Plan	Introduction OOO O O	Algorithmes récursifs 0 000	Types de récursivité 00 00 00 000	Récursivité en PASCAL O O	Conclusion
		0000			

Algorithmes récursifs

Nour-Eddine Oussous et Éric Wegrzynowski

Licence ST-A, USTL - API2

23 septembre 2009

Algorithmes récursifs Licence ST-A, USTL - API2

Plan	Introduction	Algorithmes récursifs	Types de récursivité	Récursivité en Pascal	Conclusion
	000	0	00	0	
	0	000	00	0	
	0	00	000	0	

Introduction

- ► En programmation, de nombreux problèmes résolus par répétition de tâches
- ➤ ⇒certains langages (comme PASCAL) munis de structures de contrôles répétitives : boucles pour et tant que
- ▶ Mais certains problèmes se résolvent simplement en résolvant des problèmes identiques

C'est la récursivité

Algorithmes récursifs Licence ST-A, USTL - API2

Plan	Introduction	Algorithmes récursifs	Types de récursivité	Récursivité en PASCAL	Conclusion
	000	0	00	0	
	0	000	00	0	
	0	00	000	0	
		0000			

Introduction

Exemple 1

Exemple 2

Exemple 3

Algorithmes récursifs

Définition

Exemples

Exécution d'un algorithme récursif

Règles de conception

Types de récursivité

Récursivité simple ou linéaire

Récursivité multiple

Récursivité croisée ou mutuelle

Récursivité en Pascal

Factorielle en PASCAL

Tours de Hanoï en PASCAL

Prédicats de parité en PASCAL

Conclusion

Algorithmes récursifs Licence ST-A, USTL - API2

Plan	Introduction OO O	Algorithmes récursifs 0 000 00 00 0000	Types de récursivité 00 00 000	Récursivité en Pascal o o o	Conclusion
Exemple	1				

Les tours de Hanoï : le problème

Règles (opérations élémentaires)

- 1. déplacer un disque à la fois d'un bâton sur un autre
- 2. ne jamais mettre un disque sur un plus petit

But : transférer la pile de disques de A vers B.

Plan	Introduction O O O	Algorithmes récursifs 0 000 00 00 0000	Types de récursivité 00 00 000	Récursivité en PASCAL O O O	Conclusion

Exemple 1

Les tours de Hanoï : une solution ?

1. Mettre tous les disques sauf le plus grand sur C

2. Déplacer le plus grand disque de A vers B

3. Mettre tous les disques de C sur B

Algorithmes récursifs Licence ST-A, USTL - API2

Plan	Introduction	Algorithmes récursifs	Types de récursivité	Récursivité en Pascal	Conclusion
	000 • 0	0 000 00 0000	00 00 000	O O	

Exemple 2

Calcul de dérivées

- ► Règles de dérivation
 - (u + v)' = u' + v'
 - (u-v)'=u'-v'
 - (uv)' = u'v + uv'
 - (uv) = uv + uv (uv)' = u'v uv'
 - **▶** ```
- ▶ ⇒ pour dériver il faut savoir dériver!
- ▶ Or on sait dériver les fonctions de base
- → ⇒on sait dériver toutes les fonctions (dérivables bien entendu!).

Le calcul est récursif

Plan Introduction Algorithmes récursifs Types de récursivité Récursivité en PASCAL Conclusion

OO O O O
OO O
OO OO
OO OO
OO OOO

Les tours de Hanoï : une solution

Exemple 1

- ► Les points 1 et 3 de la solution esquissée sont des problèmes de Hanoï avec un disgue de moins
- ightharpoonup si on sait résoudre le problème avec n-1 disques, alors on sait le résoudre avec n disques
- ▶ Or on sait résoudre le problème avec 1 disque
- ▶ ⇒le problème est résolu pour tout nombre $n \ge 1$ de disques (principe de récurrence)

La solution est récursive

Algorithmes récursifs Licence ST-A, USTL - API2

Plan	Introduction	Algorithmes récursifs	Types de récursivité	Récursivité en Pascal	Conclusion
	000	0	00	0	
	•	00	000	0	
Exemple	3				

Calcul de factorielle

- ▶ Soit à calculer $n! = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$
- ▶ On sait que pour n > 0, $n! = n \cdot (n-1)!$
- ightharpoonup \Rightarrow si on sait calculer (n-1)!, alors on sait calculer n!
- ▶ Or on sait calculer 0! = 1
- ightharpoonup \Rightarrow on sait calculer n! pour tout n > 0

Le calcul est récursif

Algorithmes récursifs Licence ST-A, USTL - API2 Algorithmes récursifs Licence ST-A, USTL - API2 Algorithmes récursifs Licence ST-A, USTL - API2

Plan	Introduction 000 0	Algorithmes récursifs OOO OOO	Types de récursivité 00 00 00	Récursivité en PASCAL O O O	Conclusion

Définition

Définition

Définition

Un algorithme de résolution d'un problème P sur une donnée a est dit *récursif* si parmi les opérations utilisées pour le résolution, on trouve une résolution du même problème P sur une donnée b.

Appel récursif

Dans un algorithme récursif, on nomme *appel récursif* toute étape de l'algorithme résolvant le même problème sur une autre donnée.

Algorithmes récursifs Licence ST-A, USTL - API2

0000	Plan	Introduction 000 0	Algorithmes récursifs ○ ○ ○ ○ ○ ○ ○ ○	Types de récursivité 00 00 000	Récursivité en PASCAL O O O	Conclusion
------	------	--------------------------	--	---	--------------------------------------	------------

Exemples

Dérivation: Algorithme

Dérivation

deriver(f) = problème du calcul de la dérivée de f

```
deriver(f):
    si f est une fonction de base alors
        donner la derivee de f
    sinon
        si f est de la forme u+v alors
            deriver(u) + deriver(v)
        si f est de la forme u-v alors
            ...
```

Algorithmes récursifs Licence ST-A, USTL - API2

Tours de Hanoï : Algorithme

Tours de Hanoï

Exemples

H(n, D, A, I) = problème de déplacement de n disques depuis la tour D vers la tour A avec la tour intermédiaire I

```
 \begin{array}{l} \operatorname{H}(n,D,A,I): \\ \operatorname{si}\ n=1\ \operatorname{alors} \\ \operatorname{deplacer}\ \operatorname{disque}\ \operatorname{de}\ D\ \operatorname{vers}\ A \\ \\ \operatorname{sinon} \\ \operatorname{H}(n-1,D,I,A); \\ \operatorname{deplacer}\ \operatorname{disque}\ \operatorname{de}\ D\ \operatorname{vers}\ A; \\ \operatorname{H}(n-1,I,A,D); \\ \operatorname{fin}\ \operatorname{si} \end{array}
```

Algorithmes récursifs Licence ST-A, USTL - API2

Factorielle: Algorithme

Factorielle

fact(n) = problème du calcul de n!

```
fact(n):

si n = 0 alors

fact(0) = 1

sinon

fact(n) = n \times fact(n-1)

fin si
```

0 0 000 0	Plan	Introduction 000 0		Types de récursivité 00 00 000	Récursivité en PASCAL O O O	Conclusion
------------------	------	--------------------------	--	---	--------------------------------------	------------

Exécution d'un algorithme récursif

Exécution d'un algorithme récursif

Calcul de 4!:

$$fact(4) \Rightarrow 4 \cdot fact(3) \Rightarrow 4 \cdot 3 \cdot fact(2) \Rightarrow 4 \cdot 3 \cdot 2 \cdot fact(1) \Rightarrow 4 \cdot 3 \cdot 2 \cdot 1 \cdot fact(0) \Rightarrow 4 \cdot 3 \cdot 2 \cdot 1 \cdot 1 \Rightarrow 24$$

Algorithmes récursifs Licence ST-A, USTL - API2

Plan	Introduction	Algorithmes récursifs	Types de récursivité	Récursivité en PASCAL	Conclusion
	000	0	00	0	
	0	000	00	0	
	0	00	000	0	
		•000			

Règles de conception

Règles de conception

Attention

Il existe des algorithmes récursifs qui ne produisent aucun résultat

```
fact(n):
fact(n) = n \times fact(n-1)
```

$$\mathtt{fact}(1) \; \Rightarrow \; 1 \cdot \mathtt{fact}(0) \; \Rightarrow \; 1 \cdot 0 \cdot \mathtt{fact}(-1) \; \Rightarrow \dots$$

⇒ calcul infini

Algorithmes récursifs Licence ST-A, USTL - API2

Plan Introduction Algorithmes récursifs Types de récursivité Récursivité en PASCAL Conclusion

Exécution d'un algorithme récursif

Exécution d'un algorithme récursif

Exécution de l'algorithme des tours de Hanoï pour déplacer trois disques de la tour A vers la tour B

En rouge, la suite des déplacements effectués au cours de l'exécution de l'algorithme.

Algorithmes récursifs Licence ST-A, USTL - API2

Plan	Introduction	Algorithmes récursifs	Types de récursivité	Récursivité en PASCAL	Conclusion
	000	000000	00 00 000	o o o	
Règles d	e conception	000			

Règles de conception

Première règle

Tout algorithme récursif doit distinguer plusieurs cas, dont l'un au moins ne doit pas comporter d'appel récursif.

sinon risque de cercles vicieux et de calcul infini

Condition de terminaison, cas de base

Les cas non récursifs d'un algorithme récursif sont appelés *cas de base*.

Les conditions que doivent satisfaire les données dans ces cas de base sont appelées *conditions de terminaison*.

Plan	Introduction 000 0	Algorithmes récursifs ○ ○ ○ ○ ○ ○ ○	Types de récursivité 00 00 00	Récursivité en Pascal O O O	Conclusion

Règles de conception

Règles de conception

Attention

Même avec un cas de base un algorithme récursif peut ne produire aucun résultat

```
fact(n):
    si n = 0 alors
        fact(0) = 1
    sinon
        fact(n) = fact(n+1) / (n+1)
    fin si
```

```
fact(1) \Rightarrow fact(2)/2 \Rightarrow fact(3)/(2 \cdot 3) \Rightarrow \dots
```

⇒ calcul infini

Algorithmes récursifs Licence ST-A, USTL - API2

000 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Plan	Introduction OOO O	00	00	Récursivité en Pascal O O O	Conclusion
--	------	----------------------	----	----	--------------------------------------	------------

Récursivité simple ou linéaire

Récursivité simple ou linéaire

Récursivité simple ou linéaire

Un algorithme récursif est *simple* ou *linéaire* si chaque cas qu'il distingue se résout en au plus un appel récursif.

Algorithmes récursifs Licence ST-A, USTL - API2

Plan	Introduction	Algorithmes récursifs	Types de récursivité	Récursivité en Pascal	Conclusion
	000	0	00	0	
	0	000	00	0	
	0	00 000●	000	0	

Règles de conception

Seconde règle

Règles de conception

Tout appel récursif doit se faire avec des données plus « proches » de données satisfaisant une condition de terminaison.

Théorème

Il n'existe pas de suite infinie strictement décroissante d'entiers positifs ou nuls.

Ce théorème permet de contrôler l'arrêt d'un calcul suivant un algorithme récursif.

Algorithmes récursifs Licence ST-A, USTL - API2

Plan	Introduction 000 0	Algorithmes récursifs 0 000 00 00 0000	Types de récursivité ○ ● ○ ○ ○ ○	Récursivité en PASCAL O O O	Conclusion
Récursiv	ité simple ou linéaire				

Récursivité simple ou linéaire

L'algorithme de calcul de n! est récursif simple.

```
fact(n):

si n = 0 alors

fact(0) = 1

sinon

fact(n) = n \cdot fact(n-1)

fin si
```

Plan	Introduction 000 0	Algorithmes récursifs 0 000 00 00	Types de récursivité ○○ ●○ ○○○	Récursivité en PASCAL O O O	Conclusion

Récursivité multiple

Récursivité multiple

Récursivité multiple

Un algorithme récursif est *multiple* si l'un des cas qu'il distingue se résout avec plusieurs appels récursifs.

Dans le cas où il y a deux appels récursifs on parle de récursivité binaire.

Algorithmes récursifs Licence ST-A, USTL - API2

Plan	Introduction	Algorithmes récursifs	Types de récursivité	Récursivité en Pascal	Conclusion
	000	0 000 00 00 0000	○ ○ ● ○ ○	o o o	
		0000			

Récursivité croisée ou mutuelle

Récursivité croisée ou mutuelle

La récursivité peut parfois être cachée.

Récursivité mutuelle

Deux algorithmes sont *mutuellement* récursifs si l'un fait appel à l'autre, et l'autre fait appel à l'un.

Récursivité multiple

Récursivité multiple

L'algorithme des tours de Hanoï est récursif binaire

```
 \begin{array}{l} \operatorname{H}(n,D,A,I): \\ \operatorname{si}\ n=1\ \operatorname{alors} \\ \operatorname{deplacer}\ \operatorname{disque}\ \operatorname{de}\ D\ \operatorname{vers}\ A \\ \\ \operatorname{sinon} \\ \operatorname{H}(n-1,D,I,A); \\ \operatorname{deplacer}\ \operatorname{disque}\ \operatorname{de}\ D\ \operatorname{vers}\ A; \\ \operatorname{H}(n-1,I,A,D); \\ \operatorname{fin}\ \operatorname{si} \end{array}
```

Algorithmes récursifs Licence ST-A, USTL - API2

Récursivité croisée ou mutuelle

Récursivité croisée ou mutuelle

Parité d'un entier

P(n) = prédicat de test de parité de l'entier n. I(n) = prédicat de test d'« imparité » de l'entier n.

Solution mutuellement récursive

```
P(n):
    si    n = 0    alors
        P(n) = vrai
    sinon
        P(n) = I(n-1)
    fin si

I(n):
    si    n = 0    alors
        I(n) = faux
    sinon
        I(n) = P(n-1)
    fin si
```

Algorithmes récursifs Licence ST-A, USTL - API2 Algorithmes récursifs Licence ST-A, USTL - API2

	Plan	Introduction 000 0	Algorithmes récursifs 0 000 00 000	Types de récursivité ○○ ○○ ○○	Récursivité en PASCAL O O O	Conclusion
--	------	--------------------------	--	--	--------------------------------------	------------

Récursivité croisée ou mutuelle

Récursivité croisée ou mutuelle

Évaluation de P(2):

$$P(2) \Rightarrow I(1) \Rightarrow P(0) \Rightarrow vrai$$

Évaluation de P(3) :

$$P(3) \Rightarrow I(2) \Rightarrow P(1) \Rightarrow I(0) \Rightarrow faux$$

Algorithmes récursifs Licence ST-A, USTL - API2

Plan	Introduction	Algorithmes récursifs	Types de récursivité	Récursivité en Pascal	Conclusion
	000	0 000 00 0000	00 00 000	• • •	

Factorielle en PASCAL

Récursivité en Pascal

Une fonction de calcul de n!

```
Listing

// fact(n) = n!
function fact(n : CARDINAL) : CARDINAL;
begin
  if n=0 then
   fact := 1
  else
   fact := n*fact(n-1);
end {fact};
```

Plan Introduction Algorithmes récursifs Types de récursivité Récursivité en PASCAL Conclusion

Récursivité en Pascal

- ▶ Pascal permet d'exprimer les algoritmes récursifs.
- Les fonctions et les procédures peuvent être récursives.
- ▶ Un appel récursif s'écrit simplement en faisant référence au nom de la fonction ou de la procédure.
- ▶ Il faut utiliser le mot-clé **forward** pour les fonctions ou procédures mutuellement récursives.

Algorithmes récursifs Licence ST-A, USTL - API2

Plan	Introduction	Algorithmes récursifs	Types de récursivité	Récursivité en Pascal	Conclusion
	000	0	00	0	
	0	000	000	0	
		0000			

Tours de Hanoï en PASCAL

Récursivité en Pascal

Une procédure de résolution des tours de Hanoï :

Algorithmes récursifs Licence ST-A, USTL - API2 Algorithmes récursifs Licence ST-A, USTL - API2 Licence ST-A, USTL - API2

Plan Introduction Algorithmes récursifs Types de récursivité Récursivité en PASCAL Conclusion

Prédicats de parité en PASCAL

Récursivité en Pascal

Les prédicats de test de parité :

```
Listing
  //impair(n) = vrai si et seulement si n est impair
  function impair(n : CARDINAL) : BOOLEAN; forward;
  //pair(n) = vrai si et seulement si n est pair
  function pair(n : CARDINAL) : BOOLEAN;
  begin
    if n=0 then
      pair := true
      pair := impair(n-1);
  end {pair};
  function impair(n : CARDINAL) : BOOLEAN;
  begin
    if n=0 then
      impair := false
      impair := pair(n-1);
  end {impair};
```

Algorithmes récursifs

Licence ST-A, USTL - API2

Plan	Introduction	Algorithmes récursifs	Types de récursivité	Récursivité en PASCAL	Conclusion
	000	0	00	0	
	0	000	00	0	
	0	00	000	0	

Conclusion

- ► La récursivité est un moyen naturel de résolution de certains problèmes.
- ▶ Tout algorithme itératif peut s'exprimer de manière récursive.
- ▶ Beaucoup de langages de programmation, dont PASCAL, permettent d'exprimer des algorithmes récursifs.