Библиотека для работы с элементами FCA

Mango Dataset Concept Lattice

Решётка понятий отображается с помощью библиотеки Plotly, которая рисует интерактивные графики. Для получения графиков с данного ноутбука в интерактивном виде, надо запустить ноутбук https://github.com/EgorDudyrev/FCA_BB_interpret/blob/master/notebooks/2020.01.25-First_pres.ipynb)

На решётке можно отразить три различных измерения:

- положение по вертикали порядок между концептами
- положение по горизонтали среднее предсказание для объектов концепта (sort_by="y_pred"), среднее истинное значение y внутри концепта (sort_by="y_true"), значения метрик качества (в случае бин. классификации -{"accuracy", "precision", "recall"})
- цвет те же варианты, что и в пункте "положение по горизонтали"

В данный момент цвет - это доля положительного класса в концепте (фруктов), расположение по горизонтали показывает качество (ассигасу) классификации концепта.

При наведении мыши на концепт появляется более подробная информация о нём. Также, с помощью панели управления в верхнем правом углу, изображение можно увеличивать, уменьшать, передвигать.

Идеи интерпретаций

Задание

Задача интерпретации - определить, какие признаки важны для предсказания модели. Т.е. изменение какого признака сильнее всего изменит предсказание. Также желательно показать какие именно значения признаков влияют на предсказания. В курсовой необходимо предложить способ интерпретации моделей Чёрный ящик, которая бы использовала FCA. Как вариант - результат интерпретации должен отображаться в виде Решётки понятий.

Модель для интерпретации рассматривается как Чёрный ящик. Т.е. ещё внутренее устройство неизвестно и может быть любым. Что известно - это:

- входные данные X (набор признаков и значений, на основе которого модель делает предсказания)
- модель Чёрного ящика в виде функции $BB: X \mapsto Y$, где Y предсказания модели.

Плюсы FCA

"Понятие" (концепт) как набор атрибутов и соответствующих им объектов может соответствовать некому бизнес термину, понятному ЛПР. Также, исходные данные зачастую мультиколлинеарны. В частности, несколько разных признаков из исходных данных могут соответствовать одному и тому же объекту (свойству) реального мира. Такие признаки могут объединится в одно Понятие, т.е. интерпретация с FCA может показать коррелирующие признаки.

Недостатки FCA

FCA может быть не самым точным предсказательным методом. Будем считать данный Чёрный ящик наилучшей возможной моделью для решения конкретной задачи, которая предсказывает результат сильно лучше всех остальных моделей, в т.ч. FCA. Т.е. FCA должен быть использован только для интерпретации модели, но не для предсказания результата.

Подходы интерпретации

Есть 2 главных подхода к интерпретации модели:

- 1. Глобальная интерпретация показывает, какие признаки важны для модели *в целом* на всём наборе данных.
- 2. Локальная интерпретация показывает, какие признаки и как сильно влияют на предсказание конкретного наблюдения (строчки данных).

Похожая классификация приведена в онлайн книге по интерпретации чёрных ящиков: Christoph Molnar, A Guide for Making Black Box Models Explainable. 2019-12-17 (https://christophm.github.io/interpretable-ml-book/ (https://christophm.github.io/interpretable-ml-book/))

Методы интерпретации

Поочерёдное зашумление признаков

Самый базовый метод.

Значение каждого признака из исходных данных поочерёдно заменяется на случайный шум. Чем сильнее изменились предсказания при зашумлении конкретного признака - тем этот признак "важнее".

Поочерёдное изменение значения признаков

Похожий на предыдущий метод, только исходные значения конкретного признака заменяются не на шум, а на каждое из возможных значений этого признака. Тогда можно увидеть, что при конкретном значении конкретного признака модель сильно повышает предказание, а при другом - сильно понижает.

Shap

Метод основан на исользовании вектора Шепли из теории игр. Т.е., в отличие от предыдущих методов, он имеет под собой серьёзное математическое обоснование (зашумление признаков - метод сугубо эмпирический).

Во многих блогах об анализе данных данный подаётся как лучший из существующих.

На python написана библиотека Shap (https://github.com/slundberg/shap)). Статья об её разработке: (https://arxiv.org/pdf/1705.07874.pdf)). Библиотека может применяться для любых моделей Чёрный ящик, но оптимизирована под существующие решения sklearn и xgboost. Многие другие библиотеки также поддерживают Shap.

Идея работы Shap:

- Модель находит некое среднее значение Y expected value
- Затем для каждого объекта признаки "соревнуются" между собой, кто какой вклад внесёт в предсказание. При этом "вклад" это изменение целевого признака (в тех же единицах измерения, что и целевой признак).

Результат работы Shap - матрица, размерности входных данных X, где в каждой ячейке стоит число - как изменил целевую переменную конкретный признак в конкретном объекте.

Эксперименты

Настоящие важности признаков в модели

Для пресказания использовалась модель CatBoostClassifier и Bank dataset из UCI.

Внутри CatBoost внедрены как поддержка Shap так и расчёт важности признаков, основываясь на внутренней информации о деревьях.

Поочерёдное зашумление признаков

Важности параметров в разных моделях					
duration -	20	44	45		
month -	2.4	14	14	_	4
contact -	0.42	7.4	11		7
poutcome -	5.3	6.3	6.1		
balance -	4.8	4.4	4.1	_	3
age -	5.9	3.7	2.4		-
pdays -	21	3.3	1.2		
day -	4.6	3.2	1.1	_	24
job -	0.066	2.8	2		
education -	0.18	2.7	2.9		
campaign -	20	1.8	2	_	10
marital -	0.11	1.6	1.7		
housing -	0.21	1.6	3.3		
loan -	0.26	1.5	2.6	-	8
previous -	15	1.4	1.2		
default -	0.17	0.17	0.087		
	Влияние шума	Сама модель	Shap	_	0

Для оценки влияния признака на предсказания я 100 раз наложил шум на каждый признак и посчитал среднее изменение предсказания.

Получившиеся важности принзаков слегка соотносятся с настоящими важностями атрибутов, хотя доверия не вызывают. С другой стороны, Shap даёт очень похожий результат, хоть и основывается на Black Box методе.

One feature noise in BankDS

Сформировав контекст на основе зашумления признаков (объекты - строки исходных данных, атрибуты - исходные признаки, в контесте стоит +, если зашумление признака повлияло на предсказание объекта >75% случаев), я построил Решётку понятий.

Решётка получилась очень зашумлённой - видимо надо придумать способ, как фильтровать Понятия. Цвет отражает качество предсказания Понятия, положение слева-направо - увеличение предсказания модели.

Что можно понять по скоплению красного цвета - в целом модель работает хорошо. "Плохие" Понятия появляются только на очень низких, детальных уровнях.

Посмотрим на конкретное Понятие

Concept 59

extent (len: 9): 4174, 673, 2798, 3995, 2494, 2086, 4234, 3697, 1897

intent (len: 2): job, day

• lower neighbours (len: 5): 168,105,172,110,155

upper neighbours (len: 2): 10,6

pattern: {'job': {'admin.': 0.25, 'blue-collar': 0.25, 'student': 0.12, 'unemployed': 0.12, 'management': 0.12, 'unknown': 0.12}, 'day': (7.97, 19.05, 24.54)}

• level: 2

mean y_true: 0.12mean y pred: 0.0

• metrics: {'accuracy': 0.89, 'precision': 0.0, 'recall': 0.0}

Модель недопредсказывает значение в нём (y_pred<y_true), при этом она ориентируется в основном на признаки job и day. При этом значения day оказались второй декадой месяца, а значения job - офисный рабочий.

Shap

Бинаризация

Попробуем бинаризовать значения Shap. Будем считать, что атрибут m "хорошо" влияет на объект g, если соответствующее Shap значение больше 0.75 квантили от всех значений Shap. Аналогично, атрибут m "плохо" влияет на объект g, если соответсвующее Shap значение меньше 0.25 квантили от всех значений Shap.

Так как в этом случае в формальном контекстве получается 16*2=32 признака, а это сильно замедляет расчёт концептов, можно брать лишь самые значимые признаки в модели, благо Shap может их достаточно надёжно отранжировать.

Выберем первые 3 признака

Общая решётка

Bank DS Concept Lattice (Binarized Shap)

Первый уровень решётки

- Положение слева-направо так же предсказание модели (от 0 до 1)
- Цвет качество предсказания внутри Понятия

Из увеличенного графика видно, что когда duration влияет негативно - качество модели хорошее, а когда позитивно - плохое. И в целом модель гораздо лучше предсказывает отрицательный класс (левая половина решётки).

Рассмотрим одно из плохопредсказанных понятий

Concept 17

extent (len: 159): 3660, 243, 567, 231,...
intent (len: 2): monthpos, durationpos

lower neighbours (len: 2): 25,21upper neighbours (len: 2): 1,3

pattern: {'duration': (682.44, 796.16, 909.88), 'month': {'aug': 0.5, 'mar': 0.5}}

• level: 2

mean y_true: 0.33mean y_pred: 0.32

metrics: {'accuracy': 0.74, 'precision': 0.61, 'recall': 0.6}

Интересно, что в среднем предсказания модели правильны (y_true=y_pred), но в деталях по объектам модель ошибается.

В данном Понятии модель даёт положительные предсказания, потому что видит "хорошие" month и duration. Значение duration действительно хорошее: если оператор говорит с клиентом дольше 680 секунд ~ 11 минут, значит он его заинтересовал). Август и март - возможно на самом деле хорошие месяцы для заключения депозита.

Чтобы лучше разобраться в проблеме, построим решётку только на объектах, входящих в Concept 17

Bank DS Concept Lattice (Binarized Shap)

Тут действительно очень много синих (некачественных) Понятий.

Для разнобразия посмотрим на хорошо предсказываемый концепт.

Concept 14

- extent (len: 11): 3660, 1829, 243, 567, 231, 4127, 4138, 2412, 775, 1160, 1775
- intent (len: 4): contactneg, monthpos, durationpos, poutcomeneg
- new extent (len: 2): 1829,3660
- new intent (len: 1): contact neg
- lower neighbours (len: 4): 27,28,45,39
- upper neighbours (len: 1): 1
- pattern: {'contact': {'cellular': 0.44, 'unknown': 0.33, 'telephone': 0.22}, 'poutcome': {'success': 0.33, 'unknown': 0.33, 'failure': 0.22, 'other': 0.11}, 'month': {'aug': 0.11, 'apr': 0.11, 'dec': 0.11, 'oct': 0.11, 'may': 0.11, 'jul': 0.11, 'mar': 0.11, 'jan': 0.11, 'feb': 0.11}}
- level: 2
- mean y_true: 0.0mean y_pred: 0.0
- metrics: {'accuracy': 1.0, 'precision': 0.0, 'recall': 0.0}

Модель видит, что звонок в этом Понятии был продолжительным и в нужный месяц, но через плохой contact - сотовый телефон и предыдущие сделки с данными клиентами далеко не всегда заканчивались успешно.

В случае с FCA мы можем посмотреть на группу похожих клиентов (строк) и увидеть определённые зависимости в предсказании, в то время как чистый Shap позволяет смотреть либо только на все данные, либо только на конкретную строку.

Pattern Structures

Было бы интересно смотреть не просто на "хорошие" и "плохие" значения признаков, а на то, как именно они влияют? Насколько сильно численно?

Так как все значения Shap имеют одну размерность и лежат в \mathbb{R} , можно построить одно универсальное правило узорчатых структур.

В моём случае прайм объектов - набор атрибутов, значения которых внутри заданных объектов отличаются не больше, чем на $\langle eps \rangle$. Т.е. прайм объектов - набор атрибутов, в которых эти объекты ведут себя похоже.

Это самый последний мой эксперимент, поэтому с визуализацию надо ещё доработать и привести к общему виду.

Посмотрим на самое общее Понятие

Concept 0

• len ext: 1131

intent:

• job: 0.01

education: 0.01default: 0.00housing: -0.00

loan: 0.00day: 0.00

· education:

secondary: 50%,tertiary: 31%,primary: 15%,

• unknown: 4%

• job:

management: 22%,
blue-collar: 20%,
technician: 18%,
admin.: 10%,
services: 7%,

retired: 5%,
self-employed: 5%,
entrepreneur: 4%,
housemaid: 3%,
unemployed: 2%,

student: 2%,unknown: 1%

housing: yes: 56%, no: 44%day: (1.00, 15.87, 31.00)default: no: 98%, yes: 2%loan: no: 84%, yes: 16%

Признаки job, education, default, housing, loan, day почти никак не влияют на предсказания всех объектов

Concept 1

• len ext: 36

· intent:

duration: 0.91month: -0.40contact: -0.50poutcome: -0.16

• duration: (31.00, 207.33, 897.00)

· contact:

cellular: 64%,unknown: 22%,telephone: 14%

В данном Понятии очень большую роль оказывает длительность звонка duration, но предсказние тянут вниз month, contact и poutcome. Зная среднее предсказание модели expected value, можно определить вероятность сделки для данного Понятия по версии модели:

$$prob = sigmoid(0.91 - 0.4 - 0.5 - 0.16 + expected value)$$