Dyn. Systeme in der Zahlentheorie

© M Tim Baumann, http://timbaumann.info/uni-spicker

Def. Ein **dynamisches System** ist ein kompakter metrischer Raum X mit einer Gruppen-Wirkung $\varphi: G \to \operatorname{Aut}(X), \ g \mapsto T_g$ oder einer Monoid-Wirkung $\rho: M \to \operatorname{End}(X), \ m \mapsto T_m$.

Bem. Falls $G = \mathbb{Z}$ oder $M = \mathbb{N}$, dann bezeichnen wir mit $T := T_1$ den Erzeuger der Aktion und nennen (X, T) ein **zykl. System**.

Def. Sei X ein topol. Raum, $T: X \to X$ stetig. Ein Punkt $x \in X$ heißt **wiederkehrend**, falls für für alle Umgebungen $V \subset X$ von x ein $n \ge 1$ existiert mit $T^n(x) \in V$.

Bem. Sei X sogar ein metrischer Raum, $x \in X$ wiederkehrend. Dann gibt es eine Folge (n_k) mit $d(T^{n_k}(x), x) \to 0$ für $k \to \infty$.

Theorem. Sei X ein kompakter topol. Raum, $T:X\to X$ stetig. Dann gibt es einen wiederkehrenden Punkt.

Def. Sei K eine kompakte Gruppe, $a \in K$ und T(x) := ax. Dann heißt (K, T) ein **Kronecker-System**.

Theorem. Jeder Punkt $x \in K$ in einem Kronecker-System ist wiederkehrend.

Def. Ein Homomorphismus zwischen zwei dyn. Systemen (X,G) und (X',G) (zweimal die gleiche Gruppe oder Monoid G) ist eine G-äquivariante stetige Abbildung $\phi:X\to X'$.

Def. Ein dyn. System (Y,G) ist **Faktor** eines dyn. System (X,G), wenn es einen surjektiven Homomorphismus $(X,G) \to (Y,G)$ gibt. Man nennt (X,G) dann eine **Erweiterung** von (Y,G).

Bem. Sei $\phi:X\to Y$ surjektiv. Dann kann man Ymit der Menge der Fasern von ϕ identifizieren.

Theorem. Sei $\phi:(X,T)\to (Y,T)$ ein Homomorphismus von zykl. Systemen und $x\in X$ wiederkehrend. Dann ist auch $\phi(x)$ wiederkehrend.