ICSE 2017 Q8 b

Suryaansh Jain*

Question 21(a) A product can be manufactured at a total cost $C(x) = \frac{x^2}{100} + 100x + 40$, where x is the number of units produced. The price at which each unit can be sold is given by $P = 200 - \frac{x}{400}$. Determine the production level x at which the profit is maximum. What is the price per unit and total profit at the level of production?

Solution. Let the total price p(x) = P.x

$$\implies \frac{p(x)}{x} = 200 - \frac{x}{400} \tag{0.1}$$

$$c(x) = \frac{x^2}{100} + 100x + 40 \tag{0.2}$$

$$Profit = p(x) - c(x) \tag{0.3}$$

For maximum profit $\frac{dProfit}{dx} = 0$

$$\implies 100 - \frac{x}{40} = 0 \tag{0.4}$$

$$\implies x = 4000 \tag{0.5}$$

The total production level x = 4000Price per unit = P(x) = 190

$$Profit = 199960$$
 (0.6)

Total profit = 199960

Fig. 0.1. Graph shows Total Profit, Total cost, Total profit with x

Symbol	Description	Value
\overline{x}	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	4000
P(x)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	760000
P	Priceperunit	190
C(x)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	560040
Profit	Total Profit	199960