รหัสนักศึกษา630510600 ชื่อสกุล คณฑิลากล 6พวัสุลพินภา ตอนที่ 2

Assignment2 (28 มิ.ย. 65) : Asymptotic Notation1 กำหนดส่งงาน : จ. 11 ก.ค. 65 (เวลา 23.59 น.) ให้นักศึกษา

- 1. เขียนคำตอบตามโจทย์กำหนดด้วยลายมือ แล้วถ่ายรูป (นามสกุล .jpg) หรือไฟล์ pdf ส่งที่เว็บส่งการบ้านภาควิชาพ
- 2. ตั้งชื่อไฟล์ในรูปแบบ assign_x_id เมื่อ x คือหมายเลข Assignment และ id คือ รหัสนักศึกษา

 (กรณีส่งหลายไฟล์ให้ตั้งชื่อเป็น assign_01_id_a.jpg โดย a หมายถึง ลำดับไฟล์ แล้วทำการ zip รวมทุกไฟล์ส่งในงาน

 Assignment เดียวกันด้วยชื่อ assign_01 id.zip แทน)
- 3. ส่งงานภายในวันเวลาที่กำหนด หากส่งเลยกำหนดให้ชี้แจงเหตุผลกับอ. ประจำ section (พิจารณาคะแนนตามเหตุผล)

จากฟังก์ชัน f(n) และ g(n) ที่กำหนดให้ต่อไปนี้ จงพิสูจน์หา Asymptotic Notation สำหรับฟังก์ชัน f(n) ตามที่ กำหนดใน คอลัมน์สุดท้ายของตาราง

	f(n)	g(n)	Show that
1.	6n ³	n²	$f(n)=\Theta(g(n))$?
2.	7n + 8	n²	f(n)=o(g(n)) ?
3.	3 log n + 5	log n	f(n)=O(g(n)) ?
4.	n³+n log n	n ³	f(n)= Θ (g(n)) ?
5.	(1/2) n ² - 3n	n²	f(n)= Θ (g(n)) ?
6.	n ^{log4}	3 ^{log n}	f(n)= ω (g(n)) ?

n 2002 4

3 los 3 n

1.) $f(n) = 6n^3$, $g(n) = n^2$. Show that $f(n) \in \Theta(g(n))$. Given $f(n) = 6n^3$, and $g(n) = n^2$

for all positive integer n.

To show that $f(n) \in \Theta(g(n))$, then find some constants $c_1, c_2, n_0 > 0$, such that

0 < c1. g(n) < f(n) (c2 g(n); \n> no

case 1: consider $c_1 \cdot g(n) \leq f(n)$ $c_1 \times l \leq g(n) \leq f(n)$ $c_1 \times l \leq g(n) \leq g(n)$ $f(n) \leq$

Choose $C_1 = 6$, $n_0 = 1$, then C_1 , n_0 satisfy (1). Thus, this case is true.

Coap 2: Consider $f(n) \leq C_2 \cdot g(n)$ $f(n) \leq C_2 \cdot n^2$ $6n \leq C_2 \quad (2)$

Since we cannot find no that \n > no because of (2), then it does not satisfy (*).

. The statement $f(n) \in O(g(n))$ is false.

2.) f(n) = 7n+9, $g(n) = n^2$. Show that f(n) = o(g(n)).

Given f(n) = 7n + 7, and $g(n) = n^2$ for all positive integer n.

To show that $f(n) \in o(g(n))$, then we have to find some constants c, n_o , such that $0 \le f(n) \le cg(n)$; $\forall n > n_o$ (40) Consider $f(n) \le c \cdot g(n)$

 $7n+6 < C \cdot n^2$ $\frac{7}{n} + \frac{3}{n^2} < C \qquad (1)$

choose c=16, ho=1, then complho satisfy (1), which also satisfy (x).

.. The statement $f(n) \in O(g(n))$ is true.

3.) $f(n) = 3 \log_2 n + 5$, $g(n) = \log_2 n$. Show that f(n) = O(g(n)).

Given $f(n) = 3\log_{10}n + 5$, $g(n) = \log_{10}n$; for all positive integer n.

To show that $f(n) \in O(g(n))$, then we have to find some constants c, $h_0 > 0$, such that

0 ≤ f(n) ≤ c·g(n); ∀n≥no (*)

consider f(n) (c.g(n)

 $3 \log_{1}n+5 \leq c \log_{1}n$ $3 + \frac{5}{\log_{1}n} \leq c \quad ; \quad n > 1 \quad (1)$

Choose c = T, $h_o = 2$, then c and h_o satisfy (1), which also satisfy (*)

.. The statement f(n) = O(g(n)) is true. D

(1.) $f(n) = n^3 + h \log_2 h$, $g(n) = n^5$. Show that $f(n) = \theta(g(n))$.

Given fln) = n3+nlogzh, g(n) = n3; for all positive integer n.

To show that $f(n) \in \Theta(g(n))$, then we have to find some constants $c_2c_2, n_3 > 0$, such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$; $\forall n \ge n_3(x)$

Case 1: consider $c_1 g(n) \leq f(n)$ $c_2 n^3 \leq n^3 + n \log_e n$ $c_1 \leq 1 + \frac{\log_e n}{n^2}$ (1)

choose $c_1 = 1$, $n_0 = 1$, then c_1 and n_0 satisfy (1).

cose 2: consider $f(n) \le c_2 g(n)$. $n^3 + n \log_2 n \le c_2 n^3$ $1 + \frac{\log_2 n}{n^2} \le c_2$ $1 + \frac{\log_2 n}{n^2} \le$

Since both (1) and (1) are satisfied, then (*) is satisfied.

The statement $f(n) = \Theta(g(n))$ is true.

5.) $f(n) = \frac{1}{2}n^2 - 3n$, $g(n) = h^2$. Show that $f(n) = \Theta(g(n))$.

Given $f(n) = \frac{1}{2}n^2 - 3n$, $g(n) = n^2$; for an positive integer n.

To show that $f(n) \in \Theta(S(n))$, then we have to find Guch constants $c_1, c_2, n_0 > 0$, such that

0 5 c2 g(n) 6 f(n) 5 c2 g(n); Vn>n(*)

Case 1: consider $C_1 \leq C_1 \leq C_1 \leq C_1 \leq C_2 \leq C_1 \leq C_2 \leq$

Choose $C_1 = \frac{1}{8}$, $n_0 = 8$, then $\frac{1}{8} < \frac{1}{2} - \frac{3}{8} = \frac{1}{8}$

Can how satisfy (1)

Call 2: Consider $f(n) \in C_2S(n)$ $\frac{1}{2}n^2 - 3n \in C_2n^2$ $\frac{1}{2} - \frac{3}{n} \in C_2$

Choose $c_2 = \frac{1}{2}$, $n_0 = 8$, then $\frac{1}{2} - \frac{3}{4} = \frac{1}{4} < \frac{1}{2}$

cz, no satisfy (2)

Since (1) and (2) are satisfied, then (*)
is saxisfied as well.

.. The statement $f(n) = \Theta(g(n))$ is true.

6.) $f(n) = n \frac{\log_1 4}{2}$, $g(n) = 3 \frac{\log_2 n}{2}$. Show that $f(n) = \omega(g(n))$. Given $f(n) = n \frac{\log_2 4}{2}$, $g(n) = 3 \frac{\log_2 n}{2}$;

for all positive integer N.

To show that $f(n) \in \omega(g(n))$, then we have to find such constants e, no >0,

Such that $0 \leq CS(n) \leq f(n); \forall n \geqslant n_0(*)$ Consider $CS(n) \leq f(n)$ $C \leq f(n) \leq f(n)$

Chapte $c = \frac{1}{2}$, $h_0 = 1$, then c, h_0 satisfy (1), that also satisfy (*).

 $c < h^{2-\log_2 3}$ (1)

.. The Statement f(n) = CO(g(n) is true.