Exercises

Jean-Luc Guermond

May 21, 2024

1 Lecture 1

Question 1: Let $y(x,t) = x\cos(2t + \log(|x|))$. Compute $\partial_{tt}y + x^2\partial_{xx}y - x\partial_xy + 6y$.

(b) Let $\psi: \mathbb{R} \to \mathbb{R}$ be functions of class C^1 . Let $F: \mathbb{R} \to \mathbb{R}$ be defined by $F(v) = \int_0^v f'(t)\psi'(t) dt$. Use (a) to compute $\partial_x(F(u(x)) - \partial_x(f(u(x)))\psi'(u(x))$.

(c) Using the notation of (a) and (b), assume that $u(\pm \infty) = 0$ and compute $\int_{-\infty}^{+\infty} \partial_x (f(u(x))) \psi'(u(x)) dx$.

Question 3: Let u solve $\partial_t u - \partial_x ((3x+1)\partial_x u) = -3$, $x \in (0,L)$, with $\partial_x u(0,t) = 1$, $\partial_x u(L,t) = \alpha$, u(x,0) = f(x).

(a) Compute $\int_0^L u(x,t)dx$ as a function of t.

(b) For which value of α the quantity $\int_0^L u(x,t)dx$ does not depend on t?

Question 4: Let u solve $\partial_t u + \partial_x \left(v(x,t)u - \mu(x,t)\partial_x u\right) = g(x)e^{-t}, \ x \in (0,L), \ t > 0$, with $\mu(0,t)\partial_x u(0,t) = 1, \ \mu(L,t)\partial_x u(L,t) = 1 + 2e^{-t}, \ u(x,0) = f(x)$, where $v, \ \mu > 0$, f and g are four smooth functions and v(0) = v(L) = 0.

(a) Compute $\frac{d}{dt} \int_0^L u(x,t) dx$ as a function of t.

(b) Use (a) to compute $\int_0^L u(x,t)dx$ as a function of t.

(c) What is the limit of $\int_0^L u(x,t)dx$ as $t \to +\infty$?

Question 5: Consider the differential equation $-\frac{d^2\phi}{dt^2} = \lambda\phi$, $t \in (0,\pi)$, supplemented with the boundary conditions $\phi(0) = 0$, $3\phi(\pi) = -\phi'(\pi)$.

(a) Prove that it is necessary that λ be positive for a non-zero solution to exist.

(b) Find the equation that λ must solve for the above problem to have a nonzero solution.

2 Lecture 2

Question 6: Consider the following conservation equation $\partial_t \rho + \partial_x (q(\rho)) = 0$, $x \in (-\infty, +\infty)$, t > 0, $\rho(x,0) = \frac{1}{2}$ if x < 0, and $\rho(x,0) = 1$ if x > 0. where $q(\rho) = 2\rho + 3\rho^3 - \sin(\rho^2)$ (and $\rho(x,t)$ is the conserved quantity). What is the wave speed for this problem?

Question 7: Consider the following conservation equation $\partial_t \rho + \partial_x (q(\rho)) = 0$, $x \in (-\infty, +\infty)$, t > 0, $\rho(x,0) = \frac{1}{2}$ if x < 0, and $\rho(x,0) = 1$ if x > 0. where $q(\rho) = 2\rho + 3\rho^3 - \sin(\rho^2)$ (and $\rho(x,t)$ is the conserved quantity). What is the wave speed for this problem?

Luestion	10: Fo	or all $k \in$	$\in \mathbb{R}, \text{ con}$	sider tl	he entro	py $\eta(v, k)$	v(t) := v	-k .	Compute	the entr	opy flu
ssociated	with ti	nis entro	py, q(v),	with th	ne norm	anzation	$q(\kappa) :=$	0.			

Question 11: Consider Burgers' equation with $D := \mathbb{R}$ and $u_0(x) := H(x)$, where H is the Heaviside function. (a) Verify that $u_1(x,t) := H(x - \frac{1}{2}t)$ and $u_2(x,t) := 0$ if x < 0, $u_2(x,t) := \frac{x}{t}$, if 0 < x < t, $u_2(x,t) := 1$ if x > t, are both weak solutions.

yfill

(ii) Verify that u_1 does not satisfy the entropy inequalities, whereas u_2 does.

3 Lecture 3

Question 12: Consider the quasilinear Klein-Gordon equation: $\partial_{tt}\phi(x,t)-c^2\partial_{xx}\phi(x,t)+m^2\phi(x,t)+\beta^2\phi^3(x,t)=0, x\in\mathbb{R}, t>0$, with $\phi(x,0)=f(x), \partial_t\phi(x,0)=g(x)$ and $\phi(\pm\infty,t)=0, \partial_t\phi(\pm\infty,t)=0$, $\partial_x\phi(\pm\infty,t)=0$. Find an energy E(t) which is invariant with respect to time (Hint: test with $\partial_t\phi(x,t)$ and use $\phi^p\phi'=(\frac{1}{p+1}\phi^{p+1})'$.)

Question 13: (a) Compute the Fourier transform of the function f(x) defined by

$$f(x) = \begin{cases} 1 & \text{if } |x| \le 1\\ 0 & \text{otherwise} \end{cases}$$

(b) Find the inverse Fourier transform of $g(\omega) = \frac{\sin(\omega)}{\omega}$.

Question 15: Solve the integral equation: $f(x) + \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{f(y)}{(x-y)^2+1} dy = \frac{1}{x^2+4} + \frac{1}{x^2+1}$, for all $\underline{x} \in (-\infty, +\infty)$.

Question 16: Use the Fourier transform method to solve the equation $\partial_t u + \frac{2t}{1+t^2} \partial_x u = 0$, $u(x,0) = u_0(x)$, in the domain $x \in (-\infty, +\infty)$ and $t > 0$.								
	,							

Question 17: Use the Fourier transform technique to solve $\partial_t u(x,t) + \sin(t)\partial_x u(x,t) + (2+3t^2)u(x,t) = 0, x \in \mathbb{R}, t > 0$, with $u(x,0) = u_0(x)$. (Use the shift lemma: $\mathcal{F}(f(x-\beta))(\omega) = \mathcal{F}(f)(\omega)e^{i\omega\beta}$ and the definition $\mathcal{F}(f)(\omega) := \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x)e^{i\omega x} dx$)

Question 18: Solve the PDE

$$u_{tt} - a^2 u_{xx} = 0,$$
 $-\infty < x < +\infty, \quad 0 \le t,$ $u(x,0) = \cos(x), \quad u_t(x,0) = -a\sin(x),$ $-\infty < x < +\infty.$

Question 19: Solve the wave equation on the semi-infinite domain $(0, +\infty)$,

$$\begin{split} &\partial_{tt} w - 4 \partial_{xx} w = 0, \quad x \in (0, +\infty), \ t > 0 \\ & w(x, 0) = (1 + x^2)^{-1}, \quad x \in (0, +\infty); \qquad \partial_t w(x, 0) = 0, \quad x \in (0, +\infty); \quad \text{and} \quad \partial_x w(0, t) = 0, \quad t > 0. \end{split}$$

(Hint: Consider a particular extension of w over \mathbb{R})