Add blockquote

Forecasting Sales and Visualizing Ad Campaign Impact on Social Media Platforms using Machine Learning

և 3 cells hidden

Importing Libraries

import numpy as np
import pandas as pd

Importing the required libraries

Loading Data

Loading the data using read_csv

from google.colab import files
uploaded = files.upload()

Choose Files ad_campai...analysis.csv

ad_campaign_analysis.csv(text/csv) - 60522 bytes, last modified: 9/29/2024 - 100% done
 Saving ad_campaign_analysis.csv to ad_campaign_analysis.csv

data_frame=pd.read_csv("ad_campaign_analysis.csv")

Printing the first 5 columns using data.head()

data_frame.head()

gender

View recommended plots

New interactive sheet

Checking and handling for null values

data_frame.info()

Next steps:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1143 entries, 0 to 1142 Data columns (total 11 columns): Non-Null Count Dtype # Column 0 ad_id 1143 non-null int64 xyz_campaign_id 1143 non-null int64 fb_campaign_id 1143 non-null int64 1143 non-null object

1143 non-null

Generate code with data_frame

object

5	interest	1143 non-null	int64					
6	Impressions	1143 non-null	int64					
7	Clicks	1143 non-null	int64					
8	Spent	1143 non-null	float64					
9	Total_Conversion	1143 non-null	int64					
10	Approved_Conversion	1143 non-null	int64					
dtypes: float64(1), int64(8), object(2)								

memory usage: 98.4+ KB

Exploratory Data Analysis

data_frame.shape

→ (1143, 11)

data_frame.describe()

		ad_id	xyz_campaign_id	fb_campaign_id	interest	Impressions	Clicks	Spent	Total_Conversion	Approved_Conve
	count	1.143000e+03	1143.000000	1143.000000	1143.000000	1.143000e+03	1143.000000	1143.000000	1143.000000	1143.0
	mean	9.872611e+05	1067.382327	133783.989501	32.766404	1.867321e+05	33.390201	51.360656	2.855643	9.0
	std	1.939928e+05	121.629393	20500.308622	26.952131	3.127622e+05	56.892438	86.908418	4.483593	1.7
	min	7.087460e+05	916.000000	103916.000000	2.000000	8.700000e+01	0.000000	0.000000	0.000000	0.0
	25%	7.776325e+05	936.000000	115716.000000	16.000000	6.503500e+03	1.000000	1.480000	1.000000	0.0
	50%	1.121185e+06	1178.000000	144549.000000	25.000000	5.150900e+04	8.000000	12.370000	1.000000	1.0
	75%	1.121804e+06	1178.000000	144657.500000	31.000000	2.217690e+05	37.500000	60.025000	3.000000	1.0
	max	1.314415e+06	1178.000000	179982.000000	114.000000	3.052003e+06	421.000000	639.949998	60.000000	21.0

 $\mbox{\#}$ Importing the Libararies for visualization import matplotlib.pyplot as plt

import seaborn as sns

Generating Correlation Matrix

corr=sns.heatmap(data_frame[["Impressions","Clicks","Spent","Total_Conversion","Approved_Conversion"]].corr(),annot=True ,fmt=".2f", cmap="c

It can be understood that impressions and total conversion are correlated with the approved conversion than with the clicks and spent.

Ad-Campaigns

The campaign ids are changed.

Performing Data Vizualization

```
# visualizing count plot on single categorical variable
sns.countplot(x ='xyz_campaign_id', data = data_frame)
# Generating the plot
plt.Show()
```


CAMPAIGN_C has more ads compared to CAMPAIGN_A and CAMPAIGN_B.

```
#Company vs Approved_Conversion
# Generating bar plot
plt.bar(data_frame["xyz_campaign_id"], data_frame["Approved_Conversion"])
plt.ylabel("Approved_Conversion")
plt.title("Company vs Approved_Conversion")
plt.show()
```


CAMPAIGN_C has better approved conversion count than CAMPAIGN_A and CAMPAIGN_B concluding that most people bought products from CAMPAIGN_C.

Age

```
# count plot on single categorical variable
sns.countplot(x = 'age', data = data_frame)
# Generating the plot
plt.show()
```



```
import seaborn as sns
sns.set(style="whitegrid")
tips = sns.load_dataset("tips")
sns.barplot(x=data_frame["xyz_campaign_id"], y=data_frame["Approved_Conversion"], hue=data_frame["age"], data=tips)
```


30-34 age group showed more interest in CAMPAIGN_B and CAMPAIGN_C while 40-44 age group showed more interest for CAMPAIGN_A.

Gender

```
# count plot on single categorical variable
sns.countplot(x ='gender', data = data_frame)
# Generating the plot
plt.show()
```



```
import seaborn as sns
sns.set(style="whitegrid")
tips = sns.load_dataset("tips")
sns.barplot(x=data_frame["xyz_campaign_id"], y=data_frame["Approved_Conversion"], hue=data_frame["gender"], data=tips)
```


Almost both of the genders showed same interests in all the three campaigns.

Interest

```
# count plot on single categorical variable
fig_dims = (15,6)
fig, ax = plt.subplots(figsize=fig_dims)
sns.countplot(x = 'interest', data = data_frame)
# Generating the plot
plt.show()
```



```
plt.scatter(data_frame["interest"], data_frame["Approved_Conversion"])
plt.title("interest vs. Approved_Conversion")
plt.xlabel("interest")
plt.ylabel("Approved_Conversion")
plt.show()
```


It's interesting to see that even while there were less people showing interest after 100, there was a spike in the number of people who made a purchase. The output of the distribution is as anticipated.

```
p = sns.FacetGrid(data_frame, col="gender")
p.map(plt.scatter, "interest", "Approved_Conversion", alpha=.4)
p.add_legend();
```



```
p = sns.FacetGrid(data_frame, col="age")
p.map(plt.scatter, "interest", "Approved_Conversion", alpha=.4)
p.add_legend();
```


Spent

```
plt.hist(data_frame['Spent'], bins = 25)
plt.xlabel("Spent")
plt.ylabel("Frequency")
plt.show()
```



```
# spent vs approved conversion
plt.scatter(data_frame["Spent"], data_frame["Approved_Conversion"])
plt.title("Spent vs. Approved_Conversion")
plt.xlabel("Spent")
plt.ylabel("Approved_Conversion")
plt.show()
```


No of products bought is directly proportional to the spents

```
p = sns.FacetGrid(data_frame, col="gender")
p.map(plt.scatter, "Spent", "Approved_Conversion", alpha=.4)
p.add_legend();
```



```
# Creating a FacetGrid with the column variable as age
p = sns.FacetGrid(data_frame, col="age")
# mapping Scatter plot for Spent vs Approved Conversion for each age group
```

mapping Scatter plot for Spent vs Approved Conversion for each age group
p.map(plt.scatter, "Spent", "Approved_Conversion", alpha=.4)

Giving legend for plot
p.add_legend()

Impressions

```
plt.hist(data_frame['Impressions'], bins = 25)
plt.xlabel("Impressions")
plt.ylabel("Frequency")
plt.show()
```



```
plt.scatter(data_frame["Impressions"], data_frame["Approved_Conversion"])
plt.title("Impressions vs. Approved_Conversion")
plt.xlabel("Impressions")
plt.ylabel("Approved_Conversion")
plt.show()
```


It can be observed that after some point in impressions the approved conversions is increased.

Checking who bought the product actually

Clicking on the ad?

Checking who actually bought the product after clicking on the ad.

```
p = sns.FacetGrid(data_frame, col="gender")
p.map(plt.scatter, "Clicks", "Approved_Conversion", alpha=.4)
p.add_legend();
```


Men clicked on the ad more than women but women ended up buying the product more than men.

```
import seaborn as sns
import matplotlib.pyplot as plt

# Creating a FacetGrid with the column variable as age
p = sns.FacetGrid(data_frame, col="age")

# Mapping scatter plot of Clicks vs Approved_Conversion for each age group
p.map(plt.scatter, "Clicks", "Approved_Conversion", alpha=.4)

# Giving legend for plot
p.add_legend()
```


30-34 age group people tend to buy the product after clicking the ad.

Enquiring about the product?

Checking who actually bought the product after enquiring about the ad .

```
p = sns.FacetGrid(data_frame, col="gender")
p.map(plt.scatter, "Total_Conversion", "Approved_Conversion", alpha=.4)
p.add_legend();
```


Men enquired about the ad more than women but women ended up buying the product more than men.

30-34 age group people tend to buy the product after enquiring about the ad.

Zoom-in the campaign which has the most approved conversion (Campaign_C)

Distribution of the fb campaign id along with the Approved Conversion for CAMPAIGN_C

```
plt.figure(figsize=(20,5))
plt.scatter(c_campaign["fb_campaign_id"], c_campaign["Approved_Conversion"])
plt.title("fb campaign id vs Approved Conversion for CAMPAIGN_C")
plt.xlabel("fb campaign id")
plt.ylabel("Approved Conversion")
plt.show()
```


The fb campaign ids are approximately 145000 which has more approved conversion and for campaign c it was around 180000.

Conclusion

Correlations analysis: Impressions and total conversion are correlated with the approved conversion than with the clicks and spent.

Campaign_C: CAMPAIGN_C has more ads. CAMPAIGN_C has better approved conversion count than CAMPAIGN_A and CAMPAIGN_B concluding that most people bought products from CAMPAIGN_C.

age_group: 30-34 age group showed more interest in CAMPAIGN_B and CAMPAIGN_C while 40-44 age group showed more interest for CAMPAIGN_A.

gender: Almost both of the genders showed same interests in all the three campaigns.

interest: It's interesting to see that even while there were less people showing interest after 100, there was a spike in the number of people who made a purchase. The output of the distribution is as anticipated.

money spent: No of products bought is directly proportional to the spent.

Product bought after clicking the ad: Men clicked on the ad more than women but women ended up buying the product more than men. 30-34 age group people tend to buy the product after clicking the ad.

Product bought after enquiring the ad: Men enquired about the ad more than women but women ended up buying the product more than men. 30-34 age group people tend to buy the product after enquiring about the ad.

Conclusion:

The fb campaign ids are approximately 145000 which has more approved conversion and for campaign c it was around 180000.

Modelling to train the data

Actual ids are assigned to the xyz_campaign_id for the modelling purpose

```
<ipython-input-37-ae595f44745a>:1: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future versic
    data_frame["xyz_campaign_id"].replace({"CAMPAIGN_A":916 ,"CAMPAIGN_B":936 ,"CAMPAIGN_C":1178}, inplace=True)
```

data_frame["xyz_campaign_id"].replace({"CAMPAIGN_A":916 ,"CAMPAIGN_B":936 ,"CAMPAIGN_C":1178}, inplace=True)

Encoding of the 'gender' and 'age' (labels) for modelling

```
#encoding the genders
from sklearn.preprocessing import LabelEncoder
encoder=LabelEncoder()
encoder.fit(data_frame["gender"])
data_frame["gender"]=encoder.transform(data_frame["gender"])
print(data_frame["gender"])
 <del>∑</del>
             1
             1
     2
             1
     3
             1
     1138
             0
     1139
     1140
             0
     1141
             a
     1142
     Name: gender, Length: 1143, dtype: int64
#encoding the age
encoder.fit(data_frame["age"])
data_frame["age"]=encoder.transform(data_frame["age"])
print(data_frame["age"])
 ₹
             0
             a
     2
             0
     3
             0
     4
             0
     1138
     1139
             3
     1140
             3
     1141
     1142
     Name: age, Length: 1143, dtype: int64
data_frame.head()
₹
                                                                                                                                                 Ē
          ad_id xyz_campaign_id fb_campaign_id age
                                                        gender interest Impressions Clicks
                                                                                                Spent Total_Conversion Approved_Conversion
      0 708746
                              916
                                           103916
                                                                       15
                                                                                  7350
                                                                                                  1.43
                                                                                                                       2
                                                                                                                       2
      1 708749
                              916
                                           103917
                                                     0
                                                              1
                                                                       16
                                                                                 17861
                                                                                             2
                                                                                                  1.82
                                                                                                                                             0
      2 708771
                              916
                                           103920
                                                     0
                                                              1
                                                                       20
                                                                                   693
                                                                                             0
                                                                                                  0.00
                                                                                                                                             0
      3 708815
                              916
                                           103928
                                                              1
                                                                       28
                                                                                  4259
                                                                                                  1.25
                                                                                                                                             0
         708818
                              916
                                           103928
                                                                                  4133
                                                                                                  1.29
              Generate code with data_frame
                                               View recommended plots
                                                                               New interactive sheet
 Next steps:
```

Deleting "Approved_Conversion" and "Total_Conversion" from dataset

Feature Scaling

```
from sklearn.preprocessing import StandardScaler
x_sc= StandardScaler()
x = x_sc.fit_transform(x)
```

splitting Data into testset and trainset

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3, random_state=42)
```

Random Forest Classifier to predict Total_Conversion

```
from sklearn.ensemble import RandomForestClassifier
random_fr = RandomForestClassifier(n_estimators = 10, random_state = 0)
random_fr.fit(x_train, y_train)

// usr/local/lib/python3.10/dist-packages/sklearn/base.py:1473: DataConversionWarning: A column-vector y was passed when a 1d array was ex
return fit_method(estimator, *args, **kwargs)

/ RandomForestClassifier ① ②
RandomForestClassifier ① ③
```

Predicting Total Conversion in test_set

Make predictions on the test set

```
y_pred = random_fr.predict(x_test)
y_pred
→ array([ 1, 4, 1, 2, 1, 4, 1, 1, 1, 1, 1, 13, 2, 1, 2, 1, 1,
           2, 1, 2, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1,
             1,
                    1,
                       2,
                           1,
                              1,
                                 1,
                                     1,
                                        2,
                                           3,
                                              1,
                                                  1,
           1, 1, 2, 1, 1, 2, 5, 2, 1, 1, 2, 1, 1,
          1, 1, 1,
                    1, 1, 1,
                              1, 1, 1, 1, 1, 1,
                                                  1.
                                                     1.
             1, 1, 24,
                       1,
                           1,
                              2,
                                 1,
                                     4,
                                        1,
                                           1,
                                               4,
                                                  1,
           1, 1, 1, 1, 1, 1, 1, 1,
                                        1, 1,
             3, 1, 1,
                       1, 17,
                              4,
                                 3,
                                    1,
                                        3,
                                           1,
                                               1,
                                                  1,
           1, 1, 1,
                    6,
                       1, 1,
                              1,
                                 2,
                                     1,
                                        1, 1,
                                               1,
                                                  1,
           1, 1, 22, 1, 3, 1,
                              2, 1,
                                    4, 1, 1,
                                              1, 16,
           3, 22,
                 5,
                    3,
                       1,
                           2,
                              1,
                                 1,
                                     1, 11,
                                           1,
                                               1,
                                                  1, 11,
                                       3, 3,
                       1, 1, 1, 1, 6,
           1, 1, 1, 1,
                                              1,
                                                    1.
                                        2, 1,
          7, 2, 1, 7, 8, 1, 1, 1,
                                    1,
                                               2, 1, 1, 1,
                 3,
                    1,
                       1, 1,
                              1,
                                 2,
                                     1,
                                        6, 1,
                                               3,
                                                  1,
           1, 1, 31, 1,
                       5, 1, 1,
                                 3,
                                     2,
                                        3, 2,
                                               1,
                                                  1,
           1, 1,
                 1, 2, 1, 16, 11,
                                 3,
                                    1, 1, 24,
                                              1,
                                                  2,
                                                     1,
                                          1,
                    1,
                       1, 1,
                              1,
                                 1,
                                     1,
                                        4,
                                               1,
                                                  9,
          4, 6, 1, 1, 1, 1, 1, 1, 2, 4, 4, 1, 2, 1,
                                                            1, 1,
                                                           1,
           5, 1, 2, 1, 1, 4, 1, 1, 1, 2, 1,
                                              6,
                                                  1,
                                                     7,
                                                        1,
             4,
                    3,
                       1,
                           1,
                              2,
                                 1,
                                     2,
                                           9,
           1, 1, 3])
```

Evaluation

```
from sklearn.metrics import r2_score,mean_squared_error,mean_absolute_error,accuracy_score mean_abs_error=mean_absolute_error(y_test, y_pred)
mean_sqr_error=mean_squared_error(y_test, y_pred)
r_mean_sqr_error=np.sqrt(mean_sqr_error)
r2_s=r2_score(y_test, y_pred)
a_s=accuracy_score(y_test, y_pred)

mean_abs_error

1.346938775510204

The mean absolute error achieved is 1.346.

#R-squred value
r2_s
0.5382662207706701
```

53.8% of the data will be fitting into the classifier model as the r2 score is achieved as 0.538.

a_s

0.5685131195335277

The accuracy is achieved as 0.568 which means the model is less accurate for the dataset.

Decision Tree Classifier

from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
import pands as nd