Remote Sensing Data as a Digital Image And Introductory DIP

Ritu Anilkumar

Scientist 'SD'

North Eastern Space Applications
Centre

ritu.anilkumar@nesac.gov.in

How do we see?

Materials respond differently to different regions of the electromagnetic spectrum. Some portions are reflected and others are absorbed. A graphical representation is what we call the spectrum of the material.

A Remote Sensing Camera. How does it look? What are its components?

Spectral Reflectance Curve

Different land cover types depict different spectrum.

Image source: Boldbayer R 2020

How do we get satellite images from this?

How are images generated

For an Imaging a Line

P1	P2	Р3	P4	P5	P6	P7	B1
P1	P2	Р3	P4	P5	P6	P7	B2
P1	P2	Р3	P4	P5	Р6	P7	В3
P1	P2	P3	P4	P5	P6	P7	В4

For an Imaging a Frame

L1P1	L1P2	L1P3	L1P4	L1P5	L1P6	L1P7
L2P1	L2P2	L2P3	L2P4	L2P5	L2P6	L2P7
L3P1	L3P2	L3P3	L3P4	L3P5	L3P6	L3P7
L4P1	L4P2	L4P3	L4P4	L4P5	L4P6	L4P7

B1

B3

L1P1	L1P2	L1P3	L1P4	L1P5	L1P6	L1P7
L2P1	L2P2	L2P3	L2P4	L2P5	L2P6	L2P7
L3P1	L3P2	L3P3	L3P4	L3P5	L3P6	L3P7
L4P1	L4P2	L4P3	L4P4	L4P5	L4P6	L4P7

B3

B2

Pushbroom Imaging

B1	P7	P6	P5	P4	Р3	P2	P1		
B2	P7	P6	P5	P4	P3	P2	P1		
В3	P7	P6	P5	P4	Р3	P2	P1		
B4	P7	P6	P5	P4	Р3	P2	P1		
	Satellite (detector) moves to capture next line								
B1	P7	P6	P5	P4	Р3	P2	P1		
B2	P7	P6	P5	P4	P3	P2	P1		
В3	P7	P6	P5	P4	Р3	P2	P1		
B4	P7	P6	P5	P4	Р3	P2	P1		
	line	ire next	to captu	moves	etector)	ellite (de	Sate		
В1	P7	P6	P5	P4	Р3	P2	P1		
B2	P7	P6	P5	P4	P3	P2	P1		
В3	P7	P6	P5	P4	Р3	P2	P1		
B4	P7	P6	P5	P4	Р3	P2	P1		

Whiskbroom Imaging

P1	M	P2	M	Р3	M	P4	M	P5	M	P6	M	P7	В1
P1	I R	P2	I R	P3	I R	P4	I R	P5	I R	P6	I R	P7	B2
P1	R	P2	R	Р3	R	P4	R	P5	R	P6	R	P7	В3
P1	O R	P2	O R	Р3	O R	P4	O R	P5	O R	P6	O R	P7	B4
		Sat	tellite	(dete	ctor) r	noves	to ca	pture	next l	ine			
P1	M	P2	M	Р3	M	P4	M	P5	M	P6	M	P7	В1
P1	I R	P2	I R	P3	l R	P4	l R	P5	I R	P6	l R	P7	B2
P1	R	P2	R	Р3	R	P4	R	P5	R	P6	R	P7	В3
P1	O R	P2	O R	Р3	O R	P4	O R	P5	O R	P6	O R	P7	B4
		Sat	tellite	(dete	ctor) r	noves	to ca	pture	next l	ine			
P1	M	P2	M	Р3	M	P4	M	P5	M	P6	M	P7	В1
P1	I R	P2	I R	P3	I R	P4	l R	P5	I R	P6	I R	P7	B2
P1	R	P2	R	Р3	R	P4	R	P5	R	Р6	R	P7	В3
P1	O R	P2	O R	Р3	O R	P4	O R	P5	O R	Р6	O R	P7	B4

How is Raster Data Stored?

 P1
 P2
 L1
 P3
 P4
 L2
 P3
 P4
 L2
 P3
 P4
 L2
 P3
 P4
 L2
 P5
 P6
 L3
 P5
 P6
 L3
 P5
 P6
 L3<

Assume image with 4 bands, 2 pixels in a line and 3 lines of data. Thus we get:

- # px (w): 2
- # px (h): 3
- # bands: 4

Dand	P1	P2	P1	P2	P1	P2	P1	P2	L1
Band Interleaved by Line: BIL	Р3	P4	Р3	P4	Р3	P4	Р3	P4	L2
by Lilie. BiL	P5	P6	P5	P6	P5	P6	P5	P6	L3

Band Interleaved by Pixel: BIP

P1	P1	P1	P1	P2	P2	P2	P2	L
Р3	Р3	Р3	Р3	P4	P4	P4	P4	L
P5	P5	P5	P5	P6	P6	P6	Р6	L

Band Sequential : BSQ

P1	P2	L1
Р3	P4	L2
P5	P6	L3
P1	P2	L1
Р3	P4	L2
P5	P6	L3
P1	P2	L1
Р3	P4	L2
P5	P6	L3
P1	P2	L1
Р3	P4	L2
P5	P6	L3

Satellite Bands and the Spectral Response Curve

Let's Recap

- We have understood how imaging of satellite data is undertaken
- Spectral bands as representation of wavelength
- Spectral profile
- Matrix representation of satellite data

Question: How do we visualize the data?

Single Band Visualization

Single band pseudocolor representation

Case 1: Give each unique value one color

Case 2: Give a range of values one color

Single band grayscale representation

Case 1 : Give each unique value one color

Case 2: Give a range of values one color

This can be thought as a special case of pseudocolor with the colorbar in shades of gray

Color Composites

Software Visualization Channel	Satellite Band True Color	Satellite Band Standard False Color
Red	Red	NIR
Green	Green	Red
Blue	Blue	Green

Band Ratios and Spectral Indices

- Based on the spectral profile of the target, some ratios can result in exaggerated values that simplify identifying the target. Eg NIR/Red for veg
- High NIR and low red results in large values for the ratios.
- Normalization to ensure values fall in a specific range helps generalize. Eg NDVI

NDVI=(NIR - Red) / (NIR + Red)
For veg: High NIR, low Red. So values will
be high and close to I
Urban: close to 0 as both NIR and Red is
high

Water: Negative as NIR is lower than Red

Thresholding Spectral Indices

NDVI=(NIR - Red) / (NIR + Red)

For veg: High NIR, low Red. So values will be high and close to I Urban: close to 0 as both NIR and Red is high Water: Negative as NIR is lower than Red

Why Classification?

 A user / decision maker is not interested in brightness values, but the information relayed

a:True Color Image

b: Classified Image

Source: Anilkumar et al 2018

incident light Diffraction Grating based spectral separation

- •Incident light is divided into the spectral components which are detected by the detector.
- •Depending upon sampling and whether broad band or narrow bandwidth is taken, we have multispectral or hyperspectral.

Spectral Resolution

Spatial Resolution

Changing Grey Levels: Radiometric Resolution

Data Download

- USGS Earth Explorer: https://earthexplorer.usgs.gov/
- ESA/Copernicus: https://scihub.copernicus.eu/dhus/#/home
- ISRO/Bhoonidhi: https://bhoonidhi.nrsc.gov.in/bhoonidhi/home.html
- Private Players: Eg https://www.planet.com/get-started/
- Spectral library: https://crustal.usgs.gov/speclab/QueryAll07a.php

Alternately, access data through other options:

- Google Earth engine
- Microsoft Planetary Computer
- Amazon Web Services

THANK YOU!

In case of queries, drop me an email at ritu.anilkumar@nesac.gov.in