Analyzing Animes in the Netflix Dataset

By: Suryaa Rajinikanth

Introduction:

Hey, person judging my SIF application. My name is Suryaa Rajinikanth, and today I'll be using this Jupyter Notebook to outline some of the findings I came across while examining the Netflix Dataset. Let me preface this by saying I'm a newly converted anime fan, so when I saw the dataset about programs on Netflix, I knew that anime in the dataset is something I'd definitely be interested in exploring. Let me give you a list of what I want to accomplish with this dataset.

- 1. Compare show counts of animes vs similar genres
- 2. Display and analyze statistics on animes vs shows in general
- 3. Analyze the addition of animes throughout the years
- 4. Describe the countries and languages of animes vs similar genres
- 5. Find the best animes and see what makes them so good

Cool, let's get to it then.

General Anime Stats:

```
In [2]: import pandas as pd
import matplotlib.pyplot as plt
```

In this particular case, I decided to use pandas to efficiently parse data and matplotlib to visualize it.

```
In [3]: file = 'Netflix Dataset Latest 2021.xlsx'
netflix = pd.read_excel(file)
netflix.shape
Out[3]: (9425, 29)
```

Wow, that's a lot of data. This means we have over 9k data points and 29 ways to gauge them.

```
In [4]: animes = netflix.loc[netflix['Tags'].str.contains("anime", case = False, na=
    print(str(len(animes.index))+" animes are listed on Netflix.")
```

651 animes are listed on Netflix.

```
In [5]:
    actions = netflix.loc[netflix['Tags'].str.contains("action", case = False, r
    horrors = netflix.loc[netflix['Tags'].str.contains("horror", case = False, r
    dramas = netflix.loc[netflix['Tags'].str.contains("drama", case = False, na=

    data = {'action':len(actions.index), 'horrors':len(horrors.index), 'dramas':
        courses = list(data.keys())
        values = list(data.values())

    figure = plt.figure(figsize = (10, 5))
    plt.bar(courses, values, color ='grey', width = 0.5)
    plt.xlabel("Genres")
    plt.ylabel("Number of Shows Listed")
    plt.title("Genres on Netflix")
    plt.show()
```



```
In [6]: netflix['Hidden Gem Score'].plot(kind="hist")
netflix.describe()
```

_				_	п.	
()	11	+		h	-	-
U	u	L	L.	U	Л.	

	Awards Nominated For	Awards Received	Metacritic Score	Rotten Tomatoes Score	IMDb Score	Hidden Gem Score	
3.	6376.000000	5226.000000	4082.000000	5445.000000	9417.000000	9415.000000	count
4.	16.035602	9.735936	58.113425	64.691276	6.955517	5.540733	mean
7.	32.209094	19.524116	17.143187	25.269466	0.899681	2.447462	std
7.	1.000000	1.000000	6.000000	0.000000	1.600000	0.600000	min
1.	2.000000	1.250000	46.000000	49.000000	6.500000	3.400000	25%
2.	6.000000	4.000000	59.000000	70.000000	7.000000	5.300000	50%
6	15.000000	9.000000	71.000000	85.000000	7.500000	8.100000	75%
6.	386.000000	300.000000	100.000000	100.000000	9.700000	9.800000	max

In [7]: animes['Hidden Gem Score'].plot(kind="hist")
animes.describe()

Out[7]:

	Hidden Gem Score	IMDb Score	Rotten Tomatoes Score	Metacritic Score	Awards Received	Awards Nominated For	Boxoff
count	651.000000	651.000000	127.000000	57.000000	157.000000	249.000000	8.500000e+
mean	7.039939	7.487404	80.496063	71.719298	3.783439	4.855422	1.689806e+
std	1.727293	0.609737	12.537483	11.766712	6.318794	8.439728	7.732988e+
min	2.800000	2.700000	43.000000	43.000000	1.000000	1.000000	6.461000e+
25%	6.000000	7.000000	73.000000	65.000000	1.000000	1.000000	1.721470e+
50%	7.800000	7.500000	82.000000	73.000000	2.000000	2.000000	4.981560e+
75%	8.300000	7.900000	89.500000	80.000000	3.000000	5.000000	2.250213e+
max	9.300000	9.100000	100.000000	96.000000	58.000000	69.000000	4.745447e+

Anime Specific Stats:

In [8]: #animes['Release Date'] = pd.to_datetime(animes['Release Date'], format = '%
#animes.sort_values(by='Netflix Release Date')['Netflix Release Date'].dt.ye
#for row in df.rows:

Trying To Predict Score Using Description

Ok, this has nothing to do with Anime. I just wanted to run some tests using the BERT model and Tensorflow to check if prediction of GEM score using a description works. I did something similar when I scraped Twitter for stock-related news for sentiment analysis, but this is the full, undistilled BERT.

```
In [9]: ! pip install bert-tensorflow
        ! pip install tensorflow-hub
        ! pip install tensorflow-datasets
        Collecting bert-tensorflow
          Downloading bert_tensorflow-1.0.4-py2.py3-none-any.whl (64 kB)
                                                    - 64.4/64.4 kB 22.6 MB/s eta 0:
        00:00
        Requirement already satisfied: six in /usr/lib/python3/dist-packages (from
        bert-tensorflow) (1.14.0)
        Installing collected packages: bert-tensorflow
        Successfully installed bert-tensorflow-1.0.4
        WARNING: Running pip as the 'root' user can result in broken permissions an
        d conflicting behaviour with the system package manager. It is recommended
        to use a virtual environment instead: https://pip.pypa.io/warnings/venv
        Collecting tensorflow-hub
          Downloading tensorflow_hub-0.12.0-py2.py3-none-any.whl (108 kB)
                                                  - 108.8/108.8 kB 24.8 MB/s eta 0:
        00:00
        Requirement already satisfied: numpy>=1.12.0 in /usr/local/lib/python3.9/di
        st-packages (from tensorflow-hub) (1.23.1)
        Requirement already satisfied: protobuf>=3.8.0 in /usr/local/lib/python3.9/
        dist-packages (from tensorflow-hub) (3.19.4)
        Installing collected packages: tensorflow-hub
        Successfully installed tensorflow-hub-0.12.0
        WARNING: Running pip as the 'root' user can result in broken permissions an
        d conflicting behaviour with the system package manager. It is recommended
        to use a virtual environment instead: https://pip.pypa.io/warnings/venv
        Collecting tensorflow-datasets
          Downloading tensorflow_datasets-4.6.0-py3-none-any.whl (4.3 MB)
                                                 ---- 4.3/4.3 MB 90.6 MB/s eta 0:00
        :00:00:01
        Requirement already satisfied: absl-py in /usr/local/lib/python3.9/dist-pac
        kages (from tensorflow-datasets) (1.1.0)
        Collecting toml
          Downloading toml-0.10.2-py2.py3-none-any.whl (16 kB)
        Requirement already satisfied: numpy in /usr/local/lib/python3.9/dist-packa
        ges (from tensorflow-datasets) (1.23.1)
        Requirement already satisfied: protobuf>=3.12.2 in /usr/local/lib/python3.9
        /dist-packages (from tensorflow-datasets) (3.19.4)
        Requirement already satisfied: six in /usr/lib/python3/dist-packages (from
```

```
tensorflow-datasets) (1.14.0)
Requirement already satisfied: termcolor in /usr/local/lib/python3.9/dist-p
ackages (from tensorflow-datasets) (1.1.0)
Collecting tensorflow-metadata
  Downloading tensorflow_metadata-1.10.0-py3-none-any.whl (50 kB)
                                           - 50.8/50.8 kB 19.0 MB/s eta 0:
00:00
Requirement already satisfied: etils[epath] in /usr/local/lib/python3.9/dis
t-packages (from tensorflow-datasets) (0.6.0)
Collecting promise
  Downloading promise-2.3.tar.gz (19 kB)
  Preparing metadata (setup.py) ... done
Requirement already satisfied: dill in /usr/local/lib/python3.9/dist-packag
es (from tensorflow-datasets) (0.3.5.1)
Requirement already satisfied: tgdm in /usr/local/lib/python3.9/dist-packag
es (from tensorflow-datasets) (4.64.0)
Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.9
/dist-packages (from tensorflow-datasets) (2.28.1)
Requirement already satisfied: certifi>=2017.4.17 in /usr/lib/python3/dist-
packages (from requests>=2.19.0->tensorflow-datasets) (2019.11.28)
Requirement already satisfied: idna<4,>=2.5 in /usr/lib/python3/dist-packag
es (from requests>=2.19.0->tensorflow-datasets) (2.8)
Requirement already satisfied: charset-normalizer<3,>=2 in /usr/local/lib/p
ython3.9/dist-packages (from requests>=2.19.0->tensorflow-datasets) (2.1.0)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/pyth
on3.9/dist-packages (from requests>=2.19.0->tensorflow-datasets) (1.26.10)
Requirement already satisfied: zipp in /usr/local/lib/python3.9/dist-packag
es (from etils[epath]->tensorflow-datasets) (3.8.1)
Requirement already satisfied: importlib resources in /usr/local/lib/python
3.9/dist-packages (from etils[epath]->tensorflow-datasets) (5.8.0)
Collecting googleapis-common-protos<2,>=1.52.0
  Downloading googleapis_common_protos-1.56.4-py2.py3-none-any.whl (211 kB)
                                      211.7/211.7 kB 59.2 MB/s eta 0:
00:00
Requirement already satisfied: typing_extensions in /usr/local/lib/python3.
9/dist-packages (from etils[epath]->tensorflow-datasets) (4.3.0)
Building wheels for collected packages: promise
 Building wheel for promise (setup.py) ... done
 Created wheel for promise: filename=promise-2.3-py3-none-any.whl size=214
86 sha256=623581a0368f80433f3717fc18b6b3d17e77950fdbb6c15ce22088324a1405fb
  Stored in directory: /root/.cache/pip/wheels/e1/e8/83/ddea66100678d139b14
bc87692ece57c6a2a937956d2532608
```

Successfully built promise

Installing collected packages: toml, promise, googleapis-common-protos, ten sorflow-metadata, tensorflow-datasets

Successfully installed googleapis-common-protos-1.56.4 promise-2.3 tensorfl ow-datasets-4.6.0 tensorflow-metadata-1.10.0 toml-0.10.2

WARNING: Running pip as the 'root' user can result in broken permissions an d conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv

```
In [10]: import re
         import datetime
         import numpy as np
         from collections import Counter
         import fractions
         import pandas as pd
         import matplotlib.pyplot as plt
         from sklearn.metrics import multilabel_confusion_matrix
         import tensorflow as tf
         import tensorflow hub as hub
         import tensorflow_datasets as tfds
         from tensorflow import keras
         from tensorflow.keras import layers
         from tensorflow.keras.preprocessing.text import Tokenizer
         from tensorflow.keras.preprocessing.sequence import pad_sequences
         from sklearn.metrics import classification report
         netflix1 = netflix[["Genre", "Summary"]]
         genres = list()
         for index, row in netflix1.iterrows():
           inner_genres = (str(row['Genre'])).split(", ")
           for inner genre in inner genres:
             genres.append(inner_genre)
         true genres = np.unique(genres)
         len(true_genres)
```

Out[10]: 29

```
In [11]: genrerow = [str(row.Genre).split(", ") for index, row in netflix1.iterrows()
    mylist = list()
    for i, genre in enumerate(true_genres):
        mylist.append([genre in mgenres for mgenres in genrerow])
        print(len(mylist))
        array = np.array(mylist).transpose()
        print(len(array))
        netflix2 = pd.DataFrame(data=array.astype(np.int64), columns=true_genres)
        netflix2["Summary"] = netflix1.Summary
        (netflix2.head(5))
```

29 9425

Out[11]: Action Adult Adventure Animation Biography Comedy Crime Documentary Drama

5 rows × 30 columns

```
In [12]: row_count = len(netflix2)
         test row count = round(0.05 * row count)
         test_row = [i for i in np.arange(0,row_count,test_row_count)]
         train_row = list(set([i for i in range(row_count)]) - set(test_row))
         tdf = netflix2.iloc[test row,:]
         tensor_te = tf.data.Dataset.from_tensor_slices((tdf.Summary.values, tdf.drop
         trdf = netflix2.iloc[test row,:]
         tensor_tr = tf.data.Dataset.from_tensor_slices((trdf.Summary.values, trdf.dr
         tensor_train = tensor_tr.batch(32)
         tensor_test = tensor_te.batch(32)
         embedding_layer = hub.KerasLayer("https://tfhub.dev/google/tf2-preview/nnlm-
         embedding_layer(netflix2.iloc[test_row,:]["Summary"][:1].to_numpy())
         BERT = tf.keras.Sequential()
         BERT.add(embedding layer)
         BERT.add(tf.keras.layers.Dense(64, activation='relu'))
         BERT.add(tf.keras.layers.Dense(len(true_genres), activation='sigmoid'))
         BERT.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
keras_layer (KerasLayer)	(None, 128)	124642688
dense (Dense)	(None, 64)	8256
dense_1 (Dense)	(None, 29)	1885

Total params: 124,652,829 Trainable params: 10,141

Non-trainable params: 124,642,688

```
In [18]: def macro_double_soft_f1(y, y_hat):
            """Compute the macro soft F1-score as a cost (average 1 - soft-F1 across
            Use probability values instead of binary predictions.
            This version uses the computation of soft-F1 for both positive and negat
            Args:
               y (int32 Tensor): targets array of shape (BATCH_SIZE, N_LABELS)
               y_hat (float32 Tensor): probability matrix from forward propagation
            Returns:
               cost (scalar Tensor): value of the cost function for the batch
            y = tf.cast(y, tf.float32)
            y_hat = tf.cast(y_hat, tf.float32)
            tp = tf.reduce_sum(y_hat * y, axis=0)
            fp = tf.reduce_sum(y_hat * (1 - y), axis=0)
            fn = tf.reduce sum((1 - y hat) * y, axis=0)
            tn = tf.reduce_sum((1 - y_hat) * (1 - y), axis=0)
            soft_f1_class1 = 2*tp / (2*tp + fn + fp + 1e-16)
            soft_f1_class0 = 2*tn / (2*tn + fn + fp + 1e-16)
            cost_class1 = 1 - soft_fl_class1 # reduce 1 - soft_fl_class1 in order to
            cost\_class0 = 1 - soft\_f1\_class0 \# reduce 1 - soft\_f1\_class0 in order to
            cost = 0.5 * (cost_class1 + cost_class0) # take into account both class
            macro cost = tf.reduce mean(cost) # average on all labels
            return macro_cost
        # Setup Tensorboard
        log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
        tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histo
        !rm -rf ./logs/ # Clear any logs from previous runs
        # Fit Network
        BERT.compile(optimizer="adam", loss=macro_double_soft_f1, \
                     metrics=[tf.keras.metrics.Accuracy(), tf.keras.metrics.Precisi
                             tf.keras.metrics.Recall()]) # "categorical_crossentro"
        history = BERT.fit(tensor_train, validation_data=tensor_test, epochs=25, ver
        Epoch 1/25
        cy: 0.0000e+00 - precision_1: 0.1951 - recall_1: 0.4000 - val_loss: 0.5986
        - val_accuracy: 0.0000e+00 - val_precision_1: 0.2119 - val_recall_1: 0.4167
        Epoch 2/25
        : 0.0000e+00 - precision_1: 0.2119 - recall_1: 0.4167 - val_loss: 0.5972 -
        val_accuracy: 0.0000e+00 - val_precision_1: 0.2273 - val_recall_1: 0.4167
        Epoch 3/25
        : 0.0000e+00 - precision_1: 0.2273 - recall_1: 0.4167 - val_loss: 0.5957 -
        val_accuracy: 0.0000e+00 - val_precision_1: 0.2381 - val_recall_1: 0.4167
        Epoch 4/25
```

```
1/1 [========== ] - 9s 9s/step - loss: 0.5957 - accuracy
: 0.0000e+00 - precision_1: 0.2381 - recall_1: 0.4167 - val_loss: 0.5942 -
val_accuracy: 0.0000e+00 - val_precision_1: 0.2708 - val_recall_1: 0.4333
Epoch 5/25
: 0.0000e+00 - precision 1: 0.2708 - recall 1: 0.4333 - val loss: 0.5926 -
val accuracy: 0.0000e+00 - val precision 1: 0.2857 - val recall 1: 0.4333
Epoch 6/25
: 0.0000e+00 - precision_1: 0.2857 - recall_1: 0.4333 - val_loss: 0.5910 -
val_accuracy: 0.0000e+00 - val_precision_1: 0.2889 - val_recall_1: 0.4333
Epoch 7/25
: 0.0000e+00 - precision 1: 0.2889 - recall 1: 0.4333 - val loss: 0.5894 -
val_accuracy: 0.0000e+00 - val_precision_1: 0.2955 - val_recall_1: 0.4333
Epoch 8/25
1/1 [================== ] - 10s 10s/step - loss: 0.5894 - accura
cy: 0.0000e+00 - precision_1: 0.2955 - recall_1: 0.4333 - val_loss: 0.5877
- val_accuracy: 0.0000e+00 - val_precision_1: 0.3095 - val_recall_1: 0.4333
Epoch 9/25
: 0.0000e+00 - precision_1: 0.3095 - recall_1: 0.4333 - val_loss: 0.5860 -
val_accuracy: 0.0000e+00 - val_precision_1: 0.3253 - val_recall_1: 0.4500
Epoch 10/25
: 0.0000e+00 - precision_1: 0.3253 - recall_1: 0.4500 - val_loss: 0.5842 -
val accuracy: 0.0000e+00 - val precision 1: 0.3333 - val recall 1: 0.4333
Epoch 11/25
: 0.0000e+00 - precision_1: 0.3333 - recall_1: 0.4333 - val_loss: 0.5824 -
val accuracy: 0.0000e+00 - val precision 1: 0.3288 - val recall 1: 0.4000
Epoch 12/25
: 0.0000e+00 - precision_1: 0.3288 - recall_1: 0.4000 - val_loss: 0.5806 -
val_accuracy: 0.0000e+00 - val_precision_1: 0.3333 - val_recall_1: 0.4000
Epoch 13/25
1/1 [========== ] - 9s 9s/step - loss: 0.5806 - accuracy
: 0.0000e+00 - precision 1: 0.3333 - recall 1: 0.4000 - val loss: 0.5787 -
val_accuracy: 0.0000e+00 - val_precision_1: 0.3380 - val_recall_1: 0.4000
Epoch 14/25
1/1 [============ ] - 9s 9s/step - loss: 0.5787 - accuracy
: 0.0000e+00 - precision_1: 0.3380 - recall_1: 0.4000 - val_loss: 0.5768 -
val_accuracy: 0.0000e+00 - val_precision_1: 0.3284 - val_recall_1: 0.3667
Epoch 15/25
1/1 [================== ] - 9s 9s/step - loss: 0.5768 - accuracy
: 0.0000e+00 - precision 1: 0.3284 - recall 1: 0.3667 - val loss: 0.5748 -
val_accuracy: 0.0000e+00 - val_precision_1: 0.3333 - val_recall_1: 0.3667
1/1 [=========================] - 9s 9s/step - loss: 0.5748 - accuracy
: 0.0000e+00 - precision_1: 0.3333 - recall_1: 0.3667 - val_loss: 0.5728 -
```

```
val_accuracy: 0.0000e+00 - val_precision_1: 0.3333 - val_recall_1: 0.3667
       Epoch 17/25
       1/1 [=========== ] - 9s 9s/step - loss: 0.5728 - accuracy
       : 0.0000e+00 - precision_1: 0.3333 - recall_1: 0.3667 - val_loss: 0.5707 -
       val_accuracy: 0.0000e+00 - val_precision_1: 0.3281 - val_recall_1: 0.3500
       Epoch 18/25
       : 0.0000e+00 - precision 1: 0.3281 - recall 1: 0.3500 - val loss: 0.5686 -
       val_accuracy: 0.0000e+00 - val_precision_1: 0.3443 - val_recall_1: 0.3500
       Epoch 19/25
       : 0.0000e+00 - precision_1: 0.3443 - recall_1: 0.3500 - val_loss: 0.5664 -
       val accuracy: 0.0000e+00 - val precision 1: 0.3509 - val recall 1: 0.3333
       Epoch 20/25
       : 0.0000e+00 - precision_1: 0.3509 - recall_1: 0.3333 - val_loss: 0.5643 -
       val_accuracy: 0.0000e+00 - val_precision_1: 0.3725 - val_recall_1: 0.3167
       Epoch 21/25
       1/1 [=========== ] - 9s 9s/step - loss: 0.5643 - accuracy
       : 0.0000e+00 - precision_1: 0.3725 - recall_1: 0.3167 - val_loss: 0.5620 -
       val accuracy: 0.0000e+00 - val precision 1: 0.3725 - val recall 1: 0.3167
       Epoch 22/25
       : 0.0000e+00 - precision_1: 0.3725 - recall_1: 0.3167 - val_loss: 0.5598 -
       val_accuracy: 0.0000e+00 - val_precision_1: 0.3800 - val_recall_1: 0.3167
       Epoch 23/25
       : 0.0000e+00 - precision_1: 0.3800 - recall_1: 0.3167 - val_loss: 0.5575 -
       val accuracy: 0.0000e+00 - val precision 1: 0.3696 - val recall 1: 0.2833
       Epoch 24/25
       : 0.0000e+00 - precision_1: 0.3696 - recall_1: 0.2833 - val_loss: 0.5551 -
       val accuracy: 0.0000e+00 - val precision 1: 0.3953 - val recall 1: 0.2833
       Epoch 25/25
       : 0.0000e+00 - precision_1: 0.3953 - recall_1: 0.2833 - val_loss: 0.5527 -
       val_accuracy: 0.0000e+00 - val_precision_1: 0.4250 - val_recall_1: 0.2833
In [23]: y test = np.concatenate([ex[1].numpy() for ex in tensor test])
       pre y = BERT.predict(tensor test).round().astype(np.int64)
       cm matrices = multilabel confusion matrix(y test, pre y)
       print(classification_report(y_test, pre_y, target_names=true_genres))
```

1/1 [=====	=======	=======	≔] – 0s 4ms	s/step
	precision	recall	f1-score	support
Action	0.00	0.00	0.00	1
Adult	0.00	0.00	0.00	0
Adventure	0.00	0.00	0.00	5
Animation	0.00	0.00	0.00	3
Biography	0.00	0.00	0.00	0
Comedy	1.00	0.38	0.55	8
Crime	0.00	0.00	0.00	2
Documentary	0.00	0.00	0.00	1
Drama	0.89	0.67	0.76	12
Family	1.00	0.43	0.60	7
Fantasy	0.00	0.00	0.00	7
Film—Noir	0.00	0.00	0.00	0
Game-Show	0.00	0.00	0.00	0
History	1.00	1.00	1.00	1
Horror	0.00	0.00	0.00	1
Music	0.00	0.00	0.00	0
Musical	0.00	0.00	0.00	1
Mystery	0.00	0.00	0.00	0
News	0.00	0.00	0.00	0
Reality-TV	0.00	0.00	0.00	0
Romance	1.00	0.25	0.40	8
Sci-Fi	0.00	0.00	0.00	0
Short	0.00	0.00	0.00	1
Sport	0.00	0.00	0.00	0
Talk-Show	0.00	0.00	0.00	0
Thriller	0.00	0.00	0.00	1
War	0.00	0.00	0.00	1
Western	0.00	0.00	0.00	0
nan	0.00	0.00	0.00	0
micro avg	0.42	0.28	0.34	60
macro avg	0.17	0.09	0.11	60
weighted avg	0.58	0.28	0.37	60
samples avg	0.37	0.29	0.28	60

/usr/local/lib/python3.9/dist-packages/sklearn/metrics/_classification.py:1 327: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.9/dist-packages/sklearn/metrics/_classification.py:1 327: UndefinedMetricWarning: Recall and F-score are ill-defined and being s et to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))