Indian Institute of Technology Jodhpur MAL1010, Dec'21-Mar'22 Tutorial Sheet 7 (Practice Problems)

Find the volume of the solid in the following problems.

1. The solid lies between the planes perpendicular to the x-axis at x=0 and x=4. The cross-sections perpendicular to the axis on the interval $0 \le x \le 4$ are squares whose diagonals run from the parabola $y = -\sqrt{x}$ to the parabola $y = \sqrt{x}$.

- 2. The solid lies between planes perpendicular to the x-axis at x = -1 and x = 1. The crosssections perpendicular to the x-axis between these planes are squares whose bases run from the semicircle $y = -\sqrt{1-x^2}$ to the semicircle $y = \sqrt{1-x^2}$. Ans: $\frac{16}{3}$
- 3. The base of a solid is the region between the curve $y = 2\sqrt{\sin x}$ and the interval $[0,\pi]$ on the x-axis. The cross-sections perpendicular to the x-axis are equilateral triangles with bases running from x-axis to the given curve.
- 4. The solid lies between planes perpendicular to the y-axis at y=0 and y=2. The crosssections perpendicular to the y-axis are circular disks with diameters running from the y-axis to the parabola $x = \sqrt{5}y^2$. Ans: 8π
- 5. Find the volume of the solid generated by revolving regions bounded by the lines and given curves about the x-axis by Disk Method.
 - (i) $y = \sqrt{9 x^2}$, y = 0 (ii) $y = \sqrt{\cos x}$, $0 \le x \le \pi/2$, y = 0, x = 0 (iii) $y = \sec x$, y = 0, $x = -\pi/4$, $x = \pi/4$. Ans: (i) 36π , (ii) π , (iii) 2π .
- 6. Find the volume of the solid generated by revolving region about the given line.
 - (i) The region in the first quadrant bounded above by the line $y = \sqrt{2}$, below by the curve $y = \sec x \tan x$, and on the left by the y-axis, about the line $y = \sqrt{2}$. Ans: $\pi \left(\frac{\pi}{2} + 2\sqrt{2} - \frac{11}{3} \right)$
 - (ii) The region in the first quadrant bounded above by the line y=2, below by the curve $y=2\sin x,\ 0\leq x\leq \pi/2$, and on the left by the y-axis, about the line y=2. Ans: $\pi(3\pi-8)$
- 7. Find the volume of the solid generated by revolving the regions bounded by the lines and the given curves about the y-axis.
 - (i) The region enclosed by $x = \sqrt{\cos(\pi y/4)}$, $-2 \le y \le 0$, x = 0Ans: 4
 - (ii) $x = \sqrt{2y}/(y^2 + 1)$, x = 0, y = 1 Ans: $\pi/2$
- 8. Find the volume of the solid generated by revolving the regions bounded by the lines and curves about the x-axis by Washer Method. (i) $y=x^2+1,\ y=x+3$ Ans: $117\pi/5$ (ii) $y=\sec x,\ y=\tan x,\ x=0,\ x=1$ Ans: π
- 9. Find the volume of the solid generated by revolving each region about the y- axis.
 - (i) The region in the first quadrant bounded above by the parabola $y=x^2$, below by the x-axis, and on the right by the line x=2. Ans: 8π
 - (ii) The region in the first quadrant bounded on the left by the circle $x^2 + y^2 = 3$, on the right by the line $x = \sqrt{3}$, and above by the line $y = \sqrt{3}$. Ans: $\pi\sqrt{3}$

- 10. Find the volume of the solid generated by revolving each region about the given axis.
 - (i) The region in the first quadrant bounded above by the curve $y = x^2$, below by the x-axis, and on the right by the line x = 1, about the line x = -1. Ans: $7\pi/6$
 - (ii) The region in the second quadrant bounded above by the curve $y=-x^3$, below by the Ans: $3\pi/5$ x-axis, and on the left by the line x = -1, about the line x = -2.
- 11. Use the shell method to find the volume of the solids generated by revolving the regions bounded by the curves and lines given in below about the y-axis.
 - (i) y = x, y = -x/2, x = 2. Ans: 8π
 - (ii) $y = 2x 1, \ y = \sqrt{x}, \ x = 0.$ Ans: $7\pi/15$
 - (iii) $y = 3/(2\sqrt{x}), y = 0, x = 1, x = 4$ Ans: 14π
- 12. Use the shell method to find the volume of the solid generated by revolving the regions bounded by the curves and lines given in below about the x- axis.
 - (i) $x = \sqrt{y}, \ x = -y, \ y = 2$ Ans: $\frac{16\pi}{15}(3\sqrt{2} + 5)$ (ii) $x = y^2, \ x = -y, \ y = 2, \ y \ge 0$ Ans: $40\pi/3$ (iii) $y = x, \ y = 2x, \ y = 2$ Ans: $8\pi/3$
- 13. Compute the volume of the solid generated by revolving the triangular region bounded by the lines 2y = x + 4, y = x, x = 0 about
 - (i) the x-axis using the washer method. Ans: 16π
 - Ans: $32\pi/3$ (ii) the y-axis using the shell method.
 - (iii) the line x = 4 using the shell method. Ans: $64\pi/3$
 - (iv) the line y = 8 using the washer method. Ans: 48π