Homework #2

Q1)

Do the following conversions.

Decimal	Binary	Hexadecimal
546		
128		
27.375		

Decimal	Signed 8-bit binary in 2's complement form	
-6.375		

Signed 8-bit binary in 2's complement form	Decimal	
00000011.1101		
111111111111		
10100110.0111		

Q2)

Calculate the binary equivalent of 127/64. If we use only 4 bits in the fraction, what is the error in the binary representation? How many bits are needed to fully represent 127/64 in signed 2's complement binary number system? Show your work clearly.

Q3)

Perform the following binary arithmetic operations on two 8-bit signed binary numbers in 2's-complement format and indicate whether there is an overflow or not. Show the intermediate steps.

Q4)
Implement F = xy + x'y' + y' z using only NAND gates.

$$F(x,y,z,t) = (x \oplus y)(z+t)$$

- a) Express the following function as a sum of minterms.
- b) Express the following function as a product of maxterms.
- c) Optimize F using Karnaugh map.

d) Assume we guarantee that xyzt will never be larger than 12. Add necessary don't care conditions and optimize F further using K-map.

Q6)

Design a combinational circuit that divides a 2-bit unsigned binary number $A = (a1\ a0)$ by another 2-bit unsigned binary number $B = (b1\ b0)$ and generates a 2-bit unsigned binary number $D = (d1\ d0)$ that gives the remainder of the division (i.e. D = A%B). Note that division-by-0 is not defined. Therefore, you can assume that the input combinations causing division-by-0 are not applied.

a 1	a 0	b ₁	b ₀	d ₁	d ₀
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

- a)Derive the truth table.
- b)Derive simplified boolean expressions for the outputs in sum-of-products form using K-maps.
- c)Implement d0 output using NOR gates only and draw the circuit.

Q7)

Design a magnitude comparator that takes two 3-bit signed numbers in 2's complement format, $A = (a2 \ a1 \ a0)$ and $B = (b2 \ b1 \ b0)$, and outputs g = 1 if A > B, otherwise g = 0. Show the boolean expression for the output g = 0.