Wirtschaftsmathematik: Grundlagen

Thilo Klein thilo@klein.uk

Gliederung

Grundlagen

Finanzmathematik

Zins- und Zinseszinsrechnung Äquivalenzprinzip und Kapitalwert Rentenrechnung Tilgungsrechnung

Lineare Algebra

Matrizen

Lineare Produktionsmodelle

Lineare Gleichungssysteme und inverse Matrizen

Das Leontief-Modell

Gliederung

Funktionen einer Variablen

Grundbegriffe Eigenschaften von Funktionen

Wichtige Funktionstypen

Differentialrechnung

Differentialquotient und Ableitung Kurvendiskussion Gewinnmaximierung

Funktionen mehrerer Variablen

Grundlegende Darstellungsformen Differentialrechnung Optimierungsprobleme

Integralrechnung

Literatur

Christiaans, T. und Ross, M. 2016: Wirtschaftsmathematik für das Bachelor-Studium: Lehr- und Arbeitsbuch, 2. Auflage, Wiesbaden: Springer Gabler.

1 Grundlagen

Gliederung

Grundlagen

Finanzmathematik

Zins- und Zinseszinsrechnung Äquivalenzprinzip und Kapitalwert Rentenrechnung Tilgungsrechnung

Lineare Algebra

Matrizen

Lineare Produktionsmodelle

Lineare Gleichungssysteme und inverse Matrizen

Das Leontief-Modell

Elementare Rechenregeln

- ► Elementare Rechenregeln sind die Voraussetzung für die Korrektheit bei finanz- und wirtschaftsmathematischen Anwendungen.
- Zahlen, Rechenregeln, Rechengesetze, Bruchrechnung, Potenzen, Wurzeln und Logarithmus werden an vielen Stellen im Studium und Beruf benötigt.
- Zahlenmengen:
 - Natürliche Zahlen: $N = \{1, 2, 3, \ldots\},\$
 - ganze Zahlen: $Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\},$
 - ► rationale Zahlen: *Q*, alle ganzen Zahlen und alle Brüche,
 - reelle Zahlen: R, alle rationalen Zahlen und alle irrationalen Zahlen (zum Beispiel $\sqrt{2}$, e, π , ...).

Elementare Rechenregeln

- Von links nach rechts rechnen
- Klammern als Erstes ausrechnen (von innen nach außen)
- Potenz- vor Punktrechnung (multiplizieren, dividieren)
- Punkt- vor Strichrechnung (addieren, subtrahieren)
- Das Multiplikationszeichen (Punkt) kann weggelassen werden
- ▶ Negative Zahlen: a + (-b) = a b
- ► Kommutativgesetz
 - ▶ a + b = b + a
 - a · b = b · a
- Assoziativgesetz
 - (a+b)+c=a+(b+c)=a+b+c
 - $(a \cdot b) \cdot c = a \cdot (b \cdot c) = a \cdot b \cdot c$
- ▶ Distributivgesetz
 - $(a+b) \cdot c = a \cdot c + b \cdot c$
 - $a \cdot (b+c) = a \cdot b + a \cdot c$

Bruchrechnung

Definition und Schreibweise:

► Zähler a geteilt durch Nenner ($b \neq 0$): $a : b = \frac{a}{b} = a/b$

Rechenregeln für Brüche:

- ► Kürzen oder erweitern: $\frac{a \cdot c}{b \cdot c} = \frac{a}{b}$, $\frac{a + c}{b + c} \neq \frac{a}{b}$
- Addition: $\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + b \cdot c}{b \cdot d}$
- Subtraktion: $\frac{a}{b} \frac{c}{d} = \frac{a \cdot d b \cdot c}{b \cdot d}$
- ► Multiplikation: $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$
- ▶ Division: $\frac{a}{b}$: $\frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$

Binomische Formeln

Die binomischen Formeln ergeben sich durch einfaches Ausmultiplizieren. Es ist trotzdem häufig sinnvoll, sie zu kennen, zum Beispiel, weil man sie manchmal rückwärts anwenden muss:

$$(a+b)^2 = a^2 + 2ab + b^2 (1.)$$

$$(a-b)^2 = a^2 - 2ab + b^2$$
 (II.)

$$(a+b)(a-b) = a^2 - b^2$$
 (III.)

Als Beispiel der Beweis der zweiten Formel:

$$(a-b)^2 = (a-b)(a-b) = a \cdot a - a \cdot b - b \cdot a + b \cdot b = a^2 - 2ab + b^2$$

Potenzen und Wurzeln

Regel

$$a^{0} = 1$$

$$a^{x} \cdot a^{y} = a^{x+y}$$

$$a^{x} \cdot b^{x} = (a \cdot b)^{x}$$

$$(a^{x})^{y} = a^{x \cdot y}$$

$$a^{-x} = \frac{1}{a^{x}}$$

$$\frac{a^{x}}{a^{y}} = a^{x-y}$$

$$\frac{a^{x}}{b^{x}} = \left(\frac{a}{b}\right)^{x}$$

$$\sqrt[q]{x} = x^{1/n}$$

Beispiel

$$5^{0} = 1$$

$$2^{3} \cdot 2^{4} = 2^{7}$$

$$3^{5} \cdot 4^{5} = 12^{5}$$

$$(2^{3})^{4} = 2^{12}$$

$$2^{-3} = \frac{1}{2^{3}}$$

$$\frac{6^{4}}{6^{2}} = 6^{2}$$

$$\frac{10^{5}}{5^{5}} = 2^{5}$$

$$\sqrt[5]{32} = 32^{1/5} = 32^{0.2} = 2$$

Gleichungen

Rechenregeln für (lineare) Gleichungen:

- ▶ Alle Rechenoperationen, die Äquivalenzumformungen sind, sind erlaubt, solange sie für beide Seiten der Gleichung gleich durchgeführt werden.
- ▶ Dabei wird so umgeformt, dass am Ende derjenige Wert für x gefunden wird, der die Gleichung löst.
- Äquivalenzumformungen sind Umformungen, die die Lösungsmenge der Gleichung nicht ändern.
- ▶ Bei nichtlinearen Gleichungen müssen manchmal Umformungen gemacht werden, die keine Äquivalenzumformungen sind (zum Beispiel Quadrieren); eine Probe ist dann unbedingt erforderlich.

Beispiele:

•
$$4+x=7 |-4$$

 $x=7-4=3$

•
$$4x = -12 \mid \div 4$$

 $x = -12/4 = -3$

$$\begin{array}{cccc}
\bullet & \frac{8-x}{2} & = 3 & | \cdot 2 \\
8-x & = 3 \cdot 2 & | -8 \\
-x & = 6 - 8 & | \div (-1) \\
x & = 2
\end{array}$$

Gleichungen

Grundlegende Rechenregel für Gleichungen mit Exponenten: Die Gegenoperation, um auf einer Seite einer Gleichung den Exponenten *b* aufzulösen, ist:

Beide Seiten mit 1/b potenzieren.

Beispiele:

•
$$x^{5} = 32$$
 $\left| \sqrt[5]{oder()} \right|^{\frac{1}{5}}$
 $x = \sqrt[5]{32} = 2$
• $x^{-7} = 128$ $\left| \left(\sqrt[7]{} \right)^{-1} oder() \right|^{\frac{1}{7}}$

$$x^{-7} = 128 \quad \left[\sqrt[7]{7} \quad oder() \right]^{-\frac{1}{7}}$$
$$x = \left(\sqrt[7]{128} \right)^{-1} = (128)^{-\frac{1}{7}} = 0.5$$

Logarithmen

Logarithmus von a zur Basis b (mit a > 0, b > 0):

$$\log_b a = x \iff b^x = a$$

Also: b hoch wieviel ergibt a?

Rechenregeln:

$$\log_b(x \cdot y) = \log_b x + \log_b y$$

$$\log_b(x/y) = \log_b x - \log_b y$$

$$\log_b(x^y) = y \cdot \log_b x$$

Wichtigste Basen: b=10 (Zehnerlogarithmus $\lg = \log_{10}$) und b=e (natürlicher Logarithmus $\ln = \log_e$) mit e=2,71828... (Eulersche Zahl).

Logarithmen

Steht in Gleichungen die gesuchte Variable im Exponenten, so kann mit Hilfe des Logarithmus aufgelöst werden. Beispiel:

$$4^{x} = 10$$

Entweder:

$$x = \log_4 10 \approx 1,66$$
oder: $4^x = 10$ | ln
$$\Leftrightarrow \ln(4^x) = \ln 10$$
 |
$$\Leftrightarrow x \cdot \ln 4 = \ln 10$$
 | $\div \ln 4$

$$\Leftrightarrow x = \frac{\ln 10}{\ln 4} \approx 1,66$$

Quadratische Gleichungen

Allgemeine Form:

$$x^2 + px + q = 0$$

Lösung mit der p-q-Formel:

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

Mit $D = \left(\frac{p}{2}\right)^2 - q$ gilt für das Lösungsverhalten:

- ▶ D > 0: zwei Lösungen
- ▶ D = 0: eine Lösung
- ▶ D < 0: keine (reelle) Lösung</p>

Quadratische Gleichungen

Beispiel: $4x^2 + 12x + 8 = 0$ wird zunächst durch 4 dividiert, um die p-q-Formel anwenden zu können:

$$x^2 + 3 \atop p=+3$$
 $x + 2 \atop q=+2 = 0$

$$x_{1,2} = -\frac{3}{2} \pm \sqrt{\left(\frac{3}{2}\right)^2 - 2}$$

also

$$x_1 = -1, \quad x_2 = -2.$$

Quadratische Gleichungen

Beispiel Wurzelgleichung. Aus

$$\sqrt{x+2}=x$$

erhält man durch Quadrieren

$$x^2 - x - 2 = 0$$

Die Lösungen $x_1 = 2$ und $x_2 = -1$ dieser quadratischen Gleichung sind jedoch nicht beide Lösungen der Wurzelgleichung. Grund: Quadrieren ist keine Äquivalenzumformung.

Durch die Probe folgt $L = \{2\}$.

Lineare Ungleichungen

- Eine lineare Ungleichung setzt zwei lineare Ausdrücke derart miteinander in Beziehung, dass der Ausdruck auf der linken Seite kleiner (<), kleiner oder gleich (≦), größer (>) oder größer oder gleich (≧) dem Ausdruck auf der rechten Seite sein soll.
- Meistens ist eine unbekannte Variable x in der Gleichung enthalten, und die interessierende Fragestellung ist, welche Werte x annehmen darf, damit die Ungleichung erfüllt ist.
- ▶ Die Lösung von linearen Ungleichungen erfolgt auf dem gleichen Weg wie bei linearen Gleichungen, das heißt, durch Äquivalenzumformungen wird die unbekannte Variable x auf die eine Seite der Ungleichung gebracht, so dass dann das Lösungsintervall direkt abgelesen werden kann.
- Wenn die Ungleichung im Rahmen der Umformung mit einer negativen Zahl multipliziert oder dividiert wird, kehrt das Ungleichheitszeichen seine Richtung um.
- ▶ Wird mit der unbekannten Variablen (x) multipliziert oder dividiert, muss eine Fallunterscheidung vorgenommen werden, um die Richtung des Ungleichheitszeichens zu bestimmen.
- ► Für weitere Erklärungen und Übungsaufgaben wird auf die angegebene Literatur verwiesen.

Die grundlegende Formel zur Berechnung des Prozentwertes (W) aus dem Grundwert (G) und dem Prozentsatz (p) lautet:

$$W = \frac{p}{100} \cdot G$$

Aus dieser Formel lassen sich alle anderen Formeln durch Umformung ableiten.

Beachte: Prozent bedeutet pro Hundert, also z.B.:

$$5\% = \frac{5}{100} = 0.05.$$

Prozentwert gesucht: Wieviel Euro sind 5% von 200 €?

$$\begin{array}{c|cccc}
 & & & & & & \\
\hline
 & 100 & & 200 & \\
 & 100 & & & & \\
 & 1 & & \frac{200}{100} & \\
 & .5 & & & & .5 \\
 & 5 & & \frac{200}{100} \cdot 5 = 10
\end{array}$$

$$W = \frac{p}{100} \cdot G$$
also:
$$W = \frac{5}{100} \cdot 200 = 10$$
Antwort: $10 \in$

Prozentsatz gesucht: Wieviel Prozent sind 10 € von 200 €?

	€	%		$ ho = rac{W}{G} \cdot 100$
: 200	200	100	: 200	also:
.10	1	100 200	.10	$p = \frac{10}{200} \cdot 100 = 5$
. •	10	$\frac{100.10}{200} = 5$		Antwort: 5 %

Grundwert gesucht: Wie hoch ist der Grundwert, wenn 5% gleich 10 € sind?

$$G=\frac{W}{p}\cdot 100$$

also:

$$G = \frac{10^{2}}{5} \cdot 100 = 200$$

Antwort: 200 €

Vermehrter Grundwert gesucht: Wie hoch ist der vermehrte Grundwert G_+ , wenn 5% von 200 € hinzugerechnet werden?

	%	€	_	$G_{+}=G+W=rac{100+p}{100}\cdot G,$
	100	200	-	also:
: 100			: 100	$G_{+}=rac{100+5}{100}\cdot 200$
105	1	<u>200</u> 100	105	= 210
·105	105	$\frac{200}{100} \cdot 105 = 210$	·105	Antwort: 210 €

Zur Prozentrechnung gibt es hier keine Aufgaben; stattdessen an dieser Stelle noch einige Anmerkungen:

- ▶ Die einfache Zinsrechnung (ohne Zinseszinsen) ist eine direkte Anwendung der Prozentrechnung. Wir werden sie mit Übungsaufgaben in der Vorlesung behandeln.
- ▶ In den Wirtschaftswissenschaften werden prozentuale Änderungen häufig als Wachstumsraten bezeichnet. Steigt zum Beispiel das reale Bruttoinlandsprodukt (BIP) um 2%, so spricht man von einem Wirtschaftswachstum um 2%.
- ▶ Bei Prozentsätzen ist immer wichtig, auf welchen Grundwert sie bezogen werden. Steigt zum Beispiel das BIP von 100 Milliarden auf 101 Milliarden, so wächst es um 1%. Fällt es anschließend um 1%, also um 1 · 101/100 = 1,01 Milliarden, so beträgt es nur noch 99,99 Milliarden. Der Grundwert vor dem Rückgang um 1% ist nämlich 101 Milliarden, ncht 100 Milliarden.

Summenzeichen

$$\sum_{i=1}^{5} i^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2$$

Die Laufvariable *i* durchläuft alle ganzen Zahlen von 1 bis 5

Jede dieser Zahlen der Laufvariable wird einmal in den Term hinter dem Summenzeichen (Summenglied) eingesetzt, und dann wird über alle i aufsummiert.

Beispiele:

$$\sum_{i=6}^{12} i^2 = 6^2 + 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2$$

$$\sum_{i=6}^{\infty} \frac{i}{\ln i} = \frac{1}{\ln 1} + \frac{2}{\ln 2} + \frac{3}{\ln 3} + \frac{4}{\ln 4} + \cdots$$

$$\sum_{i=2}^{6} 2(i+1) = 6 + 8 + 10 + 12 + 14 = 2\sum_{i=2}^{6} (i+1)$$

$$\sum_{i=0}^{4} \frac{20}{1,1^i} = 20\left(1 + \frac{1}{1,1^1} + \frac{1}{1,1^2} + \frac{1}{1,1^3} + \frac{1}{1,1^4}\right)$$

Hinweis: Es gilt $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$ (Gaußsche Summenformel).