

Chapter 1

Lecture 2

26/2/2022

Book: Sections 1.1.6 to 1.3.2

Lecture Contents

Logic circuits (digital circuit)

Propositional equivalences

Laws of Propositional Logic

- Tautology
- Contradiction
- Contingency
- 1. Identity laws
- 2. Domination laws
- 3. Idempotent laws
- 4. Double negation law
- 5. Commutative laws
- 6. Associative laws
- 7. Distributive law
- 8. De Morgan's laws
- 9. Absorption laws
- 10. Negation laws

- Computers represent information using bits. A bit is a symbol with two possible values: 0 (zero) and 1 (one).
 - 1 represents T (true)
 - 0 represents F (false)
- A variable is called a Boolean variable if its value is either true or false.
- A Boolean variable can be represented using a bit.

Bit string

- A bit string is a sequence of zero or one bits.
- The length of bit string is the number of bits in the string.

Example

101010011 is a bit string of length nine.

Truth Value	Bit
Т	1
F	0

x	у	$x \lor y$	$x \wedge y$	$x \oplus y$
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	0

Example

Find the bitwise OR, bitwise AND, and bitwise XOR of the bit strings:
01 1011 0110 - 11 0001 1101

0	1	1	0	1	1	0	1	1	0
1	1	0	0	0	1	1	1	0	1

- Which of the following bits is the negation of the bits "010110"?
- a) 111001

b) 001001

c) 101001

d) 111111

- If A is "001100" and B is "010101" then what is the value of A (Ex-or) B?
- a) 000000

b) 111111

c) 001101

d) 011001

- Which of the following option is suitable, if A is "10110110", B is "11100000" and C is "10100000"?
- a) C=A or B

b) C=¬A

- c) C=¬B
- d) C=A and B

- A logic circuit (or digital circuit) receives input signals p_1, p_2, \ldots, p_n , each a bit [either 0 (off) or 1 (on)], and produces output signals s_1, s_2, \ldots, s_n , each a bit.
- In this course, we will restrict our attention to logic circuits with a single output signal; in general, digital circuits may have multiple outputs.
- Complicated digital circuits can be constructed from three basic circuits, called gates.

AND gate (Boolean Product)

AND gates can be extended to arbitrary n inputs.

OR gate (Boolean Sum)

OR gates can be extended to arbitrary n inputs.

$$\begin{array}{c} p_1 \\ p_2 \end{array} \longrightarrow \begin{array}{c} p_1 \lor p_2 \lor \dots \lor p_r \\ p_n \end{array}$$

NOT gate (Boolean Complement)

Combination of Gates

Example (1)

Solution

Example (2)

Example (2)

Example (3)

Homework (2)

يسلم في السيكشن القادم

Problem (1)

Build a digital circuit that produces the output:

$$(p \vee \neg r) \wedge (\neg p \vee (q \vee \neg r))$$

when given input bits p, q, and r.

Problem (2)

Find the output of the given circuit.

Problem (3)

Find the output of the given circuit.

The compound propositions can be classified <u>according to their possible truth values</u> into three types:

Example (1)

Show that following conditional statement is a tautology by using truth table:

р	¬р	р∨¬р
Т	F	Т
F	Т	Т
Т	F	Т
F	Т	Т

■
$$p \land q \rightarrow p$$

р	q	р∧q	$p \land q \rightarrow p$
Т	Т	Т	Т
F	Т	F	Т
Т	F	F	Т
F	F	F	Т

■ $p \land q \rightarrow p$ is a tautology

Logical Equivalences

- Compound propositions that <u>have the same truth values in all possible</u> cases are called logically equivalent.
- The notation p ≡ q denotes that p and q are logically equivalent.

p	q	$p \leftrightarrow q$
T	T	Т
T	F	F
F	T	F
F	F	T

Example (1)

Show that $\neg(p \lor q)$ and $\neg p \land \neg q$ are logically equivalent.

р	q	p∨q	¬(p ∨ q)	¬р	¬q	¬р∧¬q
Т	Т	Т	F	F	F	F
F	Т	Т	F	Т	F	F
Т	F	Т	F	F	Т	F
F	F	F	Т	Т	Т	Т

So, $\neg(p \lor q) \leftrightarrow (\neg p \land \neg q)$ is logically equivalent

Example (2)

Show that $\neg p \lor q$ and $p \to q$ are logically equivalent.

р	q	¬р	¬p∨q	$p \to q$
Т	Т	F	Т	Т
F	Т	Т	Т	Т
Т	F	F	F	F
F	F	Т	Т	Т

So, $\neg p \lor q$ and $p \to q$ is logically equivalent

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	Т

Example (3)

Show that $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent.

р	q	r	q∧r	p ∨ (q ∧ r)	p∨q	p∨r	(p ∨ q) ∧ (p ∨ r)
Т	Т	Т	Т	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
Т	F	Т	F	Т	Т	Т	Т
F	F	Т	F	F	F	Т	F
Т	Т	F	F	Т	Т	Т	Т
F	Т	F	F	F	Т	F	F
T	F	F	F	Т	Т	Т	T
F	F	F	F	F	F	F	F

So, p \vee (q \wedge r) and (p \vee q) \wedge (p \vee r) is logically equivalent

1.3. Laws of Propositional Logic

Logical Equivalences.				
$p \wedge \mathbf{T} \equiv p$	Identity laws			
$p \vee \mathbf{F} \equiv p$				
$p \lor \mathbf{T} \equiv \mathbf{T}$	Domination laws			
$p \wedge \mathbf{F} \equiv \mathbf{F}$				
$p\vee p\equiv p$	Idempotent laws			
$p \wedge p \equiv p$				
$\neg(\neg p) \equiv p$	Double negation law			
$p \vee q \equiv q \vee p$	Commutative laws			
$p \wedge q \equiv q \wedge p$				

T compound proposition is always true F compound proposition is always false

Logical Equivalences.						
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws					
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws					
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws					
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws					
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws					

Thank you