Recursive Functions

Recursive functions are built up from basic functions by some operations.

The Successor Function

Let's get very primitive. Suppose we have 0 defined, and want to build the nonnegative integers and our entire number system.

We define the *successor* operator: the function S(x) that takes a number x to its successor x+1.

This gives one the nonnegative integers $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$.

Defining Addition

Addition must be defined in terms of the successor function, since initially that is all we have:

$$add(x,0) = x$$
$$add(x,S(y)) = S(add(x,y))$$

For example, one can show that 2 + 2 = 4:

$$add(2,2) = S(add(2,1))$$

= $S(S(add(2,0)))$
= $S(S(2))$
= $S(3)$
= 4

The Three Basic Functions

We formalize the above process. Primitive recursive functions are built up from three basic functions using two operations. The basic functions are:

- 1. **Zero**. $Z(x) \equiv 0$.
- **2. Successor.** $S(x) \equiv x + 1$.
- 3. **Projection**. A projection function selects out one of the arguments. Specifically

$$P_1(x,y) \equiv x$$
 and $P_2(x,y) \equiv y$

The Composition Operation

There are two operations that make new functions from old: composition and primitive recursion.

Composition replaces the arguments of a function by another. For example, one can define a function f by

$$f(x,y) = g(h_1(x,y), h_2(x,y))$$

where one supplies the functions g_1 , g_2 and h.

Primitive Recursion

A typical use of *primitive recursion* has the following form:

$$f(x,0) = g_1(x)$$

 $f(x,S(y)) = h(g_2(x,y), f(x,y))$

where one supplies the functions g_1 , g_2 and h.

For example, in the case of addition, the h is the successor function of the projection of the 2nd argument.

More Primitive Recursion

A special case of primitive recursion is for some constant number k:

$$f(0) = k$$

$$f(S(y)) = h(y, f(y))$$

Primitive recursive functions. A function is primitive recursive if it can be built up using the base functions and the operations of composition and primitive recursion.

Primitive Recursive Functions are T-computable

Composition and primitive recursion preserve the property of being computable by a TM. Thus:

Fact. A primitive recursive function is *T*-computable.

Example: Multiplication

$$mul(x,0) = 0$$

$$mul(x,S(y)) = add(x, mul(x,y))$$

(Now that we have shown addition and multiplication are primitive recursive, we will use normal arithmetical notation for them.)

Example: Subtraction and Monus

Subtraction is harder, as one needs to stay within \mathbb{N}_0 . So define "subtract as much as you can", called **monus**, written $\dot{-}$ and defined by:

$$x - y = \begin{cases} x - y & \text{if } x \ge y, \\ 0 & \text{otherwise.} \end{cases}$$

To formulate monus as a primitive recursive function, one needs the concept of predecessor.

Example: Predecessor

$$pred(0) = 0$$

 $pred(S(y)) = y$

Practice

Show that monus is primitive recursive.

Solution to Practice

$$monus(x, 0) = x$$

 $monus(x, S(y)) = pred(monus(x, y))$

Example: Predicates

A function that takes on only values 0 and 1 can be thought of as a *predicate*, where 0 means false, and 1 means true.

Example: A zero-recognizer function is 1 for argument 0, and 0 otherwise:

$$sgn(0) = 1$$
$$sgn(S(y)) = 0$$

Example: Definition by Cases

$$f(x) = \begin{cases} g(x) & \text{if } p(x), \\ h(x) & \text{otherwise.} \end{cases}$$

We claim that if g and h are primitive recursive functions, then f is primitive recursive too. One way to see this is to write some algebra:

$$f(x) \equiv g(x) p(x) + (1 - p(x)) h(x)$$

Practice

Show that if p(x) and q(x) are primitive recursive predicates, then so is $p \wedge q$ (the **and** of them) defined to be true exactly when both p(x) and q(x) are true.

Solution to Practice

$$p \wedge q = p(x) \times q(x)$$

Functions that are not Primitive Recursive

Theorem. Not all T-computable functions are primitive recursive.

Yes, it's a diagonalization argument. Each partial recursive function is given by a finite string. Therefore, one can number them f_1, f_2, \ldots Define a function g by

$$g(x) = f_x(x) + 1.$$

This g is a perfectly computable function. But it cannot be primitive recursive: it is different from each primitive recursive function.

Ackermann's Function

Ackermann's function is a famous function that is not primitive recursive. It is defined by:

$$A(0, y) = y + 1$$

 $A(x, 0) = A(x - 1, 1)$
 $A(x, y + 1) = A(x - 1, A(x, y))$

Here are some tiny values of the function:

$$A(1,0) = A(0,1) = 2$$

 $A(1,1) = A(0,A(1,0)) = A(0,2) = 3$
 $A(1,2) = A(0,A(1,1)) = A(0,3) = 4$
 $A(2,0) = A(1,1) = 3$
 $A(2,1) = A(1,A(2,0)) = A(1,3) = A(0,A(1,2)) = A(0,4) = 5$

Practice

Calculate A(2,2).

Solution to Practice

$$A(2,2) = A(1,A(2,1)) = A(1,5) = A(0,A(1,4)).$$

Now, $A(1,4) = A(0,A(1,3))$, and $A(1,3) = A(0,A(1,2)) = A(0,4) = 5.$
So $A(1,4) = 6$, and $A(2,2) = 7.$

Bounded and Unbounded Minimization

Suppose q(x,y) is some predicate. One operation is called **bounded minimization**. For some fixed k:

$$f(x) = \min\{ y \le k : q(x, y) \}$$

Note that one has to deal with those x where there is no y.

Actually, bounded minimization is just an extension of the case statement (equivalent to k-1 nested case statements), and so if f is formed by bounded minimization from a primitive recursive predicate, then f is primitive recursive.

Unbounded Minimization

We define

$$f(x) = \mu \, q(x, y)$$

to mean that f(x) is the minimum y such that the predicate q(x,y) is true (and 0 if q(x,y) is always false).

Definition. A function is μ -recursive if it can be built up using the base functions and the operations of composition, primitive recursion and unbounded minimization.

μ -Recursive Functions

It is not hard to believe that all such functions can be computed by some TM. What is a much deeper result is that every TM function corresponds to some μ -recursive function:

Theorem. A function is T-computable if and only if it is μ -recursive.

We omit the proof.

Summary

A primitive recursive function is built up from the base functions zero, successor and projection using the two operations composition and primitive recursion. There are T-computable functions that are not primitive recursive, such as Ackermann's function.