线性代数 II(H) 2024-2025 春夏期末

图灵回忆卷 by jayi0908

2025年6月18日

- 一、(16 分) $P_0(1,0,1)$ 到平面 x+y+z=D(D>0) 的距离为 $\sqrt{3}$,求 P_0 到直线 $\begin{cases} x+y+z=D\\ x-y+z=1 \end{cases}$ 的距离.
- 二、(16 分) V 为次数不超过 2 的实数多项式空间,定义在 V 上的内积为 $\langle p,q \rangle = \int_0^1 p(x)q(x)\mathrm{d}x$,记 $W = \{p(0) = 0 | p \in V\}$,(1) 求 W 的正交补;(2) 求 $f \in V$ 使得 $\langle p,f \rangle = p(0)$ 对 $\forall p \in V$ 都成立.
- Ξ 、(12 分) $A \in \mathbb{C}^{7 \times 7}$,且存在 $B \in \mathbb{C}^{7 \times 7}$, $X \in \mathbb{C}^{7 \times 1}$ 使得 $A = B^2$, $A^3 X \neq O$, $A^4 X = O$,证明 r(A) = 5.
- **四、(12 分)** 设 T 为维数为 $n(n \ge 3)$ 的线性空间 V 上的幂零算子,且 r(T) = 1,求 T 的 Jordan 标准 形,并证明 V 有无穷多个二维的 T-不变子空间.
- 五、(20分)试给出下列命题的真伪. 若命题为真,请给出简要证明;若命题为假,请举出反例.
 - **1.** T 为实算子,且只有特征值 1 和 2,则 $T^2 3T + 2I = O$.
 - 2. 实算子 T 有非平凡子空间,则有特征值.
- **3.** U 为 V 的一个子空间,则可取 U 的补空间的一组基 $\varepsilon_1, \dots, \varepsilon_s$,使得 $\varepsilon_1 + U, \dots, \varepsilon_s + U$ 为商空间 V/U 的一组基.
 - **4.** T 为实内积空间上的算子,且 T 在某组基下有对称矩阵,则 T 是自伴算子.
 - 5. 设 s 为 T 的奇异值,则存在单位向量 α 使得 $||T\alpha|| = s$.
- 六、(12 分) 设 $\varepsilon_1, \dots, \varepsilon_5$ 为 \mathbb{R}^5 的一组基,T 为 \mathbb{R}^5 上的算子且 $T(\varepsilon_i) = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 (i = 1, 2, 3)$, $T(\varepsilon_i) = \varepsilon_4 + \varepsilon_5 (j = 4, 5)$,求 T 的极小多项式与 $T^{2025618}$.
- 七、(12 分) 对于算子 T, 记 G = T*T, 证明以下等价:
 - (1) T 是正规算子;
- (2) 存在等距同构 S 使得对任意向量 v, $Tv = \sum_{i=1}^{m} \sum_{j=1}^{d_i} \sqrt{\lambda_i} \langle v, \varepsilon_{ij} \rangle S \varepsilon_{ij}$,其中 $\{\varepsilon_{ij}\}_{j=1}^{d_i}$ 是 $E(\lambda_i, G)$ 的一组基,且 $E(\lambda_i, G)$ 是 S 不变的.
 - (3) 存在等距同构 S' 使得 $T^2 = S'G$,且 $\operatorname{Im} T = (\operatorname{Ker} T)^{\perp}$.