Lista de Exercícios 04: Critérios de Testes Funcionais

- 1. **Tabela de decisão.** Cálculo da hipoteca. Considere os seguintes requisitos:
 - R1- O sistema deve receber três valores como entrada: gênero (1 → feminino e 0 → masculino), idade ([21, 70]) e salário ([0-10000]). Como saída, o sistema deve calcular o valor máximo da hipoteca para essa pessoa.
 - R2- O valor máximo da hipoteca é calculado pela multiplicação do valor do salário com um fator (ver tabela).
 - R3- Mensagens de erro especificas devem ser geradas para valores inválidos de idade e salário.
 - R4- O fator para calcular a hipoteca (R2) e definido pela tabela a seguir:

Homem	Fator	Mulher	Fator
21-40 anos	80	21-43 anos	60
41-70 anos	40	44-70 anos	30

Implemente uma classe Java que calcula o valor máximo da hipoteca e casos de teste JUnit derivados da **tabela de decisão**. Elabore uma planilha que ilustra a tabela de decisão criada.

Resposta:

		CT1	CT2	CT3	CT4	CT5	СТ6
	Idade ([21, 70])	F	V	V	V	V	V
	Salário ([0-10000])	-	F	V	V	V	V
	Hipoteca (Mulher 21-43)	-	-	V	F	F	F
Restrições	Hipoteca (Mulher 44-70)				V	F	F
	Hipoteca (Homem 21-40)					V	F
	Hipoteca (Homem 41-70)						V
	Msg Erro	V	V	-	-	-	-
Efeitos	Calcula Hipoteca	-	-	60 * Salário	30* Salário	80* Salário	40*Salário

Observação: Pelo menos as combinações apresentadas na tabela acima devem ser consideradas para teste, ou seja, pelo menos 6 casos de testes devem ser implementados no JUnit.

- 2. **Tabela de decisão.** A classe Calculadora e usada para calcular o salário dos empregados de acordo com as seguintes regras:
 - Se o tipo de empregado e "Assalariado40H" seu salário e 4.000.
 - Se o tipo de empregado e "Assalariado20H" seu salário e 1.500.
 - Se o tipo de empregado e "Horista" seu salário e o número de horas trabalhadas vezes 15.
 - Caso o horista trabalhe exatamente 40 horas nenhuma pendência é gerada (atributo pendência da classe Salário).

- Caso o horista trabalhe menos de 40 horas, a pendência "relatório de ausência" é gerada.
- Caso o horista trabalhe mais de 40 horas, a pendência "autorização de hora extra" é gerada.

Elabore uma tabela de decisão para a descrição apresentada. Derive casos de teste da tabela e implemente os casos de teste em JUnit, considerando as classes a seguir.

```
public class Salario {
    int valorSalario;
    String pendencia;

public String getPendencia() {
    return pendencia;
}

public int getValorSalario() {
    return valorSalario;
}

Calculadora.java

public class Calculadora {

public Salario calcularSalario(String tipoEmpregado, int horasTrabalhadas) {
    //todo
    return null;
    }
}
```

Resposta:

		CT1	CT2	CT3	CT4	CT5
	Assalariado40H	V	F	F	F	F
Tino	Assalariado20H	F	V	F	F	F
Tipo	Horista 40H	F	F	V	F	F
Empregado	Horista Menos 40H	F	F	F	V	F
	Horista Mais 40H	F	F	F	F	V
	4000	V	-	-	-	-
	1500	-	V	-	-	-
	SalarioHoristaSemPend	-	-	HT*15	-	-
		-	-	-	HT*15	-
Salário					"Relatório de	
	SalarioHComAusencia				Ausência"	
		-	-	-	-	HT*15
						"autorização de
	SalarioHComHoraExtra					hora extra"

Observação: Pelo menos as combinações apresentadas na tabela acima devem ser consideradas para teste, ou seja, pelo menos 5 casos de testes devem ser implementados no JUnit.

- 3. Partição em Classes de Equivalências. Uma universidade considera aprovado o aluno que obtém nota maior ou igual a 7. Porém, com nota maior ou igual a 4 ele terá direito a uma prova de recuperação, mas com nota inferior a 4 estará reprovado. Considerando apenas valores para uma nota válida (entre 0 e 10), qual alternativa apresenta uma nota para cada partição equivalente?
 - a) 2.5, 6.0, 8.9
 - b) 3.0, 5.5, 6.0
 - c) 3.5, 7.8, 9.0
 - d) 4.5, 5.5, 9.0

Implemente uma classe Java que calcula os valores de cada classe de equivalência e casos de teste JUnit.

4. Partição em Classes de Equivalências. Um sistema solicita a nota bimestral de um aluno. As notas permitidas são entre 0 e 10. Notas fora desse intervalo são consideradas "notas inválidas". Considerando o critério Partição por Classes de Equivalência, identifique as possíveis classes existentes e implemente em JUnit um caso de teste para cada classe. Elabore uma tabela com os casos de teste para a descrição apresentada.

Resposta:

Classe 01 – Classe inválida (nota < 0)

Classe 02 – Classe válida (nota entre 0 a 10)

Classe 03 – Classe invalida (nota>10)

Casos de Teste	Entrada	Saída Prevista
CT01 – Classe 01	Nota = -5	Nota inválida
CT02 – Classe 02	Nota = 6	OK
CT03 – Classe 03	Nota = 12	Nota inválida

Observação: Pelo menos os 3 casos de testes apresentados devem ser implementados no JUnit.

5. Partição em Classes de Equivalências. Considerando a idade do eleitor, o sistema deve informar se ele não pode votar, é obrigado a votar ou se o voto é facultativo. Para ser obrigado a votar o eleitor deve ter idade entre 18 e 70 anos. É proibido eleitores menores de 16 anos a votarem. E é facultativo os eleitores com menos de 18 ou mais de 70 anos. Elabore uma tabela com os casos de teste para a descrição apresentada.

Resposta:

Classe 01 – Menores de 16 anos - proibido

Classe 02 - Entre 16 e 17 anos - facultativo

Classe 03 – Entre 18 e 70 anos - obrigatório

Classe 04 - Mais de 70 anos - facultativo

Casos de Teste	Entrada	Saída Prevista
CT01 – Classe 01	Idade = 12	Proibido votar
CT02 – Classe 02	Idade = 17	Voto facultativo
CT03 – Classe 03	Idade = 25	Voto obrigatório
CT04 – Classe 04	Idade = 75	Voto facultativo

6. **Análise de Valor Limite.** Considerando os exercícios 4 e 5, complemente os casos de teste usando o critério de análise do valor limite. Implemente em JUnit e complemente as tabelas criadas para os casos de teste.

Complemento da tabela exercício 4:

Classe 01 – Classe inválida (nota < 0)

Classe 02 – Classe válida (nota entre 0 a 10)

Classe 03 - Classe invalida (nota>10)

Casos de Teste	Entrada	Saída Prevista
CT01 – Classe 01	Nota = -5	Nota inválida
CT02 – Classe 02	Nota = 6	OK
CT03 – Classe 03	Nota = 12	Nota inválida
	Valor Limite:	
	-0,1	Nota inválida
Classe 01	0	ОК
	0,1	ОК
Classe 02	-0,1	Nota inválida
	0	OK
	10	OK
	10,1	Nota inválida
Classe 03	9,9	OK
	10	OK
	10,1	Nota inválida

Complemento da tabela exercício 5:

Classe 01 – Menores de 16 anos

Classe 02 – Entre 16 e 17 anos

Classe 03 – Entre 18 e 70 anos

Classe 04 – Mais de 70 anos

Casos de Teste	Entrada	Saída Prevista		
CT01 – Classe 01	Idade = 12	Proibido votar		
CT02 – Classe 02	Idade = 17	Voto facultativo		
CT03 – Classe 03	Idade = 25	Voto obrigatório		
CT04 – Classe 04	Idade = 75	Voto facultativo		
Valor Limite:				
	15	Proibido votar		
Classe 01	16	Voto facultativo		
	17	Voto facultativo		
Classe 02	15	Proibido votar		
	16	Voto facultativo		

	17	Voto facultativo
	18	Voto obrigatório
Classe 03	17	Voto facultativo
	18	Voto obrigatório
	70	Voto obrigatório
	71	Voto facultativo
Classe 04	69	Voto obrigatório
	70	Voto obrigatório
	71	Voto facultativo