Week 14 Lecture 1

Jared Brannan

December 8, 2021

1 Administrative drivel

- Clicker serial number assignment on Canvas
- No clicker qs today no base
- final on the 16th at 4:30 in the usual classroom
- Review sheet should be posted tonight
 - The exam will be 45-50 questions
 - 2 hours to complete

2 Climate change – continued

- We'll finish climate change today hopefully
- Temperature change
 - Warmer in the last few decades, almost certainly human caused
 - fosil fuels release carbon that's been tied up in rocks for thousands of years into the atmosphere
 - the amount of carbon the atmosphere is relatively constant, at least for the last 10s of millions of years
 - burning fosil fuels has changed this
 - since the 80's we've seen a steady rise in temp which is associated with increase in CO_2
- Some evidence and patterns
 - There is a tight relationshep between temperature and CO_2 concentration
 - * How do they know the CO_2 concentration 160k years ago?
 - · Looking at ice cores!
 - Historic
 - * Steady CO_2 till the mid 1980's when exponential growth began
 - More recent
 - * CO_2 has been exponentially increasing by industry output, and has stopped during 3 periods in the 20th century
 - * The use of electricity is accelerating, increasing CO_2 production
 - very recent
 - * CO₂ production Accelerating over the last 50 years
 - C 14 short half life, not present in fossile fuels, so we can measure its concentration to see how much is from fosil fuels

- The C 14 concentration in the atmosphere has decreased with the burning of fossil fuels depleted in C 14
- Coal major contributor of CO_2
 - In volume of CO_2 concentration, coal is one of the largest contributor
 - Used for most electricity
 - natural gas makes about 1/3 the CO_2 that coal makes
 - it costs a lot to make power plants that are clean, so we have a lot coal generators still
 - Now, coal is substantially more expensive than other sources, as of fairly recently
- It's not only CO_2
 - Methane (CH_4) , Chlorofluorocarbons (CFCs), Nitrous oxide (N_2O)
 - * Methane is about 20 times more potent as a greenhouse gas than CO_2 by weight
 - * CFCs are rare used in refrigerants made the hole in the ozone, so it's outlawed as of 30 ish years ago
- Greenhouse effect: how it works
 - most of what happens is
 - * Sun emits energy through the atmosphere (some visible, most invisible)
 - * Some bounces off and goes into space
 - * some comes through and is
 - · absorbed by atoms in the atmosphere or
 - · absorbed by atoms on the land
 - · absorbtion transforms the energy into heat thermal energy
 - absorption heats the earth
 - some bounces back out into space
 - * Some of the heat is let out as radiation cooling the earth
 - * If the amount of radiation coming in is the same as going out, the earth's temperature will be at equilibrium (constant)
 - * greenhouse gasses absorb some of the radiation on it's way out of the atmosphere, turning it back into heat, so energy gets trapped, breaking the equalibrium, heating the earth's atmosphere
- We're in an interglacial period, so the the temp/ CO_2 levels are high just from normal changes in temp/ CO_2 , but now we're well above the norm and at a much faster rate of increase than has ever been seen
- things to do: drive less (walk, bike, take the bus), avoid air travel when possible (airplanes dump a lot of CO_2)
- Things governments can do: finance power grids, tax carbon, regulate greenhouse gas emition
- half life of CO_2 is long 120 years so it takes a long time to get out
- Most of the warming is at the far north, and over land

•