Software Quality Engineering

Testing, Quality Assurance, and Quantiable Improvement

Tian Siyuan tiansiyuan@gmail.com

Chapter 13. Defect Prevention & Process Improvement

- · Defect prevention approaches
- Error blocking
- · Error source removal
- Process improvement

QA Alternatives

- Defect and QA
 - o Defect error/fault/failure
 - Defect prevention/removal/containment
 - Map to major QA activities
- Defect prevention (this chapter)
 - Error source removal & error blocking
- Defect removal Inspection/testing/etc.
- Defect containment Fault tolerance and failure containment (safety assurance)
 - Generic Ways for Defect Prevention
- · Error blocking
 - Error missing/incorrect actions
 - Direct intervention
 - Error blocked
 - => fault injections prevented (or errors tolerated)
 - Rely on technology/tools/etc.
- · Error source removal
 - Root cause analysis
 - => identify error sources
 - Removal through education/training/etc.

Defect Prevention Why and How?

- · Major factors in favor of defect prevention
 - Super-linear defect cost increase over time
 - early faults chain-effect/propagation
 - difficulty to fix remote (early) faults
 - in-field problems cost" significantly
 - Other QA techniques for later phases
 - even inspection after defect injection
- Basis for defect prevention: Causal and risk analysis
 - Analyze pervasive defects
 - · Cause identification and fixing
 - Risk analysis to focus/zoom-in

Defect Cause and Actions

- Types of causal analyses
 - Logical (root cause) analysis by expert for individual defects and defect groups
 - Statistical (risk) analysis for large data sets with multiple attributes
 - Model predictor variables) defects
 - # defects often as response variable
 - Cause(s) identified via either variation
- · Actions for identified causes
 - Remedial actions for current product
 - Preventive actions for future products
 - negate causes or pre-conditions

Common Causes/Preventive Actions

- Education/training to correct human misconceptions as error sources
 - Product/domain knowledge
 - Development methodology
 - Development process, etc.
 - · Act to remove error sources
 - · Cause identification: mostly through root case analysis
- Formal methods, Chapter 15
 - Formal specification to eliminate imprecision in design/implementation

(error source removal)

· Formally verify fault absence

Common Causes/Preventive Actions

- Technologies/tools/standards/etc.
 - · Based on empirical evidence
 - Proper selection and consistent usage or enforcement
 - More error blocking than error source removal
 - Cause identification: mostly statistical
- Process improvement
 - Integration of many factors in processes
 - Based on empirical evidence or logic
 - Define/select/enforce
 - Helping both error blocking and error source removal
 - · Cause identification: often implicit

Education and Training

- People most important factor to quality
 - e.g., vs. implicit languages (Prechelt, 2000)
- Development methodology knowledge
 - Solid CS and SE education
 - Methodology/process/tools/etc.
- Product/domain knowledge
 - Industry/segment specific knowledge
 - Type of products new vs. legacy etc.
 - legacy product inter-operability
 - General product environment, etc.
- Means of delivery formal and informal education + on-the-job training

Other Techniques

- Appropriate software technologies
 - o Formal methods Chapter 15
 - Cleanroom formal verification + statistical testing
 - Other technologies: CBSE, COTS, etc.
- Appropriate standards/guidelines

- Mis-understanding/mis-communication decrease
- Empirical evidence for effectiveness
- Appropriate scope and formality
- · Effective methodologies
 - As package technologies/std/tools/etc.
 - Empirical evidence
 - Match to the specific product domain

Tools for Error Blocking

- Programming language/environment tools
 - Syntax-directed editor to match pairs
 - Syntax checker/enforcer.
 - General tools for coding standards, etc.
- · Other tools
 - Design/code and version control
 - examples CMVC, CVS, etc.
 - Tools for individual development activities
 - testing tools, see Chapter 7
 - requirement solicitation tools
 - design automation tools, etc.
- General tools or tool suites for certain methodologies, e.g., Rational Rose.

Process Improvement

- Integration of individual pieces for defect prevention => process improvement
- Selecting appropriate development processes
 - Process characteristics and capability
 - Match to specific product environment
 - Consideration of culture/experience/etc.
- Process definition and customization
 - Adapt to specific project environment
 - e.g., IBM's PPA from Waterfall
- Process enforcement and ISO/9000
 - "say what you do"
 - "do what you say"
 - "show me"

Process Maturity for Improvement

- SEI/CMM Focus on defect prevention
 - maturity level focus/key practice area
 - 1. ad-hoc competent people/heroics
 - 2. repeatable project management process
 - 3. defined engineering-process/orgnizational support
 - 4. managed prod./process quality
 - 5. optimized continuous process improvement
 - expectation maturity" => quality improvement
 - recently CMMI/P-CMM/SA-CMM/etc.
- Other process maturity work
 - SPICE (Software Process Improvement and Capability dEtermination)
 - international effort
 - assessment, trial, and tech. transfer
 - BOOTSTRAP 2 ESPRIT programme

TAME Process/Quality Improvement

- · QIP: Quality Improvement Paradigm
 - understand baseline
 - intro. process change and assess impact
 - package above for infusion
- GQM: goals/questions/metrics paradigm
 - goal-driven activities
 - o questions related to goals
 - · metrics to answer questions
- EF: experience factory
 - separation of concerns
 - EF separate from product organization
 - form a feedback/improvement loop

Summary

- Key advantages
 - Significant savings if applicable
 - avoid downstream problems
 - Direct affect important people factor
 - Promising tools, methodologies, etc.
 - Process improvement: long-lasting and wide-impact
- · Key limitations

- Known causes of pervasive problems
- Difficulties analyzing complex problems
- Difficulties with changing environment
- Hard to automate
- Process quality <> product quality
- Comparison to other QA Chapter 17.