Лабораторная работа № 2

Характеристики входной цепи

1. Пересчёт проводимости нагрузки в контур входной цепи

Параметры входной цепи (ВЦ) рассчитываются по приближённым формулам, поэтому рассчитанные значения следует сравнить с результатами моделирования. Сначала рассматривается вспомогательная задача — пересчёт внешней проводимости нагрузки в контур ВЦ.

1.1. Исходные данные для расчёта и моделирования: колебательный контур входной цепи настроен на частоту 20 МГц, ёмкость конденсатора 25 пФ, собственное резонансное сопротивление контура 5 кОм, сопротивление нагрузки 1 кОм, коэффициент включения нагрузки 0,4.

Задание: Рассчитать индуктивность катушки колебательного контура и его эквивалентную резонансную проводимость. Рассчитать элементы связи контура с нагрузкой для двух вариантов: а) трансформаторная связь; б) внутриемкостная связь. Сравнить АЧХ контура при неполном подключении нагрузки с АЧХ контура с эквивалентной проводимостью.

1.1.1. Расчёт

Индуктивность катушки $L_{_{\rm K}} = \frac{1}{\left(2\pi f_{_0}\right)^2 C_{_{\rm K}}}$. Собственная резонансная проводимость

контура $g_{\rm \tiny K}=1/R_{\rm \tiny K}$, проводимость нагрузки $g_{\rm \tiny H}=1/R_{\rm \tiny H}$. Эквивалентная резонансная проводимость:

$$g_{\kappa}' = g_{\kappa} + m^2 g_{H}.$$

Эквивалентное резонансное сопротивление контура:

$$R'_{\kappa} = 1/g'_{\kappa}$$
.

А) При трансформаторной связи нагрузки с контуром нужно рассчитать индуктивность катушки связи. Степень связи этой катушки с колебательным контуром характеризуется безразмерным коэффициентом связи $k = \frac{M}{\sqrt{L_{\rm k} L_{\rm cs}}} < 1$, где

M — взаимная индуктивность. Коэффициент включения при трансформаторной связи определяется как $m=\frac{M}{L_{_{\rm K}}}=\frac{k\sqrt{L_{_{\rm K}}L_{_{\rm CB}}}}{L_{_{\rm K}}}=k\sqrt{\frac{L_{_{\rm CB}}}{L_{_{\rm K}}}}$. Следовательно, индуктивность

катушки связи равна $L_{_{\mathrm{CB}}} = \left(\frac{m}{k}\right)^2 L_{_{\mathrm{K}}}$. Значение коэффициента связи задаётся с учётом

возможности его практической реализации. Провести расчёт и моделирование для двух значений коэффициента связи: 0,4 и 0,8. На модели сравнить эти два варианта.

Б) При внутриемкостной связи нагрузки с контуром нужно рассчитать значения ёмкости конденсаторов C_1 и C_2 емкостного делителя. Ёмкость этих конденсаторов определяется так, чтобы обеспечить заданный коэффициент включения $m=\frac{C_1}{C_1+C_2}$ и необходимую полную ёмкость $C_{\rm K}=\frac{C_1C_2}{C_1+C_2}$, определяющую резонансную частоту колебательного контура. Из этих двух условий следует, что $C_1=\frac{C_{\rm K}}{1-m}$, $C_2=\frac{C_{\rm K}}{m}$.

1.1.2. Моделирование

Для сравнения АЧХ контура при неполном подключении нагрузки с АЧХ контура с эквивалентной проводимостью нужно смоделировать оба эти контура, подключив их с помощью идеального источника тока, управляемого напряжением (ИТУН), к одному и тому же источнику сигнала. Для оценки точности расчёта элементов связи контура с нагрузкой нужно также получить зависимость коэффициента включения нагрузки от частоты.

А) Трансформаторная связь нагрузки с контуром

Величина коэффициента передачи ИТУН в данном случае роли не играет и его можно принять равным 1.

Модель трансформатора выбирается следующим образом:

$Component \rightarrow Analog \ Primitives \rightarrow Passive \ Components \rightarrow Transformer.$

В поле Value через запятую указываются: индуктивность первичной обмотки трансформатора (контурной катушки), индуктивность вторичной обмотки трансформатора (катушки связи), коэффициент связи.

Расчёт АЧХ

В режиме AC Analysis рассчитаются AЧX контура ВЦ, контура с эквивалентной проводимостью и частотная зависимость коэффициента включения нагрузки. Диапазон изменения частоты задаётся так, чтобы резонансная частота находилась посредине: от 5 МГц до 35 МГц.

Б) Внутриемкостная связь нагрузки с контуром

2. Согласование входной цепи с антенной

2.1. Исходные данные для расчёта и моделирования: резонансная частота контура ВЦ $f_0 = 150 \ \mathrm{M}\Gamma$ ц, полоса пропускания ВЦ $\Pi_{\mbox{\tiny K}9} = 37,5 \ \mathrm{M}\Gamma$ ц, ёмкость контура ВЦ $C_{\mbox{\tiny K}} = 20 \ \mbox{\tiny Π}$ собственная добротность контура $Q_{\mbox{\tiny K}} = 20$, сопротивление антенны $R_{\mbox{\tiny A}} = 100 \ \mathrm{OM}$, проводимость нагрузки $g_{\mbox{\tiny H}} = 5 \ \mbox{\tiny MCM}$.

Задание: Рассчитать коэффициенты включения, обеспечивающие согласование антенны с ВЦ, и коэффициент передачи ВЦ в режиме согласования. Рассчитать индуктивность катушки колебательного контура и параметры элементов связи для двух вариантов: а) внутриемкостная связь с антенной и трансформаторная связь с нагрузкой; б) трансформаторная связь с антенной и внутриемкостная связь с нагрузкой.

2.1.1. Расчёт

Собственная полоса пропускания контура ВЦ $\Pi_{\kappa} = \frac{f_0}{O_{\kappa}}$.

Коэффициент расширения полосы пропускания $\gamma = \frac{\prod_{\kappa_9}}{\prod_{\kappa}}$.

Индуктивность катушки $L_{\kappa} = \frac{1}{\left(2\pi f_{0}\right)^{2} C_{\kappa}}$.

Собственная резонансная проводимость контура $g_{_{\rm K}} = 2\pi\Pi_{_{\rm K}}C_{_{\rm K}}$.

Коэффициент включения антенны в контур $m_{\rm lc} = \sqrt{\frac{\gamma g_{\rm K}}{2g_{\rm A}}}$, коэффициент включения

нагрузки в контур $m_{2c} = \sqrt{\frac{\left(\gamma - 2\right)g_{_{\rm K}}}{2g_{_{\rm H}}}}$.

Коэффициент передачи ВЦ в режиме согласования $K_{0c} = \frac{m_{2c}}{2m_{1c}}$.

Для моделирования колебательного контура с потерями необходимо задать его резонансное сопротивление: $R_{\kappa} = 1/g_{\kappa}$.

А) При емкостной связи антенны с контуром $C_1 = \frac{C_{\kappa}}{1 - m_1}$, $C_2 = \frac{C_{\kappa}}{m_1}$.

При трансформаторной связи нагрузки с контуром нужно рассчитать индуктивность катушки связи. Коэффициент включения при трансформаторной связи равен $m_2 = k \sqrt{\frac{L_{_{\rm CB}}}{L_{_{\rm K}}}}$. Для упрощения моделирования принимается, что индуктивности катушки связи и контурной катушки одинаковы. В этом случае коэффициент включения равен коэффициенту связи: $m_2 = k$.

Б) При трансформаторной связи антенны с контуром также принимается, что индуктивности катушки связи и контурной катушки одинаковы и $m_1 = k$.

При внутриемкостной связи нагрузки с контуром $C_1 = \frac{C_{\kappa}}{1 - m_2}$, $C_2 = \frac{C_{\kappa}}{m_2}$.

2.1.2. Моделирование

А) внутриемкостная связь с антенной и трансформаторная связь с нагрузкой

В режиме *AC Analysis* рассчитать АЧХ ВЦ и частотную зависимость коэффициентов включения. Диапазон изменения частоты задать так, чтобы резонансная частота находилась посредине: от 50 МГц до 250 МГц.

Б) трансформаторная связь с антенной и внутриемкостная связь с нагрузкой

В режиме *AC Analysis* рассчитать АЧХ ВЦ и частотную зависимость коэффициентов включения. Диапазон изменения частоты задать так, чтобы резонансная частота находилась посредине: от 50 МГц до 250 МГц.

3. Характеристики входной цепи при рассогласовании с антенной

3.1. Исходные данные для расчёта и моделирования: параметры входной цепи такие же, что в п. 2 при трансформаторной связи с антенной.

Задание: Рассчитать зависимости резонансного коэффициента передачи и полосы пропускания ВЦ от коэффициента включения антенны в контур при изменении коэффициента включения от 0 до 1. Построить графики этих зависимостей.

3.1.1. Расчёт

Степень рассогласования ВЦ с антенной характеризуется параметром $a=\frac{m_1}{m_{1c}}$, где m_{1c} — коэффициент включения антенны при согласовании. Коэффициент передачи ВЦ равен $K_0=K_{0c}\frac{2a}{a^2+1}$, полоса пропускания равна $\Pi_{\rm BЦ}=\Pi_{\rm BЦ}$ $\frac{a^2+1}{2}$. Здесь K_{0c} — коэффициент передачи в режиме согласования, $\Pi_{\rm BЦ}$ = $\Pi_{\rm KS}$ = 37,5 МГц — полоса пропускания в режиме согласования.

3.1.2. Моделирование

Для того чтобы иметь возможность в режиме *Stepping* изменять коэффициент связи, определяющий коэффициент включения антенны в контур ВЦ, следует изменить схему модели, заменив трансформатор двумя катушками индуктивности **L1** и **L2** и элементом индуктивной связи (выбирается в следующей последовательности: Component \rightarrow Analog Primitives \rightarrow Passive Components \rightarrow K). В поле Inductors через пробел указываются номера индуктивностей: **L1** L2, в поле Coupling указывается коэффициент связи.

По этим графикам измерить резонансный коэффициент передачи и полоса пропускания. Измеренные значения нанести на соответствующие графики.