← Optimization algorithms Quiz, 10 questions

10/10 points (100%)

Congratulations! You passed!

Next Item

1/1 points

1.

Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?

 $a^{[8]\{3\}(7)}$

 $a^{[3]\{8\}(7)}$

Correct

 $a^{[8]\{7\}(3)}$

 $a^{[3]\{7\}(8)}$

1/1 points

2.

Which of these statements about mini-batch gradient descent do you agree with?

Opti Quiz, 10	Mizationalgorithms tch gradient descent without an explicit for-loop over different 10/1046/1804 (190%), that the algorithm processes all mini-batches at the same time (vectorization).		
	Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.		
0	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.		
Corre	ect		
/	1 / 1 points		
vhy is the best mini-batch size usually not 1 and not m, but instead something in-between?			
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.		
Un-se	elected is correct		
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.		
Correct			
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.		
Corre	ect each each each each each each each each		

Optirhiza្ជាច់ទ្រាវត្សាខ្លាំង end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.

10/10 points (100%)

Quiz, 10 questions

Un-selected is correct

1/1 points

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

10/10 points (100%)

Which of the following do you agree with?

- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

Correct

If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

1/1 points

5.

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd:
$$heta_2 10^o C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=7.5$$
 , $v_2^{corrected}=10$

Correct

$$v_2=10$$
, $v_2^{corrected}=10$

$$v_2=10$$
, $v_2^{corrected}=7.5$

$$v_2=7.5$$
 , $v_2^{corrected}=7.5$

1/1 points 6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number. $\begin{tabular}{c} \textbf{Optimization algorithms} \end{tabular}$

10/10 points (100%)

Quiz, 10 $questiq res^{\frac{1}{2}}$

 $lpha=0.95^tlpha_0$

Correct

1/1 points

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red **Optimization** (algorithms at apply)

Decreasing eta will shift the red line slightly to the right.

Un-selected is correct

Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - H	lome Coursera	
lacksquare Increasing eta will shift the red line slightly to the right.		
Optimization algorithms	10/10 points (100%	
Qપાંત્રપીએ, જાયભાર્ધભાઇ er that the red line corresponds to $eta=0.9$. In lecture we had a green line \$\$\beta\$ slightly shifted to the right.	a = 0.98) that is	
Decreasing eta will create more oscillation within the red line.		
Correct True, remember that the red line corresponds to $eta=0.9$. In lecture we had a yellow line \$\$\beta a lot of oscillations.	ta = 0.98 that had	
Increasing eta will create more oscillations within the red line.		
Un-selected is correct		

/

1/1 points

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)

10/10 points (100%)

Quiz, 10 questions

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},...,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

	Try using Adam		
Correct			
	Try tuning the learning rate $lpha$		
Corre	Correct		
	Try better random initialization for the weights		
Correct			
	Try mini-batch gradient descent		
Correct			
	Try initializing all the weights to zero		
Un-selected is correct			

Optimization algorithms

10/10 points (100%)

10 iz, 10 questions

Which of the following statements about Adam is False?
--

	The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.
	We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9,eta_2=0.999$, $arepsilon=10^{-8}$)
0	Adam should be used with batch gradient computations, not with mini-batches.

Correct

Adam combines the advantages of RMSProp and momentum

