Алгебраические типы данных

Алгебра на типах данных

Множество	Мощность	Тип	Название
Ø	0	void	необитаемый
$\{\varnothing\}$	1	unit ()	одноэлементный
$\{T,F\}$	2	boolean	булевский, двухэлементный
$A \uplus B$	$ \alpha + \beta $	Either Alpha Beta	тип-сумма
$A \times B$	$ \alpha \cdot \beta $	(Alpha, Beta)	пара, декартово произведение
B^A	$ eta ^{ lpha }$	$Alpha \to Beta$	функциональный

Пример

(boolean, $A \rightarrow boolean$) cootbetctbyet $2 \cdot (2^A)$

Алгебраический тип данных, тип-сумма

Определение

Отмеченным объединением множеств (дизъюнктным объединением) назовём:

$$A \uplus B := \{ \langle a, "L" \rangle \mid a \in A \} \cup \{ \langle b, "R" \rangle \mid b \in B \}$$

Алгебраический тип данных, тип-сумма

Определение

Отмеченным объединением множеств (дизъюнктным объединением) назовём:

$$A \uplus B := \{ \langle \ a, \ ``L" \ \rangle \mid \ a \in A \} \cup \{ \langle \ b, \ ``R" \ \rangle \mid \ b \in B \} = \{ a_L \mid \ a \in A \} \cup \{ b_R \mid \ b \in B \}$$

Алгебраический тип данных, тип-сумма

Определение

Отмеченным объединением множеств (дизъюнктным объединением) назовём:

$$A \uplus B := \{ \langle \ a, \text{``L''} \ \rangle \mid \ a \in A \} \cup \{ \langle \ b, \text{``R''} \ \rangle \mid \ b \in B \} = \{ a_L \mid \ a \in A \} \cup \{ b_{\underset{\bullet}{R}} \mid \ b \in B \}$$

Пример

$$\mathbb{N} \cup \mathbb{N} = \{1, 2, 3, \dots\} \qquad \mathbb{N} \uplus \mathbb{N} = \{1_L, 1_R, 2_L, 2_R, 3_L, 3_R, \dots\}$$

$$\mathbb{N} \uplus \mathbb{Z} = \{\dots - 3_R, -2_R, -1_R, 0_R, 1_L, 1_R, 2_L, 2_R, 3_L, 3_R \dots\}$$

Алгебраический тип данных (тип-сумма) задаётся набором конструкторов, каждому конструктору сопоставляется тип параметра.

Пример

boolean := False | True
$$B = \{\varnothing\} \uplus \{\varnothing\}$$
 $\mathcal{J} : \varnothing_L$ angle := Degrees of int | Radians of real $A := \mathbb{Z} \uplus \mathbb{R}$ 180°: 180 $_L, \pi_R$ Degrees 180, Read, 3|4|...

Примеры из языков программирования

```
type angle = record
                                      struct angle {
     case radians : boolean of
                                           bool radians;
         true: (rads: real);
                                           union {
         false: (degs: integer);
                                               float rads;
     end;
                                               int degs;
                                      };
Типичное применение:
union {
    short ax;
    struct {
        char al;
        char ah;
```

Списки

▶ Список (целых чисел) — алгебраический тип: type list = Nil | Cons of int * list

Как строим значения:

```
Ni1 => []
Cons (5, Ni1) => [5]
Cons (3, Cons (4, Cons (5, Ni1))) => [3,4,5]
```

Как используем значения:

```
let rec length l = match l with
   Nil -> 0
   | Cons (_,lt) -> 1 + length lt
```

Взглянем немного глубже

Надо научиться строить и разбирать тип list = $Nil \mid Cons \ of \ int * list$:

$$L = \{\varnothing\} \uplus (\mathbb{Z} \times L)$$

ightharpoonup Строить. Конструкторы: Nil, Cons — или левая и правая инъекции (In_L , In_R).

$$Nil := In_L()$$
 Cons a $b := In_R \langle a, b \rangle$

Разбирать.

$$Nil := In_L()$$
 Cons a $b := In_R \langle a, b \rangle$ Райм а $b := In_R \langle a, b \rangle$

В самом низу — элиминатор Case:

$$length \ l := Case \ l \ (\lambda p.0) \ (\lambda p.1 + length \ (\pi_R p))$$

Алгебраический тип как дизъюнкция

Общие соображения: ВНК-интерпретация.

Интуиционистское исчисление высказываний

$$(\mathcal{U})$$

$$\frac{\Gamma \vdash \alpha}{\Gamma \vdash \alpha \lor \beta} \qquad \frac{\Gamma \vdash \beta}{\Gamma \vdash \alpha \lor \beta}$$

$$(\mathcal{U}) \qquad \frac{\Gamma \vdash \alpha}{\Gamma \vdash \alpha \lor \beta} \qquad \frac{\Gamma \vdash \beta}{\Gamma \vdash \alpha \lor \beta} \qquad \frac{\Gamma \vdash \alpha \lor \beta \quad \Gamma \vdash \alpha \to \gamma \quad \Gamma \vdash \beta \to \gamma}{\Gamma \vdash \gamma} \qquad (yy^{an}.)$$

Просто-типизированное лямбда исчисление — придумаем названия

$$\Gamma \vdash In_{L}A : \alpha \lor \beta \qquad \Gamma \vdash In_{R}B : \alpha \lor \beta$$

$$\frac{\Gamma \vdash A : \alpha}{\Gamma \vdash In_L A : \alpha \lor \beta} \qquad \frac{\Gamma \vdash B : \beta}{\Gamma \vdash In_R B : \alpha \lor \beta} \qquad \frac{\Gamma \vdash X : \alpha \lor \beta \quad \Gamma \vdash L : \alpha \to \gamma \quad \Gamma \vdash R : \beta \to \gamma}{\Gamma \vdash \mathsf{Case} \ \mathsf{X} \ \mathsf{L} \ \mathsf{R} : \gamma}$$

Пример

Напомним, если
$$\tau = \varphi = \text{unit}$$
, то $\tau \vee \varphi \approx \text{bool}$.
Тогда $T^{\tau \vee \varphi} := \text{In}_L(), \quad F^{\tau \vee \varphi} := \text{In}_R()$. И, например,
Not $x := \text{Case } x \; (\lambda t. \text{In}_R()) \; (\lambda t. \text{In}_L())$

Реализация алгебраического типа

Просто-типизированное лямбда исчисление:

$$\frac{\Gamma \vdash A : \alpha}{\Gamma \vdash \textit{In}_{\textit{L}} A : \alpha \lor \beta} \qquad \frac{\Gamma \vdash B : \beta}{\Gamma \vdash \textit{In}_{\textit{R}} B : \alpha \lor \beta} \qquad \frac{\Gamma \vdash X : \alpha \lor \beta}{\Gamma \vdash \text{Case X L R} : \gamma} \qquad \frac{\Gamma \vdash R : \beta \to \gamma}{\Gamma \vdash \text{Case X L R} : \gamma}$$

Предлагаем такую реализацию:

$$In_L := \underbrace{\lambda x. \lambda t. \lambda f.t \ x}, \quad In_R := \underbrace{\lambda x. \lambda t. \lambda f.f \ x} \quad Case := \underbrace{\lambda x. \lambda l. \lambda r. x} Ir$$
 $Case (In_L X^{\tau}) \stackrel{\tau \to \gamma}{L^{\tau \to \gamma}} R \twoheadrightarrow_{\beta} (In_L X) L R = (\underbrace{\lambda t. \lambda f.t} X) L R \twoheadrightarrow_{\beta} (L X)^{\gamma}$

А где здесь дизъюнкция? Ожидаем, что $(\mathit{In}_L\ X^{\tau})$: $\tau \lor \varphi$. А что на деле?

$$X: \tau \vdash \lambda t^{\tau \to \gamma}.\lambda f^{\varphi \to \gamma}.t \ X \left((\tau \to \gamma) \to (\varphi \to \gamma) \to \gamma \right)$$

«Если некоторое утверждение γ истинно всегда, когда оно следует из истинности τ и φ — то либо τ , либо φ истинно». Рассуждение не совсем формально, потому что не хватает кванторов по утверждениям, использующимся неявно:

$$\forall \gamma.(\tau \to \gamma) \to (\varphi \to \gamma) \to \gamma$$

Примеры алгебраических типов

Булевские значения:

$$T_1 := In_L() = \lambda t.\lambda f.t()$$
 $F_1 := In_R() = \lambda t.\lambda f.f()$ $If_1 := \lambda b.\lambda t.\lambda e.b(\lambda p.t)(\lambda p.e)$

Ну или когда аргумент опущен за ненадобностью:

$$T := \lambda t.\lambda f.t$$
 $F := \lambda t.\lambda f.f$ $If := \lambda b.\lambda t.\lambda e.b \ t \ e$

Списки:

$$Nil := In_L 0$$
 Cons $p q := In_R \langle p, q \rangle$

Тогда [1,3,5] превращается в Cons 1 (Cons 3 (Cons 5 Nil)). Для простоты раскроем полностью [1] = Cons 1 Nil:

$$\lambda t.\lambda f.f(\lambda p.p(\lambda f.\lambda x.f x)(\lambda t.\lambda f.t(\lambda f.\lambda x.x)))$$

Мощность	Тип	Высказывание
0	\perp	необитаемый тип
1	(): unit	одноэлементный тип

 $\lambda \mathsf{x}^{lpha}.\mathsf{B}:lpha oeta$ функциональный, импликация

 $|\alpha| + |\beta|$ Either $A^{\alpha} B^{\beta} : \alpha \vee \beta$

тип-сумма, дизъюнкция $|lpha|\cdot|eta|$ $(\mathcal{A}^lpha,\mathcal{B}^eta):lpha$ & eta тип-произведение, конъюнкция

Мощность множеств

Отношения

Определение

$$A \times B := \{\langle a, b \rangle \mid a \in A, b \in B\}$$

Бинарное отношение — $R \subseteq A imes B$

Функциональное бинарное отношение (функция) R — такое, что

$$\forall x. x \in A \to \exists ! y. \langle x, y \rangle \in R$$

R — инъективная функция, если $\forall x. \forall y. \langle x,t
angle \in R \ \& \ \langle y,t
angle \in R o x = y.$

R — сюръективная функция, если $\forall y.y \in B
ightarrow \exists x. \langle x,y
angle \in R.$

Равномощные множества

Определение

Множество A равномощно B (|A|=|B|), если существует биекция $f:A\to B$. Множество A имеет мощность, не превышающую мощности B ($|A|\le |B|$), если существует инъекция $f:A\to B$.

Теорема Кантора-Бернштейна

Теорема

Если $|A| \le |B|$ и $|B| \le |A|$, то |A| = |B|.

Заметим, $f:A o B,\ g:B o A$ — инъекции, но не обязательно g(f(x))=x.

Доказательство.

Избавимся от множества B: пусть $A_0 = A$; $A_1 = g(B)$; $A_{k+2} = g(f(A_k))$.

1 A (< | Ag) ~ /A/=1Ap/

Тогда, если существует $h:A_0\to A_1$ — биекция, то тогда $g^{-1}\circ h:A\to B$ — требуемая биекция.

Построение биекции $h:A_0 o A_1$

Пусть
$$C_k = A_k \setminus A_{k+1}$$
. Тогда $g(f(C_k)) = g(f(A_k)) \setminus g(f(A_{k+1})) = A_{k+2} \setminus A_{k+3} = C_{k+2}$.

Тогда определим h(x) следующим образом:

$$h(x) = \begin{cases} x, & x \in C_{2k+1} \lor x \in \cap A_k \\ g(f(x)), & x \in C_{2k} \end{cases}$$

Кардинальные числа

Определение

Кардинальное число— наименьший ординал, не равномощный никакому меньшему:

$$\forall x.x \in c \rightarrow |x| < |c|$$

Теорема

Конечные ординалы — кардинальные числа.

Определение

Мощность множества (|S|) — равномощное ему кардинальное число.

Диагональный метод 0,3000 (Лемма $|\mathbb{R}| > |\mathbb{N}|$

Доказательство.

Рассмотрим $a\in(0,1)$ и десятичную запись: $0.a_0a_1a_2\dots$ Пусть существует биективная $f:\mathbb{N}\to(0,1)$. По функции найдём значение σ , не являющееся образом никакого натурального числа.

n	f(n)	$f(n)_0$	$f(n)_1$	$f(n)_2$	$f(n)_3$	$f(n)_4$	$f(n)_5$	
n_0	0.3	3	0	0	0	0	0	
n_1	$\pi/10$	3	1	4	1	5	9	
<i>n</i> ₂	1/7	1	4	2	8	5	7	

Диагональный метод

Лемма

$$|\mathbb{R}| > |\mathbb{N}|$$

Доказательство.

Рассмотрим $a\in(0,1)$ и десятичную запись: $0.a_0a_1a_2\dots$ Пусть существует биективная $f:\mathbb{N}\to(0,1)$. По функции найдём значение σ , не являющееся образом никакого натурального числа.

n	f(n)	$f(n)_0$	$f(n)_1$	$f(n)_2$	$f(n)_3$	$f(n)_4$	$f(n)_5$	
$\overline{n_0}$	0.3	3	0	0	0	0	0	
n_1	$\pi/10$	3	1	4	1	5	9	
n_2	1/7	1	4	2	8	5	7	
	σ	8	6	7	$\dots \sigma_k$:	$=(f(n_k))$	(k+5)%	610

$$f(x) = g$$
 ?

Теорема Кантора

Teopema $|\mathcal{P}(S)|>|S|$ Доказательство.

Теорема Кантора

Теорема

$$|\mathcal{P}(S)| > |S|$$

Доказательство.

Пусть
$$S = \{a, b, c, \dots\}$$

n	$a \in f(n)$	$b \in f(n)$	$c \in f(n)$	
а	N	Л	И	
a b	Л	Л	И	
С	И	N	И	
	Л	И	Л	$y \notin f(y)$

Пусть $f:S \to \mathcal{P}(S)$ — биекция. Тогда $\sigma = \{y \in S \mid y \notin f(y)\}$. Пусть $f(x) = \sigma$. Но $x \in f(x)$ тогда и только тогда, когда $x \notin \sigma$, то есть $f(x) \neq \sigma$.

О буквах

https://en.wikipedia.org/wiki/Proto-Sinaitic_script

5	Ø	/۶/	'alp "ox"	≮ *	×N	א	ষ্ঠ	I	ААА
		/b/	bayt "house"	⊴ 9	y 7	ב	رد	ب	ввввь
	_	/g/	gaml "throwstick"	1^	41	λ	٨	ج	гс G Г

Иерархии \aleph_n и \beth_n

Определение

$$leph_0 := |\omega|$$
; $leph_{k+1} := \min\{a \mid a - opдинал, leph_k < |a|\}$

Определение

$$\beth_0 := |\omega|; \, \beth_{k+1} := |\mathcal{P}(\beth_k)|$$

Континуум-гипотеза (Г.Кантор, 1877): $\aleph_1 = \beth_1$ (не существует мощности, промежуточной между счётной и континуумом).

Обобщённая континуум-гипотеза: $\aleph_n = \beth_n$ при всех n.

Определение

Утверждение α противоречит аксиоматике: $\vdash \alpha$ ведёт к противоречию.

 ${\it V}$ тверждение lpha не зависит от аксиоматики: $ot \vdash lpha$ и $ot \vdash \lnot lpha.$

Иерархии \aleph_n и \beth_n

Определение

$$leph_0 := |\omega|$$
; $leph_{k+1} := \min\{a \mid a - opдинал, leph_k < |a|\}$

Определение

$$\beth_0 := |\omega|, \, \beth_{k+1} := |\mathcal{P}(\beth_k)|$$

Континуум-гипотеза (Г.Кантор, 1877): $\aleph_1 = \beth_1$ (не существует мощности, промежуточной между счётной и континуумом).

Обобщённая континуум-гипотеза: $\aleph_n = \beth_n$ при всех n.

Определение

Утверждение α противоречит аксиоматике: $\vdash \alpha$ ведёт к противоречию. Утверждение α не зависит от аксиоматики: $\not\vdash \alpha$ и $\not\vdash \neg \alpha$.

Теорема (О независимости континуум-гипотезы, Дж. Коэн, 1963) Утверждение $\aleph_1 = \beth_1$ не зависит от аксиоматики ZFC.

Примеры мощностей множеств

Пример	мощность
ω	ℵ₀
ω^2 , ω^ω	ℵ₀
\mathbb{R}	\beth_1
все непрерывные функции $\mathbb{R} o \mathbb{R}$	\beth_1
все функции $\mathbb{R} o \mathbb{R}$	\beth_2

Как пересчитать вещественные числа (неформально)?

1. Номер вещественного числа — первое упоминание в литературе, т.е. $\langle j, y, n, p, r, c \rangle$:

j — гёделев номер названия научного журнала (книги); у — год издания;

n — номер;

р — страница;

r — строка;

с — позиция

Как пересчитать вещественные числа (неформально)?

1. Номер вещественного числа — первое упоминание в литературе, т.е.

```
\langle j,y,n,p,r,c \rangle: 
 j — гёделев номер названия научного журнала (книги); 
 y — год издания; 
 n — номер; 
 p — страница; 
 r — строка; 
 c — позиция
```

2. Попробуете предъявить число x, не имеющее номера? Это рассуждение сразу даст номер.

Мощность модели и аксиоматизации

Определение

Пусть задана модель $\langle D, F_n, P_n \rangle$ для некоторой теории первого порядка. Её мощностью будем считать мощность D.

Мощность модели и аксиоматизации

Определение

Пусть задана модель $\langle D, F_n, P_n \rangle$ для некоторой теории первого порядка. Её мощностью будем считать мощность D.

Определение

Пусть задана формальная теория с аксиомами α_n . Её мощность — мощность множества $\{\alpha_n\}$.

Мощность модели и аксиоматизации

Определение

Пусть задана модель $\langle D, F_n, P_n \rangle$ для некоторой теории первого порядка. Её мощностью будем считать мощность D.

Определение

Пусть задана формальная теория с аксиомами α_n . Её мощность — мощность множества $\{\alpha_n\}$.

Пример

Формальная арифметика, исчисление предикатов, исчисление высказываний — счётно-аксиоматизируемые.

Определение

$$\mathcal{M}'=\langle D',F_n',P_n' \rangle$$
 — элементарная подмодель $\mathcal{M}=\langle D,F_n,P_n
angle$, если:

Определение

$$\mathcal{M}'=\langle D',F_n',P_n'
angle$$
 — элементарная подмодель $\mathcal{M}=\langle D,F_n,P_n
angle$, если:

1. $D' \subseteq D$,

Определение

$$\mathcal{M}' = \langle D', F'_n, P'_n \rangle$$
 — элементарная подмодель $\mathcal{M} = \langle D, F_n, P_n \rangle$, если:

1. $D' \subseteq D$, F'_n , P'_n — сужение F_n , P_n (замкнутое на D').

Определение

$$\mathcal{M}' = \langle D', F'_n, P'_n \rangle$$
 — элементарная подмодель $\mathcal{M} = \langle D, F_n, P_n \rangle$, если:

- 1. $D' \subseteq D$, F'_n , P'_n сужение F_n , P_n (замкнутое на D').
- 2. $\mathcal{M} \models \varphi(x_1,\ldots,x_n)$ тогда и только тогда, когда $\mathcal{M}' \models \varphi(x_1,\ldots,x_n)$ при $x_i \in D'$.

Определение

$$\mathcal{M}' = \langle D', F'_n, P'_n \rangle$$
 — элементарная подмодель $\mathcal{M} = \langle D, F_n, P_n \rangle$, если:

- 1. $D' \subseteq D$, F'_n , P'_n сужение F_n , P_n (замкнутое на D').
- 2. $\mathcal{M} \models \varphi(x_1,\ldots,x_n)$ тогда и только тогда, когда $\mathcal{M}' \models \varphi(x_1,\ldots,x_n)$ при $x_i \in D'$.

Пример

Когда сужение М не является элементарной подмоделью?

Элементарная подмодель

Определение

 $\mathcal{M}' = \langle D', F'_n, P'_n \rangle$ — элементарная подмодель $\mathcal{M} = \langle D, F_n, P_n \rangle$, если:

- 1. $D' \subseteq D$, F'_n , P'_n сужение F_n , P_n (замкнутое на D').
- 2. $\mathcal{M} \models \varphi(x_1,\ldots,x_n)$ тогда и только тогда, когда $\mathcal{M}' \models \varphi(x_1,\ldots,x_n)$ при $x_i \in D'$.

Пример

Когда сужение M не является элементарной подмоделью? $\forall x. \exists y. x \neq y.$ Истинно в $\mathbb N$.

Элементарная подмодель

Определение

 $\mathcal{M}' = \langle D', F'_n, P'_n \rangle$ — элементарная подмодель $\mathcal{M} = \langle D, F_n, P_n \rangle$, если:

- 1. $D' \subseteq D$, F'_n , P'_n сужение F_n , P_n (замкнутое на D').
- 2. $\mathcal{M} \models \varphi(x_1,\ldots,x_n)$ тогда и только тогда, когда $\mathcal{M}' \models \varphi(x_1,\ldots,x_n)$ при $x_i \in D'$.

Пример

Когда сужение M не является элементарной подмоделью? $\forall x. \exists y. x \neq y.$ Истинно в \mathbb{N} . Но пусть $D' = \{0\}$.

Теорема Лёвенгейма-Сколема

Теорема

Пусть T — множество всех формул теории первого порядка. Пусть теория имеет некоторую модель \mathcal{M} . Тогда найдётся элементарная подмодель \mathcal{M}' , причём $|\mathcal{M}'| = \max(\aleph_0, |T|)$.

Теорема Лёвенгейма-Сколема

Теорема

Пусть T — множество всех формул теории первого порядка. Пусть теория имеет некоторую модель \mathcal{M} . Тогда найдётся элементарная подмодель \mathcal{M}' , причём $|\mathcal{M}'| = \max(\aleph_0, |T|)$.

Доказательство.

(Схема доказательства)

1. Построим D_0 — множество всех значений, которые упомянуты в языке теории.

Теорема Лёвенгейма-Сколема

Теорема

Пусть T — множество всех формул теории первого порядка. Пусть теория имеет некоторую модель \mathcal{M} . Тогда найдётся элементарная подмодель \mathcal{M}' , причём $|\mathcal{M}'| = \max(\aleph_0, |T|)$.

Доказательство.

(Схема доказательства)

- 1. Построим D_0 множество всех значений, которые упомянуты в языке теории.
- 2. Будем последовательно пополнять D_i : $D_0 \subseteq D_1 \subseteq D_2 \dots$, следя за мощностью. $D' = \cup D_i$.
- 3. Покажем, что $\langle D', F_n, P_n \rangle$ требуемая подмодель.

Пусть $\{f_k^0\}$ — все 0-местные функциональные символы теории.

Пусть $\{f_k^0\}$ — все 0-местные функциональные символы теории.

1. $D_0 = \{ \llbracket f_k^0 \rrbracket \}$, если есть хотя бы один f_k^0 .

Пусть $\{f_k^0\}$ — все 0-местные функциональные символы теории.

- 1. $D_0 = \{ \llbracket f_k^0 \rrbracket \}$, если есть хотя бы один f_k^0 .
- 2. Если таких f_k^0 нет, возьмём какое-нибудь одно значение из D.

Пусть $\{f_k^0\}$ — все 0-местные функциональные символы теории.

- 1. $D_0 = \{ \llbracket f_k^0 \rrbracket \}$, если есть хотя бы один f_k^0 .
- 2. Если таких f_k^0 нет, возьмём какое-нибудь одно значение из D.

Пусть $\{f_k^0\}$ — все 0-местные функциональные символы теории.

- 1. $D_0 = \{ \llbracket f_k^0 \rrbracket \}$, если есть хотя бы один f_k^0 .
- 2. Если таких f_k^0 нет, возьмём какое-нибудь одно значение из D.

Очевидно, $|D_0| \leq |T|$.

Фиксируем некоторый D_k . Напомним, T — множество всех формул теории. Рассмотрим $\varphi \in \mathcal{T}$.

1. φ не имеет свободных переменных — пропустим.

- $1. \ arphi$ не имеет свободных переменных пропустим.
- 2. φ имеет хотя бы одну свободную переменную y.

- $1. \ arphi$ не имеет свободных переменных пропустим.
- 2. φ имеет хотя бы одну свободную переменную y.
 - 2.1 $\varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ бывает истинным и ложным ничего не меняем

- $1. \ arphi$ не имеет свободных переменных пропустим.
- 2.~arphi имеет хотя бы одну свободную переменную y.
 - $2.1 \ \ arphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ бывает истинным и ложным ничего не меняем
 - 2.2 $\varphi(y,x_1,\ldots,x_n)$ при $y\in D$ и $x_i\in D_k$ либо всегда истинен, либо всегда ложен ничего не меняем

- $1. \ arphi$ не имеет свободных переменных пропустим.
- 2.~arphi имеет хотя бы одну свободную переменную y.
 - 2.1 $\varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ бывает истинным и ложным ничего не меняем
 - 2.2 $\varphi(y,x_1,\ldots,x_n)$ при $y\in D$ и $x_i\in D_k$ либо всегда истинен, либо всегда ложен ничего не меняем
 - 2.3 $\varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ тождественно истинен или ложен, но при $y'\in D\setminus D_k$ отличается добавим y' к D_{k+1} .

- $1. \ arphi$ не имеет свободных переменных пропустим.
- 2. φ имеет хотя бы одну свободную переменную y.
 - $2.1 \ \varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ бывает истинным и ложным ничего не меняем
 - 2.2 $\varphi(y,x_1,\ldots,x_n)$ при $y\in D$ и $x_i\in D_k$ либо всегда истинен, либо всегда ложен ничего не меняем
 - 2.3 $\varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ тождественно истинен или ложен, но при $y'\in D\setminus D_k$ отличается добавим y' к D_{k+1} . Вместе добавим всевозможные $[\![\theta(y')]\!]$.

Фиксируем некоторый D_k . Напомним, T — множество всех формул теории. Рассмотрим $\varphi \in \mathcal{T}$.

- $1. \ arphi$ не имеет свободных переменных пропустим.
- 2.~arphi имеет хотя бы одну свободную переменную y.
 - $2.1 \ \ arphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ бывает истинным и ложным ничего не меняем
 - 2.2 $\varphi(y, x_1, \dots, x_n)$ при $y \in D$ и $x_i \in D_k$ либо всегда истинен, либо всегда ложен ничего не меняем
 - 2.3 $\varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ тождественно истинен или ложен, но при $y'\in D\setminus D_k$ отличается добавим y' к D_{k+1} . Вместе добавим всевозможные $[\![\theta(y')]\!]$.

Всего добавили не больше $|T| \cdot |D_k|$.

Фиксируем некоторый D_k . Напомним, T — множество всех формул теории. Рассмотрим $\varphi \in \mathcal{T}$.

- $1. \ arphi$ не имеет свободных переменных пропустим.
- 2. φ имеет хотя бы одну свободную переменную y.
 - $2.1 \ \ arphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ бывает истинным и ложным ничего не меняем
 - 2.2 $\varphi(y,x_1,\ldots,x_n)$ при $y\in D$ и $x_i\in D_k$ либо всегда истинен, либо всегда ложен ничего не меняем
 - 2.3 $\varphi(y,x_1,\ldots,x_n)$ при $y,x_i\in D_k$ тождественно истинен или ложен, но при $y'\in D\setminus D_k$ отличается добавим y' к D_{k+1} . Вместе добавим всевозможные $[\![\theta(y')]\!]$.

Всего добавили не больше $|T|\cdot |D_k|$. $|\cup D_i|\leq |T|\cdot |D_k|\cdot |\aleph_0|=\max(|T|,|\aleph_0|)$

Индукцией по структуре формул $\tau\in T$ покажем, что все формулы можно вычислить, и что $[\![\varphi]\!]_{\mathcal{M}'}=[\![\varphi]\!]_{\mathcal{M}}.$

1. База, 0 связок. $au \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n)).$

Индукцией по структуре формул $\tau \in T$ покажем, что все формулы можно вычислить, и что $[\![\varphi]\!]_{\mathcal{M}'} = [\![\varphi]\!]_{\mathcal{M}}$.

1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим au с k+1 связкой.

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим au с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим au с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.
 - $2.2 \ \tau \equiv \forall y. \varphi(y, x_1, \ldots, x_n).$

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим au с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.
 - 2.2 $au \equiv \forall y. arphi(y, x_1, \dots, x_n)$. Каждый x_i добавлен на каком-то шаге максимум t.

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим au с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.
 - 2.2 $au\equiv \forall y. \varphi(y,x_1,\ldots,x_n)$. Каждый x_i добавлен на каком-то шаге максимум t. Если $\varphi(y,x_1,\ldots,x_n)$ бывает истинен и ложен при $y_t,y_f\in D$, то $y_t,y_f\in D_{t+1}$ (по построению).

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим au с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.
 - 2.2 $au \equiv \forall y. \varphi(y, x_1, \dots, x_n)$. Каждый x_i добавлен на каком-то шаге максимум t. Если $\varphi(y, x_1, \dots, x_n)$ бывает истинен и ложен при $y_t, y_f \in D$, то $y_t, y_f \in D_{t+1}$ (по построению). Поэтому, если $\mathcal{M} \not\models \forall y. \varphi(y, x_1, \dots, x_n)$, то и $\mathcal{M}' \not\models \forall y. \varphi(y, x_1, \dots, x_n)$.

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим au с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.
 - 2.2 $au \equiv \forall y. \varphi(y, x_1, \dots, x_n)$. Каждый x_i добавлен на каком-то шаге максимум t. Если $\varphi(y, x_1, \dots, x_n)$ бывает истинен и ложен при $y_t, y_f \in D$, то $y_t, y_f \in D_{t+1}$ (по построению). Поэтому, если $\mathcal{M} \not\models \forall y. \varphi(y, x_1, \dots, x_n)$, то и $\mathcal{M}' \not\models \forall y. \varphi(y, x_1, \dots, x_n)$. Если же $\varphi(y, x_1, \dots, x_n)$ не меняется от y, то тем более $\llbracket \varphi \rrbracket_{\mathcal{M}'} = \llbracket \varphi \rrbracket_{\mathcal{M}}$.

- 1. База, 0 связок. $\tau \equiv P(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$. Если $x_i \in D'$, то значит, добавлены на некоторых шагах (максимальный пусть t). Поэтому в D_{t+1} можно вычислить формулу, и её значение сохранилось.
- 2. Переход. Пусть формулы из k связок сохраняют значения. Рассмотрим au с k+1 связкой.
 - 2.1 $\tau \equiv \rho \star \sigma$ очевидно.
 - 2.2 $au \equiv \forall y. \varphi(y, x_1, \dots, x_n)$. Каждый x_i добавлен на каком-то шаге максимум t. Если $\varphi(y, x_1, \dots, x_n)$ бывает истинен и ложен при $y_t, y_f \in D$, то $y_t, y_f \in D_{t+1}$ (по построению). Поэтому, если $\mathcal{M} \not\models \forall y. \varphi(y, x_1, \dots, x_n)$, то и $\mathcal{M}' \not\models \forall y. \varphi(y, x_1, \dots, x_n)$. Если же $\varphi(y, x_1, \dots, x_n)$ не меняется от y, то тем более $\llbracket \varphi \rrbracket_{\mathcal{M}'} = \llbracket \varphi \rrbracket_{\mathcal{M}}$.
 - 2.3 $\tau \equiv \exists y. \varphi(y, x_1, \dots, x_n)$ аналогично.

1. Как известно, $|\mathbb{R}|=|\mathcal{P}(\mathbb{N})|>|\mathbb{N}|=leph_0.$

1. Как известно, $|\mathbb{R}|=|\mathcal{P}(\mathbb{N})|>|\mathbb{N}|=\aleph_0$. Однако, ZFC — теория со счётным количеством формул.

1. Как известно, $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})| > |\mathbb{N}| = \aleph_0$. Однако, ZFC — теория со счётным количеством формул. Значит, существует счётная модель ZFC, то есть $|\mathbb{R}| = \aleph_0$.

1. Как известно, $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})| > |\mathbb{N}| = \aleph_0$. Однако, ZFC — теория со счётным количеством формул. Значит, существует счётная модель ZFC, то есть $|\mathbb{R}| = \aleph_0$. В чём ошибка?

«Парадокс» Сколема

- 1. Как известно, $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})| > |\mathbb{N}| = \aleph_0$. Однако, ZFC теория со счётным количеством формул. Значит, существует счётная модель ZFC, то есть $|\mathbb{R}| = \aleph_0$. В чём ошибка?
- 2. У равенств разный смысл, первое в предметном языке, второе в метаязыке.