1 Problem Statement and Algorithm Overview

1.1 Diffusion Correction in Spatial Transcriptomics

In spatial transcriptomics, mRNA molecules undergo diffusion during tissue processing and sequencing, resulting in observed expression patterns $\boldsymbol{X}_g \sim P(x_{i,g})$ for each gene g across N spots that deviate from the true undiffused states $\boldsymbol{Z}_g \sim P(z_{j,g})$. Our goal is to infer the undiffused expression field \boldsymbol{Z}_g by modeling the diffusion process as an optimal transport problem for every gene \boldsymbol{g} .

1.2 Optimization Framework

We formulate this as a differentiable optimal transport problem with:

1.2.1 Parameters to Optimize

• Cost Matrix Weights $W \in \mathbb{R}^{N \times N}$: Learns spatial relationships between spots, incorporating:

$$W_{ij} = f_{\phi}(\|\boldsymbol{r}_i - \boldsymbol{r}_j\|, \text{tissue_mask}) \tag{1}$$

• Initialization:

$$\mathbf{1}_N \times_N$$

- Gene-specific Thresholds $q \in [0,1]^G$: Adaptive quantiles to reflect diffusion levels. Essentially assuming spots with counts above quantile cutoffs as true sources.
- Initialization: For each gene, the cutoff value that maximizes Moran's I after filtering
- Regularization Strengths $r \in \mathbb{R}_+^G$: Balances transport cost and entropy in the Sinkhorn algorithm.
- Initialization:

 $\mathbf{1}_G$

1.2.2 Differentiable Components

The entire pipeline is end-to-end differentiable through:

• **Soft Thresholding**: Implements a differentiable quantile-based filter when applying gene-specific thresholds:

$$\boldsymbol{b}_{g} = \sigma(\beta \frac{\boldsymbol{X}_{g} - Q_{g}(q)}{\operatorname{range}(\boldsymbol{X}_{g})}) \odot \boldsymbol{X}_{g}$$
 (2)

- **POT Integration**: Uses PyTorch-compatible optimal transport solvers (Sinkhorn, EMD) that preserve gradients
- Spatial Statistics: Moran's I and image alignment metrics are computed using differentiable Kornia operations

2 Problem Formulation

2.1 Objective Function

We minimize the composite loss:

$$\mathcal{L} = \lambda_1 \mathcal{L}_{image} + \lambda_2 \mathcal{L}_{out\text{-tissue}} + \lambda_3 \mathcal{L}_{Moran}$$
 (3)

where $\lambda_1 = \lambda_2 = \lambda_3 = 1$ are weighting hyperparameters.

2.2 Component Losses

2.2.1 1. Image Alignment Loss

$$\mathcal{L}_{\text{image}} = \underbrace{\text{SSIM}(\boldsymbol{E}, \boldsymbol{I})}_{\text{Structural similarity}} + \underbrace{\|\nabla \boldsymbol{E} - \nabla \boldsymbol{I}\|_{1}}_{\text{Gradient matching}} + \underbrace{|\text{TV}(\boldsymbol{E}) - \text{TV}(\boldsymbol{I})|}_{\text{Total variation}}$$
(4)

where

- $\boldsymbol{E} \in \mathbb{R}^{H \times W}$ is the gene expression grid
- $\boldsymbol{I} \in \mathbb{R}^{H \times W}$ is the H&E image
- SSIM is the Structural Similarity Index Measure
- TV is the Total Variation norm

2.2.2 2. Out-of-Tissue Expression Loss

$$\mathcal{L}_{\text{out-tissue}} = \sum_{i \notin \Omega} x_i \tag{5}$$

where Ω is the set of in-tissue spots and \boldsymbol{x}_i is the expression vector for spot i.

2.2.3 3. Spatial Autocorrelation Loss (Moran's I)

$$\mathcal{L}_{\text{Moran}} = -\frac{1}{G} \sum_{g=1}^{G} I_g \tag{6}$$

with Moran's I for gene g calculated as:

$$I_g = \frac{N}{S_0} \frac{(\boldsymbol{z}_g - \bar{z}_g)^{\top} \boldsymbol{W}(\boldsymbol{z}_g - \bar{z}_g)}{(\boldsymbol{z}_g - \bar{z}_g)^{\top} (\boldsymbol{z}_g - \bar{z}_g)}$$
(7)

where:

- $\boldsymbol{z}_g \in \mathbb{R}^N$ is the expression of gene g
- $\boldsymbol{W} \in \mathbb{R}^{N \times N}$ is the spatial weight matrix
- $S_0 = \sum_{ij} W_{ij}$ is the normalization constant

2.3 Optimal Transport Framework

For each gene g, we solve the following with $ot.bregman.sinkhorn_stabilized$:

$$\gamma = \underset{\gamma}{\operatorname{arg\,min}} \quad \langle \gamma, \mathbf{M} \rangle_F + \operatorname{reg} \cdot \Omega(\gamma)
s.t. \quad \gamma \mathbf{1} = \mathbf{a}
\qquad \gamma^T \mathbf{1} = \mathbf{b}
\qquad \gamma > 0$$
(8)

where:

- M is the (dim_a, dim_b) metric cost matrix
- Ω is the entropic regularization term $\Omega(\gamma) = \sum_{i,j} \gamma_{i,j} \log(\gamma_{i,j})$
- ullet a and b are source and target weights (histograms, both sum to 1)

2.4 Soft Thresholding Operation

$$\boldsymbol{b}_g = \sigma \left(\beta \frac{\boldsymbol{x}_g - Q_g(q)}{\text{range}(\boldsymbol{x}_g)} \right) \odot \boldsymbol{x}_g$$
 (9)

where:

- $Q_g(q)$ is the q-th quantile cutoff
- σ is the sigmoid function with $\beta = 50$
- \bullet \odot denotes element-wise multiplication

3 Current Limitations and Proposed Improvements

3.1 Identified Challenges

The current implementation faces several technical and theoretical challenges:

- High memory usage:
 - The $N \times N$ cost matrix \mathbf{C}_g becomes prohibitive for large datasets $(N>10^4~{\rm spots})$
 - Current RAM usage: $\mathcal{O}(GN^2)$ where G is the number of genes
- Gene interactions:
 - Treats each gene independently (no cross-gene constraints)
 - Fails to capture biological correlations between genes
- Quantile values receive gradients as 0:
 - Even with soft-thresholding quantile values only receive 0 as gradients

3.2 Possible improvements

• OT plan highly correlated:

- Computed OT plans are highly correlated for genes with similar expressions
- May leverage this to speed up calculation

• Incorporate spatial constraints or true physical constraints:

- Initialize cost weights (N*N) to reflect maximum diffusion distance
- Need a good estimation of maximum diffusion distance / steps

• Incorporation of reference if present:

- If user provides a reference spatial / single-cell dataset with less / no lateral diffusion, the information can be incorporated into loss terms
- 1. Impute true sources based on reference (integrate and co-cluster)
 - 2. Encourage statistics of corrected counts to be close to reference