Prova sem consulta. Duração: 2h15m.

2ª Prova de Avaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular e microcomputadores;
- * Resolva cada um dos dois grupos utilizando folhas de capa distintas.

GRUPO I

- 1. [3,0] Seja a curva, C, de interseção das superfícies $z = x^2 + y^2$ e $x^2 + y^2 = 2$.
 - a) Obtenha uma parametrização para a curva C.
 - **b**) Calcule o integral de linha $\int_C (x^2) dx + (x y) dz$.
- 2. [3,0] Recorrendo ao teorema de Green, calcule o integral de linha $\int_C (x^2+2x)dx + (xy)dy$, sendo C a fronteira da região, Ω , limitada pelo semieixo negativo dos xx e pelos gráficos das funções y=x e $y=\sqrt{4-x^2}$, percorrida no sentido retrógrado.
- **3.** [3,0] Seja o campo vetorial $\vec{f}(x,y,z) = (2x\ln(y) yz))\vec{i} + (x^2y^{-1} xz)\vec{j} xy\vec{k}$. Mostre que $\vec{f}(x,y,z)$ é gradiente e calcule o integral de linha $\int_L \vec{f} \cdot d\vec{r}$, em que L é uma curva que liga ponto A = (1,2,1) ao ponto B = (3,2,2).

GRUPO II

- **4.** [3,0] Seja a superficie, S, definida por z = 4 x y, $0 \le x \le 1$, $0 \le y \le 1 x$.
 - a) Esboce a superficie S e parametrize-a.
 - b) Calcule a sua área.

Prova sem consulta. Duração: 2h15m.

2ª Prova de Avaliação

- **5.** [3,0] Considere o campo vetorial $\vec{g}(x,y,z) = y\vec{i} z\vec{j} + x\vec{k}$ e a superficie, S, do plano x + y + z = 4, limitada por $x^2 + y^2 = 1$. Calcule o fluxo do campo vetorial \vec{g} no sentido definido pelo semieixo positivo dos zz.
- 6. [3,0] Seja o integral triplo em coordenadas cartesianas:

$$\iiint_{V} f(x, y, z) dx dy dz = \int_{-\sqrt{2}}^{\sqrt{2}} \int_{\sqrt{2}}^{\sqrt{4-x^2}} \int_{0}^{2} z \sqrt{1-x^2} dz dy dx$$

- a) Esboce o domínio de integração, V.
- **b**) Reescreva-o em coordenadas cilíndricas, identificando analiticamente o domínio de integração.
- **c**) Reescreva-o em coordenadas cartesianas começando o processo de integração na variável *x*; defina analiticamente o respetivo domínio de integração.
- 7. [2,0] Considere a família das curvas, C, do plano $x^2 + (y b)^2 = 1$, $b \in \mathbb{R}$.
 - a) Enuncie o teorema de Green.
 - b) Sem recorrer ao cálculo de qualquer integral, mostre que o integral de linha $\int_C (-Axy) dx + (Bxy) dy , A, B \in \mathbb{R} \text{ \'e independente de } A \text{ e indique, justificando, em }$ que condições o seu valor \'e nulo.

1)
$$2 = x^2 + y^2 \wedge x^2 + y^2 = 2$$

$$C: \left\langle x^2 + y^2 = 2 \right\rangle$$

$$x = \sqrt{2} \cos \theta$$

$$y = \sqrt{2} \sin \theta$$

$$z = 2$$

(b)
$$\bar{f}(x,y,t) = (\rho,Q,R) = (x^2,0,x-y)$$

$$\int_{C} \int_{C} \int_{C$$

2)
$$\widetilde{f}(x,y) = (P,Q) = (\chi^2 + 2\chi, \chi y)$$

$$x = \sqrt{4-x^2}$$
 (2) $2x^2 = 4$ (3) $x^2 = 2$ (3) $x = \pm \sqrt{2}$

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = y - 0 = y$$

Considerande coordenedes polares:

$$-\iint_{\Omega} y \, dx \, dy = -\iint_{\Omega} (r \operatorname{sud}) r \, dr \, d\theta = + \int_{\Omega} r^{2} [\operatorname{ino}] \, dr =$$

$$= \int_{0}^{2} r^{2} \left[-1 - \frac{r}{2}\right] dr = -\left(1 + \frac{r}{2}\right) \left[\frac{r^{3}}{3}\right]_{0}^{2} = -\frac{8}{3} \left(1 + \frac{\sqrt{2}}{2}\right)$$

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} = 2xy^{3} - 2 - 2xy^{3} + 2 = 0$$

$$\frac{\partial Q}{\partial z} = \frac{\partial P}{\partial y} = 2xy^{3} - 2 - 2xy^{3} + 2 = 0$$

$$\frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y} = -x + x = 0$$

$$\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} = -y + y = 0$$

$$\frac{\partial P}{\partial x} = \frac{\partial P}$$

2 8 ln(2) +10

b)
$$\overline{Y}'_{\chi}(x,y) = (1,0,-1)$$
 $\overline{N}(x,y) = (1,1,1)$ $\overline{Y}'_{\gamma}(x,y) = (0,1,-1)$ $\overline{N}(x,y) = \overline{V}'_{\gamma}(x,y) = \overline{V}'_{\gamma}(x,y) = 0$

5)
$$\widehat{g}(x,y,t) = (y,-z,x)$$

S: $x+y+z=4$ $x^2+y^2=1$
 $x^2+y^2=1$
S: $\widehat{r}(x,y) = (x,y,4-x-y)$, (x,y)
 $x^2+y^2=1$
 $x^2+y^2=1$

S.
$$F(x,y)$$
: $(x,y,4-x-y)$, $(x,y) \in \mathbb{Z}$
 $\mathbb{Z}_{2} + (x,y)$: $0 \le n^{2} \le y^{2} \le 1$ 10
 $\overline{N}(x,y)$: $(1,1,1)$ 28
 $\iint \overline{g}.\overline{n} dS = \iint \overline{g}[\overline{r}(x,y)]. \overline{N}(x,y) dx dy$

b)
$$V_{2} \left\{ (r, \theta, \overline{z}), (r, \theta) \in \mathcal{I}_{r\theta} \land 0 \leq \overline{z} \leq \overline{z} \right\}$$

$$\mathcal{I}_{2r\theta} : \left\{ (r, \theta) : \overline{V}_{4} \leq \theta \leq \frac{3\pi}{4} \land \frac{\sqrt{2}}{5\pi n\theta} \leq r \leq \overline{z} \right\}$$

$$1 \leq \sqrt{2}$$

$$1 \leq \sqrt{2} = r \cdot 5\pi n\theta : \sqrt{2} = r = \frac{\sqrt{2}}{5\pi n\theta}$$

$$f(x,y,z) = 2\sqrt{1-x^2} \implies f(r,\theta,z) = 2\sqrt{1-r^2\omega^2\theta}$$

$$dxdydz = r drd\thetadz$$

$$\iiint_{V} f(x, 4, 2) \, dx \, dy \, dz = \iiint_{V_4} \frac{\sqrt{2}}{\sin \theta} \frac{2}{20} \int_{-20}^{2\pi} \frac{1}{\sqrt{12}} \int_{-2$$

$$y = \sqrt{4 - x^{2}} \implies x^{2} + y^{2} = 4 \implies x = \pm \sqrt{4 - y^{2}}$$

$$y = \sqrt{4 - x^{2}} \implies x^{2} + y^{2} = 4 \implies x = \pm \sqrt{4 - y^{2}}$$

$$y = \sqrt{4 - x^{2}} \implies x^{2} + y^{2} = 4 \implies x = \pm \sqrt{4 - y^{2}}$$

$$y = \sqrt{4 - x^{2}} \implies x^{2} + y^{2} = 4 \implies x = \pm \sqrt{4 - y^{2}}$$

$$y = \sqrt{4 - x^{2}} \implies x^{2} + y^{2} = 4 \implies x = \pm \sqrt{4 - y^{2}}$$

$$y = \sqrt{4 - y^{2}} \implies x = \pm \sqrt{4 - y^{2}}$$

$$y = \sqrt{4 - y^{2}} \implies x = \pm \sqrt{4 - y^{2}}$$

$$y = \sqrt{4 - y^{2}} \implies (y, \pm) \in \Re_{y} = x = \pm \sqrt{4 - y^{2}} \implies (y, \pm) \in \Re_$$

2 B y A(2) + A x A(2)

lu pu A(r) é a abre de regres r e (x, 5) sas as crosdende do centroide de regié r.

NOTA: \$\overline 20 \(\text{in} \) for the state of the

O(-Any)dn+ Bxy)dy =

2 B b TT, on seje é independente de A.

