^nsys

Ansys Fluent Simulation Report

Table of Contents

- 1 Geometry and Mesh
 - 1.1 Mesh Size
 - 1.2 Mesh Quality
- 1.3 Orthogonal Quality
- 2 Simulation Setup
 - 2.1 Physics
 - 2.1.1 Models
 - 2.1.2 Material Properties
 - 2.1.3 Cell Zone Conditions
 - 2.1.4 Boundary Conditions
 - 2.1.5 Reference Values
 - 2.2 Solver Settings
- 3 Run Information
- **4 Solution Status**
- **5 Report Definitions**
- 6 Plots
- 7 Mesh
- **8 Contours**

Geometry and Mesh

Mesh Size

Cells	Faces	Nodes
192883	878485	518748

Mesh Quality

Name	Туре	Min Orthogonal Quality	Max Aspect Ratio
component1-fluid	Poly Cell	0.18854607	1076.6765

Orthogonal Quality

Simulation Setup

Physics

Models

Model	Settings
Space	3D
Time	Steady
Viscous	SST k-omega turbulence model
Heat Transfer	Enabled

Material Properties

- Fluid	
— air	
Density	ideal gas
Cp (Specific Heat)	1006.43 J/(kg K)
Thermal Conductivity	0.0242 W/(m K)
Viscosity	sutherland
Molecular Weight	28.966 kg/kmol

- Solid	
aluminum	
Density	2719 kg/m^3
Cp (Specific Heat)	871 J/(kg K)
Thermal Conductivity	202.4 W/(m K)

Cell Zone Conditions

- Fluid	
component1-fluid	
Material Name	air
Specify source terms?	no
Specify fixed values?	
Frame Motion?	no
Laminar zone?	no
Porous zone?	no
3D Fan Zone?	no

Boundary Conditions

- Inlet	
farfield	
Gauge Pressure [Pa]	73048
Mach Number	0.7
Temperature [K]	283.24
Coordinate System	Cartesian (X, Y, Z)
Component of Flow Direction (x,y,z)	(cos(attackang), sin(attackang), 0)
Turbulent Specification Method	Intensity and Viscosity Ratio
Turbulent Intensity [%]	1
Turbulent Viscosity Ratio	1
Symmetry	
sym-1	symmetry
sym-2	symmetry
− Wall	
<pre>- airfoil_lower</pre>	
Wall Thickness [m]	0
Heat Generation Rate [W/m^3]	0
Material Name	aluminum
Thermal BC Type	Heat Flux
Heat Flux [W/m^2]	0
Enable shell conduction?	no
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Surface Roughness	0
Wall Roughness Height [m]	0
Wall Roughness Constant	0.5
Convective Augmentation Factor	1

airfoil_upper	
Wall Thickness [m]	0
Heat Generation Rate [W/m^3]	0
Material Name	aluminum
Thermal BC Type	Heat Flux
Heat Flux [W/m^2]	0
Enable shell conduction?	no
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Surface Roughness	0
Wall Roughness Height [m]	0
Wall Roughness Constant	0.5
Convective Augmentation Factor	1
airfoil_te	
Wall Thickness [m]	0
Heat Generation Rate [W/m^3]	0
Material Name	aluminum
Thermal BC Type	Heat Flux
Heat Flux [W/m^2]	0
Enable shell conduction?	no
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Surface Roughness	0
Wall Roughness Height [m]	0
Wall Roughness Constant	0.5
Convective Augmentation Factor	1

Reference Values

Area	0.1 m^2
Density	0.8984783 kg/m^3
Enthalpy	12860.96 J/kg
Length	1 m
Pressure	73048 Pa
Temperature	283.24 K
Velocity	236.0798 m/s
Viscosity	1.765733e-05 kg/(m s)
Ratio of Specific Heats	1.4
Yplus for Heat Tran. Coef.	300
Reference Zone	component1-fluid

Solver Settings

Equations	
Flow	True

Turbulence	True
Energy	True
- Numerics	
Absolute Velocity Formulation	True
 Pseudo Time Explicit Relaxation Factors 	
Density	1
Body Forces	1
Turbulent Kinetic Energy	0.75
Specific Dissipation Rate	0.75
Turbulent Viscosity	1
Energy	0.75
Explicit Momentum	0.5
Explicit Pressure	0.5
 Pressure-Velocity Coupling 	
Туре	Coupled
Pseudo Time Method (Global Time Step)	True
 Discretization Scheme 	
Pressure	Second Order
Density	Second Order Upwind
Momentum	Second Order Upwind
Turbulent Kinetic Energy	Second Order Upwind
Specific Dissipation Rate	Second Order Upwind
Energy	Second Order Upwind
- Solution Limits	
Minimum Absolute Pressure [Pa]	1
Maximum Absolute Pressure [Pa]	5e+10
Minimum Temperature [K]	1
Maximum Temperature [K]	5000
Minimum Turb. Kinetic Energy [m^2/s^2]	1e-14
Minimum Spec. Dissipation Rate [s^-1]	1e-20
Maximum Turb. Viscosity Ratio	100000

Run Information

Number of Machines	1
Number of Cores	1
Case Read	2.411 seconds
Iteration	887.137 seconds
AMG	572.605 seconds
Virtual Current Memory	1.30819 GB
Virtual Peak Memory	1.69326 GB
Memory Per M Cell	5.16014

Solution Status

Iterations: 250

	Value	Absolute Criteria	Convergence Status
continuity	1.099958e-07	0.001	Converged
x-velocity	9.203444e-09	0.001	Converged
y-velocity	2.972352e-09	0.001	Converged
z-velocity	9.271838e-09	0.001	Converged
energy	2.469863e-09	1e-06	Converged
k	1.50098e-05	0.001	Converged
omega	1.469142e-06	0.001	Converged

Report Definitions

dragcoeff-report	0.00922524	
liftcoeff-report	0.2186249	

Plots

Residuals

liftcoeff-report-rplot

liftcoeff-report-rplot

dragcoeff-report-rplot

Mesh

mesh-1

Contours

contour-2

contour-1

