Алгоритмы

Лекции

2024-2025

2024-09-03	
Введение	9
Структуры данных	
Линейные структуры данных	
Стек и очередь	
Список	
Стек с минимумом	
Очередь через два стека	
Асимптотика	
Вектор	
Асимптотика	
Метод потенциалов	
Для стека	4
2024-09-10	
Символы Ландау	4
Примеры	4
Мастер-теорема	4
Доказательство	5
Примеры	5
Merge sort	<i>6</i>
Бинпоиск	(
Обход полного двоичного дерева	(
Обобщение	
2024-09-17	
Информация	6
Алгоритм Карацубы	
Длинная арифметика	
Алгоритм Штрассена	
Аналоги Штрассена	
Fast Fourier Transform (FFT)	8

2024-09-03

—— Введение ———

Игорь Борисович

Накоп =
$$0.25 \cdot \text{Кол} + 0.25 \cdot \text{KP} + 0.4 \cdot \text{Д3} + 0.1 \cdot \text{Сем}$$

Итог =
$$\begin{cases} \lfloor \text{Накоп} \rceil, & \text{if HE идти на экзамен} \\ 0.5 \cdot \text{Накоп} + 0.5 \cdot \Im \kappa \text{з}, & \text{if идти на экзамен} \end{cases}$$

Контесты на 1-2 недели

——— Структуры данных ——

Опр. Абстрактный тип данных: определяем, какие операции делает структура, но не определяем конкретную реализацию

Контейнеры:

- Последовательные (напр, вектор)
- Ассоциативные (напр, тар)
- Адаптеры (не имеют итераторов)

- Линейные структуры данных –

—— Стек и очередь —

Стек	Очередь
LIFO	FIFO

Реализации:

- Массив
- Список
- Deque
- (для очереди) на двух стеках

—— Список ——

Односвязный:

- begin() указывает на первый эл-т
- каждый элемент указывает на следующий
- end() указывает в пустоту

Двусвязный:

• каждый элемент указывает ещё и на прошлый эл-т

Список может быть зациклен

Зацикленный список может иметь незацикленное начало

— Стек с минимумом —

Помимо основного стека поддерживаем стек минимумов (на префиксе)

st	min_st
2	2
5	3
3	3
6	4
4	4

Минимум в стеке - min_st.top()

— Очередь через два стека —

Имеем два стека: st1 и st2

Push:

st1.push(x)

Pop:

if st2 is empty:
 nepeлoжить весь st1 в st2
st2.pop()

Асимптотика

аморт. O(1)

Над каждым элементом совершается не более 3 операций:

- 1. Положить в st1
- 2. Переложить из st1 в st2
- 3. Вытащить из st2

—— Вектор ——

- 1. Изначально выделяется память под несколько эл-в
- 2. Можем push-ить, пока v.size() < v.capacity()
- 3. Когда место кончается, вектор выделяет в два раза больше памяти и копирует туда элементы
- 4. При удалении capacity() не меняется

<u>Асимптотика</u>

аморт. O(1)

На nопераций уходит $n+\frac{n}{2}+\frac{n}{4}+\ldots+1 \to 2n=O(n)$ копирований

——— Метод потенциалов ———

Метод подсчета асимптотики

$$\varphi_0 \to \varphi_1 \to \dots \to \varphi_n$$

Опр. Потенциал: функция от наших структур данных

Опр. Аморт. время работы: $a_i = t_i + \Delta \varphi$

$$\sum a_i = \sum (t_i + \Delta \varphi) = \sum t_i + (\varphi_n - \varphi_0)$$

$$\frac{\sum t_i}{n} = \frac{\varphi_0 - \varphi_n}{n} + \frac{\sum a_i}{n} \leq \frac{\varphi_0 - \varphi_n}{n} + \max(a_i)$$

Хотим минимизировать $\max(a_i)$ и $\frac{\varphi_0 - \varphi_n}{n}$

$$\varphi_i\coloneqq 2n_1$$

push	pop
$t_i = 1$	$t_i=1$ или $2n_1+1$
$a_i = 1 + 2 = 3$	$a_i = 1$ или $2n_1 + 1 + (0 - 2n_1) = 1$

2024-09-10

— Символы Ландау ——

Опр. f(x) = O(g(x)):

$$\exists C > 0 \exists x_0 \ge 0 : \forall x \ge x_0 : |f(x)| \le C|g(x)|$$

Опр. f(x) = o(g(x)):

$$\forall \varepsilon > 0 \exists x_0 : \forall x \geq x_0 : |f(x)| \leq \varepsilon |g(x)|$$

Onp. $f(x) = \Theta(g(x))$:

$$\exists 0 < C_1 \leq C_2 \exists x_0 : C_1 |g(x)| \leq |f(x)| \leq C_2 |g(x)|$$

- 1. $3n + 5\sqrt{n} = O(n)$
- 2. $n = O(n^2)$
- 3. $n! = O(n^n)$
- $4. \, \log n^2 = O(\log n)$
- 5. $k \log k = n \Rightarrow k = O(?)$

——— Мастер-теорема ———

T(n) — время работы (количество операций)

Теор. Пусть

$$a \in \mathbb{N}, b \in \mathbb{R}, b > 1, c \ge 0$$

$$T(n) = \begin{cases} O(1) & \text{if } n \le n_0 \\ aT\left(\frac{n}{b}\right) + O(n^c) & \text{otherwise} \end{cases}$$

тогда:

$$T(n) = \begin{cases} O(n^c) & \text{if } c > \log_b a \\ O(n^c \log n) & \text{if } c = \log_b a \\ O(n^{\log_b a}) & \text{if } c < \log_b a \end{cases}$$

— Доказательство —

Мах глубина = $\log_b n$

На $i\text{-}\mathsf{om}$ слое: $a^i\cdot\left(\frac{n}{b^i}\right)^c$ операций В листьях (слой $\log_b n)$:

$$a^{\log_b n}$$

операций

$$\begin{split} T(n) &= \sum_{k=0}^{\log_b n} O\bigg(a^i \bigg(\frac{n}{b^i}\bigg)^c\bigg) \\ &= O\bigg(\sum_{k=0}^{\log_b n} a^i \bigg(\frac{n}{b^i}\bigg)^c\bigg) \\ &= O\bigg(n^c \sum_{k=0}^{\log_b n} \bigg(\frac{a}{b^c}\bigg)^i\bigg) \end{split}$$

Let $q = \frac{a}{b^c}$

$$q < 1 : a < b^c \Leftrightarrow c > \log_b a :$$

$$\begin{split} O\bigg(n^c \sum_i q^i\bigg) \\ &\leq O\bigg(n^c \sum_i^\infty q^i\bigg) \\ &= O\bigg(n^c \cdot \frac{1}{1-q}\bigg) \\ &= O(n^c) \end{split}$$

$$q = 1: O(n^c \cdot \log_b n)$$

$$\begin{split} q &= 1 : O \Bigg(n^c \cdot \left(\frac{a}{b^c} \right)^{\log_b n} \Bigg) \\ &= O \Bigg(n^c \cdot \frac{a^{\log_b n}}{b^{c \cdot \log_b n}} \Bigg) \\ &= O \Bigg(n^c \cdot \frac{a^{\log_b n}}{n^c} \Bigg) \\ &= O \Big(a^{\log_b n} \Big) \\ &= O \Big(a^{\frac{\log_a n}{\log_a b}} \Big) \\ &= O \Big(n^{\frac{1}{\log_a b}} \Big) \\ &= O \Big(n^{\frac{1}{\log_a b}} \Big) \\ &= O \Big(n^{\log_b a} \Big) \end{split}$$

— Примеры —

Merge sort

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n)$$

$$a = 2$$

$$b = 2$$

$$c = 1$$

$$\log_2 2 = 1 \Rightarrow T(n) = O(n^c \log n) = O(n \log n)$$

Бинпоиск

$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

$$a = 1$$

$$b = 2$$

$$c = 0$$

$$\log_2 1 = 0 \Rightarrow T(n) = O(n^c \log n) = O(\log n)$$

Обход полного двоичного дерева

$$T(n)=2T\left(\frac{n}{2}\right)+O(1)$$

$$a=b=2$$

$$c=0$$

$$\log_2 2>0\Rightarrow T(n)=O\left(n^{\log_b a}\right)=O(n^1)=O(n)$$
 —— Обобщение ——
$$T(n)=aT\left(\frac{n}{b}\right)+O\left(n^c\cdot\log^k n\right)$$

2024-09-17

 $c = \log_b a \Rightarrow T(n) = O(n^c \log^{k+1} n)$

——— Информация —

Коллок предварительно в начале второго модуля (2 ноября, 1-4 пары)

Все задачи в контесте стоят одинокого

—— Алгоритм Карацубы -

Алгоритм перемножения двух многочленов (или чисел)

$$A(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}$$

$$B(x) = b_0 + b_1 x + \ldots + b_{n-1} x^{m-1}$$

$$C(x) = A(x)B(x) = c_0 + c_1 x + \ldots c_{n+m-2} x^{n+m-2}$$

bruteforce (в столбик) за $O(n^2)$:

$$c_k = \sum_{i=0}^k a_i \cdot b_{k-i}$$

В Карацубе лучше останавливаться при $\deg \approx 16$ и перемножать в столбик

Добиваем многочлены до одинаковой длины и до степени двойки.

Разобьем многочлен на два:

$$\begin{split} A(x) &= a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} \\ &= \underbrace{\left[a_0 + a_1 x + \ldots + a_{\frac{n}{2}-1} x^{\frac{n}{2}-1}\right]}_{A_0(x)} + \underbrace{\left[a_{\frac{n}{2}} + \ldots + a_{n-1} x^{\frac{n}{2}-1}\right]}_{A_1(x)} x^{\frac{n}{2}} \\ &= A_0(x) + A_1(x) x^{\frac{n}{2}} \\ B(x) &= B_0(x) + B_1(x) x^{\frac{n}{2}} \end{split}$$

Перемножим (складываем за линию, перемножаем рекурсивно):

$$A(x)B(x) = \left(A_0 + A_1 x^{\frac{n}{2}}\right) \left(B_0 + B_1 x^{\frac{n}{2}}\right) = A_0 B_0 + (A_1 B_0 + A_0 B_1) x^{\frac{n}{2}} + A_1 B_1 x^{n-2}$$

Найдем асимптотику:

$$T(n) = 4T\bigg(\frac{n}{2}\bigg) + O(n) \Rightarrow T(n) = O\big(n^2\big)$$

Так перемножать не выгодно. Проблема в четырех произведениях.

Сокращаем число произведений до трех:

$$(A_0 + A_1)(B_0 + B_1) = \underbrace{A_0 B_0 + A_1 B_1}_{\text{уже знаем}} + \underbrace{A_0 B_1 + A_1 B_0}_{\text{сможем найти}}$$

Найдем новую асимптотику:

$$T(n) = \underbrace{3T\Big(rac{n}{2}\Big)}_{ ext{на умножения}} + \underbrace{O(n)}_{ ext{на сложения}} \Rightarrow T(n) = O\Big(n^{\log_2 3}\Big) pprox O(n^{1.585})$$

Так перемножать значительно быстрее.

— Длинная арифметика —
$$2105789 = 9 + 8x + 7x^2 + 5x^3 + x^5 + 2x^6 \mid_{x=10}$$

$$a,b < 10^{1000}$$

Нужно делать перенос разряда.

Можно сменить систему счисления для ускорения в константу раз. Удобно брать $x=10^n$.

Обобщение Карацубы на матрицы

brutforce за
$$O(n^3)$$
: $C_{i_j} = \sum_{k=0}^{n-1} a_{ik} b_{kj}$ $n=2^k$

Пилим матрицу на четыре куска:

$$a_{11}$$
 a_{12}

$$a_{21}$$
 a_{22}

Куски будут перемножаться, как обычные матрицы.

Можно посчитать не за 8, а за 7 умножений

Посчитаем сложность:

$$T(n) = 7T\left(\frac{n}{2}\right) + O(n^2) \Rightarrow T(n) = O\left(n^{\log_2 7}\right) \approx O(n^{2.81})$$

Выгодно только для очень больших матриц

Аналоги Штрассена

Год	Название	Асимптотика
1990	Коперсмита-Виноградова	$O(n^{2.3755})$
2020	Алмана-Вильямса	$O(n^{2.3728})$

Гипотеза Штрассена: $\forall \varepsilon > 0: \exists$ алгоритм : $\forall n \geq N: O(n^{2+\varepsilon})$

Сложность $O(n \log n)$, но с большой константой

Основной принцип: храним многочлен, как список его значений в некоторых точках. Знаем $A(x_0), A(x_1), ..., A(x_{n-1})$

Коэффициенты при умножении меняются нетривиально, а значения в точках — намного проще, если удачно выбрать точки: $x_i=\omega^i$, где $\omega\in\mathbb{C}$ или $\omega\in\mathbb{Z}_p$.

Проблема: переход в double.