How to calculate and combine effect-si

September 2024

Damien Beillouin CIRAD-Hortsys

What is an effect-size?

A metric that quantifies the **direction** and **magnitude** of an experimental/observational effect:

- Extracted directly from publications or calculated from redata
- Standardized to be comparable across multiple primary st
- **Reliable**: effectively represent the underlying data (e.g., be of ratios with low denominators)

What is an effect-size (Visually)?

Effect-size and p-value

Statistical vs. Practical Significance

Small effect sizes can produce significant p-values with large samples but have little real-world impact.

Impact of Sample Size

Large datasets make even tiny effects statistically significarisking misinterpretation.

Criticisms of p-values

see e.g., Hasley, 2019; Chen et al., 2023). Complement with confidence intervals or Bayesian approaches.

Effect-size and p-value

Figure 1: Transformation of an ordinary graph with privalues into a visualization of the o

True vs. Estimated Effect Size

Effect sizes are typically represented by the Greek letter theta

• θ_k : the 'true' (unknown) effect size of study k

Λ

• θ_k : the observed (estimated) effect size from data in study

The observed effect size deviates from the true effect size of sampling error:

• $\theta_k \neq \theta_k$ because $\theta_k = \theta_k + \varepsilon_k$ (where ε_k is the sampling error)

Goal of meta-analysis

Reduce sampling error to produce accurate estimates that ar close as possible to the **true effect size**.

We do not know much

Unknown parameters:

θ_k, θ_k, ε_k,

What we do:

==> θ_k ^: Estimated through the mean value (of a sampling distribution)

==> ε_k : Estimated through the standard error (SE).

(standard error of the mean : $SE = s/\sqrt{n}$; with n: sample size, s standard dev)

In a perfect world

Imagine we know the **true mean** (μ) and **standard deviation** distribution perfectly.

e.g.

- mu <- 100 # True mean
- sigma <- 15 # True standard deviation

True or estimated effect-size?

What happens if we sample this distribution?

Depending on your experimental design, research question, a type of outcome you are interested in, various effect sizes car applicable.

• Continuous outcomes

Effect Type	Description
Cohen's d	Effect size between two means.
Hedges' g	Corrected Cohen's d for small samples.
Correlation (r)	Strength and direction of a linear relations
Eta-squared ((^2))	Proportion of variance explained in ANOVA
Partial Eta-squared	Proportion of variance explained by an effection controlling others.

Continuous outcomes

Figure 7.1 Converting among effect sizes.

How to calculate and combine effect-sizes?

• Discrete outcomes

Effect Type	Description
Odds Ratio (OR)	Measures the strength of association betweer events.
Risk Ratio (RR)	Compares the risk of an event between two g
Phi Coefficient	Measures the association between two binary

Mean Difference (MD) Calculation

1. Mean Difference (MD)

$$MD = M_1 - M_2$$

with M1: Mean of group 1 - M2: Mean of group 2

2. Standard Error of the Mean Difference (SE MD)

$$SE_{MD} = SD_{pooled} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

With-SD1: Standard deviation of group 1 - SD2: Standard deviation of group 2 - n1, n_sizes

3. Pooled Standard Deviation (spooled)

$$SD_{pooled} = \sqrt{\frac{(n_1 - 1) \cdot SD_1^2 + (n_2 - 1) \cdot SD_2^2}{\text{calculate and complime effect-sizes?}}}$$

Plant Growth in Different Soil Types

Variable	Soil A	Soil B
Mean Height ((M))	25 cm	20 cm
Standard Deviation ((SD))	4 cm	5 cm
Sample Size ((n))	30	30

Calculations

1. Mean Difference:

$$MD = 25 - 20 = 5 \text{ cm}$$

2. Pooled Standard Deviation:

$$SE_{MD} = \sqrt{\frac{(30-1)\cdot 4^2 + (30-1)\cdot 5^2}{30+30-2}} \cdot \sqrt{\frac{1}{30} + \frac{1}{30}} = 1.18$$

Variables to Retrieve from Primary Studies

- 1. Mean ((M))
 - For each compared group.
- 2. Standard Deviation ((SD))
 - Standard deviation for each group.
- 3. Sample Size ((n))
 - Number of observations in each group.

Advantages and Disadvantages of Me Difference (MD)

Advantages:

- **Simplicity**: Easy to understand and interpret.
- Direct Measurement: Represents a direct measure of the effect between two groups.
- General Applicability: Useful across various fields (biology, psychology, etc.).

Disadvantages:

- Sensitivity to Samples: Can be influenced by sample variability.
- Data Distribution: Requires a normal distribution for valid interpretations.

Standardized Mean Difference (Cohei

$$d = \frac{M_1 - M_2}{S_{within}}$$

$$S_{within} = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

Where: - M_1 and M_2 represent the sample means of the two groups. S_{within}, is the within-groups standard deviation: - n_1 and n_2 are the sample sizes of the two groups S_2 are the standard deviations of the two groups.

$$SE_d = \sqrt{\frac{n_1 + n_2}{n_1 n_2} + \frac{d^2}{2(n_1 + n_2)}}$$

Standardized Mean Difference (Coher

- Interpretation: SMD= 2 -> a difference of 2 standard deviat
- BUT bias when the sample size of a study is small, especial n≤ 20 (L. V. Hedges 1981).

Hedges' (g)

$$g = d \times \left(1 - \frac{3}{4N - 1}\right)$$

- (N): Total sample size ($(N = n_1 + n_2)$)

$$SE_g = \sqrt{J^2 \times SE_d^2}$$

Plant growth in different soil

Variable	Soil A	Soil B
Mean Height ((M))	25 cm	20 cm
Standard Deviation ((SD))	4 cm	5 cm
Sample Size ((n))	30	30

Calculations

2. Cohen's (d):

$$d = \frac{5}{4.58} \approx 1.09$$

3. **Hedges**' (g):

$$g = 1.09 \times \left(1 - \frac{3}{4(60) - 1}\right) \approx 1.08$$

Advantages and Disadvantages of Cohen's (d) and Hedges' (g)

Advantages:

- Standardized Measure: Allows for comparison across studies.
- Applicability: Useful in various fields (ecology, psychology, etc.).

Disadvantages:

- Sample Size Sensitivity: May be affected by small sample sizes.
- Assumption of Normality: Requires normality for accurate interpretation.
- Interpretability: Not so clear understanding of effect sizes.

Ratio Calculation

1. Ratio (R)

$$R = \frac{X_1}{X_2}$$

- X_1: Mean value or proportion in group 1
- X_2: Mean value or proportion in group 2

where: - $SD_{
m pooled}$: Pooled standard deviation - X_1 : Mean of group 1 - X_2 : Mean of group 2 Sample sizes of the two groups

Ratio: non-normal distribution

• Lead to non normal distribution

How to calculate and combine effect-sizes?

Logarithmic Transformation for Ratio

$$\log R = \ln \left(\frac{X_1}{X_2} \right)$$

Log transformation is often used to stabilize variance and not the distribution.

$$SE_{\ln R} = SD_{\text{pooled}} \sqrt{\frac{1}{n_1 \cdot (X_1)^2}} + \left(\frac{1}{n_2 \cdot (X_2)^2}\right)$$
How to calculate and combine effect-sizes?

Logarithmic Transformation for Ratio

Adjustments for Ratio-Based Effect S

1. Correction for Small Sample Size:

- Log Response Ratio (LnR) tends to be biased when sample sizes are small.
- Apply bias corrections to reduce overestimation or underestimation.
- Variance estimations need adjustment, especially when the response ratio is high

Corrected Log Response Ratio (LnR_corr)

$$\operatorname{LnR}_{corr} = \ln \left(\frac{X_1}{X_2} \right) - \frac{1}{2} \cdot \left(\frac{SD_{X1}^2}{n_1 X_1^2} + \frac{SD_{X2}^2}{n_2 X_2^2} \right)$$

Where:

- (X_1, X_2): Group means.
- (SD_{X1}, SD_{X2}): Standard deviations.
- (n_1, n_2): Sample sizes.

How to calculate and combine effect-sizes?

References: Laieunesse, M. J. (2011)

Comparing Plant Growth

Variable	Soil A	Soil B
Mean Plant Height (X)	25 cm	20 cm
Standard Deviation (SD)	4 cm	5 cm
Sample Size (n)	30	30

Ratio and LogRatio

$$R = \frac{25}{20} = 1.25$$

and

$$\log R = \ln(1.25) \approx 0.223$$

Standard Error of Log Ratio (SE Log Ratio):

$$SE_{\ln R} = 4.53$$
 ** to calculate and combine effect-sizes? ≈ 0.053

Correlation

Correlation Coefficient (r)

$$r = \frac{Cov(X, Y)}{SD_X \cdot SD_Y}$$

Where: - (Cov(X, Y)): Covariance between variables (X) and (Y) - (SD_X): Standard devariable (X) - (SD_Y): Standard deviation of variable (Y)

Standard Error of the Correlation Coefficient (SE)

$$SE_r = \frac{1 - r^2}{\sqrt{n - 2}}$$

Where: - n: Sample size

Correlation

• Non normal distribution

Fisher's Transformation

Fisher's transformation is used to stabilize the variance and make the sampling distribution coefficient more normal:

$$z_r = \frac{1}{2} \cdot \ln \left(\frac{1+r}{1-r} \right)$$

Where:

- r: Observed correlation coefficient
- z_r: Fisher-transformed value

Standard Error of (z_r)

$$SE_{z_r} = \frac{1}{\sqrt{n-3}}$$

Where:

- n : Sample size

Key Takeaways: Soil Experiment Exar

• Comparison of Plant Growth in Two Soil Types:

Variable	Soil A	Soil B
Mean Height	25 cm	20 cm
Standard Deviation	4 cm	5 cm
Sample Size (n)	30	30

Effect Size Calculations:

■ Mean Difference (MD): 5 cm

■ Cohen's d: 1.09

■ **Hedges'** g: 1.08

■ **Ratio**: 1.25

■ log(Ratio): 0.0223

Important Considerations for Effect S

1. Data Characteristics:

- Ensure assumptions of normality and homogeneity of variance are met.
- Consider small sample size biases, especially with Cohen's d.

2. Interpretation:

- Choose the appropriate effect size based on study design (e.g., continuous vs. cat data).
- Understand practical significance beyond just statistical significance.

3. Use of Correct Formulas:

- When sample sizes differ, use pooled standard deviations for accurate mean differ
- Apply corrections like Hedges' g for small sample sizes to minimize bias.

Key References for Effect Size Calculations

1. Borenstein et al. (2009):

- Comprehensive guide on effect size calculations and interpretations.
- Essential for meta-analyses and evidence synthesis.

2. The esc and metafor Packages:

- R tools for calculating various effect sizes.
- Use metafor for meta-analytic models and conversions between effect types.

3. Practical Meta-Analysis (Lipsey & Wilson):

- Resource for practical guidance on interpreting and reporting effect sizes.
- Includes guidance on which effect size to use based on research context.