VİTMO

Презентация бакалаврской работы по теме

«Разработка сервиса интерполяции и экстраполяции данных»

Автор: Попов А.В., студент группы М34351

Руководитель: Лукин М.А., к.т.н.

Предметная область

В геостатистике для анализа данных очень часто используется пространственная интерполяция и экстраполяция — предсказание значений в неизвестных объектах по набору данных.

Эти задачи решаются при помощи методов интерполяции. В зависимости от области, на которой применен метод, вычисляется интерполяция или экстраполяция набора данных.

Сравнение инструментов

Все инструменты для решения этой задачи имеют ограниченный набор функций, требуют знаний программирования, сложной настройки или являются платными.

Как удобная бесплатная альтернатива им был создан сервис Uncorr.

	Surfer	Методы программирования, Microsoft Excel / Google Spreadsheets	Uncorr 1.0	Другие онлайн сервисы
Количество методов	>10	>10	3	1
Возможности настройки	Да	Да	Да	Нет
Качественные графики	Да	Да	Нет	Нет
Поддерживает большие наборы данных	Да	Да	Нет	Нет
Платное	Да	Нет	Нет	Нет
Сложность использования	Средняя	Высокая	Низкая	Средняя

Актуальность

Недостатки Uncorr 1.0:

- Мало методов интерполяции.
- Артефакты в графиках.
- Только маленькие наборы данных.
- Внешний вид графиков не подходит для научных работ.
- Нестандартный для компании набор технологий.

Цель работы

Разработать веб-приложение, в котором будет:

- Весь функционал предыдущей версии.
- Основные методы интерполяции.
- Возможность обрабатывать **большие наборы данных** (до миллиона точек) за **ограниченное время** (до шестидесяти секунд на запрос).
- **Качество графиков и возможности их обработки** сравнимы с программой Surfer от Golden Software.
- Создать инструмент для финальной обработки диаграмм, полученных в сервисе forctool.com. Проработать возможность интеграции.

Кроме того, приложение должно быть реализовано с использованием **стандартных для компании Sudo технологий**.

Задачи

- 1. Разработка архитектуры приложения.
- 2. Разработка и реализация библиотеки с методами интерполяции.
- 3. Разработка и реализация серверной части.
- 4. Разработка и реализация клиентской части.
- 5. Добавление возможности интеграции с другими сервисами.

1. Разработка архитектуры

Приложение состоит из модулей, помещенных в Docker-контейнеры:

- **Серверная часть**: python + fastAPI + gstools + libs
- **База данных для хранения серверных сессий**: Redis
- **К**лиентская часть: typescript + reduxToolkit + react + plotly.js + webpack
- Внешний сервер: Nginx

Решена инженерная проблема — **горизонтальное масштабирование**, благодаря тому, что:

- модули стали более изолированы друг от друга.
- Используемые библиотеки **уменьшили требования на** каждый сервер.

Это важно, потому что обработка запроса иногда занимает до десятков секунд.

2. Разработка библиотеки

Стандартизированы оптимальные алгоритмы из популярных библиотек.

Mетод IDW реализован самостоятельно, потому что не была найдена подходящая под задачу реализация.

Доступны параметризуемые методы интерполяции:

- Inverse Distance Weighting
- Linear
- Nearest neighbour
- Radial basis function
- Kriging: simple, ordinary и universal

Больше информации можно найти здесь:

https://pypi.org/project/sdinterp/

Метод	Время работы, с	
IDW	$10,0 \pm 0,5$	
Linear	$8,3 \pm 0,1$	
Nearest Neighbour	$3,0 \pm 0,1$	
RBF	26,0 ± 1,0	
Simple Kriging	$33,2 \pm 2,0$	
Ordinary Kriging	$37,0 \pm 2,0$	
Universal Kriging	$39,5 \pm 2,0$	

3. Разработка серверной части

Серверная часть предоставляет публичный интерфейс, позволяющий:

- Обрабатывать большие наборы данных
- Собирать по ним статистику
- Выполнять параметризируемую интерполяцию различными методами

Также присутствует автоматически созданный веб-интерфейс.

Через него можно взаимодействовать с API и узнать как им пользоваться.

3. Разработка серверной части

Состояние сервиса хранится как кэш в отдельной базе данных. Оно нужно только для ускорения обработки запросов.

Хранится только последние рассчитанные данные каждого типа, но для каждой пары из пользователя и набора данных кэш независим.

4. Разработка клиентской части

Интерфейс в формате Jupyter / Zeppelin.

Раздел с документацией.

Решенные проблемы:

- Отрисовка графиков в браузере уменьшает нагрузку на сервера и дает возможность гибкой настройки.
- Подобраны значения по умолчанию для методов интерполяции и настроек графиков. Это сильно упрощает работу с сервисом

4. Разработка клиентской части

5. Интеграция

Возможности интеграции с другими сервисами:

- Встроить график интерполяции в другую страницу.
- Скопировать ссылку на страницу.

Автоматизированы популярные пользовательские сценарии.

Результаты

- Решены проблемы, затрудняющие развитие сервиса использован стандартный для компании Sudo набор технологий.
- Решена проблема масштабирования сервиса.
- Создана и выложена в публичный доступ библиотека с оптимальными методами интерполяции, которая поддерживает работу с большими наборами данных.
- Соблюдены требования на наборы данных и скорость работы в сервисе благодаря правильному использованию кеша.
- Добавлены качественные настраиваемые интерактивные графики.
- Добавлена возможность интеграции с другими сервисами.
- Получена правильная интерполяция и экстраполяция.

Сравнение графиков интерполяции

Выводы

- Создана и выложена в публичный доступ библиотека, в которой собраны и стандартизированы оптимальные реализации методов интерполяции. Аналогов ей по разнообразию методов нет.
- Реализован сервис по интерполяции и экстраполяции данных, удовлетворяющий актуальным требованиям.
- Сервис внедрен в компанию Sudo.
- Запланирована интеграция в сервис forctool.com.

VİTMO

Спасибо за внимание!

Экстраполяция

ИТМО

Решена задача экстраполяции

Методы имеют две фазы: обучение и предсказание. На втором этапе можно получить аппроксимацию для произвольной части плоскости.

