SARKAR, Mohul

Experiment Number 1

Unknown Board Measurements - Voltage, Current, and Reference Direction

TUESDAY

February 27

ECE 1101L

Spring 2024

Partner Name(s): MARIN, Gregorio

Lab:

ECE 1101L Experiment 1

VOLTAGE, CURRENT, AND REFERENCE DIRECTIONS OBJECTIVES

The student will measure voltages and conventional currents for arbitrarily specified reference directions.

The student will also verify some basic relationships

MATERIALS REQUIRED BY STUDENT

11 clip leads

MATERIALS TO BE SUPPLIED

Power Cables and a breadboard looking like:

Given CKT1:

Per sign convention shown on CKT1									
	Voltage Across Element		Current through		Power	For P>0	For P<0	Comments	
			Element		Calculations	Equiv. CKT	Equiv. CKT		
Element	Ref Des	Measured	Ref	Measured	$P_i=V_i*I$	$R_{eq(i)}=V_i/I$	$R_K =$		
		Value [V]	Des	Value	[mW]	$[\Omega]$	V_{RK}/I		
				[mA]			$[\Omega]$		
A	V_1	1	I_1	1	1	1		Load	
Е	V_2	2	I_2	1	2	2		Load	
Н	V_3	1.6	I ₃	1	1.6	1.6		Load	
T	V_4	0	I ₄	1	0	DNE		Current	
								Source	
K	V_5	5.4	I ₅	1	5.4	5.4	5.4	Load	
	$V_1+V_2+V_3+V_4+V_5=0$		Series	1					
			Circuit:						
			$I_1 = I_2 =$						
			$I_3 = I_4 =$						
			I_5						

Given CKT2:

Per sign convention shown on CKT2									
	Voltage Across Element		Current through		Power	For P>0	For	Comments	
			Element		Calculations	Equiv.	P<0		
						CKT	Equiv.		
							CKT		
Element	Ref Des	Measured	Ref	Measured	$P_i=V_i*I[mW]$	$R_{eq(i)}=V_i/I$	$R_K =$		
		Value [V]	Des	Value		$[\Omega]$	V_{RK}/I		
				[mA]			$[\Omega]$		
K	V_1	4.9	I_1	0.6	2.94	8.17		Load	
L	V_2	4.9	I_2	31	151.9	2		Load	
M	V_3	4.9	I_3	0	0	1.6		Voltage	
								Source	
N	V_4	4.9	I_4	31.6	154.84	0.16		Load	
	$V_{1}=V_{2}=V_{3}=V_{4}$	4.9	Series	0	Conservation				
			Circuit:		of Power:				
			$I_1 + I_2$		$P_1 + P_2 + P_3 + P_4 = 0$				
			$+I_{3} +$						
			$I_4 = 0$						

Sample calculation:

 $P_i \!\!=\!\! V_i \!\!*\! I$

4.9*0.6=2.94 mW

 $R_{eq(i)}\!\!=\!\!V_i\!/I$

 $4.9/0.6 = 8.17 \Omega$

Given CKT3:

Per sign convention shown on CKT1									
	Voltage Across Element		Current through Element		Power	For P>0	For P<0	Comments	
					Calculation	Equiv.	Equiv.		
					S	CKT	CKT		
Eleme	Ref Des	Measure	Ref	Measured	P _i =V _i *I	R _{eq(i)} =V _i /I	$R_K = V_{RK}/I$		
nt		d Value	Des	Value	[mW]	$[\Omega]$	$[\Omega]$		
		[V]		[mA]					
L	V_1	5	I_1	0.6	3.12	8.33	8.33	Load	
Е	V_2	1.7	I_2	-0.6	-1.02	-2.83		Load	
M	V_3	3.6	I_3	0	0	DNE		Voltage	
								Source	
Н	V_4	0.9	I_4	-0.6	-0.54	-1.5		Load	
N	V_5	-2		-0.6	-1.2	1.2		Load	
V	V_6	0.6		-0.6	-0.36	-0.36		Load	
	$V_1+V_2+V_3+V_4+V_5+V_6$	0	Series	0	Conservati				
	=0		Circui		on of				
			t: I ₁ +		Power:				
			$I_2 + I_3$		$P_1 + P_2 + P_3 +$				
			$+ I_4 =$		$P_{4+}P_5=0$				
			0						

Reflection: Our lab resulted in accurate findings and all the circuits matched up with the reference destination equation. We had small error with our calculations by around 5 percent, but they were close to perfect.

Post Lab:

1.Conventional Current: Conventional current assumes that electric current flows from the positive terminal of a voltage source to the negative terminal.

- 3a. The electrons are flowing right to left through the positive side
- 3b. Power is being received because it is going from positive terminal to negative terminal
- 4.No it is not possible, the sign would be wrong but the value identical, this can lead to analysis error, but the value would simply be the reciprocal of the correct reference direction

6.The tolerance is $\pm 0.1\%$, so the maximum allowable error is 0.1% of the full-scale voltage:

Tolerance = 0.1% * 10 V = 0.01 V

Minimum real value = 5V-0.01=4.99V

Maximum real value=5V+0.01=5.01V