Test case

One reservoir, two-objectives, stationary system:

 s_t = reservoir storage

 u_t = reservoir release

 q_{t+1} = reservoir inflow

Objectives:

- in-reservoir flood control
- downstream water supply

S = 1	reservoir surface
$\bar{h} = 50$	flooding threshold
$\bar{r} = 50$	water demand
$\mu_q = 40$	inflow mean
$\sigma_q = 10$	inflow standard deviation

Analysis

The space of feasible controls:

$$V_t = s_t$$
$$v_t = \max(s_t - 100, 0)$$

Analysis

The next storage:

$$s_{t+1}^{\min} = s_t + q_{t+1} - V_t$$

$$= s_t + q_{t+1} - s_t = q_{t+1}$$

$$s_{t+1}^{\max} = s_t + q_{t+1} - v_t$$

$$= \begin{cases} s_t + q_{t+1} & \text{if } s_t < 100 \\ s_t + q_{t+1} - s_t + 100 = q_{t+1} + 100 & \text{otherwise} \end{cases}$$

Piecewise linear control law

