Panel Data Regression

Dataset Background:

The dataset is taken from An Examination of the Dynamic Behavior of Local Governments using GMM Bootstrapping Methods Journal by Dahlberg. It represents the Municipal Expenditure Data collected over a period of time. The goal is to predict the Expenditure on the basis of Revenue and Grants. Since the data contains both time-series and cross-sectional data, it is considered to be Panel Dataset.

Dataset Glimpse:

YEAR	EXPEND	REVENUE	GRANTS
1979	0.022974	0.018177	0.005443
1980	0.026631	0.020914	0.00573
1981	0.027325	0.021084	0.005665
1982	0.02887	0.023431	0.005886
1983	0.022647	0.017998	0.005591
1984	0.02156	0.017995	0.004754
1985	0.021959	0.016224	0.005491
1986	0.020889	0.015941	0.005398
1987	0.021327	0.016589	0.005135
1979	0.015662	0.014539	0.004354

Total Number of Rows: 39.

Total Number of Columns: 4.

Column Details:

- Year the year in which the data was collected.
- Expend the logarithm of the expenditure by the municipal corporation.
- Revenue the logarithm of the revenue earned by the municipal corporation.
- Grants the logarithm of the grants issued to the municipal corporation.

Main Dependent Variable: Expend.

Using SPSS Software EViews, we have analysed the data:

Descriptive Statistics:

	EXPEND	REVENUE	GRANTS
Mean	0.020188	0.015531	0.004847
Median	0.018726	0.014487	0.004781
Maximum	0.028870	0.023431	0.005886
Minimum	0.014237	0.009854	0.003974
Std. Dev.	0.004099	0.003607	0.000529
Skewness	0.664011	0.595132	0.147535
Kurtosis	2.258700	2.204175	1.890282
_			
Jarque-Bera	3.758901	3.331357	2.142628
Probability	0.152674	0.189062	0.342558
Sum	0.787315	0.605714	0.189022
Sum Sq. Dev.	0.000638	0.000494	1.06E-05
Observations	20	20	20
Observations	39	39	39

- The variable Expend is slightly right skewed, ranging between 0.014 to 0.029.
- The variable Revenue is slightly right skewed, ranging between 0.001 to 0.023.
- The variable Grants is slightly right skewed, ranging between 0.004 to 0.006.
- There is no missing data.

Correlation Analysis:

	EXPEND	REVENUE	GRANTS
EXPEND	1.000000	0.963747	0.821757
REVE	0.963747	1.000000	0.787069
GRANTS	0.821757	0.787069	1.000000

Inferences:

- The variables expend and revenue have very high degree of positive linear correlation, having correlation coefficient 0.96.
- The variables expenditure and grants have sufficient high degree of positive linear correlation, having correlation coefficient 0.82.
- The variables revenue and grants have moderate degree of positive linear correlation, having correlation coefficient 0.78.

Scatter Plots:

Inference: the variables expend and revenue have very high degree of positive linear correlation.

Inference: the variables expenditure and grants have sufficient high degree of positive linear correlation.

Inference: the variables revenue and grants have moderate degree of positive linear correlation.

Regression Analysis using OLS:

Cross-sections included: 9

Total panel (unbalanced) observations: 39

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C REVENUE GRANTS	-0.000752 0.946639 1.286989	0.001741 0.075642 0.515587	-0.432223 12.51474 2.496160	0.6682 0.0000 0.0173
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.939311 0.935940 0.001037 3.87E-05 214.1912 278.5958 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.020188 0.004099 -10.83032 -10.70235 -10.78441 2.231517

Estimate Equation:

Expend =
$$-0.0008 + (0.94)(Revenue) + (1.29)(Grants)$$

- The model has very good explanatory power, having R² value 0.94.
- The variables revenue and grants are statistically significant, having p-values 0.00 and 0.02.
- The intercept is not statistically significant, having p-value 0.668.

Fixed Effect Model:

Cross-sections included: 9

Total panel (unbalanced) observations: 39

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C REVENUE	-0.000292 0.951611	0.001728 0.078235	-0.168829 12.16345	0.8671 0.0000		
GRANTS	1.175993	0.529612	2.220477	0.0347		
Effects Specification						
Cross-section fixed (dummy variables)						
R-squared	0.960816	Mean depen	dent var	0.020188		
Adjusted R-squared	0.946822	S.D. dependent var		0.004099		
S.E. of regression	0.000945	Akaike info criterion		-10.85756		
Sum squared resid	2.50E-05	Schwarz criterion		-10.38835		
Log likelihood	222.7223	Hannan-Quinn criter.		-10.68921		
F-statistic	68.65807			3.463053		
Prob(F-statistic)	0.000000					

Estimate Equation:

Expend =
$$-0.0003 + (0.95)(Revenue) + (1.17)(Grants)$$

- The model has very good explanatory power, having R² value 0.96.
- The variables revenue and grants are statistically significant, having p-values 0.000 and 0.03.
- The intercept is statistically significant, having p-value 0.87.

Random Effect Model:

Cross-sections included: 9

Total panel (unbalanced) observations: 39

Swamy and Arora estimator of component variances

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C REVENUE GRANTS	-0.000465 0.950660 1.214282	0.001672 0.073820 0.501532	-0.278141 12.87812 2.421147	0.7825 0.0000 0.0206		
	Effects Spe	ecification	S.D.	Rho		
Cross-section random Idiosyncratic random			0.000540 0.000945	0.2460 0.7540		
Weighted Statistics						
R-squared Adjusted R-squared S.E. of regression F-statistic Prob(F-statistic)	0.948051 0.945165 0.000924 328.4934 0.000000	Mean dependent var S.D. dependent var Sum squared resid Durbin-Watson stat		0.012960 0.003936 3.07E-05 2.816083		
Unweighted Statistics						
R-squared Sum squared resid	0.939263 3.88E-05	Mean dependent var Durbin-Watson stat		0.020188 2.231562		

Estimate Equation:

Expend =
$$-0.00047 + (0.95)(Revenue) + (1.21)(Grants)$$

- The model has a high explanatory power, having R² value 0.94.
- The variables revenue and grants are statistically significant, having p-values 0.000 and 0.02.
- The intercept is statistically insignificant, having p-value 0.78.

Hausman Test:

Correlated Random Effects - Hausman Test

Equation: Untitled

Test cross-section random effects

Test Summary	Chi-Sq. Statistic	Chi-Sq. d.f.	Prob.
Cross-section random	0.287356	2	0.8662

Cross-section random effects test comparisons:

Variable	Fixed	Random	Var(Diff.)	Prob.
REVENUE	0.951611	0.950660	0.000671	0.9707
GRANTS	1.175993	1.214282	0.028955	0.8220

Here:

- Null Hypothesis The random effect model is appropriate.
- Alternate Hypothesis The fixed effect model is appropriate.

Since the chi-square statistic test with a value of 0.28 having 2 degrees of freedom has a p-value of 0.8662, we accept the null hypothesis and conclude that the random effect model is appropriate.