Hieu Pham

Assignment Section_3.2 due 05/01/2014 at 11:58pm MST

1.	(1 p	t)	Algebraica	lly fin	d the	inverse	function	of $f(x) =$
9 - 3e	<i>x</i> .							
$f^{-1}(\mathbf{r})$) —							

Graph f, f^{-1} and the line y = x on the same screen and check whether the graphs of f and f^{-1} are reflections about the line. Answer(s) submitted:

• log((9-x)/3)

(correct)

Correct Answers:

- ln((9-x)/3)
- **2.** (1 pt) Consider the function $f(x) = \sqrt{x-10}$.

(A) Find
$$f^{-1}(10) =$$

(B) Use Theorem 7, page 156 of the Stewart Essential Calculus textbook to find $(f^{-1})'(10)$ $(f^{-1})'(10) = \underline{\hspace{1cm}}$

(C) Calculate $f^{-1}(x)$ and state domain and range of f^{-1} . Use interval notation. If needed enter *inf* for ∞ or *minf* for $-\infty$. $f^{-1}(x) =$ _____

Domain = _____

Range = ____

Calculate $(f^{-1})'(10)$ from the formula for $f^{-1}(x)$ and check that it agrees with the result of part (B)

Answer(s) submitted:

- 110
- 20
- $x^2 + 10$
- [0, inf)
- [10, inf)

(correct)

Correct Answers:

- 110
- 20
- x**2+10
- [0, infinity)
- [10, infinity)

3. (1 pt) Consider the function
$$f(x) = \frac{3}{x-1}$$
 for $x > 1$.

(A) Find
$$f^{-1}(2) =$$

(B) Use Theorem 7, page 156 of the Stewart Essential Calculus textbook to find $(f^{-1})'(2)$

$$(f^{-1})'(2) = \underline{\hspace{1cm}}$$

(C) Calculate $f^{-1}(x)$ and state domain and range of f^{-1} . Use interval notation. If needed enter inf for ∞ or minf for $-\infty$.

 $f^{-1}(x) =$

Domain = _____ Range = ___

Calculate $(f^{-1})'(2)$ from the formula for $f^{-1}(x)$ and check that it agrees with the result of part (B)

Answer(s) submitted:

- 5/2
- −3/4
- ((x+3)/x)
- (0,inf)
- (1, inf)

(correct)

Correct Answers:

- 2.5
- −0.75
- 1+3/x
- (0, infinity)
- (1, infinity)

4. (1 pt) For each of the given functions f(x), find the derivative $(f^{-1})'(c)$ at the given point c, first finding $a = f^{-1}(c)$. (See Theorem 7, page 156 of the Stewart Essential Calculus textbook)

$$f(x) = 5x + 6x^{15};$$
 $c = -11$

$$(f^{-1})'(c) = \underline{\qquad}$$

 $f(x) = x^2 - 11x + 41$ on the interval $[5.5, \infty)$; $c = 13$

$$(f^{-1})'(c) = \underline{\hspace{1cm}}$$

Answer(s) submitted:

- dne
- 2.9259E-17
- 7
- 1/3

(score 0.5)

Correct Answers:

- −1
- 0.0105263157894737
- 0.333333333333333

5. (1 pt) Evaluate the following expressions.

- (a) $\ln e^{-7} =$ _____
- (b) $e^{\ln 7} =$ _____
- (c) $e^{\ln(3^2)} =$ ____
- (d) $\ln(1/e^4) =$ ____

Answer(s) submitted:

- −7
- 7
- 9
- −4

(correct)

Correct Answers:

- −7
- 7
- 9
- −4

6. (1 pt) Use the Laws of logarithms to rewrite the expression

$$\ln(\sqrt[4]{xy})$$

in a form with no logarithm of a product, quotient or power. After rewriting we have

$$\ln(\sqrt[4]{xy}) = A\ln(x) + B\ln(y)$$

with the constant

 $A = \underline{\hspace{1cm}}$

and the constant

 $S = \underline{\qquad}$ Answer(s) submitted:

- 1/4
- 1/4

(correct)

Correct Answers:

- 1/4
- 1/4

7. (1 pt) Use the Laws of logarithms to rewrite the expression

$$\ln\left(\frac{x^3\sqrt{x-1}}{3x-6}\right)$$

in a form with no logarithm of a product, quotient or power. After rewriting we have

$$\ln\left(\frac{x^3\sqrt{x-1}}{3x-6}\right) = A\ln x + B\ln(x-1) + C\ln(3x-6)$$

with the constant A = _____ the constant B = ____ and the constant C = _____

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

Answer(s) submitted:

- 3
- 1/2
- −1

(correct)

Correct Answers:

- 3
- 0.5
- -1

8. (1 pt) Find the solution of the exponential equation

$$e^{1-4x} = 8$$

in terms of logarithms, or correct to four decimal places.

 $x = \underline{\hspace{1cm}}$

Answer(s) submitted:

-0.2699

(correct)

Correct Answers:

-0.269860385419959

9. (1 pt) Find the solution of the logarithmic equation

$$16 - \ln(5 - x) = 0$$

correct to four decimal places.

Your answer is

x = _____

Answer(s) submitted:

-8886100

(correct)

Correct Answers:

-8886105.52050787

10. (1 pt)

Find the following limits. If needed, enter inf for ∞ and minf for $-\infty$.

(a)
$$\lim_{x \to \infty} \ln(2+11x) - \ln(11+2x) =$$

(b) $\lim_{x\to 0^+} \ln(2\sin x) =$ _____

Answer(s) submitted:

- 1.7047
- minf

(correct)

Correct Answers:

- 1.70474809223843
- minf