VECTEURS 3 – COLINÉARITÉ

I) COLINÉARITÉ DE DEUX VECTEURS

1) Intuitivement

Exprimer \vec{u} en fonction de \vec{v} dans les cas suivants :

$$\frac{\vec{u}}{\vec{v}} \qquad \frac{\vec{u}}{\vec{v}} \qquad \frac{\vec{u}}{\vec{v}} \qquad \frac{\vec{u}}{\vec{v}} \qquad \vec{v} \qquad \vec{v} \qquad \vec{v} = ? \vec{v}$$

Ces exemples permettent de sentir intuitivement que :

- si \vec{u} et \vec{v} ont la même direction, il existe un réel k tel que $\vec{u} = k \vec{v}$.
- si \vec{u} et \vec{v} n'ont pas la même direction, un tel réel k n'existe pas.

2) Définition

On dit que \vec{u} est colinéaire à \vec{v} lorsqu'il existe un réel k tel que $\vec{u} = k \vec{v}$.

- \vec{u} a alors la même direction que \vec{v} .
- ullet Les coordonnées de \vec{u} sont proportionnelles à celles de \vec{v} .

Remarques:

- Le vecteur nul est colinéaire à tout vecteur \vec{v} : car quelque soit \vec{v} , il suffit de choisir k = 0: $\vec{0} = 0 \times \vec{v}$ En revanche, aucun vecteur non nul n'est colinéaire au vecteur nul : $\vec{u} = ? \times \vec{0}$
- Dans le cas où \vec{u} et \vec{v} sont non nuls et où \vec{u} est colinéaire à \vec{v} : Le réel k tel que $\vec{u} = k \vec{v}$ est alors non-nul, on peut donc écrire $\vec{v} = \frac{1}{k} \vec{u}$ et \vec{v} est donc aussi colinéaire à \vec{u} .

On dit alors que « \vec{u} et \vec{v} sont colinéaires » (l'un à l'autre)

p149: 120, 121, 122

p154:163

p178:88

II) DANS LES EXERCICES

1) Application

A, B, C et D étant distincts, on a :

- \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires \Leftrightarrow (AB) // (CD)
- \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires \Leftrightarrow A, B et C sont alignés

2) Exemple

Dans un repère $(O; \vec{i}; \vec{j})$, on considère les points :

A(1; 2), B(4; 1), C(6; -1), D(0; 1) et E(3; 4/3).

- 1) Montrer que (AB) et (CD) sont parallèles.
- 2) Les points A, B et E sont-ils alignés ?

Rédaction:

1) Montrer que : (AB) // (CD).

Par hypothèse, A(1; 2) et B(4; 1) donc $\overrightarrow{AB} \begin{pmatrix} 3 \\ -1 \end{pmatrix}$ Par hypothèse, C(6; -1) et D(0; 1) donc $\overrightarrow{CD} \begin{pmatrix} -6 \\ 2 \end{pmatrix}$

On remarque que $\overrightarrow{CD} = -2\overrightarrow{AB}$

donc CD est colinéaire à AB

donc (AB) // (CD) |.

2) A, B et E sont-ils alignés?

On a $\overrightarrow{AB}\begin{pmatrix} 3 \\ -1 \end{pmatrix}$ et par hypothèse, A(1; 2) et E(3; 4/3) donc $\overrightarrow{AE}\begin{pmatrix} 2 \\ -\frac{2}{3} \end{pmatrix}$

On remarque que $2 \overrightarrow{AB} = 3 \overrightarrow{AE}$ donc $\overrightarrow{AB} = \frac{3}{2} \overrightarrow{AE}$

donc AB est colinéaire à AE donc A, B et E sont bien alignés.

p151:137, 144, 145

p152:150,151

p153:153

III) DÉTERMINANT DE 2 VECTEURS

Parfois, il n'est pas très facile de mettre en évidence le fait que deux vecteurs sont colinéaires. On peut alors calculer leur « déterminant ».

1) Définition

On appelle « déterminant des vecteurs $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ » le réel noté : $\det(\vec{u}; \vec{v}) = \begin{vmatrix} x & x' \\ v & v' \end{vmatrix} = x \ y' - x' \ y$

2) Critère de colinéarité

Soit \vec{v} un vecteur non nul :

$$\vec{u}$$
 est colinéaire à $\vec{v} \Leftrightarrow \det(\vec{u}; \vec{v}) = 0$

Démonstration:

Soit \vec{v} un vecteur non nul :

$$\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 colinéaire à $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ \Leftrightarrow les coordonnées de \vec{u} sont proportionnelles à celles de \vec{v} $\Leftrightarrow \frac{x \mid x'}{y \mid y'}$ est un tableau de proportionnalité $\Leftrightarrow x y' = x' y$ $\Leftrightarrow x y' - x' y = 0$ $\Leftrightarrow \det(\vec{u}; \vec{v}) = 0$

p173: 42, 44, 48, 49 p176: 67, 68, 69, 71, 76 p177: 78, 79, 81, 82 p178: 86 p179: 91

algo p177:77