1.Define the following terms.

- a) Entity,
- b) entity set.
- c) attribute
- d) tuple.
- e) damain.
- f) key
- g) null

a) Entity

An entity is a thing or object that exists, like a student or a product. It's like a single item in a database.

b) Entity Set

An entity set is a group of similar entities, like all students or all products. It's like a table in a database that contains many similar items.

c) Attribute

An attribute is a characteristic or feature of an entity, like a student's name or age. It's like a column in a database table.

d) Tuple

A tuple is a single row in a database table, representing one entity or item.

e) Domain

A domain is the set of possible values for an attribute, like all possible ages or names.

f) Key

A key is a unique identifier for each tuple or row in a database table, like a student ID.

g) Null

Null means a value is missing or unknown, like if someone's age or address isn't known.

2. What is differnt types of keys, and what is the true

- 1. Primary Key (PK)
- 2. Candidate Key (CK)
- 3. Foreign Key (FK)
- 4.Super Key (SK)
- 5. Composite Key (CoK)
- **6.Alternate Key (AK)**

1. Primary Key (PK)

- Unique key in a table
- No null values
- No duplicate values
- Eg: Student ID

2. Candidate Key (CK)

- Unique key in a table
- Multiple candidate keys possible
- Eg: Student ID, Roll Number

3. Foreign Key (FK)

- Primary key of another table in this table
- Establishes relationship
- Eg: Order table's Customer ID (Customer table's PK)

4. Super Key (SK)

- Unique key in a table
- Includes primary key and foreign key
- Eg: Student ID, Student Name + Student ID

5. Composite Key (CoK)

- Combination of multiple columns as unique key
- Eg: Order table's Order ID + Product ID

6. Alternate Key (AK)

- Alternative to candidate key
- Candidate key other than primary key
- Eg: Roll Number (alternative to Student ID).

3. Discuss differnt typea id relationship and example.

- 1. One-to-One Relationships (1:1)
- One row links to only one row
- Eg: Customer Address
- RDBMS:

Customers(CustID)

Addresses(AddrID, CustID)

- 2. *One-to-Many (1:N)*
- One row links to many rows
- Eg: Customer Orders
- RDBMS:

Customers(CustID)

Orders(OrderID, CustID)

- 3. *Many-to-One (N:1)*
- Many rows link to one row
- Eg: Orders Customer
- RDBMS:

Customers(CustID)

Orders(OrderID, CustID)

- 4. *Many-to-Many (N:N)*
- Many rows link to many rows
- Eg: Students Courses
- RDBMS:

Students(StudID)

Courses(CourseID)

Enrollment(StudID, CourseID)

4.State the difference.

- * Union and intersection
- * project and join
- * selection and rejection

1. Union vs Intersection

Union: Combines 2 tables (allows duplicates)

Intersection: Common rows between tables (no duplicates)

2. Project vs Join

Project: Selects specific columns

Join: Combines tables based on related columns

3. Selection vs Rejection

Selection: Picks rows based on conditions

Rejection: Opposite, picks rows NOT matching condition.

5. Define the following terms

- a)parsial dependency
- b)Transitive dependency
- c) Normalization
- d)Data anomalies
- e) Cardinality

1. Partial Dependency

When a column depends on only part of a table's key

2. Transitive Dependency

When a column depends on another column, not the table's key

3. Normalization

Organizing data to reduce duplicates and dependencies

4. Data Anomalies

Errors in data due to bad design (insertion, deletion, update)

5. Cardinality

Number of rows in a relationship between tables (1:1, 1:N, N:N)