VAPOR GROWTH METHOD

Patent Number:

JP5047665

Publication date:

1993-02-26

Inventor(s):

NAKAI KENYA

Applicant(s):

FUJITSU LTD

Requested Patent:

JP5047665

Application Number: JP19910201027 19910812

Priority Number(s):

IPC Classification:

H01L21/205

EC Classification:

Equivalents:

Abstract

PURPOSE:To prevent carbon contamination when organic metal material gas is used by introducing gas made of hydroxide into a reaction tube before material gas of silicon is introduced when organic compound is used as the material gas and an Si-Ge mixed crystal is grown by an atomic layer epitaxy method. CONSTITUTION:A silicon substrate 14 is placed on a susceptor 12 in a reaction tube I, the substrate 14 is heated to 900 deg.C, and a spontaneous oxide film on the surface is removed. A temperature of the susceptor 12 is set to 390 deg.C, diethylgermanium (DEGe) is introduced into the tube 1, and a Ge layer is grown on the substrate 14. The introduction of the DEGe is stopped, the DEGe in the tube 1 is discharged, the temperature of the susceptor 12 is set to 450 deg.C, and AsH3 is introduced. After the AsH3 in the tube 1 is discharged, the temperature of the susceptor 12 is raised to 530 deg.C, Si2H6 is introduced, and an Si layer is grown on the substrate 14. Thereafter, the above steps are similarly repeated to grow an Si-Ge crystalline layer.

Data supplied from the esp@cenet database - 12

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-47665

(43)公開日 平成5年(1993)2月26日

(51) Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

H 0 1 L 21/205

7454-4M

審査請求 未請求 請求項の数2(全 6 頁)

(21)出願番号

特願平3-201027

(22)出願日

平成3年(1991)8月12日

(71)出願人 000005223

富士通株式会社

神奈川県川崎市中原区上小田中1015番地

(72)発明者 中井 建弥

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(74)代理人 弁理士 井桁 貞一

(54) 【発明の名称】 気相成長方法

(57)【要約】

【目的】 SiとGeから成る複合結晶を成長させるための 気相成長法に関し、Geの有機化合物を原料ガスとして用 いた場合の炭素汚染を低減することを目的とする。

【構成】 有機化合物から成るGe原料ガスと水素化物ま たはハロゲン化物から成るSi原料ガスとを交互に反応管 内に供給してSi-Ge 結晶を成長させる際に、Si原料ガス を供給する工程の前に、AsHa、PHa、BaHa 等の水素化物 を導入する工程を設ける。これにより、有機Geが分解し て生成した炭素または炭化水素化合物は基板表面や反応 管の内壁から離脱し、外部に排出される。

1

【特許請求の範囲】

【請求項1】 所定温度に加熱された基板が設置された 反応管の内部に有機ゲルマニウムから成る第1のガスを 導入して該基板と接触させて熱分解させることにより該 基板上にゲルマニウム層を形成する工程と, 該第1の原 料ガスを排出したのち水素化物から成る第2のガスを該 反応管の内部に導入して少なくとも該基板の表面に残留 する該第1のガスまたは該第1のガスが該基板表面において熱分解して生成した炭素もしくは炭化水素化合物を 除去する工程と, 該第2のガスを排出したのち該反応管 10の内部にシリコンの水素化物またはハロゲン化物から成る第3のガスを導入して該基板と接触させて熱分解させることにより該基板上にシリコン層またはシリコンとゲルマニウムの混晶層を形成する工程とを含むことを特徴とする気相成長方法。

【請求項2】 前記第2のガスを構成する水素化物はゲルマニウム、砒素、燐または硼素の水素化物であることを特徴とする請求項1記載の気相成長方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、シリコンとゲルマニウムから成る複合結晶を成長させるための気相成長方法に関する。

[0002]

【従来の技術】最近、シリコン(Si)とシリコン-ゲルマニウム(Si-Ge)とのヘテロ接合を利用した半導体装置が注目されている。その一つに、シリコン結晶上に順次エピタキシャル成長させたシリコン・ゲルマニウム混晶およびシリコン結晶をそれぞれベース領域およびエミッタ領域として成るヘテロバイポーラトランジスタ(HBT)がある。また、このヘテロ接合を利用したフォトダイオードなどの受光素子や高電子移動度トランジスタ(HEMT)の開発が進められている。さらに、シリコンとゲルマニウムを原子層の整数倍の厚さで交互に積層した超格子は、直接遷移型の半導体となることが知られており(R. People、IEBE, J. QE-22、p1696、1986に概説されている)、光半導体素子用の新しい結晶材料として期待されている。

【0003】上記のような半導体装置を構成するSi-Ge 混晶のエピタキシャル成長法、とくに、その厚さを原子 40 層オーダで制御できる超精密成長法としては、分子線エピタキシ(MBE) 法が適している。しかし、現在のところ、MBE 法には、これにより成長させた結晶に欠陥密度が高いと言う質的な問題、あるいは、多数枚の大型の基板に対する結晶成長が困難である等の生産性に関係した問題がある。

【0004】したがって、現段階においては、化学的気相成長法(CVD) 法が実用性のある成長方法として有力である。とくに、基板に対する原料ガスの単分子吸着を利用する、いわゆる原子層エピタキシ(ALE) 法によれば、

所望の化合物半導体層の成長厚さを分子層単位で制御できることが知られている。このALE 法を用いてSi-Ge混晶の成長を行う技術の開発が重要視されている。

[0005]

【発明が解決しようとする課題】ALE は、現在のところ、III-V族化合物半導体の陽イオン成分を供給する原料ガスとして有機金属を用いた場合にのみ可能である。これは、ALE におけるいわゆるセルフリミティング効果、すなわち、III 族およびV族の原料ガスを反応管内に交互に導入するごとに一分子層の化合物半導体が成長する現象は、原料ガスの供給および基板温度のある条件の範囲において、原料ガスが基板表面に単分子層以上は吸着しないことに起因するものと推測されている。

【0006】Ge結晶層の成長に関しては、ゲルマニウムの原料ガスとして、例えばジエチルゲルマニウム(DEGe: Ge(C2 Hs)2 Hz)のような有機化合物を用いて、通常の化合物半導体と同様、セルフリミティング効果を利用して結晶成長を高精度で制御可能である。有機ゲルマニウム化合物を原料ガスとして用いると、300~350℃程度の低20 温でゲルマニウムをエピタキシャル成長させることができる。

【0007】しかしながら、Si-Ge 混晶の成長に関しては、有機ゲルマニウム化合物を原料ガスとしてゲルマニウムを成長させたのちにシリコンを成長させると、炭素濃度の高いシリコン層が成長したり、炭化珪素が生成したりする。また、ゲルマニウム層が多結晶となりやすい。この原因は、有機ゲルマニウム化合物の分解によって生成した炭素あるいは炭化水素化合物が基板表面や反応容器の内壁に吸着しており、この残留炭素または炭化水素化合物がシリコンの成長過程において汚染源となるためと考えられる。炭素はシリコンと強い結合を形成するために、シリコン結晶から容易に除去されない。

【0008】上記のような残留炭素による汚染を回避するために、シリコンの原料ガスとしては、モノシラン(SizHa) 等の水素化物あるいはジクロールシラン(SiClaHa) 等の塩化物が一般に用いられている。これらシリコンの原料ガスは、セルフリミティング効果を示さない。

【0009】本発明は、Si-Ge 混晶を成長させるために、少なくともゲルマニウムについては有機化合物を原料ガスとして用い、そのセルフリミティング効果によって層厚を高精度で制御する場合に、この有機ゲルマニウム原料ガスの分解によって生じた炭素または炭化水素化合物によるシリコンの汚染を防止可能とすることを目的とする。

[0010]

【課題を解決するための手段】上記目的は,所定温度に加熱された基板が設置された反応管の内部に有機ゲルマニウムから成る第1のガスを導入して該基板と接触させて熱分解させることにより該基板上にゲルマニウム層を

3

形成し、該第1の原料ガスを排出したのち容易に熱分解する水素化物から成る第2のガスを該反応管の内部に導入して少なくとも該基板の表面に残留する該第1のガスまたは該第1のガスが該基板表面において熱分解して生成した炭素もしくは炭化水素化合物を除去し、該第2のガスを排出したのち該反応管の内部にシリコンの水素化物またはハロゲン化物から成る第3のガスを導入して該基板と接触させて熱分解させることにより該基板上にシリコン層またはシリコンとゲルマニウムの混晶層を形成する諸工程を含むことを特徴とする本発明に係る気相成 10 長方法によって達成される。

[0011]

【作用】本発明者は、ジエチルゲルマニウム(DEGe)のよ うな有機化合物を原料ガスとし、ALE によってSi-Ge 混 晶を成長させる際に、シリコンの原料ガスを導入する工 程に先立って, アルシン(AsHa), ホスフィン(PHa) また はジポラン(B2 H4)等を反応管内に導入することによっ て、炭素によるシリコン層の汚染が防止されることを見 出した。この効果の原因としては、AsEa、PEa、BaEa、G eH4 等の熱分解によって生成したに発生期の水素が, 基 20 板表面や反応管内壁等に吸着している炭素または炭化水 素化合物と結合して離脱を促進するためと考えられる。 また、As、P,B 等は炭素と結合し難いので、汚染炭素 源を生成しない。これら水素化物はゲルマニウムおよび シリコンに対して、例えばAsHa およびPLb はn型の導電 性を付与する不純物として、B2H4はp型の導電性を付与 する不純物としても使用できる。ゲルマニウムの水素化 物であるゲルマン(GeHa)も上記残留炭素等の除去に有効 である。

[0012]

【実施例】図1は本発明によるSi-Ge 混晶の成長を実施するための気相成長装置の概要構成を示す模式図であって、例えば透明石英から成る反応管1の一端には、それぞれマスフローコントローラ(MFC)を介して、以下に述べる原料ガス供給源2~5が接続されている。2はジエチルゲルマニウム(DEGe)を供給するパブラであって、恒温槽により所定温度に保持されている。3は水素で10%に希釈されたジシラン(Si₂H₆)を供給するボンベ、4は水素で10%に希釈されたアルシン(Ash₆)を供給するボンベ、5は水素で1%に希釈されたジボラン(B₂H₄)を供給するボンベ、5は水素で1%に希釈されたジボラン(B₂H₄)を供給するボンベである。これらボンベ内の原料ガスは一般に高圧であるため、圧力調整器によって所定圧力に減圧して供給される。

【0013】低温でシリコン結晶を成長させるためには、反応管1内における残留酸素および水蒸気の分圧を ~10⁻⁷ Torr以下にすることが必要である。このために、気相成長装置の真空系は、高レベルの気密性が維持可能 なようにするとともに、その内容積が極力小さくなるように設計されている。また、この真空系内部のガス交換を促進するために、上記原料ガス供給源2~5と並列に

水素ガス(E₄)の供給経路が設けられている。この水素ガスは、反応管1内部および上記原料ガス供給経路のパージガスおよびDEGeのキャリヤガスとして切り換えられる。

【0014】反応管1の他端にはロータリポンプ9が接続されている。同じく反応管1の他端には、ゲートバルブ6を介してロードロック7が接続されている。ロードロック7には、ターポポンプ8と別のロータリポンプ10が直列に接続されている。ロータリポンプ9は、反応管1内部の主排気に用いられる。ターポポンプ8およびロータリポンプ10は、ロードロック7を介して反応管1内に基板を出し入れするための排気系である。ロータリポンプ9および10の排気側は、図示しない有毒ガス除去装置に接続されている。

【0015】反応管1の内部には、高純度グラファイトから成るサセプタ12が設置されている。サセプタ12は、例えば反応管1の外部に設けられた高周波誘導コイル13によって加熱される。これにより、サセプタ12上に載置された基板14が所定温度に保持される。なお、後述するように、シリコンとゲルマニウムを交互に成長させる場合に、基板14の温度を、例えば560℃と390℃の間で急速に変化させる。このために、高周波誘導コイル13に対する入力電力の制御と並行して、反応管1の外部に設けたオイル冷却装置15上にサセプタ12を移動することによって冷却速度を高めた。

【0016】図1の装置を用いて、シリコン基板上にSi 層およびGe層を成長させる実施例を説明する。面方位(100)を有するシリコン基板を、硫酸と過酸化水素水の混合溶液によって酸化処理したのち、弗酸水溶液に浸漬し 30 て表面の酸化膜を除去する。このシリコン基板を、図1におけるロードロック7を通じて反応管1内に送入し、サセプタ12上に載置する。そして、反応管1内部に圧力10Torrの高純度水素を導入しながら、高周波誘導コイル13に電力を入力して、シリコン基板14を900℃で10分間加熱する。これにより、表面の自然酸化膜を除去する。そののち、サセプタ12をオイル冷却装置15上に移動するとともに、高周波誘導コイル13への入力電力を下げる。【0017】次いで、図2に示す温度サイクルおよびガ

ス導入サイクルでSi-Ge 混晶の成長を行う。すなわち、 ①サセプタ12がオイル冷却装置15上に移動された状態で、反応管 1 内部にジエチルゲルマニウム(DEGe)を30秒間導入する。このときのサセプタ12の最低温度は約390 でである。なお、上記における反応管 1 内におけるDEGe の分圧が 1×10-4 気圧(7.6×10-2 Torr)になるように、DEGeの流量およびロータリポンプ9による排気速度を調節する。これにより、30秒間で約5 AのGe層がシリコン基板14上に成長する。

なようにするとともに、その内容積が極力小さくなるよ 【0018】②サセプタ12をオイル冷却装置15上から移うに設計されている。また、この真空系内部のガス交換 動するとともに、高周波誘導コイル13への入力電力を増を促進するために、上記原料ガス供給源2~5と並列に 50 大する。DEGeの導入を停止し、水素ガスを約3秒間導入

する。これにより、反応管1内部のDEGeが排出されたの ち、アルシン(AsHa)を15秒間導入する。この間における サセプタ12の温度は約450 ℃である。なお、上記におけ る反応管 1 内におけるAsHs の分圧が 2×10・気圧(1.5× 10-3 Torr) になるように、DEGeの流量およびロータリポ ンプ9による排気速度を調節する。

【0019】③上記AsHaの導入を停止し、水素ガスを約 3 秒間導入して反応管 1 内のAsHs を排出する。高周波誘 導誘導コイル13に対する入力電力を上記のままに保って おき、サセプタ12の温度がさらに上昇して530 ℃に達し 10 たとき、ジシラン(Si₂H₆)を40秒間導入する。この間 に、サセプタ12の温度が560 ℃に達したとき、高周波誘 導誘導コイル13に対する電力を下げる。SizHs の導入停 止時におけるサセプタ12の温度は 500℃である。なお、 上記における反応管1内におけるSi2Hs の分圧が2×10 - 5 気圧(1.5×10-2 Torr) になるように、Si₂H₅ の流量お よびロータリポンプ9による排気速度を調節する。これ により、40秒間で約7AのSi層がシリコン基板14上に成 長する。

【0020】④上記Si₂H₆ の導入を停止したのち、約3 20 秒間水素ガスを導入して反応管1内のSizHs が排出され てから、サセプタ12を再びオイル冷却装置15上に移動す る。サセプタ12の温度が430 ℃に達したとき、再び反応 管1内にDEGeを30秒間導入する。

【0021】⑤以後、上記②~④を所定回数繰り返す。 上記②の工程において、AsHaの代わりに、PHa、Bo Ha ま たはGeLL を導入してもよい。

上記の工程を3時間継続することにより、全層厚が約19 00AのSi-Ge 結晶層が成長した。X線回折測定によれ ば、このSi-Ge 結晶層の構造は、周期構造が小さい超格 30 8 ターボポンプ 子ではなく、むしろ、Si-Ge 混晶に近く、その原子組成 はGeが約40%であることが示された。一般に、Ge層は厚 くなると三次元成長をするために、表面に凹凸が見られ るようになる。しかし、上記Si-Ge 結晶層では、微分干 **渉顕微鏡による観察によれば、結晶表面は鏡面であっ**

た。これは、個々のGe層は厚さが数A程度と極めて薄い ために、三次元成長が進まなかったためと考えられる。

【0022】ホール係数の測定結果によれば、上記Si-G e 結晶層はn型で、その電子濃度は約101°cm-3であっ た。SIMS分析によるGeの原子濃度は38%であり、また、 炭素原子濃度は約10¹⁹ cm⁻³ であった。この値は、従来の 気相成長法によるSi-Ge 混晶層における炭素濃度の10分 の1程度と著しく低く,本発明のSi-Ge 結晶層は,実用 性のある結晶品質を有している。

[0023]

【発明の効果】本発明によれば、有機金属原料ガスを用 いた場合の炭素汚染を低減できるために、ALE 法を用い てSi-Ge 結晶をエピタキシャル成長させることが可能と なる。その結果、高精度かつ平滑な表面を有するSi-Ge 多層構造を形成することができ、シリコン基板を用いた HBI あるいはシリコンとゲルマニウムを積層した受光素 子やHEMT等の実用化を促進する効果がある。また、Si-G e の超格子を利用した新しい半導体素子の開発にも寄与 するところが大きい。

【図面の簡単な説明】

【図1】 本発明の実施に用いた気相成長装置の概要構

【図2】 本発明によるSi-Ge 結晶層の成長方法の実施 例説明図

【符号の説明】

- 1 反応管
- 2, 3, 4, 5 原料ガス供給源
- 6 ゲートバルブ
- 7 ロードロック
- 9.10 ロータリポンプ
- 12 サセプタ
- 13 高周波誘導コイル
- 14 基板
- 15 オイル冷却装置

用いた気相成長装置の概要構成図

[図2]

本発明によるSi-Ge結晶層の成長方法の実施例説明図

