CA_HW_5

2014011349 计43 杨皖宁

1

先计算 $A=A_1*B_1, B=A_2*B_2, C=A_3*B_3, D=A_4*B_4$,再计算 $E=A_1*B_1+A_2*B_2$ 和 $F=A_3*B_3+A_4*B_4$,最后求和得最后结果G。时空图表示如下:

Figure 1:

则吞吐率为:

$$TP = \frac{7}{18\Delta t}$$

加速比为:

$$S = \frac{4*4\Delta t + 3*4\Delta t}{18\Delta t} = 1.556$$

效率为:

$$E = \frac{S}{k} = 0.311$$

$\mathbf{2}$

2.1

首先写出禁止表F = (1,3,4,8)。 由此得初始冲突向量 $C_0 = (10001101)$ 计算得流水线任务调度的转移图如下(转移边上的9实际表示 ≥ 9):

Figure 2:

2.2

简单循环	平均启动距离
(5)	5
(6)	6
(7)	7
(9)	9
(2, 5)	3.5
(2, 7)	4.5
(2, 9)	5.5
(7, 6)	6.5
(5, 6)	5.5
(9, 6)	7.5

由此知最优调度策略为(2,5),最大吞吐率为 $TP_{max} = \frac{1}{3.5\Delta t}$

2.3

实际吞吐率为:

$$TP = \frac{6}{(2+5+2+5+2+9)\Delta t} = \frac{6}{25\Delta t}$$

3

3.1

首先写出禁止表F=(1,3,6)。 由此得初始冲突向量 $C_0=(100101)$ 计算得流水线任务调度的转移图如下(转移边上的7实际表示 \geq 7):

Figure 3:

3.2

简单循环	平均启动距离
(4)	4
(5)	5
(7)	7
(2, 5)	3.5
(2, 7)	4.5
(2, 2, 5)	3
(2, 2, 7)	3.67
(4, 5)	4.5
(4, 7)	5.5

因此允许不等时间间隔时,最优调度策略为(2,2,5),最大吞吐率为 $\frac{1}{3\Delta t}$ 而等时间间隔时,最优调度策略为(4),最大吞吐率为 $\frac{1}{4\Delta t}$

3.3

允许不等时间间隔时: 实际吞吐率为:

$$\frac{10}{(2+2+5+2+2+5+2+2+5+7)\Delta t} = \frac{5}{17\Delta t}$$

加速比为:

$$\frac{7*10}{(2+2+5+2+2+5+2+2+5+7)}\approx 2.06$$

等时间间隔时:实际吞吐率为:

$$\frac{10}{(4*9+7)\Delta t} = \frac{10}{43\Delta t}$$

加速比为:

$$\frac{7*10}{(4*9+7)} \approx 1.63$$

4

4.1

		1	2	3 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
LW R1,0(R2)	IF	ID	EX	MEM	WB													
DADDIU R1,R1,#1		IF	ID			EX	MEM	WB										
SW R1,0(R2)			IF			ID			EX	MEM	WB							
DADDIU R2,R2,#4						IF			ID	EX	MEM	WB						
DSUB R4,R3,R2									IF	ID			EX	MEM	WB			
BNEZ R4,LOOP										IF			ID			EX	MEM	WB
																	IF	

Figure 4:

每次循环中,BNEZ句在EX结束后即跳转,在下一时钟周期开始重复上述过程,因此单次循环需要16个时钟周期,仅在最后一次循环中分支指令不再跳转,根据课件所述分支指令不进入WB阶段,只需要四个时钟周期。而分析这段汇编指令并结合R3 初值为R2+396,不难发现该循环需要执行 $\frac{396}{4}$ = 99 次,因此总共需要的时钟周期数为:

$$99 * 16 + 1 = 1585$$

4.2

	1		2		3	4	5	6	7	8	9	10	1:
LW R1,0(R2)	IF	ID		EX		MEM	WB						
DADDIU R1,R1,#1		IF		ID			EX	MEM	WB				
SW R1,0(R2)				IF			ID	EX	MEM	WB			
DADDIU R2,R2,#4							IF	ID	EX	MEM	WB		
DSUB R4,R3,R2								IF	ID	EX	MEM	WB	
BNEZ R4,LOOP									IF	ID	EX	MEM	WB
												IF	

Figure 5:

分析基本同第一小问,总共需要的时钟周期数为:

$$99 * 9 + 1 = 892$$

4.3

		1		2	3	3	4	5	6	7	8	9	10
LW R1,0(R2)	IF		ID		EX	M	1EM	WB					
DADDIU R2,R2,#4			IF		ID	E)	X	MEM	WB				
DADDIU R1,R1,#1					IF	ID)	EX	MEM	WB			
DSUB R4,R3,R2						IF		ID	EX	MEM	WB		
BNEZ R4,LOOP								IF	ID	EX	MEM	WB	
SW R1,-4(R2)									IF	ID	EX	MEM	WB
										IF			

Figure 6:

指令调度为如上图所示,核心思想为利用不相干的指令填充延迟槽以避免暂停流水线,为达到这一目的,首先将ADDIU R2,R2,#4前置,填充在LW指令后,消除了Load相关造成的流水线暂停;此外将SW后移到BNEZ语句后,用来填充延迟槽,需要注意的是此时R2与源代码中的值已有不同,因此修改为-4(R2)。

总共需要的时钟周期数为:

$$99*6+4=598$$

5

5.1

$$Bypass_{MEM->ID(B)} = (rt_D = ws_M) * we_M * re2_D$$
 (1)

5.2

$$stall = (rs_D = ws_E) * (opcode_E = LW_E) * (ws_E \neq 0) * re1_D + (rt_D = ws_E) * (opcode_E = LW_E) * (ws_E \neq 0) * re2_D$$
(2)

5.3

LW R1, 0x1000 ADDIU R3, R4, 0x2000 ADDIU R2, R1, 0x2000