Amendments to the Claims:

Please amend claim 20 as follows.

1. (Previously Presented) A compound of formula (I):

$$R^3$$
 R^4
 R^5
 R^5
 R^1
 R^3
 R^4
 R^5
 R^5
 R^1
 R^2

wherein:

p is 0, 1, 2, 3 or 4;

each R^1 is the same or different and is independently selected from the group consisting of halo, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, Ay, Het, $-OR^7$, -OAy, $-OR^{10}Ay$, -OHet, $-OR^{10}Het$, $-C(O)R^9$, -C(O)Ay, -C(O)Het, $-CO_2R^9$, $-C(O)NR^7R^8$, $-C(O)NR^7Ay$, $-C(O)NHR^{10}Ay$, $-C(O)NHR^{10}Het$, $-C(S)NR^9R^{11}$, $-C(NH)NR^7R^8$, $-C(NH)NR^7Ay$, $-S(O)_nR^9$, $-S(O)_nAy$, $-S(O)_nHet$, $-S(O)_2NR^7R^6$, $-S(O)_2NR^7Ay$, $-NR^7Ay$, -NHHet, $-NHR^{10}Ay$, $-NHR^{10}Het$, $-R^{10}$ cycloalkyl, $-R^{10}Ay$, $-R^{10}Het$, $-R^{10}O-C(O)R^9$, $-R^{10}O-C(O)Ay$, $-R^{10}O-C(O)Het$, $-R^{10}O-S(O)_nR^9$, $-R^{10}OR^9$, $-R^{10}C(O)R^9$, $-R^{10}CO_2R^9$, $-R^{10}C(O)NR^9R^{11}$, $-R^{10}C(O)NR^9R^{11}$, $-R^{10}SO_nR^9$, $-R^{10}SO_2NR^9R^{11}$, $-R^{10}SO_2NR^9R^{11}$, $-R^{10}NR^7R^8$, $-R^{10}NR^7Ay$, $-R^{10}NHC(NH)NR^9R^{11}$, cyano, nitro and azido; or two adjacent R^1 groups together with the atoms to which they are bonded

form a C₅₋₆cycloalkyl or a 5 or 6-membered heterocyclic ring containing 1 or 2 heteroatoms; each R⁷ and R⁶ are the same or different and are independently selected from the group consisting of H, alkyl, alkenyl, cycloalkyl, cycloalkenyl,

 $-C(O)R^{\theta}, \ -CO_{2}R^{\theta}, \ -C(O)NR^{\theta}R^{11}, \ -C(S)NR^{\theta}R^{11}, \ -C(NH)NR^{\theta}R^{11}, \ -SO_{2}R^{10}, \ -C(NH)NR^{\theta}R^{11}, \ -SO_{2}R^{10}, \ -C(NH)NR^{\theta}R^{11}, \ -SO_{2}R^{10}, \ -C(NH)NR^{\theta}R^{11}, \ -SO_{2}R^{10}, \ -C(NH)NR^{\theta}R^{11}, \ -C(NH)NR^{\theta}R^{11}, \ -SO_{2}R^{10}, \ -C(NH)NR^{\theta}R^{11}, \ -C(N$

-SO₂NR⁹R¹¹, -R¹⁰cycloalkyl, -R¹⁰OR⁹, -R¹⁰C(O)R⁹, -R¹⁰CO₂R⁹,

 $-R^{10}C(O)NR^9R^{11}, -R^{10}C(S)NR^9R^{11}, -R^{10}C(NH)NR^9R^{11}, -R^{10}SO_2R^{10}, \\$

 $-R^{10}SO_{2}NR^{9}R^{11}, -R^{10}SO_{2}NHCOR^{9}, -R^{10}NR^{9}R^{11}, -R^{10}NHCOR^{9}, \\$

-R $^{10}NHSO_2R^{9}$ and -R $^{10}NHC(NH)NR^{9}R^{11};$

each R⁹ and R¹¹ are the same or different and are independently selected from the group consisting of H, alkyl, cycloalkyl, -R¹⁰cycloalkyl, -R¹⁰OH, -R¹⁰(OR¹⁰)_w where w is 1-10, and -R¹⁰NR¹⁰R¹⁰;

each R¹⁰ is the same or different and is independently selected from the group consisting of alkyl, alkenyl, alkynyl, cycloalkyl and cycloalkenyl; Ay is aryl;

Het is a 5- or 6-membered heterocyclic or heteroaryl group;

R² is selected from the group consisting of halo, alkyl, alkenyl, cycloalkyl, cycloalkenyl, Ay, Het, -OR⁷, -OAy, -OHet, -OR¹⁰Het, -S(O)_nR⁹, -S(O)_nAy, -S(O)_nNR⁷R⁸, -S(O)_nHet, -NR⁷R⁸, -NHHet, -NHR¹⁰Ay, -NHR¹⁰Het, -R¹⁰NR⁷R⁸ and -R¹⁰NR⁷Ay:

n is 0, 1 or 2;

Y is N;

R³ and R⁴ are the same or different and are each independently selected from the group consisting of H, halo, alkyl, alkenyl, cycloalkyl, Ay, Het, -OR⁷, -OAy, -C(O)R⁷, -C(O)Ay, -CO₂R⁷, -CO₂Ay, -SO₂NHR⁹, -NR⁷R⁸, -NR⁷Ay, -NHHet, -NHR¹⁰Het, -R¹⁰cycloalkyl, -R¹⁰OR⁷, -R¹⁰OAy, -R¹⁰NR⁷R⁸ and -R¹⁰NR⁷Ay,

R⁵ is the selected from the group consisting of H, halo, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, -OR⁷, -OAy, -OHet, -OR¹⁰Ay, -OR¹⁰Het, -C(O)R⁹, -C(O)Ay, -C(O)Het, -CO₂R⁹, -C(O)NR⁷R⁸, -C(O)NR⁷Ay, -C(O)NHR¹⁰Het, -CH(OR⁹)₂, -CH(OR⁹)-R¹⁰, -CH(OR⁹)-Ay, -C(S)NR⁹R¹¹, -C(NH)NR⁷R⁸, -C(NH)NR⁷Ay, -S(O)₂NR⁷R⁸, -S(O)₂NR⁷Ay, -NR⁷R⁸, -NR⁷Ay, -NHHet, -NHR¹⁰Ay, -NHR¹⁰Het, -R¹⁰cycloalkyl, -R¹⁰Ay, -R¹⁰Het, -R¹⁰OR⁹, -R¹⁰C(O)R⁹, -R¹⁰C(O)Ay, -R¹⁰C(O)Het, -R¹⁰CO₂R⁹, -R¹⁰C(O)NR⁹R¹¹, -R¹⁰C(O)NR⁷Ay, -R¹⁰C(O)NHR¹⁰Het, -R¹⁰CH(OR⁸)-R¹⁰; -R¹⁰CH(OR⁸)-Ay, -R¹⁰C(S)NR⁹R¹¹, -R¹⁰C(NH)NR⁹R¹¹, -R¹⁰SO₂NHCOR⁹, -R¹⁰NR⁷R⁸, -R¹⁰NR⁷Ay, -R¹⁰NHC(NH)NR⁹R¹¹, cyano, nitro and azido; or

wherein when Y is CH, R³ is not –NR⁷Ay; or a pharmaceutically acceptable salt thereof.

2. (Original) The compound according to claim 1 wherein each R^1 is the same or different and is independently selected from the group consisting of halo, alkyl, cycloalkyl, Ay, Het, $-OR^7$, $-C(O)R^8$, -C(O)Het, $-CO_2R^9$, $-C(O)NR^7R^8$, $-C(O)NR^7R^8$, $-NR^7R^8$, $-R^{10}C(O)NR^7R^8$, $-R^{10}CO^8$,

- 3. (Original) The compound according to claim 1 wherein each R¹ is the same or different and is independently selected from the group consisting of halo, Ay, Het, -NR⁷R⁸ and -NR⁷Ay.
- 4. (Previously Presented) The compound according to claim 1 wherein p is 0 or 1.
- 5. (Previously Presented) The compound according to claim 1 wherein R^2 is selected from the group consisting of halo, alkenyl, cycloalkyl, cycloalkenyl, Ay, Het, $-OR^7$, -OAy, -OHet, $-OR^{10}Het$, $-S(O)_0R^9$, $-NR^7R^8$, -NHHet, $-NHR^{10}Het$, $-R^{10}NR^7R^8$ and $-R^{10}NR^7Ay$.
- 6. (Previously Presented) The compound according to claim 1 wherein R² is -NR⁷R⁸.
- 7-8. (Canceled.)
- 9. (Previously Presented) The compound according to claim 1 wherein R³ and R⁴ are the same or different and are each independently selected from the group consisting of H, halo, alkyl, Ay, -OR⁷, -CO₂R⁷, -NR⁷R⁸, -R¹⁰OR⁷ and -R¹⁰NR⁷R⁸.
- 10. (Previously Presented) The compound according to claim 1 wherein R^3 and R^4 are both H.
- 11. (Previously Presented) The compound according to claim 1 wherein R^5 is selected from the group consisting of halo, alkyl, cycloalkyl, $-OR^7$, $-C(O)R^9$, -C(O)Ay, -C(O)Het, $-CH(OR^9)-R^{10}$, $-CH(OR^9)-Ay$, $-S(O)_nR^9$, $-S(O)_2NR^7R^8$, $-NR^7R^8$, $-NR^7Ay$, $-R^{10}$ cycloalkyl, $-R^{10}Ay$, $-R^{10}Het$, $-R^{10}OR^9$, $-R^{10}C(O)R^9$, $-R^{10}SO_2NR^9R^{11}$ and $-R^{10}NR^7R^8$.
- 12. (Previously Presented) The compound according to claim 1, wherein R⁵ is selected from the group consisting of alkyl, -C(O)Ay, -CH(OR⁹)-Ay, -R¹⁰cycloalkyl, -R¹⁰Ay, -R¹⁰OR⁹ and -R¹⁰NR⁷R⁸.

- 13. (Previously Presented) A compound selected from the group consisting of:
- 2-Isobutyl-3-[2-(methylthio)pyrimidin-4-yl]pyrazolo[1,5-a]pyridine;
- 2-Isobutyl-3-[2-(methylsulfinyl)pyrimidin-4-yl]pyrazolo[1,5-a]pyridine;
- N-Cyclopentyl-4-(2-isobutylpyrazolo[1,5-a]pyridin-3-yl)pyrimidin-2-amine;
- *N*-Cyclopentyl-4-[2-isobutyl-7-(methylthio)pyrazolo[1,5-a]pyridin-3-yl]pyrimidin-2-amine;
- N-Cyclopentyl-4-[2-isobutyl-7-(methylsulfinyl)pyrazolo[1,5-a]pyridin-3-yl]pyrimidin-2-amine;
- *N*-Cyclopentyl-3-[2-(cyclopentylamino)pyrimidin-4-yl]-2-isobutylpyrazolo[1,5-a]pyridin-7-amine;
- 2-(Diethoxymethyl)-3-[2-(methylthio)pyrimidin-4-yl]pyrazolo[1,5-a]pyridine;
- 3-[2-(Methylthio)pyrimidin-4-yl]pyrazolo[1,5-a]pyridine-2-carbaldehyde;
- {3-[2-(methylthio)pyrimidin-4-yl]pyrazolo[1,5-a]pyridin-2-yl}(phenyl)methanol;
- {3-[2-(Cyclopentylamino)-4-pyrimidinyl]pyrazolo[1,5-a]pyridin-2-yl}(phenyl)methanol;
- {3-[2-(Cyclopentylamino)-4-pyrimidinyl]pyrazolo[1,5-a]pyridin-2-yl}(phenyl)methanone;
- {7-(Cyclopentylamino)-3-[2-(cyclopentylamino)-4-pyrimidinyl]pyrazolo[1,5-a]pyridin-2-yl}(phenyl)methanone;
- 4-(2-Benzylpyrazolo[1,5-a]pyridin-3-yl)-N-cyclopentyl-2-pyrimidinamine;
- 4-(2-Benzyl-7-chloropyrazolo[1,5-a]pyridin-3-yl)-N-cyclopentyl-2-pyrimidinamine;
- *N*-{4-[2-Benzyl-7-(cyclopentylamino)pyrazolo[1,5-*a*]pyridin-3-yl]-2-pyrimidinyl}-*N*-cyclopentylamine;
- N-Cyclopentyl-4-[2-(methoxymethyl)pyrazolo[1,5-a]pyridin-3-yl]-2-pyrimidinamine;
- *N*-Cyclopentyl-4-[2-(methoxymethyl)-7-(methylsulfanyl)pyrazolo[1,5-*a*]pyridin-3-yl]-2-pyrimidinamine;
- *N*-Cyclopentyl-3-[2-(cyclopentylamino)-4-pyrimidinyl]-2-(methoxymethyl)pyrazolo[1,5-a]pyridin-7-amine;
- N-Cyclopentyl-3-[2-(cyclopentylamino)-4-pyrimidinyl]-2-[3-(1-pyrrolidinyl)propyl]pyrazolo[1,5-a]pyridin-7-amine;
- *N*-({3-[2-(Methylsulfanyl)-4-pyrimidinyl]pyrazolo[1,5-a]pyridin-2-yl}methyl)-2-propanamine;
- *N*-Cyclopentyl-4-{2-[(isopropylamino)methyl]pyrazolo[1,5-a]pyridin-3-yl}-2- pyrimidinamine;

- N-Cyclopentyl-3-[2-(cyclopentylamino)-4-pyrimidinyl]-2-[(isopropylamino)methyl]pyrazolo[1,5-a]pyridin-7-amine;
- 4-{7-Chloro-2-[3-(isopropylamino)propyl]pyrazolo[1,5-a]pyridin-3-yl}-*N*-cyclopentyl-2-pyrimidinamine;
- *N*-Cyclopentyl-3-[2-(cyclopentylamino)-4-pyrimidinyl]-2-[3-(isopropylamino)propyl]-pyrazolo[1,5-a]pyridin-7-amine;
- 4-{7-Chloro-2-[(2-methoxyethoxy)methyl]pyrazolo[1,5-a]pyridin-3-yl}-N-cyclopentyl-2-pyrimidinamine;
- 3-[2-(Cyclopentylamino)-4-pyrimidinyl]-2-[(2-methoxyethoxy)methyl]-N-(2-methoxyethyl)pyrazolo[1,5-a]pyridin-7-amine;
- N-Cyclopentyl-3-[2-(cyclopentylamino)-4-pyrimidinyl]-2-[(2-methoxyethoxy)-methyl]pyrazolo[1,5-a]pyridin-7-amine;
- N-Cyclopentyl-4-(2-isopropylpyrazolo[1,5-a]pyridin-3-yl)pyrimidin-2-amine;
- N-Cyclopentyl-3-[2-(cyclopentylamino)pyrimidin-4-yl]-2-isopropylpyrazolo[1,5-a]pyridin-7-amine;
- 2-Cyclopropyl-3-[2-(methylthio)pyrimidin-4-yl]pyrazolo[1,5-a]pyridine;
- N-Cyclopentyl-4-(2-cyclopropylpyrazolo[1,5-a]pyridin-3-yl)pyrimidin-2-amine; and
- *N*-Cyclopentyl-3-[2-(cyclopentylamino)pyrimidin-4-yl]-2-cyclopropylpyrazolo[1,5-a]pyridin-7-amine;
- or a pharmaceutically acceptable salt thereof.
- 14. (Previously Presented) A pharmaceutical composition comprising a compound according to claim 1.
- 15. (Original) The pharmaceutical composition according to claim 14 further comprising a pharmaceutically acceptable carrier or diluent.
- 16. (Previously Presented) The pharmaceutical composition according to claim 14, further comprising an antiviral agent selected from the group consisting of aciclovir and valaciclovir or a pharmaceutically acceptable salt thereof.
- 17. (Previously Presented) A method for the treatment of a herpes viral infection selected from herpes simplex virus 1 and herpes simplex virus 2 in an animal, said method comprising administering to the animal a therapeutically effective amount of a compound according to claim 1.

- 18. (Canceled.)
- 19. (Previously Presented) A method for the treatment of a condition or disease associated with a herpes viral infection selected from herpes simplex virus 1 and herpes simplex virus 2 in an animal, comprising administering to the animal a therapeutically effective amount of a compound according to claim 1.
- 20. (Currently Amended) A process for preparing a compound according to claim 1 wherein R² is selected from -NR⁷R⁸, Het, -NHR¹⁰Het and -NHHet and R³ and R⁴ are the same or different and are each independently H or alkyl, said process comprising the steps of:
- a) coupling a compound of formula (II):

$$R^3$$
 X
 X
 X
 X
 X
 X
 X

wherein X is chloro, bromo, iodo or triflate;

R² is selected from -NR⁷R⁵, Het, -NHR¹⁰Het and -NHHet and

R³ and R⁴ are the same or different and are each independently H or alkyl; to a terminal alkyne of formula (III):

to prepare a compound of formula (IV):

$$R^3$$
 R^4
 R^5
 R^5
 R^2

and

b) reacting an N-amino pyridinium salt of formula (V):

wherein Z- is a counterion;

with the compound of the formula (IV) to prepare a compound of formula (I).

21-28. (Canceled.)