CONTENTS 1

Data Science II Final Project Analysis

Camille Okonkwo

Contents

Background	3
Data	3
Data Preparation	3
Exploratory analysis and data visualization	5
Descriptive Statistics	5
Discrete Variable Visualization	5
Continuous Variable Visualization	12
Model training	14
Results	15
Conclusion	16

CONTENTS 2

```
library(tidymodels)
library(splines)
library(caret)
library(glmnet)
library(table1)
library(kableExtra)
library(summarytools)
library(corrplot)
library(cowplot)
```

Background

A research study aims to identify key factors that predict the severity of COVID-19 illness. This study collects demographic information, clinical variables, and disease severity among participants infected with COVID-19 between 2021 and 2023. The goal is to develop a robust prediction model that can accurately predict COVID-19 severity and understand how predictors impact the risk of severe infection.

Data

The training data in "severity_training.RData" includes data from 800 participants.

The test data in "severity_test.RData" includes data from another set of 200 participants.

Here is a description of each variable:

- ID (id): Participant ID
- Age (age): Age
- Gender (gender): 1 = Male, 0 = Female
- Race/ethnicity (race): 1 = White, 2 = Asian, 3 = Black, 4 = Hispanic
- Smoking (smoking): Smoking status; 0 = Never smoked, 1 = Former smoker, 2 = Current smoker
- Height (height): Height (in centimeters)
- Weight (weight): Weight (in kilograms)
- BMI (bmi): Body Mass Index; BMI = weight (in kilograms) / height (in meters) squared
- Hypertension (hypertension): 0 = No, 1 = Yes
- Diabetes (diabetes): 0 = No, 1 = Yes
- Systolic blood pressure (SBP): Systolic blood pressure (in mm/Hg)
- LDL cholesterol (LDL): LDL (low-density lipoprotein) cholesterol (in mg/dL)
- Vaccination status at the time of infection (vaccine): 0 = Not vaccinated, 1 = Vaccinated
- Depression score (depression): Higher scores indicate higher risk for depression
- Severity of COVID-19 infection (severity): Response variable; 0 = Not severe, 1 = Severe

Data Preparation

```
# loading training data
load("data/severity_training.RData") # is depression discrete?
# making discrete variables factors
training_data = training_data |>
  janitor::clean_names() |>
  select(-id) |>
  mutate(gender = as.factor(gender),
         race = as.factor(race),
         smoking = as.factor(smoking),
         hypertension = as.factor(hypertension),
         diabetes = as.factor(diabetes),
         vaccine = as.factor(vaccine),
         severity = as.factor(severity))
# matrix of predictors & vector of response for data set exploration
x_train = model.matrix(severity ~., training_data)[, -1]
y_train = training_data$severity
# loading testing data
load("data/severity_test.RData")
```

Data Preparation 4

Exploratory analysis and data visualization

Descriptive Statistics

Discrete Variable Visualization

```
# qender x severity
prop_gender <- training_data %>%
  group_by(gender, severity) %>%
  summarise(count = n()) %>%
 mutate(prop = count / sum(count))
gender_labels = c("1" = "Male", "0" = "Female")
ggplot(prop_gender,
      aes(y = factor(gender),
           x = prop,
           fill = factor(severity), label = scales::percent(prop))) +
  geom_bar(stat = "identity", position = "dodge") +
  geom_text(position = position_dodge(width = 0.9), vjust = -0.4) +
  labs(x = "Proportion", y = "Gender", fill = "Severity") +
  ggtitle("Proportion of Severity by Gender") +
  scale_fill_manual(values = c("0" = "blue", "1" = "red")) +
  scale_y_discrete(labels = gender_labels) +
  theme_minimal()
```

Table 1: Descriptive Characteristics of Participants, Stratified by Severity of COVID-19 Infection

	0	1	Total
	(N=514)	(N=286)	(N=800)
o.mo	(11-014)	(11-200)	(11-000)
age Mean (SD)	59.5 (4.29)	61.0 (4.12)	60.0 (4.30)
Median [Min, Max]	59.0 [46.0, 71.0]		60.0 [46.0, 72.0]
gender	5010 [1010, 1110]	0110 [1010, 1210]	00.0 [10.0, 12.0]
0	255 (49.6%)	155 (54.2%)	410 (51.3%)
1	259 (50.4%)	131 (45.8%)	390 (48.8%)
race	(((
1	328 (63.8%)	193 (67.5%)	521 (65.1%)
2	34 (6.6%)	16 (5.6%)	50 (6.3%)
3	103(20.0%)	46~(16.1%)	149 (18.6%)
4	49~(9.5%)	$31\ (10.8\%)$	80 (10.0%)
smoking			
0	304~(59.1%)	163~(57.0%)	467~(58.4%)
1	157 (30.5%)	91 (31.8%)	248 (31.0%)
2	$53\ (10.3\%)$	$32 \ (11.2\%)$	85~(10.6%)
height			
Mean (SD)	$170 \ (6.24)$	170 (5.83)	170 (6.09)
Median [Min, Max]	170 [150, 187]	170 [152, 190]	170 [150, 190]
weight			
Mean (SD)	79.0 (7.33)	80.1 (7.09)	79.4 (7.26)
Median [Min, Max]	79.2 [56.6, 105]	79.9 [59.0, 104]	79.3 [56.6, 105]
bmi			
Mean (SD)	27.4 (2.70)	27.9 (2.78)	27.5 (2.74)
Median [Min, Max]	27.4 [19.6, 37.4]	27.9 [19.9, 36.9]	27.6 [19.6, 37.4]
hypertension	222 (24.204)	100 (07 004)	100 (51 004)
0	332 (64.6%)	100 (35.0%)	432 (54.0%)
1	182 (35.4%)	$186 \ (65.0\%)$	$368 \ (46.0\%)$
diabetes	(07 007)	242 (24.204)	a=a (a.t.a04)
0	437 (85.0%)	242 (84.6%)	679 (84.9%)
1	77 (15.0%)	44 (15.4%)	$121 \ (15.1\%)$
sbp	100 (7 50)	199 (7.69)	190 (5.05)
Mean (SD)	128 (7.58)	133 (7.62)	130 (7.97)
Median [Min, Max]	128 [109, 154]	134 [111, 153]	130 [109, 154]
ldl Maara (SD)	100 (20 5)	119 (10 0)	110 (20 1)
Mean (SD)	108 (20.5) 110 [41.0, 167]	113 (18.8) 112 [54.0, 174]	110 (20.1)
Median [Min, Max]	110 [41.0, 107]	112 [34.0, 174]	111 [41.0, 174]
vaccine	06 (19 707)	240 (92 007)	226 (42.007)
0 1	96 (18.7%)	240 (83.9%) 46 (16.1%)	336 (42.0%)
	418 (81.3%)	40 (10.1/0)	464 (58.0%)
depression Moon (SD)	6 01 (2 12)	6.00 (2.00)	6.01 (2.12)
Mean (SD) Median [Min, Max]	6.91 (2.13) 7.00 [0, 13.0]	6.90 (2.09) 7.00 [1.00, 13.0]	6.91 (2.12) 7.00 [0, 13.0]
	1.00 [0, 13.0]	1.00 [1.00, 13.0]	1.00 [0, 13.0]


```
# race x severity
prop_race <- training_data %>%
  group_by(race, severity) %>%
  summarise(count = n()) %>%
  mutate(prop = count / sum(count))
race_labels = c("1" = "White", "2" = "Asian", "3" = "Black", "4" = "Hispanic")
ggplot(prop_race,
       aes(y = factor(race),
           x = prop,
           fill = factor(severity), label = scales::percent(prop))) +
  geom_bar(stat = "identity", position = "dodge") +
  geom_text(position = position_dodge(width = 0.9), vjust = -0.4) +
  labs(x = "Proportion", y = "Race", fill = "Severity") +
  ggtitle("Proportion of Severity by Race") +
  scale_fill_manual(values = c("0" = "blue", "1" = "red")) +
  scale_y_discrete(labels = race_labels) +
  theme_minimal()
```



```
# smoking status x severity
prop_smoking <- training_data %>%
  group_by(smoking, severity) %>%
  summarise(count = n()) %>%
  mutate(prop = count / sum(count))
smoking_labels = c("1" = "Former Smoker", "2" = "Current Smoker", "0" = "Never Smoked")
ggplot(prop_smoking,
       aes(y = factor(smoking),
           x = prop,
           fill = factor(severity), label = scales::percent(prop))) +
  geom_bar(stat = "identity", position = "dodge") +
  geom_text(position = position_dodge(width = 0.9), vjust = -0.4) +
  labs(x = "Proportion", y = "Smoking Status", fill = "Severity") +
  ggtitle("Proportion of Severity by Smoking Status") +
  scale_fill_manual(values = c("0" = "blue", "1" = "red")) +
  scale_y_discrete(labels = smoking_labels) +
  theme_minimal()
```



```
# hypertension status x severity
prop_hyp <- training_data %>%
  group_by(hypertension, severity) %>%
  summarise(count = n()) %>%
  mutate(prop = count / sum(count))
hyp_labels = c("0" = "No", "1" = "Yes")
ggplot(prop_hyp,
       aes(y = factor(hypertension),
           x = prop,
           fill = factor(severity), label = scales::percent(prop))) +
  geom_bar(stat = "identity", position = "dodge") +
  geom_text(position = position_dodge(width = 0.9), vjust = -0.4) +
  labs(x = "Proportion", y = "Hypertension Status", fill = "Severity") +
  ggtitle("Proportion of Severity by Hypertension Status") +
  scale_fill_manual(values = c("0" = "blue", "1" = "red")) +
  scale_y_discrete(labels = hyp_labels) +
  theme_minimal()
```



```
# diabetes x severity
prop_dia <- training_data %>%
  group_by(diabetes, severity) %>%
  summarise(count = n()) %>%
  mutate(prop = count / sum(count))
dia_labels = c("0" = "No", "1" = "Yes")
ggplot(prop_dia,
       aes(y = factor(diabetes),
           x = prop,
           fill = factor(severity), label = scales::percent(prop))) +
  geom_bar(stat = "identity", position = "dodge") +
  geom_text(position = position_dodge(width = 0.9), vjust = -0.4) +
  labs(x = "Proportion", y = "Diabetes Status", fill = "Severity") +
  ggtitle("Proportion of Severity by Diabetes Status") +
  scale_fill_manual(values = c("0" = "blue", "1" = "red")) +
  scale_y_discrete(labels = dia_labels) +
  theme_minimal()
```



```
# vaccine x severity
prop_vaccine <- training_data %>%
  group_by(vaccine, severity) %>%
  summarise(count = n()) %>%
  mutate(prop = count / sum(count))
vax_labels = c("0" = "Not vaccinated", "1" = "Vaccinated")
ggplot(prop_vaccine,
       aes(y = factor(vaccine),
           x = prop,
           fill = factor(severity), label = scales::percent(prop))) +
  geom_bar(stat = "identity", position = "dodge") +
  geom_text(position = position_dodge(width = 0.9), vjust = -0.4) +
  labs(x = "Proportion", y = "Vaccination Status at Time of Infection", fill = "Severity") +
  ggtitle("Proportion of Severity by Vaccination Status") +
  scale_fill_manual(values = c("0" = "blue", "1" = "red")) +
  scale_y_discrete(labels = vax_labels) +
  theme_minimal()
```


Continuous Variable Visualization

```
theme1 <- trellis.par.get()
theme1$plot.symbol$col <- rgb(.2, .4, .2, .5)
theme1$plot.symbol$pch <- 2
theme1$plot.line$col <- rgb(.8, .1, .1, 1)
theme1$plot.line$lwd <- 2
theme1$strip.background$col <- rgb(.0, .2, .6, .2)
trellis.par.set(theme1)

featurePlot(
    x_train[, -c(2, 3, 4, 5, 6, 7, 11, 12, 15)],
    y_train,
    plot = "box",
    labels = c("", "Y"),
    type = c("p", "smooth"),
    layout = c(4, 3))</pre>
```


Model training

Results

Conclusion