

SENSORS & FIELD TRANSMITTERS

INTERFACE (HMI)

MOTOR DRIVE

INDUSTRIAL COMMUNICATION PROGRAMMABLE LOGIC CONTROL (PLC)

TEMA 2 Sensores analógicos y digitales

Apuntes basados en los desarrollados por el Prof. Alfredo Pérez Vega-Leal.

Indice

- 1. Sensores analógicos
- 2. Circuitos de adaptación
- 3. Sensores digitales

Objetivos

- Recordar el funcionamiento de sensores analógicos
- Presentar algunos sensores digitales
- Comparar unos y otros

Introducción

- Esquema general:
- Necesidad de medir
- Instrumentación electrónica
- Sensores analógicos
 - Adaptación, ruido
- Sensores digitales
 - Precio, optimización

Sensores analógicos

- TODOS los sensores son analógicos
- Variación de un parámetro eléctrico en función de un estímulo
 - Transductores que transforman o transportan energía
- Clasificación según el fenómeno físico
 - Sensores resistivos
 - Sensores termoeléctricos (Termopares)
 - Sensores piezorresistivos o piezoeléctricos
 - Sensores optoelectrónicos y piroeléctricos

Sensores Resistivos

Potenciómetros

- Variación de R con la posición, lineal o angular
- Ley de variación lineal o logarítmica

Sensores Térmicos Resistivos

- RTD: Resistive Temperature Detector
 - Variación muy lineal de R con T
 - Depende del metal:
 - Pt: muy caro pero muy preciso
 - Ni: No muy lineal.
 - Cu: muy barato, buena precisión.

Metal	Resistividad	Coef. de T.	Rango	Coste	R a 0°C	Precisión
Platino	9.83	0.00392	-200-900	Alto	25,100,150	0.01
Níquel	6.38	0.0063-0.0066	-150-300	medio	100	0.5
Cobre	1.56	0.00425	-200-120	Bajo	10	0.1

Sensores térmicos resistivos (II)

- Termistores: NTC y PTC
- NTC:
 - Negative Temp. Coefficient. R crece cuando T baja.
 - Coeficiente Logarítmico
 - Autocalentamiento
 - Alta sensibilidad
- PTC:
 - Positive Temp. Coeff.
 - Muy no-lineales
 - Para protecciones

$$R = R_o \cdot e^{B \cdot \left(\frac{1}{T} - \frac{1}{T_o}\right)}$$

Sensores térmicos resistivos (III)

- Encapsulado de los termistores:
 - Materiales conductores del calor
 - Resina,
 - Vidrio
 - metal
 - Formas diversas
 - Gota
 - Barra
 - Arandela

Sensores fotorresistivos

- Fotorresistencias (LDR)
 - Valor de R depende de la intensidad luminosa (lux=lumen/m2).
 - Materiales semiconductores. Fotón energiza el 'e'
 a banda de conducción

 Resistance vs. Illumination
 - Muy no lineales

Adaptación de sensores resistivos

- R no medible directamente
- Divisor resistivo
- Puente de Wheatstone
 - dos divisores resistivos
 - Tensión diferencial
- Amplificador con offset para adaptar

Adaptación de sensores resistivos (II)

Circuito con amplificadores clásico:

– OP1: desacoplo

– OP2: amplificador

– R1: divisor resistivo

- R2, R3: ganancia

– R4, R5: offset

– C1: filtro paso bajo

$$\begin{split} v_{out} &= V_{offset} + G \cdot v_{in} \\ G &= -\frac{R3}{R2} \\ V_{offset} &= \frac{R3 + R2}{R2} \cdot V_2 = \frac{(R3 + R2) \cdot R5}{(R4 + R5) \cdot R2} \cdot V_{ref} \end{split}$$

Adaptación de sensores resistivos (III)

- Otro circuito posible (solo 1 OPAMP)
 - Amplif. No inversor
 - Impedancia de entrada elevada
 - Ecuaciones más complejas

$$Vout = \left(\frac{Rf}{Rd} + 1 - \frac{\frac{Rf \cdot R1}{Rd^2}}{1 + \frac{R1}{R2} + \frac{R1}{Rd}}\right) \cdot Vin - \frac{\frac{Rf \cdot R1}{Rd \cdot R2}}{1 + \frac{R1}{R2} + \frac{R1}{Rd}} \cdot Vref$$

- G>1 (no filtro)

Adaptación de sensores resistivos (IV)

- Tensiones diferenciales (Weathstone):
 - Amplificador de instrumentación

Termopares

- Basados en el efecto Seebeck
 - Dos metales soldados, generan un pequeño potencial proporcional a T
- Diferentes tipos según las aleaciones usadas

Termopares

• Características:

Tipo según ambos metales

	<u> </u>
Material	Composición
Hierro	99.5% de Hierro
Constantán	45% de Níquel y 55% de Cobre y 95% de Níquel
Platino/Rodio(13%)	87% de Platino y 13% de Rodio
Platino/Rodio(10%)	90% de Platino y 10% de Rodio
Cobre	100% de Cobre
Cromel	10% de Cromo y 90% de Cobre

Tipo	Materiales	Rango
J	Hierro-Constantán (Galga 14)	200-550
T	Cobre-Constantán (Galga 20)	180-270
K	Cromel-Alumel (Galga 14)	260-950
R	Platino/Rodio(13%)-Platino	800-1650
S	Platino/Rodio(13%)-Platino	800-1650
J*	Hierro-Constantán (Galga 8)	200-800

Termopares

• Necesidad de compensar la temperatura de la unión fría (T3) $_{\scriptscriptstyle T}$

 Conectores isotermos, o circuitos especiales de compensación

Galgas extensiométricas

- Al deformarse, cambia alguna propiedad eléctrica
 - Resistencia
 - Capacidad
 - Galgas fotoeléctricas
 - Semiconductoras
- Cambios muy pequeños, necesaria adaptación

Sensores piezoeléctricos

- Efecto piezoeléctrico: al presionar un cristal se genera un pequeño potencial
- Medidores de fuerza, presión, aceleración...

Sensores Piroeléctricos

- Efecto piroeléctrico: generación de corriente al recibir una radiación que calienta el objeto
- Aplicaciones:
 - Pirometría óptica: (temperatura a distancia).
 - Radiometría: pedida de potencia radiada.
 - Termometría: termómetro de alta resolución.
 - Espectroscopía de gases.
 - Detectores de presencia y movimier
 - Visión nocturna (imagen térmica).

Sensores optoelectrónicos

- Mejor respuesta que LDR
- Fotodiodos o fototransistores
- La unión p-n es sensible a la luz

Material	λ (nm)
Silicio (Si)	190–1100
Germanio (Ge)	800–1900
Indio-Galio-Arsénico (InGaAs)	800–2600
Sulfuro de Plomo	<1000-3900

- Según el material, una longitud de onda distinta
- Polarizado en inversa, crece la corriente al incidir la luz
- Sin polarizar, generan un pequeño potencial

Resumen Sensores Analógicos

- Multitud de sensores
- Basados en diferentes efectos
- Necesidad de adaptación de la señal
- Circuitos muy sensibles al ruido
- Necesidad de conocer los principios básicos, aunque no se usen

Sensores digitales

- En realidad, sensores analógicos (o MEMS) con circuito de adaptación integrado
- Tendencia, por su facilidad de uso
- Inconveniente de duplicidad de sistemas
 - Un ADC cada sensor
 - medidas redundantes

Sensores disponibles

- Sensors Boosterpack
 - TMP007: Temperatura ambiente e IR (NRND)
 - OPT3000: Medida de luz
 - BME280: Medidas ambientales (P, T, %H)
 - BMI160: Acelerómetro y giróscopo 3 ejes
 - BMM150: Magnetómetro 3 ejes
- Todos, conectados por I2C
 - Sólo 2 líneas (+ints)

TMP007

- NRND: Not recommended for new designs
- Termopila. Mide radiación IR incidente
- Mide T local para ajustar valor.

TMP007

- ADC de 16 bits y módulo de cálculo de T
- Multitud de registros internos, de 16 bits
 - $-0x01 y 0x03: T_{local} y T_{obj}$
 - 0x02: configuración
 - 0x1F: DevID ("TI")
- Calibrado de fábrica
- Por defecto, 1 conv/s

REGISTER ADDRESS	VENDOR RESET VALUE	REGISTER NAME	REGISTER DESCRIPTION
00h	0000h	Sensor voltage	Sensor voltage result register
01h	0000h	Local temperature	TDIE temperature result register
02h	1140h	Configuration	Configuration register
03h	0000h	Object temperature	Object temperature result register
04h	0000h	Status	Status register
05h	0000h	Status mask and enable	Mask and enable register
06h	7FC0h	Object high-limit temperature	Object temperature high limit register
07h	8000h	Object low-limit temperature	Object temperature low limit register
08h	7FC0h	Local high-limit temperature	T _{DIE} temperature high limit register
09h	8000h	Local low-limit temperature	T _{DIE} temperature low limit register
0Ah	260Eh	S0 coefficient	S0 coefficient register
0Bh	0106h	A0 coefficient	A0 coefficient register
0Ch	FF9Bh	A1 coefficient	A1 coefficient register
0Dh	FF3Ah	B0 coefficient	B0 coefficient register
0Eh	FF71h	B1 coefficient	B1 coefficient register
0Fh	0553h	B2 coefficient	B2 coefficient register
10h	0000h	C coefficient	C coefficient register
11h	0034h	TC0 coefficient	TC0 coefficient register
12h	0000h	TC1 coefficient	TC1 coefficient register
1Fh	0078h	Device ID	Manufacturer ID register
2Ah	0E00h	Memory access	Memory access register

OPT3000

- Medidor de luz adaptada al ojo humano
- De 0.01lux a 83klux
- Ajuste automático de ganancia
 - ADC 12 bits, 23 bits efectivos

OPT3000

Sólo 6 registros de 16 bits

REGISTER	ADDRESS (Hex) ⁽¹⁾	BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Result	00h	E3	E2	E1	E0	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1	R0
Configuration	01h	RN3	RN2	RN1	RN0	CT	M1	M0	OVF	CRF	FH	FL	L	POL	ME	FC1	FC0
Low Limit	02h	LE3	LE2	LE1	LE0	TL11	TL10	TL9	TL8	TL7	TL6	TL5	TL4	TL3	TL2	TL1	TLO
High Limit	03h	HE3	HE2	HE1	HE0	TH11	TH10	TH9	TH8	TH7	TH6	TH5	TH4	TH3	TH2	TH1	TH0
Manufacturer ID	7Eh	ID15	ID14	ID13	ID12	ID11	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
Device ID	7Fh	DID15	DID14	DID13	DID12	DID11	DID10	DID9	DID8	DID7	DID6	DID5	DID4	DID3	DID2	DID1	DID0

Configuración por defecto:

- Rango automático
- Tiempo de conversión de 800ms
- El resultado, codificado:
 - 12 bits de dato (R0..R11)

$$Lux = 0.01 \cdot R \cdot 2^E$$

- 4 de valor de LSB (E0..E3) [máximo 11]

- Medidas ambientales
- Sensores de T, P y %HR
 - Humedad: de 0 a 100%. 3% de error, 1s
 - Presión: de 300 a 1100hPa. Error de 1hPa
 - Temperatura: de 0 a 65. Error de 0.5ºC

- Posibilidad de oversampling y filtrado.
- Dependiendo de su uso, distintas configuraciones de oversampling y filtrado:
 - Estación meteorológica: baja tasa (1/min), sin filtrado de la presión.
 - Altímetro: sobremuestreo de 16x para la presión y
 2x para temperatura. Filtrado de 16 valores IIR
 para la presión

Gran cantidad de registros internos.

Register Name	Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Reset state	
hum Isb	0xFE		hum lsb<7:0>								
hum msb	0xFD				hum_m	sb<7:0>				0x80	
temp_xlsb	0xFC		temp_x	lsb<7:4>		0	0	0	0	0x00	
temp_lsb	0xFB				temp_l:	sb<7:0>				0x00	
temp_msb	0xFA				temp_m	rsb<7:0>				0x80	
press_xlsb	0xF9		press_x	lsb<7:4>		0	0	0	0	0x00	
press_lsb	0xF8				press_l	sb<7:0>				0x00	
press_msb	0xF7				press_n	nsb<7:0>				0x80	
config	0xF5		t_sb[2:0] filter[2:0] spi3w_en[0]						spi3w_en[0]	0x00	
ctrl_meas	0xF4		osrs_t[2:0]			osrs_p[2:0]		mod	e[1:0]	0x00	
status	0xF3					measuring[0]			im_update[0]	0x00	
ctrl hum	0xF2		osrs_h[2:0]							0x00	
calib26calib41	0xE10xF0		calibration data								
reset	0xE0		reset[7:0]								
id	0xD0		chip_id[7:0]								
calib00calib25	0x880xA1				calibrat	ion data				individual	

- Chip_id: 0x60
- Reset: escribiendo 0xB6 se resetea
- En amarillo los registros de datos

- Para calcular los valores reales, necesidad de cálculos bastante complejos.
- Uso de la API disponible
 - Funciones para calcular T, P, H en diferentes precisiones

```
BME280_S32_t t_fine;
BME280_S32_t BME280_compensate_T_int32(BME280_S32_t adc_T)
{
    BME280_S32_t var1, var2, T;
    var1 = ((((adc_T>>3) - ((BME280_S32_t)dig_T1<<1))) * ((BME280_S32_t)dig_T2)) >> 11;
    var2 = (((((adc_T>>4) - ((BME280_S32_t)dig_T1)) * ((adc_T>>4) - ((BME280_S32_t)dig_T1))) >> 12) *
        ((BME280_S32_t)dig_T3)) >> 14;
    t_fine = var1 + var2;
    T = (t_fine * 5 + 128) >> 8;
    return T;
```


- Acelerómetro y giróscopo de 3 ejes
- Sistemas MEMS
 - Micro electro mechanical systems
- Conexión de un tercer sensor

- Medida de la aceleración lineal y angular, en los tres ejes, con 16 bits de precisión
- Fondo de escala seleccionable
 - 2g..16g
 - 125 °/s .. 2000 °/s
- Medidas sincronizadas
 - Fusión de sensores

- Detección de *gestos* o *escenarios*
 - Caída, Tap, movimiento...

Gran cantidad de registros internos

BMM150

- Magnetómetro de 3 ejes
- En coordinación con una IMU (BMI160) puede dar la posición absoluta

BMM150

- Sensibilidad de 0.3uT
 - Campo magnético terrestre: 25-65 uT
- Medidas de 13 bits
- Interrupciones programables

Register Address	Default Value	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0				
0x52	0x00		REPZ Number Of Repetitions (valid for Z) [7:0] REPXY Number Of Repetitions (valid for XY) [7:0] High Threshold [7:0]										
0x51	0x00												
0x50	0x00												
0x4F	0x00		Low Threshold [7:0]										
0x4E	0x07	Data Ready Pin En	Interrupt Pin En	Channel Z	Channel Y	Channel X	DR Polarity	Interrupt Latch	Interrupt Polarity				
0X4D	0x3F	Data Overrun En	Overflow Int En	High Int Z en	High Int Y en	High Int X en	Low Int Z en	Low Int Y en	Low Int X en				
0x4C	0x06	Adv. S	T [1:0]		Data Rate [2:0]		Opmo	Self Test					
0x4B	0x01	Soft Reset '1'	fixed '0'	fixed '0'	fixed '0'	fixed '0'	SPI3en	Soft Reset '1'	Power Control Bit				
0x4A	0x00	Data Overrun	Overflow	High Int Z	High Int Y	High Int X	Low Int Z	Low Int Y	Low Int X				
0x49	N/A				RHALL [13:6] MSB							
0x48	N/A			RHALL	[5:0] LSB			fixed '0'	Data Ready Status				
0x47	N/A				DATA Z [14:7] MSB							
0x46	N/A				DATA Z [6:0] LSB				Z-Self-Test				
0x45	N/A				DATA Y [12:5] MSB							
0x44	N/A		DATA Y [4:0] LSB fixed '0' fixed '0'										
0x43	N/A		·	·	DATA X [12:5] MSB			·				
0x42	N/A		DATA X [4:0] LSB fixed '0' fixed '0' X-Self-Te										
0x41	N/A					erved							
0x40	0x32			Ch	ip ID = 0x32 (can only be	read if power control bit =	"1")						

BME160-BMM150

- Conectados entre sí
- Con la información de ambos, fusión de sensores
- Z Y X Y

- Cálculo de los ángulos de Euler.
- Cálculos bastante complejos, con funciones trigonométricas inversas
 - Librería de apoyo

Esquemático Boosterpack

Conclusiones

- Los sensores son, intrínsecamente analógicos
- Necesitan adaptación (compleja a veces)
- Sensores digitales más sencillos de montar, pero más complejos de programar
 - Manejo del Bus I2C
- Solución más estándar, independiente de la magnitud a medir

