Discrete 3D surfaces of revolution English Presentation

Zied BEN ОТНМАNE Thomas BENOIST Adrien BISUTTI Lydie RICHAUME

University of Poitiers

December 9th of 2015

Plan

- Introduction
- Staff Organization
- Planification
- Risks

- Methodology
- 6 Costs
- Conclusion

- Introduction
 - Collaborators and clients
 - Context
- 2 Staff Organization
- Planification
- 4 Risks

- Methodology
- 6 Costs
- Conclusion

Collaborators and clients

- Clients :
 - Éric ANDRES (Professor and former director of XLIM-SIC department)
 - Gaëlle LARGETEAU-SKAPIN (University lecturer, Discrete geometry)
- Exemple of end user :
 - Aurélie MOURIER (Artist)
- Pedagogic Supervisor :
 - Philippe MESEURE (Professor, Computer Graphics)

Context

- Éric Andres and Gaëlle Largeteau-Skapin developped a new algorithm to model discrete surfaces of revolution.
- Display the result with Mathematica

Need of a tool useable by everyone and everywhere

- Introduction
- Staff Organization
 - Roles
 - Meetings
- 3 Planification
- 4 Risks

- Methodology
- Costs
- Conclusion

Roles

- Team composition :
 - Thomas BENOIST Project manager
 - Zied BEN OTHMANE Quality manager
 - Adrien BISUTTI Risks manager
 - Lydie RICHAUME Tasks manager

Meetings

- Milestone meetings :
 - With the clients
 - First meeting : around December 20th of 2015
 - Possibility to add meetings during the project
- Audits
 - In presence of the auditor, the clients and the pedagogic supervisor
 - Followup meeting, Progress meeting, Delivery, Presentation
- Meeting with the pedagogic supervisor every week

- Introduction
- Staff Organization
- Planification
 - Tasks
 - Pert Diagram
 - Gantt diagram
 - Progress
 - Deliverables
- 4 Risk

- Methodology
- Costs
- Conclusion

Tasks

1 - Documentation, test et aide utilisateur			
6 - Conception			
6 - Noyau fonctionnel	10 - Interface minimale		
17 - Ajout de fonctionnalités	14, 22, 32 - Amélioration IHM		
25 - Méridienne à main levée			
29 - Gestion des données			
36 - Ajout courbe utilisateur			
37 - Rédaction rapport technique			

D : Start (30/10) Am : Minimal appli. (24/12)

Fc : End of design (16/12)

Am : Minimal appli(24/12)

Dm: Hand free drawing (28/01)

Cc : Courb choice(20/01)

Dm: Hand free drawing (28/01) Fd: End of Development (02/03)

Rf: Write formula (19/02)

Fd: End of Development (02/03) F: Fin (17/03)

Rédaction rapport

technique

Fd

Gantt

Gantt

Progress

Deliverables

N°	Deliverable	Planned date
1	Interface and algorithm result	12/23
2	Minimal application	01/21
3	Hand Free drawing and curves with editable parameters	01/29
4	Équations and export	02/19
5	Final application and documentation	03/02

Deliverables types:

• Software version : all

User documentation : all

• Technical documentation: 1 and 5

- Introduction
- 2 Staff Organization
- 3 Planification
- 4 Risks
 - Specifics Risks
 - Generic risks

- Methodology
- Costs
- Conclusion

List of identified risks:

- Generation algorithm evolution (criticality : 2)
- ullet Difficulty to transcript the algorithm (Mathematica o Javascript) (1)
- Interface to develop for two types of users (1)
- 3D Rendering using too much resources (1)
- Server linked problems (0)

• Generation algorithm evolution

Criticité du risque		
0	RISQUE	
1	NON CRITIQUE	
2	RISQUE	
3	CRITIQUE	

• Interface to develop for two types of users

Criticité du risque		
0	RISQUE	
1	NON CRITIQUE	
2	RISQUE	
3	CRITIQUE	

Server linked problems

Criticité du risque		
0	RISQUE	
1	NON CRITIQUE	
2	RISQUE	
3	CRITIQUE	

Generic risks

- New clients (criticality : 1)
- Non-compliance of the requirements (1)
- Non usability of tools (1)
- insufficient intern communication (1)

- Introduction
- 2 Staff Organization
- 3 Planification
- 4 Risks

- Methodology
 - Application
 - Tests
 - Quality insurance plan
- 6 Costs
- Conclusion

Application

- Spiral development
 - Deliverable for every developments cycles (Software version and documentation associated)
 - Documentation and tests during every developments cycles
 - Adaptation to the client requests
 - Six developments cycles
- Quality insurance plan
 - QIP: ISO-9126 standard
 - a rating is given depending on the criteria
 - internal and external tests

Tests

Internal tests

- Code quality mesured
- Tests plan defined by the quality manager
- Unit tests conducted by the developers
- Integration tests conducted by the quality manager

External tests

- Application validation by the clients and the quality manager
 - Functionalities validation
 - Interface validation
- Formula Tests scripts are given to the clients

Quality insurance plan

- Introduction
- 2 Staff Organization
- Planification
- 4 Risks

- Methodology
- 6 Costs
- 7 Conclusion

Costs

- Project cost :
 - Young engineer : 3 000 € / month
 - 4 persons during 10 weeks
 - Cost price : 30 000 €
 - Selling price proposed : 40 000 €
- Distribution of payments :
 - 30% when the requirements are signed (12 000 €)
 - 10% for every deliverables (4 000 €)
 - 30% for the final delivery

Évolution prévisionnelle des dépenses et des recettes (k€)

- Introduction
- 2 Staff Organization
- 3 Planification
- 4 Risks

- Methodology
- 6 Costs
- Conclusion

Conclusion

- ullet Cycles organization o incremental developpement
- Consistent validation with the clients
- Only one critical risk
- Next milestone : Design phase

Discrete surfaces of revolution

English presentation

Thanks for your attention.

Is there any questions?

