

Blockchain Security | Smart Contract Audits | KYC

Ribus Token

Audit

Security Assessment 14.July,2022

For

Disclaimer	2
Description	5
Project Engagement	5
Logo	5
Contract Link	5
Methodology	7
Used Code from other Frameworks/Smart Contracts (direct imports)	8
Tested Contract Files	9
Source Lines	10
Risk Level	10
Capabilities	11
Inheritance Graph	12
CallGraph	13
Scope of Work/Verify Claims	14
Modifiers and public functions	22
Source Units in Scope	22
Critical issues	23
High issues	23
Medium issues	23
Low issues	23
Informational issues	24
Audit Comments	24
SWC Attacks	25

Disclaimer

<u>SolidProof.io</u> reports are not, nor should be considered, an "endorsement" or "disapproval" of any particular project or team. These reports are not, nor should be considered, an indication of the economics or value of any "product" or "asset" created by any team. SolidProof.io do not cover testing or auditing the integration with external contract or services (such as Unicrypt, Uniswap, PancakeSwap etc'...)

SolidProof.io Audits do not provide any warranty or guarantee regarding the absolute bug- free nature of the technology analyzed, nor do they provide any indication of the technology proprietors. SolidProof Audits should not be used in any way to make decisions around investment or involvement with any particular project. These reports in no way provide investment advice, nor should be leveraged as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending to help our customers increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and blockchain technology. Blockchain technology and cryptographic assets present a high level of ongoing risk. SolidProof's position is that each company and individual are responsible for their own due diligence and continuous security. SolidProof in no way claims any guarantee of security or functionality of the technology we agree to analyze.

Version	Date	Description
1.0	12.July,2022	Layout projectAutomated- /Manual-Security TestingSummary

Network

Polygon

Website

https://ribus.com.br/

Description

Ribus is a company that offers an integration platform via Blockchain, strategically designed for the real estate sector.

Its mission is to democratize access and demystify the dogmas implanted by the conventional investment environment in the real estate sector, which is currently the largest in the entire world economy. An extremely conservative and solid market, demanding safety and highly controlled by inspection bodies, laws and regulations, that is, Ribus acts as a bridge between the segments, products and services.

Ribus is a company created by professionals of the highest capacity and knowledge of the crypto-assets market in partnership with companies that have been in the real estate market for more than 40 years. Partners that have already delivered more than 4 million m2 in developments, constructions and sales. These combined skills provide a range of products and services within this sector, ensuring the distribution of the best results.

Project Engagement

During the 12th of July 2022, Ribus Team engaged Solidproof.io to audit smart contracts that they created. The engagement was technical in nature and focused on identifying security flaws in the design and implementation of the contracts. They provided Solidproof.io with access to their code repository and whitepaper.

Logo

Contract Links

v1.0

https://polygonscan.com/address/0xf13ce10739f73270ee926a3098d18432fafe871b#code

Vulnerability & Risk Level

Risk represents the probability that a certain source-threat will exploit vulnerability, and the impact of that event on the organization or system. Risk Level is computed based on CVSS version 3.0.

Level	Value	Vulnerability	Risk (Required Action)
Critical	9 - 10	A vulnerability that can disrupt the contract functioning in a number of scenarios, or creates a risk that the contract may be broken.	Immediate action to reduce risk level.
High	7 – 8.9	A vulnerability that affects the desired outcome when using a contract, or provides the opportunity to use a contract in an unintended way.	Implementation of corrective actions as soon as possible.
Medium	4 – 6.9	A vulnerability that could affect the desired outcome of executing the contract in a specific scenario.	Implementation of corrective actions in a certain period.
Low	2 – 3.9	A vulnerability that does not have a significant impact on possible scenarios for the use of the contract and is probably subjective.	Implementation of certain corrective actions or accepting the risk.
Informational	0 – 1.9	A vulnerability that have informational character but is not effecting any of the code.	An observation that does not determine a level of risk

Auditing Strategy and Techniques Applied

Throughout the review process, care was taken to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices. To do so, reviewed line-by-line by our team of expert pentesters and smart contract developers, documenting any issues as there were discovered.

Methodology

The auditing process follows a routine series of steps:

- 1. Code review that includes the following:
 - Review of the specifications, sources, and instructions provided to SolidProof to make sure we understand the size, scope, and functionality of the smart contract.
 - ii) Manual review of code, which is the process of reading source code line-byline in an attempt to identify potential vulnerabilities.
 - iii) Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to SolidProof describe.
- 2. Testing and automated analysis that includes the following:
 - i) Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run those test cases.
 - ii) Symbolic execution, which is analysing a program to determine what inputs causes each part of a program to execute.
- 3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the established industry and academic practices, recommendations, and research.
- 4. Specific, itemized, actionable recommendations to help you take steps to secure your smart contracts.

Used Code from other Frameworks/Smart Contracts (direct imports)

Imported packages:

Tested Contract Files

This audit covered the following files listed below with a SHA-1 Hash.

A file with a different Hash has been modified, intentionally or otherwise, after the security review. A different Hash could be (but not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of this review.

v1.0

File Name	SHA-1 Hash
contracts/RibusToken.sol	b3da8ea31ea1caeae66951e0cdc4d3724744c8ae

Metrics

Source Lines v1.0

Capabilities

Components

Version	Contracts	Libraries	Interfaces	Abstract
1.0	2	3	4	8

Exposed Functions

This section lists functions that are explicitly declared public or payable. Please note that getter methods for public stateVars are not included.

Version	Public	Payable
1.0	36	1

Version	External	Internal	Private	Pure	View
1.0	14	128	5	20	30

State Variables

Version	Total	Public
1.0	25	1

Capabilities

Version	Solidity Versions observed	Experime ntal Features	Can Receive Funds	Uses Assembly	Has Destroyab Ie Contracts
1.0	^0.8.0		Yes	Yes	

Version	Transfe rs ETH	Low- Level Calls	Deleg ateCal	Uses Hash Function s	EC Rec ove r	New/Cre ate/Creat e2	
1.0			Yes				

Inheritance Graph

v1.0

Call Graph

v1.0

Scope of Work/Verify Claims

The above token Team provided us with the files that needs to be tested (Github, Bscscan, Etherscan, files, etc.). The scope of the audit is the main contract (usual the same name as team appended with .sol).

We will verify the following claims:

- 1. Is contract an upgradeable
- 2. Correct implementation of Token standard
- 3. Deployer cannot mint any new tokens
- 4. Deployer cannot burn or lock user funds
- 5. Deployer cannot pause the contract
- 6. Overall checkup (Smart Contract Security)

Is contract an upgradeable

I	Name	
ı	s contract an upgradeable?	Yes

Comments:

v1.0

- Owner can deploy a new version of the contract which can change any limit and give owner new privileges or even change the functionalities of the contract.
 - Be aware of this and do your own research for the contract to which the proxy contract is pointing to.

Correct implementation of Token standard

	ERC20							
Function	Description	Exist	Tested	Verified				
totalSupply	Provides information about the total token supply							
balanceOf	Provides account balance of the owner's account							
transfer	Executes transfers of a specified number of tokens to a specified address							
transferFrom	Executes transfers of a specified number of tokens from a specified address							
approve	Allow a spender to withdraw a set number of tokens from a specified account							
allowance	Returns a set number of tokens from a spender to the owner							

Write functions of contracts

v1.0 1. approve 2. burn 3. burnFrom 4. decreaseAllowance 5. distribute 6. increaseAllowance 7. initialize 8. renounceOwnership 9. transfer 10. transferFrom 11. transferOwnership 12. upgradeTo 13. upgradeToAndCall

Deployer cannot mint any new tokens

Name	Exist	Tested	Status
Deployer cannot mint			
Max / Total Supply	300.000.000		

Deployer cannot burn or lock user funds

Name	Exist	Tested	Status
Deployer cannot lock			
Deployer cannot burn			

Deployer cannot pause the contract

Name	Exist	Tested	Status
Deployer cannot pause			

Comments:

Pausable contract was implemented but never used in the contract

Overall checkup (Smart Contract Security)

Tested	Verified

Legend

Attribute	Symbol
Verified / Checked	
Partly Verified	
Unverified / Not checked	
Not available	

Modifiers and public functions

v1.0

Source Units in Scope

v1.0

File	Logic Contra cts	Interfa ces	Lin es	nLin es	nSL OC	Comm ent Lines	Compl ex. Score
RibusToke n.sol	13	4	214 0	1773	726	1006	459
Totals	13	4	214 0	1773	726	1006	459

Legend

Attribute	Description		
Lines	total lines of the source unit		
nLines	normalized lines of the source unit (e.g. normalizes functions spanning multiple lines)		
nSLOC	normalized source lines of code (only source-code lines; no comments, no blank lines)		
Comment Lines	lines containing single or block comments		
Complexity Score	a custom complexity score derived from code statements that are known to introduce code complexity (branches, loops, calls, external interfaces,)		

Audit Results

AUDIT PASSED

Critical issues

No critical issues

High issues

No high issues

Medium issues

No medium issues

Low issues

Issue	File	Type	Line	Description
#1	Main	A floating pragma is set	12	The current pragma Solidity directive is ""^0.8.0"".
#2	Main	Dead Code	2131	The function is never used in the contract and should be removed
#3	Main	Missing Events	2094	Emit an event for critical parameter changes. In this case, minting of tokens

Informational issues

Issue	File	Туре	Line	Description
#1	Main	Missing Error Message	2072	There is a missing error message in the require statement which will lead the caller to the confusion if the transaction reverts.
#2	Main	Unnecessary modifier	2094	The modifiers should be removed from the internal function because they have already been used in the public function.
#3	Main	NatSpec documentation missing	-	If you started to comment your code, also comment all other functions, variables etc.

Audit Comments

We recommend you to use the special form of comments (NatSpec Format, Follow link for more information https://docs.soliditylang.org/en/v0.5.10/natspec-format.html) for your contracts to provide rich documentation for functions, return variables and more. This helps investors to make clear what that variables, functions etc. do.

12.July,2022:

• Read the whole report and modifiers section for more information.

SWC Attacks

I D	Title	Relationships	Status
SI W CI : 1 31 61	Unencrypted Private Data On-Chain	CWE-767: Access to Critical Private Variable via Public Method	PASSED
S W C 1 3 5	Code With No Effects	CWE-1164: Irrelevant Code	PASSED
S W C 1 3 4	Message call with hardcoded gas amount	CWE-655: Improper Initialization	PASSED
S W C 1 3 3	Hash Collisions With Multiple Variable Length Arguments	CWE-294: Authentication Bypass by Capture-replay	PASSED
S W C - 1 3 2	Unexpected Ether balance	CWE-667: Improper Locking	PASSED
<u>S</u> <u>W</u> <u>C</u> :	Presence of unused variables	CWE-1164: Irrelevant Code	NOT PASSED

1 3 1			
S W C 1 3 0	Right-To-Left- Override control character (U+202E)	CWE-451: User Interface (UI) Misrepresentation of Critical Information	PASSED
S W C 1 2 9	Typographical Error	CWE-480: Use of Incorrect Operator	PASSED
S W C 1 2 8	DoS With Block Gas Limit	CWE-400: Uncontrolled Resource Consumption	PASSED
S W C 1 2 7	Arbitrary Jump with Function Type Variable	CWE-695: Use of Low-Level Functionality	PASSED
S W C 1 2 5	Incorrect Inheritance Order	CWE-696: Incorrect Behavior Order	PASSED
<u>S</u> <u>W</u> <u>C</u> :	Write to Arbitrary	CWE-123: Write-what-where Condition	PASSED

1 2 4	Storage Location		
S W C : 1 2 3	Requirement Violation	CWE-573: Improper Following of Specification by Caller	PASSED
S W C 1 2 2	Lack of Proper Signature Verification	CWE-345: Insufficient Verification of Data Authenticity	PASSED
S W C 1 2 1	Missing Protection against Signature Replay Attacks	CWE-347: Improper Verification of Cryptographic Signature	PASSED
S W C	Weak Sources of Randomness from Chain Attributes	CWE-330: Use of Insufficiently Random Values	PASSED
S W C : 1 1 9	Shadowing State Variables	CWE-710: Improper Adherence to Coding Standards	PASSED

S W C	Incorrect Constructor Name	CWE-665: Improper Initialization	PASSED
S W C : 1 1 7	Signature Malleability	CWE-347: Improper Verification of Cryptographic Signature	PASSED
S W C 1 1 6	Timestamp Dependence	CWE-829: Inclusion of Functionality from Untrusted Control Sphere	PASSED
S W C 1 1 5	Authorization through tx.origin	CWE-477: Use of Obsolete Function	PASSED
S W C 1 1 4	Transaction Order Dependence	CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')	PASSED
S W C 1 1 2	DoS with Failed Call	CWE-703: Improper Check or Handling of Exceptional Conditions	PASSED

S W C : 1 1 2	Delegatecall to Untrusted Callee	CWE-829: Inclusion of Functionality from Untrusted Control Sphere	PASSED
<u>S</u> <u>W</u> <u>C</u> : 1 1 1	Use of Deprecated Solidity Functions	CWE-477: Use of Obsolete Function	PASSED
S W C - 1 1 0	Assert Violation	CWE-670: Always-Incorrect Control Flow Implementation	PASSED
S W C - 1 0 9	Uninitialized Storage Pointer	CWE-824: Access of Uninitialized Pointer	PASSED
S W C : 1 0 8	State Variable Default Visibility	CWE-710: Improper Adherence to Coding Standards	PASSED
S W C : 1 0 7	Reentrancy	CWE-841: Improper Enforcement of Behavioral Workflow	PASSED

SI W CI 1 0 6	Unprotected SELFDESTR UCT Instruction	CWE-284: Improper Access Control	PASSED
S W C : 1 0 5	Unprotected Ether Withdrawal	CWE-284: Improper Access Control	PASSED
S W C 1 0 4	Unchecked Call Return Value	CWE-252: Unchecked Return Value	PASSED
S W C 1 0 3	Floating Pragma	CWE-664: Improper Control of a Resource Through its Lifetime	NOT PASSED
S W C	Outdated Compiler Version	CWE-937: Using Components with Known Vulnerabilities	PASSED
	1		

<u>S</u> <u>W</u> <u>C</u> : 1	Function Default Visibility	CWE-710: Improper Adherence to Coding Standards	PASSED
--------------------------------	-----------------------------------	---	--------

Blockchain Security | Smart Contract Audits | KYC

