Termodinámica - Clase 8

Graeme Candlish

Institúto de Física y Astronomía, UV graeme.candlish@ifa.uv.cl

Contenido

Conceptos en esta clase

La definición de Boltzmann de la entropía

La ecuación central de la termodinámica

Resumer

Conceptos en esta clase

- La definición de Boltzmann de la entropía
- La ecuación central de la termodinámica y aplicaciones.

Contenido

Conceptos en esta clase

La definición de Boltzmann de la entropía

La ecuación central de la termodinámica

Resumen

Entropía y su interpretación estadística

Boltzmann, Gibbs, Maxwell y otros llegaron a una definición **estadística** de la entropía.

Ludwig Boltzmann, 1844-1906, físico y filósofo austríaco.

La segunda ley de nuevo

La segunda ley: la entropía de un sistema aislado siempre aumenta en un proceso irreversible.

⇒ si un sistema está en **equilibrio**, su entropía debe estar en su **máximo**.

El punto de vista estadístico de un sistema

Postulado fundamental de la física estadística:

Un sistema fuera de equilibrio cambiará de un estado menos probable a un estado más probable.

 \Rightarrow hay una conexión entre la **entropía** y la **probabilidad**

N partículas de un gas ideal comienzan en el lado izquierdo. Después de quitar la partición llenan toda la caja.

Cambio de entropía en la expansión libre:

$$dU = dQ + dW = TdS - PdV$$
 (procesos reversibles)

Para un gas ideal dU = 0 en una expansión libre.

Cambio de entropía en la expansión libre:

$$\Delta S = \int dS = \int \frac{PdV}{T}$$

$$= \int \frac{nRdV}{V} = nR \ln \frac{V_f}{V_i} = nR \ln 2$$

Probabilidad de encontrar una partícula en el lado izquierdo de la caja (mucho después de quitar la partición):

$$P(1 \text{ partícula en el lado izquierdo}) = \frac{1}{2}$$

Probabilidad de encontrar N partículas en el lado izquierdo de la caja (mucho después de quitar la partición):

$$P(\text{N partículas en el lado izquierdo}) = \underbrace{\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \cdots \times \frac{1}{2}}_{N \text{ veces}}$$
$$= \left(\frac{1}{2}\right)^{N}$$

Definiciones: macroestados y microestados

Macroestado: un estado de equilibrio termodinámico.

Microestado: Una especificación de todas las posiciones y momentos de las partículas del sistema.

Vamos a suponer que todos los microestados tienen la misma probabilidad.

Microestados del gas en la expansión libre

- Considerando N partículas en el volumen V_A, el número total de microestados posibles, con energía total E, es: Ω_A = Ω(N, V_A, E).
- Ω es un número finito si los estados de posición y momentum son cuantizados (es decir, NO continuos).

Microestados del gas en la expansión libre

Considerando N partículas en el volumen **total** V_{A+B} , el número total de microestados posibles, con energía total E, es: $\Omega_{A+B} = \Omega(N, V_{A+B}, E)$.

Microestados del gas en la expansión libre

- La probabilidad de tener todas las partículas en el lado izquierdo (después de quitar la partición) es (1/2)^N.
- El número de microestados del gas donde todas las partículas están en el lado izquierdo es Ω_A .
- El número de microestados donde el gas ocupa toda la caja es Ω_{A+B}.
- Entonces, tenemos:

$$\frac{\Omega_A}{\Omega_{A+B}} = \frac{\Omega(N, V, E)}{\Omega(N, 2V, E)} = \left(\frac{1}{2}\right)^N$$

Relación entre microestados y la entropía

- La interpretación estadística de la entropía:
 - Expresa la probabilidad de que un sistema esté en un determinado macroestado.
- Por lo tanto, debe existir una relación matemática entre el número de microestados disponibles Ω y la entropía:
 S = f(Ω).

Relación entre microestados y la entropía

- Entropía es una variable extensiva: si hay 2 veces más gas, hay 2 veces más entropía.
- El número de microestados crece mucho más rápidamente...
- Si hay Ω_1 microestados disponibles para sistema 1, y Ω_2 microestados disponibles para sistema 2, hay $\Omega_1\Omega_2$ microestados disponibles para el sistema compuesto.

$$\Rightarrow$$
 $f(\Omega_1\Omega_2) = f(\Omega_1) + f(\Omega_2)$

 La única función matemática que satisface esta ecuación es el logarítmo.

La definición estadística de entropía

$$S = k_B \ln(\Omega) + S_0$$

Elegimos $S_0 = 0$ (la entropía de un sistema con un microestado disponible es cero).

$$S = k_B \ln(\Omega)$$

La definición estadística de entropía

La entropía es una medición del número de **microestados** posibles para un sistema en un cierto **macroestado**.

La entropía es una medición del **desorden** de un sistema. Un sistema perfectamente *ordenado* tiene 1 microestado disponible y una entropía mínima. Un sistema muy desordenado tiene un número grande de microestados disponibles.

La definición estadística de entropía

Cambio de entropía en una expansión libre

$$\ln\left(\frac{\Omega_A}{\Omega_{A+B}}\right) = \ln(\Omega_A) - \ln(\Omega_{A+B}) = \ln\left(\left(\frac{1}{2}\right)^N\right) = N(\ln(1) - \ln(2))$$

Por lo tanto

$$S_{A+B} - S_A = k_B N \ln(2)$$

Este es igual al cambio determinado con la termodinámica clásica si $k_B N_A = R$ donde $N_A = N/n$ es el número de Avogadro. La constante k_B es una de las constantes fundamentales de la naturaleza que se llama **la constante de Boltzmann**.

Contenido

Conceptos en esta clase

La definición de Boltzmann de la entropía

La ecuación central de la termodinámica

Resumer

La ecuación central de la termodinámica

Combinamos la definición de la entropía con la primera ley dU = dQ + dW:

$$dU = TdS - PdV$$
 ecuación central, o ecuación TdS

- Obtuvimos esta ecuación considerando procesos reversibles.
- Involucra solamente variables termodinámicas: podemos integrar esta ecuación a lo largo de cualquier camino.
- Es decir, podemos reemplazar un proceso irreversible por un proceso reversible equivalente y aplicar la ecuación central.

Entropía de un gas ideal

Para un gas ideal U = U(T), por lo tanto $dU = C_V dT$. De la ecuación central (en forma **intensiva**):

$$ds = c_v \frac{dT}{T} + R \frac{dv}{v}$$

donde hemos usado la ecuación de estado. Integrando:

$$s = c_v \ln(T/T_0) + R \ln(v/v_0) + s_0$$

= $c_P \ln(T/T_0) - R \ln(P/P_0) + s_0$

- Entropía relativa a un estado de referencia con T_0 , s_0 , P_0 , v_0 .
- Vemos que es problemático poner $T_0=0$ y/o $P_0=0...$

- Agua calentado de 20° C a 100° C (a presión constante) por un proceso irreversible.
- Podemos calcular el cambio en entropía por 3 métodos.

Método 1

 Proceso reversible equivalente (serie de reservorios caloríficos)

$$\Delta S = \int_{T_i}^{T_f} \frac{dQ_R}{T} = \int_{T_i}^{T_f} \frac{C_P dT}{T}$$

Método 2

 Aplicamos la ecuación central:

$$\Delta S = \int_{i}^{f} \frac{dU}{T} + \int_{i}^{f} \frac{P}{T} dV$$
donde $P_{i} = P_{f}$.

Método 2

• Escribimos *dU* y *dV* en términos de *P* y *T*:

$$dU = \left(\frac{\partial U}{\partial T}\right)_{P} dT + \left(\frac{\partial U}{\partial P}\right)_{T} dP$$
$$dV = \left(\frac{\partial V}{\partial T}\right)_{P} dT + \left(\frac{\partial V}{\partial P}\right)_{T} dP$$

Método 2

Tenemos:

$$\begin{split} \Delta S &= \int_{i}^{f} \frac{dU}{T} + \int_{i}^{f} \frac{P}{T} dV \\ &= \int_{i}^{f} \frac{\left(\frac{\partial U}{\partial T}\right)_{P} dT + \left(\frac{\partial U}{\partial P}\right)_{T} dP}{T} \\ &+ \int_{i}^{f} \frac{P}{T} \left[\left(\frac{\partial V}{\partial T}\right)_{P} dT + \left(\frac{\partial V}{\partial P}\right)_{T} dP \right] \\ &= \int_{T_{i}}^{T_{f}} \frac{\left(\frac{\partial U}{\partial T}\right)_{P} dT + P\left(\frac{\partial V}{\partial T}\right)_{P} dT}{T} = \int_{T_{i}}^{T_{f}} \frac{\left(\frac{\partial (U+PV)}{\partial T}\right)_{P}}{T} dT \\ &= \int_{T_{i}}^{T_{f}} \frac{\left(\frac{\partial H}{\partial T}\right)_{P}}{T} dT = \int_{T_{i}}^{T_{f}} \frac{C_{P} dT}{T} \end{split}$$

Método 3

 Partimos con la entalpía (ya que es un proceso a presión constante):

$$dH = dU + PdV + VdP = (TdS - PdV) + PdV + VdP = TdS + VdP$$

Ya que dP = 0 tenemos dH = TdS:

$$\int_{i}^{f} dS = \int_{i}^{f} \frac{dH}{T}$$

Método 3

• Con H = H(T, P) tenemos

$$dH = \left(\frac{\partial H}{\partial T}\right)_{P} dT + \left(\frac{\partial H}{\partial P}\right)_{T} dP = C_{P} dT$$

Por lo tanto

$$\Delta S = \int_{T_i}^{T_f} \frac{C_P dT}{T}$$

- La potencia eléctrica P se disipa irreversiblemente en un resistor.
- $P = I^2 R$ (donde I es la corriente y R es la resistencia).
- Si no hay otro trabajo ni flujo de calor $\Delta U = Q + W = I^2 R \Delta t$

- Un proceso isocórico: $dU = C_V dT$.
- Cambio de temperatura: $I^2R\Delta t = \int_{T_i}^{T_f} C_V dT = C_V\Delta T$ (suponiendo que C_V es constante).

Cambio de entropía (método 2, ecuación central):

$$dS = \frac{dU}{T} = \frac{C_V dT}{T} \quad \Rightarrow \quad \Delta S = \int_{T_i}^{T_f} \frac{C_V}{T} dT$$

donde sabemos $\Delta T = T_f - T_i$ por el cálculo anterior.

Cambio de entropía (método 1, proceso reversible):

$$\Delta S = \int_{T_i}^{T_f} \frac{d^2Q_R}{T} = \int_{T_i}^{T_f} \frac{C_V}{T} dT$$

Aquí estamos considerando un proceso con flujos de calor reversibles, pero sin trabajo disipativo!

Contenido

Conceptos en esta clase

La definición de Boltzmann de la entropía

La ecuación central de la termodinámica

Resumen

Resumen

- La interpretación estadística de la entropía: el número de microestados disponibles al sistema en un cierto macroestado.
- En otras palabras, la entropía es una medición del desorden del sistema, o la cantidad de información que requerimos para definir el sistema.
- $S = k_B \ln(\Omega)$
- La ecuación central (o de TdS): dU = TdS PdV
- Reemplazamos PdV por el tipo de trabajo que corresponde al sistema si no es un fluido.