TD 07: CHAMPS DE VECTEURS ET TOPOLOGIE DES SURFACES

► Cette feuille de TD07 nous occupera deux semaines.

Première semaine

Exercices fondamentaux

1. CROCHET DE LIE

Soit U un ouvert de \mathbf{R}^d . Soient X et Y deux champs de vecteurs \mathcal{C}^∞ sur U. On note $\varphi_{X,t}$ le flot associé au temps t, là où il est défini. Pour $x \in U$, on note :

$$g_{X,Y}(t) := \varphi_{X,t} \circ \varphi_{Y,t} \circ \varphi_{X,-t} \circ \varphi_{Y,-t}(x),$$
$$[X,Y](x) := \frac{g''_{X,Y}(0)}{2}.$$

- (a) Faire un développement limité à l'ordre 2 de $t\mapsto \varphi_{X,t}(y)$, pour $y\in U.$
- **(b)** Montrer que $[X,Y](x)=d_xX(Y(x))-d_xY(X(x))$ pour tout $x\in U$.
- **(b)** Montrer que l'application de $\Gamma(TU) \times \Gamma(TU)$ dans $\Gamma(TU)$ définie par $(X,Y) \mapsto [X,Y]$ est bilinéaire et antisymétrique.

2. COURBE DE FERMAT

Soit $d \geq 2$ fixé, $X = \{[x:y:z] \in \mathbb{P}_2(\mathbb{C}) \mid x^d + y^d = z^d\}$ et $\pi: X \to \mathbb{P}_1(\mathbb{C})$ définie par $\pi([x:y:z]) = [x:y]$.

- (a) Soit C un CW-complexe fini et $p: \tilde{C} \to C$ un revêtement fini de degré n. Déterminer $\chi(\tilde{C})$ en fonction $\chi(C)$ et n.
- **(b)** Montrer que X est une sous-variété lisse compacte de dimension 2 de $\mathbb{P}_2(\mathbb{C})$.
- (c) Montrer que pour tout $k \in \mathbb{Z}/d\mathbb{Z}$, l'application $[x:y:z] \mapsto [x:y:ze^{2i\pi k/d}]$ est un C^{∞} -difféomorphisme de X.
- (d) Montrer que π est un C^{∞} -difféomorphisme local en tout point de X-F où $F=\{[x:y:z]\in X:z=0\}$.
- (e) Montrer que la sphère \mathbb{S}_2 privée de d points a le même type d'homotopie qu'un CW-complexe fini de dimension 1 et donner sa caractéristique d'Euler.
- **(f)** Montrer que la surface réelle X est connexe et orientable.
- (g) Montrer que si une surface lisse S compacte connexe privée de d points a le même type d'homotopie qu'un CW-complexe de dimension 1 fini de caractéristique d'Euler N, alors S a le même type d'homotopie qu'un CW-complexe fini de caractéristique d'Euler N+d.
- **(h)** En déduire la caractéristique d'Euler de X.

Exercices complémentaires

3. GROUPE DE HEISENBERG

On note $\mathbb{H}_3(\mathbb{R})$ le groupe des matrices 3×3 réelles, triangulaires supérieures, de diagonale 1:

$$\mathbb{H}_3(\mathbb{R}) = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : (a, b, c) \in \mathbb{R}^3 \right\}.$$

On note I la matrice identité de $\mathbb{H}_3(\mathbb{R})$. Pour tout $x \in \mathbb{H}_3(\mathbb{R})$, on note $G_x : \mathbb{H}_3(\mathbb{R}) \to \mathbb{H}_3(\mathbb{R})$ la multiplication par x à gauche. Finalement, on pose $e_1 = (1,0,0)$, $e_2 = (0,1,0)$ et $e_3 = (0,0,1)$, vu en tant qu'éléments de $T_I\mathbb{H}_3(\mathbb{R})$ (i.e. en tant que vecteurs tangents en l'identité).

- (a) Expliciter la loi de groupe sur $\mathbb{H}_3(\mathbb{R})$, et l'application G_x .
- **(b)** Pour tout $x \in \mathbb{H}_3(\mathbb{R})$, calculer les vecteurs tangents $d(G_x)_I(e_1)$, $d(G_x)_I(e_2)$ et $d(G_x)_I(e_3)$. Pour $i \in \{1,2,3\}$ on notera E_i , le champ de vecteurs $x \mapsto d(G_x)_I(e_i)$.
- (c) Calculer les flots des champs de vecteurs $E_{\mathbf{1}}$, $E_{\mathbf{2}}$ et $E_{\mathbf{3}}$.
- (d) En déduire $[E_1, E_2]$, $[E_1, E_3]$ et $[E_2, E_3]$.

4. FLOTS PÉRIODIQUES SUR LE TORE

Soit X un champ de vecteurs lisse sur \mathbb{R}^2 qui est \mathbb{Z}^2 -périodique, c'est-à-dire tel que X(x+k)=X(k) pour tous les $x\in\mathbb{R}^2$ et $k\in\mathbb{Z}^2$. Soit $\pi:\mathbb{R}^2\to\mathbb{T}^2=\mathbb{R}^2/\mathbb{Z}^2$ la projection canonique.

(a) Montrer que X est l'image réciproque par π d'un champ de vecteurs lisse Y sur \mathbb{T}^2 . Montrer que X et Y sont complets. Exprimer le flot local maximal de Y en fonction du flot local maximal de X.

1

(b) Supposons maintenant que X est un champ de vecteurs constant sur \mathbb{R}^2 . Donner une condition nécessaire et suffisante pour que le flot de X' soit périodique, c'est à dire qu'il existe T tel que $\varphi_{X',t+T}=\varphi_{X',t}$.

Deuxième semaine

Exercices fondamentaux

5. COURBES SIMPLES FERMÉES SÉPARANTES SUR UNE SURFACE

Soit Σ_g une surface compacte orientée connexe sans bord de genre $g\geq 0$. Une courbe simple fermée est un plongement C^∞ de \mathbb{S}^1 dans Σ_g . On dit qu'une courbe simple fermée $c:\mathbb{S}^1\to\Sigma_g$ est essentielle si $c_*:\pi_1(\mathbb{S}^1)\to\pi_1(\Sigma_g)$ est injective. On dit qu'une courbe simple fermée $c:\mathbb{S}^1\to\Sigma_g$ est séparante si $\Sigma_g-c(\mathbb{S}^1)$ n'est pas connexe.

- (a) Montrer qu'il n'existe pas de courbe simple fermée essentielle sur Σ_0 .
- **(b)** Montrer que si g=1 alors toute courbe fermée séparante n'est pas essentielle.
- (c) Soit C_g l'ensembles courbes simples fermées sur Σ_g . Soit $\mathrm{Diff}(\Sigma_g)$ le groupe de difféomorphismes lisses de Σ_g . On définit l'action suivante de $\mathrm{Diff}(\Sigma_g)$ sur C_g :

$$\varphi.c = \varphi \circ c \quad \forall (\varphi, c) \in \text{Diff}(\Sigma_g) \times \mathcal{C}_g$$

Montrer que l'ensemble $\mathrm{Diff}(\Sigma_q)\backslash\mathcal{C}_q$ est fini et calculer son cardinal.

On suppose maintenant que $g \geq 2$ et on fixe c une courbe simple fermée séparante.

- (d) Montrer que $c_*(\pi_1(\mathbb{S}^1)) \subset [\pi_1(\Sigma_a), \pi_1(\Sigma_a)].$
- (e) On suppose de plus que c est essentielle. Construire un revêtement double $\widetilde{\Sigma}_g \to \Sigma_g$ tel que c se relève sur $\widetilde{\Sigma}_g$ en une courbe fermée non séparante.

Exercices complémentaires

6. DÉCOMPOSITION EN PANTALONS

Pour $g \geq 0$ et $b \geq 0$, on note $\Sigma_{a,b}$ la surface compacte orientable connexe de genre g avec b composantes de bord.

- (a) Calculer $\chi(\Sigma_{g,b})$.
- **(b)** Soit $g,g'\geq 0$ et $b,b'\geq 1$. Soit D une composante de bord de $\Sigma_{g,b}$ et D' une composante de bord de $\Sigma_{g',n'}$. Soit $f:D\to D'$ un homéomorphisme et $\Sigma'=\Sigma_{g,b}\cup_f\Sigma_{g',b'}$. Calculer $\chi(\Sigma')$ en fonction de $\chi(\Sigma_{g,b})$ et $\chi(\Sigma_{g',b'})$.
- (c) Soit $g \geq 0$ et $b \geq 2$. Soit D et D' deux composantes de bord distinctes de $\Sigma_{g,b}$. Soit Σ' la surface obtenue à partir de $\Sigma_{g,n}$ en recollant D et D' avec un homéomorphisme. Calculer $\chi(\Sigma')$ en fonction de $\chi(\Sigma_{g,b})$.

Un pantalon est surface homéomorphe à une sphère privée de 3 points. Une décomposition en pantalons de $\Sigma_{g,n}$ est un ensemble fini de courbes simples fermées $\{c_1,\ldots,c_k\}$ deux à deux disjointes tel que $\Sigma_{g,b}-(c_1\cup\cdots\cup c_k)$ est homéomorphe à une union disjointe de pantalons.

- (d) Montrer que si $\Sigma_{g,b}$ admet une décomposition en pantalons alors $\chi(\Sigma_{g,b}) < 0$.
- (e) Soit $\{c_1,\ldots,c_k\}$ une décomposition en pantalons de $\Sigma_{g,b}$. Montrer que $\Sigma_{g,b}-(c_1\cup\cdots\cup c_k)$ a 2g-2+b composantes connexes et que k=3g-3+b.

7. REVÊTEMENT RAMIFIÉ SUR LA SPHÈRE

Soit $G=\{\pm 1\}$ le groupe à deux éléments. On définit une action de G sur $T=\mathbb{S}^1 \times \mathbb{S}^1$ par

$$\alpha.(u,v) = (u^{\alpha}, v^{\alpha})$$

pour tout $\alpha \in G$ et $(u,v) \in \mathbb{S}^1 \times \mathbb{S}^1$. Soit S l'espace topologique quotient $G \setminus T$ et $\pi : T \to S$ la projection canonique.

- (a) Calculer $\pi_1(T-\{x_1,\ldots,x_k\})$, où x_1,\ldots,x_k sont des points deux à deux distincts de T.
- **(b)** Montrer que G laisse fixe exactement quatre points x_1, x_2, x_3, x_4 de T, et que $\pi: T \{x_1, \dots, x_4\} \to S \{\pi(x_1), \dots, \pi(x_4)\}$ est un revêtement galoisien et calculer son groupe des automorphismes.
- (c) Montrer, à l'aide de dessins, que S est homéomorphe à la sphère \mathbb{S}^2 .
- (d) Soit $i\in\{1,2,3,4\}$ et soit $\gamma_i:[0,1]\to S-\{\pi(x_1),\dots,\pi(x_4)\}$ un lacet simple $(\gamma_i \text{ restreint à }]0,1[$ est injective) qui fait le tour de $\pi(x_i)$ (c'est à dire que $S-\gamma(\mathbb{S}^1)=S_1\sqcup S_2$ avec $\pi(x_i)\in S_1$ et $\pi(x_j)\in S_2$ pour tout $j\neq i$). Décrire un relevé de γ_i à T
- (e) Soit Σ_g une surface compacte orientable connexe de genre $g \geq 2$. Construire un difféomorphisme C^{∞} $f: \Sigma_g \to \Sigma_g$ d'ordre $g \in \operatorname{Fix}(f) = \{x \in \Sigma_g \mid f(x) = x\}$ soit de cardinal $g \in \operatorname{Fix}(f) = f(x) \in \operatorname{Fix}(f)$ soit homéomorphe à une sphère privé de $g \in \operatorname{Fix}(f)$ points.