OPTIMIZATION PROBLEM FORMULATION

By Kevin Adrián Rodríguez Ruiz

PROBLEM

To produce $100 \, kmol/h$ of n-buthyl acetate (AcBu), through the reaction:

$$BuOH + AcAc \leftrightharpoons BuAc + H_2O$$

 $Buthanol Acetic acid H^+ Buthyl acetate Water$

The kinetics is defined by the Langmuir-Hinshelwood-Hougen-Watson equation (M-LHHW). Sources (Gangadwala, Mankar, & Mahajani, 2003) (The Dow Chemical Company®)

$$r_{i} = v_{i} \, M_{cat} K_{f} K_{s,AcH} K_{s,BuOH} \frac{a_{AcH} \, a_{BuOH} - \frac{1}{K_{a}} a_{BuAc} \, a_{H2O}^{\alpha}}{\left(1 + K_{s,AcH} a_{AcH} + K_{s,BuOH} a_{BuOH} + K_{s,BuAc} a_{BuAc} + K_{s,H2O} a_{H2O}^{\alpha}\right)^{2}}$$

K_f^0	$14.0093\times10^6 kmol/kg/s$
E_f	$72.896 \times 10^3 \ kJ/kmol$
K_a^0	3.8207
$\boldsymbol{E_a}$	$-3.5817\times10^3\ kJ/kmol$
$K_{s,AcH}$	4.4521
$K_{s,BuOH}$	6.9211
$K_{s,BuAc}$	3.5995
$K_{s,H20}$	9.0304
α	2.00

A reactor for this process will be designed and it must accomplish with the lowest fixed costs and the lowest operating costs.

REACTOR CONDITIONS

Variable		Ranges
F_{BuOH}	Reactor's butanol feed flow	100 – 500 kmol/h
F_{AcAc}	Reactor's acetic acid feed flow	100 – 500 kmol/h
T	Operating temperature	50 − 120 °C
P	Operating pressure	$1-10 \ bar$

Inlet temperature

$$\circ$$
 25 $^{\circ}$ C

- Pressure
 - o 1-10 bar

1 – to avoid vacuum

10 - larger costs

• Optimal relationship between reactives flows (AcAc : BuOH)

1:5

RESTRICTIONS

• Steam fraction = 0

• Outlet temperature bounds: 25 – 120 °C

BuAc = spec

Nombre de la restricción	Definición
Outlet temperature limit T_{out} . Amberlyst 15 catalyst works up to 120 °C, keep temperature below of it avoids the formation of DBE	$T_{out} \le 120^{\circ} \text{C}$
No formation of steam inside the reactor. Outlet steam fraction X_{vap} cero	$X_{vap} = 0$
Established prodution accomplishment	$F_{BuAc} = 120 \ kmol/h$

COSTS

Fixed costs

$$C_{fijos} = reactor cost = W \times \$_{catalyst} + C_{shell}$$

 C_{fijos} Fixed costs

 W_{cat} Catalyst weight

 $$_{catalizador}$$ Catalyst cost per kilogram

 C_{shell} Reactor's shell costs

Reactor costs:

Seider, pag 523

$$Cp = F_P F_M F_L C_B$$

Fixed head

$$c_B = \exp(11.0545 - 0.9228 * \ln(A) + 0.09861 * \ln(A)^2)$$

$$F_M = a + \left(\frac{A}{100}\right)^b$$

$$a = 0$$

$$b = 0$$

$$F_M = 1$$

$$F_L = 1.05$$

$$F_P = 1$$

All for CE index of 394, now is 556.8

Operating costs

Corresponding to the annual costs of the currents of power

$$C_{operación} = \frac{costo\ de}{las\ corrientes} = F_0 \cdot x_{BuOH}_0 \cdot \$_{BuOH} + F_0 \cdot x_{AcAc_0} \cdot \$_{AcAc}$$

$C_{operaci\'on}$	Operating costs per year
F_0	Reactor feed flow rate
x_{BuOH_0}	Inlet butanol composition
$\$_{BuOH}$	Cost of butanol per kilogram
x_{AcAc_0}	Inlet acetic acid composition
\$ _{AcAc}	Cost of acetic acid per kilogra

The plant operates 330 days a year

Optimization variables

The variables chosen for optimization are the following:

 F_{BuOH} Inlet butanol flow rate

 F_{AcAc} Inlet acetic acid flow rate

T Reactor operating temperature

P Reactor operating pressure

 x_{BuOH_0} Inlet butanol composition

 x_{AcAc_0} Inlet acetic composition

References

Gangadwala, J., Mankar, S., & Mahajani, S. (2003). Esterification of Acetic Acid with Butanol in the Presence of Ion-Exchange Resins as Catalysts. *Ind. Eng. Chem. Res, 42*(10), 2146–2155.

- Group, T. K. (2013). *Running Aspen via Python*. Retrieved from http://kitchingroup.cheme.cmu.edu/blog/2013/06/14/Running-Aspen-via-Python/
- Haas, R. a. (n.d.). AMBERLYST™ 15 DRY. Retrieved from http://www.dow.com/assets/attachments/business/process_chemicals/amberlyst/amberl yst_15dry/tds/amberlyst_15dry.pdf
- Prakash, A., & Bendale., P. G. (1991). Comparison of slurry versus fixed-bed reactor costs for indirect liquefaction applications. A supplement to final report: Design of slurry reactor for indirect liquefaction applications. Washington, DC.: Department of Energy.
- Srinivasan, A. (n.d.). *A fast and elitist multiobjective genetic algorithm: NSGA-II*. Retrieved from https://web.njit.edu/~horacio/Math451H/download/Seshadri_NSGA-II.pdf
- The Dow Chemical Company®. (n.d.). *AMBERLYST™ 15.* Retrieved Noviembre 8, 2014, from http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_08d2/0901b803808d2f06. pdf