Subsection 2

Topic modeling (very very briefly)

Topics

Given a corpus of documents, what do they talk about?

▶ talks about → topic

Probabilistic model

Assume stochastic document building process:

- ▶ there exist *k* topics
- a topic is a distribution over words
- ▶ a topic is assigned to the document according to a known probability (a document may exhibit multiple topics)
- a word in a document is drawn according to topic and document-topic assignment

Words order does not matter!

Probabilistic model

Image from https://www.cs.princeton.edu/~blei/topicmodeling.html

Probabilistic graphical model

Image from https://www.cs.princeton.edu/~blei/topicmodeling.html

- nodes are random variables
- edges are dependencies
- shaded nodes are observed
- boxes are repeated variables

Latent Dirichlet allocation (LDA)

A way for inferring distributions/assignments from observed values! (*Posterior inference*)

Given K (parameter),

- for each topic, compute words distribution
- for each document, compute topic "distribution"
- ▶ Latent refers to the unknown random variables
- Dirichlet is the distribution assumed for topics and words
- ▶ **Allocation** of words to topics and topics to documents

LDA internals

(Just a coarse overview)

While inferring posterior, try to (both):

- associate each document with as few topics as possible
- associate each topic with as few words as possible

Conflicting goals, which results in finding (and putting in the same topics) words which often co-occur

LDA output

- For each document of the corpus, a vector in [0,1]^K where i-th value is "how much the document exhibits i-th topic"
 - reasonable values for the number of topics K is some tens (10−50) (Q: how to choose the right value for a problem?)
- For each topic, a vector $[0,1]^V$ where the *i*-th value is "how much the *i*-th word (on V words) is associated with the topic"
 - how to visualize/understand a topic? Select its most likely words

Visualize topics

1	2	3	4	5
dna	protein	water	says	mantle
gene	cell	climate	researchers	high
sequence	cells	atmospheric	new	earth
genes	proteins	temperature	university	pressure
sequences	receptor	global	just	seismic
human	fig	surface	science	grust
genome	binding	ocean	lke .	temperature
genetic	activity	carbon	work	earths
analysis	activation	atmosphere	fest	lower
two	kinase	changes	years	earthquakes
6	7	8	9	10
end	time	materials	dna	disease
article	data	surface	rna	cancer
start	beo	high	transcription	patients
science	model	sperie	protein	human
readers	50	Sergentine	site	gene
service	1000	minutes	binding	medical
news	netter .	deniol	sequence	studies
card	- Court	continue	proteins	drug
circle	-	in the	specific	normal
letters	_	unionally	acquences	drugs
11	12	13	14	15
vears	species	protein	cells	space
million	evolution	structure	cell	solar
ago	noishugga	proteins	virus	observations
age	evolutionary	two	hly	earth
university	university	amino	infection	atora
north	nonulations	binding	Immune	university
early	cotoral	acid	human	mare
fin	studes	residues	antigen	NO.
evirience	genete	molarity	infected	ashmamers
record	ladege	structural	viral	telescope
16	17	18	19	20
fax	cells	eneray	research	neurons
manager	cell	electron	science	brain
science	gene	state	national	cells
aaas	denes	light	scientific	activity
advertising	expression	quantum	scientists	fig
sales	development	physics	new	channels
member	mutent	electrons	states	university
recruitment	rtice	high	umenty	cornex
associate	fo	Inner	- mari	neuronal
washington	biology	magnetic		vivad

Image from https://www.cs.princeton.edu/~blei/topicmodeling.html

LDA as a building block

- corpus visualization
- document similarities
- document $\to \mathbb{R}^K$

LDA: document $\to \mathbb{R}^K$

How to apply to new data?

- assume everything is known (i.e., already computed on the corpus)
- just infer the posterior of topic assignment for the new document

Lab: Topics in poetry

```
KEY POINTS:

1) HOW TO CHOOSE K

2) PREPLOCESSING ?

3) HOW TO PRESENT OUTPUT
```

What's modern and renaissance poetry about?

Data: https:

//www.kaggle.com/ultrajack/modern-renaissance-poetry

In R:

- package topicmodels
- ► functions LDA(train.data, k), posterior(lda.model, test.data)