11. freiwillige Hausaufgabe - Logik

Abgabe: bis 10:30 am 03.02.2023 im ISIS-Kurs [WiSe 2022/23] Logik

Sei $\sigma = \{E\}$ eine Signatur mit einem zweistelligen Relationssymbol E.

Hausaufgabe 1

Die σ -Strukturen \mathcal{A} und \mathcal{B} sind durch die folgende Abbildung gegeben.

WiSe 2022/23

Stand: 23. Januar 2023

- (i) Bestimmen Sie das minimale $m \in \mathbb{N}$ für welches der Herausforderer eine Gewinnstrategie im Spiel $\mathfrak{G}_m(\mathcal{A},\mathcal{B})$ besitzt. Geben Sie eine entsprechende Gewinnstrategie für den Herausforderer an.
- (ii) Bestimmen Sie das maximale $n \in \mathbb{N}$ für welches die Duplikatorin eine Gewinnstrategie im Spiel $\mathfrak{G}_n(\mathcal{A},\mathcal{B})$ besitzt. Geben Sie eine entsprechende Gewinnstrategie für die Duplikatorin an.
- (iii) Geben Sie eine unterscheidende Formel für \mathcal{A} und \mathcal{B} mit minimalem Quantorenrang an.

Hausaufgabe 2

- (i) Zeigen oder widerlegen Sie: Die Klasse der vollständigen Graphen lässt sich in der Klasse der endlichen, zusammenhängenden Graphen $FO[\sigma]$ -definieren.
- (ii) Zeigen oder widerlegen Sie: Die Klasse der vollständigen, bipartiten Graphen lässt sich in der Klasse der endlichen, zusammenhängenden Graphen $FO[\sigma]$ -definieren.

Anmerkung: Siehe die Referenz für Graphen für die Definitionen von vollständigen und vollständigen, bipartiten Graphen.

Hausaufgabe 3

Sei $\tau = \{\leq\}$ eine Signatur mit dem zweistelligen Relationssymbol \leq . Wir definieren die Strukturen $\mathcal{N} = (\mathbb{N}, \leq^{\mathcal{N}})$, $\mathcal{Z} = (\mathbb{Z}, \leq^{\mathcal{Z}})$ und $\mathcal{Q} = (\mathbb{Q}, \leq^{\mathcal{Q}})$, wobei $\leq^{\mathcal{N}}, \leq^{\mathcal{Z}}$ und $\leq^{\mathcal{Q}}$ jeweils die übliche Kleiner-Gleich-Ordnung über dem Universum der Struktur ist.

- (i) Finden Sie das kleinste $m \in \mathbb{N}$, sodass der Herausforderer $\mathfrak{G}_m(\mathcal{N}, \mathcal{Z})$ gewinnt.
- (ii) Finden Sie das kleinste $m \in \mathbb{N}$, sodass der Herausforderer $\mathfrak{G}_m(\mathcal{Z}, \mathcal{Q})$ gewinnt.