Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

l'Ingénieur

Industrielles de

Sciences

Révision 1 – Résolution des problèmes de statique – Statique 2D

TD 01

Documents de TP

Étude théorique de la barrière Sympact

Savoirs et compétences :

Modélisation cinématique de la barrière Sympact

Schéma cinématique

On pose $\overrightarrow{AB} = H\overrightarrow{y_0}$, $\overrightarrow{BC} = R\overrightarrow{x_2}$ et $\overrightarrow{AC} = \lambda(t)\overrightarrow{x_1}$. Paramètres constants :

- $R = 81 \, \text{mm}$
- $H = 112 \,\text{mm}$
- $\alpha = 45^{\circ}$

Conditions aux limites

- Barrière fermée : $\theta_{\text{ini}} = -30,61^{\circ}$
- Barrière ouverte : $\theta_{\text{fin}} = 180 + 35, 35 = 215, 35^{\circ}$

Détermination de la loi Entrée / Sortie

La fermeture de chaîne cinématique s'écrit ainsi : $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$ soit $\overrightarrow{Hy_0} + \overrightarrow{Rx_2} - \lambda(t)\overrightarrow{x_1} = \overrightarrow{0}$

Projetons cette relation dans le repère $\mathcal{R}_0: H\overrightarrow{y_0} + R\left(\cos\theta(t)\overrightarrow{x_0} + \sin\theta(t)\overrightarrow{y_0}\right) - \lambda(t)\left(\cos\varphi(t)\overrightarrow{x_0} + \sin\varphi(t)\overrightarrow{y_0}\right) = \overrightarrow{0}$.

On a alors:
$$\begin{cases} R\cos\theta(t) - \lambda(t)\cos\varphi(t) = 0\\ H + R\sin\theta(t) - \lambda(t)\sin\varphi(t) = 0 \end{cases}$$

Pour exprimer la loi entrée sortie, il faut déterminer φ en fonction de θ . $\begin{cases} R\cos\theta(t) = \lambda(t)\cos\varphi(t) \\ H + R\sin\theta(t) = \lambda(t)\sin\varphi(t) \end{cases}$

En faisant le rapport, on a donc $\tan \varphi(t) = \frac{H + R \sin \theta(t)}{R \cos \theta(t)}$

Expression analytique de λ **.** On peut aussi vouloir exprimer $\lambda(t)$ en fonction de $\varphi(t)$ (nécessaire en statique).

 $R\cos\sigma(t) = \lambda(t)\cos\varphi(t)$ $R\sin\theta(t) = \lambda(t)\sin\varphi(t) - H$ et $R^2 = (\lambda(t)\cos\varphi(t))^2 + (\lambda(t)\sin\varphi(t) - H)^2$ soit $R^2 = \lambda(t)^2 + H^2 - H$ On a donc: $2\lambda(t)\sin\varphi(t)\dot{H}$.

1

On résout donc $\lambda(t)^2 - 2\lambda(t)\sin\varphi(t)H + H^2 - R^2 = 0$. $\Delta = 4H^2\sin^2\varphi(t) - 4(H^2 - R^2)$ et donc

$$\lambda = \frac{2\sin\varphi(t)H \pm \sqrt{4H^2\sin^2\varphi(t) - 4\left(H^2 - R^2\right)}}{2}.$$

$$\lambda = \sin\varphi(t)H \pm \sqrt{H^2\sin^2\varphi(t) - \left(H^2 - R^2\right)}.$$

$$\lambda = \sin \varphi(t) H \pm \sqrt{H^2 \sin^2 \varphi(t) - (H^2 - R^2)}.$$

1.3 Détermination de la loi en vitesse

1.4 Tracé des courbes

Application numérique:

2 Détermination du couple moteur en statique

2.1 Isolement du galet 3

On isole le galet (3) soumis à deux glisseurs.

BAME

- Pivot entre 2 et 3: $\{\mathcal{T}(2 \rightarrow 3)\}$.
- Sphère plan entre 1 et 3 : $\{\mathcal{T}(1 \rightarrow 3)\}$.

Application du PFS D'après le PFS, on a donc : $\{\mathcal{T}(2 \to 3)\} + \{\mathcal{T}(1 \to 3)\} = \{0\}$ soit $\{\mathcal{T}(2 \to 3)\} = -\{\mathcal{T}(1 \to 3)\} = \left\{\begin{array}{c} \overrightarrow{Fy_1} \\ \overrightarrow{0} \end{array}\right\}_I$.

2.2 Isolement de la manivelle 2 + Galet 3

BAME

- Pivot entre 0 et 2 : $\{\mathcal{T}(0 \rightarrow 2)\}$.
- Sphère plan entre 1 et 3 : $\{\mathcal{T}(1 \to 3)\} = \left\{\begin{array}{c} -F\overrightarrow{y_1} \\ \overrightarrow{0} \end{array}\right\}_T$.
- Moteur entre 0 et 2 : $\{\mathcal{T}(0 \to 2)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_m \overrightarrow{z_0} \end{array}\right\}_{\forall p}$

Application du PFS

On utilise le théorème du moment statique en B en projection sur l'axe \overline{z} . Déplacement de $\{\mathcal{T}(3 \to 2)\}$ en B.

On a
$$\overline{\mathcal{M}(B, 3 \to 2)} \cdot \overline{z_0} = \left(\overline{\mathcal{M}(I, 3 \to 2)} + \overline{BI} \wedge \overline{R(3 \to 2)}\right) \overline{z_0}$$

$$= \left(\left(\overline{BC} + \overline{CI}\right) \wedge \overline{R(3 \to 2)}\right) \overline{z_0}$$

$$= \left(\left(R\overline{x_2} - r\overline{y_1}\right) \wedge \left(-F\overline{y_1}\right)\right) \overline{z_0} = -rF\left(\overline{x_2} \wedge \overline{y_1}\right) \overline{z_0} = -rF\left(\overline{y_1} \wedge \overline{z_0}\right) \cdot \overline{x_2} = -rF\overline{x_1} \cdot \overline{x_2} = -rF\cos\left(\theta - \varphi\right)$$
Le TMS en B s'écrit donc sous la forme $C_m = rF\sin\left(\theta - \varphi\right)$

2.3 Isolement de la barrière 1

BAME

- Pivot entre 0 et 1: $\{\mathcal{T}(0 \to 1)\}$.
- Sphère plan entre 1 et 2 : $\{\mathcal{T}(3 \to 2)\} = \left\{\begin{array}{c} -F\overrightarrow{y_1} \\ \overrightarrow{0} \end{array}\right\}_I$.

- Ressort entre 0 et 1: $\{\mathcal{T}(0 \to 1)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_r \overrightarrow{z_0} \end{array}\right\}_{\forall P}$. Pesanteur sur 1: $\{\mathcal{T}(\text{pes} \to 1)\} = \left\{\begin{array}{c} -Mg\overrightarrow{y_0} \\ 0 \end{array}\right\}_C$ avec G tel que $\overrightarrow{AG} = \mu\overrightarrow{x_1'}$

Application du PFS

On utilise le théorème du moment statique en A en projection sur l'axe \overrightarrow{z} .

• Déplacement de $\{\mathcal{T}(3 \to 2)\}\$ en A.

On a
$$\overline{\mathcal{M}(A, 3 \to 2)} \cdot \overline{z_0} = \left(\overline{\mathcal{M}(I, 3 \to 2)} + \overline{AI} \wedge \overline{R(3 \to 2)}\right) \overline{z_0}$$

$$= \left(\left(\overline{AC} + \overline{CI}\right) \wedge \overline{R(3 \to 2)}\right) \overline{z_0} = \left(\left(\lambda \overline{x_1} - r \overline{y_1}\right) \wedge \left(-F \overline{y_1}\right)\right) \overline{z_0} = \left(\lambda \overline{x_1} \wedge \left(-F \overline{y_1}\right)\right) \overline{z_0} = -\lambda F$$

• Déplacement de $\{\mathscr{T}(\text{pes} \to 1)\}\$ en A. On a $\overline{\mathscr{M}(A, \text{pes} \to 1)} \cdot \overrightarrow{z_0} = \left(\overrightarrow{AG} \wedge \left(-Mg\overrightarrow{y_0}\right)\right)\overrightarrow{z_0} = \left(\mu\overrightarrow{x_1'} \wedge \left(-Mg\overrightarrow{y_0}\right)\right)\overrightarrow{z_0}$

$$= -Mg\mu\left(\overrightarrow{y_0} \wedge \overrightarrow{z_0}\right)\overrightarrow{x_1'} = -Mg\mu\overrightarrow{x_0} \cdot \overrightarrow{x_1'} = -Mg\mu\cos\left(\varphi - \alpha\right)$$

Le TMS en *B* s'écrit donc sous la forme $-\lambda F + C_r - Mg\mu\cos\left(\varphi - \alpha\right) = 0$.

Résolution

On a:
$$\begin{cases} C_m = rF\sin(\theta - \varphi) \\ -\lambda F + C_r - Mg\mu\cos(\varphi - \alpha) = 0 \iff F = \frac{C_r - Mg\mu\cos(\varphi - \alpha)}{\lambda} \end{cases}$$

On a donc $C_m = r \sin(\theta - \varphi) \frac{C_r - Mg\mu \cos(\varphi - \alpha)}{2}$.

Expression de C_r 2.5

La raideur du ressort est de 100° pour 40 Nm soit $\frac{180 \times 40}{100 \pi}$ Nm par radian soit 23 Nm rad⁻¹.

De plus,
$$C_r(\varphi) = k\varphi + C_0$$
 avec
$$\begin{cases}
C_r\left(\frac{3\pi}{4}\right) = 0 = k\frac{3\pi}{4} + C_0 \\
C_r\left(\frac{\pi}{4}\right) = 23\frac{\pi}{2} = k\frac{\pi}{4} + C_0
\end{cases} \iff \begin{cases}
C_0 = -k\frac{3\pi}{4} \\
23\frac{\pi}{2} = k\frac{\pi}{4} - k\frac{3\pi}{4}
\end{cases} \iff \begin{cases}
C_0 = 23\frac{3\pi}{4} \\
k = -23
\end{cases}$$

Au final, $C_r(\varphi) = -23\varphi + 23\frac{3\pi}{4}$

Détermination du couple moteur en utilisant le Théorème de l'Energie cinétique 3

On isole {1+2+3} 3.1

Bilan des puissances extérieures

Hypothèse: liaisons parfaites

- Puissance exercée par le moteur : \mathscr{P} (moteur $\rightarrow 2/0$) = $C_m \dot{\theta}$.
- Puissance exercée par le ressort : $\mathcal{P}(\text{ressort} \to 1/0) = C_r(\varphi)\dot{\varphi}$
- Puissance exercée par la pensanteur : \mathscr{P} (pesanteur $\rightarrow 1/0$) = $\begin{cases} -Mg\overline{y_0} \\ -\mu x_1' \wedge Mg\overline{y_0} \end{cases}$ \rbrace $\otimes \begin{cases} \dot{\varphi}\overline{z_0} \\ ** \end{cases}$ \rbrace $= -Mg\mu\cos(\varphi \alpha)\dot{\varphi}$.

Bilan des puissances intérieures

Hypothèse: liaisons parfaites la puissance interne est donc nulle.

3.4 Calcul de l'énergie cinétique

Les pièces 1 et 2 sont respectivement en rotation autour des axes $(\overrightarrow{A}, \overrightarrow{z_0})$ et $(\overrightarrow{B}, \overrightarrow{z_0})$. On néglige l'énergie cinétique

$$\mathcal{E}_c(1+2+3/0) = \frac{1}{2} \left(J_{2,B,\vec{z_0}} \dot{\theta}^2 + J_{1,A,\vec{z_0}} \dot{\varphi}^2 \right)$$

Théorème de l'énergie cinétique

$$J_{2.B.\vec{z_0}}\dot{\theta}\ddot{\theta} + J_{1.A.\vec{z_0}}\dot{\varphi}\ddot{\varphi} = C_m\dot{\theta} + C_r(\varphi)\dot{\varphi} - Mg\mu\cos(\varphi - \alpha)\dot{\varphi}$$

Références

Xavier Pessoles

[1] xx