# Natural Language Processing

Lecture 8: Classification

# Three Spelling Problems

- ✓ Detecting isolated non-words
- ✓ Fixing isolated non-words
- 3. Fixing errors in context

## Kernighan's Model: A Noisy Channel



#### acress

| С       | freq(c) | $p(t \mid c)$         | %  |
|---------|---------|-----------------------|----|
| actress | 1343    | p(delete t)           | 37 |
| cress   | 0       | p(delete a)           | 0  |
| caress  | 4       | p(transpose a & c)    | 0  |
| access  | 2280    | p(substitute r for c) | 0  |
| across  | 8436    | p(substitute e for o) | 18 |
| acres   | 2879    | p(delete s)           | 21 |
| acres   | 2879    | p(delete s)           | 23 |

# Noisy Channel Model (General)



### Classification

#### Notation

- Training examples:  $\mathbf{x} = (x_1, x_2, ..., x_N)$
- Their categories:  $\mathbf{y} = (y_1, y_2, ..., y_N)$
- A classifier C seeks to map X<sub>i</sub> to Y<sub>i</sub>

$$X \to \boxed{C}$$

A learner L infers C from (x, y)

$$y \rightarrow C$$

#### **Probabilistic Classifiers**



# Noisy Channel Model (General)



# Noisy Channel Classifiers



### Representing Text: Features

- Any object  $x \in \mathcal{X}$  you might be given to classify can be represented as a vector in a **vector space** 
  - Vectors of representing text are often sparse and high-dimensional
- Designing Φ ("Feature engineering")
  - What information do you need to solve the problem?
  - What information do you need to avoid mistakes?
  - Very common: bag-of-words

# Naïve Bayes Classifier



# Naïve Bayes Learner



#### C:

- 1. Use  $\Phi(x)$  to map x onto a **real-valued** feature space.
- 2. Calculate the linear score  $z = \mathbf{w}^{\mathsf{T}} \mathbf{\Phi}(x)$ .
- 3. If z > 0, then return y = YES, else y = NO.

$$X \to \bigcirc$$









# Linear Classifiers (> 2 Classes)



## Perceptron Learner

```
for t = 1 ... T:
      select (x_t, y_t)
      # run current classifier
   y \leftarrow \text{arg max}_{y'} \mathbf{w} \top \mathbf{\Phi}(x, y')
      if y != y_t then # mistake
            \mathbf{w} \leftarrow \mathbf{w} + \alpha \left[ \mathbf{\Phi}(x_t, y_t) - \mathbf{\Phi}(x_t, y) \right]
return w
```