# Tema 3 Equación 10 de Transporte

Ecuación 1D de transporte. Métodos explícitos e implícitos.

### Referencias del Capítulo:

- Numerical Recipes. W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling. Cambridge University Press (1988).
- Computational Techniques for Fluid Dynamics. C.A.J. Fletcher. Springer-Verlag (1991).

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} - \alpha \frac{\partial^2 T}{\partial x^2} = 0$$

 $\partial R$ =frontera

Consideramos un sistema en el que el transporte de información puede ser difusivo y/o convectivo. La forma de ecuación más general tiene la forma:

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} - \alpha \frac{\partial^2 T}{\partial x^2} = 0$$

donde T es la variable a estudiar (p.e.: temperatura) que se ve forzada con una velocidad de convección u y se difunde con una difusividad  $\alpha$ .

Para tener un problema bien planteado necesitamos aportar:

- Condiciones iniciales (especificar T(x) para un  $t_o$  y todo x).
- Condiciones de frontera para todo t.
  - 1. Condiciones de Direchlet: T=f en  $\partial R$ .



3. Condiciones de mezcla o de Robin:  $\frac{\partial T}{\partial n} + kT = f \text{ con } k > 0 \text{ en } \partial R$ 

# **M3: Ecuación de Transporte. Esquema FTCS** $\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} - \alpha \frac{\partial^2 T}{\partial x^2} = 0$

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} - \alpha \frac{\partial^2 T}{\partial x^2} = 0$$

$$\frac{\partial T}{\partial t} = \frac{T_i^{n+1} - T_i^n}{\Delta t}$$

$$\frac{\partial T}{\partial x} = \frac{T_{i+1}^n - T_{i-1}^n}{2\Delta x}$$

$$\Rightarrow \frac{T_i^{n+1} - T_i^n}{\Delta t} + u \frac{T_{i+1}^n - T_{i-1}^n}{2\Delta x} - \alpha \frac{T_{i-1}^n - 2T_i^n + T_{i+1}^n}{\Delta x^2} = 0$$

$$\frac{\partial^2 T}{\partial x^2} = \frac{T_{i-1}^n - 2T_i^n + T_{i+1}^n}{\Delta x^2}$$

Consistencia:

$$E_i^n = Cu(\Delta x/2) \frac{\partial^2 T}{\partial x^2} - [C\alpha \Delta x - u(\Delta x^2/6)(1 + 2C^2)] \frac{\partial^3 T}{\partial x^3}$$

Estabilidad: Factor amplificación:  $G = 1 - 2s(1 - \cos\theta) - iC\sin\theta$ 

Condición Estabilidad:  $0 \le C^2 \le 2s \le 1$ 

$$|G| \leq 1 \quad \forall \theta$$



n

n-1

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} - \alpha \frac{\partial^2 T}{\partial x^2} = 0$$

**Table 9.3.** Algebraic (discretised) schemes for the transport equation  $\partial \bar{T}/\partial t + u \partial \bar{T}/\partial x - \alpha \partial^2 \bar{T}/\partial x^2 = 0$ 

| Scheme         | Algebraic form                                                                                                     | Truncation error <sup><math>a</math></sup> ( $E$ ) (leading terms)                                                                                                 | Amplification factor $G$<br>$(\theta = m\pi \Delta x)$ | Stability<br>Restrictions | Remarks                                          |
|----------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------|--------------------------------------------------|
| FTCS           | $\frac{\Delta T_j^{n+1}}{\Delta t} + uL_x T_j^n - \alpha L_{xx} T_j^n = 0$                                         | $Cu(\Delta x/2)\frac{\partial^2 T}{\partial x^2}$                                                                                                                  | $1-2s(1-\cos\theta)-\mathrm{i}C\sin\theta$             | $0 \le C^2 \le 2s \le 1$  | $R_{\text{cell}} \ll 2/C$ for accuracy           |
|                |                                                                                                                    | $-\left[C\alpha\Delta x-u(\Delta x^2/6)(1+2C^2)\right]\frac{\partial^3 T}{\partial x^3}$                                                                           |                                                        |                           |                                                  |
| Upwind         | $\frac{\Delta T_{j}^{n+1}}{\Delta t} + u \frac{(T_{j}^{n} - T_{j-1}^{n})}{\Delta x} - \alpha L_{xx} T_{j}^{n} = 0$ | $-u(\Delta x/2)(1-C)\frac{\partial^2 T}{\partial x^2} - \left[C\alpha \Delta x\right]$ $-u(\Delta x^2/6)(1-3C+2C^2)\left[\frac{\partial^3 T}{\partial x^3}\right]$ | $1 - (2s + C)(1 - \cos\theta) - iC\sin\theta$          | $C+2s \le 1$              | $R_{\text{cell}} \leqslant 2/(1-C)$ for accuracy |
| DuFort-Frankel |                                                                                                                    | $\alpha C^2 \frac{\partial^2 T}{\partial x^2} + (1 - C^2) \left[ u \Delta x^2 / 6 \right]$                                                                         | $\frac{B \pm [B^2 - 8s(1+2s)]^{\frac{1}{2}}}{(2+4s)}$  | <i>C</i> ≦1               | $C^2 \ll 1$ for accuracy                         |
| $\Diamond$     | $-\frac{\alpha}{\Delta x^2} \left\{ T_{j-1}^n - (T_j^{n-1} + T_j^{n+1}) + T_{j+1}^n \right\} = 0$                  | $-2\alpha^2C^2/u]\frac{\partial^3 T}{\partial x^3}$                                                                                                                | where $B = 1 + 4s\cos\theta - i2C\sin\theta$           |                           |                                                  |

# M3: Ecuación de Transporte. Esquema completamente implícito

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} - \alpha \frac{\partial^2 T}{\partial x^2} = 0$$

$$\frac{\partial T}{\partial t} = \frac{T_i^{n+1} - T_i^n}{\Delta t}$$

$$\frac{\partial T}{\partial x} = \frac{T_{i+1}^{n+1} - T_{i-1}^{n+1}}{2\Delta x} \Rightarrow \frac{T_i^{n+1} - T_i^n}{\Delta t} + u \frac{T_{i+1}^{n+1} - T_{i-1}^{n+1}}{2\Delta x} - \alpha \frac{T_{i-1}^{n+1} - 2T_i^{n+1} + T_{i+1}^{n+1}}{\Delta x^2} = 0$$

$$\frac{\partial^2 T}{\partial x^2} = \frac{T_{i-1}^{n+1} - 2T_i^{n+1} + T_{i+1}^{n+1}}{\Delta x^2}$$

$$i = 1 ... N - 1$$

+ 2 cond. frontera

Consistencia: 
$$E_i^n \propto \frac{\partial^3 T}{\partial T^3}$$

Estabilidad: incondicionalmente estable



$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} - \alpha \frac{\partial^2 T}{\partial x^2} = 0$$

| Lax-Wendroff                  | $\frac{\Delta T_j^{n+1}}{\Delta t} + uL_x T_j^n - \alpha^* L_{xx} T_j^n = 0$                                                              | $-\left[C\alpha\Delta x-u(\Delta x^2/6)(1-C^2)\right]\frac{\partial^3T}{\partial x^3}$                                        | $1-2s*(1-\cos\theta)-iC\sin\theta$                                                                                                         | $0 \le C^2 \le 2s^* \le 1$ | $R_{\text{cell}} \leq 2$ to avoid spatial oscillations |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------|
| ·                             | where $\alpha^* = \alpha + 0.5uC \Delta x$                                                                                                | $+ \left[ C\alpha^2/u(\Delta x/2) - \alpha \Delta x^2/12 \right]$                                                             | where $s^* = \alpha^* \Delta t / \Delta x^2$                                                                                               |                            | osomutions                                             |
|                               |                                                                                                                                           | $-uC(\Delta x^3/8)(C^2-1)]\frac{\partial^4 T}{\partial x^4}$                                                                  |                                                                                                                                            |                            |                                                        |
| Crank-Nicolson                | $\frac{\Delta T_j^{n+1}}{\Delta t}$                                                                                                       | $u(\Delta x^2/6)(1+0.5C^2)\frac{\partial^3 T}{\partial x^3}$                                                                  | $\frac{1 - s(1 - \cos\theta) - i \ 0.5C\sin\theta}{1 + s(1 - \cos\theta) + i \ 0.5C\sin\theta}$                                            | None                       | $R_{\text{cell}} \leq 2$ to avoid spatial              |
| :_i_:                         | $+\{uL_x-\alpha L_{xx}\}\left\{\frac{T_j^n+T_j^{n+1}}{2}\right\}=0$                                                                       | $-\alpha(\Delta x^2/12)(1+3C^2)\frac{\partial^4 T}{\partial x^4}$                                                             |                                                                                                                                            |                            | oscillations                                           |
| Three-level fully implicit    | $\frac{3 \Delta T_j^{n+1}}{2 \Delta t} - \frac{1}{2} \frac{\Delta T_j^n}{\Delta t} + \left\{ uL_x - \alpha L_{xx} \right\} T_j^{n+1} = 0$ | $u(\Delta x^2/6)(1+2C^2)\frac{\partial^3 T}{\partial x^3}$ $-\alpha(\Delta x^2/12)(1+12C^2)\frac{\partial^4 T}{\partial x^4}$ | $\frac{1 \pm \frac{1}{3} i[3 + 16s(1 - \cos\theta) + i8C\sin\theta]^{\frac{1}{2}}}{2(1 + \frac{2}{3}[2s(1 - \cos\theta) + iC\sin\theta])}$ | None                       | $R_{cell} \le 2$ to avoid spatial oscillations         |
| Linear F.E.M./ Crank-Nicolson | $M_{x} \frac{\Delta T_{j}^{n+1}}{\Delta t} + uL_{x} \left\{ \frac{T_{j}^{n} + T_{j}^{n+1}}{2} \right\}$                                   | $uC^2(\Delta x^2/12)\frac{\partial^3 T}{\partial x^3}$                                                                        | $\frac{2+3\cos\theta-3s(1-\cos\theta)-i1.5C\sin\theta}{2+3\cos\theta+3s(1-\cos\theta)+i1.5C\sin\theta}$                                    | None                       | $R_{\text{cell}} \leq 2$                               |
| <u> </u>                      | $-\alpha L_{xx}\left\{\frac{T_j^n + T_j^{n+1}}{2}\right\} = 0$                                                                            | $+\alpha(\Delta x^2/12)(1-3C^2)\frac{\partial^4 T}{\partial x^4}$                                                             |                                                                                                                                            |                            | to avoid spatial oscillations                          |

<sup>&</sup>lt;sup>4</sup> The algebraic scheme is equivalent to  $\partial T/\partial t + u \partial T/\partial x - \alpha \partial^2 T/\partial x^2 + E(T) = 0$ 

$$L_{x} = \frac{1}{2\Delta x} \{-1, 0, 1\}, L_{xx} = \frac{1}{\Delta x^{2}} \{1, 2, 1\}, M_{x} = \{\frac{1}{6}, \frac{2}{3}, \frac{1}{6}\}, C = u\Delta t/\Delta x, s = \alpha \Delta t/\Delta x^{2}, R_{cell} = C/s = u\Delta x/\alpha \}$$

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} - \alpha \frac{\partial^2 T}{\partial x^2} = 0$$

Esquemas de nodos activos para los principales esquemas de integración considerados:



### Ecuación Unidimensional de Transporte

Implementar los siguientes algoritmos en un programa que resuelva la ecuación unidimensional de transporte:

### **Métodos Explícitos:**

- 6\*.- Esquema Forward in Time Centered in Space (FTCS).
- 7\*.- Esquema upstream.
- 8\*.- Esquema DuFort-Frankel.

### **Métodos Implícitos:**

- 9.- Esquema totalmente implícito a dos niveles.
- 10.- Esquema Crank-Nicolson.
- 11\*.- Calcular la estabilidad y la consistencia de uno de los métodos anteriores.