GrafosGreedy

Daniel Penazzi

17 de marzo de 2021

Tabla de Contenidos

- Grafos
 - Repaso de nociones básicas y notación
 - Conectitud

- Coloreo de Grafos
 - Definiciones básicas
 - Greedy

Repaso de Definiciíon de Grafos

- Uds. vieron grafos en Discreta I
- Repasaremos algunos temas para estar seguros que los tenemos frescos.
- y para coordinar la notación.
- Recordemos que un grafo es un par ordenado G = (V, E) donde
 - V es un conjunto cualquiera.
 - En esta materia siempre supondremos *V* finito.
 - es un subconjunto del conjunto de subconjuntos de 2 elementos de V.
 - \blacksquare es decir $E \subseteq \{A \subseteq V : |A| = 2\}$

Notaciones

- Los elementos de *V* se llaman vértices o nodos. Usaremos preferentemente el primer nombre.
- Los elementos de *E* se llaman lados o aristas. Usaremos preferentemente el primer nombre.
- La cantidad de elementos de *V*, salvo que digamos otra cosa, se denotará por default como *n*.
- La cantidad de elementos de *E*, salvo que digamos otra cosa, se denotará por default como *m*.
- Un elemento $\{x,y\} \in E$ será abreviado como xy.
- x e y se llamarán los extremos del lado xy.

Lados

- Como xy denota el conjunto $\{x, y\}$ entonces es claro que xy = yx.
- Hay grafos en donde vamos a querer que el orden de los elementos de un lado importe, esos serán "grafos dirigidos".
- La diferencia es que en vez de ser $E \subseteq \{A \subseteq V : |A| = 2\}$ tendremos $E \subseteq A \times A$.
- Pero ese tipo de grafos los veremos mas adelante, por ahora estaremos tomando grafos "no dirigidos"

Ejemplo de un grafo

- G = (V, E) con:
 - $V = \{A, B, C, D, E\}$ (por lo tanto, n = 5)
 - \blacksquare $E = \{\{A, B\}, \{A, C\}, \{A, E\}, \{C, E\}\}$ (por lo tanto, m = 4)
 - o bien, en la notación que usaremos usualmente que hemos aclarado antes, $E = \{AB, AC, AE, CE\}$.
- No hay que confundir un grafo con la representación gráfica de un grafo.
- Podemos representar *G* dibujando 5 puntos, representando cada uno de los vértices, y dibujando lineas, ya sea rectas o curvas, uniendo dos vértices si forman un lado.
- La representación gráfica puede ser útil para grafos con pocos vértices o lados, pero a medida que el grafo se vuelve mas grande se vuelve casi inútil.

Subgrafos

- Dado un grafo G = (V, E), un subgrafo de G es un grafo H = (W, F) tal que $W \subseteq V$ y $F \subseteq E$.
- Observemos que pedimos que H sea en si mismo un grafo. No cualquier par (W, F) con $W \subseteq V$ y $F \subseteq E$ será un subgrafo porque necesitamos que si un lado está, los dos extremos del lado estén.
- En el ejemplo anterior $(\{A, B, C\}, \{AC\})$ es un subgrafo de G.
- \blacksquare ({A, B, C, D, E}, {AB, CE}) es otro subgrafo de G

Vecinos de un vértice

- Dado $x \in V$, los vértices que forman un lado con x se llaman los vécinos de x.
- El conjunto de vécinos se llama el "vecindario" y se denota por $\Gamma(x)$.
- Es decir $\Gamma(x) = \{y \in V : xy \in E\}$
- En el ejemplo anterior:
 - $\Gamma(A) = \{B, C, E\}.$
 - $\Gamma(B) = \{A\}.$
 - $\Gamma(C) = \{A, E\}.$
 - $\Gamma(D) = \emptyset.$
 - $\blacksquare \Gamma(E) = \{A, C\}.$

Grado de un vértice

- La cardinalidad de $\Gamma(x)$ se llama el grado de x, y la denotaremos por d(x) (ο $d_G(x)$ si queremos recalcar G, pej, si tenemos varios grafos con los mismos vértices).
- **WARNING**: en algunos libros se denota usando la letra griega delta: $\delta(x)$ pero δ nosotros la usaremos para otra cosa. (ver página siguiente).
- En el ejemplo anterior, tenemos:
 - d(A) = 3.
 - d(B) = 1.
 - d(C) = 2.
 - d(D) = 0.
 - d(E) = 2.

- El menor de todos los grados de un grafo lo denotaremos por δ y al mayor de todos los grados por Δ.
- Es decir:
 - $\delta = Min\{d(x) : x \in V\}$
 - $\triangle = Max\{d(x) : x \in V\}$
- En el ejemplo anterior, $\delta = 0$, $\Delta = 3$.
- Un grafo que tenga $\delta = \Delta$ (es decir, todos los grados iguales) se llamará un grafo regular.
- ο Δ-regular si queremos especificar el grado común a todos los vértices.
- Puesto que en el ejemplo $\delta = 0 \neq 3 = \Delta$, el ejemplo no es un grafo regular.

Cíclicos y completos

- 1 El grafo cíclico en *n* vértices, (n > 3) denotado por C_n , es el grafo:
 - Con vértices {1, 2, ..., *n*}.
 - Con lados $\{12, 23,, (n-1)n, n1\}$.
 - (mas generalmente podria ser cualquier conjunto con n elementos $\{x_1, ..., x_n\}$ y lados $\{x_1x_2, x_2x_3, ..., x_{n-1}x_n, x_nx_1\}$).
- 2 El grafo completo en *n* vértices, denotado por K_n , es el grafo:
 - Con vértices {1, 2, ..., n}.
 - Con lados $\{ij : i, j \in \{1, 2, ..., n\}, i < j\}$.
 - (mas generalmente podria ser cualquier conjunto con n elementos $\{x_1,...,x_n\}$ y lados $\{x_ix_j:i,j\in\{1,2,...,n\},i< j\}$)

Mas sobre ciclicos y completos.

- C_n y K_n tienen ambos n vértices, (aunque C_1 y C_2 no están definidos y K_1 y K_2 si) pero C_n tiene n lados mientras que K_n tiene $\binom{n}{2} = \frac{n(n-1)}{2}$ lados.
- Observar que $C_3 = K_3$ y su representación gráfica es un triángulo.
- C_n se llaman cíclicos porque su representación gráfica es un ciclo de n puntos.
- Pej, como dijimos, C_3 es un triangulo, C_4 un cuadrado, C_5 un pentágono, etc.
- $d_{C_n}(x) = 2$ para todo vértice de C_n , mientras que $d_{K_n}(x) = n 1$ para todo vértice de K_n .
- Por lo tanto ambos son grafos regulares.
- (C_n es 2-regular y K_n es (n-1)-regular).

Componentes conexas

- Un camino entre 2 vértices x, y es una sucesión de vértices $x_1, ..., x_r$ tales que:
 - 1 $X_1 = X$
 - $X_r = y$.
 - 3 $x_i x_{i+1} \in E \ \forall i \in \{1, 2, ..., r-1\}.$
- Es trivial ver que la relación:
 - " $x \sim y$ sii existe un camino entre x e y"
- es una relación de equivalencia.
- Por lo tanto el grafo *G* se parte en clases de equivalencia de esa relación de equivalencia.
- Esas partes se llaman las componentes conexas de G.

Grafos conexos

- Un grafo se dice conexo si tiene una sola componente conexa.
- Por ejemplo, C_n y K_n son conexos.
- Pero el ejemplo de grafo que habiamos dado al principio no es conexo.
- Tiene dos componentes conexas: $\{A, B, C, E\}$ y $\{D\}$.
- Recordemos que un arbol es un grafo conexo sin ciclos. (es decir, que no tiene como subgrafo a un C_k).

Grafos

Componentes conexas.

- ¿Cómo determinar las componentes conexas?
- En realidad no estoy seguro si esto lo vieron en Discreta I, pero seguro lo vieron en Algoritmos II.
- De hecho, vieron al menos dos algoritmos que hacen esto.

Determinación de las componentes conexas

- Son DFS y BFS.
- De hecho, hay un poco de ambivalencia en que queremos decir por "DFS" y "BFS"
- El algoritmo básico de DFS o BFS lo que hace es, dado un vértice x, encontrar todos los vértices de la componente conexa de x.
- Asi que si llamamos DFS o BFS a eso, no encuentra todas las componentes conexas.
- Pero ese algoritmo seria mas preciso llamarlo DFS(x) o BFS(x).
- Y el algoritmo DFS o BFS seria: (concretemos para BFS, pej):

Determinación de las componentes conexas

(abajo en vez de BFS puede usarse DFS)

- Tomar $W = \emptyset$, i = 1.
- 2 Tomar un vértice cualquiera x de V.
- 3 Correr BFS(x).
- 4 LLamarle C_i a la componente conexa que encuentra BFS(x).
- 5 Hacer $W = W \cup (\text{vértices de } C_i)$.
- 6 Si W = V, return $C_1, C_2, ..., C_i$.
- Si no, hacer i = i + 1, tomar un vértice $x \notin W$ y repetir [3].

DFS y BFS

- Uds ya vieron DFS y BFS en Algoritmos II, asi que no los veremos aca asi que si no los recuerdan bien vuelvan a verlos.
- En especial BFS va a ser usado mas adelante en forma crucial en un algoritmo muy importante.
- Sólo daremos un breve repaso de ambos.
- En ambos casos, a partir de un vértice raiz, los algoritmos van buscando nuevos vértices, buscando vecinos de vértices que ya han sido agregados.
- Los algoritmos pueden ser implementados simplemente buscando los vértices, o ademas agregando los lados entre un vértice que ya estaba agregado y los vértices que ese vértice agregó.

DFS y BFS

- En ambos casos, si se hace lo segundo, las componentes conexas que se obtengan serán árboles, por la forma que tienen ambos algoritmos.
- Esto es porque en ambos casos no se agrega un vértice que ya estaba agregado, asi que no se generan ciclos.
- La diferencia entre ambos es cómo se buscan vecinos, y qué tipo de estructura de datos usan.
- DFS agrega de a un vécino por vez y usa una pila.
- BFS agrega todos los vecinos juntos y usa una cola.

- Crear una cola con x como único elemento.
- Tomar $C = \{x\}$.
- WHILE (la cola no sea vacia)
 - Tomar *p*=el primer elemento de la cola.
 - Borrar p de la cola.
 - IF existen vértices de $\Gamma(p)$ que no esten en C:
 - Agregar todos los elementos de $\Gamma(p)$ que no estén en C a la cola y a C.
 - ENDWHILE
- return C.

- Crear una pila con x como único elemento.
- Tomar $C = \{x\}$.
- WHILE (la pila no sea vacia)
 - Tomar *p*=el primer elemento de la pila.
 - IF existe algún vértice de $\Gamma(p)$ que no esté en C:
 - Tomar un $q \in \Gamma(p) C$.
 - Hacer $C = C \cup \{q\}$.
 - Agregar q a la pila.
 - ELSE:
 - Borrar *p* de la pila.
 - ENDWHILE
- return C.

Complejidad

- Deberian haber visto en Algoritmos II que la complejidad tanto de DFS como de BFS es O(m).
- (por supuesto, en realidad depende de como se implementen. Hay formas malas de implementarlos que harian que la complejidad fuese peor).
- Una variación obvia de DFS o BFS hace que en vez de retornar las componentes conexas, se retorne simplemente el número de componentes conexas, si es de interes.
- En el proyecto que van a tener que entregar van a tener que implementar al menos uno de estos algoritmos.

Coloreos propios

- Un coloreo (de los vértices) es una función cualquiera $c: V \rightarrow S$ donde S es un conjunto finito.
- Un coloreo es propio si $xy \in E \Rightarrow c(x) \neq c(y)$ (extremos con distinto color)
- Si la cardinalidad de S es k diremos que el coloreo tiene k colores. En general usaremos $S = \{0, 1, ..., k 1\}$ para denotar los colores.
- Un grafo que tiene un coloreo propio con k colores se dice k-coloreable.
- El número cromático es

 $\chi(G) = \min\{k : \exists \text{ un coloreo propio con } k \text{ colores de } G\}$

Calculando $\chi(G)$

- Si uno dice que $\chi(G) = k$, por la definición misma de este número, hay que hacer dos cosas para probarlo:
 - 1 Dar un coloreo propio de *G* con *k* colores. (y obviamente probar que es propio).
 - Esto prueba la parte del " \exists un coloreo propio con k colores de G"
 - Probar que no existe ningún coloreo propio con k-1 colores de G.
 - Esto prueba que k es el mínimo.
- Es un error inexplicable (porque repetimos una y otra vez que no lo hagan, pero lo hacen igual) pero común que muchos alumnos cuando se les pide probar que $\chi(G)$ es igual a pej 5, lo que hacen es dar un coloreo propio con 5 colores y nada mas.
- Es decir, prueban [1] arriba pero no [2].
- Este es un error serio con alto descuento de puntos.

Calculando $\chi(G)$

- En general probar [1] es la parte mas fácil de un ejercicio, aunque en algunos casos puede ser la mas dificil si no pueden encontrar un coloreo.
- Probar [2], salvo en algunos casos especiales, puede ser la parte mas complicada.
- Una ayuda útil para probar [2] es la siguiente observación obvia:
 - Si H es un subgrafo de G, entonces $\chi(H) \leq \chi(G)$.
 - Prueba: pues si necesito r colores para colorear los vértices de H, no puedo colorear a todos los vértices de G con menos de r colores, porque tendria un coloreo con menos de r colores de los vértices de H al restringir el coloreo de G a los vértices de H.
- Entonces si encontramos un subgrafo H de G para el cual sepamos que $\chi(H) = k$ habremos probado [2].

Calculando $\chi(G)$

- Lamentablemente en muchos casos no es posible o no es fácil encontrar un *H* adecuado con esa propiedad.
- Entonces hay que hacer una prueba por contradicción: se asume que existe un coloreo propio con k-1 colores y deduciendo cosas, se llega a un absurdo.
- Hay 2 problemas aca:
 - 1 Llegar al absurdo puede ser bastante dificil, teniendo que contemplar varios casos, pej.
 - 2 Para poder hacer la prueba por contradicción, hay que asumir que existe un coloreo propio con k-1 colores.
 - Eso significa que uds. NO TIENEN CONTROL sobre ese coloreo.
 - Sólo saben que hay uno, y deben deducir cosas sobre ese coloreo a partir de la estructura del grafo.
 - Un error típico es que los alumnos CONSTRUYEN un coloreo con k-1 colores y prueba que ese coloreo que construyeron no es propio.
 - Esto obviamente no prueba nada mas que ese coloreo no es adecuado, pero no demuestra que no pueda existir otro coloreo.

G) para algunos grafos

- En general, dado que para cualquier grafo G podemos darle un color distinto a todos los vértices, tenemos la desigualdad $\chi(G) \leq n$.
- Obviamente $\chi(K_n) = n$ pues al estar todos los vértices unidos con todos los otros vértices, entonces todos los vértices deben tener colores distintos.
- Entonces si quieren probar que $r \leq \chi(G)$ basta con ver que existe un K_r subgrafo de G.
- Por ejemplo, en el ejemplo dado al principio, dado que el subgrafo $(\{A, C, E\}, \{AC, AE, CE\})$ es un K_3 , concluimos que $3 \le \chi(G)$.
- Como es trivial dar un coloreo propio con 3 colores de G, concluimos $\chi(G) = 3$.
- Sin embargo, la vuelta NO VALE: puede ocurrir que $r < \chi(G)$ pero que no exista ningún subgrafo K_r de G. (luego veremos un ejemplo).

$\chi(G)$ para algunos grafos

- $\chi(G) = 1$ si y solo si $E = \emptyset$ asi que para cualquier grafo que tenga al menos un lado, $\chi(G) \ge 2$.
- $\chi(C_{2r}) = 2$ pues podemos colorear $c(i) = (i \mod 2)$ (es decir c(i) = 0 si i es par y c(i) = 1 si i es impar) y eso es un coloreo propio porque vértices consecutivos en el ciclo tendrán colores distintos.
- Pero no podemos hacer lo mismo con $\chi(C_{2r+1})$ pues tendriamos que 2r+1 y 1 tendrían color 1, absurdo pues forman lado.
- Podemos colorear: $c(i) = (i \mod 2)$ si i < 2r + 1 y c(2r + 1) = 2.
- Ese es un coloreo propio pues 2r + 1 tiene color distinto del resto de los vértices asi que no hay problema con el, y los demas vértices consecutivos tienen colores distintos.
- Esto demuestra que $\chi(C_{2r+1}) \le 3$. Pero todavia no probamos que $3 \le \chi(C_{2r+1})$ pues sólo hemos probado que un coloreo específico que dimos con 2 colores no es propio. Podria haber otro.

$\chi(C_{2r+1})=3$

- Para ver que $3 \le \chi(C_{2r+1})$ supongamos que no es cierto. Esto implica que existe un coloreo propio c con 2 colores.
- Sea A = c(1).
- Como $12 \in E$, entonces $c(2) \neq c(1)$. Sea B = c(2). Entonces acabamos de ver que $B \neq A$ y como estamos suponiendo que es un coloreo con 2 colores, entonces A y B son esos 2 colores.
- Como 23 ∈ E, entonces $c(3) \neq c(2)$. Como c(2) = B y sólo hay 2 colores, concluimos que necesariamente c(3) = A.
- Como 34 ∈ E, entonces $c(4) \neq c(3)$. Como c(3) = A y sólo hay 2 colores, concluimos que necesariamente c(4) = B.
- Continuando de esta forma y probando por inducción, concluimos que c(i) = A si i es impar (y c(i) = B si i es par) lo cual es un absurdo pues 1 y 2r + 1 forman lado.

- Entonces hemos probado que los ciclos impares (i.e., con un número impar de vértices) tienen número cromático igual a 3.
- En particular, $\chi(C_5) = 3$.
- Pero C_5 no tiene como subgrafo ningún K_3 , asi que esto es un ejemplo de que se puede tener $\chi(G) \ge r$ sin tener un K_r como subgrafo.
- Que los ciclos impares tengan número cromático igual a 3 significa que cualquier grafo que tenga como subgrafo a un ciclo impar debe tener número cromático mayor o igual que 3.
- En algunos ejercicios esto les permitira calcular rapidamente $\chi(G)$: sólo tienen que dar un coloreo propio con 3 colores y encontrar algún ciclo impar.

Algoritmo de fuerza bruta

- Un algoritmo para encontrar $\chi(G)$ es simplemente tomar todos los coloreos posibles con los colores $\{0,1,...,n-1\}$ y calcular cuales de esos coloreo son propios, y ver de entre esos quien tiene la menor cantidad de colores.
- Este algoritmo calcula $\chi(G)$ pero:
 - 1 Hay n^n posibles coloreos.
 - 2 Chequear que un coloreo es propio es O(m).
- por lo tanto el algoritmo tiene complejidad $O(n^n m)$ asi que no es útil salvo para n muy chicos.
- Ahora veremos un algoritmo que no calcula $\chi(G)$ pero al menos da un coloreo propio en tiempo polinomial.

Algoritmo Greedy

- El algoritmo Greedy requiere como input no sólo un grafo *G* sino un orden de los vértices.
- Algunas implementaciones en vez de requerir un orden simplemente usan algún orden cualquiera, pero para extraer el mayor beneficio posible de Greedy conviene poder llamarlo varias veces cambiando el orden.
- De hecho, luego probaremos que si bien Greedy no necesariamente colorea G con $\chi(G)$ colores, existe un orden de los vértices tal que Greedy, con ese orden, colorea G con $\chi(G)$ colores, asi que el orden es importante.
- Esto no nos da un algoritmo polinomial para calcular $\chi(G)$ porque hay n! ordenes posibles.

ldea de Greedy

- La idea de Greedy consiste de dos partes:
 - Ir coloreando los vértices de *G* uno por uno, en el orden dado, manteniendo siempre el invariante que el coloreo parcial que se va obteniendo es propio.
 - Darle a cada vértice al momento de colorearlo el menor color posible que se le pueda dar manteniendo el invariante de que el coloreo es propio.
- 1 nos asegura que cuando Greedy termina, el coloreo que da es propio.
- 2 es lo que le da el nombre al algoritmo: usar siempre el menor color posible.
- Como muchas cosas en la vida, hacer algo que optimiza el presente no necesariamente optimiza el futuro, y luego veremos ejemplos de que Greedy no siempre obtiene $\chi(G)$.

- Input: Grafo G y orden de los vértices $x_1, x_2,, x_n$.
- $c(x_1) = 0$
- Para i > 1, asumiendo que los vértices $x_1, x_2, ..., x_{i-1}$ ya han sido coloreados, colorear x_i con:
 - $c(x_i) = \min\{k \geq 0 : k \notin c(\{x_1, \dots, x_{i-1}\} \cap \Gamma(x_i))\}$
- Arriba estamos usando la notación usual de $c(A) = \{c(a) : a \in A\}.$
- Es decir, x_i recibe el menor color que sea distinto del color de todos los vecinos anteriores a x_i .

Greedy, ejemplo

- \blacksquare G = el grafo del ejemplo del principio, con el orden alfabetico.
- c(A) = 0.
- \blacksquare Como $AB \in E$, B no puede tener el color de A, coloreamos B con el menor color posible distinto de 0: c(B) = 1.
- \blacksquare Como $AC \in E$, C no puede tener el color de A. Pero A es el único vécino de C en el conjunto $\{A, B\}$ asi que Greedy le da c(C) = 1.
- \blacksquare Como *D* no tiene vecinos, c(D) = 0.
- \blacksquare Como $\Gamma(E) = \{A, C\}$, entonces E no puede tener ni el color 0 ni el 1, Greedy le da c(E) = 2.
- En este caso Greedy coloreó con 3 colores, y como el grafo tiene un K_3 entonces $\chi(G) = 3$.

Greedy, ejemplo II

- Tomemos C_6 pero con el orden 1, 4, 2, 3, 5, 6.
- c(1) = 0.
- 4 no es vecino de 1, por lo tanto, Greedy tambien le da el color 0.
- 2 es vecino de 1, Greedy hace c(2) = 1.
- 3 tiene vecinos a 2 (de color 1) y a 4 (de color 0) asi que Greedy le da el color 2.
- 5 tiene vecino anterior solamente a 4, asi que Greedy le da el color 1.
- 6 tiene vecinos a 1 (color 0) y a 5 (color 1) asi que Greedy hace c(6) = 2.
- Conclusión: Greedy colorea C_6 , en ese orden, con 3 colores.
- Pero sabemos que $\chi(C_6) = 2$ asi que este es un ejemplo de que Greedy puede colorear con mas de $\chi(G)$ colores.

Complejidad de Greedy

- Para colorear el vertice x_i Greedy debe chequear $d(x_i)$ vecinos de x para ver sus colores.
- Por lo tanto la complejidad de Greedy es $O(d(x_1) + d(x_2) + \cdots + d(x_n))$.
- (en realidad el d_1 esta de mas porque colorear x_1 es O(1) pero no importa).
- Por el lema del apretón de manos que vieron en Discreta I, la suma de todos los grados es igual a 2*m*.
- Por lo tanto la complejidad de Greedy es O(2m) = O(m), polinomial.
- (el lema del apreton de manos es facil de probar: al sumar sobre todos los grados, estamos contando cada lado *xy* dos veces: una vez cuando pasamos por *x* y otra cuando pasamos por *y*).

