ปีริกสาก ป 7

ພາກທີ່ 1: ການເຄື່ອນທີ່ປິ່ນຂອງວັດຖຸແຂງ ບິດທີ່1: ການເຄື່ອນທີ່ປິ່ນ

ທ່ານ ອຈ ປທ ຄຳສອນ ຄຳສົມພູ ໂຮງຮຽນ ມປ ສົງໂສກປ່າຫຼວງ ເບີໂທ: 020 28295529

ອີເມວ: khamsone896@gmail.com

ພາກທີ່ 1: ການເຄື່ອນທີ່ປິ່ນຂອງວັດຖຸແຂງ ບິດທີ່ 1: ການເຄື່ອນທີ່ປິ່ນ

ບົດທີ່ 2: ພະລັງງານ ແລະ ແຮງງານຂອງການເຄື່ອນທີ່ປິ່ນ

1. ການປິ່ນ ແລະ ຄວາມໄວມູມ

ການປິ່ນຂອງວັດຖຸອ້ອມແກນປິ່ນໃດໜຶ່ງໝາຍເຖິງ ສ່ວນຕ່າງໆຂອງວັດຖຸເຄື່ອນທີ່ເປັນວົງມົນອ້ອມແກນປິ່ນ ໂດຍໄລຍະຫ່າງຈາກແກນປິ່ນບໍ່ປຸ່ງນແປງ.

$$\omega = \frac{\Delta \theta}{\Delta t} \tag{1.1}$$

ໃນນີ້ 🛭 ແມ່ນຄວາມໄວມູມ ຫົວໜ່ວຍເປັນຣາດງໆຕໍ່ວິນາທີ (rad/s)

 $\Delta \theta$ ແມ່ນມູມກວາດໄປໄດ້ ຫົວໜ່ວຍເປັນຣາດງາ (rad)

 Δt ແມ່ນໄລຍະເວລາຂອງການເຄື່ອນທີ່ປິ່ນ ຫົວໜ່ວຍເປັນວິນາທີ (s)

2. ຄວາມເລັ່ງມູມ

$$arepsilon = rac{\Delta \omega}{\Delta t}$$
ຄວາມເລັ່ງມູມທັນທີແມ່ນ
$$arepsilon = rac{d\omega}{dt}$$

3. ສົມຜົນການເຄື່ອນທີ່ປິ່ນ

ລ/ດ	ສົມຜົນການເຄື່ອນທີ່ຊື່	ສົມຕົນການເຄື່ອນທີ່ປິ່ນ
1	$v = v_0 + at$	$\omega = \omega_0 + \varepsilon t$
2	$s = \frac{(v + v_0)t}{2}$	$\theta = \frac{(\omega + \omega_0)t}{2}$
3	$s = \frac{1}{2}at^2 + v_0t$	$\theta = \frac{1}{2}\varepsilon t^2 + \omega_0 t$
4	$v^2 - v_0^2 = 2as$	$\omega^2 - \omega_0^2 = 2\varepsilon\theta$

4. ແຮງບິດ (Torque: τ)

$$\tau = I\varepsilon$$

ເຊິ່ງແຮງບິດ au ແລະ ຄວາມເລັ່ງມູມ arepsilon ມີທິດດຽວກັນ.

5. ໂມມັງອຶ້ງຕຶ້ງ (Inertia Moment)

$$I = m_1 r_1^2 + m_2 r_2^2 + ... + m_n r_n^2 = \sum_{i=1}^{n} m_i r_i^2$$

$$I = mr^2$$

$$I = \int r^2 dm$$

ຕາຕະລາງສະຫຼຸບໂມມັງອຶ້ງຕຶ້ງຂອງວັດຖຸໃນຮູບຮ່າງອື່ນໆ

ລັກສະນະຂອງວັດຖຸ	ແກນຢ່ນ	ಕ್ಷಬ	ໂມມັງອຶ້ງຕຶ້ງ
ໜ່ວຍມົນຕັນມວນສານ <i>m</i>	ປິ່ນອ້ອມແກນຜ່ານຈຸດສູນ	· ·	$I = \frac{2}{5}mR^2$
ລັດສະໝີ $\it R$	ກາງ		3
ໜ່ວຍມົນ ໂຄ້ງມວນສານ <i>m</i>	ປິ່ນອ້ອມແກນຜ່ານຈຸດສູນ	()	$I = \frac{2}{3}mR^2$
ລັດສະໝີ $\it R$	ກາງ		3
ທໍ່ກົມຕັນມວນສານ <i>m</i>	ປິ່ນອ້ອມແກນຂອງທໍ່ກົມ		$I = \frac{1}{2}mR^2$
ລັດສະໝີ R ຍາວ L			2
ແຜ່ນມົນມວນສານ <i>m</i>	ປິ່ນອ້ອມແກນຜ່ານສູນ		$I = \frac{1}{2}mR^2$
ລັດສະໝີ R	ກາງ <i>m</i> ຕັ້ງສາກກັບແຜ່ນມົນ		2

ແຜ່ນມົນມວນສານ m ລັດສະໝີ R	ປິ່ນອ້ອມແກນຜ່ານສູນກາງ ເທິງໜ້າພູງງ ແຜ່ນມົນ		$I = \frac{1}{4} mR^2$
ແທ່ງວັດຖຸນ້ອຍ $m{m}$ ຍາວ $m{L}$	ປິ່ນອ້ອມແກນຜ່ານຈຸດສູນ ກາງຕັ້ງສາກກັບແທ່ງວັດຖຸ		$I = \frac{1}{12} mL^2$
ທໍ່ບາງ ຫຼື ວົງມົນມວນ ສານ <i>m</i> ລັດສະໝີ <i>R</i>	ອ້ອມແກນທໍ່	R	$I = mR^2$
ທໍ່ໜາມວນສານ $m{m}$ ລັດສະໝີ $m{r}$ ແລະ $m{R}$	ອ້ອມແກນທໍ່	- O	$I = \frac{1}{2}m(R^2 + r^2)$
ແຜ່ນຮູບສີ່ແຈຂ້າງຂະໜານ ກວ້າງ a ຍາວ b	ອ້ອມຈຸດສູນກາງ	b a	$I = \frac{1}{12}m(a^2 + b^2)$

ຕົວຢ່າງ 1: ໂມມັງອຶ້ງຕຶ້ງຂອງວັດຖຸທີ່ເປັນຮູບທໍ່ໜາ ລັດສະໝີໃນ $R_{\rm l}$, ລັດ ສະໝີນອກ $R_{\rm l}$, ມີມວນສານ M, ແລະ ຄວາມສູງh ດັ່ງຮູບ1.7.

ຕົວຢ່າງ 2: ລະບົບລໍ້ກັບເພົາ ດັ່ງຮູບ 1.9 ເຊິ່ງລໍ້ມີມວນສານ M_1 ລັດສະໝີ R ຕິດກັບເພົາທີ່ ມີມວນສານ M_2 ລັດສະໝີ r ຖ້າແຂນວັດຖຸທີ່ມີມວນສານ m ພັນຮອບເພົາ. ຖາມວ່າ ຄວາມເລັ່ງມູມຂອງລໍ້ ແລະ ເພົາຈະມີເທົ່າໃດ?

