Parallel, Error-Tolerant Sibling Reconstruction

Presented by: Alan Perez-Rathke

Outline

- Motivation and Background
- Improvements to Parallel 2-Allele
- Parallel 2-Allele Consensus
- Future Work
- Q&A

Biological Motivation

- Used in: conservation biology, animal management, molecular ecology, genetic epidemiology
- Necessary for: estimating heritability of quantitative characters, characterizing mating systems and fitness.
- Caveat: hard to sample parent/offspring pairs. Sampling cohorts of juveniles is much easier.

Lemon sharks, Negaprion brevirostris

2 Brown-headed cowbird (*Molothrus ater*) eggs in a Blue-winged Warbler's nest

Basic Genetics

- Gene: Unit of inheritance
- Allele: Actual genetic sequence
- Locus: Location of allele in entire genetic sequence
- Diploid: 2 alleles at each locus

Microsatellites (STR)

Advantages

- Equal probability of allele inheritance (easy inference of genotypes and allele frequencies)
- Many heterozygous alleles per locus
- Possible to estimate other population parameters
- _ Cheaper than SNPs

But

_ Few loci

And

- _ Large families
- _ Self-mating

Diploid Siblings

Siblings: Children with the same parent(s)

Question: Given a set of children, can we find the sibling groups?

Sibling Reconstruction Problem

Individual	Locus1	Locus2
	allele1/allele2	
1	111/122	211/222
2	111/133	233/244
3	111/144	233/255
4	111/133	277/266
5	111/133	233/244
6	111/133	233/277
7	111/155	288/222
8	111/166	222/222

Sibling Groups:

2, 4, 5, 6

1, 3

7,8

Existing Methods

Method	Approach	Error- Detectio	Assumptions
Almudevar& Field (1999,2003)	Minimal Sibling groups under likelihood	No	Minimal sibgroups, representative allele frequencies
KinGroup (2004)	Markov Chain Monte Carlo/ML	No	Allele Frequencies etc. are representative
Family Finder(2003)	Partition population using	No	Allele Frequencies etc. are representative
Pedigree (2001)	Markov Chain Monte Carlo/ML	No	Allele Frequencies etc are representative
COLONY (2004)	Simulated Annealing under	Yes	Monogamy for one sex
Fernandez & Toro (2006)	Simulated Annealing	No	Co-ancestry matrix is a good measure, parents can be reconstructed or are available

Mendelian Constraints

4-allele rule:

siblings have at most 4 different alleles in a locus

Yes: 3/3, 1/3, 1/5, 1/6

No:3/3, 1/3, 1/5, 1/6, 3/2

2-allele rule:

In a locus in a sibling group:

$$a + R \leq 4$$

Num distinct alleles

Num alleles that appear with 3 others or are homozygote

Yes: 3/3, 1/3, 1/5

No: 3/3, 1/3, 1/5, 1/6

2-Allele Min Set Cover

Problem Statement

- Find the minimum number of sibling groups necessary to explain the given cohort
- Exact Algorithm [ISMB/ECCB 2007, Bioinformatics]
 - Enumerate all maximal feasible sibling groups
 - Find min set cover using CPLEX

Complexity

NP-Hard & No polynomial approximation [Ashley et al JCSS 09]

Serial 2-Allele Min Set Cover

Parallel 2-Allele Min Set Cover

- Enumeration is slow, how to speed it up?
- Enumerate at each locus in parallel
- Sibgroups are represented as bitsets
- Intersect groups at each locus for final enumeration
- Subsets must be culled

Example: Intersecting Loci Sets

Outline

- Motivation and Background
- Improvements to Parallel 2-Allele
- Parallel 2-Allele Consensus
- Future Work
- Q & A

Why Parallel?

- Min Set Cover is NP-hard and no polynomial approximation
- Set cover enumeration is exponential in the number of individuals

Issues with Parallel 2-Allele

To achieve enumeration:
 Must intersect across all loci

 Problem: Number of feasible sibling groups explodes exponentially with the number of loci!

Solution: Must <u>cull subsets</u>
 between rounds to avoid
 exceeding RAM and
 crippling performance

Catch 22!

- A simple method of subset culling:
 - To see if a sibling group is a subset of any other sibling group, must check against all other sibling groups

• Notes:

- O(n²)
- Necessary for memory and performance, but very slow!
- Can account for as high as 80% of processing time
- Performance bottleneck, infeasible for large data sets
- Data dependencies make parallelization a chore!
- How do we improve on this?

Observations

Matrix representation:

 The collection of feasible sibling groups can be represented as a bit matrix.

Groups are small:

Each feasible sibling group contains, on average, approximately 2% of the population. In other words, the number of feasible groups, s, greatly exceeds the average number of individuals, m, which belong to any sibling group (i.e.; s >> m).

Most groups are supersets:

• In practice, 55% to 85% of feasible siblings groups are not subsets of any other sibling group, and, therefore, will not be culled.

Matrix representation

feasible sibling groups

- Rows are feasible sibling groups
- A 1 in the *i*-th column means Individual, is a member of that sibling group

What about columns?

- They have meaning too!
- Column_i defines which feasible sibling groups contain Individual_i as a member
- What happens if we intersect the positive columns of a feasible sibling group?

Column-based subset culling

Case 1: A subset

Case 2: A superset

Conclusion:

The output vector can be used to classify a sibling group as a subset.

How many bits would be examined in Case 2 with the original culling algorithm?

Pseudocode

```
/* M is a bit matrix of feasible sibling groups. */
ParallelTransposeSubsetCulling(bit matrix M)
  /* Take the transpose of M in order to place columns
     into contiguous memory. This allows bitwise operators
      to be used on columns. */
   T \leftarrow \text{parallelComputeTransposeOf}(M)
   parallel for each row G_{\downarrow} in M do
     /* Note: each row of M is a sibling group. */
     y \leftarrow G_y.getFirstTrueBitPos()
     Result \leftarrow T.getRow(y)
     while z \leftarrow G_{y}.getNextTrueBitPos() do
        Result \leftarrow Result.bitwiseIntersect(T.getRow(z))
     end while
  if Result.hasMultipleBitsSetToTrue() then
     markAsSubset(Result)
  end if
end for
```

Advantages & Results

- Easy to parallelize: subset classification of a sibling group is independent of the classification of other groups
- Exploits sparse nature of sibling group matrix:
 Intersects only relevant columns
 - No longer need to examine every bit in the worst case (i.e. - the majority case!)

Outline

- Motivation and Background
- Improvements to Parallel 2-Allele
- Parallel 2-Allele Consensus
- Future Work
- Q & A

Consensus Motivation

- Problem: Real world genotypic data has errors and mutations!
- Solution: Compute multiple solutions and take a consensus

Consensus Algorithm

- For each *locus*, compute a sibling reconstruction with *locus*, removed.
- Solutions are then merged via strict consensus followed by a distance-based heuristic.

What happens when 2-Allele is used?

Redundant Loci Intersections

- Locus drop-out solution for locus;
 - locus₁ ∩ locus₂ ∩ . . . locus₃ ∩ locus₄ ∩ . . . locus₄
- Locus drop-out solution for *locus*:
 - locus₁ ∩ locus₂ ∩ . . . locus₁ ∩ locus₁ ∩ . . . locus_n
- Same colors are redundant intersections!

Order Matters!

Comparison:

- 1. $((locus_1 \cap locus_2) \cap locus_3) \cap locus_4$
- 2. $(locus_1 \cap locus_2) \cap (locus_3 \cap locus_4)$
- Data has shown: Method 1 performs better in practice! Why?
 - Because of quadratic nature of an intersection round and variability in culling
 - → Do not want to intersect two large collections of sibling groups with each other, you'll have to cull more as well!
 - It follows then that we want to sort loci and intersect from highest to lowest ordered
- **Conclusion**: Want algorithm that sorts loci by order, performs incremental intersections, and reduces number of redundant intersections

Recursive Approach

- Key is to cache all intermediate intersections!
- Cached intersections are in square brackets, includes those from parent
- To avoid intersecting large sets, as in Method 2, if at any time, the size disparity between left and right subtrees exceeds a threshold, a "quadratic method" is used on the left subtree which reuses any cached parent intersections.

Pseudocode

```
/* L is a sorted set of loci. C is a cache of loci intersections */
CompLociDropoutSolnsRecur(L, C)
    /* Base case: we only have a single locus to process. */
     if L.size() == 1 then
          outputSolution(L, C)
          return
     end if
     /* Split set of loci in half. */
     L.split(I half, r half)
     /* Recurse down right child tree. */
     I cache ← I half.parallelIntersectAll(C, intermed cache)
     CompLociDropoutSolnsRecur(r half, I cache)
     /* Conditionally recurse down left child tree, else perform quadratic
       procedure. */
     if shouldRecurseDownLeftChildTree(I half, r half, thresh) then
          r_cache \leftarrow r_half.parallelIntersectAll(C, NULL)
          CompLociDropoutSolnsRecur(I half, r cache)
     else
          CompLociDropoutSolnsQuadrat(I half, intermed cache)
     end if
```

Results

Results

Total Parallel Consensus Reconstruction Time

Parallel Loci Intersection Time

Outline

- Motivation and Background
- Improvements to Parallel 2-Allele
- Parallel 2-Allele Consensus
- Future Work
- Q & A

Future Work

More cores! MPI and GPU implementations

 Sparse Intersections: Need method to exploit sparseness of matrix columns and not just rows

Questions?