Reyes 09/659,643

11/06/2003

=> d ibib abs hitstr l17 1-15

L17 ANSWER 1 OF 15 HCAPLUS COPYRIGHT 2003 ACS ACCESSION NUMBER: 2003:376271 HCAPLUS

TITLE:

Methods for the detection, analysis and isolation of nascent proteins by labeling with reporter dyes using an aminoacyl-tRNA charged with a dye-conjugated amino

acid

INVENTOR(S):

Rothschild, Kenneth J.; Gite, Sadanand; Olejnik, Jerzy

PATENT ASSIGNEE(S):

Ambergen, Inc. USA

SOURCE:

U.S. Pat. Appl. Publ., 76 pp., Cont.-in-part of U.S.

Ser. No. 49,332. CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	PATENT NO.			KI	ND	DATE		APPLICATION NO.				DATE						
	US	2003	0920	31	Α	1	2003	0515					74368	-	2002		1	
	US 6306628			B1		20011023			US 1999 382736				6	19990	<u> 28/2</u> 5	_/		
WO 2001014578			78	À1		20010301		WO 2000-US23233				20000823						
		W:	AE,	AG,	AL,	AM,	AT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,
			CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EE,	ES,	FI,	GB,	GD,	GE,	GH,	GM,	HR,
			HU,	ID,	IL,	IN,	IS,	JP,	KΕ,	KG,	KP,	KR,	ΚZ,	LC,	LK,	LR,	LS,	LT,
			LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NO,	NZ,	PL,	PT,	RO,	RU,
			SD,	SE,	SG,	SI,	SK,	SL,	TJ,	TM,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VN,
			YU,	ZA,	ZW,	AM,	ΑZ,	BY,	KG,	ΚZ,	MD,	RU,	ТJ,	TM				
		RW:	GH,	GM,	ΚE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZW,	AT,	BE,	CH,	CY,
			DE,	DK,	ES,	FI,	FR,	GB,	GR,	IE,	ΙT,	LU,	MC,	NL,	PT,	SE,	BF,	ВJ,
			CF,	CG,	CI,	CM,	GA,	GN,	G₩,	ML,	MR,	NE,	SN,	TD,	TG			
PRIORITY APPLN. INFO.:						1	US 19	999-:	3827	36	A1	19990	0825					
WO 2000-US2323						233	W	20000	0823									
US 2002-49332							A2	20020	0621									
									1	US 19	999-:	3829	50	Α	19990	0825		

A non-radioactive method of detection and anal. of nascent proteins AΒ translated within cellular or cell-free translation systems by labeling the nascent protein with a reporter dye is described. The core method involves charging a tRNA with an amino acid conjugated with a powerful fluorescent, preferably a deriv. of BODIPY (4,4-difluoro-4-bore-3a,4adiaza-s-indacene). Alternatively, protein synthesis can be monitored by incorporating a dye-binding peptide into a protein. Binding of the dye to the protein, with a change in its spectral properties, can be used to monitor protein synthesis. Nascent proteins contg. these markers can be rapidly and efficiently detected, isolated and analyzed without the handling and disposal problems assocd. with radioactive reagents. Chem. synthesis of misaminoacylated tRNA-Lys by partial degrdn. of the 3'-end and resynthesis is demonstrated. The amino acid was also labeled with a photolabile biotin that allowed rapid recovery of the protein from cell-free translation with immobilized streptavidin. Lower limits of detection were in the range 0.3-10 ng protein.

IT 524698-42-8

RL: ANT (Analyte); BUU (Biological use, unclassified); ANST (Analytical study); BIOL (Biological study); USES (Uses)

(detection in nascent proteins of; methods for detection, anal. and isolation of nascent proteins by labeling with reporter dyes using aminoacyl-tRNA charged with dye-conjugated amino acid)

RN 524698-42-8 HCAPLUS

CN 16-0xa-6,13,18-triazatetracosan-24-oic acid, 23-amino-1-[(3aS,4S,6aR)-

hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-15-(2-nitrophenyl)-5,12,17-trioxo-, (23S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

L17 ANSWER 2 OF 15 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

2003:77534 HCAPLUS

DOCUMENT NUMBER:

138:142467

TITLE:

Compositions and methods for enhancing drug delivery

across and into ocular tissues

INVENTOR(S):

Rothbard, Jonathan B.; Wender, Paul A.; McGrane, P. Leo; Sista, Lalitha V. S.; Kirschberg, Thorsten A.

Cellgate, Inc. A Delaware Corporation, USA

PATENT ASSIGNEE(S): SOURCE:

U.S. Pat. Appl. Publ., 64 pp., Cont.-in-part of U.S.

Ser. No. 792,480.

CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO. DATE
22 000200021		00000100	HG 2002 02000 2002025
US 2003022831	A 1	20030130	US 2002-83960 20020225
US 2002127198	A1	20020912	US 2001-792480 20010223
PRIORITY APPLN. INFO.	:		US 1999-150510P (P)19990824
			US 2000-648400 A2 200d0824
			US 2001-792480 . A2 20010223

OTHER SOURCE(S): MARPAT 138:142467

AB This invention provides compns. and methods for enhancing delivery of drugs and other agents across epithelial tissues, including into and across ocular tissues and the like. The compns. and methods are also useful for delivery across endothelial tissues, including the blood brain

barrier. The compns. and methods employ a delivery-enhancing transporter that has sufficient guanidino or amidino side chain moieties to enhance delivery of a compd. conjugated to the reagent across one or more layers of the tissue, compared to the non-conjugated compd. The delivery-enhancing polymers include, for example, polyarginine mols. that are preferably between about 6 and 25 residues in length.

IT 455282-37-8P 455282-38-9P 455282-39-0P

RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(delivery-enhancing transporters for drug delivery across and into ocular tissues)

RN 455282-37-8 HCAPLUS

CN L-Lysinamide, N2-[6-[[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-1-oxopentyl]amino]-1-oxohexyl]-D-arginyl-D-arginyl-D-arginyl-D-arginyl-N6-[2-[(1R,2S)-2-(benzoylamino)-1-[[(2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl]oxy]carbonyl]-2-phenylethoxy]-2-oxoethyl]- (9CI) (CA INDEX NAME)

RN 455282-38-9 HCAPLUS

CN L-Lysinamide, N2-[6-[[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-l-oxopentyl]amino]-l-oxohexyl]-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-N6-[2-[(1R,2S)-2-(benzoylamino)-1-[[[(2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl]oxy]carbonyl]-2-phenylethoxy]-2-oxoethyl]- (9CI) (CA INDEX NAME)

PAGE 1-B

PAGE 1-C

RN 455282-39-0 HCAPLUS

CN L-Lysinamide, N2-[6-[[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-1-oxopentyl]amino]-1-oxohexyl]-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-N6-[2-[(1R,2S)-2-(benzoylamino)-1-[[((2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl]oxy]carbonyl]-2-phenylethoxy]-2-oxoethyl]- (9CI) (CA INDEX NAME)

L17 ANSWER 3 OF 15 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

2002:696457 HCAPLUS

DOCUMENT NUMBER:

137:237728

TITLE:

Pentide conjugates for enhancing drug delivery across

and into epithelial tissues

INVENTOR(S):

Rothbard, Jonathan B.; Wender, Paul A.; McGrane, P. Leo; Sista, Lalitha V. S.; Kirschberg, Thorsten A.

PATENT ASSIGNEE(S):

SOURCE:

USA
U.S. Pat. Appl. Publ., 80 pp., Cont.-in-part of U.S.

Ser. No. 648,400.

CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND DATE	APPLICATION NO.	DATE
00 000000		US 2001-792480 WO 2002-US5804	
CO, CR, GM, HR, LS, LT,	AL, AM, AT, AU, AZ, CU, CZ, DE, DK, DM, HU, ID, IL, IN, IS, LU, LV, MA, MD, MG, RO, RU, SD, SE, SG,	DZ, EC, EE, ES, FI, JP, KE, KG, KP, KR, MK, MN, MW, MX, MZ,	GB, GD, GE, GH, KZ, LC, LK, LR NO, NZ, OM, PH,
RW: GH, GM, CY, DE, BF, BJ,	UZ, VN, YU, ZA, ZM, KE, LS, MW, MZ, SD, DK, ES, FI, FR, GB, CF, CG, CI, CM, GA,	SL, SZ, TZ, UG, ZM, GR, IE, IT, LU, MC, GN, GQ, GW, ML, MR,	ZW, AT, BE, CH, NL, PT, SE, TR, NE, SN, TD, TG
CO, CR, GM, HR, LS, LT, PL, PT, UA, UG, RW: GH, GM,	AI 20020912 AL, AM, AT, AU, AZ, CU, CZ, DE, DK, DM, HU, ID, IL, IN, IS, LU, LV, MA, MD, MG, RO, RU, SD, SE, SG, UZ, VN, YU, ZA, ZM, KE, LS, MW, MZ, SD, DK, ES, FI, FR, GB,	DZ, EC, EE, ES, FI, JP, KE, KG, KP, KR, MK, MN, MW, MX, MZ, SI, SK, SL, TJ, TM, ZW, AM, AZ, BY, KG, SL, SZ, TZ, UG, ZM,	BZ, CA, CH, CN, GB, GD, GE, GH, KZ, LC, LK, LR, NO, NZ, OM, PH, TN, TR, TT, TZ, KZ, MD, RU, TJ, TM ZW, AT, BE, CH,

BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG US 2003022831 Α1 20030130 US 2002-83960 20020225 US 2003083256 A1 20030501 US 2002-209421 20020730 PRIORITY APPLN. INFO.: US 1999-150510P P 19990824 US 2000-648400 A2 20000824 US 2001-792480 Α 20010223

OTHER SOURCE(S): MARPAT 137:237728

AB This invention provides compns. and methods for enhancing delivery of drugs and other agents across epithelial tissues, including the skin, gastrointestinal tract, pulmonary epithelium, ocular tissues and the like. The compns. and methods are also useful for delivery across endothelial tissues, including the blood brain barrier. The compns. and methods employ a delivery enhancing transporter that has sufficient guanidino or amidino side-chain moieties to enhance delivery of a compd. conjugated to the reagent across one or more layers of the tissue, compared to the non-conjugated compd. The delivery-enhancing polymers include, for example, poly-arginine mols. that are preferably between about 6 and 25 residues in length. E.g., biotinylated polymers of D-arginine were prepd. and their penetration into the skin of nude mice studied.

IT 455282-37-8P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(peptide conjugates for enhancing drug delivery across and into epithelial tissues)

RN 455282-37-8 HCAPLUS

CN L-Lysinamide, N2-[6-[[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-l-oxopentyl]amino]-l-oxohexyl]-D-arginyl-D-arginyl-D-arginyl-N6-[2-[(1R,2S)-2-(benzoylamino)-l-[[(2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl]oxy]carbonyl]-2-phenylethoxy]-2-oxoethyl]- (9CI) (CA INDEX NAME)

IT 455282-38-9P 455282-39-0P

RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(peptide conjugates for enhancing drug delivery across and into epithelial tissues)

RN 455282-38-9 HCAPLUS

CN L-Lysinamide, N2-[6-[[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-1-oxopentyl]amino]-1-oxohexyl]-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-N6-[2-[(1R,2S)-2-(benzoylamino)-1-[[((2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl]oxy]carbonyl]-2-phenylethoxy]-2-oxoethyl]- (9CI) (CA INDEX NAME)

RN 455282-39-0 HCAPLUS

L-Lysinamide, N2-[6-[[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-1-oxopentyl]amino]-1-oxohexyl]-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-N6-[2-[(1R,2S)-2-(benzoylamino)-1-[[((2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl]oxy]carbonyl]-2-phenylethoxy]-2-oxoethyl]- (9CI) (CA INDEX NAME)

L17 ANSWER 4 OF 15 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

2002:675821 HCAPLUS

DOCUMENT NUMBER:

137:222033

TITLE:

Compositions and methods for enhancing drug delivery

across and into ocular tissues

INVENTOR(S):

Rothbard, Jonathan B.; Wender, Paul A.; McGrane, P.

Lee, Sista, Lalitha Vs; Kirschberg, Thorsten A.

PATENT ASSIGNEE(S):

SOURCE:

Cellgate, Inc., USA PCT Int. Appl., 119 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent English

LANGUAGE:

۰. ۱

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.

KIND DATE

APPLICATION NO. DATE

```
WO 2002067917
                                        Α1
                                                 20020906
                                                                            WO 2002-US5804
                      AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
                       CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
                      GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
               RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR,
                       BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
                                                                           US 2001-792480
        US 2002127198
                                        Α1
                                                 20020912
                                                                                                          20010223
                                                                                                    A 20010223
PRIORITY APPLN. INFO.:
                                                                       US 2001-792480
                                                                       US 1999-150510P
                                                                                                  P 1999/08/24
                                                                       US 2000-648400
                                                                                                    A2 20000824
OTHER SOURCE(S):
                                           MARPAT 137:222033
        Compns. and methods for enhancing delivery of drugs, diagnostic and other
        agents across epithelial tissues, including into and across ocular tissues
        and blood-brain barrier are provided. The compns. and methods employ a
        delivery enhancing transporter that has sufficient quanidino or amidino
        side chain mojeties to enhance delivery of a compd. conjugated to the
        reagent across one or more layers of the tissue, compared to the
        non-conjugated compd. The delivery-enhancing polymers include, for
        example, poly-arginine mols. that are preferably between about 6 and 25
        residues in length. For example; a series of structural characteristics
        including sequence length, amino acid compn., and chirality that influence
        the ability of Tat49-57 to enter cells is identified. These
        characteristics provided the blueprint for the design of a series of novel
        peptoids, of which 17 members were synthesized and assayed for cellular
        uptake. This research established that the peptide backbone and hydrogen
        bonding along that backbone are not required for cellular uptake, that the
        quanidino head group is superior to other cationic subunits, and most
        significantly, that an extension of the alkyl chain between the backbone
        and the head group provides superior transporters. In addn. to better
        uptake performance, these novel peptoids offer several advantages over
        Tat49-57 including cost-effectiveness, ease of synthesis of analogs, and
        protease stability. These features along with their significant water
        soly. (>100 mg/mL) indicate that these novel peptoids could serve as
        effective transporters for the mol. delivery of drugs, drug candidates,
        and other agents into cells.
TΤ
        455282-37-8P 455282-38-9P 455282-39-0P
        455282-40-3P 455282-41-4P 455282-42-5P
        RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological
        study); PREP (Preparation); USES (Uses)
              (drug conjugates with peptide transporter contq. amidino or guanidino
             moieties for enhanced delivery across epithelium)
        455282-37-8 HCAPLUS
RN
        L-Lysinamide, N2-[6-[[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[3,4-hexahydro-2-oxo-1H-thieno[
CN
        d]imidazol-4-yl]-1-oxopentyl]amino]-1-oxohexyl]-D-arginyl-D-arginyl-D-
        arginyl-D-arginyl-D-arginyl-N6-[2-[(1R,2S)-2-(benzoylamino)-1-
        [[[(2aR, 4S, 4aS, 6R, 9S, 11S, 12S, 12aR, 12bS) - 6, 12b-bis(acetyloxy) - 12-
         (benzoyloxy)-2a, 3, 4, 4a, 5, 6, 9, 10, 11, 12, 12a, 12b-dodecahydro-4, 11-dihydroxy-
        4a, 8, 13, 13-tetramethyl-5-oxo-7, 11-methano-1H-cyclodeca[3, 4]benz[1, 2-b]oxet-
```

Absolute stereochemistry.

9-y1]oxy]carbony1]-2-phenylethoxy]-2-oxoethy1]- (9CI) (CA INDEX NAME)

RN 455282-38-9 HCAPLUS

CN L-Lysinamide, N2-[6-[[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-1-oxopentyl]amino]-1-oxohexyl]-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-N6-[2-[(1R,2S)-2-(benzoylamino)-1-[[[(2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl]oxy]carbonyl]-2-phenylethoxy]-2-oxoethyl]- (9CI) (CA INDEX NAME)

RN 455282-39-0 HCAPLUS

L-Lysinamide, N2-[6-[[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-l-oxopentyl]amino]-l-oxohexyl]-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-N6-[2-[(1R,2S)-2-(benzoylamino)-1-[[[(2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl]oxy]carbonyl]-2-phenylethoxy]-2-oxoethyl]- (9CI) (CA INDEX NAME)

RN 455282-40-3 HCAPLUS

CN L-Lysinamide, D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-N6-[2-[(1R,2S)-2-(benzoylamino)-1-[[[(2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl]oxy]carbonyl]-2-phenylethoxy]-2-oxoethyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

RN 455282-41-4 HCAPLUS

CN L-Lysinamide, D-arginyl-D-arginyl

PAGE 1-B

PAGE 2-A

|| NH

RN 455282-42-5 HCAPLUS

CN L-Lysinamide, D-arginyl-D-arginyl

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PAGE 2-A

PAGE 3-A

```
5
                                THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS
REFERENCE COUNT:
                                RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT
L17 ANSWER 5 OF 15 HCAPLUS COPYRIGHT 2003 ACS
                          2001:265375 HCAPLUS
ACCESSION NUMBER:
DOCUMENT NUMBER:
                          134:311431
                          Preparation of novel amino acid-related carbamates and
TITLE:
                          ureas
                          Rana, Tariq W.; Hwang, Seongwoo; Tamilarasu, Natarajan
INVENTOR(S):
                          University of Medicine and Dentistry of New Jersey,
PATENT ASSIGNEE(S):
                          USA
                          PCT Int. Appl., 117 pp.
SOURCE:
                          CODEN: PIXXD2
                          Patent
DOCUMENT TYPE:
                          English
LANGUAGE:
FAMILY ACC. NUM. COUNT:
PATENT INFORMATION:
                                             APPLICATION NO. DATE
     PATENT NO.
                      KIND DATE
                                            _____
                      ----
                            _____
     _____
                      A1 20010412 WO 2000-US27398 20001004
     WO 2001025188
         W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
             CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
             HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,
             LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU,
             ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
         RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
             DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ,
             CF, ÆG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG ¶ 1
                                                              2000/10/04
                                       US 2000-679728 20001004
EP 2000-968691 20001004
     US 6420591/
                      . B1
                             20020716
                             20020731
     EP 1226115
                      A1
             AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
             IE, SI, LT, LV, FI, RO, MK, CY, AL
                                             US 2000-679451
                                                               20001004
     US 6503713
                       В1
                             20030107
     JP 2003511362
                        T2
                             20030325
                                             JP 2001-528136
                                                               20001004
                                                               19991004
PRIORITY APPLN. INFO.:
                                         US 1999-157646P P
                                         WO 2000-US27398 W
                                                               20001004
OTHER SOURCE(S):
                        MARPAT 134:311431
     Novel carbamates and ureas H-Y-Y-Y-NH2 [each Y is independently a radical
     NHC*H[(CH2)mR1]CO, N[(CH2)mR1]CH2CO, or NHC*H[(CH2)mR1]2H2O2C (Q), where
     each R1 is independently selected from -NH2, -NHC(:NAVNH2, and
     -CH2C(:NH)NH2; each m is independently an integer 3-7 each * is an (R) or (S) chiral center; and with the proviso that at least one Y is a radical
     having the structure of Q] and their pharmaceutically acceptable salts
     were prepd. for treating or preventing cancer, in flammation, or a viral
     infection. Thus, H2NCONHCH[(CH2)3NHC(:NH)NH2]CH2NHCONHCH[(CH2)4NH2]CH2NHC
     ONHCH[(CH2)4NH2]CH2NH2, with the chirality of am{t}ginine and lysine, was
     prepd. and showed Ki = 50 nM for binding to HIV TAR RNA.
     334000-12-3P 334000-13-4P 334000-14-5P
     334000-15-6P 334000-16-7P 334000-17-8P
     334000-18-9P 334000-19-0P 334000-20-3P
     334000-21-4P 334000-22-5P 334000-23-6P
     334000-24-7P 334000-25-8P 334000-26-9P
     334000-27-0P 334000-28-1P 334000-29-2P
     334000-64-5P 334000-65-6P 334000-66-7P
     334000-67-8P 334000-68-9P 334000-69-0P
```

334000-70-3P 334000-71-4P 334000-72-5P 334000-73-6P 334000-74-7P 334000-75-8P 334000-76-9P 334000-77-0P 334000-78-1P

334000-79-2P 334000-80-5P 334000-81-6P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(prepn. of amino acid-related carbamates and ureas)

RN 334000-12-3 HCAPLUS

CN 5,10-Dioxa-2,7-diazaundecanoic acid, 11-amino-3,8-bis(4-aminobutyl)-6,11-dioxo-, (2S)-2,6-diaminohexyl ester, (3R,8R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 334000-13-4 HCAPLUS

CN 5,10-Dioxa-2,7-diazaundecanoic acid, 11-amino-3,8-bis(4-aminobutyl)-6,11-dioxo-, (2R)-2,6-diaminohexyl ester, (3R,8R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 334000-14-5 HCAPLUS

CN Carbamic acid, [(1R)-5-amino-1-[[(aminocarbonyl)oxy]methyl]pentyl]-, (2R)-6-amino-2-[[(2S)-2,6-diamino-1-oxohexyl]amino]hexyl ester (9CI) (CAINDEX NAME)

RN 334000-15-6 HCAPLUS

CN Carbamic acid, [(1R)-5-amino-1-[[(aminocarbonyl)oxy]methyl]pentyl]-, (2R)-6-amino-2-[[(2R)-2,6-diamino-1-oxohexyl]amino]hexyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 334000-16-7 HCAPLUS

CN Carbamic acid, [(1R)-5-amino-1-[[(aminocarbonyl)oxy]methyl]pentyl]-, (2R)-6-amino-2-[[[(5-aminopentyl)amino]acetyl]amino]hexyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$(CH_2)_4$$
 $(CH_2)_5$ $(CH_2)_5$ $(CH_2)_5$ $(CH_2)_4$ $(CH_2)_5$ $(CH_2)_4$ $(CH_2)_5$ $(CH_2)_4$ $(CH_2)_5$ $(CH_2)_4$ $(CH_2)_5$ $(CH_2)_4$ $(CH_2)_5$ $(CH_2)_4$ $(CH_2)_5$ $(CH_2)_5$ $(CH_2)_5$ $(CH_2)_5$ $(CH_2)_5$ $(CH_2)_5$ $(CH_2)_5$ $(CH_2)_5$

RN 334000-17-8 HCAPLUS

CN Carbamic acid, [(1R)-5-amino-1-[[(aminocarbonyl)oxy]methyl]pentyl]-, (2R)-6-amino-2-[[[(7-aminoheptyl)amino]acetyl]amino]hexyl ester (9CI) (CA INDEX NAME)

RN 334000-18-9 HCAPLUS

CN 2,7-Dioxa-5,10-diazaundecan-11-oic acid, 1-amino-4,9-bis(4-aminobutyl)-1,6-dioxo-, (2S)-2-amino-5-[(aminoiminomethyl)amino]pentyl ester, (4R,9R)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 334000-19-0 HCAPLUS

CN Carbamic acid, [(1R)-5-amino-1-[[(aminocarbonyl)oxy]methyl]pentyl]-, (2R)-6-amino-2-[[[(4-aminobutyl)amino]acetyl]amino]hexyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$(CH_2)_4$$
 $(CH_2)_4$ $(CH_2)_4$

RN 334000-20-3 HCAPLUS

CN 5,10-Dioxa-2,7-diazaundecanoic acid, 11-amino-3,8-bis(4-aminobutyl)-6,11-dioxo-, (2R)-2,5-diamino-5-oxopentyl ester, (3R,8R)- (9CI) (CA INDEX NAME)

$$(CH_2)$$
 4 R O NH2

 (CH_2) 4 R O NH2

 (CH_2) 4 R O NH2

 (CH_2) 4 NH2

 (CH_2) 6 NH2

 (CH_2) 7 NH2

RN 334000-21-4 HCAPLUS

CN 5,10-Dioxa-2,7-diazaundecanoic acid, 11-amino-3,8-bis(4-aminobutyl)-6,11-dioxo-, (2S)-2,6-diaminohexyl ester, (3S,8R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 334000-22-5 HCAPLUS

CN 5,10-Dioxa-2,7-diazaundecanoic acid, 11-amino-3,8-bis(4-aminobutyl)-6,11-dioxo-, (2R)-2,6-diaminohexyl ester, (3S,8R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 334000-23-6 HCAPLUS

CN Carbamic acid, [(1R)-5-amino-1-[[(aminocarbonyl)oxy]methyl]pentyl]-, (2S)-6-amino-2-[[(2S)-2,6-diamino-1-oxohexyl]amino]hexyl ester (9CI) (CA INDEX NAME)

RN 334000-24-7 HCAPLUS

CN Carbamic acid, [(1R)-5-amino-1-[[(aminocarbonyl)oxy]methyl]pentyl]-, (2S)-6-amino-2-[[(2R)-2,6-diamino-1-oxohexyl]amino]hexyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 334000-25-8 HCAPLUS

CN Carbamic acid, [(1R)-5-amino-1-[[(aminocarbonyl)oxy]methyl]pentyl]-, (2S)-6-amino-2-[[[(5-aminopentyl)amino]acetyl]amino]hexyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$(CH_2)_4$$
 R $(CH_2)_5$ $(CH_2)_4$ $(CH_2)_5$ $(CH_2)_4$ $(CH_2)_5$ $(CH_2)_4$ $(CH_2)_5$ $(CH_2)_4$ $(CH_2)_5$ $(CH_2)_4$ $(CH_2)_5$ $(CH_2)_4$ $(CH_2)_5$

RN 334000-26-9 HCAPLUS

CN Carbamic acid, [(1R)-5-amino-1-[[(aminocarbonyl)oxy]methyl]pentyl]-, (2S)-6-amino-2-[[[(7-aminoheptyl)amino]acetyl]amino]hexyl ester (9CI) (CA INDEX NAME)

RN 334000-27-0 HCAPLUS

Absolute stereochemistry.

$$H_2N$$
 $(CH_2)_4$
 R
 H_1
 $(CH_2)_4$
 $(CH_2)_4$
 $(CH_2)_4$
 $(CH_2)_4$
 $(CH_2)_4$
 $(CH_2)_4$
 $(CH_2)_4$
 $(CH_2)_4$
 $(CH_2)_4$

RN 334000-28-1 HCAPLUS

CN 5,10-Dioxa-2,7-diazaundecanoic acid, 11-amino-3,8-bis(4-aminobutyl)-6,11-dioxo-, (2S)-2-amino-5-[(aminoiminomethyl)amino]pentyl ester, (3S,8R)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$(CH_2)_4$$
 $(CH_2)_4$ $(CH_2)_4$

RN 334000-29-2 HCAPLUS

CN 5,10-Dioxa-2,7-diazaundecanoic acid, 11-amino-3,8-bis(4-aminobutyl)-6,11-dioxo-, (2R)-2,5-diamino-5-oxopentyl ester, (3S,8R)- (9CI) (CA INDEX NAME)

RN 334000-64-5 HCAPLUS

CN 5,10-Dioxa-2,7-diazaundecanoic acid, 11-amino-3,8-bis(4-aminobutyl)-6,11-dioxo-, (2S)-2,6-diaminohexyl ester, (3R,8S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 334000-65-6 HCAPLUS

CN 5,10-Dioxa-2,7-diazaundecanoic acid, 11-amino-3,8-bis(4-aminobutyl)-6,11-dioxo-, (2R)-2,6-diaminohexyl ester, (3R,8S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 334000-66-7 HCAPLUS

CN Carbamic acid, [(1S)-5-amino-1-[[(aminocarbonyl)oxy]methyl]pentyl]-, (2R)-6-amino-2-[[(2S)-2,6-diamino-1-oxohexyl]amino]hexyl ester (9CI) (CA INDEX NAME)

RN 334000-67-8 HCAPLUS

CN Carbamic acid, [(1S)-5-amino-1-[[(aminocarbonyl)oxy]methyl]pentyl]-, (2R)-6-amino-2-[[(2R)-2,6-diamino-1-oxohexyl]amino]hexyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 334000-68-9 HCAPLUS

CN Carbamic acid, [(1S)-5-amino-1-[[(aminocarbonyl)oxy]methyl]pentyl]-, (2R)-6-amino-2-[[[(5-aminopentyl)amino]acetyl]amino]hexyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$H_2N$$
 $(CH_2)_4$
 S
 HN
 $(CH_2)_5$
 NH_2
 $(CH_2)_4$
 NH_2
 $(CH_2)_4$
 $(CH_2)_4$
 $(CH_2)_5$

RN 334000-69-0 HCAPLUS

CN Carbamic acid, [(1S)-5-amino-1-[[(aminocarbonyl)oxy]methyl]pentyl]-,
(2R)-6-amino-2-[[[(7-aminoheptyl)amino]acetyl]amino]hexyl ester (9CI) (CA
INDEX NAME)

RN 334000-70-3 HCAPLUS

CN Carbamic acid, [(1S)-5-amino-1-[[(aminocarbonyl)oxy]methyl]pentyl]-, (2R)-6-amino-2-[[[(4-aminobutyl)amino]acetyl]amino]hexyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$H_2N$$
 $(CH_2)_4$
 S
 HN
 $(CH_2)_4$
 NH_2
 $(CH_2)_4$
 NH_2
 $(CH_2)_4$
 $(CH_2)_4$
 $(CH_2)_4$

RN 334000-71-4 HCAPLUS

CN 5,10-Dioxa-2,7-diazaundecanoic acid, 11-amino-3,8-bis(4-aminobutyl)-6,11-dioxo-, (2S)-2-amino-5-[(aminoiminomethyl)amino]pentyl ester, (3R,8S)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 334000-72-5 HCAPLUS

CN 5,10-Dioxa-2,7-diazaundecanoic acid, 11-amino-3,8-bis(4-aminobutyl)-6,11-dioxo-, (2R)-2,5-diamino-5-oxopentyl ester, (3R,8S)- (9CI) (CA INDEX NAME)

$$(CH_2)_4$$
 $(CH_2)_4$ $(CH_2)_4$

RN 334000-73-6 HCAPLUS

CN 5,10-Dioxa-2,7-diazaundecanoic acid, 11-amino-3,8-bis(4-aminobutyl)-6,11-dioxo-, (2S)-2,6-diaminohexyl ester, (3S,8S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$(CH_2)_4$$
 $(CH_2)_4$ $(CH_2)_4$

RN 334000-74-7 HCAPLUS

CN 5,10-Dioxa-2,7-diazaundecanoic acid, 11-amino-3,8-bis(4-aminobutyl)-6,11-dioxo-, (2R)-2,6-diaminohexyl ester, (3S,8S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 334000-75-8 HCAPLUS

CN Carbamic acid, [(1S)-5-amino-1-[[(aminocarbonyl)oxy]methyl]pentyl]-, (2S)-6-amino-2-[[(2S)-2,6-diamino-1-oxohexyl]amino]hexyl ester (9CI) (CA INDEX NAME)

RN 334000-76-9 HCAPLUS

CN Carbamic acid, [(1S)-5-amino-1-[[(aminocarbonyl)oxy]methyl]pentyl]-, (2S)-6-amino-2-[[(2R)-2,6-diamino-1-oxohexyl]amino]hexyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 334000-77-0 HCAPLUS

CN Carbamic acid, [(1S)-5-amino-1-[[(aminocarbonyl)oxy]methyl]pentyl]-, (2S)-6-amino-2-[[[(5-aminopentyl)amino]acetyl]amino]hexyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$H_2N$$
 $(CH_2)_4$
 S
 H_1
 O
 S
 $(CH_2)_4$
 NH_2
 O
 S
 $(CH_2)_4$
 NH_2

RN 334000-78-1 HCAPLUS

CN Carbamic acid, [(1S)-5-amino-1-[[(aminocarbonyl)oxy]methyl]pentyl]-, (2S)-6-amino-2-[[[(7-aminoheptyl)amino]acetyl]amino]hexyl ester (9CI) (CA INDEX NAME)

RN 334000-79-2 HCAPLUS

CN Carbamic acid, [(1S)-5-amino-1-[[(aminocarbonyl)oxy]methyl]pentyl]-, (2S)-6-amino-2-[[[(4-aminobutyl)amino]acetyl]amino]hexyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 334000-80-5 HCAPLUS

CN 5,10-Dioxa-2,7-diazaundecanoic acid, 11-amino-3,8-bis(4-aminobutyl)-6,11-dioxo-, (2S)-2-amino-5-[(aminoiminomethyl)amino]pentyl ester, (3S,8S)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$(CH_2)_4$$
 $(CH_2)_4$ $(CH_2)_4$

RN 334000-81-6 HCAPLUS

CN 5,10-Dioxa-2,7-diazaundecanoic acid, 11-amino-3,8-bis(4-aminobutyl)-6,11-dioxo-, (2R)-2,5-diamino-5-oxopentyl ester, (3S,8S)- (9CI) (CA INDEX NAME)

ame inventue en

$$(CH_2)_4$$
 $(CH_2)_4$ $(CH_2)_4$

REFERENCE COUNT:

THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L17 ANSWER 6 OF 15 HCAPLUS COPYRIGHT 2003 ACS 2001:208131 HCAPLUS ACCESSION NUMBER:

3

DOCUMENT NUMBER:

134:231861

Method of potentiating chemotherapy and treating solid TITLE:

tumors

Gibbons, James Joseph, Jr.; Dukart, Gary; Lucas, Judy; INVENTOR(S):

Speicher, Lisa Anne

American Home Products Corporation, USA PATENT ASSIGNEE(S):

SOURCE:

PCT Int. Appl., 23 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent English LANGUAGE:

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

DATE PATENT NO. KIND DATE APPLICATION NO. Some -----____ 2001/0822 20000912 A2 WO 2000-US25008 WO 2001019399 А3 20011/213 WO 2001019399 AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG BR 2000014001 20020521 BR 2000-14001 20000912 Α EP 2000-961841 20020619 20000912 EP 1214092 Α2 AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL-JP 2003509383 T2 20030311 JP 2001-523030 20000912 US 1999-396051 A 19990915 PRIORITY APPLN. INFO.: WO 2000-US25008 W 20000912

MARPAT 134:231861 OTHER SOURCE(S):

This invention provides a method of treating solid tumors which comprises administering an effective amt. of a combination of (1) a bioresponse modifier and (2) a chemotherapeutic agent. This invention also provides a method of potentiating the effects of a chemotherapeutic regimen in a mammal in need of treatment with such regimen which comprises administering a bioresponse modifier in addn. to a chemotherapeutic regimen. The potentiating effect of the bioresponse modifier

 $[R-(R^*,R^*)]-N-[R-6-carboxy-N2-[[2-carboxy-1-methyl-2-[(1-oxoheptyl)amino]ethoxy]carbonyl]-L-lysyl]alanine and paclitaxel was demonstrated in mice.$

IT 160705-84-0

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(potentiating chemotherapy and treating solid tumors)

RN 160705-84-0 HCAPLUS

CN D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with N-(1-oxoheptyl)-D-allothreonine (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L17 ANSWER 7 OF 15 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

2001:177403 HCAPLUS

DOCUMENT NUMBER: TITLE:

135:28708
Targeting RNA with peptidomimetic oligomers in human

celĺs

AUTHOR(S):

Tamilarasu, N.; Huq, I.; Rana, T. M.

CORPORATE SOURCE:

Department of Pharmacology, Robert Wood Johnson Medical School, and Molecular Biosciences Graduate Program at Rutgers State University, Piscataway, NJ,

08854, USA

SOURCE:

Bioorganic & Medicinal Chemistry Letters (2

11(4), 505-507

CODEN: BMCLE8; ISSN: 0960-894X

PUBLISHER:

Elsevier Science Ltd.

DOCUMENT TYPE: LANGUAGE:

Journal English

Replication of human immunodeficiency virus type 1 (HIV-1) require specific interactions of Tat protein with the trans-activation responsive region (TAR) RNA, a 59-base stem-loop structure located at the 5'-end of all HIV mRNAs. Here we report that two TAR RNA-binding peptidomimetics, oligourea and oligocarbamate, inhibit transcriptional activation by Tat protein in human cells with an IC50 of .apprx.0.5 and 1 .mu.M, resp. Peptidomimetics that can target specific RNA structures provide novel mols. that can be used to control cellular processes involving protein-RNA interactions in vivo. Replication of human immunodeficiency virus type 1 (HIV-1) requires specific interactions of Tat protein with the trans-activation responsive region (TAR) RNA, a stem-loop structure located at the 5'-end of all HIV mRNAs. Here we report that two TAR RNA-binding peptidomimetics, oligourea and oligocarbamate, inhibit transcriptional activation by Tat protein in human cells with an IC50 of 0.5 and .apprx.1.0 .mu.M, resp. Peptidomimetics that can target specific

RNA structures provide novel mols. that can be used to control cellular processes involving protein-RNA interactions in vivo.

IT 343944-29-6

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)

(targeting RNA with peptidomimetic oligomers in human cells)

RN 343944-29-6 HCAPLUS

CN L-Arginine, N44-L-tyrosyl-(4S,9S,14S,19S,24S,29S,34S,39S)-44-amino-29,34-bis(4-aminobutyl)-4,9,19,24,39-pentakis[3-[(aminoiminomethyl)amino]propyl]-14-(3-amino-3-oxopropyl)-6,11,16,21,26,31,36,41-octaoxo-2,7,12,17,22,27,32,37,42-nonaoxa-5,10,15,20,25,30,35,40-octaazatetratetracontanoyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

NH

HN

PAGE 1-A

PAGE 1-C

```
CO2H
(CH<sub>2</sub>)<sub>3</sub>
```

22 THERE ARE 22 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT:

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L17 ANSWER 8 OF 15 HCAPLUS COPYRIGHT 2003 ACS 2001:152863 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER:

134:204756

TITLE:

Methods for the detection, analysis and isolation of

nascent proteins

INVENTOR(S):

Rothschild, Kenneth J.; Gite, Sadanand; Olejnik, Jerzy

Ambergen, Inc. USA PATENT ASSIGNEE(S): SOURCE:

PCT Int. Appl., 204 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

```
APPLICATION NO. DATE
    PATENT NO.
                     KIND DATE
    _____
                     ____
                           -----
                                          _____
                                          WO 2000-US23233 2000/08/23
    WO 2001014578
                      Α1
                           20010301
           AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ/\phiA, CH, CN,
            CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
            HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,
            LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU,
            SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN,
            YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
        RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
            DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ,
            CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG //
                                                           19990825
    US 6303337
                      В1
                           20011016
                                        US 1999-382950
                                                           19990825
    US 6306628
                           20011023
                                          US 1999-382736
                      В1
    EP 1210449
                      Α1
                           20020605
                                          EP 2000-957758
                                                           20000823
            AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
            IE, SI, LT, LV, FI, RO, MK, CY, AL
    US 2002132248
                      Α1
                           20020919
                                          US 2001-973145
                                                           20011009
    US 2003092031
                      A1
                           20030515
                                          US 2002-174368
                                                           20020618
PRIORITY APPLN. INFO.:
                                       US 1999-382736
                                                      - A 19990825
                                       US 1999-382950
                                                        A 19990825
                                       WO 2000-US23233
                                                        W 20000823
                                       US 2002-49332
                                                        A2 20020621
```

- AB This invention relates to non-radioactive markers that facilitate the detection and anal. of nascent proteins translated within cellular or cell-free translation systems. Nascent proteins contg. these markers can be rapidly and efficiently detected, isolated and analyzed without the handling and disposal problems assocd. with radioactive reagents. Preferred markers are dipyrrometheneboron difluoride (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dyes.
- IT 328387-26-4P

RL: SPN (Synthetic preparation); PREP (Preparation) (methods for detection, anal. and isolation of nascent proteins)

RN 328387-26-4 HCAPLUS

CN 10-0xa-2,8,13,20-tetraazapentacosanoic acid, 3-carboxy-25-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-11-(2-nitrophenyl)-9,14,21-trioxo-, 1-(9H-fluoren-9-ylmethyl) ester, (3S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

REFERENCE COUNT:

THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L17 ANSWER 9 OF 15 HCAPLUS COPYRIGHT 2003 ACS ACCESSION NUMBER: 2000:220895 HCAPLUS

DOCUMENT NUMBER:

133:120610

TITLE:

Design and synthesis of novel antimicrobial

Reves 09/659,643

paeudopeptides with selective membrane-perturbation activity

AUTHOR(S):

Lee, K.-H.; Oh, J.-E.

CORPORATE SOURCE:

Protein Chemistry Laboratory, Mogam Biotechnology

Research Institute, Kyonggi-Do, S. Korea

Bdoorganic & Medicinal Chemistry (2000) 8(4), 833-839

CODEN: BMECEP; ISSN: 0968-0896

PUBLISHER:

Elsevier Science Ltd.

DOCUMENT TYPE:

Journal

LANGUAGE:

SOURCE:

English

By incorporating carbamate bond(s) into a cytolytic peptide, novel AΒ pseudopeptides with potent antibacterial activity and low hemolytic activity were synthesized. CD spectra suggested that the incorporation of carbamate bond(s) decrease the .alpha .- helical conformation of the peptide in lipid membrane circumstances, which must be regarded as a major factor for the sepn, of antibacterial activity from cytotoxic activity for mammalian cell. Expts. in which dye was released from vesicles indicated that the potent antibacterial activity and low hemolytic activity of the pseudopeptides must be due to their great lipid membrane selectivity.

IT 284680-90-6P

> RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); PROC (Process) (design and synthesis of antimicrobial pseudopeptides with selective membrane-perturbation activity)

284680-90-6 HCAPLUS RN

L-Lysinamide, N-[[((2S)-2-[[N-[[((2S)-2-[(L-lysyl-L-leucyl)amino]-4-CN methylpentyl]oxy]carbonyl]-L-leucyl-L-lysyl-L-leucyl-L-leucyl]amino]-4methylpentyl]oxy]carbonyl]-L-lysyl-L-leucyl-L-leucyl- (9CI) (CA INDEX NAME)

PAGE 1-B

PAGE 2-A

.

REFERENCE COUNT:

THERE ARE 43 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L17 ANSWER 10 OF 15 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1999:414234 HCAPLUS

DOCUMENT NUMBER:

131:193710

TITLE:

Cyclic and linear oligocarbamate ligands for human

thrombin

AUTHOR(S):

Cho, Charles Y.; Liu, Corey W.; Wemmer, David E.;

Schultz, Peter G.

CORPORATE SOURCE:

Department of Chemistry, University of California,

Berkeley CA, 94720, USA

SOURCE:

Bioorganic & Medicinal Chemistry (1999), 7(6),

1171-1179

CODEN: BMECEP; ISSN: 0968-0896

PUBLISHER:

Elsevier Science Ltd.

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB Several classes of compds. have been tested as potential inhibitors of the serine protease thrombin, an important regulator of blood coagulation cascades. The authors describe here the discovery of a new class of thrombin inhibitors based on an unnatural carbamate biopolymer. Oligocarbamate thrombin inhibitors were identified through the screening of diverse cyclic trimer, cyclic tetramer, and linear tetramer libraries using the one bead, one peptide method. Whereas the cyclic trimer oligocarbamate ligands bound thrombin with modest affinity, a cyclic tetramer oligocarbamate inhibited thrombin with an apparent Ki of 31 nM. Linear oligocarbamate tetramers bound thrombin with inhibition consts. in the 100-nM range. These nonpeptidic, oligomeric mols. may provide the basis for further drug development and studies of thrombin-ligand interactions.

IT 213120-37-7 241496-02-6 241496-04-8

241496-06-0 241496-08-2 241496-09-3 241496-11-7

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(cyclic and linear peptide oligocarbamate ligands for human thrombin in relation to structure)

RN 213120-37-7 HCAPLUS

CN 1-Pyrrolidinecarboxylic acid, 2-[(5S,10S)-18-amino-10-[4[(aminoiminomethyl)amino]butyl]-5-(cyclohexylmethyl)-3,8,13,18-tetraoxo2,7,12,17-tetraoxa-4,9,14-triazaoctadec-1-yl]-, methyl ester, (2S)- (9CI)
(CA INDEX NAME)

Absolute stereochemistry.

RN 241496-02-6 HCAPLUS

CN 5,10-Dioxa-2,7,12-triazahexadecanedioic acid, 13[[(aminocarbonyl)oxy]methyl]-8-[4-[(aminoiminomethyl)amino]butyl]-3(cyclohexylmethyl)-6,11-dioxo-, 1-[[(2S)-1-(methoxycarbonyl)-2pyrrolidinyl]methyl] ester, (3S,8S,13S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 241496-04-8 HCAPLUS

CN 1-Pyrrolidinecarboxylic acid, 2-[(5S,10S)-18-amino-10-[4-[(aminoiminomethyl)amino]butyl]-5-[(4-methoxyphenyl)methyl]-3,8,13,18-tetraoxo-2,7,12,17-tetraoxa-4,9,14-triazaoctadec-1-yl]-, methyl ester, (2S)- (9CI) (CA INDEX NAME)

RN 241496-06-0 HCAPLUS

CN 1-Pyrrolidinecarboxylic acid, 2-[(5S,10S)-18-amino-10-[4-[(aminoiminomethyl)amino]butyl]-3,8,13,18-tetraoxo-5-(phenylmethyl)-2,7,12,17-tetraoxa-4,9,14-triazaoctadec-1-yl]-, methyl ester, (2S)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 241496-08-2 HCAPLUS

CN 1-Pyrrolidinecarboxylic acid, 2-[(5S,10S)-18-amino-10-[4-[(aminoiminomethyl)amino]butyl]-5-[(4-nitrophenyl)methyl]-3,8,13,18-tetraoxo-2,7,12,17-tetraoxa-4,9,14-triazaoctadec-1-yl]-, methyl ester, (2S)- (9CI) (CA INDEX NAME)

RN 241496-09-3 HCAPLUS

CN 1-Pyrrolidinecarboxylic acid, 2-[(5S,10S)-16-amino-10-[(aminocarbonyl)oxy]methyl]-16-imino-5-[(4-methoxyphenyl)methyl]-3,8dioxo-2,7-dioxa-4,9,15-triazahexadec-1-yl]-, (2S)-4-carboxy-2-[(methoxycarbonyl)amino]butyl ester, (2S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

RN 241496-11-7 HCAPLUS

CN 5,10,15-Trioxa-2,7,12,17,23-pentaazatetracosanoic acid, 24-amino-18-[[(aminocarbonyl)oxy]methyl]-3-[3-[(aminoiminomethyl)amino]propyl]-24-imino-8-methyl-13-(1-methylethyl)-6,11,16-trioxo-, methyl ester, (3S,8S,13S,18S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

OMe

REFERENCE COUNT:

THERE ARE 28 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L17 ANSWER 11 OF 15 ACCESSION NUMBER:

DOCUMENT NUMBER:

HCAPLUS COPYRIGHT 2003 ACS 1998:507680 HCAPLUS 189:245467

28

Searched by Mary Jane Ruhl

605-1155

Page 45

TITLE: Oligocarbamates as MHC class I ligands

AUTHOR(S): Warrass, Ralf; Walden, Peter; Wiesmuller, Karl-Heinz;

Jung, Gunther

CORPORATE SOURCE: Institut fur Organische Chemie, Tubingen, D-72076,

Germany

SOURCE: Letters in Peptide Science (1998), 5(2-3), 125-128

CODEN: LPSCEM; ISSN: 0929-5666

PUBLISHER: Kluwer Academic Publishers

DOCUMENT TYPE: Journal LANGUAGE: English

New ligands for major histocompatibility complex (MHC) class I mols. were prepd. using a flexible automated synthesis of oligocarbamates. An efficient soln.-phase synthesis was found for Fmoc-amino alcs. (Fmoc = 9-fluorenylmethoxycarbonyl) which are required as building blocks. The biol. activity of the oligomeric peptidomimetics H-[NHCH(R)CH2OCO]4NHCH(CH3)CO2H (R = amino acid side chain) was demonstrated in a stabilizing assay with MHC class I presenting cells.

IT 213336-26-6P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)

(prepn. of peptidomimetics in the form of oligocarbamates as MHC class I liqunds)

RN 213336-26-6 HCAPLUS

CN 5,10,15-Trioxa-2,7,12,17-tetraazanonadecanedioic acid,
13-(4-aminobutyl)-3-(2-amino-2-oxoethyl)-18-methyl-6,11,16-trioxo-8(phenylmethyl)-, 1-[(2S)-2-amino-3-hydroxypropyl] ester, (3S,8S,13S,18K)(9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

CO2H

REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L17 ANSWER 12 OF 15 HCAPLUS COPYRIGHT 2003 ACS ACCESSION NUMBER: 1998:496513 HCAPLUS

DOCUMENT NUMBER: 129:245454

Searched by Mary Jane Ruhl 605-1155

TITLE: Synthesis and <u>Screening of Linear</u> and Cyclic

Oligocarbamate Libraries. Discovery of High Affinity

Ligands for GPIIb/IIIa

AUTHOR(S):

Cho, Charles Y.; Youngquist, R. Scott; Paikoff, Sari J.; Beresini, Maureen H.; Hebert, Andrea R.; Berleau,

Lea T.; Liu, Corey W.; Wemmer, David E.; Keough,

Thomas; Schultz, Peter G.

CORPORATE SOURCE:

Department of Chemistry and Howard Hughes Medical Institute, University of California, Berkeley, CA,

94720-1460, USA

SOURCE:

Journal of the American Chemical Society (1998),

120(31), 7706-7718

CODEN: JACSAT; ISSN: 0002-7863

PUBLISHER: American Chemical Society
DOCUMENT TYPE: Journal

DOCUMENT TYPE: LANGUAGE:

English

AB Synthetic methodol. has been developed for the generation of large, diverse libraries of "unnatural" carbamate oligomers using the "one bead, one peptide" method. Using a pool of 27 structurally and functionally diverse monomers, one acyclic and two cyclic libraries were synthesized and screened for binding to the integrin GPIIb/IIIa. Several classes of oligocarbamate ligands for GPIIb/IIIa were discovered, and two cyclic ligands have activities that are within a factor of 3 of kistrin, a snake venom protein that effectively inhibits platelet aggregation. Preliminary pharmacokinetic characterization was performed on a linear oligocarbamate ligand, which was cleared from plasma with a half-life of 3.6 min.

IT 213120-28-6P 213120-29-7P 213120-32-2P 213120-33-3P 213120-35-5P 213120-36-6P

213120-37-7P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)

(prepn. and screening of linear and cyclic oligocarbamate combinatorial libraries for discovery of high affinity ligands for GPIIb/IIIa)

RN 213120-28-6 HCAPLUS

CN · 5,10,15-Trioxa-2,7,12,17,23-pentaazatetracosanoic acid,
24-amino-18-[[(aminocarbonyl)oxy]methyl]-13-[3[(aminoiminomethyl)amino]propyl]-3-(carboxymethyl)-24-imino-8-(1methylethyl)-6,11,16-trioxo-, 1-methyl ester, (3R,8S,13S,18S)- (9CI)
INDEX NAME)

(CI

PAGE 1-A

$$H_{2}N$$
 H_{1}
 $(CH_{2})_{4}$
 H_{1}
 $(CH_{2})_{4}$
 H_{1}
 $(CH_{2})_{3}$
 $(CH_{2})_{3}$
 H_{1}
 $(CH_{2})_{3}$
 (CH_{2})

PAGE 1-B

OMe

∠CO2H

RN 213120-29-7 HCAPLUS

CN 5,10,15-Trioxa-2,7,12,17,22-pentaazatricosanoic acid, 23-amino-18-[[(aminocarbonyl)oxy]methyl]-13-[4-[(aminoiminomethyl)amino]butyl]-8-(carboxymethyl)-23-imino-3-methyl-6,11,16-trioxo-, 1-methyl ester, (3S,8R,13S,18S)- (9CI) (CA INDEX NAME)

PAGE 1-B

__NH2

RN 213120-32-2 HCAPLUS

CN 5,10,15-Trioxa-2,7,12,17-tetraazaeicosanedioic acid, 18[[(aminocarbonyl)oxy]methyl]-13-[4-[(aminoiminomethyl)amino]butyl]-3,8bis[3-[(aminoiminomethyl)amino]propyl]-6,11,16-trioxo-, 1-methyl ester,
(3S,8S,13S,18R)- (9CI) (CA INDEX NAME)

RN 213120-33-3 HCAPLUS

CN 1-Pyrrolidinecarboxylic acid, 2-[(5S,10S)-16-amino-10[[(aminocarbonyl)oxy]methyl]-5-[2-[(aminoiminomethyl)amino]ethyl]-16-imino3,8-dioxo-2,7-dioxa-4,9,15-triazahexadec-1-yl]-, (2R)-3-carboxy-2[(methoxycarbonyl)amino]propyl ester, (2S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

NH2

RN 213120-35-5 HCAPLUS CN 5,10-Dioxa-2,7,12-triazapentadecanedioic acid, 13-[[[[(1S)-1[[(aminocarbonyl)oxy]methyl]-5-[(aminoiminomethyl)amino]pentyl]amino]carbonyl]oxy]methyl]-3,8-bis[3-[(aminoiminomethyl)amino]propyl]-6,11-dioxo-,1-methyl ester, (3S,8R,13R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

RN 213120-36-6 HCAPLUS

CN 5,10-Dioxa-2,7,12-triazapentadecanedioic acid, 13-[[[[(1S)-1-[(aminocarbonyl)oxy]methyl]-5-[(aminoiminomethyl)amino]pentyl]amino]carbonyl]oxy]methyl]-3,8-bis[3-[(aminoiminomethyl)amino]propyl]-6,11-dioxo-,1-methyl ester, (3S,8S,13R)- (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

OMe

RN 213120-37-7 HCAPLUS

CN 1-Pyrrolidinecarboxylic acid, 2-[(5S,10S)-18-amino-10-[4-[(aminoiminomethyl)amino]butyl]-5-(cyclohexylmethyl)-3,8,13,18-tetraoxo-2,7,12,17-tetraoxa-4,9,14-triazaoctadec-1-yl]-, methyl ester, (2S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

REFERENCE COUNT:

THERE ARE 84 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L17 ANSWER 13 OF 15 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1997:436038 HCAPLUS

DOCUMENT NUMBER:

127:91798

TITLE:

SOURCE:

HIV-1 TAR RNA recognition by an unnatural biopolymer

Wang, Xilu; Huq, Ikramul; Rana, Tariq M.

AUTHOR(S): CORPORATE SOURCE:

Department of Pharmacology Robert Wood Johnson (Rutgers) Medical School, University of Medicine

Dentistry of New Jersey, Piscataway, NJ, 08854, USA

Journal of the American Chemical Socjety

119(27), 6444-6445

CODEN: JACSAT; ISSN: 0002-7863

American Chemical Society

DOCUMENT TYPE: LANGUAGE:

PUBLISHER:

Journal English

Replication of human immunodeficiency virus type 1 (HIV-1) requires specific interactions of Tat protein with the trans-activation responsive region (TAR) RNA, a 59-base stem-loop structure located at the 5'-end of all HIV mRNAs. We synthesized an oligocarbamate contg. the basic-arginine rich region of Tat (47Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg57) by solid phase peptide synthesis methods, and tested for TAR RNA binding. This Tat protein-derived unnatural biopolymer can specifically bind TAR RNA with high affinities. Site-specific photocrosslinking expts. using photoactive analog (4-thiouracil) contg. TAR RNA revealed that the unnatural biopolymer interacts with RNA in the major groove. oligocarbamate-RNA complexes were stable to proteolytic digestion recognition by an unnatural biopolymer provides a new approach for the design of cell-permeable mols. for the control of cellular processes involving RNA-protein interactions in vivo.

TΤ 192193-77-4

RL: BPR (Biological process); BSU (Biological study, unc/assified); BIOL (Biological study); PROC (Process)

(TAR RNA binding by; HIV-1 TAR RNA recognition by and unnatural oligocarbamate biopolymer corresponding to basic arginine-rich region of Tat protein)

PAGE 1-A

192193-77-4 HCAPLUS RN

2,7,12,17,22,27,32,37,42,47,52-Undecaoxa-5,10,15,20,25,30,35,40,45,50-CN decaazapentapentacontanoic acid, 54-amino-34,39-bis(4-aminobuty1)-9,14,24,29,44-pentakis[3-[(aminoiminomethyl)amino]propyl]-19-(3-amino-3oxopropyl)-55-(4-hydroxyphenyl)-6,11,16,21,26,31,36,41,46,51-decaoxo-, [4S-(4R*,9R*,14R*,19R*,24R*,29R*,34R*,39R*,44R*,54R*)]- (9CI) NAME)

Absolute stereochemistry.

NH NH₂ HN (CH₂)₃ Н NH2

PAGE 1-C

HCAPLUS COPYRIGHT 2003 ACS

NUMBER: DOCUMENT

122:106538

TITLE:

Preparation of peptide urethane and urea derivatives

that induce cytokine production

INVENTOR(S):

Ayral-Kaloustian, Semiramis; Schow, Steven R.; Du, Mila T.; Gibbons, James J., Jr.

PATENT ASSIGNEE(S):

SOURCE:

American Cyanamid Co., USA U.S., 25 pp.

CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

KIND DATE PATENT NO.

APPLICATION NO.

```
US 5312831
                              19940517
                                              US 1993-63174
                                                                19930512
                        Α
     US 5545662
                              19960813
                                              US 1994-213303
                                                                19940314
                        Α
     EP 652228
                        Α1
                              19950510
                                              EP 1994-106123
                                                                19940420
                              19961023
     EP 652228
                        B1
                      CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, NL, PT, SE
         R:
             AT, BE,
                              19961115
                                              AT 1994-106123
                                                                19940420
     AT 144533
                        Ε
                              19970101
                                              ES 1994-106123
                                                                19940420
     ES 2094004
                        Т3
     CZ 290445
                        B6
                              20020717
                                              CZ 1994-981
                                                                19940422
     SK 281120
                        B6
                              20001211
                                              SK 1994-491
                                                                19940428
                        A2
                              19950130
                                              HU 1994-1444
                                                                19940506
     HU 67038
     HU 219768
                        В
                              20010730
                              19950718
                                              JP 1994-119532
                                                                19940509
     JP 07179414
                        A2
                        A1
                              20000601
                                              IL 1994-109602
                                                                19940509
     IL 109602
                        AA
                              19941113
                                              CA 1994-2123261
                                                                19940510
     CA 2123261
                        Α
                              19941113
                                              FI 1994-2186
                                                                19940511
     FI 9402186
                                              NO 1994-1786
                                                                19940511
     NO 9401786
                        Α
                              19941114
                                              AU 1994-63043
                                                                19940511
     AU 9463043
                        A1
                              19941117
     AU 669064
                        B2
                              19960523
                                              ZA 1994-3266
                                                                19940511
                        Α
                              19950112
     ZA 9403266
                                              RU 1994-16389
                        C1
                              19990827
                                                                19940511
     RU 2135515
                                                                19940511
                        В1
                              20001130
                                              PL 1994-303396
     PL 179984
                                              CN 1994-105671
                                                                19940512
                        Α
                              19950322
     CN 1100413
                        В
                              20021127
     CN 1094943
                        В
                              20000121
                                              TW 1994-83107431 19940813
     TW 380129
                                              US 1995-449878
                                                                19950525
                        Α
                              19970211
     US 5602275
                        Α
                              19970401
                                              US 1995-451099
                                                                19950525
     US 5616612
                                                                19950525
     US 5633280
                        Α
                              19970527
                                              US 1995-451085
                                              US 1995-449968
                                                                19950525
     US 5658945
                        Α
                              19970819
                                           US 1993-63174
                                                             A3 19930512
PRIORITY APPLN. INFO.:
                                           US 1994-213303
                                                             A3 19940314
```

OTHER SOURCE(S):

MARPAT 122:106538

GΙ

Title compds. [I; R1, R3, Ra = H, (substituted) alkyl, cycloalkyl, cycloalkylalkyl, vinyl, acetylene, amino, acylamino, aryl, aralkyl, aryloxy, heterocyclyl, etc.; R2, Rb, Rc = (protected) carboxy, carboxylalkyl, carboxamide; X = O, S; R4 = H, protecting group], were prepd. Thus, [R-(R*,R*)]-N-(R)-6-carboxy-N2-[[2-carboxy-1-methyl-2-[(1-oxoheptyl)amino]ethoxy]carbonyl]lysyl-D-alanine (soln. phase prepn. given) at 0.1 mg/kg s.c. in mice induced 4802 U/mL of IL-6. I may be useful in the treatment of cancer, AIDS, aplastic anemia, myelodysplastic syndrome, infectious disease, and in the enhancement of immune response.

IT 160578-69-8P 160578-70-1P 160578-71-2P 160578-72-3P 160578-73-4P 160579-15-7P 160579-16-8P 160579-17-9P 160579-18-0P 160705-77-1P 160705-78-2P 160705-79-3P 160705-81-7P 160705-82-8P 160705-83-9P 160705-84-0P 160705-85-1P 160705-86-2P

RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. of, for induction of cytokine prodn.)

RN 160578-69-8 HCAPLUS

CN D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with N-(1-oxoheptyl)-D-threonine (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$NH_2$$
 HN
 O
 S
 R
 CO_2H
 HO_2C
 R
 $CH_2)_3$
 S
 HN
 R
 CO_2H
 O
 HN
 R
 CO_2H
 O
 Me

RN 160578-70-1 HCAPLUS

CN D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with N-(1-oxoheptyl)-D-serine (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 160578-71-2 HCAPLUS ·

CN D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with N-[(4-pentylcyclohexyl)carbonyl]-L-threonine, (trans)- (9CI) (CA INDEX NAME)

$$HO_2C$$
 R
 HO_2C
 HO_2C

RN 160578-72-3 HCAPLUS

CN D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with N-[(4-butoxyphenyl)acetyl]-L-threonine (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$\begin{array}{c|c} & & & \\ & & & \\$$

RN 160578-73-4 HCAPLUS

CN D-Alanine, N-[(R)-6-carboxy-N2-[[1-[carboxy[(1-oxoheptyl)amino]methyl]propoxy]carbonyl]-L-lysyl]-, [R-(R*,R*)]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$HO_2C$$
 R
 HO_2C
 HO_2C

RN 160579-15-7 HCAPLUS

CN D-Allothreonine, N-(1-oxoheptyl)-, phenylmethyl ester,

Absolute stereochemistry.

RN 160579-16-8 HCAPLUS

CN D-Serine, N-(1-oxoheptyl)-, phenylmethyl ester, [1-[[[1-methyl-2-oxo-2-(phenylmethoxy)ethyl]amino]carbonyl]-6-oxo-6-(phenylmethoxy)-5[[(phenylmethoxy)carbonyl]amino]hexyl]carbamate (ester),
[1S-[1R*(S*),5S*]]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 160579-17-9 HCAPLUS

CN D-Allothreonine, N-[(4-pentylcyclohexyl)carbonyl]-, phenylmethyl ester, [1-[[[1-methyl-2-oxo-2-(phenylmethoxy)ethyl]amino]carbonyl]-6-oxo-6- (phenylmethoxy)-5-[[(phenylmethoxy)carbonyl]amino]hexyl]carbamate (ester), [1S-[1R*(trans),1(S*),5S*]]- (9CI) (CA INDEX NAME)

RN 160579-18-0 HCAPLUS

CN D-Allothreonine, N-[(4-butylphenyl)acetyl]-, phenylmethyl ester, [1-[[[1-methyl-2-oxo-2-(phenylmethoxy)ethyl]amino]carbonyl]-6-oxo-6-(phenylmethoxy)-5-[[(phenylmethoxy)carbonyl]amino]hexyl]carbamate (ester), [1S-[1R*(S*),5S*]]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 160705-77-1 HCAPLUS

CN D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with N-(1-oxoheptyl)-L-allothreonine (9CI) (CA INDEX NAME)

RN 160705-78-2 HCAPLUS
CN D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with N-(1-oxoheptyl)-L-threonine (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 160705-79-3 HCAPLUS
CN D-Alanine, N-[(R)-6-carboxy-N2-[[1-[carboxy-1-[(1-oxoheptyl)amino]methyl]propoxy]carbonyl]-L-lysyl]-, [S-(R*,S*)]- (9CI)
(CA INDEX NAME)

Absolute stereochemistry.

$$HO_2C$$
 R
 HO_2C
 HO_2C

RN 160705-81-7 HCAPLUS

CN D-Threonine, N-(1-oxoheptyl)-, phenylmethyl ester, [1-[[[1-methyl-2-oxo-2-(phenylmethoxy)ethyl]amino]carbonyl]-6-oxo-6-(phenylmethoxy)-5-

[[(phenylmethoxy)carbonyl]amino]hexyl]carbamate (ester), [1S-[1R*(S*),5S*]]-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 160705-82-8 HCAPLUS

CN L-Allothreonine, N-(1-oxoheptyl)-, phenylmethyl ester,
[1-[[[1-methyl-2-oxo-2-(phenylmethoxy)ethyl]amino]carbonyl]-6-oxo-6(phenylmethoxy)-5-[[(phenylmethoxy)carbonyl]amino]hexyl]carbamate (ester),
[1S-[1R*(S*),5S*]]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 160705-83-9 HCAPLUS

CN L-Threonine, N-(1-oxoheptyl)-, phenylmethyl ester, [1-[[[1-methyl-2-oxo-2-(phenylmethoxy)ethyl]amino]carbonyl]-6-oxo-6-(phenylmethoxy)-5[[(phenylmethoxy)carbonyl]amino]hexyl]carbamate (ester),
[1S-[1R*(S*),5S*]]- (9CI) (CA INDEX NAME)

RN 160705-84-0 HCAPLUS

CN D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with N-(1-oxoheptyl)-D-allothreonine (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 160705-85-1 HCAPLUS

CN D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with N-[(4-pentylcyclohexyl)carbonyl]-D-allothreonine, trans- (9CI) (CA INDEX NAME)

$$HO_2C$$
 R
 HO_2C
 HO_2C

RN 160705-86-2 HCAPLUS

CN D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with N-[(4-butoxyphenyl)acetyl]-D-allothreonine (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L17 ANSWER 15 OF 15 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1981:66453 HCAPLUS

DOCUMENT NUMBER:

94:66453

TITLE:

Improving the solubility of biologically active agents

in water and in lower aliphatic alcohols, and

compounds having an improved solubility

INVENTOR(S):

Moehring, Edgar; Mueller, Hanns Peter; Roessler,

Peter; Wagner, Kuno; Tietz, Helmut

PATENT ASSIGNEE(S):

SOURCE:

Bayer A.-G., Fed. Rep. Ger.

Eur. Pat. Appl., 151 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

LANGUAGE:

Patent German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 14263 EP 14263	A2 A3 B1	19800820 19800917 19820505	EP 1979-105407	19791231
EP 14263 R: BE, CH,	DE, FR		DE 1979-2901060	19790112
DE 2901060 DE 2910356	A1 A1	19800925	DE 1979-2901060 DE 1979-2910356 US 1979-107976	19790316 19791228
U\$ 4684728 II 59099	A A1	19870804 19840330	IL 1980-59099	19800109
DK 8000135 BR 8000192	A A	19800713 19801021	DK 1980-135 BR 1980-192	19800111 19800111
PRIORITY APPLN. INFO	.:		DE 1979-2901060 DE 1979-2910356	19790112 19790316

The soly. of biol. active materials (e.g. pesticides, herbicides, drugs) in water and lower alcs. is increased by treating such compds., contg. OH, NH, or NH2 groups, with hydrophilic polyethers reactive with such groups and having water uptake .gtoreq.15%. Thus, 600 g Bu(OCH2CH2)43OH was heated at 120.degree. with 3 mL BzCl, cooled to 90.degree., and stirred 25 min with 63.7 g Me 2,6-diisocyanatohexanoate to give 662 g BuO(CH2CH2O)43CONH(CH2)4CH(CO2Me)NCO (I) [75856-33-6]. A soln. of bis(4-chlorophenyl) isocyanurate [71809-41-1] in acetone was ślowly added to 22.1 g I in PhMe at 40.degree., giving 25.5 g product (II) [75856-34-7] with high soly. in water and lower alcs.

IT 75856-41-6P

RL: IMF (Industrial manufacture); PREP (Preparation) (manuf. of, with improved water and alc. soly.)

RN 75856-41-6 HCAPLUS

CN Poly(oxy-1,2-ethanediyl), .alpha.-[[[5-[[[2-[(dichloroacetyl)amino]-3-hydroxy-3-(4-nitrophenyl)propoxy]carbonyl]amino]-6-methoxy-6-oxohexyl]amino]carbonyl]-.omega.-butoxy- (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

$$-CH_2$$
 OBu-n

```
=> d his
```

```
(FILE 'HOME' ENTERED AT 17:01:24 ON 11 JUN 2003)
       FILE 'REGISTRY' ENTERED AT 17:02:25 ON 11 JUN 2003
                  STR
  L1
                0 S L1
  L2
                0 S L1 FUL
  L3
                  STR L1
  L4
                0 S L4
  L5
                0 S L4 FUL
                  STR L4
  L7
                0 S L7
                  STR L7
  L9
                0 S L9
                0 S L9 FUL
                   STR L9
                 0 S L12
  L13
               80 S. LI4 FUL / 80 comple from Registry - see of que stat"
                   STR L12
  L14
       FILE 'HCAPLUS' ENTERED AT 17:11:10 ON 11 JUN 2003

15 S L16 / 5 cifs from CA Plus, basel on comple only Call cifi

1 S L17 AND ?BIORESPONS? (W) ?MODIF? AND ?CHEMOTHER? injulated because
                                                                      There are so yew)
       FILE 'MEDLINE, BIOSIS, EMBASE, JICST-EPLUS' ENTERED AT 17:12:38 ON 11 JÚN
                 0 S L18
  L19
       FILE 'HCAPLUS' ENTERED AT 17:13:05 ON 11 JUN 2003
                 2 S L17 AND ?CHEMOTHER?
  L20
                 1 S L17 AND ?BIORESPONS?(W)?MODIF?
  L21
               2 S L17 AND ?CYTOKINE?(W)?INDUC?
            1 S L17 AND (?MICROTUB? OR (?MACROPHAG? (W) ?ACTIVAT?) (W) AGENT).
L24 3 S L20 OR L21 OR L22 OR L23 / 3 cets when combined with
       FILE 'MEDLINE, BIOSIS, EMBASE, JICST-EPLUS' ENTERED AT 17:52:29 ON 11 JUN
               0 5 L24 ) O cit's from other databases"
Hector, I didn't combine "method "Serms since
There new so few hiss.
Manyare
```

=> d que stat 117 / L14 STR.

NODE ATTRIBUTES: DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES: RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 15

STEREO ATTRIBUTES: NONE
L16 80 SEA FILE=REGISTRY SSS FUL L14
L17 15 SEA FILE=HCAPLUS ABB=ON L16

```
=> d que stat 124
L14 STR
```

15

NODE ATTRIBUTES: DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES: RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 15

STEREO ATTRIBUTES: NONE

L16	80	SEA	FILE=REGISTRY	Y SSS FU	L L14	1	•
L17	15	SEA	FILE=HCAPLUS	ABB=ON	L16		
L20	2	SEA	FILE=HCAPLUS	ABB=ON	L17	AND	?CHEMOTHER?
L21	1	SEA	FILE=HCAPLUS	ABB=ON	L17	AND	?BIORESPONS?(W)?MODIF?
L22	2	SEA	FILE=HCAPLUS	ABB=ON	L17	AND	<pre>?CYTOKINE?(W)?INDUC?</pre>
L23	1	SEA	FILE=HCAPLUS	ABB=ON	L17	AND	(?MICROTUB? OR (?MACROPHAG?(W)
		?AC	TIVAT?) (W) AGEN	NT)			•
L24	3	SEA	FILE=HCAPLUS	ABB=ON	L20	OR I	21 OR L22 OR L23 7

Inventor Search

Reves 09/659,643R>11/06/2003

=> d ibib abs hitstr 17 1-1

ANSWER 1 OF 1 HCAPLUS COPYRIGHT 2003 ACS L7 ACCESSION NUMBER: 2001:208131 HCAPLUS

DOCUMENT NUMBER:

134:231861

TITLE:

Method of potentiating chemotherapy and treating solid

tumors

INVENTOR(S):

Gibbons, James Joseph, Jr., Dukart, Gary; Lucas, Judy; Speicher, Lisa

Anne

PATENT ASSIGNEE(S):

American Home Products Corporation, USA

SOURCE:

PCT Int. Appl., 23 pp. CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

```
APPLICATION NO.
                    KIND DATE
                                                         DATE
    PATENT NO.
                    ----
                          _____
                                         -----
                                                         _____
    ______
                  A2
                          20010322
                                         WO 2000-US25008 20000912
    WO 2001019399
                    А3
                          20011213
    WO 2001019399
           AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
            CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
            HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,
            LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU,
            SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU,
            ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
        RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
            DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ,
            CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
                                     BR 2000-14001
                          20020521
                                                         20000912
    BR 2000014001
                    Α
                                                        20000912
                                         EP 2000-961841
    EP 1214092
                     Α2
                         20020619
            AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
            IE, SI, LT, LV, FI, RO, MK, CY, AL
                                                         20000912
                    T2
                          20030311
                                         JP 2001-523030
    JP 2003509383
                                      US 1999-396051 A 1999/09/15
PRIORITY APPLN. INFO.:
                                      WO 2000-US25008 W 2000012
```

OTHER SOURCE(S): MARPAT 134:231861

This invention provides a method of treating solid tumors which comprises administering an effective amt. of a combination of (1) a bieresponse modifier and (2) a chemotherapeutic agent. This invention also provides a method of potentiating the effects of a chemotherapeutic regimen in a mammal in need of treatment with such regimen which comprises administering a bioresponse modifier in addn. to a chemotherapeutic regimen. The potentiating effect of the bioresponse modifier $[R-(R^*,R^*)]-N-[R-6-carboxy-N2-[[2-carboxy-1-methyl-2-[(1-raboxy-1-rabox$ oxoheptyl)amino]ethoxy]carbonyl]-L-lysyl]alanine and paclitaxel was demonstrated in mice.

50-07-7, Mitomycin c 57-22-7, Vincristine **865-21-4**, Vinblastine **11056-06-7**, Bleomycin 15663-27-1, Cisplatin 23214-92-8, Doxorubicin 25316-40-9, Adriamycin 33069-62-4, Paclitaxel 41575-94-4, Carboplatin 71486-22-1, Vinorelbine 114977-28-5, Docetaxel 160705-84-0

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES

(potentiating chemotherapy and treating solid tumors)

CN Azirino[2',3':3,4]pyrrolo[1,2-a]indole-4,7-dione, 6-amino-8[[(aminocarbonyl)oxy]methyl]-1,1a,2,8,8a,8b-hexahydro-8a-methoxy-5-methyl, (1aS,8S,8aR,8bS)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 57-22-7 HCAPLUS

CN Vincaleukoblastine, 22-oxo- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 865-21-4 HCAPLUS

CN Vincaleukoblastine (6CI, 8CI, 9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

RN 11056-06-7 HCAPLUS

CN Bleomycin (8CI, 9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 15663-27-1 HCAPLUS

CN Platinum, diamminedichloro-, (SP-4-2)- (9CI) (CA INDEX NAME)

RN 23214-92-8 HCAPLUS

CN 5,12-Naphthacenedione, 10-[(3-amino-2,3,6-trideoxy-.alpha.-L-lyxo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(hydroxyacetyl)-1-methoxy-, (8S,10S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 25316-40-9 HCAPLUS

CN 5,12-Naphthacenedione, 10-[(3-amino-2,3,6-trideoxy-.alpha.-L-lyxo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-(hydroxyacetyl)-

1-methoxy-, hydrochloride, (8S,10S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

HC1

RN 33069-62-4 HCAPLUS

CN Benzenepropanoic acid, .beta.-(benzoylamino)-.alpha.-hydroxy-, (2aR, 4S, 4aS, 6R, 9S, 11S, 12S, 12aR, 12bS)-6, 12b-bis(acetyloxy)-12-(benzoyloxy)-2a, 3, 4, 4a, 5, 6, 9, 10, 11, 12, 12a, 12b-dodecahydro-4, 11-dihydroxy-4a, 8, 13, 13-tetramethyl-5-oxo-7, 11-methano-1H-cyclodeca[3, 4]benz[1, 2-b]oxet-9-ylester, (.alpha.R, .beta.S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

RN 41575-94-4 HCAPLUS

CN Platinum, diammine[1,1-cyclobutanedi(carboxylato-.kappa.O)(2-)]-, (SP-4-2)- (9CI) (CA INDEX NAME)

RN 71486-22-1 HCAPLUS

CN Aspidospermidine-3-carboxylic acid, 4-(acetyloxy)-6,7-didehydro-15[(2R,6R,8S)-4-ethyl-1,3,6,7,8,9-hexahydro-8-(methoxycarbonyl)-2,6-methano2H-azecino[4,3-b]indol-8-yl]-3-hydroxy-16-methoxy-1-methyl-, methyl ester,
(2.beta.,3.beta.,4.beta.,5.alpha.,12R,19.alpha.)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 2-A

RN 114977-28-5 HCAPLUS

CN

Benzenepropanoic acid, .beta.-[[(1,1-dimethylethoxy)carbonyl]amino]-.alpha.-hydroxy-, (2aR, 4S, 4aS, 6R, 9S, 11S, 12S, 12aR, 12bS)-12b-(acetyloxy)-12-

Reyes 09/659,643R>11/06/2003

(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,6,11-trihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl ester, (.alpha.R,.beta.S)- (9CI) (CAINDEX NAME)

Absolute stereochemistry.

RN 160705-84-0 HCAPLUS
CN D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with N-(1-oxoheptyl)-D-allothreonine (9CI) (CA INDEX NAME)

11/06/2003

=> d ibib abs hitstr 124 1-3

L24 ANSWER 1 OF 3 HCAPLUS COPYRIGHT 2003 ACS 2002:675821 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER:

137:222033

TITLE:

Compositions and methods for enhancing drug delivery

across and into ocular tissues

INVENTOR(S):

Rothbard, Jonathan B.; Wender, Paul A.; McGrane, P.

Leo; Sista, Lalitha Vs; Kirschberg, Thorsten A.

PATENT ASSIGNEE(S):

Cellgate, Inc., USA PCT Int. Appl., 119 pp.

SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

PATENT INFORMATION:

FAMILY ACC. NUM. COUNT:

	PAT	TENT	NO.		KI	ND	DATE			A	PPLI	CATI	ON NO	O.	DATE				
	WO	0 2002067917			 A	1	20020906			WO 2002-US5804 2002									
		W:	ΑE,	AG,	AL,	AM,	AT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,	
			CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FI,	GB,	GD,	GE,	GH,	
			GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	·KP,	KR,	ΚZ,	LC,	LK,	LR,	•
			LS,	LT,	LU,	LV,	.MA,	MD,	MG,	MK,	MN,	MW,	MX,	ΜZ,	NO,	ΝZ,	OM,	PH,	
			PL,	PT,	RO,	RU,	SD,	SE,	SG,	SI,	SK,	SL,	TJ,	TM,	TN,	TR,	TT,	TZ,	
			UA,	UG,	UZ,	VN,	YU,	ZA,	ZM,	ZW,	AM,	AZ,	BY,	KG,	ΚZ,	MD,	RU,	ТJ,	TM
		RW:	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AT,	BE,	CH,	
			CY,	DÉ,	DK,	ES,	FI,	FR,	GB,	GR,	IE,	IT,	LU,	MC,	NL,	PT,	SE,	TR,	
			BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	ΜŔ,	NE,	SN,	TD,	TG	
	US 2002127198 A1 2						2002	0912		U	S 20	01-7	9248	0	2001	0223			
PRIC	ORITY	APP	LN.	INFO	.:					US 2	001-	7924	80	Α	2001	92/23	1	٠,	Ti.
			•				-		-)	US 1	999-	1505	10P	P	1999	0824		q	Y Y

US 2000-648400 A2 20000824 MARPAT 137:222033 OTHER SOURCE(S):

Compns. and methods for enhancing delivery of drugs, diagnostic and other agents across epithelial tissues, including into and across ocular tissues and blood-brain barrier are provided. The compns. and methods employ a delivery enhancing transporter that has sufficient guanidino or amidino side chain moieties to enhance delivery of a compd. conjugated to the reagent across one or more layers of the tissue, compared to the non-conjugated compd. The delivery-enhancing polymers include, for example, poly-arginine mols. that are preferably between about 6 and 25 residues in length. For example, a series of structural characteristics including sequence length, amino acid compn., and chirality that influence the ability of Tat49-57 to enter cells is identified. These characteristics provided the blueprint for the design of a series of novel peptoids, of which 17 members were synthesized and assayed for cellular uptake. This research established that the peptide backbone and hydrogen bonding along that backbone are not required for cellular uptake, that the quanidino head group is superior to other cationic subunits, and most significantly, that an extension of the alkyl chain between the backbone and the head group provides superior transporters. In addn. to better uptake performance, these novel peptoids offer several advantages over Tat49-57 including cost-effectiveness, ease of synthesis of analogs, and protease stability. These features along with their significant water soly. (>100 mg/mL) indicate that these novel peptoids could serve as effective transporters for the mol. delivery of drugs, drug candidates, and other agents into cells.

IT455282-37-8P 455282-38-9P 455282-39-0P

455282-40-3P 455282-41-4P 455282-42-5P

RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(drug conjugates with peptide transporter contg. amidino or guanidino moieties for enhanced delivery across epithelium)

RN 455282-37-8 HCAPLUS

CN

L-Lysinamide, N2-[6-[[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-l-oxopentyl]amino]-l-oxohexyl]-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-N6-[2-[(1R,2S)-2-(benzoylamino)-l-[[(2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl]oxy]carbonyl]-2-phenylethoxy]-2-oxoethyl]- (9CI) (CA INDEX NAME)

PAGE 1-C

RN 455282-38-9 HCAPLUS

L-Lysinamide, N2-[6-[[5-[(3aS, 4S, 6aR)-hexahydro-2-oxo-1H-thieno[3, 4-d]imidazol-4-yl]-1-oxopentyl]amino]-1-oxohexyl]-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-N6-[2-[(1R, 2S)-2-(benzoylamino)-1-[[(2aR, 4S, 4aS, 6R, 9S, 11S, 12S, 12aR, 12bS)-6, 12b-bis(acetyloxy)-12-(benzoyloxy)-2a, 3, 4, 4a, 5, 6, 9, 10, 11, 12, 12a, 12b-dodecahydro-4, 11-dihydroxy-4a, 8, 13, 13-tetramethyl-5-oxo-7, 11-methano-1H-cyclodeca[3, 4]benz[1, 2-b]oxet-9-yl]oxy]carbonyl]-2-phenylethoxy]-2-oxoethyl]- (9CI) (CA INDEX NAME)

PAGE 1-B

PAGE 1-C

RN 455282-39-0 HCAPLUS

CN L-Lysinamide, N2-[6-[[5-[(3aS,4S,6aR)-hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-l-oxopentyl]amino]-l-oxohexyl]-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-N6-[2-[(1R,2S)-2-(benzoylamino)-1-[[[(2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl]oxy]carbonyl]-2-phenylethoxy]-2-oxoethyl]- (9CI) (CA INDEX NAME)

PAGE 1-C

RN 455282-40-3 HCAPLUS

CN L-Lysinamide, D-arginyl-D-arginyl-D-arginyl-D-arginyl-D-arginyl-N6-[2-[(1R,2S)-2-(benzoylamino)-1-[[[(2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl]oxy]carbonyl]-2-phenylethoxy]-2-oxoethyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

RN 455282-41-4 HCAPLUS

CN L-Lysinamide, D-arginyl-D-arginyl

PAGE 1-B

PAGE 2-A

|| NH

RN 455282-42-5 HCAPLUS

CN L-Lysinamide, D-arginyl-D-arginyl

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PAGE 2-A

PAGE 3-A

$$H_2N$$
 N
 H
 $CH_2)$
 R
 R
 NH
 R

THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS 5 REFERENCE COUNT: RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L24 ANSWER 2 OF 3 HCAPLUS COPYRIGHT 2003 ACS ACCESSION NUMBER: 2001:208131 HCAPLUS

134:231861 DOCUMENT NUMBER:

Method of potentiating chemotherapy and TITLE:

treating solid tumors, Jr.; Dukart, Gary; Lucas Judy; INVENTOR(S):

Speicher, Lisa Anne

American Home Products Corporation, USA PATENT ASSIGNEE(S):

PCT Int. Appl., 23 pp. SOURCE: CODEN: PIXXD2

Patent DOCUMENT TYPE:

English LANGUAGE:

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

```
KIND DATE
                                         APPLICATION NO.
                                                          DATE
    PATENT NO.
                    ____
                          _____
                                         _____
    ______
                   A2
                           20010322
                                         WO 2000-US25008
    WO 2001019399
                                                          20000912
                     A3
    WO 2001019399
                           20011213
            AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
            CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
            HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,
            LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU,
            SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU,
            ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
        RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
            DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ,
            CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
                                     BR 2000-14001
    BR 2000014001
                           20020521
                                                          20000912
                    Α
                                         EP 2000-961841
                                                         20000912
    EP 1214092
                     A2
                          20020619
            AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
            IE, SI, LT, LV, FI, RO, MK, CY, AL
                     T2
                           20030311
                                         JP 2001-523030
                                                          20000912
    JP 2003509383
PRIORITY APPLN. INFO.:
                                      US 1999-396051 A 1999/09/15
                                      WO 2000-US25008 W 20000912
```

OTHER SOURCE(S): MARPAT 134:231861

This invention provides a method of treating solid tumors which comprises administering an effective amt. of a combination of (1) a bioresponse modifier and (2) a chemotherapeutic agent. This invention also provides a method of potentiating the effects of a chemotherapeutic regimen in a mammal in need of treatment with such regimen which comprises administering a bioresponse modifier in addn. to a chemotherapeutic regimen. potentiating effect of the bioresponse modifier $[R-(R^*,R^*)]-N-[R-6-carboxy-N2-[[2-carboxy-1-methyl-2-[(1-carboxy$ oxoheptyl)amino]ethoxy]carbonyl]-L-lysyl]alanine and paclitaxel was demonstrated in mice.

TΤ 160705-84-0

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES

(potentiating chemotherapy and treating solid tumors)

160705-84-0 HCAPLUS RN

D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with CN N-(1-oxoheptyl)-D-allothreonine (9CI) (CA INDEX NAME)

L24 ANSWER 3 OF 3 HCAPLUS COPYRIGHT 2003 ACS ACCESSION NUMBER: 1995:324507 HCAPLUS

ACCESSION NUMBER: DOCUMENT NUMBER:

122:106538

TITLE:

Preparation of peptide urethane and urea derivatives

that induce cytokine production

INVENTOR(S):

Ayral-Kaloustian, Semiramis; Schow, Steven R.; Du,

Mila T.: Gibbons, James J., Jr. American Cyanamid Co., USA

PATENT ASSIGNEE(S): SOURCE:

U.S., 25 pp. CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION: .

PATENT NO.				KIND	DATE		API	PLICATION NO.	DATE		
	IIS	5312831	_	A	19940517		US	1993-63174	19930512		
_		5545662		A	19960813			1994-213303	19940314		
		652228		A1	19950510		EP	1994-106123	19940420		
		652228		B1	19961023						
			BE.			FR.	GB, C	GR, IE, IT, LI	, LU, NL,	PT,	SE
	ΑТ	144533	,	E	19961115			1994-106123		•	
		2094004		Т3	19970101			1994-106123	19940420		
		290445		В6	20020717		CZ	1994-981	19940422		
	-	281120		В6	20001211		SK	1994-491	19940428		
		67038		A2	19950130		HU	1994-1444	19940506		
	HU	219768		В	20010730						
	JΡ	07179414		A2	19950718		JP	1994-119532	19940509		
	ΙL	109602		A1	20000601		IL	1994-109602	19940509		
	CA	2123261		AA	19941113		CA	1994-2123261	19940510		
	FΙ	9402186		Α	19941113		FI	1994-2186	19940511		
	NO	9401786		Α	19941114		NO	1994-1786	19940511		
	ΑU	9463043		A1	19941117		AU	1994-63043	19940511		
	ΑU	669064		B2	19960523				•		
	ZA	9403266		Α	19950112		ZA	1994-3266	19940511		
	RU	2135515		C1	19990827		RU	1994-16389	19940511		
	PL	179984		B1	20001130		\mathtt{PL}	1994-303396	19940511		
	CN	1100413		Α	19950322		CN	1994-105671	19940512		
	CN	1094943		В	20021127						
_	TW.	380129		В	20000121		TW	1994-83107431	19940813		
	US	5602275		Α	19970211		US	1995-449878	19950525		
1	US	5616612		Α	19970401		US	1995-451099	19950525		
- 1	US	5633280		Α	19970527		US	1995-451085	19950525		
- 1							•		•		

US 5658945 PRIORITY APPLN. INFO.: A 19970819

US 1995-449968 19950525

US 1993-63174 A3 19930512 US 1994-213303 A3 19940314

OTHER SOURCE(S):

MARPAT 122:106538

GI

Title compds. [I; R1, R3, Ra = H, (substituted) alkyl, cycloalkyl, cycloalkylalkyl, vinyl, acetylene, amino, acylamino, aryl, aralkyl, aryloxy, heterocyclyl, etc.; R2, Rb, Rc = (protected) carboxy, carboxylalkyl, carboxamide; X = O, S; R4 = H, protecting group], were prepd. Thus, [R-(R*,R*)]-N-(R)-6-carboxy-N2-[[2-carboxy-1-methyl-2-[(1-oxoheptyl)amino]ethoxy]carbonyl]lysyl-D-alanine (soln. phase prepn. given) at 0.1 mg/kg s.c. in mice induced 4802 U/mL of IL-6. I may be useful in the treatment of cancer, AIDS, aplastic anemia, myelodysplastic syndrome, infectious disease, and in the enhancement of immune response.

160578-69-8P 160578-70-1P 160578-71-2P 160578-72-3P 160578-73-4P 160579-15-7P 160579-16-8P 160579-17-9P 160579-18-0P 160705-77-1P 160705-78-2P 160705-79-3P 160705-81-7P 160705-82-8P 160705-83-9P 160705-84-0P 160705-85-1P 160705-86-2P

RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. of, for induction of cytokine prodn.)

RN 160578-69-8 HCAPLUS

CN D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with N-(1-oxoheptyl)-D-threonine (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$O$$
 Me
 O
 S
 R
 CO_2H
 O
 HN
 O
 $CH_2)_5$
 Me
 Me

RN 160578-70-1 HCAPLUS

CN D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with N-(1-oxoheptyl)-D-serine (9CI) (CA INDEX NAME)

RN 160578-71-2 HCAPLUS

CN D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with N-[(4-pentylcyclohexyl)carbonyl]-L-threonine, (trans)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$HO_2C$$
 R
 HO_2C
 HO_2C

RN 160578-72-3 HCAPLUS

CN D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with N-[(4-butoxyphenyl)acetyl]-L-threonine (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

RN 160578-73-4 HCAPLUS

CN D-Alanine, N-[(R)-6-carboxy-N2-[[1-[carboxy[(1-oxoheptyl)amino]methyl]propoxy]carbonyl]-L-lysyl]-, [R-(R*,R*)]- (9CI)

(CA INDEX NAME)

Absolute stereochemistry.

$$HO_2C$$
 R
 HO_2C
 HO_2C

RN 160579-15-7 HCAPLUS

CN D-Allothreonine, N-(1-oxoheptyl)-, phenylmethyl ester,
[1-[[[1-methyl-2-oxo-2-(phenylmethoxy)ethyl]amino]carbonyl]-6-oxo-6(phenylmethoxy)-5-[[(phenylmethoxy)carbonyl]amino]hexyl]carbamate (ester),
[1S-[1R*(S*),5S*]]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 160579-16-8 HCAPLUS

CN D-Serine, N-(1-oxoheptyl)-, phenylmethyl ester, [1-[[[1-methyl-2-oxo-2-(phenylmethoxy)ethyl]amino]carbonyl]-6-oxo-6-(phenylmethoxy)-5[[(phenylmethoxy)carbonyl]amino]hexyl]carbamate (ester),
[1S-[1R*(S*),5S*]]- (9CI) (CA INDEX NAME)

RN 160579-17-9 HCAPLUS

D-Allothreonine, N-[(4-pentylcyclohexyl)carbonyl]-, phenylmethyl ester, [1-[[[1-methyl-2-oxo-2-(phenylmethoxy)ethyl]amino]carbonyl]-6-oxo-6-(phenylmethoxy)-5-[[(phenylmethoxy)carbonyl]amino]hexyl]carbamate (ester), [1S-[1R*(trans),1(S*),5S*]]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 160579-18-0 HCAPLUS

CN D-Allothreonine, N-[(4-butylphenyl)acetyl]-, phenylmethyl ester, [1-[[[1-methyl-2-oxo-2-(phenylmethoxy)ethyl]amino]carbonyl]-6-oxo-6-(phenylmethoxy)-5-[[(phenylmethoxy)carbonyl]amino]hexyl]carbamate (ester), [1S-[1R*(S*),5S*]]- (9CI) (CA INDEX NAME)

RN 160705-77-1 HCAPLUS
CN D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with
N-(1-oxoheptyl)-L-allothreonine (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 160705-78-2 HCAPLUS
CN D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with
 N-(1-oxoheptyl)-L-threonine (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 160705-79-3 HCAPLUS

CN D-Alanine, N-[(R)-6-carboxy-N2-[[1-[carboxy-1-[(1-oxoheptyl)amino]methyl]propoxy]carbonyl]-L-lysyl]-, [S-(R*,S*)]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$HO_2C$$
 R
 Me
 HN
 O
 O
 HO_2C
 R
 $(CH_2)_3$
 S
 N
 H
 O
 Et
 R
 H
 O
 CO_2H
 O
 Me

RN 160705-81-7 HCAPLUS

CN D-Threonine, N-(1-oxoheptyl)-, phenylmethyl ester, [1-[[[1-methyl-2-oxo-2-(phenylmethoxy)ethyl]amino]carbonyl]-6-oxo-6-(phenylmethoxy)-5[[(phenylmethoxy)carbonyl]amino]hexyl]carbamate (ester),
[1S-[1R*(S*),5S*]]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 160705-82-8 HCAPLUS

CN L-Allothreonine, N-(1-oxoheptyl)-, phenylmethyl ester,
[1-[[[1-methyl-2-oxo-2-(phenylmethoxy)ethyl]amino]carbonyl]-6-oxo-6(phenylmethoxy)-5-[[(phenylmethoxy)carbonyl]amino]hexyl]carbamate (ester),
[1S-[1R*(S*),5S*]]- (9CI) (CA INDEX NAME)

RN 160705-83-9 HCAPLUS

CN L-Threonine, N-(1-oxoheptyl)-, phenylmethyl ester, [1-[[[1-methyl-2-oxo-2-(phenylmethoxy)ethyl]amino]carbonyl]-6-oxo-6-(phenylmethoxy)-5[[(phenylmethoxy)carbonyl]amino]hexyl]carbamate (ester),
[1S-[1R*(S*),5S*]]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 160705-84-0 HCAPLUS

CN D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with N-(1-oxoheptyl)-D-allothreonine (9CI) (CA INDEX NAME)

HO₂C R (CH₂)
$$\stackrel{\bigcirc}{_{3}}$$
 S O HN (CH₂) $\stackrel{\bigcirc}{_{5}}$ Me

RN 160705-85-1 HCAPLUS
CN D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with
N-[(4-pentylcyclohexyl)carbonyl]-D-allothreonine, trans- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$HO_2C$$
 R
 HO_2C
 HO_2C

RN 160705-86-2 HCAPLUS
CN D-Alanine, N-[(R)-N2,6-dicarboxy-L-lysyl]-, N2-ester with
N-[(4-butoxyphenyl)acetyl]-D-allothreonine (9CI) (CA INDEX NAME)