

Central European Institute of Technology BRNO | CZECH REPUBLIC

David Potěšil Kristína Gömöryová

2019-11-20

Anna Schneiderová Pavel Hruška Ranjani Ganji

Processing of proteomics data in KNIME

Workshop outline

- morning session theoretical part
 - 10:00 10:15 Opening and introduction
 - 10:15 10:45 Software container running KNIME
 - 10:45 11:00 Coffee break
 - 11:00 11:30 Introduction to KNIME
 - 11:30 11:45 Coffee break
 - 11:45 12:30 Practical applications, our KNIME metanodes
 - 12:30 13:30 Lunch break, visit of our laboratories for interested people

Workshop outline

- afternoon session practical part
 - 13:30 16:30 KNIMing and coffee breaks
 - 16:30 18:00 Discussion

Workshop organization remarks

- morning session
 - presentation slides will be provided
 - keep your questions to the end of each presentation
- afternoon session
 - virtual workspaces provided to you by us will be kept for you till 31st January 2020
 - changes in the network settings will be necessary though (different IP::port settings)
 - let us know if you would need prolongment
 - data and workflows presented will be provided

Workshop organization remarks

everyone has working WiFi connection?

who does not have working environment accessible and wants to have one?

Workshop outline

- morning session theoretical part
 - 10:00 10:15 Opening and introduction
 - 10:15 10:45 Software container running KNIME
 - 10:45 11:00 Coffee break
 - 11:00 11:30 Introduction to KNIME
 - 11:30 11:45 Coffee break
 - 11:45 12:30 Practical applications, our KNIME metanodes
 - 12:30 13:30 Lunch break, visit of our laboratories for interested people

0) General proteomics study

- email in our inbox
 - "Hello, we are studying very interesting protein A and would love to know how it will look like if we will get rid of it in our cell line.
- discussion about the study, experiment design specification
 - two types of cell line
 - WT wild type
 - KO protein A knocked out
 - 4 replicates
 - prepared all in parallel
- samples processing plan on our side, instrument booking
- samples preparation on the customer side

- samples processing in our laboratory
 - e.g. cells lysis (proteins solubilization)
 - protein level quality control (QC) step (1D SDS-PAGE; semi quant.)
 - FASP (proteins ⇒ peptides)
 - peptide level QC (LC-UV-MS; semi quant.)
 - peptides transfer into the LC-MS vial prior the LC-MS/MS measurement

- final LC-MS analyses of the resulting peptide mixtures
 - potential issues due to samples matrix and or technical problems with the used instruments
 - e.g. residual detergents affecting the peptides LC separation, "dirty" mass spectrometer
 - iRT injected together with each sample, checked for retention and intensity profiles
 - partial samples reprocessing might be sometimes necessary with another round of the LC-MS analyses

QC database searches

- potential issues with protein type contaminations
 - e.g. FBS, bacterial contamination
 - QC database searches to check on any potential samples contamination
- potential issues with not expected peptide or protein level modifications
 - e.g. partially digested sample (not specific peptides)
 - QC database searches to check presence of not expected modifications

sometimes critical issue ⇒ new samples preparation

- final database searches and protein quantification
 - peptides identification, proteins list generation and peptides and proteins quantification
 - including LC-MS signal, not MS/MS based quant., e.g. MBR
 - more and more complex approaches
 - potential issues affecting the results worth to check
 - varying or generally too low identification rates
 - separation specific issues (varying peptides LC-MS peaks widths and or retention times)

PG	Accession	Protein intensity					
		A1	A2	A3	B1	B2	В3
1	P12345	20	18	19	12	15	13
2	P23456	28	24	23	0	0	0
3	P34567	18	17	15	16	19	18
4	P45678	0	0	0	0	0	0
5	P56789	0	0	0	20	24	20

- proteins quantification data preprocessing
 - proteins list filtering
 - transformation, normalization
 - missing data imputation
 - + another level of QC steps (cluster analysis, correlation plots inspection, ...)
 - get to know the data prior statistics...
 - potential issues observed/affecting the results
 - not expected design "features" paired design, batch effects
 - outlying sample replicates

cluster analysis

samples protein intensities correlations

- statistical data analysis
 - e.g. LIMMA test (moderated t-test)
 - importance of proper experimental design, outliers exclusion, ...

- initial proteins list interpretation
 - using whole protein list or just candidate proteins list
 - e.g. pathway analysis using Reactome

- study results discussion with the customer
- study results verification
 - mainly on the customer side, with our assistance if needed
 - MS data re-evaluation and finalization sometimes needed
 - including e.g. MS data database re-searching
 - combination with other omics data
 - combining with another set of samples prepared
 - even several years long process...
- study publication

Number of LC-MS/MS samples (04/2016 – 11/2019)

CIISB project - 10 Core facilities

funding of our CF

General proteomics study in our core facility - overview

LC-MS/MS data interpretation Bioinformatic analysis

- QC database searching
- final database searching and proteins quantification
- quantitative data preprocessing (transformation, normalization etc.)
- statistical evaluation
- initial results interpretation
- reporting

1) Software container running KNIME

Reasons to create such environment?

- more and more complex data processing and visualization steps needed and used
- combining individual steps into complex pipelines
 - flexibility of the processing ways necessary
 - one approach not generally applicable for all datasets, even though with similar concept
 - multiple settings tested, benchmarked and considered
- to have easy to be used environment without any scripting necessary
- to have reproducible environment, yet with up to date techniques, i.e. versioning needed
 - use identical environment on many installations covering also e.g. R, python specific versions
 - older versions easily accessible if needed even after years
- revisiting the old pipelines needed (publication, candidates verification, ...)
 - detailed documentation of the used tools/steps with concrete settings
 - single processing step settings details having major effect on the results!
 - · including all the scripts used
- be able to reproduce/reuse the older pipelines on other data Don't Repeat Yourself
- use, support and build our processing pipelines on free and open-source tools

Potential tools/solutions for data processing

- selected tools/solutions
 - Proteome Discoverer commercial, ready-to-use solution, limited functionality
 - MaxQuant + Perseus free, but closed source (black boxes)
 - R studio/R console (DEP, MSnbase)
 - Jupyter notebooks using python, R, or other scripting language
 - Galaxy (https://galaxyproject.org)
 - great community
 - less clear and user-friendly interface
 - harder to get new features in and script on the go

Ubuntu

(incl. desktop environment, browser, text editor) KNIME
Analytics
Platform
with
additional

python and selected packages for use in KNIME

R and selected packages for use in KNIME

Scripts for selected use cases like git

access via
VNC
protocol
and shared
folder

Running software container scheme – local version

your PC (Windows, Linux) or Mac

Running software container scheme – server version

your PC (Windows, Linux) or Mac

your remote server

Requirements to run container – run locally

- hardware
 - supporting virtualization (you may need to enable it in the bios)
 - desktop or server; Mac hardware 2010 or newer
- operation system
 - Linux (64-bit, kernel >=3.10)
 - Mac (macOS >=10.12)
 - Windows (64-bit, Win 10, Pro, Enterprise or Education, Build 15063 or later)
- software
 - docker application installed
 - VNC viewer (TigerVNC viewer recommended)
 - VirtualBox can NOT be installed.
 - folder for sharing with the environment

Requirements to run container – access to server

- hardware
 - supporting virtualization (you may need to enable it in the bios)
 - desktop or server; Mac hardware 2010 or newer
- operation system
 - **Linux** (64-bit, kernel >=3.10)
 - Mac (macOS >=10.12)
 - Windows (64-bit, Win 10, Pro, Enterprise or Education, Build 15063 or later)
- software
 - docker application installed
 - VNC viewer (TigerVNC viewer recommended)
 - VirtualBox can NOT be installed
 - folder for sharing with the environment access only docker

Software container availability

- GitHub repository with docker files and associated files + script
 - to know how the environment has been build and what components it components
 - https://github.com/OmicsWorkflows/KNIME_docker_vnc

- to use the environment directly (info on how to use it is on the GitHub repository)
- https://hub.docker.com/r/cfprot/knime

Thank you for your attention

Workshop outline

- morning session theoretical part
 - 10:00 10:15 Opening and introduction
 - 10:15 10:45 Software container running KNIME
 - 10:45 11:00 Coffee break
 - 11:00 11:30 Introduction to KNIME
 - 11:30 11:45 Coffee break
 - 11:45 12:30 Practical applications, our KNIME metanodes
 - 12:30 13:30 Lunch break, visit of our laboratories for interested people

