System:

1,4-Dioxane & Water

Type Of Equation:

UNIQUAC:

Type of Equation	Parameters	$\ln \gamma_1 = \\ \ln \gamma_2 =$		Notation of Para- meters in Data Sheet
UNIQUAC [10]	u ₁₂ -u ₂₂ 3)	$\ln \gamma_1^{C} + \ln \gamma_1^{R}$ 3)	(32a)	A 12
	u ₂₁ - u ₁₁	$\ln \gamma_2^{\text{C}} + \ln \gamma_2^{\text{R}}$	(32b)	A 21

2. Antoine Vapor Pressure Equation

The Antoine vapor pressure equation is used in the following form:

$$\log[p_i^0] = A - \frac{B}{t+C} \tag{70}$$

with [p_i⁰] vapor pressure of pure component i in mm Hg t emperature in degrees Celsius (° C)

The Antoine constants A, B, and C are given with respective temperature regions (in $^{\circ}$ C).

Note: Here it is log (base 10)

$$\ln \gamma_1 = \ln \gamma_1^C + \ln \gamma_1^R \tag{33a}$$

$$\ln \gamma_1 = \ln \gamma_1^{\Gamma} + \ln \gamma_1$$

$$\ln \gamma_1^{C} = \ln \frac{\varphi_1}{x_1} + \frac{z}{2} q_1 \ln \frac{\vartheta_1}{\varphi_1} + \varphi_2 \left(l_1 - \frac{r_1}{r_2} l_2 \right)$$

$$\ln \gamma_1^{R} = -q_1 \ln \left(\vartheta_1 + \vartheta_2 \tau_{21} \right) + \vartheta_2 q_1 \left(\frac{\tau_{21}}{\vartheta_1 + \vartheta_2 \tau_{21}} - \frac{\tau_{12}}{\vartheta_1 \tau_{12} + \vartheta_2} \right)$$
(34a)

$$\ln \gamma_1^R = -q_1 \ln (\vartheta_1 + \vartheta_2 \tau_{21}) + \vartheta_2 q_1 \left(\vartheta_1 + \vartheta_2 \tau_{21} - \vartheta_1 / \eta_2 \right)$$
(32b)

$$\ln \gamma_2 = \ln \gamma_2^C + \ln \gamma_2^R$$

$$\ln \gamma_2^C = \ln \frac{\varphi_2}{x_2} + \frac{z}{2} q_2 \ln \frac{\vartheta_2}{\varphi_2} + \varphi_1 \left(I_2 - \frac{r_2}{r_1} I_1 \right)$$
 (33b)

$$\ln \gamma_2^{R} = -q_2 \ln \left(\vartheta_1 \tau_{12} + \vartheta_2\right) + \vartheta_1 q_2 \left(\frac{\tau_{12}}{\vartheta_1 \tau_{12} + \vartheta_2} - \frac{\tau_{21}}{\vartheta_1 + \vartheta_2 \tau_{21}}\right)$$
(34b)

$$I_i = \frac{z}{2}(r_i - q_i) - (r_i - 1)$$
 $z = 10^\circ$ (35)

Symbols

- see equation (35)
- area parameter of component i *)
- volume parameter of component i *)
- Parameter of interaction between components i and j; $u_{ii} = u_{ii}$
- coordination number
- γ_i^c combinatorial part of activity coefficient of component i residual part of activity coefficient of component i
- residual part of activity coefficient of component i

$$\vartheta_i = \frac{q_i x_i}{\sum_j q_j x_j}$$
 area fraction of component i

$$\varphi_i = \frac{r_i x_i}{\sum_{j} r_j x_j}$$
 volume fraction of component i

- *) For values of r_i and q_i see Appendix A

Value of constants:

```
(1) WATER
                                                             H20
  (2) 1,4-DIOXANE
                                                             C4H802
               760.00 MM HG
                                    1.013 BAR
 CONSTANTS:
                  A12
                               A21
                                          α<sub>12</sub>
UNIQUAC
                              323.7097
               -19.1253
                                                       3.03
                                                                14.31
                                                                          .4613
```

T_{X-Y} Data:

T DEG C	IMENTAL X1	DATA Y1
97.00 98.50 93.40 89.40 97.50 88.90 96.30 97.30	.0820 .1080 .1700 .1720 .5510 .6400 .7700 .9880 .9920	.2000 .2480 .3340 .3700 .5280 .5280 .5840 .8480 .9080

Take the molar volume from NIST Database. If not available, please contact the TA's (Krishna, Nikil & Adithya)

Note: All the data are taken from Dechema Chemistry Data Series