Corso di Logica 1.2 – Simboli logici

Docenti: Alessandro Andretta, Luca Motto Ros, Matteo Viale

Dipartimento di Matematica Università di Torino

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021–2022

1/46

Simboli

Per poter analizzare il ragionamento matematico, è necessario innanzitutto individuare quali simboli e costrutti linguistici vengono usati. Scorrendo un testo di analisi matematica ci si imbatte in vari tipi di simboli.

- Le lettere x, y, z, \ldots in genere designano numeri reali arbitrari, mentre le lettere k, m, n, \ldots denotano numeri naturali. In ogni caso, il loro ruolo è quello di essere *variabili*, ovvero quello di indicare un generico numero anziché identificarne uno specifico.
- Al contrario, certe lettere designano numeri ben specifici: sono cioè delle *costanti*. Per esempio la lettera π rappresenta un preciso numero reale, ovvero il rapporto tra la lunghezza del diametro e la lunghezza della circonferenza. Il suo valore è $\pi=3,14159\ldots$

- Alcuni simboli denotano *operazioni* tra numeri o particolari *funzioni*. Ad esempio, i simboli $+ e \cdot$ denotano le operazioni binarie di somma e prodotto, mentre $\sqrt{\cdot}$ indica la funzione "radice quadrata".
- Altri simboli denotano *relazioni* tra numeri, come il simbolo < che usiamo per indicare l'ordine tra i numeri.
- Il simbolo =, che denota l'*uguaglianza*, è anch'esso un simbolo per una relazione tra oggetti, ma il suo significato è fissato ed indipendente dal contesto: esso asserisce che l'oggetto scritto a sinistra del segno di uguale coincide con l'oggetto scritto a destra.

Vedremo che tutte queste tipologie di simboli giocheranno un ruolo fondamentale quando presenteremo la logica del prim'ordine.

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021-2022

3 / 46

Ci sono poi alcune espressioni che ricorrono in ogni testo matematico:

- le particelle "non", "e", "o"
- "se ...allora ..."
- "...se e solo se ..."
- "c'è almeno un x tale che ..."
- "per ogni $x \dots$ ".

Espressioni di questo genere le abbiamo anche ripetutamente incontrate nella nostra trattazione informale del concetto di dimostrazione (Sezione 1.1).

Per scrivere in modo non ambiguo i ragionamenti e le dimostrazioni introduciamo dei simboli che rappresentano questi costrutti linguistici, ovvero i **connettivi**

 $\neg \qquad \land \qquad \lor \qquad \rightarrow \qquad \leftrightarrow$

ed i simboli di quantificatore

 \exists

Negazione

I connettivi e i quantificatori si dicono **costanti logiche**. Vediamo il loro significato e alcune delle loro proprietà di base.

¬ denota la **negazione** e serve per affermare l'opposto di quanto asserisce l'affermazione a cui si applica.

Per esempio

$$\neg (x < y)$$

significa che x non è minore di y, ovvero che $x \ge y$.

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021–2022

5 / 46

Data un'affermazione P, si ha sempre che P è vera se e solo se $\neg P$ è falsa, e questo accade se e solo $\neg \neg P$ è vera. Questo mostra che le espressioni P e $\neg \neg P$ sono *equivalenti*, ovvero che vale la

Legge della doppia negazione

$$P \equiv \neg \neg P$$
.

Inoltre

$$P \equiv Q \quad \text{se e solo se} \quad \neg P \equiv \neg Q.$$

Infatti, in qualunque contesto si ha che se $P \equiv Q$ allora

$$\neg P$$
 è vero se e solo se P è falso se e solo se Q è falso se e solo se $\neg Q$ è vero.

Similmente si dimostra anche che se $\neg P \equiv \neg Q$ allora $P \equiv Q$.

Congiunzione

∧ è la congiunzione e serve per asserire che due fatti valgono contemporaneamente.

Per esempio

$$(x \text{ è pari}) \land (x \text{ è un quadrato perfetto})$$

significa che il numero x è sia pari che un quadrato perfetto (ovvero è il quadrato di qualche numero): poiché abbiamo dimostrato che se k^2 è pari allora anche k lo è, questo vuol dire che $x=(2n)^2=4n^2$ per qualche $n \in \mathbb{N}$.

Anche le particelle "ma" e "però" sono delle congiunzioni, a cui noi attribuiamo una connotazione avversativa. Tuttavia, in matematica il significato di "P ma Q" o di "P però Q" è lo stesso di "P e Q" e quindi si scrivono comunque come " $P \wedge Q$ ".

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021-2022

7 / 46

Il connettivo \wedge è commutativo, poiché asserire $P \wedge Q$ è come asserire $Q \wedge P$, in simboli

$$P \wedge Q \equiv Q \wedge P$$
,

ed è associativo, poiché asserire $P \wedge (Q \wedge R)$ è la stessa cosa di asserire $(P \land Q) \land R$ (ovvero: P, Q ed R sono tutt'e tre vere), in simboli

$$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R.$$

È chiaro che in qualunque contesto ci troviamo, se $\mathrm P$ e $\mathrm Q$ sono vere allora anche $P \wedge Q$ lo è, in simboli

$$P, Q \models P \wedge Q.$$

Viceversa, se $P \wedge Q$ è un'affermazione vera, allora lo sono in particolare sia P che Q, in simboli possiamo scrivere che

$$P \wedge Q \models P$$
 e $P \wedge Q \models Q$.

Infine

Se
$$P \equiv R$$
 e $Q \equiv S$, allora $P \wedge Q \equiv R \wedge S$.

Infatti se siamo in un contesto in cui vale $P \wedge Q$, in tale contesto devono necessariamente valere sia P che Q. Dato che $P \models R$ e $Q \models S$, in tale contesto varranno sia R che S, da cui concludiamo che varrà anche $R \wedge S$.

Il ragionamento mostra che in ogni contesto in cui vale $P \wedge Q$ vale anche $R \wedge S$, per cui

$$P \wedge Q \models R \wedge S$$

In maniera simile si dimostra $R \wedge S \models P \wedge Q$, da cui

$$P \wedge Q \equiv R \wedge S$$
.

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021–2022

9 / 46

Disgiunzione

 \lor è la **disgiunzione** (inclusiva) e corrisponde al *vel* latino o all'inglese *or*: questo *o* quello *o* eventualmente entrambi.

In particolare, affermare che vale $P \vee Q$ non vuol dire che soltanto una tra P e Q è vera. Se asseriamo ad esempio che

$$(x \text{ è pari}) \lor (x \text{ è un quadrato perfetto})$$

intendiamo dire che il numero x può essere pari (cioè della forma 2n, per esempio 6), o un quadrato perfetto (cioè della forma n^2 , per esempio 9), o magari un numero che è un quadrato perfetto pari (cioè della forma $4n^2$, per esempio 4).

Anche il connettivo \vee è commutativo, poiché $P \vee Q$ ha lo stesso significato di $Q \vee P$, in simboli

$$P \vee Q \equiv Q \vee P$$
,

e associativo, poiché $P \lor (Q \lor R)$ ha lo stesso significato di $(P \lor Q) \lor R$ (ovvero: almeno una tra P, Q ed R è vera), in simboli

$$P \lor (Q \lor R) \equiv (P \lor Q) \lor R.$$

Se sappiamo che una certa affermazione P è vera, allora possiamo anche asserire che $P \vee Q$ è vera, qualsiasi sia l'affermazione Q; infatti, $P \vee Q$ è vera quando è vera almeno una delle due affermazioni P e Q, e nel nostro caso P lo è. Viceversa, se Q è vera allora anche $P \vee Q$ lo è, qualunque sia P. Quindi

$$P \models P \lor Q$$
 e $Q \models P \lor Q$.

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021-2022

11 / 46

Invece a partire da $P \vee Q$ non possiamo né concludere P né concludere Q. Infatti, se $P \vee Q$ è vera sappiamo solo che almeno una tra P e Q è vera, ma non possiamo sapere quale (in genere dipenderà dal contesto).

Invece, se sappiamo che $P \lor Q$ è vera ma che P è falsa, allora l'unica possibilità è che Q sia vera (se P e Q fossero entrambe false, sarebbe falsa anche $P \lor Q$). Similmente, se $P \lor Q$ è vera ma Q è falsa, allora possiamo concludere che P deve essere vera. Questa è la

Legge della disgiunzione

$$P \vee Q, \neg P \models Q$$

е

$$P \vee Q, \neg Q \models P.$$

Infine

Se
$$P \equiv R$$
 e $Q \equiv S$, allora $P \vee Q \equiv R \vee S$.

Infatti se vale $P \vee Q$, allora certamente almeno una tra P e Q vale. Nel primo caso (P è vera), poiché $P \models R$ e $R \models R \vee S$ si ottiene per composizione che deve valere $R \vee S$. Nel secondo caso (Q è vera), poiché $Q \models S$ e $S \models R \vee S$ si ottiene nuovamente $R \vee S$. Quindi in ogni caso si ha che vale $R \vee S$, ovvero

$$P \vee Q \models R \vee S$$
.

Similmente si dimostra

$$R \vee S \models P \vee Q$$

da cui

$$P \vee Q \equiv R \vee S.$$

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021–2022

13 / 46

Leggi di De Morgan

Combinando quanto visto finora riguardo ai connettivi \neg , \land e \lor , possiamo già fare alcune osservazioni interessanti. Ad esempio, possiamo argomentare che valgono le

Leggi di De Morgan

$$\neg (P \land Q) \equiv \neg P \lor \neg Q \qquad \text{e} \qquad \neg (P \lor Q) \equiv \neg P \land \neg Q.$$

Infatti, se sappiamo che $P \wedge Q$ è falsa, allora almeno una tra P e Q deve essere falsa: questo mostra che $\neg(P \wedge Q) \models \neg P \vee \neg Q$. Viceversa, se sappiamo che almeno una tra P e Q è certamente falsa, allora $P \wedge Q$ è anch'essa falsa: questo dimostra che $\neg P \vee \neg Q \models \neg(P \wedge Q)$, da cui $\neg(P \wedge Q) \equiv \neg P \vee \neg Q$.

Lasciamo al lettore il verificare con ragionamenti analoghi che $\neg(P\vee Q)\equiv \neg P\wedge \neg Q.$

Negando entrambi i termini dell'equivalenza $\neg(P \land Q) \equiv \neg P \lor \neg Q$ si ottiene, sfruttando quanto visto per la \neg , che

$$\neg\neg(P \land Q) \equiv \neg(\neg P \lor \neg Q),$$

da cui per la legge della doppia negazione

$$P \wedge Q \equiv \neg (\neg P \vee \neg Q).$$

Questo vuol dire che la congiunzione ∧ può essere "definita" a partire da negazione ¬ e disgiunzione ∨: ogni affermazione che contenga una congiunzione potrebbe essere riscritta in maniera equivalente utilizzando al suo posto negazioni e disgiunzioni in modo opportuno.

Similmente, partendo da $\neg(P\vee Q)\equiv \neg P\wedge \neg Q$ e ragionando come prima si verifica che

$$P \vee Q \equiv \neg (\neg P \wedge \neg Q),$$

ovvero che la disgiunzione \vee può essere "definita" a partire da negazione \neg e congiunzione \wedge .

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021-2022

15 / 46

Distributività

Valgono poi la **proprietà distributiva** di ∨ su ∧

$$P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R).$$

e la **proprietà distributiva** di ∧ su ∨

$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R).$$

Per la simmetria di ∨ e ∧ si avrà anche

$$(P \wedge Q) \vee R \equiv (P \vee R) \wedge (Q \vee R) \quad \text{e} \quad (P \vee Q) \wedge R \equiv (P \wedge R) \vee (Q \wedge R).$$

La dimostrazione di queste proprietà non è del tutto immediata: per questa ragione verrà posticipata alla Sezione 1.3 dove, utilizzando le tavole di verità, potremo controllarne in modo assai più semplice la validità.

Tautologie

Possiamo poi osservare che l'affermazione

$$P \vee \neg P$$

è sempre vera, qualunque sia P. Infatti, dato un qualunque contesto si ha che in esso o P è vera oppure P è falsa: nel primo caso si ottiene che $P \vee \neg P$ è vera poiché $P \models P \vee \neg P$, nel secondo caso si ottiene nuovamente che $P \vee \neg P$ è vera poiché $\neg P \models P \vee \neg P$.

Affermazioni come $P \vee \neg P$, ovvero affermazioni che sono sempre vere, indipendentemente dal contesto, verranno chiamate **tautologie**. In simboli, scriviamo

$$\models Q$$

per dire che Q è una tautologia.

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021–2022

17 / 46

Contraddizioni

Siccome $P \vee \neg P$ è sempre vera, la sua negazione $\neg (P \vee \neg P)$ è sempre falsa. Poiché per le leggi di De Morgan

$$\neg(P \vee \neg P) \equiv \neg P \wedge \neg \neg P$$

e per la legge della doppia negazione

$$\neg P \wedge \neg \neg P \equiv \neg P \wedge P$$

applicando la simmetria di \wedge all'ultima espressione otteniamo che

$$P \wedge \neg P$$

è sempre falsa, qualunque sia P.

Affermazioni di questo tipo, ovvero affermazioni che sono sempre false, indipendentemente dal contesto, verranno chiamate **contraddizioni**.

Si può anche osservare che

$$Q \models P \vee \neg P$$
,

qualunque siano P e Q. Infatti asserire $Q \models P \lor \neg P$ significa dire che: "in ogni conteso in cui vale Q, vale anche $P \lor \neg P$ ". Ma poiché, $P \lor \neg P$ è sempre vera, sarà in particolare vera anche nei contesti in cui vale Q. Quindi abbiamo verificato che effettivamente $Q \models P \lor \neg P$. Ovviamente $P \lor \neg P$ potrebbe essere sostituita da qualunque altra tautologia.

Viceversa,

$$P \wedge \neg P \models Q$$
,

indipendentemente da P e Q. Infatti, poiché non accade mai che $P \land \neg P$ sia vera, allora è vero che "in ogni contesto in cui vale $P \land \neg P$, vale anche Q" (semplicemente non c'è nessun contesto in cui si deve necessariamente verificare Q). Ovviamente $P \land \neg P$ potrebbe essere sostituita da qualunque contraddizione. Questo è il cosiddetto principio dell'**ex falso quodlibet**.

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021–2022

19 / 46

Implicazione

 \rightarrow è l'**implicazione** e corrisponde all'espressione "se . . . allora . . . " .

Precisare il significato dell'implicazione è piuttosto delicato ed è il primo scoglio in cui ci si imbatte quando si formalizza il ragionamento matematico. Infatti, se sappiamo che è vero che "Se vale P allora vale Q", allora saremo tutti concordi nel ritenere che in ogni contesto in cui P sia vera, si debba avere che anche Q è vera. Ma cosa dire dei contesti in cui P risulta falsa? Se ad esempio nel nostro contesto sia P che Q sono false, siamo ancora disposti a ritenere la frase "Se vale P allora vale Q" vera?

Per chiarire la situazione, cominciamo con un esempio. Consideriamo la seguente affermazione riguardante un generico numero reale x.

Se
$$\underbrace{x>0}_{\mathrm{P}}$$
 allora $\underbrace{x=y^2 \text{ per qualche } y\geq 0}_{\mathrm{Q}}.$

Tale frase è chiaramente vera in ogni contesto in cui abbia senso valutarla: infatti, per ogni numero reale x se vale P, ovvero x>0, allora basta porre $y=\sqrt{x}$ per avere che anche Q vale. Notiamo che anche nei contesti in cui $x\leq 0$, ovvero quando P è falsa, non possiamo ritenere l'affermazione precedente errata: semplicemente diremmo che in quel caso non c'è nulla da verificare perché l'affermazione impone vincoli solo per gli x>0 (in particolare, è ininfluente se Q sia vera o meno in tale contesto). In altre parole:

L'affermazione "Se P allora Q" precedente risulterebbe falsa in un dato contesto, ovvero per un dato valore di x, solo se si verificasse che x>0 ("P vera") ma x non fosse il quadrato di un numero positivo ("Q falsa").

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021-2022

21 / 46

Proviamo ora a considerare quest'altra affermazione riguardante un generico numero reale x.

Se
$$x > 0$$
 allora $x^2 > 1$.

Anche questa frase è della forma "Se P allora Q", ma questa volta non saremo disposti a ritenerla vera in generale: più precisamente, noteremo che ci sono alcuni contesti in cui essa vale (ad esempio quando x>1) e contesti in cui essa non vale. Questi ultimi sono esattamente quelli dati dai valori di x per cui accade che x>0 ("P vera") ma $x^2\leq 1$ ("Q falsa"), ovvero i contesti in cui $0< x\leq 1$.

Vediamo un ultimo esempio. La frase della forma $\mathrm{P} \to \mathrm{Q}$

Se
$$\underbrace{\textit{piove}}_{P}$$
 allora $\underbrace{\textit{in cielo ci sono le nuvole}}_{Q}$.

è chiaramente vera in ogni possibile contesto: in ogni possibile situazione, se sta effettivamente piovendo allora certamente ci devono anche essere delle nuvole in cielo da cui la pioggia cade. In altre parole, in qualunque contesto l'implicazione $P \to Q$ considerata è vera perché o non sta piovendo, oppure se sta piovendo allora necessariamente ci sono delle nuvole in cielo. Viceversa, l'affermazione

Se
$$\underbrace{\text{in cielo ci sono le nuvole}}_{\mathbb{Q}}$$
 allora $\underbrace{\text{piove.}}_{\mathbb{P}}$

è falsa in determinati contesti, ovvero quando accade che ci sia una giornata nuvolosa ("Q vera") ma senza pioggia ("P falsa"). Quindi l'implicazione $Q \to P$ non può essere ritenuta vera in generale.

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021-2022

23 / 46

Riassumendo quanto discusso finora, abbiamo quindi che

- L'affermazione $P \to Q$ è falsa in un dato contesto se e solo se in tale contesto accade che P è vera ma Q è falsa, ovvero se in esso vale $P \land \neg Q$.
- Di conseguenza, $P \to Q$ è vera in un dato contesto se e solo se in tale contesto *non* vale $P \land \neg Q$; equivalentemente, se in esso vale $\neg P \lor Q$.

Infatti i nostri ragionamenti evidenziano che

$$\neg(P \to Q) \equiv P \land \neg Q \qquad \text{e} \qquad P \to Q \equiv \neg(P \land \neg Q).$$

Dalla seconda equivalenza, per le leggi di De Morgan e della doppia negazione

$$P \to Q \equiv \neg P \lor Q.$$

In particolare, questo vuol dire che l'implicazione può essere "definita" a partire da negazione e congiunzione, oppure a partire da negazione e disgiunzione.

In accordo con la nostra intuizione, il significato dato all'implicazione cattura quello di conseguenza logica:

$$P \models Q$$
 se e solo se $\models P \rightarrow Q$.

Infatti, supponiamo che $P \models Q$. Allora in ogni contesto in cui vale P deve valere anche Q: in particolare, in nessun contesto può valere $P \land \neg Q$, per cui $\models \neg (P \land \neg Q)$. Poiché $\neg (P \land \neg Q) \equiv P \rightarrow Q$, abbiamo $\models P \rightarrow Q$.

Viceversa, supponiamo che $\models P \to Q$, ovvero che l'implicazione $P \to Q$ sia vera in qualunque contesto. Supponiamo di trovarci in un contesto in cui vale P, cosicché vale anche $\neg \neg P$ per la legge della doppia negazione. Siccome $P \to Q \equiv \neg P \lor Q$, in tale contesto deve valere anche $\neg P \lor Q$. Per la legge della disgiunzione applicata a $\neg P \lor Q$ e $\neg \neg P$, si ha allora che Q vale in tale contesto. Quindi abbiamo verificato che $P \models Q$.

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021-2022

25 / 46

Più in generale, ricordiamo che $P_1, \ldots, P_n \models Q$ se in ogni contesto in cui tutte le P_1, \ldots, P_n sono vere si ha che anche Q è vera. Poiché in ogni contesto si ha che P_1, \ldots, P_n sono tutte vere se e solo se è vera $P_1 \wedge \ldots \wedge P_n$, allora

$$P_1, \dots, P_n \models Q$$

se e solo se

$$P_1 \wedge \ldots \wedge P_n \models Q$$

se e solo se

$$\models P_1 \land \ldots \land P_n \to Q.$$

In matematica, si usano anche altre espressioni che sono equivalenti all'implicazione.

- Le espressioni "affinché valga P deve valere Q" oppure "affinché valga P è necessario che valga Q" significano che non può accadere che P valga ma Q no. Il loro significato è quindi equivalente a quello di "se P allora Q" e perciò si scrivono, in simboli, $P \to Q$.
- L'espressione "affinché valga P è sufficiente che valga Q" significa che non appena si sa che Q vale, allora anche P deve valere. Il suo significato è quindi equivalente a quello di "se Q allora P" e perciò si scrive, in simboli, $Q \to P$.

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021–2022

27 / 46

Osservazione

L'implicazione cattura il concetto intuitivo di **conseguenza**. Diciamo che Q è una conseguenza di P se ogni volta che si verifica P allora anche Q si deve verificare, ovvero $P \to Q.$

L'implicazione non ha invece nulla a che fare con il concetto di **causalità**. Infatti, si ritiene usualmente che P sia una causa di Q se è una *condicio sine qua non*, ovvero se non può accadere Q senza che si verifichi P. Questo vuol dire che se c'è un nesso di causalità tra P e Q, allora l'unica cosa che possiamo affermare è che $Q \to P$; non possiamo invece affermare che $P \to Q$, perché non possiamo asserire con certezza che P sia sufficiente, da sola, a causare Q (potrebbero essere necessarie altre concause affinché si verifichi veramente Q).

C'è poi un'ultimo aspetto di cui tener conto. A differenza di quanto accade per i concetti intuitivi di "conseguenza" e "causa", è possibile valutare se è vero che $P \to Q$ anche quando P e Q sono affermazioni che non hanno nulla a che fare una con l'altra.

Ad esempio se P è l'affermazione

Il ghiaccio ha una temperatura di 100 gradi centigradi.

e Q è l'affermazione

L'Empoli vincerà il campionato di calcio nel 2028.

allora si può comunque ritenere l'implicazione $P \to Q$ vera (poiché non può certamente verificarsi che P valga ma Q no, essendo che P è sempre falsa), anche se evidentemente non c'è nessuna relazione di "conseguenza" o "causalità" tra P e Q nel senso intuitivo di tali termini.

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021-2022

29 / 46

Il connettivo \to non è affatto commutativo: $P \to Q$ e $Q \to P$ hanno significati completamente diversi!

Infatti, se ad esempio Q è vera e P è falsa, allora l'implicazione $P\to Q$ risulterà vera, mentre l'implicazione $Q\to P$ risulterà falsa. Dunque queste due implicazioni *non* sono equivalenti.

Si verifica anche che \to non è associativo, ovvero che $P \to (Q \to R)$ e $(P \to Q) \to R$ non sono espressioni equivalenti.

Infatti, se ad esempio sia P che R sono false, allora è facile verificare che $P \to (Q \to R)$ è vera, mentre $(P \to Q) \to R$ è falsa (indipendentemente dal fatto che Q sia vera o meno).

L'implicazione $P\to Q$ è invece equivalente al suo contrappositivo $\neg Q\to \neg P,$ in simboli

$$P \to Q \equiv \neg Q \to \neg P$$
.

Infatti per la legge della doppia negazione e la simmetria di V si ha

$$\begin{split} P \rightarrow Q &\equiv \neg P \lor Q \\ &\equiv \neg P \lor \neg \neg Q \\ &\equiv \neg \neg Q \lor \neg P \\ &\equiv \neg Q \rightarrow \neg P. \end{split}$$

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021–2022

31 / 46

Infine

Se
$$P \equiv R$$
 e $Q \equiv S$, allora $P \to Q \equiv R \to S$.

Infatti, utilizzando quanto visto per negazione e disgiunzione si ha

$$\begin{split} P \to Q &\equiv \neg P \lor Q \\ &\equiv \neg R \lor S \\ &\equiv R \to S. \end{split}$$

Modus Ponens

Dall'equivalenza $P \to Q \equiv \neg P \lor Q$ si può anche ricavare una delle più famose tra le leggi logiche, ovvero il

Modus Ponens

$$P \rightarrow Q, P \models Q.$$

Infatti, se siamo in un contesto in cui vale $P \to Q$, allora vale anche $\neg P \lor Q$. Se inoltre vale anche P, per la legge della doppia negazione vale anche $\neg \neg P$. Applicando la legge della disgiunzione, concludiamo che deve valere Q.

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021–2022

33 / 46

Bi-implicazione

 \leftrightarrow è la **bi-implicazione** e corrisponde all'espressione "...se e solo se ...".

Quando asseriamo che "P se e solo se Q" intendiamo dire che "se P allora Q, e se Q allora P". In altre parole, $P \leftrightarrow Q$ è equivalente ad affermare

$$(P \to Q) \land (Q \to P).$$

In particolare, $P\leftrightarrow Q$ è vera se e solo se in ogni contesto si verifica che o P e Q sono entrambe vere, oppure sono entrambe false.

Spesso in matematica "P se e solo se Q" lo si scrive come: "condizione necessaria e sufficiente affinché valga P, è che valga Q".

Utilizzando la commutatività della congiunzione e il fatto che $P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$, si ottiene facilmente che la bi-implicazione è commutativa, ovvero

$$P \leftrightarrow Q \equiv Q \leftrightarrow P$$
.

Si può anche dimostrare che la bi-implicazione è associativa, ovvero

$$P \leftrightarrow (Q \leftrightarrow R) \equiv (P \leftrightarrow Q) \leftrightarrow R.$$

Tuttavia la verifica di questo fatto è tutt'altro che banale e verrà posticipata alla Sezione 1.3, quando sapremo utilizzare le tavole di verità.

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021-2022

35 / 46

Utilizzando l'equivalenza $P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$ e le leggi viste per la congiunzione si ha che

$$P \leftrightarrow Q \models P \rightarrow Q$$

$$P \leftrightarrow Q \models P \rightarrow Q \qquad \text{e} \qquad P \leftrightarrow Q \models Q \rightarrow P.$$

е

$$P \to Q, Q \to P \models P \leftrightarrow Q.$$

Infine, utilizzando le analoghe leggi riguardanti implicazione e congiunzione, si verifica facilmente che

Se
$$P \equiv R$$
 e $Q \equiv S$, allora $P \leftrightarrow Q \equiv R \leftrightarrow S$.

Osserviamo infine che il bicondizionale cattura il concetto di equivalenza logica, ovvero che

$$P \equiv Q$$
 se e solo se $\models P \leftrightarrow Q$.

Infatti

$$P \equiv Q$$

se e solo se

$$P \models Q \quad \textit{e} \quad Q \models P$$

se e solo se

$$\models P \rightarrow Q \quad e \quad \models Q \rightarrow P$$

se e solo se

$$\models (P \rightarrow Q) \land (Q \rightarrow P)$$

se e solo se

$$\models P \leftrightarrow Q$$
.

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021-2022

37 / 46

Quantificatori

∃ è il quantificatore esistenziale.

L'espressione $\exists x \, P$ si legge: "c'è un x tale che P", ovvero "l'affermazione P vale per qualche x". Essa asserisce che c'è almeno un ente (non necessariamente unico!) che gode della proprietà descritta da P.

∀ è il quantificatore universale.

L'espressione $\forall x \, \mathbf{P}$ si legge: "per ogni x vale \mathbf{P} ", ovvero "l'affermazione \mathbf{P} vale per tutti gli x". Essa asserisce che *ogni* ente gode della proprietà descritta da \mathbf{P} .

Quando scriviamo un'affermazione del tipo $\exists x \, P \, o \, \forall x \, P$ spesso siamo in una situazione in cui P afferma qualche proprietà che l'elemento x può avere o meno.

Esempio

Se P è l'equazione $x^2 + x = 0$, l'espressione $\exists x P$ dice che l'equazione data ammette una soluzione. Invece $\forall x P$ dice che ogni numero è soluzione di P.

Se invece P non dice nulla della variabile x, il significato di $\exists x P$ e di $\forall x P$ coincide con quello di P.

Esempio

Le espressioni $\exists x\exists y \ (y^2+y=0)$ e $\forall x\exists y \ (y^2+y=0)$ sono entrambe equivalenti a $\exists y \ (y^2+y=0)$: tutte e tre asseriscono che l'equazione $y^2+y=0$ ammette una soluzione.

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021-2022

39 / 46

La negazione di espressioni che iniziano con un quantificatore è un altro dei punti che può trarre in inganno se non si presta abbastanza attenzione al significato di ciò che si sta dicendo.

La frase

Non tutti i politici sono onesti.

(che è della forma $\neg \forall x P(x)$, dove P(x) significa "x è onesto"), non vuol dire che

Tutti i politici sono disonesti.

(ovvero $\forall x \neg P(x)$), bensì è equivalente a

Esiste (almeno) un politico disonesto.

(ovvero all'espressione $\exists x \neg P(x)$).

Similmente:

L'affermazione

Non esiste un vaccino pericoloso.

(che è della forma $\neg \exists x P(x)$, dove P(x) sta per "x è pericoloso"), non vuole dire che

Qualche vaccino è sicuro.

(ovvero $\exists x \neg P(x)$), bensì è equivalente a

Tutti i vaccini sono sicuri.

(ovvero all'espressione $\forall x \neg P(x)$).

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021–2022

41 / 46

Più in generale, negare $\forall x \, P$ significa dire che non tutti gli x godono della proprietà descritta da P, cioè c'è almeno un x per cui si può asserire $\neg P$. Viceversa, se neghiamo $\exists x \, P$ allora vuol dire che non si dà il caso che ci sia un x per cui vale P, cioè che per ogni x deve valere $\neg P$. Quindi

$$\neg \forall x P \equiv \exists x \neg P$$
 e $\neg \exists x P \equiv \forall x \neg P$.

Negando entrambi i termini di ciascuna delle equivalenze precedenti e applicando la legge della doppia negazione si ottiene

$$\forall x P \equiv \neg \exists x \neg P$$
 e $\exists x P \equiv \neg \forall x \neg P$.

Questo vuol dire che ciascuno dei due quantificatori \forall e \exists può essere "definito" a partire dall'altro quantificatore e dalla negazione.

Quando scriviamo $\forall x \forall y P$ intendiamo dire che in qualsiasi modo si scelgano gli elementi x e y vale P, e questo è la stessa cosa che dire $\forall y \forall x P$.

Analogamente $\exists x \exists y P$ ha lo stesso significato di $\exists y \exists x P$. Quindi

$$\exists x \exists y P \equiv \exists y \exists x P$$
 e

$$\forall x \forall y P \equiv \forall y \forall x P.$$

Bisogna invece stare molto attenti quando si vuole scambiare due quantificatori di diverso tipo. . .

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021–2022

43 / 46

Supponiamo che valga $\exists x \forall y P$: questo vuol dire che c'è un \bar{x} tale che per ogni y vale P. Quindi è vero che dato un y arbitrario possiamo sempre trovare un x tale che P: basta prendere l'elemento \bar{x} di prima. In altre parole

$$\exists x \forall y \, \mathbf{P} \models \forall y \exists x \, \mathbf{P}.$$

Questa regola non può però essere invertita! Da $\forall y \exists x P$ non possiamo affatto concludere $\exists x \forall y P$: si considerino ad esempio le affermazioni $\forall y \exists x (y < x)$ e $\exists x \forall y (y < x)$ (nei numeri naturali, la prima è vera ma la seconda è falsa).

Questo vuol dire, in particolare, che le espressioni $\exists x \forall y P \in \forall y \exists x P \text{ non}$ sono equivalenti: dalla prima segue la seconda, ma non viceversa.

Il quantificatore esistenziale si può distribuire e raccogliere rispetto alla disgiunzione nel seguente senso: dire che "c'è un x per cui P oppure c'è un x per cui P o Q" è equivalente a dire "c'è un x per cui P o Q", in simboli

$$(\exists x P) \lor (\exists x Q) \equiv \exists x (P \lor Q).$$

Rispetto alla congiunzione, invece, solo una delle due possibili regole è valida: il quantificatore si può distribuire ma non raccogliere. Infatti, se "c'è un x tale che P e Q" allora "c'è un x tale che P, e c'è un x tale che Q", in simboli

$$\exists x (P \land Q) \models (\exists x P) \land (\exists x Q).$$

Il viceversa però non vale: ad esempio, dal fatto che ci sia un numero naturale pari e ci sia un numero naturale dispari non possiamo concludere che esista un numero naturale che è sia pari che dispari.

Andretta, Motto Ros, Viale (Torino)

Simboli logici

AA 2021-2022

45 / 46

Specularmente, il quantificatore universale si distribuisce e raccoglie rispetto alla congiunzione

$$(\forall x \mathbf{P}) \wedge (\forall x \mathbf{Q}) \equiv \forall x (\mathbf{P} \wedge \mathbf{Q}),$$

ma rispetto alla disgiunzione si può raccogliere

$$(\forall x P) \lor (\forall x Q) \models \forall x (P \lor Q),$$

ma non distribuire. Ad esempio, è vero che ogni numero naturale è o pari o dispari, ma da questo non si può concludere che tutti i numeri naturali sono pari o tutti i numeri naturali sono dispari.

Questo parallelismo tra il quantificatore esistenziale e la disgiunzione, da un lato, e il quantificatore universale e la congiunzione, dall'altro, non è così sorprendente, visto che i quantificatori possono essere visti come disgiunzioni e congiunzioni generalizzate: infatti, dire che vale $\exists x P(x)$ in \mathbb{N} equivale ad asserire $P(0) \vee P(1) \vee P(2) \vee \ldots$, mentre dire che vale $\forall x P(x)$ in \mathbb{N} equivale ad asserire $P(0) \wedge P(1) \wedge P(2) \wedge \ldots$