

Inspiration

- Nadine is Pre-med!~
- Tanjuma is interested in computational biology!
- Sara's work is inspiring!
- Diseases are interesting (from an academic perspective!)

National Library of Medicine Malaria Dataset

https://lhncbc.nlm.nih.gov/publication/pub9932

Cases

228 million

malaria cases worldwide in 2018

Deaths

405 000

malaria deaths worldwide in 2018

Malaria Quick Facts

"Every 2 minutes, a child dies of malaria. And each year, more than 200 million new cases of the disease are reported. Although countries have dramatically reduced the total number of malaria cases and deaths since 2000, progress in recent years has stalled. Worryingly, in some countries, malaria is on the rise." *

The Dataset

- NIH Malaria Cell Dataset
- o 50 healthy patients, 150 infected patients
- ° Chittagong Medical College Hospital, Bangladesh
- 13779 "Infected" cell slide images

• 13779 "Healthy" cell slide images

o Total: 27558 images

Pre-processing

- Images are all different sizes!
 - Smallest image: 49 x 58
 - o Largest image: 394 x 241
- Padding
 - ∘ Advantage no data lost
 - Disadvantage more pixels to deal with
 - Runtime = BAD
- Resize
 - Advantage less pixels, better runtime!
 - Disadvantage data lost
 - Tried several different sizes
 - ∘ 500 x 500, 128 x 128
 - Found that 64 x 64 was ideal
 - ° X_train shape is: (22046, 64, 64, 3)

VS.

CNN Model

- Convolutional layers:
 - x2
 - Conv2D
 - MaxPool2D
 - BatchNormalization
 - Dropout
- Flattening
- Full Connection:
 - x2
 - Dense
 - BatchNormalization
 - Dropout
 - Dense

Model: "sequential_1"			
Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	====== (None	 62, 62, 32)	====== 896
	(None)		
max_pooling2d_1 (MaxPooling2	(None,	31, 31, 32)	
batch_normalization_1 (Batch	(None,	31, 31, 32)	128
dropout_1 (Dropout)	(None,	31, 31, 32)	
conv2d_2 (Conv2D)	(None,	29, 29, 32)	9248
max_pooling2d_2 (MaxPooling2	(None,	14, 14, 32)	
batch_normalization_2 (Batch	(None,	14, 14, 32)	128
dropout_2 (Dropout)	(None,	14, 14, 32)	
flatten_1 (Flatten)	(None,	6272)	
dense_1 (Dense)	(None,	512)	3211776
batch_normalization_3 (Batch	(None,	512)	2048
dropout_3 (Dropout)	(None,	512)	
dense_2 (Dense)	(None,	256)	131328
batch_normalization_4 (Batch	(None,	256)	1024
dropout_4 (Dropout)	(None,	256)	
dense_3 (Dense)	(None,	2)	514

Training vs Testing Accuracy & Loss

Data Augmentation

- Manipulate the dataset to generate new data to train on
- Helps our model better generalize!
- o ImageDataGenerator

Test_Accuracy(before augmentation): 95.03%

Test_Accuracy(after augmentation): 96.44%

Increased by 1.41%!

ROC curve

CNN CONFUSION MATRIX

Infected = 0Healthy = 1

Challenges

- Needed to learn how to process raw images in python!
- Images of all different sizes (and quite large ones)
 - Padding?
 - Resizing?
 - Truncate dataset?
- o Relatively large dataset
- Runtime!

Why do we care about this?

ONE COMPACT MODEL FOR END-TO-END MALARIA CLASSIFICATION TIME SAVED -> MONEY SAVED -> LIVES SAVED

If we had more time...

- 1. Try the model on another disease dataset (training + testing)
- 2. Try the model on Malaria dataset from another population
- 3. Try the model on data collected from more than 200 people
- 4. Use GridSearchCV to find the best parameters
- 5. Visualize model filters!

Figure source: Sivaramakrishnan Rajaraman, Journal of Medical Imaging

Sources:

- NIH Malaria Dataset:
 - https://lhncbc.nlm.nih.gov/publication/pub9932
- https://www.researchgate.net/publication/326557171 Understa nding the learned behavior of customized convolutional neural networks toward malaria parasite detection in thin blood smear images/figures?lo=1
- https://www.pyimagesearch.com/2018/12/03/deep-learning-and-medical-image-analysis-with-keras/?fbclid=IwAR2WrCJK66swdiwQs51TT-dQDR7eGwX3iCniBr0L3aSdRk9MhzLdDcZdO1E
- https://machinelearningmastery.com/image-augmentation-deep-learning-keras/

THANK YOU FOR LISTENING!~ ANY QUESTIONS?