ROCO218: Control Engineering Dr Ian Howard

Tutorial 1

ROCO204 2012 Exam example Transfer function of block diagram

(b) Deduce the system transfer function relating C to R for the block diagram shown in Figure Q2(b).

(10 marks)

Block diagram reduction techniques

1. Combining blocks in cascade or in parallel

2. Moving a summing point from behind a block

Block diagram reduction techniques

3. Moving a summing point ahead of a block

4. Moving a pickoff point from behind a block

5. Moving a pickoff point from ahead of a block

Block diagram reduction techniques

7. Swap order of two neighboring summing points

ROCO218: Control Engineering Dr Ian Howard

Tutorial 1

2016R exam for ROCO319 Modern Control Solutions to relevant questions

Consider the following linear control system:

$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
(2)

(a) Justify that the uncontrolled system (i.e. u = 0) is unstable.

- (5 marks)
- (b) Compute the controllability matrix C of system (2). Is this system controllable? (5 marks)
- (c) Compute the observability matrix O of system (2). Is this system observable? (5 marks)

State space equations take the form

$$\dot{X} = AX + BU$$
$$Y = CX + DU$$

The given system state space equations are

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} U \qquad y = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Therefore the system matrices are

$$\Rightarrow A = \begin{bmatrix} 1 & 0 \\ 0 & 7 \end{bmatrix} \qquad \Rightarrow B = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \Rightarrow C = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

- NB: Since system matrix A is diagonal, by inspection we can see that the eigenvalues of the system are given the diagonal elements of the system matrix A
- Therefore $\lambda = 1,7$
 - However here we will proceed and adopt an analysis here that will deal with the general case

Given system matrix A

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 7 \end{array} \right]$$

The eigenvalues of matrix A must satisfy the equation

$$AX = \lambda X$$

Where X is the state vector

$$\Rightarrow AX - \lambda X = 0$$

$$\Rightarrow (A - \lambda I)X = 0$$

Where I is the identity matrix

 This equation has a non-zero solution X if and only if the determinant of the matrix (A-I)=0

$$\Rightarrow |A - \lambda I| = 0$$

Where straight bracket signifies the determinant

• Substituting A and I into the expression $|A - \lambda I| = 0$

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 7 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0 \qquad \Rightarrow \begin{bmatrix} 1 - \lambda & 0 \\ 0 & 7 - \lambda \end{bmatrix} = 0$$

For a 2x2 matrix the determinant is given by

$$\det(A) = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(ad - bc\right)$$

$$\Rightarrow (1-\lambda)(7-\lambda)-0\times 0=0$$

$$\Rightarrow (1 - \lambda)(7 - \lambda) = 0$$

$$\Rightarrow \lambda = 1,7$$

- Both of these eigenvalues are strictly positive
- Therefore the uncontrolled system is unstable

 Since our system has a 2x2 system matrix, the system controllability is given by

$$M_c = \begin{bmatrix} B & AB \end{bmatrix}$$

Calculating the AB term gives

$$AB = \begin{bmatrix} 1 & 0 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$$

$$\Rightarrow M_c = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 7 \end{bmatrix}$$

Using Gaussian elimination to try to achieve echelon form

$$M_c | R_2 \to R_2 - R_1 = \begin{bmatrix} 1 & 1 \\ 1-1 & 7-1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 6 \end{bmatrix}$$

- It can be seen directly that the (reduced echelon form) matrix has rank
 of 2, which is full rank
- Therefore the system is controllable

 Since our system has a 2x2 system matrix, the system observability matrix is given by

Calculating the CA term gives

$$CA = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 7 \end{bmatrix}$$

$$\Rightarrow M_o = \begin{bmatrix} 1 & 1 \\ 1 & 7 \end{bmatrix}$$

Using Gaussian elimination to try to achieve echelon form

$$M_c | R_2 \to R_2 - R_1 = \begin{vmatrix} 1 & 1 & 1 \\ 1-1 & 7-1 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 0 & 6 \end{vmatrix}$$

- It can be seen that the reduced echelon form matrix has rank of 2
- Therefore the system is observable

ROCO218: Control Engineering Dr Ian Howard

Tutorial 1

ROCO218 2016R Exam examples
Derive transfer function for electrical system

Q1: Electrical system

Q1. Calculate the transfer function from the battery voltage to the current in Figure Q1 below.

(20 marks)

Solution: Summing voltages around circuit we have

$$v(t) = Ri(t) + \frac{1}{C} \int i(t) dt$$

Q1: Electrical system

Taking Laplace transforms of the voltage equation

$$v(t) = Ri(t) + \frac{1}{C} \int i(t) dt$$
 $\Rightarrow V(s) = RI(s) + \frac{1}{sC} I(s)$

Taking out the factor I(s)

$$\Rightarrow V(s) = I(s) \left(R + \frac{1}{sC} \right) = I(s) \frac{\left(sCR + 1 \right)}{sC}$$

Rearranging we get the following transfer function

$$\frac{I(s)}{V(s)} = \frac{sC}{\left(sCR+1\right)}$$

Substituting in C=0.5F, R = 1Ω

$$\Rightarrow \frac{I(s)}{V(s)} = \frac{0.5s}{(0.5s+1)}$$

ROCO218: Control Engineering Dr Ian Howard

Tutorial 1

2016 exam for ROCO319 Modern Control Solutions to relevant questions

Consider the following system:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
(3)

(a) Design a state feedback u(t) = -k₁x₁(t) - k₂x₂(t) so that the closed-loop eigenvalues are placed at {-3, -2}. You should use the direct method for computing the gains k₁ and k₂.

(10 marks)

State space equations take the form

$$\dot{X} = AX + BU$$

$$Y = CX + DU$$

The given system state space equations are

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} U$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Therefore the system matrices are

$$\Rightarrow A = \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix} \qquad \Rightarrow B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \Rightarrow C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

We now apply feedback to the state space equation

$$\dot{X} = AX + BU$$

By setting input U to

$$U = -KX$$

where
$$K = \begin{bmatrix} k_1 & k_2 \end{bmatrix}$$

This leads to the the modified relationship

$$\Rightarrow \dot{X} = AX - BKX \Rightarrow \dot{X} = (A - BK)X$$

So the stability is now determined by location of poles which are the eigenvalue of matrix (A-BK)

The eigenvalues λ of the closed loop system are thus given by

$$\det(A - BK - \lambda I) = 0$$

Using the system matrices

$$A = \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$\Rightarrow BK = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} k_1 & k_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ k_1 & k_2 \end{bmatrix}$$

Substituting in values

$$\det(A - BK - \lambda I) = 0$$

$$\Rightarrow 0 = \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ k_1 & k_2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -\lambda_1 & 3 \\ 2 - k_1 & 1 - k_2 - \lambda \end{bmatrix}$$

The characteristic equation is therefore

$$\Rightarrow (-\lambda)(1-k_2-\lambda)-3(2-k_1)=0$$

Simplifying the characteristic equation

$$\Rightarrow (-\lambda)(1 - k_2 - \lambda) - 3(2 - k_1) = 0$$
$$\Rightarrow \lambda^2 + \lambda(k_2 - 1) + 3k_1 - 6 = 0$$

We require that the eigenvalues λ of the controller system are at -3,-2 Therefore we want the following characteristic equation

$$\Rightarrow (\lambda + 3)(\lambda + 2) = 0 \Rightarrow \lambda^2 + 5\lambda + 6 = 0$$

We now need to match the coefficients in the desired eigenvalues characteristic equation using the appropriate gain vector K

$$\lambda^{2} + 5\lambda + 6 = 0 \qquad \Leftrightarrow \lambda^{2} + \lambda (k_{2} - 1) + 3k_{1} - 6 = 0$$

$$\Rightarrow 5 = k_{2} - 1 \qquad \Rightarrow k_{2} = 6$$

$$\Rightarrow 3k_{1} - 6 = 6 \qquad \Rightarrow k_{1} = 4$$

Feedback law is therefore $u(t) = -4x_1 - 6x_2$

ROCO218: Control Engineering Dr Ian Howard

Tutorial 1

2015 exam for ROCO316 Modern Control Solutions to relevant questions

Consider the following continuous-time nonlinear control system

$$\dot{x}_1(t) = x_1^3(t) - x_2(t) + 1 \tag{1}$$

$$\dot{x}_2(t) = \mathbf{e}^{x_2(t)} + u(t)$$
 (2)

$$y(t) = -x_1(t) + u(t) \tag{3}$$

(a) We assume a constant input $u(t) = \bar{u} = -1$, and we admit that the equilibrium state (\bar{x}_1, \bar{x}_2) for this constant input is (-1, 0). Determine the linearized system about this equilibrium state.

(5 marks)

(b) Write the linearized system in state-space form.

(5 marks)

(c) Determine the stability of the linearized system.

(5 marks)

(d) Determine the eigenvectors, and the solution of the linear system.

(5 marks)

Solution: Substituting in value of u(t) = -1 gives the equations

$$\dot{x}_1(t) = x_1^3(t) - x_2(t) + 1$$

$$\dot{x}_2(t) = e^{x_2(t)} - 1$$

$$y(t) = -x_1(t) - 1$$

To linearize we need to calculate the Jacobian matrix and evaluate it at the given equilibrium position (-1,0).

In general the Jacobian is given by

This by
$$J = \begin{pmatrix} \frac{\partial f_1}{\partial x_j} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{pmatrix}$$

Here we only have a 2x2 matrix

The corresponding functions we need f₁ and f₂ are given by the two state expressions

$$f_1 = \dot{x}_1(t) = x_1^3(t) - x_2(t) + 1$$

$$f_2 = \dot{x}_2(t) = e^{x_2(t)} - 1$$

Taking partial derivatives w.r.t. to the state variables

$$\Rightarrow \frac{\partial f_1}{\partial x_1} = 3x_1^2(t) \qquad \Rightarrow \frac{\partial f_1}{\partial x_2} = -1$$

$$\Rightarrow \frac{\partial f_2}{\partial x_1} = 0 \qquad \Rightarrow \frac{\partial f_2}{\partial x_2} = e^{x_2(t)}$$

The equilibrium point is given as (-1,0) so we evaluate the Jacobian matrix at this point

$$\Rightarrow J_{|(-1,0)} = \begin{bmatrix} 3x_1^2(t) & -1 \\ 0 & e^{x_2(t)} \end{bmatrix}_{|(-1,0)} = \begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix}$$

(b) Write the linearized system in state-space form.

(5 marks)

From the Jacobian

$$J = \left[\begin{array}{cc} 3 & -1 \\ 0 & 1 \end{array} \right]$$

we can directly write

$$\Rightarrow \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\Rightarrow \dot{x}_1 = 3x_1 - x_2$$
$$\Rightarrow \dot{x}_2 = x_2$$

- (c) Determine the stability of the linearized system.
- To determine the stability of the system we need to calculate the eigenvalues of Jacobian matrix J which is now our system matrix A

$$A = \left[\begin{array}{cc} 3 & -1 \\ 0 & 1 \end{array} \right]$$

The eigenvalues of matrix A must satisfy the equation

$$AX = \lambda X$$

$$\Rightarrow AX - \lambda X = 0$$

$$\Rightarrow (A - \lambda I)X = 0$$
Where X is the state vector $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

$$\Rightarrow (A - \lambda I)X = 0$$
Where I is the identity matrix $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

- This equation has a non-zero solution X if and only if the determinant of the matrix (A-I)=0
 - $\Rightarrow |A \lambda I| = 0$ Where straight bracket signifies the determinant

• Substituting A and I into the expression $|A - \lambda I| = 0$

$$\Rightarrow \begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0 \qquad \Rightarrow \begin{bmatrix} 3 - \lambda & -1 \\ 0 & 1 - \lambda \end{bmatrix} = 0$$

For a 2x2 matrix the determinant is given by

$$\det(A) = \left| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right| = \left(ad - bc\right)$$

$$\Rightarrow (3 - \lambda)(1 - \lambda) - (-1) \times 0 = 0$$

$$\Rightarrow (3 - \lambda)(1 - \lambda) = 0$$

$$\Rightarrow \lambda = 3, \lambda = 1$$

Note also that since the A matrix is of triangular form, its leading diagonal values indicate the eigenvalues of 3 and 1 directly. However we calculated the values for thoroughness of methodology since this will not always be the case

 Both eigenvalues are strictly positive and therefore the linearized system is unstable

(d) Determine the eigenvectors

The eigenvalues of a matrix A satisfy the equation

$$AX = \lambda X$$

$$\Rightarrow \begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- The values of X gives the eigenvector
- When λ=1

$$\begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow 3x_1 - x_2 = x_1 \\ \Rightarrow x_2 = x_2 \Rightarrow 2x_1 = x_2 \Rightarrow x_{\lambda=1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

When λ=3

$$\begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 3 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow 3x_1 - x_2 = 3x_1 \Rightarrow x_2 = 0 \\ \Rightarrow x_2 = 3x_2 \Rightarrow x_1 = x_1 \Rightarrow x_{\lambda=3} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

ROCO218: Control Engineering Dr Ian Howard

Tutorial 1

State space model of spring coupled masses

Derive the state space model for the following translational mechanical system whose input is f(t) and whose output is x_2 :

Equations of motion are

$$M_1 \frac{d^2 x_1}{dt^2} + D \frac{dx_1}{dt} = K(x_2 - x_1)$$

$$M_2 \frac{d^2 x_2}{dt^2} + K(x_2 - x_1) = f(t)$$

Identify its states: highest state term must be less than highest differential equation term

$$x_1$$

$$v_1 = \dot{x}_1$$

$$x_2$$

$$v_2 = \dot{x}_2$$

From 1st equation of motion

$$M_{1} \frac{d^{2}x_{1}}{dt^{2}} + D \frac{dx_{1}}{dt} = K(x_{2} - x_{1})$$

$$\Rightarrow \frac{d^2 x_1}{dt^2} = -\frac{D}{M_1} \frac{dx_1}{dt} + \frac{K}{M_1} (x_2 - x_1)$$

$$\Rightarrow \dot{v}_1 = -\frac{D}{M_1}v_1 + \frac{K}{M_1}(x_2 - x_1)$$

From definition of state variables

$$\dot{x}_1 = v_1$$

$$\dot{x}_2 = v_2$$

Reordering

$$\Rightarrow \dot{v}_{1} = -\frac{K}{M_{1}}x_{1} - \frac{D}{M_{1}}v_{1} + \frac{K}{M_{1}}x_{2}$$

From 2nd equation of motion

$$M_2 \frac{d^2 x_2}{dt^2} + K(x_2 - x_1) = f(t)$$

$$\Rightarrow \frac{d^2x_2}{dt^2} = \frac{-K}{M_2}(x_2 - x_1) + \frac{f(t)}{M_2}$$

$$\Rightarrow \dot{v}_2 = \frac{-K}{M_2} (x_2 - x_1) + \frac{f(t)}{M_2}$$

From definition of state variables

$$\dot{x}_1 = v_1$$

$$\dot{x}_2 = v_2$$

Reordering

$$\Rightarrow \dot{v}_2 = \frac{K}{M_2} x_1 - \frac{K}{M_2} x_2 + \frac{f(t)}{M_2}$$

Thus we have

$$\begin{split} \dot{x}_1 &= v_1 \\ \dot{v}_1 &= -\frac{K}{M_1} x_1 - \frac{D}{M_1} v_1 + \frac{K}{M_1} x_2 \\ \dot{x}_2 &= v_2 \\ \dot{v}_2 &= \frac{K}{M_2} x_1 - \frac{K}{M_2} x_2 + \frac{f(t)}{M_2} \end{split}$$

Want matrix format is

$$\dot{X} = AX + BU$$

$$Y = CX + DU$$

$$\Rightarrow \begin{bmatrix} \dot{x}_1 \\ \dot{v}_1 \\ \dot{x}_2 \\ \dot{v}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{K}{M_1} & -\frac{D}{M_1} & \frac{K}{M_1} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{K}{M_2} & 0 & -\frac{K}{M_2} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ v_1 \\ x_2 \\ v_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{M_2} \end{bmatrix} f(t)$$

Since want output to be x₂

$$\Rightarrow y = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ v_1 \\ x_2 \\ v_2 \end{bmatrix}$$

Want matrix format is

$$\dot{X} = AX + BU$$

$$Y = CX + DU$$

ROCO218: Control Engineering Dr Ian Howard

Tutorial 1

Analysis of rod pendulum

Fixed rod pendulum

Gravitation force acting on center of mass leads to torque

$$T_g = -mg(d/2)\sin(\theta)$$

Resistance torque to movement by moment of inertia of system

$$T_I = I_r \frac{d^2 \theta}{dt^2} \implies I_r \frac{d^2 \theta}{dt^2} = -mg(d/2)\sin(\theta)$$

For rod
$$I_r = \frac{md^2}{3}$$
 For rod around one end

$$\Rightarrow \frac{md}{3} \frac{d^2\theta}{dt^2} = -mg(d/2)\sin(\theta) \Rightarrow \frac{d^2\theta}{dt^2} = -\frac{mg(d/2)}{\left(\frac{md^2}{3}\right)}\sin(\theta)$$

For small angles
$$\sin(\theta) \approx \theta$$
 $\Rightarrow \frac{d^2\theta}{dt^2} = -\frac{3g\theta}{2d}$

Fixed rod pendulum

Linearized equation of motion for rod pendulum

$$\frac{d^2\theta}{dt^2} = -\frac{3g\theta}{2d}$$

Taking Laplace transforms with zero initial condition

$$\Rightarrow s^2 \Phi(s) = -\frac{3g}{2d} \Phi(s)$$

$$\Rightarrow s = \pm i \sqrt{\frac{3g}{2d}} \quad \Rightarrow \omega = \pm \sqrt{\frac{3g}{2d}}$$

$$\Rightarrow f = \frac{1}{2\pi} \sqrt{\frac{3g}{2d}}$$

