Abstand eines Punktes von einer Ebene

Einfuehrung

Niklas von Hirschfeld

All my contents

1	ufgaben	. 1
1.1	S. 214	- 1

1 Aufgaben

1.1 S. 214

1.1.1 Nr. 1

Bestimmen Sie die Koordinaten des Lotfusspunktes F des Lots durch A(3|-1|7),

$$B(6|8|19) \text{ und } C(-3|-3|-4) \text{ auf der Ebene } E: \vec{x} = r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 4 \\ -3 \end{pmatrix}$$

$$\vec{n} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 4 \\ -3 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix}$$

Den Normalenverktor können wir jetzt in die Gleichung mit einsetzten. Hier setzen wir die Ebenen mit unserer Gerade (Punkt + t * Normalenverktor) gleich, um den Schnittpunkt zu berechnen.

$$r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 4 \\ -3 \end{pmatrix} = \vec{p} + t \cdot \vec{n}$$

Nun müssen nurnoch die Ortsvektoren der Punkte in die gleichung eingegeben. Mit dem Wert für t können wir den Ortsvektor des Punktes auf der Ebene berechnen, welcher unserem Ausgangspunkt am nächsten liegt.

$$\frac{f = \vec{p} + t \cdot \vec{n}}{ \begin{array}{c} \text{Punkt Distanz} \\ \text{A} & 5 \\ \text{B} & 25 \\ \text{C} & 5 \\ \end{array}}$$

1.1.2 A2

$$E: \vec{x} = \begin{pmatrix} 1\\3\\-1 \end{pmatrix} + r \cdot \begin{pmatrix} 1\\0\\-1 \end{pmatrix} + s \cdot \begin{pmatrix} 5\\2\\0 \end{pmatrix}$$

$$E: \vec{y} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

Punkt	Distanz zu $E: \vec{x}$	Distanz zu $E: \vec{y}$
A(0 2 1)	2	≈ 0.41
B(1 3 5)	≈ 5.13	≈ 0.8085
C(-3 1 - 1)	≈ 4.64079	≈ 2.45

1.1.3 A4

$$E: \vec{x} = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix}$$
$$P(3|5|7)$$

 $\mathsf{Distanz} = 4.2$

1.1.4 A6

Koordinatenebe	ne Entfernung des Punktes $P(1 -2 -3$	()
x1x2	3	
x1x3	2	
x2x3	1	

Die drei Werte des Punktes x_1 , x_2 und x_3 geben so gesehen die Entfernung zu der jeweiliegen Koordinatenebene ein. Der Punkt P(x|y|10) ist immer 10 entfernt von der x_1x_2 -Koordinatenebenen.

1.1.5 A13

Idee: Von beliebigen Punkt aus in die Richtung des Normalenverktors und dort Ebene Spannen. Punkt haben wir und auch die Spannung mit der Koordinatengleichung der gegebenen.

$$E: 4x_1 - 7x_2 + 4x_3 = 6$$

Dies trifft zu für $x_1=2.5, x_2=1, x_3=1$. Damit können wir anfangen, die Normalenform der Gleichung bestimmen:

$$E: \left(\begin{array}{c} 4 \\ -7 \\ 4 \end{array}\right) \cdot (\left(\begin{matrix} x_1 \\ x_2 \\ x_3 \end{matrix}\right) - \left(\begin{array}{c} 2.5 \\ 1 \\ 1 \end{array}\right))$$

Damit können wir eine Ebene Aufspannen, welche den selben Normalenverktor hat und so also parrallel verläuft. Um einen Abstand von d zu erhalten müssen wir nun nur noch eine Gleichung aufstellen.

Mit dem C.A.S.:

$$solve(nrom(\begin{pmatrix} 2.5 \\ 1 \\ 1 \end{pmatrix} - (\begin{pmatrix} 2.5 \\ 1 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 4 \\ -7 \\ 4 \end{pmatrix})) = d,t)$$

Damit ergibt sich $t \approx \pm 0.44$. Und dies können wir in die Parametergleichung mit eingeben.