Partie 1 – Conduction

On souhaite refroidir un transistor de puissance en le fixant sur un support relié à des ailettes cylindriques soumises à de la convection. On suppose négligeables les transferts du transistor vers son couvercle.

Un disque isolant électrique I, de diamètre D = 2,54 cm, identique à celui du transistor, (cf. schéma ci après) sépare celui-ci du support S. Cet isolant est du mica de conductivité thermique $\lambda_i = 0.43$ W/m K, d'épaisseur $e_i = 30$ µm.

Le transistor est supposé isotherme à TJ et il est le siège d'une dissipation QJ = 37,5 W.

L'ambiante est à $T_a = 25$ °C.

Le support est un cylindre de diamètre D_s =5,08 cm, de hauteur H_S=3mm et de conductivité $\lambda_S = 165 \text{ W/mK}$. Ce support possède N = 60 ailettes cylindriques de diamètre d = 0,317 cm et de longueur L_a = 1,905 cm. Leur conductivité thermique est λ_a = 202 W /mK. Le coefficient d'échange convectif est $h = 76 \text{ W/m}^2 \text{ K}$. Le contact entre le support et les ailettes est, dans tous les cas, supposé parfait.

60 ailettes cylindriques

Le schéma suivant représente le réseau thermique analogue du transistor, à partir duquel on peut mener l'analyse thermique du transistor.

Le fabricant donne:

La résistance thermique R_J entre transistor J et isolant I, supposant parfait le contact J/I La résistance thermique R_C de contact entre isolant et support S La résistance R_E entre le disque isolant et le support

$$R_{J} = 0.42 \text{ K/W}$$
 $R_{C} = 0.40 \text{ K/W}$ $R_{E} = 0.02 \text{ K/W}$

Première partie

Le problème va tout d'abord consister à calculer R_I , et R_A , puis à en déduire la température T_J du transistor, ainsi que la puissance maximale admissible QJ_{max} .

- 1) Pour calculer R_I , on assimile l'isolant à un mur fini (voir plus haut les section, conductivité et épaisseur). En déduire la valeur de R_I .
- 2) Calcul de R_A, résistance traduisant l'échange convectif ailettes / fluide, passe par le calcul de la résistance associée à 1 ailette unique.
- 2.1 Quel est le rendement d'une ailette
- 2. 2 En déduire la conductance d'une ailette
- 2. 3 En déduire la résistance des 60 ailettes en parallèle, R_A.
- 3) Déduire des résultats précédents, et en vous aidant du schéma résistif présenté plus haut, la température TJ du transistor.
- 4) Quel est alors le taux d'occupation, τ , du support par les ailettes, exprimé en % ?
- 5) Quelle puissance QJ_{max} pourrait dissiper le transistor si l'on admet que sa température maximale de fonctionnement vaut TJmax = 125 °C ? (sans modifier les valeurs des 5 résistances).

Deuxième partie

Prise en compte d'une résistance de contact additionnelle entre le transistor et l'isolant

En fait le contact entre le transistor et l'isolant est imparfait et il est caractérisé par la valeur $g_c = 10^4 \text{ W/m}^2 \text{ K}$ de la conductance unitaire de contact.

- 1) Calculer la résistance de contact RC_{JI} entre J et I.
- 2) En déduire la nouvelle valeur de TJ
- 3) Que devient la valeur de QJ_{max} pour la même valeur limite, TJmax = 125 °C?

Troisième partie

Etudes de sensibilité

- 1) Que deviennent TJ et QJ_{max} si la longueur L_a des ailettes est doublée, devenant L_a = 3,81 cm? Cette opération vous semble-elle réaliste?
- 2) On revient au cas de référence, avec L_a = 1,905 cm et on divise par 2 le nombre des ailettes N valant alors 30. Que devient la valeur de τ ? Justifier sommairement que l'on puisse alors adopter h = 87 W / m² K. Reprendre le calcul de TJ et QJ_{max} avec les nouvelles valeurs N= 30 et h = 87 W / m² K.
- 3) On garde N=30 et on double le diamètre des ailettes qui devient d=0,634 mm. Calculer la nouvelle valeur de τ . Et justifier que l'on puisse admettre $h=64,6~W/m^2$ K. Reprendre le calcul de TJ et QJ_{max} avec les nouvelles valeurs N=30, d=0,634 mm et $h=64,6~W/m^2$ K.
- 4) Conclure cette étude de sensibilité.

Partie 2 – Rayonnement

On étudie ici une lampe à ruban de tungstène. Celle-ci est constituée, schématiquement, d'une **ampoule en verre**, sphérique, de surface $S_a = 100 \text{ cm}^2$, au centre de laquelle se trouve un **ruban** vertical **de tungstène**, de longueur L = 25 mm, de largeur l = 2 mm, et d'épaisseur négligeable, émettant **sur les deux faces**.

- 1) La lampe est alimentée sous une tension U=10~V et consomme un courant I=16~A. En supposant que le filament émet dans le vide, quelle est sa température d'équilibre T_F ? Donnée : émissivité hémisphérique totale $\epsilon_F=0$,35 pour le **filament**.
- 2) Le coefficient monochromatique d'absorption de l'**ampoule** varie selon la loi indiquée cidessous.

La lampe est placée dans une enceinte, S', de grande taille devant celle de l'ampoule et qui sera assimilée à un corps noir dont la température est $T_0=290~{\rm K}$.

- 2.1 Quel est le facteur total d'absorption de l'ampoule α_A^F à l'égard du rayonnement émis par le filament ?
 - 2.2 Quel est le facteur total d'absorption de l'ampoule α_A^0 vis-à-vis de l'enceinte ?
- 2.3 En admettant que le verre de l'ampoule n'est que légèrement plus chaud que l'ambiante ($T_A \# T_0$), montrer, par un raisonnement simple, que son facteur d'émission ϵ_A est très proche de α_A^0 .
- 3) Equation de bilan de l'ampoule
- 3.1 Quel est le flux émis par le filament et absorbé par l'ampoule, en fonction de U, I, et α_A^F ?
- 3.2 Montrer, à partir de relations simples impliquant les facteurs de forme concernés, que le flux émis par S' (enceinte) et absorbé par S_a (ampoule) a pour expression : $\alpha_A^0 S_a \sigma T_0^4$
- 3.3 Quel est le flux émis par l'ampoule vers S'?

- 3.4 En déduire l'équation de bilan énergétique de l'ampoule.
- 3.5 Calculer la température d'équilibre, T_A de l'ampoule. Cette valeur remet-elle vraiment en cause l'hypothèse utilisée au § 2.3 ?
- 4) Réécrire l'équation de bilan de l'ampoule, en prenant en compte la convection de celle-ci avec l'air ambiant.
- 5) Quelle est la nouvelle température d'équilibre T_A , pour une valeur $h=10~W\ /\ m^2~K$ du coefficient d'échange ? (Note : on pourra utiliser une méthode de type itératif pour calculer T_A).
- 6) Le coefficient d'émission monochromatique du tungstène varie selon :

En supposant, comme au § 1, que le filament émet dans le vide, reprendre alors le calcul de sa température d'équilibre. Est —elle beaucoup modifiée par rapport à la question 1 ?

λ T μm × K	0	20	40	60	80	λT μm × K	0	ou 200(*)	ou 400(*)	ou 500(*)	ou 800(+)
piii - K						Jan - K		ou 2000(+)	ou)4000 ⁽⁺⁾	ou 6000 ⁽⁺⁾	ou 8000 (+
500	0,0000	0,0000	0,0000	0,0000	0,0000	6200	0,7541	0,7556	0,7572	0,7587	0,7603
600	0,0000	0,0000	0,0000	0,0000	0,0000	6300	0,7618	0,7633	0,7648	0,7662	0,7677
700	0,0000	0,0000	0,0000	0,0000	0,0000	6400	0,7692	0,7706	0,7721	0,7735	0,7749
800	0,0000	0,0000	0,0000	0,0000	0,0000	6500	0,7763	0,7777	0,7791	0,7804	0,7818
900	0,0001	0,0001	0,0001	0,0001	0,0002	6600	0,7831	0,7845	0,7858	0,7871	0,7884
1000	0,0003	0,0004	0,00045	0,0005	0,0007	6700	0,7897	0,7910	0,7923	0,7936	0,7948
1100	0,0009	0,0010	0,0013	0,0015	0,0018	6800	0,7961	0,7973	0,7985	0,7998	0,8010
1200	0,0021	0,0024	0,0028	0,0033	0,0037	6900	0,8022	0,8034	0,8045	0,8057	0,8089
1300	0,0043	0,0049	0,0055	0,0062	0,0069	7000	0,8080	0,8092	0,8103	0,8115	0,8126
1400	0,0078	0,0086	0,0096	0,0106	0,0117	7100	0,8137	0,8148	0,8159	0,8170	0,8181
1500	0,0128	0,0140	0,0153	0,0167	0,0182	7200	0,8191	0,8202	0,8213	0,8223	0,8234
1600	0,0197	0,0213	0,0230	0,0247	0,0266	7300	0,8244	0,8254	0,8264	0,8275	0,8285
1700	0,0285	0,0305	0,0326	0,0347	0,0370	7400	0,8295	0,8304	0,8314	0,8324	0,8334
1800	0,0393	0,0417	0,0442	0,0467	0,0494	7500	0,8343	0,8353	0,8362	0,8372	0,8381
1900	0,0521	0,0549	0,0577	0,0606	0,0636	7600	0,8390	0,8399	0,8409	0,8418	0,8427
2000	0,0667	0,0698	0,0730	0,0763	0,0796	7700	0,8436	0,8444	0,8453	0,8462	0,8471
2100	0,0830	0,0865	0,0900	0,0936	0,0972	7800	0,8479	0,8488	0,8496	0,8505	0,8513
2200	0,1009	0,1045	0,1084	0,1122	0,1161	7900	0,8521	0,8530	0,8538	0,8546	0,8554
2300	0,1200	0,1240	0,1280	0,1320	0,1361	8000	0,8562	0,8570	0,8578	0,8586	0,8594
2400	0,1402	0,1444	0,1486	0,1528	0,1571	8100	0,8601	0,8609	0,8617	0,8624	0,8632
2500	0,1613	0,1656	0,1700	0,1743	0,1787	8200	0,8639	0,8647	0,8654	0,8661	0,8669
2600	0,1831	0,1875	0,1920	0,1964	0,2009	8300	0,8676	0,8683	0,8690	0,8697	0,8704
2700	0,2053	0,2098	0,2143	0,2188	0,2234	8400	0,8711	0,8718	0,8725	0,8732	0,8738
2800	0,2279	0,2324	0,2369	0,2415	0,2460	8500	0,8745	0,8752	0,8759	0,8765	0,8772
2900	0,2506	0,2551	0,2596	0,2642	0,2687	8600	0,8778	0,8785	0,8791	0,8797	0,8804
3000	0,2732	0,2778	0,2823	0,2868	0,2913	8700	0,8810	0,8816	0,8822	0,8829	0,8835
3100	0,2958	0,3003	0,3047	0,3092	0,3137	8800	0,8841	0,8847	0,8853	0,8859	0,8865
3200	0,3181	0,3225	0,3269	0,3313	0,3357	8900	0,8871	0,8877	0,8882	0,8888	0,8894
3300	0,3401	0,3445	0,3488	0,3531	0,3574	9000	0,8899	0,8905	0,8911	0,8916	0,8922
3400	0,3617	0,3660	0,3703	0,3745	0,3787	9100	0,8927	0,8933	0,8938	0,8943	0,8949
3500	0,3829	0,3871	0,3912	0,3954	0,3995	9200	0,8954	0,8959	0,8965	0,8970	0,8975
3600	0,4036	0,4077	0,4117	0,4158	0,4198	9300	0,8980	0,8985	0,8990	0,8995	0,9000
3700	0,4238	0,4277	0,4317	0,4356	0,4395	9400	0,9005	0,9010	0,9015	0,9020	0,9025
3800	0,4434	0,4472	0,4511	0,4549	0,4585	9500	0,9030	0,9035	0,9039	0,9044	0,9049
3900	0,4624	0,4661	0,4699	0,4736	0,4772	9600	0,9054	0,9058	0,9063	0,9067	0,9072
4000	0,4809	0,4845	0,4881	0,4917	0,4952	9700	0,9076	0,9081	0,9085	0,9090	0,9094
4100	0,4987	0,5022	0,5057	0,5092	0,5126	9800	0,9099	0,9103	0,9107	0,9112	0,9116
4200	0,5160	0,5194	0,5227	0,5261	0,5294	9900	0,9120	0,9124	0,9129	0,9133	0,9137
4300	0,5327	0,5359	0,5392	0,5424	0,5456	10000	0,9141	0,9181	0,9218	0,9253	0,9287
4400	0,5488	0,5519	0,5551	0,5582	0,5612	11000	0,9318	0,9347	0,9375	0,9401	0,9426
4500	0,5643	0,5673	0,5703	0,5733	0,5763	12000	0,9450	0,9472	0,9493	0,9513	0,9532
4600	0,5793	0,5822	0,5851	0,5880	0,5908	13000	0,9550	0,9567	0,9584	0,9599	0,9614
4700	0,5937	0,5965	0,5993	0,6020	0,6048	14000	0,9628	0,9641	0,9654	0,9666	0,9678
4800	0,6075	0,6102	0,6129	0,6156	0,6182	15000	0,9689	0,9699	0,9709	0,9719	0,9728
4900	0,6209	0,6235	0,6261	0,6286	0,6312	16000	0,9737	0,9745	0,9753	0,9761	0,9769
5000	0,6337	0,6362	0,6387	0,6412	0,6436	17000	0,9776	0,9783	0,9789	0,9796	0,9802
5100	0,6461	0,6485	0,6509	0,6532	0,6556	18000	0,9807	0,9813	0,9818	0,9824	0,9829
5200	0,6579	0,6603	0,6625	0,6648	0,6671	19000	0,9833	0,9838	0,9842	0,9847	0,9851
5300	0,6693	0,6716	0,6738	0,6760	0,6782	20000	0,9855	0,9888	0,9912	0,9929	0,9942
5400	0,6803	0,6825	0,6845	0,6867	0,6888	30000	0,9952	0,9960	0,9966	0,9971	0,9975
5500	0,6909	0,6929	0,6950	0,6970	0,6990	40000	0,9978	0,9981	0,9983	0,9985	0,9987
5600	0,7010	0,7030	0,7049	0,7069	0,7088	50000	0,9988	0,9989	0,9990	0,9991	0,9992
5700	0,7107	0,7126	0,7145	0,7164	0,7183	60000	0,9993	0,9993	0,9994	0,9994	0,9995
5800	0,7201	0,7219	0,7238	0,7256	0,7273	70000	0,9995	0,9995		0,9996	0,9996
5900	0,7291	0,7309	0,7326	0,7343	0,7361	80000	0,9996	0,9997	0,9996		0,9997
6000	0,7378	0,7395	0,7411	0,7428	0,7444	90000	0,9997	0,9997	0,9997	0,9997	0,9998
6100	0,7461	0,7477	0,7493	0,7509	0,7525	100000			0,9997	0,9998	
					,,,,,,	100000	0,9998	0,9998	0,9998	0,9998	0,9998

Table des fractions spectrales