

CLAIMS

Sub A27
What is Claimed is:

- 1 1. A system for providing at least near continuous broadcast service to a
2 terrestrial receiver, comprising:
3 a plurality of satellites, each satellite in an inclined, elliptical, geosynchronous
4 orbit, each satellite providing a portion of time of the at least near continuous broadcast
5 service to the terrestrial receiver.
- 1 2. The system of Claim 1, wherein the plurality of satellites comprises a first
2 satellite actively servicing the terrestrial receiver, and a second satellite, wherein an
3 apparent position of the second satellite relative to the terrestrial receiver is substantially
4 proximate the apparent position of the first satellite relative to the terrestrial receiver
5 when the first satellite completes providing its portion of the broadcast service.
- 1 3. The system of Claim 1, wherein a track of the apparent position of each of
2 the satellites relative to the terrestrial receivers when the satellite is providing its portion
3 of the at least near continuous broadcast service is substantially closed loop.
- 1 4. The system of Claim 3, wherein the terrestrial receiver comprises an
2 antenna having a sensitivity characteristic substantially corresponding to the track of the
3 apparent position of each of the satellites.
- 1 5. The system of Claim 3, wherein the track of the apparent position of each
2 of the satellites substantially corresponds to a sensitivity pattern of an antenna at the
3 terrestrial receiver.

1 6. The system of Claim 1, wherein a track of the apparent position of each of
2 the satellites relative to the terrestrial receivers when the satellite is providing its portion
3 of the at least near continuous broadcast service is substantially teardrop-shaped.

1 7. The system of Claim 1, wherein the satellite orbits are characterized by an
2 orbital inclination approximately equal to 50 degrees and an eccentricity approximately
3 equal to 0.13.

1 8. The system of Claim 7, wherein the satellite orbits are further
2 characterized by a period approximately equal to 86164 seconds, an altitude at perigee
3 approximately equal to 30305 kilometers, and an altitude at apogee approximately equal
4 to 41268 kilometers.

1 9. A receiver station for receiving at least near continuous broadcast service
2 from a plurality of satellites in an inclined, elliptical, geosynchronous orbit, comprising:
3 an antenna having a sensitivity characteristic substantially corresponding to the
4 track of the apparent position of each of the satellites.

1 10. The receiver station of Claim 9, wherein the receiver antenna comprises a
2 reflector having a focal line and a focal point on the focal line and a head, wherein the
3 head is disposed offset from the focal point.

1 11. The receiver station of Claim 10, wherein the head is disposed offset from
2 the focal line.

1 12. The receiver station of Claim 11, wherein the reflector is approximately 18
2 centimeters in diameter, and the head is disposed approximately 7 inches offset from the
3 focal point and approximately 4 inches offset from the focal line.

1 13. The receiver station of Claim 12, further comprising a second head
2 disposed substantially at the focal point.

1 14. The receiver station of Claim 13, wherein the second head receives signals
2 from a geostationary satellite.

1 15. The receiver station of Claim 9, wherein the plurality of satellites
2 comprises a first satellite actively servicing the terrestrial receiver, and a second satellite,
3 wherein the apparent position of the second satellite relative to the terrestrial receiver is
4 substantially proximate the apparent position of the first satellite relative to the terrestrial
5 receiver when the first satellite completes providing its portion of the broadcast service.

1 16. A method of providing at least near continuous broadcast service to a
2 terrestrial receiver, comprising the steps of:

3 providing a signal having a portion of the continuous broadcast service from at
4 least one of a plurality of satellites at a time, each satellite in an inclined, elliptical,
5 geosynchronous orbit.

1 17. The method of Claim 16, wherein the plurality of satellites comprises a
2 first satellite actively servicing the terrestrial receiver, and a second satellite, wherein an
3 apparent position of the second satellite relative to the terrestrial receiver is substantially
4 proximate the apparent position of the first satellite relative to the terrestrial receiver
5 when the first satellite completes providing its portion of the broadcast service.

1 18. The method of Claim 16, wherein a track of the apparent position of the
2 each of the satellites relative to the terrestrial receivers when the satellite is providing its
3 portion of the at least near continuous broadcast service is substantially closed loop.

1 19. The method of Claim 18, wherein the terrestrial receiver comprises an
2 antenna having a sensitivity characteristic substantially corresponding to the track of the
3 apparent position of each of the satellites.

1 20. The method of Claim 18, wherein the track of the apparent position of
2 each of the satellites substantially corresponds to a sensitivity pattern of an antenna at the
3 terrestrial receiver.

1 21. The method of Claim 16, wherein a track of the apparent position of the
2 each of the satellites relative to the terrestrial receivers when the satellite is providing its
3 portion of the at least near continuous broadcast service is substantially teardrop-shaped.

1 22. The method of Claim 16, wherein the satellite orbits are characterized by
2 an orbital inclination approximately equal to 50 degrees and an eccentricity
3 approximately equal to 0.13.

1 23. The method of Claim 20, wherein the satellite orbits are further
2 characterized by a period approximately equal to 86164 seconds, an altitude at perigee
3 equal to approximately 30305 kilometers, and an altitude at apogee approximately equal
4 to 41268 kilometers.

1 24. A method of receiving at least near continuous broadcast service at a
2 terrestrial receiver, comprising the steps of:

3 receiving a signal having a portion of the continuous broadcast service from at
4 least one of a plurality of satellites at a time, each satellite in an inclined, elliptical,
5 geosynchronous orbit.

1 25. The method of Claim 24, wherein the plurality of satellites comprises a
2 first satellite and a second satellite and wherein the step of providing a signal having a
3 portion of the continuous broadcast service from at least one of the plurality of satellites
4 at a time comprises the steps of:

5 receiving a signal from the first satellite actively servicing the terrestrial receiver;
6 and

7 receiving a signal from the second satellite when the apparent position of the
8 second satellite relative to the terrestrial receiver is proximate the apparent position of the
9 first satellite relative to the terrestrial receiver.

1 26. The method of Claim 24, wherein the plurality of satellites comprises a
2 first satellite actively servicing the terrestrial receiver, and a second satellite, wherein an
3 apparent position of the second satellite relative to the terrestrial receiver is proximate the
4 apparent position of the first satellite relative to the terrestrial receiver when the first
5 satellite completes providing its portion of the broadcast service.

1 27. The method of Claim 24, wherein a track of the apparent position of the
2 each of the satellites relative to the terrestrial receivers when the satellite is providing its
3 portion of the at least near continuous broadcast service is closed loop.
Sub A&N

1 28. The system of Claim 27, wherein the terrestrial receiver comprises an
2 antenna having a sensitivity characteristic corresponding to the track of the apparent
3 position of each of the satellites.
Cont X

1 29. The system of Claim 27, wherein the track of the apparent position of each
2 of the satellites corresponds to a sensitivity pattern of an antenna at the terrestrial receiver.

1 30. The method of Claim 24, wherein a track of the apparent position of the
2 each of the satellites relative to the terrestrial receivers when the satellite is providing its
3 portion of the at least near continuous broadcast service is teardrop-shaped.

A2
Concl. 1 31. The method of Claim 24, wherein the satellite orbits are characterized by
2 an orbital inclination equal to 50 degrees and an eccentricity equal to 0.13.

1 32. The method of Claim 31, wherein the satellite orbits are further
2 characterized by a period equal to 86164 seconds, an altitude at perigee equal to 30305
3 kilometers, and an altitude at apogee equal to 41268 kilometers.

A2d A27