

Multivariable Functions' Worksheet

Exercise 1

Let $\alpha \in \mathbb{R}$ and $m \in \mathbb{N}^*$, and let $f_{m,\alpha} : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a function defined as: $f_{m,\alpha}(x,y) = \begin{cases} \frac{e^{m(x^2+y^2)}-1}{x^2+y^2} & : (x,y) \neq (0,0). \\ \alpha & : (x,y) = (0,0). \end{cases}$

Part 1: Study of $f_{m,\alpha}$ over $\mathbb{R}^2 - \{(0,0)\}, \ \forall m \in \mathbb{N}^*$.

- 1. Show that $f_{m,\alpha}$ is continuous.
- 2. Compute the gradient of $f_{m,\alpha}$ over it, and show that $f_{m,\alpha}$ is of class C^1 in that domain.
- 3. What can we deduce?

Part 2: Study of $f_{m,\alpha}$ at (0,0).

When m=1:

- 1. Compute the limit of $f_{1,\alpha}$ at (0,0) and deduce that there exists a value, α_0 , for which $f_{1,\alpha}$ is continuous at (0,0).
- 2. Show that $f_{1,\alpha}$ admits a partial derivative at (0,0) if and only if $\alpha = \alpha_0$, and calculate the gradient at (0,0).
- 3. Using the limit definition, prove that f_{1,α_0} is differentiable at (0,0).
- 4. Show that f_{1,α_0} is of a class C^1 at (0,0).

When m > 1:

- 1. For what values of m is the function $f_{m,\alpha}$ continuos at (0,0).
- 2. Compute the gradient of $f_{m,\alpha}$ at that point.
- 3. For what values of m is the function $f_{m,\alpha}$ differentiable at (0,0).
- 4. For what values of m is the function $f_{m,\alpha}$ class C at (0,0).

Exercise 2

Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, such that: $f(x,y) = \begin{cases} 0 & : \text{ if } y = 0. \\ y^2 \sin \frac{x}{y} & : \text{ if } y \neq 0. \end{cases}$

- 1. Study the continuity of f.
- 2. Study the existence of the value of partial derivative at 1 and 2.
- 3. For each of the following functions, defined on a subset of \mathbb{R}^2 , check if they admit an extension by continuity near their domain borders:

$$g_1(x,y) = \frac{y}{x^3}e^{-\frac{|y|}{x^3}}$$
, $g_2(x,y) = (x-5y)\sin\left(\frac{x^2}{x^2+y^2}\right)$.

 $\overline{(2)}$

(1)