A Secure and Efficient Key Management and User Authentication Scheme for Fog Computing

By

SHIVENDRA SAXENA

Roll No. B150105CS

Under the Supervision of

Dr. Sangram Ray

Assistant Professor

PROJECT REPORT

Submitted to

NATIONAL INSTITUTE OF TECHNOLOGY SIKKIM

for the award of the degree of

Bachelor of Technology

in

Computer Science and Engineering

May 2019

Department of Computer Science and Engineering National Institute of Technology Sikkim

(An Institute of National Importance, under MHRD, Govt. of India) Ravangla, South Sikkim – 737139, Sikkim, India

CERTIFICATE

It is hereby certified that the dissertation report entitled "A secure and efficient key management and user authentication scheme for fog computing" submitted by Shivendra Saxena bearing Roll No. B150105CS for the fulfillment of the requirement for the award of the degree Bachelor of Technology in Computer Science and Engineering at National Institute of Technology Sikkim is an original record of her own work carried out during the period August 2015 to May 2019 under my sole supervision and has not been reiterated in any other form of degree or diploma.

Dr. Sangram Ray

Assistant Professor & HOD
Department of Computer Science and Engineering
National Institute of Technology Sikkim
Ravangla, Sikkim-737139, India

ACKNOWLEDGEMENT

I am tremendously indebted to my supervisor **Dr. Sangram Ray, Assistant Professor and Head of the Department, Department of Computer Science and Engineering**, National Institute of Technology Sikkim for his invariable guidance and assistance during the course of thesis and its evolvement. His advice and suggestions have been prized in the development and progress of the content. Furthermore the skills and knowledge which I have gained throughout this period I perceive that as very valuable and significant for my future.

I take this opportunity to acknowledge the Director, Prof. M. C. Govil, all Deans, all departmental professors, research scholars and staff who have provided the necessary infrastructure and their valuable experience throughout this entire curriculum and led to my piecemeal growth as a student.

Finally I express my deepest gratitude to my family & friends for their untiring encouragement and unconditional support.

Shivendra Saxena

List of Contents

1.	Introduction	1-4
	1.1 Literature review	2-3
	1.2 System model	3
	1.3 Security goals	3-4
	1.4 Organization of report	4
2.	Preliminaries	5-7
	2.1 ECC	5
	2.2 Benefits of ECC.	5
	2.3 Definition	5-6
	2.4 Basic group operations.	6
	2.5 Computational problems of ECC	7
3.	Cryptanalysis of Wajid et al. scheme	8-14
	3.1 Review of Wajid et. al. scheme.	8-13
	3.1.1 Pre-Deployment phase	8-10
	3.1.2 Key management phase	10
	3.1.3 User registration phase	10
	3.1.4 User login and authentication	11
	3.1.5 Password and biometric update phase	11-12
	3.1.6 New smart device addition phase	12
	3.1.7 Mobile Device revocation phase	12-13
	3.2 Cryptanalysis of Wajid et. al. scheme	13-14
4.	Proposed scheme	15-23
	4.1 Pre-Negotiation phase	15
	4.2 Pre deployment phase	16-19
	4.21 Smart device registration phase	16-17
	4.2.2 Fog server registration phase	17-18
	4.2.3 Cloud server registration phase.	18-19

	4.3 Key management phase	19-20
	4.3.1 Smart device and fog server registration phase	19-20
	4.3.2 Fog server and cloud server registration phase	20
	4.4 User registration phase	20-21
	4.5 User login phase	21
	4.6 User authentication and key agreement phase	22-23
5.	Security analysis	24-32
	5.1 Informal security analysis	26-28
	5.2 AVISPA	28-32
6.	Performance analysis.	33-34
	6.1 Computational cost comparison	33
	6.2 Communication cost comparison	34
7.	Conclusion.	35
8.	References	36-37

List of Tables

1.	Symbol table of Wajid et al. scheme	10
2.	Symbol table of the proposed scheme	16
3.	Comparison of computation cost.	33
4.	Comparison of communication cost	34

List of Figures

1.	A typical fog computing environment	1
2.	An elliptic curve example.	6
3.	Key management phase of SAKA-FC	10
4.	User registration phase of SAKA-FC	10
5.	User login and authentication phase of SAKA-FC	11
6.	Summary of smart device registration	17
7.	Summary of fog server registration.	18
8.	Summary of cloud server registration	19
9.	Summary of key management phase of SD and FS	22
10.	Summary of key management phase of FS and CS	23
11.	Summary of user registration phase	24
12.	Sumary of user login phase	24
13.	Summary of user authentication	25
14.	Architecture of AVISPA	28
15.	Role fog server and role user	29
16.	Role TA and Role SD	30
17.	Role session/ environment and role CS	31
18.	Result analysis of proposed scheme using OMFC back-end of AVISPA	32
19.	Result analysis of proposed scheme using Cl-AtSe back-end of AVISPA	32

Abstract

Fog computing is a decentralized computing infrastructure in which data, applications, compute as well as data storage are scattered in the most logical and efficient place among the data source (i.e., smart devices) and the cloud. It gives better services than cloud computing because it has better performance with reasonably low cost. Since, the cloud computing has security and privacy issues, and fog computing is an extension of cloud computing, it is therefore obvious that fog computing will inherit those security and privacy issues from cloud computing. Recently, a scheme on secure key management and user authentication for fog computing services, SAKA-FC was proposed by Wajid et al. which is a three-factor authentication scheme with privacy preservation for remote user based on ECC, hash functions, fuzzy extractor and symmetric bivariate polynomial function. In this report the scheme proposed by Wajid et al. is analyzed and found that it is not resilient against fog server insider attack and denial of service attack. Further, to eradicate all of the above mentioned attacks, an enhanced, lightweight and secure scheme is proposed. The proposed scheme is verified using both formal and mathematical security analysis, and simulated using AVISPA that shows all the protocols are well secure against all relevant security attacks. The performance analysis depicts that the proposed scheme is more efficient and lightweight than other existing schemes.