MNYC '17: Bells

There are N $(1 \le N \le 100\,000)$ bells arranged in a line, labelled 1 to N. The $i^{\rm th}$ bell has a frequency of f_i Hz $(1 \le f_i \le 10^8)$. There are Q $(1 \le Q \le 50\,000)$ operations to perform.

There are two types of operations:

- ullet 1 i f Replace the i^{th} bell with one with a frequency of f Hz.
- ullet 2 l r Output the number of distinct frequencies between the $l^{
 m th}$ and $r^{
 m th}$ bell (inclusive).

There will be at most 1000 distinct frequencies at a time.

Fast input may be required.

Constraints

For 10% of the points, $1 \le N \le 100, 1 \le Q \le 100$.

For 90% of the points, $1 \le N \le 100000, 1 \le Q \le 50000$.

Input Specification

The first line contains two space separated integers, $N\ Q$, respectively the number of bells and the number of queries.

The next line contains N space separated integers, the frequency of the bells.

The next Q lines each contain a query in the format described above.

Output Specification

Output a single integer on its own line for each type 2 query.

Sample Input 1

```
6 3
1 2 1 4 4 2
2 1 6
1 2 1
2 1 3
```

Sample Output 1

3 1

Sample Output 1 Explanation

In the beginning, there are only 3 distinct frequencies which the bells have, $1\,\text{Hz}$, $2\,\text{Hz}$, and $4\,\text{Hz}$. After switching the second bell with one with a frequency of $1\,\text{Hz}$. There is only one distinct frequency among the first $3\,\text{bells}$.