Signal Processing First

LECTURE #3 Phasor Addition Theorem

1/12/2004 © 2003, JH McClellan & RW Schafer

LECTURE OBJECTIVES

- Phasors = Complex Amplitude
 - Complex Numbers represent Sinusoids

$$z(t) = Xe^{j\omega t} = (Ae^{j\varphi})e^{j\omega t}$$

- Develop the ABSTRACTION:
 - Adding Sinusoids = Complex Addition
 - PHASOR ADDITION THEOREM

READING ASSIGNMENTS

- This Lecture:
 - Chapter 2, Section 2-6
- Other Reading:
 - Appendix A: Complex Numbers
 - Appendix B: MATLAB
 - Next Lecture: start Chapter 3

1/12/2004 © 2003, JH McClellan & RW Schafer

3

Z DRILL (Complex Arith)

1/12/2004 © 2003, JH McClellan & RW Schafer

AVOID Trigonometry

- Algebra, even complex, is EASIER !!!
- Can you recall $cos(\theta_1 + \theta_2)$?
- Use: real part of $e^{j(\theta_1+\theta_2)} = \cos(\theta_1+\theta_2)$

$$e^{j(\theta_1+\theta_2)} = e^{j\theta_1}e^{j\theta_2}$$

$$= (\cos \theta_1 + j \sin \theta_1)(\cos \theta_2 + j \sin \theta_2)$$

$$= \left(\cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2\right) + j(...)$$

1/12/2004

© 2003, JH McClellan & RW Schafe

_

Euler's FORMULA

- Complex Exponential
 - Real part is cosine
 - Imaginary part is sine
 - Magnitude is one

$$\frac{1}{\theta}\sin\theta$$

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

1/12/2004

© 2003, JH McClellan & RW Schafer

7

Real & Imaginary Part Plots

COMPLEX EXPONENTIAL

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

- Interpret this as a Rotating Vector
 - $\theta = \omega t$
 - Angle changes vs. time
 - ex: ω =20 π rad/s
 - Rotates 0.2π in 0.01 secs

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

1/12/2004 © 2003, JH McClellan & RW Schafe

9

Rotating Phasor

See Demo on CD-ROM Chapter 2

Complex Plane

Cos = REAL PART

Real Part of Euler's

$$\cos(\omega t) = \Re e \left\{ e^{j\omega t} \right\}$$

General Sinusoid

$$x(t) = A\cos(\omega t + \varphi)$$

So,

$$A\cos(\omega t + \varphi) = \Re e \left\{ A e^{j(\omega t + \varphi)} \right\}$$

$$= \Re e \left\{ A e^{j\varphi} e^{j\omega t} \right\}$$
© 2003, JH McClellan & RW Schafer

1/12/2004

1/12/2004

COMPLEX AMPLITUDE

General Sinusoid

1/12/2004

$$x(t) = A\cos(\omega t + \varphi) = \Re\{Ae^{j\varphi}e^{j\omega t}\}\$$

Sinusoid = REAL PART of $(Ae^{j\phi})e^{j\omega t}$

$$x(t) = \Re \left\{ X e^{j\omega t} \right\} = \Re \left\{ z(t) \right\}$$

Complex AMPLITUDE = X

$$z(t) = Xe^{j\omega t} \qquad X = Ae^{j\varphi}$$

POP QUIZ: Complex Amp

Find the COMPLEX AMPLITUDE for:

$$x(t) = \sqrt{3}\cos(77\pi t + 0.5\pi)$$

Use FULER's FORMULA:

$$x(t) = \Re e \left\{ \sqrt{3} e^{j(77\pi t + 0.5\pi)} \right\}$$
$$= \Re e \left\{ \sqrt{3} e^{j0.5\pi} e^{j77\pi t} \right\}$$
$$X = \sqrt{3} e^{j0.5\pi}$$

$$X = \sqrt{3}e^{j0.5\pi}$$

1/12/2004 © 2003, JH McClellan & RW Schafer 13

WANT to ADD SINUSOIDS

- ALL SINUSOIDS have SAME FREQUENCY
- HOW to GET {Amp,Phase} of RESULT?

$$x_1(t) = 1.7\cos(2\pi(10)t + 70\pi/180)$$

$$x_2(t) = 1.9\cos(2\pi(10)t + 200\pi/180)$$

$$x_3(t) = x_1(t) + x_2(t)$$

$$= 1.532 \cos(2\pi(10)t + 141.79\pi/180)$$

1/12/2004

Clellan & RW Schafer

ADD SINUSOIDS

Sum Sinusoid has <u>SAME</u> Frequency

PHASOR ADDITION RULE

$$x(t) = \sum_{k=1}^{N} A_k \cos(\omega_0 t + \phi_k)$$
 $= A \cos(\omega_0 t + \phi)$
Get the new complex amplitude by complex addition
$$\sum_{k=1}^{N} A_k e^{j\phi_k} = A e^{j\phi}$$
1/12/2004 © 2003, JH McClellan & RW Schafer

Phasor Addition Proof

$$\sum_{k=1}^{N} A_k \cos(\omega_0 t + \phi_k) = \sum_{k=1}^{N} \Re e \left\{ A_k e^{j(\omega_0 t + \phi_k)} \right\}$$

$$= \Re e \left\{ \sum_{k=1}^{N} A_k e^{j\phi_k} e^{j\omega_0 t} \right\}$$

$$= \Re e \left\{ \left(\sum_{k=1}^{N} A_k e^{j\phi_k} \right) e^{j\omega_0 t} \right\}$$

$$= \Re e \left\{ \left(A e^{j\phi} \right) e^{j\omega_0 t} \right\} = A \cos(\omega_0 t + \phi)$$

1/12/2004

2003, JH McClellan & RW Schafer

17

POP QUIZ: Add Sinusoids

ADD THESE 2 SINUSOIDS:

$$x_1(t) = \cos(77\pi t)$$

$$x_2(t) = \sqrt{3}\cos(77\pi t + 0.5\pi)$$

COMPLEX ADDITION:

$$1e^{j0} + \sqrt{3}e^{j0.5\pi}$$

1/12/2004

© 2003, JH McClellan & RW Schafer

10

POP QUIZ (answer)

COMPLEX ADDITION: $1 + j\sqrt{3} = 2e^{j\pi/3}$ $j\sqrt{3} = \sqrt{3}e^{j0.5\pi}$

CONVERT back to cosine form:

$$x_3(t) = 2\cos(77\pi t + \frac{\pi}{3})$$

1/12/2004

003 JH McClellan & RW Schafer

ADD SINUSOIDS EXAMPLE

Convert Time-Shift to Phase

- Measure peak times:
 - t_{m1} =-0.0194, t_{m2} =-0.0556, t_{m3} =-0.0394
- Convert to phase (T=0.1)
 - $\phi_1 = -\omega t_{m1} = -2\pi (t_{m1}/T) = 70\pi/180$,
 - $\phi_2 = 200\pi/180$
- Amplitudes
 - A₁=1.7, A₂=1.9, A₃=1.532

1/12/2004 © 2003, JH McClellan & RW Schafer

Phasor Add: Numerical

Convert Polar to Cartesian

$$X_1 = 0.5814 + j1.597$$

$$X_2 = -1.785 - j0.6498$$

• sum =

$$X_3 = -1.204 + j0.9476$$

Convert back to Polar

• $X_3 = 1.532$ at angle $141.79\pi/180$

This is the sum

1/12/2004 © 2003, JH McClellan & RW Schafer

Phasor Vectors

22

ADD SINUSOIDS

$$x_1(t) = 1.7\cos(2\pi(10)t + 70\pi/180)$$

$$x_2(t) = 1.9\cos(2\pi(10)t + 200\pi/180)$$

$$x_3(t) = x_1(t) + x_2(t)$$

$$= 1.532\cos(2\pi(10)t + 141.79\pi/180)$$

