Habermans Dataset

March 25, 2018

1 Plotting for Exploratory Data Analysis(EDA) for Cancer Patients

2 Habermans Dataset

Sources: (a) Donor: Tjen-Sien Lim (b) Date: March 1999 Past Usage:

Haberman, S. J. (1976). Generalized Residuals for Log-Linear Models, Proceedings of the 9th International Biometrics Conference, Boston, pp. 104-122. Landwehr, J. M., Pregibon, D., and Shoemaker, A. C. (1984), Graphical Models for Assessing Logistic Regression Models (with discussion), Journal of the American Statistical Association 79: 61-83. Lo, W.-D. (1993). Logistic Regression Trees, PhD thesis, Department of Statistics, University of Wisconsin, Madison, WI. Relevant Information: The dataset contains cases from a study that was conducted between 1958 and 1970 at the University of Chicago's Billings Hospital on the survival of patients who had undergone surgery for breast cancer.

- Number of Instances: 306
- Number of Attributes: 4 (including the class attribute)
- Attribute Information:
 - Age of patient at time of operation (numerical)
 - Patients year of operation (year 1900, numerical)
 - Number of positive axillary nodes detected (numerical)
 - Survival status (class attribute) 1 = the patient survived 5 years or longer 2 = the patient died within 5 year
- Missing Attribute Values: None

3 Objective

Classify a new patient according to one of the 2 classes that is whether it survived 5 years or longer or patient died within 5 years, given the 3 features

```
In [1]: #importing all libraries
    import pandas as pd
    import seaborn as se
    import numpy as np
    import matplotlib.pyplot as plt
```

4 Observations

This shows * Only 225 patients survived 5 years or longer * And 81 the patient died within 5 year

5 Univariate Analysis

6 Histogram

Observation: can't say much from the plot as points are overlapping

Observation: * Patients with age less than 35 and greater than 30 have survived more than 5 years after operation * Patients with age less than 83 and greater than 78 have survived not more than 5 Years after operation * Patients from age 35 to 78 we can't say anything as point are almost overlapping.

Observation: can't say much from the plot as points are overlapping but one thing we can infer is as the no. of positive auxillary nodes increases the survival status decreases less than 5 years.

7 Box plot and Whiskers

In [10]: se.boxplot(x = 'survival_status',y = 'Age',data = hb)
 plt.show()

In [11]: se.boxplot(x = 'survival_status',y = 'positive_axillary_nodes',data = hb)
 plt.show()

8 Observations

• From the boxplot we can observe that most people who survived cancer have zero positive axillary nodes

9 Violin plots

```
In [12]: se.violinplot(x="survival_status", y="year", data=hb, size=8)
    plt.show()
```


In [13]: se.violinplot(x="survival_status", y="Age", data=hb, size=8)
 plt.show()

In [14]: se.violinplot(x="survival_status", y="positive_axillary_nodes", data=hb, size=8)
 plt.show()

10 Observation

• From the violin plots we can observe that most people who survived cancer have zero positive axillary nodes

11 PDF and CDF

```
plt.plot(bin_edges[1:],cdf)
plt.xlabel('Year')
plt.grid()
plt.show()
```

C:\Users\sagun\AppData\Local\Continuum\anaconda3\lib\site-packages\matplotlib\axes_axes.py:54 warnings.warn("No labelled objects found."

In [76]: #pdf cdf of positive_axillary_nodes

plt.plot(bin_edges[1:],pdf)

```
counts,bin_edges = np.histogram(hb['positive_axillary_nodes'],bins = 30, density = Tr
pdf = counts/(sum(counts))
cdf = np.cumsum(pdf)
plt.plot(bin_edges[1:],pdf)
plt.plot(bin_edges[1:],cdf)
plt.legend()

counts,bin_edges = np.histogram(hb['positive_axillary_nodes'],bins = 30, density = Tr
pdf = counts/(sum(counts))
cdf = np.cumsum(pdf)
```

```
plt.plot(bin_edges[1:],cdf)
plt.xlabel('positive_axillary_nodes')
plt.grid()
plt.show()
```

C:\Users\sagun\AppData\Local\Continuum\anaconda3\lib\site-packages\matplotlib\axes_axes.py:54 warnings.warn("No labelled objects found."

In [77]: #pdf cdf of Age

```
counts,bin_edges = np.histogram(hb['Age'],bins = 30, density = True)
pdf = counts/(sum(counts))
cdf = np.cumsum(pdf)
plt.plot(bin_edges[1:],pdf)
plt.plot(bin_edges[1:],cdf)
plt.legend()

counts,bin_edges = np.histogram(hb['Age'],bins = 30, density = True)
pdf = counts/(sum(counts))
cdf = np.cumsum(pdf)
plt.plot(bin_edges[1:],pdf)
plt.plot(bin_edges[1:],cdf)
```

```
plt.xlabel('Age')
plt.grid()
plt.show()
```

C:\Users\sagun\AppData\Local\Continuum\anaconda3\lib\site-packages\matplotlib\axes_axes.py:54 warnings.warn("No labelled objects found."

12 Bivariate analysis

13 2-D Scatter Plot

Observation: can't say much from the plot as points overlapping

```
In [19]: se.set_style("darkgrid");
    se.FacetGrid(hb,hue='survival_status',size=6)\
        .map(plt.scatter,"positive_axillary_nodes","Age")\
        .add_legend();
    plt.show()
```


Observation: can't say much from the plot as points overlapping

14 Pair-Plot

15 Observations

- Positive_axillary_nodes is a useful feature to identify the survival_status of cancer patients
- Age and Year of operation have overlapping curves so we can't have a suitable observation that can classify survival_status

16 Mean

```
      Age
      52.017778

      year
      62.862222

      positive_axillary_nodes
      2.791111

      survival_status
      1.000000
```

dtype: float64

In [74]: print(np.mean(less_five))

Age	53.679012
year	62.827160
positive_axillary_nodes	7.456790
survival_status	2.000000

dtype: float64

Observation * Mean age of patients who survived more than 5 years is 52 years and who didn't survive is 54 years * Those having more than 3 positive_axillary_nodes they have not survived more than 5 years * Those having less than 3 positive_axillary_nodes they have survived more than 5 years after the operation

17 Final Conclusion

- Those having more than 3 positive_axillary_nodes they have not survived more than 5 years
- Those having less than 3 positive_axillary_nodes they have survived more than 5 years after the operation
- Positive_axillary_nodes is a useful feature to identify the survival_status of cancer patients
- Age and Year of operation have overlapping curves so we can't classify patients for their survival_status using age