EXERCÍCIOS DE FIXAÇÃO

1) Analise e resolva o sistema de equações abaixo pelo método do escalonamento

$$\begin{cases} 2x - 3y - z = 4 \\ x + 2y + z = 3 \end{cases}$$

$$3x - y - 2z = 1$$

$$S = (-1, 1, -1)$$

2) Resolva o sistema de equações abaixo pelo método de Cramer

$$\begin{cases} x - 2y - 2z = -1 \\ x - y + z = -2 \\ 2x + y + 3z = 1 \end{cases} S = (1, 2, -1)$$

Matemática Aplicada à Computação

Priscila Louise Leyser Santin priscila.santin@prof.unidombosco.edu.br

DEFINIÇÃO

 Vetor é um segmento de reta orientado que apresenta tamanho (módulo), direção e sentido

TAMANHO

Comprimento do vetor

DEFINIÇÃO

DIREÇÃO E SENTIDO

- As direções de um vetor podem ser definidas com base no sistema de coordenadas escolhido
- Usando-se o sistema cartesiano, as direções do espaço são x e y e um vetor pode ser escrito como V=(x,y) ou ainda como $\vec{v}=x\vec{\imath}+y\vec{\jmath}$

DEFININDO UM VETOR

- No vetor V = (x, y), x e y são as suas componentes horizontal e vertical
- Quando um vetor encontra-se inclinado, é possível determinar o tamanho das suas componentes desde que se conheça o ângulo θ formado entre o vetor e a direção horizontal

$$a_{x} = \vec{a}\cos(\theta)$$

$$a_{v} = \vec{a} \operatorname{sen}(\theta)$$

• Com base nas componentes a_x e a_y de um vetor, é possível calcular o seu tamanho (ou módulo – indicado por $|\vec{a}|$) pelo teorema de Pitágoras:

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2}$$

• Notação de vetores: \vec{u} , \vec{v} , \vec{w} , \vec{z}

- Quando escrevemos $\overrightarrow{u}=\overrightarrow{AB}$ estamos afirmando que o vetor é determinado pelo segmento orientado AB de origem em A e extremidade em B
- Todos os segmentos orientados que têm a mesma direção, o mesmo sentido e o mesmo comprimento são representantes de um mesmo vetor

- Um vetor \vec{u} é unitário se o seu comprimento é 1, ou seja, $|\vec{u}|$ =1
- O vetor nulo pode ser representado por $\vec{0}$
- Se \vec{u} e \vec{v} tem mesma direção, dizemos que eles são vetores paralelos e indicamos por \vec{u} // \vec{v}
- Os vetores \vec{u} e \vec{v} são ortogonais, se eles apresentam um ângulo reto entre eles $(\vec{u} \perp \vec{v})$

Exemplos:

- 1) Desenhe no plano cartesiano o vetor cujo início está no ponto (3,2) e o final no ponto (-2,5).
- 2) Desenhe no plano cartesiano o vetor cujo início está no ponto (-1, -2) e o final no ponto (2,4).

- Vetor resultante \vec{R} é o nome dado ao vetor que se obtém após realizar-se uma soma vetorial
- A soma de dois vetores $\vec{u}=(x_1,y_1)$ e $\vec{v}=(x_2,y_2)$ é o vetor resultante \vec{R} tal que $\vec{R}=\vec{u}+\vec{v}=(x_1+x_2,y_1+y_2)$

ADIÇÃO DE VETORES

Exemplos:

1) Calcule $\vec{u} + \vec{v}$ e $\vec{u} - \vec{v}$ quando $\vec{u} = (2,3)$; $\vec{v} = (-2,5)$, e determine o tamanho dos vetores resultantes.

2) Calcule $\vec{u} + \vec{v}$ e $\vec{u} - \vec{v}$ quando $\vec{u} = (-2,4)$; $\vec{v} = (1,-3)$, e determine o tamanho dos vetores resultantes.

MULTIPLICAÇÃO DE UM NÚMERO REAL POR VETOR

• Dado um vetor \vec{v} e um número real α , definimos o vetor $\alpha \cdot \vec{v}$ como:

$$\checkmark$$
 Se $\alpha=0$ ou $\vec{v}=\vec{0}$, então $\alpha\cdot\vec{v}=\vec{0}$

- \checkmark Se $\alpha \neq 0$ ou $\vec{v} \neq \vec{0}$, então $\alpha \cdot \vec{v}$ é o vetor tal que:
 - o vetor $\alpha \cdot \vec{v}$ é paralelo a \vec{v}
 - os vetores $\alpha \cdot \vec{v}$ e \vec{v} tem mesmos sentidos se $\alpha > 0$
 - os vetores $\alpha \cdot \vec{v}$ e \vec{v} tem sentidos opostos se $\alpha < 0$

MULTIPLICAÇÃO DE UM NÚMERO REAL POR VETOR

Exemplos:

a)
$$\vec{w} = 2 \cdot \vec{v}$$

$$\overrightarrow{W}$$

b)
$$\vec{r} = -2 \cdot \vec{v}$$

c)
$$\vec{s} = \frac{1}{2} \cdot \vec{v}$$

$$\overrightarrow{S}$$

MULTIPLICAÇÃO DE UM NÚMERO REAL POR VETOR

Exemplos:

1) Calcule o vetor $\vec{s} = 3\vec{u}$, sabendo que $\vec{u} = (-2,4)$.

2) Calcule o vetor $\vec{w} = -2\vec{r}$, sabendo que $\vec{r} = (1,3)$.

3) Calcule o vetor $\vec{z} = 2\vec{r} - 3\vec{s}$, sabendo que $\vec{r} = (2, -1)$ e $\vec{s} = (3, -2)$.

IGUALDADE DE VETORES

• Dois vetores $\vec{u}=(x_1,y_1)$ e $\vec{v}=(x_2,y_2)$ são iguais se, e somente se, $x_1=x_2$ e $y_1=y_2$

Exemplos:

Sejam os vetores $\vec{u}=(x-1,3)$ e $\vec{v}=(3,2y-1)$, determine x e y de tal forma que $\vec{u}=\vec{v}$

Sejam os vetores $\vec{u}=(x+2.4y)$ e $\vec{v}=(2y,3y+2)$, determine x e y de tal forma que $\vec{u}=\vec{v}$

PRODUTO ESCALAR DE VETORES

• Atribui-se o produto escalar de dois vetores $\vec{u}=(x_1,y_1)$ e $\vec{v}=(x_2,y_2)$ ao número real tal $\vec{u}\cdot\vec{v}=x_1x_2+y_1y_2$

Exemplos:

Calcule o seguinte produto escalar $\vec{u} \cdot \vec{v}$:

a)
$$\vec{u} = (-1,2,-3); \vec{v} = (2,5,-1)$$

b)
$$\vec{u} = (0,3); \vec{v} = (1,4)$$

PRODUTO VETORIAL

- O produto vetorial entre dois vetores é um terceiro vetor
- Atribui-se o produto vetorial a vetores tridimensionais
- O produto vetorial entre $\vec{u}=u_1\vec{i}+u_2\vec{j}+u_3\vec{k}$ e $\vec{v}=v_1\vec{i}+v_2\vec{j}+v_3\vec{k}$ é denotado $\vec{u}\times\vec{v}$ e é definido como:

$$\vec{u} \times \vec{v} = (u_2 v_3 - u_3 v_2) \vec{i} + (u_3 v_1 - u_1 v_3) \vec{j} + (u_1 v_2 - u_2 v_1) \vec{k}$$

$$\vec{u} \times \vec{v} = \begin{bmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$$

PRODUTO VETORIAL

Exemplos:

Dados os vetores \vec{u} e \vec{v} , calcule $\vec{u} \times \vec{v}$.

a)
$$\vec{u} = (2,1) e \vec{v} = (4,-1)$$

b)
$$\vec{u} = (3,1,2) \text{ e } \vec{v} = (-2,2,5)$$

EXERCÍCIOS DE FIXAÇÃO

- 1) Calcule $\vec{u} + \vec{v}$ e $\vec{u} \vec{v}$ quando $\vec{u} = (0,3)$; $\vec{v} = (3,2)$, e determine o tamanho dos vetores resultantes.
- 2) Calcule o vetor $\vec{r}=-2\vec{v}$, sabendo que $\vec{v}=(-3,2)$.
- 3) Sejam os vetores $\vec{u}=(3,y+1)$ e $\vec{v}=(x-2,-3)$, determine x e y de tal forma que $\vec{u}=\vec{v}$.
- 4) Calcule o produtos escalar $(\vec{u} \cdot \vec{v})$ entre o vetor $\vec{u} = (7,3)$ e $\vec{v} = (4,5)$.
- 5) Dados os vetores $\vec{u} = (1, -1, -4)$ e $\vec{v} = (3, 2, -2)$, calcule $\vec{u} \times \vec{v}$.

EXERCÍCIOS DE FIXAÇÃO

- 1) Calcule $\vec{u} + \vec{v}$ e $\vec{u} \vec{v}$ quando $\vec{u} = (0,3)$; $\vec{v} = (3,2)$, e determine o tamanho dos vetores resultantes. $\vec{R} : \vec{u} + \vec{v} = (3,5)$; $\vec{u} \vec{v} = (-3,1)$
- 2) Calcule o vetor $\vec{r} = -2\vec{v}$, sabendo que $\vec{v} = (-3,2)$. *R.:* $\vec{r} = (6,-4)$
- 3) Sejam os vetores $\vec{u}=(3,y+1)$ e $\vec{v}=(x-2,-3)$, determine x e y de tal forma que $\vec{u}=\vec{v}$. R: x=5; y=-4
- 4) Calcule o produtos escalar $(\vec{u} \cdot \vec{v})$ entre o vetor $\vec{u} = (7,3)$ e $\vec{v} = (4,5)$. R.: 43
- 5) Dados os vetores $\vec{u} = (1, -1, -4)$ e $\vec{v} = (3, 2, -2)$, calcule $\vec{u} \times \vec{v}$. R.: $\vec{u} \times \vec{v} = (10, -10, 5)$

Análise e Desenvolvimento de Sistemas Gestão de Tecnologia da Informação

Matemática Aplicada à Computação

Priscila Louise Leyser Santin priscila.santin@prof.unidombosco.edu.br