

NLP Lab 1

Word Embeddings

Motivation

- Sprache muss irgendwie in den Computer kommen.
 - Wort/Laut => Zahl(en)
- Das Vokabular einer Sprache ist in der Regel sehr umfangreich.
 - Dimensionalitätsproblem (?)
- Einige Wörter sind enger verbunden als andere
 - Ähnlichkeit, Abstand => Maße?

Wortvektoren

- One-hot Vektoren
 - hochdimensional, linear unabhängig
- Word Embeddings:
 - reellwertige Vektoren mit N << |V| Dimensionen
 - Komponente im Vektor bildet Eigenschaft des Wortes ab
- wichtige Publikation:
 - Efficient Estimation of Word Representations in Vector Space – Mikolov et al. 2013

Katze: [1 0 0

Maus:

Hund: [0 1 0]

Grundidee

Bellend rennt ... der Katze hinterher.

Funktionsweise

- Wie kann man Wörter auf Vektoren abbilden?
- Trick:
 - Fake Task
 - (einfaches) neuronales Netz, das Wörter aus ihrem Kontext vorhersagt
 - Vektoren werden aus den Gewichtsmatrizen des neuronalen Netz extrahiert
 - Ergebnisse interessieren eigentlich nicht

Continuous Bag of Words Model (CBOW)

Kontext => fehlendes Wort

- Input Layer:
 - Kontextwörter als Vektoren
- Hidden Layer:
 - N Dimensionen
 - Durchschnitt über Inputvektoren
- Output layer:
 - Wort als Vektor
- Activation: Softmax

Skip-Gram Model

Wort => Kontext

- Input
 - Wort als Vektor
- Hidden layer:
 - N Dimensionen
- Output:
 - C*V dimensionaler Vektor
- Activation: Softmax

Skip-Gram Model

Wort => Kontext

- Input
 - Wort als Vektor
- Hidden layer:
 - N Dimensionen
- Output:
 - C*V dimensionaler Vektor
- Activation: Softmax

Implementierungen

- GloVe
 - https://nlp.stanford.edu/projects/glove(Stanford)
- FastText
 - https://fasttext.cc (Facebook)
- Word2Vec
 - https://code.google.com/archive/p/word2vec (Google)
- Gensim
 - https://radimrehurek.com/gensim/models/word2vec.html

Word Embeddings — Hands on

Laborinhalte

- Implementierung von CBOW in Keras
 - basal, nicht performanceoptimiert
- Arbeit mit Gensim
- Word Embeddings und Bias

CBOW-Implementierung

Inspiration: <u>Blogpost von</u> <u>Dipanjan Sarkar</u>

- <u>Embedding Layer</u> dient als "Lookup-Table"
- Lambda-Layer, um
 Kontextvektoren zu mitteln
- Dense Layer erzeugt per Softmax-Aktivierung Vorhersagen des fehlenden Wortes

Visual depiction of the CBOW deep learning model

Bias

- What are the biases in my word embedding?
- Understanding the Origins of Bias in Word Embeddings
- Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings
- Evaluating the Underlying Gender Bias in Contextualized
 Word Embeddings

https://github.com/hskaailabnlp/embeddings

