Emory University

MATH 361 Mathematical Statistics I

Learning Notes

Jiuru Lyu

August 29, 2023

Contents

1	Prerequisites	2
2	Probability	5
	2.1 Sample Space and Probability	5

1 Prerequisites

Definition 1.0.1 (Geometric Series). A geometric series has the form

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots$$

If |r| < 1, then the series converges to $\frac{a}{1-r}$. Otherwise, it diverges.

Example 1.0.2 Does the series $\sum_{n=1}^{\infty} 2^{2n} 3^{1-n}$ converge or divers?

Solution 1.

Note that

$$2^{2n}3^{1-n} = \left(2^2\right)^n 3^{1-n} = 4^n \left(\frac{1}{3}\right)^{n-1} = 4 \cdot 4^{n-1} \left(\frac{1}{3}\right)^{n-1} = 4\left(\frac{4}{3}\right)^{n-1}.$$

So,

$$\sum_{n=1}^{\infty} 2^{2n} 3^{1-n} = \sum_{n=1}^{\infty} 4\left(\frac{4}{3}\right)^{n-1}$$

is a geometric series, with a = 4 and $r = \frac{4}{3}$.

Since $|r| = \left| \frac{4}{3} \right| = \frac{4}{3} > 1$, the series diverges.

Definition 1.0.3 (Taylor Series). The Taylor series expanded about a of a differentiable function f is

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \cdots$$

Definition 1.0.4 (Maclaurin Series). The Taylor series expanded about a=0.

Remark. The Maclurin Series of e^x is given by $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.

Theorem 1.0.5 Binomial Expansion

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k},$$

where $\binom{n}{k}$ is read as "n choose k" and can also be written as nCk.

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{k!}.$$

2

Theorem 1.0.6 Integration by Parts

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u.$$

Example 1.0.7 Evaluate $\int xe^{-x} dx$.

Solution 2.

Let $u=x, dv=e^{-x} dx$. So, du=dx and $v=\int e^{-x} dx=-e^{-x}$. Then,

$$\int xe^{-x} dx = -xe^{-x} - \int -e^{-x} dx = -xe^{-x} - e^{-x} + C.$$

Definition 1.0.8 (Type I Improper Integral). If $\int_a^t f(x) dx$ exists for all t > 0, then

$$\int_{a}^{\infty} f(x) \, \mathrm{d}x = \lim_{t \to \infty} \int_{a}^{t} f(x) \, \mathrm{d}x.$$

Example 1.0.9 Evaluate $\int_0^\infty xe^{-x} dx$.

Solution 3.

$$\int_0^\infty x e^{-x} \, dx = \lim_{t \to \infty} \int_0^t x e^{-x} \, dx = \lim_{t \to \infty} \left[-x e^{-x} - e^{-x} \right]_0^t$$

$$= \lim_{t \to \infty} \left(-t e^{-t} - e^{-t} + 1 \right)$$

$$= -\lim_{t \to \infty} \left(\frac{t}{e^t} \right) - \lim_{t \to \infty} e^{-t} + 1$$

$$= -\lim_{t \to \infty} \left(\frac{1}{e^t} \right) - 0 + 1 = -0 - 0 + 1 = 1.$$

Example 1.0.10 Double Integrals over Irregular Domains.

Consider

$$\iint_D 4xy - y^4 \, \mathrm{d}A,$$

where *D* is the region bounded between $y = \sqrt{x}$ and $y = x^3$.

Evaluate this double integral over D.

Solution 4.

Firstly, we draw the diagram representing D as follows:

$$\iint_D 4xy - y^3 \, dA = \int_0^1 \int_{x^3}^{\sqrt{x}} 4xy - y^3 \, dy dx = \int_0^1 \left[2xy^2 - \frac{1}{4}y^4 \right]_{x^3}^{\sqrt{x}} \, dx$$

$$= \int_0^1 2x(x - x^6) - \frac{1}{4}(x^2 - x^{12}) \, dx$$

$$= \int_0^1 2x^2 - 2x^7 - \frac{1}{4}x^2 + \frac{1}{4}x^{12} \, dx$$

$$= \left[\frac{2}{3}x^3 - \frac{1}{4}x^8 - \frac{1}{12}x^3 + \frac{1}{52}x^{13} \right]_0^1$$

$$= \frac{2}{3} - \frac{1}{4} - \frac{1}{12} + \frac{1}{52} = \frac{55}{156}.$$

2 Probability

2.1 Sample Space and Probability

Definition 2.1.1 (Experiment). An *experiment* is a procedure with well-defined outcome. **Definition 2.1.2 (Sample Space/**S). The *sample space*, denoted as S is the set of all possible outcomes of an experiment.

Definition 2.1.3 (Event). An *event* is a collection of outcomes.

Example 2.1.4 Consider flipping two coins. Use H to represent heads and T to represent tails. Then, $S = \{HH, HT, TH, TT\}$. Event "one heads"= $\{HT, TH\}$, and the event "at least one heads"= $\{HT, TH, HH\}$.

Definition 2.1.5 (Union/ \cup). $A \cup B$ is the *union* of A and B, meaning everything in A and everything in B.

Definition 2.1.6 (Intersection/ \cap **).** $A \cap B$ is the *intersection* of A and B, everything in both A and B

Definition 2.1.7 (Complement/ A^c). A^c denotes the *complement* of A, meaning everything in S that is not in A.

Corollary 2.1.8 $A \cap A^c = \{\} = \emptyset$.

Definition 2.1.9 (Mutually Exclusive). Two sets A and B over the same sample space are *mutually exclusive* if they have no outcomes in common. i.e., $A \cap B = \emptyset$.

Remark. A and A^c are mutually exclusive, but not all sets mutually exclusive are complements of each other.

Definition 2.1.10 (Probability Function). Let A be an event over a sample space S. Then, P(A) denotes the *probability* of A and P is the *probability function*. The probability function P assigns a number P(A) for each event $A \subseteq S$.

Axiom 2.1.11 Kolmogorov Axioms

- 1. Let A be an event in S, then $P(A) \ge 0$.
- 2. P(S) = 1.
- 3. If A and B are mutually exclusive, then $P(A \cup B) = P(A) + P(B)$.
- 4. If A_1, \ldots, A_n, \ldots are mutually exclusive sets, then

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i).$$

Proposition 2.1.12 $P(A^c) = 1 - P(A)$.

Proof 1. Note that P(S)=1. Since $A^c \cup A=S$, we have $P(A \cap A^c)=1$. Since A and A^c are mutually exclusive, $P(A \cup A^c)=P(A)+P(A^c)=1$. So, $P(A^c)=1-P(A)$.

Proposition 2.1.13 $P(\emptyset) = 0$.

Proof 2. Note that P(S) = 1. Then, $P(S^c) = 1 - P(S)$. By definition, we know $S^c = \emptyset$. So, $P(\emptyset) = 1 - P(S) = 1 - 1 = 0$.

Proposition 2.1.14 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Proof 3. Consider the following Venn diagram:

Note that $P(A) = P(A \cap B) + P(A \cap B^c)$ and $P(B) = P(A \cap B) + P(A^c \cap B)$. So, we have

$$P(A) + P(B) = P(A \cap B^c) + P(A^c \cap B) + P(A \cap B) + P(A \cap B).$$
 (1)

From the Venn diagram, we notice that $P(A \cap B^c) + P(A^c \cap B) + P(A \cap B)$ is exactly $P(A \cup B)$. So, Eq. (1) becomes $P(A) + P(B) = P(A \cup B) + P(A \cap B)$. That is exactly what is required: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$. **Definition 2.1.15 (Classical Probability).** In a discrete and finite case, S is finite and all outcomes are equally likely, and the probability function is defined as

$$P(A) = \frac{|A|}{|S|},$$

where |A| is the cardinality of A and |S| is the cardinality of S.

Example 2.1.16 Despite the definition of classical probability (probability function defined for a discrete and finite case), there are other definitions of probability functions:

1. Discrete and Countably Infinite:

Let $S = \mathbb{N}$ be the set of natural numbers. Then,

$$P(k) = \frac{1}{2^k}.$$

It can also be verified that

$$P(S) = \sum_{k=1}^{\infty} \frac{1}{2^k} = 1.$$

2. Continuous and Uncountably Infinite:

Let S = [0, 1]. Suppose E is a subset of [0, 1] such that $\int_E dx$ is defined. Then,

$$P(E) = \int_{E} \, \mathrm{d}x,$$

and it can also be verified that P(S) = 1.