Partial derivatives

1 & January.

Notation:

- · <2,3,47 is the same as 27+33+4R.
- contour line is the same as level lines.
- normal to a plane is perpendicular to plane
 This tance between (5,6,7) and yz-plane.

 yz-plane is x=0

 (5,6,7) lies on x=5.

 Distance between them is 5.

"Pastial Desiratives

$$f(m) = \alpha x^2$$

 $f'(m) = 2\alpha x^2$, for a constant,

Partal derivatives are derivatives of f(x,y) where one of the variables is fixed and the other is assumed constant

Degivatives	Partial Deriver
, fix)	f(x,y).
, $f'(\alpha)$, $\frac{d}{dx}f(x) _{X=\alpha}$.	$f(x,y).$ $f_{x} = \frac{\partial f}{\partial x}, f_{y} = \frac{\partial f}{\partial y}$
Derivative of fata	
is $f'(a) = \lim_{n \to \infty} \frac{f(a+h) - f(a)}{n}$	Definition: Partial derivatives of f est (9,6) is with sespect to x is $f_{\chi}(9,6) = \lim_{h \to 0} f(4,6) - f(4,6)$
if it exists.	for wo and with hespect to y is $f(a,6) = \lim_{h \to 0} \frac{f(a,6+h) - f(a,6)}{h}$.
f(n) = x ² f(n) = 2ex	ty=2xy fy=x2.
The name of variables is not important. (x, y) could be (P,Q) or (U,V) or anything. (What is a manne?)	
A I touche notation, $\frac{\partial f}{\partial x} = f_{\chi}$ $\frac{\partial f}{\partial y} = f_{\chi}$.	
Meaning: Suppose production & P is a function of capital K and labour L. What is meant by	
0 K . !	

Solution: 3P is the late of increase of production with respect to capital keeping labour fixed = marginal production with hesped to capital. e + (7,4) = x3+43-x. Full fx (1,1) Solution: $f_{x} = \frac{3}{3}(x^{2}y) + \frac{3}{3}(y^{3}) + \frac{3}{3}(x)$ Yis fixed, so constant $f_{x} = 2xy + 0 - 1 = 2xy - 1$ $f_{x}(1,1) = 2 - 1 = 1$ · flxy)= Sin(xy) Ind t~(0,0). > (on stant Solution: fy= 2 (sin(8y)) * Xis fixed. fy= 34 (sin (xy)) By (hair rule. $= \cos(k\lambda) \frac{d}{d\lambda} (k\lambda)$ X is a fixed $= \cos(\pi y) x$ $= x \cos(\pi y)$.

fy(0,0)=0.cos(0.0)=0,1=0

Second derivatives (derivatives of derivatives)

 $(t^{\times})^{\times} = t^{\times} \times = \frac{9^{\times}}{9} \left(\frac{9^{\times}}{9} + 1\right)$

(fy) = fy = 34 (34)

 $(f_{\gamma})_{\chi} = f_{QQ} = \frac{\partial}{\partial \chi} (\frac{\partial f}{\partial y})$

finet se cond.

* Find all second derivatives of.

fix,y) = xy + exet. at (1,0)

Key-first find derivative then plug (1,0)

Solution: $f_x = \frac{\partial}{\partial x} (xy) + \frac{\partial}{\partial x} (e^{x+y})$

= 6 7 4 e 2 (2 (xey)) [Change]

Bix 3 + B = (1) Bux 3 + B =

fy = 3 (xy) + 3 (exts)

= x+ enay(2 (xxy)) = x+exy (10) = x+exy.

= 37 (x) + 37 (extx).

 $= 0 + e^{x+y} \frac{\partial}{\partial y} (x+y)$

- E= 6x4x(1)

+yy (1,0) = e1+6=e.

Note fxx=fxx. This is brue in

Clairant's Theorem & fxy and fxx are

Continuous there fxy = fxx

Application Does there exist a function of

such that fx= 2x and fy= 3x

Solution: Suppose there does exist such a

function of such that

fx= Zy and fy=3x

Then fxy=2 and fyx=3

Clairants Theorem. Soft there does not exist