Ejercicios verano

Gonzalo Esteban

25 de agosto de 2019

En cada ejercicio, se indica entre paréntesis la página del libro y el número de ejercicio al que corresponde.

1 Bloque 2. Aspectos cualitativos de la Química (tema 3 del libro)

Ejercicios del tema

S 1.1 a)
$$m = 6.6 \cdot 10^{-23}$$
 g; b) 40 g de Ca.

S 1.2 a)
$$m = 9.3 \cdot 10^{-23}$$
 g; b) 56 g de Fe.

\$ 1.3 a) En los 100 g de oxígeno molecular; b) En los 100 g de oxígeno molecular.

S 1.5
$$d = 0.52 \,\mathrm{g/L}$$

S 1.6
$$M = 2.7 \cdot 10^{23}$$
 moléculas.

S 1.7
$$M = 64 \text{ g/mol}$$

S 1.9
$$p_{\text{alcohol}}$$
 = 1,7 atm; p_{acetona} = 1,3 atm; P_T = 3,0 atm.

S 1.10 81,8% de carbono; 18,2% de hidrógeno.

S 1.11
$$X_{\text{alcohol}} = 0,24, X_{\text{agua}} = 0,76.$$

S 1.12
$$M = 7.8 \text{ M y } N = 7.8 \text{ N}.$$

S 1.13
$$M = 3.2 M$$
.

Problemas propuestos

Leyes de los volúmenes de combinación. Hipótesis de Avogadro. Concepto de molécula. Mol

S 1.16 a)
$$M = 71 g/\text{mol}$$
; b) $M = 58 g/\text{mol}$; c) $M = 44 g/\text{mol}$.

\$ 1.17 a)
$$6 \cdot 10^{23}$$
 átomos; b) 1,6 · 10^{26} moléculas; c) 19 g; d) $M = 93$ g/mol.

S 1.18 a)
$$m_{\text{H}_2\text{S}} = 102 \,\text{g}$$
; b) 1,8 · 10^{24} moléculas; c) 3 moles de H₂ y 3 moles de S.

S 1.20
$$V = 4,5$$
 L de HCl.

S 1.21
$$m_{NH_3}$$
 = 15 g.

S 1.22 p = 792 mmHg.

Leyes de los gases

S 1.23 V = 2,76 L.

S 1.24 a) 36,3 g de N₂ han salido; b) T' = 2214 K.

S 1.25 p_{N_2} = 0,98 atm; p_{H_2} = 0,56 atm; p_{NH_3} = 10,9 atm.

S 1.26 a) $1,31 \cdot 10^{24}$ moléculas de NH₃; b) d = 0,49 g/L.

S 1.27 a) V = 14,6 L; b) m = 16 g de He, T = 56 K; c) m = 13 g de aire.

Composición centesimal. Fórmulas moleculares y empíricas

S 1.28 a) $(CH_2Cl)_n$; b) $C_2H_4Cl_2$

S 1.29 a) Cu_2S ; b) NH_4NO_3 ; c) 40,7% de Cu, 32% de As, 27,3% de O; 14,3% de Na, 9,9% de S, 69,6% de O, 6,2% de H.

Disoluciones y propiedades coligativas

S 1.30 $X_{\text{alcohol}} = 0.16, X_{\text{agua}} = 0.84.$

S 1.31 7,3 M; 14,6 N.

S 1.32 5,9 g

S 1.33 d = 1,16 g/mL; %masa = 38,5%; M = 4,5 M; m = 6,4 m

S 1.34 a) 1,19 kg; b) 441,5 g/L; c) 12,1 M.

S 1.35 71,7 g/mol.

S 1.36 a) 330 g; b) C₁₁H₂₂O₁₁

S 1.37 3,44 · 10⁴ g/mol

S 1.38 -12,6 °C.

Aplica lo aprendido

S 1.39 La c): 7,53 · 10²³ átomos de O.

S 1.40 *m* = 28,8 g/mol.

S 1.41 p = 1,24 atm.

S 1.42 Empírica $C_2H_4O_3$; molecular $C_2H_4O_3$

S 1.43 *m* = 37,82 g; *n* = 1,31 mol.

S 1.44 a) C_4H_{10} ; b) C_3H_6 ; c) $C_8H_8S_2$; d) C_2H_2Cl .

S 1.45 a) El O_2 (4,0 · 10^{23} moléculas); b) el O_2 (8,0 · 10^{23} átomos); c) el O_2 (1,4 g/L).

S 1.46 a) 0,024 g CO₂; b) 3,2 · 10²⁰ moléculas de CO₂

2 BLOQUE 5. QUÍMICA DEL CARBONO (tema 5 del libro)

Ejercicios del tema

S 2.1

a)
$$CH_3-CH_2-CH_2-CH_2-CH_3$$

b)
$${\rm CH_3-CH-CH-CH_2-CH-CH_2-CH_3} \ {\rm CH_3 \ CH_3 \ CH_3} \ {\rm CH_3}$$

c)
$${\rm CH_3-CH-CH_2-CH-CH_2-CH-CH_2-CH_3}$$
 ${\rm CH_3}$ ${\rm CH_2}$ ${\rm CH_3}$ ${\rm CH_3}$

d)
$${\rm CH_3} = {\rm CH_3} = {\rm CH_2} = {\rm CH} = {\rm CH_2} = {\rm CH} = {\rm CH_2} = {\rm CH} = {\rm CH_3} = {$$

e)
$$CH_3 - \overset{|}{C} - CH_2 - CH - CH - CH - CH_2 - CH - CH_3$$

 $CH_3 - \overset{|}{C} + CH_3 - CH_2 - CH_3$
 $CH_3 - CH_3 - CH_3$

a)
$$CH_2 = CH - CH_2 - CH_3$$

b)
$$CH_3-CH=CH-CH_2-CH_3$$

d)
$$CH_2 = CH - CH(C_4H_9) - CH = CH - CH_3$$

e)
$$CH_3-C\equiv C-CH_3$$

f)
$$CH = C - CH(CH_3) - CH(CH_3) - CH_3$$

g)
$$CH = C - CH(CH_3) - C = C - CH(CH_3) - C = C - CH_3$$

h)
$$CH_2 = CH - C = C - CH_3$$

i)
$$CH \equiv C - CH = CH - CH_2 - C \equiv CH$$

j)
$$CH_2=CH-CH=C(C_2H_5)-C\equiv CH$$

$$\mathsf{e)} \qquad \mathsf{CH}_2 - \mathsf{CH}_3$$

g)
$$CH \equiv C - CH_2 - CH - CH_3$$

h)
$$CH_3-CH=C-CH_2-CH-CH_3$$
 CH_3

- a) Ciclobutano
- b) Ciclohexeno
- c) 1-etil-3-metilciclohexano
- d) Ciclohexa-1,3-dieno
- e) Isopropil-ciclohexano
- f) 2-ciclohexil-4,4-dimetilhexano

g) 3-ciclopentilbut-1-eno

b)
$$CH = CH_2$$

c)
$$CH_3 - CH_2$$
 $CH_2 - CH_3$

d)
$$\operatorname{CH_3} - \operatorname{CH_2} - \operatorname{CH_2} - \operatorname{CH_2}$$
 $\operatorname{CH_3}$ $\operatorname{CH_3}$

e)
$$CH_3 - CH_2 - CH_2 - CH_3$$

$$\begin{array}{c} \text{f) } \operatorname{CH_3-CH_2-CH-CH_2-CH-CH_2-CH_3} \\ \\ & \stackrel{\mid}{\operatorname{CH_3}} \end{array}$$

S 2.6

a) CH₃-CHCl-CH₃

c) $F_2HC-CHF_2$

e) $CH \equiv C - CH_2 - CHBr - CH_3$

f)
$$CH_3-CH=CHF-CH_2-CH(CH_3)-CH_3$$

g)
$${\rm CH_2Br-CH=CH-CHBr-CH_2-CH-CH_2-CH_3}$$

h)
$$CH \equiv C - CH - CH - CH_2$$

i)
$$CH_2 = CH - CH_2 - CH_2CI$$

Problemas propuestos

Grupos funcionales y series homólogas

Isomería estructural y espacial

S 2.35 Formula empírica: C₃H₅; Fórmula molecular: C₆H₁₀.

3 Bloque 4. Transformaciones energéticas y espontaneidad (tema 6 del libro)

Ejercicios del tema

S 3.1 a)
$$\Delta U = -767 \text{ J}$$
; b) $\Delta U = 6.25 \cdot 10^3 \text{ J}$

S 3.2 Se desprenden $1,41 \cdot 10^3$ kJ.

S 3.3 a) $\Delta H_c^0 = -2,22 \cdot 10^3 \, \text{kJ/mol}$ de propano; b) Se desprenden 156 kcal

S 3.4 a) ΔH_f^0 (CuO) = -146 kJ/mol; b) Se desprenden 1,78 · 10³ kJ.

S 3.5

- a) $\Delta H_c^{\circ}(etanol) = -1,37 \cdot 10^3 \text{ kJ/mol};$ $\Delta H_c(acido etanoico) = -870 \text{ kJ/mol}$
- b) $\Delta H_c^{\circ}(etanol) = -273 \text{ kJ/mol};$ $\Delta H_c^{\circ}(acido\ etanoico) = -489 \text{ kJ/mol}$

S 3.6 a)
$$\Delta H_R^0 = -102 \text{ kJ}$$
; b) $\Delta H_R^0 = -99.4 \text{ kJ}$

\$ 3.7
$$\Delta H^0(C=C) = 609 \text{ kJ/mol}$$

S 3.8 a)
$$\Delta H_R^0 = -1,52 \cdot 10^3 \text{ kJ; b} \Delta H^0 (C-H) = 413 \text{ kJ/mol}$$

Problemas resueltos

Entalpias de formación, de reacción y de combustión

S 3.9 a)
$$\Delta H_f^0$$
 (CS₂₍₁₎) = 85,7 kJ/mol; b) V = 274 L

S 3.10 a) $\Delta H_R = -896 \text{ kJ/mol} - 896 \text{ de Al}_2\text{O}_3$; b) 68,7 kJ se desprenden

S 3.11 a)
$$\Delta H_f^0 = -1,26 \cdot 10^3 \text{ kJ/mol}$$
; b) 782 kJ; c) 0,8 L

S 3.12 a) ΔH_f^0 (C₂H₆) = -84,7 kJ/mol; ΔH_f^0 (C₂H₄) = 51,2 kJ/mol; b) Exotérmico; c) etano: 2,60 · 10³ kJ; eteno: 2,52 · 10³ kJ.

S 3.13 a)
$$1,87 \cdot 10^6$$
 kJ; b) 120 kg; c) $2,62 \cdot 10^3$ kJ/km

S 3.14 a)
$$\Delta H_C^0 = 3.27 \cdot 10^3 \text{ kJ/mol}$$
; b) 413 L; c) $3.83 \cdot 10^3 \text{ kJ}$.

Ley de Hess

S 3.15 a)
$$\Delta H_c^0 = -5,46 \cdot 10^3 \text{ kJ/mol}$$
; b) $9,58 \cdot 10^4 \text{ kJ}$

S 3.16 a)
$$\Delta H_f^0$$
 (hexano) = -170 kJ/mol; b) $m = 21,2$ g de C.

S 3.17

- a) $\Delta H_c^0(C_6H_{6(l)}) = -3.28 \cdot 10^3 \text{ kJ/mol};$
- b) 13,8 L de C₂H₂

Entalpías de enlace

S 3.18 a)
$$\Delta H_R = -313 \text{ kJ/mol}$$
; b) $\Delta H_R = -312 \text{ kJ/mol}$

Entropía y espontaneidad

S 3.19

 a) Por entropía se entiende la magnitud física que nos mide el grado de desorden de un sistema; es decir, a mayor desorden de las partículas del sistema, mayor entropía. Por lo tanto:

En la primera reacción, previsiblemente $\Delta S_R^0 > 0$ ya que se forma una sustancia gaseosa como producto de la reacción y no había gases entre los reactivos.

En la segunda reacción, $\Delta S_R^0 < 0$ ya que se forman dos moles de una sustancia gaseosa y había 4 moles gaseosos en los reactivos.

- b) La espontaneidad de una reacción viene dado por la ecuación de Gibbs: $\Delta G_R^0 = \Delta H_R^0 T\Delta S_R^0$ que establece la necesidad de que $\Delta G_R^0 < 0$ para que un proceso sea espontáneo. Según eso:
 - La primera reacción será siempre espontánea, ya que $\Delta H_R^0 < 0$ y $\Delta S_R^0 > 0$ por lo que ΔG_R^0 será negativo a cualquier temperatura.
 - En la segunda reacción se cumple que $\Delta H_R^0 < 0$ y $\Delta S_R^0 < 0$. Para que sea espontánea, el factor entálpico debe ser mayor (en valor absoluto) que el factor entrópico; eso es más fácil de conseguir si la temperatura de la reacción es baja.

S 3.20

- a) Aumentan los moles de sustancias gaseosas;
- b) $\Delta G_R^0 = 19.5 \text{ kJ (no es espontánea)}; T = 538 \text{ K}$

S 3.21

- a) $\Delta H_R^0 = 52,5 \text{ kJ (endotérmica)}$
- b) $\Delta G_R^0 = 68.4 \text{ kJ}$ (no es espontánea)

Aplica lo aprendido

S 3.22

- a) $\Delta H_R^0 = -312 \text{ kJ};$
- b) $\Delta G_R^0 = -242 \text{ kJ};$
- c) $\Delta S_R^0 = -235 J/K$;
- d) $S_{H_2}^0 = 132 \text{ J/(mol K)}$