LL(1) Parser

Linear algorithm

LL(k)

- L = left (sequence is read from left to right)
- L = left (use leftmost derivation)
- Prediction of length k

LL(k) Principle

- In any moment of parsing, <u>acţion</u> <u>is uniquely determinde</u> by:
- Closed part (a₁...a_i)
- Current symbol A
- Prediction a_{i+1}...a_{i+k} (length k)

FIRST_k

- \approx first k terminal symbols that can be generated from α
- Definition:

$$FIRST_k: (N \cup \Sigma)^* \to \mathcal{P}(\Sigma^k)$$

$$FIRST_k(\alpha) = \{u | u \in \Sigma^k, \alpha \stackrel{*}{\Rightarrow} ux, |u| = k \text{ sau } \alpha \stackrel{*}{\Rightarrow} u, |u| \leq k\}$$

Definition

• A cfg is LL(k) if for any 2 leftmost derivation we have:

1.
$$S \stackrel{*}{\Rightarrow}_{st} wA\alpha \Rightarrow_{st} w\beta\alpha \stackrel{*}{\Rightarrow}_{st} wx;$$

2.
$$S \stackrel{*}{\Rightarrow}_{st} wA\alpha \Rightarrow_{st} w\gamma\alpha \stackrel{*}{\Rightarrow}_{st} wy;$$

such that
$$FIRST_k(x) = FIRST_k(y)$$
 then $\beta = \gamma$.

Theorem

The necessary and sufficient condition for a grammar to be LL (k) is that for any pair of distinct productions of a nonterminal $(A \rightarrow \beta, \beta + \gamma)$ the condition holds:

$$FIRST_k(\beta\alpha) \cap FIRST_k(\gamma\alpha) = \Phi, \forall \alpha \text{ such that } S \stackrel{*}{=} > uA\alpha$$

FOLLOW

➤ FOLLOW_k(A)≈ next k symbols generated after/ following A A

$$FOLLOW: (N \cup \Sigma)^* \to \mathcal{P}(\Sigma)$$

$$FOLLOW(\beta) = \{ w \in \Sigma | S \stackrel{*}{\Rightarrow} \alpha\beta\gamma, w \in FIRST(\gamma) \}$$

LL(1) Parser

Prediction of length 1

- Steps:
 - construct FIRST, FOLLOW
 - 2) Construct LL(1) parse table
 - 3) Analyse sequence based on moves between configurations

Theorem: A grammar is LL(1) if and only if for any nonterminal A with productions A $\rightarrow \alpha_1 | \alpha_2 | ... | \alpha_n$, FIRST(α_i) \cap FIRST(α_j) = \emptyset and if $\alpha_i \Rightarrow \varepsilon$, FIRST(α_i) \cap FOLLOW(A)= \emptyset , $\forall i,j = 1,n,i \neq j$

Executed 1 time

Construct FIRST

- ➤ FIRST₁ denoted FIRST
- > Remarks:
 - If L_1, L_2 are 2 languages over alphabet Σ , then : $L_1 \oplus L_2 = \{w|x \in L_1, y \in L_2, xy = w, |w| \le 1 \text{ sau } xy = wz, |w| = 1\}$ and
 - $FIRST(\alpha\beta) = FIRST(\alpha) \oplus FIRST(\beta)$ $FIRST(X_1 ... X_n) = FIRST(X_1) \oplus ... \oplus FIRST(X_n)$

Algoritmul 3.3 FIRST

```
INPUT: G
OUTPUT: FIRS T(X), \forall X \in N \cup \Sigma
for \forall a \in \Sigma do
   F_i(a) = \{a\}, \forall i \geq 0
end for
i := 0;
F_0(A) = \{x | x \in \Sigma, A \to x\alpha \text{ sau } A \to x \in P\}; \{\text{initializare}\}
repeat
   i := i+1:
   for \forall X \in N do
       if F_{i-1} au fost calculate \forall X \in N \cup \Sigma then
           \{dacă \exists Y_j, F_{i-1}(Y_j) = \emptyset \text{ atunci nu se poate aplica}\}
          F_i(A) = F_{i-1}(A) \cup
           \{x|A \to Y_1 \dots Y_n \in P, x \in F_{i-1}(Y_1) \oplus \dots \oplus F_{i-1}(Y_n)\}
       end if
   end for
until F_{i-1}(A) = F_i(A)
FIRS T(X) := F_i(X), \forall X \in N \cup \Sigma
```

Algoritmul 3.4 FOLLOW

```
INPUT: G, FIRST(X), \forall X \in N \cup \Sigma
OUTPUT: FOLLOW(X), \forall X \in N \cup \Sigma
F(X) = \emptyset, \forall X \in N - \{S\}; \{initializare\}
F(S) = \{\epsilon\}; {corespunzător simbolului $ folosit în analiză}
repeat
  for B \in N do
     for A \to \alpha By \in P do
        if \epsilon \in FIRST(y) then
           F'(B) = F(B) \cup F(A);
         else
           F'(B) = F(B) \cup FIRST(y)
        end if
      end for
   end for
until F'(X) = F(X), \forall X \in N
FOLLOW(X) = F(X), \forall X \in N.
```

Correction:

In order for the algorithm to function correctly, consider:

For $\forall a \in FIRST(y)$ do

Step 2: Construct LL(1) parse table

- Possible action depend on:
 - Current symbol $\in \mathbb{N} \cup \Sigma$
 - Possible prediction $\in \Sigma$
- Add a special character "\$" (∉ N∪Σ) marking for "empty stack"

= > table:

- One line for each symbol $\in \mathbb{N} \cup \Sigma \cup \{\$\}$
- One column for each symbol $\in \Sigma \cup \{\$\}$

Rules LL(1) table

- 1. $M(A,a)=(\alpha,i), \forall a\in FIRST(\alpha), a\neq \epsilon, A\to \alpha$ production in P with number i $M(A,b)=(\alpha,i), \quad \text{if} \quad \epsilon\in FIRST(\alpha), \forall b\in FOLLOW(A), A\to \alpha$ production in P with number i
- 2. $M(a, a) = pop, \forall a \in \Sigma;$
- 3. M(\$,\$) = acc;
- 4. M(x,a)=err (error) otherwise

Remark

A grammar is LL(1) if the LL(1) parse table does NOT contain conflicts – there exists at most one value in each cell of the table M(A,a)

Step 3: Definire configurations and moves

• INPUT:

- Language grammar $G = (N, \Sigma, P,S)$
- LL(1) parse table
- Sequence to be parsed $w = a_1 ... a_n$

• OUTPUT:

```
If (w ∈L(G)) then string of productions
else error & location of error
```

LL(1) configurations

 (α, β, π)

where:

- α = input stack
- β = working stack
- π = output (result)

Initial configuration: $(w\$, S\$, \varepsilon)$

Final configuration: $(\$,\$,\pi)$

Moves

1. Push – put in stack

$$(ux, A\alpha\$, \pi) \vdash (ux, \beta\alpha\$, \pi i), \quad \text{if} \quad M(A, u) = (\beta, i);$$
 (pop A and push symbols of β)

2. Pop – take off from stack (from both stacks)

$$(ux, a\alpha\$, \pi) \vdash (x, \alpha\$, \pi), \text{ if } M(a,u) = pop$$

3. Accept

$$(\$,\$,\pi) \vdash acc$$

4. Error - otherwise

Algorithm LL(1) parse

• <u>here</u>