

(1) Publication number: 0 468 736 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 91306675.9

(51) Int. CI.5: B05B 5/053

22) Date of filing: 23.07.91

30 Priority: 25.07.90 GB 9016347 03.07.91 GB 9114343

- (43) Dete of publication of epplication : 29.01.92 Bulletin 92/05
- (A) Designeted Contracting Stetes:

 AT BE CH DE DK ES FR GB GR IT LI LU NL SE
- (1) Applicant: IMPERIAL CHEMICAL INDUSTRIES PLC Imperial Chemical House, Milibank London SW1P 3JF (GB)

72 Inventor: Noakes, Timothy Jemes
The Hollies, Llyn-y-Pandy Lane
Pantymwyn, Nr Mold, Clwyd CH7 5JF (GB)
Inventor: Reed, Brian
51 Pleydell Road
Swindon SN1 4DJ (GB)
Inventor: Chambers, John James
7 Somerford Road
Cirencester Gloucestershire GL7 1TP (GB)

- (74) Representative: Collingwood, Anthony Robert et el Imperial Chemical Industries PLC Legal Department: Petents P.O. Box 6 Bessemer Road
 Welwyn Gerden City Hertfordshire AL7 1HD (GB)
- (54) Electrostatic spraying device and method.
- An electrostatic spraying device in which liquid emerging from an outlet (24) of the device nozzle (12) is subjected to en electrical field sufficiently high for the liquid to be drawn from the outlet es one or more ligaments which break up into charged droplets to form the spray. In order to provide shock suppression, the electrical field is produced by means of high voltage circuitry having a bi-polar output with a frequency no greater than 10 Hz.

20

The present invention reletes to electrostatic liquid spraying devices.

On the whole, such devices use a direct current high tension source in order to electrostatically cherge the perticles of the liquid sprey. However, it is known from US Petent 1958406 to use e source of alternating potential in conjunction with an electrostatic spraying device but there is no explicit teaching as to the frequency employed. The general tenor of the disclosure implies that the frequency utilised is meins frequency, ie. 60 Hz In the USA.

it is also known from UK Patent No 2128900 to provide a lever-operated spraying device in which an atomised spray is produced from a nozzle by squeezing the lever. This device includes a needle electrode positioned at or adjacent the nozzie and high voltage is applied to the needle electrode to ionise the spray emerging at the outlet of the nozzle. In one embodiment, the voltege generator is piezo-electric end the action of alternately squeezing and releasing the lever results in high voltage pulses of successive opposite polarity being applied to the electrode. During the squeezing action, spray is produced and the resulting droplets are charged by corone discharge from the electrode. During the release action, no spray will be produced but the high voltage at the needle may reverse in polarity to produce e corona discherge which may serve to eliminete or modify static when the device is used in certain applications.

The present invention resides in the recognition that certain advantages can be derived from the use of alternating potential sources by eppropriate selection of the frequency of the source.

One of the problems of using electrostatic spraying apparatus is to prevent the operator from experiencing electrical shocks which may be perceived as unpleasant or may expose the operator to risk. For example, where a direct current electrostatic spraying device which is whoily hand held is used (and hence where no other path to earth exists other than through the operator), if the operator is or becomes substantially isolated from earth (for instence, es result of standing on e synthetic fibre carpet or wearing shoes having soles of insuleting material), during spraying charge will accumulate on the operator and, if the operetor subsequently touches an earthed conductor, he/she will experience an electrical shock. Such electrical shocks can expose the operetor to risk either through the magnitude of the electrical discharge Itself or as a result of an involuntary reaction on the part of the operator in response to the electrical discherge.

According to the present invention there is provided an electrostatic spraying device edepted for shock suppression comprising a nozzie, means for supplying liquid to the nozzle, and high voltage circuitry arranged so that, in use, liquid sprayed in atomised form from the nozzle is electrostatically charged,

the high voltage circuitry providing en output which alternates between opposite polarities with a frequency no greater than 10 Hz so that the spray is alternately cherged positively and negetively.

Preferably the frequency is no greater than 3 Hz, more preferebly no greater than 1 Hz.

Preferably the frequency is at least 0.05 Hz, more preferably at least 0.2 Hz.

In practice, the effectiveness of the shock suppression will to some extent be dependent on the nature of the liquid to be sprayed and the flow rate of the liquid. A frequency in the range of 0.2 to 3 Hz will usually cater for most circumstances. Frequencies less than 0.2 Hz may however be satisfactory provided that the resistivity of the liquid is not low end provided that the flow rate is not high. For example, in subjective tests carried out, it was found that using a liquid having a resistivity of about 5 x $10^6 \Omega$ cm at a flow rate of 0.8 ml/min gave a very slight shock et a frequency of 0.175 Hz whereas using the same liquid at a flow rate of 0.3 ml/min, the frequency could be reduced to 0.125 Hz before a slight shock of subjectively the same magnitude was experienced. Similarly, using a liquid having a resistivity of 1.4 x $10^7 \Omega$ cm and a flow rate of 0.3 ml/min, the frequency could be reduced to about 0.05 Hz before a shock of subjectively the same magnitude as thet referred to above was experienced.

Thus, by appropriate selection of the frequency, it is possible to eliminate the sensation of electrical shock by the operator or at least reduce the sensation to a level at which the risk of an accident as a result of an involuntary reection by the operator is reduced.

The high voltage circultry mey comprise two high tension generators producing outputs of opposite poiarity and switching means arranged to render the generators effective alternately to effect charging of the liquid, the frequency of switching being no greater then the frequencies specified ebove.

Alternatively, it is contemplated that the high voltage circuitry may comprise a single high tension generator producing a bi-polar output.

According to a feature of the present invention there is provided the high voltage circuitry comprises a voltage multiplying circuit having:

- Input terminal means for connection to a pulsed voltage source:
 - output terminal means for providing an output voltage which is bipolar and is a multiple of the voltage applied to the input terminal means:
- two parallel sets of serially connected capacitors connected between the input and output terminal means; a plurality of peired bi-directional switches interconnecting the sets of capacitors in such a way that each junction between successive capacitors in one of said sets is connected to a pair of said switches which couple the junction to opposite sides of a capacitor of the other set; and
 - means for effecting alternating operation of the

15

20

25

30

35

45

50

4

switches of each peir in phesed reletion with the pulsed voltage source and for cyclically verying such phesed relation to cause the output voltege at the output terminal means to alternate between opposite polarities.

Preferably the device is edepted to eccommodete one or more low power betterles which may be of the rechargeable type, means being provided for producing from the battery supply voltage a pulsed voltage for application to the input terminal means of the voltage multiplying circuit. Meens may also be provided for effecting e preliminery multiplication step so thet the magnitude of the pulsed voltage applied to the voltage multiplying circuit is a multiple of the battery supply voltage.

Conveniently, the bi-directionel switches are self-commutating, ie. when triggered into e "on" state they do not require the triggering signel to be meintained in order to remain on but will remain on until current flow through the switch ceases.

In a preferred embodiment of the invention, the switches are constituted by triacs which are self-commutating devices.

Adventageously, the triecs ere of the known type which can be triggered by optical signals.

It is preferred that a device according to the invention is operated at a frequency somewhat lower than 10 Hz because frequencies at the higher end of the specified range tend to give rise to contamination problems. It would eppear that at the Instant of switchover, e situation exists in which the nozzle is at for example a negative potential and is "looking" at a receding spray cloud of positive polarity. In such circumstances, it would appear that there is a tendency for the receding positive spray to be "pulled back" towerds the nozzle with the risk of contemination. Also as the frequency is Increased the risk Increases of collision between a newly issuing spray cloud of one polanty and a receding spray cloud of the opposite polarity, and hence the formation of lerger, discherged perticles. For these reesons, it is contempleted that optimum operation of the device will be et a frequency no greater than 5 Hz.

The device may be in a form suiteble to be held in the hand and may comprise a housing including e hand grip portion, the housing mounting the nozzle end eccommodating the high voltege circuitry end e power source. The hend grip portion conveniently includes e trigger ection for turning the sprey on end off.

An embodiment of the invention will now be described, by way of example, with reference to the eccompenying drewings, in which:

Figure 1 is e schematic view in cross section of en electrostatic sprey gun embodying the invention:

Figure 2 is a schematic diagram of the high voltage circuit of the gun of Figure 1;

Figure 3 is e cross section of e conteiner for use in the gun of Figure 1;

Figure 4 shows one embodiment of a schematic voltage multiplying circuit for use in generating a bi-polar high voltage output; and

Figure 5 shows enother embodiment of a schemetic voltege multiplying circuit for use in generating a bi-polar high voltage output.

The invention may be embodied in any shape convenient to the purpose to which it is to be put. The embodiment illustrated is in the form of a spray gun.

The sprey gun illustreted in Figure 1 has a body member 2 and a hand grip 4. The body member 2 is in the form of an tube of insulating plastics material. The body member is externally threaded at its end 6 to receive en end cap 8, which may elso be of plastics material selected from the same group. Alternatively the end cap may be of a less insuleting meterial, for example Tufnol Kite brand. The end cap 8 has a central aperture 10 through which, in use, a nozzle 12 projects. Means, in the form of a container 14, is provided for delivering liquid to be sprayed to the nozzle. The nozzle 12, which is permenently attached to the conteiner 14, hes e shoulder 16 which is received by e recess 18 on the inside of the end cap, thereby to locate the nozzle accurately centrally of the end cap. The container may be replaced by removing the end cap.

The container is pressurised by e liquefied propellent which is sepereted from the liquid to be sprayed by a metal foll sack 19 (Figure 3). The supply of fluid to the nozzle 12 is switched on and off by a valve 20 with which a passage 22 in the nozzle communicates. As in the case of an aerosol can, pressing the valve 20 relatively towards the container 14 opens the velve ellowing liquid to be propelled from the container by the pressurised propellant and Into the passage 22 of the nozzle. An internal restriction in the container 14 limits the flow rate to a low value, e.g. 1 cc per minute and so that the liquid errives at the outlet 24 of the nozzle et very low pressure which is not sufficient to cause env or significant etomisetion in the case of non aqueous liquids, or so as to cause only poor etomisation in the case of equeous liquids. The nozzle may be insuleting or semi insulating. It is preferred that the nozzle is insulating being mede from a meterial having a resistivity greater than 1014 ohm cm. Exemples of such meteriels ere ABS, polypropylene, polyethylene, polyvinyl chloride, acrylic, polycarbonate, acetal. Insulating nozzles rely on the liquid to be sufficiently conducting that the voltage drop caused in use by the resistive effect of the liquid is not so great es to reduce the voltege et the nozzle to e velue which spoils the quelity of, or prevents, spraying. In ceses where the liquid is hes too high e resistivity, the nozzle may be made from e more conducting materiel so that it acts as a resistor in parallel with the resistance presented by the liquid. In the extreme case of e highly

25

30

40

45

Insuleting Ilquid, the material of the nozzle may have a bulk resistivity of 10⁷ ohm cm, the resistivity normally being above this value. Ceramic materials mey be made with such values of resistivity. The container 14 is conducting, in this example.

In the exemple illustrated a single filament or ligament of liquid issues from the tip of the nozzle. In other examples, the nozzle may be annuler or in the shepe of a plane blade so thet e plurality of ligements of liquid issue therefrom.

At the end of the body member 2 remote from the nozzle 2, high voltage circuitry 26 is situated in a tubular carriage 28. The carriage 28 is slidable in the body member 2 and is biased away from the end cap 8 by a tension spring 29. The circuitry 26 hes a high voltage output pole 30 connected to a contact schematically indicated at 32 for contact with the conducting container 14. The output pole 30 provides en elterneting output, the frequency of which is no greeter then 10 Hz. The other high voltage output pole is electrically common with a low voltage supply lead 34 and thus connected via a resistor 36 to a contact strip 38 on the exterior of the hand grip 4. The low voltage supply lead is connected to one pole of e bettery 40. The other pole of the battery is connected to the circuitry 26 by another low voltage supply lead 42 via a microswitch 44.

The valve 20 is opened, in use, by relative movement between the container 14 and the body 2, the nozzle 12 remeining fixed in reletion to the body. Movement to operate the valve is applied to the container by movement of the carriage 28. To this end, the grip 4 has a trigger 46 which when squeezed operates on one end of a lever 48 which is pivotally mounted at 50. Movement of the lever 48 is communicated by e link 51 to a further lever 52 which is pivotally mounted at one end 54. A central portion 56 of the lever 52 bears on the end of the carriage 28 remote from the container 14 so that when the trigger 46 is squeezed, resulting movement thereof is translated into movement of the carriage, and thus the container, towerds the nozzle, so opening the valve 20. As this happens a linkage 58 operates the microswitch 44 so that power is supplied to the circuitry 26. The high voltage output from the circuitry 26 is thus applied to the container and so to the liquid therein. The high voltege is thus conducted to the tip of the nozzle, via the liquid In the case of an insuleting nozzle, where the electric field strength is sufficient to produce a charged spray. In the case of a semi insulating nozzle, the nozzle itself contributes to the conduction.

The spray may be formed preponderantly by electrostetic forces, suitable liquids for such operation preferably heving a resistivity in the range 1 x 10^5 to 5 x 10^{10} ohm cm in the case of non-aqueous liquids. In the case of more conducting liquids end equeous liquid systems, e jet may be produced by hydraulic pressure, even in the absence of the high voltage,

which jet breeks up Into coerse droplets. The addition of the high voltage creates an electric field which accelerates the jet (as in the case of more resistive liquids) and improves the spray by decreasing the droplet size end, since like charges repel each other, spreading the sprey out into more of a cloud.

In use the grlp is held in e hend and the trigger is squeezed as expleined above. The hand contects the conducting strip 38 to provide an earth return circuit. It will be understood that the earth return path is optional but, when present, serves to provide capacitence with respect to eerth. The high voltege circuit is shown schematically in Figure 2. The contact strip 38 is connected via a person (the operator of the gun) to ground. In normal use the current through the operator is too small to feel or to pose any kind of danger. The circuitry 26 comprises a pair of high tension generators 80 connected in e circuit with the bettery 40 and microswitch 44. Eech generator 80 is also connected via lead 34 and a resistor 36 to the contact strip 38. The generator 80 are arranged so that they produce at outputs 82, 84 a dc high voltage typically of the order of 15kV of opposite polarity to one another end the outputs 82, 84 ere connected vie geting circultry 86 to the output lead 30, the gating circuitry 86 being arranged to switch between the generator outputs 82, 84 at a rate which will provide an alternating high voltage output of frequency up to 10 Hz and renging typically ranging between +15kV and -15kV. The output leed 30 is connected to the container 14 end so via the liquid therein to the tip of the nozzle 12. Liquid issues from the nozzle in the form of a filament or ligament which breaks up into e spray of charged droplets 66. Successive spray clouds of droplets will be oppositely charged by the alternating generators 80. The droplets ere ettrected to en eerthed object 68. which may be an Intended or unintended target. Earth may be used to complete the circuit through the operator.

If, when the apparatus is being used, the operator is substantially isolated from earth and touches an earthed conductor, the use of en alterneting high voltage prevents the build-up of a charge on the operator of sufficient magnitude to be experienced as a shock or, if any shock is experienced, it will not be one which causes a person to react involuntarily to a significant extent. Also by limiting the frequency of the alterneting potential so that it is no greater than 10 Hz (more preferably no greater than 3 Hz), undesirable contamination resulting from the "pull back" effect previously mentioned can be reduced or minimised.

In the embodiment shown in Figure 2, the high voltage circuitry comprises two high voltage generators producing opposite polarity outputs. Flgure 4 illustrates diagrammatically a bi-polar high voltage circuit which may form the voltage generator illustrated in Figure 1. In this embodiment, the production of a bipolar high voltage output is effected by

30

35

45

50

meens of modified Cockcroft-Welton voltage multiplier circuit. A conventional Cockcroft-Welton multiplier comprises two parallel sets of serially connected capacitors with diodes interconnecting the two sets whereby the peak value V_I of an input voltage to the multiplier is transformed to a unipolar output nV_I where n corresponds to the number of diode/capecitor stages in the multiplier.

As shown in Figure 4, the high voltage generator comprises two parallel sets 100, 102 of serially connected capacitors C1 - C12 connected to an input voltage source 104. The voltage source 104 produces a high frequency pulse trein, typically 20 kHz with e squere weveform end e 50% duty cycle, derived from the battery supply 40 using a sultable pulse generator such as a multivibrator. The voltage level of the pulse train ranges between a high level, V_I, and a low level, such as zero, (assuming positive logic). The level V_I will typically be a multiple of the battery supply voltage produced for exemple by en intermediete voltege multiplying circuit.

Instead of dlode Interconnections as in a conventional Cockroft-Walton multiplier, the sets of capecitors are interconnected by triggerable bi-directional switches T1 - T12. The bi-directional switches T1 - T12 are emenged in pairs coupling each junction between the capacitors of one set 100 to opposite sides of a capacitor in the other set 102. The switches are controlled cyclically so that the switches forming each pair are in anti-phase relation, ie. during part of the cycle, switches T1, T3...Tn (where n is odd) ere closed while switches T2, T4...Tm (where m is even) ere open, end vice verse during the remeinder of the cycle.

Although the invention is not limited to any particular form of bi-directional switch, as shown in Figure 4, the switches T1 - T12 preferably are in the form of triacs which are opto-electronically controllable. The switches mey for exemple comprise MOC 3020 opticelly Isoleted triecs menufectured by Motorole which feature e gallium ersenide infrared emitting diode (LED) and a light activated bi-lateral switch. In the circuit of Figure 4, the LED associated with each triac device is controlled by a logic circuit 106 in such a way that the LED's associated with switches Tn are energised in enti-phese reletion with those essociated with switches Tm end elso in such e wey that LED energisation is in a particular phase relation with the input voltage pulse train produced by source 104.

The logic circuit receives inputs from a control signal source 108 and the input voltage source 104. The control signel produced by the source 108 comprises e control pulse treln heving e pulse repetition rete corresponding to the frequency at which the high voltage generator is required to operate. For exemple, the control pulse train may be derived by means of suitable frequency divider circuitry (not shown) from the voltage input pulse train produced by the source 104.

The logic circuit 106 comprises en exclusive OR gate 110 the output of which is supplied, on the one hand, direct to one set 112 of LED's (for example those associeted with the switches Tn) and, on the other hand, via INVERTER 114 to the other set 116 of LED's. In Figure 4, only one LED of each set is illustrated for simplicity.

When the control signel produced by source 108 is high, the inverted output of the gate 110 (ie. the output of INVERTER 114) is in phase with the high frequency input voltage produced by the source 104 while the non-inverted output of gate 110 is in entiphese reletion with the input voltege. Consequently, the LED set 116 is energised when the input voltege is high and set 112 is energised when the input voltege is low. Thus, while the control signal is high, the output voltage V₀ will be a multiple of the input voltage V₁ and will have a predetermined polarity, ie. positive.

When the control signal produced by source 108 is low, the inverted output end non-inverted outputs derived from the gete 110 ere respectively in entiphese relation and in-phese reletion with the input voltage. Consequently, the LED set 116 is energised when the input voltage is low and set 112 is energised when the input voltage is high. Thus, when the control signel is low, the output voltage $V_{\rm o}$ will be e multiple of the input voltage $V_{\rm i}$ end will heve the opposite polarity, le. negative.

In Figure 4, for simplicity, only a limited number of multiplier stages are illustrated; it will be appreciated that, in practice, there will be a lerger number required in order to produce the high voltages needed for electrodynemic spreying. For instance, if the source 104 produces en output voltage of 800V (derived by multiplication of the battery supply voltage by an intermediate voltage multiplier) then the voltage multiplier of Figure 4 may comprise 18 stages in order to obtain an output V_o of about 14kV.

Referring now to Figure 5, en alternetive bi-poler high voltege generator for use as the generator 26 of Figure 1 comprises an input do voltage source 120 of several hundred volts derived from the bettery supply voltage 40 by means of an intermediate voltage multiplying circuit (not shown) comprising for example a relaxation oscillator, transformer and rectifying circuit. The do voltage provided by the source 120 is converted to e high frequency eltemeting current, eg. 20 kHz, in a circuit 122 including an oscillator and the primary 124 of a transformer 126 thereby repeatedly reversing current flow through the primary. The secondary 128 of the transformer is centre tapped to provide an output et terminels 130, the megnitude of the output being determined by the turns retio of the transformer.

A mechanical switch 132, such as a ges filled vibrating switch, is connected so es to alternetely connect the opposite ends of the transformer secondary to ground at a frequency corresponding to the oscillation produced in the primary. Alternating operation

10

15

25

30

35

45

50

of the switch 132 is controlled by e coll 134 energised by a control signal which is darived from the circuit 122 and has a frequency corresponding to the frequency at which current reversal in the primary takes place. Tha switch 132 is thereby causad to operata synchronously with the current reversal taking place in the primary and servas to convert the ac output of the transformer secondary to dc at the terminals 130. Tha polarity of the output is determined by the relative phasa batween the control signal epplied to the coil 134 and the current supplied to the transformer primary. By changing the phasa relation from in-phasa to anti-phase (or vica versa), the polarity of the output seen at terminais 130 can ba raversad. Such revarsal is controlled by phase control circuit 136 which is operable to shift the phase of the control signal applied to the coil 134 in dependence on a clock signal applied to an input lina 138 to the phase control circuit 136. The clock signal is derived from a pulse ganarator 140 which is coupled to the oscillator of circult 122 and has a puise rapetition rata corresponding to the frequency at which the voltage generator Is required to oparata.

Thus, for exampla, when the clock signal is high, the phase control circuit 136 may be switched into a condition in which the control signal applied to the coil 134 is in phase with the current flow through the primary and, when the clock signal is low, the phase control circuit may be switched into a condition in which the control signal is shifted 180° so as to be in in antiphase relation with the current flow through the primary. In this way, a bipolar high voltage output is obtained at the terminals 130 which reverses polarity et a rate determined by the clock signel.

Claims

- An electrostatic spraying device adapted for shock suppression comprising a nozzle, means for supplying ilquid to the nozzle, and high voltage circuitry arranged so that, in usa, liquid sprayed in atomised form from the nozzla is electrostatically cherged, tha high voltaga circuitry providing an output which alternates between opposita polarities with a frequency no graater than 10 Hz so that the spray is alternately charged positively and nagatively.
- A davica as claimed in Claim 1 in which the frequency is no greater than 5 Hz.
- 3. A davice as claimed in Claim 1 in which the frequency is no greeter than 3 Hz.
- A davice as claimed in Claim 1 in which the fraquency is no greater than 1 Hz.

- A davica as claimed in any one of Claims 1 to 4 In which the frequency is at least 0.05 Hz.
- A davica as claimed in any one of Claims 1 to 4 in which the frequency is at least 0.02 Hz.
- 7. A davice as claimed in any one of Claims 1 to 6 in which tha high voltage circuitry comprises two high tension generators producing outputs of opposite polarity and switching means arranged to render the generators affective alternately to affect charging of the liquid.
- A device as claimed in any one of Claims 1 to 6 In which the high voltage circuitry comprises a singla high tension ganerator producing a bi-polar output.
- A device es claimed in any one of Claims 1 to 8 in e form suitable to be held in the hend.
- 10. A device as claimed in Claim 9 in which the device comprises a housing including a hand grip portion, tha housing mounting the nozzla and accommodating the high voltage circuitry and a power source.
- 11. An electrostatic spraying device adapted for shock supprassion comprising a nozzle, means for supplying liquid to the nozzla, and high voltaga circuitry arranged so that, in use, liquid emerging at the nozzla outlet is subject to an electrical field sufficiantly high to draw tha liquid from tha nozzla in tha form of et laast one ligament which breaks up into chargad droplets to form the spray, tha high voltage circuitry comprising a bi-polar voltage generator producing an output which alternates with a fraquancy no greater than 10 Hz.
- 40 12. A device as claimed in Claim 11 in which the high voltage circuitry comprises a voltage multiplying circuit having:
 - input terminal means for connection to a pulsed voltage source;
 - output terminal means for providing an output voltaga which is bipolar and is a multipla of the voltage applled to the input tarminal means;
 - two parallal sats of serially connacted capacitors connacted between the input and output terminal means:
 - a plurality of paired bi-directional switches interconnecting tha sats of capacitors in such a way that each junction between successive capacitors in one of sald sets is connected to a pelr of said switches which coupla the junction to opposita sidas of a capacitor of tha other set; and means for effacting alternating operation of tha switches of each pair in phasad reletion with tha

pulsed voltage source and for cyclically varying such phased relation to cause the output voltage at the output terminal means to alternate between opposite polarities.

- 13. A device as claimed in any one of Claims 1 to 12 in which the high voltage is applied to the nozzle.
- 14. A device as claimed in Claim 13 in which the high voltage is applied to the nozzle via the liquid supply to the nozzle.

EP 0 468 736 A1

EUROPEAN SEARCH REPORT

Application Number

EP 91 30 6675

I		DERED TO BE RELEVANT			
Category	Citation of decument with in of relevant pas	dication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CL5)	
D,A	US-A-1 958 406 (W. A. D.	ARRAH)	1, 11	B05B5/Q53	
	* page 1, line 55 - line				
	* page 1, 1fme 96 - 1fme	98 *			
	* page 2, 1fne 49 - 1fne	e 53 *			
- 1	* page 3, 1fne 18 - 1ine	20 *			
1					
D,A	GB-A-2 128 900 (CHRISTO	FIDIS)	1,11		
	* abstract *	·	•	1	
	* page 1, 11ne 49 - 11ne	2 66 *			
	* page 2, line 47 - line	2 55; claims 10,12,14 *			
				TECHNICAL PIELDS SEARCHED (Int. Cl.5)	
				BQ5B	
			·		
	The present search report has be				
Place of search THE HAGUE		Date of completion of the search 21 OCTOBER 1991	GUASTAVINO L.		
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the name extegory A: technological background		T: theory or principle E: carilor patent document cited in L: document cited for	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons		
O : non-written disclosure P : intermediate document		& : member of the sam document	A: member of the same patent family, corresponding		