Achieving algorithmic transparency with Shapley Additive Explanations

Contents:

- Trade-off between Explainability & Performance
- Shapley additive explanations
- SHAP: illustrative example
- XAI use case 1: clinical operations
- XAI use case 2: driver genome
- Future developments

Explainability vs Performance trade-off

Explainability

Explain why our models perform

the contribution of drivers in

How can we get drivers for an

black-box models?

individual prediction?

as they do. How can we interpret

Performance

 Provide highly accurate solutions for our clients

Random forests

Linear regression

Logistic regression

Natural trade-off between these two concepts

 Local interpretations of black-box models

Explainability vs Performance trade-off integration

Performance

 Provide highly accurate solutions for our clients

Random forests

Linear regression

Explainability

Explain why our models perform

the contribution of drivers in

How can we get drivers for an

black-box models?

individual prediction?

as they do. How can we interpret

Logistic regression

Natural trade-off between these two concepts

 Local interpretations of black-box models

Methods for XAI

Rationalizing Neural Predictions²

this beer pours ridiculously clear with tons of carbonation that forms a rather impressive rocky head that settles slowly into a fairly dense layer of foam. this is a real good lookin' beer, unfortunately it gets worse from here ... first, the aroma is kind of bubblegum-like and grainy. next, the taste is sweet and grainy with an unpleasant bitterness in the finish. overall, the fat weasel is good for a fairly cheap buzz, but only if you like your beer grainy and bitter.

Ratings

Look: 5 stars

Aroma: 2 stars

multi-aspect sentiment analysis

Bayesian Rule Lists³

21% (19%-23%) If male and adult, then survival probability else if 3rd class then 44% (38%-51%) survival probability else if 1st class then 96% (92%-99%) survival probability else survival probability 88% (82%-94%)

- Ribeiro et al., "Why Should I Trust You?": Explaining the Predictions of Any Classifier, https://arxiv.org/abs/1602.04938
- Lei et al., Rationalizing Neural Predictions, https://arxiv.org/abs/1602.04938
- Letham et al., Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model, https://arxiv.org/abs/1511.01644
- Lundberg and Lee, A unified approach to interpreting model predictions, http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions
- Ribeiro et al., Anchors: High-Precision Model-Agnostic Explanations, https://homes.cs.washington.edu/~marcotcr/aaai18.pdf
- All images taken from respective publications/github repos

Methods for XAI

Rationalizing Neural Predictions²

forms a rather impressive rocky head that settles slowly into a grainy with an unpleasant bitterness in the finish. overall,

Ratings Aroma: 2 stars

Bayesian Rule Lists³

21% (19%-23%) If male and adult, then survival probability else if 3rd class then 44% (38%-51%) survival probability else if 1st class then 96% (92%-99%) survival probability else survival probability 88% (82%-94%)

- Trade-off between Explainability & Performance
- Shapley additive explanations
- SHAP: illustrative example
- XAI use case 1: clinical operations
- XAI use case 2: driver genome
- Future developments

SHAP (**Sh**apley **A**dditive Explanations)

Explanation model¹:

$$g(x') = \varphi_0 + \sum_{i=1}^{M} \varphi_i x_i'$$

(class of additive feature attribution models)

Shapley regression values^{2,} $\varphi_i \in \mathbb{R}$

- unified measure of additive feature attributions

$$\varphi_i = \sum_{S \in F \setminus \{i\}} \frac{|S|! (M - |S| - 1)!}{M!} [f_{S \cup \{i\}}(x_{S \cup \{i\}}) - f_S(x_S)]$$

3 properties

Local accuracy: require the output of the local explanation model g(x') to match the original model f(x), where x' is the simplified input, i.e.

$$f(x) = g(x')$$

Missingness: require features missing in the original input to have no attributed impact, i.e.

$$x_i' = 0 \Longrightarrow \varphi_i = 0$$

Consistency: stipulates $\varphi_i(f',x) \ge \varphi_i(f,x)$ for any two models f and f' if the feature's contribution in $f' \ge$ the feature's contribution in *f* .

^{1.} Lundberg and Lee (2017) "A unified approach to interpreting model predictions", https://arxiv.org/abs/1705.07874

^{2.} Lloyd S Shapley (1953) "A value for n-person games", In: Contributions to the Theory of Games, 2:28, pp.307-317

Computing SHAP values

SHAP values - unified measure of additive feature attributions, $\varphi_i \in \mathbb{R}$:

Computing SHAP values:

- $f_{S \cup \{i\}}$ is trained with the i^{th} feature present
- f_S is trained without the i^{th} feature
- compute difference $f_{S \cup \{i\}}(x_{S \cup \{i\}}) f_S(x_s)$ for the current input
- retrain the model on all feature subsets $S \in F \setminus \{i\}$
- take weighted average of all possible differences

SHAP in practice

Implementations:

Kernel SHAP¹ = LIME + Shapley Values

where loss function L, weighting kernel π , and regularisation term Ω are computed so that LIME meets Shapley properties:

Theorem 2 (Shapley kernel) Under Definition 1, the specific forms of $\pi_{\pi'}$, L, and Ω that make solutions of Equation 2 consistent with Properties 1 through 3 are:

$$egin{aligned} \Omega(g) &= 0, \ \pi_{x'}(z') &= rac{(M-1)}{(M\ choose\ |z'|)|z'|(M-|z'|)}, \ L(f,g,\pi_{x'}) &= \sum_{z' \in Z} \left[f(h_x^{-1}(z')) - g(z')
ight]^2 \pi_{x'}(z'), \end{aligned}$$

where |z'| is the number of non-zero elements in z'.

Deep SHAP 1 = DeepLIFT + Shapley Values

Linear SHAP¹, Low-Order SHAP¹, Max SHAP¹

Tree SHAP2

speed-up from O(TL2^M) to O(TLD²)

Integration

pip install shap

+ beautiful out-of-box JS visualisations

- 1. Lundberg and Lee (2017) "A unified approach to interpreting model predictions", https://arxiv.org/abs/1705.07874
- 2. Lundberg, Erion, Lee (2018) "Consistent Individualized Feature Attribution for Tree Ensembles", https://arxiv.org/abs/1802.03888

SHAP: illustrative example

Task: given demographic data, classify adult income groups

Dataset: US 1994 Census data¹

Base model: sklearn Random Forest classifier

Explanation model: TreeSHAP

^{1. 1994} Census database, donated by B. Becker: https://archive.ics.uci.edu/ml/datasets/Adult

RF importance scores vs. SHAP's explanations

'Native' RF feature importance scores

SHAP summary plot

SHAP: individualised explanations

Legend to categorical value:

Sex: o = F, 1 = M | Marital status: 2 = never married, 3 = married, spouse absent

Occupation: o = Adm-clerical, 5 = Sales

SHAP: individualised explanations across the cohort

Contents:

- Explainability vs Performance trade-off
- Shapley additive explanations
- SHAP: illustrative example
- Use case 1: clinical operations
- Use case 2: driver genome
- Future developments

Use case: Clinical Operations

Task: given a new drug trial, predict which hospitals will enroll more patients (high enrolment rate).

Two questions raised frequently by our client

How can we interpret the predictions given by your black-box model? What drives the direction (high or low) of the predicted enrollment rate?

How can we get **personalised** explanations? Why hospital B enrolls more patients than hospital A?

Local explanations (Enrolment Rate)

Local prediction = 4.96 pt/month Black-box prediction = 4.99 pt/month

Contents:

- Explainability vs Performance trade-off
- Shapley additive explanations
- Use case 1: clinical operations
- Use case 2: driving safety
- Future developments

Use case: Driving Safety

Two questions raised frequently by our client

How can we interpret the predictions given by your blackbox model? What drives the direction (high or low) of the predicted probability of an accident?

Drivers can use **personalised** explanations to improve their driving behaviour. Also, in case of a change in their insurance premium, they have the right to know what is the cause

The proposed solution uses Logistic Regression and Random Forest plus LIME for interpretability

Feature engineering

Creation of single and multi-dimensional features based on hypotheses tree

~100 features

Logistic regression

Use of elastic net regularization to prevent overfitting to the training set

Random Forest

A random forest can discover complex nonlinear relationships between features

LIME/SHAP

Personalized interpretations of the RF results

Example of a driver profile

Contents:

- Explainability vs Performance trade-off
- Shapley additive explanations
- SHAP: illustrative example
- Use case 1: clinical operations
- Use case 2: driving safety
- Future developments

Future developments

Model agnostic: LIME, Kernel SHAP <- drive development & community interest

Model-specific: DeepLIFT (NNs), TreeSHAP (XGBoost, RFs) <- drive implementation

Individualised explanations ≠ Transparency

Explain one instance using explanation model

Pick a number of representable examples from a dataset

Explanation model \neq causality

Questions?