APPLIED STATISTICAL ANALYSIS I Multiple linear regression

Hannah Frank frankh@tcd.ie

Department of Political Science Trinity College Dublin

November 15, 2023

Today's Agenda

- (1) Lecture recap
- (3) Tutorial exercises: What is the relationship between education and Euroscepticism?

What is the t-test for individual coefficients?

What is the t-test for individual coefficients?

- Null and alternative hypotheses:
 - there is no association between X and Y, $\beta = 0$ (H_0)
 - there is an association between X and Y, $\beta \neq 0$ (H_1)
- Test statistic: "measures the number of standard errors between the estimate and the H_0 value" (Agresti and Finlay 2009, 192).

$$t = \frac{\textit{Estimate of parameter} - \textit{Null hypothesis value of parameter}}{\textit{Standard error of estimate}}$$

$$t=rac{\hat{eta}-eta_{H_0}}{\hat{\sigma}_{\hat{eta}}}=rac{\hat{eta}}{\hat{\sigma}_{\hat{eta}}}$$
, H_0 assumes $eta=0$

- Is there an association between house selling price and size (Agresti and Finlay 2009, 278–279)? Price = 50, 926.2 + 126.6 * Size
- $t = \frac{\hat{\beta}}{\hat{\sigma}_{\hat{\beta}}} = \frac{126.6}{8.47} = 14.95$
- How to interpret this value? How likely are we to observe data in sample (this test statistics), under the assumption that H_0 is true? \rightarrow Probability distribution

<u>What is the conclusion?</u> P-value < 0.05, We can reject H_0 with an error probability (p-value) of essentially 0%. \rightarrow There is an association between house selling price and size

Table 3.5 Regression Output for Supervisor Performance Data

Variable	Coefficient	s.e.	$t ext{-Test}$	p-value
Constant	10.787	11.5890	0.93	0.3616
X_1	0.613	0.1610	3.81	0.0009
X_2	-0.073	0.1357	-0.54	0.5956
X_3	0.320	0.1685	1.90	0.0699
X_4	0.081	0.2215	0.37	0.7155
X_5	0.038	0.1470	0.26	0.7963
X_6	-0.217	0.1782	-1.22	0.2356
n = 30	$R^2 = 0.73$	$R_a^2 = 0.66$	$\hat{\sigma} = 7.068$	df = 23

Table 3.2 Description of Variables in Supervisor Performance Data

Variable	Description					
Y	Overall rating of job being done by supervisor					
X_1	Handles employee complaints					
X_2	Does not allow special privileges					
X_3	Opportunity to learn new things					
X_4	Raises based on performance					
X_5	Too critical of poor performance					
X_6	Rate of advancing to better jobs					

(Chatterjee and Hadi 2015, 59)

General set-up: Test whether reduced model (RM) is adequate (H_0) or full model (FM) is adequate (H_1) .

The reduced model is nested within the full model \rightarrow compare "the goodness of fit that is obtained when using the full model, to the goodness of fit that results using the reduced model".

$$F = \frac{[SSE(RM) - SSE(FM)]/(p+1-k)}{SSE(FM)/(n-p-1)}$$

(Chatterjee and Hadi 2015, 71–72)

$$F = \frac{[SSE(RM) - SSE(FM)]/(p+1-k)}{SSE(FM)/(n-p-1)}$$

- * Sum of squared errors (SSE), denotes *lack of fit* \rightarrow SSE(RM) SSE(FM) "represents the increase in the residual sum of squares due to fitting the reduced model".
- * We use the ratio, weighted by "respective degrees of freedom to compensate for the different number of parameters involved in the two models".
- * p=number of IVs full model, n=number of observations, k=number of parameters reduced model

(Chatterjee and Hadi 2015, 71–72)

Two versions of the F-test

- 1. "All the regression coefficients are zero".
- 2. "Some of the regression coefficients are zero".

(Chatterjee and Hadi 2015, 71)

What is the F-test for all coefficients?

"All the regression coefficients are zero."

- * Reduced model (RM): $Y=\beta_0+\epsilon$ all slopes are equal to zero, $\beta_k=0$ (H_0) \to the null model performs better
- * Full model (FM): $Y = \beta_0 + \beta_1 X_1 + ... + \beta_p X_p \epsilon$ at least one slope is different from zero, $\beta_p \neq 0$ (H_1) \rightarrow the full model performs better

$$F = \frac{[SSE(RM) - SSE(FM)]/(p+1-k)}{SSE(FM)/(n-p-1)} = \frac{[SST - SSE]/p}{SSE/(n-p-1)} = \frac{SSR/p}{SSE/(n-p-1)}$$

"Because the least squares estimate of β_0 in the reduced model is \bar{y} , the residual sum of squares from the reduced model is SSE(RM)=SST." "reduced model has one regression parameter and the full model has p+1 regression parameter". "Because SST=SSR+SSE, we can replace SST-SSE by SSR"

(Chatterjee and Hadi 2015, 73)

Table 3.5 Regression Output for Supervisor Performance Data

Variable	Coefficient	s.e.	t-Test	p-value
Constant	10.787	11.5890	0.93	0.3616
X_1	0.613	0.1610	3.81	0.0009
X_2	-0.073	0.1357	-0.54	0.5956
X_3	0.320	0.1685	1.90	0.0699
X_4	0.081	0.2215	0.37	0.7155
X_5	0.038	0.1470	0.26	0.7963
X_6	-0.217	0.1782	-1.22	0.2356
n = 30	$R^2 = 0.73$	$R_a^2 = 0.66$	$\hat{\sigma} = 7.068$	df = 23

Table 3.7 Supervisor Performance Data: Analysis of Variance (ANOVA) Table

Source	Sum of Squares	df	Mean Square	F-Test	
Regression	3147.97	6	524.661	10.5	
Residuals	1149.00	23	49.9565		

$$F = \frac{SSR/p}{SSE/(n-p-1)} = \frac{3147.97/6}{1149.00/23} = 10.50$$

How to interpret this value? How likely are we to observe data in sample (this test statistics), under the assumption that H_0 is true? \rightarrow Probability distribution

(Chatterjee and Hadi 2015, 75)

What is the conclusion? P-value < 0.05, We can reject H_0 with an error probability (p-value) of essentially 0%. \rightarrow The full model performs better, "not all $\beta's$ can be taken as zero"

(Chatterjee and Hadi 2015, 75).

PARTIAL F-TEST

What is the F-test for some coefficients?

Partial F-test

"Some of the regression coefficients are zero".

- * Reduced model (RM): $Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3 + \epsilon$ subset of slopes is equal to zero, $\beta_k = 0$ (H_0) \rightarrow the reduced model performs better
- * Full model (FM): $Y = \beta_0 + \beta_1 X_1 + ... + \beta_p X_p \epsilon$ at least one slope in the subset is different from zero, $\beta_p \neq 0$ $(H_1) \rightarrow$ the full model performs better

$$F = \frac{[SSE(RM) - SSE(FM)]/(p+1-k)}{SSE(FM)/(n-p-1)}$$

(Chatterjee and Hadi 2015, 77)

PARTIAL F-TEST

Table 3.5 Regression Output for Supervisor Performance Data

Variable	Coefficient	s.e.	t-Test	p-value
Constant	10.787	11.5890	0.93	0.3616
X_1	0.613	0.1610	3.81	0.0009
X_2	-0.073	0.1357	-0.54	0.5956
X_3	0.320	0.1685	1.90	0.0699
X_4	0.081	0.2215	0.37	0.7155
X_5	0.038	0.1470	0.26	0.7963
X_6	-0.217	0.1782	-1.22	0.2356
n = 30	$R^2 = 0.73$	$R_a^2 = 0.66$	$\hat{\sigma} = 7.068$	df = 23

Table 3.7 Supervisor Performance Data: Analysis of Variance (ANOVA) Table

Source	Sum of Squares	df	Mean Square	F-Test	
Regression	3147.97	6	524.661		
Residuals	1149.00	23	49.9565		

(Chatterjee and Hadi 2015, 75)

Partial F-test

Table 3.8 Regression Output from the Regression of Y on X_1 and X_3

ANOVA Table							
Source	Sum of Squares	df	Mean Square	F-Test			
Regression	3042.32	2	1521.1600	32.7			
Residuals	1254.65	27	46.4685				
	Co	pefficients Table					
Variable	Coefficient	s.e.	t-Test	p-value			
Constant	9.8709	7.0610	1.40	0.1735			
X_1	0.6435	0.1185	5.43	< 0.0001			
X_3	0.2112	0.1344	1.57	0.1278			
n = 30	$R^2 = 0.708$	$R_a^2 = 0.686$	$\hat{\sigma} = 6.817$	df = 27			

$$F = \frac{[1254.65 - 1149]/4}{1149/23} = 0.0528$$

How to interpret this value? How likely are we to observe data in sample (this test statistics), under the assumption that H_0 is true? \rightarrow Probability distribution

(Chatterjee and Hadi 2015, 76)

Partial F-test

What is the conclusion? P-value > 0.05, We cannot reject H_0 . \rightarrow The reduced model performs better. "The variables X_1 and X_3 together explain the variation in Y as adequately as the full set of six variables" (Chatterjee and Hadi 2015, 77).

How to include binary independent variables in multiple linear regression?

Environmental Performance_i = $\alpha + \beta_1 * Regime Type_i + \beta_2 * Income_i$

```
## Call:
## lm(epi_epi ~ democracy + income, data = qog_data)
## Residuals:
      Min
             10 Median
                                  Max
## -53.563 -6.502 0.498 6.773 20.198
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  35.3027
                              1.1269 31.327 < 2e-16 ***
## ---
## Signif. codes:
## 0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
## Residual standard error: 9.982 on 154 degrees of freedom
    (37 observations deleted due to missingness)
## Multiple R-squared: 0.6175, Adjusted ## R-squared: 0.6126
## F-statistic: 124.3 on 2 and 154 DF, p-value: < 2.2e-16
```

In comparison to autocracies (= reference category), democracies have a 16.5270 scale point higher score on the Environmental Performance Index, under control of income.

$$\hat{Y}_i = \alpha + \beta_1 * \textit{Regime Type}_i + \beta_2 * \textit{Income}_i$$

Model for Autocracies:

$$\hat{Y}_i = 35.303 + (16.527 * Regime Type_i) + (3.579 * Income_i)$$

 $\hat{Y}_i = 35.303 + (16.527 * 0) + (3.579 * Income_i)$
 $\hat{Y}_i = 35.303 + (3.579 * Income_i)$

Model for Democracies:

$$\hat{Y}_i = 35.303 + (16.527 * Regime Type_i) + (3.579 * Income_i)$$

 $\hat{Y}_i = 35.303 + (16.527 * 1) + (3.579 * Income_i)$
 $\hat{Y}_i = 51.83 + (3.579 * Income_i)$

CATEGORICAL INDEPENDENT VARIABLES

How to include categorical independent variables with more than two levels?

Categorical independent variables

Country	X_{region}	Country	X_{region}		Country	X_{Asia}	X_{EE}	X_{LA}	X_{MENA}	$X_{Sub-Saharan}$
Afghanistan	Asia	Afghanistan	2	Afghanistan	1	0	0	0	0	
Albania	EE	Albania	3		Albania	0	1	0	0	0
Algeria	MENA	Algeria	5		Algeria	0	0	0	1	0
Argentina	LA	Argentina	4		Argentina	0	0	1	0	0
Australia	Advanced	Australia	1		Australia	0	0	0	0	0
:	:	:	:		:	:	:	:	:	:

School enrollment rate = $\alpha + \beta_1 Democracy_i + \beta_2 Region_{EE} + \beta_3 Region_{LA} + \beta_4 Region_{MENA} + \beta_5 Region_{Sub-Saharan} + \epsilon_i$

- \rightarrow Include binary/dummy variables for all levels minus one (=reference category).
- α (intercept): expected value of Y when X = 0
- β (coefficient): expected change in Y for X=1, in comparison to reference category

CATEGORICAL INDEPENDENT VARIABLES

 \rightarrow Convert into factor variable, then R automatically generates dummy variables, with first level as reference category (or change with relevel-function).

```
1 # Code dummy variables on the fly
2 # specify region Sub-Saharan Africa = reference category
  lm <- lm(primary_ser ~ democracy + relevel(as.factor(region), ref="Sub-Saharan</pre>
        Africa"), data = paglavan2021)
4
5 # Print model output
6 summary (Im)
  Call:
  lm(formula = primary ser ~ democracy + relevel(as.factor(region).
      ref = "Sub-Saharan Africa"), data = paglavan2021)
  Coefficients:
                                                           Estimate Std. Error t value Pr(>|t|)
  (Intercept)
                                                           48.060
                                                                       1.796 26.754 < 2e-16 ***
                                                           41.291
                                                                       1.351 30.557 < 2e-16 ***
  democracy
  ref = "Sub-Saharan Africa")Advanced Economies
                                                            3.063
                                                                       2.143 1.429 0.153007
  ref = "Sub-Saharan Africa") Asia and the Pacific
                                                           -9.101
                                                                      2.437 -3.734 0.000192 ***
                                                           12.991 2.825 4.599 4.46e-06 ***
  ref = "Sub-Saharan Africa")Eastern Europe
  ref = "Sub-Saharan Africa")Latin America and the Caribbean -13.090
                                                                     2 073 -6 315 3 20e-10 ***
  ref = "Sub-Saharan Africa")Middle East and North Africa
                                                            4.389
                                                                       2.695 1.629 0.103515
```

Under control of regime type, Eastern Europe has a student enrollment rate of 12.991 percentage points higher than Sub-Saharan Africa.

Education (X)
$$\xrightarrow{-}$$
 Euroscepticism (Y)

*Hypothesis*₁: The higher the years of education, the lower the level of Euroscepticism.

 $Hypothesis_2$: The higher the income, the lower the level of Euroscepticism. \rightarrow Economic dimension

*Hypothesis*₃: The higher the trust in politics, the lower the level of Euroscepticism. \rightarrow Political dimension

*Hypothesis*₃: The more positive attitudes towards immigration, the lower the level of Euroscepticism. \rightarrow Cultural dimension

References I

Chatterjee, Samprit, and Ali S. Hadi. 2015. *Regression analysis by example*. Somerset: Wiley.