Toward Structural Biology in Supercooled Water

Jack J. Skalicky, Dinesh K. Sukumaran, Jeffrey L. Mills, and Thomas Szyperski*

Department of Chemistry State University of New York at Buffalo Buffalo, New York 14260

Received November 2, 1999 Revised Manuscript Received January 25, 2000

Internal mobility limits the accuracy of NMR¹ structures:² NOEs are quenched, and conformational and/or chemical exchange broaden resonances, thus impeding extraction of conformational constraints. A shift of temperature, *T*, may move such processes into regimes of very fast or slow exchange on the chemical shift time scale. While a large *increase* of *T* is limited by macromolecular stability and excitation of yet additional motions, a *decrease* well below 0 °C is attainable in supercooled water.³ This promises more accurate NMR structures, a means to freeze out conformations and novel insights into biomolecular dynamics, hydration, and cold denaturation. NMR of small carbohydrates allowed observation of hydroxyl protons,⁴ but multidimensional spectra of macromolecules have not been reported. Here we show the feasibility of NMR-based structural biology in supercooled water.

NMR in supercooled water is hampered by high viscosity, η , yielding long overall rotational correlation times, τ_c , and line broadening; an exponential, $\eta(T)$, was fitted to published values³ (Figure 1a). Hydrodynamic theory⁵ predicts for rigid spherical proteins that $\tau_c = 4\pi [\eta(T)] r_{\rm H}^3/3kT$ (eq 1). $r_{\rm H}$ is the effective radius with $r_{\rm H} = [3VM/(4\pi N_{\rm A})]^{1/3} + r_{\rm w}$ (eq 2), where $\bar{V} = 0.73$ cm³/g, M, $N_{\rm A}$ and $r_{\rm w}$ are the protein's specific volume and molecular weight, Avogadro's number, and the added radius of a monolayer of water, respectively. With $r_{\rm w} = 3.2$ Å, eq 2 yields $r_{\rm H} = 17.2$ Å for 9.4 kDa recombinant ubiquitin.6 To verify that theory applies at <0 °C, we determined τ_c between 25 and −15 °C from ¹⁵N $T_1/T_{1\rho}$ ratios^{7,8} (Figure 1b; Table S1). With $\eta(T)$ of Figure 1a, a fit of eq 1 to τ_c yields $r_{\rm H} = 17.2 \pm 1.0$ Å and allows prediction of τ_c below −15 °C (Figure 1b). The very good agreement

Figure 1. Overall rotational tumbling of globular proteins in supercooled water. The freezing point of water (273 K) is indicated. (A) Viscosity, η , of water as a function of T. The dots represent published values.³ The fitted curve represents the indicated exponential function. (B) Rotational correlation time, τ_c , of ubiquitin⁶ versus T. Experimental values⁹ are represented by dots, and the middle curve (asterisk) was obtained from a fit of eq 1 yielding $r_H = 17.2$ Å. The upper ($r_H = 18.2$ Å) and the lower curve ($r_H = 16.6$ Å) enclose the experimental values shown at higher resolution in the insert. Fits were performed with SigmaPlot 4.0.

between theory and experiment suggests that theory, in general, allows estimation of τ_c of macromolecules in supercooled water.

Here we present the first multidimensional NMR spectra acquired⁹ for a protein (ubiquitin) in supercooled water. The good quality of ¹H NMR spectra (Figures 2a, S3, S4) shows that structure determinations of small proteins (<10 kDa) pursued below -10 °C will profit from homonuclear ¹H NMR. Highquality 2D [13C,1H]-HSQC (Figure 2b) at -15 °C and 3D HNCA at -11 °C (Figure 2c) show that heteronuclear resolved NMR^{2d} serves well to obtain assignments. TROSY¹⁰ is tailored for long τ_c ; 2D [15 N, 1 H]-TROSY (Figure 2d) shows that such spectroscopy is well suited below 0 °C (pronounced differential line broadening was observed⁶ in ω_1, ω_2 - $^1J_{NH}$ -coupled HSQC at -15 °C, Figure 3B). For structure determinations in supercooled water, measurement of residual dipolar couplings 11 is attractive 12 since large $au_{\rm c}$ may require deuteration.¹³ Since bicelle systems are restricted to ambient T, we explored the Pf1 phage system. 14 1% (0.5%) solutions in capillaries⁶ can be cooled to -8 °C (-15 °C), i.e., at >0.5% phage the impact of capillaries⁶ is reduced. Moreover,

(10) (a) Pervushin, K.; Riek, R.; Wider, G.; Wüthrich, K. *Proc. Natl. Acad. Sci. U.S.A.* **1997**, *94*, 12366–12371. (b) Salzmann, M.; Wider, G.; Pervushin, K.; Senn, H.; Wüthrich, K. *J. Am. Chem. Soc.* **1999**, *121*, 844–848.

^{*} To whom correspondence should be addressed.

⁽¹⁾ Abbreviations used: NMR, nuclear magnetic resonance; 1D, 2D, 3D, one-, two-, three-dimensional; HNCA, NMR experiment correlating polypepide backbone 1 HN, 1 SN, and 13 C $^{\alpha}$ chemical shifts; HSQC, heteronuclear single-quantum correlation; NOE, nuclear Overhauser effect; T_{1} , longitudinal nuclear spin relaxation time; $T_{1\rho}$, transverse nuclear spin relaxation time in the rotating frame; TROSY, transverse relaxation-optimized spectroscopy; dGTP, 2'-deoxyguanosine-5'-triphosphate; dTTP, 2'-deoxythymidine-5'-triphosphate; DSS, 2,2-dimethyl-2-silapentane-5-sulfonate.

(2) (a) Wüthrich, K. *NMR of Proteins and Nucleic Acids*; Wiley: New

^{(2) (}a) Wüthrich, K. NMR of Proteins and Nucleic Acids; Wiley: New York, 1986. (b) Ernst, R. R.; Bodenhausen, G.; Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions; Clarendon Press: Oxford, 1987. (c) Wagner, G. J. Biomol. NMR 1993, 3, 375–386. (d) Cavanagh, J.; Fairbrother, W. J.; Palmer, A. G.; Skelton, N. J. Protein NMR Spectroscopy; Academic Press: San Diego, 1996.

⁽³⁾ Angell, C. A. In *Water: a Comprehensive Treatise*; Frank, F., Ed.; Plenum Press: New York, 1982; pp 1–82. (4) Poppe, L.; van Halbeek, H. *Nat. Struct. Biol.* **1994**, *1*, 215–216.

^{(5) (}a) Cantor, P. R.; Schimmel, C. R. *Biophysical Chemistry*;. Freeman: New York, 1980. (b) Tirado, M. M.; Garcia de la Torre, J. *J Chem. Phys.* **1980**, *73*, 1986–1993.

^{(6) 0.8} mM solutions (50 mM K $-PO_4$, pH = 5.9) of $^{13}C/^{15}N$ labeled human ubiquitin comprising a C-terminal Ser-(His)₆-segment (Martek, MD) were put in glass capillaries (Wilmad, NJ, No. 1365-1.7) or 5 mm tubes (Wilmad, NJ, No. 528). T = -7 °C (5 mm tube) and -16 °C (capillary tube) could be reached without freezing. 3D HNCA was recorded with a sample in which the volume between the capillaries inside the 5 mm tube was also filled with protein solution; this allowed reaching -12 °C. Pf1 phage (ASLA, Riga, Latvia) solutions (0.5% and 1%; w/v) were prepared in capillaries (10 mM K $-PO_4$, pH = 7.0). Residual ^{15}N -labeled ubiquitin (Martek, MD) in a 5 mm tube containing 1.3% (w/v) phage at elevated ionic strength (10 mM K $-PO_4$, pH = 6.9, 250 mM NaCl); NMR lines broaden at lower ionic strength. 14 For detection of imino proton resonances, 10 mM aqueous solutions of dGTP and dTTP in capillaries were used (pH = 7.0).

 ⁽⁷⁾ Kay, L. E.; Torchia, D. A.; Bax, A. *Biochemistry* 1989, 28, 8972–8979.
 (8) Szyperski, T.; Luginbühl, P.; Otting, G.; Güntert, P.; Wüthrich, K. *J. Biomol. NMR* 1993, 3, 151–164.

⁽⁹⁾ NMR spectra were recorded on a VARIAN Inova750 spectrometer. *In capillaries*: 15 N T_1 and $T_{1\rho}$ with 1D schemes extended for suppression of cross correlated relaxation 24 (T_1 -delays: 31, 95, 213, 290, 379, 480, 592, 852, 1000 ms; $T_{1\rho}$ -delays: 8,16,23,31,47,55,62,78,94,125 ms; 7 kHz 15 N continuous wave spin-lock; total integrals of 14 H 3 resonances between 8 and 9.5 ppm, which excludes side chain amides, were determined; T=25,20,15,10,5,0,5,-10,-15 $^{\circ}$ C.; total measurement time: 96 h). 2D [13 C, 14 H]-HSQC ($t_{1,\max}$ (13 C) = 22 ms, $t_{2,\max}$ (14 H) = 71 ms, T=25,0,-8,-15 $^{\circ}$ C.; 30 h total). 2D [15 N, 14 H]-TROSY ($t_{1,\max}$ (15 N) = 49 ms, $t_{2,\max}$ (14 H) = 48 ms, T=25,15,5,-5,-6,-7,-8,-11,-15 $^{\circ}$ C.; 60 h total). ω_{1,ω_2} - 14 Hn-coupled HSQC ($t_{1,\max}$ (15 N) = 49 ms, $t_{2,\max}$ (14 H) = 48 ms, T=25,-15 $^{\circ}$ C.; 24 h). *In capillaries with void volume filledic* 3D HNCA ($t_{1,\max}$ (13 C) = 6 ms, $t_{2,\max}$ (15 N) = 24 ms, $t_{3,\max}$ (14 H) = 48 ms, T=25,-11 $^{\circ}$ C.; 28 and 144 h, respectively). *Pf1 solution in 5 mm tube*: 2D [15 N, 14 H]-HSQC without 1 J_{NH} decoupling along ω_1 (15 N) ($t_{1,\max}$ (15 N) = 46 ms, $t_{2,\max}$ (14 H) = 48 ms, T=25,-17 $^{\circ}$ C.; 6 and 24 h, respectively). (10) (a) Pervushin, K.; Riek, R.; Wider, G.; Wüthrich, K. *Proc. Natl. Acad.*