Package 'growthfd'

February 3, 2022

```
Title Fitting FPCA-based growth curve model
Version 0.0.0.9000
Author Ondrej Klima [aut, cre],
     Miroslav Kralik [aut]
Maintainer Ondřej Klíma <iklima@fit.vutbr.cz>
Description
      This package provides a method for fiting an FPCA-based growth curve model described in the pa-
      per stated bellow. This research was funded by Technology Agency of the Czech Repub-
     lic (Technologická agentura České republiky), grant number TL01000394.
Citation Kralik M., Klima O., Cuta M., Malina R., Koziel S., Polcerova L., Skultety-
     ova A., Spanel M., Kukla L., Zemcik P. Estimating Growth in Height from Limited Longitudi-
      nal Growth Data Using Full-Curves Training Dataset: A Comparison of Two Proce-
     dures of Curve Optimization-Functional Principal Component Analysis and SITAR. Chil-
     dren, 2021, vol. 8, n. 10., pages 934-955.
URL https://ondrej-klima.github.io/growthfd/, https:
      //github.com/ondrej-klima/growthfd/
License LGPL (>= 3)
Encoding UTF-8
RoxygenNote 7.1.2
Imports minpack.lm,
     sitar (>= 1.2.0),
     fda,
     ggplot2,
     parallel,
     doParallel,
     foreach,
     flock.
     MASS
Depends R (>= 2.10)
LazyData true
Suggests rmarkdown,
     knitr
VignetteBuilder knitr
```

2 growthfd

R topics documented:

growthfd	2
growthfd.apv	3
growthfd.ApvRegVelocity	
growthfd.bgs.apvs	
growthfd.bgs.dropoutsIds.Height	
growthfd.bgs.eval	
growthfd.bgs.evalMonotone	
growthfd.bgs.gather	
growthfd.bgs.interpolateNAs	
growthfd.bgs.measurementsAge	
growthfd.bgs.plotAll	
growthfd.bgs.plotIndividuals	
growthfd.bgs.resample	
growthfd.bgs.smooth	
growthfd.evaluate	
growthfd.fit	11
growthfd.modelPars	11
growthfd.plot	12
growthfd.plot.ApvRegVelocity	
growthfd.plot.RegVelocities	
growthfd.RegVelocities	
growthfd.residuals	14
growthfd.std	15
growthfd.warpfd	15
growthfd.warpfdInv	
model.bgs.f	
model.bgs.m	
	17

growthfd

Index

Fit a FPCA Growth Curve Model to a population

Description

This function fits a model to the given measured data of a population.

Usage

```
growthfd(
  data,
  x,
  y,
  id,
  model,
  verbose = 1,
  bounds = "negative",
  filename = "",
  startFromId = NULL,
  parallel = F,
```

growthfd.apv 3

```
scores.filename = "parallel.txt"
)
```

Arguments

data	Data frame containing age, height and id of individuals		
X	Age at measured data points		
у	Height at measured data points		
id	Corresponding individual's id at measured data points		
model	FPCA growth model to be fitted		
verbose	Verbosity		
bounds	Limitation of the interval for milestones estimation, 'negative' or 'inverse'		
filename	File name for saving results after each individual		
startFromId	Start the evaluation from this id		
parallel	(Experimental) Parallel evaluation of the model fitting		
scores.filename			

File name for continuous saving of the scores

Value

List containing individuals id and model

Examples

```
filename <- system.file("extdata", "data.csv", package="growthfd", mustWork=TRUE)
csv <- read.csv(filename)
d <- data.frame('id'=as.factor(csv[,'id']), 'x'=csv[,'age'], 'y'=csv[,'height'])
fit<-growthfd(data=d, x=x, y=y, id=id, model=model.bgs.m)</pre>
```

growthfd.apv

Compute apv of model instance

Description

This function computes apv related to the certain instance of the model described by the given parameters.

Usage

```
growthfd.apv(model, par)
```

Arguments

model FPCA growth model

par Params of the model, corresponding to some individual

Value

Age of maximum growth velocity

4 growthfd.bgs.apvs

```
growthfd.ApvRegVelocity
```

Register a velocity curve at population apv

Description

This function registers a curve corresponding to the supplied parameters onto the population apv.

Usage

```
growthfd.ApvRegVelocity(model, par, verbose = F)
```

Arguments

model FPCA growth model

par Params of the model, corresponding to the individual

Value

Velocity at apv data frame

Examples

```
filename <- system.file("extdata", "data.csv", package="growthfd", mustWork=TRUE)
csv <- read.csv(filename)
d <- data.frame('id'=as.factor(csv[,'id']), 'x'=csv[,'age'], 'y'=csv[,'height'])
m <- d$id == 'John'
fit <- growthfd.fit(model.bgs.m, age=d$x[m], height=d$y[m])
data<-growthfd.ApvRegVelocity(model.bgs.m, fit$par)</pre>
```

growthfd.bgs.apvs

Find apvs on growth curves

Description

This function finds ages of maximal growth velocity on the velocity curves.

Usage

```
growthfd.bgs.apvs(age, velocity)
```

Arguments

age Vector of ages

velocity Matrix of velocity curves ids Vector of individuals' ids

limits List of limits

Value

Vector of apv values

```
growthfd.bgs.dropoutsIds.Height
```

List ids of individuals to be dropped from height modeling

Description

This function returns a vector containing ids of individuals with incomplete stature measurements.

Usage

```
growthfd.bgs.dropoutsIds.Height()
```

Value

Vector of ids

growthfd.bgs.eval

Evaluate general fda splines

Description

This function evaluates non monotone fda splines.

Usage

```
growthfd.bgs.eval(fda, age, deriv = 0)
```

Arguments

fda Fda object

age Vector of ages to be evaluated

deriv Derivative of the curve

Value

Matrix of evaluated points

growthfd.bgs.gather

```
{\tt growthfd.bgs.eval} {\tt Monotone}
```

Evaluate monotone fda splines

Description

This function evaluates the set of monotone splines.

Usage

```
growthfd.bgs.evalMonotone(fda, age, deriv = 0)
```

Arguments

fda Fda object

age Vector of ages to be evaluated

deriv Derivative of the curve

Value

Matrix of evaluated points

growthfd.bgs.gather Gather selected columns

Description

Selects columns with given prefix for supplied ages and gathers them into a matrix together with id and sex data

Usage

```
growthfd.bgs.gather(data, prefix = "vysk", age = NULL)
```

Arguments

data BGS data

prefix Columns prefix

age Vector containing ages (optional)

Value

Gathered data

```
growthfd.bgs.interpolateNAs
```

Estimate NA values

Description

Interpolates missing values using spline method. Interpolates data from the 'value' column and join them as the 'valuei' column.

Usage

```
growthfd.bgs.interpolateNAs(gatheredData)
```

Arguments

```
gatheredData Data in gathered form
```

Value

Interpolated data

```
growthfd.bgs.measurementsAge
```

List ages of measurements

Description

This function returns a vector of ages when the measurements were performed.

Usage

```
growthfd.bgs.measurementsAge()
```

Value

Vector of ages

```
growthfd.bgs.plotAll Plot curves in one figure
```

Description

Plots all curves from given matrix into a single figure.

Usage

```
growthfd.bgs.plotAll(age, values, xlimit = NULL, ylimit = NULL)
```

Arguments

age	Vector of ages
values	Matrix containing curves as columns
xlimit	Limits for the x axis
ylimit	Limits for the y axis

Value

GGPlot2 plot

```
\label{eq:continuity} {\it Plot all individual curves to pdf}
```

Description

Plots value, velocity and acceleration curves together with apvs and measured data points into separate figure for each individual. All plots are stored into a single pdf file, one figure per page.

Usage

```
growthfd.bgs.plotIndividuals(
   age,
   ids,
   apvs,
   values,
   vel,
   acc,
   data,
   filename = "plots.pdf"
)
```

growthfd.bgs.resample 9

Arguments

age	Vector of ages
ids	Vector containing ids
apvs	Vector containing apv for each individual
values	Matrix with acceleration curves
vel	Matrix with velocity curves
data	Matrix with original data points
filename	File name of the output pdf

```
growthfd.bgs.resample Resample the data
```

Description

Resample the data without NA values to fine grid.

Usage

```
growthfd.bgs.resample(interpolatedData)
```

Arguments

interpolatedData

Data to be resampled.

Value

Resampled data

```
growthfd.bgs.smooth Fit the monotone spline
```

Description

This function fit the monotone splines to the data.

Usage

```
growthfd.bgs.smooth(
  resampledData,
  monotone = T,
  norder = 6,
  Lfdobj = 3,
  lambda = 0.05
)
```

10 growthfd.evaluate

Arguments

resampledData Data to be interpolated by monotone fda splines

Value

Object with fitted splines

Examples

```
data <- read.table("D:/Growth/playground/data/bgs_07.txt", header=TRUE, sep="\t", na.strings="NA", dec=".")
data <- data[!(data$id %in% growthfd.bgs.dropoutsIds.Height()) & data$sex == "1",]</pre>
gather <- growthfd.bgs.gather(data)</pre>
interp <- growthfd.bgs.interpolateNAs(gather)</pre>
resampled <- growthfd.bgs.resample(interp)</pre>
smoothed <- growthfd.bgs.smooth(resampled)</pre>
age <- seq(10, 18, 0.05)
m<-growthfd.bgs.evalMonotone(smoothed,age)</pre>
apvs<-growthfd.bgs.apvs(age,m)
age <- seq(0, 18, 0.05)
ids <- unique(data$id)</pre>
values <- growthfd.bgs.evalMonotone(smoothed,age)</pre>
vel <- growthfd.bgs.evalMonotone(smoothed,age,1)</pre>
acc <- growthfd.bgs.evalMonotone(smoothed,age,2)</pre>
growthfd.bgs.plotIndividuals(age, ids, apvs, values, vel, acc, gather)
growthfd.bgs.plotAll(age,acc, ylimit = c(-25, 25))
```

growthfd.evaluate

Generate a Discrete Growth Curve

Description

This function evaluates a curve function for given ages. Depending on a degree of derivation, the function produces stature, velocity or acceleration curve.

Usage

```
growthfd.evaluate(x, par, model, deriv = 0)
```

Arguments

X	Ages to be evaluated
par	Parameters of the model
model	FPCA growth model
deriv	Path to the input file

Value

Y-values of the evaluated curve

growthfd.fit 11

growthfd.fit	Fit a FPCA Growth Curve Model to measurements of a single individual
--------------	--

Description

This function fits a model to the given measured data of a single individual.

Usage

```
growthfd.fit(model, age, height, nprint = 1)
```

Arguments

model FPCA growth model to be fitted age Age at measured data points height Height at at measured data points nprint Verbosity

Value

An optimization result object

Examples

```
age <- c(6.9, 8.2, 10, 12.1)
height <- c(114, 122, 130, 141)
fit <- growthfd.fit(model.bgs.m, age=c(6.9, 8.2, 10, 12.1), height=c(114, 122, 130, 141))
x11()
growthfd.plot(model.bgs.m, fit$par)
points(age, height)
x11()
growthfd.plot(model.bgs.m, fit$par, from=0.5, deriv = 1)
x11()
growthfd.plot(model.bgs.m, fit$par, from=0.5, deriv = 2)</pre>
```

 ${\tt growthfd.modelPars}$

Standardized model scores

Description

This function returns model parameters for the individuals used for training the model.

Usage

```
growthfd.modelPars(model)
```

Arguments

model

FPCA-based growth model

Value

Matrix containing the scores

growthfd.plot

Plot a Growth Curve

Description

This function plots a stature, velocity or acceleration curve.

Usage

```
growthfd.plot(model, par, deriv = 0, from = 0, to = 18)
```

Arguments

model	FPCA growth model
par	Parameters of the model
deriv	Path to the input file
from	The lower age limit
to	The upper age limit

```
growthfd.plot.ApvRegVelocity
```

Plot a velocity curve registered at apv

Description

This function plots a velocity curve, registered at population (model) apv in comparison with the mean curve.

Usage

```
growthfd.plot.ApvRegVelocity(data)
```

Arguments

model

Data obtained using growthfd.ApvRegVelocity

Value

Velocity at apv plot

Examples

```
filename <- system.file("extdata", "data.csv", package="growthfd", mustWork=TRUE)
csv <- read.csv(filename)
d <- data.frame('id'=as.factor(csv[,'id']), 'x'=csv[,'age'], 'y'=csv[,'height'])
m <- d$id == 'John'
fit <- growthfd.fit(model.bgs.m, age=d$x[m], height=d$y[m])
data<-growthfd.ApvRegVelocity(model.bgs.m, fit$par)
p<-growthfd.plot.ApvRegVelocity(data)
x11()
p</pre>
```

```
growthfd.plot.RegVelocities
```

Plot velocity boxplots registered on apv

Description

This function plots boxplots in time of measurements, after registration of the individual on population apv.

Usage

```
growthfd.plot.RegVelocities(populationData, individualData)
```

Arguments

```
populationData Data frame for population box plots individualData Data frame for the individual
```

Value

GGPlot2 plot

Examples

```
filename <- system.file("extdata", "data.csv", package="growthfd", mustWork=TRUE)
csv <- read.csv(filename)
d <- data.frame('id'=as.factor(csv[,'id']), 'x'=csv[,'age'], 'y'=csv[,'height'])
m <- d$id == 'John'
fit <- growthfd.fit(model.bgs.m, age=d$x[m], height=d$y[m])
b <- growthfd.RegVelocities(model.bgs.m, fit$par, d$x[m])
p<- growthfd.plot.RegVelocities(b$population, b$individual)
x11()
p</pre>
```

14 growthfd.residuals

```
growthfd.RegVelocities
```

Prepare data for velocity boxplots registered on apv

Description

This function prepares data for boxplots in time of measurements, after registration of the individual on population apv.

Usage

```
growthfd.RegVelocities(model, par, ages, rndn = 0, verbose = F)
```

Arguments

model Model

par Parameters of the model fitted to the measurements

ages Ages of measurements points

rndn Count of random curves to be evaluated

Value

Data frames for population and the individual

growthfd.residuals Compute residuals

Description

This function computes residuals between measured stature data and data generated from the growth model.

Usage

```
growthfd.residuals(x, y, par, model)
```

Arguments

x Vector with input ages

y Vector with target height measurements

par Parameters of the model model FPCA growth model

Value

A vector of residuals

growthfd.std 15

growthfd.std

Generate a Curve Function

Description

This function generates a growth curve function based on given model and parameters, describing the growth phase and amplitude.

Usage

```
growthfd.std(par, model)
```

Arguments

par Phase and amplitude parameters

model FPCA growth model

Value

FDA function object

growthfd.warpfd

Time warping function

Description

This function returns the time warping function corresponding to supplied model and particular parameters.

Usage

```
growthfd.warpfd(par, model)
```

Arguments

par Parameters of the model model FPCA growth model

16 model.bgs.m

growthfd.warpfdInv

Inverse time warping function

Description

This function returns the *inverse* time warping function corresponding to supplied model and particular parameters.

Usage

```
growthfd.warpfdInv(par, model)
```

Arguments

par Parameters of the model model FPCA growth model

model.bgs.f

FPCA model for girls

Description

Model trained using 167 female individuals from Brno Growth Study (BGS).

Usage

```
model.bgs.f
```

Format

An object of class list of length 3.

model.bgs.m

FPCA model for boys

Description

Model trained using 167 male individuals from Brno Growth Study (BGS).

Usage

```
model.bgs.m
```

Format

An object of class list of length 3.

Index

```
* datasets
    model.bgs.f, 16
    model.bgs.m, 16
growthfd, 2
growthfd.apv, 3
growthfd.ApvRegVelocity, 4
growthfd.bgs.apvs, 4
growthfd.bgs.dropoutsIds.Height,5
growthfd.bgs.eval, 5
growthfd.bgs.evalMonotone, 6
growthfd.bgs.gather, 6
{\tt growthfd.bgs.interpolateNAs}, {\tt 7}
growthfd.bgs.measurementsAge, 7
growthfd.bgs.plotAll, 8
growthfd.bgs.plotIndividuals, 8
{\tt growthfd.bgs.resample}, 9
growthfd.bgs.smooth, 9
growthfd.evaluate, 10
growthfd.fit, 11
growthfd.modelPars, 11
growthfd.plot, 12
growthfd.plot.ApvRegVelocity, 12
{\tt growthfd.plot.RegVelocities}, 13
growthfd.RegVelocities, 14
growthfd.residuals, 14
growthfd.std, 15
growthfd.warpfd, 15
growthfd.warpfdInv, 16
model.bgs.f, 16
model.bgs.m, 16
```