CMPT-379 Compilers

 $\label{local_Anoop} A noop \ Sarkar \\ \ \texttt{http://www.cs.sfu.ca/}{\sim} a noop \\$

10/05/11

Programming Languages and Formal Language Theory

- ▶ We ask the question: Does a particular formal language describe some key aspect of a programming language
- ► Then we find out if that language **isn't** in a particular language class

Programming Languages and Formal Language Theory

- ▶ For example, if we abstract some aspect of the programming language structure to the formal language: $\{ww^R \mid \text{ where } w \in \{a,b\}^*, w^R \text{ is the reverse of } w\}$ we can then ask if this language is a regular language
- ► If this is false, i.e. the language is not regular, then we have to go beyond regular languages

Recursion in Regular Languages

Consider a regular expression for matching arithmetic expressions:

```
2 + 3 * 4
  8 * 10 + 24
  2 + 3 * 2 + 8 + 10
▶ num [0-9]+
  op (\+|\*)
  ws [\t]*
  %%
  {ws}
  \{num\}(\{ws\}\{op\}\{ws\}\{num\})* \{ printf("yes\n"); \}
                    { printf("no\n"); }
```

▶ Can we compute the *meaning* of these expressions?

Recursion in Regular Languages

- ► Construct the finite state automata and associate the meaning with the state sequence
- ► However, this solution is missing something crucial about arithmetic expressions what is it?

Do Programming Languages belong to Regular Languages

- Consider the following arithmetic expressions
 - ► (((2) + (3)) * (4)) ► ((8) * ((10) + (-24)))
- ▶ Map (\rightarrow a and) \rightarrow b. Map everything else to ϵ (keep only the tree structure)
- ▶ This results in strings like aaababbabb and aabaababbb
- ▶ So the language is a set $L = \{\epsilon, ab, aabb, abab, \ldots\}$
 - ▶ What is a good description of this language?
- ► Consider the intersection of *L* with the language of the regexp *a*b**. If *L* is regular then the intersection is also regular.
- ▶ Let's call it $L_{\text{new}} = \{a^n b^n : n \ge 0\}$ or simply $a^n b^n$ for short.

Pumping Lemma proofs

- ► Is L a regular language?
- ▶ For any infinite set of strings generated by a finite-state machine if you consider a string that is long enough from this set, there has to be a loop which visits the same state at least twice (from the pigeonhole principle)
- ▶ Thus, in a regular language L, there are strings x, y, z such that $xy^iz \in L$ for $i \ge 0$ where $y \ne \epsilon$
- We can use this basic characteristic of regular languages to show that $a^n b^n$ cannot be regular

The Chomsky Hierarchy

- ▶ unrestricted or type-0 grammars, generate the recursively enumerable languages, automata equals Turing machines
- context-sensitive or type-1 grammars, generate the context-sensitive languages, automata equals Linear Bounded Automata
- ► context-free or type-2 grammars, generate the *context-free* languages, automata equals *Pushdown Automata*
- ► regular or type-3 grammars, generate the regular languages, automata equals Finite-State Automata

The Chomsky Hierarchy

- ▶ A system of grammars G = (N, T, P, S)
- T is a set of symbols called terminal symbols.
 Also called the alphabet Σ
- ▶ N is a set of non-terminals, where $N \cap T = \emptyset$ Some notation: $\alpha, \beta, \gamma \in (N \cup T)^*$ N is sometimes called the set of variables V
- ▶ *P* is a set of production rules that provide a finite description of an infinite set of strings (a language)
- S is the start non-terminal symbol (similar to the start state in a FSA)

Languages

- ▶ Language defined by G: L(G)
 - ▶ L(G): set of strings $w \in T^*$ derived from S
 - ▶ $S \Rightarrow^+ w$ (derives in 1 or more steps using rules in P)
 - w is a sentence of G
 - ▶ Sentential form: $S \Rightarrow^+ \alpha$ and α contains a mix of terminals and non-terminals
- ▶ Two grammars G_1 and G_2 are equivalent if $L(G_1) = L(G_2)$

The Chomsky Hierarchy: G = (N, T, P, S) where, $\alpha, \beta, \gamma \in (N \cup T)^*$

- ▶ unrestricted or type-0 grammars: $\alpha \rightarrow \gamma$, such that $\alpha \neq \epsilon$
- ▶ **context-sensitive** or **type-1** grammars: $\alpha \to \gamma$, where $|\gamma| \ge |\alpha|$ CSG Normal Form: $\alpha A\beta \to \alpha\gamma\beta$, such that $\gamma \ne \epsilon$ and $S \to \epsilon$ if $\epsilon \in L(G)$
- **context-free** or **type-2** grammars: $A \rightarrow \gamma$
- ▶ regular or type-3 grammars: $A \rightarrow a \ B$ or $A \rightarrow a$

Examples of Languages in the Chomsky Hierarchy

- **context-sensitive** grammars: 0^i , i is a prime number
- ▶ **indexed** grammars: $0^n 1^n 2^n \dots m^n$, for any fixed m and $n \ge 0$
- ▶ **context-free** grammars: 0^n1^n for $n \ge 0$; also $\{0^n1^n2^m\} \cup \{0^m1^n2^n\}$ which is *inherently* ambiguous, i.e. no unambiguous CFG exists!
- ▶ **deterministic context-free** grammars: $S' \rightarrow S$ c, $S \rightarrow S$ $A \mid A$, $A \rightarrow a$ S $b \mid ab$: the language of "balanced parentheses"
- **regular** grammars: (0|1)*00(0|1)*

Language	Automaton	Grammar	Recognition	Dependency
Recursively Enumerable Languages	Turing Machine	Unrestricted Baa → A	Undecidable	Arbitrary
Context- Sensitive Languages	Linear-Bounded	Context- Sensitive At → aA	NP-Complete	Crossing
Context- Free Languages	Pushdown (stack)	Context-Free S → gSc	Polynomial	Nested
Regular Languages	Finite-State Machine	Regular A → cA	Linear	Strictly Local

Complexity of Parsing Algorithms

- ▶ Given grammar G and input x, provide algorithm for: Is $x \in L(G)$?
 - unrestricted: undecidable
 - context-sensitive: NSPACE(n) linear non-deterministic space
 - ▶ indexed grammars: NP-Complete
 - context-free: $\mathcal{O}(n^3)$
 - deterministic context-free: $\mathcal{O}(n)$
 - regular grammars: $\mathcal{O}(n)$

Summary

- Aspects of PL structure cannot be represented by FSAs
- We can show that a language is not regular.
- If such a language is needed for our programming language then we have to use something more powerful than a regular language
- Chomsky hierarchy: from FSAs to Turing machines
- Context-free grammars (seems sufficient for PLs) but problems with ambiguity