• •

Seegene M Detection with attention module

20210325 강현정

Additional Experiments

- 1. Which level attention module shows best result?
 - According to previous result, model showed it is good at catching low-level features
 - Considering that, attention module on low-level would be more accurate than on high-level
- 2. Still deep layers problematic in our model?
 - Attention module adopted to avoid missing information during convolution operation
 - It would be solved to some extent
 - 3. Still ResNeXt effective in our model?
 - ResNeXt is good for learning various feature expressions
 - It still would be effective in our model

Additional Experiments

• • •

1. Which level attention module shows best result?

- According to previous result, model showed it is good at catching low-level features
- Considering that, attention module on low-level would be more accurate than on high-level
- 2. Still deep layers problematic in our model?
 - Attention module adopted to avoid missing information during convolution operation
 - It would be solved to some extent
 - 3. Still ResNeXt effective in our model?
 - ResNeXt is good for learning various feature expressions
 - It still would be effective in our model

Attention level Experiment

Attention level Experiment

• • •

Base Model: Faster R-CNN + FPN + ResNet101

<Model Description>

frcnn_resnet_cbam : base model + cbam (level 1-4)

frcnn_resnet_cbam_low: base model + cbam (level 1-2)

frcnn_resnet_cbam_high: base model + cbam (level 3-4)

If cbam module does not applied, original ResNet bottleneck block was used.

Model	Confidence Score	Accuracy	Precision
frcnn_resnet_cbam	0.5	80.37%	23.85%
frcnn_resnet_cbam_high	0.5	79.99%	23.19%
frcnn_resnet_cbam_low	0.5	80.18%	24.43%

<u>배율에 따른 차이가 존재</u>

Ground Truth

cbam

cbam_low

cbam_high

<u>배율에 따른 차이가 존재</u>

Ground Truth

cbam

cbam_low

cbam_high

Attention level Experiment

- 1. General Object Detection
- Attention on low-level features is more effective than high-level features
- Contrary to assumption, all-level attention model showed lowest accuracy but not on TPR
- Still could avoid over-prediction which is a main problem in frcnn_anchor model (model w/o attention)
- 2. Small Object Detection
- Contrary to assumption, cbam_low showed poor accuracy than all-level attention model
- According to comparison, attention on high-level features is more helpful for SOD (Small object detection)
- Considering zoom-level Rol generation

Additional Experiments

• • •

- 1. Which level attention module shows best result?
 - According to previous result, model showed it is good at catching low-level features
 - Considering that, attention module on low-level would be more accurate than on high-level

2. Still deep layers problematic in our model?

- Attention module adopted to avoid missing information during convolution operation
- It would be solved to some extent
- 3. Still ResNeXt effective in our model?
 - ResNeXt is good for learning various feature expressions
 - It still would be effective in our model

Deep Layer with Attention Module Experiment

• • •

Base Model: Faster R-CNN + FPN

<Model Description>

frcnn_resnet_cbam : base model + resnet101 +cbam (level 1-4)

frcnn_resnet_cbam_low: base model + resnet101 +cbam (level 1-2)

frcnn_resnet152_cbam : base model + resnet152 + cbam (level 1-4)

Model	Confidence Score	Accuracy	TPR
frcnn_resnet_cbam	0.5	80.37%	23.85%
frcnn_resnet_cbam_low	0.5	80.18%	24.43%
frcnn_resnet152_cbam	0.5	81.12%	23.58%

<u>배율에 따른 차이가 존재</u>

Ground Truth

cbam

cbam_low

cbam_resnet152

<u>배율에 따른 차이가 존재</u>

Ground Truth

cbam

cbam_low

cbam_resnet152

Deep Layer with Attention Module Experiment

- 1. General Object Detection
- As with assumption, deep layer problem showed in non-attention model is solved
- Attention module could extract advantages of deep backbone model
- 2. Small Object Detection
- In the same manner, deep layer can boost the accuracy of small objects

Additional Experiments

- 1. Which level attention module shows best result?
 - According to previous result, model showed it is good at catching low-level features
 - Considering that, attention module on low-level would be more accurate than on high-level
- 2. Still deep layers problematic in our model?
 - Attention module adopted to avoid missing information during convolution operation
 - It would be solved to some extent
 - 3. Still ResNeXt effective in our model?
 - ResNeXt is good for learning various feature expressions
 - It still would be effective in our model

ResNeXt with Attention Module Experiment

• • •

Base Model: Faster R-CNN + FPN

<Model Description>

frcnn_resnet_cbam : base model + resnet101 +cbam (level 1-4)

frcnn_resnet_cbam_low: base model + resnext50 + cbam (level 1-4)

256-d In	256-d in				
	—		1	\rightarrow	ì
256, 1x1, 64	256, 1x1, 4	256, 1x1, 4	total 32	256, 1x1, 4	
—	-	+	paths	+	1
64, 3x3, 64	4, 3x3, 4	4, 3x3, 4	••••	4, 3x3, 4	
	-	+	1	+	i /
64, 1x1, 256	4, 1x1, 256	4, 1x1, 256		4, 1x1, 256	
+ 256-d out		++			
		(+) (66-d out		

Model	Confidence Score	Accuracy	TPR
frcnn_resnet_cbam	0.5	80.37%	23.85%
frcnn_resnet_cbam_low	0.5	80.18%	24.43%
frcnn_resnet152_cbam	0.5	81.12%	23.58%
frcnn_resnext_cbam	0.5	80.48%	22.03%

ResNeXt with Attention Module Experiment

• • •

CBAM_resnet

ResNeSt

Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Zhang, Z., Lin, H., ... & Smola, A. (2020). Resnest: Split-attention networks. arXiv preprint arXiv:2004.08955.

<u>배율에 따른 차이가 존재</u>

Ground Truth

cbam

cbam_low

cbam_resnext101

<u>배율에 따른 차이가 존재</u>

Ground Truth

cbam

cbam_low

cbam_resnext101

ResNeXt with Attention Module Experiment

- 1. General Object Detection
- ResNeXt have advantage on learning multiple expressions
- Attention model could use advantage of ResNeXt model but not that much contrary to non-attention model
- Bounding box regression loss greater than ResNet model
- 2. Small Object Detection
- Too bad. It is worse than all-attention ResNet model
- Accuracy is similar to low-attention ResNet model
- Have to find out that problem comes from using ResNeXt model or using low-layer model

Current Best Model

What to do?

Cascade Partial Decoder

• • •

Segment the objects that the most salient!

Find the most salient objects (hamster!!) and segment those objects

• •

Thank you :-)