Evaluate {EpiEstim} on five epidemic outbreaks

LiJin Joo lijin.joo at gmail.com

2020-08-23

(Cori et al. 2013) used the following five examples to demonstrate {EpiEstim} in thier paper. As the first step of {EpiEstim} evalution, we reproduced Figure 1 and generated a table summarize the comparison of the current version and the result resported in Cori et al.

```
library(EpiEstim)
library(ggplot2)

data(Measles1861)
data(Flu1918)
data(Smallpox1972)
data(SARS2003)
data(Flu2009)
```

Each data contains at least two varriables, a serise of number of cases (i.e. incidence) and a distirbution of serial intervals (i.e. si_distr) as in Flu 2009.

```
head(Flu2009$incidence)
## dates I
```

```
## 1 2009-04-27 1
## 2 2009-04-28 1
## 3 2009-04-29 0
## 4 2009-04-30 2
## 5 2009-05-01 5
## 6 2009-05-02 3
Flu2009$si_distr
```

```
## [1] 0.000 0.233 0.359 0.198 0.103 0.053 0.027 0.014 0.007 0.003 0.002 0.001
```

Several options are available for different estimators for a distribution of serial intervals in {EpiEstim}: 1) nonparametric_si' with the supplied density weights (si_distr), 2)parametric_si' with options in contig', such as mean_si, std_si, or 3) learning a distribution of serial intervals from data or samples using mcmc throughmake_contig' function. Details of each option can be learned from ("EpiEstim: The R-Epi Project" 2020), ("EpiEstim: Github Repository" 2020), (Anne Cori 2020).

Reproducing Figure 1

With the provided si_distr, we can obtain Rt estimates non-parametrically with a default of 7 day sliding window as follows:

```
t start t end Mean(R) Std(R) Quantile.0.025(R) Median(R) Quantile.0.975(R)
##
## 1
             2
                   8
                           NΑ
                                  NΑ
                                                      NΑ
                                                                 NΑ
                                                                                     NΑ
## 2
             3
                   9
                           NA
                                                      NA
                                                                 NA
                                                                                     NA
## 3
             4
                  10
                                                      NΑ
                           NΔ
                                  NA
                                                                 NA
                                                                                     NA
## 4
             5
                  11
                           NA
                                                      NA
                                                                 NA
                                                                                     NA
## 5
             6
                           NA
                                  NA
                                                      NA
                  12
                                                                 NΑ
                                                                                     NA
## 6
             7
                  13
                           NA
                                                      NA
                                                                 NA
                                                                                     NA
             8
## 7
                  14
                           NA
                                  NA
                                                      NA
                                                                 NA
                                                                                     NA
## 8
            9
                  15
                          8.2
                                 2.9
                                                     3.5
                                                                7.8
                                                                                   14.7
           10
## 9
                                                                                    9.9
                  16
                          5.1
                                 2.1
                                                     1.9
                                                                4.8
## 10
           11
                  17
                          5.1
                                 1.9
                                                     2.0
                                                                4.8
                                                                                    9.5
## 11
            12
                  18
                          4.5
                                 1.7
                                                     1.8
                                                                4.2
                                                                                    8.3
## 12
           13
                  19
                          4.5
                                 1.6
                                                     2.0
                                                                4.3
                                                                                    8.2
## 13
           14
                          3.6
                  20
                                 1.3
                                                     1.4
                                                                3.4
                                                                                    6.6
## 14
           15
                  21
                          3.2
                                 1.2
                                                     1.3
                                                                3.0
                                                                                    5.9
## 15
            16
                  22
                          3.6
                                 1.2
                                                     1.7
                                                                3.5
                                                                                    6.4
Rt_flu1918 <- estimate_R(incid = Flu1918$incidence,
                           method = "non_parametric_si",
                           config = make_config(list(si_distr = Flu1918$si_distr)))
round(head(Rt_flu1918$R[,c(1:4, 5, 8, 11)]),1)
     t_start t_end Mean(R) Std(R) Quantile.0.025(R) Median(R) Quantile.0.975(R)
##
## 1
                                                    1.0
            2
                  8
                         1.4
                                0.2
                                                               1.4
                                                                                   1.9
## 2
           3
                  9
                         1.2
                                                    0.9
                                                                                   1.6
                                0.2
                                                               1.2
## 3
           4
                 10
                         1.4
                                0.2
                                                    1.0
                                                               1.4
                                                                                   1.7
## 4
           5
                 11
                         1.0
                                0.2
                                                    0.7
                                                               1.0
                                                                                   1.3
## 5
           6
                 12
                         1.3
                                0.2
                                                    1.0
                                                               1.3
                                                                                   1.6
           7
## 6
                 13
                         1.2
                                0.2
                                                    0.9
                                                                                   1.6
Rt_Smallpox1972 <- estimate_R(incid = Smallpox1972$incidence,
                                method = "non_parametric_si",
                                config = make_config(list(si_distr = Smallpox1972$si_distr)))
round(head(Rt Smallpox1972$R[,c(1:4, 5, 8, 11)], 10),1)
      t_start t_end Mean(R) Std(R) Quantile.0.025(R) Median(R) Quantile.0.975(R)
##
## 1
             2
                   8
                                  NA
                                                      NA
             3
                   9
## 2
                           NA
                                                      NA
                                                                 NA
                                                                                     NA
                                   NΑ
## 3
             4
                  10
                           NA
                                   NA
                                                      NA
                                                                 NA
                                                                                     NA
## 4
             5
                           NA
                                  NA
                                                      NA
                                                                 NA
                                                                                     NA
                  11
## 5
             6
                  12
                           NA
                                  NA
                                                      NA
                                                                 NA
                                                                                     NA
             7
## 6
                           NA
                  13
                                  NA
                                                      NA
                                                                 NA
                                                                                     NA
## 7
             8
                  14
                           NA
                                  NA
                                                      NA
                                                                 NA
                                                                                     NA
## 8
             9
                  15
                           NA
                                   NA
                                                      NA
                                                                 NA
                                                                                     NA
## 9
            10
                  16
                           NA
                                  NA
                                                      NA
                                                                 NA
                                                                                     NA
## 10
            11
                  17
                           NA
                                  NA
                                                                 NA
                                                                                     NA
Rt_sars2003 <- estimate_R(incid = SARS2003$incidence,</pre>
                            method = "non_parametric_si",
                            config = make_config(list(si_distr = SARS2003$si_distr)))
round(head(Rt_sars2003$R[,c(1:4, 5, 8, 11)]), 1)
```

t_start t_end Mean(R) Std(R) Quantile.0.025(R) Median(R) Quantile.0.975(R)

```
## 1
                                                                                             NA
                                                                                                                        NA
                                                                                                                                                                                              NA
                                                                                                                                                                                                                                     NA
                                                                                                                                                                                                                                                                                                          NA
                                           3
 ## 2
                                                                  9
                                                                                          5.8
                                                                                                                     2.4
                                                                                                                                                                                           2.1
                                                                                                                                                                                                                                 5.4
                                                                                                                                                                                                                                                                                                    11.2
 ## 3
                                           4
                                                                                                                                                                                                                                                                                                    10.9
                                                               10
                                                                                          6.0
                                                                                                                     2.1
                                                                                                                                                                                           2.6
                                                                                                                                                                                                                                 5.8
                                           5
                                                                                                                                                                                                                                 4.6
                                                                                                                                                                                                                                                                                                       8.7
 ## 4
                                                                                          4.8
                                                                                                                     1.7
                                                                                                                                                                                           2.1
                                                               11
                                           6
 ## 5
                                                               12
                                                                                          4.3
                                                                                                                     1.4
                                                                                                                                                                                           2.0
                                                                                                                                                                                                                                 4.2
                                                                                                                                                                                                                                                                                                       7.6
 ## 6
                                           7
                                                               13
                                                                                          3.9
                                                                                                                     1.2
                                                                                                                                                                                           1.9
                                                                                                                                                                                                                                                                                                       6.6
                                                                                                                                                                                                                                 3.7
Rt_flu2009 <- estimate_R(incid = Flu2009$incidence$I,</pre>
                                                                                                 method = "non parametric si",
                                                                                                 config = make_config(list(si_distr = Flu2009$si_distr)))
 round(head(Rt_flu2009$R[,c(1:4, 5, 8, 11)]), 1)
 ##
                    t_start t_end Mean(R) Std(R) Quantile.0.025(R) Median(R) Quantile.0.975(R)
 ## 1
                                           2
                                                                  8
                                                                                          1.7
                                                                                                                     0.4
                                                                                                                                                                                           1.0
                                                                                                                                                                                                                                 1.7
                                                                                                                                                                                                                                                                                                       2.6
 ## 2
                                           3
                                                                  9
                                                                                          1.7
                                                                                                                     0.4
                                                                                                                                                                                           1.1
                                                                                                                                                                                                                                 1.7
                                                                                                                                                                                                                                                                                                       2.5
 ## 3
                                           4
                                                                                                                     0.3
                                                               10
                                                                                          1.5
                                                                                                                                                                                           1.0
                                                                                                                                                                                                                                 1.5
                                                                                                                                                                                                                                                                                                       2.2
 ## 4
                                           5
                                                               11
                                                                                                                     0.3
                                                                                                                                                                                           1.0
                                                                                                                                                                                                                                                                                                       2.0
                                                                                          1.4
                                                                                                                                                                                                                                 1.4
                                                                                         1.4
 ## 5
                                           6
                                                               12
                                                                                                                     0.3
                                                                                                                                                                                           1.0
                                                                                                                                                                                                                                 1.4
                                                                                                                                                                                                                                                                                                       2.0
 ## 6
                                           7
                                                               13
                                                                                          1.6
                                                                                                                     0.3
                                                                                                                                                                                           1.2
                                                                                                                                                                                                                                 1.6
                                                                                                                                                                                                                                                                                                       2.2
                 Measles 1861
                                                                                        Flu 1918
                                                                                                                                                            Smallpox 1972
                                                                                                                                                                                                                                    SARS 2003
                                                                                                                                                                                                                                                                                                       Flu 2009
                                                                                                                                                     20 -
                                                                                                                                                                                                                           100 -
Daily incidence
                                                                        Daily incidence
                                                                                                                                               Daily incidence
                                                                                                                                                                                                                    Daily incidence
                                                                                                                                                                                                                                                                                          Daily incidence
                                                                               400 -
                                                                                                                                                                                                                            75 ·
                                                                                                                                                     10 -
                                                                                                                                                                                                                            50 -
                                                                               200
           5 -
                                                                                                                                                       5 -
                                                                                                                                                                                                                            25 -
                                 21 31 41
                                                                                                 21 41 61 81
                                                                                                                                                                    11 21 31 41 51
                                                                                                                                                                                                                                      1 21 41 61 81 101
                                                                                                                                                                                                                                                                                                                6 11 16 21 26 31
                                                                                                                                                                                                                           15 -
                                                                                                                                                     30
         15 -
                                                                                                                                                     20
                                                                                                                                                                                                                           10
         10 -
  œ
                                                                                                                                                      10
                                                                                                                                                                                                                            0 -
           0.
                                                                               0
                                                                                                                                                       0 -
                                                                                                                                                                                                                                                                                                 0 -
                                 20 30 40 50
Time
                                                                                                                                                                         20
Time
                                                                                                                                                                                                                                             30 60
Time
                                                                                                                                                                                                                                  0
                                                                                    Ö
                        10
                                                                                                                                                            Ö
                                                                                                                                                                                           40
                                                                                                                                                                                                                                                                                                     ò
                                                                                                                                                                                                                          0.12 -
        0.100 -
                                                                                                                                                    0.06 -
                                                                               0.3 -
                                                                                                                                                                                                                                                                                                 0.3 -
                                                                                                                                                                                                                   SI frequency 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.0
  treducy
0.020 -
                                                                       SI frequency
                                                                                                                                                                                                                                                                                         SI frequency
                                                                                                                                             SI frequency 0.04 - 0.02 -
                                                                               0.2
  \overline{o} 0.025
        0.000
                                                                               0.0
                                                                                                                                                     0.00
                                                                                                                                                                                                                          0.00
                                                                                                                                                                                                                                                                                                 0.0
                                                                                                                6
                                                                                                                             9
                                                                                                                                                                                                                                                        10 15 20 25
                                                                                                                                                                ó
                                                                                                                                                                                                                                      ò
                       Ó
                                                   20
                                                                                                                                                                                  20 30
                                      .
10
                                       Time
                                                                                                          Time
                                                                                                                                                                                                                                                        Time
                                                                                                                                                                                                                                                                                                                            Time
```

Comparison

Over the years, some features of {EpiEstim} have been updated thus minor differences are observed. Characteristics of each case curve and differences in the reproduced numbers are summarized as follows.

Outbreak	Cori et al (2013)	Reproduced
Measles 1861	initial : 4.3 (95 % CI: 2-8.2)	4.2 (95 Q: 1.8-8.3) at d=18
increased Rt in	mid w3: 3.0 (95 % CI: 1.3–5.9)	2.8 (95 Q: 2.2-3.4) at d=39
w3-4		

Outbreak	Cori et al (2013)	Reproduced
due to the high	mid w4: 11.5 (95 % CI: 8.3–15.3)	no second peak after d=29 last d Rt>10
transsibility	w7: below 1	0.99 (95 Q: 0.7-1.3) at d=42
Flu 1918	end w2 : 1.4 (95 % CI: 1.0–1.9)	1.4 (95 Q: 1.0-1.9) at $d = 8$, 10
2 days of extremely	mid w5: 2.4 (95 % CI: 2.2–2.6)	2.2 (95 Q: 2.4-2.6) at d = 31
high incidence at d=31, 45	early w7: below 1	1.0 (95 Q: $0.9 - 1.0$) at $d = 42$ 0.9 (95 Q: $0.8 - 0.9$) at $d = 47$
Smallpox 1972	early w4: 3.4 (95% CI: 0.8–9.3)	3.4 (95 Q: 0.8-9.3) at d = 29
a long induction	mid w6: 23.9 (95% CI: 19.0–29.5)	23.9 (95 Q: 19.1-29.5 at d = 38
period (4 wk)	early w8: below 1	0.9 (95 Q: 0.5-1.6) at d = 50
SARS 2003	mid w3: 12.2 (95% CI: 10.0–14.7)	12.2 (95 Q: 10.0-14.7) at $d = 24$
2 peaks	end w6: 2.6 (95% CI: 2.4–2.9)	2.4 (95 Q: 2.6-2.9) at d = 41, 42
	w7: below 1	0.9 (95 Q: 0.8-1.0) at $d = 47$
Flu 2009	early w2: 1.7 (95% CI: 1.0-2.6)	1.7 (95 Q: 1.0-2.6) at d = 8
a constant rate	end w2: 1.7 (95% CI: 1.2–2.2)	1.7 (95 Q: 1.2-2.2) at $d = 14$
	w4: 0.2 (95% CI: 0.1–0.5)	0.2 (95 Q: 0.1-0.5) at d = 28
	w5: 0.9 (95% CI: 0.3–2.0)	0.9 (95 Q: 0.3-2.1) at d = 32

- Reproduced estimates are sample quantiles, median (quanteil at 0.025 quantile at 0.975).
- 95Q indicates 95 sample quantile intervals. Cori et al. used a term of 95% CI but it seems they referring to the quantile intervals.
- d indicates t_end in R_t result.

Conclusion

With fixed serial interval weights, the estimates are consistent in the reproducible studies.

A true challenge in a COVID 19 study is to obtain an sensible estimate for this distribution.

Reference

Anne Cori, Neil M. Ferguson, Simon Cauchemez. 2020. EpiEstim: Estimate Time Varying Reproduction Numbers from Epidemic Curves. https://cran.r-project.org/web/packages/EpiEstim/index.html.

Cori, Anne, Neil M Ferguson, Christophe Fraser, and Simon Cauchemez. 2013. "A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics." *American Journal of Epidemiology* 178 (9). Oxford University Press: 1505–12.

[&]quot;EpiEstim: Github Repository." 2020. https://github.com/mrc-ide/EpiEstim.

[&]quot;EpiEstim: The R-Epi Project." 2020. https://sites.google.com/site/therepiproject/r-pac/epiestim.