Table of Contents

- 1 Cholesky Decomposition
- 1.1 Cholesky decomposition
- 1.2 Pivoting
- 1.3 Implementation
- 1.3.1 Example: positive definite matrix.
- 1.3.2 Example: positive semi-definite matrix.
- 1.4 Applications
- 1.4.1 Multivariate normal density
- 1.4.2 Linear regression
- 1.5 Further reading

In [1]:

versioninfo()

```
Julia Version 1.1.0
Commit 80516ca202 (2019-01-21 21:24 UTC)
Platform Info:
 OS: macOS (x86_64-apple-darwin14.5.0)
 CPU: Intel(R) Core(TM) i7-6920HQ CPU @ 2.90GHz
 WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-6.0.1 (ORCJIT, skylake)
Environment:
  JULIA_EDITOR = code
```

Cholesky Decomposition

· A basic tenet in numerical analysis:

The structure should be exploited whenever solving a problem.

Common structures include: symmetry, positive (semi)definiteness, sparsity, Kronecker product, low rank, ...

- LU decomposition (Gaussian Elimination) is not used in statistics so often because most of time statisticians deal with positive (semi)definite matrix. (That's why I hate to see solve() in R code.)
- For example, in the normal equation

$$\mathbf{X}^T \mathbf{X} \beta = \mathbf{X}^T \mathbf{y}$$

for linear regression, the coefficient matrix $\mathbf{X}^T\mathbf{X}$ is symmetric and positive semidefinite. How to exploit this structure?

Cholesky decomposition

• Theorem: Let $\mathbf{A} \in \mathbb{R}^{n imes n}$ be symmetric and positive definite. Then $\mathbf{A} = \mathbf{L}\mathbf{L}^T$, where \mathbf{L} is lower triangular with positive diagonal entries and is unique.

Proof (by induction):

If n=1, then $\ell=\sqrt{a}$. For n>1, the block equation

$$egin{pmatrix} egin{pmatrix} a_{11} & \mathbf{a}^T \ \mathbf{a} & \mathbf{A}_{22} \end{pmatrix} = egin{pmatrix} \ell_{11} & \mathbf{0}_{n-1}^T \ \mathbf{l} & \mathbf{L}_{22} \end{pmatrix} egin{pmatrix} \ell_{11} & \mathbf{l}^T \ \mathbf{0}_{n-1} & \mathbf{L}_{22}^T \end{pmatrix}$$

has solution

$$egin{aligned} \ell_{11} &= \sqrt{a_{11}} \ \mathbf{l} &= \ell_{11}^{-1}\mathbf{a} \ \mathbf{L}_{22}\mathbf{L}_{22}^T &= \mathbf{A}_{22} - \mathbf{l}\mathbf{l}^T &= \mathbf{A}_{22} - a_{11}^{-1}\mathbf{a}\mathbf{a}^T. \end{aligned}$$

Now $a_{11}>0$ (why?), so ℓ_{11} and ${f l}$ are uniquely determined. ${f A}_{22}-a_{11}^{-1}{f a}{f a}^T$ is positive definite because $\bf A$ is positive definite (why?). By induction hypothesis, ${\bf L}_{22}$ exists and is unique.

• The constructive proof completely specifies the algorithm:

· Computational cost:

$$rac{1}{2}[2(n-1)^2+2(n-2)^2+\cdots+2\cdot 1^2]pprox rac{1}{3}n^3 \quad ext{flops}$$

plus n square roots. Half the cost of LU decomposition by utilizing symmetry.

• In general Cholesky decomposition is very stable. Failure of the decomposition simply means A is not positive definite. It is an efficient way to test positive definiteness.

Pivoting

- When ${f A}$ does not have full rank, e.g., ${f X}^T{f X}$ with a non-full column rank ${f X}$, we encounter $a_{kk}=0$ during the procedure.
- Symmetric pivoting. At each stage k, we permute both row and column such that $\max_{k < i < n} a_{ii}$ becomes the pivot. If we encounter $\max_{k \leq i \leq n} a_{ii} = 0$, then $\mathbf{A}[k:n,k:n] = \mathbf{0}$ (why?) and the algorithm terminates.
- · With symmetric pivoting:

$$\mathbf{P}\mathbf{A}\mathbf{P}^T = \mathbf{L}\mathbf{L}^T,$$

where ${f P}$ is a permutation matrix and ${f L} \in \mathbb{R}^{n imes r}$, $r = \mathrm{rank}({f A})$

Implementation

- LAPACK functions: ?potrf (http://www.netlib.org/lapack/explore-
 httml/d1/d7a/group double p ocomputational ga2f55f604a6003d03b5cd4a0adcfb74d6.html#ga2f55f604
 (without pivoting), ?pstrf (httml/da/dba/group double o the roomputational ga31cdc13a7f4ad687f4aefebff870e1cc.html#ga31cd
 (with pivoting).
- Julia functions: cholesky
 <a href="mailto:(https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.cholesky), cholesky!, cholesky!, or call LAPACK wrapper functions potrf! (https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.LAPACK.potrf!)

Example: positive definite matrix.

```
In [2]:
using LinearAlgebra
A = Float64.([4 12 -16; 12 37 -43; -16 -43 98])
Out[2]:
3×3 Array{Float64,2}:
  4.0 12.0 -16.0
  12.0 37.0 -43.0
 -16.0 -43.0
              98.0
In [3]:
# Cholesky without pivoting
Achol = cholesky(A)
Out[3]:
Cholesky{Float64,Array{Float64,2}}
U factor:
3×3 UpperTriangular{Float64,Array{Float64,2}}:
 2.0 6.0 -8.0
           5.0
     1.0
           3.0
In [4]:
typeof(Achol)
Out[4]:
Cholesky{Float64,Array{Float64,2}}
In [5]:
fieldnames(typeof(Achol))
Out[5]:
(:factors, :uplo, :info)
```

```
In [6]:
# retrieve the lower triangular Cholesky factor
Achol.L
Out[6]:
3×3 LowerTriangular{Float64,Array{Float64,2}}:
  2.0
  6.0 1.0
 -8.0 5.0 3.0
In [7]:
# retrieve the upper triangular Cholesky factor
Achol.U
Out[7]:
3×3 UpperTriangular{Float64,Array{Float64,2}}:
 2.0 6.0 -8.0
     1.0
           5.0
           3.0
    .
In [8]:
b = [1.0; 2.0; 3.0]
A \ b # this does LU; wasteful!; 2/3 \text{ n}^3 + 2\text{n}^2
Out[8]:
3-element Array{Float64,1}:
 28.58333333333338
 -7.66666666666679
  1.333333333333333
In [9]:
Achol \ b # two triangular solves; only 2n^2 flops
Out[9]:
3-element Array{Float64,1}:
 28.583333333333332
 -7.66666666666666
  1.3333333333333333
In [10]:
det(A) # this actually does LU; wasteful!
Out[10]:
35.9999999999994
In [11]:
det(Achol) # cheap
Out[11]:
36.0
```

```
In [12]:
```

```
inv(A) # this does LU!
Out[12]:
3×3 Array{Float64,2}:
 49.3611
          -13.5556
                        2.11111
 -13.5556
             3.77778
                        -0.555556
   2.11111 -0.555556
                        0.111111
In [13]:
inv(Achol)
Out[13]:
3×3 Array{Float64,2}:
 49.3611 -13.5556
                        2.11111
 -13.5556
             3.77778
                        -0.555556
   2.11111
            -0.555556
                        0.111111
```

Example: positive semi-definite matrix.

In [14]:

```
using Random
Random.seed!(123) # seed
A = randn(5, 3)
A = A * transpose(A) # A has rank 3
```

Out[14]:

```
5×5 Array{Float64,2}:
 1.97375
            2.0722
                     1.71191
                                0.253774
                                           -0.544089
 2.0722
            5.86947
                     3.01646
                                0.93344
                                           -1.50292
 1.71191
            3.01646
                     2.10156
                                0.21341
                                           -0.965213
 0.253774
            0.93344
                     0.21341
                                0.393107
                                           -0.0415803
                                            0.546021
 -0.544089 -1.50292 -0.965213 -0.0415803
```

```
In [15]:
```

```
Achol = cholesky(A, Val(true)) # 2nd argument requests partial pivoting
RankDeficientException(1)
Stacktrace:
 [1] chkfullrank at /Users/osx/buildbot/slave/package_osx64/build/usr/shar
e/julia/stdlib/v1.1/LinearAlgebra/src/cholesky.jl:498 [inlined]
 [2] #cholesky!#98(::Float64, ::Bool, ::Function, ::Hermitian{Float64,Arra
y{Float64,2}}, ::Val{true}) at /Users/osx/buildbot/slave/package_osx64/bui
ld/usr/share/julia/stdlib/v1.1/LinearAlgebra/src/cholesky.jl:195
 [3] #cholesky! at ./none:0 [inlined]
 [4] #cholesky!#100(::Float64, ::Bool, ::Function, ::Array{Float64,2}, ::V
al{true}) at /Users/osx/buildbot/slave/package_osx64/build/usr/share/juli
a/stdlib/v1.1/LinearAlgebra/src/cholesky.jl:221
 [5] #cholesky#102 at ./none:0 [inlined]
 [6] cholesky(::Array{Float64,2}, ::Val{true}) at /Users/osx/buildbot/slav
e/package_osx64/build/usr/share/julia/stdlib/v1.1/LinearAlgebra/src/choles
ky.jl:296
 [7] top-level scope at In[15]:1
In [16]:
Achol = cholesky(A, Val(true), check=false) # turn off checking pd
Out[16]:
CholeskyPivoted{Float64,Array{Float64,2}}
U factor with rank 4:
5×5 UpperTriangular{Float64,Array{Float64,2}}:
 2.4227 0.855329 0.38529
                               -0.620349
                                             1.24508
        1.11452
                  -0.0679895 -0.0121011
                                             0.580476
                   0.489935
                               0.4013
                                           -0.463002
                               1.49012e-8
                                            0.0
                                           0.0
permutation:
5-element Array{Int64,1}:
 2
 1
 4
 5
 3
In [17]:
rank(Achol) # determine rank from Cholesky factor
Out[17]:
In [18]:
rank(A) # determine rank from SVD, which is more numerically stable
Out[18]:
3
```

```
In [19]:
Achol.L
Out[19]:
5×5 LowerTriangular{Float64,Array{Float64,2}}:
  2.4227
 0.855329 1.11452
 0.38529 -0.0679895
                        0.489935
 -0.620349 -0.0121011 0.4013
                                 1.49012e-8
  1.24508
            0.580476 -0.463002 0.0
                                             0.0
In [20]:
Achol.U
Out[20]:
5×5 UpperTriangular{Float64,Array{Float64,2}}:
 2.4227 0.855329
                  0.38529
                             -0.620349
                                          1.24508
        1.11452
                  -0.0679895 -0.0121011
                                           0.580476
                  0.489935
                             0.4013
                                         -0.463002
                             1.49012e-8 0.0
                                         0.0
In [21]:
Achol.p
Out[21]:
5-element Array{Int64,1}:
 2
 1
 4
 5
 3
In [22]:
#PAP'=LU
norm(Achol.P * A * Achol.P - Achol.L * Achol.U)
Out[22]:
```

7.5285903934693295

Applications

• No inversion mentality: Whenever we see matrix inverse, we should think in terms of solving linear equations. If the matrix is positive (semi)definite, use Cholesky decomposition, which is twice cheaper than LU decomposition.

Multivariate normal density

Multivariate normal density $MVN(0, \Sigma)$, where Σ is p.d., is

$$-rac{n}{2}\mathrm{log}(2\pi) - rac{1}{2}\mathrm{log}\det\Sigma - rac{1}{2}\mathbf{y}^T\Sigma^{-1}\mathbf{y}.$$

- Method 1: (a) compute explicit inverse Σ^{-1} ($2n^3$ flops), (b) compute quadratic form ($2n^2 + 2n$ flops), (c) compute determinant $(2n^3/3 \text{ flops})$.
- Method 2: (a) Cholesky decomposition $\Sigma = \mathbf{L}\mathbf{L}^T$ ($n^3/3$ flops), (b) Solve $\mathbf{L}\mathbf{x} = \mathbf{y}$ by forward substitutions (n^2 flops), (c) compute quadratic form $\mathbf{x}^T\mathbf{x}$ (2n flops), and (d) compute determinant from Cholesky factor (n flops).

Which method is better?

In [23]:

```
# this is a person w/o numerical analsyis training
function logpdf_mvn_1(y::Vector, Σ::Matrix)
    n = length(y)
    -(n//2) * log(2\pi) - (1//2) * logdet(\Sigma) - (1//2) * y' * inv(\Sigma) * y
end
# this is an efficiency-savvy person
function logpdf_mvn_2(y::Vector, Σ::Matrix)
    n = length(y)
    \Sigmachol = cholesky(Symmetric(\Sigma))
    - (n//2) * log(2\pi) - (1//2) * logdet(Σchol) - (1//2) * sum(abs2, Σchol.L \ y)
end
# better memory efficiency
function logpdf_mvn_3(y::Vector, Σ::Matrix)
    n = length(y)
    \Sigmachol = cholesky(Symmetric(\Sigma))
    - (n//2) * log(2π) - (1//2) * logdet(Σchol) - (1//2) * dot(y, Σchol \ y)
end
```

Out[23]:

logpdf mvn 3 (generic function with 1 method)

In [24]:

```
using BenchmarkTools, Distributions, Random
Random.seed!(123) # seed
n = 1000
# a pd matrix
\Sigma = convert(Matrix{Float64}, Symmetric([i * (n - j + 1) for i in 1:n, j in 1:n]))
y = rand(MvNormal(\Sigma)) # one random sample from N(0, \Sigma)
# at least they give same answer
@show logpdf_mvn_1(y, \Sigma)
@show logpdf_mvn_2(y, \Sigma)
@show logpdf_mvn_3(y, \Sigma);
logpdf mvn 1(y, \Sigma) = -4878.375103770505
```

```
logpdf mvn 2(y, \Sigma) = -4878.375103770553
logpdf_mvn_3(y, \Sigma) = -4878.375103770553
```

```
In [25]:
```

```
@benchmark logpdf_mvn_1(y, Σ)
Out[25]:
BenchmarkTools.Trial:
 memory estimate: 15.78 MiB
 allocs estimate: 14
  -----
 minimum time:
                   37.747 ms (0.00% GC)
 median time:
                   41.845 ms (3.56% GC)
 mean time:
                   42.982 ms (3.71% GC)
 maximum time:
                   85.951 ms (54.02% GC)
  -----
                   117
  samples:
 evals/sample:
                   1
In [26]:
@benchmark logpdf_mvn_2(y, Σ)
Out[26]:
BenchmarkTools.Trial:
 memory estimate: 15.27 MiB
  allocs estimate: 10
  minimum time:
                   7.946 ms (0.00% GC)
 median time:
                   9.517 ms (16.00% GC)
 mean time:
                  9.518 ms (12.95% GC)
                  59.474 ms (82.87% GC)
 maximum time:
  _____
  samples:
                   525
 evals/sample:
                   1
In [27]:
@benchmark logpdf_mvn_3(y, \Sigma)
Out[27]:
BenchmarkTools.Trial:
 memory estimate: 7.64 MiB
  allocs estimate: 8
  -----
  minimum time:
                   6.353 ms (0.00% GC)
                   6.571 ms (0.00% GC)
 median time:
                   7.318 ms (9.51% GC)
 mean time:
                   54.287 ms (88.08% GC)
 maximum time:
  samples:
                   682
  evals/sample:
                   1
```

- To evaluate same multivariate normal density at many observations y_1,y_2,\ldots , we pre-compute the Cholesky decomposition ($n^3/3$ flops), then each evaluation costs n^2 flops.

Linear regression

- Cholesky decomposition is **one** approach to solve linear regression. Assume $\mathbf{X} \in \mathbb{R}^{n \times p}$ and $\mathbf{y} \in \mathbb{R}^n$.
 - Compute $\mathbf{X}^T\mathbf{X}$: np^2 flops
 - lacksquare Compute $\mathbf{X}^T\mathbf{y}$: 2np flops
 - Cholesky decomposition of $\mathbf{X}^T\mathbf{X}$: $\frac{1}{3}p^3$ flops
 - lacksquare Solve normal equation $\mathbf{X}^T\mathbf{X}eta = \mathbf{X}^T\mathbf{y}$: $2p^2$ flops
 - If need standard errors, another $(4/3)p^3$ flops

Total computational cost is $np^2+(1/3)p^3$ (without s.e.) or $np^2+(5/3)p^3$ (with s.e.) flops.

Further reading

- Section 7.7 of Numerical Analysis for Statisticians (http://ucla.worldcat.org/title/numerical-analysis-forstatisticians/oclc/793808354&referer=brief results) of Kenneth Lange (2010).
- Section II.5.3 of Computational Statistics (http://ucla.worldcat.org/title/computationalstatistics/oclc/437345409&referer=brief results) by James Gentle (2010).
- Section 4.2 of Matrix Computation (http://catalog.library.ucla.edu/vwebv/holdingsInfo?bibId=7122088) by Gene Golub and Charles Van Loan (2013).