No alixativas
Applications
· Robot path planning
· Robot path planning · Network flows (transportation, circuits, communication) · Early con (ob con section)
· Equilibria (physics, economics).
Topics
· Solutions of systems of linear equations (ALA 1.1)
· Back substitution & triangular Systems
Date 2083) 1101101 d 11100 0001 27 31 000
· Matrices & vectors (ALA 1.2 & 1.6)
· definitions; special motrices, row & colin vectors
· Matrix arithmetic & multiplication
I mear Systems in matrix - vector notation
a Course Charles (October Con) CAIA (3)
· Caussian Elimnotion (Regular Case) (ALA (3)
· Pivots
· Upper triangular matrices & triangular systems
* Regular Gaussian Elimination & A matrices
· LU-juctor. zation & Jorward/back Substitution

Solution of Linear Systems
Warm up. Three linear equations in three unknowns xy y, 2:
$\begin{array}{c} x + 2y + z = 2 & (1) \\ 2x + 6y + z = 7 & (2) \\ x + y + 4z = 3 & (3) \end{array}$
product terms like xy or xyz.
(5x, 57, 52) that, when physical in to above, sortisties (1), (2),(3)?
Idea! We know how to solve equations that look like
$\frac{5}{2}x = 6$, $5 - 2 = 12$, $1 + 3y = -4$
Can we turn (1)-(3) into an equivalent system that has equations we know how to solve?
Tool: Add a multiple of one equation to another (TI)
** You should convince yourself that using (TI) does not change the solution to the linear system (17-13). **
We will proceed systematically first, we try to eliminate x from (2) & (3) by adding multiples of (1) to them.
$2 \times + 6 y + 2 = 7 \left[Eqn 2 \right] \times + y + 42 = 3 \left[Eqn 3 \right]$ $-2 \cdot \left[\times + 2 y + 2 = 2 \right] - 2 \cdot \left[Eqn 2 \right] = -2 \cdot \left[\times + 2 y + 2 = 2 \right] - Eqn 1$ $0 \times + 2 y - 2 = 3$ $0 \times - y + 3z = 1$
This gives the equivalent system:
2x + 6y + 2 = 1 (4) $2y - 2 = 3 (5)$ $-y + 32 = 1 (6)$
Projess! The unknown X has been eliminated from the bottom 2 equations

Let's Jocus on the two equations in the pink squire above to eliminate y from (6): and try $+\frac{1}{2}\cdot\frac{2y-2}{2z-3}$ [Eqn 6] this gives the following triangular system: x + 2y + 2 = 2 2y - 2 = 3 (Tri) 52 = 5The name is self-explanatory, but it has a very important consequence: Triangular Systems can be easily solved via back substitution! As the name suggests, back substitution consists of solving the last equation first of them working backwards: 0 5+=5 =>> 2=1 2) 2y-2=3, 2=1=> 2y-1=3=> 2y=4=> y=2 3 × +27 +2-2, 7-2, 2-1-> × +4 +1=2=> ×=-3 (-3,2,2) solves the linear system (1)-(3)! You should check! In this case, (-3, 2, 1) is the unique solution, i.e, one and This is, modulo some small details, Gaussian Elimnation. Our soal in this class is to move from small systems you can solve by hand to bis ones that you need a computer to solve. To du this, we need a more convenient way of writing bij systems, or for example 1000s of variouses a equations.

A matrix is a rectangular array of numbers:
$ \begin{bmatrix} 1 & 0 & 3 \\ -2 & 4 & 1 \end{bmatrix} $ $ \begin{bmatrix} 77 & 0 \\ 2 & 19 \end{bmatrix} $ $ \begin{bmatrix} -1 & .83 \\ \sqrt{2} & -4/7 \end{bmatrix} $
are all examples of madrices.
A general matrix of Stre mxn is written as # coins. A = [a_1, a_1, a_n] a = a_2, a_2, a_n] and and and and and and
Cam and and
A mx1 matrix is called a column vector:
2+2 column vectors: [O], [-1], [t] 2-vectors
3×1 column vectors: [O] [1] [V3] 3-vectors. [O] [2] [-12] [U] [3]
Since column vectors are going to be very important to us we will often call a m+1 column vector a m-vector
less important to us, but still needed will be now vectors. These are 1×1 matrices:
1x 2 row vectors: [000] [-1 12] [TT e] 1x3 row vectors: [000] [123] [13-12 VT]
Although similar, row and column vectors are not the same! We'll see why this distinction matters later in the course.
Matrix Arithmetic
Three basic operations: matrix addition, Scalar multiplication, matrix multiplication.

Matrices & Vectors

Matrix addition.
To add two matrices A and B, they must be the same size. For A, B the same size, C=A+B is computed entry by entry, that
C=A+BC=> Cij = aij +bij
$E \times ample$: $\begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} + \begin{bmatrix} 3 & -5 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1+3 & 2-5 \\ -1+2 & 0+1 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 1 & 1 \end{bmatrix}$
Matrix addition otherwise behaves just like scalar addition:
· Commutative: A+B =B+A · Ass ociative: A+(B+C) = (A+B)+C
Scalar multiplication:
A scalar is a fancy name for an ordinary number. 95% of this class will consider real valued scalars. To tell you that a number CB a real scalar, we will write CBB a symbol for real line.
Scalar multiplication takes a scalar CER and an mxn matrix A
each entry of A by C.
Example: $C=3$, $A=\begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}$ $CA=3\begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}=\begin{bmatrix} 3 & 6 \\ -3 & 0 \end{bmatrix}$
In Soneral, of 18=cA, then bi; =cais.

Matrix multiplication
Warm up: a now vector with a column vector
Let a be a 1×n row vector a × a n×1 cdin vector
\$8 We will underline symbols for vectors to help distinguish them from scalars. Capital letters (A,B,C) will be reserved for matrices. Its
The product ax is a scalar defined as follows: $ax = [a_1 \ a_2 - a_n] x_1 = a_1x_1 + a_2x_2 + \cdots + a_nx_n = \sum_{k=1}^{n} a_kx_k$
Matrix - Matrix multiplication
To multiply two matrices A and B, they must be of compatible size. A must have the same number of columns as B has rows, so if A is a mxn matrix, B must be a nxp matrix. The resulting product C=AB is then a mxp matrix, defined by Ci; = \frac{2}{2} aick bis
The (isi) entry of C-AB is the product of the ith row of A and the jth column of B.
Another convenient way of computing C=AB is as follows. We denote the columns of B by bisby, -, bp so that B= [b] bg bp). Then
C=AB=A[b, b2 bp) = [Ab, Ab, Ab,]
i.e. the kth column of C=AB is computed by the matrix-vector product of A and the Okth column by of B.
An important Special case is matrix-vector products. Let A he a matrix and X a AxI advancement. Then the
be a mxn matrix and X a nx1 column vector. Then, the matrix-vector product 5=Ax is an mx1 column vector, with entries
Column vector, se bi = 2 aix bi do not write the column Modex since it is changes

40	NG OF 51, 52,	-> Un be le	columns of A so that IT-	101 02 0V7
The.	n another Jumila	for 6 3 Ax	columns of A so that A = 1	
	<u>5</u> = X	101+ x202+		
ç.e.,	by the entries	by adding t	le columns of A together	, weighted
This	he for nog an	, to us la	ter when we think abou	of the
Tuo	special matri	(85)		
Eder	ntity matrix: I	$\Gamma = \Gamma_{n} = 0$	0 0 nxn montri)	r w/ It, = 0 for it;
lLey	Property: DA	= AI = A	Cnote I & I may b	
			J	
Tero	protik,	mxn 13	the all zeros matrix	
Sov	will often need ne practice, but	to infording returning	nensions from context. It	may take
	_			
		Basic Matrix Ar	rithmetic	
	Matrix Addition:			
	Matrix Addition:	Basic Matrix Ar Commutativity Associativity	rithmetic $A + B = B + A$ $(A + B) + C = A + (B + C)$	
	Matrix Addition:	Commutativity	A + B = B + A	
	Matrix Addition:	Commutativity Associativity	A + B = B + A $(A + B) + C = A + (B + C)$	
	Matrix Addition: Scalar Multiplication:	Commutativity Associativity Zero Matrix	A + B = B + A $(A + B) + C = A + (B + C)$ $A + O = A = O + A$ $A + (-A) = O, -A = (-1)A$ $c(dA) = (cd)A$	
		Commutativity Associativity Zero Matrix Additive Inverse	A + B = B + A $(A + B) + C = A + (B + C)$ $A + O = A = O + A$ $A + (-A) = O, -A = (-1)A$ $c(dA) = (cd)A$ $c(A + B) = (cA) + (cB)$	
		Commutativity Associativity Zero Matrix Additive Inverse Associativity	A + B = B + A $(A + B) + C = A + (B + C)$ $A + O = A = O + A$ $A + (-A) = O, -A = (-1)A$ $c(dA) = (cd)A$	
		Commutativity Associativity Zero Matrix Additive Inverse Associativity Distributivity	A + B = B + A $(A + B) + C = A + (B + C)$ $A + O = A = O + A$ $A + (-A) = O, -A = (-1)A$ $c(dA) = (cd)A$ $c(A + B) = (cA) + (cB)$ $(c + d)A = (cA) + (dA)$	
		Commutativity Associativity Zero Matrix Additive Inverse Associativity Distributivity Unit Scalar	A + B = B + A $(A + B) + C = A + (B + C)$ $A + O = A = O + A$ $A + (-A) = O, -A = (-1)A$ $c(dA) = (cd)A$ $c(A + B) = (cA) + (cB)$ $(c + d)A = (cA) + (dA)$ $1 A = A$	
	Scalar Multiplication:	Commutativity Associativity Zero Matrix Additive Inverse Associativity Distributivity Unit Scalar Zero Scalar	A + B = B + A $(A + B) + C = A + (B + C)$ $A + O = A = O + A$ $A + (-A) = O, -A = (-1)A$ $c(dA) = (cd)A$ $c(A + B) = (cA) + (cB)$ $(c + d)A = (cA) + (dA)$ $1 A = A$ $0 A = O$ $(AB)C = A(BC)$ $A(B + C) = AB + AC,$	
	Scalar Multiplication:	Commutativity Associativity Zero Matrix Additive Inverse Associativity Distributivity Unit Scalar Zero Scalar Associativity Distributivity	A + B = B + A $(A + B) + C = A + (B + C)$ $A + O = A = O + A$ $A + (-A) = O, -A = (-1)A$ $c(dA) = (cd)A$ $c(A + B) = (cA) + (cB)$ $(c + d)A = (cA) + (dA)$ $1 A = A$ $0 A = O$ $(AB)C = A(BC)$ $A(B + C) = AB + AC,$ $(A + B)C = AC + BC,$	
	Scalar Multiplication:	Commutativity Associativity Zero Matrix Additive Inverse Associativity Distributivity Unit Scalar Zero Scalar Associativity	A + B = B + A $(A + B) + C = A + (B + C)$ $A + O = A = O + A$ $A + (-A) = O, -A = (-1)A$ $c(dA) = (cd)A$ $c(A + B) = (cA) + (cB)$ $(c + d)A = (cA) + (dA)$ $1 A = A$ $0 A = O$ $(AB)C = A(BC)$ $A(B + C) = AB + AC,$	
	Scalar Multiplication:	Commutativity Associativity Zero Matrix Additive Inverse Associativity Distributivity Unit Scalar Zero Scalar Associativity Distributivity Compatibility	A + B = B + A $(A + B) + C = A + (B + C)$ $A + O = A = O + A$ $A + (-A) = O, -A = (-1)A$ $c(dA) = (cd)A$ $c(A + B) = (cA) + (cB)$ $(c + d)A = (cA) + (dA)$ $1 A = A$ $0 A = O$ $(AB)C = A(BC)$ $A(B + C) = AB + AC,$ $(A + B)C = AC + BC,$ $c(AB) = (cA)B = A(cB)$	


```
Systems of Linear Equations: Ax=b
 Let us rewrite our example linear system
   as a vector equation Ax = b. We just notice we can enjoyce this by Stading the left & right hand sides into vectors
                                     2x + 27 + 2 | 2 | 7 | 2

2x + 6y + 2 | 2 | 7 | 3

x + y + 47 | 3 | we all be the right

Ax

b c hard side or RHS
It is easy to read off b & Ax. Next we need to split Ax mto a coefficient matrix A and unknowns vector x. It is also easy to read these off as
                               A = \begin{bmatrix} 1 & 9 & 1 \\ 9 & 6 & 1 \end{bmatrix} and X = \begin{bmatrix} X \\ 1 \end{bmatrix}
 You can check that Ax indeed gives the left hand side of our
   rector solvation.
```

Gaussian Elimination: Regular Case
For a vector equation $Ax = b$, we define the augmented matrix
$M = [A \mid b] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \mid b_{1} \\ a_{21} & a_{22} & \cdots & a_{2n} \mid b_{2} \\ a_{m_{1}} & a_{m_{2}} & \cdots & a_{m_{n}} \mid b_{m} \end{bmatrix}$ $\begin{bmatrix} a_{m_{1}} & a_{m_{2}} & \cdots & a_{m_{n}} \mid b_{m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{nst} & colin \text{ is special.} \end{bmatrix}$
If A is an mxn matrix, M is the mx (nt) matrix obtained by concatenating to on the end.
Example:
$\begin{array}{c} x + 2y + z = 2 \\ 2x + 6y + z = 7 \\ x + y + 4z = 3 \end{array} \qquad \begin{array}{c} [1 \ 2 \ 1][x] = [2] = [1 \ 2 \ 1][x] \\ [2] = [2] = [2][x] \\ [2] = [2][x] = [2][x] = [2][x] \\ [2] = [2][x] = [2][x$
Tool: adding a scalar multiple of one row of M to another.
It you should convince yourself this is doing the same thing ons (TI) that
Example: add -2 times the first row to the Second row gives:
-2 [1 2 1 2)+ [2 6 1 7]= [0 2 -1 3]
Swing the new augmented materx
0 9 -1 3
We call the (1,1) entry of A the first privit.
It key requirement: pivots must be nonzero XX

Eliminating X from 2rd & 3rd equation means making all entries below
the last plut zero. (2,2) entry is already zero, of we can elimnate
(),1) entry by adding -I times the 1st equation to the last, jung us:
[1 2 1 2]
0 2 -1 3
0-13/1/
The second pivot is the (2,2) entry, which is 2 (important: it is nonzerd)
we add by the god now to the 3rd now to zero out every they below!
T1 2 11 9 7
0 7 -1 3
0055
which maps exactly onto the triangular System (Tri) we saw ourlier!
1 1011 1 to \$1 - 1 05 1 1 2)
Well write this ors N= 02 1 2 0 050 5/2
0 0 5
while to an it a correct on the large & steer lax - C.
which defines the corresponding linear system UX = C.
The coallined rater of is unas timed a samed too object convers
The coefficient matrix I is upper triangular named for obvious reasons. The three numbers entries along its diagonal , 1, 2, 5/2, one the three plats.
The three vonzero entries along its disjoined , 1) 2, 5/2 5 ove la three proofs.
We can solve UX = & easily via March Substitution.
100 -01/ 30106 01/2 2 & 03/19 010 120de 3033110 ha
This newative has white a basis sixtem of a continue of
This procedure for solving a linear system of n equations in a unknowns is called regular Gaussian Elimnotium.
IN ONKNOWNS IS CONTRACT TO COSSIUM ETIMATON,
A source which A will be called colored to the above also it
A square matrix A will be called regular if the above algorithm succeeds and produces a U with all nonzeros day the diagonal
SUCCESS and browness of or milk was very series aford the application
The LU-Factorization
THE LO TOCIONATION
Ideal (on the sounds the and describes after as a northix radiust
Idea! Can we encode the row operations above as a matrix product, E.e., can I find a water's E so that
or - Juni or Mannix T 20 1.001
EM= EN, i.e., EA= U & Eb=C
We will show how to suild E from elementary matrices.

The elementary matrix for a row operation on a matrix with m rows is the mxm matrix obtained by applying the row operation to Im.
is the mxm matrix obtained by oppying the raw operation to Im.
For example, adding -2 times row I to row 2 of Iz sives
$E_{1} = \begin{bmatrix} 1 & 0 & 0 \\ -9 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$
Let's check this does what we want it to:
$E_{1}A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 2 & 6 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -1 \\ 1 & 1 & 4 \end{bmatrix}$
It does - So let's compactly encode step 2 (adding-1. (ron 1) to ron 3) & step 3 (adding 2 (ron 2) to ron 3) via
$E_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ $E_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$
and then importantly, apply them in the right order, we get
$E_{3}E_{2}E_{1}A=U=\begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 52 \end{bmatrix}$
The way to read Ez Ez E, A is from right to left. We start w/ A, then apply E, then Ez, then Ez.
· Be cause of associativity of matrix multiplication, we don't need to compute theys in that order. For example, we could just compute
E= E3 E2E(
and then U=EA.

The LU-Factorization
We can also "undo" the action of an elementary matrix Using the corresponding inverse elementary matrix For example to undo the action of Ep which adds 2: (row) to row 2, we simply add 2. (row) back to row 2. The corresponding matrix is
LISTIOO). Notice LIE = I3. This makes sense 2 10) as we are undoing" the action of E, w/ LI SO the and result should be to do nothing.
We can define appropriate inverses for Eq & Ez:
$L_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ $L_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & -V_2 & 1 \end{bmatrix}$
Now we start with $U=E_3E_3E_4A$ & "undo" our actions by left-multiplying both sides by $L_1L_2L_3$ (notice the order!) ($L_1L_2L_3$) $U=L_1L_2$ ($E_3E_3E_4E_1A$) ($E_1L_2L_3$) $U=E_3E_3E_4E_1A$
= LI (Lg EJE, A
= FIA
· Calling L=L,L2L3, we just showed that A=LU. We and by noting that because L, L2, L3 are all lower triangular, so is their product
this is the LU-factorization of A, which decomposes A as a product of a lower and upper-triangular matrix.
This is important be cause implementing LU-factorizations of A using computer code is easy to do; letting us use these ideas on very big linear Systems.
"Next we show how LU-freterization leads to an easy solinest Ax = 5.

forward and Back Substitution
Given LV-Jacterization A=LU, we solve Ax=5 in two steps. The idea is to rewrite Ax=5 as two linear systems:
$Ax = LUx = b \longrightarrow Lz = b$ $Ux = z$
1) Solve Lz = b via forward substitution. L is lower-triangular so this is just the Back substitution, but Starting from the top moteord of Sottom.
2) Using the z we just found, solve Ux = Z via Back substitution
This works be cause of Ux= = and Lz= = then Ax=LUx=Lz=b.
See online notes for worked examples.