Assignment 14 MAT 347

Q2: We claim that $\mathbb{Z}/(m) \otimes_{\mathbb{Z}} \mathbb{Z}/(n)$ is isomorphic to $\mathbb{Z}/(m,n)$. Consider the following commutative diagram:

$$\mathbb{Z}/(m) \times \mathbb{Z}/(n) \xrightarrow{\otimes} \mathbb{Z}/(m) \otimes_{\mathbb{Z}} \mathbb{Z}/(n)$$

$$f(x,y)=xy \downarrow \qquad \qquad \tilde{f}$$

$$\mathbb{Z}/(m,n)$$

We have that by the universal property of \otimes , f(x,y)=xy factors. We claim that \tilde{f} is a group isomorphism. Note that it must be a homeomorphism. Note that \tilde{f} is surjective since for $r \in \mathbb{Z}/(m,n)$ we can just take $r \otimes 1$ and see that

$$\tilde{f}(r \otimes 1) = r\tilde{f}(1 \otimes 1) = r.$$

We now compute the cardinality of $\mathbb{Z}/(m) \otimes_{\mathbb{Z}} \mathbb{Z}/(n)$. If we take some element $a \otimes b = ab \otimes 1 = 1 \otimes ab$. Using the division algorithm, we can write $ab = p_1m + r_1 = p_2n + r_2$. So $a \otimes b = r_1 \otimes 1 = 1 \otimes r_2$. For this to be nontrivial we must have that $r_1, r_2 < \gcd(n, m)$. Therefore the cardinalities of the groups are the same. Since \tilde{f} is a surjection, it must also be a bijection.