TERRESTRIAL NEUTRINO EXPERIMENTS

Giunti, C., & Kim, C. W. (2007). Fundamentals of Neutrino Physics and Astrophysics. Oxford University Press. doi:10.1093/acprof:oso/9780198508717.001.0001

Lei Ma September 29, 2015

PandA @ UNM

OUTLINE

- · Some Q&A's about Neutrino Experiments
- · Exclusion Curve
- · Sensitivity
- · Results of Experiments
- $\cdot \ \text{Summary}$

Q&A'S

What Does Theory Tell Us about Neutrino Oscillation

The transition probability from one flavor state ν_{α} to another ν_{β} ,

$$P\left(\frac{L}{E}\right) = \frac{1}{2}\sin^2 2\theta \left(1 - \cos\left(\frac{\Delta m^2}{2}\frac{L}{E}\right)\right)$$

What Do Experiments Tell Us about Neutrino Oscillation

Experiments detect neutrino triggered events N^{obs} through reactions. One example of those reactions is

$$\bar{\nu}_e + p \rightarrow n + e^+$$
.

We can calculate a probability of neutrino disappearance,

$$P_{obs} = 1 - \frac{N^{obs}}{N^{exp}}.$$

N^{exp} is the number of neutrinos that should be detected if we assume no oscillation has happened.

Should The Two Probabilities Be The Same?

No.

- · Detectors: size range [L_I, L_u];
- · Neutrinos: energy spectrum [E_l, E_u].

Detectors detect averaged probability.

What Average?

- · Average over distribution of $\frac{L}{F}$: $\phi(\frac{L}{F})$.
- · Gaussian $\phi(\frac{L}{F})$:

$$\langle P \rangle$$

$$= \frac{1}{2} \sin^2 2\theta \left(1 - \cos \left(\frac{\Delta m^2}{2} \left\langle \frac{L}{E} \right\rangle \right) \exp \left(-\frac{1}{2} \left(\frac{\Delta m^2}{2} \sigma_{L/E} \right)^2 \right) \right)$$

What Can Experiment Tell Us

No sign of oscillation \Rightarrow Upper limit of probability

$$\langle P \rangle \leq P^{max}$$

Gaussian:

$$\sin^2 2\theta \leq \frac{2\mathsf{P}^{\mathsf{max}}}{1 - \cos\left(\frac{\Delta \mathsf{m}^2}{2} \left\langle \frac{\mathsf{L}}{\mathsf{E}} \right\rangle\right) \exp\left(-\frac{1}{2} \left(\frac{\Delta \mathsf{m}^2}{2} \sigma_{\mathsf{L}/\mathsf{E}}\right)^2\right)}$$

EXCLUSION CURVE

Exclusion $\sin^2 2\theta \leq \frac{2p^{\max}}{1 - \cos\left(\frac{\Delta m^2}{2} \left\langle \frac{L}{E} \right\rangle\right) \exp\left(-\frac{1}{2} \left(\frac{\Delta m^2}{2} \sigma_{L/E}\right)^2\right)} \Rightarrow \sin^2 2\theta \leq \frac{2p^{\max}}{f(\Delta m^2 \left\langle \frac{L}{E} \right\rangle)}$

Figure: Exclusion Curves

SENSITIVITY

Figure: Sensitivity

Sensitivity

$$\begin{split} (\sin^2 2\theta)_s &\propto P^{max} \sim \frac{L}{\sqrt{N^{src}\sigma(E)\eta M_{det}}} \\ (\Delta m^2) &\propto \frac{E}{L} \sqrt{P^{max}} \sim E \frac{1}{\sqrt{L} \sqrt[4]{N^{src}\sigma(E)\eta M_{det}}} \end{split}$$

Sensitivity of Δm^2

 $\nearrow L \rightarrow \searrow \Delta m^2$ which also $\nearrow \sin 2\theta$ \nearrow power of source + $\nearrow M_{det}$ to keep the sensitivity of $\sin^2 2\theta$

Figure: Baselines. Figure from Ref 1.

Figure: Short baseline

Figure: Long baseline

CONCLUSION

Analysis

· L
$$\nearrow$$
: $(\sin^2 2\theta_v)_s \nearrow$, $(\Delta m^2)_s \searrow$

Exclusion Curves

REFERENCES

- 1. Giunti, C., & Kim, C. W. (2007). Fundamentals of Neutrino Physics and Astrophysics. Oxford University Press. doi:10.1093/acprof:oso/9780198508717.001.0001
- 2. F. Boehm, et al. (2001). Final results from the Palo Verde neutrino oscillation experiment. Phys. Rev. D, 64, 112001.
- 3. http://docs.neutrino.xyz/experiments.html

BACKUPS

Backups

Figure: Background

Figure: KamLand Result

Figure: KamLand Result