TM 2108

FLUIDA RESERVOIR LAPORAN TUGAS BESAR

	OIM II	DEDIM

NAMA : 1. Andika Nurtamin 12218021

2. M. Afra Dzaki 12218054

3. Febri Dwi Avianto 12218087

DOSEN: Ir. Zuher Syihab, M.Sc, Ph.D

ASISTEN : 1. Hanif Farrastama Yoga

2. Alysia Chaterine 12216036

3. M. Hafizh Kurnia Utama 12216017

TANGGAL PENYERAHAN: 12 Desember 2019

PROGRAM STUDI TEKNIK PERMINYAKAN FAKULTAS TEKNIK PERTAMBANGAN DAN PERMINYAKAN INSTITUT TEKNOLOGI BANDUNG 2019

Daftar Isi

Halaman Cover	1
Daftar Isi	2
BAB I Gambaran Umum Program	3
BAB II Work-Flow	4
BAB III Korelasi yang Digunakan	5
BAB IV Program	7
BAB VI Kelebihan, Kekurangan, dan Hambatan Program	12
Daftar Pustaka	12

BABI

GAMBARAN UMUM PROGRAM

Program ini dibuat dengan menggunakan Bahasa Python 3 yang digabungkan dengan module Tkinter untuk membentuk desain interface program tersebut. Seperti namanya program ini adalah sebuah Pressure, Volume, Temperature (PVT) Calculator yang memiliki fungsi untuk mengetahu properti – properti dari setiap jenis fluida, dalam hal ini adalah minyak, gas, dan air formasi.

Pada bagian Home program, terdapat kolom-kolom yang dapat diisi dengan informasi umum reservoir yang dipunya, seperti Reservoir Temperatur(°F), Initial Reservoir Pressure (Psia), Standard Pressure (Psia), Gas Gravity, Impurities, °API, Bubble Point Pressure, Separator Temperatur (°F), Separator Pressure, dan Brine Data. Selain itu terdapat juga tombol Calculate yang berfungsi untuk memproses semua data, tombol configuration yang berfungsi untuk memilih korelasi yang diinginkan, tombol show table dan show chart yang berfungsi untuk menampilkan table dan grafik propreti-properti yang ada.

Program ini akan memiliki output kalkulasi berupa nilai nilai property-properti. Adapun properti-properti yang akan dikeluarkan adalah Rs, Bo, μ oil, Oil Density, Bt, Co, z, μ Gas, Cg, Gas Density, Bg, Rsw, Bw , μ water, Cw, dan Brine Density

BAB II WORK FLOW

BAB III

TEORI DASAR DAN KORELASI YANG DIGUNAKAN

2.1 Korelasi

Korelasi yang dapat digunakan:

A. OIL

a. Gas Solubility (R_s)

- 1. Standing
- 2. Vasquez-Beggs
- 3. Glaso
- 4. Marhoun
- 5. Petrosky-Farshad

b. Oil Formation Volume Factor (B₀)

- 1. Vasquez-Beggs (Saturated/UnderSaturated)
- 2. Glaso (Saturated/UnderSaturated)
- 3. Marhoun (Saturated/UnderSaturated)
- 4. Petrosky-Farshad (Saturated/UnderSaturated)

c. Oil Viscosity

- 1. Beggs-Robinson (dead oil)
- 2. Glaso (dead oil)
- 3. Beal (dead oil)
- 4. Chew-Connally (saturated)
- 5. Beggs-Robinson (saturated)
- 6. Vasquez-Beggs (undersaturated)

d. Oil Compressibility Factor (C₀)

- 1. Vasquez-Beggs (undersaturated)
- 2. Petrosky-Farshad (undersaturated)

B. GAS PROPERTIES

- a. Compressibility Factors (Z)
 - 1. Dranchuk-Abu-Kassem
 - 2. Hall-Yarborough
- b. Gas Viscosity
 - 1. Lee-Gonzalez-Eakin
- c. Gas Compressibility Factor (Cg)
 - 1. Standing-Katz
- d. Gas Density
 - 1. Standard

C. BRINE PROPERTIES

- a. Brine Viscosity
 - 1. Meehan
 - 2. Brill and Beggs
- b. Water Compressibility Factor (Cw)
 - 1. Meehan gas free water
 - 2. Meehan gas-saturated water
- c. Brine Density
 - 1. Gas-Free Brine
 - 2. Gas-Saturated Brine
- d. Pseduocritical Temperature (Tpc) dan Pseudocritical Pressure(Ppc):
 - 1. Natural Gas (Sutton)
 - 2. Natural Gas (Standing)
 - 3. Gas Condensate (Standing)
- e. Pseudocritical Temperature(T'pc) and pseudocritical pressure(P'pc) (correction method)
 - 1. Wichert-Aziz
 - 2. Carr-Kobayashi-Burrows

BAB IV

PROGRAM

3.1 Desain Program

a. HOME

		·						
PVT Calculator	– 🗆 ×							
PVT CALCULATOR								
Calc	Calculating reservoir fluids properties							
	_	nercial use only						
Please choose the following properties to be show	Calculate							
Reservoir Data		Oil Data						
Reservoir Temperature (°F)	0	API 0	Configuration					
Initial Reservoir Pressure (psia)	0	Bubble Point Pressure (psia) 0	Configuration					
Standard Pressure (psia)	0	Separator Temperature (°F) 0	Character Table					
Gas Gravity	0	Separator Pressure (psia) 0	Show Table					
L		Brine Data	Show Chart					
Impurities (%mole)								
CO2	0	Total Dissolved Solid (%) 0	About					
N2	0							
H2S	0							
	,							

b. CONFIGURATION

c. CALCULATION RESULT DISPLAY

d. PVT TABLE

PVT Calculator									- 0
P	Rs	Bo	Mu oil	Rho oil	Bt	z	Mu gas	cg	Rho ga
2600	454.8351045269424	1.2738411663971458	1.1299451799687663	48.99151481180933	0.0029444255080113575	0.3280768954270214	0.07113857922074568	0.01063445899392551	27.551200211777825
2615	457.96770565563156	1.2753060846271524	1.1247007035426848	48.96363468597569	0.002947435951668723	0.32989179475114944	0.07117797472040976	0.010617082568812192	27.55770208891748
2630	461.103953468778	1.2767719318146713	1.119506214457357	48.935815949841135	0.0029504343404792317	0.3317059463153645	0.07121734065860796	0.01059976530177284	27.564194954768293
2645	464.2438315763932	1.2782387074689674	1.1143610176832517	48.908058323407985	0.002953420794091341	0.33351935208003375	0.07125667712203322	0.01058250688448803	27.57067883799484
2660	467.38732375385626	1.27970641108214	1.109264430687301	48.88036152980275	0.0029563954302635705	0.3353320139964265	0.07129598419696385	0.010565307010808295	27.577153767118133
2675	470.5344139393304	1.281175042129671	1.1042157831604504	48.85272529521431	0.00295935836490466	0.3371439340067732	0.07133526196926662	0.010548165376734309	27.583619770516638
2690	473.6850862312343	1.2826446000709508	1.0992144167521196	48.82514934883418	0.0029623097121126048	0.33895511404432593	0.07137451052439919	0.010531081680398457	27.590076876427236
2705	476.83932488576596	1.284115084349793	1.0942596848113761	48.79763342279777	0.0029652495842127234	0.3407655560334165	0.07141372994741288	0.010514055622045326	27.59652511294615
2720	479.9971143144786	1.2855864943949311	1.0893509521346332	48.770177252127624	0.0029681780917946887	0.3425752618895152	0.07145292032295561	0.01049708690401338	27.60296450802998
2735	483.15843908190675	1.2870588296205001	1.084487594719679	48.74278057467778	0.0029710953437485895	0.3443842335192887	0.07149208173527406	0.010480175230716815	27.609395089496562

e. GRAPHS

3.2 Perbandingan dengan Referensi – Program Mas Zuher

PROPERTIES	CORRELATION	OUTPUT	MAS ZUHER'S OUTPUT	GALAT
	Glaso	0.382232231		13.35%
	Standing	0.486323284		10.18%
Rs	Vasquez-Beggs	0.421656866	0.4411	4.33%
	Marhoun	0.543021449		23.10%
	Petrosky-Farshad	0.504906325		14.49%
Во	Marhoun	0.841326268	1.2366	31.97%
	Vasquez-Beggs	0.841326268		31.97%
μο	Chew-Connally	1.802282297	1.6454	9.54%
	Beggs-Robinson	1.299446328		21.05%

Co x 1E-5	Vasquez-Beggs	1.064159045	1.1622	8.45%
ρΟ	Standing	67.93456781	50.2749	35.12%
Z	Dranchuk Abu-Kassem	0.552580968	0.7991	30.85%
Bg	Standard	0.229114805	0.877	73.89%
μд	Lee-Gonzalez-Eakin	0.075918423	0.0236	221.61%
Cg x 1E-5	Standard	8.8820524	27.2759	67.44%
ρ g	Standard	28.3112738	13.0549	116.85%
Rsw	McCain	0.011522813	0.01223	5.78%
Bw	Gas-Free Brine	1.364152829	1.03447	31.85%
μw	Standard	0.668810177	0.3408	96.24%
Cw x 1E-5	Gas-Free Brine	1.31048191	0.307	326.71%
ρw	Gas-Free Brine	62.368	62.4482	0.13%

Data diatas diambil dengan inputan:

1. Temperatur reservoir $= 200^{\circ}F$

2. Tekanan awal reservoir = 4500 psia

3. Tekanan standar = 14.56 psia

4. Specific gravity gas = 0.85

5. API $= 23^{\circ}$ API

6. Tekanan separator = 150 psia

7. Temperatur separator = $80 \, ^{\circ}F$

8. Tekanan Bubble-point = 2750 psia

9. Tekanan sistem = 3000 psia

10. Kesadahan = 5 % weight

BAB V

KELEBIHAN, KEKURANGAN, DAN HAMBATAN PROGRAM

4.1 Kelebihan Program

Kelebihan dari Program ini adalah,

- 1. Terdepat pilihan korelasi-korelasi untuk menghitung property-properti
- 2. Tampilan yang sederhana sehingga mempermudah penggunaan
- 3. Program menggunakan Bahasa python

4.2 Kekurangan Program

Kekurangan dari Program ini adalah,

- 1. Masih terdapat galat yang cukup besar diantara hasil dengan referensi
- 2. Output dari setiap property kurang dilengkapi denga validasi
- 3. Terdapat kesalah minor pada program utama
- 4. Grafik yang berbeda dikarenakan hasil properties yang berbeda

4.3 Hambatan Pembuatan Program

Hambatan dari pembuatan program ini adalah,

- 1. Sulit mencari error saat terjadi hasil yang berbeda
- 2. Sering kali terdapat kekeliruan dalam pengetikan kode program
- 3. Pada awalnya banyak hasil korelasi yang tidak muncul
- 4. Pada awalnya ada beberapa korelasi yang hasilnya tidak sesuai dengan perhitungan manual

DAFTAR PUSTAKA

- 1. Ahmed, Tarekh. 2006. Reservoir Engineering Hand Book Third Edition. London: Elsevier.
- 2. McCain, William D. 1990. *The Properties of Petroleum Fluids. 2nd ed.* Oklahoma: PennWell Publishing Co.