Question 1

The force of mortality for a particular population from birth (that is, $\lambda(t)$ is the hazard t years after birth) is assumed to take the following form:

$$\lambda(t) = (\theta - t)^{-1},$$

where, $0 \le t \le \theta$. Based on this form of the force of mortality, find an expression for q_x .

Solution:

$$S(t) = \exp(-\int_0^t \frac{1}{\theta - s} ds) = \exp\{\log(\theta - t) - \log(\theta)\} = \frac{\theta - t}{\theta}.$$

$${}_t p_x = \frac{S(x+t)}{S(x)} = \frac{\theta - (x+t)}{\theta} \frac{\theta}{\theta - x} = \frac{\theta - (x+t)}{\theta - x}.$$

$$\Rightarrow {}_t q_x = 1 - \frac{\theta - (x+t)}{\theta - x} = \frac{t}{\theta - x}.$$

Question 2

The observed survival times (in years) of 7 patients after a heart transplant operation are provided below. Values denoted with "*" correspond to times of censoring, rather than times of death. The censoring is uninformative, right censoring.

a) Based on this data, what is the Kaplan-Meier estimate of the survival function at time 6.5? Your answer must also include an estimate of the standard error of the survival function at time 6.5.

Solution:

"cheating" and using R I get the following table:

time n.risk n.event survival std.err lower 95% CI upper 95% CI

1	7	1	0.857	0.132	0.598	1.000
2	6	1	0.714	0.171	0.380	1.000
4	4	1	0.536	0.201	0.142	0.929
6	2	1	0.268	0.214	0.000	0.688
7	1	1	0.000	NaN	NaN	NaN

This gives an estimate of the survival function of 0.268 and a standard error of 0.214.

b) Provide an estimate of the mean survival time after a heart transplant operation.

Solution:

One way to answer this question is to approximate the integral $\int_0^\infty t p_x dt$. This can be done by computing the area under the estimated KM survival function. This area is equal to $(1-0)\times 1+(2-1)\times (0.857)+(4-2)\times (0.714)+(6-4)\times (0.536)+(7-6)\times 0.268$. = 4.625.

c) How does the Nelson-Aalen estimate of the survival function at time 6.5 compare to the Kaplan-Meier estimate at this time?

Solution:

The NA estimator is computed as
$$exp(-(\frac{1}{7} + \frac{1}{6} + \frac{1}{4} + \frac{1}{2}))$$
. =0.3466

Question 3

Based on a given set of data you have computed the maximum likelihood estimate of the parameter θ , denoted $\hat{\theta}$, to be 1.5. You have also computed an estimate of the standard error to be 2. Using this information compute an estimate of the variance of the quantity $\log(\hat{\theta})$. Also, provide an approximate 95% confidence interval for θ .

Solution:

$$\operatorname{var}\{\log(\hat{\theta})\} \approx \frac{1}{\hat{\theta}^2} 4 = \frac{1}{1.5^2} 4$$

$$\Rightarrow SE\{\log(\hat{\theta})\} \approx 1.33$$
95% CI for $\theta = 1.5 \pm 2 \times 2$

Question 4

The figures below contain (rough) plots of estimated survival curves for males and females after a particular operation.

Based on this figure answer the following questions:

- a) Provide a rough estimate of the median survival time for males.
- b) Comment on any concerns you might have modeling this data using the Cox regression formulation of the hazard given in class.

Solution:

- a) About 4.5 years.
- b) The survival functions cross this is cannot happen with the Cox regression formulation of the hazard function given in lectures.