Moving Average Models

Jared Fisher

Lecture 5a

Announcements

- Homework 3 is due tomorrow/Wednesday March 3
- ▶ Project Checkpoint 2 is due Wednesday March 10. Specifics will be published later today. Bottom line: pursue stationarity two different ways (e.g. a polynomial+sinusoid model and a differencing approach)
- Midterm 1 grades will be done soon

Recap

Big Picture

raw time series \rightarrow stationary process \rightarrow white noise

Pursuing Stationarity

$$f(X_t) = m_t + s_t + X_t$$

- ▶ f() Variance stabilizing transform (e.g. \sqrt{x} or log(x))
- $ightharpoonup m_t$ deterministic trend (e.g., approximately linear or quadratic)
- $ightharpoonup s_t$ deterministic periodic function of know period d, $s_{t+d} = s_t$
- $ightharpoonup X_t$ stationary process, e.g. white noise
- ▶ Idea: Remove both trend and seasonality so that what remains exhibit stable behavior over time (stability vs stationarity?)
- Instead of deterministic functions, we can also use filters like smoothing and differencing

How this works in practice: back to sales data

Model from previous lecture

Have we reached stability?

Add more interactions

Are the residuals stable?

Differencing

```
sales2 = sales[450:nrow(sales),]
plot.ts(diff(diff(sales2$sales,lag=365),lag=7))
```


ACF

Series d7d365

NEXT

- We have pursued stationarity (and achieved stability, meaning approximately constant mean and variance)
- Now we can model the autocorrelation structure in this stable series!
- ▶ First we will discuss some theory of modeling stationary processes (~2+ weeks)
- Then we'll implement the ideas from theory into applied modeling

NEXT!

One way to think of this next step:

stationary process
$$\rightarrow$$
 white noise

means

$$X_t = \sum_j a_j W_{t-j}$$

Motivating Example

Does this look like White Noise? (does it look stable?)

► More or less, yes! But what does the Correlogram/ACF say?

Motivating Example

Series Xt

▶ Here, $X_t = Z_t + \frac{1}{2}Z_{t-1}$ and $Z_t \sim N(0,1)$ (so Gaussian noise!).

So what?

▶ Given a white noise series $\{W_t\}$ with variance σ^2 and a number $\theta \in R$, set

$$X_t = W_t + \theta W_{t-1}.$$

- ▶ This is called a **moving average** of order 1, or MA(1).
- ▶ What is the mean? Covariance? Is it stationary?
- Try by yourselves for a few minutes, then we'll derive together

Derivations (handwritten during lecture)

Moving Average Process of Order 1

The series is stationary with mean zero and auto-covariance function (ACVF)

$$\gamma_X(h) = egin{cases} \sigma^2(1+ heta^2) & h=0 \ heta\sigma^2 & h=1 \ 0 & ext{otherwise} \end{cases}$$

As a consequence, X_s and X_t are uncorrelated whenever s and t are two or more time points apart. This time series has *short memory*.

MA(1)

▶ The autocorrelation function (ACF), for $\{X_t\}$ is given by

$$\rho_X(h) = \frac{\theta}{1 + \theta^2}$$

for h = 1 and 0 for h > 1.

- ▶ What is the maximum value that $\rho_X(1)$ can take?
- ► This is our first type of non-white-noise stationary process that we'll explore
- This gives us a tool for modeling noise that has autocorrelation

Definition

Let ..., W_{-2} , W_{-1} , W_0 , W_1 , W_2 , ... be a double infinite white noise sequence. The **moving average model** of order q or MA(q) model is defined as

$$X_t = W_t + \theta_1 W_{t-1} + \theta_2 W_{t-2} + \ldots + \theta_q W_{t-q}$$

where $heta_1,\dots, heta_q$ are parameters, with $heta_q
eq 0$.

Autocovariance function of an MA(q) time series:

- ▶ The MA(q) model can be concisely written as $X_t = \sum_{j=0}^q \theta_j W_{t-j}$ where we take $\theta_0 = 1$.
- ▶ The mean of X_t is clearly 0.
- ▶ For $h \ge 0$, the covariance between X_t and X_{t+h} is given by

$$cov(X_t, X_{t+h}) = cov\left(\sum_{j=0}^q \theta_j W_{t-j}, \sum_{k=0}^q \theta_k W_{t+h-k}\right)$$
$$= \sum_{j=0}^q \sum_{k=0}^q \theta_j \theta_k cov(W_{t-j}, W_{t+h-k}).$$

Autocovariance function of an MA(q) time series:

▶ Note that because $\{W_t\}$ is white noise, the

$$cov(W_{t-i}, W_{t+h-k}) = \sigma^2 \neq 0$$

if and only if t - j = t + h - k i.e., if and only if k = j + h.

- ▶ But because k has to lie between 0 and q, we must have that j has to lie between 0 and q h.
- ▶ We thus get:

$$\gamma_X(h) = \begin{cases} \sigma^2 \sum_{j=0}^{q-h} \theta_j \theta_{j+h} & h = 0, 1, \dots, q \\ 0 & \text{if } h > q. \end{cases}$$

Autocorrelation function of an MA(q) time series:

For the autocorrelation function we thus get

$$ho_X(h) = egin{cases} rac{\sum_{j=0}^{q-h} heta_j heta_{j+h}}{\sum_{j=0}^q heta_j^2} & h=0,1,\ldots,q \ 0 & h>q \end{cases}$$

Note that the autocovariance and the autocorrelation functions $\it cut\ off$ after lag $\it q$.

Theorem: Stationarity of MA(q)

- ► Theorem: Let ..., X_{-2} , X_{-1} , X_0 , X_1 , X_2 , ... be a time series which follows an MA(q) model. Then $\{X_t\}$ is weakly stationary.
- ▶ Why? Because the mean is always 0 and
- ightharpoonup cov (X_t, X_{t+h}) does not depend on t, only h.

Backshift Notation

- ▶ A convenient piece of notation avoids the trouble of writing huge expressions!
- Let B denote the **backshift operator** defined by

$$BX_t = X_{t-1}, B^2X_t = X_{t-2}, B^3X_t = X_{t-3}, \dots$$

and similarly

$$BW_t = W_{t-1}, B^2W_t = W_{t-2}, B^3W_t = W_{t-3}, \dots$$

▶ Also let I (or 1) denote the identity operator: $IX_t = X_t$.

Backshift Notation Examples

▶ Polynomial functions of the backshift operator:

$$(I + B + 3B^{2})X_{t} = IX_{t} + BX_{t} + 3B^{2}X_{t}$$
$$= X_{t} + X_{t-1} + 3X_{t-2}$$

- ▶ In general, for every polynomial f(z), we can define f(B).
- ▶ Negative powers of *B* correspond forward shifts.
 - \triangleright $B^{-1}X_t = X_{t+1}$
 - $ightharpoonup B^{-5}X_t = X_{t+5}$
 - $(B^3 + 9B^{-2})X_t = X_{t-3} + 9X_{t+2}$

Moving Average Operator

▶ The MA(1) process $X_t = W_t + \theta W_{t-1}$ can be written as

$$X_t = \theta(B)W_t$$

for the polynomial $\theta(z) = 1 + \theta_1 z$.

▶ Definition: for parameters $\theta_1, \dots, \theta_q$ with $\theta_q \neq 0$ define the **moving average** operator of order q as

$$\theta(B) = 1 + \theta_1 B + \dots \theta_q B^q.$$

► Then we can write the MA(q) model as

$$X_t = \theta(B)W_t$$

for a white noise process $\{W_t\}$.

Moving Average Operator Example

► MA(2):

$$X_t = W_t + \theta_1 W_{t-1} + \theta_2 W_{t-2}$$

▶ Then we can write the MA(2) model as

$$X_t = (1 + \theta_1 B + \theta_2 B^2) W_t$$

Such that $\theta(B) = (1 + \theta_1 B + \theta_2 B^2)$

Motivation

► Consider the case of the MA(1) model whose ACVF is given by

$$\gamma_X(0) = \sigma_W^2(1 + \theta^2)$$
 $\gamma_X(1) = \theta \sigma_W^2$
 $\gamma_X(h) = 0$ for all $h \ge 2$.

- $\blacktriangleright \text{ Let's say } \theta = 5, \sigma_W^2 = 1$
- ▶ But we'd get the same ACVF as for $\theta = 1/5, \sigma_W^2 = 25$.
- In other words, there exist different parameter values that give the same ACVF.
- ► This implies that one **cannot uniquely** estimate the parameters of an MA(1) model from data.

Invertibility

$$X_t = W_t + \theta W_{t-1}$$

- ▶ A natural fix is to consider only those MA(1) for which $|\theta| < 1$:
- This condition is called invertibility.
- The condition $|\theta| < 1$ for the MA(1) model is equivalent to stating that the moving average polynomial $\theta(z) = 1 + \theta z$ has all roots of magnitude strictly larger than one.

Definition

An MA(q) model $X_t = \theta(B)W_t$ is said to be **invertible**, if $\theta(z) \neq 0$ for $|z| \leq 1$.

Alternate Definition via Theorem

An MA(q) model $X_t = \theta(B)W_t$ is invertible if and only if the time series $\{X_t\}$ and the white noise $\{W_t\}$ can be written as

$$W_t = \pi(B)X_t = \sum_{i=0}^{\infty} \pi_j X_{t-j},$$

where $\pi(B) = \sum_{j=0}^{\infty} \pi_j B^j$ and $\sum_{j=0}^{\infty} |\pi_j| < \infty$ and $\pi_0 = 1$.

▶ This is an $MA(\infty)$ model:

$$X_t = W_t + \theta_1 W_{t-1} + \theta_2 W_{t-2} + \dots + \theta_q W_{t-q} + \theta_{q+1} W_{t-q-1} + \dots$$

with $\{W_t\}$ as white noise with mean zero and variance σ^2 .

We will write this expression succinctly via

$$X_t = \sum_{j=0}^{\infty} \theta_j W_{t-j}$$

with θ_0 taken to be 1.

- Infinite sums have convergence issues
- A sufficient condition which ensures that the infinite sum is finite (almost surely) is $\sum_j |\theta_j| < \infty$.
- In this class, we will always assume this condition when talking about the infinite series $\sum_{j\geq 0} \theta_j W_{t-j}$.

It turns out that $X_t = \sum_{j=0}^{\infty} \theta_j W_{t-j}$ is a stationary process because

$$EX_t = E\left(\sum_{j=0}^{\infty} \theta_j W_{t-j}\right) = \sum_{j=0}^{\infty} \theta_j EW_{t-j} = 0$$

and

$$Cov(X_t, X_{t+h}) = Cov\left(\sum_{j=0}^{\infty} \theta_j W_{t-j}, \sum_{k=0}^{\infty} \theta_k W_{t+h-k}\right)$$
$$= \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \theta_j \theta_k Cov(W_{t-j}, W_{t+h-k}) = \sigma^2 \sum_{j=0}^{\infty} \theta_j \theta_{j+h}.$$

We could freely interchange the expectation and covariance operators above with the infinite sum because of the condition $\sum_i |\theta_i| < \infty$.

Note that the expectation EX_t and the covariance $Cov(X_t, X_{t+h})$ do not depend on t and the autocovariance is given by

$$\gamma_X(h) = \sigma^2 \sum_{j=0}^{\infty} \theta_j \theta_{j+h}. \tag{1}$$

In particular, we get the following

▶ Thoerem: Let ..., X_{-2} , X_{-1} , X_0 , X_1 , X_2 ,... be a time series which follows an MA(∞) model. Then $\{X_t\}$ is weakly stationary.

An Interesting $MA(\infty)$

- Fix ϕ with $|\phi| < 1$.
 - ightharpoonup Choose weights $\theta_i = \phi^j$ in $MA(\infty)$
 - $X_t = \sum_{j=0}^{\infty} \phi^j W_{t-j}$
 - ACVF:

- ▶ ACF: $\rho(h) = \phi^h$ for $h \ge 0$.
- ▶ Unlike the MA(1), this ACF is strictly non-zero for all lags! But, since $\rho(h)$ drops exponentially as lag increases, this is effectively a stationary time series with short range dependence.

 $\gamma(h) = \sigma^2 \sum_{i=0}^{\infty} \phi^j \phi^{j+h} = \sigma^2 \phi^h \sum_{i=0}^{\infty} \phi^{2j} = \frac{\phi^h \sigma^2}{1 - \phi^2} \text{for } h \ge 0$

Note that if ϕ is negative, the ACF $\rho(h)$ osillates as h increases.

An Interesting $MA(\infty)$

▶ Here is an important property of this process X_t :

$$X_{t} = W_{t} + \phi W_{t-1} + \phi^{2} W_{t-2} + \dots$$

$$= W_{t} + \phi \left(W_{t-1} + \phi W_{t-2} + \phi^{2} W_{t-3} + \dots \right)$$

$$= W_{t} + \phi X_{t-1} \text{ for every } t = \dots, -1, 0, 1, \dots$$

ightharpoonup Thus X_t satisfies the following first order difference equation:

$$X_t = \phi X_{t-1} + W_t.$$

For this reason, $X_t = \sum_{j=0}^{\infty} \phi^j W_{t-j}$ is called the **Stationary Autoregressive Process of order one**. More next time!