

LIFTING DERIVATIONS AND n -WEAK AMENABILITY OF THE SECOND DUAL OF A BANACH ALGEBRA

S. BAROOTKOOB AND H.R. EBRAHIMI VISHKI

ABSTRACT. We show that for $n \geq 2$, n -weak amenability of the second dual \mathcal{A}^{**} of a Banach algebra \mathcal{A} implies that of \mathcal{A} . We also provide a positive answer for the case $n = 1$, which sharpens some older results. Our method of proof also provides a unified approach to give short proofs for some known results in the case where $n = 1$.

The concept of n -weak amenability was initiated and intensively developed by Dales, Ghahramani and Grønbæk [3]. A Banach algebra \mathcal{A} is said to be n -weakly amenable ($n \in \mathbb{N}$) if every (bounded) derivation from \mathcal{A} into $\mathcal{A}^{(n)}$ (the n^{th} dual of \mathcal{A}) is inner. Trivially, 1-weak amenability is nothing else than weak amenability, which was first introduced and intensively studied by Bade, Curtis and Dales [2] for commutative Banach algebras and then by Johnson [9] for a general Banach algebra.

We equip the second dual \mathcal{A}^{**} of \mathcal{A} with its first Arens product and focus on the following question which is of special interest, especially for the case when $n = 1$.

*Does n -weakly amenability of \mathcal{A}^{**} force \mathcal{A} to be n -weakly amenable?*

In the present paper first we shall show:

Theorem 1. *The answer to the above question is positive for any $n \geq 2$.*

Then we consider the case $n = 1$, which is a long-standing open problem with a slightly different feature from that of $n \geq 2$. This case has been investigated and partially answered by many authors (see Theorem 6, in which we rearrange some known answers from [5, 6, 7, 8]). As a consequence of our general method of proof (for the case $n = 1$), we present the next positive answer; in which, π denotes the product of \mathcal{A} , $\pi^* : \mathcal{A}^* \times \mathcal{A} \rightarrow \mathcal{A}^*$ is defined by

$$\langle \pi^*(a^*, a), b \rangle = \langle a^*, \pi(a, b) \rangle, \quad (a^* \in \mathcal{A}^*, a, b \in \mathcal{A}),$$

and $Z_\ell(\pi^*)$ is the left topological centre of π^* , (see the next section).

Theorem 2. *Let \mathcal{A} be a Banach algebra such that every derivation $D : \mathcal{A} \rightarrow \mathcal{A}^*$ satisfies $D^{**}(\mathcal{A}^{**}) \subseteq Z_\ell(\pi^*)$. Then weak amenability of \mathcal{A}^{**} implies that of \mathcal{A} .*

2000 *Mathematics Subject Classification.* 46H20, 46H25.

Key words and phrases. Weak amenability, n -weak amenability, derivation, second dual, Arens product.

As a rapid consequence we get the next result, part (*ii*) of which sharpens [4, Corollary 7.5] and also [5, Theorem 2.1] (note that $WAP(\mathcal{A}) \subseteq \mathcal{A}^* \subseteq Z_\ell(\pi^*)$); indeed, it shows that the hypothesis of Arens regularity of \mathcal{A} in [4, Corollary 7.5] is superfluous.

Corollary 3. *For a Banach algebra \mathcal{A} , in either of the following cases, the weak amenability of \mathcal{A}^{**} implies that of \mathcal{A} .*

- (*i*) *If π^* is Arens regular.*
- (*ii*) *If every derivation from \mathcal{A} into \mathcal{A}^* is weakly compact.*

The influence of the impressive paper [7] of Ghahramani *et al.* on our work should be evident. It should finally be remarked that part (*ii*) of Corollary 3 actually demonstrates what Ghahramani *et al.* claimed in a remark following [7, Theorem 2.3]. Indeed, as we shall see in the proof of Theorem 2, $J_0^* \circ D^{**}$ is a derivation ($J_0 : \mathcal{A} \rightarrow \mathcal{A}^{**}$ denotes the canonical embedding), however they claimed that D^{**} is a derivation and in their calculation of limits they used the Arens regularity of \mathcal{A} ; see also a remark just after the proof of [4, Corollary 7.5].

THE PROOFS

To prepare the proofs, let us first fix some notations and preliminaries. Following the seminal work [1] of Arens, every bounded bilinear map $f : \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z}$ (on normed spaces) has two natural but, in general, different extensions f^{***} and f^{r***r} from $\mathcal{X}^{**} \times \mathcal{Y}^{**}$ to \mathcal{Z}^{**} . Here the flip map f^r of f is defined by $f^r(y, x) = f(x, y)$, the adjoint $f^* : \mathcal{Z}^* \times \mathcal{X} \rightarrow \mathcal{Y}^*$ of f is defined by

$$\langle f^*(z^*, x), y \rangle = \langle z^*, f(x, y) \rangle \quad (x \in \mathcal{X}, y \in \mathcal{Y} \text{ and } z^* \in \mathcal{Z}^*);$$

and also the second and third adjoints f^{**} and f^{***} of f are defined by $f^{**} = (f^*)^*$ and $f^{***} = (f^{**})^*$, respectively. Continuing this process one can define the higher adjoints $f^{(n)}$, ($n \in \mathbb{N}$).

We also define the left topological centre $Z_\ell(f)$ of f by

$$Z_\ell(f) = \{x^{**} \in \mathcal{X}^{**}; y^{**} \rightarrow f^{***}(x^{**}, y^{**}) : \mathcal{Y}^{**} \rightarrow \mathcal{Z}^{**} \text{ is } w^* - w^* - \text{continuous}\}.$$

A bounded bilinear mapping f is said to be Arens regular if $f^{***} = f^{r***r}$, or equivalently $Z_\ell(f) = \mathcal{X}^{**}$.

It should be remarked that, in the case where π is the multiplication of a Banach algebra \mathcal{A} , then π^{***} and π^{r***r} are actually the first and second Arens products on \mathcal{A}^{**} , respectively. From now on, we only deal with the first Arens product \square and our results are based on $(\mathcal{A}^{**}, \square)$. Similar results can be derived if one uses the second Arens product instead of the first one.

Consider \mathcal{A} as a Banach \mathcal{A} -module equipped with its own multiplication π . Then $(\pi^{r**}, \mathcal{A}^*, \pi^*)$ is the natural dual Banach \mathcal{A} -module, in which, π^{r**} and π^* denote its left and right module actions, respectively. Similarly, the n^{th} dual $\mathcal{A}^{(n)}$ of \mathcal{A} can be made into a Banach \mathcal{A} -module in a natural fashion. A direct verification reveals that $(\pi^{(3n)}, \mathcal{A}^{(2n)}, \pi^{(3n)})$ is a Banach \mathcal{A}^{**} -module. It induces the natural dual Banach \mathcal{A}^{**} -module $(\pi^{(3n)r**}, \mathcal{A}^{(2n+1)}, \pi^{(3n+1)})$ which will be used in the sequel. Note that we have also $(\pi^{r**(3n)}, \mathcal{A}^{(2n+1)}, \pi^{(3n+1)})$ as a Banach \mathcal{A}^{**} -module that induced by $(\pi^{r**}, \mathcal{A}^*, \pi^*)$. It should be mentioned that these two actions on $\mathcal{A}^{(2n+1)}$ do not coincide, in general. For more information on the equality of these actions in the case where $n = 1$ see [4, 10].

From now on, we identify (an element of) a normed space with its canonical image in its second dual; however, we also use $J_n : \mathcal{A}^{(n)} \rightarrow \mathcal{A}^{(n+2)}$ for the canonical embedding.

We commence with the next lemma.

Lemma 4. *Let \mathcal{A} be a Banach algebra, $n \in \mathbb{N}$ and let $D : \mathcal{A} \rightarrow \mathcal{A}^{(2n-1)}$ be a derivation.*

- (i) *If $n \geq 2$ then $[(J_{2n-2})^* \circ D^{**}] : \mathcal{A}^{**} \rightarrow \mathcal{A}^{(2n+1)}$ is a derivation.*
- (ii) *For $n = 1$, $[J_0^* \circ D^{**}] : \mathcal{A}^{**} \rightarrow \mathcal{A}^{***}$ is a derivation if and only if $\pi^{***r**}(D^{**}(\mathcal{A}^{**}), \mathcal{A}) \subseteq \mathcal{A}^*$.*

Proof. (i). It is enough to show that for any $a^{**}, b^{**} \in \mathcal{A}^{**}$

$$[(J_{2n-2})^* \circ D^{**}](a^{**} \square b^{**}) = \pi^{(3n+1)}([(J_{2n-2})^* \circ D^{**}](a^{**}), b^{**}) + \pi^{(3n)r**}(a^{**}, [(J_{2n-2})^* \circ D^{**}](b^{**})).$$

To this end let $\{a_\alpha\}$ and $\{b_\beta\}$ be bounded nets in \mathcal{A} , w^* -converging to a^{**} and b^{**} , respectively. Then

$$\begin{aligned} D^{**}(a^{**} \square b^{**}) &= w^* - \lim_{\alpha} w^* - \lim_{\beta} D(a_\alpha b_\beta) \\ &= w^* - \lim_{\alpha} w^* - \lim_{\beta} [\pi^{(3n-2)}(D(a_\alpha), b_\beta) + \pi^{(3n-3)r**}(a_\alpha, D(b_\beta))] \\ &= \pi^{(3n+1)}(D^{**}(a^{**}), b^{**}) + \pi^{(3n-3)r**r***}(a^{**}, D^{**}(b^{**})). \end{aligned}$$

For each $a^{(2n-2)} \in \mathcal{A}^{(2n-2)}$,

$$\begin{aligned} \langle (J_{2n-2})^*(\pi^{(3n-3)r**r***}(a^{**}, D^{**}(b^{**}))), a^{(2n-2)} \rangle &= \\ &= \lim_{\alpha} \lim_{\beta} \langle D(b_\beta), \pi^{(3n-3)}(a^{(2n-2)}, a_\alpha) \rangle \\ &= \lim_{\alpha} \langle D^{**}(b^{**}), \pi^{(3n-3)}(a^{(2n-2)}, a_\alpha) \rangle \\ &= \lim_{\alpha} \langle [(J_{2n-2})^* \circ D^{**}](b^{**}), \pi^{(3n-3)}(a^{(2n-2)}, a_\alpha) \rangle \\ &= \langle [(J_{2n-2})^* \circ D^{**}](b^{**}), \pi^{(3n)}(a^{(2n-2)}, a^{**}) \rangle \\ &= \langle \pi^{(3n)r**r}(a^{**}, [(J_{2n-2})^* \circ D^{**}](b^{**})), a^{(2n-2)} \rangle. \end{aligned}$$

Since for $n \geq 2$,

$$\pi^{(3n)}(\mathcal{A}^{**}, \mathcal{A}^{(2n-2)}) = \pi^{(3n-3)}(\mathcal{A}^{**}, \mathcal{A}^{(2n-2)}) \subseteq \pi^{(3n-3)}(\mathcal{A}^{(2n-2)}, \mathcal{A}^{(2n-2)}) \subseteq \mathcal{A}^{(2n-2)}$$

(note that the same inclusion may not valid for the case $n = 1$; indeed, it holds if and only if $\pi^{***}(\mathcal{A}^{**}, \mathcal{A}) \subseteq \mathcal{A}$, or equivalently, \mathcal{A} is a left ideal in $\mathcal{A}^{**!}$), we get $\pi^{(3n)}(b^{**}, a^{(2n-2)}) \in \mathcal{A}^{(2n-2)}$ and so

$$\begin{aligned} & \langle (J_{2n-2})^*(\pi^{(3n+1)}(D^{**}(a^{**}), b^{**})), a^{(2n-2)} \rangle = \\ &= \langle D^{**}(a^{**}), \pi^{(3n)}(b^{**}, a^{(2n-2)}) \rangle \\ &= \langle [(J_{2n-2})^* \circ D^{**}](a^{**}), \pi^{(3n)}(b^{**}, a^{(2n-2)}) \rangle \\ &= \langle \pi^{(3n+1)}([(J_{2n-2})^* \circ D^{**}](a^{**}), b^{**}), a^{(2n-2)} \rangle. \end{aligned}$$

Therefore

$$\begin{aligned} & [(J_{2n-2})^* \circ D^{**}](a^{**} \square b^{**}) = \\ &= (J_{2n-2})^*(\pi^{(3n+1)}(D^{**}(a^{**}), b^{**})) + (J_{2n-2})^*(\pi^{(3n-3)r**r***}(a^{**}, D^{**}(b^{**}))) \\ &= \pi^{(3n+1)}([(J_{2n-2})^* \circ D^{**}](a^{**}), b^{**}) + \pi^{(3n)r**r}(a^{**}, [(J_{2n-2})^* \circ D^{**}](b^{**})); \end{aligned}$$

as required.

For (ii), examining the above proof for the case $n = 1$ shows that, $J_0^* \circ D^{**} : \mathcal{A}^{**} \rightarrow \mathcal{A}^{***}$ is a derivation if and only if

$$J_0^*(\pi^{****}(D^{**}(a^{**}), b^{**})) = \pi^{****}([J_0^* \circ D^{**}](a^{**}), b^{**}) \quad (a^{**}, b^{**} \in \mathcal{A}^{**}),$$

which holds if and only if

$$\langle \pi^{****}(D^{**}(a^{**}), b^{**}), a \rangle = \langle \pi^{****}([J_0^* \circ D^{**}](a^{**}), b^{**}), a \rangle \quad (a \in \mathcal{A});$$

or equivalently,

$$\langle \pi^{***r*}(D^{**}(a^{**}), a), b^{**} \rangle = \langle \pi^{***r*}([J_0^* \circ D^{**}](a^{**}), a), b^{**} \rangle.$$

As $\pi^{***r*}([J_0^* \circ D^{**}](a^{**}), a) = \pi^{**r}([J_0^* \circ D^{**}](a^{**}), a) \in \mathcal{A}^*$ and also $\pi^{***r*}(D^{**}(a^{**}), a)|_{\mathcal{A}} = \pi^{**r}([J_0^* \circ D^{**}](a^{**}), a)$; the map $[J_0^* \circ D^{**}] : \mathcal{A}^{**} \rightarrow \mathcal{A}^{***}$ is a derivation if and only if $\pi^{***r*}(D^{**}(a^{**}), a) \in \mathcal{A}^*$, as claimed. \square

We are now ready to present the proofs of the main results.

Proof of Theorem 1. Let $n \in \mathbb{N}$, $D : \mathcal{A} \rightarrow \mathcal{A}^{(2n)}$ be a derivation and let $a^{**}, b^{**} \in \mathcal{A}^{**}$. As $(\pi^{(3n+3)}, \mathcal{A}^{(2n+2)}, \pi^{(3n+3)})$ is a Banach \mathcal{A}^{**} -module, a standard double limit process

argument—similar to what has been used at the beginning of the proof of the preceding lemma—shows that $D^{**} : \mathcal{A}^{**} \rightarrow \mathcal{A}^{(2n+2)}$ satisfies

$$D^{**}(a^{**} \square b^{**}) = \pi^{(3n+3)}(D^{**}(a^{**}), b^{**}) + \pi^{(3n+3)}(a^{**}, D^{**}(b^{**})).$$

Therefore D^{**} is a derivation and so $(2n)$ –weak amenability of \mathcal{A}^{**} implies that $D^{**} = \delta_{a^{(2n+2)}}$ for some $a^{(2n+2)} \in \mathcal{A}^{(2n+2)}$. Now we get $D = \delta_{(J_{2n-1})^*(a^{(2n+2)})}$. Thus D is inner and so \mathcal{A} is $(2n)$ –weakly amenable.

Now for the odd case, suppose that \mathcal{A}^{**} is $(2n-1)$ –weakly amenable and let $D : \mathcal{A} \rightarrow \mathcal{A}^{(2n-1)}$ be a derivation. Then as we have seen in Lemma 4, when $n \geq 2$ the mapping $[(J_{2n-2})^* \circ D^{**}] : \mathcal{A}^{**} \rightarrow \mathcal{A}^{(2n+1)}$ is a derivation. But then, by the assumption, $[(J_{2n-2})^* \circ D^{**}] = \delta_{a^{(2n+1)}}$ for some $a^{(2n+1)} \in \mathcal{A}^{(2n+1)}$. It follows that $D = \delta_{(J_{2n-2})^*(a^{(2n+1)})}$, so that D is inner, as claimed. \square

Proof of Theorem 2. Let $a^{**}, b^{**} \in \mathcal{A}^{**}, a \in \mathcal{A}$ and let $\{a_\alpha^{**}\}$ be a net in \mathcal{A}^{**} w^* –converging to a^{**} . As $D^{**}(b^{**}) \in Z_\ell(\pi^*)$,

$$\begin{aligned} \lim_\alpha < \pi^{***r*}(D^{**}(b^{**}), a), a_\alpha^{**} > &= \lim_\alpha < D^{**}(b^{**}), \pi^{***}(a_\alpha^{**}, a) > \\ &= \lim_\alpha < \pi^{****}(D^{**}(b^{**}), a_\alpha^{**}), a > \\ &= < \pi^{****}(D^{**}(b^{**}), a^{**}), a > \\ &= < D^{**}(b^{**}), \pi^{***}(a^{**}, a) > \\ &= < \pi^{***r*}(D^{**}(b^{**}), a), a^{**} >. \end{aligned}$$

And this means that $\pi^{***r*}(D^{**}(b^{**}), a) \in \mathcal{A}^*$, so that $J_0^* \circ D^{**}$ is derivation by Lemma 4. Now by the assumption $J_0^* \circ D^{**} = \delta_{a^{***}}$, for some $a^{***} \in \mathcal{A}^{***}$, and this follows that $D = \delta_{J_0^*(a^{***})}$, so that \mathcal{A} is weakly amenable. \square

FURTHER CONSEQUENCES

Recall that for a derivation $D : \mathcal{A} \rightarrow \mathcal{A}^*$ the second adjoint D^{**} is a derivation if and only if $\pi^{r**r***}(a^{**}, D^{**}(b^{**})) = \pi^{***r*r}(a^{**}, D^{**}(b^{**}))$, for every $a^{**}, b^{**} \in \mathcal{A}^{**}$; or equivalently, $\pi^{****}(D^{**}(\mathcal{A}^{**}), \mathcal{A}^{**}) \subseteq \mathcal{A}^*$; see [4, Theorem 7.1] and also [10, Theorem 4.2] for a more general case. While, as Lemma 4 demonstrates, $J_0^* \circ D^{**}$ is a derivation if and only if $\pi^{***r*}(D^{**}(\mathcal{A}^{**}), \mathcal{A}) \subseteq \mathcal{A}^*$. In the next result we investigate the interrelation between D^{**} and $J_0^* \circ D^{**}$.

Proposition 5. *Let $D : \mathcal{A} \rightarrow \mathcal{A}^*$ be a derivation.*

- (i) *If D^{**} is a derivation and $\mathcal{A}^{**} \square \mathcal{A} = \mathcal{A}^{**}$ then $J_0^* \circ D^{**}$ is a derivation.*
- (ii) *If $J_0^* \circ D^{**}$ is a derivation and \mathcal{A} is Arens regular then D^{**} is a derivation.*

Proof. (i). As $\mathcal{A}^{**}\square\mathcal{A} = \mathcal{A}^{**}$, for each $b^{**} \in \mathcal{A}^{**}$ there exist $a^{**} \in \mathcal{A}^{**}$ and $a \in \mathcal{A}$ such that $a^{**}\square a = b^{**}$. Then

$$\begin{aligned}\pi^{***r*}(D^{**}(b^{**}), b) &= \pi^{***r*}(D^{**}(a^{**}\square a), b) \\ &= \pi^{***r*}(\pi^{****}(D^{**}(a^{**}), a) + \pi^{***r*r}(a^{**}, D(a)), b) \\ &= \pi^{r*}(\pi^{****}(D^{**}(a^{**}), a) + \pi^{**}(a^{**}, D(a)), b) \in \mathcal{A}^*.\end{aligned}$$

It follows from Lemma 4 that $J_0^* \circ D^{**}$ is a derivation.

(ii). Since $J_0^* \circ D^{**}$ is a derivation,

$$J_0^*(\pi^{****}(D^{**}(a^{**}), b^{**})) = \pi^{****}([J_0^* \circ D^{**}](a^{**}), b^{**}) \quad (a^{**}, b^{**} \in \mathcal{A}^{**}).$$

Let $\{a_\alpha\}$ be a bounded net in \mathcal{A} , w^* -converging to a^{**} . Then as \mathcal{A} is Arens regular,

$$\begin{aligned}\langle \pi^{r**r***}(a^{**}, D^{**}(b^{**})), c^{**} \rangle &= \lim_{\alpha} \langle \pi^{r**r***}(D^{**}(b^{**}), c^{**}), a_\alpha \rangle \\ &= \lim_{\alpha} \langle J_0^*(\pi^{****}(D^{**}(b^{**}), c^{**})), a_\alpha \rangle \\ &= \lim_{\alpha} \langle \pi^{****}([J_0^* \circ D^{**}](b^{**}), c^{**}), a_\alpha \rangle \\ &= \lim_{\alpha} \langle [J_0^* \circ D^{**}](b^{**}), \pi^{***}(c^{**}, a_\alpha) \rangle \\ &= \langle [J_0^* \circ D^{**}](b^{**}), \pi^{***}(c^{**}, a^{**}) \rangle \\ &= \langle \pi^{***r*r}(a^{**}, D^{**}(b^{**})), c^{**} \rangle,\end{aligned}$$

for all $c^{**} \in \mathcal{A}^{**}$. Therefore D^{**} is a derivation. \square

As a by-product of our method of proof we provide a unified approach to new proofs for some known results for the case where $n = 1$.

Theorem 6. *In either of the following cases, weak amenability of \mathcal{A}^{**} implies that of \mathcal{A} .*

- (i) \mathcal{A} is a left ideal in \mathcal{A}^{**} ; [7, Theorem 2.3].
- (ii) \mathcal{A} is a dual Banach algebra; [6, Theorem 2.2].
- (iii) \mathcal{A} is a right ideal in \mathcal{A}^{**} and $\mathcal{A}^{**}\square\mathcal{A} = \mathcal{A}^{**}$; [5, Theorem 2.4].

Proof. In either cases, it sufficients to show that for a derivation $D : \mathcal{A} \rightarrow \mathcal{A}^*$ the map $J_0^* \circ D^{**} : \mathcal{A}^{**} \rightarrow \mathcal{A}^{***}$ is also a derivation, or equivalently, $\pi^{***r*}(D^{**}(\mathcal{A}^{**}), \mathcal{A}) \subseteq \mathcal{A}^*$.

(i) If \mathcal{A} is a left ideal in \mathcal{A}^{**} , i.e. $\mathcal{A}^{**}\square\mathcal{A} \subseteq \mathcal{A}$, then for each $a^{**}, b^{**} \in \mathcal{A}^{**}, a \in \mathcal{A}$,

$$\begin{aligned}\langle \pi^{***r*}(D^{**}(a^{**}), a), b^{**} \rangle &= \langle D^{**}(a^{**}), b^{**}\square a \rangle = \langle \pi^{***r*}([J_0^* \circ D^{**}](a^{**}), a), b^{**} \rangle \\ &= \langle \pi^{**r}([J_0^* \circ D^{**}](a^{**}), a), b^{**} \rangle.\end{aligned}$$

Therefore $\pi^{***r*}(D^{**}(a^{**}), a) = \pi^{**r}([J_0^* \circ D^{**}](a^{**}), a) \in \mathcal{A}^*$, as required.

(ii) Let \mathcal{A} be a dual Banach algebra with a predual \mathcal{A}_* . It is easy to verify that $J_0^* \circ D^{**} = D \circ (J_{\mathcal{A}_*})^*$, where $J_{\mathcal{A}_*} : \mathcal{A}_* \rightarrow \mathcal{A}^*$ denotes the canonical embedding. Now using the fact that $(J_{\mathcal{A}_*})^* : \mathcal{A}^{**} \rightarrow \mathcal{A}$ is a homomorphism, a direct verification shows that $D \circ (J_{\mathcal{A}_*})^*$ is a derivation.

(iii) To show that $J_0^* \circ D^{**} : \mathcal{A}^{**} \rightarrow \mathcal{A}^{***}$ is a derivation, by Proposition 5 we only need to show that D^{**} is a derivation. However this was done in the proof of [5, Theorem 2.4], we also give the next somewhat shorter proof for this. Let $a^{**}, b^{**}, c^{**}, d^{**} \in \mathcal{A}^{**}$ and $a \in \mathcal{A}$ such that $d^{**} \square a = b^{**}$. As $a \square c^{**} \in \mathcal{A}$,

$$\begin{aligned} \langle \pi^{****}(D^{**}(a^{**}), b^{**}), c^{**} \rangle &= \langle \pi^{****}(D^{**}(a^{**}), d^{**} \square a), c^{**} \rangle \\ &= \langle \pi^{****}(D^{**}(a^{**}), d^{**}), a \square c^{**} \rangle \\ &= \langle \pi^*(J_0^*(\pi^{****}(D^{**}(a^{**}), d^{**}))), a), c^{**} \rangle. \end{aligned}$$

We have thus $\pi^{****}(D^{**}(a^{**}), b^{**}) = \pi^*(J_0^*(\pi^{****}(D^{**}(a^{**}), d^{**})), a) \in \mathcal{A}^*$, and this says that $\pi^{****}(D^{**}(\mathcal{A}^{**}), \mathcal{A}^{**}) \subseteq \mathcal{A}^*$, as required. \square

ACKNOWLEDGMENTS

The useful comments of anonymous referee is gratefully acknowledged.

REFERENCES

- [1] A. Arens, *The adjoint of a bilinear operation*, Proc. Amer. Math. Soc. **2**(1951), 839–848.
- [2] W. G. Bade, P. C. Curtis, and H. G. Dales, *Amenability and weak amenability for Beurling and Lipschitz algebras*, Proc. London Math. Soc. **55** (1987), 359–377.
- [3] H. G. Dales, F. Ghahramani, and N. Grønbæk, *Derivations into iterated duals of Banach algebras*, Studia Math. **128** (1) (1998), 19–54.
- [4] H. G. Dales, A. Rodrigues-Palacios and M. V. Velasco, *The second transpose of a derivation*, J. London Math. Soc. **64** (2) (2001), 707–721.
- [5] M. Eshaghi Gordji and M. Filali, *Weak amenability of the second dual of a Banach algebra*, Studia Math. **182** (3) (2007), 205–213.
- [6] F. Ghahramani and J. Laali, *Amenability and topological centres of the second duals of Banach algebras*, Bull. Austral. Math. Soc. **65** (2002), 191–197.
- [7] F. Ghahramani, R.J. Loy and G.A. Willis, *Amenability and weak amenability of the second conjugate Banach algebras*, Proc. Amer. Math. Soc. **124** (1996), 1489–1497.
- [8] A. Jabbari, M.S. Moslehian and H.R.E. Vishki, *Constructions preserving n -weak amenability of Banach algebras*, Mathematica Bohemica **134** (4), (2009), 349–357.
- [9] B. E. Johnson, *Weak amenability of group algebras*, Bull. London Math. Soc. **23** (1991), 281–284.
- [10] S. Mohammadzadeh and H.R.E. Vishki, *Arens regularity of module actions and the second adjoint of a derivation*, Bull. Austral. Math. Soc. **77** (2008), 465–476.

DEPARTMENT OF PURE MATHEMATICS, FERDOWSI UNIVERSITY OF MASHHAD, P.O. BOX 1159, MASHHAD
91775, IRAN

E-mail address: sbk-923@yahoo.com

DEPARTMENT OF PURE MATHEMATICS AND CENTRE OF EXCELLENCE IN ANALYSIS ON ALGEBRAIC STRUCTURES (CEAAS), FERDOWSI UNIVERSITY OF MASHHAD, P.O. BOX 1159, MASHHAD 91775, IRAN.

E-mail address: vishki@um.ac.ir