Resolução – Provinha V (Física I – 4302111)

Isabella B. – 11810773

Nessa provinha discutiremos um modelo para descrever interações interatômicas de moléculas diatômicas. O modelo que faremos considera a estrutura de vibração da molécula, desconsiderando qualquer efeito de rotação do sistema. A sua principal vantagem é a capacidade de descrever estados ligados e estados livres de uma maneira simples, como veremos. Os estados ligados representam as configurações em que os átomos interagentes não possuem energia suficiente para se afastarem o quanto queiram, como o próprio nome diz eles estão "ligados", em contrapartida, os estados livres representam as configurações em que os átomos possuem energia suficiente para se moverem livremente.

Questão 1

Para estudar essa interação iremos primeiro entender como essa situação se traduz em um problema de apenas uma variável. Vamos considerar o caso mais simples em que os dois átomos tem a mesma massa m. Sabendo que o centro de massa de um sistema de dois corpos é dado por

$$\mathbf{r_{CM}} = \frac{m_1 \, \mathbf{r_1} + m_2 \, \mathbf{r_2}}{m_1 + m_2},$$

e considerando que a posição de um átomo no referencial do centro de massa seja $\mathbf{r_1}$ e a do outro $\mathbf{r_2}$ (veja a Figura 1), determine:

(a) A relação entre $\mathbf{r_1}$ e $\mathbf{r_2}$ nesse referencial.

Resolução:

(b) A energia total em função desses vetores e da energia potencial de interação U(r), em que r é a distância entre os centros dos dois núcleos atômicos.

Resolução:

(c) A energia cinética em função do vetor \mathbf{r} , que representa a posição do átomo 1 em relação ao 2. Feito isso, a energia do sistema depende apenas de \mathbf{r} .

Resolução:

Figura 1: Posição dos átomos no referencial do centro de massa.

Questão 2

Uma vez que conseguimos escrever a energia total do nosso sistema para um potencial genérico, podemos estudar o seu comportamento para um potencial específico. A energia potencial que descreve a interação interatômica é apresentada abaixo

$$U(r) = A \left(1 - e^{-a(r-b)} \right)^2$$
 (2.1)

onde $A,\ a$ e b são constantes positivas com as dimensões apropriadas. Primeiramente, estudaremos o comportamento do potencial ao redor do mínimo. Para isso, mostre que $r=r_e=b$ é o mínimo do potencial apresentado em 2.1.

Resolução:

Questão 3

Estude agora em que região esse potencial gera uma força atrativa e em qual essa força é repulsiva.

(a) Determine quais são essas regiões.

Resolução:

(b) Discuta como o comportamento da força em cada uma dessas regiões está associado ao fato de o mínimo obtido no item anterior ser um ponto de equilíbrio estável.

Resolução:

Questão 4

Conseguimos descrever o comportamento de funções nas proximidades de um certo ponto utilizando a expansão de Taylor. Para uma função f(x), a expansão de Taylor até a segunda ordem ao redor do ponto x_0 , onde a ordem representa a maior potência de $x-x_0$ na expansão, é dada por

$$f(x) \simeq f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + f\frac{f''(x_0)}{2!}(x - x_0)^2, \tag{4.1}$$

onde $f'(x_0)$ e $f''(x_0)$ são a primeira e a segunda derivada da função calculadas no ponto x_0 , respectivamente.

(a) Utilize essa expansão para mostrar que o potencial ao redor do ponto r_e é aproximado por

$$U(r) = A a^{2} (r - r_{e}) 2. (4.2)$$

Resolução:

(b) Discuta porque é vantajoso utilizarmos a expansão até o termo de segunda ordem ao invés da expansão até o termo de primeira ordem.

Resolução:

Questão 5

Com a aproximação feita no item anterior, escreva:

(a) Qual é a expressão para a energia total do sistema, ou seja, a energia cinética mais a energia potencial próxima ao ponto r_e .

Resolução:

Resolução Por Isabella B.

(b) Mostre que essa energia é a mesma energia de um oscilador harmônico simples, em relação ao deslocamento relativo $r-r_e$, e determine a constante elástica associada.

Resolução:

Questão 6

Suponha agora que a velocidade relativa entre os átomos é praticamente zero, a distância entre eles é aproximadamente igual a re e queremos separá-los, ou seja, que a distância entre eles seja aproximadamente infinita. Nesse contexto, responda.

(a) Durante esse processo de separação, o trabalho que a força associada a U(r) faz é positivo ou negativo?

Resolução:

(b) Com base com o que você respondeu no item anterior, o sistema perde ou ganha energia cinética devido a esse trabalho?

Resolução:

(c) Como podemos relacionar trabalho realizado com a energia potencial do ponto r_e e do ponto final?

Resolução:

(d) Qual o mínimo de energia que deve ser fornecida ao sistema para que essa separação seja possível? Essa energia é o que chamamos de energia de dissociação E_D .

Resolução:

Questão 7

Tendo em mente do que fizemos nos itens anteriores, faça:

(a) um gráfico de U(r) deixando claro o ponto que representa r_e e onde podemos identificar E_D ;

Resolução:

(b) neste gráfico que você acabou de fazer, identifique uma energia total em que o sistema estaria no estado ligado e uma energia total em que o mesmo estaria no estado não ligado.

Resolução:

Item extra

Questão 8

Para uma molécula de ${\rm N_2}$ sabemos que $A=9{,}905\,{\rm eV},~a=2{,}691\cdot10^{10}\,{\rm m^{-1}}$ e $b=1{,}098\cdot10^{-10}\,{\rm m},$ faça o

Resolução Por Isabella B.

gráfico do potencial através de algum software (Mathematica, Python, Desmos, etc).

Resolução Por Isabella B.