EXPERIENCES WITH STREAMING & MICRO-BATCH FOR ONLINE LEARNING

The Challenge of Today's Analytics Trajectory

IoT is Driving Explosive Growth in Data Volume

Edges benefit from real-time online learning and/or inference

Real-Time Intelligence: Online Algorithm Advantages

- Real-world data is unpredictable and bursty
 - Data behavior changes (different time of day, special events, flash crowds, etc.)
- Data behavior changes require retraining & model updates
 - Updating models offline can be expensive (compute, retraining)
- Online algorithms retrain on the fly with real-time data
 - Lightweight, low compute and memory requirements
 - Better accuracy through continuous learning
- Online algorithms are more accurate, especially with data behavior changes

Experience Building ML Algorithms on Flink 1.0

- Built both Offline(Batch) and Online algorithms
 - Batch Algorithms (Examples: KMeans, PCA, and Random Forest)
 - Online Algorithms (Examples: Online KMeans, Online SVM)
- Uses many of the Flink DataStream primitives:
 - o DataStream APIs are sufficient and primitives are generic for ML algorithms.
 - CoFlatMaps, Windows, Collect, Iterations, etc.
- We have also added Python Streaming API support in Flink and are working with dataArtisans to contribute it to upstream Flink.

Example: Online SVM Algorithm

```
/* Co-map to update local model(s) when new data arrives and also
create the shared model when a pre-defined threshold is met */
private case class SVMModelCoMap(...) {
   /* flatMap1 processes new elements and updates local model*/
   def flatMap1(data: LabeledVector[Double],
                  out: Collector[Model]) {
   /* flatMap2 accumulates local models and creates a new model
(with decay) once all local models are received */
   def flatMap2(currentModel: Model, out: Collector[Model]) {
object OnlineSVM {
   def main(args: Array[String]): Unit = {
        // initialize input arguments and connectors
```

Aggregated and local models combined with decay factor

Telco Example: Measuring SLA Violations

- A server providing VoD services to VLC (i.e., media player) clients
 - Clients request videos of different sizes at different times
 - Server statistics used to predict violations
- SLA violation: service level drops below predetermined threshold

Dataset

(https://arxiv.org/pdf/1509.01386.pdf)

CPU Utilization	Memory/Swap	I/O Transactions	Block I/O operations	Process Statistics	Network Statistics
CPU Idle	Mem Used	Read transactions/s	Block Reads/s	New Processes/s	Received packets/s
CPU User	Mem Committed	Write transactions/s	Block Writes/s	Context Switches/s	Transmitted Packets/s
CPU System	Swap Used	Bytes Read/s			Received Data (KB)/s
CPU IO_Wait	Swap Cached	Bytes Written/s			Transmitted Data (KB)/s
					Interface Utilization %

- Load patterns Flashcrowd, Periodic
- Delivered to Flink and Spark as live stream in experiments

Fixed workloads – Online vs Offline (Batch)

Load Scenario	Offline (LibSVM) Accuracy	Offline (Pegasos) Accuracy	Online SVM Accuracy
flashcrowd_load	0.843	0.915	0.943
periodic_load	0.788	0.867	0.927
constant_load	0.999	0.999	0.999
poisson_load	0.963	0.963	0.971

When load pattern remains static (unchanged),
Online algorithms can be as accurate as Offline algorithms

Online SVM vs Batch (Offline) SVM – both in Flink

Online algorithms quickly adapt to workload changes

Throughput: Online SVM in Streams and Micro-Batch

Throughput for processing samples with 256 attributes from Kafka

Notable performance improvement over micro-batch based solution

Latency: Online SVM in Streams & Micro-batch

— Spark - 1s ubatch -- Spark - 0.1s ubatch -- Spark 0.01s ubatch — Spark 10s ubatch — Flink 1.0.3

Conclusions

Edge computing & Online learning are needed for real-time analytics

- Edge Computing: minimizes the excessive latencies, reaction time
- Online learning: can dynamically adapt to changing data / behavior

Online machine learning with streaming on Flink

- Supports low latency processing with scaling across multiple nodes
- Using real world data, demonstrate improved accuracy over offline algorithms

Parallel Machines The Machine Learning Management Solution

info@parallelmachines.com

