10	Name of the Subject: DATA ANALYSIS & INFO, EXTR. Subject Code: TT-704
	Seat No: TT076 Student ID: SITUBNII6 Branch/Sem: TT-VII
	Ta
Q3	Clan.
-	C1:- buys_ Compute = "Yes"
	V
	C2:- buys_ computer= 'no'
	Data to be clanified.
	X = (age <= 30. Income = medium, Student = yes,
	X = (age <=30, Income = medium, Student = yes, Oudel_rating=Fair)
	P(C1)= P(buys_(onp)='Yes')= 9/14 == 0.643
	D(1 /2 1) 5/4
	P(buys. (omp='no') = 5/14 = 0.357
	- Computer P(X1(1) for each clas.
	Plage = '<=30' buys (omp = 'Yes') - 2/9
	P(age = '<=30' buy-(omp = 'ho') = 3/5 = 0.6
	P(income = medium buys - comp = "/6") = 4/9 = 0-444
	P(income = medium' buys_ comp = "/6") = 4/9 = 0.444 P(incom = medium' buys_ comp = 'no') = 2/5 = 0.4
	P(Student = 'Ves') buys = (omp = 'Yes') = 6/9 = 0.667 P(Student = 'Yes' buys = (omp = 'ho') = 1/5 = 0.2
	P(Credit rating: "fair" buys (omp = 'Ves') = 6/9 = 0.667 P(Credit - rating: "fair" buys (omp = 'no') = 26 = 0.4.
	P(Crudit-rating: "fair" buys (omp = 'no') = 26 = 0.4
Section – II	Date: 14/10/2021 Signature of Student: Page No: 01
Section - II	Page No: 01

10)	Name of the Subject:
	Seat No: TO76 Student ID: STTUBNII6 Branch/Sem: TT-VII
	X= (age <=30, income = medium, Student = yes, budit = rating = fam).
	P(x 1ci): P(x 1 buy- (omp = 'Yes')= = 0 222 x 0.444 x 0.667 x 0.667
	P(x1 buys_comp='ho') = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
	P(x1(i) AP((i): P(x1buys_comp='Yes') + P(buys_comp='Yes')
	= 0.028
	P(x 1 buys = (omp = 'ho') * P(buys = (omp = 'ho') = 0.007
	> Thursfore, X belongs to class ("buys-(omp=Yes")
	13 Limitation of Maire Bayes
_	- Naives Bayesian Prudication reguvus each reguvus each reguvus
-	- Otherwise the predicted prob will be zuro.
	P(x1(i)= TT P(xx1(i)
	- ly, Suppose a dataset with 1000 tuples, incom: low(0) income: medium (990), & income: high(10).
Section - II	Date: 14 10 2021 Signature of Student: Page No: 02

	Name of the Subject: DAIE Subject Code: IT-704 Seat No: IT076 Student ID: SITURNII6 Branch/Sem: IT-VII -Use Laplacian Coveredian - Add I to lach (ax. Brob (in(on = low)= 1/1003 Brob (in(on = mid)= 991/1003 Brob (in(u= high)= 11/1003
	"Un (arrichor' for Counterparts.
(12)	[b]
-	Centre of the Cluster is represented by the
	in 4 Skps.
	1. Partition object into le non-empty subsets.
	2. Compute Sted points as the Centroids of the Cluster of the Coverent partitioning
	3. Assign each object to the Cluster with the nearest send point.
	4. bo back to Step 2, Stop when the assignment does not chang.
Section - II	Date: 1410/2021 Signature of Student: Page No: 03

-

](9)	Name of the Subject:
_	2 Example.
	K=2 + Upclakethe + + + Charles + + + Candroad. + + + Candroad. + + + Candroad. + + + Candroad. + + + + Candroad. + + + + + Candroad. + + + + + + + + + + + + + + + + + + +
	The nitial data Set
	Limitation.
	- K-mean Clustoning Algorithm has limitation
	1. It requires to specify the no. of cluster (4) in
	2. It (arit handle noisy data od outlier.
	3. It is not Switable to identify cluster with non- convex shapes.
Section – II	Date: 14/10 /2021 Signature of Student: Page No: OL.

10)	Name of the Subject: DAIE Subject Code: IT-704 Seat No: T7076 Student ID: STTURNII6 Branch/Sem: TT-VII
	Decision Tree Algorithm. [D7A]. - DTA belongs to the family of Supervised lawnis algorithm. - The decision Oriteria are different for classification. & regression trees. - Decision True use multiple algorithm to decide to split
-	Decision True use multiple algorithm to devote to split a node into 2 as more Sub-node. The decision True splits selects the split all nodes available variable & the Select the Split which result is most homogenous Sub-node. The algorithm Selects is also band on the type of target variable.
	ID30, COR (4.5, CART (Clanification & Regression Trus) (HAID, MARS.
Section – II	Date: 14 10 /2021 Signature of Student: Page No: QS