CS21 Decidability and Tractability

Lecture 25 March 7, 2014

March 7, 2014

CS21 Lecture 25

Outline

- "Challenges to the (extended) Church-Turing Thesis"
 - randomized computation
 - quantum computation

March 7, 2014

CS21 Lecture 25

Challenges to the extended Church-Turing thesis

Extended Church-Turing Thesis

 the belief that TMs formalize our intuitive notion of an efficient algorithm is:

The "extended" Church-Turing Thesis

everything we can compute in time t(n) on a physical computer can be computed on a Turing Machine in time t(n)^{O(1)} (polynomial slowdown)

· randomized computation challenges this belief

March 7, 2014

CS21 Lecture 25

Randomness in computation

- · Example of the power of randomness
- Randomized complexity classes

March 7, 2014

CS21 Lecture 25

Communication complexity

two parties: Alice and Bob function $f:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ Alice holds $x \in \{0,1\}^n$; Bob holds $y \in \{0,1\}^n$

- Goal: compute f(x, y) while communicating as few bits as possible between Alice and Bob
- count number of bits exchanged (computation free)
- at each step: one party sends bits that are a function of held input and received bits so far

March 7, 2014

CS21 Lecture 25

Communication complexity

· simple function (equality):

$$EQ(x, y) = 1 \text{ iff } x = y$$

- · simple protocol:
 - Alice sends x to Bob (n bits)
 - Bob sends EQ(x, y) to Alice (1 bit)
 - total: n + 1 bits
 - (works for any predicate f)

March 7, 2014

CS21 Lecture 25

Communication complexity

- · Can we do better?
 - deterministic protocol?
 - probabilistic protocol?
 - at each step: one party sends bits that are a function of held input and received bits so far and the result of some coin tosses
 - required to output f(x, y) with high probability over all coin tosses

March 7, 2014 CS21 Lecture 25

Communication complexity - at end of protocol involving k bits of communication, matrix is partitioned into at most 2^k combinatorial rectangles - bits sent in protocol are the same for every input (x, y) in given rectangle - conclude: f(x,y) must be constant on each rectangle

Communication complexity

 $\begin{array}{c|c} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$

- any partition into combinatorial rectangles with constant f(x,y) must have at least 2ⁿ + 1 rectangles
- protocol that exchanges ≤ n bits can only create 2ⁿ rectangles, so must exchange at least n+1 bits.

March 7, 2014 CS21 Lecture 25

Communication complexity

- · Can we do better?
 - deterministic protocol?
 - probabilistic protocol?
 - at each step: one party sends bits that are a function of held input and received bits so far and the result of some coin tosses
 - required to output f(x, y) with high probability over all coin tosses

March 7, 2014 CS21 Lecture 25 14

Communication complexity

- protocol for EQ employing randomness?
 - Alice picks random prime p in {1...4n²}, sends:
 - p
 - (x mod p)
 - Bob sends:
 - (y mod p)
 - players output 1 if and only if:

 $(x \mod p) = (y \mod p)$

March 7, 2014 CS21 Lecture 25 15

Communication complexity

- O(log n) bits exchanged
- if x = y, always correct
- if $x \neq y$, incorrect if and only if:

p divides |x - y|

- -# primes in range is ≥ 2n
- -# primes dividing |x y| is ≤ n
- probability incorrect ≤ 1/2

Randomness gives an exponential advantage!!

March 7, 2014 CS21 Lecture 25 16

Communication complexity

two parties: Alice and Bob function $f:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ Alice holds $x \in \{0,1\}^n$; Bob holds $y \in \{0,1\}^n$

 Goal: compute f(x, y) while communicating as few bits as possible between Alice and Bob

Example: EQ(x, y) = 1 iff x = y

- Deterministic protocol: no fewer than n+1 bits
- · Randomized protocol: O(log n) bits

March 7, 2014 CS21 Lecture 25 17

Extended Church-Turing Thesis

· Common to insert "probabilistic":

The "extended" Church-Turing Thesis

everything we can compute in time t(n) on a physical computer can be computed on a *probabilistic* Turing Machine in time t(n)^{O(1)} (polynomial slowdown)

March 7, 2014 CS21 Lecture 25

Randomized complexity classes · model: probabilistic Turing Machine - deterministic TM with additional read-only tape containing "coin flips" input tape 0 1 1 0 0 1 1 1 0 1 0 0 ... finite read/write head control q_0 read head 0 1 1 0 0 1 1 1 0 1 0 0 ... March 7, 2014 CS21 Lecture 25

```
Randomized complexity classes
• RP (Random Polynomial-time)
   -L \in \mathbf{RP} if there is a p.p.t. TM M:
               x \in L \Rightarrow Pr_v[M(x,y) \text{ accepts}] \ge \frac{1}{2}
               x \notin L \Rightarrow Pr_v[M(x,y) \text{ rejects}] = 1
• coRP (<u>complement of Random Polynomial-time</u>)
   -L \in coRP if there is a p.p.t. TM M:
               x \in L \Rightarrow Pr_v[M(x,y) \text{ accepts}] = 1
               x \notin L \Rightarrow Pr_v[M(x,y) \text{ rejects}] \ge \frac{1}{2}
           "p.p.t" = probabilistic polynomial time
March 7, 2014
                            CS21 Lecture 25
                                                                  20
```

```
Randomized complexity classes
• BPP (Bounded-error Probabilistic Poly-time)
   - L ∈ BPP if there is a p.p.t. TM M:
              x \in L \Rightarrow Pr_{\nu}[M(x,y) \text{ accepts}] \ge 2/3
              x \notin L \Rightarrow Pr_v[M(x,y) \text{ rejects}] \ge 2/3
March 7, 2014
                          CS21 Lecture 25
                                                             21
```


