Теория вероятностей. Вопросы к РК1

Этот файл — вырезка из лекций, которая составляется для удобства подготовки к РК. Можно сказать, что составляется она один раз: всякие ошибки, будь они типографическими или смысловыми, будут, скорее всего, исправлены только в конспекте лекций.

1. Сформулировать определение плоской квадрируемой фигуры. Сформулировать определение площади такой фигуры. Сформулировать критерий квадрируемости плоской фигуры (в терминах ее границы).

Пусть D — некоторая область на плоскости. Если D является прямоугольником, треугольником, многоугольником (и т. д.), то понятие площади области D ввести легко (см. классические формулы).

Как ввести понятие площади для произвольной области D?

Рассмотрим множество всех многоугольников M, которые целиком содержит область D, и множество всех многоугольников m, которые целиком содержатся в D.

(Тут нужно сделать рисунок)

Обозначим

$$S^* = \inf_M S(M)$$

где S(M) — площадь многоугольника M. Обозначим

$$S_* = \sup_m S(m)$$

Определение. Область D на плоскости называется квадрируемой, если для неё существуют конечные значения S^* , S_* и эти значения совпадают. При этом величина $S=S^*=S_*$ называется площадью квадрируемой области D.

По определению, множество D точек плоскости имеет площадь нуль, если D можно заключить в многоугольную фигуру сколь угодно малой площади (т. е. $\forall \varepsilon > 0$ существует M — многоугольник такой, что $D \subseteq M$, $S(M) \leqslant \varepsilon$).

Утверждение. Пусть D — замкнутая область на плоскости. Тогда эта область квадрируемая тогда и только тогда, когда её граница имеет площадь нуль.

Утверждение приводится без доказательства.

(Дополнительные материалы):

Следствие. Пусть D — область на плоскости, ограниченная набором спряляемых кривых. Тогда область D — квадрируема.

Утверждение приводится без доказательства.

2. Задача о вычислении объема z-цилиндрического тела. Сформулировать определение двойного интеграла.

- (a) Задача об объёме цилиндрического тела Пусть
 - i. D область на плоскости Oxy (замкнутая и ограниченная);
 - іі. f функция на плоскости, принимающая неотрицательные значения: $f:D \to \Re;$
 - iii. $f(x, y) \ge 0, (x, y) \in D;$
 - iv. Тело G ограничено
 - A. снизу областью D;
 - B. сверху графиком функции z = f(x, y);
 - С. соответствующими вертикальным прямыми, проходящими через границу области D.

Другими словами

$$G = \{ (x, y, z) : (x, y) \in D, \ 0 \le z \le f(x, y) \}$$

(Здесь нужно сделать рисунок тела)

 ${f Задача.}$ Найти объём V(G) тела G.

Разобъём область D на части $D_i,\ i=\overline{1,n},$ так, чтобы

i.
$$D = \bigcup_{i=1}^{n} D_i$$
;

ii. $int^1 D_i \cap int D_j = \emptyset$ при $i \neq j$.

Где int M - множество внутренних точек множества M.

В пределах каждой подобласти D_i выберем точку M_i , $i = \overline{1, n}$.

Объём той части тела G, которая располагается над подобластью D_i , равен $\Delta V_i \approx f(M_i) \ \Delta S_i$, где ΔS_i — площадь области D_i . Тогда объём всего тела G

$$V(G) = \sum_{i=1}^{n} \triangle V_i \approx \sum_{i=1}^{n} f(M_i) \triangle S_i$$

 $^{^1 {\}rm Interior}$ по версии Власова. He internal. — Прим. ред.

.

Полученная формула тем точнее, чем меньше размеры подобалстей D_i , поэтому ествественно перейти к пределу

$$V(G) = \lim_{\substack{\max \\ i=1,n} diam D_i \to 0} \sum_{i=1}^n f(M_i) \triangle S_i$$

Замечание. Диаметром множества М называется число

$$\operatorname{diam} M = \sup_{P,\,Q \in M} |\overrightarrow{PQ}|$$

(Здесь можно сделать рисунок, иллюстрирующий концепцию диаметра)

(b) Определение двойного интеграла

Пусть D — квадрируемая замкнутая область на плоскости Oxy.

Определение. Разбиением области D называется набор $T = \{D_1, \ldots, D_n\}$, ide

$$i. D_i \subseteq D, i = \overline{1, n};$$

$$ii. \ D = \bigcup_{i=1}^{n} D_i;$$

iii. $int D_i \cap int D_i = \emptyset \ npu \ i \neq j$.

$$d(T) = \max_{i=\overline{1,n}} diam D_i$$

.

Определение. Пусть $f: D \to \Re - \phi$ ункция двух переменных. Двойным интегралом функции f по области D называется число

$$\iint\limits_{D} f(x, y) dx dy = \lim_{d(T) \to 0} \sum_{i=1}^{n} f(M_i) \triangle S_i$$

где $M_i \in D_i$, $i = \overline{1,n}$; $\Delta S_i = S(D_i)$, $i = \overline{1,n}$; $T = \{D_1, \ldots, D_n\}$.

Замечание. В определении подразумевается, что указанный предел существует, конечен и не зависит от выбора разбиения T области D и способа выбора точек M_i .

3. Задача о вычислении массы пластины. Сформулировать определение двойного интеграла.

Пусть

- (a) пластина занимает плоскую область D на плоскости Oxy;
- (b) f(x,y) значение поверхностной плоскости материала пластины в точке (x,y).

Задача. Найти массу этой пластины.

Разобъём область D на подобласти $D_i, i = \overline{1,n}$, так, чтобы выполнялись условия

(a)
$$D = \bigcup_{i=1}^{n} D_i$$
;

(b) $int D_i \cap int D_j = \emptyset$ при $i \neq j$

Тогда, считая, что размеры подобласти D_i достаточно малы, можно считать, что, в пределах этой подобласти, плотность f(x, y) изменяется незначительно. Поэтому масса той части пластины как раз занимает подобласть D_i :

$$\triangle m_i \approx f(M_i) \triangle S_i$$

где $M_i \in D_i$ — произвольная точка, $\Delta S_i = S(D_i)$.

С учётом этого масса всей пластины

$$m = \sum_{i=1}^{n} \triangle m_i \approx \sum_{i=1}^{n} f(M_i) \triangle S_i$$

Эта функция тем точнее, чем меньше размеры D_i , поэтому

$$m = \lim_{\max diam D_i \to 0} \sum_{i=1}^{n} f(M_i) \triangle S_i, \ i = \overline{1, n}$$

(Для определения двойного интеграла см. вопрос 2)

4. Сформулировать свойства линейности и аддитивности двойного интеграла, сохранения двойным интегралом знака функции.

Линейность.

(a) Если f и g интегрируемы в D, то $f \pm g$ также интегрируема в D, причём

$$\iint\limits_{D} (f \pm g) \, dx \, dy = \iint\limits_{D} f \, dx \, dy \pm \iint\limits_{D} g \, dx \, dy$$

(b) Функция $c \cdot f$, где c = const, интегрируема в D, и

$$\iint\limits_{D} c \cdot f \, dx \, dy = c \iint\limits_{D} f \, dx \, dy$$

Аддитивность.

Пусть

- (a) $D = D_1 \cup D_2$,
- (b) $int D_i \cap int D_2 = \emptyset$,
- (c) f интегрируема в D_1 ,
- (d) f интегрируема в D_2 .

Тогда f интегрируема в D, причём

$$\iint\limits_{D} f \, dx \, dy = \iint\limits_{D_1} f \, dx \, dy + \iint\limits_{D_2} f \, dx \, dy$$

Свойство сохранения двойным интегралом знака функции.

Пусть

- (a) $f(x, y) \ge 0$ (B D),
- (b) f интегрируема (в D).

Тогда $\iint_D f \, dx \, dy \geqslant 0$.

(aналогично ∂ ля \leqslant))

5. Сформулировать теоремы об оценке модуля двойного интеграла, об оценке двойного интеграла и следствие из нее, теорему о среднем значении для двойного интеграла.

Теорема об оценке модуля двойного интеграла.

Пусть f интегрируема в D. Тогда |f| также интегрируема в D, причём

$$\left| \iint\limits_{D} f \, dx \, dy \right| \leqslant \iint\limits_{D} |f| \, dx \, dy$$

.

Теорема об оценке двойного интеграла.

Пусть

(a) f, g интегрируемы (в D);

(b)
$$m \le f(x, y) \le M$$
 (B D);

(c)
$$g(x, y) \ge 0$$
 (B D).

Тогда

$$m \iint\limits_D g(x, y) \, dx \, dy \leqslant \iint\limits_D f(x, y) \, g(x, y) \, dx \, dy \leqslant M \iint\limits_D g(x, y) \, dx \, dy$$

Следствие. $\mathit{Ecnu}\ g(x,\,y) \equiv 1\ \mathit{e}\ D,\ \mathit{mo}\ \mathit{ceoйcmeo}\ \mathit{7}\ \mathit{npuhumaem}\ \mathit{eud}$

$$m \cdot S \leqslant \iint_D f(x, y) \, dx \, dy \leqslant M \cdot S$$

 $\epsilon \partial e \ S \ - \ n$ лощадь области D.

Теорема о среднем значении для двойного интеграла.

Пусть

- (a) f непрерывна в D;
- (b) D квадрируемая линейно связная замкнутая область.

Тогда $\exists M_0 \in D$ такая, что

$$f(M_0) = \frac{1}{S} \iint_D f(x, y) dx dy \tag{1}$$

где S — площадь области D.

Замечание. Величину в правой части формулы 1 называют средним значением функции f в области D.

(Дополнительные материалы): Обобщённая теорема о среднем значении. Обратите внимание, что в аналогичном вопросе с тройным интегралом требуется обобщённая версия.

Пусть

(a) f непрерывна (в D);

- (b) g интегрируема (в D);
- (c) g знакопостоянна (опять в D);
- (d) D линейно связная замкнутая область.

Тогда $\exists M_0 \in D$ такая, что

$$\iint\limits_D f(x, y) g(x, y) dx dy = f(M_0) \iint\limits_D g(x, y) dx dy$$

Замечание. «Обычная» теорема о среднем значении является следствием обобщённой, для g(x, y) = 1.

6. Сформулировать определение y-правильной области и теорему о вычислении двойного интеграла по произвольной y-правильной области.

Определение. Область D на плоскости Oxy называется y-правильной, если $e\ddot{e}$ можно задать в следующем виде:

$$D = \{(x, y) : a \leqslant x \leqslant b, \ \varphi_1(x) \leqslant y \leqslant \varphi_2(x)\}$$

(Здесь можно сделать поясняющий рисунок.)

Теорема. $\Pi ycmb$

(a)
$$\exists \iint_D f(x, y) dx dy = I$$

(b) Область D является у-правильной и задаётся в виде

$$D = \{(x, y) : a \leqslant x \leqslant b, \ \varphi_1(x) \leqslant y \leqslant \varphi_2(x)\}\$$

(c)
$$\forall x \in [a, b] \exists \int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \stackrel{o \circ o \circ \text{значим}}{=} F(x)$$

Tог ∂a

(a) Существует повторный интеграл
$$\int\limits_a^b dx \int\limits_{\varphi_1(x)}^{\varphi_2(x)} f(x,y)\,dy = \int\limits_a^b F(x)dx \stackrel{oбозначим}{=} I_{nosm.}$$

(b)
$$I_{noem.} = I$$

(Дополнительные материалы):

Определение. Повторным интегралом называется выражение

$$\int_{a}^{b} dx \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) dy$$

Значением повторного интеграла называется число

$$\int_{a}^{b} F(x) \, dx$$

где

$$F(x) = \int_{\varphi_1(x)}^{\varphi_2(2)} f(x, y) \, dy, \ x \in [a, b]$$

7. Сформулировать теорему о замене переменных в двойном интеграле. Записать формулы перехода в двойном интеграле от декартовых координат к полярным и обобщенным полярным координатам. Дать геометрическую интерпретацию полярных координат.

Пусть

(a)
$$I = \iint_D f(x, y) dx dy$$

(b) Есть область D_{xy} очень сложной формы (см. рисунок 7).

Предположим, что мы подобрали

- (a) Область D_{uv} более простой формы (см. рисунок 8);
- (b) Отображение $\Phi: D_{uv} \to D_{xy}$

$$\Phi = \begin{cases} x = x(u, v) \\ y = y(u, v) \end{cases}$$

Тогда вычисление двойного интеграла I можно упростить.

Теорема. О замене переменных в двойном интеграле.

(a)
$$D_{xy} = \Phi(D_{uv});$$

- (b) Φ непрерывно² и непрерывно дифференцируемо³;
- (c) Φ биективно;
- (d) Якобиан отображения Φ не равен нулю в D_{uv} :

$$J_{\Phi} = \begin{vmatrix} x'_u & x'_v \\ y'_u & y'_v \end{vmatrix} \neq 0$$

(e) f интегрируема в D_{xy} .

Tог ∂a

$$\iint\limits_{D_{xy}} f(x, y) \, dx \, dy = \iint\limits_{D_{uv}} f(x(u, v), y(u, v)) \, |J_{\Phi}(u, v)| \, du \, dv$$

Формулы перехода от декартовых координат к полярным.

$$x = \rho \cos \varphi$$
$$y = \rho \sin \varphi$$

$$I = \iint\limits_{D_{xy}} f(x, y) \, dx \, dy = \iint\limits_{D_{\rho\varphi}} f(\rho \cos \varphi, \rho \sin \varphi) \, \rho \, d\rho \, d\varphi$$

Формулы перехода от декартовых координат к обобщённым полярным (отсутствовали в лекциях, были на семинаре (как минимум, для тройного интеграла)).

$$x = a \rho \cos \varphi$$
$$y = b \rho \sin \varphi$$

$$I = \iint\limits_{D_{xy}} f(x, y) \, dx \, dy = \iint\limits_{D_{\rho\varphi}} f(a\rho \cos \varphi, b\rho \sin \varphi) \, ab\rho \, d\rho \, d\varphi$$

Под геометрической интерпретацией подразумевается описание соответствующих систем координат (в общем и применительно к декартовой системе).

 $^{^{2}}$ Т. е. $x(u,v),\,y(u,v)$ непрерывны. — Прим. лект.

 $^{^{3}}x_{u}^{'},\,x_{v}^{'},\,y_{u}^{'},\,y_{v}^{'}$ существуют и непрерывны. — Прим. лект.

8. Приложения двойного интеграла: записать формулы для вычисления площади плоской фигуры, объема z-цилиндрического тела, массы пластины с использованием двойного интеграла.

Вычисление площади плоской фигуры

Пусть фигура занимает область D на плоскости Oxy. Тогда площадь этой фигуры равна двойному интегралу

$$S(D) = \iint_D 1 \cdot dx \, dy$$

(см. свойство 1 двойного интегала: если область D имеет площадь S, то $\iint\limits_D 1 \cdot dx \, dy = S)$

Вычисление объёма цилиндрического тела

Пусть

- (a) G тело в пространстве Oxyz;
- (b) $G = \{(x, y, z) : (x, y) \in D_{xy}, z_1(x, y) \leq z \leq z_2(x, y)\}.$

(Здесь можно сделать рисунок данного тела)

Тогда объём тела G можно найти по следующей формуле:

$$V(G) = \iint_{D_{xy}} [z_2(x, y) - z_1(x, y)] dx dy$$
 (2)

Замечание. В ранее рассмотренной задаче о вычислении объёма цилиндрического тела тело ограничивалось $f(x, y) \geqslant 0$ и плоскостью Оху. Объём такого тела равен

$$V(G) = \lim_{\max diam D_i \to 0} \sum_{i=1}^{n} f(M_i) \triangle S_i$$

Формула 2 является обобщением этого старого результата.

Вычисление массы пластины

Пусть

- (a) Пластина занимает область D на плоскости Оху;
- (b) $\mu(x,y)$ значение поверхностной плоскости материала пластины в точке (x,y).

Тогда масса этой пластины

$$m = \iint_{D} \mu(x, y) \, dx \, dy$$

(см. задачу о вычислении массы пластины)

9. Сформулировать определение кубируемого тела и объема кубируемого тела. Сформулировать критерий кубируемости тела (в терминах границы).

Если тело G является кубом или многогранником, то понятие объёма можно ввести элементарным образом. Давайте рассмотрим множество всех многогранников m, целиком содержащихся в G. Пусть

$$V_* = \sup_m V(m)$$

Теперь рассмотрим множество всех многранником M, целиком содержащихся в G. Обозначим

$$V^* = \inf_{M} V(M)$$

Определение. Тело G называется кубируемым, если существуют конечные значения V_* , V^* , причём V_* , V^* . При этом $V=V_*=V^*$ называется объёмом кубируемого тела G.

Определение. Говорят, что множество G точек пространства имеет объём нуль, если G можно заключить в многогранник сколь угодно малого объёма, m. e. $\forall \varepsilon > 0 \; \exists Q \; - \;$ многогранник такой, что $G \leqslant Q$.

Теорема. Пусть G — тело. Тогда G кубируемо тогда и только тогда, когда границы G имеют объём нуль.

Доказательство. Без доказательства.

- 10. Задача о вычислении массы тела. Сформулировать определение тройного интеграла.
 - (a) Задача о вычислении массы тела.

Задача. Пусть тело занимает область G в пространстве Oxyz. $\mu(x, y, z)$ — значение плотности материала этого тела в точке с координатами (x, y, z). Требуется найти массу тела G.

Здесь мог бы быть ваш рисунок для задачи о вычислении массы тела, но его украла лень редактора.

Разобъём тело G на непересекающиеся части G_i , а точнее

$$G = \bigcup_{i=1}^{n} G_i, \ int G_i \cap int G_j = \emptyset, \ i \neq j$$

В пределах каждой области G_i выберем точку $M_i \in G_i$, $i = \overline{1, n}$. Считая, что размеры части G_i достаточно малы, можно полагать, что функция плотности μ не очень сильно изменяется в пределах области G_i , поэтому $\mu(x, y, z) \approx f(M_i)$, $(x, y, z) \in G_i$.

Тогда масса части G_i

$$m(G_i) \approx \mu(M_i) \triangle V_i$$

где $\triangle V_i$ — объём части G_i .

 ${
m Torдa}$ масса ${
m Terga}$ G

$$m(G) = \sum_{i=1}^{n} m(G_i) \approx \sum_{i=1}^{n} \mu(M_i) \triangle V_i$$

Эта функция тем точнее, чем меньше размеры G_i , поэтому естественно перейти к пределу

$$m(G) = \lim_{\substack{\max \\ i=\overline{1}, n}} \lim_{\substack{diam G_i \to 0}} \sum_{i=1}^{n} \mu(M_i) \triangle V_i$$

(b) Определение тройного интеграла

Пусть G — тело в прострастве Oxyz, определена

$$f:G\to\Re$$

— числовая функция.

Разобъём тело G на части G_i , $i=\overline{1,n}$ так, как это было сделано в задаче о вычислении массы тела.

Обозначим $T = \{G_1, \ldots, G_n\}$ — разбиение тела G.

Определение. Тройным интегралом функции f по области G называется число

$$\iiint\limits_{G} f(x, y, z) dx dy dz = \lim_{d(T) \to 0} \sum_{i=1}^{n} f(M_i) \triangle V_i$$

11. Сформулировать свойства линейности и аддитивности тройного интеграла, сохранения тройным интегралом знака функции.

Эти свойства формулируются абсолютно аналогично свойствам двойного интеграла, см. вопрос 4.

Линейность.

(a) Если f и g интегрируемы в G, то $f\pm g$ также интегрируема в G, причём

$$\iiint_G (f \pm g) \, dx \, dy \, dz = \iiint_G f \, dx \, dy \, dz \pm \iiint_G g \, dx \, dy \, dz$$

(b) Если f интегрируема в G, то $c \cdot f$, где c = const, интегрируема в G, и

$$\iiint\limits_{G} c \cdot f \, dx \, dy \, dz = c \iiint\limits_{G} f \, dx \, dy \, dz$$

Аддитивность.

Пусть

- (a) $G = G_1 \cup G_2$,
- (b) $int G_i \cap int G_2 = \emptyset$,
- (c) f интегрируема в G_1 ,
- (d) f интегрируема в G_2 .

Тогда f интегрируема в G, причём

$$\iiint\limits_G f\,dx\,dy\,dz = \iiint\limits_{G_1} f\,dx\,dy\,dz + \iiint\limits_{G_2} f\,dx\,dy\,dz$$

Свойство сохранения тройным интегралом знака функции.

Пусть

- (a) $f(x, y) \ge 0$ (B G),
- (b) f интегрируема (в G).

Тогда
$$\iiint_G f \, dx \, dy \, dz \geqslant 0$$
.

(аналогично для ≤)

12. Сформулировать теоремы об оценке модуля тройного интеграла, об оценке тройного интеграла и следствие из нее, обобщённую теорему о среднем значении для тройного интеграла.

Эти свойства формулируются абсолютно аналогично свойствам двойного интеграла, см. вопрос 5. Обратите внимание, что в этом вопросе требуется обобщённая теорема о среднем значении.

13. Сформулировать определение тройного интеграла и теорему о сведении тройного интеграла к повторному для z-правильной области.

Определение тройного интеграла

Пусть G — тело в прострастве Oxyz, определена

$$f:G\to\Re$$

— числовая функция.

Разобъём тело G на части G_i , $i=\overline{1,\,n}$ так, как это было сделано в задаче о вычислении массы тела.

Обозначим $T = \{G_1, \ldots, G_n\}$ — разбиение тела G.

Определение. Тройным интегралом функции f по области G называется число

$$\iiint\limits_G f(x, y, z) \, dx \, dy \, dz = \lim_{d(T) \to 0} \sum_{i=1}^n f(M_i) \, \triangle \, V_i$$

Теорема о сведении тройного интеграла к повторному для z-правильной области.

Пусть G — тело в пространстве Oxyz.

Определение. Тело G называется z-правильным, если его можно задать в следующем виде:

$$G = \{(x, y, z) : (x, y) \in D_{xy}, \ z_1(x, y) \leqslant z \leqslant z_2(x, y)\}$$
(3)

 $\epsilon \partial e\ D_{xy}$ — область на плоскости Oxy.

(Здесь можно сделать поясняющий рисунок)

Теорема. Пусть

(a)
$$\exists \iiint_G f(x, y, z) dx dy dz = I;$$

- (b) Область G является z-правильной и задаётся формулой 3;
- (c) Для каждой фиксированной точки $(x, y) \in D_{xy}$ существует интеграл

$$\int_{z_1(x,y)}^{z_2(x,y)} f(x, y, z) dz \stackrel{\text{обозначим}}{=} F(x, y)$$

Tог ∂a

(а) Существует повторный интеграл

$$\iint_{D_{xy}} F(x, y) \, dx \, dy = \iint_{D_{xy}} dx \, dy \int_{z_1(x, y)}^{z_2(x, y)} f(x, y, z) \, dz \stackrel{\text{обозначим}}{=} I_{nosm.}$$

(b) $I = I_{noem}$

(Дополнительные материалы):

Замечание. Если при этом область D_{xy} является y-правильной и задаётся в следующем виде⁴

$$D = \{(x, y) \colon a \leqslant x \leqslant b, \ \varphi_1(x) \leqslant y \leqslant \varphi_2(x)\}$$

mo

$$\iiint\limits_{G} f(x, y, z) \, dx \, dy \, dz = \int\limits_{a}^{b} dx \int\limits_{\varphi_{1}(x)}^{\varphi_{2}(x)} dy \int\limits_{z_{1}(x, y)}^{z_{2}(x, y)} f(x, y, z) \, dz$$

14. Сформулировать теорему о замене переменных в тройном интеграле. Записать формулы перехода в тройном интеграле от декартовых координат к цилиндрическим и сферическим координатам. Дать геометрическую интерпретацию цилиндрических и сферических координат.

Теорема. Пусть

(a)
$$G_{xyz} = \Phi(G_{uv\omega})$$
, $\varepsilon \partial e \Phi = \begin{cases} x = x(u, v, \omega) \\ y = y(u, v, \omega) \\ z = z(u, v, \omega) \end{cases}$

- (b) Φ биективно;
- (c) Φ непрерывно и непрерывно дифференцируемо в $G_{uv\omega}$;

 $^{^4}$ Стандартное определение y-правильной области. — Прим. ред.

(d) Якобиан

$$J_{\Phi} = \begin{vmatrix} x'_{u} & x'_{v} & x'_{\omega} \\ y'_{u} & y'_{v} & y'_{\omega} \\ z'_{u} & z'_{v} & z'_{\omega} \end{vmatrix} \neq 0 \ (e \ G_{uv\omega})$$

Tог ∂a

$$\iiint\limits_{G_{xyz}} f(x,\,y,\,z)\,dx\,dy\,dz = \iiint\limits_{G_{uv\omega}} f(x(u,\,v,\,\omega),y(u,\,v,\,\omega),z(u,\,v,\,\omega)) |J_{\Phi}|\,du\,dv\,d\omega$$

Формулы перехода от декартовых к цилиндрическим.

$$x = \rho \cos \varphi$$
$$y = \rho \sin \varphi$$
$$z = z$$

$$\iiint\limits_{G_{xyz}} f(x, y, z) \, dx \, dy \, dz = \iiint\limits_{G_{\rho\varphi z}} f(\rho \cos \varphi, \rho \sin \varphi, z) \rho \, d\rho \, d\varphi \, dz$$

Формулы перехода от декартовых к сферическим.

$$x = \rho \cos \theta \cos \varphi$$
$$y = \rho \cos \theta \sin \varphi$$
$$z = z \sin \theta$$

$$\iiint\limits_{G_{xyz}} f(x, y, z) \, dx \, dy \, dz = \iiint\limits_{G_{\rho\varphi\theta}} f(\rho\cos\theta\cos\varphi, \rho\cos\theta\sin\varphi, z\sin\theta) \, \rho^2\cos\theta \, d\rho \, d\varphi \, d\theta$$

Под геометрической интерпретацией подразумевается описание соответствующих систем координат (в общем и применительно к декартовой системе).