

Optical Silica Glass

ES Series

ES ingots are manufactured from high-purity SiCl₄ using an oxy-hydrogen flame in a verneuil type process.

For very large parts, such as LCD photomasks, ES ingots are reflown into large rectangular blocks.

ES ingots have a typical purity that exceeds the detection limit of 1 Oppb in all elements, and are virtually free of bubbles and inclusions.

As a result, ES is the material of choice for LCD photomasks up to Gen. 10, and selected subgrades are widely used in leading edge stepper (KrF and ArF) and optics applications.

Grade ES 1,800x1,700mm *1 Standard optical grade for planar optics LCD Mask, Mirror&window substrate ESL-1 General Optics & laser Optics 1,300x1,000mm *1 Standard optical grade with 1D striae free 1,300x1,000mm *1 ESL-1000 Enhance excimer durability for ESL-1 Stepper lens (illumination) ESL-2 Good homogeneity with 3D striae free High precision optics ~Ф450mm ESL-2000 Enhance excimer durability for ESL-2 Stepper lens (Projection) ~Ф450mm

Optical Properties

(Typical values)

Grades	Striae *2	Homogeneity ^{*3} Δn(x10 ⁻⁶) within CA	Strain (nm/cm)	Fluorescence *4	Excimer Durability	Applicable Wavelength *6 (nm)	Bubble Class *7
ES	n.sp.	n.sp.	1~20	n.sp.	n.sp.	180~2100	Class O
ESL-1	10	5~15(CA:Ф500mm) 3~10(CA:Ф300mm)	1~10	None	n.sp.	180~2100	Class O
ESL-1000	1D	5~15(CA:Ф500mm) 3~10(CA:Ф300mm)	1~10	None	sp. *5	180~2100	Class O
ESL-2	3D	<10(СА:Ф300mm)	1~10	None	n.sp.	180~2100	Class 0
ESL-2000	3D	<10(СА:ФЗООmm)	1~10	None	sp. *5	180~2100	Class O
*Q. Otrice appointing in defined as below and confirmed by interferometric massurement.							

^{*2} Striae specification is defined as below and confirmed by interferometric measurement.

1D: 1 direction free 3D: 3 direction free

Homogeneity means refractive index homogeneity and is expressed as Δ n(PV) within effective area.

- *4 Fluorescence is checked with excitation at 254nm using an Hg-lamp.
- *5 Excimer durability is specified with Tosoh's KrF and ArF excimer laser damage tests.
- *6 Applicable wavelength is defined as the wavelength range where external transmittance is more than 80%/cm.
- *7 Bubble class is as per DIN 58927.

Spectral Transmission

*3

^{*1} Reflown ingots

Optical Properties

λ	(μm)	Refractive Index*1
n ₁₅₃₀	1.53000	1.44428
n ₁₀₆₄	1.06400	1.44965
n _t	1.01398	1.45027
n _s	0.85211	1.45249
n _{A'}	0.76819	1.45392
n ₇₀₈	0.70820	1.45514
n ₆₉₁	0.69075	1.45554
n ₆₇₂	0.67164	1.45600
n _c	0.65627	1.45640
n _{c'}	0.64385	1.45674
n _{He-Ne}	0.63299	1.45704
n ₆₂₃	0.62344	1.45733
n_D	0.58929	1.45844
n _d	0.58773	1.45849
n ₅₇₇	0.57696	1.45888
n _e	0.54623	1.46011
n ₄₉₂	0.49161	1.46284
n _F	0.48613	1.46317
n _F	0.47999	1.46354
n _g	0.43596	1.46673
n _h	0.40477	1.46966
n _i	0.36512	1.47458
n ₃₃₄	0.33415	1.47983
n ₃₁₃	0.31266	1.48454
n ₂₈₉	0.28936	1.49107
n ₂₇₀	0.26988	1.49814
n ₂₅₄	0.25373	1.50557
n ₂₄₈	0.24800	1.50865
n ₂₂₉	0.22887	1.52121
n ₂₁₅	0.21451	1.53378
n ₁₉₄	0.19423	1.55899
n ₁₈₅	0.18495	1.57511

Refractive Index		Abbe No.		Dispersion		
n _d	1.45849	V d	67.72	n _F -n _C	0.00677	
n _e	1.46011	V _e	67.58	n _F -n _C	0.00681	

Part	ial Dispersion
n _c -n _t	0.00613
n _c -n _{A'}	0.00248
n _d -n _C	0.00209
n _e -n _C	0.00371
n _g -n _d	0.00824
n _g -n _F	0.00356
n _h -n _g	0.00293
n _i -n _g	0.00785
n _c -n _t	0.00647
n _e -n _C	0.00337
n _F -n _e	0.00344
n _i -n _F	0.01104

Partial D	Dispersion Ratio
θ _{C.t}	0.9056
θ _{C,A'}	0.3665
θ _{d,C}	0.3093
θ _{e,C}	0.5480
θ _{g,d}	1.2167
θ _{g,F}	0.5260
θ _{h,g}	0.4323
$ heta_{ ext{i,g}}$	1.1600
θ' _{C'.t}	0.9499
θ' _{e,C'}	0.4952
θ' _{F,e}	0.5046
θ' _{i,F}	1.6209

	Sellmeier Dispersion Formula for Refractive Index						
	$n^2-1 = A_1 \lambda^2 / (\lambda^2 - B_1^2) + A_2 \lambda^2 / (\lambda^2 - B_2^2) + A_3 \lambda^2 / (\lambda^2 - B_3^2)$						
	Constants of Sellmeier Dispersion Formula						
A1	0.6961852	В1	0.0685886				
A2	0.4079779	B2	0.1162043				
АЗ	0.8974798	вз	9.8961609				

Differential Temperature Coefficients of the Refractive Index								
Temp. range	dn/c	IT absolu	te (X10 ⁻⁶	/°C)	dn/c	IT relativ	e (X10 ⁻⁶ /	°C)
(℃)	e (546.1nm)	g (435.8nm)	h (404.7nm)	j (365.0nm)	e (546.1nm)	g (435.8nm)	h (404.7nm)	i (365.0nm)
-40~-20	7.8	8.2	8.4	8.7	9.8	10.2	10.5	10.8
-20~0	8.2	8.6	8.9	9.2	9.9	10.4	10.7	11.0
0-20	8.7	9.1	9.4	9.7	10.1	10.6	10.9	11.2
20~40	9.1	9.5	9.8	10.2	10.6	10.8	11.1	11.5
40~60	9.5	9.9	10.2	10.6	10.6	11.1	11.4	11.7
60~80	9.8	10.3	10.5	10.9	10.8	11.3	11.6	12.0

Internal Tr	ansmission
λ(nm)	t =10 mm
170	77
175	95
180	98
190	98
200	99
210	100
220	100
230	100
240	100
250	100
260	100
270	100
280	100
290	100
300	100
350	100
400	100
450	100
500	100
600	100
700	100
800	100
900	100
1000	100
1200	100
1400	93
1600	100
1800	100
2000	99
2100	98
2200	66

Mechanical Properties

Item		Value
Density	(g/cm³)	2.2
Young's modulus	(GPa)	74
Shear modulus	(GPa)	31
Poisson's ratio		0.18
Bending strength*2	(MPa)	65~95
Compressive strength	(MPa)	1,130
Tensile strength*2	(MPa)	49
Torsion strength	(MPa)	29
Vickers hardness	(MPa)	8,900

Thermal Properties

Item		Value
Strain point($\eta = 10^{14.5}$)	(°C)	980
Annealing Point($\eta = 10$) ¹³) (°C)	1,080
Softening Point($\eta = 10$) ^{7.6})*3 (°C)	(1,720)
Thermal Conductivity (N/mK) at 20℃	1.38
Specific heat (J	I/kg⋅K) at 20°C	749
Thermal diffusivity (x10 ⁻⁷ m²/s)at 20℃	8.5
Coefficient of thermal exp	ansion $(x 10^{-7}/^{\circ}C)$	
	α:30℃~100℃	5.2
	α:30℃~200℃	5.8
Viscosity log η (Poise)	at 1,200℃	11.4

Electrical Properties

Item	Value
Dielectric constant at 500MHz	3.9
Dielectric loss factor(tan δ) at 500MHz	<1x10 ⁻³
Resistivity (\O)	5 x 10 ¹⁵
Volume resistiviity (Ω · cm)	1 x 10 ¹⁷

NOTE : Unless otherwise stated, all values represent typical data at $25\ensuremath{^{\circ}}$

^{*1} All refractive indices are calculated from values measured under dry N2 at 25°C, 1013hPa

^{*2} Bending and Tensile strengths are affected by surface conditions.

^{*3} Estimate from extrapolation

ED-H

ED-H ingots are manufactured from high-purity SiCl₄ in a VAD process.

ED-H ingots have a typical purity that exceeds the detection limit of 10ppb in all elements, and are virtually free of bubbles and inclusions.

Thanks to an OH content less than 100ppm, ED-H material exhibits superior transmission characteristics in the deep UV and is a material of choice for VUV applications down to 170nm.

Grade Grade Feature Application Available size (Diameter) ED-H Good homogeneity with 3D striae free High precision optics Φ180mm

Optical Properties

(Typical values)

Grade	Striae *1	Homogeneity *2 Δn(x10 ⁻⁶) within CA	Strain (nm/cm)	Fluorescence*3	Excimer Durability	Applicable Wavelength *4 (nm)	Bubble Class *5	
ED-H	3D	5~10 (CA:Ф180mm)	1~10	None	n.sp.	170~2,600	Class O	

*1 Striae specification is defined as below and confirmed by interferometric measurement.

1D:1 direction free 3D:3 direction free

n.sp. = not specified

- 2 Homogeneity means refractive index homogeneity and is expressed as Δ n(PV) within effective area.
- *3 Fluorescence is checked with excitation at 254nm using an Hg-lamp.
- *4 Applicable wavelength is defined as the wavelength range where external transmittance is more than 80%/cm.
- *5 Bubble class is as per DIN 58927.

Spectral Transmission

High temperature viscosity

Homogeneity (Typical mapping data)

Optical Properties

λ	(μ m)	Refractive Index*1
n ₁₅₃₀	1.53000	1.44440
n ₁₀₆₄	1.06400	1.44977
n _t	1.01398	1.45038
n _s	0.85211	1.45260
n _{A'}	0.76819	1.45403
n ₇₀₈	0.70820	1.45525
n ₆₉₁	0.69075	1.45565
n ₆₇₂	0.67164	1.45611
n _c	0.65627	1.45651
n _{c'}	0.64385	1.45685
n _{He-Ne}	0.63299	1.45716
n ₆₂₃	0.62344	1.45744
n_D	0.58929	1.45855
n _d	0.58773	1.45861
n ₅₇₇	0.57696	1.45899
n _e	0.54623	1.46022
n ₄₉₂	0.49161	1.46296
n _F	0.48613	1.46328
n _{F'}	0.47999	1.46366
n _g	0.43596	1.46684
n _h	0.40477	1.46977
n _i	0.36512	1.47469
n ₃₃₄	0.33415	1.47994
n ₃₁₃	0.31266	1.48465
n ₂₈₉	0.28936	1.49118
n ₂₇₀	0.26988	1.49825
n ₂₅₄	0.25373	1.50568
n ₂₄₈	0.24800	1.50876
n ₂₂₉	0.22887	1.52132
n ₂₁₅	0.21451	1.53389
n ₁₉₄	0.19423	1.55910
n ₁₈₅	0.18495	1.57522

R	Refractive Index	Abbe No.		D	ispersion
n _d	1.45861	V d	67.75	n _F -n _C	0.00677
n _e	1.46022	V _e	67.61	n _F -n _C	0.00681

Partial Dispersion				
n _c -n _t	0.00613			
n _C -n _{A'}	0.00248			
n _d -n _C	0.00209			
n _e -n _C	0.00371			
n _g -n _d	0.00823			
n _g -n _F	0.00356			
n _h -n _g	0.00293			
n _i -n _g	0.00785			
n _C -n _t	0.00647			
n _e -n _{C'}	0.00337			
n _F -n _e	0.00344			
n _i -n _F	0.01104			

Partial Dispersion Ratio					
θ _{C,t}	0.9056				
θ _{C,A'}	0.3665				
heta d,C	0.3094				
heta e.C	0.5481				
heta g.d	1.2166				
heta g,F	0.5259				
heta h.g	0.4324				
heta i.g	1.1600				
θ' _{C',t}	0.9502				
θ' _{e,C'}	0.4954				
$ heta'_{F,e}$	0.5046				
θ' _{i,F}	1.6213				

	Sellmeier Dispersion Formula for Refractive Index						
	$n^{2}-1 = A_{1} \lambda^{2} / (\lambda^{2}-B_{1}^{2}) + A_{2} \lambda^{2} / (\lambda^{2}-B_{2}^{2}) + A_{3} \lambda^{2} / (\lambda^{2}-B_{3}^{2})$						
	Constants of Sellmeier Dispersion Formula						
A1	0.6963511	В1	0.0685337				
A2	0.4081467	B2	0.1162167				
АЗ	0.8974786	ВЗ	9.8961611				

Internal Transmission					
λ(nm)	t = 10 mm				
170	98				
175	99				
180	99				
190	99				
200	99				
210	99				
220	100				
230	100				
240	100				
250	100				
260	100				
270	100				
280	100				
290	100				
300	100				
350	100				
400	100				
450	100				
500	100				
600	100				
700	100				
800	100				
900	100				
1000	100				
1200	100				
1400	99				
1600	100				
1800	100				
2000	100				
2200	98				
2400	100				
2600	97				
2800	71				

Item		Value
Density	(g/cm³)	2.2
Young's modulus	(GPa)	74
Shear modulus	(GPa)	31
Poisson's ratio		0.18
Bending strength*2	(MPa)	65~95
Compressive strength	(MPa)	1,130
Tensile strength*2	(MPa)	49
Torsion strength	(MPa)	29

Mechanical Properties *2

Thermal Properties					
Item		Value			
Strain point($\eta = 10^{14.5}$)	(°C)	1,090			
Annealing Point($\eta = 10$) ¹³) (°C)	1,190			
Softening Point($\eta = 10$	^{7.6})*3 (°C)	(1,720)			
Thermal Conductivity (V	1.38				
Specific heat (J	/kg·K) at 20℃	749			
Thermal diffusivity ()	<10 ⁻⁷ m²/s)at 20℃	8.5			
Coefficient of thermal expans					
	5.2				
	α:30℃~200℃	5.8			
Viscosity log η (Poise)	at 200℃	13.0			

Electrical Properties							
Item		Value					
Dielectric constant	at 500MHz	3.9					
Dielectric loss factor(tan δ)	at 500MHz	<1x10 ⁻³					
Resistivity	(Ω)	8 x 10 ¹⁵					
Volume resistiviity (Ω ·	cm)	5 x 10 ¹⁷					

(MPa)

Vickers hardness

NOTE : Unless otherwise stated, all values represent typical data at $25\ensuremath{^{\circ}}$

8,900

^{*1} All refractive indices are calculated from values measured under dry N2 at 25°C, 1013hPa

^{*2} Bending and Tensile strengths are affected by surface conditions.*3 Estimate from extrapolation

Impurity Level of Optical Silica Glass (Typical Value)

Unit(ppm)

Grades	Al	Ca	Cu	Fe	Na	K	Li	Mg	ОН
ES	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	1000
ED-H	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<100

Fluorescence Property of ES series

ES Series do not show fluorescence when irradiating with 254nm light from a low pressure lamp.

However, when irradiating with a strong light source such as X-ray and excimer lasers, fluorescence may occur.

The following indicates the fluorescence seen in ES Series when irradiated with X-ray and UV lights.

Irradiated Light	Excitation Wavelength (nm)	Condition	Shot Number	Absorption Band	Visible Fluorescence
Low pressure Hg	254	Continuously,2mW/cm ²	10,000	None	None
KrF excimer laser	248	25Hz、200mJ/cm ²	10,000	None	None
ArF excimer laser	193	125Hz,500mJ/cm ²	10,000	None	light red
ArF excimer laser	193	100Hz、150mJ/cm²	10,000	None	blue
ArF excimer laser	193	100Hz,400mJ/cm ²	10,000	None	blue & slight red
X-ray	_	W, 50KV, ca 1E+6 rad	_	*1	_

^{*1} Transmittance decrease less than 1% in the 200 to 300nm wavelength

Excimer Laser Durability of ES grades

Dependence of ArF Laser durability on OH Content

Nd: YAG laser damage threshold of ES

(K.Mikami, T.Jitsuno, et.al., 56th JSAP conference 2009)

Chemical properties

Mass Loss of Clear Fused Quartz by Selected Acids

Solution		Mass Loss		
Solution	Conc. (%) Temp. (°C)		Time (hr)	(g/m²)
H ₂ SO ₄	96	20	240	0.016
		205	24	0.06
HNO ₃	65	20	240	0.06
		115	24	0.11
HCI	37	20	240	0.18
		66	24	0.14

Mass Loss of Clear Fused Quartz by Selected Alkalis

Solution		Mass Loss			
Solution	Conc. (%)	Temp. (℃)	Time (hr)	(g/m²)	
NH ₄ OH	10	25	72	0.06	
		50	72	0.32	
NaOH	5	25	96	0.135	
		100	10	15	
KOH	10	25	72	0.14	
		100	10	11.3	

Chemical reactivity towards other materials

Metals and nonmetals		Gases		
Al, Ag	Rapid reaction at 700-800℃	CO, SO ₂	No reaction	
Au, Ag, Pt	No reaction	N ₂ , O ₂	No reaction	
Zn, Sn, Pb	No reaction	Cl ₂	No reaction	
Si	Slight reaction when fused	F ₂	No reaction with dried gases under 300℃	
Ge	No reaction at 900℃	H ₂	No reaction	
Mo, W	No reaction	HCI	No reaction	
Oxides		Salts		
Al ₂ O ₃	Gradual reaction over 900℃	BaCl ₂	Reaction when fused	
CaO	Reaction over 900℃	BaSO ₄	Reaction over 700℃	
CuO	Reaction over 800℃	CaCl ₂	Slight reaction when fused at 800℃	
Fe ₂ O ₃	Reaction over 900℃	KCI	Acceleration of devitrification at high temp.	
PbO	Intense reaction with fusion	KF	Intense reaction when fused	
MgO	Slight reaction at 900℃	NaCl	Reaction visually recognized over 800°C	
ZnO	Reaction over 420℃	Na ₂ SO ₄	No reaction	

Devitrification

When silica glass is exposed to high temperatures, the pure SiO₂ structure changes from a glass state (amorphous) to a stable crystalline state called cristobalite. This structural change is known as devitrification and generally occurs at temperatures over 1,150°C for clean clear fused quartz. Devitrification may also occur at temperatures below 1,000°C in the presence of impurities such as metal. The relation between the devitrification rate of clear fused quartz and temperature in various atmospheres is indicated below.

Gas composition	Temp.(℃)	Time(h)	Degree of devitrification	Devitrification thickness(μ m)
Air	1,300	72	Surface completely devitrified	250
Dried oxygen	1,300	72	Devitrification of 50% of the surface	100~150
Industrial nitrogen	1,300	72	Surface devitrified	_
Nitrogen(O ₂ and H ₂ O removed)	1,300	72	No devitrification	_
Hydrogen(O ₂ and H ₂ O removed)	1,300	72	No devitrification	_

Handling Precautions

Care must be taken to avoid direct hand contact with silica glass. The skin's natural salts contain alkali such as sodium, potassium and other impurities that accelerate devitrification. All sources of metal contaminants should be avoided.

As a further precaution, fused silica should be washed in pure or distilled water, then either air dried in a clean area or wiped dry with an alcohol-soaked clean cloth. For more rigorous cleaning, a very thin surface layer of the glass can be removed by etching, prior to water washing, in a 5% - 10% hydrofluoric acid solution.

Usage Precautions

- * Always clean silica glass prior to use.
- * Dry product completely before using at high temperature.
- * Pay attention to devitrification due to atmospheric exposure.
- * Please refer to the thermal properties for your application. Fused silica can resist sudden heating and quenching, but it does have its limits.
- * Always consider fused silica's very low thermal expansion when the glass is used with other materials to avoid failure due to the differences in thermal expansion.
- * Take caution during prolonged usage at temperatures approaching the annealing point.
- * Be aware that slow sagging may occur under high temperature.

TOSOH SGM USA, Inc.

6000 Shoreline Court, Ste 101, South San Francisco, CA 94080

TEL: +1-888-799-0025
FAX: +1-650-210-4362
E-mail: info.tsgm@tosoh.com
URL: http://www.tosohsgmusa.com

TOSOH CORPORATION

Advanced Materials Division Electronic Materials Dept.

3-8-2, Shiba, Minato-ku, Tokyo 105-8623, Japan

TEL: +81-3-5427-5121 FAX: +81-3-5427-5200 E-mail: sekiei@tosoh.co.jp URL: http://www.tosoh.co.jp