Multimodal Model for Diagram Question Answering

GWU Capstone Fall 2022 - DATS 6501_80 Final Presentation Alexis Kaldany, Joshua Ting GitHub Repo

Background

A Diagram Is Worth A Dozen Images

Kembhavi et al. (2016)³

 Interpretation and reasoning of scientific diagrams from elementary school science textbooks

 Visual Question and Answering Task with complex feature engineering

 Question/image pairing is sufficiently complex that normal VQA models don't work

 Paper solves this problem by creating a new network architecture called DQA-Net

Fig. 3. An overview of the DQA-NET solution to diagram question answering. The network encodes the DPG into a set of facts, learns to attend on the most relevant fact, given a question and then answers the question.

Figure 1: DQA-Net architecture³

Outcome of A Diagram Is Worth A Dozen Images

Kembhavi et al. (2016)³

- New Dataset:
 - Diagrams with exhaustive annotations of constituents and relationships
- Results:
 - Their best model reached 38.47% accuracy with their DQA-NET model.
 - Pure VQA model reached 32.90% accuracy

Method	JIG Score
GREEDY SEARCH	28.96
A* Search	41.02
DSDP-NET	51.45

Method	Training set	Accuracy
VQA	VQA	29.06
VQA	AI2D	32.90
DQA-NET	AI2D	38.47

Table 2. (left) Syntactic parsing results, (right) Question answering results

Contribution Goals to Original Paper

- Transformers and/or Auto Encoder-Decoder architectures with pretraining
 - a. Achieved impressive results in complex domains (NLP, CV, Speech)
- 2. Reduce the complexity during featuring engineering
 - a. No separate model to create Diagram Parse Graphs (DPGs)
- 3. Use a pretrained model and try **Transfer Learning**
- 4. Try to achieve comparable results

Data

Dataset Overview

- 5,000 diagrams, annotations
- 15,000 questions and answers
- Annotation json contains coordinates and linkages between detected objects
- Question json contains question answer pairings

```
"relationships": {
    "T0+A0+B1": {
        "category": "intraObjectLinkage",
        "connector": "A0",
        "destination": "B1",
        "hasDirectionality": false,
        "id": "T0+A0+B1",
        "origin": "T0"
},
```

Intra-Object Label (\mathbb{R}_1): A text box naming the entire object.

Intra-Object Region Label (\mathbb{R}_2): A text box referring to a region within an object. Intra-Object Linkage (\mathbb{R}_3): A text box referring to a region within an object via an arrow.

Inter-Object Linkage (\mathbb{R}_4): Two objects related to one another via an arrow.

Arrow Head Assignment (\mathbb{R}_5): An arrow head associated to an arrow tail.

Arrow Descriptor (\mathbb{R}_6): A text box describing a process that an arrow refers to. **Image Title** (\mathbb{R}_7): The title of the entire image.

Image Section Title (\mathbb{R}_8): Text box that serves as a title for a section of the image. Image Caption (\mathbb{R}_9): A text box that adds information about the entire image, but does not serve as the image title.

Image Misc (\mathbb{R}_{10}): Decorative elements in the diagram.

Table 1. Different types of relationships in our diagram parse graphs.

Figure 5: Annotations²

Example: Question - Image Pairs

Figure 6: Data sample²

Example II: Question - Image Pairs

Figure 7: Data sample²

Multiple Choice Question: From the above food web diagram, what will lead to an increase in the population of deer? a) increase in lion b) decrease in plants c) decrease in lion d) increase in pika

Figure 3: Sample data example with diagram, annotations, and graph relationships³

Figure 2: Diagram Graph Parser result examples³

Data Acquisition and EDA

Data Acquisition

Data Split

Dataset Split	Choice A	Choice B	Choice C	Choice D	TOTAL
Training	25.3% (2,831)	25.5% (2,845)	25.6% (2,856)	23.6% (2,639)	72.1% (11,171)
Validation	23.8% (296)	26.5% (329)	27.7% (345)	21.9% (272)	8.0% (1,242)
Testing	24.5% (758)	26.0% (802)	26.9% (832)	22.5% (696)	19.9% (3,088)
TOTAL	25.1% (3,885)	25.6% (3,976)	26.0% (4,033)	23.3% (3,607)	15,501

Figure 9: Train/Test/Validation splits

Model Selection and Background

Model Selection

Name	Туре	Pre-Training Objectives	Key Heads	
VisualBERT⁵	Vision-Language Transformer Model	 Bidirectional masked language model Sentence-image prediction on caption data 	 Multiple Choice Question Answering Visual Reasoning 	
ViLT ⁶	V-L Transformer Model without Convolution for Visual Embedding	 Masked language model with whole word masking Image text matching Word patch alignment: predict masked image patches of a text word 	1. Question Answering	
LayoutMV3 ⁷	Document Transformer Model	 Bidirectional masked language model Masked image model Word patch alignment 	1. Question Answering	

Figure 10: Model selection considerations

VisualBERT⁵

- Has head for Multiple-Choice downstream task
- BERT with visual input component
- Pre-Training Objectives:
 - Masked Language Model with Image
 - Text tokens are masked but image vectors are not
 - Sentence Image Prediction
 - Provide a text segment consisting of two captions, one describes the image, the other has 50% to describe the image or be randomly drawn caption
- Trained on Common Object in Context (COCO) dataset¹⁸

VisualBERT Model Architecture

Figure 11: VisualBERT architecture⁵

Metrics Selection

Metric
*Accuracy
F1 Score
Recall
Precision
Specificity

*Main metric

Data Processing

Types of Input Scenarios

No Annotations used in Inputs

Inputs:

- Q-A pairs: text embeddings
- 2. Diagram images: visual embeddings
- 3. Annotations: not used

2 Draw Annotations on Diagram

Inputs:

- 1. Q-A pairs: text embeddings
- 2. **Diagram images:** visual embeddings
- 3. **Annotations**: drawn on diagram images and part of **visual embeddings**

Embedding Annotations via Strings

Inputs:

- 1. Q-A pairs: text embeddings
- 2. Diagram images with annotations: visual embeddings
- Annotations: as strings and concatenated with Q-A pairs and part of text embeddings

Embeddings

Text Embedding

BERT Tokenizer¹⁹ for contextual text embeddings

Visual Embedding

- Resize diagram images to 224x224
- Forward pass through ResNET18 and get the 'avgpool' feature maps layer

Image Annotator

Figure 13: Diagram with visual annotations applied

Embedding Annotations Via Strings

Question: Which organism is both predator and prey in the above food chain?

Annotations: The title of the image is F. D object links to A. E object links to D. B object links to E. C object links to B. A object links to C.

Figure 14: Data sample²

Model Training and Results

VisualBERT Fine-Tuning

- Trained for 16 epochs for each of the 3 input scenarios
- Used PyTorch
- Hyperparameters
 - Optimizer: AdamW()¹⁶
 - Criterion: torch.nn.CrossEntropy()¹⁷

Final Test Evaluation Accuracy vs Benchmarks

Figure 15: VisualBERT vs Benchmarked Model accuracy on same testing dataset

Interpreting Results: Complexity of Dataset

- Diagrams are not like regular natural images
 - Arrows, Relationships between objects, Text
- Annotations
 - Our How do we structure this as an input?
 - Difficult to process
- Lots of signals between the different data modes but difficult to ensure the model can appropriately learn a good joint representation of all those inputs

Final Words

Lessons Learned and Future Improvements

Contributions:

Proved that large pretrained transformer models may not always perform
 better than more data-customized architectures, at least for diagram QA

Possible Future Improvements:

- Try ViLT or LayoutMV3 models
 - a. Models with **masked image pretraining or word patch alignment** may have performed better in this task
- Try more techniques to embed the annotations
- Better visual embedding techniques
- Try data-customized architectures

References

- 1. Github Repo
- 2. Al2 Diagram Dataset (Al2D)
 - Al2 Diagram Dataset (Al2D) was accessed on 9/5/2022 from https://registry.opendata.aws/allenai-diagrams.
- 3. <u>A Diagram is Worth a Thousand Words</u>
 - @article{Kembhavi2016ADI,
 - title={A Diagram is Worth a Dozen Images},
 - author={Aniruddha Kembhavi and Michael Salvato and Eric Kolve and Minjoon Seo and Hannaneh Hajishirzi and Ali Farhadi}, journal={ArXiv},
 - year={2016},
 - volume={abs/1603.07396}
- Paper code:
- 5. VISUALBERT: A SIMPLE AND PERFORMANT BASELINE FOR VISION AND LANGUAGE, Li et al., 2019
- 5. ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision. Kim et al., 2021
- 7. LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking, Huang et al., 2022
- 8. VisualBERT for Multiple Choice Hugging Face
- 9. <u>VisualBERT for Question Answering Hugging Face</u>
- 10. <u>VILT for Question Answering Hugging Face</u>
- 11. <u>LayoutMV3 Hugging Face</u>
- 12. VisualBERT Demo
- 13. BERT Multiple Choice Sample
- 14. Fine Tuning on Multiple Choice Task
- 15. Hugging Face
- 16. <u>PyTorch AdamW Optimizer</u>
- 17. PyTorch Cross Entropy
- 18. Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dolla´r, and C Lawrence Zitnick. Microsoft COCO captions: Data collection and evaluation server. arXiv preprint arXiv:1504.00325, 2015.
- 19. BERT Tokenizer
- 20. Ramzan, Farheen & Khan, Muhammad Usman & Rehmat, Asim & Iqbal, Sajid & Saba, Tanzila & Rehman, Amjad & Mehmood, Zahid. (2019). A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification of Alzheimer's Disease Stages Using Resting-State fMRI and Residual Neural Networks. Journal of Medical Systems. 44. 10.1007/s10916-019-1475-2.

Appendix: Additional Slides Not Used

Project Inspiration

Work on a dataset or model type we had never encountered before

 We have worked with images, time series, text, and tabular data but all separately

 Use this as an opportunity to combine different modes of data and techniques into one model

QA-NET max_i softmax max_i max_i max_i $(\mathbf{m}_{i}^{\mathsf{T}} \mathbf{s}_{1})$ $(\mathbf{m}_{i}^{\mathsf{T}} \mathbf{s}_{2})$ $(\mathbf{m}_{i}^{\mathsf{T}} \mathbf{s}_{3})$ $\mathbf{m}_{\mathsf{M}}^{\mathsf{T}} \mathbf{s}_{\mathsf{4}}$ $\mathbf{m}_{\mathsf{M}}^{\mathsf{T}} \mathbf{s}_{1}$ $\mathbf{m}_{\mathsf{M}}^{\mathsf{T}} \mathbf{s}_{\mathsf{2}}$ LSTM - m_M $\mathbf{m}_{\mathsf{M}}^{\mathsf{T}} \mathbf{s}_{\mathsf{3}}$ LSTM $\mathbf{m_1}^\mathsf{T} \mathbf{s_2}$ $\mathbf{m_1}^\mathsf{T} \mathbf{s_3}$ $\mathbf{m_1}^\mathsf{T} \mathbf{s_4}$

LSTM

Statement 2

LSTM

Statement 3

LSTM

Statement4

Fig. 3. An overview of the DQA-NET solution to diagram question answering. The network encodes the DPG into a set of facts, learns to attend on the most relevant fact, given a question and then answers the question.

LSTM

Statement 1

DPG

Relation Embedding

Statement

Embedding

Figure X: DQA-Net architecture³

DSDP-NET

Figure X: DSDP-Net architecture³

Contribution Goals to Original Paper

- Transformers and/or Auto Encoder-Decoder architectures with pretraining
 - a. Achieved impressive results in complex domains (NLP, CV, Speech)
- 2. Reduce the complexity during featuring engineering
 - a. No separate model to create Diagram Parse Graphs (DPGs)
- 3. Use a pretrained model and try Transfer Learning
- 4. Create a more streamlined, more end-to-end model
- 5. Try to achieve **comparable results**

Dataset Overview

- Al2D dataset²
 - Free and open source access, a Creative Commons license
 - On the AWS Data Marketplace within a S3 bucket
 - Original images folder = 1.07 GB

AI2D DATASET

Images	4,903
Questions	4,563
Annotations	4,903

Example II: Question - Image Pairs


```
"What happens to the mayfly population if the trout population disappears?": {
    "abcLabel": false,
    "answerTexts": [
        "remain the same",
        "decrease",
        "increase",
        "NA"
    ],
    "correctAnswer": 2,
    "questionId": "28.png-9"
```

Figure X: Data sample²

Cloud Environment

Data Acquisition

Download Command:

download_command = f"aws s3 cp --no-sign-request s3://ai2-public-datasets/diagrams/ai2d-all.zip {DATA_DIRECTORY}"
os.system(download_command)

Cloud Environment and Software Used

Figure X: Cloud setup and key software used

VisualBERT⁵

- Task specific pre-training
 - Has head for Multiple-Choice downstream task
- BERT with visual input component
 - o 12 layers
 - 768 hidden size
 - 12 self-attention heads
- Pre-Training Objectives:
 - Masked Language Model with Image
 - Text tokens are masked but image vectors are not
 - Sentence Image Prediction
 - Provide a text segment consisting of two captions, one describes the image, the other has 50% to describe the image or be randomly drawn caption
- Trained on Common Object in Context (COCO) dataset¹⁸

Modules

- 1. **Data Downloader**: Downloads data into workspace
- 2. **Data Preprocessor**: Performs preprocessing of images, q-a pairs, annotations into one dataframe
- 3. **Train/Val/Test Splitter**: Splits train/test/validation datasets
- 4. Image Annotator: Annotates regions of diagram image from the annotations file
- 5. Visual Embedder: Generate visual embeddings using a Resnet18 model
- 6. **Text Embedder**: Tokenize our inputs with BERT tokenizer to generate text embeddings
- 7. **Annotations-Strings Embedder**: Turns annotations into text embeddings
- 8. **Data Loader**: Yield batch of data while performing each of the preprocessing modules above to output text and visual embeddings
- 9. Model: Includes training loop and support functions
- 10. **Testing**: Test and generate results
- 11. **Plotter**: Plot diagrams and results

Embedding Annotations Via Strings

Problem

- 1. VisualBERT takes text and visual embeddings as inputs
- Nowhere to place the annotations in any format "out of the box", except drawing them onto the image

Solution

- 1. Encode the annotations into a string, add to the question string before tokenizer
- 2. Ensures model absorbs in some way annotation data

Embedding Annotations Via Strings

Problem

- 1. VisualBERT take question and the visual embeddings of the diagram as inputs
- 2. Nowhere to place the annotations in any format "out of the box", except drawing them onto the image.

Solution

- 1. Encode the annotations into a string, add to the question string before tokenizer
- 2. Ensures model absorbs in some way annotation data

Outcome

1. No change whatsoever in metrics :(

Test Data Evaluation Results

Test Evaluation Results

Figure X: VisualBERT final accuracy on testing data evaluation

Setup 1 Results

Metrics: Setup 1

Figure X: VisualBERT Metrics - Setup 1: No Annotations

Class Metrics: Setup 1

VisualBERT no Annotations - 16 epochs: Class Metrics on Test Set

Figure X: VisualBERT Class Metrics - Setup 1: No Annotations

Confusion Matrix: Setup 1

Figure X: VisualBERT Confusion Matrix - Setup 1: No Annotations

Training Results: Setup 1

Figure X: VisualBERT Accuracy over Training Epochs - Setup 1: No Annotations

Setup 2 Results

Metrics: Setup 2

VisualBERT w/ Visual Annotations - 16 epochs: Test Metrics

Figure X: VisualBERT Metrics - Setup 2: Visual Annotations

Class Metrics: Setup 2

VisualBERT w/ Visual Annotations - 16 epochs: Class Metrics on Test Set

Figure X: VisualBERT Class Metrics - Setup 2: Visual Annotations

Confusion Matrix: Setup 2

Figure X: VisualBERT Confusion Matrix - Setup 2: Visual Annotations

Training Results: Setup 2

Figure X: VisualBERT Accuracy over Training Epochs - Setup 2: Visual Annotations

Setup 3 Results

Metrics: Setup 3

Figure X: VisualBERT Metrics - Setup 3: Text Annotations

Class Metrics: Setup 3

VisualBERT w/ Text Annotations - 16 epochs: Class Metrics on Test Set

Figure X: VisualBERT Class Metrics - Setup 3: Text Annotations

Confusion Matrix: Setup 3

Figure X: VisualBERT Confusion Matrix - Setup 3: Text Annotations

Training Results: Setup 3

VisualBERT w/ Text Annotations: Accuracy over Training Epochs

Figure X: VisualBERT Accuracy over Training Epochs - Setup 3: Visual Annotations

Diagram Object

Intra-Object Label (R1): A text box naming the entire object.

Intra-Object Region Label (R2): A text box referring to a region within an object.

Intra-Object Linkage (R3): A text box referring to a region within an object via an arrow.

Inter-Object Linkage (R4): Two objects related to one another via an arrow.

Arrow Head Assignment (R5): An arrow head associated to an arrow tail.

Arrow Descriptor (R6): A text box describing a process that an arrow refers to.

Image Title (R7): The title of the entire image.

Image Section Title (R8): Text box that serves as a title for a section of the image. Image Caption (R9): A text box that adds information about the entire image, but does not serve as the image title.

Image Misc (R10): Decorative elements in the diagram.