Chapitre 34

Notions de géométrie affine et application aux systèmes linéaires

1 Hyperplans

Dans ce paragraphe, on se fixe un corps K et un K-espace vectoriel E.

1.1 Formes linéaires

Rappelons qu'une forme linéaire sur E est une application linéaire de E dans K, i.e. un élément de $E^* = \mathcal{L}(E, K)$.

Proposition 1.1

Une forme linéaire sur E est soit nulle, soit surjective, et dans ce dernier cas, elle est de rang 1.

Définition 1.2 (Formes coordonnées)

Soit $(e_i)_{i\in I}$ une base de E. Pour tout $i\in I$, on définit la forme coordonnée d'indice i e_i^* par

$$e_i^*(e_j) = \delta_{ij}.$$

Proposition 1.3

Soit $(e_i)_{i\in I}$ une base de E. Soit $x\in E$ et $i\in I$. Alors $e_i^*(x)$ est la coordonnée d'indice i de x, et $\operatorname{Ker}(e_i^*)$ est le sous-espace vectoriel des vecteurs dont la coordonnées d'indice i est nulle.

Remarque.

Attention : les formes coordonnées de chaque vecteur de la base dépendent non seulement du vecteur en question, mais aussi de toute la base. Par exemple, dans \mathbb{R}^2 , si (e_1, e_2) est la base canonique, et $(f_1, f_2) = ((1, 1), (0, 1))$, on a $e_2 = f_2$, mais $e_2^* \neq f_2^*$, car $(1, 1) = e_1 + e_2 = f_1$, donc $e_2^*((1, 1)) = 1$ et $f_2^*((1, 1)) = 0$.

1.2 Hyperplans

Définition 1.4 (Hyperplan)

Un hyperplan de E est le noyau d'une forme linéaire non nulle.

Proposition 1.5

Soit H un hyperplan de E, et D une droite vectorielle non contenue dans H. Alors $E = H \oplus D$.

Plus généralement, si $x \notin H$, alors $E = H \oplus \text{vect}(x)$.

Remarque.

Attention : si F est un sous-espace vectoriel , et (e_1, \ldots, e_{n-p}) est une famille libre telle que $e_i \notin F$ pour tout $i = 1, \ldots, n-p$, on n'a pas nécessairement $F \cap \text{vect}(e_1, \ldots, e_{n-p}) = \{0\}$.

Proposition 1.6

Soit H un sous-espace vectoriel de E. Alors H est un hyperplan de E si et seulement s'il existe une droite vectorielle D telle que $E = H \oplus D$.

Proposition 1.7

Deux formes linéaires sur E non nulles sont proportionnelles si et seulement si elles ont même noyau.

1.3 Hyperplans en dimension finie

Dans ce paragraphe, on suppose que E est de dimension finie n.

Proposition 1.8

Un sous-espace vectoriel H de E est un hyperplan si et seulement s'il est de dimension n-1.

Proposition 1.9 (Matrices des formes linéaires)

Les matrices des formes linéaires sur E sont les matrices lignes de longueur $\dim(E)$.

Proposition 1.10 (Équations d'hyperplan en dimension finie)

Soit H est un hyperplan de E, et $\mathcal{B} = (e_1, \ldots, e_n)$ une base de E. Il existe $(a_1, \ldots, a_n) \in K^n$, non tous nuls, tels que, si $x \in E$ et (x_1, \ldots, x_n) sont ses composantes dans \mathcal{B} , alors

$$x \in H \iff \sum_{i=1}^{n} a_i x_i = 0.$$

C'est une équation cartésienne de H dans la base $\mathcal{B}.$

Proposition 1.11

Deux équations d'un même hyperplan dans une même base sont proportionnelles. Réciproquement, deux hyperplans qui ont des équations dans une même base proportionnelles sont égaux.

Proposition 1.12 (Intersection d'un hyperplan et d'un sous-espace vectoriel)

Soit F un sous-espace vectoriel de E de dimension p, et H un hyperplan de E. Alors

- 1. Si $F \not\subset H$, $F \cap H$ est un sous-espace vectoriel de E de dimension p-1.
- 2. Sinon, $H \cap F = F$.

Proposition 1.13

Soit $m \in [0, n]$. Alors

- 1. L'intersection de m hyperplans est un sous-espace vectoriel de E de dimension au moins n-m.
- 2. Tout sous-espace vectoriel de E de dimension n-m est l'intersection de m hyperplans.

Remarque.

Cette proposition peut aussi se démontrer à l'aide des systèmes, cf. le dernier paragraphe.

2 Sous-espaces affines

Dans tout ce paragraphe, on fixe un corps K (\mathbb{R} ou \mathbb{C} en général), et un K-espace vectoriel E.

On notera les éléments de E avec des lettres latines majuscules lorqu'on les considère comme des points (par exemple A, B), et des lettres minuscules surmontées d'une flèche lorsqu'on les considère comme des vecteurs (par exemple \overrightarrow{u} , \overrightarrow{v}).

À tout moment vous devez vous souvenir de ce que vous faîtes naturellement dans le plan muni d'une origine O: vous avez des points, mais chacun de ces points est l'extrémité d'un vecteur d'origine O.

2.1 Généralités

Rappelons que si $x \in E$ et un sous-espace vectoriel de E, alors $x + G = \{x + u, u \in G\}$.

Lemme 2.1

Soient $A, A' \in E$ et F, F' des sous-espaces vectoriels de E.

- 1. On a $A + F = A + F' \iff F = F'$.
- 2. Pour tout $M \in A + F$, on a M + F = A + F.
- 3. On a $A + F = A' + F' \Longrightarrow F = F'$.

Définition 2.2 (Sous-espace affine)

Un sous-espace affine \mathcal{F} de E est un sous-ensemble de E du type A + F, où $A \in E$ et F est un sous-espace vectoriel de E. Le sous-espace vectoriel F (unique d'après le lemme) s'appelle la direction de \mathcal{F} , et \mathcal{F} est dirigé par F.

Remarque.

Le point A n'est pas unique.

Proposition 2.3

Soit \mathcal{F} un sous-espace affine de E dirigé par F. Pour tout $M \in \mathcal{F}$, on a

$$\mathcal{F} = M + F = \{M + \overrightarrow{u}, \overrightarrow{u} \in F\}.$$

Définition 2.4

Soient $A, B \in E$. On définit le vecteur \overrightarrow{AB} par $\overrightarrow{AB} = B - A$.

Remarque.

Ici, B - A signifie B + (-A) dans l'espace vectoriel E.

Proposition 2.5

Soient $A, B, C, M, \overrightarrow{u} \in E$. Alors

- 1. $\overrightarrow{AB} = \overrightarrow{0}$ si et seulement si A = B.
- 2. $\overrightarrow{BA} = -\overrightarrow{AB}$.
- 3. $B = A + \overrightarrow{x}$ si et seulement si $\overrightarrow{AB} = \overrightarrow{x}$.
- 4. Relation de Chasles : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.
- 5. On a $M = A + \overrightarrow{AM}$.

Proposition 2.6

Soit \mathcal{F} un sous-espace affine de E dirigé par un sous-espace vectoriel F de E, et $A \in \mathcal{F}$. Alors

- 1. $F = {\overrightarrow{AM}, M \in \mathcal{F}},$
- 2. Pour tout $M \in E$, $M \in \mathcal{F} \iff \overrightarrow{AM} \in F$.

Définition 2.7 (Hyperplan affine)

Un hyperplan affine de E est un sous-espace affine dont la direction est un hyperplan de E.

2.2 Translations

Définition 2.8 (Translation)

Soit $\overrightarrow{u} \in E$. La translation de vecteur \overrightarrow{u} , notée $t_{\overrightarrow{u}}$, est l'application

$$\begin{array}{cccc} t_{\overrightarrow{u}}: & E & \longrightarrow & E \\ & M & \longmapsto & M + \overrightarrow{u}. \end{array}$$

Remarque.

Une translation n'est pas une application linéaire, sauf la translation de vecteur nul, qui est alors id_E .

Proposition 2.9

Soient \overrightarrow{u} , $\overrightarrow{v} \in E$.

- 1. On a $t_{\overrightarrow{u}} \circ t_{\overrightarrow{v}} = t_{\overrightarrow{v}} \circ t_{\overrightarrow{u}} = t_{\overrightarrow{u} + \overrightarrow{v}}$.
- 2. Une translation est une bijection et $t_{\overrightarrow{u}}^{-1} = t_{-\overrightarrow{u}}$.

Proposition 2.10 (Image d'un sous-espace affine par une translation)

- 1. Soit F un sous-espace vectoriel de E et $\overrightarrow{u} \in F$. Alors $t_{\overrightarrow{u}}(F) = F$.
- 2. L'image d'un sous-espace affine par une translation est un sous-espace affine de même direction.
- 3. Reciproquement, deux sous-espaces affines de même direction sont images l'un de l'autre par une translation. En particulier, un sous-espace affine est l'image de sa direction par une translation.

2.3 Intersection

Proposition 2.11 (Intersection de sous-espaces affines)

L'intersection de deux sous-espaces affines de directions respectives F et G est soit vide, soit un sous-espace affine de direction $F \cap G$.

Proposition 2.12

Soient \mathcal{F} et \mathcal{G} deux sous-espaces affines de E de directions respectives F et G.

- 1. Si E = F + G, alors $\mathcal{F} \cap \mathcal{G} \neq \emptyset$.
- 2. Si $E = F \oplus G$, alors $\mathcal{F} \cap \mathcal{G}$ est réduit à un point.

2.4 Repère affine

Dans ce paragraphe, on suppose que E est de dimension finie n.

Définition 2.13 (Repère affine)

Un repère affine de E est un (n+1)-uplet $(\Omega, \overrightarrow{e}_1, \ldots, \overrightarrow{e}_n)$, où Ω est un point de E, et (e_1, \ldots, e_n) une base de E.

Définition 2.14 (Coordonnées dans un repère affine)

Soit $\mathcal{R} = (\Omega, \overrightarrow{e}_1, \dots, \overrightarrow{e}_n)$ un repère affine de E, et M un point de E. Les coordonnées de M dans le repère \mathcal{R} sont des scalaires $a_1, \dots, a_n \in K$ tels que

$$\overrightarrow{\Omega M} = \sum_{k=1}^{n} a_k \overrightarrow{e}_k.$$

Proposition 2.15 (Unicité des coordonnées dans un repère)

Étant donné un repère \mathcal{R} de E, tout point M admet un et un seul n-uplet de coordonnées dans \mathcal{R} .

2.5 Distance à un hyperplan affine

Dans ce paragraphe, on fixe un espace vectoriel euclidien de dimension n.

Définition 2.16 (Repère orthonormal)

Un repère orthonormal de E est un repère (Ω, \mathcal{B}) où \mathcal{B} est une base orthonormale de E.

Définition 2.17 (Vecteur normal à un hyperplan affine)

Soit \mathcal{H} un hyperplan affine de E. Un vecteur normal à \mathcal{H} est un vecteur orthogonal à la direction de \mathcal{H} .

Proposition 2.18 (Équation d'un hyperplan affine dans un ron)

Soient $\mathcal{R} = (\Omega, \overrightarrow{e}_1, \dots, \overrightarrow{e}_n)$ un repère orthonormal de E, \mathcal{H} un hyperplan affine de E, et $(a_1, \dots, a_n) \in \mathbb{R}^n$ avec $(a_1, \dots, a_n) \neq (0, \dots, 0)$. Alors \mathcal{H} admet dans \mathcal{R} une équation de la forme

$$\sum_{k=1}^{n} a_k x_k = \lambda, \ \lambda \in \mathbb{R},$$

si et seulement si le vecteur $\sum_{k=1}^{n} a_k \overrightarrow{e}_k$ est un vecteur normal à \mathcal{H} .

Définition 2.19 (Distance à un hyperplan affine)

Soit \mathcal{H} un hyperplan affine de E, et M un point de E. La distance de M à \mathcal{H} est le réel $\min_{N \in \mathcal{H}} \left\| \overrightarrow{MN} \right\|$.

Proposition 2.20 (Distance à un hyperplan affine)

Soit \mathcal{H} un hyperplan affine passant par A, et \overrightarrow{n} un vecteur normal unitaire à \mathcal{H} . Soit M un point de E. Alors

$$d(M, \mathcal{H}) = \left| \overrightarrow{AM} \cdot \overrightarrow{n} \right|.$$

Corollaire 2.21

Soient \mathcal{R} un repère orthonormal de E, \mathcal{H} un hyperplan affine de E, et

$$\sum_{k=1}^{n} a_k x_k = \lambda$$

une équation de \mathcal{H} . Alors pour tout M de E de coordonnées (x_1, \ldots, x_n) dans \mathcal{R} , on a

$$d(M, \mathcal{H}) = \frac{\left| \sum_{k=1}^{n} a_k x_k - \lambda \right|}{\sqrt{\sum_{k=1}^{n} a_k^2}}.$$

3 Systèmes linéaires

On fixe dans ce paragraphe deux entiers $n, p \in \mathbb{N}^*$, $A \in \mathcal{M}_{n,p}(K)$, $r = \operatorname{rang}(A)$, $b = (b_1, \dots, b_n) \in K^n$ et

$$B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \in \mathcal{M}_{n,1}(K).$$

Définition 3.1 (Système linéaire)

1. Le système à n lignes et p inconnues de matrice A et de second membre B est le système

(S):
$$\begin{cases} a_{11}x_1 + \dots + a_{1p}x_p = b_1 \\ \vdots \\ a_{n1}x_1 + \dots + a_{np}x_p = b_n \end{cases}$$

d'inconnue $(x_1, \ldots, x_p) \in K^p$.

- 2. Le système est homogène si B = 0.
- 3. Le système homogène associé (S_0) est le système obtenu en remplaçant B par 0.
- 4. Le rang du système est le rang de A.
- 5. Le système est *compatible* s'il admet au moins une solution.

Remarque.

Rappelons que deux systèmes linéaires sont équivalents s'ils admettent même ensemble de solutions.

Proposition 3.2 (Différentes façons d'interpréter un système)

On fixe $x = (x_1, \dots, x_p) \in K^p$.

1. x est une solution de (S) si et seulement si AX = B, où

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \in \mathcal{M}_{p,1}(K).$$

- 2. Soit $u \in \mathcal{L}(K^p, K^n)$ l'application linéaire canoniquement associée à A. Alors x est une solution de (S) si et seulement si u(x) = b, et (S) est compatible si et seulement si $b \in \text{Im}(u)$.
- 3. Soient $C_1, \ldots, C_p \in K^n$ les colonnes de A vues comme vecteurs de K^n . Alors x est solution de (S) si et seulement si

$$\sum_{j=1}^{p} x_j C_j = b,$$

et (S) est compatible si et seulement si $b \in \text{vect}(C_1, \dots, C_p)$.

4. Soient $f_1, \ldots, f_n \in (K^p)^*$ les formes linéaires canoniquement associées aux lignes L_1, \ldots, L_n de A. Alors x est solution de (S) si et seulement si

$$\forall k = 1, \dots, n, f_k(x) = b_k.$$

Proposition 3.3 (Structure de l'ensemble des solutions)

- 1. L'ensemble G_0 des solutions de (S_0) est le noyau de u. C'est un sous-espace vectoriel de K^p de dimension p-r.
- 2. L'ensemble \mathcal{G} des solutions de (S) est soit vide, soit un sous-espace affine de K^p de direction G_0 , i.e. si $\mathcal{G} \neq \emptyset$, et si $x \in K^p$ est une solution de (S), alors

$$\mathcal{G} = x + G_0.$$

Définition 3.4 (Système de Cramer)

Le système (S) est de Cramer si n = p et s'il admet exactement une solution.

Proposition 3.5

- 1. Le système (S) est de Cramer si et seulement n = p et si A est inversible.
- 2. Si u est injective (resp. surjective, bijective), (S) admet au plus (resp. au moins, exactement) une solution.
- 3. Si les colonnes C_1, \ldots, C_p de A sont linéairement indépendantes, (S) admet au plus une solution.

Proposition 3.6

Le sous-espace vectoriel G_0 est l'intersection de r hyperplans de K^p .

Proposition 3.7

Si n = p et A est triangulaire, le système (S) est de Cramer si et seulement si les éléments de la diagonale de A sont tous non nuls.

Proposition 3.8

1. Si $r = n \leq p$, le système (S) est équivalent à un système du type

$$\begin{cases} a'_{11}x_{i_1} + \dots + a'_{1r}x_{i_r} + \dots + a'_{1p}x_{i_p} = b'_1 \\ \vdots \\ a'_{rr}x_{i_r} + \dots + a'_{rp}x_{i_p} = b'_r \end{cases},$$

avec

$$\forall i = 1, \dots, r, \ a'_{ii} \neq 0.$$

Le système est alors compatible et les solutions s'expriment en fonction des inconnues $x_{i_{r+1}}, \ldots, x_{i_p}$, qui deviennent des paramètres.

2. Si r < n, le système (S) est équivalent à un système du type

$$\begin{cases} a'_{11}x_{i_1} + \dots + a'_{1r}x_{i_r} + \dots + a'_{1p}x_{i_p} = b'_1 \\ \vdots \\ a'_{rr}x_{i_r} + \dots + a'_{rp}x_{i_p} = b'_r \\ 0 = b'_{r+1} \\ \vdots \\ 0 = b'_n \end{cases},$$

et le système est compatible si et seulement si $b'_{r+1} = \cdots = b'_n = 0$.

Remarques.

- 1. Cette démonstration est en fait ce qu'on fait systématiquement pour résoudre un système!
- 2. Les deux cas n'en font en fait qu'un : le cas 2, s'il ne finit pas avec une (ou des) ligne nulle, est en fait le cas 1. C'est un algorithme qui peut se programmer, et dont on peut donner l'expression en pseudo-langage.

4 Compétences

Pour résuidre un système, on utilisera impérativement la technique de manipulation sur les lignes. Pour un système à n équations et p inconnues, on procède ainsi :

- 1. On choisit tout d'abord une inconnue et une équation : cette équation est la ligne pivot. On place cette équation en premier, et également l'inconnue choisie, et ce dans toutes les équations. Le coefficient de cette inconnue est le pivot.
- 2. Pour chacune des équations restantes, on élimine l'inconnue choisie en faisant une combinaison linéaire entre cette équation et la ligne pivot.
- 3. Il reste alors l'équation pivot, et un système de n-1 équations à p-1 inconnues. On recommence alors le procédé avec ce système.
- 4. Finalement, il reste un système triangulaire, dans le sens où le nombre d'inconnues dans chaque équation diminue de 1 à chaque équation, ou passe à 0.
- S'il y a une ou plusieurs équations où toutes les inconuues ont été éliminées, et il ne reste que des seconds membres, ces équations deviennent des conditions nécessaires et suffisantes pour que le système admette des solutions. Si ces conditions sont vérifiées (ou on discute pour qu'elles le soient), on continue la résolution comme ce qui suit.
- Sinon, si dans une équation (la dernière!) il reste une et une seule inconnue, cette équation donne la valeur de l'inconnue on question, et on résout le système de proche en proche en remontant les équations.
- Si dans toutes les équations restantes il y a au moins deux inconnues, certaines inconnues vont jouer le rôle de paramètres, les autres s'exprimant en fonction de ces paramètres. On considère la dernière équation (*i.e.* celles qui a le moins d'inconnues), on exprime une des inconnues en fonctions des autres, qui deviennent les paramètres du système, et on continue la résolution de proche en proche, toutes les inconnues qui restent s'exprimeront en fonctions des paramètres.

Lorsque le système contient des paramètres, on ne fait pas de manipulations qui entraînent des cas particuliers : par exemple l'opération $L_1 \leftarrow L_1 + mL_2$ donnera un système équivaent même pour m=0, mais pas l'opération $L_1 \leftarrow mL_1 + L_2$.

Attention : on ne choisit jamais comme pivot un coefficient vun paramètre qui peut s'annuler. De même, on ne divise jamais une équation par un paramètre sans avoir au préalable étudié le cas où il est nul.