SOLVED EXERCISE 9.1

 Prove that, only the diameters of a circle are the intersecting chords which bisect each other.

Given: A circle having diameters AC and

BD which passes through centre O.

To Prove: Diameters AC and BD bisect

each other.

Proof:

Statements .		Reasons
$\overline{OA} \cong \overline{OC}$	(j)	6
Similarly m $\overrightarrow{OC} \cong \overrightarrow{OD}$	(ii)	Common
$m\overline{OA} = m\overline{OD}$	(iii)	
From (i), (ii) and (iii), we have		radii of the same circle
$\overline{\text{mOA}} = \overline{\text{mOB}} = \overline{\text{mOC}} = \overline{\text{OD}}$		

Hence AC and BD are intersecting chords which bisect each other.

Two chords of a circle do not pass through the centre. Prove that they cannot bisect each other,

Given:

A circle with centre O having two chords \overline{AB} and \overline{CD}

M is not the mid-point of chords AB and CD

Construction:

Join O to P and Q such that $\overrightarrow{OP} \perp \overrightarrow{AB}$ and $\overrightarrow{OQ} \perp \overrightarrow{CD}$

Statements	Reasons	
O is the centre of the circle with $\overrightarrow{OP} \perp \overrightarrow{AB}$	Construction	
Thus OP 1 AB		
Now point M lies between P and B. Therefore M is not the midpoint of AB.		
Hence AB and CD cannot bisect each other.		

3. If the length of the chord AB = 8cm. Its distance from the centre is 3 cm, then measure the diameter of such circle.

Given:

mAB = 8cm, mOE = 3cm

Required:

to find the length of diameter

i.e., mCD = ?

Construction: Join O to A and E.

Proof:

Statements	Reasons
Ιη Δ ΑΕΟ	$m\overline{AO} = m\overline{OC} = m\overline{OD} = 5cm$
$(AO)^2 = \overline{AE}^2 + \overline{EO}^2$	
$\left[1/\frac{1}{12}\right]^{\frac{1}{2}}$	$\Rightarrow \overline{CD} = \overline{CO} + \overline{mOD}$
$= \left[\frac{1}{2}\left(\overline{AB}\right)\right]^2 + \left(3\right)^2$	= 5cm + 5cm
ر ای	= 10cm
$= \left[\frac{1}{2} \times 8\right]^2 + 9$	
	Hence
$= (4)^2 + 9$	
= 16 + 9 = 25cm	Diameter = 10cm
$\Rightarrow \overline{AO} = \sqrt{25} = 45 \text{cm}$	

4. Calculate the length of a chord which stands at a distance 5cm from the centre of a circle whose radius is 9cm.

Given:

$$m\overline{OA} = m\overline{OB} = 8cm$$
.

$$m\overline{OD} = 5cm$$

Required:

$$m\overline{AB} = ?$$

Proof:

Statements	Reasons
In Δ OAD.	
$m \overline{OA}^2 = m \overline{OD}^2 + m \overline{AD}^2$	
$m \overline{OA}^2 - m \overline{OD}^2 = m \overline{AD}^2$	$\therefore AD = \frac{1}{2} \overline{AB}$
$9^2 - 5^2 = \left[\frac{1}{2} m \left(\overline{AB}\right)\right]^2$	
$\left[\frac{1}{2}\mathrm{m}\left(\overline{\mathrm{AB}}\right)\right]^2 = 81 - 25$	
$\frac{1}{4} m \left(\overline{AB} \right)^2 = 56$	
$\Rightarrow m\overline{AB}^2 = 56 \times 4 = 224$	
$AB = \sqrt{224} 14.97 \text{cm}$	

THEOREM 4

9.1 (iv) If two chords of a circle are congruent then they will be equidistant from the centre.

Given:

 \overrightarrow{AB} and \overrightarrow{CD} are two equal chords of a circle with centre at O. So that $\overrightarrow{OH} \perp \overrightarrow{AB}$ and $\overrightarrow{UK} \perp \overrightarrow{CD}$.

To prove:

 $m \overline{OH} = m \overline{OK}$

Construction:

Join O with A and O with C So that we have \angle rt Δ^t OAH and OCX.

Statements	Reasons
OH bisects chord AB	OH ⊥ AB (By Theorem 3)
i.e., $m \overline{AH} = \frac{1}{2} m \overline{AB}$ (i) Similarly \overline{OK} bisects chord \overline{CD}	OK ⊥ CD (By Theorem 3)
i.e., $m\overline{CK} = \frac{1}{2}m\overline{CD}$ (ii)	
But $m \overline{AB} = m \overline{CD}$ (iii)	Given
Hence $m \overline{AH} = m \overline{CK}$ (iv)	Using (i), (ii)& (iii)
Now in $\angle rt \Delta'$ OAH \leftrightarrow OCK	Given $\overrightarrow{OH} \perp \overrightarrow{AB}$ and $OK \perp \overrightarrow{CD}$ Radii of the same circle
hyp \overrightarrow{OA} = hyp \overrightarrow{OC}	Radii of the same circle

Already proved in (iv)
H. S postulate

THEOREM 5

9.1 (v) Two chords of a circle which are equidistant from the centre, are congruent.

' Given:

 \Rightarrow

 \overrightarrow{AB} and \overrightarrow{CD} are two chords of a circle with centre at O. $\overrightarrow{OH} \perp \overrightarrow{AB}$ and $\overrightarrow{OK} \perp \overrightarrow{CD}$, so that m $\overrightarrow{UH} = \overrightarrow{mOK}$

To prove:

 $m\overline{AB} = m\overline{CD}$

Construction:

Join A and C with O. So that we can form $\angle rt \ \Delta^s$ OAH and OCK.

Proof:

Statements		Reasons
In ∠rt Δ¹ OAH ↔ OCK.		
$\frac{1}{\text{hyp OA}} = \text{hyp OC}$		Radii of the same circle.
$m\overline{OH} = m\overline{OK}$		Given
ΔO AH ≅ Δ OCK		II.S Postulate
So $m\overline{AH} = mCK$	(i)	
But $m\overline{AH} = \frac{1}{2} m\overline{AB}$	(ii)	OH 1 chord AB (Given)
Similarly $m\overline{CK} = \frac{1}{2} m\overline{CD}$	(iii)	OK ⊥ chord CD (Given)
Since $m \overline{AH} = m \overline{CK}$		Already proved in (i)
$\frac{1}{2} \text{ m } \overline{AB} = \text{m } \overline{CD}$		Using (ii)& (iii)
or mAB = mCD		

Example:

Prove that the largest chord in a circle is the diameter.

Given:

 \overrightarrow{AB} is a chord and \overrightarrow{CD} is the diameter of a circle with centre point O.

To prove:

If \overrightarrow{AB} and \overrightarrow{CD} are distinct, then $\overrightarrow{mCD} = \overrightarrow{mAB}$.

Construction:

Join O with A and 0 with B then form a AOAB.

Proof:

Sum of two sides of a triangle is greater than its third side.

$$\ln \Delta OAS \Rightarrow m \overline{OA} + m \overline{OB} > m \overline{AB}$$
 ... (i)

But \overline{OA} and \overline{OB} are the radii of the same circle with centre O.

So that
$$m \overrightarrow{OA} + m \overrightarrow{OB} = m \overrightarrow{CD}$$

 $\Rightarrow \qquad \text{Diameter } \overline{\text{CD}} > \text{chord } \overline{\text{AB}} \qquad \qquad \text{using (i) \& (ii)}.$

Hence, diameter CD is greater than any other chord drawn in the circle.

SOLVED EXERCISE 9.2

1. Two equal chords of a circle intersect, show that the segments of the one are equal corresponding to the segments of the other.

Given:

In a circle with radius O, we

have

$$\overline{MAB} = \overline{MCD}$$

To Prove:

$$\overline{AB} = \overline{CD}$$

Construction:

Join O to A and D

Because \overrightarrow{AB} and \overrightarrow{CD} intersect each other, so $\overrightarrow{MAB} = \overrightarrow{AP} + \overrightarrow{BP}$ and $\overrightarrow{MCD} = \overrightarrow{MCP} + \overrightarrow{MPD}$ $\overrightarrow{AP} = \overrightarrow{MCP}$ and $\overrightarrow{MPB} = \overrightarrow{MPP}$ So $\overrightarrow{MAB} = \overrightarrow{MCP}$

So m
$$\overline{AB} = m \overline{CP}$$

Hence proved