Analyse

Gruppe 1 (G4-103)

Oktober 2016

Opgave 1.7

Lad $A \subset \mathbb{R}^n$ og lad $f: A \to \mathbb{R}^m$. Vis, at f er kontinuert i " $\varepsilon - \delta$ -forstand" hvis og kun hvis f er kontinuert mellem de topologiske rum (A, \mathcal{T}_A) og $(\mathbb{R}^m, \mathcal{T}_{\mathbb{R}^m})$ ifølge Definition 1.3, hvor \mathcal{T}_A er sportopologien (se Definition 1.4).

Proof. Viser først " \Longrightarrow ":

Antag at f er kontinuert i " $\varepsilon - \delta$ -forstand", altså:

$$\forall a \in A \forall \varepsilon > 0 \exists \delta > 0 \forall x \in A \colon \|x - a\| < \delta \implies \|f(x) - f(a)\| < \varepsilon$$
 (1)

Lad $U \in \mathcal{T}_{\mathbb{R}^m}$ være givet og lad $a \in f^{-1}(U)$. Dermed må $f(a) \in U$. Da U er en åben mængde ved vi at $\exists \varepsilon > 0 : B_{\varepsilon}(f(a)) \subseteq U$. Af (1) har vi, at

$$\exists \delta > 0 \colon x \in B_{\delta}(a) \cap A \implies f(x) \in B_{\varepsilon}(f(a)) \subseteq U$$

Heraf ses det at $B_{\delta}(a) \cap A \subseteq f^{-1}(U)$, hvilket ydermere betyder at a er et indre punkt i A. Da a er vilkårligt valgt, må alle punkter i $f^{-1}(U)$ være indre punkter. Dette betyder at $f^{-1}(U) \in \mathcal{T}_A$. Da $U \in \mathcal{T}_{\mathbb{R}^m} \implies f^{-1}(U) \in \mathcal{T}_A$, så af Definition 1.3, så er f kontinuert i topologierne \mathcal{T}_A og $\mathcal{T}_{\mathbb{R}^m}$.

Viser nu " $\Leftarrow=$ ":

Antag at f er kontinuert i de topologiske rum \mathcal{T}_A og $\mathcal{T}_{\mathbb{R}^m}$ og vis at f er kontinuert i " $\varepsilon - \delta$ -forstand". Dette betyder, at der for en mængde U gælder, at

$$U \in \mathcal{T}_{\mathbb{R}^m} \implies f^{-1}(U) \in \mathcal{T}_A$$
 (2)

Lad $a \in A$ og $\varepsilon > 0$ være givet. Det gælder at $B_{\varepsilon}(f(a)) \in \mathcal{T}_{\mathbb{R}^m}$ og af (2):

$$B_{\varepsilon}(f(a)) \in \mathcal{T}_{\mathbb{R}^m} \implies f^{-1}(B_{\varepsilon}(f(a))) \in \mathcal{T}_A$$

Vi har af Definition 1.4 at $f^{-1}(B_{\varepsilon}(f(a))) = M \cap A$ for et $M \in \mathcal{T}_{\mathbb{R}^n}$. Vi har at $a \in f^{-1}(B_{\varepsilon}(f(a)))$ og dermed $a \in M \cap A \implies a \in M$. Dermed gælder, at $\exists \delta > 0 \colon B_{\delta}(a) \subseteq M$ da M er åben i \mathbb{R}^n . Dermed gælder det at

$$B_{\delta}(a) \cap A \subseteq M \cap A \implies B_{\delta}(a) \cap A \subseteq f^{-1}(B_{\varepsilon}(f(a))) \implies f(B_{\delta}(a) \cap A) \subseteq B_{\varepsilon}(f(a))$$

Dette kan udtrykkes som

$$\forall a \in A \forall \varepsilon > 0 \exists \delta > 0 \forall x \in A \colon x \in B_{\delta}(a) \cap A \implies f(x) \in B_{\varepsilon}(f(a))$$

hvilket betyder at fer kontinuert i " $\varepsilon-\delta-$ forstand", nemlig at

$$\forall a \in A \forall \varepsilon > 0 \exists \delta > 0 \forall x \in A \colon \|x - a\| < \delta \implies \|f(x) - f(a)\| < \varepsilon.$$