Homework 12 of Introduction to Analysis (I), Honor Class

AM15 黃琦翔 111652028

November 29, 2023

1. We claim that a_n is a Cauchy. Then, for $m > n \ge N$

$$\begin{split} |f(\frac{1}{n})-f(\frac{1}{m})| &< |(\frac{1}{n}-\frac{1}{m})\cdot f'(c)| \text{ for some } c \in [\frac{1}{m},\frac{1}{n}] \\ &< \frac{1}{n}-\frac{1}{m} \\ &< \frac{1}{n} \\ &\leq \frac{1}{N} \end{split}$$

Thus, for any $\varepsilon > 0$, we take $N > \frac{1}{\varepsilon}$. Therefore, a_n is Cauchy $\Longrightarrow \lim_{n \to \infty} a_n$ exists.

- 2. Since f'(x) exists on (a,b), we can find $s_1 = \sup\{f'(x) \mid x \in (a,b)\}$, $s_2 = \lim_{x \to a^+} f(x)$ and $s = \max\{s_1, s_2\}$. Then, for $\varepsilon > 0$, we take $\delta = \frac{\varepsilon}{s}$, then $|f(x) - f(x_0)| < |x - x_0|s < \delta s = \varepsilon$. Thus, f is uniform continuous.
- 3. (a) We want to show that when $x \to \infty$, $f(x+h) f(x) \to hb$ for all h.

 Since $f'(x) \to b$ as $x \to \infty$, for any $\varepsilon > 0$, exists a $N \in \mathbb{N}$ s.t. $|f'(x) b| < \varepsilon$ for all x > N. Thus, for x > N, $(b \varepsilon)h < f(x+h) f(x) < (b+\varepsilon)h$. Thus, $|\frac{f(x+h) f(x)}{h} b| < \varepsilon$ for x > N. Therefore, $\lim_{x \to \infty} \frac{f(x+h) f(x)}{h} b = 0$.
 - (b) Since $f(x) \to a$, we assume f'(x)