EM8BTEM - UPS Toulouse

Introduction à la Modélisation Moléculaire

(dynamique moléculaire, docking et criblage virtuel)

Georges Czaplicki, UPS / IPBS-CNRS cgeorge@ipbs.fr, tél.: 05 61 17 54 04

Dynamique moléculaire

$$ma = F$$

$$a = \frac{dv}{dt}$$

$$v = \frac{dr}{dt}$$

$$m\frac{dv}{dt} = F$$

$$m\frac{d^2r}{dt^2} = -\frac{dV}{dr}$$

$$dv = a \cdot dt$$

$$v = \int a \cdot dt \xrightarrow{a \approx const} at + v_0$$

$$dr = v \cdot dt$$

$$r = \int v \cdot dt = \int (at + v_0) dt \xrightarrow{a \approx const} \frac{1}{2}at^2 + v_0t + r_0$$

3e phase: Scoring

Prédiction d'énergie libre d'une liaison protéine-ligand :

- interactions polaires (liaisons hydrogènes, interactions ioniques)
- interactions apolaires (interactions lipophiliques et aromatiques)
- changements d'entropie (perte de la mobilité du ligand)
- effets de la désolvation (hydrophobicité)

Calcul de scores :

fonctions empiriques, basées sur les champs de force, ou potentiels de la force moyenne :

$$E = \sum_{i=1}^{N_{lig}} \sum_{j=1}^{N_{rec}} \left[\frac{A_{ij}}{r_{ij}^{12}} - \frac{B_{ij}}{r_{ij}^{6}} + \frac{q_i q_j}{\varepsilon r_{ij}} \right]$$

Comparaison de méthodes de Docking CAPRI: Critical Assessment of Prediction of Interactions

Résultats typiques :

Predictor	Software	Algorithm	T1	T2	T3	T4	T5	T6	T7
Abagyan	ICM	FF			+			+	+
Camacho	CHARMM	FF						+	+
Gardiner	GAPDOCK	GA		+					
Sternberg	FTDOCK	FFT						+	
Bates	Guided Docking	FF							+
Ten Eyck	DOT	FFT						+	
Vakser	GRAMM	FFT							
Olson	Harmony	?							
Weng	ZDOCK	FFT		+	+				+
Eisenstein	MolFit	FFT			+			+	+
Wolfson	BUDDA/PPD	GH							+
l wadate	TSCF	FF							
Ritchie	Hex	SPF			+			+	
Palma	BIGGER	GF						+	
Gray	?	MC					+	+	

Comparaison de méthodes de Docking

Conclusions:

- Il n'existe pas une seule technique supérieure aux autres

(les approches sont plus ou moins performantes, en fonction du système étudié et de la fonction de *scoring* choisie)

- Les meilleures programmes : Gold, Flexx, Dock, AutoDock

(pas nécessairement dans cet ordre)

