

COMP 273

Digital Logic (Part 3)

Data Representation and Logic Gates

Prof. Joseph Vybihal

Announcements

- Assignment #1 is given out
- TA Information on web site
- Tutorial:
 - Logisim
 - Thu Jan 22 at 2pm in TR 3120
 - Mon Jan 26 at 3pm in TR 3120

Vybihal (c) 2015

At Home

- Readings:
 - Wikipedia Unicode and ASCII
 - Wikipedia Logic Gates
 - http://www.kpsec.freeuk.com/gates.htm
 - http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/ index.html#example
- Try out exercises from the textbook
 - Fixed point mathematics
- Experiment
 - Download Logisim (Google / My Courses)

Today's Class

- Data Representation (data types)
- Introduction to Logic Gates
 - Basic gates
 - Flip Flops

Δ

Part 1

Standard Computer Representation of Data

Registers vs RAM

- Register
 - A special machine that stores a single value, possibly formatted
 - Formatted of IR, or
 - formatted GP Register
- RAM
 - General purpose memory with no special format but organized in 8-bit byte units each of which are addressable
 - Like an array

First Standard Type: Characters

Tabulated Binary Encoding Standard

Ctrl	Dec	Hex	Char	Code	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
^Φ	0	00		NUL	32	2.0		64	40	0	96	60	*
^д	1	01		SOH	33	21	•	65	41	A	97	61	a
^B	2	02		STX	34	22		66	42	В	98	62	b
^c	3	03		ETX	35	23	#	67	43	C	99	63	С
^D	4	04		EOT	36	24	\$	68	44	D	100	64	d
ΛE	5	05		ENQ	37	25	%	69	45	Ε	101	65	e
^F	6	06		ACK	38	26	&	70	46	F	102	66	f
^G	7	07		BEL	39	27	,	71	47	G	103	67	g
АH	8	08		BS	40	28	(72	48	Н	104	68	h
^I	9	09		HT	41	29)	73	49	Ι	105	69	i
^)	10	0A		LF	42	2A	*	74	44	J	106	6A	j j
^K	11	08		VT	43	2 B	+	75	4B	К	107	6B	k
^L	12	0C		FF	44	20	,	76	4C	L	108	6C	1
^M	13	0D		CR	45	2D	-	77	4D	М	109	6D	m
^N	14	0E		so	46	2 E	•	78	4E	N	110	6E	n
^0	15	0F		SI	47	2F	/	79	4F	0	111	6F	0
^P	16	10		DLE	48	30	0	80	50	P	112	70	p
^Q	17	11		DC1	49	31	1	81	51	Q	113	71	q
^R.	18	12		DC2	50	32	2	82	52	R	114	72	r
^S	19	13		DC3	51	33	3	83	53	S	115	73	S
^T	20	14		DC4	52	34	4	84	54	T	116	74	t
^U	21	15		NAK	53	35	5	85	55	U	117	75	u
^V	22	15		SYN	54	36	6	86	56	V	118	76	v
^W	23	17		ETB	55	37	/	87	57	W	119	77	W
^X	24	18		CAN	56	38	8	88	58	Х	120	78	×
^Y	25	19		EM	57	39	9	89	59	Υ	121	79	y
^Z	26	1A		SUB	58	3A	:	90	5A	Z	122	7A	Z
]^	27	18		ESC	59	3B	;	91	5B]	123	7B	{
^\	28	1C		FS	60	3 C	<	92	5C	7	124	7C	
^]	29	1D		GS	61	3D	=	93	5D	1	125	7D	}
^^	30	1E	•	RS	62	3E	>	94	5E	^	126	7E	
^-	31	1F	•	US	63	3F	?	95	5F	_	127	7F	۵

ASCII or UNICODE

SPACE =
$$32 = 00100000$$

A = $65 = 01000001$
a = $97 = 01100001$
8 bits

Start address

No sign bit

McGill

Vybihal (c) 2015

-

ASCII code 127 has the code DEL. Under MS-DOS, this code has the same effect as ASCII 8 (BS).
The DEL code can be generated by the CTRL + BKSP key.

Second Standard Type: Strings

Contiguous sequence of characters terminated by NULL, or Contiguous sequence of chars proceeded by a byte count.

E.G. HELLO = 72, 69, 76, 76, 79

NULL

5 bytes

Strings are composed of char.

Char is a built in property of the CPU not strings.

Strings are supported through software — Combining char & integer

McGill

Vybihal (c) 2015

Third Standard Type: Integer

Let *size* be a fixed number of bits, "the size in bits" then a number is represented in raw signed binary or 2's comp.

16, 32 or 64 bits, normally

McGill Vybihal (c) 2015

Fourth Standard Type: Fixed Point

I.E. $1000.25 = 0.100025 \times 10^4$

Note: do not need to store the leading zero and decimal place.

McGill

Vybihal (c) 2015

Basic Format

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
S				expo	nen	t							1				si	ignif	ican	d											
1 bi	t		8	3 bit	S				23 bits																						

32 bit version

In general, floating-point numbers are of the form

$$(-1)^S \times F \times 2^E$$

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 0
S					ex	pone	ent												sign	nifica	and									
1 b	it				1	1 bit	ts												2	0 bit	s									

significand (continued)

32 bits

64 bit version

McGill

The IEEE format

The IEEE format comes with 3 different levels of precision: Single, Double, and Quad

		Single	Double	Quad
Number of bits taken by:				
	Sign	1	1	1
	Exponent	8	11	15
	Fractional mantissa	23	52	111
	Total	32	64	128
Exponent:				
	Bias	127	1023	16383
	Range of (biased) exponent:	0255	02047	032767

Vybihal (c) 2015

$(-1)^{S} \times (1 + Sig) \times 2^{(Exp + Bias)}$

a) 1

 $-69.(25)_0 = 1000101 \cdot 001_2 = 1.000101001 * 2^6$

Mantissa:

Throw away the leading 1 to end up with a fractional mantissa of 000101001

True exponent: 6 (note we can drop the 1 bit as well)

Biased exponent = $6 + 127 = 133_{10} = 10000101_2$.

The number is negative, the sign bit is 1.

Write the sign bit, exponent and mantissa in the IEEE format:

1 10000101 000101001000000000000000

In RAM

It is good practice to represent the final answer in hexadecimal: C28A4000

McGill

Note that the fractional mantissa had only 9 bits, so we had to add zeros at the right end to get a 23-bit mantissa as required by the IEEE single precision format.

b)

In double precision, bias = 1023.

True exponent: 6

Biased exponent: $6 + 1023 = 1029_{10} = 10000000101_2$

The fractional mantissa is still 000101001, you just need to add enough zeros at its right end to get a 52-bit mantissa.

Sign bit: 1

The answer is:

1 10000000101 000101001000.... $0_2 = C051480000000000_{16}$

14

Basic Representation

Example

Show the IEEE 754 binary representation of the number -0.75_{ten} in single and double precision.

Answer

The number -0.75_{ten} is also

$$-3/4_{\text{ten}}$$
 or $-3/2^{2}_{\text{ten}}$

It is also represented by the binary fraction:

$$-11_{two}/2^{2}_{ten}$$
 or -0.11_{two}

In scientific notation, the value is

$$-0.11_{two} \times 2^{0}$$

and in normalized scientific notation, it is

$$-1.1_{\text{two}} \times 2^{-1}$$

The general representation for a single precision number is

$$(-1)^S \times (1 + Significand) \times 2^{(Exponent - 127)}$$

and so when we add the bias 127 to the exponent of $-1.1_{two} \times 2^{-1}$, the result is

$$(-1)^1 \times (1 + .1000\ 0000\ 0000\ 0000\ 0000\ 000_{two}) \times 2^{(126 - 127)}$$

The single precision binary representation of -0.75_{ten} is then

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 b	it			81	oits	St.							56							23	bits	5									

The double precision representation is

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	bit				1	1 b	its													. :	20	bits	3								

32 bits

Addition and Multiplication with real numbers

Vybihal (c) 2015 17

Basic Addition Algorithm

- 1. Normalize number
- 2. Round if necessary
- 3. Shift values to same exponent
- 4. Add bases
- 5. Normalize result
- 6. Round if necessary
- 7. Update the sign

Addition Algorithm

Addition Example

Example

Try adding the numbers $0.5_{\rm ten}$ and $-0.4375_{\rm ten}$ in binary using the algorithm in Figure 4.44.

Answer

Let's first look at the binary version of the two numbers in normalized scientific notation, assuming that we keep 4 bits of precision:

$$0.5_{\text{ten}} = 1/2_{\text{ten}} = 1/2^{1}_{\text{ten}}$$

$$= 0.1_{\text{two}} = 0.1_{\text{two}} \times 2^{0} = 1.000_{\text{two}} \times 2^{-1}$$

$$-0.4375_{\text{ten}} = -7/16_{\text{ten}} = -7/2^{4}_{\text{ten}}$$

$$= -0.0111_{\text{two}} = -0.0111_{\text{two}} \times 2^{0} = -1.110_{\text{two}} \times 2^{-2}$$

Now we follow the algorithm:

Step 1. The significand of the number with the lesser exponent (-1.11_{two} × 2^{-2}) is shifted right until its exponent matches the larger number:

$$-1.110_{\text{two}} \times 2^{-2} = -0.111_{\text{two}} \times 2^{-1}$$

Step 2. Add the significands:

$$1.0_{\text{two}} \times 2^{-1} + (-0.111_{\text{two}} \times 2^{-1}) = 0.001_{\text{two}} \times 2^{-1}$$

Step 3. Normalize the sum, checking for overflow or underflow:

$$0.001_{\text{two}} \times 2^{-1} = 0.010_{\text{two}} \times 2^{-2} = 0.100_{\text{two}} \times 2^{-3}$$

= $1.000_{\text{two}} \times 2^{-4}$

Since $127 \ge -4 \ge -126$, there is no overflow or underflow. (The biased exponent would be -4 + 127, or 123, which is between 1 and 254, the smallest and largest unreserved biased exponents.)

Step 4. Round the sum:

$$1.000_{\text{two}} \times 2^{-4}$$

The sum already fits exactly in 4 bits, so there is no change to the bits due to rounding.

This sum is then

$$1.000_{\text{two}} \times 2^{-4} = 0.0001000_{\text{two}} = 0.0001_{\text{two}}$$

= $1/2^4_{\text{ten}} = 1/16_{\text{ten}} = 0.0625_{\text{ten}}$

This sum is what we would expect from adding 0.5_{ten} to -0.4375_{ten} .

Basic Multiplication Algorithm

- 1. Remove exponent bias
- 2. Match exponents
- 3. Multiply bases
- 4. Normalize and round if needed
- 5. Update the sign

22

Start 1. Add the biased exponents of the two numbers, subtracting the bias from the sum to get the new biased exponent 2. Multiply the significands 3. Normalize the product if necessary, shifting it right and incrementing the exponent Yes Overflow or underflow? No Exception 4. Round the significand to the appropriate number of bits Still normalized? Yes 5. Set the sign of the product to positive if the signs of the original operands are the same; if they differ make the sign negative Done McGill Vybihal (c) 2015

Multiplication Algorithm

Multiplication Example

Example

Let's try multiplying the numbers 0.5_{ten} and -0.4375_{ten} using the steps in Figure 4.46.

Answer

In binary, the task is multiplying $1.000_{two} \times 2^{-1}$ by $-1.110_{two} \times 2^{-2}$.

Step 1. Adding the exponents without bias:

$$-1 + (-2) = -3$$

or, using the biased representation:

$$(-1 + 127) + (-2 + 127) - 127 = (-1 - 2) + (127 + 127 - 127)$$

= $-3 + 127 = 124$

Step 2. Multiplying the significands:

The product is $1.110000_{two} \times 2^{-3}$, but we need to keep it to 4 bits, so it is $1.110_{two} \times 2^{-3}$.

Step 3. Now we check the product to make sure it is normalized, and then check the exponent for overflow or underflow. The product is already normalized and, since $127 \ge -3 \ge -126$, there is no overflow or underflow. (Using the biased representation, $254 \ge 124 \ge 1$, so the exponent fits.)

McGill

24

Step 4. Rounding the product makes no change:

$$1.110_{\text{two}} \times 2^{-3}$$

Step 5. Since the signs of the original operands differ, make the sign of the product negative. Hence the product is

$$-1.110_{\text{two}} \times 2^{-3}$$

Converting to decimal to check our results:

$$-1.110_{\text{two}} \times 2^{-3} = -0.001110_{\text{two}} = -0.00111_{\text{two}}$$

= $-7/2^{5}_{\text{ten}} = -7/32_{\text{ten}} = -0.21875_{\text{ten}}$

The product of 0.5_{ten} and -0.4375_{ten} is indeed -0.21875_{ten} .

McGill

Fifth Standard Type: Logical

A single bit value: 0 = false and 1 = true

A	В	A and B	A	В	A or B	_A	В	A xor B
0	0	0	0	0	0	0	0	0
0	1	0	0	1	1	0	1	1
1	0	0	1	0	1	1	0	1
1	1	1	1	1	1	1	1	0
C	lears	Bits	Set	ts Bit	ts	To	oggles	s Bits

A	not A
0	1
1	0
Inve	erts Bits

Sixth Standard Type: Packed Decimal

Use a nibble to represent each digit not entire binary number.

The Packed Decimal (or BCD, Binary Coded Decimal) code is a special way of representing decimal numbers in binary. It simply replaces each decimal digit by its 4-bit equivalent.

A number written in Packed Decimal is a number written in decimal, where the individual digits of the number are written in binary.

Example:

5372₁₀ is written in Packed Decimal as 0101 0011 0111 0010.

27

Do not confuse Packed Decimal arithmetic with Binary arithmetic:

Decimal	Packed Decimal	Binary
123	0001 0010 0011	001111011
+	+	+
289	0010 1000 1001	100100001
412	0100 0001 0010	110011100

Advantage: very user-friendly

<u>Disadvantages</u>: wastes storage space complicates hardware

Part 2

Logic Gates

Basic Logic Circuits

Means inverts

Uni-directional (in this case left to right)

NAND Gate

EXCLUSIVE OR GATE

XOR

31

Low-level Construction

Tristate buffer gate

Connector

DL Circuit for OR (Diode-Logic)

32

Low-level Construction

Low-level Construction

SIMPLE LOGIC GATE PROCESSOR

http://www.circuiteasy.com/animation/logic gate.gif McGill Vybihal (c) 2015

Basic Flip Flop Circuits

This is a Bit

When R=1, S must be 0, When S=1, R must be 0. McGill

Basic Flip Flop Circuits

36

Arbitrary JPL engineer assignment of letters: J mean set and K mean reset; J=1,K=0 SET; J=0,K=1 RESET; J=1,K=1 TOGGLE; J=0,K=0 NOTHING.