

Decision Making Statements (if,if-else,if-elif-else)

Statements	Syntax	Example	Definition			
If	if condition: statement1 statement2	<pre>i = 10 if (i > 15): print ("10 is less than 15") print ("I am Not in if") Output: I am Not in if</pre>	if statement is the most simple decision making statement. It is used to decide whether a certain statement or block of statements will be executed or not			
If - else	if (condition): statement1 else: statement2	<pre>i = 20; if (i < 15): print ("i is smaller than 15") print ("i'm in if Block") else: print ("i is greater than 15") print ("i'm in else Block") print ("i'm not in if and not in else Block") Output: i is greater than 15 i'm in else Block i'm not in if and not in else Block</pre>	We can use the else statement with if statement to execute a block of code when the condition is false.			
nested-if	if (condition1): statement if (condition2): statement # if Block is end here # if Block is end here	<pre>i = 10 if (i == 10): if (i < 15): print ("i is smaller than 15") if (i < 12): print ("i is smaller than 12 too") else: print ("i is greater than 15") Output: i is smaller than 15 i is smaller than 12 too</pre>	A nested if is an if statement that is the target of another if statement. Nested if statements means an if statement inside another if statement.			

Tutorials on Conditional Statements

if-elif-else	if (condition):	i = 20	Here, a user can decide		
	statement	if (i == 10):	among multiple options.		
	elif (condition):	print ("i is 10")	The if statements are		
	statement	elif (i == 15):	executed from the top		
		print ("i is 15")	down. As soon as one of		
		elif (i == 20):	the conditions		
	else:	print ("i is 20")	controlling the if is true,		
	statement	else:	the statement associated		
		print ("i is not present")	with that if is executed,		
			and the rest of the ladder		
		Output:	is bypassed.		
		i is 20			

Comparison Operators (==,<,>,<=,>=)

Operator	Example	Meaning	Result
==	a == b	Equal to	True if the value of a is equal to the value
			of b
			False otherwise
!=	a != b	Not equal to	True if a is not equal to b
			False otherwise
<	a < b	Less than	True if a is less than b
			False otherwise
<=	a <= b	Less than or equal to	True if a is less than or equal to b
			False otherwise
>	a > b	Greater than	True if a is greater than b
			False otherwise
>=	a >= b	Greater than or equal to	True if a is greater than or equal to b
		_	False otherwise

Logical Operator

Operator	Example	Meaning	
Not	not x	True if x is False	
		False if x is True	
		(Logically reverses the sense of x)	
Or	x or y	True if either x or y is True	
		False otherwise	
and	x and y	True if both x and y are True	

ECSE105L: Computational Thinking and Programming

Tutorials on Conditional Statements

		False otherwise
not in	x not in y	x not in y, here not in results in a 1 if x is not a member of
		sequence y
In	x in y	x in y, here in results in a 1 if x is a member of sequence y

Bit-wise Operator

Operator	Example	Meaning	Result
<<	x << y	bits shifted to the	Returns x with the bits shifted to the left by y places
		left	
>>	x >> y	bits shifted to the	Returns x with the bits shifted to the right by y
		right	places
&	x & y	bitwise and	Each bit of the output is 1 if the corresponding bit of
			x AND of y is 1, otherwise it's 0
	x y	bitwise or	Each bit of the output is 0 if the corresponding bit of
			x AND of y is 0, otherwise it's 1
~	~ x	complement of x	Returns the complement of x - the number you get
			by switching each 1 for a 0 and each 0 for a 1
x ^ y	x ^ y	Bitwise XOR	Each bit of the output is the same as the
		operator	corresponding bit in x if that bit in y is 0, and it's the
			complement of the bit in x if that bit in y is 1.

Others:

Data Type	Meaning					
<u>Booleans</u>	Boolean in Python can have two values - True or False					
<u>Numbers</u>	The numbers in Python are classified using the following keywords: int, float, and					
	complex.					
<u>Strings</u>	A sequence of one or more characters enclosed within either single quotes ' or					
	double quotes " is considered as String in Python. Any letter, a number or a					
	symbol could be a part of the sting.					
<u>Lists</u>	Lists in Python can be declared by placing elements inside square brackets					
	separated by commas.					
<u>Tuples</u>	A tuple is a heterogeneous collection of Python objects, using enclosing					
	parentheses () having its elements separated by commas inside.					
<u>Sets</u>	A set is an unordered collection of unique and immutable objects. Its definition					
	starts with enclosing braces { } having its items separated by commas inside.					
<u>Dictionaries</u>	Python syntax for creating dictionaries use braces { } where each item appears					
	as a pair of keys and values.					

List:

Lists are used to store multiple items in a single variable. Lists are one of 4 built-in data types in Python used to store collections of data, the other 3 are Tuple, Set, and Dictionary, all with different qualities and usage. Lists are created using square brackets:

Mylist= ['apple', '10', 'cost', '120.5'] print(Mylist)

Tuple:

Tuples are used to store multiple items in a single variable. A tuple is a collection which is ordered and **unchangeable**. Tuples are written with round brackets.

thistuple = ("apple", "banana", "cherry")
print(thistuple)

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	а
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	Н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	Т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	V
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	у
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	Z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]


```
1. Predict the output:
   i=-4
   num=-4
   if(num<i):
     print(num*num)
   else:
     print(num)
2. Predict the output:
   i=-8
   num=-4
   if(num<i):
     print(num*num)
   print(num+num)
3. a = 10
   b = 12
   ans = a \mid b
   print(ans)
4. a = 5
   b = 9
   ans = a \& b
   print(ans)
5. a= 11
   ans= ~a
   print(ans)
6. Predict the output:
   i = 20;
   if (i < 21):
     print ("i am greater than 20")
     print ("i'm in if Block")
   elif(i<22):
     print ("i is also greater than 20")
     print ("i'm in elif Block")
     print ("i'm not in if and not in else Block")
7. Predict the output:
   i = 20;
```



```
if (i < 14):
    print ("i is smaller than 14")
    print ("i'm in if Block")
else:
    print ("i is greater than 15")
    print ("i'm in else Block")
print ("i'm not in if and not in else Block")</pre>
```

8. Predict the output:

```
num = 1122
if 9 < num < 99:
    print("Two digit number")
elif 99 < num < 999:
    print("Three digit number")
elif 999 < num < 9999:
    print("Four digit number")
else:
    print("number is <= 9 or >= 9999")
```

9. Predict the output:

```
num = -99
if num > 0:
    print("Positive Number")
else:
    print("Negative Number")
    #nested if
    if -99<=num:
        print("Two digit Negative Number")</pre>
```

```
10. num=65
   num2= ord('A')
   if (num == num2):
      print("Equal Number")
   else:
      print("not equal")

11. num=77
   num2= ord('m')
   if (num == num2):
      print("Equal Number")
```



```
else:
     print("not equal")
12.a=int(5)
   b=float(5)
   if(a==b):
     print("Equal number")
     print("Not equal")
13. Predict the outputs:
   assorted list = [True, False, 1, 1.1, 1+2j, "Learn", "b", "Python"]
   first_element = assorted_list[0]
   print(first_element)
   first element = assorted list[3]
   print(first_element)
   first element = assorted list[3]
   print(first_element)
   print(assorted_list[5])
   print(assorted_list)
14. Predict the outputs:
   first_tuple = (3, 5, 7, 9)
   print(type(first_tuple))
   print(first_tuple)
15. Predict the outputs:
   another_set = {"red", "green", "black"}
   print(type(another_set))
   print(another_set)
```

- 16. The fine charged in a library is as follow: if a student returns a book after 5 days of due date the fine is 50 rupees, if it is in between 6-10 days the fine is 100 rupees, if it is overdue by more than 10 days the fine is 500 rupees. Also, if the book is overdue by 1 semester then membership will be canceled. Now derive a solution for the whole scenario involving if else statements where number of days will be provided by the user.
- 17. You are given three sides of triangle; now check whether the triangle is isosceles, equilateral, scalene.

18. A newspaper is published using Cyan-Magenta-Yellow-Black (CMYK) color model. Usually these color formats are inherited by Red-Green-Blue (RGB) color model. The value of CMYK is varied on a real scale from 0-1. Provide a solution for RGB to CMYK color model conversion. The formulas are given:

White = Max(Red/255, Green/255, Blue/255)

Cyan = ((White - Red/255)/White)

Magenta = ((White - Green/255)/White)

Yellow = ((White - Blue/255)/White)

Black = 1 - white

19. The ratio of person's weight (kg) and square of height (m) is known as Body Mass Index (BMI). Derive a solution which will receive weight and height and provides the BMI.

BMI Category	ВМІ
Starvation	<15
Anorexic	15.1 to 17.5
Underweight	17.6 to 18.5
Ideal	18.6 to 24.9
Overweight	25 to 25.9
Obese	30 to 30.9
Morbidly Obese	>=40

20. Any character/ special symbol is entered, now check whether is it capital letter, small letter, a digit, or any special symbol.