

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL/NASIONALE SENIOR CERTIFICATE/SERTIFIKAAT

GRADE/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

NOVEMBER 2016

MEMORANDUM

MARKS/PUNTE: 150

This memorandum consists of 26 pages. *Hierdie memorandum bestaan uit 26 bladsye*.

NOTE:

- If a candidate answered a question TWICE, mark only the FIRST attempt.
- If a candidate has crossed out an attempt to answer a question and did not redo it, mark the crossed-out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord het, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n poging om 'n vraag te beantwoord, doodgetrek en nie oorgedoen het nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid is op ALLE aspekte van die memorandum van toepassing. Staak nasien by die tweede berekeningsfout.
- Om antwoorde/waardes om 'n probleem op te los, te veronderstel, word NIE toegelaat NIE.

Distance from the store in km Afstand vanaf die winkel in km	1	2	3	4	5	7	8	10
Average number of times shopped per week								
Gemiddelde aantal keer wat kopers	12	10	7	7	6	2	3	2
die winkel per week besoek								

1.1	Strong/Sterk	✓
		(1)
1.2	-0,95 (-0,9462)	✓
		(1)
1.3	$a = 11,71 \ (11,7132)$	✓ value of <i>a</i>
	$b = -1,12 \ (-1,1176)$	\checkmark value of b
	$\hat{y} = -1,12x + 11,71$	✓ equation/vgl
		(3)
1.4	$\hat{y} = -1,12(6) + 11,71$	✓ substitition
	= 5 times	✓ answer
	5 times	(2)
1.5	On scatter plot/Op spreidiagram	 ✓ A line close to any 2 of the following points: (5; 6) or (10; ½) or (6; 5) or (0; 11,7)
		(2)
		[9]

1 ositively skewe	d OK skewed to the right p	ositief skeef OF skeef na regs	✓ answer
Range/Omvang =	= 2,21 - 1,39 = 0,82 m		✓ subtract values
			✓answer
	Intervals	Cumulative frequency	
	Klasse	Kumulatiewe frekwensie 24	√ 95 , 133,
	$1,3 \le x < 1,5$	95	156
	$1,5 \le x < 1,7$	133	√ 160
	$1.7 \le x < 1.9$	156	
	$1.9 \le x < 2.1$		
	$2,1 \le x < 2,3$	160	
	OGIV	E/ <i>OGIEF</i>	✓ upper limits /
170 165			boonste
160 155		•	limiete
150 145			$\begin{array}{c c} & & \checkmark \text{ cum } f / \\ & & kum f \end{array}$
140			\sqrt{shape/}
130 125			vorm
120			
S 110			geanke
100			
f 90			
85			
a 75 70 70 70 70 70 70 70 70 70 70 70 70 70			
Number of learners 120 115 105 100 100 100 100 100 100 100 10			
55			
45			
35			
40 35 30 25 20 15 10			
15			
5			
1.1	1.3 1.5 Q ₂	.7 1.9 2.1 2.3	2.5
		Heights (m)	
_			
	to determine the height)		✓ method
1,65 (accept any	value between 1,6 and 1,69	9)	✓ answer
The mean would	change by 0.1 m		✓ answer
	al met 0,1 m verander		v answer
		e in variation of data./Geen invloed	✓ answer
		die variasie van die data is nie.	

3.1	M = Midpt of AC	[diags of rectangle bisect/ hoekl v reghoek halveer]		
		noeki v regnoek naiveer]		
	$= M\left(\frac{-7+6}{2}; \frac{2+3}{2}\right)$		\checkmark <i>x</i> -value of M	
	$= M\left(-\frac{1}{2}; \frac{5}{2}\right)$ $m_{BC} = \frac{3-0}{6-p} = \frac{3}{6-p}$		✓ y-value of M	(2)
3.2	$m_{\rm BC} = \frac{3-0}{6-n} = \frac{3}{6-n}$		√answer	
	OR/OF			(1)
	$m_{\rm BC} = \frac{0-3}{p-6} = \frac{-3}{p-6}$			
	p-6 $p-6$		√answer	(1)
3.3	$m_{\rm AD} = m_{\rm BC} [AD \mid \mid BC]$		(m 2	
	$m_{\rm BC}=2$		$\checkmark m_{\rm BC} = 2$	
	$\frac{3}{6-p}=2$		✓ equating	
	3 = 12 - 2p			
	$p = 4\frac{1}{2}$		√answer	(3)
	OR/OF		$\checkmark m_{\rm BC} = 2$	(3)
	$y - y_1 = 2(x - x_1)$			
	C(6;3)		✓ substituting	
	$y-3=2(x-6)$ $\therefore y=2x-9$		(6;3)	
	but y = 0			
			√answer	
	$\therefore x = 4\frac{1}{2} = p$			(3)
	OR/OF			

_	NSC/NSS – Memorandum		
	y = 2x + c		
	3 = 12 + c	/ m - 2	
	-9=c	$\sqrt{m_{\rm BC}} = 2$	
	y = 2x - 9		
	0 = 2x - 9	✓ substituting	
	$x = \frac{9}{2} \qquad \therefore p = \frac{9}{2}$		
	$x = \frac{1}{2}$ $\therefore p = \frac{1}{2}$		
		✓answer	(3)
3.4	DB =AC [diag of rectangle = / hoekl v reghoek =]	(.	<u>)</u>
	$AC = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$		
	,	✓ substitution	
	$AC = \sqrt{(6+7)^2 + (3-2)^2}$		
	$AC = \sqrt{13^2 + 1^2}$	✓ length of AC	
	$AC = \sqrt{170}$		
	\therefore DB = $\sqrt{170}$ or 13,04	\checkmark AC = BD	'2 \
3.5	$\tan \alpha = m_{\rm BC} = 2$	$\checkmark \tan \alpha = m_{\rm BC}$	(3)
	$\therefore \alpha = 63,43^{\circ}$	$\sqrt{\alpha} = 63.43^{\circ}$	
			(2)
3.6	In quadrilateral OFBG:		
	$\hat{OFB} = 63,43^{\circ}$ [vert opp $\angle s/regoorst \angle e$]	✓ size of OFB	
	$\hat{FOG} = \hat{GBF} = 90^{\circ}$		
	:. $O\ddot{G}B = 360^{\circ} - [90^{\circ} + 90^{\circ} + 63,43^{\circ}] [sum \angle s quad/som \angle e vierh = 360^{\circ}]$	✓ S	
	$\therefore \text{ OGB} = 116,57^{\circ}$	✓ answer	
	OR/OF		(3)
	$m_{AB} = -\frac{1}{2}$	$\sqrt{m_{AB}} = -\frac{1}{2}$	
	$90^{\circ} + \hat{OGA} = 153,43^{\circ}$	2	
	$\therefore \text{ OGA} = 63,43^{\circ}$	/ 5	
	$O\hat{G}B = 180^{\circ} - 63,43^{\circ}$	✓ S ✓ answer	
	= 116,57°		(3)
	OR/OF		
	$\hat{FOG} = \hat{GBF} = 90^{\circ}$	✓ S	
	$\therefore GOFB \text{ is cyc quad}$ $O\widehat{GP} = 180^{\circ} 62.42^{\circ} [6 \text{ of cyc quad} = 180^{\circ}]$	✓ S	
	$O\hat{G}B = 180^{\circ} - 63,43^{\circ} \ [\angle s \text{ of cyc quad} = 180^{\circ}]$ = 116,57°	✓ answer	(3)
	OR/OF	(.	(3)
	$\hat{OFB} = 63,43^{\circ}$		
	$\hat{X}OG = \hat{F}BG = 90^{\circ}$	✓ S	
	∴ OGBF is a cyclic quad		
	$\therefore \hat{OGB} = 180^{\circ} - 63,43^{\circ}$	✓ S ✓ answer	
	$O\hat{G}B = 116,57^{\circ}$		(3)
	OOD = 110,57		

3.7	$M\left(-\frac{1}{2};\frac{5}{2}\right)$ is the centre/is die middelpunt	✓ M is centre
	$r = \frac{\sqrt{170}}{2} = \text{radius}$ [BD is diameter/middellyn]	$\checkmark r = \frac{\sqrt{170}}{2}$
	$\left(x + \frac{1}{2}\right)^2 + \left(y - \frac{5}{2}\right)^2 = \left(\frac{\sqrt{170}}{2}\right)^2 = \frac{85}{2} = 42,5$	✓ equation (3)
3.8	$\hat{CBM} = \hat{BAM} = 45^{\circ}$ [diag of square bisect $\angle s/hoekl\ v\ vierk\ halv\ \angle e$] \therefore BC will be a tangent [converse tan chord th/omgekeerde raakl-koordst] \mathbf{OR}/\mathbf{OF}	✓S ✓ R (2)
	$A\hat{M}B = 90^{\circ}$ [diag of square bisect \bot] \therefore AB is diameter	√S
	BC \perp AB BC is tangent [line \perp radius or converse tan-chord th] BC \perp AB	✓ R (2) [19]

4.1	\angle in semi circle/ \angle at centre = 2 \angle on circle	✓ R	
	\angle in halfsirkel \angle by middelpt = $2\angle$ op sirkel	(1)
4.2	$m_{\text{TS}} = \frac{7-2}{3-5}$ $= -\frac{5}{2}$	✓ substitution ✓ m _{TS}	
4.3	$m_{\text{TS}} \times m_{\text{RS}} = -1$ [TS\perp SR]		2)
	$\therefore m_{\rm RS} = \frac{2}{5}$	✓ m _{RS}	
	$y = \frac{2}{5}x + c$ $2 = \frac{2}{5}(5) + c$	✓ substitution m and $(5; 2)$	
	$c = 0$ $y = \frac{2}{5}x$	✓ equation (3)	
	OR/OF		

	NSC/NSS – Memorandum	Г	
	$m_{\rm TS} \times m_{\rm RS} = -1$ [TS\perp SR] $\therefore m_{\rm RS} = \frac{2}{5}$	✓ m _{RS}	
	$y - y_1 = \frac{2}{5}(x - x_1)$ $y - 2 = \frac{2}{5}(x - 5)$ $y = \frac{2}{5}x$	✓ substitution m and (5; 2) ✓ equation	(3)
4.4.1	$y = \frac{2}{5}x$ $r = \sqrt{36\frac{1}{4}}$ $TR = 2.r = 2\left(\sqrt{36\frac{1}{4}}\right) = \sqrt{145}$ OR/OF	✓ r ✓ answer	(2)
	TM = $\sqrt{(3-9)^2 + \left(7 - 6\frac{1}{2}\right)^2} = \frac{\sqrt{145}}{2}$ TR = $2x = 2\left(\sqrt{36\frac{1}{4}}\right) = \sqrt{145}$	✓ substitution ✓ answer	(2)
4.4.2	$M\left(9; 6\frac{1}{2}\right)$ $\therefore \frac{x_R + 3}{2} = 9 \text{ and } \frac{y_R + 7}{2} = 6\frac{1}{2}$ $\therefore R(15; 6)$ Answer only: full marks Answer only: only 1 coordinate correct (1 mark) $M\left(9; 6\frac{1}{2}\right)$ $\therefore R\left(9 + 6; 6\frac{1}{2} - \frac{1}{2}\right) = R(15; 6)$	✓ M ✓ x coordinate ✓ y coordinate ✓ M ✓ x coordinate ✓ y coordinate	(3)
	OR/OF		

NSC/NSS – Memorandum		
$m_{TM} = \frac{9-3}{6\frac{1}{2}-7} = -\frac{1}{12}$ $TM: 7 = -\frac{1}{12}(3) + c y = -\frac{1}{12}x + \frac{29}{4} \dots (1)$		
$SR: y = \frac{2}{5}x (2)$	✓ equating	
$\frac{2}{5}x = -\frac{1}{12}x + \frac{29}{4}$	$\checkmark x$ coordinate	
$\frac{29}{60}x = \frac{29}{4}$	\checkmark y coordinate	(3)
$\therefore x = 15$		
$\therefore y = \frac{2}{5}(15) = 6$		
4.4.3 ST = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$		
$ST = \sqrt{(5-3)^2 + (2-7)^2}$	√substitution	
$ST = \sqrt{4 + 25} = \sqrt{29}$	✓ answer	
$\sin R = \frac{TS}{TR} = \frac{\sqrt{29}}{\sqrt{145}} or \frac{\sqrt{5}}{5} or \frac{1}{\sqrt{5}} or 0,45$	✓ ratio	(3)
$ \begin{array}{c} \mathbf{OR/OF} \\ TS = \sqrt{29} \end{array} $		
$SR = 2\sqrt{29}$		
area of $\Delta TSR = \frac{1}{2} \left(\sqrt{29} \right) \left(2\sqrt{29} \right) = 29$	√area	
$29 = \frac{1}{2}(\sqrt{145})(2\sqrt{29})\sin R$	√ rule	
	✓ ratio	(3)
$\sin R = \frac{\sqrt{5}}{5} or \frac{1}{\sqrt{5}}$, ,
$\sin R = \frac{\sqrt{5}}{5} \text{ or } \frac{1}{\sqrt{5}}$ $4.4.4$ $m_{\text{TR}} = \frac{7 - 6\frac{1}{2}}{3 - 9} = -\frac{1}{12}$ $OR/OF m_{\text{TR}} = \frac{7 - 6}{3 - 15} = -\frac{1}{12}$	$\checkmark m_{\rm TR} = -\frac{1}{12}$	
$m_{\text{TR}} \times m_{\text{KTL}} = -1$ [$r \perp \text{tangent}$]	$ \checkmark m_{\text{KTL}} = 12 $	
$m_{\text{KTL}} = 12$ $y - y_1 = 12(x - x_1)$		
y-7=12(x-3)	$\checkmark y = 12x - 29$	
y = 12x - 29	, 1200 29	(2)
substitute $K(a;b)$: b = 12a - 29		(3)
OR/OF		

NSC/NSS – Memorandum	
$m_{\text{TR}} = \frac{7 - 6\frac{1}{2}}{3 - 9} = -\frac{1}{12}$ $m_{\text{TR}} \times m_{\text{KTL}} = -1$ [$r \perp \text{tangent}$] $\frac{b - 7}{a - 3} = 12$ $b - 7 = 12(a - 3)$ $b = 12a - 29$	$\sqrt{m_{\text{TR}}} = -\frac{1}{12}$ $\sqrt{m_{\text{KTL}}} = 12$ $\sqrt{\text{substitution}}$ $(3;7) & (a;b)$ (3)
OR/OF $KR^{2} = TR^{2} + TK^{2}$ $(a-15)^{2} + (b-6)^{2} = (15-3)^{2} + (6-7)^{2} + (a-3)^{2} + (b-7)^{2}$ $-30a + 225 - 12b + 36 = 144 + 1 - 6a + 9 - 14b + 49$ $2b = 24a - 58$ $b = 12a - 29$	✓ subst into Pyth ✓ multiplication ✓ simplification (3)
$TK = TR$ $\sqrt{(a-3)^2 + (b-7)^2} = \sqrt{145}$ $(a-3)^2 + (b-7)^2 = 145$ Substitute $b = 12a - 29$ [from $4.4.4$] $(a-3)^2 + (12a - 29 - 7)^2 = 145$ $(a-3)^2 + (12a - 36)^2 = 145$ $(a-3)^2 + (12a - 36)^2 = 145$ $a^2 - 6a + 9 + 144a^2 - 864a + 1296 - 145 = 0$ $145a^2 - 870a + 1160 = 0$ $a = \frac{870 \pm \sqrt{(870)^2 - 4(145)(1160)}}{290}$ $a = 2 \text{ or } a = 4$ $\therefore b = 12(2) - 29 \text{ or } b = 12(4) - 29$ $= -5 \text{ = 19}$ $\therefore K(2; -5)$ OR/OF	✓ substitution into distance formula ✓ substitution of $b = 12a - 29$ ✓ standard form ✓ subst into formula or factorise ✓ values of a ✓ value of b (6)

NSC/NSS – Memorandum	
TK = TR	
$\sqrt{(a-3)^2 + (b-7)^2} = \sqrt{145}$	✓ substitution into
$(a-3)^2 + (b-7)^2 = 145$	distance formula
Substitute $b = 12a - 29$ [from 4.4.4]	
$(a-3)^2 + (12a-29-7)^2 = 145$	✓ substitution of $b = 12a - 29$
$(a-3)^2 + (12a-36)^2 = 145$	b - 12a - 29
$(a-3)^2 + 144(a-3)^2 = 145$	2
$(a-3)^2 = 1$	$\checkmark (a-3)^2 = 1$
$a-3=\pm 1$	✓ ±1
a=2 or 4	\checkmark values of a
$\therefore b = 12(2) - 29 \qquad \text{or } b = 12(4) - 29 \\ = -5 \qquad = 19$	
∴ K(2; -5)	\checkmark value of b
OR/OF	(6)
	✓ substitution
$KR^2 = TR^2 + TK^2$	✓ substitution of
$(a-15)^2 + (b-6)^2 = 145 + 145$	b = 12a - 29
$(a-15)^2 + (12a-29-6)^2 = 290$	
$(a-15)^2 + (12a-35)^2 = 290$	✓standard form
$a^2 - 30a + 225 + 144a^2 - 840a + 1225 = 290$	Standard Torrir
$145a^2 - 870a + 1160 = 0$	✓ factors
$a^2 - 6a + 8 = 0$	
$\therefore (a-2)(a-4) = 0$	✓ values of a
a=2 or $a=4$	
$\therefore b = 12(2) - 29$ or $b = 12(4) - 29$	✓ value of b
= -5 = 19	(6)
K(2;-5)	
	[23]

5.1.1	$\sin 196^{\circ} = -\sin 16^{\circ}$	reduction	
	=-p	✓answer	2)
5.1.2	$\cos 16^\circ = \sqrt{1 - \sin^2 16^\circ}$	√ statement	(2)
		√answer	
	$=\sqrt{1-p^2}$		2)
	OR/OF		
	$x^2 + p^2 = 1$	$\checkmark x$ in terms of p	
	$x = \sqrt{1 - p^2}$		
	$\therefore \cos 16^\circ = \frac{\sqrt{1-p^2}}{1} = \sqrt{1-p^2}$	√answer (2	(2)
5.2	$\sin(A + B) = \cos[90^{\circ} - (A + B)]$	√co-ratio	
	$=\cos[(90^{\circ}-A)-B]$	✓ correct form	
	$= \cos(90^{\circ} - A)\cos B + \sin(90^{\circ} - A)\sin B$	√ expansion	2)
	$= \sin A \cos B + \cos A \sin B$	(.	(3)
5.3	$\sqrt{1-\cos^2 2A}$		
	$\cos(-A).\cos(90^{\circ} + A)$		
	$\sqrt{\sin^2 2A}$	$\sqrt{\sin^2 2A}$	
	$=\frac{1}{\cos A.(-\sin A)}$	✓ cosA ✓ – sinA	
	_ sin 2A		
	$-\frac{1}{\cos A.(-\sin A)}$		
	_ 2sin Acos A	✓ 2sinAcosA	
	$-\frac{-\cos A.(-\sin A)}{\cos A.(-\sin A)}$	✓ answer	
	= -2		5)
	OR/OF		
	$\sqrt{1 + 224}$ $\sqrt{1 + (2 + 2)}$	$\sqrt{2\cos^2 A} - 1$	
	$\frac{\sqrt{1-\cos^2 2A}}{\cos(-A)\cos(90^\circ + A)} = \frac{\sqrt{1-(2\cos^2 A - 1)^2}}{\cos A - \sin A}$	$\checkmark \cos A \checkmark - \sin A$	
	$= \frac{\sqrt{1 - (4\cos^4 A - 4\cos^2 A + 1)}}{\cos A - \sin A} = \frac{\sqrt{4\cos^2 A - 4\cos^4 A}}{\cos A - \sin A}$		
	$\cos A - \sin A$ $\cos A - \sin A$		
	$= \frac{\sqrt{4\cos^2 A(1-\cos^2 A)}}{\cos A - \sin A} = \frac{\sqrt{4\cos^2 A\sin^2 A}}{\cos A - \sin A}$		
	$=\frac{1}{\cos A\sin A}=\frac{1}{\cos A\sin A}$	✓identity	
	_ 2cosA.sinA		
	$=\frac{1}{\cos A\sin A}$	✓ answer	<i>(</i> ح)
	=-2		(5)
	OR/OF		

	NSC/NSS – Memorandum	
	$\sqrt{1-(1-2\sin^2 A)^2}$	$\sqrt{1-2\sin^2 A}$
	cosA. – sinA	$\checkmark \cos A \checkmark - \sin A$
	$-\sqrt{1-(1-4\sin^2 A+4\sin^2 A)}$	
	$=$ $\frac{1}{\cos A \cdot - \sin A}$	
	$\sqrt{4\sin^2 A(1-\sin^2 A)}$	
	$=$ $\frac{1}{\cos A \cdot - \sin A}$	
	$-\frac{2\sin A\sqrt{\cos^2 A}}{2}$	√identity
	cosA. – sinA	✓ answer
	=-2	(5)
5.4.1	$\cos 2B = \frac{3}{5}$	
	$2\cos^2 \mathbf{B} - 1 = \frac{3}{5}$	✓ identity
	$\cos^2 \mathbf{B} = \frac{4}{5}$	✓ value of cos ² B
	$\cos^{2} B = \frac{4}{5}$ $\therefore \cos B = \sqrt{\frac{4}{5}} \text{ or } \frac{2}{\sqrt{5}} \text{ or } \frac{2\sqrt{5}}{5} [0^{\circ} \le B \le 90^{\circ}]$	✓ answer (3)
	OR/OF	
	$\cos B = \frac{\sqrt{\cos 2B + 1}}{2}$	$\checkmark = \frac{\sqrt{\cos 2B + 1}}{2}$
	$=\frac{\sqrt{\frac{3}{5}+1}}{2}$	2
	$={2}$	✓ value of cos ² B
	$=\frac{2\sqrt{5}}{5}$	✓ answer (3)
5.4.2	$\sin^2 B = 1 - \cos^2 B$	
3.1.2	$=1-\left(\frac{2}{\sqrt{5}}\right)^2$	/ sin ² D _ 1
	$= \frac{1}{5} \qquad \therefore \sin B = \frac{1}{\sqrt{5}} \text{ or } \frac{\sqrt{5}}{5}$	$\checkmark \sin^2 B = \frac{1}{5}$ $\checkmark \text{ answer}$
	OR/OF	(2)
	$(2)^2 + y^2 = (\sqrt{5})^2$	
	1 2 . 5	
	$y^2 = 1$ (2; y)	
	y = 1	$\checkmark y = 1$
	$\therefore \sin \mathbf{B} = \frac{1}{\sqrt{5}} \text{ or } \frac{\sqrt{5}}{5}$	✓ answer
	$\therefore SIII B = \frac{1}{\sqrt{5}} Or \frac{1}{5}$	(2)

NSC/NSS – Memorandum	
OR/OF	
$\cos 2B = \frac{3}{5}$	
$1 - 2\sin^2 B = \frac{3}{5}$	
$\sin^2 B = \frac{1}{5}$	
$\therefore \sin B = \frac{1}{\sqrt{5}} \text{ or } \frac{\sqrt{5}}{5}$	$\checkmark \sin^2 \mathbf{B} = \frac{1}{5}$
	✓ answer (2)
$5.4.3$ $\cos(B + 45^{\circ}) = \cos B \cdot \cos 45^{\circ} - \sin B \cdot \sin 45^{\circ}$	✓ expansion
$= \left(\frac{2}{\sqrt{5}}\right) \left(\frac{1}{\sqrt{2}}\right) - \left(\frac{1}{\sqrt{5}}\right) \left(\frac{1}{\sqrt{2}}\right)$	$\checkmark \left(\frac{1}{\sqrt{2}}\right)$
$= \frac{2}{\sqrt{10}} - \frac{1}{\sqrt{10}}$	$\checkmark \left(\frac{2}{\sqrt{5}}\right) & \left(\frac{1}{\sqrt{5}}\right)$
$=\frac{1}{\sqrt{10}} \text{ or } \frac{\sqrt{10}}{10}$	✓answer (4)
OR/OF	
$\cos(B + 45^{\circ}) = \cos B \cdot \cos 45^{\circ} - \sin B \cdot \sin 45^{\circ}$	✓ expansion
$= \left(\frac{2}{\sqrt{5}}\right)\left(\frac{\sqrt{2}}{2}\right) - \left(\frac{1}{\sqrt{5}}\right)\left(\frac{\sqrt{2}}{2}\right)$	$\checkmark \left(\frac{1}{\sqrt{2}}\right)$
$=\frac{2\sqrt{2}}{2\sqrt{5}}-\frac{\sqrt{2}}{2\sqrt{5}}$	$\checkmark \left(\frac{2}{\sqrt{5}}\right) & \left(\frac{1}{\sqrt{5}}\right)$
$=\frac{\sqrt{2}}{2\sqrt{5}} \text{ or } \frac{\sqrt{10}}{10}$	✓answer (4)
	[21]

7.1	$DB^{2} = 3^{2} + 3^{2}$ [Theorem of Pyth] = 18	✓ substitution into Pyth	
	$DB = \sqrt{18}$ $OB = \frac{1}{2}DB = \frac{\sqrt{18}}{2} \text{ or } \frac{3\sqrt{2}}{\sqrt{2}} \text{ or } 2,12$	✓ value of DB ✓ answer	
	OR/OF	(3) ✓ correct ratio	
	$\sin 45^\circ = \frac{OB}{3}$	✓ OB as subject	
	$OB = 3\sin 45^{\circ}$ $OB = \frac{3\sqrt{2}}{2} or \frac{3}{\sqrt{2}} or 2,12$	✓ answer (3)	
	OF/OR OB	✓ correct ratio	
	$\cos 45^\circ = \frac{OB}{3}$ $1 OB$	✓ special angle	
	$\frac{1}{\sqrt{2}} = \frac{OB}{3}$ $OB = \frac{3}{\sqrt{2}} or \frac{3\sqrt{2}}{2} or 2,12$	✓ answer (3)	
	$\sqrt{2}$ $\sqrt{2}$		

Mathematics P2/Wiskunde V2	18 NSC/ <i>NSS</i> – Memorandum	DBE/November 2016
OR/OF $A\hat{O}B = 90^{\circ}$ (diagon		✓ OB = OA
OB = OA	uis 613 661 —)	(D. 1
$AB^2 = AO^2 + BO^2 $ [py	th]	✓ Pyth
$\therefore AB^2 = 2OB^2$ $2OB^2 = 3^2$		
$\therefore OB = \frac{3}{\sqrt{2}} \text{ or } \frac{3\sqrt{2}}{2} \text{ or } 2,1$	2	✓ answer (3)
$7.2 BE^{2} = EO^{2} + OB^{2} ($		
$BE^2 = x^2 + \left(\frac{3}{\sqrt{2}}\right)^2$		✓ substitution into Pyth
$BE = \sqrt{x^2 + \frac{9}{2}}$		✓ length of BE
$AE^2 = AB^2 + EB^2 - 2A^2$	$\mathrm{B.EBcos} heta$	✓ correct cosine rule
$\cos \theta = \frac{AB^2 + EB^2 - AE}{2AB.EB}$	$\frac{e^2}{2AB.EB} = \frac{AB^2}{2AB.EB}$ [EB = AE]	$\checkmark \cos \theta$ as subject
$\cos \theta = \frac{AB}{2EB}$		✓ simplification (5)
$\cos\theta = \frac{3}{2\sqrt{x^2 + \frac{9}{2}}}$		
OR/OF	7. 1)	s
$BE^{2} = EO^{2} + OB^{2}$ $BE^{2} = x^{2} + \left(\frac{3}{\sqrt{2}}\right)^{2}$	(Pyth)	✓ substitution into Pyth
$BE = \sqrt{x^2 + \frac{9}{2}}$		✓ length of BE
	$3^2 - 2AB.EB\cos\theta$	✓ correct cosine rule
$\left(\sqrt{x^2 + \frac{9}{2}}\right)^2 = 9 + \left(\sqrt{x^2 + \frac{9}{2}}\right)^2$	$\left(\frac{9}{2}\right)^2 - 2(3)\left(\sqrt{x^2 + \frac{9}{2}}\right) \cdot \cos\theta$	✓ substituting
$\cos\theta = \frac{9}{6\sqrt{x^2 + \frac{9}{2}}}$	-	$\checkmark \cos \theta$ as subject
$= \frac{3}{2\sqrt{x^2 + \frac{9}{2}}}$	-	(5)

OR/OF	
$BE^2 = EO^2 + OB^2 \qquad (Pyth)$	✓ substitution into
$BE^2 = x^2 + \left(\frac{3}{\sqrt{2}}\right)^2$	Pyth
$BE = \sqrt{x^2 + \frac{9}{2}}$	✓ length of BE ✓ sketch with
$\begin{pmatrix} 1 & 1 & 2 & 1 \\ & 3 & & & & \end{pmatrix}$	values
$\cos\theta = \frac{\frac{1}{2}}{\sqrt{x^2 + \frac{9}{2}}}$	$\sqrt{\frac{3}{2}}$
$\sqrt{x^2+\frac{9}{2}}$	✓ substitution
$=\frac{3}{2\sqrt{2+9}}$ $A = \frac{\theta}{3}$ B	(5)
$2\sqrt{x^2 + \frac{9}{2}}$	(5)
OR/OF	A 1000 20
$\hat{E} = 180^{\circ} - 2\theta$	$\checkmark \hat{E} = 180^{\circ} - 2\theta$ $\checkmark \sin E = \sin 2\theta$
$\sin E = \sin 2\theta$	
$\int_{1}^{1} x^{2} + \frac{9}{2}$	✓ subst into sine rule
$\frac{1}{\sin 2\theta} = \frac{1}{\sin \theta}$	✓ diagram
$\therefore \frac{3}{2\sin\theta\cos\theta} = \frac{\sqrt{x^2 + \frac{9}{2}}}{\sin\theta}$ $A = \frac{1}{2}$	$\checkmark 2\sin\theta\cos\theta$
$\therefore \frac{3}{2\cos\theta} = \sqrt{x^2 + \frac{9}{2}}$	
$\cos\theta = \frac{3}{2\sqrt{x^2 + \frac{9}{2}}}$	(5)
, –	
Volume = $\frac{1}{3}$ (area of base) × (\perp height)	
$15 = \frac{1}{3}(9) \times x$	✓ substitution
x = 5	✓ <i>x</i> -value
$\cos \theta = \frac{3}{2\sqrt{25 + \frac{9}{2}}}$	✓ substitution
$2\sqrt{25+\frac{1}{2}}$ $\therefore \theta = 73.97^{\circ}$	✓ answer (4)
0 - 13,91	[12]

8.1

8.1.1	Alternate angles / verwiss hoeke, PQ SR		✓ R	
				(1)
8.1.2(a)	$\hat{T}_2 = 70^{\circ}$	$[\angle s \text{ opp} = \text{sides}/\angle e \text{ teenoor} = sye]$	✓ S ✓R	
	$ \hat{Q}_1 = 180^{\circ} - 2(70^{\circ}) $ = 40°	$[\angle s/e \Delta = 180^{\circ}]$		
	= 40°		✓ answer	
				(3)
8.1.2(b)	$\hat{P}_1 = 40^{\circ}$	[tangent chord th/raakl-koordst]	✓ S ✓R	
	1			(2)

8.2

8.2.1	AT = 20 [line from centre \perp to chord/lyn vanaf midpt \perp koord]	√S	(1)
8.2.2	$AO^2 = OS^2 + AS^2 \qquad [Pyth : \Delta AOS]$		
	OT ² + AT ² = OS ² + AS ² [Pyth : \triangle AOT] But AS = 24 [line from centre \perp to chord/lyn vanaf midpt \perp koord] OT ² + 400 = $\left(\frac{7}{15}\text{OT}\right)^2$ + 576 $176 = \frac{176}{225}\text{OT}^2$	✓ equating ✓ AS = 24 ✓ substitution $OS = \frac{7}{15}OT$	
	$OT^2 = 225$ $OT = 15$	✓ OT	
	$\therefore AO = \sqrt{225 + 400}$ $= 25$ OR/OF Let OS = 7, then OT = 15	✓ radius	(5)
	In $\triangle AOT$: $AO^2 = 20^2 + 15^2$ = 625 AO = 25 In $\triangle AOS$:	✓✓ testing in ΔAOT ✓✓ testing in ΔAOS	
	$AO^{2} = 24^{2} + 7^{2}$ $= 625$ $AO = 25$ $\therefore OA = 25$ OR/OF	√conclusion	(5)

√ equating	
\checkmark AS = 24	
✓ substitution	
$\checkmark x = 1$	
√ radius	
radius	(5)
	` '
\checkmark AS = 24	
✓ substitution	
$OS = \frac{1}{15}OT$	
13	
✓ subst Pyth	
/ roding	
v radius	(5)
	[12]
	✓ AS = 24 ✓ substitution ✓ $x = 1$ ✓ radius ✓ AS = 24 ✓ substitution $OS = \frac{7}{15}OT$ ✓ equating ✓ subst Pyth

9.1.1	tangent chord theorem/raaklyn-koordstelling	✓ R
		(1)
9.1.2	corresponding/ooreenkomstige ∠s/e; FB DC	✓ R
9.2	n pâp	(1) ✓ S
7.2	$\hat{E}_1 = B\hat{C}D$	
	$\therefore BCDE = cyclic quad [converse ext \angle cyc quad/omgek: buite \angle kdvh]$	✓ R (2)
9.3	$\hat{D}_2 = \hat{E}_2$ [\(\angle s\) in the same segment/\(\angle e\) in dies segment	√ S
	$\hat{D}_2 = \hat{FBD}$ [alt $\angle s$, BF CD/verwiss $\angle e$,BF CD]	✓ S (2)
		(2)
9.4	$\hat{B}_3 = y \ OR$ $\hat{B}_3 = \hat{C}_2 \ [\angle s \text{ in the same segment}] \angle e \text{ in dies segment}]$	✓ S
	$\hat{B}_2 = x - y \ OR \ \hat{B}_3 + \hat{B}_2 = x $ [from 9.3 and 9.4]	✓ S
		✓ S
	$\hat{C}_1 = x - y$ [from 9.2 and 9.3]	(3)
	$\therefore \hat{\mathbf{B}}_2 = \hat{\mathbf{C}}_1$	
	OR/OF	
	In \triangle BFE and \triangle BEC	✓ identifying Δ 's
	$\hat{\mathbf{E}}_1 = \hat{\mathbf{E}}_2$ $[=x]$	✓ S
		✓ S
	$\hat{F} = \hat{B}_3 + \hat{B}_4$ [tan - chord theorem]	
	$\therefore \Delta BFE///\Delta CBE [\angle, \angle, \angle]$	
	$\therefore \hat{\mathbf{B}}_2 = \hat{\mathbf{C}}_1$	(3) [9]
i	<u> </u>	

10.1

10.1 Constr : Join S to R and T to Q and draw h_1 from S \perp PT and h_2 ✓ constr/konstruksie from $T \perp PS$ / Verbind SR en TQ en trek h_1 van $S \perp PT$ en h_2 $van T \perp PS$] Proof: $\frac{\text{area }\Delta PST}{\text{area }\Delta QST} = \frac{\frac{1}{2}PS \times h_2}{\frac{1}{2}SQ \times h_2} = \frac{PS}{SQ}$ $\sqrt{\frac{\text{area}}{\Delta PST}}$ area ΔQST equal altitudes equal altitudes area ΔPST = area ΔPST [common] But area $\triangle QST = area \triangle STR$ [same base, height; ST || QR] area ΔPST area ΔPST $\frac{\text{area } \Delta \text{I ST}}{\text{area } \Delta \text{QST}} = \frac{\text{area } \Delta \text{I ST}}{\text{area } \Delta \text{STR}}$ \checkmark S \checkmark R (6) 10.2

10.2.1	Corresponding/Ooreenkomstige ∠s/e; GF LK	✓ R (1)
10.2.2(a)	$\frac{GL}{LM} = \frac{FK}{KM} OR \frac{GL}{y} = \frac{2x}{x} [prop theorem/eweredighst; GF LK]$ $\frac{2GH}{y} = \frac{2x}{x}$ $\therefore GH = y$ $[LH = HG]$	$\checkmark S \checkmark R$ $\checkmark GL = 2GH$ (3)

10.2.2(b)	$\bar{K}_1 = G\hat{F}M$	[corresponding/ooreenkomst∠s; GF LK]	
	$L\hat{K}M$ or $\bar{K}_1 = M\hat{H}F$	[ext∠cyclic quad/buite∠koordevh]	✓S ✓ R
	$M\hat{H}F = G\hat{F}M$		✓ S
	In \triangle MFH and \triangle MGF:		
	$\hat{\mathbf{M}} = \hat{\mathbf{M}}$	[common/gemeen]	✓ S
	MHF = GFM	[proven/bewys]	
	∴ ΔMFH ΔMGF	[∠∠∠]	✓ R (5)
	OR/OR		
	$\bar{K}_1 = G\hat{F}M$	[corresponding/ooreenkomst∠s; GF LK]	
	$L\hat{K}M \text{ or } \bar{K}_1 = M\hat{H}F$	$[\text{ext} \angle \text{cyclic quad}/\text{buite} \angle \text{koordevh}]$	✓S ✓ R
	$M\hat{H}F = G\hat{F}M$		✓ S
	In $\triangle MFH$ and $\triangle MGF$:		
	$\hat{\mathbf{M}} = \hat{\mathbf{M}}$	[common/gemeen]	✓ S
	$M\hat{H}F = G\hat{F}M$	[proven/bewys]	✓ S
	$\hat{\mathbf{F}}_2 = \hat{\mathbf{G}}$ $\therefore \Delta \mathbf{MFH} \mid \mid \mid \Delta \mathbf{MGF}$	$[\angle s \text{ of } \Delta = 180^{\circ}]$	(5)
10.2.2(c)	GF MF		
	$\therefore \frac{GT}{FH} = \frac{MT}{MH}$	$[\mid \mid \mid \Delta s]$	√S √R
	$=\frac{3x}{2y}$		(2)
10.2.3	MF _ MG	[Δs]	✓ S
	MH MF		✓substitution
	$\frac{3x}{x} = \frac{3y}{x}$	[from $10.2.2(c)$]	v substitution
	$2y^{-}3x$	2	
	$\frac{y^2}{x^2} = \frac{9}{6} = \frac{3}{2}$		simplificatio
	_		n
	$\frac{y}{x} = \sqrt{\frac{3}{2}}$		
	$x \vee 2$		(3)
		TOTAL MADIZO	[20]
		TOTAL MARKS	150