

La función ζ de Riemann

Julio César Pardo Dañino

Facultad de Ciencias

29 de abril de 2020

Un poco de historia

Iniciaremos contando un poco del origen de esta famosa función y su estrecha relación con los números primos. La cual inicia por los estudios de Euler sobre la serie armónica generalizada, hasta llegar a la famosa hipótesis de Riemann, la cual se vincula con la distribución de los números primos.

Las contribuciones de Euler

• En 1735, Euler resuelve el problema de Basilea, el cual consiste en encontrar la suma exacta de los inversos de los cuadrados de los enteros positivos:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Las contribuciones de Euler

• En 1735, Euler resuelve el problema de Basilea, el cual consiste en encontrar la suma exacta de los inversos de los cuadrados de los enteros positivos:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

 Desde Euclides (año 300 a. C.) se sabe que la sucesión de números primos es infinita. En 1737 Euler demostró que la serie

$$\sum_{p \in \mathbb{P}} \frac{1}{p}$$

(donde $\mathbb P$ es el conjunto de números primos) diverge, lo cual conduce a otra demostración de la existencia de infinitos números primos.

Las contribuciones de Euler

• En 1749, Euler observa lo siguiente

$$\sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}} \qquad s > 1$$

Las contribuciones de Euler

• En 1749, Euler observa lo siguiente

$$\sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}} \qquad s > 1$$

• La anterior observación será el comienzo de las investigaciones de Riemann en esta dirección.

La función cantidad de números primos

• Legendre y Gauss se interesaron por el problema de establecer la cantidad de números primos que hay en un intervalo [1, x] con $x \in \mathbb{R}$ y $x \ge 1$, así definieron la función $\pi(x)$, que denota la cantidad de números primos menores o iguales a x.

La función cantidad de números primos

- Legendre y Gauss se interesaron por el problema de establecer la cantidad de números primos que hay en un intervalo [1, x] con $x \in \mathbb{R}$ y $x \ge 1$, así definieron la función $\pi(x)$, que denota la cantidad de números primos menores o iguales a x.
- Legendre conjeturaba que para valores suficientemente grandes $\pi(x)$ es aproximadamente igual a $\frac{x}{\ln(x)-1.08366}$.

La función cantidad de números primos

- Legendre y Gauss se interesaron por el problema de establecer la cantidad de números primos que hay en un intervalo [1, x] con $x \in \mathbb{R}$ y $x \ge 1$, así definieron la función $\pi(x)$, que denota la cantidad de números primos menores o iguales a x.
- Legendre conjeturaba que para valores suficientemente grandes $\pi(x)$ es aproximadamente igual a $\frac{x}{\ln(x) 1.08366}$.
- Independientemente, Gauss en 1792, afirmaba que $\pi(x)$ se diferencia relativamente poco de la integral $\int_2^x \frac{dt}{\ln(t)}$. Esta integral es usualmente denotada por $\ln(x)$

La función cantidad de números primos

• Las hipótesis de Legendre y Gauss se expresan como

$$\pi(x) \sim \frac{x}{\ln(x)}$$
 $\pi(x) \sim \ln(x)$

La función cantidad de números primos

• Las hipótesis de Legendre y Gauss se expresan como

$$\pi(x) \sim \frac{x}{\ln(x)}$$
 $\pi(x) \sim \ln(x)$

• Utilizando integración por partes para li, vemos que

$$li(x) = \frac{x}{ln(x)} - \frac{2}{ln(2)} + \int_{2}^{x} \frac{dt}{ln^{2}(t)} \sim \frac{x}{ln(x)}$$

de aquí que ambas conjeturas son equivalentes.

El teorema de los números primos

• En 1851 Chebyshev demuestra las desigualdades $3/8 \ln(2) \le \frac{\pi(x)}{x/\ln(x)} \le 6 \ln(2)$ y deduce que si existe el límite de $\frac{\pi(x)}{x/\ln(x)}$ cuando $x \to \infty$ entonces debe ser la unidad, esto es

$$\lim_{x \to \infty} \frac{\pi(x) \ln(x)}{x} = 1$$

Al demostrar la existencia de este límite se tendría la equivalencia asintótica $\pi(x) \sim \frac{x}{\ln(x)}$.

El teorema de los números primos

• En 1851 Chebyshev demuestra las desigualdades $3/8 \ln(2) \le \frac{\pi(x)}{x/\ln(x)} \le 6 \ln(2)$ y deduce que si existe el límite de $\frac{\pi(x)}{x/\ln(x)}$ cuando $x \to \infty$ entonces debe ser la unidad, esto es

$$\lim_{x \to \infty} \frac{\pi(x) \ln(x)}{x} = 1$$

Al demostrar la existencia de este límite se tendría la equivalencia asintótica $\pi(x) \sim \frac{x}{\ln(x)}$.

 Esta conjetura es la que conocemos como el teorema de los números primos.

La función ζ de Riemann

• En su memoria de 1859, Riemann estudia lo que llamaría función $\zeta(s)$ definida por la serie armónica generalizada

$$\zeta(s) = \sum_{s=1}^{\infty} \frac{1}{n^s}$$
 con $\operatorname{Dom}(\zeta) = \{ s \in \mathbb{C} : \Re(s) > 1 \}$

La función ζ de Riemann

• En su memoria de 1859, Riemann estudia lo que llamaría función $\zeta(s)$ definida por la serie armónica generalizada

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
 con $\operatorname{Dom}(\zeta) = \{ s \in \mathbb{C} : \Re(s) > 1 \}$

• Utilizando métodos de variable compleja, Riemann demuestra que la función ζ se puede extender al dominio $\mathbb{C} \setminus \{1\}$, teniendo una única singularidad en s=1 coincidiendo con $\sum_{n=1}^{\infty} \frac{1}{n^s}$ justamente en $\{s \in \mathbb{C} : \Re(s) > 1\}$

La función ζ de Riemann

• La conexión fundamental entre la función $\zeta(s)$ y los números primos está dada por:

$$\zeta(s) = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}} \qquad s > 1$$

la relación encontrada por Euler.

La hipótesis de Riemann

• Riemann estaba interesado en el estudio de los ceros de la función ζ . Decimos que $s \in \mathbb{C} \setminus \{1\}$ es un cero de ζ , si $\zeta(s) = 0$.

La hipótesis de Riemann

- Riemann estaba interesado en el estudio de los ceros de la función ζ . Decimos que $s \in \mathbb{C} \setminus \{1\}$ es un cero de ζ , si $\zeta(s) = 0$.
- Existen una infinidad de ceros de la función ζ , entre ellos se puede demostrar que si $n \in \mathbb{Z}^+$, entonces $\zeta(-2n) = 0$, estos son los llamados ceros triviales de la función ζ . Todo cero diferente a estos, es conocido como cero no trivial.

La hipótesis de Riemann

- Riemann estaba interesado en el estudio de los ceros de la función ζ . Decimos que $s \in \mathbb{C} \setminus \{1\}$ es un cero de ζ , si $\zeta(s) = 0$.
- Existen una infinidad de ceros de la función ζ , entre ellos se puede demostrar que si $n \in \mathbb{Z}^+$, entonces $\zeta(-2n) = 0$, estos son los llamados ceros triviales de la función ζ . Todo cero diferente a estos, es conocido como cero no trivial.
- Riemann logra demostrar que existen infinitos ceros no triviales de la función ζ , que cumplen $\Re(s) = 1/2$. Y así enuncia su famosa conjetura, conocida como la hipótesis de Riemann, la cual establece que todos los ceros no triviales de la función ζ cumplen que $\Re(s) = 1/2$.

La distribución de los números primos

• La existencia del límite:

$$\lim_{x \to \infty} \frac{\pi(x) \ln(x)}{x} = 1$$

la demostraron Hadamard y de la Vallée Poussin independientemente uno de otro en 1896, mediante las ideas desarrolladas por Riemann relacionadas con la función $\zeta(s)$.

La distribución de los números primos

• La existencia del límite:

$$\lim_{x \to \infty} \frac{\pi(x) \ln(x)}{x} = 1$$

la demostraron Hadamard y de la Vallée Poussin independientemente uno de otro en 1896, mediante las ideas desarrolladas por Riemann relacionadas con la función $\zeta(s)$.

• Con ello quedaba completamente demostrada la ley asintótica de distribución de los números primos. Pero queda por lo tanto un resto $\pi(x) - \frac{x}{\ln(x)}$ que hay que precisar.

Riemann y los números primos

• Riemann observó que el orden de la diferencia $\pi(x) - \text{li}(x)$ depende de la ubicación de los ceros de la función $\zeta(s)$ en la llamada franja crítica $0 < \Re(s) < 1$.

Riemann y los números primos

- Riemann observó que el orden de la diferencia $\pi(x) \text{li}(x)$ depende de la ubicación de los ceros de la función $\zeta(s)$ en la llamada franja crítica $0 < \Re(s) < 1$.
- La conexión entre la hipótesis de Riemann y los números primos se debe a que de ser cierta, el resto se puede acotar de la mejor manera posible, concrétamente se tendría que

$$\pi(x) = \frac{x}{\ln(x)} + O\left(\sqrt{x}\ln(x)\right)$$

Una buena definición

Antes de presentar las propiedades básicas de la función ζ , veremos que la función ζ de Riemann está bien definida en cierto dominio.

Convergencia

Veamos para que valores $s \in \mathbb{C}$ la serie armónica generalizada

$$\sum_{n=1}^{\infty} \frac{1}{n^s}$$

está bien definida

Convergencia

Veamos para que valores $s \in \mathbb{C}$ la serie armónica generalizada

$$\sum_{n=1}^{\infty} \frac{1}{n^s}$$

está bien definida

Para esto, consideramos en primera instancia $s \in \mathbb{R}$ y la siguiente integral impropia

$$\int_{1}^{\infty} \frac{dt}{t^s} = \lim_{t \to \infty} \frac{t^{1-s}}{1-s} + \frac{1}{s-1}$$

es claro que esta converge únicamente cuando s > 1

Convergencia

Utilizando el criterio de la integral, tenemos que para s>1, la serie armónica generalizada

$$\sum_{n=1}^{\infty} \frac{1}{n^s}$$

converge.

Convergencia

Utilizando el criterio de la integral, tenemos que para s>1, la serie armónica generalizada

$$\sum_{n=1}^{\infty} \frac{1}{n^s}$$

converge. Ahora, tomamos $s \in \mathbb{C}$, de la forma $s = \sigma + it$ con $\sigma, t \in \mathbb{R}$, así tenemos:

$$\left|\frac{1}{n^s}\right| = \frac{1}{\left|n^{\sigma+it}\right|} = \frac{1}{\left|n^{\sigma}\right|\left|n^{it}\right|} = \frac{1}{n^{\sigma}}$$

Convergencia

La observación anterior nos indica que

$$\sum_{n=1}^{\infty} \left| \frac{1}{n^s} \right| = \sum_{n=1}^{\infty} \frac{1}{n^{\sigma}}$$

por lo cual la serie anterior converge si $\Re(s) = \sigma > 1$

Convergencia

La observación anterior nos indica que

$$\sum_{n=1}^{\infty} \left| \frac{1}{n^s} \right| = \sum_{n=1}^{\infty} \frac{1}{n^{\sigma}}$$

por lo cual la serie anterior converge si $\Re(s) = \sigma > 1$ Puesto que la convergencia absoluta, implica convergencia usual, concluimos que la serie armónica generalizada converge si $\Re(s) = \sigma > 1$. Lo cual nos lleva a la siguiente definición

Definición (Riemann)

Definimos la función ζ como

$$\zeta(s) = \sum_{s=1}^{\infty} \frac{1}{n^s} \quad con \quad Dom(\zeta) = \{ s \in \mathbb{C} : \Re(s) > 1 \}$$