Résultats de l'heuristique

Clément Legrand

7 Juin 2018

Exécution

Détail

- Calcul SI avec CW, et amélioration avec LK;
- Itérations en exécutant successivement EC, CE, LK.
- On repart de la dernière solution globale toutes les 25 itérations sans améliorations;
- Si on trouve une amélioration, on met à jour la solution globale;
- Toutes les 100 itérations sans améliorations, on change de fonction de pénalisation.
- On quitte la boucle au bout de 1500 itérations successives sans améliorations;
- A la fin on essaie de supprimer toutes les routes qui n'ont qu'un client.

Instance A-n37-k06

Exécution de l'heuristique sur des instances de la littérature:

Comparaison

Pour pouvoir comparer entre la solution optimale et la solution obtenue:

Coût global de 949 (à gauche), contre 952 (à droite).

Instance A-n39-k05

Nouvelle instance choisie:

Comparaison

Comparaison avec la solution optimale:

Coût global de 822 (à gauche), contre 831 (à droite).

Paramètres utilisés

Paramètres qui restent fixes dans l'heuristique:

Valeurs choisies

- Calcul des 30 pp-voisins;
- Au plus 3 déplacements dans EC;
- Arrêt au bout de 1500 itérations sans améliorations.

Déterminées grâce à l'article et de manière empirique.

Analyse

Calcul du pourcentage d'erreur avec $1-\frac{c_{opt}}{c_{sol}}$

Pourcentage d'erreur

Sur 10 instances, 0.8% d'erreurs entre les solutions calculées et les solutions optimales. min = 0% et max = 2.2%. ($Q_1=0.34$, $med=0.69,\ Q_3=1.18$).

Influence solution initiale

Les solutions obtenues avec l'heuristique dépendent de la solution initiale: meilleures SI ⇒ meilleures SG

Exemples

Passage d'un coût de 1093 (à gauche), à 1004 (à droite).

Exemples

Passage d'un coût de 1010 (à gauche), à 837 (à droite).

Présentation

Des arêtes peuvent rester inchangées lors de l'algorithme:

Objectif

Peut-on repérer à l'avance ces arêtes ?

Comment caractériser ces arêtes ?

Remarques

- Arêtes fixes autour du dépôt et en bordure de zone;
- Une des tournée initiale n'est presque pas modifiée;

ldée

Utiliser les métriques définies dans l'heuristique: coût, largeur et profondeur.

Rang d'une arête

Calcul du rang moyen

- Pour chaque arête (i, j), calculer sa profondeur d, sa largeur w et son coût c;
- On trie les arêtes pour chaque métrique, puis lui attribuer un rang avec la métrique considérée;
- Chaque arête possède ainsi 3 rangs (r_d, r_w, r_c) ; son rang moyen est la moyenne de ses rangs;
- Comparaison entre arêtes conservées et arêtes dans la solution.

Résultats

Correspondance sur les premières arêtes. Les arêtes de pire rang moyen de sont jamais prises.

Nouvelle idée

Idée

Regarder les rangs séparément

Mise en place

- Compter le nombre d'arêtes conservées qui possèdent au moins un certain rang (e.g. les arêtes qui ont au moins un rang inférieur à 5);
- Comparer avec le nombre total d'arêtes qui ont cette propriété;
- Essayer de trouver des rangs critiques, qui permettent de conserver ou d'éliminer une arête.

Résultats

On conserve à coups sûrs des arêtes qui ont leurs trois rangs inférieurs à 10.

Prochainement

- Faire converger l'algorithme indépendamment de la solution initiale;
- Poursuivre la caractérisation des arêtes conservées.