

In the Claims:**BEST AVAILABLE COPY**

1. (Currently amended) A semiconductor light emitting device
2 of a II-VI group compound semiconductor formed on a
3 compound semiconductor substrate and having comprising an
4 active layer between an n-type cladding layer and a p-type
5 cladding layer, further comprising
6 an i-type semiconductor barrier layer consisting of a
7 single monolayer of an i-type semiconductor material having
8 a band gap larger than a band gap of said p-type cladding
9 layer, provided between and respectively directly in
10 contact with said active layer and said p-type cladding
11 layer.

1. 2. (Withdrawn) The semiconductor light emitting device
2 according to claim 1, wherein
3 said light emitting device of the II-VI group compound
4 is a ZnSe based light emitting device;
5 said n-type cladding layer is an n-type $Zn_{1-x}Mg_xS_ySe_{1-y}$
6 ($0 < x < 1$, $0 < y < 1$) layer; and
7 said p-type cladding layer is a p-type $Zn_{1-x}Mg_xS_ySe_{1-y}$
8 ($0 < x < 1$, $0 < y < 1$) layer.

1. 3. (Original) The semiconductor light emitting device
2 according to claim 1, wherein
3 magnitude of the band gap of said barrier layer is
4 larger by 0.025 eV to 0.5 eV than the band gap of said
5 p-type cladding layer.

1 4. (Previously presented) The semiconductor light emitting
2 device according to claim 1, wherein

3 in the band gap of said barrier layer, energy of
4 valence band is approximately the same as or higher than
5 that of said p-type cladding layer, and energy of
6 conductive band is larger than that of said p-type cladding
7 layer.

1 5. (Original) The semiconductor light emitting device
2 according to claim 1, wherein

3 said barrier layer is of a II-VI group compound
4 semiconductor containing Be.

1 6. (Original) The semiconductor light emitting device
2 according to claim 5, wherein

3 said barrier layer is of $Zn_{1-x-y}Mg_xBe_ySe$ ($0 \leq x + y \leq 1$,
4 $0 < x$, $0 < y$).

1 7. (Withdrawn) The semiconductor light emitting device
2 according to claim 1, wherein

3 said barrier layer is of $Zn_{1-x}Mg_xS_ySe_{1-y}$.

Claims 8 to 10 (Canceled).

1 11. (Original) The semiconductor light emitting device
2 according to claim 1, wherein

3 said p-type cladding layer is formed of
4 $(Zn_{1-x}Cd_xS)_{1-z}(MgS_{1-y}Se_y)_z$ (where x, y, z satisfy $0 < x \leq 1$,
5 $0 \leq y \leq 1$, $0 \leq z < 1$).

1 12. (Original) The semiconductor light emitting device
2 according to claim 1, wherein

3 thickness of said barrier layer is at least 5 nm and
4 at most thickness of said active layer.

1 13. (Original) The semiconductor light emitting device
2 according to claim 1, wherein

3 an n-type ZnSe single crystal substrate is used as
4 said compound semiconductor substrate.

1 14. (Withdrawn) The semiconductor light emitting device
2 according to claim 1, wherein

3 an n-type GaAs single crystal substrate is used as
4 said compound semiconductor substrate.

1 15. (Withdrawn) The semiconductor light emitting device
2 according to claim 1, wherein

3 in a stacked structure including said compound
4 semiconductor substrate constituting said ZnSe based light
5 emitting device, deviation between a peak of X-ray

6 diffraction of a plane orientation used as an index of
7 distortion from said substrate and a peak of X-ray
8 diffraction of said plane orientation from said stacked
9 structure is at most 1000 seconds.

Claims 16 to 25 (Cancelled).

[RESPONSE CONTINUES ON NEXT PAGE]