Student: Arfaz Hossain Course: MATH 100 (A01, A02, A03) Fall 2021

Instructor: UVIC Math

Book: Thomas' Calculus Early Transcendentals, 14e

Date: 12/07/21 **Time:** 22:4

Find the limit of the rational function (a) as $x \to \infty$ and (b) as $x \to -\infty$.

$$f(x) = \frac{6x^4 + 6}{x^4 - x^2 + x + 4}$$

a. To find the limit of the rational function as x approaches ∞ , divide the numerator and denominator by the highest power of x in the denominator, which is x^4 .

Divide and simplify.

$$\frac{\frac{6x^{4}}{x^{4}} + \frac{6}{x^{4}}}{\frac{x^{4}}{x^{4}} - \frac{x^{2}}{x^{4}} + \frac{x}{x^{4}} + \frac{4}{x^{4}}} = \frac{6 + \frac{6}{x^{4}}}{1 - \frac{1}{x^{2}} + \frac{1}{x^{3}} + \frac{4}{x^{4}}}$$

The limit, as x approaches ∞ , for $\frac{1}{x^n}$ when n is any positive number is shown below.

$$\lim_{x \to \infty} \left(\frac{1}{x^n} \right) = 0$$

So, all the terms with x^n in the denominator go to zero as x approaches ∞ . Use that information to find the limit of the entire function as x approaches ∞ .

$$\lim_{x \to \infty} \left(\frac{6x^4 + 6}{x^4 - x^2 + x + 4} \right) = \lim_{x \to \infty} \left(\frac{6 + \frac{6}{4}}{x} \right)$$

$$= \lim_{x \to \infty} \left(\frac{1 - \frac{1}{x^2} + \frac{1}{x^3} + \frac{4}{x^4}}{1 - \frac{1}{x^2} + \frac{1}{x^3} + \frac{4}{x^4}} \right)$$

$$= 6$$

So, the limit as x approaches ∞ of the function $f(x) = \frac{6x^4 + 6}{x^4 - x^2 + x + 4}$ is 6.

b. Using the same process, find the limit of the function as x approaches $-\infty$.

$$\lim_{x \to -\infty} \left(\frac{6x^4 + 6}{x^4 - x^2 + x + 4} \right) = \lim_{x \to -\infty} \left(\frac{6 + \frac{6}{x^4}}{1 - \frac{1}{x^2} + \frac{1}{x^3} + \frac{4}{x^4}} \right)$$

$$= 6$$

So, the limit as x approaches $-\infty$ of the function $f(x) = \frac{6x^4 + 6}{x^4 - x^2 + x + 4}$ is 6.