MATH-1564-K1,K2,K3 –Linear Algebra with Abstract Vector Spaces Homework 12

1. Compute the determinants of the following matrices:

$$\begin{pmatrix}
2 & 6 & 16 \\
-3 & -6 & 18 \\
5 & 12 & 35
\end{pmatrix}, \quad
\begin{pmatrix}
1 & 2 & 3 \\
-1 & 5 & 2 \\
3 & 2 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
4 & 0 & 1 \\
-2 & 2 & -1 \\
0 & 4 & -3
\end{pmatrix}, \quad
\begin{pmatrix}
4 & -4 & 2 & 1 \\
1 & 2 & 0 & 3 \\
2 & 0 & 3 & 4 \\
0 & -1 & 2 & 1
\end{pmatrix}$$

2. i. Let $a, b, c \in \mathbb{R}$. Prove that

$$\left| \begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{pmatrix} \right| = (c-a)(c-b)(b-a)$$

ii. Find the values of a for which the following set is a basis for \mathbb{R}^3 :

$$\left\{ \begin{pmatrix} a-1\\ -3\\ -6 \end{pmatrix}, \begin{pmatrix} 3\\ a+5\\ 6 \end{pmatrix}, \begin{pmatrix} -3\\ -3\\ a-4 \end{pmatrix} \right\}$$

iii. Assume that,

$$\left| \left(\begin{array}{ccc} a & x & l \\ b & y & m \\ c & z & n \end{array} \right) \right| = 2$$

Find:

$$\left| \begin{pmatrix} 2a+3x & 2b+3y & 2c+3z \\ l+x & m+y & n+z \\ 7l & 7m & 7n \end{pmatrix} \right|$$

3. Let $A, B \in M_n(\mathbb{R})$ and $\lambda \in \mathbb{R}$. Prove or disprove the following claims:

i.
$$|A + B| = |A| + |B|$$

ii.
$$|\lambda A| = \lambda |A|$$

iii.
$$|\lambda A| = \lambda^n |A|$$

iv. If A is anti-symmetric (that is, $A^t = -A$) and n is odd then A is not invertible.

v. If A is anti-symmetric (that is, $A^t = -A$) and n is even then A is not invertible.

vi. If
$$AB = 0$$
 then $|A^2| + |B^2| = 0$.

vii. If |A + B| = |A| then B is the zero matrix.

4. i. Compute the determinant of the following $n \times n$ matrix:

$$\begin{pmatrix} 4 & 1 & 1 & \dots & 1 \\ 1 & 4 & 1 & \dots & 1 \\ 1 & 1 & 4 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 4 \end{pmatrix}$$

ii. For the matrix,

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 & 1 \\ 1 & 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

Prove that $|A| = 1 + (-1)^{(n+1)}$. (Note the 1 on the left lowest corner).

6. Consider the following matrices.

$$A = \begin{pmatrix} 8 & 3 & -3 \\ -6 & -1 & 3 \\ 12 & 6 & -4 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix} \qquad c = \begin{pmatrix} 4 & 0 & 3 \\ 0 & 5 & 0 \\ 3 & 0 & -4 \end{pmatrix}$$

$$E = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{pmatrix} \qquad F = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \qquad G = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 5 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

For each of these matrices solve the following:

- i. Find all of the eigenvalues of the matrix, determine the geometric multiplicity and the algebraic multiplicity of each eigenvalue.
- ii. Determine if the matrix is diagonalizable. If it is then find a diagonal matrix D and an invertible matrix P so that the matrix is equal to $P^{-1}DP$.
- 7. Consider the matrix E from Q1
 - i. Find the eigenvalues of E^2 . Is E^2 diagonalizable?
 - ii. Find the eigenvalues of E^{10} . Is E^{10} diagonalizable?
 - ii. Find the eigenvalues of $E^3 5E^2 + 2E + 3I$. Is $E^3 5E^2 + 2E + 3I$ diagonalizable?
 - iii. Is E invertible? If so, find the eigenvalues of E^{-1} . Is E^{-1} diagonalizable?
 - iv. Compute E^5 .
- 8. In each of the following you are given a linear transformation. Determine whether it is diagonalizable.

i. $T: M_2(\mathbb{R}) \mapsto M_2(R)$ given by

$$TA = \left(\begin{array}{cc} 1 & 2 \\ 2 & 4 \end{array}\right) A$$

- ii. $T: \mathbb{R}_2[x] \mapsto \mathbb{R}_2[x]$ given by Tp(x) = x(p(x+1) p(x))
- iii. Let V be a vector space and $B = (v_1, v_2, v_3)$ a basis for V. Here we consider the linear transformation $T: V \mapsto V$ which satisfies $Tv_1 = 5v_1$, $Tv_2 = v_2 + 2v_3$ and $Tv_3 = 2v_2 + v_3$.
- 9. Prove or disprove the following claims.
 - a. If $A \in M_3(\mathbb{R})$ has rows equal to $v \ 2v \ 3v$ for some $v \in \mathbb{R}^3$ and A has a nonzero eigenvalue then A is diagonalizable.
 - b. If $A \in M_4(\mathbb{R})$ has characteristic polynomial $q_A(x) = x^2(x+5)(x+6)$ and

$$\begin{pmatrix} 0 \\ -1 \\ 2 \\ 4 \end{pmatrix}, \begin{pmatrix} 7 \\ 5 \\ 3 \\ 4 \end{pmatrix} \in null(A)$$

then A is diagonalizable.

- c. Let $A \in M_n(\mathbb{R})$. Then 0 is an eigenvalue of A iff |A| = 0.
- d. Let $A \in M_n(\mathbb{R})$. If 0 is an eigenvalue of A then its geometric multiplicity is equal to n rankA.
- e. There exists $A \in M_5(\mathbb{R})$ which is diagonalizable and satisfies rankA = 1 and trA = 0.
- f. If $A \in M_n(\mathbb{R})$ is diagonalizable and 2 is the only eigenvalue of A then A = 2I.
- g. If $A, B \in M_n(\mathbb{R})$ have the same eigenvalues and A is diagonalizable then so is B.
- h. Let $A \in M_n(\mathbb{R})$ and let $q_A(x) = a_0 + a_1x + a_2x^2 + ... + a_{n-1}x^{n-1} + x^n$ be the characteristic polynomial of A. Then A is invertible iff $a_0 \neq 0$.
- i. If $A, B \in M_n(\mathbb{R})$ are similar then they have the same characteristic polynomials.
- j. If $A, B, C \in M_n(\mathbb{R})$ are such that A and B are similar, and such that A and C are similar, then B and C are similar.
- k. If $A \in M_n(\mathbb{R})$ and $rankA \leq n-1$ then A is similar to a matrix who's left most column is a zero column.
- l. If $A \in M_n(\mathbb{R})$ is diagonalizable and $B \in M_n(\mathbb{R})$ is similar to A then B is also diagonalizable.
- m. If $A \in M_3(\mathbb{R})$ satisfies: rank(A-I) = 2, |A+I| = 0 and there exists v such that Av = 3v then A is diagonalizable.

- n. If $A \in M_n(\mathbb{R})$ has eigenvalue λ and corresponding eigenvector v then for every positive integer k the matrix A^k has eigenvalue λ^k and corresponding eigenvector v. What about negative integers?
- o. If $A \in M_n(\mathbb{R})$ is diagonalizable then A^2 is diagonalizable.
- 10. Let V be a vector space of dimension 5. Does there exist a transformation $T:V\mapsto V$ such that dimImT=3 and:
 - i. T has 5 distinct eigenvalues?
 - ii. T has 4 distinct eigenvalues?
 - iii. T has 4 distinct eigenvalues and T is not diagonalizable?