WRL 泛函分析笔记

摘要

本来寒假打算在个人主页上面更新泛函分析的自学笔记,但在markdown文件中插入latex真不太方便,故单独用LATEX文件来记泛函笔记。

我自学使用的教材为张恭庆老师的《泛函分析讲义(上)》,在此笔记中主要记录书中的核心内容,配以心得体会。

目录

1	度量空间		2	
	1.1	压缩映射原理	2	
	1.2	完备化	2	
	1.3	列紧集	2	
	1.4	赋范线性空间	2	
	1.5	凸集与不动点	2	
	1.6	内积空间	2	
2	线性算子与线性泛函			
	2.1	线性算子的概念	3	
	2.2	Riesz表示定理及其应用	3	
	2.3	纲与开映射定理		
	2.4	Hahn-Banach定理	3	
	2.5	共轭空间、弱收敛、自反空间	3	
	2.6	线性算子的谱	3	

WRL 泛函分析笔记

1 度量空间

- 1.1 压缩映射原理
- 1.2 完备化
- 1.3 列紧集
- 1.4 赋范线性空间
- 1.5 凸集与不动点
- 1.6 内积空间

定理 1.6.1. 如果C是Hilbert空间 \mathcal{X} 中的一个闭凸子集, 那么在C上存在唯一元素 x_0 取到最小范数.

证明. 存在性: 设 $d=\inf_{z\in C}\|z\|$,取 x_n ,使得 $d\leq \|x_n\|\leq d+\frac{1}{n}$ 利用 $\|x_m-x_n\|^2=2(\|x_m\|^2+\|x_n\|^2)-4\|\frac{x_m+x_n}{2}\|^2$ 可以证明 $\{x_n\}$ 是柯西列. 唯一性: 同上利用极化恒等式可证唯一性.

推论 1.6.1. 若 C是Hilbert空间 $\mathcal X$ 中的一个闭凸子集,则对 $\forall y\in \mathcal X,\exists!x_0\in C$,使得 $\|y-x_0\|=\inf_{x\in C}\|x-y\|$

证明. 将C平移-y之后,利用上面的定理即可. \square

WRL 泛函分析笔记

2 线性算子与线性泛函

- 2.1 线性算子的概念
- 2.2 Riesz表示定理及其应用
- 2.3 纲与开映射定理
- 2.4 Hahn-Banach定理
- 2.5 共轭空间、弱收敛、自反空间
- 2.6 线性算子的谱