ECON 7011, Semester 110.1, Assignment 1

Please hand in your solutions via NTU Cool before 11:59pm on Tuesday, November 23

- 1. In this problem, we will show that the restriction to pure strategies in part 2 of Definition 1.2 comes at no loss of generality.
 - (a) Suppose that pure strategy s_i strictly dominates every other pure strategy s_i' . Show that it also strictly dominates every mixed strategy $\sigma_i \in \Delta(\mathcal{S}_i) \setminus \{\delta_{s_i}\}$.
 - (b) Show that a mixed strategy σ_i with supp $\sigma_i = \{s_i^1, s_i^2\}$ cannot be strictly dominant.
- 2. In this counterexample, we will see that the set of strategies that survive IESDS is in general strictly larger than the set of all rationalizable strategies. Consider the 3-player game, in which Player 3's payoffs are given as follows:

	L	R		L	R		L	\mathbf{R}
\mathbf{T}	3	0	${ m T}$	2	-4	${ m T}$	0	0
D	0	0	D	-4	2	D	0	3
	A	Ā		I		С		

- (a) Show that Player 3's strategy B is not strictly dominated.
- (b) Show that strategy B is not a best response to any mixed strategy profile σ_{-3} of players 1 and 2 and, hence, not a best response to any conjecture.
- (c) Explain how the payoffs of Player 1 and Player 2 have to be chosen such that $\mathcal{R}_3^{\infty} \neq \Sigma_3^{\infty}$.
- 3. Two political rivals can choose to buy time on TV to run negative ad campaigns against their opponent. Suppose that government regulations stipulate that no more than 2 hours of negative campaign time can be bought by either campaign so that $a_i \in [0, 2]$. Suppose that each player i's utility function is $u_i(a) = a_i(1 + a_{-i} a_i) 2a_{-i}$.
 - (a) Find the set of all rationalizable strategies in this game.
 - (b) Common knowledge of rationality is a sufficient assumption to arrive at the prediction in (a). Is it also necessary?