

FILE 'REGISTRY' ENTERED AT 22:17:33 ON 20 OCT 2002
L1 5 S FERRIC POTASSIUM OXALATE/CN OR CUPRIC OXALATE/CN OR CUPROUS O
L2 1 S OXALIC ACID/CN

FILE 'CAPLUS, WPIDS, CABA, CROPY, CROPB' ENTERED AT 22:20:31 ON 20 OCT 2002

FILE 'REGISTRY' ENTERED AT 22:20:46 ON 20 OCT 2002
SET SMARTSELECT ON
L3 SEL L1 1- CHEM : 42 TERMS
SET SMARTSELECT OFF

FILE 'CAPLUS, WPIDS, CABA, CROPY, CROPB' ENTERED AT 22:20:48 ON 20 OCT 2002

L4 2728 S L3/BI

FILE 'REGISTRY' ENTERED AT 22:23:19 ON 20 OCT 2002
SET SMARTSELECT ON
L5 SEL L2 1- CHEM : 8 TERMS
SET SMARTSELECT OFF

FILE 'CAPLUS, WPIDS, CABA, CROPY, CROPB' ENTERED AT 22:23:20 ON 20 OCT 2002

L6 46423 S L5/BI
L7 46423 S L5
L8 93091 S (L7 OR L6 OR OXALATE#)
L9 86574 S MOLLUSC? OR MOLLUSK? OR SLUG OR SLUGS OR SNAIL OR SNAILS OR D
L10 138 S L8 AND L9
L11 127 DUP REM L10 (11 DUPLICATES REMOVED)

→
See full
Query

L11 → Comprehensive search in multi-files for
Mollusc concept linked with oxalates

Too many False hits. Printed out only
relevant hits

FILE 'REGISTRY' ENTERED AT 22:17:33 ON 20 OCT 2002
L1 5 S FERRIC POTASSIUM OXALATE/CN OR CUPRIC OXALATE/CN OR CUPROUS O
L2 1 S OXALIC ACID/CN

FILE 'CAPLUS, WPIDS, CABA, CROPY, CROPB' ENTERED AT 22:20:31 ON 20 OCT 2002

FILE 'REGISTRY' ENTERED AT 22:20:46 ON 20 OCT 2002
SET SMARTSELECT ON
L3 SEL L1 1- CHEM : 42 TERMS
SET SMARTSELECT OFF

FILE 'CAPLUS, WPIDS, CABA, CROPY, CROPB' ENTERED AT 22:20:48 ON 20 OCT 2002

L4 2728 S L3/BI

FILE 'REGISTRY' ENTERED AT 22:23:19 ON 20 OCT 2002
SET SMARTSELECT ON
L5 SEL L2 1- CHEM : 8 TERMS
SET SMARTSELECT OFF

FILE 'CAPLUS, WPIDS, CABA, CROPY, CROPB' ENTERED AT 22:23:20 ON 20 OCT 2002

L6 46423 S L5/BI
L7 46423 S L5
L8 93091 S (L7 OR L6 OR OXALATE#)
L9 86574 S MOLLUSC? OR MOLLUSK? OR SLUG OR SLUGS OR SNAIL OR SNAILS OR D
L10 138 S L8 AND L9
L11 127 DUP REM L10 (11 DUPLICATES REMOVED)

=> d que l11

L2 1 SEA FILE=REGISTRY OXALIC ACID/CN
L5 SEL L2 1- CHEM : 8 TERMS
L6 46423 SEA L5/BI
L7 46423 SEA L5
L8 93091 SEA (L7 OR L6 OR OXALATE#)
L9 86574 SEA MOLLUSC? OR MOLLUSK? OR SLUG OR SLUGS OR SNAIL OR SNAILS
OR DEROCERAS OR THEBA OR CERNUELLA OR HELIX ASPERSA OR
ACHATINA OR ARION HORTENSIS OR MILAX BUDAPEST? OR LIMAX
MAXIMUS OR GASTROPOD? OR PULMONATA OR CEPAEA HORTENSIS OR
MUSSEL# OR OYSTER# OR SQUID# OR OCTOPUS
L10 138 SEA L8 AND L9
L11 127 DUP REM L10 (11 DUPLICATES REMOVED)

L11 ANSWER 15 OF 127 CAPLUS COPYRIGHT 2002 ACS
AN 2000:738879 CAPLUS
DN 133:301197
TI **Oxalic acid or oxalate** compositions and
methods for bacterial, viral, and other diseases or conditions
IN Hart, Francis J.
PA USA
SO U.S., 50 pp., Cont.-in-part of U. S. Ser. No. 629,538.
CODEN: USXXAM
DT Patent
LA English
FAN.CNT 3

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 6133318	A	20001017	US 1998-14943	19980128
	US 6133317	A	20001017	US 1996-629538	19960409
	US 6407141	B1	20020618	US 2000-535572	20000327
PRAI	US 1995-6785P	P	19951115		
	US 1996-629538	A2	19960409		
	US 1997-36983P	P	19970129		
	US 1998-14943	A2	19980128		

RE.CNT 103 THERE ARE 103 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

TI **Oxalic acid or oxalate** compositions and
methods for bacterial, viral, and other diseases or conditions
AB A single medicine **oxalic acid or oxalate** or
"magic bullet" and method for treatment or prevention of infectious or
pathogenic microbial, bacterial, viral and other diseases in warm-blooded
animals, including humans and pets, is provided. A compn. includes at
least one therapeutically effective form of **oxalic acid**
or **oxalate** selected from ester, lactone or salt form including
sodium **oxalate**, **oxalic acid dihydrate**,
anhyd. oxalic acid, **oxamide**, and **oxalate**
salts, natural or processed foods including molds, plants or vegetables
contg. **oxalic acid or oxalate**, beverages,
liqs. or juices contg. **oxalic acid or oxalate**
, additives contg. **oxalic acid or oxalate**,
and combinations thereof. The compn. may also contain a pharmaceutically
acceptable carrier or diluent for the therapeutically effective form of
oxalic acid or oxalate. Methods are provided
including the steps of periodically administering, by topical, oral, or
parenteral application, a therapeutically effective dosage of a compn.
including at least one therapeutically effective form of **oxalic**
acid or oxalate and improving chemotherapy reducing the
intake of **oxalic acid or oxalate** blockers
such as citric acid, ascorbic acid (vitamin C), pyridoxine hydrochloride
(vitamin B6), calcium, alc., resins, clays, foods contg. calcium,
beverages contg. alc., citric acid, or ascorbic acid, red meat or white
meat of fowl contg. pyridoxine hydrochloride, or other foods nutritional
supplements or beverages contg. **oxalic acid or**
ox

AN 1997:228676 CAPLUS
DN 126:328049
TI Gazelle herbivory and interpopulation differences in calcium
oxalate content of leaves of a desert lily
AU Ward, David; Spiegel, Michael; Saltz, David
CS Mitrani Centre for Desert Ecology, Ben Gurion University of the Negev,
Sede Boqer, 84990, Israel
SO Journal of Chemical Ecology (1997), 23(2), 333-346
CODEN: JCECD8; ISSN: 0098-0331
PB Plenum
DT Journal
LA English
TI Gazelle herbivory and interpopulation differences in calcium
oxalate content of leaves of a desert lily
AB We investigated the abundance and distribution of calcium **oxalate**
crystals in the leaves of wild populations of a Negev desert lily,
Pancratium sickenbergeri, in relation to herbivory. Three species of
herbivores are known to eat the leaves of this lily: a small antelope, the
dorcas gazelle *Gazella dorcas*, a moth larva *Polytella cliens*, and a land
snail *Eremina desertorum*. All three species eat only those parts
of the leaves where calcium **oxalate** raphides are absent,
suggesting that it is an effective defensive chem. We compared the
abundance of raphides in three isolated lily populations that differed
only in the amt. of gazelle herbivory. Within lily populations, we found
neither size-related differences in raphide abundance nor differences in
raphide abundance between plants that had previously been partially
consumed and those that had not. We found significant differences among
lily populations in the amt. of calcium **oxalate** crystals in
their leaves, with the most raphides being found in the population
suffering most herbivory, fewer in a population with intermediate
herbivory, and the least in a population without gazelle herbivory.
Addnl., sand samples showed no differences among populations in two major
nutrients (nitrogen and phosphorus) but significantly more calcium in the
sand in the population without herbivory. Thus, calcium **oxalate**
abundance in the leaves of *Pancratium sickenbergeri* is not constrained by
resource availability but rather appears to have been selected for by
gazelle.

L11 ANSWER 47 OF 127 CAPLUS COPYRIGHT 2002 ACS

AN 1996:50457 CAPLUS

DN 124:97255

TI Topical preparations containing copper compounds and/or copper-containing plant or animal extracts for skin protection

IN Momota, Hitoshi; Okaya, Yoshio; Kaneko, Chikako

PA Pola Kasei Kogyo Kk, Japan

SO Jpn. Kokai Tokkyo Koho, 6 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 07277938	A2	19951024	JP 1994-74714	19940413
AB	Topical prepns. for skin peroxidn. inhibition and skin protection contain copper compds. and/or copper-contg. plant or animal exts. The prepns. are effective in degrading peroxides formed and improving rough skin. A cream contained liq. paraffin 18.0, beeswax 5.0, jojoba oil 5.0, lanolin 2.0, methylparaben 0.2, glyceryl monostearate 2.0, polyoxyethylene behenyl ether 5.0, polyethylene glycol 6.0, 1,3-butylene glycol 8.0, pure cocoa ext. 5.0 and purified water 43.8 wt.%. Effectiveness was tested in human subjects.				

IT Animal

Auricularia auricula

Cashew

Clove

Cocoa (Theobroma cacao)

Oyster

Pistachio

Plant

Seaweed

Sesame

Shrimp

(exts.; topical prepns. contg. copper compds. or copper-contg. plant and/or animal exts. for skin protection)

IT 142-71-2, Copper acetate 3251-23-8 7057-72-9, Copper **oxalate** 7440-50-8D, Copper, compds. 7447-39-4, Copper chloride, biological studies 7758-98-7, Copper sulfate, biological studies 10402-15-0, Copper citrate

RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)

(topical prepns. contg. copper compds. or copper-contg. plant and/or animal exts. for skin protection)

L11 ANSWER 62 OF 127 WPIDS (C) 2002 THOMSON DERWENT
AN 1992-160963 [12] WPIDS
DNC C1992-074258
TI Aquatic antifouling compsn. with low toxicity - comprises 1,2,4-triazole cpd., insol. di thiocarbamic acid deriv. and opt. organic or inorganic copper cpd..
DC A82 C03 E19 G02
IN IKARI, H; WAKAYASHI, T; TAKAHASHI, T
PA (ROHM) ROHM & HAAS CO; (TOKZ) TOKYO ORGANIC CHEM IND CO LTD
CYC 19
PI EP 485213 A 19920513 (199220)* EN 14p
R: AT BE CH DE DK ES FR GB GR IT LI LU NL SE
CA 2055166 A 19920510 (199231)
BR 9104876 A 19920623 (199232)
JP 04178309 A 19920625 (199232) 7p
EP 485213 B1 19950118 (199507) EN 15p
R: AT BE CH DE DK ES FR GB GR IT LI LU NL SE
DE 69106841 E 19950302 (199514)
ES 2067164 T3 19950316 (199517)
SG 9590434 A 19950818 (199544)
ADT EP 485213 A EP 1991-310302 19911107; CA 2055166 A CA 1991-2055166
19911108; BR 9104876 A BR 1991-4876 19911108; JP 04178309 A JP 1990-302701
19901109; EP 485213 B1 EP 1991-310302 19911107; DE 69106841 E DE
1991-606841 19911107, EP 1991-310302 19911107; ES 2067164 T3 EP
1991-310302 19911107; SG 9590434 A SG 1995-90434 19950310
FDT DE 69106841 E Based on EP 485213; ES 2067164 T3 Based on EP 485213; SG
9590434 A Previous Publ. EP 485213
PRAI JP 1990-302701 19901109
AB EP 485213 A UPAB: 19941206
An aquatic antifouling compsn. comprises at least one cpd. possessing a 1,2,4-triazole group (A) and at least one insoluble dithiocarbamic acid deriv. possessing a dithiocarbamyl group (B).
USE/ADVANTAGE - The compsn. is useful for preventing or inhibiting the growth of marine organisms in underwater surfaces, e.g. ship hulls, fish nets. The compsn. has an antifouling effect against a wide variety of aquatic creatures, including e.g. barnacles, hydroids, ascidians, sea mussels and mussels, in addition to bacteria and algae.
It has an esp. good antifouling effect when compared with conventional organic tin type antifouling compsns. but has very low toxicity and risk of pollution.
0/0
Dwg.0/0
ABEQ EP 485213 B UPAB: 19950223
An aquatic antifouling composition comprising at least one compound possessing a 1,2,4-triazole group represented by the formula (I), at least one insoluble dithiocarbamic acid derivative possessing a dithiocarbamyl group (II) and one or more of basic copper carbonate, basic copper chloride, copper (II) chromate, copper (II) citrate, copper (II) ferrocyanate, copper (II) fluoride, copper (II) hydroxide, copper (II) quinoline, copper-8-hydroquinoline, copper (II) oleinate, copper (II) oxalate, copper (II) oxide, copper (II) tartrate, copper (II) tungstate, copper (I) bromide, copper (I) iodide, copper (I) oxide copper (I) sulphide, copper (I) sulphite, copper (I) thiocyanate, or copper naphthenate.
Dwg.0/0

L11 ANSWER 83 OF 127 CROPU COPYRIGHT 2002 THOMSON DERWENT
AN 1985-84337 CROPU D
TI Seed Treatments for controlling **Slugs** in Winter Wheat.
AU Scott G C; Pickett J A; Smith M C; Woodcock C M; Harris P G W; Hammon R P
LO Harpenden, U.K.
SO Proc.Br.Crop Prot.Conf.Pests Dis. (1, 133-38, 1984) 4 Tab. 5 Ref.
CODEN: PBCDDQ
AV Rothamsted Experimental Station, Harpenden, Herts., AL5 2JO, England. (7
authors).
DT Conference
LA English
FA AB; LA; CT; MPC
TI Seed Treatments for controlling **Slugs** in Winter Wheat.
AB Seed treatments were tested for **slug** (*Derooceras*
reticulatum) control in winter wheat. Products included: aldicarb,
thiocarboxime, ioxynil (I), bromoxynil (B), methiocarb (M), nereistoxin,
Padan (cartap-HCl), thiocyclam, hydrogen **oxalate** (THO),
geraniol, avermectin B1, carbofuran, CGA-73102 (furathiocarb),
cloethocarb, quinalphos, temephos, I-octenoate, B-octanoate, benzyl
choline iodide, dichlorohydroxybenzoic-acid, dinitrophenol, dinoseb,
PP-99 (Yurimin), thiocyclam (T) compound I and II, T microencapsulated,
T1-78 (bensultap), amitraz, dazomet, deltamethrin, ledermycin
(demeclacycline) morantel, thiram, trifenmorph, UNI K 840
(5-dimethylcarbamoyl-4-methyl(-2-(3-pyridinyl)-thiazole), acetazolamide,
acetylcholine iodide, anthraquinone, atropine, Bitrex (Denatonium
benzoate), cycloheximide, Mg-isoalpha acids, etc.
ABEX Most products were applied to seed at 0.2% wt/wt using 3% methyl
cellulose sticker, except for avermectin B1 0.4% suspension and T 4%
slurry, 0.02 and 0.2% a.i./wt seed respectively. The most effective
treatments preventing damage to seeds in laboratory tests were:
thiocarboxime, aldicarb, M, I, dinoseb, B, nereistoxin, cartap-HCl, THO,
geraniol and avermectin B1. Some products were phytotoxic e.g. THO.
Polymeric-salts of T did not affect germination and were effective at
preventing **slug** feeding. In a field test with a high
slug population the products M, cartap-HCl and T
polystyrenehydrosulfonate seed treatments were more effective than M
pellets mixed with the seed. The best seed treatment was M 0.1% a.i. on
the seed. Seed for field tests were treated with a mini Rotostat using
commercial 50% formulations of M and cartap-HCl at 0.1-0.2% a.i./wt seed
T compound II at 0.2 and 4% M pellets at 5.5 kg/ha with the seed. In
addition to the above chemicals, A5160 (2-(3,4-dimethylanilino)-
2-oxazoline), nicotine, oleoresin, polygodial, rotenone and undecan-2-one
were also tested.

L11 ANSWER 95 OF 127 CAPLUS COPYRIGHT 2002 ACS
AN 1979:487852 CAPLUS
DN 91:87852
TI Reproduction of two species of land **snails** in relation to calcium salts in the foerna layer
AU Waereborn, Ingvar
CS Dep. Anim. Ecol., Univ. Lund, Lund, Swed.
SO Malacologia (1979), 18(1-2), 177-80
CODEN: MALAAJ
DT Journal
LA English
TI Reproduction of two species of land **snails** in relation to calcium salts in the foerna layer
AB In culture expts. with Cochlicopa lubrica and Discus rotundatus addn. of Ca citrate and Ca **oxalate** to the substrate had a pos. influence on reprodn. The no. of young produced in the culture boxes was increased by Na₂CO₃ addns. Thus, both the Ca content and the pH-increasing action of the Ca compds. in the foerna may be important. Ca citrate was significantly better than Ca **oxalate**. To facilitate comparisons with conditions in nature a small biometrical study of C. lubrica was made. Length of the reproductive season, young prodn., and yearling growth were studied. Leaves of oak and beech are rich in **oxalate**-bound Ca, whereas in ash, lime, maple, and elm more sol. Ca compds. (e.g. citrate) were dominating. This may be related to **mollusk** fauna differences between different types of deciduous woods on noncalcareous bedrock.
ST Cochlicopa calcium citrate **oxalate** reprodn; Discus calcium citrate **oxalate** reprodn; **snail** calcium citrate reprodn
IT Reproduction
(calcium effect on, in **snail**)
IT 497-19-8, biological studies 563-72-4 7440-70-2, biological studies
7693-13-2
RL: BIOL (Biological study)
(reprodn. in **snail** in response to)

L11 ANSWER 106 OF 127 CAPLUS COPYRIGHT 2002 ACS
AN 1970:87534 CAPLUS
DN 72:87534
TI Land **molluscs** and their environments in an oligotrophic area in southern Sweden
AU Wareborn, Ingvar
CS Dep. Anim. Ecol., Univ. Lund, Lund, Swed.
SO Oikos (1969), 20(2), 461-79
CODEN: OIKSAA
DT Journal
LA English
TI Land **molluscs** and their environments in an oligotrophic area in southern Sweden
AB The effects of environmental factors on the occurrence of land **mollusks** were studied in 5 woodland habitats in an area in which no free CaCO₃ occurs. Abundance of **mollusks** and no. of species were correlated with litterCa content. Under oak trees Ca **oxalate**, which has no effect on pH, predominates. Ash, lime, maple, and elm produce litter contg. sol. Ca salts which increases the pH. Richer **mollusk** fauna were found under these conditions than in oak woods.
ST **molluscs** environment Ca; calcium **molluscs** environment; pH **molluscs** environment; trees **molluscs** environment
IT Mollusks
 Snails
 (ecology of, in southern Sweden)
IT Ecology
 (of **mollusks** in southern Sweden)
IT Plants
 Soils
 (snails in relation to, ecology of)
IT 7440-70-2, biological studies
 RL: BIOL (Biological study)
 (ecology of **mollusks** in relation to)

L11 ANSWER 124 OF 127 CAPLUS COPYRIGHT 2002 ACS

AN 1950:34247 CAPLUS

DN 44:34247

OREF 44:6562i,6563a-c

TI Toxicities of some organic chemicals to *Australorbis glabratus*, a
snail vector of *Schistosoma mansoni*

AU Jachowski, L. A.; Stirewalt, M. A.

CS Naval Med. Research Inst., Bethesda, MD

SO J. Parasitol. (1950), 36, 152-4

DT Journal

LA Unavailable

TI Toxicities of some organic chemicals to *Australorbis glabratus*, a
snail vector of *Schistosoma mansoni*

AB Effect of chemicals added to a **snail** diet of dried maple leaves and lettuce as **molluscacides** was noted with death at 24 hrs. as the end point of assay. Those inactive as **molluscacides** when added at 0.01 M included: EtOH; ethylene glycol; diethylene glycol diethyl ether; ethylene glycol diethyl ether; paraldehyde; acetone; biacetyl; glycine; acetamide; acetylglycine; acetylurea; diethanolamine; triethanolamine; diethylethanolamine; NH₄OAc; (NH₄)₂C₂O₄; acetonitrile; ethylene chlorohydrin. Addn. of acetal at 0.01 M killed 11.5%, and Et₃N at 0.01 M killed 33%. Min. lethal concn.: **oxalic acid**, 0.004 M; acetic acid, 0.005 M; chloroacetic acid, 0.004 M; dichloroacetic acid, 0.002 M; trichloroacetic acid, 0.004 M; chloroacetyl chloride, 0.003 M; acetic anhydride, 0.006 M; chloroacetic anhydride, 0.008 M; ethyl acetate, 0.008 M; ethyl chloroacetate, 0.0001 M; ethyl acetoacetate, 0.005 M; ethyl cyanoacetate, 0.004 M; methyl chloroacetate, 0.0003 M; chloroacetonitrile, 0.001 M; chloroacetamide, 0.0006 M; EtNH₂, 0.008 M; Et₂NH₂, 0.009 M; ethylenediamine, 0.005 M; ethanolamine, 0.006 M; chloral, 0.005 M; CuSO₄, 0.00002 M; and o-cyclohexylphenol, 0.000008 M.

FILE 'REGISTRY' ENTERED AT 22:17:33 ON 20 OCT 2002
L1 5 S FERRIC POTASSIUM OXALATE/CN OR CUPRIC OXALATE/CN OR CUPROUS O
L2 1 S OXALIC ACID/CN

FILE 'CAPLUS, WPIDS, CABA, CROPU, CROPB' ENTERED AT 22:20:31 ON 20 OCT 2002

FILE 'REGISTRY' ENTERED AT 22:20:46 ON 20 OCT 2002
L3 SET SMARTSELECT ON
SEL L1 1- CHEM : 42 TERMS
SET SMARTSELECT OFF

FILE 'CAPLUS, WPIDS, CABA, CROPU, CROPB' ENTERED AT 22:20:48 ON 20 OCT 2002
L4 2728 S L3/BI

FILE 'REGISTRY' ENTERED AT 22:23:19 ON 20 OCT 2002
L5 SET SMARTSELECT ON
SEL L2 1- CHEM : 8 TERMS
SET SMARTSELECT OFF

FILE 'CAPLUS, WPIDS, CABA, CROPU, CROPB' ENTERED AT 22:23:20 ON 20 OCT 2002
L6 46423 S L5/BI
L7 46423 S L5
L8 93091 S (L7 OR L6 OR OXALATE#)
L9 86574 S MOLLUSC? OR MOLLUSK? OR SLUG OR SLUGS OR SNAIL OR SNAILS OR D
L10 138 S L8 AND L9
L11 127 DUP REM L10 (11 DUPLICATES REMOVED)

FILE 'STNGUIDE' ENTERED AT 22:31:57 ON 20 OCT 2002

FILE 'CAPLUS, WPIDS, CABA, CROPU, CROPB' ENTERED AT 22:48:50 ON 20 OCT 2002

FILE 'STNGUIDE' ENTERED AT 22:49:37 ON 20 OCT 2002

FILE 'CAPLUS, WPIDS, CABA, CROPU, CROPB' ENTERED AT 23:08:59 ON 20 OCT 2002

=> s (17 or oxalate#) (25a) (fungicid? or growth hormone# or seaweed or seed or seeds)
L12 551 (L7 OR OXALATE#) (25A) (FUNGICID? OR GROWTH HORMONE# OR SEAWEED OR SEED OR SEEDS)

=> dup rem 112
PROCESSING COMPLETED FOR L12
L13 504 DUP REM L12 (47 DUPLICATES REMOVED)

L1 ANSWER 1 OF 5 REGISTRY COPYRIGHT 2002 ACS
 RN 2944-66-3 REGISTRY
 CN Iron, [.mu.-[ethanedioato(2-)-.kappa.O1,.kappa.O2'':.kappa.O1',.kappa.O2]]b
 is[ethanedioato(2-)-.kappa.O1,.kappa.O2]di- (9CI) (CA INDEX NAME)
 OTHER CA INDEX NAMES:
 CN Iron, [.mu.-[ethanedioato(2-)-O,O'':O',O'']]bis[ethanedioato(2-)-O,O']di-
 CN Oxalic acid, iron(3+) salt (3:2) (8CI)
 OTHER NAMES:
 CN **Ferric oxalate**
 CN Iron oxalate (Fe₂(C₂O₄)₃)
 CN Iron, tris[ethanedioato(2-)]di-
 CN Sanodal Gold 4N
 DR 10112-45-5, 59683-70-4, 64297-25-2, 23285-61-2
 MF C6 Fe₂ O₁₂
 CI CCS, COM
 LC STN Files: AGRICOLA, BIOBUSINESS, BIOSIS, BIOTECHNO, CA, CAOLD, CAPLUS,
 CASREACT, CHEMCATS, CHEMLIST, DETHERM*, EMBASE, IFICDB, IFIPAT, IFIUDB,
 PIRA, PROMT, TOXCENTER, USPATFULL
 (*File contains numerically searchable property data)
 Other Sources: EINECS**, NDSL**, TSCA**
 (**Enter CHEMLIST File for up-to-date regulatory information)

210 REFERENCES IN FILE CA (1962 TO DATE)
 3 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 210 REFERENCES IN FILE CAPLUS (1962 TO DATE)
 7 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

=> d 2-5

L1 ANSWER 2 OF 5 REGISTRY COPYRIGHT 2002 ACS
 RN 814-91-5 REGISTRY
 CN Copper, [ethanedioato(2-)-.kappa.O1,.kappa.O2]- (9CI) (CA INDEX NAME)
 OTHER CA INDEX NAMES:
 CN Copper oxalate (CuC₂O₄) (6CI)
 CN Copper, [ethanedioato(2-)-O,O']-
 CN Oxalic acid, copper(2+) salt (1:1) (8CI)
 OTHER NAMES:
 CN Copper oxalate
 CN Copper oxalate (1:1)
 CN Copper(2+) oxalate
 CN Copper(2+) oxalate (1:1)
 CN Copper(II) oxalate
 CN **Cupric oxalate**
 CN Cupric oxalate (1:1)
 DR 10345-26-3, 76494-22-9, 203052-44-2
 MF C2 Cu O₄
 CI COM
 LC STN Files: AGRICOLA, BIOBUSINESS, BIOSIS, CA, CAOLD, CAPLUS, CASREACT,

CHEMCATS, CHEMLIST, CSCHEM, GMELIN*, HSDB*, IFICDB, IFIPAT, IFIUDB,
 MRCK*, MSDS-OHS, PIRA, RTECS*, TOXCENTER, USPATFULL, VTB
 (*File contains numerically searchable property data)
 Other Sources: DSL**, EINECS**, TSCA**
 (**Enter CHEMLIST File for up-to-date regulatory information)

314 REFERENCES IN FILE CA (1962 TO DATE)
 9 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 314 REFERENCES IN FILE CAPIUS (1962 TO DATE)
 32 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

L1 ANSWER 3 OF 5 REGISTRY COPYRIGHT 2002 ACS
 RN 814-87-9 REGISTRY
 CN Aluminum, [.mu.-[ethanedioato(2-)-.kappa.O1,.kappa.O2':.kappa.O1',.kappa.O2]bis[ethanedioato(2-)-.kappa.O1,.kappa.O2]di- (9CI) (CA INDEX NAME)
 OTHER CA INDEX NAMES:
 CN **Aluminum oxalate (6CI, 7CI)**
 CN Aluminum, tris[ethanedioato(2-)]di-
 CN Oxalic acid, aluminum salt (3:2) (8CI)
 MF C6 A12 O12
 CI CCS, COM
 LC STN Files: BIOSIS, CA, CAOLD, CAPIUS, CHEMCATS, CHEMLIST, CIN, CSCHEM, IFICDB, IFIPAT, IFIUDB, MRCK*, PDLCOM*, PROMT, RTECS*, TOXCENTER, USPATFULL
 (*File contains numerically searchable property data)
 Other Sources: EINECS**
 (**Enter CHEMLIST File for up-to-date regulatory information)

132 REFERENCES IN FILE CA (1962 TO DATE)
 2 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 132 REFERENCES IN FILE CAPIUS (1962 TO DATE)
 5 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

L1 ANSWER 4 OF 5 REGISTRY COPYRIGHT 2002 ACS
 RN 547-68-2 REGISTRY
 CN Zinc, [ethanedioato(2-)-.kappa.O1,.kappa.O2]- (9CI) (CA INDEX NAME)
 OTHER CA INDEX NAMES:
 CN Oxalic acid, zinc salt (1:1) (8CI)
 CN **Zinc oxalate (6CI)**
 OTHER NAMES:

CN Ethanedioic acid, zinc salt (1:1)
 CN Zinc oxalate (1:1)
 CN Zinc oxalate (ZnC₂O₄)
 DR 112901-80-1, 116295-84-2
 MF C₂ O₄ Zn
 CI COM
 LC STN Files: BEILSTEIN*, CA, CAOLD, CAPLUS, CHEMCATS, CHEMLIST, CSCHEM,
 DETERM*, GMELIN*, HODOC*, IFICDB, IFIPAT, IFIUDB, MRCK*, PIRA,
 TOXCENTER, USPATFULL, VTB
 (*File contains numerically searchable property data)
 Other Sources: EINECS**
 (**Enter CHEMLIST File for up-to-date regulatory information)

239 REFERENCES IN FILE CA (1962 TO DATE)
 14 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 239 REFERENCES IN FILE CAPLUS (1962 TO DATE)
 20 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

L1 ANSWER 5 OF 5 REGISTRY COPYRIGHT 2002 ACS
 RN 516-03-0 REGISTRY
 CN Iron, [ethanedioato(2-)-.kappa.O1,.kappa.O2]- (9CI) (CA INDEX NAME)
 OTHER CA INDEX NAMES:
 CN Iron, [ethanedioato(2)-O,O']-
 CN Oxalic acid, iron(2+) salt (1:1) (8CI)
 OTHER NAMES:
 CN Ferrous oxalate
 CN Ferrous oxalate (1:1)
 CN Ferrous oxalate (Fe(C₂O₄))
 CN Ferrox
 CN Iron oxalate
 CN Iron protoxalate
 CN Iron(2+) oxalate
 CN Iron(II) oxalate
 CN Oxalic acid, iron(2+) salt
 DR 23693-49-4, 70763-81-4
 MF C₂ Fe O₄
 CI COM
 LC STN Files: ADISNEWS, BIOBUSINESS, BIOSIS, CA, CAOLD, CAPLUS, CASREACT,
 CEN, CHEMCATS, CHEMLIST, CIN, CSCHEM, DDFU, DRUGU, HSDB*, IFICDB,
 IFIPAT, IFIUDB, MRCK*, PIRA, PROMT, SPECINFO, TOXCENTER, TULSA, USPAT2,
 USPATFULL
 (*File contains numerically searchable property data)
 Other Sources: EINECS**, NDSL**, TSCA**
 (**Enter CHEMLIST File for up-to-date regulatory information)

442 REFERENCES IN FILE CA (1962 TO DATE)
14 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
442 REFERENCES IN FILE CAPLUS (1962 TO DATE)
9 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

RN 144-62-7 REGISTRY
CN Ethanedioic acid (9CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:
CN Oxalic acid (8CI)
OTHER NAMES:
CN Aktisal
CN Aquisal
FS 3D CONCORD
DR 63504-28-9, 97993-78-7, 216451-38-6
MF C2 H2 O4
CI COM
LC STN Files: ADISNEWS, AGRICOLA, ANABSTR, AQUIRE, BEILSTEIN*, BIOBUSINESS,
BIOSIS, BIOTECHNO, CA, CABA, CANCERLIT, CAOLD, CAPLUS, CASREACT, CBNB,
CEN, CHEMCATS, CHEMINFORMRX, CHEMLIST, CHEMSAFE, CIN, CSCHEM, CSNB,
DDFU, DETHERM*, DIOGENES, DIPPR*, DRUGU, EMBASE, ENCOMPLIT, ENCOMPLIT2,
ENCOMPPAT, ENCOMPPAT2, GMELIN*, HODOC*, HSDB*, IFICDB, IFIPAT, IFIUDB,
IPA, MEDLINE, MRCK*, MSDS-OHS, NAPRALERT, NIOSHTIC, PDLCOM*, PIRA,
PROMT, RTECS*, SPECINFO, SYNTHLINE, TOXCENTER, TULSA, ULIDAT, USPAT2,
USPATFULL, VETU, VTB
(*File contains numerically searchable property data)
Other Sources: DSL**, EINECS**, TSCA**
(**Enter CHEMLIST File for up-to-date regulatory information)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

21016 REFERENCES IN FILE CA (1962 TO DATE)
1611 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
21025 REFERENCES IN FILE CAPLUS (1962 TO DATE)
6 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

AN 1997:228676 CAPLUS
DN 126:328049
TI Gazelle herbivory and interpopulation differences in calcium **oxalate** content of leaves of a desert lily
AU Ward, David; Spiegel, Michael; Saltz, David
CS Mitrani Centre for Desert Ecology, Ben Gurion University of the Negev,
Sede Boqer, 84990, Israel
SO Journal of Chemical Ecology (1997), .23(2), 333-346
CODEN: JCECD8; ISSN: 0098-0331
PB Plenum
DT Journal
LA English
TI Gazelle herbivory and interpopulation differences in calcium **oxalate** content of leaves of a desert lily
AB We investigated the abundance and distribution of calcium **oxalate** crystals in the leaves of wild populations of a Negev desert lily, *Pancratium sickenbergeri*, in relation to herbivory. Three species of herbivores are known to eat the leaves of this lily: a small antelope, the dorcas gazelle *Gazella dorcas*, a moth larva *Polytella cliens*, and a land snail *Eremina desertorum*. All three species eat only those parts of the leaves where calcium **oxalate** raphides are absent, suggesting that it is an effective defensive chem. We compared the abundance of raphides in three isolated lily populations that differed only in the amt. of gazelle herbivory. Within lily populations, we found neither size-related differences in raphide abundance nor differences in raphide abundance between plants that had previously been partially consumed and those that had not. We found significant differences among lily populations in the amt. of calcium **oxalate** crystals in their leaves, with the most raphides being found in the population suffering most herbivory, fewer in a population with intermediate herbivory, and the least in a population without gazelle herbivory. Addnl., sand samples showed no differences among populations in two major nutrients (nitrogen and phosphorus) but significantly more calcium in the sand in the population without herbivory. Thus, calcium **oxalate** abundance in the leaves of *Pancratium sickenbergeri* is not constrained by resource availability but rather appears to have been selected for by gazelle.

AN 1996:50457 CAPLUS
DN 124:97255
TI Topical preparations containing copper compounds and/or copper-containing plant or animal extracts for skin protection
IN Momota, Hitoshi; Okaya, Yoshio; Kaneko, Chikako
PA Pola Kasei Kogyo Kk, Japan
SO Jpn. Kokai Tokkyo Koho, 6 pp.
CODEN: JKXXAF
DT Patent
LA Japanese
FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 07277938	A2	19951024	JP 1994-74714	19940413

AB Topical prepns. for skin peroxidn. inhibition and skin protection contain copper compds. and/or copper-contg. plant or animal exts. The prepns. are effective in degrading peroxides formed and improving rough skin. A cream contained liq. paraffin 18.0, beeswax 5.0, jojoba oil 5.0, lanolin 2.0, methylparaben 0.2, glyceryl monostearate 2.0, polyoxyethylene behenyl ether 5.0, polyethylene glycol 6.0, 1,3-butylene glycol 8.0, pure cocoa ext. 5.0 and purified water 43.8 wt.%. Effectiveness was tested in human subjects.

IT Animal
Auricularia auricula
Cashew
Clove
Cocoa (Theobroma cacao)
Oyster
Pistachio
Plant
Seaweed
Sesame
Shrimp
(exts.; topical prepns. contg. copper compds. or copper-contg. plant and/or animal exts. for skin protection)

IT 142-71-2, Copper acetate 3251-23-8 7057-72-9, Copper **oxalate**
7440-50-8D, Copper, compds. 7447-39-4, Copper chloride, biological studies 7758-98-7, Copper sulfate, biological studies 10402-15-0,
Copper citrate
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES
(Uses)
(topical prepns. contg. copper compds. or copper-contg. plant and/or animal exts. for skin protection)

AN 1992-160963 [12] WPIDS
DNC C1992-074258
TI Aquatic antifouling compsn. with low toxicity - comprises 1,2,4-triazole cpd., insol. di thiocarbamic acid deriv. and opt. organic or inorganic copper cpd..
DC A82 C03 E19 G02
IN IKARI, H; WAKAYASHI, T; TAKAHASHI, T
PA (ROHM) ROHM & HAAS CO; (TOKZ) TOKYO ORGANIC CHEM IND CO LTD
CYC 19
PI EP 485213 A 19920513 (199220)* EN 14p
R: AT BE CH DE DK ES FR GB GR IT LI LU NL SE
CA 2055166 A 19920510 (199231)
BR 9104876 A 19920623 (199232)
JP 04178309 A 19920625 (199232) 7p
EP 485213 B1 19950118 (199507) EN 15p
R: AT BE CH DE DK ES FR GB GR IT LI LU NL SE
DE 69106841 E 19950302 (199514)
ES 2067164 T3 19950316 (199517)
SG 9590434 A 19950818 (199544)
ADT EP 485213 A EP 1991-310302 19911107; CA 2055166 A CA 1991-2055166 19911108; BR 9104876 A BR 1991-4876 19911108; JP 04178309 A JP 1990-302701 19901109; EP 485213 B1 EP 1991-310302 19911107; DE 69106841 E DE 1991-606841 19911107, EP 1991-310302 19911107; ES 2067164 T3 EP 1991-310302 19911107; SG 9590434 A SG 1995-90434 19950310
FDT DE 69106841 E Based on EP 485213; ES 2067164 T3 Based on EP 485213; SG 9590434 A Previous Publ. EP 485213
PRAI JP 1990-302701 19901109
AB EP 485213 A UPAB: 19941206
An aquatic antifouling compsn. comprises at least one cpd. possessing a 1,2,4-triazole group (A) and at least one insoluble dithiocarbamic acid deriv. possessing a dithiocarbamyl group (B).
USE/ADVANTAGE - The compsn. is useful for preventing or inhibiting the growth of marine organisms in underwater surfaces, e.g. ship hulls, fish nets. The compsn. has an antifouling effect against a wide variety of aquatic creatures, including e.g. barnacles, hydrozoans, ascidians, sea mussels and mussels, in addition to bacteria and algae.
It has an esp. good antifouling effect when compared with conventional organic tin type antifouling compsns. but has very low toxicity and risk of pollution.
0/0
Dwg.0/0
ABEQ EP 485213 B UPAB: 19950223
An aquatic antifouling composition comprising at least one compound possessing a 1,2,4-triazole group represented by the formula (I), at least one insoluble dithiocarbamic acid derivative possessing a dithiocarbamyl group (II) and one or more of basic copper carbonate, basic copper chloride, copper (II) chromate, copper (II) citrate, copper (II) ferrocyanate, copper (II) fluoride, copper (II) hydroxide, copper (II) quinoline, copper-8-hydroquinoline, copper (II) oleinate, copper (II) oxalate, copper (II) oxide, copper (II) tartrate, copper (II) tungstate, copper (I) bromide, copper (I) iodide, copper (I) oxide copper (I) sulphide, copper (I) sulphite, copper (I) thiocyanate, or copper naphthenate.
Dwg.0/0

AN 1985-84337 CROPUR D
TI Seed Treatments for controlling **Slugs** in Winter Wheat.
AU Scott G C; Pickett J A; Smith M C; Woodcock C M; Harris P G W; Hammon R P
LO Harpenden, U.K.
SO Proc.Br.Crop Prot.Conf.Pests Dis. (1, 133-38, 1984) 4 Tab. 5 Ref.
CODEN: PBCDDQ
AV Rothamsted Experimental Station, Harpenden, Herts., AL5 2JO, England. (7
authors).
DT Conference
LA English
FA AB; LA; CT; MPC
TI Seed Treatments for controlling **Slugs** in Winter Wheat.
AB Seed treatments were tested for **slug** (*Deroceas*
reticulatum) control in winter wheat. Products included: aldicarb,
thiocarboxime, ioxynil (I), bromoxynil (B), methiocarb (M), nereistoxin,
Padan (cartap-HCl), thiocyclam, hydrogen **oxalate** (THO),
geraniol, avermectin B1, carbofuran, CGA-73102 (furathiocarb),
cloethocarb, quinalphos, temephos, I-octenoate, B-octanoate, benzyl
choline iodide, dichlorohydroxybenzoic-acid, dinitrophenol, dinoseb,
PP-99 (Yurimin), thiocyclam (T) compound I and II, T microencapsulated,
T1-78 (bensultap), amitraz, dazomet, deltamethrin, ledemycin
(demeclacycline) morantel, thiram, triflumorph, UNI K 840
(5-dimethylcarbamoyl-4-methyl(-2- (3-pyridinyl)-thiazole), acetazolamide,
acetylcholine iodide, anthraquinone, atropine, Bitrex (Denatonium
benzoate), cycloheximide, Mg-isoalpha acids, etc.
ABEX Most products were applied to seed at 0.2% wt/wt using 3% methyl
cellulose sticker, except for avermectin B1 0.4% suspension and T 4%
slurry, 0.02 and 0.2% a.i./wt seed respectively. The most effective
treatments preventing damage to seeds in laboratory tests were:
thiocarboxime, aldicarb, M, I, dinoseb, B, nereistoxin, cartap-HCl, THO,
geraniol and avermectin B1. Some products were phytotoxic e.g. THO.
Polymeric-salts of T did not affect germination and were effective at
preventing **slug** feeding. In a field test with a high
slug population the products M, cartap-HCl and T
polystyrenehydrosulfonate seed treatments were more effective than M
pellets mixed with the seed. The best seed treatment was M 0.1% a.i. on
the seed. Seed for field tests were treated with a mini Rotostat using
commercial 50% formulations of M and cartap-HCl at 0.1-0.2% a.i./wt seed
T compound II at 0.2 and 4% M pellets at 5.5 kg/ha with the seed. In
addition to the above chemicals, A5160 (2-(3,4-dimethylanilino)-
2-oxazoline), nicotine, oleoresin, polygodial, rotenone and undecan-2-one
were also tested.

AN 1970:87534 CAPLUS
DN 72:87534
TI Land **molluscs** and their environments in an oligotrophic area in southern Sweden
AU Wareborn, Ingvar
CS Dep. Anim. Ecol., Univ. Lund, Lund, Swed.
SO Oikos (1969), 20(2), 461-79
CODEN: OIKSAA
DT Journal
LA English
TI Land **molluscs** and their environments in an oligotrophic area in southern Sweden
AB The effects of environmental factors on the occurrence of land **mollusks** were studied in 5 woodland habitats in an area in which no free CaCO₃ occurs. Abundance of **mollusks** and no. of species were correlated with litterCa content. Under oak trees Ca **oxalate**, which has no effect on pH, predominates. Ash, lime, maple, and elm produce litter contg. sol. Ca salts which increases the pH. Richer **mollusk** fauna were found under these conditions than in oak woods.
ST **molluscs** environment Ca; calcium **molluscs** environment; pH **molluscs** environment; trees **molluscs** environment
IT **Mollusks**
 Snails
 (ecology of, in southern Sweden)
IT Ecology
 (of **mollusks** in southern Sweden)
IT Plants
 Soils
 (**snails** in relation to, ecology of)
IT 7440-70-2, biological studies
 RL: BIOL (Biological study)
 (ecology of **mollusks** in relation to)

AN 1950:34247 CAPLUS
DN 44:34247
OREF 44:6562i,6563a-c
TI Toxicities of some organic chemicals to *Australorbis glabratus*, a
snail vector of *Schistosoma mansoni*
AU Jachowski, L. A.; Stirewalt, M. A.
CS Naval Med. Research Inst., Bethesda, MD
SO J. Parasitol. (1950), 36, 152-4
DT Journal
LA Unavailable
TI Toxicities of some organic chemicals to *Australorbis glabratus*, a
snail vector of *Schistosoma mansoni*
AB Effect of chemicals added to a **snail** diet of dried maple leaves
and lettuce as **molluscacides** was noted with death at 24 hrs. as
the end point of assay. Those inactive as **molluscacides** when
added at 0.01 M included: EtOH; ethylene glycol; diethylene glycol diethyl
ether; ethylene glycol diethyl ether; paraldehyde; acetone; biacetyl;
glycine; acetamide; acetyl glycine; acetylurea; diethanolamine;
triethanolamine; diethylethanolamine; NH4OAc; (NH4)2C2O4; acetonitrile;
ethylene chlorohydrin. Addn. of acetal at 0.01 M killed 11.5%, and Et3N
at 0.01 M killed 33%. Min. lethal concn.: **oxalic acid**
, 0.004 M; acetic acid, 0.005 M; chloroacetic acid, 0.004 M;
dichloroacetic acid, 0.002 M; trichloroacetic acid, 0.004 M; chloroacetyl
chloride, 0.003 M; acetic anhydride, 0.006 M; chloroacetic anhydride,
0.008 M; ethyl acetate, 0.008 M; ethyl chloroacetate, 0.0001 M; ethyl
acetoacetate, 0.005 M; ethyl cyanoacetate, 0.004 M; methyl chloroacetate,
0.0003 M; chloroacetonitrile, 0.001 M; chloroacetamide, 0.0006 M; EtNH2,
0.008 M; Et2NH2, 0.009 M; ethylenediamine, 0.005 M; ethanolamine, 0.006 M;
chloral, 0.005 M; CuSO4, 0.00002 M; and o-cyclohexylphenol, 0.000008 M.