Degree of Field Entension

Suppose a is algebraic over F. Then $Ker \mathcal{Y} = (J(x))$. If we enforce J(x) to

be monic, then J(x) becomes unique.

It is called the irreducible polynomial

of a over F. The degree of a over Fis the degree of J(x).

Let degree of a over F = 1

=> degree of f(x) = 1

=> x-a= [(x) < F[x]

=> a < F.

O Lit | be a juild extension. Then

F

K is a vector space over F.

If m \((n-1), then g(a) is spanned by {1, α,..., αⁿ⁻¹ over F. But if m > (n-1), we med to show that an, an, are spanned by {-1, a, ..., a -1} over F. 1(a) = 0 $\Rightarrow \alpha + \alpha + \alpha + \cdots = 0 - (1).$ \Rightarrow $\alpha = -\alpha \quad \alpha = -\alpha$ ← F-span of {1, a,..., a. }. Multiplying (1) by a, $\alpha^{n+1} + \alpha_{n-1} + \alpha_{n-1} = 0$ $= - \alpha_{n-1} \alpha_{n-2} \alpha_{n-2} \alpha_{n-1} - \dots$ $\in F$ -span of $\{1, \alpha, \ldots, \alpha^{n-1}\}$ Same goes for any other a. We also need to show that { 1, a, ..., a is linearly independent over F. Let

$$h(\alpha) = \alpha n - 1 + \dots + \alpha_0 = 0$$

=> a is root of polynomial h(x) whose degree < n.

=> h(x) = 0 since $olg_{\neq}(\alpha) = n$ => $\{1, \alpha, ..., \alpha^{n-1}\}$ is linearly independent. It is thus a basis of $F(\alpha)$

 \Rightarrow dim $\{F(\alpha)\} = n$.

O Lit $\stackrel{K}{\downarrow}$ and $\alpha \in K$. α is algebraic over F and if $\dim_{F} \{F(\alpha)\} < \infty$.

If a is algebraic over F, then $dim \{F(\alpha)\} = deg \ \alpha < \alpha$.

Conversely, if dim = {F(a)} < 00

=> $\{ \pm, \alpha, \alpha, \dots, \}$ infinite set is linearly dependent. Here $\pm, \alpha, \dots \in F(\alpha)$.

=> There exists a nontrivial relation such

that a + a, a + ··· = 0 where all an EF

and \$\div 0.

=> a is algebraic over F.

0 Lit K. Thin [K:F] = [K:L][Z:F]

Suppose [K:Z] or $[Z:F] = \infty$ $If [K:L] = \infty$

=> I an infinite sized linearly independent set in K as an L-Vector space.

=> I an injunite sized Linearly independent

set in K as an F-vector space, since

some an EL are also in F.

> [K:F] = 00

And if $[L:F] = \infty$, its trivial that $[K:F] = \infty$. Thus we need both [K:L] = m and $[L:F] = n < \infty$.

 $mn\left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right)$ The basis for K as an L-vector space be I, α , ..., α m \in L and for L as an Fvector space be 1, B, ..., Bn EF. We need to prove that {a, B, }Kikm forms
1Kjkn

the basis of K as an Freeton space. Let YEK $\Rightarrow \gamma = \sum_{i} a_{i} \alpha_{i}$ for some $a_{i} \in \mathcal{L}$. $\Rightarrow \gamma = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} b_{i} \cdot \beta_{i} \right) \alpha_{i}$ for some b_{j} : $\in F$. $= \sum_{i,j} \left\{ (\alpha_i, \beta_i) \right\}$ = 0

independent, as they are the basis in

1 as an L-minor symme.

=> b: =0 + i, j since p. are linearly
independent, as they are the basis in

L as an F-vector space.

=> {a, B.} is thus the basis of K as an F-vector space.

 $\left| \left\{ \alpha_{i} \beta_{i} \right\} \right| = m n$

=> [K:F] = mn.