# INTERNATIONAL UNIVERSITY OF AFRICA CIVIL ENGINEERING DEPARTMENT ANALYSIS AND DESIGN OF STEEL WORKS

GRADE 4

7TH SEMESTER

Lecture No 2

**BEAMS** 

PART 3 NUMERICAL EXAMPLE

# Worked example

| The Steel Construction Institute Silwood Park, Ascot, Berks SL5 7QN | Subject  BEAM EXAMPLE 1  LATERALLY RESTRAINED  UNIVERSAL BEAM |                  | Chapter ref. |
|---------------------------------------------------------------------|---------------------------------------------------------------|------------------|--------------|
|                                                                     | Design code                                                   | Made by $D\!AN$  | Sheet no. 1  |
|                                                                     | BS 5950: Part 1                                               | Checked by $GWO$ |              |

### Problem

Select a suitable UB section to function as a simply supported beam carrying a 140 mm thick solid concrete slab together with an imposed load of 7.0 kN/m². Beam span is 7.2 m and beams are spaced at 3.6 m intervals. The slab may be assumed capable of providing continuous lateral restraint to the beam's top flange.



Due to restraint from slab there is no possibility of lateral-torsional buckling, so design beam for:

- i) Moment capacity
- ii) Shear capacity
- iii) Deflection limit

## Loading

D.L. = 
$$(2.4 \times 9.81 \times 0.14)$$
 =  $3.3 \, kN/m^2$   
I.L. =  $7.0 \, kN/m^2$ 

Total serviceability loading =  $10.3 \, \text{kN/m}^2$  Table 2

Total load for ultimate limit state

$$= 1.4 \times 3.3 + 1.6 \times 7.0 = 15.8 \, \text{kN/m}^2$$

Design ultimate moment = 
$$(15.8 \times 3.6) \times 7.2^2/8$$

=369 kNm

Design ultimate shear  $= (15.8 \times 3.6) \times 7.2/2$ 

= 205 kN

| The Steel Construction Institute Silwood Park, Ascot, Berks SL5 7QN                                                     | Subject BEAM EXAMPLE 1 LATERALLY RESTRAINED UNIVERSAL BEAM |               | Chapter ref.                       |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------|------------------------------------|
|                                                                                                                         | Design code  BS 5950: Part 1                               | Made by $DAN$ | Sheet no. 2                        |
| Assuming use of \$275 steel and 16 mm thick,                                                                            | l no material greate                                       | r than        | Table 9                            |
| take $p_y = 275 \text{ N/mm}^2$<br>Required $S_x = 369 \times 10^6/275$<br>$= 1.34 \times 10^6 \text{ mm}^3 =$          | 1340 cm <sup>3</sup>                                       |               |                                    |
| A $457 \times 152 \times 67 UB$ has a val<br>T = 15.0 < 16.0 mm<br>∴ $p_y = 275 N/mm^2$                                 | lue of $S_x$ of 1440 cm                                    | 3             | Steelwork<br>Design Guide<br>Vol 1 |
| Check section classification                                                                                            |                                                            |               | 3.5.2                              |
| Actual $b/T = 5.06$ $d/t = 44.7$<br>$\epsilon = (275/p_y)^{1/2} = 1$                                                    | 0.500                                                      |               | Table 11                           |
| Limit on $b/T$ for plastic section<br>Limit on $d/t$ for shear = $80 > 4$                                               |                                                            |               |                                    |
| $\therefore Section \ is \ plastic$ $Actual  M_c = 275 \times 1440 \times 10$ $= 396 \times 10^6 Nmm$ $= 396kNm > 369k$ |                                                            |               | 4.2.5                              |
| Vertical shear capacity                                                                                                 |                                                            |               |                                    |
| $P_v = 0.6 p_y A_v$ where $A_v = tD$                                                                                    |                                                            |               | 4.2.3                              |
| $P_v = 0.6 \times 275 \times 9.1 \times 10^{-6}$                                                                        | $457.2 = 686 \times 10^3 $                                 | V             |                                    |
| $= \underline{686kN} > \underline{205kN} $                                                                              | OK .                                                       |               |                                    |

| The Steel Construction Institute   | BEAM EX<br>LATERAL<br>UNIVERS |
|------------------------------------|-------------------------------|
| Silwood Park, Ascot, Berks SL5 7QN | UNIVER                        |

| Subject  BEAM EXAMI  LATERALLY I  UNIVERSAL I | RESTRAINED      | Chapter ref. |
|-----------------------------------------------|-----------------|--------------|
| Design code                                   | Made by $D\!AN$ | Sheet no. 3  |
| BS 5950: Part 1                               | Checked by GWO  |              |

2.5.1

Check serviceability deflections under imposed load

 $\delta = \frac{5 \times (7.0 \times 3.6) \times 7200^4}{384 \times 205000 \times 32400 \times 10^4}$ 

= 13.3 mm = span/541

From Table 8 limit is span/360 :. δ OK

:. <u>Use 457 × 152 × 67UB Grade 43</u>

Table 8 — Suggested limits for calculated deflections

| a) Vertical deflection of beams due to imposed load                                                    |                           |
|--------------------------------------------------------------------------------------------------------|---------------------------|
| Cantilevers                                                                                            | Length/180                |
| Beams carrying plaster or other brittle finish                                                         | Span/360                  |
| Other beams (except purlins and sheeting rails)                                                        | Span/200                  |
| Purlins and sheeting rails                                                                             | See 4.12.2                |
| b) Horizontal deflection of columns due to imposed load and wind load                                  | •                         |
| Tops of columns in single-storey buildings, except portal frames                                       | Height/300                |
| Columns in portal frame buildings, not supporting crane runways                                        | To suit cladding          |
| Columns supporting crane runways                                                                       | To suit crane runway      |
| In each storey of a building with more than one storey                                                 | Height of that storey/300 |
| c) Crane girders                                                                                       | 1                         |
| Vertical deflection due to static vertical wheel loads from overhead travelling cranes                 | Span/600                  |
| Horizontal deflection (calculated on the top flange properties alone)<br>due to horizontal crane loads | Span/500                  |

# **BEAM BENDING**

| L = overall length<br>W = point load, $M$ = moment<br>w = load per unit length | End Slope                                | Max Deflection            | Max bending moment |
|--------------------------------------------------------------------------------|------------------------------------------|---------------------------|--------------------|
| )M                                                                             | ML<br>EI                                 | $\frac{ML^2}{2EI}$        | М                  |
| <b>→</b> W                                                                     | $\frac{WL^2}{2EI}$                       | $\frac{WL^3}{3EI}$        | WL                 |
| <b>**************************</b>                                              | $\frac{wL^3}{6EI}$                       | $\frac{wL^4}{8EI}$        | $\frac{wL^2}{2}$   |
| M7 M                                                                           | ML<br>2EI                                | $\frac{ML^2}{8EI}$        | М                  |
| ₩<br>½L ½L                                                                     | $\frac{WL^2}{16EI}$                      | $\frac{WL^3}{48EI}$       | $\frac{WL}{4}$     |
| <u> </u>                                                                       | $\frac{wL^3}{24EI}$                      | 5wL <sup>4</sup><br>384EI | $\frac{wL^2}{8}$   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                         | $\theta_{B} = \frac{Wac^{2}}{2LEI}$      | Wac <sup>3</sup><br>3LEI  | Wab<br>L           |
| $a \le b,  c = \sqrt{\frac{1}{3}b(L+a)}$                                       | $\theta_A = \frac{L+b}{L+a} \; \theta_B$ | (at position c)           | (under load)       |