# MATH 307

# Chapter 1

#### SECTION 1.3: INVERSES OF MATRICES

## Contents

| What is an Inverse?                       | 2      |
|-------------------------------------------|--------|
| For Real Numbers                          | <br>   |
| For Matrices                              | <br>   |
| Properties of Inverses                    |        |
| How do we find the inverse?               | 4      |
| Little Warm-up                            | <br>4  |
| Systematic method with Augmented Matrices | <br>   |
| Inverses to Solve Systems                 |        |
| Elementary Matrices                       | ę      |
| Three types                               | <br>(  |
| Some mysteries Unraveled!                 | <br>10 |
| Inverses of elementary matrices           | <br>12 |

Created by: Pierre-Olivier Parisé Summer 2022

#### WHAT IS AN INVERSE?

#### For Real Numbers

**EXAMPLE 1.** Find the value of x if

1. 
$$2x - 1 = 0$$
.

2. 
$$x^2 - x = 0$$
.

1) 
$$\frac{2x}{2} = \frac{1}{2}$$
 2)  $\frac{x^2 - x}{x} = 0$   $x \neq 0$   
 $x = \frac{1}{2}$   $x = 0$   $x = 1$ 

#### Secretly:

2-1

- In the first equation, we multiplied by the inverse of 2, which is 1/2, because (1/2)2 = 1.
- In the second equation, we examined the values of x and made sure we avoid the value 0 because 0 is not "divisible". In other words, it doesn't have an inverse.

#### For Matrices

We say that a square matrix A is invertible if there is another matrix B such that

$$AB = BA = I$$
.

#### Remarks:

- Not all non-zero square matrices are invertible.
- Matrices that are invertible are called **nonsingular** and matrices that are not invertible are called **singular**.
- If the inverse exists, then there is only one inverse and we denote it by  $A^{-1}$ .

**EXAMPLE 2.** Verify that the matrix B is the inverse of A if

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}_{\mathbf{2} \times \mathbf{z}} B = \begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix}_{\mathbf{2} \times \mathbf{z}}.$$

$$\frac{AB}{\begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = J_{2} \qquad \begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = J_{2}$$
So B is the inverse of A?

$$SB^{-1} = A? \text{ find } C \text{ o.l.} \quad CB = BC = I \quad -b \quad C = A -b B^{-1} = A$$

$$AB = BA = JV$$

## Properties of Inverses

**EXAMPLE 3.** Find the inverse of the product

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 3 \\ 2 & 1 & 1 \\ 4 & 5 & 1 \end{bmatrix}.$$

General Facts: Let A and B be matrices of the same size and let m be a positive integer.

- If A and B are invertible, then AB is invertible with  $(AB)^{-1} = B^{-1}A^{-1}$ . (AB)  $^{-1} \neq A^{-1}B^{-1}$ .
- If A is invertible, then  $A^{-1}$  is also invertible and  $(A^{-1})^{-1} = A$ .  $A \cdot n^{-1} = \mathbf{J}$
- If A is invertible, then  $A^m$  is also invertible and  $(A^m)^{-1} = (A^{-1})^m$ .  $(2^{-2})^4 = (2^4)^{-2}$
- Suppose that A and B are  $n \times n$  matrices such that AB = I or BA = I. Then A has an inverse and  $A^{-1} = B$ .

## How do we find the inverse?

For numbers, finding the inverses is quite straightforward, or should we say "we are used to divide with numbers".

## Little Warm-up

For matrices, it is not that obvious.

**EXAMPLE 4.** Find the inverse of the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}.$$

## Systematic method with Augmented Matrices

Given a square matrix  $A = [a_{ij}]$ , we "augment" A with the identity matrix:

$$\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & 1 & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & 0 & 0 & \cdots & 1 \end{bmatrix}.$$

Now, the goal, if possible, is to perform row operations to change the left-side (the matrix A) into the identity matrix, that is:

$$\begin{bmatrix} I & B \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 & b_{11} & b_{12} & \cdots & b_{1n} \\ 0 & 1 & \cdots & 0 & b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix}.$$

#### Remark:

- When it's possible to transform the augmented matrix  $[A \ I]$  into the augmented matrix  $[I \ B]$ , then B is the inverse of A.
- When it's not possible to transform  $[A \ I]$  into  $[I \ B]$ , then A is singular.

**EXAMPLE 5.** If possible, find the inverse of the following matrix:

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 2 & 1 & 1 \\ 4 & 5 & 1 \end{bmatrix}.$$

**EXAMPLE 6.** If possible, find the inverse of the following matrix:

$$A = \begin{bmatrix} 1 & -2 & 2 \\ 2 & -3 & 1 \\ 1 & -1 & -1 \end{bmatrix}.$$

## Inverses to Solve Systems

If you have a given system of linear equations

$$AX = B$$

where A is a nonsingular matrix, then you can find X (the vector of solutions) by multiplying on the left the whole equation by the inverse  $A^{-1}$ :

$$A^{-1}AX = A^{-1}B \quad \Rightarrow \quad X = A^{-1}B.$$

**EXAMPLE 7.** Solve the system

$$2x + y + 3z = 6$$
$$2x + y + z = -12$$
$$4x + 5y + z = 3.$$

## ELEMENTARY MATRICES

When we are performing row operations, we are in fact performing matrix multiplication with special matrices that we call elementary matrices.

#### Three types

- An elementary matrix obtained by interchanging two rows of *I*.
- An elementary matrix obtained by multiplying a row I by a nonzero number.
- An elementary matrix obtained by replacing a row of *I* by itself plus a multiple of another row of *I*.

**EXAMPLE 8.** Here are some examples of dimensions  $3 \times 3$ :

$$E_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad E_2 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad E_3 = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

## Some mysteries Unraveled!

When we were performing row operations on a matrix A, we were in fact performing a multiplication of an elementary matrix with A. Here are some facts related to this:

- If E is obtained by interchanging rows i and j of I, then EA is the matrix obtained from A by interchanging rows i and j of A.
- If E is obtained by multiplying row i of I by a scalar c, then EA is the matrix obtained from A by multiplying row i of A by c.
- If E is obtained by replacing row i of I by itself plus c times the row j of I, then EA is the matrix obtained from A by replacing row i of A by itself plus c times row j of A.

**EXAMPLE 9.** Give the elementary matrices used in Example 5. At each step, using the elementary matrices, give the expression of the matrix resulting from the row operations.

#### Inverses of elementary matrices

**EXAMPLE 10.** Consider the following elementary matrices

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 3 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

For each of them, find the inverse.

Remarks: In general, if E is an elementary matrix, then E is invertible and:

- If E is obtained by interchanging two rows of I, then  $E^{-1} = E$ ;
- If E is obtained by multiplying row i of I by a nonzero scalar c, then  $E^{-1}$  is the matrix obtained by multiplying row i of I by 1/c;
- If E is obtained by replacing row i of I by itself plus c times row j of I, then  $E^{-1}$  is the matrix obtained by replacing row i of I by itself plus -c times row j of I.

#### Consequences:

• A square matrix A is invertible if and only if A is a product of elementary matrices.