TEMA 2.1: Ingenie de requisitos

1. INTRODUCCIÓN AL MODELADO DE REQUISITOS

1.1. INGENIERÍA DE REQUISITOS: ¿QUÉ ES?

Se trata de todas las actividades relacionadas con:

- Identificar y documentar las necesidades del cliente
- Analizar la viabilidad de las necesidades
- Negociar una solución razonable
- Crear un documento que describa un SW que satisfaga las necesidades
- Analizar y validar el documento
- Controlar la evolución de las necesidades
- , que nos ayudan a determinar ¿qué va a hacer el software?

En conclusión, la ingeniería de requisitos es el proceso de construcción de una <u>especificación de requisitos</u> en el que, partiendo de especificaciones iniciales, se llega a especificaciones finales completas, documentadas y validadas.

Factores a tener en cuenta en el proceso

- La complejidad del problema a resolver
- La forma de identificar los requisitos por parte del cliente
- Dificultades de comunicación entre desarrolladores y usuarios. Hay que tener cuidado a la hora de entender al cliente.
- Dificultades de comunicación entre los miembros del equipo de desarrolladores
- Requisitos que no se pueden obtener del cliente y de los usuarios
- Naturaleza cambiante de los requisitos

Ninguna otra etapa del desarrollo afecta tanto al sistema resultante si se lleva a cabo de manera incorrecta que la planificación. De hecho, es la más difícil de modificar a posteriori si se hizo mal en un principio.

1.2. CONCEPTO DE REQUISITO

Definiciones

- Capacidad que debe alcanzar o poseer un sistema o componente de este para satisfacer un contrato, estándar, especificación u otro documento formal.
- Propiedad que un software desarrollado o adaptado debe tener para resolver un problema concreto.

Atributo de un requisito

Cualquier información complementaria que se utiliza para su gestión y que se incluye en su especificación, tal y como descripción general del requisito, tipo de requisito, fuente del requisito o historial de cambios,.

1.3. ACTIVIDADES GENERALES DE LA INGENIERÍA DE REQUISITOS

Estudio de viabilidad (etapa previa)

¿Es conveniente realizar el desarrollo del sistema/SW? Para ello, nos preguntamos:

- -¿Soluciona el SW los problemas existentes en el sistema?
 - -¿Se puede desarrollar con la tecnología actual? ¿Dispone el cliente de ella?
 - -¿Se puede desarrollar con las restricciones de costo y tiempo?
 - -¿Puede integrarse con otros sistemas de la organización?

2

Obtención de requisitos

El objetivo es capturar el propósito y funcionalidades del sistema desde la perspectiva de usuario para 1) delimitar las fronteras del sistema (rectángulo en los casos de uso) y 2) elaborar un glosario de términos.

Es un proceso difícil que se apoya en entrevistas, casos de uso, prototipado (desechables) y análisis etnográfico (el desarrollador va a las oficinas del cliente a ver cómo se trabaja allí, como si fuese un safari).

Los productos generados en esta etapa son:

- -Documento de entrevistas
- -Lista estructurada de requisitos
- -Diagramas de casos de uso + Plantillas (una por CU) + Diagramas de actividad

Análisis de requisitos

Es la actividad más importante de todas. Consiste en el proceso de estudiar las necesidades del usuario para obtener una definición detallada de los requisitos.

Para ello:

- -Se detectan conflictos entre requisitos
- -Se clasifican requisitos
- -Se negocia
- -Se hace el modelado conceptual
- -Se establecen las bases para el diseño

Finalmente, todo ello conduce al estudio de soluciones.

Especificación de requisitos

Es el proceso de documentar el comportamiento requerido de un sistema SW, a menudo utilizando una notación de modelado u otro lenguaje de especificación. Para ello:

- -Se detallan los requisitos
- -Se genera un modelo formal y prototipos
- -Se estudian los casos de uso

Los productos generados en esta etapa son:

- Modelo arquitectónico (subsistemas) -> diagrama de paquetes
- Modelo estático (conceptual) -> diagrama de clases
- Modelo dinámico (funcional) -> diagrama de secuencia + contratos

Validación de requisitos

Consiste en examinar los requisitos para asegurarse de que definen el sistema que el cliente y los usuarios desean. Para facilitar el proceso, se puede:

- Crear prototipos
- Crear simulaciones
- Hacer revisiones automáticas con técnicas formales
- Usar herramientas

Recordar que validación no es lo mismo que verificación (tema 1).

1.4. ACTORES

Son cada uno de los diferentes roles que pueden desempeñar la misma o distintas personas según el punto de desarrollo en el que se encuentre el sistema SW:

- Usuarios: grupo heterogéneo que comprende a todos aquellos que operan con el SW
- Clientes: aquellos que tienen interés en adquirir el SW o representan al mercado potencial
- Analistas de mercado: personas especializadas en recabar las posibles necesidades del mercado y que obtienen requisitos a través de clientes potenciales
- Reguladores: autoridades específicas encargadas de hacer cumplir normativas estrictas o requisitos legales
- Ingenieros de SW: personas que se encargan de plantear y desarrollar soluciones de compromiso que satisfagan a todos los involucrados en un proyecto SW

1.5. PROPIEDADES DE LOS REQUISITOS

Para que sean de calidad tienen que ser:

- Completos: todos los aspectos del sistema están representados en el modelo de requisitos
- Consistentes: los requisitos no se contradicen entre sí
- No ambiguos: no es posible interpretar los requisitos de dos o más formas
- Correctos: representan exactamente el sistema que el cliente necesita y que el desarrollador construirá
- Realistas: se pueden implementar con la tecnología y el presupuesto disponibles
- Verificables: se pueden diseñar pruebas para comprobar que el sistema satisface los requisitos
- Trazables: debe ser posible hacer un seguimiento de cada requisito que permita conocer su estado (especificado, verificado, analizado, etc) en cada momento del desarrollo
- Identificables: cada requisito debe tener un identificador único que lo distinga y que permita hacer referencia a él en cualquier punto del ciclo de vida del SW sin ambigüedad
- Cuantificables: es deseable que se pueda medir el grado de cumplimiento de un requisito en términos precisos

1.6. TIPOS DE REQUISITOS

Funcionales

Especifican las funciones que un sistema o componente de este debe ser capaz de llevar a cabo (calcular media, ordenar fichero...). Se identifican con verbos y acciones.

No funcionales

Especifican aspectos técnicos que debe incluir un sistema. Pueden clasificarse en restricciones (cualquier limitación a la que se enfrenten los desarrolladores del sistema) y calidades (características de un sistema que importan a los clientes y usuarios del mismos).

Una clasificación más amplia es la siguiente:

- Requisitos del producto: detallan limitaciones o comportamientos exigidos al producto resultante del desarrollo (cantidad de memoria requerida, velocidad de respuesta...)
- Requisitos de la organización: relacionadas con normativas de funcionamiento de la organización que lleva a cabo el desarrollo, sus procedimientos y políticas (estándares de desarrollo, documentación a entregar, plazos de entrega...)
- Requisitos externos: cubren aspectos externos al sistema y a su proceso de desarrollo (interoperabilidad con otros sistemas, requisitos legales...)

De información

Describen necesidades de almacenamiento de información en el sistema.

Clasificación FURPS+

Características que tiene que tener un sistema para ser de calidad:

4 Facilidad de uso (Usability)

Factores humanos, ayuda, documentación

Fiabilidad (Reliability)

Frecuencia de fallos, disponibilidad, capacidad de recuperación de un fallo y grado de previsión

Rendimiento (Performance)

Tiempos de respuesta, productividad, precisión, velocidad, uso de los recursos

♣ Soporte (Supportability)

Adaptabilidad, facilidad de mantenimiento, internacionalización, configurabilidad

+ +

Restricciones físicas, de diseño, de implementación y de interfaz

Ejemplos de requisitos

NF® El sistema debe validar la tarjeta en menos de 3 segundos

► El sistema debe insertar las palabras en el orden correcto

F * El sistema debe contar el número de palabras procesadas

NF* El sistema se diseñará para un terminal CRT monocromo

NF . Los usuarios del sistema serán en su mayoría novatos

INF. La cantidad que pagan los socios debe ser almacenada como dato de tipo real

NC■ Deben de producirse informes útiles

NE El sistema no deberá revelar a los operadores información personal de los clientes que no sea el nombre y referencia

NP Debe existir un interfaz de usuario para las bases de datos que siga el estándar de la biblioteca general