NOM:

INTERRO DE COURS – SEMAINE 13

Exercice 1 -

1. On considère les matrices $P = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix}$ et $Q = \begin{pmatrix} \frac{3}{2} & \frac{1}{2} & -1 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & -1 \end{pmatrix}$.

Calculer *PQ*. En déduire que *P* est inversible et donner son inverse.

Solution : Je calcule le produit matriciel $P \times Q$:

$$PQ = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix} \times \begin{pmatrix} \frac{3}{2} & \frac{1}{2} & -1 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & -1 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} - \frac{1}{2} & \frac{1}{2} - \frac{1}{2} & -1 + 1 \\ -\frac{3}{2} + \frac{2}{2} + \frac{1}{2} & -\frac{1}{2} + \frac{2}{2} + \frac{1}{2} & 1 - 1 \\ \frac{1}{2} - \frac{1}{2} & \frac{1}{2} - \frac{1}{2} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Comme $PQ = I_3$, alors P est inversible et $P^{-1} = Q$.

2. On considère les matrices $P = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 3 & 1 \\ 0 & 3 & -1 \end{pmatrix}$ et $Q = \begin{pmatrix} 6 & 3 & -3 \\ -2 & 1 & 3 \\ -6 & 3 & -3 \end{pmatrix}$.

Calculer PQ. En déduire que P est inversible et donner son inverse.

Solution : Je calcule le produit matriciel $P \times Q$:

$$PQ = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 3 & 1 \\ 0 & 3 & -1 \end{pmatrix} \times \begin{pmatrix} 6 & 3 & -3 \\ -2 & 1 & 3 \\ -6 & 3 & -3 \end{pmatrix} = \begin{pmatrix} 6+6 & 3-3 & -3+3 \\ 12-6-6 & 6+3+3 & -6+9-3 \\ -6+6 & 3-3 & 9+3 \end{pmatrix} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix}$$

Comme $PQ = 12I_3$, alors P est inversible et $P^{-1} = \frac{1}{12}Q$.

Exercice 2 – On considère les matrices $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

1. Calculer $A^3 - A$. En déduire que A est inversible puis déterminer A^{-1} .

Solution:

$$A^{2} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix} = \begin{pmatrix} 1+2 & -4 & 2 \\ 1 & 1-2 & -1 \\ 1 & 2 & 2-2 \end{pmatrix} = \begin{pmatrix} 3 & -4 & 2 \\ 1 & -1 & -1 \\ 1 & 2 & 0 \end{pmatrix}$$
$$A^{3} = A^{2} \times A = \begin{pmatrix} 3 & -4 & 2 \\ 1 & -1 & -1 \\ 1 & 2 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix} = \begin{pmatrix} 3+2 & 4-4 & 6-4 \\ 1-1 & 1+2 & 2-1 \\ 1 & -2 & 2+2 \end{pmatrix} = \begin{pmatrix} 5 & 0 & 2 \\ 0 & 3 & 1 \\ 1 & -2 & 4 \end{pmatrix}$$

Ainsi

$$A^{3} - A = \begin{pmatrix} 5 & 0 & 2 \\ 0 & 3 & 1 \\ 1 & -2 & 4 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} = 4I_{3}.$$

Donc $A(A^2 - I_3) = 4I_3$, i.e. $A \times \left(\frac{1}{4}(A^2 - I_3)\right) = I_3$.

Donc A est inversible et $A^{-1} = \frac{1}{4}(A^2 - I_3)$.

2. Montrer que $B^2 = B + 2I_3$. En déduire que B est inversible et déterminer B^{-1} .

Solution:

$$B^{2} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1+1 & 1 & 1 \\ 1 & 1+1 & 1 \\ 1 & 1 & 1+1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
$$B + 2I_{3} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

Donc $B^2 = B + 2I_3$, *i.e.* $B^2 - B = 2I_3$ et $B \times (B - I_3) = 2I_3$. Donc $B \times \left(\frac{1}{2}(B - I_3)\right) = I_3$. Donc B est inversible et $B^{-1} = \frac{1}{2}(B - I_3)$.