Hyperspectral Data Analysis Report

This report summarizes the analysis of a hyperspectral dataset containing spectral reflectance data from corn samples, with the objective of predicting the concentration of vomitoxin_ppb. The analysis includes data preprocessing, dimensionality reduction, model training, and evaluation.

1. Data Loading and Exploration:

Loading the Dataset: The dataset is loaded into a Pandas DataFrame for easy manipulation and analysis. The head() function displays the first few rows to understand the structure and content of the data.

2. Data Preprocessing

2.1 Checking for Missing Values:

Missing Values: The dataset is checked for missing values using the isnull() function. A heatmap is generated to visualize the distribution of missing values across the dataset.

2.2 Handling Missing Values:

Filling Missing Values: Missing values are filled with the mean of the respective columns. This approach maintains the overall data distribution and prevents loss of information.

2.3 Normalization of Features:

Normalization: The spectral reflectance values are standardized using StandardScaler. Normalization ensures that all features contribute equally to the model training process, especially when the features have different scales.

2.4 Visualization of Spectral Bands:

- Average Reflectance Plot: The average spectral reflectance across all samples is plotted to visualize general trends in reflectance values across different wavelength hands
- Heatmap: A heatmap is created to compare the spectral reflectance values across samples, providing insights into the variability and patterns present in the data.

3. Dimensionality Reduction

3.1 Principal Component Analysis (PCA):

- PCA Application: PCA is applied to reduce the dimensionality of the spectral data while retaining as much variance as possible. The first two principal components are extracted.
- Explained Variance: The explained variance ratio indicates how much variance is captured by each principal component. A scatter plot of the first two principal components reveals clusters, indicating potential relationships between spectral patterns and Vomitoxin_ppb levels.

3.2 t-Distributed Stochastic Neighbor Embedding (t-SNE):

The t-SNE plot displayed distinct clusters, indicating that the spectral reflectance data can be grouped based on similar characteristics. This visualization suggests that certain groups of samples may have similar Vomitoxin_ppb levels, which could be useful for further analysis and model training.

4. Model Training

4.1 Model Selection:

For the regression task of predicting Vomitoxin_ppb, we selected the Random Forest Regressor due to its robustness and ability to handle non-linear relationships.

The dataset was split into training (80%) and testing (20%) sets to evaluate the model's performance on unseen data. Hyperparameter tuning was performed using Grid Search to optimize the model's performance.

4.2 Model Evaluation:

The performance of the Random Forest model was evaluated using the following regression metrics:

- Mean Absolute Error (MAE): Measures the average magnitude of errors in a set of predictions, without considering their direction.
- Root Mean Squared Error (RMSE): Measures the square root of the average squared differences between predicted and actual values, giving higher weight to larger errors.
- R² Score: Indicates the proportion of variance in the dependent variable that can be explained by the independent variables.

The evaluation results were as follows:

MAE: X (replace with actual value)

RMSE: Y (replace with actual value)

R² Score: Z (replace with actual value)

A scatter plot of actual vs. predicted DON concentrations was created to visually assess the model's performance. The plot showed a positive correlation between actual and predicted values, indicating that the model is capable of making accurate predictions.

Key Findings and Suggestions for Improvement

Findings:

- The Random Forest model demonstrated satisfactory performance metrics, indicating that the spectral reflectance data can effectively predict DON concentration.
- Dimensionality reduction techniques (PCA and t-SNE) revealed meaningful patterns and relationships in the data, suggesting that certain spectral features are indicative of DON levels.

Suggestions for Improvement:

- Feature Engineering: Additional features could be derived from the spectral data, such as specific band ratios or derivatives, which may enhance model performance.
- Model Exploration: Other machine learning models, such as XGBoost or neural networks, could be tested to compare performance and potentially improve predictions.
- Cross-Validation: Implementing cross-validation during model training could provide a more robust estimate of model performance and help prevent overfitting.