

### Министерство науки и высшего образования Российской Федерации

## Федеральное государственное бюджетное образовательное учреждение

# высшего образования

# «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

| ФАКУЛЬТЕ                                               | ЕТ Специальное машиностроение         | Специальное машиностроение |  |
|--------------------------------------------------------|---------------------------------------|----------------------------|--|
| КАФЕДРА _                                              | CM1«Космические аппараты и ракеты-нос | сители»                    |  |
|                                                        |                                       |                            |  |
|                                                        |                                       |                            |  |
|                                                        |                                       |                            |  |
|                                                        | Домашнее задание №2                   |                            |  |
| по курсу «Строительная механика летательных аппаратов» |                                       |                            |  |
| Вариант №13                                            |                                       |                            |  |
|                                                        |                                       |                            |  |
|                                                        |                                       |                            |  |
|                                                        |                                       |                            |  |
|                                                        |                                       |                            |  |
|                                                        | уппа: СМ1-81                          |                            |  |
| Ст                                                     | удент: Новиков А.Р.                   | (Подпись, дата)            |  |
| Пр                                                     | реподаватель: Печников В.П.           |                            |  |

(Подпись, дата)

### 1 Условие задания



Рисунок 1.1 — Условие задания

В данном задании необходимо определить перемещения в кольце v и w.

## 2 Решение

Из предыдущего домашнего задания имеем следующие выражения:

• Уравновешивающая нагрузка:

$$t = \frac{4q_0}{\pi}\sin\varphi\tag{2.1}$$

• Момент на кольце:

$$\begin{cases} M_1 = q_0 R^2 \left( 1 - \frac{3}{\pi} \cos \varphi - \frac{2}{\pi} \varphi \sin \varphi \right) \\ M_2 = q_0 R^2 \left( 2 \sin \varphi - \frac{3}{\pi} \cos \varphi - \frac{2}{\pi} \varphi \sin \varphi - 1 \right) \end{cases}$$
(2.2)

Запишем разрешающее уравнение кольца:

$$\frac{d^6v}{d\varphi^6} + 2\frac{d^4v}{d\varphi^4} + \frac{d^2v}{d\varphi^2} = -\frac{R^3}{EJ} \left[ R\left(t + \frac{dQ}{d\varphi}\right) + \left(\frac{d^2m}{d\varphi^2} + m\right) \right]$$
(2.3)

Решение этого уравнения имеет вид:

$$v = A_0 + \sum_{n=1}^{\infty} (A_n \cos n\varphi + B_n \sin n\varphi)$$
 (2.4)

Коэффициенты можно найти по формулам:

$$\begin{cases}
A_n = \frac{R^4}{EJn^2(n^2 - 1)^2} \left[ a_n'' + nb_n' - \frac{1}{R}(n^2 - 1)a_n''' \right] \\
B_n = \frac{R^4}{EJn^2(n^2 - 1)^2} \left[ b_n'' - na_n' - \frac{1}{R}(n^2 - 1)b_n''' \right]
\end{cases} (2.5)$$

Коэффициент  $A_0$  задает перемещение всего кольца как одно целое, поэтому задаем его равным  $A_0=0.$ 

Коэффициенты в формуле (2.5) можно найти по формулам:

$$\left\{ \begin{array}{l} a'_n \\ a''_n \\ a'''_n \end{array} \right\} = \frac{1}{\pi} \int_0^{2\pi} \left\{ \begin{array}{l} q_n \\ q_t \\ m \end{array} \right\} \cos n\varphi d\varphi \tag{2.6}$$

$$\left\{ \begin{array}{c} b'_n \\ b''_n \\ b'''_n \end{array} \right\} = \frac{1}{\pi} \int_0^{2\pi} \left\{ \begin{array}{c} q_n \\ q_t \\ m \end{array} \right\} \sin n\varphi d\varphi \tag{2.7}$$

В нашем случае распределенная нагрузка равна:

$$q_n = q_0, \quad \varphi < \frac{\pi}{2}, \quad \varphi > \frac{3\pi}{2} \tag{2.8}$$

$$q_t = t + q_{t1} + q_{t2} (2.9)$$

$$m = 0 ag{2.10}$$

Распределим сосредоточенную нагрузку  $q_0R$  по некоторому малому углу  $\Delta \varphi$ :

$$q_{ti} = \frac{q_0 R}{R \Delta \varphi} = \frac{q_0}{\Delta \varphi} \tag{2.11}$$

Получим следующие выражения для коэффициентов (2.6) и (2.7):

$$a_0'' = \frac{1}{2\pi} \int_0^{2\pi} q_t d\varphi = \frac{1}{2\pi} \left( \int_0^{2\pi} \frac{4q_0}{\pi} \sin\varphi d\varphi - \int_{\frac{\pi}{2} - \frac{\Delta\varphi}{2}}^{\frac{\pi}{2} + \frac{\Delta\varphi}{2}} \frac{q_0}{\Delta\varphi} d\varphi + \int_{\frac{3\pi}{2} - \frac{\Delta\varphi}{2}}^{\frac{3\pi}{2} + \frac{\Delta\varphi}{2}} \frac{q_0}{\Delta\varphi} d\varphi \right) =$$

$$= \frac{1}{2\pi} \left( 0 - q_0 + q_0 \right) = 0$$
(2.12)

$$a_n'' = \frac{1}{\pi} \left( \int_0^{2\pi} \frac{4q_0}{\pi} \sin\varphi \cos n\varphi d\varphi - \int_{\frac{\pi}{2} - \frac{\Delta\varphi}{2}}^{\frac{\pi}{2} + \frac{\Delta\varphi}{2}} \frac{q_0}{\Delta\varphi} \cos n\varphi d\varphi + \int_{\frac{3\pi}{2} - \frac{\Delta\varphi}{2}}^{\frac{3\pi}{2} + \frac{\Delta\varphi}{2}} \frac{q_0}{\Delta\varphi} \cos n\varphi d\varphi \right) =$$

$$= \frac{1}{\pi} \left( 0 - q_0 \cos \frac{n\pi}{2} + q_0 \cos \frac{3n\pi}{2} \right) = -\frac{2q_0}{\pi} \sin n\pi \sin \frac{n\pi}{2}$$
(2.13)

$$b_{n}'' = \frac{1}{\pi} \left( \int_{0}^{2\pi} \frac{4q_{0}}{\pi} \sin \varphi \sin n\varphi d\varphi - \int_{\frac{\pi}{2} - \frac{\Delta\varphi}{2}}^{\frac{\pi}{2} + \frac{\Delta\varphi}{2}} \frac{q_{0}}{\Delta\varphi} \sin n\varphi d\varphi + \int_{\frac{3\pi}{2} - \frac{\Delta\varphi}{2}}^{\frac{3\pi}{2} + \frac{\Delta\varphi}{2}} \frac{q_{0}}{\Delta\varphi} \sin n\varphi d\varphi \right) =$$

$$= \begin{cases} \frac{1}{\pi} \left( 0 - q_{0} \sin \frac{n\pi}{2} + q_{0} \sin \frac{3n\pi}{2} \right) = \frac{2q_{0}}{\pi} \sin \frac{n\pi}{2} \cos n\pi, & n \neq 1 \\ \frac{1}{\pi} \left( \frac{4q_{0}}{\pi} \cdot \pi - q_{0} \sin \frac{\pi}{2} + q_{0} \sin \frac{3\pi}{2} \right) = \frac{q_{0}}{\pi} \left( 4 - 1 - 1 \right) = \frac{2q_{0}}{\pi}, & n = 1 \end{cases}$$

$$(2.14)$$

$$a'_{n} = \frac{1}{\pi} \left( \int_{0}^{\frac{\pi}{2}} q_{0} \cos n\varphi d\varphi + \int_{\frac{3\pi}{2}}^{2\pi} q_{0} \cos n\varphi d\varphi \right) = \frac{q_{0}}{\pi n} \left( \sin n\varphi \Big|_{0}^{\frac{\pi}{2}} + \sin n\varphi \Big|_{\frac{3\pi}{2}}^{2\pi} \right) =$$

$$= \frac{q_{0}}{\pi n} \left( \sin \frac{\pi n}{2} - \sin \frac{3\pi n}{2} \right) = -\frac{2q_{0}}{\pi n} \sin \frac{\pi n}{2} \cos n\pi$$

$$(2.15)$$

$$b'_{n} = \frac{1}{\pi} \left( \int_{0}^{\frac{\pi}{2}} q_{0} \sin n\varphi d\varphi + \int_{\frac{3\pi}{2}}^{2\pi} q_{0} \sin n\varphi d\varphi \right) = -\frac{q_{0}}{\pi n} \left( \cos n\varphi \Big|_{0}^{\frac{\pi}{2}} + \cos n\varphi \Big|_{\frac{3\pi}{2}}^{2\pi} \right) =$$

$$= -\frac{q_{0}}{\pi n} \left( \cos \frac{\pi n}{2} - 1 + 1 - \cos \frac{3\pi n}{2} \right) = -\frac{q_{0}}{\pi n} \sin \frac{n\pi}{2} \sin n\pi = 0$$
(2.16)

$$\begin{cases} a_n''' = 0 \\ b_n''' = 0 \end{cases} \tag{2.17}$$

Проверим полученные коэффициенты с помощью выражений:

$$\begin{cases}
B - a_1'' + b_1' = 0 \\
C - b_1'' - a_1' = 0
\end{cases}$$
(2.18)

$$\begin{cases} 0 - 0 + 0 = 0 \\ \frac{4q_0}{\pi} - \frac{2q_0}{\pi} - \frac{2q_0}{\pi} = 0 \end{cases}$$
 (2.19)

Условия (2.18) выполняются, значит коэффициенты найдены правильно.

Получим коэффициенты разложения (2.5):

$$A_n = 0 (2.20)$$

$$B_n = \frac{R^4}{EJn^2(n^2 - 1)^2} \left[ \frac{2q_0}{\pi} \sin \frac{\pi n}{2} \cos n\pi + n \frac{2q_0}{\pi n} \sin \frac{\pi n}{2} \cos n\pi \right] = \frac{4q_0R^4}{\pi EJn^2(n^2 - 1)^2} \sin \frac{\pi n}{2} \cos n\pi$$
(2.21)

Получим следующее разложение функции касательных перемещений:

$$v = \frac{4q_0 R^4}{\pi E J} \sum_{n=2}^{\infty} \frac{1}{n^2 (n^2 - 1)^2} \sin \frac{\pi n}{2} \cos n\pi \sin n\varphi$$
 (2.22)

Примем количество членов ряда (2.4) равным N=50. Построим эпюры перемещений и изгибающего момента:



Рисунок 2.1 — Эпюра касательных перемещений

Найдем нормальные перемещения:

$$w = -\frac{dv}{d\varphi} = -\frac{4q_0R^4}{\pi EJ} \sum_{n=2}^{\infty} \frac{1}{n(n-1)^2(n+1)^2} \sin\frac{\pi n}{2} \cos n\pi \cos(n\varphi)$$
 (2.23)



Рисунок 2.2 — Эпюра нормальных перемещений

Найдем изгибающий момент:

$$M = \frac{EJ}{R^2} \left( \frac{d^2 w}{d\varphi^2} + w \right) = \frac{4q_0 R^2}{\pi} \sum_{n=2}^{\infty} \frac{1}{n(n^2 - 1)} \sin \frac{\pi n}{2} \cos n\pi \cos n\varphi$$
 (2.24)



Рисунок 2.3 — Эпюра изгибающего момента

Сплошной линией обозначено текущее решение  $M_2(\varphi)$ , а прерывистой — аналитическое решение из прошлого задания  $M_1(\varphi)$ . Для сравнения возьмем значения моментов в нескольких точках:

• 
$$\varphi = 0$$
:  $M_1(0) = 0.0451$ ;  $M_2(0) = 0.0451$ 

• 
$$\varphi = \frac{\pi}{4}$$
:  $M_1(\frac{\pi}{4}) = -0.02879$ ;  $M_2(\frac{\pi}{4}) = -0.02891$ 

• 
$$\varphi = \frac{\pi}{2}$$
:  $M_1(\frac{\pi}{2}) = 0$ ;  $M_2(\frac{\pi}{2}) = 0.00003$ 

• 
$$\varphi = \frac{3\pi}{4}$$
:  $M_1(\frac{3\pi}{4}) = 0.02879$ ;  $M_2(\frac{3\pi}{4}) = 0.02889$ 

• 
$$\varphi = \pi$$
:  $M_1(\pi) = -0.04507$ ;  $M_2(\pi) = -0.04515$ 

• 
$$\varphi = \frac{5\pi}{4}$$
:  $M_1(\frac{5\pi}{4}) = 0.02879$ ;  $M_2(\frac{5\pi}{4}) = -0.02885$ 

• 
$$\varphi = \frac{3\pi}{2}$$
:  $M_1(\frac{3\pi}{2}) = 0$ ;  $M_2(\frac{3\pi}{2}) = -0.00003$ 

• 
$$\varphi = \frac{7\pi}{4}$$
:  $M_1(\frac{7\pi}{4}) = -0.02879$ ;  $M_2(\frac{7\pi}{4}) = -0.02899$ 

Как можно увидеть, решения с высокой точностью совпадают.