Economic Dispatch Formulations

Danisias Vasiable	D!4'
Decision Variable	Description
P_t^{DG}	power produced by a diesel generator at time t
$P_t^{MG,b}$	power bought from the main grid at time t
$P_t^{MG,s}$	power sold to the main grid at time t
$P_t^{B,ch}$	power to charge the battery at time t
$P_t^{B,dch} S_t^{B,ch}$	power discharged from the battery at time t
$S_t^{B,ch}$	Charging status of the battery
$S_t^{B,dch} \ S_t^{MG,b}$	Discharging status of the battery
$S_t^{MG,b}$	Buying status of the main grid
$S_t^{MG,s}$	Selling status of the main grid
SOC_t	State of charge of the Battery at time t

I. BASIC ECONOMIC DISPATCH ILP FORMULATION

A. Constraints

1) Power balance Constraint:

$$\left(P_{t}^{DG} + P_{t}^{MG,b} + P_{t}^{PV} + P_{t}^{WT} + \right. \tag{1}$$

$$P_t^{B,dch}\Big) \ge P^{B,ch} + P^L + P_t^{MG,s} \ \forall t$$

2) Ramp rate limits of Diesel Generator:

$$P_t^{DG} - P_{t-1}^{DG} \le RU \ \forall t \tag{2}$$

$$P_{t-1}^{DG} - P_t^{DG} \le RD \ \forall t \tag{3}$$

3) Battery State of Charge constraint:

$$SOC_t = SOC_{t-1} - \frac{P^{B,dch} * \Delta t}{\eta_d * E^{max}} + \frac{P^{B,ch} * \Delta t * \eta_c}{E^{max}} \ \forall t \ (4)$$

4) Power and Battery SOC limits:

$$P^{DG,min} \le P_t^{DG} \le P^{DG,max} \ \forall t \tag{5}$$

$$P^{MG,min} \le P_t^{MG,b}, P_t^{MG,s} \le P^{MG,max} \ \forall t \tag{6}$$

$$P^{B,min} \le P_t^{B,ch}, P_t^{B,dch} \le P^{B,max} \ \forall t \tag{7}$$

$$SOC^{min} \le SOC_t \le SOC^{max} \ \forall t$$
 (8)

B. Objective Function

$$\begin{aligned} \text{Minimize} \sum_{t=1}^{T} \left(\alpha * P_t^{DG} + \rho_t^b * P_t^{MG,b} - \rho_t^s * P_t^{MG,s} + \right. \end{aligned} (9) \\ \gamma^b * P^{B,ch} + \gamma^b * P^{B,dch} \end{aligned}$$

II. EXTENDED ECONOMIC DISPATCH ILP FORMULATION

1) Power balance Constraint:

$$\left(P_{t}^{DG} + S_{t}^{MG,b} * P_{t}^{MG,b} + P_{t}^{PV} + P_{t}^{WT} + S_{t}^{B,dch} * P_{t}^{B,dch}\right) \\
\geq S_{t}^{B,ch} * P^{B,ch} + P^{L} + S_{t}^{MG,s} * P_{t}^{MG,s} \ \forall t$$
(10)

Constants	Description
T	Number of time slots
α	Cost coefficient of the diesel generator
$\eta_c \& \eta_d$	Charging and discharging efficiencies
	of the Battery
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Main grid buying and selling price
γ^b	Depreciation cost of the Battery
$SOC_0 \& SOC_T$	Initial and final state of charge of the Battery
E^{max}	Maximum capacity of the Battery in KWh
$P^{DG,min}$ &	Minimum and maximum power generation
$P^{DG,max}$	by Diesel Generator
$P^{MG,min}$ &	Minimum and maximum power import or export
$P^{MG,max}$	of power from the main grid
RU & RD	Diesel generator's ramp up and down limits

2) Battery State of Charge constraint:

$$SOC_{t} = SOC_{t-1} - \frac{S^{B,dch} * P^{B,dch}}{\eta_{d} * E^{max}} + \frac{S^{B,ch} * P^{B,ch} * \eta_{c}}{E^{max}} \forall t$$
(11)

$$S_t^{B,ch} + S_t^{B,dch} \le 1 \ \forall t \tag{12}$$

$$S_t^{B,ch} \& S_t^{B,dch} \in \{0,1\} \ \forall t$$
 (13)

3) Power and Battery SOC limits:

$$S^{MG,b} * P^{MG,min} \le P_t^{MG,b} \le S_t^{MG,b} * P^{MG,max} \forall t$$
 (14)

$$S^{MG,s} * P^{MG,min} \le P_t^{MG,s} \le S_t^{MG,s} * P^{MG,max} \forall t$$
 (15)

$$S_t^{B,ch} * P^{B,min} \le P_t^{B,ch} \le S_t^{B,ch} * P^{B,max} \ \forall t$$
 (16)

$$S_t^{B,dch} * P^{B,min} \le P_t^{B,dch} \le S_t^{B,dch} * P^{B,max} \ \forall t \ \ \ \ (17)$$

4) Main grid constraints:

$$S_t^{MG,b} + S_t^{MG,s} \le 1 \ \forall t \tag{18}$$

$$S_t^{MG,b} \& S_t^{MG,s} \in \{0,1\} \ \forall t$$
 (19)

5) Linearizing constraints: Let x be a binary decision variable and y be a continuous/integer decision variable within the range $\{y^{min}, y^{max}\}$, then the product xy is a nonlinear term. In order to linearize, the term xy (for example, $S^{B,ch}*P^{B,ch}$) is replaced with another decision variable say z and the following constraints are need to be added to the system of equations.

$$y^{min} * x \le z \le y^{max} * x \tag{20}$$

$$y - (1 - x)y^{max} \le z \le y + (1 - x)y^{max}$$
 (21)