UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2020

Linear Systems Fundamentals

FINAL EXAM

Preface

- I recognize that final exams are stressful in the best of times, and this is an unusually hard time.
- Please remember that despite the stress, I am counting on you to uphold academic integrity while you complete your final exam.
- Posting or seeking exam questions or answers online, or by consulting unauthorized resources, is a gross violation of our principles of integrity and engineering ethics.
- To be fair to all students, any integrity violations discovered during the final exam will be reported to the Dean of Engineering and to the office of Academic Integrity.
- Please make sure you understand and follow the academic integrity guidelines for the exam. If you are not sure, ask me.
- An honest effort, no matter what the outcome, is something to be proud of, especially in these challenging times.
- I am very proud of the commitment and resilience you have displayed. You should feel proud, too.
- Good luck on the exam!

PRINT YOUR NAME	
Student ID Number	
Signature	

Your signature confirms that you have completed this exam on your own and in accordance with the Academic Integrity Agreement.

Instructions

- Open Canvas website, no electronics allowed for problem solving.
- Tables from Chapters 3,45, and 9 of the textbook are attached to the exam for your convenience.
- Time allowed: 4 hours (including download and upload time).
- Write your solutions in the designated space in the exam.
- Justify your answers.
- If extra pages are needed to show all of your work, use the scratch pages at the end of the exam and submit them.
- Upload your solutions by 7pm via Gradescope.
- If you have not submitted the **Academic Integrity Agreement**, or are not sure if you did, **please do so now**.
- If you do not submit the Academic Integrity Agreement form, you will receive an Incomplete grade for the quarter.

Problem	Weight	Score
1	30 pts	
2	30 pts	
3	30 pts	
4	30 pts	
5	30 pts	
6	30 pts	
Total	180 pts	

Good luck!

Problem 1 [DT Filtering] (30 points)

Consider the discrete-time (DT) linear time-invariant (LTI) system defined by the difference equation:

$$y[n] = x[n] - x[n-2].$$

- (a) Determine the frequency response $H(e^{j\omega})$ of the system.
- (b) Determine and sketch precisely the magnitude $|H(e^{j\omega})|$ of the frequency response in the range $\omega \in [-\pi, \pi]$.
- (c) Determine and sketch precisely the phase $\angle H(e^{j\omega})$ of the frequency response in the range $\omega \in [-\pi, \pi]$. (Add or subtract integer multiples of 2π to keep the phase in the range $[-\frac{\pi}{2}, \frac{\pi}{2}]$.)
- (d) Find a non-zero sinusoidal input signal x[n] to the system that produces the output y[n] = 2x[n].

Write your answers to parts (a), (b), (c), and (d) on the following 4 pages.

Problem 1 (cont.)

Consider the discrete-time (DT) linear time-invariant (LTI) system defined by the difference equation:

$$y[n] = x[n] - x[n-2].$$

(a) (8 points)

Determine the frequency response $H(e^{j\omega})$ of the system.

Problem 1 (cont.)

Consider the discrete-time (DT) linear time-invariant (LTI) system defined by the difference equation:

$$y[n] = x[n] - x[n-2].$$

(b) (8 points)

Determine and sketch precisely the magnitude $|H(e^{j\omega})|$ of the frequency response in the range $\omega \in [-\pi, \pi]$.

Problem 1 (cont.)

Consider the discrete-time (DT) linear time-invariant (LTI) system defined by the difference equation:

$$y[n] = x[n] - x[n-2].$$

(c) (8 points)

Determine and sketch precisely the phase $\angle H(e^{j\omega})$ of the frequency response in the range $\omega \in [-\pi, \pi]$. (Add or subtract integer multiples of 2π to keep the phase in the range $[-\frac{\pi}{2}, \frac{\pi}{2}]$.)

Problem 1 (cont.)

Consider the discrete-time (DT) linear time-invariant (LTI) system defined by the difference equation:

$$y[n] = x[n] - x[n-2].$$

(d) (6 points)

Find a non-zero sinusoidal input signal x[n] to the system that produces the output y[n] = 2x[n].

Problem 2 [DTFT] (30 points; 15 points each part)

(a) Find the DT Fourier transform (DTFT) $X(e^{j\omega})$ of the signal

$$x[n] = \left(\frac{1}{3}\right)^n u[n-2].$$

(b) Find the signal x[n] whose DTFT in the period $[-\pi, \pi]$ is given by

$$X(e^{j\omega}) = \begin{cases} 1, & \frac{\pi}{3} \le |\omega| \le \frac{2\pi}{3} \\ 0, & 0 \le |\omega| < \frac{\pi}{3} \text{ and } \frac{2\pi}{3} < |\omega| \le \pi. \end{cases}$$

Express your answer in terms of sinusoidals signals, not exponential signals.

Write your answers to parts (a) and (b) on the following 2 pages.

Problem 2 (cont.)

(a) (15 points)

Find the DT Fourier transform (DTFT) $X(e^{j\omega})$ of the signal

$$x[n] = \left(\frac{1}{3}\right)^n u[n-2].$$

Problem 2 (cont.)

(b) (15 points)

Find the signal x[n] whose DTFT in the period $[-\pi, \pi]$ is given by

$$X(e^{j\omega}) = \begin{cases} 1, & \frac{\pi}{3} \le |\omega| \le \frac{2\pi}{3} \\ 0, & 0 \le |\omega| < \frac{\pi}{3} \text{ and } \frac{2\pi}{3} < |\omega| \le \pi. \end{cases}$$

Express your answer in terms of sinusoidals signals, not exponential signals.

Problem 3 [Amplitude Modulation] (30 points)

Consider the modulation system shown below. The input signal x(t) has a Fourier transform $X(j\omega)$ that is zero for $|\omega| > \omega_M$, also shown below. Assume that $\omega_0 > \omega_M$

- (a) Determine and sketch precisely the Fourier transform $X_1(j\omega)$ of $x_1(t)$, the Fourier transform $X_2(j\omega)$ of $x_2(t)$, and the Fourier transform $Y(j\omega)$ of y(t).
- (b) Is there a demodulation scheme that recovers the signal x(t) from y(t)? If so, describe one. If not, why not?

Write your answers to parts (a) and (b) on the following 2 pages.

${\bf Name/Student~ID:}\ _$	
Problem 3 (cont.)	

(a) (20 points)

Determine and sketch the Fourier transform $X_1(j\omega)$ of $x_1(t)$, the Fourier transform $X_2(j\omega)$ of $x_2(t)$, and the Fourier transform $Y(j\omega)$ of y(t).

Name/Student ID:	
Problem 3 (cont.)	

(b) (10 points)

Is there a demodulation scheme that recovers the signal x(t) from y(t)? If so, describe one. If not, why not?

Name/Student ID: _____

Problem 4 [Sampling] (30 points; 10 points each part)

Consider the sinusoidal signal $x(t) = \sin(100\pi t)$. Apply continuous-time impulse train sampling to this signal, with sampling frequency ω_s .

- (a) Assume $\omega_s = 80\pi$, producing the sampled signal $x_1(t)$. Determine $X_1(j\omega)$ and sketch it precisely in the frequency range $[-100\pi, 100\pi]$. How would you generate the output $y(t) = \sin(20\pi t)$ from $x_1(t)$?
- (b) Assume $\omega_s = 120\pi$, producing the sampled signal $x_2(t)$. Determine $X_2(j\omega)$ and sketch it precisely in the frequency range $[-100\pi, 100\pi]$. How would you generate the output $y(t) = \sin(20\pi t)$ from $x_2(t)$?
- (c) Suppose you applied a reconstruction filter with frequency response

$$H(j\omega) = \begin{cases} \frac{1}{40}, & |\omega| < 80\pi \\ 0, & |\omega| > 80\pi \end{cases}$$

to the signals $x_1(t)$ and $x_2(t)$ of parts (a) and (b). Determine the corresponding outputs $z_1(t)$ and $z_2(t)$.

Write your answers to parts (a), (b), and (c) on the following 3 pages.

Name/Student ID:	

Problem 4 (cont.)

Consider the sinusoidal signal $x(t) = \sin(100\pi t)$. Apply continuous-time impulse train sampling to this signal, with sampling frequency ω_s .

(a) (10 points)

Assume $\omega_s = 80\pi$, producing the sampled signal $x_1(t)$. Determine $X_1(j\omega)$ and sketch it precisely in the frequency range $[-100\pi, 100\pi]$. How would you generate the output $y(t) = \sin(20\pi t)$ from $x_1(t)$?

Name/Student ID:	

Problem 4 (cont.)

Consider the sinusoidal signal $x(t) = \sin(100\pi t)$. Apply continuous-time impulse train sampling to this signal, with sampling frequency ω_s .

(b) (10 points)

Assume $\omega_s = 120\pi$, producing the sampled signal $x_2(t)$. Determine $X_2(j\omega)$ and sketch it precisely in the frequency range $[-100\pi, 100\pi]$. How would you generate the output $y(t) = \sin(20\pi t)$ from $x_2(t)$?

Problem 4 (cont.)

(c) (10 points)

Suppose you applied a reconstruction filter with frequency response

$$H(j\omega) = \begin{cases} \frac{1}{40}, & |\omega| < 80\pi \\ 0, & |\omega| > 80\pi \end{cases}$$

to the signals $x_1(t)$ and $x_2(t)$ of parts (a) and (b). Determine the corresponding outputs $z_1(t)$ and $z_2(t)$.

Name/Student ID: ___

Problem 5 [Laplace Transform and ROC] (30 points)

Consider the LTI system function

$$H(s) = \frac{s-1}{(s^2+2s+2)(s^2-4)}.$$

- (a) Sketch precisely the pole-zero plot associated with H(s). Indicate the order of all poles and zeros.
- (b) Identify all possible regions of convergence (ROC) associated with H(s) and indicate for each ROC whether the corresponding system is causal and/or stable.
- (c) For each possible ROC in part (b), indicate whether the corresponing impulse response h(t) is left-sided, right-sided, two-sided, or finite-duration, and whether or not it has a Fourier transform $H(j\omega)$.
- (d) Determine a linear constant-coefficient differential equation that characterizes the LTI systems with system function H(s).

Write your answers to parts (a), (b), (c), and (d) on the following 4 pages.

Problem 5 (cont.)

Consider the LTI system function

$$H(s) = \frac{s-1}{(s^2+2s+2)(s^2-4)}.$$

(a) (8 points)

Sketch precisely the pole-zero plot associated with H(s). Indicate the order of all poles and zeros.

Problem 5 (cont.)

Consider the LTI system function

$$H(s) = \frac{s-1}{(s^2+2s+2)(s^2-4)}.$$

(b) (8 points)

Identify all possible regions of convergence (ROC) associated with H(s) and indicate for each ROC whether the corresponding system is causal and/or stable.

Problem 5 (cont.)

Consider the LTI system function

$$H(s) = \frac{s-1}{(s^2+2s+2)(s^2-4)}.$$

(c) (8 points)

For each possible ROC in part (b), indicate whether the corresponding impulse response h(t) is left-sided, right-sided, two-sided, or finite-duration, and whether or not it has a Fourier transform $H(j\omega)$.

Problem 5 (cont.)

Consider the LTI system function

$$H(s) = \frac{s-1}{(s^2+2s+2)(s^2-4)}.$$

(d) (6 points)

Determine a linear constant-coefficient differential equation that characterizes the LTI systems with system function H(s).

Name/Student ID: ___

Problem 6 [Laplace Transform and LTI Systems] (30 points)

Consider the causal LTI system with Laplace transform and region of convergence

 $H(s) = \frac{(s-1)^2}{(s+1)^2}, \quad \Re e(s) > -1.$

- (a) Determine and sketch precisely the magnitude $|H(j\omega)|$ of the frequency response $H(j\omega)$. How would you describe the filter characteristics of the system lowpass, highpass, bandpass, allpass?
- (b) Determine (but do not sketch) the phase $\angle H(j\omega)$ of the frequency response $H(j\omega)$.
- (c) Determine the impulse response h(t) of the system.

Hint: Write $(s-1)^2$ in the form $(s+1)^2 + f(s)$.

(d) Suppose the input to the system is $x(t) = te^t u(t)$. Determine the correponding output y(t).

Write your answers to parts (a), (b), (c), and (d) on the following 4 pages.

Problem 6 (cont.)

Consider the causal LTI system with Laplace transform and region of convergence

$$H(s) = \frac{(s-1)^2}{(s+1)^2}, \quad \Re e(s) > -1.$$

(a) (8 points) Determine and sketch precisely the magnitude $|H(j\omega)|$ of the frequency response $H(j\omega)$.

Problem 6 (cont.)

Consider the causal LTI system with Laplace transform and region of convergence

$$H(s) = \frac{(s-1)^2}{(s+1)^2}, \quad \Re e(s) > -1.$$

(b) (8 points)

Determine (but do not sketch) the phase $\angle H(j\omega)$ of the frequency response $H(j\omega)$. How would you describe the filter characteristics of the system - lowpass, highpass, bandpass, allpass?

Problem 6 (cont.)

Consider the causal LTI system with Laplace transform and region of convergence

$$H(s) = \frac{(s-1)^2}{(s+1)^2}, \quad \Re e(s) > -1.$$

(c) (8 points)

Determine the impulse response h(t) of the system.

Hint: Write $(s-1)^2$ in the form $(s+1)^2 + f(s)$.

Problem 6 (cont.)

Consider the causal LTI system with Laplace transform and region of convergence

$$H(s) = \frac{(s-1)^2}{(s+1)^2}, \quad \Re e(s) > -1.$$

(d) (6 points)

Suppose the input to the system is $x(t) = te^t u(t)$. Determine the correponding output y(t).

Scratch page	Name/Student ID:
r F 6 -	

Scratch page	Name/Student ID:
I G	

Scratch page	Name/Student ID:
r F 6 -	

Scratch page	Name/Student ID:
r F	

Scratch page	Name/Student ID:
Page	

Scratch page	Name/Student ID:
I G	

Chapter 2: LTI systems

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$
 $y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$

If h(t) is the impulse response to the CT system S, and q(t) is the impulse response to the CT system S', then it follows that if $g(t) * h(t) = \delta(t)$, then S' is the inverse of S. The same property holds true for DT systems.

An LTI system is causal iff h[n] = 0 for n < 0 (h(t) = 0 for t < 0). If an impulse response is absolutely summable $(\sum_{k=-\infty}^{\infty} |h[k]| < \infty)$, then the LTI system is stable. If an impulse response is absolutely integrable $(\int_{-\infty}^{\infty} |h(\tau)| d\tau < \infty)$, then the LTI system is stable.

Chapter 3: Fourier series and Fourier coefficients

synthesis equation

analysis equation

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \qquad a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt \qquad \omega_0 = 2\pi/T$$

$$x[n] = \sum_{k=-\infty} a_k e^{jk\omega_0 n} \qquad a_k = \frac{1}{N} \sum_{n=-\infty} x[n] e^{-jk\omega_0 n} \qquad \omega_0 = 2\pi/N$$

Response of LTI system to complex exponential

 $e^{st}(z^n)$ is called the eigenfunction and H(s)(H(z)) the eigenvalue of the LTI system.

$$e^{st} \to H(s)e^{st}$$

$$H(s) = \int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau$$
$$z^n \to H(z)z^n \qquad H(z) = \sum_{k=-\infty}^{\infty} h[k]z^{-k}$$

Let $x(t) \to y(t)$ $(x[n] \to y[n])$ in an LTI system. Then

if
$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$
 then $y(t) = \sum_{k=-\infty}^{\infty} a_k H(jk\omega_0) e^{jk\omega_0 t}$ $\omega_0 = 2\pi/T$
if $x[n] = \sum_{k=< N>} a_k e^{jk\omega_0 n}$ then $y[n] = \sum_{k=< N>} a_k H(e^{jk\omega_0}) e^{jk\omega_0 n}$ $\omega_0 = 2\pi/N$

Chapters 4 and 5

$$\begin{split} x(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega & X(j\omega) &= \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \\ x[n] &= \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega & X(e^{j\omega}) &= \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} \end{split}$$

Triangle Inequality and summation formula:

$$|X + Y| \le |X| + |Y|$$

$$\sum_{k=0}^{\infty} z^k = \frac{1}{1-z} \quad \text{if} \quad |z| < 1$$

$$\sum_{k=0}^{N-1} z^k = \frac{1-z^N}{1-z}$$

13

Chapter 7

Impulse Train Sampling

Let x(t) be a continuous function, T be the sample period, and $x_p(t)$ the sampled function.

$$p(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT) \qquad x_p(t) = x(t)p(t) = \sum_{n = -\infty}^{\infty} x(nT)\delta(t - nT)$$

Defining $\omega_s = 2\pi/T$, the transforms are

$$P(j\omega) = \omega_s \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s) \qquad X_p(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\theta) P(j(\omega - \theta)) d\theta$$

yielding

$$X_p(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s))$$

Sampling Theorem

Let x(t) be a band-limited signal with $X(j\omega) = 0$ for $|\omega| > \omega_M$. Then x(t) is uniquely determined by its samples x(nT), $n = 0, \pm 1, \pm 2, ...$ if

$$\omega_s > 2\omega_M$$
.

Discrete-Time Processing of Continuous-Time Signals

Let $x_c(t)$ be a continuous function, T be the sample period, and $x_p(t)$ the sampled function. Define the discrete function x[n] as $x[n] = x_c(nT)$.

$$x_p(t) = x_c(t)p(t) = \sum_{n = -\infty}^{\infty} x_c(nT)\delta(t - nT)$$

$$X_p(j\omega) = \sum_{n = -\infty}^{\infty} x_c(nT)e^{-j\omega nT}$$

$$X_d(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} = \sum_{n=-\infty}^{\infty} x_c(nT)e^{-j\Omega n}$$
 and thus $X_d(e^{j\Omega}) = X_p(j\Omega/T)$

Chapter 9

Laplace Transform:
$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

Table 3.1 PROPERTIES OF THE CONTINUOUS-TIME FOURIER SERIES x(t) and y(t) are periodic with period T and fundamental frequency $\omega_0 = 2\pi/T$

both $x(t)$ and $y(t)$ periodic with period T and frequency $\omega_0 = 2\pi/T$ $y(t)$ b_k 3.5.1 Linearity $Ax(t) + By(t)$ $Aa_k + Bb_k$ 3.5.2 Time Shifting $x(t-t_0)$ $a_k e^{-jk\omega_0t_0}$ Frequency Shifting $\exp[jM\omega_0t]x(t)$ a_{k-M} 3.5.6 Conjugation $x^*(t)$ a_{k-1} 3.5.3 Time Reversal $x(-t)$ a_{k-1} 3.5.4 Time Scaling $x(at), \alpha > 0$ (periodic with period T/α) Periodic Convolution $\int_T x(\tau)y(t-\tau)d\tau \qquad Ta_kb_k$ 3.5.5 Multiplication $x(t)y(t)$ $\sum_{\ell=-\infty}^{\infty} a_\ell b_{k-\ell}$ Differentiation $dx(t)/dt$ $jk\omega_0 a_k$ Integration (requires $a_0 = 0$) $\int_{-\infty}^t x(t') dt' \qquad a_k/(jk\omega_0)$ 3.5.6 Conjugate Symmetry $x(t)$ is real $\begin{cases} a_k = a_{-k} \\ a_k = a_{-k}^* \\ \Re\{a_k\} = \Re\{a_{-k}\} \\ \Im\{a_k\} = -\sqrt{a_{-k}} \end{cases}$ 3.5.6 real and even signals $x(t)$ real and even $x(t)$ is real $x(t)$ real and odd $x(t)$ $x(t)$ is real) $x(t)$ real $x(t)$	Section	Property	Periodic Signal	Fourier Series Coefficients
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		() () 1	· /	**
Frequency Shifting $\exp[jM\omega_0t]x(t)$ a_{k-M} 3.5.6 Conjugation $x^*(t)$ a_{-k}^* 3.5.3 Time Reversal $x(-t)$ a_{-k} 3.5.4 Time Scaling $x(\alpha t), \ \alpha > 0 \text{ (periodic with period } T/\alpha)$ Periodic Convolution $\int_T x(\tau)y(t-\tau)d\tau$ Ta_kb_k 3.5.5 Multiplication $x(t)y(t)$ $\sum_{\ell=-\infty}^\infty a_\ell b_{k-\ell}$ Differentiation $dx(t)/dt$ $jk\omega_0 a_k$ Integration (requires $a_0=0$) $\int_{-\infty}^t x(t')dt'$ $a_k/(jk\omega_0)$ 3.5.6 Conjugate Symmetry $x(t)$ is real $\begin{cases} a_k = a_{-k} \\ a_k = a_{-k}^* \\ 3m\{a_k\} = -\Im \{a_{-k}\} \\ 2m\{a_k\} = -\Im \{a_{-k}\} \\ 2m\{a_k\} = -\Im \{a_{-k}\} \end{cases}$ 3.5.6 real and even signals $x(t)$ real and even a_k purely real and even a_k purely imaginary and odd a_k purely	3.5.1	Linearity	Ax(t) + By(t)	$A a_k + B b_k$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.5.2	Time Shifting	$x(t-t_0)$	$a_k e^{-jk\omega_0 t_0}$
3.5.3 Time Reversal $x(-t)$ a_{-k} 3.5.4 Time Scaling $x(\alpha t), \ \alpha > 0$ (periodic a_k with period T/α) Periodic Convolution $\int_T x(\tau)y(t-\tau)d\tau \qquad T \ a_k \ b_k$ 3.5.5 Multiplication $x(t) \ y(t) \qquad \sum_{\ell=-\infty}^\infty a_\ell \ b_{k-\ell}$ Differentiation $dx(t)/dt \qquad j \ k \ \omega_0 \ a_k$ Integration (requires $a_0=0$) $\int_{-\infty}^t x(t') \ dt' \qquad a_k/(j \ k \ \omega_0)$ $\begin{cases} a_k = a_{-k} \\ a_k = a_{-k}^* \\ \Re \{a_k\} = \Re \{a_{-k}\} \\ \Im \{a_k\} = -\Im \{a_{-k}\} \\ \Im \{a_k\} = -j\alpha_{-k} \end{cases}$ 3.5.6 real and even signals $x(t)$ real and even a_k purely real and even a_k purely imaginary and odd 3.5.6 Even Decomposition $(x(t)$ is real) $x_e(t) = \operatorname{Ev}\{x(t)\}$ $\Re \{a_k\}$		Frequency Shifting	$\exp[jM\omega_0 t] x(t)$	a_{k-M}
3.5.4 Time Scaling $x(\alpha t), \ \alpha > 0 \text{ (periodic } a_k$ with period T/α) Periodic Convolution $\int_T x(\tau)y(t-\tau)d\tau \qquad Ta_kb_k$ 3.5.5 Multiplication $x(t)y(t)$ $\sum_{\ell=-\infty}^\infty a_\ell b_{k-\ell}$ Differentiation $dx(t)/dt \qquad jk \omega_0 a_k$ Integration (requires $a_0=0$) $\int_{-\infty}^t x(t')dt' \qquad a_k/(jk\omega_0)$ $\begin{cases} a_k = a_{-k} \\ a_k=a^*_{-k}\\ \Re \epsilon\{a_k\}=\Re \epsilon\{a_{-k}\}\\ \Im m\{a_k\}=-\Im m\{a_{-k}\}\\ \frac{a_k}{2}=-\frac{a_{-k}}{2}\end{cases}$ 3.5.6 real and even signals $x(t)$ real and even $a_k \text{ purely real and even}$ 3.5.6 real and odd signals $x(t)$ real and odd $a_k \text{ purely imaginary and odd}$ 3.5.6 Even Decomposition $x(t)$ is real) $x_e(t) = \operatorname{Ev}\{x(t)\}$ $\Re \epsilon\{a_k\}$	3.5.6	Conjugation	$x^*(t)$	a_{-k}^*
with period T/α) Periodic Convolution $ \int_{T} x(\tau)y(t-\tau)d\tau \qquad T a_k b_k $ 3.5.5 Multiplication $ x(t) y(t) \qquad \sum_{\ell=-\infty}^{\infty} a_\ell b_{k-\ell} $ Differentiation $ dx(t)/dt \qquad jk \omega_0 a_k $ Integration (requires $a_0 = 0$) $ \int_{-\infty}^{t} x(t') dt' \qquad a_k/(jk \omega_0) $ $ \begin{cases} a_k = a_{-k} \\ a_k = a_{-k}^* \\ \Re \epsilon\{a_k\} = \Re \epsilon\{a_{-k}\} \\ \Im m\{a_k\} = -\Im m\{a_{-k}\} \\ 2m \{a_k = -\sqrt{a_{-k}} \\ 3.5.6 \qquad \text{real and even signals} \qquad x(t) \text{ real and even} \qquad a_k \text{ purely real and even} \\ 3.5.6 \qquad \text{real and odd signals} \qquad x(t) \text{ real and odd} \qquad a_k \text{ purely imaginary and odd} \\ 3.5.6 \qquad \text{Even Decomposition } (x(t) \text{ is real}) \qquad x_e(t) = \text{Ev } \{x(t)\} $	3.5.3	Time Reversal	x(-t)	a_{-k}
3.5.5 Multiplication $x(t) y(t)$ $\sum_{\ell = -\infty}^{\infty} a_{\ell} b_{k-\ell}$ Differentiation $dx(t)/dt$ $jk \omega_0 a_k$ Integration (requires $a_0 = 0$) $\int_{-\infty}^{t} x(t') dt'$ $a_k/(jk \omega_0)$ $\begin{cases} a_k = a_{-k} \\ a_k = a_{-k}^* \\ \Re \epsilon \{a_k\} = \Re \epsilon \{a_{-k}\} \\ \Im m \{a_k\} = -\Im m \{a_{-k}\} \\ \frac{a_k}{2a_k} = -\frac{a_{-k}}{2a_k} \end{cases}$ 3.5.6 real and even signals $x(t)$ real and even a_k purely real and even a_k purely imaginary and odd 3.5.6 Even Decomposition $(x(t)$ is real) $x_e(t) = \operatorname{Ev}\{x(t)\}$ $\Re \epsilon \{a_k\}$	3.5.4	Time Scaling		a_k
Integration (requires $a_0 = 0$) $\int_{-\infty}^{t} x(t') dt'$ $a_k/(j k \omega_0)$ $\begin{cases} a_k = a_{-k} \\ a_k = a_{-k}^* \\ \Re \epsilon \{a_k\} = \Re \epsilon \{a_{-k}\} \\ \Im \Re \{a_k\} = -\Im \Re \{a_{-k}\} \\ \frac{/a_k}{2} = -\frac{/a_{-k}}{2} \end{cases}$ 3.5.6 real and even signals $x(t) \text{ real and even}$ $3.5.6 \text{ real and odd signals}$ $x(t) \text{ real and odd}$		Periodic Convolution	$\int_T x(\tau)y(t-\tau)d\tau$	
Integration (requires $a_0 = 0$) $\int_{-\infty}^{t} x(t') dt'$ $a_k/(j k \omega_0)$ $\begin{cases} a_k = a_{-k} \\ a_k = a_{-k}^* \\ \Re \epsilon \{a_k\} = \Re \epsilon \{a_{-k}\} \\ \Im \Re \{a_k\} = -\Im \Re \{a_{-k}\} \\ \frac{/a_k}{2} = -\frac{/a_{-k}}{2} \end{cases}$ 3.5.6 real and even signals $x(t) \text{ real and even}$ $3.5.6 \text{ real and odd signals}$ $x(t) \text{ real and odd}$	3.5.5	Multiplication	x(t) y(t)	$\sum_{\ell=-\infty}^{\infty} a_{\ell} b_{k-\ell}$
3.5.6 Conjugate Symmetry $x(t) \text{ is real} \begin{cases} a_k = a_{-k} \\ a_k = a_{-k}^* \\ \Re \mathfrak{e}\{a_k\} = \Re \mathfrak{e}\{a_{-k}\} \\ \Im \mathfrak{m}\{a_k\} = -\Im \mathfrak{m}\{a_{-k}\} \\ \frac{/a_k = -/a_{-k}}{2} \end{cases}$ 3.5.6 real and even signals $x(t) \text{ real and even} \qquad a_k \text{ purely real and even}$ 3.5.6 real and odd signals $x(t) \text{ real and odd} \qquad a_k \text{ purely imaginary and odd}$ 3.5.6 Even Decomposition $(x(t) \text{ is real}) \qquad x_e(t) = \operatorname{Ev}\{x(t)\} \qquad \Re \mathfrak{e}\{a_k\}$		Differentiation	dx(t)/dt	$j k \omega_0 a_k$
3.5.6 real and even signals $x(t)$ real and even a_k purely real and even a_k purely real and even a_k purely imaginary and odd a_k purely real and even a_k		Integration (requires $a_0 = 0$)	$\int_{-\infty}^t x(t')dt'$, ,-
3.5.6 real and even signals $x(t)$ real and even a_k purely real and even a_k purely real and even a_k purely imaginary and odd a_k purely real and even a_k				$\begin{cases} a_k = a_{-k} \\ a_k = a_{-k}^* \end{cases}$
3.5.6 real and even signals $x(t)$ real and even a_k purely real and even a_k purely real and even 3.5.6 real and odd signals $x(t)$ real and odd x_k purely imaginary and odd 3.5.6 Even Decomposition x_k is real x_k x_k x_k x_k x_k x_k	3.5.6	Conjugate Symmetry	x(t) is real	$\begin{cases} \mathfrak{Re}\{a_k\} = \mathfrak{Re}\{a_{-k}\} \\ \mathfrak{Im}\{a_k\} = -\mathfrak{Im}\{a_{-k}\} \end{cases}$
3.5.6 real and even signals $x(t)$ real and even a_k purely real and even a_k purely real and even a_k purely imaginary and odd a_k purely real and even a_k				$\underline{a_k} = -\underline{a_{-k}}$
3.5.6 Even Decomposition $(x(t) \text{ is real})$ $x_e(t) = \text{Ev}\{x(t)\}$ $\Re \{a_k\}$		· ·		a_k purely real and even
		S	` '	1 0 0
3.5.6 Odd Decomposition $(x(t))$ is real $x_1(t) = Od\{x(t)\}$ if $x_2(t) = i\Im(x_1(t))$	3.5.6	Even Decomposition $(x(t) \text{ is real})$	$x_e(t) = \operatorname{Ev} \{x(t)\}$	$\mathfrak{Re}\left\{a_{k} ight\}$
3.5.0 Out Decomposition $(x(i))$ is real. $x_o(i) = \text{Ou}\{x(i)\}$ $\int \mathcal{M}\{u_k\}$	3.5.6	Odd Decomposition $(x(t) \text{ is real})$	$x_o(t) = \operatorname{Od} \{x(t)\}$	$j\mathfrak{Im}\left\{ a_{k} ight\}$

Parseval's Relation for Periodic Signals
$$(1/T)\int_T |x(t)|^2\,dt = \sum_{k=-\infty}^\infty |a_k|^2$$

Table 3.2 PROPERTIES OF THE DISCRETE-TIME FOURIER SERIES x[n] and y[n] are periodic with period N and fundamental frequency $\omega_0=2\pi/N$

Property	Periodic Signal	Fourier Series Coefficients
both $x[n]$ and $y[n]$ periodic with period N and frequency $\omega_0 = 2\pi/N$	$egin{array}{c} x[n] \ y[n] \end{array}$	a_k (periodic, period N) b_k (periodic, period N)
Linearity	Ax[n] + By[n]	$A a_k + B b_k$
Time Shifting	$x[n-n_0]$	$a_k e^{-jk\omega_0 n_0}$
Frequency Shifting	$\exp[jM\omega_0 n] x[n]$	a_{k-M}
Conjugation	$x^*[n]$	a_{-k}^*
Time Reversal	x[-n]	a_{-k}
Time Scaling	$x_{(m)}[n] = \begin{cases} x[n/m], & n \mod m = 0 \\ 0, & n \mod m \neq 0 \end{cases}$	$\frac{a_k}{m}$ (periodic, period mN)
Periodic Convolution	$\sum_{r=< N>} x[r]y[n-r]$	Na_kb_k
Multiplication	x[n] y[n]	$\sum_{\substack{\ell = < N > \\ (1 - e^{-j k \omega_0}) a_k}} a_\ell b_{k-\ell}$
First Difference	x[n] - x[n-1]	$(1 - e^{-j k \omega_0}) a_k$
Running Sum (requires $a_0 = 0$)	$\sum_{k=-\infty}^{n} x[k]$	$\left(\frac{1}{1 - e^{-jk\omega_0}}\right)a_k$
Conjugate Symmetry	x[n] is real	$\begin{cases} a_k = a_{-k} \\ a_k = a_{-k}^* \\ \mathfrak{Re}\{a_k\} = \mathfrak{Re}\{a_{-k}\} \\ \mathfrak{Im}\{a_k\} = -\mathfrak{Im}\{a_{-k}\} \\ \underline{/a_k} = -\underline{/a_{-k}} \\ a_k \text{ purely real and even} \end{cases}$
real and even signals real and odd signals	x[n] real and even $x[n]$ real and odd	$ \frac{\sqrt{a_k} = -\sqrt{a_{-k}}}{a_k \text{ purely real and even}} $ $ a_k \text{ purely imaginary and odd} $
Even Decomposition $(x[n] \text{ is real})$		a_k purely imaginary and odd $\Re \{a_k\}$
Odd Decomposition $(x[n] \text{ is real})$	$x_o[n] = \operatorname{Od} \{x[n]\}$	$j\mathfrak{Im}\left\{a_{k}\right\}$

Parseval's Relation for Periodic Signals
$$\frac{1}{N} \sum_{n=< N>} |x[n]|^2 = \sum_{k=< N>} |a_k|^2$$

Table 4.1 PROPERTIES OF THE CONTINUOUS-TIME FOURIER TRANSFORM

Property	Aperiodic Signal	Fourier Transform
	$egin{array}{l} x(t) \ y(t) \end{array}$	$X(j\omega)$ $Y(j\omega)$
Linearity	a x(t) + b y(t)	$a X(j\omega) + b Y(j\omega)$
Time Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
Frequency Shifting	$\exp(j\omega_0 t) x(t)$	$X(j(\omega-\omega_0))$
Conjugation	$x^*(t)$	$X^*(-j\omega)$
Time Reversal	x(-t)	$X(-j\omega)$
Time Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
Multiplication	x(t) y(t)	$\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\theta) Y(j(\omega - \theta)) d\theta$
Differentiation (time)	dx(t)/dt	$j\omega X(j\omega)$
Integration	$\int_{-\infty}^{t} x(t') dt'$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
Differentiation (frequency)	t x(t)	$j\frac{d}{d\omega}X(j\omega)$
		$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re\{X(j\omega)\} = \Re\{X(-j\omega)\} \end{cases}$
Conjugate Symmetry	x(t) is real	$\begin{cases} \mathfrak{Im}\{X(j\omega)\} = -\mathfrak{Im}\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \end{cases}$
real and even signals	x(t) real and even	$\frac{\sum X(j\omega) = -\sum X(-j\omega)}{X(j\omega) \text{ purely real and even}}$
real and odd signals	x(t) real and odd	$X(j\omega)$ purely imaginary and odd
Even Decomposition $(x(t) \text{ is real})$	$x_e(t) = \operatorname{Ev} \{x(t)\}$	$\mathfrak{Re}\left\{ X(j\omega) ight\}$
Odd Decomposition $(x(t) \text{ is real})$	$x_o(t) = \text{Od} \{x(t)\}$	$j\Im\mathfrak{m}\left\{ X(j\omega)\right\}$

Parseval's Relation for Aperiodic Signals $\int_{-\infty}^{\infty}|x(t)|^2\,dt=\frac{1}{2\pi}\int_{-\infty}^{\infty}|X(j\omega)|^2\,d\omega$

Table 4.2 CONTINUOUS-TIME FOURIER TRANSFORM PAIRS

		Fourier Series Coefficients
Signal	Fourier Transform	(if periodic)
$\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$	a_k
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$ otherwise
$\cos(\omega_0 t)$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = 1/2$ $a_k = 0$ otherwise
$\sin(\omega_0 t)$	$-j\pi[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = -j/2$ $a_k = 0 otherwise$
x(t) = 1	$2\pi\delta(\omega)$	$a_0=1, a_k=0, k\neq 0$ (this is the Fourier series representation for any choice of $T>0$)
Periodic square wave		
$x(t) = \begin{cases} 1, t < T_1 \\ 0, T_1 < t \le T/2 \end{cases}$ and $x(t+T) = x(t)$	$\sum_{k=-\infty}^{\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$
$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) = \begin{cases} 1, t < T_1 \\ 0, t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	aperiodic
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, \omega < W \\ 0, \omega > W \end{cases}$	aperiodic
$\delta(t)$	1	aperiodic
u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$	aperiodic
$\delta(t-t_0)$	$e^{-j\omega t_0}$	aperiodic
$e^{-at}u(t), \Re \mathfrak{e}\{a\} > 0$	$\frac{1}{a+j\omega}$	aperiodic
$t e^{-at} u(t), \Re \mathfrak{e}\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	aperiodic
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$ $\Re \mathfrak{e}\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$	aperiodic

Table 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Discrete Fourier Transform always has a period of 2π .

Property	Aperiodic Signal	Fourier Transform
	x[n]	$X(e^{j\omega})$
	y[n]	$Y(e^{j\omega})$
Linearity	a x[n] + b y[n]	$a X(e^{j\omega}) + b Y(e^{j\omega})$
Time Shifting	$x[n-n_0]$	$e^{-j\omega n_0}X(e^{j\omega})$
Frequency Shifting	$\exp[j\omega_0 n] x[n]$	$X(e^{j(\omega-\omega_0)})$
Conjugation	$x^*[n]$	$X^*(e^{-j\omega})$
Time Reversal	x[-n]	$X(e^{-j\omega})$
Time Expansion	$x_{(k)}[n] = \begin{cases} x[n/k], & n \text{ Mod } k = 0\\ 0, & n \text{ Mod } k \neq 0 \end{cases}$	$X(e^{j\omega})$
Convolution	x[n] * y[n]	$X(e^{j\omega}) Y(e^{j\omega})$
Multiplication	x[n]y[n]	$\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$
Differencing in Time	x[n] - x[n-1]	$(1 - e^{-j\omega}) X(e^{j\omega})$
Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1 - e^{-j\omega}} X(e^{j\omega})$
		$+\pi X(e^{j0}) \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$ $j \frac{d}{d\omega} X(e^{j\omega})$
Differentiation (frequency)	n x[n]	$j\frac{d}{d\omega}X(e^{j\omega})$
		$\begin{cases} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ \mathfrak{Re}\{X(e^{j\omega})\} = \mathfrak{Re}\{X(e^{-j\omega})\} \\ \mathfrak{Im}\{X(e^{-j\omega})\} = -\mathfrak{Im}\{X(e^{j\omega})\} \\ X(e^{j\omega}) = X(e^{-j\omega}) \\ \underline{/X(e^{j\omega})} = -\underline{/X(e^{-j\omega})} \end{cases}$
		$\Re \{X(e^{j\omega})\} = \Re \{X(e^{-j\omega})\}$
Conjugate Symmetry	x[n] is real	$\left\{ \Im \mathfrak{m} \{ X(e^{-j\omega}) \} = -\Im \mathfrak{m} \{ X(e^{j\omega}) \} \right.$
		$ X(e^{j\omega}) = X(e^{-j\omega}) $
		$X(e^{j\omega}) = -X(e^{-j\omega})$
real and even signals	x[n] real and even	$X(e^{j\omega})$ purely real and even
real and odd signals	x[n] real and odd	$X(e^{j\omega})$ purely imaginary and odd
Even Decomposition $(x[n] \text{ is real})$	$x_e[n] = \operatorname{Ev}\left\{x[n]\right\}$	$\mathfrak{Re}\left\{X(e^{j\omega}) ight\}$
Odd Decomposition $(x[n] \text{ is real})$	$x_o[n] = \operatorname{Od} \{x[n]\}$	$j\mathfrak{Im}\left\{X(e^{j\omega}) ight\}$

Parseval's Relation for Aperiodic Signals $\sum_{n=-\infty}^{\infty}|x[n]|^2=\frac{1}{2\pi}\int_{2\pi}|X(e^{j\omega})|^2\,d\omega$

Table 5.2 DISCRETE-TIME FOURIER TRANSFORM PAIRS

In the pairs given below, if the signal is periodic, then $\omega_0 = 2\pi m/N$, where $m, N \in \mathbb{Z}$. If $\omega_0/(2\pi)$ is irrational, then the signal is aperiodic. Discrete Fourier Transform always has a period of 2π .

Signal Fourier Transform		Fourier Series Coefficients (if periodic)	
$\sum_{k=< N>} a_k e^{j(2\pi/N)n}$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	a_k	
$e^{j\omega_0 n}$	$2\pi \sum_{\ell=-\infty}^{\infty} \delta\left(\omega - \omega_0 - 2\pi\ell\right)$	$a_k = \begin{cases} 1, & k = m + qN \text{ where } q \in \mathbb{Z} \\ 0, & \text{otherwise} \end{cases}$	
$\cos \omega_0 n$	$\pi \sum_{\ell=-\infty}^{\infty} \left\{ \delta \left(\omega - \omega_0 - 2\pi \ell \right) + \delta \left(\omega + \omega_0 - 2\pi \ell \right) \right\}$	$a_k = \begin{cases} 1/2, & k = \pm m + qN \text{ where } q \in \mathbb{Z} \\ 0, & \text{otherwise} \end{cases}$	
$\sin \omega_0 n$	$-j\pi \sum_{\ell=-\infty}^{\infty} \left\{ \delta \left(\omega - \omega_0 - 2\pi \ell \right) - \delta \left(\omega + \omega_0 - 2\pi \ell \right) \right\}$	$a_k = \begin{cases} -j/2, & k = m + qN \text{ where } q \in \mathbb{Z} \\ j/2, & k = -m + qN \\ 0, & \text{otherwise} \end{cases}$	
x[n] = 1	$2\pi \sum_{\ell=-\infty}^{\infty} \delta\left(\omega - 2\pi\ell\right)$	$a_k = \begin{cases} 1, & k = qN \text{ where } q \in \mathbb{Z} \\ 0, & \text{otherwise} \end{cases}$	
Periodic square wave		. [(0 1 /27)/27 /2)]	
$x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{\sin[(2\pi k/N)(N_1 + 1/2)]}{N\sin[2\pi k/2N]}, k \text{ Mod } N \neq 0$ $a_k = (2N_1 + 1)/N, \qquad k \text{ Mod } N = 0$	
$\sum_{k=-\infty}^{\infty} \delta[n - kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N}$ for all k	
$a^n u[n], a < 1$	$\frac{1}{1 - ae^{-j\omega}}$	aperiodic	
$x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+1/2)]}{\sin(\omega/2)}$	aperiodic	
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$X\left(e^{j\omega}\right) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$	aperiodic	
$-\delta[n]$	1	aperiodic	
u[n]	$\frac{1}{1 - e^{-j\omega}} + \pi \sum_{k = -\infty}^{\infty} \delta(\omega - 2\pi k)$	aperiodic	
${\delta[n-n_0]}$	$e^{-j\omega n_0}$	aperiodic	
$(n+1)a^nu[n], a < 1$	$\frac{1}{(1-ae^{-j\omega})^2}$	aperiodic	
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a < 1$	$\frac{1}{(1-ae^{-j\omega})^r}$	aperiodic	

Table 9.1 PROPERTIES OF THE LAPLACE TRANSFORM

Property	Signal	Laplace Transform	ROC
	$x(t)$ $x_1(t)$	$\frac{X(s)}{X_1(s)}$	$\frac{R}{R_1}$
	$x_2(t)$	$X_2(s)$	R_2
Linearity	$a x_1(t) + b x_2(t)$	$a X_1(s) + b X_2(s)$	At least $R_1 \cap R_2$
Time shifting	$x(t-t_0)$	$e^{-st_0}X(s)$	R
Shifting in s	$e^{s_0 t} x(t)$	$X(s-s_0)$	Shifted version of R (i.e., s is in the ROC if $s - s_0$ is in R)
Time scaling	x(at)	$\frac{1}{ a } X \left(\frac{s}{a}\right)$	Scaled ROC (i.e., s is in the ROC if s/a is in R)
Conjugation	$x^*(t)$	X^* (s^*)	R
Convolution	$x_1(t) * x_2(t)$	$X_1\left(s\right)X_2\left(s\right)$	At least $R_1 \cap R_2$
Differentiation	$\frac{d}{dt}x(t)$	sX(s)	At least R
Differentiation in s	-t x(t)	$\frac{d}{ds}X\left(s\right)$	R
Integration	$\int_{-\infty}^t x(\tau) d\tau$	$\frac{1}{s}X\left(s\right)$	At least $R \cap \{\Re \mathfrak{e}\{s\} > 0\}$

Initial Value Theorem:

If x(t) = 0 for t < 0 and x(t) contains no impulses or higher-order singularities at t = 0, then $x(0^+) = \lim_{s \to \infty} sX(s)$. Final Value Theorem:

If x(t) = 0 for t < 0 and x(t) has a finite limit as $t \to \infty$, then $\lim_{t \to \infty} x(t) = \lim_{s \to 0} s X(s)$.

21

Table 9.2 LAPLACE TRANSFORM PAIRS

Signal	Laplace Transform	ROC
$\delta(t)$	1	All s
u(t)	$\frac{1}{s}$	$\Re \mathfrak{e}\left\{s\right\}>0$
-u(-t)	$\frac{1}{s}$	$\Re \mathfrak{e}\left\{s\right\}<0$
$\frac{t^{n-1}}{(n-1)!}u(t)$	s^{-n}	$\Re \mathfrak{e}\left\{s\right\}>0$
$-\frac{t^{n-1}}{(n-1)!}u(-t)$	s^{-n}	$\mathfrak{Re}\left\{ s\right\} <0$
$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	$\mathfrak{Re}\left\{ s\right\} >-\alpha$
$-e^{-\alpha t}u(-t)$	$\frac{1}{s+\alpha}$	$\mathfrak{Re}\left\{ s\right\} <-\alpha$
$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^n}$	$\mathfrak{Re}\left\{ s\right\} >-\alpha$
$-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)$	$\frac{1}{(s+\alpha)^n}$	$\mathfrak{Re}\left\{ s\right\} <-\alpha$
$\delta(t-T)$	e^{-sT}	All s
$\left[\cos\omega_0 t\right] u(t)$	$\frac{s}{s^2 + \omega_0^2}$	$\Re \mathfrak{e}\left\{s\right\}>0$
$\left[\sin\omega_0 t\right] u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\Re \mathfrak{e}\left\{s\right\}>0$
$\left[e^{-\alpha t}\cos\omega_0 t\right]u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega_0^2}$	$\mathfrak{Re}\left\{ s\right\} >-\alpha$
$\left[e^{-\alpha t}\sin\omega_0 t\right]u(t)$	$\frac{\omega_0}{(s+\alpha)^2 + \omega_0^2}$	$\mathfrak{Re}\left\{ s\right\} >-\alpha$
$u_n(t) = \frac{d^n \delta(t)}{dt^n}$	s^n	all s
$u_{-n}(t) = u(t) * \dots * u(t)$ n times	s^{-n}	$\mathfrak{Re}\left\{ s\right\} >0$