An assessment of racial disparities in pretrial decision-making using misclassification models

Kimberly A. H. Webb, Sarah A. Riley, and Martin T. Wells Joint Statistical Meetings – August 4, 2024

• Goal: Study algorithmic bias in pretrial risk assessment.

- Goal: Study algorithmic bias in pretrial risk assessment.
 - Pretrial risk assessment algorithms provide an evaluation of the likelihood of "pretrial failure".

 Goal: Study algorithmic bias in pretrial risk assessment.

Pretrial failure:
Reoffending before
trial or failing to
appear for trial

 Pretrial risk assessment algorithms provide an evaluation of the likelihood of "pretrial failure".

Pretrial failure:

Reoffending before trial or failing to appear for trial

- Goal: Study algorithmic bias in pretrial risk assessment.
 - Pretrial risk assessment algorithms provide an evaluation of the likelihood of "pretrial failure".
 - Used by judges at arraignment to determine whether to release or detain defendants pending trial.

Pretrial failure:

Reoffending before trial or failing to appear for trial

- Goal: Study algorithmic bias in pretrial risk assessment.
 - Pretrial risk assessment algorithms provide an evaluation of the likelihood of "pretrial failure".
 - Used by judges at arraignment to determine whether to release or detain defendants pending trial.
 - What are risk factors for pretrial failure? Are judges and risk assessments accurate? Are they biased?

Pretrial failure:

Reoffending before trial or failing to appear for trial

- Goal: Study algorithmic bias in pretrial risk assessment.
 - Pretrial risk assessment algorithms provide an evaluation of the likelihood of "pretrial failure".
 - Used by judges at arraignment to determine whether to release or detain defendants pending trial.
 - What are risk factors for pretrial failure? Are judges and risk assessments accurate? Are they biased?
- Method: Develop misclassification modeling approach, incorporating the "two stage" nature of this system.

	Stage 2 observation mechanism		
	Stage 1 observation mechanism		
Lon			
True outcome mechanism		1	
		1	
1			
		1	
1			
i		 	
			9 9
			ז

individual ₁₇

logit{
$$P(Y^{*(2)} = 1 | Y^{*(1)} = k, Y = j, Z^{(2)}; \gamma)$$
} = $\gamma_{1kj0}^{(2)} + \gamma_{1kj,race}^{(2)}$ RACE

True outcome mechanism:

$$logit\{P(Y = 1 | X; \boldsymbol{\beta})\} = \beta_0 + \beta_{FTA}FTA + \beta_{unemploymed}E + \beta_{drug}D + \beta_{violent}V$$

Stage 1 (VPRAI) observation mechanism:

logit{
$$P(Y^{*(1)} = 1 | Y = j, Z^{(1)}; \gamma)$$
} = $\gamma_{1j0}^{(1)} + \gamma_{1j,race}^{(1)}$ RACE

logit{
$$P(Y^{*(2)} = 1 | Y^{*(1)} = k, Y = j, Z^{(2)}; \gamma)$$
} = $\gamma_{1kj0}^{(2)} + \gamma_{1kj,race}^{(2)}$ RACE

Primary interest: Estimating β

True outcome mechanism:

$$logit\{P(Y = 1 | X; \boldsymbol{\beta})\} = \beta_0 + \beta_{FTA}FTA + \beta_{unemploymed}E + \beta_{drug}D + \beta_{violent}V$$

Stage 1 (VPRAI) observation mechanism:

logit{
$$P(Y^{*(1)} = 1 | Y = j, Z^{(1)}; \gamma)$$
} = $\gamma_{1j0}^{(1)} + \gamma_{1j,race}^{(1)}$ RACE

logit{
$$P(Y^{*(2)} = 1 | Y^{*(1)} = k, Y = j, Z^{(2)}; \gamma)$$
} = $\gamma_{1kj0}^{(2)} + \gamma_{1kj,race}^{(2)}$ RACE

Primary interest: Estimating β

Secondary interest: Estimating γ

True outcome mechanism:

$$logit\{P(Y = 1 | X; \boldsymbol{\beta})\} = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_{FTA}FTA + \boldsymbol{\beta}_{unemploymed}E + \boldsymbol{\beta}_{drug}D + \boldsymbol{\beta}_{violent}V$$

Stage 1 (VPRAI) observation mechanism:

logit{
$$P(Y^{*(1)} = 1 | Y = j, Z^{(1)}; \gamma)$$
} = $\gamma_{1j0}^{(1)} + \gamma_{1j,race}^{(1)}$ RACE

logit{
$$P(Y^{*(2)} = 1 | Y^{*(1)} = k, Y = j, Z^{(2)}; \gamma)$$
} = $\gamma_{1kj0}^{(2)} + \gamma_{1kj,race}^{(2)}$ RACE

- Proposed EM algorithm
- Bayesian methods (MCMC)

Complete data log-likelihood

 Y (true pretrial failure status) is a latent variable, but let's pretend we know it:

$$\ell_{complete}(\beta, \gamma; X, Z^{(1)}, Z^{(2)}) = \sum_{i=1}^{N} \left[\sum_{j=1}^{2} y_{ij} \log\{P(Y_i = j | X_i)\} \right]^{\text{True outcome mechanism}}$$

$$\text{Stage 1 (VPRAI)}$$

$$\text{observation mechanism} + \left[\sum_{j=1}^{2} \sum_{k=1}^{2} y_{ij} y_{ik}^{*(1)} \log\{P(Y_i^{*(1)} = k | Y_i = j, Z^{(1)})\} \right]$$

$$\text{Stage 2 (Judge)}$$

$$\text{observation mechanism} + \left[\sum_{j=1}^{2} \sum_{k=1}^{2} \sum_{\ell=1}^{2} y_{ij} y_{ik}^{*(1)} y_{i\ell}^{*(2)} \log\{P(Y_i^{*(2)} = \ell | P(Y_i^{*(1)} = k, Y_i = j, Z^{(1)})\}] \right]$$

Expectation Step

Maximization Step

Expectation Step

Maximization Step

$$w_{ij} = P(Y_i = j | Y_i^{*(2)}, Y_i^{*(1)}, X, Z^{(1)}, Z^{(2)})$$

"Fill in" the latent outcome:

Given the parameters and other data, compute the probability of pretrial failure for each subject.

Expectation Step

Maximization Step

$$\begin{split} w_{ij} &= P(Y_i = j | Y_i^{*(2)}, Y_i^{*(1)}, \boldsymbol{X}, \boldsymbol{Z}^{(1)}, \boldsymbol{Z}^{(2)}) = \\ & \sum_{k=1}^2 \sum_{\ell=2}^2 \frac{y_{ik}^{*(1)} y_{i\ell}^{*(2)} P(Y_i = j | \boldsymbol{X}_i) P(Y_i^{*(1)} = k | Y_i = j, \boldsymbol{Z}^{(1)}) P(Y_i^{*(2)} = \ell | Y_i^{*(1)} = k, Y_i = j, \boldsymbol{Z}^{(1)})}{\sum_{b=2}^2 P(Y_i = b | \boldsymbol{X}_i) P(Y_i^{*(1)} = k | Y_i = b, \boldsymbol{Z}^{(1)}) P(Y_i^{*(2)} = \ell | Y_i^{*(1)} = k, Y_i = b, \boldsymbol{Z}^{(1)})} \end{split}$$

"Fill in" the latent outcome:

Given the parameters and other data, compute the probability of **pretrial** failure for each subject.

Expectation Step

Maximization Step

$$w_{ij} = P(Y_i = j | Y_i^{*(2)}, Y_i^{*(1)}, X, Z^{(1)}, Z^{(2)})$$

$$Q = \sum_{i=1}^{N} \left[\sum_{j=1}^{2} w_{ij} \log \{ P(Y_i = j | X_i) \} \right]$$

$$+ \sum_{j=1}^{2} \sum_{k=1}^{2} w_{ij} y_{ik}^{*(1)} \log \{ P(Y_i^{*(1)} = k | Y_i = j, Z^{(1)}) \}$$

$$+ \sum_{j=1}^{2} \sum_{k=1}^{2} \sum_{\ell=2}^{2} w_{ij} y_{ik}^{*(1)} y_{i\ell}^{*(2)} \log \{ P(Y_i^{*(2)} = \ell | Y_i^{*(1)} = k, Y_i = j, Z^{(1)}) \}$$

"Fill in" the latent outcome:

Given the parameters and other data, compute the probability of pretrial failure for each subject.

Update estimates:

Replace the *y* terms in the likelihood with the E-step weights and then maximize.

Expectation Step

Maximization Step

$$w_{ij} = P(Y_i = j | Y_i^{*(2)}, Y_i^{*(1)}, X, Z^{(1)}, Z^{(2)})$$

$$\begin{split} Q &= \sum_{i=1}^{N} \left[\sum_{j=1}^{2} w_{ij} \log\{P(Y_i = j | X_i)\} \right. \\ &+ \sum_{j=1}^{2} \sum_{k=1}^{2} w_{ij} y_{ik}^{*(1)} \log\{P(Y_i^{*(1)} = k | Y_i = j, Z^{(1)}) \right. \\ &+ \sum_{j=1}^{2} \sum_{k=1}^{2} \sum_{\ell=2}^{2} w_{ij} y_{ik}^{*(1)} y_{i\ell}^{*(2)} \log\{P(Y_i^{*(2)} = \ell | Y_i^{*(1)} = k, Y_i = j, Z^{(1)}) \right] \end{split}$$

Apply the label switching correction

Estimates of β

Estimates of y

Y = 1, individual would have

 $Y^{*(1)} = 1$, VPRAI

Goal: Investigate (1) risk factors for pretrial failure and (2) the **accuracy** of both the VPRAI recommendations and judge decisions.

- $Y^{*(2)} = 2$. Judge releases
- Data from all admitted persons in Prince William County, VA between Jan. 2016 and Dec. 2019
 - 1,990 observations in the dataset.

 $Y^{*(2)} = 2$, Judge releases

Y = 1, individual would have

 $Y^{*(1)} = 1$. VPRAI

Goal: Investigate (1) risk factors for pretrial failure and (2) the **accuracy** of both the VPRAI recommendations and judge decisions.

- Data from all admitted persons in Prince William County, VA between Jan. 2016 and Dec. 2019
 - 1,990 observations in the dataset.
- 13.0% received a "detain" VPRAI recommendation, but 52.2% defendants were detained by the court ahead of their trial.

 $Y^{*(2)} = 2$. Judge releases

 $Y^{*(2)} = 2$. Judge releases

True outcome mechanism:

$$logit\{P(Y=1|\boldsymbol{X};\boldsymbol{\beta})\} = \beta_0 + \beta_{FTA}FTA + \beta_{unemploymed}E + \beta_{drug}D + \beta_{violent}V$$

	EM Algorithm		Naïve Analysis	
	Est.	SE	Est.	SE
β _{FTA}				
$\beta_{\text{unemployed}}$				
β_{drug}				
β_{violent}				

True outcome mechanism:

$$logit\{P(Y = 1 | X; \boldsymbol{\beta})\} = \beta_0 + \beta_{FTA}FTA + \beta_{unemploymed}E + \beta_{drug}D + \beta_{violent}V$$

	EM Algorithm		Naïve Analysis	
	Est.	SE	Est.	SE
β_{FTA}	1.22	0.22	1.02	0.13
$\beta_{\text{unemployed}}$	0.73	0.06	0.67	0.15
β_{drug}	1.97	0.13	1.74	0.17
$\beta_{violent}$	0.28	0.02	0.26	0.03

Association between risk factors and pretrial failure is generally attenuated when misclassification in the VPRAI and judge decisions is *not* accounted for.

Stage 1 (VPRAI) observation mechanism:

$$\text{logit}\{P(Y^{*(1)}=1|Y=j,\boldsymbol{Z^{(1)}};\boldsymbol{\gamma})\} = \gamma_{1j0}^{(1)} + \gamma_{1j,race}^{(1)} \text{RACE}$$

	Estimated VPRAI Specificity P(Release Would not have pretrial failure)	Estimated VPRAI Sensitivity P(Detain Would have pretrial failure)
White defendant	100%	49.3%
Black defendant	99.3%	86.0%

$$\operatorname{logit}\{P(Y^{*(2)}=1|Y^{*(1)}=k,Y=j,\boldsymbol{Z^{(2)}};\boldsymbol{\gamma})\} = \gamma_{1kj0}^{(2)} + \gamma_{1kj,race}^{(2)} \operatorname{RACE}$$

	Estimated Judge Specificity P(Release Would not have pretrial failure)	Estimated Judge Sensitivity P(Detain Would have pretrial failure)
White defendant	60.3%	76.8%
Black defendant	48.6%	88.8%

Key takeaways

Key takeaways

• Developed new methods for handling misclassified sequential and dependent binary outcome variables.

Key takeaways

- Developed new methods for handling misclassified sequential and dependent binary outcome variables.
- Used these methods to estimate misclassification rates when algorithms and judges predict pretrial failure risk.

Software

- Estimation methods for misclassified outcomes are available in the COMBO R Package on CRAN.
 - Correcting Misclassified Binary Outcomes
- Estimation methods for misclassified mediators are in the COMMA R Package on CRAN.
 - Correcting Misclassified Mediation Analysis

Thank you!

Kimberly A. H. Webb

kah343@cornell.edu

kimhwebb.com → My "webb-site" ©

