Algorithm Engineering – Exercise 5 or "What could have gone wrong?"

Team 2: Denis Koshelev, Julian Fechner, Julio Cesar Perez Duran

Presentation, February 15

Koshelev, Fechner, Duran 1 / 23

Overview

In this presentation we will talk about:

- 1. Final solver architecture
- 2. Implemented features
 - ► Branch and reduce algorithm
 - Maximum Clique solver
 - Reduction rules
- 3. Autoconfiguration tool
- 4. Bottlenecks and optimization
- 5. Final comparison
- 6. Statistics

Koshelev, Fechner, Duran 1. Overview 2 / 23

Final solver architecture

Koshelev, Fechner, Duran 2. Final solver architecture 3 / 23

Implemented features

- ▶ Branch and reduce algorithm with two constraints
- ► Maximum Clique Solver intergration
- Reduction rules:
 - ► LP Reduction via Maximum Flow
 - Degree-Three-Independent-Set Rule
 - ► Twin Rule

Comparison of raw branching algorithms

Maximum Clique Reduction

Maximum Clique \leq_p Minimum Vertex Cover

Maximum Clique in G

Minimum Vertex Cover in \bar{G}

MoMC Algorithm

For solving Maximum Clique Problem we used **MoMC algorithm** [Li, Jiang, Manyà; 2017] inspired by the winner of the PACE Challenge for Vertex Cover. It combines:

- ► Branch-And-Bound Algorithm
- MaxSAT reasoning
- Dynamic and static strategies of reducing

Highlights:

- ▶ It works really well on medium-sized instance but not on the social-networks.
- It wasn't included in the final submission.

Solver with intergrated MoMC

Reduction Rules

We have implemented the following reduction rules:

- ► LP Reduction via Flow
- ► Twin Rule
- Independent Rule

LP Reduction via Flow

We implemented not optimized version of the flow reduction using **Tarjan's Algorithm** for finding strongly connected components.

Data structured used both for FlowGraph and ResidualGraph:

- ► Adjacency map with vertices and corresponding edges
- ► Hash set of all edges

Let $u,v\in V$ where N(u)=N(v) and |N(u)|=3.

Case 1: G[N(U)] has edges

Koshelev, Fechner, Duran 3.3 Reduction Rules 11 / 23

Let $u, v \in V$ where N(u) = N(v) and |N(u)| = 3.

Case 2: G[N(U)] has no edges

Koshelev, Fechner, Duran 3.3 Reduction Rules 12 / 23

Independent Rule

As described in the lecture:

Let $v \in V$ with $N(v) = \{a, b, c\}$ and N(v) is an Independent Set.

We can remove v and add following edges:

$$\{\{a,b\},\{b,c\}\} \cup \{\{a,x\}|x \in N(b)\} \cup \{\{b,x\}|x \in N(c)\} \cup \{\{c,x\}|x \in N(a)\}$$

Reduction Rules

Comparison of recursive steps for specific graph instances.

Koshelev, Fechner, Duran 3.3 Reduction Rules 14 / 23

Autoconfiguration tool

SMAC = **S**equential **M**odel **A**lgorithm **C**onfiguration

Problems and Challenges:

- How to choose useful timeouts?
- ► How to choose training dataset?
- ► How many parameters to optimize?
- How can we compare results from multiple testruns?

Koshelev, Fechner, Duran 3.4 Autoconfiguration tool 15 / 23

Autoconfiguration tool

First Experiment:

- cutoff-time = 300sec
- ightharpoonup max-runtime = 24h
- custom training dataset
- all possible parameters

Second Experiment:

- ► cutoff-time = 150sec
- ▶ max-runtime = 24h
- custom training dataset
- depth parameters only

Autoconfiguration tool

And how did the optimized parameters perform?

Koshelev, Fechner, Duran 3.4 Autoconfiguration tool 17 / 23

Bottlenecks and optimization

- Complement graph for Clique Bound
- ► Graph constructor for components
- ► Domination Rule

Bottlenecks and optimization

Remaining Bottlenecks

We discovered following bottleneck in our current implementation using VisualVM Profiler:

- 1. Updating bipartite graph for LP Bound
- 2. Unconfined Rule
- 3. Old LP Reduction

Koshelev, Fechner, Duran 3.5 Bottlenecks and optimization 20 / 23

Comparison of all solvers

Koshelev, Fechner, Duran 4.1 Final comparison 21 / 23

Statistics

During this course we:

- Made 536 commits
- Created 33 branches
- ► Run pipeline 226 times
- ► Had 12 sleepless nights (3 submissions * 4 exercises)
- Had a lot of joy engineering algorithms

22 / 23 Koshelev, Fechner, Duran 5.1 Statistics

Thank you for your attention! Questions or Feedback?