Algorithms in Invariant Theory

With 0 Figures

Anakin Dey

Last Edited on 4/27/25 at 14:01

Contents

	Intr	Introduction		
	1.1	Symmetric Polynomials	1	
	1.2	Gröbner Bases	3	

Preface

A core interest of mine (at the time of writing this) is algorithms in the context of commutative algebra and algebraic geometry. As such, Bernd Sturmfel's text *Algorithms in Invariant Theory* [Str08] is a good resource for first learning this stuff. Perhaps in the future I'll include notes and some source code

Chapter 1

Introduction

1.1 Symmetric Polynomials

Solution: [Str08] 1.1.5: From [Page 23, 2.11'][Mac98], we have the following identities

$$\begin{aligned} 1 \cdot \sigma_1 &= p_1, \\ 2 \cdot \sigma_2 &= p_1 \sigma_1 - p_2, \\ 3 \cdot \sigma_3 &= p_1 \sigma_2 - p_2 \sigma_1 + p_3, \\ &\vdots \\ k \cdot \sigma_k &= \sum_{r=1}^k (-1)^{r-1} p_r \sigma_{k-r}. \end{aligned}$$

Treating the σ_i as indeterminants, we can re-express the above system of equations:

$$\begin{split} p_1 &= 1 \cdot \sigma_1, \\ p_2 &= p_1 \sigma_1 - 2 \cdot \sigma_2, \\ p_3 &= p_2 \sigma_1 - p_1 \sigma_2 + 3 \cdot \sigma_3, \\ &\vdots \\ p_k &= \left(\sum_{r=1}^{k-1} (-1)^{r-1} p_{k-r} \sigma_r\right) + (-1)^{k-1} \cdot k \sigma_k. \end{split}$$

Consider $\sigma_1, -\sigma_2, \sigma_3, \dots, (-1)^n \sigma_{n-1}, \sigma_n$ as indeterminants. Thus, we obtain the following matrix equation:

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ p_1 & 2 & 0 & \cdots & 0 \\ p_2 & p_1 & 3 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ p_{k-1} & p_{k-2} & \cdots & \cdots & (-1)^k \cdot k \end{pmatrix} \begin{pmatrix} \sigma_1 \\ -\sigma_2 \\ \vdots \\ (-1)^k \sigma_{k-1} \\ \sigma_k \end{pmatrix} = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_{k-1} \\ p_k \end{pmatrix}.$$

Then, Cramer's rule yields that

$$\sigma_{k} = \det \begin{pmatrix} 1 & 0 & 0 & \cdots & p_{1} \\ p_{1} & 2 & 0 & \cdots & p_{2} \\ p_{2} & p_{1} & 3 & \cdots & p_{3} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ p_{k-1} & p_{k-2} & \cdots & \cdots & p_{k} \end{pmatrix} \det \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ p_{1} & 2 & 0 & \cdots & 0 \\ p_{2} & p_{1} & 3 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ p_{k-1} & p_{k-2} & \cdots & \cdots & (-1)^{k} \cdot k \end{pmatrix}^{-1}$$

$$= \frac{(-1)^{k}}{k!} \det \begin{pmatrix} 1 & 0 & 0 & \cdots & p_{1} \\ p_{1} & 2 & 0 & \cdots & p_{2} \\ p_{2} & p_{1} & 3 & \cdots & p_{3} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ p_{k-1} & p_{k-2} & \cdots & \cdots & p_{k} \end{pmatrix}$$

$$= \frac{(-1)^{k}}{k!} \cdot (-1)^{k} \det \begin{pmatrix} p_{1} & 1 & 0 & \cdots & 0 \\ p_{2} & p_{1} & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ p_{k-1} & p_{k-2} & \cdots & p_{1} & k-1 \\ p_{k} & p_{k-1} & \cdots & \cdots & p_{1} \end{pmatrix} = \frac{1}{k!} \det \begin{pmatrix} p_{1} & 1 & 0 & \cdots & 0 \\ p_{2} & p_{1} & 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ p_{k-1} & p_{k-2} & \cdots & p_{1} & k-1 \\ p_{k} & p_{k-1} & \cdots & \cdots & p_{1} \end{pmatrix}$$

1.2 Gröbner Bases

Lemma 1.2.1:

Let $R = \mathbb{C}[x_1, \dots, x_n]$. Then with the usual grading, let $H(R, z) \coloneqq \sum_{d=0}^{\infty} \dim_{\mathbb{C}}(R_d) z^d$. We have that

$$H(R,z) := \sum_{d=0}^{\infty} \dim_{\mathbb{C}}(R_d) z^d = \sum_{d=0}^{\infty} \binom{d+n-1}{n-1} = \frac{1}{(1-z)^n}.$$

Solution: To see that $H(R,z)=\sum_{d=0}^{\infty}{d+n-1\choose n-1}$, just count the number of monomials of degree d in n variables. The value ${d+n-1\choose n-1}$ is the number of non-negative integer solutions to $a_1+\cdots+a_n=d$. Each solution corresponds to a monomial $x_1^{a_1}\cdots x_n^{a_n}$. Then to see that $H(R,z)=\frac{1}{(1-z)^n}$, consider the product of infinite sums $(1+z+z^2+\cdots)\cdots(1+z+z^2+\cdots)$ a total of n-times. Then the coefficient of z^d again corresponds to the number of such non-negative integer solutions. Since $\frac{1}{1-z}=1+z+z^2+\cdots$, we obtain the desired equality. \square

Solution: [Str08] 1.2.1: Let M be a set of monomial generators for $\operatorname{init}(I)$ and let m be minimally nonstandard. Since m is a monomial and in $\operatorname{init}(I)$, we have that $m' \mid m$ for some monomial $m' \in M$. However, note that $m' \in \operatorname{init}(I)$ and furthermore by the fact that m is minimally nonstandard, we cannot have that m' strictly divides m. Thus, m' = m and $m \in M$. Then by Dickson's Lemma, we have that M is a finite set and thus there are finitely many minimally nonstandard monomials.

Solution: [Str08] 1.2.2: This is [CLO15, Chapter 2, §7, Theorem 5].

Solution: [Str08] 1.2.3: This is [CLO15, Chapter 3, §1, Theorem 2].

Solution: [Str08] 1.2.6: First, we recall some definitions. The S-polynomial of f and g is

$$S(f,g) := \frac{\operatorname{lcm}(\operatorname{LM}(f),\operatorname{LM}(g))}{\operatorname{LT}(f)} f - \frac{\operatorname{lcm}(\operatorname{LM}(f),\operatorname{LM}(g))}{\operatorname{LT}(g)} g.$$

For a set of polynomials $\mathcal{F} = \{f_1, \dots, f_t\} \subseteq k[x_1, \dots, x_n]$, we write $f \to_{\mathcal{F}} 0$ if there exists $a_1, \dots, a_t \in k[x_1, \dots, x_n]$ such that $a_1f_1 + \dots + a_tf_t = 0$. Then [CLO15, Chapter 2, §9, Theorem 3] says that a basis $\mathcal{F} = \{f_1, \dots, f_t\}$ is a Gröbner basis for G if and only if $S(f_i, f_j) \to_{\mathcal{F}} 0$ for all $i \neq j$. But [CLO15, Chapter 2, §9, Proposition 4] says that for $f, g \in \mathcal{F}$ with relatively prime initial monomials, we have that $S(f, g) \to_{\mathcal{F}} 0$. This proves the claim.

Bibliography

- [CLO15] D.A. Cox, J. Little, and D. O'Shea. *Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra*. Undergraduate Texts in Mathematics. Springer International Publishing, 2015. ISBN: 9783319167213. URL: https://books.google.com/books?id=yL7yCAAAQBAJ.
- [Mac98] Ian Grant Macdonald. Symmetric functions and Hall polynomials. Oxford university press, 1998.
- [Str08] Bernd Strumfels. *Algorithms in Invariant Theory*. Springer Vienna, 2008. ISBN: 9783211774175. DOI: 10.1007/978-3-211-77417-5. URL: http://dx.doi.org/10.1007/978-3-211-77417-5.