EEE104 – Digital Electronics (I) Lecture 5

Dr. Ming Xu, Dr. Filbert Juwono

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- Logic Gates
 - Inverters
 - AND Gates
 - OR Gates
 - NAND Gate
 - NOR Gate
 - XOR Gate

Logic Gates

A gate is a circuit that performs a basic logic operation.

- 1. Inverter
- 2. AND gate
- 3. OR gate
- 4. NAND gate
- 5. NOR gate

The Exclusive-OR (XOR) gate and Exclusive-NOR (XNOR) Gate are sometimes thought as logic gates, but they are actually not.

Symbols

- Distinctive shape symbols and rectangular outline symbols. The former is more widely used.
- Active logic levels: when an input or output line has
 no bubble or triangle on it, that line is said to be
 active-HIGH; otherwise it is active-LOW.

The Truth Table

A **truth table** is a table which shows the output for each possible input in terms of logic levels and bits.

- When the input is HIGH, the output will be LOW.
- When the input is LOW, the output will be HIGH.

Input	Output
LOW (0) HIGH (1)	HIGH (1) LOW (0)
IIIOII (1)	LOW (0)

The Operation

- A timing diagram is a graph that displays the relationship of multiple waveforms on a time basis.
- An inverter produces an inverted output pulse or the complement of the input.

Logic Expression

- Boolean algebra is the mathematics of logic circuits.
- In Boolean algebra, a variable is designated by a letter and can take on a value of either 1 or 0
- For an inverter, if the input variable is A and the output variable is X, then

$$X = \overline{A}$$

It is read as "X equals A bar" or "X equals not A".

Symbols

 An AND gate can have any number of inputs greater than one, though gates with two inputs are shown.

Logical Operation

- Output is HIGH if all inputs are HIGH.
- Output is LOW if any input is LOW.

Truth Table

- An AND gate can have any number of inputs greater than one.
- The number of possible combinations of n binary inputs is $N = 2^n$

Inp	outs	Output
\boldsymbol{A}	В	X
0	0	0
0	1	0
1	0	0
1	1	1

1 = HIGH, 0 = LOW

Pulsed Operation

 Apply the truth table operation of the AND gate to each of the time intervals during which the levels are not changing.

Logic Expression

 If the input variables are A and B, and the output variable is X, the Boolean expression is in either way

$$X = AB$$
 $X = A \cdot B$

- It is read as "X equals A and B".
- The AND operation is the same as Boolean multiplication with the basic rules:

$$0 \cdot 0 = 0$$
$$0 \cdot 1 = 0$$
$$1 \cdot 0 = 0$$
$$1 \cdot 1 = 1$$

Symbols

 An OR gate can have any number of inputs greater than one, though gates with two inputs are shown.

Logical Operation

- Output is HIGH if any input is HIGH.
- Output is LOW if all inputs are LOW.

Truth Table

- A OR gate can have any number of inputs greater than one.
- The number of possible combinations of n binary inputs is $N = 2^n$

Inp	outs	Output
\boldsymbol{A}	В	X
0	0	0
0	1	1
1	0	1
1	1	1

1 = HIGH, 0 = LOW

Pulsed Operation

 Apply the truth table operation of the OR gate to each of the time intervals during which the levels are not changing.

Logic Expression

 If the input variables are A and B, and the output variable is X, the Boolean expression is

$$X = A + B$$

- It is read as "X equals A or B".
- The OR operation is the same as Boolean addition with the basic rules:

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 1$

Symbols

- The term NAND is a contraction of NOT-AND.
- It is equivalent to an AND gate followed by an inverter.

Distinctive shape symbol

Rectangular outline symbol

&

Logical Operation

- Output is HIGH if any input is LOW.
- Output is LOW if all inputs are HIGH.

Truth Table

Inp	outs	Output
A	В	X
0	0	1
0	1	1
1	0	1
1	1	0

1 = HIGH, 0 = LOW.

Logic Expression

 If the input variables are A and B, and the output variable is X, the Boolean expression is

$$X = \overline{AB}$$

Negative-OR Equivalent

 A NAND gate is equivalent to a negative-OR gate which is an OR gate with all inputs active-LOW.

Symbols

- The term NOR is a contraction of NOT-OR.
- It is equivalent to an OR gate followed by an inverter.

Distinctive shape symbol

Rectangular outline symbol

Logical Operation

- Output is HIGH if all inputs are LOW.
- Output is LOW if any input is HIGH.

Truth Table

Inp	outs	Output
A	В	X
0	0	1
0	1	0
1	0	0
1	1	0

^{1 =} HIGH, 0 = LOW.

Logic Expression

 If the input variables are A and B, and the output variable is X, the Boolean expression is

$$X = \overline{A + B}$$

Negative-AND Equivalent

 A NOR gate is equivalent to a negative-AND gate which is an AND gate with all inputs active-LOW.

The Exclusive-OR Gate

Symbols

- It is a combination of the basic gates but often treated as a basic gate.
- It is written as XOR gate for short.
- It has only two inputs.

Distinctive shape symbol

Rectangular outline symbol

X

The Exclusive-OR Gate

Logical Operation

- Output is HIGH if two inputs are at different levels.
- Output is LOW if two inputs are the same level.

Truth Table

In	puts	Output
A	В	X
0	0	0
0	1	1
1	0	1
1	1	0

The Exclusive-OR Gate

Logic Expression

 If the input variables are A and B, and the output variable is X, the Boolean expression is

$$X = \overline{A}B + A\overline{B}$$
$$= A \oplus B$$

Implementation

The Exclusive-NOR Gate

Symbols

- It is a combination of the basic gates but often treated as a basic gate.
- It is written as XNOR gate for short.
- It has only two inputs.

(a) Distinctive shape

(b) Rectangular outline

The Exclusive-NOR Gate

Logical Operation

- Output is LOW if two inputs are at different levels.
- Output is HIGH if two inputs are the same level.

Truth Table

In	puts	Output
\boldsymbol{A}	В	X
0	0	1
0	1	0
1	0	0
1	1	1

The Exclusive-NOR Gate

Logic Expression

 If the input variables are A and B, and the output variable is X, the Boolean expression is

$$X = \overline{AB} + AB$$
$$= \overline{A \oplus B}$$
$$= A \odot B$$