赋能正确率小于 0.75 的题目

 $_{1,10,0.512}$ 若双曲线的一条渐近线为 x+2y=0, 且双曲线与抛物线 $y=x^2$ 的准线仅有一个公共点, 则此双曲线 的标准方程为_ $f(x) = \begin{cases} 2^x, & x \leq 0, \\ -x^2 + m, & x > 0 \end{cases}$ 的值域为 $(-\infty, 1]$, 则实数 m 的取值范围是______. 3,10,0.605 有以下命题: ① 若函数 f(x) 既是奇函数又是偶函数, 则 f(x) 的值域为 $\{0\}$; ② 若函数 f(x) 是偶函数, 则 f(|x|) = f(x); ③ 若函数 f(x) 在其定义域内不是单调函数, 则 f(x) 不存在反函数; ④ 若函数 f(x) 存在反函数 $f^{-1}(x)$, 且 $f^{-1}(x)$ 与 f(x) 不完全相同, 则 f(x) 与 $f^{-1}(x)$ 图像的公共点必在直线 $y = x \perp$; 其中真命题的序号是 (写出所有真命题的序号). $_{4,5,0.750}$ 设 $k\in\mathbf{R},\,rac{y^2}{k}-rac{x^2}{k-2}=1$ 表示焦点在 y 轴上的双曲线,则半焦距的取值范围是______. 4,8,0.727 已知圆 $C:x^2+y^2+2kx+2y+k^2=0(k\in\mathbf{R})$ 和定点 P(1,-1), 若过 P 可以作两条直线与圆 C 相 切, 则 k 的取值范围是 $_{4,9,0.750}$ 如图, 在直三棱柱 $ABC - A_1B_1C_1$ 中, $\angle ABC = 90^\circ$, AB = BC = 1, 若 A_1C 与平面 B_1BCC_1 所成 的角为 $\frac{\pi}{6}$, 则三棱锥 $A_1 - ABC$ 的体积为______. $a_n = n^2 + bn$, 若数列 $\{a_n\}$ 的通项公式为 $a_n = n^2 + bn$, 若数列 $\{a_n\}$ 是单调递增数列, 则实数 b 的取值范围 $a_{13,10,0.545}$ 若 a_n 是 $(2+x)^n (n \in \mathbf{N}^*, n \geq 2, x \in \mathbf{R})$ 展开式中 x^2 项的二项式系数,则 $\lim_{n \to \infty} (\frac{1}{a_2} + \frac{1}{a_3} + \cdots + \frac{1}{a_n})$ $\frac{1}{14,9,0.674}$ 已知抛物线 C 的顶点为坐标原点, 双曲线 $\frac{x^2}{25}-\frac{y^2}{144}=1$ 的右焦点是 C 的焦点 F. 若斜率为 -1, 且 过 F 的直线与 C 交于 A, B 两点, 则 |AB| = 114,10,0.744 直角坐标系 xOy 内有点 P(-2,-1), Q(0,-2), 将 $\triangle POQ$ 绕 x 轴旋转一周, 则所得几何体的体积 $_{18,6,0.595}$ 过点 P(-2,1) 作圆 $x^2+y^2=5$ 的切线, 则该切线的点法向式方程是 $_{18,9,0.619}$ 已知 $\triangle ABC$ 的三个内角 A,B,C 所对边长分别为 a,b,c, 记 $\triangle ABC$ 的面积为 S, 若 $S=a^2-(b-c)^2$ 则内角 A =____(结果用反三角函数值表示). $f(x) = \left| \frac{1}{|x|-1} \right|$,关于 x 的方程 $f^2(x) + bf(x) + c = 0$ 有 7 个不同实数根,则实数 b, c 满 $_{19,8,0.721}$ 已知点 A(2,3)、点 $B(-2,\sqrt{3})$, 直线 l 过点 P(-1,0), 若直线 l 与线段 AB 相交, 则直线 l 的倾斜角 $_{19,10,0.581}$ 向量 \overrightarrow{i} 、 \overrightarrow{j} 是平面直角坐标系 x 轴、y 轴的基本单位向量, 且 $|\overrightarrow{a}-\overrightarrow{i}|+|\overrightarrow{a}-2\overrightarrow{j}|=\sqrt{5}$, 则 $|\overrightarrow{a}+2\overrightarrow{i}|$

的取值范围为_

$_{21,10,0.750}$ 如图, 向量 \overrightarrow{OA} 与 \overrightarrow{OB} 的夹角为 120° , $ \overrightarrow{OA} =2$, $ \overrightarrow{OB} =1$, P 是以 O 为圆心、 $ \overrightarrow{OB} $ 为半径的弧 $\overset{\frown}{BC}$
上的动点, 若 $\overrightarrow{OP} = \lambda \overrightarrow{OA} + \mu \overrightarrow{OB}$, 则 $\lambda \mu$ 的最大值是
$_{23,10,0.568}$ 已知函数 $f(x)=x 2x-a -1$ 有三个零点, 则实数 a 的取值范围为
24,9,0.682 同时掷两枚质地均匀的骰子, 则两个点数之积不小于 4 的概率为
$^{25,10,0.605}$ 若不等式 $(-1)^n \cdot a < 3 + \frac{(-1)^{n+1}}{n+1}$ 对任意正整数 n 恒成立, 则实数 a 的取值范围是
$g_{26,10,0.535}$ 已知函数 $f(x) = \cos x (\sin x + \sqrt{3}\cos x) - \frac{\sqrt{3}}{2}, \ x \in \mathbf{R}.$ 设 $\alpha > 0$, 若函数 $g(x) = f(x + \alpha)$ 为奇函数,
则 α 的值为
$_{30,5,0.698}$ 若 $(x+2)^n=x^n+ax^{n-1}+\cdots+bx+c\ (n\in\mathbf{N}^*,\ n\geq 3),$ 且 $b=4c,$ 则 a 的值为
30,6,0.558 某空间几何体的三视图如图所示, 则该几何体的侧面积是
$_{30,10,0.744}$ 已知椭圆 $x^2+rac{y^2}{b^2}=1\;(0< b< 1),$ 其左、右焦点分别为 $F_1,F_2, F_1F_2 =2c.$ 若此椭圆上存在点 $P,$
使 P 到直线 $x=rac{1}{c}$ 的距离是 $ PF_1 $ 与 $ PF_2 $ 的等差中项, 则 b 的最大值为
$_{31,10,0.721}$ 甲与其四位朋友各有一辆私家车,甲的车牌尾数是 $_{0}$,其四位朋友的车牌尾数分别是 $_{0}$ $_{2}$ $_{1}$ $_{5}$ 为遵守
当地 4月1日至5日5天的限行规定 (奇数日车牌尾数为奇数的车通行, 偶数日车牌尾数为偶数的车通行), 五
人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案总数为
33,9,0.524 若从正八边形的 8 个顶点中随机选取 3 个顶点, 则以它们作为顶点的三角形是直角三角形的概率
是
$_{34,7,0.558}$ 各项均不为零的数列 $\{a_n\}$ 的前 n 项和为 S_n . 对任意 $n\in {f N}^*,$ $\overrightarrow{m_n}=(a_{n+1}-a_n,2a_{n+1})$ 都是直线
$y=kx$ 的法向量. 若 $\lim_{n\to\infty}S_n$ 存在,则实数 k 的取值范围是
38,9,0.721 小明和小红各自掷一颗均匀的正方体骰子, 两人相互独立地进行. 则小明掷出的点数不大于 2 或小红
掷出的点数不小于 3 的概率为
$_{39,10,0.512}$ 设奇函数 $f(x)$ 的定义域为 \mathbf{R} ,当 $x>0$ 时, $f(x)=x+rac{m^2}{x}-1$ (这里 m 为正常数). 若 $f(x)\leq m-2$
对一切 $x \leq 0$ 成立,则 m 的取值范围为
$\sqrt{3}x + y \le 4\sqrt{3},$
$y \ge 0$.
P(x,y) 构成的区域面积为
$_{43,1,0.744}$ 已知 $A=(-\infty,a],B=[1,2],$ 且 $A\cap B\neq\varnothing,$ 则实数 a 的范围是
$_{43,4,0.674}$ 长方体的对角线与过同一个顶点的三个表面所成的角分别为 $lpha,eta,\gamma,$ 则 $\cos^2lpha+\cos^2eta+\cos^2\gamma=$
$_{45,10,0.581}$ 平面上三条直线 $x-2y+1=0,x-1=0,x+ky=0,$ 如果这三条直线将平面划分为六个部分,则
实数 k 的取值组成的集合 $A = $
$f(x) = \log_a(x^2 - ax + 1)$ $f(a > 0, a \neq 1)$ 没有最小值, 则 $f(a > 0, a \neq 1)$ 没有最小值, 则 $f(a > 0, a \neq 1)$ 没有最小值, 则 $f(a > 0, a \neq 1)$ 。

 $x-y\geq 0,$ $2x+y\leq 2,$ 若该条件表示的平面区域是三角形,则实数 m 的取值范围 $y\geq 0,$ $x+y\leq m,$

是 .

 $\overrightarrow{OA}=(1,m),\ \overrightarrow{OB}=(m-1,2),\ \overrightarrow{A}\ \overrightarrow{OA}\perp=\overrightarrow{AB},\$ 则实数 m=_______.

 $_{53,9,0.395}$ 已知四面体 $_{ABCD}$ 中, $_{AB}=CD=2,\,E,\,F$ 分别为 $_{BC},\,AD$ 的中点, 且异面直线 $_{AB}$ 与 $_{CD}$ 所成的角为 $_{3}^{\pi}$, 则 $_{EF}=$ _______.

万用
$$\sqrt[3]{3}$$
 , 例 $EF = \underline{\hspace{1cm}}$.
$$\begin{cases} x = 1 - \frac{\sqrt{5}}{5}t, \\ y = -1 + \frac{2\sqrt{5}}{5}t, \end{cases}$$
 $(t$ 为参数) 与曲线
$$\begin{cases} x = \sin\theta \cdot \cos\theta, \\ y = \sin\theta + \cos\theta, \end{cases}$$
 $(\theta$ 为参数) 的公共点的坐标为_____.