Instituto Senai de Inovação em Sistemas Embarcados SELETIVO PARA PESQUISADOR DE I.A

Definição do problema

Linhas de tensão percorrem centenas de quilômetros para fornecer energia às cidades. Essas grandes distâncias tornam o trabalho de inspecionar manualmente as linhas em busca de danos uma tarefa complexa e cara. Esses danos levam a um fenômeno conhecido como descarga parcial - descargas parciais são descargas elétricas que ocorrem em defeitos no isolamento de cabos, também podem ocorrer nas suas interfaces (isolante e semicondutora), ou em emendas e terminais. Entre suas causas estão o envelhecimento dos componentes, contaminação do material isolante, falha de instalação, entre outras. As descargas parciais danificam gradativamente as linhas de tensão, portanto, se não forem reparadas, podem levar a uma queda de energia, danificar equipamentos ou provocar desastres ambientais.

Você foi contratado para desenvolver um modelo de Aprendizado de Máquina para identificar padrões nos sinais de Linhas elétricas e com isso, detectar a ocorrência ou não de descargas parciais. Desenvolva o Pipeline completo de um projeto de Aprendizado de Máquina, desde a Análise e preparação dos dados adquiridos até a disponibilização do algoritmo em Container (utilizando Docker) no GitHub.

O candidato é livre para usar a criatividade sobre qual caminho seguir e como utilizar os dados para a resolução do problema.

Descrição dos dados

A base de dados contém 501 medições de sinais

(https://drive.google.com/file/d/17LPP_ZZprHIG3R2f0Vhg5CyfFZOMvlia/view?usp=sharing), cada sinal contém 800.000 medições da tensão de uma linha de energia (representado pelas colunas). A própria rede opera em um esquema de energia trifásico (0,1,2) e todas as três fases são medidas simultaneamente. As últimas 3 colunas da base de dados representam respectivamente o ID do sinal, fase, e o target representando ausência (0) ou presença de descarga parcial (1).

	0	1	2	3	4	5	6	7	8	9	 799993	799994	799995	799996	799997	799998	799999	signal_id	phase	target
0	18	18	17	18	18	18	19	18	18	17	 17	18	19	19	17	19	17	0	0	0
1	1	0	-1	1	0	0	1	0	0	0	 0	0	2	1	0	1	0	1	1	0
2	-19	-19	-20	-19	-19	-20	-18	-19	-20	-19	 -18	-19	-18	-19	-19	-18	-19	2	2	0
3	-16	-17	-17	-16	-16	-15	-16	-17	-18	-17	 -15	-15	-15	-15	-15	-14	-14	3	0	1
4	-5	-6	-6	-5	-5	-4	-5	-7	-7	-7	 -5	-4	-4	-4	-4	-3	-4	4	1	1
495	-26	-21	-24	-25	-23	-26	-22	-23	-25	-20	 -22	-20	-21	-20	-22	-22	-20	495	0	0
496	9	13	8	10	10	8	12	10	11	13	 12	12	13	13	13	13	11	496	1	0
497	8	11	7	9	8	7	10	9	9	10	 9	10	10	11	10	10	10	497	2	0
498	-18	-18	-19	-19	-19	-18	-17	-18	-19	-18	 -19	-19	-19	-19	-19	-20	-19	498	0	0
499	1	0	-1	-1	0	0	0	-1	-1	0	 0	0	0	0	0	-1	0	499	1	0

Avaliação

A prova prática terá duas etapas: a **entrega do projeto** e uma **entrevista** para a apresentação do projeto.

Itens avaliados na entrega do projeto:

- Organização do código
- Estruturação do projeto no GitHub
- Interpretação do problema
- Etapas do Pipeline realizadas e qualidade de sua execução
 - Pré-processamento, Engenharia de Requisitos, Seleção do Modelo, Avaliação do Modelo, disponibilização em Container Docker.

Itens avaliados na entrevista

- Apresentação do projeto e defesa do ponto de vista.
- Visualização dos dados e resultados

OBS1: O candidato deve submeter seu projeto independentemente da não realização de uma das etapas do exigidas.

OBS2: A apresentação do projeto pode ser feita utilizando qualquer ferramenta (power point, jupyter notebook, Google Colab etc.)

Requisitos de Software

É permitido o uso de qualquer IDE e Biblioteca de Aprendizado de Máquina, desde que respeite às seguintes exigências:

- Linguagem de Programação Python, R ou C++
- Docker

Especificações de Hardware

Recomendado usar um computador com:

- 8GB de memória RAM ou superior
- Processador Core I5 ou superior