Instruções: responda e justifique brevemente as suas respostas nesta folha.

1. (1 valor) Determine uma base do espaço linear das soluções da equação diferencial homogénea

$$\ddot{x} - x = 0$$
.

$$e^t$$
 e^{-t} $\cos t$ $\sin t$

2. (1 valor) Determine a solução da equação diferencial linear homogénea

$$\ddot{x} - 2\dot{x} + x = 0$$

com condições iniciais x(0) = 1 e $\dot{x}(0) = 0$.

$$x(t) = (1 - t) e^t$$

3. $(1\ valor)$ Determine uma (ou seja, apenas uma) solução da equação diferencial linear não homogénea

$$\ddot{x} - x = e^{-t} \,.$$

$$x(t) = -\frac{1}{2} t e^{-t}$$

4. (1 valor) Considere, no espaço euclidiano complexo \mathbb{C}^2 munido do produto escalar usual, o operador $T:\mathbb{C}^2\to\mathbb{C}^2$ definido por

$$T(x,y) = (x - iy, x + iy).$$

Determine o operador adjunto T^* e a composição TT^* .

$$T^*(x,y) = (x+y, ix - iy)$$
 $TT^*(x,y) = (2x, 2y)$

5. (1 valor) Identifique e esboce a cónica definida pela equação cartesiana

$$2x^2 + 2xy + 2y^2 - 1 = 0$$

É uma elipse, pois nas variáveis $X=\frac{1}{\sqrt{2}}(x+y)$ e $Y=\frac{1}{\sqrt{2}}(y-x)$ a equação é

$$3X^2 + Y^2 = 1$$

6. (1 valor) Calcule valores e vetores próprios da matriz hermítica

$$H = \left(\begin{array}{cc} -1 & 2i \\ -2i & 1 \end{array} \right) .$$

Os valores próprios são $\pm\sqrt{5}$. Vetores próprios são $\mathbf{v}_{\pm}=\left(2,-i(1\pm\sqrt{5})\right)$, respetivamente

7. (1 valor) Dê uma definição do grupo SO(2) e determine a forma de uma sua matriz genérica. $\mathbf{SO}(2)$ é o grupo das matrizes reais 2×2 tais que $A^{\top}A=AA^{\top}=I$ e det A=1. Uma matriz genérica de **SO**(2) é

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

onde θ é um número real.

8. (1 valor) Calcule o grupo a um parâmetro e^{tA} gerado pela matriz

$$A = \left(\begin{array}{cc} 2 & 1 \\ 0 & 2 \end{array}\right) \, .$$

$$e^{tA} = e^{2t} \left(\begin{array}{cc} 1 & t \\ 0 & 1 \end{array} \right)$$

9. (1 valor) Determine a solução do sistema

$$\begin{cases} \dot{q} = -q + p \\ \dot{p} = -q - p \end{cases}$$

com condições iniciais (q(0), p(0)) = (3, 2).

$$\left(\begin{array}{c} q(t) \\ p(t) \end{array}\right) = e^{-t} \ \left(\begin{array}{cc} \cos t & \sin t \\ -\sin t & \cos t \end{array}\right) \left(\begin{array}{c} 3 \\ 2 \end{array}\right) = \left(\begin{array}{c} e^{-t} \left(3\cos t + 2\sin t\right) \\ e^{-t} \left(2\cos t - 3\sin t\right) \end{array}\right)$$

10. (1 valores) Considere o sistema não homogéneo

$$\begin{cases} \dot{q} = -q + p \\ \dot{p} = -q - p + \sin(t) \end{cases}$$

Determine a solução com condições iniciais nulas (q(0), p(0)) = (0, 0).

$$\left(\begin{array}{c} q(t) \\ p(t) \end{array} \right) = \int_0^t e^{-(t-\tau)} \ \left(\begin{array}{cc} \cos(t-\tau) & \sin(t-\tau) \\ -\sin(t-\tau) & \cos(t-\tau) \end{array} \right) \left(\begin{array}{c} 0 \\ \sin(\tau) \end{array} \right) \, d\tau$$

- 11. (1 valor) Os semi-eixos principais do elipsoide $4x^2 2xy + 4y^2 \le 1$ são
 - $\bigcirc 1/\sqrt{3} \text{ e } 1/\sqrt{5} \qquad \bigcirc \sqrt{3} \text{ e } \sqrt{5} \qquad \bigcirc 3 \text{ e } 5$
- 12. (1 valor) Existe um operador $S: \mathbb{C}^n \to \mathbb{C}^n$ que seja unitário e hemi-hermítico.
 - O Verdadeiro
- Falso
- 13. $(1 \ valor)$ Se A é uma matriz quadrada arbitrária, então $P = A^*A$ é uma matriz hermítica com valores próprios não negativos.
 - O Verdadeiro
- O Falso

14.	$(1 \ valor)$ Uma matriz complexa $n \times n$ é unitária se
	$\bigcirc A^* = -A \qquad \bigcirc A^*A = AA^* \qquad \bigcirc A^*A = I$
15	(1 malon) Evista uma matriz artegonal () tal qua
15.	$(1 \ valor)$ Existe uma matriz ortogonal O tal que
	$O^2=\left(egin{array}{cc} 1 & 0 \ 0 & -1 \end{array} ight)$
	○ Verdadeiro ○ Falso
16.	$(1\ valor)$ Se existe uma base ortonormada de \mathbb{C}^n formada por vetores próprios do operador
-0.	$L:\mathbb{C}^n \to \mathbb{C}^n$ então o operador L é
	O hermítico O normal O unitário
17.	$(1 \ valor)$ Se H é uma matriz quadrada hermítica então e^H é unitária.
	○ Verdadeiro ○ Falso
18.	(1 valor) Toda matriz $A \in \mathbf{SO}(2)$ admite um vetor próprio com valor próprio $\lambda = 1$. \bigcirc Verdadeiro \bigcirc Falso
19.	$(1 \ valor)$ A álgebra de Lie (o espaço tangente na identidade) do grupo linear especial $\mathbf{SL}_3(\mathbb{R})$ é
	\bigcirc o espaço linear das matrizes reais 3×3 simétricas.
	\bigcirc o espaço linear das matrizes reais 3×3 com traço nulo.
	\bigcirc o espaço linear das matrizes reais 3×3 anti-simétricas.
20.	(1 valor) Considere o sistema linear definido por
	$\begin{cases} & \dot{x} = x + y \\ & \dot{y} = 2x + y \end{cases}$

O um nodo instável. O um ponto de sela. O um foco estável.

A origem é