

$$J = \frac{1}{2}$$

e MASS (atomic mass units u)

The primary determination of an electron's mass comes from measuring the ratio of the mass to that of a nucleus, so that the result is obtained in u (atomic mass units). The conversion factor to MeV is more uncertain than the mass of the electron in u; indeed, the recent improvements in the mass determination are not evident when the result is given in MeV. In this datablock we give the result in u, and in the following datablock in MeV.

$VALUE (10^{-6} \text{ u})$	DOCUMENT ID		TECN	COMMENT
548.579909070±0.000000016	MOHR	16	RVUE	2014 CODATA value
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •
548.57990946 ±0.00000022	MOHR	12	RVUE	2010 CODATA value
$548.57990943 \pm 0.00000023$	MOHR	80	RVUE	2006 CODATA value
$548.57990945 \pm 0.00000024$	MOHR	05	RVUE	2002 CODATA value
$548.5799092 \pm 0.0000004$	¹ BEIER	02	CNTR	Penning trap
$548.5799110 \pm 0.0000012$	MOHR	99	RVUE	1998 CODATA value
$548.5799111 \pm 0.0000012$	² FARNHAM	95	CNTR	Penning trap
548.579903 ± 0.000013	COHEN	87	RVUE	1986 CODATA value

 $^{^1\, \}text{BEIER}$ 02 compares Larmor frequency of the electron bound in a $^{12}\text{C}^{5+}$ ion with the cyclotron frequency of a single trapped $^{12}\text{C}^{5+}$ ion.

e MASS

2010 CODATA (MOHR 12) gives the conversion factor from u (atomic mass units, see the above datablock) to MeV as 931.494 061 (21). Earlier values use the then-current conversion factor. The conversion error dominates the uncertainty of the masses given below.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
$0.5109989461 \pm 0.0000000031$	MOHR	16	RVUE	2014 CODATA value
• • • We do not use the following	ng data for avera	ges, fi	ts, limits	s, etc. • • •
$0.510998928 \pm 0.000000011$	MOHR	12	RVUE	2010 CODATA value
$0.510998910 \pm 0.000000013$	MOHR	80	RVUE	2006 CODATA value
$0.510998918 \pm 0.000000044$	MOHR	05	RVUE	2002 CODATA value
$0.510998901 \pm 0.000000020$ ¹	^{,2} BEIER	02	CNTR	Penning trap
$0.510998902 \pm 0.000000021$	MOHR	99	RVUE	1998 CODATA value
$0.510998903 \pm 0.000000020$ ¹	^{,3} FARNHAM	95	CNTR	Penning trap
$0.510998895\ \pm0.000000024$	¹ COHEN	87	RVUE	1986 CODATA value
0.5110034 ± 0.0000014	COHEN	73	RVUE	1973 CODATA value

 $^{^1}$ Converted to MeV using the 1998 CODATA value of the conversion constant, 931.494013 \pm 0.000037 MeV/u.

 $^{^2}$ FARNHAM 95 compares cyclotron frequency of trapped electrons with that of a single trapped 12 C $^{6+}$ ion.

$$(m_{e^+} - m_{e^-}) / m_{\text{average}}$$

A test of CPT invariance.

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
<8 × 10 ⁻⁹	90	¹ FEE	93	CNTR	Positronium spectroscopy
ullet $ullet$ We do not use t	he followin	g data for averag	ges, fit	ts, limits	, etc. • • •
$< 4 \times 10^{-23}$	90	² DOLGOV	14		From photon mass limit
$< 4 \times 10^{-8}$	90	CHU	84	CNTR	Positronium spectroscopy

¹ FEE 93 value is obtained under the assumption that the positronium Rydberg constant is exactly half the hydrogen one.

$$|q_{e^+} + q_{e^-}|/e$$

A test of *CPT* invariance. See also similar tests involving the proton.

VALUE	<u>DOCUMENT ID</u>		<u>TECN COMMENT</u>
$<4 \times 10^{-8}$	$^{ m 1}$ HUGHES	92	RVUE
• • • We do not use the follow	ing data for average	s, fits,	limits, etc. • • •
$< 2 \times 10^{-18}$	² SCHAEFER	95	THEO Vacuum polarization
$< 1 \times 10^{-18}$	³ MUELLER	92	THEO Vacuum polarization

¹ HUGHES 92 uses recent measurements of Rydberg-energy and cyclotron-frequency ratios

e MAGNETIC MOMENT ANOMALY

$\mu_e/\mu_B - 1 = (g-2)/2$

VALUE (units 10 °)	DOCUMENT ID		TECN	CHG	COMMENT
$1159.65218091 \pm 0.00000026$	MOHR	16	RVUE		2014 CODATA value
• • • We do not use the follow	wing data for aver	ages,	fits, limi	ts, etc	. • • •
$1159.65218076 \pm 0.00000027$	MOHR	12	RVUE		2010 CODATA value
$1159.65218073 \pm 0.00000028$	HANNEKE	80	MRS		Single electron
$1159.65218111 \pm 0.00000074$	¹ MOHR	80	RVUE		2006 CODATA value
$1159.65218085 \pm 0.00000076$	² ODOM	06	MRS	_	Single electron
$1159.6521859 \pm 0.0000038$	MOHR	05	RVUE		2002 CODATA value
$1159.6521869 \pm 0.0000041$	MOHR	99	RVUE		1998 CODATA value
1159.652193 ± 0.000010	COHEN	87	RVUE		1986 CODATA value
$1159.6521884 \pm 0.0000043$	VANDYCK	87	MRS	_	Single electron
$1159.6521879 \pm 0.0000043$	VANDYCK	87	MRS	+	Single positron

HTTP://PDG.LBL.GOV

Page 2

 $^{^2}$ BEIER 02 compares Larmor frequency of the electron bound in a 12 C $^{5+}$ ion with the cyclotron frequency of a single trapped 12 C $^{5+}$ ion.

³ FARNHAM 95 compares cyclotron frequency of trapped electrons with that of a single trapped ¹²C⁶⁺ ion.

 $^{^2}$ DOLGOV 14 result is obtained under the assumption that any mass difference between electron and positron would lead to a non-zero photon mass. The PDG 12 limit of 1×10^{-18} eV on the photon mass is in turn used to derive the value quoted here.

tios. ² SCHAEFER 95 removes model dependency of MUELLER 92.

³ MUELLER 92 argues that an inequality of the charge magnitudes would, through higherorder vacuum polarization, contribute to the net charge of atoms.

$$(g_{e^+} - g_{e^-}) / g_{average}$$

A test of CPT invariance.

e ELECTRIC DIPOLE MOMENT (d)

A nonzero value is forbidden by both T invariance and P invariance.

<i>VALUE</i> (10 ⁻²⁸ ecm)	CL%	DOCUMENT ID		TECN	COMMENT		
< 0.87	90	$^{ m 1}$ BARON	14	CNTR	ThO molecules		
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
$-$ 5570 \pm 7980 \pm 120		KIM	15	CNTR	Gd ₃ Ga ₅ O ₁₂ molecules		
< 6050	90	² ECKEL	12	CNTR	Eu _{0.5} Ba _{0.5} TiO ₃ molecules		
< 10.5	90	³ HUDSON	11	NMR	YbF molecules		
$6.9~\pm~7.4$		REGAN	02	MRS	²⁰⁵ TI beams		
$18 \pm 12 \pm 10$		⁴ COMMINS	94	MRS	²⁰⁵ TI beams		
$-$ 27 \pm 83		⁴ ABDULLAH	90	MRS	²⁰⁵ TI beams		
$-$ 1400 \pm 2400		CHO	89	NMR	TIF molecules		
$-$ 150 \pm 550 \pm 150		MURTHY	89		Cs, no B field		
$-\ 5000\ \pm 11000$		LAMOREAUX	87	NMR	¹⁹⁹ Hg		
19000 ± 34000	90	SANDARS	75	MRS	Thallium		
7000 ± 22000	90	PLAYER	70	MRS	Xenon		
< 30000	90	WEISSKOPF	68	MRS	Cesium		

 $^{^1}$ BARON 14 gives a measurement corresponding to this limit as ($-0.21\pm0.37\pm0.25$) \times 10^{-28} ecm. 2 ECKEL 12 gives a measurement corresponding to this limit as ($-1.07\pm3.06\pm1.74$) \times

 $^{^{1}}$ MOHR 08 average is dominated by ODOM 06.

²Superseded by HANNEKE 08 per private communication with Gerald Gabrielse.

 $^{^2}$ ECKEL 12 gives a measurement corresponding to this limit as ($-1.07\pm3.06\pm1.74$) \times 10^{-25} ecm. 3 HUDSON 11 gives a measurement corresponding to this limit as ($-2.4\pm5.7\pm1.5$) \times

³ HUDSON 11 gives a measurement corresponding to this limit as $(-2.4 \pm 5.7 \pm 1.5) \times 10^{-28}$ ecm.

⁴ ABDULLAH 90, COMMINS 94, and REGAN 02 use the relativistic enhancement of a valence electron's electric dipole moment in a high-Z atom.

e- MEAN LIFE / BRANCHING FRACTION

A test of charge conservation. See the "Note on Testing Charge Conservation and the Pauli Exclusion Principle" following this section in our 1992 edition (Physical Review **D45** S1 (1992), p. VI.10).

Most of these experiments are one of three kinds: Attempts to observe (a) the 255.5 keV gamma ray produced in $e^- \to \nu_e \gamma$, (b) the (K) shell x ray produced when an electron decays without additional energy deposit, e.g., $e^- \to \nu_e \overline{\nu}_e \nu_e$ ("disappearance" experiments), and (c) nuclear deexcitation gamma rays after the electron disappears from an atomic shell and the nucleus is left in an excited state. The last can include both weak boson and photon mediating processes. We use the best $e^- \to \nu_e \gamma$ limit for the Summary Tables.

Note that we use the mean life rather than the half life, which is often reported.

$e \rightarrow \nu_e \gamma$ and astrophysical limits

U /				
VALUE (yr)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
$>6.6 \times 10^{28}$	90	AGOSTINI 1	L5B BORX	$e^- ightarrow u \gamma$
\bullet \bullet We do not	use the follo	wing data for average	es, fits, limit	ts, etc. • • •
$> 1.22 \times 10^{26}$	68	¹ KLAPDOR-K (7 CNTR	$e^- ightarrow u \gamma$
$>$ 4.6 \times 10 ²⁶	90	BACK (D2 BORX	$e^- ightarrow u \gamma$
$>$ 3.4 \times 10 ²⁶	68	BELLI (00в DAMA	$e^- ightarrow u \gamma$, liquid Xe
$>$ 3.7 \times 10 ²⁵	68	AHARONOV 9	95B CNTR	$e^- ightarrow u \gamma$
$>$ 2.35 \times 10 ²⁵	68	BALYSH 9	O3 CNTR	$e^- ightarrow \ u \gamma$, 76 Ge detector
$>1.5 \times 10^{25}$	68	AVIGNONE 8	36 CNTR	$e^- o u \gamma$
>1 \times 10^{39}		² ORITO 8	35 ASTR	Astrophysical argument
$>$ 3 \times 10 ²³	68	BELLOTTI 8	33B CNTR	$e^- ightarrow u \gamma$

¹ The authors of A. Derbin et al, arXiv:0704.2047v1 argue that this limit is overestimated by at least a factor of 5.

Disappearance and nuclear-de-excitation experiments

VALUE (yr) CL% DOCUMENT ID TECN COMMENT	
$>6.4 \times 10^{24}$ 68 ¹ BELLI 99B DAMA De-excitation of ¹²⁹ Xe	
 • We do not use the following data for averages, fits, limits, etc. • • 	
>4.2 $ imes$ 10 ²⁴ 68 BELLI 99 DAMA lodine L-shell disappears	
$>$ 2.4 $ imes$ 10^{23} 90 2 BELLI 99D DAMA De-excitation of 127 I (ir	Nal)
>4.3 $ imes$ 10 ²³ 68 AHARONOV 95B CNTR Ge K-shell disappearance	е
>2.7 $ imes$ 10 ²³ 68 REUSSER 91 CNTR Ge K-shell disappearanc	9
$>$ 2 $ imes$ 10^{22} $ imes$ 68 BELLOTTI 83B CNTR Ge K-shell disappearanc	e

 $^{^1}$ BELLI 99B limit on charge nonconserving e^- capture involving excitation of the 236.1 keV nuclear state of 129 Xe; the 90% CL limit is 3.7×10^{24} yr. Less stringent limits for other states are also given.

 $^{^2}$ ORITO 85 assumes that electromagnetic forces extend out to large enough distances and that the age of our galaxy is 10^{10} years.

² BELLI 99D limit on charge nonconserving e^- capture involving excitation of the 57.6 keV nuclear state of ¹²⁷I. Less stringent limits for the other states and for the state of ²³Na are also given.

LIMITS ON LEPTON-FLAVOR VIOLATION IN PRODUCTION

Forbidden by lepton family number conservation.

This section was added for the 2008 edition of this *Review* and is not complete. For a list of further measurements see references in the papers listed below.

```
\sigma(e^+e^- \rightarrow e^{\pm}\tau^{\mp}) / \sigma(e^+e^- \rightarrow \mu^+\mu^-)
                                                           TECN COMMENT
< 8.9 \times 10^{-6}
                                                     07P BABR e^+e^- at E_{
m cm}=10.58~{
m GeV}
                        95
                                   AUBERT
• • • We do not use the following data for averages, fits, limits, etc. • • •
< 1.8 \times 10^{-3}
                        95 GOMEZ-CAD... 91 MRK2 e^+e^- at E_{\rm cm}=29~{\rm GeV}
\sigma(e^+e^- \rightarrow \mu^{\pm}\tau^{\mp}) / \sigma(e^+e^- \rightarrow \mu^+\mu^-)
                                                           TECN COMMENT
                                   DOCUMENT ID
                                                     07P BABR e^+e^- at E_{\rm cm}=10.58~{\rm GeV}
<4.0 \times 10^{-6}
                        95
                                   AUBERT
• • • We do not use the following data for averages, fits, limits, etc. • •
< 6.1 \times 10^{-3}
                                                           MRK2 e^+e^- at E_{\rm cm}=29~{\rm GeV}
                                   GOMEZ-CAD... 91
```

e REFERENCES

MOHR	16	PMP 88 035009	P.J. Mohr, D.B. Newell, B.N. Taylor (NIST)
AGOSTINI	15B	PRL 115 231802	M. Agostini <i>et al.</i> (BOREXINO Collab.)
KIM	15	PR D91 102004	Y.J. Kim <i>et al.</i> (IND, YALE, LANL)
BARON	14	SCIENCE 343 269	J. Baron <i>et al.</i> (ACME Collab.)
DOLGOV	14	PL B732 244	A.D. Dolgov, V.A. Novikov
ECKEL	12	PRL 109 193003	S. Eckel, A.O. Sushkov, S.K. Lamoreaux (YALE)
MOHR	12	RMP 84 1527	P.J. Mohr, B.N. Taylor, D.B. Newell (NIST)
PDG	12	PR D86 010001	J. Beringer <i>et al.</i> (PDG Collab.)
HUDSON	11	NAT 473 493	J.J. Hadson <i>et al.</i> (LOIC)
HANNEKE	08	PRL 100 120801	D. Hanneke, S. Fogwell, G. Gabrielse (HARV)
MOHR	08	RMP 80 633	P.J. Mohr, B.N. Taylor, D.B. Newell (NIST)
AUBERT	07P	PR D75 031103	B. Aubert <i>et al.</i> (BABAR Collab.)
KLAPDOR-K		PL B644 109	H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, I.V. Titkova
ODOM	06	PRL 97 030801	B. Odom <i>et al.</i> (HARV)
MOHR	05	RMP 77 1	P.J. Mohr, B.N. Taylor (NIST)
BACK	02	PL B525 29	H.O. Back et al. (BOREXINO/SASSO Collab.)
BEIER	02	PRL 88 011603	T. Beier et al.
REGAN	02	PRL 88 071805	B.C. Regan <i>et al.</i>
BELLI	00B	PR D61 117301	P. Belli <i>et al.</i> (DAMA Collab.)
BELLI	99	PL B460 236	P. Belli <i>et al.</i> (DAMA Collab.)
BELLI	99B	PL B465 315	P. Belli <i>et al.</i> (DAMA Collab.)
BELLI	99D	PR C60 065501	P. Belli <i>et al.</i> (DAMA Collab.)
MOHR	99	JPCRD 28 1713	P.J. Mohr, B.N. Taylor (NIST)
Also		RMP 72 351	P.J. Mohr, B.N. Taylor (NIST)
AHARONOV	95B	PR D52 3785	Y. Aharonov <i>et al.</i> (SCUC, PNL, ZÀRA+)
Also		PL B353 168	Y. Aharonov <i>et al.</i> (SCUC, PNL, ZARA+)
FARNHAM	95	PRL 75 3598	D.L. Farnham, R.S. van Dyck, P.B. Schwinberg (WASH)
SCHAEFER	95	PR A51 838	A. Schaefer, J. Reinhardt (FRAN)
COMMINS	94	PR A50 2960	E.D. Commins et al.
BALYSH	93	PL B298 278	A. Balysh et al. (KIAE, MPIH, SASSO)
FEE	93	PR A48 192	M.S. Fee et al.
HUGHES	92	PRL 69 578	R.J. Hughes, B.I. Deutch (LANL, AARH)
MUELLER	92	PRL 69 3432	B. Muller, M.H. Thoma (DUKE)
PDG	92	PR D45 S1	K. Hikasa <i>et al.</i> (KEK, LBL, BOST+)
GOMEZ-CAD	. 91	PRL 66 1007	J.J. Gomez-Cadenas et al. (SLAC MARK-2 Collab.)
REUSSER	91	PL B255 143	D. Reusser et al. (NEUC, CIT, PSI)
ABDULLAH	90	PRL 65 2347	K. Abdullah <i>et al.</i> (LBL, UCB)
CHO	89	PRL 63 2559	D. Cho, K. Sangster, E.A. Hinds (YALE)
MURTHY	89	PRL 63 965	S.A. Murthy <i>et al.</i> (AMHT)

COHEN 87 LAMOREAUX 87 VANDYCK 87 VASSERMAN 87 Also AVIGNONE 86 ORITO 85 CHU 84 BELLOTTI 83 SCHWINBERG 81 SANDARS 75 COHEN 73 PLAYER 70	7 PRL 59 2275 7 PRL 59 26 7 PL B198 302 PL B187 172 6 PR D34 97 PRL 52 1689 3B PL 124B 435 1 PRL 47 1679 5 PR A11 473 3 JPCRD 2 664 0 JP B3 1620	E.R. Cohen, B.N. Taylor S.K. Lamoreaux et al. R.S. van Dyck, P.B. Schwinberg, I.B. Vasserman et al. I.B. Vasserman et al. F.T. Avignone et al. S. Orito, M. Yoshimura S. Chu, A.P. Mills, J.L. Hall E. Bellotti et al. P.B. Schwinberg, R.S. van Dyck, P.G.H. Sandars, D.M. Sternheimer E.R. Cohen, B.N. Taylor M.A. Player, P.G.H. Sandars	(NOVO) (NOVO) (NOVO) (PNL, SCUC) (TOKY, KEK) (BELL, NBS, COLO) (MILA) H.G. Dehmelt (WASH) (OXF, BNL) (RISC, NBS) (OXF)
WEISSKOPF 68		M.A. Player, P.G.H. Sandars M.C. Weisskopf <i>et al.</i>	(OXF) (BRAN)