Exercices de Probabilité

2022-2023: TD 4

Exercice 1 – *Loi Gamma*. Pour a > 0 et $\lambda > 0$, on définit la loi $\Gamma(a, \lambda)$ par sa densité relativement à la mesure de Lebesgue :

$$f_{a,\lambda}(x) = \frac{\lambda^a}{\Gamma(a)} x^{a-1} e^{-\lambda x} 1_{\mathbb{R}_+}(x) .$$

- 1. Vérifier que cette fonction définit bien une densité et calculer l'espérance de cette loi.
- 2. Soient X et Y deux variables indépendantes de loi $\Gamma(a, \lambda)$.
 - (a) Déterminer la loi de λX et montrer que X + Y et X/Y sont des v.a. indépendantes dont on calculera la loi.
 - (b) Montrer que X + Y et X/(X + Y) sont indépendantes. Déterminer la loi de X/(X + Y).
- 3. Soient X et Y deux v.a. réelles indépendantes de loi $\Gamma(a, \lambda)$ et $\Gamma(b, \lambda)$ respectivement, pour b > 0. Déterminer la loi de X + Y.
- 4. Soient $Z_1, Z_2, ..., Z_n$ des v.a. réelles indépendantes de loi $\mathcal{N}(0,1)$. Montrer que $Z_1^2 + Z_2^2 + ... + Z_n^2$ suit une loi $\Gamma(n/2, 1/2)$ (également appelée loi du khi-deux et notée \mathcal{X}_n^2).

Exercice 2 – *Théorème de Cochran*. Soit Z un vecteur gaussien de \mathbb{R}^n d'espérance nulle et de matrice de covariance I_n où I_n est la matrice identité de dimension n. Supposons que \mathbb{R}^n s'écrit comme la somme directe de J sous-espaces vectoriels orthogonaux $V_1, ..., V_J$ de dimensions respectives $p_1, ..., p_J$. On désigne par Π_{V_j} la matrice de projection orthogonale sur V_j .

- 1. Montrer que $\Pi_{V_1}Z$, ..., $\Pi_{V_k}Z$ sont des vecteurs aléatoires indépendants. Déterminer leurs lois.
- 2. Montrer que $||\Pi_{V_i}Z||^2$ suit la loi $\chi^2(p_i)$ pour tout $1 \le i \le J$.
- 3. Application. Soient X_i , i = 1, ..., n des variables aléatoires indépendantes de loi normale $\mathcal{N}(\mu, \sigma)$ avec $\mu \in \mathbb{R}$ et $\sigma > 0$. On pose $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ et $S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X}_n)^2$. Déterminer la loi jointe du vecteur aléatoire (\bar{X}_n, S_n^2) .

Exercice 3 – *Tomber dans le cercle*. Soient X, Y, Z trois vecteurs aléatoires indépendants à valeurs dans \mathbb{R}^2 de loi gaussienne standard. Montrer que la probabilité que Z tombe dans le cercle de diamètre Y – X qui passe par X et Y vaut $\frac{1}{4}$.

Exercice 4 – *Probabilité de survie*. Soit $(X_{n,k})_{n\geq 1,k\geq 1}$ une suite de variables aléatoires iid de loi μ sur \mathbb{N} . On note $m=\sum_{k\geq 0}k\mu(k)$. Posons $Z_0=1$ et pour tout $n\geq 1$,

$$Z_{n+1} = \sum_{k=1}^{Z_n} X_{n+1,k}.$$

- 1. Soit g la fonction génératrice de la loi μ . Démontrer que la fonction génératrice g_{Z_n} de Z_n vérifie $g_{Z_n} = g^{\circ n}$.
- 2. Soit *A* l'événement $A := \bigcap_{n \ge 0} \{Z_n \ge 1\}$. Démontrer que $1 \mathbb{P}(A)$ est un point fixe de g sur [0,1].
- 3. On suppose que $m \ge 1$. Démontrer $\mathbb{P}(A) = 0$.
- 4. On suppose que m > 1. Démontrer $\mathbb{P}(A) > 0$.

Exercice 5 – *Taille totale de la population*. On reprend les mêmes notations que l'exercice précédent. On note $T = \sum_{n \geq 0} Z_n$. Si m < 1, démontrer que $\mathbb{E}[T] = 1/(1-m)$.

Exercice 6 – *Percolation*. On considère un graphe \mathcal{G} formé d'un ensemble (fini ou dénombrable) de sites \mathcal{S} et d'un ensemble d'arêtes \mathcal{H} (une famille de couples de sites).

On définit une famille de variables aléatoires ($\omega(a)$, $a \in \mathcal{A}$) indépendantes, de même loi de Bernoulli de paramètre $p \in [0,1]$. En d'autres termes, pour chaque arête a, on tire indépendamment pile (càd 1) avec probabilité p ou face (0) avec probabilité 1-p. Lorsque $\omega(a)=1$, on dit que l'arête a est ouverte, et sinon fermée. On note P_p la loi correspondante.

Une réalisation de ω définit donc un sous-graphe aléatoire de \mathcal{G} formé de sites \mathcal{S} et des arêtes ouvertes pour ω . Souvent, on identifie la réalisation $\omega = (\omega(a), a \in \mathcal{A})$ avec le graphe qu'elle définit.

On considère le cas du graphe $G = \mathbb{Z}^d$.

1. Lorsque d = 1, p.s. existe t-il une composante connexe infinie?

Notre but est de démontrer le résultat suivant.

Théorème. Lorsque $d \ge 2$, il existe $p_c = p_c(d) \in (0,1)$ tel que :

- pour tout $p < p_c$, ω n'a presque sûrement pas de composante connexe infinie.
- pour tout $p > p_c$, ω a presque sûrement (au moins) une composante connexe infinie.
- 2. On note $A = \{\omega \text{ a au moins une composante connexe infinie }\}$. Montrer que $P_p(A) = 0$ ou 1.
- 3. Montrer que $p \mapsto P_p(A)$ est croissante.
- 4. Montrer que pour *p* suffisamment petit, presque sûrement il n'existe pas de chemin ouvert de longueur infinie issue de l'origine.
- 5. En déduire que $p_c > 0$.
- 6. Montrer que si p est suffisamment proche de 1 alors presque sûrement il existe un chemin ouvert de longueur inifnie issue de l'origine. En déduire que $p_c < 1$.
- 7. Quelle est la probabilité critique p_c pour la percolation (par arêtes) dans un arbre binaire (chaque site, sauf la racine, est relié à trois voisins, et le graphe ne comporte pas de cycle). Pour $p = p_c$, existe t'il une composante connexe infinie?