Zadatak 1. (5+2)

- (a) Odredite najmanji prirodan broj n takav da $3^2 \mid n, 4^2 \mid n+1$ i $5^2 \mid n+2$.
- (b) Postoji li prirodan broj n takav da 2² | n, 3² | n+1 i 4² | n+2? Obrazložite!

Zadatak 2. (3+4)

- (a) Razvijte u jednostavni verižni razlomak $\frac{146}{177}$.
- (b) Odredite realan broj čiji je rastav u jednostavni verižni razlomak oblika [2;3,1,1].

Zadatak 3. (4+5)

- (a) Koliko ima primitivnih korijena modulo 31? Odredite ih sve!
- (b) Riješite kongruenciju $29 x^8 \equiv 13 \pmod{31}$.
- **Zadatak 4. (7)** Odredite najmanja rješenja (u prirodnim brojevima) Pellovih jednadžbi x^2 -57 y^2 =1i x^2 -57 y^2 =-1 (ako postoje).
- **Zadatak 5.** (6) Odredite sve neparne proste brojeve p takav da je $\left(\frac{-60}{p}\right) = -1$.

Zadatak 6. (3+2+2) Zadani su skupovi

$$S=\{z \in C, |z|=1\}$$
 $K_n=\{z \in C, z^n=1, n \text{ privodan broj}\}$

- (a) Dokažite da *S* grupa s obzirom na množenje kompleksnih brojeva.
- (b) Dokažite da je K_n podgrupa od S za svaki prirodan broj n.

 $K=\bigcup_{n=1}^{\infty}Kn$

(c) Je li *K* podgrupa od *S*? Sve svoje tvrdnje dokažite!

Zadatak 7. (2+2+3)

- (a) Neka je $f:(P_1,+,\bullet) \to (P_2,+,\bullet)$ izomorfizam prstena P_1 i P_2 . Dokažite: Ako je P_1 integralna domena, onda je i P_2 integralna domena.
- (b) Dokažite da u tijelu nema pravih ideala.
- (c) Dokažite da je (**Z**,+,•) prsten glavnih ideala.
- **Zadatak 8. (4)** Odredite parametre a,b,c takve da polinom $p(x)=x^6+ax^3+bx^2+cx+1$ bude inverz polinoma $q(x)=x^3+1$ u polju \mathbf{F}_2^8 reprezentiranom kao $\mathbf{Z}_2(t)/h(t)$, gdje je $h(t)=t^8+t^4+t^3+t+1$ polinom ireducibilan nad \mathbf{Z}_2 .
- **Zadatak 9.** (6) U Rabinovom kriptosustavu s parametrima (n,p,q)=(437,19,23), dešifrirajte šifrat y=35. Poznato je da je otvoreni tekst prirodan broj z<n kojem su zadnja četiri bita u binarnom zapisu međusobno jednaka.