Minor Project

Mobile Price Range Prediction

Anudeep Yelakala

anudeepyelakala6@gmail.com +917416915807

Links:

Google collab program file:

https://colab.research.google.com/drive/1486kp9mruqmQGFNpFAuirvXNxnly-U7p?usp=sharing

Dataset drive link:

https://drive.google.com/file/d/1QNDvyE6ivkEkEX2_teLCuHcSRM7QzwIs/view?usp=sharing

Problem statement

Cell phone deals are expanding quickly, and organizations are anxious to investigate the particulars and elements of the cell phone, which overwhelmingly determine the cost of the cell phone.

The goal is to figure out some connection between the highlights of a portable phone (e.g., RAM, internal memory, and so on) and its cost. In this issue, we don't need to foresee the genuine cost however a cost range(0-3) showing most noteworthy to least cost range.

Focuses to examine

- Data description and summary
- Exploratory data analysis
- Heat map
- Machine learning algorithms
- 1. Random Forest Classifier
- 2. KNN Classifier
- 3. SVM Classifier
- 4. Logistic Regression
- 5. Decision tree Classifier
- conclusion

Data description

The information contains data with respect to cell phone highlights, details, and so on, as well as their price range. The different elements and data can be utilized to predict the value and scope of a cell phone.

- Battery_power Total energy a battery can store in one time measured in mAh
- Blue Has bluetooth or not
- Clock_speed speed at which microprocessor executes instructions
- Dual_sim Has dual sim support or not
- Fc Front Camera mega pixels
- Four_g Has 4G or not
- Int_memory Internal Memory in Gigabytes
- M_dep Mobile Depth in cm
- Mobile_wt Weight of mobile phone

Data description(cont,.)

- N_cores Number of cores of processor
- Pc Primary Camera mega pixels
- Px_height Pixel Resolution Height
- Px_width Pixel Resolution Width
- Ram Random Access Memory in Mega Bytes
- Sc_h Screen Height of mobile in cm
- Sc_w Screen Width of mobile in cm
- Talk_time longest time that a single battery charge will last when you are
- Three_g Has 3G or not
- Touch_screen Has touch screen or not
- Wifi Has wifi or not
- Price_range This is the target variable with value of 0(low cost), 1(medium cost),
- 2(high cost) and 3(very high cost).

Visualizing data for correlation

battery power- 0.20072261211373094 blue- 0.0205728540614185 clock speed -0.006605690881732072 dual sim- 0.01744447923722472 fc- 0.021998207776904255 four_g- 0.014771711417239368 int_memory- 0.04443495938898744 m dep- 0.0008530365050864314 mobile wt -0.030302171314386412 n cores- 0.004399274799457278 pc- 0.03359930021353949 px height- 0.14885755500042175 px width- 0.16581750172625515 ram- 0.9170457362649905 sc h- 0.022986073167424428 sc w- 0.038711271664484175 talk time- 0.021858871162374796 three g- 0.023611216880045034 touch screen -0.03041107189821805 wifi- 0.018784812012788994 price range- 1.0

"we see that ram has the highest correlation value i.e as ram value increases price also increases and -ve correlation between weight of phone and price i.e as weight increases price decreases etc."

Heatmap:

Analysis of outliers

As we can see there are not much outliers in any of the specification column

ML algorithms

- 1. Random Forest Classifier
- 2. KNN Classifier
- 3. SVM Classifier
- 4. Logistic Regression
- 5. Decision tree Classifier

Random Forest Classifier

			-	-	cy_score(Y_test,y_pred_rfc
Random Forest	Classifier precision	•			
0	0.98	0.95	0.97	109	
1	0.86	0.94	0.90	89	
2	0.84	0.83	0.83	106	
3	0.90	0.85	0.88	96	
accuracy			0.90	400	
macro avg	0.89	0.90	0.89	400	
weighted avg	0.90	0.90	0.90	400	

KNN Classifier

print('KNN Classifier Accuracy Score: ',accuracy_score(Y_test,y_pred_knn))
cm_rfc=my_confusion_matrix(Y_test, y_pred_knn, 'KNN Confusion Matrix')

KNN Classifier Accuracy Score: 0.9325					
	precision	recall	f1-score	support	
0	0.98	0.96	0.97	109	
1	0.91	0.94	0.93	89	
2	0.90	0.91	0.90	106	
3	0.94	0.92	0.93	96	
accuracy			0.93	400	
macro avg	0.93	0.93	0.93	400	
weighted avg	0.93	0.93	0.93	400	

SVM Classifier

```
print('SVM Classifier Accuracy Score: ',accuracy_score(Y_test,y_pred_svm))
cm_rfc=my_confusion_matrix(Y_test, y_pred_svm, 'SVM Confusion Matrix')
SVM Classifier Accuracy Score: 0.955
                          recall f1-score support
              precision
                   0.99
                            0.97
                                      0.98
                                                 109
                                      0.94
                   0.90
                            0.99
                                                  89
                                      0.93
                   0.97
                            0.90
                                                 106
                   0.96
                            0.97
                                      0.96
                                                  96
                                      0.95
                                                 400
    accuracy
                                      0.95
   macro avg
                   0.95
                            0.96
                                                 400
weighted avg
                   0.96
                            0.95
                                      0.95
                                                 400
```


Logistic Regression

```
print('Logistic Classifier Accuracy Score: ',accuracy_score(Y_test,y_pred_lr))
cm_rfc=my_confusion_matrix(Y_test, y_pred_lr, 'LR Confusion Matrix')
```

Logistic Classifier Accuracy Score: 0.9625					
	precision	recall	f1-score	support	
0	0.99	0.96	0.98	109	
1	0.90	0.97	0.93	89	
2	0.97	0.93	0.95	106	
3	0.99	0.99	0.99	96	
accuracy			0.96	400	
macro avg	0.96	0.96	0.96	400	
weighted avg	0.96	0.96	0.96	400	

Decision Tree Classifier

print('Decision tree Classifier Accuracy Score: ',accuracy_score(Y_test,y_pred_DT))
cm_rfc=my_confusion_matrix(Y_test, y_pred_DT, 'Decision tree Confusion Matrix')

Decision tree	Classifier	Accuracy	Score: 0	.8425
	precision	recall	f1-score	support
0	0.92	0.90	0.91	109
1	0.78	0.76	0.77	89
2	0.78	0.82	0.80	106
3	0.88	0.88	0.88	96
accuracy			0.84	400
macro avg	0.84	0.84	0.84	400
weighted avg	0.84	0.84	0.84	400

Decision Tree Diagram

```
import six
import sys
sys.modules['sklearn.externals.six'] = six
from six import StringIO
from IPython.display import Image
from sklearn.tree import export graphviz
import pydotplus
dot data = StringIO()
export_graphviz(DT, out_file = dot_data,
                filled = True, rounded = True,
                feature names = x[0,:],
                special_characters = True)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
Image(graph.create_png())
```


conclusion

From the above analysis logistic Regression Classifier gave the highest accuracy followed by SVM and KNN

- Logistic Classifier Accuracy Score: 0.9625
- SVM Classifier Accuracy Score: 0.955
- KNN Classifier Accuracy Score: 0.9325
- Random Forest Classifier Accuracy Score: 0.895
- Decision tree Classifier Accuracy Score: 0.8425
- Ram has continuous increase with price range while moving from Low cost to Very high cost
- costly phones are lighter
- RAM, battery power, pixels played more significant role in deciding the price range of mobile phone.