5118020-03 Operating Systems

Scheduling

OSTEP Chapter 7

Shin Hong

Scheduling Policy

- scheduling policy
 - In which order processes would be dispatched
 - -How much amount of time would be given to a process when it's dispatched

workload

- -characteristics of the running processes in a system
- -derived from the program properties or captured by runtime monitoring

Scheduling

_

5118020-03 Operating Systems

Workload Assumption for Discussion

- 1. Each job runs for the same amount of time.
- 2. All jobs arrive at the same time.
- 3. Once started, each job runs to completion.
- 4. All jobs only use the CPU (i.e., they perform no I/O)
- 5. The running time of each job is known before execution

Scheduling

--

5118020-03 Operating Systems

Scheduling Metrics

- scheduling metric: a measurement of *goodness* of a scheduling policy
- **turnaround time**: the difference between the time at which the job completes and the time at which the job arrived
 - performance metric
 - upon the assumptions, it's the same as the time to complete a process
- response time: the difference between the time when a job arrives and the first time it is scheduled
 - fairness metric

Scheduling

_

5118020-03 Operating Systems

First In First Out (FIFO) Scheduling Policy

- First come, first served
- Pros: clear, simple, easy to implement, lightweight
- Cons: convoy effect

- arrives at 0
- requires 10
- Process B
 - arrives at 0
 - requires 10
- Process C
 - arrives at 0
 - requires 10

average turnaround time: 20 = (10 + 20 + 30)/3

Scheduling

_-

5118020-03 Operating Systems

First In First Out (FIFO) Scheduling Policy

- First come, first served
- Pros: clear, simple, easy to implement, lightweight
- Cons: convoy effect

- arrives at 0
- requires 100
- Process B
 - arrives at 0
 - requires 10
- Process C
 - arrives at 0
 - requires 10

average turnaround time: 20 = (10 + 20 + 30)/3

average turnaround time: 110 = (100 + 110 + 120) /3 Scheduling
-5118020-03
Operating Systems

Shortest Job First (SJF) Scheduling Policy

- runs the shortest job first, then the next shortest, and so on
- optimal with respect to the average turnaround time

40

60

Time

80

100

120

20

average turnaround time with FIFO:

110 = (100 + 110 + 120) / 3

average turnaround time with SJF:

Scheduling

--

5118020-03 Operating Systems

Shortest Time-to-completion First (STCF)

- preemptive version of SJF
 - -schedules the one that has the least time left at a new job arrives

- Process A
 - arrives at 0
 - requires 100
- Process B
 - arrives at 10
 - require 10
- Process C
 - arrives at 10
 - require 10

Scheduling

_

5118020-03 Operating Systems

Round Robin (RR) Scheduling Policy

- Response time: the time from when a job arrives to the first time it is scheduled/responed
 - interactive performance measure
- RR runs a job for a time slice (scheduling quantum) and then switches to the next one in the ready queue
 - trace off between responsiveness and context switching overhead

CPU Burst and I/O Burst Cycle

CPU burst

I/O burst

CPU burst

I/O burst

CPU burst

I/O burst

•

load store add store read from file

wait for I/O

store increment index write to file

wait for I/O

load store add store read from file

wait for I/O

•

 process execution consists of a cycle of CPU execution and I/O wait

- CPU burst followed by I/O burst
- CPU burst distribution is of main concern

Scheduling

--

5118020-03 Operating Systems

Incorporating I/O

- The scheduler operates when I/O completes, moves the blocked process back to the ready queue
- First schedule one with a shorter CPU burst, and then one with a longer CPU burst
 - an interactive process tends to have short CPU-burst time, and get scheduled much frequently
 - CPU- and I/O-burst can be overlapped, thus CPU can be utilized better

Scheduling 5118020-03 **Operating Systems**

2024-03-26

80

100

120

140

c.f. Time Scale of System Latencies

Event	Latency	Scaled
1 CPU cycle	0.3 ns	1 s
Level 1 cache access	0.9 ns	3 s
Level 2 cache access	2.8 ns	9 s
Level 3 cache access	12.9 ns	43 s
Main memory access (DRAM, from CPU)	120 ns	6 min
Solid-state disk I/O (flash memory)	50–150 μs	2-6 days
Rotational disk I/O	1–10 ms	1–12 months
Internet: San Francisco to New York	40 ms	4 years
Internet: San Francisco to United Kingdom	81 ms	8 years
Internet: San Francisco to Australia	183 ms	19 years
TCP packet retransmit	1–3 s	105-317 years
OS virtualization system reboot	4 s	423 years
SCSI command time-out	30 s	3 millennia
Hardware (HW) virtualization system reboot	40 s	4 millennia
Physical system reboot	5 m	32 millennia

Scheduling

--

5118020-03 Operating Systems