ZADANIE 1.

Uzasadnij, że jeśli w definicji rozmaitości topologicznej warunek lokalnej euklidesowości zastąpimy którymkolwiek z następujących warunków:

- (a) każdy punkt posiada otwarte otoczenie homeomorficzne z otwartą kulą w \mathbb{R}^n ,
- (b) każdy punkt posiada otwarte otoczenie homeomorficzne z całą przestrzenią \mathbb{R}^n to otrzymamy definicję równoważną.

To, że (a) \iff (b) wynika z tego, że otwarta kula jest homeomorficzna z \mathbb{R}^n . Pokażemy więc, że Lokalnie euklidesowa \iff każdy punkt posiada otoczenie homeomorficzne z otwartą kulą.

 \Longrightarrow

Ustalmy dowolne $x\in M$. Niech $x\in U\subseteq M$ będzie otwartym otoczeniem x w M takim, że $U\cong \overline{U}\subseteq \mathbb{R}^n$ z definicji podanej na wykładzie. Nazwijmy ten homeomorfizm $\phi:U\to \overline{U}$. Wiemy, że istnieje r>0 takie, że $B_r(\phi(x))\subseteq \overline{U}$. Co więcej, $\phi^{-1}[B_r(\phi(x))]$ jest otwartym podzbiorem M, bo ϕ to homeomorfizm i przeciwobraz zbioru otwartego jest przezeń otwarty. Czyli $M\supseteq \phi^{-1}[B_r(\phi(x))]\ni x$ jest otwartym podzbiorem M zawierającym x i homeomorficznym x otwartą kulą w x

=

Otwarta kula jest otwartym podzbiorem \mathbb{R}^n , więc mamy homeomorfizm między pewnym otwartym otoczeniem $x \in U \subseteq M$ a otwartym podzbiorem \mathbb{R}^n .

ZADANIE 2.

Uzasadnij, że każdy otwarty podzbiór rozmaitości topologicznej jest rozmaitością topologiczną.

Niech M będzie rozmaitością topologiczną, a $M' \subset M$ jej otwartym podzbiorem.

1. Hausdorffowość:

 $x, y \in M' \implies x, y \in M$, czyli istnieją $U, V \subseteq M$ otwarte podzbiory M takie, że $x \in U, y \in V$ oraz $U \cap V = \emptyset$. Ponieważ M' jest otwarty, to istnieją otwarte $x \in U'$ i $y \in V'$ zawarte w M'. Skończony przekrój zbiorów otwartych, więc $x \in U' \cap U$ i $y \in V' \cap V$ są rozłącznymi zbiorami otwartymi w M'.

2. Przeliczalna baza:

Niech $\{U_i\}_{i\in\mathbb{N}}$ będzie przeliczalną bazą M. Wtedy $\{U_i\cap M'\}_{i\in\mathbb{N}}$ jest przeliczalną rodziną zbiorów otwartych w M' (przecięcie dwóch otwartych jest otwarte). Ponieważ otwarty zbiór w M' jest również otwarty w M, to mogliśmy go wysumować za pomocą U_i , czyli w szczególności możemy go wysumować z $U_i\cap M'$, bo sam jest i tak zawarty z M'.

3. Lokalna Hausdorffowość:

Weźmy dowolny $x \in M' \subseteq M$. Ponieważ M było rozmaitością topologiczną, to dla pewnego otwartego otoczenia $x \in U \subseteq M$ mieliśmy homeomorfizm $\phi : U \to \overline{U} \subseteq \mathbb{R}^n$. Znowu, $U \cap M'$ jest zbiorem otwartym, a więc $\phi \upharpoonright (U \cap M')$ jest homeomorfizmem z otwartym podzbiorem \mathbb{R}^n (bo $U \cap M'$ przechodzi na coś otwartego).

ZADANIE 3.

Uzasadnij, że jeśli rozmaitość M jest spójna, to jest też drogowo spójna, tzn. każde dwa punkty p, $q \in M$ można połączyć ciągłą krzywą $\gamma: [0,1] \to M$ (taką, że $\gamma(0) = p$, $\gamma(1) = q$). Wskazówka: dla ustalonego punktu p rozważ zbiór tych punktów q, które można połączyć z p krzywą ciągłą.

Spójna \implies jedyne zbiory otwarto-domknięte to \emptyset i M.

Ustalmy dowolne $p \in M$. Niech Σ_p będzie zbiorem tych punktów $q \in M$, które można połączyć z p krzywą ciągłą.

1. $\Sigma_{\rm p}$ jest zbiorem otwartym:

Niech $q \in \Sigma_p$ i γ będzie krzywą taką, że $\gamma(0) = p, \gamma(1) = q$. Pokażemy, że możemy na nim opisać zbiór otwarty. Niech $q \in U \subseteq M$ będzie otwartym otoczeniem q, a $\phi: U \to \overline{U} \subseteq \mathbb{R}^n$ będzie homeomorfizmem wynikającej z lokalnej euklidesowości M. Weźmy teraz dowolny $y \in U$ i pokażemy, że wówczas istnieje krzywa z p do y.

Wiemy, że \mathbb{R}^n jest przestrzenią łukowo spójną, niech więc $\mu:[0,1]\to\mathbb{R}^n$ będzie krzywą ciągłą taką, że $\mu(0)=\phi(q)$ i $\mu(1)=\phi(y)$. Rozważmy teraz krzywą

$$\gamma': [\mathsf{0},\mathsf{1}] o \mathsf{M}$$

$$\gamma'(\mathsf{a}) = \begin{cases} \gamma(2\mathsf{a}) & \mathsf{a} \le \frac{1}{2} \\ \phi^{-1}[\mu(2\mathsf{a} - 1)] \end{cases}$$

Mamy
$$\gamma'(0) = p i \gamma'(1) = \phi^{-1}[\mu(1)] = \phi^{-1}[\phi(y)] = y$$
, czyli $y \in \Sigma_p$

2. Σ_p jest zbiorem domkniętym:

Równoważnie, $M \setminus \Sigma_p$ jest zbiorem otwartym. Jeśli $M \setminus \Sigma_p$ nie byłoby otwarte, to dla pewnego $x \notin \Sigma_p$ mielibyśmy otoczenie z $y \in \Sigma_p$ i argument podobny jak wyżej: punkty są w jednym otoczeniu homeomorficznym z \mathbb{R}^n , więc możemy skonstruować krzywą z p przez y do x, więc $x \in \Sigma_p$ i mamy sprzeczność.

ZADANIE 4.

Udowodnij, że jeśli (U, ϕ) jest mapą na rozmaitości M, zaś K jest zwartym podzbiorem ϕ (U), to zbiór $\phi^{-1}(K)$ jest domknięty i zwarty w M. Pokaż też, że jeśli K jest domknięty w ϕ (U), to $\phi^{-1}(K)$ nie musi być domknięty w M.