

计算机组成原理

Principles of Computer Organization

系统总线

特性、性能指标、结构、控制方式

主讲教师:石 侃

shikan@ict.ac.cn

2025年6月16日

第3章系统总线

- 3.1 总线的基本概念 (串行、并行)
- 3.2 总线的分类(片内、系统、通信)
- 3.3 总线特性及性能指标
- 3.4 总线结构(单总线、多总线)
- 3.5 总线控制

3.1 总线的基本概念

- 一、为什么要用总线
- 二、什么是总线

总线是连接各个部件的信息传输线,

是各个部件共享的传输介质

三、总线上信息的传送

事行并行

四、总线结构的计算机举例

3.1

1. 面向 CPU 的双总线结构框图

2. 单总线结构框图

3.1

单总线 (系统总线)

3.1

3. 以存储器为中心的双总线结构框图

3.2 总线的分类

- 1. 片内总线 芯片内部的总线
- 2. 系统总线 计算机各部件之间的信息传输线 数据总线 双向 与机器字长、存储字长有关 地址总线 单向 与存储地址、I/O地址有关

控制总线有出有入

中断请求、总线请求

存储器读、存储器写总线允许、中断确认

3. 通信总线

用于计算机系统之间或计算机系统

与其他系统(如控制仪表、移动通信等)

之间的通信

串行通信总线

传输方式

并行通信总线

3.3 总线特性及性能指标

一、总线物理实现

二、总线特性

1. 机械特性 尺寸、形状、管脚数及排列顺序

2. 电气特性 传输方向和有效的电平范围

3. 功能特性 每根传输线的功能 {数据控制

4. 时间特性 信号的时序关系

地址

三、总线的性能指标

- 1. 总线宽度 数据线的根数
- 2. 总线带宽 每秒传输的最大字节数 (MBps)
- 3. 时钟同步/异步 同步、不同步
- 4. 总线复用 地址线与数据线复用
- 5. 信号线数 地址线、数据线和控制线的总和
- 6. 总线控制方式 突发(burst)、自动、仲裁、逻辑、 计数
- 7. 其他指标 负载能力(总线接上负载后,输入输出电平能否保持在正常额定范围内) 11

四、总线标准

模块

系统

标准界面

模块

系统

总线标准

ISA EISA VESA (VL-BUS) PCI (PCI-E) **AGP RS-232 USB**

四、总线标准

总线标准	数据线	总线时钟	带宽
ISA	16	8 MHz (独立)	16 MBps
EISA	32	8 MHz(独立)	33 MBps
VESA (VL-BUS)	32	33 MHz (CPU)	133 MBps
PCI	32	33 MHz (独立)	132 MBps
	64	66 MHz (独立)	528 MBps
AGP	32	66.7 MHz(独立)	266 MBps
		133 MHz(独立)	533 MBps
RS-232	串行通信 总线标准	数据终端设备(计算机)和数据通信设备 (调制解调器)之间的标准接口	
USB	串行接口 总线标准	普通无屏蔽双绞线 带屏蔽双绞线 最高	1.5 Mbps (USB1.0) 12 Mbps (USB1.0) 480 Mbps (USB2.0)

3

3.4 总线结构

一、单总线结构

单总线 (系统总线)

3.4

二、多总线结构

1. 双总线结构

2. 三总线结构

3. 三总线结构的又一形式

三、总线结构举例

3.4

1. 传统微型机总线结构

系统总线 33 MHz的32位数据通路 主存控制器 **CPU** 存储器 标准总线控制器 8 MHz的16位数据通路 **ISA EISA SCSI II** 控制器 高性能图形 高速局域网 多媒体 Modem

2. VL-BUS局部总线结构

3. PCI 总线结构

4. 多层 PCI 总线结构

3.5 总线控制

- 一、总线判优控制
 - 1. 基本概念
 - 主设备/模块(master) 对总线有 控制权
 - ·从设备/模块(slave)响应从主设备发来的总线命令

• 总线判优控制

集中式 分布式

链式查询计数器定时查询独立请求方式

2. 链式查询方式

3. 计数器定时查询方式

3.5

1

计数器

4. 独立请求方式

二、总线通信控制

1. 目的 解决通信双方协调配合问题

2. 总线周期

申请分配阶段 主模块申请,总线仲裁决定

寻址阶段

主模块向从模块 给出地址 和 命令

传数阶段

主模块和从模块 交换数据

结束阶段

主模块 撤消有关信息

3. 总线通信的四种方式

(通信双方如何获知传输开始和传输结束)

同步通信 由统一时标控制数据传送

异步通信采用应答方式,没有公共时钟标准

半同步通信 同步、异步结合

分离式通信 充分挖掘系统总线每个瞬间的潜力

(1) 同步式数据输入(S→M)

(2) 同步式数据输出(M→S)

异步通信

主设备

回答

请求

不互锁

单机

半互锁

从设备

多机

全互锁

网络通信32

(4) 半同步通信(同步、异步结合) 3.5

同步 发送方用系统 时钟前沿 发信号 接收方用系统 时钟后沿 判断、识别

异步 允许不同速度的模块和谐工作

增加一条 "等待"响应信号 WAIT

3.5

以输入数据为例的半同步通信时序

- T_1 主模块发地址
- T_2 主模块发命令
- T_{w} 当 \overline{WAIT} 为低电平时,等待一个 T
- T_{w} 当 \overline{WAIT} 为低电平时,等待一个 T
 - •
- T, 从模块提供数据
- T_4 从模块撤销数据,主模块撤销命令

(4) 半同步通信(同步、异步结合) 3.5

上述三种通信的共同点

一个总线传输周期(以输入数据为例)

• 主模块发地址、命令 占用总线

• 从模块准备数据 不占用总线 总线空闲

• 从模块向主模块发数据 占用总线

(5) 分离式通信

充分挖掘系统总线每个瞬间的潜力

一个总线传输周期

子周期1 主模块申请占用总线,使用完后

即放弃总线的使用权

子周期2

从模块 申请 占用总线,将各种信

息送至总线上

主模块

分离式通信特点

- 1. 各模块有权申请占用总线
- 2. 采用同步方式通信,不等对方回答
- 3. 各模块准备数据时,不占用总线
- 4. 总线被占用时,无空闲
- 充分提高了总线的有效占用