

In the Claims

- 5 1. (currently amended) A method for the radiation grafting of a compound
that can be grafted onto a fluoropolymer, so as to prevent destabilization of the
fluoropolymer, comprising the following steps:
- a) melt blending the fluoropolymer with a compound containing a single C=C double bond and at least one polar functional group that is not a carboxylic acid salt functional group;
- 10 b) forming the blend obtained at a) into films, sheets, granules or powder;
- c) subjecting the products from step b) to photon (γ) or electron (β) irradiation with a dose of between 0.5 and 15 Mrad; and
- 15 d) subjecting the products from step c) to a washing and/or a degassing operation,
wherein a stabilizer is blended into the fluoropolymer either before or after the
irradiation step wherein said stabilizer is a metal salt having a single C=C double bond or a mixture of a metal salt having a single C=C double bond and an antioxidant.
- 20 2. (original) The method as claimed in claim 1, in which the stabilizer is blended into the fluoropolymer before the irradiation.
- 25 3. (cancelled)
4. (original) The method as claimed in claim 1, in which the stabilizer is an antioxidant blended into the fluoropolymer after the irradiation.
- 30 5. (currently amended) The method as claimed in claim 3 1, in which said metal salt is blended into the fluoropolymer before the irradiation.
6. (previously presented) The method as claimed in claim 1, in which the stabilizer is a metal salt represented by one of the following formulae:
- 35 $(CH_2=CH-COO)_nM^{n+}$
2

- where Q denotes an optionally substituted, linear or cyclic, aliphatic or optionally substituted aromatic group, n is 1 or 2, and M denotes a metal cation of valence n,
- 5 which may be chosen from Ca^{2+} , Na^+ and Zn^{2+} , wherein said subscript n and valence n represent the same number.

7. (previously presented) The method as claimed in claim 6, in which when the metal M is Zn, and Q is an $(\text{CH}_2)_8$ group, the metal salt is zinc undecylenate.
- 10
8. (previously presented) The method as claimed claim 4, in which the content of metal salt after step a) is 0.1 to 10%, of graftable metal salt per 99.9 to 90%, of fluoropolymer.

- 15 9. (currently amended) The method as claimed in claim 3 1, in which the antioxidant is an alkylated monophenol, an alkylated hydroquinone, an alkylidene bisphenol, a benzyl compound, an acylaminophenol, a phosphite, a phosphonite or a nitroxide of general formula:

- 20 in which R_1 , R_2 , R_3 , R_4 , R_5 and R_6 denote:
- $\text{C}_1\text{-C}_{20}$, preferably $\text{C}_1\text{-C}_{10}$, linear or branched alkyl groups, whether substituted or not;
 - $\text{C}_6\text{-C}_{30}$ aryl groups, whether substituted or not, such as benzyl or $\text{C}_1\text{-C}_{30}$ saturated cyclic aryl(phenyl) groups,
- 25 and in which the R_1 and R_4 groups may form part of an $\text{R}_1\text{-CNC-R}_4$ cyclic structure optionally substituted, possibly chosen from:

in which x denotes an integer between 1 and 12.

10. (currently amended) The method as claimed in claim 9, in which the
5 antioxidant is 2,6-di-*tert*-butyl-4-methylphenol, 2,6-di-*tert*-butylphenol
(IRGANOX® 140), 2-*tert*-butyl-4,6-dimethylphenol, 2,6-di-*tert*-butyl-4-
ethylphenol, 2,6-di-*tert*-butyl-4-n-butylphenol, 2,6-di-*tert*-butyl-4-isobutylphenol,
2,6-di-cyclopentyl-4-methylphenol, 2-(β-methylcyclohexyl)-4,6-dimethylphenol,
2,6-di-octadecyl-4-methylphenol, 2,4,6-tri-cyclohexylphenol, 2,6-di-*tert*-butyl-4-
10 methoxymethylphenol, o-*tert*-butylphenol, 2,6-dinonyl-4-methylphenol, 2,4-
dimethyl-6-(1'-methylundecyl)phenol, 2,4-dimethyl-6-(1'-
methylheptadecyl)phenol, tetrakis(3-(3,5-di-*tert*-butyl-4-
hydroxyphenyl)propionyloxymethyl)methane (IRGANOX® 1010), thiodiethylene
bis(3,5-di-*tert*-butyl-4-hydroxyhydrocinnamate) (IRGANOX® 1035), or
15 octadecyl-3,5-di-*tert*-butyl-4-hydroxyhydrocinnamate (IRGANOX® 1076).

11. (currently amended) The method as claimed in claim 3 1, in which the
antioxidant content is 0.001 to 2%, of fluoropolymer.

- 20 12. (previously presented) The method as claimed in claim 1, in which the
fluoropolymer is PVDF.

13. (original) The method as claimed in claim 12, in which the PVDF contains
at least 85% VDF by weight.

- 25 14. (withdrawn) A structure comprising at least one layer of the fluoropolymer
modified by radiation grafting prepared by the method of claim 1, and at least one
layer of another material.

- 30 15. (withdrawn) The structure of claim 14 comprising bottles, tanks,
containers, pipes, hoses, receptacles, films and packaging.

16. (withdrawn) The structure of claim 14 comprising an inner layer in contact with a fluid to be transported or stored, consisting of the fluoropolymer modified by radiation grafting-and, directly attached thereto, a polyolefin or polyamide outer layer.

5

17. (withdrawn) The structure as claimed in claim 16, further comprising a PVDF layer is placed beside the layer of fluoropolymer modified by radiation grafting.

10 18. (withdrawn) The structure as claimed in claim 16, in which a functionalized polymer layer is placed between the layer of fluoropolymer modified by radiation grafting and the polyolefin or polyamide layer, said functionalized polymer having functional groups capable of reacting with the functional groups grafted onto the fluoropolymer.

15

19. (withdrawn) The structure of claim 14 comprising a layer consisting of the fluoropolymer modified by radiation grafting produced and placed between two polyolefin layers.

20 20. (withdrawn) The structure as claimed in claim 19, in which a functionalized polyolefin layer is placed between the layer of fluoropolymer modified by radiation grafting and one or both of the polyolefin layers, said functionalized polyolefin having functional groups capable of reacting with the functional groups grafted onto the fluoropolymer.

25

21. (cancelled)

22. (cancelled)

30 23. (cancelled)

24. (withdrawn) The structure as claimed in claim 16, in which the inner layer in contact with the fluid to be transported or stored may contain carbon black, carbon nanotubes or any other additive capable of making the structure conducting

in order to prevent the build-up of static electricity.

25. (withdrawn) The structure as claimed in claim 14 comprising an outer layer
consisting of the fluoropolymer modified by radiation grafting and, directly
5 attached thereto, a layer of a substrate.

26. (withdrawn) The structure as claimed in claim 25, in which a PVDF layer
is placed beside the layer of fluoropolymer modified by radiation grafting.

10 27. (withdrawn) The structure as claimed in claim 25, in which a
functionalized polymer layer is placed between the layer of fluoropolymer
modified by radiation grafting and the substrate layer, said functionalized polymer
having functional groups capable of reacting with the functional groups grafted
onto the fluoropolymer, this functionalized fluoropolymer being compatible with
15 the substrate.

28. (withdrawn) A fluoropolymer onto which a graftable compound is
radiation-grafted, said fluoropolymer being stabilized by one or more antioxidants.

20 29. (withdrawn) The fluoropolymer as claimed in claim 28 wherein said
fluoropolymer being stabilized by a graftable metal salt and by one or more
antioxidants.

30. (cancelled).
25
31. (cancelled)

32. (withdrawn) The fluoropolymer as claimed in claim 28, in which the
content of graftable compound grafted, that is to say linked to the fluoropolymer
30 via a covalent bond, is 0.1 to 5%, per 99.9 to 95.0%, of fluoropolymer.

33. (withdrawn) The fluoropolymer as claimed in claim 28, in which the
content of grafted metal salt, that is to say that links to the fluoropolymer via a
covalent bond, is 0.1 to 5%, preferably 0.1 to 2.5%, per 99.9 to 95.0%, preferably

99.9 to 97.5%, of fluoropolymer.

34. (withdrawn) The fluoropolymer as claimed in claim 28, in which the
graftable metal salt is zinc undecylenate, sodium undecylenate, or calcium
5 undecylenate.

35. (cancelled)

36. (cancelled)

10 37. (withdrawn) The fluoropolymer as claimed in claim 28, in which the
fluoropolymer is PVDF.

15 38. (withdrawn) The fluoropolymer as claimed in claim 37, in which the PVDF
contains at least 85% PDF by weight.