Universidade Federal do Rio Grande do Norte Centro de Tecnologia

Departamento de Engenharia de Comunicações

Disciplina: DCO1001-Sinais e Sistemas Lineares

Professor: Dr. Luiz Gonzaga de Queiroz Silveira Júnior

Lista de Exercícios de Verificação de Aprendizagem

Data: 15/06/2018. Semestre 2018.1

- 1. Utilizando a definição de Transformada Z, determine a transformada Z e a RDC para cada um dos seguintes sinais.
 - a) u[n m]
 - b) $\gamma^n \sin \pi n u[n]$
 - c) $\gamma^n \cos \pi n u[n]$
 - d) $\gamma^n \sin \frac{\pi n}{2} u[n]$
 - e) $\gamma^n \cos \frac{\pi n}{2} u[n]$
- 2. Determine a Transformada Z inversa dos seguintes sinais.
 - a) $\frac{z(z-4)}{z^2-5z+6}$
 - b) $\frac{z-4}{z^2-5z+6}$

 - c) z^2-5z+6 c) $\frac{(e^{-2}-2)z}{(z-e^{-2})(z-2)}$ d) $\frac{(z-1)^2}{z^3}$ e) $\frac{z(2z+3)}{(z-1)(z^2-5z+6)}$
- 3. Resolva

$$y[n+2] - 3y[n+1] + 2y[n] = x[n+1],$$

se
$$y[-1] = 2$$
, $y[-2] = 3$ e $x[n] = (3)^n u[n]$.

4. Resolva

$$y[n+2] - 2y[n+1] + 2y[n] = x[n],$$

com
$$y[-1] = 1$$
, $y[-2] = 0$ e $x[n] = u[n]$.

5. Um sistema com resposta ao impulso $h[n] = 2(1/3)^n \ u[n-1]$ produz uma saída $y[n] = (-2)^n \ u[n-1]$. Determine a entrada x[n] correspondente.

1

6. Determine a resposta ao impulso unitário, h[n], dos sistemas descritos pelas equações:

a)
$$y[n] + 3y[n-1] + 2y[n-2] = x[n] + 3x[n-1] + 3x[n-2]$$

b)
$$y[n+2] + 2y[n+1] + y[n] = 2x[n+2] - x[n+1]$$

- 7. Determine a transformada z (se ela existir) e a RDC correspondente para cada um dos seguintes sinais:
 - a) $(0,8)^n u[n] + 2^n u[-(n+1)]$
 - b) $2^n u[n] 3^n u[-(n+1)]$
 - c) $(0,8)^n u[n] + (0,9)^n u[-(n+1)]$
- 8. Obtenha a transformada z inversa de

$$X(z) = \frac{(e^{-2} - 2)z}{(z - e^{-2})(z - 2)},$$

quando a RDC é:

- a) |z| > 2
- b) $e^{-2} < |z| < 2$
- c) $|z| < e^{-2}$
- 9. Utilize a expansão em frações parciais, tabelas da transformada z e a região de convergência (|z| < 1/2) para determinar a transformada z inversa de

$$X(z) = \frac{1}{(2z+1)(z+1)(z+\frac{1}{2})}$$

10. Considere o sistema

$$H(z) = \frac{z(z - \frac{1}{2})}{(z^3 - \frac{27}{8})}$$

- a) Desenhe o diagrama de pólos-zeros para H(z) e identifique todas as possíveis regiões de convergência
- b) Desenhe o diagrama de pólos-zeros para $H^{-1}(z)$ e identifique todas as possíveis regiões de convergência
- 11. A função de sistema para um sistema um SLITD de segunda ordem com polos complexos é dada por,

$$H(z) = \frac{1}{1 - (2r\cos\theta)z^{-1} + r^2z^{-2}},$$

com pólos localizados em $z_1 = re^{j\theta}$ e $z_2 = re^{-j\theta}$.

Assumindo causalidade para este sistema, avalie a estabilidade do mesmo sistema para:

- a) r > 1.
- b) r < 1.
- 12. Considere uma sequência lateral esquerda x[n] com transformada z

$$x(z) = \frac{1}{(1 - \frac{1}{2}z^{-1})(1 - z^{-1})}.$$

- a) Escreva X(z) como uma razão de polinômios em z em vez de z^{-1} .
- b) Usando a expressão em frações parciais, expresse X(z) como uma soma de parcelas, em que cada parcela representa um polo da sua resposta no item (a).
- c) Determine x[n].