■ 다원 배치법(multi-factor design)

- 관심의 요인이 3개 이상인 경우, 모든 요인의 수준조합에 대해 확률화를 적용하여 실험
- 요인의 수가 늘어나면, 실험횟수가 많아지고 이에 대해 랜덤화가 어려워짐
- 실험전체를 비슷한 관리 상태 하에서 수행하는데 여러 가지 어려움이 따름
 - □ 요인에 대한 충분한 기술적 검토를 거쳐 불필요한 요인라고 판단되면 과감히 요인의 수를 줄임

त निगाम भम्राष्ट्राष

□ 반복이 없는 삼원배치법 (고정효과모형)

- 요인 A, B, C가 각각 a, b, c 개의 수준을 가짐
- abc 개의 모든 수준 조합에 대해 확률화를 적용하여 배치

○ 자료의 구조

		A_1	A_2	• • •	A_a
	C_1	Y_{111}	Y_{211}	• • •	Y_{a11}
B_1	:	•	•	٠.	:
	C_{c}	Y_{11c}	Y_{21c}	• • •	Y_{a1c}
•	:	:	•	:	:
	C_1	Y_{1b1}	Y_{2b1}	• • •	Y_{ab1}
$B_{\!b}$:	•	:	٠.	•
	C_c	Y_{1bc}	Y_{2bc}	• • •	Y_{abc}

○ 모형의 구조식

$$\underbrace{ \left(Y_{ijk} \right)} = \mu + \alpha_i + \beta_j + \gamma_k + \left(\alpha \beta \right)_{ij} + \left(\alpha \gamma \right)_{ik} + \left(\beta \gamma \right)_{jk} + \varepsilon_{ijk}$$

· μ: 전체평균 반복이있는/없는에원에서 사이점

 \circ $\alpha_i, \beta_j, \gamma_k$: 요인의 주효과 $\rightarrow buy + 1 \% + 1$

 \circ $(\alpha\beta)_{ij}$ $(\alpha\gamma)_{ik}$, $(\beta\gamma)_{jk}$: 두 요인의 상호작용

 $\widetilde{\varepsilon_{iik}} \sim \text{ iid } N(0,\sigma^2)$

1일 (독기에 3 요인의 상호작용 $(\alpha\beta\gamma)_{ijk}$ 는 오차항 ε_{ijk} 에 교락되어 있어 별도로

पुर्व (८८) भारति)

○ 변동 분해

$$(Y_{ijk} - \overline{Y}_{...}) = (\overline{Y}_{i..} - \overline{Y}_{...}) + (\overline{Y}_{.j.} - \overline{Y}_{...}) + (\overline{Y}_{..k} - \overline{Y}_{...}) + (\overline{Y}_{i.k} - \overline{Y}_{...}) + (\overline{Y}_{ij.} - \overline{Y}_{i..} - \overline{Y}_{i..} + \overline{Y}_{...}) + (\overline{Y}_{.jk} - \overline{Y}_{.j.} - \overline{Y}_{..k} + \overline{Y}_{...}) + (\overline{Y}_{.jk} - \overline{Y}_{.j.} - \overline{Y}_{..k} + \overline{Y}_{...}) + (\overline{Y}_{ijk} - \overline{Y}_{ij.} - \overline{Y}_{i.k} - \overline{Y}_{.jk} + \overline{Y}_{i..} + \overline{Y}_{..k} - \overline{Y}_{...})$$

$$(Y_{ijk} - \overline{Y}_{ij.} - \overline{Y}_{i.k} - \overline{Y}_{.jk} + \overline{Y}_{i..} + \overline{Y}_{..k} - \overline{Y}_{...})$$

$$(Y_{ijk} - \overline{Y}_{ij.} - \overline{Y}_{i.k} - \overline{Y}_{.jk} + \overline{Y}_{i..} + \overline{Y}_{..k} - \overline{Y}_{...})$$

$$\circ TSS = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} Y_{ijk}^{2} - CT, \quad CT = \frac{Y_{...}^{2}}{abc} \quad \text{fully if } \sum_{i=1}^{c} \sum_{k=1}^{c} \left(Y_{ijk} - \overline{Y}_{...}\right)^{2}$$

$$\circ SSA = \frac{1}{bc} \sum_{i=1}^{a} Y_{i..}^{2} - CT, SSB = \frac{1}{ac} \sum_{j=1}^{b} Y_{.j.}^{2} - CT, SSC = \frac{1}{ab} \sum_{k=1}^{c} Y_{..k}^{2} - CT$$

$$\circ SSAB = \frac{1}{c} \sum_{i=1}^{a} \sum_{j=1}^{b} Y_{ij}^{2} - CT, SSAC = \frac{1}{b} \sum_{i=1}^{a} \sum_{k=1}^{c} Y_{i,k}^{2} - CT,$$

$$SSBC = \frac{1}{a} \sum_{j=1}^{b} \sum_{k=1}^{c} Y_{.jk}^{2} - CT$$

$$SSAB = \frac{1}{c} \sum_{i=1}^{a} \sum_{j=1}^{b} Y_{ij}^{2} - CT, \quad SSAC = \frac{1}{b} \sum_{i=1}^{a} \sum_{k=1}^{c} Y_{i,k}^{2} - CT,$$

$$SSBC = \frac{1}{a} \sum_{j=1}^{b} \sum_{k=1}^{c} Y_{.jk}^{2} - CT$$

$$SSBC = \frac{1}{a} \sum_{j=1}^{b} \sum_{k=1}^{c} Y_{.jk}^{2} - CT$$

$$SSBC = \sum_{i=1}^{a} \sum_{j=1}^{c} Y_{i,k}^{2} - CT$$

$$SSBC = \sum_{i=1}^{a} \sum_{j=1}^{c} Y_{i,k}^{2} - V_{i,j}^{2}$$

$$SSBC = \sum_{i=1}^{c} \sum_{j=1}^{c} (V_{i,k} - V_{i,j})^{2}$$

FHOREDZ(75 MANINH WHI).

$$SS(AB) = SSAB - SSA - SSB, SS(AC) = SSAC - SSA - SSC,$$

$$SS(BC) = SSBC - SSB - SSC$$

$$SSE = TSS - (SSA + SSB + SSC + SS(AB) + SS(AC) + SS(BC))$$

🏂 분산분석표

(1) Ho: d1=d2=... da = 0 (1) Ho: (d8)11 = ... = (d8)ab=0

변인		자유도	제곱합	평균제곱	F
	Α	a-1	SSA	MSA	MSA/MSE (
주효과	В	b-1	SSB	MSB	MSB/MSE
	C	c-1	SSC	MSC	MSC/MSE
상호	(AB)	(a-1)(b-1)	SS(AB)	MS(AB)	MS(AB)/MSE
	(AC)	(a-1)(c-1)	SS(AC)	MS(AC)	MS(AC)/MSE
작용	(BC)	(b 1)(c-1)	SS(BC)	MS(BC)	MS(BC)/MSE
오ㅊ	F 5	(a-1)(b-1)(c-1)	SSE	MSE	
전처		abc-1	TSS		

■ 화학공장의 합생반응공정에서 합성율의 향상

한응압력 : 8, 10, 12 (kg/cm²)
 반응시간 : 1.5, 2.0, 2.5 (hr)
 반응온도 : 140, 150, 160 (°C)

		A_1	A_2	A_3	16 FLUHY [10] [= 0] FLUHX 2. AT HIZE > Y.2
	C_1	74	61	50	(4H2+ shotoks) 72+62+49
B_1	C_2	86	78	70	(C(VC(Y)
	C_3	76	71	60	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
	C_1	72	62	49	B_1 236 210 180 C_1 194 178 151 C_1 185 183 155
B_2	C_2	91	81	68	B_2 250 220 181 C_2 242 231 207 C_2 234 240 206
	C_3	87	77	64	B_3 (69) 190 181 C_3 219 211 184 C_3 207 228 179
	C_1	48	55	52	
B_3	C_2	65	72	69	142 614 = Y 626 = Y.1.
	C_3	56	63	60	= Yn

C7+5456.→713. 48+65+56

N=b= (=)

$$\circ$$
 $CT = 1817^2/27 = 122277.37$

$$\circ$$
 $TSS = 74^2 + \dots + 60^2 - CT = 3613.6$

$$\circ SSA = 9 (655^2 + 620^2 + 542^2) - CT = 743.6$$

$$SSB = \frac{1}{9}(626^2 + 651^2 + 540^2) - CT = 753.4$$

$$SSC = \frac{1}{9} (523^2 + 680^2 + 614^2) - CT = 1380.9$$

$$SSAB = \frac{1}{3} (236^2 + \dots + 181^2) - CT = 2148.9$$

$$SSAB = \frac{1}{3}(236^2 + \dots + 181^2) - CT = 2148.9$$

$$SSAC = \frac{1}{3}(194^2 + \dots + 184^2) - CT = 2133.6$$

$$\circ SSBC = \frac{1}{3} (185^2 + \dots + 179^2) - CT = 2190.9$$

$$SS(AB) = SSAB - SSA - SSB = 651.9$$
 $SS(AC) = SSAC - SSA - SSC = 9.1$
 $SS(BC) = SSBC - SSB - SSC = 56.6$
 $SSE = TSS - (SSAB + SSAC + SSBC - SSA - SSB - SSC) = 18.1$

0	분	ᄼᅡ	분	석	丑
		_	_		

변인	자유도	제곱합	평균제곱	-	F	犸	146-54	ā.
A Q	1 2	743.6	371.8		164.5			
В	2	753.4	376.7		166.7			
С	2	1380.9	690.4		305.5 72.1	F0.0	1,2,8	Luca
(AB)(a	わしか	651.9	163.0		72.1	F0.01	1,4,8	+112
(AC)	4	9.1	2.3	7/7			d=0.05	d=0.01
(BC)	4	56.6	14.2	1	6.3	218	4.46	8.65
오차()-	1)(6-8)(6-1)	18.1	2.26	- 1	71644	4,8		7.01
전체 🐠		3613.6				1.0	1-1-01	1.11

 $t = \frac{1}{2} + \frac{1}{2} +$

F0.10,4,8 = 2.81 011MZ7/14 = 215

 \circ 분산분석표상에서 (AC)는 유의수준 $\alpha = 0.10$ 에서 기각시키지 못하기 때문에 오차항에 포함시켜 재작성

रेगध्याप्ति । भूक्षमाः

변인	자유도	제곱합	평균제곱	F
Α	2	743.6	371.8	163.8
В	2	753.4	376.7	165.7
С	2	1380.9	690.4	304.1
(AB)	4	651.9	163.0	71.8
(BC)	4	56.6	14.2	6.3
오차	12	27.2	2.27	1
전제	26	3613.6	MyEn	75-10 591

update!

	d=0.05	0.01
2112	n.89	6.93
4.12	h.26	5.41
	1	

经产生和外站

○ 분산 분석후 추정

OFNIFEH

- 일차적으로 분산분석표에 의한 F-검정이 끝나면, 유의하지 않은 상호작용은 오차항에 흡수시켜 다시 F-검정을 실시
- 주효과만 유의한 경우 → 이 씨 (요 양유의하지 않는 사무 이 씨 이 만 생
 - 각 요인수준에서의 모평균 추정

$$\widehat{\mu}(A_i) = \overline{Y}_{i..}$$

○ 수준조합에 대한 모평균 추정

*言些心地划沒空吗以外与比较

- 점추정 :
$$\widehat{\mu}(A_iB_jC_k) = \overline{Y}_{i..} + \overline{Y}_{.j.} + \overline{Y}_{..k} - 2\overline{Y}_{...}$$

- 구간추정 : $\overline{Y}_{i..} + \overline{Y}_{.j.} + \overline{Y}_{..k} - 2\overline{Y}_{...} \pm t_{\alpha/2,\nu} \sqrt{MSE}^*$

$$\frac{1}{n_e} = \frac{1}{bc} + \frac{1}{ac} + \frac{1}{ab} - \frac{2}{abc} \rightarrow n_e = \frac{abc}{a+b+c-2}$$
 \quad \text{Von-thin difference} \quad \text{500 on thin difference} \text

incentive number : 실길거인 ne는 ny나내본처음 $\sqrt{n_e}$ रेष्ट्रधरमधरमभाधस्य

57301 0MO2 COV \$0, 7916641666.

$$\mu(A_iB_iC_k) = \hat{\mu} + \hat{\alpha_i} + \hat{\beta_1} + \hat{\alpha_i} = \left(\hat{\mu} + \hat{\alpha_i}\right) + \left(\hat{\mu} + \hat{\beta_1}\right) + \left(\hat{\mu} + \hat{\alpha_i}\right) - 2\hat{\mu}$$

$$\frac{1}{V_{ii}} = \frac{10}{V_{ii}} = \frac{1}{V_{ik}} = \frac{1}{V_{ik}}$$

- 주효과와 일부 상호작용만 유의한 경우
 - (예) A, B, C, (AC) 만 유의하다면,
 - 수준조합에 대한 모평균 추정

- 점추정 :
$$\hat{\mu}(A_iB_jC_k) = \hat{\mu} + \hat{\alpha_i} + \hat{\beta_j} + \hat{\gamma_k} + \underbrace{(\hat{\alpha\gamma})_{ik}}$$

$$= \hat{\mu} + \hat{\alpha_i} + \hat{\gamma_k} + (\hat{\alpha\gamma})_{ik} + \hat{\beta_j} = \underline{Y_{i.k}} + \underline{Y_{.j.}} - \underline{Y_{...}}$$

- 구간추정 :
$$\overline{Y}_{i.k}+\overline{Y}_{.j.}-\overline{Y}_{...}\pm t_{\alpha/2,\nu}\sqrt{MSE}^*$$
) $\sqrt{n_e}$

$$-\frac{1}{n_e} = \frac{1}{b} + \frac{1}{ac} - \frac{1}{abc} \rightarrow n_e = \frac{abc}{a\mathbf{c} + b - 1}$$

- 모든 요인이 유의한 경우 (더이상길에 없음)
 - 수준조합에 대한 모평균 추정

- 점추정 :
$$\hat{\mu}(A_iB_jC_k) = \overline{Y}_{ij.} + \overline{Y}_{i.k} + \overline{Y}_{.jk} - \overline{Y}_{i..} - \overline{Y}_{.j.} - \overline{Y}_{..k} + \overline{Y}_{...}$$

$$= \hat{\mu} + \hat{\alpha}_1 + \hat{\beta}_2 + \hat{\alpha}_k + (\hat{\alpha}_i\hat{\beta})_{ij} + (\hat{\alpha}_i\hat{\alpha})_{ik} + (\hat{\beta}_i\hat{\alpha})_{jk}$$

- 구간추정 : $\hat{\mu}(A_iB_jC_k)\pm t_{\alpha/2,\nu}\sqrt{\mathit{MSE}^*}/\sqrt{n_e}$

$$n_e = \frac{abc}{ab + ac + bc - a - b - c + 1}$$

$$\frac{1}{Ne} = \frac{1}{ct} + \frac{1}{bc} - \frac{1}{bc} - \frac{1}{ac} - \frac{1}{ab} + \frac{1}{abc}$$

पीराणामर (AC) केम्प्य क्रियकेरा एड देहे.

lacksquare 수준조합 $A_1B_2C_2$ 의 모평균의 점추정값과 95% 신뢰구간

$$\hat{\mu}(A_1B_2C_2) = \bar{y}_{12.} + \bar{y}_{.22} - \bar{y}_{.2.} = \frac{250}{3} + \frac{240}{3} - \frac{651}{9} = 91$$

$$0 = 91 \pm t_{0.025} \underbrace{(2\sqrt{2.27/1.8})}_{2} = 91 \pm 2.179 \times 1.123 = 91 \pm 2.4 \implies (88.6\%, 93.4\%)$$

$$0 = \frac{1}{n_e} = \frac{1}{3} + \frac{1}{3} - \frac{1}{9} \rightarrow n_e = 1.8$$

$$(-\frac{1}{6} + \frac{1}{6} - \frac{1}{66})$$

$$(-\frac{1}{6} + \frac{1}{6} +$$

世복이 있는 삼원배치법 (고정효과모형)

- \circ 요인 A, B, C가 각각 a, b, c 개의 수준을 가짐
- \circ 반복수가 r일 때 N=abcr개의 모든 수준 조합에 대해 확률화를 적용하여 배치

○ 자료의 구조

		A_1	• • •	A_a
B_1	•	$Y_{1111} \cdots Y_{112r}$ \vdots $Y_{11c1} \cdots Y_{11cr}$	٠.	•
:	•	:	•	:
B_b	•	$egin{array}{c} Y_{1b11}\cdots Y_{1b1r} \ dots \ Y_{1bc1}\cdots Y_{1bcr} \end{array}$	٠.	:

○ 모형의 구조식

$$Y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + \underline{(\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk}} + \underline{(\alpha\beta\gamma)_{ijk}} + \varepsilon_{ijkl}$$

- *µ*: 전체평균
- \circ $\alpha_i, \beta_i, \gamma_k$: 요인의 주효과
- \circ $(\alpha\beta)_{ij}$, $(\alpha\gamma)_{ik}$, $(\beta\gamma)_{jk}$: 두 요인의 상호작용
- \circ $(\alpha\beta\gamma)_{ijk}$: 세 요인의 상호작용
- \circ $\varepsilon_{ijk} \sim \text{ iid } N(0,\sigma^2)$

○ 변동 분해

$$\begin{split} (Y_{ijkl} - \overline{Y}_{...}) &= (\overline{Y}_{i...} - \overline{Y}_{...}) + (\overline{Y}_{.j..} - \overline{Y}_{...}) + (\overline{Y}_{.k.} - \overline{Y}_{...}) + (\overline{Y}_{ij..} - \overline{Y}_{i...} - \overline{Y}_{.j..} + \overline{Y}_{...}) \\ &+ (\overline{Y}_{i.k.} - \overline{Y}_{i...} - \overline{Y}_{..k.} + \overline{Y}_{...}) + (\overline{Y}_{.jk.} - \overline{Y}_{.j..} - \overline{Y}_{..k.} + \overline{Y}_{...}) \\ &+ (Y_{ijk.} - \overline{Y}_{ij..} - \overline{Y}_{i.k.} - \overline{Y}_{.jk.} + \overline{Y}_{i...} + \overline{Y}_{.j..} + \overline{Y}_{..k.} - \overline{Y}_{...}) + e_{ijkl} \\ & \circ \quad TSS = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} \sum_{l=1}^{r} Y_{ijkl}^{2} - CT, \quad CT = \frac{Y_{...}^{2}}{N} \\ & \circ \quad SSA = \frac{1}{bcr} \sum_{i=1}^{a} Y_{i...}^{2} - CT, \quad SSB = \frac{1}{acr} \sum_{j=1}^{b} Y_{.j..}^{2} - CT, \\ & SSC = \frac{1}{abr} \sum_{k=1}^{c} Y_{..k.}^{2} - CT \\ & \circ \quad SSAB = \frac{1}{cr} \sum_{i=1}^{a} \sum_{j=1}^{b} Y_{ij..}^{2} - CT, \quad SSAC = \frac{1}{br} \sum_{i=1}^{a} \sum_{k=1}^{c} Y_{i.k.}^{2} - CT, \end{split}$$

$$SSBC = \frac{1}{ar} \sum_{j=1}^{b} \sum_{k=1}^{c} Y_{.jk.}^{2} - CT$$

$$\circ SSABC = \frac{1}{r} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} Y_{ijk}^{2} - CT$$

$$SS(AB) = SSAB - SSA - SSB, SS(AC) = SSAC - SSA - SSC,$$

$$SS(BC) = SSBC - SSB - SSC$$

$$\circ SS(ABC) = SSABC - (SSA + SSB + SSC + SS(AB) + SS(AC) + SS(BC))$$

$$= SSABC - (SSAB + SSAC + SSBC - SSA - SSB - SSC)$$

$$\circ$$
 SSE= TSS-SSABC

★ 분산분석표

변인		자유도	제곱합	평균제곱	F
	Α	a-1	SSA	MSA	MSA/MSE
주효과	В	b-1	SSB	MSB	MSB/MSE
	С	c-1	SSC	MSC	MSC/MSE
	(AB)	(a-1)(b-1)	SS(AB)	MS(AB)	MS(AB)/MSE
상호	(AC)	(a-1)(c-1)	SS(AC)	MS(AC)	MS(AC)/MSE
작용	(BC)	(b-1)(c-1)	SS(BC)	MS(BC)	MS(BC)/MSE
	(ABC)	(a-1)(b-1)(c-1)	SS(ABC)	MS(ABC)	MS(ABC)/MSE
오차		abc(r-1)	SSE	(MSE)	
전체		abcr-1	TSS		

전세가유도-앞이었는거전부

$$= (abcr-1) - ((a-1)+(b-1)+(c-1)+(a-1)(b-1)+(a-1)(c-1)+(a-1)(c-1)+(a-1)(c-1))$$

$$= abc(t-1)$$