Part 1: bonding

- •Why we need Quantum Mechanics?
 - The hydrogen atom
- Basic Quantum Mechanics
 - Schrodinger equation and simple solutions
- Electronic structure of atoms
 - •Hydrogen and multi-electron atoms
- •Bonding in molecules
 - •The simplest molecule H2+
 - First row hydrides
 - Covalent, ionic and van der Waals interactions
- Bonding in crystalline solids
 - Band structure
 - Covalent vs. metallic bonding

Hydrogen excited states

Hydrogen general solution

$$\psi_{n,l,m}(r,\theta,\phi) = R_{nl}(r)Y_{l,m}(\phi,\theta)$$

Three quantum numbers

- *n* principal quantum number
 - Energy depends on n:

$$E_n = -\frac{13.6eV}{n^2}Z^2$$

- / angular momentum quantum number
 - Values limited by principal quantum number: 0, 1, ..., n-1
- m magnetic quantum number (projection of I along z axis)
 - Values limited by *I*: *m*=-*I*, -*I*+1, ...,*I*-1, *I*

Summary: hydrogen solution

Wavefunctions

n	1 -	m	Spectroscopic designation	E_n in units of $e^2/2a_0$	g	$\psi_{n,L,m}(r, heta,\phi)$
1	0	0	18	-1	1 1	$N_1 \exp \left(-Zr/a_0\right)$
2	0	0	28	-1		$N_2(2-Zr/a_0) \exp(-Zr/2a_0)$
2	1	0	$2p_s$	-1	4	$N_2(Zr/a_0) \exp(-Zr/2a_0) \cos \theta$
2 2 2	1	1, cos	$2p_s$	-1		$N_2(Zr/a_0) \exp (-Zr/2a_0) \sin \theta \cos \phi$
2	1	1, sin	$2p_y$	-1		$N_2(Z_7/a_0) \exp (-Z_7/2a_0) \sin \theta \sin \phi$
3	0	0	3s	-t		$N_3[27 - 18(Zr/a_0) + 2(Zr/a_0)^2] \exp(-Zr/3a_0)$
3	1	0	$3p_s$	$-\frac{1}{9}$		$N_3\sqrt{6} (6 - Zr/a_0)(Zr/a_0) \exp(-Zr/3a_0) \cos \theta$
3	1	1, cos	$3p_x$	-1		$N_3\sqrt{6} (6 - Zr/a_0)(Zr/a_0) \exp(-Zr/3a_0) \sin \theta \cos \theta$
3 3 3	1	1, sin	$3p_y$	- 1	9	$N_3\sqrt{6} (6 - Zr/a_0)(Zr/a_0) \exp(-Zr/3a_0) \sin \theta \sin \theta$
3	2	0	$3d_{3e^3-r^3}$	$-\frac{1}{9}$		$N_3\sqrt{1/2}(Zr/a_0)^2 \exp(-Zr/3a_0)(3\cos^2\theta-1)$
3 3 3	2 2 2 2	1, cos	$3d_{zz}$	-1		$N_3\sqrt{6}(Zr/a_0)^2 \exp(-Zr/3a_0) \sin\theta \cos\theta \cos\phi$
3	2	1, sin	$3d_{zy}$	-#		$N_3\sqrt{6}(Zr/a_0)^2 \exp(-Zr/3a_0) \sin\theta \cos\theta \sin\phi$
3		2, cos	$3d_{z^2-y^2}$	-1		$N_3\sqrt{3/2}(Zr/a_0)^2 \exp{(-Zr/3a_0)} \sin^2{\theta} \cos{2\phi}$
3	2	2, sin	$3d_{xy}$	− ∳		$N_3\sqrt{3/2}(Zr/a_0)^2 \exp(-Zr/3a_0) \sin^2\theta \sin 2\phi$

Martin Karplus and Richard N. Porter

Atoms and molecules: an introduction for students of physical chemistry

Atoms with multiple electrons

- Orbitals maintain the shape of hydrogen ones
- We'll use hydrogen-like orbitals for other atoms

Lithium and shielding

- •Electrons in inner shells shield the nuclear potential to outer electrons
 - •Energy depends not only on n, but also on I
 - •The larger the angular momentum number I, the higher the energy

Energy levels

Hund's rule and exchange interaction

