Introdution to Singularity containers

Jan P. Buchmann jan.buchmann@sydney.edu.au

The University Of Sydney

2018-11-29

Just in case...

```
Download https:
//www.sylabs.io/singularity/get-singularity/
Manual https://www.sylabs.io/guides/3.0/user-guide.pdf
Paper https://www.sylabs.io/guides/3.0/user-guide.pdf
```

Singularity: Containers for HPC

Containers are encapsulated system environments

Not a microservice: Scientific focus, e.g. whole pipelines

Single file: The image is a single file easily share, archive,

reproduce, good for parallel file sytems, e.g. Lustre

Run as user: root to create, user to run

Access HPC resources: MPI, GPUs, InfiniBand/Network, file

systems

Biggest difference to Docker

Privileges

You run the container as the user who invokes singularity. You can only be root in the container if you run it as root. Not your usual HPC experience.

No daemon

There is no deamon required, Singularity image is mounted as a loopback. Docker swarms need a DockerEngine on each node or instance they run.

Runs closer to the host

Running a singularity container bind mount your \$HOME, /dev, /sys, and /proc automatically by default.

Singularity Image Format (SIF) (\geq 3.0)

Image container format resembling a general file system whoch will allow PGP signing, block encryption, partitions accommodating multiple OSes, fast metadata access.

Docker layers change

Docker image layers can change, i.e. a docker image has likely changed layers when pulled a couple of months later.

Speed

Overall singularity workflow

Building singularity containers

Invoking singularity

```
singularity [global options] command [command options]
singularity -v build --sandbox /tmp/ubuntu docker://ubuntu:latest
```

Workflow: Build environment (root)

Interactive

```
1 sudo singularity build --sandbox /tmp/ubuntu \
2  docker://ubuntu:latest # In container
3 sudo singularity exec --writable /tmp/ubuntu/ \
4  apt-get update # In container
5 sudo singularity exec --writable /tmp/ubuntu/ \
6  mkdir /mnt/builds # In container
7 sudo singularity shell -B hostdir:/mnt/builds -w /tmp/ubuntu/ 8 #-> compile, copy, etc. tools from hostdir in the container
9 sudo singularity build raxml.sif /tmp/ubuntu/ 10 sudo singularity shell raxml.sif
```

Example: ../commands/commands.md

Workflow: Receipe file

Preferred way to crate images. Use interactive to get details right, test dependencies, etc. than fixeverything in a receipe file.

Example: ../receipes/raxml.ubuntu.def

Singularity on HPC

- Host and container OS need same OpenMPI/MPI version
- Adjust image for binding directories
- Adjust GPU specific files, libraries

Example PBS file: ../receipes/raxml-sing.pbs