УДК 597.562.591.13

ИЗМЕНЕНИЯ ХАРАКТЕРА ПИТАНИЯ ПРИБРЕЖНОЙ ТРЕСКИ GADUS MORHUA MARISALBI В КАНДАЛАКШСКОМ ЗАЛИВЕ БЕЛОГО МОРЯ В УСЛОВИЯХ ВОЗРОСШЕЙ ЧИСЛЕННОСТИ ТРЁХИГЛОЙ КОЛЮШКИ GASTEROSTEUS ACULEATUS

© 2010 г. П. Н. Ершов

Зоологический институт РАН — ЗИН, Санкт-Петербург E-mail: wsbs@zin.ru Поступила в редакцию 27.10.2008 г.

Приводятся данные по питанию прибрежной трески Gadus morhua marisalbi летом 2007 г. в районе губы Чупа (Кандалакшский залив Белого моря). В пищевом спектре трески длиной более 25 см доминировали рыбы и их икра (77.5% по частоте встречаемости и 91.7% по массе), остальные группы кормовых организмов имели второстепенное значение. Среди рыб трёхиглая колюшка Gasterosteus aculeatus являлась наиболее значимым объектом в питании трески (48.3% по массе). Рассматриваются данные литературы по многолетнему изменению характера питания трески, связанному, прежде всего, со значительными колебаниями численности трёхиглой колюшки в Белом море. Показано, что колюшка в настоящее время вновь стала играть существенную роль в питании беломорской трески.

Ключевые слова: треска, питание, трёхиглая колюшка, Белое море.

Особенности питания оказывают существенное влияние на процессы роста, созревания, размножения и, соответственно, формирования численности отдельных поколений в популяциях рыб Белого моря. В связи с этим изучение долговременных изменений в характере питания разных видов беломорских рыб имеет большое значение при анализе динамики численности стада рыб, межвидовых пищевых взаимоотношений (Никольский, 1974) и при оценке продукционных характеристик Белого моря в целом (Бергер, 2007). Сведения по качественному и количественному составу пищи беломорской прибрежной трески Gadus morhua marisalbi содержатся в ряде работ, охватывающих период с конца 1920-х гг. Показано, что одним из основных объектов питания трески в весенне-летний период в разных участках Белого моря до середины 1960-х гг. являлась трёхиглая колюшка Gasterosteus aculeatus (Янушевич, 1933; Европейцева, 1937; Ильин, Певзнер, 1939; Сонина, 1957; Извекова, 1964; Кудерский, 1966). Однако в 1960-е гг. численность колюшки резко сократилась в связи с гибелью зостеры в Белом море в 1960 г. (Колеватова, 1963; Кузнецов, Матвеева, 1963; Вехов, 1995), в зарослях которой колюшка нерестилась (Алтухов и др., 1958). Депрессия численности вида была столь значительной, что колюшка полностью исчезла из спектра питания рыб (трески, керчака Муохоcephalus scorpuis, кумжи Salmo trutta и др.), для которых ранее она являлась излюбленным кормом

(Маримон, 1988; Польтерманн, 1992; Ершов, Польтерманн, 2001; Парухина, 2005). Примерно с середины 1990-х гг. началось восстановление численности популяции колюшки в Белом море, которое происходит до сих пор. По нашим визуальным наблюдениям, а также данным контрольных ловов мальковым неводом в районе губы Чупа (Лайус, Иванова, 2007) в 2007 г. численность колюшки в прибрежной зоне была значительно выше, чем в предыдущие годы.

Цель работы — изучить состав пищи трески в период нагула в условиях возросшей численности трёхиглой колюшки в Кандалакшском заливе Белого моря.

МАТЕРИАЛ И МЕТОДИКА

Материалом для настоящей работы послужили сборы, проведенные в губе Чупа и прилегающих акваториях 11.07—08.08.2007 г. Прибрежную треску отлавливали с помощью сетей-ряжовок и крючковой снасти на тонях и в местах нагульных скоплений рыб на глубинах 5—25 м в районе м. Картеш, островов Кереть, Сидоров, Кишкин, Черемшиха, в Кив-губе и губе Никольская. У всех выловленных рыб (251 экз.) измеряли общую длину тела (*TL*) и определяли массу тела. Питание рыб исследовали согласно "Методическому пособию по изучению питания рыб" (1974). Пищевые объекты, обнаруженные в желудочно-ки-

шечном тракте трески, определяли по возможности до вида. Частота встречаемости пищевых объектов приведена для 160 экз., у которых обнаружена пища в желудочно-кишечном тракте. Количественно-весовую оценку питания проводили по массе кормового компонента в пищевом комке (в %). В работе приведены обобщенные данные по самцам и самкам, поскольку половые отличия по составу пищи у трески ранее обнаружены не были (Каспирович, Попова, 1968).

РЕЗУЛЬТАТЫ

Длина питающихся особей трески варьировала от 25.2 до 60.5 см, составляя в среднем 33.0 см; доминировали в уловах рыбы длиной 25—40 см (92%) (рисунок). Большинство особей, у которых отсутствовала пища в желудке, также принадлежали к данной размерной группе (81%). Доля рыб с пустыми желудками в сборах составила 36%. Спектр питания прибрежной трески летом 2007 г. в исследованном районе Кандалакшского залива Белого моря оказался довольно разнообразным и включал 21 пищевой компонент (таблица).

Основу потребленной треской пищи составили рыбы и их икра — 77.5% по частоте встречаемости и 91.7% по массе в пищевом комке. Необходимо отметить, что среди рыб треска потребляла преимущественно половозрелую трёхиглую колюшку, которая обнаружена в желудке у каждой второй особи (частота встречаемости 49%). Доля колюшки по массе в пищевом комке составила 48.3%. Число взрослых особей колюшек в желудках разных особей варьировало от 1 до 34 экз., а у большинства рыб (74%) в пищевом комке содержалось 1-2 экз. Максимальное число съеденных колющек отмечено у трески длиной 43.5 см и массой 1007 г. Молодь колюшки в начале августа в пище трески не обнаружена. Ракообразные, полихеты и иглокожие встречались гораздо реже и не играли существенной роли в питании прибрежной трески в исследованный период.

ОБСУЖДЕНИЕ

Литературные и полученные нами данные позволяют в общих чертах проследить основные изменения в характере питания трески с 1920-х гг. до настоящего времени. Первые общие сведения по питанию беломорской трески приводит Янушевич (1933). Он отмечает, что в мае—июне треска в Кандалакшском заливе Белого моря питалась в основном половозрелой колюшкой, а в остальные летние месяцы — сельдью Clupea pallasii marisalbi. В работе Ильина и Певзнер (1939) содержится краткая качественная характеристика питания прибрежной трески (средняя длина рыб в выборках 26.5—35.0 см) из разных губ Кандалакшского залива, а также из губы Калгалакша (Карельский

Размерный состав трески Gadus morhua marisalbi в районе губы Чупа Белого моря летом 2007 г.

берег). По данным этих авторов, у трески, пойманной в сентябре 1928 г. в губах Западная Порья, Сосновка и в Бабьем море, основой питания являлись гаммариды, колюшка и песчанка *Am*modytes marinus, а в губе Калгалакша в мае 1929 г. треска питалась в основном мизидами и колюшкой.

Несколько лет спустя Европейцева (1937) детально изучила качественный состав пищи трески 3 размерно-возрастных групп (TL 9-15, 15-25 и свыше 25 см) из разных участков Кандалакшского залива. В губах Малая Пирью, Порья, в Бабьем море и в районе м. Турий в пище крупной трески длиной более 25 см, выловленной в июле-августе 1932-1933 гг., преобладала рыба. По сравнению с другими видами рыб колюшка встречалась в желудках трески наиболее часто - 20.5% по частоте встречаемости1. Существенное значение в питании трески имели также полихета Nereis pelagica (16.7%) и офиура Ophiopholis aculeata (20.5%). Основу пищи крупной трески, пойманной в маеиюне 1935 г. в губе Порья, составили Sagitta elegans 37.3%), (частота встречаемости Amphipoda (33.1%), нерестовая колюшка (32.5%) и Mysidae (31.3%). В желудках трески обычно содержались 1-2 половозрелые колюшки, а максимальное количество (17 экз.) было обнаружено у самца TL 46.0 см.

В 1951 г. состав пищи прибрежной трески из разных губ Кандалакшского залива (Ульяшиха, Малый Питкуль, Лувеньга, Палкино, Капша, Порья, Педуниха, Островская и Сосновка) был исследован Сониной (1957). В ее сборах преобладала крупная треска: средняя длина рыб, пойманных в июле, составила 30.3 см, а в августе — 27.4 см. По данным Сониной (1957), во все летние месяцы 1951 г. основным объектом в пищевом

Частота встречаемости пищевых объектов приведена для рыб с пищей в желудках (расчет по: Европейцева, 1937).

Состав пищи трески Gadus morhua marisalbi в районе губы Чупа Белого моря, лето 2007 г.

Компонент пищи	Частота встречаемо- сти, %	Доля, % массы
Crustacea, в т. ч.	25.0	2.1
Sclerocrangon boreas	1.2	0.6
Eualus gaimardii	7.5	0.5
Pandalus montagui	3.1	0.1
Anonyx nugax	1.9	+
Rhachotropis aculeata	3.7	0.3
Paroediceros propinquus	0.6	+
Hyas araneus	0.6	0.6
Echinoidea, в т. ч.	6.2	1.2
Ophiopholis aculeata	6.2	1.2
Ophiura robusta	0.6	+
Holothuroidea, в т. ч.	0.6	0.2
Thyonidium pellucidum	0.6	0.2
Polychaeta, в т. ч.	8.1	4.8
Alitta virens	8.1	4.8
Pisces и икра, в т. ч.	77.5	91.7
Pholis gunnelus	12.5	13.8
Gadus morhua marisalbi	5.6	12.7
Myoxocephalus scorpius	1.9	1.2
Gasterosteus aculeatus	49.0	48.3
Ammodytes marinus	4.4	1.9
Pleuronectidae	1.9	1.2
Clupea pallasii marisalbi	1.9	3.6
Cyclopterus lumpus	0.6	0.2
Икра пинагора C. lumpus	7.5	6.5
Остатки рыб	5.0	2.3

Примечание. Знак "+" - менее 0.1% массы пищи.

спектре трески являлась колюшка и ее икра (проценты частоты встречаемости 41.3—67.4%)². Гораздо меньшее значение в питании трески имела сельдь — 16.0—26.6%. В целом доля рыбного компонента в пище трески варьировала в пределах от 100% (июнь) до 76.6% (август). Остальные группы пищевых организмов — ракообразные, водоросли и бентосные животные — составляли не более 10%.

Питание беломорской трески в Кандалакшском заливе было изучено также Извековой (1964). По ее данным, летом 1960 г. в прол. Великая Салма колюшка занимала в целом в питании трески третье место (13.3% массы содержимого желудков) после ракообразных (36.7%) и многошетинковых червей (31.5%). В то же время анализ сезонной и локальной изменчивости состава пиши трески показал, что доля колюшки в ее спектре значительно изменялась в зависимости от месяца и места лова. Необходимо заметить, что по сравнению с материалами Сониной (1957), в сборах Извековой преобладала некрупная треска, а характеристика питания рыб в ее работе везде приведена для смешанного материала без подразделения на размерные группы. Между тем, у трески наблюдается ярко выраженная зависимость состава пищи от возраста и размера особей (Европейцева, 1937), а именно, увеличение роли рыбы, в том числе колюшки, в питании более крупных особей. Кудерский (1966), в частности, отмечал, что переход на питание взрослой колюшкой у трески происходит по достижении ею длины тела 25 см. Извекова (1964) при анализе возрастных изменений пищевого спектра рыб также указывает, что у старших возрастных групп первое место в питании занимает рыба, однако долю колюшки в пище крупной трески не уточняет.

По данным Каспирович и Поповой (1968), в июне—июле 1961 г. в прол. Великая Салма разноразмерная треска (средняя *TL* 27.6 см, пределы варьирования 16.5—52.0 см) питалась преимущественно ракообразными рода *Caprella*, колюшкой и *Nereis* sp., причем эти организмы преобладали в составе пищи трески в каждый месяц наблюдений.

Примерно в это же время питание трески было изучено Кудерским (1966) в Гридинской губе Белого моря. Вслед за Европейцевой (1937) он показал, что по мере роста трески существенно меняется состав ее пищи в сторону преобладания рыбного компонента с одновременным снижением доли полихет и ракообразных. Кроме того, у более крупных рыб значительно расширяется спектр потребляемых организмов. В пище трески длиной 15-25 см в Гридинской губе основное значение имели полихеты (48.9% по массе) и мальки колюшки (33.5%). Крупные особи трески длиной более 25 см потребляли преимущественно рыб (90.3% по массе), а на долю колюшки приходилось 7.8% массы содержимого желудков. Приведенные Кудерским (1966) сведения дают лишь общую количественную характеристику питания разных размерных групп трески в этом районе моря, поскольку в работе использованы объединенные выборки за июль-август. Известно, что в августе, а в теплые годы и с середины июля, отнерестившаяся колюшка отходит от берегов (Мухомедияров, 1966), и, соответственно, ее значение в питании крупной трески уменьшается. Молодь же колюшки, наоборот, в начале августа многочисленна в прибрежной зоне и в это время становится излюбленным кормом для мелкой трески и некоторых других видов рыб.

² У Сониной (1957) встречаемость пищевого объекта выражена в процентах от суммы частот встречаемости всех потребленных организмов.

В целом, приведенные выше данные убедительно свидетельствуют, что до начала 1960-х гг. колюшка, несмотря на естественные колебания численности ее популяции, играла значительную роль в питании прибрежной трески как в Кандалакшском заливе, так и в некоторых других участках моря вдоль Карельского побережья. Значение половозрелой колюшки и ее молоди в питании трески разного размера было различно и менялось в течение весенне-летнего периода.

К середине 1960-х гг. произошло резкое падение численности колюшки в Белом море, причем "численность колюшки сократилась настолько, что обнаружить этих рыб в море было ... крайне трудно" (Бергер, 2007, с. 155). Парухина (2005), которая в 1986 г. исследовала питание трески в прол. Великая Салма и в районе Сонострова, вообще не обнаружила колюшку в спектре ее питания. По ее данным, в конце июля в прол. Великая Салма треска (средняя TL 22.5 см) питалась в основном полихетами (47.4% по массе) и ракообразными (37.5%), и в меньшей степени рыбами (8.8%). Вместо преобладавшей ранее колюшки в желудках трески в небольшом количестве присутствовали сельдь и маслюк Pholis gunnelus. В районе Сонострова основными группами пищевых организмов трески (средняя TL 25.0 см) являлись рыбы и их икра, а также полихеты, однако их количественное соотношение в желудках трески в июне и июле существенно различалось. В июне в пище трески преобладала рыба (69.9% по массе), а доля полихет составила 11.1%. В июле, наоборот, активнее поедались полихеты - 45.9%, а потребление рыбы снизилось до 18.4%. Существенное значение в питании трески в этот период имела икра пинагора Cyclopterus lumpus -Среди рыб в качестве объектов питания трески в июне-июле выступали сельдь, навага Eleginus nawaga, песчанка, маслюк, камбалы (Pleuronectidae) и некоторые другие виды.

По нашим наблюдениям и сборам, проводившимся в течение 1983—2000 гг. в разных участках Кандалакшского залива (губы Чупа, Кив-губа, Летняя, Никольская, Гридина, Лов, Падан, Пильская, район Сонострова и пролива Великая Салма), трёхиглая колюшка в желудках нагульной половозрелой трески в летний период (июнь—август) отсутствовала вовсе.

Таким образом, колюшка практически отсутствовала в прибрежной зоне и, соответственно, в пищевых цепях гидробионтов более 30 лет. Приблизительно с середины 1990-х гг. началось восстановление ее численности в Белом море. В 2001 г. колюшка в единичных экземплярах впервые была отмечена в спектре питания керчака и трески в губе Чупа, и с тех пор в этом участке моря она встречается в желудках указанных видов ежегодно (Ершов, 2002; наши неопубликованные данные). По неопубликованным данным Кудрявцевой (ММБИ

КНЦ РАН), частота встречаемости колюшки в желудках трески длиной свыше 25 см, пойманной в июне 2005 г. в районе м. Картеш (губа Чупа), составила уже 22.8%. Как видно из приведенных результатов наших исследований, в 2007 г. значение колюшки в питании крупной трески возросло еще больше.

Полученные нами данные показали, что в настоящее время колюшка не только вошла в пищевой спектр беломорской трески, но и стала одним из основных объектов ее питания. Частая встречаемость колюшки в желудках выловленных рыб свидетельствует о достаточно высокой ее численности и, соответственно, доступности в качестве пищевого объекта для трески в Кандалакшском заливе Белого моря. Очевидно, что появление в весенне-летний период в прибрежных районах моря вида с относительно высокой численностью (половозрелая колюшка и ее молодь) приведет к изменению всей системы трофических связей гидробионтов, обитающих в зоне верхней сублиторали. Дальнейшее изучение характера питания и пищевых взаимоотношений разных видов беломорских рыб имеет большое значение для понимания процессов, происходящих в прибрежных биоценозах.

БЛАГОДАРНОСТИ

Автор признателен А.В. Балушкину, В.Я. Бергеру (ЗИН РАН) и рецензенту за ценные замечания к рукописи. Приношу свою благодарность также О.Ю. Кудрявцевой (ММБИ КНЦ РАН) за предоставление материалов по питанию беломорской трески.

СПИСОК ЛИТЕРАТУРЫ

Алтухов К.А., Михайловская А.А., Мухомедияров Ф.Б. и др. 1958. Рыбы Белого моря. Петрозаводск: Гос. изд-во Карел. АССР, 162 с.

Бергер В.Я. 2007. Продукционный потенциал Белого моря. СПб.: ЗИН РАН, 289 с.

Вехов В.Н. 1995. Современное состояние зостеры в Белом море // Белое море. Биологические ресурсы и проблемы их рационального использования. Ч. 1. СПб.: ЗИН РАН. С. 176—188.

Европейцева Н.В. 1937. Расовый анализ беломорской трески. Дис. ... канд. биол. наук. Л.: ЛГУ, 98 с.

Ершов П.Н. 2002. Материалы по биологии европейского керчака *Муохосерhalus scorpuis* L. губы Чупа Белого моря // Современные проблемы физиологии и экологии морских животных (рыбы, птицы, млекопитающие). Тез. докл. междунар. конф. г. Ростов-на-Дону, 11—13 сентября 2002 г. Ростов н/Д: Изд-во ООО ЦВВР. С. 74—76.

Ершов П.Н., Польтерманн М. 2001. К биологии европейского керчака Myoxocephalus scorpius L. в Кандалакшском заливе Белого моря // Проблемы изучения, рационального использования и охраны природных ресурсов Белого моря. Мат-лы VIII регион. научнопракт. конф. г. Беломорск, 16—18 апреля 2001 г. Архангельск: Правда Севера. С. 142—143.

Извекова Э.И. 1964. О питании трески (Gadus morhua maris-albi Der.) в западной части Белого моря (Великая Салма) // Вопр. ихтиологии. Т. 4. Вып. 2 (31). С. 354—364.

Ильин Б.С., Певзнер В.И. 1939. Новые сведения о беломорских видах трески Gadus maris-albi Derj. и Gadus callarias hiemalis Таl. // Сб. тр., посвящ. науч. деятельности Н.Н. Книповича (1885—1939). М.: Пищепромиздат. С. 316—334.

Каспирович Г.А., Попова О.А. 1968. Некоторые данные по морфометрии и питанию трески Белого моря // Материалы по экологии трески Северной Атлантики. М.: Наука. С. 70—78.

Колеватова Г.А. 1963. Некоторые результаты наблюдений над зарослями зостеры в районе губы Чупа // Проблемы использования промысловых ресурсов Белого моря и внутренних водоемов Карелии. Вып. 1. М.—Л.: Изд-во АН СССР. С. 149—152.

Кудерский Л.А. 1966. Изменение питания беломорской трески (Gadus morhua maris-albi Derjugin) в зависимости от ее размеров в связи с внутривидовыми пищевыми взаимоотношениями // Вопр. ихтиологии. Т. 6. Вып. 2 (39). С. 346—351.

Кузнецов В.В., Матвеева Т.А. 1963. К биологическим особенностям зостеры Белого моря // Проблемы использования промысловых ресурсов Белого моря и внутренних водоемов Карелии. Вып. 1. М.—Л.: Изд-во АН СССР. С. 145—149.

Лайус Д.Л., Иванова Т.С. 2007. Оценка численности колюшки в Кандалакшском заливе Белого моря // Тез. докл. IX науч. сессии Мор. биол. ст. С.-Петербургск. гос. ун-та. СПб.: СПбГУ. С. 29—30.

Маримон Ф.К. 1988. Морфоэкологические особенности некоторых видов Cottidae Белого моря. Диплом. раб. Биол. фак. Моск. гос. ун-та, 159 с.

Методическое пособие по изучению питания и пищевых отношений рыб в естественных условиях. 1974. М.: Наука, 254 с.

Мухомедияров Ф.Б. 1966. Трехиглая колюшка (Gasterosteus aculeatus L.) Кандалакшского залива Белого моря // Вопр. ихтиологии. Т. 6. Вып. 3 (40). С. 454—467. Никольский Г.В. 1974. Теория динамики стада рыб. М.: Пищ. пром-сть, 445 с.

Парухина Л.В. 2005. О питании и суточном рационе трески Белого моря Gadus morhua marisalbi Derjugin // Проблемы изучения, рационального использования и охраны ресурсов Белого моря. Мат-лы IX междунар. конф. 11—14 октября 2004 г., Петрозаводск. С. 253—257.

Польтерманн М. 1992. Особенности биологии европейского керчака Myoxocephalus scorpuis L. и ледовитоморской рогатки Triglopsis quadricornis (Girard) Белого моря. Диплом. раб. Биол. фак. Моск. гос. ун-та, 119 с. Сонина М.А. 1957. Треска Белого моря // Материалы по комплексному изучению Белого моря. Вып. 1. М.—Л.: Изд-во АН СССР. С. 230—242.

Янушевич Д.Я. 1933. Треска Кандалакшского залива Белого моря // Карело-Мурманский край. № 5-6. С. 61-64.