Skriftlig eksamen på Økonomistudiet Vinteren 2017 - 2018

MATEMATIK A

Mandag den 19. februar 2018

2 timers skriftlig prøve uden hjælpemidler

Dette sæt omfatter 2 sider med 3 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet for at blive registeret som syg.

I den forbindelse skal du udfylde en blanket.

Derefter afleverer du en blank besvarelse i systemet og forlader eksamen.

Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitet. Økonomisk Institut

1. årsprøve 2018 V-1A rx

Skriftlig eksamen i Matematik A Mandag den 19. februar 2018

2 sider med 3 opgaver.

Løsningstid: 2 timer.

Ingen hjælpemidler må medbringes ved eksamen.

Opgave 1. Middelværdisætningen.

Lad $a, b \in \mathbf{R}$, så a < b. Lad endvidere $f : [a, b] \to \mathbf{R}$ være en kontinuert funktion, og antag, at f' eksisterer for ethvert $x \in]a, b[$.

(1) Vis, **middelværdisætningen** for funktionen f. Man skal således vise, at der findes et tal $\xi \in]a,b[$, så

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Vink: Benyt **Rolles sætning**: Lad $a, b \in \mathbf{R}$, så a < b. Lad endvidere $f : [a, b] \to \mathbf{R}$ være en kontinuert funktion, og antag, at f' eksisterer for ethvert $x \in]a, b[$. Hvis f(a) = f(b) = 0, gælder det, at der findes et $tal \ \xi \in]a, b[$, så $f'(\xi) = 0$.

- (2) Afgør, om Rolles sætning og middelværdisætningen er ensbetydende.
- (3) Lad $I \subseteq \mathbf{R}$ være et åbent interval, og lad $f: I \to \mathbf{R}$ være en differentiabel funktion.

Vis, at funktionen f er voksende overalt på intervallet I, dersom betingelsen

$$\forall x \in I : f'(x) > 0$$

er opfyldt

Vink: Lad $x_1, x_2 \in I$ være vilkårligt valgt, og antag, at $x_1 < x_2$. Betragt kvotienten

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1},$$

og benyt middelværdisætningen på passende vis.

(4) Vis, at funktionen f med forskriften

$$f(x) = e^x + e^{2x} + e^{3x}, \quad \forall x \in \mathbf{R}$$

er voksende overalt på ${\bf R}$.

Opgave 2. Vi betragter den funktion $f: \mathbb{R}^2 \to \mathbb{R}$, som er defineret ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^2 y^2 - x + y^3.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

i et vilkårligt punkt $(x, y) \in \mathbf{R}^2$.

- (2) Bestem Hessematricen f''(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.
- (3) Bestem værdimængden for funktionen f.

Betragt ligningen f(x, y) = 0.

(4) Vi bemærker, at punktet (0,0) er en løsning til ovenstående ligning. Vis, at denne ligning definerer den variable x som en implicit given funktion x = x(y) af den variable y i en omegn af punktet y = 0, og bestem differentialkvotienten x'(0).

Opgave 3. For ethvert $x \in \mathbf{R}$ betragter vi den uendelige række

$$\sum_{n=0}^{\infty} \left(\frac{1}{7 + \cos x}\right)^n.$$

- (1) Vis, at den uendelige række (§) er konvergent for ethvert $x \in \mathbf{R}$.
- (2) Bestem en forskrift for sumfunktionen

$$f(x) = \sum_{n=0}^{\infty} \left(\frac{1}{7 + \cos x}\right)^n, \quad \forall x \in \mathbf{R}.$$

(3) Udregn det ubestemte integral

$$\int f(x)\sin x\,dx.$$