

What is a Tree

- A tree is an abstract model of a hierarchical structure
- A tree T is a collection of nodes with nonlinear structure, called a *parent-child* relation
 - If nonempty, it has a special node, called the *root* of T, that has no parent
 - Each node v of T, except root, has a unique parent node w; every node with parent w is a child of w
- A unique *path* exists from the root to every other node.
- Applications:
 - Organization charts
 - File systems

Not a Tree

3

Tree Terminology

- Root: node without parent (A)
- □ **Internal node**: node with at least one child (A, B, C, F)
- External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Descendants of a node: child, grandchild, grand-grandchild, etc.
- Subtree: tree consisting of a node and its descendants
- Ordered tree: linear ordering defined for children of each node

Tree ADT

- We use positions to abstract nodes (same as node in tree)
- Generic methods:
 - integer size()
 - boolean isEmpty()
 - Iterator iterator()
 - Iterable positions()
- Accessor methods:
 - position root()
 - position parent(p)
 - Iterable children(p)

- Query methods:
 - boolean isInternal(p)
 - boolean isExternal(p)
 - boolean isRoot(p)
- Update method:
 - element replace (p, o)
- Additional update methods may be defined by data structures implementing the Tree ADT

5

Depth of a Node

- The depth of a node is the number of its ancestors, excluding itself
 - depth(A) = 0, depth(B) = 1, depth(J) = 3

```
Algorithm depth(T, v)

if T.isRoot(v)

return 0

else

return 1+depth(T, T.parent(v))
```

트리가 n 개의 노드로 구성되어 질 때, worst case는 모든 노드의 child 가 하나일 경우 O(n)이다.

Height of a Node

- □ The height(v) in a tree T is
 - If v is an external node, then height(v) = 0
 - Otherwise, height(v) = 1 + max. height of its children

```
Algorithm height(T, v)

if T.isExternal(v)

return \theta

else

h \leftarrow \theta

for each child w of v in T do

h \leftarrow max(h, height(T, w))

return 1+h
```


Height of a Tree

- The height of a tree T is the height of the root
- The height of a tree T is equal to the maximum depth of a external node of T

```
Algorithm height(T)
h \leftarrow 0
for each node v in T do
if T.isExternal(v) then
h \leftarrow max(h, depth(T, v))
return h
```


8

Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured document

Algorithm preOrder(v)
visit(v)
for each child w of v
preorder (w)

9

Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

Algorithm postOrder(v)
for each child w of v
postOrder (w)
visit(v)

UPDF WWW.UPDF.COM

Traversal

Figure 8.15: Partial game tree for Tic-Tac-Toe when ignoring symmetries; annotations denote the order in which positions are visited in a breadth-first tree traversal.

```
Algorithm breadthfirst():

Initialize queue Q to contain root()

while Q not empty \mathbf{do}

p = Q.\text{dequeue}() { p is the oldest entry in the queue } perform the "visit" action for position p

for each child c in children(p) \mathbf{do}

Q.\text{enqueue}(c) { add p's children to the end of the queue for later visits }
```

Code Fragment 8.14: Algorithm for performing a breadth-first traversal of a tree.

Table of Contents?

```
Electronics R'Us
   Paper
                            Paper
                                                          1 R&D
   Title
                               Title
                                                          2 Sales
   Abstract
                               Abstract
                                                             2.1 Domestic
   81
                               81
                                                             2.2 International
   §1.1
                                 §1.1
                                                               2.2.1 Canada
   §1.2
                                 §1.2
                                                               2.2.2 S. America
   82
   §2.1
                                 §2.1
   . . .
                                  . . .
   (a)
                            (b)
  /** Prints preorder representation of subtree of T rooted at p having depth d. */
   public static <E> void printPreorderIndent(Tree<E> T, Position<E> p, int d) {
    System.out.println(spaces(2*d) + p.getElement());
                                                       // indent based on d
    for (Position<E> c : T.children(p))
5
                                                        // child depth is d+1
      printPreorderIndent(T, c, d+1);
6 }
```

12

11

Computing Disk Space?

Code Fragment 8.25: Recursive computation of disk space for a tree. We assume that each tree element reports the local space used at that position.

13

Binary Trees

- A binary tree is an *ordered tree* with the following properties:
 - Each internal node has at most two children (exactly two for proper binary trees)
 - The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree

- Applications:
 - arithmetic expressions
 - decision processes
 - searching

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - internal nodes: operatorsexternal nodes: operands
- □ Example: arithmetic expression tree for the expression $(2 \times (a 1) + (3 \times b))$

15

Decision Tree

- Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions
- Example: dining decision

A Binary Tree and Levels

17

Full Binary Tree

□ **Full Binary Tree:** A binary tree in which all of the leaves are on the same level and every nonleaf node has two children

Complete Binary Tree

Complete Binary Tree: A binary tree that is either full or full through the next-to-last level, with the leaves on the last level as far to the left as possible

19

Examples of Different Types of Binary Trees

Properties of Binary Trees

- Notation
 - n number of nodes
 - n_a number of external nodes
 - n_i number of internal nodes
 - h height

- Properties:
 - $h+1 \le n \le 2^{h+1} -1$
 - $1 \le n_e \le 2^h$
 - $h \le n_i \le 2^h 1$
 - $log_2(n+1)-1 \le h \le (n-1)$

If proper trees:

- $2h+1 \le n \le 2^{h+1}-1$
- $h+1 \le n_e \le 2^h$
- $h \le n_i \le 2^h 1$
- $log_2(n+1)-1 \le h \le (n-1)/2$
- $n_{e}=n_{i}+1$

21

BinaryTree ADT

- The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
- Additional methods:
 - position left(p)
 - position right(p)
 - boolean hasLeft(p)
 - boolean hasRight(p)

 Update methods may be defined by data structures implementing the BinaryTree ADT

Inorder Traversal

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
 - x(v) = inorder rank of v
 - y(v) = depth of v

Algorithm in Order(v)

if hasLeft (v)
 inOrder (left (v))
visit(v)

 $\textbf{if } hasRight \ (v) \\$

 $inOrder\ (right\ (v))$

23

Tree Drawing?

Figure 8.19: An inorder drawing of a binary tree.

Print Arithmetic Expressions

- Specialization of an inorder traversal
 - print operand or operator when visiting node
 - print "(" before traversing left subtree
 - print ")" after traversing right subtree


```
Algorithm printExpression(v)

if hasLeft (v)

print("(")

inOrder (left(v))

print(v.element ())

if hasRight (v)

inOrder (right(v))

print (")")
```

$$((2 \times (a - 1)) + (3 \times b))$$

25

Evaluate Arithmetic Expressions

- Specialization of a postorder traversal
 - recursive method returning the value of a subtree
 - when visiting an internal node, combine the values of the subtrees

```
Algorithm evalExpr(v)

if isExternal (v)

return v.element ()

else

x \leftarrow evalExpr(leftChild (v))

y \leftarrow evalExpr(rightChild (v))

\Diamond \leftarrow operator stored at v

return x \Diamond y
```


Euler Tour Traversal

Three Binary Tree Traversals

Inorder: B F G H P R S T W Y Z Preorder: P F B H G S R Y T W Z Postorder: B G H F R W T Z Y S P

28

Linked Structure for Trees

- A node is represented by an object storing
 - Element
 - Parent node
 - Sequence of children nodes
- Node objects implement the Position ADT

Linked Structure for Binary Trees

Array-Based Representation of Binary Trees

 Nodes are stored in an array A G D Н 3 10 11 □ Node v is stored at A[rank(v)] 6 \blacksquare rank(root) = 1 Ε ■ if node is the left child of parent(node), $rank(node) = 2 \cdot rank(parent(node))$ ■ if node is the right child of parent(node), 10 $rank(node) = 2 \cdot rank(parent(node)) + 1$