NALYSIS OF CATION

prepare a clear transparent solution by dissolving the given salt in

- Distilled water (hot or cold) or 1.
- Dil. HCl (hot or cold) ii.

Group separation

1. Salt solution + dil. HCl If precipitate is formed – I group is present. (Pb2+). If the precipitate is not formed, I group is absent. $Pb^{2+} + Cl \rightarrow PbCl_2$

2. Pass H2S.

If precipitate is formed II group is present. (Cu2+ or As^{3+}

If precipitate is black, it is Cu 2+ If precipitate is yellow, It is As3+.

If precipitate is not formed, II group is absent. $Cu^{2+} + H_2S \rightarrow CuS + H^+$

Boil it to remove H2S. Add 3 drops of Con. HNO3 boil. Add solid NH₄Cl and NH₄OH (more). and If precipitate is formed, II group is present. /If precipitate is reddish brown, it is Fe 3+. If precipitate is not formed, III group is absent

 $Fe^{3+} + NH_4OH \rightarrow Fe(OH)_3$

4. Add more NH₄OH and pass H₂S. If precipitate is formed IV group is present. If the precipitate is black, it is Ni2+ or Co2+ If it is flesh coloured, it is Mn2+ If precipitate is dirty white, it is Zn2+. If precipitate is not formed, IV group is absent. $Zn^{2+} + H_2S \rightarrow ZnS + H^+$ $Co^{2+} + H_2S \rightarrow CoS + H^+$

 $Mn^{2+} + H_2S \rightarrow MnS + H^+$ $Ni^{2+} + H_2S \rightarrow NiS + H^+$

5. Boil the mixture to remove H2S. Add NH4Cl, NH4OH and (NH₄)₂CO₃ If white precipitate is formed, V group is present. Ba2+, Sr2+ or Ca2+

If precipitate is not formed, V group is absent.

 $\begin{array}{l} BaCl_2 + (NH_4)_2CO_3 \rightarrow BaCO_3 + NH_4Cl \\ SrCl_2 + (NH_4)_2CO_3 \rightarrow SrCO_3 + NH_4Cl \end{array}$

6. If there is no precipitate, it would be NH₄+ or Mg²⁺.

Confirmatory tests:

I group

Wash the precipitate with cold water and add 2ml of water and boil. Divide it into 2 parts.

S.No.	Experiment	Observation	Inference
1	To one part add K2CrO4	Yellow	Pb ²⁺ is
		precipitate	confirmed
2	To the other part add KI	Yellow	
		precipitate	Pb ²⁺ is
			confirmed

 $PbCl_2 + K_2CrO_4 \rightarrow PbCrO_4 + KCl$

 $PbCl_2 + KI \rightarrow PbI_2 + KCl$

Il group:

Wash the precipitate with hot water.

If the precipitate is black, treat with 3ml of HNO3 and boil. Add NH4OH. Blue colour solution is obtained. Divide the blue solution into 2 parts.

S.No.	Experiment	Observation	Inference
1	To one part, add acetic	White	Cu ²⁺ is
	acid + KI	precipitate is	confirmed
!		formed in	
	4,	brown solution	
2.	To the other part add		Cu ²⁺ is
	K ₄ [Fe(CN) ₆	Chocolate	confirmed
		brown colour	

 $Cu^{2+} + K_4[Fe(CN)_6 \rightarrow Cu_2[Fe(CN)_6 + KNO_3]$ If the precipitate is yellow, dissolve the precipitate in Con.HNO3 and divide into 2 parts.

S.NO.	Experiment :: Ammonium molybdate	Observation	Inference
1.		Yellow	As ³⁺ ·is
2.	Magnesia mixture	White precipitate	confirmed As ³⁺ is confirmed

2) Cobrol Nitrala Test C-T: 1) Lake last: Dissolve white ppt + did HCl.

Reform chorcool county / Colorte white to the latinus solve.

HII group: develope of blue latinus solve.

The group: develope develope.

If the precipitate is reddish brown, it is Fe3+ Dissolve the precipitate in dil.HCl and divide the solution into 2 parts.

Fo(OH) + HC1 - FoCl + HoO

PECOL	13 T 1101 - 120		
S:NQ	Experiment	Observation	Observation
1.	Add NH4OH	Dark brown colour	Fe ³⁺ is confirmed
2.	K₄[Fe(CN)6	Deep blue	Fe³+ is confirmed
3.	Add KSCN	Deep red colour	Fe³+ is confirmed

 $FeCl_3 + K_4[Fe(CN)_6 \rightarrow K_3 Fe[Fe(CN)_6] + KCl$ $FeCl_3 + KSCN \rightarrow K_3Fe[Fe(SCN)_6]$

Group: IV

Case I If the precipitate is black, it is Co2+ or Ni2+ Dissolve the precipitate in <u>aqua regia</u> (3 parts of con.HNO₃ and 1 part of HCl)

Blue residue – Co^{2+} . Yellow precipitate – Ni^{2+} . Evaporate the solution in a china dish. Dissolve in water. Pink colour solution is obtained. Divide into 2 parts.

S.No.	Experiment	Observation	Inference
1.	To one part add KSCN.	Blue colour	Co ²⁺ is
ì	Allow to settle		confirmed
2.	Add NH ₄ OH, CH ₃ COOH	Yellow	
	and crystal KNO3 and	precipitate	Co ²⁺ is
	warm		confirmed

Dissolve the yellow precipitate in water. Green solution is obtained. Divide the green solution into 2 parts.

S.No.	Experiment	Observation	Inference
1.	Add NFI4OH and few drops of DMG	Bright red precipitate	Ni ²⁺ is . confirmed
2.	Add NaOH in excess and bromine water and boil	Black precipitate	Ni ²⁺ is confirmed

e: II

the precipitate is of buff colour, dissolve the precipitate in ail.HCl. Boil off H₂S

MnS + HCl → MnCl₂ + H₂S

S.No.	Experiment		
1.	Add MaOII	Observation	Inference
	rad raon solution	White	Mn ²⁺ is
2.	To the selection	precipitate	confirmed
۵.	To the white precipitate		
	add bromine water	Black or brown	
9	m	colour	Mn ²⁺ is
3.	To the black precipitate		confirmed
1	add Con. HNO3 and lead		
	peroxide.Boil and cool	Pink colour	
i		solution	Mn ²⁺ is
			confirmed

 $MnCl_2 + NaOH \rightarrow Mn(OH)_2$

 $Mn(OH)_2 + O \rightarrow MnO(OH)_2$

 $PbO_2 + H + + Mn^{2+} \rightarrow MnO_4 + Pb^{2+} + H_2O$

Case: III

If the precipitate is dirty white, dissolve in dil.HCl, boil off H₂S and divide into 2 parts.

 $ZnS + HCl \rightarrow ZnCl_2 + H_2S$

S.No	Experiment	Observation	Inference
1	Add NaOH dropwise	White	Zn ²⁺ is
		precipitate	confirmed
2	To the white precipitate,		
	add more NaOH	White	
		precipitate	Zn²+ is
3	To the other part add	dissolves	confirmed
	$K_4[Fe(CN)_6]$		
	Potassium fero-Gynate.	White	Zn ²⁺ is
	10-2	precipitate or	confirmed
		bluish	
			* 1

 $ZnCl_2 + NaOH \rightarrow Zn(OH)_2$

Zn(OH)₂ + NaOH \rightarrow Na₂ZnO₄

 $\operatorname{Zn}^{(2)} + \operatorname{K}_4[\operatorname{Fe}(\operatorname{CN})_6] \to \operatorname{Zn}_2[\operatorname{Fe}(\operatorname{CN})_6]$

Group: V Dissolve the part of the white precipitate in hot dil acetic acid and divide the solution into 3 parts $BaCO_3 + CH_3COOH \rightarrow (CH_3COO)_2Ba + H_2O + CO_2$

S.No	Experiment	Observation	Inference
1.	Add few drops of	Yellow	Barium is
	potassium chromate	precipitate	confirmed
2.	Flame test		9
:		Green flame	Barium is
			confirmed

 $(CH_3COO)_2Ba + K_2CrO_4 \rightarrow BaCrO_4$ If Ba^{2+} is absent

S.No	Experiment	Observation	Inference
1.	Add ammonium sulphate	White	Sr ²⁺ is
!	solution and warm	precipitate	confirmed
		,	7
2.	Flame test	-	
		Crimson red	Sr^{2+} is
		,	confirmed

 $(CH_3COO)_2Sr + (NH_4)_2SO_4 \rightarrow SrSO_4$

If Ba2+ and Sr2+ are absent, then

S.No	Experiment	Observation	Inference
	Add ammonium oxalate	White	Calcium is
-	and little ammonium	precipitate	confirmed
İ	hydroxide	, -	
2.			Calcium is
	Flame test	Brick red	confirmed

 $(CH_3COO)_2Ca + (NH_4)_2C_2O_4 \rightarrow CaC_2O_4$

group VI

Concentrate the filtrate and divide into 2 parts

	To ant	Observation	Inference
S.No	Experiment To one part of the solution add solid ammonium chloride ammonium hydroxide in slight excess. Then add ammonium phosphate	White precipitate	Mg ²⁺ is confirmed
2.	Add NaOH solution and then add freshly prepared cobalt nitrate	Yellow precipitate	Mg ²⁺ is confirmed

CNI	Franciscont	Experiment	Inference		
S.No	Experiment	Ammonia gas	NH ₄ + is		
1.	Solid mixture is heated	is evolved. The	confirmed		
	with con.NaOH	gas gives white			
		fumes when a	-		
		rod dipped in			
		dil.HCl is			
		brought near			
		the mouth of			
		the test tube			
			-		
	, and a morat	Brick red	NH+4 is		
2.	Salt + nesslers reagent	precipitate	confirmed		
		precipitate	``		

Result:	The given salt is		-
T	the anion present in the salt	lt is	
ŗ	The cation present in the sa	alt 18	