

## GlobalMuon/HLT efficiency for close-by muons

Jim Pivarski

Texas A&M University

4 October, 2010

### Reminder of method

- ▶ Generated a sample of dimuons with uniformly distributed mass:  $2m_{\mu}$ –50 GeV/ $c^2$  (each dimuon has a different mass) and pair- $p_T$ : 0–100 GeV/c
- Not a realistic physics process: the point is to find variables that quantify nearby-muon efficiency in a model-independent way
- First, detector-based variables: propagate generator-level muons to the muon system and plot efficiency as a function of
  - ▶  $\Delta \phi$  and  $\Delta z/r$  on a cylinder with r = 600 cm
  - ▶  $\Delta \phi$  and  $\Delta r/z$  on a plane with z = 700 cm

Jim Pivarski 2/10





### Cylinder for $|\eta| < 1$ , plane for $|\eta| > 1$



### **Endcap** efficiency

Jim Pivarski



3/10



- ► CMSSW\_3\_8\_4 with ideal conditions; both muons must have  $p_T > 5$  GeV/c and  $1 < |\eta| < 2.4$  (denominator of efficiency)
- lacktriangle "Quality TrackerMuons:"  $\geq$  2 arbitrated segments,  $\geq$  8 tracker hits,  $\chi^2/N_{
  m dof}$  < 4







Left: two projections through the most inefficient region for StandAloneMuons

Independent of z of plane (shown here) and momentum (backup)



### Efficiency vs. physics variables

Jim Pivarski





- ► How does reconstruction/trigger efficiency depend on kinematics?
- Important question because we want to be sensitive to a wide range of kinematics ("mass  $\sim 1~{\rm GeV}/c^2$ " with any integer spin, momenta)



- ➤ Offline reconstruction can use ~95% efficient TrackerMuons, but triggers rely on GlobalMuons
- Trigger simulation: /dev/CMSSW\_3\_8\_1/GRun/V17
- DoubleMu triggers are inefficient in exactly the regions we need

## Efficiency vs. physics variables

#### Jim Pivarski



6/10



► How does reconstruction/trigger efficiency depend on kinematics?

η (pair)

Important question because we want to be sensitive to a wide range of kinematics ("mass  $\sim 1~{\rm GeV}/c^2$ " with any integer spin, momenta)





- Trigger simulation: /dev/CMSSW\_3\_8\_1/GRun/V17
- ► DoubleMu triggers are inefficient in exactly the regions we need

The  $p_T$  plots have a mass < 10 GeV/ $c^2$  cut applied

7/10





▶ Redefine acceptance as: two muons with  $p_T > 5 \text{ GeV}/c$ ,  $|\eta| < 2.4$ , and one muon with  $p_T > 15 \text{ GeV}/c$ ,  $|\eta| < 2.1$ 



- Isolation (HLT\_IsoMu9) gives us a low-mass, high-momentum inefficiency in the barrel: our signal region
- $\triangleright$  Could get  $\sim$ 100% trigger efficiency by requiring the high- $p_T$  muon to be in the barrel ( $|\eta| < 1$ )

HLT\_IsoMu9





Redefine acceptance as: two muons with  $p_T > 5 \text{ GeV}/c$ ,  $|\eta| < 2.4$ , and one muon with  $p_T > 15 \text{ GeV}/c$ ,  $|\eta| < 2.1$ 

All of the following plots have a mass  $< 10 \text{ GeV}/c^2 \text{ cut applied}$ 



- HLT\_Mu9
- Isolation (HLT\_IsoMu9) gives us a low-mass, high-momentum inefficiency in the barrel: our signal region
- $\triangleright$  Could get  $\sim$ 100% trigger efficiency by requiring the high- $p_T$  muon to be in the barrel ( $|\eta| < 1$ )





### Attempt to understand high- $\eta$ Jim Pivarski





- $\triangleright$  Why do single-muon triggers fail at high  $\eta$  when single-GlobalMuon efficiency is good out to  $|\eta| = 2.4$ ?
- ▶ Check trigger efficiency and  $p_T$  resolution in 1.5 <  $|\eta|$  < 2.1, with and without requiring muons to be close to each other
  - ▶ left: turn-on curve has a lower plateau for close-by muons
  - ▶ middle and right: p<sub>T</sub> resolution is not bad enough to bring muons below threshold, even in close-by case (right)



- Triggers are not failing because close-by muons fall below  $p_T$  threshold
- By process of elimination: they're lost at Level-1? (untested guess)



- Updated close-by efficiency study to recent reconstruction (CMSSW\_3\_8\_4, which has trigger table /dev/CMSSW\_3\_8\_1/GRun/V17)
- Quality TrackerMuons do have small inefficiencies for close-by muons, but still in the 90-95% range (well-controlled)
- Preferred trigger: single-muon, non-isolated (so we should anticipate a rising threshold)
- ▶ Simulated HLT has large inefficiencies starting at  $|\eta| = 1$  to 1.5, beyond what is expected from requiring a single GlobalMuon: is it Level-1?
- Proposed update to cuts:
  - ▶ at least four quality TrackerMuons with  $p_T > 5 \text{ GeV}/c$ ,  $|\eta| < 2.4$
  - ▶ at least one with  $p_T > 15 \text{ GeV}/c$ ,  $|\eta| < 1 \leftarrow \text{note!}$
  - must form at least two standard mu-jets (mass  $< 5 \text{ GeV}/c^2$ )

(Replaces detector-specific inefficiencies for kinematics, which would be easier for a theorist to plug into his/her simulation...)



# **BACKUP**

(a complete collection of plots with annotations)



- Distribution: uniform in dimuon mass  $(0-50 \text{ GeV}/c^2)$ , dimuon  $p_T$  (0–100 GeV/c), at the beamspot, no pileup
- Denominator: both muons  $p_T > 5 \text{ GeV}/c$ ,  $1 < |\eta| < 2.4$

Numerator: reconstructed







# Efficiency vs. crossing (endcap) Jim Pivarski 13/10





▶ Denominator: both muons  $p_T > 5 \text{ GeV}/c$ ,  $1 < |\eta| < 2.4$ ,

 $\Delta \phi$  plots:  $|\Delta r/z| < 0.1$  rad

 $\Delta r/z$  plots:  $|\Delta \phi| < 0.2$  rad



# Efficiency vs. crossing (endcap) Jim Pivarski 14/10





▶ Denominator: both muons in selected  $p_T$  region,  $1 < |\eta| < 2.4$ ,

 $\Delta \phi$  plots:  $|\Delta r/z| < 0.1$  rad

 $\Delta r/z$  plots:  $|\Delta \phi| < 0.2$  rad





- Distribution: uniform in dimuon mass  $(0-50 \text{ GeV}/c^2)$ , dimuon  $p_T$  (0–100 GeV/c), at the beamspot, no pileup
- Denominator: both muons  $p_T > 5 \text{ GeV}/c$ ,  $1 < |\eta| < 2.4$

Numerator: reconstructed







# Efficiency vs. crossing (endcap) Jim Pivarski 16/10





▶ Denominator: both muons  $p_T > 5 \text{ GeV}/c$ ,  $1 < |\eta| < 2.4$ ,

 $\Delta \phi$  plots:  $|\Delta z/r| < 0.3$  rad

 $\Delta z/r$  plots:  $|\Delta \phi| < 0.3$  rad



# Efficiency vs. crossing (endcap) Jim Pivarski 17/10





▶ Denominator: both muons in selected  $p_T$  region,  $1 < |\eta| < 2.4$ ,

 $\Delta \phi$  plots:  $|\Delta z/r| < 0.3$  rad

 $\Delta z/r$  plots:  $|\Delta \phi| < 0.3$  rad



# Efficiency vs. crossing and $p_T$

Jim Pivarski 18/10



▶ Denominator: both muons  $p_T > 5~{\rm GeV}/c,~1 < |\eta| < 2.4,$  barrel plots:  $\Delta z/r < 0.3~{\rm rad}$  endcap plots:  $\Delta r/z < 0.1~{\rm rad}$ 





- Distribution: uniform in dimuon mass (0–50 GeV/ $c^2$ ), dimuon  $p_T$  (0–100 GeV/c), at the beamspot, no pileup
- ▶ Denominator: both muons  $p_T > 5 \text{ GeV}/c$ ,  $1 < |\eta| < 2.4$
- Numerator: reconstructed







20/10



- Distribution: uniform in dimuon mass (0–50 GeV/ $c^2$ ), dimuon  $p_T$  (0–100 GeV/c), at the beamspot, no pileup
- ▶ Denominator: both muons  $p_T > 5 \text{ GeV}/c$ ,  $1 < |\eta| < 2.4$
- ► Numerator: reconstructed/triggered









- ▶ Distribution: uniform in dimuon mass (0–50 GeV/ $c^2$ ), dimuon  $p_T$  (0–100 GeV/c), at the beamspot, no pileup
- ▶ Denominator: both muons  $p_T > 5$  GeV/c,  $1 < |\eta| < 2.4$ , and one muon with  $p_T > 15$  GeV/c,  $|\eta| < 2.1$
- ► Numerator: triggered











- ▶ Distribution: uniform in dimuon mass (0–50 GeV/ $c^2$ ), dimuon  $p_T$  (0–100 GeV/c), at the beamspot, no pileup
- ▶ Denominator: both muons  $p_T > 5~{\rm GeV}/c$ ,  $1 < |\eta| < 2.4$ , dimuon mass  $< 10~{\rm GeV}/c^2$
- Numerator: reconstructed











- ▶ Distribution: uniform in dimuon mass (0–50 GeV/ $c^2$ ), dimuon  $p_T$  (0–100 GeV/c), at the beamspot, no pileup
- ▶ Denominator: both muons  $p_T > 5 \text{ GeV}/c$ ,  $1 < |\eta| < 2.4$ , dimuon mass  $< 10 \text{ GeV}/c^2$
- ► Numerator: reconstructed/triggered









- ▶ Distribution: uniform in dimuon mass (0–50 GeV/ $c^2$ ), dimuon  $p_T$  (0–100 GeV/c), at the beamspot, no pileup
- ▶ Denominator: both muons  $p_T > 5 \text{ GeV}/c$ ,  $1 < |\eta| < 2.4$ , dimuon mass  $< 10 \text{ GeV}/c^2$ , and one muon with  $p_T > 15 \text{ GeV}/c$ ,  $|\eta| < 2.1$
- ► Numerator: triggered









- ▶ Distribution: uniform in dimuon mass (0–50 GeV/ $c^2$ ), dimuon  $p_T$  (0–100 GeV/c), at the beamspot, no pileup
- ▶ Denominator: both muons  $p_T > 5~{\rm GeV}/c$ ,  $1 < |\eta| < 2.4$ , dimuon mass  $< 10~{\rm GeV}/c^2$
- Numerator: reconstructed









- ▶ Distribution: uniform in dimuon mass (0–50 GeV/ $c^2$ ), dimuon  $p_T$  (0–100 GeV/c), at the beamspot, no pileup
- ▶ Denominator: both muons  $p_T > 5~{\rm GeV}/c$ ,  $1 < |\eta| < 2.4$ , dimuon mass  $< 10~{\rm GeV}/c^2$
- ► Numerator: reconstructed/triggered









- ▶ Distribution: uniform in dimuon mass (0–50 GeV/ $c^2$ ), dimuon  $p_T$  (0–100 GeV/c), at the beamspot, no pileup
- ▶ Denominator: both muons  $p_T > 5 \text{ GeV}/c$ ,  $1 < |\eta| < 2.4$ , dimuon mass  $< 10 \text{ GeV}/c^2$ , and one muon with  $p_T > 15 \text{ GeV}/c$ ,  $|\eta| < 2.1$
- ► Numerator: triggered







# Investigating high- $\eta$ inefficiency Jim Pivarski 28/10



- ▶ Distribution: only  $\mu^+$  (antimuons)
- ▶ Denominator:  $1.5 < |\eta| < 2.1$ ,  $\mu^-$  outside or inside of  $|\Delta \phi| < 0.2$ ,  $|\Delta r/z| < 0.1$  (evaluated at plane 700 cm from beamspot)
- Numerator (left plot only): HLT\_Mu11 acceptance
- Resolutions: trigger  $p_T$  vs. true  $p_T$  for trigger-matched muons (matched to HLT\_Mu5)





