table of contents flow chart

Contents

1	The Finite Element Method	2
	1.1 Two-point boundary value problem	2
	1.2 Synopsis of FEM theory	4
2	Spectral Method	5
3	Gaussian elimination for sparse linear equations	5
4	Classical iterative methods for sparse linear equations	5
5	Multigrid techniques	5
6	Conjugate Gradient	5

1 The Finite Element Method

1.1 Two-point boundary value problem

Definition. (problem setup) Linear two-point boundary value problem

$$-\frac{d}{dx}\left[a(x)\frac{du}{dx}\right] + b(x)u = f \qquad 0 \le x \le 1$$

where a,b, and f are given functions, a is differentiable and a(x) > 0, $b \ge 0$, 0 < x < 1. Assume dirichlet boundary condition

$$u(0) = \alpha$$
 $u(1) = \beta$

Definition. (4 principles of FEM)

1. (Approximate the solution in a finite-dimensional space), i.e. approximate u by a linear combination of functions in $\mathring{\mathbb{H}}_m = span\{\varphi_1, \cdots, \varphi_m\}$ where $\varphi_0, \cdots, \varphi_m$ are linearly independent functions satisfying zero boundary condition. So we have an approximate solution u_m given by

$$u_m(x) = \varphi_0(x) + \sum_{l=1}^m \gamma_l \varphi_l(x) \qquad 0 \le x \le 1$$

2. (Choose the approximation so the defect is orthogonal to the space $\mathring{\mathbb{H}}_m$) Consider defect as the error of u_m as approximation to u,

$$d_m(x) = -\frac{d}{dx} \left[a(x) \frac{du_m(x)}{dx} \right] + b(x)u_m(x) - f(x) \qquad 0 < x < 1$$

Alternatively, we seek u_m such that d_m is orthogonal to all basis elements of $\mathring{\mathbb{H}}_m$, in other words, satisfy the **Galerkin equations**

$$\langle d_m, \varphi_k \rangle$$
 $k = 1, 2, \cdots, m$

3. (Integrate by parts to depress the maximal extent possible the differentiability requirements of the space $\mathring{\mathbb{H}}_m$) We can expand Gerlerkin equations by substituting u_m as a linear combination of basis to obtain a linear system of m equations in m unknown $\gamma_1, \dots, \gamma_m$

$$\sum_{l=1}^{m} \gamma_{l} \left[\left\langle -(a\varphi_{l}')', \varphi_{k} \right\rangle + \left\langle b\varphi_{l}, \varphi_{k} \right\rangle \right] = \left\langle f, \varphi_{k} \right\rangle - \left[\left\langle -(a\varphi_{0}')', \varphi_{k} \right\rangle + \left\langle b\varphi_{0}, \varphi_{k} \right\rangle \right]$$

for $k = 1, 2, \dots, m$. Given standard Euclidean inner product over funtion spaces

$$\langle v,w\rangle = \int_0^1 v(\tau)w(\tau)d\tau$$

We compute integration by parts to reduce differentiability requirements for φs

$$\langle -(a\varphi'_l)', \varphi_k \rangle = \int_0^1 \left\{ -(a(\tau)\varphi_l(\tau)')' \right\} \varphi_k(\tau) d\tau$$

$$= \left[-a(\tau)\varphi'_l(\tau)\varphi_k(\tau) \right]_0^1 + \int_0^1 a(\tau)\varphi'_l(\tau)\varphi'_k(\tau) d\tau$$

$$= \int_0^1 a(\tau)\varphi'_l(\tau)\varphi'_k(\tau) d\tau = \langle a\varphi'_l, \varphi'_k \rangle \qquad l = 0, 1, \dots, m$$

The linear system becomes

$$\sum_{l=1}^{m} a_{k,l} \gamma_l = \int_0^1 f(\tau) \varphi_k(\tau) d\tau - a_{k,0} \qquad k = 1, 2, \cdots, m$$

where

$$a_{k,l} = \int_0^1 \left[a(\tau)\varphi_l'(\tau)\varphi_k'(\tau) + b(\tau)\varphi_l(\tau)\varphi_k(\tau) \right] d\tau$$

With the help of integration by parts, and knowledge that value of integral is independent of values that integrand assumes on a finite set (at knots), we can choose basis functions that are piecewise once-differentiable.

- 4. (Choose each function φ_k so that it vanishes along most of (0,1), thereby ensuring that $\varphi_k\varphi_l=0$ for most choices of $k,l=1,2,\cdots,m$) Ideally, we want to choose $\mathring{\mathbb{H}}_m$ to be
 - (a) Dense in infinite-dimensional space inhabited by the weak solution, i.e. $||u_m u||$ is as small as possible. (spectral method) and
 - (b) Choose $\varphi_1, \dots, \varphi_m$ such that evaluating $\mathcal{O}(m^2)$ integrals to solve the linear system is as fast as possible.

To satisfy (2), we want each function φ_k to be supported on a relatively small set $\mathbb{E}_k \subset (0,1)$ and $\mathbb{E}_k \cap \mathbb{E}_l = \emptyset$ for as many k, l as possible. One example is the chapeau (hat) function

$$\varphi_k(x) = \begin{cases} 1 - k + \frac{x}{h} & (k-1)h \le x \le kh \\ 1 + k - \frac{x}{h} & kh \le x \le (k+1)h \\ 0 & |x - kh| \ge h \end{cases}$$

which reduces the number of integral evaluation from $\mathcal{O}(m^2)$ to $\mathcal{O}(m)$

Proposition. (A is positive definite)

Proof. Idea is to show A is a gram matrix (i.e. $A_{k,l} = \langle \varphi_k, \varphi_l \rangle$ where $\langle \cdot, \cdot \rangle$ is an inner product in $\mathring{\mathbb{H}}_m$). This is easy by verifying axioms of inner product. We claim that any gram matrix is symmetric positive definite. Let $\gamma \in \mathbb{R}^m$ where $\gamma \neq 0$, then

$$\langle A\gamma, \gamma \rangle = \sum_{k} \gamma_{k} (A\gamma)_{k} = \sum_{k} \gamma_{k} \sum_{l} \gamma_{l} \langle \varphi_{k}, \varphi_{l} \rangle = \left\langle \sum_{k} \gamma_{k} \varphi_{k}, \sum_{l} \gamma_{l} \varphi_{l} \right\rangle = \langle u, u \rangle > 0$$

 $u = \sum_{k} \gamma_{k} \varphi_{k} \in \mathring{\mathbb{H}}_{m} \neq 0$, so inequality follows from positive definiteness of inner product over $\mathring{\mathbb{H}}_{m}$

Definition. (Weak Solutions) Consider $\mathcal{L}u = f$ where \mathcal{L} is a differential operator. The classical solution is given by function u that satisfies the equation exactly. In constrast, we can consider $v \in \mathring{\mathbb{H}}$, an infinite-dimensional linear space, as a weak solution if the Galerkin equations are satisfied, i.e.

$$\langle \mathcal{L} \boldsymbol{v} - \boldsymbol{f}, \mathbf{w} \rangle = 0 \qquad \forall \ \mathbf{w} \in \mathring{\mathbb{H}}$$

Weak and exact solution are same for ODEs, since Lipschitz condition ensures existence of unique solution. But this is not the case for boundary value problems.

Definition. (Variational formulation of two point BVP) Given a functional $\mathcal{J}: \mathbb{H} \to \mathbb{R}$, where \mathbb{H} is some functional space. Wish to find a function $u \in \mathbb{H}$ such that

$$\mathcal{J}(u) = \min_{v \in \mathbb{H}} \mathcal{J}(v)$$

Consider a, b, and f given on (0,1) where a(x) > 1 and $b(x) \ge 1$ and any $v \in \mathbb{H}$ satisfies

$$\int_0^1 v^2(\tau)d\tau, \int_0^1 \left[v'(\tau)\right]^2 d\tau < \infty$$

We let

$$\mathcal{J}(v) = \int_0^1 \left\{ a(\tau) \left[v'(\tau) \right]^2 + b(\tau) \left[v(\tau) \right]^2 - 2f(\tau)v(\tau) \right\} d\tau \qquad v \in \mathbb{H}$$

We can show that $u \in H$ which minimizes J if and only if u is the weak solution of the differential equation given at start of the section. We call the two value boundary value problem the Euler-Lagrange equation of \mathcal{J}

Definition. (Ritz Method) Let $\mathring{\mathbb{H}} = span(\varphi_1, \dots, \varphi_m)$ and choose arbitrary $\varphi_0 \in \mathbb{H}$. Therefore $\mathring{\mathbb{H}}$ is a m-dimensional linear space. We seek a minimum of \mathcal{J} in the affine space $\varphi_0 + \mathring{\mathbb{H}}$. In other word, we seem vector $\boldsymbol{\gamma}$ that minimizes

$$\mathcal{J}_m(oldsymbol{\delta}) = \mathcal{J}\left(arphi_0 + \sum_{l=1}^m \delta_l arphi_l
ight) \qquad oldsymbol{\delta} \in \mathbb{R}^m$$

To find the minimum of sJ, We let gradient of \mathcal{J}_m be zero,

$$\frac{1}{2} \frac{\partial \mathcal{J}(\boldsymbol{\delta})}{\delta_k} = \sum_{l=1}^m \int_0^1 \left(a\varphi_l' \varphi_k' + b\varphi_l \varphi_k \right) d\tau + \int_0^1 \left(a\varphi_0' \varphi_k' + b\varphi_0 \varphi_k \right) d\tau - \int_0^1 f \varphi_k d\tau$$

Note letting $\partial \mathcal{J}_m/\partial \delta_k$ for $k=1,2,\cdots,m$ recovers the Galerkin equations! We can also show that the hessian matrix $(\partial^2 \mathcal{J}_m/\partial \partial \delta_k \partial \delta_j)_{k,j=1}^m$ be nonnegative definite. Although we get the same system of equations, we are able to ignore natural boundary conditions.

Definition. (Ritz-Galerkin method)

- 1. Approximate solution in finite dimensional space $\varphi_0 + \mathring{\mathbb{H}}_m \subset \mathbb{H}$
- 2. Retain only essential boundary conditions
- 3. Choose the approximate so that the defect is orthogonal to $\mathring{\mathbb{H}}_m$, or alternatively, so that a variational problem is minimized in $\mathring{\mathbb{H}}_m$
- 4. Integrate by parts to depress the maximal extent possible the differentiability requirements of the space $\mathring{\mathbb{H}}_m$
- 5. Choose each function in a basis of $\mathring{\mathbb{H}}_m$ in such a way that it vanishes along much of the spatial domain of interest, thereby ensuring that the intersectino between the supports of most of the basis function is empty

1.2 Synopsis of FEM theory

Definition. (problem setup) Given boundary value problem

$$\mathcal{L}u = f$$
 $\mathbf{x} \in \Omega$

where $u = u(\mathbf{x})$ and $f = f(\mathbf{x})$ is bounded and $\Omega \subset \mathbb{R}^d$ is an open, bounded, connected set with sufficiently smooth boundary. \mathcal{L} is a linear differentiable operator

$$\mathcal{L} = \sum_{|\alpha| < 2\nu} c_{\alpha}(\boldsymbol{x}) D^{\alpha}$$

Definition. (Properties of linear differential operator) Given a linear differentiable linear operator \mathcal{L} and a bilinear form $\tilde{a}(\cdot,\cdot)$ such that $\tilde{a}(v,w) = \langle \mathcal{L}v,w \rangle$ for sufficiently smooth v and w. Then \mathcal{L} is

- 1. (self-adjoint) if $\tilde{a}(v,w) = \tilde{a}(w,v)$ for all $v,w \in \mathring{\mathbb{H}}$
- 2. (elliptic) if $\tilde{a}(v,v) > 0$ for all $v \in \mathbb{H} \neq 0$
- 3. (positive definite) if it is self-adjoint and elliptic

As an example, the following is a positive definite operator (genearlization of 2-point BVP in 9.1 and negative of Laplace operator $-\nabla^2$)

$$\mathcal{L} = -\sum_{i=1}^{d} \frac{\partial}{\partial x_i} \sum_{j=1}^{d} b_{i,j}(\boldsymbol{x}) \frac{\partial}{\partial x_j}$$

where $(b_{i,j}(\mathbf{x}))$ is symmetric positive definite for all $\mathbf{x} \in \Omega$

Theorem. (Variational formulation of linear differentiable operator) Provided that the operator \mathcal{L} is positive definite. $\mathcal{L}u = f$ is the Euler-Lagrange equation of the variational problem

$$\mathcal{J}(v) = \tilde{a}(v, v) - 2\langle f, v \rangle \qquad v \in \mathbb{H}$$

The weak solution of $\mathcal{L}u = f$ is therefore, the **unique** minimum of \mathcal{J} in \mathbb{H} (up to Lebesque zero)

Definition. (Methods for solving $\mathcal{L}u = f$) Choose $\varphi_0 \in \mathbb{H}$ and let $\varphi_1, \dots, \varphi_m$ span $\mathring{\mathbb{H}}_m$.

1. (Ritz method for $\mathcal{L}u = f$) Seek $\gamma \in \mathbb{R}^m$ that will minimize

$$\mathcal{J}_m(\boldsymbol{\delta}) = \mathcal{J}(arphi_0 + \sum_{l=1}^m \delta_l arphi_l) \qquad \boldsymbol{\delta} \in \mathbb{R}^m$$

Setting $\partial \mathcal{J}_m/\partial \delta_l$ to zero for $l=1,\cdots,m$ results in a linear system,

$$a_{k,l} = \tilde{a}(\varphi_k, \varphi_l)$$

2. (Galerkin method) Seek $\gamma \in \mathbb{R}^m$ that will satisfy

$$\tilde{a}\left(\varphi_0 + \sum_{l=1}^m \gamma_l \varphi_l, \varphi_k\right) - \langle f, \varphi_k \rangle = 0 \qquad k = 1, 2, \dots, m$$

Definition. (Special case of Sobolev norm) Given any $v \in \mathbb{H}$, let

$$||v||_H = (||v||^2 + [\tilde{a}(v,v)]^{1/2})$$

be a norm in \mathbb{H} . \tilde{a} is

- 1. (bounded) if there exists $\delta > 0$ such that $|\tilde{a}(v, w)| \leq \delta ||v||_H ||w||_H$ for all $v, w \in H$
- 2. (coercive) if there exists $\kappa > 0$ such that $\tilde{a}(v,v) \geq \kappa \|v\|_H^2$ for every $v \in \mathbb{H}$

Theorem. (Lax-Milgram theorem) Let \mathcal{L} be linear, bounded, and coercive and let \mathbb{V} be a closed linear subspace of $\mathring{\mathbb{H}}$. There exists a unique $\tilde{u} \in \varphi_0 + \mathbb{V}$ such that

$$\tilde{a}(\tilde{u}, v) - \langle f, v \rangle = 0 \qquad v \in \mathbb{V}$$

and the error is bounded

$$\|\tilde{u} - u\|_H \le \frac{\delta}{\kappa} \inf \{ \|v - u\|_H \mid v \in \varphi_0 + \mathbb{V} \}$$

where $\varphi_0 \in \mathbb{H}$ is arbitrary and u is a weak solution of $\mathcal{L}u = f$ in \mathbb{H}

- 1. (observation) constant δ/κ is independent of choice of finite dimensional \mathbb{H} or of the norm $\|\cdot\|$
- 2. (observation) although the infimum on right hand side is unknown (since u is not known), the distance of u to $\varphi_0 + \mathring{\mathbb{H}}_m$ can be bounded in terms of distance of an arbitrary member $w \in \varphi_0 + \mathring{\mathbb{H}}$ from $\varphi_0 + \mathring{\mathbb{H}}_m$
- 3. (remark) error estimation in Galerkin method can be replaced by an appoximation problem: given a function $w \in \mathring{\mathbb{H}}$ find the distance $\inf_{v \in \mathring{\mathbb{H}}_m} \|w v\|_H$
- 2 Spectral Method
- 3 Gaussian elimination for sparse linear equations
- 4 Classical iterative methods for sparse linear equations
- 5 Multigrid techniques
- 6 Conjugate Gradient