Extra assignment 0: Who's that (simulated) pokémon?

Computational Statistics Instructor: Luiz Max Carvalho

September 21, 2022

Hand-in date: 28/09/2022.

General guidance

- State and prove all non-trivial mathematical results necessary to substantiate your arguments;
- Do not forget to add appropriate scholarly references at the end of the document;
- Mathematical expressions also receive punctuation;
- Please hand in a single PDF file as your final main document.
 Code appendices are welcome, in addition to the main PDF document.

Background

In this (hopefully) fun little exercise I will describe a rejection sampling algorithm to sample from a mysterious distribution. Suppose we have the following procedure:

- 1. Generate $U_1, U_2 \sim \text{Uniform}(0, 1)$, independently;
- 2. Compute $Y_1=-\log(U1)$ and $Y_1=-\log(U1)$. If $Y_2>\frac{(1-Y_1)^2}{2}$, accept $Y=(Y_1,Y_2)$. Else, reject and return to step 1;
- 3. Generate $U_3 \sim \text{Uniform}(0,1)$; if $U_3 < 1/2$, set $X = Y_1$, otherwise set $X = -Y_1$.

Your job is to analyse this algorithm mathematically, find out its target distribution and work out its acceptance rate.

Questions

- 1. What is the distribution of Y_1 and Y_2 ?
- 2. What is the distribution of the "mystery" random variate X?
- 3. How can one take the output of the algorithm (X) and generate $W \sim \text{Normal}(\mu, \sigma^2)$, with $\mu \in \mathbb{R}$ and $\sigma^2 \in \mathbb{R}_+$?
- 4. Can you work out what the acceptance rate of this algorithm is?
- 5. (bonus) Can you generalise this algorithm to sample from other distributions? For example, how would you modify the algorithm in order to sample from a Gamma distribution with parameters $a, b \in \mathbb{R}_+$?

Hint: consider modifying step 2) to accept when $Y_2 > f(Y_1)$ and choose f carefully.