Exercice 12

Une charge q_1 =2 μ C est située à l'origine, et une charge q_2 =-6 μ C est située à (0,3)m comme montré sur la figure8.

- 1- Déterminer le potentiel électrique total du à ces charges au point P de coordonnées(4,0) m.
- 2- Déterminer la variation de l'énergie potentielle d'une charge q_3 =3 μ C qui se déplace de l'infini au point P.
- 3- Déduire le travail qui doit être fourni pour déplacer la charge q₃ de P à l'infini.
- 4- Déterminer l'énergie interne du système formé par les trois charges (q1, q2, q3).

Exercice 10 : dipôle électrique

On considère un dipôle électrique constitué d'une charge positive +q placée à une distance x=-a et d'une charge négative -q placée à une distance x=+a (figure 6).

Déterminer le champ électrique \vec{E} créé par ces 2 charges au point P situé sur l'axe des y tel que $y_p \gg a$.

Exercice 11

On considère un dipôle électrique constitué d'une charge positive +q placée à une distance x= +a et d'une charge négative –q placée à une distance x=-a (figure 7).

- 1- Déterminer le potentiel électrique V au point P
- 2- Pour $x_p \gg a$, déduire
 - i. V
 - ii. E en utilisant la relation $E = \frac{dV}{dx}$

Figure 7