Introduction

LING 572

Fei Xia

Week 1: 1/05/2010

Outline

General course information

Course contents

General course information

Prerequisites

- CS 326 (Data Structures) or equivalent:
 - Ex: hash table, array, tree, ...
- Stat 391 (Prob. and Stats for CS) or equivalent: Basic concepts in probability and statistics
 - Ex: random variables, chain rule, Bayes' rule
- Programming in C/C++, Java, Perl, Python, or Ruby
- Basic unix/linux commands (e.g., ls, cd, ln, sort, head): tutorials on unix
- LING570: if you did not take it with me, you need to go over the slides and assignments for my 570 from last quarter.
- If you don't meet all the prerequisites, you need to email me by 6pm tomorrow.

Topics covered in Ling570

• LM, ngram, and smoothing

HMM and POS tagging

Classification task and Mallet

Chunking, NE tagging, clustering

Grades for LING572

- No midterm or final exams.
- Programming Assignments (9): 90%
- Reading assignments (4-5): 10%
- Class participation: 10%
 - 50%: ask questions in class and on GoPost
 - 50%: help others on GoPost or in/after class
- Remove the lowest score to calculate average.
- The average is then mapped to the final grade.

Tentative mapping from the class average to the final grade

98-100	4.0	77-79	3.3
95-97	3.9	74-76	3.2
92-94	3.8	71-73	3.1
89-91	3.7	68-70	3.0
86-88	3.6	65-67	2.9
83-85	3.5	62-64	2.8
80-82	3.4	59-61	2.7

Office hours

- Fei:
 - Email:
 - Email address: fxia@uw.edu
 - Subject line should include "ling572"
 - The 36-hour rule: it works both ways
 - Office hour:
 - Time: Thurs 11am-noon ??
 - Location: Padelford A-210G

TA hours

- Ryan Georgi
 - Email: rgeorgi@uw.edu
 - Time:
 - M, T, W, Th: 3-4pm
 - F: 1-2pm
 - Location: treehouse??

Questions about grades

 If you have any questions about hw grades, please email Ryan first.

 For any remaining issues, email me and cc Ryan.

Slides

The slides will be online before class.

 The final version will be uploaded a few hours after class.

 "Additional slides" are not required and not covered in class.

Url, GoPost, Email

- Course url: http://courses.washington.edu/ling572
 - Syllabus (incl. slides, assignments, and papers):
 - GoPost:
 - CollectIt:
- GoPost: Most course-related questions should go to GoPost, including the urls of recordings.
- Email: you should use it ONLY for confidential subjects.
- Please check your emails and GoPost at least once per day.

GoPost

 GoPost is mainly a venue for student discussion.

- I am NOT going to answer all the questions:
 - Some questions have been answered already.
 - As for others, I prefer that students would work out the answers by themselves.

GoPost (cont)

- Main discussion areas:
 - Announcements
 - General information
 - Recordings
 - Grades
 - Hw1, Hw2, ...
- A discussion area can have multiple threads, and each thread can have multiple posts.
- Start a new thread when the subject changes.
- Each thread should have a clear title: e.g., "Q1: ..."

GoPost (cont)

 Posts on GoPost do not change hw, so you should be able to complete hw without relying on GoPost.

- Going through posts can be time consuming, and some posts could be misinterpreted if you are not "there".
- You need to decide what's the best way to take advantage of GoPost.

Reading assignments

- You will answer some questions about the papers that will be discussed in next class.
- The questions are on teaching slides, and there are no separate documents for them.
- Your answers should be concise and no more than a few lines.
- Your answers are due before the next class. Bring the hardcopy of your answers to class.

Programming assignments

- Due date: every Thurs at 11:55pm unless specified otherwise.
- The submission area is closed 4 days after the due date.
- There is 1% penalty for every hour after the due date.

Programming assignments

- Programming languages: C, C++, Java, Perl, or Python
- Write a simple shell script
- Follow the instructions in the assignments, including
 - command line format:cat input | foo.sh arg1 arg2 ... > output
 - file format
 - the probability model
 - Naming convention: hw1.notes
- Your code must run on Patas

Shell script

- An example: output the first n lines in STDIN
 - All under dropbox/08-09/572/code/code-samples/
- Write your code:

```
Perl: cat ex | ncat.pl 5 > t1 2>t2
```

Python: cat ex | ncat.py 5 > t1 2>t2

- Use a shell script: ncat.sh
 - cat ex | ncat.sh 5 1>t1 2>t2

Shell script (cont)

```
#!/bin/sh
./ncat.pl $@ # Perl
./ncat.py $@ # Python
./ncat $@ # C
```

→ See ~/dropbox/08-09/572/code/code-samples/

Homework Submission

- Use "Collect it": submit the tar file.
 - E.g., tar –cvf hw1.tar hw1_dir
- Each submission includes
 - a note file: hw1.(txt|doc|pdf) for hw1.
 - If your code does not work, explain in the note file what you have implemented so far.
 - a set of shell scripts: e.g., kNN.sh
 - source code: e.g., kNN.C
 - binary code (for C/C++/Java): kNN.out
 - data files if any.
 - The TA will NOT compile or debug your code.

Patas

- If you need to have a patas account, you need to email linghelp@u.washington.edu right away to get an account.
- The directory for LING572:
 - ~/dropbox/09-10/572/
 - hw1/, hw2/,: Assignments and solution
 - misc_slides/: Solution to exams and misc slides that are not on the course url.
- For jobs that run more than 5 minutes, use the cluster submission commands: see slides from 1/14

Summary of assignments

	Assignments (hw)	Reading assignments	
Num	9	5-6	
Distribution	Download from the course url		
Discussion	Allowed		
Submission	Collect It	Bring to class Not graded	
Due date	11:55pm every Thurs	Before next class	
Extension	1% penalty per hour	Disallowed	
Estimate of hours	10-30 hours	2-6 hours	
Solution files	On Patas	Discussed in class	

Workload

- On average, students will spend around
 - 20 hours on each assignment
 - 3 hours on lecture time
 - 2-3 hours on GoPost
 - 2-3 hours on each reading assignment
 - → 25-30 hours per week
- You need to be realistic about how much time you have for 572.
- I will have a thread on "time spent" for each assignment on GoPost.
 I will appreciate it if you could reply to that post.

Programming assignments

Try to reuse code from previous assignments.

Results:

- No need to get exactly the same results: if the gold standard is 83.8, getting 83.1 is fine.
- → spend time on high-level ideas, not on debugging.
- Teamwork: (??)
 - Discuss pseudo code together, but only one person has to type in the code and debug

Extension and incomplete

- Extension and incomplete are given only under extremely unusual circumstances (e.g., health issues, family emergency).
- The following are NOT acceptable reasons for extension:
 - My code does not quite work.
 - I have a deadline at work.
 - I am going to be out of town for a few days.

— ...

Course contents

Types of ML problems

- Classification problem
- Estimation problem
- Clustering
- Discovery
- ...
- →A learning method can be applied to one or more types of ML problems.
- → We will focus on the classification problem.

Course objectives

- Covering basic statistical methods that produce state-of-the-art results
- Focusing on classification and sequence labeling problems
- Some ML algorithms are complex. We will focus on basic ideas, not theoretical proofs.

Main units

- Simple classification algorithms (2 weeks)
 - -kNN
 - Decision tree
 - Naïve Bayes
- Advanced classification algorithms (4 weeks)
 - MaxEnt
 - CRF
 - SVM

Main units (cont)

- Sequence labeling algorithms and SSL (1.5 weeks)
 - TBL
 - EM (if time permits)
 - Introduction to semi-supervised learning
- Misc topics (2.5 weeks)
 - Introduction
 - Two packages: Mallet and libSVM
 - Feature selection
 - Converting Multi-class to binary classification problem
 - Review and summary

Questions for each ML method

Six methods:

- kNN and SVM
- DT and TBL
- NB and MaxEnt

Modeling:

- what is the model?
- What kind of assumption is made by the model?
- How many types of model parameters?
- How many "internal" (or non-model) parameters?

32

Questions for each method (cont)

- Training: how to estimate parameters?
- Decoding: how to find the "best" solution?
- Weaknesses and strengths:
 - Is the algorithm
 - robust? (e.g., handling outliners)
 - scalable?
 - prone to overfitting?
 - efficient in training time? Test time?
 - How much data is needed?
 - Labeled data
 - Unlabeled data

Coming up

- If you have any question about the course, email me by 9am tomorrow.
- No class on 1/7, due to LSA at Baltimore. The lecture is recorded and the urls are at GoPost.
 - Information theory
 - Probability
 - Classification task (from ling570)
 - Mallet (from ling570)
- Hw1 is due on 1/14.