Advanced FPGA Design / System Level Design with Intel FPGAs Course Duration: (8 Weeks)

Commencing from Sunday, 29th Jan 2023 (Hybrid Mode)

Day	Topics	Learning Outcomes
Day-1	Introduction to Intel FPGAs	 Low end, Mid-range and High-end FPGAs Introduction to Intel Quartus Prime design software Lite, Standard and Pro editions Downloading and Installation Licensing and Device Support MAX 10 and Cyclone V devices Arria 10, Stratix 10 and Agilex devices Internal Architecture of FPGAs LUT and ALM Memory and DSP resources Clocking and I/O resources
Day-2	Verilog HDL and Advanced Verilog	 Data Flow, Structural and Behavioral modeling FSM Modeling Memory designs Functions and Tasks Synthesis Support HDL coding Techniques SystemVerilog Support
Day-3	Intel Quartus Design Software Tool flow	 Creating and managing projects Simulation using ModelSim and Questasim Analysis and Elaboration I/O Assignments using Pin Planner IP Catalog Synthesis and Fitter Programming File Generation and FPGA Implementation
Day-4	Timing Analysis using Intel Quartus Prime Timing Analyzer	 Understanding the basic timing parameters Timing Analyzer Creating basic and complex timing constraints Timing Exceptions, Analyzing timing reports Generating better SDC files Achieving Timing Closure Timing Closure recommendations for hyperflex devices How to overcome setup and hold violations Clock Domain Crossing Considerations Last Mile Strategies Tcl based Scripting flow
Day-5	FPGA Debugging Techniques	 Introduction to Signal Tap Logic analyzer In System Sources and Probes System Console

Day-6	Internal and External FPGA Memory	 Introduction to Intel FPGA Internal and External memory Memory Initialization file On chip RAM and SDRAM In System memory content editor
Day-7	Platform designer	 Introduction to Platform designer Create a system Avalon and AMBA AXI interfaces Incorporate the platform designer system into the Intel Quartus prime design software Debug using Signal Tap and System console
Day-8	Embedded System using NIOS and ARM based SoC	 Introduction to Soft core processor Embedded System using NIOS Configure the NIOS II processor using Intel Quartus software and platform designer tool Hardware Design Flow and Software Design Flow ARM based SoC Communication between HPS and FPGA Introduction to HLS Intel HLS Compiler and HLS Implementation for Matrix Multiplication and FIR filter

Hardware:

- Hands on Labs with MAX 10, Cyclone V and Arria 10 devices
- Timing Analysis and Platform designer sessions with Stratix 10 devices
- Design Migration Examples

Lab Exercises:

- 1. Basic Combinational and Sequential Logic Examples
- 2. FSM and Memory designs
- 3. High Speed Interfaces (DDR/Ethernet)
- 4. Embedded System design using NIOS II and NIOS V
- 5. Embedded System design using Cyclone V and ARM
- 6. Hardware and Software Design Flow
- 7. Timing Analysis and Timing Closure exercises
- 8. Intel FPGA Simulation and debug lab exercises
- 9. HLS implementation of 32-bit square root component, Matrix Multiplication and FIR Filter-RTL Vs HLS Examples
- 10. Intel FPGAs for AI/ML and Acceleration applications

Course Fee: Rs.15, 000/- (Excluding 18% GST)

25% discount for IETE Members.

50% discount for Students & Teaching Staffs.

Fee inclusive Course materials, Certificate and other miscellaneous charges.

Course Coordinator: Mr. Dinesh, Manager, IETE Bangalore

Mob: +91-99017 43330, LL:080-2333 1133/2333 7231

Email: <u>bangalore@iete.org</u>, web: www.ietebangalore.org