QUALIFYING EXAM Geometry/Topology March 2018

Attempt all ten problems. Each problem is worth 10 points. Justify your answers carefully.

- 1. Suppose that M and N are connected smooth manifolds of the same dimension and $f: M \to N$ is a smooth submersion.
- (a) Prove that if M is compact, then f is onto and f is a covering map.
- (b) Give an example of a smooth submersion $f: M \to N$ such that M and N have the same dimension, N is compact, and f is onto, but f is not a covering map.
- **2.** Let $\Phi_N, \Phi_S : \mathbb{R} \times S^2 \to S^2$ be two global flows on the sphere S^2 . Show that there exist $\epsilon > 0$, a neighborhood U of the North pole, a neighborhood V of the South pole, and a global flow $\Phi : \mathbb{R} \times S^2 \to S^2$ such that $\Phi(t,q) = \Phi_N(t,q)$ for all $t \in (-\epsilon,\epsilon), q \in U$, and $\Phi(t,q) = \Phi_S(t,q)$ for all $t \in (-\epsilon,\epsilon), q \in V$.
 - **3.** For $n \geq 1$, consider the subset $X \subset \mathbb{CP}^{2n}$ given by

$$X = \{ [z_0 : z_1 : \dots : z_{2n}] \in \mathbb{CP}^{2n} \mid z_{n+1} = z_{n+2} = \dots = z_{2n} = 0 \}.$$

- (a) Show that X is a smooth submanifold.
- (b) Calculate the mod 2 intersection number of X with itself.
- **4.** Suppose N is a smoothly embedded submanifold of a smooth manifold M. A vector field X on M is called tangent to N if $X_p \in T_pN \subset T_pM$ for all $p \in M$.
- (a) Show that if X and Y are vector fields on M both tangent to N, then [X,Y] is also tangent to N.
- (b) Illustrate this principle by choosing two vector fields X, Y tangent to $S^2 \subset \mathbb{R}^3$ (such that [X, Y] is not identically zero), computing [X, Y] and checking that it is tangent to S^2 .
- 5. A symplectic form on an eight-dimensional manifold is defined to be a closed two-form ω such that $\omega \wedge \omega \wedge \omega \wedge \omega$ is a volume form (that is, everywhere nonvanishing). Determine which of the following manifolds admit symplectic forms: (a) S^8 ; (b) $S^2 \times S^6$; (c) $S^2 \times S^2 \times S^2 \times S^2$.
- **6.** Let U be a bounded open set in \mathbb{R}^3 with smooth boundary, and let V be a smooth vector field on \mathbb{R}^3 . The classical divergence theorem expresses the triple integral $\iiint_V \operatorname{div} V d(\operatorname{vol})$ as a surface integral over the boundary of V. State this theorem, and show how it can be obtained as a particular case of Stokes' Theorem for differential forms.
- 7. Let M and N be smooth, connected, orientable n-manifolds for $n \geq 3$, and let M # N denote their connect sum.
- (a) Compute the fundamental group of M#N in terms of that of M and of N (you may assume that the basepoint is on the boundary sphere along which we glue M and N).

- (b) Compute the homology groups of M#N. (You may use without proof that $H_n(-;\mathbb{Z})$ of a connected orientable n-manifold is always isomorphic to \mathbb{Z}).
- (c) For part (a), what changes if n = 2? Use this to describe the fundamental groups of orientable surfaces.
 - **8.** Determine all of the possible degrees of maps $S^2 \to S^1 \times S^1$.
 - **9.** Point S^2 via the south pole, and consider the Cartesian product $S^2 \times S^2$.
- (a) Describe a cell structure on $S^2 \times S^2$ that is compatible with the inclusion of

$$S^2 \vee S^2 \hookrightarrow S^2 \times S^2$$

as those pairs where one coordinate is the south pole.

(b) Let X be $(S^2 \times S^2) \cup_{S^2} D^3$, where we attach the 3-disk via the map

$$S^2 \to S^2 \vee S^2$$

which crushes a great circle connecting the north and south poles. Compute the homology groups of X.

- 10. Let X be a semi-locally simply connected space and let $\tilde{X} \to X$ be the universal cover.
- (a) Show that any map $\sigma \colon \Delta^n \to X$ lifts to a map $\tilde{\sigma} \colon \Delta^n \to \tilde{X}$, where Δ^n is the standard *n*-simplex.
- (b) Show that if $\tilde{\sigma}_1, \tilde{\sigma}_2 \colon \Delta^n \to \tilde{X}$ are two lifts of σ , then there is an element g of the fundamental group of X such that $g \circ \tilde{\sigma}_1 = \tilde{\sigma}_2$, where we view g as an automorphism of \tilde{X} via the deck transformations.