Turing Machines Part 2

Adam Wyner CS3518, Spring 2017 University of Aberdeen

First TM example

- Given: w is a bitstring
- TM that recognises L = {w: w contains at least one 0}

First TM example

Formally

$$\delta(q_0, 1) = (q_0, 1, R)$$

$$\delta(q_0, 0) = (Acc, 0, R)$$

$$\delta(q_0, \Box) = (Rej, \Box, R)$$

Observe ..

- The "transition function" in this graph is not a total function.
 However,
 - The missing arrows (from the Acc and Rej states) can easily be added
 - How you do this does not affect the language recognised by the TM

Second TM example

- Given: w is a bitstring
- TM that recognises L = {w: w contains at least two 0s}

Third example

- Given: w is a bitstring
- TM that recognises L={w: w contains exactly one 0}

High-level description

- These TMs were very simple and only solve problems that FSAs were able to solve already.
- More sophisticated TMs get complicated
 - A lengthy document
 - We often settle for a higher-level description
 - Easier to understand than transition rules or diagrams
- Every higher-level description is just a shorthand for its formal specification

• M_2 recognises all strings of 0s whose length is a power of 2, that is, the language

$$A = \{ \mathbf{0}^{2^n} \mid n \ge 0 \}$$

M_2 = On input string w:

- 1. Sweep left to right across the tape, crossing off every other **0**.
 - a. If tape contains a single **0**, accept.
 - b. If tape contains more than a single **0** and the number of **0**s was odd, reject.
- 2. Return the head to the left-hand of the tape
- 3. Go to step 1.

Formally $M_2 = (Q, \Sigma, \Gamma, \delta, q_1, q_{acc}, q_{rei})$

- $Q = \{q_1, q_2, q_3, q_4, q_5, q_{acc}, q_{rej}\}$
- $\Sigma = \{\mathbf{0}\}$
- $\Gamma = \{0, x, \Box\}$ (x is a character we use to ignore characters in subsequent processing)
- δ is given as a state diagram (next slide)
- The start, accept and reject states are q_1 , q_{acc} , q_{rei}
- Recall the left-hand rule if on the left edge of the input tape and trying to move left, just overwrite the character, and remain in place.

Sample Turing Machine (Cont'd)

Sample run of M_2 on input **0000**:

Turing-Recognisable Languages

- A language is Turing Recognisable if some TM recognises it.
 This is what we called recursively enumerable before
- So if a TM recognises L, this means that all and only the elements of L are accepted by the TM. These strings result in the Accept state
- But what happens with the strings that are not in L?

Turing-Recognisable Languages

- But what happens with the strings that are not in L?
 - these might end in the Reject state ...
 - or the TM might never reach Accept or Reject on the inputs

Turing-Recognisable Languages (Cont'd)

- A TM fails to accept an input either by
 - Entering q_{rei} and rejecting the input
 - Looping forever
- It is not easy to distinguish a machine that is looping from one that is just taking a long time!
 - Loops can be complex, not just $C_i \rightarrow C_i \rightarrow C_i \rightarrow C_i \rightarrow ...$

Turing-Recognisable Languages (Cont'd)

- We prefer TMs that halt on all inputs
 - They are called deciders
 - A decider that recognises a language is said to decide that language
 - A decider answers every question of the form "Does the TM accept this string?" in finite time
 - Non-deciders keep you guessing on some strings

Turing-Decidable Languages

- A language is (Turing-)decidable if some TM decides it
 - Every decidable language is Turing-recognisable
 - Some Turing-recognisable languages are not decidable (though you haven't seen any examples yet)
- We return to this topic later. It is another way of saying there are problems without solutions.

Variants of Turing Machines

- There are many alternative definitions of TMs
 - They are called variants of the Turing machine
- They all have the same power as the original TM
- Some of these deviate from the TMs we have seen so far in minor ways

Variants of Turing Machines

- Some TMs put strings in between two infinite sequences of blanks. This avoids the need that sometimes exists to mark the start of the string
- Some TMs halt only when they reach a state from which no transitions are possible. Compare our TM: "sudden death" after reaching q_{acc} , q_{rej}
- Let's briefly look at some more interesting variants

Multitape Turing Machines

- A TM with several tapes instead of just one
- Each tape has its own head for reading/writing
 - Initially, input appears on tape 1; other tapes are blank
- Transition function caters for k different tapes:

$$\delta: Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L, R\}^k$$

The expression

$$\delta(q_i, a_1, ..., a_k) = (q_i, b_1, ..., b_k, L, R, ..., L)$$

Means

- If in q_i and heads 1 through k read a_1 through a_k ,
- Then go to q_j , write b_1 through b_k and move heads to the left or right, as specified

Multitape Turing Machines (Cont'd)

Theorem:

Every multitape Turing machine has an equivalent single tape Turing machine.

Proof: show how to convert a multitape TM *M* to an equivalent single tape TM *S*. (Sketch only!)

Nondeterministic Turing Machines

- This time, at a given point in the computation, there may be various possibilities to proceed
- Transition function maps to powerset (options):

$$\delta: Q \times \Gamma \longrightarrow 2^{(Q \times \Gamma \times \{L, R\})}$$

The expression

$$\delta(q_i, a) = \{(q_i, b_1, L), ..., (q_i, b_2, R)\}$$

Means

- If in q_i and head is on a
- Then go to any one of the options (some finite number!)
- If there is a sequence of choices that lead to the accept state,
 the machine accepts the input

Nondeterministic TMs (Cont'd)

Theorem:

For every nondeterministic Turing machine there exists an equivalent deterministic Turing machine

Equivalent means:

- -- accepts the same strings
- -- rejects the same strings

(No proof offered here.)

Other types of TMs

- These lectures focus on TMs for accepting strings (recognizing languages)
- Other TMs were built primarily for manipulating strings.
 Examples:
 - TMs that count the number of symbols in a string (by producing a string that contains the right number of 1s)
 - TMs that adds up two bit strings (by producing a string that contains the right number of 1s)
 - See your Practical
- Such TMs do not need Accept/Reject states.
- Their behaviour can be simulated in the earlier (simpler) TMs: accept if the tape contains inputs + the correct output.

TMs are cumbersome to specify in detail

- TMs serve as a precise model for algorithms
- We shall often make do with informal descriptions
- We need to be comfortable enough with TMs to believe they capture all algorithms

Notation for TMs

- Input to a TM is always a string
- If we want to provide something else such as a polynomial, matrix, list of students, etc. then we need to
 - Represent these as strings (somehow), and
 - Program the TM to decode/act on the representation
- Notation:
 - Encoding of O as a string is $\langle O \rangle$
 - Encoding of O_1 , O_2 ,..., O_k as a string is $\langle O_1, O_2, ..., O_k \rangle$