Colle LIPR-6 A1

1 Question de cours

- a) Donner la définition mathématique d'un polynôme formel à coefficients dans un corps \mathbb{K} . Quel est son degré?
- b) Soit $P \in \mathbb{R}[X]$ non nul et soit z un complexe non réel racine de P.
 - i) Montrer que \bar{z} est aussi racine de P.
 - ii) Montrer qu'il existe un polynôme réel de degré 2 qui divise P.

2 Exercice

a) Soit $(e_i)_{i \in \{1...3\}}$ la base canonique de \mathbb{R}^3 . Montrer que la famille suivante forme une base de \mathbb{R}^3 . préciser la dimension de $Vect(v_1, v_2, v_3)$ et les coordonnées du vecteur e_3 dans cette nouvelle base.

$$v_1 = e_1 + e_2$$

 $v_2 = e_2 + e_3$
 $v_3 = e_1 + e_3$

- b) Soient F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E de dimension finie $n \in N$. Montrer que si dim(F) + dim(G) > n alors $F \cap G$ contient un vecteur non nul.
- c) Soit E un \mathbb{K} espace vectoriel muni d'une base $e = (e_1, \dots, e_n)$. Pour tout $i \in \{1, \dots, n\}$, on pose $v_i = e_1 + \dots + e_i$. Montrer que les v_i , $i \in \{1, \dots, n\}$ forment une base de E. Donner les coordonnées d'un vecteur dans cette nouvelle base.

Colle LIPR-6 A2

1 Question de cours

Compléter les phrases suivantes sans changer les termes/symboles déjà écrits! Soit E un \mathbb{K} -espace vectoriel de dimension finie non nulle, soient F et G deux sous-espaces vectoriels de E de bases respectives $\mathcal{F} = (f_1, \dots, f_p)$ et $\mathcal{G} = (g_1, \dots, g_q)$ alors :

- a) Si $F \cap G$ vérifie \cdots , alors on peut affirmer que ces sous-espaces vectoriels sont en somme directe.
- b) les sous-espaces F et G sont en somme directe si et seulement si la famille de vecteurs \cdots vérifie $\cdots \Rightarrow \cdots$.
- c) F + G = E si, et seulement si, la famille \cdots est \cdots .
- d) Les propriétés 2 et 3 nous permettent de conclure que F et G sont \cdots si et seulement si la famille "concaténée" $(f_1, \cdots, f_p, g_1, \cdots, g_q) \cdots$.

2 Exercice

- a) Effectuer la division euclidienne de A par B avec $A = 3X^5 + 4X^2 + 1$ et $B = X^2 + 2X + 3$.
- b) Les restes de la division euclidienne du polynôme A par (X-1), (X-2) et (X-3) sont respectivement 3, 7 et 13. Calculer le reste de la division de A par (X-1)(X-2)(X-3).
- c) Déterminer a et b dans \mathbb{R} tels que $Q=X^2-aX+1$ divise $P=X^4-X+b$.
- d) Déterminer les nombres a et b pour que

$$P(X) = X^4 + 2aX^3 + bX^2 + 2X + 1$$

soit le carré d'un polynôme que l'on précisera.

Colle LIPR-6 B1

1 Question de cours

Dire si les affirmations suivantes sont vraies ou fausses. Si elles sont vraies, prouvez-les. Soient F et G sont deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E (sans autre supposition particulière sur eux). On peut alors affirmer que :

- a) F + G est un sous-espace vectoriel de E, d'autre part, c'est le plus petit sous-espace vectoriel de E qui contient F et G.
- b) $F \cup G$ est un sous-espace vectoriel de E, d'autre part, c'est le plus petit sous-espace vectoriel de E qui contient F et G.
- c) $F + G = F \bigoplus G \Leftrightarrow F \cup G = \{0\}$
- d) Si F + G = E alors on dit que F et G sont supplémentaires de E.
- e) On dit que H est un sous-espace vectoriel de E si et seulement si H muni des mêmes lois que E (addition et multiplication externe) est un \mathbb{K} -espace vectoriel.

2 Exercice

- a) Effectuer la division euclidienne de A par B avec $A = 3X^5 + 2X^4 X^2 + 1$ et $B = X^3 + X + 2$.
- b) Soient α , β et γ , les racines de $P=X^3-5X^2+6X-1$. Déterminer de deux manières différentes la valeur exacte de $A=\frac{1}{1-\alpha}+\frac{1}{1-\beta}+\frac{1}{1-\gamma}$.
- c) Soient a et $b \in \mathbb{K}$ distincts et P un polynôme. Donner le reste de la division euclidienne de P(X) par (X a)(X b) en fonction de P(a) et P(b).

Colle LIPR-6 B2

1 Question de cours

- a) Donner la définition mathématique d'un polynôme unitaire.
- b) Donner la définition mathématique d'un polynôme irréductible.
- c) Donner la définition mathématique de A divise B avec A et B dans $\mathbb{K}[X]$.
- d) Soient P,Q et R dans $\mathbb{K}[X]$ tels que P irréductible et P divise QR. Peut-on affirmer que P divise Q?

2 Exercice

a) Soit $(e_i)_{i \in \{1...3\}}$ la base canonique de \mathbb{R}^3 . Montrer que la famille suivante forme une base de \mathbb{R}^3 . préciser la dimension de $Vect(v_1, v_2, v_3)$ et les coordonnées du vecteur e_2 dans cette nouvelle base.

$$v_1 = e_1 + e_2 + e_3$$

 $v_2 = e_2 - e_1$
 $v_3 = e_1 - e_3$

b) Soient F et G deux sous-espaces vectoriels de \mathbb{R}^5 de dimension 3. Montrer que :

$$F \cap G \neq \{0\}$$
.

c) Soit $(e_i)_{i\in\{1\cdots n\}}$ la base canonique de \mathbb{R}^n . On définit des vecteurs v_i comme suit :

$$\begin{cases} v_i = e_i + e_{i+1} \text{ si } i \in \{1 \cdots n\} \text{ est impair} \\ v_i = e_i - e_{i-1} \text{ si } i \in \{1 \cdots n\} \text{ est pair} \end{cases}$$
 (1)

Montrer que les v_i forment une base. Exprimer un vecteur v quelconque dans cette nouvelle base en fonction de ses coordonnés dans la base canonique.

Colle LIPR-6 C1

1 Question de cours

Soient P et Q deux éléments non-nuls de $\mathbb{K}[X]$ et $\lambda \in \mathbb{K}$. Compléter les phrases suivantes.

- a) On peut borner deg(P+Q), en effet \cdots
- b) Le cas d'égalité de la propriété précédente est vérifiée si \cdots
- c) $deg(\lambda P) = deg(P)$ si, et seulement si · · ·
- d) Si P est de degré n alors $P^{(n+1)}$ est \cdots
- e) On dit que P est irréductible si \cdots
- f) On suppose que deg(Q) < deg(P) alors le théorème de division euclidienne donne que \cdots

2 Exercice

a) Soit $(e_i)_{i \in \{1...3\}}$ la base canonique de \mathbb{R}^3 . Montrer que la famille suivante forme une base de \mathbb{R}^3 . préciser la dimension de $Vect(v_1, v_2, v_3)$ et les coordonnées du vecteur e_1 dans cette nouvelle base.

$$v_1 = e_1 - e_2$$

 $v_2 = 2e_1 - e_2 + 2e_3$
 $v_3 = e_1 + e_3$

- b) Donner une famille libre de \mathbb{R}^3 qui n'est pas une base. Donner une famille génératrice de \mathbb{R}^3 qui n'est pas une base. Dans les deux cas préciser leur dimension.
- c) Nous souhaitons montrer un lemme connu appelé le lemme d'échange. Soient (e_1, \dots, e_n) et (f_1, \dots, f_n) deux bases d'un \mathbb{R} -espace vectoriel de E. Montrer qu'il existe $j \in \{1 \dots n\}$ tel que la famille $(e_1, \dots, e_{n-1}, f_j)$ soit encore une base de E.

Colle LIPR-6 C2

1 Question de cours

- a) Donner la définition mathématique de E, \mathbb{K} espace vectoriel est de dimension finie.
- b) Donner la définition mathématique de la base canonique de E.
- c) Énoncer la formule de Grassman.
- d) Si dim(F) < dim(E) pour F, \mathbb{K} -espace vectoriel, peut-on dire que F est un sous-espace vectoriel de E?

2 Exercice

- a) Effectuer la division euclidienne de A par B avec $A = X^4 X^3 + X 2$ et $B = X^2 2X + 4$.
- b) Montrer que $P(X) = X(X+a)(X+2a)(X+3a) + a^4$ est le carré d'un polynôme que l'on précisera. En déduire la factorisation sur \mathbb{R} de $P_0(x) = X(X+1)(X+2)(X+3) - 8$.
- c) Trouver les $P \in \mathbb{R}[X]$ tels que $P(X^2) = (X^2 + 1)P(X)$.
- d) Soient $a \in \mathbb{K}$ distincts et P un polynôme. Donner le reste de la division euclidienne de P(X) par $(X-a)^2$ en fonction de P(a) et P'(a).

AUTRES EXERCICES

Exercice 1

- a) Effectuer la division euclidienne de A par B avec $A = X^5 7X^4 X^2 9X + 9$ et $B = X^2 5X + 4$.
- b) À quelle condition sur $a, b, c \in \mathbb{R}$, le polynôme

$$X^4 + aX^2 + bX + c$$

est-il divisible par $X^2 + X + 1$?

Exercice 2

- a) Montrer que les racines complexes de X^3-X+1 sont simples sans les calculer. On les note a,b et c. Calculer :
 - i) a+b+c
 - ii) $a^2 + b^2 + c^2$
 - iii) $a^3 + b^3 + c^3$
 - iv) $a^{-1} + b^{-1} + c^{-1}$
- b) Trouver les solutions du système suivant :

$$x + y + z = 11 \tag{2}$$

$$x^2 + y^2 + z^2 = 49 (3)$$

$$x^{-1} + y^{-1} + z^{-1} = 1 (4)$$

Exercice 3

a) Soient F et G deux sous-espaces vectoriels de \mathbb{R}^{13} de dimension 7. Montrer que :

$$F \cap G \neq \{0\}$$
.

- b) Soit E un espace vectoriel de dimension finie, F et G deux sous-espaces vectoriels de E. Montrer que si l'on suppose deux des propriétés suivantes vraies, alors la troisième l'est aussi :
 - (i) $F \cap G = \{0\}$
 - (ii) F + G = E
 - (iii) dim(F) + dim(G) = dim(E)