Time-optimal Flying a VTOL Drone

Leonardo Igler and Larissa Rickler

Topic and Motivation

- Minimum-time flight for VTOL-Drone
- Push platform to its limits
- Use Cases:
 - Rescue
 - Delivery
 - Transportation

Fig. 1: Quadrotor races through a race track in the real world.

Our Approach

- Actor Critic
- Adam Optimizer

What has been done so far

- Problem reduced to 2D
- Steer towards single points
- Fly along small random trajectories

$$r(t) = k_p \cdot \Delta progress(t) + k_s \cdot progress(t) + k_{wp} \cdot r_{wp} - k_{\omega} \cdot ||\omega|| - fall$$

- Encourage line progression
- Encourage reaching points
- Penalize spinning
- Penalize inactivity

Training Strategy

- Two Phases: Slow and Fast
- Slow: Learn to follow path
- Fast: Time optimality

SLOW PLOTS

SLOW PLOTS

SLOW VIDEO

FAST VIDEO

Next Steps

Appendix

Actor

$$r(t) = k_p \cdot \Delta progress(t) + k_s \cdot progress(t) + k_{wp} \cdot r_{wp} - k_{\omega} \cdot ||\omega|| - fall$$

- Encourage line progression in each step
- $k_p = 5.0 \cdot s_m$

$$r(t) = k_p \cdot \Delta progress(t) + k_s \cdot progress(t) + k_{wp} \cdot r_{wp} - k_{\omega} \cdot ||\omega|| - fall$$

- Encourage line progression
 - Counteracts to possible singularities in $\Delta progress$
- $k_s = s_m \cdot (2v_{max}\Delta t)/length_{traj}$

Progress calculation

$$l(\boldsymbol{p}), \boldsymbol{\psi}(\boldsymbol{p}) = \underset{l(\boldsymbol{p}), \boldsymbol{\psi}(\boldsymbol{p})}{\operatorname{arg \, min}} \|\boldsymbol{p} - \boldsymbol{\psi}(\boldsymbol{p})\|$$
s.t. $\boldsymbol{\psi}(\boldsymbol{p}) = \boldsymbol{g}_{l(\boldsymbol{p})} + t(\boldsymbol{g}_{l(\boldsymbol{p})+1} - \boldsymbol{g}_{l(\boldsymbol{p})}),$

$$t = \frac{(\boldsymbol{p} - \boldsymbol{g}_{l(\boldsymbol{p})}) \cdot (\boldsymbol{g}_{l(\boldsymbol{p})+1} - \boldsymbol{g}_{l(\boldsymbol{p})})}{\|\boldsymbol{g}_{l(\boldsymbol{p})+1} - \boldsymbol{g}_{l(\boldsymbol{p})}\|^2},$$

$$l(\boldsymbol{p}) \in \{1, \dots, n-1\}, t \in [0, 1].$$

Fig. 2: Illustration of guiding path between waypoints g. Nearest point on the guiding path ψ from drone position p is used to calculate progress reward $r_p(t)$ and $r_s(t)$ while the next and second next waypoints are used as a part of observation.

Scale down reward of progress.

Encourages velocity in certain range.

$$\begin{split} s_{m} &= s_{v_{max}} s_{v_{min}} s_{gd}, \\ s_{v_{max}} &= \begin{cases} 10^{v_{max} - \|\boldsymbol{v}\|} & \text{if } \|\boldsymbol{v}\| > v_{max}, \\ 1 & \text{otherwise,} \end{cases} \\ s_{v_{min}} &= \begin{cases} 10^{\|\boldsymbol{v}\| - v_{min}} & \text{if } \|\boldsymbol{v}\| < v_{min}, \\ 1 & \text{otherwise,} \end{cases} \\ s_{gd} &= \begin{cases} e^{-\|\boldsymbol{p} - \boldsymbol{\psi}(\boldsymbol{p})\| + d_{max}} & \text{if } \|\boldsymbol{p} - \boldsymbol{\psi}(\boldsymbol{p})\| > d_{max}, \\ 1 & \text{otherwise.} \end{cases} \end{split}$$

$$r(t) = k_p \cdot \Delta progress(t) + k_s \cdot progress(t) + k_{wp} \cdot r_{wp} - k_{\omega} \cdot ||\omega|| - fall$$

- Encourage reaching points
 - Only added if waypoint is passed within distance $< dist_{tol}$
- $k_{wp} = 10.0 \cdot \#waypoints$
- $r_{wp} = exp(-dist(drone, waypoint)/dist_{tol})$

$$r(t) = k_p \cdot \Delta progress(t) + k_s \cdot progress(t) + k_{wp} \cdot r_{wp} - |k_{\omega} \cdot ||\omega|| - fall$$

- Penalize spinning
- $k_{\omega} = 0.01$

$$r(t) = k_p \cdot \Delta progress(t) + k_s \cdot progress(t) + k_{wp} \cdot r_{wp} - k_{\omega} \cdot ||\omega|| - fall$$

- Penalize inactivity
 - Only subtracted if hight falls under -2
- fall = 1

Termination Criteria

- Body rates to high
- Velocity to high
- Drone falls below -5
- Too much time passed
- Too far off path
- All waypoints reached

FAST PLOTS

Image Sources

From https://arxiv.org/pdf/2203.15052v1.pdf

- Fig. 1: Our quadrotor races through a complex race track in the real world.
- Fig. 2: Illustration of guiding path between waypoints g. Nearest point on the guiding path ψ from drone position p is used to calculate progress reward $r_p(t)$ and $r_s(t)$ while the next and second next waypoints are used as a part of observation. https://arxiv.org/pdf/2203.15052v1.pdf