Adiar 1.1 : Zero-suppressed Decision Diagrams in External Memory

Steffan Christ Sølvsten and Jaco van de Pol

NFM 2023

Binary Decision Diagrams in External Memory

Multi-terminal Decision Diagrams in External Memory

Quantum Multi-valued Decision Diagrams in External Memory

Zero-suppressed Decision Diagrams in External Memory

ZDD: $A \subseteq \mathbb{B}^n$

BDD: $f: \mathbb{B}^n \to \mathbb{B}$

bdd bdd_apply(bdd f, bdd g, bool_op o)

bdd bdd_apply(bdd f, bdd g, bool_op o)

zdd zdd_binop(zdd A, zdd B, bool_op o)

```
bdd bdd_apply(bdd f, bdd g, bool_op o) {
   return prod2<bdd_policy>(f, g, o);
zdd zdd_binop(zdd A, zdd B, bool_op o) {
   return prod2<zdd_policy>(A, B, o);
```

```
bdd bdd_apply(bdd f, bdd g, bool_op o) {
   return prod2<bdd_policy>(f, g, o);
zdd zdd_binop(zdd A, zdd B, bool_op o) {
   return prod2<zdd_policy>(A, B, o);
```


Running time for 3D Tic-Tac-Toe with 300 GiB of RAM.

Running time for 3D Tic-Tac-Toe with 300 GiB of RAM.

Running time for 3D Tic-Tac-Toe with 300 GiB of RAM.

Done

DD ZDD

Doable MTBDD LDD Done BDD ZDD (K)FDD Tagged/Chained BDD

Steffan Christ Sølvsten

- soelvsten@cs.au.dk
- ssoelvsten.github.io

Adiar

- github.com/ssoelvsten/adiar
- ssoelvsten.github.io/adiar

Function	Operation Semantics	Function	Operation Semantics	
ZDD Constructors		Counting		
zdd_empty()	Ø	zdd_size(A)	A	
zdd_null()	{Ø}	$zdd_nodecount(A)$	# ZDD Nodes in A	
zdd_singleton(var)	$\{x_{var}\}$	$zdd_varcount(A)$	# Non-empty Levels in A	
zdd_vars(vars)	$\{\bigcup_{i \in \mathbf{vars}} \{x_i\}\}$	Predicates		
zdd_singletons(vars)	$\{\{x_i\}\mid i\in \mathit{vars}\}$	zdd_equal(A, B)	A = B	
zdd_powerset(vars)	$\mathcal{P}(\mathit{vars})$	$zdd_unequal(A, B)$	$A \neq B$	
$zdd_sized_set(vars, k, \odot)$	$\{s \in \mathcal{P}(\textit{vars}) \mid s \odot k\}$	$zdd_subseteq(A, B)$	$A \subseteq B$	
ZDD I	Manipulation			
$zdd_binop(A,B,\otimes)$	$\{x \mid x \in A \otimes x \in B\}$	Set elements		
zdd_change(A, vars)	$\{(a \setminus \textit{vars}) \cup (\textit{vars} \setminus \textit{a}) \mid \textit{a} \in \textit{A}\}$	zdd_contains(A, a)	$a \in A$	
zdd_complement(A, dom)	$\mathcal{P}(\textit{dom}) \setminus A$	$zdd_{minelem}(A)$	$a \in A$ s.t. $\forall a' \in A$. $a \leq a'$	
$zdd_{expand}(A, vars)$	$\bigcup_{a\in A}\{a\cup v\mid v\in \mathcal{P}(\textit{vars})\}$	$zdd_{maxelem}(A)$	$a \in A$ s.t. $orall a' \in A$. $a' \leq a$	
$zdd_offset(A, vars)$	$\{a \in A \mid \textit{vars} \cap a = \emptyset\}$	Conversion		
<pre>zdd_onset(A, vars)</pre>	$\{a\in A\mid \mathit{vars}\subseteq a\}$	zdd_from(f, dom)	$\{x \in \mathcal{P}(dom) \mid f(x) = \top\}$	
$zdd_project(A, vars)$	$\bigcup_{a\in A}\{a\cap \mathit{vars}\}$	bdd_from(A, dom)	$\vec{x}: \mathcal{P}(\textit{dom}) \mapsto \vec{x} \in A$	

Operations provided by Adiar in <adiar/zdd.h>.

Priority Queue:
$$Q_{count}$$
:
$$[((0,0) \xrightarrow{\top} (1,0), 1), ((0,0) \xrightarrow{\bot} (2,0), 1),$$

Seek (1,0)	Sum 0	Result 0
[((0	ority Queue: $(0,0) \xrightarrow{\top} (1,0),$ $(0,0) \xrightarrow{\bot} (2,0),$	1) ,
		1

Seek (1,0		Sum 0		sult 0
[((0,0)	ey Queue: $\xrightarrow{\top} (1,0),$ $\xrightarrow{\bot} (2,0),$	1)	,
				1

Seek Sum Result
$$(1,0)$$
 1 0 $(1,0)$ $\stackrel{}{=} 1$ 0 $(1,0)$ $\stackrel{}{=} (2,0)$ $\stackrel{}{=} (1,0)$ $\stackrel{}{=} (1,0)$

Seek Sum Result
$$(2,0)$$
 0 0 0

Priority Queue: Q_{count} :

[
 $((0,0) \xrightarrow{\perp} (2,0), 1), ((1,0) \xrightarrow{\perp} (2,0), 1), ((1,0) \xrightarrow{\top} (3,1), 1), (1,0)$

Seek Sum Result
$$(2,0)$$
 0 0 0

Priority Queue: Q_{count} :

[
 $((0,0) \xrightarrow{+} (2,0), 1), ((1,0) \xrightarrow{+} (2,0), 1), ((1,0) \xrightarrow{-} (3,1), 1), (1,0)$

Seek Sum Result
$$(2,0)$$
 1 0

Priority Queue: Q_{count} :
[
$$((1,0) \xrightarrow{\top} (2,0), \quad 1) \quad ,$$

$$((1,0) \xrightarrow{\top} (3,1), \quad 1) \quad ,$$

Seek (2,0)		Result 0
[Priority Queue: <i>Q</i>	count
	$((2,0) \xrightarrow{\perp} (3,0),$ $((1,0) \xrightarrow{\top} (3,1),$ $((2,0) \xrightarrow{\top} (3,1),$	2) , 1) , 2)]

Seek (3,0)	Sum 0	Res	
Pric [ority Queue: (Q _{count} :	
((1,	$0) \xrightarrow{\perp} (3,0),$ $0) \xrightarrow{\top} (3,1),$ $0) \xrightarrow{\top} (3,1),$	2) 1) 2)	, , 1

Seek (3,0)	Sum 0	Re	sul 0
Prior [rity Queue: 0	Ocount:	
((1,0	$\begin{array}{c} \stackrel{\bot}{\rightarrow} (3,0), \\ \stackrel{\top}{\rightarrow} (3,1), \\ \stackrel{\top}{\rightarrow} (3,1). \end{array}$	2) 1) 2)	, , 1

Steffan Christ Sølvsten

- soelvsten@cs.au.dk
- ssoelvsten.github.io

Adiar

- github.com/ssoelvsten/adiar
- ssoelvsten.github.io/adiar

