```
1. library(multtest), library(Biobase)
2.
data(golub)
golub.frame <- data.frame(golub)</pre>
row.names(golub.frame) <- paste("g",1:nrow(golub.frame), sep = "")</pre>
ann.dat2= data.frame(golub.cl)
data=list(x=golub.frame,y=data.frame(golub.cl))
wilcox.test.all.genes <- function(x,s1,s2) {</pre>
x1 < -x[s1]
x2 < -x[s2]
x1 <- as.numeric(x1)
x2 < -as.numeric(x2)
t.out <- wilcox.test(x1,x2, alternative="two.sided",exact=F, correct=T)
out <- as.numeric(t.out$statistic)</pre>
return(out)
original.wmw.run <- apply(golub.frame,1,wilcox.test.all.genes,s1=ann.dat2==0,s2=ann.dat2==1)
5.
wlist = replicate(500, apply(golub.frame[ ,sample(ncol(golub.frame))], 1, wilcox.test.all.genes, s1=ann.dat2==0,
s2=ann.dat2==1)
ps.max= apply(wlist, 1, max)
6. t.test(ps.max)
           One Sample t-test
data: ps.max
t = 1309, df = 3050, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to O
95 percent confidence interval:
 237.9143 238.6281
sample estimates:
mean of x
 238.2712
subsetV<-original.wmw.run[original.wmw.run>238.2712,,drop=FALSE]
```

g23	original.wmw.run 249
g55	251
g66 g81	258 244
g96	274
g126	2 62 2 5 6
g127 g135	256
g158	246
g172 g174	253 262
g182	261
g184 g192	244 241
g202	255
g204 g207	2 63 2 4 6
g220	240
g226 g232	244 250
g239	247
g246 g248	254 244
g2 53	266
g259 g282	266 242
g283	271
g286	260
g297 g304	257 243
g307	252
g309 g313	245 248
g314	246
g320 g323	241 262
g329	275
g330 g335	245 254
g344	259
g345 g357	274 247
g376	244
g391 g394	245 290
g395	250
g399 g407	247 240
g422	270
g453 g462	242 259
g479 g489	248 250
g489 g490	248
g494	251
g515 g522	264 257
g523 g546	283 274
g560 g561 g563	262 281
a590	255 245
g620 g621	239 269
g634 g648	243 271
g688 g695	258 251
g698 g701	241 240
g703 g704 g713	285 273
g713 g715 g717	266 240
	283 252
g738 g746	271 277 277 248 241
g763	248 241
g764 g785 g801	256 263
g807 g811	248 249
g835 g838	272
cr83.9	272
g846 g849 g862	272 259
g866 g922	269 272
g963 g971	250 242
g984 g1006	283 275 243
g1011 g1014 g1019	243 259
g1019 g1025	259 254 244
g1025 g1030 g1037	244 244 281
g1042 g1045	284 270
g1045 g1060 g1070	264 260
g1081 g1086	240
g1094 g1101	278 278 244 258

g1109	239
g1110	242
g1145	2 62
g1161	245
g1162	261
g1174	240
g1175	239
g1202	256
g1225	254
g1245	245
g1253	255
g1271	268
g1293	255
g1316	255
g1327	267
g1334	266
g1337	244
g1348	241
g1359	244
g1368	279
g1381	248
g1445	263
g1453	254
g1455	266
g1456	261
g1459	250
g1468	245
g1470	243
g1474	250
g1480	242 242
g1489	242
g1491 g1513	242
g1513 g1524	282
g1542	266
g1542 g1547	243
g1559	260
g1564	246
g1579	245
g1575 g1585	243
g1598	275
g1610	249
g1616	258
g1629	245
g1638	262
q1640	265
g1642	265
g1649	246
g1653	259
g1671	254
g1691	266
g1696	250
g1723	256
g1732	264
g1766	252
g1773	247
-	

```
7.
fit <- lmFit(golub.frame)</pre>
emp<- eBayes(fit)
emp$p.value
8.
sortpval <- apply(emp$p.value, 2, sort)</pre>
subsetP<-sortpval[sortpval<0.05,,drop=FALSE]
subsetPg<-sortpval[sortpval>0.05,,drop=FALSE]
intersect(rownames(subsetP), rownames(subsetV))
intersect(rownames(subsetPg), rownames(subsetV))
[1] "g55" "g701" "g2702" "g634" "g1696" "g2020" "g1513" "g407" "g801" "g1948" "g1327" "g335" "g1456" "g1732" "g232" "g2506" "g1638" [30] "g1882" "g2262" "g2459" "g1547" "g2736" "g1092" "g248" "g2708" "g300" "g963" "g253" "g1629"
t.test.all.genes <- function(x,s1,s2) {
x1 < -x[s1]
x2 < -x[s2]
x1 <- as.numeric(x1)
x2 <- as.numeric(x2)
t.out <- t.test(x1,x2, alternative="two.sided",var.equal=T)
out <- as.numeric(t.out$p.value)</pre>
return(out)
pv <- apply(golub.frame,1,t.test.all.genes,s1=ann.dat2==0,s2=ann.dat2==1)
pv <- data.frame(pv)
subsetS<-pv[pv<0.01,,drop=FALSE]
intersect(rownames(subsetS), rownames(empV))
subsetemp<-empV[same,,drop=FALSE]</pre>
comb<- cbind(subsetS, subsetemp)</pre>
colnames(comb) <- c("Student t-test", "Empircal bayes")</pre>
plot(comb[,1],comb[,2], xlab="Student t-test", ylab="Empircal bayes", main="Student t-test vs Empircal Bayes
test")
```

