12. SINIF NÜKLEİK ASİTLER-2 (DNA ve RNA) CEVAP ANAHTARI

1.		
Sadece DNA ya ait olanlar	Sadece RNA ya ait olanlar	Hem DNA hem de RNA ya ait olabilecekler
I-IV	Ш	II-V

2. Nükleik asitlerin yapısında bulunan;

I. Riboz	II. Deoksiriboz	III. Fosforik asit
IV. Pürün bazları	V. Timin	VI. Urasil

moleküllerinden hangileri sadece DNA da hangileri sadece RNA da hangileri hem DNA hem de RNA da bulunur.

II-V	I-VI	III-IV
bulunanlar	bulunanlar	RNA da bulunanlar
Sadece DNA da	Sadece RNA da	Hem DNA hem de

www.biyolojiportali.com

- **3.** Aşağıda verilen DNA moleküllerinin sıcaklıkla bozulma dereceleri zordan kolaya doğru nasıl sıralanır?
- ||| || ||
- 4. Bir hücrede bulunan RNA çeşitleri;
- I. rRNA
- II. tRNA
- III. mRNA

şeklindedir. Bu RNA çeşitlerinin miktarları yönünden çoktan aza doğru sıralanışını yazınız.

-1 - 11 - 111

5. Aşağıda beş farklı hücrenin nükleik asitlerindeki nükleotit dizilimlerinin bir kısmı verilmiştir.

I. C-G-A-A-T-A

II. T-A-G-C-C-C

III. C-A-U-G-A-A

IV. T-T-T-A-G-G

V. A-A-G-C-G-U

Bunlardan hangisinde/hangilerinde meydana gelebilecek bir mutasyonun kalıtsal olabilme ihtimali yoktur? Niçin?

-Cevap: III ve V

- -Çünkü bu ikisinin RNA ya ait olduğu kesindir. RNA daki bir mutasyon kalıtsal olamaz.
- **6.** Melez DNA lı (14 N 15 N) bir grup bakteriden biri normal (14 N), diğeri ise ağır azotlu (15 N) besin bulunan ortama aktarılarak bu ortamda birer kez bölünmeleri sağlanıyor.
- a. Bölünme sonucu oluşan tüm bakterilerin DNA larının ağır, normal, melez olma yüzdelerini bulunuz.
- b. Bölünme sonucu oluşan tüm bakterilerin DNA ları aynı tüpe konularak santrifüjlenirse tüpteki bantlaşma durumunu gösteriniz.

a.

¹⁴ N lü	¹⁴ N ¹⁵ N
ortamda	¹⁴ N ¹⁴ N ¹⁴ N ¹⁵ N
eşlenen	

¹⁵ N li	¹⁴ N ¹⁵ N	
ortamda	¹⁴ N ¹⁵ N	¹⁵ N ¹⁵ N
eşlenen		

%25 normal DNA, %50 melez DNA, %25 ağır DNA oluşur.

- 7. Normal DNA li (14 N 14 N) bir bakteri, ağır azotlu (15 N) bir ortamda dört kez bölündükten sonra, oluşan bakterilerin,
- a. Yüzde oranlarını bulunuz.
- b. Bu DNA lar bir tüpte santrifüj edilirse, bantlaşma durumunu gösteriniz.
- a. Dört kez bölünürse 2⁴= 16 DNA oluşur. Bunların 2 tanesi melez,
 14 tanesi ortam ağır azotlu (¹⁵N) olduğu için ağır DNA olacaktır.
 O halde %12,5 melez, %87,5 ağır DNA oluşmuştur.

- 8. Üç RNA çeşidine ait birer özellik aşağıda verilmiştir.
- I. Amino asitleri şifreleyen kodonları taşır.
- II. Hücrede en çok bulunan RNA çeşididir.
- III. Kodonlarla baz eşleşmesi yapar.

Bu RNA çeşitlerini aşağıya yazınız.

I	II	III
mRNA	rRNA	tRNA

9. Protein sentezi sırasında aralarında geçici H bağlarının oluştuğu molekülleri ve hangi olay sırasında olduğunu yazınız.

Aralarında H bağının oluştuğu moleküller	Oluştuğu olay
1. DNA – mRNA arasında	Transkripsiyon
2. mRNA – tRNA arasında	Translasyon

10. Aşağıda verilen DNA moleküllerinden hangisi/hangileri kendini onaramaz? Niçin?

- -II numaralı DNA kendini onaramaz.
- -Çünkü DNA onarımı için en az bir nükleotidin zincirde bulunması gerekir. Karşılıklı nükleotitler koptuğu için II kendini onaramaz.

www.biyolojiportali.com

11. tRNA antikodonları CCA CGA CGU UUA şeklinde ise buna karşılık gelecek **DNA nın tamamlayıcı ipliğindeki** kod dizilimini yazınız.

DNA tamamlayıcı iplik	GGT GCT GCA AAT
DNA Anlamlı iplik	CCA CGA CGT TTA
tRNA antikodonları	CCA CGA CGU UUA

12. Normal azotlu (¹⁴N) DNA ya sahip bir bakteri ağır azotlu (¹⁵N) ortamda üç kez bölünmeye birakılıyor.

Bu çoğalma sırasında DNA lardaki ¹⁴N ve ¹⁵N li <u>ipliklerin</u> sayısal değişimini gösteren grafiği çiziniz.

-Bakterilerin bölünme sürecinde ¹⁴N lü ipliklerin sayısı sabit kalacak, ¹⁵N li ipliklerin sayısı ise artacaktır.

