CS 771A: Intro to Machine Learning, IIT Kanpur		Quiz I (31 Aug 2022)			
Name				20 marks	
Roll No	Dept	:.		Page 1 of 2	

Instructions:

- 1. This question paper contains 1 page (2 sides of paper). Please verify.
- 2. Write your name, roll number, department above in block letters neatly with ink.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ such cases will get straight 0 marks.
- 5. Do not rush to fill in answers. You have enough time to solve this quiz.

Q1. Write **T** or **F** for True/False (write **only in the box on the right-hand side**)

(5x1=5 marks)

1	For a linear classifier with model parameters: vector $\mathbf{w} \in \mathbb{R}^d$ and bias $b=0$, the origin point (i.e., the vector $0 \in \mathbb{R}^d$) must always lie on the decision boundary.	
2	Let $f: \mathbb{R} \to \mathbb{R}$ be a doubly differentiable function (i.e., first and second derivatives exist). If $f''(x^0) = 0$ at $x^0 \in \mathbb{R}$, then it is always the case that $f'(x^0) = 0$ too.	
3	For any dimension $d \in \mathbb{N}$, the dot product of two d -dimensional vectors is always another d -dimensional vector.	
4	If a set $\mathcal{C} \subset \mathbb{R}^2$ is convex, then its translation $\mathcal{C}' = \mathcal{C} + \mathbf{a}$ must be convex too for any vector $\mathbf{a} \in \mathbb{R}^2$ where we define the translation as $\mathcal{C}' \stackrel{\text{def}}{=} \{\mathbf{v} + \mathbf{a} : \mathbf{v} \in \mathcal{C}\}$.	
5	Feature vectors used to describe data points to an ML model are never allowed to have negative values in their coordinates.	

Q2. (Melbo's claim) Melbo makes another claim that for some values of $m, b \in \mathbb{R}$, the function on the right is both continuous and differentiable for all $x \in \mathbb{R}$. Find these magical values of m, b. Show the major steps in your derivation. Answers in fractions and using terms like e okay. No need for decimal answers. (5 marks)

$$f(x) = \begin{cases} e^x & x \le 2\\ mx + b & x > 2 \end{cases}$$

Page	2	of	2
------	---	----	---

Q3. (Vector line-up) Give examples of 4D vectors (fill-in the 4 b					
Any example will get full marks so long as it satisfies the prope Your answers to the parts a, b, c, d, e may be same/different.		entione	ed in th	_	ion part. marks)
		<u> </u>		(2X1 -	
a. A vector $\mathbf{v} \in \mathbb{R}^4$ with L_1 norm of two i.e., $\ \mathbf{v}\ _1 = 2$.		İ			
	[
b. A vector $\mathbf{v} \in \mathbb{R}^4$ with unit L_2 norm i.e., $\ \mathbf{v}\ _2 = 1$.		ı			
<u>.</u>	ļ			<u> </u>	
c. A vector $\mathbf{v} \in \mathbb{R}^4$ equal to its own negative i.e., $\mathbf{v} = -\mathbf{v}$.		ı			
d. A vector $\mathbf{v} \in \mathbb{R}^4$ with same L_1 and L_2 norm i.e $\ \mathbf{v}\ _1 = \ \mathbf{v}\ _1$	$\ \mathbf{v}\ _2$.				
e. A vector $\mathbf{v} \in \mathbb{R}^4$ whose L_2 norm is half its L_1 norm	[[<u> </u>	<u> </u> 	
i.e., $\ \mathbf{v}\ _2 = \frac{1}{2} \ \mathbf{v}\ _1$.		ı			
Q4. (Melbo takes a break) When not being the star of ML Y volleyball. Melbo finds that if thrown straight up from a $10\ m/s^2$), the height of the ball t seconds after being launche	heigh	t of 1	metre	(assum	g = 0
1. The maximum height attained by the ball	Llinte In this case valority would				
2. Time taken to reach the highest point	Hint: In this case, velocity would be defined as $v = \frac{dh}{dt}$. The "up"				
3. Time taken for the ball to hit the ground initially	direction is considered positive.				
4. The velocity with which Melbo threw the ball5. The velocity of the ball at its highest point		ction is considered positive.			
Answers in fractions are okay – no need for decimals. Show makes	nain ca	lculatio	ns.	(5x1=5	5 marks)