

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» $(M\Gamma T Y \text{ им. H. Э. Баумана})$

ФАКУЛЬТЕТ _	Фундаментальные науки
КАФЕДРА	Прикладная математика

Отчет по лабораторной работе №5 на тему:

"Методы решения нелинейных уравнений"

Студент	ФН2-51Б		И.Е. Дыбко
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Студент	ФН2-51Б		С. И. Тихомиров
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Проверил			К. А. Касьянова
		(Подпись, дата)	(И.О. Фамилия)

ОГЛАВЛЕНИЕ 2

Оглавление

1.	Описание использованных алгоритмов
	1.1. Метод бисекции
	1.2. Метод Ньютона
2.	Ответы на контрольные вопросы
3.	Ответы на дополнительные вопросы
4.	Область сходимости
	1. Описание использованных алгоритмов
	1.1. Метод бисекции
	1.2. Метод Ньютона
	2. Ответы на контрольные вопросы 1) Можно ли использовать методы бисекции и Ньютона для нахождения кратных корней уравнения $f(x) = 0$ (т. е. тех, в которых одна или несколько первых производных функций $f(x)$ равны нулю)? Обос-
	нуйте ответ.
	Для метода бисекции рассматривается функция на отрезке $[a,b]$, на котором существует один корень нечетной кратности $f(x) = 0$, $f(a)f(b) < 0$. При этих условиях метод не может не сойтись. Так кратный корень будет иметь одинаковые значения в данных точках (т.е. $f(a) = f(b)$), то условие $f(a)f(b) < 0$ не будет выполнено.
	Метод Ньютона может сходиться для корня любой кратности лишь при удачном попадании начального приближения в окрестность конрня. Чем больше кратность корня, тем медленне сходится метод.
	2) При каких условиях можно применять метод Ньютона для поиска
	корней уравнения $f(x) = 0$? При каких ограничениях на функцию
	f(x) метод Ньютона обладает квадратичной скоростью сходимости? В
	каких случаях можно применять метод Ньютона для решения систем
	нелинейных упавнений?

Для решения уравнения f(x) = 0 методом Ньютона необходимо, чтобы функция была непрерывно дифференцируема на отрезке локализации [a, b], а также модуль ее первой и второй производной были оценены снизу и сверху соответсятвенно $(|f'(x)| \ge m > 0, |f''(x)| \le M)$.

Метод Ньютона имеет квадратичную скорость сходимости, если $f'(x) \neq 0$, в противном случае скорость сходимости снижается до линейной. Для реализации метода Ньютона необходимо существование матрицы, обратной матрице $F'(x^k)$.

3) Каким образом можно найти начальное приближение?

Для того, чтобы при итерационном процессе метода Ньютона не произошел выход за границы отрезка локализации корня, начальное приближение находят через метод хорд:

$$x^{0} = \frac{f(a) \cdot b - f(b) \cdot a}{f(a) - f(b)}.$$

Иногда метод Ньютона сходится не к искомому корню, а к локальному минимуму, поэтому на практике имеет смысл проверить близость $f(x^0)$ к нулю.

4) Можно ли использовать метод Ньютона для решения СЛАУ?

Рассмотрим СЛАУ F(x) = Ax - b = 0. Решим ее матодом Ньютона:

$$F(x^k) + F'(x^{k+1})(x^{k+1} - x^k) = 0, \ Ax^k - b + Ax^{k+1} - Ax^k = 0 \Rightarrow x^{k+1} = A^{-1}b.$$

Получим, что алгоритм сойдется за одну итерацию.

5) Предложите альтернативный критерий окончания итераций в методе бисекции, в котором учитывалась бы возможность попадания очередного приближения в очень малую окрестность корня уравнения.

В метоже бисекции итерации оканчиваются при выполнении следующего условия:

$$|b^{(k)} - a^{(k)}| < 2\varepsilon.$$

Также модно использовать следующий критерий

$$|x^{(k+1)} - x^{(k)}| < \varepsilon,$$

который показывает, что последнее найденное приближение будет отличаться от решения не более чем на ε .

Если задана производная f'(x), то в качестве критерия останова можно проверят условие

$$\left| \frac{f(x^k)}{f'(x^k)} \right| < \varepsilon$$

которое учитывает малость производной (т.е. малый тангенс угла кассательной) в окрестности корня.

6) Предложите различные варианты модификаций метода Ньютона. Укажите их достоинства и недостатки.

Метод Ньютона с кубической скоростью сходимости

$$x^{k+1} = x^k - \frac{f(x^k)}{f(x^{k+1})} - \frac{f(x^k - f(x^k)f'(x^k)^{-1})}{f'(x^k)}.$$

Добавленный «подшаг» из нового ньютоновского приближения вдоль прямой, имеющей тот же угол наклона, что и касательная в x^k делает сходимость данного метода кубической.

Метод секущих

$$x^{k+1} = x^k - \frac{x^k - x^{k-1}}{f(x^k) - f(x^{k-1})} f(x^k)$$

Этот метод получается из метода Ньютона заменой $f'(x^k)$ разделенногй разностью, вычесленной по известным значениям x^k и x^{k-1} . Данный метод является двухшаговым, т.е. новое приближение x^{k+1} определяется двумя предыдущими итерациями x^k и x^{k-1} . В методе необходимо задавать два начальных приближения x^1 и x^0 .

Модифицированный метод Ньютона

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^0)}$$

Данный метод применяют в том случае, когда хотят избежать многократноговычисления производной f'(x). Метод прелъявляет меньше требований к выбору начального приближения x^0 , однако обладает лишь линейной сходимостью.

7) Предложите алгоритм для исключения зацикливания метода Ньютона и выхода за пределы области поиска решения?

Для выявления зацикливания можно сравнивать очередное приближение со всеми остальными:

$$|x^{k+1} - x^{(j)}| < \varepsilon_0, \quad \varepsilon_0 \ll \varepsilon.$$

При выходе за границы массива касательные к f(x) в точках $x \to 0$ могут быть практически параллельны оси абсцисс (т.к $f'(x) \to 0$ при $x \to$). В этом случае следует модифицировать алгоритм решения либо искать другое начальное приближение (см. ответ на контрольный вопрос 3).Например сделать это можно, используя метод Ньютона с параметром:

$$x^{k+1} = x^k - \alpha \frac{f(x^k)}{f'(k+1)}$$

Для решения систем нелинейных уравнений можно использовать гибридные методы для нахождения нового приближения (например, внешние итерации

проводить по методу Якоби, а внутренние — по методу хорд). Например, в случае выхода решения X^{k+1} за пределы области можно положить

$$X^{k+1} = \frac{X^{k+1} + X^k}{2}$$

Повторят этот шаг можно до тех пор, пока X^{k+1} не попадет в область.

3. Ответы на дополнительные вопросы

1) Доказать линейную скорость сходимости при кратном корне в методе Ньютона

Классческий метод Ньютона задается следующим итерационным процессом:

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)}$$

Пусть существует непрерывная $f^{(p+1)}(x)$, а x_* есть p-кратный корень. Тогда в малой окрестности корня

$$f(x) \approx a\Delta^p + b\Delta^{p+1}, \quad \Delta = x - x_*$$

Подставляя данное выражение в выражение для метода Ньютона и вычитая из обеих частей неравенства x_* , получаем

$$\Delta^{k+1} = \frac{p-1}{p}\Delta^k + O((\Delta^k)^2)$$

Отсюда видно, что метод Ньютона для простого корня (p=1) сходится квадратично, а для кратного корня $(p \ge 2)$ сходится линейно.

2) Геометрический смысл системы нелинейных уравнений

Рассмотрим систему нелиненйных уравнений

$$\begin{cases} f_1(x_1, x_2, \dots, x_n) = 0, \\ f_2(x_1, x_2, \dots, x_n) = 0, \\ \dots \\ f_n(x_1, x_2, \dots, x_n) = 0, \end{cases}$$

Ее можно представить как совокупность поверхностей или кривых в пространстве \mathbf{R}^n , где F(x) задает некоторое множество точек (например, кривых, поверхностей или гиперплоскостей).

Решение этой системы — это точки, принадлежащие пересечению всех этих геометрических объектов. Если n=2, то это пересечение кривых на плоскости.

Если n=3, это точки пересечения поверхностей. В общем случае решение — это подмножество в пространстве \mathbf{R}^n , где все компоненты F(x) одновременно равны нулю.

3) Доказать, что модифицированный метод Ньютона имеет кубическую скорость сходимости

Модифицированный метод Ньютона с кубической сходимостью задается следующем итерационным процессом:

$$x^{k+1} = x^k - \frac{f(x^k)}{f(x^{k+1})} - \frac{f(x^k - f(x^k)f'(x^k)^{-1})}{f'(x^k)}.$$

Пусть x_* — корень уравнения f(x) = 0, $e^k = x^k - x_*$) — ошибка на k-й итерации. Разложим функцию f(x) по формуле Тейлора около корня x_* :

$$f(x^k) = f'(x_*)(e^k) + \frac{f''(x_*)}{2}(e_k)^2 + \frac{f'''(\xi)}{6}(e_k)^3,$$

где $\xi \in (x_*, x^k)$.

Аналогично для производной:

$$f'(x^k) = f'(x_*) + f''(x_*)e^k + \frac{f'''(\eta)}{2}(e^k)^2,$$

где $\eta \in (x_*, x^k)$.

Классический метод Ньютона задается следующим итерационным процессом:

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)}.$$

Подставим разложения $f(x^k)$ и $f'(x^k)$:

$$x_1^{k+1} = x^k - \frac{f'(\alpha)e^k + \frac{f''(\alpha)}{2}(e^k)^2}{f'(\alpha) + f''(\alpha)e^k}$$

После упрощения:

$$x_1^{k+1} - x_* = -\frac{f''(x_*)(e^k)^2}{2f'(x_*)} = C_1(e^k)^2,$$

где
$$C_1 = -\frac{f''(x_*)}{2f'(x_*)}$$
.

Далее рассмотрим разложение $f(x_1^{k+1})$ около корня x_* :

$$f(x_1^{k+1}) = f'(x_*)(x_1^{k+1} - x_*) + \frac{f''(x_*)}{2}(x_1^{k+1} - x_*)^2 = f'(x_*)(C_1(e^k)^2) + \frac{f''(\alpha)}{2}(C_1(e^k)^2)^2.$$

Подставим разложение $f(x_1^{k+1})$ в формулу модифицированного метода Ньютона:

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)} - \frac{f'(x_*)C_1(e^k)^2 + \frac{f''(x_*)}{2}(C_1(e^k)^2)^2}{f'(x^k)}.$$

Упростим выражение:

$$x_{k+1} - \alpha = -\frac{\frac{f''(\alpha)}{2}e_k^2}{f'(\alpha)} - \frac{f'(\alpha)C_1e_k^2}{f'(\alpha)} = L(e^k)^3.$$

4) Оценить скорость сходимости метода Ньютона при решении уравнения $(x-1)^3=0$ при начальном приближении $x_0=0$.

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)}.$$

$$x^{k+1} = x^k - \frac{f(x_k - 1)^3}{3(x_k - 1)^2} = x_k - \frac{x_k}{3} + \frac{1}{3} = \frac{2}{3}x_k + \frac{1}{3}.$$

$$|x^{k+1} - x^*| = |\frac{2}{3}x_k + \frac{1}{3} - 1| = \frac{2}{3}|x_k - 1| \Rightarrow \text{Коэффициент сходимости } C = \frac{2}{3}.$$

$$k \ge \frac{\ln\left(\frac{\varepsilon}{e_0}\right)}{\ln C},$$

где $e_0 = |x_0 - x^*| = |0 - 1| = 1$ — начальная погрешность, а $\varepsilon = 10^{-6}$. Таким образом

$$k \ge \frac{\ln\left(\frac{10^{-6}}{1}\right)}{\ln\frac{2}{3}} \approx 34.07.$$

На практике при решении уравнения производится 33 итерации.

4. Область сходимости

Рис. 1. Область сходимости для первой системы при h=0.5

Рис. 2. Область сходимости для первой системы при h=0.1

Рис. 3. Область сходимости для второй системы при $h=0.1\,$