Негосударственное образовательное частное учреждение дополнительного профессионального образования «Геотэк-Колледж»

УТВЕРЖДАЮ

Директор В.Н.Озмидов

«15» января 2021

ДОПОЛНИТЕЛЬНАЯ ПРОФЕССИОНАЛЬНАЯ ПРОГРАММ

ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

«Теоретические основы и практическая методика лабораторных определений входных параметров расчетных моделей программных комплексов, основанных на методе конечных элементов (МКЭ). Программный комплекс PLAXIS»

72 акад.часа

Оглавление

І ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
II ЦЕЛЬ И ЗАДАЧИ ПРОГРАММЫ4
III ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ5
IV СОДЕРЖАНИЕ ПРОГРАММЫ6
IV.1 Учебный план6
IV.2 Календарный учебный график7
IV.3 Рабочие программы модулей
IV.3.1 Модуль 1. Лабораторные и полевые методы получения входных параметров нелинейных моделей грунтов
IV.3.2 Модуль 2. Модели материалов
IV.3.3 Модуль 3. Основы метода конечных элементов и численное моделирование грунтовых оснований
IV.3.4 Модуль 4. Особенности работы грунтовых оснований в режиме сверхмалых деформаций
IV.3.5 Модуль 5 Моделирование поведения грунтового основания в зоне влияния источников динамического воздействия
IV.3.6 Программа лекционных занятий
IV.3.7 Программа учебной практики
IV.3.8 Самостоятельная работа слушателей
IV.4 Оценка качества освоения программы. Формы аттестации и оценочные материалы
V УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ19
V.1 Материально-техническое обеспечение программы
V.2 Кадровое обеспечение
V.3 Нормативно-правовое и учебно-методическое обеспечение программы
V.3.1 Нормативные правовые акты
V.3.2 Учебно-методическое обеспечение программы

І ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дополнительная профессиональная программа повышения квалификации «Теоретические основы и практическая методика лабораторных определений входных параметров расчетных моделей программных комплексов, основанных на методе конечных элементов (МКЭ). Программный комплекс PLAXIS» (далее – программа) разработана в соответствии с требованиями Федерального закона от 29 декабря 2012 г. № 273-ФЗ "Об образовании в Российской Федерации" и приказа Министерства образования и науки Российской Федерации от 1 июля 2013 г. № 499 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным профессиональным программам».

Нормативно-правовой и методической основой для разработки программы являются:

- Федеральный закон от 29 декабря 2004 г. № 190-ФЗ «Градостроительный кодекс Российской Федерации»,
- Федеральный закон от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании»,
- Федеральный закон от 30 декабря 2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений»,
- Приказ Министерства регионального развития Российской Федерации от 30 декабря 2009 г. № 624 «Об утверждении Перечня видов работ по инженерным изысканиям, по подготовке проектной документации, по строительству, реконструкции, капитальному ремонту объектов капитального строительства, которые оказывают влияние на безопасность объектов капитального строительства»,
- Приказ Министерства образования и науки Российской Федерации от 12 мая 2016 г. № 548 «Об утверждении федерального государственного образовательного стандарта высшего образования по направлению подготовки 21.05.02 Прикладная геология (уровень специалитета)».

Курс повышения квалификации предназначен для специалистов строительной отрасли в области инженерно-геологических и инженерно-геотехнических изысканий, а также проектировщиков фундаментов зданий и сооружений.

Общими требованиями к обучающимся являются:

- наличие среднего профессионального или высшего образования;
- получение среднего профессионального или высшего образования.

Обучение по программе является одним из условий получения свидетельства о допуске саморегулируемых организаций:

- «Организация управления инженерными изысканиями»
- «Инженерно-геологические изыскания»
- «Инженерно-геотехнические изыскания»
- «Обследование состояния грунтов основания зданий и сооружений».

ІІ ЦЕЛЬ И ЗАДАЧИ ПРОГРАММЫ

Основной целью программы является обновление теоретических и практических знаний руководителей и специалистов в области инженерных изысканий для строительства в связи с повышением требований к уровню квалификации и необходимостью освоения современных методов решения профессиональных задач.

Материалы программы позволяют ознакомить слушателей с новыми решениями в отечественной и зарубежной практике инженерных изысканий, совершенствовать знания в области нормативных и правовых изыскательской деятельности, современных методов и технических средств производства изысканий. Слушатели имеют возможность усвоить современные приемы работы с применением компьютерной техники и использованием систем автоматизации инженерных изысканий. Практическая часть программы направлена на получение слушателями профессиональных навыков работы с программным комплексом численного моделирования грунтовых оснований PLAXIS. В результате прохождения программы обучающиеся изучат нелинейные модели грунтов (Hardening Soil, Hardening Soil Small-strain, Soft Soil, Soft Soil Creep и др.), особенности динамических расчетов с применением модели семейства UBC SAND, ознакомятся с практическими лабораторными технологиями получения входных параметров моделей грунтов, а также освоят необходимые требования к составлению технического задания при проектировании зданий

III ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

- В результате реализации программы происходит совершенствование компетенций (общекультурных ОК и профессиональных ПК) (на основании Федерального государственного образовательного стандарта высшего образования по направлению подготовки 21.05.02 Прикладная геология (уровень специалитета)):
 - способность к самоорганизации и самообразованию (ОК-7);
- способность проводить технические расчеты по проектам, техникоэкономический и функционально-стоимостный анализ эффективности проектов (ПК-11);
- способность планировать и выполнять аналитические, имитационные и экспериментальные исследования, критически оценивать результаты исследований и делать выводы (ПК-14);
- способность проводить математическое моделирование процессов и объектов на базе стандартных пакетов автоматизированного проектирования и исследований (ПК-15).

В результате освоения программы обучения слушатель должен знать:

- физические основы моделей грунтов, используемых в современной механике грунтов;
- устройство и принципы работы современного оборудования геотехнической лаборатории;
- закономерности формирования напряженно-деформированного состояния грунтового основания:
- аналитические зависимости, используемые при построении нелинейных моделей грунтов;
- методику моделирования грунтового основания при помощи средств численного моделирования PLAXIS;
- технологию оценки влияния нового строительства на существующую застройку с использованием метода конечных элементов;
- положения нормативной базы по инженерным изысканиям, относящиеся к испытаниям грунтов;
 - особенности международной нормативной базы.

В результате освоения программы обучения слушатель должен уметь:

- подбирать необходимое геотехническое оборудование для выполнения испытаний;
- составлять техническое задание по определению входных параметров нелинейных моделей грунтов лабораторными методами;
- корректно использовать положения нормативной базы применительно к поставленным задачам;
 - выполнять интерпретацию материалов испытаний;
- моделировать грунтовые основания зданий и сооружений при помощи программного средства PLAXIS;
 - оформлять результаты испытаний в виде лабораторных протоколов;
 - составлять текст технического отчета по определению параметров грунтов.

IV СОДЕРЖАНИЕ ПРОГРАММЫ

IV.1 Учебный план

Форма обучения: очная с возможностью применения дистанционных технологий.

Срок обучения: - 72 часа (лекции - 23 час., учебная практика — 19 час., самостоятельная работа - 30).

По окончанию учебного процесса проводится аттестация. По итогам аттестации слушателям, прошедшим курс обучения, выдаются удостоверения о повышении квалификации установленного образца.

№ п/п	Разделы, темы Всего часог		Вт	ом чи часов	Форма контроля	
			Л	УП	CP	.
1.	Модуль 1. Лабораторные и полевые методы получения входных параметров нелинейных моделей грунтов.	11	4	3	4	Устный опрос
2.	Модуль 2. Модели материалов	16	7	2	7	Устный опрос -
3.	Модуль 3. Основы метода конечных элементов и численное моделирование грунтовых оснований	26	5	10	11	Устный опрос -
4.	Модуль 4. Особенности работы грунтовых оснований в режиме сверхмалых деформаций	8	2	2	4	Устный опрос -
5.	Модуль 5. Моделирование поведения грунтового основания в зоне влияния источников динамического воздействия	10	5	1	4	Устный опрос
6.	Итоговая аттестация.	1	-	1	-	Зачет
	Итого часов	72	23	19	30	

Л – лекции, УП – учебная практика, СР – самостоятельная работа

IV.2 Календарный учебный график

Компоненты программы	День	1	2	3	4	5	6	7	8	9	10	Всего
Аудиторных часов	<u>Л</u> УП	7 7 0	-	7 3 4	-	7 3 4	7 3 4	-	$7 \frac{5}{2}$	-	7 2 5	42 23 19
Самостоятельная работа, часов		1	6	1	6	1	1	6	1	6	1	30
Итоговая аттестация		-	-	-	1	-	-	-	-	1	зачет	-
Итого		8	6	8	6	8	8	6	8	6	8	72

День обучения Модули	1	2	3	4	5	6	7	8	9	10	Всего
Модуль 1. Лабораторные и полевые методы	4Л										4Л
получения входных параметров нелинейных			3УП								3УП
моделей грунтов.	1CP	3CP									4CP
	3Л		3Л		1Л						7Л
Модуль 2. Модели материалов			1УП		1УП						2УП
		1CP	1CP	5CP							7CP
Модуль 3. Основы метода конечных					2Л	3Л					5Л
элементов и численное моделирование					3УП	4УП		2УП		1УП	10УП
грунтовых оснований					1CP	1CP	8CP	1CP			11CP
Модуль 4. Особенности работы грунтовых								2Л			2Л
оснований в режиме сверхмалых										2УП	2УП
деформаций									4CP		4CP
Модуль 5. Моделирование поведения								3Л		2Л	5Л
грунтового основания в зоне влияния										1УП	1УП
источников динамического воздействия									4CP		4CP
Итоговая аттестация.										1УП	1УП
Итого, часов	8	4	8	5	8	8	8	8	8	7	72

 $[\]Pi$ — лекции, УП — учебная практика, СР — самостоятельная работа

IV.3 Рабочие программы модулей

IV.3.1 Модуль 1. Лабораторные и полевые методы получения входных параметров нелинейных моделей грунтов.

№ п/п	Разлелы, темы		Вт	ом чи часов	•	Форма - контроля	
11/11		часов	Л	УП	CP	Kon i posin	
1.	Модуль 1. Лабораторные и полевые методы получения входных параметров нелинейных моделей грунтов.	11	4	3	4	-	
1.1.	Основы цифрового грунтоведения. Требования к компетентности испытательных лабораторий. Экскурсия по испытательной лаборатории.	4	2	2	ı	-	
1.2.	Применение полевых методов для определения входных параметров конечно-элементных моделей. Современные установки глубинного статического зондирования.	1	1	-	ı	-	
1.3.	Научные и практические основы испытаний грунтов методом трехосных сжатий. Основные принципы геотехники. Упругие и пластические деформации грунтов. Критерии прочности.	2	1	1	-	-	
1.4	Проработка конспектов лекций и подготовка к опросу	4	-	-	4	Контр. вопросы	

IV.3.2Модуль 2. Модели материалов

№ п/п	Parmanti Tamti		Вт	ом чи часов		Форма контроля
11/11		часов	Л	УП	CP	Konipolii
2.	Модуль 2. Модели материалов	16	7	2	7	-
2.1.	Модель Мора-Кулона (МС).	1	1	-	-	-
2.2.	Модели уплотняющегося грунта Hardening Soil (HS) и уплотняющегося грунта при малых деформациях Hardening Soil Small (HSS)	2	2	-	1	•
2.3.	Модели слабого грунта Soft Soil (SS) и слабого грунта с учетом ползучести Soft Soil Creep (SSC).	2	2	-	-	1
2.4.	Принципиальные отличия в расчетах при применении линейных и нелинейных моделей. Учет разгрузки материала	1	1	-	-	-
2.5.	Калибровка параметров модели Hardening Soil при помощи средства Soil Test.	4	1	1	3	•
2.6.	Методы лабораторного определения входных параметров моделей материала PLAXIS	2	1	1	-	-
2.7.	Проработка конспектов лекций и подготовка к опросу	4	1	-	4	Контр. вопросы

IV.3.3 Модуль 3. Основы метода конечных элементов и численное моделирование грунтовых оснований

№ п/п	Разделы, темы	Всего,	Вт	ом чи часов	Форма контроля	
11/11		часов	Л	УП	CP	контроли
3.	Модуль 3. Основы метода конечных элементов и численное моделирование грунтовых оснований	26	5	10	11	-
3.1.	Использование метода конечных элементов (МКЭ) в расчетах оснований.	7	1	3	3	•
3.2.	Основные понятия и принципы МКЭ	1	1	-	-	•
3.3.	Сходимость численного решения.	1	1	-	-	-
3.4.	Расчет эпюры геостатического давления и давления от здания.	1	-	1	-	-
3.5.	Влияние выбора модели материала на напряженно-деформированного состояния грунтового основания.	4	1	2	2	-
3.6.	Расчет на устойчивость	3	1	1	1	-
3.7.	Расчет с учетом консолидации	2	-	1	1	-
3.8.	Расчет влияния нового строительства на существующую застройку. Моделирование котлована	2	-	1	-	-
3.9.	Расчет влияния нового строительства на существующую застройку. Моделирование карста/тоннеля.	1	-	1	-	-
3.10.	Проработка конспектов лекций и подготовка к опросу	4	-	-	4	Контр. вопросы

IV.3.4Модуль 4. Особенности работы грунтовых оснований в режиме сверхмалых деформаций

№ п/п	Разделы, темы		Вт	ом числе, часов		Форма контроля	
			Л	УП	CP		
4.	Модуль 4. Моделирование грунтовых оснований в режиме сверхмалых деформаций	8	2	2	4	-	
4.1.	Деформационных характеристик грунтов G_0 и $\gamma_{0,7}$ для модели HSS. Лабораторное определение.	2	1	1	-		
4.2.	Теоретические основы проведения эксперимента на циклическом сервогидравлическом стабилометре. с целью получения входных параметров модели HSS.	2	1	1	-	-	
4.3.	Проработка конспектов лекций и подготовка к опросу	4	1	-	4	Контр. вопросы	

IV.3.5 Модуль 5 Моделирование поведения грунтового основания в зоне влияния источников динамического воздействия

№ п/п	Разделы, темы	Всего,	Вт	ом чи часов	Форма контроля	
			Л	УП	CP	•
5.	Модуль 5. Моделирование поведения грунтового основания в зоне влияния источников динамического воздействия	10	5	1	4	-
5.1.	Основы динамических расчетов в методе конечных элементов. Особенности лабораторного определения разжижаемости грунтов	2	2	-	-	-
5.2.	Модель UBC SAND. Основные гипотезы и допущения, параметры. Геотехнические параметры грунтов: прочность, жесткость	1	1	-	-	-
5.3.	Научные и практические основы определения динамических свойств грунтов (сейсморазжижение, виброползучесть, виброогойчивость).	3	2	1	-	-
5.4.	Проработка конспектов лекций и подготовка к опросу	4	-	-	4	Контр. вопросы

IV.3.6Программа лекционных занятий

Тема 1.1. Основные принципы цифрового грунтоведения. Современные программные средства численного моделирования. Требования к компетентности испытательных лабораторий. Основные принципы работы оборудования современной геотехнической лаборатории. Инновационные методы определения состава и свойств грунтов. Геотехническое оборудование ведущих мировых производителей. Основные положения ГОСТ ИСО/МЭК 17025 «Общие требования к компетентности испытательных и калибровочных лабораторий». Оборудование современной геотехнической лаборатории. Оборудование для испытаний грунтов ведущих мировых производителей. Импортозамещение в геотехнике (2 часа).

Тема 1.2. Применение полевых методов для определения входных параметров конечно-элементных моделей. Современные установки глубинного статического зондирования (1 час).

Тема 1.3. Научные и практические основы испытаний грунтов методом трехосных сжатий. Статический, кинематический и динамический режимы испытаний. Дренированные и недренированные испытания. Метод восстановления фазового состава. Методы ускорения и снижения себестоимости трехосных испытаний грунтов, отвечающие требованиям действующих нормативных документов. Основные принципы геотехники. Упругие и пластические деформации грунтов. Критерии прочности (**1 час**).

Тема 2.1. Модель Мора-Кулона (МС). Основные гипотезы, допущения, параметры. Геотехнические параметры грунтов: прочность и жесткость (1 час).

- **Тема 2.2.** Модели уплотняющегося грунта Hardening Soil (HS) и уплотняющегося грунта при малых деформациях Hardening Soil Small (HSS). Основные гипотезы, допущения, параметры. Геотехнические параметры грунтов: прочность и жесткость. Нелинейная механика грунтов (**2 часа**).
- **Тема 2.3.** Модели слабого грунта Soft Soil (SS) и слабого грунта с учетом ползучести Soft Soil Creep (SSC). Основные гипотезы, допущения, параметры. Геотехнические параметры грунтов: прочность и жесткость. Нелинейная механика грунтов (2 часа).
- **Tema 2.4.** Принципиальные отличия в расчетах при применении линейных и нелинейных моделей. Учет разгрузки материала (1 час).
- **Тема 2.6.** Методы лабораторного определения входных параметров моделей материала конечно-элементного программного комплекса PLAXIS. Стандарт предприятия по определению входных параметров расчетных моделей грунтовых оснований. Особенности инструментальных определений входных параметров расчетной модели HS посредством использования камеры трехосного сжатия типа Б в режиме K0-консолиации. Разработка программного обеспечения по имитации камеры трёхосного сжатия типа Б при помощи камеры типа A (1 час).
- **Тема 3.1.** Использование метода конечных элементов (МКЭ) в расчетах оснований. Развитие нормативной базы по инженерно-геологическим и геотехническим испытаниям, ориентированным на получение входных параметров программных комплексов численного моделирования. Требования к составлению программы работ и технического задания (1 час).
- **Тема 3.2.** Основные понятия и принципы МКЭ. Принципы построения сети конечных элементов. Понятие конечного элемента, узла, Гауссовой точки (stress point) и граничных условий (ГУ). Современные программные средства численного моделирования: PLAXIS. Действующие нормативы по численному моделированию (1 час).
- **Тема 3.3.** Сходимость численного решения. Итерации и шаги нагружения. Критерии сходимости решения (1 час).
- **Тема 3.5.** Влияние выбора модели материала на напряженнодеформированного состояния грунтового основания. Характерные ошибки при оценке устойчивости грунтовых оснований (1 час).
- **Тема 3.7.** Параметры решателя в PLAXIS. Расчет на устойчивость. Коэффициента запаса устойчивости. Критерии сходимости расчета на устойчивость (1 час).
- **Тема 4.1.** Особенности модели уплотняющегося грунта при малых деформациях (HSS). Определение деформационных характеристик грунтов G0 и γ 0,7 в циклическом режиме малых деформаций (microstrain), используемых в модели Hardening Soil Small (HSS). (1 час).

- **Тема 4.2.** Организация и проведение эксперимента на циклическом сервогидравлическом стабилометре Wille Geotechnik. с целью получения входных параметров модели Hardening Soil Small (HSS). Использование геофизических методов для оценки начального модуля сдвига в рамках модели HSS (1 час).
- **Tema 5.1.** Основы динамических расчетов в методе конечных элементов. Особенности лабораторного определения разжижаемости грунтов (2 часа).
- **Тема 5.2.** Модель UBC SAND. Основные гипотезы и допущения, параметры. Геотехнические параметры грунтов: прочность, жесткость (1 час).
- **Тема 5.3.** Научные и практические основы определения динамических свойств грунтов (сейсморазжижение, виброразжижение, виброползучесть, вибропрочность, виброустойчивость). Современные сервопневматические и сервогидравлические циклические установки трехосного сжатия. Спектральный анализ сигналов-откликов динамического нагружения грунтов в камерах циклических стабилометров. Требования к составлению технического задания при проектировании зданий и сооружений в зоне влияния источников динамического воздействия. Нормативная база. Превентивные мероприятия, повышающие динамическую устойчивость грунтовых оснований (2 часа).

IV.3.7Программа учебной практики

- **Тема 1.1.** Экскурсия по испытательной лаборатории. Знакомство с современным оборудованием по определению прочностных и деформационных свойств грунтов. Демонстрация процесса сборки установки трехосного сжатия (2 часа).
- **Тема 1.3.** Интерпретация результатов стабилометрических испытаний. Построение диаграмм Мора-Кулона. Особенности построения предельной (**1 час**).
- **Тема 2.5.** Калибровка параметров модели Hardening Soil при помощи программного модуля Soil Test на основе файла с результатами лабораторного эксперимента девиаторного нагружения (1 час).
- **Тема 2.6.** Интерпретация результатов лабораторных испытаний и определение входных параметров модели уплотняющегося грунта Hardening Soil (1 час).
- **Тема 3.1.** Расчет напряженно-деформированного состояния грунтового основания под многоэтажным зданием при помощи программного средства PLAXIS. Знакомство с интерфейсом. Задание материалов. Построение геометрии. Разбиение на сеть конечных элементов. Задание граничных условий. Создание фаз строительства. Задание параметров расчета. Отображение и интерпретация результатов (**3 часа**).
- **Тема 3.4.** Расчет эпюры геостатического давления и давления от здания с использованием метода конечных элементов (1 час).
- **Тема 3.5.** Определение области влияния нового строительства на существующую застройку и величины сжимаемой толщи при использовании

моделей HS и HSS. Расчет усадки с использованием модели материала SS и SSC (2 часа).

- **Тема 3.6.** Расчет с учетом консолидации. Нахождение порового давления в грунтовом основании. Определение необходимого времени выдержки при строительстве (1 час).
- **Тема 3.7.** Расчет на устойчивость модели грунтового основания под многоэтажным зданием (1 час).
- **Тема 3.8.** Расчет влияния нового строительства на существующую застройку. Создание модели котлована. Ограждающие и усиливающие конструкции. Моделирование осущения котлована (1 часа).
- **Тема 3.9.** Расчет влияния нового строительства на существующую застройку. Создание модели карста или тоннеля метро под зданием. Моделирование осушения (1 час).
- **Тема 4.1.** Интерпретация результатов лабораторных испытаний и определение входных параметров модели уплотняющегося грунта Hardening Soil Small. Определение коэффициентов зависимости Гардина-Дрневича (1 час).
- **Tema 4.2.** Проведение эксперимента на циклическом сервогидравлическом стабилометре Wille Geotechnik с целью получения входных параметров модели Hardening Soil Small (HSS) (1 час).
- **Тема 5.3.** Интерпретация результатов динамических трехосных сжатий. Определения параметров сейсморазжижение грунтов (1 час).

IV.3.8 Самостоятельная работа слушателей

Вид самостоятельной работы	Модуль 1	Модуль 2	Модуль 3	Модуль 4	Модуль 5	Всего
Проработка конспектов лекций и подготовка к опросу, часов	4	4	4	4	4	20
Выполнение построений в конечно-элементом комплексе, часов	-	3	7	1	-	10
Итого, часов	4	7	11	4	4	30

Примеры вопросов для проверки самостоятельной подготовки

Модуль 1. Лабораторные и полевые методы получения входных параметров нелинейных моделей грунтов

- 1. Почему появилось цифровое грунтоведение как отдельное направление? В чем достоинства и недостатки данного направления?
- 2. Принципы цифрового грунтоведения.

- 3. Норматив, регламентирующий требования к компетентности испытательных лабораторий.
- 4. Виды лабораторного оборудования, применяемого для определения прочностных и деформационных свойств грунтов.
- 5. Лабораторное оборудование, позволяющее определить угол внутреннего трения и удельное сцепление грунтов.
- 6. Принципиальная схема установки трехосного сжатия.
- 7. Основные режимы испытаний грунтов с помощью установки трехосного сжатия.
- 8. Применение статического зондирования в целях оценки параметров нелинейных моделей грунтов.
- 9. Применение метода восстановления фазового состава (ВФС) и противодавления (ПД) для водонасыщения образцов грунтов.
- 10. Характеристики грунтов, определяемые при неконсолидированнонедренированных испытаниях грунтов.
- 11. Методы ускорения трехосных испытаний грунтов, отвечающие требованиям действующих нормативных документов.
- 12. Принцип Терцаги. Расчет эффективных напряжений в грунтовом массиве.
- 13. Наименования современных программных средств численного моделирования грунтовых оснований.
- 14. Нормативные документы, регламентирующие применение метода конечных элементов для расчета грунтовых оснований.

Модуль 2. Модели материалов

- 1. Основные упругопластические модели, используемые в программном средстве численного моделирования грунтовых оснований PLAXIS.
- 2. Критерии прочности, используемые в механике грунтов.
- 3. Определение упругих и пластических деформаций грунтов. Упругоидеально пластическая модель грунта Мора-Кулона.
- 4. Основные аналитические зависимости модели уплотняющегося грунта Hardening Soil (HS).
- 5. Особенности модели уплотняющегося грунта при малых деформациях Hardening Soil Small (HSS).
- 6. Полный перечень входных параметров моделей HS и HSS, используемых в программном комплексе PLAXIS.
- 7. Преимущества модели HSS, проявляющиеся при расчете глубины сжимаемой толщи под фундаментом здания.
- 8. Основные принципы моделей Soft Soil (SS) и Soft Soil Creep (SSC). Определение коэффициентов первичной и вторичной консолидации грунтов лабораторными методами.
- 9. Технология определения коэффициента бокового давления в состоянии покоя К0 и коэффициента поперечного расширения v грунтов при помощи камеры трехосной испытаний типа Б.
- 10. Основные принципы калибровки модели грунта. Возможности программного модуля Soil Test.

Модуль 3. Основы метода конечных элементов и численное моделирование грунтовых оснований

- 1. Основные положения программы работ по расчету грунтовых оснований численными методами.
- 2. Основные этапы расчета напряженно-деформированного состояния грунтового основания методом конечных элементов.
- 3. Основные принципы МКЭ. Принципы построения сети конечных элементов. Понятие конечного элемента, узла, Гауссовой точки (stress point) и граничных условий (ГУ).
- 4. Сходимость численного решения. Итерации и шаги нагружения. Критерии сходимости решения
- 5. Параметры решателя в PLAXIS. Расчет на устойчивость. Коэффициента запаса устойчивости. Критерии сходимости расчета на устойчивость
- 6. Расчет геостатического давления в грунтовом массиве. Форма эпюры напряжения в грунтовом массиве, включающем в себя водоупорный слой.
- 7. Требования к составлению технического задания по определению входных параметров нелинейных моделей грунтов.
- 8. Влияние выбора математической модели грунта на результаты расчета осадки здания/сооружения.

Модуль 4. Моделирование грунтовых оснований в режиме сверхмалых деформаций

- 1. Определение деформационных характеристик грунтов G0 и γ 0,7 при помощи циклического стабилометра и резонансной колонки.
- 2. Особенности использования сейсмоакустических методов для оценки значения начального модуля сдвига G0.
- 3. Принципиальная схема циклического сервогидравлического стабилометра.

Модуль 5. Моделирование поведения грунтового основания в зоне влияния источников динамического воздействия

- 1. Динамические свойства дисперсных грунтов (сейсморазжижение, виброразжижение, виброползучесть, вибропрочность, виброустойчивость). Возможности лабораторного оборудования по определения свойств грунтов в условиях динамического воздействия.
- 2. Основы динамических расчетов в методе конечных элементов. Временной шаг.
- 3. Особенности лабораторного определения разжижаемости грунтов
- 4. Модель UBC SAND. Основные гипотезы, допущения и параметры.
- 5. Принципиальная схема циклической сервогидравлической установки трехосного сжатия. Возможности сервогидравлических и сервопневматических стабилометров.
- 6. Спектральный анализ сигналов-откликов динамического нагружения грунтов в камерах циклических стабилометров.

Критерии оценивания построений в конечно-элементом комплексе

Характеристика ответа	Оценка
Создана конечно-элементная модель, адекватно отражающая поведение грунтового массива и конструктивных элементов. Правильно выбраны типы элементов и модели материала. Отсутствует излишняя детализация, сделаны необходимые, но не излишние упрощения. Положена качественная конечно-элементная сетка. Физические допущения, адекватные целям расчета. Граничные условия отражают реальные условия нагружения и закрепления грунта. Правильно смоделированы и заданы этапы строительства. Произведен расчет. Проведен анализ на адекватность полученных результатов. Обучающийся может обосновать все принятые решения.	Зачет
Допущены принципиальные ошибки при моделировании. Произведено излишнее упрощение геометрии. Допущена ошибка в разделении на этапы строительства. Присутствуют области в конечно-элементной сетке, провоцирующие безосновательные с точки зрения работы грунтового массива концентрации напряжений, или неправильно подобранный размер элементов в области градиента напряжений. Получен результат расчета, противоречащий физическим законам. Расчет не производится или заканчивается ошибкой. Обучающийся не может аргументировать принятые решения моделирования.	Незачет

IV.4 Оценка качества освоения программы. Формы аттестации и оценочные материалы

Оценка качества освоения программы осуществляется при проведении:

- промежуточной аттестации обучающихся в форме опроса и выполнения практических заданий;
 - итоговой аттестации обучающихся в форме зачета.

Промежуточная аттестация проводится в форме опроса или задания практического характера (задачи) по окончании каждого модуля. Промежуточная аттестация должна выявить уровень освоения обучающимися пройденного модуля и тем, изученных в рамках этого модуля, а также наличие профессиональных компетенций, совершенствование и формирование которых проводилось в ходе реализации модулей данной программы.

Промежуточная аттестация осуществляется преподавателем непосредственно на учебных занятиях. Вопросы для опроса и практические задания для промежуточной аттестации готовятся преподавателем.

Итоговая аттестация должна выявить уровень освоения обучающимися данной образовательной программы и наличие у него профессиональных компетенций, формирование и совершенствование которых проводилось в ходе ее реализации. Слушатель допускается к итоговой аттестации после прохождения всех учебных модулей в объеме, предусмотренном учебным планом программы и успешного прохождения промежуточной аттестации в конце каждого модуля.

Итоговая аттестация проводится в форме зачета, в ходе которого обучающемуся предлагается ответить на вопросы билета. Итоговый зачет принимает аттестационная комиссия из трех человек. Состав комиссии утверждается директором. В состав комиссии входит председатель, член

экзаменационной комиссии, секретарь. Качество освоения программы обучающихся на зачете осуществляется по двухбалльной системе оценивания: зачет/незачет.

Билеты для проведения итоговой аттестации составляются преподавателем из примерных вопросов и заданий, являющихся частью программы.

Примеры контрольных вопросов для итоговой аттестации:

- **1.** Виды лабораторного оборудования, применяемого для определения прочностных и деформационных свойств грунтов.
- **2.** Основные упругопластические модели, используемые в программном средстве численного моделирования грунтовых оснований PLAXIS.
- **3.** Норматив, регламентирующий требования к компетентности испытательных лабораторий.
 - 4. Основные принципы цифрового грунтоведения.
- **5.** Лабораторное оборудование, позволяющее определить угол внутреннего трения и удельное сцепление грунтов.
- **6.** Применение статического зондирования в целях оценки параметров нелинейных моделей грунтов.
 - 7. Принципиальная схема установки трехосного сжатия.
- **8.** Основные режимы испытаний грунтов с помощью установки трехосного сжатия.
- **9.** Применение метода восстановления фазового состава (ВФС) и противодавления (ПД) для водонасыщения образцов грунтов.
- **10.** Характеристики грунтов, определяемые при неконсолидированнонедренированных испытаниях грунтов.
- **11.** Принцип Терцаги. Расчет эффективных напряжений в грунтовом массиве.
 - 12. Критерии прочности, используемые в механике грунтов.
- **13.** Определение упругих и пластических деформаций грунтов. Упругоидеально пластическая модель грунта Мора-Кулона.
- **14.** Расчет геостатического давления в грунтовом массиве. Форма эпюры напряжения в грунтовом массиве, включающем в себя водоупорный слой.
- **15.** Методы ускорения трехосных испытаний грунтов, отвечающие требованиям действующих нормативных документов.
- **16.** Основные этапы расчета напряженно-деформированного состояния грунтового основания методом конечных элементов.
- **17.** Наименования современных программных средств численного моделирования грунтовых оснований.
- **18.** Нормативные документы, регламентирующие применение метода конечных элементов для расчета грунтовых оснований.
- **19.** Требования к составлению технического задания по определению входных параметров нелинейных моделей грунтов.
- **20.** Основные положения программы работ по расчету грунтовых оснований численными методами.
- **21.** Основные аналитические зависимости модели уплотняющегося грунта Hardening Soil (HS).
- **22.** Особенности модели уплотняющегося грунта при малых деформациях Hardening Soil Основные принципы моделей Soft Soil и Soft Soil Creep. Определение

коэффициентов первичной и вторичной консолидации грунтов лабораторными методами.

- **23.** Влияние выбора математической модели грунта на результаты расчета осадки здания/сооружения.
- **24.** Технология определения коэффициента бокового давления в состоянии покоя К0 и коэффициента поперечного расширения v грунтов при помощи камеры трехосной испытаний типа Б.
- **25.** Полный перечень входных параметров моделей HS и HSS, используемых в программном комплексе PLAXIS.
- **26.** Преимущества модели HSS, проявляющиеся при расчете глубины сжимаемой толщи под фундаментом здания.
- **27.** Определение деформационных характеристик грунтов G_0 и $\gamma_{0,7}$ при помощи циклического стабилометра и резонансной колонки. Особенности использования сейсмоакустических методов для оценки значения начального модуля сдвига G_0 .
- **28.** Принципиальная схема циклической сервогидравлической установки трехосного сжатия. Возможности сервогидравлических и сервопневматических стабилометров.
- **29.** Основные принципы калибровки модели грунта. Возможности программного модуля Soil Test.
- **30.** Динамические свойства дисперсных грунтов (сейсморазжижение, виброразжижение, виброползучесть, вибропрочность, виброустойчивость). Возможности лабораторного оборудования по определения свойств грунтов в условиях динамического воздействия.

Пример практического задания для итоговой аттестации

Расчет деформаций грунтового основания здания при помощи программного комплекса PLAXIS

Критерии оценивания итоговой аттестации слушателей:

Характеристика ответа	Процент	Оценка
Слушатель глубоко и прочно усвоил материал по программе,	70-100	Зачет
исчерпывающе, последовательно, четко его излагает,		
свободно справляется с вопросами и другими видами		
применения знаний, причем не затрудняется с ответом при		
видоизменении заданий, правильно обосновывает принятое		
решение, владеет разносторонними навыками и приемами		
выполнения практических заданий.		
Выставляется слушателю, который не знает значительной	Менее 70	Незачет
части теоретического материала, допускает существенные		
ошибки, неуверенно, с большими затруднениями выполняет		
практические задания.		

V УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

V.1 Материально-техническое обеспечение программы

Наименование учебного помещения	Вид занятий	Оснащение
Аудитория	Лекция, практические занятия	Компьютер, электронная доска, демонстрационный монитор, лицензионное программное средство PLAXIS
Лаборатория	Экскурсия	Компрессионные приборы, установки одноплоскостного среза и трехосного сжатия.

V.2 Кадровое обеспечение

К реализации программы привлекаются педагогические работники, квалификация которых соответствует требованиям Единого квалификационного справочника должностей руководителей, специалистов и служащих, раздел «Квалификационные характеристики должностей работников образования»:

«Высшее профессиональное образование или среднее профессиональное образование по направлению подготовки «Образование и педагогика» или в области, соответствующей преподаваемому предмету, без предъявления требований к стажу работы либо высшее профессиональное образование или среднее профессиональное образование и дополнительное профессиональное образование по направлению деятельности в образовательном учреждении без предъявления требований к стажу работы».

V.3 Нормативно-правовое и учебно-методическое обеспечение программы

V.3.1 Нормативные правовые акты

- 1. Федеральные законы и постановления Правительства Российской Федерации в области градостроительной деятельности:
 - «Градостроительный кодекс РФ»;
 - «Гражданский кодекс РФ»;
 - «О техническом регулировании»;
 - «Технический регламент о безопасности зданий и сооружений»;
 - «О саморегулируемых организациях» и др.
- 2. Постановления Правительства Российской Федерации в области градостроительной деятельности:
 - постановление Правительства РФ от 19 января 2006 г. № 20 «Об инженерных изысканиях для подготовки проектной документации, строительства, реконструкции объектов капитального строительства»;
 - постановление Правительства РФ от 16 февраля 2008 г. № 87 «О составе разделов проектной документации и требованиях к их содержанию»;

- постановления Правительства РФ от 05 марта 2007 г. № 145 (с изменениями), от 31 марта 2012 г. № 272;
- распоряжение Правительства РФ от 21 июня 2010 г. № 1047-р;
- приказ Минрегионразвития от 30.12.2009 г. № 624;
- приказы Рос стандарта от 1 июня 2010 г. № 2079 и от 18 мая 2011 г. № 2244 и др.

3. Нормативная литература

- 1) ГОСТ 25100 -2011 Грунты. Классификация.
- 2) ГОСТ 12248-2010 Грунты. Методы лабораторного определения характеристик прочности и деформируемости.
- 3) ГОСТ 20522-2012. Грунты. Методы статистической обработки результатов испытаний.
- 4) ГОСТ 56353-2015. Грунты. Методы лабораторного определения динамических свойств дисперсных грунтов.
- 5) ГОСТ 5180-2015. Грунты. Методы лабораторного определения физических характеристик.
- 6) ГОСТ 12536-2014. Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава.
- 7) СП 22.13330.2011. Основания зданий и сооружений. (актуализированная редакция СНиП 2.02.01-83*)
- 8) СП 23.13330 СП 23.13330.2011 Основания гидротехнических сооружений. Актуализированная редакция СНиП 2.02.02-85. Приложение Б.
- 9) СП 24.133330.2011. Свайные фундаменты. Актуализированная редакция СНиП 2.02.03-85.
- 10) ASTM D 6528 Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils (Withdrawn 2016).
- 11) ASTM D4186. Standard test method for one-dimensional consolidation properties of soil using controlled-strain loading. American Society for Testing and Materials (ASTM).
- 12) ASTM D2435. Standard test method for one-dimensional consolidation properties of soil using incremental loading. American Society for Testing and Materials (ASTM).
- 13) EN 1997-1. Eurecode 7. Geotechnical Design. Part 2: Design assisted by laboratory and field-testing.

V.3.2 Учебно-методическое обеспечение программы

Учебная и научно-исследовательская литература

- 1. Берлинов М.В. Основания и фундаменты. М., Изд-во Высшая школа, 1999.
- 2. Болдырев Г.Г., Малышев М.В. Механика грунтов, основания и фундаменты. Пенза, ПГУАС, 2009.
- 3. Болдырев Г.Г., Скопинцев Д.Г. Методические вопросы определения модулей деформации дисперсных грунтов. Журнал «Инженерные изыскания», № 10-11, 2016, стр. 24-36.
- 4. Болдырев Г.Г. Методы определения механических характеристик грунтов. Состояние вопроса//ПГУАС, Пенза. 2008.- 696с.
- 5. Вознесенский Е.А., Никитин М.С., Сенцова Е.А. Методические вопросы определения параметров моделей, учитывающих повышение жесткости грунтов при малых деформациях. Журнал «Геотехника», №2, 2016, стр. 4-162.

- 6. Кочерженко В.В. Технология возведения подземных сооружений. М., Издво Ассоциации строительных вузов, 2000.
- 7. Ломтадзе В.Д. и др. Методика исследований физико-механических свойств горных пород. Изд-во Недра, 1972.
- 8. Пособие по моделям материалов Plaxis 2D. МИП «Информатика», СПб, 2018.
- 9. Пособие по расчетам MIDAS GTS NX, Midas Information Technology Co. Ltd, 2018.
- 10. Строкова Л.А. Определение параметров начального напряженного состояния грунта К0 и ОСR для нелинейных упругопластических моделей. Журнал «Геотехника». №2 2012.
- 11. Улицкий В.М., Шашкин А.Г., Шашкин К.Г. Гид по геотехнике. СПб, ПИ «Геореконструкция», 2010.
- 13. Федоренко Е.В. Геотехника и геосинтетика в вопросах и ответах. СПб, WWW/DARIKNIGI.RU, 2016. MIDAS Information
- 14. Becker D.E., Crooks J.H.A., Been K., Jefferies M.G. Works as a criterion for determining in-situ and yield stresses in clays // Canadian Geotechnical Journal. 1987. V. 24. № 4. P. 549–564.
- 15. Bishop A.W., Henkel D.J. The Measurement of Soil Properties in the Triaxial Test/A.W. Bishop, D.J. Henkel, Edward Amold-е изд., London:, 1957.
- 16. Bolton M.D. The strength and dilatancy of sands // Geotechnique. 1986. № 1 (36). C. 65-78.
- 17. Brinkgreve R.B.J., Engin E., Swolfs W.M. Plaxis 3D. Руководство пользователя / R.B.J. Brinkgreve, E. Engin, W.M. Swolfs, Санкт-Петербург: ООО «НИП-Информатика», 2011.
- 18. Duncan J.M., Chang C.. Nonlinear analysis of stress and strain in soil // ASCE Journal of the Soil Mechanics and Foundations. 1970. (96). C. 1629-1653.
- 19. Janbu N. Soil compressibility as determined by oedometer and triaxial tests Wiesbaden:, 1963. 19-25 c.
- 20. Kondner R.L. A hyperbolic stress strain formulation for sands Brazil: 1963. 289-324 c.
- 21. Rowe P.W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact 1962. 500-527 c.
- 22. Schanz T., Vermeer P.A. Angles of friction and dilatancy of sand // Geotechnique. 1996. № 46. C. 145-151.
- 23. Schanz T., Vermeer P.A., Bonnier P.G. The hardening-soil model: Formulation and verification Rotterdam: Brinkgreve R.B.J., 1999. 281-290 c.
- 24. Schanz T. Vermeer P.A., Bonnier P.G. The hardening soil model: formulation and verification.// Beyond 2000 in Computional Geotechnics 10 years of PLAXIS. Balkema, Rotterdam, 1999
- 25. Soos P. von Properties of soil and rock (in German) / P. von Soos, Berlin: Ernst & Sohn, 1990.
- 26. Vermeer P.A., De Borst R. Non-associated plasticity for soils, concrete and rock / P.A. Vermeer, R. De Borst, Heron, 1984. 62 c.