ANSWER KEY (AIPMT-1999)

Oues.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans	1	2	1	1	3	2	1	1	1	2	3	1	1	2	3	1	3	2	4	3
Oues.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
—	1	4	1	1	2	1	1	1	3	4	2	3	3	2	1	1	3	2	1	3
Ans	1		1	1		1	1	1							1	1	_		1	_
Ques.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	4	1	2	3	1	1	1	1	1	1	1	2	1	4	3	2	3	3	2	1
Ques.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans	1	2	1, 2	1	3	3	1	2	2	3	1	1	3	1	4	1, 2	3	1	2	2, 3
Ques.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans	4	2	1	1	2	2	3	1	2	4	2	3	2	1	1	1	2	1	3	
Ques.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans	1	4	2	2	4	1	1	1	2	4	2	1	2	3	1	3	2	3	1	2
Ques.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Ans	1	3	3	2	4	2	3	1	1	4	3	2	4	2	1	1	2	1	1	1
Ques.	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ans	2	1	1	2	1	2	1	1	3	4	4	1	1	3	4	3	1	2	2	4
Ques.	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans	3	2	1	1	1	3	2	4	3	2	4	1	2	1	1	2	4	4	1	2
Ques.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
Ans	4	1	1	3	4	2	4	1	2	3	3	1	3	2	1	1	1	3	3	2

HINTS & SOLUTIONS

1.
$$V = \frac{4}{3} \pi R^3; \frac{\Delta V}{V} = \frac{3\Delta R}{R}$$

% change in volume = $3 \times 0.1 = 0.3$ %

2.
$$h = \frac{1}{2} gt^2$$
 (i)

$$\frac{h}{2} = \frac{1}{2} g(t-1)^2$$
 (ii)

$$\frac{1}{4} gt^2 = \frac{1}{2} g(t-1)^2$$

$$\frac{t}{\sqrt{2}} = t - 1$$

$$t\left(1-\frac{1}{\sqrt{2}}\right)=1$$

$$t = \frac{\sqrt{2}}{\sqrt{2} - 1} \times \frac{\sqrt{2} + 1}{\sqrt{2} + 1}$$

$$t = \sqrt{2} (\sqrt{2} + 1)$$

$$t = 2 + \sqrt{2}$$

Let initial speed of man of mass m be u then 3.

$$KE_{man} = \frac{1}{2} mu^2 \& KE_{boy} = 2 \times \frac{1}{2} mu^2 = mu^2$$

Now if man increases his speed by 1 m/s⁻¹ then

$$KE_{man} = \frac{1}{2} m (u + 1)^2 = KE'_{boy} = mu^2$$

$$\Rightarrow \frac{u+1}{u} = \sqrt{2}$$

$$\Rightarrow$$
 $u = \frac{1}{\sqrt{2} - 1} \times \frac{\sqrt{2} + 1}{\sqrt{2} + 1} = (\sqrt{2} + 1) \text{ ms}^{-1}.$

 $Time = \frac{Relative horizontal distance}{Relative horizontal velocity}$ 4.

$$=\frac{x}{u\cos 60^{\circ}+\frac{u}{\sqrt{3}}\cos 30^{\circ}}=\frac{x}{u}$$

5.
$$t = \sqrt{x} + 3$$

6.

$$x = (t - 3)^2$$

$$v = \frac{dx}{dt} = 2(t-3) = 0$$

at
$$t = 3$$
, $x = (3 - 3)^2 = 0$

10 kg. 40 kg. Friction less

Let the net acceleration of the slab be a limiting friction

$$F_S = \mu mg = 0.6 \times 10 \times 9.8 = 58.8 \text{ N}$$

$$100 \text{ N} > 58.8 \text{ N}$$

i.e. slab will accelerate with different acceleration.

f = 40a

$$0.4 \times 10 \times 9.8 = 40a \Rightarrow a = 0.98 \text{ m/s}^2$$

7. Method-I

$$-8(I_1 + I_2) - 4I_1 + 8 = 0$$
 ... (i)

$$-8(I_1 + I_2) - 6I_2 + 6 = 0$$
 ... (ii)

Solving eqⁿ. (i) and (ii), we get

$$I_1 = \frac{8}{13}, I_2 = \frac{1}{13}$$

Current in $8\Omega = I_1 + I_2 = 0.69A$

Method-II

Given circuit can be reduced to

$$E_{net} = \frac{\frac{8}{4} + \frac{6}{6}}{\frac{1}{4} + \frac{1}{6}} = 7.2 \text{ volt}$$

$$\frac{1}{R_{\text{net}}} = \frac{1}{4} + \frac{1}{6} = \frac{10}{24} \implies R_{\text{net}} = 2.4\Omega$$

$$\Rightarrow I = \frac{7.2}{10.4} = 0.69 \text{ A}$$

8. Here bridge is balanced then 20μF becomes ineffective.

Therefore $C_{AB} = 6\mu F$

9.
$$P = VI = V^2/R$$
, voltage constant

then power in 10Ω will be 10W when I constant then

$$P = I^2 R$$

$$P \propto R$$

$$\frac{P'}{10} = \frac{4}{10} \Rightarrow P' = 4W$$

10. For maximum power consumption –

$$R = r = 6\Omega$$

12. Magnetic field at the centre of coil B = $\frac{\mu_0 i N}{2a}$

$$= \frac{4\pi \times 10^{-7} \times 5 \times 50}{2 \times 10/100} = 1.57 \times 10^{-3} \text{ T}$$
$$= 1.57 \text{ mT}.$$

$$8V_{\text{tiny}} = V_{\text{big}}$$

$$8\frac{4}{3}\pi r^3 = \frac{4}{3}\pi R^3$$

$$2r = R$$

$$V_{\text{tiny}} = \frac{Kq}{r}$$

$$V_{\text{big}} = \frac{K \times 8q}{R}$$

$$V_{big} = \frac{8Kq}{2r}$$

$$V_{\text{big}} = 4V_{\text{tiny}}$$

$$V_{big} = 4 \times 10 \implies 40 \text{ V}$$

14. Work done by source

$$= E \times q = E\left(\frac{\Delta\phi}{R}\right) = E \frac{LI_0}{R}$$

$$= \left(\frac{E}{R}\right) LI_0 = (I_0)LI_0 = LI_0^2$$

$$= 0.04 \times (5)^2 = 1.0 \text{ J}$$

16.
$$V = \frac{Q \times E \times t}{m}$$

$$V \propto E$$

So Ans.
$$\frac{V}{2}$$

17.
$$T = 2\pi \sqrt{I/MB_H}$$
; $B_H = 0$ at poles

$$B_H = max$$
 at equator

$$B_H \, \uparrow \quad \Rightarrow \, T \, \downarrow$$

18.
$$Y = \overline{A}B + A\overline{B} = A \oplus B$$

A	В	A + B	$A \oplus B$
0	0	0	0
1	0	1	1
0	1	1	1
1	1	1	0

- 19. Zener diode \rightarrow DC voltage stabilizer.
- **20.** Unbiased PN junction

Deplation layer → static ions

21.
$$f = \frac{(2n-1)v}{4\ell}$$

$$\ell = \frac{(2n-1)v}{4f} = \frac{(2n-1)\times 330}{4\times 330} = \frac{(2n-1)}{4}$$

$$\ell = \frac{1}{4} \text{ m}, \quad \frac{3}{4} \text{ m} = 25 \text{ cm}, 75 \text{ cm}.$$

 \therefore Minimum height of water column = 125 - 75 = 50 cm

22. For isothermal process

$$P_{A}V_{A} = P_{B}V_{B}$$
$$PV = P_{B}(4V)$$

$$P_B = \frac{P}{4}$$

for adiabatic process

$$P_{\rm B}V_{\rm B}^{\gamma} = P_{\rm C}V_{\rm C}^{\gamma}$$

$$P_c = \frac{P}{4} \left(\frac{4V}{V} \right)^{1.5} = \frac{P}{4} \times 8 = 2P$$

$$\frac{R'}{R} = \frac{(400)^4 - (200)^4}{(600)^4 - (200)^4} = \frac{4^4 - 2^4}{6^4 - 2^4}$$
$$= \frac{(4^2 + 2^2)(4^2 - 2^2)}{(6^2 + 2^2)(6^2 - 2^2)} = \frac{20 \times 12}{40 \times 32}$$
$$R' = \frac{3}{16} R$$

$$mu\cos\theta = -\frac{mu}{2}\cos\theta + \frac{m}{2}v'$$

$$v' = 3u\cos\theta$$

24.

Amplitude of damped oscillation at time t $x = x_0 e^{-\lambda t}$ Where λ is a constant after 20 sec

$$\frac{x_0}{3} = x_0 e^{-\lambda(20)} \implies e^{-\lambda(20)} = \frac{1}{3}$$
 (1)

After 40 sec

$$x' = x_0 e^{-\lambda(40)} \implies x_0 e^{-\lambda(2 \times 20)}$$

from (1

$$x' = x_0 \left(\frac{1}{3}\right)^2 = \frac{x_0}{9}$$

26.
$$W = \frac{1}{2} Kx^2$$
, $F = -Kx$

$$W = \frac{1}{2} K \cdot \frac{F^2}{K^2} = \frac{F^2}{2K}$$

$$W \propto \frac{1}{K} \implies \frac{W_A}{W_B} = \frac{K_B}{K_A} = \frac{K_B}{2K_B} = \frac{1}{2}$$

27.
$$: T = 2\pi \sqrt{\frac{M}{K}} : Mg = K\ell$$

Therefore
$$T = 2\pi \sqrt{\frac{(M+m)\ell}{Mg}}$$

28.
$$n = \frac{1}{2\pi} \sqrt{\frac{g_{\text{eff.}}}{\ell}}$$

In a freely falling lift $g_{eff} = g - g = 0$ then n = 0

29.
$$C_{PPC} = \frac{\epsilon_0 \epsilon_r A}{d} \implies C' = 6C$$

$$E_{PPC} = \frac{q}{\epsilon_0 \epsilon_r A} \implies E' = \frac{E}{6}$$

32. K.E._{max.} =
$$\frac{hc}{\lambda}$$
 - ϕ

Then K.E. will be greater than 0.5 eV

33.
$$(K.E.)_e = E_{ph}$$

$$\frac{1}{2} \text{ mv}^2 = \frac{\text{hc}}{\lambda \text{ph}} \implies \frac{1}{2} \left(\frac{\text{h}}{\lambda_e \text{v}} \right) \text{v}^2 = \frac{\text{hc}}{\lambda \text{ph}}$$

$$\frac{\lambda_e}{\lambda ph} = \frac{v}{2c}$$
 $c > v$

$$\lambda ph > \lambda_e$$

K.E. =
$$3.555 - 0.51 = 3.045$$
 MeV

$$35. r = \frac{\sqrt{2mqV_{acce}}}{qB}$$

$$r \propto \sqrt{m}$$

$$\frac{m_1}{m_2} = \left(\frac{r_1}{r_2}\right)^2$$

37. decay constant =
$$\frac{0.693}{T_{1/2}} = \frac{0.693}{77}$$

$$= 0.009/day$$

38.
$$\mu = \frac{\cos\frac{A}{2}}{\sin\frac{A}{2}} = \frac{\sin\frac{A+\delta_m}{2}}{\sin\frac{A}{2}}$$

$$\frac{\pi}{2} - \frac{A}{2} = \frac{A}{2} + \frac{\delta_m}{2}$$

$$\Rightarrow$$
 $\delta_{\rm m} = 180 - 2A$

39.
$$Q = \frac{K_1 A(\theta_1 - \theta)t}{d} = \frac{K_2 A(\theta - \theta_2)t}{d}$$
Or
$$K_1 \theta_1 - K_1 \theta = K_2 \theta - K_2 \theta_2$$

$$\theta = \frac{K_1\theta_1 + K_2\theta_2 + K_2\theta_2}{K_1\theta_1 + K_2\theta_2}$$

$$\theta = \frac{K_1\theta_1 + K_2\theta_2}{K_1 + K_2}$$

40.
$$\langle v \rangle_{\text{time}} = \frac{\int v dt}{\int dt} = \frac{\int_{0}^{1} at dt}{\int_{0}^{T} dt} = \frac{aT}{2}$$

$$_{space} = \frac{\int v ds}{\int ds} = \frac{\int v \frac{ds}{dt} dt}{\int \frac{ds}{dt} dt}$$

$$= \int_{0}^{T} v^{2} dt = \int_{0}^{T} a^{2} t^{2} dt = \frac{2}{3} aT$$

$$\int_{0}^{T} v dt = \int_{0}^{T} a t dt$$

$$\frac{\langle v \rangle_{\text{space}}}{\langle v \rangle_{\text{time}}} = \frac{2aT/3}{aT/2} = \frac{4}{3}$$

42.
$$V_0 = \sqrt{\frac{GM}{r}}$$
; $M = \text{mass of earth}$
 $V_0 \propto \frac{1}{\sqrt{r}}$ then $V_R > V_1$

43.
$$g = \frac{GM}{R^2}$$
 or $g \propto \frac{M}{R^2}$

$$g_{M} = \frac{M_{M}}{M_{E}} \times \left(\frac{R_{E}}{R_{M}}\right)^{2} \times g_{E}$$
$$= \frac{1}{81} \times (3.7)^{2} \times 9.8 = \frac{9.8}{6} = 1.65 \text{ m/s}^{2}$$

44. Let natural length of spring be λ_0 then according to question

$$4 = K (a - \ell_0)$$

$$5 = K (b - \ell_0)$$

$$\Rightarrow \ell_0 = 5a - 4b$$
; $k = \frac{1}{b-a}$

Now if we apply 9 N force then

$$9 = k(\ell - \ell_0) \implies 9 = \frac{1}{(b-a)} [\ell - 5a + 4b]$$

$$\Rightarrow \ell = 5b - 4a$$

45.
$$\overrightarrow{v} = \overrightarrow{w} \times \overrightarrow{r}$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 3 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \hat{i}(-2 - 3) - \hat{i}(1 - 3) + \hat{i}(1 - 3) + \hat{i}(1 - 3) + \hat{i}(1 - 3)$$

$$= \hat{i}(-2-3) - \hat{j}(1-3) + \hat{k}(1+2)$$

$$= -5\hat{i} + 2\hat{j} + 3\hat{k}$$

46. The centre of mass of the stick fall through 0.3 m. According to law of conservation of energy

$$\frac{1}{2}$$
 I ω^2 = mgh

$$\frac{1}{2} \frac{m\ell^2}{3} \frac{V^2}{\ell^2} = mgh \qquad (\because v = \omega \ell)$$

$$V = \sqrt{6gh} = \sqrt{6 \times 9.8 \times 0.3} = 4.2 \text{ m/s}$$

47.
$$\lambda = \frac{c}{v} = \frac{3 \times 10^8}{10 \times 10^6} = 30 \text{ meter}$$

48.
$$R = \frac{u^2 \sin 2\theta}{g}, \quad t_1 = \frac{2u \sin \theta}{g}$$

$$t_2 = \frac{2u\sin(90^{\circ} - \theta)}{g} = \frac{2u\cos\theta}{g}$$

$$\therefore \qquad t_1 t_2 = \frac{4u^2 \sin \theta \cos \theta}{g} = \frac{2R}{g}$$

or
$$t_1 t_2 \propto R$$

49. Compound microscope $M = m_0 \times m_e$

$$M = \frac{F_0}{u + F_0} \times m_e$$

$$\Rightarrow$$
 95 = $\frac{1/4}{-1/3.8+1/4}$ m_e

$$\Rightarrow$$
 95 = 19m_e \Rightarrow m_e = $\frac{95}{19}$ = 5