Linear Model

Tong Zhang

Rutgers University

Topics

Basic statistical model for linear regression

Algebraic solution

This talk: focus on three practical issues with example

Using linear method to model nonlinearity

residue plot and basis expansion

Noise variance estimation and weighted least squares

Variable Importance

two different methods: cost reduction based and test based

Simple Examples

Statistical Linear Regression Model

Predict Y based on X

Y: duration - response

X: waiting – covariate (feature)

: random noise

$$Y = \beta_0 + \beta_1 X + \epsilon$$

Unknown model parameters: β_0 (intercept or bias) and β_1 (slope) Questions:

How to estimate model parameters β_0 and β_1 from data? ow good is this linear model (can we find better model)? How important are variables β_0 and β_1 ?

Model Parameter Estimation

Given training data (X_i, Y_i) (i = 1, ..., n), want to learn β_0 and β_1 eneral rule: find parameters to fit data as well as possible efine the residues of linear regression as

$$r_i = Y_i - (\beta_0 + \beta_1 X_i).$$

want to achieve small residues Method: minimize loss function

$$\min \sum_{i=1}^n L(r_i)$$

most popular loss function is squared loss $L(r_i) = r_i^2$

$$\min_{\beta_0,\beta_1} \sum_{i=1}^{n} (Y_i - (\beta_0 + \beta_1 X_i))^2$$

this is called *linear least squares method* other loss functions: $L(r_i) = |r_i|$, or $L(r_i) = \max(|r_i| - \epsilon, 0)^2$ etc...

Least Squares Regression

Least squares regression

$$[\hat{\beta}_0, \hat{\beta}_1] = \arg\min_{\beta_0, \beta_1} \sum_{i=1}^n (Y_i - (\beta_0 + \beta_1 X_i))^2$$

Statistical model:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
 $(i = 1, \dots, n)$

where ϵ_i is zero-mean noise for i = 1, ..., n. Ideally noise should be iid zero-mean Gaussian

$$\epsilon_i \sim N(0, \sigma^2)$$

for some unknown σ^2

Remark: least squares regression is sensitive to outliers not robust if ϵ_i is heavier tailed than Gaussian

Diagnostic via Residue Plot

Residue $r_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i)$ should approximate ϵ_i and look random. if not, we may add additional features to improve model. residue does not look random – add nonlinear features

quadratic term X_i^2

piecewise linear term $max(0, X_i - 70)$

Linear Model with Nonlinear Basis

Consider nonlinear basis functions $[f_1(X_i), \ldots, f_p(X_i)]$, we can write a general linear model as

$$Y_i = \beta_0 + \sum_{j=1}^p \beta_j f_j(X_i) + \epsilon_i$$
 $(i = 1, \dots, n)$

Example I:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \epsilon_i$$

Example II:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 \max(0, X_i - 68) + \beta_3 \max(0, X_i - 72) + \epsilon_i$$

Can still use least squares method to estimate still linear model: estimation method is linear (least squares)

Linear method can model nonlinear functions using nonlinear basis functions

Model Nonlinearity

T. Zhang (Rutgers) Linear Regression 9 / 20

General Linear Least Squares

Consider linear regression in high dimension $X_i \in R^p$ Statistical model with regression function f(x) ($x \in R^p$)

$$Y_i = \beta^T X_i + \epsilon_i$$
: $\epsilon_i \sim N(0, \sigma^2)$,

where $\beta = [\beta_1, \dots, \beta_p] \in \mathbb{R}^p$ can include nonlinear features and intercept (constant feature)

Minimize the empirical squared loss (residue sum-of-squares RSS):

$$\hat{\beta} = \arg\min_{\beta \in R^p} RSS(\beta) = \arg\min_{\beta \in R^p} \sum_{i=1}^n (\beta^T X_i - Y_i)^2.$$

Algebraic solution:

$$\hat{\beta} = (X^T X)^{-1} X^T Y.$$

X: $n \times p$ matrix, with each row a data point of vector X_i *Y*: $n \times 1$ dimensional vector $[Y_1, \dots, Y_n] \in \mathbb{R}^n$

Noise Distribution

Statistical model: $(X_i \in R^p)$

$$Y_i = \beta^{\top} X_i + \epsilon_i$$
: $\epsilon_i \sim N(0, \sigma^2)$

Residue: $r_i \approx \epsilon_i$

$$r_i = Y_i - \hat{\beta}^{\top} X_i$$

Questions:

if noise has equal variance, how to estimate σ^2 ? does noise look like Gaussian? does noise have equal variance? if noise has unequal variance, what to do?

Noise Variance Estimation

residue QQ-plot

Assume noise has equal variance; then estimate noise variance with

$$\hat{\sigma}^2 = \frac{1}{n-p} \sum_{i=1}^n r_i^2$$

divide by n-p instead of n: unbiased estimate compensate "residue < noise" effect due to fitting *p* coefficients.

T. Zhang (Rutgers) Linear Regression 12/20

More Complex Noise Variance Model

residue plot

$$Y_i \approx \beta_0 + \beta_1 X_i + \beta_2 \max(0, X_i - 68) + \beta_3 \max(0, X_i - 72))$$

What to do with unequal variance?

squared residue plot

$$r_i^2 \approx \underbrace{v_0 + v_1(X_i - 45) + v_2(X_i - 45)^2}_{\text{model variance } \sigma_i^2}$$

Weighted Least Squares Regression

Statistical model:

$$Y_i = \beta^T X_i + \epsilon_i,$$

where ϵ_i are independent noise.

Different variance for different i:

$$Var(\epsilon_i) = \sigma_i^2$$
,

where assume σ_i^2 are all known.

Best unbiased linear estimator is weighted least squares:

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} w_i (Y_i - \beta^T X_i)^2,$$

where $w_i = 1/\sigma_i^2$ is inversely proportional to noise variance.

Variable Importance

Goal: to decide which variable is important

related to variable selection

Method: assign importance score to each variable and compare.

Different interpretations of variable importance:

include a particular variable can improve prediction (or stability) he corresponding coefficient is nonzero (Hypothesis testing)

The basic ideas can also be applied to other learning algorithms including nonlinear methods

Variable Importance: method I

Model training error measured by residue sum of squares (RSS):

$$RSS = \sum_{i=1}^{n} r_i^2 = \sum_{i=1}^{n} (Y_i - X_i^{\top} \hat{\beta})^2,$$

where $\hat{\beta}$ is the solution of least squares (or other algorithm).

Test the effect of removing the *j*-th variable (setting $\beta_i = 0$):

RSS₀: RSS of the original model

 $RSS_{(j)}$: RSS with *j*-th variable removed.

ignificance can be measured by:

$$F_j = \frac{\text{Cost Function Increase}}{\text{Noise Variance}} = \frac{RSS_{(j)} - RSS_0}{RSS_0/(n-p)}$$

This idea can be generalized to groups of variables change of residue by removing a set of variables.

This idea can be applied to other learning methods

Variable Importance: method II

Equivalent alternative: $F_j = z_j^2$

Let ω_j be the *j*-th diagonal of $(X^TX)^{-1}$.

Estimate noise variance as:

$$\hat{\sigma}^2 = RSS_1/(n-p).$$

Define *z*-score for the *j*-th variable:

$$z_j = \frac{\hat{eta}_j}{\sqrt{\operatorname{Var}(\hat{eta}_j)}} = \frac{\hat{eta}_j}{\hat{\sigma}} \cdot \frac{1}{\sqrt{\omega_j}},$$

If noise is iid Gaussian, then

$$\frac{\hat{\beta}_j - \beta_j}{\sqrt{\operatorname{Var}(\hat{\beta}_j)}} \sim t_{n-p},$$

 t_{n-p} : student t distribution with degree of freedom n-p.

Variable Importance and Hypothesis Testing

We know that if noise is iid normal, then

$$\frac{\hat{eta}_j - eta_j}{\sqrt{\operatorname{Var}(\hat{eta}_j)}} \sim t_{n-p}.$$

Hypothesis testing view of variable importance:

Null hypothesis $\beta_i = 0$. Under null hypothesis:

$$z_j \sim t_{n-p}$$
.

Variable importance using *p*-value of *z*-score under t_{n-p} distribution loose interpretation: the chance of β_i to be zero coefficient

Equivalent for least squares: *p*-value gives natural interpretation

Example

Model:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 \max(0, X_i - 68) + \beta_3 \max(0, X_i - 72) + \epsilon_i$$

Variable importance:

ranable importance:			
coefficient	LS-solution	z-score	<i>p</i> -value
$eta_{f 0}$	0.057978	0.171	0.865
$eta_{ extsf{1}}$	0.037619	6.144	2.9×10^{-9}
$eta_{f 2}$	0.368549	11.395	$< 2 \times 10^{-16}$
eta_{3}	-0.394534	-12.737	$< 2 \times 10^{-16}$

Summary

Basic statistical model for linear regression

linear regression function with Gaussian noise solution via least squares method

Model nonlinearity

using nonlinear basis functions residue plot and simple diagnostics

Noise variance estimation:

formula for constant noise variance

non-constant noise variance: need to use weighted least squares

Variable Importance: two schemes

error reduction: removing a variable doesn't increase error a lot

stability: p-value and confidence interval estimation