EE7403 LEC14 Nerval Networks and Very Learning: From MLP to CNN

1. Neural Network and Deep CNN

1) Network architecture of artificial nerval networks (ANN), or simply, neural network.

Ok is an external parameter, we can consider

$$y_0 = 1$$
, $W_{K0} = -\theta_K$
 $V_K = \sum_{j=0}^{p} W_{Kj} N_j$ $y_K = f(U_K)$

3 Types of Activation Fuctions

d. ReLu

```
EE 7403 LEC 14
   2. ANN O Multilager Percepton (MLP)
    w_{j} = \begin{bmatrix} w_{j1} \\ w_{j2} \\ \vdots \\ w_{jn} \end{bmatrix} \qquad V_{k} = \begin{bmatrix} V_{k1} \\ V_{k2} \\ \vdots \\ V_{kd} \end{bmatrix} \qquad X = \begin{bmatrix} X_{1} \\ w_{2} \\ \vdots \\ X_{n} \end{bmatrix} \qquad Z = \begin{bmatrix} Z_{1} \\ Z_{2} \\ \vdots \\ Z_{d} \end{bmatrix} \qquad J = \begin{bmatrix} Y_{1} \\ Y_{2} \\ \vdots \\ Y_{c} \end{bmatrix}
     W = [w_1 \ w_2 \dots \ wd] = \sum_{i=1}^{2j-w_i^T} x_i
        V= [v, v2 ... Vc] Gimilary y= VTZ
         = f[ \( \frac{\text{\text{Y}}}{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\ext{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\ti}\tittt{\text{\text{\text{\text{\text{\texi{\texi{\text{\texi}\titt{\text{\texi}\titt{\text{\texi}\text{\texi}\text{\text{\texi}\tittt{\texi}\text{\texi}\text{\texi}\tittt{\texi}\tittt{\ti
          Uf f is a linear function: y = \int [V^T f(W^T y)] = V^T W^T x = (WV)^T x = \overline{U^T x}
             y = f(VTZ)=f[VTf(WTX))
          where U=WV
                                                                                                                                                                                                                                                                          Single layer
       To clesign a multi-layer network, the activation function should
    3 Single-Layer Neural Network
                                                                            target output: t
                  error: e= t- y= t-wTx
       The mean square error: J(w) = E\{e^2\} = E\{(t-y)^2\} = E\{(t-w^Tx)^2\} w = \frac{t}{x}
least square quaratic: = t2-2WTE(Dt)+WTE(XXT) W only one minimum method:
           \frac{\partial E\{e\}}{\partial w} = \frac{\partial (t^2 - 2w^T E\{xt\} + w^T E\{xx x T\} w)}{\partial w} = 0 \Rightarrow E\{xx T\} w = E\{xt\}
E\{xx T\} = \frac{1}{9} \sum_{i=1}^{2} x_i x_i^T E\{xt\} \frac{1}{9} \sum_{i=1}^{2} x_i t_i^T
```

EE 7403 LEC14

gradient descent method.

$$\nabla J(w) = \frac{\partial J(w)}{\partial w} = \frac{\partial E\{(t - w^T x)^2 \beta}{\partial w} = -2E\{(t - w^T x) x \}$$

$$= -2E\{ex\} \stackrel{\sim}{=} -2eixi$$

$$W \Leftarrow W + \eta ei \lambda i = W + \eta (ti - yi)^{\lambda i}$$

 $\Rightarrow W = (X X^T)^{-1} X t^{T}$

3 Learning Curve and Pecision Bornday

w = w+ylti-yi) »i

backpropagation $y = f[VT f(W^TX)] = \frac{1}{2} \sum_{k=1}^{\infty} [tk - f(q_k)]^2 = \frac{1}{2} \sum_{k=1}^{\infty} [tk - f(\frac{q}{2}V_{Kj} \frac{2q}{2})]^2$ $J(W, V) = E(e^2) = E\{||t - y||^2\} = E\{||t - f[VT f(W^TX)]|^2\} \left(9k = \sum_{j=1}^{\infty} V_{Kj} \frac{2q}{2}\right)$

$$J(w,v) = E(e^{2}) = E(\pi v - y_{k}) \cdot f'(q_{k}) z_{j}$$

$$w \in w - \eta \nabla J(w)$$

$$V \in v - \eta \nabla J(v)$$

$$V \in v - \eta \nabla J(v)$$

$$V = \int_{0}^{\infty} \frac{\partial Q_{k}}{\partial v_{k}} = -\left(t_{k} - y_{k}\right) \cdot f'(q_{k}) z_{j}$$

$$V \in v - \eta \nabla J(v)$$

Similarly . $J(w,v) = E\{||t-y||^2\} = \frac{1}{2} \sum_{k=1}^{\infty} [t_k - f(x_k)]^2 = \frac{1}{2} \sum_{k=1}^{\infty}$

Vrj& Vrj+y (tr-yr).f'(9k) Zj

EE7403 LEC 14 f(q)= 1 1+exp(-aq) = aexp(aq) [1+exp(-aq)] = af(q)[1-f(a)] mo paga tion noceduce Assume a training samples, no prior info. (1) Unitialization (2) Presentation of training samples should be randomized from epoch to epoch (3) Forward Computation (4) Backward comportation (5) Iteration. Oriterion can be the number of iterations or the rate of change of the average error small enough Stop training at minimum of the error on the validation set. x overtit 3. Problems of Machine Learning Problems of local minima lunder-fitting). Poor generalization (overfitting) (DWhy cleep layer though 2 layers are renonate): a. deep layer NN is easier to train. a shallow NN with many newsons is hard to optimize. Fewer neurons per layer are often with better gradient flow. b. deep layer needs fewer parameters, there ire fewer nouron per layer c. Better generalization. deep layer structure white feature extractor. D'minê2=min [11 yi-f(xi)]; =>0, can only find yi=f(xi), not y=f(x). how to make f(x) => f(x)? Regulation.

EE7403 LEC14
4. Convolutional Neural Networks, CNN
Ddifferent from MLP.
1) network architecture
3) Simple nonlinear activation function ReLU.
4) pooling
s) desp. large number of lager.
Input size PXQ. C chamels.
Olipset Size PXQ. D chamels.
Xinj, K. 1=i=P, 1=j=Q, LEKEC.
yi, j, k, léiép. lé je Q. léké D
yi,j. k = \(\bar{\pi_{n=1}}\)\(\bar{\pi_{l=1}}\)\(\bar{\pi_{l}}\)\(\bar{\pi_{l=1}}\)\(\bar{\pi_{l}}\)\(\bar{\pi_{l=1}}\)\(\bar{\pi_{l}}\)\(\bar{\pi_{l=1}}\)\(\bar{\pi_{l}}\)\(
a net al
CNN capture the local feature. includes a bias term
Along channel dim, all inputs of different channels are all fully connected.
3 Characteristics
1) Local Perceptive Fields 2) Shared Weights (gives translation invaviance. num of parapreters)
(3) Full channel connected.
4) Bias Term
4) Bious Term 5) Hierarchy Features A CNN is Resentially a regularized version
& MLP.

EE7403 LEC 15 Deep Learning: From CNN to Transformer.

Attention is all you need.

Transformer captures the relationships between each word/token in a sequence with every other word/token.

7. Embedding

Embed each input token into a feature vector.

- I taken is a vector
- 2. Encoder & Petoder

EE 7403 LEC 15

Three copies of each word / token are generated for self-attention trainable Wq. WK. WV by linear projection. Let $X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{pmatrix}$, $Q = \begin{pmatrix} Q_1 \\ Q_2 \\ Q_3 \\ Q_4 \end{pmatrix}$, $K = \begin{pmatrix} K_1 \\ K_2 \\ K_3 \\ K_4 \end{pmatrix}$, $V = \begin{pmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \end{pmatrix}$ Then: Q= XWq, K= XWk, V= XWv each 'row' of these matrices correspond D(R=QKT) the relevance between words.

Dot product generates similarity between words. used as factors DZ = Softmax (QKT) V Q. K. V. ZERnxk Attention - W= DKT Output Z = (WV weighted sum of all input token. Capture global infor, X leaght from training data but generated by specific took impact. Attention itself is learnable. 4. Learnable feed forward networks Y=h(h(h(XW1)W2)W3) (Nxk)(kxk) => (Nxk) all tokens in inputs/outputs share some levernable parameters each single learnable parameter go through all points