Московский физико-технический институт

Лабораторная работа

Опыт Милликена

выполнила студентка 653 группы ФФКЭ Карпова Татьяна

1 Цель работы

Определение заряда электрона методом масляных капель

2 В работе используются:

- плоский конденсатор в защитном кожухе
- осветитель
- измерительный микроскоп
- электростатический вольтметр
- электронный секундомер
- переключатель напряжения
- пульверизатор с маслом

3 Теоретические положения

Если заряд действительно существует, то заряд любого тела может принимать дискретную последовательность значений $\pm e, \pm 2e, \pm 3e...$

Рассматривая движение капли в гравитационном поле с учётом электростатических сил и сил трения:

$$q = 9\pi \sqrt{\frac{2\eta^3 h^3}{g\rho}} \frac{l(t_0 + t)}{V t_0^{3/2} t},\tag{1}$$

где $\eta=1,85*10^{-5}\Pi a^*c$ - вязкость воздуха, h=0.25 мм - расстояние, пройденное каплей, $\rho=898$ кг/см³ - вязкость масла, t_0 - время свободного падения капли, t - время подъёма капли в конденсаторе, V - напряжение на конденсаторе.

Погрешность измерения заряда определяется по формуле

$$\sigma_q = q\sqrt{\left(\frac{\sigma_V}{V}\right)^2 + \left(\frac{\sigma_t t_0}{t(t_0 + t)}\right)^2 + \left(\frac{\sigma_{t0}(3t + t_0)}{2t_0(t + t_0)}\right)^2}$$
 (2)

4 Экспериментальная установка

Рис. 1: Схема установки для измерения заряда электрона

Масло разбрызгивается пульверизатором. Капли масла попадают в конденсатор С через небольшое отверстие в верхней пластине. При этом часть из них вследствие трения о воздух приобретает случайный по знаку и модулю электрический заряд. Напряжение подаётся с регулируемого выпрямителя и измеряется вольтметром V. С помощью ключа К можно менять направление поля в конденсаторе, чтобы можно было работать как с положительно, так и с отрицательно заряженными каплями.

5 Ход работы

- 1. Подготовим установку к работе, проведём пробные измерения.
- 2. Для 14 капель будем замерять время её свободного падения t_0 и время подъёма в поле конденсатора t. Результаты занесём в таблицу 2

Таблица 1: Заряды капель

$q, 10^{-19}$ Кл	1.305	3.475	1.508	1.481	2.623	1.477	1.578
q/e	0.815	2.172	0.942	0.926	1.639	0.923	0.987
$q, 10^{-19}$ Кл	1.416	2.765	1.769	1.743	1.486	1.647	
q/e	0.885	1.728	1.106	1.090	0.929	1.029	

3. В отдельную таблицу 1 занесём получившиеся значения зарядов и отношения заряда капли к заряду электрона. Результаты представлены графически на рис. 2. Видим, что с учётом погрешности модуль заряда капель или равен заряду электрона, или в два раза его больше

Рис. 2: Отношение зарядов капель к заряду электрона

6 Вывод

В ходе работы методом масляных капель был экспериментально определён заряд электрона. Точность измерений на предложенной установке позволила определить эту величину с достаточно большой точностью. В основном исследовались капли с зарядами, по модулю равном элементарному. Было и несколько капель с зарядом, по модулю равным 2e - полученные для них значения заряда не совсем совпадают с конкретной величиной 2e, у двух капель он меньше (но больше e). Это можно объяснить тем, что при взаимодействии капель друг с другом заряды на них могут перераспределяться, и в течение одного опыта (примерно 5 минут) могло произойти такое взаимодействие и заряд капли изменился.

В целом, эксперимент можно считать удачным, так измеренные значения зарядов совпали с зарядом электрона, и значения погрешностей не слишком велики.

Таблица 2: Движение капель свободное и в поле конденсатора

t_0 , c	19.46	17.6	15.12	20.3	16.17	$\bar{t}_0 = 17.73$
t, c	6.75	4.77	3.74	2.47	1.97	$\bar{t} = 3.94$
	V = 540 кB	$q_1 = 1.305 * 10^{-19}$ K_{π}	$q_1/e = 0.815$	$\sigma_q = 0.06$	$\epsilon_q = 4.61\%$	
t_0 , c	36.28	26.35	28.3	24.55	29.34	$\bar{t}_0 = 28.964$
t, c	5.19	4.5	4.53	5.15	5.77	$\bar{t} = 5.028$
	V = 280 kB	$q_2 = 1.481 * 10^{-19}$ K_{II}	$q_2/e = 0.926$	$\sigma_q = 0.073$	$\epsilon_q = 4.95\%$	
t_0 , c	13.55	16.65	14.67	13.12	15.95	$\bar{t}_0 = 14,79$
t, c	7.33	7.14	7.44	6.75	6.55	$\bar{t} = 7.04$
	V = 150 кB	$q_3 = 3.475 * 10^{-19}$ $K\pi$	$q_3/e = 2.172$	$\sigma_q = 0.24$	$\epsilon_q = 7.03\%$	
t_0 , c	29.9	32.62	23.55	24.72	32.03	$\bar{t}_0 = 28.56$
t, c	9.6	8.55	9.87	10.19	7.99	$\bar{t} = 9.24$
	V = 170 кB	$q_4 = 1.508 * 10^{-19}$ K_{II}	$q_4/e = 0.942$	$\sigma_q = 0.09$	$\epsilon_q = 6.16\%$	
t_0 , c	26.67	26.9	27.73	25.86	26.55	$\bar{t}_0 = 26.74$
t, c	4.25	5.05	5.08	5.11	5.05	$\bar{t} = 4.91$
	V = 170 кB	$q_5 = 2.623 * 10^{-19}$ Кл	$q_5/e = 1.639$	$\sigma_q = 0.18$	$\epsilon_q = 6.83\%$	
t_0 , c	29.1	29.9	26.5	25.53	30.55	$\bar{t}_0 = 28.32$
t, c	7.37	11.3	9.54	10.21	9.46	$\bar{t} = 9.58$
	V = 170 кB	$q_6 = 1.477 * 10^{-19}$ K_{π}	$q_6/e = 0.923$	$\sigma_q = 0.09$	$\epsilon_q = 6.11\%$	
t_0 , c	32.2	30.65	32.52	32.18	29.34	$\bar{t}_0 = 31.38$
t, c	8.07	7.73	9.14	6.33	8.63	$\bar{t} = 7.98$
	V = 170 kB	$q_7 = 1.578 * 10^{-19}$ K_{JI}	$q_1/e = 0.987$	$\sigma_q = 0.01$	$\epsilon_q = 6.22\%$	
t_0 , c	32.36	38.14	35.1	36	33.44	$\bar{t}_0 = 35.01$
t, c	7.64	8.46	7.61	9.54	8.3	$\bar{t} = 8.31$
	V = 170 кB	$q_8 = 1.305 * 10^{-19}$ K_{II}	$q_8/e = 0.815$	$\sigma_q = 0.09$	$\epsilon_q = 6.21\%$	
t_0 , c	25.5	20.48	20.48	22.69	24.94	$\bar{t}_0 = 22.82$
t, c	5.44	4.94	5.22	5.4	5.18	$\bar{t} = 5.24$
	V = 170 kB	$q_9 = 2.765 * 10^{-19}$ K_{JI}	$q_9/e = 1.728$	$\sigma_q = 0.19$	$\epsilon_q = 10.63\%$	
t_0 , c	26.29	24.73	23.46	33.13	24.4	$\bar{t}_0 = 26.40$
t, c	8.63	8.5	8.2	7.73	7.35	$\bar{t} = 8.08$
	V = 170 kB	$q_{10} = 1.769 * 10^{-19}$ Кл	$q_{10}/e = 1.106$	$\sigma_q = 0.11$	$\epsilon_q = 6.21\%$	
t_0 , c	24.52	29.99	31.13	31.36	26.63	$\bar{t}_0 = 28.73$
t, c	7.65	7.52	8.5	7.53	6.88	$\bar{t} = 3.94$
	V = 170 кB	$q_{11} = 1.743 * 10^{-19}$ K_{II}	$q_{11}/e = 1.090$	$\sigma_q = 0.11$	$\epsilon_q = 6.26\%$	
t ₀ , c	35.43	27.54	35.85	25.79	36.01	$\bar{t}_0 = 32.12$
t, c	8.83	6.37	9.37	8.71	8.88	$\bar{t} = 8.43$
	V = 170 kB	$q_{12} = 1.486 * 10^{-19}$ Кл	$q_{12}/e = 0.929$	$\sigma_q = 0.09$	$\epsilon_q = 6.91\%$	
t_0 , c	27.63	30.94	28.31	27.62	30.81	$\bar{t}_0 = 29.06$
t, c	7.83	11.59	9.08	7.71	9.2	$\bar{t} = 9.08$
	V = 180 кB	$q_{13} = 1.647 * 10^{-19}$ K_{π}	$q_{13}/e = 1.029$	$\sigma_q = 0.10$	$\epsilon_q = 5.83\%$	