ENSEEIHT - 2IMA

TD de systèmes temps réel

Exercice 1

1. Soit la configuration de tâches périodiques indépendantes suivante :

	WCET	D	Р	RN
T_1	2	5	5	1
T_2	2	8	8	2
T_3	2	10	10	3

Est-elle ordonnançable avec un algorithme à priorités statiques? Si ce n'est pas le cas, l'est-elle avec un algorithme à priorités dynamiques?

2. Même question pour la configuration de tâches périodiques indépendantes suivante :

	WCET	D	Р	OW
T_1	2	5	5	2
T_2	2	8	8	3
T_3	2	4	10	1

3. Même question pour la configuration de tâches périodiques indépendantes suivante :

	WCET	D	Р
T_1	2	5	5
T_2	2	7	8
T_3	2	4	10

Exercice 2

Soit la configuration de tâches périodiques suivante :

	r_0	WCET	D	Р
T_1	2	1	16	18
T_2	1	2	17	18
T_3	0	3	18	18
T_4	0	3	7	18
T_5	0	2	18	18
T_6	0	2	18	18
T_7	0	2	17	18
T_8	0	1	18	18
T_9	2	1	7	9

$$T_{1}, T_{2} < T_{4}$$
 $t_{2}, T_{3} < T_{5}$
 $t_{4} < T_{6}, T_{7}$
 $T_{5} < T_{7}, T_{8}$

On a en outre les contraintes de précédence suivantes :

- T1 et T2 doivent s'exécuter avant T4,
- T2 et T3 doivent s'exécuter avant T5,
- T4 doit s'exécuter avant T6 et T7,
- T5 doit s'exécuter avant T7 et T8.
- 1. Ordonnancer cette configuration de tâches en utilisant l'algorithme Rate Monotonic. Que conclue-t-on?
- 2. Même question en utilisant l'algorithme Earliest Deadline First.

Exercice 3

Soit la configuration de tâches périodiques suivante, qui partagent les ressources $R_1,\ R_2$ et R_3 :

	r_0	WCET	D	Р
T_1	5	3:	7	20
T_2	4	$3: \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	20
T_3	2	6:	16	20
T_4	0	$8: \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20	20

- 1. Que constate-t-on si on ordonnance cette configuration de tâches avec l'algorithme Earliest Deadline First simple?
- 2. Même question avec l'algorithme Earliest Deadline First et un mécanisme d'héritage de priorité simple.
- 3. Même question avec l'algorithme Earliest Deadline First et un mécanisme de type "stack-based protocol".

	Exercice. Il m	L:	Ti -> Ti	× réveille	avant Ti		
owec RM	72 C	mt prio wat D 16 2 19 3 18 3 7 2 18 2 18 2 17	(T;) > pr 18 2 18 2 18 2 18 2 18 2 18 2 18 2	16 2 17 2 18 2 5 3 17 3 16 4	(an pas de pred.) (an ode pred.)	(a) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	(3)
T1 T2 T3 T4 T5 T6 T9			18 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	17 F 7 2	4	75	30

