Giorno 9

1 Programmazione dinamica

Molti problemi risolti con il paradigma divide et impera, prendiamo ad esempio il calcolo dell'n-esimo numero di fibonacci, vi sono sottoproblemi sovrapposti che vengono risolti più di una volta.

Ad esempio, nel calcolare fib_5 con la definizione $fib_n = fib_{n-1} + fib_{n-2}$, con $fib_0 = fib_1 = 1$ come caso base, i sottoproblemi sono i seguenti (sono evidenziati quelli ripetuti):

La Programmazione Dinamica risolve ogni sottoproblema una sola volta.

I problemi che possono essere risolti dalla programmazione dinamica hanno determinate caratteristiche:

- 1. Sottoproblemi sovrapposti
- 2. Sottostruttura ottima.

Un problema ha sottostruttura ottima quando la sua soluzione ottima contiene le soluzioni ottime dei suoi sottoproblemi. Vedremo tra poco degli esempi di sottostruttura ottima.

1.1 Fibonacci DP

Ricordiamo che il costo di Fibonacci DEI è:

$$T(n) = T(n-1) + T(n-2) + O(1) > 2T(n-2) > 2^2T(n-4) > \dots > 2^iT(n-2i)$$

 $\text{Soluzione dipende da caso base se } n-2i = \begin{cases} 0 \\ 1 \end{cases}, \text{ ossia se } \begin{cases} i = \frac{n}{2} \\ i = \frac{n-1}{2} \end{cases} \implies T(n) > 2^{\frac{n}{2})} \cdot T(0) = O(2^{\frac{n}{2}})$

Ci sono più approcci alla programmazione dinamica. Uno applicabile al probema dell'*n*-esimo numero di Fibonacci è l'*approccio bottom-up*.

1.1.1 Approccio bottom-up

```
\begin{array}{llll} 1 & Fibo(n): \\ 2 & a=0\,,\ b=1; \\ 3 & \textbf{for}(\,i=0\,\,\textbf{to}\,\,n): \\ 4 & c=a+b\,; \\ 5 & a=b\,; \\ 6 & b=c\,; \\ 7 & \text{return}\,\,b\,; \end{array}
```

A differenza del paradigma divide et impera, che ha un approccio *top-down*, ossia parte dal caso che si vuole risolvere e scende ricorsivamente fino ai casi base, si parte dai casi base e si calcola iterativamente la soluzione (costo lineare).

1.1.2 Memoization

Un altro approccio è quello della *memoization*: si crea un dizionario di appoggio per tenere traccia di quali sottoproblemi hanno già soluzione. (costo lineare).

1.2 Distanza di Levenshtein

La distanza di Levenshtein è una metrica $E_d(X,Y)$ che rappresenta il numero minimo di operazioni su caratteri (inserimenti, cancellazioni, sostituzioni) che trasformano una stringa X in un'altra Y.

Il seguente schema può essere usato per applicare la programmazione dinamica a vari problemi:

1. Sottoproblemi

Date le stringhe X e Y allineamento è la struttura $\frac{X}{Y}$, dove i caratteri della stringa X sono sovrapposti a quelli di Y.

Siano $x_1...x_n$ i caratteri di X e $y_1...y_m$ i caratteri di Y.

Definiamo un allineamento ottimo quando tutti i caratteri delle due stringhe coincidono.

$$\frac{X}{Y} = \frac{x_1, x_2, ..., x_n}{y_1, y_2, ..., y_m} \text{ è un allineamento ottimo } \implies \frac{X[i, ..., j]}{Y[i, ..., j]} = \frac{x_i, ..., x_j}{y_i, ..., y_j} \text{ lo è per } 1 \leq i \leq j \leq n$$

Quindi il problema ha sottostruttura ottima (si dimostra per assurdo obv).

Per individuare i sottoproblemi concentriamoci sugli ultimi caratteri di X ed Y:

$$X[1, n-1], x_n$$

 $Y[1, m-1], y_m$

I due caratteri x_n e y_m possono essere uguali o diversi.

Possiamo agire in quattro modi diversi:

- (a) Se sono uguali, possiamo **non fare niente**.
- (b) In caso contrario, possiamo sostituire y_m

$$E_d(X,Y) = E_d(X[1,n-1],Y[1,m-1])$$

$$E_d(X,Y) = 1 + E_d(X[1, n-1], Y[1, m-1])$$

- (c) Se non sono uguali, possiamo anche (d) Se non sono uguali, possiamo cancellare **inserire** y_n in fondo ad X:
 - $x_n da X$:

$$E_d(X,Y) = 1 + E_d(X[1,n], Y[1,m-1])$$

$$E_d(X,Y) = 1 + E_d(X[1, n-1], Y[1, m])$$

2. Sottoproblemi elementari

- (a) Per trasformare la stringa X, lunga n, nella stringa vuota, si fanno n cancellazioni.
- (b) Per trasformare la stringa vuota in una stringa Y lunga m, si fanno m inserimenti.
- 3. Definizione ricorsiva del problema: Siano $i \in j$ gli ultimi caratteri di X ed Y. Sia DP(i,j) la funzione ricorsiva (Dynamic Programming).

$$DP(i,j) = \begin{cases} DP(i-1,j-1) & \text{se } A[i] = A[j] \\ \min \begin{cases} 1 + DP(i-1,j-1) & \text{(sostituzione)} \\ 1 + DP(i,j-1) & \text{(cancellazione)} & \text{o/w} \\ 1 + DP(i-1,j) & \text{(inserimento)} \end{cases}$$

4. Risoluzione (tabella) Creiamo una tabella tale che la posizione i, j contenga $E_d(X[1, i], Y[1, j])$ (se i o j = 0: X o Y = stringa vuota, la tabella contiene i risultati dei sottoprob. elementari).

		y_1	y_2	
	0	1	2	
x_1	1	DP(1, 1)	DP(1, 2)	
x_2	2	DP(2,1)	DP(2,2)	
:	:			٠

Segue un esempio che spiega come utilizzare questa tabella per il calcolo.

1.2.1 Esempio di calcolo di E_d

Vogliamo calcolare l'edit distance tra ALBERO e LABBRO.

			L	A	В	В	R	О
T =		0	1	2	3	4	5	6
	Α	1						
	L	$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$						
	В	3						
	\mathbf{E}	$\begin{vmatrix} 4 \\ 5 \end{vmatrix}$						
	R	5						
	Ο	6						

			L	Α	В	В	\mathbf{R}	0
		0	1	2	3	4	5	6
T =	Α	1	1	1	2	3	4	5
	L	2	1	2	2	3	4	5
	В	3	2	2	2	2	3	4
	\mathbf{E}	4	3	3	3	3	3	4
	R	5	4	4	4	4	3	4
	Ο	6	5	5	5	5	4	3

Se ogni posizione della tabella T contiene la distanza tra le due sottostringhe, allora la posizionne (n, m) = (6, 6) contiene il risultato del problema.

Ogni sottoproblema non elementare è definito in funzione di altri sottoproblemi, perciò vale la relazione:

$$T[i,j] = \begin{cases} T[i-1,j-1] & \text{se } X[i] = Y[j] \\ \min \begin{cases} 1+T[i-1,j-1] & \text{(sostituzione)} \\ 1+T[i,j-1] & \text{(cancellazione)} & \text{o/w} \\ 1+T[i-1,j] & \text{(inserimento)} \end{cases}$$

che riflette la definizione ricorsiva. Applicando questa formula si ottiene la tabella a destra. Complessità in tempo = Complessità in spazio = $\Theta(n \cdot m)$

1.3 Knapsack

Il Knapsack Problem, o problema dello zaino, è un probema di ottimizzazione. Sia A un insieme di n elementi $a_1...a_n$ che hanno associati un **valore** ed un **peso**, risp. $v_1, ..., v_n$ e $w_1, ..., w_n$. Qual è il valore totale del sottoinsieme S di A tale che:

- 1. Dato un peso massimo W, la somma dei pesi degli elementi è $\leq W$.
- 2. Il valore è massimo.

1.3.1 Problema dello zaino intero

Assumiamo ogni elemento possa essere incluso o meno in S (non si possono prendere frazioni di un elemento).

Se proviamo a risolvere questo problema senza fare uso della programmazione dinamica, utilizzando degli algoritmi greedy, che ad ogni scelta locale massimizzano, il valore o il rapporto v/w, possiamo facilmente renderci conto che questi non funzionano, poiché le soluzioni dipendono dalle scelte già prese. Utilizziamo lo stesso schema:

1. Sottoproblemi

Consideriamo gli elementi di A in ordine; per ognuno ci sono solo due possibilità: è incluso in S o no?

- (a) Se a_n è incluso, allora sottraiamo il suo peso da W e ci chiediamo se a_{n-1} è incluso.
- (b) In caso contrario, W rimane lo stesso, e ci chiediamo se a_{n-1} è incluso.
- 2. Sottoproblemi elementari: W = 0 o $n = 0 \implies \text{risultato} = 0$.
- 3. **Definizione ricorsiva**: Sia i uguale all'indice dell'ultimo elemento della sequenza $a_1 \dots a_i$. Sia j uguale al peso massimo rimanente (inizialmente W, poi sottraggo il peso degli elementi inseriti)

$$DP(i,j) = \max \begin{cases} DP(i-1,j) & a_i \notin S \\ v_i + DP(i-1,j-w_i) & a_i \in S \end{cases}$$

3

4. Tabella: Segue dalla definizione ricorsiva e dai sottoproblemi elementari.

1.3.2 Problema dello zaino continuo (o frazionario)

Il problema dello zaino continuo è una versione del problema in cui si possono prendere frazioni degli elementi di A.

In questo caso si può usare un algoritmo greedy, che ordina gli elementi in base a v/w ed inserisce ordinatamente in S più elementi interi possibili, frazionando l'ultimo.

1.3.3 Complessità di Knapsack

La complessità in tempo del problema dello zaino intero è $\Theta(Wn)$. Questo è uno dei casi in cui la complessità sembra polinomiale, ma in realtà non lo è.

Se n è la dimensione di un insieme, W è un intero; la dimensione in memoria della rappresentazione di un intero è uguale al suo numero di cifre binarie. Questo è uguale a $b = O(\log W)$.

La complessità è perciò $O(2^b n)$, che non è un tempo polinomiale.

Un limite inferiore alla complessità della versione continua del problema è $O(\log_n)$, poiché si devono ordinare gli elementi, ma è possibile dimostrare che il problema è risolubile in O(n).

1.4 Scacchiera

Il problema della scacchiera consiste nel trovare il numero di cammini che portano dalla casella (0,0) alla (n-1,n-1) di una scacchiera $n \times n$. Le uniche mosse valide sono \downarrow e \rightarrow .

Scriviamo nella tabella il numero di cammini fino a quella cella, seguendo la regola:

$$A[i,j] = A[i,j-1] + A[i-1,j]$$

e conoscendo il risultato dei sottoproblemi elementari: A[0, j] = 1, A[i, 0] = 1.

1	1	1	1	1	1
1	2	3	4	5	6
1	3	6	10	15	21
1	4	10	20	35	56
1	5	15	35	70	126
1	6	21	56	126	252

(heh)