

Blue Team Scenarios

Team Names:

- 1. Mohamed Abdel-Moneam Mohamed
- 2. Toka Abdelgwad
- 3. Habiba Bastawe Mohamed
- 4. George Samir
- 5. Omar Mohamed Abo Elkasem

1. Recording Network Capture on a PCAP file

Mission: Recording Network Traffics

Tool: Wireshark

Wireshark: Wireshark is a powerful open-source network protocol analyzer used for capturing and inspecting the data traveling across a network in real-time.

Steps:

- 1. Open Wireshark on Linux
- ➤ Wireshark

PCAP File Source:

https://drive.google.com/file/d/1EnJR_Plk0BSmWuNY3YLP63pOsgR66Ea/view?usp=sharing

2. Investigating PCAP file to discover ongoing reconnaissance

Mission: Investigating PCAP file to discover reconnaissance on the Whole Network

Tool: Wireshark

Steps:

> Open PCAP file

➤ Investigation Output

Received packets: 159716

IPV4: 159666
ICMP:13
UDP: 147
TCP: 150506

TCP: 159506Alerts: 1111

There are TCP syn ,UDP and Fin scanning in the target machine

3. Downloading image by Mistake and Record ongoing traffic

Mission: Downloading image by Mistake

Tool: Wireshark

Steps:

1. Network Traffic Capture:

> During the payload delivery and execution, network traffic was captured using Wireshark. This allowed for further analysis to track the exploitation process, and any data exchanged during the attack.

Wireshark Filters Used: ip.addr == 192.168.65.129 && ip.addr == 192.168.65.130

PCAP File Source:

https://drive.google.com/file/d/1GaOZr0pqx2hR8Isc3gahzeb9h2vJ7T-h/view?usp=sharing

4. Investigating the PCAP file for alert

Mission: investigating PCAP file

Tool: Snort

In this mission, we utilized a PCAP file recorded from a Windows XP machine, capturing reconnaissance activities conducted on that system.

Steps:

> sudo snort -r Windows xp.pcapng -c /etc/snort/snort.conf -A console

> The output:

```
Packet I/O Totals:
Received: 159716
Analyzed: 159716 (100.000%)
Dropped: 0 ( 0.000%)
Filtered: 0 ( 0.000%)
Outstanding: 0 ( 0.000%)
Injected: 0 ( 0.000%)

Breakdown by protocol (includes rebuilt packets):
Eth: 159728 (100.000%)
VLAN: 0 ( 0.000%)
IVLAN: 0 ( 0.000%)
Frag: 0 ( 0.000%)
Frag: 0 ( 0.000%)
IVMP: 13 ( 0.000%)
IVMP: 33 ( 0.024%)
IPG Dats: 0 ( 0.000%)
IVMP: 5 ( 0.000%)
IVMP: 5 ( 0.000%)
IVMP: 5 ( 0.000%)
IVMP: 33 ( 0.021%)
IVMP: 33 ( 0.021%)
IVMP: 33 ( 0.021%)
IVMP: 10 ( 0.000%)
IVMP: 10 ( 0.000%)
IVMP: 10 ( 0.000%)
IVMP: 10 ( 0.000%)
IVMP: 0 ( 0.000%)
```



```
HTTP Inspect - encodings (Note: stream-reassembled packets included):
     POST methods:
     GET methods:
     HTTP Request Headers extracted:
     HTTP Request Cookies extracted:
    Post parameters extracted:
HTTP response Headers extracted:
HTTP Response Cookies extracted:
     Unicode:
    Double unicode:
Non-ASCII representable:
                                                         0
                                                         0
    Directory traversals:
Extra slashes ("//"):
                                                         0
    Self-referencing paths ("./"): 0
HTTP Response Gzip packets extracted: 0
Gzip Compressed Data Processed: n/
     Gzip Decompressed Data Processed:
     Total packets processed:
                                                         4759
SMTP Preprocessor Statistics
  Max concurrent sessions
                                                                       : 0
dcerpc2 Preprocessor Statistics
SSL Preprocessor:
   SSL packets decoded: 11
Client Hello: 0
Server Hello: 2
Certificate: 0
   Client Key Exchange: 0
Server Key Exchange: 0
           Change Cipher: 4
Finished: 0
     Client Application: 6
                      Alert: 0
  Unrecognized records: 2
  Completed handshakes: 0
        Bad handshakes: 0
    Sessions ignored: 1
Detection disabled: 1
SIP Preprocessor Statistics
  Total sessions: 0
Snort exiting
```


5. Conclude a malicious activity and scan the device network

Mission: make scanning on machine

Tool: Nessus

Nessus: is a popular vulnerability scanning tool used to identify security weaknesses in systems

Steps:

1. Open Nessus from terminal

```
File Actions Edit View Help

kali@kali:~$ sudo systemctl start nessusd.service
[sudo] password for kali:
```

2. Set target Ip and start scanning

192.168.128.133

ulnerabiliti				Total: 3
SEVERITY	CVSS V3.0	VPR SCORE	PLUGIN	NAME
CRITICAL	9.8	3.00	34477	MS08-067: Microsoft Windows Server Service Crafted RPC Request Handling Remote Code Execution (958644) (ECLIPSEDWING) (uncredentialed check)
CRITICAL	10.0		73182	Microsoft Windows XP Unsupported Installation Detection
CRITICAL	10.0	-	108797	Unsupported Windows OS (remote)
CRITICAL	10.0*	o - s	35362	MS09-001: Microsoft Windows SMB Vulnerabilities Remote Code Execution (958687) (uncredentialed check)
HIGH	8.1		97833	MS17-010: Security Update for Microsoft Windows SMB Server (4013389) (ETERNALBLUE) (ETERNALCHAMPION) (ETERNALROMANCE) (ETERNALSYNERGY) (WannaCry) (EternalRocks (Petya) (uncredentialed check)
HIGH	7.3	_	26920	SMB NULL Session Authentication
MEDIUM	5.3	-	57608	SMB Signing not required
LOW	2.1*	7-	10114	ICMP Timestamp Request Remote Date Disclosure
INFO	N/A	S-	45590	Common Platform Enumeration (CPE)
INFO	N/A		54615	Device Type

Nessus file:

https://drive.google.com/file/d/1vZ5jlPdXSlBMWbZOze8VjcHnIciqUnys/view?usp=sharing

6. After finding vulnerabilities, Launching an IPS to prevent the attack

Mission: after finding vulnerabilities and port scanning in network, launching rules to prevent the attack

Tool: snort

Snort: Snort is an open-source network intrusion detection and prevention system (IDPS). It is designed to monitor network traffic in real-time and analyze it for suspicious activities and potential threats.

Steps to prevent suspicious activity:

After analyzing the PCAP file using Snort and Wireshark, we observed TCP and UDP scanning activities on unknown ports, which may indicate potential malicious behavior. Additionally, we detected numerous packets associated with ping scans, suggesting reconnaissance efforts across the entire network. To address these security concerns, we will implement rules to alert and drop these suspicious packets.

Time	Source	Destination	Protocol	Length Info
1027 18.388810009	192.168.128.130	192.168.128.133	TCP	58 47590 → 25 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
1028 18.388914754	192.168.128.130	192.168.128.133	TCP	58 47590 → 53 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
1029 18.388978343	192.168.128.130	192.168.128.133	TCP	58 47590 → 587 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
1030 18.389024025	192.168.128.130	192.168.128.133	TCP	58 47590 → 445 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
1031 18.389115952	192.168.128.130	192.168.128.133	TCP	58 47590 → 995 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
1032 18.389169532	192.168.128.130	192.168.128.133	TCP	58 47590 → 139 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
1033 18.389212838	192.168.128.133	192.168.128.130	TCP	60 25 → 47590 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
1034 18.389234680	192.168.128.130	192.168.128.133	TCP	58 47590 → 1720 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
1035 18.389283045	192.168.128.133	192.168.128.130	TCP	60 53 → 47590 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
1036 18.389283067	192.168.128.130	192.168.128.133	TCP	58 47590 → 199 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
1037 18.389283171	192.168.128.133	192.168.128.130	TCP	60 587 → 47590 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
1038 18.389331291	192.168.128.130	192.168.128.133	TCP	58 47590 → 1723 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
1039 18.389431100	192.168.128.130	192.168.128.133	TCP	58 47590 → 80 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
1040 18.389480555	192.168.128.133	192.168.128.130	TCP	60 445 → 47590 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=1460
1041 18.389480793	192.168.128.133	192.168.128.130	TCP	60 995 → 47590 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
1042 18.389507727	192.168.128.130	192.168.128.133	TCP	54 47590 → 445 [RST] Seq=1 Win=0 Len=0
1043 18.389622772	192.168.128.133	192.168.128.130	TCP	60 139 → 47590 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=1460
1044 18.389674598	192.168.128.130	192.168.128.133	TCP	54 47590 → 139 [RST] Seq=1 Win=0 Len=0
1045 18.389748934	192.168.128.133	192.168.128.130	TCP	60 1720 → 47590 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
1046 18.389876498	192.168.128.133	192.168.128.130	TCP	60 199 → 47590 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
1047 18.389876685	192.168.128.133	192.168.128.130	TCP	60 1723 → 47590 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
1048 18.389941680	192.168.128.133	192.168.128.130	TCP	60 80 → 47590 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
1049 18.390058123	192.168.128.130	192.168.128.133	TCP	58 47590 → 23 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
1050 18.390152411	192.168.128.130	192.168.128.133	TCP	58 47590 → 8888 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
1051 18.390189781	192.168.128.130	192.168.128.133	TCP	58 47590 → 113 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
1052 18.390225729	192.168.128.130	192.168.128.133	TCP	58 47590 → 8080 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
1053 18.390265889	192.168.128.130	192.168.128.133	TCP	58 47590 → 443 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
1054 18.390295274	192.168.128.133	192.168.128.130	TCP	60 23 → 47590 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
1055 18.390305597	192.168.128.130	192.168.128.133	TCP	58 47590 → 111 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
1056 18.390374522	192.168.128.130	192.168.128.133	TCP	58 47590 → 3389 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
1057 18.390398476	192.168.128.133	192.168.128.130	TCP	60 8888 → 47590 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
1058 18.390406448	192.168.128.130	192.168.128.133	TCP	58 47590 → 135 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
1059 18.390435054	192.168.128.130	192.168.128.133	TCP	58 47590 → 110 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
1060 18.390458599	192.168.128.133	192.168.128.130	TCP	60 113 → 47590 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
1061 18.390467766	192.168.128.130	192.168.128.133	TCP	58 47590 → 993 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
1062 18.390496749	192.168.128.133	192.168.128.130	TCP	60 8080 → 47590 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
1063 18.390499887	192.168.128.130	192.168.128.133	TCP	58 47590 → 554 [SYN] Seq=0 Win=1024 Len=0 MSS=1460


```
| ip.addr==192.168.128.133&&udp
                                                                                               Length Info
                                                                                       Protocol
                10296 66.036962367
                                           192.168.128.133
                                                                 192.168.128.2
                                                                                       NBNS
                                                                                                  110 Refresh NB DELL-C03BD99FD1<00>
                12933 67.536306433
                                           192.168.128.133
                                                                 192.168.128.2
                                                                                       NBNS
                                                                                                  110 Refresh NB DELL-C03BD99ED1<00>
               28805 70.536813503
                                           192.168.128.133
                                                                192,168,128,2
                                                                                       NBNS
                                                                                                  110 Refresh NB WORKGROUP<1d>
                40975 72.037153227
                                           192.168.128.133
                                                                                                  110 Refresh NB WORKGROUP<1d>
                                                                 192.168.128.2
                                                                                       NBNS
               53078 73.536644922
                                           192.168.128.133
                                                                192.168.128.2
                                                                                       NBNS
                                                                                                  110 Refresh NB WORKGROUP<1e>
                63894 75.036931260
                                           192.168.128.133
                                                                192.168.128.2
                                                                                                  110 Refresh NB WORKGROUP<1e>
                                                                                       NBNS
                                           192.168.128.133
192.168.128.133
                75619 76.536792785
                                                                192,168,128,2
                                                                                       NRNS
                                                                                                  110 Refresh NB WORKGROUP<1e>
               87095 78.037433750
                                                                192.168.128.2
                                                                                                  110 Refresh NB WORKGROUP<00>
                                                                                       NBNS
               99366 79,536891030
                                           192.168.128.133
                                                                 192,168,128,2
                                                                                       NBNS
                                                                                                  110 Refresh NB WORKGROUP<00>
               111872 81.036649771
                                           192.168.128.133
                                                                192.168.128.2
                                                                                                  110 Refresh NB WORKGROUP<00>
                                                                                       NBNS
               148492 119.880908852
                                           192.168.128.133
                                                                 192.168.128.255
                                                                                       BROWSER
                                                                                                  243 Local Master Announcement DELL-C03BD99FD1, Workstation, Serve...
               159024 175.537452383
                                           192.168.128.133
                                                                 192.168.128.2
                                                                                       NBNS
                                                                                                  110 Refresh NB <01><02> MSBROWSE <02><01>
               159172 177.037584845
                                                                 192.168.128.2
                                                                                                  110 Refresh NB <01><02>_MSBROWSE_<02><01>
               159203 177.227190685
                                           192.168.128.130
                                                                192.168.128.133
                                                                                       UDP
                                                                                                  342 38562 → 41623 Len=300
               159204 177.227819473
                                           192.168.128.133
                                                                 192.168.128.130
               159262 178.264596114
                                           192,168,128,130
                                                                 192,168,128,133
                                                                                       UDP
                                                                                                  43 34594 → 1434 Len=1
               159263 178.264788703
                                           192.168.128.130
                                                                 192.168.128.133
                                                                                       NBNS
                                                                                                   159264 178.264958828
                                           192,168,128,130
                                                                 192,168,128,133
                                                                                                  159265 178.265056826
                                           192.168.128.133
                                                                 192.168.128.130
                                                                                       ICMP
               159266 178.265119337
159267 178.265150140
                                           192.168.128.133
192.168.128.133
                                                                192.168.128.130
192.168.128.130
                                                                                                 271 Name query response NBSTAT
271 Name query response NBSTAT
                                                                                       NBNS
              159299 178 422552846
                                           192 168 128 130
                                                                192 168 128 133
                                                                                       LIDP
                                                                                                  56 60806 → 64042 Len=14
                                                                                                  84 Destination unreachable (Port unreachable)
110 Refresh NB <01><02>_MSBROWSE_<02><01>
              159302 178.422814253
                                          192.168.128.133
                                                                192.168.128.130
                                                                                      ICMP
              159309 178.537728382
159333 178.931091018
                                                                192.168.128.133
                                                                                                   56 47768 → 43471 Len=14
                                           192.168.128.130
                                                                                      UDP
               159334 178.931478616
                                           192.168.128.133
                                                                 192.168.128.130
                                                                                                   84 Destination unreachable (Port unreachable
```

Rules:

We will test these rules in real-time; however, we encountered some issues with (IPS) functionality in Snort, as it is not operating effectively on our machine. The required packages are incompatible, and despite our efforts to resolve these issues, we were unable to do so. As a result, we have opted to operate in (IDS) mode to identify and analyze the threats effectively.

1. Test TCP SYN Scan

Snort detected that activity and give us alert

```
10/21-16:07:59.139904 [**] [1:1000001:1] TCP SYN Scan Detected [**] [Priori
ty: 0] {TCP} 192.168.128.130:34678 \rightarrow 192.168.128.133:1723
WARNING: No preprocessors configured for policy 0.
10/21-16:07:59.140031 [**] [1:1000001:1] TCP SYN Scan Detected [**] [Priori
ty: 0] {TCP} 192.168.128.130:34678 \rightarrow 192.168.128.133:22
WARNING: No preprocessors configured for policy 0.
10/21-16:07:59.140158 [**] [1:1000001:1] TCP SYN Scan Detected [**] [Priori
ty: 0] {TCP} 192.168.128.130:34678 → 192.168.128.133:1720
WARNING: No preprocessors configured for policy 0.
10/21-16:07:59.140276 [**] [1:1000001:1] TCP SYN Scan Detected [**] [Priori
ty: 0] {TCP} 192.168.128.130:34678 → 192.168.128.133:12345
WARNING: No preprocessors configured for policy 0.
```


2. Test UDP scan

```
—(kali⊕kali)-[~]
└$ <u>sudo</u> nmap -sU 192.168.128.133
Starting Nmap 7.94SVN ( https://nmap.org ) at 2024-10-21 16:15 EDT
Nmap scan report for 192.168.128.133 (192.168.128.133)
Host is up (0.00040s latency).
Not shown: 993 closed udp ports (port-unreach)
PORT
         STATE
                       SERVICE
123/udp open
                       ntp
137/udp open
                       netbios-ns
138/udp open|filtered netbios-dgm
445/udp open|filtered microsoft-ds
500/udp open|filtered isakmp
1900/udp open|filtered upnp
4500/udp_open|filtered_nat-t-ike
MAC Address: 00:0C:29:61:FD:09 (VMware)
Nmap done: 1 IP address (1 host up) scanned in 1.57 seconds
```

> Snort Detection

```
10/21-16:15:32.551316 [**] [1:1000003:1] UDP Scan Detected [**] [Priority: 0] {UDP} 192.168.128.130:42103 → 192.168.128.133:9876 WARNING: No preprocessors configured for policy 0.
WARNING: No preprocessors configured for policy 0. WARNING: No preprocessors configured for policy 0.
WARNING: No preprocessors configured for policy WARNING: No preprocessors configured for policy
WARNING: No preprocessors configured for policy 0. WARNING: No preprocessors configured for policy 0.
WARNING: No preprocessors configured for policy 0. WARNING: No preprocessors configured for policy 0.
WANNING: No preprocessors configured for policy 0.

WANNING: No preprocessors configured for policy 0.

WANNING: No preprocessors configured for policy 0.

WANNING: No preprocessors configured for policy 0.

WANNING: No preprocessors configured for policy 0.

WANNING: No preprocessors configured for policy 0.

WANNING: No preprocessors configured for policy 0.
WARNING: No preprocessors configured for policy
WANNING: No preprocessors configured for policy 0.

WANNING: No preprocessors configured for policy 0.

WANNING: No preprocessors configured for policy 0.

### 10/21-16:15:32.551866 [**] [1:1000003:1] UDP Scan Detected [**] [Priority: 0] {UDP} 192.168.128.130:42103 → 192.168.128.133:3401

WARNING: No preprocessors configured for policy 0.
WARNING: No preprocessors configured for policy 0. WARNING: No preprocessors configured for policy 0.
WARNING: No preprocessors configured for policy WARNING: No preprocessors configured for policy
WARNING: No preprocessors configured for policy WARNING: No preprocessors configured for policy
WARNING: No preprocessors configured for policy 0. WARNING: No preprocessors configured for policy 0.
WARNING: No preprocessors configured for policy 0.
10/21-16:15:32.552112 [**] [1:1000003:1] UDP Scan Detected [**] [Priority: 0] {UDP} 192.168.128.130:42103 → 192.168.128.133:19956
WARNING: No preprocessors configured for policy 0.
WARNING: No preprocessors configured for policy
 WARNING: No preprocessors configured for policy
```


3. Test Ping Scan

```
kali@kali)-[~]
    ping 192.168.128.133
PING 192.168.128.133 (192.168.128.133) 56(84) bytes of data.
64 bytes from 192.168.128.133: icmp_seq=1 ttl=128 time=1.26 ms
64 bytes from 192.168.128.133: icmp_seq=2 ttl=128 time=0.671 ms
64 bytes from 192.168.128.133: icmp_seq=3 ttl=128 time=0.770 ms
64 bytes from 192.168.128.133: icmp_seq=4 ttl=128 time=1.01 ms
```

> Snort Detection

```
18/21-16:20:42.514074 (**) [1:1000005:1] ICMP Ping Scan Detected (**) [Priority: 0] {ICMP} 192.168.128.130 → 192.168.128.133 MARNING: No preprocessors configured for policy 0. 16/21-16:20:44.502464 [**] [1:1000005:1] ICMP Ping Scan Detected [**] [Priority: 0] {ICMP} 192.168.128.130 → 192.168.128.133 MARNING: No preprocessors configured for policy 0. MARNING: N
```


9. Forensic Investigation Report on Backdoor Discovery

Mission: Perform Forensic Investigation on the Image and Get the Backdoor

Tool: Autopsy

Autopsy: Autopsy is the premier open-source forensics platform which is fast, easy-to-use, and capable of analyzing all types of mobile devices and digital media. Its plug-in architecture enables extensibility from community-developed or custom-built modules. Autopsy evolves to meet the needs of hundreds of thousands of professionals in law enforcement, national security, litigation support, and corporate investigation

Steps:

1. Introduction

- Purpose of the Investigation:
 - To analyze the disk image for malicious activity and identify any backdoors present.
- Scope of the Report:
 - This report details the methodology used, findings, and conclusions drawn from the investigation.

2. Initial Findings

MD5 Hash of The Image

We can find the hash of the image by selecting the appropriate data source in Autopsy and navigating to the Container tab under Summary.

3f08c518adb3b5c1359849657a9b2079

User Accounts Identified

Just below the *Operating System Information* results, we see an option for *Operating System User Accounts*, we can get our answer from there.

Accounts are: H4S4N,joshwa,keshav,sandhya,shreya,sivapriya,srini,suba

• Last Logged Use We can sort the User Accounts by "Date Accessed" and we see sivapriya was the last user who logged to the device

the first terms to be a second to the second terms and the second terms are a second to the second terms and the second terms are a second term are a second terms are a second terms are a second terms are a

• IP Address for the computer

Since we're working with an image of a Windows machine, we can find the IP address associated with network adapters in the Windows Registry. We can even access the registry from within Autopsy.

No such luck, the IP address is listed as 0.0.0.0. We'll have to find it elsewhere, and while looking through Autopsy's findings, we notice an unusual application installed on the device.

Searching for the executable name tells us it is a network monitoring tool, so let's look for any logs it may have generated. We find its directory under $Program\ Files\ (x86)$. Among the files in the folder, only one stands out, a .ini file. We can view the file within Autopsy by selecting it.

3. File System Analysis

First, we Identify unusual file names or extensions that may indicate malicious activity. After checking some of the user's Desktops, we locate a flag within the shreya user's Desktop directory. Now that we know the user, we'll check the PowerShell history for the account. There is also a PowerShell script on the user's desktop named exploit.

PowerShell command history is stored in APPDATA\Microsoft\Windows\PowerShell\PSReadLine\ConsoleHost_history.txt As expected, we find the PowerShell history with a flag{HarleyQuinnForQueen}

We noted a PowerShell script named exploit, so we'll go back and look at its contents now.

10. Analysis of the Backdoor By Ghidra

Using Ghidra to analyze putty.exe allows you to reverse-engineer the executable and gain insights into its structure, functions, and potential behavior. Once you've loaded putty.exe into Ghidra and completed the analysis

