10-414/714 – Deep Learning Systems: Algorithms and Implementation

Model Deployment

Fall 2022
J. Zico Kolter and Tianqi Chen (this time)
Carnegie Mellon University

Outline

Model deployment overview

Machine learning compilation

Outline

Model deployment overview

Machine learning compilation

What we have learned so far in this class

How to build a deep learning system that trains deep learning models efficiently on a standard computing environment (with GPUs).

Automatic differentiation

Deep learning modeling techniques

Hardware accelerations and scale up

Normalization, initialization, optimization

Model deployment

Bring learned models to different application environments

Model deployment considerations

Application environment may bring restrictions (model size, no-python)

Leverage local hardware acceleration (mobile GPUs, accelerated CPU instructions, NPUs)

Integration with the applications (data preprocessing, post processing)

Model exportation and deploy to inference engines

Computational graph and weights

Backend frameworks

TensorRT ARMComputeLib TFLite

CoreML

Inference engine internals

Computational graph

Many inference engines are structured as computational graph interpreters

Allocate memories for intermediate activations

Traverse the graph and execute each of the operators

Usually only support a limited set of operators and programming models (e.g. dynamism)

Outline

Model deployment overview

Machine learning compilation

Limitation of library driven inference engine deployments

Need to build specialized libraries for each hardware backend

A lot of engineering efforts to optimization

Machine learning compilation

High-level IR Optimizations and Transformations

Tensor Operator Level Optimization

Direct code generation

Compiler representation of a model

IRModule: a collection if interdependent functions

Example compilation flow: high-level transformations

Example compilation flow: lowering to loop IR

Example compilation flow: low-level transformations

Low-level transformations

Example compilation flow: code generation and execution

Runtime Execution

High-level IR and optimizations

Computation graph(or graph-like) representation

Each node is a tensor operator(e.g. convolution)

Can be transformed (e.g. fusion) and annotated (e.g. device placement)

Most ML frameworks have this layer

Low-level code optimizations

Elements of low-level loop representations

Transforming loops: splitting

Code

for x in range(128): C[x] = A[x] + B[x]

for xo in range(32):
 for xi in range(4):
 C[xo * 4 + xi]
 = A[xo * 4 + xi] + B[xo * 4 + xi]

Transformation

```
x = get_loop("x")
xo, xi = split(x, 4)
```

Transforming loops: reorder

```
for xo in range(32):
  for xi in range(4):
     C[xo * 4 + xi]
      = A[xo * 4 + xi] + B[xo * 4 + xi]
for xi in range(4):
  for xo in range(32):
   C[xo * 4 + xi]
      = A[xo * 4 + xi] + B[xo * 4 + xi]
```

Code

Transformation

```
x = get_loop("x")
xo, xi = split(x, 4)
reorder(xi, xo)
```

Transforming loops: thread binding

```
for xi in range(4):
  for xo in range(32):
    C[xo * 4 + xi]
      = A[xo * 4 + xi] + B[xo * 4 + xi]
def gpu_kernel():
  C[threadId.x * 4 + blockIdx.x] = . . .
```

Code

Transformation

```
x = get_loop("x")
xo, xi = split(x, 4)
reorder(xi, xo)
bind_thread(xo, "threadIdx.x")
bind_thread(xi, "blockIdx.x")
```

Search via learned cost model

Summary: elements of an automated ML compiler

Program representation

 Represent the program/optimization of interest, (e.g. dense tensor linear algebra, data structures)

Build search space through a set of transformations

- Cover common optimizations
- Find ways for domain experts to provide input

Effective search

Cost models, transferability

Still an open research area!

Outline

Deploying models to different backends

Machine learning compilation