Topic and contents

UNSW, School of Mathematics and Statistics

MATH2089 - Numerical Methods

Week 03 - Nonlinear equations - II

- MATLAB M-files
 - nlog2n_newton.m nle1.m nle2.m

nthroot.m pltsin.m

(Numerical Methods)

(Numerical Methods)

WK 03 - Nonlinear equations - II

Newton's method

T2 2019 1 / 21 (Numerical Methods)

T2 2019 2 / 21

Newton's method

Geometrical interpretation

WK 03 - Nonlinear equations - II T2 2019 3 / 21

WK 03 - Nonlinear equations - II

T2 2019 4 / 21

Newton's method

• Requires function value f(x) and its derivative f'(x)

Newton's method

• First order Taylor series approximation of f about x_k gives

$$f(x) \approx f(x_k) + (x - x_k)f'(x_k).$$

- ullet Choose the next point x_{k+1} to make right-hand-side zero
- Newton's method

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

- Assumes that the first derivatives $f'(x_k) \neq 0$
- Fast rate of convergence in the neighbourhood of a simple zero.
- MATLAB M-file nlog2n_newton.m

(Numerical Methods)

WK 03 - Nonlinear equations - II

Newton's method

Example

Formulate Newton's method for solving $x \log_2(x) = c$ for some constant c > 0.

Example

Formulate Newton's method for finding the nroot of a>1 for some integer n>1.

(Numerical Methods)

WK 03 - Nonlinear equations - II

T2 2019

5 / 21

Secant method

Secant method cont.

Secant method

$$x_{k+1} = \frac{f(x_k)x_{k-1} - f(x_{k-1})x_k}{f(x_k) - f(x_{k-1})}$$

- Only requires function values
- Equivalent to approximating function by line through

$$(x_{k-1}, f(x_{k-1}))$$
, and $(x_k, f(x_k))$.

• Requires two starting points x_0 , x_1

(Numerical Methods) WK 03 - Nonlinear equations - II T2 2019 7 / 21

Secant method

Secant method

- Difficulties with Newton's method
 - need to calculate derivative f'(x)
 - possibly dividing by zero if $f'(x_k) = 0$ for some k.
- Derivatives
 - Symbolic algebra packages: MAPLE, MUPAD, MATHEMATICA
 - Automatic differentiation: computer program: input your program to evaluate f(x); output a program to evaluate the derivative f'(x)
 - Finite difference approximation using values at x_k , x_{k-1}

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}.$$

Secant condition

$$f'(x_k)(x_k - x_{k-1}) = f(x_k) - f(x_{k-1})$$

• Secant method Replace $f'(x_k)$ in Newton's method

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

(Numerical Methods)

WK 03 - Nonlinear equations - II

T2 2019

6 / 21

Secant method

(Numerical Methods)

WK 03 - Nonlinear equations - II

T2 2019 9 / 21

T2 2019

11 / 21

Convergence

Errors

- Errors $e_k = |x_k x^*|$.
- Convergence as $k \to \infty$: $x_k \to x^* \iff e_k \to 0$

Secant method

Iterative methods and convergence

- Iterative methods
 - Starting point x_1
 - Generate a sequence of iterates x_k , k = 2, 3, ...
 - Notation: $f_k \equiv f(x_k)$
- Convergence $\lim_{k \to \infty} x_k = x^* \quad \text{where} \quad f(x^*) = 0.$
- *f* is continuous then

$$\lim_{k \to \infty} f_k = 0$$

- Practical convergence: tolerances τ
 - $|x_k x^*| < \tau$

Don't know x^*

- $|x_{k+1} x_k| < \tau_x$ convergence $\Longrightarrow |x_{k+1} x_k| \to 0$
- Maximum number of iterations

(Numerical Methods)

WK 03 - Nonlinear equations - II

T2 2019 10 / 21

Rate of convergence

Rate of convergence

• How quickly does $x_k \to x^*$? (or equivalently $e_k \to 0$)

Definition (Order of convergence)

The order of convergence is the largest ν such that

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^{\nu}} < \infty$$

• Linear or first order convergence $\iff \nu = 1$

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|} = \beta, \text{ where } 0 < \beta < 1$$

- Rate constant $0 < \beta < 1$ is critical
- β close to 1, eg $\beta = 0.99$ very slow
- $\beta = 0.1 \Longrightarrow$ reduce error by 10 on each iteration.
- Super-linear convergence order $\iff 1 < \nu < 2$
- Quadratic convergence order $\iff \nu = 2$
- MATLAB M-file nlog2n.m

Rates of convergence II

- Convergence $e_k \to 0$
- Linear convergence, rate β (order of convergence $\nu = 1$)

$$\frac{e_{k+1}}{e_k} \to \beta \in (0,1), \qquad \frac{e_{k+1}}{(e_k)^2} \to \infty$$

• Super-linear convergence (order of convergence $1 < \nu < 2$)

$$\frac{e_{k+1}}{e_k} \to 0, \qquad \frac{e_{k+1}}{(e_k)^2} \to \infty$$

• Quadratic convergence (order of convergence $\nu=2$)

$$\frac{e_{k+1}}{e_k} \to 0, \qquad \frac{e_{k+1}}{(e_k)^2} \to K \in (0, \infty), \qquad \frac{e_{k+1}}{(e_k)^3} \to \infty$$

• Example: MATLAB nlog2n.m

(Numerical Methods)

WK 03 - Nonlinear equations - II

T2 2019 13 / 21

Rate of convergence

Convergence of Newton's method

Proposition (Convergence of Newton's method)

f twice continuously differentiable, $x^*: f(x^*) = 0$ and $f'(x^*) \neq 0$ x_1 sufficiently close to $x^* \Longrightarrow \text{Newton's method is well-defined and}$ converges to x^* with a second order rate of convergence.

Convergence of fixed point iteration

Proposition

- $q \in C([a,b])$ and $g(x) \in [a,b]$ for all $x \in [a,b] \Longrightarrow$ q has a fixed point in [a, b]
- $q \in C^1((a,b))$ and $\exists K : 0 < K < 1$ with $|q'(x)| < K \ \forall \ x \in (a,b)$ \implies fixed point iteration converges linearly for any $x_1 \in [a, b]$

(Numerical Methods)

WK 03 - Nonlinear equations - II

T2 2019 14 / 21

Rate of convergence

Convergence of secant method

Proposition

Suppose f is continuously differentiable, and f has a simple zero x^* , i.e. $f(x^*) = 0$ and $f'(x^*) \neq 0$.

- The secant method has a super-linear rate of convergence.
- Order of convergence is $\nu = (1 + \sqrt{5})/2 \approx 1.618$

(Numerical Methods) WK 03 - Nonlinear equations - II 15 / 21

Rate of convergence

Rates of convergence III

Example (Rate of convergence)

If $|x_1 - x^*| \approx 0.1$ estimate how many iterations it will take to get $|x_{k+1} - x^*| < 10^{-14}$ using a method

- linearly convergent with rate $\beta = 0.99$
- ② linearly convergent with rate $\beta = 0.1$
- quadratically convergent
- third order method

(Numerical Methods)

WK 03 - Nonlinear equations - II

T2 2019 17 / 21

Rate of convergence

Rate of convergence

Solution

(Numerical Methods)

WK 03 - Nonlinear equations - II

T2 2019

18 / 21

Rate of convergence

Example – rates of convergence cont

Solution

(Numerical Methods) WK 03 - Nonlinear equations - II T2 2019 19 / 21 (Numerical Methods) WK 03 - Nonlinear equations - II T2 2019

Rate of convergence

(Numerical Methods)

WK 03 - Nonlinear equations - II

T2 2019 21 / 21

