МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Информационные технологии и прикладная математика»

Кафедра: 806 «Вычислительная математика и программирование»

Курсовая работа по курсу «Фундаментальная информатика» I семестр Задание 3

«Вещественный тип. Приближенные вычисления. Табулирование функций»

Группа	М8О-109Б-22
Студент	Филиппов А. М.
Преподаватель	Сысоев М.А.
Оценка	
Дата	

Постановка задачи

Составить программу на Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [a, b] на п равных частей (n+1 точка включая концы отрезка), находящихся в рекомендованной области хорошей точности формулы Тейлора. Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью $\varepsilon * 10^k$, где ε - машинное эпсилон аппаратно реализованного вещественного типа для данной ЭВМ, а k – экспериментально подбираемый коэффициент, обеспечивающий приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна сама определять машинное ε и обеспечивать корректные размеры генерируемой таблицы.

Вариант 11:

Ряд Тэйлора:

$$1 - \frac{3}{2}x^2 + \dots + (-1)^n \frac{2n^2 + 1}{(2n)!}x^{2n}$$

Функция:

$$(1-\frac{x^2}{2})\cos x - \frac{x}{2}\sin x$$

Значения а и b: 0.1 и 0.6

Теоретическая часть

Формула Тейлора — формула разложения функции в бесконечную сумму степенных функций. Формула широко используется в приближённых вычислениях, так как позволяет приводить трансцендентных функций к более простым. Сама она является следствием теоремы Лагранжа о среднем значении дифференцируемой функции. В случае а=0 формула называется рядом Маклорена.

$$\sum_{n=0}^k rac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f^{(1)}(a) (x-a) + rac{f^{(2)}(a)}{2!} (x-a)^2 + \ldots + rac{f^{(k)}(a)}{k!} (x-a)^k$$

Машинное эпсилон — числовое значение, меньше которого невозможно задавать относительную точность для любого алгоритма, возвращающего вещественные числа. Абсолютное значение для машинного эпсилон зависит от разрядности сетки применяемой ЭВМ и от разрядности используемых при расчёте чисел. Формально это машинное эпсилон определяют как число, удовлетворяющее равенству $1 + \varepsilon = 1$. Фактически, два отличных от нуля числа являются равными с точки зрения машинной арифметики, если их модуль разности меньше или не превосходит машинное эпсилон.

В языке Си машинные эпсилон определено для следующих типов: float – $1.19 * 10^{-7}$, double – $2.20 * 10^{-16}$, long double – $1.08 * 10^{-19}$.

Описание алгоритма

Рассмотрим алгоритм решения. Сперва нужно найти машинное эпсилон, на котором будет основываться точность вычисления. Это можно сделать просто деля 1 на 2.

Для каждой N+1 строки нужно просуммировать і членов формулы Тейлора, пока $|A_1-A_2| > \varepsilon$. Для этого просто ищем каждый новый член из формулы Тэйлора и суммируем с результатом

Использованные в программе переменные

Название	Тип	Смысл переменной				
переменной переменной						
n	int64_t	То самое число N, на которое нужно разбить отрезок				
k	int	То самое число K, используемое для вычисления точности.				
FLT_EPSILON	float	То самое машинное эпсилон. 1.192092896e-07F				
step	long double	Формально разница между предыдущим значением из отрезка и следующим, если отрезок разбит на п равных частей.				
currentX long double		Переменная, для которой будем производить вычисления				
getTaylorSeries (currentX, i)	double	То самое значение А1, вычисленное с помощью формулы Тейлора				
func(currentX) double		То самое значение A2, вычисленное с помощью встроенных функций языка				
i	double	Счётчик члена формулы Тейлора + кол- во итераций				

Исходный код программы:

```
#include <float.h>
int64 t factorial(int64 t n) {
    for (int64 t i = 1; i <= n; ++i)</pre>
long double getTaylorSeries(long double x, int64 t n) {
printf("
    for (int64 t i = 1; i <= n; ++i) {</pre>
        sum = getTaylorSeries(currentX, i);
sum, func(currentX), i);
printf("
```

```
if (fabsl(func(currentX) - sum) < LDBL_EPSILON) break;
}
return 0;
}</pre>
```

Входные данные

Единственная строка содержит одно целое число N (0≤N≤100) – число разбиений отрезка на равные части

Выходные данные

Программа должна вывести значение машинного эпсилон, а затем N+1 строку.

В каждой строке должно быть значение x, для которого вычисляется функция, число A_1 — значение, вычисленное c помощью формулы Тейлора, A_2 — значение, вычисленное c помощью встроенных функций языка, i — количество итерация, требуемых для вычисления, и Δ — разница значений A_1 и A_2 по модулю. A_1 , A_2 и Δ должны быть выведены c точностью 16 знаков после запятой.

Протокол исполнения и тесты

Тест №1

Ввод:

2

Вывод:

```
N = 2

Machine epsilon is equal to: 3.50172e-312

Table for values of Taylor series and of base function

| x | sum | f(x) | number of iterations |
| 0.350 | 0.8162500000000000 | 0.8218290178807730 | 1 |
| 0.600 | 0.5086000000000000 | 0.5073824622074256 | 2 |

Process finished with exit code 0
```

Тест №2

Ввод: 200

Вывод:

	90 = 200)								
Má	Machine epsilon is equal to: 4.2329e-312									
Table for values of Taylor series and of base function										
1	Х	I		sum	I	f(x)		number	of :	iterations
1	0.103	1	0.9842	40625000000	00	0.984281987	3903479	I	1	ı
1	0.105		0.9835	 98081484375	50	0.983508046	1328300	I	2	l
1	0.108	3	0.9827	 15664366761	LO	0.982715664	3813550	I	3	l
1	0.110)	0.9819	 94857018017	79	0.981904857	 '0180142	I	4	l
1	0.113		0.9810	75639272179	96	0.981075639	2721796	I	5	l
]	0.115		0.9802	28026720302	24	0.980228026	7203024	I	6	
Pı	ocess	f.	inished	with exit	code	e 0				

Тест №3

Ввод:

100000

Вывод:

N	100000 N = 100000 Machine epsilon is equal to: 1.40416e-312							
Та	Table for values of Taylor series and of base function							
I	х	1	SUM	 	f(x)	number	of	iterations
Ī	 0.100	I	0.9849984999625000	 	0.9850359810744424	ı	1	Ι
I	0.100		0.9850345148522501	I	0.9850344884557136	Ι	2	l
1	0.100	I	0.9850329957549152	I	0.9850329957631082	I	3	
1	0.100	I	0.9850315029966274	I	0.9850315029966260	I	4	
I	0.100	I	0.9850300101562674	 	0.9850300101562674	l	5	
I	0.100		0.9850285172420323		0.9850285172420323		6	l
I	0.100		0.9850270242539209		0.9850270242539209		7	
 Pr	Process finished with exit code 0							

Вывод

В работе описано определение машинного эпсилон, приведены его значения для разных переменных языка Си, описана формула Тейлора и составлен алгоритм реализации вычисления значения функции с заданной точностью для заданного числа точек на отрезке. На основе алгоритма составлена программа на языке Си, проведено её тестирование на различных тестах, составлен протокол исполнения программы. В целом, работа понравилась. Приятно применять знания из других областей для решения какой-либо задачи по программированию.

Список литературы

- 1. Машинный ноль URL: https://ru.wikipedia.org/wiki/Машинный ноль
- 2. Ряд Тейлора URL: https://ru.wikipedia.org/wiki/Ряд Тейлора