

REAL MULTIPLICATIVE INVERSES

Why

What is the multiplicative inverse in the reals?

Result

We can show the following.¹

Proposition 1. The multiplicative inverse of R is, if $R \neq 0_R$,

- 1. if $0_{\mathbf{Q}} \in \mathbf{R}$, then $\{q \in \mathbf{Q} \mid q \le 0_{\mathbf{Q}}\} \cup \{r^{-1}\}\exists s < r, (r \notin \mathbf{R})$
- 2. If $0_{\mathbf{Q}} \notin \mathbf{R}$, then the additive inverse of the multiplicative inverse of the additive inverse of R.

Notation

We denote the multiplicative inverse of $r \in \mathbb{R}$ by r^{-1} . We denote $q \cdot (r^{-1})$ by q/r.

Division

We call the operation $(a, b) \mapsto a/b$ real division.

¹The account will appear in future editions.

