JK Lakshmipat University, Jaipur Institute of Engineering and Technology Mid Term Examination II, October 2024

B. Tech., Odd Semester, 2024-25

Roll No. 2008 Con

AS1209: Matrix Computations

Time: 1 hour 40 minutes

Max. Marks: 15

Instructions to students:

Do not write anything other than your roll number on the question paper.

Mention all the assumptions for your answers clearly. Scientific calculator is allowed.

7 2 2	A CONTRACTOR OF THE CONTRACTOR	
Q. 1	 a. Given a matrix A of order 11 × 5, determine the orders of the matrices Q and R in the QR factorization of A. Also, specify the orders of matrices involved in the reduced QR factorization of A. b. Let A be a tridiagonal matrix and B be a pentadiagonal matrix, comment on the 	4 × 1 (CO 1,2,3)
	structural properties of the matrix AB.	
	c. Given a banded matrix A of order 7 with lower bandwidth 2 and upper bandwidth 1, what will be the structure of factors L and U in the LU factorization of A?	
	d. Let A be a toeplitz matrix with the first row $\begin{bmatrix} 2 & -1 & 0 & 0 \end{bmatrix}$ and the first column	
	$\begin{bmatrix} 2 & -1 & 0 & 0 \end{bmatrix}^T$ Construct the complete $A \times A$ to only the matrix A	
Q. 2	Given a Householder matrix $H = \begin{bmatrix} -\frac{1}{6} & -\frac{1}{2} & \frac{1}{6} & -\frac{5}{6} \\ -\frac{1}{2} & \frac{11}{14} & \frac{1}{14} & -\frac{5}{14} \\ \frac{1}{6} & \frac{1}{14} & \frac{41}{42} & \frac{5}{42} \\ -\frac{5}{6} & -\frac{5}{14} & \frac{5}{42} & \frac{17}{42} \end{bmatrix}$ and a vector $x = \begin{bmatrix} 1 \\ 3 \\ -1 \\ 5 \end{bmatrix}$, find $ Hx _2$. Also, find $H(Hx)$. You are encouraged to use the properties of Householder	2 (CO 4)
	$ Hx _2$. Also, find $H(Hx)$. You are encouraged to use the properties of Householder matrix.	
Q.3	a. Estimate the upper bound on the relative error in solution x , given by $\frac{\ \delta x\ }{\ x\ }$, of the linear system $Ax = b$. Assume a relative error in b , given by $\frac{\ \delta b\ }{\ b\ } = 10^{-3}$ and $cond(A) = 10^4$.	2 (CO 1,2
	b. Consider solving the linear system $Ax = b$. Assuming you are using IEEE double precision floating point numbers, how many digits of accuracy can you expect in your solution if $cond(A) = 1000$?	
0.4	The Spectral norm of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as $ A _2 = \sqrt{\lambda_{max}(A^T A)}$. For the matrix $A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$, calculate the spectral norm.	2 (CO 1,2

Q. 5	Let $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix}$, we want to find the QR factorization of A using Givens rotations. We	3 (CO 1,4)
	follow the following steps:	
	Step 1. Compute $A_2 = G_1(1,2,\theta)^T A = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} A_1 = \begin{bmatrix} -1 & -2 & -3 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$	
	Step 2. Compute $A_3 = G_2(1,3,\theta)^T A_2 = \begin{bmatrix} ? & 0 & ? \\ 0 & 1 & 0 \\ ? & 0 & ? \end{bmatrix} A_2 = \begin{bmatrix} \sqrt{2} & ? & ? \\ 0 & 1 & 1 \\ 0 & ? & ? \end{bmatrix}.$	T
	Step 3. Compute $A_4 = G_3(?,?,\theta)^T A_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & ? & ? \\ 0 & ? & ? \end{bmatrix} A_3 = \begin{bmatrix} 1.4142 & 2.1213 & 2.8284 \\ 0 & ? & ? \\ 0 & 0 & 0.5774 \end{bmatrix}.$	
	a. Complete the missing values in the steps provided above.	
	b. Find the orthogonal matrix Q and the upper triangular matrix R such that $A = QR$.	
Q. 6	Given $x = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$, construct a Householder matrix H such that $Hx = \begin{bmatrix} * \\ 0 \\ 0 \end{bmatrix}$.	2 (CO 1,4)

:::END:::

A=