HW2 - Drug Activity Prediction

Introduction

This report presents my approach for the **Drug Activity Prediction** task using machine learning. The objective is to predict whether a given drug is **active (1)** or **inactive (0)** based on its molecular features. The dataset is **imbalanced**, requiring special techniques to achieve good model performance. I explored several **feature selection**, **scaling**, **and resampling techniques** to improve the model's **F1-score**, with **Decision Tree** emerging as the best classifier.

While **Naive Bayes** was initially tested, it gave a significantly **lower F1-score**, and hence, it was not used in the final solution. This report summarizes the **steps taken**, **results**, **and reasons for the final choices** made during the process.

Approach and Methodology

1. Data Preprocessing:

- The provided TXT files were loaded and processed. Each training sample contained a class label followed by a list of feature indices. For each sample, I constructed a binary matrix with 1s indicating the presence of specific features.
- o **Feature Selection:** Applied **Variance Threshold** to remove low-variance features.
- Dimensionality Reduction: Used Truncated SVD to reduce the dataset to 80 components to improve training speed and prevent overfitting.
- Scaling: MaxAbsScaler was applied to normalize the feature values to the range [0, 1].

2. Handling Imbalanced Data:

- Since the dataset was highly imbalanced, I experimented with the following resampling techniques:
 - Random Oversampling: Duplicates samples of the minority class.
 - **SMOTE (Synthetic Minority Oversampling Technique)**: Generates synthetic samples for the minority class.
 - **ADASYN (Adaptive Synthetic Sampling)**: Similar to SMOTE but focuses more on harder-to-classify samples.
 - Random Undersampling: Removes samples from the majority class to balance the dataset.

3. Classifier Choice and Model Selection:

4. Why I Didn't Use Naive Bayes:

- While Naive Bayes is a **fast and simple algorithm**, it relies on the assumption that all features are **independent** and follow a **Gaussian distribution**.
- In this case, the features are binary indicators (presence or absence of a feature), and this violates Naive Bayes' assumptions.
- As a result, Naive Bayes gave lower F1-scores because it could not model the dependencies between features effectively.
- In contrast, Decision Trees can handle feature dependencies and non-linear relationships in the data, resulting in better performance.

5. Model Selection:

- o I chose the **Decision Tree classifier** for the final solution because:
 - It gave **better F1-scores** compared to Naive Bayes.
 - It handles **imbalanced data well** by weighting classes.
 - It does not assume any **feature independence** or distribution assumptions.
- o **GridSearchCV** was used to tune the following hyperparameters:
 - max_depth: Range from 2 to 9
 - min_samples_split: Range from 2 to 5
 - min_samples_leaf: Range from 1 to 5

6. Evaluation Metric:

I used the F1-score to evaluate the models because the dataset is highly imbalanced.
F1-score ensures a balance between precision and recall, making it suitable for this task.

Experimental Results

The table below summarizes the F1-scores for each **resampling technique** used with the Decision Tree classifier:

Resampling Technique	F1-Score (Validation)	Best Parameters
Random Oversampling	0.72	max_depth=5, min_samples_leaf=2
SMOTE	0.76	max_depth=6, min_samples_split=3
ADASYN	0.75	max_depth=4, min_samples_leaf=1
Random Undersampling	0.68	max_depth=3, min_samples_leaf=2

Visualization

The **best performing technique** was **SMOTE**, which achieved an F1-score of **0.76**. This technique performed better as it **generated synthetic samples** that improved the classifier's ability to generalize across both classes.

Results Submission and Ranking

1. Miner Website Username: Rithvik

2. Current Rank: 233

3. **Best F1-Score:** 0.76 (Using SMOTE)

Summary and Conclusion

In this project, I successfully built a **robust classifier** to predict drug activity using **Decision Tree**. Through experimentation, I identified that **SMOTE** performed the best in handling the imbalanced dataset, resulting in the highest F1-score.

Initially, I tested **Naive Bayes**, but it was **not chosen** for the final solution due to its **low F1-score**. The main reason for this was that Naive Bayes assumes **feature independence** and a **Gaussian distribution**, which was not suitable for this dataset. **Decision Tree** proved to be more effective, as it can **model feature dependencies** and handle non-linear relationships.