THÉORIE DES GROUPES - SÉRIE 1

24 septembre 2021

Quiz

Quiz 1.1. Un poset (P, \leq) est la donnée d'un ensemble P muni d'une relation \leq telle que \leq est:

- 1. réflexive: $x \leq x$ pour tout $x \in P$,
- 2. transitive: si $x \leq y$ et $y \leq z$, alors $x \leq z$ pour tous $x, y, z \in P$,
- 3. antisymétrique: si $x \leq y$ et $y \leq x$, alors x = y pour tous $x, y \in P$.

Comment peut-on construire une catégorie à partir d'un poset (P, \leq) dont les objects sont les éléments de P et les morphismes sont induits par \leq ?

Quiz 1.2. Considère les posets $[0] = \{0\}$ et $[1] = \{0 < 1\}$.

- (i) Quelles sont les données des catégories [0] et [1] obtenues à partir de ces deux posets?
- (ii) Soit C une catégorie. Quelle est la donnée d'un foncteur $[0] \to C$ et celle d'un foncteur $[1] \to C$?

Exercices

Exercice 1.1. Soit C une catégorie et $c \in C$ un objet. Montrer que la composition munit l'ensemble $\operatorname{Aut}_{C}(c)$ des automorphismes de c d'une structure de groupe. (Voir Lemme 14 du cours)

Exercice 1.2. Soit G et H deux groupes.

- (i) Vérifier que BG définit bien une catégorie, où BG a un objet \star et est tel que $BG(\star,\star)=G$. (Voir Exemple 7 du cours)
- (ii) Montrer que l'ensemble Gr(G, H) des homomorphismes de groupes de G vers H est isomorphe à l'ensemble Cat(BG, BH) des foncteurs de BG vers BH.
- (iii) Montrer qu'il existe un foncteur $B \colon \mathsf{Gr} \to \mathsf{Cat}$ qui envoie un groupe G sur la catégorie BG.

Exercice 1.3. Soit C et D deux catégories. On considère leur produit $C \times D$. (Voir Exemple 1.7.2 du cours)

- (i) Montrer qu'il existe des projections $\pi_C : C \times D \to C$ et $\pi_D : C \times D \to D$ et que π_C et π_D sont des foncteurs.
- (ii) Montrer la propriété universelle du produit $C \times D$: pour toute catégorie E et tous foncteurs $F : E \to C$ et $G : E \to D$, il existe un unique foncteur $(F, G) : E \to C \times D$ tel que le diagramme suivant commute,

i.e., tel que $\pi_{\mathsf{C}} \circ (F, G) = F$ et $\pi_{\mathsf{D}} \circ (F, G) = G$.

Exercice 1.4. Montrer qu'un foncteur $F: \mathsf{C} \to \mathsf{D}$ préserve les isomorphismes, i.e., si $f: c \to d$ est un isomorphisme de C , alors $Ff: Fc \to Fd$ est un isomorphisme de D .

Exercice 1.5. Montrer qu'un foncteur $F: C \to D$ est un isomorphisme dans la catégorie Cat si et seulement si $F_{Ob}: Ob C \to Ob D$ est une bijection et, pour tous objets $c, d \in C$, F_{Mor} induit une bijection

$$C(c,d) \xrightarrow{\cong} D(Fc,Fd).$$

On appelle un tel foncteur un **isomorphisme de catégories** et on dit que les catégories C et D sont **isomorphes**.

Exercice 1.6. Soit k un corps.

(i) Construire une catégorie Mat_k telle que $\mathsf{Ob}(\mathsf{Mat}_k) = \mathbb{N}$ et, pour tous $m, n \in \mathbb{N}$,

$$\mathsf{Mat}_{\Bbbk}(m,n) = \mathsf{M}_{n \times m}(\Bbbk),$$

où $M_{n\times m}(\mathbb{k})$ est l'ensemble des matrices de tailles $n\times m$ à coefficients dans \mathbb{k} .

(ii) Construire un foncteur $F \colon \mathsf{Mat}_{\Bbbk} \to \mathsf{Vect}_{\Bbbk}$ tel que $F(n) = \Bbbk^n$, pour tout $n \in \mathbb{N}$.

Exercice 1.7. Soit k un corps.

- (i) Décrire la catégorie opposée de la catégorie Mat_k de l'Exercice 1.6.
- (ii) Montrer que la catégorie Mat_{\Bbbk} et son opposée sont isomorphes en construisant explicitement un isomorphisme de catégories.
- (iii) Pour une catégorie quelconque C, est-ce vrai que la catégorie C est isomorphe à son opposée? Si oui, donner une preuve. Si non, donner un contre-exemple.