

Week 12 Lecture - Complex Experiments

Undergraduate Research Methods in Psychology

Quinton Quagliano, M.S., C.S.P

Department of Psychology

Table of Contents						
1.1 Textbook Objectives	2 2 2					
• • • • • • • • • • • • • • • • • • •	2 2					
3.1 Overview 2 3.2 Intuitive Interactions 3 3.3 Study Two IVs 5 3.4 Limit Testing 5 3.5 Test Theories 6	2 2 3 5 6 6					
4.1 Overview3.14.2 Independent-Groups Design4.34.3 Within-Groups Design4.44.4 Mixed Factorial Design4.54.5 More Conditions4.5	7 7 8 8 8 8					
5.1 Reading Empirical Articles	9 9					

1 Learning Objectives

1.1 Textbook Objectives

- Explain why researchers combine independent variables in a factorial design.
- Describe an interaction effect in both everyday terms and arithmetic terms.
- Identify and interpret the main effects and interactions from a factorial design.

1.2 Professor's Objectives

- Understand and produce examples of when factorial design would be useful and/or appropriate
- Discuss some basic statistics procedures that can be used with these designs

2 Chapter Overview

2.1 Chapter Overview

•	Up until now, we have only talked about experimental designs that deal with manipulated/independent variable and one measured/dependent
	dent variable.
•	However, we have designs that can look at two (or more) IVs at once and see their individual andimpact on the DV!
•	We refer to these asdesigns.

3 Experiments with Two IVS

3.1 Overview

 We can add a second (and third) 	variable if we are curious
about more than one	

• In addition to the individual effects of both of the IVs, we also get an effect that describes how they change each other's relationship with the outcome.

- Statistically, we might say this interaction is a " in differences"
 - Practically, this means that the differences between our groups may be different based on some other trait.
 - More on this later

3.2 Intuitive Interactions

- When confronted with a causal relationship, sometimes we might say, "well it " what it depends on is the second (or third) IV
- We can see this even in our personal experiences, and many relationships do depend on factors
- Example: I am assessing how spicy I like my food (on a scale of 1 to 10; my outcome). First, is it cold or hot outside (IV 1)? Second, am I eating Thai or Italian (IV 2)? It is possible that my answer will be different based upon both of the IVs.
- · 4 Possible Outcomes:
- I like all of my food spicier when it is hot Weather effect, but not food

• I like Thai food spicier that Italian, regardless of weather - Food effect, but *not* temperature

- Whether I like by food spicy or not depends on both the weather, and type of food interaction effect
- Specifically, we are looking to see whether we have a _____interaction, like in the graph below:

 My preference for spice doesn't change, regardless of food type or weather - null findings

3.3 Study Two IVs

When we work with than one IV, we use a factorial design.

- This creates more unique conditions = # of Conditions in IV 1 x
 # of Conditions in IV 2 = total number of conditions
- Both IVs do *not* have to be ______. Often, one will be some categorical, measured trait (e.g., gender, ethnicity, etc.)
- In addition to our statistics, we should show these differences in Interaction effects become especially clear with visual evidence.

3.4 Limit Testing

- Factorial designs can help us find whether outcomes are different for different of people.
- A strong intervention may not be as effective in a different group of people.
- This can be a _____ to our external validity, as we demonstrate findings in a more heterogeneous group.
- We also can establish whether one variable appears to _____ another on the relationship with the outcome variable.

3.5 Test Theories

•	For some an effect differs based on some	reasons, we may have goo demographic variable.	od reason to believe that
•	Example: I have a new interve taking in new content. However, just lesser in general. Therefore for younger adults, than it will for	, I recognize that the neurop , I believe my intervention w	lasticity of older adults is
•	In essence, we may be able to hypotheses and investigate with		and "it depends" to ou

3.6 Main Effects & Interactions

 Main Effects are those that come from each IV on the outcome. 				
 The main effect is 	as an average over the levels of the			
other IV. Similar to how we "cont - You have 1 main effect for each	rol" for other variable in multiple regression. IV			
 Marginal Means are the 	that we use to determine whether a			
main effect is present				
 We can test significance by taki 	ng the difference of the two marginal means,			
and calculating 95% CIs. If CIs	$0 \rightarrow non\text{-significant}$			

		IV ₁ : Pho		
DV: Reaction time (ms)		Alcohol	Alcohol Plant	
IV ₂ :	Aggressive	551	559	555 (average of 551 and 559)
Word type	Neutral	562	552	557 (average of 562 and 552)
Main effe Photo ty	ect for IV ₁ : pe	556.5 (average of 551 and 562)	555.5 (average of 559 and 552)	

•	An interaction effect can be detected by looking	g at the differences of the main
	effect differences. If they are	different from one another, then
	we would say that there is an interaction effect	_
	 Interactions are often treated as 	important, theoretically,
	that main effects - when they are significant.	

- Conventional wisdom: If interaction is significant, focus on that mostly. If interaction is non-significant, focus on main effects of IVs.
 - Interpreting the main effects with a significant interaction can be leaving out important information!
- Stats sidebar: This type of analysis is usually done via Two-way ANOVA, which does all the work of calculating significance of interactions, and main effects for us.

4 Factorial Variations

4.1 Overview

•	•	, we can lay -groups.	out a factorial design as being between-
•	But, we can designate to a total of 3 possible designs:		variable as between or within, leading

- Independent-Groups FactorialWithin-Groups Factorial
- Mixed Factorial

4 0	· · · · ·	
71 - 7	Indonondont Crounc	IJACIAN
4./	Independent-Groups	17621011
	macponacii Cicapo	2001911

•	This is when IVs are between-groups (i.e., participants are arranged into entirely separate groups)
•	One nuance is that this will likely require the largest sample ,
	as each group will have about 1/4th the total number of participants
4.3	Within-Groups Design
•	Much like with previous within-groups designs, this is when participants seepossible condition.
•	One thing to watch out for is the need for to prevent order effects Think about how many permutations of condition orders you may need!
4.4	Mixed Factorial Design
•	This is when one IV isgroups, and the other is within-group.
•	This is fairly common if we have one demographic variable (between-groups) and one manipulated variable that both demographics are exposed to each level (within-groups).
4.5	More Conditions
•	Many are going to naturally have more than one level
	- E.g., race, ethnicity, gender, etc.
•	We can use these in factorial designs all the same - and we write it as: AxB Design. - Where A = Number of conditions in IV 1
	- Where B = Number of conditions in IV 2 Statistics here get more to interpret - but a good starting point
·	is to use a line plot just like what we have done previously and see if lines cross or
	are parallel.

4.6 More IVs

 Prof. P 	'aul Moes: '	'God himself	cannot	interpret a	a 4-way	' interaction	 neither 	can you'
-----------------------------	--------------	--------------	--------	-------------	---------	---------------	-----------------------------	----------

•	We can do 3 IVs, but with each additional variable the interpretation becomes expo)-
	nentially more difficult and complicated.	

-	One popular alternative is to do this as a multiple	1	mode
	instead		

- Stat sidebar: ANOVA and linear regression are both types of the general model, so, in a roundabout way, these are actually equivalent!
- Remember to think carefully about what sorts of conclusions you can draw with a design before you use it, and whether an alternative provides a more conclusion.

5 Identify Factorial Designs

5.1 Reading Empirical Articles

•	Look	for	words	like		
---	------	-----	-------	------	--	--

- " ANOVA"
- "Factorial"
- "Interaction" or "Main Effects"
- You may also see phrasing like "2 x 2 design", referring to the two conditions of each IV.

5.2 In Popular Media

- Look for words like ...
 - " "
 - "Only when"
- You may also look for demographic variables ...
 - "For males this was the results, but for females..."