Formulario básico primer examen parcial 20/03/24

Tema 1. Cinemática y dinámica de la partícula

Posición, velocidad y	Movimiento rectilíneo	Movimiento circular
aceleración $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$	$s(t) = s_0 + vt$	$\theta(t) = \theta_0 + \omega t$
	$v(t) = v_0 + at$	$\omega(t) = \omega_0 + \alpha t$ $\omega(t) = \omega_0 + \alpha t$
$\vec{v}_m = \frac{\Delta \vec{r}}{\Delta t} = \frac{\vec{r}_2 - \vec{r}_1}{t_2 - t_1}$	$v^{2} = v_{0}^{2} + 2a(s - s_{0})$	$\omega(t) - \omega_0 + \alpha t$ $\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)^2$
2 2	0 1 07	, , ,
$\vec{v} = \lim_{\Delta t \to 0} \left(\frac{\Delta \vec{r}}{\Delta t} \right) = \frac{d\vec{r}}{dt}$	$s(t) = s_0 + v_0(t - t_0) + \frac{a}{2}(t - t_0)^2$	$\theta(t) = \theta_0 + \omega_0(t - t_0) + \frac{\alpha}{2}(t - t_0)^2$
$\vec{a}_m = \frac{\Delta \vec{v}}{\Delta t}$	$v(t) = v_0 + \int_{t_0}^t a(t) dt$	$v = \frac{\mathrm{d}s}{\mathrm{d}t} = R\omega$
$\rightarrow \qquad (\Delta \vec{v}) \qquad d\vec{v}$	$\int_{0}^{v} v$	$\omega = \frac{\mathrm{d}\theta}{\mathrm{d}t}$
$\vec{a} = \lim_{\Delta t \to 0} \left(\frac{\Delta \vec{v}}{\Delta t} \right) = \frac{d\vec{v}}{dt}$	$s = s_0 + \int_{v_0}^{v} \frac{v}{a(v)} \mathrm{d}v$	dt $\vec{v} = \vec{\omega} \times \vec{r}$
	$\frac{1}{2}$,
	$v^2 = v_0^2 + 2\int_{s_0}^s a(s) ds$	$\alpha = \frac{\mathrm{d}\omega}{\mathrm{d}t}$
		$\vec{a}_t = \frac{\mathrm{d}v}{\mathrm{d}t} \hat{u}_t = R\alpha \hat{u}_t$
		$\vec{a}_t = \vec{\alpha} \times \vec{r}$
		$\vec{a}_n = \frac{v^2}{R}\hat{u}_n = R\omega^2\hat{u}_n$
		$\vec{a}_n = \vec{\omega} \times \vec{v}$
Movimiento relativo	Tiro parabólico	Leyes de Newton
$\vec{r}_{P/A} = \vec{r}_{P/B} + \vec{r}_{B/A}$	$x(t) = x_0 + v_{0x}t$	$\sum \vec{F}_i = m\vec{a}$
$\vec{v}_{P/A} = \vec{v}_{P/B} + \vec{v}_{B/A}$	$y(t) = y_0 + v_{0y}t - \frac{gt^2}{2}$	i
$\vec{a}_{P/A} = \vec{a}_{P/B} + \vec{a}_{B/A}$	-	$ec{F}_{AB} = -ec{F}_{BA}$
, , ,	$y(x) = \left(\frac{v_{0y}}{v_{0x}}\right)x - \left(\frac{g}{2v_{0x}^2}\right)x^2$	
	$t_{vuelo} = \frac{2 \vec{v}_0 }{g} \sin(\theta_0)$	Momento lineal
	$t_{vuelo} = \frac{-\sin(v_0)}{g}$	$\vec{p} = m\vec{v}$
	$x_{max} = x_0 + \frac{ \vec{v}_0 ^2}{g} \sin(2\theta_0)$	$\sum \vec{F} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t}$
	$y_{max} = y_0 + \frac{ \vec{v}_0 ^2}{2a} \sin^2(\theta_0)$	
	$y_{max} - y_0 + 2g$ Sin (0_0)	
Impulso	Fuerzas elásticas y de fricción	Momento angular
$\vec{I} = \int_{t}^{t_2} \left(\sum \vec{F} \right) dt$	$\vec{F} = -k\vec{x}$	$\vec{L}(t) = \vec{r}(t) \times \vec{p}(t) = \vec{r}(t) \times m\vec{v}(t)$
1	$F_s \leq \mu_s n$	$rac{\mathrm{d} ec{L}(t)}{\mathrm{d} t} = ec{r} imes ec{F}_{neta} = ec{ au}$
$\vec{I} = \Delta \vec{p} = \vec{p}_2 - \vec{p}_1$	$F_k = \mu_k n$	$dt = i \wedge i neta = i$
$ec{I} = ec{F}_{prom} \Delta t$		
$\vec{I} = \vec{F}_{imp-prom}(t_2 - t_1)$		

Tema 2. Energía y principios de conservación

Trabajo	Potencia
$W_{\vec{F}} = \int_{A}^{B} \vec{F}(\vec{r}) \cdot d\vec{r} = \int_{t_{A}}^{t_{B}} \vec{F}(\vec{r}(t)) \cdot \vec{v}(t) dt$	$P(t) = \frac{\mathrm{d}W(t)}{\mathrm{d}t} = \vec{F}(t) \cdot \vec{v}(t)$
$W_{\vec{F}_{Const}} = \vec{F} \cdot \Delta \vec{r} = \vec{F} \Delta \vec{r} \cos(\theta)$	$P_m = rac{\Delta W}{\Delta t}$
$W_{Total} = \int_{A}^{B} \left(\sum \vec{F}(\vec{r}) \right) \cdot d\vec{r} = \int_{t_{A}}^{t_{B}} \left(\sum \vec{F}(\vec{r}(t)) \right) \cdot$	$ec{v}(t)\mathrm{d}t$
Energía cinética. Teorema trabajo – energía	Energía potencial gravitacional y elástica
$K(t) = \frac{1}{2}mv(t)^2$	$U_g = mgy$
$W_{Total} = K(t_R) - K(t_A) = \Delta K$	$W_g = U_{g,A} - U_{g,B} = -\Delta U_g$
Total (B) (A)	$U_{el} = \frac{1}{2}kx^2$
	$W_{el} = U_{el,A} - U_{el,B} = -\Delta U_{el}$
Fuerzas conservativas	Fuerzas no conservativas
$\vec{F}_C(\vec{r}) = -\operatorname{grad} U(\vec{r}) = -\nabla U(\vec{r})$	$\vec{F}_{NC}(\vec{r}) \neq -\nabla U(\vec{r})$
$P_C(t) = -\frac{\mathrm{d}U(\vec{r}(t))}{\mathrm{d}t}$	$W_d = \int_A^B \vec{F}_d(\vec{r}) \cdot d\vec{r} < 0$
$W_C = -\Delta U$	
$W_C = \oint_S \vec{F}_C(\vec{r}) \cdot d\vec{r} = -\Delta U = 0$	
Conservación de la energía	
$\Delta E_{Sist} = \Delta K + \Delta U + \Delta U_{Int} = W_{ext} + Q + E_{Trans,OM} + E_{Trans,TM} + E_{Trans,TE} + E_{Trans,RE}$	
$\Delta E_{Sist} = \Delta K + \Delta U + \Delta U_{Int} = 0$ (Sistemas aislado)	
Conservación momento lineal	Conservación momento angular
$\vec{F}_{neta}(t) = \sum \vec{F}(t) = \frac{\mathrm{d}\vec{p}(t)}{\mathrm{d}t} = 0$	$rac{\mathrm{d} ec{L}(t)}{\mathrm{d} t} = ec{r}(t) imes ec{F}_{neta}(t) = ec{ au}(t) = 0$

Tema 3. Sistemas de partículas

Centro de masa	Centro de gravedad
$ec{r}_{CM} = rac{\sum_{i}^{n} m_i ec{r}_i}{\sum_{i}^{n} m_i} = rac{1}{M} \sum_{i}^{n} m_i ec{r}_i$	$ec{r}_{CG} = rac{\sum_{i}^{n} w ec{r}_{i}}{\sum_{i}^{n} w_{i}} = rac{\sum_{i}^{n} m_{i} g ec{r}_{i}}{\sum_{i}^{n} m_{i} g}$
$\vec{r}_{CM} = \frac{\int_{M}^{\square} \vec{r} \mathrm{d}m}{\int_{M}^{\square} \mathrm{d}m} = \frac{1}{M} \int_{M}^{\square} \vec{r} \mathrm{d}m$	$\vec{r}_{CG} = \frac{\int_{w}^{\square} \vec{r} dw}{\int_{w}^{\square} dw} = \frac{1}{w} \int_{w}^{\square} \vec{r} dw$
- pg - P1	$S = 2\pi y_{CG} L$
	$S = \varphi y_{CG} L$
	$V = 2\pi y_{CG} S$
	$V = \varphi y_{CG} S$
Centro de masa de cuerpos compuestos	Movimiento sistema de partículas
$\vec{r}_{CM} = \frac{\sum_{i}^{n} M_{i} \vec{r}_{CM_{i}}}{\sum_{i}^{n} M_{i}} = \frac{1}{M} \sum_{i}^{n} M_{i} \vec{r}_{CM_{i}}$	$M ec{v}_{CM}(t) = \sum_{i}^{n} m_i ec{v}_i(t)$
$ec{r}_{CM} = rac{\sum_{i}^{n} M_{ti} ec{r}_{CMt_i} + \sum_{j}^{n'} \left(-M_{hj}\right) ec{r}_{CMh_j}}{M}$	$M\vec{v}_{CM}(t) = \int_{M}^{\square} \vec{v}(t) \mathrm{d}m$
$ec{r}_{CM} = rac{1}{L}\int\limits_{L}^{rac{1}{L}}ec{r}\mathrm{d}l$	$M\vec{a}_{CM}(t) = \sum_{i}^{n} m_{i}\vec{a}_{i}(t)$
$\vec{r}_{CM} = \frac{1}{S} \int_{S}^{\square} \vec{r} \mathrm{d}S$	$M\vec{a}_{CM}(t) = \int_{M}^{\Box} \vec{a}(t) \mathrm{d}m$
$ec{r}_{CM} = rac{1}{V}\int\limits_{V}^{\square} ec{r} \mathrm{d}V$	$M\vec{a}_{CM}(t) = \sum_{i}^{n} \vec{F}_{i}^{ext} = \vec{F}_{neta}^{ext}$
Momento lineal	Momento angular
$ec{p}_{sist} = \sum_i^n ec{p}_i = \sum_i^n m_i ec{v}_i = M ec{v}_{CM} = ec{p}_{CM}$	$ec{L}_{sist,O} = \sum_{i}^{n} ec{L}_{i,O} = \sum_{i}^{n} ec{r}_{i} imes ec{p}_{i} = \sum_{i}^{n} ec{r}_{i} imes m_{i} ec{v}_{i}$
$ec{p}_{sist} = \int\limits_{M}^{\square} \mathrm{d}ec{p} = \int\limits_{M}^{\square} ec{v} \mathrm{d}m$	$\vec{L}_{sist,O} = \int\limits_{M}^{\square} \mathrm{d}\vec{L}_{O} = \int\limits_{M}^{\square} \vec{r} \times \mathrm{d}\vec{p} = \int\limits_{M}^{\square} \vec{r} \times \vec{v} \mathrm{d}m$
$\frac{\mathrm{d}\vec{p}_{sist}}{\mathrm{d}t} = M\vec{a}_{CM}(t) = \vec{F}_{neta}^{ext}$	$ec{L}_{sist,O} = ec{L}_{sist,O}^{CM} + ec{L}_{sist}'$ $ec{L}_{sist,O}^{CM} = ec{r}_{CM} imes M ec{v}_{CM}$
	$ec{L}_{sist}' = \sum_{i}^{n} ec{r}_{i}' imes m_{i} ec{v}_{i}'$

Energía y conservación	Colisiones perfectamente inelásticas
$K_{sist} = \frac{1}{2}M \vec{v}_{CM} ^2 + K'$	$\vec{v}_f = \frac{m_1 \vec{v}_{1,o} + m_2 \vec{v}_{2,o}}{m_1 + m_2}$
$K' = \sum_{i=1}^{n} \frac{1}{2} m_i \vec{v}_i' ^2$	Colisiones elásticas
$W_{Total} = \sum_{i}^{n} W_{i} = W_{ext} + W_{int} = \sum_{i}^{n} \Delta K_{i} = \Delta K_{Sist}$ $E_{sist} = K_{sist} + U^{int} + U^{ext} = E_{propia} + U^{ext} = W_{NC,ext}$ $E_{propia} = K_{sist} + U^{int} = \frac{1}{2}M \vec{v}_{CM} ^{2} + E_{int}$	$v_{1,f} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) v_{1,o} + \left(\frac{2m_2}{m_1 + m_2}\right) v_{2,o}$
	$v_{2,f} = \left(\frac{2m_1}{m_1 + m_2}\right)v_{1,o} + \left(\frac{m_2 - m_1}{m_1 + m_2}\right)v_{2,o}$
	$v_{1,o} - v_{2,o} = -(v_{1,f} - v_{2,f})$
	Coeficiente restitución
	$C_R = \frac{-(v_{1,f} - v_{2,f})}{v_{1,f} - v_{2,f}}$
	$v_{1,o} - v_{2,o}$

Tema 4. Cinemática y dinámica del sólido rígido

Traslación pura	Rotación eje fijo
$\vec{v}_B(t) = \vec{v}_A(t)$	$\vec{v} = \vec{\omega} \times \vec{r}$
$\vec{a}_B(t) = \vec{a}_A(t)$	$\vec{a} = \vec{\alpha} \times \vec{r} + \vec{\omega} \times \vec{v} = \vec{\alpha} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r})$
Movimiento general	Momento de inercia
$\vec{v}_B = \vec{v}_A + \vec{\omega} \times \vec{r}_{AB}$	$I = \sum_{n=1}^{n} m_n n^2$
$\vec{a}_B = \vec{a}_A + \vec{\alpha} \times \vec{r}_{AB} + \vec{\omega} \times (\vec{\omega} \times \vec{r}_{AB})$	$I = \sum_{i} m_i r_i^2$
	$I = \int r^2 \mathrm{d} m$
Energía potencial	Energía cinética rotacional
$U_g = Mgz_{CM}$	$K_R = \frac{1}{2}I\omega^2$
Teorema de los ejes paralelos (Steiner)	Momento inercia figuras compuestas
$I = I_{\rm CM} + Md^2$	$I_X = I_{X_1} + I_{X_2} + \dots + I_{X_N}$
	$I_Y = I_{Y_1} + I_{Y_2} + \dots + I_{Y_N}$
	$I_Z = I_{Z_1} + I_{Z_2} + \dots + I_{Z_N}$
Momento de una fuerza	Segunda ley de Newton para la rotación
$\vec{\tau}_F = \vec{r} \times \vec{F}$ $ \vec{\tau}_F = \vec{r} \vec{F} \sin(\theta) = \vec{r} F_t = d \vec{F} $	$ au_{neto} = au_{neto}^{ext} = \sum_{i}^{n} au_{i} = I lpha$
	$\sum_i^n ec{ au}_i^{int} = \sum_i^n ec{r}_i imes ec{F}_i^{int} = 0$
Momento debido a la gravedad	Energía cinética sólido rígido (traslación + rotación)
$\tau_g = \sum_{i}^{n} \tau_{g,i} = g \sum_{i}^{n} x_i m_i = Mg x_{CM}$	$K = \frac{1}{2}M \vec{v}_{CM} ^2 + \frac{1}{2}I_{CM}\omega^2$
Movimiento de rodamiento sin deslizamiento	Segunda ley Newton (traslación del CM)
$v_{CM} = \frac{\mathrm{d}s}{\mathrm{d}t} = R\frac{\mathrm{d}\theta}{\mathrm{d}t} = R\omega$	$\sum \vec{F}^{ext} = M\vec{a}_{CM}$
$a_{CM} = \frac{\mathrm{d}v_{CM}}{\mathrm{d}t} = R\frac{\mathrm{d}\omega}{\mathrm{d}t} = R\alpha$	
Segunda ley Newton (rotación alrededor del CM)	Movimiento de rodamiento con deslizamiento
$\sum_{n=1}^{\infty} \frac{1}{n}$	$v_{CM} \neq R\omega$
$ au_{neto}^{ext} = \sum_{i} au_{i} = I_{CM} lpha$	$a_{CM} \neq R\alpha$

Trabajo en el movimiento rotacional	Potencia en el movimiento rotacional
$W = \int_{ heta_1}^{ heta_2} ec{ au}_F \mathrm{d} heta$	$P= ec{ au}_F \omega$
$W = \vec{\tau}_F (\theta_2 - \theta_1); \vec{\tau}_F \text{ constante}$ $W = \frac{1}{2}I\omega_2 - \frac{1}{2}I\omega_1$	
Momento angular de un sólido rígido (giro alrededor de eje de simetría)	Conservación del momento angular
$\vec{L} = I\vec{\omega}$ $L = \sum_{i}^{n} L_{i,O} = \left(\sum_{i}^{n} m_{i} \vec{r}_{i} ^{2}\right) \omega = I\omega$	$I_1 \omega_{z,1} = I_2 \omega_{z,2}$
$\sum_{i} \vec{\tau}_{Z}^{ext} = I\alpha_{Z}; \text{ eje fijo en el espacio}$	

Tema 5. Vibraciones mecánicas

Vibraciones libres no amortiguadas	Péndulo simple (no amortiguado)
$x(t) = A\sin(\omega_0 t + \varphi_0')$	$\theta = \theta_{max} \cos(\omega_0 t + \varphi_0)$
$x(t) = A\cos(\omega_0 t + \varphi_0)$	
$T_0 = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{k}}$ $\omega_0 = 2\pi f_0 = \frac{2\pi}{T_0} = \sqrt{\frac{k}{m}}$	$\omega_0 = \sqrt{\frac{g}{l}}$ $T_0 = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{l}{g}}$
$f_0 = \frac{1}{T_0} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$	
Energía de un oscilador no amortiguado	Vibraciones libres amortiguadas
$K = \frac{1}{2}mv(t)^{2} = \frac{1}{2}m\omega_{0}^{2}A^{2}\operatorname{sen}^{2}(\omega_{0}t + \varphi_{0})$ $U = \frac{1}{2}kx(t)^{2} = \frac{1}{2}kA^{2}\cos^{2}(\omega_{0}t + \varphi_{0})$ $E = K + U = \frac{1}{2}kA^{2}$	$x(t) = c_1 e^{-\lambda_1 t} + c_2 e^{-\lambda_2 t}$ $\beta = \frac{R}{2m}$ $\omega = \sqrt{\omega_0^2 - \beta^2}$ $\lambda_1 = -\beta + \sqrt{\beta^2 - \omega_0^2}$ $\lambda_2 = -\beta - \sqrt{\beta^2 - \omega_0^2}$
Vibraciones libres amortiguadas	Vibraciones libres amortiguadas
(Sistema sobreamortiguado) $\beta > \omega_0$	(Sistema con amortiguamiento crítico) $\beta = \omega_0$
$x(t) = c_1 e^{- \lambda_1 t} + c_2 e^{- \lambda_2 t}$	$x(t) = (c_1 + c_2 t)e^{\omega_0 t}$ $\frac{R}{2m} = \omega_0$ $R = 2\sqrt{km}$
Vibraciones libres amortiguadas	Energía de un oscilador amortiguado
(Sistema subamortiguado) $\beta < \omega_0$ $x(t) = A(t)\cos(\omega t + \varphi_0)$ $A(t) = A_0 e^{-\beta t}$	$E = \frac{1}{2}m\omega^2 A(t)^2 = \frac{1}{2}m\omega^2 A_0^2 e^{-2\beta t} = E_0 e^{-2\beta t}$
Factor de calidad del oscilador	Vibraciones forzadas
$Q = \frac{\sqrt{km}}{R} = \frac{\omega}{2\beta} = \frac{2\pi}{(\Delta E/E)_{ciclo}}$	$x(t) = x_{trans}(t) + x_{est}(t)$

Vibraciones forzadas (estado estacionario)	Resonancia
$x_{est}(t) = A\cos(\omega_f t + \varphi_0)$	$\omega_f = \omega_0$
$A = \frac{F_0/m}{\sqrt{(\omega_0^2 - \omega_f^2)^2 + 4\beta^2 \omega_f^2}}$ $\tan(\varphi_0) = \frac{2\beta \omega_f}{\omega_0^2 - \omega_f^2}$	$A_{res} = \frac{F_0/m}{2\beta\omega_0}$ $\Delta\omega = \frac{\omega_0}{Q}$ $Q = \frac{\omega_0}{2\beta}$

Tema 6. Movimiento ondulatorio

Velocidad de avance de una onda	Ecuación de onda armónica
$v = \frac{\lambda}{T} = \lambda f$	$y(x,t) = Asen(kx \mp \omega t + \varphi)$
T N	$k = \frac{2\pi}{3}$
	λ
	$\omega = 2\pi f = 2\pi \frac{v}{\lambda} = vk$
Velocidad de cualquier punto del medio	Aceleración de cualquier punto del medio
$v_y = \frac{dy}{dt}\Big _{x=const} = -A\omega cos(kx - \omega t + \varphi)$	$a_y = \frac{dv_y}{dt}\Big _{x=const} = -A\omega^2 sen(kx - \omega t + \varphi)$
$v_{y,max} = A\omega$	$a_{y,max} = A\omega^2$
Velocidad ondas transversales	Velocidad ondas longitudinales
$v = \sqrt{\frac{T}{\mu}}$	$v=\sqrt{^E/ ho}$; medio sólido
V ⁿ	$v=\sqrt{B/ ho}\;$; medio líquido o gas
Transporte de energía en ondas	Potencia asociada a la onda mecánica
$K_{\lambda} = \frac{\mu}{2} A^2 \omega^2 \int_0^{\lambda} \cos^2(kx + \varphi) dx = \frac{\mu}{4} A^2 \omega^2 \lambda$ $U_{\lambda} = \frac{\mu}{4} A^2 \omega^2 \lambda$	$P = \frac{E_{\lambda}}{T} = \frac{1}{2}\mu A^2 \omega^2 \frac{\lambda}{T} = \frac{1}{2}\mu A^2 \omega^2 v$
$E_{\lambda} = K_{\lambda} + U_{\lambda} = \frac{1}{2} \mu A^2 \omega^2 \lambda$	
Ondas bidimensionales	Ondas tridimensionales
$rA^2 = const$	$r^2A^2 = const$
$A \propto \frac{1}{\sqrt{r}}$	$A \propto \frac{1}{r}$
	$I_1 = \frac{P}{S} = \frac{P}{4\pi r_1^2}$
	$\frac{I_1}{I_2} = \left(\frac{r_2}{r_1}\right)^2 = \left(\frac{A_1}{A_2}\right)^2$
Absorción	Interferencia Principio de superposición
$I = I_0 e^{-\alpha x}$	$y = 2A\cos(\varphi/2)\operatorname{sen}(kx - \omega t + \varphi/2)$

Tema 7. CAMPO ELÉCTRICO, FLUJO ELÉCTRICO Y LEY DE GAUSS.

Fuerza electroestática	Constante de Coulomb y permitividad del vacío
$F = k \frac{ q_1 q_2 }{r^2}$	$k = \frac{1}{4\pi\epsilon_0}$ $\epsilon_0 = 8.85 \cdot 10^{-12} \frac{\text{C}^2}{\text{N m}^2}$
$\overrightarrow{F}_{1,2} = rac{kq_1q_2}{r_{1,2}^2} \hat{r}_{1,2}$	$k = 8.99 \cdot 10^9 \frac{\text{N m}^2}{\text{C}^2}$
Campo eléctrico	Momento dipolar
$\vec{E}(\vec{r}) = \frac{\vec{F}(\vec{r})}{q}$ $\vec{E}_P = \sum_{i=1}^n \frac{kq_i}{r_{i,0}^2} \hat{r}_{i,0} = k \sum_{i=1}^n \frac{q_i}{r_{i,0}^2} \hat{r}_{i,0}$	$-q \longrightarrow \overrightarrow{L} + q$ $\overrightarrow{p} = q \overrightarrow{L} \text{UNIDADES: C·m}$
Momento torsión dipolo	Flujo del campo eléctrico
$\vec{\tau} = \vec{p} \times \vec{E}$ $\tau = pE \operatorname{sen} \theta$	$oldsymbol{arPhi}_E = \overrightarrow{E} \cdot \overrightarrow{S}$
Flujo eléctrico uniforme: superficie plana perpendicular	Flujo eléctrico uniforme: superficie plana NO perpendicular
$oldsymbol{\Phi}_E = \overrightarrow{E} \cdot \overrightarrow{S} = E \cdot S \cdot \cos \ 0 \ = E \cdot S$	$arPhi_E = E \cdot S \cdot \cos lpha$
Flujo eléctrico NO uniforme: superficie abierta	Flujo eléctrico NO uniforme: superficie cerrada
$arPhi_E = \int_S \overrightarrow{E} \cdot d \overrightarrow{S}$	$arPhi_E = \oint_S \overrightarrow{E} \cdot d\overrightarrow{S}$
Ley de Gauss: Flujo eléctrico	Ley de Gauss: Simetría plana
$\Phi_E = \frac{\sum_i q_i}{\epsilon_0}$	$\iint \vec{E} \cdot d\vec{A} = (EA + EA) = \frac{q}{\epsilon_0} = \frac{\sigma A}{\epsilon_0},$
	$E = \frac{\sigma}{2\epsilon_0}$

Tema 7. CAMPO ELÉCTRICO, FLUJO ELÉCTRICO Y LEY DE GAUSS.

Ley de Gauss: Simetría cilíndrica	Ley de Gauss: Simetría cilíndrica
$\iint \vec{E} \cdot d\vec{A} = EA = E(2\pi rL) = \frac{q}{\epsilon_0} = \frac{\lambda L}{\epsilon_0},$	$\iint \vec{E} \cdot d\vec{A} = EA = E(2\pi rL) = \frac{q}{\epsilon_0} = \frac{\lambda L}{\epsilon_0},$
$E = \frac{\lambda}{2\pi\epsilon_0 r} = \frac{2k\lambda}{r}$	$E = \frac{\lambda}{2\pi\epsilon_0 r} = \frac{2k\lambda}{r}$
Ley de Gauss: Simetría esférica concéntrica r ₂ >r _s q>0	Ley de Gauss: Simetría esférica concéntrica r ₁ <r<sub>s q>0</r<sub>
$ \oint \vec{E} \cdot d\vec{A} = E\left(4\pi r_2^2\right) = \frac{q}{\epsilon_0} $	$\iint \vec{E} \cdot d\vec{A} = E\left(4\pi r_1^2\right) = 0.$
$E = \frac{1}{4\pi\epsilon_0} \frac{q}{r_2^2}$	
Ley de Gauss: Simetría esférica r ₁ < r ρ>0	Ley de Gauss: Simetría esférica r₂ > r ρ>0
$ \oint \vec{E} \cdot d\vec{A} = E\left(4\pi r_1^2\right) = \frac{q}{\varepsilon_0} $	$ \iint \vec{E} \cdot d\vec{A} = E\left(4\pi r_2^2\right) = \frac{q_t}{\epsilon_0} $
$q_{\rm t} = \rho \frac{4}{3} \pi r^3$ $E = \frac{q_{\rm t} r_{\rm l}}{4 \pi \epsilon_0 r^3} = \frac{k q_{\rm t} r_{\rm l}}{r^3}$	$E = \frac{q_{\rm t}}{4\pi\epsilon_0 r_2^2} = \frac{kq_{\rm t}}{r_2^2}.$

Tema 7. POTENCIAL ELÉCTRICO y ENERGÍA POTENCIAL ELÉCTRICA.

Energía potencial eléctrica	Potencial eléctrico
$\Delta U = U_{\rm f} - U_{\rm i} = -W_{\rm e}, \qquad U = -W_{\rm e,\infty}$ $\Delta U = -W = -q\vec{E} \cdot \vec{d} = -qEd.$	$\Delta V = V_{\rm f} - V_{\rm i} = \frac{U_{\rm f}}{q} - \frac{U_{\rm i}}{q} = \frac{\Delta U}{q}$
$U = \frac{kq1q2}{r}$	$\Delta V = -\frac{W_e}{q} \qquad V = \sum_{i=1}^{n} V_i = \sum_{i=1}^{n} \frac{kq_i}{r_i}$
Campo eléctrico a partir del potencial eléctrico	
$ E_s = \left -\frac{\Delta V}{\Delta s} \right $ $\vec{E} = -\vec{\nabla} V$	
$E_x = -\frac{\partial V}{\partial x}; E_y = -\frac{\partial V}{\partial y}; E_z = -\frac{\partial V}{\partial z}.$	

Tema 7. CORRIENTE Y RESISTENCIA

Corriente eléctrica	Densidad de corriente
$i=\frac{dq}{dt}.$	$J = \frac{di}{dA} \qquad i = \int \vec{J} \cdot d\vec{A},$
Densidad de corriente en función de la velocidad de arrastre	Ley Ohm
$\vec{j} = q n \vec{v}_a$	$V = i \cdot R$
Resistividad y Resistencia	Coductividad y conductancia
$\rho = R \cdot \frac{A}{l} \qquad \rho = \frac{E}{J}.$	$\sigma = \frac{1}{\rho}$. $\vec{j} = \sigma \vec{E}$ $G = \frac{i}{\Delta V} = \frac{1}{R}$
Relación empírica resistividad/temperatura	Asociación resistencias en serie
$\rho - \rho_0 = \rho_0 \alpha (T - T_0)$	$R_{\rm eq} = \sum_{i=1}^{n} R_i$
Asociación resistencias en paralelo	Potencia en circuitos eléctricos
$\frac{1}{R_{\text{eq}}} = \sum_{i=1}^{n} \frac{1}{R_i}$	$P = i\Delta V = i^2 R = \frac{\left(\Delta V\right)^2}{R}.$
KCL Ley de corrientes de Kirchhoff	KVL Ley de tensiones de Kirchhoff
KCL - Kirchhoff's Current Law $\sum_{n=1}^5 i_n = 0$ $\sum_{n=1}^5 i_n = i_1 - i_2 + i_3 + i_4 - i_5$	KVL - Kirchhoff's Voltage Law $ \sum_{n=1}^{5} v_n = 0 $ $ \sum_{n=1}^{5} v_n = -v_1 + v_2 + v_3 - v_4 - v_5 $

Tema 8. MAGNETISMO

Fuerza magnética	Fuerza magnética sobre un conductor de corriente eléctrica
$\vec{F}_B = q\vec{v} \times \vec{B}. F_B = q vB \operatorname{sen} \theta$	$\vec{F}_B = i\vec{L} \times \vec{B}$
Momento de torsión sobre un bucle conductor de corriente eléctrica	Momento dipolar magnético
$\tau = N\tau_1 = NiAB \operatorname{sen} \theta$	$\mu = NiA$
$\vec{ au} = \vec{\mu} \times \vec{B}$	