异步 FIFO 验证计划

1. 概述

本验证计划针对异步 FIFO 模块,验证其在跨时钟域(100MHz 同频不同相)环境下的功能正确性。测试平台包含 DUT(待测设计)和参考模型,通过对比两者输出实现自检。

2. 验证目标

- · 验证异步 FIFO 的空/满标志行为
- · 验证复位功能正确性
- · 验证读写使能控制逻辑
- · 验证随机读写场景下的数据一致性
- · 验证连续读写场景下的稳定性
- · 验证跨时钟域同步机制的正确性

3. 测试用例列表

测试用			
例名称	描述	关键检查点	预期结果
空满信	测试 FIFO 的空满标志	- 写满 FIFO 时 full 标志-	写满时 full 置位,读空时
号测试	行为	读空 FIFO 时 empty 标志	empty 置位;与参考模型
			一致
复位测	验证复位功能及复位后	- 复位后 empty 标志- 复位	复位后 empty=1, full=0;
试	状态	后 full 标志- 复位后读取	读取数据为0;复位后能
		数据	正常读写
写使能	测试写使能控制逻辑	- 写使能无效时数据写入-	写使能无效时数据不写
测试		FIFO 满时继续写入	入;满时继续写入不会覆
			盖数据

测试用			
例名称	描述	关键检查点	预期结果
读使能 测试	测试读使能控制逻辑	- 读使能无效时数据读取- FIFO 空时读取	读使能无效时数据不读 出;空时读取不会产生错 误数据
随机读 写测试	随机读写操作测试(100 次迭代)	- 空满标志一致性- 读写数 据一致性- 跨时钟域同步	所有操作后 DUT 与参考 模型状态一致;无数据丢 失或错误
连续读 写测试	连续读写压力测试	- 写满时停止写入- 读空时停止读取- 同时读写时的数据一致性	满时停止写入;空时停止 读取;同时读写时数据正 确传输

4. 检查机制

- · 实时比对:在 clk_out 下降沿比较 DUT 与参考模型的输出
 - 数据输出 (dut_data vs ref_data)
 - 空标志 (dut_empty vs ref_empty)
 - 满标志 (dut_full vs ref_full)
- · **错误报告**: 检测到差异时立即打印错误信息 · **波形记录**: 生成 wave.vcd 波形文件用于调试

5. 时钟与复位配置

信号	频率	相位	复位策略
clk_in	100MHz	0°	初始复位 10 个周期
clk_out	100MHz	180°	同步释放

6. 测试数据

· 数据宽度: 140 位

· 数据生成: 使用 \$urandom() 生成随机测试数据 · 数据验证: 非空状态下比较 DUT 输出与参考模型

7. 通过标准

· 所有测试用例执行完成

· 无任何 ERROR 信息打印

· 最终显示" All tests completed"

8. 风险分析

风险点	缓解措施
亚稳态问题	增加同步触发器深度; 延长复位时间
指针同步延迟	在连续测试中验证边界情况
空满标志误判	在满/空边界进行密集测试
同时读写冲突	在连续读写测试中验证数据一致性

9. 交付物

- 1. 验证报告(包含通过率统计)
- 2. 覆盖率报告