TRABAJO TEÓRICO

IDENTIFICADOR

Expresión regular: L(L|D)*

Construcción de el AFD utilizando el metodo del Arbol

CALCULO DE SIGUIENTES			
No	Siguiente (No)		
1	L	2,3,4	
2	L	2,3,4	
3	D	2,3,4	
4	\$	#	

SUBCONJUNTOS			
S0={1}			
siguiente(L)=siguiente(1)=	2,3,4	S1	
S1={2,3,4}			
siguiente(2)=siguiente(L)=	2,3,4	S1	
siguiente(3)=siguiente(D)=	2,3,4	S1	

TABLA DE TRASICION			
L D			
S0 S1			
S1 S1 S1			

Conjunto de estados del A:

 $Q = \{S0, S1\}$

Estado inicial:

S0

Alfabeto Σ :

 $\Sigma = \{L,D\}$

Estados de aceptación F:

 $F={S1}$

Funcion de transicion ð:

 $\delta(S0,L)=S1$

$$\delta(S1,L)=S1$$

 $\delta(S1,D)=S1$

Gramática regular:

S0 -> L S1

 $S1 \rightarrow LS1$

S1 -> D S1

NÚMERO

Expresión regular: D(D)*

Construcción de el AFD utilizando el metodo del Arbol

CALCULO DE SIGUIENTES			
No	Σ	Siguiente (No)	
1	D	2,3	
2	D	2,3	
3	\$	#	

SUBCONJUNTOS			
2,3	S1		
2,3	S1		
	2,3 2,3		

TABLA DE TRASICION		
D		
S0	S1	
S1	S1	

Conjunto de estados del A:

 $Q = \{S0,S1\}$

Estado inicial:

S0

Alfabeto Σ :

 $\Sigma = \{D\}$

Estados de aceptación F:

 $F={S1}$

Funcion de transicion ð:

 $\delta(S0,D)=S1$ $\delta(S1,D)=S1$

Gramática regular:

S0 -> D S1

S1 -> D S1

DECIMAL

Expresión regular: D(D)*(.)(D)+

Construcción de el AFD utilizando el método de Thomson

TABLA DE TRANSICION			
FT	e	d (digito)	p (punto)
S0	${S1} = A$	ð(A,d)={S2}=B	
S2	{S3,S4,S6,S7}=B	ð(B,d)={S5}=C	ð(B,p)={S8}=D
S5	{S4,S6,S7}=C	ð(C,d)={S5}=C	ð(B,p)={S8}=D
S8	{S9,S10}=D	ð(D,d)={S11}=E	
S11	{S10,S12}=E	ð(D,d)={S11}=E	

Optimizacion del automata finito no determinista			
	digito	punto	
Α	В		
В	С	D	
С	С	D	
D	E		
E	E		

Optimización del AFD

	Estados no aceptacion			Estados aceptacion	
Alfabeto	Α	В	С	D	E
d (digito)	В	C	С	E	Е
p (punto)		D	D		

		Estados no a	ceptacion	Estados aceptacion
Alfabeto	S1={A}	S2={B,C}	S3={D}	S4={E}
d (digito)	S2	S2	S4	S4
p (punto)		S3		

Nueva tabla de transición

	d (digito)	p (punto)
S1	S2	
S2	S2	S3
S3	S4	
S4	S4	

Conjunto de estados del A:

 $Q = \{S1, S2, S3, S4\}$

Estado inicial:

S1

Alfabeto Σ :

 $\Sigma = \{D, .\}$

Estados de aceptación F:

 $F={S4}$

Funcion de transicion ð:

 $\delta(S1,D)=S2$ $\delta(S2,D)=S2$ $\delta(S2,D)=S2$

 $\delta(S2,p)=S3$ $\delta(S3,D)=S4$

 $\delta(S4,D)=S4$ Donde: d/D es un dígito y p es un punto (.).

Gramática regular:

 $S1 \rightarrow DS2$

 $S2 \rightarrow DS2$

 $S2 \rightarrow . S3$

 $S3 \rightarrow DS4$

S4 -> D S4

PUNTUACIÓN

Expresión regular:

P

Construcción de el AFD

Conjunto de estados del A:

 $Q = \{S0, S1\}$

Estado inicial:

S0

Alfabeto Σ :

 $\Sigma = \{P\}$

Estados de aceptación F:

 $F={S1}$

Funcion de transicion ð:

 $\delta(S0,P)=S1$

Gramática regular:

 $S0 \rightarrow PS1$

 $S1 \rightarrow e$

OPERADOR

Expresión regular:

O

Construcción de el AFD.

Conjunto de estados del A:

 $Q = \{S0, S1\}$

Estado inicial:

S0

Alfabeto Σ :

 $\Sigma = \{O\}$

Estados de aceptación F:

 $F={S1}$

Funcion de transicion ð:

 $\delta(S0,O)=S1$

Gramática regular:

 $S0 \rightarrow OS1$

 $S1 \rightarrow e$

AGRUPACIÓN

Expresión regular:

A

Construcción de el AFD.

Conjunto de estados del A:

 $Q = \{S0, S1\}$

Estado inicial:

S0

Alfabeto Σ :

 $\Sigma = \{A\}$

Estados de aceptación F:

 $F={S1}$

Funcion de transicion ð:

 $\delta(S0,A)=S1$

Gramática regular:

 $S0 \rightarrow AS1$

 $S1 \rightarrow e$

UNION DE AUTÓMATAS FINITOS DETERMINISTAS

Conversión de AFND a AFD

Tr	Transicion inicial			
	D			
S0	S2,S3			
Evaluaci	on de nuevos	estados		
	D			
K0	S2,S3 = K1			
SI	JBCONJUNTO	S		
	D			
K0	S2,S3 = K1			
$K1 = \{S2,S3\}$	S2,S3 = K1	S4 = K2		
K2 ={S4}	S5 = K3			
K3={S5}	S5 = K3			
Tal	ola de transici	ion		
	D			
K0	K1			
K1	K1	K2		
K2	K3			
K3	K3			

Automata finito determinista

Renombrando los estados

TABLA DE TRANSICIONES								
	L	D		Α	0	P		
S0	S1	S2		S5	S6	S7		
S1	S1	S1						
S2		S2	S3					
S3		S4						
S4		S4						
S5								
S6								
S7								

Conjunto de estados del A:

Q={S0,S1,S2,S3,S4,S5,S6,S7}

Estado inicial:

S0

Alfabeto Σ :

 $\Sigma = \{ L, D, .., A, O, P \}$

Estados de aceptación F:

F={S1,S2,S4,S5,S6,S7}

Funcion de transicion ð:

$\delta(S0,L)=S1$	$\delta(S0,D)=S2$	$\delta(S0,A)=S5$	$\delta(S0,O)=S6$
$\delta(S0,P)=S7$	$\delta(S1,L)=S1$	$\delta(S1,D)=S1$	$\delta(S2,D)=S2$
$\delta(S2,)=S3$	$\delta(S3.D)=S4$	ð(S4.D)=S4	

Gramática regular:

 $S0 \rightarrow LS1$

 $S0 \rightarrow DS2$

 $S0 \rightarrow AS5$

S0 -> O S6

 $S0 \rightarrow PS7$

 $S1 \rightarrow L S1$

 $S1 \rightarrow DS1$

S2 -> D S2

02 / 0 02

S2 -> . S3

S3 -> D S4

S4 -> D S4

 $S5 \rightarrow e$

 $S6 \rightarrow e$

 $S7 \rightarrow e$

BUSCADOR

Expresión regular:

C+ Donde C es cualquier carácter.

Ejemplo: hola

Construcción de su ADF

Tabla de transición:

	h	0	I	a
S0	S1	error	error	error
S1	error	S2	error	error
S2	error	error	S3	
S3	error	error	error	S4
S4	error	error	error	error

Conjunto de estados del A:

Q={S0,...,S(numCaracteresPalabra)}

Estado inicial:

S0

Alfabeto Σ :

 $\Sigma = \{C\}$ Donde C es cualquier carácter.

Estados de aceptación F:

F={S(numCaracterPalabra)}

Funciones de transición:

 $\delta(S0,h)=S1$ $\delta(S1,o)=S2$ $\delta(S2,l)=S3$ $\delta(S3,a)=S4$

Generalización

El número de estados es igual al número de caracteres de la palabra más 1.

nE = numCaracteresPalabra + 1

El número de caracteres del alfabeto es igual al número de caracteres de la palabra.