UCB - CS189 Introduction to Machine Learning Fall 2015

Lecture 5: Shrinkage

Isabelle Guyon
ChaLearn

Come to my office hours... Wed 2:30-4:30 Soda 329

Last time

Come to my office hours... Wed 2:30-4:30 Soda 329

Today

For Ockham to Vapnik

(→ SOFT margin)

- Shave off unnecessary parameters.
- Forget the unnecessary memories.
- Minimize complexity.
- Minimize ||w||.

Math prerequisites

- Derivative
- Chain rule
- Lagrange multiplier

Fit / Robustness Tradeoff

Reasons for non-linear separability

Figure 9.1 Non-linear separability. (a) Overlapping classes. The optimum decision boundary may still be linear. (b) Non overlapping classes. In the case shown, the optimum decision boundary is not linear.

Ockham's Razor

- Principle proposed by William of Ockham in the fourteenth century: "Pluralitas non est ponenda sine neccesitate".
- Of two theories providing similarly good predictions, prefer the simplest one.
- Shave off unnecessary parameters of your models.

Fit / Robustness Tradeoff

The Power of Amnesia

- The human brain is made out of billions of cells or Neurons, which are highly interconnected by synapses.
- Exposure to enriched environments with extra sensory and social stimulation enhances the **connectivity** of the synapses, but children and adolescents can lose them up to 20 million per day.

Artificial Neurons

McCulloch and Pitts, 1943

$$f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + \mathbf{b}$$

Hebb's Rule

$$w_i \leftarrow w_i + y^k x_i^k$$

Weight Decay

$$W_i \leftarrow W_i + y^k x_i^k$$

Hebb's rule

$$w_i \leftarrow (1-\gamma) w_i + y^k x^k_i$$
 Weight decay

 $\gamma \in [0, 1]$, decay parameter

Weight Decay for MLP

Replace: $w_i \leftarrow w_i + back_prop(i)$ $w_i \leftarrow (1-\gamma) w_i + back_prop(i)$ by:

Notion of "Risk"

Last time: The risk is the sum of losses

$$R[f] = (1/N) \sum_{k=1:N} L(f(x^k), y^k)$$

- L(f(x), y) = 1(f(x)≠y) = 1(yf(x)<0) zero-one loss
 L(f(x), y) = (f(x) y)² = (yf(x) 1)² square loss
- with $y=\pm 1$

$$R[f] = \int L(f(\mathbf{x}, \mathbf{w}), \mathbf{y}) dP(\mathbf{x}, \mathbf{y})$$

Empirical risk

$$R_{train}[f] = (1/N) \sum_{k=1:N} L(f(x^k), y^k)$$

Notion of "Risk"

Last time: The risk is the sum of losses

$$R[f] = (1/N) \sum_{k=1:N} L(f(x^k), y^k)$$

• L(f(x), y) = 1(f(x) \neq y)

zero-one loss

• L(f(x), y) = ($f(x) - y)^2$

square loss

with $y=\pm 1$

Today: Expected risk

$$R[f] = \int L(f(\mathbf{x}, \mathbf{w}), y) dP(\mathbf{x}, y)$$

Empirical risk

$$R_{train}[f] = (1/N) \sum_{k=1:N} L(f(x^k), y^k)$$

Risk Minimization

 Learning problem: find the best function f(x; w) minimizing a risk functional

$$R[f] = \int L(f(\mathbf{x}; \mathbf{w}), \mathbf{y}) dP(\mathbf{x}, \mathbf{y})$$

Examples are given:

$$(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), ... (\mathbf{x}_N, \mathbf{y}_N)$$

Approximations of R[f]

(generalization error)

• Empirical risk: $R_{train}[f] = (1/N) \sum_{k=1:N} L(f(\mathbf{x}^k, \mathbf{w}), y^k)$

```
-0/1 loss \mathbf{1}(f(\mathbf{x}_k) \neq y_k): R_{train}[f] = error rate
```

- square loss
$$(f(x_k)-y_k)^2$$
: $R_{train}[f]$ = mean square error

Guaranteed risk:

With high probability (1- δ), R[f] \leq R_{gua}[f]

$$R_{gua}[f] = R_{train}[f] + \epsilon(\delta, C/N)$$

Approximations of R[f]

(generalization error)

• Empirical risk: $R_{train}[f] = (1/N) \sum_{k=1:N} L(f(\mathbf{x}^k, \mathbf{w}), y^k)$

```
-0/1 loss \mathbf{1}(f(\mathbf{x}_k) \neq y_k): R_{train}[f] = error rate
```

- square loss
$$(f(x_k)-y_k)^2$$
: $R_{train}[f]$ = mean square error

Guaranteed risk:

With high probability (1- δ), R[f] \leq R_{gua}[f]

$$R_{gua}[f] = R_{train}[f] + \varepsilon(\delta, C/N)$$

Structural Risk Minimization

Vapnik, 1974

Nested subsets of models, increasing complexity/capacity:

$$S_1 \subset S_2 \subset ... S_N$$

SRM Example (linear model)

$$S_1 {\subset S_2 \subset ... \ S_N}$$

• Minimization under constraint:

min
$$R_{train}[f]$$
 s.t. $\|\mathbf{w}\|^2 < \omega_k^2$

• Lagrangian:

$$R_{\text{reg}}[f,\lambda] = R_{\text{train}}[f] + \lambda \left(\|\mathbf{w}\|^2 - \omega_k^2 \right), \ \lambda > 0$$

• Equivalent problems:

$$\min R_{\text{train}}[f] \text{ s.t. } \|\mathbf{w}\|^2 < \omega_k^2, \quad \omega_1 < \omega_2 < ... < \omega_n$$

$$\min R_{\text{reg}}[f] = R_{\text{train}}[f] + \lambda_k \|\mathbf{w}\|^2, \quad 0 < \lambda_1 < ... < \lambda_n$$

Gradient Descent

$$R_{reg}[f] = R_{train}[f] + \lambda ||\mathbf{w}||^2$$

SRM/regularization

$$w_j \leftarrow w_j - \eta \partial R_{reg} / \partial w_j$$

$$w_i \leftarrow w_j - \eta \partial R_{train} / \partial w_j - 2 \eta \lambda w_j$$
 $\gamma = 2 \eta \lambda$

$$w_j \leftarrow (1 - \gamma) w_j - \eta \partial R_{train} / \partial w_j$$

Weight decay

Example: Mean square error: $(1/N) \Sigma_{k=1:N} (f(\mathbf{x}^k) - y^k)^2$

FIGURE 6.7. Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions, $|\beta_1| + |\beta_2| \le s$ and $\beta_1^2 + \beta_2^2 \le s$, while the red ellipses are the contours of the RSS.

Contour maps

http://geology.isu.edu/geostac/Field_Exercise/topomaps/topo_map.htm

http://www.nationalgeographic.com/adventure/images/02_06/Appalachian_TOPO_5.jpg

Shrinkage justified

Why do we want "simple" models?

Everything is about mitigating risk

Guaranteed risk:

With high probability (1- δ), R[f] \leq R_{gua}[f]

$$R_{gua}[f] = R_{train}[f] + \varepsilon(\delta, C/N)$$

Regularized risk:

$$R_{reg}[f] = R_{train}[f] + \lambda \|\mathbf{w}\|^{2}$$
FIT ROBUSTNESS

Multiple Structures

Shrinkage (weight decay, ridge regression, SVM):

$$S_k = \{ \mathbf{w} \mid \|\mathbf{w}\|_2 < \omega_k \}, \omega_1 < \omega_2 < ... < \omega_k \}$$

 $\gamma_1 > \gamma_2 > \gamma_3 > ... > \gamma_k$ (γ is the ridge)

Feature selection:

$$S_k = \{ \mathbf{w} \mid \|\mathbf{w}\|_{\mathbf{0}} < v_k \},$$

 $v_1 < v_2 < ... < v_k$ (*v* is the number of features)

• Kernel parameters $k(s, t) = (s \cdot t + 1)^q$:

$$q_1 < q_2 < ... < q_k$$
 (q is the polynomial degree)
 $k(\mathbf{s}, \mathbf{t}) = \exp(-\|\mathbf{s} - \mathbf{t}\|^2 / \sigma^2)$
 $\sigma_1 > \sigma_2 > \sigma_3 > ... > \sigma_k$ (σ is the kernel width)

Loss Functions

The risk is the average of the loss.

Maximizing the margin

Linking geometrical and functional margin

Equivalent formulations

Optimum margin

Hard margin

Soft margin

Large margin Perceptron with weight decay = soft margin

$$L_{\text{hinge}} = \max(0, 1 - z)$$

$$z = y f(x)$$

$$\min_{w} (L_{\text{hinge}} + \lambda ||w||^2)$$

$$W_{i} \leftarrow \begin{cases} (1-\gamma) \ W_{i} + \eta \ y \ X_{i}, \text{ if } z < 1 \text{ (misclassified or within margin)} \\ (1-\gamma) \ W_{i} \text{ otherwise} \end{cases}$$

$$(\gamma = 2 \eta \lambda)$$

Soft Margin Compromise

Minimize

(1/Margin) + C Training error

Good robustness

Good fit

Soft Margin Compromise

Hyper-parameter Selection

- Learning = adjusting:
 parameters (w vector).
 hyper-parameters (γ, ν, q, σ).
- Cross-validation with K-folds:

For various values of γ , ν , q, σ :

- Adjust w on a fraction (K-1)/K of training examples *e.g.* 9/10th.
- Test on 1/K remaining examples e.g. 1/10th.
- Rotate examples and average test results (CV error).
- Select γ , ν , q, σ to minimize CV error.
- Re-compute w on all training examples using optimal γ , ν , q, σ .

Summary

- High complexity models may "overfit":
 - Fit perfectly training examples
 - Generalize poorly to new cases
- SRM solution: organize the models in nested subsets such that in every structure element

complexity $< \theta$

Regularization: Formalize learning as a constrained optimization problem, minimize

regularized risk = training error + λ complexity

- Both formulations are equivalent via the use of Lagrange multipliers.
- θ and λ are hyperparamenters, which can be optimized by cross-validation.

Come to my office hours... Wed 2:30-4:30 Soda 329

Next time

