Grundzüge der Theoretischen Informatik

Markus Bläser Universität des Saarlandes

8.12.2021

Kapitel 15: Der Satz von Rice

Fixpunktsatz

Theorem (15.4, Fixpunktsatz)

Für alle WHILE-berechenbaren totalen Funktionen $f:\mathbb{N}\to\mathbb{N}$ und alle $n\in\mathbb{N}\setminus\{0\}$, gibt es ein $e\in\mathbb{N}$ mit

$$\phi^n_{f(e)} = \phi^n_e.$$

g und g+1 berecher desselbe Funktion.

Definition (15.5, Indexmenge)

 $I \subseteq \mathbb{N}$ heißt *Indexmenge*, falls

für alle
$$i,j\in\mathbb{N}$$
 gilt: $i\in I$ und $\phi_i=\phi_j\Longrightarrow j\in I.$

Eine Indexmenge I ist *nicht-trivial*, falls zusätzlich $I \neq \emptyset$ und $I \neq \mathbb{N}$ gilt.

Indexmengen sind durch semantische Eigenschaften definiert:

Bemerkung

I ist Indexmenge genau dann, wenn es eine Menge F von WHILE-berechenbaren Funktionen gibt mit $I=\{i\in\mathbb{N}\mid \phi_i\in F\}.$

Hot or not?

Welche Mengen sind Indexmengen?

- 1. $V_0 = \{i \in \mathbb{N} \mid \phi_i(x) = 0 \text{ für alle } x \in \mathbb{N}\}.$
- 2. $N_1 = \{g \in \mathbb{N} \mid g \le 10000\}$
- 3. $N_2 = \{g \in \mathbb{N} \mid \phi_g(0) = 0 \text{ und } g \ge 10000\}$
- 4. $T = \{i \in \mathbb{N} \mid \phi_i \text{ ist total}\}$
- 5. H₀, das spezielle Halteproblem
- 6. $D_c = \{i \in \mathbb{N} \mid |\operatorname{dom} \varphi_i| \geq c\}$ für alle $c \in \mathbb{N}$,
- 7. $\operatorname{Mon} = \{i \in \mathbb{N} \mid \phi_i \text{ ist monoton}\}\$
- 8. H, das Halteproblem

Der Satz von Rice

HOEREC also Ho ist serie Indexereign

Theorem (15.8, Satz von Rice)

Jede nicht-triviale Indexmenge ist unentscheidbar

"Jede nicht-triviale semantische Programmeigenschaft ist unentscheidbar"

Der Satz von Rice liefert einen alternativen Beweis, dass V_0 , V, T, D_c,\ldots unentscheidbar sind.

Bures 15.8. yen I with himide Index merge Sever ict und jet dur; I ist entschool bar Darn ist de Frt: h(x)= { i falls x & I WHILE- beneder bur Es gilt are godelnummer e nach der Frient outs rut ge = Gheer 1) Falls eat ist, down int h(e) = j, also y = 9 Mer I not ené indoenenge, also not je I da le I. 3 da je I

2) Fall Da	b e & I, door it h(e)=i, also qe=qi. also i & I wod I hadeverge, st and e & I &	
dlso vu	on I unurholeidhar seir. 17	,

Bitte passen Sie auf!

Methoden, um zu zeigen, dass $L \subseteq \mathbb{N}$ unentscheidbar ist: (Nicht alle sind von mir zertifiziert, werden dennoch gerne in Abgaben und Klausuren angewandt.)

- ▶ Universelle Methode: Reduzieren von H₀ auf L.
- ► Gute Methode: Beweisen, dass L nicht-triviale Indexmenge ist. Satz von Rice anwenden.
- ► Akzeptable Methode: Beweisen, dass L nicht-triviale Indexmenge ist. Gehirn ausschalten. Satz von Rice anwenden.
- ► Inakzeptable Methode: Gehirn ausschalten, Satz von Rice anwenden.
- **Schlechte Methode:** Gehirn ausschalten, Satz von Rice anwenden, behaupten, dass L ∉ RE.

Kapitel 16: Turingmaschinen

Turingmaschinen

6: Q x Z > Q

·A3G

 $\delta: \mathbb{Q} \times \mathbb{M} \to \mathbb{Q} \times \mathbb{M} \times \{L, S, R\}^{R}$ $\delta: \mathbb{Q} \times \mathbb{M} \to \mathbb{Q} \times \mathbb{M} \times \{L, S, R\}^{R}$ $\delta: \mathbb{Q} \times \mathbb{M} \to \mathbb{Q} \times \mathbb{M} \times \{L, S, R\}^{R}$ $\delta: \mathbb{Q} \times \mathbb{M} \to \mathbb{Q} \times \mathbb{M} \times \{L, S, R\}^{R}$ $\delta: \mathbb{Q} \times \mathbb{M} \to \mathbb{Q} \times \mathbb{M} \times \{L, S, R\}^{R}$ $\delta: \mathbb{Q} \times \mathbb{M} \to \mathbb{Q} \times \mathbb{M} \times \{L, S, R\}^{R}$ $\delta: \mathbb{Q} \times \mathbb{M} \to \mathbb{Q} \times \mathbb{M} \times \{L, S, R\}^{R}$ $\delta: \mathbb{Q} \times \mathbb{M} \to \mathbb{Q} \times \mathbb{M} \times \{L, S, R\}^{R}$ $\delta: \mathbb{Q} \times \mathbb{M} \to \mathbb{Q} \times \mathbb{M} \times \{L, S, R\}^{R}$ $\delta: \mathbb{Q} \times \mathbb{M} \to \mathbb{Q} \times \mathbb{M} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$ $\delta: \mathbb{Q} \times \mathbb{Q}$ $\delta: \mathbb{Q} \times \mathbb{$

Definition

Definition (16.1)

Eine k-Band-Turingmaschine M ist ein Tupel $(Q, \Sigma, \Gamma, \delta, q_0)$ mit:

- 1. Q ist eine endliche Menge, die Menge der Zustände.
- 2. Σ ist eine endliche Menge, das *Eingabealphabet*.
- 3. Γ ist eine endliche Menge, das Bandalphabet.
 - $\square \in \Gamma$ ist das Leerzeichen, $\Sigma \subseteq \Gamma \setminus \{\square\}$.
- 4. $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, S, R\}^k$ ist die Übergangsfunktion.
- 5. $q_0 \in Q$ ist der *Startzustand*.

Konfigurationen und Berechnungen

Endliche Automaten:

- Berechnung = Folge von Zuständen
- darin implizit: wieviel von der Eingabe gelesen wurde
- kennt man den Zustand und den Rest der Eingabe, so kennt man das weitere Vehalten des Automaten

Turingmaschinen:

- Input kann mehrfach gelesen werden
- Bandinhalte können geändert werden
- Um das weitere Verhalten der Turingmaschine zu kennen, benötigt man:
 - den aktuellen Zustand
 - die aktuellen Bandinhalte
 - die Positionen der Köpfe

Konfigurationen

speirtet alle homenhoren, die noting, un des
veilere Verhalter der TM un kerren.

- lackbox Modellierung eines Bands: Funktion $t: \mathbb{Z} \to \Gamma$
- \blacktriangleright Am Anfang: $t(\mathfrak{i})=\square$ für alle $\mathfrak{i}\in\mathbb{Z}$
- Die Turingmaschine kann nur einen endlichen Teil beschreiben.
- Die absolute Position ist irrelevant.

Modellierung eines Bandes

$$(p,x) \in \mathbb{N} \times \Gamma^*$$

- x ist der Bandinhalt (bislang besuchte Zellen)
- ▶ p (1 ≤ p ≤ |x|) ist die relative Position auf x

Konfigurationen (2)

Definition (Konfiguration)

$$(q,(p_1,x_1),\dots(p_k,x_k))\in Q\times (\mathbb{N}\times\Gamma^*)^k$$

- p q ist der Zustand

Definition (Startkonfiguration auf w)

$$(q_0, (1, w), (1, \square), \dots, (1, \square)).$$

Berechnungen

- $ightharpoonup C = (q, (p_1, x_1), \dots (p_k, x_k))$
- $ightharpoonup C' = (q', (p'_1, x'_1), \dots (p'_k, x'_k))$

C' heißt Nachfolgekonfiguration von C, falls C' durch einen Schritt von M von C erreicht wird.

D.h. falls $\delta(q, \alpha_1, \dots, \alpha_k) = (q', \beta_1, \dots, \beta_k, r_1, \dots, r_k)$, dann ist

$$x'_{\kappa} = u_{\kappa} \beta_{\kappa} v_{\kappa}, \quad 1 \leq \kappa \leq k$$

und

$$p_\kappa' = \begin{cases} p_\kappa - 1 & \text{falls } r_\kappa = L, \\ p_\kappa & \text{falls } r_\kappa = S, \\ p_\kappa + 1 & \text{falls } r_\kappa = R. \end{cases}$$

Berechnungen (2)

Randfälle:

Falls $p_{\kappa} = 1$ und $r_{\kappa} = L$, dann ist

$$\chi'_{\kappa} = \Box \beta_{\kappa} \nu_{\kappa}$$

und

▶ Falls $p_{\kappa} = |x_{\kappa}|$ and $r_{\kappa} = R$, dann ist

$$x'_{\kappa} = u_{\kappa} \beta_{\kappa} \square$$

und

$$p_{\kappa}' = |x_{\kappa}| + 1.$$

Berechnungen (3)

C' ist (diette) nurtheyelorf. von C

- ▶ Notation: $C \vdash_M C'$
- ightharpoonup \vdash_{M}^* bezeichnet die reflexiv-transitive Hülle
- $\begin{array}{c} \triangleright \ C \vdash_M^* C' \text{ falls es } C_1, \ldots, C_\ell \text{ gibt mit} \\ C \vdash_M C_1 \vdash_M \ldots \vdash_M C_\ell \vdash_M C'. \end{array}$
- Eine Konfiguration ohne Nachfolger heißt haltend.
- ▶ M hält auf w, falls $SC_M(w) \vdash_M^* C_t$ und C_t ist haltend.
- ► $SC_M(w) \vdash_M C_1 \vdash_M C_2 \vdash_M ... \vdash_M C_t$ heißt *Berechnung* von M auf w.
- ► Falls C_t nicht existiert, so hält M nicht auf w. Die zugehörige Berechnung ist unendlich.

Berechnungen (4)

- ► Sei $SC_M(w) \vdash_M^* C_t$, $C_t = (q, (p_1, x_1), \dots, (p_k, x_k))$ haltend.
- Sei $i \le p_1$ der größte Index mit $x_1(i) = \square$. (i = 0 falls der Index nicht existiert.)
- Sei $j \ge p_1$ der kleinste Index mit $x_1(j) = \square$. $(j = |x_1| + 1$, falls der Index nicht existiert.)
- $ightharpoonup x_1(i+1)x_1(i+2)...x_1(j-1)$ ist die Ausgabe von M auf w.
- ▶ Berechnete Funktion: $φ_M : Σ^* \to (Γ \setminus {□})^*$

$$\phi_M(w) = \begin{cases} \text{Ausgabe von } M \text{ auf } w & \text{falls } M \text{ auf } w \text{ h\"{a}lt,} \\ \text{undefiniert} & \text{sonst.} \end{cases}$$

Berechnete Funktionen und Sprachen

Definition (16.3)

 $f: \Sigma^* \to \Sigma^*$ ist *Turing-berechenbar*, falls $f = \phi_M$ für eine Turingmaschine $M = (Q, \Sigma, \Gamma, \delta, q_0) / Q_{acc}$

- Wir könnten $L \subseteq \Sigma^*$ Turing-entscheidbar nennen, falls $\chi_L : \Sigma^* \to \{0,1\}$ Turing-berechenbar ist. (0, 1 als Elemente von Σ aufgefasst.)
- Stattdessen arbeiten wir mit akzeptierenden Zuständen $Q_{\mathrm{acc}} \subseteq Q$
- Eine haltende Konfiguration $(q, (p_1, x_1), ..., (p_k, x_k))$ heißt akzeptierend, falls $q \in Q_{acc}$. Sonst heißt sie verwerfend.

Berechnete Funktionen und Sprachen (2)

Definition (16.4)

Sei $L \subseteq \Sigma^*$.

- 1. $M = (Q, \Sigma, \Gamma, \delta, q_0, Q_{acc})$ erkennt $L \subseteq \Sigma^*$, falls für alle $w \in L$ die Berechnung von M in einer akzeptierenden Konfiguration endet und für alle $w \notin L$ nicht.

 (D.h. sie endet entweder in einer verwerfenden Konfiguration
 - (D.h. sie endet entweder in einer verwertenden Konfiguration oder M hält nicht auf w.)
- 2. M entscheidet L, falls zusätzlich M auch auf alle $w \notin L$ hält.
- 3. L(M) bezeichnet die von M erkannte Sprache.