Duas placas de aço foram soldadas para formar uma viga em forma de T que foi reforçada aparafusando-se firmemente a ela duas pranchas de madeira, conforme mostra a figura. O módulo de elasticidade da madeira é de \mathbf{E}_{mad} GPa do aço é de $\mathbf{E}_{aço}$ GPa. Sabendo que a viga tem L m de vão, se encontra simplesmente apoiada em suas extremidades, está solicitada por uma força uniformemente distribuída de \mathbf{q}_1 kN/m na direção do eixo baricental (y_g) e outra força uniformemente distribuída de \mathbf{q}_2 kN/m na direção do eixo baricentral (z_g), como ilustrado na figura, determine:

- a) A resultante das forças nos apoios. (1 Ponto)
- b) O momento máximo resultante em (kN.m) e a posição em (m) ao logo do vão em que ele acontece; (1 Ponto)
- c) Qual a posição \bar{Z}_g do baricentro da seção composta em (mm) tomando como referência o ponto inferior esquerdo da seção; (1 Ponto)
- d) Qual a posição \bar{Y}_g do baricentro da seção composta em (mm) tomando como referência o ponto inferior esquerdo da seção; (1 Ponto)
- e) O momento de inércia I_{Zq} em torno do eixo baricentral e principal de inércia (z_g) da seção em (mm⁴); (1 Ponto)
- f) O momento de inércia I_{Yg} em torno do eixo baricentral e principal de inércia (yg) da seção em (mm 4); (1 Ponto)
- g) A inclinação da linha neutra em (graus); (1 Ponto)
- h) As tensões máximas de tração e compressão no aço em (MPa); (1 Ponto)
- i) As tensões máximas de tração e compressão na madeira em (MPa); (1 Ponto)
- j) Considerando apenas a flexão normal em torno do eixo (z_g), calcule o giro relativo entre as seções dos apoios; (**1 Ponto**)

