

NOVEMBER 2002

GCE Advanced Subsidiary Level

MARK SCHEME MAXIMUM MARK: 60 SYLLABUS/COMPONENT: 9701 /2 CHEMISTRY (STRUCTURED QUESTIONS (AS))

www.studyguide.pk

Page 1	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2002	9701	2

Question Number	Mark Scheme Details	Part Mark
1(0)	number shape(i) rolecules +8T axes(i)	
(b)	not all molembos have the same energy / some have little some	[2]
(e) (i) (ii)	a lot, distributed about a mean. OR asymmetrical/not a normal distribution (1) Molewher require a certain/minimum energy before trey can react / only molewhor which have this energy can react Successfully on collision. (1) Line on graph (1)	[2]
j	The statted line on the graph - maximum lower and to the right of the solid line maximum (1) larger area to right of Ea line is to umber of anclember with energy greater than Ea. (1)	, —
	Rate is proportional to number of molecules with Ea (or nume) (1) Collision rate faster when molecular speed greater (1) (max2)	[3]
	[Total: 8]	

www.studyguide.pk

	II. I. Sahama	Syllabus	Paper
Page 2	Mark Scheme		2
	AS Level Examinations – November 2002	L	L

Question	Mark Scheme Details	Part Mark
Number V (a) (i)	An a said is a proton (H+) donor (1)	
(ii)	An acid which is partially ionised (1) HA = H+ + A- must have = (1)	[3]
(ii)	reverse reaction (1) [ester][H20]	
(e) (i)	acid + alichol \rightleftharpoons ester + water initially. $\frac{6}{60} = 0.1$ $\frac{6}{46} = 0.13$ $\frac{4.4}{88} = 0.050$ All three (1) at equilm	
(n)	[0.040] = 0.07 = 0.11 all three (1)	
(iii		4
	Total: 10	

www.studyguide.pk

Page 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2002	9701	2

	Mark Scheme Details		Part Mark
3 (a)	$\begin{bmatrix} \times & \times \times \\ \times & \times \\ \times & \times \end{bmatrix}^{2+} \begin{bmatrix} : & \circ \\ : & \circ \\ : & \circ \end{bmatrix}^{2-} (1)$		门
(b)	(i) Na20		
	(ii) ngo or A1203		
	(iii) 503 (allow 502)		
	(iv) SO2 SO3	ch	[s]
(c)	(i) A1203 + 6HCl -> 2A1U3 + 3H20		
	(ii) NacH + SO2 -> NaHSO3 M 2 NacH + SO2 -> Na		_0 [2]
(d)	(i) 25b253+ 902 -> 5b406 + 6602 (;)	
	(ii) +3 or3 NOT 3+ (1)		
	(iii) 2 mols Sb2S3 give 3co2		
	: 10 mols Sb2S3 give 15 mol CO2 (1)		
	15 × 24 = 0 du3 = 360 dm3 (1)		[4]
	[Tot	El :12)	

Page 4	Mark Scheme	Syllabus	Paper	
	AS Level Examinations – November 2002	9701	2	

Question Number	Mark Scheme Details	Part Mark
4 (a)	$CH_4 + H_2O \longrightarrow 3H_2 + CO$	ì
(b)	(i) $N_2 + 3H_2 \rightleftharpoons 2NH_3 \rightleftharpoons (1)$ we consory	i
	(ii) pressure over 100 atm temp 400-600°C range or conoxide ive nf. (catalyst) all (i)	4
	(iii) N2+H2(i) heat but gazes (iii) N2+H2 (convertor (convertor	
	Condensed NH3 (i)	4 [6]
(c)	Reaction 4 > 2 (mols, vols) favoured by high P (1)	-
	Collision frequency greates at high P (1)	[2]
(N)	NH3 +202 -> HNO3 + H20	[1]
(e)	$H_{20} + Ce(NH_{2})_{2} \longrightarrow 2NH_{3} + CO_{2}$ -287 + (-322.5) \longrightarrow -162 -414.5 (i) -607.5 \longrightarrow -576.5	
	SH = 31 tet mol (1)	[2]
	[Total:12]	

Page 5 Mark Scheme WSyllabus UPApper CE.PK

AS Level Examinations – November 2002 9701 2

Question lumber	Mark Scheme Details			Part Mark
5	H+/cr20,2-	A,B,C		
	H+/m04-	C,E		
	H2/86	E		
	Gn ²⁺ (Fehling)	C	· .	
	2,4-DNP	C, D	1 each	9 ma
	Brz	É		ma
	Each wrong answer in a	Les invalidates a cor	ret answer	
	,			
		•		
	:			
				i

Page 6 Mark Scheme WWW STUCYCHICE. PK

AS Level Examinations – November 2002 9701 2

Question Number	Mark Scheme Details	Part Mark
6 (a)	CH3. C2H5 CH-CH2OH etc (1)	
(6)(6) C5H110H + HBV -> C5H11Br + H20 (1)	
(ii)	889 alcohol-required for 1519 bromide (1)	
(c)	= 14.57 q allow 14.5 to 14.69 (1) H. a neatdrawing of a double bound (1) H or and TT labels(1)	[3]
(d) (ii)	(i) C3H110H H+/c1202-(i) reflux (i) accept H+/Mn04- or or //m04 CH3CO2H + HOC5H11 CH3CO.OC5H11[+ H20] conc H2504 + heat/reflux (i) conclition work is only awarded when [Total:197 the reagent is correct	[4]