TECHNIQUES AVANCÉES POUR L'APPRENTISSAGE — COURS 2

CES DATA SCIENTIST, TÉLÉCOM PARISTECH

Aurélien Bellet

Inria Lille

March 12, 2016

MENU D'AUJOURD'HUI

- 1. Le perceptron revisité
- 2. Support Vector Machines linéaires
- 3. Cas non linéaire et noyaux

4. Support Vector Regression

LE PERCEPTRON REVISITÉ

APPRENTISSAGE SUPERVISÉ : CADRE PROBABILISTE ET STATISTIQUE

- · X : variable explicative, vecteur aléatoire dans $\mathcal{X} = \mathbb{R}^p$
- Y : variable à prédire, aléatoire dans $\mathcal{Y} = \{1, \dots, C\}$ (classification) ou $\mathcal{Y} = \mathbb{R}$ (régression)
- P : loi de probabilité jointe de (X, Y), fixée mais inconnue
- $\mathcal{S} = \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1}^n$: échantillon i.i.d. tiré selon la loi P
- · \mathcal{H} : collection de classifieurs / modèles, $h \in \mathcal{H}$
- · L : perte mesurant les erreurs d'un classifieur / modèle
 - Exemple (classification) : $L(y, h(x)) = \begin{cases} 1 & \text{si } h(x) \neq y \\ 0 & \text{sinon} \end{cases}$
 - Exemple (régression): $L(y, h(x)) = (y h(x))^2$
- Objectif: déterminer à partir de S la fonction $h \in \mathcal{H}$ qui minimise $R(h) = \mathbb{E}_{(X,Y) \sim P}[L(Y,h(X))]$

CLASSIFIEURS LINÉAIRES

- Classification binaire : $\mathcal{Y} = \{-1, 1\}$
- On choisit $\mathcal H$ comme étant la classe des séparateurs linéaires dans $\mathcal X=\mathbb R^p$
- Un séparateur linéaire $h \in \mathcal{H}$ est défini par un vecteur de poids $w \in \mathbb{R}^p$ et un biais $b \in \mathbb{R}$:

$$h(x) = sign(w^{T}x + b)$$

= $sign\left(\sum_{i=1}^{p} w^{i}x^{i} + b\right)$

CLASSIFIEURS LINÉAIRES

- $h \in \mathcal{H}$ définit un hyperplan d'équation $w^T x + b = 0$ séparant \mathbb{R}^p en deux régions
- Exemple avec $w = [1, 3/2]^T$ et différentes valeurs de b:

- On a p + 1 paramètres à apprendre (w et b)
- · Un algorithme classique : le perceptron de Rosenblatt

Algorithme du perceptron entrée : Ensemble d'apprentissag

```
entrée : Ensemble d'apprentissage S
Initialiser w = [0, ..., 0], b = 0, R = \max_{1 \le i \le n} ||x_i||_2
tant que il y a au moins une erreur faire
   pour i = 1, 2, \ldots, n faire
      \operatorname{si} v_i(w^Tx_i+b) < 0 \text{ alors}
         W = W + V_i X_i
         b = b + v_i R^2
      fin si
   fin pour
fin tant que
retourner (w, b)
```

· L'algorithme s'arrête si $\mathcal S$ est linéairement séparable

NOTION DE MARGE

• Marge de l'observation (x_i, y_i) par rapport à un séparateur linéaire

$$\gamma_i = y_i(w^T x_i + b)$$

- Si $\gamma_i > 0$, (x_i, y_i) est bien classifié
- \cdot Marge du séparateur par rapport à un ensemble ${\cal S}$

$$\gamma = \min_{1 \le i \le n} \gamma_i$$

 Les marges correspondent aux marges géométriques (distance Euclidienne entre les observations et le séparateur) quand on considère le séparateur normalisé

$$w = \frac{1}{\|w\|_2} w, \quad b = \frac{1}{\|w\|_2} b$$

NOTION DE MARGE

NOTION DE MARGE

CONVERGENCE DU PERCEPTRON

Convergence de l'algorithme du perceptron

Soit $R = \max_{1 \le i \le n} \|x_i\|_2$. S'il existe un hyperplan (w, b) tel que

$$||w|| = 1,$$

$$y_i(w^T x_i + b) \ge \gamma \quad \forall i \in \{1, \dots, n\},$$

alors l'algorithme du perceptron fait au plus $(2R/\gamma)^2$ erreurs.

FORME DUALE DU PERCEPTRON

- L'algorithme du perceptron forme w en ajoutant (resp. retirant) itérativement du vecteur initial les observations positives (resp. négatives) mal classées
- On a ainsi une représentation dans un autre espace (dit dual) du classifieur appris

$$h(x) = \operatorname{sign}\left(\underbrace{\sum_{i=1}^{n} \alpha_i y_i x_i^T}_{w} x + b\right)$$

• α_i est positif et proportionnel au nombre de fois où x_i a été mal classifié \rightarrow les exemples "difficiles" ont un α_i élevé

· Algorithme équivalent apprenant α directement

Algorithme dual du perceptron

```
entrée : Ensemble d'apprentissage S
Initialiser \alpha = [0, ..., 0], b = 0, R = \max_{1 \le i \le n} ||x_i||_2
tant que il y a au moins une erreur faire
    pour i = 1, 2, ..., n faire
       \operatorname{si} y_i(\sum_{i=1}^n \alpha_i y_i x_i^\mathsf{T} x_i + b) \leq 0 \operatorname{alors}
          \alpha_i = \alpha_i + 1
          b = b + v_i R^2
       fin si
   fin pour
fin tant que
retourner (w, b)
```

SVM LINÉAIRES

CHOIX DU SÉPARATEUR LINÉAIRE

- Pour l'instant, supposons que ${\mathcal S}$ est linéairement séparable
- · Quel hyperplan séparateur choisir ?

MAXIMISATION DE LA MARGE

- Principe : fixer la marge fonctionnelle à 1 et maximiser la marge géométrique
- Une marge fonctionnelle à 1 pour un exemple positif x⁺ et un exemple négatif x⁻ signifie

$$\begin{cases} w^{T}x^{+} + b &= 1 \\ -(w^{T}x^{-} + b) &= 1 \end{cases} \iff \begin{cases} w^{T}x^{+} &= 1 - b \\ w^{T}x^{-} &= -b - 1 \end{cases}$$

· La marge géométrique est alors

$$\begin{cases} \gamma & = & \frac{1}{\|w\|_2} w^T x^+ + \frac{1}{\|w\|_2} b \\ \gamma & = & -\frac{1}{\|w\|_2} w^T x^- - \frac{1}{\|w\|_2} b \end{cases} \implies \gamma = \frac{1}{\|w\|_2}$$

SVM LINÉAIRE: CAS SÉPARABLE

Formulation primale du SVM linéaire (cas séparable)

$$\min_{w \in \mathbb{R}^p, b \in \mathbb{R}} \frac{1}{2} ||w||_2^2$$
s.t. $y_i(w^T x_i + b) \ge 1 \quad \forall i \in \{1, \dots, n\}$

• Assure une solution unique : il s'agit du séparateur maximisant la marge géométrique

SVM LINÉAIRE: CAS SÉPARABLE

INTERLUDE : CONVEXITÉ

Définition: ensemble convexe

Un ensemble C est convexe C s'il contient le segment reliant tout couple de points de C:

$$x_1, x_2 \in C$$
, $0 \le \alpha \le 1 \implies \alpha x_1 + (1 - \alpha)x_2 \in C$

Convexe Non convexe

INTERLUDE : CONVEXITÉ

Définition: fonction convexe

La fonction $f: \mathbb{R}^p \to \mathbb{R}$ est convexe si

$$x_1,x_2\in\mathbb{R}^p,\quad 0\leq\alpha\leq 1\quad\Longrightarrow\quad f(\alpha x_1+(1-\alpha)x_2)\leq\alpha f(x_1)+(1-\alpha)f(x_2)$$

CARACTÉRISATION DU PROBLÈME

Formulation primale du SVM linéaire (cas séparable)

$$\min_{w \in \mathbb{R}^p, b \in \mathbb{R}} \quad \frac{1}{2} ||w||_2^2$$
s.t. $y_i(w^T x_i + b) \ge 1 \quad \forall i \in \{1, \dots, n\}$

- · La fonction objective est quadratique et convexe en w
- · Les contraintes sont linéaires en w et b
- C'est ce que l'on appelle un problème d'optimisation quadratique convexe
- Il existe beaucoup d'algorithmes d'optimisation numérique permettant de résoudre efficacement cette classe de problème

VERS UNE FORMULATION DUALE

• Lagrangien du problème convexe $\min_{x} f(x)$ s.t. $g(x) \le 0$

$$L(x, \alpha) = f(x) + \alpha g(x), \quad \alpha \ge 0$$

· Problème dual équivalent au primal

$$\max_{\alpha \geq 0} \inf_{x} L(x, \alpha)$$

· Dans notre cas, on a

$$L(w, b, \alpha) = \frac{1}{2} \|w\|_2^2 + \sum_{i=1}^n \alpha_i [1 - y_i (w^T x_i + b)], \quad \alpha_1, \dots, \alpha_n \ge 0$$

Conditions d'optimalité de Karush-Kuhn-Tucker (KKT)

Au point extremum, on a

1.
$$\frac{\partial L(w,b,\alpha)}{\partial w} = w - \sum_{i=1}^{n} y_i \alpha_i X_i = 0$$

2.
$$\frac{\partial L(w,b,\alpha)}{\partial b} = \sum_{i=1}^{n} y_i \alpha_i = 0$$

3.
$$\alpha_i \geq 0$$
, $\forall i \in \{1, \ldots, n\}$

4.
$$\alpha_i[1-y_i(w^Tx_i+b)]=0, \forall i \in \{1,\ldots,n\}$$

 On obtient le problème dual en remplaçant la valeur de w donnée par (KKT 1) dans le Lagrangien L, en développant puis en utilisant (KKT 2)

FORMULATION DUALE (CAS SÉPARABLE)

Formulation duale du SVM linéaire (cas séparable)

$$\max_{\alpha \in \mathbb{R}_{+}^{n}} \quad \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

- · C'est encore un problème quadratique convexe
- Le vecteur de poids optimal a la forme $w = \sum_{i=1}^{n} \alpha_i y_i x_i$ (KKT 1)
- Pour $1 \le i \le n$, on remarque par (KKT 4)
 - Cas 1: $y_i(w^Tx_i + b) > 1 \Rightarrow x_i$ n'est pas sur la marge et $\alpha_i = 0$
 - Cas 2 : $y_i(w^Tx_i + b) = 1 \Rightarrow \alpha_i \neq 0$ et on en déduit b
- Le w optimal est défini par les points sur la marge : ce sont les fameux vecteurs supports

SVM LINÉAIRE: CAS SÉPARABLE

SVM LINÉAIRE: CAS NON SÉPARABLE

- · Comment traiter le cas non séparable ?
- Autoriser la violation des contraintes de marge, mais infliger une pénalité quand cela arrive

Formulation primale du SVM linéaire (cas non séparable)

$$\min_{w \in \mathbb{R}^p, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \quad \frac{1}{2} ||w||_2^2 \quad + \quad C \sum_{i=1}^n \xi_i$$
s.t.
$$y_i(w^T x_i + b) \ge 1 - \xi_i \quad \forall i \in \{1, \dots, n\}$$

$$\xi_i \ge 0 \quad \forall i \in \{1, \dots, n\}$$

- L'hyperparamètre *C* permet de régler le compromis entre maximiser la marge (régularisation) et minimiser les violations
- $C = +\infty$ permet de retrouver la formulation des marges strictes

SVM LINÉAIRE: CAS NON SÉPARABLE

SVM LINÉAIRE: CAS NON SÉPARABLE

Formulation primale équivalente du SVM linéaire (non séparable)

$$\min_{w \in \mathbb{R}^p, b \in \mathbb{R}} \quad \frac{1}{2} \|w\|_2^2 \quad + \quad C \sum_{i=1}^n \left[y_i (w^T x_i + b) \right]_+$$

- La fonction $[a]_+ = \max(0, 1 a)$ est la perte hinge
- Note: cette formulation sans contrainte se prête à un algorithme d'optimisation de type gradient stochastique adapté au cas où n est grand

FORMULATION DUALE (CAS NON SÉPARABLE)

Formulation duale du SVM linéaire (cas non séparable)

$$\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_i^\mathsf{T} x_j$$
s.t.
$$\sum_{i=1}^n \alpha_i y_i = 0$$

$$0 \le \alpha_i \le \mathsf{C} \quad \forall i \in \{1, \dots, n\}$$

- · La forme duale est presque la même que dans le cas séparable
- Intuition pour la nouvelle contrainte : elle empêche de mettre trop de poids sur un exemple difficile pour bien le classifier

AU DELÀ DES MODÈLES LINÉAIRES

- En pratique, on a souvent affaire à des données qui ont une structure non linéaire
- Une solution serait de travailler avec une classe de modèles plus complexes
- · Mais on perdra la simplicité des modèles linéaires
 - · Simples et efficaces à entraîner
 - · Prédiction rapide
 - · Robustesse au sur-apprentissage
- Approche SVM : apprendre un classifieur linéaire dans un espace obtenu par projection non linéaire !

EXEMPLE DE PROJECTION UTILE

· La loi de la gravitation universelle de Newton

$$f(m_1, m_2, r) = G \frac{m_1 m_2}{r^2}$$

où m_1, m_2 sont les masses, r la distance entre le centre des masses, et G la constante de gravitation

- Cette fonction est non linéaire : on ne peut donc pas l'apprendre avec une machine linéaire
- Changement de coordonnées avec la projection non linéaire ϕ

$$\phi([m_1, m_2, r]) = [\log m_1, \log m_2, \log r]^T = [x, y, z]^T$$

· On a alors une fonction linéaire de x, y, z

$$g(x, y, z) = \log f(\phi([m_1, m_2, r]))$$

= $\log G + \log m_1 + \log m_2 - 2 \log r = C + x + y - 2z$

SÉPARATEUR LINÉAIRE APRÈS PROJECTION NON LINÉAIRE

• Considérons le classifieur linéaire dans l'espace $\mathcal F$ induit par la projection $\phi:\mathcal X\to\mathcal F$

$$h(x) = sign(w^{T}\phi(x) + b)$$

= $sign\left(\sum_{i=1}^{|\mathcal{F}|} w^{i}\phi^{i}(x) + b\right)$

 \cdot Celui-ci correspond à un classifieur non linéaire dans ${\mathcal X}$

AUGMENTER LA DIMENSION

- Un simple changement de coordonnées peut ne pas suffire pour rendre les données linéairement séparables
- On peut projeter les données dans un espace de plus grande dimension
- Par exemple, supposons que $\mathcal{X}=\mathbb{R}^2$ mais que des connaissances sur notre problème nous disent que l'on peut l'apprendre parfaitement avec des monômes de degré 2
- · C'est alors une bonne idée de travailler dans $\mathcal{F}=\mathbb{R}^3$ plutôt que $\mathcal{X}=\mathbb{R}^2$ en utilisant la transformation

$$\phi([x^1, x^2]) = (x^1x^1, x^2x^2, x^1x^2)$$

AUGMENTER LA DIMENSION

MALÉDICTION DE LA DIMENSION

- Et si on a besoin de davantage de dimensions, par exemple de monômes de plus grand degré ?
- · Nombre de monômes de degré d à partir de p variables

$$\begin{pmatrix} p+d-1\\ d \end{pmatrix}$$

- $p = 5, d = 5 \rightarrow \text{need 126 dimensions}$
- $p = 10, d = 5 \rightarrow \text{need } 11628 \text{ dimensions}$
- $p = 20, d = 10 \rightarrow \text{need 20030010 dimensions}$
- Malédiction de la dimension : l'apprentissage devient très coûteux en temps de calcul si la dimension est trop grande

RETOUR SUR LES FORMULATIONS DUALES

Formulation duale du SVM linéaire (cas non séparable)

$$\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \phi(\mathbf{x}_i)^\mathsf{T} \phi(\mathbf{x}_j)$$
s.t.
$$\sum_{i=1}^n \alpha_i y_i = 0$$

$$0 \le \alpha_i \le C \quad \forall i \in \{1, \dots, n\}$$

• Contrairement à la formulation primale, on n'a pas besoin de manipuler explicitement les $\phi(x_i)$, mais seulement les produits scalaires $\phi(x_i)^T \phi(x_j)$ qui sont les entrées de la matrice de Gram G

$$G_{i,j} = \phi(x_i)^T \phi(x_j)$$

 Cette observation est valable pour les autres formulations duales étudiées (perceptron, SVM pour le cas séparable)

Definition (Fonction noyau)

Une fonction symétrique $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ est un *noyau* si et seulement si il existe une projection $\phi: \mathcal{X} \to \mathcal{H}$ de \mathcal{X} vers un espace de Hilbert \mathcal{H} telle que K s'écrit comme un produit scalaire dans \mathcal{H} :

$$K(x_1, x_2) = \phi(x_1)^T \phi(x_2), \quad \forall x_1, x_2 \in \mathcal{X}.$$

De manière équivalente, *K* est un *noyau* si et seulement si il est semi-défini positif (SDP), c'est-à-dire

$$\sum_{i=1}^n \sum_{j=1}^n c_i c_j K(x_i, x_j) \ge 0$$

pour tous les $x_1, \ldots, x_n \in \mathcal{X}$ et $c_1, \ldots, c_n \in \mathbb{R}$.

EXEMPLES DE FONCTIONS NOYAUX

- Noyau linéaire : $K(x_1, x_2) = x_1^T x_2$
 - · Équivalent au cas linéaire
- Noyaux polynomiaux : $K(x_1, x_2) = (x_1^T x_2 + c)^d$ avec $c \in \mathbb{R}, d \in \mathbb{N}$
 - $\phi(x)$ contient tous les monômes de degré au plus d (voir plus bas)
- Noyau Gaussien : $K(x_1, x_2) = \exp\left(\frac{\|x_1 x_2\|^2}{2\sigma^2}\right)$ avec $\sigma^2 \ge 0$
 - $\phi(x)$ est de dimension infinie! C'est le plus utilisé
- Note : il existe de nombreux noyaux pour les données structurées
 - Par exemple, le noyau k-spectrum : $\phi(x)$ contient le nombre d'occurrences dans la chaîne de caractères x de chaque sous-séquence possible de taille k

CONSTRUCTION DE NOYAUX

- On peut combiner plusieurs noyaux de manière à obtenir un nouveau noyau valide
- Par exemple, si K_1 et K_2 sont des noyaux alors les fonctions suivantes sont aussi des noyaux :
 - $K(x_1,x_2) = K_1(x_1,x_2) + K_2(x_1,x_2)$
 - $K(x_1, x_2) = aK_1(x_1, x_2)$ pour $a \ge 0$
 - $K(x_1, x_2) = K_1(x_1, x_2)K_2(x_1, x_2)$
 - $K(x_1, x_2) = x_1^T B x_2$ pour $B \in \mathbb{R}^{p \times p}$ semi-définie positive

NOYAU POLYNOMIAL HOMOGÈNE DE DEGRÉ 2

• Considérons tout d'abord le noyau polynomial homogène de degré 2 : $K(x_1, x_2) = (x_1^T x_2)^2$

$$K(x_1, x_2) = \left(\sum_{i=1}^{p} x_1^i x_2^i\right)^2 = \left(\sum_{i=1}^{p} x_1^i x_2^i\right) \left(\sum_{j=1}^{p} x_1^j x_2^j\right)$$
$$= \sum_{i,j=1}^{p} x_1^i x_2^j x_1^j x_2^j = \sum_{i,j=1}^{p} (x_1^i x_1^j)(x_2^i x_2^j)$$

• K est donc un noyau avec $\phi(x) = [x^i x^j]_{i,j=1}^p$, un vecteur de dimension $\binom{p+1}{2}$ contenant tous les monômes de degré 2

NOYAU POLYNOMIAL NON-HOMOGÈNE DE DEGRÉ 2

• Pour le noyau polynomial non-homogène de degré 2 : $K(x_1, x_2) = (x_1^T x_2 + c)^2$

$$K(x_1, x_2) = \left(\sum_{i=1}^{p} x_1^i x_2^i + c\right) \left(\sum_{j=1}^{p} x_1^j x_2^j + c\right)$$
$$= c^2 + \sum_{i,j=1}^{p} (x_1^i x_1^j)(x_2^i x_2^j) + \sum_{i=1}^{p} \sqrt{2c} x_1^i \sqrt{2c} x_2^i$$

• K est donc un noyau avec $\phi(x)$ correspondant au vecteur de dimension $1+\binom{p+1}{2}+p$ contenant tous les monômes de degré au plus 2, avec des poids contrôlés par c

NOYAUX POLYNOMIAUX DE DEGRÉ d

- · Le raisonnement peut être généralisé pour tout degré $d \in \mathbb{N}$
 - $K(x_1, x_2) = (x_1^T x_2)^d$: les attributs sont les $\binom{d+p-1}{d}$ monômes de degré d
 - $K(x_1, x_2) = (x_1^T x_2 + c)^d$: les attributs sont les $\binom{d+p}{d}$ monômes de degré au plus d
- Note : on peut aussi montrer la validitié de ces noyaux par construction

L'ASTUCE DU NOYAU

- L'astuce du noyau (kernel trick en anglais) consiste à remplacer les $x_i^T x_j$ dans les formulations duales par $\phi(x)_i^T \phi(x)_j = K(x_1, x_j)$
- · On réécrit la forme du classifieur linéaire dans l'espace dual

$$h(x) = \operatorname{sign}\left(\underbrace{\sum_{i=1}^{n} \alpha_{i} y_{i} \phi(x_{i})^{\mathsf{T}}}_{w} \phi(x) + b\right)$$
$$= \operatorname{sign}\left(\underbrace{\sum_{i=1}^{n} \alpha_{i} y_{i} K(x_{i}, x)}_{w} + b\right)$$

- Avantages
 - Pas besoin de représenter $\phi(x)$ explicitement
 - Pas d'influence de la dimension de $\phi(x)$ sur le nombre de paramètres à apprendre (on apprend n paramètres)
 - Pas d'influence de la dimension de $\phi(x)$ sur l'évaluation de h (on a besoin au plus de n évaluations de la fonction noyau)
 - En fait, pas besoin de connaître ϕ : la projection peut être implicite

L'ASTUCE DU NOYAU: VISUALISATION

· Pour le noyau polynomial, voir par exemple

http://www.youtube.com/watch?v=3liCbRZPrZA

• Pour le noyau Gaussien et $\sigma \in [0.01, 0.05, 0.1, 0.2, 0.5, 1, 2]$

· Démo graphique de LibSVM

https://www.csie.ntu.edu.tw/~cjlin/libsvm/

CHOIX DU NOYAU

- Le choix du noyau a une influence primordiale sur la performance du modèle
- · Quelques règles générales :
 - Pour des données en grande dimension, un noyau linéaire est souvent suffisant
 - Pour des données en grande dimension et creuses (ex : sacs de mots en texte), essayer le noyau polynomial
 - Le noyau Gaussien donne généralement de très bonnes performances
- Règle d'or : utiliser les principes de sélection de modèles pour le choix du noyau et de ses paramètres !
- Multiple Kernel Learning (MKL): permet d'apprendre une bonne combinaison de noyaux de base

VALIDATION THÉORIQUE

Theorem (Vapnik)

Soit $S = \{(x_i, y_i)\}_{i=1}^n$ un échantillon i.i.d. tiré selon la loi P. Soit h le classifieur appris sur S avec une marge géométrique γ . Pour $i=1,\ldots,n$, on note $\xi_i=\max(0,\gamma-y_ih(x_i))$. On suppose $\|x\|_2 \leq R$ pour tout x tiré selon P. Alors on a avec probabilité au moins $1-\delta$:

$$\underbrace{\mathbb{E}_{(X,Y)\sim P}\left[\mathbb{I}\{h(X)\neq Y\}\right]}_{erreur\ en\ g\acute{e}n\acute{e}ralisation} \leq \frac{1}{n} \underbrace{\sum_{i=1}^{n} \mathbb{I}\{\xi_{i}>0\}}_{\#\ violations\ dans\ \mathcal{S}} + O\left(\sqrt{\frac{R^{2}\log n + \log(1/\delta)}{\gamma^{2}n}}\right).$$

- On voit que l'erreur en généralisation dépend du nombre d'exemple d'apprentissage, de la taille de la marge et des violations de marge, mais pas du nombre d'attributs
- C'est donc une validation théorique des deux principes des SVMs: maximisation de marge + astuce du noyau
- Pour en savoir plus sur ce type de bornes, voir par exemple http://www.cs.cmu.edu/~guestrin/Class/10701-S05/slides/pac-vc.pdf

VASTE MARGE POUR LA RÉGRESSION

- · Dans le cas de la régression, on a $\mathcal{Y}=\mathbb{R}$
- On cherche un modèle linéaire : pour $w \in \mathbb{R}^p, b \in \mathbb{R}$

$$h(x) = w^{\mathsf{T}} x + b$$

- · Fonctions de perte classique en régression
 - Moindre carrés : $(h(x) y)^2$
 - Valeur absolue : |h(x) y|
- \cdot Dans les SVMs pour la régression, on utilise la perte ϵ -insensible

$$|h(x) - y|_{\epsilon} = \max(0, |h(x) - y| - \epsilon)$$

SVR LINÉAIRE

Formulation primale du SVR linéaire

$$\min_{w \in \mathbb{R}^{p}, b \in \mathbb{R}, \xi \in \mathbb{R}^{n}, \xi' \in \mathbb{R}^{n}} \quad \frac{1}{2} \|w\|_{2}^{2} + C \sum_{i=1}^{n} (\xi_{i} + \xi'_{i})$$
s.t.
$$w^{T} x_{i} + b - y_{i} \leq \epsilon + \xi_{i} \quad \forall i \in \{1, \dots, n\}$$

$$y_{i} - w^{T} x_{i} + b \leq \epsilon + \xi'_{i} \quad \forall i \in \{1, \dots, n\}$$

$$\xi_{i}, \xi'_{i} \geq 0 \quad \forall i \in \{1, \dots, n\}$$

Formulation primale équivalente du SVR linéaire

$$\min_{w \in \mathbb{R}^p, b \in \mathbb{R}} \quad \frac{1}{2} ||w||_2^2 \quad + \quad C \sum_{i=1}^n |w^T x_i + b - y_i|_{\epsilon}$$

VASTE MARGE POUR LA RÉG<u>RESSION</u>

DUAL DU SVR LINÉAIRE

Formulation duale du SVR linéaire

$$\min_{\alpha,\alpha' \in \mathbb{R}^n} \sum_{i,j=1}^n (\alpha_i - \alpha_i')(\alpha_j - \alpha_j') x_i^\mathsf{T} x_j + \epsilon \sum_{i=1}^n (\alpha_i + \alpha_i') - \sum_{i=1}^n y_i (\alpha_i - \alpha_i')$$
s.t.
$$\sum_{i=1}^n (\alpha_i - \alpha_i') = 0$$

$$0 \le \alpha_i, \alpha_i' \le C \quad \forall i \in \{1, \dots, n\}$$

- Le modèle se réécrit sous la forme $h(x) = \underbrace{\sum_{i=1}^{n} (\alpha_i \alpha_i') x_i^T}_{w} x + b$
- La formulation duale n'implique que les produits scalaires $x_i^T x_j$. On peut donc appliquer l'astuce du noyau!

RÉFÉRENCES

- Article: A Tutorial on Support Vector Machines for Pattern Recognition (C. Burges, Data Mining and Knowledge Discovery 1998)
- Livre: An introduction to Support Vector Machines and Others Kernel-Based Learning Methods (N. Cristianini and J. Shawe-Taylor, 2000)
- Livre: Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond (B. Scholkopf and A. Smola, 2002)
- Article: A tutorial on support vector regression (A. Smola & B. Schölkopf, Statistics and Computing 2004)