Tutorial 1

- a) $[Fe(CN)_6]^{3-}$
- b) $[Fe(H_2O)_6]^{3+}$
- c) $[CoF_6]^{3-}$
- d) $\left[\text{CoCl}_4\right]^{2}$
- e) $[Cr(H_2O)_6]^{2+}$

Q2: Which of the following are structural isomers?

- I. coordination isomers
- II. linkage isomers
- III. geometric isomers
- IV. optical isomers
 - A) I, III
 - B) II, IV
 - C) I, III, IV
 - D) II, III
 - E) I, II
- Q3: Which of the following complexes shows geometric isomerism?
 - A) [Co(NH₃)₅Cl]SO₄
 - B) $[Co(NH_3)_6]Cl_3$
 - C) $[Co(NH_3)_5Cl]Cl_2$
 - D) $K[Co(NH_3)_2Cl_4]$
 - E) Na₃[CoCl₆]
- Q4. How many of the following compounds exhibit geometric isomers?
 - I. $Pt(H_2O)_2Cl_2$ (square planar)
 - II. $[Co(H_2O)_6]Br_3$
 - III. $[Ni(H_2O)_4(NO_2)_2]$
 - IV. $K_2[CoCl_4]$
 - A) 0
 - B) 1
 - C) 2
 - D) 3
 - E) 4

- Q5. Give the number of geometric isomers for the octahedral compound [MA₂B₂C₂], where A, B, and C represent ligands.
 - A) 1
 - B) 2
 - C) 3
 - D) 5
 - E) none of these
- Q6. For the process $[Co(NH_3)_5Cl]^{2+} + Cl^- \rightarrow [Co(NH_3)_4Cl_2]^+ + NH_3$, what would be the ratio of *cis* to *trans* isomers in the product?
 - A) 1:1
 - B) 1:2
 - C) 1:4
 - D) 4:1
 - E) 2:1
- Q7. Which of the following statements about the complex ion $[Co(en)_2Cl_2]^+$ is true? (en = ethylenediamine, NH₂CH₂CH₂NH₂)
 - A) The complex ion contains Co(I).
 - B) The complex ion exhibits *cis* and *trans* geometric isomers, but no optical isomers.
 - C) The complex ion exhibits two geometric isomers (*cis* and *trans*) and two optical isomers.
 - D) The geometric isomers of the complex ion have identical chemical properties.
- Q8. Calculate the oxidation state of the metal and the number of d electrons in the following coordination complexes:
 - a) $[CoCl_4]^{2-}$; b) $[Fe(bpy)_3]^{3+}$; c) $[Cu(ox)_2]^{2-}$; d) $[Cr(CO)_6]$
- Q9. Which of the following complexes will have larger crystal field splitting (Δ) in the given series? Give brief explanation for your choice.
 - (i) $[Co(en)_3]^{3+}$, $[Ir(en)_3]^{3+}$, $[Rh(en)_3]^{3+}$
 - (ii) $[Cr(H_2O)_6]^{3+}$, $[Cr(H_2O)_6]^{2+}$, $[Cr(NH_3)_6]^{3+}$, $[Cr(CN)_6]^{3-}$
 - (iii) $[CoF_6]^{3-}$, $[Co(H_2O)_6]^{3+}$, $[Co(NH_3)_6]^{3+}$
 - (iv) $[Fe(H_2O)_6]^{2+}$, $[Fe(CN)_6]^{4-}$, $[FeCl_4]^{2-}$