CMPT 732-G200 Practices for Visual Computing

Ali Mahdavi Amiri

Images

An array of pixels

Images

An array of pixels

- Each pixel has integer values
 - 1 value for grey scale
 - 3 values for RGB images

Digitizing Images

• Images are capturing continuous phenomena

Digitizing Images

• Images are capturing continuous phenomena

Sampling

Sampling

Quantization

Quantization

Image Artifacts

• What kind of image artifact is the result of quantization?

Image Artifacts

Saturation

Image Enhancement

• Can we turn on the lights?

Image Enhancement

• Finding a transformation to re-arrange the pixel value distribution.

Transformations

- Pixel to pixel
 - No information about neighborhood

Transformations

A transformation function to manipulate the intensity values of an image

Transformations

A transformation function to manipulate the intensity values of an image

Original Intensity value
$$s=T(r)$$
 New Intensity value

What type of functions are candidates for T?

$$s = T(r) = ?$$

input intensity value, r

Identity function

$$s = r$$

 $input\ intensity\ value,\ r$

Negative function

$$s = T(r) = ?$$

Negative function

 $input\ intensity\ value,\ r$

Log function

 $input\ intensity\ value,\ r$

• Power-Law (Gamma) transformation

$$s = cr^{\gamma}$$

input intensity value, r

Changing gamma makes a family of functions

$$s = cr^{\gamma}$$

• Power-Law (Gamma) transformation

Original image
MRI of a fractured
human spine

c = 1

 $\gamma = 0.4$

 $\gamma = 0.3$

Recap (so far)

• We defined a set of simple pixel to pixel transformations that enhance the quality of images to reveal more details/information.

Cons

• Hard to find the best transformation function.

- It is blind to the distribution of pixels.
 - What if all the pixels are between 0-32?

• What is an alternative?

Thresholding Transformations

• 1D function that maps all the pixels smaller than a value to zero, larger than a value to (e.g., 1 or k).

$$s = T(r)$$

Thresholding function

Stretching Transformations

• We want to somehow smooth the middle to stretch the contrast.

$$s = T(r)$$

Stretching Transformations

• We want to somehow smooth the middle to stretch the contrast.

$$s = T(r)$$

Stretching Transformations

One way to define such a function is to use histograms equalization

$$s = T(r)$$

Histogram

Histogram

• We are looking for a transformation to map the histogram of an image to a well distributed histogram.

Function should be monotonically increasing (why?)

Strictly monotonically increasing

Function should be monotonically increasing (why?)

Strictly monotonically increasing

Function should be monotonically increasing (why?)

Strictly monotonically increasing

• One way to define such a function is to use cumulative distribution

function or cdf.

Monotonically increasing

• Example

5 2	55	61	59	70	61	76	61
62	59	55	104	94	85	59	71
63	65	66	113	144	104	63	72
64	70	70	126	154	109	71	69
67	73	68	106	122	88	68	68
68	79	60	79	77	66	58	75
69	85	64	58	55	61	65	83
			68				

• Example

Smallest value

I	52	55	61	59	70	61	76	61
ı	62	59	55	104	94	85	59	71
ı				113				
l	64	70	70	126	154	109	71	69
l	67	73	68	106	122	88	68	68
l	68	79	60	79	77	66	58	75
l	69	85	64	58	55	61	65	83
	70	87	69	68	65	73	78	90

• Example

Smallest value

	52	55	61	59	70	61	76	61
I	62	59	55	104	94	85	59	71
				113				
I	64	70	70	126	154	109	71	69
				106				
I	68	79	60	79	77	66	58	75
I	69	85	64	58	55	61	65	83
l	70	87	69	68	65	73	78	90_

cdf
1

• Example

Next Smallest value

52	55	61	59 104 113	70	61	76	61
62	59	55	104	94	85	59	71
63	65	66	113	144	104	63	72
64	70	70	126	154	109	71	69
67	73	68	106	122	88	68	68
68	79	60	79 58	77	66	58	75
69	85	64	58	55	61	65	83
70	87	69	68	65	73	78	90

value	cdf
52	1
55	3+1=4

• Example

Next Smallest value

52	55	61	59	70	61	76	61
62	59	55	104	94	85	59	71
				144			
64	70	70	126	154	109	71	69
67	73	68	106	122	88	68	68
68	79	60	79	77 55	66	58	75
69	85	64	58	55	61	65	83
70	87	69	68	65	73	78	90

r	cdf
52	1
55	4
58	4+2=6

• Example

Next Smallest value

[5:	55	61	59	70	61	76	61
62	2 59	55	104	94	85	59	71
6	65	66	113	144	104	63	72
6	1 70	70	126	154	109	71	69
6	7 73	68	106	122	88	68	68
68	3 79	60	79	77	66	58	75
69	85	64	58	55	61	65	83
[70	87	69	68	65	73	78	90

r	cdf
52	1
55	4
58	6
59	6+3=9

• Example

Largest value

$\lceil 52 \rceil$	55	61	59	70	61	76	61
62	59	55	104	94	85	59	71
63	65	66	113	144	104	63	72
64	70	70	126	154	104 109	71	69
67	73	68	106	122	88	68	68
					66		
69	85	64	58	55	61	65	83
70	87	69	68	65	73	78	90_

r	cdf
52	1
55	4
58	6
59	9
•	
•	
144	63
154	64

• Example

Largest value

$\lceil 52 \rceil$	55	61	59	70	61	76	61
62	59	55	104	94	85	59	71
63	65	66	113	144	104	63	72
64	70	70	126	154	109	71	69
67	73	68	106	122	88	68	68
68	79	60	79	77	66	58	75
69	85	64	58	55	61	65	83
70	87	69	68	65	73	78	90

r	cdf
52	1
55	4
58	6
59	9
•	
144	63
154	64

S
0
•
•
•
255

Example

Largest value

5 2	55	61	59	70	61	76	61
62	59	55	104	70 94 144 154 122 77 55 65	85	59	71
63	65	66	113	144	104	63	72
64	70	70	126	154	109	71	69
67	73	68	106	122	88	68	68
68	79	60	79	77	66	58	75
69	85	64	58	55	61	65	83
70	87	69	68	65	73	78	90

We get help from cdf

$$s = \left[\frac{cdf(r) - cdf_{min}}{(M \times N) - cdf_{min}} \times (L - 1) \right]$$

r	cdf	S
52	1	0
55	4	
58	6	
59	9	
•		
•		
•		•
144	63	
154	64	255

We get help from cdf

Example

cdf of a pixel with value r

$$s = \left[\frac{cdf(r) - cdf_{min}}{(M \times N) - cdf_{min}} \times (L - 1) \right]$$

r	cdf	S
52	1	0
55	4	
58	6	
59	9	
•		•
•		
•		•
144	63	
154	64	255

We get help from cdf

$$s = \left[\frac{cdf(r) - cdf_{min}}{(M \times N) - cdf_{min}} \times (L - 1) \right]$$
height width

r	cdf	S
52	1	0
55	4	
58	6	
59	9	
•		•
•		
•		•
144	63	
154	64	255

We get help from cdf

Example

$$s = \left[\frac{cdf(r) - cdf_{min}}{(M \times N) - cdf_{min}} \times (L - 1) \right]$$

Probability distribution of pixels

r	cdf	S
52	1	0
55	4	
58	6	
59	9	
		•
		•
•		•
144	63	
154	64	255

Example

To map pixel with minimum intensity to 0

$$s = \left[\frac{cdf(r) - cdf_{min}}{(M \times N) - cdf_{min}} \times (L - 1) \right]$$

r	cdf	S
52	1	0
55	4	
58	6	
59	9	
		•
•		•
•		•
144	63	
154	64	255

Example

$$s = \left[\frac{cdf(r) - cdf_{min}}{(M \times N) - cdf_{min}} \times (L - 1) \right]$$

To map pixel with maximum intensity to L-1 Why?

r	cdf	S
52	1	0
55	4	
58	6	
59	9	
•		
•		•
144	63	
154	64	255

$$s = \left[\frac{cdf(r) - cdf_{min}}{(M \times N) - cdf_{min}} \times (L - 1) \right]$$

v: 58 →	$\left \frac{cdf(58) - cdf_{min}}{2} \times 255 \right $	
ν. 30 →	$8 \times 8 - cdf_{min}$	

r	cdf	S
52	1	0
55	4	
58	6	
59	9	
		•
•		
•		•
144	63	
154	64	255

$$s = \left[\frac{cdf(r) - cdf_{min}}{(M \times N) - cdf_{min}} \times (L - 1) \right]$$

v: 58 →	$\frac{cdf(58) - cdf_{min}}{8 \times 8 - cdf_{min}} \times 255$	$ - \frac{6-1}{2} \times 25$	اء؛
ν: 30 →	$8 \times 8 - cdf_{min}$ × 255	$\left[- \left[\frac{64-1}{64-1} \right]^{1} \right]$)]

r	cdf		S
52	1		0
55	4		
58	6		
59	9		
•			•
•			•
•			•
144	63		
154	64		255
		='	

$$s = \left[\frac{cdf(r) - cdf_{min}}{(M \times N) - cdf_{min}} \times (L - 1) \right]$$

v: 58 →	$\frac{cdf(58) - cdf_{min}}{8 \times 8 - cdf_{min}} \times 255$	$= \left \frac{6-1}{64-1} \times 255 \right $	= [20.2380] = 20
	$8 \times 8 - cdf_{min}$	[64 - 1]	[_000]

r	cdf	S
52	1	0
55	4	
58	6	20
59	9	
•		•
•		•
•		•
144	63	
154	64	255

Example

$$s = \left[\frac{cdf(r) - cdf_{min}}{(M \times N) - cdf_{min}} \times (L - 1) \right]$$

Following the same formula produces a better distribution for pixel values

Original Image

Enhanced Image

• So far, the modification was only based on the value of pixels

We did not consider neighbouring pixels

• Define a transformation via a local mask

W 0	W 1	W 2
W 3	W 4	W 5
W 6	W 7	W 8

Convolution

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G = H * F$$

	Н	
W 0	W 1	W 2
W 3	W 4	W 5
W 6	W 7	W 8

• What does this filter do?

0	0	0
0	1	0
0	0	0

Original

Identity

0	0	0
0	1	0
0	0	0

Original

Identical image

• What does this filter do?

0	0	0
1	0	0
0	0	0

Original

• Shift to left by one pixel.

0	0	0
1	0	0
0	0	0

Original

• What does this filter do?

Original

Average (blur)

Original

Weighted Average (blur)

$\frac{1}{16}$	$\frac{8}{16}$	$\frac{1}{16}$
$\frac{1}{16}$	$\frac{8}{16}$	$\frac{1}{16}$
$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$

Original

• Filter size

3

• Filter size

Why do we get more blurriness with larger filter size?

• Can we get sharpening artifacts using filters we learned?

Sharpening

- Adding more details will sharpen the image.
 - You can control the sharpness by alpha

+α

=

- Adding more details will sharpen the image.
 - You can control the sharpness by alpha

• Can we get sharpening artifacts using filters we learned?

$$-\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \end{bmatrix}$$

Original

Another smoothing (blur) operation is Gaussian

• If we use Gaussian as the convolution function, we can find a filter (convolution mask) by integration. (filter is not unique)

	1	4	7	4	1
	4	16	26	16	4
<u>1</u> 273	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

- Similar to finding the derivative
 - Why?

- Similar to finding the derivative
 - First derivative

$$\frac{\partial I}{\partial x} \approx I(x+1,y) - I(x,y)$$

0	0	0
0	-1	1
0	0	0

- Similar to finding the derivative
 - First derivative

$$\frac{\partial I}{\partial x} \approx I(x+1,y) - I(x,y)$$

0	0	0
0	-1	1
0	0	0

Second derivative

$$\frac{\partial^2 I}{\partial x^2} \approx I(x+1,y) - 2I(x,y) + I(x-1,y)$$

0	0	0
1	-2	1
0	0	0

- Similar to finding the derivative
 - First derivative

$$\frac{\partial I}{\partial x} \approx I(x+1,y) - I(x,y)$$

0	0	0
0	-1	1
0	0	0

Second derivative

$$\frac{\partial^2 I}{\partial x^2} \approx I(x+1,y) - 2I(x,y) + I(x-1,y)$$

0	0	0
1	-2	1
0	0	0

$$\frac{\partial^2 I}{\partial x^2} \approx \frac{\partial I(x,y)}{\partial x} - \frac{\partial I(x+1,y)}{\partial x} = I(x+1,y) - I(x,y) - \left(I(x,y) - I(x-1,y)\right) = I(x+1,y) - 2I(x,y) + I(x-1,y)$$

- Similar to finding the derivative
 - Derivative on both axes (Laplacian)

$$\frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2} \approx I(x+1,y) \left(-2I(x,y) + I(x-1,y) + I(x,y+1) \left(-2I(x,y) + I(x,y-1) \right) \right)$$

0	1	0
1	-4	1
0	$\Big\}$	0

Another version

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

Sobel operator

$$G_{x} = \frac{1}{2} \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$G_y = \frac{1}{2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

$$G=\sqrt{G_x^2+G_y^2}$$
 Or $G=|G_x|+|G_y|$

faster

Sobel operator

$$G_{x} = \frac{1}{2} \begin{vmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{vmatrix}$$

$$G_y = \frac{1}{2} \begin{vmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{vmatrix}$$

How did we find these filters?

Derivatives along \vec{i} and \vec{j} are easy:

Derivatives along \vec{i} and \vec{j} are easy:

$$(f - e)\vec{i} + (d - e)(-\vec{i}) + (b - e)\vec{j} + (h - e)(-\vec{j})$$

Derivatives along \vec{i} and \vec{j} are easy:

$$(f - e)\vec{i} + (d - e)(-\vec{i}) + (b - e)\vec{j} + (h - e)(-\vec{j})$$

Derivatives along \vec{i} and \vec{j} are easy:

$$(f - e)\vec{i} + (d - e)(-\vec{i}) + (b - e)\vec{j} + (h - e)(-\vec{j})$$

$$\frac{(c-e)}{\sqrt{2}}$$
 Normalize the length

Derivatives along \vec{i} and \vec{j} are easy:

$$(f - e)\vec{i} + (d - e)(-\vec{i}) + (b - e)\vec{j} + (h - e)(-\vec{j})$$

$$\frac{(c-e)}{\sqrt{2}}$$
 Normalize the length, project on \vec{i} and \vec{j}

Derivatives along \vec{i} and \vec{j} are easy:

$$(f - e)\vec{i} + (d - e)(-\vec{i}) + (b - e)\vec{j} + (h - e)(-\vec{j})$$

$$\frac{(c-e)}{\sqrt{}}$$
 Normalize the length, project on \vec{i} and \vec{j}

$$\frac{(c-e)}{\sqrt{2}}\cos(45)\vec{i} + \frac{(c-e)}{\sqrt{2}}\sin(45)\vec{j} = \frac{1}{2}(c-e)(\vec{i}+\vec{j})$$

Similarly, we find all the diagonal derivatives

$$(f - e)\vec{i} + (d - e)(-\vec{i}) + (b - e)\vec{j} + (h - e)(-\vec{j}) + \frac{1}{2}(c - e)(\vec{i} + \vec{j}) + \frac{1}{2}(a - e)(\vec{j} - \vec{i}) + \frac{1}{2}(g - e)(-\vec{j} - \vec{i}) + \frac{1}{2}(i - e)(\vec{i} - \vec{j})$$

 $+\left(b-h+\frac{1}{2}a-\frac{1}{2}g-\frac{1}{2}i+\frac{1}{2}c\right)\vec{j}$

Add all them up

$$(f - e)\vec{i} + (d - e)(-\vec{i}) + (b - e)\vec{j} + (h - e)(-\vec{j}) + \frac{1}{2}(c - e)(\vec{i} + \vec{j}) + \frac{1}{2}(a - e)(\vec{j} - \vec{i}) + \frac{1}{2}(g - e)(-\vec{j} - \vec{i}) + \frac{1}{2}(i - e)(\vec{i} - \vec{j})$$

$$= \left(f - d + \frac{1}{2}c - \frac{1}{2}a - \frac{1}{2}g + \frac{1}{2}i\right)\vec{i}$$

Correspond values to find filters

$$(f - e)\vec{i} + (d - e)(-\vec{i}) + (b - e)\vec{j} + (h - e)(-\vec{j}) + \frac{1}{2}(c - e)(\vec{i} + \vec{j}) + \frac{1}{2}(a - e)(\vec{j} - \vec{i}) + \frac{1}{2}(g - e)(-\vec{j} - \vec{i}) + \frac{1}{2}(i - e)(\vec{i} - \vec{j})$$

$$= \left(f - d + \frac{1}{2}c - \frac{1}{2}a - \frac{1}{2}g + \frac{1}{2}i\right)\vec{i}$$
$$+ \left(b - h + \frac{1}{2}a - \frac{1}{2}g - \frac{1}{2}i + \frac{1}{2}c\right)\vec{j}$$

-1	0	1
2		$\frac{\overline{2}}{2}$
-1	0	1
-1	0	1
2		$\frac{\overline{2}}{2}$

$\frac{1}{2}$	1	$\frac{1}{2}$
0	0	0
$\frac{-1}{2}$	-1	$\frac{-1}{2}$

- Sobel operator
 - One of the most common edge detection filters

 Notice that there are many artifacts. To avoid these artifacts, we can first smooth the image by Gaussian and then apply the filter.

 Sobel operator is itself a combination of a smoothing and an edge detection. How?

 Sobel operator is itself a combination of a smoothing and an edge detection. How?

 hint: vertical smoothing (weighted average), horizontal edge detection (derivative)

-1	0	1
-2	0	2
-1	0	1

 Sobel operator is itself a combination of a smoothing and an edge detection. How?

hint: vertical smoothing, horizontal edge detection (derivative)

-1	0	1
-2	0	2
-1	0	1

1
2
1

-1	0	1
----	---	---

 Sobel operator is itself a combination of a smoothing and an edge detection. How?

hint: vertical smoothing, horizontal edge detection (derivative)

-1	0	1	1	
-2	0	2	2	
-1	0	1	1	

-1	0	1		
f(x+h)-f(x-h)				

Image Features

• You can define many different convolution kernels (filters).

• Applying these filters may result a set of image features (e.g., corners, edges, etc), such filters are called feature detectors.

Image Features

• Find a list of feature detector filters and try to implement them in Matlab.

- Image Resizing
 - An application of edge detection aside from Active Contours

- How can we define "less important"?
 - The parts that have less visible edges or they have a lower energy

$$e_1(\mathbf{I}) = \left| \frac{\partial}{\partial x} \mathbf{I} \right| + \left| \frac{\partial}{\partial y} \mathbf{I} \right|$$

- How can we define "less important"?
 - The parts that have less visible edges or they have a lower energy

$$e_1(\mathbf{I}) = \left| \frac{\partial}{\partial x} \mathbf{I} \right| + \left| \frac{\partial}{\partial y} \mathbf{I} \right|$$

reminder:
$$\frac{\partial I}{\partial x} pprox I(x+1,y) - I(x,y)$$

• We cannot remove single pixels

1	2	1	2
1	2	3	4
2	4	1	0
0	1	2	1
1	2	3	1

• We cannot remove single pixels

How can we shift the pixels?

1	2	1	2
1	2	3	4
2	4	1	0
0	1	2	1
1	2	3	1

• We can remove a column or row that has the smaller sum of energy

1	2	1	2
1	2	3	4
2	4	1	0
0	1	2	1
1	2	3	1

• We can remove a column or row that has the smaller sum of energy

1	2	1	2
1	2	3	4
2	4	1	0
0	1	2	1
1	2	3	1
5	11	10	8

• We can remove a column or row that has the smaller sum of energy

remove the column

1	2	1	2
1	2	3	4
2	4	1	0
0	1	2	1
1	2	3	1
5	11	10	8

- Problem with column removing
 - The chance of removing important features is high

- Problem with column removing
 - The chance of removing important features is high

• Instead of a column, we can remove a seam

- How do you define a seam?
 - vertical seam: it has a pixel at each row; two consecutive rows have pixels with a difference with maximum one.

$$\mathbf{s}^{\mathbf{x}} = \{s_i^x\}_{i=1}^n = \{(x(i), i)\}_{i=1}^n, \text{ s.t. } \forall i, |x(i) - x(i-1)| \le 1$$

- How do you select a seam?
 - Dynamic programming

- How do you select a seam?
 - First find the energy of each pixel using discrete derivative

$$e_1(\mathbf{I}) = \left| \frac{\partial}{\partial x} \mathbf{I} \right| + \left| \frac{\partial}{\partial y} \mathbf{I} \right|$$

- How do you select a seam?
 - First find the energy of each pixel using discrete derivative

E(i, j)

- How do you select a seam?
 - First find the energy of each pixel using discrete derivative
 - Then use dynamic programming with this recursive equation

		M(i,j)

 $\mathbf{M}(i, j) = E(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$

- How do you select a seam?
 - First find the energy of each pixel using discrete derivative
 - Then use dynamic programming with this recursive equation

	M(i,j)

Find the pixel with smaller M(i,j) value and backtrack to find the seam

 $\mathbf{M}(i, j) = E(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$

- How do you select a seam?
 - First find the energy of each pixel using discrete derivative
 - Then use dynamic programming with this recursive equation

Find the pixel with smaller M(i,j) value and backtrack to find the seam

 $\mathbf{M}(i, j) = E(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$

$$\mathbf{M}(i,j) = E(i,j) + \min(\mathbf{M}(i-1,j-1), \mathbf{M}(i-1,j), \mathbf{M}(i-1,j+1))$$

M(i,j)

5	8	12	3
9	2	3	9
7	3	4	2
4	5	7	8

$$\mathbf{M}(i,j) = E(i,j) + \min(\mathbf{M}(i-1,j-1),\mathbf{M}(i-1,j),\mathbf{M}(i-1,j+1))$$

M(i,j)

5	8	12	3
9	2	3	9
7	3	4	2
4	5	7	8

$$\mathbf{M}(i,j) = E(i,j) + \min(\mathbf{M}(i-1,j-1),\mathbf{M}(i-1,j),\mathbf{M}(i-1,j+1))$$

M(i,j)

5	8	12	3
9	2	3	9
7	3	4	2
4	5	7	8

$$\mathbf{M}(i,j) = E(i,j) + \min(\mathbf{M}(i-1,j-1),\mathbf{M}(i-1,j),\mathbf{M}(i-1,j+1))$$

M(i,j)

5	8	12	3
9	7	3	9
7	3	4	2
4	5	7	8

$$\mathbf{M}(i,j) = E(i,j) + \min(\mathbf{M}(i-1,j-1),\mathbf{M}(i-1,j),\mathbf{M}(i-1,j+1))$$

M(i,j)

5	8	12	3
9	7	3	9
7	3	4	2
4	5	7	8

$$\mathbf{M}(i,j) = E(i,j) + \min(\mathbf{M}(i-1,j-1), \mathbf{M}(i-1,j), \mathbf{M}(i-1,j+1))$$

M(i,j)

5	8	12	3
9	7	6	9
7	3	4	2
4	5	7	8

$$\mathbf{M}(i,j) = E(i,j) + \min(\mathbf{M}(i-1,j-1),\mathbf{M}(i-1,j),\mathbf{M}(i-1,j+1))$$

M(i,j)

5	8	12	3
9	7	6	12
14	9	10	8
13	14	15	8

$$\mathbf{M}(i,j) = E(i,j) + \min(\mathbf{M}(i-1,j-1), \mathbf{M}(i-1,j), \mathbf{M}(i-1,j+1))$$

M(i,j)

5	8	12	3
9	7	6	12
14	9	10	8
13	14	15	8

$$\mathbf{M}(i,j) = E(i,j) + \min(\mathbf{M}(i-1,j-1),\mathbf{M}(i-1,j),\mathbf{M}(i-1,j+1))$$

M(i,j)

5	8	12	3
9	7	6	12
14	9	10	8
13	14	15	16

$$\mathbf{M}(i,j) = E(i,j) + \min(\mathbf{M}(i-1,j-1), \mathbf{M}(i-1,j), \mathbf{M}(i-1,j+1))$$

M(i,j)

5	8	12	3
9	7	6	12
14	9	10	8
13	14	15	16

$$\mathbf{M}(i,j) = E(i,j) + \min(\mathbf{M}(i-1,j-1),\mathbf{M}(i-1,j),\mathbf{M}(i-1,j+1))$$

M(i,j)

5	8	12	3
9	7	6	12
14	9	10	8
13	14	15	16

$$\mathbf{M}(i,j) = E(i,j) + \min(\mathbf{M}(i-1,j-1),\mathbf{M}(i-1,j),\mathbf{M}(i-1,j+1))$$

M(i,j)

5	8	12	3
9	7	6	12
14	9	10	8
13	14	15	16

$$\mathbf{M}(i,j) = E(i,j) + \min(\mathbf{M}(i-1,j-1), \mathbf{M}(i-1,j), \mathbf{M}(i-1,j+1))$$

M(i,j)

5	8	12	3
9	7	6	12
14	9	10	8
13	14	15	16

• Remove the seam on the actual image

5	8	12	3
9	7	6	12
14	9	10	8
13	14	15	16

I(0,0)	I(1,0)	I(2,0)	I(3,0)
I(0,1)	I(1,1)	I(2,1)	I(3,1)
I(0,2)	I(1,2)	I(2,2)	I(3,2)
I(0,3)	I(1,3)	I(2,3)	I(3,3)

• Remove the seam on the actual image

1(0,0)	I(1,0)	I(2,0)	I(3,0)		I(0,0)	I(1,0)	I(2,0)
I(0,1)	I(1,1)	I(2,1)	I(3,1)		I(0,1)	l(1,1)	I(3,1)
1(0,2)	I(1,2)	I(2,2)	I(3,2)				I(3,1)
I(0,3)	I(1,3)	I(2,3)	I(3,3)				
				I	[1(1,3)]		I(3,3)

• Remove the seam on the actual image

1(0,0)	I(1,0)	I(2,0)	I(3,0)	I(0,0)	I(1,0)	I(2,0)
I(0,1)	I(1,1)	I(2,1)	I(3,1)	I(0,1)	l(1,1)	I(3,1)
I(0,2)	I(1,2)	I(2,2)	I(3,2)	I(0,2)	I(2,2)	I(3,2)
1(0,3)	I(1,3)	I(2,3)	I(3,3)	I(1,3)	I(2,3)	I(3,3)

Results

Results

Adding seams

