Η ιδανική δίοδος

Ανόρθωση Ημιανορθωτής – Half Wave Rectifier

Άσκηση 1 [A1: 1/1]

Να βρεθεί η υ_ο αν υ_ι = 10sin2π1000t.

Οι δίοδοι είναι ιδανικές.

Όλες οι αντιστάσεις είναι 1ΚΩ.

Άσκηση 1 [A1: 1/1]

Λύση

Να βρεθεί η υ₀ αν υ₁ = 10sin2π1000t. Οι δίοδοι είναι ιδανικές. Όλες οι αντιστάσεις είναι 1ΚΩ.

Άσκηση 2 [A2: 1/1]

Οι δίοδοι είναι ιδανικές. Να βρεθούν τα Ι και V.

Μοντελοποίηση της διόδου σε λειτουργία ορθής πόλωσης

(a) Half-wave rectifier. (b) Equivalent circuit of the half-wave rectifier with the diode replaced with its battery-plus-resistance model. (c) Transfer characteristic of the rectifier circuit. (d) Input and output waveforms.

Άσκηση 3 [Α3: 1/1]

Η δίοδος είναι ιδανική. Να βρεθεί το Ι_m και να γίνουν οι γραφικές υs(t), i(t).

$$Wt = 2rcsin \frac{14}{20} = 2rcsin0,7 = 45° = 135°$$

$$Apa Dager (ON) : 45° = 201 = 135° in par 90°$$

$$Xpores apply = \frac{90°}{360°} = 0,25 = 25% (rug n epissou) + 200 = 2000 =$$

Full-wave rectifier utilizing a transformer with a center-tapped secondary winding: (a) circuit; (b) transfer characteristic assuming a constant-voltage-drop model for the diodes; (c) input and output waveforms.

The bridge rectifier: (a) circuit; (b) input and output waveforms.

Voltage and current waveforms in the peak rectifier circuit with CR = T. The diode is assumed ideal.

Waveforms in the full-wave peak rectifier.

Κυκλώματα ψαλιδισμού ή περιορισμού

Παραδείγματα ψαλιδιστών

Άσκηση 4 [4: 1/3]

- α) Οι δίοδοι είναι ιδανικές. Σημειώστε τις εξισώσεις της συνάρτησης μεταφοράς (v_{α} συναρτήσει του v_{i}).
- **6)** Σχεδιάστε την v_0 συναρτήσει της v_1 , σημειώστε όλες τις διασταυρώσεις με τους άξονες τις κλίσεις και τις στάθμες τάσεως.
 - γ) Σχεδιάστε την $v_{\rm o}$ εαν $v_{\rm i}$ =40 sinωt. Δείξτε όλες τις στάθμες τάσεως.

Λύση[A4: 2/3]

Λύση [A4: 3/3]

α) Η δίοδος D_1 άγει όταν $v_i > 0$. Η D_2 άγει όταν $v_o > 10$ V.

$$\Sigma \text{ unehás} \qquad \qquad v_{\circ} = \begin{cases} 0 & v_{i} \leq 0 \\ \\ \frac{v_{i}}{2} & 0 \leq v_{i} \leq 20V \\ \\ 10V & 20 \leq v_{i} \end{cases} \label{eq:volume}.$$

6) Το διάγραμμα $v_o = f(v_i)$ είναι αυτό που ακολουδεί και προκύπτει με τη βοήδεια της συναρτήσεως μεταφοράς του ερωτήματος (α).

γ) Οταν $0 \le v_i \le 20 \text{V}$, τότε $v_o = 20 \sin \omega t$. Για $v_i = 20$, που συμβαίνει όταν

$$\sin\omega t = \frac{20}{40} = \frac{1}{2} \implies \omega t = 30^{\circ}$$
,

n D_2 άγει και v_0 =10V. Για v_i <0, v_0 =0.

Άσκηση 5 [5: 1/2]

Να βρεθεί η συνάρτηση μεταφοράς υο=f(υi). Οι δίοδοι είναι ιδανικές

Λύση[Α5:2/2]

ΕΜΠ - Ασκήσεις Η Ι - Ν. Βουδούκης