Numerical Methods for Hyperbolic PDEs Homework 6

James King*, Robert Ziegler†
April 24, 2024

Exercise 1

See extra pdf.

Exercise 2

(a)

For $t=\frac{0.5}{\pi}$ we observe order 1 convergence in all norms. For $t=\frac{1.5}{\pi}$ we only observe this order 1 convergence in the L^1 -norm, while the error seems to plateau in the other two norms. We observe that the reason for this is an oscillation at the shock.

Figure 1: Numerical solutions with the the Lax-Wendroff scheme at time $t=\frac{0.5}{\pi}$

^{*}Immatriculation Nr. 23-942-030

 $^{^{\}dagger}$ Immatriculation Nr. 18-550-558

N	L^1 -Error	rate	L^2 -Error	rate	L^{∞} -Error	rate
40	0.015	-	0.026	-	0.089	-
80	0.009	0.7077	0.016	0.6677	0.075	0.256
160	0.004	1.3039	0.008	1.0574	0.036	1.0458
320	0.001	1.4053	0.004	1.0458	0.017	1.0546
640	0.001	0.9924	0.002	1.0424	0.008	1.0449

Table 1: Errors and convergence rates for the Lax-Wendroff scheme at time $t=\frac{0.5}{\pi}$

Figure 2: Error of numerical solution with the the Lax-Wendroff scheme at time $t=\frac{0.5}{\pi}$

Figure 3: Numerical solutions with the the Lax-Wendroff scheme at time $t=\frac{1.5}{\pi}$

N	L^1 -Error	rate	L^2 -Error	rate	L^{∞} -Error	rate
40	0.12	-	0.235	-	0.832	-
80	0.067	0.837	0.165	0.5126	0.761	0.1282
160	0.028	1.2616	0.077	1.097	0.486	0.6464
320	0.016	0.8345	0.056	0.4515	0.47	0.0478
640	0.009	0.8275	0.051	0.1487	0.621	-0.4015

Table 2: Errors and convergence rates for the Lax-Wendroff scheme at time $t=\frac{1.5}{\pi}$

Figure 4: Numerical solution with the the Lax-Wendroff scheme at time $t=\frac{1.5}{\pi},$ 320 mesh points

Figure 5: Error of numerical solution with the the Lax-Wendroff scheme at time $t=\frac{1.5}{\pi}$

(b)

When only considering the errors on [0,0.75] at $t=\frac{1.5}{\pi}$ we observe order 1 convergence in all norms. This supports the hypothesis that the bad convergence at $t=\frac{1.5}{\pi}$ is caused by the oscillations around the shock. When only considering the errors on [0,0.75] at $t=\frac{1.5}{\pi}$ we observe order 1 convergence in all norms. This supports the hypothesis that the bad convergence at $t=\frac{1.5}{\pi}$ is caused by the oscillations around the shock.

N	L^1 -Error	rate	L^2 -Error	rate	L^{∞} -Error	rate
40	0.018	-	0.033	-	0.097	-
80	0.008	1.1322	0.015	1.1649	0.044	1.1477
160	0.004	0.9035	0.007	1.0064	0.02	1.0984
320	0.002	0.8962	0.004	1.013	0.01	1.072
640	0.001	1.0161	0.002	1.0085	0.005	1.0179

Table 3: Errors and convergence rates on [0,0.75] for the Lax-Wendroff scheme at time $t=\frac{1.5}{\pi}$

Figure 6: Numerical solutions on [0,0.75] of with the the Lax-Wendroff scheme at time $t=\frac{1.5}{\pi}$

Figure 7: Error on [0,0.75] of numerical solution with the the Lax-Wendroff scheme at time $t=\frac{1.5}{\pi}$

(c)

Plotting the numerical versus exact solution with N=100 when $t=\frac{1.5}{\pi}$ shows the oscillations in the Lax-Wendroff scheme before the shock.

Figure 8: Numerical and exact solution with the the Lax-Wendroff scheme at time $t=\frac{1.5}{\pi},\,100$ mesh points

Exercise 3

We sketch the original proof of Lax and Richtmyer. Let \mathcal{B} be a Banach space consisting of functions, containing the spacial solution of a well posed, linear initial value problem for each $0 \le t \le T$:

$$\begin{cases} u_t = Au(t) \\ u(0) = u_0 \end{cases}$$

where $A: \mathcal{B} \to \mathcal{B}$ is a (densely defined) linear differential operator. Note that we consider the time only as a parametrization of the solution, which is a family $(u(t))_t$ of functions in \mathcal{B} .

Denote the Banach space norm by $\|\cdot\|$. We call u a genuiune solution if u lies in the domain of A and

$$\left\| \frac{u(t+h) - u(t)}{h} - Au(t) \right\| \to 0$$
, uniformly in t, $0 \le t \le T$.

, Define the operator

$$E_0(t)u_0 := u(t),$$

which is well defined since the problem is assumed well posed. Also, the well-posedness implies that there exists a constant K such that $||E_0(t)u_0|| \leq K||u_0||$, i.e. they are uniformly bounded for $0 \leq t \leq T$. Note that the domain of E_0 are the unique initial values for the genuine solutions, which are assumed to be dense. We assume that we can extend E_0 continuously to the whole space \mathcal{B} , leading to the notion of weak solutions. We call this extension then E.

Consider now a linear numerical scheme $C_{\Delta t}$, seen as a linear operator on \mathcal{B} , where

$$U^{n+1} = C_{\Delta t} U^n.$$

We call the numerical scheme consistent, if for all genuine solutions u

$$\lim_{\Delta t \to 0} \left\| \frac{1}{\Delta t} \left(C_{\Delta t} u(t) - u(t) \right) - A u(t) \right\| = 0, \quad \text{uniformly in } t, 0 \le t \le T$$

We call the numerical scheme *convergent*, if for any sequence $\Delta_j t$, n_j , such that $n_j \Delta_j t \to t$ and for any initial data u_0 , we have

$$\left\| \left(C_{\Delta_j t} \right)^{n_j} u_0 - E(t) u_0 \right\| \to 0, \quad 0 \le t \le T$$

Finally, we call the scheme *stable*, if the family of operators

$$\left(C_{\Delta_j t}\right)^n, \quad j \in \mathbb{N}, \quad 0 \le n\Delta_j t \le T \forall j$$

is uniformly bounded.

$Convergent \implies stable$

Assume the scheme is convergent. Assume by contradiction, that there exists a sequence n_j , $\Delta_j t$ with $n_j \Delta_j t \leq T$ and u_0 such that

$$||C^{n_j}(\Delta_j t)u_0|| \to \infty, \quad (j \to \infty).$$

By passing to a subsequence, we can assume that there exists $n_j \Delta_j t$ converges to some t, $0 \le t \le T$. Since the scheme is convergent, we must have

$$C^{n_j}(\Delta_i t)u_0 \to E(t)u_0$$
 in \mathcal{B} ,

which gives a contradiction.

Stable and consistent \implies Convergent

Assume the scheme is stable and consistent. Let

$$u(t) := E(t)u_0,$$

being a genuine solution. Let $\epsilon > 0$. By consistency, we can choose Δt small enough so that

$$\left\| \frac{1}{\Delta t} \left(C_{\Delta t} u(t) - u(t) \right) - A u(t) \right\| < \frac{\epsilon}{2}.$$

By the definition of a genuine solution, we can choose Δt also small enough so that

$$\left\|\frac{E(\Delta t)u(t)-u(t)}{\Delta t}-Au(t)\right\|<\frac{\epsilon}{2}.$$

Thus, by the triangle inequality,

$$||C(\Delta t)u(t) - E(\Delta t)u(t)|| \le \epsilon \Delta t,$$

for Δt small enough. Define

$$\psi_j = \left[\left(C(\Delta_j t) \right)^{n_j} - E(n_j \Delta_j t) \right] u_0$$

$$= \sum_{k=0}^{n_j - 1} \left(C(\Delta_j t)^k \left(C(\Delta_j t) - E(\Delta_j t) \right) E((n_j - 1 - k) \Delta_j t) u_0.$$

Now we can estimate, for small enough $\Delta_i t$

$$\|\psi_j\| < K \sum_{k=0}^{n_j-1} \epsilon \Delta_j t = K \epsilon n_j \Delta_j t < K \epsilon T.$$

Since ϵ was arbitrary, we obtain

$$\|\psi_j\| \to 0$$
, as $\Delta_j t \to 0$.

Suppose now that $n_j \Delta_j t \to t$ as $j \to \infty$, 0 < t < T. For simplicity, assume $s := n_j \Delta_j t - t \ge 0$, so that we can write

$$\left[E(n_j \Delta_j t) - E(t) \right] u_0 = (E(s) - id) E(t) u_0.$$

(The case " \leq 0" is similar and gives the same results.) Then, since the operators E(t) are uniformly bounded by well-posedness, there exists a constant $K_E>0$ such that

$$\| [E(n_j \Delta_j t) - E(t)] u_0 \| < K_E \| (E(s) - id) u_0 \|,$$

converging to 0 as $j \to \infty$ since the solution is genuine. Therefore, since $\|\psi_j\| \to 0$, as $\Delta_j t \to 0$, we obtain

$$\left\| \left[C(\Delta_j t)^{n_j} - E(t) \right] u_0 \right\| \to 0, \quad j \to \infty,$$

establishing convergence of the scheme. Note that if we assume that the genuine solutions are only dense in \mathcal{B} , we can extend this argument by the uniform boundedness principle.