Classification I: Logistic Regression

Termeh Shafie

Link Functions

a method to get "non-linear" linear regression (more on this topic in a later lecture...)

$$y = X\beta$$

$$y = g^{-1}(X\beta)$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

the link function transforms the probabilities of the levels of a categorical response variable to a continuous scale that is unbounded

> the link function transforms back the expectation of the response to the linear function

Logistic Regression

logit link function and log odds

$$y = X\beta$$

$$y = X\beta y = g^{-1}(X\beta)$$

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1$$

$$p = \frac{e^{\beta_0 + \beta_1 x_1}}{1 + e^{\beta_0 + \beta_1 x_1}} = \text{[a little algebra]}$$
$$= \frac{1}{1 + e^{\beta_0 + \beta_1 x_1}}$$

logit link function

Redefining The Response

Logistic Regression

$$y = X\beta$$

our link function is
$$g(x) = \log \frac{x}{1-x}$$
 which has the inverse
$$a^{-1}(x) = \frac{e^x}{1-x}$$

$$y=g^{-1}(Xeta)$$
 general case e^{Xeta}

$$p = \frac{e^{X\beta}}{1 + e^{X\beta}}$$

Interpreting Logistic Regression Models

- we want to create a spam filter based on 3921 observations/emails
- simple model, one predictor: 'to_multiple'

Interpreting Coefficients

Probability p	Odds p/(1-p)	Log Odds log[p/(1-p)]
0.1	0.1111	-2.1972
0.5	1	0
0.9	9	2.1972

Example: South African Heart Disease

- From Western Cape, South Africa in early 80s
- Coronary Risk Factor Study (CORIS)
- High incidence of myocardial infarction (MI) in region: 5.1%
- Measurements on seven predictors (risk factors)
- 160 cases, 302 controls. Ages 15-64.
- Outcome is presence/absence of MI at time of survey
- Goal:
- to identify relative strengths and directions of risk factors
- intervention study aimed at educating the public on healthier diets

[For more info see ESL 4.4.2]

Example: South African Heart Disease | South African Heart Disease | Cases = red controls = turquoise

Example: South African Heart Disease

term	estimate	std.error	statistic	p.value
(Intercept)	-4.130	0.964	-4.283	0.000
sbp	0.006	0.006	1.023	0.306
tobacco	0.080	0.026	3.034	0.002
ldl	0.185	0.057	3.219	0.001
famhistPresent	0.939	0.225	4.177	0.000
obesity	-0.035	0.029	-1.187	0.235
alcohol	0.001	0.004	0.136	0.892
age	0.043	0.010	4.181	0.000

Estimating Coefficients: MLE

$$\prod_{i;y_i=1} p(x_i)$$

$$\prod_{i;y_i=0} 1 - p(x_i)$$

$$L(\beta_0, \beta_1) = \prod_{i: y_i = 1} p(x_i) \cdot \prod_{i: y_i = 0} 1 - p(x_i)$$

$$L(\beta_0, \beta_1) = \prod_{i=1} p(x_i)^{y_i} (1 - p(x_i))^{1 - y_i}$$

$$l(\beta_0, \beta_1) = \sum_{i=1} y_i \log(p(x_i)) + (1 - y_i) \log(1 - p(x_i))$$

[full proof:https://arunaddagatla.medium.com/maximum-likelihood-estimation-in-logistic-regression-f86ff1627b67

Assessing Model Performance

- Did it make the correct prediction?
- accuracy
- sensitivity
- specificity
- How well does to perform in distinguishing classes correctly?

