Análisis Matemático para Inteligencia Artificial

Verónica Pastor (vpastor@fi.uba.ar), Martín Errázquin (merrazquin@fi.uba.ar)

Especialización en Inteligencia Artificial

Clase 2

Espacios con Producto Interno: Definición

Sea $\mathbb{V} - \mathbb{K}$ e.v., donde $\mathbb{K} = \mathbb{R}$ o \mathbb{C} , un producto interno sobre \mathbb{V} es una función $\Phi : \mathbb{V} \times \mathbb{V} \to \mathbb{R}$ $(o \mathbb{C})$ que satisface:

- Para cada $\alpha \in \mathbb{R}$ (o C), $u, v, w \in \mathbb{V}$.

 $\Phi(u+v,w) = \Phi(u,w) + \Phi(v,w)$ $\Phi(u,v) = \Phi(v,u)$ $\Phi(u,v) = \Phi(v,u)$ $\Phi(v,v) \geq 0$, $\Psi(v,v) = 0$ sii V=0Notación: $\Psi(u,v) = \langle u,v \rangle$
- **Definición:** A un espacio vectorial real (complejo) provisto de un producto interno se lo llama espacio euclídeo (espacio unitario).

Obs: El p.i. es una generalización del producto escalar en \mathbb{R}^n (o \mathbb{C}^n).

V, W
$$\in \mathbb{R}^N$$
 N. $\mathbb{R}^1 = \sum_{k=1}^n \sqrt{1} \cdot \sqrt{1} \cdot \sqrt{\frac{4}{5}} \cdot \left(\frac{4}{5}\right) \cdot \left(\frac{4$

También hay otros espacios con productos internos ...

Sea \mathcal{V} el espacio de las funciones continuas de valor real (o complejo) en el intervalo $-1 \le x \le 1$ (se nota $\mathcal{C}([-1,1])$) con p.i.

Verificar que cumple:

• Para cada
$$\alpha \in \mathbb{R}$$
 (o \mathbb{C}), $f, g, h \in \mathcal{C}([-1,1])$.
• $\Phi(f+g,h) = \Phi(f,h) + \Phi(g,h)$

$$\Phi(f+g,h) = \Phi(f,h) + \Phi(g,h)$$

$$\Phi(\alpha \bullet f,g) = \alpha \bullet \Phi(f,g)$$

•
$$\Phi(\alpha \bullet f, g) = \alpha \bullet \Phi(f, g)$$

• $\Phi(f, g) = \overline{\Phi(g, f)}$

$$\Phi(f,g) = \Phi(g,f)$$

$$\Phi(f,f) \ge 0, \text{ y } \Phi(f,f) = 0 \text{ sii } f(x) = 0, \forall x$$

$$3) < \frac{1}{4} + 3 = \int_{1}^{1} \frac{1}{4(x)^{\frac{1}{2}(x)}} dx = \int_{1}^{1} \frac{1}{4(x)^{\frac{1}{2}(x)}} dx$$

3)
$$+> = \int_{1}^{1} f(x) dx = (14x)|_{1}^{2} + 30 \quad \forall f \in ((1,1))$$

 $= 0 \Leftrightarrow ||f(x)|_{2} = 0 \quad \forall x \Leftrightarrow f(x) = 0$

-cf,h>+<9,h> /

Definición de Norma

Sea $(\mathbb{V}, \langle .,. \rangle)$ un e.v. real (complejo) con p.i.. Sea $v \in \mathbb{V}$, se define la norma de v asociada a $\langle .,. \rangle$.

Notación: $||v|| = \langle v, v \rangle^{1/2}$

Es la generalización de la longitud de un vector en \mathbb{R}^n (o \mathbb{C}^n).

Propiedades de la Norma

- $\forall v \in \mathbb{V}, \ ||v|| \geq 0, \ y \ ||v|| = 0 \ \text{sii} \ v = 0.$ $\text{Sean } \alpha \in \mathbb{R}(o \ \mathbb{C}), \ v \in \mathbb{V}, \ ||\alpha \bullet v|| = |\alpha| \ ||v||.$ $\text{Designaldad de Cauchy Schwartz: si } u, v \in \mathbb{V} \ \text{entonces}$

$$|\langle u,v\rangle| \leq ||u|| \ ||v||$$

Designaldad Triangular: si $u,v\in\mathbb{V}$ entonces $\|u,v\|\in\mathbb{V}$ entonces

 $||u + v|| \le ||u|| + ||v||$ 1/4+2/1=1/4/1 +/12/1

Ortogonalidad

Def: $(\mathbb{V}, \langle .,. \rangle)$ un \mathbb{K} -EV (con $\mathbb{K} = \mathbb{R}$ o \mathbb{C}) con p.i. dos vectores $u, v \in \mathbb{V}$ se dicen ortogonales si $\langle u, v \rangle = 0$.

Teorema de Pitágoras: Si
$$u, v \in \mathbb{V}$$
 son ortogonales entonces $||u+v||^2 = ||u||^2 + ||v||^2$.

Def: $(\mathbb{V}, \langle .,. \rangle)$ un \mathbb{K} -EV (con $\mathbb{K} = \mathbb{R}$ o \mathbb{C}) con p.i.. Se dice que $\{v_1, ..., v_r\} \subset \mathbb{V}$ es un conjunto ortogonal si $\langle v_i, v_j \rangle = 0, \ \forall i \neq j$. Si $||v_i|| = 1, \ \forall i$ se dice que es un conjunto ortonormal.

La proyección ortogonal del vector v sobre el vector u es otro vector que notamos como $P_u(v)$, y se define:

$$P_{u}(v) = \frac{\langle u, v \rangle}{||u||} \frac{u}{||u||} = \frac{\langle u, v \rangle}{\langle u, u \rangle} u$$

Proceso de Ortogonalización de Gram Schmidt

Def: Una base ortonormal (BON) de un E.V. es una base $B = \{v_1, ..., v_n\}$ que satisface:

$$\langle v_i, v_j \rangle = 0, \ \forall i \neq j$$

 $\langle v_i, v_i \rangle = 1, \ \forall i$

Obs: Si sólo se cumple que $\langle v_i, v_j \rangle = 0$, $\forall i \neq j$ se dice que es una base ortogonal.

Para transformar una base en una base ortonormal usamos el proceso de Gram-Schmidt:

$$k_{3} = N_{3} - Proy_{k_{1}}(v_{3}) - Proy_{k_{2}}(v_{3})$$

$$k_{1} = v_{1}$$

$$k_{2} = v_{2} - Proy_{k_{1}}(v_{2})$$

$$\vdots$$

$$k_{n} = v_{n} - \sum_{i=1}^{n-1} Proy_{k_{i}}(v_{n})$$

$$k_{i} = \frac{k_{1}}{|k|}$$

Y así, $\tilde{B} = \{k_1, ..., k_n\}$ pidiendo que $||k_i|| = 1$ resulta una BON.

Complemento Ortogonal

Sea $\mathbb V$ un EV de dimensión $n<\infty$ y $S\subset \mathbb V$ un SEV de dimensión $m\leq n$. El complemento ortogonal (S^\perp) es un SEV de de dimensión n-m que satisface:

satisface:

$$S \cup S^{\perp} = \mathbb{V} \wedge S \cap S^{\perp} = \emptyset$$
Ejemplo:

$$S = \left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad p.i.$$

$$S = \left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad p.i.$$

$$S = \left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{on} \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\rangle \quad A$$

$$S = \left\langle \begin{pmatrix} 1 \\ 2$$

Distancia

Sea \mathbb{V} - \mathbb{K} , (\mathbb{R} o \mathbb{C}) EV con p.i. $\langle .,. \rangle$ se define la distancia $d: \mathbb{V} \times \mathbb{V} \to \mathbf{K}$ como d(u,v) = ||u-v||.

Propiedades:

- $d(u,v) = 0 \Leftrightarrow u = v$

Observación: Existen distancias que no están asociadas a ninguna norma.

Matrices definidas positivas

Una matriz $A \in \mathbb{R}^{n \times n}$ se dice definida positiva si es simétrica y vale que:

$$x^T A x > 0, \ \forall x \in \mathbb{R}^n - \{0\}$$

Si vale que $x^T A x \ge 0$ se la llama semi definida positiva.

Ejemplo:
$$A = \begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix} = A \rightarrow A \Rightarrow \text{ sime Crise}$$
 $Z = \begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix} = A \rightarrow A \Rightarrow \text{ sime Crise}$
 $Z = \begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix} = A \rightarrow A \Rightarrow \text{ sime Crise}$
 $Z = \begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 4 & 4 \end{pmatrix} \begin{pmatrix} 2 & 4$

Teorema: Sea \mathbb{V} un EV de dimensión finita, y B una base de \mathbb{V} , vale que es un p.i. sii existe una matriz definida positiva tal que:

$$\langle x, y \rangle = \tilde{x}^T A \tilde{y}$$

donde \tilde{x} , \tilde{y} , son las representaciones de x, y en la base B.

Transformaciones

Sea $T: \mathbb{V} \to \mathbb{W}$ una transformación, donde \mathbb{V}, \mathbb{W} son dos conjuntos arbitrarios. Se dice que T es:

- Inyectiva: si $\forall x, y \in \mathbb{V} : T(x) = T(y) \rightarrow x = y$
- Survectiva: si $T(\mathbb{V}) = \mathbb{W}$ $T(\mathbb{V}) = \mathbb{V}$
- Biyectiva: si es inyectiva y suryectiva.

Transformaciones Lineales

Sean $\mathbb{V},\ \mathbb{W}$ dos EV, $L:\mathbb{V}\to\mathbb{W}$ es una transformación lineal si:

$$L(\alpha x + \beta y) = \alpha L(x) + \beta L(y) \ \forall \alpha, \beta \in \mathbb{K}, \ \forall x, y \in \mathbb{V}$$

- Isomorfismo: $L: \mathbb{V} \to \mathbb{W}$ es lineal y biyectiva.
- Endomorfismo: si $L: \mathbb{V} \to \mathbb{V}$ es lineal.
- Automorfismo: $L: \mathbb{V} \to \mathbb{V}$ es lineal y biyectiva. 150 + ende

Representaciones

Teorema: Sea \mathbb{V} y \mathbb{W} , dos espacios vectoriales de dimensión finita son un isomorfismo sii $dim(\mathbb{V}) = dim(\mathbb{W})$.

Teorema: Sea \mathbb{V} un EV, $dim(\mathbb{V}) = n < \infty$ tiene un isomorfismo con \mathbb{R}^n . Si consideramos la base $B = \{v_1, ..., v_n\}$, todo $v \in \mathbb{V}$ puede escribirse como $v = \alpha_1 v_1 + ... + \alpha_n v_n$. Luego las coordenadas de v en la base B resulta:

$$\alpha = (\alpha_1, ..., \alpha_n)^T \in \mathbb{R}^n$$

$$\nabla = (\alpha_1, ...$$

Núcleo e Imagen de una transformación

Sea $L: \mathbb{V} \to \mathbb{W}$, se define:

- Núcleo (o Kernel) $Nu(L) = \{v \in \mathbb{V} : L(v) = 0_W\},\$
- Imagen $Im(L) = L(\mathbb{V}) = \{ w \in \mathbb{W} : \exists v \in \mathbb{V}, \ w = L(v) \}$

Teorema: Toda transformación lineal se puede representar de forma matricial. $\frac{3}{4}$

• Espacio Nulo de A: es un subespacio de \mathbb{R}^n formado por todas las soluciones del sistema lineal homogéneo Av = 0, $A \in \mathbb{R}^{m \times n}$.

$$N(A) = \{v \in \mathbb{R}^{n \times 1} : Av = 0\}$$
• Espacio columna de A : es el subespacio de \mathbb{R}^m generado por los n

 \sim vectores columna de A:

$$EC(A) = \{\alpha_1(a_{11}, ..., a_{m1})^T + ... + \alpha_m(a_{1n}, ..., a_{mn})^T, \alpha_i \in \mathbb{R}\}$$

• Espacio fila de A: e el subespacio de R^n generado por los m vectores fila de A:

$$A: (a_{11}, ..., a_{1n}) + ... + \alpha_{m}(a_{m1}, ..., a_{mn}), \alpha_{i} \in \mathbb{R}$$

Veamos un ejemplo...

$$L: \mathbb{R}^{2} \to \mathbb{R}^{2} / L(x_{3}) = (x_{3} + \frac{1}{2}) \quad [A TL] L(d(x_{3}) + \beta(x_{3} + \frac{1}{2}) - L(x_{3} + \frac{1}{$$

 $\lfloor \binom{1}{0} = \binom{1}{1} \Rightarrow \exists r(L) = \left\langle \binom{4}{1}, \binom{1}{1} \right\rangle$

La bijective L(2)= (1) = P = Surretive L's endomartismo

Seguimos con el ejemplo...

Conclusiones ...

Teorema: Sea $A \in \mathbb{R}^{m \times n}$, dim(EC(A)) = dim(EF(A)) = r(A). Donde r(A) se denomina rango de la matriz.

Definición: Se denomina nulidad de una matriz A a la dimensión de su espacio nulo N(A), n(A) = dim(N(A)), siendo $N(A) = \{v \in \mathbb{R}^n, Av = 0\}$ Teorema de Rango-Nulidad: Para toda matriz $A \in \mathbb{R}^{m \times n}$ se verifica: