Exercise Sheet – Advanced Calculus III

Taiyang Xu*

18/09/2025, Week 2

Exercise 1 (Warm up: Directional derivatives and gradient). Complete the following exercises.

- (1) Let $f(x, y, z) = x^2y + yz^3$. Compute the gradient ∇f at the point (1, 2, 1).
- (2) For f(x, y, z) as above, compute the directional derivative of f at (1, 2, 1) in the direction of the vector $\vec{v} = (2, -1, 2)$.
- (3) Let $f(x,y) = x^3 3xy^2$. Find all points (x,y) where the gradient ∇f is parallel to the vector (1,1).

Application in ML:

- (4) (Linear regression) A common loss function is Mean Squared Error (MSE). For a single data point (x, y), the loss is defined as $L(m, b) = (y (mx + b))^2$, where m is the slope and b is the y-intercept of the regression line. Compute the gradient $\nabla L(m, b)$ and interpret its components in terms of how they influence the loss.
- (5) (Gradient descent step) Suppose you are using gradient descent to minimize the function $J(\theta_0, \theta_1) = \theta_0^2 + 2\theta_1^2$. Calculate the gradient $\nabla J(\theta_0, \theta_1)$ firstly, and write down the update rule for θ_0 and θ_1 using a learning rate α .

Exercise 2. Complete the following exercises

(1) Let u = f(x, y), $x = r \cos \theta$, $y = r \sin \theta$. Prove that

$$\nabla u = \frac{\partial f}{\partial r} \vec{r}_0 + \frac{1}{r} \frac{\partial f}{\partial \theta} \vec{\theta}_0,$$

where $\vec{r}_0 = (\cos \theta, \sin \theta)$ and $\vec{\theta}_0 = (\cos(\theta + \frac{\pi}{2}), \cos \theta)$.

(2) We have the following equation:

$$\frac{x^2}{a^2+u} + \frac{y^2}{b^2+u} + \frac{z^2}{c^2+u} = 1.$$

^{*}School of Mathematical Sciences, Fudan University, Shanghai 200433, China. Email: tyxu19@fudan.edu.cn

Prove that

$$(\nabla u)^2 = 2 < \vec{A}, \nabla u >,$$

where $\vec{A} := (x, y, z)$. (Hint: see u = u(x, y, z))

Exercise 3. Suppose the function f(x,y) has a nonzero directional derivative at some point (x_0,y_0) , and the directional derivatives along three different (non-colinear) directions at (x_0,y_0) are equal. Prove that f(x,y) is not differentiable at (x_0,y_0) .