

Week report

Camila Riccio Rengifo

September 18th, 2020

QUERY GENOME MAPPING

COORDS

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

VARIANTS

	rpos	ref	query
0	4	T	TA
1	11	CTA	С
2	20	Α	Т

Query genome

Reference genome

rpos	rbase	qpos	qbase	snp	var	inv	idt
1	С	-	-	0	0	0) -
2		11		0	0	0	1
3		12		0	0	0	1
4	Т	13	Т	0	-1	0	1
5	С	15	С	0	0	0	1
6		16		0	0	0	1
7		17		0	0	0	1
8	-	-	-	0	0	0	-
9		3		0	0	0	1
10		4		0	0	0	1
11	С	5	С	0	2	0	1
12	Т	-	-	0	0	0	-
13	Α	-	-	0	0	0	-
14	G	6	G	0	0	0	1
15		7		0	0	0	1
16	-	-	-	0	0	0	-
17		20		0	0	0	1
18		21		0	0	0	1
19		22		0	0	0	1
20	Α	23	Т	1	0	0	0
21		24		0	0	0	1
22		22		0	0	0	1
23	T	23	Т	0	0	0	1

QUERY GENOME MAPPING

COORDS (5.208 contigs)

	Sr	Er	Sq	Eq	len_r	len_q	%IDY
0	8701	184119	1	175451	175419	175451	99.88
1	184133	193002	176105	184984	8870	8880	98.93
2	193099	218454	184979	210400	25356	25422	98.49
3	218635	246229	225148	252840	27595	27693	98.36
4	247275	249168	252834	254721	1894	1888	98.94

VARIANTS (450.980)

	#CHROM	POS	ID	REF	ALT	QUAL	FILTER
0	chr01	8714		Т	TA	30	PASS
1	chr01	8735		CTA	С	30	PASS
2	chr01	8738		Α	С	30	PASS
3	chr01	8739		Α	Т	30	PASS
4	chr01	8744	1	TACA	Т	30	PASS

Reference genome: IR64

Query genome: AZUCENA

Mapping (44.350.042 bp)

rpos rbase goos gbase inversion snp variant identical

	rpos	rbase	qpos	quase	inversion	snp	variani	identicai
8711	8712	С	11	С	False	0	0	1
8712	8713	С	12	С	False	0	0	1
8713	8714	Т	13	Т	False	0	-1	1
8714	8715	Α	15	Α	False	0	0	1
8715	8716	Α	16	Α	False	0	0	1
					•			
					:			
8733	8734	С	34	С	False	0	0	1
8734	8735	С	35	С	False	0	2	1
8735	8736	Т	0	-	False	0	0	0
8736	8737	Α	0	-	False	0	0	0
8737	8738	Α	36	С	False	1	0	0
8738	8739	Α	37	Т	False	1	0	0
8739	8740	Α	38	Α	False	0	0	1
8740	8741	С	39	С	False	0	0	1
8741	8742	С	40	С	False	0	0	1
8742	8743	С	41	С	False	0	0	1

Gene nomenclature conversion

Rice Genome Annotation Project Rice Pseudomolecule Version Converter The Rice Pseudomolecule Version Converter allows you to list gene models in different Rice Genome Annotation Project pseudomolecule versions. You can season teleritor by legacy beare identifiers (e.g. 6488.m0315 or 11686.0037) on WSI (RGAP locus names (e.g. 1.CC, 0.400,03200 or 10.CC 0.400,03200 or 10. . Feature identifiers and locus names are identical for releases 6 and 6.1. Legacy feat names were dropped in release 7
Loci were only made obsolete in release 7. No new models were created in release 7. Feat name or Locus: Search Clear You can do a batch conversion by downloading a text file here. Please click here to search the obsolete loci for more information if your locus doesn't exist in our latest version of annotation This work is supported by grants (DBI-0321538/DBI-0834043) from the National Science Foundation.

Comments or Questions? Send e-mail to MSU Rice Genome Annotation Project Team

Abstract

Yangsheng Li¹*

OPEN ACCESS Freely available online

during In Vitro Culture of Rice

Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China

As both major macronutrients and signal molecules, nitrogen metabolites, such as nitrate and nitrite, play an important role in plant growth and development, in this study, the callus growth of indicates, social material and interesting an important control in plant growth and development. In this study, the callus growth of indicates, social was significantly enhanced by nitrite, whereas the subole protein control that meaning the callus growth of indicates a significantly enhanced by nitrite, whereas the subole protein control that meaning the callus growth of indicates and in the significantly changed after adding nitrite to the nitrate-free medium, that the transcriptional profiles or or. 9311 call were significantly changed after adding nitrite to the nitrate-free medium, and the significantly changed after adding nitrite to the nitrate-free medium, and the significantly changed after adding nitrite to the nitrate-free medium, and the significantly changed after adding nitrite to the nitrate-free medium, and the significantly changed after adding nitrite to the nitrate-free medium, and the significantly changed after adding nitrite to the nitrate-free medium, and the significantly changed after adding nitrite to the nitrate-free medium. and these nitrite-responsive genes were involved in a wide range of plant processes, particularly in the secondary metabolite pathways. Interestingly, most of the genes involved in phenylpropanoid-related pathways were coordinately down-regulated by nitrite, such as four cinnamoyl-CoA reductase, and these in turn resulted in the decrease of lignin content of *indica* calli. Furthermore, several candidate genes related to cell growth or stress responses were identified, such as genes coding for expanism, SMALL AUXINU PAN (SAUR) and HSPSDs, and these suggested that intrite could probable that the control of the cont as genes counting for expansions, sower states of the property of the property

4335 genes 4594 genes 51% 49%

Aliados

IES Ancla

Apoyan

