CÀLCUL INTEGRAL EN DIVERSES VARIABLES. PRIMAVERA 2013

Llista 4: Integrals de línia. Teorema de Green

- 1. Es considera la corba plana definida per $\gamma(t)=(t-\sin t,1-\cos t),\quad t\in[0,2\pi].$ Calculeu:
 - a) La longitud de la corba.
- b) La integral de $f(x,y) = y^2$ sobre γ .
- c) La integral de F(x,y) = (2 y, x) sobre γ .
- 2. Calculeu el treball realitzat pel camp de forces F en moure una partícula al llarg d'una corba γ , essent:
 - a) $F(x, y, z) = (xy, xz, yz), \quad \gamma = \{(x, y, z) \in \mathbf{R}^3 \mid z = x^2 + y^2, \quad x^2 + y^2 = 4\}$
 - b) $F(x, y, z) = (y z, z x, x y), \quad \gamma = \{(x, y, z) \in \mathbf{R}^3 \mid x^2 + y^2 + z^2 = 4, \quad z = y\}$
 - c) $F(x, y, z) = (2xy + z^3, x^2, 3xz^2), \quad \gamma = \{(x, y, z) \in \mathbf{R}^3 \mid (x-1)^2 + (y-1)^2 + z^2 = 3, \quad z = 1\}$
- 3. Sobre el quadrant x>0, y>0, comproveu que $F(x,y)=(x^2+y^2)\left(\frac{3x^2-y^2}{x^2y}, \frac{3y^2-x^2}{y^2x}\right)$ és un gradient. Calculeu $\int_{\gamma} F.\ d\gamma$ essent $\gamma(t)=(t+\cos^2(t), 1+\sin^2(t)),\ t\in[0,\pi/2].$
- **4.** Sigui C la circumferència amb centre en (1/2,0) i radi 1/2. Sigui γ l'arc de C, orientat en sentit antihorari, i tal que $y \geq \frac{x}{\sqrt{3}}$.

Calculeu la circulació del camp $F(x,y)=(x^2\sin(x^3),\ ye^{-y^2})$ al llarg de la corba γ .

- **5.** Comproveu el teorema de Green per al camp $F(x,y)=(x^2y,x)$, essent D el domini regular $D=\{(x,y)\in {\bf R}^2\mid x+y\leq 1,\ x-y\leq 1,\ x\geq 0\}$
- **6.** a) Sigui G un domini regular d' \mathbf{R}^2 . Comproveu que $\mu(G) = \int_{\partial^+(G)} x \, dy$, i calculeu l'àrea de la regió del primer quadrant limitada per les equacions 4y = x, 4x = y, xy = 4.

- b) Sigui $F(x,y)=(-\frac{1}{2}y,\frac{1}{2}x)$ definit en un domini regular $D\subset \mathbf{R}^2$. Comproveu que $\mu(D)=\int_{\partial^+ D}F\cdot d\gamma$, i calculeu l'àrea de $D=\{(x,y)\in \mathbf{R}^2\mid \frac{x^2}{a^2}+\frac{(y+1)^2}{b^2}<1\}$
- 7. Sigui $F(x,y) = \left(e^x + \frac{y}{e^x y}, \frac{1}{y e^x} + y\right)$ el camp definit en el conjunt dels punts $(x,y) \in \mathbf{R}^2$ tals que $e^x y \neq 0$. Calculeu la circulació d'F al llarg del segment que uneix els punts (0,2) i (1,3).
- 8. Calculeu la circulació del camp $F(x,y) = \left(\frac{-y}{(x+1)^2 + y^2}, \frac{x+1}{(x+1)^2 + y^2}\right)$ al llarg de l'el·lipse $\left(\frac{x}{2}\right)^2 + y^2 = 4$, recorreguda en sentit antihorari.
- 9. Sigui $F(x,y) = \left(\frac{1}{2(x+1)^2} y^2x, \ y(x+\sin y)\right)$. Sigui $\overline{D} = \{(x,y) \in \mathbf{R}^2 \mid x^2 + y^2 \le 1, \ (x-1)^2 + y^2 \le 1, \ y \ge 0\}$, i γ la corba, part de la vora de D, orientada positivament en relació amb D, continguda en y > 0. Calculeu la integral de línia del camp F sobre γ .