Neural Networks Basics

Jen-Ing Hwang

Department of Computer Science and
Information Engineering
Fu Jen Catholic University

Outline

- 1. Brief History of Neural Networks
- 2. Biological Inspiration
- 3. Artificial Neuron
- 4. Illustrative Example: Neural Representation
- 5. Activation Functions
- 6. Network Architectures
 - A Layer of Neurons
 - Multiple Layers of Neurons

Brief History of Neural Networks (1/4)

4

Brief History of Neural Networks (2/4)

- 1943: McCulloch & Pitts
 - Show that neurons can be combined to construct a Turing machine
- 1958: Rosenblatt
 - Shows that perceptron will converge if what they are trying to learn can be represented
- 1950s: Rosenblatt, Widrow & Hoff
 - First practical networks and learning rules
 - The Widrow-Hoff learning rule is still in use today
- 1969: Minsky & Papert
 - Show the limitations of perceptron, killing research in neural networks for a decade

Brief History of Neural Networks (3/4)

- 1980s: Rumelhart, Hinton & Williams
 - The backpropagation algorithm revitalizes the field
- 1998: Yan LeCun
 - Convolutional Neural Networks with Backpropagation for document analysis
- 2006: The Hinton lab solves the training problem for Deep Neural Networks
- 2012 present:
 - A variety of deep learning algorithms are increasingly emerging

Brief History of Neural Networks (4/4)

Biological Inspiration (1/3)

- Biological motivation
 - Biological learning system (brain)
 - Complex network of neurons

Biological Inspiration (2/3)

- A neuron consists of a cell body (細胞體)(中心體), dendrites (樹突)(輸入) and an axon (軸突)(輸出).
- Neurons are massively interconnected, where an interconnection is between the axon of one neuron and a dendrite of another neuron.
- This connection is referred to as a synapse (突觸)->用來決定每個輸入值的重要程度

Biological Inspiration (3/3)

Neural Networks: A Simple Explanation

https://youtu.be/gcK_5x2KsLA

Artificial Neuron (1/2)

- An artificial neuron is a model of a biological neuron.
 - Based on model of brain
 - Network of simple units
 - Real-valued inputs & outputs

Artificial Neuron (2/2)

Bias and Weight

- The bias b is much like a weight w, except that it has a constant input of 1. It can be omitted for some situation.
- The bias b (= w_0) and weights w_i , I = 1, 2, ..., M, are adjustable 可調整的 scalar parameters of the neuron. They can be adjusted by some learning algorithm so that the neuron input/output relationship meets some particular goal.

Biological Neuron Vs. Artificial Neuron

Biological Neuron

Artificial Neuron

Illustrative Example for Linear Classification

- Dataset D
 - Students take a class on a Pass/Fail basis

Student	x_1 (Midterm)	X_2 (Final)	y (Pass/Fail)
S			
A	80	60	+1 (Pass)
В	50	50	–1 (Fail)
C	90	80	+1 (Pass)
D	30	60	–1 (Fail)
E	40	90	+1 (Pass)
F	90	50	+1 (Pass)

Illustrative Example: Neural Representation

Students' Performance Dataset

Students	x ₁ (Midterm)	x ₂ (Final)	y (Pass/Fail)
Α	80	60	+1
В	50	50	-1
С	90	80	+1
D	30	60	-1
E	40	90	+1
F	90	50	+1

$$f(x_{1}, x_{2}) = sign ((w_{1}x_{1} + w_{2}x_{2}) - threshold)$$

= $sign (w_{0}x_{0} + w_{1}x_{1} + w_{2}x_{2})$
- threshold(門檻值) 1

Activation Functions (1/3) (= transfer function)

- Activation function f(n):
 - Define the output of a node when given the inputs of the node
 - The output of a neuron can either inhibit (抑制、不觸發) or excite (激發、觸發) the net input n

Ex: 及格 -> 觸發 不及格 -> 不觸發

Activation Functions (2/3)

函式考試必考!!

一個東西有很多名稱,表示它很重要,表示有個領域的人來做研究, 並用不同的名稱來稱呼它

The activation function f may be a linear or nonlinear function of n

Sign function:

$$f(n) = sign(n)$$

Linear function:

$$f(n) = n$$

0.4 *X*1 + 0.6 *X*2 = 0 Ex: 老師完全不調分, 也沒有門檻值

Logistic sigmoid function:

$$f(n) = \sigma(n) = \frac{1}{1 + e^{-n}}$$

$$n = 0 -> \sigma(n) = \frac{1}{2}$$

 $n = \infty -> \sigma(n) = 1$

Activation Functions (3/3)

The activation function f may be a linear or nonlinear function of n

Hyperbolic Tangent Tanh

function (雙曲函數):

$$f(n) = \frac{e^n - e^{-n}}{e^n + e^{-n}}$$

是Logistic sigmoid function 的變形

Ex: 把同學的分數壓縮在1和-1之間

Rectified Linear Unit (ReLU)

function (線性整流函數):

$$f(n) = \max(0, n)$$

-> 變形的線性函數

訊號很強 就希望它的輸出也很強如果訊號很弱 甚至是負的 就當作它們

不重要

Leaky ReLU function:

$$f(n) = \max(0.01n, n)$$

實務上,負的有跟沒有差不多,所以比較

prefer Rectified Linear Unit ReLU

Network Architectures (1/3)

A Layer of Neurons

Network Architectures (2/3)

Multiple Layers of Neurons

Network Architectures (3/3)

- Multiple Layers of Neurons
 - The layer that receives inputs is called the input layer.
 - The outputs of the network are generated from the output layer.
 - Any layer between the input and the output layers is called a hidden layer.

-> 如果問題很簡單 不需要隱藏層 輸入層和輸出層永遠只有一個 但是隱藏層可以有很多個 Ex: 如果有兩個隱藏層 一個輸出層 我們稱它為三層的神經元 因為真正有神經元的是隱藏層一隱藏層二和輸出層 (但也有人說它 是四層 ex:有人說 tree 的 root 是在 level 1也有人說在level 0)

Representational Power of Feedforward (前饋) Networks

Boolean functions

- Every boolean function can be represented exactly by some network with two layers (*i.e.*, one single hidden layer) of units
- But might require exponential (in number of inputs) hidden units

Continuous functions

 Every bounded continuous function can be approximated with arbitrarily small error by a network with two layers

Arbitrary functions

 Any function can be approximated to arbitrary accuracy by a network with three layers (i.e., two hidden layers)

Note: Although a limited depth of feedforward networks can provide a very expressive hypothesis space for Backpropagation, the number of neurons in a hidden layer can be exponential in the input dimension.

Summary

- An Artificial Neural Network (ANN) is a computational model inspired by biological network systems.
- A biological neuron:
 - Dendrites, a cell body, and an axon.
 - Synapse is between the axon of one neuron with the dendrite of another neuron.
- An artificial neuron:
 - A set of input nodes, a set of weights, an activation function that relates the total synaptic input to the output (activation) of the neuron.
- Activation function
 - Define the output of a neuron
- The essential elements of an artificial network are an input layer, an output layer, and may contain hidden layers.

References

- [1] Networks are like onions: Practical Deep Learning with TensorFlow, Barbara Fusinska, London Tensorflow Meetup, Jun 21, 2017.
- [2] Neural Network Design (2nd Edition), Martin T Hagan, Howard B Demuth, Mark H Beale, and Orlando De Jesús, Martin Hagan, 2014.
- [3] Pattern Recognition and Machine Learning, Christopher Bishop, Springer-Verlag New York, 2006.
- [4] Machine Learning, Tom M. Mitchell, McGraw-Hill, 1997.