Bayesian inference of deterministic population growth models

Luiz Max F. de Carvalho* [lmax.procc@gmail.com]

Claudio J. Struchiner [stru@fiocruz.br]

Leonardo S. Bastos [Isbastos@fiocruz.br]

Scientific Computing Programme (PROCC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro,
Brazil

March, 2014 12th EBEB - Atibaia - SP

Ministério da Saúde

Nice to meet you!

- BSc. in Microbiology, UFRJ (2013);
- Statistics Assistant, Pan American Health Organization, 2010-2013;
- Currently at PROCC and DME/IM-UFRJ (MSc);
- Soon to be moving to the University of Edinburgh for a PhD in Evolutionary Biology.

Motivation

- Deterministic models are widely used in Science, let alone Biology;
 - Population Growth;
 - Disease Spreading;
 - Cell and molecular interactions.
- They provide a crude but easily interpretable representation of reality;
- Temperature is a key factor to the growth of several organisms.
 - Disease-carrying arthropds;
 - Pathogenic bacteria;
 - Economically important plants.
- With a deterministic model and some time series data at hand, how to learn about model parameters?

- Consider a deterministic model $M(\cdot)$;
 - Let $x \in \mathcal{X} \subset \mathbb{R}^p$ be the set of model inputs and $y \in \mathcal{Y} \subset \mathbb{R}^n$ be the model outputs. The deterministic model $M(x; \theta) = y$, where $\theta \in \Theta \subset \mathbb{R}^q$ is a q-dimensional parameter vector, completely specifies the relationship between x and y (Poole & Raftery, 2000);
 - In our particular case, we have laid our dirty hands on some data \mathbf{y} and inputs \mathbf{x} that we think can be modelled as $\mathbf{y} = M(\mathbf{x}; \boldsymbol{\theta})$
- ullet We are now interested in learning about $oldsymbol{ heta}$

• Consider the ordinary non-linear differential equation (Verhulst, 1838):

$$\frac{dP}{dt} = r\left(1 - \frac{P}{K}\right)P \quad \therefore \quad P(t) = \frac{K}{1 + \left(\frac{K - N_0}{N_0}\right)e^{-rt}} \tag{1}$$

 We formulate a modified version of (1), with temperature-dependent parameters

$$P(t,T) = \frac{K(T)}{1 + \left(\frac{K(T) - N_0}{N_0}\right) e^{-r(T)t}}$$
(2)

 To complete model specification, we propose two smooth functions on temperature T:

$$K(T) = c_K \exp\left(-\frac{(T - a_K)^2}{b_K}\right) \tag{3}$$

$$r(T) = c_r exp\left(-\frac{(T - a_r)^2}{b_r}\right)$$
 (4)

We want to learn about $\theta = \{a_K, b_K, c_K, a_r, b_r, c_r\}$

- Assume P(t, T) to be a Gaussian process with fixed variance τ^2 ;
- Let $\mathbf{y} = \{y_1, y_2, \dots, y_N\}$ be an output vector with N measurements, which we observe directly;
- Moreover, let $\mathbf{t} = \{t_1, t_2, ..., t_N\}$ and $\mathbf{T} = \{T_1, T_2, ..., T_N\}$ be the vectors with observed times and temperatures. Then

$$y_i|t_i, T_i, N_0, \theta \sim \mathcal{N}(\mu(t_i, T_i, N_0; \theta), \tau^2)$$
 (5)

$$\mu(t_i, T_i, \boldsymbol{\theta}) = \frac{K(T_i; \boldsymbol{\theta}_K)}{1 + \left(\frac{K(T_i; \boldsymbol{\theta}_K) - N_0}{N_0}\right) e^{-r(T_i; \boldsymbol{\theta}_r)t_i}}, \quad \forall i = 1, 2, \dots, N \quad (6)$$

which is equivalent to writing $y_i = M(t_i, T_i, N_0; \theta) + \epsilon$, $\epsilon \sim \mathcal{N}(0, \tau^2)$.

 Biologically motivated, proper priors, elicited to maintain functional form while remaining diffuse.

$$a_{K}, a_{r} \sim Normal(20, 10)$$
 $b_{K}, b_{r} \sim Gamma(4, 1/5)$
 $c_{K} \sim Gamma(1, 1/1000)$
 $c_{r} \sim Normal(1/2, 2)$
 $\tau^{2} \sim Gamma(1/10, 1/10)$

• From the Bayes theorem

$$p(\theta|\mathbf{y}, \mathbf{t}, \mathbf{T}) \propto p(\mathbf{y}|\theta, \mathbf{t}, \mathbf{T})\pi(\theta|\mathbf{t}, \mathbf{T})$$
 (7)

• The model for P(t, T) is thus hierarchical and depends on two latent quantities, r(T) and K(T).

Ministério da Saúde

Posterior Approximation - Stan

- Hamiltonian Monte Carlo (HMC):
 - Avoids Random Walk behaviour:
 - Allows big moves, with high acceptance probability;
 - o Does not suffer with highly correlated posteriors;
- We used the stan package of the R Statistical Computing Environment to approximate the posterior through HMC.
 - Fast C++ implementation;
 - No-U-Turn Sampler (NUTS);
 - Neat BUGS-like syntax for model specification;
 - Smooth interface with R.
- MCMC was run for 50,000 iterations with 25,000 burn-in and convergence was assessed by inspecting the trace- and autocorrelation plots and potential scale reduction factor.

- From a set of parameters θ^* and a grid $\{t, T\}$ we generate Q data sets of size $N = n_t \times n_T$ by sampling from $\mathbf{y} | \theta^*, t, T$;
- We then obtain *Q* posterior estimates and calculate MSE, normalized bias and coverage probability of the 95% credibility intervals;

Parameter	Value	Posterior Mean	Bias	MSE	Coverage
a_K	30.00	29.44	0.01	7.99	0.93
a_r	23.00	22.71	0.00	3.31	0.86
b_K	10.00	13.08	0.95	450.26	0.94
b_r	15.00	16.82	0.22	16.77	0.88
c_K	700.00	692.17	0.09	7203.06	0.96
C_r	0.40	0.43	0.00	0.04	0.85
au	3.16	4.89	0.94	67.02	0.88

[•] Consistent results for N = 350,630 and 1600.

Results II – Rhodnius prolixus data

- Important Chagas disease vector;
 - We fear climatic change may increase suitability in previously uncolonized areas:
- Population sizes measured in 10 temperatures in the range $16-38\,^{\circ}\mathrm{C}$ for 35 days ($N_0=30$ for all T);

Results II – Rhodnius prolixus data (cont.)

	Posterior Mean (95% C.I.)	Prior Mean (95% C.I.)
a_K	19.23 (17.56 – 21.09)	25.00 (5.40 – 44.60)
a_r	25.73 (25.44 – 26.10)	25.00 (5.40 – 44.60)
b_K	106.17 (75.25 – 137.31)	20.00 (5.44 – 43.84)
b_r	26.77 (22.59 – 32.19)	20.00 (5.44 – 43.84)
CK	1023.32 (898.28 - 1165.40)	1000.00 (25.31 – 3688.87)
C_r	0.66 (0.58 – 0.76)	0.50 (-3.41 - 4.41)
au	177.33 (166.10 – 191.78)	1.00(0.00 - 9.78)

Results II – Rhodnius prolixus data (cont.)

Conclusions and Perspectives

- We stress the importance of using Bayesian Inference to learn about model parameters
 - o Parameters retain direct interpretability
- Stan
 - Efficient sampling through HMC;
 - NUTS drops the need for hand-tuning;
 - Consirable speed-up and quicker convergence.
- Perspectives
 - Dynamic variance, $\tau^2(t)$;
 - Other data sets, e.g, bacterial growth;
 - o Complete treatment of uncertainty: Bayesian melding.

References

P.-F. Verhulst, "Notice sur la loi que la population suit dans son accroissement. correspondance mathématique et physique publiée par a," *Quetelet*, vol. 10, pp. 113–121, 1838.

Acknowledgements

- My advisors, Claudio and Leo;
- Leonardo B. Santos, INPE;
- PROCC, who provided an office and a Gourmet coffee machine!

Questions

