Лабораторная работа N5.

ИНТЕРПОЛИРОВАНИЕ СПЛАЙНАМИ

При большом количестве узлов интерполяции возрастает степень интерполяционных многочленов, что приводит приближению из-за накопления вычислительных погрешностей. Высокой степени многочлена можно избежать, разбив отрезок [a,b] частей c построением каждой на несколько самостоятельного интерполяционного многочлена (так называемая кусочно-полиномиальная интерполяция). В этом случае удобно пользоваться особым видом кусочно-полиномиальной интерполяции интерполяцией сплайнами(spline-рейка). Рассмотрим способ построения сплайнов третьей степени (так называемых кубических сплайнов), наиболее широко распространённых на практике.

Построение кубического сплайна.

Пусть на [a,b] задана непрерывная функция f(x).Введём сетку $a=x_0 < x_1 < ... < x_{N-1} < x_N = b$ и обозначим $f_i=f(x_i), i=\overline{0,N}$.

Сплайном, соответствующим данной функции f(x) и данным узлам $\{x_i\}_{i=0}^N$ называется функция S(x), удовлетворяющая следующим условиям:

- 1) на каждом сегменте $[x_{i-1}, x_i], i = \overline{1, N}$ функция S(x) является многочленом третьей степени;
- 2) функция S(x), а также её первая и вторая производные непрерывны на [a,b];
- 3) $S(x_i) = f(x_i), i = 0, N.$

Последнее условие называется условием интерполирования, а сплайн, определяемый этими тремя условиями, называется интерполяционным кубическим сплайном.

Сплайн, определённый таким образом , существует и единственен, если наложить два дополнительных условия на производные функции f . Покажем способ его построения.

На каждом из отрезков $[x_{i-1}, x_i], i = \overline{1, N}$, будем искать функцию $S(x) = S_i(x)$ в виде многочлена третьей степени:

$$S_{i}(x) = a_{i} + b_{i}(x - x_{i}) + \frac{c_{i}}{2}(x - x_{i})^{2} + \frac{d_{i}}{6}(x - x_{i})^{3},$$

$$x_{i-1} \le x \le x_{i}, i = \overline{1, N},$$
(1)

где
$$a_i = S_i(x_i) = f(x_i)$$
 -известные величины , $b_i = S_i^{'}(x_i), c_i = S_i^{''}(x_i), d_i = S_i^{'''}(x_i)$ -коэффициенты подлежащие определению.

Для того чтобы составить систему уравнений для коэффициентов сплайна , необходимо потребовать , чтобы в точке x_{i-1} , $i=\overline{1,N}$, совпадали значения многочленов S_{i-1} и S_i , а также значения их первых и вторых производных , то есть

$$S_{i-1}(x_{i-1}) = S_i(x_{i-1})$$
 , $S_{i-1}(x_{i-1}) = S_i(x_{i-1})$, $S_{i-1}(x_{i-1}) = S_i(x_{i-1})$.

Учитывая выражения для функции $S_i(x)$ и обозначая $h_i = x_i - x_{i-1}$, получаем уравнения

$$h_i b_i - \frac{h_i^2}{2} c_i + \frac{h_i^3}{6} d_i = f_i - f_{i-1}, i = \overline{1, N},$$
 (2)

$$h_i c_i - \frac{h_i^2}{2} d_i = b_i - b_{i-1}, i = \overline{2, N},$$
 (3)

$$h_i d_i = c_i - c_{i-1}, i = \overline{2, N},$$
 (4)

Это система 3N-2 уравнений относительно 3N неизвестных . Два недостающих уравнения получают , задавая те или иные граничные условия для S(x) . Полученная система 3N уравнений может быть решена тем или иным методом решения систем линейных уравнений.

ПРИМЕР 1:

Предположим , например , что функция f(x) удовлетворяет условиям f''(a) = f''(b) = 0. Тогда естественно потребовать , чтобы S''(a) = S''(b) = 0 .Отсюда получаем $S_1''(x_0) = 0$, $S_N''(x_N) = 0$, то есть

$$c_1 - d_1 h_1 = 0, c_N = 0. (5)$$

Исключим из системы (2)-(5) переменные b_i, d_i , и получим трёхдиагональную систему, содержащую только переменные c_i :

$$\begin{split} h_i c_{i-1} + 2(h_i + h_{i+1}) c_i + h_{i+1} c_{i+1} &= 6(\frac{f_{i+1} - f_i}{h_{i+1}} - \frac{f_i - f_{i-1}}{h_i}), \\ c_N &= 0, i = \overline{1, N-1}, \end{split}$$

где положено $c_0=0$. Эту систему можно решать любым методом , однако такие трёхдиагональные системы удобно решать методом прогонки , которая в данном случае устойчива. По найденным коэффициентам c_i определим остальные коэффициенты по формулам.

$$d_i = \frac{c_i - c_{i-1}}{h_i}, \quad b_i = \frac{h_i}{2} c_i - \frac{h_i^2}{6} d_i + \frac{f_i - f_{i-1}}{h_i},$$

					_	
a.	=	f(x)	\cdot), i	=	1.	Ν.
- 1) \			,	

ПРИМЕР 2:

Пусть функция задана таблицей своих значений:

i	0	1	2	3	4	5
x_i	0.1	0.15	0.19	0.25	0.28	0.30
$f(x_i)$	1.1052	1.1618	1.2092	1.2840	1.3231	0.3499

требуется построить сплайн третьего порядка. Заданы два граничных условия:

$$2M_0 + M_1 = \alpha$$
 , где $\alpha = 3.3722$

$$0.5M_4 + 2M_5 = \beta$$
 , где $\beta = 3.3614$,

где $M_i = S_3^{"}(x_i), i = \overline{0,5}$. Подставив данное условие в (1) получим два недостающих уравнения :

$$h_1 d_1 = \frac{3c_1 - \alpha}{2}$$
,

$$h_5 d_5 = \frac{2.5c_5 - \beta}{2} .$$

Имеем систему из пятнадцати уравнений для пятнадцати неизвестных (c_i, b_i, d_i) :

1.
$$h_i b_i - \frac{h_i^2}{2} c_i + \frac{h_i^3}{6} d_i = f_i - f_{i-1}$$
, $i = \overline{1,5}$.

2.
$$h_i c_i - \frac{h_i^2}{2} d_i = b_i - b_{i-1}$$
, $i = \overline{2,5}$.

3.
$$h_i d_i = c_i - c_{i-1}$$
, $i = \overline{2,5}$.

4.
$$h_1 d_1 = \frac{3c_1 - \alpha}{2}$$
,

5.
$$h_5 d_5 = \frac{2.5c_5 - \beta}{2}$$
.

Символы α , β являются численными константами определёнными выше в граничных условиях.

Выражая переменные b_i из уравнений **1.**, а переменные d_i из уравнений **3.**, **4.**, **5.**, и подставляя полученные значения в уравнения **2.**, получим трёхдиагональную систему из пяти уравнений , содержащую только переменные c_i :

•
$$h_2c_2 + (4h_2 + 3h_1)c_1 = 12(\frac{f_2 - f_1}{h_2} - \frac{f_1 - f_0}{h_1}) - h_1\alpha$$
,

•
$$h_{i+1}c_{i+1} + 2(h_{i+1} + h_i)c_i + h_ic_{i-1} = 6(\frac{f_{i+1} - f_i}{h_{i+1}} - \frac{f_i - f_{i-1}}{h_i})$$
, $i = \overline{2,4}$.

•
$$3c_5 + 4c_4 = 2\beta$$
.

Решим данную трёхдиагональную систему методом правой прогонки. В данном случае он является устойчивым, так как коэфициенты при переменных c_i соответствуют условиям.

По найденным коэфициентам c_i определим остальные коэфициенты по следующим формулам :

$$b_{1} = \frac{(f_{1} - f_{0})}{h_{1}} + \frac{3h_{1}c_{1} + h_{1}\alpha}{12} , \qquad d_{1} = \frac{3c_{1} - \alpha}{2h_{1}} ,$$

$$b_{i} = \frac{(f_{i} - f_{i-1})}{h_{i}} + \frac{2h_{i}c_{i} + h_{i}c_{i-1}}{6} , \qquad d_{i} = \frac{c_{i} - c_{i-1}}{h_{i}} , \quad i = \overline{2,5}.$$

$$a_{i} = f(x_{i}), i = \overline{1,5}.$$

Подставим значения вычисленных коэфициентов в формулу (1) и получим функции интерполирования $S(x) = S_i(x)$, для каждого из отрезков $[x_{i-1}, x_i]$, $i = 1,\overline{5}$.

ЗАДАНИЯ:

Функция f(x) задана таблицей своих значений . Построить сплайн третьего порядка и вычислить значение функции в указанных точках , $M_i = S_i^{\ \ \ \ }(x_i)$:

Вариант N1.

i	0	1	2	3	4	5
x_i	0.1	0.15	0.19	0.25	0.28	0.30
$f(x_i)$	1.1052	1.1618	1.2092	1.2840	1.3231	0.3499

$$2M_0 + M_1 = 3,3722$$
 , $0.5M_4 + 2M_5 = 3,3614$, $x = 0.20$.

Вариант N2.

i	0	1	2	3	4	5
x_i	0.2	0.24	0.26	0.29	0.32	0.38
$f(x_i)$	1.2214	1.2712	1.2969	1.3364	1.3771	1.4623

$$2M_0 + 0.1M_1 = 2.5699$$
 , $0.3M_4 + 2M_5 = 3.3378$, $x = 0.31$.

Вариант N3.

i	0	1	2	3	4	5
\boldsymbol{x}_{i}	0.1	0.13	0.17	0.20	0.25	0.28
$f(x_i)$	0.0998	0.1296	0.1692	0.1987	0.2474	0.2764

$$2M_0 + 0.5M_2 = -0.2644$$
 , $0.4M_4 + 2M_5 = -0.6580$, $x = 0.15$.

Вариант N4.

i	0	1	2	3	4	5
x_i	0.1	0.15	0.18	0.22	0.28	0.30
$f(x_i)$	1.1052	1.1618	1.1972	1.2461	1.3231	1.3499

$$2M_0 + M_1 = 3.3722$$
 , $0.5M_4 + 2M_5 = 3.3614$, $x = 0.16$.

Вариант N5.

i	0	1	2	3	4	5
x_i	0.2	0.24	0.27	0.30	0.32	0.38
$f(x_i)$	1.2214	1.2712	1.3100	1.3499	1.3771	1.4623

$$2M_0 + 0.1M_1 = 2.5699$$
 , $0.3M_4 + 2M_5 = 3.3378$, $x = 0.25$.

Вариант №6.

i	0	1	2	3	4	5
\mathcal{X}_{i}	0.1	0.14	0.16	0.20	0.24	0.30
$f(x_i)$	0.1234	0. 1456	0.1874	0.2361	0.2475	0.4562

$$2M_0 + 0.3M_1 = -0.3421$$
 , $0.5M_4 + 2M_5 = -0.6578$, $x = 0.20$.

Вариант N7.

i	0	1	2	3	4	5
x_i	0.2	0.26	0.28	0.31	0.32	0.38
$f(x_i)$	1.2214	1.2765	1.3071	1.3456	1.3775	1.4568

$$2M_0 + 0.5M_1 = 1.8765$$
 , $0.3M_4 + 2M_5 = 3.4567$, $x = 0.30$.

Вариант N8.

i	0	1	2	3	4	5
\mathcal{X}_{i}	0.2	0.25	0.28	0.30	0.33	0.36
$f(x_i)$	1.2222	1.2345	1.2876	1.3345	1.3864	1.4123

$$2M_0 + 0.5M_2 = 2.2132$$
 , $0.5M_4 + M_5 = 4.1211$, $x = 0.26$.

Вариант N9.

i	0	1	2	3	4	5
x_i	0.1	0.15	0.18	0.23	0.26	0.31
$f(x_i)$	0.2345	0.3647	0.4634	0.5221	0.6231	0.8352

$$M_0 + M_1 = 3.2756$$
 , $M_4 + M_5 = 3.8731$, $x = 0.30$.

Вариант N10.

i	0	1	2	3	4	5
X_{i}	0.1	0.13	0.18	0.24	0.28	0.32
$f(x_i)$	1.1123	1.1453	1.2344	1.4321	1.8321	1.8888

$$2M_0 + 0.5M_1 = -0.2313$$
 , $0.4M_4 + 2M_5 = -0.8765$, $x = 0.20$.

Вариант N11.

i	0	1	2	3	4	5
x_i	0.2	0.24	0.25	0.28	0.35	0.38
$f(x_i)$	1.2342	1.4532	1.8723	2.1234	2.3421	2.4321

$$2M_0 + M_1 = 2.2431$$
 , $M_4 + 3M_5 = 3.6231$, $x = 0.26$.

Вариант N12.

i	0	1	2	3	4	5
x_i	0.1	0.13	0.18	0.20	0.24	0.28
$f(x_i)$	0.1234	0.1345	0.1678	0.2234	0.2678	0.3112

$$M_0 + 0.5M_1 = 3.3452$$
 , $0.5M_4 + 2M_6 = 3.6751$, $x = 0.25$.

Вариант N13.

i	0	1	2	3	4	5
\boldsymbol{x}_{i}	0.1	0.15	0.18	0.22	0.26	0.31
$f(x_i)$	0.1234	0.1456	0.1897	0.2343	0.2872	0.3213

$$M_0 + 0.5 M_1 = -0.2435$$
 , $M_4 + 2 M_5 = -0.6545$, $x = 0.20$.

Вариант N14.

i	0	1	2	3	4	5
x_i	0.2	0.24	0.28	0.32	0.36	0.38
$f(x_i)$	1.2345	1.2532	1.2876	1.3241	1.3632	1.4231

$$2M_0 + M_1 = 2.2351$$
 , $M_4 + M_6 = 3.3452$, $x = 0.30$.

Вариант N15.

i	0	1	2	3	4	5
x_i	0.1	0.15	0.16	0.18	0.25	0.30
$f(x_i)$	0.1123	0.1467	0.1873	0.2134	0.2436	0.2531

$$2M_0 + 0.5M_1 = 3.3722$$
 , $0.5M_4 + 2M_5 = 3.5342$, $x = 0.20$.

Вариант N16.

i	0	1	2	3	4	5
X_i	0.2	0.23	0.26	0.30	0.34	0.36
$f(x_i)$	1.1232	1.2345	1.2675	1.2876	1.3452	1.3672

$$2M_0 + M_1 = 1.9274$$
 , $0.5M_4 + 2M_5 = 2.3421$, $x = 0.25$.

Вариант N17.

i	0	1	2	3	4	5
x_i	0.1	0.14	0.18	0.23	0.28	0.31
$f(x_i)$	1.1122	1.1342	1.1654	1.2132	1.2454	1.2675

$$M_0 + M_1 = 3.3722$$
 , $M_4 + 2M_5 = 3.3614$, $x = 0.15$.

Вариант N18.

i	0	1	2	3	4	5
\mathcal{X}_{i}	0.2	0.24	0.26	0.28	0.32	0.36
$f(x_i)$	1.2231	1.2524	1.2861	1.3421	1.3872	1.4653

$$M_0 + 2M_1 = 2.7645$$
 , $0.5M_4 + M_5 = 2.7545$, $x = 0.30$.

Вариант N19.

i	0	1	2	3	4	5
x_i	0.2	0.25	0.28	0.34	0.38	0.42
$f(x_i)$	1.3452	1.3654	1.3823	1.4231	1.4652	1.4826

$$M_0 + 0.5 M_1 = 1.7236$$
 , $0.5 M_4 + M_5 = 1.7436$, $x = 0.30$.

Вариант N20.

i	0	1	2	3	4	5
x_i	0.2	0.23	0.26	0.28	0.34	0.38
$f(x_i)$	0.0291	0.1342	0.3522	0.4635	0.4821	0.5212

$$2M_0 + 0.5M_1 = 3.3722$$
 , $M_4 + M_5 = 3.5806$, $x = 0.25$.

Вариант N21.

i	0	1	2	3	4	5
x_i	0.1	0.16	0.18	0.24	0.26	0.32
$f(x_i)$	0.1232	0.1342	0.16232	0.18234	0.2342	0.2621

$$M_0 + 2M_1 = 3.4534$$
 , $0.5M_4 + 2M_5 = 3.3614$, $x = 0.16$.

Вариант N22.

i	0	1	2	3	4	5
x_i	0.1	0.12	0.15	0.19	0.24	0.28
$f(x_i)$	0.2143	0.2432	0.2832	0.3123	0.3243	0.3622

$$M_0 + 0.4M_1 = 3.3255$$
 , $M_4 + 2M_5 = 3.8453$, $x = 0.20$.

Вариант N23.

i	0	1	2	3	4	5
x_i	0.2	0.24	0.25	0.32	0.36	0.40
$f(x_i)$	1.2342	1.2633	1.2823	1.3645	1.3843	1.4123

$$M_0 + 2M_1 = 1.4636$$
 , $0.5M_4 + 2M_5 = 1.9786$, $x = 0.30$.

Вариант N24.

i	0	1	2	3	4	5
x_i	0.1	0.14	0.16	0.18	0.24	0.28
$f(x_i)$	1.1231	0.1342	0.1654	0.1823	0.2134	0.2432

$$2M_0 + 0.5M_1 = 3.3722$$
 , $0.5M_4 + 2M_5 = 3.3614$, $x = 0.20$.

Вариант N25.

i	0	1	2	3	4	5
\boldsymbol{x}_{i}	0.2	0.24	0.26	0.28	0.34	0.38
$f(x_i)$	1.1234	1.1453	1.1675	1.2123	1.2456	1.2654

$$M_0 + 2M_1 = -0.2344$$
 , $M_4 + 2M_5 = -0.5432$, $x = 0.25$.

Литература:

- 1. П. И. Монастырный. Сборник задач по МЕТОДАМ ВЫЧИСЛЕНИЙ -Минск-Издательство БГУ им. В. И. Ленина. 1983г.
- 2. Н. Б. Медведева , К. А. Рязанов. Численные методы(Методические указания к лабораторным работам) Челябинск. 1998г.