Problem 1

a)

Р	Q	R	$(Q \wedge R)$	$(P \wedge Q)$	$P \wedge (Q \wedge R)$	$(P \wedge Q) \wedge R$
F	F	F	F	F	F	F
F	F	Т	F	F	F	F
F	Т	F	F	F	F	F
F	Т	Т	Т	F	F	F
Т	F	F	F	F	F	F
Т	F	Т	F	F	F	F
Т	Т	F	F	Т	F	F
Т	Т	Т	Т	Т	T	T

b)

Р	Q	R	$(Q \vee R)$	$(P \vee Q)$	$P \vee (Q \vee R)$	$(P \vee Q) \vee R$
F	F	F	F	F	F	F
F	F	Т	Т	F	Т	Т
F	Т	F	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т
Т	F	Т	Т	Т	T	Т
Т	Т	F	Т	Τ	T	T
Т	Т	Т	Т	Т	T	Τ

c)

Р	Q	R	(P ⇔ Q)	$(Q \iff R)$	$(P \iff Q) \text{ and } (Q \iff R)$
F	F	F	Τ	Τ	T
F	F	Т	Τ	F	F
F	Т	F	F	F	F
F	Т	Т	F	Т	F
Т	F	F	F	Τ	F
Т	F	Т	F	F	F
Т	Τ	F	Т	F	F
Т	Т	Т	Т	Т	T

Р	Q	R	$(P \implies Q)$	$(Q \implies R)$	$(R \implies P)$	$(P \implies Q) \land (Q \implies R) \land (R \implies P)$
F	F	F	Τ	Т	Т	T
F	F	Т	Τ	Т	F	F
F	Т	F	Τ	F	T	F
F	Т	Т	Τ	Τ	F	F
Т	F	F	F	Τ	T	F
Т	F	Т	F	Τ	T	F
Т	Т	F	Τ	F	T	F
Т	Т	Т	Τ	Т	Т	T

Problem 2

a)

Р	Q	$(P \implies Q)$	$(\neg P \land \neg Q) \lor (\neg P \land Q) \lor (P \land Q)$
F	F	Τ	T
F	Т	Τ	T
Т	F	F	F
Т	Т	Τ	T

b)

Р	Q	$(P \implies Q)$	$\neg (P \implies Q)$	$(P \land \neg Q)$
F	F	T	F	F
F	Т	Τ	F	F
Т	F	F	Τ	Т
Т	Т	Τ	F	F

Problem 3

Proof. Base case n=2

$$\neg (P_1 \land P_2) = (\neg P_1) \lor (\neg P_2)$$

Works through demorgans law

Assume case n = k

$$\neg (P_1 \land P_2 \land \dots \land P_k) = (\neg P_1) \lor (\neg P_2) \lor \dots \lor (\neg P_k)$$

Inductive step n = k + 1

$$\begin{split} \neg(P_1 \wedge P_2 \wedge \ldots \wedge P_{k+1}) &= \neg(P_1 \wedge P_2 \wedge \ldots \wedge P_k \wedge P_{k+1}) \\ &= \neg((P_1 \wedge P_2 \wedge \ldots \wedge P_k) \wedge (P_{k+1})) \\ &= \neg(P_1 \wedge P_2 \wedge \ldots \wedge P_k) \vee \neg(P_{k+1}) \\ &= ((\neg P_1) \vee (\neg P_2) \vee \ldots \vee (\neg P_k)) \vee (\neg P_{k+1}) \\ &= (\neg P_1) \vee (\neg P_2) \vee \ldots \vee (\neg P_k) \vee (\neg P_{k+1}) \end{split}$$

Problem 4

a) $(3|1) \vee (3|2) \vee (3|3) \vee (3|4) \vee ...$

b) $\forall n \in \mathbb{N}(2|n) \iff \neg(2|n+1)$

c) $\forall n \in \mathbb{N}, \exists m \in \mathbb{N} \ (m \ge n)$

Problem 5

a)

$$x \in A \cup (B \cup C)$$

$$x \in A \text{ or } x \in (B \text{ or } C)$$

$$x \in A \text{ or } x \in B \text{ or } x \in C$$

$$x \in (A \text{ or } B) \text{ or } x \in C$$

$$x \in (A \cup B) \cup C$$

This process can go the other way. This then shows that $A \cup (B \cup C) \subset (A \cup B) \cup C$ and $(A \cup B) \cup C \subset A \cup (B \cup C)$ This means that $A \cup (B \cup C) = (A \cup B) \cup C$

b)

$$x \in A \cap (B \cap C)$$

$$x \in A \text{ and } x \in (B \text{ and } C)$$

$$x \in A \text{ and } x \in B \text{ and } x \in C$$

$$x \in (A \text{ and } B) \text{ and } x \in C$$

$$x \in (A \cap B) \cap Cx \in (A \cap B) \cap C$$

Similar to the last question, this can be shown in the other direction easily. This then shows that $A \cap (B \cap C) \subset (A \cap B) \cap C$ and $(A \cap B) \cap C \subset A \cap (B \cap C)$ This means that $A \cap (B \cap C) = (A \cap B) \cap C$

- c) $A \cap (B \cup C)$ This means that $x \in A$ and $x \in B$ or C. This means that $x \in A$ and B or $x \in A$ and C. This means that $x \in (A \cap B) \cup (A \cap C)$ This means that $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$. We can also prove this the other way which would then show that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- d) $A \cup (B \cap C)$ This means that $x \in A$ or $x \in B$ and C. This means that $x \in A$ or B and $x \in A$ or C. This means that $x \in (A \cup B) \cap (A \cup C)$ This means that $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$. Prove this the other way would then show that $A \cup (B \cap C) = (A \cup B) \cup (A \cup C)$.
- e) $x \in A \cap (B/C)$ this means that $x \in A \cap B$ and $x \notin A \cap C$ or vice versa. We can then rewrite this as $x \in (A \cap B)/(A \cap C)$