File Management

File Concept

- •A file is a named collection of related information that is recorded on secondary storage.
- Many different types of information may be stored in a file—source or executable programs, numeric or text data, photos, music, video, and so on.
- •A file has a certain defined structure, which depends on its type.
- •A **text file** is a sequence of characters organized into lines (and possibly pages).
- •A **source file** is a sequence of functions, each of which is further organized as declarations followed by executable statements.
- •An **executable file** is a series of code sections that the loader can bring into memory and execute.

File Attributes

- •Name only information kept in human-readable form
- •Identifier unique tag (number) identifies file within file system
- •Type needed for systems that support different types
- •Location pointer to file location on device
- •Size current file size
- Protection controls who can do reading, writing, executing
- Time, date, and user identification data for protection, security, and usage monitoring
- •Information about files are kept in the **directory structure**, which is maintained on the disk
- Many variations, including extended file attributes such as file checksum
- Information kept in the directory structure

File Operations

- Create
- •Write at write pointer location
- •Read at read pointer location
- Reposition within file seek
- Delete
- •Truncate erase the contents of a file but keep its attributes.
- •Open (F_i) search the directory structure on disk for entry F_i , and move the content of entry to memory
- •Close (F_i) move the content of entry F_i in memory to directory structure on disk

Open Files

- Several pieces of data are needed to manage open files:
 - Open-file table: tracks open files
 - File pointer: pointer to last read/write location, per process that has the file open
 - File-open count: counter of number of times a file is open to allow removal of data from open-file table when last processes closes it
 - Disk location of the file: cache of data access information
 - Access rights: per-process access mode information

File Types – Name, Extension

file type	usual extension	function
executable	exe, com, bin or none	ready-to-run machine- language program
object	obj, o	compiled, machine language, not linked
source code	c, cc, java, pas, asm, a	source code in various languages
batch	bat, sh	commands to the command interpreter
text	txt, doc	textual data, documents
word processor	wp, tex, rtf, doc	various word-processor formats
library	lib, a, so, dll	libraries of routines for programmers
print or view	ps, pdf, jpg	ASCII or binary file in a format for printing or viewing
archive	arc, zip, tar	related files grouped into one file, sometimes com- pressed, for archiving or storage
multimedia	mpeg, mov, rm, mp3, avi	binary file containing audio or A/V information

Access Methods

- •Sequential Access processed in order, one record after the other.
- •Direct Access The direct-access method is based on a disk model of a file, since disks allow random access to any file block.

Other Access Methods

- Can be built on-top of base methods
- •General involve creation of an index for the file
- •Keep index in memory for fast determination of location of data to be operated on (consider Universal Produce Code (UPC code) plus record of data about that item)
- •If too large, index (in memory) of the index (on disk).

Index and Relative Files

Directory Structure

A collection of nodes containing information about all files

• Both the directory structure and the files reside on disk

Operations Performed on Directory

- Search for a file
- Create a file
- Delete a file
- List a directory
- Rename a file
- Traverse the file system

Directory Organization

The directory is organized logically to obtain

- Efficiency locating a file quickly
- Naming convenient to users
 - Two users can have same name for different files
 - The same file can have several different names
- •Grouping logical grouping of files by properties, (e.g., all Java programs, all games, ...)

Single-Level Directory

A single directory for all users

- Naming problem
- Grouping problem

Two-Level Directory

Separate directory for each user

- Path name
- Can have the same file name for different user
- Efficient searching
- No grouping capability

Tree-Structured Directories

Acyclic-Graph Directories

Have shared subdirectories and files

Acyclic-Graph Directories

- Two different names (aliasing)
- If *dict* deletes w/*list* ⇒ dangling pointer
 Solutions:
 - Backpointers, so we can delete all pointers.
 - Variable size records a problem
 - Backpointers using a daisy chain organization
 - Entry-hold-count solution
- New directory entry type
 - •Link another name (pointer) to an existing file
 - Resolve the link follow pointer to locate the file

File Sharing

- Sharing of files on multi-user systems is desirable
- Sharing may be done through a protection scheme
- On distributed systems, files may be shared across a network
- Network File System (NFS) is a common distributed file-sharing method
- •If multi-user system
 - User IDs identify users, allowing permissions and protections to be per-user
 Group IDs allow users to be in groups, permitting group access rights
 - Owner of a file / directory
 - Group of a file / directory

File Sharing – Remote File Systems

- Uses networking to allow file system access between systems
 - Manually via programs like FTP
 - Automatically, seamlessly using distributed file systems
 - Semi automatically via the world wide web
- •Client-server model allows clients to mount remote file systems from servers
 - Server can serve multiple clients
 - Client and user-on-client identification is insecure or complicated
 - NFS is standard UNIX client-server file sharing protocol
 - CIFS is standard Windows protocol
 - Standard operating system file calls are translated into remote calls
- Distributed Information Systems (distributed naming services) such as LDAP, DNS, NIS, Active Directory implement unified access to information needed for remote computing

Protection

- •File owner/creator should be able to control:
 - what can be done
 - by whom
- Types of access
 - Read
 - Write
 - Execute
 - Append
 - Delete
 - List

Access Lists and Groups in Unix

- Mode of access: read, write, execute
- Three classes of users on Unix / Linux

```
a) owner access 7 \Rightarrow 111 RWX
b) group access 6 \Rightarrow 110 RWX
c) public access 1 \Rightarrow 001
```

- Ask manager to create a group (unique name), say G, and add some users to the group.
- For a file (say *game*) or subdirectory, define an appropriate access.

Attach a group to a file

chgrp G game

Windows 7 Access-Control List Management

