D - 21 - 2012

옥외 저장탱크의 포 소화설비 설계지침

2012. 7.

한 국 산 업 안 전 보 건 공 단

안전보건기술지침의 개요

- ㅇ 작성자 : 임 대 식
- ㅇ 개정자 : 연구원 화학물질센터 한인수
- o 제·개정 경과
- 1996년 12월 화학안전분야 기준제정위원회 심의
- 1996년 12월 총괄기준제정위원회 심의
- 2002년 11월 화학안전분야 기준제정위원회 심의
- 2002년 12월 총괄기준제정위원회 심의
- 2012년 7월 총괄제정위원회 심의(개정, 법규개정조항 반영)
- ㅇ 관련규격 및 자료
- 국내 소방법 및 미국의 NFPA CODE
- o 관련법규·규칙·고시 등
- 산업안전보건기준에 관한 규칙 제243조(소화설비)
- ㅇ 기술지침의 적용 및 문의
- 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 안 전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 7월 18일

제 정 자 : 한국산업안전보건공단 이사장

D - 21 - 2012

옥외저장탱크의 포 소화설비 설계지침

1. 목 적

이 지침은 산업안전보건기준에 관한 규칙(이하 "안전보건규칙"이라 한다) 제243조(소화설비)의 규정에 의거 포 소화설비의 설계에 관한 기술적 사항을 정한을 목적으로 한다.

2. 적용범위

이 지침은 안전보건규칙 별표1(위험물질의 종류)의4호(인화성 액체)에서 정하는 물질을 저장하는 옥외 저장탱크로서 저장물의 액표면적이 40㎡ 이상 또는 방유제 내의 지면으로부터 탱크 상단까지의 높이가 6m 이상인 저장탱크에 설치하여야 하는 포 소화설비에 적용한다. 다만, 인화점이 이 기준에서 정하는 온도 이상일 경우라도 효과적인 화재진압을 위하여 포 소화설비를 갖추고자 할 경우에는 이 지침을 적용할 수 있다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "인화성 액체"라 함은 대기압 하에서 인화점이 65℃ 이하이거나 그 물질의 인화점 이상에서 저장·취급하는 액체를 말한다.
 - (나) "포 소화설비"라 함은 물에 의한 소화방법으로는 소화효과가 적거나 화재가 확대될 위험성이 있는 인화성 액체의 화재에 포 소화약제를 물과 일정한 비율로 혼합하여 사용하는 설비를 말한다.
 - (다) "포(Foam)"라 함은 포 소화약제를 함유하는 수용액에 공기를 혼합하여 연소 액면을 지속적으로 덮는 물보다 낮은 밀도의 작은 거품의 안정된 집합체를 말한다.
- (2) 기타 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙, 안 전보건규칙 및 노동부 고시에서 정하는 바에 따른다.

KOSHA GUIDE

D - 21 - 2012

4. 포 소화설비

4.1. 포 소화설비의 종류

옥외 저장탱크에 적용되는 포 소화설비는 고정포 방출설비와 포 소화전설비가 있다.

4.2. 고정포 방출설비

4.2.1. 고정포 방출구의 종류

고정포 방출구는 포 소화약제를 방출하는 것으로서 인화성액체 저장 탱크의 측판에 고정 설치하여 발생한 포를 탱크안의 연소액면에 방출하는 설비로서 다음과 같은 형식이 있다.<그림 1>

(1) [형 고정포 방출구

방출된 포가 위험물과 섞이지 아니하고 저장탱크속으로 흘러 들어가도록 홈통(Trough)등의 설비가 된 고정포 방출구로 주로 고정식 지붕 탱크 (Cone roof tank)의 측판 상부에 설치한다. 특히 알코올형 포는 연소액면에 포를 주입할 때 포의 소멸이 빨라 소화효과가 감소하므로 I형 방출구를 사용하는 것이 좋다.

(2) Ⅱ형 고정포 방출구

방출된 포가 디플렉터에 의하여 탱크의 벽면을 따라 흘러 들어가 소화하는 고정포 방출구로 고정식 지붕 탱크의 측판 상부에 설치한다.

(3) 표면하 포주입 방출구

탱크 화재시 폭발 등에 의하여 고정포 방출구가 파괴됨이 없이 탱크 저부에서 지속적으로 포를 주입하여 소화하는 고정포 방출구로 고정식 지붕 탱크의 측판 하부에 설치한다.

(4) 특형 방출구

부유식 지붕 탱크(Floating roof tank)의 굽도리판에 의하여 형성된 환상 부분에 포를 방출하여 소화하는 고정포 방출구로 측판 상부에 설치한다.

< 그림 1 > 고정포 방출구의 종류

D - 21 - 2012

4.2.2. 고정포 방출구 설치기준

(1) 고정포 방출구는 저장탱크 주위에 균등하게 설치하고 〈표 1〉에서 정한 개수 이상으로 하여야 한다.

〈표 1〉 옥외저장탱크의 고정포 방출구 수

	고정포 방출구의 수			
 탱크의 직경(단위:m)	I형,II형	특형	표면하 포 주입 방출구	
824 48(E11.III)			인화점 21℃미만	인화점 21℃이상
13 미만	1	2		
13 이상 19 미만	1	3	1	1
19 이상 24 미만	1	4	1	1
24 이상 35 미만	2	5	1	1
35 이상 42 미만	3	6	2	2
42 이상 46 미만	4	7	3	3
46 이상 53 미만	6	8	4	4
53 이상 60 미만	8	10	5	5
60 이상 67 미만	10	10	6	6
67 이상 73 미만	12	12	액면 465m²	액면 697m²
73 이상 79 미만	14	12	증가시마다	증가시마다
79 이상 85 미만	16	14	1개 추가	1개 추가
85 이상 90 미만	18	14		
90 이상 95 미만	20	16		
95 이상 99 미만	22	16		
99 이상 103 미만	24	18	\	↓

(2) 고정포 방출구에는 봉판(납·주석·유리·석면 등)을 설치하여 포의 방출에 의하여 용이하게 깨어질 수 있고, 저장물에 의하여 영향을 받지 아니하는 것으로 밀봉하여 흘러 넘친 저장물이 고정포 방출구 및 송액관 내에 침입하는 것을 방지할 수 있도록 하여야 한다.

D - 21 - 2012

- (3) 고정포 방출구는 봉판의 점검 및 교체가 용이하도록 점검구를 설치하여 탱크 밖으로 방출시험이 가능한 구조로 설치하여야 한다.
- (4) 고정포 방출구에 접근하여 점검·교체 또는 시험을 할 수 있도록 탱크 지붕으로부터 고정포 방출구까지 발판을 갖춘 사다리를 설치하여야 한다.
- (5) 고정포 방출구 입구에서의 압력은 $3kg_t/cm' \cdot G$ 이상 $7kg_t/cm' \cdot G$ 이하이하이어야 하며, 고정포 입구에서의 압력이 $7kg_t/cm' \cdot G$ 이상일 경우에는 고정포 방출구 입구에 오리피스를 설치하여야 한다. 다만 표면하 주입방출구 입구에서의 압력은 $7kg_t/cm' \cdot G$ 이상 $21kg_t/cm' \cdot G$ 이하로 하여야한다.

4.2.3. 고정포 방출구의 방출량 및 방출 시간

고정포 방출구의 방출량은 I형, 또는 II형 방출구 및 표면하 포주입 방출구의 경우는 탱크안 저장물의 액 표면적 1m²당, 특형의 경우는 탱크측면과 굽도리판에 의하여 형성된 환상부분의 면적 1m²당 〈표 2〉의 방출량 이상으로 하여야하며 규정된 방출시간 이상으로 방출되어야 한다.

〈표 2〉 고정포 방출구의 최소방출량 및 최소방출 시간(단위: 방출량: ℓ/m²·min, 방출시간: min)

구 분		인화점 21℃미만의 인화성 액체	인화점 21℃이상 70℃미만 인화성 액체	인화점 70℃이상의 인화성 액체	수용성 인화성 액체
		가솔린,나프타, 원유등	등유 경유등	윤활유,중유등	이소프로필알콜 에탄올,메탄올등
I 형	방출량	4.0 (수성막포 2.27)	4.0 (수성막포 2.27)	4.0 (수성막포 2.27)	8.0
	방출 시간	30	20	15	20
II 형	방출량	4.0 (수성막포 2.27)	4.0 (수성막포 2.27)	4.0 (수성막포 2.27)	8.0
	방출 시간	55	30	25	30
표면하 포주입	방출량	4.0	4.0	적용안함	적용안함
	방출 시간	55	30	적용안함	적용안함
특형	방출량	12	12	12	적용안함
	방출 시간	30	20	15	적용안함

KOSHA GUIDE

D - 21 - 2012

4.3. 포 소화전설비

화재시 쉽게 접근하여 소화작업을 할 수 있는 장소 또는 방호대상이 고정포 방출 설비방식으로는 충분한 소화효과를 얻을 수 없는 부분에 설치하는 설비를 말한다.

4.3.1. 포 소화전설비 설치기준

(1) 포 소화전은 탱크로부터 방유제 안으로 누출된 위험물의 화재를 유효하게 소화할 수 있도록 방유제 밖에 설치하여야 하며, 방유제를 설치하지 아니하는 경우에는 방호대상 저장탱크로부터 수평거리 15m 이상 되는 곳에 설치하여야 하다.

(2) 포 소화전 설치개수

포 소화전은 방유제 각 부분으로부터 하나의 포 소화전까지의 수평거리가 40m 이내가 되도록 설치하여야 한다. 단, 탱크 직경이 24m 미만인 것은 1개, 직경이 24m 이상~35m 미만은 2개, 직경이 35m 이상의 것은 3개를 설치하여야 한다.

4.3.2. 포 소화전의 방출량 및 방출압력

설치된 포 소화전(3개 이상 설치된 경우는 3개)을 동시에 사용하는 경우 1개의 포 소화전마다 노즐선단의 방출 압력이 $3.5 kg_{t}/cm \cdot G$ 이상, 분당 400 리터 이상의 포 수용액을 수평거리 15m 이상으로 20분간 이상 방출할 수 있어야 한다.

5. 포 소화설비의 소화 수원의 양 및 약제량

5.1. 수원의 양

포 소화설비에 필요한 수원의 양은 <표 3>에서 정하는 단위 저장탱크의 고정포 방출구에서 요구되는 양 중에서 최대의 값과 포 소화전이 가장 많이 설치된 방유제의 포 소화전 수(포 소화전이 3개 이상의 경우는 3개)에 8㎡를 곱한 양에 가장 먼 탱크까지의 배관에 충전하기 위하여 필요한 양을 합한 양 이상이어야 한다.

KOSHA GUIDE D - 21 - 2012

5.2. 포 소화약제량 및 약제 저장탱크

5.2.1 소화약제량

포 소화설비에 필요한 소화약제량은 〈표 3〉에서 정하는 고정포 방출구와 포 소화전에 사용되는 약제소요량 및 배관에 충전되는 약제량을 합한 양 이상이어야 한다.

5.2.2 소화약제 저장탱크

소화약제를 저장하기 위한 탱크의 용량은 필요한 소화약제량을 충분히 저장할 수 있는 용량의 것으로 하여야 한다.

〈표 3〉소화약제량 및 수원의 양

구 분	소 화 약 제 량	수 원 의 양
고정포 방출구	Q = A × Q1 × T × S Q : 포 소화약제의 양(ℓ) A : 탱크의 액표면적 (m²) Q1 : 단위 포소화수용액의 양(ℓ/m²·min) T : 방출 시간 (min) S : 포소화 약제의 사용 농도	W =A×Q1×T W : 수원의 양(ℓ)
포 소화전	Q = N × S × 8,000 Q : 포 소화약제의 양(ℓ) N : 포 소화전의 수(3개 이상인 경우 3) S : 포소화 약제의 사용 농도	W =N×8,000 W : 수원의 양(ℓ)
배 관	Q = Qp × S Q : 포 소화약제의 양(ℓ) Qp: 배관 충전량(ℓ) S : 포소화 약제의 사용 농도	W =Qp W : 수원의 양(ℓ)

KOSHA GUIDE

D - 21 - 2012

6. 포의 종류와 선택

6.1. 포의 종류

포 소화설비에 사용되는 포 소화약제에는 이산화탄소를 포핵으로 하는 화학 포와 공기를 포핵으로 하는 공기포(기계포)로 구분하고 있다.

(1) 화학포

탄산수소나트륨(NaHCO₃)의 수용액과 황산알미늄[Al₂(SO₄)₃·18H₂O]의 수용액을 혼합할 때 발생하는 이산화탄소(CO₂)를 포의 핵으로 하여 안정제로서단백질을 첨가하여 사용하나 현재는 유지·관리상 거의 사용되지 않는다.

 $NaHCO_3 + Al_2(SO_4)_3 \cdot 18H_2O \rightarrow 6CO_2 + 3Na_2SO_4 + 2Al(OH)_3 + 18H_2O$

(2) 공기포 (기계포)

공기포는 동식물성 단백질 또는 계면 활성제를 기제로 하는 원액을 3% 또는 6% 수용액으로 희석한 것을 기계적으로 혼합하는 동시에 공기를 흡입하여 발생하는 공기를 포핵으로 하며 <표 4>의 종류가 있다.

D - 21 - 2012

〈표 4〉 공기포 (기계포) 약제의 종류

약제의 종류	성분및 소화 특성	사용농도	방 호 대 상
단백포 (Protein foam)	○ 동・식물성 단백질의 가수분해 생성물을 기제로 하고, 안정제로서 제1철염을 첨가한 것 ○ 흑갈색으로서 독한 냄새가 있음 ○ 포의 유동성이 작아서 소화 속도가 늦은 반면 안정성이 커서 재연방지 효과가 우수함	3 % 6 %	석유류 저장탱크 석유화학 플랜트
불화 단백포 (Flouroprotein foam)	 단백포 소화약제에 불소계 계면 활성제를 소량 첨가한 것 단백포와 수성막포의 단점인 유 동성과 열안정성을 보완한 것 표면하 포 주입방식에도 효과적임 	3 % 6 %	석유류 저장탱크 석유화학 플랜트
수성막포 [AFFF] (불소계 계면활성제포: Aqueous film forming foam)	 불화 계면활성제를 기제로하여 안정제 등을 첨가한 것 화학적으로 안정하여 보존성, 내약품성이 우수함 대형화재 또는 고온화재시 표면 막생성이 곤란한 단점이 있음 	3 % 6 %	석유류 저장탱크 석유화학 플랜트
합성계면 활성제포 (Synthetic foam)	○ 계면 활성제를 기제로 하여 안정 제 등을 첨가한 것 ○ 저팽창에서 고팽창까지 팽창범위 가 넓어 고체 및 기체연료 등 사용범위가 큼 ○ 유동성이 좋은 반면 내유성이 약하고 포가 빨리 소멸되는 단점이 있음	1%, 1.5%, 2% 저발포용 :	고압가스, 액화가스, 위험물저장소
알코올형포 (Alcohol resistant foam)	 천연단백질 분해물 계와 합성계 면활성제계로 구분 물과 혼합하면 알콜과 같은 수용성 위험물에서 불용성이 되므로 알 콜류 위험물의 소화에 사용됨 	3 %	수용성 인화성 액체 (알코올류, 케톤류)

KOSHA GUIDE

D - 21 - 2012

6.2. 포 팽창비와 발포 종류

6.2.1. 포 팽창비

포 팽창비는 포 소화설비의 발포기로부터 발포되어 팽창된 포의 체적과 발포되기 전 포 수용액의 체적과의 비율로 표시한다.

> 포 팽창비 = 발포기에서 발포된 포의 체적 발포되기 전 포 수용액의 체적

6.2.2. 발포 종류

- (1) 저발포 : 팽창 비율이 6배 이상 20배 미만으로 주로 3% 또는 6%의 농도로 사용되며, 단백포는 유류에 대한 내성 및 포 자체 강도가 커서 인화성액체의 화재 진압에 주로 사용한다.
- (2) 고발포: 팽창 비율이 20배 이상 1,000배 미만으로 주로 합성 계면 활성제 포 소화약제의 1%, 1.5% 및 2%의 농도로 사용되며, 주로 밀폐실의 일반 가연물 화재에 사용하나 유류에 대한 내성 및 바람에 대한 저항력이 약하여 인화성 액체의 화재에는 적당하지 않다.

7. 포 소화설비의 가압송수장치

7.1. 가압송수펌프

전동기 또는 내연기관에 의한 펌프를 이용하는 가압송수장치는 다음 기준에 의하여 설치되어야 한다.

- (1) 펌프의 토출량은 고정포 방출구 또는 포 소화전의 설계압력 허용범위 내에서 포 수용액을 방출할 수 있는 양 이상이 되도록 하여야 한다.
- (2) 펌프의 양정은 다음 식에 의하여 산출한 수치 이상이 되어야 한다.

D - 21 - 2012

 $H = h_1 + h_2 + h_3 + h_4$

H : 펌프 양정(m)

h₁ : 포 방출구 설계압력 환산 수두 또는 포 소화전 노즐의 설계

압력 환산 수두(m)

h₂ : 배관의 마찰 손실 수두(m)

h₃ : 낙차(m)

h₄ : 소방용 호스의 마찰 손실 수두(m)

(3) 포 소화 설비용 가압송수펌프는 전용으로 하여야 한다. 다만 다른 소화설 비와 겸용하는 경우 각각의 소화설비의 성능에 지장이 없는 경우는 예외로 한다.

- (4) 펌프의 성능은 정격토출량의 150%로 운전시 정격토출압력의 65% 이상이 되어야 하고, 성능시험배관은 펌프 토출측에 설치된 개폐밸브 이전에서 분기하여야 하며, 유량 측정장치는 성능시험배관의 직관부에 설치하되 펌프 정격 토출량의 175%까지 측정할 수 있어야 한다.
- (5) 가압송수장치에는 토출측 밸브를 잠근상태로 운전시 수온의 상승을 방지하기 위하여 체크밸브와 펌프 사이에 순환배관을 설치하고 릴리프밸브를 설치하여야 한다.
- (6) 수원의 수위가 펌프보다 낮은 위치에 있는 가압송수장치에는 물이 계속 공급되도록 100리터 이상의 물올림 전용 탱크를 설치하여야 한다.
- (7) 내연기관을 사용하는 경우 기동은 소화전 함의 위치에서 원격조작이 가능하고 기동상태를 알 수 있는 적색 램프를 설치하며 제어반에 의하여 자동기동 및 수동 기동이 가능하도록 항시 충전되어 있는 축전지 설비를 갖추어야 한다.

7.2. 충압 펌프

압력 스위치를 기동장치로 사용하는 경우, 충압 펌프의 정격토출압력은 그 설비의 최고위 포 소화전 방출구의 자연압보다 적어도 $2kg_{/}$ c㎡·G이 더 크거나 가압송수 펌프의 정격토출압력과 같게 충압 펌프를 설치하여야 한다.

D - 21 - 2012

8. 배관설비

8.1. 배관

- (1) 수원에서부터 고정포 방출구 또는 포 소화전까지의 배관은 전용으로 하여야 한다.
- (2) 펌프 흡입측 배관은 공동현상(Cavitation)이 생기지 않는 구조로 하고 여과장치를 설치하여야 한다.
- (3) 펌프 토출측에 역류 방지용 체크 밸브를 설치해야 한다.
- (4) 배관에 설치되어 있는 개폐밸브는 그 개폐 상태를 확인할 수 있도록 스위치를 설치하거나 개폐 밸브를 개방한 상태에서 자물쇠 장치를 하여야 한다.
- (5) 송액관은 포 방출 종료 후 배관내의 액을 배출하기 위하여 적당한 기울기를 유지하도록 하고 낮은 부분에 배액 밸브를 설치해야 한다.
- (6) 위험물 탱크의 경우 배관과 탱크 접합 부분의 충격에 의해 영향을 받지 않도록 완충 조치를 하여야 한다.
- (7) 필요한 경우 동결 방지 조치를 취하거나 동결의 우려가 없는 장소에 설치 하여야 한다.

8.2. 선택밸브

포 소화설비에 설치하여 방호구역 또는 방호 대상물에 공급하는 포 수용액의 방출을 제어하는 선택밸브는 위치 및 기능에 따라 두 가지가 있으며, 자동 또는 수동으로 개방할 수 있어야 하며 다음의 설치기준에 따라야 한다.

8.2.1. 선택밸브의 종류

(1) 제 1 선택밸브 (주 선택밸브) 주배관에서 각 방호 구역으로 절환되는 밸브로서 펌프실 또는 주배 관으로부터의 분기점에 설치한다.

D - 21 - 2012

(2) 제 2 선택밸브

방호 대상물마다 절환되는 선택밸브로서 화재 발생시 안전하게 조작할 수 있는 곳에 설치한다.

< 그림 2 > 선택 밸브의 위치

8.2.2. 선택밸브의 설치

- (1) 제 1 선택밸브와 제 2 선택밸브에는 당해 밸브가 제어하는 방호구역 또는 방호대상물을 명기한 표지판을 설치하여야 한다.
- (2) 선택밸브는 방유제 밖에 설치하여야 하며, 방유제가 없는 경우에는 직경이 15m 미만의 탱크의 경우 에는 수평거리 15m 이상, 직경이 15m 이상인 탱크의 경우에는 탱크 직경 이상의 거리를 두어야 한다.

KOSHA GUIDE

D - 21 - 2012

9. 포 소화약제의 혼합장치

포 소화약제의 혼합장치는 포 소화약제의 사용 농도에 적합한 수용액으로 혼합될 수 있도록 다음 방식 중 하나를 선택하여 설치하여야 한다.

9.1. 프레져 푸로포셔너 방식(Pessuree proportioner type)

펌프와 발포기 중간에 설치된 벤추리관의 벤추리 작용과 펌프 가압수의 포 소화약제 저장탱크에 대한 압력에 의하여 포 소화약제를 흡입·혼합하는 방식

< 그림 3 > 프레져 푸로포셔너 방식

9.2. 펌프 푸로포셔너 방식(Pump proportioner type)

펌프의 토출관과 흡입관 사이에 설치한 혼합기에 펌프에서 토출된 물의 일부를 보내고, 농도 조정밸브에서 조정된 약제의 필요량을 약제탱크에서 펌프 흡입측으로 보내어 이를 혼합하는 방식

KOSHA GUIDE D - 21 - 2012

9.3. 라인 푸로포셔너 방식(Line proportioner type)

펌프와 발포기의 중간에 설치된 벤추리관의 벤추리 작용에 의하여 포 소화 약제를 흡입·혼합하는 방식

9.4. 프레져 사이드 푸로포셔너 방식(Pressure side proportioner type) 펌프의 토출관에 혼합기를 설치하고 약제 압입용 펌프로 포 원액을 압입시켜 혼합하는 방식

KOSHA GUIDE D - 21 - 2012

< 그림 6 > 프레져 사이드 푸로포셔너 방식

10. 포 소화설비의 전원과 기동

10.1. 포 소화설비의 전원

(1) 상용전원

포 소화설비에는 소방대상물의 수전방식에 따라 적합한 상용전원 회로의 배선을 설치하여야 한다.

- (가) 저압수전인 경우에는 인입개폐기 직후에서 분기하여 전용배선으로 하여야 한다.
- (나) 고압수전인 경우에는 전력용 변압기 2 차측 주 차단기 1 차측에서 분기 하여 전용배선으로 하여야 한다.

(2) 비상전원

포 소화설비가 상용전원으로부터 전력공급이 중단된 때에는 자동으로 비상전원으로부터 전력을 공급할 수 있도록 자가 발전설비 또는 축전지 설비에의한 비상 발전기를 설치하여야 한다.

D - 21 - 2012

10.2. 포 소화설비의 기동

포 소화설비는 자동식 또는 수동식에 의하여 기동할 수 있도록 설치되어야 한다.

(1) 자동식 기동장치

포 소화설비의 자동식 기동장치는 자동화재탐지설비의 감지기 작동과 연동 하여 가압송수장치, 일제개방밸브 및 포 소화약제 혼합장치를 자동으로 기동시킬 수 있어야 한다.

(2) 수동식 기동장치

수동식 기동장치는 직접조작 또는 원격조작에 의하여 가압송수장치, 개방 밸브 및 소화약제 혼합장치를 기동할 수 있는 것으로 기동장치의 조작부는 화재시 쉽게 접근할 수 있는 곳에 설치하되, 바닥으로부터 0.8m 이상 1.5m 이하의 위치에 설치하여야 한다.

11. 수원 및 가압송수펌프의 겸용

- (1) 옥내 소화전설비, 스프링쿨러 설비, 물분무 소화설비, 포 소화설비 및 옥외 소화전설비를 설치하고 그 수원 및 가압송수펌프를 겸용하여 사용하고자 하는 경우의 저수량 및 가압송수펌프의 토출량은 각 소화설비에 필요한 저수량 및 토출량을 합한 양 이상이 되도록 한다.
- (2) 다만, 하나의 소화대상물에 고정식 소화설비가 두가지 종류 이상이 설치되어 있고 그 소화대상물이 다른 소화대상물과 규정에 의한 안전거리를 유지하고 별개의 소화 대상물로 구획되어 있으며 각 소화설비의 성능에 지장이 없는 경우에는 각 고정식 소화설비에 필요한 저수량 및 토출량 중 최대의 것 이상으로 할수 있다.

KOSHA GUIDE D - 21 - 2012

<별표 1>

옥외저장탱크의 포소화 설비 설치 예

