# TFE4208 Lab 2, Løsningsforslag forarbeide

# KRETS\_1



Design av KRETS\_1

### Skrivebordstest av KRETS\_1

| $DI_1[30]$ | $DO_1[30]$ (EN <sub>1</sub> =0) | $DO_1[30] (EN_1=1)$ |
|------------|---------------------------------|---------------------|
| 0000       | 0000                            | 1111                |
| 0001       | 0001                            | 1110                |
| 0010       | 0010                            | 1101                |
| 0011       | 0011                            | 1100                |
| 0100       | 0100                            | 1011                |
| 0101       | 0101                            | 1010                |
| 0110       | 0110                            | 1001                |
| 0111       | 0111                            | 1000                |
| 1000       | 1000                            | 0111                |
| 1001       | 1001                            | 0110                |
| 1010       | 1010                            | 0101                |
| 1011       | 1011                            | 0100                |
| 1100       | 1100                            | 0011                |
| 1101       | 1101                            | 0010                |
| 1110       | 1110                            | 0001                |
| 1111       | 1111                            | 0000                |

## KRETS\_2



Design av KRETS\_2

### Skrivebordstest av KRETS\_2

| DI-[2 0]             | EN                   | = 0             | EN                   | = 1             |
|----------------------|----------------------|-----------------|----------------------|-----------------|
| DI <sub>2</sub> [30] | DO <sub>2</sub> [30] | CO <sub>2</sub> | DO <sub>2</sub> [30] | CO <sub>2</sub> |
| 0000                 | 0000                 | 0               | 0001                 | 0               |
| 0001                 | 0001                 | 0               | 0010                 | 0               |
| 0010                 | 0010                 | 0               | 0011                 | 0               |
| 0011                 | 0011                 | 0               | 0100                 | 0               |
| 0100                 | 0100                 | 0               | 0101                 | 0               |
| 0101                 | 0101                 | 0               | 0110                 | 0               |
| 0110                 | 0110                 | 0               | 0111                 | 0               |
| 0111                 | 0111                 | 0               | 1000                 | 0               |
| 1000                 | 1000                 | 0               | 1001                 | 0               |
| 1001                 | 1001                 | 0               | 1010                 | 0               |
| 1010                 | 1010                 | 0               | 1011                 | 0               |
| 1011                 | 1011                 | 0               | 1100                 | 0               |
| 1100                 | 1100                 | 0               | 1101                 | 0               |
| 1101                 | 1101                 | 0               | 1110                 | 0               |
| 1110                 | 1110                 | 0               | 1111                 | 0               |
| 1111                 | 1111                 | 0               | 0000                 | 1               |

## KRETS\_12





Design ABS-kretsen

## Testplan for KRETS\_12

| I               | nngangssignaler | •               | Utgangs         | signaler        |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| $\mathbf{DI}_1$ | EN <sub>1</sub> | EN <sub>2</sub> | DO <sub>2</sub> | CO <sub>2</sub> |
| 0x5 (5)         | 0               | 0               | 0x5 (5)         | 0               |
| 0x5(5)          | 0               | 1               | 0x6 (6)         | 0               |
| 0x5(5)          | 1               | 0               | 0xA (-6)        | 0               |
| 0x5(5)          | 1               | 1               | 0xB (-5)        | 0               |
| 0x8 (-8)        | 0               | 0               | 0x8 (8)         | 0               |
| 0x8 (-8)        | 0               | 1               | 0x9 (9)         | 0               |
| 0x8 (-8)        | 1               | 0               | 0x7 (7)         | 0               |
| 0x8 (-8)        | 1               | 1               | 0x8 (-8)        | 0               |
| 0x0(0)          | 0               | 0               | 0x0(0)          | 0               |
| 0x0(0)          | 0               | 1               | 0x1 (1)         | 0               |
| 0x0(0)          | 1               | 0               | 0xF (-1)        | 0               |
| 0x0(0)          | 1               | 1               | 0x0 (0)         | 1               |

## **Testplan for ABS**

| Inngangssignaler |                 | Utgangssignaler |
|------------------|-----------------|-----------------|
| EN <sub>1</sub>  | DI <sub>1</sub> | DO <sub>2</sub> |
| 0                | 0xA893          | 0xA893          |
| 1                | 0xA893          | 0x576D          |
| 0                | 0x576D          | 0x576D          |
| 1                | 0x576D          | 0x576D          |
| 0                | 0x7FFF          | 0x7FFF          |
| 1                | 0x7FFF          | 0x7FFF          |
| 0                | 0x8001          | 0x8001          |
| 1                | 0x8001          | 0x7FFF          |
| 0                | 0x884E          | 0x884E          |
| 1                | 0x884E          | 0x77B2          |
| 0                | 0x77B2          | 0x77B2          |
| 1                | 0x77B2          | 0x77B2          |

## Forklaring av virkemåten til ABS-modulen

ABS modulen gjør negative tall positive. Positive tall slippes uforandret gjennom. Dette gjelder dersom ENABS er '1'. Hvis ENABS er '0', slippes alle tall uforandret gjennom.

#### 0x8000

0x8000 er det største negative tallet man kan representere med 16 bit på toers komplement form (-32768). Det finnes ikke et tilsvarende positivt tall. Det største positive tall er 32767. Derfor blir svaret ikke gyldig/riktig etter toerkomplement-konverteringen.

Når man inverterer 0x8000 får man 0x7FFF. Legger man til 0x0001 til dette tallet får man 0x8000.

### Løsningsforslag labarbeide

#### Fase 2

bdf betyr "block design file".

#### Fase 4

Nedenfor vises et eksempelutsnitt av et simuleringsvindu (for ABSLT). I overgangene mellom to stabile faser kan det vises flere verdier fordi de ulike utgangene ut av kretsen endres til forskjellig tid. Dette igjen skyldes at det er ulik forsinkelse fra inngangspinnene til de ulike utgangspinnene.

#### Fase 5

Antall LE'er er 2716 (eller der omkring).

Dersom bussen mellom B[15..0] og Result\_B[15..0] fjernes så vil ikke lenger data som legges inn i B-registeret ved hjelp av tastaturet vises i sjusegmentdisplay hex4..7.

#### Fase 6

Ytterligere svar på spørsmål fra fase 5:

- En LE er et logisk element, og består av en fire input oppslagstabell og en D-vippe. Det er 35.000 LE'er i vår FPGA.
- USB-kabelen benyttes bare til å laste konfigurereingsfilen ned på FPGAen. Når det er gjort har det ingen konsekvenser for oppførselen til lydbehandlingssystemet om den kobles fra.

