

产品手册

ESP-M1/M2

版本 V1.1

2017年3月18日

编号: DM0013CN

特点

- SOC 特性
 - 内置 Tensilica L106 超低功耗 32 位微处理 器, 主频支持 80MHz 和 160MHz, 支持 **RTOS**
 - 内置 TCP/IP 协议栈
 - 内置 1路 10 bit高精度 ADC
 - 外设接口 HSPI、UART、I2C、I2S、IR Remote Control, PWM, GPIO
 - 深度睡眠保持电流为 10uA, 关断电流小于 5uA
 - 2 ms 之内唤醒、连接并传递数据包
 - 待机状态消耗功率小于 1.0mW(DTIM3)
 - 内置 1M 字节 SPI Flash
- Wi-Fi 特性
 - 支持 802.11 b/g/n/e/i
 - 支持 Station、SoftAP、SoftAP+STA 模式
 - 支持 Wi-Fi Direct(P2P)
 - 支持 CCMP(CBC-MAC、计数器模式)、 TKIP(MIC, RC4), WAPI(SMS4), WEP(RC4)、CRC 的硬件加速
 - P2P 发现, P2P GO 模式/GC 模式和 P2P 电 源管理
 - WPA/PA2 PSK 和 WPS
 - 802.11 i 安全特征: 预认证和 TSN
 - 支持 802.11n (2.4 GHz)
 - 802.1h/RFC1042 帧封装
 - 支持无缝漫游
 - 支持 AT 远程升级及云端 OTA 升级
 - 支持 Android 和 iOS 设备 SmartConfig 功能

模块外设

- 2xUART
- 1xADC
- 1xEn
- 1x 唤醒管脚
- 1xHSPI
- 1xI2C
- 1xI2S
- 最多 10xGPIOs
- 工作温度范围: -40℃-125℃
- 模块尺寸: 12.3mm×15mm(M1版本)

12.3mm×20mm(M2版本)

应用场景

- 家用电器
- 家庭自动化
- 智能插座、智能灯
- Mesh 网络
- 婴儿监控器
- IP 摄像机
- 传感器网络
- 可穿戴电子产品
- 安全 ID 标签
- 无线位置感知
- 无线定位系统信标 工业无线控制

模块型号

名称	天线类型
ESP-M1	IPEX 外置天线
ESP-M2	板载 PCB 天线

模块结构图

文档更新说明

		1083
日期	版本	更新内容
2017-3-14	V1.0	初版
2017-3-18	V1.1	增加推荐 PCB 设计章节

录 目

目	录 Technology
一. 产品概述	1
二. 接口定义	
三. 外型与尺寸	5
四. 电气特性	7
五. 功耗	7
六. Wi-Fi 射频特征	8
七. 推荐炉温曲线	9
八. 模块最小系统	
九 推荐 PCB 设计	
十. 外围走线建议	
附录. 设计资料	
附录. 设计资料	

图目录

图 1.1 模块结构图	1
图 2.1 ESP-M1 管脚定义	3
图 2.2 ESP-M2 管脚定义	3
图 3.1 ESP-M1 模块外观	5
图 3.2 ESP-M1 尺寸图	
图 3.3 ESP-M2 模块外观	6
图 3.4 ESP-M2 尺寸图	
图 7.1 推荐炉温曲线	9
图 8.1 最小系统	10
图 9.1 外接天线连接器	11
图 9.2 方案一-天线在板框外	12
图 9.3 方案二-天线沿板边放置且下方挖空	12
图 9.4 方案三-天线沿板边放置且下方均不铺铜	13
表目录	
	2
表 1.1 模块主要参数表 2.1 引脚模式	
	3
表 2.1 引脚模式	4
表 2.1 引脚模式表 2.2 模块管脚功能定义	
表 2.1 引脚模式表 2.2 模块管脚功能定义表 3.1 ESP-M1 模块尺寸对照表表 3.2 ESP-M2 模块尺寸对照表表 4.1 电气特性	
表 2.1 引脚模式表 2.2 模块管脚功能定义表 3.1 ESP-M1 模块尺寸对照表表 3.2 ESP-M2 模块尺寸对照表表 4.1 电气特性	
表 2.1 引脚模式表 2.2 模块管脚功能定义表 3.1 ESP-M1 模块尺寸对照表表 3.2 ESP-M2 模块尺寸对照表表 4.1 电气特性表 5.1 功耗	

一.产品概述

ESP-M1/M2 模块核心处理器采用高性价比芯片 ESP8285。该芯片在较小尺寸封装中集成了增强版的 Tensilica's L106 钻石系列 32-bit 内核处理器,带片上 SRAM。ESP8285 拥有完整的 Wi-Fi 网络功能,既能够独立应用,也可以作为从机搭载于其他主机 MCU 运行。当 ESP8285 托管应用时,能够直接从外接 Flash 中启动。内置的高速缓冲存储器有利于提高系统性能,并且优化存储系统。此外 ESP8285 只需通过 SPI/SDIO 接口或 I2C/UART口即可作为 Wi-Fi 适配器,应用到基于任何微控制器的设计中。

ESP-M1/M2 模块支持标准的 IEEE802.11 b/g/n/e/i 协议以及完整的 TCP/IP 协议栈。用户可以使用该模块为现有设备添加联网功能,也可以构建独立的网络控制器。

ESP-M1/M2 模块以最低成本提供最大实用性,为 Wi-Fi 功能嵌入其他系统提供无限可能。

图 1.1 模块结构图

模块主要技术参数如下:

表 1.1 模块主要参数

			大人工女学效		
	分类	项目	参数		
		频率范围	2.4G~2.5G(2400M~2483.5M)		
			802.11b: +20 dBm		
		发射功率	802.11g: +17 dBm		
	Wi-Fi	_nC	802.11n: +14 dBm		
	W1-F1	111201	802.11b: -91 dbm (11Mbps)		
		接收灵敏度	802.11g: -75 dbm (54Mbps)		
	67		802.11n: -72 dbm(MCS7)		
	7 O >	天线	PCB 板载天线		
(0)		CPU	Tensilica L106 32 bit 微控制器		
		AL LITE	UART/SDIO/SPI/I2C/I2S/IR 遥控		
		外设	GPIO/ADC/PWM/SPI/I2C/I2S		
	石田 /	工作电压	2.5V ~ 3.6V		
	硬件	工作电流	平均电流: 80 mA		
		工作温度	-40 ℃ ~ 125 ℃		
		环境温度范围	-40 ℃ ~ 125 ℃		
		封装大小	16mm x 24mm x 3mm		
	NS	Wi-Fi 模式	Station/SoftAP/SoftAP+Station		
		安全机制	WPA/WPA2		
		加密类型	WEP/TKIP/AES		
	软件	升级固件	UART Download/OTA(通过网络)		
		软件开发	Non-RTOS/RTOS/Arduino IDE 等		
		网络协议	IPv4、TCP/UDP/HTTP/FTP/MQTT		
		用户配置	AT+ 指令集/云端服务器/ Android/iOS APP		
		用尸配置			

二.接口定义

ESP-M1/M2接口定义如下图所示。

图 2.1 ESP-M1 管脚定义

图 2.2 ESP-M2 管脚定义

模块的工作模式选择和每个管脚定义如下表所示。

表 2.1 引脚模式

模式	GPIO15 (模块内部已对地接电阻)	GPIO0	GPIO2
UART下载模式	低	低	高
Flash Boot 模式	低	高	高

表 2.2 模块管脚功能定义

序号	Pin 脚名称	类型	功能说明
1	ADC	I	A/D 转换管脚。输入电压范围 0~1V,取值范围: 0~1024
2	EN	I	芯片使能端, 高电平: 有效, 芯片正常工作; 低电平: 芯片关闭, 电流很小
3	IO14	I/O	GPIO14; HSPI_CLK
4	IO12	I/O	GPIO12;HSPI_MISO
5	IO13	I/O	GPIO13;HSPI_MOSI; UART0_CTS
6	IO15	I/O	GPIO15; MTDO;HSPICS;UART0_RTS; 模块内部已对地接电阻
70	VCC	P	模块电源: 3.3V
8	GND	P	GND
9	IO2	I/O	GPIO2; UART1_TXD;
10	IO0	I/O	GPIO0; SPI_CS2;
11	IO4	I/O	GPIO4
12	IO5	I/O	GPIO5
13	RXD	I/O	GPIO3; 可用作烧写 Flash 时 UART Rx
14	TXD	I/O	GPIO1; 可用作烧写 Flash 时 UART Tx
15	RST	I	外部重置信号(低电平有效),复位模块;模块内部已接上拉电阻
16	GND	P	GND
			GND

三. 外型与尺寸

模块的外观及尺寸如下所示。

图 3.1 ESP-M1 模块外观

图 3.2 ESP-M1 尺寸图

图 3.3 ESP-M2 模块外观

U.8mm

(b) 侧视图 图 3.4 ESP-M2 尺寸图

表 3.1 ESP-M1 模块尺寸对照表

长	宽	高	PAD 尺寸(底部)	Pin 脚间距		
12.3mm	15mm	3 mm	0.9 mm x 1.7mm	1.5 mm		
表 3.2 ESP-M2 模块尺寸对照表						
K	窑	吉	PAD 尺寸(底部)	Pin 脚间距		

长	宽	高	PAD 尺寸(底部)	Pin 脚间距
12.3mm	20mm	3 mm	0.9 mm x 1.7mm	1.5 mm

四. 电气特性

表 4.1 电气特性

参	数	条件	最小值	典型值	最大值	单位
存储温	腹范围	-	-40	正常温度	125	${\mathbb C}$
最大焊	達温度	IPC/JEDEC J- STD-020	-	ST.	260	$^{\circ}$
工作	电压	-	2.5	3. 3	3.6	V
	$V_{\scriptscriptstyle \rm IL}/V_{\scriptscriptstyle \rm IH}$	-	$-0.3/0.75V_{10}$	19-703	$0.25V_{10}/3.6$	V
I/0	$V_{\text{OL}}/V_{\text{OH}}$	- 1	$N/0.8V_{10}$		0. 1V ₁₀ /N	V
	$\mathbf{I}_{ exttt{MAX}}$	761		_	12	mA
	释放量 (模型)	TAMB=25℃		-	2	KV
静电释放量 (人体模型)		TAMB=25℃	_	-	0.5	KV

五. 功耗

表 5.1 功耗

* * * * * * * * * * * * * * * * * * * *				
参数	最小值	典型值	最大值	单位
Tx802.11b, CCK 11Mbps, POUT=+17dBm	X	170	-	mA
Tx802.11g, OFDM 54 Mbps, POUT =+15dBm		140	-	mA
Tx802.11n,MCS7,POUT =+13dBm	_	120	-	mA
Rx 802.11b,1024 Bytes 包长,-80dBm	-	50	-	mA
Rx 802.11g,1024 Bytes 包长,-70dBm	-	56	-	mA
Rx 802.11n,1024 Bytes 包长,-65dBm	-	56	100	mA
Modem-sleep①	-	15	-	mA
Light-sleep②	- 0	0.9	-	mA
Deep-sleep③	- 7	20	-	μΑ
关闭	C	0.5	-	μΑ

注①: Modem-Sleep 模式用于需要 CPU 一直处于工作的场景,如应用于 PWM 或 I2S 应用等。在保持 Wi-Fi 连接时,如果没有数据传输,可根据 802.11 标准(如 U-APSD),关闭 Wi-Fi Modem 电路来省电。例如在 DTIM3 时,保持睡眠 300ms,醒来 3ms 间隔唤醒来接收 AP 的 Beacon 包,则电流约 15mA。

注②: Light-Sleep 模式用于 CPU 可暂停的应用,如 Wi-Fi 开关。在保持 Wi-Fi 连接时,如果没有数据传输,可根据 802.11 标准(如 U-APSD),关闭 Wi-Fi Modem 电路并暂停 CPU 来省电。例如,在 DTIM3 时,保持睡眠 300ms,每 3ms 间隔唤醒来接收 AP 的 Beacon 包,则整体平均电流约 0.9mA。

注③: Deep-Sleep 模式应用于不需一直保持 Wi-Fi 连接的场景,很长时间才发送一次数据包的应用(如每 100 秒测量一次温度的传感器),每 300s 醒来后需 0.3s-1s 连上 AP,则整体平均电流可远小于 1mA。

六. Wi-Fi 射频特征

下表中数据是在室内温度下, 电压为 3.3V 和 1.1V 时分别测得。

表 6.1 Wi-Fi 射频特征

参数	最小值	典型值	最大值	单位
输入频率	2412	-	2484	MHz
输入阻抗	-	50	-	Ω
输入反射	-	-	-10	dB
72.2Mbps 下, PA 的输出功耗	15.5	16.5	17.5	dBm
11b 模式下, PA 的输出功耗	19.5	20.5	21.5	dBm
灵敏度	-	~ e		-
DSSS, 1Mbps	- 0	-98	-	dBm
CCK11, Mbps	e C	-91	-	dBm
6Mbps(1/2 BPSK)	Co.	-93	-	dBm
54Mbps(3/4 64-QAM)	-*	-75	-	dBm
HT20, MCS7(65 Mbps, 72.2 Mbps)		-72	-	dBm
邻道抑	制			
OFDM, 6Mbps	-	37	-	dB
OFDM, 54Mbps	-	21	-	dB
HT20, MCS0	-	37	- 0	dB
HT20, MCS7	-	20		dB

七. 推荐炉温曲线

图 7.1 推荐炉温曲线

八. 模块最小系统

模块最小系统电路图如下:

图 8.1 最小系统

注:

- (1) 模块供电电压为直流 3.3V;
- (2) Wi-Fi 模块 IO 最大输出电流为 12mA;
- (2) Wi-Fi 模块 NRST 管脚低电平有效; EN 使能管脚高电平有效;
- (4) Wi-Fi 模块进入升级模式: GPIOO 处于低电平,然后模块复位上电; Wi-Fi 模块进入正常工作模式: GPIOO 处于高电平,模块复位上电。
 - (5) Wi-Fi 模块的 RXD 接外部 MCU 的 TXD, Wi-Fi 模块的 TXD 接外部 MCU 的 RXD;

九推荐 PCB 设计

Wi-Fi 模块可以直接焊接到 PCB 板上。为了使您的终端产品获得最佳的射频性能,请注意根据本指南合理设计模块及天线在底板上的摆放位置。

针对外置天线版本 ESP-M1,由于天线外置,对模块摆放位置要求不高,可参考 ESP-M2 的布置建议酌情调整。外接天线连接器的规格见下图所示。

图 9.1 外接天线连接器

针对 PCB 天线版本 ESP-M2 建议将模块沿 PCB 板边放置,天线在板框外或者沿板边放置且下方挖空,参考方案一及方案二;若必须将 PCB 天线放在底板上,则需要保证天线下方的 PCB 区域不可敷铜,参考方案三。

图 9.2 方案一-天线在板框外

Doctors of In 图 9.3 方案二-天线沿板边放置且下方挖空

图 9.4 方案三-天线沿板边放置且下方均不铺铜

十. 外围走线建议

Wi-Fi 模块集成了高速 GPIO 和外设接口,这可能会产生严重的开关噪声。如果一些应用对于功耗和 EMI 特性要求较高,建议在数字 I/O 线上串联 10~100 欧姆的电阻。这样可以在开关电源时抑制过冲,并使信号变得平稳,同时这种做法也能在一定程度上防止静电释放(ESD)。

附录. 设计资料

	四博智联资源	
	官网	www.doit.am
	教材	ESPDuino 智慧物联开发宝典
	购买	ESPDuino 智慧物联开发宝典
	讨论	官方淘宝店(szdoit.am)
	应用案例集锦	技术论坛(bbs.doit.am)
		智能建筑云(building.doit.am)
		光伏监控云(solar.doit.am)
		Doit 玩家云(wechat.doit.am)
	官方技术支持 QQ 群	
	技术支持群1	278888901
	技术支持群 2	278888902
	技术支持群3	278888903
	技术支持群 4	278888904
	技术支持群 5	278888905
	技术支持群 6	278888906
	技术支持群7	278888907
	技术支持群8	278888908
	技术支持群9	278888909
	技术支持群 10	278888900

乐鑫 ESP8266 资源		
芯片基本资料	ESP8266 快速入门指南	
软件编程基本资料	ESP8266 SDK入门指南 ESP8266 SDK	
固件下载工具	ESP8266 下载工具	
资源整合	ESP8266 官方论坛 ESP8266 资源合集	

免责申明和版权公告。

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

注意