Teoremas de Ceva, Pappus e Désargues

Aula 10 - 27/03/2019

Sumário

- Teorema de Ceva
- ► Teorema da divisão harmónica de Pappus
- ► Teorema de Désargues

Teorema de Ceva

Teorema. Sejam A, B, C três pontos não colineares num espaço afim S e sejam $X \in BC$, $Y \in AC$ e $Z \in AB$. Sejam $\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2$ números reais tais que

$$BX:XC=\alpha_1:\alpha_2,\ CY:YA=\beta_1:\beta_2,\ AZ:ZB=\gamma_1:\gamma_2.$$

Então as condições seguintes são equivalentes

- ► As rectas AX, BY, CZ são concorrentes ou são paralelas

Demonstração do teorema de Ceva (I)

Tomemos o ponto C para origem de S. Sejam

$$\vec{a} = \overrightarrow{CA}, \ \vec{b} = \overrightarrow{CB}, \ \vec{x} = \overrightarrow{CX}, \ \vec{y} = \overrightarrow{CY}.$$

Então, como $BX:XC=\alpha_1:\alpha_2$ e $CY:YA=\beta_1:\beta_2$ temos que

$$CX : CB = \alpha_2 : \alpha_1 + \alpha_2 \ e \ CY : CA = \beta_1 : \beta_1 + \beta_2.$$

Portanto

$$\vec{x} = \frac{\alpha_2}{\alpha_1 + \alpha_2} \vec{b}$$
 e $\vec{y} = \frac{\beta_1}{\beta_1 + \beta_2} \vec{a}$.

As rectas AX e BY são concorrentes num ponto P se e só se existirem $\lambda,\ \mu\in\mathbb{R}$ tais que

$$\vec{p} = \lambda \vec{x} + (1 - \lambda)\vec{a} = \mu \vec{y} + (1 - \mu)\vec{b},$$

sendo $AP: PX = 1: 1 - \lambda$ e $BP: PY = 1: 1 - \mu$. Assim, temos

$$(1-\lambda)\vec{a} + \frac{\lambda\alpha_2}{\alpha_1 + \alpha_2}\vec{b} = \frac{\mu\beta_1}{\beta_1 + \beta_2}\vec{a} + (1-\mu)\vec{b}.$$

Como A,B,C são não colineares, temos que os vectores \vec{a} e \vec{b} são linearmente independentes, logo

$$\begin{cases} \lambda + \frac{\beta_1}{\beta_1 + \beta_2} \mu = 1 \\ \frac{\alpha_2}{\alpha_1 + \alpha_2} \lambda + \mu = 1 \\ \end{pmatrix}$$

Demonstração do teorema de Ceva (II)

Este sistema tem uma única solução se e só se

$$\left|\begin{array}{cc} 1 & \frac{\beta_1}{\beta_1+\beta_2} \\ \frac{\alpha_2}{\alpha_1+\alpha_2} & 1 \end{array}\right| = \frac{\alpha_1\beta_1 + \alpha_1\beta_2 + \alpha_2\beta_2}{(\alpha_1 + \alpha_2)(\beta_1 + \beta_2)} \neq 0.$$

Pela regra de Cramer obtemos

$$\lambda = \frac{\beta_2(\alpha_1 + \alpha_2)}{\alpha_1\beta_1 + \alpha_1\beta_2 + \alpha_2\beta_2} \ \ \mathsf{e} \ \ \mu = \frac{\alpha_1(\beta_1 + \beta_2)}{\alpha_1\beta_1 + \alpha_1\beta_2 + \alpha_2\beta_2}.$$

Portanto

$$\vec{p} = \frac{\alpha_1 \beta_1}{\alpha_1 \beta_1 + \alpha_1 \beta_2 + \alpha_2 \beta_2} \vec{a} + \frac{\alpha_2 \beta_2}{\alpha_1 \beta_1 + \alpha_1 \beta_2 + \alpha_2 \beta_2} \vec{b}.$$

Como tomámos o ponto C para origem, temos que qualquer ponto na recta CP tem como vector posição um múltiplo escalar de \vec{p} . Por outro lado, qualquer ponto na recta AB tem como vector posição uma combinação afim de \vec{a} e \vec{b} .

Logo a recta CP intersecta a recta AB num ponto Z tal que

$$\vec{z} = \frac{\alpha_1 \beta_1}{\alpha_1 \beta_1 + \alpha_2 \beta_2} \vec{b} + \frac{\alpha_2 \beta_2}{\alpha_1 \beta_1 + \alpha_2 \beta_2} \vec{b}.$$

Como $\alpha_1\beta_1 \overrightarrow{AZ} = \alpha_2\beta_2 \overrightarrow{ZB}$, temos que $\alpha_2\beta_2 : \alpha_1\beta_1 = AZ : ZB = \gamma_1 : \gamma_2$ logo

$$\alpha_1\beta_1\gamma_1=\alpha_2\beta_2\gamma_2.$$

Demonstração do teorema de Ceva (III)

Temos que

$$\alpha_1\beta_1 + \alpha_1\beta_2 + \alpha_2\beta_2 = 0,$$

se e só se as rectas AX e BY são paralelas e têm ambas vector director

$$\overrightarrow{AX} = \vec{x} - \vec{a} = \frac{\alpha_2}{\alpha_1 + \alpha_2} \vec{b} - \frac{\alpha_1 + \alpha_2}{\alpha_1 + \alpha_2} \vec{a} = -\frac{\alpha_1 \beta_1}{\alpha_1 \beta_1} \vec{a} - \frac{\alpha_2 \beta_2}{\alpha_1 \beta_1} \vec{b}.$$

A segunda identidade obtém-se multiplicando e dividindo a expressão por $\alpha_1\beta_1/(\alpha_1+\alpha_2)$ e usando a igualdade $\alpha_1\beta_1=-\alpha_1\beta_2-\alpha_2\beta_2$.

Com um raciocínio análogo ao caso anterior, concluímos que a única recta que passa por C e é paralela a \overrightarrow{AX} intersecta a recta AB no ponto Z tal que

$$\vec{z} = \frac{\alpha_1 \beta_1}{\alpha_1 \beta_1 + \alpha_2 \beta_2} \vec{b} + \frac{\alpha_2 \beta_2}{\alpha_1 \beta_1 + \alpha_2 \beta_2} \vec{b}.$$

Temos assim que $AZ:ZB=\alpha_2\beta_2:\alpha_1\beta_1=\gamma_1:\gamma_2,$ logo

$$\alpha_1\beta_1\gamma_1=\alpha_2\beta_2\gamma_2.$$

Nota. A partir da expressão de \vec{p} e \vec{z} como combinação afim de \vec{a} e \vec{b} , podemos concluir que num triângulo [ABC] com $BX: XA = \alpha_1: \alpha_2$, $CY: YA = \beta_1: \beta_2$ e $AX \cap BY = P$, então a recta CP intersecta a recta AB num ponto Z tal que

$$CP: PZ = \alpha_1\beta_1 + \alpha_2\beta_2: \alpha_1\beta_2$$

Teorema da divisão harmónica (Pappus)

Sejam A, B dois pontos. Dizemos que os pontos $X, Y \in AB$ dividem harmonicamente os pontos A e B se as razões AX : XB e AY : YB só diferem no sinal, ou seja, se

$$AX : XB = \alpha : \beta \in AY : YB = -\alpha : \beta.$$

O conjunto $\{A, B, X, Y\}$ diz-se conjunto harmónico e dada uma régua na recta AB, tem-se que

$$(a-x)(y-b)=(x-b)(y-a).$$

Teorema. (Pappus) Sejam A, B, C, D quatro pontos complanares. Suponhamos que $AB \cap CD = E$ e que $BD \cap AC = F$. Sejam P e Q, tais que $AD \cap BC = P$ e $AD \cap EF = Q$. Então, os pontos P e Q dividem A e D harmonicamente.

Nota. Este teorema é notável porque define uma noção de medida em termos de relações de incidência entre pontos e rectas. Dados três dos pontos A, P, D, Q, podemos construir o quarto ponto de modo a ter um conjunto harmónico apenas com uma régua, sem ser necessário medir distâncias.

Demonstração do teorema da divisão harmónica

Sejam $AB:BE=1:\lambda$ e $AC:CF=1:\mu$. Então, como $AD\cap EF=Q$ e $CE\cap BF=D$, pela nota à demonstração do teorema de Ceva aplicada ao triângulo [AEF], temos que

$$AD:DQ=\lambda+\mu:\lambda\mu,\ \ \text{logo}\ \ AQ:QD=\lambda+\mu+\lambda\mu:-\lambda\mu.$$

Aplicando a mesma nota ao triângulo [ABC], temos

$$AE : EB = \lambda + 1 : -\lambda$$
 e $AF : FC = \mu + 1 : -\mu$.

Logo, observando que $P \in BC$, obtemos

$$AD: DP = -(1+\lambda)\mu - (1+\mu)\lambda: \lambda\mu = -\lambda - \mu - 2\lambda\mu: \lambda\mu.$$

Logo

$$AP : PD = \lambda + \mu + \lambda \mu : \lambda \mu.$$

Portanto $P \in Q$ dividem harmonicamente $A \in D$.

Triângulos em perspectiva

Sejam [A,B,C] e [A'B'C'] triângulos, não necessariamente complanares. Dizemos que $\triangle(ABC)$ e $\triangle(A'B'C')$ estão em perspectiva segundo o ponto O se as rectas AA', BB', CC' são concorrentes em O.

Suponhamos que

$$BC \cap B'C' = P$$
, $AC \cap A'C' = Q$, $AB \cap A'B' = R$.

Dizemos que $\triangle(ABC)$ e $\triangle(A'B'C')$ estão em perspectiva segundo a recta r se os pontos P, Q, R pertencem a r.

Teorema de Désargues

O teorema de Désargues estabelece que se dois triângulos estão em perspectiva segundo um ponto então também estão em perspectiva segundo uma recta. O recíproco deste teorema também é verdadeiro.

Teorema. (Désargues) Se dois triângulos [ABC] e [A'B'C'] estão em perspectiva segundo um ponto e os lados correspondentes se intersectam, então os três pontos de intersecção dos lados correspondentes são colineares.

Dem. Seja $O = AA' \cap BB' \cap CC'$ e sejam

$$BC \cap B'C' = P$$
, $AC \cap A'C' = Q$, $AB \cap A'B' = R$.

Consideremos o ponto O como origem e denotemos

$$\vec{a} = \overrightarrow{OA}, \ \vec{a'} = \overrightarrow{OA'}, \ \vec{b} = \overrightarrow{OB}, \ \vec{b'} = \overrightarrow{OB'}, \ \vec{c} = \overrightarrow{OC}, \ \vec{c'} = \overrightarrow{OC'}$$
$$\vec{p} = \overrightarrow{OP}, \ \vec{Q} = \overrightarrow{OQ}, \ \vec{r} = \overrightarrow{OR}.$$

Demonstração do teorema de Désargues (continuação)

Como OAA', OBB' e OCC' são colineares, temos

$$\vec{a'} = \lambda \vec{a}, \ \vec{b'} = \mu \vec{b}, \ \vec{c'} = \nu \vec{c}.$$

Como $R \in AB \cap A'B'$, existem e são únicos $\xi, \eta \in \mathbb{R}$ tais que

$$\vec{r} = \xi \vec{a} + (1 - \xi) \vec{b} = \eta \vec{a'} + (1 - \eta) \vec{b'} = \xi \lambda \vec{a} + (1 - \xi) \mu \vec{b}.$$

Como \vec{a} e \vec{b} são linearmente independentes, temos que $-\xi + \mu \eta = \mu - 1$ e $\xi - \lambda \eta = 0$, o que implica

$$\xi = -\frac{\lambda(\mu - 1)}{\lambda - \mu}.$$

Logo

$$\vec{r} = \frac{\mu(\lambda - 1)}{\lambda - \mu} \vec{b} - \frac{\lambda(\mu - 1)}{\lambda - \mu} \vec{a}.$$

Analogamente se provava que

$$\vec{p} = \frac{\nu(\mu-1)}{\mu-\nu}\vec{c} - \frac{\mu(\nu-1)}{\mu-\nu}\vec{b} \ \ \mathbf{e} \ \ \vec{q} = \frac{\lambda(\nu-1)}{\nu-\lambda}\vec{a} - \frac{\nu(\lambda-1)}{\nu-\lambda}\vec{c}.$$

Assim, como

$$(\lambda - \mu)(\nu - 1)\vec{r} + (\mu - \nu)(\lambda - 1)\vec{p} + (\nu - \lambda)(\mu - 1)\vec{q} = \vec{0}$$

e

$$(\lambda - \mu)(\nu - 1) + (\mu - \nu)(\lambda - 1) + (\nu - \lambda)(\mu - 1) = 0$$