Series 2: epidemic models

Exercise 1. During the lecture, we have studied the solutions of the Kermack-McKendrick model for initial conditions (S(0) > 0, I(0) > 0). Study the solution for the following initial conditions: i) (S(0) = 0, I(0) > 0), ii) (S(0) = 0, I(0) > 0), and iii) (S(0) > 0, I(0) = 0). If possible give the exact analytic solution.

Exercise 2. The following table gives the data from the Eyam's (a village in England) Plague of 1666.

Date(1666)	Susceptible	Infected
$\overline{July3}$	235	15
July19	201	22
August3	154	29
August 19	121	21
September 3	108	8
September 19	97	8
October 20	83	0

Compute the epidemic threshold.

Exercise 3. Let assume an epidemic with the following information: S(0) = 250, I(0) = 50, and $S^* = 100$. What is the number of infected people at the peak of the epidemic (i.e., the maximum number of infected people).