

High precision decay energy measurements of low Q-value beta decays with JYFLTRAP

Zhuang Ge

University of Jyväskylä

JYU. Since 1863.

Determination of neutrino mass from single β^{\pm}/EC decay

Current direct neutrino mass probes: Ground-state to ground-state (gs-to-gs) decays (β-:Tritium, ¹⁸⁷Re; EC: ¹⁶³Ho)

- Lower Q-value, higher sensitivity to neutrino mass
- Model independent method

Tritium (β⁻decay)

 $E_0 = Q_0 - E_{rec}$ (recoil corrections: 1.72 eV)

Endpoint energy E₀ ~18.57 keV

Our Purpose: Search for low Q-value decays

 $Q \rightarrow 0$, and Q < 1 keV (ultra-low)

¹⁶³Ho (Electron Capture)

Situation with gs-to-gs Q-value precision

Ground-to-ground state decays

- Measured with high precision already
- Beta/EC spectrum endpoint meausrements already ongoing

1. β -decay of ³H: Q-value = 18.59201(7) keV

E. G. Myers et al , Phys. Rev. Lett. 114 (2015)

gs-to-gs decay Project:

KATRIN, Project8

recent upper limit of antineutrino mass: 0.8 eV (90% C. L.) from β -decay

2. β -decay of ¹⁸⁷Re: Q-value = 2.4709(13) keV

P. Filianin et al., Phys. Rev. Lett. 127, 072502 (2021)

MARE

stopped

3. EC in 163 Ho: Q-value = 2.8632(6) keV

Schweiger C., Braß M., Debierre V. et al. Nat. Phys. (2024)

ECHo, HOLMES

recent upper limit of neutrino mass: 150 eV (95% C. L.) from EC

Low Q-value decays for neutrino mass determination

We search for low Q-value ground state to nuclear excited state decays.

Low Q-value (Q*): < 1 keV

1.
$$\beta$$
-decay of ¹¹⁵In(9/2+) \rightarrow ¹¹⁵Sn*(9/2+): Q*-value = 0.147(10) keV
E* improvement: V. A. Zheltonozhsky et al. 2018 EPL 121 12001

2.
$$\beta$$
-decay of 135 Cs(7/2-) \rightarrow 135 Ba*(11/2+): Q*-value = 0.44(31) keV Q_{gs} improvement: A. De Roubin, J. Kostensalo, T. Eronen et al., Phys. Rev. Lett., 124 (22), 222503.

2. EC of ⁷⁵Se (5/2+)
$$\rightarrow$$
 ⁷⁵As*({3/2-, 5/2-}) : Q*-value = 0.64(51) keV Q_{gs} improvement: M. Ramalho, Z.Ge, T. Eronen et al., Phys. Rev. C 106, 015501 (2022)

J. Suhonen, Phys. Scr. 89, 054032 (2014) N. D. Gamage et al., Hyp. Int. **240**, 43 (2019)

$$Q^* = Q_{\rm gs} - E^*$$

E* From gamma spectroscopy

- Typical uncertainty ~100 eV
- Potentially ~10 eV

Our work: Q_{gs} measurements

- Penning trap mass spectrometry (JYFLTRAP)
- Q_{gs} through $E = mc^2$

Nuclear theory:

Partial half-life based on Q*

Summary of measured Q-values of potential candidates at JYFLTRAP

List of measured promising low Q-value decay candidates for neutrino mass determination

	Parent	T1/2	Daughter	E* (keV)	decay type	Q* (keV)	Decay	Q ₀ (keV)	dQ0 (keV)
	146Pm(3-)	5.53(5) y	146Nd(2+)	1470.63(6)	1st FNU	1.3(4.2)	EC	1472.000	4.000
7 Co T Franco	149Gd(7/2-)	9.28(10) dy	149Eu(5/2+)	1312(4)	1st FNU	2(6.4)	EC	1314.100	4.000
Z. Ge 1. Erone	n, et al., Phys. Rev. C 00 155Tb(3/2+)	5.32(6) dy	155Gd{3/2+}	815.731(3)	Allowed{?}	4.2(10.1)	EC	820.000	10.000
	159Dy(3/2-)	144.4(2) dy	159Tb(5/2-)	363.5449(14)	Allowed	1.7(1.2)	EC	365.200	1.200
Z. Ge, T. Erone	en, et al., Phys. Rev. Lett	t. 127, 272301 (2021)	159Tb(11/2+)	362.050(40)	3rd FU	3.2(1.2)	EC	365.200	1.200
	161Ho(5/2-)	18.479(4) hr	161Dy{7/2+}	858.502(7)	1st FNU	1.0(2.2)	EC	858.500	2.200
			161Dy{3/2-}	858.7919(18)	Allowed	-0.3(2.2)	EC	858.500	2.200
	72As(2-)	26.0(1)h	72Ge{1}	4358.7(3)	Allowed{?}	-2.8(4.0)	EC	4356.000	4.000
Z. Ge, T. Erone	n et al., PHYSICAL REV	/IEW C 103 , 065502 (2	<i>021</i>) 72Ge(3–)	3325.01(3)	Allowed	8.9(4.0)	β+	4356.000	4.000
			72Ge(2+)	3327(3)	1st FNU	6.9(5.0)	β+	4356.000	4.000
			72Ge{1+}	3338.0(3)	1st FNU{?}	-4.1(4.0)	β+	4356.000	4.000
			72Ge{2-}	3341.76(4)	Allowed{?}	-7.9(4.0)	β+	4356.000	4.000
	159Gd(3/2-)	26.24(9) h	159Tb{1/2+}	971	1st FNU{?}	0.0(1.8)	β-	970.900	0.800
Z. Ge T. Eronen	77As(3/2-)	38.79(5) h	77Se(5/2+)	680.1035(17)	1st FNU	3.1(1.7)	β-	683.200	1.700
	76As(2-)	26.24(9) h	76Se{2-}	2968.4(7)	Allowed{?}	-7.8(1.1)	β-	2960.600	0.900
	153Tb(5/2+)	2.34(1)dy	153Gd(5/2-)	548.7645(18)	1st FNU	-1.2(4.0)	β+	1569.000	4.000
			153Gd{5/2}	551.092(19)	Allowed{?}	-3.5(4.0)	β+	1569.000	4.000
	111In(9/2+)	3dy	111Cd(3/2+)	864.8(3)	2nd FU	-6.6(3.0)	EC	860.2	3.4
Z. Ge, T. Erone	n, et al., Physics Letters	B 832 (2022) 137226	111Cd(3/2+)	864.8(3)	2nd FU	-4.6(3.0)	EC	860.2	3.4
			111Cd(3/2+)	855.6(1.0)	2nd FU	4.6(3.2)	EC	860.2	3.4
T. Eronen, Z. G	Ge et al., Physics Letters	B 830 (2022) 137135	111Cd(7/2+)	853.94(7)	Allowed	6.3(3.0)	EC	860.2	3.4
,	131I(7/2+)	8dy	131Xe{9/2+}	971.22(13)	Allowed{?}	-0.42(0.61)	β-	970.80	0.60
			131Xe(7/2+)	973.11(14)	Allowed	-2.31(0.62)	β-	970.80	0.60
	155Eu(5/2+)	5yr	155Gd(9/2-)	251.7056(10)	1st FU	0.1(1.8)	β-	252.00	2.40

Z. Ge T. Eronen, et al., Phys. Rev. C 108, 045502 (2023)

One more long table list will not be shown in this talk

Q₀ from: M. Wang et al., Chinese Physics C 45, 030003 (2021)

E* from: National nuclear data center, Available at https://www.nndc.bnl.gov

JYU. Since 1863.

The Ion Guide Isotope Separator On-Line facility (IGISOL)

J. Ärje, J. Ävstö et al., PRL 54 (1985) 99

T. Eronen et al., Eur. Phys. J. A 48 (2012) 46

JYFLTRAP double Penning trap

Eronen et al., EPJA 48 (2012) 46

Cyclotron frequency

$$\nu_c = \frac{1}{2\pi} \frac{q}{m} B$$

Penning trap eigenfrequencies:

$$\nu_z = \frac{1}{2\pi} \sqrt{\frac{U_0}{d^2} \frac{q}{m}}$$

$$\nu_{\pm} = \frac{1}{2} \left(\nu_c \pm \sqrt{\nu_c^2 - 2\nu_z^2} \right)$$

Invariance theorem

$$\nu_c^2 = \nu_-^2 + \nu_+^2 + \nu_z^2$$

$$TOF - ICR \ and \ PI - ICR$$
:
 $v_c = v_+ + v_-$

TOF-ICR method

Interleaved measurements of Ion-of-interest and reference (111 In and 111 Cd)

Phase-imaging Ion-Cyclotron-Resonance (PI-ICR)

Delay-Line Microchanel Channel Plate (MCP) Detector from Roentdek GmbH

Position sensitive detector

Angle between cyclotron and magnetron motion phases with respect to the center spot:

$$\alpha_c = \alpha_- + \alpha_+$$

cyclotron frequency:

$$\nu_c = \nu_+ + \nu_- = \frac{\alpha_c + 2\pi n}{2\pi t}$$

Phase-imaging Ion-Cyclotron-Resonance (PI-ICR)

- Dipolar excitation at v_+
 - Direct conversion to magnetron motion
 - → Magnetron phase
 - Accumulation then conversion to magnetron motion
 - Modified cyclotron phase

Schematic of PI-ICR for 159Dy-159Tb Q-value measurements

Typical systematic uncertainties

D.A. Nesterenko, T. Eronen, Z. Ge, A. Kankainen, M. Vilen, Eur. Phys. J. A (2021) 57:302

- JYFLTRAP (TOF-ICR)
 - 7.8×10^{-10} per u, residual: 1.2×10^{-8}
 - If $m m_{ref} < 24u$:
 - 7.5×10^{-10} per u, residual: 7.9×10^{-9}

magnetic field fluctuations: $\delta B/B = 2.01(25) \times 10^{-12} / min \delta t$

- -2.35(81) $\times 10^{-10}$ per u, residual: 9×10^{-9}
- If $m m_{ref} < 12u$:
 - -2.3(21) $\times 10^{-10}$ per u, residual: 5.3×10^{-9}

To reach the precision at the level of 10^{-10} or better, need:

 $|m_{ref} - m_{ioi}| \le 2$ u or ideally A/q doublets.

Cleaning methods coupled with PI-ICR method

Z. Ge, T. Eronen, A. de Roubin et al., Phys. Rev. C 108, 045502 (2023)

Conatminant-free ion sample preparation:

Coupling of Ramsey cleaning&Buffer gas cleaning&laser frequency scan and PI-ICR method for unambiguous cleaning contaminants of 90 keV (A =136) away from ion of interest easy to clean, more than 10⁶ resolving power to clean 2 or more closely lying contaminants

Q-value measurement of 159 Dy

Gs-to-GS Q value (Q_{EC}^{gs})

Obtained frequency ratio r with a precision of 1.3×10^{-9}

 \longrightarrow

Q-value precision: **190 eV** now **6.3 times** more precise and 0.47 keV smaller than liturature value

Level scheme of 159 Dy with refined Q-value

GS-to-GS Q value (Q_{EC}^{gs}) E_i^* $5/2^- 363.5449(14)$ $11/2^+ 362.050(40)$ Binding energy e_x (allowed atomic shell x of the EC)

With the refined Q_{EC}^{gs} :

- Captures to 5/2-
 - only from N1 or higher orbitals
 - M2 and M1 captures forbidden at > 4σ level

JYU. Since 1863.

- captures to 11/2+
- from M1 and higher orbitals

Z. Ge, T. Eronen, K. S. Tyrin et al., Phys. Rev. Lett. 127, 272301(2021)

M. Wang et al., Chinese Physics C 45, 030003 (2021) -> AME2020 National nuclear data center, Available at https://www.nndc.bnl.gov

Results and conclusion of 159 Dy

EC spectrum of 159 Dy (3/2 $^- \rightarrow 5/2$ $^-$) compared to 163 Ho (Dirac-Hartree-Fock atomic many-body calculations)

Z. Ge, T. Eronen, K. S. Tyrin et al., Phys. Rev. Lett. 127, 272301(2021)

159
Dy(3/2⁻) \rightarrow 159 Tb* (5/2⁻), Q_{EC} * = 1.18(19) keV

lower than the GS-to-GS $Q_{\rm EC}$ of 163 Ho (running)

- allowed transition
- \triangleright known branching ratio 1.9(5) \times 10⁻⁶
- > ultra-low distance to the atomic line M1: 0.79(19) keV
- the most promising gs-to-excited state transition for future calorimetric experiment

Puzzles in potential candidates ⁷²As, ¹¹¹In

State, i	<i>E</i> * (keV)	J^{π}	Decay type	Q (keV)
1	3325.01(3)	3-	β^+ : Allowed	8.9(40)
2	3327(3)	2+	β^+ : 1st FNU	6.9(50)
3	3338.0(3)	1{+}	β^+ : 1st FNU{?}	-4.1(40)
4	3341.76(4)	{2}	β^+ : Allowed{?}	-7.9(40)
5	4358.7(3)	1	EC: Allowed{?}	-2.8(40)
gs	0	0_{+}		4356(4)

Z. Ge, T. Eronen et al., PHYSICAL REVIEW C 103, 065502 (2021)

similarly

Z. Ge, T. Eronen, et al., Physics Letters B 832 (2022) 137226

 Q_0 from M. Wang et al. , Chinese Physics C 45, 030003 (2021) E^{\ast} from National nuclear data center, Available at https://www.nndc.bnl.gov

Q-value of potential candidate ⁷²As, ¹¹¹In

Large discrepancy from the AME2020

Good agreement with the AME2020

GS-to-GS Q-values to ~ 100 eV precision to determine whether the cases are suitable for neutrino mass determination

Required to be measured directly with high accuracy and precision

Ruling out ⁷²As as potential candidate

Q-values (in keV) for the decay candidate to the excited states of the daughter nucleus ⁷²Ge

E*	Q-value (AME2020)	Q-value (This work)	$Q/\delta Q$ (This work)
3325.01(3)	8.9(40)	-3.42(8)	43
3327(3)	6.9(50)	-5.4(30)	1.8
3338.0(3)	-4.1(40)	-16.41(31)	53
3341.76(4)	-7.9(40)	-20.17(8)	238
4358.7(3)	-2.8(40)	-15.11(31)	49

five potential ultra-low Q-value β^+ -decay or electron capture transitions are energetically forbidden, precluding all the transitions as possible candidates for the electron neutrino mass determination

However, the discovery of *small negative Q-values* opens up the possibility to use 72 As for the study of virtual β - γ transitions

Normalized distribution of the released energy (EC) and partial half-lives: atomic self-consistent many-electron Dirac-Hartree-Fock-Slater method and NSM

Multiple corrections are considered in the new method

Summary and Outlook

- **❖12** Cases being published in 9 papers by JYFLTRAP (PRLx2, PLBx2, PRCx4, EPJAx1)
 - > ^{72,76,77}As, ⁷⁵Se, ⁷⁵⁻⁷⁶Ge, ¹¹¹In, ¹³¹I, ¹³⁵, ¹³⁶Cs, ¹⁵⁵Tb, and ¹⁵⁹Dy
 - ✓ Neutrino mass, Neutrino capture, relic ne
 - ≥ 95Tc --- submitted (PLB)
- **❖** More than 10 other Cases to be characterized for
 - > The JYFLTRAP wanna some rest now --- 0-T s
- **❖** More low Q value cases to be measured
 - > 14 days of beam time with Penning trap is lef
 - > More ...
- **❖** To do: N~Z mass measurements (recently Funded Academy project)
 - Make JYFLTRAP great again (PRL accepted: masses 95-97AgTrapse.Laser+Hot cavity+HIGISOL/MI
 - ➤ IGISOL MR-TOF (RIKEN MR-TOF?)
 - ➤ RIKEN storage ring + Bro-TOF

Let us see how productive for this project in next PLATAN

- \checkmark (9 days of beam time approved: 100Sn) \times 3 to measure all N=Z nuclei
- RIKEN storage ring + Bro-TOF (9 days of beam time) x3 to measure all N=Z

Theory experiment

COLLABORATION LIST

T. Eronen,¹ Z. Ge,¹ A. de Roubin,² D. A. Nesterenko,¹ M. Hukkanen,^{1,2} O. Beliuskina,¹ R. de Groote,¹ C. Delafosse,¹ S. Geldhof,¹, W. Gins,¹ A. Kankainen,¹ Á. Koszorús,⁷ I. D. Moore,¹ H. Penttilä,¹ A. Raggio,¹ S. Rinta-Antila,¹ M. Stryjczyk,¹ V. Virtanen,¹ A. P. Weaver,⁸ A. Zadvornaya,¹ A. Jokinen¹ and the IGISOL collaboration

J. Suhonen, ¹ K. S. Tyrin, ³ M. I. Krivoruchenko, ^{3,4} J. Kostensalo, ¹ J. Kotila, ^{5,6} P. Pirinen, ¹ M. Ramalho ¹

- 1 Department of Physics, University of Jyvaskyla, Finland
- 2 Centre d'Etudes Nucléaires de Bordeaux Gradignan, UMR 5797 CNRS/IN2P3 Université de Bordeaux, France

Theoretical Collaborators before 2021

- 3 National Research Centre "Kurchatov Institute". Russia
- 4 Institute for Theoretical and Experimental Physics, NRC "Kurchatov Institute", Russia
- 5 Finnish Institute for Educational Research, University of Jyväskylä, Finland
- 6 Yale University, USA
- 7 University of Liverpool, United Kingdom
- 8 University of Brighton, United Kingdom

Financial Support

Academy of Finland projects

No. 306980, 312544, 275389, 284516, 295207, 314733, 315179, 327629, 320062, 354589, 345869 and 354968.

EU Horizon 2020 research and innovation program

under grant

No. 771036 (ERC CoG MAIDEN)

No. 861198-LISA-H2020-MSCA-ITN-2019

Zhuang Ge^{a,*}, Tommi Eronen^a, Vasile Alin Sevestrean^{b,c,d,*}, Ovidiu Niţescu^{b,d}, Sabin Stoica^b, Marlom Ramalho^a, Jouni Suhonen^{a,b,*}, Antoine de Roubin^{e,f}, Dmitrii Nesterenko^a, Anu Kankainen^a, Pauline Ascher^f, Samuel Ayet San Andres^g, Olga Beliuskina^a, Pierre Delahaye^h, Mathieu Flayol^f, Mathias Gerbaux^f, Stéphane Grévy^f, Marjut Hukkanen^{a,i}, Arthur Jaries^a, Ari Jokinen^a, Audric Husson^f, Daid Kahl^{j,2}, Joel Kostensalo^k, Jenni Kotila^{b,l,m}, Iain Moore^a, Stylianos Nikas^a, Marek Stryjczyk^a and Ville Virtanen^a

New theoretical collabarators

^aDepartment of Physics, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland

^bInternational Centre for Advanced Training and Research in Physics (CIFRA), POB MG-12, RO-077125, Bucharest-Măgurele, Romania

Faculty of Physics, University of Bucharest, 405 Atomistilor, POB MG-11, RO-077125, Bucharest-Măgurele, Romania

d"Horia Hulubei" National Institute of Physics and Nuclear Engineering, 30 Reactorului, POB MG-6, RO-077125, Bucharest-Mägurele, Romania

eKU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001, Leuven, Belgium

JUniversité de Bordeaux, CNRS/IN2P3, UMR 5797, F-33170, Gradignan, France

g Instituto de Fisica Corpuscular, CSIC-UV, 46980, Gradignan, Spain

hGANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, 14000, Caen, France

ⁱUniversité de Bordeaux, CNRS/IN2P3, LP2I Bordeaux, UMR 5797, F-33170, Gradignan, France

^jExtreme Light Infrastructure - Nuclear Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), 077125, Bucharest-Magurele, Romania

^kNatural Resources Institute Finland, Yliopistokatu 6B, FI-80100, Joensuu, Finland

Finnish Institute for Educational Research, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland

^mCenter for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520-8120, Connecticut, USA

Thank you
for
your attention

Thank you for your attention