Mathe 1 Tutorium Blatt 2

Alex B.

October 2024

1 Relationen

- \bullet Eine Relation ist eine Teilmenge des kartesischen Produktes zweier (oder mehrerer) Mengen. $R\subseteq A\times B$
- Eine Umkehrrelation erhält man durch vertauschen von a und b (d.h. die Relation gilt von B auf A). Zeichen: R^{-1}
- Zwei Relationen $R \subseteq A \times B$ und $S \subseteq B \times C$ kann ausgedrückt werden durch $R \circ S = \{(a,c) \in A \times C : \exists b \in B \text{ mit } (a,b) \in R \land (b,c) \in S\}$
- Relationen können folgende Eigenschaften aufweisen:
 - Reflexivität: Relation auf sich selbst, d.h. $(a, a) \in R \ \forall a \in A$
 - Symmetrie: Ungerichtete Relation, d.h. wenn $(b,a) \in R$ ist auch $(a,b) \in R$
 - Transitivität: Folgernde Relation, d.h. wenn $(a,b) \in R \land (b,c) \in R$ dann ist $(a,c) \in R$
 - Antisymmetrie: Nur gleiche Elemente haben eine symmetrische Relation, d.h. wenn $(a,b)\in R\land (b,a)\in R$ dann ist a=b
- Eine Relation, welche reflexiv, symmetrisch und transitiv ist, heißt Äquivalenzrelation
- Eine Relation, welche reflexiv, antisymmetrisch und transitiv ist, heißt Ordnungsrelation
- Eine Äquivalenzklasse zu einer Teilmenge sind alle Mengen, welche eine Äquivalenzrelation zu dieser besitzen

2 Aufgaben

- 1. Gegeben ist die Menge $A=\{1,2,3\}$. Schreibe folgende Relationen als Menge von Paaren auf
 - a) $R \subseteq A \times A | a_1 \ge a_2$

- b) $R \subseteq A \times A | a_1 + a_2 \le 4$
- c) $R \subseteq A \times A \times A \times A | a_1 * a_2 + a_3 * a_4 = 10$
- 2. Gib für nachfolgende Relationen auf der Menge $A=\{1,2,3\}$ an, welche Eigenschaften sie erfüllen
 - a) $R = \{(a_1, a_2) \in A^2 | (a_1 * a_2)/(a_1) = a_1 \}$
 - b) $R = \{(a_1, a_2) \in A^2 | a_1 < a_2 \}$
 - c) $R = \{(a_1, a_2) \in A^2 | a_1 + a_2 \ge 5\}$
- 3. Gegeben ist die Menge $A=\{1,2,3,-1,0,-2\}$. Überprüfe, ob die Relation $R=\{(a_1,a_2)\in A^2: a_1*a_2\geq 0 \text{ eine Äquivalenzrelation ist.}$
- 4. Die Relation $R = \{(x,y) \in A^2 : |x^2 + y| \le |x + y^2|\}$ ist auf der Menge $A = \{-2, -1, 0, 1, 2\}$ gegeben. Ist die Relation reflexiv oder symmetrisch? Gib zusätzlich ein Paar an, für das gilt $(x,y) \in R, x \ne y$ und $(y,x) \in R$

3 Funktionen

- Funktionen sind Relationen, die eindeutig sind, mit anderen Worten, jedes $a \in A$ hat genau ein $b \in B$, sodass $(a, b) \in R$
- Funktionen können verknüpft werden, indem die Werte der zweiten Funktion in die erste eingesetzt werden
- Eigenschaften von Funktionen
 - Injektivität: Wenn die Werte unterschiedlich sind, ist ihr Funktionswert unterschiedlich, d.h. aus $a_1 \neq a_2$ folgt $f(a_1) \neq f(a_2) \forall a \in A$
 - Surjektivität: Der komplette Wertebereich wird abgedeckt, mit anderen Worten $\forall b \in B \exists a \in A \text{ mit } f(a) = b$
 - Bijektivität: Die Funktion ist sowohl injektiv als auch surjektiv. Für bijektive Abbildungen existiert die Umkehrfunktion.

4 Aufgaben

- 1. Gegeben ist die Funktion f(x) = 2x + 3
 - a) Gib den Wertebereich der Funktion an, wenn ihr Definitionsbereich wie folgt definiert ist: $D=\{-3,-2,-1,0,1,2,3\}$
 - b) Ist die Funktion injektiv?
 - c) Ist die Funktion surjektiv für folgenden Wertebereich: $W = \{-3, -2, -1, 1, 3, 5, 7, 9\}$
- 2. Gib zu folgenden Funktionen an, ob sie auf dem Definitionsbereich $\mathbb R$ injektiv, surjektiv und bijektiv sind
 - a) $f(x) = x^2$
 - b) $f(x) = e^x$