COMP5541 Assignment 1 - Question 3 Results: Transfer Learning

This document contains the results and analysis from transfer learning experiments to improve model classification performance on the CIFAR-10 dataset using ImageNet pre-trained models.

Part A: AlexNet Fine-tuning with Different Data Amounts Experimental Setup

- Data Percentages: 10%, 20%, 50% of CIFAR-10 training data
- Comparison: Pre-trained AlexNet vs. AlexNet from scratch
- Batch Size: 64

Figure 1: image

Results Summary

Data	Pre-trained Test	From-Scratch Test	Performance
Percentage	Accuracy	Accuracy	Difference
10%	82.99%	12.89%	$+70.10\% \\ +49.77\% \\ +38.62\%$
20%	87.18%	37.41%	
50%	89.68%	51.06%	

Training Characteristics

Pre-trained AlexNet (10% data - 5,000 samples):

• **Epoch 1**: Loss: 1.1414, Acc: 59.68%

- **Epoch 5**: Loss: 0.3922, Acc: 86.78%
- **Epoch 10**: Loss: 0.2157, Acc: 92.82%
- Final Test: 82.99% accuracy

From-Scratch AlexNet (10% data):

- Epoch 1: Loss: 2.3024, Acc: 10.44%
 Epoch 5: Loss: 2.2999, Acc: 12.66%
- **Epoch 10**: Loss: 2.2823, Acc: 11.82%
- Final Test: 12.89% accuracy (essentially random performance)

Part A Analysis

Key Findings:

- 1. **Dramatic Transfer Learning Advantage**: Pre-trained models show overwhelming superiority:
 - With only 10% data, pre-trained Alex Net achieves 82.99% vs 12.89% from scratch
 - 70% performance advantage demonstrates transfer learning is essential for small datasets

2. Data Efficiency:

- From-scratch models fail completely with limited data (10-20%)
- Pre-trained models maintain strong performance (>82%) even with minimal data
- Transfer learning enables practical deep learning with small datasets

3. Learning Dynamics:

- Pre-trained models converge quickly and stably
- From-scratch models struggle to learn meaningful patterns with limited data
- ImageNet features prove highly transferable despite domain differences

Part B: Comparison of Different Pre-trained Models

Experimental Setup

- Models: ResNet18 vs VGG16 (both ImageNet pre-trained)
- Data: 50% of CIFAR-10 training data (25,000 samples)
- Training: 10 epochs with identical settings

Results Summary

Model	Test Accuracy	Test Loss	Parameters	Training Time/Epoch
ResNet18 VGG16	94.30 % 92.59%	0.1665 0.2633	~11.7M ~138M	~33s ~505s

Training Progress

ResNet18 Training Progression:

Epoch 1: Loss: 0.6968, Acc: 78.49%
Epoch 5: Loss: 0.1128, Acc: 96.46%
Epoch 10: Loss: 0.0407, Acc: 98.94%

VGG16 Training Progression:

Epoch 1: Loss: 0.5862, Acc: 79.77%
Epoch 5: Loss: 0.1484, Acc: 94.89%
Epoch 10: Loss: 0.0587, Acc: 98.04%

Part B Analysis

Performance Comparison:

- 1. Accuracy Advantage: ResNet18 outperforms VGG16 by 1.71% (94.30% vs 92.59%)
- 2. Efficiency Superiority: ResNet18 achieves better results with:
 - 12x fewer parameters (11.7M vs 138M)
 - 15x faster training (33s vs 505s per epoch)
 - Lower test loss (0.1665 vs 0.2633)

Architecture Benefits: - ResNet18's Skip Connections: Enable better gradient flow and more effective learning - Modern vs Classical Design: ResNet's architectural innovations prove superior to VGG's classical deep design - Resource Efficiency: ResNet18 provides better accuracy-to-parameter ratio

Part C: Layer-wise Fine-tuning Strategies

Experimental Setup

- Base Model: ResNet18 (ImageNet pre-trained)
- Freezing Strategies:
 - None: Fine-tune all layers
 - **Early**: Freeze early layers (layer1, layer2)
 - Middle: Freeze middle layers (layer2, layer3)
 - Last Only: Only fine-tune final fully connected layer

Results Summary

Freezing	Test	Test	Performance	Training
Strategy	Accuracy	Loss	Drop	Time/Epoch
None (All	94.60%	0.1713	0% (baseline)	~34s
layers)				
Early frozen	93.58%	0.1937	-1.02%	$\sim 30 s$
Middle	93.50%	0.1979	-1.10%	~31s
frozen				
Last only	79.87%	0.5901	-14.73%	Fastest

Training Characteristics by Strategy

Full Fine-tuning (None):

• Best Performance: 94.60% test accuracy

• **Training**: Epoch 1: 79.94% → Epoch 10: 98.88%

• Characteristics: Optimal accuracy, all parameters trainable

Early Layers Frozen:

• Good Performance: 93.58% test accuracy (99% of full performance)

• Training: Epoch 1: $76.22\% \rightarrow \text{Epoch } 10: 98.12\%$

• Characteristics: Slight efficiency gain, minimal accuracy loss

Middle Layers Frozen:

• Similar Performance: 93.50% test accuracy

• Training: Stable progression with frozen mid-level features

• Characteristics: Comparable to early freezing strategy

Last Layer Only:

• Poor Performance: 79.87% test accuracy

 \bullet ${\bf Characteristics}:$ Significant performance degradation, not recommended

Part C Analysis

Strategic Insights:

- 1. Full Fine-tuning Optimal: Achieves highest accuracy (94.60%) when maximum performance is required
- 2. Efficient Alternatives: Early/middle layer freezing provides:
 - 99% of full performance (93.5-93.6% vs 94.6%)
 - 10-15% training speed improvement
 - Reduced computational requirements
- 3. **Feature Layer Importance**: "Last only" strategy fails (79.87%), demonstrating that:
 - Feature extraction layers need task-specific adaptation
 - Classifier-only fine-tuning is insufficient for computer vision
- 4. Layer Transferability: Small performance gaps between strategies indicate:
 - ImageNet features transfer well to CIFAR-10
 - Different layer combinations can be effective
 - Robust feature hierarchy in ResNet18