1- A charged particle is held at the center of two concentric conducting spherical shells. A cross section is shown in the figure. If the charged particle at the center has charge +2 μ C, and the two conducting shells A and B have charges -3 μ C and +4 μ C deposited on them, respectively, what is the charge on the inner surface of shell B?.

Answer: +1 μC

2- What is the flux through the right side face of the shown cube if the electric field is given by $\underline{\mathbf{E}} = -2\mathbf{x}\,\underline{\mathbf{i}} + 3\mathbf{y}\,\underline{\mathbf{j}}$ and the cube has a side length of 2?

Answer: -16

3- In the figure shown, what is the net electric potential at the origin of the coordinate system due to the four other charged particles if V=0 at infinity? Express your answer in terms of the constants q, d, and $k=1/4\pi\varepsilon_{o}$.

Answer: 5kq/(2d)

4- The figure shows a graph of the electric potential as a function of x. The scale of the vertical axis is set by $V_S = 200$ V. What is x component of the force acting on a proton located at x = 0.2 m?

Answer: 1.6 × 10–16 N