Урок 62 Прості механізми. Коефіцієнт корисної дії механізмів Мета уроку:

Навчальна. Навести приклади використання машин і механізмів, з'ясувати, що жоден з простих механізмів не дає виграшу в роботі («Золоте правило» механіки), ввести поняття коефіцієнта корисної дії (ККД) простого механізму, пояснити його фізичний зміст; ознайомити учнів із похилою площиною.

Розвивальна. Розвивати інтерес до вивчення фізики; показати учням практичну значущість набутих знань.

Виховна. Виховувати культуру оформлення задач.

Тип уроку: урок вивчення нового матеріалу.

Обладнання: похила площина, навчальна презентація, комп'ютер.

План уроку:

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

II. ПЕРЕВІРКА ДОМАШНЬОГО ЗАВДАННЯ

III. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

IV. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

V. ЗАКРІПЛЕННЯ НОВИХ ЗНАНЬ ТА ВМІНЬ

VI. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

VII. ДОМАШНЄ ЗАВДАННЯ

Хід уроку

І. ОРГАНІЗАЦІЙНИЙ ЕТАП ІІ.ПЕРЕВІРКА ДОМАШНЬОГО ЗАВДАННЯ ІІІ. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

Прості механізми — це трудівники зі «стажем роботи» понад 30 століть, проте вони анітрохи не «постаріли», адже зустрічаються на заводах і будівельних майданчиках, у транспортних засобах і побутових приладах. Ці пристрої дозволяють отримати виграш у силі.

А чи дають вони виграш у роботі?

IV. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

1. «Золоте правило» механіки

Ви вже знаєте, що важелі з різними плечима та рухомі блоки дозволяють отримати виграш у силі, однак такий виграш дається не «задарма», адже, отримавши перевагу в силі, ми обов'язково програємо у відстані.

Розглянемо рисунок.

$$\frac{d_2}{d_1} = \frac{h_2}{h_1}$$

$$\frac{F_1}{F_2} = \frac{h_2}{h_1} \implies F_1 h_1 = F_2 h_2 \implies A_1 = A_2$$

«Золоте правило» механіки:

Жоден із простих механізмів не дає виграшу в роботі: у скільки разів виграємо в силі, у стільки само разів програємо у відстані.

2. Похила площина

Окрім важеля та блока люди використовують похилу площину.

Похила площина — це будь-яка плоска поверхня, нахилена під деяким кутом до горизонту.

Використання похилої площини дає змогу отримати виграш у силі.

Властивість похилої площини давати виграш у силі та змінювати напрямок дії цієї сили застосовують у використанні *сходів, ескалаторів, конвеєрів, пандусів тощо*.

3. Різновиди похилої площини

Клин (полегшує рубання дров).

Гвинт. Нарізка гвинта — це похила площина, яку багато разів обернуто навколо циліндра. Принцип дії гвинта використовують у багатьох механізмах і пристроях: механічних домкратах і підйомниках, м'ясорубці, лещатах, струбцинах, свердлах, шурупах, різьбових кріпленнях тощо.

4. Коефіцієнт корисної дії

До цього часу ми розглядали ідеальні умови використання простих механізмів.

Припустимо, що треба підняти вантаж на певну висоту. Нерухомий блок можна уявити як рівноплечий важіль:

$$F = P$$

Однак на практиці застосовуючи нерухомий блок, доводиться додатково прикладати силу, щоб тягнути мотузку й подолати силу тертя в осі блока:

При підніманні вантажу на висоту h виконується корисна робота:

$$A_{\text{kop}} = Ph$$

А от *повна робота*, тобто робота, яку виконує вантажник обчислюється за формулою:

$$A_{\text{повна}} = Fh$$

Оскільки F > P, то:

Корисна робота, яку виконують за допомогою будь-якого механізму, завжди менша за повну роботу

$$A_{\text{кор}} < A_{\text{повна}}$$

Коефіцієнт корисної дії (ККД) механізму — це фізична величина, яка характеризує механізм і дорівнює відношенню корисної роботи до повної роботи.

$$\eta = \frac{A_{\text{кор}}}{A_{\text{повна}}} \cdot 100\%$$

V. ЗАКРІПЛЕННЯ НОВИХ ЗНАНЬ ТА ВМІНЬ

Розв'язування задач

1. Крісло масою 24 кг піднімають за допомогою нерухомого блоку на певну висоту, діючи на мотузку силою 250 Н. Визначте ККД установки.

$$\eta = \frac{A_{\text{kop}}}{A_{\text{повна}}} \cdot 100\%$$
 $A_{\text{kop}} = Ph = mgh$

$$A_{
m повна} = Fl$$
 $l = h \ ({
m нерухомий} \ {
m блок})$ $A_{
m повна} = Fh$

$$\eta = \frac{mgh}{Fh} \cdot 100\% =>$$

$$\eta = \frac{mg}{F} \cdot 100\%$$

$$\eta = \frac{24 \text{ Kr} \cdot 10 \frac{\text{H}}{\text{Kr}}}{250 \text{ H}} \cdot 100\% \approx 94\%$$

Biδnosiδь: $η \approx 94\%$

2. Тягарець масою 1,2 кг учень рівномірно перемістив уздовж похилої площини довжиною 80 см, прикладаючи силу 5,4 Н. Висота похилої площини дорівнює 20 см. Який ККД установки?

Дано:

$$m = 1,2$$
 кг $l = 80$ см $= 0,8$ м $F = 5,4$ Н $h = 20$ см $= 0,2$ м $g = 10 \frac{H}{\text{K}\Gamma}$ $\eta = ?$

$$\eta = \frac{A_{\text{кор}}}{A_{\text{повна}}} \cdot 100\%$$
$$A_{\text{кор}} = mgh$$

$$A_{\text{повна}} = Fl$$

$$\eta = \frac{mgh}{Fl} \cdot 100\%$$

$$\eta = \frac{1,2 \text{ kg} \cdot 10 \frac{H}{\text{kg}} \cdot 0,2 \text{ m}}{5.4 \text{ H} \cdot 0.8 \text{ m}} \cdot 100\% \approx 56\%$$

Biδnosiδь: $η \approx 56\%$

3. Камінь масою 300 кг піднімають за допомогою важеля на висоту 8 см. До довгого кінця важеля прикладають силу 1200 Н. При цьому точка прикладання сили переміщується на 35 см. Знайдіть ККД важеля.

$$\eta = rac{A_{ ext{ iny Kop}}}{A_{ ext{ iny Hobha}}} \cdot 100\%$$
 $A_{ ext{ iny Kop}} = F_2 h_2 = mgh_2$
 $A_{ ext{ iny Hobha}} = F_1 h_1$

$$\eta = \frac{mgh_2}{F_1h_1} \cdot 100\%$$

$$\eta = \frac{300 \text{ кг} \cdot 10 \frac{\text{H}}{\text{кг}} \cdot 0,08 \text{ м}}{1200 \text{ H} \cdot 0,35 \text{ м}} \cdot 100\% \approx 57\%$$

Bidnosidь: η ≈ 57%

VI. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

Бесіда за питаннями

1. Для чого використовують прості механізми?

Розв'язання

- 2. Чому на практиці корисна робота завжди менша від повної роботи?
- 3. Дайте означення ККД.
- 4. Як визначити ККД похилої площини?
- 5. Назвіть різновиди похилої площини.
- 6. Наведіть приклади використання простих механізмів у сучасних машинах.

VII. ДОМАШНЄ ЗАВДАННЯ

Вивчити § 36, Вправа № 36 (2, 3)

Д/з надішліть на human, або на електрону адресу kmitevich.alex@gmail.com