Biogeografía de islas

Modelos

Gerardo Martín

28-07-2023

- Biogeografía es el estudio del efecto de la geografía en la diversidad biológica
 - · Analizaremos el caso especial de las islas
 - Isla puede ser porción de tierra rodeada de agua, fragmento de bosque rodeado de cultivo, un árbol separado de otros...
- Modelos de metapoblaciones ightarrow parches ocupados por poblaciones por una sola especie
- Modelos de islas \rightarrow parches ocupados por varias especies

Esquema del proceso

Alternativas técnicas

- 1. Representar movimiento de individuos desde continente
 - 1.1 Analizar frecuencia de llegada a las islas
- 2. Ignorar individuos \rightarrow representar número de especies como población
 - 2.1 Mac Arthur y Wilson 1967

El modelo de Mac Arthur y Wilson

- 1. Número de especies \rightarrow balance entre colonización y extinción
- 2. \forall spp tienen misma prob de llegar a isla
- 3. Sólo cuentan las colonizaciones, llegada de spp nuevas
- 4. Probabilidad de extinción es constante
- 5. Probabilidad de extinción de cualquier especie aumenta con el número de especies en isla

El modelo de Mac Arthur y Wilson (1967)

Figure 1: Relaciones cuantitativas entre inmigración, extinción, especies presentes y posibles.

Donde ...

$$I = I_x - (I_x/P)R \tag{1}$$

$$E = (E_x/P)R \tag{2}$$

- \cdot I= inmigración
- $\cdot E = \operatorname{extinción}$
- $\cdot P =$ número de especies que pueden colonizar la isla
- $\cdot R =$ número de especies que habitan la isla

7

•••

- \cdot I_x es la tasa máxima de colonización
- \cdot E_x es la tasa máxima de extinción

Por lo tanto el modelo completo es:

$$R_{t+1} = R_t + I_x - (I_x/P)R_t - (E_x/P)R_t \label{eq:reconstruction}$$

Características del modelo de Mac Arthur y Wilson

- · Tiempo discreto
- \cdot Inmigración disminuye si hay pocas especies en P
- \cdot Extinción aumenta si hay pocas especies en P

Ejemplo del modelo resuelto

```
R <- numeric(100); R[1] <- 10
Ix <- 1; Ex <- 0.5; P <- 20
for(i in 2:length(R)){
   R[i] <- R[i-1] + Ix - (Ix/P)*R[i-1] - Ex/P*R[i-1]}</pre>
```

Ejemplo del modelo resuelto

Ejercicio

 Repetir la simulación con las siguientes combinaciones de parámetros

lx	Ex	Р
0.75	0.75	20
1.50	0.75	20
0.75	1.25	20
1.50	1.25	20
0.75	0.75	40
1.50	0.75	40
0.75	1.25	40
1.50	1.25	40

12

Ejercicio

- \cdot ¿Qué pasa con el punto de equilibio cuando hay más especies en P?
- ¿Cómo afectan ${\cal I}_x$ y ${\cal E}_x$ al número de especies en el conjunto de islas?

Relación entre área, distancia y especies

Concepto

- · No. spp disminuye con distancia de tierra
- · No. spp aumenta con tamaño de isla
- · Se ha propuesto:

$$S = cA^z$$

S es el número de especies, c es una constante de grupo taxonómico, z exponente sin dimensión

Interpretación de parámetros

- \cdot z
 ightarrow tiene valores típicos de 0.2-0.3
- · Indica que si área aumenta 10x número de especies aumenta 2x

Evidencia

Organism	Location	z	Source
Beetles	West Indies	0.34	Darlington
Reptiles and amphibians	West Indies	0.30	Darlington
Birds	West Indies	0.24	Hamilton, Barth, Rubinoff
Birds	East Indies	0.28	Hamilton, Barth, Rubinoff
Birds	East-Central Pacific	0.30	Hamilton, Barth, Rubinoff
Ants	Melanesia	0.30	MacArthur and Wilson
Land vertebrates	Lake Michigan Islands	0.24	Preston
Birds	New Guinea Islands	0.22	Diamond
Birds	New Britain Islands	0.18	Diamond
Birds	Solomon Islands	0.09	Diamond
Birds	New Hebrides	0.05	Diamond and Mayr
Land plants	Galapagos	0.32	Preston
Land plants	Galapagos	0.33	Hamilton, Barth, Rubinoff
Land plants	Galapagos	0.31	Johnson and Raven
Land plants	World-wide	0.22	Preston
Land plants	British Isles	0.21	Johnson and Raven
Land plants	Yorkshire nature reserves	0.21	Usher
Land plants	California Island	0.37	Johnson, Mason, Raven

Mecanismos biológicos

- 1. Más especies pueden explotar nichos si el área es mayor
- 2. Áreas menores pueden albergar poblaciones más pequeñas
- 3. Extinciones pueden ocurrir por:
 - · Estocasticidad ambiental
 - · Emigración
 - · E...?

Supuestos

- 1. La identidad de especies no importa
- 2. Todos los grupos taxonómicos se asumen igualmente probables
 - · Colonización
 - Extinción

Interacción entre área y distancia

Supuestos

A (área) es equivalente a N (número de especies)