Electronic Circuits for Mechatronics (ELCT 609)

Spring 2021

Lecture 1: PN Junctions Physical Structure

Course Instructor: Dr. Eman Azab

Electronic (Semiconductor) Devices

P-N Junctions (Diodes): Physical Structure & I-V Characteristics

Course Instructor: Dr. Eman Azab

Introduction to Semiconductors

Course Instructor: Dr. Eman Azab

Introduction to Semiconductors

- ☐ What is the reason for Conductivity Variation?
 - ☐ Outer Shell Electrons inside the material's atom

Course Instructor: Dr. Eman Azab Contact: eman.azab@guc.edu.eg

Introduction to Semiconductors

- Silicon atoms form a crystal (Intrinsic Semiconductor)
- Si atoms outer shells overlap, then split into two Energy bands:
 - Conduction Band
 - Valence Band

Pure Silicon Crystal (Semiconductor)

Energy Band Diagram for Silicon (Band theory for Solids)

Course Instructor: Dr. Eman Azab
Contact: eman.azab@guc.edu.eg

Material's Conductivity

- ☐ Free electrons (Charges) exist in Conduction Band
- ☐ Electrons tied with the atom nucleus exist in Valence Band
- No. of Electrons in Conduction Band indicates the material Conductivity

Course Instructor: Dr. Eman Azab

Material's Conductivity

- Metals have a large number of electrons in Conduction band (Overlapping bands)
 - Electrons can move freely with the smallest energy gain
- Insulators have no electrons in Conduction band
 - Electrons need to gain high energy to be able to move freely
 - $(E_{gap} = 9 \ eV = 1.44196e 18 \ J)$
- Semiconductors have no electrons in Conduction band at Zero Kelvin Temp.
 - Electrons need to gain small energy to be able to cross from the valence to the conduction band
 - $(E_{gap} = 1 \ eV = 1.6e 19 \ J)$

- What happens to a Silicon Crystal at room Temp.?
 - ☐ Electrons gain thermal energy enough to break a covalent bond
 - ☐ Electron leaves a HOLE in the outer shell
 - □Electron-hole pair generation
 - ☐ Free electron existence increases the Si Conductivity
 - □ Can we add more free Electrons and Holes to enhance the Si Conductivity?

Course Instructor: Dr. Eman Azab Contact: eman.azab@quc.edu.eq

- Can we add more free Electrons to enhance the Silicon Conductivity?
 - ☐ Yes, by adding new materials to the silicon crystal (Extrinsic Semiconductor)
 - Add penta-valent element
 - Materials with <u>5</u> electrons in their outer shell
 - Ex: Arsenic "As", antimony "Sb", and Phosporus

An Antimony Atom, Atomic number = 51 Antimony atom showing 5 electrons in its outer valence shell (o) Co-valent Bonds Si Impurity Atom (Donor) Shared Electrons N-Type Semiconductor

N-Type Semiconductor

Course Instructor: Dr. Eman Azab

- □ Can we add more Holes to enhance the Silicon Conductivity?
 - ☐ Yes, by adding new materials to the silicon crystal (Extrinsic Semiconductor)
 - Add Tri-valent element
 - Materials with <u>3</u> electrons in their outer shell
 - ☐ Ex: Aluminum "Al", Boron "B", and Gallium "Ga"

A Boron Atom, Atomic number = 5 Oron atom showing 3 electrons in its outer valence shell (L) P-Type

P-Type Semiconductor

Course Instructor: Dr. Eman Azab

Semiconductor

Extrinsic Semiconductors

P-Type
Majority Charge Carries (Holes)
Minority Charge Carriers (Electrons)

N-Type
Majority Charge Carries (Electrons)
Minority Charge Carriers (Holes)

Course Instructor: Dr. Eman Azab

Summary:

- Intrinsic Si Crystal is a bad conductor at 0 Kelvin
- At room Temp., some electrons gain energy and can move inside Si crystal (in small numbers)
 - Electron-Hole Pairs are generated
- When an electron break free from a covalent bond it leaves a hole (a positive free charge)
- Extrinsic Si Crystals contain free charges in large numbers (Doping Process)
 - N-Type has negative free charges (electrons are the majority current carriers)
 - P-Type has positive free charges (Holes are the majority current carriers)

Course Instructor: Dr. Eman Azab Contact: eman.azab@guc.edu.eq

Semiconductor Devices

- What is the use of Extrinsic Semiconductors?
 - Extrinsic Si Crystals contain free charges in large numbers
 - Both N and P types can be used as conducting materials,
 However still conducting elements will have higher conductivity
- What is the importance of Extrinsic Semiconductors then?
 - Manufacturing different types of N and P types together creates new devices with electrically controllable conductivity
 - Ex: P-N Junction

Course Instructor: Dr. Eman Azab Contact: eman.azab@quc.edu.eq

P-N Junction Structure

- What happens when we put a P-Type and N-Type in contact?
- ☐ Electrons/holes diffuse in P/N type semiconductor
 - ☐ We call this charge motion **Diffusion Current**
 - ☐ Does the holes and electrons diffusion cancel the net current?

P-N Junction Circuit Symbol

Diffusion Current

semiconductor

electron

negative ion

positive ion

from filled hole

from removed

o hole

Course Instructor: Dr. Eman Azab

P-N Junction Structure

- What happens when we put a P-Type and N-Type in contact?
- Minority carriers drift in the junction
 - We call this charge motion Drift Current
- At thermal equilibrium the total current is Zero
- A free charge region called Depletion Region

Course Instructor: Dr. Eman Azab

P-N Junction Structure

- □ Will the electron-hole recombination happens for all charge carriers?
- No, as the ions in the depletion region creates an Electric Field
- ☐ This field will oppose the holes and electrons from moving
 - □ A potential barrier is created

P-N Junction Circuit Symbol

Course Instructor: Dr. Eman Azab

P-N Junction Biasing

- ☐ The potential barrier (V_b) will keep the free charges (holes & electrons) from diffusing
- ☐ What would happen if we connected a voltage Source across the P-N junction??
 - ☐ If the Voltage across the P-N junction is **greater than** V_b, then the majority carriers gain enough energy to surpass the depletion region
 - **□** Depletion region width decreases
 - ☐ High Diffusion Current
 - □ Low Drift Current
 - ☐ High Current flows from P-Type to N-Type,

P-N Junction Biasing

What will happen if we connected a voltage Source across the P-N junction, with the P-Type less than N-Type??

Course Instructor: Dr. Eman Azab Contact: eman.azab@guc.edu.eg

P-N Junction Biasing

P-N junction Modes of Operation

P-N Junction Circuit Symbol

Forward Biased	Reverse Biased
Depletion region Forward biased p-n junction	Minority carrier flow (I _s) P Depletion region I _s Vo Reverse biased p-n junction
$V_D = V_P - V_N$ $V_D > V_b$	$V_D = V_P - V_N$ $V_D < V_b$
$I_D > 0$	$I_D = -I_S \cong 0$

Course Instructor: Dr. Eman Azab Contact: eman.azab@guc.edu.eg

P-N Junction I-V Characteristics

Can we model versus V_D?

$$I_{D} = I_{s}(\exp\left(\frac{V_{D}}{\eta V_{T}}\right) - 1)$$

 I_S : Reverse Saturation Current [nA] V_T : Thermal voltage [mV] η : ideality factor (1 ~ 2)

Course Instructor: Dr. Eman Azab

P-N Junction I-V Characteristics

Notes:

- V_D is the diode voltage, always take P-side minus N-side
- I_D is the diode current, flowing from P-side to N-side
- Thermal voltage is defined by:

$$V_{\rm T} = \frac{kT}{q}$$

k :Boltzmann's Constant

T: Absolute Temperature in Kelvin

q:electron Charge

- At room temp., V_T=25mV
- We can make the following approximations:

Forward Biased	Reverse Biased
$I_{\rm D} \cong I_{\rm s} \exp\left(\frac{V_{\rm D}}{\eta V_{\rm T}}\right)$	$I_{\rm D} = -I_{\rm s} \cong 0$

Example

- Find the diode voltage and current for the Circuit Shown?
 - Given: V_{DD}=1V, R=100Ω
 - Solution:
 - We need two equations to get V_D and I_D
 - First equation KVL in the loop

$$\boxed{V_{DD} = I_D R + V_D} \qquad \boxed{I_D = \frac{V_{DD} - V_D}{R}}$$

- Second Equation: we use the I-V Characteristic of the diode
 - Which one? Forward or Reverse Biased equation?
 - We will assume one mode and verify our assumption!
 - Since V_{DD} drive the current in the loop from P side to N-Side, we will assume Forward Biased

Course Instructor: Dr. Eman Azab Contact: eman.azab@quc.edu.eq

Example

- ☐ Find the diode voltage and current for the given Circuit?
 - ☐ Forward biased equation:

$$\boxed{I_{D} \cong I_{s} \exp\left(\frac{V_{D}}{\eta V_{T}}\right)}$$

☐ Solving the two equations together?

$$I_D = \frac{V_{DD} - V_D}{R}$$

- □Linear and nonlinear equation!!!!!!
 - ☐Use Iteration? Too complicated!
 - □Use graphical Solution

$$V_D = 0.75V, I_D = 2.5V$$

 \square Check assumption $I_D > 0$, **Is there an easier solution?**

PN Junctions I-V Modeling

- □ We can exchange the exponential equation with a linear one
 - ☐ By approximating I-V Characteristics (Ideal Diode)

Ideal Diode Model (Switch)	Forward Biased	Reverse Biased
Ideal switch V _D V _D	Assume $V_D=0$ Verify $I_D>0$	Assume $I_D=0$ Verify $V_D<0$

Course Instructor: Dr. Eman Azab

PN Junctions I-V Modeling

- We can exchange the exponential equation with a linear one
 - By approximating I-V Characteristics (Battery)

Battery	Forward	Reverse
Model	Biased	Biased
V _D	Assume $V_D = V_{Th}$ Verify $I_D > 0$	Assume $I_D = 0$ Verify $V_D < V_{Th}$

PN Junctions I-V Modeling

- We can exchange the exponential equation with a linear one
 - By approximating I-V Characteristics (Battery and Resistor)

Battery and R Model	Forward Biased	Reverse Biased
R _B is the slope of the line	Assume	Assume
ļ.	$V_D = V_{Th}$ Verify	$I_D = 0$ Verify
V_{Th}	$I_D > 0$	$V_D < V_{Th}$

Course Instructor: Dr. Eman Azab

Example

- Find the circuit voltage and current? Assuming:
 - Ideal Diode
 - (Final answer l=0.6mA, V=+3V)

Course Instructor: Dr. Eman Azab
Contact: eman.azab@quc.edu.eq

Example

- Find the current I? Assuming:
 - V_{Th}=0.6V (Final answer I=0.9mA)

Course Instructor: Dr. Eman Azab Contact: eman.azab@guc.edu.eg