Házi feladat

Feladatválasztás/specifikáció

Programozás alapjai 2.

Pálinkás Lőrinc Mihály - XBOSMF

Tartalom

1	1. Feladat	3
	Digitális áramkör3	3
2	2. Feladatspecifikáció	4
	Feladat általános leírása	4
	Megvalósított áramköri elemek	Ý
	Bemenet formátuma	4
	Kimenet opciók5	5

1. Feladat

Digitális áramkör

Készítsen egyszerű objektummodellt digitális áramkör szimulálására! A modell minimálisan tartalmazza a következő elemeket:

- NOR kapu
- vezérelhető forrás
- összekötő vezeték
- csomópont

A modell felhasználásával szimulálja egy olyan 5 bemenetű kombinációs hálózat működését, amely akkor ad a kimenetén hamis értéket, ha bementén előálló kombináció 5!

Demonstrálja a működést külön modulként fordított tesztprogrammal! A megoldáshoz ne használjon STL tárolót!

2. Feladatspecifikáció

Feladat általános leírása

A program lehetőséget ad digitális áramkörök szimulálására. A felhasználó áramköröket képes betölteni szöveges file-okból, beállítani a bemeneti jelkombinációt és a kapcsolók állapotát és ez alapján kiolvasni a kimeneti jeleket.

Megvalósított áramköri elemek

A következő elemeket képes szimulálni az áramkör:

- Forrás: állítható LOW és HIGH kimeneti jelekkel, kiolvasható az értéke
- Vezeték: két részt köt össze az áramkörben
- Csomópont: 1 bemeneti jelet több kimeneti irányba tud továbbítani
- Kapu: Több bemenetből képes pontosan 1 kimenetet produkálni. Megvalósított kapuk:
 - o AND
 - o OR
 - o XOR
 - o NOT
 - o NAND
 - o NOR
 - O XNOR
- Lámpa: tárolja a kapott jelet, kiolvasható az értéke
- Kapcsoló: továbbítja a jelet, amennyiben zárt, egyébként LOW jelszintet ad ki

A bonyolultabb elemeket (pl. funkcionális elemek) egyelőre nem implementáljuk, mert könnyen felépíthető ezekből szimuláció során, de ha marad idő, akkor ezeket is megvalósíthatjuk.

Bemenet formátuma

Az áramkörök felkonfigurálása szöveges file alapján történik. Ebben a felhasználó felsorolja a komponenseket, megadva, hogy hogyan kapcsolódnak. A kapcsolódás megadásához meg kell adni, hogy az adott lába az elemnek melyik csompópontra kapcsolódik. A csomópontokat számok jelölik megadáskor, azonos szám azonos csomópontot jelent. Tehát a konfigurációs file körülbelül így néz ki:

test.txt

SOURCE: (1) (2) (3)

AND: (1,2,4)[(...,...) ...] <- ha több van

OR: (2,3,5) ...

XNOR: (4,5,6) ...

LAMP: (6)

Például erről az ábráról azt tudjuk leolvasni, hogy 3db forrás van jelen, ezek az 1-es, 2-es és 3-as csomópontokra küldik a jeleiket. Emellett van az 1 és 2-es csomópontra kapcsolódó ÉS kapu, mely a 4-es csomópontra küldi a jelét. Hasonlóan kell értelmezni a többit. Ez alapján az alábbi digitális áramkör szimulálható:

Fontos megjegyzés: A szimuláció során az összekötő vezetékeket is csomópontnak tekintünk, így tudjuk könnyen megadni formátumosan a kapcsolódásokat.

A példa azt is mutatja hogy milyen egy egyszerű kapu megadásának például általános formátuma:

GATE_NAME: (IN1, IN2, OUT1) ...

Kimenet opciók

A felhasználó képes lekérdezni több információt az áramkörből:

- A lámpák státusza: minden lámpának ki tudjuk olvasni az állapotát, hogy világít-e vagy nem.
- A források státusza: minden forrásnak meg tudjuk adni és ki tudjuk olvasni a jelszintjét.
- A kapcsolók státusza: minden kapcsolónak meg tudjuk adni és ki tudjuk olvasni, hogy zárva van-e vagy sem.

Az áramkör kimenetének megadható, hogy melyik file-ba irányítjuk át a szimuláció kimenetét.