Лабораторна робота № 5

Проведення трьохфакторного експерименту при використанні рівняння регресії з урахуванням квадратичних членів (центральний ортогональний композиційний план)

<u>Мета роботи:</u> Провести трьохфакторний експеримент з урахуванням квадратичних членів ,використовуючи центральний ортогональний композиційний план. Знайти рівняння регресії, яке буде адекватним для опису об'єкту.

Завдання

- 1. Взяти рівняння з урахуванням квадратичних членів.
- 2. Скласти матрицю планування для ОЦКП
- 3. Провести експеримент у всіх точках факторного простору (знайти значення функції відгуку Y). Значення функції відгуку знайти у відповідності з варіантом діапазону, зазначеного далі. Варіанти вибираються по номеру в списку в журналі викладача.

$$\begin{aligned} y_{i\max} &= 200 + x_{cp\max} \\ y_{i\min} &= 200 + x_{cp\min} \end{aligned}$$
 где $x_{cp\max} = \frac{x_{1\max} + x_{2\max} + x_{3\max}}{3}$, $x_{cp\min} = \frac{x_{1\min} + x_{2\min} + x_{3\min}}{3}$

- 4. Розрахувати коефіцієнти рівняння регресії і записати його.
- 5. Провести 3 статистичні перевірки.

Порядок виконання лабораторної роботи

1. Записати рівняння регресії з урахуванням квадратичних членів::

$$\widehat{y} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{12} x_1 x_2 + b_{13} x_1 x_3 + b_{23} x_2 x_3 + b_{123} x_1 x_2 x_3 + b_{11} x_1^2 + b_{22} x_2^2 + b_{33} x_3^2$$

- 2. Вибрати з таблиці варіантів і записати в протокол інтервали значень х1, х2, х3.
- 3. Скласти матрицю планування для ОЦКП і заповнити нормованими значеннями. Початкова кількість дослідів m = 3.
- 4. Провести першу статистичну перевірку перевірку однорідності дисперсії за критерієм Кохрена (якщо дисперсія не однорідна, то збільшити m і почати з п.3).
- 5. Розрахувати коефіцієнти рівняння регресії, розв'язавши матричні рівняння. При розрахунку використовувати **натуральні** значення x_1 , x_2 і x_3 .
- 6. Провести другу статистичну перевірку і скорегувати рівняння регресії.
- 7. Провести третю статистичну перевірку.
- 8. Зробити висновки щодо перевірок 3-х критеріїв.

Зміст звіту

- 1. Результати підготовки до виконання лабораторної роботи.
- 2. Рівняння регресії в кодованої системі координат для лінійної форми, рівняння з урахуванням ефекту взаємодії і з урахуванням квадратичних членів.
- 3. Статистичні перевірки для кожної форми:
 - а. Перевірка однорідності дисперсії за Кохреном.
 - b. Перевірка значимості коефіцієнтів регресії за Стьюдентом.
 - Іс. Перевірка адекватності моделі оригіналу за допомогою критерію Фішера
- 4. Рівняння регресії після натуралізації його коефіцієнтів.
- 5. Порівняння значень функцій відгуку із значеннями, отриманими при підстановці в рівняння регресії.
- 6. Висновки про адекватність кожної з отриманих моделей рівняння регресії.
- 7. Лістинг програми.

Теоретичні відомості

Кількість членів рівняння регресії

Якщо при перевірці виявиться що гіпотеза про адекватність лінійної моделі (рівняння регресії) оригіналу не підтверджується, то тоді необхідно збільшити кількість членів ряду. У цьому випадку необхідно враховувати ефект взаємодії, тобто

$$\hat{y} = b_0 + \sum_{i=1}^k b_i x_i + \sum_{\substack{i,j=1 \ j > i}}^k b_{ij} x_i x_j + \sum_{\substack{i,j,k=1 \ k > j > i}}^k b_{ikj} x_i x_j x_k$$

При k = 3 рівняння набуде вигляду

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{12} x_1 x_2 + b_{13} x_1 x_3 + b_{23} x_2 x_3 + b_{123} x_1 x_2 x_3$$

Якщо гіпотеза адекватності знову не підтверджується - додаються квадратичні коефіцієнти:

$$\hat{y} = b_0 + \sum_{i=1}^k b_i x_i + \sum_{\substack{i,j=1 \ i>i}}^k b_{ij} x_i x_j + \sum_{\substack{i,j,k=1 \ k>j>i}}^k b_{ikj} x_i x_j x_k + \sum_i^k b_{ii} x_i^2$$

При k = 3 рівняння набуде вигляду:

$$\widehat{y} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{12} x_1 x_2 + b_{13} x_1 x_3 + b_{23} x_2 x_3 + b_{123} x_1 x_2 x_3 + b_{11} x_1^2 + b_{22} x_2^2 + b_{33} x_3^2 + b_{123} x_1 x_2 x_3 + b_{123} x_1 x_3 + b_{123} x_1 x_2 x_3 + b_{123} x_1 x_3 + b_{12$$

Зоряні точки розташовані по осях кодованої системи координат на відстані *l* від центру системи, де - *l* величина зоряного плеча (значення в кодованих одиницях).

На малюнку а) це точки 5, 6, 7, 8 для двох факторів і точки 9, 10, 11, 12, 13, 14 для трьох факторів на малюнку б).

Центральні точки - це точки з кодованими нульовими координатами. Наприклад, для 3 факторного експерименту це точка (0; 0; 0) На малюнках вище це точки 9 і 15.

Таким чином, використовуються 5 рівнів: +1; -1; + l; 0

Властивість ортогональності і рототабельності в композиційному плані одночасно виконуватися не можуть. Тому існує два види композиційних планів, залежно від того, яке з цих двох властивостей виконується. У даній лабораторній роботі буде розглянуто побудову центрального ортогонального плану.

Ортогональний центральний композиційний план

Складання матриці планування експерименту

Довільний симетричний ЦКП

Складові			Фак	тори		Кількість
частини ЦКП	N	X ₁	X ₂		$\mathbf{x}_{\mathbf{k}}$	точок
Ядро плану	1	-1	-1		-1	
(ПФЕ 2 ^k або	2	+1	-1		-1	7
ДФЕ 2 ^{k-p})	3	-1	+1		-1	2^{k-p}
	4	+1	+1		-1	p = 0;1;2;
					•••	
	2^{k-p}	+1	+1		-1	
«Зіркові»	2 ^{k-p} +1	-l	0		0	
точки	2 ^{k-p} +2	+l	0		0	7
	2 ^{k-p} +3	0	-l		0	7
	2 ^{k-p} +4	0	+l		0	2k
					•••	
	2 ^{k-p} +2k-1	0	0		-l	
	2 ^{k-p} +2k	0	0		+l	
Центральні	$2^{k-p}+2k+1$	0	0		0	
точки		•••			•••	N_0
	$2^{k-p}+2k+N_0$	0	0		0	7

Значення р вказує на дробність факторного експерименту, тобто:

- p=0 ($N=2^k$), якщо $\Pi \Phi E$,
- p=1 ($N=2^{k-1}$); $p=2(N=2^{k-2})$; $p=3(N=2^{k-3})$, якщо ДФЕ.

Рівняння для необхідного значення l:

$$l = \sqrt{\sqrt{2^{k-p-2}(2^{k-p} + 2k+1)} - 2^{k-p-1}}$$

За допомогою цієї формули знайдені конкретні числові значення l при $k=2\div 8$:

k	2	3	4		5	(5	2	7		8	
Ядро	ПФЕ	ПФЕ	ПФЕ	ПФЕ	ДФЕ	ПФЕ	ДФЕ	ПФЕ	ДФЕ	ПФЕ	ДФЕ	ДФЕ
ЦПК	2^2	2^3	2^4	2^{5}	2^{5-1}	2^{6}	2^{6-1}	2^{7}	2^{7-1}	2^{8}	2^{8-1}	2^{8-2}
N	9	15	25	43	27	77	45	143	79	273	145	81
l	1,000	1,215	1,414	1,596	1,547	1,761	1,724	1,909	1,885	2,045	2,029	2,000

Загальна кількість дослідів N в ОЦКП становить $N=2^{k-p}+2k+N_0$.

<u>Матриця планування ОЦКП для k=3</u>:

N	$\overline{x_1}$	$\overline{x_2}$	$\overline{x_3}$	y i
1	-1	-1	-1	
2	-1	-1	1	
3	-1	1	-1	
4	-1	1	1	
5	1	-1	-1	
6	1	-1	1	
7	1	1	-1	
8	1	1	1	•••
9	-1.215	0	0	
10	1.215	0	0	
11	0	-1.215	0	•••
12	0	1.215	0	
13	0	0	-1.215	
14	0	0	1.215	
15	0	0	0	

Примітка! При розрахунку коефіцієнтів рівняння регресії в даній лабораторній роботі використовуються **натуральні** значення факторів. Для того щоб отримати значення факторів для зоряних точок і для нульової точки, необхідно використовувати формули з лабораторної роботи № 1, нагадаємо їх:

$$x_{0i} = \frac{x_{\max i} + x_{\min i}}{2} \qquad \Delta x_i = x_{\max i} - x_{0i} = x_{0i} - x_{\min i} \qquad x_i = x_i \cdot \Delta x_i + x_{0i},$$

де \bar{x}_i - кодоване значення і-го фактора, $[x_{\max i}, x_{\min i}]$ - інтервал варіювання, заданий за варіантом.

Тоді, наприклад, для зоряної точки (-1,215; 0; 0) натуральні значення будуть рівні:

$$x_1 = l \cdot \Delta x + x_0 = -1.215 \cdot \Delta x_1 + x_{01}$$

$$x_2 = 0 \cdot \Delta x_2 + x_{02} = x_{02}$$

$$x_3 = 0 \cdot \Delta x_3 + x_{03} = x_{03}.$$

Матриця планування ОЦКП із натуралізованими значеннями для k=3:

N	$\overline{x_1}$	$\overline{x_2}$	$\overline{x_3}$	y _i
1	x_1 min	x ₂ min	x ₃ min	
2	x_1 min	x_2 min	x_3 max	
3	x_1 min	x_2 max	x ₃ min	
4	x_1 min	x_2 max	x ₃ max	
5	x_1 max	x ₂ min	x ₃ min	
6	x_1 max	x ₂ min	x_3 max	
7	x_1 max	x_2 max	x ₃ min	
8	x_1 max	x_2 max	x ₃ max	
9	$-l \cdot \Delta x_1 + x_{01}$	x_{02}	$x_{_{ m O3}}$	
10	$l \cdot \Delta x_1 + x_{01}$	x_{02}	x_{03}	
11	x ₀₁	$-l\cdot\Delta x_2+x_{02}$	x_{03}	
12	x_{01}	$l \cdot \Delta x_2 + x_{02}$	x_{03}	
13	x ₀₁	x_{02}	$-l \cdot \Delta x_3 + x_{03}$	
14	x ₀₁	x_{02}	$l \cdot \Delta x_3 + x_{03}$	
15	x ₀₁	x_{02}	x ₀₃	

Алгоритм отримання адекватного рівняння регресії

- 1) Вибір рівняння регресії (лінійна форма, рівняння з урахуванням ефекту взаємодії і з урахуванням квадратичних членів);
- 2) Вибір кількості повторень кожної комбінації (m);
- 3) Складається матриця планування експерименту і вибір кількості рівнів (n)
- 4) Проведення експериментів;
- 5) Перевірка однорідності дисперсії. якщо не проходить повертаємося на п. 2 (збільшуємо m на 1);
- 6) Розрахунок коефіцієнтів рівняння регресії. при розрахунку використовувати натуральні значення х1, х2 і х3.
- 7) Нуль-гіпотеза. вибір значимих коефіцієнтів;
- 8) Перевірка адекватності моделі оригіналу. При неадекватності повертаємося на п.1

Розрахунок коефіцієнтів рівняння регресії проводиться за нижченаведеним формулами:

Для рівняння регресії при k=3

$$\hat{y} = \varphi(x_0, x_1, x_2, x_3, x_1x_2, x_1x_3, x_2x_3, x_1x_2x_3, x_1x_1, x_2x_2, x_3x_3, b_0, b_1, b_2, b_3, b_{12}, b_{13}, b_{23}, b_{123}, b_{11}, b_{22}, b_{33})$$

$$\hat{y} = b_0 + b_1x_1 + b_2x_2 + b_3x_3 + b_{12}x_1x_2 + b_{13}x_1x_3 + b_{23}x_2x_3 + b_{123}x_1x_2x_3 + b_{11}x_1^2 + b_{22}x_2^2 + b_{33}x_3^2$$

$$\varphi_i = b_0x_{0i} + b_1x_{1i} + b_2x_{2i} + b_3x_{3i} + b_{12}x_{1i}x_{2i} + b_{13}x_{1i}x_{3i} + b_{23}x_{2i}x_{3i} + b_{123}x_{1i}x_{2i}x_{3i} + b_{11}x_1^2 + b_{22}x_2^2 + b_{33}x_{3i}^2$$

Для зручності в розрахунках проводиться заміна:

```
b_0 = \beta_0
b_1 = \beta_1
b_2 = \beta_2
b_3 = \beta_3
b_{12} = \beta_4
b_{13} = \beta_5
b_{23} = \beta_6
b_{123} = \beta_7
b_{11} = \beta_8
b_{22} = \beta_9
b_{33} = \beta_{10}
x_{1i} x_{2i} = x_{4i}
\mathbf{x}_{1i} \mathbf{x}_{3i} = \mathbf{x}_{5i}
x_{2i} x_{3i} = x_{6i}
X_{1i} X_{2i} X_{3i} = X_{7i}
x_{1i}^2 = x_{8i}
x_{2i}^2 = x_{9i}
x_{3i}^2 = x_{10i}
\varphi_{i} = \beta_{0} x_{0i} + \beta_{1} x_{1i} + \beta_{2} x_{2i} + \beta_{3} x_{3i} + \beta_{4} x_{4i} + \beta_{5} x_{5i} + \beta_{6} x_{6i} + \beta_{7} x_{7i} + \beta_{8} x_{8i} + \beta_{9} x_{9i} + \beta_{10} x_{10i}
```

Продиференціювавши за коефіцієнтами, отримаємо:

$$\begin{cases} \frac{\partial \varphi_{i}}{\partial \beta_{0}} = 1 \\ \frac{\partial \varphi_{i}}{\partial \beta_{1}} = x_{1i} \\ \frac{\partial \varphi_{i}}{\partial \beta_{2}} = x_{2i} \\ \frac{\partial \varphi_{i}}{\partial \beta_{3}} = x_{3i} \\ \frac{\partial \varphi_{i}}{\partial \beta_{4}} = x_{4i} \\ \frac{\partial \varphi_{i}}{\partial \beta_{5}} = x_{5i} \\ \frac{\partial \varphi_{i}}{\partial \beta_{6}} = x_{6i} \\ \frac{\partial \varphi_{i}}{\partial \beta_{7}} = x_{7i} \\ \frac{\partial \varphi_{i}}{\partial \beta_{8}} = x_{8i} \\ \frac{\partial \varphi_{i}}{\partial \beta_{9}} = x_{9i} \\ \frac{\partial \varphi_{i}}{\partial \beta_{10}} = x_{10i} \end{cases}$$

Запишемо рівняння у повній формі (де n = N*m):

$$\begin{split} \sum_{i=1}^{n} \left(\beta_{0} x_{0i} + \beta_{1} x_{1i} + \beta_{2} x_{2i} + \beta_{3} x_{3i} + \beta_{4} x_{4i} + \beta_{5} x_{5i} + \beta_{6} x_{6i} + \beta_{7} x_{7i} + \beta_{8} x_{8i} + \beta_{9} x_{9i} + \beta_{10} x_{10i} - y_{i}\right) * 1 &= 0 \\ \sum_{i=1}^{n} \left(\beta_{0} x_{0i} + \beta_{1} x_{1i} + \beta_{2} x_{2i} + \beta_{3} x_{3i} + \beta_{4} x_{4i} + \beta_{5} x_{5i} + \beta_{6} x_{6i} + \beta_{7} x_{7i} + \beta_{8} x_{8i} + \beta_{9} x_{9i} + \beta_{10} x_{10i} - y_{i}\right) * x_{1i} &= 0 \\ \sum_{i=1}^{n} \left(\beta_{0} x_{0i} + \beta_{1} x_{1i} + \beta_{2} x_{2i} + \beta_{3} x_{3i} + \beta_{4} x_{4i} + \beta_{5} x_{5i} + \beta_{6} x_{6i} + \beta_{7} x_{7i} + \beta_{8} x_{8i} + \beta_{9} x_{9i} + \beta_{10} x_{10i} - y_{i}\right) * x_{2i} &= 0 \\ \sum_{i=1}^{n} \left(\beta_{0} x_{0i} + \beta_{1} x_{1i} + \beta_{2} x_{2i} + \beta_{3} x_{3i} + \beta_{4} x_{4i} + \beta_{5} x_{5i} + \beta_{6} x_{6i} + \beta_{7} x_{7i} + \beta_{8} x_{8i} + \beta_{9} x_{9i} + \beta_{10} x_{10i} - y_{i}\right) * x_{3i} &= 0 \\ \sum_{i=1}^{n} \left(\beta_{0} x_{0i} + \beta_{1} x_{1i} + \beta_{2} x_{2i} + \beta_{3} x_{3i} + \beta_{4} x_{4i} + \beta_{5} x_{5i} + \beta_{6} x_{6i} + \beta_{7} x_{7i} + \beta_{8} x_{8i} + \beta_{9} x_{9i} + \beta_{10} x_{10i} - y_{i}\right) * x_{3i} &= 0 \\ \sum_{i=1}^{n} \left(\beta_{0} x_{0i} + \beta_{1} x_{1i} + \beta_{2} x_{2i} + \beta_{3} x_{3i} + \beta_{4} x_{4i} + \beta_{5} x_{5i} + \beta_{6} x_{6i} + \beta_{7} x_{7i} + \beta_{8} x_{8i} + \beta_{9} x_{9i} + \beta_{10} x_{10i} - y_{i}\right) * x_{4i} &= 0 \\ \sum_{i=1}^{n} \left(\beta_{0} x_{0i} + \beta_{1} x_{1i} + \beta_{2} x_{2i} + \beta_{3} x_{3i} + \beta_{4} x_{4i} + \beta_{5} x_{5i} + \beta_{6} x_{6i} + \beta_{7} x_{7i} + \beta_{8} x_{8i} + \beta_{9} x_{9i} + \beta_{10} x_{10i} - y_{i}\right) * x_{5i} &= 0 \\ \sum_{i=1}^{n} \left(\beta_{0} x_{0i} + \beta_{1} x_{1i} + \beta_{2} x_{2i} + \beta_{3} x_{3i} + \beta_{4} x_{4i} + \beta_{5} x_{5i} + \beta_{6} x_{6i} + \beta_{7} x_{7i} + \beta_{8} x_{8i} + \beta_{9} x_{9i} + \beta_{10} x_{10i} - y_{i}\right) * x_{7i} &= 0 \\ \sum_{i=1}^{n} \left(\beta_{0} x_{0i} + \beta_{1} x_{1i} + \beta_{2} x_{2i} + \beta_{3} x_{3i} + \beta_{4} x_{4i} + \beta_{5} x_{5i} + \beta_{6} x_{6i} + \beta_{7} x_{7i} + \beta_{8} x_{8i} + \beta_{9} x_{9i} + \beta_{10} x_{10i} - y_{i}\right) * x_{7i} &= 0 \\ \sum_{i=1}^{n} \left(\beta_{0} x_{0i} + \beta_{1} x_{1i} + \beta_{2} x_{2i} + \beta_{3} x_{3i} + \beta_{4} x_{4i} + \beta_{5} x_{5i} + \beta_{6} x_{6i} + \beta_{7} x_{7i} + \beta_{8} x_{8i} + \beta_{9} x_{9i} + \beta_{10} x_{10i} - y_{i}\right) * x_{7i} &= 0$$

Отже:

$$\begin{bmatrix} \sum_{i=1}^{n} x_{0i} \beta_{0} + (\sum_{i=1}^{n} x_{1i}) \beta_{i} + (\sum_{i=1}^{n} x_{2i}) \beta_{2} + (\sum_{i=1}^{n} x_{3i}) \beta_{3} + (\sum_{i=1}^{n} x_{3i} x_{1i}) \beta_{4} + (\sum_{i=1}^{n} x_{3i} x_{1i}) \beta_{3} + (\sum_{i=1}^{n} x_{3i} x_{1i}) \beta_{5} + (\sum_{i=1}^{n} x_{3i} x_{1i}) \beta_{$$

Заради зручності замінимо громіздкі формули більш простими:

$$\frac{1}{n}\sum_{i=1}^{n}x_{ii} = m_{xi} \qquad \frac{1}{n}\sum_{i=1}^{n}x_{2i} = m_{x2} \qquad \frac{1}{n}\sum_{i=1}^{n}x_{3i} = m_{x3} \qquad \frac{1}{n}\sum_{i=1}^{n}x_{4i} = m_{x4} \qquad \frac{1}{n}\sum_{i=1}^{n}x_{5i} = m_{x5}$$

$$\frac{1}{n}\sum_{i=1}^{n}x_{6i} = m_{x6} \qquad \frac{1}{n}\sum_{i=1}^{n}x_{7i} = m_{x7} \qquad \frac{1}{n}\sum_{i=1}^{n}x_{8i} = m_{x8} \qquad \frac{1}{n}\sum_{i=1}^{n}x_{9i} = m_{x9} \qquad \frac{1}{n}\sum_{i=1}^{n}x_{10i} = m_{x10}$$

$$\frac{1}{n}\sum_{i=1}^{n}x_{1i}x_{2i} = a_{12} \qquad \frac{1}{n}\sum_{i=1}^{n}x_{1i}x_{3i} = a_{13} \qquad \frac{1}{n}\sum_{i=1}^{n}x_{2i}x_{4i} = a_{24}$$

$$\frac{1}{n}\sum_{i=1}^{n}x_{3i}x_{5i} = a_{35} \qquad \frac{1}{n}\sum_{i=1}^{n}x_{1i}y_{i} = a_{1} \qquad \frac{1}{n}\sum_{i=1}^{n}x_{2i}y_{i} = a_{2} \qquad \frac{1}{n}\sum_{i=1}^{n}x_{1i}^{2} = a_{11} \qquad \frac{1}{n}\sum_{i=1}^{n}x_{2i}^{2} = a_{22}$$

$$\frac{1}{n}\sum_{i=1}^{n}y_{i} = m_{y} \qquad i.m.\partial.$$

$$\begin{bmatrix} \beta_{0} + m_{x1}*\beta_{1} + m_{x2}*\beta_{2} + m_{x3}*\beta_{3} + m_{x4}*\beta_{4} + m_{x5}*\beta_{5} + m_{x6}*\beta_{6} + m_{x7}*\beta_{7} = m_{y} \\ m_{x1}\beta_{0} + a_{11}*\beta_{1} + a_{21}*\beta_{2} + a_{31}*\beta_{3} + a_{41}*\beta_{4} + a_{51}*\beta_{5} + a_{61}*\beta_{6} + a_{71}*\beta_{7} + a_{81}*\beta_{8} + a_{91}*\beta_{9} + a_{101}*\beta_{10} = a_{1} \\ m_{x2}\beta_{0} + a_{12}*\beta_{1} + a_{22}*\beta_{2} + a_{32}*\beta_{3} + a_{42}*\beta_{4} + a_{52}*\beta_{5} + a_{62}*\beta_{6} + a_{72}*\beta_{7} + a_{82}*\beta_{8} + a_{92}*\beta_{9} + a_{102}*\beta_{10} = a_{2} \\ m_{x3}\beta_{0} + a_{13}*\beta_{1} + a_{22}*\beta_{2} + a_{33}*\beta_{3} + a_{44}*\beta_{4} + a_{53}*\beta_{5} + a_{63}*\beta_{6} + a_{73}*\beta_{7} + a_{83}*\beta_{8} + a_{93}*\beta_{9} + a_{103}*\beta_{10} = a_{3} \\ m_{x4}\beta_{0} + a_{14}*\beta_{1} + a_{22}*\beta_{2} + a_{33}*\beta_{3} + a_{44}*\beta_{4} + a_{53}*\beta_{5} + a_{63}*\beta_{6} + a_{73}*\beta_{7} + a_{83}*\beta_{8} + a_{93}*\beta_{9} + a_{103}*\beta_{10} = a_{3} \\ m_{x5}\beta_{0} + a_{15}*\beta_{1} + a_{22}*\beta_{2} + a_{35}*\beta_{3} + a_{44}*\beta_{4} + a_{53}*\beta_{5} + a_{64}*\beta_{6} + a_{74}*\beta_{7} + a_{84}*\beta_{8} + a_{94}*\beta_{9} + a_{103}*\beta_{10} = a_{3} \\ m_{x6}\beta_{0} + a_{15}*\beta_{1} + a_{22}*\beta_{2} + a_{35}*\beta_{3} + a_{44}*\beta_{4} + a_{55}*\beta_{5} + a_{65}*\beta_{6} + a_{75}*\beta_{7} + a_{85}*\beta_{8} + a_{95}*\beta_{9} + a_{105}*\beta_{10} = a_{5} \\ m_{x6}\beta_{0} + a_{15}*\beta_{1} + a_{25}*\beta_{2} + a_{35}*\beta_{3} + a_{45}*\beta_{4} + a_{55}*\beta_{5} + a_{65}*\beta_{6} + a_{75}*\beta_{7} + a_{85}*\beta_{8} + a_{95}*\beta_{$$

Далі аналогічно 4-й лабораторній роботі методом Крамера знаходимо значення коефіціентов b_i.

Статистичні перевірки

Теоретичні відомості за статистичними перевіркам дані в лабораторній роботі № 3. аналогічно проводиться:

- 1. Оцінка однорідності дисперсії по Кохрену. У разі неоднорідної дисперсії потрібно збільшити кількість значень функцій відгуку.
- 2. Перевірка значимості коефіцієнтів за Стьюдентом. Якщо знаходяться незначущі коефіцієнти, то вони виключаються з рівняння регресії.
- 3. Перевірка адекватності моделі по Фішеру. При неадекватності моделі, необхідно збільшити кількість рівнів або змінити модель рівняння регресії.

** **Примітка:** можливий варіант, коли N = k и d = k, отже d = N і знаменник дорівнює нулю. У цьому випадку потрібно збільшувати кількість N, так щоб N > k.

Приклад виконання лабораторної роботи

Запишемо рівняння регресії з урахуванням квадратичних членів:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{12} x_1 x_2 + b_{13} x_1 x_3 + b_{23} x_2 x_3 + b_{123} x_1 x_2 x_3 + b_{11} x_1^2 + b_{22} x_2^2 + b_{33} x_3^2$$

Σ	Κ 1	Х	K ₂]	X ₃
min	max	min	max	min	max
4	4	-10	4	-5	6

$$x_{cpmin} = \frac{x_{smin} + x_{smin} + x_{smin}}{3} = \frac{-4 + (-10) + (-5)}{3} = -6.33; \quad x_{cpmax} = \frac{x_{smiax} + x_{smax} + x_{smax}}{3} = \frac{4 + 4 + 6}{3} = 4.66$$

$$y_{min} = 200 + x_{cpmin} = 200 - 6.33 = 193.67; \quad y_{max} = 200 + x_{cpmax} = 200 + 4.67 = 204.67$$

Матриця планування експерименту для ОЦКП при k=3 із **нормованими** значеннями факторів наведена нижче

N	$\overline{x_1}$	$\overline{x_2}$	$\overline{x_3}$	$\overline{x_1} \cdot \overline{x_2}$	$\overline{x_1} \cdot \overline{x_3}$	$\overline{x_2} \cdot \overline{x_3}$	$\overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}$	x_1^2	x_2^2	x_3^2	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	\bar{y}
1	-1	-1	-1	1	1	1	-1	1	1	1	196	201	194	197
2	-1	-1	1	1	-1	-1	1	1	1	1	198	195	200	197,667
3	-1	1	-1	-1	1	-1	1	1	1	1	196	198	193	195,667
4	-1	1	1	-1	-1	1	-1	1	1	1	202	203	195	200
5	1	-1	-1	-1	-1	1	1	1	1	1	202	203	200	201,667
6	1	-1	1	-1	1	-1	-1	1	1	1	202	196	194	197,333
7	1	1	-1	1	-1	-1	-1	1	1	1	198	195	193	195,333
8	1	1	1	1	1	1	1	1	1	1	203	198	200	200,333
9	-1,215	0	0	0	0	0	0	1,47623	0	0	203	201	198	200,667
10	1,215	0	0	0	0	0	0	1,47623	0	0	199	200	203	200,667
11	0	-1,215	0	0	0	0	0	0	1,47623	0	201	200	195	198,667
12	0	1,215	0	0	0	0	0	0	1,47623	0	193	202	197	197,333
13	0	0	-1,215	0	0	0	0	0	0	1,47623	203	201	198	200,667
14	0	0	1,215	0	0	0	0	0	0	1,47623	197	203	197	199
15	0	0	0	0	0	0	0	0	0	0	195	201	203	199,667

Матриця планування експерименту для ОЦКП при k=3 із **натуралізованими** значеннями факторів має вигляд:

N	$\overline{x_1}$	$\overline{x_2}$	$\overline{x_3}$	$\overline{x_1} \cdot \overline{x_2}$	$\overline{x_1} \cdot \overline{x_3}$	$\overline{x_2} \cdot \overline{x_3}$	$\overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}$	x_1^2	x_2^2	x_3^2	y_1	<i>y</i> ₂	<i>y</i> 3	\bar{y}
1	-4	-10	-5	40	20	50	-200	16	100	25	196	201	194	197
2	-4	-10	6	40	-24	-60	240	16	100	36	198	195	200	197,667
3	-4	4	-5	-16	20	-20	80	16	16	25	196	198	193	195,667
4	-4	4	6	-16	-24	24	-96	16	16	36	202	203	195	200
5	4	-10	-5	-40	-20	50	200	16	100	25	202	203	200	201,667
6	4	-10	6	-40	24	-60	-240	16	100	36	202	196	194	197,333
7	4	4	-5	16	-20	-20	-80	16	16	25	198	195	193	195,333
8	4	4	6	16	24	24	96	16	16	36	203	198	200	200,333
9	-4,86	-3	0,5	14,58	-2,43	-1,5	7,29	23,6196	9	0,25	203	201	198	200,667
10	4,86	-3	0,5	-14,58	2,43	-1,5	-7,29	23,6196	9	0,25	199	200	203	200,667
11	0	-11,505	0,5	0	0	-5,7525	0	0	132,365	0,25	201	200	195	198,667
12	0	5,505	0,5	0	0	2,7525	0	0	30,305	0,25	193	202	197	197,333
13	0	-3	-6,1825	0	0	18,5475	0	0	9	38,2233	203	201	198	200,667
14	0	-3	7,1825	0	0	-21,548	0	0	9	51,5883	197	203	197	199
15	0	-3	0,5	0	0	-1,5	0	0	9	0,25	195	201	203	199,667

Коефіцієнти рівняння регресії:

 $b_0 = 200.24940857210032$

 $b_1 = 0.12788124109948826$

 $b_2 = -0.10897813124490989$

 $b_3 = 0.10140360075278557$

 $b_{12} = 0.05627705627705626$

 $b_{13} = -0.014069264069263926$

 $b_{23} = -0.01406926406926436$

 $b_{123} = 0.0035173160173160695$

 $b_{11} = 0.005174267936477589$

 $b_{22} = -0.035175940392839465$

 $b_{33} = -0.01592445090790185$

Отже, рівняння регресії має вигляд:

```
\begin{split} \hat{y} &= 200.\,24940857210032 + 0.\,12788124109948826 \cdot x_1 + (-0.\,10897813124490989) \cdot x_2 + 0.\,10140360075278557 \cdot x_3 + 0.\,05627705627705626 \cdot x_1x_2 \\ &+ (-0.014069264069263926) \cdot x_1x_3 + (-0.\,01406926406926436) \cdot x_2x_3 + 0.\,0035173160173160695 \cdot x_1x_2x_3 \\ &+ 0.\,005174267936477589 \cdot x_1^2 + (-0.\,035175940392839465) \cdot x_2^2 + (-0.\,01592445090790185) \cdot x_3^2 \end{split}
```

Зробимо перевірку (підставимо значення факторів з матриці планування і порівняємо результат з середніми значеннями функції відгуку по рядках):

```
y1 = 197.05050045416021 \approx 197.000000000000
v4 = 200.1216831575735 \approx 200.000000000000
y6 = 197.29776742791188 \approx 197.333333333333333
y7 = 195.54108285048858 \approx 195.333333333333333
y8 = 200.44290618681964
                  ≈ 200.33333333333334
y9 = 200.19095203077472
                  ≈ 200.66666666666666
y10 = 200.70864441923578
                  y11 = 198.59147124489238
                  y12 = 196.9747918717842
                  ≈ 197.3333333333334
y13 = 200.46973288193894
                  y14 = 198.7631969014049
                  \approx 199. 000000000000
y15 = 200.32758408605284
```

Оскільки отримані значення з невеликим відхиленням збігаються із середніми значеннями у_і, то значення коефіцієнтів рівняння регресії знайдені **правильно**.

Далі проведемо статистичні перевірки – на однорідність дисперсії за критерієм Кохрена, на нуль-гіпотезу за критерієм Стьюдента і на адекватність моделі за критерієм Фішера.

Перевірка однорідності дисперсії за критерієм Кохрена

Gp = 0.13203463203463203

Визначимо степені свободи: F1 = m - 1 = 2; F2 = N = 15

Рівень значущості: q = 1 - p = 0.05.

Табличне значення коефіцієнта Кохрена: Gт = 0.3346

Отже, виконується умова: $\mathbf{Gp} = \mathbf{0.13203463203463203} < \mathbf{0.3346} = \mathbf{Gt}$ і з ймовірністю 0,95 усі дисперсії по рядках **однорідні**.

Перевірка нуль-гіпотези за критерієм Стьюдента

Оскільки число степенів свободи F3 = F1 * F2 = 30, то табличне значення критерію Стьюдента при рівні значущості q = 1 - p = 0.05: traбл = 2.042

t0 = 135.10026339290076 => коефіцієнт значимий

t1 = 0.1709408646894618 => коефіцієнт незначимий і його слід виключити з рівняння регресії

t2 = 0.8547043234472845 => коефіцієнт незначимий і його слід виключити з рівняння регресії

t3 = 0.6267831705280119 => коефіцієнт незначимий і його слід виключити з рівняння регресії

t4 = 0.6267831705280119 => коефіцієнт незначимий і його слід виключити з рівняння регресії

t5 = 0.8547043234472845 => коефіцієнт незначимий і його слід виключити з рівняння регресії

t6 = 0.1709408646894618 => коефіцієнт незначимий і його слід виключити з рівняння регресії

t8 = 135.10026339290076 => коефіцієнт значимий

t9 = 135.10026339290076 => коефіцієнт значимий

t10 = 135.10026339290076 => коефіцієнт значимий

Отже, кількість **значимих** коефіцієнтів d = 5

Після виключення незначимих коефіцієнтів рівняння регресії приймає вигляд:

$$\hat{y} = 200.24940857210032 + 0.0035173160173160695 \cdot x_1 x_2 x_3 + 0.005174267936477589 \cdot x_1^2 + (-0.035175940392839465) \cdot x_2^2 + (-0.01592445090790185) \cdot x_3^2$$

Перевірка при підстановці в спрощене рівняння регресії:

```
\approx 197.000000000000
v`1 = 195.71302834363925
v^2 = 198.8584392424517
                    y`3 = 195.39716674295968
                    y`4 = 199.08988525871567
                      200. 0000000000000
y^5 = 197.0854784312714
                    y^6 = 199.65265582148626
                    ≈ 197.3333333333334
y`7 = 197.11995475056565
                    ≈ 195.3333333333334
y`8 = 199.5337639177764
                    ≈ 200.3333333333334
y^9 = 200.025416901024
                    y`10 = 200.07669936855646
                    v`11 = 199.17941970636986
                    y 12 = 195.58936322987665
                    ≈ 197.3333333333334
y`13 = 199.11130965826484
                    y`14 = 199.32413994464895
                    \approx 199.000000000000
y`15 = 199.9288439958378
```

Перевірка адекватності моделі по критерію Фішера

Отримане рівняння регресії необхідно перевірити на адекватність досліджуваного об'єкта. Для цього необхідно оцінити, наскільки відрізняються середні значення у вихідній величині, отриманої в точках факторного простору, і значення у, отриманого з рівняння регресії в тих же точках факторного простору. Для цього використовують дисперсію адекватності.

Кількість степенів свободи: F4 = N - d = 10; F3 = F1*F2 = (m - 1)*N = 30

Рівень значущості: q = 1 - p = 0.05.

Табличне значення коефіцієнта Фішера: Fт = 2.16

Оскільки $\mathbf{Fp} = \mathbf{1.7897132300106948} < \mathbf{2.16} = \mathbf{Ft}$, то отримана математична модель з ймовірністю p = 0.95 адекватна експериментальним даним.

Таблиця варіантів

№ _{варіанта}	Х	Σ ₁	Х	K ₂	2	X ₃
	min	max	min	max	min	max
101	-5	8	-5	8	-2	6
102	-8	9	-6	2	-1	5
103	-1	4	-3	6	-1	9
104	-8	1	-8	5	-2	7
105	-2	5	0	3	-9	10
106	-2	9	-4	2	-5	9
107	-9	7	-4	7	-10	5
108	-5	7	-10	3	-7	1
109	-3	7	0	9	-8	10
110	-4	3	-6	10	0	3
111	-9	1	-2	3	-2	4
112	-7	8	-1	5	-7	2
113	-6	2	0	2	-6	8
114	-10	1	-6	6	-1	10
115	-1	2	-9	6	-5	8
116	-7	10	-4	6	-5	3
117	-7	10	-4	8	-5	4
118	-3	10	-8	2	-6	1
119	0	4	0	10	-1	7
120	-10	3	-7	2	-1	6
121	-3	6	0	10	-7	10
122	-8	6	-5	4	-5	8
123	-4	6	-1	2	-4	2
124	-3	6	-8	2	-3	4
125	-1	6	-10	5	-8	2
126	-6	1	-4	10	-10	10
127	-4	4	-5	4	-5	4
128	-2	5	-6	4	-9	8
129	-5	5	-9	3	-3	5
130	-1	8	-8	4	-8	8

201 -4 4 -10 4 -5 6 202 -1 1 -8 10 -2 6 203 -9 9 -9 7 -1 7 204 -5 5 5 -5 6 -4 8 205 -7 4 -6 10 -8 1 206 -4 4 -6 7 -7 10 207 -5 8 -7 4 -10 4 208 -5 6 -7 9 -5 3 209 -10 9 0 1 -3 4 210 -6 10 -10 5 -9 3 211 -6 10 -3 5 -4 9 212 -3 8 0 6 -6 1 213 -2 4 -10 8 -3	201	4	1	10	1	_	
203 -9 9 -9 7 -1 7 204 -5 5 5 -5 6 -4 8 205 -7 4 -6 10 -8 1 206 -4 4 -6 7 -7 10 207 -5 8 -7 4 -10 4 208 -5 6 -7 9 -5 3 209 -10 9 0 1 -3 4 210 -6 10 -10 5 -9 3 211 -6 10 -3 5 -4 9 212 -3 8 0 6 -6 1 213 -2 4 -10 8 -3 6 214 -6 10 -8 3 -10 9 215 -2 7 -9 2 -5	201	-4	4	-10	4	-5	6
204 -5 5 -5 6 -4 8 205 -7 4 -6 10 -8 1 206 -4 4 -6 7 -7 10 207 -5 8 -7 4 -10 4 208 -5 6 -7 9 -5 3 209 -10 9 0 1 -3 4 210 -6 10 -10 5 -9 3 211 -6 10 -3 5 -4 9 212 -3 8 0 6 -6 1 213 -2 4 -10 8 -3 6 214 -6 10 -8 3 -10 9 215 -2 7 -9 2 -5 1 216 -5 5 -2 5 -1 4 <							
205 -7 4 -6 10 -8 1 206 -4 4 -6 7 -7 10 207 -5 8 -7 4 -10 4 208 -5 6 -7 9 -5 3 209 -10 9 0 1 -3 4 210 -6 10 -10 5 -9 3 211 -6 10 -3 5 -4 9 212 -3 8 0 6 -6 1 213 -2 4 -10 8 -3 6 214 -6 10 -8 3 -10 9 215 -2 7 -9 2 -5 1 216 -5 5 -2 5 -1 4 217 -1 6 -3 4 -3 7 <							
206 -4 4 -6 7 -7 10 207 -5 8 -7 4 -10 4 208 -5 6 -7 9 -5 3 209 -10 9 0 1 -3 4 210 -6 10 -10 5 -9 3 211 -6 10 -3 5 -4 9 212 -3 8 0 6 -6 1 213 -2 4 -10 8 -3 6 214 -6 10 -8 3 -10 9 215 -2 7 -9 2 -5 1 216 -5 5 -2 5 -1 4 217 -1 6 -3 4 -3 7 218 -5 5 -1 6 -10 1 <							
207 -5 8 -7 4 -10 4 208 -5 6 -7 9 -5 3 209 -10 9 0 1 -3 4 210 -6 10 -10 5 -9 3 211 -6 10 -3 5 -4 9 212 -3 8 0 6 -6 1 213 -2 4 -10 8 -3 6 214 -6 10 -8 3 -10 9 215 -2 7 -9 2 -5 1 216 -5 5 -2 5 -1 4 217 -1 6 -3 4 -3 7 218 -5 5 -1 6 -10 1 219 -6 9 -9 3 -6 9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
208 -5 6 -7 9 -5 3 209 -10 9 0 1 -3 4 210 -6 10 -10 5 -9 3 211 -6 10 -3 5 -4 9 212 -3 8 0 6 -6 1 213 -2 4 -10 8 -3 6 214 -6 10 -8 3 -10 9 215 -2 7 -9 2 -5 1 216 -5 5 -2 5 -1 4 217 -1 6 -3 4 -3 7 218 -5 5 -1 6 -10 1 219 -6 9 -9 3 -6 9 220 -3 10 -1 2 -8 6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
209 -10 9 0 1 -3 4 210 -6 10 -10 5 -9 3 211 -6 10 -3 5 -4 9 212 -3 8 0 6 -6 1 213 -2 4 -10 8 -3 6 214 -6 10 -8 3 -10 9 215 -2 7 -9 2 -5 1 216 -5 5 -2 5 -1 4 217 -1 6 -3 4 -3 7 218 -5 5 -1 6 -10 1 219 -6 9 -9 3 -6 9 220 -3 10 -1 2 -8 6 221 -3 4 -9 3 -4 10 <			8		4	-10	
210 -6 10 -10 5 -9 3 211 -6 10 -3 5 -4 9 212 -3 8 0 6 -6 1 213 -2 4 -10 8 -3 6 214 -6 10 -8 3 -10 9 215 -2 7 -9 2 -5 1 216 -5 5 -2 5 -1 4 217 -1 6 -3 4 -3 7 218 -5 5 -1 6 -10 1 219 -6 9 -9 3 -6 9 220 -3 10 -1 2 -8 6 221 -3 4 -9 3 -4 10 222 -2 3 0 10 -4 8 <			6	-7	9	-5	
211 -6 10 -3 5 -4 9 212 -3 8 0 6 -6 1 213 -2 4 -10 8 -3 6 214 -6 10 -8 3 -10 9 215 -2 7 -9 2 -5 1 216 -5 5 -2 5 -1 4 217 -1 6 -3 4 -3 7 218 -5 5 -1 6 -10 1 219 -6 9 -9 3 -6 9 220 -3 10 -1 2 -8 6 221 -3 4 -9 3 -4 10 222 -2 3 0 10 -4 8 223 -10 10 -10 2 -10 4	209	-10	9	0	1	-3	4
212 -3 8 0 6 -6 1 213 -2 4 -10 8 -3 6 214 -6 10 -8 3 -10 9 215 -2 7 -9 2 -5 1 216 -5 5 5 -2 5 -1 4 217 -1 6 -3 4 -3 7 218 -5 5 -1 6 -10 1 219 -6 9 -9 3 -6 9 220 -3 10 -1 2 -8 6 221 -3 4 -9 3 -4 10 222 -2 3 0 10 -4 8 223 -10 10 -10 2 -10 4 224 -2 2 -2 4 -3	210	-6	10	-10		-9	3
213 -2 4 -10 8 -3 6 214 -6 10 -8 3 -10 9 215 -2 7 -9 2 -5 1 216 -5 5 5 -2 5 -1 4 217 -1 6 -3 4 -3 7 218 -5 5 -1 6 -10 1 219 -6 9 -9 3 -6 9 220 -3 10 -1 2 -8 6 221 -3 4 -9 3 -4 10 222 -2 3 0 10 -4 8 223 -10 10 -10 2 -10 4 224 -2 2 -2 4 -3 9 225 -8 9 -1 8 -9	211	-6	10	-3	5	-4	9
214 -6 10 -8 3 -10 9 215 -2 7 -9 2 -5 1 216 -5 5 -2 5 -1 4 217 -1 6 -3 4 -3 7 218 -5 5 -1 6 -10 1 219 -6 9 -9 3 -6 9 220 -3 10 -1 2 -8 6 221 -3 4 -9 3 -4 10 222 -2 3 0 10 -4 8 223 -10 10 -10 2 -10 4 224 -2 2 -2 4 -3 9 225 -8 9 -1 8 -9 9 226 -5 4 -2 7 -1 2		-3	8	0	6		1
215 -2 7 -9 2 -5 1 216 -5 5 -2 5 -1 4 217 -1 6 -3 4 -3 7 218 -5 5 -1 6 -10 1 219 -6 9 -9 3 -6 9 220 -3 10 -1 2 -8 6 221 -3 4 -9 3 -4 10 222 -2 3 0 10 -4 8 223 -10 10 -10 2 -10 4 224 -2 2 -2 4 -3 9 225 -8 9 -1 8 -9 9 226 -5 4 -2 7 -1 2 227 -5 3 -1 1 -6 5 </td <td>213</td> <td>-2</td> <td>4</td> <td>-10</td> <td>8</td> <td>-3</td> <td>6</td>	213	-2	4	-10	8	-3	6
216 -5 5 -2 5 -1 4 217 -1 6 -3 4 -3 7 218 -5 5 -1 6 -10 1 219 -6 9 -9 3 -6 9 220 -3 10 -1 2 -8 6 221 -3 4 -9 3 -4 10 222 -2 3 0 10 -4 8 223 -10 10 -10 2 -10 4 224 -2 2 -2 4 -3 9 225 -8 9 -1 8 -9 9 226 -5 4 -2 7 -1 2 227 -5 3 -1 1 -6 5 228 -3 6 -8 6 -3 10 <	214	-6	10	-8	3	-10	9
217 -1 6 -3 4 -3 7 218 -5 5 -1 6 -10 1 219 -6 9 -9 3 -6 9 220 -3 10 -1 2 -8 6 221 -3 4 -9 3 -4 10 222 -2 3 0 10 -4 8 223 -10 10 -10 2 -10 4 224 -2 2 -2 4 -3 9 225 -8 9 -1 8 -9 9 226 -5 4 -2 7 -1 2 227 -5 3 -1 1 -6 5 228 -3 6 -8 6 -3 10 229 -3 8 -6 7 -7 10	215	-2	7	-9		-5	1
218 -5 5 -1 6 -10 1 219 -6 9 -9 3 -6 9 220 -3 10 -1 2 -8 6 221 -3 4 -9 3 -4 10 222 -2 3 0 10 -4 8 223 -10 10 -10 2 -10 4 224 -2 2 -2 4 -3 9 225 -8 9 -1 8 -9 9 226 -5 4 -2 7 -1 2 227 -5 3 -1 1 -6 5 228 -3 6 -8 6 -3 10 229 -3 8 -6 7 -7 10 230 -6 3 -4 5 -10 4	216	-5	5	-2	5	-1	4
219 -6 9 -9 3 -6 9 220 -3 10 -1 2 -8 6 221 -3 4 -9 3 -4 10 222 -2 3 0 10 -4 8 223 -10 10 -10 2 -10 4 224 -2 2 -2 4 -3 9 225 -8 9 -1 8 -9 9 226 -5 4 -2 7 -1 2 227 -5 3 -1 1 -6 5 228 -3 6 -8 6 -3 10 229 -3 8 -6 7 -7 10 230 -6 3 -4 5 -10 4 301 -1 8 -5 4 -9 10	217	-1	6	-3	4	-3	7
220 -3 10 -1 2 -8 6 221 -3 4 -9 3 -4 10 222 -2 3 0 10 -4 8 223 -10 10 -10 2 -10 4 224 -2 2 -2 4 -3 9 225 -8 9 -1 8 -9 9 226 -5 4 -2 7 -1 2 227 -5 3 -1 1 -6 5 228 -3 6 -8 6 -3 10 229 -3 8 -6 7 -7 10 230 -6 3 -4 5 -10 4 301 -1 8 -5 4 -9 10 302 -5 7 -1 1 -2 8	218	-5	5	-1	6	-10	1
221 -3 4 -9 3 -4 10 222 -2 3 0 10 -4 8 223 -10 10 -10 2 -10 4 224 -2 2 -2 4 -3 9 225 -8 9 -1 8 -9 9 226 -5 4 -2 7 -1 2 227 -5 3 -1 1 -6 5 228 -3 6 -8 6 -3 10 229 -3 8 -6 7 -7 10 230 -6 3 -4 5 -10 4 301 -1 8 -5 4 -9 10 302 -5 7 -1 1 -2 8 303 0 1 -3 1 -3 9	219	-6	9	-9	3	-6	9
222 -2 3 0 10 -4 8 223 -10 10 -10 2 -10 4 224 -2 2 -2 4 -3 9 225 -8 9 -1 8 -9 9 226 -5 4 -2 7 -1 2 227 -5 3 -1 1 -6 5 228 -3 6 -8 6 -3 10 229 -3 8 -6 7 -7 10 230 -6 3 -4 5 -10 4 301 -1 8 -5 4 -9 10 302 -5 7 -1 1 -2 8 303 0 1 -3 1 -3 9	220	-3	10	-1	2	-8	6
223 -10 10 -10 2 -10 4 224 -2 2 -2 4 -3 9 225 -8 9 -1 8 -9 9 226 -5 4 -2 7 -1 2 227 -5 3 -1 1 -6 5 228 -3 6 -8 6 -3 10 229 -3 8 -6 7 -7 10 230 -6 3 -4 5 -10 4 301 -1 8 -5 4 -9 10 302 -5 7 -1 1 -2 8 303 0 1 -3 1 -3 9	221	-3	4	-9	3	-4	10
224 -2 2 -2 4 -3 9 225 -8 9 -1 8 -9 9 226 -5 4 -2 7 -1 2 227 -5 3 -1 1 -6 5 228 -3 6 -8 6 -3 10 229 -3 8 -6 7 -7 10 230 -6 3 -4 5 -10 4 301 -1 8 -5 4 -9 10 302 -5 7 -1 1 -2 8 303 0 1 -3 1 -3 9	222	-2	3	0	10	-4	8
225 -8 9 -1 8 -9 9 226 -5 4 -2 7 -1 2 227 -5 3 -1 1 -6 5 228 -3 6 -8 6 -3 10 229 -3 8 -6 7 -7 10 230 -6 3 -4 5 -10 4 301 -1 8 -5 4 -9 10 302 -5 7 -1 1 -2 8 303 0 1 -3 1 -3 9	223	-10	10	-10	2	-10	4
226 -5 4 -2 7 -1 2 227 -5 3 -1 1 -6 5 228 -3 6 -8 6 -3 10 229 -3 8 -6 7 -7 10 230 -6 3 -4 5 -10 4 301 -1 8 -5 4 -9 10 302 -5 7 -1 1 -2 8 303 0 1 -3 1 -3 9	224	-2	2	-2	4	-3	9
227 -5 3 -1 1 -6 5 228 -3 6 -8 6 -3 10 229 -3 8 -6 7 -7 10 230 -6 3 -4 5 -10 4 301 -1 8 -5 4 -9 10 302 -5 7 -1 1 -2 8 303 0 1 -3 1 -3 9	225	-8	9	-1	8	-9	9
228 -3 6 -8 6 -3 10 229 -3 8 -6 7 -7 10 230 -6 3 -4 5 -10 4 301 -1 8 -5 4 -9 10 302 -5 7 -1 1 -2 8 303 0 1 -3 1 -3 9	226	-5	4	-2	7	-1	2
229 -3 8 -6 7 -7 10 230 -6 3 -4 5 -10 4 301 -1 8 -5 4 -9 10 302 -5 7 -1 1 -2 8 303 0 1 -3 1 -3 9	227	-5	3	-1	1	-6	5
230 -6 3 -4 5 -10 4 301 -1 8 -5 4 -9 10 302 -5 7 -1 1 -2 8 303 0 1 -3 1 -3 9	228	-3	6	-8	6	-3	10
301 -1 8 -5 4 -9 10 302 -5 7 -1 1 -2 8 303 0 1 -3 1 -3 9	229	-3	8	-6	7	-7	10
302 -5 7 -1 1 -2 8 303 0 1 -3 1 -3 9	230	-6	3	-4	5	-10	4
303 0 1 -3 1 -3 9	301	-1	8	-5	4	-9	10
	302	-5	7	-1	1	-2	8
304 -5 8 -1 4 -4 2	303	0	1	-3	1	-3	9
	304	-5	8	-1	4	-4	2

305	-10	10	-2	2	-1	4
306	-1	2	-9	5	-10	7
307	-7	8	-9	4	-3	6
308	0	10	-5	9	-5	1
309	0	10	-6	6	-7	9
310	0	3	-6	3	-4	1
311	-7	1	-4	8	-1	3
312	0	2	-5	9	-6	10
313	-4	1	-8	6	-10	8
314	-6	6	-5	5	-10	8
315	-8	9	-8	6	-5	6
316	-8	8	-6	3	-10	7
317	-7	8	-7	9	-4	10
318	-2	3	-8	9	-10	5
319	0	7	-2	6	-9	10
320	-3	5	-7	6	-10	6
321	-6	1	-4	4	-2	7
322	-10	1	-9	7	-8	3
323	-6	2	-9	5	-3	9
324	-8	5	-5	7	-5	10
325	-5	9	-8	10	-2	6
326	-9	8	0	4	-2	7
327	-8	4	-9	7	-3	9
328	-9	3	-10	5	-7	6
329	-5	2	-9	4	0	10
330	-8	2	-2	9	-5	10
401	-5	9	-9	4	-1	9
402	-1	3	-5	2	0	4
403	-4	6	-5	6	-9	3
404	-4	6	-9	6	-5	7
405	-3	5	-5	10	-7	2
406	-1	9	-3	8	-6	4
407	0	9	-3	5	-10	7
408	-9	3	-9	6	-2	7

409	-4	7	0	4	-8	6
410	-9	5	-2	2	0	3
411	-10	8	-6	4	-5	8
412	-8	6	-5	7	-4	5
413	-1	10	-7	5	-8	4
414	-6	10	-4	9	-4	5
415	-1	3	0	9	-5	5
501	-10	1	-10	1	-6	3
502	-1	6	-1	5	-8	7
503	-10	5	-3	1	-4	2
504	0	10	-1	1	0	1
505	-3	7	-4	4	-3	4
506	-10	1	-3	3	-1	7
507	-3	4	-7	3	-5	1
508	-4	6	-7	7	-5	7
509	-8	3	-7	10	0	8
510	-9	1	-1	8	-3	10
511	-5	8	-8	9	-1	4
512	-8	6	-3	10	-5	3
513	0	1	0	1	-4	7
514	-9	8	-5	6	0	8
515	-3	1	-2	2	0	1
516	-2	1	-4	2	-1	6
517	-1	4	0	10	-10	4
518	-4	7	-4	7	-2	4
519	-7	10	-7	9	-7	7
520	-5	3	-2	5	-10	10
601	-2	8	-7	1	-8	4
602	-9	1	-7	10	-1	2
603	-7	1	-4	1	-6	1
604	-9	4	-3	8	0	2
605	-7	7	-2	8	-5	2
606	-9	10	-1	5	-6	10
607	-4	5	-3	5	-4	6

	_					
608	-2	3	-3	2	0	5
609	0	2	-6	9	-7	4
610	-5	7	-9	9	-9	5
611	-1	6	-1	5	-2	5
612	-7	6	0	6	-7	4
613	-6	7	-8	10	-7	6
614	-6	4	-5	1	-8	4
615	-6	8	-1	1	-5	1
616	-1	6	-1	1	-3	3
617	-6	4	-10	1	-6	9
618	-3	3	-1	2	-10	10
619	0	8	-4	2	-5	8
620	-8	4	-10	5	-9	7
701	-8	9	-7	7	-3	4
702	-9	10	-4	4	-3	5
703	-6	6	-6	4	-1	8
704	-7	7	-5	5	-4	2
705	-3	5	-9	10	-7	5
706	-7	8	-2	2	-1	8
707	-8	2	-5	8	-1	6
708	-8	6	-6	6	-8	4
709	-4	10	-4	4	-2	5
710	-3	1	-3	10	-3	9

G-Распределение Кохрена.

(значение G*1000 в зависимости от числа степени свободы K, ν)

уровень значимости q=0.05

Κν	1	2	3	4	5	6	7	8	9	10	16	36	144	00
2	9985	9750	9392	9057	8772	8534	8332	8159	8010	7880	7341	6602	5813	5000
3	9669	8709	7977	7457	7071	6771	6530	6333	6167	6025	5466	4748	4031	3333
4	9065	7679	6841	6287	5892	5598	5365	5175	5017	4884	4366	3720	3093	2500
5	8412	6838	5981	5440	5063	4783	4564	4387	4241	4118	3645	3066	2513	2000
6	7808	6161	5321	4803	4447	4184	3980	3817	3682	3568	3135	2612	2119	1667
7	7271	5612	4800	4307	3974	3726	3535	3384	3259	3154	2756	2278	1833	1429
8	6798	5157	4377	3910	3595	3362	3185	3043	2926	2829	2462	2022	1616	1250
9	6385	4775	4027	3584	3286	3067	2901	2768	2659	2568	2226	1820	1446	1111
10	6020	4450	3733	3311	3029	2823	2666	2541	2439	2353	2032	1655	1308	1000
12	5410	3924	3264	2880	2624	2439	2299	2187	2098	2020	1737	1403	100	0833
15	4709	3346	2758	2419	2159	2034	1911	1815	1736	1671	1429	1144	0889	0667
20	3894	2705	2205	1921	1735	1602	1501	1422	1357	1303	1108	0879	0675	0500
24	3434	2354	1907	1656	1493	1374	1286	1216	1160	1113	0942	0743	0567	0417
30	2929	1980	1593	1377	1237	1137	1061	1002	0958	0921	0771	0604	0457	0333
40	2370	1576	1259	1082	0968	0887	0827	0780	0745	0713	0595	0462	0347	0250
60	1737	1131	0895	0766	0682	0623	0583	0552	0520	0497	0411	0316	0234	0167
120	0998	0632	0495	0419	0371	0337	0312	0292	0279	0266	0218	0165	0120	0083

уровень значимости q=0.01

Κν	1	2	3	4	5	6	7	8	9	10	16	36	144	œ
2	9999	950	9794	9586	9373	9172	8988	8823	8674	7539	7949	7067	6062	5000
3	9933	9423	8831	8355	7933	7606	7335	7107	6912	6743	6059	5153	4230	3333
4	9676	8643	7814	7212	6761	6410	6129	5897	5702	5536	4884	4057	3251	2500
5	9279	7885	6957	6329	5875	5531	5259	5037	4854	4697	4094	3351	2644	2000
6	8828	7218	6258	5635	5195	4866	4608	4401	4229	4048	3529	2858	2229	1667
7	8276	664	5685	5080	4659	4347	4105	3911	3751	3616	3105	2494	1929	1429
8	7945	6162	5209	4627	4226	3932	3704	3522	3373	3248	2779	2214	1700	1250
9	7544	5727	4810	4251	3870	3592	3378	3207	3067	2950	2514	1992	1521	1111
10	7175	5358	4469	3934	3572	3308	3106	2945	2813	2704	2297	1811	1376	1000
12	6528	4751	3919	3428	3099	2861	2680	2535	2419	2320	1961	1535	1157	0833
15	5747	4069	3317	2882	2593	2386	2228	2104	2002	1918	1612	1251	0934	0667
20	4799	3297	2654	2288	2048	1877	1748	1646	1567	1501	1248	0960	0709	0500
24	4247	2871	2295	1970	1759	1608	1495	1406	1338	1283	1060	0810	0595	0417
30	3632	2412	1913	1635	1454	1327	1232	1157	1100	1054	0867	0658	0480	0333
40	2940	1951	1508	1281	1135	1033	0957	0898	0853	0816	0668	0503	0363	0250
60	2151	1371	1069	0902	0796	0722	0668	0625	0594	0567	0461	0344	0245	0167
120	1252	0759	0585	0489	0429	0387	0357	0334	0316	0302	0242	0178	0125	0083

Приложение В ТАБЛИЦА t-РАСПРЕДЕЛЕНИЯ

t - случайная величина, распределенная по закону Стьюдента с числом

степеней свободы q. Таблица содержит значения ε , полученные из условия $P(|t| < \varepsilon) = 1 - \alpha$.

	_					
	<i>α</i> =0.99	0.95	0.90	0.80	0.50	0.20
q=1	63.657	12.706	6.314	3.078	0.727	0.325
2	9.935	4.303	2.920	1.886	0.617	0.289
3	5.841	3.182	2.353	1.638	0.584	0.277
4	4.604	2.776	2.132	1.533	0.569	0.271
5	4.032	2.571	2.015	1.476	0.559	0.267
6	3.707	2.447	1.943	1.440	0.553	0.265
7	3.499	2.365	1.895	1.415	0.549	0.263
8	3.355	2.306	1.860	1.397	0.546	0.262
9	3.250	2.262	1.833	1.383	0.543	0.261
10	3.169	2.228	1.812	1.372	0.542	0.260
11	3.106	2.201	1.796	1.363	0.540	0.260
12	3.055	2.119	1.782	1.356	0.539	0.259
13	3.012	2.160	1.771	1.350	0.538	0.259
14	2.977	2.145	1.761	1.345	0.537	0.258
15	2.947	2.131	1.753	1.341	0.536	0.258
16	2.921	2.120	1.746	1.337	0.535	0.258
18	2.878	2.101	1.734	1.330	0.534	0.257
20	2.845	2.086	1.725	1.325	0.533	0.257
21	2.807	2.069	1.714	1.319	0.532	0.256
25	2.787	2.060	1.708	1.316	0.531	0.256
30	2.750	2.042	1.697	1.310	0.530	0.256
40	2.704	2.021	1.684	1.303	0.529	0.255
60	2.660	2.000	1.671	1.296	0.527	0.254
100	2.617	1.980	1.658	1.289	0.526	0.254
120	2.576	1.960	1.645	1.282	0.524	0.253

Примечание. Допускается интерполяция только по аргументу q, погрешность линейной интерполяции не превышает 0,007.

Распределение Фишера. Значения F-критерия Фишера при уровне значимости q=0.05

F1	F2=1	2	3	4	5	6	12	24	oc
1	164.4	199.5	215.7	224.6	230.2	234.0	244.9	249.0	254.3
2	18.5	19.2	19.2	19.3	19.3	19.3	19.4	19.4	19.5
3	10.1	9.6	9.3	9.1	9.0	8.9	8.7	8.6	8.5
4	7.7	6.9	6.6	6.4	6.3	6.2	5.9	5.8	5.6
5	6.6	5.8	5.4	5.2	5.1	5.0	4.7	4.5	4.4
6	6.0	5.1	4.8	4.5	4.4	4.3	4.0	3.8	3.7
7	5.5	4.7	4.4	4.1	4.0	3.9	3.6	3.4	3.2
8	5.3	4.5	4.1	3.8	3.7	3.6	3.3	3.1	2.9
9	5.1	4.3	3.9	3.6	3.5	3.4	3.1	2.9	2.7
10	5.0	4.1	3.7	3.5	3.3	3.2	2.9	2.7	2.5
11	4.8	4.0	3.6	3.4	3.2	3.1	2.8	2.6	2.4
12	4.8	3.9	3.5	3.3	3.1	3.0	2.7	2.5	2.3
13	4.7	3.8	3.4	3.2	3.0	2.9	2.6	2.4	2.2
14	4.6	3.7	3.3	3.1	3.0	2.9	2.5	2.3	2.1
15	4.5	3.7	3.3	3.1	2.9	2.8	2.5	2.3	2.1
16	4.5	3.6	3.2	3.0	2.9	2.7	2.4	2.2	2.0
17	4.5	3.6	3.2	3.0	2.8	2.7	2.4	2.2	2.0
18	4.4	3.6	3.2	2.9	2.8	2.7	2.3	2.1	1.9
19	4.4	3.5	3.1	2.9	2.7	2.6	2.3	2.1	1.9
20	4.4	3.5	3.1	2.9	2.7	2.6	2.3	2.1	1.9
22	4.3	3.4	3.1	2.8	2.7	2.6	2.2	2.0	1.8
24	4.3	3.4	3.0	2.8	2.6	2.5	2.2	2.0	1.7
26	4.2	3.4	3.0	2.7	2.6	2.5	2.2	2.0	1.7
28	4.2	3.3	3.0	2.7	2.6	2.4	2.1	1.9	1.7
30	4.2	3.3	2.9	2.7	2.5	2.4	2.1	1.9	1.6
40	4.1	3.2	2.9	2.6	2.5	2.3	2.0	1.8	1.5
60	4.0	3.2	2.8	2.5	2.4	2.3	1.9	1.7	1.4
120	3.9	3.1	2.7	2.5	2.3	2.2	1.8	1.6	1.3
00	3.8	3.0	2.6	2.4	2.2	2.1	1.8	1.5	1.0