FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Projekt iz predmeta Raspoznavanje uzoraka

Ak. god. 2016/17

Lokalizacija karakterističnih točaka lica u videu

Generalić Boris

Gulan Filip

Kopljar Damir

Miličević Andrija

Nuić Hrvoje

Šarić Fredi

Zadro Tvrtko

SADRŽAJ

1.	Proj	ektni zadatak	1
	1.1.	Opis projektnog zadatka	1
	1.2.	Pregled i opis srodnih rješenja	1
	1.3.	Konceptualno rješenje zadatka	1
2.	Post	upak rješavanja zadatka	3
	2.1.	Prvi korak	3
		2.1.1. Prvi algoritam	3
		2.1.2. Drugi algoritam	3
	2.2.	Drugi korak	3
3.	Ispitivanje rješenja		
	3.1.	Ispitna baza	4
	3.2.	Rezultati učenja i ispitivanja	4
	3.3.	Analiza rezultata	4
4.	Opis	s programske implementacije rješenja	5
5.	Zak	ljučak	6
6.	Lite	ratura	7

1. Projektni zadatak

1.1. Opis projektnog zadatka

Lokalizacija karakterističnih točaka lica u videu ili fotografiji je tehnika koja se danas koristi u mnogim sustavima i uređajima. Susrećemo je na raznim društvenim servisima, poput *Facebook-a*, koji ju koriste za automatsko označavanje ljudi na fotografijama. Većina algoritama lokalizacije točaka lica su iznimno kompleksni i zahtjevaju veliku količinu procesorske snage i memorije, pa je težnja usmjerena na poboljšavanje tih algoritama. No razvojem i napretkom tehnologije algoritmi lokalizacije točaka lica se danas uspješno, bez velikih problema, izvode i na mobilnim uređajima koji ih koriste u raznoraznim aplikacijama poput alata za šminkanje gdje osoba može uz pomoć praćenja lica vidjeti kako bi izgledali s određenim bojama na svom licu.

Kroz ovaj projekt pokušat će se dani problem lokalizacije karakterističnih točaka lica riješiti uporabom dubokih neuronskih mreža.

1.2. Pregled i opis srodnih rješenja

Iscrpan pregled srodne literature s predloženim rješenjima. Opis postojećih ispitnih baza (linkovi na javno dostupne baze).

1.3. Konceptualno rješenje zadatka

Sam sustav za lokalizaciju karakterističnih točaka lica je podijeljen u više segmenata, tj. podsustava. Prvi segment sustava na ulaz prima sliku ili jedan vremenski okvir video isječka. Dana slika ili isječak se zatim pretvaraju u sliku sivih nijansi. Tako obrađena slika se dovodi na ulaz podsustava za izlučivanje položaja svih lica na slici te kao rezultat vraća listu u obliku: koordinate gornjeg lijevog ugla, širina i visina lica.

Tako dobivena lista se zatim iskoristi na način da se iz slike sivih nijansi izrežu

prepoznata lica i skaliraju. Pojedina skalirana lica dovede se na ulaze duboke neuronske mreže koja kao izlaze daje koordinate odabranih karakterističnih točaka lica. Tako dobivene točke skaliraju se u prostor početne slike ili isječka te se iscrtavaju i prikazuju korisniku sustava.

2. Postupak rješavanja zadatka

(do 10 stranica)

Navesti numerirani slijed koraka rješavanja. Npr.: 1. Dobivanje binarne slike iz slike u boji, 2. Segmentacija objekata na slici, 3. Nalaženje rubova u slici ...

2.1. Prvi korak

Za svaki korak napisati što su ulazi i što su izlazi. Popisati sve algoritme/ koncepte koji se u tom koraku koriste za pretvorbu ulaza u izlaz. Navesti sve probleme koji su se pojavili u pojedinom koraku i kako su riješeni. Pojedinačno opisati svaki korišteni algoritam/koncept:

2.1.1. Prvi algoritam

Opis/koraci/matematička formulacija, prednosti i mane, ulazi i izlazi te korišteni parametri.

2.1.2. Drugi algoritam

Opis/koraci/matematička formulacija, prednosti i mane, ulazi i izlazi te korišteni parametri.

2.2. Drugi korak

...

3. Ispitivanje rješenja

(do 10 stranica)

3.1. Ispitna baza

Opisati ispitnu bazu, tipove i broj različitih uzoraka u bazi te na koji su način uzorci iz baze korišteni prilikom učenja i ispitivanja rješenja projektnog zadatka.

3.2. Rezultati učenja i ispitivanja

Prikazati statističke podatke o uspješnosti rješenja prilikom učenja/ispitivanja te opisati eksperimente na temelju kojih su podaci dobiveni.

3.3. Analiza rezultata

Analizirati uzroke rezultata ispitivanja, povezati sa uzorcima u bazi i algoritmima korištenim u rješenju. Raspraviti moguća poboljšanja.

4. Opis programske implementacije rješenja

Opisati sučelje programske implementacije i način korištenja implementacije.

5. Zaključak

(do 2 stranice)

Ocijeniti uspješnost implementacije, navesti budući rad u smislu potrebnih poboljšanja.

6. Literatura

1. Ime i prezime autora: Naziv časopisa vol. br. godina izdanja, pp od-do (npr. pp 486-492)/knjige/članka/web resursa (s linkom i datumom pristupa web resursu) DVD/CD . kompletan tekst projekta izvorni kod projekta exe verzija readme file – upute za korištenje i pokretanje programa . baze slika (sve koje su korištene) E-oblik članaka koji su korišteni za izradu projekta primjeri obrade ..