15.081J/6.251J Introduction to Mathematical Programming

Lecture 8: Duality Theory I

1 Outline

SLIDE 1

SLIDE 2

- Motivation of duality
- General form of the dual
- Weak and strong duality
- Relations between primal and dual
- Economic Interpretation
- Complementary Slackness

2 Motivation

2.1 An idea from Lagrange

Consider the LOP, called the **primal** with optimal solution x^*

n optimal solution x

$$\begin{array}{ll}
\min & c'x \\
\text{s.t.} & Ax = b \\
& x \ge 0
\end{array}$$

Relax the constraint

$$g(\boldsymbol{p}) = \min_{\text{s.t.}} \quad \boldsymbol{c}'\boldsymbol{x} + \boldsymbol{p}'(\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x})$$

$$g(p) \le c'x^* + p'(b - Ax^*) = c'x^*$$

Get the tightest lower bound, i.e.,

$$\max g(p)$$

$$g(p) = \min_{x \ge 0} \left[c'x + p'(b - Ax) \right]$$
$$= p'b + \min_{x \ge 0} (c' - p'A)x$$

Note that

$$\min_{\boldsymbol{x} \geq \boldsymbol{0}} (\boldsymbol{c}' - \boldsymbol{p}' \boldsymbol{A}) \boldsymbol{x} = \begin{cases} 0, & \text{if } \boldsymbol{c}' - \boldsymbol{p}' \boldsymbol{A} \geq \boldsymbol{0}', \\ -\infty, & \text{otherwise.} \end{cases}$$

$$\begin{array}{cccc} \mathbf{Dual} & \max \ g(\pmb{p}) & \Leftrightarrow & \max & \pmb{p'b} \\ & & \mathrm{s.t.} & \pmb{p'A} \leq \pmb{c'} \end{array}$$

3 General form of the dual

3.1 Example

SLIDE 4 min $x_1 + 2x_2 + 3x_3$ max $5p_1 + 6p_2 + 4p_3$ s.t. $-x_1 + 3x_2 = 5$ s.t. p_1 free $2x_1 - x_2 + 3x_3 \ge 6$ $p_2 \ge 0$ $p_3 \le 0$ $-p_1 + 2p_2 \le 1$ $x_2 \le 0$ $3p_1 - p_2 \ge 2$ x_3 free, $3p_2 + p_3 = 3$. SLIDE 5

SLIDE 3

SLIDE 6

SLIDE 7

Primal	min	max	dual
constraints		≥ 0 ≤ 0 >< 0	variables
variables	$\stackrel{\geq}{\stackrel{>}{\stackrel{\circ}{=}}} 0$	$ \leq c_j \\ \geq c_j \\ = c_j $	constraints

Theorem: The dual of the dual is the primal.

3.2 A matrix view

 $\begin{array}{llll} & \min & c'x & \max & p'b \\ & \mathrm{s.t.} & Ax = b & & \mathrm{s.t.} & p'A \leq c' \\ & & x \geq 0 & & & & \\ & \min & c'x & \max & p'b & \\ & & \mathrm{s.t.} & Ax \geq b & & & \mathrm{s.t.} & p'A = c' \\ & & & p \geq 0 & & & \end{array}$

4 Weak Duality

Cheorem:

If x is primal feasible and p is dual feasible then $p'b \leq c'x$ Proof

$$p'b = p'Ax \le c'x$$

Corollary:

If x is primal feasible, p is dual feasible, and p'b = c'x, then x is optimal in the primal and p is optimal in the dual.

5 Strong Duality

SLIDE 8

Theorem: If the LOP has optimal solution, then so does the dual, and optimal costs are equal.

Proof:

$$\begin{array}{ll}
\min & c'x \\
\text{s.t.} & Ax = b \\
& x \ge 0
\end{array}$$

Apply Simplex; optimal solution x, basis B.

Optimality conditions:

$$c' - c'_B B^{-1} A \ge 0'$$

SLIDE 9

Define
$$p' = c'_B B^{-1} \Rightarrow p' A \leq c'$$
 $\Rightarrow p$ dual feasible for

$$egin{array}{ll} \max & p'b \ & ext{s.t.} & p'A \leq c' \end{array}$$

$$p'b = c'_B B^{-1}b = c'_B x_B = c'x$$

 $\Rightarrow \boldsymbol{x},\boldsymbol{p}$ are primal and dual optimal

5.1 Intuition

SLIDE 10

6 Relations between primal and dual

SLIDE 11

	Finite opt.	Unbounded	Infeasible
Finite opt.	*		
Unbounded			*
Infeasible		*	*

7 Economic Interpretation

SLIDE 12

- x optimal nondegenerate solution: $B^{-1}b > 0$
- $\bullet\,$ Suppose b changes to b+d for some small d
- How is the optimal cost affected?
- ullet For small $oldsymbol{d}$ feasibilty unaffected
- Optimality conditions unaffected
- New cost $c'_B B^{-1}(b+d) = p'(b+d)$
- If resource i changes by d_i , cost changes by $p_i d_i$: "Marginal Price"

8 Complementary slackness

8.1 Theorem Slide 13

Let x primal feasible and p dual feasible. Then x, p optimal if and only if

$$p_i(\boldsymbol{a}_i'\boldsymbol{x} - b_i) = 0, \quad \forall i$$

$$x_j(c_j - \mathbf{p}'\mathbf{A}_j) = 0, \quad \forall j$$

• $u_i = p_i(\mathbf{a}_i'\mathbf{x} - b_i)$ and $v_i = (c_i - \mathbf{p}'\mathbf{A}_i)x_i$

SLIDE 14

- If x primal feasible and p dual feasible, we have $u_i \ge 0$ and $v_j \ge 0$ for all i and j.
- Also

8.2 Proof

$$c'x - p'b = \sum_i u_i + \sum_j v_j.$$

- By the strong duality theorem, if x and p are optimal, then $c'x = p'b \Rightarrow u_i = v_j = 0$ for all i, j.
- Conversely, if $u_i = v_j = 0$ for all i, j, then c'x = p'b,
- $\Rightarrow x$ and p are optimal.

8.3 Example

SLIDE 15

Is $x^* = (1, 0, 1)'$ optimal?

SLIDE 16

$$5p_1 + 3p_2 = 13, \quad 3p_1 = 6$$

$$\Rightarrow p_1 = 2, \quad p_2 = 1$$

 ${\small \tt Objective=19}$

MΙ	Т	Oı	pen	Со	urs	e۷	Vare	Э
htt	p:/	//c	cw.	.mit	.ec	ut		

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.