Define-se ganho de tensão pela relação entre a variação na na tensão de saída (em $R_{\rm b}$) e a respectiva variação na tensão de entrada (em R) que provocou a primeira. AV = $\frac{\Delta V_{\rm b}}{\Delta V_{\rm b}}$

Dado que R. tem valor elevado, qualquer pequena variação da corrente $I_{\rm C}^{\rm L}$ produz nela grande variação de tensão.

O ganho de tensão nesta montagem atinge a ordem dos 1500.

3.1.16.1

O transistor da figura

a)	está	na (configur	ração d	le	colector	comum	•••	 		• • • •	
b)		**	**		I+	emissor	11	•••	 	• • •		\boxtimes
c)	apre	senta	a baixo	ganho	de	tens ã o		• • • •	 	• •		
a)		10	**	19	ŗ	corrente	:	• • • •	 	• •		

Nota: O sinal de entrada aplica-se entre base e <u>emissor</u> e o sinal de saída obtém-se entre colector e <u>emissor</u>, pelo que o emissor é comum à entrada e à saída.

A polarização entre base e emissor (polarização directa) obtém-se pela queda de tensão em R₁ que torna a base posi^{tivo} em relação ao emissor (transistor NPN).

R, e R constituem um divisor de tensão.