

Chemical Espionage

ABIGAIL BALLARD, AUROD OUNSINEGAD, AND DASHON MITCHELL DR. CHRISTOPHER MITCHELL

Parameters			
Parameter	Description	Value	Assumptions
k	Carrying capacity	Varies	Varies with equilibrium
α	Birthrate of butterflies	25	Each butterfly lays 20-50 eggs
μ	Death rate of butterflies	20	High death rate since they are preyed upon frequently
ρ	Amount of anti- aphordias	Varies	
σ	Death rate of wasps	12	Natural Death Rate
W	Wasp population		Measured in tens
В	Butterflies population		Measured on tens

Differential Equation Model

$$B' = \alpha B \left(1 - \frac{B}{k} \right) - \mu B - \rho B W$$

$$W' = \rho W B - \sigma W$$

Equilibrium			
Equilibrium	Stability conditions		
$W = 0 \qquad B = 0$	$0 < \alpha < \mu$		
$B = \frac{k(\alpha - \mu)}{\alpha} \ W = 0$	$0 < k < \frac{\alpha \sigma}{\alpha \rho - \mu \rho}$		
$B = \frac{\sigma}{\rho} W = -\frac{-k\alpha\rho + k\mu\rho + \alpha\sigma}{k\rho^2}$	Always stable when it exists $k>rac{lpha\sigma}{lpha ho-\mu ho}$		

The Problem

The female Large White Cabbage Butterfly uses aphrodisiacs to attract the males for mating. The male releases anti-aphrodisiacs to deter other males. However, this anti-aphrodisiacs attracts parasitic wasps. These wasp parasites the eggs and kill the larvae inside. We wanted to model this interaction to see how much anti-aphrodisiacs the butterflies need to produces for both of these species to coexist.

Results

Low level of anti aphrodisiacs

- Wasps aren't able to find enough eggs to parasitize
- Butterfly populations grows to carrying capacity without any predators to hunt them.

High levels of anti-aphrodisiacs

 Coexistence but small variations could drive population extinct.

Healthy levels of anti-aphrodisiacs

Coexistence at stable amounts for both species

Conclusions and Future Work

- We found that the amount of antiaphrodisiacs to achieve coexistence is 2 millimeters
- This result also agrees with the research we conducted for this project which also stated that males produces 2 millimeters on average.

Future Work

My future work includes:

- Including more predators in this model like birds
- Include equations on male butterflies and eggs
- Add in more variables to make the model more accurate such as temperature/climate.