1. Plasma parameters

Find the Debye lengths, d_e , $d_{i,}$ the plasma parameters, N_{de} , N_{di} , the plasma frequencies, ω_{pe} , ω_{pi} , and the thermal velocities, V_{Te} , V_{Ti} , for electrons and ions (protons) under the following conditions:

- (a) A fusion device: $n_e=n_i=10^{16} \text{ cm}^{-3}$, $T_e=T_i=10^7 \text{K}$;
- (b) The Earth's magnetosphere: $n_e=n_i=10^4$ cm⁻³, $T_e=T_i=10^3$ K;
- (c) The center of the Sun: $n_e = n_i = 10^{26} \text{ cm}^{-3}$, $T_e = T_i = 10^{7.2} \text{K}$;
- (d) The solar corona: $n_e=n_i=10^8$ cm⁻³, $T_e=T_i=10^6$ K;
- (e) The solar wind: $n_e=n_i=10$ cm⁻³, $T_e=T_i=10^5$ K;
- (f) The atmosphere of a neutron star: $n_e=n_i=10^{12}$ cm⁻³, $T_e=T_i=10^7$ K.

Can all of these cases qualify to be described as "plasmas"?

2. Particle interactions

Show that, in a nonrelativistic plasma ($kT \ll m_e c^2$), the mutual Coulomb (electrostatic) force between two typical particles is much more important than the mutual Lorentz (magnetic) force.

3. Debye shielding

A spherical conductor of radius a is immersed in a plasma and charged to a potential ϕ_0 . The electrons remain Maxwellian and move to form a Debye shield, but the ions are stationary during the time frame of the experiment. Assuming $\phi_0 << kT_e/e$, derive an expression for the potential as a function of r in terms of a, ϕ_0 , and d_e. (Hint: assume a solution of the form e^{-kr}/r .)

4. Gravitational drift

What is the gravitational drift speed of an electron in a tokamak, with $|B_0|=10$ kG? How about a proton? Does either of these drifts make it hard to confine a plasma in a volume of order 1 m³ for a time of order 1s?