

# Storage options for cloud computing

WestDRI Webinar

Nov 9, 2022

Sarah Huber, University of Victoria

#### Outline



Brief cloud orientation



Options for storage in the cloud



Common use cases for each storage type



Basic useage demos





- the Alliance has multiple Infrastructure-as-a-Service (IaaS) clouds
  - You (or PI) can apply for a cloud project with a quota of resources
  - Networks, "flavors" and various other options are provided
  - You setup and manage your own virtual machines (VMs), including storage
  - Lots of terminology specific to cloud management software OpenStack
    - e.g. VMs vs. instances

#### • Our clouds:

- Arbutus
- Cluster sites, including Béluga, Graham, and Cedar

### OpenStack Horizon - Dashboard



#### Prerequisite cloud usage information



#### How to set up a virtual machine, including choosing

image (operating system)
security rules
access, including network access + ssh key
https://docs.alliancecan.ca/wiki/Cloud Quick Start



#### **Security best practices:**

https://docs.alliancecan.ca/wiki/Security\_consideration s\_when\_running\_a\_VM

### Cloud storage types



storage







# Ephemeral disk

- Linked to a single instance
- Destroyed when instance dies, any back up must be enabled by user
- Use cases:
  - Storage for operating system if launched from image
    - common with "compute" flavors
    - may outperform root stored in a volume

# Volume storage

- Can be attached to different VMs, like a USB stick
- Mounted on a single VM at a time, like a USB stick
- Hardware redundancy, unlike a USB stick
- Not backed up by default
- Designed as "block" storage, must be formatted to use for a file system
- Use case:
  - Data that only needs to be used on a single VM at once
  - Storage for operating system/root of persistent VM

### Creating a new volume



#### Attaching a volume



j.

#### Formatting + file system for volume

```
[ubuntu@storageexample:/$ sudo fdisk /dev/vdc
Welcome to fdisk (util-linux 2.37.2).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.
Device does not contain a recognized partition table.
Created a new DOS disklabel with disk identifier 0xd84c8b2b.
[Command (m for help): n
Partition type
   p primary (0 primary, 0 extended, 4 free)
   e extended (container for logical partitions)
[Select (default p): p
[Partition number (1-4, default 1): 1
[First sector (2048-209715199, default 2048):
[Last sector, +/-sectors or +/-size{K,M,G,T,P} (2048-209715199, default 209715199):
Created a new partition 1 of type 'Linux' and of size 100 GiB.
[Command (m for help): w
The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.
ubuntu@storageexample:/$
[ubuntu@storageexample:/$ sudo mkfs -t ext4 /dev/vdc
mke2fs 1.46.5 (30-Dec-2021)
Found a dos partition table in /dev/vdc
[Proceed anyway? (y,N) y
Creating filesystem with 26214400 4k blocks and 6553600 inodes
Filesystem UUID: b37ab441-6116-4fc9-b993-9c26efbf5499
Superblock backups stored on blocks:
        32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
        4096000, 7962624, 11239424, 20480000, 23887872
Allocating group tables: done
Writing inode tables: done
Creating journal (131072 blocks): done
Writing superblocks and filesystem accounting information: done
ubuntu@storageexample:/$
```

#### Mounting a volume

Make directory to mount on:

```
sudo mkdir /media/data
```

Mount to that directory
 sudo mount /location/of/volume /media/data

• Optional: manage ownership of mounted directory, e.g. change ownership to user

sudo chown -R ubuntu /media/data

#### An example use case

- Solve linear system of equations, Ax = b for multiple large and sparse matrices A,  $b = \vec{1}$
- Matrices obtained from SparseSuite <a href="https://people.engr.tamu.edu/davis/suitesparse.html">https://people.engr.tamu.edu/davis/suitesparse.html</a>
- Want to store many (possibly large) matrix files
- Solve using MUMPS linear solver

#### An example use case

```
ubuntu@storageexample:/media/data$ cat runall.sh
                                                                                                                                                 ICNTL(7) Pivot order option
                                                                                                                                                 ICNTL(14) Percentage of memory relaxation
                                                                                                                                                 Number of level 2 nodes
#!/bin/bash
                                                                                                                                                 RINFOG(1) Operations during elimination (estim)= 1.048D+04
                                                                                                                                                 MEMORY ESTIMATIONS .
                                                                                                                                                 Estimations with standard Full-Rank (FR) factorization:
module load mumps-parmetis
                                                                                                                                                   Total space in MBytes, IC factorization
                                                                                                                                                   Total space in MBytes, OOC factorization
                                                                                                                                                 Elapsed time in analysis driver=
                                                                                                                                                 ***** FACTORIZATION STEP ******
runfile=c_example_read_mm
                                                                                                                                                 GLOBAL STATISTICS PRIOR NUMERICAL FACTORIZATION ...
                                                                                                                                                 Number of working processes
                                                                                                                                                 ICNTL(22) Out-of-core option
                                                                                                                                                 TCNTI (35) BLR activation (eff. choice
logfile=out.txt
                                                                                                                                                 ICNTL(14) Memory relaxation
                                                                                                                                                 INFOG(3) Real space for factors (estimated)=
                                                                                                                                                 INFOG(4) Integer space for factors (estim.)=
                                                                                                                                                                                  25652
                                                                                                                                                 Maximum frontal size (estimated)
rm $logfile
                                                                                                                                                                                   1036
                                                                                                                                                 Memory allowed (MB -- 0: N/A )
                                                                                                                                                 Memory provided by user, sum of LWK USER
                                                                                                                                                 Relative threshold for pivoting, CNTL(1)
                                                                                                                                                                               0.0000D+00
                                                                                                                                                 Effective size of S (based on INFO(39))=
for foldername in *; do
                                                                                                                                                 Elapsed time to reformat/distribute matrix =
                                                                                                                                                 ** Memory allocated, total in Mbytes
                                                                                                                                                 ** Memory effectively used, total in Mbytes
          if [ -d "$foldername" ]; then
                                                                                                                                                 Elapsed time for factorization
                                                                                                                                                Leaving factorization with ...
                                                                                                                                                 RINFOG(2) Operations in node assembly = 2.998D+03
          echo $foldername
                                                                                                                                                   ---(3) Operations in node elimination = 1.048D+04
                                                                                                                                                 TCNTI (8) Scaling effectively used
          cd $foldername
          cd
          time { ./$runfile ${foldername}/${foldername}.mtx >> $logfile;
          fi
done
```

MUMPS compiled with option -Dparmetis MUMPS compiled with option -Dptscotch This MUMPS version includes code for SAVE\_RESTOR This MUMPS version includes code for DIST\_RHS L D L^T Solver for symmetric positive definite matrices

Average density of rows/columns = 3 Ordering based on AMF Leaving analysis phase with ...

-- (20) Number of entries in factors (estim.) = -- (3) Real space for factors (estimated) = -- (4) Integer space for factors (estimated) = -- (5) Maximum frontal size (estimated) = -- (6) Number of nodes in the tree -- (32) Type of analysis effectively used

-- (7) Ordering option effectively used ICNTL(6) Maximum transversal option



## Shared file system storage

- Also called CephFS
- Backed up externally
- Can be accessed by multiple instances simultaneously
- Is most like a HPC cluster experience
- Setup may be tricky
- Currently only available on Arbutus

# Using shared file system

- Create share (if needed)
- Configure system and mount
  - https://docs.alliancecan.ca/wiki/Arbutus\_CephFS

sudo chown -R ubuntu /mnt/def-shuber-example

Manage access for mounted directory



#### Object storage

- Flat file system
- Files stored together in buckets
- Public/private access switchable
- Files not editable in the store
- Customizable metadata
- Access via a client, e.g. s3cmd
   <a href="https://docs.alliancecan.ca/wiki/Arbutus\_Object\_Storage\_Clients">https://docs.alliancecan.ca/wiki/Arbutus\_Object\_Storage\_Clients</a>
- Use case:
  - Reading millions of small files
  - May integrate with software, e.g. Pytorch



#### Dashboard setup and management



#### Accessing your objects with s3cmd

```
#!/bin/bash
module load mumps-parmetis
runfile=c_example_read_mm
logfile=out.txt
filelist=$(s3cmd ls s3://def-shuber-example/ | awk '{ print $4 }')
for matrixname in $filelist; do
    echo $matrixname
    time {
          s3cmd get ${matrixname} matrix.mtx;
          ./$runfile matrix.mtx >> $logfile;
          rm matrix.mtx;
done
```

#### Thanks for listening!

#### Further details and help

- https://docs.alliancecan.ca/wiki/Cloud
- cloud@tech.alliancecan.ca

#### **Questions?**