The group G is isomorphic to the group labelled by [10, 1] in the Small Groups library. Ordinary character table of $G \cong D10$:

	1a	5a	5b	2a
χ_1	1	1	1	1
χ_2	1	1	1	-1
χ_3	2	$E(5) + E(5)^4 E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	0
χ_4	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0

Trivial source character table of $G \cong D10$ at p = 5:

Normalisers N_i	N_1		N_2	
p-subgroups of G up to conjugacy in G	P_1		P_2	
Representatives $n_j \in N_i$	1a	2a	1a	2a
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4$	5	1	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4$	5	-1	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4$	1	1	1	1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4$	1	-1	1	-1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4$	1	-1	1	-1

$$P_1 = Group([()]) \cong 1$$

 $P_2 = Group([(1, 3, 5, 7, 9)(2, 4, 6, 8, 10)]) \cong C5$

$$\begin{aligned} N_1 &= Group([(1,2)(3,10)(4,9)(5,8)(6,7),(1,3,5,7,9)(2,4,6,8,10)]) \cong D10 \\ N_2 &= Group([(1,3,5,7,9)(2,4,6,8,10),(1,2)(3,10)(4,9)(5,8)(6,7)]) \cong D10 \end{aligned}$$