

From Past Abiding Behavior to Subsequent Intervention Compliance: A Mobile Phone Usage Case Study

Yang Meng Rong Ji Zeyue Zhang

Department of Biostatistics, University of Michigan, Ann Arbor, MI

1. Introduction

Background

- Mobile phone addiction is a crucial concern and excessive usage leads to various mental, psychological, and physical health issues^[1];
- Many behavioral interventions have been developed but there is a need to learn users' compliance and factors related with it;

Study Design & Interventions

- A cohort of 34 users recorded their daily screen time data from mid-January to April 2;
- From March 27 to April 2 is the intervention treatment period which has daily restricted allowance for phone usage on users;
- Intervention assigned by randomization:
- Intervention A: 200 screen time minutes;
- Intervention B: 50 pick up numbers;

2h 45m

Statistical Aim

- Are users' past committed behavior status associated with intervention adherence?
- Deriving new variables from raw data to provide metrics for the past abiding behavior;

2. Data Description

- Original longitudinal data set consists of two sheets:
 - Sheet "screentime": daily phone usage activity statistics for each participant;
 - O Sheet "baseline": individual characteristics by answering a questionnaire;
- "compliance": binary outcome, whether complying with assigned intervention;
- "early": new created main predictor, measuring users past punctuality and abiding tendencies to a 8 AM class; hypothesized significantly associated with outcome;

- Differences between males and females in terms of daily phone usage;
- Less time on phones for users during intervention, compared with prior data;

Quality Control

- Common Categories:
 - Invalid: valid ranges of variables' measurements;
 - Inconsistency: variables not marked in the same unit;
 - Accuracy: under-reporting of variable information;
 - Precision: recording lower values than actual amount;
- Outliers Detection:
 - With-and-without outliers analysis on mean calculation; "base_mean":
 - Minor concern if results show trivial change;

Variable Creation

• A common choice in practice to derive new variables • R-package MICE for multiple imputation procedures; from raw data to provide other types of information;

3. Data Preprocessing

- "lag_y1" or "lag_y2":
- Yesterday's phone usage data (minutes or pickup);
- "early":
 - Past proportion of daily 1st pickup time prior 8 AM
- - O Last 3 weeks' (ahead March 27) mean usage data;

Missing Data

- o mice() function in the MICE package;
- "method=pmm" for continuous variables;
- "m=5" indicates generating five imputed datasets;
- Separate original data by intervention category;
 - O Producing 5 imputed sets for Intervention A data and Intervention B data respectively using mice();
- After-imputation analysis: estimation and inference;

4. Data Analysis

Model Setup

- Response "compliance" is binary ↔ logistic regression model
- "score": a continuous variable of a procrastination score value from an online test;
- Intervention A Model:
- Model A: $logit(\pi) = \beta_0 + \beta_1 \cdot (lag_y1) + \beta_2 \cdot (base_mean) + \beta_3 \cdot (score) + \beta_4 \cdot (early)$
- Intervention B Model:
- Model B: $logit(\pi) = \beta_0 + \beta_1 \cdot (lag_y2) + \beta_2 \cdot (base_mean) + \beta_3 \cdot (score) + \beta_4 \cdot (early)$
- Hypothesis Testing:

Null Hypothesis: $\beta_{\perp} = 0$ & Alternative Hypothesis: $\beta_{\perp} \neq 0$

• Focus on observations in intervention program period (March 27 – April 2);

Model Fitting Steps

- Fitted Model A on 5 generated imputed sets from Intervention A data;
 - Obtained 5 fitted GLMs' summary statistics;
- Fitted Model B on 5 generated imputed sets from Intervention B data;
 - Obtained 5 fitted GLMs' summary statistics;
- Summary statistics e.g., estimates, standard errors —- could used to manually compute the key metrics of missing data imputation diagnostics;
 - o **pool()** function is an alternative option to deliver key metrics;
 - o also returning model summary by merging all the fitted GLMs;
- Results: # of Model Model A P-Values 0.00011 $1.15544e^{-9}$ 0.43219 0.28683 0.08939 Model B P-Values $0.02222 \ 3.11952e^{-9} \ 0.70035 \ 0.84552 \ 0.03543$

Key Findings

- β_1 < 0.05 in both Model A & B, β_4 > 0.05 in Model A, and β_4 < 0.05 in Model B;
- Lag-1 effects significantly associated with both intervention compliance;
- Prior abiding habit significant associated with Intervention B compliance;

Imputation Diagnostics

- Show missing data imputation effectiveness after generating imputed datasets;
- Using **Rubin's rule**^[2] can find out key metrics regarding imputation diagnostics;
- RI: represents a proportional increase in total sampling variance compared with its sampling variance would have had the missing values been complete;
- FMI: exhibits a proportion of total sampling variance due to a missing variable and how correlated this variable with others in imputation model;
- RE: provides an accuracy of estimating true population parameters and an estimate of efficiency compared to infinite number of imputations;

# of Model's β	Relative Increase(RI)	Fraction Missing Info(FMI)	Relative Efficiency(RE)
Model A: lag_y1	0.03872	0.03795	0.99247
Model A: base_mean	0.08989	0.08559	0.98317
Model A: score	0.02696	0.02659	0.99471
Model A: early	0.23682	0.20591	0.96045
Model B: lag_y2	0.05541	0.05381	0.98935
Model B: base_mean	0.01973	0.01954	0.99611
Model B: score	0.08590	0.08198	0.98387
Model B: early	0.33809	0.27543	0.94779

5. Future Directions

- Longitudinal analysis given longitudinal nature of repeated-measures data;
- Expectation–Maximization (EM) algorithm for handling missing values;
- Dynamic treatment regimes to design individualized intervention policies;

References

[1] I. O. Adam and M. D. Alhassan. The effect of mobile phone penetration on the quality of life. Telecommunications Policy, vol. 45, no. 4, p. 102109, 2021. [2] D. Rubin. Multiple Imputation for Nonresponse in Surveys,. New York: John Wiley and Sons., 1987.