

NAVODAYA INSTITUTE OF TECHNOLOGY MACHINE LEARNING LAB (BCSL606)

Program 9

9. Develop a program to implement the Naive Bayesian classifier considering Olivetti Face Data set for training. Compute the accuracy of the classifier, considering a few test data sets.

PROGRAM:

```
import numpy as np
from sklearn.datasets import fetch_olivetti_faces
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
import matplotlib.pyplot as plt

data = fetch_olivetti_faces(shuffle=True, random_state=42)

X = data.data
y = data.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

gnb = GaussianNB()
```

gnb.fit(X_train, y_train)

y pred = gnb.predict(X test)

```
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy * 100:.2f}%')
print("\nClassification Report:")
print(classification_report(y_test, y_pred, zero_division=1))
print("\nConfusion Matrix:")
print(confusion_matrix(y_test, y_pred))
cross_val_accuracy = cross_val_score(gnb, X, y, cv=5, scoring='accuracy')
print(f'\nCross-validation accuracy: {cross_val_accuracy.mean() * 100:.2f}%')
fig, axes = plt.subplots(3, 5, figsize=(12, 8))
for ax, image, label, prediction in zip(axes.ravel(), X_test, y_test, y_pred):
  ax.imshow(image.reshape(64, 64), cmap=plt.cm.gray)
  ax.set_title(f"True: {label}, Pred: {prediction}")
  ax.axis('off')
plt.show()
```

OUTPUT:

Accuracy: 80.83%

Classification Report:

precision recall f1-score support

0	0.67	1.00	0.80	2
1	1.00	1.00	1.00	2
2	0.33	0.67	0.44	3
3	1.00	0.00	0.00	5
4	1.00	0.50	0.67	4
5	1.00	1.00	1.00	2
7	1.00	0.75	0.86	4
8	1.00	0.67	0.80	3
9	1.00	0.75	0.86	4
10	1.00	1.00	1.00	3
11	1.00	1.00	1.00	1
12	0.40	1.00	0.57	4
13	1.00	0.80	0.89	5
14	1.00	0.40	0.57	5
15	0.67	1.00	0.80	2
16	1.00	0.67	0.80	3
17	1.00	1.00	1.00	3

5

19	0.67	1.00	0.80	2

accuracy 0.81 120
macro avg 0.89 0.85 0.83 120
weighted avg 0.91 0.81 0.81 120

Confusion Matrix:

[[2 0 0 ... 0 0 0]

[0 2 0 ... 0 0 0]

[0 0 2 ... 0 0 1]

...

[0 0 0 ... 1 0 0]

[0 0 0 ... 0 3 0]

[0 0 0 ... 0 0 5]]

Cross-validation accuracy: 87.25%