Deep Learning

Ian Goodfellow Yoshua Bengio Aaron Courville

Contents

Website			vii	
Ac	know	ledgments	viii	
No	otatio	n	xi	
1	Intro 1.1 1.2	Oduction Who Should Read This Book?	1 8 11	
Ι	Appl	ied Math and Machine Learning Basics	29	
2	Linear Algebra		31	
	2.1	Scalars, Vectors, Matrices and Tensors	31	
	2.2	Multiplying Matrices and Vectors	34	
	2.3	Identity and Inverse Matrices	36	
	2.4	Linear Dependence and Span	37	
	2.5	Norms	39	
	2.6	Special Kinds of Matrices and Vectors	40	
	2.7	Eigendecomposition	42	
	2.8	Singular Value Decomposition	44	
	2.9	The Moore-Penrose Pseudoinverse	45	
	2.10	The Trace Operator	46	
	2.11	The Determinant	47	
	2.12	Example: Principal Components Analysis	48	
3	Prob	pability and Information Theory	53	
	3.1	Why Probability?	54	

	3.2	Random Variables	. 56
	3.3	Probability Distributions	
	3.4	Marginal Probability	
	3.5	Conditional Probability	. 59
	3.6	The Chain Rule of Conditional Probabilities	. 59
	3.7	Independence and Conditional Independence	. 60
	3.8	Expectation, Variance and Covariance	. 60
	3.9	Common Probability Distributions	. 62
	3.10	Useful Properties of Common Functions	
	3.11	Bayes' Rule	
	3.12	Technical Details of Continuous Variables	
	3.13	Information Theory	. 73
	3.14	Structured Probabilistic Models	
4	Num	nerical Computation	80
	4.1	Overflow and Underflow	. 80
	4.2	Poor Conditioning	
	4.3	Gradient-Based Optimization	
	4.4	Constrained Optimization	
	4.5	Example: Linear Least Squares	
5	Mac	hine Learning Basics	98
	5.1	Learning Algorithms	. 99
	5.2	Capacity, Overfitting and Underfitting	
	5.3	Hyperparameters and Validation Sets	
	5.4	Estimators, Bias and Variance	
	5.5	Maximum Likelihood Estimation	
	5.6	Bayesian Statistics	. 135
	5.7	Supervised Learning Algorithms	. 140
	5.8	Unsupervised Learning Algorithms	
	5.9	Stochastic Gradient Descent	
	5.10	Building a Machine Learning Algorithm	. 153
	5.11	Challenges Motivating Deep Learning	. 155
II	Dee	p Networks: Modern Practices	166
6	Deer	o Feedforward Networks	168
J	6.1	Example: Learning XOR	
		Cradiont Resed Learning	. 111 177

	6.3	Hidden Units		
	6.4	Architecture Design		
	6.5	Back-Propagation and Other Differentiation Algorithms 204		
	6.6	Historical Notes		
7	Regi	ularization for Deep Learning 228		
	7.1	Parameter Norm Penalties		
	7.2	Norm Penalties as Constrained Optimization		
	7.3	Regularization and Under-Constrained Problems		
	7.4	Dataset Augmentation		
	7.5	Noise Robustness		
	7.6	Semi-Supervised Learning		
	7.7	Multi-Task Learning		
	7.8	Early Stopping		
	7.9	Parameter Tying and Parameter Sharing		
	7.10	Sparse Representations		
	7.11	Bagging and Other Ensemble Methods		
	7.12	<u>Dropout</u>		
	7.13	Adversarial Training		
	7.14	Tangent Distance, Tangent Prop, and Manifold Tangent Classifier 270		
8	Optimization for Training Deep Models 274			
O	8.1	How Learning Differs from Pure Optimization		
	8.2	Challenges in Neural Network Optimization		
	8.3	Basic Algorithms		
	8.4	Parameter Initialization Strategies		
	8.5	Algorithms with Adaptive Learning Rates		
	8.6	Approximate Second-Order Methods		
	8.7	Optimization Strategies and Meta-Algorithms		
9		volutional Networks 330		
	9.1	The Convolution Operation		
	9.2	Motivation		
	9.3	Pooling		
	9.4	Convolution and Pooling as an Infinitely Strong Prior		
	9.5	Variants of the Basic Convolution Function		
	9.6	Structured Outputs		
	9.7	Data Types		
	9.8	Efficient Convolution Algorithms		
	99	Random or Unsupervised Features 36:		

	9.10	The Neuroscientific Basis for Convolutional Networks	364
	9.11	Convolutional Networks and the History of Deep Learning	371
10	Seque	ence Modeling: Recurrent and Recursive Nets	373
	10.1	Unfolding Computational Graphs	375
	10.2	Recurrent Neural Networks	378
	10.3	Bidirectional RNNs	394
	10.4	Encoder-Decoder Sequence-to-Sequence Architectures	396
	10.5	Deep Recurrent Networks	398
	10.6	Recursive Neural Networks	400
	10.7	The Challenge of Long-Term Dependencies	401
	10.8	Echo State Networks	404
	10.9	Leaky Units and Other Strategies for Multiple Time Scales	406
	10.10	The Long Short-Term Memory and Other Gated RNNs	408
	10.11	Optimization for Long-Term Dependencies	413
	10.12	Explicit Memory	416
11	Pract	tical Methodology	421
	11.1	Performance Metrics	422
	11.2	Default Baseline Models	
	11.3	Determining Whether to Gather More Data	
	11.4	Selecting Hyperparameters	
	11.5	Debugging Strategies	
	11.6	Example: Multi-Digit Number Recognition	
12	Appl	ications	443
		Large-Scale Deep Learning	443
	12.2	Computer Vision	
	12.3	Speech Recognition	
	12.4	Natural Language Processing	461
	12.5	Other Applications	
III	Doc	ep Learning Research	486
111	Dec	be Learning Research	400
13		ar Factor Models	489
	13.1	Probabilistic PCA and Factor Analysis	
	13.2	Independent Component Analysis (ICA)	
	13.3	Slow Feature Analysis	. 493 496
	1.5 4	adarse Coulds	49h

	13.5	Manifold Interpretation of PCA	499
14	Autoencoders 50		
	14.1	Undercomplete Autoencoders	503
	14.2	Regularized Autoencoders	504
	14.3	Representational Power, Layer Size and Depth	508
	14.4	Stochastic Encoders and Decoders	509
	14.5	Denoising Autoencoders	
	14.6	Learning Manifolds with Autoencoders	515
	14.7	Contractive Autoencoders	521
	14.8	Predictive Sparse Decomposition	523
	14.9	Applications of Autoencoders	
15	Repi	resentation Learning	52 6
	15.1	Greedy Layer-Wise Unsupervised Pretraining	528
	15.2	Transfer Learning and Domain Adaptation	
	15.3	Semi-Supervised Disentangling of Causal Factors	
	15.4	Distributed Representation	
	15.5	Exponential Gains from Depth	
	15.6	Providing Clues to Discover Underlying Causes	554
16	Structured Probabilistic Models for Deep Learning 5		
	16.1	The Challenge of Unstructured Modeling	559
	16.2	Using Graphs to Describe Model Structure	
	16.3	Sampling from Graphical Models	580
	16.4	Advantages of Structured Modeling	582
	16.5	Learning about Dependencies	582
	16.6	Inference and Approximate Inference	584
	16.7	The Deep Learning Approach to Structured Probabilistic Models	585
17	Mon	te Carlo Methods	5 90
	17.1	Sampling and Monte Carlo Methods	590
	17.2	Importance Sampling	592
	17.3	Markov Chain Monte Carlo Methods	595
	17.4	Gibbs Sampling	599
	17.5	The Challenge of Mixing between Separated Modes	599
18	Conf	fronting the Partition Function	605
	18.1	The Log-Likelihood Gradient	606
	18.2	Stochastic Maximum Likelihood and Contrastive Divergence	607

	18.3	Pseudolikelihood	615
	18.4	Score Matching and Ratio Matching	617
	18.5	Denoising Score Matching	619
	18.6	Noise-Contrastive Estimation	620
	18.7	Estimating the Partition Function	623
19	Appr	eoximate Inference	631
	19.1	Inference as Optimization	633
	19.2	Expectation Maximization	634
	19.3	MAP Inference and Sparse Coding	635
	19.4	Variational Inference and Learning	638
	19.5	Learned Approximate Inference	651
20	Deep	Generative Models	654
	20.1	Boltzmann Machines	654
	20.2	Restricted Boltzmann Machines	656
	20.3	Deep Belief Networks	660
	20.4	Deep Boltzmann Machines	
	20.5	Boltzmann Machines for Real-Valued Data	676
	20.6	Convolutional Boltzmann Machines	683
	20.7	Boltzmann Machines for Structured or Sequential Outputs	685
	20.8	Other Boltzmann Machines	686
	20.9	Back-Propagation through Random Operations	687
	20.10	Directed Generative Nets	692
	20.11	Drawing Samples from Autoencoders	711
	20.12	Generative Stochastic Networks	714
	20.13	Other Generation Schemes	716
	20.14	Evaluating Generative Models	717
	20.15	Conclusion	720
Bil	Bibliography		
Inc	Index		

Website

www.deeplearningbook.org

This book is accompanied by the above website. The website provides a variety of supplementary material, including exercises, lecture slides, corrections of mistakes, and other resources that should be useful to both readers and instructors.

Acknowledgments

This book would not have been possible without the contributions of many people.

We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée.

We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Cağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zajac and Ozan Çağlayan.

We would also like to thank those who provided us with useful feedback on individual chapters:

- Notation: Zhang Yuanhang.
- Chapter 1, Introduction: Yusuf Akgul, Sebastien Bratieres, Samira Ebrahimi,

Charlie Gorichanaz, Brendan Loudermilk, Eric Morris, Cosmin Pârvulescu and Alfredo Solano.

- Chapter 2, Linear Algebra: Amjad Almahairi, Nikola Banić, Kevin Bennett, Philippe Castonguay, Oscar Chang, Eric Fosler-Lussier, Andrey Khalyavin, Sergey Oreshkov, István Petrás, Dennis Prangle, Thomas Rohée, Gitanjali Gulve Sehgal, Colby Toland, Alessandro Vitale and Bob Welland.
- Chapter 3, Probability and Information Theory: John Philip Anderson, Kai Arulkumaran, Vincent Dumoulin, Rui Fa, Stephan Gouws, Artem Oboturov, Antti Rasmus, Alexey Surkov and Volker Tresp.
- Chapter 4, Numerical Computation: Tran Lam AnIan Fischer and Hu Yuhuang.
- Chapter 5, Machine Learning Basics: Dzmitry Bahdanau, Justin Domingue, Nikhil Garg, Makoto Otsuka, Bob Pepin, Philip Popien, Emmanuel Rayner, Peter Shepard, Kee-Bong Song, Zheng Sun and Andy Wu.
- Chapter 6, Deep Feedforward Networks: Uriel Berdugo, Fabrizio Bottarel, Elizabeth Burl, Ishan Durugkar, Jeff Hlywa, Jong Wook Kim, David Krueger and Aditya Kumar Praharaj.
- Chapter 7, Regularization for Deep Learning: Morten Kolbæk, Kshitij Lauria, Inkyu Lee, Sunil Mohan, Hai Phong Phan and Joshua Salisbury.
- Chapter 8, Optimization for Training Deep Models: Marcel Ackermann, Peter Armitage, Rowel Atienza, Andrew Brock, Tegan Maharaj, James Martens, Kashif Rasul, Klaus Strobl and Nicholas Turner.
- Chapter 9, Convolutional Networks: Martín Arjovsky, Eugene Brevdo, Konstantin Divilov, Eric Jensen, Mehdi Mirza, Alex Paino, Marjorie Sayer, Ryan Stout and Wentao Wu.
- Chapter 10, Sequence Modeling: Recurrent and Recursive Nets: Gökçen Eraslan, Steven Hickson, Razvan Pascanu, Lorenzo von Ritter, Rui Rodrigues, Dmitriy Serdyuk, Dongyu Shi and Kaiyu Yang.
- Chapter 11, Practical Methodology: Daniel Beckstein.
- Chapter 12, Applications: George Dahl, Vladimir Nekrasov and Ribana Roscher.
- Chapter 13, Linear Factor Models: Jayanth Koushik.