#### PROGRAM STUDI TEKNIK INFORMATIKA – S1

#### FAKULTAS ILMU KOMPUTER UNIVERSITAS DIAN NUSWANTORO



<a href='https://www.freepik.com/vectors/technology'>Technology vector created by sentavio - www.freepik.com</a>

# DATA MINING "Klastering dengan KMeans"

TIM PENGAMPU DOSEN DATA MINING
2023

#### **Kontak Dosen**

- Junta Zeniarja, M.Kom
- Email: junta@dsn.dinus.ac.id
- Youtube : <a href="https://www.youtube.com/JuntaZeniarja">https://www.youtube.com/JuntaZeniarja</a>
- Scholar : <a href="http://bit.do/JuntaScholar">http://bit.do/JuntaScholar</a>







#### **Algoritma K-Means**

- K-means pertama kali dipublikasikan oleh Stuart Lloyd pada tahun 1984 dan merupakan algoritma clustering yang banyak digunakan.
- K-means bekerja dengan mensegmentasi objek yang ada kedalam kelompok atau yang disebut dengan segmen sehingga objek yang berada dalam masing-masing kelompok lebih serupa satu sama lain dibandingkan dengan objek dalam kelompok yang berbeda.
- Algoritma Clustering adalah meletakkan nilai yang serupa dalam satu segmen, dan meletakkan nilai yang berbeda dalam cluster yang berbeda (Wu & Kumar, 2009).
- K-Means memisahkan data dengan optimal dengan perulangan yang memaksimalkan hasil dari partisi hingga tidak ada perubahan data dalam setiap segmentasi.

# Algoritma K-Means [2]

- K-Means bekerja dengan pendekatan Top-Down karena memulai dengan segmentasi yang sudah ditentukan terlebih dahulu (Myatt, 2007). Sehingga hasil data sebuah segmen tidak mungkin tercampur antara satu segmen dengan segmen lainnya (Xu & Wunsch II, 2009). Pendekatan ini juga mempercepat proses komputasi untuk data dalam jumlah besar.
- Algoritma K-means diterapkan pada objek yang diwakili dalam bentuk titik didalam ruangan vektor berdimensi-d. K-means mengcluster semua data didalam setiap dimensi dimana titik dalam segmentasi yang sama diberi custer ID. Nilai dari k adalah masukan dasar dari algoritma yang menentukan jumlah segmentasi yang ingin dibentuk. Partisi akan dibentuk dari sekumpulan objek n kedalam cluster k sehingga terbentuk kesamaan objek dalam setiap segmentasi k.

# Algoritma K-Means [3]

- Untuk menghasilkan cluster yang maksimal, titik awal partisi merupakan salah satu faktor yang berpengaruh.
- Karena k-means memecahkan data kedalam segmentasi berdasarkan nilai lokal maksimum. Karena itu pemilihan titik awal harus beralasan, ada beberapa metode yang diusulkan oleh beberapa peneliti seperti genetic k-means, pemilihan titik awal secara acak sebanyak beberapa kali, metode yang paling baik adalah dengan mengukur nilai titik tengah segmentasi berdasarkan jumlah jarak terpendek antar anggota kelas tersebut.

# Algoritma K-Means [4]

Beberapa kelemahan dari algoritma k-means antara lain:

- a. Perlu mengetahui jumlah segmen yang ingin dibentuk, penentuan jumlah segmentasi ini membutuhkan pengalaman dalam melihat dan menilai jumlah segmentasi yang ada dalam data.
- b. Mudah terganggu dengan data yang tidak valid, karena cara kerja k-means merata-rata nilai dalam setiap segmen, maka data yang tidak relevan dapat mengacaukan pusat segmen.
- c. Hasil partisi dari *k-means tidak memiliki nilai hirarki, sehingga tidak ada* segmentasi yang lebih baik dari segmentasi lainnya.

# Langkah – Langkah Algoritma K-Means

Langkah-langkah algoritma K-means adalah sebagai berikut:

- 1. Tentukan nilai k sebagai jumlah klaster yang ingin dibentuk.
- 2. Bangkitkan k centroid (titik pusat klaster) awal secara random.
- Hitung jarak setiap data ke masing-masing centroid menggunakan rumus korelasi antar dua objek yaitu Euclidean Distance dan kesamaan Cosine.
- Kelompokkan setiap data berdasarkan jarak terdekat antara data dengan centroidnya.
- 5. Tentukan posisi centroid baru (k C) dengan cara menghitung nilai ratarata dari data-data yang ada pada centroid yang sama.

$$C_k = \left(\frac{1}{n_k}\right) \sum d_i$$

Dimana k n adalah jumlah dokumen dalam cluster k dan i d adalah dokumen dalam cluster k.

$$Sim(dx,dy) = \frac{\sum_{k=1}^{n} x_{k} \times y_{k}}{\sqrt{\sum_{k=1}^{n} x_{k}^{2}} \times \sqrt{\sum_{k=1}^{n} y_{k}^{2}}}$$



Gambar 1. Flowchart algoritma K-Means

#### **Euclidean Distance**

- Cara Menghitung Euclidean Distance
- **Euclidean distance** adalah perhitungan jarak dari 2 buah titik dalam Euclidean space. Euclidean space diperkenalkan oleh seorang matematikawan dari Yunani sekitar tahun 300 B.C.E. untuk mempelajari hubungan antara sudut dan jarak. Euclidean ini biasanya diterapkan pada 2 dimensi dan 3 dimensi. Tapi juga sederhana jika diterapkan pada dimensi yang lebih tinggi.

#### 1 dimensi

Semisal ingin menghitung jarak Euclidean 1 dimensi. Titik pertama adalah 4, titik kedua adalah -10. Caranya adalah kurangkan -10 dengan 4. sehingga menghasilkan -14. Cari nilai absolut dari nilai -14 dengan cara mempangkatkannya sehingga mendapat nilai 196. Kemudian diakarkan sehingga mendapatkan nilai 14. Sehingga jarak euclidean dari 2 titik tersebut adalah 14.

#### 2 dimensi

Caranya hampir sama. Misalkan titik pertama mempunyai kordinat (3,5). Titik kedua ada di kordinat (5,-3). Caranya adalah kurangkan setiap kordinat titik kedua dengan titik yang pertama. Yaitu, (5-3,-3-5) sehingga menjadi (2,-8). Kemudian pangkatnya sehingga memperoleh (4,64). Kemudian tambahkan semuanya sehingga memperoleh nilai 64+4 = 68. Hasil ini kemudian diakarkan menjadi 8.25. Sehingga jarak euclideannya menjadi 8.25.

# **Euclidean Distance [2]**

- **Euclidean Distance** adalah metrika yang paling sering digunakan untuk menghitung kesamaan 2 vektor.
- Euclidean distance menghitung akar dari kuadrat perbedaan 2 vektor (root of square differences between 2 vectors).

Rumus dari Euclidian Distance: 
$$d_{ij} = \sqrt{\sum_{k=1}^{n} (x_{ik} - x_{jk})^2}$$

Contoh :

Terdapat 2 vektor sebagai berikı A = [0, 3, 4, 5]B = [7, 6, 3, -1]

Euclidean Distance dari vektor A dan B adalah  $d_{AB} = \sqrt{(0-7)^2 + (3-6)^2 + (4-3)^2 + (5-(-1))^2}$ =  $\sqrt{49+9+1+36} = 9.747$ 

#### **Contoh Kasus 1**

Menggunakan algoritma K-Means temukan pengelompokan dan mean terbaik dari dua cluster data 2D di bawah ini.



#### Asumsi:

- Semua data akan dikelompokkan ke dalam dua kelas
- Titik pusat kedua cluster adalah C<sub>1</sub>(3,4), C<sub>2</sub>(6,4)

#### **Contoh Kasus – Iterasi 1**

#### Iterasi 1

a. Menghitung *Euclidean distance* dari semua data ke tiap titik pusat pertama.

Sehingga didapatkan:

$$D_{11} = \sqrt{(M_{1x} - C_{1x})^2 + (M_{1y} - C_{1y})^2} = \sqrt{(2-3)^2 + (5-4)^2} = \sqrt{2} = 1.41$$

$$D_{12} = \sqrt{(M_{2x} - C_{1x})^2 + (M_{2y} - C_{1y})^2} = \sqrt{(2-3)^2 + (5.5-4)^2} = \sqrt{3.25} = 1.80$$

$$D_{13} = \sqrt{(M_{3x} - C_{1x})^2 + (M_{3y} - C_{1y})^2} = \sqrt{(5-3)^2 + (3.5-4)^2} = \sqrt{4.25} = 2.06$$

$$D_{14} = \sqrt{(M_{4x} - C_{1x})^2 + (M_{1y} - C_{1y})^2} = \sqrt{(6.5-3)^2 + (2.2-4)^2} = \sqrt{2} = 3.94$$

$$D_{15} = \sqrt{(M_{5x} - C_{1x})^2 + (M_{5y} - C_{1y})^2} = \sqrt{(7-3)^2 + (3.3-4)^2} = \sqrt{2} = 4.06$$

$$D_{16} = \sqrt{(M_{6x} - C_{1x})^2 + (M_{6y} - C_{1y})^2} = \sqrt{(3.5-3)^2 + (4.8-4)^2} = \sqrt{2} = 0.94$$

$$D_{17} = \sqrt{(M_{7x} - C_{1x})^2 + (M_{7y} - C_{1y})^2} = \sqrt{(4-3)^2 + (4.5-4)^2} = \sqrt{2} = 1.12$$

P Dengan cara yang sama hitung jarak tiap titik ke titik pusat kedua, dan kita akan mendapatkan:

#### **Contoh Kasus – Iterasi 1 [2]**

b. Dari penghitungan Euclidean distance, kita dapat membandingkan:

|             | M1   | M2   | M3   | M4   | M5   | M6   | M7   |
|-------------|------|------|------|------|------|------|------|
| Jarak ke C1 | 1.41 | 1.80 | 2.06 | 3.94 | 4.06 | 0.94 | 1.12 |
| Jarak ke C2 | 4.12 | 4.27 | 1.18 | 1.86 | 1.22 | 2.62 | 2.06 |

{M1, M2, M6, M7} anggota C1 and {M3, M4, M5} anggota C2

c. Hitung titik pusat baru

$$M1 = (2, 5.0), M2 = (2, 5.5), M3 = (5, 3.5), M4 = (6.5, 2.2), M5 = (7, 3.3), M6 = (3.5, 4.8), M7 = (4, 4.5)$$

C1 = 
$$\left(\frac{2+2+3.5+4}{4}, \frac{5+5.5+4.8+4.5}{4}\right)$$
 = (2.85, 4.95)  
C2 =  $\left(\frac{5+6.5+7}{3}, \frac{3.5+2.2+3.3}{3}\right)$  = (6.17, 3)

#### **Contoh Kasus – Iterasi 1 [3]**

#### **ITERASI 2**

a) Hitung Euclidean distance dari tiap data ke titik pusat yang baru Dengan cara yang sama dengan iterasi pertama kita akan mendapatkan perbandingan sebagai berikut:

|                         | $M_\mathtt{1}$ | $M_2$ | $M_3$ | $M_4$ | $M_{5}$ | $M_6$ | $M_7$ |
|-------------------------|----------------|-------|-------|-------|---------|-------|-------|
| Jarak ke C <sub>1</sub> | 0.76           | 0.96  | 2.65  | 4.62  | 4.54    | 0.76  | 1.31  |
| Jarak ke C <sub>2</sub> | 4.62           | 4.86  | 1.27  | 0.86  | 0.88    | 3.22  | 2.63  |

- b) Dari perbandingan tersebut kita tahu bahwa  $\{M_1, M_2, M_6, M_7\}$  anggota  $C_1$  dan  $\{M_3, M_4, M_5\}$  anggota  $C_2$
- c) Karena anggota kelompok tidak ada yang berubah maka titik pusat pun tidak akan berubah.

#### **KESIMPULAN**

{M<sub>1</sub>, M<sub>2</sub>, M<sub>6</sub>, M<sub>7</sub>} anggota C<sub>1</sub> dan {M<sub>3</sub>, M<sub>4</sub>, M<sub>5</sub>} anggota C<sub>2</sub>

#### **Contoh Kasus 2**

• Diketahui Dataset Panen Tanaman Padi sebagai berikut :

| No | Luas Panen (ha) | Produksi |
|----|-----------------|----------|
| 1  | 1081            | 6142     |
| 2  | 2172            | 12354    |
| 3  | 213             | 1202     |
| 4  | 828             | 4708     |
| 5  | 135             | 766      |
| 6  | 176             | 993      |
| 7  | 15              | 85       |
| 8  | 40              | 224      |
| 9  | 1014            | 5758     |
| 10 | 889             | 5046     |

• Tentukan anggota untuk masing-masing klaster jika dibentuk 3 klaster?

- Tentukan nilai k.
- Diketahui jumlah klaster yang akan dibentuk sebanyak 3 sehingga k = 3.

- Bangkitkan Centroid Awal secara random.
- Misal dibangkitkan centroid (titik pusat klaster) sebagai berikut:

| • |    | Х    | Υ     |
|---|----|------|-------|
|   | C1 | 1000 | 10000 |
|   | C2 | 500  | 5000  |
|   | C3 | 50   | 100   |

- Hitung jarak setiap data ke masing-masing centroid.
- Menghitung Euclidean distance setiap data dengan titik pusat pertama:
- $D(1,1) = \sqrt{(M_{1x} C_{1x})^2 + (M_{1y} C_{1y})^2} = \sqrt{(1081 1000)^2 + (6142 10000)^2} = 3858,85$   $D(1,2) = \sqrt{(M_{2x} C_{1x})^2 + (M_{2y} C_{1y})^2} = \sqrt{(2172 1000)^2 + (12354 10000)^2} = 2629,62$   $D(1,3) = \sqrt{(M_{3x} C_{1x})^2 + (M_{3y} C_{1y})^2} = \sqrt{(213 1000)^2 + (1202 10000)^2} = 8833,13$   $D(1,4) = \sqrt{(M_{4x} C_{1x})^2 + (M_{4y} C_{1y})^2} = \sqrt{(828 1000)^2 + (4708 10000)^2} = 5294,79$   $D(1,5) = \sqrt{(M_{5x} C_{1x})^2 + (M_{5y} C_{1y})^2} = \sqrt{(135 1000)^2 + (766 10000)^2} = 9274,43$

# Langkah 3 [2]

- Hitung jarak setiap data ke masing-masing centroid.
- Menghitung Euclidean distance setiap data dengan titik pusat pertama:

• 
$$D(1,6) = \sqrt{(M_{6x} - C_{1x})^2 + (M_{6y} - C_{1y})^2} = \sqrt{(176 - 1000)^2 + (993 - 10000)^2} = 9044,61$$

•  $D(1,7) = \sqrt{(M_{7x} - C_{1x})^2 + (M_{7y} - C_{1y})^2} = \sqrt{(15 - 1000)^2 + (85 - 10000)^2} = 9963,81$ 

•  $D(1,8) = \sqrt{(M_{8x} - C_{1x})^2 + (M_{8y} - C_{1y})^2} = \sqrt{(40 - 1000)^2 + (224 - 10000)^2} = 9823,02$ 

•  $D(1,9) = \sqrt{(M_{9x} - C_{1x})^2 + (M_{9y} - C_{1y})^2} = \sqrt{(1014 - 1000)^2 + (5758 - 10000)^2} = 4242,02$ 

•  $D(1,10) = \sqrt{(M_{10x} - C_{1x})^2 + (M_{10y} - C_{1y})^2} = \sqrt{(889 - 1000)^2 + (5048 - 10000)^2} = 4955,24$ 

# Langkah 3 [3]

- Hitung jarak setiap data ke masing-masing centroid.
- Menghitung Euclidean distance setiap data dengan titik pusat kedua:
- $D(2,1) = \sqrt{(M_{1x} C_{2x})^2 + (M_{1y} C_{2y})^2} = \sqrt{(1081 500)^2 + (6142 5000)^2} = 1281,3$  $D(2,2) = \sqrt{(M_{2x} - C_{2x})^2 + (M_{2y} - C_{2y})^2} = \sqrt{(2172 - 500)^2 + (12354 - 5000)^2} = 7541,68$  $D(2,3) = \sqrt{(M_{3x} - C_{2x})^2 + (M_{3y} - C_{2y})^2} = \sqrt{(213 - 500)^2 + (1202 - 5000)^2} = 3808,83$  $D(2,4) = \sqrt{(M_{4x} - C_{2x})^2 + (M_{4y} - C_{2y})^2} = \sqrt{(828 - 500)^2 + (4708 - 5000)^2} = 439,14$  $D(2,5) = \sqrt{(M_{5x} - C_{2x})^2 + (M_{5y} - C_{2y})^2} = \sqrt{(135 - 500)^2 + (766 - 5000)^2} = 4249,7$

# Langkah 3 [4]

- Hitung jarak setiap data ke masing-masing centroid.
- Menghitung Euclidean distance setiap data dengan titik pusat kedua:
- $D(2,6) = \sqrt{(M_{6x} C_{2x})^2 + (M_{6y} C_{26})^2} = \sqrt{(176 500)^2 + (993 5000)^2} = 4020,08$  $D(2,7) = \sqrt{(M_{7x} - C_{2x})^2 + (M_{7y} - C_{2y})^2} = \sqrt{(15 - 500)^2 + (85 - 5000)^2} = 4938,87$  $D(2,8) = \sqrt{(M_{8x} - C_{2x})^2 + (M_{8y} - C_{2y})^2} = \sqrt{(40 - 500)^2 + (224 - 5000)^2} = 4798,1$  $D(2,9) = \sqrt{(M_{9x} - C_{2x})^2 + (M_{9y} - C_{2y})^2} = \sqrt{(1014 - 500)^2 + (5758 - 5000)^2} = 915,84$  $D(2,10) = \sqrt{(M_{10x} - C_{2x})^2 + (M_{10y} - C_{2y})^2} = \sqrt{(889 - 500)^2 + (5048 - 5000)^2} = 391,71$

# Langkah 3 [5]

- Hitung jarak setiap data ke masing-masing centroid.
- Menghitung Euclidean distance setiap data dengan titik pusat ketiga:
- $D(3,1) = \sqrt{(M_{1x} C_{3x})^2 + (M_{1y} C_{3y})^2} = \sqrt{(1081 50)^2 + (6142 100)^2} = 6129,33$   $D(3,2) = \sqrt{(M_{2x} C_{3x})^2 + (M_{2y} C_{3y})^2} = \sqrt{(2172 50)^2 + (12354 100)^2} = 12436,37$   $D(3,3) = \sqrt{(M_{3x} C_{3x})^2 + (M_{3y} C_{3y})^2} = \sqrt{(213 50)^2 + (1202 100)^2} = 1113,99$   $D(3,4) = \sqrt{(M_{4x} C_{3x})^2 + (M_{4y} C_{3y})^2} = \sqrt{(828 50)^2 + (4708 100)^2} = 4673,22$   $D(3,5) = \sqrt{(M_{5x} C_{3x})^2 + (M_{5y} C_{3y})^2} = \sqrt{(135 50)^2 + (766 100)^2} = 671,4$

# Langkah 3 [6]

- Hitung jarak setiap data ke masing-masing centroid.
- Menghitung Euclidean distance setiap data dengan titik pusat ketiga:

• 
$$D(3,6) = \sqrt{(M_{6x} - C_{3x})^2 + (M_{6y} - C_{3y})^2} = \sqrt{(176 - 50)^2 + (993 - 100)^2} = 901,85$$
  
 $D(3,7) = \sqrt{(M_{7x} - C_{3x})^2 + (M_{7y} - C_{3y})^2} = \sqrt{(15 - 50)^2 + (85 - 100)^2} = 38,08$   
 $D(3,8) = \sqrt{(M_{8x} - C_{3x})^2 + (M_{8y} - C_{3y})^2} = \sqrt{(40 - 50)^2 + (224 - 100)^2} = 124,4$   
 $D(3,9) = \sqrt{(M_{9x} - C_{3x})^2 + (M_{9y} - C_{3y})^2} = \sqrt{(1014 - 50)^2 + (5758 - 100)^2} = 5739,53$   
 $D(3,10) = \sqrt{(M_{10x} - C_{3x})^2 + (M_{10y} - C_{3y})^2} = \sqrt{(889 - 50)^2 + (5048 - 100)^2} = 5016,66$ 

Kelompokkan setiap data

|    | M1      | M2       | М3      | М4      | M5      | М6      | М7      | М8      | М9      | M10     |
|----|---------|----------|---------|---------|---------|---------|---------|---------|---------|---------|
| C1 | 3858.85 | 2629.62  | 8833.13 | 5294.79 | 9274.43 | 9044.61 | 9963.81 | 9823.02 | 4242.02 | 4955.24 |
| C2 | 1281.3  | 7541.68  | 3808.83 | 439.14  | 4249.7  | 4020.08 | 4938.87 | 4798.1  | 915.84  | 391.71  |
| С3 | 6129.33 | 12436.37 | 1113.99 | 4673.22 | 671.4   | 901.85  | 38.08   | 124.4   | 5739.53 | 5016.66 |

- {M2} anggota C1
- {M1, M4, M9, M10} anggota C2
- {M3, M5, M6, M7, M8} anggota C3

Tentukan posisi centroid baru

|    | M1      | M2       | М3      | M4      | M5      | М6      | М7      | М8      | М9      | M10     |
|----|---------|----------|---------|---------|---------|---------|---------|---------|---------|---------|
| C1 | 3858.85 | 2629.62  | 8833.13 | 5294.79 | 9274.43 | 9044.61 | 9963.81 | 9823.02 | 4242.02 | 4955.24 |
| C2 | 1281.3  | 7541.68  | 3808.83 | 439.14  | 4249.7  | 4020.08 | 4938.87 | 4798.1  | 915.84  | 391.71  |
| С3 | 6129.33 | 12436.37 | 1113.99 | 4673.22 | 671.4   | 901.85  | 38.08   | 124.4   | 5739.53 | 5016.66 |

C1 = 
$$\left(\frac{2172}{1}, \frac{12354}{1}\right)$$
 = (2712, 12354)  
C2 =  $\left(\frac{1081+828+1014+889}{4}, \frac{6142+4708+5758+5046+}{4}\right)$  = (953, 5413.5)  
C2 =  $\left(\frac{213+135+176+40}{5}, \frac{1202+766+933+224}{5}\right)$  = (115.8, 654

|    | Х     | Υ      |
|----|-------|--------|
| C1 | 2172  | 12354  |
| C2 | 953   | 5413.5 |
| C3 | 115.8 | 654    |

- Kelompokkan setiap data.
- Hasil Iterasi 2:

|    | M1      | M2       | М3       | M4      | M5       | М6      | M7       | M8       | М9      | M10     |
|----|---------|----------|----------|---------|----------|---------|----------|----------|---------|---------|
| C1 | 6307.08 | 0        | 11322.76 | 7763.22 | 11765.68 | 11535   | 12457.17 | 12315.94 | 6696.88 | 7419.77 |
| C2 | 739.66  | 7046.74  | 4276.02  | 716.49  | 4718.94  | 4488.27 | 5410.43  | 5269.2   | 349.86  | 373.03  |
| С3 | 5572.23 | 11879.31 | 556.55   | 4116.08 | 113.63   | 344.3   | 577.86   | 436.63   | 5182.43 | 4459.54 |

Hasil Iterasi 1:

|    | M1      | M2       | М3      | M4      | M5      | М6      | М7      | M8      | М9      | M10     |
|----|---------|----------|---------|---------|---------|---------|---------|---------|---------|---------|
| C1 | 3858.85 | 2629.62  | 8833.13 | 5294.79 | 9274.43 | 9044.61 | 9963.81 | 9823.02 | 4242.02 | 4955.24 |
| C2 | 1281.3  | 7541.68  | 3808.83 | 439.14  | 4249.7  | 4020.08 | 4938.87 | 4798.1  | 915.84  | 391.71  |
| С3 | 6129.33 | 12436.37 | 1113.99 | 4673.22 | 671.4   | 901.85  | 38.08   | 124.4   | 5739.53 | 5016.66 |

Karena anggota kelompok tidak ada yang berubah maka kesimpulannya:

- **{M2**} anggota C1.
- {M1, M4, M9, M10} anggota C2.
- {M3, M5, M6, M7, M8} anggota C3.

#### **Implementasi Python**

Mengimpor library python yang diperlukan:

```
from sklearn import datasets
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from scipy.spatial.distance import cdist
import matplotlib.pyplot as plt
```

# **Implementasi Python [2]**

```
iris = datasets.load_iris()
features = iris.data
plt.scatter(features[:,0], features[:,1])
plt.show()
```



- Membaca data input.
- Sebagai ilustrasi, dataset yang digunakan di dalam program ini adalah data iris yang bersumber kepada data yang dipublikasikan oleh Fisher (Fisher, 1950).
- Data tersebut dapat didownload dari website UCI Machine Learning Repository.
- Hasil visualisasi scatter data iris bisa dilihat pada gambar disamping.

# Implementasi Python [3]

Menstandardisasi fitur.

```
scaler = StandardScaler()
features_standardized = scaler.fit_transform(features)
```

#### Implementasi Python [4]

```
from sklearn.metrics import silhouette_samples, silhouette_score
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, init='k-means++',
    max_iter=300, n_init=10, random_state=0)
    kmeans.fit(features)
    wcss.append(kmeans.inertia_)
plt.plot(range(1, 11), wcss)
plt.title('Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
```



- Membuat klastering dan mencari nilai k yang paling optimal, dengan menggunakan elbow method.
- Tampilan hasil elbow method seperti terlihat pada gambar diatas.

#### **Implementasi Python [5]**

Melakukan klastering.

```
kmeans = KMeans(n_clusters=4, init='k-means++',
    max_iter=300, n_init=10, random_state=0)
pred_y = kmeans.fit_predict(features)
plt.scatter(features[:,0], features[:,1])
plt.scatter(kmeans.cluster_centers_[:,0],
    kmeans.cluster_centers_[:,1], s=300, c='red')
plt.show()
```

Hasil visualisasi klaster seperti gambar disamping.



#### Implementasi Python dengan Dataset txt

```
#import libary yang dibutukan
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.pyplot import cm
import time
import itertools
#baca dataset dari file
datasetPath = "D:\dataku.txt"
dataset = np.loadtxt(datasetPath, delimiter=" ")
#mendefinisikan parameter k-means klustering
k = 2 #jumlah klaster yg diinginkan
iterationCounter = 0 #counter untuk iterasi
input = dataset #input data
#fungsi untuk inisialisi titik pusat klaster (random)
def initCentroid(dataIn, k):
    result = dataIn[np.random.choice(dataIn.shape[0], k, replace=False)]
    return result
```

```
-9.6961 6.0031
11.9126 0.2844
-3.9586 0.0571
-3.6131 -1.3299
-1.6446 -3.0697
-9.0433 -8.0838
-2.9757 -1.5796
13.4308 -6.4078
1.9012 0.9898
3.8303 13.9523
3.0094 2.1778
```

- Pertama kali kita harus import library yang dibutuhkan seperti numpy, matplotlib, dll.
- Kemudian baca dataset dari file (dataku.txt => berisi 400 data dalam bentuk teks).
- Setelah itu mendefinisikan parameter K-Means.
- Buat fungsi untuk inisialisasi titik pusat klister secara random.

# Implementasi Python dengan Dataset txt [2]

```
#fungsi untuk plot hasil klaster per iterasi
def plotClusterResult(listClusterMembers, centroid, iteration, converged):
   n = listClusterMembers. len ()
   color = iter(cm.rainbow(np.linspace(0, 1, n)))
   plt.figure("result")
   plt.clf()
   plt.title("iteration-" + iteration)
   marker = itertools.cycle(('.', '*', '^', 'x', '+'))
   for i in range(n):
       col = next(color)
       memberCluster = np.asmatrix(listClusterMembers[i])
       plt.scatter(np.ravel(memberCluster[:, 0]), np.ravel(memberCluster[:, 1]),
                   marker=marker. next (), s=100, c=col, label="klaster-"+str(i+1))
   for i in range(n):
       plt.scatter((centroid[i, 0]), (centroid[i, 1]), marker=marker.__next__()
                    , c=col, label="centroid-" + str(i + 1))
   if(converged == 0):
       plt.legend()
       plt.ion()
       plt.show()
       plt.pause(0.1)
   if (converged == 1):
       plt.legend()
       plt.show(block=True)
```

 Selanjutnya buat fungsi untuk plot hasil klister per iterasi.

#### Implementasi Python dengan Dataset txt [3]

```
#fungsi utama algoritma k-means
def kMeans(data, centroidInit):
   nCluster = k #banyaknya klaster
   global iterationCounter
   centroidInit = np.matrix(centroidInit)
   # looping hingga konvergen
   while(True):
        iterationCounter +=1
        euclideanMatrixAllCluster = np.ndarray(shape=(data.shape[0], 0))
        #ulangi proses untuk semua klaster
       for i in range(0, nCluster):
           centroidRepeated = np.repeat(centroidInit[i,:], data.shape[0], axis=0)
           deltaMatrix = abs(np.subtract(data,centroidRepeated))
           #hitung jarak Euclidean
           euclideanMatrix = np.sqrt(np.square(deltaMatrix).sum(axis=1))
           euclideanMatrixAllCluster = \
               np.concatenate((euclideanMatrixAllCluster, euclideanMatrix), axis=1)
        #tempatkan data ke klaster yang jarak Euclideannya plg dekat
        clusterMatrix = np.ravel(np.argmin(np.matrix(euclideanMatrixAllCluster), axis=1))
        listClusterMember = [[] for i in range(k)]
        for i in range(0, data.shape[0]):#assign data to cluster regarding cluster matrix
           listClusterMember[np.asscalar(clusterMatrix[i])].append(data[i,:])
        #hitung titik pusat klaster terbaru
        newCentroid = np.ndarray(shape=(0, centroidInit.shape[1]))
        for i in range(0,nCluster):
           memberCluster = np.asmatrix(listClusterMember[i])
           centroidCluster = memberCluster.mean(axis=0)
           newCentroid = np.concatenate((newCentroid, centroidCluster), axis=0)
        print("iter: ", iterationCounter)
       print("centroid: ", newCentroid)
        #break dari loop jika sudah konvergen
        if((centroidInit == newCentroid).all()):
           break
        centroidInit = newCentroid
        #plot hasil klaster per iterasi
        plotClusterResult(listClusterMember, centroidInit, str(iterationCounter), 0)
        time.sleep(1) #diberi jeda 1 detik agak hasil plot klaster nyaman dilihat
   return listClusterMember, centroidInit
```

 Selanjutnya buat fungsi utama untuk algoritma K-Means.

#### Implementasi Python dengan Dataset txt [4]

```
#panggil fungsi inisialisasi klater
centroidInit = initCentroid(input, k)
#panggil fungsi k-means
clusterResults, centroid = kMeans(input, centroidInit)
#plot hasil final klaster setelah konvergen
plotClusterResult(clusterResults, centroid, str(iterationCounter) + " (converged)", 1)
```



- Kemudian panggil fungsi inisialisasi klister dan panggil fungsi utama K-Means.
- Selanjutnya plot hasil final klaster setelah konvergen.
- Hasil visualisasi
   Klaster seperti
   gambar disamping.

#### Implementasi Python dengan Dataset CSV

|    | Α  | В    | С           |
|----|----|------|-------------|
| 1  | No | Gaji | Pengeluaran |
| 2  | 1  | 2500 | 1750        |
| 3  | 2  | 3800 | 4200        |
| 4  | 3  | 3900 | 3800        |
| 5  | 4  | 4350 | 5500        |
| 6  | 5  | 4400 | 3200        |
| 7  | 6  | 5500 | 5450        |
| 8  | 7  | 5600 | 5950        |
| 9  | 8  | 5750 | 4100        |
| 10 | 9  | 6850 | 6050        |
| 11 | 10 | 6900 | 8500        |
| 12 | 11 | 7250 | 9500        |
| 13 | 12 | 7350 | 6050        |
| 14 | 13 | 7500 | 8500        |
| 15 | 14 | 7800 | 9500        |
| 16 | 15 | 8200 | 8300        |
| 17 | 16 | 8500 | 6500        |
| 18 | 17 | 8550 | 8400        |
| 19 | 18 | 8750 | 6000        |
| 20 | 19 | 9100 | 10500       |
| 21 | 20 | 9100 | 8500        |

- Siapkan 20 record data, kemudian simpan dengan nama konsumen.csv
- Kemudian, memanggil library yang dibutuhkan.

```
#Import Library yang akan digunakan
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as numpy
import pandas as pd
from sklearn.cluster import KMeans
```

- Ket:
  - Matplotlib => membuat grafik plot
  - Numpy => untuk kebutuhan scientific.
  - Pandas => untuk manipulasi data, spt membuat tabel, mengubah dimensi data, mengecek data dsb.
  - Sklearn => untuk metode dan algoritma Machine Learning.

#### Implementasi Python dengan Dataset CSV [2]

Memanggil dataset konsumen.csv

```
#Menyiapkan data dan memanggil dataset
dataset = pd.read_csv('D:\konsumen.csv')
dataset.keys()
```

Untuk menampilkan 5 baris data pertama dari dataset tersebut:

```
dataku = pd.DataFrame(dataset)
dataku.head()
```

#### Implementasi Python dengan Dataset CSV [3]

Konversi Dataset ke Data Array:

```
#Konversi ke data Array
X = np.asarray(dataset)
print(X)
```

• Hasil konversinya seperti tampil pada gambar disamping.

```
2500
      1750]
3800
      4200]
3900
      3800]
4350
      5500]
4400
      3200]
      5450]
5600
      5950]
5750
      4100]
6850
      6050]
6900
      8500]
      9500]
7350
      6050
      8500]
7500
7800
      9500]
8200
      8300]
8500
      6500]
      8400]
8550
      6000]
8750
9100 10500]
9100 8500]]
```

# Implementasi Python dengan Dataset CSV [4]

- Menampilkan data Array ke dalam Scatter Plot.
- Untuk visualisasi data, berikut adalah perintah untuk menampilkan data array.

```
#Menampilkan data dalam bentuk scatter plot
plt.scatter(X[:,0], X[:,1], label='True Position')
plt.xlabel("Gaji")
plt.ylabel("Pengeluaran")
plt.title("Grafik Penyebaran Data Konsumen")
plt.show()
```

Hasil visualisasi penyebaran data konsumen seperti terlihat pada gambar dibawah ini.



#### Implementasi Python dengan Dataset CSV [5]

- Mengaktifkan K-Means dari Sklearn.
- Untuk langkah selanjutnya, perlu dilakukan konversi dataset ke dalam tipe data array, dan kemudian melakukan fitting data dengan kode program sebagai berikut.

```
#Mengaktifkan K-Means dengan jumlah K=2
kmeans = KMeans(n_clusters=2)
kmeans.fit(X)
```

#### Implementasi Python dengan Dataset CSV [6]

- Menampilkan nilai Centroid.
- Untuk menampilkan nilai centroid atau titik pusat klaster yang degenerate oleh algoritma dapat menggunakan kode sebagai berikut:

```
#Menampilkan nilai Centroid yang digenerate oleh algoritma
print(kmeans.cluster_centers_)
```

Hasil Nilai Centroid seperti gambar dibawah ini:

```
[[4475. 4243.75]
[7987.5 8025. ]]
PS C:\Users\Junz> [
```

# Implementasi Python dengan Dataset CSV [7]

- Visualisasi Hasil.
- Untuk menampilkan scatter plot dari data-data setelah dilakukan klasterisasi oleh algoritma K-Means sebagai berikut:

```
#Plot Data Point
#Memvisualisasikan Hasil Klasterisasi Data Konsumen
plt.scatter(X[:,0], X[:,1], c=kmeans.labels_, cmap='rainbow')
plt.xlabel("Gaji")
plt.ylabel("Pengeluaran")
plt.title("Grafik Hasil Klasterisasi Data Gaji dan Pengeluaran Konsumen")
plt.show()
```

 Dan visualisasi hasil klaster dapat dilihat pada gambar grafik disamping.



# Implementasi Python dengan Dataset CSV [8]

 Kita juga bisa menampilkan centroid dari masing-masing klaster dengan kode sebagai berikut:

```
#Plot Data Point
#Memvisualisasikan hasil klasterisasi dengan centroid dr masing2 klaster
plt.scatter(X[:,0], X[:,1], c=kmeans.labels_, cmap='rainbow')
plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1], color='black')
plt.xlabel("Gaji")
plt.ylabel("Pengeluaran")
plt.title("Grafik Hasil Klasterisasi Data Gaji dan Pengeluaran Konsumen")
plt.show()
```

 Dan visualisasi hasil klaster dapat dilihat pada gambar grafik disamping.



# **Latihan Soal (Kuis)**

 Tentukan anggota klasternya, jika dikelompokan menjadi 2 klaster?

Titik Pusat Cluster => C<sub>1</sub>(3,4), C<sub>2</sub>(6,4)

#### Referensi

- 1. Kusrini, Taufiq Emha, Algoritma Data Mining, *Penerbit Andi*, 2009.
- Ian H. Witten, Frank Eibe, Mark A. Hall, Data mining: Practical Machine Learning Tools and Techniques 4th Edition, *Elsevier*, 2017.
- 3. Budi Santosa, Ardian Umam, Data Mining dan Big Data Analytics, Penebar Media Pustaka, 2018.
- 4. Yaya Heryadi, Teguh Wahyono, Machine Learning: Konsep dan Implementasi, Penerbit Gava Media, 2020.
- 5. Sumber gambar: <a href="www.freepik.com">www.freepik.com</a>.



# THANKS

#### **ANY QUESTIONS?**

