

دانشگاه شهید بهشتی دانشکدهی مهندسی و علوم کامپیوتر

001001 100010 0 11010

امنیت شبکههای کامپیوتری ۱۵۵۱٬۵۵۰ دکتر مقصود عباسپور

- مقدمهای بر امنیت کامپیوتر و شبکه
 - پروژههای عملی
 - 0 تولید حملات
 - ٥ مقابله با حملات
 - و بررسی امنیت در لایههای مختلف
 - ٥ امنیت کاربرد
 - ٥ امنیت سیستم عامل
 - 0 امنیت وب
 - ٥ امنیت شبکه

اطلاعات کلی

• پیشنیازها:

- ٥ شبکه های کامپیوتری
- ٥ سيستم عامل لينوكس
- C/C++ زبان برنامه نویسی

• ارزیابی:

- 0 امتحان ۱۰-۱۲ نمره
 - ۵ تکالیف ۲ نمره
 - پروژه ۸–۶ نمره

• کمک استاد

- ✓ مقدمهای بر رمزنگاری
 - ✓ امنیت نرم افزار
 - Sandboxing ✓
- ✓ آسیب پذیریهای شبکه
- Secure Sockets Layer (SSL) ✓
 - (IPsec) IP امنیت
 - Firewall ✓
- Intrusion Detection Systems (IDS) ✓
- ✓ همبستگی هشدارها (Alert Correlation)
- √ غير فعال نمودن سرويس (Denial of Service)

منابع درس امنیت شبکه های کامپیوتری

o Charles P. Pfleeger, "Security in Computing", Fourth Edition.

o Kaufman, Perlman and Speciner, "Network Security: Private Communication in a Public World", Second Edition.

- Avinash Kak, ECE 404 Introduction to Computer Security,
 Purdue University
- o Papers

سیستم درست: ورودی خوب و درست →خروجی خوب خوب

- سیستم خوب
- امكانات بيشتر خوب است!
 - امنیت
- امكانات بيشتر دردسر است!

خصوصیات امنیت

• محرمانگی (Confidentiality)

اطلاعات فقط توسط افرادي كه تأييد صلاحيت شدهاند، قابل ديدن باشد.

• صحت (Integrity)

داده نباید به صورت تصادفی یا عمدی تغییر، نابود و یا گم شود.

• دسترس پذیری (Availability)

سیستم باید قادر باشد سرویسهای مورد نظر را هنگام درخواست کاربر ارئه دهد.

اصطلاحات امنيتي

: (Vulnerability) √ آسیب پذیری

یک خطا یا نقص در طراحی، پیاده سازی یا عملیات سیستم.

✓ حمله (Attack) :

بهره برداری از آسیب پذیریهای یک سیستم.

∵ Threat) : نهدید

فردی بدخواه که انگیزه و توانایی حمله داشته باشد.

(Authentication) تایید هویت √

√ اجازه (Authorization)

Vulnerability Disclosures 2000-2009

Source: IBM X-Force®

آسیب پذیری های سیستم عامل

Vulnerability Disclosures Affecting Operating Systems 2005-2009

Source: IBM X-Force®

Critical and High Vulnerability Disclosures Affecting Operating Systems 2005-2009

Source: IBM X-Force®

دانش حمله کننده ها در مقایسه با ابزارها

- o روش (Method)
 - ٠ مهارت
 - + دانش
 - + ابزار
- o فرصت (Opportunity)
 - ۰ زمان
 - دسترسی
 - o انگیزه (Motive)
 - سرگرمی : خرابکاری
 - ♦ منفعت: سازماندهی شده
 - + جاسوسی

: **Host** آسیب پذیری های ۰

- نرمافزار
- ♦ سيستم عامل

: Network آسیب پذیری های ০

ARP Spoofing : ۷ اليه لينک

IP Forgery : لايه شبكه

TCP Sequence-Number ودن * دن *

♦ لایه کاربرد : کرمهای اینترنتی

لايه لينك: ARP Spoofing

- Address Resolution Protocol o
- o پروتکل ARP برای پیدا کردن آدرس Ethernet یک آدرس IP استفاده می شود.
- o ماشین حمله کننده می تواند به در خواستهای ARP پاسخ دهد و بستههای ماشین قربانی را به سمت خود منحرف کند.

TCP 3-Way Handshake : لايه انتقال

: و برای برقراری اتصال بین کلاینت C و سرور S بسته های زیر رد و بدل میشوند \circ

Initial Sequence Number (ISN) •

• در بعضی از پیادهسازیهای ISN ،TCP بعد از هر اتصال به اندازه \underline{k} واحد افزایش می یابد.

 $C \rightarrow S: SYN(ISN_C)$

 $S \rightarrow C$: $SYN(ISN_S)$, $ACK(ISN_C)$

 $C \rightarrow S: ACK(ISN_S)$

 $C \rightarrow S$: data

حدس زدن TCP Sequence-Number

: کند یاد گرفتن ISN_S یک اتصال برقرار می کند $X \circ$

 $X \to S$: $SYN(ISN_X)$

 $S \to X$: $SYN(ISN_S)$, $ACK(ISN_X)$

o سپس X هویت T را **جعل** می کند:

 $X \to S$: $SYN(ISN_X), SRC = T$

 $S \to T$: $SYN(ISN_S + k), ACK(ISN_X)$

 $X \rightarrow S$: $ACK(ISN_S + k), SRC = T$

 $X \to S$: $ACK(ISN_S + k), SRC = T, nasty data$

- o قطع ارتباط (Interruption)
 - عدم دسترس پذیری
- o سرقت اطلاعات (Interception)
 - عدم محرمانگی
- o تغییر اطلاعات (Modification)
 - عدم صحت
 - o جعل اطلاعات (Fabrication) جعل
 - عدم اعتبار
- (Denial of Service) رد درخواست
 - عدم دسترس پذیری

o **اسکن کردن شبکه**

- شناسایی ساختار شبکه سازمان

o مصرف پهنای باند

- Denial of Service (DoS) -
- استفاده از پهنای باند سازمان برای حمله به یک شبکهی دیگر
 - Reflector Attack -

o **سوء استفاده**

- استفاده از کامپیوترهای یک سازمان برای کارهای بدخواهانه

o استراق سمع (Eavesdropping)

- برنامه های استنشاق اطلاعات (Sniffer)

- استنشاق كارتهاي اعتباري

مهندسی اجتماعی

- تحریک مدیران فنی سیستم و اخذ اطلاعات

- o ممانعت کردن (Prevent)
 - o باز داشتن (Deter)

تا جاى ممكن سخت كردن وقوع حمله.

- o منحرف کردن (Deflect)
- ایجاد اهداف ساختگی برای منحرف کردن حمله به سمت آنها.
 - o شناسایی کردن (Detect)
 - مدارا کردن (Tolerate)تا جای ممکن اثر حمله را کم کردن.
 - o باز یافتن (Recover)

Host olar

- راحتتر قابل كنترل است.
- مدلهای خوبی برای تأیید هویت و اجازه طراحی و پیادهسازی شده است.

o امنیت Network

- همه می توانند به شبکه متصل باشند.
- نحوه اتصال ماشینها به شبکه قابل کنترل نیست.

- حایگزینی ساختارهای آسیب پذیر
- استفاده از رمزنگاری به جای تأیید هویت مبتنی بر آدرس
- استفاده از Firewall برای ایجاد محدودیت در دسترسی به سرویسهای مهم
 - بررسی شیوهمند و پی در پی برای جلوگیری از حملات
 - مانیتورینگ شبکه برای شناسایی ARP Spoofing
 - پایش شبکه

