The Reachability Problem for Petri Nets is Not Elementary

Wojciech Czerwiński¹, Sławomir Lasota¹, Ranko Lazić², Jérôme Leroux³ and Filip Mazowiecki³

¹University of Warsaw

²University of Warwick

³University of Bordeaux

STOC 2019

The Reachability Problem for Petri Nets is Not Elementary

Wojciech Czerwiński¹, Sławomir Lasota¹, Ranko Lazić², Jérôme Leroux³ and Filip Mazowiecki³

¹University of Warsaw

²University of Warwick

³University of Bordeaux

STOC 2019

Petri net (d, T): d – dimension, $T \subseteq \mathbb{Z}^d$

Petri net
$$(d, T)$$
: d – dimension, $T \subseteq \mathbb{Z}^d$

Example:
$$d = 2$$
, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2)$$

$$t_2 = (1, -1)$$

$$t_2 = (1, -1)$$
 t_2 $t_3 = (-3, -1)$ t_3

Petri net (d, T): d – dimension, $T \subseteq \mathbb{Z}^d$

Example:
$$d = 2$$
, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2)$$

$$t_2=(1,-1) \qquad t_2$$

$$t_3 = (-3, -1)$$
 t_3

Petri net (d, T): d – dimension, $T \subseteq \mathbb{Z}^d$

Example:
$$d = 2$$
, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2)$$

$$t_2=(1,-1) \qquad t_2$$

$$t_3 = (-3, -1)$$
 t_3

Petri net (d, T): d – dimension, $T \subseteq \mathbb{Z}^d$

Example:
$$d = 2$$
, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2)$$

$$t_2=(1,-1) \qquad t_2$$

$$t_3 = (-3, -1)$$
 t_3

Petri net (d, T): d – dimension, $T \subseteq \mathbb{Z}^d$

Example:
$$d = 2$$
, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2)$$

$$t_2=(1,-1) \qquad t_2$$

$$t_3 = (-3, -1)$$
 t_3

Petri net (d, T): d – dimension, $T \subseteq \mathbb{Z}^d$

Example:
$$d = 2$$
, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2)$$

$$t_2=(1,-1) \qquad t_2$$

$$t_3 = (-3, -1)$$
 t_3

Petri net (d, T): d – dimension, $T \subseteq \mathbb{Z}^d$

Example:
$$d = 2$$
, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2)$$

$$t_2=(1,-1) \qquad t_2$$

$$t_3 = (-3, -1)$$
 t_3

Petri net (d, T): d – dimension, $T \subseteq \mathbb{Z}^d$

Example:
$$d = 2$$
, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2)$$

$$t_2=(1,-1) \qquad t_2$$

$$t_3 = (-3, -1)$$
 t_3

Petri net (d, T): d – dimension, $T \subseteq \mathbb{Z}^d$

Example: d = 2, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2)$$

$$t_2=(1,-1) \qquad t_2$$

$$t_3 = (-3, -1)$$
 t_3

Petri net (d, T): d – dimension, $T \subseteq \mathbb{Z}^d$

Example: d = 2, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2)$$

$$t_2 = (1, -1)$$
 t_2

$$t_3 = (-3, -1)$$
 t_3

Reachability: given $a, b \in \mathbb{N}^d$ is there a walk from a to b within \mathbb{N}^d ?

One of the fundamental models and problems in formal verification

- 1: x = True
- 2: if x then goto 3 else goto 1
- x = False
- 4: # critical section
- 5: exit

- 1: x = True
- 2: if x then goto 3 else goto 1
- 3: x = False
- 4: # critical section
- 5: **exit**

Input: *n* processes in parallel

Output: can two processes be at once in critical section?

- 1: x = True
- 2: if x then goto 3 else goto 1
- 3: x = False
- 4: # critical section
- 5: exit

Input: *n* processes in parallel

Output: can two processes be at once in critical section?

Model with Petri nets (d, T):

• d=5 (one per program command), configurations: vectors in \mathbb{N}^5

```
1: x = True
2: if x then goto 3 else goto 1
3: x = False
4: # critical section
5: exit
```

Input: *n* processes in parallel

Output: can two processes be at once in critical section?

Model with Petri nets (d, T):

- d=5 (one per program command), configurations: vectors in \mathbb{N}^5
- Transitions: vectors in \mathbb{Z}^5 e.g. (-1, 1, 0, 0, 0)

```
1: x = True
2: if x then goto 3 else goto 1
3: x = False
4: # critical section
5: exit
```

Input: *n* processes in parallel

Output: can two processes be at once in critical section?

Model with Petri nets (d, T):

- d=5 (one per program command), configurations: vectors in \mathbb{N}^5
- Transitions: vectors in \mathbb{Z}^5 e.g. (-1, 1, 0, 0, 0)
- Given two configurations a = (n, 0, 0, 0, 0) and b = (0, 0, 0, 2, 0)

```
1: x = True
2: if x then goto 3 else goto 1
3: x = False
4: # critical section
5: exit
```

Input: *n* processes in parallel

Output: can two processes be at once in critical section?

Model with Petri nets (d, T):

- d=5 (one per program command), configurations: vectors in \mathbb{N}^5
- Transitions: vectors in \mathbb{Z}^5 e.g. (-1, 1, 0, 0, 0)
- Given two configurations $\mathbf{a} = (n, 0, 0, 0, 0)$ and $\mathbf{b} = (0, 0, 0, 2, 0)$

b is reachable from $a \iff$ two processes at once in critical section

What is the complexity?

1976 — EXPSPACE-hard (Lipton)

Implications of the Not elementary result

- Disproves the EXPSPACE-complete conjecture
- Many problems are now not elementary, in: logic, databases, ...

x += m (add m to variable x) x -= m (subtract m from variable x) halt (terminate) halt if $x_1, \ldots, x_l = 0$ (terminate if listed variables are zero) loop (to be explained)

```
x += m (add m to variable x)

x -= m (subtract m from variable x)

halt (terminate)

halt if x_1, \ldots, x_l = 0 (terminate if listed variables are zero)

loop (to be explained)
```

Variables initialised to 0, never become negative. Terminate executing halt

```
x += m (add m to variable x)

x -= m (subtract m from variable x)

halt (terminate)

halt if x_1, \ldots, x_l = 0 (terminate if listed variables are zero)

loop (to be explained)
```

Variables initialised to 0, never become negative. Terminate executing halt

$$x += m$$
 (add m to variable x)
 $x -= m$ (subtract m from variable x)
halt (terminate)
halt if $x_1, \ldots, x_l = 0$ (terminate if listed variables are zero)
loop (to be explained)

Variables initialised to 0, never become negative. Terminate executing halt

Example
$$\begin{array}{c} x_1 \mathrel{+}= 3 \\ \textbf{loop} \\ x_1 \mathrel{-}= 1 \quad x_2 \mathrel{+}= 2 \\ \textbf{until} \; x_1 = 0 \\ \textbf{halt}. \end{array}$$

$$x += m$$
 (add m to variable x)
 $x -= m$ (subtract m from variable x)
halt (terminate)
halt if $x_1, \ldots, x_l = 0$ (terminate if listed variables are zero)
loop (to be explained)

Variables initialised to 0, never become negative. Terminate executing halt

$$x += m$$
 (add m to variable x)
 $x -= m$ (subtract m from variable x)
halt (terminate)
halt if $x_1, \ldots, x_l = 0$ (terminate if listed variables are zero)
loop (to be explained)

Variables initialised to 0, never become negative. Terminate executing halt

Example
$$\rightarrow$$
 $x_1 += 3$ loop $x_1 -= 1$ $x_2 += 2$ until $x_1 = 0$ halt. $x_1 = 0$ $x_2 = 0$

$$x += m$$
 (add m to variable x)
 $x -= m$ (subtract m from variable x)
halt (terminate)
halt if $x_1, ..., x_l = 0$ (terminate if listed variables are zero)
loop (to be explained)

Variables initialised to 0, never become negative. Terminate executing halt

Example
$$x_1 += 3$$

$$\begin{array}{c} \textbf{loop} \\ \rightarrow x_1 -= 1 \\ \textbf{until} \ x_1 = 0 \\ \textbf{halt}. \end{array}$$

$$x += m$$
 (add m to variable x)
 $x -= m$ (subtract m from variable x)
halt (terminate)
halt if $x_1, ..., x_l = 0$ (terminate if listed variables are zero)
loop (to be explained)

Variables initialised to 0, never become negative. Terminate executing halt

Example
$$x_1 += 3$$
 loop $\rightarrow x_1 -= 1$ $x_2 += 2$ until $x_1 = 0$ halt. $x_1 = 0$ $x_2 = 0$ $x_3 = 0$ $x_4 = 0$ $x_4 = 0$ $x_5 = 0$ $x_5 = 0$ $x_6 = 0$ x_6

$$x += m$$
 (add m to variable x)
 $x -= m$ (subtract m from variable x)
halt (terminate)
halt if $x_1, ..., x_l = 0$ (terminate if listed variables are zero)
loop (to be explained)

Variables initialised to 0, never become negative. Terminate executing halt

Example
$$x_1 += 3$$
 | loop $x_1 -= 1$ | $x_2 += 2$ | \rightarrow until $x_1 = 0$ | halt. $x_1 = 0$ | $x_2 = 0$ | $x_2 = 0$ | $x_3 = 0$ | $x_4 = 0$

$$x += m$$
 (add m to variable x)
 $x -= m$ (subtract m from variable x)
halt (terminate)
halt if $x_1, ..., x_l = 0$ (terminate if listed variables are zero)
loop (to be explained)

Variables initialised to 0, never become negative. Terminate executing halt

What is our **loop**

What is our **loop**

Previous example

$$x_1 += 3$$
loop
 $x_1 -= 1$
 $x_2 += 2$
until $x_1 = 0$
halt.
 $\{x_2 = 6\}$

What is our **loop**

Previous example

$$x_1 += 3$$
loop
 $x_1 -= 1$ $x_2 += 2$
until $x_1 = 0$
halt.
 $\{x_2 \in \{0, 2, 4, 6\}\}$

What is our loop

Previous example

$$x_1 += 3$$
loop
 $x_1 -= 1$ $x_2 += 2$
until $x_1 = 0$
halt.
 $\{x_2 \in \{0, 2, 4, 6\}\}$

$$x_1 += 3$$
loop
 $x_1 -= 1$
 $x_2 += 2$
halt if $x_1 = 0$.

$$\{x_2 = 6\}$$

What is our **loop**

Previous example

$$x_1 += 3$$
loop
 $x_1 -= 1$ $x_2 += 2$
until $x_1 = 0$
halt.
 $\{x_2 \in \{0, 2, 4, 6\}\}$

$$x_1 += 3$$
loop
 $x_1 -= 1$
 $x_2 += 2$
halt if $x_1 = 0$.

$$\{x_2 = 6\}$$

loop creates many runs

What is our loop

Previous example

$$x_1 += 3$$
loop
 $x_1 -= 1$ $x_2 += 2$
until $x_1 = 0$
halt.
 $\{x_2 \in \{0, 2, 4, 6\}\}$

$$x_1 += 3$$
loop
 $x_1 -= 1$
 $x_2 += 2$
halt if $x_1 = 0$.

$$\{x_2=6\}$$

loop creates many runs

Is there a run executing **halt**? \iff reachability for Petri nets

Additional command: **test** x = 0

Additional command: **test** x = 0

• More powerful and more readable

Additional command: **test** x = 0

More powerful and more readable

Previous example: $n \rightarrow 2n$

$$x_1 += n$$
 $| \mathbf{loop} |$
 $x_1 -= 1$ $x_2 += 2$
 $| \mathbf{until} | x_1 = 0$
 $| \mathbf{halt} |$

$$x_1 += n$$
loop
 $x_1 -= 1$ $x_2 += 2$
halt if $x_1 = 0$.

Additional command: **test** x = 0

• More powerful and more readable

Previous example: $n \rightarrow 2n$

$$x_1 += n$$
 $loop$
 $x_1 -= 1$ $x_2 += 2$
 $until x_1 = 0$
 $halt.$

$$x_1 += n$$
loop
 $x_1 -= 1$ $x_2 += 2$
halt if $x_1 = 0$.

• But too powerful: reachability becomes undecidable

Additional command: **test** x = 0

• More powerful and more readable

Previous example: $n \rightarrow 2n$

$$x_1 += n$$
 $loop$
 $x_1 -= 1$ $x_2 += 2$
 $until x_1 = 0$
 $halt.$

$$x_1 += n$$
loop
 $x_1 -= 1$ $x_2 += 2$
halt if $x_1 = 0$.

• But too powerful: reachability becomes <u>undecidable</u>

How much can Petri nets simulate?

Key ingredient: compute a big value in some counter

Key ingredient: compute a big value in some counter by iteratively reusing some program

• Previous program "double the value" take x_1, \ldots, x_n

Key ingredient: compute a big value in some counter by iteratively reusing some program

• Previous program "double the value" take x_1, \ldots, x_n

```
x_1 += 2
loop
x_1 -= 1 x_2 += 2
loop
x_2 -= 1 x_3 += 2
\vdots
loop
x_{n-1} -= 1 x_n += 2
halt if x_1, x_2, \dots, x_{n-1} = 0
```

Key ingredient: compute a big value in some counter by iteratively reusing some program

• Previous program "double the value" take x_1, \ldots, x_n

$$x_1 += 2$$
loop
 $x_1 -= 1$
 $x_2 += 2$
loop
 $x_2 -= 1$
 $x_3 += 2$

:

loop
 $x_{n-1} -= 1$
 $x_n += 2$
halt if $x_1, x_2, ..., x_{n-1} = 0$

Key ingredient: compute a big value in some counter by iteratively reusing some program

• Previous program "double the value" take x_1, \ldots, x_n

$$x_1 += 2$$
loop
 $x_1 -= 1$
 $x_2 += 2$
loop
 $x_2 -= 1$
 $x_3 += 2$
:
loop
 $x_{n-1} -= 1$
 $x_n += 2$
halt if $x_1, x_2, \dots, x_{n-1} = 0$

Key ingredient: compute a big value in some counter by iteratively reusing some program

• Previous program "double the value" take x_1, \ldots, x_n

$$x_1 += 2$$
loop
 $x_1 -= 1$
 $x_2 += 2$
loop
 $x_2 -= 1$
 $x_3 += 2$
:
loop

 $x_{i+1} = 2 \cdot x_i$, so $x_n = 2^n$

halt if $x_1, x_2, \dots, x_{n-1} = 0$

 $x_{n-1} -= 1 \quad x_n += 2$

Showing hardness

What programs to iterate?

• Lipton's program is "squaring": $x_{i+1} = (x_i)^2$, so $x_n = 2^{2^n}$ (this gives the EXPSPACE lower bound from 1976)

• We managed to do "factorial": $x_{i+1} = (x_i)!$, so $x_n \ge 2^{-\frac{1}{2}} n$ times. (this gives the not elementary lower bound in our paper)

```
i += k
loop
  x += 1 y += 1 z += 1
loop
   loop
     x -= i \quad x' += i + 1
  loop
     x' -= 1 x += 1
  i -= 1
loop
  x = (k+1) y = 1
halt if y, i = 0
```

```
i += k
loop
   x += 1 y += 1 z += 1
loop
   loop
      x -= i \quad x' += i + 1
   loop
      x' -= 1 \quad x += 1
   i -= 1
loop
   x = (k+1) y = 1
halt if y, i = 0
\{z = k!\}
```

For the program $k \to k!$

```
i += k
loop
   x += 1 y += 1 z += 1
loop
   loop
      x -= i \quad x' += i + 1
   loop
     x' -= 1 x += 1
   i -= 1
loop
   x = (k+1) y = 1
halt if y, i = 0
\{z=k!\}
```

i goes from k to 0 in the main loop

For the program $k \to k!$

$$i += k$$
 $loop$
 $x += 1$ $y += 1$ $z += 1$
 $loop$
 $loop$
 $x -= i$ $x' += i + 1$
 $loop$
 $x' -= 1$ $x += 1$
 $i -= 1$
 $loop$
 $x -= (k + 1)$ $y -= 1$
 $loop$
 $z -= k!$

i goes from k to 0 in the main loop

x, y, z initialised to any c

every time x multiplied by at most $\frac{i+1}{i}$

For the program $k \to k!$

i +=
$$k$$
loop
 $x += 1$ $y += 1$ $z += 1$
loop
 $x -= i$ $x' += i + 1$
loop
 $x' -= 1$ $x += 1$
 $i -= 1$
loop
 $x -= (k + 1)$ $y -= 1$
halt if $y, i = 0$
 $\{z = k!\}$

i goes from k to 0 in the main loop

x, y, z initialised to any c

every time x multiplied by at most $\frac{i+1}{i}$

In the end $x \le c \cdot \prod_{i=1}^{k} \frac{i+1}{i} = c \cdot (k+1)$

$$\frac{k+1}{k} \cdot \frac{k}{k-1} \cdot \frac{k-1}{k-2} \dots \frac{3}{2} \cdot \frac{2}{1} = k+1$$

```
i += k
                                      i goes from k to 0 in the main loop
loop
   x += 1 y += 1 z += 1
                                              x, y, z initialised to any c
loop
    loop
       x -= i \quad x' += i + 1
                                       every time x multiplied by at most \frac{1+1}{1}
    loop
       x' -= 1  x += 1
    i -= 1
                                      In the end x \le c \cdot \prod_{i=1}^{k} \frac{i+1}{i} = c \cdot (k+1)
loop
   x = (k + 1) y = 1
                                     But we need x \ge y \cdot (k+1) = c \cdot (k+1)
halt if y, i = 0
\{z=k!\}
```

```
i += k
                                      i goes from k to 0 in the main loop
loop
   x += 1 y += 1 z += 1
                                             x, y, z initialised to any c
loop
                                              so k \mid x, k-1 \mid x, \dots
    loop
       x = i x' = i + 1
                                       every time x multiplied by at most \frac{1+1}{1}
    loop
       x' -= 1  x += 1
   i -= 1
                                      In the end x \le c \cdot \prod_{i=1}^{k} \frac{i+1}{i} = c \cdot (k+1)
loop
   x = (k + 1) y = 1
                                     But we need x \ge y \cdot (k+1) = c \cdot (k+1)
halt if y, i = 0
\{z=k!\}
```

- Several applications and corollaries
 - reachability is harder than we expected
 - many problems are not elementary (FO2 on data words)

- Several applications and corollaries
 - reachability is harder than we expected
 - many problems are not elementary (FO2 on data words)
- The proof is short and self contained

- Several applications and corollaries
 - reachability is harder than we expected
 - many problems are not elementary (FO2 on data words)
- The proof is short and self contained
- The complexity is between Tower (\mathbf{F}_3) and Ackermann (\mathbf{F}_{ω})

- Several applications and corollaries
 - reachability is harder than we expected
 - many problems are not elementary (FO2 on data words)
- The proof is short and self contained
- The complexity is between Tower (\mathbf{F}_3) and Ackermann (\mathbf{F}_{ω})
- This originated from studying 1-Pushdown-VASS

- Several applications and corollaries
 - reachability is harder than we expected
 - many problems are not elementary (FO2 on data words)
- The proof is short and self contained
- The complexity is between Tower (\mathbf{F}_3) and Ackermann (\mathbf{F}_{ω})
- This originated from studying 1-Pushdown-VASS
 So maybe it's good to study restrictions of generalizations of etc...
 (my current favourite: BOBRVASS)