1. Dado  $\alpha > 0$ , se considera la ecuación en diferencias

$$x_{n+1} = 1 - \alpha \mid x_n \mid$$

- a) Para  $\alpha = 0.7$ , estudia gráficamente el comportamientos de las soluciones en función de su dato inicial  $x_0 \in \Re$ .
- b) Para  $\alpha > 0$  determina el número de puntos de equilibrio de la ecuación.
- c) Estudia la estabilidad de los puntos para  $\alpha = 1.8$ .
- d) Si  $\alpha = 2$ , comprueba que  $\{-0.2, 0.6\}$  es un 2-ciclo y estudia su estabilidad.

Comenzamos considerando la función  $f: \Re \to \Re$  como  $f(x) := 1 - \alpha \mid x \mid$ , la cual, podemos reescribir como una función a trozos, de la siguiente manera:

$$f(x) = \begin{cases} 1 - \alpha x & si \quad x \ge 0 \\ 1 + \alpha x & si \quad x < 0 \end{cases}$$

Esta función es la que define la recurrencia dada en el enunciado.

Procedemos a calcular su derivada:

$$f'(x) = \begin{cases} -\alpha & si \quad x \ge 0 \\ \alpha & si \quad x < 0 \end{cases}$$

## Apartado 1

Sea  $\alpha=0.7$ , entonces la función f queda determinada de la siguiente manera:

$$f(x) = \begin{cases} 1 - 0.7x & si \quad x \ge 0 \\ 1 + 0.7x & si \quad x < 0 \end{cases}$$

Procedemos a calcular los puntos de equilibrio de la función, para lo que resolvemos la ecuación f(x) = x. Como tenemos una función a trozos, tenemos que distinguir dos casos:

1. Si  $x \ge 0$  tenemos que resolver la ecuación x = 1 - 0.7x. Luego, tenemos:

$$x = 1 - 0.7x \implies 1.7x = 1 \implies x = \frac{10}{17}$$

Como estamos en la región  $x \ge 0$ , el resultado es válido

2. Si x < 0 tenemos que resolver la ecuación x = 1+0,0,7x. Luego, tenemos:

$$x = 1 + 0.7x \implies 0.3x = 1 \implies x = \frac{10}{3}$$

Como estamos en la región x < 0, la solución no es válida.

Como el punto  $x=\frac{10}{17}$  es un punto de equilibrio de la función f y como  $|f'(\frac{10}{17})|=|-0.7|<1$ , el punto es asintóticamente estable, y, por tanto, si escogemos un valor inicial de  $x_0$  que se encuentre dentro de un entorno de  $p=\frac{10}{17}$ , el sistema convergerá a dicho punto de equilibrio.

La representación gráfica sería la siguiente:



## Apartado 2

Tenemos  $\alpha > 0$ . Recordemos que los puntos de equilibrio se obtienen resolviendo la ecuación f(x) = x. Luego, nuevamente, tenemos que distinguir dos casos:

1. Si  $x \ge 0$  tenemos que resolver la ecuación x = 1 - 0.7x. Luego, tenemos:

$$x = 1 - \alpha x \implies (1 + \alpha)x = 1 \implies x = \frac{1}{1 + \alpha}$$

Como estamos en la región  $x \ge 0$ , el resultado es válido, ya que  $\alpha > 0$ .

2. Si x < 0 tenemos que resolver la ecuación  $x = 1 + \alpha x$ . Luego, tenemos:

$$x = 1 + \alpha x \implies (1 - \alpha)x = 1 \implies x = \frac{1}{1 - \alpha}$$

Como estamos en la región x < 0, la solución solo será valida si  $x = \frac{1}{1-\alpha} < 0 \implies 1-\alpha < 0 \implies \alpha > 1$ .

Luego, tenemos que  $\forall \alpha > 0$  el punto  $x = \frac{1}{1+\alpha}$  es un punto de equilibrio, y que si  $\alpha > 1$ , también tendríamos el punto  $x = \frac{1}{1-\alpha}$ .

## Apartado 3

Tenemos  $\alpha=1,8$ , luego, estamos en el caso  $\alpha>1$ , por lo que "usando el apartado anterior, tenemos que existen dos puntos de equilibrio, que son  $x=\frac{1}{1+1.8}=\frac{5}{14}$  y  $x=\frac{1}{1-1.8}=\frac{-5}{4}$ .

Recordemos que tenemos:

$$f'(x) = \begin{cases} -\alpha & si \quad x \ge 0 \\ \alpha & si \quad x < 0 \end{cases}$$

Luego:

$$f'(x) = \begin{cases} -1.8 & si \quad x \ge 0 \\ 1.8 & si \quad x < 0 \end{cases}$$

Por lo que tenemos que  $|f'(\frac{5}{14})| = |f'(\frac{-5}{4})| = |1,8| > 1$ . Luego, ambos puntos de equilibrio son inestables.

## Apartado 4

Para  $\alpha = 2$  tenemos que:

$$f(x) = \begin{cases} 1 - 2x & si \quad x \ge 0 \\ 1 + 2x & si \quad x < 0 \end{cases}$$

Luego, observamos que f(-0.2) = 0.6 y f(0.6) = -0.2, luego, efectivamente existe el 2-ciclo.

Ahora, para calcular su estabilidad observemos que:

$$f'(x) = \begin{cases} -2 & si \quad x \ge 0 \\ 2 & si \quad x < 0 \end{cases}$$

Luego, tenemos que  $|f'(0,2) \cdot f'(0,6)| = |-2 \cdot 2| = |-4| = 4 > 1$ . Luego, concluimos con que el 2-ciclo no es estable.