Data Wrangling Report

Introduction

This project I will be focused on wrangling tweets archive and deliver interesting findings of Twitter user @dog_rate also known as WeRateDogs. WeRateDogs is a Twitter account that rates people's dog with humorous comment about the dog. WeRateDogs has over 4 million followers and has received international media coverage. This short report, I will be describing wrangling efforts which consists of gathering, assessing and cleaning data on WeRateDogs project.

Gathering Data

The data was gathered from three different sources:

- 1. twitter: twitter_archive_enhanced.csv is provided by Udacity and can be downloaded manually which contains 2356 row tweets archive
- 2. img_prediction: (image_prediction.tsv). The file contains prediction result of dog breeds. It was hosted on Udacity's server and was downloaded programmatically using the Request library with given URL
- 3. tweet_json.txt: retweet and favourite count were gathered and stored in txt file via Tweety library and Twitter's API

Assessing Data

The goal of assessing data is to improve quality and tidiness issue. Most of the data are messy, dirty and redundance and are not applicable for analysis.

Quality Issues

- 1. HTML entities found in 'source', can be fixed by extract important text to enhance readability.
- 2. Incorrect 'source' datatype. Convert 'source' datatype to categorical.
- 3. 'timestamp' can be converted to datetime format
- 4. Incorrect rating denominators, it should be 10
- 5. Some rating numerators are too large
- 6. We are going to assess and analyse "original tweets", no "retweets".
- 7. Null represented as 'None' in columns 'name'
- 8. Uncapitalized texts are incorrect in 'name' column. Example "a", "an", "the" etc
- 9. Image prediction contains data redundancy

Tidiness Issues

- 1. twitter's doggo, floofer, pupper, and puppo columns should be merged into one column
- 2. All three files have tweet_id column, which can be merge into one dataframe.
- 3. Dropping unnecessary column that are not useful for analysis.

Cleaning Data

This is the final step for data wrangling process. There are three steps which are:

- Define: define and suggestion for the issue
- Code: code to rectify the issue
- Test: to validate the desire result whether it is achieved.

Result

Before wrangling

```
tweet_id
                                2356 non-null
                                                int64
    in_reply_to_status_id
                                                float64
                               78 non-null
    in_reply_to_user_id
                               78 non-null
                                                float64
                                2356 non-null
    timestamp
                                               object
    source
                               2356 non-null
                                               object
5
                               2356 non-null
    text
                                               object
    retweeted_status_id
                               181 non-null
                                                float64
    retweeted_status_user_id 181 non-null
                                               float64
8
    retweeted_status_timestamp 181 non-null
                                               object
    expanded_urls
                                2297 non-null
                                               object
10 rating_numerator
                               2356 non-null
11 rating_denominator
                                2356 non-null
                                               int64
                               2356 non-null
                                               object
12 name
13 doggo
                               2356 non-null
                                               object
                                2356 non-null
14 floofer
                                               object
15 pupper
                                2356 non-null
                                               object
                                2356 non-null
                                               object
dtypes: float64(4), int64(3), object(10)
```

memory usage: 313.0+ KB

After wrangling

```
Column
                          Non-Null Count Dtype
                          -----
    tweet_id
                         1643 non-null int64
                        1643 non-null
                                           datetime64[ns]
1
     timestamp
     source
                          1643 non-null
                                           category
                          1643 non-null
     text
                                           obiect
     expanded_urls 1643 non-null rating_numerator 1643 non-null
                                           object
                                            int64
    rating_denominator 1643 non-null
                                            int64
                          1253 non-null
                                           object
8 predictions 1643 non-null
9 confidence 1643 non-null
10 favorite_count 1643 non-null
                                           object
                                            float64
                                            int64
11 retweet_count
                        1643 non-null
                                            int64
12 dogo type
                          1643 non-null
                                           category
dtypes: category(2), datetime64[ns](1), float64(1), int64(5), object(4)
memory usage: 157.6+ KB
```

The initial dataset provided has contains 2356 row tweets archive. After wrangling, we have 1643 rows and 13 columns of data. The dataset is then storing in a csv file namely 'twitter_archive_master.csv' and it is now ready to be analyse.