteten Knoten als Aufteilungskriterium gewählt. Diese Zufälligkeit dekorreliert die Basisklassifikatoren, denn diese treffen ihre Entscheidungen basierend auf verschiedenen Features, und ermöglicht dadurch ein komplementäres Ensemble. Algorithmus 1 veranschaulicht die Erstellung eines Random Forests mittels Pseudocode.

Algorithm 1 Random Forest Pseudocode

```
Require: Trainingset \chi_{training}, Features \Phi, Anzahl der Decision Trees n
 1: function RandomForest (\chi_{random\_forest} \Phi_{random\_forest}, n)
 2: T \leftarrow \emptyset
 3: for i \in \{1, ..., n\} do
       \chi_i \leftarrow \text{Bootstrapping-Set von } \chi_{random\_forest}
       \Phi_i \leftarrow \text{Randomisierte}, echte Teilmenge von \Phi_{random\ forest}
       t_i \leftarrow \text{DecisionTree}(\chi_i, \Phi_i)
 6:
       T \cup t_i
 8: end for
 9: return T
10: end function
11: function DecisionTree(\chi_{decision\ tree}\Phi_{decision\ tree})
12: K ← Wurzel-Knoten k_1
13: while K enthält mindestens einen internen Knoten k_{intern\_neu} ohne Nachfolger do
       \Phi_{opt} \leftarrow Feature mit höchstem Information Gain an Knoten k_{intern}
       Teile Instanzen an k_{intern\ neu} entsprechend der Werte von \Phi_{opt} auf neue Knoten K_{neu}
15:
       Weise k_{intern\_neu} alle Knoten aus K_{neu} als Nachfolger zu
16:
       for K_{neu_i} ∈ K_{neu} do
17:
18:
          if Instanzen an Knoten K_{neu} i haben alle dieselbe Klasse then
             Erkläre K_{neu\ i} als Blatt mit Mehrheitsklasse
19:
20:
          else
21:
             Erkläre K_{neu_i} als internen Knoten ohne Nachfolger
          end if
22:
23:
       end for
       K \cup K_{neu}
24:
25: end while
26: return K
27: end function
```

2.5.3 Grundlegende (Hyper-)Parameter

Zusätzlich zu den (Hyper-)Parametern seiner Basisklassifikatoren (siehe 2.3.3) besitzt der Random Forest als Ensemble noch weitere Einstellungen. Die Tabelle 2.2 orientiert sich an der Implementierung von Scikit-learn (Pedregosa u. a., 2011) und gibt einen Überblick über alle relevanten (Hyper-)Parameter.

Aufbauend auf der ursprünglichen Idee von Breiman (2001) entwickelten Forscher neue Random Forest Modelle mit dem Ziel, die Fehlerrate weiter zu reduzieren. Ebenso optimieren manche Ansätze den Random Forest für bestimmte Anwendungsbereiche, oder reduzieren die Trainings- und Klassifikationszeit. Diese Arbeit stellt einige dieser weitergehenden Random Forest Variationen im Unterabschnitt ?? vor.

Tabelle 2.2 (Hyper-)Parameter eines Random Forests und deren Bedeutung

Name	Тур	Beschreibung	Zweck (Beispiele)
Anzahl der Basis- klassifikatoren	Н	Anzahl der Decision Trees innerhalb des Random Forests	Steigerung der Treffer- genauigkeit durch mehr komplementäre Basisklassifikatoren
Bootstrap-Sampling	Н	Bestimmung, ob Basis- klassifikatoren auf den gesamten Daten oder auf Bootstrap- Stichproben trainiert werden	Steigerung der Zufälligkeit bei Training der Basis- klassifikatoren durch Veränderung der Trainingsstichproben
OOB Treffer- genauigkeit	Р	Schätzung der Treffergenauig- keit, gemessen den den out-of-bag Instanzen der jeweiligen Decision Trees	Beurteilung der Treffer- genauigkeit noch vor Evaluierung auf einem Validierungs- oder Testdatenset
Alle (Hyper-) Parameter von Decision Trees	H/P	Die (Hyper-)Parameter der Basisklassifikatoren werden über den Random Forest zentral definiert	Steigerung der Treffer- rate des Random Forests durch Optimierung der Hyperparameter seiner Decision Trees

2.6 Erfolgsmessung von Klassifikatoren

Nach der Erstellung eines oder mehrerer Klassifikatoren ist häufig die Güte des Modells von Interesse, beispielsweise gemessen an der Fehlerrate. Fehlerraten werden unter anderem verglichen, um den geeignetsten Klassifikator für einen gegebenen Anwendungsfall zu bestimmen. Außerdem ist die erwartete Fehlerrate auf neuen Daten außerhalb $\chi_{training}$ häufig von Interesse. Das ist insbesondere der Fall, wenn es für die Fehlerrate eine – selbstauferlegte oder fremdbestimmte – harte Obergrenze von p% gibt, die nachgewiesen werden muss, bevor der Klassifikator in der Realität angewendet werden darf.

Das Training, die Validierung und das Testen erfolgen jeweils auf den separaten Datensets $\chi_{training}$, $\chi_{validierung}$ und χ_{test} , wobei gilt

$$\chi_{training} \cap \chi_{validierung} = \emptyset; \chi_{validierung} \cap \chi_{test} = \emptyset \text{ und } \chi_{training} \cap \chi_{test} = \emptyset.$$
 (2.19)

 $\chi_{training}$ dient der Optimierung der Parameter eines Klassifikators, $\chi_{validierung}$ dem Tuning von Hyperparametern und χ_{test} der Erhebung des erwarteten Fehlers auf neuen Daten. Jedes dieser Datensets soll die Grundgesamtheit, aus der die Stichproben stammen, repräsentativ darstellen. Alpaydın (2008) schlägt vor, ein Drittel der vorhandenen Daten für χ_{test} zu verwenden und die anderen zwei Drittel auf $\chi_{training}$ und $\chi_{validierung}$ zu verteilen. Für diese Einteilung zwischen $\chi_{training}$ und $\chi_{validierung}$ gibt es mehrere Varianten. Eine davon ist die Kreuzvalidierung.

In der Kreuzvalidierung werden aus χ k Stichproben, $\{\chi_1, ..., \chi_k\}$ mit $|\chi_1| = ... = |\chi_k|$ generiert. Dann erfolgen k Durchläufe, genannt Folds, wobei der Klassifikator in $Fold_i$ auf

 $\chi_1 \cup ... \cup \chi_{i-1} \cup \chi_i + 1 \cup ... \cup \chi_k$ trainiert wird und auf χ_i getestet wird. Alpaydın (2008) merkt an, dass für jede Teilstichprobe χ_i die relative Häufigkeit jeder Klasse y gleich sein sollte, und, dass diese wiederum den relativen Häufigkeiten von y in χ gleichen sollten. Dieser Vorgang nennt sich Stratifizierung. Ein Spezialfall der Kreuzvalidierung ist die Leave-One-Out Methode Alpaydın (2008). Dabei wird χ in k=n Stichproben aufgeteilt, mit $n=|\chi_{training} \cup \chi_{validierung}|$. Jede Trainingsstichprobe χ_i besteht also aus einer einzigen Instanz. In diesem Spezialfall ist Stratifizierung nicht möglich. Die Leave-One-Out Methode wird zum Beispiel in der medizinischen Diagnostik verwendet, wenn nur sehr wenige relevante Daten vorhanden sind Alpaydın (2008). Eine weitere Variante zur Einteilung der Datensets $\chi_{training}$, $\chi_{validierung}$ und χ_{test} ist die Bootstrap Methode. Diese wurde bereits in Kapitel 2.4.2 behandelt.

Um die Güte eines Klassifikators zu bestimmen und mit anderen zu vergleichen, bieten sich verschiedene Kennzahlen an. Jede Klassifizierung fällt in eines der vier Felder aus der Konfusionsmatrix in Tabelle 2.3.

Tabelle 2.3 Konfusionsmatrix

Die Fehlerrate E berechnet sich dann mit

$$E = \frac{|FP| + |FN|}{N},\tag{2.20}$$

wobei N = |WP| + |FP| + |FN| + |WN|.

Im Falle von verzerrten Datensets, wenn die Klassen sehr ungleich verteilt sind, eignet sich diese simple Fehlerrate alleine nicht zur Erfolgsmessung; stattdessen bieten sich weitergehende Metriken aus der Konfusionsmatrix an (Gron, 2017). Precision misst den Erfolg des Klassifikators auf den positiven Instanzen und ergibt sich aus

$$Precision = WP/(WP + FP). (2.21)$$

Precision alleine reicht jedoch nicht aus. Ein Klassifikator könnte von n wahren Positiven nur einen einzigen, sicheren als positiv bestimmen, wobei 1 << n. Damit wäre die Precision $\frac{1}{(1+0)} = 100\%$, jedoch zu Lasten von n-1 falschen Negativen. Um diesen Trade-Off zu erkennen, bietet sich der Recall als weitere Metrik an. Dieser folgt aus

$$Recall = WP/(WP + FN). (2.22)$$

Das F-Maß kombiniert schließlich Precision und Recall als harmonischer Durchschnitt (Gron, 2017)

$$F - \text{Maß} = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}} = 2x \frac{PrecisionxRecall}{Precision + Recall}.$$
 (2.23)

Das F-Maß bestraft zwar Klassifikatoren, die sehr ungleiche Werte für Precision und Recall erzielen. Gleichzeitig bevorzugt es jedoch Klassifikatoren, die für Precision und Recall ähnliche Werte aufweisen. Das ist nicht immer erstrebenswert. Je nach Anwendungsfall kann entweder Precision oder Recall relevanter sein (Russell u. Norvig, 2009). Handelt es sich um die Klassifikation zur Bombendetektion, so würde man vermutlich Fehlalarme einer entgangenen Bombe vorziehen. Dann wäre Recall wichtiger als Precision. Allgemein geht eine höhere Precision mit niedrigerem Recall einher, und vice versa (Gron, 2017). Dieser Precision-Recall Trade-Off ist eine zentrale Fragestellung im Machine Learning und ist für jeden Anwendungsfall einzeln zu lösen.

Es sei erwähnt, dass die Konfusionsmatrix nicht das einzige Kriterium zur Erfolgsmessung eines Klassifikators sein sollte. Turney (2002) ergänzt zum Beispiel die Speicher- und Laufzeit-Komplexität sowie die Interpretierbarkeit als weitere Bewertungskriterien, die in der Forschung noch nicht genug Beachtung gefunden hätten.

2.7 Underfitting, Overfitting und der Curse of Dimensionality

Um die bestmögliche Generalisierung zu erreichen, vergleicht man die Komplexität der erlernten Funktion f mit der den Daten zugrundeliegenden Funktion (Alpaydın, 2008). Ist die Komplexität von f niedriger als die der approximierten Funktion, wird dies als Underfitting bezeichnet. Dies ist zum Beispiel der Fall, wenn man versucht, eine Gerade auf einen Datensatz anzupassen, der von einem Polynom dritten Grades stammt (Alpaydın, 2008). Die Erhöhung der Komplexität führt bei Underfitting zu einer Verbesserung der Vorhersagegenauigkeit beziehungsweise zu einer Reduktion des Vorhersagefehlers. Ist die Komplexität von f höher als die der approximierten Funktion, so wird dies als Overfitting bezeichnet. Ein Beispiel ist der oben erwähnte, nicht-kontrollierte Decision Tree, der für jede Instanz einen eigenen Blattknoten anlegt. Es folgt die Definition von Overfitting. Dabei bezeichnet E(.) die Fehlerfunktion. Angenommen, der Lernalgorithmus zieht die Funktion $f_1(X)$ aus F einer Funktion $f_2(X)$ vor, weil auf $\chi_{training}$ gilt:

$$E(f_1(x)) < E(f_2(X)).$$
 (2.24)

Gleichzeitig aber gilt auf der gesamten Verteilung, aus der $\chi_{training}$ stammt:

$$E(f_1(X)) > E(f_2(X)).$$
 (2.25)

Dann wird die Funktion $f_1(X)$ als overfitted bezeichnet (Mitchell, 1997).

Was genau die Komplexität ausmacht, hängt vom betrachteten Klassifikator ab. In Decision Trees leitet sich die Komplexität aus der Anzahl an Knoten und Blättern ab. Eine große Anzahl an Knoten und Blättern bedeutet hohe Komplexität, was wiederum zu Overfitting führen kann, und vice versa. Für Decision Tree Ensembles, wie dem Random Forest, kommt zusätzlich noch die Anzahl der einzelnen Basisklassifikatoren als Faktor für die Komplexität hinzu. Hierbei ist anzumerken, dass eine größere Anzahl an Basisklassifikatoren aber nicht unbedingt zu Overfitting führt. Random Forests profitieren – im Widerspruch zu Ockhams Rasiermesser – von einer steigenden Anzahl an Basisklassifikatoren, solange diese hinreichend unabhängig voneinander sind (Gron, 2017).

Eine weitere, allgemeine Herausforderung – unabhängig vom konkreten Anwendungsfall – im Machine Learning ist der Curse of Dimensionality. Dieses Phänomen bezeichnet die exponentielle Steigung der benötigten Features, die bei Erhöhung der Dimensionen nötig ist (Verleysen u. François, 2005). Wenn beispielsweise ein Klassifikator in einer Dimension mit 10 Instanzen trainiert wird, so sind in zwei Dimensionen 100 und in drei Dimensionen 1.000 Trainings-Instanzen nötig, um den gleichen Lernerfolg zu erzielen (Verleysen u. François, 2005). Obwohl Random Forests dazu in der Lage sind, den Curse of Dimensionality zu reduzieren, sind diese dennoch von einer steigenden Anzahl an Features negativ betroffen, da sich die Trainingszeit verlängert (Li, 2016). Li (2016) schlug einen mittels Hadoop MapReduce parallelisierten Random Forest vor und zeigte, dass dieser verglichen mit einem nichtparallelisierten Random Forest ein besseres Ergebnis sowie eine um 40% verkürzte Rechenzeit erreicht.

2.8 Besonderheiten bei der Klassifikation von Zeitreihen

Für den Spezialfall der Zeitreihen-Klassifikation bieten sich angepasste Methoden für die Messung der Fehlerrate an. Es ist zum Beispiel möglich, dass zwischen den Instanzen aus χ zeitliche Abhängigkeiten bestehen. So könnte in einer Stichprobe über die Jahre j_1 bis j_n ein Muster ab Jahr j_s auftreten, wobei $j_1 < j_s < j_n$. Ein Beispiel ist die Einführung eines neuen Gesetzes in Jahr j_s , das die betrachtete Zeitreihe ab dann beeinflusst. In diesem Fall sollte der Klassifikator das Muster nur auf Instanzen aus den Jahren $]j_s, j_n]$, nicht jedoch aus der Vorzeit $[j_1, j_s]$ anwenden.

Abbildung 2.2 Schematischer Ablauf einer Time Series Cross-Validation in den ersten vier Iterationen

Ein Ansatz, um zeitlich-bedingte Muster zu entdecken, ist die Blocked Form Cross-Validation, auch bekannt als Time Series Cross-Validation. Bergmeir u. Benitez (2011) haben empirisch ermittelt, dass diese Methode für Zeitreihen-Klassifikatoren genauere Ergebnisse erzielt als herkömmliche Cross-Validation Varianten wie die erwähnte Kreuzvalidierung. Der schematische Ablauf ist in Abbildung 2.2 dargestellt. Ausgehend von der Trainings-Stichprobe $\chi_{training}$ bildet die Time Series Cross-Validation k Teilstichproben, $\{\chi_1, ..., \chi_k\}$,

wobei $|\chi_{-}1| = ... = |\chi_{-}k|$. Dann erfolgen i = k-1 Epochen, wobei der Klassifikator in $Epoche_i$ jeweils auf $\chi_1 \cup ... \cup \chi_i$ trainiert wird und auf χ_{i+1} getestet wird. Alternativ kann $\chi_i \cup ... \cup \chi_k$ als Testset verwendet werden. Eine weitere Variation ist es, nicht auf den Daten aller vorangegangener Zeitabschnitte, sondern lediglich auf jenen des letzten Zeitabschnittes, also auf χ_i , zu trainieren (Cerqueira u. a., 2019).

2.9 Random Walk Theorie und Markteffizienzhypothese

Da sich diese Arbeit mit Anwendungsfällen aus der Finanzdomäne beschäftigt, folgen zwei grundlegende Theorien aus diesem Gebiet. Nach der Random Walk Theorie (Fama, 1965) sind sämtliche Analysen zur Vorhersage von Aktienkursen wertlos. Das gilt sowohl für die technische Analyse, die annimmt, dass es in Aktienkursen sich wiederholende Muster gibt, als auch für die Fundamentalanalyse, die den intrinsischen Wert eines Unternehmens anhand von Finanzkennzahlen bewertet. Die technische Analyse bezieht sich ausschließlich auf die Zeitreihen eines Wertpapiers. Kennzahlen über die prozentuale oder absolute Veränderung des Kurses sowie statistische Werte bilden dabei die Grundlage für Kauf- und Verkaufsentscheidungen. Ein Beispiel aus der technischen Analyse ist der gleitende Durchschnitt der letzten d Tage, wobei d beliebig variiert wird. Die Fundamentalanalyse hingegen basiert auf den Finanzkennzahlen des Emittenten des Wertpapiers, und nicht auf dem Kurs des Wertpapiers. Beispiele für solche Kennzahlen sind der Umsatz, der Jahresüberschuss oder auch die Eigenkapitalrendite des Unternehmens. Ebenso betrachtet die Fundamentalanalyse ökonomische Faktoren wie den Leitzins, gesellschaftliche Trends oder das Management des Emittenten.

Analysen basieren stets auf Informationen, die den Marktteilnehmern bekannt sind. Nach der Markteffizienzhypothese sind all diese Informationen jedoch bereits im Preis des Wertpapiers abgebildet. Dann kann die Analyse der Informationen keine überproportionalen Renditen ermöglichen. Nach Fama (1965) ist ein effizienter Markt ein Markt, in dem sehr viele rationale, Gewinn-maximierende Akteure konkurrieren, wobei jeder von diesen Zugriff auf alle Informationen hat und versucht, die Kursbewegungen gewinnbringend vorherzusagen. Somit spiegelt der Preis eines Wertpapiers in einem effizienten Markt alle vorhandenen Informationen wieder. Sowohl Ereignisse aus der Vergangenheit als auch zukünftig erwartete Ereignisse, über die sich die Marktakteure einig sind, bestimmen die Preisbildung. Der Marktpreis stimmt also mit dem inneren Wert des Wertpapiers überein. In einem solchen Markt "hat eine Zeitreihe von Aktienkursen kein Gedächtnis" (Fama, 1965); es ist nicht möglich von historischen Beobachtungen auf neue Kursbewegungen zu schließen. Erkennbare, gewinnbringende Muster würden von der Masse der rationalen Akteure sofort ausgenutzt, bis sie im Marktpreis berücksichtigt und somit nutzlos wären (Lendasse u.a., 2002). Also können nur neue Informationen zu einer Änderung des inneren Preises eines Wertpapiers führen. Und neue Informationen können per Definition nicht vorhergesagt werden (Lendasse u. a., 2002).

In der Realität treffen einige Annahmen der Markteffizienzhypothese allerdings nicht immer zu. Zum einen handeln die Akteure am Aktienmarkt, also Käufer und Verkäufer, nicht immer rational. Auch wenn Computer einen wachsenden Teil der Aktienkäufe und -Verkäufe tätigen, sind emotional geleitete Menschen am Markt aktiv. Auch hat nicht

jeder Marktteilnehmer die gleichen Informationen. Zum Beispiel nutzen die Akteure unterschiedliche Datenquellen, die Informationen verzerren oder zu verschiedenen Zeitpunkten veröffentlichen. Selbst wenn die Informationsbasis aller Akteure gleich wäre, würde jeder von diesen – aufgrund einmaliger Erfahrungen und Fähigkeiten eines jeden Menschen – zu unterschiedlichen Ergebnissen kommen.

Weiterhin ist es möglich, dass die handelnden Computerprogramme selbst, durch ihre automatischen Kauf- und Verkaufsaktionen bei Unter- oder Überschreitung gewisser Preispunkte, Muster in den Aktienkursen erzeugen. Dann könnte ein Klassifikator, wie der Decision Tree, eben diese Muster erkennen und Regeln bilden, um sie systematisch auszunutzen.

Diese über fünfzig Jahre alten Theorien wurden in jüngerer Zeit kritisch hinterfragt. Vor dem Hintergrund steigender Rechenleistung von Computern und gehäufter Erfolge im Machine Learning hat man mit verschiedenen Klassifikatoren versucht, signifikant höhere Renditen zu erzielen als der Marktdurchschnitt und die Random Walk Theorie zu widerlegen. Ausgewählte Arbeiten zu diesem Thema finden sich in Unterabschnitt ??.

2.10 Relevante Literatur

In den letzten Jahren haben Forscher die Anwendung von Machine Learning und speziell von Random Forest Modellen zur Vorhersage von Aktienkursen unter verschiedenen Ansätzen untersucht. Es folgt ein Überblick relevanter Veröffentlichungen mit deren Ansätzen, Vorgehen und Ergebnissen. Dabei werden auch bisher nicht- oder unzureichend erforschte Fragen identifiziert.

Sadia u. a. (2019) haben Random Forests und Support Vector Machines verglichen und deren Vorhersagegenauigkeiten von Aktienkursen auf einem Datensatz von Kaggle gemessen. Insgesamt lagen 121.608 Datensätze verschiedener Aktien vor, die bereinigt und im Verhältnis 80% zu 20% in Trainings- und Testset aufgeteilt wurden. Das Trainingsset wiederum wurde mittels Cross-Validation aufgeteilt, um die Hyperparameter zu optimieren. Mit einer Genauigkeit von 0,808 hat der Random Forest ein besseres Ergebnis erzielt als die State Vector Machine mit 0,787. Da die die Chronologie der Daten bei der Cross-Validation nicht eingehalten wird, sind mögliche zeitliche Abhängigkeiten nicht berücksichtigt worden. Außerdem ist die 80% zu 20% Aufteilung nur einmalig erfolgt. Im Gegensatz zu Cross-Validation liegt hier eine lokale Verzerrung vor, da kein Mittelwert über verschiedene Aufteilungen berechnet wird. Die Anwendung der Time Series Cross-Validation reduziert die beiden genannten Schwächen und kann somit zu aussagekräftigeren Ergebnissen führen.

Alavi u. a. (2015) haben Random Forests mit State Vector Machines und K-Nearest Neighbor Modellen verglichen. Als Datengrundlage dienten Zeitreihen iranischer Aktien im Zeitraum von 2002 bis 2012. Als zusätzliche Features, neben den Aktienkursen selbst, wurden Indikatoren aus der technischen Aktienanalyse berechnet. Die Untersuchungen wurden in MATLAB durchgeführt. Nach dem Hyperparameter-Tuning erreichte der Random Forest mit 0,919 das beste F-Maß, gefolgt von State Vector Machines (0,860) und K-Nearest Neighbors (0,820). Zur Erfolgsmessung haben die Autoren eine einmalige Aufteilung in Trainings- und Testset vorgenommen; ein auf Zeitreihen spezialisiertes Verfahren hat nicht

stattgefunden. Auch die Auswirkungen der zusätzlichen technischen Features wurde nicht eruiert.

Pasupulety u. a. (2019) haben einen Baum-basierten Klassifikator mit Features zur Erfassung der öffentlichen Wahrnehmung einer Aktie angereichert, um Aktienkurse des indischen IT-Unternehmens Infosys Limited vorherzusagen. Dabei konnten sie jedoch nur eine vernachlässigbare Verbesserung der Genauigkeit feststellen. Die Umsetzung erfolgte mit der Scikit-learn Bibliothek in Python. Die Erfolgsmessung fand nach der Time Series Cross-Validation statt, um zeitliche Abhängigkeiten in den Daten zu berücksichtigen.

Eine Alternative zur binären Klassifikation auf den Aktienmärkten, mit den Klassen Äktie steigtünd Äktie fällt", schlugen Lohrmann u. Luukka (2019) vor. Mit den vier Klassen ßtark positiv", ßchwach positiv", ßchwach negativünd ßtark negativ"konnten sie bessere Ergebnisse erzielen, als mit zwei Klassen. Aktienkurse zwischen 2010 und 2018 von der Yahoo Finance API waren dabei die Datengrundlage. Der Random Forest Klassifikator erreichte in den MATLAB-Simulationen die höchste Genauigkeit. Eine Untersuchung verschiedener Zeithorizonte fand nicht statt.

Khaidem u. a. (2016) haben bei der Klassifikation nach Zeithorizont unterschieden und erschlossen, dass längere Zeithorizonte zu einer höheren Treffergenauigkeit führen. Für Datensätze von Apple, Microsoft und Samsung berichten die Autoren Treffergenauigkeiten zwischen 85% und 95% für einen Horizont von zehn Tagen, was eine Steigerung gegenüber der Bezugsliteratur (Di, 2014) darstellt, in der Werte zwischen 70% und 80% erreicht wurden. Beide Veröffentlichungen beschränken sich jedoch auf kurze Zeiträume von unter einem Monat. Die Vorhersagegenauigkeit von Machine Learning Modellen kann abhängig vom Zeithorizont stark schwanken. So ist es möglich, dass es für die Vorhersagen ein Jahr in die Zukunft erkennbare Muster gibt, während Vorhersagen einen Tag in die Zukunft dem Zufall unterliegen. Einige der genannten Veröffentlichungen haben den Zeithorizont der Vorhersage gar nicht beachtet, andere haben sich auf maximal drei Monate beschränkt, dafür jedoch die kurzen Horizonte von wenigen Tagen vernachlässigt. Vorhersagen über mehr als drei Monate hinweg wurden nicht betrachtet. Auch ist noch erforscht, inwiefern sich die Gewichte der Features mit den Zeithorizonten verändern.

Zusammenfassend lässt sich feststellen, dass der Vergleich der Modelle zwischen den Aktien – und nicht nur im Gesamtmarkt –, der Einfluss von technischen Features auf die Vorhersagegenauigkeit sowie die Veränderung der Gewichtungen der Features mit unterschiedlichen Zeithorizonten noch nicht ausreichend erforscht sind.

3 Methodik

3.1 Vorgehen

Nachfolgend wird das Vorgehen zur Untersuchung der Forschungsfragen dargelegt. Um den Dummy Klassifikator, Decision Tree und Random Forest zu vergleichen werden die in Tabelle 3.1 aufgeführten fünf Variablen eingeführt.

VariableMögliche WerteKlassifikator{Dummy Klassifikator, Decision Tree, Random Forest}Datenset{AAPL, AMZN, CSCO, GE, GOOGL, HP, IBM, INTC,(Tickersymbol der Aktie)MSFT, WU, XRX}Feature Engineering{Ja, Nein}Zeithorizont{1d, 5d, 10d, 20d, 65d, 250d} mit den Indizes {0, 1, 2, 3, 4, 5}Hyperparameter-Tuning{Ja, Nein}

Tabelle 3.1 Die fünf zentralen Variablen für die Untersuchungen

Die erste Variable ist der Klassifikator selbst. Er nimmt stets eine der drei genannten Ausprägungen – Dummy Klassifikator, Decision Tree oder Random Forest – an. Die zweite Variable ist das Datenset. Die elf ausgewählten Aktien-Datensets stammen allesamt aus dem Technologie Sektor und werden in Abschnitt 3.3 im Detail vorgestellt. Die dritte Variable ist das Feature Engineering. Um die Auswirkungen der zusätzlichen technischen Features zu erfassen, werden die Klassifikatoren im ersten Durchgang ohne diese trainiert und getestet, und im zweiten Durchgang mit ihnen. Die vierte Variable ist der Zeithorizont, der zwischen einem Handelstag (1d) und einem Handelsjahr (250d) liegt. Die fünfte Variable ist das Hyperparameter-Tuning. Dadurch soll eruiert werden, wie sich die Optimierung der Hyperparameter in verschiedenen Szenarien auf die Treffergenauigkeit des Modells auswirkt. Das allgemeine Vorgehen ist so, dass vier dieser Variablen konstant gehalten werden und die fünfte variiert. Anschließend werden Rückschlüsse gezogen, wie diese fünfte Variable das Ergebnis beeinflusst. Für jede Kombination dieser fünf Variablen wird dasselbe Prozedere angewendet, um sie zu bewerten und mit den anderen Kombinationen zu vergleichen.

Wie in Abbildung 3.1 dargestellt, ist der erste Schritt das Laden eines Datensets, das im Format .CSV (comma-separated values) vorliegt. Eine Vorstellung der ausgewählten Datensets folgt in Abschnitt 3.3. Das Ergebnis ist eine Datenstruktur, die die Zeitreihen eines Aktienkurses enthält. Nach dem Laden stehen für jeden enthaltenen Tag das Datum ("date"), der Name der Aktie ("name"), der Eröffnungspreis ("open"), das Tageshoch ("high"), das Tagestief ("low"), der Schlusspreis ("closing") und das gehandelte Volumen des Tages ("volume") zur Verfügung. Ein Vorteil von Decision Trees und Random Forests ist es, dass die Werte der Features keine Skalierung benötigen (Gron, 2017). Somit entfällt dieser Schritt.

Auch die Auswahl der wichtigsten Features ist im Gegensatz zu anderen Machine Learning Modellen nicht nötig. Die Bäume selektieren nämlich während ihrer Erstellung automatisch die wichtigsten Features insofern, als deren Aufteilungen die Entropie der Klassen am stärksten reduzieren (siehe Abschnitt 2.3.2).

Abbildung 3.1 Vorgehen in der Untersuchung vom Laden des Datensets bis zur Auswertung des Klassifikators

Im zweiten Schritt werden weitere Features aus der technischen Analyse berechnet. Einige, in der Literatur weit verbreitete, technische Features sind der gleitende Durchschnitt, die Volatilität und das Momentum (Drakopoulou, 2016). Der gleitende Durchschnitt der Schlusspreise, c_i , der letzten k Tage, benannt als $ma_- < k > d$, ergibt sich zum Zeitpunkt t aus

$$ma_{-} < k > d = \frac{\sum_{i=t-k+1}^{t} c_i}{k}.$$
 (3.1)

Die Volatilität der letzten k Tage, $volatility_{-} < k > d$, zum Zeitpunkt t wird mit der Standardabweichung

$$volatility_{-} < k > d = \sqrt{\frac{\sum_{i=t-k+1}^{t} (c_i - \bar{x})^2}{k-1}}$$
 (3.2)

gemessen. Das Momentum der letzten k Tage, momentum < k > d, bezeichnet die absolute Veränderung der Schlusspreise bis zum Zeitpunkt t:

$$momentum_{-} < k > d = c_t - ct - k. \tag{3.3}$$

Ebenso wird die prozentuale Veränderung der Schlusspreises der letzten k Tage, $return_past_ < k > d$, als Feature ergänzt:

$$return_past_ < k > d = \frac{c_t}{c_{t-k}} - 1.$$
 (3.4)

Für k werden jeweils die betrachteten Zeithorizonte h_i aus Tabelle 3.1 eingesetzt.

Der dritte Schritt ist die Zuteilung der Klassen. Bisher enthält die Datenstruktur lediglich Features. Um die Auswirkungen unterschiedlicher Klassifikationshorizonte zu untersuchen, wird pro Zeithorizont h_i eine eigene Klassenspalte erstellt. Dazu wird zuerst berechnet, ob der Schlusspreis in den nächsten h_i Tagen steigt oder fällt. Falls der Kurs steigt, wird der Instanz die Klasse 1 (positiv) zugeteilt. Andernfalls lautet die Klasse 0 (negativ). Nach dieser Logik zählt auch ein konstanter Kurs, dessen Werte zu Beginn und am Ende von h_i identisch sind, zur negativen Klasse. Der Klassifikator soll in diesem Fall also keine Kaufempfehlung abgeben. Zeithorizonte werden stets in Handelstagen angegeben, weshalb der maximale Horizont über ein Jahr 250 Tage besitzt. So gibt zum Beispiel die Klasse $class_10d$ der Instanz X vom 01.01.2015 an, ob der Kurs der Aktie bis zum 15.01.2015 steigt oder fällt. Nachdem die Klassen erstellt sind, werden alle Spalten mit Zwischenergebnissen, die zur Erstellung der Klasse verwendet wurden, aus der Datenstruktur entfernt. Dadurch ist gewährleistet, das der Klassifikator nicht von illegal voraussehenden Features profitiert, die die Erfolgsmessung positiv verfälschen würden.

Im vierten Schritt findet die Time Series Cross-Validation statt. Diese ist für die vorliegenden Datensets besser geeignet als andere Cross-Validation Ansätze, da sie die Chronologie der Instanzen beibehält (siehe Abschnitt 2.8). Nicht nur technisch, sondern auch fachlich entspricht das der Problemstellung. Denn der Anwender des Klassifikators trainiert diesen auf historischen Daten, bis zum aktuellen Zeitpunkt, und wendet die Klassifikation dann auf den Zeithorizont h_i an, um eine Investitionsentscheidung zu treffen. In der realen Anwendung stehen nicht, wie es zum Beispiel bei der k-fold Cross-Validation der Fall wäre, Datensätze aus der Zukunft, die zeitlich hinter h_i liegen, zur Verfügung. Deshalb findet in dieser Arbeit die Time Series Cross-Validation Anwendung. Für die Anzahl der Epochen wird 10 gewählt; dadurch bestehen die Testsets pro Datensatz aus näherungsweise $\frac{1}{10}$ * 1259 = 126 Instanzen. Mehr als zehn Epochen würden zu sehr kleinen Testsets führen, und weniger als zehn Epochen würden die Anzahl der Ergebnisse stärker einschränken.

Schritt fünf ist das Training des Klassifikators. Das Training erfolgt auf jenen Daten, die in der aktuellen Epoche als Trainingsdaten indiziert sind. Pro vergangener Epoche stehen ungefähr 126 zusätzliche Trainingsdaten zur Verfügung, die in der jeweils letzten Epoche als Testset dienten. Das bedeutet, dass in der ersten Epoche die wenigsten, und in der letzten Epoche die meisten Trainingsdaten vorhanden sind. Es werden in dieser Arbeit drei Klassifikatoren verglichen. Ein Dummy Classifier dient als Vergleichsmaßstab. Um einen Klassifikator sinnvoll in der Realität einsetzen zu können, muss er eine höhere Trefferrate als der Dummy Classifier erreichen. Der Dummy Classifier betrachtet nur die Verteilung der Klassen in den Trainingsdaten, nicht jedoch die sonstigen Features. Dann errechnet er die Wahrscheinlichkeit $P(y_i)$ pro Klasse y_i . Bei der Klassifikation unbekannter Instanzen erteilt er jeder Instanz dann mit Wahrscheinlichkeit $P(y_i)$ die Klasse y_i . Der Dummy Classifier nimmt an, dass die Klassenverteilung auf den Trainingsdaten stets mit der Verteilung auf den Testdaten übereinstimmt. Ausgehend von den Treffergenauigkeiten dieses simplen

Klassifikators lassen sich andere Modelle vergleichen. Die weiteren zwei Klassifikatoren sind der der Decision Tree (siehe Abschnitt 2.3) und der Random Forest (siehe Abschnitt 2.5).

Der sechste Schritt ist das Hyperparameter-Tuning, mit dem Decision Trees und Random Forests verbessert werden können. Für jeden der beiden Klassifikatoren werden zuerst zentrale Hyperparameter aus den Tabellen 2.1 und 2.2 ausgewählt. Dann werden für diese festgelegte Werte auf einem Validierungsset ausprobiert und verglichen, um die beste Kombination zu ermitteln. Wie auch bei der Bewertung der Klassifikatoren wird die Güte hier mit dem F-Maß bestimmt. Für den Hyperparameter der maximalen Anzahl an betrachteten Features ist die Wurzel der Anzahl an Trainingsinstanzen ein gängiger Standardwert (Probst u. a., 2018). In dieser Arbeit werden beim Hyperparameter-Tuning Werte bis maximal zu diesem Standardwert verglichen, um das Overfitting zu reduzieren. Auch für die anderen Hyperparameter der maximalen Tiefe, der minimalen Anzahl an Instanzen für ein neues Blatt werden die zu vergleichenden Werte bis maximal zu diesem Standardwert gewählt. Die Anzahl der Basisklassifikatoren im Random Forest stellt eine Ausnahme dar, da sie nicht gleichermaßen durch Tuning optimierbar ist, sondern lediglich hinreichend hoch gesetzt werden muss (Probst u. a., 2018). Deshalb wird dieser Hyperparameter nach dem Tuning separat untersucht.

Neben dieser sogenannten Grid Search, bei der die zu vergleichenden Werte im Vorhinein vom Anwender festzulegen sind, gibt es auch noch eine zufallsgesteuerte Alternative, die Randomized Grid Search. Dann werden die zu vergleichenden Hyperparameter-Werte nicht explizit vom Anwender angegeben. Stattdessen werden zufällige Kombinationen solange betrachtet, bis eine vorher festgelegte maximale Anzahl zu vergleichender Kombinationen erreicht ist (Feurer u. Hutter, 2019). Die Randomized Grid Search ist besonders erfolgreich, wenn es nur wenige Features gibt, die mit sehr hohen Gewichtungen die wichtigsten sind (Feurer u. Hutter, 2019). Das Hyperparameter-Tuning wird in jeder der zehn Epochen aus der Time Series Cross-Validation separat ausgeführt. Ein einmaliges Tuning auf dem gesamten Datenset ist nicht möglich, da der Klassifikator sonst bereits Testdaten gesehen hätte und die Trefferrate positiv verfälscht würde.

Der letzte Schritt ist schließlich die Auswertung des Klassifikators in der jeweiligen Kombination der fünf Untersuchungsvariablen. Die Vorhersagen des trainierten, und gegebenenfalls optimiertem, Klassifikators für das unbekannte Testset werden mit den richtigen Klassen anhand einer Confusion Matrix verglichen. Die Erfolgsmessung durch Precision, Recall und das F-Maß erfolgt wie in Abschnitt 2.6 beschrieben. Ebenso werden die Gewichtungen der einzelnen Features, nachfolgend als Feature Importances bezeichnet, analysiert. Im Falle von Decision Trees und Random Forests ergeben sich diese Feature Importances aus der relativen Reduktion eines Unreinheitsmaßes, die der Baum durch Aufteilungen mittels des jeweiligen Features erreicht.

Diese sieben Schritte werden mehrmals durchgeführt, um die Ergebnisse je nach Kombination der Untersuchungsvariablen zu vergleichen und die Forschungsfragen zu beantworten. Für jedes Datenset (11 Möglichkeiten), mit oder ohne Feature Engineering (2 Möglichkeiten), mit einer der Klassen (6 Möglichkeiten), werden drei Klassifikatoren (3 Möglichkeiten), mit oder ohne Hyperparameter-Tuning (2 Möglichkeiten), trainiert und getestet. Insgesamt ergeben sich theoretisch $11 \times 2 \times 6 \times 3 \times 2 = 792$ mögliche Kombinationen. Von diesen werden im Ergebnisteil allerdings nur die für die Forschungsfragen relevantesten Kombinationen direkt miteinander verglichen. Ebenso werden Durchschnitte über eine der fünf

Dimensionen, wie beispielsweise über alle elf Datensets, berechnet, um übersichtliche und aussagekräftige Ergebnisse zu erhalten.

3.2 Tool-Stack und Bibliotheken

Die Untersuchungen in dieser Arbeit werden in einem Jupyter Notebook in der Python-Version 3.6.6 umgesetzt. Jupyter ist ein Open-Source Projekt mit dem Ziel, eine interaktive, Web-basierte und sprachenunabhängige Entwicklungsumgebung für Data Science-Anwendungen bereitzustellen. Ein Vorteil von Jupyter ist, dass sich Code, Graphiken sowie Markup-Texte in einer gemeinsamen Datei befinden, und man als Anwender die Ergebnisse somit direkt verwerten kann. Die Programmierung findet auf Azure Notebooks, einem Microsoft-Service für gehostete Jupyter Notebooks, statt. Als Kernel dient Python 3.6.6 aus der Anaconda Distribution, die bereits viele Machine Learning-relevante Pakete enthält.

Diese Arbeit nutzt die Pakete Scitkit-learn, pandas, Numpy, Matplotlib, Seaborn und Graphviz. Die Open-Source Bibliothek Scitkit-learn stellt Implementierungen für eine Vielzahl von Machine Learning Algorithmen, wie dem Decision Tree oder dem Random Forest, bereit (Pedregosa u. a., 2011). Auch nützliche Methoden rund um den Machine Learning Prozess deckt Scitkit-learn ab, so zum Beispiel die Aufteilung von Daten in Training- und Testsets oder das Hyperparameter-Tuning. pandas bietet Werkzeuge zur Verarbeitung und Analyse von Daten an, wie zum Beispiel das zweidimensionale DataFrame. NumPy liefert eine effiziente Array-Implementierung und wird für mathematische Operationen, zum Beispiel zur Mittelwertberechnung oder Sortierung, verwendet. Matplotlib ist eine verbreitete Bibliothek zur Visualisierung in Python, die verschiedene Diagrammtypen unterstützt. Seaborn ist eine Erweiterung von Matplotlib und ist auf attraktive und informative Graphiken spezialisiert. Zur Visualisierung von Decision Trees wird Graphviz verwendet.

Das öffentliche GitHub Repository https://github.com/feschu/BSc-Thesis-ML enthält das Jupyter Notebook, die Datensets sowie die generierten Graphiken aus dieser Arbeit. Um diese Arbeit reproduzierbar zu halten, finden sich in Sektion 6 des Jupyter Notebooks die Zellen, mit welchen sämtliche Ergebnisse und Graphiken generiert wurden.

3.3 Datengrundlage

Elf Datensets bilden die Grundlage der Untersuchungen. Es handelt sich um die Aktienkurse der Unternehmen Apple (AAPL), Amazon (AMZN), Cisco (CSCO), General Electric (GE), Google (GOOGL), Hewlett-Packard (HP), IBM (IBM), Intel (INTC), Microsoft (MSFT), Western Union (WU) und Xerox (XRX) im Zeitraum vom 08.02.2013 bis zum 07.02.2018. Pro Aktie stehen somit 1.259 Handelstage zur Verfügung. Bei der Auswahl der Aktien wurde darauf geachtet, dass sie sich in ihrem Verlauf den fünf Jahren unterscheiden. So folgte AMZN einem steigenden Trend, HP einem ausgeglichen Trend und GE einem fallenden Trend, wie in Abbildung ?? zu sehen.

Alle elf Unternehmen sind im Technologie-Sektor angesiedelt, teilweise jedoch mit unterschiedlichen Schwerpunkten. Während Google auf Software spezialisiert ist und Umsatz

größtenteils mit Werbung generiert, ist Cisco zum Beispiel auf Infrastruktur fokussiert. Die Datensets stammen aus dem Kaggle-Datenset SS&P 500 stock data"https://www.kaggle.com/camnugent/sandp500. Kaggle ist eine Plattform, die Machine Learning Wettbewerbe veranstaltet und es den Nutzern unter anderem ermöglicht, Datensets auszutauschen und die Anwendung von Machine Learning Algorithmen auf diesen zu diskutieren.

Literaturverzeichnis

- [Abdou u. Pointon 2011] Abdou, Hussein; Pointon, John: Credit Scoring, Statistical Techniques and Evaluation Criteria: A Review of the Literature. In: *Int. Syst. in Accounting, Finance and Management* 18 (2011), 04, S. 59–88. http://dx.doi.org/10.1002/isaf.325. DOI 10.1002/isaf.325
- [Alavi u. a. 2015] Alavi, Seyed E.; Sinaei, Hasanali; Afsharirad, Elham: Predict the trend of stock prices using machine learning techniques. In: *International Academic Journal of Economics* 2 (2015), S. 1–11
- [Alpaydın 2008] Alpaydın, E.: Maschinelles Lernen. Oldenbourg, 2008. ISBN 9783486581140
- [Bergmeir u. Benitez 2011] Bergmeir, C.; Benitez, J. M.: Forecaster performance evaluation with cross-validation and variants. In: 2011 11th International Conference on Intelligent Systems Design and Applications, 2011, S. 849–854
- [Breiman 2001] Breiman, Leo: Random Forests. In: *Machine Learning* 45 (2001), Oktober, Nr. 1, S. 5–32. http://dx.doi.org/10.1023/A:1010933404324. DOI 10.1023/A:1010933404324. ISSN 0885–6125
- [Cerqueira u. a. 2019] Cerqueira, Vitor; Torgo, Luis; Mozetic, Igor: Evaluating time series forecasting models: An empirical study on performance estimation methods. 2019
- [Cutler u. a. 2007] Cutler, D. R.; Edwards, Thomas C.; Beard, Karen H.; Cutler, Adele; Hess, Kyle; Gibson, Jacob; Lawler, Joshua J.: Random forests for classification in ecology. In: *Ecology* 88 11 (2007), S. 2783–92
- [Di 2014] DI, Xinjie: Stock Trend Prediction with Technical Indicators using SVM / Stanford University. 2014. Forschungsbericht
- [Diaz-Uriarte u. Alvarez 2006] DIAZ-URIARTE, Ramon; ALVAREZ, Sara: Gene Selection and Classification of Microarray Data Using Random Forest. In: *BMC bioinformatics* 7 (2006), 02, S. 3. http://dx.doi.org/10.1186/1471-2105-7-3. DOI 10.1186/1471-2105-7-3
- [Drakopoulou 2016] Drakopoulou, Veliota: A Review of Fundamental and Technical Stock Analysis Techniques. In: *Journal of Stock & Forex Trading* 05 (2016), 01. http://dx.doi.org/10.4172/2168-9458.1000163. DOI 10.4172/2168-9458.1000163
- [Fama 1965] FAMA, Eugene F.: Random Walks in Stock-Market Prices. In: *Financial Analysts Journal* 21 (1965), S. 55–59
- [Feurer u. Hutter 2019] Feurer, Matthias; Hutter, Frank: *Automated Machine Learning Methods, Systems, Challenges*. Springer International Publishing, 2019. ISBN 978–3–030–05318–5

- [Freund u. Schapire 1997] FREUND, Yoav; SCHAPIRE, Robert E.: A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. In: *Journal of Computer and System Sciences* 55 (1997), Nr. 1, S. 119 139. http://dx.doi.org/https://doi.org/10.1006/jcss.1997.1504. DOI https://doi.org/10.1006/jcss.1997.1504. ISSN 0022–0000
- [Gron 2017] Gron, Aurlien: Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. 1st. O'Reilly Media, Inc., 2017. ISBN 1491962291, 9781491962299
- [Gupta u. a. 2017] Gupta, Bhumika; Rawat, Aditya; Jain, Akshay; Arora, Arpit; Dhami, Naresh: Analysis of Various Decision Tree Algorithms for Classification in Data Mining. In: International Journal of Computer Applications 163 (2017), 04, S. 15–19. http://dx.doi.org/10.5120/ijca2017913660. DOI 10.5120/ijca2017913660
- [Howard u. Bowles 2012] Howard, Jeremy; Bowles, Mike: The Two Most Important Algorithms in Predictive Modeling Today. https://conferences.oreilly.com/strata/strata2012/public/schedule/detail/22658, 2012. Besucht: 19. Oktober 2019
- [Khaidem u. a. 2016] Khaidem, Luckyson; Saha, Snehanshu; Basak, Suryoday; Kar, Saibal; Dey, Sudeepa: Predicting the direction of stock market prices using random forest. In: *Applied Mathematical Finance* (2016), 04
- [Lendasse u. a. 2002] LENDASSE, Amaury; BODT, E.; WERTZ, Vincent; VERLEYSEN, Michel: Non-linear financial time series forecasting Application to the Bel 20 stock market index. In: http://dx.doi.org/10.1051/ejess:2000110 14 (2002), 11. http://dx.doi.org/10.1051/ejess:2000110
- [Li 2016] Li, C.: The application of high-dimensional data classification by random forest based on hadoop cloud computing platform. 51 (2016), 01, S. 385–390. http://dx.doi.org/10.3303/CET1651065. DOI 10.3303/CET1651065
- [Lohrmann u. Luukka 2019] LOHRMANN, Christoph; LUUKKA, Pasi: Classification of intraday S&P500 returns with a Random Forest. In: *International Journal of Forecasting* 35 (2019), Nr. 1, S. 390–407. http://dx.doi.org/10.1016/j.ijforecast.2018. DOI 10.1016/j.ijforecast.2018
- [Mitchell 1997] MITCHELL, Thomas M.: *Machine Learning*. 1. New York, NY, USA: McGraw-Hill, Inc., 1997. ISBN 0070428077, 9780070428072
- [Pasupulety u. a. 2019] Pasupulety, U.; Abdullah Anees, A.; Anmol, S.; Mohan, B. R.: Predicting Stock Prices using Ensemble Learning and Sentiment Analysis. In: 2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), 2019, S. 215–222
- [Pedregosa u. a. 2011] Pedregosa, Fabian; Varoquaux, Gaël; Gramfort, Alexandre; Michel, Vincent; Thirion, Bertrand; Grisel, Olivier; Blondel, Mathieu; Prettenhofer, Peter; Weiss, Ron; Dubourg, Vincent; Vanderplas, Jake; Passos, Alexandre; Cournapeau, David; Brucher, Matthieu; Perrot, Matthieu; Duchesnay, Édouard: Scikit-learn: Machine Learning in Python. In: *J. Mach. Learn. Res.* 12 (2011), November, S. 2825–2830. ISSN 1532–4435

- [Prasad u. a. 2006] Prasad, Anantha; Iverson, Louis; Liaw, Andy: Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction. In: *Ecosystems* 9 (2006), 03, S. 181–199. http://dx.doi.org/10.1007/s10021-005-0054-1. DOI 10.1007/s10021-005-0054-1
- [Probst u. a. 2018] Probst, Philipp; Boulesteix, Anne-Laure; Wright, Marvin: *Hyperparameters and Tuning Strategies for Random Forest*. 04 2018
- [Quinlan 1986] QUINLAN, J. R.: Induction of decision trees. In: *Machine Learning* 1 (1986), Mar, Nr. 1, S. 81–106. http://dx.doi.org/10.1007/BF00116251. DOI 10.1007/BF00116251
- [Russell u. Norvig 2009] Russell, Stuart; Norvig, Peter: Artificial Intelligence: A Modern Approach. 3rd. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009. – ISBN 0136042597, 9780136042594
- [Sadia u. a. 2019] SADIA, K. H.; SHARMA, Aditya; PAUL, Adarrsh; PADHI, Sarmistha; SANYAL, Saurav: Stock Market Prediction Using Machine Learning Algorithms. In: *International Journal of Engineering and Advanced Technology* 8 (2019), 04
- [Shannon 1948] Shannon, Claude E.: A Mathematical Theory of Communication. In: *The Bell System Technical Journal* 27 (1948), 7, Nr. 3, S. 379–423. http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x. DOI 10.1002/j.1538-7305.1948.tb01338.x
- [Shotton u. a. 2011] Shotton, J.; Fitzgibbon, A.; Cook, M.; Sharp, T.; Finocchio, M.; Moore, R.; Kipman, A.; Blake, A.: Real-time Human Pose Recognition in Parts from Single Depth Images. In: *Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition*, IEEE Computer Society, 2011 (CVPR '11). ISBN 978–1–4577–0394–2, S. 1297–1304
- [Svetnik u. a. 2003] Svetnik, Vladimir; Liaw, Andy; Tong, Christopher; Culberson, J. C.; Sheridan, Robert P.; Feuston, Bradley P.: Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling. In: *Journal of Chemical Information and Computer Sciences* 43 (2003), Nr. 6, S. 1947–1958. http://dx.doi.org/10.1021/ci034160g. DOI 10.1021/ci034160g. PMID: 14632445
- [Tang u. a. 2018] TANG, Cheng; GARREAU, Damien; Luxburg, Ulrike von: When do random forests fail?, 2018
- [Tin Kam Ho 1998] Tin Kam Ho: The random subspace method for constructing decision forests. In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* 20 (1998), Aug, Nr. 8, S. 832–844. http://dx.doi.org/10.1109/34.709601. DOI 10.1109/34.709601
- [Turney 2002] TURNEY, Peter: Types of Cost in Inductive Concept Learning. In: *CoRR* cs.LG/0212034 (2002), 12
- [Verleysen u. François 2005] Verleysen, Michel; François, Damien: The Curse of Dimensionality in Data Mining and Time Series Prediction, 2005, S. 758–770
- [Whitley u. Watson 2005] WHITLEY, L. D.; WATSON, Jean-Paul: Complexity Theory and the No Free Lunch Theorem, 2005

[Wolpert 1992] Wolpert, David H.: Stacked generalization. In: *Neural Networks* 5 (1992), Nr. 2, S. 241 - 259. http://dx.doi.org/https://doi.org/10.1016/S0893-6080 (05) 80023-1. - DOI https://doi.org/10.1016/S0893-6080 (05) 80023-1.