GAUSSIAN PROCESSES PROBLEM SHEET

- 1 Performing integrals over normal distributes takes practice.
- (a) Consider the integral

$$I_1 = \int_{-\infty}^{\infty} e^{-x^2/2} dx.$$

Directly evaluating this is difficult, but there is a trick. Consider instead

$$I_1^2 = \int_{-\infty}^{\infty} e^{-x^2/2} dx \int_{-\infty}^{\infty} e^{-y^2/2} dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)/2} dx dy.$$

By making the change of variables to polar coordinates where $r=\sqrt{x^2+y^2}$ and $\theta=\arctan(y/x)$ (so that $x=r\cos(\theta),\ y=r\sin(\theta)$) then $\mathrm{d} x\mathrm{d} y=r\mathrm{d} r\mathrm{d} \theta.$ Note that to integrate over all space we let θ vary from 0 to 2π and r to vary from 0 to ∞ . Write down the integral in polar coordinate, make a further the change of variables $u=r^2/2$ to evaluate I_1^2 hence compute I_1 [5 marks]

$$I_1^2 = \int_0^{2\pi} d\theta \int_0^{\infty} re^{-r^2/2} dr = 2\pi \int_0^{\infty} re^{-r^2/2} dr.$$

Making the change of variables $u = r^2/2$ so that du/dr = r or du = rdr we get

$$I_1^2 = 2\pi \int_0^\infty e^{-u} du = 2\pi$$

so
$$I_1 = \sqrt{2\pi}$$
.

(b) By making a change of variables compute

$$I_2 = \int_{-\infty}^{\infty} e^{-(x-\mu)^2/(2\sigma^2)} dx$$

[5 marks]

The trick is to let $z = (x - \mu)/\sigma$ so that $dz = dx/\sigma$ or $dx = \sigma dz$. Then

$$I_2 = \sigma \int_{-\infty}^{\infty} e^{-z^2/2} dz = \sigma I_1 = \sqrt{2\pi} \sigma$$

Note that the *probability density function* (PDF) for a normally distributed random variable is given by

$$\mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}.$$

(Observe that $\mathcal{N}(0 \mid \mu, \sigma^2) = 1/(\sqrt{2\pi}\sigma)$ so when $\sigma < \sqrt{2\pi}$ then $\mathcal{N}(0 \mid \mu, \sigma^2) > 1$, showing that PDFs are not probabilities.)

(c) By using the identity $e^{a+b} = e^a e^b$, or more generally

$$e^{\sum_i a_i} = \prod_i e^{a_i}$$

compute

$$I_3 = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\frac{1}{2} \|\boldsymbol{x}\|_2^2} dx_1 \cdots dx_n$$

where $x = (x_1, x_2, ..., x_n)^T$.

[3 marks]

We note that $\|\boldsymbol{x}\|_2^2 = \sum_{i=1}^n x_i^2$

$$I_{3} = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}} dx_{1} \cdots dx_{n}$$
$$= \prod_{i=1}^{n} \int_{-\infty}^{\infty} e^{-x_{i}^{2}/2} dx_{i} = \prod_{i=1}^{n} \sqrt{2\pi} = (2\pi)^{n/2}.$$

(d) By using the fact that for a positive semi-definite matrix, Ξ , we can use the eigenvector decomposition $\Xi^{-1} = V \Lambda^{-1} V^{\mathsf{T}}$ where V is an orthogonal matrix with determinant $\det(V) = \pm 1$ and Λ^{-1} is a diagonal matrix with elements λ_i^{-1} compute

$$I_4 = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Xi}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})} \, \mathrm{d}x_1 \cdots \mathrm{d}x_n.$$

[6 marks]

This needs some confidence to push through to the end.

$$I_4 = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{V} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathsf{T}} (\boldsymbol{x} - \boldsymbol{\mu})} dx_1 \cdots dx_n.$$

We make the change of variables $y = V^{T}(x - \mu)$. However, to make a change of variables, $x \to y$, where we use

$$\iiint_{\mathcal{R}(\boldsymbol{x})} f(\boldsymbol{x}) dx_1 \cdots dx_n = \iiint_{\mathcal{R}(\boldsymbol{y})} f(\boldsymbol{x}(\boldsymbol{y})) |\mathbf{J}| dy_1 \cdots dy_n$$

where $\mathcal{R}(y)$ is the same region as $\mathcal{R}(x)$ but specified in y-coordinates and J is the Jacobian matrix with elements $J_{ij} = \partial x_i/\partial y_j$. In our case $x(y) = \mathbf{V}y + \mu$

$$J_{ij} = \frac{\partial x_i}{\partial y_j} = \frac{\partial}{\partial y_j} \left(\sum_{k=1}^n V_{ik} y_k - \mu_i \right) = V_{ij}$$

so that J = V and $|\det(J)| = |\det(V)| = 1$. This makes sense as the matrix V corresponds to a rotation (with a possible reflection) which does not change the volume.

Thus on making the change of variables

$$I_4 = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-\frac{1}{2} \boldsymbol{y}^{\mathsf{T}} \boldsymbol{\Lambda}^{-1} \boldsymbol{y}} \, \mathrm{d}y_1 \cdots \mathrm{d}y_n. = \prod_{i=1}^n \int_{-\infty}^{\infty} e^{-y_i^2/(2\lambda_i)} \, \mathrm{d}y_i = \prod_i \sqrt{2\pi \lambda_i}$$

where we used I_2 with $\sigma = \sqrt{\lambda_i}$. (Note if Ξ was not positive semi-definite λ_i would be negative and the integral would not converge.)

(e) Using the facts, that $\Xi = V \Lambda V^\mathsf{T}$, for any two square matrices A and B the determinants satisfy $\det(AB) = \det(A)\det(B)$, and $\det(V) = \det(V^\mathsf{T}) = \pm 1$ show that $\det(\Xi) = \prod_i \lambda_i$. [1 mark]

$$\det(\boldsymbol{\Xi}) = \det(\boldsymbol{V}\boldsymbol{\Lambda}\boldsymbol{V}^\mathsf{T}) = \det(\boldsymbol{V})\det(\boldsymbol{\Lambda})\det(\boldsymbol{V}^\mathsf{T}) = \det(\boldsymbol{\Lambda}) = \prod_{i=1}^n \lambda_i$$

We have used that $\det(\mathbf{V}) = \det(\mathbf{V}^T)$ which equals 1 or -1, but $\det(\mathbf{V}) \times \det(\mathbf{V}^T) = 1$. Also we use that the determinant of a diagonal matrix is equal to the product of the diagonal elements. We note that

$$I_4 = (2\pi)^{n/2} \sqrt{\det(\mathbf{\Xi})}$$

There is another trick to simplify the notation a bit more. For an $n \times n$ matrix \mathbf{M} then $\det(c\mathbf{M}) = c^n \det(\mathbf{M})$ as the determinant of the matrix involves a sum of terms where each term involves a product of n elements. Multiplying each element by c means that the determinant increases by c^n . Thus, we can write

$$I_4 = (2\pi)^{n/2} \sqrt{\det(\mathbf{\Xi})} = \sqrt{\det(2\pi\mathbf{\Xi})}$$

and the multivariate normal PDF is

$$\mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Xi}) = \frac{1}{\sqrt{\det(2\pi\boldsymbol{\Xi})}} e^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Xi}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})}$$

End of question 1

2 Consider a multivariate normal distribution

$$f_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y}) = \mathcal{N}\bigg(\begin{pmatrix}\boldsymbol{x}\\\boldsymbol{y}\end{pmatrix}\bigg|\begin{pmatrix}\boldsymbol{0}\\\boldsymbol{0}\end{pmatrix},\begin{pmatrix}\boldsymbol{A} & \boldsymbol{B}\\\boldsymbol{B}^\mathsf{T} & \boldsymbol{C}\end{pmatrix}\bigg)$$

where A and C are symmetric (positive definite) matrices. The matrix

$$\Xi = \begin{pmatrix} A & B \\ B^\mathsf{T} & C \end{pmatrix}$$

is the covariance matrix.

We want to compute the conditional probability density function $f_{X,Y}(x \mid y)$. This is complicated because the normal distribution involve the inverse of the covariance matrix. Let

$$\mathbf{U} = \begin{pmatrix} \mathbf{I} & \mathbf{B} \, \mathbf{C}^{-1} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}, \qquad \qquad \mathbf{D} = \begin{pmatrix} \mathbf{A} - \mathbf{B} \, \mathbf{C}^{-1} \mathbf{B}^\mathsf{T} & \mathbf{0} \\ \mathbf{0}^\mathsf{T} & \mathbf{C} \end{pmatrix}$$

where I is the identity matrix.

(a) Compute UD

[3 marks]

$$\begin{split} \mathbf{UD} &= \begin{pmatrix} \mathbf{I} & \mathbf{B} \, \mathbf{C}^{-1} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{A} - \mathbf{B} \, \mathbf{C}^{-1} \mathbf{B}^\mathsf{T} & \mathbf{0} \\ \mathbf{0}^\mathsf{T} & \mathbf{C} \end{pmatrix} \\ &= \begin{pmatrix} \mathbf{A} - \mathbf{B} \, \mathbf{C}^{-1} \mathbf{B}^\mathsf{T} & \mathbf{B} \\ \mathbf{0}^\mathsf{T} & \mathbf{C} \end{pmatrix} \end{split}$$

(b) Using the previous result compute $(UD)U^{\mathsf{T}}.$ Hence show $\Xi=UDU^{\mathsf{T}}.$ [3 marks]

$$(\mathbf{U}\mathbf{D})\mathbf{U}^\mathsf{T} = \begin{pmatrix} \mathbf{A} - \mathbf{B}\mathbf{C}^{-1}\mathbf{B}^\mathsf{T} & \mathbf{B} \\ \mathbf{0}^\mathsf{T} & \mathbf{C} \end{pmatrix} \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{C}^{-1}\mathbf{B}^\mathsf{T} & \mathbf{I} \end{pmatrix} = \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^\mathsf{T} & \mathbf{C} \end{pmatrix} = \mathbf{\Xi}$$

(c) Given that $\Xi = UDU^\mathsf{T}$ write down Ξ^{-1} in terms of U and D

[1 mark]

$$\mathbf{\Xi}^{-1} = (\mathbf{U}^{\mathsf{T}})^{-1} \mathbf{D}^{-1} \mathbf{U}^{-1}$$

(d) Demonstrate by direct multiplication that

$$\mathbf{U}^{-1} = \begin{pmatrix} \mathbf{I} & -B\,\mathbf{C}^{-1} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \quad \mathbf{D}^{-1} = \begin{pmatrix} (\mathbf{A} - B\,\mathbf{C}^{-1}B^\mathsf{T})^{-1} & \mathbf{0} \\ \mathbf{0}^\mathsf{T} & \mathbf{C}^{-1} \end{pmatrix} \quad (\mathbf{U}^\mathsf{T})^{-1} = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{C}^{-1}B^\mathsf{T} & \mathbf{I} \end{pmatrix}$$

i.e. show $\mathbf{U}^{-1}\mathbf{U} = \mathbf{I}$, $\mathbf{D}^{-1}\mathbf{D} = \mathbf{I}$ and $(\mathbf{U}^\mathsf{T})^{-1}\mathbf{U}^\mathsf{T} = \mathbf{I}$.

[6 marks]

(i)

$$u^{-1}u = \begin{pmatrix} I & -BC^{-1} \\ 0 & I \end{pmatrix} \begin{pmatrix} I & BC^{-1} \\ 0 & I \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}$$

(ii)

$$\mathbf{D}^{-1}\mathbf{D} = \begin{pmatrix} (\mathbf{A} - \mathbf{B}\,\mathbf{C}^{-1}\mathbf{B}^\mathsf{T})^{-1} & \mathbf{0} \\ \mathbf{0}^\mathsf{T} & \mathbf{C}^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{A} - \mathbf{B}\,\mathbf{C}^{-1}\mathbf{B}^\mathsf{T} & \mathbf{0} \\ \mathbf{0}^\mathsf{T} & \mathbf{C} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$$

where we use $(\mathbf{A} - \mathbf{B} \mathbf{C}^{-1} \mathbf{B}^{\mathsf{T}})^{-1} (\mathbf{A} - \mathbf{B} \mathbf{C}^{-1} \mathbf{B}^{\mathsf{T}}) = \mathbf{I}$ and $\mathbf{C}^{-1} \mathbf{C} = \mathbf{I}$.

(iii)

$$(\boldsymbol{U}^\mathsf{T})^{-1}\boldsymbol{U}^\mathsf{T} = \begin{pmatrix} \boldsymbol{I} & \boldsymbol{0} \\ -\boldsymbol{C}^{-1}\boldsymbol{B}^\mathsf{T} & \boldsymbol{I} \end{pmatrix} \begin{pmatrix} \boldsymbol{I} & \boldsymbol{0} \\ \boldsymbol{C}^{-1}\boldsymbol{B}^\mathsf{T} & \boldsymbol{I} \end{pmatrix} = \begin{pmatrix} \boldsymbol{I} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{I} \end{pmatrix}$$

(e) Letting $z=inom{x}{y}$ then we can write

$$f_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y}) = f_{\boldsymbol{Z}}(\boldsymbol{z}) = \mathcal{N}(\boldsymbol{z} \mid \boldsymbol{0},\boldsymbol{\Xi}) = \frac{1}{\sqrt{\det(2\pi\boldsymbol{\Xi})}} \mathrm{e}^{-\frac{1}{2}\boldsymbol{z}^\mathsf{T}\boldsymbol{\Xi}^{-1}\boldsymbol{z}}.$$

where $\det(2\pi\Xi)$ is the determinant of the matrix $2\pi\Xi$ and is introduced to ensures that $f_{X,Y}(x,y)$ is normalised. From parts (c) and (d)

$$\boldsymbol{\Xi}^{-1} = \begin{pmatrix} \boldsymbol{I} & \boldsymbol{0} \\ -\boldsymbol{C}^{-1}\boldsymbol{B}^\mathsf{T} & \boldsymbol{I} \end{pmatrix} \begin{pmatrix} (\boldsymbol{A} - \boldsymbol{B}\,\boldsymbol{C}^{-1}\boldsymbol{B}^\mathsf{T})^{-1} & \boldsymbol{0} \\ \boldsymbol{0}^\mathsf{T} & \boldsymbol{C}^{-1} \end{pmatrix} \begin{pmatrix} \boldsymbol{I} & -\boldsymbol{B}\,\boldsymbol{C}^{-1} \\ \boldsymbol{0} & \boldsymbol{I} \end{pmatrix}.$$

Expand out $z^{\mathsf{T}}\Xi^{-1}z=(x^{\mathsf{T}},y^{\mathsf{T}})\Xi^{-1}\binom{x}{y}$ (start by multiplying the vectors z^{T} by $(\mathbf{U}^{\mathsf{T}})^{-1}$ and z by \mathbf{U}^{-1}) [4 marks]

$$\begin{split} \boldsymbol{z}^\mathsf{T} \boldsymbol{\Xi}^{-1} \boldsymbol{z} &= (\boldsymbol{x}^\mathsf{T}, \boldsymbol{y}^\mathsf{T}) \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{C}^{-1} \mathbf{B}^\mathsf{T} & \mathbf{I} \end{pmatrix} \begin{pmatrix} (\mathbf{A} - \mathbf{B} \mathbf{C}^{-1} \mathbf{B}^\mathsf{T})^{-1} & \mathbf{0} \\ \mathbf{0}^\mathsf{T} & \mathbf{C}^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{I} & -\mathbf{B} \mathbf{C}^{-1} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \boldsymbol{x} \\ \boldsymbol{y} \end{pmatrix} \\ &= (\boldsymbol{x}^\mathsf{T} - \boldsymbol{y}^\mathsf{T} \mathbf{C}^{-1} \mathbf{B}^\mathsf{T}, \boldsymbol{y}^\mathsf{T}) \begin{pmatrix} (\mathbf{A} - \mathbf{B} \mathbf{C}^{-1} \mathbf{B}^\mathsf{T})^{-1} & \mathbf{0} \\ \mathbf{0}^\mathsf{T} & \mathbf{C}^{-1} \end{pmatrix} \begin{pmatrix} \boldsymbol{x} - \mathbf{B} \mathbf{C}^{-1} \boldsymbol{y} \\ \boldsymbol{y} \end{pmatrix} \\ &= (\boldsymbol{x}^\mathsf{T} - \boldsymbol{y}^\mathsf{T} \mathbf{C}^{-1} \mathbf{B}^\mathsf{T}) (\mathbf{A} - \mathbf{B} \mathbf{C}^{-1} \mathbf{B}^\mathsf{T})^{-1} (\boldsymbol{x} - \mathbf{B} \mathbf{C}^{-1} \boldsymbol{y}) + \boldsymbol{y}^\mathsf{T} \mathbf{C}^{-1} \boldsymbol{y} \end{split}$$

In the next question we use the short-hand notation

$$\int f(\boldsymbol{z}) d\boldsymbol{z} = \int \cdots \int f(\boldsymbol{z}) dz_1 dz_2 \dots dz_n$$

(f) To compute $f_{X|Y}(x \mid y) = f_{X,Y}(x,y)/f_Y(y)$ we need to find

$$f_{\boldsymbol{Y}}(\boldsymbol{y}) = \int_{-\infty}^{\infty} f(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x}$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{\det(2\pi\boldsymbol{\Xi})}} e^{-\frac{1}{2}(\boldsymbol{x}^{\mathsf{T}} - \boldsymbol{y}^{\mathsf{T}} \mathbf{C}^{-1} \mathbf{B}^{\mathsf{T}})(\mathbf{A} - \mathbf{B} \mathbf{C}^{-1} \mathbf{B}^{\mathsf{T}})^{-1} (\boldsymbol{x} - \mathbf{B} \mathbf{C}^{-1} \boldsymbol{y}) - \frac{1}{2} \boldsymbol{y}^{\mathsf{T}} \mathbf{C}^{-1} \boldsymbol{y}} d\boldsymbol{x}$$

$$= \frac{e^{-\frac{1}{2} \boldsymbol{y}^{\mathsf{T}} \mathbf{C}^{-1} \boldsymbol{y}}}{\sqrt{\det(2\pi\boldsymbol{\Xi})}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} (\boldsymbol{x}^{\mathsf{T}} - \boldsymbol{y}^{\mathsf{T}} \mathbf{C}^{-1} \mathbf{B}^{\mathsf{T}})(\mathbf{A} - \mathbf{B} \mathbf{C}^{-1} \mathbf{B}^{\mathsf{T}})^{-1} (\boldsymbol{x} - \mathbf{B} \mathbf{C}^{-1} \boldsymbol{y})} d\boldsymbol{x}$$

By making a change of variable from x to $u = x - BC^{-1}y$ rewrite the integral

$$I = \int_{-\infty}^{\infty} e^{-\frac{1}{2}(\boldsymbol{x}^{\mathsf{T}} - \boldsymbol{y}^{\mathsf{T}} \mathbf{C}^{-1} \mathbf{B}^{\mathsf{T}})(\mathbf{A} - \mathbf{B} \, \mathbf{C}^{-1} \mathbf{B}^{\mathsf{T}})^{-1}(\boldsymbol{x} - \mathbf{B} \, \mathbf{C}^{-1} \boldsymbol{y})} \mathrm{d}\boldsymbol{x}$$

then use

$$\int_{-\infty}^{\infty} e^{-\frac{1}{2}\boldsymbol{u}^{\mathsf{T}}\mathbf{M}^{-1}\boldsymbol{u}} \mathrm{d}\boldsymbol{u} = \sqrt{\det(2\pi\mathbf{M})}$$

to evaluate $f_{\mathbf{Y}}(\mathbf{y})$.

[5 marks]

Making the change of variables $u = x - BC^{-1}y$

$$I = \int_{-\infty}^{\infty} e^{-\frac{1}{2}\boldsymbol{u}^{\mathsf{T}}(\mathbf{A} - \mathbf{B}\mathbf{C}^{-1}\mathbf{B}^{\mathsf{T}})^{-1}\boldsymbol{u}} d\boldsymbol{u} = \sqrt{\det(2\pi(\mathbf{A} - \mathbf{B}\mathbf{C}^{-1}\mathbf{B}^{\mathsf{T}}))}$$

Thus

$$f_{\mathbf{Y}}(\mathbf{y}) = \sqrt{\frac{\det(2\pi(\mathbf{A} - \mathbf{B}\mathbf{C}^{-1}\mathbf{B}^{\mathsf{T}}))}{\det(2\pi\mathbf{\Xi})}} e^{-\frac{1}{2}y^{\mathsf{T}}\mathbf{C}^{-1}\mathbf{y}}.$$

where $\det(\Xi)$ denotes the determinant of a matrix Ξ . In passing we recall that $\Xi = \mathbf{U}^\mathsf{T} \mathbf{D} \mathbf{U}$ so $\det(\Xi) = \det(\mathbf{U}^\mathsf{T}) \det(\mathbf{D}) \det(\mathbf{U})$, But it is easy to show $\det(\mathbf{U}^\mathsf{T}) = \det(\mathbf{U}) = 1$ and because \mathbf{D} is block diagonal $\det(\mathbf{D}) = \det(\mathbf{A} - \mathbf{B} \mathbf{C}^{-1} \mathbf{B}^\mathsf{T}) \det(\mathbf{C})$ so that $\det(\Xi) = \det(\mathbf{A} - \mathbf{B} \mathbf{C}^{-1} \mathbf{B}^\mathsf{T}) \det(\mathbf{C})$. Thus

$$f_{\boldsymbol{Y}}(\boldsymbol{y}) = \frac{1}{\sqrt{\det(2\pi \mathbf{C})}} e^{-\frac{1}{2}y^{\mathsf{T}}\mathbf{C}^{-1}\boldsymbol{y}} = \mathcal{N}(\boldsymbol{y} \mid \mathbf{0}, \mathbf{C}).$$

Recall that

$$f_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y}) = \mathcal{N}\left(\begin{pmatrix} \boldsymbol{x} \\ \boldsymbol{y} \end{pmatrix} \middle| \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{0} \end{pmatrix}, \begin{pmatrix} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{B}^\mathsf{T} & \boldsymbol{C} \end{pmatrix}\right)$$

so we see y is normally distributed with covariance C as might be expected.

(g) Using $f_{X|Y}(x \mid y) = f_{X,Y}(x,y)/f_Y(y)$ write down $f_{X|Y}(x \mid y)$. [3 marks]

$$\begin{split} f_{\boldsymbol{X}|\boldsymbol{Y}}(\boldsymbol{x} \mid \boldsymbol{y}) &= \frac{f_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{x}),\boldsymbol{y})}{f_{\boldsymbol{Y}}(\boldsymbol{y})} = \frac{\det(2\pi\mathbf{C})^{\frac{1}{2}}}{\det(2\pi\mathbf{\Xi})^{\frac{1}{2}}} e^{-\frac{1}{2}(\boldsymbol{x}^\mathsf{T} - \boldsymbol{y}^\mathsf{T}\mathbf{C}^{-1}\mathbf{B}^\mathsf{T})(\mathbf{A} - \mathbf{B}\,\mathbf{C}^{-1}\mathbf{B}^\mathsf{T})^{-1}(\boldsymbol{x} - \mathbf{B}\,\mathbf{C}^{-1}\boldsymbol{y})} \\ &= \frac{1}{\det(2\pi(\mathbf{A} - \mathbf{B}\,\mathbf{C}^{-1}\mathbf{B}^\mathsf{T}))^{\frac{1}{2}}} e^{-\frac{1}{2}(\boldsymbol{x}^\mathsf{T} - \boldsymbol{y}^\mathsf{T}\mathbf{C}^{-1}\mathbf{B}^\mathsf{T})(\mathbf{A} - \mathbf{B}\,\mathbf{C}^{-1}\mathbf{B}^\mathsf{T})^{-1}(\boldsymbol{x} - \mathbf{B}\,\mathbf{C}^{-1}\boldsymbol{y})} \\ &= \mathcal{N}(\boldsymbol{x} \mid \mathbf{B}\,\mathbf{C}^{-1}\boldsymbol{y}, \mathbf{A} - \mathbf{B}\,\mathbf{C}^{-1}\mathbf{B}^\mathsf{T}). \end{split}$$

This is the conditioning result we use in deriving the Bayesian update for a Gaussian Process.

End of question 2