### Chapter 1

# Design implementation of NLS

This chapter contains a detailed guide through the various steps and components of the Nickel Language Server (NLS). Being written in the same language (Rust(rust?)) as the Nickel interpreter allows NLS to integrate existing components for language analysis. Complementary, NLS is tightly coupled to Nickel's syntax definition. Section ?? will introduce the main data structure underlying all higher level LSP interactions and how the AST described in sec. ?? is transformed into this form. Finally, the implementation of current LSP features is discussed in sec. ??.

#### 1.1 Illustrative example

The example lst. 1.1 shows an illustrative high level configuration of a server. Throughout this chapter, different sections about the NSL implementation will refer back to this example.

#### 1.2 Linearization

The focus of the NLS as presented in this work is to implement a working language server with a comprehensive feature set. To answer requests, NLS needs to store more information than what is originally present in a Nickel AST. Apart from missing data, an AST is not optimized for quick random access of nodes based on their position, which is a crucial operation for a language server. To that end NLS introduces an auxiliary data structure, the *linearization*, which is derived from the AST. It represents the original data linearly, performs an enrichment of the AST nodes and provides greater decoupling of the LSP functions from the implemented language. Section ?? details the process of transferring the AST. After NLS parsed a Nickel source files to an AST it starts to fill the linearization, which is in a *building* state during this phase. For reasons detailed in sec. ??, the linearization needs to be post-processed, yielding a *completed* state. The completed linearization acts as the basis to handle all

supported LSP requests as explained in sec. ??. Section ?? explains how a completed linearization is accessed.

Advanced LSP implementations sometimes employ so-called incremental parsing, which allows updating only the relevant parts of an AST (and, in case of NLS, the derived linearization) upon small changes in the source. However, an incremental LSP is not trivial to implement. For once, NLS would not be able to leverage existing components from the existing Nickel implementation (most notably, the parser). Parts of the nickel runtime, such as the typechecker, would need to be adapted or even reimplemented to work in an incremental way too. Considering the scope of this thesis, the presented approach performs a complete analysis on every update to the source file. The typical size of Nickel projects is assumed to remain small for quite some time, giving reasonable performance in practice. Incremental parsing, type-checking and analysis can still be implemented as a second step in the future.

#### 1.2.1 States

At its core the linearization in either state is represented by an array of LinearizationItems which are derived from AST nodes during the linearization process. However, the exact structure of that array is differs as an effect of the post-processing.

LinearizationItems maintain the position of their AST counterpart, as well as its type. Unlike in the AST, metadata is directly associated with the element. Further deviating from the AST representation, the type of the node and its kind are tracked separately. The latter is used to represent a usage graph on top of the linear structure. It distinguishes between declarations (let bindings, function parameters, records) and variable usages. Any other kind of structure, for instance, primitive values (Strings, numbers, boolean, enumerations), is recorded as Structure.

To separate the phases of the elaboration of the linearization in a type-safe, the implementation is based on type-states (typestate?). Type-states were chosen over an enumeration bases approach for the additional flexibility they provide to build a generic interface. Thanks to the generic interface, the adaptions to Nickel to integrate NLS are expected to have almost no influence on the runtime performance of the language in an optimized build.

NLS implements separate type-states for the two phases of the linearization: Building and Completed.

building phase: A linearization in the Building state is a linearization under construction. It is a list of LinearizationItems of unresolved type, appended as they are created during a depth-first traversal of the AST. During this phase, the id affected to a new item is always equal to its index in the array.

The Building state also records the definitions in scope of each item in a separate mapping.

**post-processing phase:** Once fully built, a Building instance is post-processed to get a Completed linearization.

Although fundamentally still represented by an array, a completed linearization is optimized for search by positions (in the source file) thanks to sorting and the use of an auxiliary map from ids to the new index of items.

Additionally, missing edges in the usage graph have been created and he types of items are fully resolved in a completed linearization.

Type definitions of the Linearization as well as its type-states Building and Completed are listed in lsts. 1.2, 1.3, 1.4. Note that only the former is defined as part of the Nickel libraries, the latter are specific implementations for NLS.

#### 1.2.2 Transfer from AST

The NLS project aims to present a transferable architecture that can be adapted for future languages. Consequently, NLS faces the challenge of satisfying multiple goals

- 1. To keep up with the frequent changes to the Nickel language and ensure compatibility at minimal cost, NLS needs to *integrate critical functions* of Nickel's runtime
- 2. Adaptions to Nickel to accommodate the language server should be minimal not obstruct its development and maintain performance of the runtime.

To accommodate these goals NLS comprises three different parts as shown in fig. 1.1.

The Linearizer trait acts as an interface between Nickel and the language server. NLS implements a Linearizer specialized to Nickel which registers AST nodes and builds a final linearization. Nickel's type checking implementation

was adapted to pass AST nodes to the Linearizer. Modifications to Nickel are minimal, comprising only few additional function calls and a slightly extended argument list. A stub implementation

of the Linearizer trait is used during normal operation. Since most methods of this implementation are no-ops, the compiler should be able to optimize away all Linearizer calls in release builds.

#### 1.2.2.1 Usage Graph

At the core the linearization is a simple *linear* structure. Yet, it represents relationships of nodes on a structural level as a tree-like structure. Taking into account variable usage information adds back-edges to the original AST, yielding a graph structure. Both kinds of edges have to be encoded with the elements in the list. Alas, items have to be referred to using ids since the index of items cannot be relied on(such as in e.g. a binary heap), because the array is reordered to optimize access by source position.

There are two groups of vertices in such a graph. **Declarations** are nodes that introduce an identifier, and can be referred to by a set of nodes. Referral is represented by **Usage** nodes.

During the linearization process this graphical model is embedded into the items of the linearization. Hence, each LinearizationItem is associated with a kind



Figure 1.1: Interaction of Componenets

representing the item's role in the graph (see: lst. 1.5).

Variable bindings and function arguments are linearized using the Declaration variant which holds

- the bound identifier
- a list of IDs corresponding to its Usages.
- its assigned value

**Records** remain similar to their AST representation. The Record variant simply maps the record's field names to the linked RecordField

Record fields are represented as RecordField kinds and store:

- the same data as for identifiers (and, in particular, tracks its usages)
- a link to the parent Record
- a link to the value of the field

Variable usages can be in three different states.

- Usages that can not (yet) be mapped to a declaration are tagged Unbound
- 2. A Resolved usage introduces a back-link to the complementary Declaration
- 3. For record destructuring resolution of the name might need to be Deferred to the post-processing as discussed in sec. ??.

Other nodes of the AST that do not participate in the usage graph, are linearized as Structure – A wildcard variant with no associated data.

#### 1.2.2.2 Scopes

The Nickel language implements lexical scopes with name shadowing.

- 1. A name can only be referred to after it has been defined
- 2. A name can be redefined locally

An AST inherently supports this logic. A variable reference always refers to the closest parent node defining the name and scopes are naturally separated using branching. Each branch of a node represents a sub-scope of its parent, i.e. new declarations made in one branch are not visible in the other.

When eliminating the tree structure, scopes have to be maintained in order to provide auto-completion of identifiers and list symbol names based on their scope as context. Since the bare linear data structure cannot be used to deduce a scope, related metadata has to be tracked separately. The language server maintains a register for identifiers defined in every scope. This register allows NLS to resolve possible completion targets as detailed in sec. ??.

For simplicity, NLS represents scopes by a prefix list of integers. Whenever a new lexical scope is entered, the list of the outer scope is extended by a unique identifier.

Additionally, to keep track of the variables in scope, and iteratively build a usage graph, NLS keeps track of the latest definition of each variable name and which Declaration node it refers to.

#### 1.2.2.3 Linearizer

The heart of the linearization the Linearizer trait as defined in lst. 1.6. The Linearizer lives in parallel to the Linearization. Its methods modify a shared reference to a Building Linearization.

Linearizer::add\_term is used to record a new term, i.e. AST node.

Its responsibility is to combine context information stored in the Linearizer and concrete information about a node to extend the Linearization by appropriate items.

Linearizer::retype\_ident is used to update the type information of an identifier.

The reason this method exists is that not all variable definitions have a corresponding AST node but may be part of another node. This is the case with records; Field *names* are not linearized separately but as part of the record. Thus, their type is not known to the linearizer and has to be added explicitly.

Linearizer::complete implements the post-processing necessary to turn a final Building linearization into a Completed one.

Note that the post-processing might depend on additional data.

Linearizer::scope returns a new Linearizer to be used for a sub-scope of the current one.

Multiple calls to this method yield unique instances, each with their own scope. It is the caller's responsibility to call this method whenever a new scope is entered traversing the AST.

The recursive traversal of an AST implies that scopes are correctly backtracked.

While data stored in the Linearizer::Building state will be accessible at any point in the linearization process, the Linearizer is considered to be *scope safe*. No instance data is propagated back to the outer scopes Linearizer. Neither have Linearizers of sibling scopes access to each other's data. Yet, the scope method can be implemented to pass arbitrary state down to the scoped instance. The scope safe storage of the Linearizer implemented by NLS, as seen in lst. ??, stores the scope aware register and scope related data. Additionally, it contains fields to allow the linearization of records and record destructuring, as well as metadata (sec. ??).

```
pub struct AnalysisHost {
    env: Environment,
    scope: Scope,
    next_scope_id: ScopeId,
    meta: Option<MetaValue>,
    /// Indexing a record will store a reference to the record as
    /// well as its fields.
    /// [Self::Scope] will produce a host with a single **`pop`ed**
    /// Ident. As fields are typechecked in the same order, each
    /// in their own scope immediately after the record, which
    /// gives the corresponding record field _term_ to the ident
    /// useable to construct a vale declaration.
    record_fields: Option<(usize, Vec<(usize, Ident)>)>,
```

```
/// Accesses to nested records are recorded recursively.
/// outer.middle.inner -> inner(middle(outer))
/// To resolve those inner fields, accessors (`inner`, `middle`)
/// are recorded first until a variable (`outer`). is found.
/// Then, access to all nested records are resolved at once.
access: Option<Vec<Ident>>,
}
```

#### 1.2.2.4 Linearization Process

From the perspective of the language server, building a linearization is a completely passive process. For each analysis NLS initializes an empty linearization in the Building state. This linearization is then passed into Nickel's type-checker along a Linearizer instance.

Type checking in Nickel is implemented as a complete recursive depth-first preorder traversal of the AST. As such it could easily be adapted to interact with a Linearizer since every node is visited and both type and scope information is available without the additional cost of a separate traversal. Moreover, type checking proved optimal to interact with traversal as most transformations of the AST happen afterwards.

While the type checking algorithm is complex only a fraction is of importance for the linearization. Reducing the type checking function to what is relevant to the linearization process yields lst. 1.7. Essentially, every term is unconditionally registered by the linearization. This is enough to handle a large subset of Nickel. In fact, only records, let bindings and function definitions require additional change to enrich identifiers they define with type information.

While registering a node, NLS distinguishes 4 kinds of nodes. These are *metadata*, usage graph related nodes, i.e. declarations and usages, static access of nested record fields, and general elements which is every node that does not fall into one of the prior categories.

- 1.2.2.4.1 Structures In the most common case of general elements, the node is simply registered as a LinearizationItem of kind Structure. This applies for all simple expressions like those exemplified in lst. 1.8
- **1.2.2.4.2 Declarations** In case of let bindings or function arguments name binding is equally simple. As discussed in sec. ?? the let node may contain both a name and pattern matches. For either the linearizer generates **Declaration** items and updates its name register. However, type information is available for name bindings only, meaning pattern matches remain untyped.

The same process applies for argument names in function declarations. Due to argument currying, NLS linearizes only a single argument/pattern at a time.

**1.2.2.4.3** Records Section ?? introduced the AST representation of Records. As suggested by fig. 1.2, Nickel does not have AST nodes dedicated to record



Figure 1.2: AST representation of a record

fields. Instead, it associates field names with values as part of the Record node. Since the language server is bound to process nodes individually, in effect, it will only see the values. Therefore, it can not process record values at the same time as the outer record. For the language server it is important to associate field names with their value, as it serves as name declaration. For that reason, NLS distinguishes Record and RecordField as independent kinds of linearization items where RecordFields act as a bridge between the record and the value named after the field.

To maintain similarity to other binding types, NLS has to create a separate item for the field and the value. This also ensures, that the value can be linearized independently.

Record values may reference other fields defined in the same record regardless of the order, as records are recursive by default. Consequently, all fields have to be in scope and as such be linearized beforehand. When linearizing a record, NLS will generate RecordField items for each field. However, it can not associate the field's value with the item yet (which is expressed using ValueState::None). This is because the subtree of each field can be arbitrary large, as is the offset of the corresponding linearization items.

The visualization (fig. 1.3) of the record discussed in lst. 1.9 gives an example for this. Here, the first items linearized are record fields. Yet, as the containers field value is processed first, the metadata field value is offset by a number of fields unknown when the outer record node is processed.



Figure 1.3: Linearization of a record  $\,$ 

To provide the necessary references, NLS makes used of the *scope safe* memory of its Linearizer implementation. This is possible, because each record value corresponds to its own scope. The complete process looks as follows:

- 1. When registering a record, first the outer Record is added to the linearization
- 2. This is followed by RecordField items for its fields, which at this point do not reference any value.
- 3. NLS then stores the id of the parent as well as the fields and the offsets of the corresponding items (n-4 and [(apiVersion, n-3), (containers, n-2), (metadata, n-1)] respectively in the example fig. 1.3).
- 4. The scope method will be called in the same order as the record fields appear. Using this fact, the scope method moves the data stored for the next evaluated field into the freshly generated Linearizer
- 5. (In the sub-scope) The Linearizer associates the RecordField item with the (now known) id of the field's value. The cached field data is invalidated such that this process only happens once for each field.

**1.2.2.4.4** Variable Reference The usage of a variable is always expressed as a Var node that holds an identifier. Registering a name usage is a multi-step process.

First, NLS tries to find the identifier in its scope-aware name registry. If the registry does not contain the identifier, NLS will linearize the node as Unbound. In the case that the registry lookup succeeds, NLS retrieves the referenced Declaration or RecordField. The linearizer will then add a usage item in the Resolved state to the linearization and update the declaration's list of usages.

1.2.2.4.5 Resolution of Record Fields The AST representation of record destructuring in fig. ?? shows that accessing inner records involves chains of unary operations *ending* with a reference to a variable binding. Each operation encodes one field of a referenced record. However, to reference the corresponding declaration, the final usage has to be known. Therefore, instead of linearizing the intermediate elements directly, the Linearizer adds them to a shared stack until the grounding variable reference is registered.

Whenever a variable usage is linearized, NLS checks the stack for latent destructors. If destructors are present, it adds Usage items for each element on the stack. Yet, because records are recursive it is possible that fields reference other fields' values.

Consider the following example lst. 1.10, which is depicted in fig. 1.4

Here, a conflict is guaranteed. As the Linearizer processes the field values sequentially in arbitrary order, it is unable to resolve both y.yz and z.

Assuming the value for z is linearized first, the items corresponding the destructuring of y can not be resolved. While the *field* y is known, its value is not (cf. sec. ??), from which follows that yy is inaccessible. Yet, y.yy will be possible to resolve once the value of y is processed. For this reason the Usage generated from the destructor .yy is marked as Deferred and will be fully resolved during the post-processing phase as documented in sec. ??.



Figure 1.4: Example race condition in recursive records. The field 'y.yz' cannot be not be referenced at this point as the 'y' branch has yet to be linearized

In fact, NLS linearized all destructor elements as Deferred and resolves the correct references later. Figure 1.5 shows this more clearly for the expression x.y.z. The Declaration for x is known, therefore its Var AST node is linearized as a Resolved usage. Mind that in records x could as well be a RecordField.



Figure 1.5: Depiction of generated usage nodes for record destructuring

1.2.2.4.6 Metadata In sec. ?? was shown that on the syntax level, metadata "wraps" the annotated value. Conversely, NLS encodes metadata in the LinearizationItem as metadata is intrinsically related to a value. NLS therefore has to defer handling of the MetaValue node until the processing of the associated value in the succeeding call. Like record destructors, NLS temporarily stores this metadata in the Linearizer's memory.

Metadata always precedes its value immediately. Thus, whenever a node is linearized, NLS checks whether any latent metadata is stored. If there is, it moves it to the value's LinearizationItem, clearing the temporary storage.

Although metadata is not linearized as is, contracts encoded in the metadata can however refer to locally bound names. Considering that only the annotated value is type-checked and therefore passed to NLS, resolving Usages in contracts requires NLS to separately walk the contract expression. Therefore, NLS traverses the AST of expressions used as value annotations. In order to avoid interference with the main linearization, contracts are linearized using their own Linearizer.

#### 1.2.3 Post-Processing

Once the entire AST has been processed NLS modifies the Linearization to make it suitable as an efficient index to serve various LSP commands.

After the post-processing the resulting linearization

- 1. allows efficient lookup of elements from file locations
- 2. maintains an id based lookup
- 3. links deeply nested record destructors to the correct definitions
- 4. provides all available type information utilizing Nickel's typing backend

#### 1.2.3.1 Sorting

Since the linearization is performed in a preorder traversal, processing already happens in the order elements are defined physically. Yet, during the linearization the location might be unstable or unknown for different items. Record fields for instance are processed in an arbitrary order rather than the order they are defined. Moreover, for nested records and record short notations, symbolic Record items are created which cannot be mapped to a physical location and are thus placed at the range [0..=0] in the beginning of the file. Maintaining constant insertion performance and item-referencing require that the linearization is exclusively appended. Each of these cases, break the physical linearity of the linearization.

NLS thus defers reordering of items. The language server uses a stable sorting algorithm to sort items by their associated span's starting position. This way, nesting of items with the same start location is preserved. Since several operations require efficient access to elements by id, which after the sorting does not correspond to the items index in the linearization, after sorting NLS creates an index mapping ids to list indices.

#### 1.2.3.2 Resolving deferred access

Section ?? introduced the Deferred type for Usages. Resolution of usages is deferred if chained destructors are used. This is especially important in recursive records where any value may refer to other fields of the record which could still be unresolved.

As seen in fig. 1.5, the items generated for each destructor only link to their parent item. Yet, the root access is connected to a known declaration. Since at this point all records are fully processed NLS is able to resolve destructors iteratively.

First NLS collects all deferred usages in a queue. Each usage contains the id of the parent destructor as well as the name of the field itself represents. NLS then tries to resolve the base record for the usage by resolving the parent. If the

value of the parent destructor is not yet known or a deferred usage, NLS will enqueue the destructor once again to be processed again later. In practical terms that is after the other fields of a common record. In any other case the parent consequently has to point to a record, either directly, through a record field or a variable. NLS will then get the id of the RecordField for the destructors name and mark the Usage as Known If no field with that name is present or the parent points to a Structure or Unbound usage, the destructor cannot be resolved in a meaningful way and will thus be marked Unbound.

#### 1.2.3.3 Resolving types

As a necessity for type checking, Nickel generates type variables for any node of the AST which it hands down to the Linearizer. In order to provide meaningful information, the Language Server needs to derive concrete types from these variables. The required metadata needs to be provided by the type checker.

#### 1.2.4 Resolving Elements

#### 1.2.4.1 Resolving by position

As part of the post-processing step discussed in sec. ??, the LinearizationItems in the Completed linearization are reorderd by their occurence of the corresponding AST node in the source file. To find items in this list three preconditions have to hold:

- 1. Each element has a corresponding span in the source
- 2. Items of different files appear ordered by FileId
- 3. Two spans are either within the bounds of the other or disjoint.

$$\operatorname{Item}^2_{\operatorname{start}} \geq \operatorname{Item}^1_{\operatorname{start}} \wedge \operatorname{Item}^2_{\operatorname{end}} \leq \operatorname{Item}^1_{\operatorname{end}}$$

4. Items referring to the spans starting at the same position have to occur in the same order before and after the post-processing. Concretely, this ensures that the tree-induced hierarchy is maintained, more precise elements follow broader ones

This first two properties are an implication of the preceding processes. All elements are derived from AST nodes, which are parsed from files retaining their position. Nodes that are generated by the runtime before being passed to the language server are either ignored or annotated with synthetic positions that are known to be in the bounds of the file and meet the second requirement. For all other nodes the second requirement is automatically fulfilled by the grammar of the Nickel language. The last requirement is achieved by using a stable sort during the post-processing.

The algorithm used is listed in lst. 1.11. Given a concrete position, that is a FileId and ByteIndex in that file, a binary search is used to find the *last* element that *starts* at the given position. According to the aforementioned preconditions an element found there is equivalent to being the most specific element starting at this position. In the more frequent case that no element starting at the provided position is found, the search instead yields an index which can be used as a starting point to iterate the linearization *backwards* to find an item with the shortest span containing the queried position. Due to the

third requirement, this reverse iteration can be aborted once an item's span ends before the query. If the search has to be aborted, the query does not have a corresponding LinearizationItem.

#### 1.2.4.2 Resolving by ID

During the building process item IDs are equal to their index in the underlying List which allows for efficient access by ID. To allow similarly efficient access to nodes with using IDs a Completed linearization maintains a mapping of IDs to their corresponding index in the reordered array. A queried ID is first looked up in this mapping which yields an index from which the actual item is read.

#### 1.2.4.3 Resolving by scope

During the construction from the AST, the syntactic scope of each element is eventually known. This allows to map scopes to a list of elements defined in this scope. Definitions from higher scopes are not repeated, instead they are calculated on request. As scopes are lists of scope fragments, for any given scope the set of referable nodes is determined by unifying IDs of all prefixes of the given scope, then resolving the IDs to elements. The Rust implementation is given in lst. 1.12 below.

#### 1.3 LSP Server

Section ?? introduced the concept of capabilities in the context of the language server protocol. This section describes how NSL uses the linearization described in sec. ?? to implement a comprehensive set of features. NLS implements the most commonly compared capabilities Code completion, Hover Jump to def, Find references, Workspace symbols and Diagnostics.

#### 1.3.1 Diagnostics and Caching

NLS instructs the LSP client to notify the server once the user opens or modifies a file. Each notification contains the complete source code of the file as well as its location. NLS subsequently parses and type-checks the file using Nickel's libraries. Since Nickel deals with error reporting already, NLS converts any error generated in these processes into Diagnostic items and sends them to the client as server notifications. Nickel errors provide detailed information about location of the issue as well as possible details which NLS can include in the Diagnostic items.

As discussed in sec. ?? and sec. ?? the type-checking yields a Completed linearization which implements crucial methods to resolve elements. NLS will cache the linearization for each processed file. This way it can provide its LSP functions while a file is being edited.

#### 1.3.2 Commands

Contrary to Diagnostics, which are part of a Notification based interaction with the client and thus entirely asynchronous, Commands are issued by the

client which expects an explicit synchronous answer. While servers may report long-running tasks and defer sending eventual results back, user experience urges quick responses. NLS achieves the required low latency by leveraging the eagerly built linearization. Consequently, the language server implements most Commands through a series of searches and lookups of items.

#### 1.3.2.1 Hover

When hovering an item or issuing the corresponding command in text based editors, the LSP client will send a request for element information containing the cursor's *location* in a given *file*. Upon request, NLS loads the cached linearization and performs a lookup for a LinearizationItem associated with the location using the linearization interface presented in sec. ??. If the linearization contains an appropriate item, NLS serializes the item's type and possible metadata into a response object which is resolves the RPC call. Otherwise, NLS signals no item could be found.

#### 1.3.2.2 Jump to Definition and Show references

Similar to hover requests, usage graph related commands associate a location in the source with an action. NLS first attempts to resolve an item for the requested position using the cached linearization. Depending on the command the item must be either a Usage or Declaration/RecordField. Given the item is of the correct kind, the language server looks up the referenced declaration or associated usages respectively. The stored position of each item is encoded in the LSP defined format and sent to the client. In short, usage graph queries perform two lookups to the linearization. One for the requested element and a second one to retrieve the linked item.

#### 1.3.2.3 Completion

Item completion makes use of the scope identifiers attached to each item. Since Nickel implements lexical scopes, all declarations made in parent scopes can be a reference. If two declarations use the same identifier, Nickel applies variable shadowing to refer to the most recent declaration, i.e., the declaration with the deepest applicable scope. NLS uses scope identifiers which represent scope depth as described in sec. ?? to retrieve symbol names for a reference scope using the method described in sec. ??. The current scope taken as reference is derived from the item at cursor position.

#### 1.3.2.4 Document Symbols

The Nickel Language Server interprets all items of kind Declaration as document symbol. Accordingly, it filters the linearization by kind and serializes all declarations into an LSP response object.

Listing 1.1 Nickel example with most features shown

```
let Port | doc "A contract for a port number" =
 contracts.from_predicate (fun value =>
   builtins.is_num value &&
   value % 1 == 0 &&
   value >= 0 &&
   value <= 65535) in
let Container = {
 image | Str,
 ports | List #Port,
} in
let NobernetesConfig = {
 apiVersion | Str,
 metadata.name | Str,
 replicas | #nums.PosNat
           | doc "The number of replicas"
           | default = 1,
 containers | { _ : #Container },
} in
let name_ = "myApp" in
let metadata_ = {
   name = name_,
} in
let webContainer = fun image => {
 image = image,
 ports = [ 80, 443 ],
} in
let image = "k8s.gcr.io/#{name_}" in
 apiVersion = "1.1.0",
 metadata = metadata_,
 replicas = 3,
 containers = {
    "main container" = webContainer image
} | #NobernetesConfig
```

## Listing 1.2 Definition of Linearization structure pub trait LinearizationState {} pub struct Linearization<S: LinearizationState> { pub state: S,

#### Listing 1.3 Type Definition of Building state

```
pub struct Building {
   pub linearization: Vec<LinearizationItem<Unresolved>>,
   pub scope: HashMap<Vec<ScopeId>, Vec<ID>>>,
impl LinearizationState for Building {}
```

#### Listing 1.4 Type Definition of Completed state

```
pub struct Completed {
   pub linearization: Vec<LinearizationItem<Resolved>>,
    scope: HashMap<Vec<ScopeId>, Vec<ID>>,
    id_to_index: HashMap<ID, usize>,
impl LinearizationState for Completed {}
```

#### Listing 1.5 Definition of a linearization items TermKind

```
pub enum TermKind {
    Declaration(Ident, Vec<ID>, ValueState),
    Record(HashMap<Ident, ID>),
    RecordField {
        ident: Ident,
        record: ID,
        usages: Vec<ID>,
        value: ValueState,
    },
    Usage(UsageState),
    Structure,
}
pub enum UsageState {
    {\tt Unbound}\,,
    Resolved(ID),
    Deferred { parent: ID, child: Ident },
}
pub enum ValueState {
    Unknown,
    Known(ID),
```

19

#### Listing 1.6 Interface of linearizer trait

```
pub trait Linearizer {
    type Building: LinearizationState + Default;
    type Completed: LinearizationState + Default;
    type CompletionExtra;
    fn add_term(
        &mut self,
        lin: &mut Linearization<Self::Building>,
        term: &Term,
        pos: TermPos,
        ty: TypeWrapper,
    )
    fn retype_ident(
        &mut self,
        lin: &mut Linearization<Self::Building>,
        ident: &Ident,
        new_type: TypeWrapper,
    fn complete(
        _lin: Linearization<<u>Self</u>::Building>,
        _extra: Self::CompletionExtra,
    ) -> Linearization<Self::Completed>
    where
        Self: Sized,
    fn scope(&mut self) -> Self;
```

Listing 1.7 Abstract type checking function

```
fn type_check_<L: Linearizer>(
   lin: &mut Linearization<L::Building>,
   mut linearizer: L,
   rt: &RichTerm,
   ty: TypeWrapper,
    /* omitted */
) -> Result<(), TypecheckError> {
   let RichTerm { term: t, pos } = rt;
   // 1. record a node
   linearizer.add_term(lin, t, *pos, ty.clone());
   // handling of each term variant
   // recursively calling `type_check_`
   // 2. retype identifiers if needed
   match t.as_ref() {
     Term::RecRecord(stat_map, ..) => {
       for (id, rt) in stat_map {
         let tyw = binding_type(/* omitted */);
          linearizer.retype_ident(lin, id, tyw);
        }
     }
     Term::Fun(ident, _) |
     Term::FunPattern(Some(ident), _)=> {
        let src = state.table.fresh_unif_var();
        linearizer.retype_ident(lin, ident, src.clone());
     Term::Let(ident, ..) |
     Term::LetPattern(Some(ident), ..)=> {
       let ty_let = binding_type(/* omitted */);
        linearizer.retype_ident(lin, ident, ty_let.clone());
     _ => { /* omitted */ }
```

21

#### Listing 1.8 Exemplary nickel expressions

```
// atoms

1
true
null

// binary operations
42 * 3
[ 1, 2, 3 ] @ [ 4, 5]

// if-then-else
if true then "TRUE :)" else "false :("

// string iterpolation
"#{ "hello" } #{ "world" }!"
```

# Listing 1.9 A record in Nickel { apiVersion = "1.1.0", metadata = metadata\_, replicas = 3, containers = { "main container" = webContainer image } }

```
Listing 1.10 Example of a recursive record

{
    y = {
      yy = "foo",
      yz = z,
    },
    z = y.yy
```

#### Listing 1.11 Resolution of item at given position

```
impl Completed {
 pub fn item_at(
   &self,
   locator: &(FileId, ByteIndex),
 ) -> Option<&LinearizationItem<Resolved>> {
   let (file_id, start) = locator;
   let linearization = &self.linearization;
   let item = match linearization
      .binary_search_by_key(
        locator,
        |item| (item.pos.src_id, item.pos.start))
        // Found item(s) starting at `locator`
       // search for most precise element
       Ok(index) => linearization[index..]
          .take_while(|item| (item.pos.src_id, item.pos.start) == locator)
          .last(),
        // No perfect match found
        // iterate back finding the first wrapping linearization item
       Err(index) => {
         linearization[..index].iter().rfind(|item| {
           // Return the first (innermost) matching item
           file_id == &item.pos.src_id
           && start > &item.pos.start
           && start < &item.pos.end
         })
   };
   item
 }
```

23

#### Listing 1.12 Resolution of all items in scope

```
impl Completed {
 pub fn get_in_scope(
    &self,
    \label{linearizationItem} \mbox{LinearizationItem} \mbox{\tt $<$ Resolved>$},
  ) -> Vec<&LinearizationItem<Resolved>> {
    let EMPTY = Vec::with_capacity(0);
    // all prefix lengths
    (0..scope.len())
      // concatenate all scopes
      .flat_map(|end| self.scope.get(&scope[..=end])
        .unwrap_or(&EMPTY))
      // resolve items
      .map(|id| self.get_item(*id))
      // ignore unresolved items
      .flatten()
      .collect()
 }
```