Introduction to Computer Science

Computer Architecture: The Past & The Future

Mingyu Gao

gaomy@tsinghua.edu.cn

IIIS, Tsinghua

About Me: Mingyu Gao 高鸣宇

- □ Assistant Professor at Tsinghua University (2019.3. now)
- □ Ph.D. from Stanford University (2012.9. 2018.6.)
- B.S. from Tsinghua University (2008.9. 2012.7.)
- □ Research: Computer Architecture 计算机系统结构
 - 。Domain-specific (e.g., AI) systems 领域专用加速
 - 。Memory systems 存储系统架构
 - 。Hardware security 硬件安全计算
 - 0

More on my webpage: http://people.iiis.tsinghua.edu.cn/~gaomy/

Terminology & Vocabulary

- Von Neumann Architecture 冯诺依曼架构
- Arithmetic/logic unit (ALU)算术逻辑单元
- □ Register file 寄存器堆
- □ Memory 内存
- □ Assembly code 汇编代码
- □ Machine code 机器码
- □ Instruction 指令
- □ Instruction set architecture (ISA) 指令集架构

- □ Moore's Law 摩尔定律
- □ Integrated Circuits 集成电路
- □ Transistor 晶体管
- □ Parallelism 并行
- □ Pipelining 流水线执行
- □ Superscalar 超标量
- □ Out-of-order 乱序执行Vector 矢量
- □ Multi-thread 多线程
- □ Bandwidth 带宽

COMPUTER SYSTEM BASICS

How a computer works, in a good way

Typical Computer Systems Today

 Computer systems have diverse scales and abstraction levels

 Mobile phones, laptops, desktop PCs, distributed clusters, datacenters, ...

We study all of them

Von Neumann Architecture

- Memory: for both data and programs
- Compute unit: include arithmetic/logic units and registers
- Control unit: coordinate program flow
- Input/output devices

How Computer Systems Work

- Computers work with binary signals, i.e., bits (0 and 1)
 - Everything is expressed as sequences of bits
- Program: sequence of instructions, encoded as strings of bits
 - ISA (instruction set architecture)
 - Example ISAs: x86, x86-64, ARM, RISC-V, MIPS, ...
- Data storage (i.e., memory): cells preserve bits over time
 - Flip-flops, registers, SRAM, DRAM, ...
- Data processing (i.e., compute & control): logic gates operate on bits
 - AND, OR, NOT, MUX, add, mult, ...

Code Translation

- Machine code: the byte sequence that encodes program instructions
 - Actual 0's and 1's stored in the memory
- Assembly code: text representation of machine code
 - Human-readable instruction sequence

Assembler

Binary encode each instruction

Linker

- Resolve inter-file references
- Combine with static libraries
 - Some libraries are dynamically linked

Assembly's (Simplified) View of The System

- State: PC, registers, memory
 - Program counter (PC): points to the next instruction
 - Where we are in the middle of the instruction sequence
 - Registers (a.k.a., register file): local, heavily used data in the processor
 - Memory: code and data, both stored as blocks of bytes
- Arithmetic/logic unit (ALU): digital logic to do computation

How Instructions Execute

- 1) PC used as address to fetch an instruction from memory
- 2) The instruction indicates how to compute
 - a) Transfer data between memory and processor registers
 - b) Compute on register values and store results to registers
 - c) Special ways to interact with outside world through I/O
- 3) Update PC to the next instruction, go back to 1)

What We Always Want

All computer systems should work fast & efficiently

- High performance
 - Theorists invent algorithms by considering asymptotic behaviors (e.g., O(nlogn))
 - Architects set the constant factors
- □ Low cost, in terms of money, area, power, energy, design complexity, ...
 - o It is not hard to have high performance, but it is hard to do so with low cost

How did we achieve this goal before? What could we do next to continue?

THE OLD GOOD DAYS

... when we have everything scale well

Moore's Law

- □ Gordon E. Moore
 - Co-founder of Fairchild, later became CEO of Intel
- □ The original statement (1965)

The complexity for minimum component costs has increased at a rate of roughly a factor of two per year

□ The more well-known version

The number of transistors per square inch on integrated circuits is doubling every year

In 1975, revised to doubling every two years

Fig. 2 Number of components per Integrated function for minimum cost per component extrapolated vs time.

How Is Moore's Law Doing?

Moore's Law – The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

- □ 1974, Intel 8080
 - 6,000 transistors
 - o 20 mm²
- □ 2018, HiSilicon Kirin 980
 - 6,900,000,000 transistors
 - o 74.13 mm²
- \square 310,000 \times in 44 years
 - $_{\circ}$ 1.33imes per year
 - $_{\circ}$ About 1.7imes per two years

Moore's Law is still alive!

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

What is Happening Under the Hood

□ Transistor

- MOS: Metal-Oxide-Semiconductor
- Digital switch: G controls the current from S to D
- Use these 0/1 switches to build binary circuits

- Feature size: length of the transistor channel
 - $_{\circ}$ Feature size shrinks in each technology generation (roughly 1.4imes reduction)
 - 0.18 um \rightarrow 0.13 um \rightarrow 90 nm \rightarrow 65 nm \rightarrow 45 nm \rightarrow 32 nm \rightarrow 22 nm \rightarrow 14 nm \rightarrow 10 nm \rightarrow 7 nm \rightarrow
- Other dimensions shrink along with feature size with roughly same ratio
 - $_{\circ}$ For planar area, 2imes reduction per generation, enabling Moore's Law

Dennard Scaling

- Moore's Law is only about chip density scaling
 - $_{\odot}$ If the transistor feature size scales by 1/S ($S \approx 1.4$), the chip density scales by S^2
- Performance and cost: Dennard Scaling (Robert H. Dennard, 1974)
 - $_{\circ}$ If the feature size scales by 1/S, the supply voltage and current can scale by 1/S
- The free lunch in semiconductor industry!
 - 2.8x capability (2x transistors & 1.4x speed) with same area and same power
 - E.g., Intel Tick-Tock model

Feature Size	Area <i>A</i>	Capacitance C	Voltage V	Current <i>I</i>	Freq $f = I/CV$	Energy $E = CV^2$	Power $P = CV^2f$	Pwr Density P/A
1/ <i>S</i>	$1/S^2$	1/ <i>S</i>	1/ <i>S</i>	1/S	S	$1/S^{3}$	$1/S^2$	1

From More Transistors to Higher Performance

- Processor architectures have been evolving to utilize the increasing amount of transistors to offer higher performance
- By leveraging different levels of parallelism

- Bit-level parallelism
- Instruction-level parallelism
- Data-level parallelism
- Thread-level parallelism

Bit-Level Parallelism

□ From 1970s to mid 1980s, increase datapath bit width

○ 16-bit: 0 to 65536, or −32768 to 32767

○ 32-bit: 0 to 4G, or −2G to 2G, large enough in most cases, except for memory

64-bit: little benefit to further increase

Processor	Year	# Transistors	Bit width
Intel 4004	1971	2,250	4-bit
Intel 8008	1972	3,500	8-bit
Intel 8086	1978	29,000	16-bit
Intel 80386	1985	275,000	32-bit

- Reduce number of cycles required to perform arithmetic operations
 - E.g., multiply two 32-bit numbers on a 16-bit processor
 - Four multiplies $(A_H \times B_H, A_H \times B_L, A_L \times B_H, A_L \times B_L)$, followed by several adds

Instruction-Level Parallelism

- □ From mid 1980s to 2000, increase instruction throughput
 - Pipelining: partially overlap execution of instructions
 - Superscalar & out-of-order: executing multiple instructions together
- Limitations
 - Dependencies (data or control) between instructions
 - Hardware complexity and cost

Data-Level Parallelism

- Scalar processors execute each instruction on single numbers (scalars)
- Vector processors may execute one instruction on vectors of numbers
- SIMD (single-instruction, multiple-data)
 - Increase processing throughput
 - Amortize instruction cost
 - o E.g., Intel SSE, AVX, ...

Q: what domains of algorithms would SIMD be most beneficial?

Thread-Level Parallelism

- □ After 2000, chip multiprocessors (CMPs), i.e., multi-core
- Single-thread performance is more and more difficult to optimize
- Explicitly extract task parallelism and specify as multi-thread programs

THE WALLS

... which block us from further improving performance now

Post-Dennard Scaling Era

- Moore's Law <u>without</u> Dennard Scaling
 - No more voltage and current scaling/reduction!! Why?
- □ When transistor size is so small (a few nanometers) ...
 - Transistor threshold voltage and gate oxide thickness are set by leakage
 - Further reducing voltage cannot effectively turn off
 - Leakage power may exceed switch power
- Implication: 1.4x chip capability per generation if with constant power

Feature Size	Area <i>A</i>	Capacitance C	Voltage V	Current <i>I</i>	Freq $f = I/CV$	Energy $E = CV^2$	Power $P = CV^2f$	Pwr Density P/A
1/ <i>S</i>	$1/S^2$	1/ <i>S</i>	~1	~1	< <i>S</i>	1/S	< 1	$< S^2$

The Power Wall

- Power Wall: all computers are power limited
 - From cellphones to datacenters
 - \circ Power density would increase at S^2 , need to cap it at 1
- Slow down the frequency scaling
 - \circ Basically frequency has almost stopped scaling (see previous slide): $S \to 1$
- Reduce chip utilization (*Dark Silicon*: dark area of chip not turned on)
 - \circ S^2 transistors available, but can only utilize S transistors simultaneously
 - Save another S factor

Recall: Von Neumann Architecture

- Separated processor (compute chip) and memory (data chip)
 - Fetch data from memory into processor
 - Compute in processor (processor has limited local data store)
 - Write back data from processor to memory
 - Continue with next data ...
- Overall performance is determined by both processor and memory
 - How fast processor computes
 - How fast memory delivers data

The Roofline Model

- Performance: operations per second
- Operational Intensity
 - How many ops to perform for each byte
 - A characteristic of program
 - Denote the ratio of compute to data
- Overall performance = min(processor performance, memory performance)
 - High OI: compute-bound
 - Low OI: memory-bound

The Memory Wall

- <u>Memory Wall</u>: memory performance and energy dominate systems
 - Memory (DRAM) technology scales more slowly than processor (MOS)
 - Today, memory accesses are two to three orders of magnitude more expensive than processor operations

J. L. Hennessy and D. A. Patterson. *Computer Architecture: A Quantitative Approach* (Fifth Edition). M. Horowitz. *Computing's energy problem (and what we can do about it)*. ISSCC, 2014.

Make Things Great Again

Let's break the walls!

Improving Power: Energy Efficiency

Power =
$$\frac{\text{Energy}}{\text{Time}} = \frac{\text{Energy}}{\text{Op}} \times \frac{\text{Op}}{\text{Time}}$$

Energy Efficiency Performance

- To improve performance we must improve energy efficiency
 - Otherwise, we cannot use the additional transistors

Where does the energy go?

Figure 4. Processor energy breakdown for base implementation. IF is instruction fetch/decode. D-\$ is data cache. P Reg includes the pipeline registers, buses, and clocking. Ctrl is miscellaneous control. RF is register file. FU is the functional units.

Domain-Specific Architectures (DSAs)

- Achieve better energy efficiency by tailoring the architecture to characteristics of the domain
 - Not one application, but a domain of applications different from strict ASIC
 - Requires more domain-specific knowledge then general-purpose processors
- DSA can ...
 - Reduce overheads of general-purpose
 - Instruction fetch, instruction scheduling (pipelining/OoO), ...
 - Use custom optimizations
 - Lower precision in certain domains, e.g., neural nets
 - Have more effective parallelism
 - SIMD, spatial arrays of simple processing elements, ...
 - Access memory more efficiently
 - User-controlled on-chip buffer management

Example: Google TPU v1 for Neural Nets

- Matrix Multiply Unit
 - 256 x 256 8-bit multiply-accumulate
 - Peak: 92 Tops/sec (@ 700 MHz)
- On-chip memories
 - 4 MB accumulator memory
 - 24 MB unified buffer

- □ 25x MACs vs. GPU
- □ 3.5x on-chip memory vs. GPU
- 29x perf/Watt vs. GPU

TPU v1 Roofline

Operational Intensity: MAC Ops/weight byte (log scale)

31

Open Research Questions for DSA

- Tradeoff between general-purpose and domain-specific
 - Generality, cost vs. performance, efficiency
 - Smart selection of domains
- □ Hardware development cost → agile hardware development
 - Debugging, testing, verification, ...
- Programming on DSAs
 - Domain-specific languages: TensorFlow, OpenGL, P4, Halide, ...
 - Compiler challenges: from DSL code to DSA binary
 - Co-design of new DSLs and DSAs

Improving Memory

- Memory capacity is not too hard to scale up
- Data bandwidth to processor is limited, restricting performance
 - Bandwidth (bytes/sec) = datawidth (bytes) x frequency (Hz)
 - o Channel datawidth is limited by available chip pins, which is limited by chip area
 - Channel data frequency is limited by signal integrity
- Inter-chip data transfers (memory to processor) have high energy cost

Near-Data Processing/Processing-In-Memory

- Key idea of NDP/PIM: execute computation closer to data
- Attach small processors inside or near memory modules
 - High local data bandwidth, low energy cost, low access latency, high parallelism
- Near-data compute capability is constrained by area & power budget
 - Compute-bound tasks: execute on host processor
 - Memory-bound tasks: execute on near-data processors

Example: Near-Data Processing Architecture

- □ 3D stacking integration for NDP: a logic die below multiple memory dies
 - Much more local vertical connections within a chip module
 - Memory bandwidth scale proportionally to memory capacity
 - Much more small cores utilize abundant memory bandwidth
- □ Implication: centralized → distributed
 - Making software programming more difficult

Example: In-Situ Analog Processing-in-Memory

- □ Resistive RAM (memristor): cell resistance/conductance represent value
- \square Enable analog dot-product $(I = \sum V \cdot G)$ and more
 - Computation within memory: one of the two operands stays inside memory
 - Require digital-to-analog and analog-to-digital conversions (DAC, ADC)
 - Well-suited for vector/matrix computation
- Challenge: how to enable more general, fine-grained operations?

Open Research Questions for NDP/PIM

Impact on programming models

- Heterogenous between host and NDP processors
- Distributed among NDP processors
- Work partition, data layout, coherence, consistency, synchronization, ...

Issues with analog computation

- Overheads of digital-analog conversion
- Physical device reliability, noise, interference, data precision, ...

More efficient computation

- Fully utilize abundant memory bandwidth
- Meet the tight constraints of area and power budget in memory modules

Summary

- Computer systems used to be great! exponential perf increasing
 - Moore's Law and Dennard Scaling
 - Parallelism in processor architectures
- □ They are not so "great" now 🕾 the challenges
 - The Power Wall
 - The Memory Wall
- □ How to make computer systems great again? the research directions
 - Domain-specific architectures
 - Near-data processing/processing-in-memory
 - o And many more!

The Scope of My Research Lab

Innovative Data-centric Efficient Architecture Lab (IDEAL)

Data storage

- Near-Data Processing/Processing-in-Memory architectures
- Hybrid memory systems: DRAM + NVM

Data processing

- Al accelerators: hardware architectures + software scheduling
- Reconfigurable architectures

Data security

- Isolated execution on accelerator hardware
- Hardware enclaves + cryptographic algorithms

Extended Reading/Watching

Turing Lecture by 2017 ACM A. M. Turing Award recipients –
 John L. Hennessy and David A. Patterson

A New Golden Age for Computer Architecture: Domain-Specific Hardware/Software Co-Design, Enhanced Security, Open Instruction Sets, and Agile Chip Development

- https://dl.acm.org/citation.cfm?id=3282307
 - A video recording the Turing lecture (on YouTube)
 - An article on Communications of the ACM

THANKS!

Webpage: http://people.iiis.tsinghua.edu.cn/~gaomy/

Contact: gaomy@tsinghua.edu.cn

