第5章 二项式系数

- 5.1 帕斯卡三角形
- 5.2 二项式定理
- 5.3 二项式系数的单峰性
- 5.4 多项式定理
- 5.5 牛顿二项式定理
- 5.6 再论偏序集

回顾:集合的组合

n元素集合的r子集的数目

$$\binom{n}{r} = \frac{n!}{r! (n-r)!} = \frac{n(n-1) \dots (n-k+1)}{k(k-1) \dots 1}$$

例: 有10位专家,从中选取5位构成专家小组,一共可构成多少个专家小组?

$$\binom{10}{5}$$
个专家小组

例:
$$\binom{n}{k} = \binom{n}{n-k}$$

证明:

$$\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k!(n-k)!}$$

另一种证明方式: 组合证明

问题:从 n 个不同的球中取出 k 个球,有多少种方法?

方法1: 直接取,共有 $\binom{n}{k}$ 种取法。

方法2:取出n-k个球丢弃,留下剩下的k个球,共有

$$\binom{n}{n-k}$$
种取法。

因此,得
$$\binom{n}{k} = \binom{n}{n-k}$$
。

组合证明

- 是一种依靠计数原理构建代数事实的证明方法
- 基本框架:
 - 1. 定义一个集合S:
 - 2. 通过一种计数方式得出 |S|=n;
 - 3. 通过另一种计数方式得出 |S|=m;
 - 4. 得出结论 n = m。

■二项式定理

 ϕ n 是一个正整数, 那么对于所有的 x, y有:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

二项式系数 $^{\prime}$ $_{n}$ 元素集合的 $_{r}$ 子集的数目

$$\binom{n}{k} = \frac{n!}{k! (n-k)!} = \frac{n(n-1)...(n-k+1)}{k(k-1)...1}$$

本章的目的主要是讨论二项式系数一些相关等式和性质。

第5章 二项式系数

- 5.1 帕斯卡三角形
- 5.2 二项式定理
- 5.3 二项式系数的单峰性
- 5.4 多项式定理
- 5.5 牛顿二项式定理

5.1 帕斯卡三角形

定理5.1.1(Pascal公式) 对于满足 $1 \le k \le n$ 的所有整数 k 和 n, 有

n元素集合的 k子集的数目

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

$$\frac{n-1 元素集合的}{k-1 子集的数目}$$

n-1元素集合的k子集的数目

设集合 $S=\{1, 2, ..., n\}$, S的k子集分为两类:

- ✓ 不包含1 的k子集 $\binom{n-1}{k}$ 个
- ✓ 包含1 的k子集 $\binom{n-1}{k-1}$ 个

(组合证明)

定理5.1.1(Pascal公式)对于满足 $1 \le k \le n$ 的所有整数 k

和n,有

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

证明:设S的k子集的集合为X,那么 $|X|=\binom{n}{k}$ 。设x是S的一个元素、

令 A是不含x的k子集的集合,

B是包含x的k子集的集合,

那么, $X=A\cup B$,且 $A\cap B=\emptyset$ 。

由加法原理,|X|=|A|+|B|。

计算得:
$$|A| = \binom{n-1}{k}$$
, $|B| = \binom{n-1}{k-1}$

因此,
$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$
。证毕。

Pascal三角形

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

$$\binom{n}{k}$$
的规律

- □对角线上元素全为1
- □第一列上元素全为1
- □对角线以外各项都 是其上一行的两项 的和:
- 直接上方的项
- 直接上方的项的直接左 邻的项

			(n)	/ (("	1)		_	_
n k	0	1	2	3	4	5	6	7	8	
0	. 1									
1	ì,	. 1								
2	1	2	1							
3	1	3	3	1						، ا
4	1 1	4	6	4	1					
5	1	5	10	10	5	1				•
6	1	6	15	20	15	6	1			,
7	1	7	21	35	35	21	7	. 1		,
8	1	_8_	28_	56	70	56	28	8	_1	,
9	1	9	36	84	126	126	84	36	9	1

n=9,10的两行分别是多少?

Pascal三角形

每一行相加:

(第n行)

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^n$$

$$\begin{pmatrix} 4 \\ 0 \end{pmatrix} + \begin{pmatrix} 4 \\ 1 \end{pmatrix} + \begin{pmatrix} 4 \\ 2 \end{pmatrix} + \begin{pmatrix} 4 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 4 \end{pmatrix} = 2^4$$

$n \setminus k$	0	1	2	3	4	5	6	7	8
0	1								
1	1	1							
2	1	2	1						
3	1	3	3	1					
4	1	4	6	4	1				
5	1	5	10	10	5	1			
6	1	6	15	20	15	6	1		
7	1	7	21	35	35	21	7	1	
8	1	8	28	56	70	56	28	8	1

$$\binom{n}{1} = n$$

$n \setminus k$	0	1	2	3	4	5	6	7	8
0	1								
1	1	1							
2	1	2	1						
3	1	3	3	1					
4	1	4	6	4	1				
5	1	5	10	10	5	1			
6	1	6	15	20	15	6	1		
7	1	7	21	35	35	21	7	1	
8	1	8	28	56	70	56	28	8	1

■ 第2列是三角形数,即三角形阵列中的点数:

$$\binom{n}{2} = \frac{n(n-1)}{2}$$

$$n=3$$

n∖k	0	1	2	3	4	5	6	7	8
0	1								
1	1	1							
2	1	2	1						
3	1	3	3	1					
4	1	4	6	4	1				
5	1	5	10	10	5	1			
6	1	6	15	20	15	6	1		
7	1	7	21	35	35	21	7	1	
8	1	8	28	56	70	56	28	8	1

■ 第3列是四面体数:
$$\binom{n}{3} = n(n-1)(n-2)/6$$

K=3

n=4

■ 第3列是四面体数,即四面体阵列中的点数

$$\binom{n}{3} = n(n-1)(n-2)/6$$

$$\binom{5}{3} = \binom{4}{2} + \binom{3}{2} + \binom{2}{2}$$

$$\binom{5}{3} = \binom{4}{3} + \binom{3}{2} + \binom{2}{2}$$

$$\binom{5}{3} = \binom{4}{3} + \binom{3}{2} + \binom{3}{2} + \binom{3}{2}$$

$$\binom{5}{3} = \binom{4}{3} + \binom{3}{2} + \binom{3}{2}$$

二项式系数的另一种组合解释

$$p(n,k)$$
: 从 $\binom{0}{0}$ 项到 $\binom{n}{k}$ 项的路径的数目

两种移动方向:

$$p(n,0) = 1$$
$$p(n,n) = 1$$

$n \setminus k$	0	1	2	3	4	5	6	7	8
0	1								
1	1 √	1							
2	1	2	1						
3	1	3	3	1					
4	1	4	6	4	1				
5	1	5	10	10	5	1			
6	1	6	15	20	15	6	1		
7	1	7	21	35	35	21	7	1	
8	1	8	28	56	70	56	28	8	1

二项式系数的另一种组合解释

令 p(n,k) 表示从 (0,0)到 (n,k) 的路径数,

(4, 1)

- · 规定 *p*(0, 0)=1
- 由加法原理,p(n,k) = p(n-1,k)+p(n-1,k-1), 其中, $n \ge 1$.

用数学归纳法可证
$$p(n,k) = \binom{n}{k}$$

第5章 二项式系数

- 5.1 帕斯卡三角形
- 5.2 二项式定理
- 5.3 二项式系数的单峰性
- 5.4 多项式定理
- 5.5 牛顿二项式定理

5.2 二项式定理

定理5.2.1 令n是一个正整数,那么对于所有的x,y有:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

证明: (组合证明)将 $(x+y)^n$ 写成 $n \land x+y$ 因子的乘积形式: $(x+y)^n = (x+y)(x+y)...(x+y)$

用分配律将乘积展开,再合并同类项。

展开时,对于每个因子 x+y,或者选择x,或者选择y,所以展开结果有 2^n 项,其中,每一项具有形式 $x^{n-k}y^k$,k=0,1,...,n。合并同类项时, $x^{n-k}y^k$ 的系数相当于在 n 项因子中选 k 个 y,余下 n-k 项因子是 x,

因此,等于组合数 $\binom{n}{k}$ 。

二项式定理的等价形式

令n是一个正整数,那么对于所有的x,y有:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

$$= \sum_{k=0}^{n} {n \choose k} x^k y^{n-k}$$
 (y+x)ⁿ

$$=\sum_{k=0}^{n} {n \choose n-k} x^{n-k} y^k \qquad {n \choose k} = {n \choose n-k}$$

$$=\sum_{k=0}^{n}\binom{n}{n-k}x^ky^{n-k}$$

定理5.2.1 令n是一个正整数,那么对于所有的x,y有:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

例:用二项式定理求下列式子

(1)
$$\sum_{k=0}^{n} {n \choose k} 2^k = (1+2)^n = 3^n$$

$$(2) \sum_{k=0}^{n} (-1)^k {n \choose k} 3^{n-k} = (3+(-1))^n = 2^n$$

(3)
$$\sum_{k=0}^{n} (-1)^k {n \choose k} 9^{n-k} = (9+(-1))^n = 8^n$$

(4)
$$\sum_{k=0}^{n} {n \choose k} 9^k = (1+9)^n = 10^n$$

二项式系数的其他等式

$$k\binom{n}{k} = n\binom{n-1}{k-1}$$

- 例: *n*个人中选 *k* 人组成足球队,其中 一人为队长,有多少种不同选法?
 - □先选足球队,然后从足球队中选队长,选法数目为:

$$\binom{n}{k}\binom{k}{1}=k\binom{n}{k}$$

□先选队长,再在剩下的n-1人中选k-1个足球队员,选法

数目为:
$$\binom{n}{1}\binom{n-1}{k-1}$$