Taller 2. Cálculo I. CM0230.

Límites

- 1. Dada la función $f(x) = \frac{x}{\sqrt{x+1}-1}$. Se pide lo siguiente:
 - a) Dominio y recorrido o rango de la función.
 - **b**) Evaluar la función en varios puntos cercanos a x = 0 y usar el resultado para estimar el límite:

$$\lim_{x\to 0} \frac{x}{\sqrt{x+1}-1}$$

- c) Confirme su resultado realizando la gráfica de f.
- d) Calcule $\lim_{x\to 0} \frac{x}{\sqrt{x+1}-1}$ empleando métodos analíticos.
- e) Analizar intervalos de continuidad de f.

- 2. Dada la función $f(x) = \frac{\frac{4}{x+2} 2}{x}$. Se pide lo siguiente:
 - a) Dominio y recorrido o rango de la función.
 - b) Evaluar la función en varios puntos cercanos a x = 0 y usar el resultado para estimar el límite:

$$\lim_{x \to 0} \frac{\frac{4}{x+2} - 2}{x}$$

- c) Confirme su resultado realizando la gráfica de f.
- d) Calcule $\lim_{x\to 0} \frac{\frac{4}{x+2}-2}{x}$ empleando métodos analíticos.
- e) Analizar intervalos de continuidad de f.

- 3. Dada la función $f(x) = \frac{x-3}{\sqrt{x+1}-2}$. Se pide lo siguiente:
 - a) Dominio y recorrido o rango de la función.
 - Evaluar la función en varios puntos cercanos a x = 3 y usar el resultado para estimar el límite:

$$\lim_{x \to 3} \left[\frac{x - 3}{\sqrt{x + 1} - 2} \right]$$

- c) Confirme su resultado realizando la gráfica de f.
- empleando métodos analíticos.
- e) Analizar intervalos de continuidad de f.

- **4.** Dada la función $f(x) = \frac{8-x}{\sqrt{x+1}-3}$. Se pide lo siguiente:
 - Dominio y recorrido o rango de la función.
 - Evaluar la función en varios puntos cercanos a $x=8\,$ y usar el resultado para estimar el límite:

$$\lim_{x \to 8} \left[\frac{8 - x}{\sqrt{x + 1} - 3} \right]$$

$x \to 8 \lfloor \sqrt{\lambda}$:+1-3]					
Y se anrovima a	nor - izauierda	*	Y co anno	vima a	nor la dere	rcha
	 		$\overline{}$			Τ
					-	
f(v) co annovima a		* *	flv) co an	rovima a		

- c) Confirme su resultado realizando la gráfica de f.
- empleando métodos analíticos.
- e) Analizar intervalos de continuidad de f.

DEPARTAMENTO DE CIENCIAS MATEMÁTICAS

CM0230

- 5. Dada la función $f(x) = \frac{3-x}{\sqrt{x+1}-2}$. Se pide lo siguiente:
 - a) Dominio y recorrido o rango de la función.
 - b) Evaluar la función en varios puntos cercanos a x = 3 y usar el resultado para estimar el límite:

- c) Confirme su resultado realizando la gráfica de f.
- **d**) Calcule $\lim_{x \to 3} \left[\frac{3-x}{\sqrt{x+1}-2} \right]$ empleando métodos analíticos.
- e) Analizar intervalos de continuidad de f.

- **6.** Dada la función $f(x) = \frac{x^2 6x + 9}{x^2 9}$. Se pide lo siguiente:
 - a) Dominio y recorrido o rango de la función.
 - b) Evaluar la función en varios puntos cercanos a x = 3 y usar el resultado para estimar el límite:

$$\lim_{x \to 3} \frac{x^2 - 6x + 9}{x^2 - 9}$$

- c) Confirme su resultado realizando la gráfica de f.
- d) Calcule $\lim_{x\to 3} \frac{x^2 6x + 9}{x^2 9}$ empleando métodos analíticos.
- e) Analizar intervalos de continuidad de f. (estudiar si presenta discontinuidad esencial o removible)
- f) Asíntota vertical (si existe, analizar comportamiento)

Parábolas abren eje y (completación de cuadrados)

DEPARTAMENTO DE CIENCIAS MATEMÁTICAS

CM0230

- 7. Dada la función $f(x) = \frac{\frac{1}{x+2} \frac{1}{2}}{x}$. Se pide lo siguiente:
 - a) Dominio y recorrido o rango de la función.
 - **b**) Evaluar la función en varios puntos cercanos a x=0 y usar el resultado para estimar el límite:

$$\lim_{x \to 0} \frac{\frac{1}{x+2} - \frac{1}{2}}{x}$$

c) Confirme su resultado realizando la gráfica de f.

d) Calcule
$$\lim_{x\to 0} \frac{\frac{1}{x+2} - \frac{1}{2}}{x}$$
 empleando métodos analíticos.

- e) Analizar intervalos de continuidad de f.
- f) Asíntota vertical.

- **8.** Dada la función $f(x) = \frac{x+2}{x^2-3x-10}$. Se pide lo siguiente:
 - a) Evaluar la función en varios puntos cercanos a x = -2 y usar el resultado para estimar el límite:

$$\lim_{x \to -2} \frac{x+2}{x^2 - 3x - 10}$$

b) Confirme su resultado realizando la gráfica de f.

- c) Calcule $\lim_{x\to -2} \frac{x+2}{x^2-3x-10}$ empleando métodos analíticos.
- d) Analizar intervalos de continuidad de f.
- e) Asíntota vertical.

.....

- **9.** Dada la función $f(x) = \frac{x-1}{x^2-1}$. Se pide lo siguiente:
 - a) Dominio y recorrido o rango de la función.
 - b) Evaluar la función en varios puntos cercanos a x = 1 y usar el resultado para estimar el límite

$$f(x) = \frac{x-1}{x^2 - 1}.$$

V co annovima a	nor izquiorda	>> <	V 50.307	ovima a	nor la dore	ocha
					1	
f(v) se annovima a		→ ←		nrovima a		

- c) Confirme su resultado realizando la gráfica de f.
- d) Calcule $f(x) = \frac{x-1}{x^2-1}$ empleando métodos analíticos
- e) Asíntota vertical (si existe, analizar comportamiento)

- **10.** Dada la función $f(x) = \frac{1-x}{x^2-1}$. Se pide lo siguiente:
 - a) Dominio y recorrido o rango de la función.
 - b) Evaluar la función en varios puntos cercanos a x=1 y usar el resultado para estimar el límite $f(x)=\frac{1-x}{x^2-1}$

- c) Confirme su resultado realizando la gráfica de f.
- d) Calcule $\lim_{x\to 1} \frac{1-x}{x^2-1}$ empleando métodos analíticos.
- e) Asíntota vertical (si existe, analizar comportamiento)

- 11. Dada la función $f(x) = \frac{x-3}{\sqrt{x+1}-2}$. Se pide lo siguiente:
 - a) Dominio y recorrido o rango de la función.
 - b) Evaluar la función en varios puntos cercanos a x = 3 y usar el resultado para estimar el límite:

- c) Confirme su resultado realizando la gráfica de f.
- d) Calcule $\lim_{x\to 3} \left[\frac{x-3}{\sqrt{x+1}-2} \right]$ empleando métodos analíticos.
- e) Analizar intervalos de continuidad de f.

- **12.** Dada la función $f(x) = \frac{x^2 6x + 9}{9 x^2}$. Se pide lo siguiente:
 - a) Dominio y recorrido o rango de la función.
 - b) Evaluar la función en varios puntos cercanos a x = 3 y usar el resultado para estimar el límite:

$$\lim_{x \to 3} \frac{x^2 - 6x + 9}{9 - x^2}$$

- ${f c}$) Confirme su resultado realizando la gráfica de f.
- d) Calcule $\lim_{x\to 3} \frac{x^2 6x + 9}{9 x^2}$ empleando métodos analíticos.
- $e) \ Analizar \ intervalos \ de \ continuidad \ de \ f. \ (estudiar \ si \ presenta \ discontinuidad \ esencial \ o \ removible)$
- f) Asíntota vertical (si existe, analizar comportamiento)