Прецизионное измерение энергии в системе центра масс и её разброса на коллайдере $\mu\mu$ -трон

Автор: Байков А.А., гр. 15301 Научный руководитель: Дружинин В.П.

13 июня 2019 г.

План

- 1.) Коллайдер $\mu\mu$ -трон и эксперимент по наблюдению димюония.
- 2.) Постановка эксперимента.
- 3.) Расчёт сечения процесса $e^+e^ightarrow \mu^+\mu^-$ на пороге.
- 4.) Сканирование по энергии.
- 5.) Контроль энергии в системе центра масс.
- 5.) Измерение разброса по энергии.
- 6.) Заключение.

Коллайдер $\mu\mu$ -трон и эксперимент по наблюдению димюония

Параметры коллайдера: $E_{\rm beam} \approx 408 \, \text{MeV}$ $E_{cm} \approx 211 \text{ MeV}$ Периметр 23 м $\sigma_{E_{beam}}/E_{beam} \approx 7.8 \cdot 10^{-4}$ $\sigma_{E_{cm}} \approx 0.4 \text{ MeV}$ $\alpha \approx 75^{\circ}$ $\sigma_{\alpha} \approx 6.8 \cdot 10^{-4}$ Светимость $8 \cdot 10^{31} \ cm^{-2}c^{-1}$ $\gamma = 3.86$ $\beta = 0.966$ Длина пролёта димюония $\ell = \gamma \beta c \tau = 2 \text{ MM}$

Измеряется N_{1S} и ℓ_{1S} . $\tau = \ell/(\gamma \beta c)$, $\sigma_{\ell} \sim 2\%$, $\sigma_{\gamma\beta}\sim 10^{-3} \rightarrow \sigma_{ au} < 1\%$. E необходимо выставлять с точностью лучше $\frac{1}{10}\sigma_E$. $N_{1S} \propto \Gamma_{ee}/\sigma_F$, поэтому для измерения Γ_{ee} с точностью порядка 1% необходимо измерить σ_E с точностью лучше 1%.

Постановка эксперимента

- 1.) Сканирование порогового региона по энергии.
- 2.) Установка пороговой энергии.
- 3.) Набор статистики.

Расчёт сечения процесса $e^+e^ightarrow \mu^+\mu^-$ на пороге

$$\sigma_B(E) = \frac{2\pi\alpha\beta}{E^2} (1 - \frac{\beta^2}{3}) C(E).$$

C(E) - фактор Зоммерфельда-Гамова-Сахарова.

$$\begin{split} &C(E) = \frac{\eta}{1 - e^{-\eta}}, \quad \eta = \frac{\pi \alpha}{\beta}. \\ &\sigma_{\text{vis}} = \int_0^{x_{\text{max}}} dx \sigma_B (E\sqrt{1 - x}) W(E, x). \\ &x = 2E_\gamma/E, \quad x_{\text{max}} = 1 - 4m_e^2/E^2. \\ &\sigma_{\text{exp}} = \frac{1}{\sqrt{2\pi}\sigma_E} \int_{-\infty}^{\infty} dE \sigma_{\text{vis}}(E) \exp\left[-\frac{(E - E_0)^2}{2\sigma_E^2}\right]. \end{split}$$

$$\sigma_B(2m_\mu) = 65$$
 нб. $\sigma_{vis}(2m_\mu) = 44$ нб. $\sigma_{exp}(2m_\mu) = 66$ нб.

Сканирование по энергии

Сканирование проводится по трём точкам. Теоретическое сечение параметризуется сдвигом энергии от порога ΔE , энергетическим разбросом σ_E и эффективностью регистрации ϵ .

$$\sigma = \sigma_{exp}(E + \Delta E, \sigma_E)\epsilon. \tag{1}$$

После этого генерируется три значения *N* для проектных значений параметров:

$$N_i = L\sigma_{exp}(E_i; \sigma_E = 400 \text{ кэB})t, i = 1, 3.$$
 (2)

 $t=3600\,$ с. После этого проводится подгонка полученных значений теоретическим сечением. Точки по энергии затем варьируются так, чтобы ошибка подгонки была минимальной.

Ε	$2m_{\mu}-1.5\sigma_{E}$	$2m_{\mu} + \sigma_{E}$	$2m_{\mu}+2$ МэВ
$\overline{\sigma}$ (нб)	6.97	147.6	351.4
N	2007	42496	101195

Точность измерения E=5 кэB. Точность измерения $\sigma_E=4$ кэB.

Контроль энергии в системе центра масс

$$\Delta E = \Delta \sigma_{exp}(E) \left(rac{d\sigma}{dE}
ight)^{-1}$$
 $\Delta \sigma = rac{\sqrt{N}}{Lt} = \sqrt{rac{\sigma}{Lt}}$ $\Delta E = \sqrt{rac{\sigma}{Lt}} \left(rac{d\sigma}{dE}
ight)^{-1}$ Контроль E с точностью

60 кэВ/сутки.

Измерение разброса по энергии

σ_E контролируется с точностью ~ 3 кэB/час.

Заключение

Цель работы: разработать методику измерения энергии в системе центра масс и её разброса на коллайдере мюмютрон. Для этого необходимо сделать:

- $lacksymbol{\blacksquare}$ Расчёт сечения процесса $e^+e^ightarrow \mu^+\mu^-$ на пороге
- Расчёт зависимости производной сечения процесса по энергии от энергии
- Написание программы моделирования процесса с учётом многократного рассеяния и точности детектора

Результаты:

- Проведён расчёт сечения процесса $e^+e^- o \mu^+\mu^-$ и его производной в припороговой области энергии
- lacksquare Определены точки для сканирования: $2m_{\mu}-1.5\sigma_{E}$, $2m_{\mu}+\sigma_{E}$, $2m_{\mu}+2$ МэВ.
- Определена точность измерения энергии и энергетического разброса при сканировании, которая составила 5 кэВ и 4 кэВ соответственно.
- Оценена точность контроля энергии при часовом наборе данных, составляющая ≈ 3 кэВ
- \blacksquare Проведено Монте-Карло моделирование процесса $e^+e^- o \mu^+\mu^-$ вблизи порога