

# **Advanced Usage**

Thomas Stainer, Mark Gilbert, Greg Bailey, Olga Vilkhivskaya, Andrew Davis

FISPACT-II Workshop
October 23-25<sup>th</sup>, 2019, Manchester

## **Additional tools**



### Not just FISPACT-II, additional tools included:

- compress\_xs\_endf Turn nuclear data into binary format for quicker processing
- extract\_xs\_endf Get the energy dependent cross section per reaction
- listreactions Prints information about reaction data in ENDF-6 file
- makenuclideindex Create a new index file given nuclide names

#### Other tools online and open source:

- GitHub <a href="https://github.com/fispact/">https://github.com/fispact/</a>
  - Pypact python3 package to parse output file and other functions
  - SPECTRA-PKA primary knock-on atom spectra
  - FFM Fispact File Maker
- Docker premade container environments with nuclear data included
  - DockerHub https://hub.docker.com/u/fispact/





# Extract\_xs\_endf



Previously we compared different incident particle spectra and how this caused different collapsed cross section values. We showed the energy dependent cross section for Al 24 (n,p), but I did not show how to get this data.

FISPACT-II has a tool – extract\_xs\_endf, which will allow you to extract this data.

- Needs a lightweight files file
- No input file, just command line args
- Does need a fluxes file even if you just want the XS

Try the exercise in 'extended' folder, to understand how to use it and plot cross sections.

## Listreactions



FISPACT-II has a tool – listreactions, which will allow you to print available channels in ENDF-6 files.

- No input files, just two args:
  - 1. "n", "p", "d", "g", "t", "a"
  - 2. ENDF-6 file path

First argument is really redundant, since you can give it a proton file and input "g", but for correctness use the correct particle for that file.

# **Group Convert**



FISPACT-II uses binned (group-wise) data

### A major problem with this:

- Group structure of F-II nuclear data is usually 709 for most libraries
- Whilst 709 is generally pretty good, your flux must match this structure
- If you have a spectra in another structure how do you use it with F-II?

#### Two solutions:

- Make your own nuclear data for that group use NJOY, PREPRO (not recommended)
- Use group convert F-II keyword (GRPCONVERT)



# **Group Convert**



Input arbitrary group structure

- Lethargy =  $u = ln(E_0/E)$
- Output F-II known group structure
- Conversion can be done using equal lethargy or equal energy per bin method (CNVTYPE)
- Splits groups based on weighting each input and output energy group
- Not a separate tool use GRPCONVERT keyword in input file
- Requires a files file with:
  - ind\_nuc needed to run but not used
  - arb flux input flux file
  - fluxes output flux file

Recommended to use groups "close" to each other. But is possible to do 66 -> 1102 if desired. Results depend on how groups "line" up.

# **Group Convert**



Exercise 'grpconvert' shows conversion from group 66 to 709. Must compare using bin width (per unit energy) or unit lethargy.



# Try the exercise in 'extended' folder.





# **Gamma spectrum**



FISPACT-II also outputs the gamma spectrum rate (power) at each timestep.

- If you use ATOMS or SPECTRUM the data will be in the output file
- Default gamma group is <u>24-energy group structure</u>
- Use GROUP 1 to use <u>22-group 'Steiner' structure</u>
- If this is too coarse you can input custom bin boundaries with READGG



Try the exercise in 'advanced' folder, to understand how to use it and plot cross sections.

# **FISPACT-II Output Format**



- Fairly easy to look inside and read a value
- Hard to script and parse values
- Output files can be quite large (often > 5MB)
- Grep will only take you so far

#### Solutions:

- Write your own parser (not recommended)
- Use TAB files for easier parsing (limited output, limited precision)
- Use JSON output (standardised format, high precision, since v4 only)
- Use pypact (python3 package designed for parsing output)

#### **Exercise on each in advanced section**

## **FISPACT-II JSON**



### FISPACT-II 4.0 now has a JSON output

```
{
    "name" : "json",
    "description" : "I am JSON",
    "id" : 4,
    "value" : 4.3e+9
}
```

Simply use JSON keyword in control section
We did this in FNS Inconel example

```
<< ----set initial switches and get nuclear data--
--- >>
CLOBBER
JSON
GETXS 0
GETDECAY 0
FISPACT
* FNS 5 Minutes Inconel-600
```

## **Exercise JSON**





Left: initial

Right: final (excluding initial)

# **Exercise JSON (advanced) shows** how to do this



# **Exercise Pypact**



## Use pypact to make simple plots vs time



# **Exercise Pypact**



#### Chart of nuclides animation – less than 70 lines of code!



## **Multiflux**



- In most practical scenarios, energy spectra changes with time and space
- Important for burn-up calculations
- Need to allow for different spectra in inventory calculations, but...
  - One simulation/run = one collapse
- ⇒ When the spectra is changing, we must re-collapse
- Chain input1, output1 => input2, output2 =>...
- Can be difficult to parse output file
  - As mentioned before, a few options TAB, JSON, PYPACT
- We will use the TAB1 file to help automate this, since the input just needs to know the number of atoms

## Exercise multiflux (advanced) shows how to do this

# **Pathways**



- Nuclear data represents a major contributor to uncertainties in nuclear simulations
- There are known knowns, known unknowns, and unknown unknowns
- We can estimate the known unknowns via pathways analysis built into FISPACT-II
- Pathways also provides information on the path from parent to child
  - How much of X comes from Y?
  - What if we isotopically tailored X?

## Where did my 52V come from?



# **Pathways**



- Use the PATH keyword to specify a path of interest
- Use ROUTES keyword to specify a parent and child to find all routes
- Other keywords to related to pathways analysis
  - PATHRESET
  - LOOKAHEAD
  - UNCERTAINTY
  - ZERO
  - FISCHOSE
  - GENERIC



Exercise pathways (extended) shows how to use it

## **Summary and more**



- FISPACT-II is an advanced multigroup Multiphysics code capable of:
  - Providing radio properties per nuclide at times from 1e-20 to 1e20 seconds!
  - Associated gamma spectrum at time interval
  - Extract + plot XS data
  - Uncertainty analysis
  - Pathways analysis
- Open source tools in active development
- Many ways to analyse FISPACT-II output
  - GNU plotting built in
  - TAB files can make life easier but difficult hard to script
  - JSON output has many parsers ready C++, Fortran, Python, js, ...
  - Pypact
- Docker
  - Many images ready made with nuclear data inside
  - Self contained environment to run fispact easily
  - Nuclear data in binary format performance improvement

# **Coming soon**



There has been recent development into FISPACT-II to bring you:

#### A kernel with APIs

- No files
- C, C++, Fortran, and Python bindings
- Significant performance boost
- Makes some analysis trivial and fast

## A web application

- No installation required
- No command line
- No output file
- Dashboard approach
- Select and click!

I will give a demo of the API later....

