

Algorithms and Data Structures 2 CS 1501

Spring 2023

Sherif Khattab

ksm73@pitt.edu

(Slides are adapted from Dr. Ramirez's and Dr. Farnan's CS1501 slides.)

Announcements

- Upcoming Deadlines
 - Homework 9: this Friday @ 11:59 pm
 - Lab 8: Tuesday 3/28 @ 11:59 pm
 - Assignment 3: Friday 3/31 @ 11:59 pm
 - Support video and slides on Canvas

Previous lecture

- ADT Graph
 - definitions
 - representations
 - traversals
 - BFS

This Lecture

- ADT Graph
 - traversals
 - BFS
 - shortest paths based on number of edges
 - connected components
 - DFS
 - finding articulation points of a graph
 - Minimum Spanning Tree (MST) problem
 - Prim's MST algorithm

BFS Pseudo-code

```
Q = new Queue
BFS(vertex v){
    add v to Q
    while(Q is not empty){
        w = remove head of Q
         visited[w] = true //mark w as visited
         for each unseen neighbor x
             seen[x] = true //mark x as seen
              parent[x] = w
             add x to Q
```

BFS example

Shortest paths

 BFS traversals can further be used to determine the shortest path between two vertices

BFS Pseudo-code to compute shortest paths

```
Q = new Queue
BFS(vertex v){
    add v to Q
    while(Q is not empty){
        w = remove head of Q
        visited[w] = true //mark w as visited
        for each unseen neighbor x
             seen[x] = true //mark x as seen
              parent[x] = w
             distance[x] = distance[w] + 1
             add x to Q
```

Problem of the Day

- Input: A file containing LinkedIn Connection information formatted like the following:
 - Account1: Connection1, Connection2, ...
 - Account2: Connection1, Connection2, ...
 - •
- Output: Answer the following questions:
 - Given two LI accounts, how "far" are they from each other?
 - E.g., 1st connection, 2nd connection, etc.
 - Are the accounts in the file all connected?
 - If not, how many connected components are there?
 - Are there certain accounts that if removed, the remaining accounts become *partitioned*?
 - These account are called articulation points

Problem of the Day

- Input: A file containing LinkedIn Connection information formatted like the following:
 - Account1: Connection1, Connection2, ...
 - Account2: Connection1, Connection2, ...
 - •

- Output: Answer the following questions:
 - Given two LI accounts, how "far" are they from each other?
 - E.g., 1st connection, 2nd connection, etc.
 - Are the accounts in the file all connected?
 - If not, how many connected components are there?
 - Are there certain accounts that if removed, the remaining accounts become *partitioned*?
 - These account are called *articulation points*

Finding connected components

- A connected component is a connected subgraph G'
 - (V', E')
 - $\bigvee'\subseteq\bigvee$
 - \blacksquare E' = {(u, v) \in E and both u and v \in V'}
- To find all connected components:
 - wrapper function around BFS
 - A loop in the wrapper function will have to continually call bfs() while
 there are still unseen vertices
 - Each call will yield a spanning tree for a connected component of the graph

BFS Pseudo-code to compute connected components

```
int components = 0
for each vertex v in V
    if visited[v] = false
        components++
        Q = new Queue
        BFS(v)
```

```
BFS(vertex v){
    add v to Q
    component
    while(Q is not empty){
        w = remove head of Q
        visited[w] = true
        component[w] = components
        for each unseen neighbor x
             seen[x] = true
             add x to O
```

Problem of the Day

- Input: A file containing LinkedIn Connection information formatted like the following:
 - Account1: Connection1, Connection2, ...
 - Account2: Connection1, Connection2, ...
 - •

- Output: Answer the following questions:
 - Given two LI accounts, how "far" are they from each other?
 - E.g., 1st connection, 2nd connection, etc.
 - Are the accounts in the file all *connected*?

- /
- If not, how many connected components are there?
- Are there certain accounts that if removed, the remaining accounts become *partitioned*?
 - These account are called *articulation points*

Runtime Analysis of BFS

- Total time: vertex processing time + edge processing time
- Each vertex is added to the queue exactly once and removed exactly once
 - O *v* add/remove operations
 - O(v) time for vertex processing
- Edges are processed when adding the list of neighbors to the queue

Runtime Analysis of BFS: Adjacency Lists

- Each edge is processed at most twice, one per edge endpoint
 - O *O(e)* time for edge processing
- Total time: vertex processing time + edge processing time
 - \bigcirc O(v + e)

Runtime Analysis for BFS: Adjacency Matrix

- With Adjacency Matrix, BFS checks each possible edge!
 - \bigcirc $O(v^2)$ time for edge processing
- Total time: vertex processing time + edge processing time

$$\bigcirc O(v^2 + v) = O(v^2)$$

• Running time depends on data structure selection!

Problem of the Day

- Input: A file containing LinkedIn Connection information formatted like the following:
 - Account1: Connection1, Connection2, ...
 - Account2: Connection1, Connection2, ...
 - •

- Output: Answer the following questions:
 - Given two LI accounts, how "far" are they from each other?
 - E.g., 1st connection, 2nd connection, etc.
 - Are the accounts in the file all connected?
 - If not, how many connected components are there?
 - Are there certain accounts that if removed, the remaining accounts become partitioned?
 - These account are called articulation points

DFS – Depth First Search

- Already seen and used this throughout the term
 - For Huffman encoding...
 - as we build the codebook from the Huffman Trie
- Can be easily implemented recursively
 - O For each vertex, visit *first* unseen neighbor
 - Backtrack at deadends (i.e., vertices with no unseen neighbors)
 - Try next unseen neighbor after backtracking
 - An arbitrary order of neighbors is assumed

DFS Pseudo-code

```
DFS(vertex v) {
 seen[v] = true //mark v as seen
 for each unseen neighbor w
   parent[w] = v
   DFS(w)
```

DFS example

20

When to visit a vertex

```
DFS(vertex v) {
 seen[v] = true //mark v as seen
 visit v //pre-order DFS
 for each unseen neighbor w
   parent[w] = v
   DFS(w)
```

When to visit a vertex

```
DFS(vertex v) {
  seen[v] = true //mark v as seen
for each unseen neighbor w
   parent[w] = v
   DFS(w)
visit v //post-order DFS
```

When to visit a vertex

```
DFS(vertex v) {
  seen[v] = true //mark v as seen
for each unseen neighbor w
   parent[w] = v
    DFS(w)
    (re)visit v //in-order DFS
```

Runtime Analysis of DFS: Adjacency Lists

- Total time: vertex processing time + edge processing time
- Each vertex is seen then visited exactly once
 - \bigcirc O(v) time for vertex processing
 - O except for in-order DFS
 - vertex processing is included in edge processing in that case
- Edges are processed when finding the list of neighbors
- Each edge is checked at most twice, one per edge endpoint
 - O O(e) time for edge processing
- Total time: O(v + e)

Runtime Analysis of BFS and DFS

- At a high level, DFS and BFS have the same runtime
 - Each vertex must be seen and then visited, but the order will differ between these two approaches
- The representation of the graph affect the runtimes of of these traversal algorithms?
 - \bigcirc O(v + e) with Adjacency Lists
 - \bigcirc $O(v^2)$ with Adjacency Matrix
 - O Note that for a dense graph, $v + e = O(v^2)$

Problem of the Day

- Input: A file containing LinkedIn Connection information formatted like the following:
 - Account1: Connection1, Connection2, ...
 - Account2: Connection1, Connection2, ...
 - •

- Output: Answer the following questions:
 - Given two LI accounts, how "far" are they from each other?
 - E.g., 1st connection, 2nd connection, etc.
 - Are the accounts in the file all connected?
 - If not, how many connected components are there?
 - Are there certain accounts that if removed, the remaining accounts become partitioned?
 - These account are called articulation points

Biconnected graphs

- A biconnected graph has at least 2 distinct paths between all vertex pairs
 - a distinct path shares no common edges or vertices with another path
 except for the start and end vertices
- A graph is biconnected graph iff it has zero articulation points
 - O Vertices, that, if removed, will separate the graph

Biconnected Graph

Finding articulation points of a graph

- A DFS traversal builds a spanning tree
 - O red edges in the picture
- Edges not included in the spanning tree are called

back edges

O e.g., (4, 9) and (2, 6)

num(v)

- A pre-order DFS
 traversal visits the
 vertices in some order
 - let's number the vertices with their traversal order
 - \bigcirc num(v)

Finding articulation points of a graph

For each non-root vertex v,
 find the lowest numbered
 vertex reachable from v

- not through v's parent
- using 0 or more tree
 edges then at most one
 back edge
- move down the tree looking for a back edge that goes backwards the furtheset

