MA1521 Finals Cheatsheet v1.2 (2020-10-27) by Julius Putra Tanu Setiaji, page 1 of 2

Trigo Formulae

- $\sin^2 \theta + \cos^2 \theta = 1$, $\sin 2\theta = 2\sin \theta \cos \theta$
- $\sin(A \pm B) = \sin A \cos B \pm \sin B \cos A$
- $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$
- $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$, $\tan 2\theta = \frac{2 \tan \theta}{1 \tan^2 \theta}$
- $\cos 2\theta = \cos^2 \theta \sin^2 \theta = 2\cos^2 \theta 1 = 1 2\sin^2 \theta$
- $\sin P + \sin Q = 2 \sin \frac{1}{2} (P + Q) \cos \frac{1}{2} (P Q)$
- $\sin P \sin Q = 2\cos \frac{1}{2}(P+Q)\sin \frac{1}{2}(P-Q)$ • $\cos P + \cos Q = 2\cos\frac{1}{2}(P+Q)\cos\frac{1}{2}(P-Q)$
- $\cos P \cos Q = -2\sin\frac{1}{2}(P+Q)\sin\frac{1}{2}(P-Q)$
- $a^2 = b^2 + c^2 2bc\cos\theta$ and $\frac{a}{\sin a} = \frac{b}{\sin b}$

2 Functions and Limits **Existence of Limits**

 $\lim_{x \to \infty} f(x)$ only exists when:

- $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$ (limit from left = right)
- For $a = \infty$ or $-\infty$, only if f(x) does not oscillate

Rules of Limits

- 1. $\lim_{x \to a} (f \pm g)(x) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$
- 2. $\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- 3. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$ provided $\lim_{x \to a} g(x) \neq 0$
- 4. $\lim_{x \to a} k f(x) = k \lim_{x \to a} f(x)$

f is continuous at point $a \Leftrightarrow \lim_{x \to a} f(x) = f(a)$

L'Hôpital's Rule Suppose:

- 1. f and g are differentiable
- 2. f(a) = g(a) = 0
- 3. $g'(x) \neq 0$ for all $x \in I \setminus a$

Then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

- Use L'Hôpital's Rule for ⁰/₀ and [∞]/_∞ forms.
- Common: $\lim_{x \to \frac{\pi^{-}}{2}} (\sin x)^{\tan x} = \lim_{x \to \frac{\pi^{-}}{2}} e^{\ln(\sin x)^{\tan x}}$
- $\lim_{x \to \infty} \tan x \ln(\sin x) \qquad \lim_{x \to \infty} \frac{\ln(\sin x)}{\cot x}$ (now in $\frac{0}{0}$ form)
- 1. Convert $0 \cdot \infty, \infty \infty$ by algebra manip
- 2. Convert 1^{∞} , ∞^{0} , 0^{0} by first taking ln

f'(a) = slope of tangent at pt a

3 Derivative

The derivative of f at point a is $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$, denoted by f'(a) provided the limit exists. $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = \frac{dy}{dx} \Big|_{x = a}$ Some properties

- f'(a) exists $\Rightarrow f(x)$ is smooth (:: continuous) at a

Since derivative is limit, if $\lim_{n \to \infty} f(a) = \frac{1}{2} \cdot \frac{1}{2}$ does not exist.

Formulae

Function	Deriva	tive
$(f(x))^n$	nf'(x)f(x)	$(x)^{n-1}$
$\sin f(x)$	$f'(x)\cos$	
$\cos f(x)$	$-f'(x)\sin$	
$\tan f(x)$	$f'(x)\sec^2$	
$\cot f(x)$	$-f'(x)\csc^2 f(x)$	
$\sec f(x)$	$f'(x)\sec f(x)$	$) \tan f(x)$
$\csc f(x)$	$-f'(x)\csc f(x)\cot f(x)$	
$a^f(x)$	$f'(x)a^{f(x)}$	⁽⁾ ln <i>a</i>
Б (:		Function
Function	Derivative	1
k	0	$\sin^{-1} f(x)$

Proceedings	D	Function	Derivative
Function	Derivative	. 1	f'(x)
k	0	$\sin^{-1} f(x)$	1 2
$e^f(x)$	$f'(x)e^{f(x)}$	·	$\sqrt{1-f(x)^2}$
$\log_a f(x)$	f'(x)	$\cos^{-1} f(x)$	$-\frac{f'(x)}{}$
108a) (10)	$f(x) \ln a$		$\sqrt{1-f(x)^2}$
$\ln f(x)$	$\frac{f'(x)}{f(x)}$	$\tan^{-1} f(x)$	f'(x)
, , ,	$\int (x)$	tan - f(x)	$\frac{1+f(x)^2}{1+f(x)^2}$

Rules of Differentiation

- (kf)'(x) = kf'(x)
- $(f \pm g)'(x) = f'(x) \pm g'(x)$
- $\frac{d}{dx}uv = u\frac{dv}{dx} + v\frac{du}{dx}$
- $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{(g(x))^2}$
- $\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$ or $\frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{du}{dx}$

Parametric Differentiation

Given $\begin{cases} y = u(t) \\ x = v(t) \end{cases}$, we have $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$

Second derivative

 $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$ then do implicit differentiation w.r.t x

Polar equation $(r = a\theta)$: $x = r\cos\theta$, $y = r\sin\theta$

mplicit Differentiation

Differentiate w.r.t. to var, then multiply by $\frac{d < \text{var}>}{dx}$ Com $mon: y = x^x \iff \ln y = x \ln x$

Higher Order Derivatives

The *n*-th derivative is denoted by $\frac{d^n y}{dx^n}$ or $f^{(n)}(x)$

Maxima and Minima

• f(c) is Local Maximum if $f(c) \ge f(x)$ for x near c

- f(c) is Local Minimum if $f(c) \le f(x)$ for x near c
- f(c) is abs maximum if $f(c) \ge f(x) \forall x \in domain$
- f(c) is abs minimum if $f(c) \le f(x) \forall x \in \text{domain}$
- Critical Point:

Let f be a function with domain D. An interior point (not end-point) c in D is called a **Critical Point** of f if f'(c) = 0of f'(c) does not exist.

Method to find extreme values of f :

Check critical points of f, end-points of domain D

Method to Find Local Extreme values

A function may not have a local extreme at a critical pt. Check using 1st/2nd derivative tests.

1st Derivative Test: Assume $c \in (a, b)$ is a critical point of f

Function f'(x) > 0 for $x \in (a,c)$ and f'(x) < 0 for $x \in (c,b)$, then f is tan² xdx a local maximum $\int \sec x dx$

f'(a) does not exist at **discontinuity, corner,** and **vertical** 2. f'(x) < 0 for $x \in (a,c)$ and f'(x) > 0 for $x \in (c,b)$, then f is a local minimum

 $f'(c) = 0 \begin{cases} f''(c) < 0 \iff f \text{ has local max at } c \\ f''(c) > 0 \iff f \text{ has local min at } c \end{cases}$

Note: if f'(c) = 0 and f''(c) = 0 then 2nd derivative test fail Use 1st derivative test.

Method to Find Absolute Extreme Values

- 1. Find all critical points *c* in the interior
- 2. Evaluate f(c), where c is a critical or end point
- 3. The largest and smallest of these values will be abs max & min respectively

Increasing and Decreasing Functions

Test for Monotonic Functions (f: I (interval) $\rightarrow \mathbb{R}$):

- f'(x) > 0 for any x in $I \Rightarrow f$ is **increasing** on I
- f'(x) < 0 for any x in $I \Rightarrow f$ is **decreasing** on I

Concativity

 $\int f''(x) < 0 \Leftrightarrow f'(x)$ is decreasing \Leftrightarrow Concave Down $f''(x) > 0 \Leftrightarrow f'(x)$ is increasing \Leftrightarrow Concave Up

Points of Inflection

Let $f: I \to \mathbb{Z}$ and $c \in I$.

cavity of f changes at c. In another word: c is pt of inflection $\rightarrow f''(c) = 0$ (but not $\left| \frac{d}{dx} \int_{a}^{x} f(t) dt = f(x) \right|$ the reverse – c is a pt of inflection only if f''(c) crosses from Note the 2 x's: on $\frac{d}{dx}$ and \int_a^x and f(t) is indep of x

(+) to (-) and vice versa.)

4 Integration

Indefinite Integral

Denoted by $\int f(x)dx = F(x) + C$

Geometrical Interpretation

All curves y = F(x) + C s.t. their slopes at x are f(x)

Rules of Indefinite Integration

- 1. $\int k f(x) dx = k \int f(x) dx$
- 2. $\int -f(x)dx = -\int f(x)dx$
- 3. $\int [f(x) \pm g(x)]dx = \int f(x)dx \pm \int g(x)dx$

Integral Formulae

tan xdx

Function	Integral	
$\int \cot x dx$	$ln(\sin x) + C$	
sec x tan xdx	$\sec x + C$	
$\csc x \cot x dx$	$\csc x + C$	
$\int \sec^2 x dx$	$\tan x + C$	
$\int \csc^2 x dx$	$-\cot x + C$	
(wh dw	x^{n+1}	1 44

$\int x^n dx$	$\frac{x^{n+1}}{n+1} + C, n \neq -1, n$ rational
$\int \frac{1}{\sqrt{a^2-x^2}} dx$	$\sin^{-1}(\frac{x}{a}) + C$
$\int \frac{1}{a^2 + x^2} dx$	$\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right) + C$
(, , (,	1

$\int 1ax = \int ax$	x + C
$\int e^x dx$	$e^x + C$
$\int a^x dx$	$\frac{a^{\chi}}{1-a^{\chi}}$

$\ln x dx$ $x \ln x - x + C$ $\int \frac{1}{x} dx$ $\ln x + C$

 $-\frac{\cos kx}{} + C$ $\sin kx dx$ $\frac{\sin kx}{L} + C$ $\cos kx dx$

 $\ln(\sec x) + C$ or $-\ln(\sec x) + C$

Riemann (Definite) Integrals

 $\csc x dx$

Riemann sum on f on $[a,b] \approx \sum_{k=1}^{n} f(c_k) \Delta x$

Integral

 $\tan x - x + C$

 $\ln(\sec x + \tan x) + C$

 $\ln(\csc x - \cot x) + C$

Exact area = $\lim_{n \to \infty} \sum_{k=1}^{n} f(c_k) \Delta x$ Riemann Integral of f over [a, b]:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_k) \Delta x$$

Rules of Definite Integrals

$$\int_{a}^{a} f(x)dx = 0, \int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx$$

$$2. \int_a^b f(x)dx = -\int_b^a f(x)dx$$

3.
$$\int_a^b [f(x) \pm g(x)] = \int_a^b f(x) \pm \int_a^b g(x)$$

4. If
$$f(x) \ge g(x)$$
 on $[a, b]$, then $\int_a^b f(x)dc \ge \int_a^b g(x)dx$
If $f(x) \ge 0$ on $[a, b]$, then $\int_a^b f(x)dx \ge 0$

5. If *f* is continuous on the interval joining *a*, *b* and *c*, then
$$\int_a^b f(x)dx + \int_b^c f(x)dx = \int_a^c f(x)dx$$

Fundamental Thm of Calculus

F'(x) = f(x) If F is an antiderivative of f on [a, b], then

Let
$$f: I \to \mathbb{Z}$$
 and $c \in I$.
 c is a pt of inflection of f if f is continuous at c and the concavity of f changes at c .

$$\int_a^b F'(x)dx = \int_a^b f(x)dx = F(b) - F(a)$$

$$x'$$
 Let f be continuous on $[a, b]$. Then

$$\lim_{dx} J_a f(t) dt = f(x)$$

1.
$$\frac{d}{dx} \int_0^2 t^2 dt = 0, \frac{d}{dx} \int_0^x \sin \sqrt{t} dt = \sin \sqrt{x}$$

2.
$$\frac{d}{dx} \left(\int_{1}^{x^{4}} \frac{t}{\sqrt{t^{3}+2}} dt \right) = \frac{d}{dx^{4}} \left(\int_{1}^{x^{4}} \frac{t}{\sqrt{t^{3}+2}} dt \right) \frac{dx^{4}}{dx}$$
$$= \frac{x^{4}}{\sqrt{(x^{4})^{3}+2}} (4x^{3}) = \frac{4x^{7}}{\sqrt{x^{1}}^{2}+2}$$

3.
$$\frac{d}{dx} \int_{x}^{a} f(t)dt = -\frac{d}{dx} \int_{a}^{x} f(t)dt$$

4.
$$\frac{d}{dx} \int_{x^2}^{x^4} f(t)dt = \frac{d}{dx} \int_{a}^{x^4} f(t)dt - \frac{d}{dx} \int_{a}^{x^2} f(t)dt$$

Integration Methods

Integration by Substitution :

Use the form $\int f(g(x))dg(x)$ OR use a dummy variable to get to a form in the Integral Formulae (taking into account chain rule)

Integral	Sub	Use identity
$a^2 - u^2$	$u = a \sin \theta$	$1 - \sin^2 \theta = \cos^2 \theta$
$a^2 + u^2$	$u = a \tan \theta$	$1 + \tan^2 \theta = \sec^2 \theta$
$u^{2} - a^{2}$	$u = a \sec \theta$	$sec^2\theta - 1 = \tan^2\theta$

• Integration by Part:

$$\int uv'dx = uv - \int u'vdx$$

Choose u by LIATE (Logarithmic, Inverse trigo, Algebraic, Trigo, Exponential)

Area between 2 curves

 $A = \int_{a}^{b} (g(x) - f(x)) dx$ provided g(x) is above f(x)

Volume of a solid

Volume (around x-axis) = $\int_{a}^{b} \pi v^2 dx$

5 Series

Geometric Series

 $\sum_{r=1}^{n} ar^{n-1} = a \frac{1-r^n}{1-r}$ $\sum_{r=1}^{\infty} ar^{n-1} = \frac{1}{1-r}$ if |r| < 1, diverges otherwise MA1521 Finals Cheatsheet v1.2 (2020-10-27) by Julius Putra Tanu Setiaji, page 2 of 2

$$\sum (a_n \pm b_n) = \sum a_n \pm \sum b_n$$
, $\sum (ka_n) = k \sum a_n$ Ratio Test

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho, \text{ the series } \begin{cases} \text{converges if} & \rho < 1 \\ \text{diverges if} & \rho > 1 \\ \text{no conclusion if} & \rho = 1 \end{cases}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \begin{cases} \text{diverges} & 0 \le p \le 1\\ \text{converges} & p > 1 \end{cases}$$
Radius of convergence (*R***)**

Series about x = a, $\sum_{n=0}^{\infty} c_n (x-a)^n$ 1. R = 0, converges only at a

- 2. R = h, converges in (a h, a + h) but diverges outside
- 3. $R = \infty$, converges at every x

Differentiation and Integration of Power Series

Let $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$, a-h < x < a+h where h is Radius Chain Rule of Convergence, then for a-h < x < a+h, $dz = \frac{\partial z}{\partial z} \cdot \frac{\partial z}{\partial z}$

$$f'(x) = \sum_{n=0}^{\infty} \frac{d}{dx} (c_n (x-a)^n) = \sum_{n=1}^{\infty} n c_n (x-a)^{n-1}$$

$$f''(x) = \sum_{n=1}^{\infty} n c_n \frac{d}{dx} (x-a)^{n-1} = \sum_{n=2}^{\infty} n (n-1) c_n (x-a)^{n-2}$$
Note lower bound of sum increases by 1

$$\int_{-\infty}^{x} f(x)dx = \int_{-\infty}^{x} \sum_{n=0}^{\infty} c_n(x-a)^n = \sum_{n=0}^{\infty} c_n(x-a)^n$$

 $\int_0^x f(x)dx = \int_0^x \sum_{n=0}^\infty c_n(x-a)^n = \sum_{n=0}^\infty c_n \frac{(x-a)^{n+1}}{n+1}$ The radius of convergence is h after diff and integ Taylor Series of f at a

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$$

MacLaurin Series

Taylor series of f at 0, i.e. $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$

List of common MacLaurin Series

1.
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, -1 < x < 1, R = 1$$

2. $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, -1 < x < 1, R = 1$

3.
$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} x^2 n, -1 < x < 1, R = 1$$

4. $ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}, -1 < x < 1, R = 1$

5.
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, -\infty < x < \infty, R = \infty$$

6. $\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}, -\infty < x < \infty, R = \infty$

7.
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, -\infty < x < \infty, R = \infty$$

8. $\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}, -1 \le x \le 1, R = 1$

9.
$$\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1}, -1 < x < 1, R = 1$$
0.
$$\frac{1}{(1-x)^3} = \frac{1}{2} \sum_{n=2}^{\infty} n(n-1)x^{n-2}, -1 < x < 1, R = 1$$

1.
$$(1+x)^k = \sum_{n=0}^{\infty} {n \choose n} x^n, -1 < x < 1, R = 1$$

2. $(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} x^2 + \frac{n(n-1)(n-2)}{3!} x^3 + ..., -1 < x$

Taylor Polynomials

The n-th order Taylor Polynomial of f at a

$$P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k$$
 It gives a good polynomial approxn of order n

Taylor's Theorem $f(x) = P_n(x) + R_n(x)$ where

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$
 for $a < c < x$.
 $R_n(x)$ is remainder of order n or error term

$$n(x)$$
 is remainder of order n or error term **Vector**

Dot Product

$$\begin{aligned} v_1 &= \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}, v_2 &= \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}, v_1 \cdot v_2 &= x_1 x_2 + y_1 y_2 + z_1 z_2 \\ \cos \theta &= \frac{v_1 \cdot v_2}{\|v_1\| \|v_2\|}, \text{ Projection of } b \text{ onto } a &= \frac{b \cdot a}{\|a\|^2} a \end{aligned}$$

Commut, assoc, distr, and $v_1 \cdot v_1 = ||v_1||^2$ Cross Product

$v_1 \times v_2 = (y_1 z_2 - y_2 z_1)\mathbf{i} - (x_1 z_2 - x_2 z_1)\mathbf{j} + (x_1 y_2 - x_2 y_1)\mathbf{k}$ Area Hyperbolic Functions

Use the Ratio Test to find range of convergence of Power of parallellogram = $||v_1 \times v_2|| = ||v_1|| ||v_2|| \sin \theta$ Distr, assoc, but $v_1 \times v_2 = -v_2 \times v_1$ and $v_1 \times v_1 = O$ Functions of Several Variables

> **Partial Derivatives** of z = f(x, y) w.r.t. x is denoted by $\frac{\partial z}{\partial x}\Big|_{(a, b)}$ or $f_X(a, b)$

Method: Fix the other variable (Note: $f_{xy} = f_{yx}$)

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} \text{ AND } \frac{dw}{dt} = \frac{\partial w}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial w}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial w}{\partial z} \cdot \frac{dz}{dt}$$

 $f_x(a, b)$ is rate of change of f along direction of x-axis Directional derivative of f at (a,b) in direction of unit vector 3. 2 complex roots (a+ib): $y=e^{ax}(c_1\cos bx+c_2\sin bx)$

$$u = u_1 \mathbf{i} + u_2 \mathbf{j}$$
 is $D_u f(a, b) = f_X(a, b) u_1 + f_Y(a, b) u_2$
or $D_u f(a, b, c) = f_X(a, b, c) u_1 + f_Y(a, b, c) u_2 + f_Z(a, b, c) u_3$
 $df = D_u f(a, b) \cdot dt$ (normal · multiplication) measures
change in $f(df)$ when we move a small distance dt and Malthusian Population Growth

change in f(df) when we move a small distance dt, and *u* is the unit directional vector of the change and (a,b) is the $N(t) = N(0)e^{kt}$ where k = B - D. Conditions: original pt

Gradient Vector

Denoted by $\nabla f = f_x \mathbf{i} + f_v \mathbf{j}$ where

$$\nabla f(a,b) \cdot u = D_u f(a,b) = \|\nabla f(a,b)\| \cos \theta$$

 $D_u f(a,b) > 0$ and max when $\cos \theta = 1 \iff \theta = 0^\circ$

$D_u f(a, b) < 0$ and min when $\cos \theta = -1 \iff \theta = 180^\circ$

Critical Points - First Derivative Test has a local max or min at $(a,b) \wedge f_x$ exists $\wedge f_v$ exists $f_x = 0 \land f_v = 0$ (But not the converse)

Second Derivative Test Disriminant = $f_{xx}(a,b)f_{yy}(a,b) - f_{xy}(a,b)^2$

1. $D > 0 \land f_{xx}(a,b) > 0 \rightarrow f$ has a local min at (a,b)

- 2. $D > 0 \land f_{xx}(a,b) < 0 \rightarrow f$ has a local max at (a,b)
- 3. $D < 0 \rightarrow f$ has a saddle-point at (a, b)
- 4. $D = 0 \rightarrow \text{no conclusion}$

Ordinary Differential Equation (ODE) No Crossing Principle: solution curves do not cross each

There is only 1 soln for initial value problem with 1st order population stabilises at $\frac{B}{S}$ ODE. Intersection point of 2 curves is the initial pt.

1.
$$\frac{dy}{dx} = \frac{M(x)}{N(y)} \iff \int M(x)dx = \int N(y)dy$$

2. $y' = f(\frac{y}{x}) \Leftrightarrow \text{Let } v = \frac{y}{x}, f(v) = y' \Leftrightarrow \frac{dv}{f(v) - v} = \frac{dx}{x}$

3.
$$y' = \frac{ax + by + c}{a_1x + b_1y + c_1} \Leftrightarrow \text{Let } u = ax + by$$

4. $\frac{dy}{dx} + p(x)y = Q(x) \Leftrightarrow ye^{\int p(x)dx} = \int Q(x)e^{\int p(x)dx}dx$ 5. Bernoulli eqn $y' + p(x)y = q(x)y^n \Leftrightarrow$

Let $z = y^{1-n} \Leftrightarrow z' + (1-n)p(x)z = (1-n)q(x)$

Radioactive decay: $\frac{dx}{dt} = kx$, $x(t) = x(0)e^{-\frac{\ln 2}{t}t}$

Uranium-Thorium: $\frac{T}{U} = \frac{k_U}{k_T - k_{IJ}} (1 - e^{-(k_T - k_U)t}) k_N = \frac{\ln 2}{\tau_N}$ Cooling/Heating: $\int \frac{dT}{T-T_0} = \int k dt, T(t) - T_0 = (T(0) - T_0)e^{kt}$

Retarded fall: $m\frac{dv}{dt} = mg - bv^2$,

Retarded fall:
$$m \frac{dv}{dt} = mg - bv^2$$
,
 $v = k \frac{1+ce^{-pt}}{1-ce^{-pt}}$, $k^2 = \frac{mg}{b}$, $c = \frac{v(0)-k}{v(0)+k}$, $p = \frac{2kb}{m}$

$\cosh x = \frac{e^x + e^{-x}}{2}$, $\sinh x = \frac{e^x + e^{-x}}{2}$, $\tanh x = \frac{\sinh x}{\cosh x} = \frac{1 - e^{-2x}}{1 + e^{-2x}}$

Form:
$$\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = F(x)$$

homogeneous $\Leftrightarrow F(x) = 0$, else non-homogeneous Homogeneous 2nd order linear ODE

Linearly dependent $\Leftrightarrow \forall x \exists c \text{ s.t. } u(x) = cv(x)$

 y_1, y_2 are lin. indep. solns \Rightarrow a general soln is $y = c_1 y_1 + c_2 y_2$ y_1, y_2 are NOT lin. indep. solns $\Rightarrow y = c_1y_1 + c_2y_2$ is a soln

 $\frac{d^2y}{dx^2} + A\frac{dy}{dx} + By = 0$ has the trivial soln y = 0 and non-trivial soln: Let $y = e^{\lambda x}$, solve $\lambda^2 + A\lambda + B = 0$, general soln is: (PS: Reverse is $A = -(\lambda_1 + \lambda_2), B = \lambda_1 \lambda_2$

- 1. 2 real roots: $y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$
- 2. 1 real root: $y = c_1 e^{\lambda_1 x} + c_2 x e^{\lambda_1 x}$
- 9 Mathematical Modelling (B = birth rate, D = death

- 1. k > 0 (B > D): popn explosion ($e^{kt} \to \infty, N(t) \to \infty$ as $t \to \infty$
- 2. k = 0 (B = D): stable (N(t) = N(0) for all t)
- 3. $k < 0 \ (B < D)$: extinction $(e^{kt} \to 0, N(t) \to 0 \text{ as } t \to \infty)$

Logistic Growth Model

Eqn: $\frac{dN}{dt} = (B-D)N, N(0) = \hat{N}, N_{\infty} = \frac{B}{s}$ $\frac{dN}{dt} = (B-D)N = (B-sN)N = BN - sN^2$ where s is a small

number compared to B.
$$\frac{dN}{dt} = 0 \text{ when } N \approx \frac{B}{s} \text{ (population stops growing)}$$

$$N(t) = \frac{B}{s + \left(\frac{B}{N_0} - s\right)e^{-Bt}} = \frac{N_{\infty}}{1 + \left(\frac{N_{\infty}}{N_0} - 1\right)e^{-Bt}}$$

$$\lim N(t) = \frac{B}{s}$$

Case 1: $B - sN(t) > 0 \ \forall t$ (Popn < sustainable popn) Logistic curve increasing

Logistic curve decreasing Case 3: B - sN(t) = 0 at all t (At sustainable popn)

Population constant at N(0)

Case 2: B - sN(t) < 0 at all t (Popn > sustainable popn)

Harvesting

 $\frac{dN}{dt} = BN - sN^2 - E$ where E is fish caught per year. **DO NOT ATTEMPT TO SOLVE THE ODE.** They will just

ask to draw graph. Method:

- 1. Let $F(N) = \frac{dN}{dt} = -sN^2 + BN E$
- 2. Discriminant = $B^2 4(-s)(-E) = B^2 4sE$
- (a) D < 0: No equiblirium soln (Popn is decreasing to ex-Note: -s < 0, shape is \cap , $F(N) \neq 0$

(b) D > 0: 2 equilibrium solns Solve F(N) for β_1 , β_2 where $\beta_1 < \beta_2 < \frac{B}{c}$

There are 3 possible cases:

 $\frac{B}{S} = \beta_1 + \beta_2, \frac{E}{S} = \beta_1 \beta_2$ β_2 is stable (N(0) slightly diff from β_2 , popn will still tend to β_2). β_1 is not stable (N(0) slightly diff from β_1 will not tend to β_1)

(c) D = 0: 1 equilibrium solns

Suppose $N(0) > \frac{B}{2s}$ then max. harvesting w/o extinc-

This constant $\frac{B}{S}$ is called carrying capacity, sustainable PS: more precise curves, follow the original logistic growth population, or logistic equilibrium population. Or that the model graph (S-shaped) increasing: gentle-steep-gentle, decreasing: steep-gentle-steep

Additional Notes

• If the question is in powers above 2, e.g. $\frac{dN}{dt} = aN^4 +$ $|bN^3 + cN^2 + dN + e$, the same rule about the graph still applies: the stable populations are the solutions to $aN^4 + bN^3 +$ $cN^2 + dN + e = 0$

• If there is no harvesting, then N = 0 is also a solution.