Розв'язні групи

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

2 листопада 2022

FACULTY OF MECHANICS AND MATHEMATICS

1/8

Ряд комутантів

Для довільної групи G її *ряд комутантів* визначається як такий ряд підгруп $G^{(0)}$, $G^{(1)}$, групи G, що

$$G^{(0)} = G, G^{(1)} = [G, G], G^{(k+1)} = [G^{(k)}, G^{(k)}], k > 1.$$

Очевидно, що

$$G^{(0)} \rhd G^{(1)} \rhd G^{(2)} \rhd \cdots$$

Вправа

Довести, що $G^{(k+l)} = (G^{(k)})^{(l)}$.

2/8

Розв'язні групи

Означення

Група G називається *розв'язною*, якщо існує таке $n \in \mathbb{N}$, що $G^{(n)} = \{e\}$. Найменше таке $n \in \mathbb{N}$ називається *ступенем розв'язності* групі G.

Приклад

- Кожна абелева група є розв'язною ступеня 1.
- **2** $G = S_3 \epsilon$ розв'язною ступеня 2: $G^{(1)} = [S_3, S_3] = \mathcal{A}_3, G^{(2)} = [\mathcal{A}_3, \mathcal{A}_3] = \{\epsilon\}.$
- \bigcirc \mathcal{A}_n , $n \ge 5$, не є розв'язною.

Теорема

Нехай N — нормальна підгрупа групи G. Група G є розв'язною тоді і лише тоді, коли N та G/N є розв'язними.

$$G=G^{(0)}\rhd G^{(1)}\rhd G^{(2)}\rhd \cdots$$

Лема

Якщо $f: G \to H$ — гомоморфізм, то $f(G^{(i)}) < H^{(i)}$. Якщо $f: G \to H$ — епіморфізм, то $f(G^{(i)}) = H^{(i)}$.

Доведення.

 $G^{(i+1)} = [G^{(i)}, G^{(i)}] \Rightarrow$ досить довести f(G') < H'. Для довільних $g_1, g_2 \in G$:

$$f([g_1, g_2]) = f(g_1^{-1}g_2^{-1}g_1g_2) = f(g_1)^{-1}f(g_2)^{-1}f(g_1)f(g_2) =$$

= $[f(g_1), f(g_2)] \in H'$.

Доведення теореми.

(⇒) Нехай $\sigma: N \to G$ — канонічне вкладення, $\pi: G \to G/N$ — канонічна проекція та G — розв'язна група ступеня n.

•
$$\sigma(N) < G \Rightarrow N^{(n)} < G^{(n)} = \{e\} \Rightarrow N$$
 — розв'язна.

•
$$(G/N)^{(n)} = \pi(G^{(n)}) = \pi(\{e\}) = \{e\} \Rightarrow G/N$$
 — розв'язна.

(⇐) Нехай N — розв'язна ступеня k, G/N — розв'язна ступеня l.

Тоді

$$(G/N)^{(l)} = \pi(G^{(l)}) = \{e\} \Rightarrow G^{(l)} < \text{Ker } \pi = N.$$

Отже,

$$G^{(k+l)} = (G^{(l)})^{(k)} < N^{(k)} = \{e\} \Rightarrow G$$
 — розв'язна. \square

Еквівалентне означення розв'язності

Означення

Група G називається розв'язною, якщо існує такий ряд підгруп

$$G = G_0 > G_1 > G_2 \cdots > G_n = \{e\},$$

що $G_{i-1} \triangleright G_i$, $i=1,\ldots,n$, та G_{i-1}/G_i — абелева.

Приклад

 \mathcal{S}_4 — розв'язна, бо існує ряд нормальних підгруп

$$\{\varepsilon\} \triangleleft K_4 \triangleleft \mathcal{A}_4 \triangleleft \mathcal{S}_4$$
,

у якому всі факторгрупи $K_4/\{\varepsilon\}$, \mathcal{A}_4/K_4 та $\mathcal{S}_4/\mathcal{A}_4$ — абелеві.

Теорема Томпсона-Фейта

Теорема

Кожна скінченна група непарного порядку є розв'язною.