Double Integrals

Section 15.1-15.3

Outline

- Double Integrals over Rectangles
- Iterated Integrals
 - Fubini's Theorem
- Double Integrals over General Regions
 - Type I Regions
 - Type II Regions
- Double Integrals in Polar Coordinates

- For a general region D in \mathbb{R}^2 , we suppose that D is bounded, which means that D can be enclosed in a rectangular region \mathbb{R} .
- lacktriangle We define a new function F with domain R:

$$F(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \text{ is in D} \\ 0 & \text{if } (x,y) \text{ is in R but not in D} \end{cases}$$

If F is integrable over R, then we define the double integral of f over D by

$$\iint_D f(x, y) dA = \iint_R F(x, y) dA \quad \text{where } F \text{ is given by Equation 1}$$

- If f is continuous on D and the boundary curve of D is "well behaved", then it can be shown that $\iint_R F(x,y)dA$ exists and therefore $\iint_D f(x,y)dA$ exists.
- In particular, this is the case for **type I** and **type II** regions.

A plane region D is said to be of **type I** if it lies between the graphs of two continuous functions of x, that is,

$$D = \{(x,y) | a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

where g_1 and g_2 are continuous on $[a,b]$.

R=[a,b] x [c,d] that contains D.

Let
$$F(x,y) = \begin{cases} f(x,y) \\ 0 \end{cases}$$
, if $(x,y) \in D$

Define $\iint f(x,y) dA = \iint F(x,y) dA$.

 $D = \{ (x,y) | a \le x \le b, g((x) \le y \le g_2(x) \}$. Choose a rectangle

However, If Fixy, dA = Ib Id Fix, y) dy dx

If f is continuous on a type I region D such that

$$D = \{(x, y) \mid a \leq x \leq b, g_1(x) \leq y \leq g_2(x)\}$$

then

$$\iint_{D} f(x, y) dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) dy dx$$

Ex: Compute $\iint X + 2y \, dA$, where Dis bounded by $y = 2x^2$ and $y = 1 + x^2$.

Sol:

Ex: Compute $\iint \frac{xy}{1+x^4} dA$, where T is the triangle with vertices (0,0), (1,1) and (1,3)

We also consider plane regions of **type II**, which can be expressed as

$$D = \{(x, y) | c \le y \le d, h_1(y) \le x \le h_2(y) \}$$

where h_1 and h_2 are continuous on [c,d] .

$$D = \{(x,y) \mid c \in y \in d, g, (y) \in x \in g_2(y)\}$$

$$D \subset [a,b] \times [c,d]$$

$$Then \iint_D f(x,y) dA$$

$$= \iint_D F(x,y) dA = \int_0^d \int_0^b F(x,y) dx dy$$

[a,b]x[c,d]

$$\iint_{D} f(x, y) dA = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) dx dy$$

where D is a type II region given by Equation 4.

Ex: Evaluate $\iint xy^2 dA$, where D is a region bounded by y=x-1 and $y^2=2x+b$

Ex: Find the volume of the solid that lies under the paraboloid $z=x^2+y^2$ and above the region D in the xy-plane bounded by $y=\sqrt{x}$ and y=x.

Ex: Find the volume of the tetrahedron bounded by planes 2x+4+2=6, 4x=4, x=0 and 7=0.

```
sol:
```


Change the Order of Integration

change
$$I = \int_{a}^{b} \int_{g_{i}(x)}^{g_{z}(x)} f(x,y) \, dy \, dx$$
 into the iterated integral of the other order.

Step 1: Write $\int_{a}^{b} \int_{g_{i}(x)}^{g_{z}(x)} f(x,y) dy dx$ as $\int \int f(x,y) dA$.

Draw $y=g_{i}(x)$, $y=g_{z}(x)$, x=a, x=b and determine D.

Step 2: Write D as a type II region.

Step 3: Write $\iint f(x,y) dA$ as $\iint_{C} h_{2}(y) f(x,y) dx dy$

Ex: Compute
$$I = \int_0^9 \int_{\sqrt{x}}^3 \frac{1}{1+y^3} dy dx$$
.

Ex: Compute
$$I = \int_0^1 \int_X^{\frac{1}{3}} \sqrt{1-y^4} \, dy \, dx$$
.

Ex: Compute
$$I = \int_{0}^{1} \int_{x}^{1} \frac{y^{\lambda}}{x^{2}+y^{2}} dy dx$$
, where $\lambda > 0$.

D_1 D_2 D_2

Double Integrals over General

If $D=D_1\cup D_2$, where D_1 and D_2 don't overlap except perhaps on their boundaries, then

$$\iint\limits_D f(x, y) \, dA = \iint\limits_{D_1} f(x, y) \, dA + \iint\limits_{D_2} f(x, y) \, dA$$

We can use this property to evaluate double integrals over regions D that are neither type I nor type II but can be expressed as a union of regions of type I or type II.