Cognitive Algorithms Lecture 2

Neurons - Computational Units of Cognition

Klaus-Robert Müller, Wojciech Samek Stephanie Brandl

> Berlin Institute of Technology Dept. Machine Learning

Summary Lecture 1

- Cognitive processes:
 Perception, recognition of and inference on semantic concepts
- Cybernetics

Overview

- simple models of cognition inspired by biological organisms modeled motion detection, navigation, ...
- → but what about higher cognitive functions?
- Artificial intelligence

took over ideas from Cybernetics focused on (biologically inspired) models of higher cognition Old AI: rule based systems (e.g. *Eliza*)

New AI (machine learning): learns rules from data

Overview

Cognitive functions have to be investigated on 3 levels [Marr, 1982]

- Computational Level
 - What does a cognitive function do?
- Algorithmic Level
 - What is the functional organization within a cognitive module?
- Implementational Level
 - What is the physical/physiological realization of this algorithm?

Biological Neurons

Cortical Neuron

Neurons are electrically charged cells (-50 to -70mV)

They process information by changes in membrane potential

Human brain has 10^{11} neurons and 10^{14} synapses

The prototypical neuron

Parts of a neuron	
Part	Function
Dendrites	Receive incoming 'messages' from other neurons.
Soma	Combines all incoming 'messages'
Axon hillock	If the membrane potential at the axon hillock reaches a threshold value, the axon 'fires' an action potential.
Axon	Carries the action potential over short $(<1\text{mm})$ or long $(>1\text{m})$ distances.

The structure of the human brain

Rough cortilcal division

Frontal lobe: executive functions, motor areas

Parietal lobe: secondary visual perception, sensory areas

Temporal lobe: memory (hippocampus), emotion (amygdala)

Occipital lobe: primary visual perception

Biological Neurons in the early visual system

Nature Reviews | Neuroscience

Information processing pathway in the early visual system

Functional properties of neurons are defined by stimulus-response characteristics

Much of what we know about our cognitive functions is based on neuroscientific studies

Visual System: Retina

Visual System: Retina

Visual System: Primary Visual Cortex

Neuron response in primary visual cortex \rightarrow Oriented edge detector

Oriented bar of light runs over visual field while neural activity is recorded from cells in primary visual cortex

→ Neurons respond preferentially to oriented bars [Hubel and Wiesel, 1959]

In 1981 Hubel and Wiesel received the Nobel Prize.

Visual System: Primary Visual Cortex

Center-surround receptive fields of 3 LGN neurons

Patch of retina

LGN neurons

Layer IVCα neuron

Neuron response in primary visual cortex \rightarrow Oriented edge detector

What Primary Visual Cortex Sees Spatial Frequency Decomposition of Images

Original

Visual System

Visual System = Deep Learning?

- Neurons receive (non-linearly) filtered sensory input
- How can abstract concepts be learned from this information?
 → Subject to neuroscientific research

 Sparse vs. Distributed Coding [Quiroga et al., 2005]?

Psychologists postulated that we learn **prototypes** [Jäkel, 2007; Posner and Keele, 1968]

Toy data example:

Neuron receives two dimensional input $x \in \mathbb{R}^2$

Two *classes* of data, Δ and \circ

Prototypes \mathbf{w}_{Δ} and \mathbf{w}_{o} can be the class means

$$\mathbf{w}_{\Delta} = \frac{1}{N_{\Delta}} \sum_{n=1}^{N_{\Delta}} \mathbf{x}_{\Delta,n}$$

$$\mathbf{w}_o = \frac{1}{N_o} \sum_{n=0}^{N_o} \mathbf{x}_{o,n}$$

Distance from \mathbf{w}_{Λ} to new data \mathbf{x}

$$\|\mathbf{w}_{\Delta} - \mathbf{x}\| = \sqrt{\sum_{j=1}^{2} (w_{\Delta j} - x_j)^2}$$

For new data x check: **Is** x **more similar to** w_o ?

$$\|\mathbf{w}_{\Delta} - \mathbf{x}\| > \|\mathbf{w}_o - \mathbf{x}\|$$

yes? ightarrow x belongs to o

no? \rightarrow **x** belongs to \triangle

How does the classification boundary look like?

Linear Classification

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} - \beta = \begin{cases} > 0 & \text{if } \mathbf{x} \text{ belongs to } o \\ < 0 & \text{if } \mathbf{x} \text{ belongs to } \Delta \end{cases}$$

From Prototypes to Linear Classification - The Nearest Centroid Classifier

$$\begin{array}{rcl} \text{distance}(\mathbf{x},\mathbf{w}_{\Delta}) &>& \text{distance}(\mathbf{x},\mathbf{w}_{o}) \\ & \|\mathbf{x}-\mathbf{w}_{\Delta}\| &>& \|\mathbf{x}-\mathbf{w}_{o}\| \\ & \Leftrightarrow \|\mathbf{x}-\mathbf{w}_{\Delta}\|^{2} &>& \|\mathbf{x}-\mathbf{w}_{o}\|^{2} \\ & \Leftrightarrow (\mathbf{x}-\mathbf{w}_{\Delta})^{\top}(\mathbf{x}-\mathbf{w}_{\Delta}) &>& (\mathbf{x}-\mathbf{w}_{o})^{\top}(\mathbf{x}-\mathbf{w}_{o}) \\ \Leftrightarrow \mathbf{x}^{\top}\mathbf{x}-\mathbf{x}^{\top}\mathbf{w}_{\Delta}-\mathbf{w}_{\Delta}^{\top}\mathbf{x}+\mathbf{w}_{\Delta}^{T}\mathbf{w}_{\Delta} &>& \mathbf{x}^{\top}\mathbf{x}-\mathbf{x}^{\top}\mathbf{w}_{o}-\mathbf{w}_{o}^{\top}\mathbf{x}+\mathbf{w}_{o}^{T}\mathbf{w}_{o} \\ & \Leftrightarrow -2\mathbf{w}_{\Delta}^{\top}\mathbf{x}+\mathbf{w}_{\Delta}^{T}\mathbf{w}_{\Delta} &>& -2\mathbf{w}_{o}^{\top}\mathbf{x}+\mathbf{w}_{o}^{\top}\mathbf{w}_{o} \\ & \Leftrightarrow 0 &<& \underbrace{\left(\mathbf{w}_{o}-\mathbf{w}_{\Delta}\right)^{\top}}_{\mathbf{w}}\mathbf{x}-\underbrace{\frac{1}{2}\left(\mathbf{w}_{o}^{\top}\mathbf{w}_{o}-\mathbf{w}_{\Delta}^{\top}\mathbf{w}_{\Delta}\right)}_{\beta} \end{array}$$

Artificial Neural Networks

Input nodes x_i receive information

Inputs are multiplied with a weighting factor w_i and summed up

Integrated input is mapped through some (non-linear) function $f(\cdot)$

$$f(\mathbf{x}) = egin{cases} +1 & ext{if } \mathbf{x} ext{ is preferred stimulus} \\ -1 & ext{if } \mathbf{x} ext{ is any other stimulus} \end{cases}$$

Rosenblatt's Perceptron

Frank Rosenblatt (1928-1969)

Rosenblatt proposed the **perceptron**, an artificial neural network for pattern recognition [Rosenblatt, 1958]

Perceptrons gave rise to the field of artificial neural networks

The Perceptron Learning Algorithm

Goal Binary classification of multivariate data $\mathbf{x} \in \mathbb{R}^D$

Input Learning rate η and N tupels (\mathbf{x}_n, y_n) where $\mathbf{x}_n \in \mathbb{R}^D$ is the D-dimensional data $\mathbf{y}_n \in \{-1, +1\}$ is the corresponding label

Output Weight vector $\mathbf{w} \in \mathbb{R}^D$ such that

$$\mathbf{w}^{\top}\mathbf{x}_n = \begin{cases} \geq 0 & \text{if } y_n = +1 \\ < 0 & \text{if } y_n = -1 \end{cases}$$

Linear Classification and the Perceptron

$$\mathbf{w}^{\top}\mathbf{x} - \beta = \begin{cases} > 0 & \text{if } \mathbf{x} \text{ belongs to } o \\ < 0 & \text{if } \mathbf{x} \text{ belongs to } \Delta \end{cases}$$

The offset β can be included in \mathbf{w}

$$\tilde{\mathbf{x}} \leftarrow \begin{bmatrix} \mathbf{1} \\ \mathbf{x} \end{bmatrix} \qquad \tilde{\mathbf{w}} \leftarrow \begin{bmatrix} -\beta \\ \mathbf{w} \end{bmatrix}$$

such that

$$\tilde{\mathbf{w}}^{\top}\tilde{\mathbf{x}} = \mathbf{w}^{\top}\mathbf{x} - \beta.$$

Linear Classification and the Perceptron

What is a good w?

 \rightarrow We need an **error function** that tells us how good **w** is.

Then we chose \mathbf{w} such that the error function is minimized.

The Perceptron Error Function

Perceptron error $\mathcal{E}_{\mathcal{P}}$ is a function of the weights \mathbf{w}

$$\underset{\mathbf{w}}{\operatorname{argmin}} \qquad \left(\mathcal{E}_{\mathcal{P}}(\mathbf{w}) = -\sum_{m \in \mathcal{M}} \mathbf{w}^{\top} \mathbf{x}_{m} y_{m} \right) \tag{1}$$

where \mathcal{M} denotes the index set of all *misclassified* data \mathbf{x}_m Data $\mathbf{x} \in \mathbb{R}^2$

The Perceptron Learning Algorithm

Perceptron error $\mathcal{E}_{\mathcal{P}}(\mathbf{w}) = -\sum_{m \in \mathcal{M}} \mathbf{w}^{\top} \mathbf{x}_m y_m$ can be minimized *iteratively* using **stochastic gradient descent** [Bottou, 2010; Robbins and Monro, 1951]

- 1. Initialize \mathbf{w}^{old} (randomly, 1/n, ...)
- 2. While there are misclassified data points

Pick a random misclassified data point \mathbf{x}_m Descent in direction of the gradient at single data point \mathbf{x}_m

$$\mathcal{E}_{m}(\mathbf{w}) = -\mathbf{w}^{\top} \mathbf{x}_{m} y_{m}$$

$$\nabla \mathcal{E}_{m}(\mathbf{w}) = -\mathbf{x}_{m} y_{m}$$

$$\mathbf{w}^{\text{new}} \leftarrow \mathbf{w}^{\text{old}} - \eta \nabla \mathcal{E}_{m}(\mathbf{w}^{\text{old}}) = \mathbf{w}^{\text{old}} + \eta \mathbf{x}_{m} y_{m}$$

The Perceptron Learning Algorithm in Action 2

Step 2, 1 Misclassified

The Perceptron Learning Algorithm in Action 2

$$\mathbf{w}^{\mathsf{new}} \leftarrow \mathbf{w}^{\mathsf{old}} + \eta \mathbf{x}_m \mathbf{y}_m$$

After a single update the error of that data point is reduced:

$$-\mathbf{w}^{(\text{new})\top}\mathbf{x}_{m}y_{m} = -\mathbf{w}^{(\text{old})\top}\mathbf{x}_{m}y_{m} - \eta(\mathbf{x}_{m}y_{m})^{\top}\mathbf{x}_{m}y_{m}$$
$$< -\mathbf{w}^{(\text{old})\top}\mathbf{x}_{m}y_{m}$$
(2)

because
$$(\mathbf{x}_m y_m)^{\top} \mathbf{x}_m y_m > 0$$

[Novikoff, 1962; Rosenblatt, 1962]

If there is a solution, the perceptron algorithm will find it in a finite number of steps

The learning rate η

[Novikoff, 1962; Rosenblatt, 1962]:

If there is a solution, the perceptron algorithm will find it in a finite number of steps

Convergence on non-linearably-separable sets:

$$\mathbf{w}^{\mathsf{new}} \leftarrow \mathbf{w}^{\mathsf{old}} + \eta \mathbf{x}_m \mathbf{v}_m$$

- Proven for variable learning rate $\eta(t)$, with $\eta(t) \stackrel{t \to \infty}{\to} 0$
- Best convergence speed is achieved for $\eta(t) \sim \frac{1}{t}$

reviewed in [Bottou, 2010]

Application example: Automatic character recognition

Application example: Handwritten Digit Recognition

Handwritten digits from USPS data set

Each digit represented as 16×16 pixel image

 $\rightarrow \mathbf{x} \in \mathbb{R}^{256}$ input nodes Each image is associated with a label

 $y \in \{0, 1, \dots, 9\}$

Goal Artificial neural network that recognizes the digit 8

 \Rightarrow We need a function $f(\cdot)$ such that

$$f(\mathbf{x}) = \begin{cases} -1 & \text{if } y \in \{0, 1, \dots, 7, 9\} \\ +1 & \text{if } y = 8 \end{cases}$$

Application example: Handwritten Digit Recognition

Summary

Biological Neural Networks

Cascade of (non-linear) filters of sensory features Abstract ideas are based on integration of these features How integration is done is subject of neuroscientific research [Gross, 2002; Quiroga et al., 2005]

Psychologists postulated we learn **Prototypes**

Prototypes can be the class means Prototype theory is closely related to linear classification

Artificial Neural Networks

Model biological neural networks
Can learn abstract concepts from data

References

- C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). 2007.
- L. Bottou. Large-scale machine learning with stochastic gradient descent. In Y. Lechevallier and G. Saporta, editors, Proceedings of the 19th International Conference on Computational Statistics (COMPSTAT'2010), pages 177–187, Paris, France, 2010. Springer.
- C. G. Gross. Genealogy of the "grandmother cell". Neuroscientist, 8(5):512-8, 2002.
- D. Hubel and T. Wiesel. Receptive fields of single neurones in the cat's striate cortex. The Journal of Physiology, 148:574–591, 1959. doi: 10.1113/jphysiol.2009.174151.
- F. Jäkel. Some Theoretical Aspects of Human Categorization Behaviour: Similarity and Generalization. PhD thesis, 2007.
- D. Marr. Vision. A Computational Investigation into the Human Representation and Processing of Visual Information. W. H. Freeman and Company, 1982.
- A. B. Novikoff. On convergence proofs on perceptrons. In Proceedings of the Symposium on the Mathematical Theory of Automata, volume 12, pages 615–622, New York, NY, USA, 1962. Polytechnic Institute of Brooklyn.
- M. I. Posner and S. W. Keele. On the genesis of abstract ideas. Journal of Experimental Psychology, 77(3):353-363, 1968.
- R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, and I. Fried. Invariant visual representation by single neurons in the human brain. Nature, 435(7045):1102–1107, 2005. doi: 10.1038/nature03687.
- H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical Statistics, 22(3):400-407, 1951.
- F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain. *Psychological Review*, 65(6): 386–408, Nov. 1958.
- F. Rosenblatt. Principles of neurodynamics: perceptrons and the theory of brain mechanisms. Spartan Books, 1962.