Advanced Machine Learning

Giuseppe Magazzù

2021 - 2022

Contents

1	Introduction 1.1 Non Linearity 1.2 Feed Forward Neural Network	
2	Backpropagation	4
3	Gradient Based Optimization	5
4	Cost Functions 4.1 Loss Functions 4.2 Output Units 4.2.1 Linear - Distribuzione Gaussiana 4.2.2 Sigmoid - Distribuzione Bernoulli 4.2.3 Softmax - Distribuzione Multinoulli 4.2.4 Gaussian Mixtures	
5	Regularization 5.1 Norm Penalities	9

Introduction

1.1 Non Linearity

Per estendere i modelli lineari a funzioni non lineari possiamo applicare una trasformazione non lineare $\phi(x)$ all'input.

La funzione $\phi(x)$ definisce una nuova rappresentazione di x.

La funzione $\phi(x)$ può essere generica come nelle *kernel machines* oppure può essere imparata aggiornando i parametri θ .

$$f(x; \theta; \omega) = \phi(x; \theta)^T \omega$$
,

dove θ sono i parametri e ω i pesi del modello.

Una rete con 1 hidden layer può imparare una qualsiasi funzione f(x) non lineare. La difficoltà consiste nel trovare i pesi per determinare f(x).

XOR Example

XOR function: $y = f^*(x)$

$$X = \{[0, 0]^T, [0, 1]^T, [1, 0]^T, [1, 1]^T\}$$

$$y = f(x; \theta) \Rightarrow f^*(x)$$

Supponiamo di scegliere un mapping lineare $f(x; \theta) = f(x; \omega, b) = x^T \omega + b$

Supponiamo di inizializzare i parametri nel seguente modo:

$$w = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \ c = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \ \omega = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \ b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$max(0, xw + c) \omega = [0, 1, 1, 0]^T$$

Multi-Layer Neural Networks:

- Feed Forward Neural Network (FFNN) non hanno connessioni che formano loop
- Recurrent Neural Network (RNN) hanno loop, utili per informazioni sequenziali
- Convolutional Neural Network (CNN) catturano informazioni spaziali attraversi molteplici filtri

Figure 1.1: Differenza tra RNN, FFNN [1] e CNN [3]

1.2 Feed Forward Neural Network

Una FFNN è una rete fully connected, ovvero che ogni neurone in un layer e collegato a tutti gli altri del layer successivo. Una FFNN può essere pensata come una concatenazione di funzioni applicate all'input x, $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$.

La lunghezza della catena corrisponde alla **depth** del modello. La dimensionalità degli hidden layer determina la **width** del modello.

Il training del modello consiste nel trovare una funzione f(x) che si avvicini il più possibile a una funzione target $f^*(x)$. $f(x) \to f^*(x)$.

Backpropagation

Gradient Based Optimization

Cost Functions

Per valutare l'efficacia e le performance di un modello di deep learning usiamo una **cost function**.

Si usa il termine **loss function** o **error function** quando ci si riferisce un singolo esempio del training set, mentre **cost function** sull'intero training set (o minibatch).

La **cost function** misura l'errore tra il valore predetto dal modello e il valore di verità. L'obiettivo è quello di minimizzare o massimizzare questa funzione in modo da ridurre l'errore.

La **cost function** può contenere anche un termine di regolarizzazione.

4.1 Loss Functions

Sia $y = (y_1, y_2, ..., y_k)$ un vettore che rappresenta la distribuzione multinomiale di verità definito sulle etichette 1...k.

Sia
$$\hat{y} = (\hat{y}_1, \hat{y}_2, ..., \hat{y}_k)$$
 il vettore delle predizioni, dove $\hat{y}_i = P(y = i | x, \theta)$.

Negative Log Likelihood

$$J(\theta) = -\mathbb{E}_{x, y \sim \hat{P}_{data}} \log(P_{model}(y|x))$$

$$J(\theta) = L_{neg_likelihood}(y, \hat{y}) = -\sum_{i=1}^{k} y_i \log(\hat{y}_i)$$

Mean Squared Error (MSE)

$$L(y, \hat{y}) = \frac{1}{N} \sum_{i=0}^{N} (y - \hat{y}_i)^2$$

Mean Absolute Error (MAE)

$$L(y, \hat{y}) = \frac{1}{N} \sum_{i=0}^{N} |y - \hat{y}_i|$$

4.2 Output Units

La scelta della funzione di loss è legata all'unità di output.

4.2.1 Linear - Distribuzione Gaussiana

Spesso usato per ottenere la media di una distribuzione gaussiana condizionale. $\hat{y} = w^T h + b$

4.2.2 Sigmoid - Distribuzione Bernoulli

Usata per predire il valore di una variabile binaria $\hat{y} \in [0, 1]$.

La distribuzione di output è una distribuzione di Bernoulli definita da P(y = 1|x).

La funzione sigmoide [4.1] ci permette di avere un gradiente forte quando abbiamo una predizione errata.

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$
 (4.1)

Per prima cosa calcoliamo l'argomento $z = \omega^T h + b$ e poi applichiamo la sigmoide per trovare $\hat{y} = \sigma(\omega^T h + b)$.

$$J(\theta) = -\mathbb{E}[\log P(y|x)]$$

$$\log(\tilde{P}(y)) = yz \qquad \tilde{P}(y) = \exp(yz)$$

$$P(y) = \frac{\exp(yz)}{\sum_{y'=0}^{1} \exp(y'z)} = \frac{\exp(yz)}{1 + \exp(z)} = \sigma((2y - 1)z)$$

$$P(y = 0) = \sigma((2 * 0 - 1)z) = \sigma(-z)$$

$$P(y = 1) = \sigma((2 * 1 - 1)z) = \sigma(z)$$

$$J(\theta) = -\mathbb{E}[\log P(y|x)] = -\log \sigma((2y-1)z)$$

4.2.3 Softmax - Distribuzione Multinoulli

Vogliamo rappresentare una distribuzione di probabilità \hat{y} definita su una variabile discreta con n valori possibili.

$$\hat{y} = P(y|x),$$
 $\hat{y}_i = P(y=i|x), i = 1..n$
 $z = w^T h + b$ $z_i = \log(\tilde{P}(y=i|x))$

$$Softmax(z)_i = \frac{\exp(z_i)}{\sum_{i=1}^n \exp(z_i)}$$

Calcolando il logaritmo della softmax possiamo riscriverla nel seguente modo:

$$\log \operatorname{Softmax}(z)_i = \log(\exp(z_i)) - \log \sum_{j=1}^n \exp(z_j)$$
$$= z_i - \log \sum_{j=1}^n \exp(z_j)$$

Quando massimizziamo, a valori alti del primo termine corrispondono valori bassi del secondo. Quindi possiamo tenere in considerazione solo il max_iz_i .

Le altre funzioni di loss che non invertono l'esponenziale possono dare problemi di saturazione. Quindi è stata definita una versione più stabile

$$Softmax(z) = Softmax(z - max_iz_i)$$

4.2.4 Gaussian Mixtures

Regularization

Le tecniche di regolarizzazione puntano a ridurre l'errore della loss function sul validation set e sul test set.

La regolarizzazione può avvenire:

- Direttamente: cambiando i vincoli o la funzione obiettivo
- Indirettamente: aggiungendo dati

Un regolarizzatore efficace riduce significativamente la varianza mentre non aumenta molto il bias.

Controllare la complessità del modello non è semplice, non basta trovare la dimensione giusta il numero giusto di parametri. Nel deep learning si basa su trovare il miglior modello che è un modello grande che è stato propriamente regolarizzato.

5.1 Norm Penalities

Si limita la capacità del modello aggiungendo una penalità $\Omega(\theta)$ alla funzione obiettivo J.

$$\tilde{J}(\theta) = J(\theta) + \alpha \Omega(\theta)$$

 $\alpha \in [0,\inf)$ è un iperparametro che pesa il contributo della **norm penalty** nella funzione obiettivo.

Solitamente la penalty Ω penalizza solo i pesi della trasformazione affine di ogni layer. I bias nella trasformazione affine richiedono meno dati per fittare, quindi non vengono regolarizzati.

Più parametri ci sono nel modello più questi sono sensibili a varianza, e quindi creano più instabilità nel modello.

Figure 5.1: Bias-variance tradeoff example [2]. High bias \to underfitting, High variance \to overfitting

- somma assoluta dei pesi

$$\Omega(w,b) = \sum_{w_j} |w_j|$$

- somma quadratica dei pesi

$$\Omega(w,b) = \sqrt{\sum_{w_j} |w_j|^2}$$

Data la funzione obiettivo seguente

$$\widetilde{J}(w; X, y) = \frac{\alpha}{2} w^{T} w + J(w; X, y)$$

Il gradiente é:

$$\nabla_w \tilde{J}(w; X, y) = \alpha w + \nabla_w J(w; X, y)$$

La regola di aggiornamento dei pesi usando la norma L2 diventa la seguente

$$w = w - \epsilon (\alpha w + \nabla_w J(w; X, y))$$

= $(1 - \epsilon \alpha) w + \epsilon \nabla_w J(w; X, y)$

Bibliography

- [1] Ashkan Eliasy and Justyna Przychodzen. The role of ai in capital structure to enhance corporate funding strategies. *Array*, 6:100017, 07 2020.
- [2] Satya Mallick. Bias-variance tradeoff in machine learning learnopency, 02 2017. [visited on 21/10/2021].
- [3] Phung and Rhee. A high-accuracy model average ensemble of convolutional neural networks for classification of cloud image patches on small datasets. *Applied Sciences*, 9:4500, 10 2019.