VECTEURS DU PLAN

I - Notion de vecteurs

A) Translations et vecteurs

Définition: Translation

Soient M et M' deux points du plan.

Pour tout point N du plan, on construit l'unique point N' tel que MM'N'N soit un parallélogramme (éventuellement aplati). On dit alors que le point N' est l'image du point N par la translation qui transforme M en M'. Cette translation est aussi appelée **translation de vecteur** $\overline{MM'}$.

Exemples

• On observe une première translation de vecteur $\overrightarrow{MM'}$ en dessous. On note $\overrightarrow{MM'}$ à l'aide d'une flèche qui part de M et va en M'.

• Dans le cas particulier où M, M' et N sont alignés, nous avons la configuration suivante, où la parallélogramme est plat.

Remarque

Le vecteur $\overrightarrow{MM'}$ matérialise le **déplacement rectiligne** de M vers M' caractérisé par une **direction**, celle de (MM'), un **sens**, celui de M vers M', et sa **norme** $||\overrightarrow{u}||$, la longueur MM'.

B) Égalité de deux vecteurs

Définition

Lorsque la translation qui transforme M en M' transforme aussi N en N', on dit que les vecteurs $\overrightarrow{MM'}$ et $\overrightarrow{NN'}$ sont égaux et on le note $\overrightarrow{MM'} = \overrightarrow{NN'}$.

Remarque

Si $\overrightarrow{AB} = \overrightarrow{CD}$ ou $\overrightarrow{AB} = -\overrightarrow{CD}$ alors AB = CD.

Propriété

 $\overrightarrow{MM'} = \overrightarrow{NN'}$ si, et seulement si, le quadrilatère MM'N'N est un parallélogramme (éventuellement aplati).

Démonstration. C'est immédiat par définition d'un vecteur et propriétés d'un parallélogramme.

Exemple

 \overrightarrow{AB} et \overrightarrow{CD} sont égaux alors que \overrightarrow{AB} et \overrightarrow{CE} ne le sont pas.

Remarque

On considère la situation suivante.

Il y a une infinité de vecteurs égaux à \overrightarrow{AB} , comme, entre autres, \overrightarrow{CD} ou \overrightarrow{EF} . On peut le noter \overrightarrow{u} et on dit que \overrightarrow{AB} , \overrightarrow{CD} et \overrightarrow{EF} sont des **représentants** du vecteur \overrightarrow{u} .

Définition: Vecteur nul

La translation qui transforme le point M en lui-même est la translation de vecteur \overrightarrow{MM} . Le vecteur \overrightarrow{MM} est appelé **vecteur nul** et est noté $\overrightarrow{0}$. Ainsi, $\overrightarrow{MM} = \overrightarrow{0}$.

C) Somme de vecteurs

Définition: Vecteur somme

La **somme** de deux vecteurs \overrightarrow{u} et \overrightarrow{v} est le vecteur associé à la translation qui résulte de l'enchaînement des translations de vecteur \overrightarrow{u} puis de vecteur \overrightarrow{v} . On note ce vecteur $\overrightarrow{u} + \overrightarrow{v}$.

Exemple

Voici une illustration de la somme de deux vecteurs.

Théorème : Relation de Chasles

Pour tous points A, B et C, on a $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

Démonstration. Découle de la définition de la somme de deux vecteurs.

Définition : Opposé

Soit \overrightarrow{AB} un vecteur. Alors le vecteur \overrightarrow{BA} est appelé **opposé** du vecteur \overrightarrow{AB} et on le note aussi $-\overrightarrow{AB}$.

Exemples

• On visualise l'opposé de \overrightarrow{AB} .

- On peut aussi représenter l'opposé d'un vecteur \overrightarrow{u} .

Propriété

Soit \overrightarrow{AB} un vecteur. Alors $\overrightarrow{AB} - \overrightarrow{AB} = \overrightarrow{0}$.

 \overrightarrow{D} émonstration. $\overrightarrow{AB} - \overrightarrow{AB} = \overrightarrow{AB} + \overrightarrow{BA}$ Ainsi, par la relation de Chasles, $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0}$.

D) Produit par un réel

Définition

Soit \overrightarrow{u} un vecteur non-nul et $k \in \mathbb{R}^*$. Le vecteur $k\overrightarrow{u}$ est le vecteur qui a :

- la même direction que \vec{u}
- le même sens que \vec{u} si k > 0, le sens contraire si k < 0
- pour norme $k \|\vec{u}\| \text{ si } k > 0, -k \|\vec{u}\| \text{ si } k < 0$

Exemples

• $||-2\vec{u}|| = 2||\vec{u}||$

 $\bullet \ \left\| \frac{3}{4} \overrightarrow{u} \right\| = \frac{3}{4} \| \overrightarrow{u} \|$

Propriétés

Soient \vec{u} , \vec{v} deux vecteurs et k, k' des réels.

- $k(\overrightarrow{u} + \overrightarrow{v}) = k\overrightarrow{u} + k\overrightarrow{v}$
- $(k + k')\vec{u} = k\vec{u} + k'\vec{u}$
- $k\vec{u} = \vec{0}$ si, et seulement si, k = 0 ou $\vec{u} = \vec{0}$

II - Vecteurs et coordonnées

A) Coordonnées d'un vecteurs

Définitions : Repère et base orthonormée

Soient O un point et deux vecteurs \vec{i} et \vec{j} dont les directions sont perpendiculaires et dont les normes sont égales à 1.

On dit que (\vec{i}, \vec{j}) est une base orthonormée du plan et que $(O; \vec{i}, \vec{j})$ est un repère orthonormé du plan.

Propriété: Décomposition dans une base orthonormée

Pour tout vecteur \overrightarrow{u} , il existe x et y deux réels, uniques, tels que $\overrightarrow{u} = x\overrightarrow{\iota} + y\overrightarrow{\jmath}$.

 $D\'{e}monstration$. Soit \vec{u} un vecteur. Il existe un unique point M tel que $\overrightarrow{OM} = \vec{u}$. Les coordonnées (x;y) de M dans le repère orthonormé $(O;\vec{\imath},\vec{\jmath})$ sont uniques et $\overrightarrow{OM} = x\vec{\imath} + y\vec{\jmath}$.

Remarque

On donne souvent les **coordonnées** de \vec{u} dans la base orthonormée (\vec{t}, \vec{j}) en écrivant $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$.

Exemple

Regardons $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$.

Exercice

On se place dans un repère orthonormé $(O, \overrightarrow{l}, \overrightarrow{j})$.

- 1) Représenter les vecteurs $\vec{u} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -3 \\ -1 \end{pmatrix}$.
- 2) Soit le point A(1;1). Placer B tel que $\overrightarrow{AB}\begin{pmatrix} 2\\-1 \end{pmatrix}$.

Remarque

Deux vecteurs sont égaux si, et seulement si, leurs coordonnées dans une même base orthonormée sont égales.

 $\mathbf{5}$

B) Opérations sur les vecteurs

Propriété : Somme

Soient $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs dans le repère $(O; \overrightarrow{\iota}, \overrightarrow{J})$.

Alors, $\overrightarrow{u} + \overrightarrow{v}$ a pour coordonnées $\begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$.

Démonstration. On décompose \vec{u} et \vec{v} dans la base $(\vec{\iota}, \vec{j})$.

$$\vec{u} = x\vec{\imath} + y\vec{\jmath}$$

et

$$\overrightarrow{v} = x'\overrightarrow{i} + y'\overrightarrow{j}$$

Ainsi,
$$\overrightarrow{u} + \overrightarrow{v} = x\overrightarrow{\iota} + y\overrightarrow{\jmath} + x'\overrightarrow{\iota} + y'\overrightarrow{\jmath} = (x + x')\overrightarrow{\iota} + (y + y')\overrightarrow{\jmath}$$
.

Propriété : Produit par un réel

Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ un vecteur dans le repère $(O; \vec{\imath}, \vec{\jmath})$ et k un réel.

Alors, $k\vec{u}$ a pour coordonnées $\begin{pmatrix} kx \\ ky \end{pmatrix}$.

Démonstration. Comme pour la démonstration précédente, $\overrightarrow{u} = x\overrightarrow{\imath} + y\overrightarrow{\jmath}$ donc $k\overrightarrow{u} = kx\overrightarrow{\imath} + ky\overrightarrow{\jmath}$.

C) Conséquences

Théorème

Soient $A(x_A; y_B)$ et $B(x_B; y_B)$ deux points dans un repère orthonormé $(O, \overrightarrow{\iota}, \overrightarrow{\jmath})$ du plan.

Le vecteur \overrightarrow{AB} a pour coordonnées $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$ dans la base orthonormée $(\overrightarrow{t}, \overrightarrow{f})$.

 $D\acute{e}monstration$. Remarquons d'abord que O a pour coordonnées (0;0) dans le repère $(O, \vec{1}, \vec{j})$. Ensuite, regardons \overrightarrow{OA} et \overrightarrow{OB} . Dans la base orthonormée $(\vec{1}, \vec{j})$, \overrightarrow{OA} se décompose en

$$\overrightarrow{OA} = x_A \overrightarrow{i} + y_A \overrightarrow{j}$$

et de même,

$$\overrightarrow{OB} = x_B \overrightarrow{\imath} + y_B \overrightarrow{\jmath}$$
.

Ainsi, nous avons $\overrightarrow{OA} \begin{pmatrix} x_A \\ y_A \end{pmatrix}$ et $\overrightarrow{OB} \begin{pmatrix} x_B \\ y_B \end{pmatrix}$.

Donc, par la relation de Chasles, $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{OB} - \overrightarrow{OA}$.

Finalement, le calcul des coordonnées de \overrightarrow{AB} se fait grâce aux propriétés sur les coordonnées vues précédemment.

$$\overrightarrow{AB}$$
 a pour coordonnées $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$.

Exemples

• On visualise le résultat précédent sur le repère suivant :

• Soient A(1;4) et B(8;-1). Alors \overrightarrow{AB} a pour coordonnées $\begin{pmatrix} 8-1 \\ (-1)-4 \end{pmatrix} = \begin{pmatrix} 7 \\ -5 \end{pmatrix}$.

Théorème : Norme d'un vecteur

Soit $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$. Alors, on a :

$$||\overrightarrow{u}|| = \sqrt{x^2 + y^2}$$

 $D\acute{e}monstration$. On appelle A le point du plan tel que $\overrightarrow{u} = \overrightarrow{OA}$ et B le point tel que $\overrightarrow{x} \overrightarrow{i} = \overrightarrow{OB}$. Le triangle OBA ainsi formé est un triangle en B tel que $OA = ||\overrightarrow{u}||$, OB = x et BA = y.

Par le théorème de Pythagore, nous avons :

$$\|\overrightarrow{u}\|^2 = x^2 + y^2$$

et donc,

$$\|\overrightarrow{u}\| = \sqrt{x^2 + y^2}$$

 $\operatorname{car} \| \overrightarrow{u} \| \ge 0.$

Exemple

Si $\overrightarrow{AB}\begin{pmatrix} 7\\-5 \end{pmatrix}$, alors la norme de \overrightarrow{AB} est égale à $\sqrt{7^2+(-5)^2}=\sqrt{74}$.

Corollaire: Distance entre deux points

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points du plan, dans un repère orthonormé $(O, \overrightarrow{\iota}, \overrightarrow{\jmath})$. Alors la distance AB est égale à $\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$.

 $D\'{e}monstration. \text{ Le vecteur } \overrightarrow{AB} \text{ a pour coordonn\'{e}es } \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix} \text{ dans la base } (\overrightarrow{t}, \overrightarrow{f}).$

On peut donc utiliser le théorème précédent pour obtenir $\overrightarrow{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$.

Exemple

Soient A(10; 2) et B(-2; 4).

$$AB = \sqrt{((-2) - 10)^2 + (4 - 2)^2} = \sqrt{(-12)^2 + 2^2} = \sqrt{148}$$

III - Colinéarité et alignement

A) Colinéarité

Définition

Vecteurs colinéaires Soient \vec{u} et \vec{v} deux vecteurs.

On dit que \vec{u} et \vec{v} sont **colinéaires** si et seulement s'il existe un réel k tel que $\vec{u} = k\vec{v}$. Les deux vecteurs ont donc la **même direction**.

Remarque

 $\overrightarrow{0}$ est colinéaire à tous les vecteurs du plan.

Propriété

Soient $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs dans un repère orthonormé $(O, \overrightarrow{t}, \overrightarrow{f})$.

Les vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement si leurs coordonnées sont **proportionnelles**, c'est-àdire si et seulement s'il existe un réel k tel que x' = kx et y' = ky. On a alors $\vec{u} = k\vec{v}$.

Exemple

$$\begin{pmatrix} 15 \\ 5 \end{pmatrix} \text{ et } \begin{pmatrix} 3 \\ 1 \end{pmatrix} \text{ sont colinéaires alors que } \begin{pmatrix} -15 \\ 5 \end{pmatrix} \text{ et } \begin{pmatrix} 3 \\ 1 \end{pmatrix} \text{ ne le sont pas.}$$

Théorème : Critère de colinéarité

Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs dans un repère orthonormé (O, \vec{t}, \vec{j}) . \vec{u} et \vec{v} sont colinéaires si et seulement si xy' - yx' = 0.

 $D\'{e}monstration$. C'est direct si \overrightarrow{u} ou \overrightarrow{v} est le vecteur nul. Dans la suite, \overrightarrow{u} et \overrightarrow{v} seront non nuls. Supposons d'abord que \overrightarrow{u} et \overrightarrow{v} sont colinéaires. Ainsi, il existe $k \in \mathbb{R}^*$ tel que x = kx' et y = ky' et donc xy' - yx' = kx'y' - ky'x' = 0.

Réciproquement, supposons que xy'-yx'=0. $\overrightarrow{u}\neq \overrightarrow{0}$ donc $x\neq 0$ ou $y\neq 0$.

Traitons le premier cas, le second se fera de la même manière. xy' - yx' = 0 implique que $y' = \frac{yx'}{x}$ donc

B) Alignement

Théorème : Droites parallèles

Deux droites (AB) et (CD) sont parallèles si, et seulement si, \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

Démonstration. C'est une conséquence de la caractérisation de l'égalité de vecteurs avec un parallélogramme.

Exemple

Les deux droites (AB) et (CD) sont parallèles.

Théorème: Points alignés

Trois points A, B et C sont alignés si, et seulement si, les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Démonstration. A, B et C sont alignés si et seulement si (AB) et (AC) sont parallèles. On peut utiliser le résultat précédent pour terminer la démonstration de ce théorème.

Exemple

A, B et C sont alignés.

Propriété: Milieu d'un segment

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points du plan, dans un repère orthonormé $(O, \overrightarrow{t}, \overrightarrow{j})$. Alors le milieu du segment [A, B] a pour coordonnées $\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right)$. $D\acute{e}monstration$. Notons M le milieu de [A,B]. Partant de A, l'image de la translation de vecteur $\overrightarrow{1}\overrightarrow{AB}$ est M.

Rappelons que $\overrightarrow{AM} = \frac{1}{2} \overrightarrow{AB}$ a pour coordonnées $\frac{1}{2} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix} = \begin{pmatrix} \frac{x_B - x_A}{2} \\ \frac{y_B}{2} \end{pmatrix}$.

Enfin, les coordonnées de M sont donc $\left(x_A + \frac{x_B - x_A}{2}; y_A + \frac{y_B - y_A}{2}\right) = \left(\frac{x_B + x_A}{2}; \frac{y_B + y_A}{2}\right)$.