Elisa Pioldi Mat. 856591

Esercizio 1. Una fabbrica deve pianificare l'attività della propria linea di produzione costituita da n possibili prodotti. La produzione di un'unità dell'articolo i richiede o_i ore di manodopera di cui in totale sono disponibili H ore. Per la vendita di una unità dell'articolo i è previsto un guadagno pari a g_i . Si vogliono determinare i livelli di produzione di modo da massimizzare il guadagno totale della fabbrica.

- Costruire un opportuno modello di Programmazione Lineare per tale problema.
- Discutere come cambia la formulazione nel caso in cui:
 - Degli n prodotti, se ne vogliano mettere in produzione al massimo m (con m < n).
 - La produzione del primo oggetto comporti la non produzione del secondo oggetto e viceversa.
 - Se si decide di produrre un oggetto, allora il livello di produzione di tale oggetto deve essere almeno $p_i > 0$.

Funzione obiettivo:

$$\max \sum_{i=1}^{m} g_{i} x_{i}$$

Vincoli Funzionali

$$\sum_{i=1}^{m} o_{i} z_{i} \leq H$$

Vincoli di non negativita':

$$\forall i \ z_{i} \geqslant 0 \ , \ | \leq i \leq m$$

Introduciamo le seguenti variabili binarie

$$g_{\dot{x}} = \begin{cases} 1 & \text{se il prodotto } \dot{x} \text{ uiene prodotto} \\ 0 & \text{altrimenti} \end{cases}$$

Queste sono legate alle variabili Zi:

$$y_{i} = \begin{cases} 1 & \text{allova} & z_{i} > 0 \\ 0 & \text{allora} & z_{i} = 0 \end{cases}$$

Introduciamo una costante M "molto" grande

2 $\sum_{i=1}^{m} q_{i} \le m$ Posso scegliere fino a m prodotti

By, + $y_{z} \le 1$ Se scelgo il prodotto 1 $y_{z} = 1$ e viceversa

C $\forall i = 2i \ge p_{i}y_{i}$ $1 \le i \le n$ Se $y_{i} = 1$ $y_{i} = 1$ viene prodotto e deve essere $y_{i} = 1$

Esercizio 2. Si consideri il seguente problema di Programmazione Lineare Intera.

$$\max z = 2x + y$$
$$4x - 3y \le 3$$
$$2x + 3y \le 6$$
$$x, y \in Z^+$$

- Usando la strategia di esplorazione Best Bound, si trovi la soluzione del problema.
- Discutere come potrebbe cambiare l'albero nel caso si scelga la strategia di esplorazione Depth First a sinistra (non è necessario svolgere di nuovo l'albero).
- Discutere come potrebbe cambiare l'albero nel caso si scelga la strategia di esplorazione Depth First a destra (non è necessario svolgere di nuovo l'albero).

• Scelta delle variabili di branching $\left(\frac{3}{2},1\right)$ \longrightarrow Scelgo \varkappa nato che non e intera

Scetta dei nuovi sottoproblemi da analizzare P_i : problema P_b con $z \le 1$ P_z : problema P_b con $z \ge 2$

albero di branching

· Soluzione dei RL, bounding e Fathoming

SOLUZIONE DEL RILASSAMENTO LINEARE PER IL PROBLEMA P.

La soluzione del problema rilassato e data da $\left(1,\frac{4}{3}\right)$ con $\Xi=\frac{10}{3}$

SOLUZIONE DEL RILASSAMENTO LINEARE PER IL PROBLEMA P

x > 0 y > 0 $4x - 3y \le 3$ $2x + 3y \le 6$ x > 2

E` inammissibile -- posso applicare il criterio di Fathoming

albero di branching

ITERAZIONE Z

• Scelta delle variabili di branching $\left(1, \frac{4}{3}\right)$ — Scelgo y vato che non e intera

• Soluzione dei RL, bounding e fathoming

SOLUZIONE DEL RILASSAMENTO LINEARE PER IL PROBLEMA P,

La soluzione del problema rilassato e data da (1,1) con z=3Posso chiudere questo sotto-problema in quanto la soluzione e intera

SOLUZIONE DEL RILASSAMENTO LINEARE PER IL PROBLEMA P

E' inammissibile -- posso applicare il criterio di Fathoming

albero di branching

La soluzione ottima del problema e' $\tilde{z}=(1,1)$ con $\tilde{z}=3$

Possiamo infatti evitare di esplorare il nodo P. in quanto abbiamo trovato una soluzione intera con UB=3

3 Nella strategia di esplorazione depth first a destra l'albero risultante non cambia (non ci sono particolari condizioni che permettono di fermare prima l'esplorazione).

A cambiare e invece l'ordine in cui vengono esplorati i nodi. Si avra infatti:

