# RFID MODULE

## Mifare Read/Write Module

**MF-800M** 

# User Manual

Version 3.1 Sep 2007

**CONTENS** 

| 1. MAIN FEATURES.               | 3 |
|---------------------------------|---|
| 2. PINNING INFORMATION          | 3 |
| 3. COMMUNICATION PROTOCOL       | 4 |
| 3-1. COMMUNICATION SETTING      | 4 |
| 3-2. COMMUNICATION FORMAT       | 4 |
| 3-3. COMMAND OVERVIEW           | 4 |
| 3-4. COMMUNICATION LIST         | 5 |
| 3-4-1. CONTROL RF TRANSMIT      |   |
| 3-4-2. SELECT MIFARE CARD       |   |
| 3-4-3. READ A DATA BLOCK        | 5 |
| 3-4-4. Write a data block       | 5 |
| 3-4-5. INITIALIZE A VALUE BLOCK |   |
| 3-4-6. READ A VALUE BLOCK       |   |
| 3-4-7. Increment value          |   |
| 3-4-8. DECREMENT VALUE          |   |

## 1. MAIN FEATURES

• Tag supported: Mifare 1K, Mifare 4K

• UART interface, baud 19,200 bps

• Power supply: DC4.5V  $\sim 5.5$ V

• Operating distance: Up to 80mm, depending on tag

Storage temperature: -40 °C ~ +85 °C
 Operating temperature: -20 °C ~ +70 °C

• Size: 41×18 mm, as same as DIP32

## 2. PINNING INFORMATION





| PIN | SYMBOL | TYPE   | DESCRIPTION                                                    |  |  |
|-----|--------|--------|----------------------------------------------------------------|--|--|
| 1   | RX     | Input  | Receiver Input: Pin for the received RF signal                 |  |  |
| 2   | TVSS   | PWR    | Transmitter Ground: supplies the output stage of TX1 and TX2   |  |  |
| 15  | TXD    | Output | Serial output port                                             |  |  |
| 16  | RXD    | Input  | Serial input port                                              |  |  |
| 17  | VCC    | PWR    | Power Supply                                                   |  |  |
| 18  | GND    | PWR    | Ground                                                         |  |  |
| 31  | TX2    | Output | Transmitter 2: delivers the modulated 13.56 MHz energy carrier |  |  |
| 32  | TX1    | Output | Transmitter 1: delivers the modulated 13.56 MHz energy carrier |  |  |

## 3. COMMUNICATION PROTOCOL

## 3-1. Communication Setting

The communication protocol is byte oriented. Both sending and receiving bytes are in hexadecimal format. The communication parameters are as follows,

Baud rate: 19200 bps
Data: 8 bits
Stop: 1 bit
Parity: None
Flow control: None

#### 3-2. Communication Format

#### Host to MF-800M:

| Header  | Len                           | Command | Data | Checksum |  |  |
|---------|-------------------------------|---------|------|----------|--|--|
| Header: | Communication header, 2 byte. |         |      |          |  |  |

From host to module: 0xAABB.

Len: Byte length counting from Command to Checksum inclusively, 1 byte.

Command, 1 byte.

Data: Data, variable length depends on the command type.

Checksum: Exclusive ORed result from Len to Data inclusively, 1 byte.

#### MF-800M to Host:

| Header  | Len                                   | Command | Status | Data | Checksum |  |
|---------|---------------------------------------|---------|--------|------|----------|--|
| Header: | leader: Communication header, 2 byte. |         |        |      |          |  |

From module to host: 0xAABB

Len: Byte length counting from Command to Checksum inclusively, 1 byte.

Command: Command, 1 byte.

Status: Command status, 1 byte 0x00 = succeed, 0xFF = fault

Data: Data, variable length depends on the command type.

Checksum: Exclusive ORed result from Len to Data inclusively, 1 byte.

#### 3-3. Command Overview

| Command | Description                                  |
|---------|----------------------------------------------|
| 0x01    | Turn on/Turn off RF transmit                 |
| 0x10    | Select Mifare card                           |
| 0x11    | Read a data block                            |
| 0x12    | Write a data block                           |
| 0x13    | Initialize a value block                     |
| 0x14    | Read a value block                           |
| 0x15    | Increment value                              |
| 0x16    | Decrement value                              |
| 0x20    | Reset Mifare_ProX Card                       |
| 0x21    | Transmit_ Receive COS command to Mifare_ProX |

#### 3-4. Command List

#### 3-4-1. Control RF Transmit

0xAABB Len 0x01 Code Checksum

Code: 0: turn off RF transmit, other turn on, 1 byte

Return:

0xAABB Len 0x01 Status Checksum

Example:

Host send: 0xAABB03010103 MF-800M return: 0xAABB03010002

#### 3-4-2. Select Mifare Card

0xAABB Len 0x10 Checksum

#### Return:

0xAABB Len 0x10 Status Serial num Type Checksum

Serial num: Serial number of the card detected if the operation is success, 4 bytes.

Type: 0x00: Mifare Standard 1K(S50) card

0x01: Mifare Standard 4K(S70) card

0x02: Mifare ProX card

**Example:** 

Host send: 0xAABB021012

MF-800M return: 0xAABB081000123456780010

#### 3-4-3. Read a data block

0xAABB Len 0x11 Type Block Key Checksum

Type: Key type (0: authenticate with key type A, 1: authenticate with key type B)

Block: The block number to be read, 1 byte

Key: Authenticate key, 6 bytes

Return:

0xAABB Len 0x11 Status Data Checksum

Data: Block data returned if operation is success, 16 bytes.

**Example:** 

Host send: 0xAABB0A110001FFFFFFFFFFF1A

MF-800M return: 0xAABB13110000112233445566778899AA00BBCCDDEEFF02

#### 3-4-4. Write a data block

0xAABB Len 0x12 Type Block Key Data Checksum

Type: Key type (0: authenticate with key type A, 1: authenticate with key type B)

Block: The block number to be written, 1 byte

Key: Authenticate key, 6 bytes
Data: The data to write, 16 bytes

Return:

0xAABB Len 0x12 Status Checksum

**Example:** 

Host send: 0xAABB1A120001FFFFFFFFFFF00112233445566778899AA00BBCCDDEEFF09

MF-800M return: 0xAABB03120011

#### 3-4-5. Initialize a value block

| 0xAABB | Len | 0x13 | Type      | Block | Kev | Value      | Checksum        |
|--------|-----|------|-----------|-------|-----|------------|-----------------|
| 0      |     | 0    | 1 - 1 - 1 | ~     |     | , 002 07 0 | C110 0110 01111 |

Type: Key type (0: authenticate with key type A, 1: authenticate with key type B)

Block: The block number to be written, 1 byte

Key: Authenticate key, 6 bytes Value: The value to write, 4 bytes.

Return:

0xAABB | Len | 0x13 | Status | Checksum

**Example:** 

Host send: 0xAABB0E130002FFFFFFFFFFF7856341217

MF-800M return: 0xAABB03130010

#### 3-4-6. Read a value block

0xAABB Len 0x14 Type Block Key Checksum

Type: Key type (0: authenticate with key type A, 1: authenticate with key type B)

Block: The block number to be read, 1 byte

Key: Authenticate key, 6 bytes

**Return:** 

0xAABB Len 0x14 Status Value Checksum

Value: Value returned if the operation is success, 4 bytes.

**Example:** 

Host send: 0xAABB0E140002FFFFFFFFFFC MF-800M return: 0xAABB071400785634121B

#### 3-4-7. Increment value

| 0xAABB | Len | 0x15 | Type | Block | Kev | Value | Checksum |
|--------|-----|------|------|-------|-----|-------|----------|

Type: Key type (0: authenticate with key type A, 1: authenticate with key type B)

Block: The block number to be written, 1 byte

Key: Authenticate key, 6 bytes

Value: The value to be increased by, 4 bytes.

**Return:** 

0xAABBLen0x15StatusChecksum

**Example:** 

Host send: 0xAABB0E150002FFFFFFFFFFF020000001B

MF-800M return: 0xAABB03150016

#### 3-4-8. Decrement value

| 0xAABB   Len   0x16   Type   Block   Key   Value | Checksum |
|--------------------------------------------------|----------|
|--------------------------------------------------|----------|

Type: Key type (0: authenticate with key type A, 1: authenticate with key type B)

Block: The block number to bewritten, 1 byte

Kev: Authenticate kev, 6 bytes

Value: The value to be decreased by, 4 bytes

Return:

 0xAABB
 Len
 0x16
 Status
 Checksum

#### **Example:**

Host send: 0xAABB0E160002FFFFFFFFFF0200000018

MF-800M return: 0xAABB03160015