Basics of Reinforcement Learning

Overview

HMMs The probability transformation matrix a_{ij} allows forward and backward propagation

Dynamic programing An objective function and dynamics uses backward propagation

Reinforcement Learning A reward function and probabilistic dynamics uses forward propagation with iteration

Model-free Reinforcement Learning A reward function and probabilistic dynamics uses forward propagation with search for model estimation

The Urn model of a HMM

Dynamic Programing

Final value problem

The dynamics is expressed by a difference equation,

$$\mathbf{x}(k+1) = f[\mathbf{x}(k), \mathbf{u}(k)]$$

The initial condition is:

$$\mathbf{x}(0) = \mathbf{x}_0$$

The allowable control is also discrete:

$$\mathbf{u}(k) \in U, k = 0, \dots, T$$

The integral in the objective function is expressed as a sum:

$$J = \psi[\mathbf{x}(T)] + \sum_{0}^{T} \ell[\mathbf{u}(k), \mathbf{x}(k)]$$

Solution: discretize the state space and work backwards

Let V(k) keep track of estimates of the objective function J

At the end. when k=T $V(\boldsymbol{x},N)=\psi[\boldsymbol{x}(T)]$

One step back,

$$V(x, T-1) = \max_{u \in U} \{\ell[u(T-1), x(T-1)] + \psi[x(T)]\}$$

And in general, for k < T - 1,

$$V(x, k-1) = \max_{u \in U} \{\ell[u(k-1), x(k-1)] + V[x(k), k]\}, k = 0, \dots, T$$

Discretizing the state to a fine scale is very expensive. *Bellman*, the originator of Dynamic Programming called it "The curse of dimensionality"

Basic RL Problems

Location of reward uncertain

Transitions between states uncertain

Policy constantly changing

Markov Decision Processes

Problems with delayed reinforcement are well modeled as Markov decision processes (MDPs). An MDP consists of

- a set of states S,
- a set of actions A,
- a reward function R: S × A → R, and
- a state transition function T: S × A → ∏(S), where a member of ∏(S) is a probability distribution over the set S (i.e. it maps states to probabilities). We write T(s,a,s') for the probability of making a transition from state s to state s' using action a.

The state transition function probabilistically specifies the next state of the environment as a function of its current state and the agent's action. The reward function specifies expected instantaneous rewards as a function of the current state and action. The model is *Markov* if the state transitions are independent of any previous environment states or agent actions. There are many good references to MDP models

Reinforcement Learning Primer: Before Learning

Reinforcement Learning Primer

By trying different actions from different starting points, gradually learn the expected reward value from any starting point

A Monkey uses Secondary Reward

Do dopamine neurons report an error In the prediction of reward?

The basic Reinforcement Learning model

We will speak of the optimal value of a state--it is the expected infinite discounted sum of reward that the agent will gain if it starts in that state and executes the optimal policy. Using π as a complete decision policy, it is written

$$V^*(s) = \max_{\pi} E\left(\sum_{t=0}^{\infty} \gamma^t r_t\right)$$
.

This optimal value function is unique and can be defined as the solution to the simultaneous equations

$$V^*(s) = \max_{a} \left(R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V^*(s') \right), \forall s \in S , \qquad (1)$$

which assert that the value of a state s is the expected instantaneous reward plus the expected discounted value of the next state, using the best available action. Given the optimal value function, we can specify the optimal policy as

$$\pi^*(s) = \arg\max_a \left(R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V^*(s') \right) .$$

Value Iteration

initialize V(s) arbitrarily

loop until policy good enough

loop for $s \in S$

loop for a ∈ A

$$\mathcal{Q}(s,a) := R(s,a) + \gamma \textstyle \sum_{s' \in S} T(s,a,s') V(s')$$

$$V(s) := \max_{a} Q(s, a)$$

end loop

Policy Iteration

choose an arbitrary policy π'

loop

$$\pi := \pi'$$

compute the value function of policy π :

solve the linear equations

$$V_{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s, \pi(s), s') V_{\pi}(s')$$

improve the policy at each state:

$$\pi'(s) := \arg \max_{a} \left(R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V_{\pi}(s') \right)$$

until $\pi = \pi'$

Temporal Difference Learning

$$\bar{V}_t = \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

where $0 \leq \gamma < 1$. This formula can be expanded

$$\bar{V}_t = r_t + \sum_{i=1}^{\infty} \gamma^i r_{t+i}$$

by changing the index of i to start from 0.

$$\bar{V}_t = r_t + \sum_{i=0}^{\infty} \gamma^{i+1} r_{t+i+1}$$

$$\bar{V}_t = r_t + \gamma \sum_{i=0}^{\infty} \gamma^i r_{t+i+1}$$

$$\bar{V}_t = r_t + \gamma \bar{V}_{t+1}$$

Thus, the reinforcement is the difference between the ideal prediction and the current prediction.

$$r_t = \bar{V}_t - \gamma \bar{V}_{t+1}$$

Q - Learning

Temporal difference learning [Sutton and Barto, 1998], uses the error between the current estimated values of states and the observed reward to drive learning. In a related Q-learning form, the estimate of the quality value of a state-action pair is adjusted by this error δ_Q using a learning rate α :

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \delta_Q$$
 (3)

Two fundamental learning rules for δ_Q are 1) the original Q-learning rule [Watkins, 1989] and 2) SARSA [Rummery and Niranjan, 1994]. While Q-learning rule is an off-policy rule, i.e. it uses errors between current observations and estimates of the values for following an optimal policy, while actually following a potentially suboptimal policy during learning, SARSA¹ is an on-policy learning rule, i.e. the updates of the state and action values reflect the current policy derived from these value estimates. While in the general case of Q-learning, the temporal difference is:

$$\delta_Q = r_t + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)$$
(4)

for the more specific case of SARSA it is:

$$\delta_Q = r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t). \tag{5}$$

Which action to try?

This is known as the *multi-arm bandit problem* after Las Vegas slot machines

pulling an arm results in a reward for that arm that is random.

Which arm has the best average reward?

Epsilon-greedy algorithm

Pull the best arm with probability 1- ϵ Pull the other arms, including the best, with probability ϵ

A value for ϵ might be 10%

Avoiding obstacles while walking

