_	((ሰበ	
1)	Fault	 recall	Concect
T 134	1 4411	 10000	Concept
• • //			1

205 program

Question: How does the page fault handler decide which main menning to replace when there is a page fault and no empty spots?

(Aside: Disk access speed

- Processor 15 main memory ⇒ 2 orders of magnitude difference Ins ~100ns
- · Hard disk speed? => msecs.

 => order of 4
- · So, the OS page fault handler code must be written based on a realistic model

Page Replacement Policies

Principle of Locality of Reference: If momory address A is refrenced

Commonly

Temporal Locality of Reference at time to then (it) and its neighbouring memory locations are likely to be referenced in the near future.

Spatial Locality

· Locality of Reference => heuristic argument

0	Same Address (temporal)	Neighbours (spatral)
Instructions	- Loops - functions	- Loups - sequential code
Data	- loop voriables - loop voriables	- Array (stopping through)

Data	-local variables -loop variables (index)	- Array (stopping through)

· Based on this principle, what would be or good page replacement policy?

. Let's a page fault occurs for page PX

L> P1, P2, Pn

* Pick from thom the page that was referenced least recently.*

DLRU - Least Recontly Used - Policy. «

- (9) Keep track of when each page was last used.

 Limestamp

 Liku page smallest timestamp.
- D. Or, keep track of the recently used pages. > stack

 L> LRU: at the bottom of the stack

 L> LRU must update every memory access

 * LRU might be too expensive in practise *