3.3.3 Arbol de decisión de clasificación

December 26, 2020

1 Árbol de decisión de clasificación

Dado que el análisis exploratorio de este set de datos ya se realizó en las actividades anteriores ahora solo se procede directo a la creación, entrenamiento y validación del modelo y su correspondiente evaluación.

```
[1]: # Carga de datos
     import pandas as pd
     import numpy as np
     from sklearn import datasets
     dataset = datasets.load_breast_cancer()
     data_frame = pd.DataFrame(np.c_[dataset['data'], dataset['target']],
                       columns= np.append(dataset['feature_names'], ['target']))
     data_frame
[1]:
         mean radius
                       mean texture mean perimeter
                                                     mean area mean smoothness
                17.99
                              10.38
                                             122.80
                                                        1001.0
                                                                         0.11840
```

U	17.99	10.38	122.80	1001.0	0.11840
1	20.57	17.77	132.90	1326.0	0.08474
2	19.69	21.25	130.00	1203.0	0.10960
3	11.42	20.38	77.58	386.1	0.14250
4	20.29	14.34	135.10	1297.0	0.10030
	•••	•••		•	•••
564	21.56	22.39	142.00	1479.0	0.11100
565	20.13	28.25	131.20	1261.0	0.09780
566	16.60	28.08	108.30	858.1	0.08455
567	20.60	29.33	140.10	1265.0	0.11780
568	7.76	24.54	47.92	181.0	0.05263
	mean compactness	mean concavity	mean conca	ave points	mean symmetry \
0	0.27760	0.30010		0.14710	0.2419
1	0.07864	0.08690		0.07017	0.1812
2	0.15990	0.19740		0.12790	0.2069
3	0.28390	0.24140		0.10520	0.2597
4	0.13280	0.19800		0.10430	0.1809
4	0.13280 	0.19800			0.1809
		•••		0.10430 	•••
 564	 0.11590	 0.24390		0.10430 0.13890	 0.1726

567 568	0.27700 0.04362	0.35140 0.00000	0.15200 0.00000	0.2397 0.1587
0 1 2 3 4	mean fractal dimension 0.07871 0.05667 0.05999 0.09744 0.05883	worst texture 17.33 23.41 25.53 26.50 16.67	worst perimeter 184.60 158.80 152.50 98.87 152.20	worst area \ 2019.0 1956.0 1709.0 567.7 1575.0
564 565 566 567 568	 0.05623 0.05533 0.05648 0.07016 0.05884	26.40 38.25 34.12 39.42 30.37	 166.10 155.00 126.70 184.60 59.16	 2027.0 1731.0 1124.0 1821.0 268.6
0 1 2 3 4 564 565 566 567 568	worst smoothness worst 0.16220 0.12380 0.14440 0.20980 0.13740 0.14100 0.11660 0.11390 0.16500 0.08996	compactness wors 0.66560 0.18660 0.42450 0.86630 0.20500 0.21130 0.19220 0.30940 0.86810 0.06444	0.7119 0.2416 0.4504 0.6869 0.4000 0.4107 0.3215 0.3403 0.9387 0.0000	
0 1 2 3 4 564 565 566 567 568	worst concave points wo 0.2654 0.1860 0.2430 0.2575 0.1625 0.2216 0.1628 0.1418 0.2650 0.0000	0.4601 0.2750 0.3613 0.6638 0.2364 0.2060 0.2572 0.2218 0.4087 0.2871	0.1189 0.0899 0.0879 0.1730 0.076 0.0711 0.0666 0.0789 0.1240 0.0703	90 0.0 92 0.0 58 0.0 90 0.0 78 0.0 15 0.0 37 0.0 90 0.0

[569 rows x 31 columns]

1.1 Preparación de los datos

```
[2]: # Selecciona las variables
X = data_frame.drop(["target"],axis=1)

# Rescata la etiqueta
y = data_frame.target
```

1.2 Creación del modelo, entrenamiento, validación y evaluación

Precisión del modelo: 0.8771929824561403 Accuracy del modelo: 0.8771929824561403

1.3 Representación gráfica del árbol

```
[18]: from sklearn.tree import plot_tree
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(30, 10))

print(f"Profundidad del árbol: {modelo.get_depth()}")
print(f"Número de nodos terminales: {modelo.get_n_leaves()}")

plot = plot_tree(
```

```
decision_tree = modelo,
  feature_names = data_frame.drop(columns = ["target"]).columns,
  class_names = 'target',
  filled = True,
  impurity = False,
  fontsize = 10,
  precision = 2,
  ax = ax
)
```

Profundidad del árbol: 6 Número de nodos terminales: 19

