R16

Code No: **R164103A**

Set No. 1

IV B.Tech I Semester Regular Examinations, October/November - 2019 COMPUTATIONAL FLUID DYNAMICS

(Common to Mechanical Engineering, Automobile Engineering and Aeronautical Engineering)

Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B *****

		PART-A(14 Marks)	
1.	a)	Define floating point arthematic.	[3]
	b)	Identify the various physical parameters and their units present in the Navier-	
		stokes equation.	[2]
	c)	What is a poise? How can you define 1 poise?	[3]
	d)	Draw 2D grid used for discretization problem and also write general discretized	
	,	equation for interior nodes.	[2]
	e)	Explain 2nd order upwind schemes.	[2]
	f)	Define interpolation and write at least one interpolation function.	[2]
2.		$\frac{PART-B}{(4x14 = 56 Marks)}$ Explain the term consistency in pyragical schemes and in detail explain the	
∠.		Explain the term consistency in numerical schemes and in detail explain the behavior of errors and analyze them.	[14]
		behavior of errors and analyze them.	[14]
3.	a)	Derive the Navier-stokes equation for a fluid flow and write the significance of	
	/	special and expanded forms of Navier stokes solution.	[7]
	b)	Explain the direct method for matrix inverse? Briefly explain partial pivoting	
		used in direct method.	[7]
4.	a)	Write the governing equations used in CFD in generic form.	[7]
	b)	What are the disadvantages of this method in determination flow field?	[7]
5.		Distinguish the terms consistency and stability with reference to modeling of	
۶.		fluid flow and explain the consistency of fluid flow using explicit methods.	[14]
		nula now and explain the consistency of hald now using explicit methods.	נדדן
6.	a)	State disadvantages of 1st Order Upwind Scheme. Explain Flux Vector	
	,	Splitting.	[7]
	b)	Explain how central differencing schemes works?	[7]
7.	a)	Explain steps involved in solving finite volume method for one dimensional	
	• \	steady state diffusion problem.	[7]
	b)	What are the four basic rules for discretization using Finite Volume Method?	[7]