Nombres complexes — forme trigonométrique 5

Module 5.1

Soit $z=a+b\,i$; on appelle module de z, et l'on note |z|, le réel positif $\sqrt{a^2+b^2}.$

Démontrer les propriétés suivantes :

1)
$$|z| = |\overline{z}| = \sqrt{z}\,\overline{z}$$

$$2) |z| = 0 \iff z = 0$$

3)
$$|\lambda z| = |\lambda| |z| \qquad (\lambda \in \mathbb{R})$$

$$(\lambda \in \mathbb{R}$$

4)
$$|z_1 z_2| = |z_1| |z_2|$$

$$5) \left| \frac{1}{z} \right| = \frac{1}{|z|}$$

6)
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$

5.2 Plan complexe

Considérons le plan muni d'un repère orthonormé.

- À tout nombre complexe z = a + bi, on associe le point Z(a;b), appelé point image de z.
- Réciproquement, à tout point Z(a;b) du plan, on associe le nombre complexe z = a + bi, appelé affixe de Z.

Représenter dans le plan complexe les points images des nombres suivants :

1)
$$a = 2 + i$$

2)
$$b = 2 - i$$

3)
$$c = 3 + \frac{3}{2}i$$

4)
$$d = 4$$

2)
$$b = 2 - i$$

5) $e = -2i$

6)
$$f = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$

5.3 Forme trigonométrique

1) Calculer le module des nombres complexes suivants :

$$a_{1} = \sqrt{2} + \sqrt{2}i \qquad a_{2} = -\sqrt{2} + \sqrt{2}i \qquad a_{3} = \sqrt{2} - \sqrt{2}i$$

$$a_{4} = 1 + \sqrt{3}i \qquad a_{5} = -1 + \sqrt{3}i \qquad a_{6} = -1 - \sqrt{3}i$$

$$b_{1} = \frac{3\sqrt{2}}{2} + \frac{3\sqrt{2}}{2}i \qquad b_{2} = -\frac{3\sqrt{2}}{2} + \frac{3\sqrt{2}}{2}i \qquad b_{3} = \frac{3\sqrt{2}}{2} - \frac{3\sqrt{2}}{2}i$$

$$b_{4} = \frac{3}{2} + \frac{3\sqrt{3}}{2}i \qquad b_{5} = -\frac{3}{2} + \frac{3\sqrt{3}}{2}i \qquad b_{6} = -\frac{3}{2} - \frac{3\sqrt{3}}{2}i$$

2) On considère les nombres complexes suivants :

$$a'_{1} = 2\left(\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4})\right) \qquad a'_{2} = 2\left(\cos(\frac{3\pi}{4}) + i\sin(\frac{3\pi}{4})\right)$$

$$a'_{3} = 2\left(\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})\right)$$

$$a'_{4} = 2\left(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3})\right) \qquad a'_{5} = 2\left(\cos(\frac{2\pi}{3}) + i\sin(\frac{2\pi}{3})\right)$$

$$a'_{6} = 2\left(\cos(-\frac{2\pi}{3}) + i\sin(-\frac{2\pi}{3})\right)$$

$$b'_{1} = 3\left(\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4})\right) \qquad b'_{2} = 3\left(\cos(\frac{3\pi}{4}) + i\sin(\frac{3\pi}{4})\right)$$

$$b'_{3} = 3\left(\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4})\right)$$

$$b'_{4} = 3\left(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3})\right) \qquad b'_{5} = 3\left(\cos(\frac{2\pi}{3}) + i\sin(\frac{2\pi}{3})\right)$$

$$b'_{6} = 3\left(\cos(-\frac{2\pi}{3}) + i\sin(-\frac{2\pi}{3})\right)$$

Que vaut le module de chacun de ces nombres complexes? En calculant les valeurs exactes des cosinus et des sinus, que remarque-t-on?

3) Représenter les images des nombres $a_1,\,a_2,\,a_3,\,a_4,\,a_5,\,a_6,\,b_1,\,b_2,\,b_3,\,b_4,\,b_5$ et b_6 dans le plan complexe.

- 4) Pour tout nombre complexe non nul z, il existe des nombres uniques r > 0et $\varphi \in]-\pi;\pi]$ tels que $z=r\left(\cos(\varphi)+i\sin(\varphi)\right)$. Cette écriture est appelée la forme trigonométrique de z. Remarquer que r = |z|, c'est-à-dire que r est le module de z. On appelle argument de z, et on le note arg(z), le nombre φ . Interpréter géométriquement le module r et l'argument φ .
- 5.4 Soit $z = r(\cos(\varphi) + i\sin(\varphi))$ un nombre complexe. Montrer que : $|\overline{z}| = |z|$ et $\arg(\overline{z}) = -\arg(z)$ en d'autres termes $\overline{z} = r \left(\cos(-\varphi) + i \sin(-\varphi) \right)$.
- 5.5 Écrire sous forme algébrique les nombres complexes dont le module et l'argument sont les suivants:

1)
$$r = 1$$
 $\varphi = \frac{\pi}{4}$

2)
$$r=2$$
 $\varphi=\pi$

$$3) \ r = \sqrt{2} \quad \varphi = \frac{\pi}{6}$$

$$4) r = \frac{1}{2} \quad \varphi = -\frac{3\pi}{4}$$

1)
$$r = 1$$
 $\varphi = \frac{\pi}{4}$ 2) $r = 2$ $\varphi = \pi$ 3) $r = \sqrt{2}$ $\varphi = \frac{\pi}{6}$
4) $r = \frac{1}{2}$ $\varphi = -\frac{3\pi}{4}$ 5) $r = 2$ $\varphi = -\frac{5\pi}{6}$ 6) $r = \sqrt{3}$ $\varphi = \frac{\pi}{3}$

6)
$$r = \sqrt{3}$$
 $\varphi = \frac{\pi}{3}$

5.6 Déterminer le module et l'argument des nombres complexes suivants :

1)
$$2 + 2i$$

2)
$$3\sqrt{3} + 3i$$

3)
$$1 - \sqrt{3}i$$

4)
$$5i$$

$$5) -3$$

6)
$$-2\sqrt{3}-2i$$

7)
$$-7 - 7i$$

8)
$$-3i$$

9)
$$\sin(\alpha) + i \cos(\alpha)$$

5.7 Formules trigonométriques $\cos(\alpha + \beta)$ et $\sin(\alpha + \beta)$

> Considérons le cercle trigonométrique dans le plan muni du repère orthonormé canonique (O; $\vec{e_1}$; $\vec{e_2}$).

> Les points N et M sont situés sur le cercle trigonométrique de façon à former avec l'axe OE₁ des angles valant respectivement α et $\alpha + \beta$.

> Le point H est la projection orthogonale du point M sur la droite ON.

1) Exprimer, dans la base $(\vec{e_1}; \vec{e_2})$, les composantes du vecteur \overrightarrow{OM} en fonction de l'angle $\alpha + \beta$.

- 2) (a) Quelle est la longueur du segment OH?
 - (b) En déduire, dans la base $(\vec{e_1}; \vec{e_2})$, les composantes du vecteur OH en fonction des angles α et β .
- 3) (a) Quelle est la longueur du segment HM?
 - (b) En inférer, dans la base $(\vec{e_1}; \vec{e_2})$, les composantes du vecteur HM en fonction des angles α et β .

4) Au vu de la relation de Chasles $\overrightarrow{OM} = \overrightarrow{OH} + \overrightarrow{HM}$, conclure aux formules :

$$\cos(\alpha + \beta) = \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta)$$
$$\sin(\alpha + \beta) = \sin(\alpha) \cos(\beta) + \cos(\alpha) \sin(\beta)$$

- Soient $z_1 = r_1(\cos(\varphi_1) + i\sin(\varphi_1))$ et $z_2 = r_2(\cos(\varphi_2) + i\sin(\varphi_2))$ deux nombres 5.8 complexes. Démontrer ces propriétés :
 - 1) $|z_1 z_2| = |z_1| |z_2|$ et $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$ en d'autres termes : $z_1 z_2 = r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2))$
 - 2) $\left| \frac{1}{z} \right| = \frac{1}{|z|}$ et $\arg\left(\frac{1}{z}\right) = -\arg(z)$ en d'autres termes : $\frac{1}{r} = \frac{1}{r} (\cos(\varphi) - i \sin(\varphi))$
 - 3) $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$ et $\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) \arg(z_2)$ en d'autres termes : $\frac{z_1}{z_2} = \frac{r_1}{r_2} \left(\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2) \right)$
- 5.9 Formule de moivre

Soit $z = r(\cos(\varphi) + i\sin(\varphi))$ un nombre complexe. Démontrer que pour tout $n \in \mathbb{N}$ on a:

$$z^{n} = \left(r\left(\cos(\varphi) + i\sin(\varphi)\right)\right)^{n} = r^{n}\left(\cos(n\varphi) + i\sin(n\varphi)\right)$$

5.10 Déterminer, sans effectuer les calculs, le module et l'argument des nombres complexes suivants:

1)
$$(1-i)(-3i)$$

2)
$$(-2i)^{10}$$

3)
$$(1+\sqrt{3}i)^2$$

1)
$$(1-i)(-3i)$$
 2) $(-2i)^{10}$ 3) $(1+\sqrt{3}i)^2$
4) $(-1+i)^5(2+2i)^4$ 5) $\left(\frac{\sqrt{3}-i}{\sqrt{3}+i}\right)^{30}$ 6) $\left(\frac{1-\sqrt{3}i}{\sqrt{3}+i}\right)^{17}$

$$5) \left(\frac{\sqrt{3}-i}{\sqrt{3}+i}\right)^{30}$$

$$6) \left(\frac{1-\sqrt{3}\,i}{\sqrt{3}+i}\right)^{17}$$

- Soient les nombres complexes $z_1 = 1 + \sqrt{3}i$ et $z_2 = \frac{1}{2} \frac{1}{2}i$. 5.11
 - 1) Écrire z_1 et z_2 sous forme trigonométrique.
 - 2) Déterminer la forme algébrique et la forme trigonométrique du nombre complexe $z_1 z_2$.
 - 3) En déduire les valeurs exactes de $\cos(\frac{\pi}{12})$ et de $\sin(\frac{\pi}{12})$.
- 5.12 Extraction des racines

Soient $z = r(\cos(\varphi) + i\sin(\varphi))$ un nombre complexe et $n \in \mathbb{N}$. On appelle racine $n^{\rm e}$ de z tout nombre complexe qui, élevé à la puissance n, vaut z.

1) Soit $z' = r' \left(\cos(\varphi') + i \sin(\varphi')\right)$ une racine n^e de z. Montrer que $r' = \sqrt[n]{r}$ et que $n \varphi' = \varphi + 2 k \pi$ pour un certain $k \in \mathbb{Z}$.

2) En déduire que tout nombre complexe non nul $z = r(\cos(\varphi) + i\sin(\varphi))$ possède exactement n racines $n^{\rm e}$ distinctes données par la formule :

$$\sqrt[n]{r} \left(\cos(\frac{\varphi+2k\pi}{n}) + i\sin(\frac{\varphi+2k\pi}{n})\right)$$
 avec $k = 0, 1, \dots, n-1$

5.13 Déterminer, sous forme trigonométrique et sous forme algébrique, toutes les racines suivantes; les représenter ensuite dans le plan complexe.

1)
$$\sqrt{4i}$$

2)
$$\sqrt[3]{8}$$

3)
$$\sqrt[4]{-1}$$

4)
$$\sqrt[6]{-1}$$

5.14 Représenter dans le plan complexe les solutions de l'équation $z^5 + 243 = 0$.

Réponses

5.2

5.3

1)
$$|a_1| = |a_2| = |a_3| = |a_4| = |a_5| = |a_6| = 2$$

 $|b_1| = |b_2| = |b_3| = |b_4| = |b_5| = |b_6| = 3$

2) $|a'_n| = 2$ et $a'_n = a_n$ pour tout $n \in \{1; 2; 3; 4; 5; 6\}$ $|b'_n| = 3$ et $b'_n = b_n$ pour tout $n \in \{1; 2; 3; 4; 5; 6\}$

3)

4) r exprime la distance du point z à l'origine; φ représente l'angle, mesuré en radians, entre le demi-axe \mathbb{R}_+ et la demi-droite OZ.

1)
$$\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$

$$2) -2$$

3)
$$\frac{\sqrt{6}}{2} + \frac{\sqrt{2}}{2}i$$

1)
$$\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
 2) -2 3) $\frac{\sqrt{6}}{2} + \frac{\sqrt{2}}{2}$
4) $-\frac{\sqrt{2}}{4} - \frac{\sqrt{2}}{4}i$ 5) $-\sqrt{3} - i$ 6) $\frac{\sqrt{3}}{2} + \frac{3}{2}i$

5)
$$-\sqrt{3} - i$$

6)
$$\frac{\sqrt{3}}{2} + \frac{3}{2}$$

1)
$$r = 2\sqrt{2}$$
 $\varphi = \frac{\pi}{4}$

2)
$$r = 6$$
 $\varphi = \frac{\pi}{6}$

3)
$$r = 2$$
 $\varphi = -\frac{\pi}{2}$

4)
$$r = 5$$
 $\varphi = \frac{\pi}{2}$

5)
$$r = 3$$
 $\varphi = \pi$

6)
$$r = 4$$
 $\varphi = -\frac{5\pi}{6}$

1)
$$r = 2\sqrt{2}$$
 $\varphi = \frac{\pi}{4}$ 2) $r = 6$ $\varphi = \frac{\pi}{6}$ 3) $r = 2$ $\varphi = -\frac{\pi}{3}$ 4) $r = 5$ $\varphi = \frac{\pi}{2}$ 5) $r = 3$ $\varphi = \pi$ 6) $r = 4$ $\varphi = -\frac{5\pi}{6}$ 7) $r = 7\sqrt{2}$ $\varphi = -\frac{3\pi}{4}$ 8) $r = 3$ $\varphi = -\frac{\pi}{2}$ 9) $r = 1$ $\varphi = \frac{\pi}{2} - \alpha$

8)
$$r = 3$$
 $\varphi = -\frac{\pi}{2}$

9)
$$r = 1$$
 $\varphi = \frac{\pi}{2} - c$

1)
$$\overrightarrow{OM} = \begin{pmatrix} \cos(\alpha + \beta) \\ \sin(\alpha + \beta) \end{pmatrix}$$

2) (a)
$$\|\overrightarrow{OH}\| = \cos(\beta)$$

(b)
$$\overrightarrow{OH} = \begin{pmatrix} \cos(\alpha) & \cos(\beta) \\ \sin(\alpha) & \cos(\beta) \end{pmatrix}$$

3) (a)
$$\|\overrightarrow{HM}\| = \sin(\beta)$$

2) (a)
$$\|\overrightarrow{OH}\| = \cos(\beta)$$
 (b) $\overrightarrow{OH} = \begin{pmatrix} \cos(\alpha) \cos(\beta) \\ \sin(\alpha) \cos(\beta) \end{pmatrix}$
3) (a) $\|\overrightarrow{HM}\| = \sin(\beta)$ (b) $\overrightarrow{HM} = \begin{pmatrix} -\sin(\alpha) \sin(\beta) \\ \cos(\alpha) \sin(\beta) \end{pmatrix}$

1)
$$r = 3\sqrt{2}$$
 $\varphi = -\frac{3\pi}{4}$ 2) $r = 1024$ $\varphi = \pi$ 3) $r = 4$ $\varphi = \frac{2\pi}{3}$
4) $r = 256\sqrt{2}$ $\varphi = \frac{3\pi}{4}$ 5) $r = 1$ $\varphi = 0$ 6) $r = 1$ $\varphi = -\frac{\pi}{2}$

2)
$$r = 1024$$
 $\varphi = \pi$

3)
$$r = 4$$
 $\varphi = \frac{2\pi}{3}$

4)
$$r = 256\sqrt{2}$$
 $\varphi = \frac{3\pi}{4}$

5)
$$r = 1$$
 $\varphi = 0$

6)
$$r = 1$$
 $\varphi = -\frac{\pi}{2}$

1)
$$z_1 = 2\left(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3})\right)$$

1)
$$z_1 = 2\left(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3})\right)$$
 $z_2 = \frac{\sqrt{2}}{2}\left(\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})\right)$

2)
$$z_1 z_2 = \frac{\sqrt{3}+1}{2} + \frac{\sqrt{3}-1}{2} i = \sqrt{2} \left(\cos(\frac{\pi}{12}) + i \sin(\frac{\pi}{12}) \right)$$

3)
$$\cos(\frac{\pi}{12}) = \frac{\sqrt{6} + \sqrt{2}}{4}$$
 $\sin(\frac{\pi}{12}) = \frac{\sqrt{6} - \sqrt{2}}{4}$

1)
$$z_1 = 2\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)$$
$$= \sqrt{2} + \sqrt{2}i$$
$$z_2 = 2\left(\cos\left(\frac{5\pi}{4}\right) + i\sin\left(\frac{5\pi}{4}\right)\right)$$
$$= -\sqrt{2} - \sqrt{2}i$$

2)
$$z_1 = 2 \left(\cos(0) + i \sin(0)\right) = 2$$

 $z_2 = 2 \left(\cos(\frac{2\pi}{3}) + i \sin(\frac{2\pi}{3})\right)$
 $= -1 + \sqrt{3}i$
 $z_3 = 2 \left(\cos(\frac{4\pi}{3}) + i \sin(\frac{4\pi}{3})\right)$
 $= -1 - \sqrt{3}i$

3)
$$z_1 = \cos(\frac{\pi}{4}) + i \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$

 $z_2 = \cos(\frac{3\pi}{4}) + i \sin(\frac{3\pi}{4}) = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$
 $z_3 = \cos(\frac{5\pi}{4}) + i \sin(\frac{5\pi}{4}) = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$
 $z_4 = \cos(\frac{7\pi}{4}) + i \sin(\frac{7\pi}{4}) = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$

4)
$$z_1 = \cos(\frac{\pi}{6}) + i \sin(\frac{\pi}{6}) = \frac{\sqrt{3}}{2} + \frac{1}{2}i$$

 $z_2 = \cos(\frac{\pi}{2}) + i \sin(\frac{\pi}{2}) = i$
 $z_3 = \cos(\frac{5\pi}{6}) + i \sin(\frac{5\pi}{6}) = -\frac{\sqrt{3}}{2} + \frac{1}{2}i$
 $z_4 = \cos(\frac{7\pi}{6}) + i \sin(\frac{7\pi}{6}) = -\frac{\sqrt{3}}{2} - \frac{1}{2}i$
 $z_5 = \cos(\frac{3\pi}{2}) + i \sin(\frac{3\pi}{2}) = -i$
 $z_6 = \cos(\frac{11\pi}{6}) + i \sin(\frac{11\pi}{6}) = \frac{\sqrt{3}}{2} - \frac{1}{2}i$

5.14

- 1) Résoudre, dans \mathbb{C} , l'équation $z^2 2z + 4 = 0$. 5.15
 - 2) Soit u la solution de partie imaginaire positive. Calculer u^{10} .
- 1) Déterminer le module et l'argument des nombres complexes 1-i et $\sqrt{3}-i$. 5.16
 - 2) Déterminer la forme algébrique et la forme trigonométrique du nombre complexe $\frac{1-i}{\sqrt{3}-i}$.
 - 3) En déduire les valeurs de $\cos(-\frac{\pi}{12})$ et $\sin(-\frac{\pi}{12})\,.$
 - 4) En déduire les valeurs de $\cos(\frac{5\pi}{12})$ et $\sin(\frac{5\pi}{12})$. Indication: multiplier par i.
- Soient $z_1 = \frac{\sqrt{6}}{2} \frac{\sqrt{2}}{2}i$ et $z_2 = 1 i$. 5.17
 - 1) Écrire, sous forme trigonométrique, z_1 , z_2 et $\frac{z_1}{z_2}$.
 - 2) En déduire que $\cos(\frac{\pi}{12}) = \frac{\sqrt{6} + \sqrt{2}}{4}$ et $\sin(\frac{\pi}{12}) = \frac{\sqrt{6} \sqrt{2}}{4}$.
 - 3) Résoudre l'équation $(\sqrt{6} + \sqrt{2}) \cos(x) + (\sqrt{6} \sqrt{2}) \sin(x) = 2 \text{ dans } \mathbb{R}.$
- 1) En calculant la forme algébrique et la forme trigonométrique du nombre 5.18 complexe $(\cos(\alpha) + i \sin(\alpha))^2$, établir les formules de duplication : $cos(2\alpha) = cos^2(\alpha) - sin^2(\alpha)$ et $\sin(2\alpha) = 2\cos(\alpha)\sin(\alpha)$
 - 2) De même, en considérant le cube du nombre complexe $\cos(\alpha) + i \sin(\alpha)$, établir les formules trigonométriques :

$$\cos(3\alpha) = \cos(\alpha) \left(1 - 4\sin^2(\alpha)\right) = \cos(\alpha) \left(4\cos^2(\alpha) - 3\right)$$
$$\sin(3\alpha) = \sin(\alpha) \left(4\cos^2(\alpha) - 1\right) = \sin(\alpha) \left(3 - 4\sin^2(\alpha)\right)$$

3) Vérifier que les solutions de l'équation $8x^3 - 6x - 1 = 0$ sont $\cos(\frac{\pi}{a})$, $\cos(\frac{7\pi}{9})$ et $\cos(\frac{13\pi}{9})$.

Réponses

5.15 1)
$$u = 1 + \sqrt{3}i$$
 $v = 1 - \sqrt{3}i$ 2) $-512 - 512\sqrt{3}i$

5.16 1)
$$1 - i = \sqrt{2} \left(\cos(-\frac{\pi}{4}) + i \sin(-\frac{\pi}{4}) \right)$$
 $\sqrt{3} - i = 2 \left(\cos(-\frac{\pi}{6}) + i \sin(-\frac{\pi}{6}) \right)$
2) $\frac{1 - i}{\sqrt{3} - i} = \frac{1 + \sqrt{3}}{4} + \frac{1 - \sqrt{3}}{4} i = \frac{\sqrt{2}}{2} \left(\cos(-\frac{\pi}{12}) + i \sin(-\frac{\pi}{12}) \right)$

3)
$$\cos(-\frac{\pi}{12}) = \frac{\sqrt{2} + \sqrt{6}}{4}$$
 $\sin(-\frac{\pi}{12}) = \frac{\sqrt{2} - \sqrt{6}}{4}$
4) $\cos(\frac{5\pi}{12}) = \frac{\sqrt{6} - \sqrt{2}}{4}$ $\sin(\frac{5\pi}{12}) = \frac{\sqrt{6} + \sqrt{2}}{4}$

4)
$$\cos(\frac{5\pi}{12}) = \frac{\sqrt{6}-\sqrt{2}}{4}$$
 $\sin(\frac{5\pi}{12}) = \frac{\sqrt{6}+\sqrt{2}}{4}$

5.17 1)
$$z_1 = \sqrt{2} \left(\cos(-\frac{\pi}{6}) + i \sin(-\frac{\pi}{6}) \right)$$
 $z_2 = \sqrt{2} \left(\cos(-\frac{\pi}{4}) + i \sin(-\frac{\pi}{4}) \right)$ $\frac{z_1}{z_2} = \cos(\frac{\pi}{12}) + i \sin(\frac{\pi}{12})$ 3)
$$\begin{cases} x_1 = -\frac{\pi}{4} + 2k\pi \text{ où } k \in \mathbb{Z} \\ x_2 = \frac{5\pi}{12} + 2k\pi \text{ où } k \in \mathbb{Z} \end{cases}$$