Task 1

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Humidity: 90% = Relative humidity: $\phi = 90\%$

Pressione atmosferica: 1019 hPa = total air pressure P = 101.9 kPa

Effective temperature: $7C^{\circ} = 230 \text{ K}$

Utilizing the psychometric chart, we can notice that

-The absolute humidity ω = 0.0055

$$\omega = \frac{0.622 \, P_{\text{v}}}{P_{\text{a}}} = \frac{0.622 \, P_{\text{v}}}{P - P_{\text{v}}} = 0.0055$$

$$P_v = 0.893$$
circa

$$\phi = \frac{m_v}{m_g} = 90\,\%$$

m (for gasses in general)
$$\frac{P_{\rm v}}{R_{\rm sp,}T}$$

for water vapor $R_{sp} = 0.4615$

 P_{V} (pressure of water vapor) = 0.893 k Pa

Volume(V) of classroom, where

$$m_V = \frac{0.893 \, V}{0.4615 \, *230} = 8.41 \, *10^{-3} \, V$$

$$m_{\rm g} = \frac{m_{\rm v}}{90\%} = 9.34 \times 10^{-3} \text{V}$$

Task 2

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a *good* construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

		40.65N	100	17.95E	Elev:	10	StdP:	101.2		Time Zone:	1.00 (EU)	W)	Period:	86-10	WBAN:	99999
	Annual He	ating and H	umidificati	on Design C	onditions											
1	Coldest	Heating DB		Humidification DP/MCDB and HR						Coldest month WS/MCDB				MCWS/PCWD		
- 1	Month	LIST CHE	100000		99.6%			99%		0.4			1%		.6% DB	1
ı	moriui	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	1
	(0)	(0)	(c)	(d)	(0)	(1)	(9)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	
	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250	
ı	Annual Co	oling, Dehu	midificatio	n, and Entha	lpy Design	Conditions		N-WAN		20000000		1000	70000000			
d	THE PERSON	and the same				to me a mile			gli.							
1	Hottest	Hottest		Cooling DB/MCWB							Evaporation					PCWD
1	Month	Month	DB I	4%	DB I		2% DB	MCWB		4%	WB 1	%		2%	to 0.4	
Į	4 - 4	DB Range		MCWB		MCWB			WB	MCDB		MCDB	WB	MCDB	MCWS	PCWD
	(0)	(b)	(c)	(d)	(0)	(1)	(9)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	(P)
E	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180
	Dehumidification DP/MCDB and HR							Enthalpy/MCDB							Hours	
	9	0.4%			1%			2%		0.4			1%		%	8 to 4 &
ı	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6
	(a)	(0)	(c)	(d)	(0)	(1)	(9)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	(p)
	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236
	Extreme A	nnual Desig	n Conditio	ns												
ı	Evt	reme Annual WS					Annual DB			n-Year Return Period Values of E						
ļ				Max	Mean		Standard deviation			years	n=10 years) years	n=50	
ı	1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
	(0)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	(P)
	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9

Soln:

Number of occupants=2

Number of bed rooms=1

Height of the building=2.5m

Area of the floor=200 m²

Internal gains:

$$Q_{igsensible} = 136 + 2.2A_{cf} + 22N_{oc} = 136 + 2.2*(200) + 22*2 = 620 W$$

$$Q_{iglaten} = 20 + 0.22A_{cf} + 12N_{oc} = 20 + 0.22 * 200 + 12 * 2 = 88W$$

*I*nfiltrations

For a house with a good construction quality, unit leakage area $A_{ul} = 1.4 \text{cm}^2 / \text{m}^2$ And the exposed surface $A_{es} = A_{wall} + A_{roof} = 200 + 144 = 344 \text{m}^2$ cooling temperature $T_{cooling} = 24 \,^{\circ}\text{C}$, and heating temperature $T_{heating} = 20 \,^{\circ}\text{C}$ in Brindisi, $\Delta T_{cooling} = 31.1 - 24 = 7.1 \,^{\circ}\text{C} = 7.1 \,^{\prime}\text{K}$ $\Delta T_{heating} = 20 - (-4.1) = 24.1 \,^{\circ}\text{C} = 24.1 \,^{\prime}\text{K}$ $DR = 7.1 \,^{\circ}\text{C} = 7.1$

Given that
$$IDF_{\text{heating}} = 0.073 \frac{L}{\text{s*Cm}^2}$$

$$IDF_{\text{cooling}} = 0.33 \frac{L}{\text{s*cm}^2}$$

Infiltration airflow rate

$$Q_{i, heating} = A_L * IDF_{heating} = 481.6 * 0.073 = 35.15 \frac{L}{S}$$

 $Q_{i, cooling} = A_L * IDF_{cooling} = 481.6 * 0.033 = 15.89 \frac{L}{S}$

The required miminum whole - building vetilation rate is

$$Q_v = 0.05A_{cf} + 3.5(N_{br} + 1) = 0.05 * 200 + 3.5 * (1+1) = 17 \frac{L}{S}$$

$$Q_{i-v, heating} = Q_{i, heating} + Q_{v} = 35.157 + 17 = 52.15 \frac{L}{S}$$

$$Q_{i-v, cooling} = Q_{i, cooling} + Q_{v} = 15.893 + 17 = 32.89 \frac{L}{S}$$

Given that

Csensible = 1.23

Clatent = 3010

 $\Delta \omega_{\text{cooling}} = 0.0039$

Qinf - ventilation cooling sensible = Csensible Qi - v, cooling ΔT cooling = 1.23 * 32.89 * 7.1 = 287.25 W

qinf - ventilation cooling latent = Clatent Qi - v, cooling $\Delta\omega$ cooling = 3010 * 32.89 * 0.0039 = 386.13w

 $\mathbf{q}_{\mathsf{inf}} \text{ - ventilation heating latent } = \mathbf{C}_{\mathsf{sensible}} \mathbf{Q}_{\mathsf{i}} \text{ - v, } \textit{heating} \Delta \mathbf{\mathcal{T}}_{\mathsf{cooling}} = 1.23 \text{ * } 52.15 \text{ * } 24.1 = 1546 \text{ } \mathbf{\mathcal{W}}$