

Language Modelling for Sound Event Detection with Teacher Forcing & Scheduled Sampling

Konstantinos Drossos, Shayan Gharib, Paul Magron, and

Tuomas Virtanen

Audio Research Group, Tampere University, Finland

Introduction

- Sound event detection (SED) & SED methods
 - Modelling of temporal audio patterns
 - ► Usually involving recurrent neural networks (RNNs)
 - ► No temporal structure of class activities

Problem

- ► Temporal structure of sound events in real-life
 - ▶ Intra-structure, e.g. "footsteps"
- \triangleright Inter-structure, e.g. "car horn" \rightarrow "car passing by"
- ► Exploitation of temporal structure of classes activities
 - ▶ Jointly learnt language model in SED
 - \triangleright Widely used in machine translation \rightarrow language model

Previous approaches

- ► HMM for sound event duration modelling [1]
- ► *n*-gram modelling [2]
- Connectionist temporal classification (CTC) loss [2]
- ► Time-shifted class activities as extra input to system [2]

Teacher forcing

- Teacher forcing
 - Jointly learnable language model
 - \triangleright Condition RNN input \rightarrow next time-step class activities
 - Using predicted activities
 - Learn to recover from errors
 - © Unstable training
 - On the correct conditioning on initial epochs
 - Using ground truth activities
 - Stable learning and correct conditioning on initial epochs
 - © Prone to errors

Teacher forcing & scheduled sampling

- **► Scheduled sampling** → best of both worlds
 - ▶ Gradually switch from ground truths to predictions

Evaluation & Results

- Datasets: Two real-life recordings, one synthetic
 - ▶ Real-life: DCASE 2016 & 2017
 - Synthetic: TUTSED-Synthetic 2017
- ▶ **Baseline** [3]: 3 CNN blocks, 1 GRU, 1 Classifier (CRNN)
- ▶ **Previous SOTA** [2]: *n*-grams for language model learning

Table 1: Mean/STD of F_1 score (higher is better) and error rate (*ER*) (lower is better). For [2] only the mean is available

	Baseline	[2]	Proposed
	TUT Sound Events 2016 dataset		
$\overline{\mathbf{F_1}}$	0.28/0.01	0.29	0.37/0.02
ER	0.86/0.02	0.94	0.79/0.01
	TUT Sound Events 2017 dataset		
$\overline{\mathbf{F_1}}$	0.48/0.01	_	0.50/0.02
ER	0.72/0.01	_	0.70/0.01
TUT-SED Synthetic 2016 dataset			
$\overline{\mathbf{F_1}}$	0.58/0.01	_	0.54/0.01
ER	0.54/0.01	_	0.61/0.02

Conclusions & future work

- Clear benefit on real-life recordings
- Performance drop on synthetic dataset
- ► Future work: explore learned language model

References

- [1] T. Hayashi et al., "Duration-controlled LSTM for polyphonic sound event detection," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 25, no. 11, pp. 2059-2070, November 2017.
- [2] G. Huang, T. Heittola, and T. Virtanen, "Using sequential information in polyphonic sound event detection," in 2018 16th International Workshop on Acoustic Signal Enhancement (IWAENC), Sep. 2018, pp. 291–295.
- [3] E. Çakir et. al, "Convolutional recurrent neural networks for polyphonic sound event detection," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 25, no. 6, pp. 1291–1303, June 2017.