Examen de seconde session - Vendredi 28 juin 2023.

durée: 2h00.

Les documents, calculatrices, téléphones et ordinateurs portables sont interdits. La qualité de la rédaction sera prise en compte dans la notation.

Dans tout le sujet $(\Omega, \mathcal{F}, \mathbf{P})$ désigne un espace de probabilité.

Exercice 1.

- 1. Rappeler la définition d'une variable aléatoire réelle.
- 2. Montrer que 1_A est une variable aléatoire si et seulement si $A \in \mathcal{F}$.
- 3. Que signifie : « les événements $(A_i)_{i\in I}$ sont indépendants », où I est un ensemble d'indices quelconque.
- 4. Soit X une variable intégrable de densité f paire. Montrer que E(X) = 0.
- 5. Soient X, Y deux variables aléatoires réelles définies sur un même espace de probabilité. On suppose que P(X = Y) = 1.
 - (a) Montrer que X et Y ont la même loi.
 - (b) Montrer que la réciproque est fausse.
 - (c) Montrer que pour tout $f: \mathbb{R} \to \mathbb{R}$ mesurable f(X) et f(Y) ont même loi.
- 6. Vrai ou Faux
 - (a) Soit X une variable aléatoire positive. Alors E(X) est bien défini et $E(X) \ge 0$.
 - (b) Soit X une variable aléatoire positive. Alors $E(X) < +\infty$.
 - (c) Soit X une variable aléatoire intégrable alors X^2 est également intégrable.
 - (d) Soit X une variable aléatoire de carré intégrable alors X est également intégrable.
- 7. Soit V une variable aléatoire de loi uniforme sur $[0,\pi]$. Déterminer la loi de $\sin(V)$.

Correction.

- 1. Cours
- 2. On a $\{1_A = 1\} = A$ et $\{1_A = 0\} = A^c$. Comme 1_A est à valeur dans $\{0, 1\}$ cela prouve que 1_A est une variable aléatoire si $A \in \mathcal{F}$. Réciproquement si 1_A est une variable alors $A = \{1_A = 1\} \in \mathcal{F}$.
- 3. Cours
- 4. On a $E(X) = \int x f(x) dx = \int_{-\infty}^{0} x f(x) dx + \int_{0}^{+\infty} x f(x) dx$. En faisant le changement de variable u = -x, on obtient $\int_{-\infty}^{0} x f(x) dx = -\int_{0}^{+\infty} x f(x) dx$ puis le résultat.
- 5. (a) Pour tout $B \in \mathcal{B}(\mathbb{R})$, $P(X \in B) = P(X \in B, X = Y) = P(Y \in B, X = Y) = P(Y \in B)$.
 - (b) On considère par exemple X une variable de loi gaussienne $\mathcal{N}(0,1)$ et Y=-X.
 - (c) Soit $f: \mathbb{R} \to \mathbb{R}$ mesurable et ϕ continue bornée, $\mathrm{E}(\phi(f(X))) = \mathrm{E}(\phi(f(Y)))$ puisque X et Y ont même loi donc f(X) et f(Y) ont même loi.

- 6. Vrai ou Faux
 - (a) Vrai. Dans ce cas

$$\mathbb{E}[X] := \sup \{ \mathbb{E}[Z] \colon Z \text{ \'etag\'ee}, Z \le X \}. \tag{1}$$

qui est toujours bien défini et positif (éventuellement infini).

- (b) Faux. Par exemple la variable à valeurs dans \mathbb{N}^* de loi $\mathrm{P}(X=k)=c/k^2$ (avec c adapté) vérifie $\mathrm{E}(X)=\sum_{k\geq 1}k\mathrm{P}(X=k)=\sum_{k\geq 1}kc/k^2=+\infty.$
- (c) Faux. Par exemple la variable à valeur dans \mathbb{N}^* de loi $\mathrm{P}(X=k)=c'/k^3$ (avec c' adapté) vérifie $\mathrm{E}(X)=\sum_{k\geq 1}k\mathrm{P}(X=k)=\sum_{k\geq 1}kc/k^3<+\infty$ et $\mathrm{E}(X^2)=\sum_{k\geq 1}k^2\mathrm{P}(X=k)=\sum_{k\geq 1}k^2c/k^3=+\infty$.
- (d) Vrai. On a $E(|X|) = E(|X|1_{E(|X|)<1}) + E(|X|1_{E(|X|)>1}) \le 1 + E(|X|^2) < +\infty$.
- 7. Soit ϕ une fonction continue bornée. Alors

$$E(\phi(\sin(V))) = \frac{1}{\pi} \int_0^{\pi} \phi(\sin(v)) dv = \frac{1}{\pi} \int_0^{\pi/2} \phi(\sin(v)) dv + \int_{\pi/2}^{\pi} \phi(\sin(v)) dv$$

$$\stackrel{u=\pi-v}{=} \frac{2}{\pi} \int_0^{\pi/2} \phi(\sin(u)) du \stackrel{w=\sin(u)}{=} \int_0^1 \frac{2}{\pi \sqrt{1-w^2}} dw.\phi(u)$$

On en déduit que $\sin(V)$ admet la densité $u\mapsto \frac{2}{\pi\sqrt{1-u^2}}1_{[0,1]}.$

Exercice 2. Soit $(a,b) \in \mathbb{R}^2$. On pose

$$F_{a,b}(x) = \begin{cases} ae^x & \text{si } x < 0\\ -\frac{1}{2}e^{-x} + b & \text{si } x \ge 0. \end{cases}$$

- 1. Pour quelles valeurs du couple (a,b), la fonction $F_{a,b}$ est elle une fonction de répartition?
- 2. Pour quelles valeurs du couple (a,b) la loi associée à $F_{a,b}$ est une loi à densité? Donner les densités correspondantes.
- 3. Pour toutes les valeurs obtenues à la question 2, préciser si la variable admet une espérance et si c'est le cas la calculer.

Correction.

- 1. La fonction F est une fonction de répartition si et seulement si elle vérifie les trois points suivants :
 - (a) F croissante. C'est le cas ssi $a \ge 0$ et $a \le b 1/2$.
 - (b) $\lim_{t\to-\infty} F(t) = 0$ et $\lim_{t\to+\infty} F(t) = 1$. C'est le cas ssi b=1.
 - (c) F càdlàg. C'est toujours le cas.

Finalement F est une fonction de répartition ssi b=1 et $0 \le a \le 1/2$.

2. Il est nécessaire que F soit continue ce qui implique a=b=1/2. Dans ce cas F est C^1 par morceau et est bien l'intégrale de $f: x \mapsto 1/2$ $e^x 1_{\mathbb{R}^-} + 1/2$ $e^{-x} 1_{\mathbb{R}^+}$ qui est donc la densité correspondante à F.

3. La variable est bien intégrable car $\int |x|f(x) < +\infty$. De plus la densité est paire donc l'espérance est nulle par le même calcul que dans l'exercice 1.

Exercice 3. Soit N un entier. On considère N variables aléatoires indépendantes $(Y_i)_{1 \leq i \leq N}$ de loi $\mathrm{Unif}([0,N])$. On note

$$X_N = \min\{Y_i, \ 1 \le i \le N\}.$$

- 1. Calculer la fonction de répartition F_N de X_N .
- 2. Pour tout $t \geq 0$, calculer $F(t) = \lim_{N \to +\infty} F_N(t)$ et reconnaitre en F la fonction de répartition d'une loi connue.

Correction.

1. Comme p.s. $0 \le X_N \le N$, pour tout t < 0 $F_N(t) = 0$ et pour tout $t \ge N$ $F_N(t) = 1$. Pour $t \in [0, N]$ en utilisant l'indépendance des $(Y_i)_{1 \le i \le N}$

$$F_N(t) = 1 - P(X_n > t) = 1 - P(Y_i > t, \text{ pour tout } 1 \le i \le N) = 1 - \left(\frac{N - t}{N}\right)^N.$$

2. Pour tout $t < 0 \lim_{N \to +\infty} F_N(t) = 0$. Pour tout $t \ge 0$, pour $N \ge t$, $F_N(t) = 1 - \left(\frac{N-t}{N}\right)^N$. Or en passant au log on obtient $\lim_{N \to +\infty} \left(\frac{N-t}{N}\right)^N = e^{-t}$. Finalement $\lim_{N \to +\infty} F_N(t) = 1_{\mathbb{R}^+}(1 - e^{-t})$. On reconnait la fonction de répartition d'une exponentielle de paramètre 1.

Exercice 4. On considère une suite $(Z_n)_{n\geq 1}$ de variables aléatoires.

- 1. Rappeler l'énoncé du premier lemme de Borel Cantelli.
- 2. Soit $(A_n)_{n\geq 1}$ une suite d'événements de probabilité 1. Montrer que $\cap_{n\geq 1}A_n$ est également de probabilité 1.
- 3. On suppose que pour tout $\varepsilon > 0$, $\sum_{n \geq 1} P(|Z_n| > \varepsilon) < +\infty$. Montrer que $(Z_n)_{n \geq 1}$ converge vers 0 p.s.

On suppose maintenant de plus que pour tout entier $n \geq 1$, Z_n est une variable aléatoire de loi exponentielle de paramètre n.

- 4. Montrer que Z_n converge presque sûrement vers 0 lorsque n tend vers $+\infty$.
- 5. Montrer que presque sûrement, à partir d'un certain rang, $Z_n < Z_1$.

On suppose maintenant de plus que les variable aléatoires $(Z_n)_{n\geq 1}$ sont indépendantes.

6. (Bonus : utiliser les outils de *Probabilités 2*) Calculer $\sum_{n\geq 1} P(Z_n > Z_1)$. Faut-il s'étonner de ce résultat?

Correction. On considère une suite $(Z_n)_{n\geq 1}$ de variables aléatoires.

1. Cours

2. Montrons que le complémentaire est de probabilité nulle :

$$P((\cap_{n\geq 1} A_n)^c) = P(\cup_{n\geq 1} A_n^c) \leq \sum_{n\geq 1} P(A_n^c) = 0,$$

où l'avant dernière égalité vient de ce que l'on considère une union dénombrable.

- 3. Pour tout $\varepsilon > 0$ d'après le lemme de Borel Cantelli, p.s. il existe N (dépendant de ω) tel que pour tout $n \geq N$, $|Z_n| \leq \varepsilon$. On prend maintenant $\varepsilon = 1/k$ pour tout $k \geq 1$ et on a donc pour tout $k \geq 1$ p.s. il existe N tel que pour tout $n \geq N$, $|Z_n| \leq 1/k$ et en utilisant la question précédente p.s. pour tout $k \geq 1$ il existe N tel que pour tout $n \geq N$, $|Z_n| \leq 1/k$. Ce qui donne bien la convergence vers 0.
- 4. On utilise la question précédente et il suffit donc de montrer que pour tout $\varepsilon > 0$ $\sum_{n>1} P(|Z_n| > \varepsilon) < +\infty$. Or

$$P(|Z_n| > \varepsilon) = \int_{\varepsilon}^{+\infty} ne^{-nx} dx = e^{-n\varepsilon}$$

qui est bien le terme général d'une série convergente.

- 5. p.s. Z_n tend vers 0 et $Z_1 > 0$ donc à partir d'un certain rang $Z_n < Z_1$.
- 6. Pour tout $n \ge 1$

$$P(Z_n > Z_1) = \int_0^{+\infty} P(Z_n > z) e^{-z} dz = \int_0^{+\infty} e^{-nz} e^{-z} dz = \frac{1}{n+1}$$

donc $\sum_{n\geq 1} P(Z_n>Z_1)=+\infty$. Il ne faut pas s'en étonner car le second lemme de Borel Cantelli ne s'applique pas car les événements $(\{Z_n>Z_1\})_{n\geq 1}$ ne sont pas indépendants. On ne peut donc pas en déduire que p.s. $Z_n>Z_1$ une infinité de fois ce qui serait en contradiction avec la question précédente.