Lógica de Predicados. Introducción. Lógica

Motivación

Sistema vs Realidad

- Un sistema informático no es otra cosa que un modelo de una parte de la realidad, típicamente de un servicio.
 - el servicio que debe proveer la bedelía de la facultad o un banco o un supermercado, etc.
- Cómo se construye típicamente este modelo?

Sistema Informático

Especificación

- Documento que refleja el acuerdo entre el usuario y el equipo de desarrollo sobre lo que debe hacer o no un sistema.
- Documento que refleja el acuerdo entre los integrantes del equipo de desarrollo sobre qué representa cada dato y qué debe hacer cada módulo, función, etc.
- Es un modelo donde los objetos que se especificaron se comportan de forma similar a los objetos reales.
- Si no se dispone de un mecanismo adecuado para formalizar hasta cierto punto la realidad, no es posible construir un sistema informático que la modele.

Lenguajes de Especificación

- La especificación debe proveer lo necesario para realizar las tareas básicas que se hacen con ella:
 - Describir el problema sin ambigüedad.
 - Construir una solución adecuada del problema y con un trabajo razonable.
 - Verificar la solución que se construyó con respecto a la descripción.
- Dependiendo de la claridad de la definición de la sintaxis y semántica del lenguaje de especificación, ésta será más o menos formal.

Los objetos se comportan como los reales

Lenguajes de Especificación

- El lenguaje que se usa para construir las especificaciones debe cumplir algunas características, entre ellas:
 - Permitir la referencia a los elementos del problema.
 - Permitir la identificación de diferentes clases de elementos.
 - Poder ser utilizado en diferentes contextos o al menos diferentes problemas.

Prop como Lenguaje de Especificación: Ordenar un Array

- Dado un array de enteros, devolver otro ordenado con los mismos valores.
- Correspondencia.
 - A es un array: P.
 - El programa (función) Ordenar funciona bien: R.
 - B es la salida de Ordenar: Q.
 - A y B son permutaciones de un mismo array: S.
- Especificación.
 - $\bullet \ P \wedge R \wedge Q \to S$
- Quién garantiza que A y B están relacionados de alguna forma?

Prop como Lenguaje de Especificación: Conclusiones

- Prop no es un buen lenguaje de especificación ya que sólo permite hacer referencia a las nociones de verdadero y falso.
- Esto puede tener su contexto de aplicación.
 - Ej. Electrónica Digital
- Para especificar en informática, es necesario hacer referencia a elementos de la realidad.
 - Ej: edades, personas, asignaturas, bolsas de arroz, etc.

Buscando otro Lenguaje

- Pensemos en utilizar el metalenguaje usado en el curso.
- Qué significa que un array está ordenado?

$$\begin{aligned} Ordenado(b) &\equiv (\overline{\forall} i. \\ i &\in \mathcal{N} \text{ y } 1 \leq i \leq (len(b)-1) \\ &\Rightarrow b[i] \leq [i+1]) \end{aligned}$$

 Qué significa que dos arrays tienen los mismos elementos?

$$\begin{split} TME(a,b) &\equiv Incluido(a,b) \text{ y } Incluido(b,a) \\ Incluido(a,b) &\equiv \forall i.i \in \mathcal{N} \text{y} 1 \leq i \leq len(a) \\ \Rightarrow & \bar{\exists} j: j \in \mathcal{N} \text{y} 1 \leq j \leq len(b): a[i] = b[j] \end{split}$$

Buscando otro Lenguaje

 Dado que la función pedida tiene que cumplir con las dos condiciones, f va a resolver lo pedido si está en el siguiente conjunto:

```
 \begin{cases} f/f: ArrayInt \rightarrow ArrayInt \land \\ & \forall a: a \in ArrayInt: (Ordenado(f(a)) \\ & \land TME(a,f(a))) \end{cases} \}
```

 La especificación representa el conjunto de soluciones al problema.

Especifica o no?

- Eliminación de la ambigüedad?
 - Si, porque a pesar que no es formal dado que sólo son abreviaturas del idioma español, hay un acuerdo con respecto al significado.
- Construir una solución adecuada con un trabajo razonable?
 - Si, si somos capaces de construir un elemento del conjunto que se especificó, en algún lenguaje dado, por ejemplo, Módula.
- Referencia a los elementos de la realidad?
 - Si.

Especifica o No?

- Puede ser utilizado en diferentes contextos o al menos diferentes problemas?
 - Si, lo hemos estado utilizando en todo el curso para diferentes cosas.
- Permite verificar la solución que se construyó con respecto a la descripción?
 - Parece que si... Para hacerlo bien es necesario formalizar mejor el propio lenguaje e incluso su manipulación.
- La idea es construir un sistema similar al de Prop pero para un lenguaje como este.

Análisis e Interpretación del Lenguaje

- En la condición que define al conjunto hay dos tipos de elementos:
 - Unos que referencia a array's o enteros (ej. a, b, 0, len(a)).
 - Otros que referencian a propiedades o relaciones que deben cumplir esos elementos (ej. i < len(b)-1, o Ordenado(f(a))).
- Los primeros referencia a elementos de un *Universo* de *Discurso* (*UoD*) dado
- Los segundos son una forma de expresar hechos que pueden ser verdaderos o falsos dependiendo de ese universo y la interpretación que se les dé a los símbolos.

Lo que Vendrá

Lo que Vendrá

- Sintaxis de los Lenguajes de Primer Orden.
 - Se definirán los términos y las fórmulas como conjuntos inductivos.
- Semántica de los Lenguajes de Primer Orden.
 - Se definirán formalmente las funciones que hacen la correspondencia de la sintaxis con la semántica y se estudiarán propiedades de esas correspondencias.
- Deducción Natural en Primer Orden.
 - Se definirán reglas que nos permitirán construir derivaciones sin involucrar la semántica.
- Completitud y sus aplicaciones en Primer Orden.
 - Se estudiarán las propiedades de completitud y corrección del cistoma definido anteriormento

Contenidos

• Calculo de Predicados

Cálculo Proposicional

Formalización en PROP:

Si 2 es un natural, entonces 2 es un entero.

Pero sin embargo:

$$p \not\models q \rightarrow r$$

Necesitamos un formalismo más expresivo

Análisis de Oraciones

- La validez de ciertos razonamientos depende de la relación entre las proposiciones
- Solución: Hacer análisis fino de la estructura de las proposiciones

Predicados

Lenguaje de La Lógica de Predicados

- Símbolos para denotar objetos
- Símbolos para denotar propiedades y relaciones
- Conectivos
- Cuantificadores

Símbolos para Denotar Objetos

- Símbolos de constante: permiten referirse a objetos determinados
 - Mafalda, 2, π
- Símbolos de variable: permiten referirse a objetos genéricos
 - ullet x, n, lpha
- Símbolos de función: permiten referirse a operaciones (unarias, binarias, etc.)
 - m+1,2!,(1+1)!

Símbolos de Predicado

- Permiten representar propiedades y relaciones entre objetos (símbolos unarios, binarios, etc.)
 - Par es un símbolo de propiedad (unario)
 - ≥ es un símbolo de relación binario
- Los símbolos de predicado se aplican a objetos para representar afirmaciones simples:
 - Par(2)
 - $x \ge 1$

Conectivos

- Permiten combinar afirmaciones.
- Igual que en lógica proposicional:
 - \bullet \bot , \land , \lor , \neg \rightarrow , \leftrightarrow
- Ejemplos:
 - $Par(2) \land x \ge 1$
 - $x \ge 1 \to \neg \bot$

Cuantificadores

- Cuantifican los objetos genéricos (variables)
 - Cuantificador Universal: ∀
 - Cuantificador Existencial: ∃
- Ejemplos
 - $\bullet \ (\forall n)((Par(n) \land 1 \geq n) \to n = 0)$
 - $\bullet \ (\forall x)(\exists y)x \geq y$

Ejemplos

- El factorial de todo número es par
 - \bullet $(\forall x) Par(x!)$
- La suma de dos pares es par
 - $\bullet \ (\forall x)(\forall y)(Par(x) \land Par(y) \rightarrow Par(x+y))$
- Todo número natural es par o impar
 - $\bullet \ (\forall n)(Par(n) \vee Impar(n))$
- Ningún número es a la vez par e impar
 - $\neg(\exists x)(Par(x) \land Impar(x))$
- Todo número natural par tiene raíz cuadrada
 - $\bullet \ (\forall n)(Par(n) \to (\exists m)(m*m=n))$

Universo de discurso

- En matemática usamos algunas convenciones informales para indicar dominios:
 - naturales: n, m, k
 - reales: x, y, z
 - fórmulas lógicas: α, β, γ
 - Conjuntos de fórmulas: Γ, Δ
- En Lógica de predicados los objetos pertenecen todos a un mismo universo.
 - No hay forma de diferenciar sintácticamente los distintos dominios

Universo de discurso

- Cuando es necesario particionar el universo de discurso en clases de objetos, utilizamos símbolos de propiedad para referenciar los objetos de la subclase:
 - $\bullet \ \, \text{Todo natural es par o} \\ \text{impar:} (\forall x)(N(x) \rightarrow Par(x) \vee Impar(x)) \\$
- Si la naturaleza de los objetos de quienes hablamos está sobreentendida (ej. hablamos siempre de fórmulas, naturales, reales, etc.) podemos obviar el símbolo de propiedad respectivo

Símbolos

- ¿Qué determina los símbolos del alfabeto que necesitamos en nuestro lenguaje?
 - Ningún número es par e impar a la vez: $\neg(\exists x)(Par(x) \land Impar(x))$ $\neg(\exists x)(Par(x) \land \neg Par(x))$
- La Estructura: depende de la realidad que queremos describir.