RSM384: Research Project

Vivaan Bhaskar

TABLE OF CONTENTS

O1

02

03

RESEARCH QUESTION

DATA + METHODOLOGY **VISUALIZATIONS**

04

REGRESSION MODEL 05

IMPACT OF CROWDS

06

SUMMARY

O1 RESEARCH QUESTION

RESEARCH QUESTION:

Does the presence of crowds influence home game advantage in the English Premier League?

OVERVIEW OF HOME GAME ADVANTAGE

Home game advantage is a sports phenomenon which describes the benefits the home team has over the away team

Home game advantage increases the chances of a home team victory through increased goals and referee bias

Soccer has been found to have the largest home game advantage across all leagues

THE DATA

EPL Data

- EPL Match by Match performance variables over 2009/10 2020/21 season
 - Existing variables include: Home Team Indicator, goals, conceded goals, yellow and red cards, fouls.
 - Created new variables: Conversion
 Rate, Manipulated Cards Variable, Proxy
 for Referee Bias (ie. cards to fouls ratio)
- Source:

https://www.football-data.co.uk/englandm.php

Attendance Data

- Crowd attendance per EPL team from 2009/10 -2020/21 season
 - Averaged out attendance per team per season.
 - Created a new variable: Category of Team (dependent on appearances in last 12 PL seasons)
 - Allows us to analyze the impact of crowds on HA and other factors
- Source:

https://www.kaggle.com/datasets/joovasco/premier-league-attendance-from-1949-to-2019 https://www.worldfootball.net/attendance/eng-premier-league-2019-2020/1/

THE METHODOLOGY

We answered our research question through a three facet approach:

EXPLORATORY

REGRESSION

EFFECT OF CROWDS

- Analyze only EPL data for performance variables.
- Aim: Find evidence of home advantage in EPL.
- **Method:** Study data over past 12 seasons to look for patterns.

- Contribution to Winning at Home.
- Aim: Understand the impact of performance variables on home win %.
- Method: Multiple Regression Model
- Control 1: category of team, consider only home data.
- Control 2: home and away, consider all data.

- Build a model to understand the effect of crowds on Winning at Home.
- Aim: Understand the impact of crowd presence on HA.
- Method: Differences in regression model pre-covid vs when games were played behind closed doors.

OVERALL ANALYSIS OF HA

MORE GOALS Approximately 0.4 more

LESS CARDS Less yellow and red cards and lower card to foul rate.

HIGHER WIN RATE

Approximately 15% higher win rate at home.

IMPACT OF HA BY SEASON

Focusing on the COVID season (2020/21):

- Drastically lower goals compared to previous seasons.
- Negative conversion rate of goals.
- First negative home win rate in past 10 years.

IMPACT OF HABY TEAM

> TOP TEAM HA

Top teams score and win more at home.

OFFENSIVE IMPACT

Top teams get more than twice less yellow cards at home.

UNDERDOG EFFECT

Lower teams draw more away than at home.

Q4 REGRESION MODEL

MULTIPLE REGRESSION #1

	Model 4	Model 5	Model 6
const	0.23***	0.34***	0.21***
	(0.02)	(0.02)	(0.03)
Att_10000		0.03***	0.01*
		(0.01)	(0.00)
Goals	0.21***		0.20***
	(0.02)		(0.02)
Conceded	-0.19***		-0.18***
	(0.02)		(0.02)
conversion	0.43*		0.48**
	(0.23)		(0.23)
cards_to_foul		-0.36***	0.03
	0 00***	(0.13)	(0.07)
top	0.09***	0.26***	0.08***
	(0.01)	(0.02)	(0.01)
mid	0.07***	0.04***	0.06***
low	(0.01) 0.07***	(0.01) 0.04***	(0.01) 0.06***
TOW	(0.01)	(0.02)	(0.01)
R-squared	0.88	0.51	0.88
R-squared Adj.	0.88	0.50	0.88
R-squared Auj.	0.88	0.50	0.88
No. observations	233	233	233
=======================================	=======	=======	=======

Standard errors in parentheses.

Home team winning percentage

MODEL 5

Home team being a "Top" team results in win percentage increasing by 26 PP

R explains 51% of the variation

Win percentage increases by 3 PP per every 10,000 people

MODEL 6

Home team being a "Top" team results in win percentage increasing by 8 PP

Goal scored by home team increases winning percentage by 20 PP

^{*} p<.1, ** p<.05, ***p<.01

MULTIPLE	REGRESSION	#2	
			\angle

===========			
	Model 4	Model 5	Model 6
const	0.27***	0.27***	0.27***
	(0.02)	(0.03)	(0.02)
Att_10000		0.04***	0.00
		(0.00)	(0.00)
Goals	0.24***		0.24***
	(0.01)		(0.01)
Conceded	-0.17***		-0.17***
	(0.01)		(0.01)
conversion	0.15		
	(0.16)		
cards_to_foul		-0.39***	
		(0.11)	
HomeAway	0.01	0.14***	0.01
	(0.01)	(0.02)	(0.01)
R-squared	0.88	0.32	0.88
R-squared Adj.	0.88	0.31	0.88
R-squared	0.88	0.32	0.88
No. observations	466	466	466
=============			=======

Home team winning percentage

HOMEAWAY VARIABLE

Winning percentage increases by 14 PP at a 1 percent significance level

Standard errors in parentheses.

* p<.1, ** p<.05, ***p<.01

MULTIPLE REGRESSION #3

	Model 1(pre)	Model 1(covid)	Model 2(pre)	Model 2(covid)	Model 3(pre)	Model 3(covid)
const	0.23***	0.17**	0.34***	0.25***	0.21***	0.19*
	(0.02)	(0.08)	(0.03)	(0.08)	(0.03)	(0.09)
Att_10000			0.03***	4.12**	0.01*	0.29
			(0.01)	(1.55)	(0.00)	(1.24)
Goals	0.21***	0.20***			0.21***	0.20***
	(0.02)	(0.05)			(0.02)	(0.05)
Conceded	-0.19***	-0.13**			-0.18***	-0.11
	(0.02)	(0.06)			(0.02)	(0.07)
conversion	0.42	0.52			0.43	0.39
	(0.27)	(0.41)			(0.27)	(0.49)
cards_to_foul			-0.34**	-0.77	0.04	-0.27
_			(0.14)	(0.46)	(0.07)	(0.31)
top	0.09***	0.07*	0.26***	0.15**	0.08***	0.07
	(0.01)	(0.04)	(0.02)	(0.05)	(0.01)	(0.04)
mid	0.07***	0.05	0.04***	0.04	0.06***	0.05
	(0.01)	(0.04)	(0.01)	(0.04)	(0.01)	(0.04)
low	0.07***	0.05*	0.04**	0.05	0.06***	0.06*
	(0.01)	(0.03)	(0.02)	(0.04)	(0.01)	(0.03)
R-squared	0.88	0.89	0.51	0.65	0.88	0.90
R-squared Adj.	0.88	0.86	0.50	0.56	0.88	0.84
R-squared	0.88	0.89	0.51	0.65	0.88	0.90
No. observations	213	20	213	20	213	20

Standard errors in parentheses.

NIGHER WIN RATE

Model 1: 9%*** higher win rate pre-covid, 7%* higher win rate during covid

Model 2: 26%*** higher win rate pre-covid, 15%** higher win rate during covid

Model 3: 8%*** higher win rate pre-covid

^{*} p<.1, ** p<.05, ***p<.01

CONCLUSION

RESEARCH QUESTION:

Does the presence of crowds influence home game advantage in the English Premier League?

HOME ADVANTAGE IS PRESENT

0.4 more goals on average for top teams

Receive twice less yellow cards for top teams

HIGHER WIN RATE

Approximately 15% higher for top teams

Lower teams draw more away than at home

IMPACT OF CROWDS

Higher Winning Rate for top teams with 26% higher rate pre-COVID and 15% higher during COVID

Limitation to this finding as the number of observations during the COVID season is small

LIMITATIONS OF OUR APPROACH

CONFOUNDING VARIABLES

Home Team Performance during Covid could have reduced due to other reasons - bad transfer market, drop in coaching level, drop in player performance, etc.

> AVERAGE ATTENDANCE

It would be beneficial to have match by match attendance data, rather than average attendance, which could further our analysis.

ENDOGENEITY BIAS

Regression Models suffer from EB (ie. independent variable is correlated with error term)

THANK YOU

