Thermal & pain

THERMOCEPTIVE SENSATION

Thermal Sensation:

Is the conscious perception of different grades of environmental temperature.

Types of Thermoreceptors:

- **1. Warm**: Free nerve endings (**Ruffini** nerve endings) attached to **C** fibers.
- 2. Cold: Free nerve endings (Krause's end bulbs) attached to C & A δ fibers.

In addition, two other types are <u>stimulated by extremes of temperature</u>:

- 3. Cold pain
- 4. Warm pain

Distribution of thermal receptors

- Thermal receptors are located immediately under the skin, thus they respond to the temperature of the subcutaneous tissue surrounding them and not to the environmental temperature as such.
- 2. They differ in their distribution in different parts of the body: greatest in the lips, moderate in the finger tips and least in the trunk.
- 3. <u>Cold receptors are</u> **4-10 times** more numerous than warm receptors in any given area of skin.

4. They are **widely separated**. So, to differentiate between different degrees of temperature, <u>a wide area of skin has to be</u> exposed to allow spatial summation to occur.

Adaptation of thermal receptors:

Moderately adapting but warm receptors **adapt faster** than cold receptors.

- They respond markedly to <u>changing temperatures</u> rather than steady states of temperature:
- Warm receptors increase their firing when temperature is increasing.
- Cold receptors increase their firing when temperature is decreasing.

Detection of thermal sensation:

- 1- The human being can perceive different gradations of cold and heat, due to presence of <u>4 types of thermal receptors</u>, *(Fig.1):*
 - $^{\rm a-}$ Cold pain receptors stimulated from 5-15 $^{\rm o}$ C with maximum at 5 $^{\rm o}$ C.
 - b- Cold receptors stimulated from $10-40^{\circ}$ C with maximum at 25° C.
 - $^{\text{C-}}$ Warm receptors stimulated from 30-50 $^{\text{O}}$ C with maximum at 45 $^{\text{O}}$ C.
 - d- Warm pain receptors start to be stimulated at 45 °C.
- ²⁻ At zero ⁰C, no receptors discharge and a state of **anaesthesia** occurs.

3- Comfort (or neutral) zone: exists at skin temperature around 35

 $^{\circ}\underline{C}$ where awareness of temperature disappears, due to equal discharge of both warm and cold receptors.

Fig. (1): Frequencies of discharge of:

- 1) a cold pain fiber 2) a cold fiber
- 3) a warmth fiber 4) a heat pain fiber

Thermo-receptive sensations

The pathway

The lateral spinothalamic tract.

Definition

Pain is an **unpleasant** sensory and emotional experience for **protection** of the body.

- -It occurs whenever there is physical or potential **tissue damage**.
- -It causes the person to react to remove the pain stimulus or seek medical advice.

PAIN RECEPTORS

Types of Pain Receptors: (Nociceptors)

Pain receptors are Free Nerve Endings_attached to A δ and C fibers.

They are classified according to the mode of stimulation into:

- 1- *Mechanical pain receptors*: stimulated by mechanical injurious stimuli, e.g. cuts, bruises.
- 2- **Thermal pain receptors:** respond to extremes of temperature.
- 3- **Chemical pain receptors:** stimulated by chemical injurious elements *or* chemicals produced from tissue damage (**bradykinin**, **histamine**, **high acidity** & **environmental irritants**).
- 4- **Polymodal pain receptors:** respond to combinations of these stimuli.

Distribution of Pain receptors:

- They are most numerous in superficial layers of the skin.
- They are also <u>numerous in</u> peritoneum, pleura, periosteum, joints, arterial walls, dura and tentorium of the cranial cavity.
- They are <u>less distributed</u> in deep tissues and <u>very few</u> in Internal viscera.
- They are <u>absent in</u> liver parenchyma, lung alveoli, and brain tissue (*pain insensitive structures*).

<u>Adaptation</u>: slowly or nonadaptive receptors.

Pain Sensitizers (OR Chemical mediators of pain): (Fig. 2)

- After the nociceptors are stimulated, the damaged tissues and the surrounding blood vessels release a number of pain and inflammation producing chemical substances that are normally inside the cells, into the ECF.
- **These substances include** histamine, serotonin, K+, substance P, ATP, bradykinin and prostaglandins.
- These substances in particular Prostaglandins- further sensitize the nociceptors, lowering their pain threshold, and producing the primary hyperalgesia that often accompanies pain.

• **Salicylates** and other non steroidal anti-inflammatory analgesics (NSAID) reduce pain by inhibiting prostaglandin synthesis.

Fig. (2): Chemical mediators of pain

Cutaneous hyperalgesia

Definition:

It is an exaggerated response to a **noxious stimulus**. (increased pain sensitivity= an already painful stimulus now producing a more severe type of pain). **DD.** <u>Allodynia</u>?

Types:

Point of view	Primary	Secondary hyperalgesia
	hyperalgesia	
1-Site	In the injured	In the area of healthy skin
	area.	around the injured area (not

		including the zone of injury)
2-The threshold of	Decreased	Normal may be even
pain		increased.
3-Duration of the	Longer	Shorter
lesion		
4-Mechanism	Sensitization	Convergence- facilitation
	theory	theory
	Local pain	-Afferents form both the
	receptors are	health and the injured area
	sensitized by the	converge on the same DHC.
	release of	-Impulses from the damaged
	inflammatory	area facilitate the DHC which
	mediators eg.	give more afferent discharge
	prostaglandins.	on arrival of the pain impulses
		from the healthy area.

Types of pain

/- According to site of origin of pain:

- a) **Cutaneous pain** due stimulation of pain receptors in skin or body surface.
- b) **Deep pain** due stimulation of pain receptors in deep structures as muscles, tendons and joints.
- c) **Visceral pain** due stimulation of pain receptors in viscera.

//- According to quality of pain:

a) Fast pain: also called sharp, immediate (A δ fibers)

b) Slow pain: also called dull aching, delayed. (C fibers)

	Fast Pain	Slow pain
Quality	Sharp, pricking, acute	Dull aching, Burning, throbbing

Onse	Immediate	Delayed
Duration	Short duration	Long duration and increase with time
Localization	Well localized	Poorly localized (diffuse)
Stimulated	Mechanical & thermal	All types of
Receptor	pain receptors	pain receptors
Felt	Skin and Parietal surfaces	Skin, deep structuresnand viscera
Carried by	Aδ fibers	C fibers
Blocked by	Hypoxia and compression	Local anaesthesia (e.g. cocaine)
Neurotransmitt	Glutamate	Substance P
Pathway	Neo-spinothalamic Tract	Paleo-spinothalamic Tract
Relay of 2 nd order neurons	PVN of thalamus	Reticular Formation → intralaminar thalamic N
Termination of fibers	sensory cortex	whole cortex
Pain	In Thalamus and Sensory Cortex	Mainly In Thalamus
Motor reflexes	Withdrawal reflex	Guarding: hypertonia of overlying muscles
Autonomic	Pressor response: (↑B.P. and H.R.)	Depressor response: (↓B.P. and H.R.) Nausea and vomiting
Emotional	Anxiety	Depression

A] CUTANEOUS PAIN:

- It is pain produced by stimulation of pain receptors in the **skin or body surface.**
- It starts as fast sharp pain followed by more prolonged slow dull pain.
 - Unlike the other types of pain, it is accurately localized, due to:
 - a) The high density of pain receptors in the skin.
 - b) The fast pain fibers reach the sensory cortex.

c) Besides, touch and vision help greatly in localization.

B] <u>DEEP PAIN</u>

Deep or musculoskeletal pain is the pain produced from injury to muscles, tendons, ligaments, joints and bones. It is conducted along thin **C fibers**.

Causes:

- (1) Trauma: e.g. broken bone.
- (2) Inflammation in deep tissues or joints: e.g rheumatic arthritis.
- (3) <u>Muscle spasm</u>: e.g. injury to bones, tendons and joints is associated with reflex contraction of nearby skeletal muscle → ischemia→ more pain → spasm → ischemia→ pain ...etc (vicious circle).
- (4) Ischemia block of blood flow to a tissue leads to *Ischemic Pain*:
 - a- Ischemia may be caused by narrowing or compression to an artery by thrombosis, spasm or mechanical pressure by a tumor.
 - b- Pain is produced by accumulation of metabolites and proteolytic enzymes in ischemic tissue.
 - b- Pain is aggravated by increased metabolic rate of the affected organ and relieved by rest.
 - c- Example: Anginal pain in cardiac muscle and Intermittent claudication in skeletal muscles.

=