

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8 CLASS II PERMISSIVE CHANGE

CERTIFICATION TEST REPORT

FOR

802.11ABGN 3X3 W/NO BEAM FORMING MODULE

MODEL NUMBER: AR5BHB112

FCC ID: WA7-AR5BHB112 IC: 6627C-AR5BHB112

REPORT NUMBER: 11U14110-1, Revision A

ISSUE DATE: FEBRUARY 20, 2012

Prepared for

FLUKE NETWORKS. 6920 SEAWAY BLVD EVERRET, WA 98203 USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS)
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

REPORT NO: 11U14110-1A FCC ID: WA7-AR5BHB112

DATE: FEBRUARY 20, 2012 IC: 6627C-AR5BHB112

Revision History

Rev.	Issue Date	Revisions	Revised By
	2/14/12	Initial Issue	T. LEE
A	2/20/2012	Revised EUT description, Add Section 4.2	T. LEE

TABLE OF CONTENTS

ΑT	TESTA	ATION OF TEST RESULTS	5
1.	TEST	Γ METHODOLOGY	6
2.	FACI	ILITIES AND ACCREDITATION	6
3.	CALI	IBRATION AND UNCERTAINTY	6
	3.1.	MEASURING INSTRUMENT CALIBRATION	6
	3.2.	SAMPLE CALCULATION	6
;	3.3.	MEASUREMENT UNCERTAINTY	6
4.	EQU	IPMENT UNDER TEST	7
4	4.1.	DESCRIPTION OF EUT	7
4	<i>4.2.</i>	DESCRIPTION OF CLASS II PERMISSIVE CHANGE	7
4	4.3.	MAXIMUM OUTPUT POWER	7
4	1.4.	OUTPUT POWER MEASUREMENTS	
	4.4.1		12
	4.4.2	802.11g Mode, 6Mbps	16
	4.4.3 4.4.4	, , , , , , , , , , , , , , , , , , ,	
	4.4.5	· · · · · · · · · · · · · · · · · · ·	
	4.4.6	802.11n HT20 Mode, 5.8GHz, 6.5Mbps	32
4	4.5.	DESCRIPTION OF AVAILABLE ANTENNAS	36
4	4.6.	SOFTWARE AND FIRMWARE	37
4	4.7.	WORST-CASE CONFIGURATION AND MODE	37
4	4.8.	DESCRIPTION OF TEST SETUP	38
5.	TEST	T AND MEASUREMENT EQUIPMENT	40
6.	RAD	IATED TEST RESULTS	41
(5. <i>1</i> .	LIMITS AND PROCEDURE	41
(6.2 <i>.</i>	TRANSMITTER ABOVE 1 GHz	42
	6.2.1		
	6.2.2 6.2.3	3	
	6.2.1		
	6.2.2		
	6.2.3		
	6.2.4		
(6.3. 6.3.1	RECEIVER ABOVE 1 GHz FOR 20 MHz BANDWIDTH	
	6.3.2		
(6. <i>4.</i>	WORST-CASE BELOW 1 GHz	

FCC ID: WA7-AR5BHB112 IC: 6627C-AR5BHB11:	REPORT NO: 11U14110-1A	DATE: FEBRUARY 20, 2012
	FCC ID: WA7-AR5BHB112	IC: 6627C-AR5BHB112

7. SETUP PHOTOS.......63

ATTESTATION OF TEST RESULTS

COMPANY NAME: FLUKE NETWORKS.

6920 SEAWAY BLVD

EVERRET, WA 98203, USA

DATE: FEBRUARY 20, 2012

IC: 6627C-AR5BHB112

EUT DESCRIPTION: 802.11abgn 3X3 W/NO BEAM FORMING MODULE

MODEL: AR5BHB112

SERIAL NUMBER: CUS152-053-F0760

DATE TESTED: DECEMBER 13, 2011 to JANUARY 17, 2012

APPLICABLE STANDARDS

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
CFR 47 Part 15 Subpart C	Pass
INDUSTRY CANADA RSS-210 Issue 8 Annex 8	Pass
INDUSTRY CANADA RSS-GEN Issue 3	Pass

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By: Tested By:

TIM LEE STAFF ENGINEER

- tie Son

UL CCS

VIEN TRAN EMC ENGINEER

UL CCS

1. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

2. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

3. CALIBRATION AND UNCERTAINTY

3.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

3.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

3.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

4. EQUIPMENT UNDER TEST

4.1. **DESCRIPTION OF EUT**

The EUT is a 802.11abgn 3x3 product with the option of no beam forming module.

The radio module is manufactured by Atheros.

DESCRIPTION OF CLASS II PERMISSIVE CHANGE 4.2.

The major change filed under this application is adding a new antenna types with lower gain.

IC: 6627C-AR5BHB112

4.3. **MAXIMUM OUTPUT POWER**

In order to pass Band edge and Harmonic spurious measurement, the 2.4 and 5.8GHz bands must be reduced from the original average output powers as table shown below:

Average Power 2.4GHz

11b Mode, 1Mbps

	I/O CABLE LIST										
Cable	Port	# of	Connector	Cable	Cable	Remarks					
No.		Identical	Type	Type	Length						
		Ports									
1	AC	2	US115V	Unshielded	1m	Ferrite on laptop's end					
2	DC	2	DC	Unshielded	2m	NA					
3	Ant Port	1	U.FL	Unshielded	0.2m	NA					

11g Mode, 6Mbps

Channel	Frequency	Setting	Chain 1 Power	Chain 2 Power	Chain 3 Power	Total Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2412	7.0	8.10	7.80	7.15	12.47
High	2462	13.5	13.30	13.50	13.50	18.21

11n HT20 Mode, 6.5Mbps

Channel	Frequency	Setting	Chain 1 Power	Chain 2 Power	Chain 3 Power	Total Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2412	5.5	6.60	5.40	5.35	10.59
High	2462	9.0	9.00	9.65	9.60	14.20

11n HT40 Mode, 13.5Mbps

Channel	Frequency	Setting	Chain 1 Power	Chain 2 Power	Chain 3 Power	Total Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2422	5.0	6.60	5.30	5.30	10.55
High	2452	7.50	7.35	7.85	7.12	12.22

5.8GHz

11a Mode, 6Mbps

Channel	Frequency	Setting	Chain 1 Power	Chain 2 Power	Chain 3 Power	Total Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
Middle	5785	18.0	15.30	14.80	13.60	19.39
High	5825	18.0	14.80	14.60	14.00	19.25

11n HT20 Mode 6.5Mbps

Channel	Frequency	Setting	Chain 1 Power	Chain 2 Power	Chain 3 Power	Total Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
Middle	5785	17.0	14.30	13.70	13.30	18.56
High	5825	16.0	13.50	13.00	12.65	17.84

Peak Power

2.4GHz

11b Mode, 1Mbps

Channel	Frequency	Setting	Chain 1 Power	Chain 2 Power	Chain 3 Power	Total Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2412	7.0	10.76	11.60	10.73	15.82
High	2462	13.5	15.98	16.72	16.07	21.04

11g Mode, 6Mbps

Channel	Frequency	Setting	Chain 1 Power Chain 2 Power		Chain 3 Power	Total Power	
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	
Low	2412	7.0	16.51	15.66	15.32	20.63	
High	2462	13.5	22.55	23.05	21.78	27.26	

11n HT20 Mode, 6.5Mbps

	11.000, 0.011.	200				
Channel	Frequency	Setting	Chain 1 Power	Chain 2 Power	Chain 3 Power	Total Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2412	5.5	14.30	14.06	13.96	18.88
High	2462	9.0	16.58	18.04	16.75	21.94

11n HT40 Mode, 13.5Mbps

Channel	Frequency Setting		Chain 1 Power Chain 2 Power		Chain 3 Power	Total Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2422	5.0	14.18	14.02	13.37	18.64
High	2452	7.50	15.90	16.43	15.69	20.79

5.8GHz

11a Mode, 6Mbps

Channel	Frequency	Setting	Chain 1 Power	Chain 2 Power	Chain 3 Power	Total Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
Middle	5785	18.0	23.89	23.45	22.22	28.01
High	5825	18.0	22.59	23.87	22.47	27.80

11n HT20 Mode, 6.5Mbps

Channel	Frequency	Setting	Chain 1 Power	Chain 2 Power	Chain 3 Power	Total Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
Middle	5785	17.0	23.17	23.03	21.83	27.49
High	5825	16.0	22.59	22.29	21.62	26.96

4.4. OUTPUT POWER MEASUREMENTS

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

Antenna	10 Log		Effective	
Gain	(# Tx Chains)		Legacy Gain	
(dBi)	(dB)		(dBi)	
1.1		4.77		5.87
3.2		4.77		7.97

TEST PROCEDURE

Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.

DATE: FEBRUARY 20, 2012

IC: 6627C-AR5BHB112

RESULTS

4.4.1. 802.11b Mode, 1Mbps

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		PK Power	PK Power	PK Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2412	10.76	11.60	10.73	15.82	30.00	-14.18
High	2462	15.98	16.72	16.07	21.04	30.00	-8.96

LOW CH

4.4.2. 802.11g Mode, 6Mbps

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		PK Power	PK Power	PK Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2412	16.51	15.66	15.32	20.63	30.00	-9.37
High	2462	22.55	23.05	21.78	27.26	30.00	-2.74

LOW CH

4.4.3. 802.11n HT20 Mode, 2.4GHz, 6.5Mbps

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		PK Power	PK Power	PK Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2412	14.30	14.06	13.96	18.88	30.00	-11.12
High	2462	16.58	18.04	16.75	21.94	30.00	-8.06

LOW CH

4.4.4. 802.11n HT40 Mode, 2.4GHz, 13.5Mbps

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		PK Power	PK Power	PK Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	2422	14.18	14.02	13.37	18.64	30.00	-11.36
High	2452	15.90	16.43	15.69	20.79	30.00	-9.21

LOW CH

4.4.5. 802.11a Mode, 5.8GHz, 6Mbps

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		PK Power	PK Power	PK Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Middle	5785	23.89	23.45	22.22	28.01	28.03	-0.02
High	5825	22.59	23.87	22.47	27.80	28.03	-0.23

MIDDLE CH

4.4.6. 802.11n HT20 Mode, 5.8GHz, 6.5Mbps

Channel	Frequency	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		PK Power	PK Power	PK Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Middle	5785	23.17	23.03	21.83	27.49	28.03	-0.54
High	5825	22.59	22.29	21.63	26.96	28.03	-1.07

MIDDLE CH

DESCRIPTION OF CLASS II PERMISSIVE CHANGE

The major change filed under this application is adding a new Ethertronics' Savvi WLAN Embedded Ceramic antenna.

4.5. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a Savvi Embedded Ceramic antenna, with the maximum gain as table below:

Frequency Band (GHz)	Peak Gain (dBi)
2.4-2.5	1.1
4.9-5.8	3.2

REPORT NO: 11U14110-1A FCC ID: WA7-AR5BHB112

4.6. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Atheros AR93 Anwi Diagnostic Kernel Driver.

DATE: FEBRUARY 20, 2012

IC: 6627C-AR5BHB112

The test utility software used during testing was Atheros artgui ver_2.5.

4.7. WORST-CASE CONFIGURATION AND MODE

The EUT was tested as an external module installed in a test jig board connected to a host Laptop PC.

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

For 2.4GHz Band:

All final tests in the 802.11b Mode (Legacy) were made at 1 Mb/s.

All final tests in the 802.11g Mode were made at 6 Mb/s.

All final tests in the 802.11n HT20 Mode were made at MCS0.

All final tests in the 802.11n HT40 Mode were made at MCS0.

For 5.8GHz Band:

All final tests in the 802.11a Mode (Legacy) were made at 6 Mb/s.

All final tests in the 802.11n HT20 Mode were made at MCS0

All final tests in the 802.11n HT40 Mode were made at MCS0

For Radiated Band Edge measurements preliminary testing showed that the worst case was horizontal polarization, so final measurements were performed with horizontal polarization.

Worst-case mode and channel used for 30-1000 MHz radiated and power line conducted emissions was the mode and channel with the highest output power.

To determine the worst-position of highest emissions, the EUT was investigated for X, Y, Z positions, and the worst position was turned out to be antenna at X-position.

REPORT NO: 11U14110-1A DATE: FEBRUARY 20, 2012 FCC ID: WA7-AR5BHB112 IC: 6627C-AR5BHB112

4.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

	PERIPHE	RAL SUPPORT EC	QUIPMENT LIST	
Description	Manufacturer	Model	Serial Number	FCC ID
AC Adapter	Delta	GA240PE1-00	CN-OJ211H-48661-134-09VU	DoC
Laptop	Dell	Precision M6200	FBSNQ61	DoC
PCB Board	Qualcomm	NA	NA	NA
Antenna AC Adapter	V-Infinity	3A-124DA09	1039A	DoC

I/O CABLES

			1/0 (CABLE LIST		
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks
1	AC	2	US115V	Unshielded	1m	Ferrite on laptop's end
2	DC	2	DC	Unshielded	2m	NA
3	Ant Port	1	U.FL	Unshielded	0.2m	NA

TEST SETUP

The EUT is connected to a host laptop computer via a PCI-E adapter board during the test. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

5. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	TEST	EQUIPMENT LIST			
Description	Manufacturer	Model	Asset	Cal Date	Cal Due
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C00996	04/29/11	10/29/12
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01171	01/14/11	07/14/12
Antenna, Horn, 18 GHz	EMCO	3115	C00872	06/29/11	06/29/12
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00980	06/25/11	06/25/12
Antenna, Horn, 40 GHz	ARA	MWH-2640/B	C00981	06/08/11	06/08/12
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00778	01/06/11	07/06/12
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C00749	07/14/11	07/14/12
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	C00990	07/15/11	07/15/12
Peak Power Meter	HP	437B	C00963	3/22/2011	10/29/12
Peak Power Sensor	HP	E9327A	C00964	4/13/2011	11/04/12
EMI Receiver, 6.5 GHz	Agilent / HP	8546A	1963	05/19/11	08/19/12
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	08/06/10	05/06/12
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	11/06/10	02/06/12
Reject Filter, 2.4-2.5 GHz	Micro-Tronics	BRM50702	N02685	CNR	CNR
Highpass Filter, 7.6 GHz	Micro-Tronics	HPM13195	N02601	CNR	CNR

6. RADIATED TEST RESULTS

6.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

DATE: FEBRUARY 20, 2012

IC: 6627C-AR5BHB112

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

6.2. TRANSMITTER ABOVE 1 GHz

6.2.1. 802.11b MODE IN THE 2.4 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CH CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 3m Chamber

Test Engr: Vien Tran Date: 01/06/12 Project #: 11U14110 Company: Fluke Networks FCC Class B Test Target: Mode Oper: Tx 11b Mode 1Mbps

> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters
> Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
LOW CH	ANNEL,	2412MH	z												
4.824	3.0	39.3	33.1	6.8	-34.8	0.0	0.0	44.4	74.0	-29.6	V	P	101.0	33.0	
4.824	3.0	33.0	33.1	6.8	-34.8	0.0	0.0	38.1	54.0	-15.9	V	A	101.0	33.0	
4.824	3.0	38.7	33.1	6.8	-34.8	0.0	0.0	43.8	74.0	-30.2	H	P	198.0	347.0	
4.824	3.0	31.0	33.1	6.8	-34.8	0.0	0.0	36.1	54.0	-17.9	H	A	198.0	347.0	
MID CHA	NNEL, 2	437MHz													
4.874	3.0	49.3	33.2	6.8	-34.8	0.0	0.0	54.4	74.0	-19.6	H	P	198.0	347.0	
4.874	3.0	47.6	33.2	6.8	-34.8	0.0	0.0	52.7	54.0	-1.3	H	A	198.0	347.0	
7.311	3.0	40.4	36.3	9.1	-34.1	0.0	0.0	51.7	74.0	-22.3	H	P	160.0	59.0	
7.311	3.0	33.2	36.3	9.1	-34.1	0.0	0.0	44.5	54.0	-9.5	H	A	160.0	59.0	
12.185	3.0	33.3	39.4	12.0	-32.5	0.0	0.0	52.1	74.0	-21.9	H	P	195.0	98.0	
12.185	3.0	21.3	39.4	12.0	-32.5	0.0	0.0	40.2	54.0	-13.8	H	A	195.0	98.0	
4.874	3.0	44.6	33.2	6.8	-34.8	0.0	0.0	49.8	74.0	-24.2	V	P	98.0	180.0	
4.874	3.0	41.5	33.2	6.8	-34.8	0.0	0.0	46.6	54.0	-7.4	V	A	98.0	180.0	
7.311	3.0	41.8	36.3	9.1	-34.1	0.0	0.0	53.1	74.0	-20.9	V	P	113.0	-2.0	
7.311	3.0	35.9	36.3	9.1	-34.1	0.0	0.0	47.2	54.0	-6.8	V	A	113.0	-2.0	
12.185	3.0	33.2	39.4	12.0	-32.5	0.0	0.0	52.1	74.0	-21.9	V	P	127.0	156.0	
12.185	3.0	21.3	39.4	12.0	-32.5	0.0	0.0	40.2	54.0	-13.9	V	A	127.0	156.0	
HIGH CH	ANNEL	, 2462MH	z												
4.924	3.0	39.0	33.2	6.8	-34.8	0.0	0.0	44.2	74.0	-29.8	H	P	156.0	54.0	
4.924	3.0	32.7	33.2	6.8	-34.8	0.0	0.0	37.9	54.0	-16.1	H	A	156.0	54.0	
7.386	3.0	36.0	36.4	9.1	-34.1	0.0	0.0	47.5	74.0	-26.5	H	P	152.0	334.0	
7.386	3.0	24.6	36.4	9.1	-34.1	0.0	0.0	36.1	54.0	-17.9	H	A	152.0	334.0	
12.310	3.0	33.9	39.4	12.0	-32.5	0.0	0.0	52.8	74.0	-21.2	H	P	136.0	354.0	
12.310	3.0	21.3	39.4	12.0	-32.5	0.0	0.0	40.3	54.0	-13.7	H	A	136.0	354.0	
4.924	3.0	37.2	33.2	6.8	-34.8	0.0	0.0	42.4	74.0	-31.6	V	P	98.0	257.0	
4.924	3.0	29.6	33.2	6.8	-34.8	0.0	0.0	34.8	54.0	-19.2	V	A	98.0	257.0	
7.386	3.0	36.9	36.4	9.1	-34.1	0.0	0.0	48.3	74.0	-25.7	V	P	168.0	361.0	

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

3.0 25.9 36.4 9.1 -34.1 0.0 0.0 37.3 54.0 -16.7

6.2.2. 802.11g MODE IN THE 2.4 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE HIGH CHANNEL, HORIZONTAL)

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 3m Chamber

Test Engr: Vien Tran 01/06/12 Date: 11U14110 Project #: Company: Fluke Networks FCC Class B Test Target: Tx 11g Mode, 6Mbps Mode Oper:

> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter

f GHz	Dist (m)	Read dBuV	AF dB/m	CL dB	Amp dB	D Corr dB		Corr. dBuV/m	Limit dBuV/m	:	Ant. Pol. V/H	Det. P/A/QP	Ant.High cm	Table Angle Degree	Notes
LOW CH	ANNEL,	2412MH	z, 6Mbp	s											
4.824	3.0	39.7	33.1	6.8	-34.8	0.0	0.0	44.8	74.0	-29.2	H	P	197.0	-2.0	
4.824	3.0	26.2	33.1	6.8	-34.8	0.0	0.0	31.2	54.0	-22.8	H	A	197.0	-2.0	
4.824	3.0	37.3	33.1	6.8	-34.8	0.0	0.0	42.4	74.0	-31.6	V	P	98.0	332.0	
4.824	3.0	25.1	33.1	6.8	-34.8	0.0	0.0	30.2	54.0	-23.8	V	A	98.0	332.0	
MID CHA	NNEL, 2	437MHz.	6Mbps				•••••		•••••						
4.874	3.0	47.2	33.2	6.8	-34.8	0.0	0.0	52.4	74.0	-21.6	H	P	177.0	82.0	
4.874	3.0	31.3	33.2	6.8	-34.8	0.0	0.0	36.4	54.0	-17.6	H	A	177.0	82.0	
7.311	3.0	47.7	36.3	9.1	-34.1	0.0	0.0	59.0	74.0	-15.0	H	P	155.0	37.0	
7.311	3.0	29.6	36.3	9.1	-34.1	0.0	0.0	40.9	54.0	-13.1	H	A	155.0	37.0	
12.185	3.0	33.6	39.4	12.0	-32.5	0.0	0.0	52.5	74.0	-21.5	H	P	196.0	307.0	
12.185	3.0	21.2	39.4	12.0	-32.5	0.0	0.0	40.1	54.0	-13.9	H	A	196.0	307.0	
4.874	3.0	47.1	33.2	6.8	-34.8	0.0	0.0	52.3	74.0	-21.7	V	A P	181.0	137.0	
4.874	3.0	32.7	33.2	6.8	-34.8	0.0	0.0	37.8	54.0	-16.2	V	A	181.0	137.0	
7.311	3.0	36.5	36.3	9.1	-34.1	0.0	0.0	47.8	74.0	-26.2	V	P	98.0	267.0	
7.311	3.0	23.5	36.3	9.1	-34.1	0.0	0.0	34.8	54.0	-19.2	V	A	98.0	267.0	
12.185	3.0	33.8	39.4	12.0	-32.5	0.0	0.0	52.7	74.0	-21.3	V	P	170.0	176.0	
12.185	3.0	21.3	39.4	12.0	-32.5	0.0	0.0	40.2	54.0	-13.8	V	A	170.0	176.0	
HIGH CH	IANNEL,	2462MH	z, 6Mbp)S			•••••		•••••						
4.924	3.0	44.0	33.2	6.8	-34.8	0.0	0.0	49.2	74.0	-24.8	H	P	159.0	111.0	
4.924	3.0	29.6	33.2	6.8	-34.8	0.0	0.0	34.8	54.0	-19.2	H	A	159.0	111.0	
7.386	3.0	46.9	36.4	9.1	-34.1	0.0	0.0	58.3	74.0	-15.7	H	A P	158.0	34.0	
7.386	3.0	25.4	36.4	9.1	-34.1	0.0	0.0	36.8	54.0	-17.2	H	A	158.0	34.0	
12.310	3.0	33.4	39.4	12.0	-32.5	0.0	0.0	52.3	74.0	-21.7	H	P	167.0	238.0	
12.310	3.0	21.4	39.4	12.0	-32.5	0.0	0.0	40.4	54.0	-13.6	H	A	167.0	238.0	
4.924	3.0	42.5	33.2	6.8	-34.8	0.0	0.0	47.7	74.0	-26.3	V	P	110.0	253.0	
4.924	3.0	28.5	33.2	6.8	-34.8	0.0	0.0	33.7	54.0	-20.3	V	A	110.0	253.0	
7.386	3.0	40.1	36.4	9.1	-34.1	0.0	0.0	51.5	74.0	-22.5	V	P	162.0	327.0	
7.386	3.0	23.6	36.4	9.1	-34.1	0.0	0.0	35.0	54.0	-19.0	V	A	162.0	327.0	
12.310	3.0	33.6	39.4	12.0	-32.5	0.0	0.0	52.6	74.0	-21.4	V	P	161.0	329.0	
12.310	3.0	21.0	39.4	12.0	-32.5	0.0	0.0	39.9	54.0	-14.1	V	A	161.0	329.0	

Note: No other emissions were detected above the system noise floor.

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

6.2.3. 802.11n HT20 MODE IN THE 2.4 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE HIGH CHANNEL, HORIZONTAL)

TEL: (510) 771-1000

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 3m Chamber

Test Engr: Vien Tran 01/06/12 Date: 11U14110 Project #: Company: Fluke Networks FCC Class B Test Target: Mode Oper: Tx HT20 Mode 6.5Mbps

> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dΒ	dB	dB	dBuV/m	dBuV/m	dΒ	V/H	P/A/QP	cm	Degree	
OW CH	ANNEL,	2412MH	z, 6.5M	bps - S	etting=	5.5dBm									
4.824	3.0	36.6	33.1	6.8	-34.8	0.0	0.0	41.7	74.0	-32.3	H	P	117.0	164.0	
4.824	3.0	24.0	33.1	6.8	-34.8	0.0	0.0	29.1	54.0	-24.9	H	A	117.0	164.0	
4.824	3.0	37.4	33.1	6.8	-34.8	0.0	0.0	42.5	74.0	-31.5	V	P	192.0	38.0	
4.824	3.0	24.3	33.1	6.8	-34.8	0.0	0.0	29.4	54.0	-24.6	V	A	192.0	38.0	
MID CHA	NNEL, 2	437MHz	, 6.5Mbp	s - Se	tting=14	4dBm									
1.874	3.0	51.5	33.2	6.8	-34.8	0.0	0.0	56.6	74.0	-17.4	H	P	179.0	352.0	
1.874	3.0	35.5	33.2	6.8	-34.8	0.0	0.0	40.7	54.0	-13.3	H	A	179.0	352.0	
7.311	3.0	49.4	36.3	9.1	-34.1	0.0	0.0	60.7	74.0	-13.3	H	P	143.0	26.0	
7.311	3.0	32.6	36.3	9.1	-34.1	0.0	0.0	43.9	54.0	-10.1	H	A	143.0	26.0	
12.185	3.0	36.3	39.4	12.0	-32.5	0.0	0.0	55.2	74.0	-18.8	H	P	149.0	357.0	
12.185	3.0	21.9	39.4	12.0	-32.5	0.0	0.0	40.8	54.0	-13.2	H	A	149.0	357.0	
1.874	3.0	41.3	33.2	6.8	-34.8	0.0	0.0	46.5	74.0	-27.5	V	P	110.0	283.0	
1.874	3.0	28.9	33.2	6.8	-34.8	0.0	0.0	34.0	54.0	-20.0	V	A	110.0	283.0	
7.311	3.0	42.9	36.3	9.1	-34.1	0.0	0.0	54.2	74.0	-19.8	V	P	160.0	330.0	
7.311	3.0	27.0	36.3	9.1	-34.1	0.0	0.0	38.3	54.0	-15.7	V	A	160.0	330.0	
12.185	3.0	33.6	39.4	12.0	-32.5	0.0	0.0	52.5	74.0	-21.5	V	P	197.0	32.0	
12.185	3.0	21.1	39.4	12.0	-32.5	0.0	0.0	40.0	54.0	-14.0	V	A	197.0	32.0	
MID CHA	NNEL, 2	437MHz	, 6.5Mbr	s - Se	tting=9	lBm						·····		·	
1.924	3.0	39.0	33.2	6.8	-34.8	0.0	0.0	44.2	74.0	-29.8	Н	P	181.0	344.0	
1.924	3.0	26.1	33.2	6.8	-34.8	0.0	0.0	31.3	54.0	-22.7	Н	A	181.0	344.0	
7.386	3.0	35.3	36.4	9.1	-34.1	0.0	0.0	46.8	74.0	-27.2	Н	P	166.0	18.0	
7.386	3.0	22.5	36.4	9.1	-34.1	0.0	0.0	33.9	54.0	-20.1	H	A	166.0	18.0	
12.310	3.0	33.3	39.4	12.0	-32.5	0.0	0.0	52.2	74.0	-21.8	H	P	102.0	260.0	
12.310	3.0	21.1	39.4	12.0	-32.5	0.0	0.0	40.0	54.0	-14.0	Н	A	102.0	260.0	
1.924	3.0	36.7	33.2	6.8	-34.8	0.0	0.0	41.9	74.0	-32.1	V	P	98.0	224.0	
1.924	3.0	24.4	33.2	6.8	-34.8	0.0	0.0	29.6	54.0	-24.4	v	A	98.0	224.0	
7.386	3.0	35.7	36.4	9.1	-34.1	0.0	0.0	47.1	74.0	-26.9	V	P	126.0	257.0	
7.386	3.0	22.8	36.4	9.1	-34.1	0.0	0.0	34.2	54.0	-19.8	V	A	126.0	257.0	
12.310	3.0	33.7	39.4	12.0	-32.5	0.0	0.0	52.7	74.0	-21.3	V	P	155.0	25.0	
12.310	3.0	21.3			-32.5	0.0	0.0	40.2	54.0	-13.8	V	A	155.0	25.0	

Note: No other emissions were detected above the system noise floor.

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

6.2.1. 802.11n HT40 MODE IN THE 2.4 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE HIGH CHANNEL, HORIZONTAL)

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 3m Chamber

Test Engr: Vien Tran Date: 01/09/12 11U14110 Project #: Company: Fluke Networks FCC Class B Test Target: Test Target: FCC Class B Mode Oper: Tx HT40 Mode 13.5Mbps

> f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
LOW CH	ANNEL,	2422MH	z												
4.844	3.0	38.1	33.1	6.8	-34.8	0.0	0.0	43.2	74.0	-30.8	H	P	98.0	148.0	
4.844	3.0	25.0	33.1	6.8	-34.8	0.0	0.0	30.1	54.0	-23.9	H	A	98.0	148.0	
7.266	3.0	35.8	36.2	9.1	-34.1	0.0	0.0	47.0	74.0	-27.0	H	P	101.0	185.0	
7.266	3.0	23.7	36.2	9.1	-34.1	0.0	0.0	35.0	54.0	-19.0	H	A	101.0	185.0	
4.844	3.0	38.2	33.1	6.8	-34.8	0.0	0.0	43.3	74.0	-30.7	V	P	130.0	343.0	
4.844	3.0	25.0	33.1	6.8	-34.8	0.0	0.0	30.1	54.0	-23.9	V	A	130.0	343.0	
7.266	3.0	36.2	36.2	9.1	-34.1	0.0	0.0	47.4	74.0	-26.6	V	P	100.0	322.0	
7.266	3.0	23.8	36.2	9.1	-34.1	0.0	0.0	35.0	54.0	-19.0	V	A	100.0	322.0	
MID CHA										•			•		
4.874	3.0	41.0	33.2	6.8	-34.8	0.0	0.0	46.2	74.0	-27.8	H	P	188.0	339.0	
4.874	3.0	28.4	33.2	6.8	-34.8	0.0	0.0	33.6	54.0	-20.4	H	A	188.0	339.0	
7.311	3.0	36.6	36.3	9.1	-34.1	0.0	0.0	47.8	74.0	-26.2	H	P	164.0	141.0	
7.311	3.0	23.6	36.3	9.1	-34.1	0.0	0.0	34.9	54.0	-19.1	H	A	164.0	141.0	
12.185	3.0	34.1	39.4	12.0	-32.5	0.0	0.0	53.0	74.0	-21.0	H	P	169.0	73.0	
12.185	3.0	21.7	39.4	12.0	-32.5	0.0	0.0	40.6	54.0	-13.4	H	A	169.0	73.0	
4.874	3.0	38.3	33.2	6.8	-34.8	0.0	0.0	43.4	74.0	-30.6	V	P	98.0	231.0	
4.874	3.0	26.4	33.2	6.8	-34.8	0.0	0.0	31.6	54.0	-22.4	V	A	98.0	231.0	
7.311	3.0	36.7	36.3	9.1	-34.1	0.0	0.0	48.0	74.0	-26.0	V	P	103.0	260.0	
7.311	3.0	23.7	36.3	9.1	-34.1	0.0	0.0	35.0	54.0	-19.0	V	A	103.0	260.0	
4.904	3.0	37.8	33.2	6.8	-34.8	0.0	0.0	43.0	74.0	-31.0	V	P	127.0	240.0	
4.904	3.0	25.3	33.2	6.8	-34.8	0.0	0.0	30.5	54.0	-23.5	V	A	127.0	240.0	
7.356	3.0	35.6	36.4	9.1	-34.1	0.0	0.0	47.0	74.0	-27.0	V	P	170.0	110.0	
7.356	3.0	23.4	36.4	9.1	-34.1	0.0	0.0	34.8	54.0	-19.2	V	A	170.0	110.0	
нісн сі										•			•		
4.904	3.0	38.0	33.2	6.8	-34.8	0.0	0.0	43.2	74.0	-30.8	H	P	166.0	339.0	
4.904	3.0	25.8	33.2	6.8	-34.8	0.0	0.0	31.0	54.0	-23.0	H	A	166.0	339.0	
7.356	3.0	35.2	36.4	9.1	-34.1	0.0	0.0	46.5	74.0	-27.5	H	P	183.0	243.0	
7.356	3.0	22.7	36.4	9.1	-34.1	0.0	0.0	34.1	54.0	-19.9	H	A	183.0	243.0	
12.260	3.0	34.5	39.4	12.0	-32.5	0.0	0.0	53.4	74.0	-20.6	H	P	119.0	254.0	
12.260	3.0	21.7	39.4	12.0		0.0	0.0	40.6	54.0	-13.4	H	A	119.0	254.0	
4.904	3.0	38.2	33.2	6.8	-34.8	0.0	0.0	43.4	74.0	-30.6	V	P	198.0	142.0	
4.904	3.0	25.0	33.2	6.8	-34.8	0.0	0.0	30.2	54.0	-23.8	V	A	198.0	142.0	
7.356	3.0	36.2	36.4	9.1	-34.1	0.0	0.0	47.5	74.0	-26.5	V	P	164.0	160.0	
7.356	3.0	23.4	36.4	9.1	-34.1	0.0	0.0	34.8	54.0	-19.2	V	A	164.0	160.0	

6.2.2. 802.11a MODE IN THE 5.8 GHz BAND

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 3m Chamber

Vien Tran Test Engr: 01/09/12 Date: Date: 01/09/12 Project #: 11U14110 Company: Fluke Networks

Test Target: FCC Class B
Mode Oper: Tx 11a Mode_5.8GHz Band_6Mbps

f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
LOW CH	ANNEL,	5745MH	z, Settii	ıg=19.	5dBm										
11.490	3.0	45.5	38.9	11.2	-32.5	0.0	0.0	63.0	74.0	-11.0	V	P	98.0	112.0	
11.490	3.0	32.0	38.9	11.2	-32.5	0.0	0.0	49.5	54.0	-4.5	V	A	98.0	112.0	
11.490	3.0	48.3	38.9	11.2	-32.5	0.0	0.0	65.9	74.0	-8.1	H	P	98.0	135.0	
11.490	3.0	35.7	38.9	11.2	-32.5	0.0	0.0	53.2	54.0	-0.8	H	A	98.0	135.0	
MID CHA	NNEL, 5	785MHz	Setting	=18.0	dBm to	pass (fro	n 19d	Bm)							
11.570	3.0	50.2	38.9	11.3	-32.5	0.0	0.0	68.0	74.0	-6.0	V	P	113.0	128.0	
11.570	3.0	36.3	38.9	11.3	-32.5	0.0	0.0	54.0	54.0	0.0	V	A	113.0	128.0	
11.570	3.0	45.5	38.9	11.3	-32.5	0.0	0.0	63.2	74.0	-10.8	H	P	98.0	134.0	
11.570	3.0	32.3	38.9	11.3	-32.5	0.0	0.0	50.0	54.0	-4.0	H	A	98.0	134.0	
HIGH CH	IANNEL,	5825MH	z, Setti	ng=18	.0dBm t	o pass (fr	om 19	dBm)							
11.650	3.0	47.4	39.0	11.4	-32.5	0.0	0.0	65.3	74.0	-8.7	V	P	98.0	132.0	
11.650	3.0	35.6	39.0	11.4	-32.5	0.0	0.0	53.5	54.0	-0.5	V	A	98.0	132.0	
11.650	3.0	44.5	39.0	11.4	-32.5	0.0	0.0	62.4	74.0	-11.6	H	P	98.0	53.0	
11.650	3.0	31.6	39.0	11.4	-32.5	0.0	0.0	49.5	54.0	-4.5	H	A	98.0	53.0	

DATE: FEBRUARY 20, 2012

IC: 6627C-AR5BHB112

6.2.3. 802.11n HT20 MODE IN THE 5.8 GHz BAND

DATE: FEBRUARY 20, 2012

IC: 6627C-AR5BHB112

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 3m Chamber

Vien Tran Test Engr: 01/09/12 Date: 11U14110 Project #: Fluke Networks Company: FCC Class B Test Target:

Mode Oper: Tx HT20 Mode, 6.5Mbps_5.8GHz Band

f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lir AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit CL Cable Loss HPF High Pass Filter Margin vs. Average Limit

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dΒ	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
LOW CH	ANNEL,	5745MH	z												
11.490	3.0	51.1	38.9	11.2	-32.5	0.0	0.0	68.6	74.0	-5.4	V	P	118.0	128.0	
11.490	3.0	35.8	38.9	11.2	-32.5	0.0	0.0	53.3	54.0	-0.7	V	A	118.0	128.0	
11.490	3.0	48.1	38.9	11.2	-32.5	0.0	0.0	65.6	74.0	-8.4	H	P	119.0	317.0	
11.490	3.0	33.9	38.9	11.2	-32.5	0.0	0.0	51.4	54.0	-2.6	H	A	119.0	317.0	
MID CHA	NNEL, 5	785MHz													
11.570	3.0	49.0	38.9	11.3	-32.5	0.0	0.0	66.7	74.0	-7.3	V	P	114.0	125.0	
11.570	3.0	35.1	38.9	11.3	-32.5	0.0	0.0	52.8	54.0	-1.2	V	A	114.0	125.0	
11.570	3.0	45.4	38.9	11.3	-32.5	0.0	0.0	63.2	74.0	-10.8	H	P	98.0	133.0	
11.570	3.0	31.3	38.9	11.3	-32.5	0.0	0.0	49.1	54.0	-4.9	H	A	98.0	133.0	
HIGH CH	ANNEL.	, 5825MH	z												
11.650	3.0	49.9	39.0	11.4	-32.5	0.0	0.0	67.8	74.0	-6.2	V	P	136.0	125.0	
11.650	3.0	35.8	39.0	11.4	-32.5	0.0	0.0	53.8	54.0	-0.3	V	A	136.0	125.0	
11.650	3.0	42.5	39.0	11.4	-32.5	0.0	0.0	60.4	74.0	-13.6	H	P	98.0	335.0	
11.650	3.0	29.4	39.0	11.4	-32.5	0.0	0.0	47.3	54.0	-6.7	H	A	98.0	335.0	

6.2.4. 802.11n HT40 MODE IN THE 5.8 GHz BAND

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 3m Chamber

Vien Tran 01/09/12 Date: Project #: 11U14110 Company: Fluke Networks Test Target: FCC Class B

Mode Oper: Tx HT40 Mode, 13.5Mbps_5.8GHz Band

Average Field Strength Limit
 f
 Measurement Frequency
 Amp
 Preamp Gain
 Average Field Strength Lim

 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field Strength Limit

 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

 CL
 Cable Loss
 HPF
 High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dΒ	dB	dB	dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	cm	Degree	
LOW CH	HANNEL,	5755MH	z												
11.510	3.0	45.2	38.9	11.2	-32.5	0.0	0.0	62.8	74.0	-11.2	V	P	103.0	126.0	
11.510	3.0	31.6	38.9	11.2	-32.5	0.0	0.0	49.2	54.0	-4.8	V	A	103.0	126.0	
11.510	3.0	39.5	38.9	11.2	-32.5	0.0	0.0	57.1	74.0	-16.9	H	P	98.0	131.0	
11.510	3.0	26.7	38.9	11.2	-32.5	0.0	0.0	44.2	54.0	-9.8	H	A	98.0	131.0	
HIGH CI	HANNEL,	5795MH	z												
11.590	3.0	41.6	39.0	11.3	-32.5	0.0	0.0	59.3	74.0	-14.7	H	P	101.0	132.0	
11.590	3.0	28.2	39.0	11.3	-32.5	0.0	0.0	46.0	54.0	-8.0	H	A	101.0	132.0	
11.590	3.0	48.9	39.0	11.3	-32.5	0.0	0.0	66.7	74.0	-7.3	V	P	146.0	130.0	
11.590	3.0	35.8	39.0	11.3	-32.5	0.0	0.0	53.6	54.0	-0.4	V	A	146.0	130.0	

DATE: FEBRUARY 20, 2012

IC: 6627C-AR5BHB112

Rev. 4.1.2.7

6.3. RECEIVER ABOVE 1 GHz

6.3.1. FOR 20 MHz BANDWIDTH

6.3.2. FOR 40 MHz BANDWIDTH

DATE: FEBRUARY 20, 2012

IC: 6627C-AR5BHB112

6.4. WORST-CASE BELOW 1 GHz

2.4GHz Band

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

HORIZON	TAL & V	ERTICA	L DATA						
COMPANY: PROJECT N							GINNER: CH	_	
30 - 1000MH	7 - HORI70	ΝΤΔΙ							
Test	Meter	, The second sec	25MHz-1Ghz Chamber B	T130 Bilog Factors.		CFR 47 Part 15 Class B		Height	
Frequency	Reading	Detector	Amp [dB]	TXT [dB]	dBuV/m	3m	Margin	[cm]	Polarity
50.3537	56.62	PK	-29.0	8.0	35.62	40	-4.38	300	Horz
124.984	52.85	PK	-28.3	13.8	38.35	43.5	-5.15	200	Horz
346.9365	48.32	PK	-26.8	14.1	35.62	46	-10.38	100	Horz
513.0616	43.56	PK	-27.0	17.0	33.56	46	-12.44	200	Horz
875.1639	45.24	PK	-25.0	21.4	41.64	46	-4.36	100	Horz
30 - 1000MH	Meter	AL	25MHz-1Ghz Chamber B	T130 Bilog Factors.		CFR 47 Part 15 Class B		Height	
Frequency		Detector			dBuV/m	3m	Margin	[cm]	Polarity
34.4584	44.99	PK	-29.2	18.3	34.09	40	-5.91	100	Horz
374.947	42.52	PK	-26.8	14.6	30.32	46	-15.68	100	Horz
540.006	42.48	PK	-26.8	17.4	33.08	46	-12.92	100	Horz
738.3094	45.45	PK	-25.8	19.9	39.55	46	-6.45	100	Horz
PK - Peak de									
QP - Quasi-F									
LnAv - Linear									
LgAv - Log A Av - Average		ector							
CAV - CISP		detector							
RMS - RMS		uetectoi							
CRMS - CISE		etection							
CKIVIS - CISI	-K KIVIO 06	etection							

5.8GHz Band

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

COMPANY: Fluke Networks			TEST ENGINNER: Chin Pang						
PROJECT NUMBER: 11U14110					DATE TESTED: 01/17/2012				
30 - 1000MH	7 - HORI70	ΝΤΔΙ							
00 - 10001111	Z - HOME	, TAL	25MHz-1Ghz	T130 Bilog		CFR 47 Part 15			
Test	Meter		Chamber B	Factors.		Class B		Height	
Frequency			Amp [dB]		dBuV/m	3m	Margin	[cm]	Polarity
54.6183	50.15	PK	-29.0	7.9	29.05	40	-10.95	200	Horz
124.984	52.39	PK	-28.3	13.8	37.89	43.5	-5.61	200	Horz
432.0344	42.72	PK	-27.0	15.6	31.32	46	-14.68	200	Horz
458.9788	42.62	PK	-27.0	16.1	31.72	46	-14.28	200	Horz
617.1563	45.48	PK	-26.6	18.4	37.28	46	-8.72	200	Horz
750.1339	45	PK	-25.7	20.1	39.4	46	-6.60	100	Horz
30 - 1000MH	Meter		25MHz-1Ghz Chamber B	T130 Bilog Factors.		CFR 47 Part 15 Class B		Height	
Frequency		Detector	Amp [dB]	TXT [dB]		3m	Margin	[cm]	Polarity
39.3046	48.37	PK	-29.2	14.6	33.77	40	-6.23	100	Horz
133.5132	48.13	PK	-28.2	13.5	33.43	43.5	-10.07	100	Horz
166.4668	50.37	PK	-27.9	10.4	32.87	43.5	-10.63	100	Horz
374.8501 566.9504	41.87 46.47	PK PK	-26.8 -26.6	14.6 17.8	29.67 37.67	46 46	-16.33 -8.33	100 100	Horz Horz
500.9504	40.47	PK.	-20.0	17.0	31.01	46	-0.33	100	HOIZ
PK - Peak de									
QP - Quasi-F									
LnAv - Linear Average detector LgAv - Log Average detector									
		ector							
Av - Average		d = 4 = = + = -							
	R Average (detector							
	deres artes								
RMS - RMS	dotootion								