Kompresja bezstratna. Kody Tunstalla. Kodowanie arytmetyczne Kodowanie słownikowe i predykcyjne. Kodowanie i bezpieczeństwo informacji

Filip Zagórski

8 maja 2012

 Wszystkie słowa kodowe mają tą samą długość ale jeden kod może kodować różną liczbę liter alfabetu wejściowego.

- Wszystkie słowa kodowe mają tą samą długość ale jeden kod może kodować różną liczbę liter alfabetu wejściowego.
- Chcemy zmaksymalizować średnią liczbę symboli z pierwotnego alfabetu reprezentowanych przez słowa kodowe.

- Wszystkie słowa kodowe mają tą samą długość ale jeden kod może kodować różną liczbę liter alfabetu wejściowego.
- Chcemy zmaksymalizować średnią liczbę symboli z pierwotnego alfabetu reprezentowanych przez słowa kodowe.
- Alfabet wejściowy: litery a₁, a₂,..., a_N
 z prawdopodobieństwami p₁, p₂,..., p_N (N symboli).

- Wszystkie słowa kodowe mają tą samą długość ale jeden kod może kodować różną liczbę liter alfabetu wejściowego.
- Chcemy zmaksymalizować średnią liczbę symboli z pierwotnego alfabetu reprezentowanych przez słowa kodowe.
- Alfabet wejściowy: litery a₁, a₂,..., a_N
 z prawdopodobieństwami p₁, p₂,..., p_N (N symboli).
- Kody są długości n bitów.

 Przyporządkowujemy symbolom alfabetu N różnych słów kodowych (o długości n).

- Przyporządkowujemy symbolom alfabetu N różnych słów kodowych (o długości n).
- Dopóki liczba niewykorzystanych słów kodowych jest większa niż N – 1:

- Przyporządkowujemy symbolom alfabetu N różnych słów kodowych (o długości n).
- Dopóki liczba niewykorzystanych słów kodowych jest większa niż N – 1:
 - wybierz słowo kodowe e odpowiadające ciągowi o największym prawdopodobieństwie;

- Przyporządkowujemy symbolom alfabetu N różnych słów kodowych (o długości n).
- Dopóki liczba niewykorzystanych słów kodowych jest większa niż N – 1:
 - wybierz słowo kodowe e odpowiadające ciągowi o największym prawdopodobieństwie;
 - usuń e z kodu;

- Przyporządkowujemy symbolom alfabetu N różnych słów kodowych (o długości n).
- Dopóki liczba niewykorzystanych słów kodowych jest większa niż N – 1:
 - wybierz słowo kodowe e odpowiadające ciągowi o największym prawdopodobieństwie;
 - usuń e z kodu;
 - dodaj do kodu ciągi powstałe z dodania a₁,..., a_n
 jako sufiksów ciągu odpowiadającego kodowi e
 (przypisz im odpowiednie prawdopodobieństwa).

- Przyporządkowujemy symbolom alfabetu N różnych słów kodowych (o długości n).
- Dopóki liczba niewykorzystanych słów kodowych jest większa niż N – 1:
 - wybierz słowo kodowe e odpowiadające ciągowi o największym prawdopodobieństwie;
 - usuń e z kodu;
 - dodaj do kodu ciągi powstałe z dodania a₁,..., a_n
 jako sufiksów ciągu odpowiadającego kodowi e
 (przypisz im odpowiednie prawdopodobieństwa).

Co najmniej jedno słowo kodowe zostanie niewykorzystane

Weźmy alfabet a, b, c (N = 3)
z prawdopodobieństwami P(a) = 0.6, P(b) = 0.3
i P(c) = 0.1.

- Weźmy alfabet a, b, c (N = 3) z prawdopodobieństwami P(a) = 0.6, P(b) = 0.3 i P(c) = 0.1.
- Ustalmy n = 3 (8 słów kodowych).

- Weźmy alfabet a, b, c (N = 3)
 z prawdopodobieństwami P(a) = 0.6, P(b) = 0.3
 i P(c) = 0.1.
- Ustalmy n = 3 (8 słów kodowych).
- Mamy 3 słowa kodowe odpowiadające a → 0.6, b → 0.3 i c → 0.1.

- Weźmy alfabet a, b, c (N = 3) z prawdopodobieństwami P(a) = 0.6, P(b) = 0.3 i P(c) = 0.1.
- Ustalmy n = 3 (8 słów kodowych).
- Mamy 3 słowa kodowe odpowiadające a → 0.6, b → 0.3 i c → 0.1.
- Zastępujemy a i otrzymujemy 5 kodów: $aa \rightarrow 0.36$, $ab \rightarrow 0.18$, $ac \rightarrow 0.06$, $b \rightarrow 0.3$ $c \rightarrow 0.1$.

- Weźmy alfabet a, b, c (N = 3) z prawdopodobieństwami P(a) = 0.6, P(b) = 0.3 i P(c) = 0.1.
- Ustalmy n = 3 (8 słów kodowych).
- Mamy 3 słowa kodowe odpowiadające $a \rightarrow 0.6$, $b \rightarrow 0.3$ i $c \rightarrow 0.1$.
- Zastępujemy a i otrzymujemy 5 kodów: $aa \rightarrow 0.36$, $ab \rightarrow 0.18$, $ac \rightarrow 0.06$, $b \rightarrow 0.3$ $c \rightarrow 0.1$.
- Zastępujemy aa i otrzymujemy 7 kodów: $aaa \rightarrow 0.216$, $aab \rightarrow 0.108$, $aac \rightarrow 0.036$, $ab \rightarrow 0.18$, $ac \rightarrow 0.06$, $b \rightarrow 0.3$ i $c \rightarrow 0.1$.

- Weźmy alfabet a, b, c (N = 3)
 z prawdopodobieństwami P(a) = 0.6, P(b) = 0.3
 i P(c) = 0.1.
- Ustalmy n = 3 (8 słów kodowych).
- Mamy 3 słowa kodowe odpowiadające $a \rightarrow 0.6$, $b \rightarrow 0.3$ i $c \rightarrow 0.1$.
- Zastępujemy a i otrzymujemy 5 kodów: $aa \rightarrow 0.36$, $ab \rightarrow 0.18$, $ac \rightarrow 0.06$, $b \rightarrow 0.3$ $c \rightarrow 0.1$.
- Zastępujemy aa i otrzymujemy 7 kodów: $aaa \rightarrow 0.216$, $aab \rightarrow 0.108$, $aac \rightarrow 0.036$, $ab \rightarrow 0.18$, $ac \rightarrow 0.06$, $b \rightarrow 0.3$ i $c \rightarrow 0.1$.

							???
000	001	010	011	100	101	110	111

				ac			
000	001	010	011	100	101	110	111

	aab							
000	001	010	011	100	101	110	111	

Zakodujmy tekst abcaabbaa.

aaa	aab	aac	ab	ac	b	С	???
000	001	010	011	100	101	110	111

- Zakodujmy tekst abcaabbaa.
- Otrzymujemy: 001110001101??.

aaa	aab	aac	ab	ac	b	С	???	
000	001	010	011	100	101	110	111	

- Zakodujmy tekst abcaabbaa.
- Otrzymujemy: 001110001101??.
- Na końcu tekstu może pojawić się blok dla którego nie ma słowa kodowego, wtedy wysyłamy specjalny kod i normalne kody liter.

aaa								
000	001	010	011	100	101	110	111	

- Zakodujmy tekst abcaabbaa.
- Otrzymujemy: 001110001101??.
- Na końcu tekstu może pojawić się blok dla którego nie ma słowa kodowego, wtedy wysyłamy specjalny kod i normalne kody liter.
- 0011100011011111kod(a)kod(a)

Średnia długość

• Średnia ilość bitów na jeden symbol wejściowy.

$$\sum_{i=1}^{2^n-1} P(e_i) \frac{n}{|e_i|},$$

gdzie e_i - słowo odpowiadające i-temu kodowi.

Średnia długość

• Średnia ilość bitów na jeden symbol wejściowy.

$$\sum_{i=1}^{2^n-1} P(e_i) \frac{n}{|e_i|},$$

gdzie *e_i* - słowo odpowiadające *i*-temu kodowi.

• Dla przykładu z poprzedniego slajdu: $(0.216 + 0.108 + 0.036)\frac{3}{3} + (0.18 + 0.06)\frac{3}{2} + (0.3 + 0.1)\frac{3}{4} = 1.92$

Średnia długość

• Średnia ilość bitów na jeden symbol wejściowy.

$$\sum_{i=1}^{2^n-1} P(e_i) \frac{n}{|e_i|},$$

gdzie e_i - słowo odpowiadające i-temu kodowi.

- Dla przykładu z poprzedniego slajdu: $(0.216+0.108+0.036)\frac{3}{3}+$ $(0.18+0.06)\frac{3}{2}+$ $(0.3+0.1)\frac{3}{1}=1.92$
- Średnia długość kodu Huffmana dla tego przypadku to 1.4.

Kody Tunstalla - podsumowanie

Zmienna długość bloków wejściowych, stała długość wyjściowych.

Kody Tunstalla - podsumowanie

- Zmienna długość bloków wejściowych, stała długość wyjściowych.
- Kompresja i odporność na przekłamania.

Kody Tunstalla - podsumowanie

- Zmienna długość bloków wejściowych, stała długość wyjściowych.
- Kompresja i odporność na przekłamania.
- Jednoznaczność kodowania i dekodowania.

Kodowanie arytmetyczne

 Tekst wejściowy zostaje odwzorowany na liczbę z przedziału [0, 1).

Kodowanie arytmetyczne

- Tekst wejściowy zostaje odwzorowany na liczbę z przedziału [0, 1).
- Kod tekstu to liczba n długość tekstu i liczba z (znacznik) reprezentowany z odpowiednio dobraną dokładnością.

Kodowanie arytmetyczne

- Tekst wejściowy zostaje odwzorowany na liczbę z przedziału [0, 1).
- Kod tekstu to liczba n długość tekstu i liczba z (znacznik) reprezentowany z odpowiednio dobraną dokładnością.
- Elementom alfabetu a_1, \ldots, a_N z prawdopodobieństwami p_1, \ldots, p_N przyporządkowujemy przedział [F(i), F(i+1)), gdzie $F(i) = \sum_{j=1}^{i-1} p_i$.

• Mamy ciąg liter $x_1 x_2 \dots x_m$ z alfabetu a_1, \dots, a_N .

- Mamy ciąg liter $x_1x_2...x_m$ z alfabetu $a_1,...,a_N$.
- Na początku przedział [I, p) = [0, 1).

- Mamy ciąg liter $x_1x_2...x_m$ z alfabetu $a_1,...,a_N$.
- Na początku przedział [I, p) = [0, 1).
- Dla i = 1, 2, ..., m:

- Mamy ciąg liter $x_1x_2...x_m$ z alfabetu $a_1,...,a_N$.
- Na początku przedział [I, p) = [0, 1).
- Dla i = 1, 2, ..., m:
 - Niech $x_i = a_j$.

- Mamy ciąg liter $x_1 x_2 \dots x_m$ z alfabetu a_1, \dots, a_N .
- Na początku przedział [I, p) = [0, 1).
- Dla i = 1, 2, ..., m:
 - Niech $x_i = a_j$.
 - Wtedy $d \leftarrow p l$, $p \leftarrow l + F(j+1)d$ i $l \leftarrow l + F(j)d$.

Kodowanie

- Mamy ciąg liter $x_1x_2...x_m$ z alfabetu $a_1,...,a_N$.
- Na początku przedział [I, p) = [0, 1).
- Dla i = 1, 2, ..., m:
 - Niech $x_i = a_i$.
 - Wtedy $d \leftarrow p l$, $p \leftarrow l + F(j+1)d$ i $l \leftarrow l + F(j)d$.
- Znacznik to dowolna liczba z przedziału [I, p), np. z = (I + p)/2.

 Weźmy alfabet a, b, c z prawdopodobieństwami 0.7, 0.1, 0.2.

- Weźmy alfabet a, b, c z prawdopodobieństwami 0.7, 0.1, 0.2.
- Zakodujmy tekst abc.

- Weźmy alfabet a, b, c z prawdopodobieństwami 0.7, 0.1, 0.2.
- Zakodujmy tekst abc.
- Na początku mamy przedział: [0, 1).

- Weźmy alfabet a, b, c z prawdopodobieństwami 0.7, 0.1, 0.2.
- Zakodujmy tekst abc.
- Na początku mamy przedział: [0,1).
- F(1) = 0, F(2) = 0.7, F(3) = 0.8, F(4) = 1.

- Weźmy alfabet a, b, c z prawdopodobieństwami 0.7, 0.1, 0.2.
- Zakodujmy tekst abc.
- Na początku mamy przedział: [0, 1).
- F(1) = 0, F(2) = 0.7, F(3) = 0.8, F(4) = 1.
- Kodujemy *a* i otrzymujemy przedział [0, 0.7).

- Weźmy alfabet a, b, c z prawdopodobieństwami 0.7, 0.1, 0.2.
- Zakodujmy tekst abc.
- Na początku mamy przedział: [0, 1).
- F(1) = 0, F(2) = 0.7, F(3) = 0.8, F(4) = 1.
- Kodujemy a i otrzymujemy przedział [0, 0.7).
- Kodujemy b i otrzymujemy przedział [0.49, 0.56).

- Weźmy alfabet a, b, c z prawdopodobieństwami 0.7, 0.1, 0.2.
- Zakodujmy tekst abc.
- Na początku mamy przedział: [0, 1).
- F(1) = 0, F(2) = 0.7, F(3) = 0.8, F(4) = 1.
- Kodujemy *a* i otrzymujemy przedział [0, 0.7).
- Kodujemy b i otrzymujemy przedział [0.49, 0.56).
- Kodujemy c i otrzymujemy przedział [0.546, 0.56).

- Weźmy alfabet a, b, c z prawdopodobieństwami 0.7, 0.1, 0.2.
- Zakodujmy tekst abc.
- Na początku mamy przedział: [0, 1).
- F(1) = 0, F(2) = 0.7, F(3) = 0.8, F(4) = 1.
- Kodujemy *a* i otrzymujemy przedział [0, 0.7).
- Kodujemy b i otrzymujemy przedział [0.49, 0.56).
- Kodujemy c i otrzymujemy przedział [0.546, 0.56).
- Za znacznik możemy przyjąć 0.553.

 Dla ustalonej długości tekstu n, każdy ciąg jest odwzorowany na przedział rozłączny z przedziałami odpowiadającymi innym ciągom. Gwarantuje to jednoznaczność kodowania.

- Dla ustalonej długości tekstu n, każdy ciąg jest odwzorowany na przedział rozłączny z przedziałami odpowiadającymi innym ciągom. Gwarantuje to jednoznaczność kodowania.
- Wygenerowanie znacznika dla konkretnego ciągu nie wymaga wyznaczania bądź pamiętania znaczników innych ciągów.

• Dostajemy *n* - długość tekstu i *z* - znacznik tekstu.

- Dostajemy *n* długość tekstu i *z* znacznik tekstu.
- $l \leftarrow 0 i p \leftarrow 1$.

- Dostajemy *n* długość tekstu i *z* znacznik tekstu.
- $I \leftarrow 0 i p \leftarrow 1$.
- Dla i = 1, 2, ..., n:

- Dostajemy n długość tekstu i z znacznik tekstu.
- $l \leftarrow 0 i p \leftarrow 1$.
- Dla i = 1, 2, ..., n:
 - Wybieramy j takie, że $l + F(j)(p-l) \le z < l + F(j+1)(p-l)$;

- Dostajemy n długość tekstu i z znacznik tekstu.
- $l \leftarrow 0 i p \leftarrow 1$.
- Dla i = 1, 2, ..., n:
 - Wybieramy j takie, że $l + F(j)(p-l) \le z < l + F(j+1)(p-l)$;
 - Przyjmujemy, że $x_i = a_j$;

- Dostajemy n długość tekstu i z znacznik tekstu.
- $l \leftarrow 0 i p \leftarrow 1$.
- Dla i = 1, 2, ..., n:
 - Wybieramy j takie, że $l + F(j)(p-l) \le z < l + F(j+1)(p-l)$;
 - Przyjmujemy, że $x_i = a_j$;
 - $d \leftarrow p l$, $p \leftarrow l + F(j+1)d$ i $l \leftarrow l + F(j)d$.

- Dostajemy n długość tekstu i z znacznik tekstu.
- $I \leftarrow 0 i p \leftarrow 1$.
- Dla i = 1, 2, ..., n:
 - Wybieramy j takie, że $l + F(j)(p l) \le z < l + F(j + 1)(p l)$;
 - Przyjmujemy, że $x_i = a_j$;
 - $d \leftarrow p l$, $p \leftarrow l + F(j+1)d$ i $l \leftarrow l + F(j)d$.
- Ciąg oryginalny to x_1, \ldots, x_n .

•
$$P(a) = 0.7$$
, $P(b) = 0.1$, $P(c) = 0.2$, $z = 0.55$ i $n = 3$.

- P(a) = 0.7, P(b) = 0.1, P(c) = 0.2, z = 0.55 i n = 3.
- F(1) = 0, F(2) = 0.7, F(3) = 0.8 i F(4) = 1.

- P(a) = 0.7, P(b) = 0.1, P(c) = 0.2, z = 0.55 i n = 3.
- F(1) = 0, F(2) = 0.7, F(3) = 0.8 i F(4) = 1.
- I = 0 i p = 1.

- P(a) = 0.7, P(b) = 0.1, P(c) = 0.2, z = 0.55 i n = 3.
- F(1) = 0, F(2) = 0.7, F(3) = 0.8 i F(4) = 1.
- l = 0 i p = 1.
- Dla *a* mamy $0 \le 0.55 < 0.7$, stąd $x_1 = a$, l = 0 i p = 0.7.

- P(a) = 0.7, P(b) = 0.1, P(c) = 0.2, z = 0.55 i n = 3.
- F(1) = 0, F(2) = 0.7, F(3) = 0.8 i F(4) = 1.
- I = 0 i p = 1.
- Dla *a* mamy $0 \le 0.55 < 0.7$, stąd $x_1 = a$, l = 0 i p = 0.7.
- Dla *b* mamy $0.49 \le 0.55 < 0.56$, stąd $x_2 = b$, l = 0.49 i p = 0.56.

- P(a) = 0.7, P(b) = 0.1, P(c) = 0.2, z = 0.55 i n = 3.
- F(1) = 0, F(2) = 0.7, F(3) = 0.8 i F(4) = 1.
- I = 0 i p = 1.
- Dla *a* mamy $0 \le 0.55 < 0.7$, stąd $x_1 = a$, l = 0 i p = 0.7.
- Dla *b* mamy $0.49 \le 0.55 < 0.56$, stąd $x_2 = b$, l = 0.49 i p = 0.56.
- Dla c mamy 0.546 \leq 0.55 < 0.56, stad $x_3 = c$, l = 0.546 i p = 0.56.

- P(a) = 0.7, P(b) = 0.1, P(c) = 0.2, z = 0.55 i n = 3.
- F(1) = 0, F(2) = 0.7, F(3) = 0.8 i F(4) = 1.
- I = 0 i p = 1.
- Dla *a* mamy $0 \le 0.55 < 0.7$, stąd $x_1 = a$, l = 0 i p = 0.7.
- Dla *b* mamy $0.49 \le 0.55 < 0.56$, stąd $x_2 = b$, l = 0.49 i p = 0.56.
- Dla c mamy 0.546 \leq 0.55 < 0.56, stad $x_3 = c$, l = 0.546 i p = 0.56.
- Odkodowany ciąg to abc

 Jak reprezentować znacznik (liczba rzeczywista) aby był jak najkrótszy.

- Jak reprezentować znacznik (liczba rzeczywista) aby był jak najkrótszy.
- Niech x = x₁,..., x_n będzie ciągiem danych o prawdopodobieństwie wystąpienia
 P(x) = Πⁿ_{i=1}P(x_i). Zaokrąglenie z' znacznika z do

$$m(x) = \left\lceil \log \frac{1}{P(X)} \right\rceil + 1$$

bitów gwarantuje jednoznaczność kodowania.

- Jak reprezentować znacznik (liczba rzeczywista) aby był jak najkrótszy.
- Niech x = x₁,..., x_n będzie ciągiem danych o prawdopodobieństwie wystąpienia
 P(x) = Πⁿ_{i=1}P(x_i). Zaokrąglenie z' znacznika z do

$$m(x) = \left\lceil \log \frac{1}{P(X)} \right\rceil + 1$$

bitów gwarantuje jednoznaczność kodowania.

 Kod arytmetyczny dla ustalonej długości tekstu jest kodem prefiksowym.

•
$$P(a) = 0.7$$
, $P(b) = 0.1$, $P(c) = 0.2$.

- P(a) = 0.7, P(b) = 0.1, P(c) = 0.2.
- Kod dla tekstu *abc* to $0.553 = (0.100011011)_2$.

- P(a) = 0.7, P(b) = 0.1, P(c) = 0.2.
- Kod dla tekstu *abc* to $0.553 = (0.100011011)_2$.
- P(abc) = 0.014.

- P(a) = 0.7, P(b) = 0.1, P(c) = 0.2.
- Kod dla tekstu *abc* to $0.553 = (0.100011011)_2$.
- P(abc) = 0.014.
- $\left[\log \frac{1}{0.014}\right] + 1 = 8$

- P(a) = 0.7, P(b) = 0.1, P(c) = 0.2.
- Kod dla tekstu *abc* to $0.553 = (0.100011011)_2$.
- P(abc) = 0.014.
- $\left[\log \frac{1}{0.014}\right] + 1 = 8$
- Czyli do zakodowania tekstu wystarczy wysłać 10001101.

Usprawnienia

 Dla długich ciągów potrzebujemy długich liczb i przetwarzanie wymaga przeczytania całego ciągu.

Usprawnienia

- Dla długich ciągów potrzebujemy długich liczb i przetwarzanie wymaga przeczytania całego ciągu.
- Można zmodyfikować algorytm do pracy przyrostowej
 znacznik powstaje etapami i można wysyłać go fragmentami.

Kodowanie ze skalowaniem

Po zakodowaniu kolejnej litery:

• Jeśli $[I, p) \subseteq [0, 0.5)$:

- Jeśli [*I*, *p*) ⊆ [0, 0.5):
 - zamień [I, p) na [2I, 2p);

- Jeśli [I, p) ⊆ [0, 0.5):
 - zamień [I, p) na [2I, 2p);
 - dołącz do kodu słowo 01 licznik;

- Jeśli [I, p) ⊆ [0, 0.5):
 - zamień [I, p) na [2I, 2p);
 - dołącz do kodu słowo 01 licznik;
 - $licznik \leftarrow 0$.

- Jeśli $[I, p) \subseteq [0, 0.5)$:
 - zamień [I, p) na [2I, 2p);
 - dołącz do kodu słowo 01 licznik;
 - licznik ← 0.
- Jeśli [*I*, *p*) ⊆ [0.5, 1):

- Jeśli $[I, p) \subseteq [0, 0.5)$:
 - zamień [I, p) na [2I, 2p);
 - dołącz do kodu słowo 01 licznik;
 - $licznik \leftarrow 0$.
- Jeśli $[I, p) \subseteq [0.5, 1)$:
 - zamień [l,p) na [2l-1,2p-1);

- Jeśli $[I, p) \subseteq [0, 0.5)$:
 - zamień [I, p) na [2I, 2p);
 - dołącz do kodu słowo 01 licznik;
 - licznik ← 0.
- Jeśli [I, p) ⊆ [0.5, 1):
 - zamień [l,p) na [2l-1,2p-1);
 - dołącz do kodu słowo 10 licznik;

- Jeśli $[I, p) \subseteq [0, 0.5)$:
 - zamień [I, p) na [2I, 2p);
 - dołącz do kodu słowo 01 licznik;
 - $licznik \leftarrow 0$.
- Jeśli [I, p) ⊆ [0.5, 1):
 - zamień [l,p) na [2l-1,2p-1);
 - dołącz do kodu słowo 10^{licznik};
 - licznik ← 0.

- Jeśli $[I, p) \subseteq [0, 0.5)$:
 - zamień [I, p) na [2I, 2p);
 - dołącz do kodu słowo 01 licznik;
 - licznik ← 0.
- Jeśli [*I*, *p*) ⊆ [0.5, 1):
 - zamień [l,p) na [2l-1,2p-1);
 - dołącz do kodu słowo 10^{licznik};
 - licznik ← 0.
- Jeśli I < 0.5 < p i $[I, p) \subseteq [0.25, 0.75)$:

- Jeśli $[I, p) \subseteq [0, 0.5)$:
 - zamień [I, p) na [2I, 2p);
 - dołącz do kodu słowo 01 licznik;
 - licznik ← 0.
- Jeśli [*I*, *p*) ⊆ [0.5, 1):
 - zamień [I, p) na [2I 1, 2p 1);
 - dołącz do kodu słowo 10^{licznik};
 - licznik ← 0.
- Jeśli I < 0.5 < p i $[I, p) \subseteq [0.25, 0.75)$:
 - zamień [I, p) na [2I 0.5, 2p 0.5);

- Jeśli $[I, p) \subseteq [0, 0.5)$:
 - zamień [I, p) na [2I, 2p);
 - dołącz do kodu słowo 01 licznik;
 - licznik ← 0.
- Jeśli [*I*, *p*) ⊆ [0.5, 1):
 - zamień [I, p) na [2I 1, 2p 1);
 - dołącz do kodu słowo 10^{licznik};
 - licznik ← 0.
- Jeśli I < 0.5 < p i $[I, p) \subseteq [0.25, 0.75)$:
 - zamień [I, p) na [2I 0.5, 2p 0.5);
 - licznik ← licznik + 1.

Po zakodowaniu kolejnej litery:

- Jeśli $[I, p) \subseteq [0, 0.5)$:
 - zamień [I, p) na [2I, 2p);
 - dołącz do kodu słowo 01 licznik;
 - licznik ← 0.
- Jeśli [I, p) ⊆ [0.5, 1):
 - zamień [I, p) na [2I 1, 2p 1);
 - dołącz do kodu słowo 10 licznik;
 - licznik ← 0.
- Jeśli I < 0.5 < p i $[I, p) \subseteq [0.25, 0.75)$:
 - zamień [I, p) na [2I 0.5, 2p 0.5);
 - licznik ← licznik + 1.

Analogicznie można zmodyfikować procedurę dekodowania aby dekodowanie odbywało się na podstawie otrzymywanych fragmentów.

Dalsze możliwe usprawnienia

 Przejście z arytmetyki zmiennoprzecinkowej na arytmetykę całkowitoliczbową: zastąpienie przedziału [0,1) przez przedział liczb całkowitych [0,2^m – 1].

Dalsze możliwe usprawnienia

- Przejście z arytmetyki zmiennoprzecinkowej na arytmetykę całkowitoliczbową: zastąpienie przedziału [0,1) przez przedział liczb całkowitych [0,2^m – 1].
- Problem: Jak dobrać m aby uniknąć błędów zaokrągleń.

Algorytmy słownikowe - Motywacje

- Dane, które kompresujemy, bardzo często nie tworzą ciągu wartości niezależnych (kolejne symbole są zależne od poprzednich).
- Pewne ciągi (słowa) powtarzają się bardzo często.

Słowniki statyczne

- Mamy ustalony stały słownik.
- Tekst kodujemy jako ciąg pozycji ze słownika.
- Co z elementami których nie ma w słowniku?
 Można np. umieścić pojedyńcze litery w słowniku.
- Niestety słowniki statyczne są wrażliwe na zmianę charakteru danych.

Przykład: kodowanie tekstów programów - statyczny słownik słów kluczowych.

Kodowanie digramowe

- Ustalamy wielkość słownika np. 256 (28)
- Słownik składa się ze wszystkich liter i tylu par liter (digramów), ile się jeszcze zmieści (najbardziej prawdopodobne pary).
- Na przykład w kodzie ASCII używamy przeważnie tylko 95 znaków (znaki drukowalne) i pozostałe 161 możemy zastąpić najczęściej występującymi parami.

Słowniki dynamiczne

- Słownik tworzymy w trakcie kodowania.
- Słownik dostosowuje się do charakteru danych.
- Dekoder może go odtworzyć w oparciu o odkodowaną część danych (nie trzeba go dołączać do danych).

Ziv, Lempel, LZ77

- Idea: słownikiem jest zakodowana/odkodowana część tekstu.
- Dla zakodowanej części długości n i niezakodowanej długości m, czyli dla ciągu x₁ ... x_nx_{n+1} ... x_{n+m} szukamy najdłuższego podsłowa w ciągu x₁ ... x_n będące prefiksem ciągu x_{n+1} ... x_{n+m} (dopasowanie).
- Jako kod podajemy trzy liczby:
 - wielkość przesunięcia w lewo
 - ilość kopiowanych znaków
 - kod pierwszej niepasującej litery.
- Jeśli pojawia się nowa litera której nie można znaleźć w zakodowanej części to wysyłamy trójkę (0,0, kod)

• Ustalamy n = 7 i $m = 8 (2^k - 1 i 2^k)$.

- Ustalamy n = 7 i $m = 8 (2^k 1 i 2^k)$.
- wabba-wabba-wabba-woo-woo

- Ustalamy n = 7 i $m = 8 (2^k 1 i 2^k)$.
- wabba-wabba-wabba-woo-woo(0,0,k(w))

- Ustalamy n = 7 i $m = 8 (2^k 1 i 2^k)$.
- wabba-wabba-woo-woo (0,0,k(w))
- wabba-wabba-wabba-woo-woo

- Ustalamy n = 7 i $m = 8 (2^k 1 i 2^k)$.
- wabba-wabba-wabba-woo-woo(0,0,k(w))
- wabba-wabba-wabba-woo-woo(0,0,k(a))

- Ustalamy n = 7 i $m = 8 (2^k 1 i 2^k)$.
- wabba-wabba-wabba-woo-woo(0,0,k(w))
- wabba-wabba-wabba-woo-woo (0,0,k(a))
- wabba-wabba-wabba-woo-woo

```
Ustalamy n = 7 i m = 8 (2<sup>k</sup> - 1 i 2<sup>k</sup>).
wabba-wabba-wabba-woo-woo (0,0,k(w))
```

wabba-wabba-wabba-woo-woo(0,0,k(a))

wabba-wabba-wabba-woo-woo(0,0,k(b))

```
• Ustalamy n = 7 i m = 8 (2^k - 1 i 2^k).
```

wabba-wabba-wabba-woo-woo(0,0,k(w))

wabba-wabba-wabba-woo-woo(0,0,k(a))

wabba-wabba-wabba-woo-woo(0,0,k(b))

wabba-wabba-wabba-woo-woo

```
Ustalamy n = 7 i m = 8 (2<sup>k</sup> - 1 i 2<sup>k</sup>).
wabba-wabba-wabba-woo-woo (0,0,k(w))
wabba-wabba-wabba-woo-woo (0,0,k(a))
wabba-wabba-wabba-woo-woo (0,0,k(b))
wabba-wabba-wabba-woo-woo (1,1,k(a))
```

```
Ustalamy n = 7 i m = 8 (2<sup>k</sup> - 1 i 2<sup>k</sup>).
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
```

```
Ustalamy n = 7 i m = 8 (2<sup>k</sup> - 1 i 2<sup>k</sup>).
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
(0,0,k(a))
(0,0,k(b))
wabba-wabba-wabba-woo-woo
(0,0,k(a))
(0,0,k(b))
(0,0,k(c))
```

```
Ustalamy n = 7 i m = 8 (2<sup>k</sup> - 1 i 2<sup>k</sup>).
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
```

```
Ustalamy n = 7 i m = 8 (2<sup>k</sup> - 1 i 2<sup>k</sup>).
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo
(6,7,k(a))
```

```
Ustalamy n = 7 i m = 8 (2<sup>k</sup> - 1 i 2<sup>k</sup>).
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo-woo
```

```
Ustalamy n = 7 i m = 8 (2<sup>k</sup> - 1 i 2<sup>k</sup>).
wabba-wabba-wabba-woo-woo (0,0,k(w))
wabba-wabba-wabba-woo-woo (0,0,k(a))
wabba-wabba-wabba-woo-woo (0,0,k(b))
wabba-wabba-wabba-woo-woo (1,1,k(a))
wabba-wabba-wabba-woo-woo (6,7,k(a))
wabba-wabba-wabba-woo-woo (6,5,k(o))
```

```
• Ustalamy n = 7 i m = 8 (2^k - 1 i 2^k).
wabba-wabba-woo-woo-woo
                                 (0,0,k(w))
wabba-wabba-woo-woo-woo
                                 (0.0,k(a))
wabba-wabba-woo-woo-woo
                                 (0,0,k(b))
wabba-wabba-woo-woo-woo
                                 (1,1,k(a))
wabba-wabba-woo-woo-woo
                                 (0,0,k(-))
wabba-wabba-woo-woo-woo
                                 (6.7,k(a))
 wabba-wabba-woo-woo-woo
                                 (6.5,k(0))
wabba-wabba-wabba-woo-woo
```

```
• Ustalamy n = 7 i m = 8 (2^k - 1 i 2^k).
wabba-wabba-woo-woo-woo
                                 (0,0,k(w))
wabba-wabba-woo-woo-woo
                                 (0.0,k(a))
wabba-wabba-woo-woo-woo
                                 (0,0,k(b))
wabba-wabba-woo-woo-woo
                                 (1,1,k(a))
wabba-wabba-woo-woo-woo
                                 (0,0,k(-))
wabba-wabba-woo-woo-woo
                                 (6.7,k(a))
wabba-wabba-woo-woo-woo
                                 (6.5,k(0))
                                 (1,1,k(-))
wabba-wabba-wabba-woo-woo
```

```
• Ustalamy n = 7 i m = 8 (2^k - 1 i 2^k).
wabba-wabba-woo-woo-woo
                                 (0,0,k(w))
wabba-wabba-woo-woo-woo
                                 (0.0,k(a))
wabba-wabba-woo-woo-woo
                                 (0,0,k(b))
wabba-wabba-woo-woo-woo
                                 (1,1,k(a))
wabba-wabba-woo-woo-woo
                                 (0,0,k(-))
wabba-wabba-woo-woo-woo
                                 (6,7,k(a))
 wabba-wabba-woo-woo-woo
                                 (6.5,k(0))
                                 (1,1,k(-))
wabba-wabba-wabba-woo-woo
wabba-wabba-wabba-woo-woo-woo
```

```
• Ustalamy n = 7 i m = 8 (2^k - 1 i 2^k).
wabba-wabba-woo-woo-woo
                                 (0,0,k(w))
wabba-wabba-woo-woo-woo
                                  (0.0,k(a))
wabba-wabba-woo-woo-woo
                                 (0,0,k(b))
wabba-wabba-woo-woo-woo
                                 (1,1,k(a))
wabba-wabba-woo-woo-woo
                                  (0,0,k(-))
wabba-wabba-woo-woo-woo
                                 (6,7,k(a))
 wabba-wabba-woo-woo-woo
                                  (6.5,k(0))
wabba-wabba-wabba-woo-woo
                                 (1,1,k(-))
wabba-wabba-wabba-woo-woo-woo
                                  (4,6,k(0))
```

• Ustalamy n = 7 i $m = 8 (2^k - 1 i 2^k)$.

- Ustalamy n = 7 i $m = 8 (2^k 1 i 2^k)$.
- (0,0,k(w))

- Ustalamy n = 7 i $m = 8 (2^k 1 i 2^k)$.
- (0,0,k(w)) w

- Ustalamy n = 7 i $m = 8 (2^k 1 i 2^k)$.
- (0,0,k(w)) w
- (0,0,k(a))

- Ustalamy n = 7 i $m = 8 (2^k 1 i 2^k)$.
- (0,0,k(w)) w
- (0,0,k(a)) wa

- Ustalamy n = 7 i $m = 8 (2^k 1 i 2^k)$.
- (0,0,k(w)) w
- (0,0,k(a)) wa
- (0,0,k(b))

- Ustalamy n = 7 i $m = 8 (2^k 1 i 2^k)$.
- (0,0,k(w)) w
- (0,0,k(a)) wa
- (0,0,k(b)) wab

- Ustalamy n = 7 i $m = 8 (2^k 1 i 2^k)$.
- (0,0,k(w)) w
- (0,0,k(a)) wa
- (0,0,k(b)) wab
- (1,1,k(a))

- Ustalamy n = 7 i $m = 8 (2^k 1 i 2^k)$.
- (0,0,k(w)) w
- (0,0,k(a)) wa
- (0,0,k(b)) wab
- (1,1,k(a)) wabba

```
• Ustalamy n = 7 i m = 8 (2^k - 1 i 2^k).
```

- (0,0,k(w)) w
- (0,0,k(a)) wa
- (0,0,k(b)) wab
- (1,1,k(a)) wabba
- (0,0,k(-))

```
• Ustalamy n = 7 i m = 8 (2^k - 1 i 2^k).
```

- (0,0,k(w)) w
- (0,0,k(a)) wa
- (0,0,k(b)) wab
- (1,1,k(a)) wabba
- (0,0,k(-)) wabba-

```
• Ustalamy n = 7 i m = 8 (2^k - 1 i 2^k).
```

- (0,0,k(w)) w
- (0,0,k(a)) wa
- (0,0,k(b)) wab
- (1,1,k(a)) wabba
- (0,0,k(-)) wabba-
- (6,7,k(a))

```
• Ustalamy n = 7 i m = 8 (2^k - 1 i 2^k).
```

- (0,0,k(w)) w
- (0,0,k(a)) wa
- (0,0,k(b)) wab
- (1,1,k(a)) wabba
- (0,0,k(-)) wabba-
- (6,7,k(a)) wabba-wabba-wa

• (6.5.k(o))

```
Ustalamy n = 7 i m = 8 (2<sup>k</sup> - 1 i 2<sup>k</sup>).
(0,0,k(w)) w
(0,0,k(a)) wa
(0,0,k(b)) wab
(1,1,k(a)) wabba
(0,0,k(-)) wabba-
(6.7,k(a)) wabba-wabba-wa
```

• (6.5.k(o))

```
Ustalamy n = 7 i m = 8 (2<sup>k</sup> - 1 i 2<sup>k</sup>).
(0,0,k(w)) w
(0,0,k(a)) wa
(0,0,k(b)) wab
(1,1,k(a)) wabba
(0,0,k(-)) wabba-
(6,7,k(a)) wabba-wabba-wa
```

wabba-wabba-wabba-wo

```
• Ustalamy n = 7 i m = 8 (2^k - 1 i 2^k).
\bullet (0,0,k(w))
                  W
\bullet (0,0,k(a))
                  wa
• (0,0,k(b))
                  wab
• (1,1,k(a))
                  wabba
\bullet (0,0,k(-))
                 wabba-
• (6.7.k(a))
                  wabba-wabba-wa
• (6.5.k(o))
                  wabba-wabba-wabba-wo
• (1,1,k(-))
```

```
• Ustalamy n = 7 i m = 8 (2^k - 1 i 2^k).
\bullet (0,0,k(w))
                 W
• (0,0,k(a))
                 wa
• (0,0,k(b))
                 wab
• (1,1,k(a))
                 wabba
\bullet (0,0,k(-))
                wabba-
• (6.7.k(a))
                 wabba-wabba-wa
• (6.5.k(o))
                 wabba-wabba-wabba-wo
• (1,1,k(-))
                wabba-wabba-wabba-woo-
```

```
• Ustalamy n = 7 i m = 8 (2^k - 1 i 2^k).
\bullet (0,0,k(w))
                  W
• (0,0,k(a))
                 wa
\bullet (0,0,k(b))
                 wab
• (1,1,k(a))
                 wabba
\bullet (0,0,k(-))
                 wabba-
• (6.7.k(a))
                 wabba-wabba-wa
• (6.5.k(o))
                 wabba-wabba-wabba-wo
• (1,1,k(-))
                 wabba-wabba-wabba-woo-
• (4,6,k(o))
```

```
• Ustalamy n = 7 i m = 8 (2^k - 1 i 2^k).
\bullet (0,0,k(w))
                 W
• (0.0.k(a))
                wa
\bullet (0,0,k(b))
                wab
• (1,1,k(a))
                wabba
\bullet (0,0,k(-))
                wabba-
• (6.7.k(a))
                wabba-wabba-wa
• (6.5.k(o))
                wabba-wabba-wabba-wo
• (1,1,k(-))
                wabba-wabba-wabba-woo-
                wabba-wabba-woo-woo-woo
• (4,6,k(o))
```

LZ77 - podsumowanie

- Mamy bufor słownika i bufor kodowania razem nazywamy to oknem.
- Co można usprawnić: Zamiast 3 liczb wysyłać tylko dwie: kopiowany ciąg (bez kodu ostatniej litery) lub 0 i kod nowej litery.
- Krotki kodowane przy pomocy algorytmu Huffmana (adaptacyjne)
- Zastosowanie: zip, gzip, png, arj, rar, ...

Ziv, Lempel, LZ78

- Powtórzenia nie muszą być na małej odległości wada I 777.
- Słownik to zbiór numerowanych słów.
- Zawartość słownika jest tworzona w oparciu o zakodowaną część tekstu.
- Kodowanie to ciąg indeksów ze słownika tworzący kodowany tekst.

LZ78 - Algorytm

- Na początku słownik jest pusty (ewentualnie ma jeden wpis 0ε).
- Szukamy w słowniku najdłuższego prefiksu tekstu i wysyłamy numer tego słowa oraz kod następnej litery. Do słownika dodajemy kolejne nowe słowo (to które wysłaliśmy). Jeśli w słowniku nie ma takiego prefiksu to wysyłamy 0 i kod pierwszej litery.
- Czasami na samym końcu wysyłamy krótszy prefiks i ostatnią literę.

• (0,k(w)) 1 - w

• (0,k(w)) 1 - w abba-wabba-wabba-woo-woo

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 -

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa bba-wabba-woo-woo

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa bba-wabba-woo-woo
- (3,k(b)) 7 bb

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa bba-wabba-woo-woo
- (3,k(b)) 7 bb a-wabba-woo-woo

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa bba-wabba-woo-woo
- (3,k(b)) 7 bb a-wabba-woo-woo
- (2,k(-)) 8 a-

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa bba-wabba-woo-woo
- (3,k(b)) 7 bb a-wabba-woo-woo
- (2,k(-)) 8 a- wabba-woo-woo

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa bba-wabba-woo-woo
- (3,k(b)) 7 bb a-wabba-woo-woo
- (2,k(-)) 8 a- wabba-woo-woo
- (6,k(b)) 9 wab

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa bba-wabba-woo-woo
- (3,k(b)) 7 bb a-wabba-woo-woo
- (2,k(-)) 8 a- wabba-woo-woo
- (6,k(b)) 9 wab ba-woo-woo

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa bba-wabba-woo-woo
- (3,k(b)) 7 bb a-wabba-woo-woo
- (2,k(-)) 8 a- wabba-woo-woo
- (6,k(b)) 9 wab ba-woo-woo
- (4,k(-)) 10 ba-

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa bba-wabba-woo-woo
- (3,k(b)) 7 bb a-wabba-woo-woo
- (2,k(-)) 8 a- wabba-woo-woo
- (6,k(b)) 9 wab ba-woo-woo
- (4,k(-)) 10 ba- woo-woo-woo

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa bba-wabba-woo-woo
- (3,k(b)) 7 bb a-wabba-woo-woo
- (2,k(-)) 8 a- wabba-woo-woo
- (6,k(b)) 9 wab ba-woo-woo
- (4,k(-)) 10 ba- woo-woo-woo
- (1,k(o)) 11 wo

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa bba-wabba-woo-woo
- (3,k(b)) 7 bb a-wabba-woo-woo
- (2,k(-)) 8 a- wabba-woo-woo
- (6,k(b)) 9 wab ba-woo-woo
- (4,k(-)) 10 ba- woo-woo-woo
- (1,k(o)) 11 wo o-woo-woo

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa bba-wabba-woo-woo
- (3,k(b)) 7 bb a-wabba-woo-woo
- (2,k(-)) 8 a- wabba-woo-woo
- (6,k(b)) 9 wab ba-woo-woo
- (4,k(-)) 10 ba- woo-woo-woo
- (1,k(o)) 11 wo o-woo-woo
- (0,k(o)) 12 o

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa bba-wabba-woo-woo
- (3,k(b)) 7 bb a-wabba-woo-woo
- (2,k(-)) 8 a- wabba-woo-woo
- (6,k(b)) 9 wab ba-woo-woo
- (4,k(-)) 10 ba- woo-woo-woo
- (1,k(o)) 11 wo o-woo-woo
- (0,k(o)) 12 o -woo-woo

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa bba-wabba-woo-woo
- (3,k(b)) 7 bb a-wabba-woo-woo
- (2,k(-)) 8 a- wabba-woo-woo
- (6,k(b)) 9 wab ba-woo-woo
- (4,k(-)) 10 ba- woo-woo-woo
- (1,k(o)) 11 wo o-woo-woo
- (0,k(o)) 12 o -woo-woo
- (5,k(w)) 13 -w

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa bba-wabba-woo-woo
- (3,k(b)) 7 bb a-wabba-woo-woo
- (2,k(-)) 8 a- wabba-woo-woo
- (6,k(b)) 9 wab ba-woo-woo
- (4,k(-)) 10 ba- woo-woo-woo
- (1,k(o)) 11 wo o-woo-woo
- (0,k(o)) 12 o -woo-woo
- (5,k(w)) 13 -w oo-woo

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa bba-wabba-woo-woo
- (3,k(b)) 7 bb a-wabba-woo-woo
- (2,k(-)) 8 a- wabba-woo-woo
- (6,k(b)) 9 wab ba-woo-woo
- (4,k(-)) 10 ba- woo-woo-woo
- (1,k(o)) 11 wo o-woo-woo
- (0,k(o)) 12 o -woo-woo
- (5,k(w)) 13 -w oo-woo
- (12,k(o)) 14 oo

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa bba-wabba-woo-woo
- (3,k(b)) 7 bb a-wabba-woo-woo
- (2,k(-)) 8 a- wabba-woo-woo
- (6,k(b)) 9 wab ba-woo-woo
- (4,k(-)) 10 ba- woo-woo-woo
- (1,k(o)) 11 wo o-woo-woo
- (0,k(o)) 12 o -woo-woo
- (5,k(w)) 13 -w oo-woo
- (12,k(o)) 14 oo -woo

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa bba-wabba-woo-woo
- (3,k(b)) 7 bb a-wabba-woo-woo
- (2,k(-)) 8 a- wabba-woo-woo
- (6,k(b)) 9 wab ba-woo-woo
- (4,k(-)) 10 ba- woo-woo-woo
- (1,k(o)) 11 wo o-woo-woo
- (0,k(o)) 12 o -woo-woo
- (5,k(w)) 13 -w oo-woo
- (12,k(o)) 14 oo -woo
- (13,k(o)) 15 -wo

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa bba-wabba-woo-woo
- (3,k(b)) 7 bb a-wabba-woo-woo
- (2,k(-)) 8 a- wabba-woo-woo
- (6,k(b)) 9 wab ba-woo-woo
- (4,k(-)) 10 ba- woo-woo-woo
- (1,k(o)) 11 wo o-woo-woo
- (0,k(o)) 12 o -woo-woo
- (5,k(w)) 13 -w oo-woo
- (12,k(o)) 14 oo -woo
- (13,k(o)) 15 -wo o

- (0,k(w)) 1 w abba-wabba-wabba-woo-woo
- (0,k(a)) 2 a bba-wabba-wabba-woo-woo
- (0,k(b)) 3 b ba-wabba-wabba-woo-woo
- (3,k(a)) 4 ba -wabba-wabba-woo-woo
- (0,k(-)) 5 - wabba-wabba-woo-woo
- (1,k(a)) 6 wa bba-wabba-woo-woo
- (3,k(b)) 7 bb a-wabba-woo-woo
- (2,k(-)) 8 a- wabba-woo-woo
- (6,k(b)) 9 wab ba-woo-woo
- (4,k(-)) 10 ba- woo-woo-woo
- (1,k(o)) 11 wo o-woo-woo
- (0,k(o)) 12 o -woo-woo
- (5,k(w)) 13 -w oo-woo
- (12,k(o)) 14 oo -woo
- (13,k(o)) 15 -wo o
- (0.k(o))

• (0,k(w))

● (0,k(w)) 1 - w w

- (0,k(w)) 1 w w
- (0,k(a))

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b))

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a))

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-))

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a))

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a)) 6 wa wabba-wa

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a)) 6 wa wabba-wa
- (3,k(b))

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a)) 6 wa wabba-wa
- (3,k(b)) 7 bb wabba-wabb

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a)) 6 wa wabba-wa
- (3,k(b)) 7 bb wabba-wabb
- (2,k(-))

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a)) 6 wa wabba-wa
- (3,k(b)) 7 bb wabba-wabb
- (2,k(-)) 8 a- wabba-wabba-

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a)) 6 wa wabba-wa
- (3,k(b)) 7 bb wabba-wabb
- (2,k(-)) 8 a- wabba-wabba-
- (6,k(b))

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a)) 6 wa wabba-wa
- (3,k(b)) 7 bb wabba-wabb
- (2,k(-)) 8 a- wabba-wabba-
- (6,k(b)) 9 wab wabba-wab

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a)) 6 wa wabba-wa
- (3,k(b)) 7 bb wabba-wabb
- (2,k(-)) 8 a- wabba-wabba-
- (6,k(b)) 9 wab wabba-wabba-wab
- (4,k(-))

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a)) 6 wa wabba-wa
- (3,k(b)) 7 bb wabba-wabb
- (2,k(-)) 8 a- wabba-wabba-
- (6,k(b)) 9 wab wabba-wab
- (4,k(-)) 10 ba- wabba-wabba-wabba-

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a)) 6 wa wabba-wa
- (3,k(b)) 7 bb wabba-wabb
- (2,k(-)) 8 a- wabba-wabba-
- (6,k(b)) 9 wab wabba-wabba-wab
- (4,k(-)) 10 ba- wabba-wabba-wabba-
- (1,k(o))

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a)) 6 wa wabba-wa
- (3,k(b)) 7 bb wabba-wabb
- (2,k(-)) 8 a- wabba-wabba-
- (6,k(b)) 9 wab wabba-wab
- (4,k(-)) 10 ba- wabba-wabba-wabba-
- (1,k(o)) 11 wo wabba-wabba-wa

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a)) 6 wa wabba-wa
- (3,k(b)) 7 bb wabba-wabb
- (2,k(-)) 8 a- wabba-wabba-
- (6,k(b)) 9 wab wabba-wabba-wab
- (4,k(-)) 10 ba- wabba-wabba-wabba-
- (1,k(o)) 11 wo wabba-wabba-wa
- (0,k(o))

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a)) 6 wa wabba-wa
- (3,k(b)) 7 bb wabba-wabb
- (2,k(-)) 8 a- wabba-wabba-
- (6,k(b)) 9 wab wabba-wabba-wab
- (4,k(-)) 10 ba- wabba-wabba-wabba-
- (1,k(o)) 11 wo wabba-wabba-wa
- (0,k(o)) 12 o wabba-wabba-wabba-woo

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a)) 6 wa wabba-wa
- (3,k(b)) 7 bb wabba-wabb
- (2,k(-)) 8 a- wabba-wabba-
- (6,k(b)) 9 wab wabba-wab
- (4,k(-)) 10 ba- wabba-wabba-wabba-
- (1,k(o)) 11 wo wabba-wabba-wo
- (0,k(o)) 12 o wabba-wabba-wabba-woo
- (5,k(w))

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a)) 6 wa wabba-wa
- (3,k(b)) 7 bb wabba-wabb
- (2,k(-)) 8 a- wabba-wabba-
- (6,k(b)) 9 wab wabba-wab
- (4,k(-)) 10 ba- wabba-wabba-wabba-
- (1,k(o)) 11 wo wabba-wabba-wa
- (0,k(o)) 12 o wabba-wabba-wabba-woo
- (5,k(w)) 13 -w wabba-wabba-wabba-woo-w

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a)) 6 wa wabba-wa
- (3,k(b)) 7 bb wabba-wabb
- (2,k(-)) 8 a- wabba-wabba-
- (6,k(b)) 9 wab wabba-wab
- (4,k(-)) 10 ba- wabba-wabba-wabba-
- (1,k(o)) 11 wo wabba-wabba-wabba-wo
- (0,k(o)) 12 o wabba-wabba-wabba-woo
- (5,k(w)) 13 -w wabba-wabba-wabba-woo-w
- (12,k(o))

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a)) 6 wa wabba-wa
- (3,k(b)) 7 bb wabba-wabb
- (2,k(-)) 8 a- wabba-wabba-
- (6,k(b)) 9 wab wabba-wabba-wab
- (4,k(-)) 10 ba- wabba-wabba-wabba-
- (1,k(o)) 11 wo wabba-wabba-wabba-wo
- (0,k(o)) 12 o wabba-wabba-wabba-woo
- (5,k(w)) 13 -w wabba-wabba-wabba-woo-w
- (12,k(o)) 14 oo wabba-wabba-wabba-woo-woo

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a)) 6 wa wabba-wa
- (3,k(b)) 7 bb wabba-wabb
- (2,k(-)) 8 a- wabba-wabba-
- (6,k(b)) 9 wab wabba-wabba-wab
- (4,k(-)) 10 ba- wabba-wabba-wabba-
- (1,k(o)) 11 wo wabba-wabba-wabba-wo
- (0,k(o)) 12 o wabba-wabba-wabba-woo
- (5,k(w)) 13 -w wabba-wabba-wabba-woo-w
- (12,k(o)) 14 oo wabba-wabba-wabba-woo-woo
- (13,k(o))

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a)) 6 wa wabba-wa
- (3,k(b)) 7 bb wabba-wabb
- (2,k(-)) 8 a- wabba-wabba-
- (6,k(b)) 9 wab wabba-wabba-wab
- (4,k(-)) 10 ba- wabba-wabba-wabba-
- (1,k(o)) 11 wo wabba-wabba-wabba-wo
- (0,k(o)) 12 o wabba-wabba-wabba-woo
- (5,k(w)) 13 -w wabba-wabba-wabba-woo-w
- (12,k(o)) 14 oo wabba-wabba-wabba-woo-woo
- (13,k(o)) 15 -wo wabba-wabba-wabba-woo-woo

- (0,k(w)) 1 w w
- (0,k(a)) 2 a wa
- (0,k(b)) 3 b wab
- (3,k(a)) 4 ba wabba
- (0,k(-)) 5 - wabba-
- (1,k(a)) 6 wa wabba-wa
- (3,k(b)) 7 bb wabba-wabb
- (2,k(-)) 8 a- wabba-wabba-
- (6,k(b)) 9 wab wabba-wabba-wab
- (4,k(-)) 10 ba- wabba-wabba-wabba-
- (1,k(o)) 11 wo wabba-wabba-wabba-wo
- (0,k(o)) 12 o wabba-wabba-wab
- (5,k(w)) 13 -w wabba-wabba-wabba-woo-w
- (12,k(o)) 14 oo wabba-wabba-wabba-woo-woo
- (13,k(o)) 15 -wo wabba-wabba-wabba-woo-wo

Ziv, Lempel, Welch - LZW

- Poprawki do LZ78 rezygnacja z drugiego elementu pary.
- Potrzebny słownik początkowy zawierający wszystkie używane litery.
- Słownik konstruujemy tak samo jak w LZ78.

- Słownik początkowy: 0 a, 1 b, 2 o, 3 w, 4 -.
- wabba-wabba-woo-woo-woo

- Słownik początkowy: 0 a, 1 b, 2 o, 3 w, 4 -.
- wabba-wabba-woo-woo
- 3 5 wa

- Słownik początkowy: 0 a, 1 b, 2 o, 3 w, 4 -.
- wabba-wabba-woo-woo
- 3 5 wa abba-wabba-wabba-woo-woo

- Słownik początkowy: 0 a, 1 b, 2 o, 3 w, 4 -.
- wabba-wabba-woo-woo
- 3 5 wa abba-wabba-wabba-woo-woo
- 0 6 ab

- Słownik początkowy: 0 a, 1 b, 2 o, 3 w, 4 -.
- wabba-wabba-woo-woo
- 3 5 wa abba-wabba-wabba-woo-woo
- 0 6 ab bba-wabba-wabba-woo-woo

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.
```

wabba-wabba-woo-woo

3 5 - wa abba-wabba-wabba-woo-woo

0 6 - ab bba-wabba-wabba-woo-woo

• 1 7 - bb

- Słownik początkowy: 0 a, 1 b, 2 o, 3 w, 4 -.
- wabba-wabba-woo-woo-woo
- 3 5 wa abba-wabba-wabba-woo-woo
- 0 6 ab bba-wabba-wabba-woo-woo
- 1 7 bb ba-wabba-wabba-woo-woo

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.
```

wabba-wabba-wab-woo-woo

3 5 - wa abba-wabba-wabba-woo-woo

0 6 - ab bba-wabba-wabba-woo-woo

1 7 - bb ba-wabba-wabba-woo-woo

1 8 - ba

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.
```

wabba-wabba-wab-woo-woo

• 3 5 - wa abba-wabba-wabba-woo-woo

0 6 - ab bba-wabba-wabba-woo-woo

1 7 - bb ba-wabba-wabba-woo-woo

1 8 - ba a-wabba-wabba-woo-woo

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.
```

wabba-wabba-wab-woo-woo

3 5 - wa abba-wabba-wabba-woo-woo

0 6 - ab bba-wabba-wabba-woo-woo

1 7 - bb ba-wabba-wabba-woo-woo

1 8 - ba a-wabba-wabba-woo-woo

• 0 9 - a-

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.
```

wabba-wabba-wabba-woo-woo

3 5 - wa abba-wabba-wabba-woo-woo

0 6 - ab bba-wabba-wabba-woo-woo

1 7 - bb ba-wabba-wabba-woo-woo

1 8 - ba a-wabba-wabba-woo-woo

0 9 - a- -wabba-wabba-woo-woo

4

10 - -w

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.
```

wabba-wabba-wabba-woo-woo

3 5 - wa abba-wabba-wabba-woo-woo

0 6 - ab bba-wabba-wabba-woo-woo

1 7 - bb ba-wabba-wabba-woo-woo

1 8 - ba a-wabba-wabba-woo-woo

a O O O O Walaba walaa waa waa

0 9 - a- -wabba-wabba-woo-woo

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

 wabba-wabba-woo-woo-woo
3
      5 - wa
               abba-wabba-woo-woo
• ()
      6 - ab
              bha-wabba-woo-woo-woo
      7 - bb
              ba-wabba-wabba-woo-woo
      8 - ba
              a-wabba-wabba-woo-woo
• ()
      9 - a-
              -wabba-wabba-woo-woo
      10 - -w
               wabba-wabba-woo-woo
4
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

 wabba-wabba-woo-woo-woo
3
      5 - wa
               abba-wabba-woo-woo
• ()
      6 - ab
              bha-wabba-woo-woo-woo
      7 - bb
              ba-wabba-wabba-woo-woo
      8 - ba
              a-wabba-wabba-woo-woo
• ()
      9 - a-
              -wabba-wabba-woo-woo
4
      10 - -w
               wabba-wabba-woo-woo
      11 - wab
5
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

 wabba-wabba-woo-woo-woo
3
      5 - wa
               abba-wabba-woo-woo
• ()
      6 - ab
              bha-wabba-woo-woo-woo
      7 - bb
              ba-wabba-wabba-woo-woo
      8 - ba
              a-wabba-wabba-woo-woo
• ()
      9 - a-
              -wabba-wabba-woo-woo
4
      10 - -w
               wabba-wabba-woo-woo
      11 - wab
                 hha-wabba-woo-woo
5
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

 wabba-wabba-woo-woo-woo
3
      5 - wa
               abba-wabba-woo-woo
• ()
      6 - ab
              bha-wabba-woo-woo-woo
      7 - bb
              ba-wabba-wabba-woo-woo
      8 - ba
              a-wabba-wabba-woo-woo
• ()
      9 - a-
              -wabba-wabba-woo-woo
4
      10 - -w
               wabba-wabba-woo-woo
      11 - wab
                 hha-wabba-woo-woo
5
      12 - bba
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

 wabba-wabba-woo-woo-woo
3
      5 - wa
               abba-wabba-woo-woo
• ()
      6 - ab
              bha-wabba-woo-woo-woo
      7 - bb
              ba-wabba-wabba-woo-woo
      8 - ba
              a-wabba-wabba-woo-woo
0
      9 - a-
              -wabba-wabba-woo-woo
4
      10 - -w
               wabba-wabba-woo-woo
      11 - wab
                 bba-wabba-woo-woo
5
      12 - bba
                a-wabba-woo-woo-woo
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

 wabba-wabba-woo-woo-woo
3
      5 - wa
               abba-wabba-woo-woo
• ()
      6 - ab
              bha-wabba-woo-woo-woo
      7 - bb
              ba-wabba-wabba-woo-woo
      8 - ba
              a-wabba-wabba-woo-woo
0
      9 - a-
              -wabba-wabba-woo-woo
4
      10 - -w
               wabba-wabba-woo-woo
5
      11 - wab
                 hha-wabba-woo-woo
      12 - bba
                a-wabba-woo-woo-woo
7
9
      13 - a-w
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

 wabba-wabba-woo-woo-woo
3
      5 - wa
               abba-wabba-woo-woo
• ()
      6 - ab
               bha-wabba-woo-woo-woo
      7 - bb
               ba-wabba-wabba-woo-woo
      8 - ba
               a-wabba-wabba-woo-woo
0
      9 - a-
              -wabba-wabba-woo-woo
4
      10 - -w
               wabba-wabba-woo-woo-woo
5
      11 - wab
                 bba-wabba-woo-woo
      12 - bba
7
                a-wabba-woo-woo-woo
9
      13 - a-w
                wabba-woo-woo-woo
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

 wabba-wabba-woo-woo-woo
3
      5 - wa
               abba-wabba-woo-woo
• ()
      6 - ab
              bha-wabba-woo-woo-woo
      7 - bb
              ba-wabba-wabba-woo-woo
      8 - ba
              a-wabba-wabba-woo-woo
0
      9 - a-
              -wabba-wabba-woo-woo
4
      10 - -w
               wabba-wabba-woo-woo
5
      11 - wab
                 hha-wabba-woo-woo
      12 - bba
7
                a-wabba-woo-woo-woo
9
      13 - a-w
                wabba-woo-woo-woo
11
       14 - wabb
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

 wabba-wabba-woo-woo-woo
3
      5 - wa
               abba-wabba-woo-woo
• ()
      6 - ab
              bha-wabba-woo-woo-woo
      7 - bb
              ba-wabba-wabba-woo-woo
      8 - ba
              a-wabba-wabba-woo-woo
              -wabba-wabba-woo-woo
0
      9 - a-
4
      10 - -w
               wabba-wabba-woo-woo
5
      11 - wab
                 bba-wabba-woo-woo
      12 - bba
                a-wabba-woo-woo
7
9
      13 - a-w
                wabba-woo-woo-woo
11
       14 - wabb
                   ba-woo-woo-woo
```



```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

wabba-wabba-wabba-woo-woo-woo
               abba-wabba-woo-woo
3
      5 - wa
• ()
      6 - ab
              bha-wabba-woo-woo-woo
      7 - bb
              ba-wabba-wabba-woo-woo
      8 - ba
              a-wabba-wabba-woo-woo
              -wabba-wabba-woo-woo
0
      9 - a-
4
      10 - -w
               wabba-wabba-woo-woo
      11 - wab
5
                 bba-wabba-woo-woo
      12 - bba
                a-wabba-woo-woo
7
9
      13 - a-w
                wabba-woo-woo-woo
11
       14 - wabb
                   ba-woo-woo-woo
      15 - ba-
8
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

wabba-wabba-wabba-woo-woo-woo
3
      5 - wa
               abba-wabba-woo-woo
• ()
      6 - ab
               bha-wabba-woo-woo-woo
      7 - bb
               ba-wabba-wabba-woo-woo
      8 - ba
               a-wabba-wabba-woo-woo
              -wabba-wabba-woo-woo
0
      9 - a-
4
      10 - -w
               wabba-wabba-woo-woo
      11 - wab
5
                 bba-wabba-woo-woo
7
      12 - bba
                a-wabba-woo-woo
9
      13 - a-w
                wabba-woo-woo-woo
11
       14 - wabb
                   ba-woo-woo-woo
      15 - ba-
8
                -WOO-WOO-WOO
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

wabba-wabba-wabba-woo-woo-woo
3
      5 - wa
               abba-wabba-woo-woo
• ()
      6 - ab
               bha-wabba-woo-woo-woo
      7 - bb
               ba-wabba-wabba-woo-woo
      8 - ba
               a-wabba-wabba-woo-woo
• ()
      9 - a-
              -wabba-wabba-woo-woo
4
      10 - -w
                wabba-wabba-woo-woo
5
      11 - wab
                 bba-wabba-woo-woo
      12 - bba
7
                 a-wabba-woo-woo-woo
9
      13 - a-w
                 wabba-woo-woo-woo
11
       14 - wabb
                   ba-woo-woo-woo
      15 - ba-
8
                -W00-W00-W00
       16 - -wo
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

 wabba-wabba-woo-woo-woo
3
      5 - wa
               abba-wabba-woo-woo
• ()
      6 - ab
              bha-wabba-woo-woo-woo
      7 - bb
              ba-wabba-wabba-woo-woo
      8 - ba
              a-wabba-wabba-woo-woo
• ()
      9 - a-
              -wabba-wabba-woo-woo
4
      10 - -w
               wabba-wabba-woo-woo
      11 - wab
5
                 bba-wabba-woo-woo
      12 - bba
                a-wabba-woo-woo
7
9
      13 - a-w
                wabba-woo-woo-woo
11
       14 - wabb
                   ba-woo-woo-woo
      15 - ba-
8
                -W00-W00-W00
       16 - -wo
                 00-W00-W00
```

2 17 - 00

• 2 17 - oo o-woo-woo

- 2 17 oo o-woo-woo
- 2 18 o-

2 17 - 00 o-woo-woo

• 2 18 - o- -woo-woo

```
• 2 17 - oo o-woo-woo
```

● 2 18 - o- -woo-woo

• 10 19 - -wo

```
• 2 17 - 00 o-woo-woo
```

● 10 19 - -wo oo-woo

```
2 17 - 00 o-woo-woo
2 18 - o- -woo-woo
10 19 - -wo oo-woo
17 20 - oo- -woo
19 21 - -woo
```

```
2 17 - 00 o-woo-woo
2 18 - o- -woo-woo
10 19 - -wo oo-woo
17 20 - oo- -woo
19 21 - -woo o
```

```
17 - 00
2
                0-W00-W00
2
      18 - o-
                -W00-W00
10
       19 - -wo
                  00-W00
       20 - 00-
17
                  -W00
       21 - -woo
• 19
                   0
2
```

• Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

- Słownik początkowy: 0 a, 1 b, 2 o, 3 w, 4 -.
- 3

- Słownik początkowy: 0 a, 1 b, 2 o, 3 w, 4 -.
- 3 w 5 w?

- Słownik początkowy: 0 a, 1 b, 2 o, 3 w, 4 -.
- 3 W 5 W?
- ()

- Słownik początkowy: 0 a, 1 b, 2 o, 3 w, 4 -.
- 3 w 5 w?
- 0 wa 5 wa, 6 a?

- Słownik początkowy: 0 a, 1 b, 2 o, 3 w, 4 -.
- 3 w 5 w?
- 0 wa 5 wa, 6 a?
- 1

- Słownik początkowy: 0 a, 1 b, 2 o, 3 w, 4 -.
- 3 w 5 w?
- 0 wa 5 wa, 6 a?
- 1 wab 6 ab, 7 b?

Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

```
● 3 W 5 - W?
```

- 1 wab 6 ab, 7 b?
- 1

Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.
3 w 5 - w?
0 wa 5 - wa 6 - a?

```
wa 5 - wa, 6 - a?
wab 6 - ab, 7 - b?
wabb 7 - bb, 8 - b?
```

```
Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.
3 w 5 - w?
0 wa 5 - wa, 6 - a?
1 wab 6 - ab, 7 - b?
1 wabb 7 - bb, 8 - b?
0
```

```
Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.
3 w 5 - w?
0 wa 5 - wa, 6 - a?
1 wab 6 - ab, 7 - b?
1 wabb 7 - bb, 8 - b?
0 wabba 8 - ba, 9 - a?
```

```
Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.
3 w 5 - w?
0 wa 5 - wa, 6 - a?
1 wab 6 - ab, 7 - b?
1 wabb 7 - bb, 8 - b?
0 wabba 8 - ba, 9 - a?
4
```

```
Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.
3 w 5 - w?
0 wa 5 - wa, 6 - a?
1 wab 6 - ab, 7 - b?
1 wabb 7 - bb, 8 - b?
0 wabba 8 - ba, 9 - a?
4 wabba- 9 - a-, 10 - -?
```

```
Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.
3 w 5 - w?
0 wa 5 - wa, 6 - a?
1 wab 6 - ab, 7 - b?
1 wabb 7 - bb, 8 - b?
0 wabba 8 - ba, 9 - a?
4 wabba- 9 - a-, 10 - -?
5
```

```
Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.
3 w 5 - w?
0 wa 5 - wa, 6 - a?
1 wab 6 - ab, 7 - b?
1 wabb 7 - bb, 8 - b?
0 wabba 8 - ba, 9 - a?
4 wabba- 9 - a-, 10 - -?
5 wabba-wa 10 - -w, 11 - wa?
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

            5 - w?
3
      W
()
      wa 5 - wa, 6 - a?
1
      wab 6 - ab, 7 - b?
● 1 wabb 7 - bb, 8 - b?
• 0 wabba 8 - ba, 9 - a?
      wabba- 9 - a-, 10 - -?
4
5
      wabba-wa 10 - -w, 11 - wa?
7
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

           5 - w?
3
      W
()
      wa 5 - wa, 6 - a?
1
      wab 6 - ab, 7 - b?
• 1 wabb 7 - bb. 8 - b?
• 0 wabba 8 - ba. 9 - a?
      wabba- 9 - a-, 10 - -?
4
5
      wabba-wa 10 - -w, 11 - wa?
7
      wabba-wabb 11 - wab, 12 - bb?
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

           5 - w?
3
      W
()
      wa 5 - wa, 6 - a?
1
      wab 6 - ab, 7 - b?
• 1 wabb 7 - bb. 8 - b?
      wabba 8 - ba. 9 - a?
()
      wabba- 9 - a-, 10 - -?
4
5
      wabba-wa 10 - -w, 11 - wa?
7
      wabba-wabb 11 - wab, 12 - bb?
9
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

           5 - w?
3
      W
()
      wa 5 - wa, 6 - a?
1
      wab 6 - ab, 7 - b?
• 1 wabb 7 - bb. 8 - b?
• 0 wabba 8 - ba. 9 - a?
      wabba- 9 - a-, 10 - -?
4
5
      wabba-wa 10 - -w, 11 - wa?
7
   wabba-wabb 11 - wab, 12 - bb?
      wabba-wabba- 12 - bba, 13 - a-?
9
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

           5 - w?
3
      W
()
      wa 5 - wa, 6 - a?
1
      wab 6 - ab, 7 - b?
• 1 wabb 7 - bb. 8 - b?
• 0 wabba 8 - ba. 9 - a?
      wabba- 9 - a-, 10 - -?
4
5
      wabba-wa 10 - -w, 11 - wa?
7
      wabba-wabb 11 - wab, 12 - bb?
      wabba-wabba- 12 - bba, 13 - a-?
9
11
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

           5 - w?
3
      W
()
      wa 5 - wa, 6 - a?
1
     wab 6 - ab, 7 - b?
● 1 wabb 7 - bb, 8 - b?
• 0 wabba 8 - ba. 9 - a?
      wabba- 9 - a-, 10 - -?
4
      wabba-wa 10 - -w, 11 - wa?
5
      wabba-wabb 11 - wab, 12 - bb?
7
      wabba-wabba- 12 - bba, 13 - a-?
9
    wabba-wabba-wab 13 - a-w, 14 - wab?
11
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

           5 - w?
3
      W
()
      wa 5 - wa, 6 - a?
1
     wab 6 - ab, 7 - b?
● 1 wabb 7 - bb, 8 - b?
• 0 wabba 8 - ba. 9 - a?
      wabba- 9 - a-, 10 - -?
4
      wabba-wa 10 - -w, 11 - wa?
5
      wabba-wabb 11 - wab, 12 - bb?
7
      wabba-wabba- 12 - bba, 13 - a-?
9
    wabba-wabba-wab 13 - a-w, 14 - wab?
11
8
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

           5 - w?
3
      W
()
      wa 5 - wa, 6 - a?
1
     wab 6 - ab, 7 - b?
● 1 wabb 7 - bb, 8 - b?
• 0 wabba 8 - ba. 9 - a?
      wabba- 9 - a-, 10 - -?
4
      wabba-wa 10 - -w, 11 - wa?
5
      wabba-wabb 11 - wab, 12 - bb?
7
      wabba-wabba- 12 - bba, 13 - a-?
9
11
      wabba-wabba-wab 13 - a-w. 14 - wab?
8
      wabba-wabba 14 - wabb. 15 - ba?
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

           5 - w?
3
      W
()
      wa 5 - wa, 6 - a?
1
     wab 6 - ab, 7 - b?
● 1 wabb 7 - bb, 8 - b?
• 0 wabba 8 - ba. 9 - a?
      wabba- 9 - a-, 10 - -?
4
5
      wabba-wa 10 - -w, 11 - wa?
      wabba-wabb 11 - wab, 12 - bb?
7
      wabba-wabba- 12 - bba, 13 - a-?
9
11
       wabba-wabba-wab 13 - a-w. 14 - wab?
• 8 wabba-wabba-wabba 14 - wabb, 15 - ba?
10
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

           5 - w?
3
      W
()
      wa 5 - wa, 6 - a?
1
     wab 6 - ab, 7 - b?
● 1 wabb 7 - bb, 8 - b?
• 0 wabba 8 - ba, 9 - a?
      wabba- 9 - a-, 10 - -?
4
5
      wabba-wa 10 - -w, 11 - wa?
      wabba-wabb 11 - wab, 12 - bb?
7
      wabba-wabba- 12 - bba, 13 - a-?
9
      wabba-wab 13 - a-w, 14 - wab?
11
8
      wabba-wabba 14 - wabb, 15 - ba?
       wabba-wabba-w
• 10
                             15 - ba-, 16 - -w?
```

```
    Słownik początkowy: 0 - a, 1 - b, 2 - o, 3 - w, 4 - -.

           5 - w?
3
      W
()
      wa 5 - wa, 6 - a?
1
     wab 6 - ab, 7 - b?
● 1 wabb 7 - bb, 8 - b?
• 0 wabba 8 - ba, 9 - a?
      wabba- 9 - a-, 10 - -?
4
5
      wabba-wa 10 - -w, 11 - wa?
      wabba-wabb 11 - wab, 12 - bb?
7
      wabba-wabba- 12 - bba, 13 - a-?
9
      wabba-wab 13 - a-w, 14 - wab?
11
8
      wabba-wabba 14 - wabb, 15 - ba?
    wabba-wabba-wabba-w
10
                             15 - ba-, 16 - -w?
```

• Słowo abababababab... i słownik 1 - a i 2 - b.

- Słowo abababababab... i słownik 1 a i 2 b.
- 13 ab, 24 ba, 35 aba, 56 abab, ...

- Słowo abababababab... i słownik 1 a i 2 b.
- 13 ab, 24 ba, 35 aba, 56 abab, ...
- Dekodowanie:

- Słowo abababababab... i słownik 1 a i 2 b.
- 13 ab, 24 ba, 35 aba, 56 abab, ...
- Dekodowanie:
 - 1 a 3-a?

- Słowo abababababab... i słownik 1 a i 2 b.
- 13 ab, 24 ba, 35 aba, 56 abab, ...
- Dekodowanie:
 - 1 a 3-a?
 - 2 ab 3 ab, 4 b?

- Słowo abababababab... i słownik 1 a i 2 b.
- 13 ab, 24 ba, 35 aba, 56 abab, ...
- Dekodowanie:
 - 1 a 3-a?
 - 2 ab 3 ab, 4 b?
 - 3 abab 4 ba, 5 ab?

- Słowo abababababab... i słownik 1 a i 2 b.
- 13 ab, 24 ba, 35 aba, 56 abab, ...
- Dekodowanie:
 - 1 a 3-a?
 - 2 ab 3 ab, 4 b?
 - 3 abab 4 ba, 5 ab?
 - 5 ababab?

- Słowo abababababab... i słownik 1 a i 2 b.
- 13 ab, 24 ba, 35 aba, 56 abab, ...
- Dekodowanie:
 - 1 a 3-a?
 - 2 ab 3 ab, 4 b?
 - 3 abab 4 ba, 5 ab?
 - 5 ababab?
- Ten problem można rozwiązać przez porównanie z algorytmem kodowania i wywnioskować, że 5 - aba.

Zastosowanie LZW

- Compress kompresja w UNIX-ie.
- GIF
- Kompresja w modemie V.42 bis

Algorytmy predykcyjne - Motywacje

- W tekstach naturalnych symbole bardzo często zależą od siebie.
- W językach naturalnych na podstawie już przeczytanych symboli można z bardzo dużym prawdopodobieństwem przewidzieć następny symbol (mocna zależność od historii).
- Często zamiast kompresować ciąg wejściowy kompresujemy różnicę miedzy tym ciągiem a ciągiem generowanym przez pewien "zgadywacz".

Przykład wykorzystania kontekstu

	A	В	C
Α	0.1	0.3	0.6
В	0.6	0.1	0.3
С	0.3	0.6	0.1

- Łatwo sprawdzić, że $P(A) = P(B) = P(C) = \frac{1}{3}$, stąd normalny kod Huffmana będzie miał średnią długość $\frac{5}{3}$.
- Co będzie jeśli wykorzystamy informację o tym po jakiej literze występuje kolejna, czyli stworzymy trzy kodowania Huffmana, kolejno dla liter występujących po A, B, C?
- Łatwo policzyć, że wtedy średnia długość kodu spadnie do ¹³/₁₀.
- Gdybyśmy wydłużyli historię (kontekst) moglibyśmy uzyskać większy stopień kompresji, ale ilość kodów rosłaby szybko.

Predykcja z częściowym dopasowaniem (PPM)

- Algorytm dynamiczny wykorzystujący kontekst.
- Specjalny symbol wyjścia oznaczający brak istniejącego kontekstu danej długości (<esc>).
- Ustalamy maksymalny rozmiar kontekstu.
- Dla danej litery szukamy maksymalnego kontekstu, jeśli nie wysyłamy symbol wyjścia i sprawdzamy krótszy kontekst. Jeśli istnieje to wysyłamy odpowiedni kod a ilość użycia litery w tym kontekście zwiększamy o 1.
- Jeśli symbol pojawił się po raz pierwszy dodajemy go bez kontekstu, (kontekst -1) z prawdopodobieństwem równym dla każdej litery.

- Kodujemy tekst: *this-is-the-tithe*.
- Przyjmujemy, że najdłuższy kontekst ma długość 2 (mamy konteksty długości -1, 0, 1 i 2).
- Po zakodowaniu this-is mamy następujące tabele kontekstów:

- Kodujemy tekst: *this-is-the-tithe*.
- Przyjmujemy, że najdłuższy kontekst ma długość 2 (mamy konteksty długości -1, 0, 1 i 2).
- Po zakodowaniu this-is mamy następujące tabele kontekstów:

- Kodujemy tekst: *this-is-the-tithe*.
- Przyjmujemy, że najdłuższy kontekst ma długość 2 (mamy konteksty długości -1, 0, 1 i 2).
- Po zakodowaniu this-is mamy następujące tabele kontekstów:

- Kodujemy tekst: this-is-the-tithe.
- Przyjmujemy, że najdłuższy kontekst ma długość 2 (mamy konteksty długości -1, 0, 1 i 2).
- Po zakodowaniu this-is mamy następujące tabele kontekstów:

Kontekst długości -1 Litera Licznik t 1 h 1 i 1 s 1 - 1

Kontekst długości 0

Litera	Licznik
<esc></esc>	1
t	1
h	1
i	2
S	1
-	1

Kontekst długości 1

Kontekst	Litera	Licznik
t	<esc></esc>	1
	h	1
h	<esc></esc>	1
	i	1
i	<esc></esc>	1
	S	2
S	<esc></esc>	1
	-	1
-	<esc></esc>	1
	i	1

Kontekst długości 2

Kontekst	Litera	Licznik
th	<esc></esc>	1
	i	1
hi	<esc></esc>	1
	S	1
is	<esc></esc>	1
	-	1
S-	<esc></esc>	1
	i	1
-i	<esc></esc>	1
	S	1

PPM

- Dla każdego kontekstu możemy teraz utworzyć dynamiczne kody Huffmana.
- Albo wykorzystać dany kontekst z ilością wystąpień jako prawdopodobieństwa do podziału odcinka w kodowaniu arytmetycznym.
- Najczęściej za maksymalną długość kontekstu przyjmuje się 5.

CALIC - Context Adaptative Lossless Image Compresion

		NN	NNE
	NW	N	NE
WW	W	X	

 Sprawdzamy czy w sąsiedztwie są krawędzie pionowe lub poziome, w tym celu liczymy wartości pomocnicze

$$d_h = |W - WW| + |N - NW| + |NE - N|$$

 $d_v = |W - NW| + |N - NN| + |NE - NNE|$

CALIC - Context Adaptative Lossless Image Compresion

Pseudokod algorytmu:

if
$$d_h - d_v > 80$$
 then $\widehat{X} \leftarrow N$ else if $d_v - d_h > 80$ then $\widehat{X} \leftarrow W$ else
$$\widehat{X} \leftarrow (N+W)/2 + (NE-NW)/4$$
 if $d_h - d_v > 32$ then $\widehat{X} \leftarrow (\widehat{X}+N)/2$ else if $d_v - d_h > 32$ then $\widehat{X} \leftarrow (\widehat{X}+W)/2$ else if $d_h - d_v > 8$ then $\widehat{X} \leftarrow (3\widehat{X}+N)/4$ else if $d_v - d_h > 8$ then $\widehat{X} \leftarrow (3\widehat{X}+W)/4$

- Predykcję \widehat{X} można jeszcze bardziej uszczegółowić.
- Kodujemy ciąg różnic $X \hat{X}$.

NW	N
W	X

$$\widehat{X} = W$$

NW	N
W	X

- $\widehat{X} = W$
- $\widehat{X} = N$

NW	N
W	X

- $\widehat{X} = W$
- $\widehat{X} = N$
- $\widehat{X} = NW$

NW	N
W	X

- $\widehat{X} = W$
- $\widehat{X} = N$
- $\widehat{X} = NW$

NW	N
W	X

- $\widehat{X} = W$
- $\widehat{X} = N$
- $\widehat{X} = NW$
- $\widehat{X} = N + W NW$
- $\hat{X} = N + (W NW)/2$

NW	N
W	X

- $\widehat{X} = W$
- $\widehat{X} = N$
- $\widehat{X} = NW$
- $\widehat{X} = N + W NW$
- **3** $\hat{X} = N + (W NW)/2$
- **6** $\widehat{X} = W + (N NW)/2$

NW	N
W	X

- $\widehat{X} = W$
- $\widehat{X} = N$
- $\widehat{X} = NW$
- $\widehat{X} = N + W NW$
- **3** $\hat{X} = N + (W NW)/2$
- **1** $\hat{X} = W + (N NW)/2$
- $\hat{X} = (N + W)/2$

NW	N
W	X

Nowy standard:

```
if NW \ge \max(W, N) then \widehat{X} \leftarrow \max(W, N) else if NW \le \max(W, N) then \widehat{X} \leftarrow \min(W, N) else \widehat{X} \leftarrow W + N - NW
```

Wykorzystanie poziomów rozdzielczości

- Kodujemy obraz wysyłając najpierw średni kolor kwadratów 2^kx2^k a następnie różnice między tą średnią a kwadratami o rozmiarach 2^{k-1}x2^{k-1}.
- Kończymy na pikslach (kwadraty 2⁰x2⁰).
- Różnice nie są dużymi liczbami i łatwo poddają się kompresji.

Kodowanie obrazów czarno-białych (faksy)

- Linie takich obrazów zawierają na przemian bloki białe i czarne.
- Możemy przesyłać więc tylko długości takich bloków (zakładając, że pierwszy jest biały).
- Dodatkowo każdą liczbę przedstawiamy jako parę m, t gdzie I = 64m + t dla t = 0,...,63 i m = 0,...,27.
- Dodatkowo możemy kodować nie linię a jej różnicę z linią poprzednią (bardzo skuteczne w faksach).

Kompresja bezstratna – podsumowanie

- Techniki oparte na prawdopodobieństwach: kody Huffmana, Tunstalla, kodowanie arytmetyczne.
- Metody słownikowe: LZ77, LZ78, LZW.
- Kodowanie predykcyjne: PPM, CALIC, JPEG-LS, run-length encoding.
- Stosowanie kilku metod po kolei.