Machine Learning

Objectives

Objectives

- Develop a machine learning system to characterise the pathology of pulmonary masses (lesions) in CT scans:
 - Segmentation
 - Classification
- Obtain a comprehensive understanding of supervised and unsupervised approaches to machine learning

- Analysis of Unsupervised Techniques for Lesion Segmentation:
 - Implementation of a basic pipeline
 - Comparison between different methods
 - Influence of pre and post-processing steps
 - Qualitative and quantitative test analysis

Segmentation

Parts of the Challenge

- Analysis of Supervised Techniques for Lesion Classification:
 - · Selection of optimal hyper-parameters of supervised techniques
 - Comparison between different feature spaces (radiomic texture descriptors, pre-trained networks)
 - Detection of bias in Models
 - Qualitative and quantitative test analysis

Benign

Malignant

Evaluation Activities

Activities

Milestones. Deliverables (code and report) of partial results during the course for challenge follow-up. Delivered through the Virtual Campus (VC).

Final Report. Code and report including minimums topics of the milestones (highlighted in yellow). Delivered through the Virtual Campus (VC).

Interdisciplinary working groups of 4-5 students.

Challenge2 Mark

The final mark of this part of the subject will be calculated the following way:

Challeng2 Mark = 0.25 * Milestones + 0.75 * Final Report

(Challenge2 Mark >=5 to compute average for Final Mark)

The deadline for submitting the Final Report (including code) is 1-June-2025.

Please note that Milestones should be delivered in intermediate dates (next slide).

Calendar of Milestones Deliverables

MILESTONE	DUE DATE
1. Segmentation	7 May
2. Classification baseline method	16 May
3. Classification DL method	23 May
4. Comparison of Methods & Final Report	1st June

Milestone 1 (Segmentation): Generation of an Annotated Dataset.

- 1. Extract VOI (Volume of Interest) from the CTs (intensity and mask).
- 2. Produce a single annotation for each lesion from the 4 radiologists' annotations using Max-Voting.
- 3. Make Max-Voting to obtain the "Diagnosis": if two or more radiologists have characterized the nodule with a Malignancy score > 3, then Diagnosis=1 (malignant), otherwise Diagnosis=0 (benign).

Deadline: 7 May.

Deliverable: A zip file containing the code and the VOIs and annotations per lesion of the data sample provided.

Milestone 1 (Segmentation): Nodule Segmentation. Apply unsupervised techniques to obtain a segmentation of lesions in VOIs:

- 1. Use a classic standard pipeline over intensity volumes.
- 2. Use Otsu threholding and different morphological operations.
- 3. Quantify the performance using fair segmentation metrics.
- 4. Use kmeans over classic filter banks.
- 5. Compare between different unsupervised methods.

Deadline: 7 May.

Deliverable: A zip file containing report and code. Material provided after this deadline: None.

Milestone 2 (Classification): Data Exploration

1. Use different unsupervised techniques (eg. hierarchical clustering) and statistical tests to get correlations across radiological descriptions and also detect those annotations more relevant to the diagnosis.

Deadline: 16 May.

Deliverable: A zip file containing code and report for explaining the

correlations.

Material provided after this deadline: None.

Milestone 2 (Classification): Extraction of Radiomic Features.

1. Extract GLCM texture features using the PyRadiomics library.

Deadline: 16 May.

Deliverable: A zip file containing code for the extraction of GLCM features.

Material provided after this deadline: GLCMs in numpy format (.npz).

Milestone 3 (Classification): Feature Extraction using a Pre-trained Convolutional Network.

- 1. Load a predefined VGG model and modify it to extract the features of the 1st fully connected (FC) layer.
- 2. Apply techniques for reduction of dimensionality.

Deadline: 23 May.

Deliverable: A zip file containing code for the extraction and selection of VGG features.

Material provided after this deadline: extracted features of the VGG in numpy format (.npz) and indexes of the selected features.

Milestone 3 (Classification): Experimental Design and Data Splitting. Use a classifier (like SVM) with default parameters and GLCM features and implement a validation using:

- 1. K-folds by slice (StratifiedKFold).
- 2. K-folds grouping by nodule (StratifiedGroupKFold).

Deadline: 23 May.

Deliverable: A zip file containing code for the experimental designs

Material provided after this deadline: code using k-folds by slice.

Milestone 3 (Classification): Hyper-parameters Optimization

- 1. Use a brute force grid search
- 2. Use a random search using sklearn.
- 3. Use Optuna.

Deadline: 23 May.

Deliverable: A zip file containing code for the optimization of hyper-parameters

Material provided after this deadline: None

Milestone 4 (final report): Compare the performance of the different approaches.

1. Comparison between different feature spaces (radiomic texture descriptors, pre-trained networks)

Deadline: 1 June.

Deliverable: A zip file containing report and code for the Final Report.

Material provided after this deadline: None

Dataset

LIDC-IDRI consists of diagnostic and lung cancer screening thoracic CT scans with marked-up annotated lesions.

```
<edgeMap>
<xCoord>363</xCoord>
<yCoord>338</yCoord>
</edgeMap>

<edgeMap>
<xCoord>362</xCoord>
<yCoord>339</yCoord>
</edgeMap>
</edgeMap>
```

000001.dcm
 000002.dcm
 000003.dcm
 000004.dcm
 000005.dcm
 000006.dcm
 000007.dcm

XML file for the CT scans

DICOM files for the CT scans

Mask

CT Acquisition Parameters

		_		
WindowCenter	WindowWidth	RescaleSlope	RescaleIntercept	
-600	1600	1	-1024	
-600	1600	1	-1024	
40	400	1	-1024	
-600	1600	1	-1024	

CT

Radiologist's Annotations

EL VEN HER			4		to an artist of the second	F. solice
patient id	nodule_id	seriesuid	coordX	coordY	coordZ	diameter_mm
LIDC-IDRI-0001		1.3.6.1.4.1.14519.5.2.1.6279.6001.179049373636438705059720603192	56.20840547	86.34341278	-115.8675792	23.35064438
LIDC-IDRI-0001		1.3.6.1.4.1.14519.5.2.1.6279.6001.179049373636438705059720603192	56.20840547	86.34341278	-115.8675792	23.35064438
LIDC-IDRI-0001	8	1.3.6.1.4.1.14519.5.2.1.6279.6001.179049373636438705059720603192	56.20840547	86.34341278	-115.8675792	23.35064438
LIDC-IDRI-0001		1.3.6.1.4.1.14519.5.2.1.6279.6001.179049373636438705059720603192	56.20840547	86.34341278	-115.8675792	23.35064438

Malignancy	Malignancy_value	anotation_id	Calcification	Calcification_value	InternalStructure	InternalStructure_value
Highly Suspicious	5	84	Absent	6	Soft Tissue	1
Highly Suspicious	5	85	Absent	6	Soft Tissue	1
Highly Suspicious	5	86	Absent	6	Soft Tissue	1
Moderately Suspicious	4	87	Absent	6	Soft Tissue	1

Python Libraries

Python libraries

Virtual Environment

- SimpleITK
- Numpy
- Pandas
- Sklearn

Visualization

- · 3D-Slicer
- VolumeCutBrowser

Code provided by instructors