Bounds on Lengths of Real Valued Vectors Similar with Regard to the Tanimoto **Similarity**

Marzena Kryszkiewicz **Institute of Computer Science** Warsaw University of Technology

Deriving Bounds on Lengths of Tanimoto Similar Real Valued Vectors...

Property. Let u and v be vectors. Then:

$$u \cdot v \leq |u| |v|$$

Proof.

The inequality holds trivially if u or v is a zero vector. Otherwise, $cos(\angle(u,v)) = \frac{u \cdot v}{\|u\| \|v\|}$ and $cos(\angle(u,v)) \le 1$.

Hence,

 $u \cdot v = cos(\angle(u, v)) | u | | v | \le | u | | v |. \square$

Deriving Bounds on Lengths of Tanimoto Similar Real Valued Vectors.

Theorem. Let u and v be non-zero vectors such that $T(u, v) \ge \varepsilon$ and $\varepsilon \in (0.1)$. Let

$$\alpha_1 = \frac{1}{2} \left(\left(1 + \frac{1}{\varepsilon} \right) - \sqrt{\left(1 + \frac{1}{\varepsilon} \right)^2 - 4} \right) \ , \qquad \alpha_2 = \frac{1}{2} \left(\left(1 + \frac{1}{\varepsilon} \right) + \sqrt{\left(1 + \frac{1}{\varepsilon} \right)^2 - 4} \right) \ .$$

$$|v| \in [\alpha_1 |u|, \alpha_2 |u|].$$

Proof.
$$\varepsilon \le T(u,v) = \frac{u \cdot v}{|u|^2 + |v|^2 - u \cdot v} \le \frac{|u||v|}{|u|^2 + |v|^2 - |u||v|}.$$

So,
$$\varepsilon |v|^2 - (\varepsilon + 1) |u| |v| + \varepsilon |u|^2 \le 0$$
...

Deriving Bounds on Lengths of Tanimoto Similar Real Valued Vectors

Property. Let:

$$\alpha_1 = \frac{1}{2} \left(\left(1 + \frac{1}{\varepsilon} \right) - \sqrt{\left(1 + \frac{1}{\varepsilon} \right)^2 - 4} \right), \quad \alpha_2 = \frac{1}{2} \left(\left(1 + \frac{1}{\varepsilon} \right) + \sqrt{\left(1 + \frac{1}{\varepsilon} \right)^2 - 4} \right).$$

$$\alpha_1 = \frac{1}{\alpha_2} \quad .$$

Theorem. Let *u* and *v* be non-zero vectors such that

$$T(u, v) \ge \varepsilon$$
 and $\varepsilon \in (0,1)$. Let $\alpha = \frac{1}{2} \left(\left(1 + \frac{1}{\varepsilon} \right) + \sqrt{\left(1 + \frac{1}{\varepsilon} \right)^2 - 4} \right)$.
Then: $|v| \in \left[\frac{1}{\alpha} |u|, \alpha |u| \right]$.

Example: Using bounds on lengths for searching Tanimoto similar vectors for $\varepsilon = 0.85$.

Id	(non-zero dimension, value) pairs	length	
v5	{(4, 4.0), (5,-3.0), (7, 3.0)}	5.83	Vector length ∈ [6.72, 15.49]
v9	$\{(4,-2.0),(5,3.0),(7,3.0),(9,5.0)\}$	6.86	
v3	{(3, 6.0), (4, 4.0)}	7.21	
v7	{(3, 6.0), (4, 4.0)}	7.21	
v8	{(2, 4.0), (4, 4.0), (9, 5.0)}	7.55	
v2	$\{(1, 3.0), (2, -2.0), (6, 5.0), (8, 6.0)\}$	8.60	
v4	{(2,-2.0), (4, 4.0), (6, 5.0), (8,-5.0)}	8.37	
v10	{(2,-2.0), (3,-9.0)}	9.22	
v1	$\{(1,-3.0),(2,4.0),(5,3.0),(6,5.0),(7,3.0),(8,6.0)\}$	10.20	
v6	{(3,-9.0), (4, 4.0), (9, 5.0)}	11.05	

Let us consider vector u = v1 and let $\varepsilon = 0.85$. Then, only vectors the lengths of which belong to the interval $\left[\frac{|u|}{\alpha}, \alpha |u|\right] \subseteq [6.72, 15.49]$, where $\alpha = \frac{1}{2} \left(\left(1 + \frac{1}{\epsilon}\right) + \sqrt{\left(1 + \frac{1}{\epsilon}\right)^2 - 4} \right)$, have a chance to belong to ε -neighbourhood of vector u. \square

Example: Using bounds on lengths for searching Tanimoto similar vectors for $\varepsilon = 0.98$

Id	(non-zero dimension, value) pairs	length
v5	{(4, 4.0), (5, -3.0), (7, 3.0)}	5.83
v9	{(4,-2.0), (5, 3.0), (7, 3.0), (9, 5.0)}	6.86
v3	{(3, 6.0), (4, 4.0)}	7.21
v7	{(3, 6.0), (4, 4.0)}	7.21
v8	{(2, 4.0), (4, 4.0), (9, 5.0)}	7.55
v2	{(1, 3.0), (2,-2.0), (6, 5.0), (8, 6.0)}	8.60
v4	{(2,-2.0), (4, 4.0), (6, 5.0), (8,-5.0)}	8.37
v10	{(2,-2.0), (3,-9.0)}	9.22
v1	$\{(1,-3.0),(2,4.0),(5,3.0),(6,5.0),(7,3.0),(8,6.0)\}$	10.20
v6	{(3,-9.0), (4, 4.0), (9, 5.0)}	11.05

Let us consider vector u = v1 and let $\varepsilon = 0.98$. Then, only vectors the lengths of which belong to the interval $\left[\frac{|u|}{\alpha}, \alpha |u|\right] \subseteq [8.84, 11.77]$, where $\alpha = \frac{1}{2} \left(\left(1 + \frac{1}{\epsilon}\right) + \sqrt{\left(1 + \frac{1}{\epsilon}\right)^2 - 4} \right)$, have a chance to belong to ε -neighbourhood of vector u; that is, vectors: v1, v6 and v10. \square

References

- ♦ Marzena Kryszkiewicz: Bounds on Lengths of Real Valued Vectors Similar with Regard to the Tanimoto Similarity. ACIIDS (1) 2013: 445-454.
- Marzena Kryszkiewicz: Using Non-Zero Dimensions and Lengths of Vectors for the Tanimoto Similarity Search among Real Valued Vectors. ACIIDS (1) 2014: 173-182

7