Knowledge Inference

A. Alvarez, A. Arruarte, M. Larrañaga Lenguajes y Sistemas Informáticos UPV/EHU

Knowledge Inference

- Also called Latent Knowledge Estimation
 - Latent: "not directly measurable"
 - Knowledge that we have that we have not yet harnessed

Goal

- Measuring what a student knows at a specific time
- Measuring what relevant knowledge components a student knows at a specific time

Knowledge Component

- Anything a student can know that is meaningful to the current learning situation
 - Skill
 - Fact
 - Concept
 - Principle
 - - ...

Why is it useful to measure student knowledge?

- Primary goal in education
 - Enhancing student knowledge
- If you can measure it,
 - You know whether you are making it better
 - You can inform instructors, students, peers... about it
 - You can automated pedagogical decisions

How do we get at latent knowledge?

- We can't measure it directly
- We can't look directly into the brain
 - Yet
- But we can look at performance
- And we can look at performance over time
 - More information than performance at one specific moment

Not trivial...

• This is a research problem with a long history...

Some approaches for Latent Knowledge Estimation/Knowledge Inference

Bayesian Knowledge Tracing

Corbett and Anderson, 1995

- Performance Factor Analysis
 Pavlik et al., 2009
- Item Response Theory Baker, 2001
- Q-matrix
 Barnes, 2005
- Others

Bayesian Knowledge Tracing (BKT)

- Classic approach for measuring tightly defined skill in online learning
- Thoroughly articulated and studied by Albert Corbett and John Anderson (1995)
 - Variation of Bayesian calculations proposed by Richard Atkinson in the 1970s

Key goal of BKT

 Measuring how well a student knows a specific skill/knowledge component at a specific time

 Based on their past history of performance with that skill/knowledge component

Skills should be tightly defined

- The goal in not to measure overall skill for a broadly-defined construct
 - Such as arithmetic
- But to measure a specific skill or KC
 - Such as addition of two-digit numbers where no carrying is needed
- Unlike approaches such as Item Response Theory

Typical use of BKT

- Assess a student's knowledge of skill/KC
- Based on a sequence of items that are dichotomously scored
 - E.g. the student can get a score of 0 or 1 on each item
- Where each item corresponds to a single skill
- Where the student can learn on each item due to help, feedback, scaffolding, etc.

Key assumptions of BKT

- Each item must provide a single latent skill
- Each skill has four parameters
- Parameters & Pattern of successes and failures the student has had on each relevant skill we can compute:
 - P(L_n): Latent knowledge
 - P(CORR): Probability the learner will get the item correct

Key assumptions of BKT

- Two-state learning model
 - Learned or Unlearned
- The student can learn a skill at each opportunity to apply the skill
- A student does not forget a skill, once s/he knows it

Model performance assumptions

- If the student knows a skill
 - There is still some chance the student will slip and make a mistake
- If the student does not know a skill
 - There is still some chance the student will guess correctly
- So, link between performance and learning it is not a perfect link

Model performance assumptions

Learning parameters

p(L₀): Probability the skill is already known before the first opportunity to use the skill

p(T): Probability the skill will be learned at each opportunity to use the skill

Performance parameters

p(G): Probability the student will guess correctly if the skill is not known

p(S): Probability the student will slip if the skill is known

Predicting current student correctness

• $P(CORR) = P(L_n)*P(\sim S) + P(\sim L_n)*P(G)$

Bayesian Knowledge Tracing

- Whenever the student has an opportunity to use a skill
 - The probability that the student knows the skill is updated
 - Using formulas derived from Bayes' Theorem

Formulas

•
$$P(L_{n-1}|Correct_n) = \frac{P(L_{n-1}) * (1 - P(S))}{P(L_{n-1}) * (1 - P(S)) + (1 - P(L_{n-1})) * P(G))}$$

•
$$P(L_{n-1}| \text{Incorrect}_n) = \frac{P(L_{n-1}) * P(S)}{P(L_{n-1}) * P(S) + (1 - P(L_{n-1})) * (1 - P(G))}$$

• $P(L_n|Action_n) = P(L_{n-1}|Action_n) + ((1 - P(L_{n-1}|Action_n)) * P(T))$

Action	P(L _{n-1})	P(L _{n-1} lactual)	P(L _n)
	0.4		

Action	P(L _{n-1})	P(L _{n-1} lactual)	P(L _n)
1	0.4	X	

Action	P(L _{n-1})	P(L _{n-1} lactual)	P(L _n)
1	0.4	0.4*0.3 0.4*0.3+0.6*0.8	

Action	P(L _{n-1})	P(L _{n-1} lactual)	P(L _n)
1	0.4	0.2	

P(L _{n-1})	P(L _{n-1} lactual)	P(L _n)
0.4	0.2	0.2+0.8*0.1

Action	P(L _{n-1})	P(L _{n-1} lactual)	P(L _n)
1	0.4	0.2	0.28

Action	P(L _{n-1})	P(L _{n-1} lactual)	P(L _n)
1	0.4	0.2	0.28
2	0.28		

Action	P(L _{n-1})	P(L _{n-1} lactual)	P(L _n)
1	0.4	0.2	0.28
2	0.28	γ	

Action	P(L _{n-1})	P(L _{n-1} lactual)	P(L _n)
1	0.4	0.2	0.28
2	0.28	0.28*0.7	0 .2 6
2	0.28	0.28*0.7+(1-0.28)*0.2	

Action	P(L _{n-1})	P(L _{n-1} lactual)	P(L _n)
1	0.4	0.2	0.28
2	0.28	0.58	

Action	P(L _{n-1})	P(L _{n-1} lactual)	P(L _n)
1	0.4	0.2	0.28
2	0.28	0.58	0.58+(1-0.58)*0.1

Action	P(L _{n-1})	P(L _{n-1} lactual)	P(L _n)
1	0.4	0.2	0.28
2	0.28	0.58	0.62

A few notes about BKT

- Only uses first problem attempt on each item
 - Throws out information...
 - But used the clearest information...
- Several variants

Conceptual idea behind knowledge tracing

- Knowing a skill generally leads to correct performance
- Correct performance implies that a student knows the relevant skill
- Hence, by looking at whether a student's performance is correct, we can infer whether they know the skill

Parameters constraints

- To avoid *model degeneracy*
 - Model degeneracy is based on violating the conceptual idea behind knowledge tracing
 - When knowing a skill leads to worse performance
 - When getting a skill wrong means you know it
 - Baker, Corbett & Aleven (2008)
 - P(G)<0.5, P(s)<0.5
 - Corbett & Anderson (1995)
 - P(G)<0.3, P(S)<0.1

Knowledge tracing

- How do we know if a knowledge tracing model is any good?
- We pick the knowledge tracing parameters that best predict performance
 - Whether a student's action will be correct or wrong at a given time

Three public tools

- BNT-SM: Bayes Net Toolkit
 - http://www.cs.cmu.edu/~listen/BNT-SM/
- Fitting BKT at Scale
 - https://sites.google.com/site/myudelson/projects/
- BKT-BF: BKT-Brute Force (Grid Search)
 - http://www.columbia.edu/~rsb2162/BKT-BruteForce.zip

Bibliography

- Baker, F.B. (2001). *The Basicsof Item Response Theory. Second Edition.* ERIC Clearninghouse on Assesment and Evaluation.
- Barnes, T. (2005). American Association for Artificial Intelligence. Proceedings of the Educational Data Mining Workshop.
- Corbett, A.T. and Anderson, J.R. (1995). Knowledge Tracing: Modeling the Acquisition of Procedural Knowledge. *User Modeling and User-Adapted Interaction 4*, pp. 253-278.
- Pavlik, P.I., Cen, H., Koedinger, K.R. (2009). Performance Factor Analysis – A New Alternative to Knowledge Tracing. Proceedings of the 2009 Conference on AI-ED, IOS Press, pp. 531-538.