

Background

What motivated us?

Guide dog & white cane

- Expensive
- Physical needs
- Limited detection

Wearable devices

High cost

Smart cane

- High cost
- Limited hand mobility

Prior works

What inspired us?

Augmented Cane

- Comprehensive
- Feedback
 - Kinesthetic omni-wheel
 - Audio
 - Push button

WeWalk

- Ultrasonic detection
- Vocal &tactile feedback
- Navigation
- Transportation assistant

Navigation system for blind

- Wearable
- Multiple ultrasonic modules
- GPS navigation
- Vocal and vibrating feedback

Goals

What do we want to achieve?

Goal

System Overview

Ultrasonic Module

- HC-SR04
- Waist- and foot-level
- Adjustable threshold range
- Serial communication

```
void serialEvent() {
  while(Serial1.available() > 0)
   readdata = readdata +char(Serial1.read());
   //delay(2);
  //Everytime sensor Arduino gets something from controller Arduino
  //It conducts a group of detection for left & right waist and left & right foot
  //So it needs controller Arduino to send something continuously
  //Nothing comes from controller, which means there's no need to use ultrasonic modules; sensor Arduino does nothing
  // get enable detect:
  //Serial.print(readdata);
  if (readdata == "o") {
   /*****START DETECTION*****/
   /***Left waist***/
   digitalWrite(trig_wl,LOW);
  delayMicroseconds(2);
   digitalWrite(trig_wl,HIGH);
   delayMicroseconds(10):
   digitalWrite(trig_wl,LOW); //Send a 10ms high pulse to trig trig_wr
  left_waist = (pulseIn(echo_wl,HIGH))/58.0;//Receive echoed signal
  /***Right waist***/
   digitalWrite(trig_wr,LOW);
   delayMicroseconds(2);
   digitalWrite(trig_wr, HIGH);
   delayMicroseconds(10);
   digitalWrite(trig_wr,LOW);
   right_waist = (pulseIn(echo_wr,HIGH))/58.0;
                                                   void basicTask(){
   /***Left foot***/
                                                       /***Left foot***/
   digitalWrite(trig_fl,LOW);
   delayMicroseconds(2):
                                                        digitalWrite(trig_fl,LOW);
   digitalWrite(trig_fl,HIGH);
                                                       delayMicroseconds(2);
  delayMicroseconds(10);
  digitalWrite(trig_fl,LOW);
                                                       digitalWrite(trig_fl,HIGH);
  left_foot = (pulseIn(echo_fl,HIGH))/58.0;
                                                        delayMicroseconds(10);
   /***Right foot***/
   digitalWrite(trig_fr,LOW);
                                                        digitalWrite(trig_fl,LOW);
  delayMicroseconds(2);
                                                        left_foot = (pulseIn(echo_fl,HIGH))/58.0;
   digitalWrite(trig_fr,HIGH);
                                                        /***Right foot***/
   delayMicroseconds(10);
  digitalWrite(trig_fr,LOW);
                                                        digitalWrite(trig_fr,LOW);
  right_foot = (pulseIn(echo_fr,HIGH))/58.0;
                                                        delayMicroseconds(2);
  delay(100);
  /***SEND DISTANCES***/
                                                        digitalWrite(trig_fr,HIGH);
  serialWriteDistances();
                                                        delayMicroseconds(10);
                                                        digitalWrite(trig_fr,LOW);
 readdata = "";
                                                        right_foot = (pulseIn(echo_fr,HIGH))/58.0;
                                                        delay(50);
                                                        if(left_foot<30||right_foot<30){
                                                          Serial1.print("D");
```

Raspberry Pi & IR Camera

- YOLO algorithm
- Observe in advance
- Peripheral device
 - Arduino
- Central device -RBPi

```
def SendMsg():
    try:
        p = btle.Peripheral("6d:af:ec:47:07:b8")
                                                  #connect to Arduino
        service_uuid = btle.UUID("180C")
                                                  #controller Arduino's service uuid
        s = p.getServiceByUUID(service_uuid)
       uuidConfig = btle.UUID("2A56")
        c = s.getCharacteristics(uuidConfig)[0]
        data = c.read()
       if (data != b'\x00'):
                                                  #write signal
           c.write(b'\x00',withResponse=True)
        p.disconnect()
    except BTLEException as exception:
        print("failed")
```

Smartphone Application & Earable Earphones

- Android app as BLE radio
- Phone as BLE peripheral
- Service & characteristic
- 3 priorities of alerts

```
private void onResponseToClient(byte[] requestBytes, BluetoothDevice device, int requestId, BluetoothGattCharacteristic characteristic) {
    Log.e(TAG, String, format("onResponseToClient. device name = %s, address = %s", device.getName(), device.getAddress()));
    Log.e(TAG, String, format("onResponseToClient. requestId = %s", requestId));
    String msg = OutputStringUtil.transferForPrint(reqeustBytes);
    println("receive:" + msg);
    showText( msg "receive:" + msg);
    switch (msg){
        case "1": showSound(R.raw.waist);
        showText( msg: "Obstacle at waist detected");
        break;
        case "2": showSound(R.raw.feet);
        showText( msg: "Obstacle at feet detected");
        break;
        case "3": showSound(R.raw.waist);//showSound(R.raw.feet);
        showText( msg: "Obstacle at waist and feet detected");
        break;
        case "4": showSound(R.raw.watchyourstep);
        showText( msg: "Obstacle at feet detected");
        break;
    }
}
```

Overall Control Logic on Controller Arduino

Evaluation and Results

Metrics	Results
Obstacle detection time (camera)	4s
Warning reception time (app)	< 4s
Total time (obstacle enters range → user receives a warning)	6~9s (normal mode) 3~4s (high-priority mode)
Obstacle Detection Success Rate	All successful
User Movement Speed	0.2~0.3m/s

Manual calculations

Strengths & Weaknesses

Discussion

Without vocal interface

Future Directions

Discussion

Conclusion

Palantir₂₀₂₁

Obstacle avoidance using IR camera, Raspberry Pi, YOLO, ultrasonic sensors and Arduino

Performance

High accuracy, satisfactory speed

Future works

Algorithmic optimization, Earable, hardware connections, navigation, UI re-design

References & GitHub Address

GitHub repository

https://github.com/Palantir2021/ecem202a project

GitHub pages

https://palantir2021.github.io/ecem202a project/

Technical references

Arduino https://forum.arduino.cc/t/serial-input-basics-updated/382007

YOLO https://github.com/ultralytics/yolov5/tree/8f354362cd94c70908bf6168951b07bd32715ebe;

https://blog.roboflow.com/yolov5-improvements-and-evaluation/

Prior work inspirations

Augmented Cane P. Slade, A. Tambe, M. J. Kochenderfer, Multimodal sensing and intuitive steering assistance improve navigation and mobility for people with impaired vision. Sci. Robot. 6, eabg6594 (2021)

WeWalk https://wewalk.io/en/

Navigation System for Blind https://www.youtube.com/watch?v=8tbeELHKx9Y; https://www.youtube.com/watch?v=8tbeELHKx9Y; https://www.youtube.com/watch?v=8tbeELHKx9Y; https://www.youtube.com/watch?v=JMI07-yIUo8&t=149s

