FUNDAMENTAL MATHEMATICS FOR ROBOTICS Numerical Methods

Roots of Equations

Root Finding

Open Methods

Simple Fixed-Pointed Iteration

 Rearrange the function so that x is on the left-hand side of the equation

$$x = g(x)$$

Example

$$x^2 - 2x + 3 = 0$$

- $= \sin(x) = 0$
- Predict new value of x as a function of old value of x
- While bracketing methods are "convergent", Fixed-point method may sometimes "diverge".
 - Depends on the initial guess and how the function behaves

Simple Fixed-Point Iteration Convergence

- x=g(x) can be expressed as a pair of equations:
 - □ y1=x
 - y2=g(x) (component equations)
- Plot them separately.

Simple Fixed-Point Iteration Convergence

Converge when |g'(x)| < 1 OR when the slope of g(x) is less than the slope of the line f(x) = x

Simple Fixed-Point Iteration

Proof

If converge, the error is roughly proportional to and less than the error of the previous step

- The most widely used method
- Based on Taylor series expansion:

$$f(x_{i+1}) = f(x_i) + f'(x_i)\Delta x + f''(x_i)\frac{\Delta x^2}{2!} + O\Delta x^3$$

The root is the value of x_{i+1} when $f(x_{i+1}) = 0$

Rearranging, Solve for
$$0 = f(x_i) + f'(x_i)(x_{i+1} - x_i)$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
 Newton-Raphson formula

- A convenient method for functions whose derivatives can be evaluated analytically.
- It may not be convenient for functions whose derivatives cannot be evaluated analytically.

□ Example Estimate the root of $f(x) = e^{-x} - x$ Initial guess $x_0 = 0$

i	x i	E1 (%)	
0	0	100	
1	0.500000000	11.8	
2	0.566311003	0.147	
3	0.567143165	0.0000220	
4	0.567143290	< 10 ⁻⁸	

□ Proof: Quadratic convergence $E_{t,i+1} \cong \frac{-f''(x_r)}{2f'(x_r)} E_{t,i}^2$

Newton-Raphson Method Convergence

Pitfalls of NR

Oscillate around local minimum or maximum

Zero slope → Truly a disaster

Newton-Raphson Method Convergence

- Convergence depends on the accuracy of the initial guess
- □ Take an initial guess that is "sufficiently" close to the root
- For some function, no guess will work!
 - Good computer program should be able to recognize slow convergence or divergence
 - A plotting routine should be included
 - At the end of computation, substitute the final estimated root to the original function to see whether the result is close to zero (Oscillating convergence)
 - Include an upper limit on the number of iterations
 - Alert user and take account of the possibility that f'(x) might equal to zero

The Secant Method

- Useful for functions whose derivatives are difficult to evaluate
- Approximate derivative by a backward finite divided difference

$$f'(x_i) \cong \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$
 $i = 1, 2, 3, ...$

The Secant Method

- Requires two initial estimates of x , e.g, x_o, x₁. However, because f(x) is not required to change signs between estimates, it is not classified as a "bracketing" method.
- Convergence is not guaranteed.

The Secant Method VS False-Position

The Secant Method Comparing true percent relative error

Determine the roots of $f(x)=e^{-x}-x$

Multiple Roots

Odd multiple roots cross the axis, whereas even ones do not

Multiple Roots

- For even multiple roots, function does not change sign
 - Cannot use bracketing methods
 - Can only use open methods that may diverge
- f'(x) goes to zero at the root
 - Division by zero problem for Newton-Raphson and secant methods
 - f(x) will always reach zero before f'(x) (Ralston and Rabinowitz, 1978)
 → incorporate zero check for f(x) in computer program
- NR and secant methods are linearly convergent for multiple roots
 - Modified Newton-Raphson for quadratic convergence

$$u(x) = \frac{f(x)}{f'(x)} \qquad u'(x) = \frac{f'(x)f'(x) - f(x)f''(x)}{[f'(x)]^2}$$
$$x_{i+1} = x_i - \frac{u(x_i)}{u'(x_i)} \qquad x_{i+1} = x_i - \frac{f(x_i)f'(x_i)}{[f'(x_i)]^2 - f(x_i)f''(x_i)}$$

Multiple Roots

Example

$$f(x) = (x-3)(x-1)^2 = x^3 - 5x^2 + 7x - 3$$
$$f'(x_i) = 3x^2 - 10x + 7$$

$$x_{i+1} = x_i - \frac{x_i^3 - 5x_i^2 + 7x_i - 3}{3x_i^2 - 10x_i + 7}$$

which can be solved iteratively for .

i	x _i	E+ (%)
0	0 .	100
1	0.4285714	57
2	0.6857143	31
3	0.8328654	17
4	0.9133290	8.7
5	0.9557833	4.4
6	0.9776551	2.2

$$x_{i+1} = x_i - \frac{(x_i^3 - 5x_i^2 + 7x_i - 3)(3x_i^2 - 10x_i + 7)}{(3x_i^2 - 10x_i + 7)^2 - (x_i^3 - 5x_i^2 + 7x_i - 3)(6x_i - 10)}$$

which can be solved for

i	X;	۠ (%)	
0	0	100	
1	1.105263	11	
2	1.003082	0.31	
3	1.000002	0.00024	

i	Standard	E+ (%)	Modified	ε _t (%)
0	4	33	4	33
1	3.4	13	2.636364	12
2	3.1	3.3	2.820225	6.0
3	3.008696	0.29	2.961728	1.3
4	3.000075	0.0025	2.998479	0.051
5	3.000000	2×10^{-7}	2.999998	7.7×10^{-3}

- Root finding and optimization are related, both involve guessing and searching for a point on a function.
- Fundamental difference is:
 - Root finding is searching for zeros of a function or functions
 - Optimization is finding the minimum or the maximum of a function of several variables.

Mathematical Background

 An optimization or mathematical programming problem generally be stated as:
 Find x, which minimizes or maximizes f(x) subject to

$$d_i(x) \le a_i$$
 $i = 1, 2, ..., m^*$
 $e_i(x) = b_i$ $i = 1, 2, ..., p^*$

- x is an n-dimensional design vector
- \Box f(x) is the objective function
- $d_i(x)$ are inequality constraints
- e_i(x) are equality constraints
- a_i and b_i are constants

- Optimization problems can be classified on the basis of the form of f(x):
 - \Box If f(x) and the constraints are linear, we have linear programming.
 - If f(x) is nonlinear or quadratic and/or the constraints are nonlinear, we have nonlinear programming.
- When equations(*) are included, we have a constrained optimization problem; otherwise, it is unconstrained optimization problem.

One-Dimensional Unconstrained

One-Dimensional Unconstrained Optimization

 In multimodal functions, both local and global optima can occur. In almost all cases, we are interested in finding the absolute highest or lowest value of a function.

Global and Local Optimums

- How do we distinguish global and local optimums?
 - By graphing to gain insight into the behavior of the function.
 - Using randomly generated starting guesses and picking the largest of the optima as global.
 - Perturbing the starting point to see if the routine returns a better point or the same local minimum.

- A unimodal function has a single maximum or a minimum in the a given interval. For a unimodal function:
 - □ First pick two points that will bracket your extremum $[x_l, x_u]$.
 - Pick an additional third point within this interval to determine whether a maximum occurred.
 - Then pick a fourth point to determine whether the maximum has occurred within the first three or last three points
 - The key is making this approach efficient by choosing intermediate points wisely thus minimizing the function evaluations by replacing the old values with new values.

$$\frac{l_0 = l_1 + l_2}{\frac{l_1}{l_0} = \frac{l_2}{l_1}}$$

$$\frac{l_1}{l_1 + l_2} = \frac{l_2}{l_1} \qquad R = \frac{l_2}{l_1}$$

$$1 + R = \frac{1}{R} \qquad R^2 + R - 1 = 0$$

$$R = \frac{-1 + \sqrt{1 - 4(-1)}}{2} = \frac{\sqrt{5 - 1}}{2} \neq 0.61803$$

Golden Ratio

Bracketing Method

- The method starts with two initial guesses, x_l and x_u, that bracket one local extremum of f(x):
- Next two interior points x₁ and x₂ are chosen according to the golden ratio

$$d = \frac{\sqrt{5} - 1}{2} (x_u - x_l)$$

$$x_1 = x_l + d$$

$$x_2 = x_u - d$$

The function is evaluated at these two interior points

Two results can occur:

- If $f(x_1) > f(x_2)$ then the domain of x to the left of x_2 from x_1 to x_2 , can be eliminated because it does not contain the maximum. Then, x_2 becomes the new x_1 for the next round.
- If $f(x_2) > f(x_1)$, then the domain of x to the right of x_1 from x_1 to x_2 , would have been eliminated. In this case, x_1 becomes the new x_n for the next round.

New x1 is determined as before

The real benefit from the use of golden ratio is because the original x₁ and x₂ were chosen using golden ratio, we do not need to recalculate all the function values for the next iteration

Golden-Section Search

Example

$$f(x) = 2\sin x - \frac{x^2}{10}$$
, $x_l = 0$, $x_u = 4$

Golden-Section Search

i	XI	$f(x_l)$	x ₂	$f(x_2)$	x_1	$f(x_1)$	Χu	$f(x_u)$	d
1	0	0	1.5279	1.7647	2.4721	0.6300	4,0000	-3.1136	2.4721
2	0	0	0.9443	1.5310	1.5279	1.7647	2.4721	0.6300	1.5279
3	0.9443	1.5310	1.5279	1.7647	1.8885	1.5432	2.4721	0.6300	0.9443
4	0.9443	1.5310	1.3050	1.7595	1.5279	1.7647	1.8885	1.5432	0.5836
5	1.3050	1.7595	1.5279	1.7647	1.6656	1.7136	1.8885	1.5432	0.3607
6	1.3050	1./595	1.442/	1.7755	1.5279	1.7647	1.6656	1.7136	0.2229
7	1.3050	1.7595	1.3901	1.7742	1.4427	1.7755	1.5279	1.7647	0.1378
8	1.3901	1.7742	1.4427	1.7755	1,4752	1.7732	1.5279	1.7647	0.0851

Newton's Method

- An open method
- Similar to Newton-Raphson Method
- Defining a new function g(x)=f'(x)
- Because the optimal value x* satisfies

$$f'(x^*) = g(x^*) = 0$$

We can use the following formula to find the extremum of f(x)

$$x_{i+1} = x_i - \frac{f'(x_i)}{f''(x_i)}$$

May be divergent

Newton's Method

Example

$$f(x) = 2\sin x - \frac{x^2}{10}, x_0 = 2.5$$

Newton's Method

i	x	f(x)	f'(x)	f"(x)
0	2.5	0.57194	-2,10229	-1.39694
1	0.99508	1.57859	0.88985	-1.87761
2	1.46901	1.77385	-0.09058	-2.18965
3	1.42764	1.77573	-0.00020	-2.17954
4	1.42755	1.77573	0.00000	-2.17952

Thus, within four iterations, the result converges rapidly on the true value.

Optimization

- One-dimensional Unconstrained Optimization
 - Golden-Section Search
 - Newton's Method
- Multidimensional Unconstrained Optimization

Optimization

Multidimensional Unconstrained

Multidimensional Unconstrained Optimization

 Techniques to find minimum and maximum of a function of several variables

- These techniques are classified as:
 - That require derivative evaluation
 - Gradient or descent (or ascent) methods
 - That do not require derivative evaluation
 - Non-gradient or direct methods

Direct Methods: Random Searches

- Based on evaluation of the function randomly at selected values of the independent variables
- If a sufficient number of samples are conducted, the optimum will be eventually located.
- Example: maximum of a function

$$f(x, y)=y-x-2x^2-2xy-y^2$$

can be found using a random number generator

Direct Methods: Random Searches

$$0 \le r \le 1$$
 $x = x_l + (x_u - x_l)r$ $y = y_l + (y_u - y_l)r$

- Take sufficient number of samples
- Keep track of the maximum value from among random trials

Direct Methods: Random Searches

Advantages

- Works even for discontinuous and nondifferentiable functions.
- Always find global optimum rather than a local optimum

Disadvantages

- As the number of independent variables grows, the task can become onerous
- Not efficient, it does not account for the behavior of underlying function

Direct Methods: Univariate and Pattern Searches

 More efficient than random search and still doesn't require derivative evaluation.

The basic strategy is:

- Change one variable at a time while the other variables are held constant.
- Thus problem is reduced to a sequence of one-dimensional searches that can be solved by variety of methods.
- The search becomes less efficient as you approach the maximum.

Direct Methods: Powell's Method

- If points 1 and 2 are obtained by one dimensional searches in the same direction but from different starting points
 - The line formed by 1 and 2 will be directed toward the maximum
 - Conjugated Direction

Direct Methods: Powell's Method

