

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 08251156 A

(43) Date of publication of application: 27.09.96

(51) Int. CI

H04L 9/06

H04L 9/14

G06F 13/00

G09C 1/00

H04L 12/54

H04L 12/58

(21) Application number: 07052252

(22) Date of filing: 13.03.95

(71) Applicant:

HITACHI LTD

(72) Inventor:

NISHIOKA GENJI MIYAZAKI SATOSHI

(54) METHOD AND SYSTEM FOR CIPHERING **ELECTRONIC MAIL**

(57) Abstract:

PURPOSE: To provide an electronic mail ciphering method which can be used with a normal mail together without specifying the mail system and the kind of device, reduces calculation processing and the burden of memory for attaining a security function for persons both transmitting electronic mail and receiving it, and is provided with high safety against tapping and aunauthorized persons who set up to be authorized without any need to worry about the coincidence of users' keys.

CONSTITUTION: Each user of a communication network prepares key information of each and opens only an open key. Next, the transmitter A and the receiver B of the electronic mail share master keys KA, B and KB, A from his own secret key and the open key of the opposite side and the transmitter ciphers the body sentences P of the mail by a data ciphering key (k) through the use of the secret key cipher. Then the data ciphering key is ciphered by the master key. Then, they are sent to the receiver and the receiver deciphers the data ciphering key (k) through the use of the master key KB, A and

deciphers the mail body sentence P from the data ciphering key (k) in addition.

COPYRIGHT: (C)1996,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-251156

(43)公開日 平成8年(1996)9月27日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ				技術表示箇所
H04L	9/06			H04L	9/02		Z	
	9/14		7368-5E	G 0 6 F	13/00		3 5 1 Z	
G06F	13/00	3 5 1	7259-5 J	G 0 9 C	1/00			
G09C	1/00		9466-5K	H04L	11/20		101B	
H04L	12/54							
			審査請求	未請求	求項の数13	OL	(全 20 頁)	最終頁に続く
(21)出願番号		特膜平7-52252	(71)出版	•		製作所		
(22)出顧日		平成7年(1995)3月13日		(72)発明	東京都 門者 西岡	千代田 玄次	区神田駿河台	四丁目 6 番地 時1099番地株式
				(72)発明	会社日	立製作	所システム開	
					神奈川県川崎市麻生区王禅時1099番地株式 会社日立製作所システム開発研究所内			
				(74)代題	上明金 人名	. 小川		

(54) 【発明の名称】 電子メール暗号化方法及び暗号化システム

(57)【要約】

【目的】メールシステムや機種に特定しないで通常のメールと併用することができ、電子メールの送信者および受信者双方のセキュリティ機能実現のための計算処理およびメモリの負担が少なく、かつ、利用者の鍵の一致の心配がない盗聴や不正者のなりすましに対して安全性の高い電子メール暗号化方法を提供する。

【構成】通信ネットワークの各利用者は各々の鍵情報を作成し、公開鍵のみを公開する。次に、電子メールの送信者および受信者はそれぞれ自分の秘密鍵と相手の公開鍵からマスタ鍵KA,B、KB,Aの共有を行ない、送信者は秘密鍵暗号を用いて、メール本文Pをデータ暗号化鍵kで暗号化し、データ暗号化鍵をマスタ鍵で暗号化し、それらを受信者に送り、受信者はマスタ鍵KB,Aを用いてデータ暗号化鍵kを復号化し、さらにデータ暗号化鍵kからメール本文Pを復号化する。

図 2

【特許請求の範囲】

【請求項1】通信ネットワーク上でメールの送受信を行 なう電子メール通信システムにおいて、送信者Aが受信 者Bに対して送信するメール文を暗号化する電子メール 暗号化方法であって、準備処理として、送信者Aは秘密 鍵xAおよび秘密鍵xAに対応する公開鍵vAを作成し、 受信者Bは秘密鍵xBおよび秘密鍵xBに対応する公開鍵 vBを作成し、それぞれ公開鍵のみを公開し、マスタ鍵 共有処理として、送信者Aは自分の秘密鍵xAと受信者 Bの公開鍵 v Bからマスタ鍵 K A, Bを作成し、受信者 B は 自分の秘密鍵xBと受信者Bの公開鍵vAからマスタ鍵K B. Aを作成し、このとき、KA. B= KB. Aが成立し、特 に、送信者Aは電子メールを送信する機会が多い受信者 に対しては、それらの受信者と送信者A間の各マスタ 鍵、または、各マスタ鍵を送信者Aの秘密鍵から作成し た鍵を用いて暗号化した情報を記憶し、以後の電子メー ル通信において、データ暗号化鍵更新のためなどでマス 夕鍵が必要な場合、マスタ鍵が記憶されているものにつ いては、新たに相手の公開鍵と自分の秘密鍵からマスタ 鍵を作成することなく、記憶されているマスタ鍵を使う こととし、メール本文の暗復号化処理として、送信者A はデータ暗号化鍵kをランダムに選び、受信者Bとの間 で共通に保有する秘密鍵暗号系アルゴリズムを用いて、 メール本文 Pをデータ暗号化鍵 k にて暗号化した暗号文 $E_1(k; P)$ と、データ暗号化鍵 k をマスタ鍵 $K_{A,B}$ に て暗号化した暗号文E₂(K_{A,B}; k) を受信者Bに送信 し、受信者Bは、マスタ鍵KB,Aを用いてE2(KA,B; k)からデータ暗号化鍵kを復号化し、さらにデータ暗 号化鍵 k を用いて $E_1(k; P)$ からメール本文 P を復号 化することを特徴とする電子メール暗号化方法。

【請求項2】 通信ネットワーク上でメールの送受信を行 なう電子メール通信システムにおいて、送信者Aが受信 者Bに対して送信するメール文を暗号化する電子メール 暗号化方法であって、準備処理として、センタはセンタ の秘密情報として1対1関数fを作成し、送信者Aは秘 密鍵xAおよび秘密鍵xAに対応する公開鍵yAを作成 し、受信者Bは秘密鍵xBおよび秘密鍵xBに対応する公 開鍵yBを作成し、センタへの登録処理として、送信者 Aおよび受信者Bは自分のID情報をセンタに登録し、 センタはセンタの秘密情報である関数 f を用いて、送信 40

 $y_{Aj} = \exp(a : x_{Aj}) \pmod{p}$ for $j = 1, \dots, n$,

を計算し、yAj (j=1, …, n)を送信者Aの公開鍵 として登録し、

受信者Bは、 $0 < x_{Bj} < p-1$ なる整数 x_{Bj} (j = 1,

 $y_{Bj} = \exp(a : x_{Bj}) \pmod{p}$ for $j = 1, \dots, n$,

を計算し、yBi (j=1, …, n)を受信者Bの公開鍵 として登録し(ただし、exp(a:x)はaをx乗した値 を表わす)、マスタ鍵共有処理として、

送信者Aは、自分の秘密鍵である整数 x A j と受信者Bの

2

者AのID情報IAから送信者Aに固有の秘密鍵sAを、 s_A=f(I_A), で作成し、同様に受信者BのID情報 IBから受信者Bに固有の秘密鍵sBを、sB=f(IB), で作成し、センタは秘密鍵sAとsAに対応する公開鍵v Aの組(sA, vA)を送信者Aに安全に配布し、同様に 秘密鍵 s B と s B に対応する公開鍵 v B の組 (sB, vB) を受信者Bに安全に配布し、このとき、IA≠IBならば sA≠sBかつvA≠vB, が成立し、送信者Aは(yA, vA) を、受信者Bは(yB, vB) をそれぞれ自分の公 開情報として登録し、マスタ鍵の共有処理として、送信 者Aは自分の秘密鍵(xA、sA)と受信者Bの公開鍵 (yB, vB) からマスタ鍵KA,Bを作成し、受信者Bは 自分の秘密鍵 (xB, SB) と受信者Bの公開鍵 (yA, vA) からマスタ鍵KB,Aを作成し、このとき、KA,B= KB. Aが成立し、特に、送信者Aは電子メールを送信す る機会が多い受信者に対しては、それらの受信者と送信 者A間の各マスタ鍵、または、各マスタ鍵を送信者Aの 秘密鍵から作成した鍵を用いて暗号化した情報、を記憶 し、以後の電子メール通信において、データ暗号化鍵更 20 新のためなどでマスタ鍵が必要な場合、マスタ鍵が記憶 されているものについては、新たに相手の公開鍵と自分 の秘密鍵からマスタ鍵を作成することなく、記憶されて いるマスタ鍵を使うこととし、メール本文の暗復号化処 理として、送信者Aはデータ暗号化鍵kをランダムに選 び、受信者Bとの間で共通に保有する秘密鍵暗号系アル ゴリズムを用いて、メール本文Pをデータ暗号化鍵kに て暗号化した暗号文E₁(k;P)と、データ暗号化鍵k をマスタ鍵 K_A, Bにて暗号化した暗号文 E₂(K_A, B; k) を受信者Bに送信し、受信者Bは、マスタ鍵KB, Aを用 30 いてE₂(K_{A,B;k}) からデータ暗号化鍵kを復号化 し、さらにデータ暗号化鍵kを用いてE1(k;P)から メール本文Pを復号化することを特徴とする電子メール 暗号化方法。

【請求項3】 通信ネットワーク上でメールの送受信を行 なう電子メール通信システムにおいて、送信者Aが受信 者Bに対して送信するメール文を暗号化する電子メール 暗号化方法であって、準備処理として、送信者Aは、O < x_{Ai}Ai</sub>(j = 1, …, n)をランダ ムに選び、公開情報である整数a、素数pを用いて、

【数1】

···, n)をランダムに選び、

【数2】

公開鍵である y_{Bj} (j=1, ..., n) を用いて、マスタ 鍵K_{A,B}を、

【数3】

 $K_{A,B} = \Pi \{ \exp(y_{Bj} : x_{Aj}) \pmod{p} \mid j = 1, \dots, n \},$

にて作成し、

受信者Bは、自分の秘密鍵である整数xBjと送信者Aの 公開鍵である y_{Aj} (j=1, ..., n) を用いて、マスタ

 $K_{B,A} = \prod \{ \exp(y_{Aj} : x_{Bj}) \pmod{p} \mid j = 1, \dots, n \},$

鍵KB,Aを、 【数4】

にて作成し、

このとき、KARHKRAが成立し、特に、送信者Aは電 子メールを送信する機会が多い受信者に対しては、それ らの受信者と送信者A間の各マスタ鍵からなる集合 SA、または、送信者Aの秘密鍵である整数 x A j (j = 1, …, n) と鍵生成関数 θ から、

【数5】K(A) = θ (x_{A1}, ···, x_{An}),

にて作成した鍵K(A)を用いてマスタ鍵の集合SAを暗 号化した

 $C(A) = E_A(K(A) ; S_A),$

を記憶し、以後の電子メール通信において、データ暗号 化鍵更新のためなどでマスタ鍵が必要な場合、マスタ鍵 が記憶されているものについては、新たに相手の公開鍵 と自分の秘密鍵からマスタ鍵を作成することなく、記憶 されているマスタ鍵を使うこととし(ただし、EA(k; Mを鍵kにて暗号化した結果を表わす)、

メール本文の暗復号化処理として、送信者Aは、データ 暗号化鍵kをランダムに選び、受信者Bとの間で共通に 保有する秘密鍵暗号系アルゴリズムを用いて、メール本 文Pをデータ暗号化鍵 k にて暗号化した暗号文E(k; P) と、データ暗号化鍵kをマスタ鍵KA,Bにて暗号化 した暗号文E(K_{A,B}; k) をメール受信者Bに送信し、 受信者Bは、マスタ鍵KB.Aを用いてE(KA.B; k)か らデータ暗号化鍵kを復号化し、さらにデータ暗号化鍵 kを用いてE(k;P)からメール本文Pを復号化する ことを特徴とする電子メール暗号化方法。

【請求項4】 通信ネットワーク上でメールの送受信を行 なう電子メール通信システムにおいて、送信者Aが受信 者Bに対して送信するメール文を暗号化する電子メール 暗号化方法であって、

準備処理として、センタは、素数 p_1 と、 p_2-1 が二つ の大きな素数を因数として持つ素数p2と、整数a1, a 2を公開し、p2-1の素因数分解を秘密とし、送信者A は、0<x_A<p₁-1なる整数x_Aをランダムに選び、

【数6】 $y_A = exp(a_1 : x_A)$ (mod p_1), を計算し、

受信者Bは、0<xB<p1-1なる整数xBをランダム

【数7】 $y_B = \exp(a_1 : x_B) \pmod{p_1}$,

を計算し(ただし、exp(a:x)はaをx乗した値を表

センタへの登録処理として、送信者Aおよび受信者B は、自分のID情報をセンタに登録し、センタは送信者 AのID情報IAから、IA+iA (mod p2-1) が平方 剰余、かつ、IA≠IBならばIA+iA (mod p2-1)

≠ IB+ iB (mod p 2-1) となるように正整数 iAを選 び、送信者Aに固有の秘密鍵sAを、

【数8】 $s_A = \exp(I_A + i_A : 1/2)$ (mod $p_2 - 1$), にて計算し、同様に受信者BのID情報IBから、送信 者Bに固有の秘密鍵sRを、

【数9】 $s_B = exp(I_B + i_B : 1/2)$ (mod $p_2 - 1$), にて計算し、各々を送信者Aおよび受信者Bに安全に配 布し、このとき、ID情報が異なれば対応する秘密鍵も 異なり、送信者AはyAと、秘密鍵sAに対応する公開鍵 【数10】 $v_A = \exp(a_2 : s_A)$ (mod p_2),

との組(yA, vA)を送信者Aの公開鍵として登録し、 受信者Bはygと、秘密鍵sgに対応する公開鍵

【数11】 $v_B = \exp(a_2 : s_B)$ (mod p_2),

との組 (yB, vB) を受信者Bの公開鍵として登録し、 マスタ鍵共有処理として、送信者Aは、受信者Bとの間 M) はAが所持する秘密鍵暗号アルゴリズムにより平文 20 で共通に保有する関数 g を用いて、自分の秘密鍵である (xA, sA) と受信者Bの公開鍵である (yB, vB) か ら、マスタ鍵KA,Bを、

> 【数12】 $K_{A,B} = g(\exp(y_B : x_A) \pmod{p_1}$, exp $(v_B: s_A) \pmod{p_2}$,

にて作成し、受信者Bは、自分の秘密鍵である (xg, sB) と送信者Aの公開鍵である(yA, vA)を用い て、マスタ鍵KB, Aを、

【数13】 $K_{B,A} = g(exp(y_A : x_B)(mod p_1)$, exp $(v_A: s_B) \pmod{p_2}$,

30 にて作成し、

このとき、 $K_{A,B}=K_{B,A}$ が成立し、特に、送信者Aは電 子メールを送信する機会が多い受信者に対しては、それ らの受信者と送信者A間の各マスタ鍵からなる集合 SA、または、送信者Aの秘密鍵 (xA, sA)と鍵生成

【数14】K(A) = θ (x_A, s_A),

にて作成した鍵K(A)を用いてマスタ鍵の集合SAを暗 号化した

【数15】 $C(A) = E_A(K(A); S_A)$,

40 を記憶し、以後の電子メール通信において、データ暗号 化鍵更新のためなどでマスタ鍵が必要な場合、マスタ鍵 が記憶されているものについては、新たに相手の公開鍵 と自分の秘密鍵からマスタ鍵を作成することなく、記憶 されているマスタ鍵を使うこととし(ただし、E_A(k; M) はAが所持する秘密鍵暗号アルゴリズムにより平文 Mを鍵kにて暗号化した結果を表わす。)、

メール本文の暗復号化処理として、送信者Aは、データ 暗号化鍵kをランダムに選び、受信者Bとの間で共通に 保有する秘密鏈暗号系アルゴリズムを用いて、メール本 50 文Pをデータ暗号化鍵 k にて暗号化した暗号文E(k;

P)と、データ暗号化鍵kをマスタ鍵KA,Bにて暗号化 した暗号文E(K_{A,B}; k) をメール受信者Bに送信し、 受信者Bは、マスタ鍵KB, Aを用いてE(KA, B; k)か ちデータ暗号化鍵kを復号化し、さらにデータ暗号化鍵 kを用いてE(k;P)からメール本文Pを復号化する ことを特徴とする電子メール暗号化方法。

【請求項5】通信ネットワーク上でメールの送受信を行 なう電子メール通信システムにおいて、送信者Aが受信 者Bに対して送信するメール文を暗号化する電子メール 暗号化方法であって、

準備処理として、センタは、素数 p1と、 p2-1 が二つ の大きな素数を因数として持つ素数 p2と、整数 a1, a 2を公開し、p2-1の素因数分解を秘密とし、送信者A は、 $0 < x_A < p_1 - 1$ なる整数 x_A をランダムに選び、

【数16】 $y_A = \exp(a_1 : x_A) \pmod{p_1}$,

を計算し、受信者Bは、0 < xB < p1-1 なる整数 xB をランダムに選び、

[数17] $y_B = \exp(a_1 : x_B) \pmod{p_1}$,

を計算し、センタへの登録処理として、送信者Aおよび 受信者Bは、自分のID情報をセンタに登録し、センタ は送信者AのID情報IAから、送信者Aに固有の秘密 鍵sAを正数eを用いて、

[数18] $s_A = \exp(I_A : e) \pmod{p_2 - 1}$, にて計算し、同様に受信者BのID情報IBから、送信 者Bに固有の秘密鍵sBを正数eを用いて、

【数19】 $s_B = exp(I_B: e) \pmod{p_2-1}$, にて計算し、各々を送信者Aおよび受信者Bに安全に配 布し (ただし、exp(a:x) は a & ex 乗した値を表わ す)、

このとき、ID情報が異なれば対応する秘密鍵も異な り、送信者AはyAと、秘密鍵sAに対応する公開鍵

【数20】 $v_A = \exp(a_2 : s_A) \pmod{p_2}$,

の組(yA, vA)を送信者Aの公開鍵として登録し、受 信者BはyBと、秘密鍵sBに対応する公開鍵

【数21】 $v_B = \exp(a_2 : s_B) \pmod{p_2}$,

の組(yB, vB)を受信者Bの公開鍵として登録し、マ スタ鍵の共有処理として、送信者Aは、受信者Bとの間 で共通に保有する関数gを用いて、自分の秘密鍵である (xA, sA) と受信者Bの公開鍵である (yB, vB) か ら、マスタ鍵KA.Bを、

【数22】 $K_{A,B} = g(\exp(y_B : x_A) \pmod{p_1}, \exp$ $(v_B: s_A) \pmod{p_2}$,

にて作成し、受信者Bは、自分の秘密鍵である(xB, sB) と送信者Aの公開鍵である(yA, vA)を用い て、マスタ鍵KB,Aを、

【数23】 $K_{B,A} = g(\exp(y_A : x_B) \pmod{p_1}, \exp$ $(v_A: s_B) \pmod{p_2}$,

にて作成し、このとき、 $K_{A,B}=K_{B,A}$ が成立し、

特に、送信者Aは電子メールを送信する機会が多い受信 者に対しては、それらの受信者と送信者A間の各マスタ 50 にて計算し、各々を送信者Aおよび受信者Bに安全に配

鍵からなる集合 SA、または、送信者Aの秘密鍵(xA, s_A)と鍵生成関数θから、

6

【数24】 $K(A) = \theta(x_A, s_A)$,

にて作成した鍵K(A)を用いてマスタ鍵の集合SAを暗 号化した

【数25】 $C(A) = E_A(K(A); S_A)$,

を記憶し、以後の電子メール通信において、データ暗号 化鍵更新のためなどでマスタ鍵が必要な場合、マスタ鍵 が記憶されているものについては、新たに相手の公開鍵 10 と自分の秘密鍵からマスタ鍵を作成することなく、記憶 されているマスタ鍵を使うこととし(ただし、EA(k; M) はAが所持する秘密鍵暗号アルゴリズムにより平文 Mを鍵kにて暗号化した結果を表わす)、

メール本文の暗復号化処理として、送信者Aは、データ 暗号化鍵kをランダムに選び、受信者Bとの間で共通に 保有する秘密鍵暗号系アルゴリズムを用いて、メール本 文Pをデータ暗号化鍵kにて暗号化した暗号文E(k; P)と、データ暗号化鍵kをマスタ鍵KA.Bにて暗号化 した暗号文 $E(K_{A,B};k)$ をメール受信者Bに送信し、 受信者Bは、マスタ鍵KB,Aを用いてE(KA,B;k)か 20 らデータ暗号化鍵kを復号化し、さらにデータ暗号化鍵 kを用いてE(k;P)からメール本文Pを復号化する ことを特徴とする電子メール暗号化方法。

【請求項6】通信ネットワーク上でメールの送受信を行 なう電子メール通信システムにおいて、送信者Aが受信 者Bに対して送信するメール文を暗号化する電子メール 暗号化方法であって、準備処理として、センタは、素数 pと合成数n=p1·p2と整数aを公開し、nの素因数 分解と正数αを秘密とし、送信者Aは、0<xA<p-30 1なる整数 xAをランダムに選び、

【数26】 $y_A = \exp(a : x_A)$ (mod p), を計算し、受信者Bは、0<xB<p-1なる整数xBを ランダムに選び、

【数27】 $y_B = \exp(a : x_B) \pmod{p}$,

を計算し、センタへの登録処理として、送信者Aおよび 受信者Bは、自分のID情報をセンタに登録し、センタ は送信者AのID情報IAから、IA+iA(mod 1.c.d(p 1-1, p2-1)) が平方剰余、かつ、IA≠IBならば $I_A + i_A \pmod{1.c.d(p_1-1, p_2-1)} \neq I_B + i_B$ $(mod \ 1. \ c. \ d(p_1-1, \ p_2-1))$ となるように正整数 iAを選び、送信者Aに固有の鍵(sA, vA)を、

[数28] $s_A = \exp(I_A + i_A : 1/2)$ (mod l.c.d(p₁-1, p_2-1),

 $v_A = \exp(\alpha : s_A) \pmod{n}$,

にて計算し、同様に受信者BのID情報IBから、受信 者Bに固有の鍵(sg, vg)を、

【数29】 $s_B = \exp(I_B + i_B : 1/2)$ (mod 1. c. d(p₁-1, p_2-1),

 $v_B = \exp(\alpha : s_B) \pmod{n}$,

布し (ただし、exp(a:x) は a を x 乗した値を表わす).

このとき、 ID 情報が異なれば対応する鍵も異なり、送信者 A は (y_A, v_A) を送信者 A の公開鍵として登録し、受信者 B は (y_B, v_B) を受信者 B の公開鍵として登録し、マスタ鍵共有処理として、

送信者Aは、受信者Bとの間で共通に保有する関数gを 用いて、自分の秘密難である(xA, sA)と受信者Bの 公開鍵である(yB, vB)から、マスタ鍵KA,Bを、

[数30] $K_{A,B} = g(\exp(y_B : x_A) \pmod{p}, \exp(v_B : s_A) \pmod{n}),$

にて作成し、受信者Bは、自分の秘密鍵である(x_B , s_B)と送信者Aの公開鍵である(y_A , v_A)を用いてマスタ鍵 $K_{B,A}$ を、

[数31] $K_{B,A} = g(\exp(y_A : x_B) \pmod p)$, $\exp(v_A : x_B) \pmod p$),

にて作成し、このとき、 $K_{A,B}=K_{B,A}$ が成立し、特に、送信者Aは電子メールを送信する機会が多い受信者に対しては、それらの受信者と送信者A間の各マスタ鍵からなる集合 S_A 、または、送信者Aの秘密鍵(x_A , s_A)と鍵生成関数 θ から、

【数32】K(A) = θ (xA, sA),

にて作成した鍵K(A) を用いてマスタ鍵の集合 S_A を暗号化した

【数33】 $C(A) = E_A(K(A) ; S_A)$,

を記憶し、以後の電子メール通信において、データ暗号 化鍵更新のためなどでマスタ鍵が必要な場合、マスタ鍵 が記憶されているものについては、新たに相手の公開鍵 と自分の秘密鍵からマスタ鍵を作成することなく、記憶 されているマスタ鍵を使うこととし(ただし、E_A(k; M)はAが所持する秘密鍵暗号アルゴリズムにより平文 Mを鍵kにて暗号化した結果を表わす)、

【請求項7】通信ネットワーク上でメールの送受信を行なう電子メール通信システムにおいて、送信者Aが受信者Bに対して送信するメール文を暗号化する電子メール暗号化方法であって、

準備処理として、センタは、素数 p と合成数 $n=p_1\cdot p_2$ と整数 a を公開し、n の素因数分解と正数 α を秘密とし、送信者 A は、 $0 < x_A < p-1$ なる整数 x_A をランダムに選び、

【数34】 y_A=exp(a: x_A) (mod p), を計算し、受信者Bは、0 < x_B B</sub>を ランダムに選び、

8

【数35】 $y_B = \exp(a : x_B)$ (mod p),

を計算し、センタへの登録処理として、送信者Aおよび受信者Bは、自分のID情報をセンタに登録し、センタは送信者AのID情報IAから、送信者Aに固有の鍵(sA, vA)を正数 e を用いて、

[数36] $s_A = \exp(I_A : e)$ (mod 1. c. d($p_1 - 1$, p_2 10 -1)),

 $v_A = \exp(\alpha : s_A) \pmod{n}$,

にて計算し、同様に受信者BのI D情報 I Bから、受信者Bに固有の鍵(s B, v B)を、

【数37】 $s_B = \exp(I_B : e) \pmod{1.c.d(p_1-1, p_2 - 1)}$,

 $v_B = \exp(\alpha : s_B) \pmod{n}$,

にて計算し、各々を送信者Aおよび受信者Bに安全に配布し(ただし、exp(a:x)はaをx乗した値を表わす)、このとき、ID情報が異なれば対応する秘密鍵も20 異なり、送信者Aは(yA、vA)を送信者Aの公開鍵として登録し、受信者Bは(yB、vB)を受信者Bの公開鍵として登録し、マスタ鍵共有処理として、送信者Aは、受信者Bとの間で共通に保有する関数gを用いて、自分の秘密鍵である(xA、sA)と受信者Bの公開鍵である(yB、vB)から、マスタ鍵KA、Bを、

【数38】 $K_{A,B} = g(exp(y_B : x_A) \pmod{p})$, exp $(v_B : s_A) \pmod{n}$),

にて作成し、受信者Bは、自分の秘密鍵である(x_B , s_B)と送信者Aの公開鍵である(y_A , v_A)を用いて 30 マスタ鍵 $K_{B,A}$ を、

【数39】 $K_{B,A} = g (exp(y_A : x_B) (mod p)$, exp $(v_A : s_B) (mod n)$),

にて作成し、このとき、 $K_{A,B}=K_{B,A}$ が成立し、特に、送信者Aは電子メールを送信する機会が多い受信者に対しては、それらの受信者と送信者A間の各マスタ鍵からなる集合 S_A 、または、送信者Aの秘密鍵(x_A 、 s_A)と鍵生成関数 θ から、

【数40】K (A) = θ (xA, sA),

にて作成した鍵K(A)を用いてマスタ鍵の集合SAを暗 り 暑化した

【数41】 $C(A) = E_A(K(A); S_A)$,

を記憶し、以後の電子メール通信において、データ暗号 化鍵更新のためなどでマスタ鍵が必要な場合、マスタ鍵 が記憶されているものについては、新たに相手の公開鍵 と自分の秘密鍵からマスタ鍵を作成することなく、記憶 されているマスタ鍵を使うこととし(ただし、E_A(k; M)はAが所持する秘密鍵暗号アルゴリズムにより平文 Mを鍵kにて暗号化した結果を表わす)、

メール本文の暗復号化処理として、送信者Aは、データ 50 暗号化鰻kをランダムに選び、受信者Bとの間で共通に

保有する秘密鍵暗号系アルゴリズムを用いて、メール本文Pをデータ暗号化鍵kにて暗号化した暗号文E(k; P)と、データ暗号化鍵kをマスタ鍵 $K_{A,B}$ にて暗号化した暗号文E $(K_{A,B}; k)$ をメール受信者Bに送信し、受信者Bは、マスタ鍵 $K_{B,A}$ を用いてE $(K_{A,B}; k)$ からデータ暗号化鍵kを復号化し、さらにデータ暗号化鍵kを用いてE(k; P)からメール本文Pを復号化することを特徴とする電子メール暗号化方法。

【請求項8】通信ネットワーク上でメールの送受信を行 にて作成なう電子メール通信システムにおいて、送信者Aが受信 10 号化した者Bに対して送信するメール文を暗号化する電子メール 【数51】暗号化方法であって、 を記憶し

準備処理として、センタは、素数 p_1 , p_2 と整数 a_1 , a_2 を公開し、剰余環 $Z/(p_2-1)$ の元を出力する秘密 錬暗号アルゴリズムおよび鍵 r を秘密情報とし(センタ の秘密情報である秘密鍵暗号アルゴリズムにより、平文 Mを鍵 k で暗号化した結果を $E_0(k; M)$ で表わす)、送信者 A は、 $0 < x_A < p_1-1$ なる整数 x_A をランダム に選び、

【数42】 y_A=exp(a₁: x_A) (mod p₁), を計算し、受信者Bは、0 < x_B < p₁-1なる整数 x_B をランダムに選び、

【数43】 $y_B = \exp(a_1 : x_B)$ (mod p_1),

を計算し(ただし、exp(a:x) は a & x 乗 した値を表わす)、

センタへの登録処理として、送信者Aおよび受信者Bは、自分のID情報をセンタに登録し、センタは送信者AのID情報IAから送信者Aに固有の秘密鍵sAを、

【数44】 $s_A = E_0(r; I_A)$,

にて計算し、同様に受信者BのID情報IBから、送信者Bに固有の秘密鍵sBを、

【数45】 $s_B = E_0(r; I_B)$,

にて計算し、各々を送信者Aおよび受信者Bに安全に配布し、このとき、ID情報が異なれば対応する秘密鍵も異なり、送信者Aは、yAと、秘密鍵sAに対応する公開録

【数46】 $v_A = exp(a_2: s_A)$ (mod p_2), の組 (y_A , v_A) を送信者Aの公開鍵として登録し、受信者Bは、 y_B と、秘密鍵 s_B に対応する公開鍵

[数47] $v_B = \exp(a_2 : s_B) \pmod{p_2}$,

の組 (y_B, v_B) を受信者Bの公開鍵として登録し、マスタ鍵の共有処理として、

送信者Aは、受信者Bとの間で共通に保有する関数gを用いて、自分の秘密鍵である (x_A, s_A) と受信者Bの公開鍵である (y_B, v_B) から、マスタ鍵 $K_{A,B}$ を、

【数48】 $K_{A,B} = g(exp(y_B: x_A) \pmod{p_1}, exp(y_B: s_A) \pmod{p_2})$,

にて作成し、受信者Bは、自分の秘密鍵である(x_B , s_B)と送信者Aの公開鍵である(y_A , v_A)を用いて、マスタ鍵 $K_{B,A}$ を、

[数49] $K_{B,A} = g(\exp(y_A : x_B) \pmod{p_1}, \exp(v_A : s_B) \pmod{p_2}$,

10

にて作成し、このとき、 $K_{A,B}=K_{B,A}$ が成立し、特に、送信者Aは電子メールを送信する機会が多い受信者に対しては、それらの受信者と送信者A間の各マスタ鍵からなる集合 S_A 、または、送信者Aの秘密鍵(x_A , s_A)と鍵生成関数 θ から、

【数50】K(A) = θ (x_A, s_A),

【数51】 $C(A) = E_A(K(A); S_A)$,

を記憶し、以後の電子メール通信において、データ暗号 化鍵更新のためなどでマスタ鍵が必要な場合、マスタ鍵 が記憶されているものについては、新たに相手の公開鍵 と自分の秘密鍵からマスタ鍵を作成することなく、記憶 されているマスタ鍵を使うこととし(ただし、E_A(k; M)はAが所持する秘密鍵暗号アルゴリズムにより平文 Mを鍵kにて暗号化した結果を表わす)、

メール本文の暗復号化処理として、送信者Aは、データ 20 暗号化鍵 k をランダムに選び、受信者Bとの間で共通に 保有する秘密鍵暗号系アルゴリズムを用いて、メール本 文 P をデータ暗号化鍵 k にて暗号化した暗号文E(k; P)と、データ暗号化鍵 k をマスタ鍵 KA, Bにて暗号化した暗号文E(KA, B; k)をメール受信者Bに送信し、 受信者Bは、マスタ鍵 KB, Aを用いてE(KA, B; k)からデータ暗号化鍵 k を復号化し、さらにデータ暗号化鍵 k を用いてE(k; P)からメール本文 P を復号化する ことを特徴とする電子メール暗号化方法。

【請求項9】通信ネットワーク上でメールの送受信を行 30 なう電子メール通信システムにおいて、送信者Aが受信者Bに対して送信するメール文を暗号化する電子メール 暗号化方法であって、準備処理として、センタは、素数 p と合成数 $n=p_1\cdot p_2$ と整数 a を公開し、整数 α および剰余環 Z/(N) の元を出力する秘密舞暗号アルゴリズムおよび鍵 r を秘密情報とし(ただし、 $N=1.c.d(p_1-1, p_2-1)$ であり、センタの秘密情報である秘密 舞暗号アルゴリズムにより平文Mを舞 k で暗号化した結果を $E_0(k; M)$ で表わす)、

送信者 A は、 0 < x A < p - 1 なる整数 x A をランダムに ※ 387 k

【数52】 y_A=exp(a: x_A) (mod p), を計算し、受信者Bは、0 < x_B < p₁-1なる整数 x_B

【数53】 y_B=exp(a:x_B) (mod p),

を計算し、センタへの登録処理として、送信者Aおよび 受信者Bは、自分のID情報をセンタに登録し、センタ は送信者AのID情報IAから送信者Aに固有の鍵 (sa, va)を、

【数54】 $s_A = E_0(r; I_A)$,

50 $v_A = \exp(\alpha : s_A) \pmod{n}$,

をランダムに選び、

にて計算し、同様に受信者BのI D情報 I Bから受信者Bに固有の鍵(s B, v B) を、

【数55】 $s_B = E_0(r; I_B)$,

 $v_B = \exp(\alpha : s_B) \pmod{n}$,

にて計算し、各々を送信者Aおよび受信者Bに安全に配布し、このとき、ID情報が異なれば対応する鍵も異なり、送信者Aは(y_A , v_A)を送信者Aの公開鍵として登録し、受信者Bは(y_B , v_B)を受信者Bの公開鍵として登録し、マスタ鍵共有処理として、

送信者Aは、受信者Bとの間で共通に保有する関数gを用いて、自分の秘密鍵である(x_A , s_A)と受信者Bの公開鍵である(y_B , v_B)から、マスタ鍵 $K_{A,B}$ を、

【数56】 $K_{A,B} = g(\exp(y_B : x_A) \pmod p)$, $\exp(v_B : s_A) \pmod n$),

にて作成し、受信者Bは、自分の秘密鍵である(x_B , s_B)と送信者Aの公開鍵である(y_A , v_A)を用いてマスタ鍵 $K_{B,A}$ を、

[数57] $K_{B,A} = g(exp(y_A : x_B)(mod p), exp(v_A : s_B)(mod n))$,

にて作成し、このとき、 $K_{A,B}=K_{B,A}$ が成立し、特に、送信者Aは電子メールを送信する機会が多い受信者に対しては、それらの受信者と送信者A間の各マスタ鍵からなる集合 S_A 、または、送信者Aの秘密鍵(x_A , s_A)と鍵生成関数 θ から、

【数58】 $K(A) = \theta(x_A, s_A)$,

にて作成した鍵K(A) を用いてマスタ鍵の集合 S_A を暗号化した

[数59] $C(A) = E_A(K(A); S_A)$,

を記憶し、以後の電子メール通信において、データ暗号化鍵更新のためなどでマスタ鍵が必要な場合、マスタ鍵が記憶されているものについては、新たに相手の公開鍵と自分の秘密鍵からマスタ鍵を作成することなく、記憶されているマスタ鍵を使うこととし(ただし、EA(k:M)はAが所持する秘密鍵暗号アルゴリズムにより平文Mを鍵kにて暗号化した結果を表わす)、

メール本文の暗復号化処理として、送信者Aは、データ暗号化鍵kをランダムに選び、受信者Bとの間で共通に保有する秘密鍵暗号系アルゴリズムを用いて、メール本文Pをデータ暗号化鍵kにて暗号化した暗号文E(k; P) と、データ暗号化鍵kをマスタ鍵 $K_{A,B}$ にて暗号化した暗号文E($K_{A,B}$; k) をメール受信者Bに送信し、受信者Bは、マスタ鍵 $K_{B,A}$ を用いてE($K_{A,B}$; k) からデータ暗号化鍵kを復号化し、さらにデータ暗号化鍵kを用いてE(k; P) からメール本文Pを復号化することを特徴とする電子メール暗号化方法。

【請求項10】請求項4、5、6、7、8または9において、

マスタ鍵共有処理の中で、送信者Aと受信者Bとの間で 共通に保有する関数gとして、

[数60] $g(x_1, x_2) = h(\phi(x_1, x_2))$,

なる関数を用いて(ただし、hはハッシュ関数、ゅは、 【数61】φ:Z/(p) ×Z/(n) → Z/(p n)

12

 $((x, x) \rightarrow x),$

なる同型写像を表わし、Z/(m) は整数mを法とする剰 余環を表わし、x はそれぞれの剰余環において x を代表 元とする剰余類を表わす。)、マスタ鍵を作成する電子 メール暗号化方法。

【請求項11】請求項4、5、6、7、8または9において、マスタ鍵共有処理の中で、送信者Aと受信者Bと の間で共通に保有する関数 g として、

【数62】 $g(x_1, x_2) = h(x_1 * x_2)$,

なる関数を用いて(ただし、hはハッシュ関数、 x_1* x_2 は x_1 と x_2 の排他的論理和を表わす)、マスタ鍵を作成する電子メール暗号化方法。

【請求項12】請求項3、4、5、6、7、8、9また は11において、

メール本文の暗復号化処理として、送信者Aは、データ暗号化鍵kをランダムに選び、受信者Bとの間で共通に保有する秘密鍵暗号系アルゴリズムを用いて、メール本 \mathbf{Z} のをデータ暗号化鍵kにて暗号化した暗号文E(k; \mathbf{P})と、データ暗号化鍵kとマスタ鍵 $\mathbf{K}_{A,B}$ の排他的論理和 \mathbf{k} * $\mathbf{K}_{A,B}$ を受信者Bに送信し、受信者Bは、マスタ鍵 $\mathbf{K}_{B,A}$ と \mathbf{k} * $\mathbf{K}_{A,B}$ の排他的論理和を取ることにより、データ暗号化鍵 \mathbf{k} を復号化し、さらにデータ暗号化鍵 \mathbf{k} を制いてE(\mathbf{k} ; \mathbf{P})からメール本文 \mathbf{P} を復号化する電子メール暗号化システム。

【請求項13】通信ネットワーク上でメールの送受信を 行なう電子メール通信システムにおいて、送信者Aが受 信者Bに対して送信するメール文を暗号化する電子メー 30 ル暗号化方法であって、送信者および受信者はそれぞれ の秘密鍵を内蔵した演算機能付き記憶媒体を所持し、送 信者は通信ネットワークに接続された計算機1と送信者 の記憶媒体Aを用いて、請求項1から請求項12の電子 メール暗号化方法に従い、暗号化処理を記憶媒体A内で 行ない、送信文を計算機1に出力し、計算機1から通信 回線を介して受信者の使用する計算機2に送信し、受信 者は、送信者から送られてきた送信文を計算機2から受 信者の演算機能付き記憶媒体Bに出力し、記憶媒体B内 でデータ暗号化鍵およびメール本文を復号化することを 物後とする電子メール暗号化方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、通信ネットワークを介して文書を送受信する電子メール通信システムにおいて、ネットワーク上での盗聴や不正者によるなりすましに対して安全性を向上させた電子メール暗号化方法に関する。

[0002]

【従来の技術】Internetにおける電子メールのセキュリ 50 ティを強化することを目的として、文献「Linn, J., et al., "Privacy Enhancement for Internet Electronic Mail:Part I, II, III, IV", RFC-1421-1424,1993」に 記載のPEM (Privacy Enhanced Mail) が提案されて いる。以下、PEMの電子メール暗号化技法について簡 単に説明する。

【0003】PEMでは、鍵管理に公開鍵暗号RSA (参考文献「R.L.Rivest, A. Shamir, L. Adleman, "A Meth od for Obtaining Digital Signatures and Public Key Cryptosystems", Communications of the ACM, Vol. 21, 1 978」)を利用し、データの暗号化に米国暗号標準である 秘密鍵暗号DES(参考文献「Data EncryptionStandar d, FIPS-PUB-46, 1977」) を用いている。

【0004】送信者Aは受信者Bにネットワークを介し て電子メールを送る。

【0005】Step 1. Aはデータ暗号化鍵Kをランダ ムに作り、鍵Kを用いてメール本文PをDESにより暗 号化する。すなわち、メール本文Pの暗号文C₁を、

[0006]

【数63】 $C_1 = E(K; P)$,

とする。

【0007】Step 2. AはBの公開鍵(eg, ng)を すなわ 用いて鍵KをRSAにより暗号化する。 ち、鍵Kの暗号文C2を、

[0008]

【数64】 $C_2 = \exp(K : e_B) \pmod{n_B}$,

とする。ただし、exp(a:x) はaをx乗した値を表わ

【0009】Step 3. Aはメール本文 P を公開情報で あるハッシュ関数fを用いて圧縮し、Aの秘密鍵dAと わち、f(P) に対する署名文sgnA(P) を、

[0010]

【数65】 $sgn_A(P) = exp(f(P) : d_A) \pmod{n_A}$, とする。

[0011] Step 4. A $\c C_1$, $\c C_2$, $\c sgn_A(P)$ $\c EBC$ 送る。

【0012】Step 5. Bは自分の秘密鍵 d B を用いて、 C2から、

[0013]

【数66】 $K = \exp(C_2 : d_B) \pmod{n_B}$,

により、データ暗号化鍵Kを復号化する。

【0014】Step 6. Bは鍵Kを用いて、

[0015]

【数67】 $P = D(K; C_1)$,

により、メール本文Pを復号化する。

【0016】Step 7. Bはメール本文PがAから送ら れてきたことを確めるため、ハッシュ関数fとAの公開 鍵 (eA, nA) を用いて、

[0017]

【数68】 $f(P) = \exp(\operatorname{sgn}_A(P) : e_A) \pmod{n_A}$,

を確認する。

【0018】PEMには次の問題点が考えられる。

14

【0019】(1)安全性の立場から、データ暗号化鍵 は頻繁に変更することが望ましい。PEMの場合、電子 メール通信をする機会が多い相手であっても、データ暗 号化鍵を変更する度に相手の公開鍵を用いてRSA暗号 により新しいデータ暗号化鍵を暗号化して送らなければ ならない。特に、一度に多数の相手にメールを送信した い場合、RSA暗号は暗号化のための計算量が比較的大 10 きいため、データ暗号化鍵の暗号化のための計算処理負 担が大きい。

【00.20】(2) RSA暗号を用いた鍵配送では、鍵 の復号化は受信者の秘密鍵のみで行なわれるため認証機 能はない。そのため、PEMでは、RSAを用いたディ ジタル署名を付加することで認証機能を実現している。 しかし、ディジタル署名は作成と検証のための計算処理 負担が大きく、さらに、メール暗号文に付加するヘッダ 情報が大きくなる欠点を持つ。

【0021】(3) PEMにおいては、ネットワークの 20 各利用者の鍵は利用者自身が作成するため、偶然にも異 なる利用者の鍵が一致してしまう可能性がある。たとえ ば、利用者Aと利用者Bの鍵が一致していることに、A がBの公開鍵から気が付くと、AはBになりすました り、Bと他の利用者の電子メール通信を盗聴することが できる。

[0022]

【発明が解決しようとする課題】本発明の目的は、通信 ネットワーク上でメールの送受信を行なう電子メール通 信システムにおいて、メールシステムや機種に特定しな 公開鍵 n_A を用いてf(P)にRSA署名を行なう。すな 30 いで通常のメールと併用できる特徴を有し、かつ、電子 メールの送信者および受信者双方におけるセキュリティ 機能実現のための計算処理およびメモリ負担が少なく、 かつ、利用者の鍵の一致の心配がない盗聴や不正者のな りすましに対して安全性の高い電子メール暗号化方法を 提案することにある。

[0023]

【課題を解決するための手段】本発明は、通信ネットワ ーク上でデータの送受信を行なう電子メール通信システ ムにおいて、高効率・高安全な電子メール暗号化方法を 40 提案するものである。

【0024】具体的実現方法の1つとしては、送信者A が受信者Bに対して送信するメール文を暗号化する電子 メール暗号化方法であって、

準備処理

センタは、素数pと合成数n=p1·p2と整数aを公開 し、nの素因数分解と正数αを秘密とする。

【0025】送信者Aは、0<xA<p-1なる整数xA をランダムに選び、

[0026]

50 【数69】 $y_A = \exp(a : x_A)$ (mod p),

15

を計算し、受信者Bは、O<xB<p-1なる整数xBを ランダムに選び、

[0027]

【数70】 $y_B = exp(a : x_B)$ (mod p),

を計算する。ただし、exp(a:x) はaをx乗した値を 表わす。

【0028】 センタへの登録処理

送信者Aおよび受信者Bは、自分のID情報をセンタに 登録し、センタは送信者AのID情報IAから、送信者 Aに固有の鍵(s_A, v_A)を正数eを用いて、

[0029]

[数71] $s_A = \exp(I_A : e)$ (mod 1. c. d(p₁-1, p₂ -1)),

 $v_A = \exp(\alpha : s_A) \pmod{n}$,

にて計算し、同様に受信者BのID情報IBから、受信 者Bに固有の鍵(sg, vg)を、

[0030]

[数72] $s_B = exp(I_B: e)$ (mod l.c.d($p_1 - 1$, p_2 -1)),

 $v_B = \exp(\alpha : s_B) \pmod{n}$,

にて計算し、各々を送信者Aおよび受信者Bに安全に配 布する。ただし、1. c. d (x, y) は整数 x, yの 最小公倍数を表わす。

【0031】このとき、ID情報が異なれば対応する秘 密鍵も異なる。

【0032】送信者Aは(yA, vA)を送信者Aの公 開鍵として登録し、受信者Bは(yB, vB)を受信者B の公開鍵として登録する。

【0033】 マスタ鍵共有処理

送信者Aは、受信者Bとの間で共通に保有する関数gを 用いて、自分の秘密鍵である(xA, sA)と受信者Bの 公開鍵である (yB, vB) から、マスタ鍵KA.Bを、

[0034]

【数73】 $K_{A,B} = g(exp(y_B : x_A)(mod p), exp(y_B : x_A)$ $s_A) \pmod{n}$,

にて作成し、受信者Bは、自分の秘密鍵である(xB, s B) と送信者Aの公開鍵である(yA, vA)を用いて マスタ鍵 K B. Aを、

[0035]

【数74】 $K_{B,A} = g (exp(y_A : x_B) (mod p)$, exp $(v_A : s_B) \pmod{n}$,

にて作成する。

【0036】このとき、KA,B=KB,Aが成立する。

【0037】特に、送信者Aは電子メールを送信する機 会が多い受信者に対しては、それらの受信者と送信者A 間の各マスタ鍵からなる集合SA、または、送信者Aの 秘密鍵 (x_A, s_A)と鍵生成関数θから、

[0038]

【数75】K(A) = θ (x_A, s_A),

号化した [0039]

【数76】C(A) = $E_A(K(A); S_A)$,

を記憶し、以後の電子メール通信において、データ暗号 化鍵更新のためなどでマスタ鍵が必要な場合、マスタ鍵 が記憶されているものについては、新たに相手の公開鍵 と自分の秘密鍵からマスタ鍵を作成することなく、記憶 されているマスタ鍵を使う。ただし、EA(k;M)はA が所持する秘密鍵暗号アルゴリズムにより平文Mを鍵k 10 にて暗号化した結果を表わす。

【0040】 メール本文の暗復号化処理

送信者Aは、データ暗号化鍵kをランダムに選び、受信 者Bとの間で共通に保有する秘密鍵暗号系アルゴリズム を用いて、メール本文 P をデータ 暗号化鍵 k にて暗号化 した暗号文E(k;P)と、データ暗号化鍵kをマスタ 鍵KA,Bにて暗号化した暗号文E(KA,B;k)をメール 受信者Bに送信する。

【0041】受信者Bは、マスタ鍵K_{B.A}を用いてE(K AR: k) からデータ暗号化鍵 k を復号化し、さらにデ 20 ータ暗号化鍵 k を用いて E(k; P) からメール本文 P を復号化する。

[0042]

【作用】本発明における電子メール暗号化方法では、電 子メールの送信者および受信者はそれぞれ自分の秘密鍵 と相手の公開鍵からマスタ鍵の共有を行ない、秘密鍵暗 号を用いてメール本文の暗号化およびデータ暗号化鍵の 配送を行なうことにより、セキュリティ機能実現のため の送受信者双方の計算処理負担を削減し、かつ、ディジ タル署名などの付加情報を付けることなく送信者の認証 30 を実現した。特に、頻繁にメール通信を行なう相手につ いては鍵情報としてマスタ鍵のみを記憶しておけば、受 信者の公開鍵の必要もなく、かつ、データ暗号化鍵の更 新の度にマスタ鍵の生成を行なう必要もなく、高速な暗 号化処理が可能となった。

【0043】また、ID情報は利用者(電子メールの送 信者および受信者)毎に異なることを利用して、センタ と利用者が協力して利用者の鍵生成を行なうことで、利 用者の鍵が一致することがなく、盗聴や不正者のなりす ましに対して高い安全性を実現した。

40 [0044]

【実施例】以下、図面を用いて、本発明の実施例につい て詳しく説明する。

【0045】図1は、本発明の実施例のシステム構成を 示す図である。同図のシステムは、複数の利用者側装置 100とセンタ側装置200とから構成されている。利用者側 装置100は互いに通信回線300を介して接続されている。

【0046】図2は、本発明における電子メール暗号化 方法の概念図を示す。

【0047】図3は、実施例1から9における利用者側 にて作成した鍵K(A)を用いてマスタ鍵の集合 SAを暗 50 装置100の内部構成を示す。利用者側装置100は、乱数発

生器101、べき乗算器102、鍵生成器103、演算器104、暗 復号化装置105、ハッシュ計算器106、メモリ107、通信 装置108を備えている。

【0048】図4は、センタ側装置200の内部構成を示 す。センタ側装置200は、素数発生器201、原始根生成器 202、秘密鍵作成装置203、演算器204を備えている。

【0049】図5は、カード400の内部構成を示す。カ ード400は、乱数発生器401、べき乗算器402、鍵生成器4 03、演算器404、暗復号化装置405、ハッシュ計算器40 6、メモリ407、出力装置408を備えている。

【0050】図6は、実施例10における利用者側装置 500の内部構成を示す。利用者側装置500は、カード読取 装置501、通信装置502を備えている。

【0051】ネットワークの利用者は通信回線に接続さ れた自分の利用者側装置100(カード400と利用者側装置 500) を用いて他の利用者側装置100 (カード400と利用 者側装置500)を使用する別の利用者に対して電子メー ル通信を行なうケースを考える。

【0052】このとき、電子メールの暗号化方法につい

 $x_{\lambda j} \in Z$ s.t $0 < x_{\lambda j} < p-1$ for $j = 1, \dots, n$.

公開鍵:

[0058]

 $y_{\lambda j} = \exp(a : x_{\lambda j}) \pmod{p}$ for $j = 1, \dots, n$.

ただし、pは素数、aは0<a<pでZ/(p)の原始根 となる整数、nはセキュリティパラメータを表わし、予 め与えられているものとする。

【0059】さらに、ネットワークに接続された利用者 側装置100内には同一の秘密鍵暗号系アルゴリズムを内 蔵した暗復号化装置104があり、この秘密鍵暗号系アル 復号化した結果をそれぞれE(K; M), D(K; M)で 表わす。

【0060】 マスタ鍵の共有

ネットワークの利用者であるA、Bについて、AはBに 対して電子メールを送りたい。この目的の下で、A, B は次の手順を実行する。

【0061】AはAの利用者側装置100A内のべき乗算器 102Aおよび演算器104Aを用いて自分の秘密鍵 x AjとBの 公開鍵 y_{Bi} (j=1, …, n)からマスタ鍵 $K_{A,B}$ を、

[0062]

【数79】 $K_{A,B} = \Pi \{ \exp(y_{Bj} : x_{Aj}) \pmod{p} \mid j = 1 \}$ $1, \dots, n$,

にて計算する。ただし、記号100A等については、数字の 後のアルファベットにより利用者の識別を行なう。

【0063】同様にして、BはBの利用者側装置100B内 のべき乗算器102Bおよび演算器104Bを用いて自分の秘密 鍵xBjとAの公開鍵yAj (j=1, …, n) からマスタ 鍵KB.Aを、

[0064]

【数80】 $K_{B,A} = \Pi \{ \exp(y_{Aj} : x_{Bj}) \pmod{p} \mid j = 50$ 【数83】 $C_1 = E(k; P)$,

て以下の実施例において詳しく説明する。

【0053】 Zは整数環を表わし、 Z/(n) は整数 n を 法とする剰余環を表わす。特に、nが素数のとき、Z/ (n) は剰余体になる。 $x \in Z$ に対して、xは対応する 剰余環におけるxを代表元とする剰余類を表わす。ま た、exp(a:x) はa & ex 乗した値を表わす。

18

【0054】ネットワークの利用者のID情報はすべて tビット以下で表わされる場合、利用者のID情報はZ $/(\exp(2:t)-1)$ の元と考えることができる。この 10 とき、利用者の I D情報の集合 Λ を、 Λ = Z / (exp(2: t)-1)と定義する。

【0055】(実施例1)

ネットワークの各利用者んはそれぞれ自身の利用者側装 置100内の乱数発生器101およびべき乗算器102を用いて 次の情報を作成し、公開鍵のみを公開・登録する。

【0056】秘密鍵:

[0057]

【数77】

【数78】

1, ..., n}, にて作成する。このとき、明らかに、

[0065]

【数81】 K_{A, B}= K_{B, A},

が成立する。

【0066】さらに、Aは電子メールを送信する機会が ゴリズムを用いて平文Mを鍵Kで暗号化した結果および 30 多い利用者に対しては、それらの利用者とA間の各マス 夕鍵の集合 S_A 、または、Aの秘密情報 x_{Aj} (j=1, …, n) から利用者側装置100A内の鍵生成器103Aにより 鍵K(A) を作成し、暗復号化装置105Aを用いて鍵K (A) により SAを暗号化した

[0067]

【数82】 $C(A) = E(K(A); S_A)$,

を、メモリ107Aに記憶する。以後の電子メール通信にお いて、データ暗号化鐽更新のためなどでマスタ鍵が必要 な場合、マスタ鍵が記憶されているものについては、新 40 たに自分の秘密鍵と相手の公開鍵からマスタ鍵を作成す ることなく、メモリ107Aに記憶されているマスタ鍵を使 う。

【0068】 メール本文の暗号化

Aは、利用者側装置100A内の乱数発生器101Aを用いて乱 数 r を選び、 r を入力として鍵生成器103Aからデータ暗 号化鍵kを作成する。メール本文Pを暗復号化装置105A を用いてデータ暗号化鍵kにより暗号化した暗号文C1 を、

[0069]

にて作成する。さらに、暗復号化装置105Aを用いてデー 夕暗号化鍵 k をマスタ鍵KA.Bで暗号化した暗号文C 2を、

[0070]

【数84】 $C_2 = E(K_{A,B}; k)$,

にて作成する。

【0071】Aは、通信装置108Aを用いてC1とC2をB に送る。

【0072】 メール本文の復号化

Bは送られてきた C_1 と C_2 に対して、Bの利用者側装置 IO を計算して、 s_λ を利用者 λ に安全に配布する。 100B内の暗復号化装置105Bを用いて、まず、マスタ鍵K B. Aより、

[0073]

【数85】 $k = D(K_{B, A}; C_2)$,

にてデータ暗号化鍵kを復号化し、次にデータ暗号化鍵 kを用いて、

[0074]

【数86】 $P = D(k; C_1)$,

にて、メール本文Pを復号化する。

【0075】 (実施例2) 実施例2では、センタの存在 20 を仮定して利用者の鍵情報が偶然にも一致することのな い高い安全性をもつ電子メール暗号化方法について述べ る。

【0076】 準備・

センタはセンタ側装置200内の素数発生器201、原始根生 成器202および演算器204を用いて次の情報を作成する。

【0077】公開情報:

p₁;素数,

• $p_2 = 2 q_1 q_2 + 1$; 素数,

・a₁∈Z s.t 0 < a₁<p₁、かつ、a₁はZ/(p₁) で 30 104Aとハッシュ計算器106Aを用いて、Aの秘密鍵

・a 2 ∈ Z s.t 0 < a 2 < p 2、かつ、a 1は Z/(p 1) で 原始根,

秘密情報:

·q₁, q₂∈Z;素数.

ネットワークの各利用者 λは利用者側装置100内の乱数 発生器101およびべき乗算器102を用いて次の鍵を作成す

【0078】秘密鍵:

[0079]

【数87】 $\cdot x \lambda \in Z$ s.t $0 < x \lambda < p_1 - 1$.

公開鍵:

[0080]

【数88】 \cdot y $\lambda = \exp(a_1 : x_{\lambda}) \pmod{p_1}$. センタへの登録'

ネットワークの利用者λはセンタに自分のID情報Iλ

なる同型写像を表わす $(n=p_1p_2)$ 。ここで、xはそ れぞれの剰余環におけるxを代表元とする剰余類を表わ す。

【0081】センタは、センタ側装置200内の秘密鍵作 成装置203を用いて、

20

[0082]

【数89】 e d $\equiv 1 \pmod{1.c.d(q_1-1, q_2-1)}$, なるe, d∈Zを作成し、利用者λのID情報I_λに対 して.

[0083]

【数90】 $s_{\lambda} = \exp(I_{\lambda} : e) \pmod{p_2-1}$,

【0084】このとき、

[0085]

【数91】

 $s_{\lambda} \neq s_{\mu}$ if $I_{\lambda} \neq I_{\mu} \in \Lambda = \mathbb{Z}/(p_2 - 1)$, が成立することに注意する。

【0086】 マスタ鍵の共有

ネットワークの利用者 λは、ベクトル(y λ, v λ)を λの公開鍵として登録を行なう。ただし、

[0087]

【数92】 $v_{\lambda} = \exp(a_2 : s_{\lambda}) \pmod{p_2}$.

さらに、ネットワークに接続された利用者側装置100内 には同一の秘密鍵暗号系アルゴリズムを内蔵した暗復号 化装置105があり、この秘密鍵暗号系アルゴリズムを用 いて平文Mを鍵Kで暗号化した結果および復号化した結 果をそれぞれE(K; M), D(K; M)で表わす。

【0088】ネットワークの利用者A、Bについて、A はBに対して電子メールを送りたい。この目的の下で、 A. Bは次の手順を実行する

AはAの利用者側装置100A内のべき乗算器102Aと演算器

(xA, sA) とBの公開鍵 (yB, vB) からマスタ鍵K A.Bを、

[0089]

【数93】 $K_{A,B} = g(\phi(\exp(y_B: x_A) \pmod{p_1}), \exp$ $(v_B: s_A) \pmod{p_2}$,

にて作成する。同様に、BはBの利用者側装置100B内の べき乗算器102Bと演算器104Bとハッシュ計算器106Bを用 いて、Bの秘密鍵(xB, sB)とAの公開鍵(yA,

vA)からマスタ鍵KB,Aを、

40 [0090]

[数94] $K_{B,A} = g(\phi(\exp(y_A : x_B) \pmod{p_1})$, exp $(v_A:s_B) \pmod{p_2}),$

にて計算する。ただし、gはハッシュ計算器内で用いら れるハッシュ関数を表わし、 øは,

[0091]

【数95】

 $\phi: \mathbb{Z}/(p_1) \times \mathbb{Z}/(p_2) \rightarrow \mathbb{Z}/(n)$ ((x, x) \rightarrow x),

【0092】このとき、明らかに、K_{A,B}=K_{B,A},が成 立する。

50 【0093】さらに、Aは電子メールを送信する機会が

多い利用者については、それらの利用者とAとの間の各 マスタ鍵の集合SA、または、Aの秘密情報×Aから利用 者側装置100A内の鍵生成器103Aにより鍵K(A)を作成 し、暗復号化装置105Aを用いて鍵K(A)によりSAを暗 号化した $C(A) = E(K(A); S_A)$, を、メモリ107A に記憶する。以後の電子メール通信において、データ暗 号化鍵更新のためなどでマスタ鍵が必要な場合、マスタ 鍵が記憶されているものについては、新たに自分の秘密 鍵と相手の公開鍵からマスタ鍵を作成することなく、メ モリ107Aに記憶されているマスタ鍵を使う。

【0094】 メール本文の暗号化

Aは、利用者側装置100A内の乱数発生器101Aを用いて乱 数rを選び、rを入力として鍵生成器103Aからデータ暗 号化鍵kを作成する。メール本文Pを暗復号化装置105A を用いてデータ暗号化鍵kにより暗号化した暗号文C1 を、 $C_1 = E(k; P)$, にて作成する。さらに、暗復号 化装置105Aを用いてデータ暗号化鍵kをマスタ鍵KA,B で暗号化した暗号文 C_2 を、 C_2 = $E(K_{A,B};k)$, にて 作成する。

【0095】Aは、通信装置108Aを用いてC1とC2をB に送る。

【0096】 メール本文の復号化

Bは送られてきたC1とC2に対して、Bの利用者側装置 100B内の暗復号化装置105Bを用いて、まず、マスタ鍵K B, Aより、 $k = D(K_{B, A}; C_2)$, にてデータ暗号化鍵 kを復号化し、次にデータ暗号化鍵kを用いて、P=D $(k; C_1)$, にて、メール本文Pを復号化する。

【0097】(実施例3)実施例3は、実施例2におい てセンタが作成する利用者λのための情報(sλ,

v a) を実施例2とは異なる別の関数により作成する-例を与える。

【0098】 準備

センタはセンタ側装置200内の素数発生器201、原始根生 成器202および演算器204を用いて次の情報を作成する。 ただし、関数 f は秘密鍵作成装置203内に格納されてい るものとする。

【0099】公開情報:

- p1;素数。
- $\cdot p_2 = 2 q_1 q_2 + 1$; 素数,
- $\cdot a_2 \in Z$ s.t $0 < a_2 < p_2$ 、かつ、 $a_1 dZ/(p_1)$ で 原始根,

秘密情報:

·q₁, q₂∈Z;素数.

ネットワークの各利用者 λは利用者側装置100内の乱数 発生器101およびべき乗算器102を用いて次の鍵を作成す

【0100】秘密鍵:

[0101]

22

【数96】 $\cdot x \lambda \in Z$ s.t $0 < x \lambda < p_1 - 1$.

[0102]

[数97] · y $\lambda = \exp(a_1 : x_\lambda) \pmod{p_1}$. センタへの登録

ネットワークの利用者λはセンタに自分のΙD情報Ιλ を登録する。

【0103】センタはセンタ側装置200内の秘密鍵作成 装置203を用いて、利用者λのID情報Ⅰ2に対して、

(1) I ₁ + i ₂ (mod p₂-1) は平方剰余,

(2) $I_{\lambda} + i_{\lambda} \pmod{p_2 - 1} \neq I_{\mu} + i_{\mu} \pmod{p_2 - 1}$ p_2-1) if $\lambda \neq \mu$,

となるように正整数iaを選び、

[0104]

【数98】

 $s_{\lambda} = \exp(I_{\lambda} + i_{\lambda}) : 1/2 \pmod{p_2 - 1}$ を計算して、saを利用者λに安全に配布する。

【0105】このとき、明らかに、s ぇ≠s μ if λ **≠ μ** , が成立する。

【0106】 マスタ鍵の共有

ネットワークの利用者 λ は、ベクトル(yぇ, v ぇ)を λの公開鍵として登録を行なう。ただし、νλ = exp(a 2: s l) (mod p2). さらに、ネットワークに接続さ れた利用者側装置100内には同一の秘密鍵暗号系アルゴ リズムを内蔵した暗復号化装置105があり、この秘密鍵 暗号系アルゴリズムを用いて平文Mを鍵Kで暗号化した 結果および復号化した結果をそれぞれE(K;M),D (K; M) で表わす。

【0107】ネットワークの利用者A、Bについて、A 30 はBに対して電子メールを送りたい。この目的の下で、 A, Bは次の手順を実行する

AはAの利用者側装置100A内のべき乗算器102Aと演算器 104Aとハッシュ計算器106Aを用いて、Aの秘密鍵

(xA, sA) とBの公開鍵 (yB, vB) からマスタ鍵K A.Bを、

[0108]

【数99】 $K_{A,B} = g(\phi(\exp(y_B : x_A) \pmod{p_1})$, exp $(v_B: s_A) \pmod{p_2}$,

にて作成する。同様に、BはBの利用者側装置100B内の ・a₁∈Z s.t 0 < a₁<p₁、かつ、a₁はZ/(p₁) で 40 べき乗算器102Bと演算器104Bとハッシュ計算器106Bを用 いて、Bの秘密鍵(xB, sB)とAの公開鍵(yA, va)からマスタ鍵KB,Aを、

[0109]

【数100】 $K_{B,A} = g(\phi(\exp(y_A : x_B) \pmod{p_1})$, ex $p(v_A: s_B) \pmod{p_2}$,

にて計算する。ただし、gはハッシュ計算器内で用いら れるハッシュ関数を表わし、 øは、

[0110]

【数101】

 $\phi: Z/(p_1) \times Z/(p_2) \rightarrow Z/(n)$ $((x, x) \rightarrow x),$

なる同型写像を表わす $(n=p_1p_2)$ 。ここで、xはそ れぞれの剰余環におけるxを代表元とする剰余類を表わ

【0111】このとき、明らかに、KA.B=KB.A, が成 立する。

【0112】さらに、Aは電子メールを送信する機会が 多い利用者については、それらの利用者とAとの間の各 マスタ鍵の集合SA、または、Aの秘密情報xAから利用 者側装置100A内の鍵生成器103Aにより鍵K(A)を作成 し、暗復号化装置105Aを用いて鍵K(A)によりSAを暗 号化した $C(A) = E(K(A); S_A)$, を、メモリ107A に記憶する。以後の電子メール通信において、データ暗 号化鍵更新のためなどでマスタ鍵が必要な場合、マスタ 鍵が記憶されているものについては、新たに自分の秘密 鍵と相手の公開鍵からマスタ鍵を作成することなく、メ モリ107Aに記憶されているマスタ鍵を使う。

【0113】 メール本文の暗号化

Aは、利用者側装置100A内の乱数発生器101Aを用いて乱 数 r を選び、r を入力として鍵生成器103Aからデータ暗 20 て、 号化鍵kを作成する。メール本文Pを暗復号化装置105A を用いてデータ暗号化鍵kにより暗号化した暗号文C1 を、 $C_1 = E(k; P)$, にて作成する。さらに、暗復号 化装置105Aを用いてデータ暗号化鍵kをマスタ鍵KA,B で暗号化した暗号文 C_2 を、 C_2 = $E(K_{A,B};k)$, にて 作成する。

【0114】Aは、通信装置108Aを用いてC1とC2をB に送る。

【0115】 メール本文の復号化

100B内の暗復号化装置105Bを用いて、まず、マスタ鍵K B.Aより、 $k = D(K_{B.A}; C_2)$, にてデータ暗号化鍵k を復号化し、次にデータ暗号化鍵kを用いて、P=D $(k; C_1)$, にて、メール本文Pを復号化する。

【0116】(実施例4)実施例4は、実施例2,3に おいてセンタが作成する利用者 lのための情報 (sl, v₁)を実施例2,3とは異なる別の関数により作成す る一例を与える。

【0117】 準備

センタはセンタ側装置200内の素数発生器201、原始根生 40 A, Bは次の手順を実行する 成器202および演算器204を用いて次の情報を作成する。

【0118】公開情報:

- p₁;素数,
- ・p2;素数,
- $\cdot a_1 \in Z$ s.t $0 < a_1 < p_1$ 、かつ、 $a_1 t Z/(p_1)$ で
- $\cdot a_2 \in \mathbb{Z}$ s.t $0 < a_2 < p_2$ 、かつ、 $a_1 \notin \mathbb{Z}/(p_1)$ で 原始根,

秘密情報:

・Z/(p2-1) の元を出力する秘密鍵暗号アルゴリズ

ムおよび鍵 r ∈ Z.

センタの秘密情報である秘密鍵暗号アルゴリズムによ り、平文Mを鍵kで暗号化および復号化した結果をそれ ぞれ $E_0(k; M)$, $D_0(k; M)$ で表わす。

24

【0119】ネットワークの各利用者んは利用者側装置 100内の乱数発生器101およびべき乗算器102を用いて次 の鍵を作成する。

【0120】秘密鍵:

10 [0121]

【数102】 $\cdot x_{\lambda} \in Z$ s.t $0 < x_{\lambda} < p_1 - 1$. 公開鍵:

[0122]

【数103】 · y $\lambda = \exp(a_1 : x \lambda)$ (mod p₁). センタへの登録

ネットワークの利用者んはセンタに自分のID情報IL を登録する。

【0123】センタは、センタ側装置200内の秘密鍵作 成装置203を用いて、利用者んのID情報ILに対し

[0124]

[数104] $s_{\lambda} = E_0(r; I_{\lambda}) \in \mathbb{Z}/(p_2-1)$, を計算して、s_λを利用者λに安全に配布する。

【0125】このとき、

[0126]

【数105】

 $s_{\lambda} \neq s_{\mu}$ if $I_{\lambda} \neq I_{\mu} \in \Lambda = Z/(p_2-1)$, が成立することに注意する。

【0127】 マスタ鍵の共有

Bは送られてきた C_1 と C_2 に対して、Bの利用者側装置 30 ネットワークの利用者 λ は、ベクトル(y λ , v λ) を λ の公開鍵として登録を行なう。ただし、 $v_{\lambda} = exp(a)$ 2: s 1) (mod p2). さらに、ネットワークに接続さ れた利用者側装置100内には同一の秘密鍵暗号系アルゴ リズムを内蔵した暗復号化装置105があり、この秘密鍵 暗号系アルゴリズムを用いて平文Mを鍵Kで暗号化した 結果および復号化した結果をそれぞれE(K;M), D (K; M) で表わす。

> 【0128】ネットワークの利用者A、Bについて、A はBに対して電子メールを送りたい。この目的の下で、

AはAの利用者側装置100A内のべき乗算器102Aと演算器 104Aとハッシュ計算器106Aを用いて、Aの秘密鍵

(xA, sA) とBの公開鍵 (yB, vB) からマスタ鍵K A,Bを、

[0129]

【数106】 $K_{A,B} = g(\phi(\exp(y_B : x_A) \pmod{p_1})$, ex $p(v_B: s_A) \pmod{p_2}$)

, にて作成する。同様に、BはBの利用者側装置100B内 のべき乗算器102Bと演算器104Bとハッシュ計算器106Bを 50 用いて、Bの秘密鍵(xB, sB) とAの公開鍵(yA,

va) からマスタ鍵KB,Aを、

[0130]

【数107】 $K_{B,A} = g(\phi(\exp(y_A : x_B) \pmod{p_1})$, ex $p(v_A: s_B) \pmod{p_2}$,

 $\phi: Z/(p_1) \times Z/(p_2) \rightarrow Z/(n)$

なる同型写像を表わす $(n=p_1p_2)$ 。ここで、x はそ れぞれの剰余環におけるxを代表元とする剰余類を表わ

【0132】このとき、明らかに、KA.B=KB.A, が成 立する。

【0133】さらに、Aは電子メールを送信する機会が 多い利用者については、それらの利用者とAとの間の各 マスタ鍵の集合SA、または、Aの秘密情報xAから利用 者側装置100A内の鍵生成器103Aにより鍵K(A)を作成 し、暗復号化装置105Aを用いて鍵K(A)によりSAを暗 号化した $C(A) = E(K(A); S_A)$, を、メモリ107A に記憶する。以後の電子メール通信において、データ暗 号化鍵更新のためなどでマスタ鍵が必要な場合、マスタ 鍵が記憶されているものについては、新たに自分の秘密 鍵と相手の公開鍵からマスタ鍵を作成することなく、メ 20 を登録する。 モリ107Aに記憶されているマスタ鍵を使う。

【0134】 メール本文の暗号化

Aは、利用者側装置100A内の乱数発生器101Aを用いて乱 数rを選び、rを入力として鍵生成器103Aからデータ暗 号化鍵kを作成する。メール本文Pを暗復号化装置105A を用いてデータ暗号化鍵 k により暗号化した暗号文C1 を、 C_1 =E(k;P), にて作成する。さらに、暗復号 化装置105Aを用いてデータ暗号化鍵kをマスタ鍵KA.B で暗号化した暗号文 C_2 を、 C_2 = $E(K_{A,B};k)$, にて 作成する。

【0135】Aは、通信装置108Aを用いてC1とC2をB に送る。

【0136】 メール本文の復号化

Bは送られてきたC1とC2に対して、Bの利用者側装置 100B内の暗復号化装置105Bを用いて、まず、マスタ鍵K B.Aより、 $k = D(K_{B.A}; C_2)$, にてデータ暗号化鍵k を復号化し、次にデータ暗号化鍵kを用いて、P=D $(k; C_1)$, にて、メール本文Pを復号化する。

【0137】 (実施例5) 実施例5は実施例2の拡張版 させている。

【0138】 準備

センタはセンタ側装置200内の素数発生器201、原始根生 成器202および演算器204を用いて次の情報を作成する。

【0139】公開情報:

- ·p;素数,
- $\cdot n = q \cdot q'$
- ・a∈Z s.t O < a < p、かつ、a は Z / (p) で原始 根.

秘密情報:

にて計算する。ただし、gはハッシュ計算器内で用いら れるハッシュ関数を表わし、øは,

26

[0131]

【数108】

 $((x, x) \rightarrow x),$

•q, $q' \in Z$; 素数 s.t $q-1=2\xi_1\xi_2$, q'-1 $=2\eta_1\eta_2(\xi_1, \xi_2, \eta_1, \eta_2; 素数)$,

 $\cdot \alpha \in Z$ s.t α はZ/(q), Z/(q') で原始根.

ネットワークの各利用者 λ は利用者側装置100内の乱数 10 発生器101およびべき乗算器102を用いて次の鍵を作成す る。

【0140】秘密鍵:

[0141]

【数109】 $\cdot x_{\lambda} \in Z$ s.t $0 < x_{\lambda} < p-1$.

公開鍵:

[0142]

【数110】 · y $\lambda = \exp(a : x \lambda)$ (mod p). センタへの登録

ネットワークの利用者 λ はセンタに自分の Ι D情報 Ι λ

【0143】センタはセンタ側装置200内の秘密鍵作成 装置203を用いて、ed≡1 (mod M), なるe, dを 作成し、利用者λのID情報I_λに対して、s_λ=exp $(I_{\lambda}:e) \pmod{N}$,

[0144]

【数111】 $v_{\lambda} = \exp(\alpha : s_{\lambda}) \pmod{n}$,

を計算して、 (s λ, v λ) を利用者 λ に安全に配布す る。ただし、 $M=1.c.d(\xi_1-1, \xi_2-1, \eta_1-1,$ $\eta_2 - 1$), N = 1. c. d(q - 1, q' - 1).

【0145】このとき、 30

[0146]

【数112】 $s_{\lambda} \neq s_{\mu}$ and $v_{\lambda} \neq v_{\mu}$ if $I_{\lambda} \neq I_{\mu}$ $\in \Lambda = Z/(N)$,

が成立することに注意する。

【0147】 マスタ鍵の共有

ネットワークの利用者 λは、ベクトル(y λ, v λ)を λの公開鍵として登録を行なう。

【0148】さらに、ネットワークに接続された利用者 側装置100内には同一の秘密鍵暗号系アルゴリズムを内 であり、αの値を秘密にすることで安全性をさらに向上 40 蔵した暗復号化装置105があり、この秘密鍵暗号系アル ゴリズムを用いて平文Mを鍵Kで暗号化した結果および 復号化した結果をそれぞれE(K;M), D(K;M)で

> 【0149】ネットワークの利用者A, Bについて、A はBに対して電子メールを送りたい。この目的の下で、

A, Bは次の手順を実行する

AはAの利用者側装置100A内のべき乗算器102Aと演算器 104Aとハッシュ計算器106Aを用いて、Aの秘密鍵

(xA, sA) とBの公開鍵 (yB, vB) からマスタ鍵K 50 A Bを、

[0150]

【数113】 $K_{A,B} = g(\phi(\exp(y_B : x_A) \pmod p), \exp(v_B : s_A) \pmod n)$),

27

にて作成する。同様に、BはBの利用者側装置100B内のベき乗算器102Bと演算器104Bとハッシュ計算器106Bを用いて、自分の秘密鍵(x_B , s_B)とAの公開鍵(y_A , v_A)かちマスタ鍵 $K_{B,A}$ を、

 $\phi: \mathbb{Z}/(p) \times \mathbb{Z}/(n) \rightarrow \mathbb{Z}/(m)$

なる同型写像を表わす(m=pn)。ここで、x はそれぞれの剰余環における x を代表元とする剰余類を表わす。

【0153】このとき、明らかに、 $K_{A,B}=K_{B,A}$, が成立する。

【0154】さらに、Aは電子メールを送信する機会が多い利用者については、それらの利用者とAとの間の各マスタ鍵の集合 S_A 、または、Aの秘密情報 x_A から利用者側装置100A内の鍵生成器103Aにより鍵K(A) を作成し、暗復号化装置105Aを用いて鍵K(A) により S_A を暗号化した $C(A) = E(K(A); S_A)$, を、メモリ107Aに記憶する。以後の電子メール通信において、データ暗号化鍵更新のためなどでマスタ鍵が必要な場合、マスタ鍵が記憶されているものについては、新たに自分の秘密鍵と相手の公開鍵からマスタ鍵を作成することなく、メモリ107Aに記憶されているマスタ鍵を使う。

【0155】 メール本文の暗号化

Aは、利用者側装置100A内の乱数発生器101Aを用いて乱数 r を選び、r を入力として鍵生成器103Aからデータ暗号化鍵 k を作成する。メール本文 P を暗復号化装置105Aを用いてデータ暗号化鍵 k により暗号化した暗号文 C_1 を、 C_1 = E(k;P) ,にて作成する。さらに、暗復号化装置105Aを用いてデータ暗号化鍵 k をマスタ鍵 $K_{A,B}$ で暗号化した暗号文 C_2 を、 C_2 = $E(K_{A,B};k)$,にて作成する。さらに、暗復号化装置105Aを用いてデータ暗号化鍵 k をマスタ鍵 $K_{A,B}$ で暗号化した暗号文 $K_{A,B}$ で $K_{A,$

【0156】Aは、通信装置108Aを用いて C_1 と C_2 をBに送る。

【0157】 メール本文の復号化

Bは送られてきた C_1 と C_2 に対して、Bの利用者側装置 100B内の暗復号化装置105Bを用いて、まず、マスタ鍵K B, Aより、 $k=D(K_{B,A};C_2)$, にてデータ暗号化鍵 k を復号化し、次にデータ暗号化鍵 k を用いて、k を用いて、k を用いて、k を用いて、k を見いる。

【0158】(実施例6)実施例6は実施例3の拡張版 であり、 α の値を秘密にすることにより安全性をさらに向上させている。

【0159】 準備

センタはセンタ側装置200内の素数発生器201、原始根生成器202および演算器204を用いて次の情報を作成する。 ただし、関数 f は秘密鍵作成装置203内に格納されてい [0151]

【数114】 $K_{B,A} = g(\phi(\exp(y_A : x_B) \pmod p), \exp(v_A : s_B) \pmod n)$),

にて計算する。ただし、gはハッシュ計算器内で用いられるハッシュ関数を表わし、φは,

[0152]

【数115】

 $((x, x) \rightarrow x),$

るものとする。

10 【0160】公開情報:

·p;素数,

 \cdot n = q · q',

・a ∈ Z s.t 0 < a < p、かつ、a は Z/(p) で原始 根,

秘密情報:

• q, $q' \in Z$; 素数 s.t $q-1=2\xi_1\xi_2$, $q'-1=2\eta_1\eta_2(\xi_1, \xi_2, \eta_1, \eta_2; 素数),$

・α∈Z s.t αはZ/(q), Z/(q') で原始根.

f:擬似ランダム関数。

20 ネットワークの各利用者 1 は利用者側装置100内の乱数 発生器101およびべき乗算器102を用いて次の鍵を作成す る。

【0161】秘密鍵:

[0162]

【数116】 $\cdot x \lambda \in Z$ s.t $0 < x \lambda < p-1$.

公開鍵:

[0163]

【数117】・y $\lambda = \exp(a : x \lambda) \pmod{p}$. センタへの登録

30 ネットワークの利用者 λ はセンタに自分のID情報 I_{λ} を登録する。

【0164】センタはセンタ側装置200内の秘密鍵作成 装置203を用いて、利用者λのID情報I₂に対して、

(1) I 1 + i 2 (mod N) は平方剰余、

(2) $I_{\lambda} + i_{\lambda} \pmod{N} \neq I_{\mu} + i_{\mu} \pmod{N}$ if $\lambda \neq \mu$.

となるように正整数 i λを選び、

[0165]

【数118】 $s_{\lambda} = \exp(I_{\lambda} + i_{\lambda} : 1/2) \pmod{N}$,

 $0 \quad v_{\lambda} = \exp(\alpha : s_{\lambda}) \pmod{n},$

を計算して、 $(s_{\lambda}, v_{\lambda})$ を利用者 λ に安全に配布する。

【0166】このとき、明らかに、 $s_{\lambda} \neq s_{\mu}$, $v_{\lambda} \neq v_{\mu}$ if $\lambda \neq \mu$, が成立する。

【0167】 マスタ鍵の共有

ネットワークの利用者 λ は、ベクトル(y λ , ν λ)を λの公開鍵として登録を行なう。

【0168】さらに、ネットワークに接続された利用者 側装置100内には同一の秘密鍵暗号系アルゴリズムを内 50 蔵した暗復号化装置105があり、この秘密鍵暗号系アル

ゴリズムを用いて平文Mを鍵Kで暗号化した結果および 復号化した結果をそれぞれE(K; M), D(K; M) で 表わす。

【0169】ネットワークの利用者A、Bについて、A はBに対して電子メールを送りたい。この目的の下で、 A、Bは次の手順を実行する

AはAの利用者側装置100A内のべき乗算器102Aと演算器 104Aとハッシュ計算器106Aを用いて、Aの秘密鍵

(xA, sA) とBの公開鍵 (yB, vB) からマスタ鍵K A, Bを、

[0170]

【数119】 $K_{A,B} = g(\phi(\exp(y_B : x_A) \pmod p), \exp$ $\phi: \mathbb{Z}/(p) \times \mathbb{Z}/(n) \rightarrow \mathbb{Z}/(m)$

なる同型写像を表わす(m=pn)。ここで、xはそれ ぞれの剰余環におけるxを代表元とする剰余類を表わ

【0173】このとき、明らかに、K_{A.B}=K_{B.A},が成

【0174】さらに、Aは電子メールを送信する機会が 多い利用者については、それらの利用者とAとの間の各 20 マスタ鍵の集合SA、または、Aの秘密情報xAから利用 者側装置100A内の鍵生成器103Aにより鍵K(A)を作成 し、暗復号化装置105Aを用いて鍵K(A)によりSAを暗 号化した $C(A) = E(K(A) ; S_A)$, を、メモリ107A に記憶する。以後の電子メール通信において、データ暗 号化鍵更新のためなどでマスタ鍵が必要な場合、マスタ 鍵が記憶されているものについては、新たに自分の秘密 鍵と相手の公開鍵からマスタ鍵を作成することなく、メ モリ107Aに記憶されているマスタ鍵を使う。

【0175】 メール本文の暗号化

Aは、利用者側装置100A内の乱数発生器101Aを用いて乱 数 r を選び、r を入力として鍵生成器103Aからデータ暗 号化鍵kを作成する。メール本文Pを暗復号化装置105A を用いてデータ暗号化鍵kにより暗号化した暗号文C1 を、 $C_1 = E(k; P)$, にて作成する。さらに、暗復 号化装置105Aを用いてデータ暗号化鍵 k をマスタ鍵K A, Bで暗号化した暗号文 C_2 を、 C_2 = $E(K_{A,B}; k)$, に て作成する。さらに、暗復号化装置105Aを用いてデータ 暗号化鍵kをマスタ鍵KA,Bで暗号化した暗号文C2を、 $C_2 = E(K_{A,B}; k)$, にて作成する。

【0176】Aは、通信装置108Aを用いてC1とC2をB に送る。

【0177】 メール本文の復号化

Bは送られてきたC1とC2に対して、Bの利用者側装置 100B内の暗復号化装置105Bを用いて、まず、マスタ鍵K B, Aより、 $k = D(K_{B, A}; C_2)$, にてデータ暗号化鍵 kを復号化し、次にデータ暗号化鍵kを用いて、P=D $(k; C_1)$, にて、メール本文Pを復号化する。

【0178】 (実施例7) 実施例7は実施例4の拡張版 であり、 α の値を秘密にすることにより安全性をさらに 50 【0187】このとき、s $_{\lambda} \neq s$ $_{\mu}$ and v $_{\lambda} \neq v$ $_{\mu}$ i

 $(v_B: s_A) \pmod{n}$),

にて作成する。同様に、BはBの利用者側装置100B内の べき乗算器102Bと演算器104Bとハッシュ計算器106Bを用 いて、自分の秘密鍵(xB, sB)とAの公開鍵(yA, va) からマスタ鍵KB.Aを、

30

[0171]

【数120】 $K_{B,A} = g(\phi(\exp(y_A : x_B) \pmod p)$, exp $(v_A:s_B) \pmod{n}$),

にて計算する。ただし、gはハッシュ計算器内で用いら 10 れるハッシュ関数を表わし、øは、

[0172]

. 【数121】

 $((x, x) \rightarrow x),$

向上させている。

【0179】 準備

センタはセンタ側装置200内の素数発生器201、原始根生 成器202および演算器204を用いて次の情報を作成する。

【0180】公開情報:

p:素数。

·n=q·q'(q, q';素数),

・a∈Z s.t O < a < p、かつ、aはZ/(p)で原始

秘密情報:

·Z/(N) の元を出力する秘密鍵暗号アルゴリズムおよ

 $\cdot \alpha \in \mathbb{Z}$ s.t α は $\mathbb{Z}/(q)$, $\mathbb{Z}/(q')$ で原始根. ここで、N=1. c.d(q-1, q'-1) とする。また、 センタの秘密情報である秘密鍵暗号アルゴリズムによ り、平文Mを鍵kで暗号化および復号化した結果をそれ 30 ぞれE₀(k; M), D₀(k; M) で表わす。

【0181】ネットワークの各利用者んは利用者側装置 100内の乱数発生器101およびべき乗算器102を用いて次 の鍵を作成する。

【0182】秘密鍵:

[0183]

【数122】 $\cdot x_{\lambda} \in Z$ s.t $0 < x_{\lambda} < p-1$.

公開鍵:

[0184]

【数123】 · y $\lambda = \exp(a : x \lambda)$ (mod p).

センタへの登録

ネットワークの利用者んはセンタに自分のID情報Iん を登録する。

【0185】センタはセンタ側装置200内の秘密鍵作成 装置203を用いて、利用者 λの I D 情報 I λ に対して、

[0186]

【数124】 $s_{\lambda} = E_0(r; I_{\lambda}) \in Z/(N)$,

 $v_{\lambda} = \exp(\alpha : s_{\lambda}) \pmod{N}$,

を計算して、 $(s_{\lambda}, v_{\lambda})$ を利用者 λ に安全に配布す

f $I_{\lambda} \neq I_{\mu} \in \Lambda = \mathbb{Z}/(\mathbb{N})$, が成立することに注意する。

【0188】 マスタ鍵の共有

ネットワークの利用者 A は、ベクトル(y A, v A)を Aの公開鍵として登録を行なう。

【0189】さらに、ネットワークに接続された利用者 側装置100内には同一の秘密鍵暗号系アルゴリズムを内 蔵した暗復号化装置105があり、この秘密鍵暗号系アル ゴリズムを用いて平文Mを鍵Kで暗号化した結果および 復号化した結果をそれぞれE(K; M), D(K; M)で 10 表わす。

【0190】ネットワークの利用者A, Bについて、A はBに対して電子メールを送りたい。この目的の下で、 A, Bは次の手順を実行する

AはAの利用者側装置100A内のべき乗算器102Aと演算器 104Aとハッシュ計算器106Aを用いて、Aの秘密鍵

 $\phi: Z/(p) \times Z/(n) \rightarrow Z/(m)$

なる同型写像を表わす(m=pn)。ここで、x はそれぞれの剰余環における x を代表元とする剰余類を表わす。

【0194】このとき、明らかに、 $K_{A,B}=K_{B,A}$, が成立する。

【0195】さらに、Aは電子メールを送信する機会が多い利用者については、それらの利用者とAとの間の各マスタ鍵の集合 S_A 、または、Aの秘密情報 \times Aから利用者側装置 100A内の鍵生成器 103Aにより鍵 K(A) を作成し、暗復号化装置 105Aを用いて鍵 K(A) により S_A を暗号化した $C(A)=E(K(A);S_A)$,を、メモリ 107A に記憶する。以後の電子メール通信において、データ暗号化鍵 更新のためなどでマスタ鍵が必要な場合、マスタ鍵が記憶されているものについては、新たに自分の秘密鍵と相手の公開鍵からマスタ鍵を作成することなく、メモリ 107Aに記憶されているマスタ鍵を使う。

【0196】 メール本文の暗号化

Aは、利用者側装置100A内の乱数発生器101Aを用いて乱数 r を選び、r を入力として鍵生成器103Aからデータ暗号化鍵 k を作成する。メール本文 P を暗復号化装置105Aを用いてデータ暗号化鍵 k により暗号化した暗号文 C_1 を、 C_1 = E (k; P), にて作成する。さらに、暗復号化装置105Aを用いてデータ暗号化鍵 k をマスタ鍵 K A, B で暗号化した暗号文 C_2 を、 C_2 = E (K_A , B; k), にて作成する。

【0197】Aは、通信装置108Aを用いて C_1 と C_2 をBに送る。

【0198】 メール本文の復号化

Bは送られてきた C_1 と C_2 に対して、Bの利用者側装置 100B内の暗復号化装置 105Bを用いて、まず、マスタ鍵 $K_{B,A}$ より、 $k=D(K_{B,A};C_2)$, にてデータ暗号化鍵 kを復号化し、次にデータ暗号化鍵 kを用いて、 $P=D(k;C_1)$, にて、メール本文Pを復号化する。

(x_A, s_A) とBの公開鍵(y_B, v_B) からマスタ鍵K_{A,B}を、

[0191]

[数125] $K_{A,B} = g(\phi(\exp(y_B : x_A) \pmod{p}), \exp(y_B : s_A) \pmod{n})$),

にて作成する。同様に、BはBの利用者側装置100B内のベき乗算器102Bと演算器104Bとハッシュ計算器106Bを用いて、自分の秘密鍵(x_B , s_B)とAの公開鍵(y_A , v_A)からマスタ鍵 $K_{B,A}$ を、

0 [0192]

[数126] $K_{B,A} = g(\phi(\exp(y_A : x_B) \pmod p), \exp(v_A : s_B) \pmod n)$),

にて計算する。ただし、gはハッシュ計算器内で用いられるハッシュ関数を表わし、φは、

[0193]

【数127】

 $((x, x) \rightarrow x),$

【0199】(実施例8)実施例1かち実施例7において、以下のようにメール本文の暗号化およびメール本文 の復号化を行なう。

【0200】・メール本文の暗号化

Aは、利用者側装置100A内の乱数発生器101Aを用いて乱数 r を選び、r を入力として鍵生成器103Aからデータ暗号化鍵 k を作成する。メール本文 P を暗復号化装置105Aを用いてデータ暗号化鍵 k により暗号化した暗号文 C_1 を、 C_1 =E (k; P), にて作成する。さらに、演算器を用いてデータ暗号化鍵 k とマスタ鍵 $K_{A,B}$ の排他的論理和を、 C_2 =k* $K_{A,B}$, にて作成する。

【0201】Aは通信装置108Aを用いて C_1 と C_2 をBに30 送る。

【0202】・メール本文の復号化

Bは送られてきた C_1 と C_2 に対して、まず、演算器104B を用いてマスタ鍵 $K_{B,A}$ と C_2 の排他的論理和を計算することによりデータ暗号化鍵kを復号化する。すなわち、 $k=C_2*K_{A,B}$ 、次に、暗復号化装置105Bを用いてデータ暗号化鍵kから、 $P=D(k;C_1)$, にてメール本文 Pを復号化する。

【0203】(実施例9)実施例2から実施例8のマスタ鍵共有において、AはAの利用者側装置100A内のべき40 乗算器102Aと演算器104Aとハッシュ計算器106Aを用いて、Aの秘密鍵(x_A, s_A)とBの公開鍵(y_B, v_B)からマスタ鍵K_{A,B}を、

[0204]

[数128] $K_{A,B} = g((exp(y_B: x_A) (mod p))*(exp(y_B: s_A) (mod n)))*(exp(y_B: s_A) (mod n))),$

にて作成する。同様に、BはBの利用者側装置100B内の べき乗算器102Bと演算器104Bとハッシュ計算器106Bを用いて、自分の秘密鍵(x_B , s_B)とAの公開鍵(y_A , v_A)からマスタ鍵 $K_{B,A}$ を、

50 [0205]

32

【数129】 $K_{B,A} = g((exp(y_A : x_B) (mod p))*(exp(y_A : x_B) (mod p)))*(exp(y_A : x_B) (mod p))*(exp(y_A : x_B) (mod p)))*(exp(y_A : x_B)$

にて計算する。ただし、gはハッシュ計算器内で用いられるハッシュ関数を表わし、x * yはxとyの排他的論理和を表わす。

【0206】(実施例10)ネットワークの各利用者はカード400を所持し、電子メール通信時にはカード400を利用者側装置500内のカード読取装置501に差し込み、実施例1から実施例9において、利用者側装置100内の乱数発生器101、べき乗算器102、鍵生成器103、演算器104、暗復号化装置105、ハッシュ計算器106、メモリ107を用いて行なう処理をそれぞれカード400内の乱数発生器401、べき乗算器402、鍵生成器403、演算器404、暗復号化装置405、ハッシュ計算器406、メモリ407を用いて行ない、受信者への送信文はカード400内の出力装置408を用いて、利用者側装置500内のカード読取装置501に出力され、さらに、利用者側装置500内の通信装置502を用いて通信回線300を介して送信する。

[0207]

センタ (200)

【発明の効果】本発明における電子メール暗号化方法に 20 よれば、メールシステムや機種に特定しないで通常のメールと併用できる特徴を有するため、通信ネットワークの形態に依らず適用が可能である。また、電子メールの送信者および受信者はそれぞれ自分の秘密鍵と相手の公開鍵からマスタ鍵の共有を行ない、秘密鍵暗号を用いてメール本文の暗号化およびデータ暗号化鍵配送を行なっているため、送受信者双方の計算処理負担が少なく高速な暗号化処理が可能となった。また、ディジタル署名などの付加情報を付けることなく送信者の認証が可能となるため、メール暗号文のヘッダ情報が少なく、電子メー 30

ルのセキュリティ機能実現のための処理時間が大幅に削減された。さらに、ID情報は利用者毎に異なることを利用して、センタと利用者が協力して利用者の鍵生成を行なうことにより、利用者の鍵の一致の心配がなく、盗聴や不正者のなりすまし対して高い安全性を実現した。

34

【図面の簡単な説明】

【図1】本発明の実施例におけるシステム構成を示すブロック図。

【図2】本発明の電子メール暗号化方法の概念を示す説 10 明図。

【図3】実施例1から9のシステム構成内の利用者側装 置内部構成を示すブロック図。

【図4】実施例1から9のシステム構成内のセンタ側装置内部構成を示すブロック図。

【図5】実施例10のシステム構成内のカード内部構成を示すプロック図。

【図6】実施例10のシステム構成内の利用者側装置内 部構成を示すブロック図。

【符号の説明】

20 100…利用者側装置、

101…利用者側装置100内の乱数発生器、

102…利用者側装置100内のべき乗算器、

103…利用者側装置100内の鍵生成器、

104…利用者側装置100内の演算器、

105…利用者側装置100内の暗復号化装置、

106…利用者側装置100内のハッシュ計算器、

107…利用者側装置100内のメモリ、

108…利用者側装置100内の通信装置、

200…センタ側装置。

【図2】

図 2

送信者A(100)

AおよびBは独自に

タと協力して鍵生成を行なう.

KAB-KBA

E1(k; P), E2(KA,B)k)

受信者B(100) 10 は、セ 行なう. 10 【図3】

図 3

[図1]

図 1

【図4】

[図5]

【図6】

図 6

フロントページの続き

(51) Int. Cl. ⁶

識別記号

庁内整理番号 FI

技術表示箇所

H O 4 L 12/58