

ATTACHMENT A

Claims 1 - 23: (Cancelled)

24. (Currently Amended) A metallocene compound \underline{of} comprising formula (IV):

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{16}
 R^{16}
 R^{16}
 R^{15}
 R^{15}
 R^{15}

wherein:

- M is a transition metal selected from group 3, 4, 5, 6 or a lanthanide or an actinide group in the Periodic Table of Elements;
- p is an integer from 0 to 3, wherein p is equal to a formal oxidation state of M minus 2;
- X, is the same or different, and is hydrogen, a halogen, R, OR, OSO $_2$ CF $_3$, OCOR, SR, NR $_2$ or PR $_2$, wherein R is a C_1 - C_{40} hydrocarbon group optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements; or two X can optionally form a substituted or unsubstituted butadienyl radical, or a OR'O group, wherein R' is a divalent radical selected from a C_1 - C_{40} alkylidene radical, a C_6 - C_{40} arylidene

radical, a C_7 - C_{40} alkylarylidene radical <u>or</u> [[and]] a C_7 - C_{40} arylalkylidene radical;

- L is a divalent bridging group selected from a C_1 - C_{20} alkylidene radical, a C_3 - C_{20} cycloalkylidene radical, a C_6 - C_{20} arylidene radical, a C_7 - C_{20} alkylarylidene radical, or a C_7 - C_{20} arylalkylidene radical optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements, or a silylidene radical comprising up to 5 silicon atoms;
- R^1 is a C_1 - C_{40} hydrocarbon group optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;
- R^3 is a C_1 - C_{40} hydrocarbon group optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;
- R^2 , R^4 and R^5 , are the same or different from each other, and are hydrogen or C_1 - C_{40} hydrocarbon groups optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements, with the proviso that at least one among R^2 , R^4 and R^5 is hydrogen;
- $-R^6$ and R^7 , are the same or different from each other, and are hydrogen or C_1 - C_{40} hydrocarbon groups optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;
- R^{15} and R^{16} , are the same or different from each other, and are hydrogen or C_1 - C_{40} hydrocarbon groups optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements; and
- R^3 with R^4 and/or R^4 with R^5 can optionally join to form a aliphatic or aromatic 3-7 membered ring optionally comprising at least one heteroatom belonging to groups

13-16 of the Periodic Table of Elements, the aliphatic or aromatic 3-7 membered ring optionally can comprise one or more hydrocarbon substituents comprising from 1 to 20 carbon atoms.

- 25. (Currently Amended) The metallocene compound of claim 24, wherein:
 - M is titanium, zirconium or hafnium;
 - p is 2;
 - X is hydrogen, a halogen, or R;
- R is a linear or branched, cyclic or acyclic C_1 - C_{40} -alkyl radical, C_2 - C_{40} alkenyl radical, C_2 - C_{40} alkynyl radical, C_6 - C_{40} -aryl radical, C_7 - C_{40} -alkylaryl radical or C_7 - C_{40} -arylalkyl radical, optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;
 - X-is hydrogen, a halogen, or R;
- L is $Z(R'')_2$, wherein Z is a carbon or a silicon atom, and R'' is a linear or branched, cyclic or acyclic C_1 - C_{10} -alkyl radical, C_2 - C_{10} alkenyl radical, C_2 - C_{10} alkynyl radical, C_6 - C_{10} -aryl radical, C_7 - C_{10} -alkylaryl radical, or C_7 - C_{10} -arylalkyl radical optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements.
- 26. (Currently Amended) The metallocene compound of claim 24, wherein:
- R^1 is a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl radical;
- R^3 is a linear or branched, saturated or unsaturated $C_1\text{-}C_{20}\text{-}alkyl$ radical or a $C_6\text{-}C_{40}\text{-}aryl$, radical;
 - R^2 , R^4 and R^5 are hydrogen; and

- R^6 and R^7 are hydrogen or a linear or branched-saturated or unsaturated $C_1\text{-}C_{20}\text{-}alkyl$ radical.
- 27. (Previously Presented) The metallocene compound according to claim 24, wherein R^{15} and R^{16} are linear or branched C_1 - C_{40} -alkyl radicals optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements.
- 28. (Currently Amended) A process for preparing a metallocene compound of formula (IV):

$$\begin{array}{c|c}
R^{2} & R^{3} \\
R^{4} & R^{5} \\
R^{1} & R^{5} \\
\hline
R^{16} & S \\
\hline
R^{16} & S \\
\hline
(IV)
\end{array}$$

wherein:

- M is a transition metal selected from group 3, 4, 5, 6 or a lanthanide or an actinide group in the Periodic

 Table of Elements;
- p is an integer from 0 to 3, wherein p is equal to a
 formal oxidation state of M minus 2;
- X, is the same or different, and is hydrogen, a halogen, R, OR, OSO_2CF_3 , OCOR, SR, NR_2 or PR_2 , wherein R is a C_1 - C_{40} hydrocarbon group optionally comprising at least one heteroatom belonging to groups 13-17 of the

- Periodic Table of Elements; or two X can optionally form a substituted or unsubstituted butadienyl radical, or a OR'O group, wherein R' is a divalent radical selected from a C_1 - C_{40} alkylidene radical, a C_6 - C_{40} arylidene radical, a C_7 - C_{40} alkylarylidene radical or a C_7 - C_{40} arylalkylidene radical;
- L is a divalent bridging group selected from a C_1 - C_{20} alkylidene radical, a C_3 - C_{20} cycloalkylidene radical, a C_6 - C_{20} arylidene radical, a C_7 - C_{20} alkylarylidene radical, or a C_7 - C_{20} arylalkylidene radical optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements, or a silylidene radical comprising up to 5 silicon atoms;
- R^1 is a C_1 - C_{40} hydrocarbon group optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;
- R^3 is a C_1 - C_{40} hydrocarbon group optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;
- R^2 , R^4 and R^5 , are the same or different from each other, and are hydrogen or C_1 - C_{40} hydrocarbon groups optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements, with the proviso that at least one among R^2 , R^4 and R^5 is hydrogen;
- R^6 is hydrogen or C_1 - C_{40} hydrocarbon groups optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;
- R⁷ is hydrogen;
- R^{15} and R^{16} , are the same or different from each other, and are hydrogen or C_1 - C_{40} hydrocarbon groups optionally

comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements; and

- R³ with R⁴ and/or R⁴ with R⁵ can optionally join to form a aliphatic or aromatic 3-7 membered ring optionally comprising at least one heteroatom belonging to groups 13-16 of the Periodic Table of Elements, the aliphatic or aromatic 3-7 membered ring optionally can comprise one or more hydrocarbon substituents comprising from 1 to 20 carbon atoms;

the process comprising:

- contacting a compound of formula (IVa)

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{16}
 R^{16}
 R^{15}
(IVa)

and/or its double bond isomers with a base selected from T_jB , $TMgT^1$, sodium hydride, potassium hydride, metallic sodium, metallic potassium, or [[and]] combinations thereof to form a metallocene compound product, wherein:

- L is a divalent bridging group selected from a C_1 - C_{20} alkylidene radical, a C_3 - C_{20} cycloalkylidene radical, a C_6 - C_{20} arylidene radical, a C_7 - C_{20} alkylarylidene radical, or a C_7 - C_{20} arylalkylidene radical optionally comprising

- at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements, or a silylidene radical comprising up to 5 silicon atoms;
- R^1 is a C_1 - C_{40} hydrocarbon group optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;
- R^3 is a C_1 - C_{40} hydrocarbon group optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;
- R^2 , R^4 and R^5 , are the same or different from each other, and are hydrogen or C_1 - C_{40} hydrocarbon groups optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements, with the proviso that at least one among R^2 , R^4 and R^5 is hydrogen;
- $-R^6$ and R^7 , are the same or different from each other, and are hydrogen or C_1 - C_{40} hydrocarbon groups optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;
- R^{15} and R^{16} , are the same or different from each other, and are hydrogen or C_1 - C_{40} hydrocarbon groups optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements; and
- R^3 with R^4 and/or R^4 with R^5 can optionally join to form a aliphatic or aromatic 3-7 membered ring optionally comprising at least one heteroatom belonging to groups 13-16 of the Periodic Table of Elements, the aliphatic or aromatic 3-7 membered ring optionally can comprise one or more hydrocarbon substituents comprising from 1 to 20 carbon atoms.
- B is an alkali or alkaline earth metal;

- j is 1 or 2, wherein j is equal to 1 when B is an alkaline metal, and j is equal to 2 when B is an alkaliearth metal;
- T is a linear or branched, cyclic or acyclic C_1 - C_{20} -alkyl radical, C_6 - C_{20} -aryl radical, C_7 - C_{20} -alkylaryl radical, or C_7 - C_{20} -arylalkyl radical, optionally comprising one or more Si or Ge atoms;
- T^1 is a halogen or OR"', wherein R"' is a linear or branched, cyclic or acyclic C_1 - C_{40} -alkyl radical, C_6 - C_{40} -aryl radical, C_7 - C_{40} -alkylaryl radical or C_7 - C_{40} -arylalkyl radical, optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements to form a metallocene compound product, wherein a molar ratio between the base and a ligand of the formula (IVa) is at least 2:1; and
- contacting the metallocene compound product with a compound of formula MX_{p+2} , wherein:
 - M is a transition metal selected from group 3, 4, 5, 6 or a lanthanide or an actinide group in the Periodic Table of Elements;
 - p is an integer from 0 to 3, wherein p is equal to a formal oxidation state of M minus 2; and
 - X, is the same or different, and is hydrogen, a halogen, R, OR, OSO₂CF₃, OCOR, SR, NR₂ or PR₂, wherein R is a C_1 - C_{40} hydrocarbon group optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements; or two X can optionally form a substituted or unsubstituted butadienyl radical, or a OR'O group, wherein R' is a divalent radical selected from a C_1 - C_{40} alkylidene radical, a C_6 - C_{40} arylidene radical, a C_7 - C_{40} alkylarylidene radical [[and]] or a C_7 - C_{40} arylalkylidene radical.

- 29. (Previously Presented) The process for preparing the metallocene compound of claim 28, wherein B is lithium.
- 30. (Previously Presented) The process for preparing the metallocene compound of claim 28, wherein T is a methyl radical or butyl radical.

31. (Cancelled)

32. (Currently Amended) A ligand of formula (IVa) and its double bonds isomers

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{16}
 R^{16}
 R^{15}
(IVa)

wherein:

- L is a divalent bridging group selected from a C_1 - C_{20} alkylidene radical, a C_3 - C_{20} cycloalkylidene radical, a C_6 - C_{20} arylidene radical, a C_7 - C_{20} alkylarylidene radical, or a C_7 - C_{20} arylalkylidene radical optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements, or a silylidene radical comprising up to 5 silicon atoms;

- R^1 is a C_1 - C_{40} hydrocarbon group optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;
- R^3 is a C_1 - C_{40} hydrocarbon group optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;
- R^2 , R^4 and R^5 , are the same or different from each other, and are hydrogen or C_1 - C_{40} hydrocarbon groups optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements, with the proviso that at least one among R^2 , R^4 and R^5 is hydrogen;
- $-R^6$, are the same or different from each other, and are is hydrogen or C_1 - C_{40} hydrocarbon groups optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;
- R³ with R⁴ and/or R⁴ with R⁵ can optionally join to form a aliphatic or aromatic 3-7 membered ring optionally comprising at least one heteroatom belonging to groups 13-16 of the Periodic Table of Elements, the aliphatic or aromatic 3-7 membered ring optionally can comprise one or more hydrocarbon substituents comprising from 1 to 20 carbon atoms; and
- R^{15} and R^{16} , are the same or different from each other, and are hydrogen or C_1 - C_{40} hydrocarbon groups optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements.
- 33. (Previously Presented) The ligand of claim 32, wherein:
- L is $Z(R'')_2$, wherein Z is a carbon or a silicon atom, and R'' is a linear or branched, cyclic or acyclic C_1 - C_{10} -alkyl radical, C_2 - C_{10} alkenyl radical, C_2 - C_{10} alkynyl

radical, C_6 - C_{10} -aryl radical, C_7 - C_{10} -alkylaryl radical, or C_7 - C_{10} -arylalkyl radical optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;

- 34. (Currently Amended) The ligand of claim 32, wherein:
- R^1 is a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl radical;
- R^3 is a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl radical or a C_6 - C_{40} -aryl, radical;
 - R², R⁴ and R⁵ are hydrogen; and
- R^6 and R^7 are <u>is</u> hydrogen or a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl radical.
- 35. (Currently Amended) A catalyst system obtained by contacting:
 - a) at least one metallocene compound of formula (IV)

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{16}
 R^{16}
 R^{15}
 R^{15}
 R^{15}

wherein:

- M is a transition metal selected from group 3, 4, 5, 6 or a lanthanide or an actinide group in the Periodic Table of Elements;
- p is an integer from 0 to 3, wherein p is equal to a formal oxidation state of M minus 2;
- X, is the same or different, and is hydrogen, a halogen, R, OR, OSO₂CF₃, OCOR, SR, NR₂ or PR₂, wherein R is a C_1 - C_{40} hydrocarbon group optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements; or two X can optionally form a substituted or unsubstituted butadienyl radical, or a OR'O group, wherein R' is a divalent radical selected from a C_1 - C_{40} alkylidene radical, a C_6 - C_{40} arylidene radical, a C_7 - C_{40} alkylarylidene radical or [[and]] a C_7 - C_{40} arylalkylidene radical;
- L is a divalent bridging group selected from a C_1 - C_{20} alkylidene radical, a C_3 - C_{20} cycloalkylidene radical, a C_6 - C_{20} arylidene radical, a C_7 - C_{20} alkylarylidene radical, or a C_7 - C_{20} arylalkylidene radical optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements, or a silylidene radical comprising up to 5 silicon atoms;
- R^1 is a C_1 - C_{40} hydrocarbon group optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;
- R^3 is a C_1 - C_{40} hydrocarbon group optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;
- R^2 , R^4 and R^5 , are the same or different from each other, and are hydrogen or C_1 - C_{40} hydrocarbon groups optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements, with

the proviso that at least one among R^2 , R^4 and R^5 is hydrogen;

- $-R^6$ and R^7 , are the same or different from each other, and are hydrogen or C_1 - C_{40} hydrocarbon groups optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;
- R^{15} and R^{16} , are the same or different from each other, and are hydrogen or C_1 - C_{40} hydrocarbon groups optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements; and
- R³ with R⁴ and/or R⁴ with R⁵ can optionally join to form a aliphatic or aromatic 3-7 membered ring optionally comprising at least one heteroatom belonging to groups 13-16 of the Periodic Table of Elements, the aliphatic or aromatic 3-7 membered ring optionally can comprise one or more hydrocarbon substituents comprising from 1 to 20 carbon atoms;
- b) at least one alumoxane, or a compound able to form an alkylmetallocene cation; and
- c) optionally an organo aluminium compound.

36. (Cancelled)

37. (Currently Amended) A process for (co)polymerizing olefins comprising from 2 to 20 carbon atoms comprising contacting one or more of the olefins under polymerization conditions in presence of with the catalyst system of claim 35.

38. (Cancelled)

- 39. (Previously Presented) The process according to claim 37, wherein the olefins are alpha-olefins comprising from 2 to 20 carbon atoms.
- 40. (Cancelled)
- 41. (Currently Amended) The process according to claim 37, wherein the olefins are selected from propylene, ethylene, 1-butene, or [[and]] combinations thereof.
- 42. (Cancelled)