亿级视频广告事件预测系统构建之道

潘晓彤 4月2017

促进软件开发领域知识与创新的传播

关注InfoQ官方信息

及时获取QCon软件开发者 大会演讲视频信息

扫码, 获取限时优惠

[深圳站]

2017年7月7-8日 深圳·华侨城洲际酒店

咨询热线: 010-89880682

全球软件开发大会 [上海站]

2017年10月19-21日

咨询热线: 010-64738142

关于FreeWheel

• 视频广告解决方案

A -:-E	Aol.	at&t	
6	CONDÉ NAST	CRACKLE	Crown Media FAMILY NETWORKS Hallmark Hallmark
DIRECT V.	©iscovery COMMUNICATIONS 9-	DRAMAFEVER	FOX
a italia online	MO	NBCUniversal	The New York Times

提纲

- xTR是什么
- xTR系统架构
- 特亚提取
- 模型训练与优化

xTR是什么

CPx-event流程图

xTR系统架构

xTR数据规模

- 交易量: 1.5 billion (1 day)
- 特班量: 1.5 billion (30 days)
- 样本量: 250 million (7 days)
- 模型量: 50+ events
- 在线服务(Thrift RPC)
 - 100w QPS
 - 10ms timeout

xTR问题

xTR流程图

提取哪些信息作为特征?

- 上下文统计类特征/视频文本分类特征
- 上下文:视频/网页/GEO(国家,测,城市)/视频运营商/...

$$[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]$$

纸牌屋第一季第一集 + 观看率 | 0.53

特证抽取方案	存储消耗
静态特证	n
动态特证	m (m 为事件个数) << n

提取哪些信息作为特征?

• 上下文统计类特征/视频文本分类特征

特征组织方式

- 问题:所有特证存储在KV,难以满足高异发在线服务需求
- 特征回归模型
 - 学习目标: 特证值
 - 特证:上下文信息one-hot representation,定义为"子特证"
 - Factorization machine回归模型

One hot vector: n

特证回归模型impression事件auc效果

特征筛选

- 选择最好的特征子集合
- Reference: «Practical Lessons from Predicting Clicks on Ads at Facebook»

场景	基础特证(auc)	基础特证 + GBDT binary(auc)	提升效果
前贴片广告	0.88	0.9044	2.77%
中贴片广告	0.605	0.8432	39.37%
后贴片广告	0.9115	0.9227	1.23%

特征筛选

• 交叉特证: 找 山不 同特证之间相关性

$$f(x) = \frac{1}{-(\sum_{i=1}^{n} w_i x_i + b)}$$

$$1 + e^{-(\sum_{i=1}^{n} w_i x_i + b)}$$

$$f_{crossfeature}(x) = \frac{1}{-(\sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=i+1}^{n} w_{ij} x_i x_j + b)}$$

$$1 + e^{-(\sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=i+1}^{n} w_{ij} x_i x_j + b)}$$

怎样做特征工程

• 缺失特征处理: 中位数/平均数

怎样做特征工程

• 特征平滑: Min-Max平滑/Gaussian平滑

Min – max *normalization* :

$$x_i(j) = \frac{x_i(j) - x_i^{\min}}{x_i^{\max} - x_i^{\min}}$$

Gaussian normalization:

$$x_{i}(j) = \frac{x_{i}(j) - \frac{1}{n} \sum_{k=1}^{n} x_{i}(k)}{\frac{1}{n} \sqrt{\sum_{k=1}^{n} (x_{i}(k) - \frac{1}{n} \sum_{k=1}^{n} x_{i}(k))^{2}}}$$

怎样做特征工程

• 连续特证离散化

特征更新策略

• 加长统计周期,训练效果不一定变好

不同特证统计周期auc表现

$$\frac{\alpha \times impression_{pre} + impression_{now}}{\alpha \times delivery_{pre} + delivery_{now}} \quad \alpha \in (0,1)$$

选择哪个模型训练

最优化模型参数

• 同一模型选择最佳学习方法与参数: 枚举

自动化模型选择

• 在线学习+强化学习

在线强化学习模型效果

n mod el space

$$\gamma_{avg} = \frac{1}{t} \sum_{i=1}^{t} \gamma_i$$

$$\varepsilon = \frac{e^{\gamma_{avg}}}{\sqrt{t}}$$

if $\varepsilon \ge \mu_{threshold}$ then exploration else exploitation

Exploration(soft max):

$$p(m_t^i) = \frac{e^{\frac{-\alpha \times \gamma_{avg}^i}{\lambda}}}{\sum_{j=1}^n e^{\frac{-\alpha \times \gamma_{avg}^j}{\lambda}}}$$

Policy: FTRL update

在线强化学习模型效果

解决不同事件中正负样本比例不均衡问题

场景	正负样本比例
前贴片广告	1:2
后贴片广告	1:40

解决不同事件中正负样本比例不均衡问题

- 解决正负样本不均衡问题
 - 小样本量数据全部采样,大样本量数据抽样采样
 - Stratified sampling: 根据特征来采样,使样本尽量覆盖特征空间
 - Re-weighting: 小样本被分到大样本时,在损失函数中的惩罚更大

$$\alpha > 1$$

$$L_{i} = \begin{cases} \frac{\alpha}{2} (y_{i} - p_{i})^{2}, & y_{i} = 1\\ \frac{1}{2} (y_{i} - p_{i})^{2}, & y_{i} = 0 \end{cases}$$

未来计划

- 用户属性特征
- 深度学习

FreeWheel

- 瀋晓彤
- Lead Researcher
- xtpan@freewheel.tv

Q & A
Thanks!