Class07: Machine Learning 1

Jiachen Fan (A17662703)

Clustering

We will start with k-means clustering. To get started let's make some data up:

```
hist(rnorm(10000, mean = 3))
```

Histogram of rnorm(10000, mean = 3)


```
tmp <- c(rnorm(30,3),rnorm(30, -3))
x <- cbind(x=tmp, y=rev(tmp))
plot(x)</pre>
```


The main function in R for K-means clustering is called 'kmeans()'.

```
k <- kmeans(x, centers=2, nstart=20)
k</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

```
x y
1 3.045252 -3.196866
2 -3.196866 3.045252
```

Clustering vector:

Within cluster sum of squares by cluster: [1] 56.43914 56.43914

(between_SS / total_SS = 91.2 %)

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"
 - Q1. How many points are in each cluster?

k\$size

[1] 30 30

Q2. The clustering result i.e. membership vector?

k\$cluster

Q3. Cluster centers

k\$centers

x y 1 3.045252 -3.196866 2 -3.196866 3.045252

Q4. Make a plot of our data colored by clustering results with optionally the cluster centers shown.

Q5. Run kmeans again but cluster into 3 groups and plot the results like we did above.

```
k3 <- kmeans(x, centers=3, nstart=20)
plot(x, col=k3$cluster, pch=16)
points(k3$centers, col='blue',pch=15, cex=2)</pre>
```


Hierarchical Clustering

It has an advantage in that it can reveal the structure in your data rather than imposing a structure as k-means will.

The main function in 'base' R is called 'hclust()'

It requires a distance matrix as input, not the raw data itself.

```
hc <- hclust(dist(x))
hc</pre>
```

Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

```
plot(hc)
abline(h=8,col='red')
```

Cluster Dendrogram

dist(x) hclust (*, "complete")

The function to get our clusters from a hclust object is called 'cutree()'

```
grps <- cutree(hc, h=8)
grps</pre>
```

Q. Plot our helust results in terms of our data colored by cluster membership.

```
plot(x, col=grps, pch =15)
```


single-link: smallest omplete-link: largest average-link: average

Principal Component Analysis (PCA)

We will work on data from the UK about the strange stuff folks there eat. It has 17 different foods for 4 countries.

```
url <- 'https://tinyurl.com/UK-foods'
X<- read.csv(url)
X</pre>
```

	Х	England	Wales	${\tt Scotland}$	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	Fresh_potatoes	720	874	566	1033
8	Fresh_Veg	253	265	171	143
9	Other_Veg	488	570	418	355

10	Processed_potatoes	198	203	220	187
11	Processed_Veg	360	365	337	334
12	Fresh_fruit	1102	1137	957	674
13	Cereals	1472	1582	1462	1494
14	Beverages	57	73	53	47
15	${ t Soft_drinks}$	1374	1256	1572	1506
16	Alcoholic_drinks	375	475	458	135
17	Confectionery	54	64	62	41

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

```
dim(X) # 'dim()'
```

[1] 17 5

```
# Note how the minus indexing works
rownames(X) <- X[,1]
X <- X[,-1]
head(X)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

dim(X)

[1] 17 4

There is another way to do it.

```
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and why? Is one approach more robust than another under certain circumstances?

I love the second one since it is concise and make no change to the raw data. If I repeat the first one, it will drop one more column.

Q3: Changing what optional argument in the above barplot() function results in the following plot?

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(X)))
```



```
barplot(as.matrix(x), beside=FALSE, col=rainbow(nrow(X)))
```


Q5: Generating all pairwise plots may help somewhat. Can you make sense of the following code and resulting figure? What does it mean if a given point lies on the diagonal for a given plot?

It plots food consumption of every country versus other countries. So it has 12 figures in total.

```
pairs(x, col=rainbow(10), pch=16)
```


Q6. What is the main differences between N. Ireland and the other countries of the UK in terms of this data-set?

N. Ireland eating habit are quite different from other countries because there are some points out of the line. We can see they eat more 'blue' representing food compared to others.

PCA to the rescue

The main function for PCA is called 'prcomp()'

It wants the transpose (with the 't()') of our food data for analysis

```
# Use the prcomp() PCA function
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	3.176e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

One of the main results that folks look for is called the 'score plot' a.k.a. PC plot, PC1 vs PC2 plot...

Q7. Complete the code below to generate a plot of PC1 vs PC2. The second line adds text labels over the data points.

```
# Plot PC1 vs PC2
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x))
```


Q8. Customize your plot so that the colors of the country names match the colors in our UK and Ireland map and table at start of this document.

```
# Plot PC1 vs PC2
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x), col = rainbow(nrow(x)))
```



```
v <- round( pca$sdev^2/sum(pca$sdev^2) * 100 )
v</pre>
[1] 67 29 4 0
barplot(v, xlab="Principal Component", ylab="Percent Variation")
```


Principal Component

Digging deeper (variable loadings)

Let's focus on PC1 as it accounts for > 90% of variance pca\$rotation

	PC1	PC2	PC3	PC4
Cheese	-0.056955380	0.016012850	0.02394295	-0.694538519
Carcass_meat	0.047927628	0.013915823	0.06367111	0.489884628
Other_meat	-0.258916658	-0.015331138	-0.55384854	0.279023718
Fish	-0.084414983	-0.050754947	0.03906481	-0.008483145
Fats_and_oils	-0.005193623	-0.095388656	-0.12522257	0.076097502
Sugars	-0.037620983	-0.043021699	-0.03605745	0.034101334
Fresh_potatoes	0.401402060	-0.715017078	-0.20668248	-0.090972715
Fresh_Veg	-0.151849942	-0.144900268	0.21382237	-0.039901917
Other_Veg	-0.243593729	-0.225450923	-0.05332841	0.016719075
Processed_potatoes	-0.026886233	0.042850761	-0.07364902	0.030125166
Processed_Veg	-0.036488269	-0.045451802	0.05289191	-0.013969507
Fresh_fruit	-0.632640898	-0.177740743	0.40012865	0.184072217
Cereals	-0.047702858	-0.212599678	-0.35884921	0.191926714
Beverages	-0.026187756	-0.030560542	-0.04135860	0.004831876

```
Soft_drinks 0.232244140 0.555124311 -0.16942648 0.103508492
Alcoholic_drinks -0.463968168 0.113536523 -0.49858320 -0.316290619
Confectionery -0.029650201 0.005949921 -0.05232164 0.001847469
```

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
      0.4
      0.2
      0.0
    -0.2
    -0.4
    -0.6
                                                                                                    Beverages
                                              Fats_and_oils
                                                                                              Cereals
                                                         Fresh_potatoes
                                                               Fresh_Veg
                                                                      Other_Veg
                                                                            Processed_potatoes
                                                                                  Processed_Veg
```

Q9: Generate a similar 'loadings plot' for PC2. What two food groups feature prominantely and what does PC2 maniply tell us about?

Fresh potatoes and Soft drinks are the two groups contribute most to the variance in PC2.

PC2 mainly tells us the variance between different countries are from original variables: Fresh_potatoes and Soft_drinks. These differences contribute to the variance in countries.

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,2], las=2 )
```


Using ggplot for these figures

```
library(ggplot2)

df <- as.data.frame(pca$x)
  df_lab <- tibble::rownames_to_column(df, "Country")

# Our first basic plot
  ggplot(df_lab) +
   aes(PC1, PC2, col=Country) +
   geom_point()</pre>
```



```
ggplot(df_lab) +
  aes(PC1, PC2, col=Country, label=Country) +
  geom_hline(yintercept = 0, col="gray") +
  geom_vline(xintercept = 0, col="gray") +
  geom_point(show.legend = FALSE) +
  geom_label(hjust=1, nudge_x = -10, show.legend = FALSE) +
  expand_limits(x = c(-300,500)) +
  xlab("PC1 (67.4%)") +
  ylab("PC2 (28%)") +
  theme_bw()
```



```
ld <- as.data.frame(pca$rotation)
ld_lab <- tibble::rownames_to_column(ld, "Food")

ggplot(ld_lab) +
  aes(PC1, Food) +
  geom_col()</pre>
```



```
ggplot(ld_lab) +
  aes(PC1, reorder(Food, PC1), bg=PC1) +
  geom_col() +
  xlab("PC1 Loadings/Contributions") +
  ylab("Food Group") +
  scale_fill_gradient2(low="purple", mid="gray", high="darkgreen", guide=NULL) +
  theme_bw()
```


Biplots

biplot(pca)

2. PCA of RNA-seq data

```
url2 <- "https://tinyurl.com/expression-CSV"
rna.data <- read.csv(url2, row.names=1)
head(rna.data)</pre>
```

```
wt1 wt2
                wt3
                     wt4 wt5 ko1 ko2 ko3 ko4 ko5
gene1 439 458
                408
                     429 420
                              90
                                  88
                                      86
                                          90
gene2 219 200
                204
                     210 187 427 423 434 433 426
gene3 1006 989 1030 1017 973 252 237 238 226 210
gene4
      783 792
                829
                     856 760 849 856 835 885 894
gene5
       181 249
                204
                     244 225 277 305 272 270 279
      460 502
                     491 493 612 594 577 618 638
gene6
                491
```

Q10: How many genes and samples are in this data set?

```
dim(rna.data)
```

[1] 100 10

There are 100 genes and 10 samples.