Лабораторная работа №6.

Интерполяционные сплайны 2-ой степени единичного дефекта

Определение 1

Пусть $A = \langle a = \tau_0, \tau_1, ..., \tau_k = b \rangle$ — сетка отрезка [a;b]. Интерполяционным сплайном 2-ой степени дефекта 1 для A-сеточной функции $y = \hat{A}(f) = [y_0, y_1, ..., y_k] \in \mathbb{R}^{|A|}(A)$, называется функция $\phi \in C^1([a,b],\mathbb{R})$, для которой на отрезке $[\tau_{i-1};\tau_i]$, где $i = \overline{0,k}$, для $\tau \in [\tau_{i-1};\tau_i]$ справедливо равенство $\phi(\tau) = a_i + b_i(\tau - \tau_{i-1}) + c_i(\tau - \tau_{i-1})^2$, где $a_i, b_i, c_i \in \mathbb{R}$, причем:

- а) этот сплайн на отрезке $[\tau_0; \tau_1]$ линеен $(c_1 = 0);$
- b) этот сплайн непрерывен и его значения в узлах сетки совпадают со значениями интерполируемой функции $y = \hat{A}(f) = [y_0, y_1, ..., y_k] \in \mathbb{R}^{|A|}(A)$;
- с) первая производная этого сплайна также непрерывна.

Если сетка $A=\langle a=\tau_0,\tau_1,\ldots,\tau_k=b\rangle$ является равномерной и её шаг $h=\frac{b-a}{k}=stp(A)$, то из определения 1 для $i=\overline{1,k}$ на отрезке $[\tau_{i-1};\tau_i]$ находятся значения коэффициентов полинома $p_i(\tau)=a_i+b_i(\tau-\tau_{i-1})+c_i(\tau-\tau_{i-1})^2$:

1)
$$a_1 = y_0, b_1 = \frac{y_1 - y_0}{h}, c_1 = 0$$

2)
$$a_2 = y_1$$
, $b_2 = b_1 + 2c_1h$, $c_2 = \frac{y_2 - y_1 - (b_1 + 2c_1h)h}{h^2}$

. . .

i)
$$a_i = y_{i-1}, b_i = b_{i-1} + 2c_{i-1}h, c_i = \frac{y_i - y_{i-1} - (b_{i-1} + 2c_{i-1}h)h}{h^2}, i = \overline{2,k}$$

Задание

На отрезке [0;1] задана равномерная сетка $A = \left\langle \tau_0, \tau_1, \dots, \tau_k \right\rangle$, где k = 40, с шагом $h = \frac{b-a}{k} = 0,025 = stp(A)$ и определена функция $f(\tau) = 2\sin(\pi\tau)\sqrt{55-n+N\tau\sqrt{25-N}}$, где n —номер группы и N — номер студента в журнале группы. Для A-сеточной функции $y = \hat{A}(f) = [y_0, y_1, \dots, y_k] \in \mathbb{R}^{|A|}(A)$, где $y_i = f(\tau_i)$ для $i = \overline{0,k}$, решить задачу A- интерполяции сеточной функции $y_i = y_i = y_i = y_i$ с помощью сплайна $spl_2(A; y_i)$ 2-ой степени дефекта 1. Затем сравнить в узлах интерполяции равномерной сетки $A = \left\langle \tau_0, \tau_1, \dots, \tau_k \right\rangle$ отрезка [0;1] значения производных от функции $f(\tau)$ и сплайна $spl_2(A; y_i)$, т.е. значения функций $\frac{df}{d\tau}$ и $\frac{dspl_2(A; y_i)}{d\tau}$. Результаты проиллюстрировать графически.