

Кольца Ньютона

Хомутов Андрей, Б06-903 $\Phi {\rm FM}\Phi,\,2021$

Цели работы

Познакомиться с явлением интерференции в тонких плёнках (полосы равной толщины) на примере колец Ньютона и с методикой интерференционных измерений кривизны стеклянной поверхности.

1 Теоретическая часть

Рис. 1: Ход лучей в линзе

Этот классический опыт используется для определения радиуса кривизны сферических поверхностей линз. В этом опыте наблюдается интерференция волн, отражённых от границ тонкой воздушной прослойки, образованной сферической поверхностью линзы и плоской стеклянной пластиной. При нормальном падении света (рис. 1) интерференционные полосы локализованы на сферической поверхности и являются полосами равной толщины.

Геометрическая разность хода между интерферирующими лучами равна удвоенной толщине воздушного зазора 2d в данном месте. Для точки на сферической поверхности, находящейся на расстоянии r от оси системы, имеем

$$r^2 = R^2 - (R - d)^2 = 2Rd - d^2$$
, где R — радиус кривизны сферической поверхности.

При $R\gg d$ получим $d=r^2/2R$. С учётом изменения фазы на π при отражении волны от оптически более плотной среды (на границе воздух-стекло) получим оптическую разность хода интерферирующих лучей:

$$\Delta = \frac{\lambda}{2} + 2d = \frac{r^2}{R} + \frac{\lambda}{2} \tag{1}$$

Из условия интерференционного минимума $\Delta=\frac{(2m+1)\lambda}{2},\ m=0,1,2..$ получим радиусы темных колец r_m :

$$r_m = \sqrt{m\lambda R}. (2)$$

Из аналогичного условия максимума $\Delta=m\lambda$ радиусы светлых r_m'

$$r_m' = \sqrt{\frac{(2m-1)\lambda R}{2}}. (3)$$

2 Практическая часть

Были измерены координаты колец слева и справа от центра. Погрешность измерения $\delta_x = 2$ ед. измерения шкалы (по 1 на погрешность шкалы и "визуальную" ошибку определения положения кольца). Результаты с расчетом квадрата радиуса представлены в таблице 1.

Из формул 2 и 3 следует что по наклону зависимости квдрата радиуса колец от их номера (рис. 3) можно определить радиус кривизны линзы $R=\frac{k}{\lambda}$. Учитывая $\lambda_g=546$ нм, получаем $R=1.45\pm0.14$ см.

Рис. 2: Экспериментальная установка

Таблица 1: Радиусы колец Ньютона

	Темные кольца				Светлые кольца			
No	х1, мм	х2, мм	$r^2 \cdot 10^3$, mm ²	$\delta_{r^2} \cdot 10^3$, mm ²	x1	x2	$r'^2 \cdot 10^3$, mm ²	$\delta_{r'^2} \cdot 10^3$, mm ²
0	0,36	0,445	1,81	0,04	-	-	-	-
1	0,318	0,496	7,92	0,16	0,342	0,473	4,29	0,09
2	0,281	0,533	15,9	0,3	0,3	0,516	11,66	0,25
3	0,248	0,561	24,5	0,6	0,266	0,547	19,7	0,4
4	0,227	0,587	32,4	0,8	0,239	0,573	27,9	0,7
5	0,206	0,606	40,0	1,0	0,217	0,597	36,1	0,9
6	0,187	0,625	48,0	1,3	0,201	0,614	42,6	1,1
7	0,168	0,641	55,9	1,7	0,178	0,633	51,8	1,5
8	0,15	0,656	64,0	2,1	0,16	0,649	59,8	1,9
9	0,136	0,674	72,4	2,6	0,143	0,666	68,4	2,3
10	0,123	0,688	80	3	0,129	0,68	75,9	2,8

Освещая установку зеленым и желтым светом ($\lambda_y=578$ нм) можно было наблюдать периодическое ухуджешие видимости интерференционный картины (биения). Между двумя соседними центрами четких систем уложилось $\Delta m=19$ колец. Таким образом, разность длин волн можно расчитать как:

$$(\Delta m + 1)\lambda_g = \Delta m \lambda_y => \Delta \lambda = \frac{\lambda_g}{\Delta m} \simeq 29 \text{ HM}.$$

Рис. 3: Зависимоть квадрата радиуса от номера кольца

3 Выводы

- 1. Была получена интерференционная картина колец Ньютона. По зависимости радиуса колец от их номера был вычислен радиус кривизны линзы из установки
- 2. Были получены биения. По периоду изменения видности была оценена разность длин волн, получившееся равно 29 нм. Одидаемая 32 нм.