Section 1.A - \mathbb{R}^n and \mathbb{C}^n

Thus $-\alpha$ is the unique complex number such that $\alpha+(-\alpha)=0$. Subtraction on C is de. $a_0,a_1,\ldots,a_m\in \mathbf{F}$ with $a_m\neq 0$ such that fined by $\beta - \alpha = \beta + (-\alpha)$. For $\alpha \neq 0$, let $1/\alpha$ denote the multiplicative inverse of α . Thus $1/\alpha$ is the unique complex number such that $\alpha(1/\alpha) = 1$. Division on C is defined by

List, length: Suppose n is a nonnegative integer. A list of length n is an ordered collection of n el. for all $z \in \mathbf{F}$. If p has degree m, we write $\deg p = m$ ements (which might be numbers, other lists, or more abstract entities) separated by commas and surrounded by parentheses. A list of length n looks like this: (x_1, \dots, x_n) Two lists are equal if and only if they have the same length and the same elements in the same order.

 ${f F}^n$ is the set of all lists of length n of elements of ${f F}$ $\left\{ \left(x_1,\ldots,x_n\right): x_j \in \mathbf{F} \text{ for } j=1,\ldots,n \right\} \text{ For } \left(x_1,\ldots,x_n\right) \ \in \ \mathbf{F}^n$

$$\left\{(x_1,\ldots,x_n):x_j\in\mathbf{F} \text{ for }j=1,\ldots,n\right\} \text{ For }(x_1,\ldots,x_n)\in \mathbf{F}^n$$
 and $j\in\{1,\ldots,n\}$, we say that x_j is the j^{th} coordinate of (x_1,\ldots,x_n)

addition in
$$\mathbb{F}^n$$
: Addition in \mathbb{F}^n is defined by adding corresponding coordinates: $(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$ Commutativity of addition in \mathbb{F}^n : If $x,y\in\mathbb{F}^n$, then $x+y=y+x$

o: Let o denote the list of length n whose coordinates are all $0:0=(0,\ldots,0)$ *additive inverse in* \mathbb{F}^n : For $x \in \mathbb{F}^n$, the additive inverse of x, denoted -x, is the vector $-x \in \mathbf{F}^n$ such that x + (-x) = 0 In other words, if $x = (x_1, \dots, x_n)$, then

 $-x=(-x_1,\ldots,-x_n)$ scalar multiplication in \mathbb{F}^n : The product of a number λ and a vector in \mathbf{F}^n is computed by multiplication in \mathbb{F}^n . plying each coordinate of the vector by $\lambda:\lambda\left(x_1,\ldots,x_n\right)=\left(\lambda x_1,\ldots,\lambda x_n\right)$ here $\mathrm{span}\left(v_1,\ldots,v_{j-1}\right)$ (b) if the j^{th} term is removed from v_1,\ldots,v_m , the span of $\lambda \in \mathbf{F}$ and $(x_1, \dots, x_n) \in \mathbf{F}^n$

Section 1.B - Definition of Vector Space

addition, scalar multiplication: • An addition on a set V is a function that assigns an element spanning list of vectors. $u+v\in V$ to each pair of elements $u,v\in V$. A scalar multiplication on a set \check{V} is a function Finite-dimensional subspaces: Every subspace of a finite-dimensional vector space is finite dimensional. that assigns an element $\lambda v \in V$ to each $\lambda \in \mathbf{F}$ and each $v \in V$

Vector Space: A vector space is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold: commutativity

$$u + v = v + u$$
 for all $u, v \in V$

associativity (u + v) + w = u + (v + w) and (ab)v = a(bv) for all vector space. $u,v,w\in V$ and all $a,b\in \mathbf{F}$ additive identity there exists an element $0\in V$ such that Linearly independent list extends to a basis: Every linearly independent list of vectors in a finitev+0=v for all $v\in V$ additive inverse for every $v\in V$, there exists $w\in V$ such that dimensional vector space can be extended to a basis of the vector space. v+w=0 multiplicative identity 1v=v for all $v\in V$ distributive properties

$$a(u+v) = au + av$$
 and $(a+b)v = av + bv$ for all $a, b \in \mathbf{F}$ and

all $u, v \in V$

vector, point: Elements of a vector space are called vectors or points.

real vector space, complex vector space: • A vector space over R is called a real vector space. • A vector space over C is called a complex vector space.

sum $f+g\in \mathbf{F}^S$ is the function defined by (f+g)(x)=f(x)+g(x) for all list of vectors in V with length $\dim V$ is a basis of V $x \in S \bullet$ For $\lambda \in \mathbf{F}$ and $f \in \mathbf{F}^S$, the product $\lambda f \in \mathbf{F}^S$ is the function defined by $(\lambda f)(x) = \lambda f(x)$ for all $x \in S$

Unique Additive Identity: A vector space has a unique additive identity

Unique additive inverse: Every element in a vector space has a unique additive inverse.

The number o times a vector: 0v = 0 for every $v \in V$

A number times the vector o: a0 = 0 for every $a \in \mathbf{F}$

The number -1 times a vector: (-1)v = -v for every $v \in V$

Section I,C - Subspaces

 ${\it Subspace}. \ {\rm A\, subset}\, U \ {\rm of}\ V \ {\rm is\, called}\ {\rm a\, subspace}\ {\rm of}\ V \ {\rm if}\ U \ {\rm is\, also}\ {\rm a\, vector\, space}\ ({\rm using\, the\, same\, addition}\ {\rm homogeneity}$

Conditions for a subspace: A subset U of V is a subspace of V if and only if U satisfies the following three conditions: additive identity $0 \in U$ closed under addition $u, w \in U$ implies $u+w\in U$ closed under scalar multiplication $a\in F$ and $u\in U$ implies $au\in U$ Linear maps and basis of domain: Suppose U_1,\ldots,U_m are subsets of V. The sum of U_1,\ldots,U_m , devertible $v\in U$. Then there exists a unique linear map $T:V\to W$ such posses U_1,\ldots,U_m are subsets of V. Then there exists a unique linear map V. noted $U_1+\cdots+U_m$, is the set of all possible sums of elements of U_1,\ldots,U_m More precisely, $U_1 + \cdots + U_m = \{u_1 + \cdots + u_m : u_1 \in U_1, \dots, u_m \in U_m\}$ Sum of subspaces is the smalles containing subspace: Suppose $U_1\,,\,\ldots\,,\,U_m$ are subspaces of V. Then $U_1+\cdots+U_m$ is the smallest subspace of V containing U_1,\ldots,U_m direct sum: Suppose U_1, \ldots, U_m are subspaces of V. The sum $U_1 + \cdots + U_m$ is called a direct sum if each element of $U_1+\cdots+U_m$ can be written in only one way as a sum $u_1+\cdots+u_m$, where each u_j is in U_j · If $U_1+\cdots+U_m$ is a direct sum, then $U_1\oplus\cdots\oplus U_m$ denotes $U_1+\cdots+U_m$, with the \oplus notation serving as an indication

if and only if $U \cap W = \{0\}$

sum if and only if $U \cap W = \{0\}$

Section 2, A Span and Linear Independence

Span: The set of all linear combinations of a list of vectors v_1,\ldots,v_m in V is called the span of v_1, \ldots, v_m , denoted span (v_1, \ldots, v_m) . In other words,

$$\mathrm{span}(v_1, \ldots, v_m) = \{a_1 v_1 + \cdots + a_m v_m : a_1, \ldots, a_m \in \mathbf{F}\}\$$

The span of the empty list () is defined to be $\{0\}$.

Span is the smallest containing subspace: The span of a list of vectors in V is the smallest subspace of V containing all the vectors in the list

spans: If $\operatorname{span}\left(v_1,\ldots,v_m\right)$ equals V, we say that v_1,\ldots,v_m spans Vnal vector space: A vector space is called finite-dimensional if some list of vectors in it

lynomial over a field F: A function $p: \mathbf{F} \to \mathbf{F}$ is called a polynomial with coefficients in \mathbf{F} if there exist $a_0, \ldots, a_m \in \mathbf{F}$ such that

 $p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m$

for all $z \in \mathbf{F}$. $\mathcal{P}(\mathbf{F})$ is the set of all polynomials with coefficients in \mathbf{F} .

lpha, subtraction, 1/lpha, division: Let lpha, $eta \in \mathbf{C} \cdot$ Let -lpha denote the additive inverse of lpha. degree of a polynomial: \cdot A polynomial $p \in \mathcal{P}(\mathbf{F})$ is said to have degree m if there exist scalars

$$p(z) = a_0 + a_1 z + \dots + a_m z^m$$

F): For m a nonnegative integer, $\mathcal{P}_m(\mathbf{F})$ denotes the set of all polynomials with coefficients in \mathbf{F} and degree at most m.

infinite-dimensional vector space: A vector space is called infinite-dimensional if it is not finite dimensional

linearly independent: \cdot A list v_1,\ldots,v_m of vectors in V is called linearly independent if the only choice of $a_1\ldots , a_m\in \mathbf{F}$ that makes $a_1v_1+\cdots +a_mv_m$ equal \circ is $a_1 = \cdot \cdot \cdot = a_m = 0$

The empty list () is also declared to be linearly independent.

linearly dependent: A list of vectors in V is called linearly dependent if it is not linearly indepen-

· In other words, a list v_1, \ldots, v_m of vectors in V is linearly dependent if there exist $a_1,\ldots,a_m\in \mathbf{F}$, not all 0 , such that $a_1v_1+\cdots+a_mv_m=0$ Linear Dependence Lemma: Suppose v_1, \ldots, v_m is a linearly dependent list in V. Then there exists $j \in \{1, 2, \ldots, m\}$ such that the following hold: (a) $v_j \in$

the remaining list equals $\mathrm{span}\left(v_1,\ldots,v_m\right)$

Length of linearly independent list ≤ length of spanning list: In a finite-dimensional vector space, the length of every linearly independent list of vectors is less than or equal to the length of every

sional.

basis: A basis of V is a list of vectors in V that is linearly independent and spans V

Criterion for basis: A list v_1, \ldots, v_n of vectors in V is a basis of V if and only if every $v \in V$ can be written uniquely in the form $v = a_1v_1 + \cdots + a_nv_n$ where $a_1,\ldots,a_n\in \mathbf{F}$

Spanning list contains a basis: Every spanning list in a vector space can be reduced to a basis of the

Every subspace V is part of a direct sum equal to V.: Suppose V is finite-dimensional and U is

a subspace of V. Then there is a subspace W of V such that $V=U\oplus W$

dimension, dim V: The dimension of a finite-dimensional vector space is the length of any basis of the vector space. The dimension of V (if V is finite-dimensional) is denoted by $\dim V$ **Dimension of subspace:** If V is finite-dimensional and U is a subspace of V, then dim U <

Linearly independent list of the right length is a basis: Suppose V is finite-dimensional. Then every linearly independent list of vectors in V with length $\dim V$ is a basis of V \mathbb{F}^{S} : If S is a set, then \mathbf{F}^{S} denotes the set of functions from S to \mathbf{F} . For $f,g\in \mathbf{F}^{S}$, the Spanning list of the right length is a basis: Suppose V is finite-dimensional. Then every spanning

Dimension of a sum: If U_1 and U_2 are subspaces of a finite-dimensional vector space, then

$$\dim (U_1 + U_2) = \dim U_1 + \dim U_2 - \dim (U_1 \cap U_2)$$

Section 3.A The Vector Space of Linear Maps

linear map: A linear map from V to W is a function $T:V\to W$ with the following proper-

$$T(u + v) = Tu + Tv$$
 for all $u, v \in V$

$$T(\lambda v) = \lambda (Tv)$$
 for all $\lambda \in \mathbf{F}$ and all $v \in V$

Notation $\mathcal{L}(V, W)$: The set of all linear maps from V to W is denoted $\mathcal{L}(V, W)$

$$Tv_j = w_j$$

for each $j\,=\,1\,,\,\ldots\,,\,n$

ditiona nd scalar multiplication on linear maps: Suppose $S,\,T\in\mathcal{L}(V,W)$ and $\lambda \in \mathbf{F}$. The sum S + T and the product λT are the linear maps from V to W defined

$$(S+T)(v) = Sv + Tv$$
 and $(\lambda T)(v) = \lambda (Tv)$

for all $v \in V$

Condition for a direct sum: Suppose U and W are subspaces of V. Then U+W is a direct sum $\mathcal{L}(V,W)$ is a vector space: With the operations of addition and scalar multiplication as defined above, $\mathcal{L}(V, W)$ is a vector space.

Direct sum of two subspaces: Suppose U and W are subspaces of V. Then U+W is a direct $\frac{Product of Linear Maps: \text{ if } T \in \mathcal{L}(U,V) \text{ and } S \in \mathcal{L}(V,W)$, then the product $ST \in \mathcal{L}(U, W)$ is defined by

$$(ST)(u) = S(Tu)$$

Algebraic Properties of products of linear maps: associativity

$$(T_1 T_2) T_3 = T_1 (T_2 T_3)$$

whenever T_1 , T_2 , and T_3 are linear maps such that the products make sense (meaning that T_3 maps into the domain of $\overline{T_2}$, and $\overline{T_2}$ maps into the domain of $\overline{T_1}$). identity

$$TI = IT = 7$$

whenever $T \in \mathcal{L}(V,W)$ (the first I is the identity map on V, and the second I is the identity map on \boldsymbol{W}). distributive properties

$$(S_1 + S_2) T = S_1 T + S_2 T$$
 and $S (T_1 + T_2) = ST_1 + ST_2$

whenever $T, T_1, T_2 \in \mathcal{L}(U, V)$ and $S, S_1, S_2 \in \mathcal{L}(V, W)$ Linear maps take o to o: Suppose T is a linear map from V to W. Then T(0)=0