Example Course

This course illustrates the export of LiaScript based learning content. The different formates are available in the export of the project.

 $\label{thm:continuous} \mbox{ Visit the youtube channel of LiaScript to get an overview about already implemented features. }$

Interactive Tables

Click to Bar chart for visualizing diagram's content.

Animal	weight in kg	Lifespan years	Mitogen
Mouse	0.028	02	95
Flying squirrel	0.085	15	50
Brown bat	0.020	30	10
Sheep	90	12	95
Human	68	70	10

More information about interactive tables are available <u>here</u>

Quizzes

What is the derivative function of $f(x)=x^6$?

selection

What is 37+15?

Executable and editable Codes

js based interpreters

```
PlotSin.py

1 import numpy as np
2 import matplotlib.pyplot as plt

3 
4 t = np.arange(0.0, 2.0, 0.01)
5 s = np.sin(2 * np.pi * t)

6 
7 fig, ax = plt.subplots()
8 ax.plot(t, s)
9 
10 ax.grid(True, linestyle='-.')
11 ax.tick_params(labelcolor='r', labelsize='medium', width=3)

12 
13 plt.show()
14 
15 plot(fig) # <- this is required to plot the fig also on the LiaScript canvas
```

More information about the Pyodide plugin are available <u>here</u>

Server based compiling and execution

```
Program.cs
 1 * using System;
 2 using System.Collections.Generic;
 3 using System.Collections;
 4 using System.Linq;
 5 using System.Text;
    int n:
 8 Console.Write("Number of primes: ");
 9 n = int.Parse(Console.ReadLine());
10
ArrayList primes = new ArrayList();
12 primes.Add(2);
13
14 * for(int i = 3; primes.Count < n; i++) {</pre>
     bool isPrime = true;
15
      foreach(int num in primes) isPrime &= i % num != 0;
16
      if(isPrime) primes.Add(i);
17
18 }
19
20
    Console.Write("Primes: ");
    foreach(int prime in primes) Console.Write($" {prime}");
```

CodeRunner is not defined

Diagrams and Schemas

Software development

```
PlantUML.txt
    @startuml
 3
    abstract class AbstractList
 4
    abstract AbstractCollection
    interface List
 6 interface Collection
 8 List < | -- AbstractList
    Collection < | -- AbstractCollection
10
11 Collection <|- List
12 AbstractCollection < | - AbstractList
13 AbstractList < | -- ArrayList
14
15 class ArrayList {
      Object[] elementData
16
17
      size()
18 }
19
    enum TimeUnit {
20
      DAYS
21
22
      HOURS
23
      MINUTES
24 }
25
26
    annotation SuppressWarnings
27
28
    @enduml
```


https://www.plantuml.com/plantuml/png/LO-

_JWCn38TtFuL76Fe63Aqe4aX09QudX1236mmAIdnLx0pyuTtffLH99ik_xtCSBzKeMOu1W7PgYPoX2wIAg__srgjLTaelfn3OcPy4l1YdDtACHQrjug0s8czq7Etj-GGuSMMnDHeTO_HUVdSCl04kEkFMHH_77aVNgQJYKwytuCDUxc_jnUpNCBebCHkLdGzxl4wi-KX8lxmgmP7dDCVm1

More information about this plugin are available <u>here</u>

Chemistry

Simulations

Embedded Systems

 $Run\ an\ Arduino\ example\ by\ clicking\ the\ button\ below\ the\ code.\ Adapt\ the\ content\ for\ changing\ the\ light\ pattern.$

Simulation time: 00:10.343

```
ExtendedHelloWorld.cpp
    byte leds[] = {13, 12, 11, 10};
 2 * void setup() {
       Serial.begin(115200);
 3
 4 -
       for (byte i = 0; i < sizeof(leds); i++) {</pre>
        pinMode(leds[i], OUTPUT);
 5
 6
 7
    }
 8
    int i = 0;
10 void loop() {
      Serial.print("LED: ");
11
12
      Serial.println(i);
       digitalWrite(leds[i], HIGH);
13
14
       delay(250);
15
      digitalWrite(leds[i], LOW);
       i = (i + 1) % sizeof(leds);
16
17
```

```
LED: 0
LED: 1
LED: 2
LED: 3
LED: 0
LED: 3
LED: 0
LED: 1
LED: 2
LED: 3
```

More information about the AVR8js plugin are available <u>here</u>

Visualization

Note: This might take a while, to load and render the vti data set within the browser.

Examine the 3D object by mouse movements and clicks.

More information about the VTK plugin are available $\underline{\text{here}}$