B.Sc. Engg. CSE 7th Semester

11 March 2019 (Afternoon)

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION

WINTER SEMESTER, 2018-2019

DURATION: 1 Hour 30 Minutes

FULL MARKS: 75

CSE 4753: Bioinformatics

Programmable calculators are not allowed. Do not write anything on the question paper.

There are 4 (four) questions. Answer any 3 (three) of them.

Figures in the right margin indicate marks.

1.	a)	Write short notes on genes, chromosomes and DNA.	6
	b)	Describe the steps of central dogma in details.	9
	c)	Explain the process of alternate splicing.	6
	d)	What is mRNA degradation? How does it affect the translation process?	4
2.	a)	Discuss on various types of translation process.	6
	b)	During translation Codons are mapped to Amino Acids to form proteins. Number of different Codons and number different Amino Acids are not equal. Discuss the impact of this scenario.	6
	c)	'k-means' clustering is a method to find k number of clusters within a set of data. i. Write down the weakness of k-means clustering method.	3
		 Propose at least two methods to modify k-means algorithm to overcome the weakness. 	10
3.	a)	Draw a diagram showing various forms of RNA secondary structures.	6
	b)	Explain the advantages of Zuker Folding Algorithm over Nussinov Folding Algorithm to predict RNA secondary structures.	7
	c)	What is sequence alignment? Discuss its importance in bioinformatics study.	5
	d)	Classify sequence alignments along with short description.	7
4.	a)	In agglomerative clustering we need to define a proximity matrix in terms of cluster similarity. Discuss various methods to define inter-cluster similarity.	12
	b)	How can we evaluate clusters generated from a clustering method? Discuss them.	4
	c)	What is InDel operation? Explain with example.	4
	d)	Following two sequences are needed to be aligned locally and globally:	5

ATGCAATCA TGACVGTA

Show the initialization matrix for both *smith-waterman* and *needleman-wunsch* algorithms. Consider gap, match, and mismatch penalties are -1, +2, and -2, respectively.