# Thermodynamique 1S – TD3

#### Travail des forces de pression

- 1. Une mole de gaz réel, d'équation d'état p(V b) = nRT, est comprimée très lentement du volume  $V_i = 2V_0$  au volume  $V_f = V_0$ , à température constante  $T_0$ . Exprimer le travail reçu par le gaz.
- 2. Un piston de masse m et de section S est relié, par l'intermédiaire d'un fil inextensible à un solide de même masse m (voir figure). L'enceinte fermée par le piston contient un gaz à la pression initiale  $p_0$  (pression atmosphérique). On coupe le fil. Exprimer la force de pression extérieure agissant sur le gaz, avant et après avoir coupé le fil. La transformation est-elle quasi-statique? Exprimer le travail reçu par le gaz au cours du déplacement du piston, en fonction du volume final occupé par le gaz  $V_f$ .
- 3. Un cylindre diatherme vertical de section S, fermé par un piston diatherme de masse m, contient un gaz parfait initialement à l'état  $(T_0, p_0, V_0)$ . La température et la pression de l'air environnant sont respectivement  $T_0$  et  $p_0$ . L'opérateur qui supportait le piston le relâche infiniment lentement. Déterminer les paramètres  $p_1$ ,  $T_1$ ,  $V_1$  de l'état final et les travaux échangés avec le gaz W, l'atmosphère  $W_{\text{atm}}$ , la gravité  $W_{\text{g}}$  et l'opérateur  $W_{\text{op}}$  (tous les travaux devront être comptés algébriquement par rapport au gaz).



Figure 1: Système masselotte – piston

# Étirement d'un fil de caoutchouc

L'équation d'état d'un fil de caoutchouc considéré comme parfaitement élastique s'écrit :

$$f = kT \left[ \frac{L}{L_0} - \left( \frac{L}{L_0} \right)^2 \right]$$

où f est la tension du fil, L sa longueur et  $L_0$  sa longueur à tension nulle à la température T. On donne  $k = 1.33 \times 10^{-2} \,\mathrm{N\,K^{-1}}$ . Calculer le travail nécessaire pour faire passer, à  $300\,\mathrm{K}$  et de manière quasi-statique, sa longueur de  $L_0 = 10\,\mathrm{cm}$  à  $L = 2L_0$ . Même question lorsqu'on étire brutalement le fil.

### Travail reçu par un gaz pour différents chemins suivis

On considère deux moles de dioxygène, gaz supposé parfait, que l'on peut faire passer réversiblement de l'état initial A ( $p_A$ ,  $V_A$  et  $T_A$ ) à l'état final B ( $p_B = 3p_A$ ,  $V_B$  et  $T_B = T_A$ ) par trois chemins distincts :

- i. Chemin 1: transformation isotherme,
- ii. Chemin 2 : transformation représentée par une droite en diagramme de Clapeyron (p, V),
- iii. Chemin 3 : transformation composée d'une isochore puis d'une isobare.
- 1. Représenter les trois chemins en diagramme de Clapeyron.
- 2. Calculer dans chaque cas les travaux mis en jeu en fonction de R et  $T_A$ .

Application numérique :  $T_A = 300 \,\mathrm{K}$ .

## Compressible adiabatique réversible d'un gaz parfait

Un gaz parfait subit une transformation adiabatique réversible (donc sans échange de chaleur avec le milieu extérieur) de l'état  $(P_0, V_0, T_0)$  à l'état  $(P_1, V_1, T_1)$ . On admettra que lors d'une telle transformation la quantité  $PV^{\gamma}$  reste constante.

Calculer le travail reçu par le gaz au cours de cette transformation.