

	No /6.
° Geo a	metrically, an orthogonal Q is the product of a protation and reflection.
o proje	ection reduces the longth of a vector, orthonormal matrix preserves angles and longths.
	$\ Qx\ ^2 = x^{\frac{1}{2}}Q^{\frac{1}{2}}Qx = \ x\ ^2 \rightarrow \text{length conservation}.$
	$ \frac{\partial \Psi \mathcal{I}_{\mathcal{X}}}{(Q_{\mathcal{X}})^{T}(Q_{\mathcal{Y}})} = \frac{\mathcal{I}^{T}Q^{T}Q_{\mathcal{Y}}}{I} = \frac{\mathcal{I}^{T}Q}{I} \Rightarrow imper \text{ product or angle} \\ \underline{I} \qquad conservation. $
o for	any vector by 1939 $b = x_1 q_1 + x_2 q_2 + \cdots + x_n q_n \notin Q_X = b$
	$9_{i}^{7}b = x_{i}$ since $\begin{cases} 9_{i}^{7}9_{j} = 0, & i \neq j. \\ 1, & i \neq j. \end{cases}$
⇒↓	$= (q_1^T b) q_1 + \cdots + (q_n^T b) q_n$
Ь	$= Q \mathcal{I} \Rightarrow \mathcal{I} = Q^{T} b. = Q^{T} b$
	1-DD projection ento a line, $a = \frac{a^{T}b}{a^{T}a} \frac{a}{a}$
	for q_i , $\frac{q_i^T b}{q_i^T q_i} = (q_i^T b)q_i = \alpha_i q_i$, $(\alpha_i : projection of q_i)$

 $Q^{T} = Q^{T}$ \Rightarrow $QQ^{T} = I$. for square cases Remark 2. The rows are also orthonormal @ Rectangular Matrix with Orthonormal Columns. · for m>n; least square cases, Qx = b $\rightarrow Q^T Q \widehat{x} = Q^T b$: normal equation for least squares, $P = Q\hat{x}$ $\Rightarrow P = Q(Q^{T}Q)^{T}Q^{T}$ $QQ^{T}\hat{b}$ $y = Q\hat{x}$ $QQ^{T}\hat{b}$ $y = Q\hat{x}$ al > left - inverse. $b = (x, y, z) \rightarrow project ento (x-y) plane.$ [x3) $P = QQ^{T} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ [2] > x-4 plane. MOOKEUK

@ Gram - Schmidt Orthogonalization.

$$\beta = b - \frac{b^{T}a^{T}}{a^{T}a}a = b - (9^{T}b)q_{1} = (9^{T}b)q_{2}$$

$$b = (9^{T}b)9, + (3^{T}b)9,$$

$$C = c - [(9^{T}c)9] + (3^{T}c)93P$$

$$- (9^{T}c)9$$

$$C = \frac{3}{5} (9.7c) f_i$$

$$\hat{g}_{j} = \frac{A_{j}}{\|A_{j}\|} \rightarrow normalization$$

Ex 5) (9, 16) 9, = $C = C - (9^{T}c)9 - (9^{T}c)9$ Factorization A = QR $(9_{1}^{T}a_{1})9_{1}$ $(9_{1}^{T}a_{2})9_{1}$ $(9_{1}^{T}a_{3})9_{1}$ +(9,70,)9,+(9,70,)9,+ (9, 70,)93

MOOKEUK

→ 6 m	ear comb	inotia	of each	colum vec	tor.	
			[(9,Ta,)	(9,Ta2)	9,703	9 ^T an
			0	(9 ⁷ a2)	9.Ta3	
= 9	92 93	9 _n	0	0	93a;	
			;	0	Ģ	
L			L 0	Ó	Ò	9,0
U	Q. R					
					upper tria	ngular matrix.
9 Firmation	Spaces	ond	Fourier	Series (optional	topic).
9 Hunction	Spa(es	ond	hourier	Series (optimal	lop, ()
1 /	1		Innetic	m	*	
→ extend	vector	space To	######################################	space.	1 5 . 1	ion space.
> apply	Grom -	- Schmidt	Orthogo	ratization	To Junich	ion space.
4.0.1	2222					
Hilbert	opace.	IR [©] ≤DA	(0.	1) = 1 11	7/	.)
- J	dudo	a finita	lamath o	F R War	to 1	· ,) IVII < 00. Perval
	cinale i	motion i	detroed	in on	finite in	Perval.
	7 71	WIL JE WY 13	s ne sme o	1/1	JIII 10 111	(77700
o vector	. space	of H.I.	bert space	ι.		·
	1 12 1 11	, 1) <	11211 + 1	V2 < 1	∞ → a	$ddition \in \mathbb{R}^{\omega}$ for muftiplication
	11 0, 7 U					lar multiplication

MOOKEUK