CSU44004 Formal Verification: Natural Deduction Solutions

By: Alexander Sepelenco

Note

This document will contain 8 years of natural deduction solutions ranging from 2021 to 2015.

2021 Q2

I will create a helper proof for this problem to make it easier for myself. Use this proof as a reference as I will not repeat this proof in the solutions.

I will call this rule $\neg \rightarrow$ e Prove: $\neg(p \rightarrow q) \vdash p \land \neg q$

1.	$\neg(p \to q)$	premise
2.	$\neg (p \land \neg q)$	assumption
3.	p	assumption
4.	$ \neg q$	assumption
5.	$ \ \ \ p \land \neg q$	$\wedge i, 3, 4$
6.		$\neg e, 5, 2$
7.	$\neg \neg q$	¬i, 4–6
8.	q	¬¬e, 6
9.	p o q	\rightarrow i, 3–7
10.		¬e, 9, 1
11.	$\neg\neg(p \land \neg q)$	$\neg i, 2-10$
12.	$p \wedge \neg q$	¬¬e, 12

- (a) Prove: $\neg q, t \to q, \neg r \to \neg s, p \to u, \neg t \to \neg r, u \to s \vdash p \to x$
 - 1. $\neg q$ premise
 - 2. premise $t \to q$
 - 3. $\neg r \to \neg s$ premise
 - 4. $p \rightarrow u$ premise
 - 5. $\neg t \to \neg r$ premise
 - 6. $u \to s$ premise
 - $\neg(p \to x)$ 7. assumption
 - $\neg \to e,\, 7$ 8. $p \wedge \neg x$
 - MT, 1, 29. $\neg t$
 - 10. $\neg r$ \rightarrow e, 9, 5
 - 11. $\neg s$ $\rightarrow e,\,10,\,3$
 - 12. MT, 11, 6 $\neg u$
 - 13. MT, 12, 4 $\neg p$
 - 14. $\wedge e_1, 8$ p
 - 15. $\neg e, 14, 13$

¬i, 7–15

 $\neg\neg(p \to x)$ 17. ¬¬e, 16 $p \to x$

16.

(a) This solution is ever so slightly different to 2021 Q2 (a), so I will do it slightly differently for practice. Prove: $t \to q, \neg r \to \neg s, p \to u, \neg t \to \neg r, u \to s \vdash p \to q$

1.	$t \to q$	premise
2.	$\neg r \to \neg s$	premise
3.	$p \to u$	premise
4.	$\neg t \to \neg r$	premise
5.	$u \to s$	premise
6.	$\neg(p \to q)$	assumption
7.	$p \wedge \neg q$	$\neg \rightarrow e, 6$
8.	$\neg q$	$\wedge e_2, 7$
9.	p	$\wedge e_1, 7$
10.	$\neg t$	MT, 8, 1
11.	$\neg r$	\rightarrow e, 10, 4
12.	$\neg s$	\rightarrow e, 11, 2
13.	$\neg u$	MT, 12, 5
14.	$\neg p$	MT, 13, 3
15.		¬e, 14, 9
16.	$\neg\neg(p\to q)$	¬i, 6–16
17.	$p \to q$	$\neg \neg e, 16$

2019 Q3

(a) (i) Prove: $\neg p \rightarrow r \vdash \neg r \rightarrow p$

(a) (ii) Prove: $\neg (p \to r) \to \neg q \vdash q \to p \to r$

1.
$$\neg(p \rightarrow r) \rightarrow \neg q$$
 premise
2. $\neg(q \rightarrow p \rightarrow r)$ assumption
3. $q \land \neg(p \rightarrow r)$ $\neg \rightarrow e, 2$
4. $\neg(p \rightarrow r)$ $\land e_2, 3$
5. $\neg q$ $\rightarrow e, 4, 1$
6. q $\land e_1, 3$
7. \bot $\neg e, 6, 5$
8. $\neg \neg(q \rightarrow p \rightarrow r)$ $\neg i, 2 - 7$
9. $q \rightarrow p \rightarrow r$ $\neg \neg e, 8$

(c) (i) Prove: $p \land q \rightarrow \neg r \vdash r \rightarrow p \rightarrow \neg q$

1.

$$p \land q \to \neg r$$
 premise

 2.
 $\neg (r \to p \to \neg q)$
 assumption

 3.
 $r \land \neg (p \to \neg q)$
 $\neg \to e, 2$

 4.
 r
 $\land e_1, 3$

 5.
 $\neg (p \to \neg q)$
 $\land e_2, 3$

 6.
 $p \land \neg \neg q$
 $\neg \to e, 5$

 7.
 p
 $\land e_1, 6$

 8.
 $\neg \neg q$
 $\land e_2, 6$

 9.
 q
 $\neg \neg e, 8$

 10.
 $p \land q$
 $\land i, 7, 8$

 11.
 $\neg r$
 $\rightarrow e, 10, 1$

 12.
 \bot
 $\neg e, 4, 11$

 13.
 $\neg \neg (r \to p \to \neg q)$
 $\neg i, 2-12$

 14.
 $r \to p \to \neg q$
 $\neg \neg e, 13$

(c) (ii) Sorry, this question is our assignment. I cannot give the answer to this one.

2018 Q1

(c) (i) Prove: $\vdash \neg((p \rightarrow \neg p) \land (\neg p \rightarrow p))$

1.	$\neg(\neg((p \to \neg p) \land (\neg p \to p)))$	assumption
2.	$(p \to \neg p) \land (\neg p \to p)$	assumption
3.	p o eg p	$\wedge e_1, 2$
4.	$\neg p \rightarrow p$	$\wedge e_2, 2$
5.	p	assumption
6.	$ \ \ \ \neg p$	\rightarrow e, 5, 3
7.	L	¬e, 5, 6
8.	$ \ \ \neg p$	¬i, 5–7
9.	p	\rightarrow e, 8, 4
10.		¬e, 9, 8
11.	$\neg((p \to \neg p) \land (\neg p \to p))$	¬i, 2–11
12.	Т	¬e, 11, 1
13.	$\neg\neg(\neg((p\to\neg p)\wedge(\neg p\to p)))$	$\neg i, 1-12$
14.	$\neg((p \to \neg p) \land (\neg p \to p))$	$\neg \neg e, 13$

(c) (ii) Prove:
$$p \to (q \lor r) \vdash (p \to q) \lor (p \to r)$$

1.	$p \to (q \lor r)$	assumption
2.	$\neg((p \to q) \lor (p \to r))$	assumption
3.	$p \rightarrow q$	assumption
4.	$ (p \to q) \lor (p \to r) $	assumption
5.		¬e, 4, 5
6.	$\neg(p \to q)$	¬i, 3–5
7.	$p \wedge \neg q$	$\neg \rightarrow e, 6$
8.	p	$\wedge e_1, 7$
9.	$(q \lor r)$	\rightarrow e, 8, 1
10.	$\neg q$	$\wedge e_2, 7$
11.	$p \rightarrow r$	assumption
12.	$(p \to q) \lor (p \to r)$	$\forall i_2, 11$
13.		¬e, 12, 2
14.	$\neg(p \to r)$	¬i, 11-13
15.	$p \wedge \neg r$	$\neg \rightarrow e, 14$
16.	eg r	$\wedge e_2, 15$
17.	q	assumption
18.		copy 10
19.		¬e, 17, 18
20.	r	assumption
21.	$ \hspace{.05cm} \hspace{.05cm}\neg r$	copy 16
22.		¬e, 16
23.		∨e, 9, 17–9, 20-22
24.	$\neg\neg((p\to q)\lor(p\to r))$	¬i, 2–23
25.	$(p \to q) \lor (p \to r)$	¬¬e, 24

(c) (i) Prove: $p \to r \vdash \neg p \lor r$

1.	$p \rightarrow r$	premise
2.	$\neg(\neg p \lor r)$	assumption
3.	p	assumption
4.	r	\rightarrow e, 3, 1
5.	$ \neg p \lor r$	$\forall i_2, 4$
6.	<u> </u>	$\neg e, 5, 2$
7.	$\neg p$	¬i, 3–6
8.	$\neg p \lor r$	$\vee i_1, 7$
9.		¬e, 8, 2
10.	$\neg\neg(\neg p\vee r)$	$\neg i, 2-9$
11.	$\neg p \vee r$	$\neg \neg e, 10$

(c) (ii) Prove:
$$(\neg p \to r), (r \to p), (p \to s) \vdash p \land s$$

1.	$\neg p \to r$	premise
2.	$r \to p$	premise
3.	$p \to s$	premise
4.	$\neg(p \land s)$	assumption
5.	p	assumption
6.	s	\rightarrow e, 5, 3
7.	$p \wedge s$	∧i, 5, 6
8.		¬e, 7, 4
9.	$\neg p$	¬i, 5–8
10.	r	\rightarrow e, 9, 1
11.	p	\rightarrow e, 10, 2
12.	上	¬e, 11, 9
13.	$\neg\neg(p\wedge s)$	¬i, 4–12
14.	$p \wedge s$	¬¬e, 13

I will prove Morgan's Theorem using natural deduction to use as a helper rule for the problem (ii). I will call this rule DM_2

Prove: $\neg (p \lor q) \vdash \neg p \land \neg q$

1.	$\neg(p \lor q)$	premise
2.	$\neg(\neg p \land \neg q)$	assumption
3.	p	assumption
4.	$p \lor q$	$\forall i_1, 3$
5.		¬e, 4, 1
6.	$\neg p$	¬i, 3–5
7.	q	assumption
8.	$p \lor q$	$\forall i_2, 7$
9.		¬e, 8, 1
10.	$\neg q$	¬i, 7–9
11.	$\neg p \land \neg q$	$\wedge i, 6, 10$
12.		$\neg e, 11, 2$
13.	$\neg\neg(\neg p \land \neg q)$	$\neg i, \ 212$
14.	$\neg p \wedge \neg q$	$\neg \neg e, 13$

(d) (i) Prove: $p \lor (q \land r) \vdash (p \lor q) \land (p \lor r)$

,	/ (- /	
1.	$p\vee (q\wedge r)$	premise
2.	$\neg((p \lor q) \land (p \lor r))$	assumption
3.	$p \lor q$	assumption
4.	$ p \lor r$	assumption
5.	$ \ \ \ (p \lor q) \land (p \lor r) $	$\wedge i, 3, 4$
6.		¬e, 5, 2
7.	$ \neg (p \lor r)$	¬i, 4–6
8.	$ \neg p \wedge \neg r$	$DM_2, 7$
9.	$ \ \ \neg p$	$\wedge e_1, 8$
10.	$ \; \; \neg r$	$\wedge e_2, 8$
11.		assumption
12.	$ \ \ \ \neg p$	copy 9
13.		¬e, 11, 12
14.	$(q \lor r)$	assumption
15.	$ \cdot $ r	$\wedge e_2, 14$
16.		¬e, 15, 10
17.		$\vee e, 1, 11-13, 14-16$
18.	$\neg (p \lor q)$	$\neg i, 2-17$
19.	$\neg p \land \neg q$	$DM_2, 18$
20.	$\neg p$	$\wedge e_1, 19$
21.	$\neg q$	$\wedge e_2, 19$
22.	p	assumption
23.	<u> </u>	$\neg e, 22, 20$
24.	$(q \wedge r)$	assumption
25.		$\wedge e_1, 24$
26.	<u> </u>	¬e, 24, 21
27.		$\vee e, 1, 22-23, 24-26$
28.	$\neg\neg((p\vee q)\wedge(p\vee r))$	$\neg i, 2-27$
29.	$(p\vee q)\wedge (p\vee r)$	¬¬e, 28

(d) (ii) Prove: $\phi \land \neg \psi \rightarrow \neg \phi \vdash \phi \rightarrow \psi$

1.
$$\phi \land \neg \psi \rightarrow \neg \phi$$
 premise
2. $\neg (\phi \rightarrow \psi)$ assumption
3. $\phi \land \neg \psi$ $\neg \rightarrow e, 2$
4. $\neg \phi$ $\rightarrow e, 3, 1$
5. ϕ $\land e_1, 3$
6. \bot $\neg e, 4, 5$
7. $\neg \neg (\phi \rightarrow \psi)$ $\neg i, 2-6$
8. $\phi \rightarrow \psi$ $\neg \neg e, 7$

(e) (i) Prove:
$$(\phi_1 \rightarrow \psi_1), (\neg \psi_2 \rightarrow \neg \phi_2) \vdash (\phi_1 \land \phi_2) \rightarrow (\phi_1 \lor \phi_2)$$

1.	$(\phi_1 \to \psi_1)$	premise
2.	$(\neg \psi_2 \to \neg \phi_2)$	premise
3.	$\neg((\phi_1 \land \phi_2) \to (\psi_1 \lor \psi_2))$	assumption
4.	$\phi_1 \wedge \phi_2$	assumption
5.	$ \phi_1 $	$\wedge e_1, 4$
6.	$\mid \mid \; \psi_1 \mid$	\rightarrow e, 5, 1
7.	$\psi_1 \lor \psi_2$	∨i, 6
8.	$(\phi_1 \wedge \phi_2) \to \psi_1 \vee \psi_2$	\rightarrow i, 4–7
9.	上	¬e, 8, 3
10.	$\neg\neg((\phi_1 \land \phi_2) \to (\psi_1 \lor \psi_2))$	$\neg i, 3-9$
11.	$(\phi_1 \land \phi_2) \to (\psi_1 \lor \psi_2)$	$\neg \neg e, 10$

(e) (ii) Prove: $\phi \rightarrow \neg \psi \vdash \psi \rightarrow \neg \phi$

1.
$$\phi \rightarrow \neg \phi$$
 premise
2. $\neg (\psi \rightarrow \neg \phi)$ assumption
3. $\psi \land \neg \neg \phi$ $\neg \rightarrow e, 2$
4. $\neg \neg \phi$ $\land e_2, 3$
5. ϕ $\neg \neg e, 4$
6. $\neg \phi$ $\rightarrow e, 5, 1$
7. \bot $\neg e, 5, 6$
8. $\neg \neg (\psi \rightarrow \neg \psi)$ $\neg i, 2 \neg 7$
9. $\psi \rightarrow \neg \psi$ $\neg \neg e, 8$