Übung zum Pumping-Lemma

Exkurs: Pumping-Lemma für Reguläre Sprachen

Es sei L eine reguläre Sprache. Dann gibt es eine Zahl j, sodass für alle Wörter $\omega \in L$ mit $|\omega| \geq j$ (jedes Wort ω in L mit Mindestlänge j) jeweils eine Zerlegung $\omega = uvw$ existiert, sodass die folgenden Eigenschaften erfüllt sind:

- (a) $|v| \ge 1$ (Das Wort v ist nicht leer.)
- (b) $|uv| \leq j$ (Die beiden Wörter u und v haben zusammen höchstens die Länge j.)
- (c) Für alle $i=0,1,2,\ldots$ gilt $uv^iw\in L$ (Für jede natürliche Zahl (mit 0) i ist das Wort uv^iw in der Sprache L)

Die kleinste Zahl j, die diese Eigenschaften erfüllt, wird Pumping-Zahl der Sprache L genannt.

(a) Zeigen Sie, dass die Sprache $L = \{ a^n b^m \mid n \ge m \ge 1 \}$ nicht regulär ist.

```
|a^{j}b^{j}| \geq j
a^{j}b^{j} = uvw \text{ mit } |uv| \leq j \text{ und } |v| \geq 1
\Rightarrow \text{ in } v \text{ nur } a'\text{s}
\Rightarrow uv^{0}w \notin L
```

(b) Zeige, dass die Sprache $L = \{ a^n b^m \mid n > m \ge 1 \}$ nicht regulär ist.

```
|a^{j+1}b^j| \ge j

a^{j+1}b^j = uvw \text{ mit } |uv| \le j \text{ und } |v| \ge 1

\Rightarrow \text{ in } v \text{ nur } a's

\Rightarrow uv^0w \notin L
```