Работа 4.5.2 Интерференция лазерного излучения

Шарапов Денис, Б05-005

Содержание

6	Приложение: таблицы	5
5	Вывод	5
4	Результаты измерений и обработка данных 4.1 Зависимость видности интерференционной картины от угла поворота поляроида 4.2 Зависимость видности от разности хода между пучками	3 4
3	Экспериментальная установка	2
2	Теоретические сведения	2
1	Аннотация	2

1 Аннотация

Цель работы: исследование видности интерференционной картины излучения гелий-неонового лазера и определение длины когерентности излучения.

В работе используются: Не-Ne-лазер, интерферометр Майкельсона с подвижным зеркалом, фотодиод с усилителем, осциллограф, поляроид, линейка.

2 Теоретические сведения

Типичная осциллограмма сигнала фотодиода приведена на рис. 1. По осциллограмме можно найти следующие величины: фоновую засветку (линия 0 — перекрыты оба пучка 1 и 2); интенсивность света каждого из пучков (линии 1 или 2 — перекрыт пучок 2 или 1); максимума и минимума интенсивности интерференционной картины (открыты оба пучка).

Рис. 1: Осциллограмма сигналов с фотоида

Видность интерференционной картины рассчитывается по формуле

$$V = \frac{h_4 - h_3}{h_4 + h_3}.$$

3 Экспериментальная установка

Для получения интерференционной картины используется интерферометр Майкельсона, смонтированный на вертикально стоящей массивной металлической плите. Схема установки приведена на рис. 1.

Источником света служит гелий-неоновый лазер (средняя длина волны $\lambda=632,8$ нм). Пучок лазерного излучения отражается от зеркала 3 и проходит призму полного внутреннего отражения РФ (ромб Френеля), которая превращает линейную поляризацию излучения в круговую. Если в установке используется лазер, излучающий неполяризованный свет, то ромб Френеля не нужен, но он и не мешает выполнению работы. Далее лазерное излучение делится диагональной плоскостью делительного кубика ДК на два пучка.

Пучок 1 проходит поляроид Π_1 , отражается под небольшим углом от зеркала 3_1 , снова проходит поляроид Π_1 и, частично отражаясь от диагональной плоскости делительного кубика, выходит из интерферометра, попадает на зеркало 3_3 и далее на фотодиод Φ Д. Зеркало 3_1 наклеено на пьезокерамику Π К, которая может осуществлять малые колебания зеркала вдоль направления распространения падающего пучка. Поляроид и зеркало с пьезокерамикой собраны в единый блок B_1 , который крепится к вертикально стоящей плите. В блоке B_1 имеются юстировочные винты, которые позволяют регулировать угол наклона зеркала 3_1 . В установке предусмотрена возможность вращения поляроида Π_1 . Угол поворота отсчитывается по шкале, нанесённой на оправу поляроида.

Пучок 2 проходит линзу Π , поляроид Π_2 , отражается от зеркала 3_2 , снова проходит поляроид Π_2 , линзу Π и делительный кубик, выходит из интерферометра, попадает на зеркало 3_3 и далее на фотодиод Φ Д. Таким образом, от зеркала 3_3 под небольшим углом друг к другу идут на фотодиод два пучка, прошедшие разные плечи интерферометра. Между ними происходит интерференция и образуются интерференционные полосы. Линза Π , поляроид Π_2 и зеркало 3_2 собраны в единый блок 3_2 установлено в фокальной плоскости линзы Π . Это сделано для того, чтобы падающий и выходящий из блока 3_2 пучки всегда были параллельны друг другу. Блок 3_2 может перемещаться вдоль пучка 3_2 по штанге, жёстко связанной с плитой интерферометра.

Рис. 2: Схема установки. $3, 3_1, 3_2, 3_3$ — зеркала. Π_1 и Π_2 — поляроиды. B_1 и B_2 — блоки. ДК — делительный кубик, $P\Phi$ — ромб Френеля. Φ Д — фотодиод, Θ — экран, Π К — пьезокерамика, Π — линза

Длина штанги 90 см. В установке предусмотрена возможность небольшого поперечного перемещения блока B_2 , что позволяет регулировать расстояние между падающим и выходящим из блока пучками. При измерениях блок B_2 крепится к штанге при помощи двух винтов. Вдоль штанги нанесены деления через один сантиметр.

4 Результаты измерений и обработка данных

4.1 Зависимость видности интерференционной картины от угла поворота поляроида

Исследуем зависимость видности интерференционной картины от угла β поворота поляроида Π_1 при нулевой разности хода. Результаты занесём в таблицу 1. По таблице построим графики зависимостей $V_3(\cos\beta)$ и $V_3(\cos^2\beta)$ (рис. 3 и 4).

Рис. 3: График зависимости видности интерференционной картины от угла поворота поляроида: случай 1

Рис. 4: График зависимости видности интерференционной картины от угла поворота поляроида: случай 2

4.2 Зависимость видности от разности хода между пучками

Исследуем зависимость видности от разности хода между пучками. Для этого установим поляроид Π_1 в положение, в котором интерференционная картина видна наиболее чётко. Передвигая блок B_2 , найдём зависимость величин h_1, h_2, h_3, h_4 от координаты x блока B_2 . Результаты внесём в таблицу 2. По ней построим график зависимости $\nu_2(x)$.

Рис. 5: График зависимости видности интерференционной картины от разности хода между пучками

По графику определим значение L — расстояние между зеркалами оптического резонатора лазера:

$$L \approx 46 \pm 0, 3$$
 cm.

Рассчитаем межмодовое расстояние $\Delta \nu$:

$$\Delta \nu \approx (3, 26 \pm 0, 06) \cdot 10^8 \, \Gamma_{\text{H}}.$$

Рассчитаем геометрическую задержку $l_{1/2}$, при которой видность падает вдвое:

$$l_{1/2} \approx 55, 2 \text{ cm}.$$

Теперь определим число мод n:

$$n=2\pm 1.$$

5 Вывод

В работе исследовалась видность интерференционной картины излучения гелий-неонового лазера. На графиках, изображенных на рис. 3 и 4, представлена зависимость видности интерференционной картины от угла поворота поляроида. Видно, что точки на рис. 4 «ложатся» на прямую лучше, чем точки на рис. 3. Возможно, это может быть связано с тем, что вектор $\mathbf E$ хаотически меняет своё направление (находясь при этом в плоскости поляризации, т. к. она предполагается линейной). Из графика, изображённого на рис. 5, можно найти число мод (аналитически и геометрически). Из геометрической интерпретации находим число мод n=3. При этом аналитическая интерпретация с точностью до погрешности даёт тот же результат $n=2\pm1$.

6 Приложение: таблицы

Таблица 1: Зависимость видности интерференционной картины от угла поворота поляроида

β	h_1 , дел	h_2 , дел	h_3 , дел	h_4 , дел	δ	ν	ν_1	ν_3	$\cos(\beta)$	$\cos^2(\beta)$
10	1,2	0,8	1,0	3,0	1,50	0,50	0,98	3,00	0,84	0,70
20	1,2	0,4	1,0	2,6	3,00	0,44	0,87	0,20	0,41	0,17
30	1,2	0,4	1,2	2,2	3,00	0,29	0,87	10,20	0,15	0,02
40	1,2	0,2	1,4	1,6	6,00	0,07	0,70	90,00	0,67	0,44
60	1,2	0,2	1,2	1,4	6,00	0,08	0,70	78,00	0,95	0,91
60	1,2	0,2	1,2	1,6	6,00	0,14	0,70	42,00	0,95	0,90
70	1,2	0,4	1,0	1,8	3,00	0,29	0,87	10,50	0,63	0,40
80	1,2	0,2	1,0	2,0	6,00	0,33	0,70	18,00	0,11	0,01
90	1,2	0,4	0,8	2,2	3,00	0,47	0,87	0,25	0,45	0,20
100	1,2	0,6	0,8	2,6	2,00	0,53	0,94	3,78	0,86	0,74
110	1,2	0,8	0,8	3,2	1,50	0,60	0,98	2,50	0,99	0,98
130	1,2	0,8	0,6	3,0	1,50	0,67	0,98	0,20	0,36	0,13

Таблица 2: Зависимость видности от разности хода между пучками

x, cm	h_1 , дел	h_2 , дел	h_3 , дел	h_4 , дел	δ	V	V_1	V_2
16	1,40	0,60	0,60	3,0	2,33	0,67	0,92	0,73
18	2,00	0,80	1,20	3,0	2,50	0,43	0,90	0,47
20	0,60	0,80	0,40	1,8	0,75	0,64	0,99	0,64
17	0,60	0,60	0,40	2,0	1,00	0,67	1,00	0,67
19	0,60	0,80	0,40	2,0	0,75	0,67	0,99	0,67
26	0,60	0,60	1,00	1,6	1,00	0,23	1,00	0,23
35	2,20	0,80	2,40	2,8	2,75	0,08	0,88	0,09
45	1,80	0,60	1,60	2,2	3,00	0,16	0,87	0,18
55	1,00	0,20	1,00	1,4	5,00	0,17	0,75	0,22
65	0,40	0,20	1,20	1,6	2,00	0,14	0,94	0,15
74	2,80	0,80	1,20	4,2	3,50	0,56	0,83	0,67
75	2,80	0,80	1,20	5,2	3,50	0,63	0,83	0,75