NGUYÊN HÀM VÀ TÍCH PHÂN

Bài 1. NGUYÊN HÀM

A. TÓM TẮT LÝ THUYẾT

B. KIẾN THỰC CẦN NẮM

1. Định nghĩa nguyên hàm

Cho hàm số f(x) xác định trên khoảng K. Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) nếu F'(x) = f(x) với mọi $x \in K$.

Nhận xét: Nếu F(x) là một nguyên hàm của f(x) thì F(x) + C, $(C \in \mathbb{R})$ cũng là nguyên hàm của f(x).

Ký hiệu $\int f(x) dx = F(x) + C$.

2. Một số tính chất của nguyên hàm

3. Một số nguyên hàm cơ bản

Nguyên hàm của hàm số cơ bản	Nguyên hàm mở rộng
r	Nguyen nam mo rọng
$\int a \cdot dx = ax + C, a \in \mathbb{R}$	
$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1$	$\int (ax+b)^{\alpha} dx = \frac{1}{a} \cdot \frac{(ax+b)^{\alpha+1}}{\alpha+1} + C$
$\int \frac{\mathrm{d}x}{x} = \ln x + C, x \neq 0$	$\int \frac{\mathrm{d}x}{ax+b} = \frac{1}{a} \cdot \ln ax+b + C$ $\int \frac{\mathrm{d}x}{\sqrt{ax+b}} = \frac{2}{a} \sqrt{ax+b} + C, x > 0$ $\int \frac{\mathrm{d}x}{\sqrt{ax+b}} = -\frac{1}{a} \cdot \frac{1}{a} + C$
$\int \frac{\mathrm{d}x}{\sqrt{x}} = 2\sqrt{x} + C, x > 0$	$\int \frac{\mathrm{d}x}{\sqrt{ax+b}} = \frac{2}{a}\sqrt{ax+b} + C, x > 0$
$\int \frac{\mathrm{d}x}{x^2} = -\frac{1}{x} + C, x \neq 0$	$\int \frac{\mathrm{d}x}{(ax+b)^2} = -\frac{1}{a} \cdot \frac{1}{ax+b} + C$
$\int \frac{\mathrm{d}x}{x^{\alpha}} = -\frac{1}{(\alpha - 1)x^{\alpha - 1}} + C$	$\int \frac{\mathrm{d}x}{(ax+b)^{\alpha}} = -\frac{1}{a} \cdot \frac{1}{(\alpha-1)} \cdot (ax+b)^{\alpha-1} + C$ $\int e^{ax+b} \mathrm{d}x = \frac{1}{a} \cdot e^{ax+b} + C$
$\int e^x \mathrm{d}x = e^x + C$	$\int e^{ax+b} dx = \frac{1}{a} \cdot e^{ax+b} + C$
$\int a^x \mathrm{d}x = \frac{a^x}{\ln a} + C$	$\int a^{\alpha x + \beta} dx = \frac{1}{\alpha} \cdot \frac{a^{\alpha x + \beta}}{\ln a} + C$
$\int \cos x \mathrm{d}x = \sin x + C$	$\int \cos(ax+b) \mathrm{d}x = \frac{1}{a} \cdot \sin(ax+b) + C$
$\int \sin x \mathrm{d}x = -\cos x + C$	$\int \sin(ax+b) \mathrm{d}x = -\frac{1}{a} \cdot \cos(ax+b) + C$
$\int \frac{1}{\cos^2 x} \mathrm{d}x = \tan x + C$	$\int \frac{1}{\cos^2(ax+b)} \mathrm{d}x = \frac{1}{a} \cdot \tan(ax+b) + C$
$\int \frac{1}{\sin^2 x} \mathrm{d}x = -\cot x + C$	$\int \frac{1}{\sin^2(ax+b)} dx = -\frac{1}{a} \cdot \cot(ax+b) + C$

Nhận xét: $[F(ax+b)]' = af(ax+b) \Rightarrow \int f(ax+b) dx = \frac{1}{a}F(ax+b) + C.$

C. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP

Sử dụng định nghĩa nguyên hàm và bảng nguyên hàm

1. Các ví dụ

VÍ DỤ 1. Tìm họ nguyên hàm của các hàm số sau

a)
$$f(x) = 4x^3 + x + 5$$
.

b)
$$f(x) = 3x^2 - 2x$$
.

c)
$$f(x) = \frac{1}{x^5} + x^2$$
.

d)
$$f(x) = \frac{1}{x^3} + x^2 - 1$$
.

VÍ DŲ 2. Tính

a)
$$I = \int (x^2 - 3x)(x+1)dx$$
. b) $I = \int (x-1)(x^2+2)dx$. c) $I = \int (2x+1)^5 dx$

d)
$$I = \int (2x - 10)^{2020} dx$$
. e) $I = \int \left(3x^2 + \frac{1}{x} - 2\right) dx$. f) $I = \int \left(3x^2 - \frac{2}{x} - \frac{1}{x^2}\right) dx$.

g)
$$I = \int \frac{x^2 - 3x + 1}{x} dx$$
. h) $I = \int \frac{2x^2 - 6x + 3}{x} dx$. i) $I = \int \frac{1}{2x - 1} dx$.

j)
$$I = \int \frac{2}{3 - 4x} dx$$
. k) $I = \int \frac{1}{(2x - 1)^2} dx$. l) $I = \int \left[\frac{12}{(x - 1)^2} + \frac{2}{2x - 3} \right] dx$.

$$\mathrm{m})\,I = \int \frac{3}{4x^2 + 4x + 1} \,\mathrm{d}x. \quad \mathrm{n})\,\,I = \int \frac{4}{x^2 + 6x + 9} \,\mathrm{d}x. \quad \mathrm{o})\,\,(*)\,\,I = \int \frac{2x - 1}{\left(x + 1\right)^2} \,\mathrm{d}x.$$

VÍ DỤ 3. Tìm họ nguyên hàm của các hàm số sau

a)
$$I = \int (\sin x - \cos x) dx$$
. b) $I = \int (3\cos x - 2\sin x) dx$. c) $I = \int (2\sin 2x - 3\cos 6x) dx$.

d)
$$I = \int \sin x \cos x \, dx$$
. e) $I = \int \cos \left(\frac{x}{2} + \frac{\pi}{6}\right) \, dx$. f) $I = \int \sin \left(\frac{\pi}{3} - \frac{x}{3}\right) \, dx$.

g)
$$I = \int (\sin x - \cos x)^2 dx$$
. h) $I = \int (\cos x + \sin x)^2 dx$.

VÍ DU 4. Tìm họ nguyên hàm của các hàm số sau

a)
$$I = \int \frac{1}{\sin^2 x} dx$$
. b) $I = \int \frac{6}{\cos^2 3x} dx$.

a)
$$I = \int \frac{1}{\sin^2 x} dx$$
.
b) $I = \int \frac{6}{\cos^2 3x} dx$.
c) $I = \int (\tan x + \cot x)^2 dx$.
d) $I = \int \sin^2 x dx$.
e) $I = \int \cos^2 2x dx$.
f) $I = \int \sin 4x \cos x dx$.

a)
$$I = \int e^{2x} dx$$
. b) $I = \int e^{1-2x} dx$. c) $I = \int (2x - e^{-x}) dx$.

d)
$$I = \int e^x (1 - 3e^{-2x}) dx$$
. e) $I = \int (3 - e^x)^2 dx$. f) $I = \int (2 + e^{3x})^2 dx$.

g)
$$I = \int 2^{2x+1} dx$$
. h) $I = \int 4^{1-2x} dx$. i) $I = \int 3^x \cdot 5^x dx$.

j)
$$I = \int 4^x \cdot 3^{x-1} dx$$
. k) $I = \int \frac{dx}{e^{2-5x}}$. l) $I = \int \frac{dx}{2^{3-2x}}$.

m)
$$I = \int \frac{4^{x+1} \cdot 3^{x-1}}{2^x} dx$$
. n) $I = \int \frac{4^{2x-1} \cdot 6^{x-1}}{3^x} dx$.

2. Câu hỏi trắc nghiệm

CÂU 1. Cho hàm số F(x) là một nguyên hàm của hàm số f(x) trên K. Các mệnh đề sau,

$$\mathbf{B}\left(\int f(x)\,\mathrm{d}x\right)'=f(x).$$

$$\bullet \left(\int f(x) \, \mathrm{d}x \right)' = f'(x).$$

CÂU 2. Họ tất cả các nguyên hàm của hàm số f(x) = 2x + 6 là

$$(\mathbf{A}) x^2 + C.$$

(B)
$$x^2 + 6x + C$$
.

$$(c) 2x^2 + C.$$

$$\bigcirc 2x^2 + 6x + C.$$

CÂU 3. $\int x^2 dx$ bằng

$$(\widehat{\mathbf{A}}) 2x + C.$$

B
$$\frac{1}{2}x^3 + C$$
.

$$(\mathbf{C})x^3 + C.$$

$$(\mathbf{D}) 3x^3 + C.$$

CÂU 4. Họ nguyên hàm của hàm số $f(x) = 3x^2 + 1$ là

B
$$\frac{x^3}{3} + x + C$$
.

$$\bigcirc 6x + C.$$

(D)
$$x^3 + x + C$$
.

CÂU 5. Nguyên hàm của hàm số $f(x) = x^3 + x$ là

(A)
$$\frac{1}{4}x^4 + \frac{1}{2}x^2 + C$$
. (B) $3x^2 + 1 + C$.

B
$$3x^2 + 1 + C$$

©
$$x^3 + x + C$$
.

$$\bigcirc x^4 + x^2 + C$$

CÂU 6. Nguyên hàm của hàm số $f(x) = x^4 + x^2$ là

(A)
$$\frac{1}{5}x^5 + \frac{1}{3}x^3 + C$$
. (B) $x^4 + x^2 + C$. (C) $x^5 + x^3 + C$.

B
$$x^4 + x^2 + C$$

$$\bigcirc x^5 + x^3 + C$$

CÂU 7. Hàm số nào trong các hàm số sau đây không là nguyên hàm của hàm số $y=x^{2022}$?

$$\frac{x^{2023}}{2023} + 1$$

B
$$\frac{x^{2023}}{2023}$$
.

©
$$y = 2022x^{2021}$$
.

CÂU 8. Nguyên hàm của hàm số $f(x) = \frac{1}{3}x^3 - 2x^2 + x - 2024$ là

$$\begin{array}{c} \textbf{(B)} \ \frac{1}{9}x^4 - \frac{2}{3}x^3 + \frac{x^2}{2} - 2024x + C. \\ \textbf{(D)} \ \frac{1}{9}x^4 + \frac{2}{3}x^3 - \frac{x^2}{2} - 2024x + C. \end{array}$$

CÂU 9. Tìm nguyên F(x) của hàm số f(x) = (x+1)(x+2)(x+3)?

(A)
$$F(x) = \frac{x^4}{4} - 6x^3 + \frac{11}{2}x^2 - 6x + C$$
.

B)
$$F(x) = x^4 + 6x^3 + 11x^2 + 6x + C$$
.

$$\mathbf{C}$$
 $F(x) = \frac{x^4}{4} + 2x^3 + \frac{11}{2}x^2 + 6x + C$.

$$(\mathbf{D}) F(x) = x^3 + 6x^2 + 11x^2 + 6x + C.$$

CÂU 10. Tìm nguyên hàm của hàm số $f(x) = (5x+3)^5$.

(A)
$$(5x+3)^6 + C$$

$$(5x+3)^6 + C.$$
 $(B)(5x+3)^4 + C.$

$$(\mathbf{c}) \frac{(5x+3)^6}{30} + C.$$

(c)
$$\frac{(5x+3)^6}{30} + C$$
. (d) $\frac{(5x+3)^4}{30} + C$.

CÂU 11. Tìm nguyên hàm của hàm số $f(x) = x^2 + \frac{2}{x^2}$.

(A)
$$\int f(x) dx = \frac{x^3}{3} + \frac{1}{x} + C$$
.

B
$$\int_{-\infty}^{\infty} f(x) dx = \frac{x^3}{3} - \frac{2}{x} + C.$$

$$\mathbf{C} \int f(x) \, \mathrm{d}x = \frac{x^3}{3} - \frac{1}{x} + C.$$

CÂU 12. Tính $\int \sqrt{x\sqrt{x\sqrt{x}}} dx$.

$$(A) \frac{4}{15} x \sqrt[15]{x^7} + C.$$

B
$$\frac{8}{15}x\sqrt[15]{x^7} + C$$

$$\bigcirc \frac{8}{15}x \sqrt[15]{x} + C$$

(A)
$$\frac{4}{15}x\sqrt[15]{x^7} + C$$
. (B) $\frac{8}{15}x\sqrt[15]{x^7} + C$. (C) $\frac{8}{15}x\sqrt[15]{x} + C$. (D) $\frac{4}{15}x\sqrt[15]{x} + C$.

CÂU 13. Tính $\int \frac{\sqrt{x} - 2\sqrt[3]{x^2} + 1}{\sqrt[4]{x}} dx$.

(A)
$$x\sqrt[5]{x} - 2x\sqrt[17]{x^5} + \sqrt[4]{x^3} + C$$
.

B
$$\frac{4}{5}x\sqrt[5]{x} - \frac{24}{17}x\sqrt[17]{x^5} + \frac{4}{2}\sqrt[4]{x^3} + C$$

©
$$x\sqrt[5]{x} - \frac{24}{17}x\sqrt[17]{x^5} + \sqrt[4]{x^3} + C$$
.

$$\begin{array}{c} \textbf{ (B)} \ \frac{4}{5}x\sqrt[5]{x} - \frac{24}{17}x\sqrt[17]{x^5} + \frac{4}{3}\sqrt[4]{x^3} + C. \\ \textbf{ (D)} \ \frac{4}{5}x\sqrt[5]{x} - 2x\sqrt[17]{x^5} + \frac{4}{3}\sqrt[4]{x^3} + C. \end{array}$$

CÂU 14. Cho hàm số $f(x) = x^2 + 4$. Mệnh đề nào sau đây đúng?

B
$$\int f(x) dx = x^2 + 4x + C$$
.

QUICK NOTE

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

					_
വ	ICK	Ν	റ		E
ຊຸບ	ICK	N	u	П	

$\int f(x) dx =$	$=\frac{x^3}{3}+4x+C$	
$\int f(x) dx =$	$=\frac{1}{3}+4x+C$,

CÂU 15. Trên khoảng $(0; +\infty)$, cho hàm số $f(x) = x^{\frac{3}{2}}$. Mệnh đề nào sau đây đúng?

$$\mathbf{B} \int f(x) \, \mathrm{d}x = \int \sqrt{x^3} \, \mathrm{d}x.$$

$$f(x) dx = \frac{2}{5}x^{\frac{5}{2}} + C.$$

CÂU 16. Cho hàm số $f(x) = \frac{x^4 + 2}{x^2}$. Mệnh đề nào sau đây đúng?

(A)
$$\int f(x) dx = \frac{x^3}{3} - \frac{1}{x} + C$$
.

B
$$\int f(x) dx = \frac{x^3}{3} + \frac{2}{x} + C.$$

CÂU 17. Các mệnh đề sau đây đúng hay sai

Mệnh đề	Ð	S
a) $\int (\sqrt[3]{x^2} + x - 2) dx = \frac{3}{5} \sqrt[3]{x^5} + \frac{1}{2}x^2 - 2x + C.$		
b) $\int \frac{1}{2023x^{2024}} \mathrm{d}x = \frac{1}{2023^2x^{2023}} + C.$		
c) $\int (2x - 2024)^2 dx = x - 1012 + C$.		
d) $\int \left(\frac{1}{4}x^4 + 4x^3\right) dx = \frac{1}{20}x^5 + \frac{4}{3}x^4 + C.$		

CÂU 18. Cho các mệnh đề sau đây

Mệnh đề	Ð	S
Mệnh đề $\mathbf{a)} \ F(x) = \frac{x^4}{4} - \frac{3}{2}x^2 + \ln x + C \ là nguyên hàm của hàm số f(x) = x^3 - 3x + \frac{1}{x}.$		
$x^3-3x+\frac{1}{x}$		
b) $F(x) = \frac{(5x+3)^6}{6} + C$ là nguyên hàm của hàm số $f(x) = (5x+3)^5$.		
c) $F(x) = \frac{3}{2}x\sqrt{x} + \frac{4}{3}x\sqrt[3]{x} + \frac{5}{4}x\sqrt[4]{x} + C$ là nguyên hàm của hàm số		
$f(x) = \sqrt{x} + \sqrt[3]{x} + \sqrt[4]{x}.$		
d) $F(x) = \frac{1}{3}x^3 - 2024x + C$ là nguyên hàm của hàm số $f(x) =$		
$x^3 - 2024x$		
x .		

CÂU 19. Hệ số của x^2 trong nguyên hàm F(x) của hàm số $f(x) = \frac{2}{\sqrt{x}} + 3^x + 3x - 2$ là KQ:

CÂU 20. Hệ số của x^3 trong nguyên hàm F(x) của hàm số $f(x)=mx^3-3x^2+\frac{4m}{x^3}+\frac{5}{2x}-7m$ (m là tham số) là

KQ:				
-----	--	--	--	--

CÂU 21. Tìm nguyên hàm F(x) của hàm số $f(x) = \frac{1}{\sqrt{x}} - \frac{2}{\sqrt[3]{x}}$. Tổng hệ số của biến x là

CÂU 22. Tìm nguyên hàm F(x) của hàm số $f(x) = \frac{(x^2 - 1)^2}{x^2}$. Tổng hệ số của bậc 3 và bậc 1 là (làm tròn đến hàng phần chục).

KQ:				
-----	--	--	--	--

CÂU 23. Tính $\int \left(\frac{(1-x)^3}{\sqrt[3]{x}}\right) dx$. Giá trị tổng hệ số chứa biến là (làm tròn đến hàng phần trăm).

☑ NGUYÊN HÀM - TÍCH PHÂN				VNPmath - 0962940819
	KQ:			QUICK NOTE
CÂU 24. Tính $\int \left(\sqrt[3]{x^2} - \sqrt[4]{x^3} + \sqrt[5]{x^4}\right) dx$. Giá trị tổng hệ số chứ	ứa biến là (là	m tròn	đến	
hàng phần trăm).	KQ:			
CÂU 25. Tính $\int (\sqrt{x}+1) (x-\sqrt{x}+1) dx$. Giá trị tổng hệ số ch	ứa biến là (là	am tròn	 đến	
hàng phần chục).	KQ:			
CÂU 26. Tính $\int \left(2\sqrt{x} - \frac{3}{\sqrt[3]{x}}\right) dx$. Giá trị tổng hệ số chứa biến		n đến h	 làng	
phần chục).				
	KQ:	15		
CÂU 27. Tính $\int \frac{1}{\sqrt{2x} + \sqrt{3x}} dx = a \left(\sqrt{b} - \sqrt{c} \right) \sqrt{x}$. Giá trị của tơ	KQ: $A + b + c$. 1a		
CÂU 28. Tính $\int \frac{1}{\sqrt{5x} - \sqrt{3x}} dx = (\sqrt{a} + \sqrt{b}) \sqrt{x} + C$. Giá trị $a - \sqrt{a} + \sqrt{b} = \sqrt{a}$	+ b bằng			
	KQ:			
CÂU 29. Tính $\int (x^2-1)^3 dx$. Giá trị tổng hệ số chứa biến là (l	làm tròn đến	hàng p	hần	
chục).	KQ:			
CÂU 30. Tính $\int \left(2-x^2\right)^4 \mathrm{d}x$. Giá trị tổng hệ số chứa biến là (l	làm tròn đến	hàng p	hần	
chục).	KQ:			
CÂU 31. Tính $\int (x-\sqrt[3]{x})^2 dx$. Giá trị tổng hệ số chứa biến là (làm tròn đến	hàng p	hần	
chục).	KQ:			
CÂU 32. Tính $\int \left(\frac{x^2+2\sqrt[3]{x}}{x}\right)^2 dx$. Giá trị tổng hệ số chứa biến	n là (làm trò	n đến h	làng	
phần chục).	KQ:			
CÂU 33. Tìm m để $F(x) = mx^3 + (3m+2)x^2 - 4x + 3$ là một n		của hàn	n số	
$f(x) = 3x^2 + 10x - 4.$	KQ:			
CÂU 34. Tìm a,b,c để $F(x)=(ax^2+bx+c)\sqrt{x^2-4x}$ là một r $f(x)=(x-2)\sqrt{x^2-4x}$. Giá trị biểu thức $a+b+c$ bằng.	nguyên hàm	của hàn	n số	
	KQ:			
CÂU 35. Tìm a,b,c để $F(x)=(ax^2+bx+c)\sqrt{2x-3}$ là một n $f(x)=\frac{20x^2-30x+7}{\sqrt{2x-3}}.$ Giá trị biểu thức $a+b+c$ bằng	nguyên hàm	của hàn	n số	
·	KQ:			
CÂU 36. Hàm số $F(x)=\cot x$ là một nguyên hàm của hàm số nă $\left(0;\frac{\pi}{2}\right)$	ào dưới đây t	trên kho	$ \frac{1}{2} \text{ ang } \left \begin{array}{c} \cdots \\ \cdots \\ \end{array} \right $	

				_	_
Ω	Ш	\sim ν	Ν	(e)	
•	u	CK	N	L T	_

	ICK		αт	_
711	IV . K	11/4	911	-
			\mathbf{c}	_

.....

(A)
$$f_2(x) = \frac{1}{\sin^2 x}$$
. (B) $f_1(x) = -\frac{1}{\cos^2 x}$. (C) $f_4(x) = \frac{1}{\cos^2 x}$. (D) $f_3(x) = -\frac{1}{\sin^2 x}$.

$$\mathbf{c} f_4(x) = \frac{1}{\cos^2 x}$$

CÂU 37. Cho hàm số $f(x) = 1 + \sin x$. Khẳng định nào dưới đây đúng?

CÂU 38. Tìm nguyên hàm F(x) của hàm số $f(x) = \cos^2 \frac{x}{2}$

B
$$F(x) = \frac{1}{2} (1 + \sin x) + C.$$

D $F(x) = \frac{1}{2} (1 - \sin x) + C.$

$$\mathbf{C} F(x) = 2\sin\frac{\bar{x}}{2} + C.$$

(D)
$$F(x) = \frac{2}{2}(1 - \sin x) + C$$

CÂU 39. Cho hàm số $f(x) = 1 - \frac{1}{\cos^2 x}$. Khẳng định nào dưới đây đúng?

CÂU 40. Họ nguyên hàm của hàm số $f(x) = \cos x + 6x$ là

$$(\mathbf{A})\sin x + 3x^2 + C.$$

B
$$-\sin x + 3x^2 + C$$
.

$$(\hat{\mathbf{C}})\sin x + 6x^2 + C.$$

$$(\mathbf{\overline{D}}) - \sin x + C.$$

CÂU 41. Tìm nguyên hàm của hàm số $f(x) = 2\sin x + 3x$.

(A)
$$\int (2\sin x + 3x) dx = -2\cos x + \frac{3}{2}x^2 + C$$
.

B
$$\int (2\sin x + 3x) dx = 2\cos x + 3x^2 + C.$$

CÂU 42. Tính $\int (x - \sin x) dx$.

$$\mathbf{A} \frac{x^2}{2} + \sin x + C$$

$$\bigcirc \frac{x^2}{2} - \sin x + C$$

(A)
$$\frac{x^2}{2} + \sin x + C$$
. (B) $\frac{x^2}{2} - \cos x + C$. (C) $\frac{x^2}{2} - \sin x + C$. (D) $\frac{x^2}{2} + \cos x + C$.

CÂU 43. Họ nguyên hàm của hàm số $f(x) = 3x^2 + \sin x$ là

(A)
$$x^3 + \cos x + C$$
. **(B)** $6x + \cos x + C$. **(C)** $x^3 - \cos x + C$.

$$\mathbf{B} 6x + \cos x + C$$

$$\mathbf{C}$$
 $x^3 - \cos x + C$

$$\mathbf{D}$$
 $6x - \cos x + C$.

CÂU 44. Họ nguyên hàm của hàm số $f(x) = \frac{1}{x} + \sin x$ là

$$\mathbf{B} - \frac{1}{r^2} - \cos x + C.$$

$$\mathbf{\widehat{C}})\ln|x| + \cos x + C.$$

$$\mathbf{\hat{D}} \ln |x| - \cos x + C$$

CÂU 45. Cho $\int f(x) dx = -\cos x + C$. Khẳng định nào dưới đây đúng?

$$\textbf{(A)} f(x) = -\sin x. \qquad \textbf{(B)} f(x) = -\cos x. \qquad \textbf{(C)} f(x) = \sin x.$$

$$\mathbf{B} f(x) = -\cos x.$$

$$\mathbf{C} f(x) = \sin x.$$

$$\mathbf{D} f(x) = \cos x.$$

CÂU 46. Cho hàm số $f(x) = \int \cos \frac{x}{2} \sin \frac{x}{2}$. Khẳng định nào dưới đây đúng?

$$\int \cos \frac{x}{2} \sin \frac{x}{2} = -\frac{1}{2} \sin x + C.$$

CÂU 47. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	\mathbf{S}
$\mathbf{a)} \int (2 + \cot^2 x) \mathrm{d}x = x - \cot x + C.$		
b) $\int \left(1 - \cos^2 \frac{x}{2}\right) dx = \frac{1}{2} (x + \sin x) + C.$		
c) $\int \left(\sin\frac{x}{2} + \cos\frac{x}{2}\right)^2 dx = x + \cos x + C.$		

Mệnh đề	Ð	S
d) $\int \left(\sin\frac{x}{2} - \cos\frac{x}{2}\right)^2 dx = x - \cos x + C.$		

CÂU 48. Tìm nguyên hàm F(x) của hàm số $f(x) = 2024 - 2\sin^2\frac{x}{2}$. Hệ số của biến x là

CÂU 49. Tìm nguyên hàm F(x) của hàm số $f(x) = \frac{1}{\sin^2 \frac{x}{2} \cdot \cos^2 \frac{x}{2}} = a \cot x + C$. Giá trị

a là

CÂU 50. Tìm nguyên hàm F(x) của hàm số $f(x) = \frac{1}{3}x^2 - 2x + \frac{1}{2}\tan^2 x = \frac{x^3}{a} + bx^2 + \frac{1}{a}x + \frac{1}{a$ $d \tan x + C$. Giá trị của a + b + c + d là

CÂU 51. Tính $\int x^2 \left(1 + \frac{1}{x} - \frac{\tan^2 x}{x^2}\right) dx = \frac{x^m}{n} + \frac{x^p}{q} + x + r \tan x + C$. Giá trị biểu thức $P = \frac{m}{r} + \frac{p}{a} + 2r$ là

CÂU 52. Tính $T = \int x \left(2024 - \frac{1}{r^3} + \frac{\sin x}{r} \right) dx$. Hệ số của hạng tử $\cos x$ của T là

CÂU 53. Tính $R = \int x^3 \left[\frac{\left(\sin\frac{x}{2} + \cos\frac{x}{2}\right)^2}{x^3} - 2x + \frac{1}{x^{2024}} \right] dx = ax + b\cos x + cx^5 - \frac{1}{d \cdot x^{2020}}$

C. Giá trị a+b+c+d+7 là (làm tròn đến hàng đơn vị)

CÂU 54. Tính $\int x^2 \left| \frac{1}{x^2 \sin^2 \frac{x}{a} \cdot \cos^2 \frac{x}{a}} + \frac{3}{x^3} - \frac{4}{x^4} \right| dx = a \cot x + b \ln |x| + \frac{c}{x} + C$. Giá trị a+b+c là

CÂU 55. Họ nguyên hàm của hàm số $f(x)=e^{3x}$ là hàm số nào sau đây? (A) $3e^x+C$. (B) $\frac{1}{3}e^{3x}+C$. (D)

$$\bigcirc$$
 $\frac{1}{3}e^x + C$

$$\mathbf{\widehat{A}}) \, 2e^{2x-1} + C.$$

$$\mathbf{B}) e^{2x-1} + C$$

$$\frac{1}{2}e^{2x-1} + C.$$

$$\mathbf{D} \frac{1}{2}e^x + C.$$

CÂU 56. Nguyên hàm của hàm số $y=e^{2x-1}$ là $\widehat{\qquad} \qquad \widehat{\qquad} \qquad \widehat$ **CÂU 57.** Cho hàm số $f(x) = e^x + 2$. Khẳng định nào dưới đây là **đúng**?

$$\mathbf{B} \int f(x) \, \mathrm{d}x = e^x + 2x + C.$$

CÂU 58. Cho hàm số $f(x) = e^x + 2x$. Khẳng định nào dưới đây **đúng**?

$$\mathbf{\hat{C}} \int f(x) \, \mathrm{d}x = e^x - x^2 + C.$$

B
$$\int 7^x \, \mathrm{d}x = 7^{x+1} + C.$$

																•

	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
ı																																		

٠	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•

	•		-				
ລ	ш	\mathbf{c}		M	$\overline{}$	т	
~1				N	O		

CÂU 60. Nguyên hàm của hàm số $f(x) = 2^x$ là

$$\mathbf{\hat{C}} \int 2^x \, \mathrm{d}x = \frac{2^x}{\ln 2} + C.$$

CÂU 61. Tất cả các nguyên hàm của hàm số $f(x) = 3^{-x}$ là

$$\mathbf{A} - \frac{3^{-x}}{\ln 3} + C.$$

B)
$$-3^{-x} + C$$
.

(A)
$$-\frac{3^{-x}}{\ln 3} + C$$
. (B) $-3^{-x} + C$. (C) $-3^{-x} \ln 3 + C$. (D) $\frac{3^{-x}}{\ln 3} + C$.

$$\mathbf{D} \frac{3^{-x}}{\ln 3} + C.$$

CÂU 62. Tìm nguyên hàm của hàm số $f(x) = 3^x + 2x$.

B)
$$\int (3^x + 2x) dx = 3^x \ln 3 + x^2 + C$$

$$\bigcirc \frac{1}{x+1}e^x - x^2 + C.$$

$$(\mathbf{D})e^x - 2 + C.$$

CÂU 64. Tìm nguyên hàm của hàm số $f(x) = e^x \left(2017 - \frac{2018e^{-x}}{x^5} \right)$.

B
$$\int f(x) dx = 2017e^x + \frac{2018}{x^4} + C$$

©
$$\int f(x) dx = 2017e^x + \frac{504.5}{x^4} + C$$

CÂU 65. Họ nguyên hàm của hàm số $y = e^x \left(2 + \frac{e^{-x}}{\cos^2 x} \right)$ là

A
$$2e^x + \tan x + C$$
. **B** $2e^x - \tan x + C$

(A)
$$2e^x + \tan x + C$$
. (B) $2e^x - \tan x + C$. (C) $2e^x - \frac{1}{\cos x} + C$. (D) $2e^x + \frac{1}{\cos x} + C$.

CÂU 66. Tìm họ nguyên hàm của hàm số $y = x^2 - 3^x + \frac{1}{2}$

(A)
$$\frac{x^3}{3} - \frac{3^x}{\ln 3} - \frac{1}{x^2} + C, C \in \mathbb{R}.$$

B
$$\frac{x^3}{3} - 3^x + \frac{1}{x^2} + C, C \in \mathbb{R}.$$

$$\mathbf{D} \frac{x^3}{3} - \frac{3^x}{\ln 3} - \ln|x| + C, C \in \mathbb{R}.$$

CÂU 67. Khẳng định nào dưới đây đúng?

CÂU 68. Cho hàm số $f(x) = 1 + e^{2x}$. Khẳng định nào dưới đây **đúng**?

(A)
$$\int f(x) dx = x + \frac{1}{2}e^x + C$$
.

B
$$\int f(x) dx = x + 2e^{2x} + C$$
.

$$\oint f(x) \, \mathrm{d}x = x + \frac{1}{2}e^{2x} + C.$$

CÂU 69. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Đ	S
$\mathbf{a)} \int \frac{1}{x} \mathrm{d}x = \ln x + C.$		
$\mathbf{b)} \int \frac{1}{\cos^2 x} \mathrm{d}x = \tan x + $ $C.$		

Mệnh đề	Đ	S
$\begin{array}{c} \mathbf{c}) \int \sin x \mathrm{d}x = -\cos x + \\ C. \end{array}$		
$\mathbf{d)} \int e^x \mathrm{d}x = e^x + C.$		

CÂU 70. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Đ	S
$\mathbf{a)} \int \cos x \mathrm{d}x = \sin x + C.$		
b) $\int x^e dx = \frac{x^{e+1}}{e+1} + C.$		

Mệnh đề	Ð	S
$\mathbf{c)} \int \frac{1}{x} \mathrm{d}x = \ln x + C.$		
d) $\int e^x dx = \frac{e^{x+1}}{x+1} + C.$		

CÂU 71. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	S
a) $\int 2^x dx = 2^x \ln 2 + C$.		
b) $\int e^{2x} dx = \frac{e^{2x}}{2} + C.$		
c) $\int e^x (e^x - 1) dx = \frac{1}{2}e^{2x} + e^x + C.$		
d) $\int e^{3x} \cdot 3^x dx = \frac{(3e^3)^x}{3 + \ln 3} + C.$		

CÂU 72. Biết rằng $\int (2^x+3^x) dx = \frac{2^x}{\ln a} + \frac{3^x}{\ln b} + C$, $a,b \in \mathbb{Z}$. Tính P=a+b.

KQ:

CÂU 73. Cho $\int e^{3x+2024} \, \mathrm{d}x = \frac{a}{b} e^{cx+d} + C$ với $a,b,c,d \in \mathbb{Z}$ và $\frac{a}{b}$ là phân số tối giãn . Tính giá trị của biểu thức P=a+b-c+d.

KQ:

CÂU 74. Biết rằng $\int 3^{x+2} \cdot 2^{2x+1} \, \mathrm{d}x = \frac{a \cdot 12^x}{b \ln 2 + c \ln 3} + C \text{ với } a, b, c \in \mathbb{Z}.$ Tính giá trị của biểu thức $P = \frac{a}{b+c}.$

KQ:

CÂU 75. Biết rằng $\int (3^x + 5^x)^2 dx = \frac{9^x}{a \ln 3} + \frac{30^x}{b \ln 5 + c \ln 2 + d \ln 3} + \frac{25^x}{e \ln 5} + C$. Tính giá tri của biểu thức P = a + b + c + d + e.

KQ:

CÂU 76. Cho $\int \frac{e^{3x}+1}{e^x+1} dx = \frac{a}{b}e^{2x} + ce^x + dx + C \text{ với } a,b,c,d \in \mathbb{Z} \text{ và } \frac{a}{b} \text{ là phân số tối giãn. Tính giá trị của biểu thức } P = a^2 + b^2 + c^2 + d^2.$

KQ:

CÂU 77. Biết rằng $\int (e^x+e^{-x})^2 dx = \frac{1}{m}e^{2x} + \frac{1}{n}e^{-2x} + px + C$ với $m,m,p \in \mathbb{Z}$. Tính giá trị của biểu thức P=m+n+p.

KQ:

CÂU 78. Biết rằng $\int \frac{e^{2x}-1}{1-e^{-x}} dx = \frac{1}{m}e^{nx} + pe^x + C$ với $m, m, p \in \mathbb{Z}$. Tính giá trị của biểu thức P = m + n - p.

KQ:

CÂU 79. Biết rằng $F(x) = (ax+b) \cdot e^x$ là một nguyên hàm của hàm số $f(x) = (4x-1) \cdot e^x$. Tính giá trị biểu thức P = a + b.

KQ:

CÂU 80. Biết rằng $F(x)=8e^x+\frac{na^x}{\ln a}+p\cos x$ (với $m,n,p\in\mathbb{Z}$) là một nguyên hàm của hàm số $f(x)=me^x+2a^x-2\sin x$. Tính giá trị của biểu thức P=m+n+p.

KQ:

CÂU 81. Biết rằng $F(x)=(ax^2+bx+c)e^{-2x}$ (với $a,b,c\in\mathbb{R}$) là một nguyên hàm của hàm số $f(x)=(-2x^2+8x-7)e^{-2x}$. Tính giá trị biểu thức P=a+b+c.

KQ:

♥ VNPmath - 0962940819 ♥			♂ N	GUYÊN HÀM - TÍCH PHÂN
QUICK NOTE	2 Tîm nç	guyên hàm khi biết ç	giá trị nguyên hàm	
	Phương pháp: T	$Fim F(x) = \int f(x) \mathrm{d}x.$	Sau đó dựa vào $F(x_0)$	= a để suy ra C .
				Ť
	CÂU 1. Hàm số F	F(x) là một nguyên hà	àm của hàm số $f(x) =$	$=\frac{1}{x}$ trên $(-\infty;0)$ thỏa mãn
		g định nào sau đây đú		x
		$\left(-\frac{x}{2}\right), \forall x \in (-\infty; 0).$		
		<u> </u>	ới C là một số thực bất	kì.
	1 ~	$ +\ln 2, \forall x \in (-\infty; 0).$		
		$-x$) + C , $\forall x \in (-\infty; 0)$	với C là một số thực b	oất kì.
		là một nguyên hàm	của hàm số $f(x) = e^2$	x và $F(0) = 0$. Giá trị của
	$F(\ln 3)$ bằng	B) 6.	© 8.	6 4
	(A) 2.	0	<u> </u>	(D) 4.
	CAU 3. Cho $F(x)$ $F(-1)$ bằng	là một nguyên hàm c	của $f(x) = 2^x + x + 1$.	Biết $F(0) = 1$. Giá trị của
	1	<u>- </u>	(B) $F(-1) = \frac{1}{2}$	_ 1
	$\mathbf{\hat{A}} F(-1) = \frac{1}{2 \ln x}$ $\mathbf{\hat{C}} F(-1) = 1 + \frac{1}{2 \ln x}$	1 2 · 1	B $F(-1) = \frac{1}{2}$ D $F(-1) = \frac{1}{2}$	$\frac{2 \ln 2}{1}$
	F(-1) = 1 +	$\frac{1}{2\ln 2}$.	(b) $F'(-1) = \frac{1}{2}$	$-\frac{1}{\ln 2}$.
	CÂU 4. Tìm nguy	ên hàm $F(x)$ của hàm	$s \circ f(x) = \sin x + \cos x$	c thoả mãn $F\left(\frac{\pi}{2}\right) = 2$.
	$\mathbf{C} F(x) = -\cos x$	$\operatorname{s} x + \sin x + 1.$	$\mathbf{B} F(x) = -\cos x$ $\mathbf{D} F(x) = \cos x$	$x - \sin x + 3$.
	CÂU 5. Cho $F(x)$	là một nguyên hàm ci	$f(x) = e^x + f(x)$	$2x$ thỏa mãn $F(0) = \frac{3}{2}$. Tìm
	F(x).	ia myt ngayen nam et	30 J (w) 0 1 1	2. 1111
	1 ' '	$x^2 + \frac{1}{3}$.	$\mathbf{\widehat{B}}) F(x) = e^x +$	$x^2 + \frac{5}{3}$.
	$\mathbf{\hat{A}} F(x) = e^x + \mathbf{\hat{C}} F(x) = e^x + \mathbf{\hat{C}}$	$\frac{2}{3}$	$\mathbf{B} F(x) = e^x + \mathbf{D} F(x) $	$\frac{2}{x^2-1}$
		4		2
	CÂU 6. Cho hàm	$\operatorname{s\acute{o}} f(x) = \begin{cases} 2x - 1 \\ 1 \end{cases}$	khi $x \ge 1$, giả sử F l	à nguyên hàm của f trên $\mathbb R$
	thảo mặn $F(0) = $	$(3x^2 - 2$ 2. Giá trị của $F(-1)$ \dashv	khi $x < 1$,
		2. Gia tii cua $F(-1) = \mathbf{B}$	(c) 11.	(D) 6.
		\mathbf{C}	<u> </u>	
	CÂU 7. Cho hàm	$\operatorname{s\^{o}} f(x) = \begin{cases} 3x^2 + 2 \end{cases}$	x = 1 Giả sử F là khi $x < 1$.	nguyên hàm của hàm số f
		F(0) = 2. Giá trị của I		
	A 23.	B 11.	© 10.	D 21.
	CÂUR Cho hàm	$\oint 2x + 2$	khi $x \ge 1$ Giả sử F là	nguyên hàm của hàm số f
				nguyen nam eua nam so j
		F(0) = 2. Giá trị của I		3 24
	(A) 18.	B) 20.	© 9.	(D) 24.
			àm là $f'(x) = 12x^2 + 5$ F(0) = 2, khi đó $F(1)$	$2, \forall x \in \mathbb{R} \text{ và } f(1) = 3.$ Biết bằng
	$\mathbf{A} - 3.$	B 1.	(\mathbf{C}) 2.	(D) 7.
		<u> </u>	$y'(x) = 3 - 5\sin x \text{ và } f(x)$	(0) = 10. Mệnh đề nào dưới
	đây đúng ?			
		$5\cos x + 15.$	$\mathbf{B} f(x) = 3x - \mathbf{D} f(x) = 3x + \mathbf{D} f(x)$	$5\cos x + 2.$
	_			
	CĂU 11. Hàm số $f(x)$ là	f(x) có đạo hàm liên	tục trên \mathbb{R} và $f'(x) =$	$2e^{2x} + 1, \forall x; f(0) = 2.$ Hàm
	$\mathbf{A} y = 2e^x + 2x$	$\mathbf{B} y = 2e^x + 2.$	$\mathbf{C}y = e^{2x} + x + x + x = 0$	$+2.$ (D) $y = e^{2x} + x + 1.$

đây đúng?

CÂU 12. Cho hàm số f(x) thỏa mãn $f'(x) = 2 - 5 \sin x$ và f(0) = 10. Mệnh đề nào dưới

(A)
$$f(x) = 2x + 5\cos x + 3$$
.

B)
$$f(x) = 2x - 5\cos x + 15$$
.

$$\mathbf{C}$$
 $f(x) = 2x + 5\cos x + 5.$

$$\mathbf{D} f(x) = 2x - 5\cos x + 10$$

CÂU 13. Cho hàm số f(x) thỏa mãn $f'(x) = ax^2 + \frac{b}{x^3}$, f'(1) = 3, f(1) = 2, $f\left(\frac{1}{2}\right) = -\frac{1}{12}$.

Khi đó 2a + b bằng 3

$$\textcircled{\textbf{A}}-\frac{3}{2}.$$

$$lackbox{\textbf{B}} 0.$$

$$\bigcirc 5.$$

$$\bigcirc \frac{3}{2}$$

CÂU 14. Tìm một nguyên hàm F(x) của hàm số $f(x) = ax + \frac{b}{x^2}$ $(x \neq 0)$, biết rằng

(A)
$$F(x) = \frac{3}{2}x^2 + \frac{3}{4x} - \frac{7}{4}$$
.

B
$$F(x) = \frac{3}{4}x^2 - \frac{3}{2x} - \frac{7}{4}$$

$$F(-1) = 1, F(1) = 4, f(1) = 0.$$

$$\mathbf{A} F(x) = \frac{3}{2}x^2 + \frac{3}{4x} - \frac{7}{4}.$$

$$\mathbf{C} F(x) = \frac{3}{4}x^2 + \frac{3}{2x} + \frac{7}{4}.$$

B
$$F(x) = \frac{3}{4}x^2 - \frac{3}{2x} - \frac{7}{4}$$
.
D $F(x) = \frac{3}{2}x^2 - \frac{3}{2x} - \frac{1}{2}$.

CÂU 15. Cho hàm số f(x) xác định trên $\mathbb{R}\setminus\{0\}$ thỏa mãn $f'(x)=\frac{x+1}{x^2}, f(-2)=\frac{3}{2}$ và

 $f(2) = 2 \ln 2 - \frac{3}{2}$. Giá trị của biểu thức f(-1) + f(4) bằng $\underbrace{6 \ln 2 - 3}_{4} .$ $\underbrace{6 \ln 2 + 3}_{4} .$ $\underbrace{6 \ln 2 + 3}_{4} .$

$$\bigcirc \frac{8 \ln 2 + 3}{4}$$

CÂU 16. Cho hàm số $f(x) = 2x + e^x$. Một nguyên hàm F(x) của hàm số f(x) thỏa mãn F(0) = 2024. Biết $F(x) = ax^2 + be^x + c$, giá trị của a + b + c là

CÂU 17. Cho F(x) là một nguyên hàm của hàm số $f(x) = \sin x + 1$ biết $F\left(\frac{\pi}{6}\right) = 0$. Tính giá trị của $F(\pi)$. (Làm tròn đến chữ số thập phân thứ hai)

CÂU 18. Cho F(x) là một nguyên hàm của $f(x) = (5x+3)^5$. Biết F(1) = 0. Tính giá trị của $\sqrt{|F(0)|}$. (Làm tròn đến chữ số thập phân thứ nhất)

CÂU 19. Cho F(x) là một nguyên hàm của $f(x) = x^3 - 4x + 5$. Biết F(1) = 3. Tính |F(0)|.

CÂU 20. Cho F(x) là một nguyên hàm của $f(x) = 3 - 5\cos x$. Biết $F(\pi) = 2$. Tính $F\left(\frac{\pi}{2}\right)$. (Làm tròn đến chữ số thập phân thứ nhất)

CÂU 21. Cho F(x) là một nguyên hàm của $f(x) = \frac{3-5x^2}{x}$. Biết F(e) = 1. Tính F(2). (Làm tròn đến chữ số thập phân thứ hai)

KQ:

CÂU 22. Cho F(x) là một nguyên hàm của $f(x)=\frac{x^2+1}{x}$. Biết $F(1)=\frac{3}{2}$. Tính F(-1).

CÂU 23. Cho F(x) là một nguyên hàm của hàm số $f(x) = \frac{x^3 - 1}{x^2}$. Biết F(-2) = 0. Tính giá trị của F(2).

CÂU 24. Cho F(x) là một nguyên hàm của hàm số $f(x) = x\sqrt{x} + \frac{1}{\sqrt{x}}$. Biết F(1) = -2. Tính F(0).

CÂU 25. Cho F(x) là một nguyên hàm của hàm số $f(x) = \sin x + 1$. Biết $F\left(\frac{\pi}{6}\right) = 0$. Tính F(-1). (Làm tròn đến chữ số thập phân thứ nhất)

QUICK NOTE	KQ:
	CÂU 26. Cho $F(x)$ là một nguyên hàm của $f(x) = 2024 - \sin^2 \frac{x}{2}$. Biết $F\left(\frac{\pi}{2}\right) = 2025$. Tính
	CHO 20. Cho $f(x)$ là một nguyên năm của $f(x) = 2024^{\circ}$ sin $\frac{1}{2}$. Bict $f(\frac{1}{2}) = 2029$. Thin $\sqrt{ F(0) }$. (Làm tròn đến chữ số thập phân thứ nhất)
	KQ:
	CÂU 27. Cho $F(x)$ là một nguyên hàm của $f(x) = \sin^2 \frac{x}{4} \cdot \cos^2 \frac{x}{4}$. Biết $F\left(\frac{\pi}{3}\right) = 0$. Tính giá trị của $F(\pi)$. (Làm tròn đến chữ số thập phân thứ hai)
	KQ:
	IV.Q.
	CÂU 28. Cho hàm số $f(x) = \begin{cases} 2x+5 & \text{khi } x \geq 1 \\ 3x^2+4 & \text{khi } x < 1. \end{cases}$ Giả sử F là nguyên hàm của f trên \mathbb{R}
	thỏa mãn $F(0) = 2$. Giá trị của $F(-1) + 2F(2)$.
	KQ:
	1
	CÂU 29. Gọi $F(x)$ là một nguyên hàm của hàm số $f(x) = 2^x$, thỏa mãn $F(0) = \frac{1}{\ln 2}$. Giá
	trị biểu thức $T = F(0) + F(1) + \dots + F(2018) + F(2019)$ có dạng $\frac{2^{2020} + a}{\ln h}$. Giá trị của $\frac{a}{h}$
	$\ln b$
	KQ:
	1
	CÂU 30. Cho $F(x)$ là một nguyên hàm của hàm số $f(x) = \frac{1}{\cos^2 x}$. Biết $F\left(\frac{\pi}{4} + k\pi\right) = k$
	với mọi $k \in \mathbb{Z}$. Tính giá trị của biểu thức $T = F(0) + F(\pi) + F(2\pi) + \cdots + F(10\pi)$.
	KQ:
	CÂU 31. Hàm số $f(x)$ có đạo hàm liên tục trên \mathbb{R} và $f'(x) = 2024 - 2\sin^2\frac{x}{2}$, $\forall x$;
	$f\left(\frac{\pi}{2}\right) = \frac{2023\pi}{2}$. Tính giá trị của $f(0)$.
	KQ:
	CÂU 32. Hàm số $f(x)$ có đạo hàm liên tục trên \mathbb{R} và $f'(x) = 1 + e^{2x}$, $\forall x$; $f(0) = 2$. Tính giá trị của $f(2)$. (Làm tròn đến số thập phân thứ nhất)
	KQ:
	CÂU 33. Hàm số $f(x)$ có đạo hàm liên tục trên \mathbb{R} và $f'(x) = 2^x + 3^x$, $\forall x$; $f(0) = \frac{1}{\ln 3}$. Tính
	giá trị của $f(1)$. (Làm tròn đến số thập phân thứ hai)
	KQ:
	CÂU 34. Hàm số $f(x)$ có đạo hàm liên tục trên \mathbb{R} và $f'(x) = e^{3x+2024}$, $\forall x$ thoả mã $f(-675) = 1$. Giá trị của $f(-674)$ bằng
	KQ:
	MQ.
	CÂU 35. Hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb R$ và $f'(x)=3^{x+2}\cdot 2^{2x+1}, \ \forall x$ thoả mãn
	$ = \frac{1}{2\ln 2}. $
	Giá trị của $f(1)$ bằng
	KQ:
	CÂU 36. Hàm số $f(x)$ có đạo bàm liên tực trên \mathbb{D} và $f'(x) = (9x + 5x)^2 \ \forall x + 1x^2 = x^2$
	CÂU 36. Hàm số $f(x)$ có đạo hàm liên tục trên \mathbb{R} và $f'(x) = (3^x + 5^x)^2$, $\forall x$ thoả mãn
	$f(0) = \frac{1}{\ln 5 + \ln 3 + \ln 2}$. Giá trị của $f(1)$ bằng
	KO:

......

.....

......

3

Ứng dung trong bài toán thực tiễn

Giả sử v(t) là vận tốc của vật M tại thời điểm t và s(t) là quãng đường vật đi được sau khoảng thời gian t tính từ lúc bắt đầu chuyển động. Ta có mối liên hệ giữa s(t) và v(t) như sau.

- Θ Đạo hàm của quãng đường là vận tốc s'(t) = v(t).
- $\ensuremath{\mathbf{\Theta}}$ Nguyên hàm của vận tốc là quãng đường
 $s(t)=\int v(t)\,\mathrm{d}t.$

Nếu gọi a(t) là gia tốc của vật M thì ta có mối liên hệ giữa v(t) và a(t) như sau.

- $oldsymbol{\Theta}$ Đạo hàm của vận tốc là gia tốc v'(t) = a(t).
- $m{\Theta}$ Nguyên hàm của gia tốc là vận tốc $v(t)=\int a(t)\,\mathrm{d}t.$

CÂU 1. Một ô tô đang chạy với vận tốc 20 m/s thì người lái đạp phanh. Sau khi đạp phanh, ô tô chuyển động chậm dần đều với vận tốc v(t)=-40t+20 m/s, trong đó t là khoảng thời gian tính bằng giây kể từ lúc bắt đầu đạp phanh. Gọi s(t) là quãng đường xe ô tô đi được trong thời gian t (giây) kể từ lúc đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?

- (A) 5 cm.
- **B** 7,5 m.
- $\bigcirc \frac{5}{2}$ m.
- **D** 5 m.

CÂU 2. Bạn Minh Hiền ngồi trên máy bay đi du lịch thế giới với vận tốc chuyển động của máy báy là $v(t)=3t^2+5~(\mathrm{m/s})$. Quãng đường máy bay bay từ giây thứ 4 đến giây thứ 10 là

- **(A)** 36 m.
- **(B)** 252 m.
- **(c)** 1134 m.
- **(D**) 966 m.

CÂU 3. Một ô tô đang chạy với vận tốc 12 m/s thì người lái đạp phanh; từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) = -6t + 12 (m/s), trong đó t là khoảng thời gian tính bằng giây kể từ lúc đạp phanh. Hỏi từ lúc đạp phanh đến khi ô tô dừng hẳn, ô tô còn di chuyển được bao nhiêu mét?

- (**A**) 24 m.
- **(B)** 12 m.
- **(c)** 6 m.
- **(D)** 0,4 m.

CÂU 4. Một ô tô đang chạy với vận tốc 36 km/h thì tăng tốc chuyển động nhanh dần đều với gia tốc $a(t)=1+\frac{t}{3}~(\text{m/s}^2)$ tính quãng đường ô tô đi được sau 6 giây kể từ khi ô tô bắt đầu tăng tốc.

- (A) S = 90 m.
- **B** S = 246 m.
- $(\mathbf{c}) S = 58 \text{ m}$
- $(\mathbf{D})S = 100 \text{ m}.$

CÂU 5. Một ca nô đang chạy trên hồ Tây với vận tốc 20 m/s thì hết xăng; từ thời điểm đó, ca nô chuyển động chậm dần đều với vận tốc v(t) = -5t + 20 (m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc hết xăng. Hỏi từ lúc hết xăng đến lúc ca nô dừng hẳn thì ca nô đi được bao nhiêu mét?

- (**A**) 10 m.
- **(B)** 20 m.
- **(C)** 30 m.
- **(D)** 40 m.

CÂU 6. Một vật chuyển động với vận tốc 10 m/s thì tăng tốc với gia tốc được tính theo thời gian t là $a(t)=3t+t^2$ (m²/s). Tính quãng đường vật đi được trong 10s kể từ khi bắt đầu tăng tốc.

- \bigcirc $\frac{130}{3}$ m.
- **B** $\frac{310}{3}$ m.
- \bigcirc $\frac{3400}{3}$ m.

CÂU 7. Tại một nơi không có gió, một chiếc khí cầu đang đứng yên ở độ cao 162 m so với mặt đất đã được phi công cài đặt cho nó chế độ chuyển động đi xuống. Biết rằng, khí cầu đã chuyển động theo phương thẳng đứng với vận tốc tuân theo quy luật $v(t)=10t-t^2$, trong đó t (phút) là thời gian tính từ lúc bắt đầu chuyển động, v(t) được tính theo đơn vị mét/phút (m/p). Nếu như vậy thì khi bắt đầu tiếp đất vận tốc v của khí cầu là

- (\mathbf{A}) 5 m/p.
- **(B)** 7 m/p.
- **(C)** 9 m/p.
- $(\mathbf{D})3 \text{ m/p}$

QUICK NOTE	CÂU 8. Một viên đạn được bắn lên theo phương thẳng đứng với vận tốc gia tốc trọng trường là 9,8 m/s ² . Quãng đường viên đạn đi được từ l			
	chạm đất gần bằng kết quả nào nhất trong các kết quả sau? (A) 30,78 m. (B) 31,89 m. (C) 32,43 m.	D 33,8	88 m.	
	CÂU 9. Trong một đợt xả lũ, nhà máy thủy điện đã xả lũ trong 40 p	phút [,]	với tố	c độ lưu
	lượng nước tại thời điểm t giây là $h'(t) = 10t + 500 \text{ (m}^3/\text{s)}$. Hỏi sau thờ			
	hồ thoát nước của nhà máy đã thoát đi một lượng nước là bao nhiêu? $(A) 5 \cdot 10^4 \text{ m}^3$. $(B) 4 \cdot 10^6 \text{ m}^3$. $(C) 3 \cdot 10^7 \text{ m}^3$.	$\mathbf{D})6\cdot 1$	106 m	3
	CÂU 10. Một bác thợ xây bơm nước vào bể chứa nước. Gọi $h(t)$ là thể sau t giây. Cho $h'(t) = 3at^2 + bt$ (m ³ /s) và ban đầu bể không có nước			
	tích nước trong bể là 150 m³. Sau 10 giây thì thể tích nước trong bể l			
	tích nước trong bể sau khi bơm được 20 giây là bao nhiều. (A) 8400 m ³ . (B) 7400 m ³ . (C) 6000 m ³ .	D) 420	0 m ³	
	CÂU 11. Gọi $h(t)$ (m) là mực nước ở bồn chứa sau khi bơm nước đư	_		_
	$h'(t) = \frac{1}{5}\sqrt[3]{t}$ (m/s) và lúc đầu bồn không có nước. Tìm mức nước ở bồn	n sau	khi b	om nươc
	được 6 giây (làm tròn kết quả đến hàng phần trăm). $\textcircled{\textbf{A}}$ 2,64 m. $\textcircled{\textbf{B}}$ 1,22 m. $\textcircled{\textbf{C}}$ 2,22 m.	D) 1,64	1 m	
				1000
	CÂU 12. Sự sản sinh vi rút Zika ngày thứ t có số lượng là $N(t)$ con, bi	iết N'	'(t) =	$\frac{1000}{t}$ và
	lúc đầu đám vi rút có số lượng 250,000 con. Tính số lượng vi rút sau 10	0 ngày	y.	
		D) 252		
	CÂU 13. Một chiếc ô tô đang chạy với vận tốc 15 m/s thì nhìn thấy ch đường cách đó 50 m, người lái xe hãm phanh khẩn cấp. Sau khi hãm			
	duong cach do số hi, người lài xẽ hàm phảm khán cấp. Sáu khi hàm động chậm dần đều với vận tốc $v(t) = -3t + 15$ (m/s), trong đó t (giây			
	đường xe ô tô đi được trong thời gian t (giây) kể từ lúc đạp phanh. Hổ	oi từ l	úc hãi	m phanh
	đến khi dừng hẳn, ô tô di chuyển được bao nhiêu mét?			
	KQ:			
	CÂU 14. Một chiếc ô tô đang chạy với vận tốc 72 km/h thì nhìn thấy c			
	đường cách đó 40 m, người lái xe hãm phanh khẩn cấp. Sau khi hãm động chậm dần đều với vận tốc $v(t) = -10t + 20$ (m/s), trong đó t tính			
	là quãng đường xe ô tô đi được trong thời gian t (giây) kể từ lúc đạp pha			
	phanh đến khi dừng hẳn, ô tô di chuyển được bao nhiêu mét?			
	KQ:			
	CÂU 15. Một viên đạn được bắn lên theo phương thẳng đứng từ mặt			
	t giây vận tốc của nó được cho bởi công thức $v(t) = 24.5 - 9.8t$ (m/s).	đất.	Tai ti	hời điểm
		. Tính	ı quãr	
	viên đạn đi từ lúc bắn lên cho tới khi rơi xuống đất (<i>làm tròn tới hàng</i>	. Tính	ı quãr	
		. Tính	ı quãr	
	viên đạn đi từ lúc bắn lên cho tới khi rơi xuống đất (<i>làm tròn tới hàng</i>	Tính $don v$	n quãn vi).	ng đường
	viên đạn đi từ lúc bắn lên cho tới khi rơi xuống đất (<i>làm tròn tới hàng</i> KQ: CÂU 16. Mực nước trong hồ chứa của nhà máy điện thủy triều thay ngày do nước chảy ra khi thủy triều xuống và nước chảy vào khi thủy	. Tính dơn v đổi tr triều	rong s	ng đường suốt một như hình
	viên đạn đi từ lúc bắn lên cho tới khi rơi xuống đất (<i>làm tròn tới hàng</i> KQ: CÂU 16. Mực nước trong hồ chứa của nhà máy điện thủy triều thay ngày do nước chảy ra khi thủy triều xuống và nước chảy vào khi thủy	. Tính dơn v đổi tr triều	rong s	ng đường suốt một như hình
	viên đạn đi từ lúc bắn lên cho tới khi rơi xuống đất (<i>làm tròn tới hàng</i> KQ: CÂU 16. Mực nước trong hồ chứa của nhà máy điện thủy triều thay ngày do nước chảy ra khi thủy triều xuống và nước chảy vào khi thủy vẽ). Tốc độ thay đổi của mực nước được xác định bởi hàm số $h'(t) =$ trong đó t tính bằng giờ ($0 \le t \le 24$), $h'(t)$ tính bằng mét/giờ. Tại th	. Tính $don v$	rong s $ \frac{\text{lên (r}}{t^2 - 1} $	ng đường suốt một t hình t
	viên đạn đi từ lúc bắn lên cho tới khi rơi xuống đất (<i>làm tròn tới hàng</i> KQ: CÂU 16. Mực nước trong hồ chứa của nhà máy điện thủy triều thay ngày do nước chảy ra khi thủy triều xuống và nước chảy vào khi thủy vẽ). Tốc độ thay đổi của mực nước được xác định bởi hàm số $h'(t) =$ trong đó t tính bằng giờ ($0 \le t \le 24$), $h'(t)$ tính bằng mét/giờ. Tại th nước trong hồ chứa cao 8 m. Mực nước trong hồ cao nhất là bao nhiêu trong hồ chứa cao 8 m.	. Tính $don v$	rong s $ \frac{\text{lên (r}}{t^2 - 1} $	ng đường suốt một t hình t
	viên đạn đi từ lúc bắn lên cho tới khi rơi xuống đất (<i>làm tròn tới hàng</i> KQ: CÂU 16. Mực nước trong hồ chứa của nhà máy điện thủy triều thay ngày do nước chảy ra khi thủy triều xuống và nước chảy vào khi thủy vẽ). Tốc độ thay đổi của mực nước được xác định bởi hàm số $h'(t) =$ trong đó t tính bằng giờ ($0 \le t \le 24$), $h'(t)$ tính bằng mét/giờ. Tại th	. Tính $don v$	rong s $ \frac{\text{lên (r}}{t^2 - 1} $	ng đường suốt một t hình t
	viên đạn đi từ lúc bắn lên cho tới khi rơi xuống đất (<i>làm tròn tới hàng</i> KQ: CÂU 16. Mực nước trong hồ chứa của nhà máy điện thủy triều thay ngày do nước chảy ra khi thủy triều xuống và nước chảy vào khi thủy vẽ). Tốc độ thay đổi của mực nước được xác định bởi hàm số $h'(t) =$ trong đó t tính bằng giờ ($0 \le t \le 24$), $h'(t)$ tính bằng mét/giờ. Tại th nước trong hồ chứa cao 8 m. Mực nước trong hồ cao nhất là bao nhiêu KQ: CÂU 17. Gọi $h(t)$ là chiều cao của cây keo (tính theo mét) sau khi trồi	. Tính $don v$	rong s lên (r $t^2 - 1$ km $t = 1$	suốt một như hình $7t + 60)$ = 0, mực
	viên đạn đi từ lúc bắn lên cho tới khi rơi xuống đất (<i>làm tròn tới hàng</i> KQ: CÂU 16. Mực nước trong hồ chứa của nhà máy điện thủy triều thay ngày do nước chảy ra khi thủy triều xuống và nước chảy vào khi thủy vẽ). Tốc độ thay đổi của mực nước được xác định bởi hàm số $h'(t) =$ trong đó t tính bằng giờ ($0 \le t \le 24$), $h'(t)$ tính bằng mét/giờ. Tại th nước trong hồ chứa cao 8 m. Mực nước trong hồ cao nhất là bao nhiêu KQ: CÂU 17. Gọi $h(t)$ là chiều cao của cây keo (tính theo mét) sau khi trồi	. Tính $don v$	rong s lên (r $t^2 - 1$ km $t = 1$	suốt một như hình $7t + 60$) = 0, mực
	viên đạn đi từ lúc bắn lên cho tới khi rơi xuống đất (<i>làm tròn tới hàng</i> KQ: CÂU 16. Mực nước trong hồ chứa của nhà máy điện thủy triều thay ngày do nước chảy ra khi thủy triều xuống và nước chảy vào khi thủy vẽ). Tốc độ thay đổi của mực nước được xác định bởi hàm số $h'(t) =$ trong đó t tính bằng giờ ($0 \le t \le 24$), $h'(t)$ tính bằng mét/giờ. Tại th nước trong hồ chứa cao 8 m. Mực nước trong hồ cao nhất là bao nhiêu KQ: CÂU 17. Gọi $h(t)$ là chiều cao của cây keo (tính theo mét) sau khi trồn năm đầu tiên cây cao $1,5$ m, trong những năm tiếp theo, cây phát triển vớ	. Tính $don v$	rong s lên (r $t^2 - 1$ 'èm $t =$	suốt một như hình $7t + 60$) = 0 , mực Siết rằng $(t) = \frac{1}{\sqrt[4]{t}}$
	viên đạn đi từ lúc bắn lên cho tới khi rơi xuống đất (<i>làm tròn tới hàng</i> KQ: CÂU 16. Mực nước trong hồ chứa của nhà máy điện thủy triều thay ngày do nước chảy ra khi thủy triều xuống và nước chảy vào khi thủy vẽ). Tốc độ thay đổi của mực nước được xác định bởi hàm số $h'(t) =$ trong đó t tính bằng giờ ($0 \le t \le 24$), $h'(t)$ tính bằng mét/giờ. Tại th nước trong hồ chứa cao 8 m. Mực nước trong hồ cao nhất là bao nhiêu KQ: CÂU 17. Gọi $h(t)$ là chiều cao của cây keo (tính theo mét) sau khi trồn năm đầu tiên cây cao $1,5$ m, trong những năm tiếp theo, cây phát triển vớ (mét/năm). Sau bao nhiêu năm cây cao được 3 m (<i>kết quả làm tròn tới</i>	. Tính $don v$	rong s lên (r $t^2 - 1$ 'èm $t =$	suốt một như hình $7t + 60$) = 0 , mực t Siết rằng t
	viên đạn đi từ lúc bắn lên cho tới khi rơi xuống đất (<i>làm tròn tới hàng</i> KQ: CÂU 16. Mực nước trong hồ chứa của nhà máy điện thủy triều thay ngày do nước chảy ra khi thủy triều xuống và nước chảy vào khi thủy vẽ). Tốc độ thay đổi của mực nước được xác định bởi hàm số $h'(t) = \text{trong dó } t$ tính bằng giờ ($0 \le t \le 24$), $h'(t)$ tính bằng mét/giờ. Tại th nước trong hồ chứa cao 8 m. Mực nước trong hồ cao nhất là bao nhiêu KQ: CÂU 17. Gọi $h(t)$ là chiều cao của cây keo (tính theo mét) sau khi trồn năm đầu tiên cây cao 1,5 m, trong những năm tiếp theo, cây phát triển vớ (mét/năm). Sau bao nhiêu năm cây cao được 3 m (<i>kết quả làm tròn tới</i> KQ:	. Tính $don v$	rong s lên (r $t^2 - 1$ ểm $t = \frac{1}{4}$ độ h' ($t = \frac{1}{4}$ $t = \frac{1}{4}$	suốt một như hình $7t + 60$) $= 0, \text{ mực}$ $Biết rằng t = \frac{1}{\sqrt[4]{t}} t trăm).$
	viên đạn đi từ lúc bắn lên cho tới khi rơi xuống đất (<i>làm tròn tới hàng</i> KQ: CÂU 16. Mực nước trong hồ chứa của nhà máy điện thủy triều thay ngày do nước chảy ra khi thủy triều xuống và nước chảy vào khi thủy vẽ). Tốc độ thay đổi của mực nước được xác định bởi hàm số $h'(t) = $ trong đó t tính bằng giờ ($0 \le t \le 24$), $h'(t)$ tính bằng mét/giờ. Tại th nước trong hồ chứa cao 8 m. Mực nước trong hồ cao nhất là bao nhiêu KQ: CÂU 17. Gọi $h(t)$ là chiều cao của cây keo (tính theo mét) sau khi trồn năm đầu tiên cây cao $1,5$ m, trong những năm tiếp theo, cây phát triển vớ (mét/năm). Sau bao nhiêu năm cây cao được 3 m ($k\acute{e}t$ $quả$ $l\grave{a}m$ $tròn$ $tới$ KQ: CÂU 18. Người ta bơm nước vào một bồn chứa, lúc đầu bồn không chứ	. Tính $dơn v$	rong s lên (r $t^2 - 1$ ểm $t = \frac{1}{2}$ độ h' ($q phần$	suốt một như hình $7t + 60$) $= 0, \text{ mực}$ Biết rằng $(t) = \frac{1}{\sqrt[4]{t}}$ $\frac{1}{\sqrt[4]{t}}$ ức nước \hat{c}
	 viên đạn đi từ lúc bắn lên cho tới khi rơi xuống đất (<i>làm tròn tới hàng</i> KQ: CÂU 16. Mực nước trong hồ chứa của nhà máy điện thủy triều thay ngày do nước chảy ra khi thủy triều xuống và nước chảy vào khi thủy vẽ). Tốc độ thay đổi của mực nước được xác định bởi hàm số h'(t) = trong đó t tính bằng giờ (0 ≤ t ≤ 24), h'(t) tính bằng mét/giờ. Tại th nước trong hồ chứa cao 8 m. Mực nước trong hồ cao nhất là bao nhiêu KQ: CÂU 17. Gọi h(t) là chiều cao của cây keo (tính theo mét) sau khi trồi năm đầu tiên cây cao 1,5 m, trong những năm tiếp theo, cây phát triển với (mét/năm). Sau bao nhiêu năm cây cao được 3 m (kết quả làm tròn tới KQ: CÂU 18. Người ta bơm nước vào một bồn chứa, lúc đầu bồn không chứ bồn chứa sau khi bơm phụ thuộc vào thời gian bơm nước theo một hài 	. Tính $dơn v$	rong s lên (r $t^2 - 1$ $t = $	suốt một như hình $7t + 60$) = 0 , mực $t = 0$ suốt rằng $t = 0$ suốt rằng $t = 0$ suốt $t = 0$ sực $t = 0$ sực $t = 0$ sực nước $t = 0$ ($t = 0$) trong
	viên đạn đi từ lúc bắn lên cho tới khi rơi xuống đất (<i>làm tròn tới hàng</i> KQ: CÂU 16. Mực nước trong hồ chứa của nhà máy điện thủy triều thay ngày do nước chảy ra khi thủy triều xuống và nước chảy vào khi thủy vẽ). Tốc độ thay đổi của mực nước được xác định bởi hàm số $h'(t) = $ trong đó t tính bằng giờ ($0 \le t \le 24$), $h'(t)$ tính bằng mét/giờ. Tại th nước trong hồ chứa cao 8 m. Mực nước trong hồ cao nhất là bao nhiêu KQ: CÂU 17. Gọi $h(t)$ là chiều cao của cây keo (tính theo mét) sau khi trồn năm đầu tiên cây cao $1,5$ m, trong những năm tiếp theo, cây phát triển vớ (mét/năm). Sau bao nhiêu năm cây cao được 3 m ($k\acute{e}t$ $quả$ $l\grave{a}m$ $tròn$ $tới$ KQ: CÂU 18. Người ta bơm nước vào một bồn chứa, lúc đầu bồn không chứ	. Tính $dơn v$	rong s lên (r $t^2 - 1$ $t = $	suốt một như hình $7t + 60$) = 0 , mực $t = 0$ suốt rằng $t = 0$ suốt rằng $t = 0$ suốt $t = 0$ sực $t = 0$ sực $t = 0$ sực nước $t = 0$ ($t = 0$) trong

CÂU 19. Khi quan sát một đám vi khuẩn trong phòng thí nghiệm người ta thấy tại ngày thứ t có số lượng là N(t). Biết rằng $N'(t) = \frac{1500}{t}$ và tại ngày thứ nhất số lượng vi khuẩn là 5000 con. Tính số lượng vi khuẩn tại ngày thứ 12 (*làm tròn đến hàng đơn vị*).

KQ:				
-----	--	--	--	--

CÂU 20. Vi khuẩn HP (Helicobacter pylori) gây đau dạ dày, tại ngày thứ t với số lượng là F(t). Biết $F'(t) = \frac{600}{t}$ và ban đầu bệnh nhân có 2000 con vi khuẩn. Sau 15 ngày bệnh nhân phát hiện ra bị bệnh. Hỏi khi đó có bao nhiêu con vi khuẩn trong dạ dày (lấy xấp xỉ tới hàng đơn vị)? Biết rằng nếu phát hiện sớm khi số lượng không vượt quá 4000 con thì bệnh nhân sẽ được cứu chữa.

KQ:			

Bài 2. TÍCH PHÂN

A. LÝ THUYẾT CẦN NHỚ

1. Diện tích hình thang cong

Nếu hàm số f(x) liên tục và không âm trên đoạn [a;b] thì diện tích S của hình thang cong giới hạn bởi đồ thị y=f(x), trục hoành và hai đường thẳng x=a, x=b được tính bởi: S=F(b)-F(a) trong đó F(x) là một nguyên hàm của f(x) trên đoạn [a;b].

2. Khái niệm tích phân

Cho hàm số f(x) liên tục trên đoạn [a;b]. Nếu F(x) là nguyên hàm của hàm số f(x) trên đoạn [a;b] thì hiệu số F(b) - F(a) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu

$$\int_{a}^{b} f(x) dx.$$

A Chú ý:

- $oldsymbol{\Theta}$ Hiệu số F(b)-F(a) còn được kí hiệu là $F(x)\Big|_a^b$. $V \hat{a} y \int\limits_a^b f(x) \mathrm{d} x = F(x)\Big|_a^b = F(b)-F(a).$
- $m{\Theta}$ Ta gọi $\int\limits_a^b$ là dấu tích phân, a là cận dưới, b là cận trên, $f(x) \mathrm{d}x$ là biểu thức dưới dấu tích phân và f(x) là hàm số dưới dấu tích phân.
- $Quy \ \textit{u\'oc}: \int_{a}^{a} f(x) dx = 0; \int_{a}^{b} f(x) dx = \int_{a}^{a} f(x) dx.$
- $m{\Theta}$ Tích phân của hàm số f từ a đến b chỉ phụ thuộc vào f và các cận a, b mà không phụ thuộc vào biến x hay t, nghĩa là $\int\limits_a^b f(x) \mathrm{d}x = \int\limits_a^b f(t) \mathrm{d}t$.
- Ý nghĩa hình học của tích phân.

	aoioit	
• • • • • • •		

		-	 		4
ລເ	П	\sim	Ν	\sim	
SΑL	"	•	N	O	ш

Nếu hàm số f(x) liên tục và không âm trên đoạn [a;b] thì $\int f(x)dx$ là diện tích S của

hình thang cong giới hạn bởi đồ thị y = f(x), truc hoành và hai đường thẳng x = a, x = b.

$$S = \int_{a}^{b} f(x) \, \mathrm{d}x.$$

7 NHẬN XÉT. $oldsymbol{\Theta}$ Nếu hàm số f(x) có đạo hàm f'(x) và f'(x) liên tục trên đoạn [a;b] thì

$$f(b) - f(a) = \int_{a}^{b} f'(x) dx.$$

- $m{\Theta}$ Cho hàm số f(x) liên tục trên đoạn [a;b]. Khi đó $\frac{1}{b-a}\int f(x)\mathrm{d}x$ được gọi là giá trị trung bình của hàm số f(x) trên đoạn [a;b].
- ❷ Đạo hàm của quãng đường di chuyển của vật theo thời gian bằng tốc độ của chuyển động tại mọi thời điểm v(t) = s'(t). Do đó, nếu biết tốc độ v(t) tại mọi thời điểm $t \in [a; b]$ thì tính được quãng đường di chuyển trong khoảng thời gian từ a đến b theo công thức: $s = s(b) - s(a) = \int v(t) dt$.

3. Tính chất của tích phân

Cho hai hàm số f(x), g(x) liên tục trên đoạn [a;b]. Khi đó:

a)
$$\int_a^b kf(x)dx = k \int_a^b f(x)dx$$
, với k là hằng số.

b)
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx.$$

c)
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx \text{ v\'oi } c \in (a; b).$$

B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP

Tính chất của tích phân

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Nếu $\int_0^x f(x) dx = 6$ thì $\int_0^x \left[\frac{1}{3} f(x) + 2 \right] dx$ bằng

CÂU 2. Nếu $\int_{1}^{4} f(x) dx = 3$ và $\int_{1}^{4} g(x) dx = -2$ thì $\int_{1}^{4} (f(x) - g(x)) dx$ bằng **(A)** -1. **(B)** -5. **(D)** 1.

CÂU 3. Nếu $\int_{-1}^{4} f(x) dx = 5$ và $\int_{-1}^{4} g(x) dx = -4$ thì $\int_{-1}^{4} [f(x) - g(x)] dx$ bằng

CÂU 4. Biết
$$\int_{1}^{2024} f(x) dx = -3 \text{ và } \int_{2024}^{1} g(x) dx = 2.$$
 Khi đó $\int_{1}^{2024} [f(x) - g(x)] dx$ bằng **(A)** 6. **(B)** -5. **(C)** 5. **(D)** -1.

CÂU 5. Nếu
$$\int_{-3}^{3} f(x) dx = 3 thì \int_{-3}^{3} 4f(x) dx$$
 bằng

$$\bigcirc$$
 4.

CÂU 6. Cho
$$\int_{0}^{2} f(x) dx = \frac{1}{2024}$$
. Tính $I = \int_{0}^{2} 2024 f(x) dx$.

A
$$I = 5$$
.

B
$$I = \frac{1}{2024}$$
.

©
$$I = 1$$
.

D
$$I = 2024$$
.

CÂU 7. Nếu
$$\int_{0}^{5} f(x) dx = 5 \text{ thì } \int_{\xi}^{0} 5f(x) dx \text{ bằng}$$

B
$$-1$$
.

$$\bigcirc$$
 -25.

CÂU 8. Nếu
$$\int_{0}^{2} f(x) dx = 5 \text{ thì } \int_{0}^{2} [2f(x) - 1] dx \text{ bằng}$$

$$\bigcirc$$
 12.

CÂU 9. Nếu
$$\int_0^2 f(x)dx = 3$$
 thì $\int_0^2 [2f(x) - 1] dx$ bằng

$$(\mathbf{A})$$
 6.

$$\bigcirc$$
 5.

CÂU 10. Cho
$$\int_{0}^{1} f(x) dx = 2 \text{ và } \int_{0}^{1} g(x) dx = 5, \text{ khi } \int_{0}^{1} [f(x) - 2g(x)] dx \text{ bằng}$$

$$\bigcirc -8$$

$$(\mathbf{C})$$
 -3

CÂU 11. Cho
$$\int_{0}^{\frac{\pi}{2}} f(x) dx = 5$$
. Tính $I = \int_{0}^{\frac{\pi}{2}} [f(x) + 2\sin x] dx$.

B
$$I = 5 + \frac{\pi}{2}$$

©
$$I = 3$$
.

$$\mathbf{\widehat{D}})I = 5 + \pi.$$

CÂU 12. Cho
$$\int_{1}^{2} [4f(x) - 2x] dx = 1$$
. Khi đó $\int_{1}^{2} f(x) dx$ bằng

(A) 1.

\bigcirc -3	3
-----------------	---

$$(D) -1.$$

Phần II. Trong mỗi ý a), b), c) và d) ở mỗi câu, học sinh chọn đúng hoặc sai. **CÂU 13.** Cho hai hàm f, g liên tục trên K và a, b là các số bất kỳ thuộc K.

Mệnh đề	Ð	S
a) $\int_{a}^{b} [f(x) + 2g(x)] dx = \int_{a}^{b} f(x) dx + 2 \int_{a}^{b} g(x) dx.$		
$\mathbf{b}) \int_{a}^{b} \frac{f(x)}{g(x)} dx = \frac{\int_{a}^{b} f(x) dx}{\int_{a}^{b} g(x) dx}.$		
$\mathbf{c)} \int_{a}^{b} [f(x) \cdot g(x)] \mathrm{d}x = \int_{a}^{b} f(x) \mathrm{d}x \int_{a}^{b} g(x) \mathrm{d}x.$		
$\mathbf{d}) \int_{a}^{b} f^{2}(x) \mathrm{d}x = \left[\int_{a}^{b} f(x) \mathrm{d}x \right]^{2}.$		

\sim		•			
വ	K	N		Т	
			J	ш	-

•	•	•	•						•	•	•	•	•	•						•	•	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	۰	•	•	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	٠	•	۰	۰	٠	٠	٠	٠	٠	٠	•	•	

 • • • • • • • • •	

	•	•	•	•	•			•	•		•		•	•				•	•		•	•	

	 •															

	•	•																•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
٠	•	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•

		_			_	
ည၊	III	_	_	N	$\overline{}$	тт
71		•		N	u	

CÂU 14. Cho hàm số f(x), g(x) liên tục trên \mathbb{R} .

Mệnh đề	Đ	\mathbf{S}
a) Nếu $\int_{0}^{2} f(x) dx = 4 \text{ thì } \int_{0}^{2} \left[\frac{1}{2} f(x) + 2 \right] dx = 6.$		
b) Nếu $\int_{2}^{5} f(x) dx = 3 \text{ và } \int_{2}^{5} g(x) dx = -2 \text{ thì } \int_{2}^{5} [f(x) + g(x)] dx = 1.$		
c) Nếu $\int_{1}^{4} f(x) dx = 6$ và $\int_{1}^{4} g(x) dx = -5$ thì $\int_{1}^{4} [f(x) - g(x)] dx = 1$.		
d) Nếu $\int_{2}^{3} f(x) dx = 4 \text{ và} \int_{2}^{3} g(x) dx = 1 \text{ thì } \int_{2}^{3} [f(x) - g(x)] dx = 3.$		

CÂU 15. Cho hàm số f(x), g(x) liên tục trên \mathbb{R} .

Mệnh đề	Ð	\mathbf{S}
a) Biết $\int_{2}^{3} f(x) dx = 3$ và $\int_{3}^{2} g(x) dx = 1$. Khi đó $\int_{2}^{3} [f(x) + g(x)] dx = 4$.		
b) Biết $\int_{1}^{3} f(x) dx = 2022 \text{ và } \int_{3}^{1} g(x) dx = 1$. Khi đó $\int_{1}^{3} [f(x) + g(x)] dx = 2021$.		
c) Biết $\int_{1}^{2} f(x) dx = 3$ và $\int_{1}^{2} g(x) dx = 2$. Khi đó $\int_{1}^{2} [f(x) - g(x)] dx = 1$.		
d) Biết $\int_{2}^{5} f(x) dx = 2$. Khi đó $\int_{2}^{5} 3f(x) dx = 2$.		

CÂU 16. Cho hàm số f(x) liên tục trên \mathbb{R} .

Mệnh đề	Đ	S
a) Nếu $\int_{0}^{3} f(x) dx = 3 \text{ thì } \int_{0}^{3} 2f(x) dx = 6.$		
b) Nếu $\int_{1}^{4} f(x) dx = 2024 \text{ th} $ $\int_{4}^{1} f(x) dx = -2024.$		
c) Nếu $\int_{6}^{0} f(x) dx = 12 \text{ thì } \int_{0}^{6} 2022 f(x) dx = 24264.$		
d) Nếu $\int_{0}^{1} f(x) dx = 4 \text{ thì } \int_{0}^{1} 2f(x) dx = 8.$		

Phần III. Học sinh điền kết quả vào ô trống.

CÂU 17. Cho
$$\int_{0}^{3} f(x) dx = 4$$
. Tính $I = \int_{0}^{3} 3f(x) dx$.

KQ:

CÂU 18. Cho $\int_{1}^{3} f(x) dx = 2$. Tính $I = \int_{1}^{3} [f(x) + 2x] dx$.

KQ:				
-----	--	--	--	--

CÂU 19. Cho
$$\int_{-1}^{2} f(x) dx = 2 \text{ và } \int_{-1}^{2} g(x) dx = -1.$$
 Tính $I = \int_{-1}^{2} \left[x + 2f(x) + 3g(x) \right] dx.$

CÂU 20. Cho $\int_{0}^{1} f(x) dx = 1$. Tính tích phân $I = \int_{0}^{1} \left[2f(x) - 3x^{2} \right] dx$.

CÂU 21. Biết $\int f(x) dx = 3$. Tính giá trị của $I = \int 2f(x) dx$.

Tích phân hàm số sơ cấp

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Tích phân $I = \int_{\hat{\Omega}} (2x+1) dx$ bằng

$$\mathbf{\widehat{A}}) I = 5.$$

$$\widehat{\mathbf{B}}) I = 6.$$

$$\bigcirc I = 2$$

$$\bigcirc I = 4.$$

CÂU 2. Tích phân $\int (3x+1)(x+3) dx$ bằng

(A) 12.

 (\mathbf{C}) 5.

 (\mathbf{D}) 6.

CÂU 3. Tính tích phân $I = \int \left(\frac{1}{x} - \frac{1}{x^2}\right) \mathrm{d}x$

$$\bigcirc$$
 $I = \frac{1}{2}$.

B
$$I = \frac{1}{e} + 1.$$
 C $I = 1.$

$$\mathbf{C}I = 1$$

$$\bigcirc I = e.$$

CÂU 4. Biết $\int\limits_{-c}^{3} \frac{x+2}{x} \, \mathrm{d}x = a+b \ln c$, với $a,\,b,\,c \in \mathbb{Z},\,c < 9$. Tính tổng S=a+b+c.

$$\mathbf{\widehat{A}} S = 7.$$

$$\bigcirc S = 5.$$

$$(\mathbf{C})S = 8.$$

$$\mathbf{D}S = 6.$$

CÂU 5. Tích phân $\int e^{3x+1} dx$ bằng

(A)
$$\frac{1}{3} (e^4 + e)$$
. **(B)** $e^3 - e$.

$$\mathbf{B} \, \mathrm{e}^3 - \mathrm{e}.$$

$$\bigcirc$$
 $\frac{1}{3} \left(e^4 - e \right)$

$$\bigcirc e^4 - e.$$

CÂU 6. Biết $\int\limits_0^{\hat{x}} \frac{\mathrm{e}^x}{2^x} \, \mathrm{d}x = \frac{\mathrm{e}-1}{a-\ln b}, \, (a,b\in\mathbb{Z})$. Khi đó giá trị của P=a+b là

$$\widehat{\mathbf{A}} P = -3.$$

$$\bigcirc P = 6.$$

$$\mathbf{\widehat{C}})P = -1.$$

CÂU 7. Giá trị của $I = \int\limits_{0}^{1} \frac{\mathrm{e}^{2x} - 4}{\mathrm{e}^{x} + 2} \,\mathrm{d}x$ bằng

A
$$I = 2 (e + 3)$$
.

(A)
$$I = 2 (e + 3)$$
. (B) $I = \frac{1}{2} (e + 3)$. (C) $I = e - 3$.

$$\bigcirc I = e - 3$$

$$I = 2 (e - 3).$$

CÂU 8. Biết $\int_{1}^{2} e^{x} \left(1 - \frac{e^{-x}}{x}\right) dx = e^{2} + a \cdot e + b \ln 2$, $(a, b \in \mathbb{Z})$. Khi đó giá trị của $P = \frac{a+b}{a \cdot b}$

$$\mathbf{A} P = -3.$$

$$\bigcirc P = 1$$

(C)
$$P = -1$$
.

$$(\mathbf{D})P = -2$$

ΩI	\mathbf{L}	Ν		
		II V	\mathbf{O}	 3

CÂU 9. Biết $I=\int\limits_0^1 \frac{\mathrm{e}^{2x-1}-\mathrm{e}^{-3x}+1}{\mathrm{e}^x}\,\mathrm{d}x=\frac{1}{a}+b,\,(a,b\in\mathbb{R}).$ Khi đó giá trị của $P=\frac{a+b}{a\cdot b}$

$$\mathbf{A} P = e^4 - 1$$

B
$$P = \frac{e^4 - 1}{e^2}$$
.

$$\bigcirc P = \frac{e^4 - 1}{e^4}.$$

(a)
$$P = e^4 - 1$$
. (b) $P = \frac{e^4 - 1}{e^2}$. (c) $P = \frac{e^4 - 1}{e^4}$.

CÂU 10. Giá trị của $\int \sin x \, dx$ bằng

 \bigcirc 0.

$$(c) -1$$

$$\bigcirc \frac{\pi}{2}$$
.

CÂU 11. Biết $\int_{-c}^{c} (2\sin x + 3\cos x + x) dx = \frac{a + b\sqrt{3}}{2} + \frac{\pi^2}{c}$, $(a, b, c \in \mathbb{Z})$. Khi đó giá trị của

P = a + 2b + 3c là

A
$$P = 45$$
.

$$\mathbf{(B)}\,P=60.$$

©
$$P = 65$$
.

(D)
$$P = 70$$
.

CÂU 12. Biết $\int\limits_{\pi}^{c} 3 \tan^2 x \, \mathrm{d}x = a \sqrt{3} + b + \frac{\pi}{c}$, $(a,b,c \in \mathbb{Z})$. Khi đó giá trị của P = a + b + c

$$\mathbf{B}) P = -4.$$

$$\bigcirc P = 4$$

CÂU 13. Biết $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \left(2\cot^2 x + 5\right) dx = \frac{\pi}{a} + b\sqrt{3} + c$, $(a, b, c \in \mathbb{Z})$. Khi đó giá trị của P = a + b + c là **(a)** P = 6. **(b)** P = -6.

$$\mathbf{\widehat{B}})P = -4$$

$$\bigcirc P = 4$$

$$\bigcirc P = -6.$$

CÂU 14. Biết $\int_{0}^{\frac{\pi}{2}} \sin^2 \frac{x}{4} \cos^2 \frac{x}{4} dx = \frac{\pi}{c} + \frac{a}{b}$ với $a, b \in \mathbb{Z}$ và $\frac{a}{b}$ là phân số tối giản. Khi đó giá

A
$$P = 17$$
.

$$\bigcirc P = 16.$$

$$(\mathbf{C})P = 32.$$

$$\bigcirc P = 49.$$

Phần II. Trong mỗi ý a), b), c) và d) ở mỗi câu, học sinh chọn đúng hoặc sai. **CÂU 15.** Cho hàm số y = f(x) liên tục trên [a; b]. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Đ	\mathbf{S}
$\mathbf{a)} \int_{a}^{b} f(x) \mathrm{d}x = \int_{b}^{a} f(x) \mathrm{d}x.$		
$\mathbf{b)} \int_{a}^{b} f(x) \mathrm{d}x = -\int_{b}^{a} f(x) \mathrm{d}x.$		
c) $\int_{a}^{b} f(x) dx = 2 \int_{a}^{b} f(x) d(2x).$		
d) $\int_{a}^{a} 2024 f(x) dx = 0.$		

CÂU 16. Cho hàm số y = f(x), y = g(x) liên tục trên [a; b]. Các mệnh đề sau đây đúng hay sai?

Mệnh đề		Ð	\mathbf{S}
a) $\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b}$	$f(x) dx + \int_{a}^{b} g(x) dx.$		

Mệnh đề	Ð	S
$\mathbf{b)} \int_{a}^{b} f(x) \cdot g(x) \mathrm{d}x = \int_{a}^{b} f(x) \mathrm{d}x \cdot \int_{a}^{b} g(x) \mathrm{d}x.$		
$\mathbf{c)} \int_{a}^{b} kf(x) \mathrm{d}x = k \int_{a}^{b} f(x) \mathrm{d}x.$		
$\mathbf{d}) \int_{a}^{b} \frac{f(x)}{g(x)} \mathrm{d}x = \frac{\int_{a}^{b} f(x) \mathrm{d}x}{\int_{a}^{b} g(x) \mathrm{d}x}.$		

CÂU 17. Cho hàm f(x) là hàm liên tục trên đoạn [a;b] với a < b và F(x) là một nguyên hàm của hàm f(x) trên [a;b]. Các mệnh đề sau đây đúng hay sai?

	Mệnh đề	Đ	S
a)	$\int_{a}^{b} kf(x) dx = k [F(b) - F(a)].$		
b)	$\int_{b}^{a} f(x) dx = F(b) - F(a).$		
	Diện tích S của hình phẳng giới hạn bởi đường thẳng $x=a;x=b;$ đồ thị của hàm số $y=f(x)$ và trực hoành được tính theo công thức $S=F(b)-F(a).$		
d)	$\int_{a}^{b} f(2x+3) dx = F(2x+3) \Big _{a}^{b}.$		

CÂU 18. Các mệnh đề sau đây đúng hay sai.

Mệnh đề	Ð	S
a) $\int_{0}^{1} \frac{e^{2x} - 4}{e^{x} + 2} dx = e - 3.$		
b) $\int_{0}^{1} \frac{e^{x}}{2^{x}} dx = \frac{e}{2} + 1.$		
c) $\int_{1}^{2} e^{x} \left(1 - \frac{e^{-x}}{x} \right) dx = e^{2} - e - \ln 2.$		
d) $\int_{0}^{1} \frac{e^{2x-1} - e^{-3x} + 1}{e^{x}} dx = e^{4} - 1.$		

Phần III. Học sinh điền kết quả vào ô trống.

CÂU 19. Với a, b là các tham số thực. Tích phân

$$I = \int_{0}^{b} (3x^{2} - 2ax - 1) dx = b^{t} - b^{y}a + zb.$$

Tính t + y + z.

TTO		
K()		
176%		
•		

CÂU 20. Cho $\int_{0}^{m} (3x^2 - 2x + 1) dx = 6$. Tính giá trị của tham số m.

KQ:				
-----	--	--	--	--

ov.v.ñ	NOOO	DUÁT	
GV.VŨ	MGÓC	PHAI	

All	IICK	N	
	пск	N	9112

	2
CÂU 21. Tính tích phân $I=$	$\int \frac{x-1}{x} dx \ (l\grave{a}m \ tr\grave{o}n \ d\acute{e}n \ h\grave{a}ng \ ph\grave{a}n \ tr\check{a}m).$

CÂU 22. Tính
$$I = \int_{1}^{2} \left(\frac{x - \sqrt[4]{x^3}}{x}\right)^2 dx$$
 (làm tròn đến hàng phần trăm).

CÂU 23. Tính
$$I = \int_{1}^{2} (\sqrt{x} + 1) (\sqrt[3]{x} - 1) dx$$
 (làm tròn đến hàng phần trăm).

KQ:		

CÂU 24. Tính
$$I = \int_{1}^{2} \frac{(x^2+1)^3}{x^2} dx$$
 (làm tròn đến hàng phần chục).

CÂU 25. Tính
$$I = \int_{0}^{1} 5^{x+1} \cdot 7^{2x-1} dx$$
 (làm tròn đến hàng đơn vi).

KQ:				
-----	--	--	--	--

CÂU 26. Tính
$$I = \int_{0}^{1} (x + e^{-x-2}) dx$$
 (làm tròn đến hàng phần trăm).

CÂU 27. Tính
$$I = \int\limits_{\frac{\pi}{6}}^{\frac{n}{3}} x^2 \left(1 - \frac{\sin x}{x^2}\right) \mathrm{d}x$$
 (làm tròn đến hàng phần trăm).

CÂU 28. Tính
$$I = \int\limits_{\frac{\pi}{c}}^{\frac{\pi}{2}} \left(\sin x - \frac{1}{\sqrt[3]{x^2}}\right) \mathrm{d}x$$
 (làm tròn đến hàng phần trăm).

CÂU 29. Biết
$$\int_{0}^{1} \frac{(e^{-x}+2)^2}{e^{x-1}} dx = ae + b + \frac{c}{e} + \frac{1}{e^2} \ (a,b,c \in \mathbb{Z})$$
. Tính giá trị của $P = a + b + c$.

CÂU 30. Biết
$$\int_{0}^{\frac{\pi}{3}} \frac{1 - \cos 2x}{1 + \cos 2x} dx = a\sqrt{3} + \frac{\pi}{b} \ (a, b \in \mathbb{Z})$$
. Tính $a + b$.

KO.		
110.		

CÂU 31. Tính
$$I = \int_0^1 \frac{(2024^x + 1)^2}{e^{-3x}} dx$$
 (*làm tròn đến hàng phần trăm*).

CÂU 32. Tính
$$I = \frac{1}{1000} \int_{0}^{1} \frac{(e^{-x} + 2)^{2}}{e^{x-1}} dx$$
 (làm tròn đến hàng đơn vị).

KQ:			
	K()		

CÂU 33. Tính $I = \frac{1}{100} \int_{-\infty}^{2\pi} e^{2x} \left(2023 + \frac{2024e^{-2x}}{x^3} \right) dx$ (làm tròn đến hàng phần chục).

CÂU 34. Tính $I = \int_{-\infty}^{\infty} \left(4x^3 - 2 \cdot 3^{x+1} + \frac{1}{x^2}\right) dx$ (làm tròn đến hàng phần chục).

KQ:

Tích phân hàm chứa trị tuyệt đối

Tính tích phân $I = \int_{-}^{b} |f(x)| dx$?

Phương pháp

- Θ Bước 1. Xét dấu f(x) trên đoạn [a;b].
- $oldsymbol{\Theta}$ Bước 2. Dựa vào bảng xét dấu trên đoạn [a;b] để khử |f(x)|. Sau đó sử dụng các phương pháp tính tích phân đã học để tính $I = \int |f(x)| \cdot \, \mathrm{d}x.$

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Giá trị của $I = \int \sqrt{1-\cos 2x} \,\mathrm{d}x$ bằng

- \mathbf{A} $\sqrt{3}$.
- **(B)** $4\sqrt{2}$.
- **(c)** $2\sqrt{3}$.
- $\bigcirc \frac{\pi}{2}$.

CÂU 2. Tính tích phân $I = \int |x-2| \ \mathrm{d}x$.

- $(\mathbf{A}) I = -2.$

- **(D)** I = 0.

CÂU 3. Tính tích phân $I = \int \left| x^3 - x \right| \, \mathrm{d}x.$

- **(A)** $I = -\frac{1}{2}$. **(B)** I = 5.

CÂU 4. Tính tích phân $I = \int_{-\infty}^{\infty} |x^2 + 2x - 3| dx$.

- (A) I = -2.
- **(C)** I = 5.

CÂU 5. Cho tích phân $I = (\sqrt{3} + \sqrt{2}) \int_{0}^{3} |x^2 - 1| dx = \frac{20}{3} + \frac{4}{3} + \frac{16}{3} = a\sqrt{3} + b\sqrt{2}$ với

- **©** $P = \frac{17}{3}$.

CÂU 6. Tính tích phân $I = \int (|x+2| - |x-2|) dx$.

- **(A)** I = 38.
- **B** I = 44.

CÂU 7. Cho tích phân $I=\int\limits_{-\infty}^{\infty}|2^x-4|\;\mathrm{d}x=a+\frac{b}{c\ln 2}$ với $a,b,c\in\mathbb{Z}$ và $\frac{b}{c}$ là phân số tối giản. Tính $P = a^2 + b^2 + c^2$

aII		NC	
711	11. 18.	MC	ЭΠΕ

l	ı
J	H
П	н
C	
1	
ĸ	н
ı	r
1	٠
ľ	ı
•	_
1	۰
1	4

		1
O) I	-	

(A)
$$P = 15$$
.

(B)
$$P = 10$$
.

(c)
$$P = 5$$
.

$$(\mathbf{D})P = 18.$$

CÂU 8. Tính tích phân $I = \int |2^x - 2^{-x}| dx$.

$$\bigcirc \frac{1}{\ln 2}$$

$$lackbox{\bf B} \ln 2.$$

$$\bigcirc$$
 2 ln 2.

$$\bigcirc \frac{2}{\ln 2}$$
.

CÂU 9. Tính tích phân $I = \int \left(|x| - |x-1| \right) \, \mathrm{d}x.$

$$\mathbf{B}) I = 2$$

(c)
$$I = -2$$
.

$$\mathbf{D} I = -3.$$

CÂU 10. Cho a là số thực dương, tính tích phân $I = \int |x| \, \mathrm{d}x$ theo a.

(A)
$$I = \frac{a^2 + 1}{2}$$
. **(B)** $I = \frac{a^2 + 2}{2}$. **(C)** $I = \frac{-2a^2 + 1}{2}$. **(D)** $I = \frac{\left|3a^2 - 1\right|}{2}$.

CÂU 11. Cho số thực m>1 thỏa mãn $\int |2mx-1| \; \mathrm{d}x = 1$. Khẳng định nào sau đây

$$(\mathbf{A}) m \in (4; 6).$$

B
$$m \in (2;4)$$
.

$$\bigcirc m \in (3;5).$$

$$\bigcirc m \in (1;3).$$

CÂU 12. Khẳng định nào sau đây là đúng?

$$\int_{-1}^{2024} |x^4 - x^2 + 1| \, \mathrm{d}x = \int_{-1}^{2024} (x^4 - x^2 + 1) \, \mathrm{d}x.$$

$$\widehat{\mathbf{C}} \int_{-2}^{3} |e^{x} (x+1) dx| = \int_{-2}^{3} e^{x} (x+1) dx.$$

CÂU 13. Tính tích phân $I = \int_{-\infty}^{\infty} \sqrt{x^2 - 6x + 9} \, \mathrm{d}x$.

(A)
$$I = \frac{5}{2}$$
.

B
$$I = -\frac{1}{2}$$
. **C** $I = -2$.

$$\bigcirc I = -2$$

Phần III. Học sinh điền kết quả vào ô trống.

CÂU 14. Tính tích phân $I = \int \left| x^2 - 1 \right| \, \mathrm{d}x$ (tính gần đúng đến hàng phần chục).

CÂU 15. Tính tích phân $I = \int \left| -x^2 - 2x + 3 \right| \, \mathrm{d}x$ (tính gần đúng đến hàng phần trăm).

CÂU 16. Tính tích phân $I = \int \left| \frac{x+1}{x} \right| dx$ (tính gần đúng đến hàng phần trăm).

CÂU 17. Tính tích phân $I = \int \sqrt{x^2 - 8x + 16} \, \mathrm{d}x$.

KQ:		

CÂU 18. Tính tích phân $I=\int\limits_{-2}^{1}\sqrt{4x^2+6x+9}\,\mathrm{d}x$ (làm tròn đến hàng phần trăm).

CÂU 19. Tính tích phân $I = \int_{-\infty}^{1} \sqrt{9x^2 - 6x + 1} \, dx$ (*làm tròn đến hàng phần trăm*).

CÂU 20. Tính tích phân $I = \int_{1}^{2\pi} \sqrt{1 + \cos 2x} \, dx$ (*làm tròn đến hàng phần trăm*).

CÂU 21. Tính tích phân $I = \int\limits_{1}^{2\pi} \sqrt{1-\cos 2x} \, \mathrm{d}x$ (*làm tròn đến hàng phần trăm*).

CÂU 22. Tính tích phân $I = \int_{-\infty}^{2\pi} \sqrt{1 - \sin 2x} \, dx$, (*làm tròn đến hàng phần trăm*).

CÂU 23. Tính tích phân $I = \int_{0}^{2\pi} \sqrt{1 + \sin 2x} \, dx$ (*làm tròn đến hàng phần trăm*).

Tích phân có điều kiện

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Nếu $F'(x) = \frac{1}{2x}$ và F(1) = 1 thì giá trị của F(4) bằng

$$\bigcirc$$
 ln 2.

B
$$1 + \ln 2$$
.

©
$$1 + \frac{1}{2} \ln 2$$
. **©** $\frac{1}{2} \ln 2$.

$$\bigcirc \frac{1}{2} \ln 2.$$

CÂU 2. Cho F(x) là một nguyên hàm của $f(x)=\frac{2}{x}$. Biết F(-1)=0. Tính F(2) kết quả

$$\mathbf{\hat{A}} 2 \ln 2 + 1.$$

$$lacksquare$$
 $\ln 2$.

©
$$2 \ln 3 + 2$$
.

$$\bigcirc$$
 2 ln 2.

CÂU 3. Cho hàm số f(x) liên tục, có đạo hàm trên [-1;2], f(-1)=8, f(2)=-1. Tích phân $\int f'(x) dx$ bằng

$$(c) - 9$$

CÂU 4. Biết $F(x)=x^2$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Giá trị của $\int\limits_{-\infty}^{\infty} \left[1+f(x)\right]\mathrm{d}x$

bằng

A
$$10$$
.

$$\bigcirc \frac{26}{3}$$
.

$$\bigcirc \frac{32}{3}$$

CÂU 5. Biết $F(x)=x^3$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Giá trị của $\int\limits_{-\infty}^{\infty} \left[1+f(x)\right]\mathrm{d}x$

♥ VNPmath - 0962940819 ♥
QUICK NOTE

A 20.

B) 22.

(C) 26.

(D) 28.

CÂU 6. Biết $F(x) = x^2$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Giá trị của $\int [2 + f(x)] dx$

bằng

(**A**) 5.

 \bigcirc $\frac{13}{3}$.

CÂU 7. Biết $F(x)=x^3$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Giá trị của $\int \left[2+f(x)\right]\mathrm{d}x$

bằng

 \bigcirc $\frac{23}{4}$.

CÂU 8. Cho hàm số f(x). Biết f(0) = 4 và $f'(x) = 2\sin^2\frac{x}{2} + 1$, $\forall x \in \mathbb{R}$, khi đó $\int_0^{\frac{\pi}{4}} f(x) dx$

(a) $\frac{\pi^2 + 16\pi + 8\sqrt{2} - 16}{16}$ (c) $\frac{\pi^2 + 16\pi + 8\sqrt{2}}{16}$

CÂU 9. Cho hàm số f(x). Biết f(0) = 4 và $f'(x) = 2\cos^2\frac{x}{2} + 3$, $\forall x \in \mathbb{R}$, khi đó $\int_{-\infty}^{\infty} f(x) dx$

 $\mathbf{A} \frac{\pi^2 + 8\pi - 8 - \sqrt{2}}{8}.$

 $\mathbf{c} \frac{\pi^2 + 6\pi + 8}{9}$.

 $\mathbf{D} \frac{\pi^2 + 8\pi - 4\sqrt{2}}{8}$.

CÂU 10. Cho hàm số $f(x)=\begin{cases} e^{2x} \text{ khi } x\geq 0 \\ x^2+x+2 \text{ khi } x<0 \end{cases}$. Biết tích phân $\int_{1}^{1}f(x)\mathrm{d}x=\frac{a}{b}+\frac{e^2}{c}$

 $(\frac{a}{b}$ là phân số tối giản). Giá trị a+b+c bằng \bigcirc 7. \bigcirc 8.

CÂU 11. Cho hàm số $f(x)=\begin{cases} x^2-1 \text{ khi } x\geq 2\\ x^2-2x+3 \text{ khi } x<2 \end{cases}$. Tích phân $I=\frac{1}{2}\int\limits_{-\infty}^3 f(x)\mathrm{d}x$ bằng:

CÂU 12. Cho hàm số $f(x) = \begin{cases} \frac{x(1+x^2)}{x-4} & \text{khi } x \geq 3\\ \frac{1}{x-4} & \text{khi } x < 3 \end{cases}$. Tích phân $I = \int_2^4 f(t) dt$ bằng:

(A) $\frac{40}{3} - \ln 2$. (B) $\frac{95}{6} + \ln 2$. (C) $\frac{189}{4} + \ln 2$. (D) $\frac{189}{4} - \ln 2$.

CÂU 13. Cho số thực a và hàm số $f(x) = \begin{cases} 2x \text{ khi } x \leq 0 \\ a(x-x^2) \text{ khi } x > 0 \end{cases}$. Tính tích phân $\int_{-1}^{1} f(x) \mathrm{d}x$

bằng:

B $\frac{2a}{3} + 1$.

© $\frac{a}{6} + 1$. **©** $\frac{2a}{3} - 1$.

Phần II. Trong mỗi ý a), b), c) và d) ở mỗi câu, học sinh chọn đúng hoặc sai. CÂU 14. Cho hàm số $f(x)=\begin{cases} 2x^2+3 \text{ khi } x\geq 1\\ 2-x^3 \text{ khi } x<1 \end{cases}$.

Mệnh đề	Ð	S
a) $\int_{1}^{2024} f(x) dx = \int_{1}^{2024} (2x^2 + 3) dx.$		

Mệnh đề	Đ	\mathbf{S}
b) $\int_{-2024}^{1} f(x) dx = \int_{-2024}^{1} (2 - x^3) dx.$		
c) $\int_{-2024}^{2024} f(x) dx = \int_{1}^{2024} (2x^2 + 3) dx + \int_{-2024}^{1} (2 - x^3) dx.$		
d) $\int_{-2024}^{2024} f(x) dx = \int_{1}^{2024} (2x^2 + 3) dx + \int_{-2024}^{1} (2 - x^3) dx$.		

CÂU 15. Cho hàm số $f(x) = \begin{cases} x^2 - 2x + 3 \text{ khi } x \geq 2 \\ x + 1 \text{ khi } x < 2 \end{cases}$.

Mệnh đề	Ð	S
a) $\int_{1}^{2} f(x) dx = \int_{1}^{2} (x+1) dx.$		
b) $\int_{2}^{3} f(x) dx = \int_{2}^{3} (x^{2} - 2x + 3) dx.$		
c) $\int_{1}^{3} \frac{1}{2} f(x) dx = \frac{41}{12}$.		
d) $\int_{1}^{2} f(x) dx = \int_{1}^{2} (x^{2} - 2x + 3) dx.$		

Phần III. Học sinh điền kết quả vào ô trống.

CÂU 16. Cho hàm số $f(x)=\begin{cases} \frac{1}{x} \text{ khi } x\geq 1\\ x+1 \text{ khi } x<1 \end{cases}$. Tích phân $I=\int\limits_{2}^{0}-3t^2f(t)\mathrm{d}t$. (*làm tròn đến hàng phần trăm*)

CÂU 17. Cho hàm số $f(x) = \begin{cases} 2x^2 - 1 \text{ khi } x < 0 \\ x - 1 \text{ khi } 0 \le x \le 2. \text{ Tính tích phân } I = \int\limits_{-5}^{9} \frac{1}{7} f(t) \mathrm{d}t. \text{ ($l\`{a}$m } 5 - 2x \text{ khi } x > 2 \end{cases}$

tròn đến hàng phần trăm)

KQ:

CÂU 18. Cho hàm số $f(x) = \begin{cases} x^2 - x \text{ khi } x \ge 0 \\ x \text{ khi } x < 0 \end{cases}$. Khi đó $I = \int_{-1}^{1} f(x) \mathrm{d}x + \int_{-1}^{3} f(x) \mathrm{d}x$ bằng

bao nhiêu? (làm tròn đến hàng phần trăm)

CÂU 19. Cho hàm số $f(x)=\begin{cases} 4x \text{ khi } x>2\\ -2x+12 \text{ khi } x\leq 2 \end{cases}$. Tính tích phân $I=\int\limits_{1}^{2}f(t)\mathrm{d}t+12 \text{ khi } x\leq 2$

$$\frac{1}{2} \int_{5}^{10} f(t) \mathrm{d}t.$$

KQ:		

CÂU 20. Biết rằng hàm số f(x)=mx+n thỏa mãn $\int\limits_0^1 f(x)\mathrm{d}x=3, \int\limits_0^2 f(x)\mathrm{d}x=8.$ Tính m+n.

KQ:		

		_
GV.VŨ	NGỌC	PHÁ1

.....

.....

.....

.....

.....

CÂU 21. Biết rằng hàm số $f(x)=ax^2+bx+c$ thỏa mãn $\int\limits_{a}^{1}f(x)\mathrm{d}x=-\frac{7}{2},\int\limits_{a}^{2}f(x)\mathrm{d}x=-2$

và $\int_{0}^{3} f(x) dx = \frac{13}{2}$. Tính P = a + b + c. (làm tròn đến hàng phần trăm).

KQ:		

CÂU 22. Cho $\int_{0}^{m} (3x^{2} - 2x + 1) dx = 6.$ Tính giá trị của tham số m.

KQ:		
•		

CÂU 23. Cho $I = \int_{0}^{1} (4x - 2m^2) dx$. Có bao nhiều giá trị nguyên của m để I + 6 > 0?

KQ:		

CÂU 24. Có bao nhiêu giá trị nguyên dương của a để $\int_{0}^{a} (2x-3) dx \le 4$?

KQ:				
-----	--	--	--	--

CÂU 25. Có bao nhiêu số thực b thuộc khoảng $(\pi; 3\pi)$ sao cho $\int_{\pi}^{b} 4\cos 2x dx = 1$?

KQ:		

8 Úng dụng tích phân trong thực tiễn

- $m{\Theta}$ Cho hàm sốf(x) liên tục trên đoạn [a;b]. Khi đó $\frac{1}{b-a}\int\limits_a^b f(x)\,dx$ được gọi là giá trị trung bình của hàm số f(x) trên đoạn [a;b].
- $oldsymbol{\Theta}$ Đạo hàm của quãng đường di chuyển của vật theo thời gian bằng tốc độ của chuyển động tại mọi thời điểm v(t)=s'(t). Do đó, nếu biết tốc độ v(t) tại mọi thời điểm $t\in[a;b]$ thì tính được quãng đường di chuyển trong khoảng thời gian từ a đến b theo công thức

$$s = s(b) - s(a) = \int_{a}^{b} v(t) dt.$$

- ❷ Giả sử là vận tốc của vật tại thời điểm và là quãng đường vật đi được sau khoảng thời gian tính từ lúc bắt đầu chuyển động. Ta có mối liên hệ giữa vận tốc và quãng đường như sau
 - Đạo hàm của quãng đường là vận tốc s'(t) = v(t).
 - Nguyên hàm của vận tốc là quãng đường $s(t) = \int v(t) \, \mathrm{d}t.$

 \Rightarrow Từ đây ta cũng có quãng đường vật đi được trong khoảng thời gian từ a đến b là

$$\int_{a}^{b} v(t) dt = s(b) - s(a).$$

Nếu gọi a(t) là gia tốc của vật thì ta có mối liên hệ giữa gia tốc và vận tốc như sau

— Đạo hàm của vận tốc là gia tốc v'(t) = a(t).

.........

 Nguyên	hàm	của	gia	tốc	là	vận	tốc	v(t) =	$\int a(t) dt$	t.
									1	

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Một ô tô đạng chay với vân tốc $10 \, m/s$ thì gặp chướng ngai vật, người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc $v(t) = -2t + 10 \ (m/s)$, trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Tính quãng đường ô tô di chuyển được trong 8 giây cuối cùng.

(A) 55 m.

(B) 25 m.

(**c**) 50 m.

(D) 16 m.

CÂU 2. Một ô tô đang chạy với tốc độ $20 \ (m/s)$ thì gặp chướng ngại vật, người lái đạp phanh, từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc $v(t) = -5t + 20 \ (m/s)$, trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét (m)?

(A) $20 \, m$.

(B) $30 \, m$.

(**c**) 10 m.

(D) $40 \, m$.

CÂU 3. Một chất điểm A xuất phát từ O, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật $v\left(t\right)=\frac{1}{150}t^2+\frac{59}{75}t\ (m/s)$, trong đó t (giây) là khoảng thời gian tính từ lúc a bắt đầu chuyển động. Từ trạng thái nghỉ, một chất điểm B cũng xuất phát từ O, chuyển đông thẳng cùng hướng với A nhưng châm hơn 3 giây so với A và có gia tốc bằng $a \left(m/s^2 \right)$ (a là hằng số). Sau khi B xuất phát được 12 giây thì đuổi kịp A. Vận tốc của Btại thời điểm đuổi kip A bằng

(A) 15 (m/s).

(B) $20 \ (m/s)$.

(C) $16 \ (m/s)$.

CÂU 4. Một ô tô bắt đầu chuyển động thẳng đều với vận tốc v_0 , sau 6 giây chuyển động thì gặp chướng ngại vật nên bắt đầu giảm tốc độ với vận tốc chuyển động $v(t) = -\frac{9}{2}t + a\left(m/s\right)$ với $t \geq 6$ cho đến khi dừng hẳn. Biết rằng kể từ lúc chuyển động đến lúc dừng hẳn thì ô tô đi được quãng đường là $80 \, m$. Tìm v_0 .

(A) $v_0 = 35 \, m/s$.

(B) $v_0 = 25 \, m/s$.

 $(\mathbf{c}) v_0 = 10 \, m/s.$

 $(\mathbf{D})v_0 = 20 \, m/s.$

CÂU 5. Để đảm bảo an toàn khi lưu thông trên đường, các xe ô tô khi dùng đèn đỏ phải cách nhau tối thiểu 1 m. Một ô tô A đang chạy với vận tốc 16 m/s bỗng gặp ô tô B đang dừng đèn đổ nên ô tô A hãm phanh và chuyển động chậm dần đều với vận tốc được biểu thị bởi công thức $v_A(t) = 16 - 4t$ (đơn vị tính bằng m/s), thời gian tính bằng giây. Hỏi rằng để hai ô tô A và B đạt khoảng cách an toàn khi dừng lại thì ô tô A phải hãm phanh khi cách $\hat{0}$ tô B một khoảng ít nhất là bao nhiều?

(**A**) 33.

(B) 12.

 $(\mathbf{C}) \, 31.$

(**D**)32.

CÂU 6. Do các xe phải cách nhau tối thiểu 1m để đảm bảo an toàn nên khi dừng lại ô tô A phải hãm phanh khi cách ô tô B một khoảng ít nhất là $33\,m$. Một chất điểm đang chuyển động với vận tốc $v_0 = 15 \, m/s$ thì tăng tốc với gia tốc $a(t) = t^2 + 4t \, (m/s^2)$. Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3 giây kể từ lúc bắt đầu tăng vận tốc.

(A) 70,25 m.

(B) 68,25 m.

 (\mathbf{C}) 67,25 m.

 $(\mathbf{D})69,75\,m.$

CÂU 7. Một vật chuyển động với vận tốc $10 \, m/s$ thì tăng tốc với gia tốc được tính theo thời gian là $a(t) = t^2 + 3t$. Tính quãng đường vật đi được trong khoảng thời gian 6 giây kể từ khi vật bắt đầu tăng tốc.

(A) $136 \, m$.

(B) 126 m.

 $(\mathbf{C}) 276 \, m.$

(D) $216 \, m$.

CÂU 8. Một ô tô bắt đầu chuyển động nhậnh dần đều với vận tốc $v_1(t) = 7t \ (m/s)$. Di được $5\,s$, người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc $a=-70~(m/s^2)$. Tính quãng đường S đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn.

(A) $S = 96,25 \ (m)$.

(B) S = 87.5 (m).

 $(\mathbf{C}) S = 94 \ (m).$

 $(\mathbf{D})S = 95.7 \ (m).$

CÂU 9. Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc $v_1(t) = 2t \ (m/s)$. Đi được 12 giây, người lái xe gặp chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc $a = -12 \ (m/s^2)$. Tính quãng đường s(m) đi được của ôtô từ lúc bắt đầu chuyển động đến khi dừng hẳn.

 $(\mathbf{A}) s = 168 \ (m).$

(B) $s = 166 \ (m)$.

 $(\mathbf{C}) s = 144 \ (m).$

 $(\mathbf{D}) s = 152 \ (m).$

CÂU 10. Một ô tô đang dừng và bắt đầu chuyển động theo một đường thẳng với gia tốc $a(t) = 6 - 2t \text{ (m/s}^2)$, trong đó t là khoảng thời gian tính bằng giây kể từ lúc ô tô bắt đầu

QUICK NOTE	chuyển động. Hỏi quảng đường ô tô đi được từ lúc bắt đầu chuyển động đến khi vận tốc củ ô tô đạt giá trị lớn nhất là bao nhiêu mét? (A) 18 m. (B) 36 m. (C) 22,5 m. (D) 6,75 m.
	CÂU 11. Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc vào thời gian (h) có đồ thị vận tốc như hình bên. Trong thời gian 1 giờ kể từ khi bắt đầu chuyển động, đ thị đó là một phần của đường parabol có đỉnh $I(2;9)$ và trục đối xứng song song với trụ tung, khoảng thời gian còn lại đồ thị là một đoạn thẳng song song với trục hoành. Tính quãng đường s mà vật chuyển động được trong 3 giờ đó (kết quả làm tròn đến hàng phầt trăm).
	(A) $s=21,58~(\mathrm{km})$. (B) $s=23,25~(\mathrm{km})$. (C) $s=13,83~(\mathrm{km})$. (D) $s=15,50~(\mathrm{km})$. Phần III. Học sinh điền kết quả vào ô trống. (CÂU 12. Một ô tô đang chạy với vận tốc là $12~(\mathrm{m/s})$ thì người lái đạp phanh; từ thời điển đó ô tô chuyển động chậm dần đều với vận tốc $v~(t)=-6t+12~(\mathrm{m/s})$, trong đó t là khoản thời gian tính bằng giây kể từ lúc đạp phanh. Hỏi từ lúc đạp phanh đến lúc ô tô dừng hẳn ô tô còn di chuyển được bao nhiêu mét?
	CÂU 13. Một ô tô đang chạy với vận tốc 10 m/s thì người lái đạp phanh; từ thời điểm đớ ô tô chuyển động chậm dần đều với vận tốc $v(t) = -5t + 10 \text{ (m/s)}$, trong đó t là khoản thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừn hẳn, ô tô còn di chuyển bao nhiều mét?
	CÂU 14. Một ô tô chuyển động nhanh dần đều với vận tốc $v(t) = 7t$ (m/s). Đi được 5 (s người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dầu đều với gia tốc $a = -35$ (m/s²). Tính quãng đường của ô tô đi được từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn (đơn vị tính bằng mét)?
	CÂU 15. Một vật chuyển động trong 4 giờ với vận tốc v (km/h) phụ thuộc thời gian t (h có đồ thị là một phần của đường parabol có đỉnh $I(1;1)$ và trục đối xứng song song với trụ tung như hình bên. Tính quãng đường s mà vật di chuyển được trong 4 giờ kể từ lúc xuấ phát (làm tròn đến chữ số thập phân thứ nhất).
	$ \begin{array}{c} 10 \\ $
	KQ:

Bài 3. ỨNG DỤNG HÌNH HỌC CỦA TÍCH PHÂN

A. DIỆN TÍCH HÌNH THANG CONG

1. Hình phẳng giới hạn bởi đồ thị hàm số, trục hoành và hai đường thẳng x = a và x = b

Cho hàm số y = f(x) liên tục trên [a; b]. Khi đó, diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trực hoành Ox (y = 0) và hai đường thẳng x = a và x = b được tính bởi công thức

$$S = \int_{a}^{b} |f(x)| \, \mathrm{d}x$$

Chú ý: Giả sử hàm số y = f(x) liên tục trên [a; b]. Nếu f(x) không đổi dấu trên [a; b] thì

$$\int_{a}^{b} |f(x)| \, \mathrm{d}x = \left| \int_{a}^{b} f(x) \, \mathrm{d}x \right|.$$

2. Hình phẳng giới hạn bởi hai đồ thị hàm số và hai đường thẳng $x = a \mathbf{v} \mathbf{\hat{a}} x = b$

Cho 2 hàm số y = f(x) và y = g(x) liên tục trên [a; b]. Khi đó diện tích của hình phẳng giới hạn bởi đồ thị hai hàm số y = f(x) và y = g(x) và hai đường thẳng x = a và x = b được tính bởi công thức

$$S = \int_{a}^{b} |f(x) - g(x)| \, \mathrm{d}x$$

B. THỂ TÍCH HÌNH KHỐI

				_
АШ	CK	Ν	\odot 1	4 -
SU	CK	1	O.	

1. Thể tích của vật thể

Trong không gian, cho một vật thể nằm trong khoảng không gian giữa hai mặt phẳng (P)và (Q) cùng vuông góc với trực Ox tại các điểm a và b. Mặt phẳng vuông góc với trực Oxtại điểm $x(a \le x \le b)$ cắt vật thể theo mặt cắt có diện tích S(x). Khi đó, nếu S(x) là hàm số liên tục trên [a;b] thì thể tích của vật thể được tính bởi công thức

$$V = \int_{a}^{b} S(x) \, \mathrm{d}x$$

2. Thể tích khối tròn xoay

Cho hàm số y = f(x) liên tục, không âm trên [a;b]. Hình phẳng (H) giới hạn bởi đồ thị hàm số y = f(x), trục hoành Ox và hai đường thẳng x = a và x = b quay quanh trục Oxtạo thành một khối tròn xoay có thể tích bằng

$$V = \pi \int_{a}^{b} \left[f(x) \right]^{2} \, \mathrm{d}x$$

TÍNH DIỆN TÍCH HÌNH GIỚI HẠN BỞI CÁC ĐƯỜNG CONG

CÂU 1. Cho hai hàm số f(x) và g(x) liên tục trên [a;b]. Diện tích hình phẳng giới hạn bởi đồ thị của các hàm số y = f(x), y = g(x) và các đường thẳng x = a, x = b bằng

$$\bigodot \int_{-\infty}^{\infty} |f(x) - g(x)| \, \mathrm{d}x.$$

CÂU 2. Gọi S là diện tích của hình phẳng giới hạn bởi các đường $y = 3^x$, y = 0, x = 0, x=2. Mệnh đề nào dưới đây đúng?

$$\mathbf{B} S = \pi \int_{-\infty}^{2} 3^{2x} \, \mathrm{d}x$$

$$\mathbf{C} S = \pi \int_{-\infty}^{\infty} 3^x \, \mathrm{d}x$$

(B)
$$S = \pi \int_{0}^{2} 3^{2x} dx$$
. **(C)** $S = \pi \int_{0}^{2} 3^{x} dx$. **(D)** $S = \int_{0}^{2} 3^{2x} dx$.

CÂU 3. Diện tích hình phẳng giới hạn bởi đồ thị hàm số $y=(x-2)^2-1$, trục hoành và hai đường thẳng x = 1, x = 2 bằng

$$\mathbf{A} \frac{2}{3}$$

B
$$\frac{3}{2}$$
.

$$\bigcirc \frac{1}{3}$$

(D)
$$\frac{7}{3}$$
.

CÂU 4. Tính diện tích S hình phẳng giới hạn bởi các đường $y=x^2+1,\,x=-1,\,x=2$ và trục hoành.

$$\widehat{(\mathbf{A})}\,S=6.$$

$$\widehat{\mathbf{B}}) S = 16.$$

$$\bigcirc S = \frac{13}{6}$$
.

$$\bigcirc S = 13.$$

CÂU 5. Gọi S là diện tích hình phẳng giới hạn bởi các đường $y=x^2+5, y=6x, x=0, x=1.$ Tính S.

A
$$\frac{4}{3}$$
.

B
$$\frac{7}{3}$$
.

$$\bigcirc \frac{8}{3}$$
.

(D)
$$\frac{5}{3}$$
.

CÂU 6. Diện tích hình phẳng giới hạn bởi đồ thị các hàm số $y = \ln x, y = 1$ và hai đường thẳng x = 1, x = e bằng

$$\bigcirc$$
 e^2 .

B)
$$e + 2$$
.

$$\bigcirc$$
 2e.

$$(\mathbf{D})e-2$$

CÂU 7. Diện tích hình phẳng giới hạn bởi đồ thị của hàm số $y=4x-x^2,y=2x$ và hai đường thẳng x = 1, x = e bằng

B
$$\frac{20}{3}$$
.

$$\bigcirc \frac{4}{3}$$
.

CÂU 8. Tính diện tích S của hình phẳng giới hạn bởi các đường $y=x^2-2x, y=0, x=-10,$

$$\bigcirc S = \frac{2000}{3}$$

(B)
$$S = 2008$$

$$\bigcirc S = 2000.$$

$$\bigcirc S = \frac{2008}{3}.$$

CÂU 9. Gọi S là diện tích của hình phẳng giới hạn bởi các đường $y=2^x,\,y=0,\,x=0,$ x=2. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Đ	S
$\mathbf{a)} \ S = \int_{0}^{2} 2^{x} \mathrm{d}x.$		
b) $S = \frac{3}{\ln 2}$.		

Mệnh đề	Đ	S
$\mathbf{c)} \ \ S = \pi \int_{0}^{2} 2^{x} \mathrm{d}x.$		
d) $S = \frac{3\pi}{\ln 2}$.		

CÂU 10. Gọi S là diện tích hình phẳng giới hạn bởi các đường $y=\mathrm{e}^x,y=0,x=0,x=2.$ Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Đ	S
$\mathbf{a)} \ S = \int_{0}^{2} e^{x} \mathrm{d}x.$		
b) $S = e^2$.		

Mệnh đề	Đ	S
$\mathbf{c)} \ \ S = \pi \int_{0}^{2} \mathrm{e}^{x} \mathrm{d}x.$		
d) $S = (e^2 - 1) \pi$.		

CÂU 11. Các mệnh đề sau đây đúng hay sai

Mệnh đề	Ð	S
a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số $y=x^2,y=2x,x=0,x=1$ là $\frac{4}{3}$.		
b) Diện tích hình phẳng giới hạn bởi đồ thị hàm số $y=-x^2+2x+1$, $y=2x^2-4x+1$, $x=0$, $x=2$ là 4.		
c) Diện tích hình phẳng giới hạn bởi đồ thị hàm số $y = \frac{x-1}{x+1}$, trục hoành, $x = 0$, $x = 1$ là $2 \ln 2 - 1$.		
d) Diện tích hình phẳng giới hạn bởi đồ thị hàm số $y=-x^3+12x,$ $y=-x^2,x=-3,x=4$ là $\frac{937}{12}.$		

CÂU 12. Tính diện tích hình phẳng giới hạn bời đồ thị hàm số $y = x^2 + x - 1$, $y = x^4 + x - 1$, x = -1, x = 1.

KQ:		

CÂU 13. Kí hiệu S(t) là diện tích của hình phẳng giới hạn bởi các đường y=2x+1, y=0, x = 1, x = t (t > 1). Tìm t dễ S(t) = 10.

CÂU 14. Gọi S là diện tích hình phẳng giới hạn bởi các đường $my=x^2, mx=y^2 (m>0)$. Tìm giá trị của m để S=3.

CĂU 15. Giá trị dương của tham số m sao cho diện tích hình phẳng giới hạn bởi đồ thị của hàm số y = 2x + 3 và các đường thẳng y = 0, x = 0, x = m bằng 10 là?

CÂU 16. Cho hàm số $f(x)=\begin{cases} 7-4x^3 \text{ khi } 0\leq x\leq 1\\ 4-x^2 \text{ khi } x>1 \end{cases}$. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số f(x) và các đường thẳng x = 0, x = 3, y = 0.

CÂU 17.

Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành, đường thẳng x = a, x = b (như hình vẽ bên). Hỏi cách tính S nào dưới đây đúng?

$$\mathbf{C} S = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

$$\mathbf{C} S = -\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

$$\mathbf{D} S = \int_{c}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

CÂU 18.

Cho hàm số y = f(x) liên tục trên đoạn [a; b]. Gọi D là diện tích hình phẳng giới hạn bởi đồ thị (C): y = f(x), trục hoành, hai đường thắng x = a, x = b (như hình vẽ). Giả sử S_D là diện tích hình phẳng D. Chọn phương án đúng trong các phương án **A**, **B**, **C**, **D** cho dưới đây?

$$\mathbf{A} S_D = \int_a^0 f(x) \, \mathrm{d}x + \int_0^b f(x) \, \mathrm{d}x.$$

$$\mathbf{B} S_D = -\int_a^b f(x) dx + \int_0^b f(x) dx.$$

$$\mathbf{D} S_D = -\int_a^b f(x) dx - \int_a^b f(x) dx.$$

 $\mathbf{C} S_D = \int_0^0 f(x) dx - \int_0^b f(x) dx.$

CÂU 19.

Diện tích của hình phẳng được giới hạn bởi đồ thị hàm số y = f(x), trực hoành và hai đường thẳng $x = a, x = b \ (a < b)$ (phần tô đậm trong hình vẽ) tính theo công thức nào dưới đây?

$$\mathbf{B} S = \int_{a}^{b} f(x) \, \mathrm{d}x.$$

$$\mathbf{C} S = -\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

CÂU 20. Diện tích phần hình phẳng gạch chéo trong hình vẽ bên dưới được tính theo công thức nào dưới đây?

(a)
$$\int_{-1}^{2} (-2x+2) dx$$
.
(c) $\int_{-1}^{2} (-2x^2+2x+4) dx$.

CÂU 21. Cho hàm số y = f(x) liên tục trên \mathbb{R} . Gọi S là diện tích hình phẳng giới hạn bởi các đường y = f(x), y = 0, x = -1, x = 5 (như hình vẽ bên dưới).

Mệnh đề nào sau đây đúng?

$$\mathbf{\hat{A}} S = -\int_{-1}^{1} f(x) dx - \int_{1}^{5} f(x) dx.$$

$$\mathbf{\hat{B}} S = \int_{-1}^{1} f(x) dx + \int_{1}^{5} f(x) dx.$$

$$\mathbf{\hat{C}} S = \int_{-1}^{1} f(x) dx - \int_{1}^{5} f(x) dx.$$

$$\mathbf{\hat{D}} S = -\int_{-1}^{1} f(x) dx + \int_{1}^{5} f(x) dx.$$

B
$$S = \int_{-1}^{1} f(x) dx + \int_{1}^{5} f(x) dx$$

©
$$S = \int_{1}^{1} f(x) dx - \int_{1}^{5} f(x) dx.$$

$$\widehat{\mathbf{D}} S = -\int_{-1}^{1} f(x) dx + \int_{-1}^{5} f(x) dx.$$

CÂU 22. Cho hàm số y = f(x) liên tục trên \mathbb{R} . Gọi S là diện tích hình phẳng giới hạn bởi các đường y = f(x), y = 0, x = -1, x = 2 (như hình vẽ bên dưới).

											•																•	•					
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	•

•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
٠.																																	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	
٠.	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
٠.																																	

•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	

 	 • • • • •	

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

0	Ш	_	Ν			1
-	Ш		N	O	11	

Mệnh đề nào sau đây đúng?

$$\mathbf{\hat{A}} S = \int_{-1}^{1} f(x) \, dx + \int_{1}^{2} f(x) \, dx.$$

$$\mathbf{\hat{B}} S = -\int_{-1}^{1} f(x) \, dx - \int_{1}^{2} f(x) \, dx.$$

$$\mathbf{\hat{C}} S = -\int_{-1}^{1} f(x) \, dx + \int_{1}^{2} f(x) \, dx.$$

$$\mathbf{\hat{D}} S = \int_{-1}^{1} f(x) \, dx - \int_{1}^{2} f(x) \, dx.$$

B
$$S = -\int_{-1}^{1} f(x) dx - \int_{1}^{2} f(x) dx$$

(**D**)
$$S = \int_{-1}^{1} f(x) dx - \int_{1}^{2} f(x) dx$$
.

CÂU 23.

Gọi S là diện tích hình phẳng (H) giới hạn bởi các đường y = f(x), trực hoành và hai đường thẳng x = -1, x = 2.

Đặt
$$a = \int_{-1}^{0} f(x) dx$$
, $b = \int_{0}^{2} f(x) dx$ (như hình vẽ bên). Mệnh

đề nào sau đây đúng?

- $(\mathbf{A}) S = b a.$
- $(\mathbf{C}) S = -b + a.$

CÂU 24.

Gọi S là diện tích hình phẳng (H) giới hạn bởi các đường y = f(x), trực hoành và hai đường thẳng x =

$$-3, x = 2.$$
 Đặt $a = \int_{-3}^{1} f(x) dx, b = \int_{1}^{2} f(x) dx$ (như

hình vẽ bên). Mệnh đề nào sau đây đúng?

$$(\mathbf{A}) S = a + b.$$

$$\mathbf{(B)}\,S = a - b.$$

$$(\mathbf{C})S = -a - b.$$

$$S = b - a$$
.

CÂU 25. Diện tích phần hình phẳng được gạch sọc trong hình vẽ sau được tính theo công thức nào dưới đây?

$$(\mathbf{A} \int_{-1}^{1} \left(x^2 - 2 + \sqrt{|x|} \right) \, \mathrm{d}x.$$

B
$$\int_{-1}^{1} \left(x^2 - 2 - \sqrt{|x|} \right) dx.$$

(c)
$$\int_{1}^{1} \left(-x^2 + 2 + \sqrt{|x|} \right) dx$$

$$\int_{1}^{1} \left(-x^2 + 2 - \sqrt{|x|} \right) dx.$$

CÂU 26. Cho hàm số y = f(x) liên tục trên \mathbb{R} . Gọi S là diện tích hình phẳng giới hạn bởi các đường y = f(x), y = 0, x = -1, x = 4 (như hình vẽ). Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Đ	S
a) $S = \int_{-1}^{1} f(x) dx - \int_{1}^{4} f(x) dx.$		
b) $S = \int_{-1}^{1} f(x) dx + \int_{1}^{4} f(x) dx.$		
$\mathbf{c)} \ \ S = \left \int_{-1}^{4} f(x) \mathrm{d}x \right .$		
d) $S = \int_{-1}^{1} f(x) dx + \int_{1}^{4} f(x) dx.$		

CÂU 27. Cho hình phẳng được gạch chéo trong hình bên dưới.

Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Đ	S
a) Hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị $y=x^2-2x-2, y=-x^2+2$ và hai đường thẳng $x=-1, x=2$.		

QUICK NOTE

♥ VNPmath - 0962940819 ♥	
QUICK NOTE	
	•

Mệnh đề	Ð	S
b) Diện tích hình phẳng gạch chéo trong hình vẽ là $S = \int_{-1}^{2} x^2 - 2x - 2 dx + \int_{-1}^{2} -x^2 + 2 dx.$		
c) Hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị $y=x^2-2x-2$ và $y=-x^2+2$.		
d) Diện tích hình phẳng gạch chéo trong hình vẽ là $S=9$.		

CÂU 28. Cho hình phẳng được gạch chéo trong hình bên dưới.

Các mệnh đề sau đây đúng hay sai?

Mệnh đề						
a) Hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị $y=x^2,y=0$ và hai đường thẳng $x=1,x=2.$						
b) Diện tích hình phẳng gạch chéo trong hình vẽ là $S = \int_{1}^{2} x^{2} dx$.						
c) Diện tích hình phẳng gạch chéo trong hình vẽ là $S = \frac{4}{3}$.						
d) Hình phẳng được gạch chéo trong hình trên được giới hạn đồ thị $y=x^2$ và hai đường thẳng $x=1,x=2.$						

CÂU 29. Cho hình phẳng được gạch chéo trong hình bên dưới.

Các mệnh đề sau đây đúng hay sai?

Mệnh đề				
a) Hình phẳng được gạch chéo trong hình trên được giới hạn các đồ t $y=5x-x^2,y=x$ và các đường thẳng $x=0,x=4.$	hị			

Mệnh đề	Ð	\mathbf{S}
b) Diện tích hình phẳng gạch chéo trong hình vẽ là $S = \int_{0}^{4} (x^2 - 4x) dx$.		
c) Diện tích hình phẳng gạch chéo trong hình vẽ là $S = \int_{0}^{4} x^2 - 4x dx$.		
d) Diện tích hình phẳng gạch chéo trong hình vẽ $S = \frac{56}{3}$.		

CÂU 30. Cho hình phẳng được gạch chéo trong hình bên dưới.

Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	S
a) Hình phẳng được gạch chéo trong hình trên được giới hạn đồ thị $y=1+\frac{1}{x}$ và các đường thẳng $x=1,x=2.$		
b) Diện tích hình phẳng gạch chéo trong hình vẽ là $S = \int_{1}^{2} \left(1 + \frac{1}{x}\right) dx$.		
c) Diện tích hình phẳng gạch chéo trong hình vẽ là $S=2$.		
d) Diện tích hình phẳng gạch chéo trong hình vẽ là $S = 1 + \int_{1}^{2} \frac{1}{x} dx$.		

CÂU 31. Cho hình phẳng được tô màu trong hình bên dưới

Các mệnh đề sau đây đúng hay sai?

Mệnh đề		Ð	\mathbf{S}
a) Hình phẳng được tô màu trong hình vẽ trong thị $y = e^x$; $y = 0$; $x = 0$; $x = 1$.	n được giới hạn bởi các đồ		
b) Diện tích hình phẳng tô màu trong hình v	$ \stackrel{\cdot}{=} \lim_{x \to 0} \int_{-1}^{1} e^{x} dx. $		
c) Diện tích hình phẳng tô màu trong hình v	$\tilde{e} \operatorname{la} \int\limits_0^1 \mathrm{e}^x \mathrm{d}x.$		

QUICK NOTE

_	٧	/ [`	٧	Ρ	'n	Υ	10	מ	TI	n			L)\	/(5	2	. 5)	1(J	8			/		_		_	_	
						(3	j	Ų			C)	K	(١)											
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •	٠.																														
٠.	٠.																														
	٠.																														
٠.	٠.		•	•	•	•	•	•	•	•					•	•	•	•	•	•	•	•	•	•		•		•			•
٠.	٠.																														
	٠.																														
٠.	٠.		•	•	•	•	•	•	•	•					•	•	•	•	•	•	•	•	•	•		•		•			•
٠.	٠.										•	•	•	•											•		•		•	•	
٠.	٠.																														

Mệnh đề	Ð	S
d) Hình phẳng được tô màu trong hình vẽ trên được giới hạn bởi các đồ thị $y={\rm e}^x;\ y=0;\ x=-1;\ x=1.$		

CÂU 32. Cho hình phẳng được tô màu trong hình bên dưới.

Các mệnh đề sau đúng hay sai?

Mệnh đề	Ð	S
a) Hình phẳng được tô màu trong hình vẽ trên được giới hạn bởi các đồ thị $y=x+1;$ $y=\left(\frac{1}{2}\right)^x;$ $x=0;$ $x=2.$		
b) Diện tích hình phẳng tô màu trong hình vẽ là $\int_{0}^{2} \left[\left(\frac{1}{2} \right)^{x} - x - 1 \right] dx$.		
c) Diện tích hình phẳng tô màu trong hình vẽ bằng $S=4-\frac{3}{4\ln 2}$.		
d) Hình phẳng được tô màu trong hình vẽ trên được giới hạn bởi các đồ thị $y=x+1;$ $y=\left(\frac{1}{2}\right)^x;$ $x=1;$ $x=2.$		

CÂU 33. Cho đồ thị hàm số y=f(t) như hình vẽ.

Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	\mathbf{S}
a) Diện tích hình phẳng được giới hạn các đồ thị hàm số $y=f(t),$ trục		
Ot và hai đường thẳng $t=0; t=1$ là $S=rac{1}{2}\int\limits_0^1 t\mathrm{d}t=rac{1}{4}.$		
b) Diện tích hình phẳng được giới hạn các đồ thị hàm số $y=f(t),$ trục		
Ot và hai đường thẳng $t=1; t=2$ là $S=\int\limits_{1}^{2}2\mathrm{d}t=2.$		

Mệnh đề	Đ	S
c) Tích phân $\int\limits_{2}^{3}f(x)\mathrm{d}x$ biểu thị cho phần diện tích của hình phẳng giới hạn các đồ thị hàm số $y=f(t)$, trục Ot và hai đường thẳng $t=2$; $t=3$.		
d) Tích phân $\int_{3}^{5} f(x) dx$ biểu thị cho phần diện tích của hình phẳng giới hạn các đồ thị hàm số $y = f(t)$, trục Ot và hai đường thẳng $t = 3$; $t = 5$.		

CÂU 34. Tính diện tích hình phẳng được tô màu trong hình bên dưới.

KQ:		

CÂU 35. Biết diện tích phần hình phẳng gạch chéo trong hình vẽ bên có diện tích là $\frac{a}{b}$ với $a, b \in \mathbb{Z}$ và phân số $\frac{a}{b}$ tối giản. Tính tổng a+b.

KQ:

CÂU 36. Biết diện tích phần tam giác cong OAB trong hình vẽ bên có diện tích là $\frac{a}{b}$ với $a, b \in \mathbb{Z}$ và phân số $\frac{a}{b}$ tối giản. Tính hiệu b-a.

KQ:	
-----	--

QUICK NOT					
BUICK NOIL	\sim III		M	\sim	ı
	21U	$\mathbf{I} \subset \mathbf{N}$	121	V.	и

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

																•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																																	•

• • • •	• • • • • • • •	

7																	

QUICK NOTE

CÂU 37. Hình vuông OABC có cạnh bằng 4 được chia thành hai phần bởi đường cong (C)có phương trình $y = \frac{1}{4}x^2$. Gọi S_2 , S_2 lần lượt là diện tích của phần không tô màu và phần tô màu như hình vẽ bên dưới. Tỉ số $\frac{S_1}{S_2}$ bằng bao nhiêu?

CÂU 38. Cho hình thang cong (H) giới hạn bởi các đường $y=\mathrm{e}^x,\,y=0,\,x=0,\,x=\ln 4.$ Đường thẳng x = k, $(0 < k < \ln 4)$ chia (H) thành hai phần có diện tích là S_1 và S_2 như hình vẽ bên. Tìm k để $S_1=2S_2$ (làm tròn kết quả đến hàng phần chục).

KQ:				
-----	--	--	--	--

THỂ TÍCH KHỐI TRÒN XOAY

CÂU 1. Viết công thức tính thể tích V của khối tròn xoay được tạo ra khi quay hình thang cong, giới hạn bới đồ thị hàm số y = f(x), trục Ox và hai đường thẳng x = a, x = b, (a < b)xung quanh trục Ox.

$$\mathbf{A} V = \int_{a}^{b} |f(x)| \, \mathrm{d}x.$$

$$\mathbf{B} V = \pi \int_{a}^{b} f^{2}(x) dx.$$

$$\mathbf{D} V = \pi \int_{a}^{b} f(x) dx.$$

CÂU 2. Cắt một vật thể bởi hai mặt phẳng vuông góc với trục Ox tại x=1 và x=2. Một mặt phẳng tùy ý vuông góc với trực Ox tại điểm có hoành độ x, $(1 \le x \le 2)$ cắt vật thể đó có diên tích S(x) = 2024x. Tính thể tích của phần vật thể giới han bởi hai mặt phẳng trên.

(A)
$$V = 3036$$
.

(B)
$$V = 3036\pi$$
.

$$(\mathbf{C})V = 1518.$$

(D)
$$V = 1518\pi$$
.

CÂU 3. Cắt một vật thể bởi hai mặt phẳng vuông góc với trục Ox tại x=1 và x=3. Một mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x, $(1 \le x \le 3)$ cắt vật thể đó theo thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x và $3x^2 - 2$. Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng trên.

$$(A) \dot{V} = 156.$$

(B)
$$V = 156\pi$$
.

$$(\mathbf{C})V = 312.$$

$$(\mathbf{D})V = 312\pi.$$

CÂU 4. Gọi D là hình phẳng giới hạn bởi các đường $y=\mathrm{e}^{3x},\,y=0,\,x=0$ và x=1. Thể tích của khối tròn xoay tạo thành khi quay D quanh trục Ox bằng

$$\mathbf{A} \pi \int_{\mathbf{A}}^{1} e^{3x} dx.$$

$$\mathbf{C} \pi \int_{-\infty}^{1} e^{6x} dx.$$

CÂU 5. Gọi D là hình phẳng giới hạn bởi các đường $y=\mathrm{e}^{4x},\,y=0,\,x=0$ và x=1. Thể tích của khối tròn xoay tạo thành khi quay D quanh trực Ox bằng

$$\blacksquare \pi \int_{0}^{1} e^{8x} dx.$$

$$\mathbf{C} \pi \int_{0}^{1} e^{4x} dx.$$

CÂU 6. Cho hình phẳng (H) giới hạn bởi các đường $y=x^2+3, y=0, x=0, x=2$. Gọi V là thể tích của khối tròn xoay được tạo thành khi quay (H) xung quanh truc Ox. Mênh đề nào dưới đây đúng?

(A)
$$V = \int_{0}^{2} (x^2 + 3) dx$$
.

B
$$V = \pi \int_{-\infty}^{2} (x^2 + 3) dx.$$

©
$$V = \int_{-2}^{2} (x^2 + 3)^2 dx.$$

(D)
$$V = \pi \int_{0}^{2} (x^2 + 3)^2 dx.$$

CẦU 7. Cho hình phẳng D giới hạn bởi đường cong $y = e^x$, trục hoành và các đường thẳng x=0, x=1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?

(a)
$$V = \frac{\pi (e^2 + 1)}{2}$$
. (b) $V = \frac{e^2 - 1}{2}$. (c) $V = \frac{\pi e^2}{2}$.

B
$$V = \frac{e^2 - 1}{2}$$

$$\bigcirc V = \frac{\pi e^2}{3}.$$

$$\bigcirc V = \frac{\pi \left(e^2 - 1 \right)}{2}.$$

CÂU 8. Cho hình phẳng D giới hạn bởi đường cong $y = \sqrt{x^2 + 1}$, trục hoành và các đường thẳng x=0, x=1. Khối tròn xoay tạo thành khi quay D quanh trực hoành có thể tích V bằng bao nhiêu?

$$(\mathbf{A}) V = 2.$$

$$\bigcirc V = \frac{4\pi}{2}.$$

$$\bigcirc V = 2\pi.$$

$$\bigcirc V = \frac{4}{3}.$$

CÂU 9. Cho hình phẳng D giới hạn bởi đường cong $y=\sqrt{2+\cos x}$, trục hoành và các đường thẳng $x=0, x=\frac{\pi}{2}$. Khối tròn xoay tạo thành khi D quay quanh trục hoành có thể tích V bằng bao nhiêu?

$$(\mathbf{A}) V = (\pi + 1)\pi.$$

$$\widehat{\mathbf{B}}) V = \pi - 1.$$

(c)
$$V = \pi + 1$$
.

$$\bigcirc V = (\pi - 1)\pi.$$

CÂU 10. Cho hình phẳng D giới hạn bởi đường cong $y = \sqrt{2 + \sin x}$, trục hoành và các đường thẳng $x=0,\,x=\pi.$ Khối tròn xoay tạo thành khi quay D quay quanh trục hoành có thể tích V bằng bao nhiêu?

(A)
$$V = 2\pi(\pi + 1)$$
.

$$(\hat{\mathbf{C}}) V = 2(\pi + 1).$$

$$(\mathbf{D})V = 2\pi^2.$$

CÂU 11. Tìm công thức tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi parabol (P): $y=x^2$, đường thẳng d: y=2x và đường thẳng $x=0,\,x=2$ quay xung quanh truc Ox.

$$\mathbf{\hat{A}} \pi \int_{-\infty}^{2} (x^2 - 2x)^2 dx.$$

B)
$$\pi \int_{0}^{2} 4x^{2} dx - \pi \int_{0}^{2} x^{4} dx$$
.

$$\mathbf{\hat{C}} \pi \int_{2}^{2} 4x^{2} dx + \pi \int_{0}^{2} x^{4} dx.$$

$$\mathbf{D} \pi \int_{0}^{2} (2x - x^{2}) dx.$$

CÂU 12. Cho hình phẳng (H) giới hạn bởi các đường $y = x^2 + 3$, y = 0, x = 0, x = 2. Gọi V là thể tích khối tròn xoay được tạo hành khi quay (H) xung quanh trục Ox. Mệnh đề nào sau đây đúng?

(A)
$$V = \pi \int_{0}^{2} (x^2 + 3)^2 dx$$
.

(B)
$$V = \int_{-\infty}^{2} (x^2 + 3) \, dx.$$

©
$$V = \int_{0}^{2} (x^2 + 3)^2 dx$$
.

CÂU 13. Gọi V là thể tích của khối tròn xoay thu được khi quay hình thang cong, giới hạn bởi đồ thị hàm số $y = \sin x$, trực Ox, trực Oy và đường thẳng $x = \frac{\pi}{2}$, xung quanh trực Ox. Mệnh đề nào dưới đây đúng?

 	 	 	 	 	• • • •	

ຄ	Ш	CK	Ν	OI	-
	u	$-\kappa$		v.	

		•	•	•	•	•	•	•		
٠	٠	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	

$$\mathbf{(A)} V = \int_{0}^{\frac{\pi}{2}} \sin^2 x \, \mathrm{d}x.$$

$$\mathbf{B} V = \int_{0}^{\frac{\pi}{2}} \sin x \, \mathrm{d}x.$$

$$\mathbf{C} V = \pi \int_{1}^{\frac{\pi}{2}} \sin^2 x \, \mathrm{d}x.$$

$$\mathbf{\widehat{D}} V = \pi \int_{0}^{\frac{\pi}{2}} \sin x \, \mathrm{d}x.$$

CÂU 14. Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi đồ thị của hàm số $y = x^2 - 2x$, trực hoành, đường thẳng x = 0 và x = 1 quanh trực hoành bằng

- 16π

CẦU 15. Cho miền phẳng (D) giới hạn bởi $y=\sqrt{x}$, hai đường thẳng $x=1,\,x=2$ và trục hoành. Tính thể tích khối tròn xoay tạo thành khi quay (D) quanh trục hoành.

CÂU 16. Cho hình phẳng (H) giới hạn bởi các đường $y = 2x - x^2$, y = 0. Quay (H) quanh truc hoành tao thành khối tròn xoay có thể tích là

$$(\mathbf{A}) \int_{0}^{2} (2x - x^2) \, \mathrm{d}x.$$

B
$$\pi \int_{0}^{2} (2x - x^2)^2 dx$$
.

$$\bigcirc \int_{0}^{2} (2x - x^{2})^{2} dx.$$

$$\mathbf{D} \pi \int_{0}^{2} (2x - x^{2}) \, \mathrm{d}x.$$

CÂU 17. Cho hình phẳng giới hạn bởi các đường $y=\sqrt{x}-2,\,y=0$ và $x=4,\,x=9$ quay

CÂU 18. Cho hình phẳng (H) giới hạn bởi các đường thẳng $y=x^2+2, y=0, x=1, x=2.$ Gọi V là thể tích của khối tròn xoay được tạo thành khi quay (H) xung quanh trục Ox. Mênh đề nào dưới đây đúng?

(A)
$$V = \int_{1}^{2} (x^2 + 2) dx$$
.

B
$$V = \pi \int_{1}^{2} (x^{2} + 2)^{2} dx.$$

©
$$V = \int_{1}^{2} (x^2 + 2)^2 dx$$
.

CẦU 19. Cắt một vật thể (T) bởi hai mặt phẳng vuông góc với trục Ox tại x=0 và x=2. Một mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x $(0 \le x \le 2)$ cắt vật thể đó có theo một thiết diện là một hình vuông có cạnh bằng $\sqrt{x^3}$. Thể tích vật thể (T) là số hữu tỉ có dạng phân số tối giản $\frac{a}{b}$. Tính a+b.

KQ:		

CĂU 20. Cắt một vật thể bởi hai mặt phẳng vuông góc với trục Ox tại x=1; x=3. Khi cắt một vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x $(1 \le x \le 3)$, mặt cắt là tam giác vuông có một góc 45° và độ dài một cạnh góc vuông là $\sqrt{4-\frac{1}{2}x^2}$. Thể tích vật thể trên là một số hữu tỉ có dạng phân số tối giản $\frac{a}{b}$. Tính $a \cdot b$.

CÂU 21. Tính thể tích khối tròn xoay khi quay hình phẳng (H) xác định bởi các đường $y = \frac{1}{3}x^3 - x^2$, y = 0, x = 0 và x = 3 quanh trực Ox (kết quả viết dưới dạng số thập phân và làm tròn đến hàng phần trăm).

KQ:		

CÂU 22. Tính thể tích của vật thể tạo nên khi quay quanh trực Ox hình phẳng D giới hạn bởi đồ thị (P): $y=2x-x^2$, trục Ox và hai đường thẳng x=0, x=2 (Kết quả viết dưới dạng số thập phân và làm tròn đến hàng phần trăm).

KQ:

CÂU 23. Cho hình phẳng giới hạn bởi các đường $y = \tan x$, y = 0, x = 0, $x = \frac{\pi}{4}$ quay xung quanh trục Ox. Tính thể tích vật thể tròn xoay được sinh ra (kết quả viết dưới dạng số thập phân và làm tròn một chữ số thập phân sau dấu phẩy).

CÂU 24. Gọi V là thể tích khối tròn xoay tạo thành do quay xung quanh trục hoành một elip có phương trình $\frac{x^2}{25} + \frac{y^2}{16} = 1$. Tính V (Kết quả làm tròn đến hàng đơn vị).

CÂU 25.

Cho hình phẳng (H) được gạch chéo trong hình bên. Tính thể hình tròn xoay sinh ra bởi (H) khi quay (H) quanh trục Ox (Kết quả viết dưới dạng số thập phân và làm tròn đến hàng phần chuc).

CÂU 26.

Cho hình phẳng (D) được tô màu trong hình bên. Tính thể hình tròn xoay sinh ra bởi (D) khi quay (D) quanh trục Ox (Kết quả viết dưới dạng số thập phần và làm tròn đến hàng phần trăm).

CÂU 27.

Cho hình phẳng (H) được tô màu trong hình bên. Tính thể hình tròn xoay sinh ra bởi (H) khi quay (H) quanh trục Ox (Kết quả viết dưới dạng số thập phân và làm tròn đến hàng phần chục)

CÂU 28.

Cho hình phẳng (H) được tô màu trong hình bên. Tính thể hình tròn xoay sinh ra bởi (H) khi quay (H) quanh trục Ox (Kết quả viết dưới dạng số thập phân và làm tròn đến hàng phần chục).

QUICK NOTE

QUICK NOTE	KQ:
	CÂU 29.
	Cho hình phẳng (H) là tam giác cong
	Cho limit phang (H) la tain grac cong OAB trong hình vẽ bên. Tính thể hình
	tròn xoay sinh ra bởi (H) khi quay (H)
	quanh trục Ox (Kết quả viết dưới dạng số thập phân và làm tròn đến hàng phần
	trăm).
	-1/O 1 2 3 4 x
	$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $
	KQ:
	CÂU 30.
	Gọi V là thể tích khối tròn xoay tạo thành khi $y \uparrow$
	quay hình phẳng giới hạn bởi các đường $y = M$
	\sqrt{x} , $y = 0$ và $x = 4$ quanh trực Ox . Đường thẳng $x = a$, $(0 < a < 4)$ cắt đồ thị hàm số
	tháng $x = u$, $(0 < u < 4)$ cát do thị hành số $y = \sqrt{x}$ tại M (hình vẽ). Gọi V_1 là thể tích khối
	tròn xoay tạo thành khi quay tam giác OMH
	quanh trục Ox . Biết rằng $V = 2V_1$. Tìm a .
	KQ:
	Ứng dụng diện tích hình phẳng và thể tích khối tròn xoay trong
	bt thực tiễn
	CÂU 1. Trường Nguyễn Văn Trỗi muốn làm một cái cửa nhà hình parabol có chiều cao
	mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi m vuông là 1500 000 đồng. Vậy số tiền nhà trường phải trả là
	(A) 33 750 000 đồng. (B) 3 750 000 đồng. (C) 12 750 000 đồng. (D) 6 750 000 đồng.
	(A) 55 750 000 doing. (B) 5 750 000 doing. (C) 12 750 000 doing.
	CÂU 2.
	Chị Minh Hiền muốn làm một cái cổng hình Parabol như hình vẽ bên. Chiều cao $GH = 4 \mathrm{m}$, chiều rộng $AB = 4 \mathrm{m}$,
	$AC = BD = 0.9 \mathrm{m}$. Chị Minh Hiền làm hai cánh cổng
	khi đóng lại là hình chữ nhật $CDEF$ tô đậm có giá là 1 200 000 đồng/m² còn cóc phần đổ trắng làm viên họa có
	1200000dồng/m^2 , còn các phần để trắng làm xiên hoa có giá là 900000dồng/m^2 . Hỏi tổng số tiền để làm hai phần nói
	gia là 900 000 dong/m. Hoi tong so tiên de làm hai phần hỏi trên gần nhất với số tiền nào dưới đây?
	(A) 11 445 000 đồng. (B) 4 077 000 đồng.
	© 7 368 000 đồng.
	A C H D D

CÂU 3.

QUICK NOTE

Một cổng chào có dạng hình Parabol chiều cao 18 m, chiều rộng chân đế 12 m. Người ta căng hai sợi dây trang trí AB, CD nằm ngang đồng thời chia hình giới hạn bởi Parabol và mặt đất thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số $\frac{AB}{CD}$ bằng

CÂU 4.

Một họa tiết hình cánh bướm như hình vẽ bên. Phần tô đậm được đính đá với giá thành 500 000/ m². Phần còn lại được tô màu với giá thành $250\,000/\,\mathrm{m}^2$. Cho $AB=4\,\mathrm{dm};\,BC=8\,\mathrm{dm}.$ Hỏi để trang trí 1000 họa tiết như vậy cần số tiền gần nhất với số nào sau đây.

A) 105 660 667.

(B) 106 666 667.

(C) 107 665 667.

(D) 108 665 667.

CÂU 5.

Một viên gạch hoa hình vuông cạnh 40 cm. Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm viên gạch để tạo ra bốn cánh hoa (được tô đen như hình vẽ dưới). Diện tích mỗi cánh hoa của viên gach bằng

 \bigcirc 800 cm².

B $\frac{800}{3}$ cm². **C** $\frac{400}{3}$ cm². **D** 250 cm².

40 cm

CÂU 6. Để kỷ niệm ngày 26-3. Chi đoàn 12A dự định dựng một lều trại có dạng parabol, với kích thước: nền trại là một hình chữ nhật có chiều rộng là 3 mét, chiều sâu là 6 mét, đỉnh của parabol cách mặt đất là 3 mét. Hãy tính thể tích phần không gian phía bên trong trại để lớp 12A cử số lượng người tham dự trại cho phù hợp.

 $(A) 30 \text{ m}^3.$

(B) 36 m^3 .

 (\mathbf{C}) 40 m³.

(**D** $)41 \text{ m}^3.$

CÂU 7. Cho một vật thể bằng gỗ có dạng hình trụ với chiều cao và bán kính đáy cùng bằng R. Cắt khối gỗ đó bởi một mặt phẳng đi qua đường kính của một mặt đáy của khối gỗ và tạo với mặt phẳng đáy của khối gỗ một góc 30° ta thu được hai khối gỗ có thể tích là V_1 và V_2 , với $V_1 < V_2$. Thể tích V_1 bằng

(A) $V_1 = \frac{2\sqrt{3}R^3}{9}$. (B) $V_1 = \frac{\sqrt{3}\pi R^3}{27}$. (C) $V_1 = \frac{\sqrt{3}\pi R^3}{18}$. (D) $V_1 = \frac{\sqrt{3}R^3}{27}$.

CÂU 8.

<u> </u>	٧	Ν	F	r	Υ	10	a	t	h		-	C)(90	5	2	9) /	1(C	8	1	Ç	7	(?			
					(Ş)	l	J	ľ			K	7		١	(C)										
			•		•				•	•		•				•			•					•	•	•	•	•	
• •																										•	•	•	•
• •			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•
••		• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠.																													
٠.																													
				•		•	•	•	•	•	•	•	•											•	•	•	•	•	
• •																							•	•	•	•	•	•	
	• •																												
	• •																												
• •		٠.	٠	٠	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•

Chuẩn bị cho đêm hội diễn văn nghệ chào đón năm mới, bạn Minh Hiền đã làm một chiếc mũ "cách điệu" cho ông già Noel có dáng một khối tròn xoay. Mặt cắt qua trực của chiếc mũ như hình vẽ bên dưới. Biết rằng OO' = 5 cm, OA = 10 cm, OB = 20 cm, đường cong AB là một phần của parabol có đỉnh là điểm A. Thể tích của chiếc mũ bằng

 $\mathbf{B} \frac{2500\pi}{3} \text{ cm}^3.$ $\mathbf{D} \frac{2250\pi}{3} \text{ cm}^3.$

CÂU 9.

Một chi tiết máy được thiết kế như hình vẽ bên. Các tứ giác ABCD, CDPQ là các hình vuông cạnh 2,5 (cm). Tứ giác ABEF là hình chữ nhật có BE = 3.5 (cm). Mặt bên PQEFđược mài nhẫn theo đường parabol (P) có đỉnh parabol nằm trên canh EF. Thể tích của chi tiết máy bằng

(A) $\frac{395}{24}$ cm³. (B) $\frac{50}{3}$ cm³. (C) $\frac{125}{8}$ cm³.

CÂU 10. Bổ dọc một quả dưa hấu ta được thiết diện là hình elip có trục lớn 28 cm, trục nhỏ $25~\mathrm{cm}$. Biết cứ $1000~\mathrm{m}^3$ dưa hấu sẽ làm được cốc sinh tố giá $20000~\mathrm{đồng}$. Hỏi từ quả dưa hấu trên có thể thu được bao nhiêu tiền từ việc bán nước sinh tố? Biết rằng bề dày vỏ dưa không đáng kể.

(A) 183000 đồng.

(B) 180000 đồng.

(C) 185000 đồng.

(**D**) 190000 đồng.

CÂU 11. Một bác thợ xây bơm nước vào bể chứa nước. Gọi h(t) là thể tích nước bơm được sau t giây. Cho $h'(t) = 6at^2 + 2bt$ và ban đầu bể không có nước. Sau 3 giây thì thể tích nước trong bể là $90m^3$, sau 6 giây thì thể tích nước trong bể là $504m^3$. Tính thể tích nước trong bể sau khi bơm được 9 giây.

(A) $1458m^3$.

(B) $600m^3$.

 $(\mathbf{C}) 2200m^3$.

 $(\mathbf{D})4200m^3$.

CÂU 12. Người ta thay nước mới cho một bể bơi có dạng hình hộp chữ nhật có độ sâu là 280cm. Giả sử h(t)là chiều cao (tính bằng cm) của mực nước bơm được tại thời điểm t giây, biết rằng tốc độ tăng của chiều cao mực nước tại giây thứ t là $h'(t) = \frac{1}{500} \sqrt[3]{t}$ và lúc đầu hồ bơi không có nước. Hỏi sau bao lâu thì bơm được số nước bằng $\frac{3}{4}$ độ sâu của hồ bơi (làm tròn đến giây)?

(A) 2 giờ 36 giây.

(B) 2 giờ 48 giây.

© 2 giờ 38 giây.

 (\mathbf{D}) 2 giờ 46 giây.

NGUYÊN HÀM VÀ	ΓÍCH PHÂN	1
Bài 1.	NGUYÊN HÀM	1
A	Tóm tắt lý thuyết	1
B	Kiến thức cần nắm	1
	Phân loại và phương pháp giải bài tập	1
	Dạng 1. Sử dụng định nghĩa nguyên hàm và bảng nguyên hàm	
	🗁 Dạng 2. Tìm nguyên hàm khi biết giá trị nguyên hàm	
	Dạng 3. Ứng dụng trong bài toán thực tiễn	13
Bài 2.	Tích Phân	15
A	Lý thuyết cần nhớ	15
B	Phân loại và phương pháp giải bài tập	16
	Dạng 4. Tính chất của tích phân	
	Dạng 5. Tích phân hàm số sơ cấp	
	🗁 Dạng 6. Tích phân hàm chứa trị tuyệt đối	23
	🗁 Dạng 7. Tích phân có điều kiện	25
	Dạng 8. Ứng dụng tích phân trong thực tiễn	28
Bài 3.	ỨNG DỤNG HÌNH HỌC CỦA TÍCH PHÂN	31
A	Diện tích hình thang cong	31
B	Thể tích hình khối	31
	🗅 Dạng 9. TÍNH DIỆN TÍCH HÌNH GIỚI HẠN BỞI CÁC ĐƯỜNG CONG	32
	🖒 Dạng 10. THỂ TÍCH KHỐI TRÒN XOAY	42
	😑 Dạng 11. Ứng dụng diện tích hình phẳng và thể tích khối tròn xoay trong bt thực tiễn	46

