

# SCHOOL OF ENGINEERING

# DATA MODELLING AND SIMULATION

Lecture 4: Partial Differential equations

By, Dr Mithun Poozhiyil

"Since Newton, mankind has come to realize that the laws of physics are always expressed in the language of differential equations."

## **Contents:**

- 1. Partial Differentiation
  - a. Introduction
  - b. Direct Partial Integration
  - c. Separation of variables
- 2. Wave equation
- 3. Heat Equation

## Differential vs Partial Differential equation (PD)

Derivative of a function with respect to the one variable

$$\frac{dy}{dx} = ky(t)$$

y depends only on one independent variable t



Derivative of a function with respect to the more than one variable

$$\frac{\delta^2 f}{\delta x^2} + \frac{\delta^2 f}{\delta u^2} = 0$$

f depends on two independent variables x and y



#### Applications:

- Heat conduction
- Hydrodynamics
- Aerodynamics etc.

#### Solutions:

- Difficult to solve (but few techniques are there)
- More difficult types By Numerical Methods

# Differential vs Partial Differential equation (PD)

Metal rod







Metal sheet





**Using Direct Partial Integration** 

### **Partial Integration**

Integrate  $\frac{\partial u}{\partial t} = 5\cos x \sin t$  partially with respect to t.

$$u = 5\cos x \int \sin t \, dt$$

$$= (5\cos x)(-\cos t)$$

$$= -5\cos x \cos t + f(x)$$

 Note that we no longer have a constant of integration (+C) but a function of integration (f(x)).

This merely demonstrates that we are aware that there could've been a function of x there prior to differentiation

**Partial Integration** 

**Using Direct Partial Integration** 

Integrate 
$$\frac{\partial^2 u}{\partial x \partial y} = 6x^2 \cos 2y$$
 partially with respect to y.

Integrating with respect to y and therefore, treating all x terms as constants gives

$$\frac{\partial u}{\partial x} = 6x^2 \int \cos 2y \, dy$$

$$= (6x^2) \left(\frac{1}{2}\sin 2y\right) + f(x)$$
 Are we done?

Now we can go on and integrate with respect to x to obtain an equation in terms of u. This means we must now treat any y terms as constants. This gives,

$$u = \frac{1}{2}\sin 2y \int 6x^2 + f(x) dx$$

$$= (2x^3) \left( \frac{1}{2} \sin 2y \right) + xf(x) + g(y)$$

$$= x^3 \sin 2y + xf(x) + g(y)$$

How to determine f(x) and g(y)?

We can determine the functions f(x) and g(y) using extra information called boundary conditions or initial conditions.

## **Using Direct Partial Integration**

**Example 3.** Solve the differential equation  $\frac{\partial^2 u}{\partial x^2} = 6x^2(2y-1)$  given the boundary

conditions that at x = 0,  $\frac{\partial u}{\partial x} = \sin 2y$  and  $u = \cos y$ .

First integrating partially with respect to x gives,

$$\frac{\partial u}{\partial x} = 2y - 1\int 6x^2 dx$$

$$= (2y-1)\frac{6x^3}{3} + f(y)$$

$$=2x^{3}(2y-1)+f(y)$$

Now applying the boundary conditions where  $\frac{\partial u}{\partial x} = \sin 2y$  at x = 0,

$$\sin 2y = 2(0)^{3}(2y-1) + f(y)$$

This gives,

$$f(y) = \sin 2y$$

And therefore,  $\frac{\partial u}{\partial x} = 2x^3(2y-1) + \sin 2y$ 

Now integrating again with respect to x gives,

$$u = \frac{2x^4}{4}(2y-1) + x\sin 2y + g(y)$$

Applying the boundary condition  $u = \cos y$  at x = 0 gives,

$$\cos y = \frac{2(0)^4}{4}(2y-1) + (0)\sin 2y + g(y)$$

And therefore,

$$g(y) = \cos y$$

This means the solution of the partial differential equation is,

$$u = \frac{x^4}{2}(2y-1) + x\sin y + \cos y$$

## **Using Direct Partial Integration**

**Example 4.** Solve the differential equation  $\frac{\partial^2 u}{\partial x \partial y} = \cos(x+y)$  given that  $\frac{\partial u}{\partial x} = 2$ 

when y=0 and  $u=y^2$  when x=0.

$$\frac{\partial u}{\partial x} = \int \cos(x+y) \, dy$$

$$= \sin(x+y) + f(x)$$

Now applying the boundary condition  $\frac{\partial u}{\partial x} = 2$  when y = 0 gives,

$$2 = \sin(x+0) + f(x)$$

$$f(x) = 2 - \sin x$$

And therefore,

$$\frac{\partial u}{\partial x} = \sin(x+y) + 2 - \sin x$$

Now integrating partially with respect to x gives,

$$u = \int \sin(x+y) + 2 - \sin x \, dx$$

$$= -\cos(x+y) + 2x + \cos x + f(y)$$

Applying the boundary condition  $u = y^2$  when x = 0 gives,

$$y^{2} = -\cos(0+y) + 2(0) + \cos 0 + f(y)$$

$$=1-\cos y+f(y)$$

$$f(y) = y^2 - 1 + \cos y$$

The solution of the differential equation is therefore,

$$u = -\cos(x + y) + 2x + \cos x + y^2 - 1 + \cos y$$

## Partial Differential equation (PD)

#### Important engineering Partial Differential Equations

(a) The wave equation, where the equation of motion is given by:

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

Where  $c^2 = \frac{T}{\rho}$ , with T being the tension in a string and  $\rho$  being the mass/unit length of the string.



$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial u}{\partial t}$$

Where  $c^2=\frac{h}{\sigma\!\rho}$  , with h being the thermal conductivity of the material and  $\rho$  being the mass/unit length of the material.





- Waves on a membrane
- Acoustic model for seismic waves
- Sound waves in liquids and gases



- Fluid mechanics,
- Atmospheric science,
- Climate physics

Separation of variables

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

X(x) is a function of x only

Let 
$$u(x,t) = X(x)T(t)$$

T(t) is a function of t only

Consider u = XT

then 
$$\frac{\partial u}{\partial x} = X'T$$
 and  $\frac{\partial^2 u}{\partial x^2} = X''T$   
 $\frac{\partial u}{\partial t} = XT'$  and  $\frac{\partial^2 u}{\partial t^2} = XT''$ 

Substituting into the partial differential equation  $\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$  gives:

$$X''T = \frac{1}{c^2}XT''$$

Separating the variables gives:

$$\frac{X''}{X} = \frac{1}{c^2} \frac{T''}{T}$$

Let 
$$\mu = \frac{X''}{X} = \frac{1}{c^2} \frac{T''}{T}$$
, where  $\mu$  is a constant.

The result of this is that we are now left with two ordinary differential equations that we can now solve, viz

$$X'' - \mu X = 0$$
 and  $T'' - c^2 \mu T = 0$ 

The solutions to these equations will depend on whether  $\mu > 0$ ,  $\mu = 0$  or  $\mu < 0$ .

| Condition | Characteristics         | Solution                                    |
|-----------|-------------------------|---------------------------------------------|
| μ = 0     | real and repeated roots | Ax + B                                      |
| μ > 0     | real and distinct roots | $Ae^{k_1x} + Be^{k_2x}$                     |
| μ < 0     | complex roots           | $e^{\alpha x}(A\cos\beta x + B\sin\beta x)$ |

Separation of variables

Finding Auxiliary equation

substitute  $X = e^{kx}$ 

**Example 1**. Find the general solution of the following differential equations:

- (a) X''-4X=0
- (b)
- T'' + 4T = 0

(a) If X''-4X=0 then the auxiliary equation is:

$$k^2 - 4 = 0$$

From which,

$$k = 2$$
 or  $k = -2$ 

The general solution is therefore,

$$X = Ae^{2x} + Be^{-2x}$$

 Condition
 Characteristics
 Solution

  $\mu = 0$  real and repeated roots
 Ax + B 

  $\mu > 0$  real and distinct roots
  $Ae^{k_1x} + Be^{k_2x}$ 
 $\mu < 0$  complex roots
  $e^{\alpha x}(A\cos\beta x + B\sin\beta x)$ 

(b) If T''+4T=0 then the auxiliary equation is:

$$k^2 + 4 = 0$$

From which,

$$k = 2j$$
 or  $k = -2j$ 

If the auxiliary equation has complex roots,  $\alpha+\beta j$  and  $\alpha-\beta j$ , then the complementary function is

$$y_{cf} = e^{\alpha x} (A\cos\beta x + B\sin\beta x)$$

The general solution is therefore,

$$T = e^{0} \left( A \cos 2t + B \sin 2t \right)$$

$$= A\cos 2t + B\sin 2t$$

## Partial Differential equation (PD)

### **Wave Equation**

Models the propagation of waves with speed v





A flexible elastic string stretched between two points at x=0 and x=L with uniform tension T

String is displaced slightly from its initial position = string will vibrate

A point P on the string depends on its distance from one end, will get displacement u = f(x,t)
 where x is its distance from O.

The equation of motion

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

| Condition | Characteristics         | Solution                              |
|-----------|-------------------------|---------------------------------------|
| μ = 0     | real and repeated roots | Ax + B                                |
| μ > 0     | real and distinct roots | $Ae^{k_1x} + Be^{k_2x}$               |
| μ<0       | complex roots           | $e^{ax}(A\cos\beta x + B\sin\beta x)$ |

## Wave equation solutions

#### Procedure

- Identify clearly the initial and boundary conditions.
- 2. Assume a solution of the form u = XT and express the equations in terms of X and T and their derivatives.
- 3. Separate the variables by transposing the equation and equate each side to a constant, say  $\mu$ ; two separate equations are obtained, one in x and one in t.
- 4. Let  $\mu = -p^2$  to give an oscillatory solution.
- 5. The two solutions are of the form:  $X = A\cos px + B\sin px \text{ and } T = A\cos pt + B\sin pt$ Then  $u(x,t) = \{(A\cos px + B\sin px)\}\{(C\cos pt + D\sin pt)\}$
- 6. Apply the boundary conditions to determine constants A and B.
- 7. Determine the general solution as an infinite sum.
- 8. Apply the remaining boundary and initial conditions and determine the coefficients  $A_n$  and  $B_n$  using Fourier series techniques.



## **Wave equation solutions**

**Example 3**. A stretched string of length 50cm is set oscillating by displacing its midpoint a distance of 2cm from its rest position and releasing it with zero velocity. Solve the wave equation  $\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$  where  $c^2 = 1$ , to determine the resulting motion u(x,t).



1. The boundary and initial conditions given are:

$$\begin{pmatrix} u(0,t) = 0 \\ u(50,t) = 0 \end{pmatrix}$$
 i.e. fixed end points

$$u(x,0) = f(x) = \frac{2}{25}x \qquad 0 \le x \le 25$$
$$= -\frac{2}{25}x + 4 \qquad 25 \le x \le 50$$

initial velocity is zero thus,  $\frac{\partial u}{\partial t} = 0$ 

2. Assuming a solution u = XT we get,

$$\frac{\partial u}{\partial x} = X'T$$
 and  $\frac{\partial^2 u}{\partial x^2} = X''T$ 

$$\frac{\partial u}{\partial t} = XT'$$
 and  $\frac{\partial^2 u}{\partial t^2} = XT''$ 

Substituting into  $\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$  gives,

$$X''T = \frac{1}{c^2}XT''$$
(since c<sup>2</sup> = 1)
$$X''T = XT''$$

3. Separating the variables gives:

$$X''-\mu X=0$$
 and  $T''-\mu T=0$ 

4. Letting  $\mu = -p^2$  to give an oscillatory solution gives:

$$X''+p^2X=0$$
 and  $T''+p^2T=0$ 

The auxiliary equation for each is,

$$k^2 + p^2 = 0$$
 Which gives,  
 $k = \sqrt{-p^2} = \pm pj$ 

5. Solving each equation gives,

$$u(x,t) = \{A\cos px + B\sin px\} \{C\cos pt + D\sin pt\}$$

| Condition | Characteristics         | Solution                              |
|-----------|-------------------------|---------------------------------------|
| μ = 0     | real and repeated roots | Ax + B                                |
| μ > 0     | real and distinct roots | $Ae^{k_1x} + Be^{k_2x}$               |
| μ < 0     | complex roots           | $e^{ax}(A\cos\beta x + B\sin\beta x)$ |

## Wave equation solutions

- 6. Apply the boundary conditions to determine constants A and B.
- 7. Determine the general solution as an infinite sum.
- 8. Apply the remaining boundary and initial conditions and determine the coefficients  $A_n$  and  $B_n$  using Fourier series techniques.
  - 5. Solving each equation gives,

$$u(x,t) = \{A\cos px + B\sin px\} \{C\cos pt + D\sin pt\}$$

- 6. Applying the boundary conditions to determine A and B gives,
- (i) u = 0 when x = 0, for all values of t, hence  $0 = A\{C\cos pt + D\sin pt\}$  from which we conclude that A = 0.

Therefore,

$$u(x,t) = B\sin px\{C\cos pt + D\sin pt\}$$
 Equation (a)

(ii) u = 0 when x = 50, for all values of t, hence  $0 = B\sin 50 p\{C\cos pt + D\sin pt\}$  where B cannot be 0 otherwise u(x,t) would also equal 0.

As B and  $C\cos pt + D\sin pt$  cannot be zero then  $\sin 50p$  must be zero hence,

$$\sin 50 p = 0$$

From which,

$$50 p = n\pi$$

$$p = \frac{n\pi}{50}$$

7. Substituting into equation (a) above gives:

$$u(x,t) = B\sin\frac{n\pi x}{50} \left\{ C\cos\frac{n\pi t}{50} + D\sin\frac{n\pi t}{50} \right\} \qquad u_n(x,t) = f(x) = \sum_{n=1}^{\infty} \left\{ \sin\frac{n\pi x}{50} \left( A_n \cos\frac{nc\pi t}{50} + B_n \sin\frac{nc\pi t}{50} \right) \right\}$$

8. Now applying the remaining boundary conditions:

$$u(x,0) = f(x) = \frac{2}{25}x$$
  $0 \le x \le 25$ 

$$=-\frac{2}{25}x+4$$
  $25 \le x \le 50$ 

$$A_n = \frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n\pi x}{l} dx = \frac{2}{50} \left[ \int_{0}^{25} \left( \frac{2}{25} x \right) \sin \frac{n\pi x}{50} dx + \int_{25}^{50} \left( \frac{100 - 2x}{25} \right) \sin \frac{n\pi x}{50} dx \right]$$

Each integral is determined using integration by parts with the result:

$$A_n = \frac{16}{n^2 \pi^2} \sin \frac{n\pi}{2}$$

Secondly,

$$B_n = \frac{2}{nc\pi} \int_0^l g(x) \sin \frac{n\pi x}{l} dx$$

From the initial condition  $\left[\frac{\partial u}{\partial t}\right]_{t=0}=0=g(x)$  ,

$$B_n = 0$$

Substituting into our equation,

$$u_n(x,t) = \sum_{n=1}^{\infty} \left\{ \sin \frac{n\pi x}{50} \left( A_n \cos \frac{n\pi t}{50} + B_n \sin \frac{n\pi t}{50} \right) \right\}$$

$$= \sum_{n=1}^{\infty} \left\{ \sin \frac{n\pi x}{50} \left( \frac{16}{n^2 \pi^2} \sin \frac{n\pi}{2} \cos \frac{n\pi t}{50} + (0) \sin \frac{n\pi t}{50} \right) \right\}$$

Hence, our final solution is,

$$u(x,t) = \frac{16}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{n\pi x}{50} \sin \frac{n\pi}{2} \cos \frac{n\pi t}{50}$$

## **Self study**

- 1. Solutions of partial differential equation
- 2. Auxiliary equation
- 3. ToDo

**Example 2**. Solve the wave equation  $\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$  given the initial and boundary conditions:

- (a) The string is fixed at both ends, i.e. at x = 0 and x = 1 for all values of t.
- (b) The initial deflection of the string is denoted by f(x).
- (c) The initial velocity of P is  $\left[\frac{\partial u}{\partial t}\right]_{t=0} = g(x)$