Wei-Yu (Harvey) Chen

+886-937106763(Mobile phone) wyharveychen@gmail.com

RESEARCH INTERESTS	
Machine learning, Computer vision, Robotics	
EDUCATION	
M.S. in Electrical Engineering, National Taiwan University	09/2015-01/2017
Computer Science Division, Network Database Lab. Co-advisor: Ming-Syan Chen, Yu-Chiang Frank Wang	
Cumulative GPA: 4.22 /4.30	
B.S. in Electrical Engineering, National Taiwan University	09/2011-06/2015
Cumulative GPA : 4.15 /4.30	
Overall ranking: 7/205	_
PUBLICATIONS	
[1] Yi-Hsin Chen, Wei-Yu Chen, Yu-Ting Chen, Bo-Cheng Tsai, Yu-Chiang Frank Wang, Min Sun, "No More	
Discrimination: Cross City Adaptation of Road Scene Segmenters", in ICCV 2017. [PDF link][Site]	
[2] Wei-Jen Ko, Jheng-Ying Yu, Wei-Yu Chen, and Yu-Chiang Frank Wang, "Enhanced Canonical Correlation	
Analysis with Local Density for Cross-Domain Visual Classification", in ICASSP 2017. [PDF link]	
[3] Wei-Yu Chen, Tzu-Ming Harry Hsu, Yao-Hung Hubert Tsai, Yu-Chiang Frank Wang, Ming-Syan Chen, "Transfer	
Neural Trees for Heterogeneous Domain Adaptation", in ECCV 2016. [PDF link]	
[4] Yao-Hung Hubert Tsai, Cheng-An Hou, Wei-Yu Chen, Yi-Ren Yeh and Yu-Chiang Frank Wang,	
"Domain-Constraint Transfer Coding for Imbalanced Unsupervised Domain Adaptation", in AAAI 2016. [PDF link]	
[5] Tzu-Ming Harry Hsu, Wei-Yu Chen, Cheng-An Hou, Yao-Hung Hubert Tsai, Yi-Ren Yeh and Yu-Chiang Frank	
Wang, "Unsupervised Domain Adaptation with Imbalanced Cross-Domain Data", in ICCV 2015. [PDF link]	
[6] Wei-Yu Chen, Tzu-Ming Harry Hsu, Cheng-An Hou, Yi-Ren Yeh and Yu-Chiang Frank Wang, "Connecting the	
dots without clues: Unsupervised domain adaptation for cross-domain visual classification.", in ICIP 2015. [PDF link]	
RESEARCH EXPERIENCE	
Multimedia & Machine Learning Lab (Advisor: Dr. Yu-Chiang Frank Wang)	02/2014-present
Domain Adaptation of Road Scene Segmentation	
Scene segmentation is the recognition and location of objects in a scene; road scene segmentation is the core technique	
in advanced driver assistance systems (ADAS). However, due to the diversity of city appearances around the world, it	
is difficult to segment scenes for all cities with training data from only one specific city. In this project, we solve this	
problem by using domain adaptation techniques to exploit information in unlabeled city scenes from Google Maps. [1]	
Heterogeneous Domain Adaptation	
Heterogeneous domain adaptation (HDA) focuses on transferring classifier knowledge to different problem domains,	
for instance using text features to enhance image recognition accuracy. To solve the challenging HDA problems,	
existing approaches typically choose a domain-invariant feature space. In our work [3], we jointly learn the feature	
space and recognition together by integrating with a neural network structure, and propose Transfer Neural Decision	
Forest and embedding loss to preserve structural consistency between cross-domain data.	

(Imbalanced) Unsupervised Domain Adaptation	
Unsupervised domain adaptation (UDA) concerns domain differences, such as discrepancies between real photos and	
internet images, by exceptionally observing unlabeled data in the target domain along with labeled data in the source	
domain. In our work [6], we exploit cross-domain data correspondences using both observed data similarity and labels	
transferred from the source domain.	
However, most existing work assumes that the source domain consists of data from a single dataset, and that no more	
object classes are collected than are in the target domain. We propose two methods to remove the aforementioned	
assumptions: the first [5] is to use maximum mean discrepancy (MMD) to discover latent domains to exploit both label	
and structural information, the second [4] is to apply sparse coding with locality constraints to exploit subdomains.	
Cross-Domain Visual Classification	
Canonical correlation analysis (CCA) is a classical algorithm for cross-domain visual classification, such as person	
re-identification or recognition across different camera angles. To suppress outlier effects, we further exploit local	
density information observed from each domain. [2]	
SELECTED TERM PROJECTS	
Advanced Topics In Multimedia Analysis And Indexing	06/2016
Action recognition with SegNet [Video]	
This project is an implementation of a convolutional neural network (CNN) based action recognition system. First we	
apply SegNet, a CNN structure for semantic segmentation, to segment human regions from images. Thereafter, we	
apply a model pre-trained on the PASCAL VOC action dataset to recognize human action.	
Electrical Engineering Lab (Networking and Multimedia)	06/2015
Eureka [Video]	
Eureka is a theft-proof device for bicycles. Using Wi-Fi, GPS and Bluetooth, the device informs your smartphone	
when your bicycle is moved and helps you to locate it. With Wi-Fi it sends messages, with GPS it locates the device,	
and with Bluetooth it can receive a signal from your smartphone to ring it.	
Robotics	01/2014
Storage robot [PDF link][Video]	
This robot can understand simple command such as "deposit belongings" or "withdraw belongings". On command,	
this robot moves to a shelf, grips a box, approaches users, and lets them deposit or withdraw their belongings. It then	
puts the box back and returns it to its original place. It integrates sound recognition, image processing, and robot arm	
control.	
AWARDS & HONORS	
Excellent Master Thesis Award	07/2017
Awarded for an excellent master thesis by The Chinese Image Processing & Pattern Recognition Society.	
Garmin Scholarship	01/2017
Provided by Garmin to support EE/CS students; evaluated by Garmin engineers.	
Viscovery Scholarship	09/2016
A scholarship won by popular vote upon presentation during the Viscovery Research Seminar on Computer Vision and	
Deep Learning.	

A competition to analyze heart rates during physical exercise using wrist-type photoplethysmographic (PPG) signals. Team **Taipei Amoeba** proposed an algorithm called the **Trajectory Space Circular Model** with an error of 4.89 beats

02/2015

IEEE Signal Processing Cup 2015, Tenth Place

per minute (BPM).

Department Representative to Receive Undergraduate Diploma	06/2015
Awarded to students with the top 5% GPA over all semesters.	
Presidential Award (2 times), Department of Electrical Engineering, NTU	09/2012, 02/201
Awarded to students with the top 5% GPA for the semester.	
EXTRACURRICULAR EXPERIENCE	
MSRA Summer Camp	07/2014
A summer camp held by Microsoft Research Asia. Participants selected from top universities in China and Taiwan.	
Book Editor	2014 Spring
Worked with Prof. Ping-Cheng Yeh to publish "Ping-Cheng Yeh's Amazing Probability Course" (ISBN:	
9789861371832).	
RELEVANT COURSES	
Machine learning	
Artificial Intelligence (A+), Machine Learning (A-), Deep Learning (A+), Data Science (A+), Data Mining (A+),	
Genetic Algorithms (A+), Introduction to Digital Speech Processing (A+)	
Robotics	
Robotics (A+), Probabilistic Machine Perception (A+), Robot Perception and Learning (A+), Control Systems (A),	
Electrical Engineering Lab (Automatic Control) (A)	
Computer vision	
Digital Visual Effects (A), Rendering (A), Advanced Computer Vision (A+), Advanced Topics in Multimedia Analysis	
and Indexing (A)	
SKILLS	
Programming languages	
MATLAB, Python, C++, R	
Languages	
English (fluent, GRE 329, TOEFL 103), Mandarin Chinese (native), Japanese (moderate, JEPT N3)	