

HURTOWNIE DANYCH

Lista 3 – Podstawy SQL: funkcje grupujące i okienkowe

ALEKSANDER STEPANIUK

NR. INDEKSU: 272644 Politechnika Wrocławska, Informatyka Stosowana

Rozwiązania:

Zadanie 1.

1. Kolejno: Rollup, Cube, Grouping sets


```
SELECT
    COALESCE(CAST(DATEPART(YEAR, OrderDate) AS VARCHAR), '') as "Year",
    SUM(TotalDue) as "Total"
FROM Sales.SalesOrderHeader SOH
    JOIN Sales.Customer C ON SOH.CustomerID = C.CustomerID
    JOIN Person.Person P ON C.PersonID = P.BusinessEntityID
GROUP BY ROLLUP((FirstName, LastName), YEAR(OrderDate)),
         ROLLUP((YEAR(OrderDate)))
ORDER BY "Customer", "Year";
SELECT
    COALESCE(CONCAT(FirstName, ' ', LastName), '') as "Customer",
    COALESCE(CAST(DATEPART(YEAR, OrderDate) AS VARCHAR), '') as "Year",
    SUM(TotalDue) as "Total"
FROM Sales.SalesOrderHeader SOH
    JOIN Sales.Customer C ON SOH.CustomerID = C.CustomerID
    JOIN Person.Person P ON C.PersonID = P.BusinessEntityID
GROUP BY CUBE((FirstName, LastName), YEAR(OrderDate))
ORDER BY "Customer", "Year";
SELECT
    COALESCE(CAST(DATEPART(YEAR, OrderDate) AS VARCHAR), '') as "Year",
    SUM(TotalDue) as "Total"
FROM Sales.SalesOrderHeader SOH
         JOIN Sales.Customer C ON SOH.CustomerID = C.CustomerID
         JOIN Person.Person P ON C.PersonID = P.BusinessEntityID
GROUP BY GROUPING SETS ((Year(OrderDate), CONCAT(FirstName, ' ', LastName)),
                        (Year(OrderDate)), (CONCAT(FirstName, ' ', LastName)), ())
```

2. Przygotować zestawienie przedstawiające łączną kwotę zniżek z podziałem na kategorie...

100 % ▼ ■ Results ■ Messages					
	<u> </u>	Product	Year	Discount	
1	Category Accessories	All-Purpose Bike Stand	2013	0,00	
· ·		All-Purpose Bike Stand	2013	0.00	
3	Accessories	All-Purpose Bike Stand	2014	0.00	
	Accessories Accessories	Bike Wash - Dissolver	2013		
4				83,88	
5	Accessories	Bike Wash - Dissolver	2014	27,72	
6	Accessories	Bike Wash - Dissolver	0040	111,60	
7	Accessories	Cable Lock	2012	20,30	
8	Accessories	Cable Lock	2013	3,48	
9	Accessories	Cable Lock		23,78	
10	Accessories	Fender Set - Mountain	2013	0,00	
11	Accessories	Fender Set - Mountain	2014	0,00	
12	Accessories	Fender Set - Mountain		0.00	
13	Accessories	Hitch Rack - 4-Bike	2013	1950,44	
14	Accessories	Hitch Rack - 4-Bike	2014	390,60	
15	Accessories	Hitch Rack - 4-Bike		2341,04	
16	Accessories	HL Mountain Tire	2013	0.00	
17	Accessories	HL Mountain Tire	2014	0.00	
18	Accessories	HL Mountain Tire		0.00	
19	Accessories	HL Road Tire	2013	0,00	
20	Accessories	HL Road Tire	2014	0.00	
21	Accessories	HL Road Tire		0.00	
22	Accessories	Hydration Pack - 70 oz.	2013	390,08	
23	Accessories	Hydration Pack - 70 oz.	2014	113,26	
24	Accessories	Hydration Pack - 70 oz.		503,35	
25	Accessories	LL Mountain Tire	2013	0,00	
26	Accessories	LL Mountain Tire	2014	0,00	
27	Accessories	LL Mountain Tire		0,00	
28	Accessories	LL Road Tire	2013	0,00	
20	Accessories	LL Road Tire	2014	0.00	
Accessories LL Road Tire 2014 0.00 Query executed successfully.					

SELECT COALESCE(PC.Name, '') as "Category", COALESCE(P.Name, '') as "Product", COALESCE(CAST(DATEPART(YEAR, OrderDate) AS VARCHAR), '') as "Year", ROUND(SUM(SOD.OrderQty * SOD.UnitPrice * SOD.UnitPriceDiscount), 2) as "Discount" FROM Sales.SalesOrderDetail SOD JOIN Production.Product P ON SOD.ProductID = P.ProductID JOIN Production.ProductSubcategory PSC ON P.ProductSubcategoryID = PSC.ProductSubcategoryID JOIN Production.ProductCategory PC ON PSC.ProductCategoryID = PC.ProductCategoryID JOIN Sales.SalesOrderHeader SOH ON SOD.SalesOrderID = SOH.SalesOrderID GROUP BY GROUPING SETS ((PC.Name, P.Name, YEAR(OrderDate)), (PC.Name, P.Name), (PC.Name), ())

Zad2.

- 1. Dla kategorii 'Bikes' przygotuj zestawienie prezentujące procentowy udział kwot...
- a) Bikes

b) Components

c) Clothing

d) Accessories


```
WITH BikesSales AS (

SELECT

YEAR(SOH.OrderDate) AS Rok,
SUM($SOL.LineTotal) AS SalesAmount

FROM Sales.SalesOrderHeader SOH

JOIN Sales.SalesOrderDetail SOD ON SOH.SalesOrderID = SOD.SalesOrderID

JOIN Production.Product P ON SOD.ProductID = P.ProductID

JOIN Production.ProductSubcategory PS ON P.ProductSubcategoryID = PS.ProductSubcategoryID

JOIN Production.ProductCategory PC ON PS.ProductCategoryID = PC.ProductCategoryID

WHERE PC.Name = 'Bikes'

GROUP BY YEAR(SOH.OrderDate)

)

SELECT Nazwa, Rok, Procent

FROM (

SELECT

'Bikes' AS Nazwa,
CAST(Rok AS VARCHAR(4)) AS Rok,
CAST(Rok AS VARCHAR(4)) AS Rok,
CAST(ROUND(100.0 * SalesAmount / SUM(SalesAmount)) DVER (), 2) AS DECIMAL(5,2)) AS Procent,
Rok AS SortOrder

FROM BikesSales

UNION ALL

SELECT

'' AS Nazwa,
'' AS Rok,
CAST(100.00 AS DECIMAL(5,2)) AS Procent,
9999 AS SortOrder

) AS T

ORDER BY SortOrder;
```

2. Przygotuj zestawienie dla sprzedawców z podziałem na lata i miesiące prezentujące liczbę obsłużonych przez nich zamówień w ciągu roku, narastająco, sumarycznie w poprzecnim i obecnym miesiącu. (Wykorzystaj funkcje okna)

Query executed successfully.

```
COUNT(SOH.SalesOrderID) AS Orders
```

3. Przygotuj ranking klientów w zależności od liczby zakupionych produktów. Porównaj rozwiązania uzyskane przez funkcje rank i dense_rank...

100 %	100 % 🔻						
⊞ F	⊞ Results						
	FirstName	LastName	Products	DenseRank	Rank		
1	Reuben	D'sa	2737	1	1		
2	Kevin	Liu	2554	2	2		
3	Marcia	Sultan	2350	3	3		
4	Holly	Dickson	2313	4	4		
5	Mandy	Vance	2129	5	5		
6	Richard	Lum	2076	6	6		
7	Della	Demott Jr	1963	7	7		
8	Sandra	Maynard	1951	8	8		
9	Anton	Kirilov	1946	9	9		
10	Ryan	Calafato	1931	10	10		
11	John	Evans	1887	11	11		
12	Yale	Li	1843	12	12		
13	Helen	Dennis	1784	13	13		
14	Margaret	Vanderkamp	1782	14	14		
15	Lola	McCarthy	1776	15	15		
16	Robert	Vessa	1736	16	16		
17	Joseph	Castellucio	1708	17	17		
18	Donna	Carreras	1695	18	18		
19	Kirk	DeGrasse	1688	19	19		

```
WITH CustomersProducts AS (

SELECT

P.FirstName,
P.LastName,
SUM(SOD.OrderQty) AS Products

FROM Sales.SalesOrderDetail SOD

JOIN Sales.SalesOrderHeader SOH ON SOD.SalesOrderID = SOH.SalesOrderID

JOIN Sales.Customer C ON SOH.CustomerID = C.CustomerID

JOIN Person.Person P ON C.PersonID = P.BusinessEntityID

GROUP BY P.FirstName, P.LastName
)

SELECT

FirstName,
LastName,
Products,
DENSE_RANK() OVER (ORDER BY Products DESC) AS DenseRank,
RANK() OVER (ORDER BY Products DESC) AS Rank

FROM CustomersProducts

ORDER BY Products DESC;
```

4. Przygotuj ranking produktów w zależności od średniej liczby sprzedanych sztuk. Wyróżnij 3 (prawie równoliczne) grupy produktów...

III R	esults 🖺 Messages		
	Product	AvgSold	ranking
1	Full-Finger Gloves, L	9	najlepiej
2	Full-Finger Gloves, M	6	najlepiej
3	Classic Vest, S	6	najlepiej
4	ML Headset	5	najlepiej
5	Mountain Bike Socks, M	5	najlepiej
6	Women's Mountain Shorts, S	5	najlepiej
7	Women's Tights, L	4	najlepiej
8	Women's Mountain Shorts, L	4	najlepiej
9	Women's Tights, S	4	najlepiej
10	Racing Socks, L	4	najlepiej
11	Short-Sleeve Classic Jersey, XL	4	najlepiej
12	Men's Sports Shorts, M	4	najlepiej
13	Minipump	4	najlepiej
14	Long-Sleeve Logo Jersey, L	4	najlepiej
15	Men's Bib-Shorts, M	4	najlepiej
16	Classic Vest, M	4	najlepiej

```
WITH ProductsSales AS (
    SELECT
        P.Name AS Product,
        AVG(SOD.OrderQty) AS AvgSold
    FROM Sales.SalesOrderDetail SOD
        JOIN Production.Product P ON SOD.ProductID = P.ProductID
    GROUP BY P.Name
SELECT
    AvgSold,
    CASE NTILE(3) OVER (ORDER BY AvgSold DESC)
    WHEN 1 THEN 'najlepiej'
        WHEN 2 THEN 'srednio'
        ELSE 'najslabiej'
END ranking
FROM ProductsSales
ORDER BY AvgSold DESC;
```

Zad3.

Ocena jakości danych (profilowanie danych) zostało wykonanie w jęzuku Python za pomocą bibliotek pandas i ydata profiling.

```
import pandas as pd
from ydata_profiling import ProfileReport

data = pd.read_csv('dane_lista3.csv')

# data frame info
print("Info o DataFrame:")
print(data.info())
# statystyki opisowe
print("\nStatystyki opisowe (wszystkie kolumny):")
print(data.describe(include='all'))

# liczba wystapień error i unknown
print("\nLiczba wystapień 'ERROR' i 'UNKNOWN' w każdej kolumnie:")
print(data.isin(['ERROR', 'UNKNOWN']).sum())

# liczba brakujących wartości
print("\nLiczba brakujących wartości:")
print(data.isnull().sum())

profile = ProfileReport(data, title="Raport profilu danych - dane_lista3.csv", explorative=True)
profile.to_file("raport_danych.html")

print("\nraport został zapisany do pliku 'raport_danych.html'")
```

Wszystkie rekordy mają id transakcji, ale tylko blisko 2/3 posiada dane w kolumnie Location.

```
RangeIndex: 10002 entries, 0 to 10001
Data columns (total 8 columns):
    Column
                     Non-Null Count
                                     Dtype
    Transaction ID
                     10002 non-null object
                     9669 non-null
                                     object
    Item
2
    Quantity
                     9864 non-null object
3
    Price Per Unit 9823 non-null object
4
    Total Spent
                     9829 non-null
                                    object
    Payment Method 7423 non-null object
                     6737 non-null
    Location
                                    object
    Transaction Date 9842 non-null
                                     object
dtypes: object(8)
memory usage: 625.3+ KB
```

Ilość wystąpień słów 'Error' i 'Unknown' w różnych kolumnach wydaje się być zbliżona (około 300-600 rekordów na 10002 czyli jakieś 3%-6%) , tylko kolumna ID nie posiada takich rekordów.

Liczba wystąpień	'ERROR'	i	'UNKNOWN'	W	każdej	kolumnie:
Transaction ID	0					
Item	636					
Quantity	341					
Price Per Unit	354					
Total Spent	329					
Payment Method	599					
Location	696					
Transaction Date	301					1.00
dtype: int64						

Najwięcej brakujących wartości (pustych pól) widać w kolumnach metody płatności i lokalizacji. Jest ich tam o cały rząd wielkości więcej niż w pozostałych kolumnach.

Liczba brakujących	wartości:
Transaction ID	0
Item	333
Quantity	138
Price Per Unit	179
Total Spent	173
Payment Method	2579
Location	3265
Transaction Date	160
dtype: int64	

Wygenerowany raport za pomocą ydata profiling:

Raport profilu danych - dane_lista3.csv Overview Variables Correlations Missing values Sample Duplicate rows

Overview

Możemy na tej stronie html interaktywnie przeglądać nasze dane, tu kilka najważniejszych wykresów:

ID:

Widać że ID nie jest unikalne, i niektóre pojedyncze rekordy występują więcej niż jeden raz. Kolumna Item:

Common Values		
Value	Count	Frequency (%)
Juice	1171	11.7%
Coffee	1164	11.6%
Salad	1148	11.5%
Cake	1141	11.4%
Sandwich	1131	11.3%
Smoothie	1096	11.0%
Cookie	1092	10.9%
Tea	1089	10.9%
UNKNOWN	344	3.4%
ERROR	292	2.9%
(Missing)	333	3.3%

Widać że ilość produktów jest podobna w poszczególnych kategoriach, z wyjątkiem brakujących danych, które to kategorią nie są, ale widać że jest to łącznie około 1000 rekordów (~10%), które nie mają podanej wartości w 'Item'.

Kolumna Quantity:

Widać, że ilość oscyluje w granicach 1-5, pojedyncze wartości -2 i 100 które prawdopodobnie zostały wprowadzone do danych ręcznie lub są wynikiem błędu, więc można je kategoryzować razem z resztą błędów.

Kolumna Price per Unit:

Widać że jest prawie dwa razy więcej wartości 3.0 i 4.0 niż pozostałych wartości takich jak 2.0, 5.0, 1.0, 1.5. Pozostałe wartości typu ERROR, UNKNOWN i (Missing) czyli puste pole stanowią zdecydowaną mniejszość.

Kolumna Payment method:

Widać że większość danych to Digital Wallet, Credit Card lub Cash, jest też standardowo trochę pustych rekordów z wartościami ERROR lub UNKNOWN ale również pojedyncze literówki w Digital Walle (brakujące 't' na końcu) oraz CreditCard pisane razem. Widać też że ponad 25% rekordów jest brakujących (puste pola)

Mapa korelacji:

Correlations

Widać największą korelację pomiędzy Price per unit, a Item oraz Total Spent i polami Item, Price Per Unit, Quantity. Reszta pól jest bez żadnej korelacji.

Duplikaty:

Duplicate rows

Widać także że jeden rekord występuje aż 3 razy w dokłanie tej samej formie.

Wnioski:

Wykorzystanie funkcji grupujących (rollup, cube, grouping sets) okazało się przydatne do uzyskania dodatkowych informacji o danych, takich jak sumy całkowite, sumy częściowe czy rankingu i podsumowania na różnych poziomach szczegółów w relatywnie prosty sposób. Wyniki takiego zapytania są właściwie gotowe do użycia w raportach i analizach.

Największe zniżki dotyczą produktów z kategorii 'Bikes'. Łączna kwota zniżek dla tej kategorii wynosi ponad 0,5 miliona. Widać, że niektóre produkty nigdy nie potrzebowały zniżki, co może sugerować ich wysoką jakość lub popularność wśród klientów. Inne produkty były przeceniane tylko w niektórych latach lub miesiącach, co może być związane z sezonowością sprzedaży lub innymi czynnikami rynkowymi.

Najwięcej zniżek zostało udzielonych w 2012 i 2013 roku (około 200tys w 2012 i 300tys w 2013) - może to sugerować, że w tych latach sklep dynamicznie się rozwijał i wprowadzał nowe promocje, aby przyciągnąć klientów (pik w sprzedaży 2013 rok). We wszystkich kategoriach widać, że najwięcej promocji zostało nałożone w 2013 roku, jednak dla rowerów i komponentów 2012 rok jest podobnie obfity w zniżki, co sugeruje, że sklep najpierw nakładał zniżki na rowery i komponenty a z czasem, rozszerzył to również o pozostałe kategorie.

Najlepszym pracownikiem był Jillian Carson, który w ciągu 2013 roku obsłużył 185 transakcji (w każdym miesiącu regularnie radził sobie dobrze, najgorszym był Amy Alberts, który obsłużył zaledwie 3 transakcje.

Najlepszym klientem był Reuben D'Sa który zakupił aż 2737 produktów. Najgorszych klientów było ponad 3500, czyli tych, którzy kupili tylko jeden produkt.

Najlepszym produktem był Full-Finger Gloves L (9 sztuk średnio sprzedanych). Na drugim miejscu ten sam produkt w rozmiarze M.

Pandas Profiling jest doskonałym narzędziem, aby automatycznie wygenerować ciekawe statystyki dotyczące zbioru danych. Udało się z łatwością zobaczyć ile jest unikalnych wartości, brakujących rekordów i inne ciekawe statystyki.