AARHUS SCHOOL OF ENGINEERING

ELECTRONIC ENGINEERING E4PRJ

Detaljeret Software Design

Author:
Nicolai GLUD
Johnny KRISTENSEN
Rasmus LUND-JENSEN
Mick HOLMARK
Jacob ROESEN

6. december 2012

Indholdsfortegnelse

Kapite	l 1 In	dledning	4
	1.0.1	Formål	4
	1.0.2	Reference dokumentation	4
Kapite	12 K	ontrolinterface	5
_	2.0.3	Modulets ansvar	5
	2.0.4	Klassediagram	5
2.1	Metod	e- og klassebeskrivelser	7
	2.1.1	MainWindow	7
	2.1.2	Kontrolinterface	11
	2.1.3	DataServer	11
	2.1.4	manuDialog	12
	2.1.5	Styringsmodul	13
	2.1.6	VBTE	14
	2.1.7	Sensor	14
	2.1.8	RS232	14
Kapite	1 3 Da	atabasen	1 6
1	3.0.9	Modultes Ansvar	
	3.0.10	Klassediagrammer	
		Globale variabler	
	3.0.12	Funktionsbeskrivelser	18
3.1	Design		21
	3.1.1	Server	21
Kapite	14 SN	vI	22
4.1		ns ansvar	
4.2		diagram	
4.3	Variab		
4.4	Funkti	onsbeskrivelser	23
	4.4.1	Init	23
	4.4.2	Levelsensor	
	4.4.3	autoReg	23
	4.4.4	I2C_Kom	24
	4.4.5	KI_KOM	24
4.5	Eventu	uelle Sekvensdiagrammer og state machines	25
Kapite	15 VI	BTE	2 6
5.1			- 26
5.2		diagram	
5.3			27

5.4	Metoo	de- og klassebeskrivelser	7			
	5.4.1	Init	7			
	5.4.2	Valve	7			
	5.4.3	Dist	8			
	5.4.4	I2Chandle	8			
	5.4.5	PSoC-API::ADC	9			
	5.4.6	State Machine	9			
	5.4.7	Timing Diagram	0			
	5.4.8	Interrupt rutiner	0			
5.5	5 Hovedvindue					
5.6	Manu	el regulering af hældning 3	2			
5.7	Automatisk regulering af hældning					
5.8	Termi	neringsdialog	2			

Indledning

Dette dokument beskriver det detaljerede SW-design for BROS, som er fastlagt ud fra dokumenterne kravspecifikation og systemarkitektur.

1.0.1 Formål

Formålet med dokumentet er:

- At fastlægge systemets detaljerede softwarestruktur udfra kravene specificeret i kravsspecifikationen. Derudover beskrivelsen af softwarekomponenterne og deres grænseflader beskrevet i systemarkitektur-dokumentet.
- At fastlægge systemets softwareklasser og deres indbyrdes interaktioner.
- At beskrive de enkelte klassers vigtigste metoder.

1.0.2 Reference dokumentation

- Kravspecifikation for projektet.
- Systemarkitektur-dokument.

Kontrolinterface 2

Nedenfor følger design af software til Kontrolinterfacet. Dette er lavet på baggrund af kravspecifikation og systemarkitektur.

2.0.3 Modulets ansvar

Kontrolinterfacet er brugerens primære kontaktflade til systemet. Programmet indeholder en brugergrænseflade der opfylder kravene i Kravspecifikationen. Her kan der også ses en prototype på den grafiske brugergrænseflade. Kontrolinterfacet står for at modtage inputs fra brugeren. Disse inputs sendes som kommandoer til Styringsmodulet. Det er også herfra at Kontrolinterfacet modtager de værdier, som sidenhen vises på den grafiske brugergrænseflade. Kontrolinterfacet står også for kommunikationen til den eksterne database. Her sendes en række parametre om skibet og dets status.

2.0.4 Klassediagram

Nedenfor ses klassediagrammet for Kontrolinterfacet. Bemærk at klassediagrammet er delt op i to. Skæringsstedet er mellem Kontrolinterface-klassen og Styringsmodul-klassen og er markeret med «extend».

BROS 2. Kontrolinterface

 ${\it Figur~2.1.}$ På figuren ses klassediagrammet for KI - Kontrolinterface-delen

Figur 2.2. På figuren ses klassediagrammet for KI - Styringsmodul-delen

2.1 Metode- og klassebeskrivelser

2.1.1 MainWindow

Ansvar

Denne klasse indeholder de funktioner der er skrevet til Qt-formen MainWindow.ui hvori selve det grafiske er opbygget. Klassen indeholder de funktioner der anvendes i forbindelse med den grafiske brugergrænseflade. Det være sig når der kommer et input, eller der skal opdateres nogle værdier på skærmen.

BROS 2. Kontrolinterface

Funktionsbeskrivelser

int getSecondsSinceLastGuiUpdate();

Beskrivelse: En simpelt get-funktionen der returnerer værdien af klasseattributten

 $last_\,GUI_\,Update.$

Parametre: Ingen

Returværdi: int secondsSinceLastGuiUpdate

void updateGuiSlot(status temp);

Beskrivelse: Bliver kaldt når GUI'en skal opdateres. Den modtager parameterent temp

som er en struct af typen status. Ud fra denne struct hives de værdier ud, som skal vises på GUI'en. Værdierne vises ved de set-funktioner der er tilknyttet de anvendte widgets (og dermed en del af Qt-frameworket.) Når

værdierne er opdateret vises det som en aktivitet i aktivitetsloggen

Parametre: status temp

Returværdi: Ingen

void showSMConnectionChange();

Beskrivelse: Kaldes hvis SM-forbindelsen til styringsmodulet ændres fra forbundet til

mistet forbindelse eller omvendt. Det udløser en aktivitet i aktivitetsloggen. Derudover skiftes lyset på gui'en. Parameteren state er den status som

forbindelsen har ændret sig til.

Parametre: bool state

Returværdi: Ingen

void manuChangedHandle(Level samlet, int side, double level);

Beskrivelse: Kaldes når brugeren har ændret i indstillingen til den manuelle hældning.

Som parametre modtages hvilken side man ønsker at skibet skal hælde til (int side), hvor meget det skal hælde (double level) samt de to informationer samlet i en enum, Level samlet. Funktionen emitter signalet "manuChanged(Level temp). Det sætter også klasseattributerne manuelSide, manuelLevel samt autoActivated til deres rette værdier. Til

sidst kaldes funktionen displayManuText(true)

Parametre: Level samlet

int side

double level

Returværdi: Ingen

void showServerUpdateStatus(bool state);

Beskrivelse: Kaldes hver gang signalet DataServer::serverUpdateStatus() udsendes.

Funktionen undersøger om forbindelsen har ændret sig ved at sammenligne med attributen serverConnection. Hvis forbindelsen har ændret sig udsendes dette som en aktivitet. Lyset ændres også således at det passer ved hjælp af setLight(DATA, serverConnection. Hvis vi modtager "true"vil last DATA Update opdateres til således til den nuværende værdi af

sekunder siden epoch.

Parametre: Ingen Returværdi: Ingen

void showTimeSinceLastUpdate();

Beskrivelse: Kaldes hvert sekund. Funktionen opdaterer antallet af sekunder siden sidste

overførelse af data til serveren eller til SM. Når tiden er længere end tiden

mellem hver opdatering vil dette tal skifte til rødt.

Parametre: Ingen Returværdi: Ingen

void displayManuText(bool show);

Beskrivelse: Viser eller skjuler teksten med indstillingen af manuel hældning afhængig

af parameteret show.

Parametre: Ingen Returværdi: Ingen

void activateAutoClicked();

Beskrivelse: udsendes når der er blevet trykket på knappen activateAutoClicked

Parametre: Ingen Returværdi: Ingen

void activateAutoClicked();

Beskrivelse: udsendes når der er blevet trykket på knappen activateAutoClicked

Parametre: Ingen Returværdi: Ingen

void manuChanged(Level grader);

Beskrivelse: Udsendes når der er blevet ændret en manuel indstilling.

Parametre: Level grader

Returværdi: Ingen

void programTerminated();

Beskrivelse: Udsendes når programmet er blevet lukket ned.

Parametre: Ingen Returværdi: Ingen BROS 2. Kontrolinterface

void btn_CloseApplication_clicked();

Beskrivelse: Kaldes når luk-knappen på GUI'en er blevet trykket. Udsender signalet

programTerminated() hvis brugeren bekræfter valget

Parametre: Ingen Returværdi: Ingen

void on_btn_manu_clicked();

Beskrivelse: Kaldes når der bliver trykket på knappen for manuel hældning. Viser

dialogen "manuDialog".

Parametre: Ingen Returværdi: Ingen

void on_btn_auto_clicked();

Beskrivelse: Kaldes når der trykkes på Automatisk Hældnings-knappen. Aktiverer

automatisk styring og deaktiverer den manuelle.

Parametre: Ingen Returværdi: Ingen

void setLight(lys id, bool state);

Beskrivelse: Sætter lyset i forhold til parametrene. lys er en enum der bestemmer hvilket

element lyset skal ændres for. state er om lyset skal være tændt eller ej

Parametre: lys id

bool state

Returværdi: Ingen

void alarmChangerCheck(QString sentence, int critical_point, int value, bool &e

Beskrivelse: Tester om alarmerne har ændret sig. Sentence er starten af den sætning der

skrives i aktivitetsloggen. critical_point er det kritiske punkt for det emne der arbejdes på. Value er den værdi den har. Earlier_state er hvilket stadie

alarmen var i tidligere.

Parametre: QString sentence

int critical_point

int value

bool &earlier_state

Returværdi: Ingen

void levelEnumConverterAndSetter(int level);

Beskrivelse: Konverterer en integer baseret på Level-enumeratoren om til en side og en

vinkel.

Parametre: int level

Returværdi: Ingen

2.1.2 Kontrolinterface

Ansvar

Dette er hovedklassen hvori selve programmet lever. Oprettelsen af et objekt af denne klasse er derfor også det eneste der sker i main.

Funktionsbeskrivelser

void update();

Beskrivelse: Får en status-struct fra SM-klassen udfyldt med de nuværende værdier

for systemet. Tilføjer antal sekunder siden sidste gui-update ved hjælp af getSecondsSinceLastGuiUpdate. Denne struct udsendes med signalet

updateSignal(status recentValues)

Parametre: Ingen Returværdi: Ingen

void updateSignal(status recentValues);

Beskrivelse: Signalet der sendes når gui og server skal updateres. Indeholder en struct

med alle relevante værdier.

Parametre: status recentValues

Returværdi: Ingen

void terminate();

Beskrivelse: Udsendes når brugeren ønsker at terminere programmet.

Parametre: Ingen Returværdi: Ingen

void destroyMe();

Beskrivelse: Muliggør nedlæggelse af klassen med et funktionskald.

Parametre: Ingen Returværdi: Ingen

2.1.3 DataServer

Ansvar

Klassen står for al kommunikation med serveren via en TCP-forbindelse. Forbindelse oprettes og nedlægges hver gang der tages kontakt. DataServer-objektet opdaterer serveren når den får ordre om det fra Kontrolinterface-klassen.

BROS 2. Kontrolinterface

Funktionsbeskrivelser

void onDelete();

Beskrivelse: Kaldes i destruktoren. Sender en besked til serveren om at programmet

termineres .

Parametre: Ingen Returværdi: Ingen

void updateServerSlot(status recentValues);

Beskrivelse: Kaldes når signalet updateSignal(status recentValues) udsendes. Funktio-

nen sørger så for at der via TCP-forbindelsen bliver udsendt de relevante

værdier til databasen.

Parametre: status recentValues

Returværdi: Ingen

void serverUpdateStatus(bool status);

Beskrivelse: Udsendes når databasen er blevet opdateret. Parameteren "status"indikerer

hvorvidt overførelsen var succesfuld eller ej. Der ventes ikke noget svar fra

databasen.

Parametre: bool status

Returværdi: Ingen

2.1.4 manuDialog

Ansvar

manu Dialog-klassen står for håndtering af det vindue der åbnes ved tryk på
 Manuel Hældningsregulering-knappen.

Funktionsbeskrivelser

void manuSet(Level degrees, int side, double level);

Beskrivelse: Udsendes i funktionen accept(). Der medsendes de data som brugeren har

valgt på dialogen.

Parametre: Level degrees

int side

double level

Returværdi: Ingen

void accept();

Beskrivelse: Kaldes når der trykkes på "OK-knappen på dialogen. Det indtastede

omdannes til en værdi i forhold til enumeratoren "Level". Dialogen lukkes

og signalet manuSet(...) udsendes

Parametre: Level degrees

int side
double level

Returværdi: Ingen

2.1.5 Styringsmodul

Ansvar

Klassen har samme rolle som det fysiske styringsmodul har i systemet. Det giver kontrolinterfacet adgang til sensor-værdier og vandstandsniveauer igennem sine underklasser, VBTE og Sensor.

Funktionsbeskrivelser

status getStatus();

Beskrivelse: Indhenter værdierne for systemet fra VBTE'er og Hældningssensor. Disse

værdier sættes ind i structen temp som så returneres.

Parametre: Ingen

Returværdi: status recentValues

void manuelLeveling(Level level);

Beskrivelse: Sender kommando og vinkel til PSoC over RS232 vha. objektet m pCom.

Parametre: Level level

Returværdi: Ingen

void activateAutomaticRegulation();

Beskrivelse: Sætter hvorvidt automatisk regulering skal være aktiveret eller ej til

styringsmodulet.

Parametre: Ingen Returværdi: Ingen

void SMConnectionChangedTo(bool status);

Beskrivelse: Udsendes hver gang der har været en overførelse. Status indikerer hvorvidt

overførelsen var succesfuld eller ej.

Parametre: bool status

Returværdi: Ingen

BROS 2. Kontrolinterface

void ManuelLevelingAck(bool status);

Beskrivelse: Udsendes når der er blevet sendt kommandoen CMD_MANU til styrings-

modulet. Bool status indikerer hvorvidt overførelsen var succesfuld ej.

Parametre: bool status

Returværdi: Ingen

2.1.6 VBTE

Ansvar

Håndterer værdierne for hver sin vandballasttankenhed. Kommunikerer til det fysiske styringsmodul ved hjælp af RS232-klassen.

Funktionsbeskrivelser

int getNiveau();

Beskrivelse: Kalder setNiveau og returnerer værdien af niveau

Parametre: Ingen

Returværdi: int niveau()

status getStatus(status temp);

Beskrivelse: Skaffer status vha. rs232-objektet og sætter niveau og status i structen temp

som herefter returneres.

Parametre: status temp() Returværdi: status temp()

2.1.7 Sensor

Ansvar

Håndterer værdierne for hældningssensoreren. Kommunikerer til det fysiske styringsmodul ved hjælp af RS232-klassen.

Funktionsbeskrivelser

int getLevel();

Beskrivelse: Skaffer værdien af hældningen på skibet vha. rs232-objektet og returnerer

det.

Parametre: Ingen Returværdi: int level

2.1.8 RS232

Ansvar

Håndterer kommunikationen til det fysiske styringsmodul ved protokollen der ses i enumeratoren "Kommando".

Funktionsbeskrivelser

void send(int cmd);

Beskrivelse: Sendefunktion. Sender den medsendte integer.

Parametre: int cmd Returværdi: Ingen

int readValue();

Beskrivelse: Modtagerfunktion. Returnerer den læste værdi.

Parametre: Ingen

Returværdi: int receivedValue

bool readAck(Kommando cmd);

Beskrivelse: Kalder readValue() og sammenholder dennes returværdi med den værdi der

er medsendt som parameter (cmd). Returnerer hvor vidt de to var identiske.

Parametre: Kommando cmd

Returværdi: bool status

void SMConnectionChangedTo(bool status);

Beskrivelse: Når der har været en overførelse udsendes dette signal. Status indikerer

hvorvidt overførelsen var succesfuld eller ej.

Parametre: bool status Returværdi: Ingen

void SMConnectionChangedTo(bool status);

Beskrivelse: Når der har været en overførelse udsendes dette signal. Status indikerer

hvorvidt overførelsen var succesfuld eller ej.

Parametre: bool status Returværdi: Ingen

bool isConnectionOpen();

Beskrivelse: Tester om der er forbindelse til PSoC

Parametre: Ingen

Returværdi: bool connectionState

Databasen 3

Nedenfor følger design af software til databasen og dens interface. Dette er lavet på baggrund af kravspecifikation og systemarkitektur.

3.0.9 Modultes Ansvar

Databasen er her hvor havne terminalens personale kan aflæse data fra skibet. Disse data er sendt fra KI. Programmerne indeholder brugergrænseflader der opfylder kravene, beskrevet i kravspecifikationen. Her kan der også ses en prototyper på brugergrænsefladen. Database modulet har 3 dele. Severen, Web-siden og en mySQL database.

Severen står for kommunikationen immellem KI og Databasen. Severen modtager data fra KI og lager disse i en tekst fil

Web-siden giver brugeren mulighed for at se info om BROS samt at logge sig ind i BROS database hvorfra at data om skibe der er tilsluttet systemet kan aflæses. Web-sidens 3 vigtigste funktioner er at gemme ny data til mySQL databasen, slette den tekst fil som severen lavede og vise data for brugeren. For at håndtere web-sider der benytter sig af php (web-programmering) kræves der en web server som er i stand til at håndtere dette. En af de mest udbredte er apache serveren som også benyttes for denne webside. mySQL databasen er en database som er installeret på computeren. Alle data som er sendt fra KI er lageret i mySQL databasen.

3.0.10 Klassediagrammer

Nedenfor ses klassediagrammerne for databasen. Bemærk database modulet er lavet som en server del og en web del

Figur 3.1. Klassedigram for databasens severer

 ${\it Figur~3.2.}$ Klassedigram for databasens web-side.

 $^{^1\}mathsf{FiXme}$ Note: check med kim, beskriv «html» og «php»

BROS 3. Databasen

3.0.11 Globale variabler

3.0.12 Funktionsbeskrivelser

Server

Denne header står for at starte serveren og starte GUI for korte informationer til brugeren. Alle informationer om server start, connection o datamodtagelse vil blive udskrevet her.

```
Void addLogEntry( QString )
```

Står for at udskrive beskeder fra tcp klassen til GUI

Parametre: Ui::Server *ui;

Returværdi:

Void on_closeServer_clocked()

Denne funktion håndtere luk knappen. Ved tryk knappen vil brugeren blive bedt om at svare ja eller nej til ϵ

Parametre: Ingen Returværdi:Ingen

Void on_webDatabase_clicked()

Denne funktion står for at håndtere den direkte adgang til den web baserede database. Ved tryk vil brugeren

Parametre: QWebView* $m_pWebView$

Returværdi:Ingen

update

Denne header står for at håndtere de struct's der benyttes til at at save data til log filen.

Void addLogEntry(QString)

Står for at udskrive beskeder fra tcp klassen til GUI

Parametre: Ui::Server *ui;

Returværdi:

tcp

Denne header står for tcp forbindelsen. Socket oprettes og connection adgang gives. Når data bliver modtaget blvier denne gemt i den eksterne log fil ship.txt

Void addLogEntry(QString)

Står for at udskrive beskeder fra tcp klassen til GUI

Parametre: Ui::Server *ui;

Returværdi:

Void acceptConnection(void)

Beskrivelse: Står for at acceptere forbindelse fra KI og connecte.

Parametre: QTcpServer server

QTcpSocket* client

Returværdi:

Void startRead(void)

Beskrivelse: Læser data fra socket. Data til fil og GUI

Parametre: QTcpSocket* client

Returværdi:

savedata

Denne header står for at handtere lagring af data modtaget fra skibet. Den lager dataerne i ship.txt

```
int save( save_data )
```

Står for at udskrive beskeder fra tcp klassen til GUI

Parametre:

Returværdi:

Wep-side

Web-siden står for at fremvise skibs data grafisk for terminal personalet. Desuden står den for at lager data og loade data fra mySQL databasen.

bros

```
file_handle(
Beskrivelse:
             Læse hvilken adresse databasen ligger på
Parametre:
Returværdi:
 fgets (
             Læse hvilken adresse databasen ligger på
Beskrivelse:
Parametre:
Returværdi:
 explode(
             Læse hvilken adresse databasen ligger på
Beskrivelse:
Parametre:
Returværdi:
 date(
Beskrivelse:
             Opdatere dato og tid når der gemmes til mySQL databasen
Parametre:
Returværdi:
```

BROS 3. Databasen

```
mysql_connect( )
              Læse hvilken adresse databasen ligger på
 Beskrivelse:
 Parametre:
 Returværdi:
  mysql_select_db( )
              Læse hvilken adresse databasen ligger på
 Beskrivelse:
 Parametre:
 Returværdi:
  unlink(
 Beskrivelse:
              Læse hvilken adresse databasen ligger på
 Parametre:
 Returværdi:
 new mysql( )
              Læse hvilken adresse databasen ligger på
 Beskrivelse:
 Parametre:
 Returværdi:
mysql
  setHostName( )
              Læse hvilken adresse databasen ligger på
 Parametre:
 Returværdi:
  setUserName( )
              Skriver brugernavn til databasen
 Beskrivelse:
 Parametre:
 Returværdi:
  setPassword(
 Beskrivelse:
              Skriver password til databasen
 Parametre:
 Returværdi:
  setDatabase(
              Fortæller mySQL hvilken database der skal benyttes
 Beskrivelse:
 Parametre:
 Returværdi:
```

```
getDatabase( )
Beskrivelse:Tager fat i databasen
Parametre:
Returværdi:
 connect (
Beskrivelse:
             Står for at samle localhost, username, password, database og connecte til
             databasen
Parametre:
Returværdi:
 disconnect( )
             Lukker database forbindelsen
Beskrivelse:
Parametre:
Returværdi:
 query()
             Opretter database kø og skriver data til skærm
Beskrivelse:
Parametre:
Returværdi:
 numRows (
             Checker hvor mange rækker der findes i databasen bruges desuden til at
Beskrivelse:
             udskrive om databasen er tom.
Parametre:
Returværdi:
```

3.1 Design

3.1.1 Server

Figur 3.3. BDD server

Dette afsnit beskriver designet af styringsmodulet, SM.

4.1 Klassens ansvar

Styringsmodulet har til ansvar at holde styr på levelsensoren og værdierne fra VBTE. Den kommunikere med KI og VBTE med indbyggede API'er fra Cypress PSoC 5 biblioteker.

4.2 Klassediagram

Nedenfor ses klassediagrammet for SM. Bemærk at koden dog er i C men for overblikket er der lavet klassediagram.

 $Figur\ 4.1.$ På figuren ses klassediagrammet for SM

4.3 Variabler

Variabel	Beskrivelse
autoflag	Denne variable er et flag der holder styr på automatisk
	regulering.
manuflag	Et flag til at holde styr på manuel regulering.
levelVal	En variable med vores level værdi.
VBTE1Niveau og VBTE2Niveau	Holder styr på vandniveauet i ballasttanke i %.
VBTE1Status og VBTE2Status	Holder styr op tilgængelighed for VBTE1 og 2.
vinkelVal	Indeholder værdien for manuel regulering.

Alle variabler er indkapslet i en struct navngivet "smflags".

4.4 Funktionsbeskrivelser

4.4.1 Init

Ansvar

Denne header har til ansvar at sørge for alle komponenter opretter og initieret. void init (void);

Beskrivelse: Funktionen anvender API'et fra Cypress componenter og står for at initiere

og starte vores PSoC hardware. Den sætter også et register tilhørende vores

Accelerometer.

Parametre: ingen Returværdi: ingen

4.4.2 Levelsensor

Ansvar

Denne header har til ansvar at hente levelværdien ind fra vores accelerometer. uint 32 getLevel (void);

Beskrivelse: Funktionen anvender API'et fra Cypress componenter og venter på at vores

ADC henter convertere det analoge signal. Funktionskald for ADC ses i

PSoC databladet.

Parametre: ingen

Returværdi: uint32 levelVal

4.4.3 autoReg

Ansvar

Denne header har til ansvar at styre automatisk regulering. void autoReg(struct smflags* sm);

BROS 4. SM

Beskrivelse: autoReg anvender værdier fra VBTE moduler samt KI til at holde systemet

i et bestemt level. Funktionen starter med at checke på automatisk og manuel styrings flagene. Derefter kalder den getLevel agere ud fra niveauet. Funktionen vil altid tømme fra en tank før den begynder at fylde en anden.

Parametre: struct smflags* sm

Returværdi: ingen

4.4.4 I2C Kom

Ansvar

Denne header har til ansvar at kommunikere med VBTE modulerne. uint8 writeToVbte (uint8 Adresse, uint8 besked);

Beskrivelse: writeToVbte anvender I2C fra Cypress PSoC 5 API til at skrive til VBTE

modulerne. Den tager adressen og beskeden man skal sende og sender til pågældende enhed. Derefter venter den på svar som den så returnere.

Parametre: uint8 Adresse

uint8 besked

Returværdi: uint8 VbteNiveau

4.4.5 KI KOM

Ansvar

Denne header har til ansvar at kommunikere med KI enheden.

```
int convertToEnum( int value);
```

Beskrivelse: funktionen tager en level værdi ind for så at konvertere den til en

Enum(integer) som den returnere.

Parametre: int value Returværdi: int Enum

void convertToValue(int Level, struct smflags* sm);

Beskrivelse: Funktionen tager en enum og en pointer som den så konvertere til en level

værdi og sætter i sm structen.

Parametre: int Level,

struct smflags* sm

Returværdi: ingen

void getFromKI(struct smflags* sm);

Beskrivelse: Funktionen anvender UART fra Cypress PSoC 5 API'en til at modtage

en besked fra KI modulet som den så vurdere og agere på. Når den har modtaget noget sender den en ack tilbage til KI modulet. Derefter handler

den og hvis det er nødvendigt sender data til KI.

Parametre: struct smflags* sm

Returværdi: ingen

4.5 Eventuelle Sekvensdiagrammer og state machines

Måske kommer de senere?

Nedenfor følger design af software til VBTE. Dette er lavet på baggrund af kravspecifikation og systemarkitektur. Bemærk der i dette design dokument blandt andet ikke er beskrevet mixer, pga osv. da deres eneste funktion er "Start();". Derudover er der en betydelig hardware del knyttet til dette modul, der refereres derfor til detaljeret hardware design for yderligere detaljer om VBTE modulet.

5.1 Modulets ansvar

Som beskrevet i systemarkitektur står VBTE'en for at måle vandniveauet i ballasttankene samt at lukke vand ind eller ud af ballasttankene. Hertil er der også en kommunikation med SM modulet indeholende instruktioner.

5.2 Klassediagram

Nedenfor ses klassediagrammet for VBTE. Bemærk at koden dog er i C men for overblikket er der lavet klassediagram.

Figur 5.1. På figuren ses klassediagrammet for VBTE Billedet skal opdateres

5.3 Globale variabler

Variabel	Beskrivelse		
BurstLengthVal	Denne variabel er anvendt til at håndtere antallet af perioder		
	burstet bliver sendt med.		
WaitBurstVar	Bliver brugt til nonblocking delay til SendBurst funktionen.		
BurstTimerVal	Holder på Timerens værdi når et burst er sendt.		
DistanceTimerVal	Holder værdien på timeren når et burst er modtaget.		
CalcDistFlag	Bliver sat når et burst er modtaget så en afstand kan blive		
	beregnet.		
BurstFlag	Bliver sat når et burst bliver sendt og hevet ned når et burst		
	er modtaget. Dette sker for ikke at få flere detektioner på		
	samme signal.		

5.4 Metode- og klassebeskrivelser

5.4.1 Init

Ansvar

Denne header har til ansvar at initiere alle moduler og blokke på PSoC'en. Disse funktioner hentes fra PSoC'ens API.

Funktionsbeskrivelser

Beskrivelse: Funktionen anvender API'et fra alle PSoC blokke anvendt i designet og kalder deres start funktion. Derudover initierer den også read- og writebuffer til I2C modulet.

Parametre: uint8* WriteBuffer uint8* ReadBuffer uint8 BufferSize

Returværdi: Ingen

5.4.2 Valve

Ansvar

Denne header har til ansvar at styre ventilerne ud fra "state-variablen modtaget fra I2C_handle. Headeren benytter PSoC-API'et til kontrol registre..

BROS 5. VBTE

Funktionsbeskrivelser

```
void ChangeState( uint8 state )
```

Beskrivelse: Funktionen modtager state som indeholder indformationer om ventilerne

skal være lukkede eller hvilken ventil der skal være åben. Den benytter

PSoC5 API'et for kontrol register.

Parametre: uint8 state

Returværdi: Ingen

5.4.3 Dist

Ansvar

Denne header har til ansvar at sende burst, beregne afstanden samt at omregne afstanden til procent.

Funktionsbeskrivelser

void SendBurst(void)

Beskrivelse: Denne metode aktiverer en 40kHz clock og tæller perioderne op til 10,

lukker for burstet og ligger timerens værdi ind i den globale variabel

BurstTimerVal. Herefter sættes BurstFlag'et.

Parametre: Ingen Returværdi: Ingen

float CalculateDistance(void)

Beskrivelse: Denne metode anvender BurstTimerVal og DistanceTimerVal til at finde

ud af hvor mange clocks der er gået fra burstet er blevet sendt til det igen

er blevet registreret.

Parametre: Ingen

Returværdi: float DistanceMM

uint8 ConvertMMtoPercent(float)

Beskrivelse: Metoden modtager afstanden i millimeter og returnerer hvor mange % der

er i tanken

Parametre: float DistanceMM

Returværdi: uint8 DistancePercent

5.4.4 I2Chandle

Ansvar

Denne header har til ansvar at håndtere I2C. Den kigger om der er kommet noget i writebufferen. Er der kommet noget i bufferen kigger den efter hvilket tilstand det er der skal ændres til og så smider den afstanden i procent i read bufferen.

Funktionsbeskrivelser

```
uint8 I2C_handle( uint8* WriteBuffer, uint8* ReadBuffer, uint8 BufferSize )
```

Beskrivelse: Funktionen anvender API'et fra I2C blokken i PSoC miljøet. Med disse

tjekker den om der er fyldt nyt i bufferen og aflæse dette. Herfer kalder den funktionen I2C_decode til at afkode beskeden fra SM. Herefter klargøres

readbufferen til at sende vandniveau tilbage.

Parametre: uint8* WriteBuffer

uint8* ReadBuffer
uint8 BufferSize

Returværdi: uint8 State

5.4.5 PSoC-API::ADC

Ansvar

Denne header er kun beskrevet fordi der er implementeret en funktionalitet i dette API. Der er under ADC

Beskrivelse

Inde i ADC'ens interrupt header tilføjes funktionalitet så der, hver gang der bliver samplet, bliver valideret på om der er en detektion. Er der en detektion sættes flaget til udregning af afstand samt flaget for burst sættes til 0 igen. For at gøre dette anvendes funktionerne fra API'et for ADC'en.

5.4.6 State Machine

Nedenfor ses statemachine der beskriver det overordnede flow i VBTE programmet.

Figur 5.2. Statemachine for VBTE program

BROS 5. VBTE

5.4.7 Timing Diagram

Nedenfor ses timing diagram for en ultralydspuls til afstandsmåling

Figur 5.3. Timing diagram for VBTE ultralydspuls

5.4.8 Interrupt rutiner

I dette afsnit beskrives interrupt rutinerne i VBTE programmet.

isr dist

Isr_dist har til ansvar at tælle den globale variabel WaitBurstVar op. Den bliver triggeret af en clock på 1kHz. Hver gang variablen havner over 500 bliver SendBurst(); funktionen kaldt og variablen bliver nulstillet.

isr counter

Isr_counter tæller variablen BurstLengthVal op. Denne anvendes til at styre at der kun bliver sendt 10 peroder i et burst.

Appendix A: Kontrolinterface

I dette appendix vil jeg gå nærmere ind på opbygningen af den grafiske brugergrænseflade på Kontrolinterfacet.

5.5 Hovedvindue

Det første vindue man ser ved programopstart er hovedvinduet, som vist på

Figur 5.4. På figuren ses hovedvinduet for Kontrolinterface-programmet

BROS 5. VBTE

Hovedvinduets elementer	
1: Forsinkelse i sekunder	Det øverste tal fortæller tiden i sekunder siden serveren sidst er ble opdateret succesfuldt. Nedenunder udskrives tiden i sekunder sie værdierne i boks tre og fire er blevet opdateret.
2: Nedlukningsknap	Anvendes til at lukke programmet. Programmet åbner dialogen som se ??
3: Vandballasttankene	Her kan status for vandballasttankene aflæses. Niveauet er hvor fyldt tan er angivet i procent. Hvis niveauet er over 70% skrives tallet med rø Status angiver vandets flow i tanken: IND/UD/LUKKET.
4: Hældningssensor	Værdien for hældningen af skibet angives i antal grader og i hvilken s skibet hælder.
5: Reguleringsstatus6: Forbindelser	Her angives hvorvidt automatisk eller manuel hældningsregulering aktiveret. Der vil altid kun være en og kun en af disse aktiveret. Der vil der altid være en rød og en grøn indikator tændt. I dette eksempe den automatisk hældningsregulering aktiveret. Indikerer hvorvidt der er forbindelse til Styringsmodulet og server Dataforbindelse er rød hvis det ikke lykkedes at oprette forbindelse serveren ved sidste forsøg. SM-forbindelse er rød hvis det ikke lykkedes få de ventede svar fra Styringsmodulet. I denne situation er der forbinde til styringsmodulet, men ikke serveren.
7: Automatisk reguleringsknap	Ved tryk på denne knap vil man komme til dialogen på ?? såfre automatisk styring ikke er aktiveret. Hvis den er aktiveret og man tryk på knappen vil dialogen på figur ?? fremkomme.
8: Manuel reguleringsknap 9: Aktivitetslog	Bringer dig til dialogen på figur ?? Her udskrives vigtige hændelser i programmet med farvekoder. I de eksempel kan det ses hvordan alarmer skrives med rødt og oprett forbindelser skrives med grønt.

5.6 Manuel regulering af hældning

Ved tryk på knappen med teksten "AKTIVER MANUEL HÆLDNINGSREGULERING" (boks otte på figur 5.6) kommer dialogen på figur ??

32

Figur 5.5. På figuren ses vinduet for manuel indstilling af vinkel

5.7 Automatisk regulering af hældning

Ved tryk på knappen med teksten "AKTIVER AUTOMATISK HÆLDNINGSREGULE-RING" (boks syv på figur 5.6) kommer en dialog frem. Såfremt automatisk hældnings allerede er aktiveret (som indikeret med en grøn cirkel øverst i boks fem på figur 5.6) fremkommer dialogen på figur ?? frem. Hvis automatisk hældning ikke er aktiveret fremkommer dialogen på figur ?? frem.

Figur~5.6. Ved tryk på AKTIVER AUTOMATISK HÆLDNINGSREGULERING når automatisk hældningsregulering allerede er aktiveret

 ${\it Figur~5.7.}$ Ved tryk på knappen i boks syv på figur 5.6 når automatisk hældningsregulering ikke er aktiveret

BROS 5. VBTE

5.8 Termineringsdialog

Denne advarsel fremkommer når man trykker på knappen i boks to på figur 5.6.

 ${\it Figur~5.8.}$ Advarsel før nedlukning af BROS

\mathbf{D}	<u></u>	+ +	ല	ام	_	•
к	$\boldsymbol{\omega}$	Б.Т.	$\boldsymbol{\omega}$	18	Ω	ľ