RF信号链:特性和性能指标

RF表示射频,此术语的通用定义规定了特定的频率范围:MHz至GHz电磁频谱。 RF的突出特性包括相移、电抗、耗散、噪声、辐射、反射和非线性,术语RF适用于 许多具有构成此定义特性的任何电路或组件。

S矩阵

S21:端口1到端口2的传输系数

|S21|: 输出功率与输入功率的比值, 称为增益或标量对数增益

S11、S22: 反射系数|Г|

反射系数与回波损耗: RL=-20log |Γ| (回波损耗始终是非负值)

(IL和RL与S参数的这种简单关系只有在所有端口都匹配的情况下才有效)

· 频率范围和带宽

3 dB带宽: 信号功率电平超过其最大值一半的频率范围。

瞬时带宽(IBW)或实时带宽:系统在不需要重新调谐的情况下能够产生或获取的最大连续带宽。

占用带宽(OBW): Occupied BW,包含总集成信号功率特定百分比的频率范围。 分辨率带宽(RBW):指两个频率分量(可继续分解)之间的最小间隔。例如,在频谱分析仪系统中,它是最终滤波器级的频率范围。

・非线性

输出1 dB压缩点(OP1dB)

饱和输出功率(PSAT)

IP3

· 分布式元件电路、集总电路

取决于电路中RF波长,高频RF系统中波长较短,需按照分布式原件电路模型分析来体现电路中的相位偏移。

· 回波损耗、反射系数、电压驻波比

插入损耗: Insert Loss

回波损耗: Return Loss

回波损耗与电压驻波比计算:

回波损耗始终是非负值

电压驻波比: VSWR = $\frac{V_{1max}}{V_{1min}} = \frac{V_1^+ + V_1^-}{V_1^+ - V_1^-}$

反射系数 $|\Gamma| = \frac{V_1^-}{V_1^+} = \frac{VSWR-1}{VSWR+1}$, RL=-20log $|\Gamma|$

比如, VSWR = 17.391, $\frac{V_1^-}{V_1^+}$ = 0.891, RL = $-20 lg \frac{V_1^-}{V_1^+}$ = 1dB

OBW IBW

RF信号链的带宽很大程度上取决于其模拟前端,以及高速模数转换器或数模 转换器的采样速率和带宽

Instantaneous Bandwidth, 瞬时带宽

Operating Bandwidth, 工作带宽

Occupied Bandwidth, 占用带宽, 华为FDD产品无OBW指标

dBm	Watts	dBm	Watts	dBm	Watts	dBm	Watts
50 dBm	100 W	20 dBm	100 mW	-10 dBm	100 μW	-40 dBm	100 nW
49 dBm	79 W	19 dBm	79 mW	-11 dBm	79 uW	-41 dBm	79 nW
48 dBm	63 W	18 dBm	63 mW	-12 dBm	63 uW	-42 dBm	63 nW
47 dBm	50 W	17 dBm	50 mW	-13 dBm	50 µW	-43 dBm	50 nW
46 dBm	40 W	16 dBm	40 mW	-14 dBm	40 uW	-44 dBm	40 nW
45 dBm	32 W	15 dBm	32 mW	-15 dBm	32 µW	-45 dBm	32 nW
44 dBm	25 W	14 dBm	25 mW	-16 dBm	25 uW	-46 dBm	25 nW
43 dBm	20 W	13 dBm	20 mW	-17 dBm	20 μW	-47 dBm	20 nW
42 dBm	16 W	12 dBm	16 mW	-18 dBm	16 uW	-48 dBm	16 nW
41 dBm	13 W	11 dBm	13 mW	-19 dBm	13 µW	-49 dBm	13 nW
40 dBm	10 W	10 dBm	10 mW	-20 dBm	10 μW	-50 dBm	10 nW
39 dBm	7.9 W	9 dBm	7.9 mW	-21 dBm	7.9 µW	-51 dBm	7.9 nW
38 dBm	6.3 W	8 dBm	6.3 mW	-22 dBm	6.3 µW	-52 dBm	6.3 nV
37 dBm	5.0 W	7 dBm	5.0 mW	-23 dBm	5.0 µW	-53 dBm	5.0 nV
36 dBm	4.0 W	6 dBm	4.0 mW	-24 dBm	4.0 µW	-54 dBm	4.0 nV
35 dBm	3.2 W	5 dBm	3.2 mW	-25 dBm	3.2 µW	-55 dBm	3.2 nV
34 dBm	2.5 W	4 dBm	2.5 mW	-26 dBm	2.5 µW	-56 dBm	2.5 nV
33 dBm	2.0 W	3 dBm	2.0 mW	-27 dBm	2.0 µW	-57 dBm	2.0 nW
32 dBm	1.6 W	2 dBm	1.6 mW	-28 dBm	1.6 µW	-58 dBm	1.6 nW
31 dBm	1.3 W	1 dBm	1.3 mW	-29 dBm	1.3 µW	-59 dBm	1.3 nW
30 dBm	1.0 W	0 dBm	1.0 mW	-30 dBm	1.0 µW	-60 dBm	1.0 nW
29 dBm	794 mW	-1 dBm	794 µW	-31 dBm	794 nW	-61 dBm	794 pW
28 dBm	631 mW	-2 dBm	631 µW	-32 dBm	631 nW	-62 dBm	631 pW
27 dBm	501 mW	-3 dBm	501 μW	-33 dBm	501 nW	-63 dBm	501 pW
26 dBm	398 mW	-4 dBm	398 µW	-34 dBm	398 nW	-64 dBm	398 pW
25 dBm	316 mW	-5 dBm	316 µW	-35 dBm	316 nW	-65 dBm	316 pW
24 dBm	251 mW	-6 dBm	251 µW	-36 dBm	251 nW	-66 dBm	251 pW
23 dBm	200 mW	-7 dBm	200 µW	-37 dBm	200 nW	-67 dBm	200 pW
22 dBm	158 mW	-8 dBm	158 µW	-38 dBm	158 nW	-68 dBm	158 pW
21 dBm	126 mW	-9 dBm	126 µW	-39 dBm	126 nW	-69 dBm	126 pW
20 dBm	100 mW	-10 dBm	100 uW	-40 dBm	100 nW	-70 dBm	100 pW

非线性

・非线性

- ✓ RF网络的功率电平持续升高通常会带来更明显的非线性效应,最终导致其性能下降。
- ✓ 一旦系统处于非线性模式,就会使信号失真、产生杂散频率分量,或者杂散。杂散是相对于载波信号(单位:dBc)的电平进行测量,可以分为谐波和交调产物。谐波是处于基波频率的整数倍位置的信号(例如,H1、H2、H3谐波),而交调产物是非线性系统中存在两个或更多基波信号时出现的信号。如果第一个基波信号位于频率f1,第二个位于f2,则二阶交调产物出现在两个信号的和频和差频位置,即f1 + f2和f2 − f1,以及f1 + f1和f2 + f2(后者也称为H2谐波)。二阶交调产物与基波信号相结合,会产生三阶交调产物,其中两个(2f1 − f2和2f2 − f1)特别重要,由于它们接近原始信号,因此难以滤除。包含杂散频率分量的非线性RF系统的输出频谱表示了交调失真(IMD),这是描述系统非线性度的一个重要术语。
- ✓ 与二阶交调失真(IMD2)和三阶交调失真(IMD3)相关的杂散分量会对目标信号造成干扰。用于量化干扰严重程度的重要指标为交调点(IP)。我们可以区分二阶(IP2)和三阶(IP3)交调点。如图所示,它们定义输入(IIP2、IIP3)和输出(OIP2、OIP3)信号功率电平的假设点,在这些点上,相应的杂散分量的功率将达到与基波分量相同的电平。虽然交调点是一个纯数学概念,但它是衡量RF系统对非线性度耐受性的重要指标。
- ✓ 线性区输出功率: Pour = Gain · Pin
- ✓ 1dB压缩点: OP1_{dB} = Gain·IP1_{dB} 1 (非线性系统实际增益曲线确定)
- ✓ IMn计算: IIPn = PIN + $\Delta P/(n-1)$, OIPn = PIN + G + $\Delta P/(n-1)$
- ・ IPn的推导

线性增益区间线性方程: Y = X + G; 在非线性区间, IPn线性方程: Y = nX + b

(1) 求解IPn线性方程

IPn线性方程经过测试点 (Pin, Pout – ΔP),即(Pin, Pin + G – ΔP),在非线性区间,IPn线性方程:Y = nX + (1 - n)Pin + G - ΔP

(2) 求解IIPn, OIPn

求解Y = X + G和Y = nX + (1 - n)Pin + G - ΔP的交点: (PIN + ΔP/(n - 1), PIN + ΔP/(n - 1)+G)

即: $IIPn = PIN + \Delta P/(n-1)$, $OIPn = PIN + G + \Delta P/(n-1)$

IP3

IP3

Questiona: IM3曲线: 斜率为3倍线性增益, 为什么斜率是3?

Answer1: 非线性系统, n次谐波

非线性系统:
$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 + \cdots$$

输入:
$$X(t) = A\cos(\omega t + \varphi) = \frac{A}{2}(e^{j(\omega t + \varphi)} + e^{-j(\omega t + \varphi)})$$
 (欧拉公式)

简化输入,令
$$\varphi = 0$$
: $X(t) = A\cos\omega t = A\frac{(e^{j\omega t} + e^{-j\omega t})}{2}$

✓
$$y = a_0$$
的输出: $Y(t) = a_0$

✓
$$y = a_1 x$$
的输出: $Y(t) = a_1 A \cos \omega t$

✓
$$y = a_2 x^2$$
的输出: $Y(t) = a_2 A^2 (\cos \omega t)^2 = \frac{a_2 A^2}{2} \cos 2\omega t + \frac{a_2 A^2}{2}$

$$\checkmark y = a_3 x^3$$
的輸出: $Y(t) = a_3 A^3 (\cos \omega t)^3 = a_3 A^3 \frac{(e^{j\omega t} + e^{-j\omega t})^3}{8} = a_3 A^3 \frac{\cos 3\omega t + 3\cos \omega t}{4} = \frac{a_3 A^3}{4} \cos 3\omega t + \frac{3a_3 A^3}{4} \cos \omega t$

$$y = a_4 x^4$$
的输出: $Y(t) = a_4 A^4 (\cos \omega t)^4 = a_4 A^4 \frac{(e^{j\omega t} + e^{-j\omega t})^4}{16} = a_4 A^4 \frac{\cos 4\omega t + 4\cos 2\omega t + 3}{8} = \frac{a_4 A^4}{8} \cos 4\omega t + \frac{a_4 A^4}{2} \cos 2\omega t + \frac{3a_4 A^4}{8} \cos 4\omega t +$

✓
$$y = a_5 x^5$$
的輸出: $Y(t) = a_5 A^5 (\cos \omega t)^5 = a_5 A^5 \frac{(e^{j\omega t} + e^{-j\omega t})^5}{32} = a_5 A^5 \frac{2\cos 5\omega t + 5\cos 3\omega t + 10\cos \omega t}{32} = \frac{a_5 A^5}{16}\cos 5\omega t + \frac{5a_5 A^5}{32}\cos 3\omega t + \frac{5a_5 A^5}{16}\cos \omega t$

综上:

$$y = a_0 + a_1 x$$
的输出: $Y(t) = a_1 A \cos \omega t + a_0$

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$
 的输出:
$$Y(t) = \frac{a_3 A^3}{4} \cos 3\omega t + \frac{a_2 A^2}{2} \cos 2\omega t \left(a_1 A + \frac{3a_3 A^3}{4} \right) \cos \omega t + \frac{a_2 A^2}{2} + a_0$$

参考文献:

[2] Maxim IP3_and_Intermodulation_Guide.pdf

IP3

Answer 2: 非线性系统,输入信号频率w1,w2,n阶互调

非线性系统: $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 + \cdots$

输入: $X_1(t) = A_1 \cos(\omega_1 t + \varphi_1) = \frac{A_1}{2} (e^{j(\omega_1 t + \varphi_1)} + e^{-j(\omega_1 t + \varphi_1)}), \quad X_2(t) = A_2 \cos(\omega_2 t + \varphi_2) = \frac{A_2}{2} (e^{j(\omega_2 t + \varphi_2)} + e^{-j(\omega_2 t + \varphi_2)})$

简化输入,令 $\varphi_1=0$, $\varphi_2=0$: $X_1(t)=A_1\cos\omega_1t=\frac{A_1}{2}(e^{j\omega_1t}+e^{-j\omega_1t})$, $X_2(t)=A_2\cos\omega_2t=\frac{A_2}{2}(e^{j\omega_2t}+e^{-j\omega_2t})$

✓ $y = a_0$ 的输出: $Y(t) = a_0$

✓ $y = a_1 x$ 的输出: $Y(t) = a_1 (A_1 \cos \omega_1 t + A_2 \cos \omega_2 t)$

✓ $y = a_2 x^2$ 的輸出: $Y(t) = a_2 (A_1 \cos \omega_1 t + A_2 \cos \omega_2 t)^2 = a_2 \left[\frac{A_1^2}{2} \cos 2\omega_1 t + \frac{A_2^2}{2} \cos 2\omega_2 t + A_1 A_2 \cos(\omega_1 + \omega_2) t + A_1 A_2 \cos(\omega_1 - \omega_2) t + \frac{A_1^2}{2} + \frac{A_2^2}{2} \right]$

✓ $y = a_3 x^3$ 的输出: $Y(t) = a_3 (A_1 \cos \omega_1 t + A_2 \cos \omega_2 t)^3 =$

$$= a_3 \left\{ \frac{A_1^3}{4} \cos 3\omega_1 t + \frac{A_2^3}{4} \cos 3\omega_2 t + \left(\frac{3A_1^3}{4} + \frac{3A_1A_2^2}{2} \right) \cos \omega_1 t + \left(\frac{3A_2^3}{4} + \frac{3A_1^2A_2}{2} \right) \cos \omega_2 t + \frac{3A_1^2A_2}{4} \left[\cos(2\omega_1 + \omega_2)t + \cos(2\omega_1 - \omega_2)t \right] + \frac{3A_1A_2^2}{4} \left[\cos(\omega_1 + 2\omega_2)t + \cos(\omega_1 - 2\omega_2)t \right] \right\}$$

综上:

 $y = a_0 + a_1 x$ 的输出: $Y(t) = a_1 A_1 \cos \omega_1 t + a_1 A_2 \cos \omega_2 t + a_0$

 $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$ 的輸出: $Y(t) = a_3 \frac{A_1^3}{4} \cos 3\omega_1 t + a_3 \frac{A_2^3}{4} \cos 3\omega_2 t + a_2 \frac{A_1^2}{2} \cos 2\omega_1 t + a_2 \frac{A_2^2}{2} \cos 2\omega_2 t + \left(a_1 A_1 + a_3 \frac{3A_1^3}{4} + a_3 \frac{3A_1 A_2^2}{2}\right) \cos \omega_1 t + \left(a_1 A_2 + a_3 \frac{3A_1^2 A_2}{4} + a_3 \frac{3A_1^2 A_2}{2} + \right) \cos \omega_2 t + \left(a_1 A_2 + a_3 \frac{3A_1^3}{4} + a_3 \frac{3A_1 A_2^2}{2}\right) \cos \omega_1 t + \left(a_1 A_2 + a_3 \frac{3A_1^2 A_2}{4} + a_3 \frac{3A_1^2 A_2}{2} + a_3 \frac{3A_1^2 A_2}{4} + a_3 \frac{3A_1^2 A_2}{4$

 $a_3 \frac{3A_1^2A_2}{4} \left[\cos(2\omega_1 + \omega_2)t + \cos(2\omega_1 - \omega_2)t\right] + a_3 \frac{3A_1A_2^2}{4} \left[\cos(\omega_1 + 2\omega_2)t + \cos(\omega_1 - 2\omega_2)t\right] + a_2A_1A_2\cos(\omega_1 + \omega_2)t + a_2A_1A_2\cos(\omega_1 - \omega_2)t + a_2\frac{A_1^2}{2} + a_2\frac{A_2^2}{2} + a_2\frac{A_2$

- [1] ADI MT-053 Op Amp Distortion HD, THD, THD + N, IMD, SFDR, MTPR.pdf
- [2] Maxim IP3_and_Intermodulation_Guide.pdf