פתרון ממ"ן 11

שאלה 1

לכל אחת מהטענות הבאות קבעו אם היא נכונה או לא.

בשאלה זו בלבד אין צורך לנמק, די לרשום בכל סעיף נכון / לא נכון.

- $\emptyset \subseteq \{1,\{2\}\}$.7 $\{2,3\} \subseteq \{1,\{2,3\}\}$.3 $\{2\} \in \{\{1\},\{2\}\}$.2 $\{1,\{2\}\}\}$.8
- $\{1,\{2\}\} \cap \mathcal{P}(\{1,2\}) \neq \varnothing \text{ .n } |\{1,\mathbf{N}\}| = |\{1,\varnothing\}| \text{ .t } \{1,2\} \subseteq \{\mathbf{N}\} \text{ .t } \{\varnothing\} \subseteq \{\{1\}\} \text{ .n}$

תשובה

- $\{1\}$ ו- $\{1\}$ הם $\{1\},\{2\}$ הם ו- $\{2\}$ ו- $\{2\}$ א. לא נכון מפני האיברים היחידים של הקבוצה
 - ב. נכון, לפי מה שהסברנו בסעיף א.
 - $2 \notin \{1, \{2,3\}\}$ אבל $2 \in \{2,3\}$ ג. לא נכון מפני שלמשל
 - ד. נכון, הקבוצה הריקה חלקית לכל קבוצה.
 - $\varnothing \notin \{\{1\}\}$ אבל $\varnothing \in \{\varnothing\}$ ה. לא נכון מפני ש
- (N הוא $\{N\}$ שימו לב: האיבר היחיד של $\{1,2\}$ הוא $\{1,2\}$ הוא לא נכון מפני שלמשל וו. לא נכון מפני שלמשל
 - ז. נכון, כי לכל אחת משתי הקבוצות יש בדיוק שני איברים.
 - $\{2\} \in \mathcal{P}(\{1,2\})$ וגם $\{2\} \in \{1,\{2\}\}$ ח. נכון מפני ש-

שאלה 2

: הבאות הטענות הריחו את קבוצות. קבוצות A,B,C

- $(A \setminus B) \cup (B \setminus C) = (A \cup B) \setminus (B \cap C)$.
- C=B או C=A או $\mathcal{P}(C)=\mathcal{P}(A)\cup\mathcal{P}(B)$ ב. אם
- $|A\cap B|=1$ אז $|\mathcal{P}(A)|=2\cdot|\mathcal{P}(A\setminus B)|$ אז וועם $|A\cap B|=1$ אז $|A\cap B|=1$

תשובה

א. נראה שכל אחת משתי הקבוצות חלקית האחרת.

 $x \in (A \setminus B) \cup (B \setminus C)$ נניח קודם ש-

ענביט כעת. $(x \notin C$ אז $x \in B$) או $(x \notin B$ וגם $x \in A$) כלומר $x \in (B \setminus C)$ או $x \in (A \setminus B)$ אז $x \in A$ או $x \in A$ וגם $x \notin B$ לכן על כל אחד משני המצבים האפשריים הנ"ל. במקרה הראשון $x \in A$ וגם

 $x \in (A \cup B) \setminus (B \cap C)$ מכאן ש- $(x \notin B) \setminus (x \in A)$. מכאן ש- $(x \in A \cup B) \setminus (x \in A)$

במקרה השני, $x \in B$ ור $x \in B$ (כי $x \in B$ (כי $x \in B$). מכאן $x \in B$ (כי $x \in B$). מכאן במקרה זה $x \in (A \setminus B) \setminus (B \setminus C)$. לפיכך הוכנו שלכל $x \in (A \setminus B) \setminus (B \cap C)$ מתקיים

 $(A \setminus B) \cup (B \setminus C) \subseteq (A \cup B) \setminus (B \cap C)$ כלומר $x \in (A \cup B) \setminus (B \cap C)$

 $x \notin B \cap C$ וגם $x \in A \cup B$ אז $x \in (A \cup B) \setminus (B \cap C)$ להפך נניח ש-

x נבחין כעת בין שני מקרים שבכל אופן מכסים את כל האופציות האפשריות עבור

 $x \notin B$:1 מקרה

 $x \in A \setminus B$ ולכן $x \in A$ ולכן הכרח זה, בהכרח $x \in A \cup B$ מאחר ש-

 $x \in B : \mathbf{2}$ מקרה

 $x \in B \setminus C$ -ש ואז ברור ש- $x \notin C$ מקרה אה מחייב ש, $x \notin B \cap C$ מאחר ש-

 $x \in (A \setminus B) \cup (B \setminus C)$ בשני המקרים מצאנו ש- $x \in A \setminus B$ או $x \in A \setminus B$ בשני המקרים

לפיכך הוכנו שלכל $x \in (A \setminus B) \cup (B \setminus C)$ מתקיים $x \in (A \cup B) \setminus (B \cap C)$ כלומר

. משתי ההכלות נובע השוויון הנדרש. $(A \cup B) \setminus (B \cap C) \subseteq (A \setminus B) \cup (B \setminus C)$

ב. $C\in\mathcal{P}(A)$ מפני ש- $C\in\mathcal{P}(A)\cup\mathcal{P}(B)$ לכן מהנתון נובע ש- $C\in\mathcal{P}(A)\cup\mathcal{P}(B)$ לכן מפני ש- $C\in\mathcal{P}(A)$ או $C\in\mathcal{P}(B)$

נניח ש- $A\in\mathcal{P}(C)$, מפני ש- $A\in\mathcal{P}(A)\cup\mathcal{P}(B)$ נכיח ש- $A\in\mathcal{P}(A)$ מפני ש- $A\in\mathcal{P}(A)$ נכיח ש- $A\in\mathcal{P}(A)$ משתי ההכלות נובע ש- $A\subset C$

. C=B -ש במקרה ש- $C\subseteq B$ נקבל בדרך דומה ש

 $|\mathcal{P}(A)| = 2^{|A|}$, א סופית שלכל קבוצה שלכל קבוצה ידוע שלכל קבוצה א

כמו כן, לכל שתי קבוצות A,B מתקיים A,B מתקיים A,B (קל להוכיח שוויון זה כי כל איבר לכל שתי קבוצות A,B משייך ל- B (ואז הוא איבר של $A\cap B$) או שלא שייך ל- A (ואז הוא איבר של $A\cap B$). ברור שהקבוצות $A\cap B$ ו- $A\setminus B$ הן זרות זו לזו (אין להן איברים משותפים) ולכן $A\setminus B$ ו- $A\cap B$ $|A\cap B|$

$$|\mathcal{P}(A)| = 2^{|A} = 2^{|A \cap B| + |A \setminus B|} = 2^{|A \cap B|} \cdot 2^{|A \setminus B|} = 2^{|A \cap B|} \cdot |\mathcal{P}(A \setminus B)|$$
 מכאן ש-

 $|A\cap B|=1$ - דבר שמחייב שי $2^{|A\cap B|}=2$ לפיכך לפיכך אפיכך פי הנתון $|\mathcal{P}(A)|=2\cdot|\mathcal{P}(A\setminus B)|$

שאלה 3

: הבאות הטענות את הוכיחו U הוניברסלית לקבוצה אוניברסליות חלקיות הבאות קבוצות הבאות הבאות

- $A \cup B^c \neq U$ in $A \subset B$ on .
 - A = C in $A^c \Delta B = B^c \Delta C$.
- $A \cap B \subseteq C$ אמ $A \cap B \subseteq A \triangle B \triangle C$ אם ...

תשובה

 $x\in A^c$ וגם $x\in B$ אחרות במילים במילים כך כך $x\in B$ אז קיים אחרות אם אחרות במילים או $A\subset B$

 $A^c \cap B \neq \emptyset$ ולכן $x \in A^c \cap B$

. מכאן ש- $A^c \cap B = U^c = \varnothing$ - נקבל ש- $(A^c \cap B)^c = U$ שכן אם שכן אם ($A^c \cap B)^c \neq U$ שכן מכאן ש-

 $A \cup B^c \neq U$ לכן. $(A^c \cap B)^c = A^{cc} \cup B^c = A \cup B^c$ לפי חוקי דה מורגן

 $A^{c}\Delta B = A\Delta B^{c}$ ב. לפי הטענה שבשאלה 41, מתקיים

. (שכן ההפרש הסימטרי הוא חילופי). $A^c \Delta B = B^c \Delta A$

. $B^c \Delta A = B^c \Delta C$ נחליף (שאלה ב- $A^c \Delta B$ ב- $A^c \Delta B$ נחליף כאן נחליף (מיר ב- ב- $A^c \Delta B$ ב- $A^c \Delta B = B^c \Delta C$ נקבל ש- A = C אז על ידי שימוש בחוק הצמצום של הפעולה Δ (שאלה 32 ג) נקבל ש-

. $A\cap B\subseteq (A\Delta B)\Delta C:$ ג. ההפרש הסימטרי הוא קיבוצי לכן נוכל לרשום את הנתון כך: $x\in (A\Delta B)\Delta C$ מתקיים $x\in A\cap B$ ממכאן שלכל $x\in A\cap B$ מתקיים $x\in A\cap B$ מתקיים $x\in A\cap B$ ומהגדרה ההפרש הסימטרי נובע ש

אבל, אם $A \triangle B = (A \cup B) \setminus (A \cap B)$ שכן $x \in A \triangle B$ אז לא ייתכן ש $x \in A \triangle B$ אבל, אם $x \in A \cap B$ שבהכרח . $x \in C$

 $A \cap B \subseteq C$ -ומכאן ש $X \in C$ מתקיים $X \in A \cap B$ הראנו אם כן שלכל

שאלה 4

. בשאלה זו, קבוצת המספרים הטבעיים ${f N}$ היא הקבוצה האוניברסלית.

$$A_k = \{0k, 1k, 2k, 3k, ...\} = \{nk | n \in \mathbb{N}\}$$
 נסמן $k \in \mathbb{N}$ לכל

. A_k כך שהקבוצה באותו סעיף תהיה שווה ל- k כל אחד מן הסעיפים הבאים, מיצאו מספר טבעי לכל אחד מן הסעיפים. נמקו טענותיכם.

$$A_6 \cup \{x+3 \mid x \in A_6\}$$
 . Γ
$$\bigcap_{k=1}^{\infty} A_k \cdot \lambda$$

$$\bigcap_{k=1}^{5} A_k \cdot \Delta$$

$$\bigcup_{k=1}^{\infty} A_{2k} \cdot \lambda$$

תשובה

$$igcup_{k=1}^{\infty}A_{2k}=A_2$$
 -א. נראה ש

,
(k=1עבור אותה אחת (מקבלים הנתון המשתתפת המשתתפת הקבוצות הקבוצות היא אח
ד A_2

$$A_2 \subseteq \bigcup_{k=1}^{\infty} A_{2k}$$
 לכן

מצד שני, לכל אד הקבוצות מכילות אד מכילות מספרים אד הקבוצות א $k \in \mathbf{N}$ לכל מצד שני, לכל

וליים ל- איא (כי A_2 ל- חלקית הקבוצה הקבוצה ולכן ווגיים טבעיים טבעיים מספרים מכיל מכיל מכיל מכיל מספרים ווגיים ולכן איים ווגיים ולכן מספרים מכיל איים מכיל איים מכיל ווגיים ו

. $\bigcup\limits_{k=1}^{\infty}A_{2k}\subseteq A_2$ אחרות במילים). במילים הטבעיים הטבעיים קבוצת כל המספרים הטבעיים הזוגיים

. $\bigcup_{k=1}^{\infty} A_{2k} = A_2$ משתי ההכלות שהוכחנו נובע

$$\bigcap_{k=1}^{5} A_k = A_{60}$$
 ב. נראה ש-

kב- המתחלקים הטבעיים המספרים לא קבוצת היא קבוצת או הא A_k , $k \geq 1$ לשם כך נשים כך לשם כך מספר שימו לב: 0 מתחלק של (אומרים אז גם שהם כפולות של (kשימו לב: 0 מתחלק ב- (הוא כפולה של)

.1,2,3,4,5 בו זמנית המספרים המספרים הוא קבוצת הוא $\bigcap\limits_{k=1}^{5}A_{k}$ -ש מכאן ש

. $\bigcap_{k=1}^5 A_k \subseteq A_{60}$ ולכן 60 ב- 3,4,5 מתחלק ב- 3,4,5 כל מספר שמתחלק ב-

ולכן 1,2,3,4,5 מתחלק ב- 60 לכן מחלק ב- 60 מתחלק אחד מו $x\in A_{60}$ מטפר שני כל מצד מ

. $A_{60} \subseteq \bigcap_{k=1}^5 A_k$: במילים אחרות במילים . $\bigcap_{k=1}^5 A_k$ כלומר שייך ל- A_5 ו- A_4 , A_3 , A_2 , A_1 - הוא שייך ל-

. $\bigcap_{k=1}^{5} A_k = A_{60}$ -שתי ההכלות שהוכנו נובע ש

$$\bigcap_{k=1}^{\infty}A_k=A_0$$
 ג. נראה ש-

 $A_0 = \{0\}$ נשים לב שלפי הנתון

. kב- המתחלקים המשפרים כל המספרים היא קבוצת היא A_k , $\,k\,\geq 1\,$ לכל כמו כן, כמו

 $k\geq 1$ אז מתחלק בכל מספר אז א $x\in \bigcap_{k=1}^\infty A_k$ לכן אם לכן א

 $x=0\,$ אין מספר טבעי שיכול להתחלק בכל מספר מספר להתחלק שיכול אין מספר טבעי אין מספר אין אין מספר אין אין מספר איי

 $.\{0\}\subseteq\bigcap_{k=1}^\infty A_k$ לכן , $k\ge 1$ עבור כל $x\in A_k$, מצד שני, לפי ההגדה. מכאן ש- . $\bigcap_{k=1}^\infty A_k\subseteq\{0\}$

.
$$\bigcap_{k=1}^{\infty}A_{k}=\{0\}=A_{0}$$
- ששתי ההכלות נובע ש

 $A_6 \cup \{x+3 \mid x \in A_6\} = A_3$ ד. נראה ש- .

לפי הנתון $A_6 = \{6n | n \in \mathbb{N}\} = \{3 \cdot 2n | n \in \mathbb{N}\}$ וזו קבוצות כל הכפולות של 3 במספר זוגי. (גם 0 זוגי!)

-ש ומכאן אר $\{x+3 \mid x \in A_6\} = \{6n+3 \mid n \in \mathbf{N}\}$ נקבל ש- $A_6 = \{6n \mid n \in \mathbf{N}\}$ ומכאן ש- מצד שני מפני

. וזו קבוצת אי-זוגי אי-זוגי ($x+3 \mid x\in A_6\}=\{3(2n+1)\mid n\in \mathbf{N}\}$

ולכן אי-זוגיות וגם אי-זוגיות כל הכפולות הכן אי-זוגיות היא קבוצת לפיכך אי-זוגיות היא היא א $A_6 \cup \{x+3 \mid x \in A_6\}$

$$A_6 \cup \{x + 3 \mid x \in A_6\} = A_3$$