Geometría Analítica

Facultad de Ingeniería

Universidad Nacional de Cuyo

Actividades para el Aprendizaje

Ejercicios 36 a 40 resueltos

PLANOS

Ejercicios a desarrollar en Clases de Aula-Taller

36. Determine si los puntos A(1, 2, 3), B(0, 1, 0), C(0, 0, 1) y D(0, 1, 1) pertenecen a un mismo plano. Justifique su respuesta.

Respuestas:

Sean los vectores: BA = (1,1,3), CA = (1,2,2), DA = (1,1,2)

Si los cuatro puntos pertenecen a un mismo plano, entonces el volumen del paralelepípedo definido por los tres vectores calculados debe ser nulo. De lo contrario, los tres vectores no son coplanares y los cuatro puntos no pertenecen a un mismo plano.

$$Vol_{ABCD} = |BA \wedge CA \cdot DA| = \begin{vmatrix} 1 & 1 & 3 \\ 1 & 2 & 2 \\ 1 & 1 & 2 \end{vmatrix} = 1$$

Como el volumen no es nulo, se concluye que los cuatro puntos no pertenecen a un mismo plano.

37. Dado el plano de ecuación π : 5x + 5y + z - 5 = 0:

- a) Calcule el ángulo que forma el mismo con el plano xy;
- b) Calcule el volumen del tetraedro determinado por el plano π y los planos coordenados. Represente gráficamente.
- c) Calcule la distancia desde el punto Q(5,3,1) al plano dado.

Respuestas:

a) El ángulo entre dos planos es igual al ángulo θ entre sus vectores normales, entonces:

$$n_{\pi} = (5,5,1)$$
; $n_{xy} = \hat{k} = (0,0,1)$

$$cos\theta = \frac{n_{\pi} \cdot n_{xy}}{\|n_{\pi}\|\|n_{xy}\|} = \frac{(5,5,1) \cdot (0,0,1)}{\sqrt{51}} = \frac{1}{\sqrt{51}} \implies \theta = 82^{\circ}$$

b) Primero encontramos los puntos de intersección entre el plano π y los ejes coordenados:

$$A(x,0.0) \Rightarrow 5x + 0 + 0 - 5 = 0 \Rightarrow x = 1 \Rightarrow A(1.0.0)$$

$$B(0, y, 0) \Rightarrow 0 + 5y + 0 - 5 = 0 \Rightarrow y = 1 \Rightarrow B(0, 1, 0)$$

$$C(0,0,z) \Rightarrow 0 + 0 + z - 5 = 0 \Rightarrow z = 5 \Rightarrow C(0,0,5)$$

Tomamos los tres vectores posición de dichos puntos, los cuales serán las aristas del tetraedro. Para calcular su volumen, consideramos 1/6 del producto mixto entre dichos vectores.

$$Vol_{\text{TETRAEDRO}} = \frac{1}{6} | \mathbf{O} \mathbf{A} \wedge \mathbf{O} \mathbf{B} \cdot \mathbf{O} \mathbf{C} | = \frac{1}{6} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{vmatrix} = \frac{5}{6} [L]^3$$

Geometría Analítica

Facultad de Ingeniería

Universidad Nacional de Cuyo

Actividades para el Aprendizaje

Ejercicios 36 a 40 resueltos

2

c) Siguiendo el procedimiento desarrollado en la sección *2.2.2 Distancia de un punto a un plano*, del Libro *Geometría Analítica para Ciencias e Ingenierías* (página 51), tenemos:

$$h = \frac{|Ax_Q + By_Q + Cz_Q + D|}{\|n_\pi\|} = \frac{|36|}{\sqrt{51}} \approx 5,04 \text{ [L]}$$

38. Dados los planos: π_1 : 2x - 4y + 2z - 3 = 0 y π_2 : 2x + 6y - z - 26 = 0

- a) Encuentre la ecuación del plano π_3 que pasa por el punto R(1, 4, 3) y por la intersección de los dos planos dados, usando el concepto de familia de planos.
- b) Determine la ecuación del plano π_4 perpendicular a los dos planos dados que contenga al origen de coordenadas.
- c) Indique, justificando su respuesta, si el plano π_4 pertenece a la familia de planos que pasa por la intersección de π_1 y π_2

Respuestas:

a) La ecuación de la familia de planos que pasa por la intersección de π_1 y π_2 está dada por:

$$2x - 4y + 2z - 3 + k(2x + 6y - z - 26) = 0$$
, $k \in \mathbb{R}$

La ecuación del plano π_3 se obtendrá de la expresión anterior, para algún valor específico de k. El punto R(1,4,3) debe satisfacer la ecuación del plano π_3 , por lo tanto usaremos sus coordenadas, reemplazadas en la ecuación, para obtener el valor de k correspondiente.

$$2 - 4 \cdot 4 + 2 \cdot 3 - 3 + k(2 + 6 \cdot 4 - 3 - 26) = 0 \implies k = -11/3$$

$$\pi_3 : 2x - 4y + 2z - 3 - \frac{11}{3}(2x + 6y - z - 26) = 0$$

$$\pi_3 : -\frac{16}{3}x - 26y + \frac{17}{3}z + \frac{277}{3} = 0$$

b) Para que el plano π_4 sea perpendicular a π_1 y a π_2 , su vector normal debe ser ortogonal a los vectores normales de π_1 y π_2 . Por lo tanto lo obtenemos mediante producto vectorial entre ambos vectores:

$$n_{\pi_1} = (2, -4, 2)$$

 $n_{\pi_2} = (2, 6, -1)$ $\Rightarrow n_{\pi_4} = n_{\pi_1} \wedge n_{\pi_2} = (-8, 6, 20)$

Para que el plano π_4 contenga al punto (0,0,0) sabemos que el término independiente de su ecuación debe ser D=0, entonces:

$$\pi_4$$
: $-8x + 6y + 20z = 0$

c) El plano π_4 no pertenece a la familia de planos indicada: no contiene a la recta de intersección entre π_1 y π_2 , sino que es perpendicular a la misma. Por lo tanto, no existe ningún valor de k en la ecuación de la familia que nos dé como resultado la ecuación del plano π_4 .

Para que un plano pertenezca a la familia, es condición necesaria que su vector normal sea CL de los vectores n_{π_1} y n_{π_2} , es decir, sea coplanar con los mismos. Para el caso de π_4 , su vector normal n_{π_4} no es coplanar con n_{π_1} y n_{π_2} , sino que es perpendicular a ellos.

39. a) Escriba la ecuación de la familia de planos que pasan por la intersección del plano xy y el plano xz. Represente gráficamente dos planos de dicha familia.

b) Determine la ecuación del plano que pertenece a dicha familia y es plano bisector de ambos planos coordenados. Represente gráficamente.

Geometría Analítica

Facultad de Ingeniería

Universidad Nacional de Cuyo

Actividades para el Aprendizaje

Ejercicios 36 a 40 resueltos

Respuestas:

a) Ecuación del plano xy:

$$z = 0$$

Ecuación del plano xz:

$$y = 0$$

Familia de planos:

$$y + kz = 0$$
 , $k \in \mathbb{R}$

b) Un plano bisector entre dos planos cualquiera es aquel

que forma el mismo ángulo con cada uno de los dos planos. En este caso, debemos encontrar un plano bisector de los planos *xy y xz*. Este plano pertenece a la familia de planos del inciso a), por lo

tanto, debemos encontrar el valor de k para el cual el plano resultante forma el mismo ángulo con ambos planos coordenados.

El vector normal de un plano cualquiera de la familia indicada está dado por: $n_{\pi} = (0,1,k)$

Buscamos el valor de k tal que el vector $\boldsymbol{n_{\pi}}$ forme el mismo ángulo θ con los versores $\hat{\boldsymbol{k}}$ y $\hat{\boldsymbol{j}}$ (los vectores normales de los planos xy y xz respectivamente)

$$cos\theta = \frac{\boldsymbol{n_{\pi}} \cdot \hat{\boldsymbol{k}}}{\|\boldsymbol{n_{\pi}}\| \|\hat{\boldsymbol{k}}\|} = \frac{\boldsymbol{n_{\pi}} \cdot \hat{\boldsymbol{j}}}{\|\boldsymbol{n_{\pi}}\| \|\hat{\boldsymbol{j}}\|}$$
$$\frac{(0,1,k) \cdot (0,0,1)}{\|\boldsymbol{n_{\pi}}\|} = \frac{(0,1,k) \cdot (0,1,0)}{\|\boldsymbol{n_{\pi}}\|}$$
$$k = 1$$

Observamos que dicho plano forma un ángulo de 45° con los planos coordenados.

El plano encontrado no es único. Puede obtenerse otro considerando el versor $-\hat{k}$ para el plano xy (ya que también es un vector normal del mismo). En ese caso:

$$cos\theta = \frac{n_{\pi} \cdot (-\hat{k})}{\|n_{\pi}\| \|\hat{k}\|} = \frac{n_{\pi} \cdot \hat{j}}{\|n_{\pi}\| \|\hat{j}\|}$$
$$\frac{(0,1,k) \cdot (0,0,-1)}{\|n_{\pi}\|} = \frac{(0,1,k) \cdot (0,1,0)}{\|n_{\pi}\|}$$
$$k = -1$$

La ecuación de otro plano bisector es entonces y-z=0, que también forma un ángulo de 45° con los planos coordenados.

Facultad de Ingeniería

Universidad Nacional de Cuyo

Actividades para el Aprendizaje

Ejercicios 36 a 40 resueltos

40. Dada la siguiente ecuación vectorial paramétrica del plano π_1 :

$$\pi_1$$
: OP = $(1, 2, 0) + \mu (1, 4, -2) + \beta (3, 0, 2)$ $\mu, \beta \in \mathbb{R}$

- a) Determine las coordenadas de dos puntos que pertenezcan a dicho plano.
- b) Halle la ecuación cartesiana de un plano π_2 que sea perpendicular al plano dado π_1 , que sea paralelo al eje z y que además pase por el origen de coordenadas. Justifique su respuesta.
- c) Verifique sus respuestas utilizando el Escenario geométrico Interactivo EGI-Posiciones relativas entre planos. [Libro Geometría Dinámica].

Respuestas:

a) Para obtener puntos que pertenecen al plano, basta con darle valores a los parámetros μ y β , por ejemplo:

Si
$$\mu$$
=1 y β =0 \Longrightarrow $OP_1 = (2,6,-2) \Longrightarrow P_1(2,6,-2)$

Si
$$\mu$$
=0 y β =1 \Longrightarrow $OP_2 = (4,2,2) \implies P_2(4,2,2)$

b) Obtenemos primero el vector n_{π_1} normal al plano π_1 , mediante el producto vectorial entre los vectores (1,4,-2) y (3,0,2), ambos paralelos al plano.

$$n_{\pi_1} = (1, 4, -2) \land (3, 0, 2) = (8, -8, -12)$$

Para que el plano π_2 sea perpendicular al plano π_1 , sus vectores normales deben ser perpendiculares, entonces, siendo $n_{\pi_2} = (A, B, C)$, tenemos:

$$n_{\pi_1} \cdot n_{\pi_2} = 0 \implies (8, -8, -12) \cdot (A, B, C) = 0$$

$$8A - 8B - 12C = 0 \quad [1]$$

Además, si el plano π_2 es paralelo al eje z, entonces su vector normal debe ser perpendicular al versor $\widehat{m{\iota}}$

$$\hat{\mathbf{k}} \cdot \mathbf{n}_{\pi_2} = 0 \implies (0,0,1) \cdot (A,B,C) = 0$$

$$C = 0 \quad [2]$$

De [1] y [2] obtenemos:

$$\begin{cases} 8A - 8B - 12C = 0 \\ C = 0 \end{cases} \implies A = B$$

Entonces, $\mathbf{n}_{\pi_2} = (A, A, 0) = \mathbf{A}(1,1,0)$, es decir, que el vector normal del plano π_2 puede ser cualquier vector paralelo al (1,1,0).

Escribimos entonces la ecuación cartesiana (o general) del plano π_2

$$\pi_2$$
: $x + y + D = 0$

Como el mismo debe pasar por el punto (0,0,0), sabemos que D=0, entonces:

$$\pi_2$$
: $x + y = 0$

Otra forma de obtener n_{π_2} :

Como π_2 es perpendicular a π_1 , el vector \mathbf{n}_{π_2} será paralelo a π_1 , y por lo tanto es combinación lineal de los vectores (1,4,-2) y (3,0,2), es decir:

$$(A, B, C) = k_1(1,4,-2) + k_2(3,0,2)$$
 , $k_1 y k_2 \in \mathbb{R}$

Incorporando la condición [2] tenemos:

$$\begin{cases} k_1 + 3k_2 = A & A = 4k_1 \\ 4k_1 + 0k_2 = B \implies B = 4k_1 \\ -2k_1 + 2k_2 = 0 & k_1 = k_2 \end{cases} \Rightarrow \mathbf{n_{\pi_2}} = (4k_1, 4k_1, 0), k_1 \in \mathbb{R}$$