1 Алгоритм симплекс-метода, симплекс-таблицы

1. Для известного начального базиса находят координаты разложения векторов b и A_k ($k=1,\ldots,n$) по базису:

$$\begin{cases} x^0 = A_B^{-1}b - \text{ненулевые координаты опорной точки,} \ x^k = A_B^{-1}A_k, \ k = \overline{1,n} - \text{координаты разложения вектора } A_k$$
 по базису.

- 2. Вычисляют симплекс-разности: $\Delta_k = c_k c_B A_B^{-1} A_k, \ k = 1, \dots, n.$
- 3. Проверяют план на оптимальность. Если все $\Delta_k \leq 0, k = 1, \dots, n$, то решение оптимально.
- 4. Проверяется критерий отсутствия решения. Если $\exists \Delta_r > 0$: все $x_{ir} \leq 0, i = \overline{1,m}$, то целевая функция не ограничена сверху в допустимой области.
- 5. Определяют вектор A_r , вводимый в базис: $\Delta_r > 0$ и максимальная среди всех положительных Δ_k , $k = \overline{1,n}$.
- 6. Определяют вектор A_s , выводимый из базиса:

$$A_s: rac{x_{s0}}{x_{sr}} = \min_{i \in I} rac{x_{i0}}{x_{ir}} \quad (x_{ir} > 0) \Rightarrow$$
 строим новый базис и переходим в п.1.

Формулы пересчета координат разложения векторов по новому базису:

$$x_{jk}' = egin{cases} x_{jk} - rac{x_{jr}}{x_{sr}} x_{sk}, & ext{если } j \in I \setminus s, \ rac{x_{sk}}{x_{sr}}, & ext{если } j = r. \end{cases}$$

			C_1	• • •	C_r	 C_n
базис	$C_{бa3}$	B	A_1		A_r	A_n
A_{i1}	C_{i1}	X_{10}	X_{11}		X_{1r}	X_{1n}
:	:	:	:		:	:
A_{is}	C_{is}	X_{s0}	X_{s1}		X_{sr}	X_{sn}
:	:	:	:		:	:
A_{im}	C_{im}	X_{m0}	X_{mr}		X_{mr}	X_{mn}
		$f(x^{\text{опт}})$	Δ_1		Δ_r	Δ_n