Iperbolicità di Gromov in più variabili complesse

2* Aprile 2022

Scuola Normale Superiore di Pisa Colloquio IV Anno

Candidato: Marco Vergamini Relatore: Prof. Marco Abate

Domini strettamente pseudoconvessi e metrica di Kobayashi

Setting: fissiamo $\Omega \subseteq \mathbb{C}^n, n \geq 2$ un dominio limitato con bordo C^2 , cioè esiste $\rho \in C^2(\mathbb{C}^n)$ tale che $\Omega = \{\rho(z) < 0\}$.

Domini strettamente pseudoconvessi e metrica di Kobayashi

Setting: fissiamo $\Omega \subseteq \mathbb{C}^n$, $n \geq 2$ un dominio limitato con bordo \mathbb{C}^2 , cioè esiste $\rho \in C^2(\mathbb{C}^n)$ tale che $\Omega = {\rho(z) < 0}.$

Definizione

Dato $p \in \partial \Omega$, lo spazio tangente complesso a $\partial \Omega$ in p è $H_n\partial\Omega=\{Z\in\mathbb{C}^n\mid \langle\bar{\partial}\rho(p),Z\rangle=0\}$. Diciamo che Ω è strettamente pseudoconvesso se la forma di Levi

$$L_{\rho}(p;Z) = \sum_{\mu,\mu=1}^{n} \frac{\partial \rho^{2}}{\partial z_{\nu} \partial \bar{z}_{\mu}}(p) Z_{\nu} \bar{Z}_{\mu}, \quad Z = (Z_{1}, \dots, Z_{n}) \in \mathbb{C}^{n}$$

è definita positiva in $H_n \partial \Omega$ per ogni $p \in \Omega$.

Domini strettamente pseudoconvessi e metrica di Kobayashi

Setting: fissiamo $\Omega \subseteq \mathbb{C}^n$, $n \geq 2$ un dominio limitato con bordo \mathbb{C}^2 , cioè esiste $\rho \in C^2(\mathbb{C}^n)$ tale che $\Omega = {\rho(z) < 0}.$

Definizione

Dato $p \in \partial \Omega$, lo spazio tangente complesso a $\partial \Omega$ in p è $H_n\partial\Omega=\{Z\in\mathbb{C}^n\mid \langle\bar{\partial}\rho(p),Z\rangle=0\}$. Diciamo che Ω è strettamente pseudoconvesso se la forma di Levi

$$L_{\rho}(p;Z) = \sum_{\mu,\mu=1}^{n} \frac{\partial \rho^{2}}{\partial z_{\nu} \partial \bar{z}_{\mu}}(p) Z_{\nu} \bar{Z}_{\mu}, \quad Z = (Z_{1}, \dots, Z_{n}) \in \mathbb{C}^{n}$$

è definita positiva in $H_n \partial \Omega$ per ogni $p \in \Omega$.

Nel seguito, lavoriamo sempre sotto l'ipotesi che Ω sia strettamente pseudoconvesso.

Domini strettamente pseudoconvessi e metrica di Kobayashi

Definizione

Sia $\mathbb D$ il disco unitario in $\mathbb C$, data $f:\mathbb D\longrightarrow\mathbb C^n$ olomorfa indichiamo con Df(z) il differenziale di f in $z\in\mathbb D$. La $metrica\ di\ Kobayashi\ su\ \Omega$ è

$$K(x;Z) = \inf\{|v| \mid v \in \mathbb{C}, \text{ esiste } f: \mathbb{D} \longrightarrow \Omega$$
 olomorfa con $f(0) = x, Df(0)v = Z\},$

che induce la distanza di Kobayashi d_K .

Domini strettamente pseudoconvessi e iperbolicità di Gromov

Definizione

Sia (X, d) uno spazio metrico, dati $x, y \in X$ il prodotto di Gromov con punto base w è $(x, y)_w = \frac{1}{2} (d(x, w) + d(y, w) - d(x, y))$. Dato $\delta \geq 0$, diciamo che X è δ -iperbolico se

$$(x,y)_w \ge (x,z)_w \wedge (y,z)_w - \delta$$
 per ogni $x,y,z,w \in X$.

Domini strettamente pseudoconvessi e iperbolicità di Gromov

Definizione

Sia (X, d) uno spazio metrico, dati $x, y \in X$ il prodotto di Gromov con punto base $w \in (x,y)_w = \frac{1}{2}(d(x,w) + d(y,w) - d(x,y))$. Dato $\delta \geq 0$, diciamo che $X \in \delta$ -iperbolico se

$$(x,y)_w \ge (x,z)_w \wedge (y,z)_w - \delta$$
 per ogni $x,y,z,w \in X$.

Fissato $w \in X$, il bordo iperbolico è $\partial_G X$ costruito come classe di equivalenza delle successioni (x_i) che convergono a infinito, cioè tali che $\lim_{i,j\to\infty} (x_i,x_j) = \infty$; due tali successioni $(x_i),(y_i)$ sono equivalenti se $\lim_{i \to \infty} (x_i, y_i) = \infty.$

Domini strettamente pseudoconvessi e iperbolicità di Gromov

Definizione

Sia (X, d) uno spazio metrico, dati $x, y \in X$ il prodotto di Gromov con punto base w è $(x, y)_w = \frac{1}{2} (d(x, w) + d(y, w) - d(x, y))$. Dato $\delta \geq 0$, diciamo che X è δ -iperbolico se

$$(x,y)_w \ge (x,z)_w \wedge (y,z)_w - \delta$$
 per ogni $x,y,z,w \in X$.

Teorema

(Balogh-Bonk) (Ω, d_K) è Gromov iperbolico, e il bordo iperbolico $\partial_G \Omega$ può essere identificato con il bordo euclideo $\partial \Omega$. Inoltre, la distanza di Carnot-Carathéodory d_H su $\partial \Omega$ (quella indotta dalla forma di Levi) sta nella classe canonica di distanze su $\partial_G X$, cioè esiste $\varepsilon > 0$ tale che $d_H(a,b) \simeq \exp((a,b)_w)$ per ogni $a,b \in \partial_G X$.

Conseguenze: estensioni al bordo di funzioni olomorfe

Devo trovare un modo rapido di riassumere la proposizione 5.3, con tutte le definizioni e conseguenze (compresi i corollari 6.1 e 6.2).

Definizione

Un orociclo di centro $\tau \in \partial \mathbb{D}$ e raggio R > 0 è

$$E(\tau,R) = \left\{ z \in \mathbb{D} \mid \frac{|\tau - z|^2}{1 - |z|^2} < R \right\}.$$

Definizione

Un orociclo di centro $\tau \in \partial \mathbb{D}$ e raggio R>0 è

$$E(\tau,R) = \Big\{ z \in \mathbb{D} \mid \frac{|\tau - z|^2}{1 - |z|^2} < R \Big\}.$$

Detta ω la distanza iperbolica su \mathbb{D} , si ha

$$E(\tau, R) = \{ z \in \mathbb{D} \mid \lim_{w \to \tau} \left(\omega(z, w) - \omega(0, w) \right) < \frac{1}{2} \log R \}.$$

Definizione

Un orociclo di centro $\tau \in \partial \mathbb{D}$ e raggio R>0 è

$$E(\tau, R) = \left\{ z \in \mathbb{D} \mid \frac{|\tau - z|^2}{1 - |z|^2} < R \right\}.$$

Teorema

(Wolff) Sia $f : \mathbb{D} \longrightarrow \mathbb{D}$ olomorfa e senza punti fissi. Allora esiste un unico $\tau \in \partial \mathbb{D}$ tale che per ogni R > 0 vale che $f(E(\tau, R)) \subseteq E(\tau, R)$.

Definizione

Un orociclo di centro $\tau \in \partial \mathbb{D}$ e raggio R > 0 è

$$E(\tau, R) = \left\{ z \in \mathbb{D} \mid \frac{|\tau - z|^2}{1 - |z|^2} < R \right\}.$$

Teorema

(Wolff) Sia $f : \mathbb{D} \longrightarrow \mathbb{D}$ olomorfa e senza punti fissi. Allora esiste un unico $\tau \in \partial \mathbb{D}$ tale che per ogni R > 0 vale che $f(E(\tau, R)) \subseteq E(\tau, R)$.

Teorema

(Wolff-Denjoy) Sia $f: \mathbb{D} \longrightarrow \mathbb{D}$ olomorfa e senza punti fissi. Allora esiste un unico $\tau \in \partial \mathbb{D}$ tale che $f^k \longrightarrow \tau$ uniformemente sui compatti.

Karlsson, 2001: sotto opportune ipotesi, che sono soddisfatte dagli spazi iperbolici (è vera quest'affermazione?), valgono dei risultati simili per funzioni 1-lipschitziane dallo spazio in sé.

Karlsson, 2001: sotto opportune ipotesi, che sono soddisfatte dagli spazi iperbolici (è vera quest'affermazione?), valgono dei risultati simili per funzioni 1-lipschitziane dallo spazio in sé.

Usando il teorema di Balogh-Bonk e il fatto che i biolomorfismi sono delle isometrie rispetto a d_K , si ottengono delle generalizzazioni dei teoremi di Wolff e Wolff-Denjoy per i domini strettamente pseudoconvessi.