1 Introduction

Recommended Problems

P1.	1		
rı.	. 1		

Evaluate each of the following expressions for the complex number $z = \frac{1}{2}e^{j\pi/4}$.

- (a) $Re\{z\}$
- **(b)** $Im\{z\}$
- (c) |z|
- (d) *∢z*
- (e) z^* (* denotes complex conjugation)
- (f) $z + z^*$

P1.2

Let z be an arbitrary complex number.

(a) Show that

$$Re\{z\} = \frac{z+z^*}{2}$$

(b) Show that

$$jIm\{z\} = \frac{z-z^*}{2}$$

P1.3

Using Euler's formula, $e^{j\theta} = \cos \theta + j \sin \theta$, derive the following relations:

- (a) $\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$
- **(b)** $\sin \theta = \frac{e^{j\theta} e^{-j\theta}}{2j}$

P1.4

- (a) Let $z = re^{j\theta}$. Express in polar form (i.e., determine the magnitude and angle for) the following functions of z:
 - (i) a
 - (ii) z^2
 - (iii) *jz*
 - (iv) zz*
 - $(v) \frac{z}{z^4}$
 - (vi) $\frac{1}{z}$

(b) Plot in the complex plane the vectors corresponding to your answers to Problem P1.4a(i)–(vi) for $r = \frac{2}{3}$, $\theta = \pi/6$.

P1.5

Show that

$$(1 - e^{j\alpha}) = 2\sin\left(\frac{\alpha}{2}\right)e^{j[(\alpha - \tau)/2]}$$

P1.6

For x(t) indicated in Figure P1.6, sketch the following:

- (a) x(-t)
- **(b)** x(t+2)
- (c) x(2t+2)
- (d) x(1-3t)

P1.7

Evaluate the following definite integrals:

$$(a) \int_0^a e^{-2t} dt$$

(b)
$$\int_2^\infty e^{-3t} dt$$

2 Signals and Systems: Part I

Recommended Problems

P2.1

Let $x(t) = \cos(\omega_x(t + \tau_x) + \theta_x)$.

- (a) Determine the frequency in hertz and the period of x(t) for each of the following three cases:
 - (i) $\frac{\omega_x}{\pi/3} \quad \frac{\tau_x}{0} \quad \frac{\theta_x}{2\pi}$
 - (ii) $3\pi/4$ 1/2 $\pi/4$
 - (iii) 3/4 1/2 1/4
- **(b)** With $x(t) = \cos(\omega_x(t + \tau_x) + \theta_x)$ and $y(t) = \sin(\omega_y(t + \tau_y) + \theta_y)$, determine for which of the following combinations x(t) and y(t) are identically equal for all t.
 - ω_x 0 2π 1 $-\pi/3$ (i) $\pi/3$ $\pi/3$ 1/2 $3\pi/8$ (ii) $3\pi/4$ $\pi/4$ $11\pi/4$ 1 3/41/21/4 3/41 3/8 (iii)

P2.2

Let $x[n] = \cos(\Omega_x(n + P_x) + \theta_x)$.

(a) Determine the period of x[n] for each of the following three cases:

	Ω_x	P_x	θ_x	
(i)	$\pi/3$	0	2π	
(ii)	$3\pi/4$	2	$\pi/4$	

- (iii) 3/4 1 1/4
- (b) With $x[n] = \cos(\Omega_x(n + P_x) + \theta_x)$ and $y[n] = \cos(\Omega_y(n + P_y) + \theta_y)$, determine for which of the following combinations x[n] and y[n] are identically equal for all n.

	Ω_x	P_x	$ heta_x$	Ω_y	P_y	$ heta_y$
(i)	$\pi/3$	0	2π	$8\pi/3$	0	0
(ii)	$3\pi/4$	2	$\pi/4$	$3\pi/4$	1	$-\pi$
(iii)	3/4	1	1/4	3/4	0	1

P2.3

(a) A discrete-time signal x[n] is shown in Figure P2.3.

Sketch and carefully label each of the following signals:

- x[n-2](i)
- x[4-n](ii)
- (iii) x[2n]
- **(b)** What difficulty arises when we try to define a signal as x[n/2]?

P2.4

For each of the following signals, determine whether it is even, odd, or neither.

(a)

(c)

(d)

P2.5

Consider the signal y[n] in Figure P2.5.

- (a) Find the signal x[n] such that $Ev\{x[n]\} = y[n]$ for $n \ge 0$, and $Od\{x[n]\} = y[n]$ for n < 0.
- (b) Suppose that $Ev\{w[n]\} = y[n]$ for all n. Also assume that w[n] = 0 for n < 0. Find w[n].

P2.6

- (a) Sketch $x[n] = \alpha^n$ for a typical α in the range $-1 < \alpha < 0$.
- (b) Assume that $\alpha = -e^{-1}$ and define y(t) as $y(t) = e^{\beta t}$. Find a complex number β such that y(t), when evaluated at t equal to an integer n, is described by $(-e^{-1})^n$.
- (c) For y(t) found in part (b), find an expression for $Re\{y(t)\}$ and $Im\{y(t)\}$. Plot $Re\{y(t)\}$ and $Im\{y(t)\}$ for t equal to an integer.

P2.7

Let $x(t) = \sqrt{2}(1+j)e^{j\pi/4}e^{(-1+j2\pi)t}$. Sketch and label the following:

- (a) $Re\{x(t)\}$
- **(b)** $Im\{x(t)\}$
- (c) $x(t+2) + x^*(t+2)$

P2.8

Evaluate the following sums:

(a)
$$\sum_{n=0}^{5} 2 \left(\frac{3}{a}\right)^n$$

(b)
$$\sum_{n=2}^{6} b^{n}$$

(c)
$$\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^{2n}$$

Hint: Convert each sum to the form

$$C\sum_{n=0}^{N-1}\alpha^n=S_N$$
 or $C\sum_{n=0}^{\infty}\alpha^n=S_\infty$

and use the formulas

$$S_N = C\left(\frac{1-\alpha^N}{1-\alpha}\right), \quad S_\infty = \frac{C}{1-\alpha} \quad \text{for } |\alpha| < 1$$

P2.9

- (a) Let x(t) and y(t) be periodic signals with fundamental periods T_1 and T_2 , respectively. Under what conditions is the sum x(t) + y(t) periodic, and what is the fundamental period of this signal if it is periodic?
- (b) Let x[n] and y[n] be periodic signals with fundamental periods N_1 and N_2 , respectively. Under what conditions is the sum x[n] + y[n] periodic, and what is the fundamental period of this signal if it is periodic?
- (c) Consider the signals

$$x(t) = \cos \frac{2\pi t}{3} + 2\sin \frac{16\pi t}{3},$$

$$y(t) = \sin \pi t$$

Show that z(t) = x(t)y(t) is periodic, and write z(t) as a linear combination of harmonically related complex exponentials. That is, find a number T and complex numbers c_k such that

$$z(t) = \sum_{k} c_{k} e^{jk(2\pi/T)t}$$

P2.10

In this problem we explore several of the properties of even and odd signals.

(a) Show that if x[n] is an odd signal, then

$$\sum_{n=-\infty}^{+\infty} x[n] = 0$$

(b) Show that if $x_1[n]$ is an odd signal and $x_2[n]$ is an even signal, then $x_1[n]x_2[n]$ is an odd signal.

(c) Let x[n] be an arbitrary signal with even and odd parts denoted by

$$x_e[n] = Ev\{x[n]\}, \quad x_o[n] = Od\{x[n]\}$$

Show that

$$\sum_{n=-\infty}^{+\infty} x^{2}[n] = \sum_{n=-\infty}^{+\infty} x_{e}^{2}[n] + \sum_{n=-\infty}^{+\infty} x_{o}^{2}[n]$$

(d) Although parts (a)-(c) have been stated in terms of discrete-time signals, the analogous properties are also valid in continuous time. To demonstrate this, show that

$$\int_{-\infty}^{+\infty} x^2(t) dt = \int_{-\infty}^{+\infty} x_e^2(t) dt + \int_{-\infty}^{+\infty} x_o^2(t) dt,$$

where $x_e(t)$ and $x_o(t)$ are, respectively, the even and odd parts of x(t).

P2.11

Let x(t) be the continuous-time complex exponential signal $x(t) = e^{j\omega_0 t}$ with fundamental frequency ω_0 and fundamental period $T_0 = 2\pi/\omega_0$. Consider the discrete-time signal obtained by taking equally spaced samples of x(t). That is, $x[n] = x(nT) = e^{j\omega_0 nT}$.

- (a) Show that x[n] is periodic if and only if T/T_0 is a rational number, that is, if and only if some multiple of the sampling interval *exactly equals* a multiple of the period x(t).
- **(b)** Suppose that x[n] is periodic, that is, that

$$\frac{T}{T_0} = \frac{p}{q} \,, \tag{P2.11-1}$$

where p and q are integers. What are the fundamental period and fundamental frequency of x[n]? Express the fundamental frequency as a fraction of $\omega_0 T$.

(c) Again assuming that T/T_0 satisfies eq. (P2.11-1), determine precisely how many periods of x(t) are needed to obtain the samples that form a single period of x[n].

Signals and Systems: Part II

Recommended **Problems**

P3.1

Sketch each of the following signals.

(a)
$$x[n] = \delta[n] + \delta[n-3]$$

(b)
$$x[n] = u[n] - u[n-5]$$

(c)
$$x[n] = \delta[n] + \frac{1}{2}\delta[n-1] + (\frac{1}{2})^2\delta[n-2] + (\frac{1}{2})^3\delta[n-3]$$

(d)
$$x(t) = u(t+3) - u(t-3)$$

(e)
$$x(t) = \delta(t+2)$$

$$\mathbf{(f)} \ x(t) = e^{-t}u(t)$$

P3.2

Below are two columns of signals expressed analytically. For each signal in column A, find the signal or signals in column B that are identical.

(1)
$$\delta[n+1]$$

(2)
$$(\frac{1}{2})^n u[n]$$

(3)
$$\delta(t)$$

(4)
$$u(t)$$

(5)
$$u[n]$$

(6)
$$\delta[n+1]u[n]$$

(a)
$$\sum_{k=-\infty}^{n} \delta[k]$$

(b)
$$\frac{du(t)}{dt}$$

(c)
$$\sum_{k=0}^{n} \delta[k]$$

(d)
$$\sum_{k=0}^{\infty} (\frac{1}{2})^k \delta[n-k]$$

(e)
$$\int_{-\infty}^{t} \delta(\tau) d\tau$$

(f)
$$u[n]$$

(g)
$$\sum_{k=-\infty}^{\infty} (\frac{1}{2})^k \delta[n-k]$$

(h)
$$\delta[n + 1]$$

(i)
$$\phi$$

P3.3

(a) Express the following as sums of weighted delayed impulses, i.e., in the form

$$x[n] = \sum_{k=-\infty}^{\infty} a_k \delta[n-k]$$

(b) Express the following sequence as a sum of step functions, i.e., in the form

$$s[n] = \sum_{k=-\infty}^{\infty} a_k u[n-k]$$

P3.4

For x(t) indicated in Figure P3.4, sketch the following:

(a)
$$x(1-t)[u(t+1)-u(t-2)]$$

(b)
$$x(1-t)[u(t+1)-u(2-3t)]$$

P3.5

Consider the three systems H, G, and F defined in Figure P3.5-1.

The systems in Figures P3.5-2 to P3.5-7 are formed by parallel and cascade combination of H, G, and F. By expressing the output y[n] in terms of the input x[n], determine which of the systems are equivalent.

P3.6

Table P3.6 contains the input-output relations for several continuous-time and discrete-time systems, where x(t) or x[n] is the input. Indicate whether the property along the top row applies to each system by answering yes or no in the appropriate boxes. Do not mark the shaded boxes.

Properties

y(t), y[n]	Memoryless	Linear	Time-Invariant	Causal	Invertible	Stable
$\mathbf{(a)} \ (2 + \sin t)x(t)$:
(b) $x(2t)$						
$(\mathbf{c}) \sum_{k=-\infty}^{\infty} x[k]$						
$(\mathbf{d}) \sum_{k=-\infty}^{n} x[k]$						
(e) $\frac{dx(t)}{dt}$						
(f) $\max\{x[n], x[n-1], \ldots, x[-\infty]\}$						

Table P3.6

P3.7

Consider the following systems

H:
$$y(t) = \int_{-\infty}^{t} x(\tau) d\tau$$
 (an integrator),
G: $y(t) = x(2t)$,

where the input is x(t) and the output is y(t).

- (a) What is H^{-1} , the inverse of H? What is G^{-1} ?
- (b) Consider the system in Figure P3.7. Find the inverse F^{-1} and draw it in block diagram form in terms of H^{-1} and G^{-1} .

