Métodos de Analítica II Ensambles

Juan Eduardo Coba Puerto

Pontificia Universidad Javeriana

- Contenido
- 2 Bias-Variance
- Idea del Ensamble
- 4 Bagging: Bootstrap Aggregations
- 5 CART
- 6 Random Forests
- 7 Boosting
- 8 Gradient Boosting
- 9 Gradient Boosting
- 10 Referencias

- 1 Contenido
- 2 Bias-Variance
- 3 Idea del Ensamble
- 4 Bagging: Bootstrap Aggregations
- 5 CART
- 6 Random Forests
- 7 Boosting
- 8 Gradient Boosting
- 9 Gradient Boosting
- 10 Referencias

Descomposición

El error de predicción de un modelo $\hat{f}(\boldsymbol{x})$ puede descomponerse en tres elementos,

$$error = \operatorname{Bias}^2 + \operatorname{Var}(\hat{f}(x)) + \sigma_{\varepsilon}^2,$$

donde σ_{ε}^2 es el error irreducible, Bias corresponde a qué tanto se aleja el modelo de la realidad y $\operatorname{Var}(\hat{f}(x))$ qué tanto oscila el modelo al rededor de la media.

Bias-Variance

Figure: Bias-Variance Tradeoff

Bias-Variance

Figure: Ejemplos de Modelos con diferentes niveles de sesgo y varianza

Bias-Variance Viz!

Figure: Lo que realmente significa la varianza...

- 1 Contenido
- 2 Bias-Variance
- Idea del Ensamble
- 4 Bagging: Bootstrap Aggregations
- 5 CART
- 6 Random Forests
- 7 Boosting
- 8 Gradient Boosting
- 9 Gradient Boosting
- 10 Referencias

Diferentes modelos de clasificación

Figure: Tres fronteras de decisión diferentes

(Zhang and Ma, 2012)

Diferentes modelos de clasificación

Figure: Tres fronteras de decisión diferentes... se combinan en una frontera suavizada

(Zhang and Ma, 2012)

Diferentes modelos de clasificación

Figure: ¡Como cambió! Bajo sesgo (ya tenía) y varianza menor

- 1 Contenido
- 2 Bias-Variance
- Idea del Ensamble
- 4 Bagging: Bootstrap Aggregations
- 5 CART
- 6 Random Forests
- 7 Boosting
- 8 Gradient Boosting
- 9 Gradient Boosting
- 10 Referencias

Bagging

Entrenar modelos en diferentes submuestras del conjunto de entrenamiento.

Dada una base de entrenamiento ${\bf Z}$ conformada por parejas como $(x_i,y_i)_{i=1,\dots,N}$,

$$\mathbf{Z} = \left\{ (x_1, y_1), (x_2, y_2), \dots, (x_N, y_N) \right\}$$

Normalmente se entrenaría un modelo,

$$\hat{f}_{\mathbf{Z}}(x)$$

- 1. Podría entrenarse el mismo modelo y obtener "formas" diferentes utilizando *muestras bootstrap*.
- 2. Generaría diversidad en el desempeño y particularmente en los errores de predicción.

Tomar una muestra con reemplazamiento de la base de datos original,

$$\mathbf{Z}_b = \{(x_{1b}, y_{1b}), (x_{2b}, y_{2b}), \dots, (x_{Nb}, y_{Nb})\},\$$

entrenar un modelo en esa muestra,

$$\hat{f}_b$$
.

Se repite este proceso B veces.

Figure: Ejemplo de Bootstrap Sampling (Galdi and Tagliaferri, 2018)

Bagged Predictor

Como se tiene un conjunto de modelos entrenados en cada submuestra,

$$\left\{\hat{f}_b\right\}_{b=1,2,\ldots,B},$$

Entonces pueden combinarse las predicciones como,

$$\hat{f}_{\text{bagging}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(x)$$

Figure: Training n(B) models on bootstrap samples.

(Galdi and Tagliaferri, 2018)

Ejemplo

Figure: Detector de 8s. El dataset apenas contiene 6, 8 y 9. Reglas sobreajustadas.

(Goodfellow et al., 2016)

¿Dónde se usa?

Bagging puede ser utilizado en cualquier modelo que se desee entrenar.

- 1. Se puede aprovechar más en modelos no linales,
- 2. que detecten más particularidades de los datos (varianza).

- 1 Contenido
- 2 Bias-Variance
- 3 Idea del Ensamble
- 4 Bagging: Bootstrap Aggregations
- 5 CART
- 6 Random Forests
- 7 Boosting
- 8 Gradient Boosting
- 9 Gradient Boosting
- 10 Referencias

Repaso de CART

Interpretación

Figure: Interpretación CART Titanic (Varian, 2014)

"Precauciones"

Tocaba tener cuidado con...

- 1. No dejar crecer mucho el árbol (overfitting).
- 2. No dejar crecer lo suficiente el árbol (underfitting).

¿Cómo sabíamos hasta dónde dejar crecer el árbol?

- Contenido
- 2 Bias-Variance
- Idea del Ensamble
- 4 Bagging: Bootstrap Aggregations
- 5 CART
- 6 Random Forests
- 7 Boosting
- 8 Gradient Boosting
- 9 Gradient Boosting
- 10 Referencias

Random Forests

Busca explotar la relación entre sesgo y varianza, al agregar *weak learners* (con mucha varianza y bajo sesgo) para conseguir una reducción en la varianza.

$$\rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$$

Random Forests

Busca explotar la relación entre sesgo y varianza, al agregar *weak learners* (con mucha varianza y bajo sesgo) para conseguir una reducción en la varianza.

$$\rho\sigma^2 + \frac{1-\rho}{B}\sigma^2$$

¿Qué podríamos hacer para disminuir ρ al máximo?

Random Forest Algorithm

Algorithm Random Forest

for $b \leftarrow 1$ to B do

- 1. $Z_b \leftarrow$ Obtenga una muestra bootstrap de Z;
- 2. $T_b \leftarrow$ entrene un árbol de decisión, con una selección aleatoria de $m \leq k$ features.;
- 3. Guarde el modelo.

end

return
$$\left\{T_b(x)\right\}_{b=1,\dots,B}$$
;

Random Forest Algorithm

Para generar las predicciones utilizando el ensamble,

$$\left\{T_b(x)\right\}_{b=1,\dots,B}$$

Regresión:

$$\hat{f}_{rf}(x) = \frac{1}{B} \sum_{b=1}^{B} T_b(x)$$

Clasificación: Si \hat{C}_b corresponde a la predicción que hace $T_b(x)$, entonces,

$$\hat{C}_{rf} = \text{votomayoritario} \left\{ \right. \hat{C}_b \Big\}_{b=1,\dots,B}$$

- 1 Contenido
- 2 Bias-Variance
- 3 Idea del Ensamble
- 4 Bagging: Bootstrap Aggregations
- 5 CART
- 6 Random Forests
- Boosting
- 8 Gradient Boosting
- 9 Gradient Boosting
- 10 Referencias

Figure: Si hacemos una predicción de riesgo (modelo sencillo)

(Ng, 2012)

Figure: Podríamos hacer un modelo que mejore la predicción en donde más nos equivocamos.

(Ng, 2012)

Figure: Ajustamos los pesos de las observaciones según nos equivocamos (Galdi and Tagliaferri, 2018)

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m=1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 err_m)/err_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N.$
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

Figure: Algoritmo

(Hastie et al., 2009)

t=1: Just learn a classifier on original data

Figure: Algoritmo

(Ng, 2012)

Updating weights α_i

Figure: Algoritmo (Ng, 2012)

t=2: Learn classifier on weighted data

Figure: Algoritmo

(Ng, 2012)

Ensemble becomes weighted sum of learned classifiers

Figure: Algoritmo

(Ng, 2012)

Este algoritmo acaba entrenando muchos modelos, de tal forma que siempre corrija los errores de los anteriores.

- En entrenamiento con suficientes iteraciones acaba con error de 0.
- Debe tenerse cuidado con el número de árboles para evitar overfitting (validación del modelo).

- 1 Contenido
- 2 Bias-Variance
- Idea del Ensamble
- 4 Bagging: Bootstrap Aggregations
- 5 CART
- 6 Random Forests
- 7 Boosting
- 8 Gradient Boosting
- 9 Gradient Boosting
- 10 Referencias

Gradient Boosting

El Gradient Boosting es una mejora del algoritmo de Boosting (AdaBoost vs. XGBoost).

- Contenido
- 2 Bias-Variance
- Idea del Ensamble
- 4 Bagging: Bootstrap Aggregations
- 5 CART
- 6 Random Forests
- 7 Boosting
- 8 Gradient Boosting
- Gradient Boosting
- 10 Referencias

Gradient Boosting

El Gradient Boosting es una mejora del algoritmo de Boosting (AdaBoost vs. XGBoost).

- Se relajan las restricciones de los weak learners (de bumps a modelos cortos)
- En lugar de predecir donde hubo error, se predicen los errores del modelo anterior.

- Contenido
- 2 Bias-Variance
- 3 Idea del Ensamble
- 4 Bagging: Bootstrap Aggregations
- 5 CART
- 6 Random Forests
- 7 Boosting
- 8 Gradient Boosting
- 9 Gradient Boosting
- 10 Referencias

References I

- Galdi, P. and Tagliaferri, R. (2018). Data mining: accuracy and error measures for classification and prediction. *Encyclopedia of Bioinformatics and Computational Biology*, 1:431–436.
- Goodfellow, I., Bengio, Y., and Courville, A. (2016). *Deep learning*. MIT press.
- Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009). *The elements of statistical learning: data mining, inference, and prediction*, volume 2. Springer.
- Ng, A. (2012). Cs229 lecture notes supervised learning.
- Varian, H. R. (2014). Big data: New tricks for econometrics. *Journal of Economic Perspectives*, 28(2):3–28.
- Zhang, C. and Ma, Y. (2012). *Ensemble machine learning: methods and applications*. Springer.