Table of Laplace Transforms and Properties

LAPLACE TRANSFORMS			LAPLACE TRANSFORM PROPERTIES		
	$oldsymbol{x}(oldsymbol{t})$	$oldsymbol{X}(oldsymbol{s})$		Time-domain	s-domain
Unit Impulse	$\delta(t)$	1	Linearity	$lpha x_{1}\left(t ight) +eta x_{2}\left(t ight)$	$lpha X_{1}\left(s ight) +eta X_{2}\left(s ight)$
Unit Step	u(t)	1/s	Time shifting	$x(t-t_o)$	$\exp(-st_o)X(s)$
Ramp	tu(t)	$1/s^2$	Shifting in the s-domain	$\exp(s_o t)x(t)$	$X(s-s_o)$
n th order Ramp	$t^nu(t)$	$rac{n!}{s^{n+1}}$	Time scaling	x(lpha t)	$rac{1}{ lpha }Xigg(rac{s}{lpha}igg)$
Damped Ramp	$t\exp(-lpha t)u(t)$	$1/(s+\alpha)^2$	Integration in the time-domain	$\int_0^t x(\zeta)d\zeta$	$\frac{1}{s}X(s)$
Exponential	$\exp(-\alpha t)u(t)$	$1/(s+\alpha)$	Differentiation in	$rac{dx(t)}{dt}$	sX(s)-x(0)
Cosine	$\cos(\omega_o t) u(t)$	$s/(s^2+\omega_o^2)$	the time-domain	$\frac{d^nx(t)}{dt^n}$	$\left\ s^n X(s) - \sum_{k=0}^{n-1} s^{n-1-k} \frac{d^k x(t)}{dt^k} \right\ _{t=0}$
Sine	$\sinig(\omega_o tig)uig(tig)$	$\omega_o / (s^2 + \omega_o^2)$	Differentiation in	-tx(t)	$rac{dX(s)}{ds}$
Damped Cosine	$\exp(-lpha t)\cos(arphi_o t)u(t)$	$\frac{s+\alpha}{\left(s+\alpha\right)^2+\omega_o^2}$	the s-domain	$\left(-t ight)^{n}x(t)$	$\frac{d^nX(s)}{ds^n}$
Damped Sine	$\exp(-lpha t) \sin(\omega_o t) u(t)$	$\frac{\omega_o}{\left(s+\alpha\right)^2+\omega_o^2}$	Convolution in the time-domain	$\int_{-\infty}^{\infty} x_1(\zeta) x_2(t-\zeta) d\zeta$	$X_{1}(s)X_{2}(s)$

Initial value theorem: $f(0) = \lim_{s \to \infty} sF(s)$

Final value theorem: $\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$