Simulated ROC

jdt

2/15/2021

Contents

Preface and Assignment	1
Theory Receiver Operating Characteristics Curve (ROC)	1
R	6
SAS Code	

Preface and Assignment

In this document I have used Rmarkdown and SAS to LaTeX to create a pdf document file containing a description of the theory used in this problem with the code and output for the analysis using Rmarkdown with RStudio and SAS. I do not expect you to be able to reproduce a document of this type but I do want you to be able to preform the analysis with simulated data. The R and SAS code are found in the pdf document. You should be able to copy this material for use in R or RStudio and SAS. Generate you own simulation by controlling the separation between the population means, c_0 and c_1 . What conclusion can you reach?

Theory

Receiver Operating Characteristics Curve (ROC)

In this section, assume that the random variable Y is continuous and that the test is said to be positive if $Y \geq c$, for some c. For example, let Y denote the PSA levels that is commonly used to indicate potential problems with the prostrate gland when Y is "large". The binary test given in the previous section can be constructed for any value of c. That is, the test is positive if $Y \geq c$ and is negative if Y < c, from which we have

$$\begin{aligned} \text{FPF}(c) &=& \Pr[Y \geq c \mid D = 0] \\ \text{TPF}(c) &=& \Pr[Y \geq c \mid D = 1]. \end{aligned}$$

The receiver operating characteristic curve (ROC) for a test using the random variable Y is defined as

$$ROC(\cdot) = \{(FPF(c), TPF(c)), c \in (-\infty, \infty)\}$$
 (1)

or

$$ROC(\cdot) = \{(t, ROC(t)), t \in (0, 1)\}.$$
 (2)

Some of the properties for the ROC include:

- 1. The ROC curve is invariant to strictly (monotone) increasing transformations of Y
- 2. Let $S_D = 1 F_Y(y \mid D = 1)$ and $S_{\bar{D}} = 1 F_Y(y \mid D = 0)$ denote the survivor functions of Y for the diseased and non-diseased populations given by

$$S_D(y) = \Pr[Y \ge y \mid D = 1]$$

$$S_{\bar{D}}(y) = \Pr[Y \ge y \mid D = 0]$$

then

$$ROC(t) = S_D(S_{\bar{D}}^{-1}(t)), t \in (0, 1).$$

3.

$$\frac{\partial ROC(t)}{\partial t} = \frac{f_D(S_{\bar{D}}^{-1}(t))}{f_{\bar{D}}(S_D^{-1}(t))}$$

where f_D denotes the probability density for Y in the diseased population (D=1) and $f_{\bar{D}}$ denotes the probability density for Y in the healthy population (D=0).

4. The area under the ROC curve (AUC) is

$$AUC = \Pr[Y_D > Y_{\bar{D}}] \tag{3}$$

$$= \int ROC(t)dt. \tag{4}$$

5. (Special Case - Parametric Binormal Form) Suppose that $Y_D \sim N(\mu_D, \sigma_D^2)$ and $Y_{\bar{D}} \sim N(\mu_{\bar{D}}, \sigma_{\bar{D}}^2)$ then

$$ROC(t) = \Phi(a + b\Phi^{-1}(t))$$

and

$$AUC = \Phi(\frac{a}{\sqrt{1+b^2}})$$

where $a=\frac{\mu_D-\mu_{\bar{D}}}{\sigma_D},\,b=\frac{\sigma_{\bar{D}}}{\sigma_D}$ and Φ is the standard normal c.d.f.

Figure 1: ROC Basics

Figure 2: Area Under the Curve - AUC

Placement Values

A useful concept that is related to the ROC and AUC is a value called the Placement score.

Placement Values

► Cai(2002) defines $PV_D = S_{\bar{D}}(Y_D)$.

▶ The ROC is equivalent to the cdf of PV_D .

$$P[PV_D \le t | \mathbf{X}] = P[S_{\bar{D}\mathbf{X}}(Y_D) \le t | \mathbf{X}]$$

$$= P[Y_D \ge [S_{\bar{D}\mathbf{X}}^{-1}(t) | \mathbf{X}]$$

$$= ROC_{\mathbf{X}}(t).$$

Figure 3:

SAS - Example

Figure contains the SAS output.

\mathbf{R}

Set seed for the simulation

```
# clear the environment and set seed
rm(list = ls())
set.seed(12345)
```

Function to generate normal data. For dis=0 ("Control") and dis=1 ("Disease"). The separation between the two groups is controlled by one's choice of c0, c1, sd_e0, and sd_e1. n0 and n1 are the sample sizes for the groups.

Create discrete variables for Y

```
y=dat1[,1]
summary(y)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -2.071 1.395 2.737 2.672 4.024 7.621
case=dat1[,2]
```

Create binary table with cutoff y > 2.5

```
high_y = y > 2.5
tex1 = table(case,high_y)
addmargins(tex1)
##
       high_y
## case FALSE TRUE Sum
## 0
         137 63 200
          40 160 200
##
    1
    Sum 177 223 400
##
prop.out = prop.table(tex1,1)
specificity = prop.out[1,1]
sensitivity = prop.out[2,2]
prop.out
##
      high_y
## case FALSE TRUE
     0 0.685 0.315
##
     1 0.200 0.800
##
sensitivity
## [1] 0.8
specificity
## [1] 0.685
TPR = sensitivity
FPR = 1 - specificity
TPR
## [1] 0.8
FPR
## [1] 0.315
Create binary table with cutoff y > 3.0
high_y = y > 3.0
tex1 = table(case,high_y)
addmargins(tex1)
##
       high_y
## case FALSE TRUE Sum
## 0
         161 39 200
    1 60 140 200
##
   Sum 221 179 400
prop.out = prop.table(tex1,1)
specificity = prop.out[1,1]
sensitivity = prop.out[2,2]
prop.out
##
      high_y
## case FALSE TRUE
##
     0 0.805 0.195
##
     1 0.300 0.700
```

```
sensitivity
## [1] 0.7
specificity
## [1] 0.805
TPR = sensitivity
FPR = 1 - specificity
TPR
## [1] 0.7
FPR
```

[1] 0.195

Instead of creating a table at each cutoff point one can construct a ROC plot for a continuous variable Y. Which is constructing using the pairs (TPR, FPR) at each cutoff point (in R). Sometimes (as in SAS) this curve is smoothed.

```
library(ROCR)
pred = prediction(y,case)
perf=performance(pred, "tpr", "fpr")
plot(perf)
```


SAS

Code

```
libname LDATA '/home/jacktubbs/my_shared_file_links/jacktubbs/myfolders/Titanic/';
options center nodate pagesize=100 ls=80;
/* Simplified LaTeX output that uses plain LaTeX tables */
ods tagsets.simplelatex file="/home/jacktubbs/my_shared_file_links
/jacktubbs/LaTeX/ROC_sim.tex"
```

```
stylesheet="/home/jacktubbs/my_shared_file_links
/jacktubbs/LaTeX/sas.sty"(url="sas");
/*
The above will create a new file that can be inputed into LaTeX
(simple.tex) and the new style needed by LaTex (sas.sty).
The following example can be found at
http://support.sas.com/rnd/base/ods/odsmarkup/latex.html
*/
ods graphics on;
title1 'Simulated Data for ROC';
* Run Macro;
%macro binorm(dsn, title);
title2 &title;
data a; set &dsn;
  seed=12345;
  do i = 1 to n0;
  group='control';
  y = c0 + rand("Normal", 0, sd_e0);
  output;
  end;
  do i = 1 to n1;
   group='disease';
  y = c1 + rand("Normal", 0, sd_e1);
  output;
  end;
run;
data a; set a; y_cut = (y > cutoff); run;
proc sgplot data=a;
density y /type=kernel group=group;
proc freq; table group*y_cut/ nopercent nocol outpct out=b ; run;
data c; set b;
if group = 'disease' and y_cut = '1' then sensitivity = pct_row;
if group = 'control' and y_cut = '0' then specificity = pct_row;
keep sensitivity specificity;
run;
proc print data=c; var sensitivity specificity; run;
proc logistic data=a plots(only)=roc ;
class group ;
model group(event='disease')=y;
run;
%mend binorm;
*Run data genration;
data parms1; c0=1.5; sd_e0=1.5; n0=100; c1=2.0; sd_e1=1.5; n1=100; cutoff = 3.0;
run;
data parms2; c0=1.5; sd_e0=1.5; n0=100; c1=2.5; sd_e1=1.5; n1=100; cutoff = 3.0;
data parms3; c0=1.5; sd_e0=1.5; n0=100; c1=3.0; sd_e1=1.5; n1=100; cutoff = 3.0;
run;
```

```
data parms4; c0=1.5; sd_e0=1.5; n0=100; c1=3.5; sd_e1=1.5; n1=100; cutoff = 3.0;
run;

*%binorm(parms1,'Data set #1');
%binorm(parms2,'Data set #2');
*%binorm(parms3,'Data set #3');
*%binorm(parms4,'Data set #4');
quit;
```

Output

Simulated Data for ROC Data set #2 The FREQ Procedure

Table of group by y_cut				
group	y_cut			
	0 1 Total			
control	86	14	100	
	86.00	14.00		
disease	60	40	100	
uisease	60.00	40.00		
Total	146	54	200	

Simulated Data for ROC Data set #2

Obs	sensitivity	specificity
1	•	86
2		
3		
4	40	

Simulated Data for ROC Data set #2 The LOGISTIC Procedure

Model Information			
Data Set	WORK.A		
Response Variable	group		
Number of Response Levels	2		
Model	binary logit		
Optimization Technique	Fisher's scoring		

Number of Observations Read	200
Number of Observations Used	200

Response Profile				
Ordered Value group Total Frequency				
1	control	100		
2	disease	100		

Model Fit Statistics				
Criterion Intercept Only Intercept and Co				
AIC	279.259	255.599		
SC	282.557	262.196		
-2 Log L	277.259	251.599		

Testing Global Null Hypothesis: BETA=0					
Test Chi-Square DF Pr > ChiSq					
Likelihood Ratio	25.6598	1	<.0001		
Score	24.2216	1	<.0001		
Wald	21.7853	1	<.0001		

Analysis of Maximum Likelihood Estimates					
Parameter DF Estimate Standard Error Wald Chi-Square Pr > ChiSq					
Intercept	1	-0.9345	0.2504	13.9281	0.0002
У	1	0.4804	0.1029	21.7853	<.0001

Odds Ratio Estimates				
Effect Point Estimate 95% Wald Confidence Limits				
У	1.617	1.321	1.978	

Association of Predicted Probabilities and Observed Responses					
Percent Concordant 70.2 Somers' D 0.405					
Percent Discordant	29.8	Gamma	0.405		
Percent Tied 0.0 Tau-a 0.20					
Pairs	10000	С	0.702		

