Fajlagos hőveszteségtényező ellenőrzése

Ellenőrizze, hogy az alábbi adatokkal rendelkező lakóépület megfelel-e a fajlagos hőveszteségtényező követelményének! (egyszerűsített számítás sugárzási nyereségek számítása nélkül)

Lehűlő felületek (A [m²]) és a rétegtervi hőátbocsátási tényezők (U [W/m²K]):

Homlokzat: 510 m ⁻	•	Homlokzat:	510 m ²
-------------------------------	---	------------	--------------------

Homlokzati fal (hőszigeteletlen): 330 m² 0,43 W/m²K
 Homlokzati üvegezett nyílászárók: 180 m² 1,50 W/m²K
 Lapostető: 240 m² 0,24 W/m²K
 Pincefödém (alsó oldali hőszigeteléssel): 240 m² 0,45 W/m²K

Hőhidak hossza:

Homlokzati fal: 570 m
 Lapostető: 90 m
 Fűtött épülettérfogat: 2800 m³

Megoldás

Az épület geometriai jellemzőjének és a fajlagos hőveszteségtényező követelményértékének számítása

Az épület geometriai jellemzőjének számítása

Lehűlő összfelület: $\Sigma A = 510 + 240 + 240 = 990 \text{ m}^2$

 $\Sigma A/V = 990/2800 = 0.3536 \text{ m}^2/\text{m}^3$

A fajlagos hőveszteségtényező követelményértéke:

Az épület hőveszteségtényezőjének számítása a sugárzási nyereségek számítása nélkül

 $q = (\Sigma A*U + \Sigma I*Y) / V$

Mivel egyszerűsített számítás a feladat, az összefüggés így módosul:

 $q = \sum A^*U_R / V$

 U_R - a hőhidak hatását kifejező korrekciós tényezővel (χ) módosított rétegtervi hőátbocsátási tényező: U_R = U (1 + χ)

Rétegtervi hőátbocsátási tényezők korrekciója

1 m²-re jutó hőhíd hossza a fal esetén: 570 m / 330 m² = 1.72 m/m² 1 m²-re jutó hőhíd hossza a lapostetőre: 90 m / 240 m² = 0.375 m/m²

40/2012. (VIII. 13.) BM rendelet 2. melléklet II/2. táblázat

Hatford and control	A hőhidak hosszának fajlagos mennyisége (fm/m²)					
Határoló szerkezetek	Határoló szerkezet besorolása					
	gyengén	közepesen	erősen			
	hőhidas	hőhidas	hőhidas			
Külső falak	< 0,8	0.8 - 1.0	> 1,0			
Lapostetők	< 0,2	0,2-0,3	> 0,3			
Beépített tetőtereket határoló szerkezetek	< 0,4	0,4-0,5	> 0,5			

A külső fal besorolása **erősen hőhidas**.

A lapostető besorolása **erősen hőhidas**.

Korrekciós értékek, a módosított hőátbocsátási tényezők számítása.

40/2012. (VIII. 13.) BM rendelet 2. melléklet II/1. táblázat

	A hőhidak hatását kifejező korrekciós tényező χ					
	11 . // 1 . 1 . 1	:	gyengén hőhidas	0,15		
		i, vagy szerkezeten belüli lan hőszigeteléssel	közepesen hőhidas	0,20		
Külső falak ¹⁾	megszakitat	nun noszigetelessei	erősen hőhidas	0,30		
Kuiso iaiak			gyengén hőhidas	0,25		
	egyéb külső	falak	közepesen hőhidas	0,30		
			erősen hőhidas	0,40		
I (*1 - 2)			gyengén hőhidas	0,10		
Lapostetők 2)			közepesen hőhidas	0,15		
			erősen hőhidas	0,20		
			gyengén hőhidas	0,10		
Beépített tetőtere	et határoló sze	rkezetek 3)	közepesen hőhidas	0,15		
			erősen hőhidas	0,20		
Padlásfödémek 4)			0,10		
Árkádfödémek 4)			0,10		
Pincefödémek 4)		szerkezeten belüli hőszige	teléssel	0,20		
Pincefodemek		alsó oldali hőszigeteléssel	0,10			
	Fűtött és fűtetlen terek közötti falak, fűtött pincetereket határoló, külső oldalon hőszigetelt falak					

Falra	χ=0.4	$U_R=0.45*(1+0.4)=0.602 \text{ W/m}^2\text{K}$
Lapostetőre	χ=0.2	$U_R=0.24*(1+0.2)=0.288 \text{ W/m}^2\text{K}$
Pincefödémre	<i>χ</i> =0.1	$U_R = 0.45*(1+0.1) = 0.495 \text{ W/m}^2\text{K}$

Hőmérsékleti korrekció a pincefödémre

$$U_{Rpif}^* = 0.5*U_{Rpif} = 0.5*0.495 = 0.2475 \text{ W/m}^3\text{K}$$

A hőveszteségtényező számított értéke.

$$q = \sum A^* U_R / V = (U_{Rfal} * A_{fal} + U_{Rtető} * A_{tető} + U_{Rpif} * A_{pif} + U_{Rnyz} * A_{nyz}) / V$$

$$q = (0,602 * 330 + 0,288 * 240 + 0,2475 * 240 + 1,50 * 180) / 2800 = 0,213 \text{ W/m}^3 \text{K}$$

Értékelés

Mivel q < q_m (0,213 < 0,220), az épület megfelel.

Falszerkezet hőátbocsátási tényezőjének számítása 1.

Számítsa ki az alábbi rétegrendű falszerkezet hőátbocsátási tényezőjét! Alkalmazza a szabványban előírt korrekciós értékeket a hővezetési tényezőknél! Vegye figyelembe a szerkezetben megadott hőhidak hatását!

Alapadatok:

A B-30 falazatból készült fal polisztirol külső szigetelése műanyag dübelekkel van rögzítve. 8 db/m² 6 mm átmérőjű dübel kerül alkalmazásra, a műanyag hővezetési tényezője 0,14 W/mK.

A falazat rétegei kívülről befelé:

- 1 cm vakolatrendszer, λ=0,8 W/mK
- 8 cm polisztirolhab, λ=0,04 W/mK
- 30 cm B30 tégla falazat, λ=0,64 W/mK
- 1 cm mészvakolat, λ=0,81 W/mK

A külső hőátadási tényező $\alpha_a=24$ W/m²K, a belső hőátadási tényező $\alpha_i=8$ W/m²K.

Megoldás

A dübelek és a rávakolás hatásának figyelembe vétele a hővezetési tényező korrekciójával

MSZ-04-140-2:1991 M.1.1. melléklet 4. táblázat

Anyag és beépítési mód	korrekciós tényező
Polisztirol hab, amelyre rávakolnak vagy rábetonoznak	0.42
Perlitbeton ($\rho \le 400 \text{ kg/m}^3$), amelyre rábetonoznak	0.57
Bitumoperlit ($\rho \le 300 \text{ kg/m}^3$), amelyre rábetonoznak	0.51
Expanzit, amelyre rávakolnak	0.20
Polisztirol hab két falazott réteg között	0.10
Isolyth két falazott réteg között	0.10
Perlit ömlesztve, két falazott réteg között	0.38
Poliuretán (40 kg/m³) kiszellőztetett légrétegben	0.25
Izofen kiszellőztetett légrétegben	0.25
NIKECELL kiszellőztetett légrétegben	0.50

$$A_{d\ddot{u}bel} = \frac{d^2 \cdot \pi}{4} \cdot n = \frac{(6/1000)^2 \cdot \pi}{4} \cdot 8 = 0.000226 \quad m^2$$

$$\lambda_{szig,ered\ddot{o}} = (A_{szig} \cdot \lambda_{szig} \cdot (1 + \kappa) + A_{d\ddot{u}b} \cdot \lambda_{d\ddot{u}b}) / (A_{szig} + A_{d\ddot{u}b}) = (1 - 0.000226) \cdot 0.04 \cdot (1 + 0.42) + 0.000226 \cdot 0.14 = 0.05682 \quad W / mK$$

A falszerkezet hőátbocsátási tényezője

$$U_{fal} = \frac{1}{\frac{1}{\alpha_a} + \sum \frac{d}{\lambda} + \frac{1}{\alpha_i}} = \frac{1}{\frac{1}{24} + \frac{0.01}{0.8} + \frac{0.08}{0.05682} + \frac{0.3}{0.64} + \frac{0.01}{0.81} + \frac{1}{8}} = 0.484 \quad W / m^2 K$$

Falszerkezet hőátbocsátási tényezőjének számítása 2.

Számítsa ki az alábbi rétegrendű padlásfödém hőátbocsátási tényezőjét! Vegye figyelembe a szerkezetben megadott hőhidak hatását!

Alapadatok:

Egy fafödém az alábbi rétegekből épül fel:

- 2.5 cm deszka burkolat, λ=0,13 W/mK
- 20 cm ásványgyapot, λ=0,04 W/mK
- 0.05 cm PVC fólia, λ=0,1 W/mK
- 1 cm gipszburkolat, λ=0,24 W/mK

A külső hőátadási tényező α_a=12 W/m²K, a belső hőátadási tényező α_i=10 W/m²K.

Az ásványgyapot réteget 1 m-es távolságonként 5 cm szélességű, a szigetelés vastagsággal megegyező magasságú pallók/gerendák szakítják meg.

A gerenda hővezetési tényezője λ=0,14 W/mK

Megoldás

A pallók/gerendák hatásának figyelembe vétele a hővezetési tényező korrekciójával.

A pallók keresztmetszete m²-enként.

$$\begin{split} A_{ger} &= s \cdot L = 0.05 \cdot 1 = 0.05 \quad m^2 \\ \lambda_{szig,eredő} &= (A_{szig} \cdot \lambda_{szig} + A_{ger} \cdot \lambda_{ger}) / (A_{szig} + A_{ger}) = (1 - 0.05) \cdot 0.04 + 0.05 \cdot 0.14 = 0.045 \quad W / mK \end{split}$$

A szerkezet hőátbocsátási tényezője

$$U_{fal} = \frac{1}{\frac{1}{\alpha_a} + \sum \frac{d}{\lambda} + \frac{1}{\alpha_i}} = \frac{1}{\frac{1}{12} + \frac{0.025}{0.13} + \frac{0.2}{0.045} + \frac{0.0005}{0.1} + \frac{0.01}{0.24} + \frac{1}{10}} = 0.205 \quad W/m^2 K$$

Nettó fűtési energiaigény 1.

Számítsa ki az alábbi adatokkal rendelkező épület nettó fűtési energiaigényét. Alanadatok:

Egy 1200 m² fűtött alapterületű, 3480 m³ térfogatú irodaépület központi szellőző berendezése η_r =0.65 hatásfokú hővisszanyerővel van felszerelve. A szellőzőberendezés heti 60 órát üzemel, a szellőzés működésekor a légcsereszám n_{LT} =2.2 1/h, üzemszünetben n_{inf} =0.3 1/h.

Az épület fajlagos hőveszteségtényezője q=0.34 W/m³K. Az épület belső átlaghőmérséklete 20 °C, a fűtési idényre számított egyensúlyi hőmérsékletkülönbség 10 °C, (vegye figyelembe a hőfokhíd és fűtési idény hossz korrekciónál). Az épület szakaszos használatú.

Megoldás

A nettó fűtési energiaigény hővisszanyerővel felszerelt szellőzés figyelembe vételével

$$Q_{F} = HV \left[q + 0.35 n_{\inf} \frac{Z_{F} - Z_{LT}}{Z_{F}} + 0.35 n_{LT} (1 - \eta_{r}) \frac{Z_{LT}}{Z_{F}} \right] \sigma - Z_{F} A_{N} q_{b} \quad [kWh/a]$$

Fűtési hőfokhíd és a fűtési idény hossza

 Δt_b = 10 °C egyensúlyi hőmérséklet esetén a fűtési határhőmérséklet

$$t_{fh} = t_{i, atl} - \Delta t_b = 20-10 = 10 \, ^{\circ}C$$

40/2012. (VIII. 13.) BM rendelet 3. melléklet I.2. táblázat (részlet)

Napi középhőmérséklet	t _{köz} -nél alacsonyabb	H ₂₀
t _{köz}	átlaghőmérsékletű órák száma	
°C	h	hK/a
-19	0,9	30,9
-18	1,7	61,0

8	3451,7	60270,7
9	3756,5	63623,5
10	4073,3	66791,5
11	4361,3	69383,5
12	4615,7	71418,7
13	4886,9	73317,1
14	5147,3	74879,5

H = 66791 hK

 $Z_F = 4073 h$

A légtechnikai rendszer működési ideje:

$$Z_{LT} = 4073 \cdot \frac{60}{7 \cdot 24} = 1455$$

Az összefüggésbe H, Z_F és Z_{LT} ezredrészét kell behelyettesíteni!

A szakaszos üzem és a belső hőnyereségek

40/2012. (VIII. 13.) BM rendelet 3. melléklet IV.1. táblázat

Az épület	L	égcser	e-	Használati	Világítás	Világítási	Szakaszos	Belső hő-
rendeltetése	SZ	ám fűt	ési	melegvíz	energia	energia	üzem	nyereség
	ic	dénybe	en	nettó	igénye	Igény	korrekciós	átlagos
	<i>n</i> [1/h]]	hőenergia		korrekciós	szorzó	értéke
	1)	2)	3)	Igénye		szorzó		
				q_{HMV}	$q_{ m vil}$	$v^{4)}$	σ ⁵⁾	q_b
				$[kWh/m^2/a]$	$[kWh/m^2/a]$			$[W/m^2]$
Lakóépületek ⁶⁾		0,5		30	(4) ⁹⁾	-	0,9	5
Irodaépületek 7)	2	0,3	0,8	9	11	0,7	0,8	7
Oktatási épületek ⁸⁾	2,5	0,3	0,9	7	6	0,6	0,8	9

A nettó fűtési energiaigény

$$Q_{F} = HV \left[q + 0.35 n_{\inf} \frac{Z_{F} - Z_{LT}}{Z_{F}} + 0.35 n_{LT} (1 - \eta_{r}) \frac{Z_{LT}}{Z_{F}} \right] \sigma - Z_{F} A_{N} q_{b} \quad \left[kWh / a \right]$$

$$Q_{F} = 66.791 \cdot 3480 \cdot \left[0.34 + 0.35 \cdot 0.3 \cdot \frac{4.073 - 1.455}{4.073} + 0.35 \cdot 2.2 \cdot (1 - 0.65) \cdot \frac{1.455}{4.073} \right] \cdot 0.8 - 4.073 \cdot 1200 \cdot 7$$

$$Q_{F} = 59460 \left[kWh / a \right] = 59.460 \left[MWh / a \right]$$

Nettó fűtési energiaigény 2.

Számítsa ki az alábbi adatokkal rendelkező épület nettó fűtési energiaigényét.

Egy 1200 m² fűtött alapterületű, 3480 m³ térfogatú irodaépület központi szellőző berendezésének befújt levegő hőmérséklete t_{bef} =22 °C. A szellőzőberendezés heti 60 órát üzemel, a szellőzés működésekor a légcsereszám n_{LT} =2.2 1/h, üzemszünetben n_{inf} =0.3 1/h.

Az épület fajlagos hőveszteségtényezője q=0.34 W/m³K. Az épület belső átlaghőmérséklete 20 °C, a fűtési idényre számított egyensúlyi hőmérsékletkülönbség 10 °C, (vegye figyelembe a hőfokhíd és fűtési idény hossz korrekciónál). Az épület szakaszos használatú.

Megoldás

A nettó fűtési energiaigény hővisszanyerővel felszerelt szellőzés figyelembe vételével

$$Q_F = HV \left[q + 0.35 n_{\text{inf}} \frac{Z_F - Z_{LT}}{Z_F} \right] \sigma + 0.35 n_{LT} V(t_i - \overline{t_{bef}}) Z_{LT} - Z_F A_N q_b \quad \left[kWh/a \right]$$

Fűtési hőfokhíd és a fűtési idény hossza

 Δt_b = 10 °C egyensúlyi hőmérséklet esetén a fűtési határhőmérséklet t_{fh} = $t_{i.átl}$ – Δt_b = 20-10= 10 °C

40/2012. (VIII. 13.) BM rendelet 3. melléklet I.2. táblázat (részlet)

Napi középhőmérséklet	t _{köz} -nél alacsonyabb	H ₂₀
$t_{ m k\ddot{o}z}$	átlaghőmérsékletű órák száma	
°C	h	hK/a
-19	0,9	30,9
-18	1,7	61,0

8	3451,7	60270,7
9	3756,5	63623,5
10	4073,3	66791,5
11	4361,3	69383,5
12	4615,7	71418,7
13	4886,9	73317,1
14	5147,3	74879,5

H = 66791 hK

 $Z_F = 4073 h$

A légtechnikai rendszer működési ideje:

$$Z_{LT} = 4073 \cdot \frac{60}{7 \cdot 24} = 1455$$

Az összefüggésbe H, Z_F és Z_{LT} ezredrészét kell behelyettesíteni!

A szakaszos üzem és a belső hőnyereségek

40/2012. (VIII. 13.) BM rendelet 3. melléklet IV.1. táblázat

Az épület	Légcsere-		e-	Használati	Világítás	Világítási	Szakaszos	Belső hő-
rendeltetése	SZ	ám fűt	ési	melegvíz	energia	energia	üzem	nyereség
	ic	lénybe	en	nettó	igénye	Igény	korrekciós	átlagos
		n [1/h]		hőenergia		korrekciós	szorzó	értéke
	1)	2)	3)	Igénye		szorzó		
				q_{HMV}	$q_{ m vil}$	$v^{4)}$	σ 5)	q_b
				$[kWh/m^2/a]$	$[kWh/m^2/a]$			$[W/m^2]$
Lakóépületek 6)		0,5		30	(4) ⁹⁾	-	0,9	5
Irodaépületek 7)	2	0,3	0,8	9	11	0,7	0,8	7
Oktatási épületek ⁸⁾	2,5	0,3	0,9	7	6	0,6	0,8	9

A nettó fűtési energiaigény

$$Q_{F} = HV \left[q + 0.35 n_{\inf} \frac{Z_{F} - Z_{LT}}{Z_{F}} \right] \sigma + 0.35 n_{LT} V (t_{i} - \overline{t_{bef}}) Z_{LT} - Z_{F} A_{N} q_{b} \quad [kWh/a]$$

$$Q_{F} = 66.791 \cdot 3480 \left[0.34 + 0.35 \cdot 0.3 \cdot \frac{4.073 - 1.455}{4.073} \right] \cdot 0.8 + 0.35 \cdot 2.2 \cdot 3480 \cdot (20 - 22) \cdot 1.455 - 4.073 \cdot 1200 \cdot 7$$

$$Q_{F} = 33760 \quad [kWh/a] = 33.760 \quad [MWh/a]$$

Egyensúlyi hőmérsékletkülönbség, fűtési hőfokhíd és a fűtési idény hossza

Határozza meg az alábbi adatok mellett a számításban figyelembe veendő fűtési hőfokhíd értékét és a fűtési idény hosszát.

Az épület főbb adatai: Rendeltetése: Lakóépület

Épület besorolása: nehéz szerkezetű

Fűtött alapterület: 1000 m², belmagasság 2.7 m.

Átlagos belső hőmérséklet 20 °C.

Ablak: É-i tájolással 20 m², D-i tájolással 24 m², K-i és Ny-i tájolással 64 m²

Ablak hőátbocsátási tényező: U=1.6 W/m²K, összes sugárzás átbocsátó képesség: 0.65

Ajtó: 2.4 m^2 , $U=1.8 \text{ W/m}^2\text{K}$

Külső fal: 310 m², U=0.41 W/m²K, hőhíd korrekció 20% Talajjal érintkező padló: kerület l=140 m, Ψ =1.15 W/mK Padlásfödém: 1000 m², U=0.22 W/m²K, hőhíd korrekció 10%

Megoldás

A szerkezetek veszteségtényezői

A sugárzási energiahozam

$$Q_{sd} = \varepsilon \cdot \sum A_{ii} \cdot I_b \cdot g$$

Nehéz szerkezetű épületnél a hasznosítási tényező ε=0,75

40/2012. (VIII. 13.) BM rendelet 3. melléklet I.3. táblázat

A számítás célja	Tájolás		
	É	D	K - N
Sugárzási energiahozam a fűtési idényre fajlagos hőveszteségtényező	100	400	200
számításához Q_{TOT} [kWh/m²/a]			
Átlagintenzitás egyensúlyi hőmérsékletkülönbség számításához I_b [W/m ²]	27	96	50
Átlagintenzitás nyári túlmelegedés kockázatának számításához $I_{nyár}$ [W/m ²]	85	150	150

$$Q_{sd} = 0.75 \cdot (20 \cdot 27 + 24 \cdot 96 + 64 \cdot 50) \cdot 0.65 = 2946.5 \quad W/K$$

Az épületben nincsen üvegház, Trombe-fal stb. ezért Q_{sid}=0 W/K.

Egyensúlyi hőmérsékletkülönbség

$$\Delta t_b = \frac{Q_{sd} + Q_{sid} + A_N \cdot q_b}{\sum A \cdot U + \sum l \cdot \Psi + 0.35 \cdot n \cdot V} + 2 \quad ^{\circ}C$$

40/2012. (VIII. 13.) BM rendelet 3. melléklet IV.1. táblázat

Az épület	L	égcser	e-	Használati	Világítás	Világítási	Szakaszos	Belső hő-
rendeltetése	SZ	ám fűt	ési	melegvíz	energia	energia	üzem	nyereség
	io	dénybe	en	nettó	igénye	Igény	korrekciós	átlagos
	<i>n</i> [1/h]]	hőenergia		korrekciós	szorzó	értéke
	1)	2)	3)	Igénye		szorzó		
				q_{HMV}	$q_{ m vil}$	$v^{4)}$	σ 5)	$q_{\rm b}$
				$[kWh/m^2/a]$	$[kWh/m^2/a]$			$[W/m^2]$
Lakóépületek ⁶⁾		0,5		30	(4) 9)	-	0,9	5
Irodaépületek 7)	2	0,3	0,8	9	11	0,7	0,8	7
Oktatási épületek ⁸⁾	2,5	0,3	0,9	7	6	0,6	0,8	9

$$\Delta t_{b} = \frac{2946.5 + 0 + 1000 \cdot 5}{547.4 + 161 + 0.35 \cdot 0.5 \cdot 1000 \cdot 2.7} + 2 = 8.7 \quad ^{\circ}C$$

A hőfokhíd és a fűtési idény hossza

 Δt_b = 8,7 °C egyensúlyi hőmérséklet esetén a fűtési határhőmérséklet t_{fh} = $t_{i, {
m átl}}$ – Δt_b = 20-8,7= 11,3 °C

40/2012. (VIII. 13.) BM rendelet 3. melléklet I.2. táblázat (részlet)

Napi középhőmérséklet	t _{köz} -nél alacsonyabb	H ₂₀
t _{köz}	átlaghőmérsékletű órák száma	
°C	h	hK/a
-19	0,9	30,9
-18	1,7	61,0

8	3451,7	60270,7
9	3756,5	63623,5
10	4073,3	66791,5
11	4361,3	69383,5
12	4615,7	71418,7
13	4886,9	73317,1
14	5147,3	74879,5

$$H_{11,3} = 0.7 \cdot H_{11} + 0.3 \cdot H_{12} = 0.7 \cdot 69383.5 + 0.3 \cdot 71418.7 = 69994$$
 hK
 $Z_{11,3} = 0.7 \cdot Z_{11} + 0.3 \cdot Z_{12} = 0.7 \cdot 4361.3 + 0.3 \cdot 4615.7 = 4437.2$ h

Fűtési rendszer fajlagos energiaigénye

Számítsa ki az alábbi adatokkal rendelkező épületnél a fűtési rendszer fajlagos energiaigényét. Alapadatok:

Egy 195 m² fűtött alapterületű épület fűtési energiáját 60%-ban alacsonyhőmérsékletű gázkazán és 40%-ban szabályozással ellátott fatüzelésű kazán fedezi. Az épület nettó fűtési energiaigénye 120.5 kWh/m²a. A fűtési rendszer 70/55 °C hőfoklépcsőjű, termosztatikus szelepekkel (2K arányossági sávval) felszerelt kétcsöves radiátoros fűtés, fordulatszám szabályozású szivattyúval. A kazánok az épület alatti fűtetlen alagsorban vannak elhelyezve, itt haladnak az alapvezetékek is. A rendszer puffertárolóval nem rendelkezik.

Megoldás

Számítási összefüggés

$$E_{F} = (q_{f} + q_{f,h} + q_{f,v} + q_{f,t}) \cdot \sum (C_{k} \cdot \alpha_{k} \cdot e_{f}) + (E_{FSz} + E_{FT} + q_{k,v})e_{v}$$

A hőtermelők adatai

40/2012. (VIII. 13.) BM rendelet 2. melléklet VI.1. táblázat

	To			
Alapterület A_N [m ²]	Állandó hőmérsékletű kazán	Alacsony hőmérsékletű kazán	Kondenzációs kazán	Segédenergia $q_{k,v}$ [kWh/m ² /a]
100	1,38	1,14	1,05	0,79
150	1,33	1,13	1,05	0,66
200	1,30	1,12	1,04	0,58
300	1,27	1,12	1,04	0,48
500	1,23	1,11	1,03	0,38
750	1,21	1,10	1,03	0,31
1000	1,20	1,10	1,02	0,27
1500	1,18	1,09	1,02	0,23
2500	1,16	1,09	1,02	0,18
5000	1,14	1,08	1,01	0,13
10000	1,13	1,08	1,01	0,09

40/2012. (VIII. 13.) BM rendelet 2. melléklet VI.5. táblázat

Szilárdtüzelésű kazán	Fatüzelésű kazán	Pellet-tüzelésű kazán	Faelgázosító kazán
1,85	1,75	1,49	1,2

40/2012. (VIII. 13.) BM rendelet 2. melléklet VI.6. táblázat

Alapterületig	Szilárdtüzelésű kazán	Fatüzelésű kazán	Pellet-tüzelésű kazán
$A_N[\mathrm{m}^2]$	(szabályozó nélkül)	(szabályozóval)	(Ventilátorral/
			elektromos gyújtással)
100	0	0,19	1,96
150	0	0,13	1,84
200	0	0,10	1,78
300	0	0,07	1,71
500	0	0,04	1,65

Az elosztás fajlagos vesztesége

40/2012. (VIII. 13.) BM rendelet 2. melléklet VI.7. táblázat

Alap- területig	A hőelosztás veszteségei $q_{f,v}$ [kWh/m²/a] Vízszintes elosztóvezetékek a fűtött téren kívül					
$A_N [\text{m}^2]$ 90/70°C 70/55°C 55/45°C 35/28						
100	13,8	10,3	7,8	4,0		
150	10,3	7,7	5,8	2,9		
200	8,5	6,3	4,8	2,3		
300	6,8	5,0	3,7	1,8		
500	5,4	3,9	2,9	1,3		
> 500	4,6	3,4	2,5	1,1		

A keringtetés fajlagos vesztesége

40/2012. (VIII. 13.) BM rendelet 2. melléklet VI.9. táblázat

	Fordula	atszám s	zabályoz	zású szivattyú	Állandó fordulatú szivattyú			
Alap-	Szabad	fűtőfelü	iletek	Beágyazott	Szabad	l fűtőfelü	iletek	Beágyazott
területig				fűtőfelületek				fűtőfelületek
A_N [m ²]	20 K	15 K	10 K	7 K	20 K	15 K	10 K	7 K
	90/70	70/55	55/45		90/70	70/55	55/45	
	°C	°C	°C		°C	°C	°C	
100	1,69	1,85	1,98	3,52	2,02	2,22	2,38	4,22
150	1,12	1,24	1,35	2,40	1,42	1,56	1,71	3,03
200	0,86	0,95	1,06	1,88	1,11	1,24	1,38	2,44
300	0,61	0,68	0,78	1,39	0,81	0,91	1,04	1,85
500	0,42	0,48	0,57	1,01	0,57	0,65	0,78	1,38
750	0,33	0,38	0,47	0,83	0,45	0,52	0,64	1,14
1000	0,28	0,33	0,42	0,74	0,39	0,46	0,58	1,02
1500	0,23	0,28	0,37	0,65	0,33	0,39	0,51	0,90
2500	0,20	0,24	0,33	0,58	0,28	0,34	0,46	0,81
5000	0,17	0,22	0,30	0,53	0,24	0,30	0,42	0,74
10000	0,16	0,20	0,28	0,50	0,22	0,28	0,40	0,70

A szabályozás pontatlansága miatti veszteség

40/2012. (VIII. 13.) BM rendelet 2. melléklet VI.10. táblázat

Rendszer	Szabályozás	$q_{f,h}$ [kWh/m ² /a]	Megjegyzések
Vízfűtés	Szabályozás nélkül	15,0	
Kétcsöves radiátoros és beágyazott	Épület vagy rendeltetési egység egy központi szabályozóval	9,6	
fűtések	(pl. szobatermosztáttal) Termosztatikus szelepek és más arányos szabályozók 2 K arányossági sávval	3,3	
	1 K arányossági sávval	1,1	
	Elektronikus szabályozó	0,7	Idő- és hőmérséklet szabályozás PI - vagy hasonló tulajdonsággal
	Elektronikus szabályozó optimalizálási funkcióval	0,4	Pl. ablaknyitás, jelenlét érzékelés funkciókkal kibővítve
Egycsöves fűtések	Épület vagy rendeltetési egység 1 központi szabályozóval (pl. szobatermosztáttal)	9,6	Pl. lakásonkénti vízszintes egycsöves rendszer
	Időjárásfüggő központi szabályozás helyiségenkénti szabályozás nélkül	5,5	Pl. panelépületek átfolyós vagy átkötő szakaszos rendszere
	Termosztatikus szelepekkel	3,3	

A hőtárolás fajlagos vesztesége

Hőtároló nincs, ezért annak fajlagos energiaigénye $q_{f,t}$ =0 kWh/m²a, és segédenergia igénye E_{FT} =0 kWh/m²a.

A primer energia átalakítási tényezők

40/2012. (VIII. 13.) BM rendelet 3. melléklet V.1. táblázat

Energia	e
elektromos áram	2,50
csúcson kívüli elektromos áram	1,80
földgáz	1,00
tüzelőolaj	1,00
szén	1,00
tüzifa, biomassza, pellet	0,60
megújuló (pl. napenergia)	0,00

A fűtési rendszer fajlagos energiaigénye

$$\begin{split} E_F &= \left(q_f + q_{f,h} + q_{f,v} + q_{f,t}\right) \cdot \sum \left(C_k \cdot \alpha_k \cdot e_f\right) + \left(E_{FSz} + E_{FT} + q_{k,v}\right) e_v \\ E_F &= \left(120.5 + 3.3 + 6.3 + 0\right) \cdot \left(1.12 \cdot 0.6 \cdot 1 + 1.75 \cdot 0.4 \cdot 0.6\right) + \left(0.95 + 0 + \left(0.6 \cdot 0.58 + 0.4 \cdot 0.1\right)\right) \cdot 2.5 \\ E_F &= 145.41 \quad \left[kWh/m^2a\right] \end{split}$$

HMV rendszer fajlagos energiaigénye

Számítsa ki az alábbi adatokkal rendelkező épületnél a HMV rendszer fajlagos energiaigényét. Alapadatok:

Egy 195 m² fűtött alapterületű lakóépület használati melegvizét 60 %-ban napkollektor és 40 %-ban állandó hőmérsékletű gázkazán fedezi. A kazán és a HMV közös indirekt tárolója az épület alatti fűtetlen alagsorban vannak elhelyezve, itt haladnak az alapvezetékek is. A rendszer cirkulációs vezetékkel rendelkezik. A napkollektoros rendszer fajlagos villamosenergia fogyasztása $E_K=2,5$ kWh/m²a

Megoldás

Számítási összefüggés

$$E_{HMV} = (q_{HMV} + q_{HMV,v} + q_{HMV,t}) \cdot \sum (C_k \cdot \alpha_k \cdot e_f) + (E_C + E_K) \cdot e_v \text{ [kWh/m2a]}$$

A hőtermelők adatai

40/2012. (VIII. 13.) BM rendelet 2. melléklet VII.1. táblázat

Alap- területig		Segéd	energia				
A_N	Állandó	Alacsony	Konden-	Kombi-	Kondenzációs	Kombi-	Más
$[m^2]$	hőm. Kazán	hőm.	zációs	kazán	kombikazán	kazán	kazánok
	(olaj és gáz)	kazán	kazán	ÁF/KT*	ÁF/KT*		
			$C_K[-]$			E _K [kW	/h/m²/a]
100	1,82	1,21	1,17	1,27/1,41	1,23/1,36	0,20	0,30
150	1,71	1,19	1,15	1,22/1,32	1,19/1,28	0,19	0,24
200	1,64	1,18	1,14	1,20/1,27	1,16/1,24	0,18	0,21
300	1,56	1,17	1,13	1,17/1,22	1,14/1,19	0,17	0,17
500	1,46	1,15	1,12	1,15/1,18	1,11/1,15	0,17	0,13
750	1,40	1,14	1,11				0,11
1000	1,36	1,14	1,10				0,10
1500	1,31	1,13	1,10				0,084
2500	1,26	1,12	1,09				0,069
5000	1,21	1,11	1,08				0,054
10000	1,17	1,10	1,08				0,044

A napkollektor teljesítménytényezője érdektelen a nullával való szorzás miatt, $C_k=1$, elektromos segédenergia igénye az alapadatok szerint $E_k=2.5$ kWh/m²a.

Az elosztás fajlagos vesztesége, a cirkuláció segédenergia igénye, a hőtárolás fajlagos vesztesége

40/2012. (VIII. 13.) BM rendelet 2. melléklet VII.6. táblázat

Alap-	Az elosztás hővesztesége a nettó melegvíz készítési hőigény					
területig		százale	ékában			
A_N	Cirkula	ációval	Cirkulác	ió nélkül		
$[m^2]$	Elosztás a fűtött	Elosztás a fűtött	Elosztás a fűtött	Elosztás a fűtött		
	téren kívül	téren belül	téren kívül	téren belül		
	%	%	%	%		
100	28	24				
150	22	19				
200	19	17				
300	17	15	13	10		
500	14	13				
750	13	12				
> 750	13	12				

40/2012. (VIII. 13.) BM rendelet 2. melléklet VII.7. táblázat

	-
Alapterületig A_N	Fajlagos segédenergia igény [kWh/m²/a]
$[m^2]$	
100	1,14
150	0,82
200	0,66
300	0,49
500	0,34
750	0,27
1000	0,22
1500	0,18
2500	0,14
5000	0,11
> 5000	0,10

40/2012. (VIII. 13.) BM rendelet 2. melléklet VII.5. táblázat

Alapterü-	A tárolás hővesztesége a nettó melegvízkészítési hőigény százalékában						
letig	A tároló a fűtött légtéren kívül						
A_N	Indirekt fűtésű	rekt fűtésű Csúcson kívüli árammal Nappali árammal működő					
$[m^2]$	tároló	működő elektromos bojler	elektromos bojler	bojler			
Ī	%	%	%	%			
100	28	24	16	97			
150	21	20	12	80			
200	16	16	10	69			
300	12	14	8	61			
500	9	10	6	53			
750	6	8	5	49			
1000	5	8	4	46			
1500	4	7	4	40			
2500	4	6	3	32			
5000	3	5	2	26			
10000	2	4	2	22			

A primer energia átalakítási tényezők

40/2012. (VIII. 13.) BM rendelet 3. melléklet V.1. táblázat

Energia	e
elektromos áram	2,50
csúcson kívüli elektromos áram	1,80
földgáz	1,00
tüzelőolaj	1,00
szén	1,00
tüzifa, biomassza, pellet	0,60
megújuló (pl. napenergia)	0,00

A HMV rendszer fajlagos energiaigénye

$$\begin{split} \mathbf{E}_{\mathrm{HMV}} &= \left(\mathbf{q}_{\mathrm{HMV}} + \mathbf{q}_{\mathrm{HMV}, \mathrm{v}} + \mathbf{q}_{\mathrm{HMV}, \mathrm{t}}\right) \cdot \sum \left(C_{\mathrm{k}} \cdot \alpha_{\mathrm{k}} \cdot \mathbf{e}_{\mathrm{f}}\right) + \left(\mathbf{E}_{\mathrm{C}} + \mathbf{E}_{\mathrm{K}}\right) \cdot \mathbf{e}_{\mathrm{v}} \ \left[\mathrm{kWh/m2a}\right] \\ E_{\mathrm{HMV}} &= \left(30 + 30 \cdot 0.19 + 30 \cdot 0.16\right) \cdot \left(1 \cdot 0.6 \cdot 0 + 1.64 \cdot 0.4 \cdot 1\right) + \left(\left(0.6 \cdot 2.5 + 0.4 \cdot 0.21\right) + 0.66\right) \cdot 2.5 \\ E_{\mathrm{HMV}} &= 32.18 \quad \left[\mathrm{kWh/m^2a}\right] \end{split}$$

Légtechnikai rendszer fajlagos energiaigénye

Számítsa ki az alábbi adatokkal rendelkező épületnél a légtechnikai rendszer fajlagos energiaigényét.

Alapadatok:

Egy 2400 m³ fűtött térfogatú, 800 m² fűtött alapterületű irodaépület szellőző rendszere használati időben n=2 1/h légcsereszámmal üzemel. A befúvó rendszer áramlási ellenállása 450 Pa, az elszívó rendszeré 250 Pa. A befúvó légcsatorna 25 m hosszúságú, NA 800 mm méretű szakasza a fűtetlen padláson halad keresztül. Α légcsatorna 20 mm hőszigeteléssel rendelkezik. A szellőzőrendszer hétfőtől péntekig napi 14 órát üzemel, szombaton és vasárnap ki van kapcsolva. A befújt levegő hőmérséklete 24 °C, központilag szabályozva, az épület átlagos belső hőmérséklet 20°C. A szellőző rendszer ηr=0,6 hatásfokú hővisszanyerővel rendelkezik. A kalorifer fűtővizét az épület alatti fűtetlen alagsorban elhelyezett hagyományos kazán állítja elő földgáz energiahordozóból. Ugyanez a kazán szolgálja ki a fűtési rendszert, ezért nem kell ismételten a segédenergia felhasználással számolni.

Megoldás

Számítási összefüggés

$$E_{LT} = \{ [Q_{LT,n} \cdot (1 + f_{LT,sz}) + Q_{LT,v}] \cdot C_k \cdot e_{LT} + (E_{VENT} + E_{LT,s}) \cdot e_v \} \cdot \frac{1}{A_N}$$

Légtechnika nettó energiaigénye

$$Q_{LT,h} = 0.35 \cdot V \cdot n_{LT} \cdot (1 - \eta_r) \cdot Z_{LT} \cdot (\bar{t}_{bef} - 4) \quad [kWh/a]$$

Működési idő fűtési idényben:

$$Z_{LT} = 4400 \cdot \frac{5}{7} \cdot \frac{14}{24} = 1833.3 [\text{óra}] = 1.8333 [\text{ezeróra}]$$

Éves működés időtartama:

$$Z_{a,LT} = 365 \cdot \frac{5}{7} \cdot 14 = 3650 [\text{óra}] = 3.65 [\text{ezeróra}]$$

$$Q_{LT,h} = 0.35 \cdot 2400 \cdot 2 \cdot (1 - 0.6) \cdot 1,833 \cdot (24 - 4)$$

$$Q_{LT,h} = 24640 \quad [kWh/a]$$

Ventilátor villamos energiaigénye

$$E_{VENT} = \frac{V_{LT} \cdot \Delta p_{LT}}{3600 \cdot \eta_{vent}} \cdot Z_{a,LT} \quad [kWh/a]$$

A rendszer térfogatárama:

$$V_{LT} = V \cdot n_{LT} = 2400 \cdot 2 = 4800 \quad [m^3 / h]$$

Ventilátorok összhatásfoka:

40/2012. (VIII. 13.) BM rendelet 2. melléklet VIII.1. táblázat

	Ventilátor térfogatárama	Ventilátor összhatásfoka
	V_{LT} [m ³ /h]	η_{vent} [-]
Nagy ventilátorok	$10.000 \le V_{LT}$	0,70
Közepes ventilátorok	$1.000 \le V_{LT} < 10.000$	0,55
Kis ventilátorok	$V_{LT} < 1.000$	0,40

$$E_{VENT} = \frac{4800 \cdot (450 + 250)}{3600 \cdot 0.55} \cdot 3.65 = 6193.9 [kWh/a]$$

Légcsatorna hőleadása

A légcsatorna keresztmetszete:

$$A = \frac{D^2 \cdot \pi}{4} = \frac{\left(\frac{800}{1000}\right)^2 \cdot \pi}{4} = 0.503 \quad [m^2]$$

Az áramlási sebesség:

$$v = \frac{\dot{V}}{A} = \frac{\left(\frac{4800}{3600}\right)}{0.503} = 2.7 \quad [m/s]$$

Egységnyi hosszra vonatkoztatott hőátbocsátási tényező:

40/2012. (VIII. 13.) BM rendelet 2. melléklet VIII.3. táblázat

Cső	Szigetelés nélkül 20 mm hőszigetelés				50 mm	n hőszig	getelés		
átmérő		Áramlási sebesség <i>w</i> _{lev} [m/s]							
<i>d</i> [mm]	2	4	6	2	4	6	2	4	6
100	1,39	1,83	2,08	0,53	0,57	0,59	0,32	0,33	0,34
150	1,95	2,57	2,93	0,73	0,80	0,83	0,43	0,45	0,46
200	2,48	3,28	3,74	0,94	1,03	1,06	0,53	0,56	0,57
300	3,49	4,63	5,29	1,33	1,47	1,52	0,75	0,79	0,80
500	5,49	7,27	8,30	2,13	2,34	2,43	1,17	1,23	1,25
800	8,30	11,0	12,5	3,29	3,63	3,78	1,79	1,88	1,92
1000	10,1	13,4	15,3	4,05	4,48	4,66	2,20	2,32	2,37
1250	12,2	16,2	18,5	4,99	5,52	5,76	2,71	2,86	2,92
1600	15,2	20,1	23,0	6,29	6,97	7,28	3,42	3,61	3,69

 $U_{k\ddot{o}r}$ =3.4 W/mK

Légcsatorna veszteségtényezője f_v=1. (fűtetlen téren halad keresztül)

$$\begin{aligned} \mathbf{Q}_{\mathrm{LT,v}} &= \mathbf{U}_{\mathrm{k\"{o}r}} \cdot \mathbf{l}_{\mathrm{v}} \cdot \left(\mathbf{t}_{\mathrm{l,k\"{o}z}} - \mathbf{t}_{\mathrm{i,\acute{a}tl}} \right) \cdot \mathbf{f}_{\mathrm{v}} \cdot \mathbf{Z}_{\mathrm{LT}} \\ \mathbf{Q}_{\mathrm{LT,v}} &= 3.4 \cdot 25 \cdot \left(24 - 4 \right) \cdot 1 \cdot 1.833 \\ \mathbf{Q}_{\mathrm{LT,v}} &= 3116.1 \quad \left[\mathrm{kWh} \, / \, \mathrm{a} \right] \end{aligned}$$

A szabályozás pontatlansága miatti veszteség

40/2012. (VIII. 13.) BM rendelet 2. melléklet VIII.2. táblázat

Rendszer	Hőmérséklet szabályozás módja	$f_{LT,sz}$	Megjegyzés
		%	
20 °C feletti befúvási	Helyiségenkénti szabályozás	5	Érvényes az egyes helyi
hőmérséklet esetén	Központi előszabályozással,	10	(helyiségenkénti) és a
	helyiségenkénti szabályozás nélkül		központi kialakításokra,
	Központi és helyiségenkénti	30	függetlenül a levegő
	szabályozás nélkül		melegítés módjától.
20 °C alatti befúvási		0	Pl.: hővisszanyerős rendszer utófűtő nélkül
hőmérséklet esetén			

Kazán teljesítménytényezője

40/2012. (VIII. 13.) BM rendelet 2. melléklet VI.1. táblázat

	To			
Alapterület A_N [m ²]	Állandó hőmérsékletű kazán	Alacsony hőmérsékletű kazán	Kondenzációs kazán	Segédenergia $q_{k,v}$ [kWh/m ² /a]
100	1,38	1,14	1,05	0,79
150	1,33	1,13	1,05	0,66
200	1,30	1,12	1,04	0,58
300	1,27	1,12	1,04	0,48
500	1,23	1,11	1,03	0,38
750	1,21	1,10	1,03	0,31
1000	1,20	1,10	1,02	0,27
1500	1,18	1,09	1,02	0,23
2500	1,16	1,09	1,02	0,18
5000	1,14	1,08	1,01	0,13
10000	1,13	1,08	1,01	0,09

A primer energia átalakítási tényezők

40/2012. (VIII. 13.) BM rendelet 3. melléklet V.1. táblázat

Energia	e
elektromos áram	2,50
csúcson kívüli elektromos áram	1,80
földgáz	1,00
tüzelőolaj	1,00
szén	1,00
tüzifa, biomassza, pellet	0,60
megújuló (pl. napenergia)	0,00

Légtechnikai primer energiaigénye

$$E_{LT} = \{ [Q_{LT,n} \cdot (1 + f_{LT,sz}) + Q_{LT,v}] \cdot C_k \cdot e_{LT} + (E_{VENT} + E_{LT,s}) \cdot e_v \} \cdot \frac{1}{A_N}$$

$$\begin{split} E_{LT} = & \left\{ \left[24640 \cdot \left(1 + \frac{10}{100} \right) + 3116.1 \right] \cdot 1.21 \cdot 1 + (6193.9 + 0) \cdot 2.5 \right\} \cdot \frac{1}{800} \\ E_{LT} = & 65.06 \quad \left[kWh / m^2 a \right] \end{split}$$