

Computational mechanisms of structure learning: how humans update relational knowledge

¹Leonie Glitz, ^{1,2}Neil Garrett, ¹Keno Jüchems & ^{1,3}Christopher Summerfield

¹ Department of Experimental Psychology, University of Oxford, Oxford, UK² Neuroscience Institute, Princeton University, Princeton, NJ, USA ³ Google DeepMind, London, UK

Introduction

- To make inferences about the world, we need a model of it that includes transition probabilities between different states
- Having and updating a unique model for each context is computationally expensive
- Can we learn to reuse models for different contexts when appropriate but not when inappropriate?
- Current tasks investigating model-based & model-free learning are solvable using either of the two learning systems
 - Here we use a novel decision-making task that coerces participants to use model-based learning of transition structures across four different contexts
- This allows us to test whether participants generalise new information about state transitions learnt in one context to other contexts when appropriate

Computational Models

Model Free Learner

 $Q^{MF}_{t+1}(a, t) = (1-\alpha)^* Q^{MF}_t + r_t$

Model Based Learner

$$T(s, a, s') = T(s, a, s') + \alpha^* \delta_{SPE}$$

 $Q^{MB}_{t}(s, a) = \sum_{S'} T(s, a, s') * r(s')$

T(s, a, s'): Transition matrix, stores the probability of transitioning from state s to s' given action a.

 δ_{SPF} : state prediction error

Choice

 $p(black) = \frac{\exp(\beta^{MF} * Q_{Black}^{MF} + \beta^{MB} * Q_{Black}^{MB})}{\exp(\beta^{MF} * Q_{Black}^{MF} + \beta^{MB} * Q_{Black}^{MB}) + \exp(\beta^{MF} * Q_{White}^{MF} + \beta^{MB} * Q_{White}^{MB})}$

 β^{MF} , β^{MB} : inverse temperature parameters for Model Free and Model Based value estimates

Basic Model

single learning rate: α

Learning Asymmetry Model two learning rates: α⁺, α⁻

Structure Learning Model

Q^{MB} from both states weighted by trial-bytrial covariance between state transitions

Combined Model

Integrates structure learning and learning asymmetry model; Q^{MB} & α^+ , α^-

of choosing black door

Independent variable: Outcome on the last trial

Dependent variable: Likelihood

*** p< .001, **p< .01, * p< .05

*** *p*< .001, ***p*< .01, * *p*< .05

Context: gem presented on the trial

Model-based Learning is Sensitive to Task Structure

Hierarchical Logistic Regression Model

MF*context*condition + MB*context*condition + MB*outcome | Subject)

P(Black Door) ~ MF*context*condition + MB*context*condition + MB*outcome + (1 +

Dependent variable: Likelihood of choosing black door

Independent variable: State transition on the last trial combined with trial type (gain/loss) of the current trial.

Asymmetries in Model-based Updating

Structure learning and learning asymmetry a better fit to choice data

Conclusion

- Participants integrate information about transition structures across different contexts
- This effect is stronger in environments where different contexts share the same underlying transition dynamics and weaker in environments where the transition dynamics differ between contexts -> clear evidence of efficient structure learning
- Valence whether an outcome is positive or negative has a strong impact on the rate with which new information about state transitions is integrated into beliefs -> evidence of asymmetric belief updating
- Future work will examine how shared versus separate use of state transition knowledge between contexts corresponds to differences in neural representations