Lab-8

Relation Algebra and SQL Queries for Functional Requirements Prepared By: Group 22

1)Query to retrieve employees with age more than 50 working in safety department

Relational Algebra:

 Π (fname, lname) -> EmployeeName (σ < (age > 50) AND department = 'Safety' >)

SQL query:

select fname ||' || Iname as EmployeeName from employee where age > 50 and department='Safety';

2)Query to retrieve total employees working in each department

Relational Algebra:

 $\Pi_{\mathsf{department}}(\mathsf{department}\mathscr{F}_{\mathsf{count}(\mathsf{eid})})$

SQL QUERY:

select department, count(eid) from employee group by department;

3)Query to retrieve train name that will transport parcel from source AHMEDABAD to destination GANDHINAGAR

RELATIONAL ALGEBRA:

 Π <par_id,train_id,train>(parcel \bowtie <s.sid=pa.sid >station \bowtie <s.train_id=tr.train_id>train) σ <pa.source_t='Ahmedabad' and pa.destination_t='Gandhinagar' and tr.t_source='Ahmedabad' and tr.t_destination='Gandhinagar'>

SQL query:

select pa.par_id, tr.train_id, tr.train from parcel pa inner join station s on s.sid = pa.sid inner join train tr on s.train_id = tr.train_id where pa.source_t='Ahmedabad' and pa.destination_t='Gandhinagar' and tr.t_source='Ahmedabad' and tr.t_destination='Gandhinagar';

4) RETRIEVE EMPLOYEE WORKING ON TRAIN ID 12005 OR 12115

Relational Algebra: $\Pi < \text{e_id} > (\text{employee}) (\sigma \text{ train.e_id='}12005' \text{ or train.e_id='}12115' (\text{employee}) \times < \text{employee.e_id=train.e_id>} \text{train.e_id>} \text{train.e_id>}$

SQL query:

SELECT employee.e_id FROM employee , train WHERE employee.e_id=train.e_id
OR (train.train_id='12005' OR train.train_id='12115')

5)Retrieve lost and found item details that are submitted at station id's 1 or 2

Relational Algebra:

 Π <item_id, item_name, description, sid>(lost_and_found) \bowtie <s.sid = lf.sid > σ <s.sid=1 or s.sid=2>

SQL query:

select lf.item_id, lf.item_name, lf.description, lf.sid from lost_and_found lf inner join station s on s.sid = lf.sid where s.sid=1 or s.sid=2;

6)Retrieve all the station names where patients are suffering from covid 19.

Relational Algebra:

 Π <station_name,patient_name>(station,medical_services) \bowtie <s.sid = medical_services.sid> σ <medical_services.description like '%COVID%'>

SQL Query:

select station.station_name,medical_services.patient_name from station,medical_services inner join station s on s.sid = medical_services.sid where medical_services.description like '%COVID%'; 7) show the first and last name of the passenger with their ticket details of train id12135.

Relational Algebra:

 Π <fname,lname,ticket_id,pid,tra_id,train_id>(passenger) \bowtie <passenger.pid=ticket. pid> (ticket) σ <ticket.train_id='12135'>

SQL QUERY:

select

passenger.fname,passenger.lname,ticket.ticket_id,ticket.pid,ticket.tra_id,ticket.tra in_id from passenger inner join ticket on passenger.pid=ticket.pid where ticket.train_id='12135';

8)Retrieve the first and last name of an employee who works on a train and whose name starts with "R" and is older than 20.

Relational Algebra:

 Π <e_id , fname , lname>(employee) σ <employee.FNAME like 'R%' And employee.age > 20>(employee) \bowtie <employee.e_id=train.e_id>(train) >

SQL QUERY:

SELECT employee.e_id , fname , lname FROM employee WHERE employee.e_id IN (SELECT train.e_id FROM train WHERE employee.FNAME like 'R%') And employee.age > 20 9)Retrieve passenger name and all ticket details of passenger with the help of transaction details table and train table.

Relational Algebra:

Π<ticket_id,fname,lname ->

PassengerName,amount,train,t_source,t_destination>(ticket) ⋈<tc.pid = ps.pid>(passenger) ⋈<tc.tra_id = td.tra_id>(transaction_details)⋈<ti.train_id = tc.train_id>(train)

SQL Query:

select tc.ticket_id,ps.fname ||' || ps.lname as PassengerName, td.amount, ti.train_id, ti.t_source, ti.t_destination from ticket tc inner join passenger ps on tc.pid = ps.pid inner join transaction_details td on tc.tra_id = td.tra_id inner join train ti on ti.train_id = tc.train_id;

10)Retrieve station's name where food and waiting rooms facilities are available.

Relational Algebra:

 Π <sid,station_name>(station) σ <station.food_availablity=true AND station.waiting_room_availablity=true>

SQL QUERY:

SELECT station.sid,station.station_name FROM station WHERE (station.food_availablity=true AND station.waiting_room_availablity=true) 11)Retrive the ticket details of the passengers of the train named karnavati express.

Relational Algebra:

 σ <train_name='KARNAVATI EXPRESS'>(train) \bowtie <ticket.train_id=train.train_id>(ticket) \bowtie ticket.pid=passenger.pid(passenger)

SQL QUERY:

select pa.* from passenger pa, train tr, ticket tc where tc.train_id = tr.train_id and tc.pid = pa.pid and tr.train_name = 'KARNAVATI EXPRESS'; 12) count the number of tickets of train id 12115 and display the name of the train.

Relational Algebra:

 Π <train_id,train_name>(Π <ticket_id>)(ticket) σ <tc.train_id = tr.train_id> Π <train.train_id,train.train_name>(σ train_id='12115' (ticket \bowtie <ticket.train_id = train.train_id> train))

SQL QUERY:

select tr.train_id, tr.train_name, (Select COUNT(tc.ticket_id) from ticket tc where tc.train_id = tr.train_id)

as Total from train tr where tr.train_id = '12115';

13) Retrieve the passenger details who booked a ticket in train 12115.

Relational Algebra:

```
σ<train.train_id = '12115'>(train)⋈<train.train_id = ticket.train_id>(ticket)⋈<passenger.pid = ticket.pid>(passenger)
```

SQL QUERY:

SELECT passenger.* FROM passenger LEFT JOIN ticket ON passenger.pid = ticket.pid LEFT JOIN train

ON train.train_id = ticket.train_id WHERE train.train_id = '12115';

14)Retrieve the transaction details and passenger details of the passenger who booked ticket of train id 12155

Relational Algebra:

 Π casenger>(transaction_details)(σ train_id = '12155' (ticket)

SQL QUERY:

SELECT transaction_details,passenger.* FROM transaction_details right JOIN passenger ON

passenger.pid = transaction_details.pid right JOIN ticket
ON transaction_details.pid = ticket.pid WHERE ticket.train_id = '12155';

15)List out the station name of those stations where lost items are not found or food availability or waiting room availability is not there.

Relational Algebra:

 Π <station_name,sid,food_availablity,waiting_room_availablity>(station) \bowtie <station.sid=lost_and_found.sid>(lost_and_found) σ <lost_and_found.status='no' or station.food_availablity=false or station.waiting_room_availablity=false>

SQL QUERY:

select lost_and_found.*

,station.station_name,station.sid,station.food_availablity,station.waiting_room_availablity from station join lost_and_found on station.sid=lost_and_found.sid where lost_and_found.status='no' or station.food_availablity=false or station.waiting_room_availablity=false;

16)show minimum age of employee and count number of employees whose age is greater than 18 and less than 60 count should be atleast one.

Relational Algebra:

 Π <sid,MIN> -> minage (employee) σ_{employee} (<age>= 18 AND age <=60>) $\mathscr{F}_{\text{count}(*)>1}$

SQL QUERY:

SELECT sid, MIN(age) AS minage FROM employee WHERE age >= 18 AND age <=60 GROUP BY sid HAVING COUNT (*) > 1;

17) count the number of lost items whose status is still not found.

Relational Algebra:

 $\Pi < \mathscr{F}_{\mathsf{count} < \mathsf{item_id} > \mathsf{J}} \mathsf{item_name} > (\mathsf{lost_and_found}) \sigma_{\mathsf{item_id}} (\mathsf{status} = \mathsf{'no'})$

SQL QUERY:

select count(item_id),item_name from lost_and_found where status='no' group by item_id;

18)Retrieve station name and id details with parcel service details and medical service details of patient name starts with x.

Relational Algebra:

Π<sid,station_name,pracel_id,sid>(station) ⋈
<station.sid=parcel_service.sid>(parcel_services) ⋈
<medical_services.sid=station.sid>(medical_services)
σ<medical_services.patient_name like 'X%'>

SQL QUERY:

Select station.sid,station.station_name,parcel_service.par_id,medical_services.* from station join parcel_service on station.sid=parcel_service.sid join medical_services on medical_services.sid=station.sid where medical_services.patient_name like 'X%';

19)Retrieve the details of passenger and there ticket whose transaction amount is more than 500

Relational Algebra:

SQL QUERY:

select

passenger.*,ticket.*,transaction_details.amount,transaction_details.transaction_d ate_time

from passenger join ticket on passenger.pid=ticket.pid join transaction_details on transaction_details.pid=ticket.pid where transaction_details.amount>500;

20) count the employees and average salary of employees of station id 1 or 2 or 4.

Relational Algebra:

 Π <sid, $\mathscr{F}_{count<e_id>AVERAGE}$ (SALARY)>(employee) σ_{sid} <sid=1 or sid=2 or sid=4>

SQL QUERY:

SELECT sid, COUNT(e_id), AVG(SALARY) FROM employee WHERE sid=1 or sid=2 or sid=4 GROUP BY sid;

21) Find out employees of departments who draw more salary then average salary of all employees of that department.

Relational Algebra:

R1 -> π (department, \mathscr{F} avg(salary)->avg_sal)(employee) σ (e.salary>department_avg_sal.avg_sal) (ρ (e,employee) \bowtie <e.department=department_avg_salary.department> ρ (department_avg_salary,r1))

SQL QUERY:

SELECT * FROM employee AS e JOIN (
SELECT department, AVG(salary) AS avg_sal FROM employee
GROUP BY department
ORDER BY department
) AS department_avg_sal
ON (e.department = department_avg_sal.department)
WHERE e.salary > department_avg_sal.avg_sal;