What is claimed is:

5

20

25

- 1. A method of producing low-dust granules of polymer additives or polymer additive mixtures, wherein the granule-forming polymer additives are mixed together, the mixture is converted into a workable mass and pressed through an orifice, and the pre-shaped strand-like extruded mass is cooled and, while still in a workable state, formed into granules by rolling, impressing, cooling and comminuting.
- 2. A method according to claim 1, wherein there are mixed together as granule-forming polymer additives phenolic polymer additives of formula:

$$\begin{array}{c|c}
R_1 & O \\
HO \longrightarrow R_2 & CH_2 - (S)_m - CH_2 & O \\
R_3 & O & O \\
\end{array}$$
(I),

wherein, independently of one another, one of R₁ and R₂ is hydrogen, a substituent selected from the group C₁-C₁₈alkyl, phenyl, (C₁-C₄alkyl)₁₋₃phenyl, phenyl-C₁-C₃alkyl, (C₁-C₄alkyl)₁₋₃phenyl-C₁-C₃alkyl, C₅-C₁₂cycloalkyl and (C₁-C₄alkyl)₁₋₃C₅-C₁₂cycloalkyl or a group of partial formula

$$R_a = N$$
N — (A),

wherein R_a is hydrogen or a substituent selected from the group C₁-C₄alkyl, halogen and sulfo;

and the other is a substituent selected from the group C_1 - C_{18} alkyl, phenyl, $(C_1$ - C_4 alkyl)₁₋₃phenyl, phenyl- C_1 - C_3 alkyl, $(C_1$ - C_4 alkyl)₁₋₃phenyl- C_1 - C_3 alkyl, C_5 - C_{12} cycloalkyl and $(C_1$ - C_4 alkyl)₁₋₃ C_5 - C_{12} cycloalkyl or a group of partial formula (A) wherein R_a is as defined;

R₃ is hydrogen or methyl;

m is the number zero or 1; and

n is an integer from 1 to 4; wherein,

when n is the number 1,

m is zero or 1 and Y denotes

a monovalent substituent -O-Y₁ or -N(-Y₂)₂, wherein

 Y_1 is C_5 - C_{45} alkyl, C_3 - C_{45} alkyl interrupted by at least one oxygen atom, C_5 - C_{12} cycloalkyl, C_2 - C_{12} alkenyl,

a substituent of partial formula

5 -CH₂-CH(C

$$-CH_2-CH(OH)-CH_2-O-C(=O)-R_b,$$
 (B),

wherein R_b is hydrogen, C₁-C₈alkyl, C₃-C₅alkenyl or benzyl,

a substituent of partial formula

$$-CH_2-CH_2-O-R_c (C),$$

wherein R_c is hydrogen, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl or phenyl,

10 a substituent of partial formula

$$-CH2-CH2-O-CHRd-CHRe-C(=O)-O-Rf (D),$$

wherein one of R_d and R_e is hydrogen or methyl and the other is methyl, and R_f is hydrogen or C_1 - C_{24} alkyl,

a substituent of partial formula

$$-CH_{2}$$
 $-CH_{2}$ $-CH_$

15

wherein R₁ and R₂ are as defined above,

or a substituent of partial formula

$$-CH_2-CH_2-O-CH_2-C(=O)-O-R_q$$
 (F),

wherein R_g is hydrogen or C₁-C₂₄alkyl; and

Y₂ is hydroxy- C_2 - C_4 alkyl; or,

when n is the number 2,

m is zero and Y is a bivalent group of partial formula

$$-O-C_xH_{2x}-O-$$
 (G),

wherein x is an integer from 2 to 20,

$$-O-(CH2-CH2-O)v-CH2-CH2-O- (H),$$

wherein y is an integer from 1 to 30,

$$-O-CH_2-CH_2-S-CH_2-CH_2-O-$$
 (I),

$$-O-CH_2-CH=CH-CH_2-O-$$
 (K) or

$$-NH-(CH2)z-NH- (L),$$

wherein z is zero or an integer from two to ten; or,

when n is the number 3, m is zero and Y is a trivalent group of partial formula

$$-O-CH_{2}$$

 $-O-CH_{2}-R_{h}$ (M),
 $-O-CH_{2}$

wherein R_h is C₁-C₂₄alkyl or phenyl, or

when n is the number 4, m is zero and Y is the tetravalent group of partial formula

$$\begin{array}{c} -{\rm O-CH_2} \\ -{\rm O-CH_2} \\ -{\rm O-CH_2} \\ -{\rm O-CH_2} \end{array}$$

10

5

A method according to claim 1, wherein there are mixed together as granule-forming polymer additives phenolic polymer additives of formula:

$$R_1$$
 HO
 C_xH_{2x}
 Y
'),

15

wherein, independently of one another, one of R_1 and R_2 is hydrogen or C_1 - C_4 alkyl and the other is C_3 - C_4 alkyl; x is zero (direct bond) or an integer from one to three; and Y is C_8 - C_{22} alkoxy or a group of partial formula

5

$$-N - (CH_2)_y - N - (C_xH_{2x}) - C_xH_{2x} - C_xH_{$$

wherein, independently of one another, one of R_1 ' and R_2 ' is hydrogen or C_1 - C_4 alkyl and the other is C_3 - C_4 alkyl; x is zero (direct bond) or an integer from one to three; y is an integer from two to ten and z is an integer from two to six.

- 4. A method according to claim 1, wherein the mixture of granule-forming polymer additives is converted into a workable mass in a heatable ko-kneader.
- A method according to claim 1, wherein the workable mass is extruded from the ko kneader through a circular nozzle or slot-shaped nozzle and the pre-shaped, strand-like mass is subjected to further processing.
 - 6. A method according to claim 1, wherein the plastic, pre-shaped mass is processed by squeeze rollers having a smooth and polished surface and then shaping rollers provided with embossing lines.
- 15 7. A method according to claim 1, wherein the shaping rollers are provided with grooves.
 - 8. A method according to claim 1, wherein the transport and the cooling and solidification are carried out on a continuous steel belt.
 - 9. A method according to claim 1, wherein the components of the granule-forming polymer additives are fed into the ko-kneader in liquid or solid form or in molten form.
- 20 10. A method according to claim 1, wherein the impressed product mat is comminuted to granule size in a sieve granulator.