Hawollen candy project!

Jie

1. Importing candy data

```
candy <- read.csv("candy-data.csv", row.names=1)
head(candy)</pre>
```

	choco	olate	fruity	${\tt caramel}$	peanut	tyalmondy	nougat	crispedr	cicewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	()	0.732	0	.860	66.97173	
3 Musketeers	0	1	()	0.604	0	.511	67.60294	
One dime	0	0	()	0.011	0	.116	32.26109	
One quarter	0	0	()	0.011	0	.511	46.11650	
Air Heads	0	0	()	0.906	0	.511	52.34146	
Almond Joy	0	1	()	0.465	0	.767	50.34755	

Q1. How many different candy types are in this dataset? 85

```
nrow(candy)
```

[1] 85

rownames(candy)

[1] "100 Grand" "3 Musketeers" [3] "One dime" "One quarter" [5] "Air Heads" "Almond Joy" [7] "Baby Ruth" "Boston Baked Beans" [9] "Candy Corn" "Caramel Apple Pops" [11] "Charleston Chew" "Chewey Lemonhead Fruit Mix" [13] "Chiclets" "Dots" [15] "Dum Dums" "Fruit Chews" [17] "Fun Dip" "Gobstopper" [19] "Haribo Gold Bears" "Haribo Happy Cola" [21] "Haribo Sour Bears" "Haribo Twin Snakes" [23] "HersheyÕs Kisses" "HersheyÕs Krackel" [25] "HersheyÕs Milk Chocolate" "HersheyÕs Special Dark" [27] "Jawbusters" "Junior Mints" [29] "Kit Kat" "Laffy Taffy" [31] "Lemonhead" "Lifesavers big ring gummies" [33] "Peanut butter M&MÕs" "M&MÕs" [35] "Mike & Ike" "Milk Duds" [37] "Milky Way" "Milky Way Midnight" [39] "Milky Way Simply Caramel" "Mounds" "Nerds" [41] "Mr Good Bar" [43] "Nestle Butterfinger" "Nestle Crunch" [45] "Nik L Nip" "Now & Later" "Peanut M&Ms" [47] "Payday" [49] "Pixie Sticks" "Pop Rocks" [51] "Red vines" "ReeseÕs Miniatures" [53] "ReeseÕs Peanut Butter cup" "ReeseÕs pieces" [55] "ReeseÕs stuffed with pieces" "Ring pop" [57] "Rolo" "Root Beer Barrels" [59] "Runts" "Sixlets" "Skittles wildberry" [61] "Skittles original" "Smarties candy" [63] "Nestle Smarties" [65] "Snickers" "Snickers Crisper" [67] "Sour Patch Kids" "Sour Patch Tricksters" [69] "Starburst" "Strawberry bon bons" [71] "Sugar Babies" "Sugar Daddy" [73] "Super Bubble" "Swedish Fish" [75] "Tootsie Pop" "Tootsie Roll Juniors" [77] "Tootsie Roll Midgies" "Tootsie Roll Snack Bars" [79] "Trolli Sour Bites" "Twix"

"Warheads"

"WertherÕs Original Caramel"

[81] "Twizzlers"

[85] "Whoppers"

[83] "WelchÕs Fruit Snacks"

Q2. How many fruity candy types are in the dataset? 38 sum(candy\$fruity)

[1] 38

2. What is your favorate candy?

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

```
candy["Haribo Gold Bears", ]$winpercent
```

- [1] 57.11974
- Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat", ]$winpercent
```

- [1] 76.7686
- Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars", ]$winpercent
```

[1] 49.6535

```
library("skimr")
skim(candy)
```

Table 1: Data summary

candy
85
12

Table 1: Data summary

Column type frequency:	
numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcom	plete_ra	ntmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset? Winpercent looks diffent as its mean is around 50 while others are less than 1

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}? 0 is the candy does not contain chocolate and 1 is the candy does contain chocolate

Q8. Plot a histogram of winpercent values

hist(candy\$winpercent)

Histogram of candy\$winpercent

library("ggplot2")

ggplot(candy) + aes(winpercent) + geom_histogram(bins=10,col="yellow")

Q9. Is the distribution of winpercent values symmetrical? No

Q10. Is the center of the distribution above or below 50%? Below 50%

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
chocolate.inds <- as.logical(candy$chocolate)</pre>
  chocolate.win <- candy[chocolate.inds,]$winpercent</pre>
  mean(chocolate.win)
[1] 60.92153
  fruity.inds <- as.logical(candy$fruity)</pre>
  fruity.win <- candy[fruity.inds,]$winpercent</pre>
  mean(fruity.win)
[1] 44.11974
```

Chocolate is lower ranked than fruit candy

Q12. Is this difference statistically significant?

```
t.test(chocolate.win,fruity.win)
```

```
Welch Two Sample t-test
```

```
data: chocolate.win and fruity.win
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 11.44563 22.15795
sample estimates:
mean of x mean of y
 60.92153 44.11974
```

It is significant

3. Overall Candy Rankings

Q13. What are the five least liked candy types in this set?

#x[order(x)] head(candy[order(candy\$winpercent),], n=5)

	chocolate	fruity	cara	nel j	peanutyaln	nondy	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
	crispedrio	ewafer	${\tt hard}$	bar	pluribus	sugar	percent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans		0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
	winpercent	;						
Nik L Nip	22.44534	<u> </u>						
Boston Baked Beans	23.41782	2						
Chiclets	24.52499)						
Super Bubble	27.30386	3						
Jawbusters	28.12744	<u> </u>						

Q14. What are the top 5 all time favorite candy types out of this set?

 $\label{tail(candy[order(candy$winpercent),], n=5)} \\$

	chocolate	fruity	caram	el p	peanutyalm	nondy	nougat
Snickers	1	0		1		1	1
Kit Kat	1	0		0		0	0
Twix	1	0		1		0	0
ReeseÕs Miniatures	1	0		0		1	0
ReeseÕs Peanut Butter cup	1	0		0		1	0
	crispedrio	cewafer	hard	bar	pluribus	sugar	rpercent
Snickers		0	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Twix		1	0	1	0		0.546
ReeseÕs Miniatures		0	0	0	0		0.034
ReeseÕs Peanut Butter cup		0	0	0	0		0.720
pricepercent winpercent							
Snickers	0.6	351 76	6.6737	'8			

Kit Kat	0.511	76.76860
Twix	0.906	81.64291
ReeseÕs Miniatures	0.279	81.86626
ReeseÕs Peanut Butter cup	0.651	84.18029

Q15. Make a first barplot of candy ranking based on winpercent values.

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_bar(stat='identity')
```



```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_bar(stat='identity')
```



```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy), winpercent)) +
   geom_col(fill=my_cols)
```


- Q17. What is the worst ranked chocolate candy? Sixlets
- Q18. What is the best ranked fruity candy? Starburst

4. Taking a look at pricepercent

```
library(ggrepel)

ggplot(candy) +
  aes(winpercent, pricepercent, label=rownames(candy)) +
  geom_point(col=my_cols) +
  geom_text_repel(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck? ReeseOs Miniatures

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular? Nik L Nip

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
HersheyÕs Krackel	0.918	62.28448
HersheyÕs Milk Chocolate	0.918	56.49050

5. Exploring the correlation structure

```
library(corrplot)
```

```
cij <- cor(candy)
corrplot(cij)</pre>
```


- Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)? Chocolate and fruity
- Q23. Similarly, what two variables are most positively correlated? Chocolate and bar

6. Principal Component Analysis

```
pca <- prcomp(candy, scale=TRUE)
summary(pca)</pre>
```

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 Standard deviation 2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530 Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539

plot(pca\$x[,1:2], col=my_cols, pch=16)


```
library(ggrepel)

p + geom_text_repel(size=2.2, col=my_cols, max.overlaps = 7) +
    theme(legend.position = "none") +
    labs(title="Halloween Candy PCA Space",
        subtitle="Colored by type: chocolate bar (dark brown), chocolate other (light brown caption="Data from 538")
```

Warning: ggrepel: 48 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you? Fruity, hard and pluribus