Experiment Particle-in-Cell Methode 1D Simulation Simulationen in 2D Ausblick

Kinetic Effects in RF Discharges

Philipp Hacker

Mathematisch-Naturwissenschaftliche Fakultät Institut für Physik Ernst-Moritz-Arndt-Universität Greifswald

26. November 2017

Betreuer: Prof. Dr. R. Schneider Gutachter: Prof. Dr. J. Meichsner

1. Motivation

- 2. Experiment
- 3. Particle-in-Cell Methode
- 4. 1D Simulation
- 5. Simulationen in 2D
- 6. Ausblick

Kapazitive gekopplte RF-Plasmen

Anwendung in Halbleiter- und Computerchip-Industrie

- in elektronegativen CCRF-Entladungen treffen schnelle Ionen auf die Elektroden
- Oberflächenprozesse an der Elektrode mit negativen Ionen

Motivation Experiment Particle-in-Cell Methode 1D Simulation Simulationen in 2D Ausblick

Kapazitive gekopplte RF-Plasmen

- Anwendung in Halbleiter- und Computerchip-Industrie
- in elektronegativen CCRF-Entladungen treffen schnelle Ionen auf die Elektroden
- Oberflächenprozesse an der Elektrode mit negativen Ionen

Motivation Experiment Particle-in-Cell Methode 1D Simulation Simulationen in 2D Ausblick

Kapazitive gekopplte RF-Plasmen

- · Anwendung in Halbleiter- und Computerchip-Industrie
- in elektronegativen CCRF-Entladungen treffen schnelle Ionen auf die Elektroden
- Oberflächenprozesse an der Elektrode mit negativen Ionen

Randschichteffekte

Oberflächen- und Stoßprozesse

Das Experiment

Particle-in-Cell Methode

Monte-Carlo Stoßroutinen

1D Simulation

Energieverteilungen

Dynamik negativer Ionen

Simulationen in 2D

Vergleich mit 1D

Negative Ionen EVF

Asymmetrische Ranbedingungen

Einfluss des Self Bias

Ausblick

