Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий

ВЫСШАЯ ШКОЛА ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ И СУПЕРКОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

ПРАКТИЧЕСКАЯ РАБОТА № 4 «СИНТЕЗ СДВИГАЮЩИХ РЕГИСТРОВ.» по дисциплине «Архитектура вычислительных систем»

Выполнил студент гр.3530903/80302	<подпись>	А.П. Большакова
Руководитель доцент, к.т.н.		Н.М. Вербова
	<подпись>	« <u> </u>

Цель работы.

Целью данной работы является изучение принципа работы сдвигающих регистров.

Ход работы.

1. Синтез последовательного (сдвигающего) 4-х разрядного регистра.

По заданию работы требовалось построить последовательный (сдвигающий) 4-х разрядный регистр. Для реализации такого регистра потребуется 4 триггера, по количеству разрядов. Была составлена таблица возможных переходов і-го триггера из состояния Q_i^t в момент времени t (до прихода сдвигающего импульса) в состояние Q_i^{t+1} после прихода сдвигающего импульса в зависимости от его собственного состояния Q_i^t и состояния Q_{i+1}^t

предыдущего триггера:

предыдущего	этриптера.							
№ сост.	Q_1^t	\overline{Q}_2^t	Q_3^t	\overline{Q}_4^t	Q_1^{t+1}	Q_2^{t+1}	Q_3^{t+1}	Q_4^{t+1}
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0
2	0	0	1	0	0	0	0	1
3	0	0	1	1	0	0	0	1
4	0	1	0	0	0	0	1	0
5	0	1	0	1	0	0	1	0
6	0	1	1	0	0	0	1	1
7	0	1	1	1	0	0	1	1
8	1	0	0	0	0	1	0	0
9	1	0	0	1	0	1	0	0
10	1	0	1	0	0	1	0	1
11	1	0	1	1	0	1	0	1
12	1	1	0	0	0	1	1	0
13	1	1	0	1	0	1	1	0
14	1	1	1	0	0	1	1	1
15	1	1	1	1	0	1	1	1

Таблица 1 – Таблица функционирования регистра.

На основании таблицы функционирования регистра были составлены прикладные таблицы для каждого триггера регистра (Таблицы 2-5). Прикладные таблицы отражают переход данного триггера из предыдущего состояния в последующее. Для составления прикладных таблиц в клетки карты, соответствующие номерам предыдущих состояний автомата, вписываются 2-разрядные двоичные числа, выражающие переход триггера при изменении состояния автомата. В этих таблицах прочёркнутые клетки соответствуют исключённым состояниям счётчика.

$Q_1^t \rightarrow Q_1^{t+1}$	Q_3	Q_3	\overline{Q}_3	\overline{Q}_3	
$Q_{\overline{4}}$	00	10	10	00	$\overline{Q_2}$
$Q_{_4}$	00	10	10	00	Q_{2}

\overline{Q}_4	00	10	10	00	$Q_{_{2}}$
\overline{Q}_4	00	10	10	00	$\overline{Q_2}$
	$\overline{Q_1}$	$Q_{_{1}}$	Q_{1}	$\overline{Q_1}$	

Таблица 2 – Прикладная таблица для Q₁.

$Q_2^t \rightarrow Q_2^{t+1}$	Q_3	$Q^{}_3$	\overline{Q}_3	\overline{Q}_3	
$Q_{_4}$	00	01	01	00	$\overline{Q_2}$
$Q_{_4}$	10	11	11	10	Q_{2}
\overline{Q}_4	10	11	11	10	Q_{2}
\overline{Q}_4	00	01	01	00	$\overline{Q_2}$
	$\overline{Q_1}$	Q_{1}	Q_{1}	$\overline{\overline{Q}_1}$	

Таблица 3 – Прикладная таблица для Q_2 .

$Q_3^t \rightarrow Q_3^{t+1}$	Q_3	Q_3	\overline{Q}_3	\overline{Q}_3	
$Q_{_4}$	10	10	00	00	$\overline{Q_2}$
$Q_{_{4}}$	11	11	01	01	Q_{2}
\overline{Q}_4	11	11	01	01	Q_{2}
\overline{Q}_4	10	10	00	00	$\overline{Q_2}$
	$\overline{Q_1}$	Q_{1}	Q_{1}	\overline{Q}_1	

Таблица 4 – Прикладная таблица для Q₃.

$Q_4^t \rightarrow Q_4^{t+1}$	Q_3	Q_3	\overline{Q}_3	\overline{Q}_3	
$Q_{_4}$	11	11	10	10	\overline{Q}_2
$Q_{_{4}}$	11	11	10	10	Q_{2}
\overline{Q}_4	01	01	00	00	Q_{2}
\overline{Q}_4	01	01	00	00	$\overline{Q_2}$
	$\overline{Q_1}$	\overline{Q}_1	Q_{1}	\overline{Q}_1	

Таблица 5 – Прикладная таблица для Q₄.

В качестве элементной базы были выбраны триггеры D типа, которые имеют следующую характеристическую таблицу (Таблица 6):

$Q^{t o} Q^{t+1}$	D^t
00	0
01	1
10	0
11	1

Таблица 6 – Характеристическая таблица для D-триггера.

На основании полученных прикладных таблиц и характеристической таблицы D триггера были составлены карты Карно для входов каждого триггера (Таблицы 7-10). Для этого 2-разрядные двоичные числа в прикладных таблицах были заменены соответствующими обобщёнными значениями из клеток характеристической таблицы для каждого входа

триггера.

$Q_1^t \rightarrow Q_1^{t+1}$	Q_3	Q_3	\overline{Q}_3	\overline{Q}_3	
$Q_{_4}$	0	0	0	0	$\overline{Q_2}$
$Q_{_{4}}$	0	0	0	0	Q_{2}
\overline{Q}_4	0	0	0	0	Q_{2}
\overline{Q}_4	0	0	0	0	$\overline{Q_2}$
	$\overline{Q_1}$	\overline{Q}_1	Q_{1}	$\overline{Q_1}$	

Таблица 7 – Карта Карно для входа D₁.

$Q_2^t \rightarrow Q_2^{t+1}$	$Q_3^{}$	$Q_{_3}$	\overline{Q}_3	\overline{Q}_3	
$Q_{_4}$	0	1	1	0	\overline{Q}_{2}
Q_4	0	1	1	0	Q_{2}
\overline{Q}_4	0	1	1	0	Q_{2}
\overline{Q}_4	0	1	1	0	$\overline{Q_2}$
	\overline{Q}_{1}	$Q_{_{1}}$	$Q_{_{1}}$	\overline{Q}_{1}	

Таблица 8 – Карта Карно для входа D₂.

$Q_3^t \rightarrow Q_3^{t+1}$	Q_3	Q_3	\overline{Q}_3	\overline{Q}_3	
$Q_{_{4}}$	0	0	0	0	$\overline{Q_2}$
$Q_{_{4}}$	1	1	1	1	Q_{2}
\overline{Q}_4	1	1	1	1	Q_{2}
\overline{Q}_4	0	0	0	0	$\overline{Q_2}$
	$\overline{Q_1}$	Q_{1}	Q_{1}	$\overline{Q_1}$	

Таблица 9 – Карта Карно для входа D₃.

$Q_4^t \rightarrow Q_4^{t+1}$	$Q_{_{3}}$	$Q_{_{3}}$	\overline{Q}_3	\overline{Q}_3	
$Q_{_{4}}$	1	1	0	0	$\overline{Q_2}$
$Q_{_4}$	1	1	0	0	Q_{2}
\overline{Q}_4	1	1	0	0	Q_{2}
\overline{Q}_4	1	1	0	0	$\overline{Q_2}$
	$\overline{Q_1}$	Q_{1}	Q_{1}	$\overline{Q_1}$	

Таблица 10 – Карта Карно для входа D₄.

В результате был получен набор карт Карно, отражающих значения логических функций на входах каждого триггера в зависимости от состояний счётчика.

Из полученного набора карт Карно были составлены логические уравнения входов триггеров, которые связывают между собой входы и выходы всех триггеров счётчика:

$$D_1 = 0;$$

 $D_2 = Q_1;$
 $D_3 = Q_2;$
 $D_4 = Q_3;$

По полученным уравнениям был в Multisim был построен требуемый регистр (Рисунок 1). При замыкании ключа D схема работает как регистр, при размыкании ключа D на каждом такте происходит включение ламп одна за другой.

Рисунок 1 – Синтезированный последовательный (сдвигающий) 4-х разрядный регистр.

2. Регистр на ИС К155ИР13 (SN74198).

Универсальный сдвиговый регистр К155ИР13 является восьмиразрядным. Занесение информации в регистр осуществляется в параллельном или последовательном коде. Занесение информации в регистр выполняется по синхроимпульсу (точнее по положительному перепаду). Считывание информации из регистра происходит в параллельном коде. Для исследования работы ИС К155ИР13 была предоставлена специальная схема (Рисунок 2):

Рисунок 2 – Схема для исследования ИС К155ИР13.

Данная схема была перенесена в Multisim для проверки её работы (Рисунок 3). Вместо ИС K155ИP13 использовался его аналог – 74198N.

Рисунок 3 – Схема для исследования ИС К155ИР13, перенесённая в Multisim.

Далее схема была модифицирована таким образом, чтобы на базе ИС К155ИР13 был получен универсальный кольцевой регистр (Рисунок 4). Для этого было учтено, что если осуществляется сдвиг влево и на выходе А единица, то на выходе Н должна будет появиться единица. Аналогично, если осуществляется сдвиг вправо и на выходе Н единица, то на выходе А должна будет появиться единица. Ключи DL и DR в случае универсального кольцевого регистра не нужны.

Рисунок 4 – Универсальный кольцевой регистр.

Вывод.

В результате данной работы была синтезирована схема сдвигового 4-х разрядного регистра, построена его принципиальная электрическая схема, изучен принцип работы ИС К155ИР13 (SN74198) и проверена его работа. Также на базе ИС К155ИР13 был сконструирован универсальный кольцевой регистр, была осуществлена проверка его работы.