ЛАБОРАТОРНАЯ РАБОТА № 7 LVM

Цель работы – Научится создавать и обслуживать разделы LVM.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

1 Управление файловыми системами

Рисунок 1 – Архитектура подсистемы хранения данных

Именование файлов дисковых устройств:

- /dev/sd* дисковые устройства с интерфейсом последовательной передачи данных (SCSI, SATA, см. man 4 sd)
- /dev/hd* дисковые устройства с интерфейсом параллельной передачи данных (PATA, см. man 4 hd)
- Буква (a,b,c,...) после sd или hd номер диска
- Число после буквы номер раздела (/dev/sdb4)
- Если числа нет, то весь диск (/dev/sdc)
- В случае BIOS/MBR: поддерживается 4 первичных раздела (1-4), один из которых может объявлен, как расширенный. В расширенном разделе могут быть созданы логические разделы (первый логический раздел -5)
- B UEFI/GPT все разделы первичные (1-128)

Поддерживаемые типы файлов системы:

- модули ядра (драйверы) поддерживаемых файловых систем в установленной операционной системы ls/lib/modules/\$(uname -r)/kernel/fs
- -список драйверов файловых систем, загруженных в данный момент cat/proc/filesystems (nodev-псевдофайловые или временные файловые системы)
- все ФС должны предоставлять VFS информацию о суперблоке, inode, dentry, блоках данных
 - «родные» для Linux Φ C ext2/ext3, ext4

- дисковые ФС, поддерживаемые ядром: XFS, BtrFS, iso9660, udf.

Файловая система ext2.

- Макс. размер файла:
 - 16 GiB (размер блока 1 KiB)
 - 1 ТіВ (размер блока 4 КіВ)
- Макс. размер ФС:
 - 4 ТіВ (размер блока 1 КіВ)
 - 16 ТіВ (размер блока 4 КіВ)
- Пространство ФС разбито на группы блоков: резервный суперблок, таблица описания группы, битовые карты inode и блоков данных, области inode и блоков данных (dumpe2fs)

Суперблок ФС содержит информацию о самой файловой системе (тип, размер, состояние, UUID и т.д.). Содержимое супреблока можно посмотреть командой: tune2fs –l/dev/имя_раздела

Суперблок в ФС дублируется:

dumpe2fs/dev/имя_раздела | grep superblock позволяет определить номера резервных суперблоков.

При монтировании устройства можно указать резервный суперблок (параметр –o sb=n команды mount, n- номер резервного суперблока).

Размер inode хранится в сперблоке (128.256 байт).

Начиная с ядра 2.6.10-256 байт (для хранения точного времени и расширенных атрибутов, включая метку безопасности (мандатную метку)). Команда для просмотра inode: debugfs -R «stat имя файла» имя блочного устройства

Для адресов блоков данных отведено: 12 прямых указателей, 1 косвенный указатель, 1 – указатель с двойной косвенной адресацией, 1 – с тройной косвенной адресацией.

Файловая система ext3. Главные отличия от ext2:

- -наличие журнала,
- -онлайн увеличение размера ФС,
- -использование сбалансированного дерева для индексирования больших каталогов обеспечило более быстрый поиск файлов,
- **-e**xt3 совместима с ext2 (ext2 может быть преобразована в ext3 (tune2fs -j) и наоборот (tune2fs –O^has_journal),
 - режимы работы журнала: journal, ordered, writeback,
 - журнал обычно размещается в конце раздела ФС,
 - максимальный размер ФС 1 ЕіВ, файла -16 Тб (при размере блока 4 Кб).

Отличительные черты:

- размещение данных экстентами,
- отложеннное распределение (выделение) блоков распределение блоков откладывается до тех пор, пока не пойдет запись на диск,
 - предварительное выделение места для файла на диске,
- контрольные суммы журнала для определения возможных проблем в журнале.

Основные характеристики ФС XFS:

- -64-х разрядноя Φ С (максимальный размер файла -8EiB, максимальный размер Φ С 8EiB)
- увеличение производительности путем использования линейных областей (allocation groups)
 - -использованиеэкстентов для выделения места в области данных
 - журналируемая ФС (только метаданные)
 - индексныедескрипторы выделяются динамически
 - поддержка дефрагмнтации «на лету»
 - возможность увеличения размера ФС «на лету»
 - поддержка отложенного выделения места (delayed allocation).

Основные характеристики ФС BtrFS:

- 64x- разрядная ФС (макс. Размер файла 16 EiB, раздела 16 EiB)
- -поддержка механизма «крпирования при записи» (Copy On Write, COW)
- поддержка подтомов (subvolumes)
- поддержка снимков состояния ФС (использует механизм COW и подтома)
- -дефрагментация и сжатие данных «на лету»
- динамическое размещение inode
- целостность данных (вычисление контрольных сумм для данных и метаданных)
 - встроенная поддержка многодисковых ФС (RAID и LVM)

2 Создание дисковых разделов

Утилиты для разметки диска:

fdisk имя диска

parted имя_диска

GUID Partition Table, GPT — стандарт формата размещения таблиц разделов на физическом жестком диске используется в настоящее время вместо MBR.

Утилиты создания разделов:

- sfdisk предназначена для использования в сценариях (скриптах)
- cfdisk псевдографическая утилита
- gparted графическая утилита

Список дисков и разделов fdisk –1

Спислк разделов на одном диске fdisk –1 имя диска

Запуск fdisk в интерактивном режиме fdisk имя диска

Например, sudo fdisk /dev/sdb

Основные команды fdisk:

т- помощь

- а включение или выключения флага boot для раздела;
- d удалить раздел;
- F показать свободное место;
- 1 вывести список известных типов разделов;
- n создать новый раздел;
- р вывести таблицу разделов;

- t изменение типа раздела;
- і вывести информацию о разделе;
- I и O записать или загрузить разметку в файл сценария sfdisk;
- w записать новую таблицу разделов на диск;
- q выйти без сохранения;
- g создать пустую таблицу разделов GPT;
- о создать пустую таблицу разделов MBR.

Примечание. Если после записис таблицы разделов fdisk команда lsblk не показывает созданные разделы, то надо вызвать команду partprobe, чтобы уведомить ядро об изменениитаблицы разделов.

Основные команды parted:

help команда - помощь по выбранной команде;

mkpart тип раздела файловая система начало конец - создание раздела linux с файловой системой начиная с позиции начало заканчивая конец, два последних параметра задаются в мегабайтах по умолчанию;

mktable тип - создать таблицу разделов;

print - отобразить таблицу разделов;

quit - выйти;

resizepart раздел конец - изменить размер раздела;

rm раздел - удалить раздел;

select раздел - установить раздел как текущий;

set раздел флаг состояние - установить флаг для раздела. Состояние может быть on (включен) или off(выключен);

unit единицы – установка единиц измерения (s, MiB, GiB, MB, GB)

Утилиту parted можноиспользовать в командной строке Parted имя диска команды

3 Создание файловой системы

ФС создается командой mkfs.тип_ФС параметры файл_устройства

Количетсво индексных дескрипторов для файловых систем семейства ext задается при создании ФС и фиксированно.

Параметр –і задает плотность индексных дескрипторов

Установки, которые применяются при создании ΦC по умолчанию, находятся в etc/mke2fs.conf

Чтобы отмонтированный раздел диска был доступен, нужно подключить его к каталогу в дереве ФС (точке монтирования).

Варианты монтирования ФС:

- временное монтирование с помощью mount
- постоянное монтирование с помощью etc/fstab
- монтирование с помощью systemd

Временное монтирование. Команда sudo mount/dev/устройство точка монтирования

Точка монтирования должна быть предварительно создана – обычно это пустой каталог (можно использовать каталог /mnt)

Для размонтирования используется один из вариантов:

sudo unmount/dev/устройство

или

sudo unmount точка монтирования

Примечание. Чтобы размонтирование прошло успешно, на устройстве не должно быть занятых файловых ресурсов.

Настройка автоматического монтирования ΦC может быть выполнена путем соответствующих настроек в /etc/fstab

Файл /etc/fstab содержит следующие поля:

- файл устройства/метка/UUID
- точка монтирования
- тип файловой системы
- параметры (обычно defaults)
- признак для команды dump (обычно 0)
- признак для команды fsck (1 для корневой файловой системы, 2 для остальных)

Для монтирования ФС через systemd требуется создать юнит типа mount, в котором следует описать какое устройство и как должно быть смонтировано. Название юнита должно совпадать с именем точки монтирования, но вместо символа «/» должен использоваться символ «-».

В юните должна быть секция [mount] со следующими параметрами:

- What имя устройства (имя файла устройства, метка, UUID)
- Where точка монтирования
- Туре тип ФС
- Options параметры монтирования

Утилиты для работы с файловой системой:

- tune2fs настройка параметров ФС
- dumpe2fs вывод информации о структуре ФС
- e2fsck проверка целостности структуры ФС
- resize2fs изменение размеров ФС
- e4defrag дефрагментация ФС ext4
- debugfs отладчик ФС
- e2image сохранения метаданных ФС в файл
- df (-h, -i) информация о свободном месте в областях данных и inode
- du –sh каталог общий размер файлов в каталоге
- lsblk список блочных устройств

4 Управление логическими томами LVM

Рисунок 2 – LVM

Работа с томами с помощью LVM происходит на 3-х уровнях абстракции:

- 1. Физический уровень (**PV**). Сначала диск инициализируется командой **pvcreate** в начале диска создается дескриптор группы томов. При этом важно заметить, что диск не обязательно должен быть физическим мы можно отметить на использование обычный раздел диска.
- 2. Группа томов (**VG**). С помощью команды **vgcreate** создается группа томов из инициализированных на предыдущем этапе дисков.
- 3. Логический том (LV). Группы томов нарезаются на логические тома командой lvcreate.

Рисунок 3 – Уровни абстракции

Вывод списка блочных устройств:

adminis	stratore	rato	r:-\$ 5	sudo	o lsb	lk
NAME	MAJ:MIN	RM	SIZE	RO	TYPE	MOUNTPOINT
sda	8:0	0	8G	0	disk	
∟sda1	8:1	0	8G	0	part	1
sdb	8:16					
sdc	8:32	0	8G	0	disk	
sdd	8:48	0	8G	0	disk	
sde	8:64	0	8G	0	disk	
sr0	11:0	1	8,6G	0	rom	

Установка пакета LVM – sudo apt install lvm2 –y

Создание физических томов с помощью pvcreate /dev/sdb

Посмотреть, что диск может использоваться LMV можно командой:

pvdisplay – вывод атрибутов PV, pvscan – сканирование дисков на PV, pvs – вывод информации о PV.

```
administratorgrator:-$ sudo pvdisplay
"/dev/sdc" is a new physical volume of "8,00 GiB"
    -- NEW Physical volume
  PV Name
                           /dev/sdc
  PV Size
                           8,00 GiB
  Allocatable
  PE Size
  Total PE
  Free PE
  Allocated PE
  PV UUID
                           8snd8A-Hdf8-YLdS-Hwz0-DenI-Hxtq-AdLCqd
  "/dev/sdb" is a new physical volume of "8,00 GiB"
     NEW Physical volume
                           /dev/sdb
```

PV Name — имя диска.

VG Name — группа томов, в которую входит данный диск (в нашем случае пусто, так как мы еще не добавили его в группу).

PV Size — размер диска.

Allocatable — распределение по группам. Если NO, то диск еще не задействован и его необходимо для использования включить в группу.

PE Size — размер физического фрагмента (экстента). Пока диск не добавлен в группу, значение будет 0.

Total PE — количество физических экстентов.

Free PE — количество свободных физических экстентов.

Allocated PE — распределенные экстенты.

PV UUID — идентификатор физического раздела.

Создание групп томов

Инициализированные на первом этапе диски должны быть объединены в группы. Группа может быть создана:

vgcreate vg01 /dev/sdb /dev/sdc

vg01 — произвольное имя создаваемой группы; /dev/sdb, /dev/sdc — наши диски Просмотреть информацию о созданных группах можно командой: vgdisplay

VG Name — имя группы.

Format — версия подсистемы, используемая для создания группы.

Metadata Areas — область размещения метаданных. Увеличивается на единицу с созданием каждой группы.

VG Access — уровень доступа к группе томов.

VG Size — суммарный объем всех дисков, которые входят в группу.

PE Size — размер физического фрагмента (экстента).

Total PE — количество физических экстентов.

Alloc PE / Size — распределенное пространство: количество экстентов / объем.

Free PE / Size — свободное пространство: количество экстентов / объем.

VG UUID — идентификатор группы.

Создание логических томов

Последний этап — создание логического раздела их группы томов командой lvcreate. Ее синтаксис: lvcreate [опции] <имя группы томов>

Примеры создания логических томов:

```
administrator@rator:~$ sudo lvcreate -L 9G -n lv01 vg01 Logical volume "lv01" created.
```

Информация о логических томах lvdisplay, lvscan, lvs:

LV Path — путь к устройству логического тома.

LV Name — имя логического тома.

VG Name — имя группы томов.

LV UUID — идентификатор.

LV Write Access — уровень доступа.

LV Creation host, time — имя компьютера и дата, когда был создан том.

LV Size — объем дискового пространства, доступный для использования.

Current LE — количество логических экстентов.

Создание файловой системы и монтирование тома

Чтобы начать использовать созданный том, необходимо его отформатировать, создав файловую систему и примонтировать раздел в каталог.

Процесс создания файловой системы на томах LVM ничем не отличается от работы с любыми другими разделами.

Например, для создания файловой системы ext4: mkfs.ext4 /dev/vg01/lv01

vg01 — наша группа томов; lv01 — логический том.

Далее надо создать точку монтирования и смонтировать том

```
administrator@rator:~$ sudo mkdir /data administrator@rator:~$ sudo mount /dev/vg01/lv01 /data
```

где /dev/vg01/lv01 — созданный нами логический том, /data — раздел, в который мы хотим примонтировать раздел.

Создаем юнит system для монтирования

```
administrator@rator:-$ sudo vi /etc/systemd/system/data.mount

[Unit]
Description=Mount data

[Mount]
What=/dev/vg01/lv01
Where=/data
Type=ext4
Option=defaults,noexec

[Install]
WantedBy=multi-user.target
```

Проверяем файловую систему на наличие ошибок с помощью fsck.ext4

```
administrator@rator:-$ sudo fsck.ext4 /dev/vg01/lv01 e2fsck 1.43.4 (31-Jan-2017) /dev/vg01/lv01: clean, 11/589824 files, 62641/2359296 blocks
```

или e2fsck

```
administrator@rator:-$ sudo e2fsck -f /dev/vg01/lv01
e2fsck 1.43.4 (31-Jan-2017)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/dev/vg01/lv01: 11/589824 files (0.0% non-contiguous), 62641/2359296 blocks
```

Чтобы уменьшить размер логического тома, сначала необходимо уменьшить размер файловой системы и затем том с помощью команды resize2fs

Затем уменьшить размер логического тома с 9 Γ 6 до 7 Γ 6 lvreduce –L 7G /dev/vg01/lv01

Удаление физического тома

```
Перед удалением физического тома надо переместить экстенты с него administratorgraton: -$ sudo pymove /dev/sdb /dev/sdb: Moved: 0,56% /dev/sdb: Moved: 100,00%

Командой vgreduce физический том удалить из группы томов: administratorgrator: -$ sudo vgreduce vg01 /dev/sdb Removed "/dev/sdb" from volume group "vg01"

Удалить сам физический том: administratorgrator: -$ sudo pyremove /dev/sdb Labels on physical volume "/dev/sdb" successfully wiped.
```

Добавление физического тома

Для этого необходимо создать физический том suda pvcreate /dev/sdb. Добавить /dev/sdb в группу физических томов sudo vgextend vg01 /dev/sdb Увеличим размер логического тома на $3\Gamma \delta$ sudo lvextend -1 + 3G dev/vg01/lv01 Увеличиваем файловую систему sudo resize2fs dev/vg01/lv01

Работа со снапшотами

Снимки диска позволят нам откатить состояние на определенный момент. Это может послужить быстрым вариантом резервного копирования. Однако нужно понимать, что данные хранятся на одном и том же физическом носителе, а значит, данный способ не является полноценным резервным копированием.

Необходимо смонтировать файловую систему и создать произвольный файл, по которому можно изучить снимки состояний.

```
Coздать снимок можнo: sudo systemctl start data.mount administrator@rator:~$ sudo systemctl start data.mount 1 /dev/vg01/lv01
Using default stripesize 64,00 KiB.
Logical volume "snap090721" created.
```

```
Затем надо создать каталог и смонтировать снимок состояния administratorarator:-$ sudo mkdir /snap01 administratorarator:-$ sudo mount /dev/vq01/snap090721 /snap01
```

МЕТОДИКА ВЫПОЛНЕНИЯ

1 Работа с жесткими дисками

- 1. Используйте fdisk -l, чтобы посмотреть информации о дисках и разделах на вашем компьютере. Какие из ваших дисков в системе имеют разметку? Описать. Посмотрите свободное место на этих разделах с помощью команды df
- 2.Добавьте 2 новых жестких диска в в виртуальную машину (SCSI и IDE). Для добавления новых дисков виртуальную машину нужно выключить. После добавления новых дисков загрузите Astra Linux. Далее проверьте, что новые диски появились в системе.

Например, один из наших новых дисков определился в системе как /dev/sdc.

Используя команду fdisk, создайте два новых раздела (/dev/sdc1 и /dev/sdc2) на данном диске, размером 512 М. Перезагрузитесь, чтобы удостовериться, что вы корректно изменили разделы на жестком диске.

- 3.Используя команду mke2fs или команду mkfs.ext2, создайте новую файловую систему ext2 на новом логическом paзделе /dev/sdc1.
 - 4. На разделе /dev/sdc2 создайте файловую систему ext4
- 5.Создайте директорию /data, в которую вы будете монтировать новый логический том /dev/sdc2.
- 6.Используйте команду mount, чтобы смонтировать новый логический том в директорию /data. Скопируйте /etc/passwd в директорию /data и проверьте, что копирование было успешно.
- 7.Затем размонтируйте директорию. Еще раз проверьте содержимое каталога /data.
 - 8. Добавьте метку /data к новому разделу с помощью команды e2label.
- 9.Отредактируйте файл /etc/fstab так, чтобы новый раздел монтировался при загрузке системы. Проверьте, что вы правильно прописали данную строку в файл fstab
- 10.Перезагрузите систему и убедитесь, что новый раздел монтируется автоматически.
- 11.Посмотрите свойства файловой системы для раздела /dev/sdc1. Включено ли журналирование данной файловой системы? Если нет, то включите журналирование для раздела /dev/sdc1. Создайте для данного раздела точку монтирования /data1 и смонтируйте туда этот слайс.
- 12.Перейдите в раздел /data1 и попробуйте размонтировать его. Почему вы не можете размонтировать данный раздел?
- 13. Посмотрите, кто из пользователей, и какими процессами занял раздел /data1. Завершите все процессы на разделе /data1
 - 14.Попробуйте размонтировать раздел /data1 снова. Что произошло?
- 15. Увеличьте резервируемое место (minfree) файловой системой до 10% на разделе /dev/sdc1. Осуществите проверку файловой системы для раздела /dev/sdc1

2 LVM

Для данного раздела нужно установить пакет lvm2 (если он у вас не установлен).

1.Создайте три новых раздела на диске по 512 М. При необходимости добавьте в систему новый диск (если вы работаете на виртуальной машине). Предположим, что в нашем случае мы добавили новый диск и он был распознан системой как /dev/sda

(соответственно, новые разделы будут /dev/sda1, /dev/sda2 и /dev/sda3). Покажите и опишите свой диск и разделы. Разделы на диске должны иметь тип LVM

- 2.LVM строится на основе разделов жёсткого диска и/или целых жёстких дисков. Поэтому на первых двух из созданных нами разделов (/dev/sda1, /dev/sda2) создайте физический том (physical volume). Проверьте, что физические тома созданы корректно.
- 3.На первых двух физических томах (/dev/sda1 и /dev/sda2) создаём группу томов, которая будет называться, например, vg1. Проверьте, что группа vg1 создана корректно. Групп можно создать несколько, каждая со своим набором томов. Но обычно это не требуется.
- 4.В группе томов создайте логический том lv1 размером 200 Мб и lv2 размером 300 Мб. Проверьте, что том создан корректно.
- 5. Теперь у вас есть блочные устройства /dev/vg1/lv1 и /dev/vg1/lv2 . Создайте на них файловую систему: на lv1 — ext4 и на lv2 — ext3.

Примечание. Удаление LVM (или отдельных его частей, например, логических томов или групп томов) происходит в обратном порядке - сначала нужно отмонтировать разделы, затем удалить логические тома (lvremove), после этого можно удалить группы томов (vgremove) и ненужные физические тома (pvremove). **На данном шаге удалять ничего не нужно!**

- 6.Смонтируйте созданные логические тома lv1 и lv2 в директории /lvdir1 и /lvdir2 (предварительно их создав). Посмотрите информацию по смонтированным томам, опишите. Выполните настройки для автоматического монтирования данных томов во время запуска системы. Для этого внесите изменения в файл /etc/fstab. Проверьте корректность правок в файле /etc/fstab без перезагрузки.
- 7. Чтобы добавить раздел /dev/sda3 в группу томов, создайте физический том для этого раздела. Далее добавьте его в группу.
- 7.Увеличьте размер существующего тома lv2 за счет физического тома, добавленного в группу. Для этого размонтируйте том lv2 и проверьте его на наличие ошибок. Увеличьте lv2 на 512М. После увеличения выполните проверку файловой системы на наличие ошибок. Подмонтируйте измененный том и проверьте, изменился ли его размер.
- 8. Чтобы убрать из работающей группы томов раздел /dev/sda2 сначала перенесите все данные с него на другие диски, затем удалите его из группы томов, после этого удалите физический том.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Какой файл устройства соответствует 2-ому разделу 3-его SATA диска?
- 2. Какая команда помогает найти причину, почему не получается размонтировать ΦC ?
- 3. Какую утилиту следует использовать, чтобы создать на разделе ФС типа ext3?
- 4. В каком порядке следует уменьшать размер логического тома?
- 5. В каком порядке следует увеличивать размер логического тома?
- 6. Что следует сделать перед удалением физического тома?