EEC 180: Digital Systems II

Winter Quarter 2025 Department of Electrical & Computer Engineering University of California, Davis

Units: 5 (3 Lecture/2 Laboratory) **Prerequisite:** EEC 18 or EEC 180A

Catalog Description: Computer-aided design of digital systems with emphasis on hardware description languages, logic synthesis, and field-programmable gate arrays (FPGA). May cover advanced topics in digital system design such as static timing analysis, pipelining, memory system design, and testing digital circuits.

Educational Objectives:

- 1) The students will be able to:
 - a) Describe combinational and sequential logic in Verilog
 - b) Describe a design using behavioral and structural code
 - c) Develop testbenches to verify correctness of designs
 - d) Design and verify complex designs using Verilog and CAD tools
 - e) Design complex systems using FPGAs
- 2) Students who have completed this course should have achieved:
- a) Student Outcome 1: an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- b) Student Outcome 2: an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
- c) Student Outcome 6: an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.

General Announcements

- 1. Please monitor CANVAS regularly for announcements, solutions, homework, lecture notes etc.
- 2. Microsoft Teams (https://www.microsoft.com/en-us/microsoft-teams/download-app) will be used for communication and interaction in the class.
- 3. Use t6ixiyo to join Teams.
- 4. You will be reported to **SJA** if you violate the UC Davis academic code of conduct. Review here https://ossja.ucdavis.edu/code-academic-conduct

Teaching Staff

Name	Email	Lab / Office Hours	
Venkatesh Akella	akella@ucdavis.edu	Wednesday 11:00AM – 12:00PM (2117	
		Kemper)	
Najmeh Bavarsad (TA)	nnazari@ucdavis.edu	Wednesday 9AM – 1PM	
Daniel Chevy (TA)	dachevy@ucdavis.edu	Wednesday 1PM – 5PM	
Alireza Zeraatkar (TA)	abolhasani@ucdavis.edu	Thursday 1PM – 5PM	
Rijuta Ravichandran	rravicha@ucdavis.edu	Reader	
Kushagra Tiwari (ULA)	ktiwari@ucdavis.edu	Wednesday 9AM – 1PM	
Fatima Sheikh (ULA)	fzshaik@ucdavis.edu	Wednesday 1PM – 5PM	
Zhenyi Lu (ULA)	ryalu@ucdavis.edu	Thursday 1PM – 5PM	

Textbook

<u>Digital Design: A Systems Approach</u>

William James Dally (Author), R. Curtis Harting (Author)

Cambridge University Press; Illustrated edition (September 17, 2012) Publisher: Cambridge University Press ISBN-13: 978-0521199506

Laboratory Guidelines

You will work in a two-person team. Both the partners should be from the same lab section. Each partner describes the contribution to the lab in the lab report. Your individual grade for a lab will depend on your contribution to the project.

Hardware for the Lab

The Terasic webpage for the DE10-Lite board contains links to information and resources for the board

http://www.terasic.com.tw/cgi-

bin/page/archive.pl?Language=English&CategoryNo=218&No=1021&PartNo=4

Laboratory Schedule (Tentative) Always check the lab handout for the actual due date

Lab	Description	When?	Points
1	Lab1 – Modelsim and Quartus Tutorial	Week of Jan 6	100
	Objective: Getting Familiar with The Tools and Design Flow		
2	Lab2 - Adders and Multipliers	Week of Jan 13	100
	Objective: Structural Verilog and Hierarchical Description in		
	Verilog and Testbenches		
3	Lab 3 – Leading Zero Detector	Week of Jan 20	100
	Objective: Combinational Logic Design		
4	Lab 4 - Sequence Detector	Week of Jan 27	100
	Objective - Sequential Logic Design		
5	Lab 5 – Sequential System Design and RAM	Week of Feb 3	200
	Objective: Memory. Datapath and State Machine Extraction	Week of Feb 10	
6	Lab 6 – Matrix Multiplication in Hardware		
	Project Milestone 1 (Design and Simulation)	Week of Feb 17	100
	Project Milestone 2 (HW Implementation)	Week of Feb 24	100
	Project Milestone 3 (Demo and Optimization)	Week of Mar 4	100
	Extra Credit	Week of Mar 10	100

When is the lab due and what is the late penalty?

<u>Labs must be completed (which involves getting a signature from the TA) and the lab report is due</u> at the beginning of the lab period in the week following the due date of the lab.

You can complete the lab one week late with a late penalty of 25%.

A **lab report** consists of the following:

- 1. Pre-lab signed by the TA.
- 2. A brief description of your design, highlighting any special problems that you encountered, design decisions that you took, and the assumptions in your design.
- 3. Answers to the questions in the laboratory description handout, if any.
- 4. Verification sheet signed by the TA.
- 5. Statement of contribution of each team member.
- 6. Anything else your TA wants.

Exams

Midterm Thursday, Feb 13 @ 10 AM Final Exam Thursday March 20 @ 8 AM

Grading

Laboratory	45%
Midterm Exam	20%
Homework	10%
Final	25%

Tentative Lecture Plan

(Chapters Refer to Chapters from the Textbook)

When?	Topic	Reading Assignment
Week 1	Combinational and Sequential Logic	Chapter 1, Chapter 2, Chapter
	Design. Boolean Algebra	11.1 and Chapter 11.2
		(Review Material from EEC18)
Week 2, Week 3,	Modeling and Simulation of	Moorby-Thomas Book, Chapter
and Week 4	Combinational and Sequential Logic in	2, Chapter 7, Appendix A, Verilog
	Verilog	Coding Guidelines
Week 5 Week 6	CMOS Implementation of Digital	Chapter 4 and Chapter 5
	Circuits	
Week 7	Programmable Logic, FPGA	Chapter 8
Week 8	Sequential Logic and Timing Analysis	Chapter 15, Chapter 16
Week 9 Week 10	Pipelining, Digital System Design and	Chapter 23
	Optimization, Asynchronous Inputs	