Voorkennis

V-1ab

V-2a breedte foto
$$A \xrightarrow{\times} \cdots \rightarrow b$$
 reedte foto $B \leftarrow 6$ cm $\xrightarrow{\times} \cdots \rightarrow 9,9$ cm

- De factor is 9.9 : 6 = 1.65.
- De hoogte van foto B is $4 \text{ cm} \times 1,65 = 6,6 \text{ cm}$.

V-3a In de lijst van 20 cm bij 32 cm past een vergroting van de foto.

- **b** De afmetingen worden dan vier keer zo groot, dus de factor is 4.
- c 5 $\xrightarrow{\times 2,8}$ 14 en 8 $\xrightarrow{\times 2,8}$ 22,4

De breedte van de lijst is 14 cm en de hoogte is 22,4 cm.

V-4a
$$\angle A = 40^{\circ}, \angle B = \angle C = 70^{\circ}$$

- **b** $\angle P = 40^{\circ}, \angle Q = \angle R = 70^{\circ}$
- **c** $\triangle PQR$ is een vergroting van $\triangle ABC$ omdat de overeenkomstige hoeken even
- **d** AB = 4.5 cm en PQ = 6.8 cm
- **e** origineel $\triangle ABC \xrightarrow{\times \dots}$ vergroting $\triangle PQR$

$$AB = 4.5 \text{ cm} \xrightarrow{\times ...} PQ = 6.8 \text{ cm}$$

De factor is $6.8 : 4.5 \approx 1.5$.

V-5a De factor bij deze vergroting ligt tussen de gehele getallen 0 en 1.

b
$$AB \xrightarrow{\times \dots} PQ$$

De factor bij de vergroting is $3:4=\frac{3}{4}$.

V-6a

b

c $9 \xrightarrow{\times 0.5} 4.5$; de andere zijde wordt 4.5 cm.

V-7a

$$LM = \sqrt{169} = 13$$
; $LM = 13$ cm

b De zijden van $\triangle PQR$ zijn

$$2.5 \times 12 \text{ cm} = 30 \text{ cm},$$

$$2.5 \times 5 = 12.5$$
 cm en

$$2.5 \times 13 = 32.5$$
 cm.

5-1 Schaduwen

- **1a** Ieder paaltje is 7 mm lang.
- **b** Ja, de lengten van de schaduwen zijn allemaal even lang.
- 2 Nee, nu zijn de lengten van de schaduwen niet even lang.
- **3a** De schaduw blijft even lang.
- **b** Als je naar de lantaarn toeloopt, wordt je schaduw korter. Als je van de lantaarn afloopt, wordt de schaduw langer.

4a

- **b** De schaduwen zijn ongeveer 0,5 cm, 1,2 cm en 1,8 cm.
- **c** Hoe verder het paaltje van de lantaarn staat, hoe langer de schaduwlengte.

5

6ab

5-2 Gelijkvormigheid

7a/c

- d -
- **8a** Hoek F is de overeenkomstige hoek van hoek C.
- **b** De hoeken *A* en *D* zijn overeenkomstige hoeken. De hoeken *B* en *E* zijn overeenkomstige hoeken.
- c AB en DE zijn overeenkomstige zijden. BC en EF zijn overeenkomstige zijden. AC en DF zijn overeenkomstige zijden.

- **9a** Bij zijde *CD* van driehoek *DEC* hoort zijde *CF* van driehoek *FGC*.
- **b** Bij zijde *DE* van driehoek *DEC* hoort zijde *FG* van driehoek *FGC*. Bij zijde *CE* van driehoek *DEC* hoort zijde *CG* van driehoek *FGC*.
- c Hoek D van driehoek DEC en hoek F van driehoek FGC zijn overeenkomstige hoeken

Hoek E van driehoek DEC en hoek G van driehoek FGC zijn overeenkomstige hoeken.

Hoek ${\cal C}$ van driehoek ${\cal DEC}$ en hoek ${\cal C}$ van driehoek ${\cal FGC}$ zijn overeenkomstige hoeken.

10a

- **b** De driehoeken *LKP* en *MKN* zijn gelijkvormig.
- **c** De zijden *LK* en *MK* zijn overeenkomstige zijden. De zijden *LP* en *MN* zijn overeenkomstige zijden. De zijden *KP* en *KN* zijn overeenkomstige zijden.
- **d** De hoeken *L* en *M* zijn overeenkomstige hoeken. De hoeken *P* en *N* zijn overeenkomstige hoeken. De hoeken *K* en *K* zijn overeenkomstige hoeken.
- **11a** De driehoeken *ACD* en *ABE* zijn gelijkvormig.

bc

d origineel $\xrightarrow{\times \dots}$ vergroting $AB = 3 \text{ m} \xrightarrow{\times \dots} AC = 7,5 \text{ m}$

De factor van de vergroting is 7.5:3=2.5.

5-3 Rekenen met gelijkvormigheid

12a $\triangle ABC$ is gelijkvormig met $\triangle PQR$.

b

- c lengtematen $\triangle ABC \xrightarrow{\times} \cdots$ lengtematen $\triangle PQR$ 60 $\xrightarrow{\times} \cdots$ 45
 - De factor is 45:60 = 0.75 (of $60:45 = 1\frac{1}{3}$).
- **d** Je hebt zijde *BC* nodig. De lengte hiervan is 48 m.
- e $QR = 48 \text{ m} \times 0.75 = 36 \text{ m}$
- **13a** $\triangle PRS$ is gelijkvormig met $\triangle PQT$.

b

c zijde kwadraat
$$PQ = 8$$
 64 $PT = 6$ 36 + $TQ = ?$ 100

$$TQ = \sqrt{100} = 10$$
; $TQ = 10$ cm

- **d** Van $\triangle PQT$ weet je de meeste lengtematen.
- e afmetingen $\triangle PQT \xrightarrow{\times \dots}$ afmetingen $\triangle PRS$ $PQ \xrightarrow{\times \dots} PR$

$$\begin{array}{c}
PQ \xrightarrow{\times \dots} PR \\
8 \xrightarrow{\times \dots} 12
\end{array}$$

- **f** De factor is 12 : 8 = 1,5.
- **g** $RS = 1.5 \times TQ = 1.5 \times 10 \text{ cm} = 15 \text{ cm}$
- 14 $QR \xrightarrow{\times 0.75} TQ$ $11 \xrightarrow{\times 0.75} TQ$ $TQ = 0.75 \times 11 \text{ cm} = 8.25 \text{ cm}.$
- **15a** Driehoek *KLM* is gelijkvormig met driehoek *KPQ*.
 - $\begin{array}{c|cccc} \mathbf{b} & \underline{zijde} & \underline{kwadraat} \\ \hline & KP = 12 & 144 \\ & KQ = 9 & \underline{81} + \\ & PQ = ? & 225 \\ \end{array}$

$$PQ = \sqrt{225} = 15; PQ = 15 \text{ cm}$$

C

- $lengtematen \ \triangle KPQ \ \underline{\hspace{1cm}^{\times} \ \cdots} \ lengtematen \ \triangle KLM$
- 9 <u>× ...</u> 20

De factor is
$$20:9=2\frac{2}{9}$$

De factor is 20 :
$$9 = 2\frac{2}{9}$$

 $LM = PQ \times 2\frac{2}{9} = 15 \text{ cm} \times 2\frac{2}{9} = 33\frac{1}{3}\text{cm}$

16a

- Van △ABC weet je de lengte van alle zijden, dus deze komt vóór de pijlenketting te staan.
- afmetingen $\triangle ABC \xrightarrow{\times \dots}$ afmetingen $\triangle ADE$
- Bij zijde AB van driehoek ABC hoort zijde AD van driehoek ADE.

$$AB \xrightarrow{\times \dots} AD$$

De factor bij de vergroting is 8 : $24 = \frac{1}{3}$.

De zijden DE en BC zijn overeenkomstige zijden.

$$BC \xrightarrow{\times \frac{1}{3}} DE$$

$$36 \xrightarrow{\times \frac{1}{3}} DE$$

Dus
$$DE = 12$$
 cm.

De zijden AE en AC zijn overeenkomstige zijden.

$$AC \xrightarrow{\times \frac{1}{3}} AE$$

$$20 \times \frac{1}{3}$$

$$AC \xrightarrow{\times \frac{1}{3}} AE$$

$$20 \xrightarrow{\times \frac{1}{3}} AE$$
Dus $AE = \frac{20}{3} = 6\frac{2}{3}$; $AE = 6.7$ cm.

17a

Van driehoek ABD weet je de meeste zijden. Deze driehoek komt vóór de pijlenketting.

afmetingen
$$\triangle ABD \xrightarrow{\times \cdots}$$
 afmetingen $\triangle ACE$

c
$$AB \xrightarrow{\times \dots} AC$$

De factor is 8 :
$$6 = 1\frac{1}{3}$$
.

$$BD \xrightarrow{\times 1\frac{1}{3}} CE$$

$$8 \xrightarrow{\times 1\frac{1}{3}} CE$$

 $CE = 10\frac{2}{3}$, de ladder komt ongeveer 1067 cm hoog tegen de muur.

$$AD = \sqrt{100} = 10$$
; $AD = 10$ m

b
$$AD \xrightarrow{\times 1\frac{1}{3}} AE$$

 $10 \xrightarrow{\times 1\frac{1}{3}} AE$

 $AE = 13\frac{1}{3}$, de ladder is ongeveer 13,33 m lang; dat is 1333 cm.

5-4 Tekenen in dezelfde stand

19ab

c
$$\angle A = \angle F$$
; $\angle B = \angle D$; $\angle C = \angle E$

d De hoeken zijn inderdaad even groot.

20a
$$\triangle PQR \xrightarrow{\times \dots} \triangle TUS$$

$$QR \xrightarrow{\times \dots} US$$

$$280 \xrightarrow{\times \dots} 182$$

De factor is
$$182 : 280 = 0,65$$
.

b
$$PQ \xrightarrow{\times 0,65} TU$$

$$4 \xrightarrow{\times 0,65} TU$$

 $4 \times 0.65 = 2.6$, dus de lengte van TU is 2.60 m.

21a

$$3 \xrightarrow{\times \dots} 1,5$$

De factor is 1,5:3=0,5.

$$AB \xrightarrow{\times 0,5} QR$$

$$1.8 \xrightarrow{\times 0.5} QR$$

$$1.8 \times 0.5 = 0.9$$
, dus $QR = 0.9$ m

22a

 $\triangle ABC \xrightarrow{\times \dots} \triangle EFD$

$$AB \xrightarrow{\times \dots} EF$$

De factor is 63 : 70 = 0.9.

 $hoogte \triangle ABC \xrightarrow{\times 0.9} hoogte \triangle EFD$

$$210 \xrightarrow{\times 0.9} hoogte \triangle EFD$$

 $210 \times 0.9 = 189$; de hoogte van de omgekeerde kerstboom is 189 cm.

23a

 $\angle E$ is even groot als $\angle G$.

Zie opdracht 23a.

d
$$\triangle GSF \xrightarrow{\times \dots} \triangle ESD$$

$$GS \xrightarrow{\times \dots} ES$$

De factor van deze vergroting is $10:6=1\frac{2}{3}$.

$$SF \xrightarrow{\times 1\frac{2}{3}} SD$$

$$3 \xrightarrow{\times 1\frac{2}{3}} SD$$

$$3 \xrightarrow{\times 1\frac{\pi}{3}} SI$$

$$SD = 3 \times 1\frac{2}{3} = 5$$

24a $\angle S = \angle S$, $\angle A = \angle G$ en $\angle G = \angle F$

b

G

6

De factor van deze vergroting is 6:3=2.

$$GS \xrightarrow{\times 2} AS$$

$$6 \xrightarrow{\times 2} AS$$

$$AS = 6 \times 2 = 12$$

Test jezelf

T-1ab

c Dan wordt de schaduw langer.

T-2ab

T-3a/c

T-4a De driehoeken *ABC* en *DEC* zijn gelijkvormig.

bc

- **d** Zijde *CA* van de grote driehoek hoort bij zijde *CD* van de kleine driehoek.
- **e** DE en AB zijn overeenkomstige zijden en ook CE en CB.

De driehoeken ACE en BCF zijn gelijkvormig.

b

Flevolaan Ir Lelylaan В

- **c** afmetingen $\triangle ACE \xrightarrow{\times \dots}$ afmetingen $\triangle BCF$ AC = 600 m BC = 450 m
 - De factor is 450 : 600 = 0,75.
- $AE \xrightarrow{\times 0.75} BF$ $200 \xrightarrow{\times 0.75} BF$

 $200 \times 0.75 = 150$; de Flevolaan is 150 m.

T-6ab

1,8 m

$$AC \xrightarrow{\times \dots} DB$$

De factor is 1.8 : 3 = 0.6.

 $AB \xrightarrow{\times 0,6} DE$

$$4 \xrightarrow{\times 0,6} DE$$

$$4 \times 0.6 = 2.4$$
; $DE = 2.4$ m

T-7a

 $ABCD \xrightarrow{\times \dots} EHGF$

$$AD \xrightarrow{\times \dots} EF$$

De factor is 7:28 = 0,25.

$$\begin{array}{c}
AB \xrightarrow{\times 0,25} EH \\
84 \xrightarrow{\times 0,25} EH
\end{array}$$

$$84 \xrightarrow{\times 0.25} EE$$

$$84 \times 0,25 = 21; EH = 21.$$

Er geldt FG = EH, dus GF = 21.

Extra oefening

E-1a De schaduwen van de paaltjes zijn even lang.

b

E-2a

- Zijde DE is de overeenkomstige zijde van BC.
- De andere overeenkomstige zijden zijn AB en AD en AC en AE. c
- Zie opdracht E-2a.
- E-3a De driehoeken ABC en EBF zijn gelijkvormig.

b

- Zijde AC is de overeenkomstige zijde van EF.
- $\Delta EBF \xrightarrow{\times \dots} \Delta ABC$ $EF \xrightarrow{\times \dots} AC$

20 <u>× ...</u> 45

De factor is 45:20 = 2,25.

E-4a

b Driehoek *DEC* is de driehoek met de meeste gegevens.

$$\triangle DEC \xrightarrow{\times \dots} \triangle ABC$$

c
$$DC \xrightarrow{\times \dots} AC$$

35 $\xrightarrow{\times \dots}$ 63

De factor bij de vergroting is
$$63:35=1,8$$
.

d
$$EC \xrightarrow{\times 1,8} BC$$

$$42 \xrightarrow{\times 1,8} BC$$

$$42 \times 1.8 = 75.6$$
; $BC = 75.6$ cm

E-5a De driehoeken *ABC* en *EDC* zijn gelijkvormige driehoeken.

b

- **c** Zijde *DC* is overeenkomstig met zijde *BC*.
- **d** De andere overeenkomstige zijden zijn EC en AC en ED en AB.

e
$$\triangle EDC \xrightarrow{\times ...} \triangle ABC$$

$$DC \xrightarrow{\times \dots} BC$$

De factor is
$$40: 15 = 2\frac{2}{3}$$
.

f Lijnstuk *AB* is de breedte van de rivier.

$$ED \xrightarrow{\times 2\frac{2}{3}} AB$$

$$28 \xrightarrow{\times 2\frac{2}{3}} AB$$

 $AB = 74\frac{2}{3}$ m; de breedte van de rivier is ongeveer 75 meter.

E-6a

b Van driehoek *PQR* zijn de meeste gegevens bekend.

$$\triangle PQR \xrightarrow{\times \dots} \triangle TUS$$

c
$$PQ \xrightarrow{\times \dots} TU$$

$$6 \xrightarrow{\times \dots} 2$$

De factor bij de vergroting is 2 :
$$6 = \frac{1}{3}$$
.

d
$$QR \xrightarrow{\times \frac{1}{3}} US$$

$$2,4 \xrightarrow{\times \frac{1}{3}} US$$

$$2.4 \times \frac{1}{3} = 0.8$$
, $US = 0.8$ m

Gemengde opdrachten

G-1a De lichtstralen zijn evenwijdig. Dat geldt alleen voor zonlicht.

b

C

G-2

G-3ab

Een schets van de situatie zie je hierboven.

Teken de driehoeken nu naast elkaar.

De hoogte van de lantaarnpaal is AC.

$$\triangle DBE \xrightarrow{\times \dots} \triangle ABC$$

$$DB \xrightarrow{\times \dots} AB$$

De factor bij deze vergroting is 4.8:1.2=4.

$$DE \xrightarrow{\times 4} AC$$

$$1 \xrightarrow{\times 4} AC$$

AC = 4; de hoogte van de lantaarnpaal is 4 m.

G-4a

$$BC \xrightarrow{\wedge \cdots} AC$$

$$2.8 \xrightarrow{\times 13.3} 13.3$$

De factor bij deze vergroting is 13.3:2.8=4.75.

$$BD \xrightarrow{\times 4,75} AE$$

$$1,6 \xrightarrow{\times 4,75} AE$$

$$AE = 1.6 \times 4.75 = 7.6$$

De hoogte van de boom is 7,6 m.

G-5a De driehoeken zijn naast elkaar in dezelfde stand getekend.

b $\triangle GED \xrightarrow{\times \dots} \triangle GAB$ $GE \xrightarrow{\times \dots} GA$ $3,5 \xrightarrow{\times \dots} 1,75$

De factor bij deze vergroting is 1,75:3,5=0,5.

c $ED \xrightarrow{\times 0.5} AB$ $4 \xrightarrow{\times 0.5} AB$ $AB = 4 \times 0.5 = 2$