Name of the student:	Roll No.				
Practical Number:2		Date of Practical:			
Relevant CO's:					
ITC802.2	At the end of the course students will be able to use tools like hadoop and NoSQL to solve big data related problems.				
Sign here to indicate that you have read all the relevant material provided Sign:					
before attempting this practical					

Practical grading using Rubrics

Indicator	Very Poor	Poor	Average	Good	Excellent
Timeline	More than a	NA	NA	NA	Early or on
(2)	session late				time (2)
	(0)				
Code de-	N/A	Very poor	Poor code	Design with	Accurate
sign (2)		code design	design with	good coding	design
		with no	very com-	standards	with bet-
		comments	ments and	(1.5)	ter coding
		and indenta-	indentation		satndards (2)
		tion(0.5)	(1)		
Performance	Unable to	Able to	Able to	Able to	Able to
(4)	perform the	partially	perform the	perform the	perform the
	experiment	perform the	experiment	experiment	experiment
	(0)	experiment	for certain	considering	considering
		(1)	use cases (2)	most of the	all use cases
				use cases (3)	(4)
Postlab (2)	No Execu-	N/A	Partially Exe-	N/A	Fully Ex-
	tion(0)		cuted (1)		ecuted
					(2)

Total Marks (10)	Sign of instructor	

Practical

Course title: Big Data Analytics					
Course term: 2019-2020					
Instructor name: Saurabh Kulkarni					
Problem Statement: Counting number of words in given text file using map reduce.					
Theory:Explain the working of word count using map reduce with small example and diagrams					

Course title: Big Data Analytics

FRCRCE

DEPARTMENT OF INFORMATION TECHNOLOGY

Code: code for mapper: import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Mapper.Context; public class WCMapper extends Mapper < Long Writable, Text, Text, → IntWritable > // Create object of type Text to hold strings created per word → of given document **Code for Reducer: Code for Driver Class:**

PostLab:Find inverted index
In this assignment you have to implement a simple map reduce job that builds an inverted index on the set of input documents. An inverted index maps each word to a list of documents that contain the word, and additionally records the position of each occurrence of the word within the document. For the purpose of this assignment, the position will be based on counting words, not characters.

Ex: Assume below are the input Documents.

file1="data is good."

file2="data is not good?"

Output:

data (file1,1)(file2,1) good (file1,3)(file2,4)

is (file1,2)(file2,2)

not (file2,3)

For more details on inverted indices, you can check out the Wikipedia page on inverted indices.

Now in this assignment you need to implement above map-reduce job.

Input: A set of documents

Output:

Map: word1 (filename, position)

word2 (filename, position)

word1 (filename, position)

and so on for each occurrence of each word.

Reduce: word1 (filename, position)(filename, position)

word2 (filename, position)

and so on for each word.

Code for getting file name in Hadoop, which can be used in the Map function:

```
String filename = null;
filename = ((FileSplit) context.getInputSplit()).

    getPath().getName();
```

Code for postlab question