IntroBA Midterm Team Project

Analyzing the data 'Bike Seoul Sharing'

Data Analysis Objective

How? Using 'Seoul Bike Sharing' Data analyze
What? To find out which variables affect the Number of Bicycles Rented

Data

Data Source: Kaggle

Range Index: 8760 entries

Data columns: Total 14 columns

· Able to identify weather information

: Temperature, Humidity, Windspeed, Visibility, Dewpoint (Temperature), Solar radiation, Rainfall Snowfall

This data contains information about the number of bikes rented per hour and date information

Date	Rented Bike Count	Hour	Temperature(°C)	Humidity(%)	Wind speed (m/s)	Visibility (10m)	Dew point temperature(°C)	Solar Radiation (MJ/m2)	Rainfall(mm)	Snowfall (cm)	Seasons	Holiday	Functioning Day
0 01/12/2017	254	0	-5.2	37	2.2	2000	-17.6	0.0	0.0	0.0	Winter	No Holiday	Yes
1 01/12/2017	204	1	-5.5	38	0.8	2000	-17.6	0.0	0.0	0.0	Winter	No Holiday	Yes
2 01/12/2017	173	2	-6.0	39	1.0	2000	-17.7	0.0	0.0	0.0	Winter	No Holiday	Yes
3 01/12/2017	107	3	-6.2	40	0.9	2000	-17.6	0.0	0.0	0.0	Winter	No Holiday	Yes
4 01/12/2017	78	4	-6.0	36	2.3	2000	-18.6	0.0	0.0	0.0	Winter	No Holiday	Yes

Data Exploration

1. Analysis of the relationship between season and Bike Volume

```
season_order = ['Spring', 'Summer', 'Autumn', 'Winter']
# Average calculation of bicycle volume by season
seasonal_data = df.groupby('Seasons')['Rented Bike Count'].mean()
# Visualize with bar graphs
seasonal_data.plot(kind='bar', color='skyblue')
plt.title("Bicycle volume and season")
plt.xlabel("Seasons")
plt.ylabel("Rented Bike Count")
plt.xticks(rotation=0)
plt.show()
```

Q. In what season do most bicycle volumes take place?

Kind='bar'

X label: "Seasons"

Y label: "Rented Bike Count"

1. Analysis of the relationship between season and Bike Volume

The relationship between variable 'Seasons' and 'Rented Bike Count'

2. Simple Regression model after identifying correlation between variables

```
import statsmodels.api as sm
# Set 'Temperature(° C)' as an independent variable
x = df['Temperature(° C)']
# Set 'Rented Bike Count' as a dependent variable
y = df['Rented Bike Count']
x = sm.add\_constant(x)
model = sm.OLS(y, x)
results = model.fit()
print(results.summary())
```

- •Set Temperature related with seasons as an independent variable
- Set 'Rented Bike Count' as a dependent variable

2-1 Regression Analysis Results

	(OLS Regress	ion Results				
Dep. Variable: Model:	ike Count OLS	R-squared: Adj. R-squa	ıred:	0.290 0.290			
Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	t Squares Oct 2023 22:08:40 8760 8758 1 nonrobust	F-statistic Prob (F-sta Log-Likelih AIC: BIC:	tistic):	3578. 0.00 -67600. 1.352e+05 1.352e+05			
	coef	std err	t	P> t	[0.025	0.975]	
const Temperature(°C)	329.9525 29.0811	8.541 0.486	38.631 59.816	0.000 0.000	313.210 28.128	346.695 30.034	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		954.681 0.000 0.817 4.108	Jarque-Bera		1421 1.68e	.271 .965 -309 25.9	

-P-value: 0.000

-> It means that the p-value is smaller than 0.05, so it affects meaningful effect on dependent variable.

Coef(coefficient) of the

'Temperature': 29.0811

-R-squared: 0.0290

2-2 Regression Model Visualization

```
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(12, 8))

plt.scatter(df['Temperature(° C)'], df['Rented Bike Count'], label='Real Data', alpha=0.5)
```

•Preparing visualization of the regression model by using 'scatter plot' to show the relationship between 'Temperature' and 'Bicycle Volume'

2-2 Regression Model Visualization

```
# 회귀선 추가
sns.regplot(x='Temperature(° C)', y='Rented Bike Count', data=df, scatter=False,
plt.xlabel('Temperature(° C)')
plt.ylabel('Rented Bike Count')
plt.title('Relationship between temperature and bicycle volume')
plt.legend()
plt.show()
```

·Adding Regression Line to show how 'Bicycle Volume' changes as the 'Temperature' increases.

The Relationship between 'Temperature' and 'Rented Bike Count'

- The higher the 'Temperature', the higher the 'Rented Bike Count'
- This Scatter Plot shows the relationship between 'Temperature' and 'Bicycle volume'

The Relationship between 'Visibility' and 'Rented Bike Count'

Scatter Plot

X label: Visibility(10m)

Y label: Rented Bike Count

3 Regression Analysis

- Set 'Visibility' as an independent variable
- Set 'Rented Bike Count' as a dependent variable

•P-value: 0,000

-> It means that the p-value is smaller than 0.05, so it affects meaningful effect on dependent variable.

Coef(coefficient) of theVisibility: 0.2113

-R-squared: 0.040

3-1 The relationship between 'Visibility' and 'Humidity'

Predicted Humidity was the most influential factor in visibility

```
correlation = df['Visibility (10m)'].corr(df['Humidity(%)'])
print(f"Pearson Correlation between Visibility and Humidity: {correlation}")
```

Pearson Correlation between Visibility and Humidity: -0.5430903446558321

-> In fact, there was a negative correlation between the two variables

3-2 Multiple Regression Analysis

·After analyzing the relationship between Visibility and Humidity, we did Multiple Regression Analysis setting Visibility and Humidity as independent variables.

```
import statsmodels.api as sm
# 가시거리와 습도를 독립 변수로 선택
x = df[['Visibility (10m)', 'Humidity(%)']]
\times['Visibility*Humidity'] = df['Visibility (10m)'] * df['Humidity(%)']
v = df['Rented Bike Count']
x = sm.add\_constant(x)
# 다중 회귀 모델 생성
model = sm.OLS(y, x)
results = model.fit()
```

print(results.summary())

OLS Regression Results									
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least Squar Wed, 25 Oct 20 22:08	DLS res D23 : 42 760 756	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic Log-Likelihood: AIC: BIC:	;):	0.071 0.070 221.9 1.01e-138 -68779. 1.376e+05				
const Visibility (10m) Humidity(%) Visibility*Humidity	 1599.8335 -0.4073 -15.8695	73.5 0.0 0.9	 56 21.750 43 -9.553 60 -16.532	P> t 0.000 0.000 0.000 0.000	[0.025 1455.647 -0.491 -17.751 0.007	-0.324 -13.988			
Omnibus: Prob(Omnibus): Skew: Kurtosis:	1.	000	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		0.214 2129.853 0.00 9.47e+05))			

- •P-value: 0.000
- -> It means that the p-value is smaller than 0.05, so it affects meaningful effect on dependent variables.
- Coef(coefficient) of theVisibility*Humidity: 0.0080-> Interaction between two variables
- -R-squared: 0.071

4 Analysis of Rented Bike Count by time zone

• Grouped based on the "Hour" column to calculate the average bicycle load over time

```
import matplotlib.pyplot as plt
# 시간대별 대여량의 평균 계산
hourly_rentals = df.groupby('Hour')['Rented Bike Count'].mean()
plt.figure(figsize=(14, 7))
plt.plot(hourly_rentals.index, hourly_rentals.values, marker='o')
plt.title('Hourly Bike Rentals')
plt.xlabel('Hour of the Day')
plt.ylabel('Average Rental Count')
plt.grid(True)
plt.xticks(hourly_rentals.index)
plt.xticks(hourly_rentals.index, [f"{hour:02}:00" for hour in hourly_rentals.index])
plt.show()
```

4 Analysis of Rented Bike Count by time zone

- This graph is intended to visualize the average of bicycle traffic by time zone to determine when bicycle traffic is high and low during the day.
- In this case, it can be observed that the demand for bicycles increases during rush hour.

Summary We analyzed with...

- Season Rented Bike Count
- Temperature Rented Bike Count
- Visibility Rented Bike Count
- Visibility & Humidity Rented Bike Count
- Time zone Rented Bike Count
- Through the analysis, a meaningful correlation between these variables could be confirmed.

QnA

