TEST REPORT

Reference No. : WTS14S1220964-1E

FCC ID : 2ADTE-DG800

Applicant : Shenzhen KVD Communication Equipment

Address : 13C, Block C, Shenzhen Electronic Technology Building, Shennan

Middle Road, Futian District, Shenzhen, China

Manufacturer : The same as above

Address : The same as above

Product Name.....: Mobile Phone

Model No.....: VALENCIA DG800

Brand..... : DOOGEE

Standards...... : FCC CFR47 Part 15 Section 15.247:2014

Date of Receipt sample : Dec.09, 2014

Date of Test : Dec.10 2014 ~ Jan.12, 2015

Date of Issue..... : Jan.19, 2015

Test Result.....: Pass *

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Approved by:

Zero Zhou / Project Engineer

Philo Zhong / Manager

Reference No.: WTS14S1220964-1E Page 2 of 51

2 Test Summary

Test Items	Test Requirement	Result	
	15.205(a)		
Radiated Spurious Emissions	15.209	PASS	
	15.247(d)		
Dand adea	15.247(d)	DACC	
Band edge	15.205(a)	PASS	
Conduct Emission	15.207	PASS	
20dB Bandwidth	15.247(a)(1)	PASS	
Maximum Peak Output Power	15.247(b)(1)	PASS	
Frequency Separation	15.247(a)(1)	PASS	
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS	
Dwell time	15.247(a)(1)(iii)	PASS	
Antenna Requirement	15.203	PASS	
Maximum Permissible Exposure	4.4207/b\/4\	DACC	
(Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS	

3 Contents

		Page
1	COVER PAGE	1
2	TEST SUMMARY	2
3	CONTENTS	3
4	GENERAL INFORMATION	5
	4.1 GENERAL DESCRIPTION OF E.U.T. 4.2 DETAILS OF E.U.T. 4.3 CHANNEL LIST. 4.4 TEST MODE. 4.5 TEST FACILITY.	
5	EQUIPMENT USED DURING TEST	
	5.1 EQUIPMENTS LIST5.2 MEASUREMENT UNCERTAINTY5.3 TEST EQUIPMENT CALIBRATION	9 9
6	CONDUCTED EMISSION	
	 6.1 E.U.T. OPERATION 6.2 EUT SETUP 6.3 MEASUREMENT DESCRIPTION 6.4 CONDUCTED EMISSION TEST RESULT 	10
7	RADIATED SPURIOUS EMISSIONS	13
	7.1 EUT OPERATION	
8	BAND EDGE MEASUREMENT	20
9	8.1 TEST PROCEDURE	21
	9.1 TEST PROCEDURE	24
10	MAXIMUM PEAK OUTPUT POWER	
	10.1 TEST PROCEDURE	30
11	HOPPING CHANNEL SEPARATION	
	11.1 TEST PROCEDURE	36
12	NUMBER OF HOPPING FREQUENCY	
	12.1 TEST PROCEDURE	42
13	DWELL TIME	
	13.1 TEST PROCEDURE	44

Reference No.: WTS14S1220964-1E Page 4 of 51

14	ANTENNA REQUIREMENT	50
15	RF EXPOSURE	51

Reference No.: WTS14S1220964-1E Page 5 of 51

4 General Information

4.1 General Description of E.U.T.

Product Name : Mobile Phone

Model No. : VALENCIA DG800

Model Description : N/A

GSM Band(s) : GSM 850/900/1800/1900MHz

GPRS Class : 12

WCDMA Band(s) : FDD Band I/V

Wi-Fi Specification : 802.11b/g/n HT20/n HT40

Bluetooth Version : Bluetooth v4.0 with BLE

GPS : Support

NFC : N/A

Hardware Version : Z869H

Software Version : DOOGEE_VALENCIA_DG800

4.2 Details of E.U.T.

Operation Frequency : GSM/GPRS 850: 824~849MHz

GSM/GPRS 900: 925-960MHz DCS 1800: 1805-1880MHz PCS 1900: 1850~1910MHz

WCDMA Band I: 1920-1980MHz WCDMA Band V: 824~849MHz

WiFi:

802.11b/g/n HT20: 2412-2462MHz 802.11n HT40: 2422-2452MHz

Bluetooth:

2402-2480MHz

GPS: 1.57GHz

Max. RF output power : GSM 850: 32.68dBm

PCS1900: 29.88dBm

WCDMA Band V: 22.63dBm

WiFi: 9.36dBm

Bluetooth: -0.21dBm

Type of Modulation : GSM,GPRS: GMSK

WCDMA: QPSK WiFi: CCK, OFDM

Waltek Services (Shenzhen) Co.,Ltd.

http://www.waltek.com.cn

Reference No.: WTS14S1220964-1E Page 6 of 51

Bluetooth: GFSK, Pi/4 DQPSK,8DPSK

Antenna installation : GSM/WCDMA: internal permanent antenna

WiFi/Bluetooth: internal permanent antenna

Antenna Gain : GSM 850: -4.0dBi

PCS1900: -4.0dBi

WCDMA Band V: -4.0dBi

WiFi: -1.0dBi

Bluetooth: -1.0dBi

Technical Data Battery DC 3.7V 2000mAh

DC 5V, 1.0A, charging from adapter

(Adapter Input: 100-240V~50/60Hz, 0.15A)

Adapter Manufacture: Shenzhen KVD Communication Equipment

Model No.: TN-050100UZ

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	-	-

Reference No.: WTS14S1220964-1E Page 7 of 51

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests; the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting	2402MHz	2441MHz	2480MHz

4.5 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A-1

Waltek Services (Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A-1, July 12, 2012.

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory 'has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# – Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory 'has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

5 Equipment Used during Test

5.1 Equipments List

Conducted Emissions Test Site 1#									
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.15,2014	Sep.14,2015			
2.	LISN	R&S	ENV216	101215	Sep.15,2014	Sep.14,2015			
3.	Cable	Тор	TYPE16(3.5M)	-	Sep.15,2014	Sep.14,2015			
Conducted Emissions Test Site 2#									
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.15,2014	Sep.14,2015			
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.15,2014	Sep.14,2015			
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.15,2014	Sep.14,2015			
4.	Cable	LARGE	RF300	-	Sep.15,2014	Sep.14,2015			
3m Sei	mi-anechoic Chamber	for Radiation Emis	sions Test site	1#					
Item	Equipment Manufactur		Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.15,2014	Sep.14,2015			
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Sep.15,2014	Sep.14,2015			
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.19,2014	Apr.18,2015			
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.15,2014	Sep.14,2015			
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.19,2014	Apr.18,2015			
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.19,2014	Apr.18,2015			
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Mar.17,2014	Mar.16,2015			
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr.10,2014	Apr.09,2015			
9	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.19,2014	Apr.18,2015			
3m Sei	mi-anechoic Chamber	for Radiation Emis	ssions Test site	2#					
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date			
1	Test Receiver	R&S	ESCI	101296	Sep.15,2014	Sep.14,2015			
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Sep.15,2014	Sep.14,2015			
3	Amplifier	Compliance pirection	PAP-0203	22024	Sep.15,2014	Sep.14,2015			

		systems inc				
4			CBL2	525178	Sep.15,2014	Sep.14,2015
RF Co	nducted Testing					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.15,2014	Sep.14,2015
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.15,2014	Sep.14,2015
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.15,2014	Sep.14,2015

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	$\pm 1 \times 10^{-6}$
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
Padiated Spurious Emissions tost	± 5.03 dB (Bilog antenna 30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (Horn antenna 1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS14S1220964-1E Page 10 of 51

6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

56 dB μ V between 0.5MHz & 5MHz 60 dB μ V between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

6.1 E.U.T. Operation

Operating Environment:

Temperature: 22.6 °C
Humidity: 52.4% RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.4:2003.

6.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.4 Conducted Emission Test Result

The worst mode: transmitting mode (Adapter Operation)

Live line:

Neutral line:

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Margin (dB)	Detector	Remark
1	0.1500	38.91	11.17	50.08	65.99	-15.91	QP	
2	0.1500	15.38	11.17	26.55	55.99	-29.44	AVG	
3	0.1980	40.37	11.29	51.66	63.69	-12.03	QP	
4	0.1980	24.03	11.29	35.32	53.69	-18.37	AVG	
5	0.2540	33.35	11.30	44.65	61.62	-16.97	QP	
6	0.2540	14.40	11.30	25.70	51.62	-25.92	AVG	
7	0.3260	28.99	11.30	40.29	59.55	-19.26	QP	
8	0.3260	13.70	11.30	25.00	49.55	-24.55	AVG	
9	4.0100	31.53	11.23	42.76	56.00	-13.24	QP	
10	4.0100	21.60	11.23	32.83	46.00	-13.17	AVG	
11	6.0580	23.38	11.25	34.63	60.00	-25.37	QP	
12	6.0580	15.85	11.25	27.10	50.00	-22.90	AVG	

Reference No.: WTS14S1220964-1E Page 13 of 51

7 Radiated Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: DA 00-705
Test Result: PASS
Measurement Distance: 3m

Limit:

Limit	Field Stre	nath	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m Distance (m)		uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	00/F(kHz) 300 10000 * 2		20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

7.1 EUT Operation

Operating Environment:

Temperature: 22.5 °C
Humidity: 51.8 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4: 2003.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Reference No.: WTS14S1220964-1E Page 15 of 51

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0° to 360°

Turn Table

PC Spectrum

AMP Combining

Analyzer

Network

The test setup for emission measurement above 1 GHz.

System

7.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GHz	<u>z</u>	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS14S1220964-1E Page 16 of 51

7.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

Reference No.: WTS14S1220964-1E Page 17 of 51

7.6 Summary of Test Results

Test Frequency: 32.768kHz~30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

Remark: only the worst data (GFSK modulation mode) were reported.

	Receiver	Turn	RX Antenna		Corrected	Corrected			
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
GFSK Low Channel									
199.38	22.13	QP	276	1.4	Н	11.13	33.26	43.50	-10.24
199.38	21.29	QP	92	1.6	V	11.13	32.42	43.50	-11.08
4804.00	47.83	PK	229	2.0	V	-1.06	46.77	74.00	-27.23
4804.00	43.50	Ave	229	2.0	V	-1.06	42.44	54.00	-11.56
7206.00	40.43	PK	85	1.1	Н	1.33	41.76	74.00	-32.24
7206.00	35.80	Ave	85	1.1	Н	1.33	37.13	54.00	-16.87
2342.78	46.92	PK	252	1.3	V	-13.19	33.73	74.00	-40.27
2342.78	38.61	Ave	252	1.3	V	-13.19	25.42	54.00	-28.58
2385.74	43.00	PK	100	1.6	Н	-13.14	29.86	74.00	-44.14
2385.74	36.23	Ave	100	1.6	Н	-13.14	23.09	54.00	-30.91
2483.81	43.98	PK	347	1.2	V	-13.08	30.90	74.00	-43.10
2483.81	37.45	Ave	347	1.2	V	-13.08	24.37	54.00	-29.63

Frequency Receiver Reading	Receiver		Turn	RX Antenna		Corrected Factor	Corrected Amplitude	Limit	Margin
	Detector	table Angle	Height	Polar					
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK Middle Channel								
199.38	23.97	QP	184	1.3	Н	11.13	35.10	43.50	-8.40
199.38	23.59	QP	52	1.7	V	11.13	34.72	43.50	-8.78
4882.00	49.50	PK	15	1.0	V	-0.62	48.88	74.00	-25.12
4882.00	43.08	Ave	15	1.0	V	-0.62	42.46	54.00	-11.54
7323.00	42.80	PK	239	1.3	Н	2.21	45.01	74.00	-28.99
7323.00	38.03	Ave	239	1.3	Н	2.21	40.24	54.00	-13.76
2314.34	45.32	PK	150	1.9	V	-13.19	32.13	74.00	-41.87
2314.34	39.07	Ave	150	1.9	V	-13.19	25.88	54.00	-28.12
2356.19	42.75	PK	60	1.6	Н	-13.14	29.61	74.00	-44.39
2356.19	37.07	Ave	60	1.6	Н	-13.14	23.93	54.00	-30.07
2498.08	44.83	PK	90	1.4	V	-13.08	31.75	74.00	-42.25
2498.08	36.64	Ave	90	1.4	V	-13.08	23.56	54.00	-30.44

Frequency Receiver Reading	Receiver		Turn	RX Antenna		Corrected	Corrected Amplitude	Limit	Margin
	Detector	table Angle	Height	Polar	Factor				
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK High Channel								
199.38	22.95	QP	149	1.9	Н	11.13	34.08	43.50	-9.42
199.38	19.44	QP	48	1.6	V	11.13	30.57	43.50	-12.93
4960.00	49.90	PK	120	1.1	V	-0.24	49.66	74.00	-24.34
4960.00	42.90	Ave	120	1.1	V	-0.24	42.66	54.00	-11.34
7440.00	38.94	PK	359	1.8	Н	2.84	41.78	74.00	-32.22
7440.00	37.71	Ave	359	1.8	Н	2.84	40.55	54.00	-13.45
2338.15	46.07	PK	204	1.9	V	-13.19	32.88	74.00	-41.12
2338.15	38.11	Ave	204	1.9	V	-13.19	24.92	54.00	-29.08
2362.09	43.80	PK	108	1.7	Н	-13.14	30.66	74.00	-43.34
2362.09	38.58	Ave	108	1.7	Н	-13.14	25.44	54.00	-28.56
2494.14	44.65	PK	334	1.3	V	-13.08	31.57	74.00	-42.43
2494.14	37.81	Ave	334	1.3	V	-13.08	24.73	54.00	-29.27

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported

Reference No.: WTS14S1220964-1E Page 20 of 51

8 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section

15.209(a) (see Section 15.205(c)).

Test Method: DA 00-705

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

8.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto
 Detector function = peak, Trace = max hold

Test plots

Reference No.: WTS14S1220964-1E Page 24 of 51

9 20 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Mode: Test in fixing operating frequency at low, Middle, high channel.

9.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

Modulation	Test Channel	Bandwidth(MHz)	
GFSK	Low	0.928	
GFSK	Middle	0.928	
GFSK	High	0.928	
Pi/4 DQPSK	Low	1.240	
Pi/4 DQPSK	Middle	1.258	
Pi/4 DQPSK	High	1.252	
8DPSK	Low	1.258	
8DPSK	Middle	1.258	
8DPSK	High	1.258	

Test plots
GFSK Low Channel

Reference No.: WTS14S1220964-1E Page 30 of 51

10 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz

band: 0.125 watts.

Test mode: Test in fixing frequency transmitting mode.

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

Modulation	Test Channel	Output Power (dBm)	Limit (dBm)
GFSK	Low	-2.06	30
GFSK	Middle	-0.80	30
GFSK	High	-0.21	30
Pi/4 DQPSK	Low	-2.24	30
Pi/4 DQPSK	Middle	-0.90	30
Pi/4 DQPSK	High	-0.45	30
8DPSK	Low	-1.91	30
8DPSK	Middle	-0.84	307
8DPSK	High	-0.28	30

Test plots
GFSK Low Channel

Reference No.: WTS14S1220964-1E Page 36 of 51

11 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

11.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 3.0MHz. Sweep = auto;
 Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

Modulation	Test Channel	Separation (MHz)	Result
GFSK	Low	1.000	PASS
GFSK	Middle	1.000	PASS
GFSK	High	1.000	PASS
Pi/4 DQPSK	Low	1.000	PASS
Pi/4 DQPSK	Middle	1.000	PASS
Pi/4 DQPSK	High	1.000	PASS
8DPSK	Low	1.000	PASS
8DPSK	Middle	1.000	PASS
8DPSK	High	1.000	PASS

Test plots
GFSK Low Channel

Reference No.: WTS14S1220964-1E Page 42 of 51

12 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

12.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.483GHz. Sweep=auto;

12.2 Test Result

Test Plot: 79 Channels in total

Reference No.: WTS14S1220964-1E Page 44 of 51

13 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided

that a minimum of 15 channels are used.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set spectrum analyzer span = 0. Centred on a hopping channel;
- 3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

13.2 Test Result

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)			
DH5	1600/79/6*0.4*79*(MkrDelta)/1000			
DH3	1600/79/4*0.4*79*(MkrDelta)/1000			
DH1	1600/79/2*0.4*79*(MkrDelta)/1000			
Remark: Mkr Delta is once pulse time.				

Modulation	Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
GFSK	DH5	Low	2.880	0.307	0.4
		middle	2.880	0.307	0.4
		High	2.880	0.307	0.4
Pi/4DQPSK	DH5	Low	2.888	0.308	0.4
		middle	2.888	0.308	0.4
		High	2.888	0.308	0.4
8DPSK	DH5	Low	2.888	0.308	0.4
		middle	2.888	0.308	0.4
		High	2.888	0.308	0.4

Remark: only the worst data were recorded.

Test Plots
GFSK DH5 Low Channel

GFSK DH5 Middle Channel

GFSK DH5 High Channel

Pi/4DQPSK DH5 Middle Channel

Pi/4DQPSK DH5 High Channel

8DPSK DH5 Low Channel

8DPSK DH5 Middle Channel

8DPSK DH5 High Channel

14 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a integrated antenna, fulfil the requirement of this section.

Reference No.: WTS14S1220964-1E Page 51 of 51

15 RF Exposure

Remark: refer to SAR test report: STR14128112H.

====End of Report=====