\mathbf{SeMR} ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 12, стр. 64-79 (2015)

УДК 519.1 MSC 68R15

О ПЕРЕСТАНОВОЧНОЙ СЛОЖНОСТИ НЕПОДВИЖНЫХ ТОЧЕК НЕКОТОРЫХ НЕРАВНОБЛОЧНЫХ БИНАРНЫХ МОРФИЗМОВ

А.А. ВАЛЮЖЕНИЧ

ABSTRACT. We study properties of infinite permutations generated by fixed points of morphism $\varphi(0) = 01^k$, $\varphi(1) = 0$ for $k \ge 2$, and find the formula for their factor complexity.

Keywords: permutation complexity, infinite permutation, morphism.

1. Введение

В данной работе мы изучаем бесконечные перестановки, порожденные бесконечными словами. Понятие бесконечной перестановки было введено в [5], где, кроме этого, исследовались периодические перестановки. В работе [3] исследовались бесквадратные перестановки. Понятие бесконечной перестановки, порожденной бесконечным непериодическим словом, было введено Макаровым в [6].

В [6] Макаров ввел понятие перестановочной сложности бесконечного слова, равной количеству подперестановок длины n в порожденном словом бесконечной перестановке. Это понятие является модификацией классического понятия комбинаторной сложности бесконечного слова, равной количеству его подслов длины n, однако вычислить перестановочную сложность в большинстве случаев сложнее, чем комбинаторную сложность. В частности, для вычисления комбинаторной сложности разработан метод биспециальных слов [4]; для перестановочной же сложности такого метода до сих пор не найдено. В данной работе сделан шаг к разработке такого метода; для этого вычислена перестановочная сложность семейства бесконечных слов, порожденных как неподвижные точки морфизмов вида $\varphi(0) = 01^k, \varphi(1) = 0$ для $k \ge 2$. Таким образом,

Valuzhenich, A.A., On permutation complexity of fixed points of some nonuniform binary morphisms.

^{© 2015} Валюженич A.A.

Работа поддержана РФФИ (грант 12-01-00089-а и 13-01-00463).

Поступила 17 сентября 2012 г., опубликована 1 февраля 2015 г.

работа продолжает исследования Макарова [7], Уидмера [9] и автора [8], в которых изучалась перестановочная сложность слов Штурма [7] и неподвижных точек морфизмов [9, 8].

В разделе 2 мы вводим основные определения. В разделах 3-7 мы доказываем вспомогательные утверждения, необходимые для доказательства основной теоремы. В разделе 8 мы находим формулу для комбинаторной сложности перестановок, порожденных неподвижными точками морфизмов вида $\varphi(0) = 01^k, \varphi(1) = 0$ для $k \ge 2$. Отметим, что случай k = 1 соответствует известному морфизму Фибоначчи, и был рассмотрен в работе [7].

2. Основные определения

Пусть Σ — конечный алфавит. Всюду далее мы будем использовать только двухбуквенный алфавит $\Sigma = \{0, 1\}.$

Бесконечное слово над алфавитом Σ — это слово вида $\omega = \omega_1 \omega_2 \omega_3 \dots$, где $\omega_i \in \Sigma$. Конечное слово u называется nodсловом или фактором бесконечного или конечного слова v, если $v=s_1us_2$ для некоторых слов s_1 и s_2 , которые могут быть пустыми. Длину конечного слова u будем обозначать |u|. Множество всех подслов слова ω обозначим через $F(\omega)$. Подслово u слова ω называется $cneuuaльным\ enpago,\ eсли\ u0\ u\ u1\ также являются подсловами слова <math>\omega.$

Непериодическому слову ω сопоставим действительное число $R_{\omega}(i)=0.\omega_i\omega_{i+1}\ldots=\sum_{k\geq 0}\omega_{i+k}2^{-(k+1)}.$ В дальнейшем мы будем писать R(i) вместо $R_{\omega}(i).$ Отображение $h:\Sigma^*\longrightarrow\Sigma^*$ называется морфизмом, если h(xy) = h(x)h(y) для любых слов $x, y \in \Sigma^*$. Будем говорить, что ω — это непоdвижная точка морфизма φ , если $\varphi(\omega) = \omega$. Очевидно, что любой морфизм однозначно определяется образами символов, которые называются блоками. Пусть $\varphi(\omega)=\omega$. Разбиение слова ω на блоки, которые являются образами его символов, назовем правильным. Слово $\varphi(0)$ будем называть блоком первого типа, а слово $\varphi(1)$ — блоком второго типа. Всюду далее мы будем рассматривать неподвижные точки морфизмов вида $\varphi(0) = 01^k, \varphi(1) = 0$ для $k \ge 2$.

Bхождение слова $u \in \Sigma^*$ в слово ω — это пара (u,m), такая что u = $\omega_{m+1}\omega_{m+2}\dots\omega_{m+n}$. Интерпретацией слова $u\in\Sigma^*$ под действием морфизма arphi назовем тройку $s=\langle v,i,j \rangle$, где $v=v_1\dots v_k$ — некоторое слово над алфавитом Σ , i и j неотрицательные целые числа такие, что $0 \le i < |\varphi(v_1)|$ и $0 \le j < |\varphi(v_k)|$, и слово, полученное из $\varphi(v)$ удалением i символов слева и j символов справа, равно u. Слово v назовем $nped\kappa om$ слова u. Пусть u имеет интерпретацию (v,i,j). Тогда вхождение (v,p) слова v длины k называется предком вхождения (u, m) слова u, если $m = |\varphi(\omega_1 \dots \omega_p)| + i$.

- 1. Рассмотрим произвольное подслово u слова ω длины не менее k+1. Пусть $u = s\varphi(x)p$, где s — суффикс $\varphi(a)$, p — префикс $\varphi(b)$, a и b — некоторые символы и axb — подслово слова ω . Тогда так как либо $u=0^{k+1}$, либо 1 является подсловом слова u, то возможны два случая. В первом случае слова axb, s и pоднозначно определяются по слову u. Во втором случае мы имеем, что p=0, b=0 или b=1, и слова ax и s однозначно определяются по слову u. Таким образом, и имеет либо одного, либо двух предков. Причем во втором случае эти предки имеют вид v0 и v1 для некоторого подслова v слова ω .
- 2. Пусть (u, m_1) и (u, m_2) два вхождения слова u длины $n \ge k+1, (u', m_1')$ и (u',m_2') — предки этих вхождений длины l. Пусть $u_1=\omega_{m_1+1}\ldots\omega_{m_1+n}$ и

 $u_2=\omega_{m_2+1}\dots\omega_{m_2+n}$. Из определения предка вхождения получаем, что $u_1=s_1\varphi(x)p_1$ и $u_2=s_2\varphi(y)p_2$, где s_1 и s_2 — суффиксы $\varphi(\omega_{m'_1+1})$ и $\varphi(\omega_{m'_2+1})$, p_1 и p_2 — префиксы $\varphi(\omega_{m'_1+l})$ и $\varphi(\omega_{m'_2+l})$, $x=\omega_{m'_1+2}\dots\omega_{m'_1+l-1}$ и $y=\omega_{m'_2+2}\dots\omega_{m'_2+l-1}$. Так как $\omega_{m'_1+l}=\omega_{m'_2+l}$, то по пункту 1 получаем, что $s_1=s_2$, $p_1=p_2$ и x=y. Поэтому слова u_1 и u_2 имеют одинаковые разбиения в правильном разбиении ω на блоки.

Весконечной перестановкой будем называть упорядоченную тройку $\delta=\langle \mathbb{N},<_{\delta},<\rangle$, где $<_{\delta}$ — некоторый порядок на множестве \mathbb{N} и < — естественный порядок на множестве \mathbb{N} . Таким образом, бесконечная перестановка — это некоторый линейный порядок на множестве натуральных чисел. В данной работе под конечной перестановкой x длины n мы будем понимать некоторый линейный порядок на множестве $\{1,2,\ldots,n\}$, который может быть отличен от естественного порядка. В дальнейшем мы будем писать $x=x_1x_2\ldots x_k$, если $\{x_1,x_2,\ldots,x_k\}$ — это перестановка чисел $\{1,2,\ldots,k\}$ такая, что $x_i< x_j$ если и только если $i<_x j$. Пусть δ — бесконечная перестановка. Конечную перестановку x длины n такую, что $i<_x j$ если и только, если $m+i-1<_{\delta} m+j-1$ обозначим через $\delta[m,m+n-1]$. Конечная перестановка π длины n называется подперестановкой длины n бесконечной перестановки δ , если $\pi=\delta[i,i+n-1]$ для некоторого i>0.

Определим функцию $\gamma: \mathbb{R}^2 \setminus \{(a,a)|a \in \mathbb{R}\} \mapsto \{<,>\}$, которая по двум различным действительным числам выдает их отношение: $\gamma(a,b) = <$, если и только если a < b. Пусть ω — бесконечное вправо непериодическое слово над алфавитом Σ . Тогда определим бесконечную перестановку, порождаемую словом ω , как упорядоченную тройку $\delta_{\omega}=\langle\mathbb{N},<_{\delta_{\omega}},<\rangle$, где $<_{\delta_{\omega}}$ и <- линейные порядки на \mathbb{N} . При этом $<_{\delta_{\omega}}$ определяется следующим образом: $i<_{\delta_{\omega}}j$ тогда и только тогда, когда $R_{\omega}(i) < R_{\omega}(j)$. В силу непериодичности ω все $R_{\omega}(i)$ различны и данное выше определение корректно. Тогда конечная перестановка π длины n будет подперестановкой длины n бесконечной перестановки δ_{ω} , если $\pi = \delta_{\omega}[i, i+n-1]$ для некоторого i > 0. Определим комбинаторную сложность $\lambda(n)$ перестановки δ_{ω} (или *перестановочную сложность* слова ω), порождаемой некоторым словом ω , как число ее различных подперестановок длины n. Вхождение (u, m) слова u длины n порожедает перестановку $\pi = \pi(u, m)$, если $\pi = \delta_{\omega}[m+1,m+n]$. Подслово u слова ω порождает перестановку π , если существует вхождение (u, m), которое порождает π . Через f(u) обозначим число, а через H_u — множество перестановок, порождаемых словом u.

Пусть $z=z_1z_2\dots z_k$ — конечная перестановка. Элементом перестановки z будем называть z_i , где $1\leq i\leq k$. Назовем две перестановки $x=x_1x_2\dots x_k$ и $y=y_1y_2\dots y_k$ сопряженными, если они отличаются только отношениями крайних элементов, то есть $\gamma(x_1,x_k)\neq \gamma(y_1,y_k)$. Будем обозначать сопряженность как $x\sim y$. Назовем слово u плохим, если u порождает хотя бы одну пару сопряженных перестановок. Через E_u обозначим множество пар сопряженных перестановок, порождаемых словом u.

Отметим, что всюду далее говоря о подсловах и их свойствах, мы будем иметь ввиду, что эти подслова являются подсловами слова $\omega = \varphi(\omega)$ — неподвижной точки морфизмов вида $\varphi(0) = 01^k, \varphi(1) = 0$ для $k \ge 2$.

В дальнейшем тексте нам несколько раз потребуется вычислить значение $\|A^n \begin{pmatrix} x \\ y \end{pmatrix}\|$, где $A = \begin{pmatrix} 1 & 1 \\ k & 0 \end{pmatrix}$, $\begin{pmatrix} x \\ y \end{pmatrix}$ — произвольный вектор, и под нормой вектора понимается сумма модулей его координат. Как нетрудно показать стандартными методами, $\|A^n \begin{pmatrix} x \\ y \end{pmatrix}\| = c_1(x,y)\lambda_1^n + c_2(x,y)\lambda_2^n$, где c_1 и c_2 — константы, зависящие только от x и y, $\lambda_1 = \frac{1+\sqrt{1+4k}}{2}$ и $\lambda_2 = \frac{1-\sqrt{1+4k}}{2}$ — собственные значения матрицы A. Подставляя n=0 и n=1, легко найти что $c_1 = \frac{(k+\frac{1+\sqrt{1+4k}}{2})x+\frac{1+\sqrt{1+4k}}{2}y}{\sqrt{1+4k}}$ и $c_2 = \frac{(\sqrt{1+4k}-1}-k)x+\frac{\sqrt{1+4k}-1}{2}y}{\sqrt{1+4k}}$.

3. Общая схема

Для начала, докажем следующую лемму.

Пемма 1. Пусть $u\ u\ v\ -\ \partial \epsilon a\ pазличных\ nodслова\ слова\ \omega\ dлины\ n\geq k+2.$ Тогда $u\ u\ v\$ не могут порождать одинаковые перестановки.

Доказательство. В [6] (лемма 1) было доказано, что если u и v порождают одинаковые перестановки, то $u=xa,\ v=xb$, где x — некоторое слово, a и b — различные символы. Пусть, без ограничения общности, a=0 и b=1. Если $x=x_11$, то из условия $x0=x_110\in F(\omega)$ следует, что $x=x'1^k$ для некоторого слова x'. Но тогда $x1=x'1^{k+1}\in F(\omega)$. Пришли к противоречию, а значит, $x=x_10$. Если $x=x_200$, то из того, что $x1=x_2001\in F(\omega)$, следует, что $x=x'0^{k+1}$ для некоторого слова x'. Но тогда слово $x0=x'0^{k+2}$ тоже является подсловом слова ω . Пришли к противоречию, а значит $x=x_210$. Пусть (u,m_1) и (v,m_2) — произвольные вхождения слов u и v. Тогда $\gamma(R_\omega(m_1+|x_2|+1),R_\omega(m_1+|x_2|+3))=\gamma(0.1\dots,0.0\dots)=\{>\}$ и $\gamma(R_\omega(m_2+|x_2|+1),R_\omega(m_2+|x_2|+3))=\gamma(0.10\dots,0.11\dots)=\{<\}$. Отсюда $\pi(u,m_1)\neq \pi(v,m_2)$.

Напомним, что через f(u) мы обозначаем число, а через H_u — множество перестановок, порождаемых словом u. Из леммы 1 немедленно вытекает следующее следствие.

Следствие 1. Если
$$n \ge k + 2$$
, то $\lambda(n) = \sum_{|u|=n} f(u)$.

Пусть B(n) — множество специальных вправо слов длины n, A(n) — множество неспециальных слов длины n. Тогда по следствию 1 при $n \ge k+2$ имеем $\lambda(n) = \sum_{u \in A(n)} f(u) + \sum_{v \in B(n)} f(u)$ и $\lambda(n+1) = \sum_{u \in A(n)} f(ua) + \sum_{v \in B(n)} (f(v0) + f(v1))$, где слово u продолжается вправо единственным образом символом a = a(u). Отсюда получаем

$$\lambda(n+1) - \lambda(n) = \sum_{u \in A(n)} (f(ua) - f(u)) + \sum_{v \in B(n)} (f(v0) + f(v1) - f(v)).$$

Таким образом, для вычисления перестановочной сложности слова ω осталось понять, сколько перестановок порождает произвольное слово длины n.

4. Оценка
$$f(u) \leq 2$$

В данном разделе мы докажем, что любое подслово u слова ω порождает либо одну, либо две перестановки.

Теорема 1. Пусть u - noдслово слова ω . Тогда $f(u) \le 2$.

Для доказательства теоремы 1 нам потребуется ряд вспомогательных утверждений.

Предложение 1. Пусть ω — неподвижная точка морфизма φ . Пусть $\omega_i = \omega_j$; ω_i и ω_j — символы с номерами i' и j', лежащие в блоках $\varphi(a)$ и $\varphi(b)$ соответственно. Если $a \neq b$, или a = b, но $i' \neq j'$, то отношение $\gamma(R_{\omega}(i), R_{\omega}(j))$ полностью определяется значениями a, b, i', j'.

Доказательство. Если $\omega_i = \omega_j = 0$, то, без ограничения общности, можно считать что ω_i — первый символ некоторого блока первого типа, а ω_j — блок второго типа в разбиении ω на блоки. Поэтому $\omega_{i+1} = 1$ и $\omega_{j+1} = 0$, а значит $\gamma(R_\omega(i), R_\omega(j)) = \{>\}$.

Рассмотрим случай $\omega_i = \omega_j = 1$. Тогда без, ограничения общности, можно считать что ω_i это i'-й символ некоторого блока первого типа, а ω_j это j'-й символ некоторого блока первого типа в разбиении ω на блоки и i' > j'. Тогда $\gamma(R_\omega(i),R_\omega(j)) = \gamma(0.\omega_i 1^{k+1-i'}0\ldots,0.\omega_j 1^{k+1-i'}1) = \{<\}$.

Предложение 2. Пусть $\omega_i = \omega_j = a$ и $R_{\omega}(i) < R_{\omega}(j)$, $l_i = |\varphi(\omega_1 \dots \omega_{i-1})|$ и $l_j = |\varphi(\omega_1 \dots \omega_{j-1})|$. Тогда неравенство $R(l_i + r) > R(l_j + r)$ выполнено для любого $1 \le r \le |\varphi(a)|$.

Доказательство. Так как $\omega_i = \omega_j$, то $\varphi(\omega_i) = \varphi(\omega_j)$. Отсюда получаем, что $\omega_{l_i+r} = \omega_{l_j+r}$ выполнено для любого $1 \le r \le |\varphi(\omega_i)|$. В силу того, что $R_\omega(i) < R_\omega(j)$ существует некоторое конечное слово x такое, что $R(i) = 0.\omega_i x 0 \dots$ и $R(j) = 0.\omega_j x 1 \dots$ Тогда имеем:

$$R(l_i + r) = 0.\omega_{l_i + r} \dots \varphi(x)01\dots$$

И

$$R(l_j + r) = 0.\omega_{l_j + r} \dots \varphi(x)00\dots$$

Значит $R(l_i + r) > R(l_j + r)$. Лемма доказана.

Всюду далее $|\varphi(\omega_1 \dots \omega_{i-1})|$ будем обозначать через l_i .

Предложение 3. Пусть (u,m_1) и (u,m_2) — два вхождения слова и длины $n \geq k+1$, (u',m_1') и (u',m_2') — предки этих вхождений. Тогда для $1 \leq t < s \leq n$ либо $\gamma(R(m_1+t),R(m_1+s)) = \gamma(R(m_2+t),R(m_2+s))$, либо существуют $1 \leq t' < s' \leq |u'|$ такие, что $m_1+t=l_{m_1'+t'}+r$, $m_1+s=l_{m_1'+s'}+r$, $m_2+t=l_{m_2'+t'}+r$ и $m_2+s=l_{m_2'+s'}+r$ для некоторого $1 \leq r \leq |\varphi(a)|$ и $\omega_{m_1'+t'}=\omega_{m_1'+s'}=\omega_{m_2'+t'}=\omega_{m_2'+t'}=a$.

Доказательство. Пусть $1 \le t < s \le n$. Рассмотрим отношения $\gamma(R_{\omega}(m_1+t), R_{\omega}(m_1+s))$ и $\gamma(R_{\omega}(m_2+t), R_{\omega}(m_2+s))$. Если $\omega_{m_1+t} \ne \omega_{m_1+s}$ и $\omega_{m_2+t} \ne \omega_{m_2+s}$, то $\gamma(R_{\omega}(m_1+t), R_{\omega}(m_1+s)) = \gamma(\omega_{m_1+t}, \omega_{m_1+s})$ и $\gamma(R_{\omega}(m_2+t), R_{\omega}(m_2+s)) = \gamma(\omega_{m_2+t}, \omega_{m_2+s})$. Поэтому $\gamma(R_{\omega}(m_1+t), R_{\omega}(m_1+s)) = \gamma(R_{\omega}(m_2+t), R_{\omega}(m_2+s))$.

Рассмотрим случай, когда $\omega_{m_1+t}=\omega_{m_1+s}$ и $\omega_{m_2+t}=\omega_{m_2+s}$. Пусть $u_1=\omega_{m_1+1}\ldots\omega_{m_1+n}$ и $u_2=\omega_{m_2+1}\ldots\omega_{m_2+n}$. Так как $|u_1|=|u_2|\geq k+1$, то по замечанию 1 слова u_1 и u_2 имеют одинаковые разбиения на блоки в правильном разбиении ω . Следовательно $\omega_{m_1+t},\,\omega_{m_1+s},\,\omega_{m_2+t}$ и ω_{m_2+s} лежат в блоках $\varphi(\omega_{m_1'+t'}),\,\varphi(\omega_{m_1'+s'}),\,\varphi(\omega_{m_2'+t'})$ и $\varphi(\omega_{m_2'+s'})$ в правильном разбиении ω для некоторых $1\leq t'< s'\leq |u'|$. Более того, ω_{m_1+t} и ω_{m_2+t} расположены в блоках $\varphi(\omega_{m_1'+t'})$ и $\varphi(\omega_{m_2'+t'})$ на одинаковых позициях. Аналогично ω_{m_1+s} и ω_{m_2+s}

распложены в блоках $\varphi(\omega_{m_1'+s'})$ и $\varphi(\omega_{m_2'+s'})$ на одинаковых позициях. Поэтому $m_1+t=l_{m_1'+t'}+r,\, m_2+t=l_{m_2'+t'}+r$ и $m_1+s=l_{m_1'+s'}+r'$ и $m_2+s=l_{m_2'+s'}+r'$ для некоторых r и r'. Кроме того, $\omega_{m'_1+t'}=\omega_{m'_2+t'}$ и $\omega_{m'_1+s'}=\omega_{m'_2+s'}$.

Пусть $\omega_{m'_1+t'}=\omega_{m'_2+t'}=a$ и $\omega_{m'_1+s'}=\omega_{m'_2+s'}=b$. Если $a\neq b$, то ω_{m_1+t} и ω_{m_1+s} (ω_{m_2+t} и ω_{m_2+s}) расположены в блоках разного типа в правильном разбиении ω на блоки. Тогда по предложению 1 имеем $\gamma(R_{\omega}(m_1+t), R_{\omega}(m_1+t))$ $(s) = \gamma(R_{\omega}(m_2+t), R_{\omega}(m_2+s))$. Если a=b и $r \neq r'$, то опять по предложению 1 получаем, что $\gamma(R_{\omega}(m_1+t), R_{\omega}(m_1+s)) = \gamma(R_{\omega}(m_2+t), R_{\omega}(m_2+s)).$

Осталось рассмотреть случай a=b и r=r'. Тогда $\omega_{m_1'+t'}=\omega_{m_1'+s'}=$ $\omega_{m_2'+t'}=\omega_{m_2'+s'}$. Tak kak r=r', to $m_1+t=l_{m_1'+t'}+r, m_1+s=l_{m_1'+s'}+r,$ $m_2+t=l_{m_2'+t'}+r$ и $m_2+s=l_{m_2'+s'}+r$ для некоторого $1\leq r\leq |arphi(a)|$ и $\omega_{m_1'+t'} = \omega_{m_1'+s'} = \omega_{m_2'+t'} = \omega_{m_2'+s'} = a.$

В следующих двух утверждениях (u, m_1) и (u, m_2) — два вхождения слова u длины $n \geq k+1$; (u'_1, m'_1) и (u'_2, m'_2) — предки вхождений (u, m_1) и (u, m_2) .

Предложение 4. Если $\pi(u, m_1) \neq \pi(u, m_2)$, то $\pi(u'_1, m'_1) \neq \pi(u'_2, m'_2)$.

Доказательство. Рассмотрим случай $u_1' = u_2'$. Так как $\pi(u, m_1) \neq \pi(u, m_2)$, то $\gamma(R(m_1+t), R(m_1+s)) \neq \gamma(R(m_2+t), R(m_2+s))$ для некоторых $1 \le t < s \le n$. Пусть $R(m_1+t) < R(m_1+s)$ и $R(m_2+t) > R(m_2+s)$. Тогда по предложению 3 существуют $1 \le t' < s' \le |u'|$ такие, что $m_1 + t = l_{m'_1 + t'} + r$, $m_1 + s = l_{m'_1 + s'} + r$, $m_2+t=l_{m_2'+t'}+r$ и $m_2+s=l_{m_2'+s'}+r$ для некоторого $1\leq r\leq |arphi(a)|$ и $\omega_{m_1'+t'}=\omega_{m_1'+s'}=\omega_{m_2'+t'}=\omega_{m_2'+s'}=a.$ Отсюда по предложению $2\ R(m_1'+t')>$ $R(m_1' + s')$) и $R(m_2' + t') < R(m_2' + s')$. Поэтому $\gamma(R(m_1' + t'), R(m_1' + s')) \neq$ $\gamma(R(m'_2+t'),R(m'_2+s'))$ и $\pi(u'_1,m'_1)\neq \pi(u'_2,m'_2)$.

Осталось рассмотреть случай $u_1' \neq u_2',$ то есть когда u_1' и u_2' отличаются только последними символами. Предположим, что $\pi(u_1', m_1') = \pi(u_2', m_2')$. Тогда по лемме 1 можно считать, что $|u_1'|=|u_2'|\leq k+1$. Пусть $u_1'=v0$ и $u_2'=v1$ для некоторого v. Тогда $u_1'=1^l0$ и $u_2'=1^l1$ для некоторого $1\leq l\leq k-1$, либо $u_1'=0^l0$ и $u_2'=0^l1$ для $0\leq l\leq k$, либо $u_1'=1^l00$ и $u_2'=1^l01$ для $1\leq l\leq k+1$. $1 \leq l \leq k-1$. Нетрудно убедиться, что в первых двух случаях u задает только одну перестановку, а в третьем случае $\pi(u'_1, m'_1) \neq \pi(u'_2, m'_2)$, так как $\gamma(R(m'_1 +$ $l), R(m'_1 + l + 2)) \neq \gamma(R(m'_2 + l), R(m'_2 + l + 2)).$

Если, кроме того, выполнено условие $u_1' = u_2' = u'$, то выполнено следующее утверждение:

(1) Ecau $\pi(u', m_1') \neq \pi(u', m_2') \ u \ \pi(u', m_1') \sim \pi(u', m_2'),$ Предложение 5. $mo \ \pi(u, m_1) \neq \pi(u, m_2) \ u \ \pi(u, m_1) \nsim \pi(u, m_2).$

- (2) $E_{CAU} \pi(u, m_1) \sim \pi(u, m_2), mo \pi(u', m_1') \sim \pi(u', m_2')$
- (3) Пусть $u' = u'_1 u'_2 ... u'_p$ $u u = x \varphi(u'_2 ... u'_p)$, где $x cy \phi \phi u \kappa c$ слова $\varphi(u'_1)$. Тогда если $\pi(u', m_1') \neq \pi(u', m_2')$, то $\pi(u, m_1) \neq \pi(u, m_2)$.

Доказательство. Пусть |u| = n и |u'| = p.

1. Так как $\pi(u', m_1') \neq \pi(u', m_2')$ и $\pi(u', m_1') \sim \pi(u', m_2')$, мы имеем $\gamma(R(m_1' + m_2'))$ $(t'), R(m'_1+s'))
eq \gamma(R(m'_2+t'), R(m'_2+s'))$ для некоторого $1 \le t' < s' \le p$, причем либо $t' \neq 1$, либо $s' \neq p$. Без ограничения общности предположим что s' < p: пусть $R(m_1' + t') < R(m_1' + s')$ и $R(m_2' + t') > R(m_2' + s')$. Очевидно, что $\omega_{m'_1+t'} = \omega_{m'_1+s'} = \omega_{m'_2+t'} = \omega_{m'_2+s'}$. Пусть $\omega_{m'_1+t'} = a$.

Тогда из предложения 2 следует что $R(l_{m_1'+t'}+r) > R(l_{m_1'+s'}+r)$ и $R(l_{m_2'+t'}+r) < R(l_{m_2'+s'}+r)$, где $r=|\varphi(a)|$. Кроме того, легко видеть, что $\omega_{l_{m_1'+s'}+r}$ и $\omega_{l_{m_2'+s'}+r}$ — это не последние символы слов $\omega_{m_1+1}\ldots\omega_{m_1+n}$ и $\omega_{m_2+1}\ldots\omega_{m_2+n}$ соответственно, а значит $\pi(u,m_1)\neq\pi(u,m_2)$ и $\pi(u,m_1)\nsim\pi(u,m_2)$.

2. Так как $\pi(u,m_1)\sim\pi(u,m_2)$, то $\gamma(R(m_1+1),R(m_1+n))\neq\gamma(R(m_2+1),R(m_2+n))$. Пусть $R(m_1+1)< R(m_1+n)$ и $R(m_2+1)> R(m_2+n)$. Тогда по предложению 3 получаем, что $m_1+1=l_{m_1'+1}+r,\ m_1+n=l_{m_1'+p}+r,$ $m_2+1=l_{m_2'+1}+r$ и $m_2+n=l_{m_2'+p}+r$ для некоторого $1\leq r\leq |\varphi(a)|$ и $\omega_{m_1'+1}=\omega_{m_1'+p}=\omega_{m_2'+1}=\omega_{m_2'+p}$. Отсюда по предложению 2 имеем $R(m_1'+1)>R(m_1'+p)$ и $R(m_2'+1)< R(m_2'+p)$, то есть $\gamma(R(m_1'+1),R(m_1'+p))\neq\gamma(R(m_2'+1),R(m_2'+p))$.

Если $\omega_{m'_1+t'} \neq \omega_{m'_1+s'}$ для некоторого $1 \leq t' < s' \leq p$, то $\gamma(R(m'_1+t'), R(m'_1+s')) = \gamma(R(m'_2+t'), R(m'_2+s'))$. Рассмотрим случай $\omega_{m'_1+t'} = \omega_{m'_1+s'}$ для $1 \leq t' < s' \leq p$, где либо $t' \neq 1$, либо $s' \neq p$. Так как $\pi(u, m_1) \sim \pi(u, m_2)$, то $\gamma(R(l_{m'_1+t'}+r), R(l_{m'_1+s'}+r)) = \gamma(R(l_{m'_2+t'}+r), R(l_{m'_2+s'}+r))$ для $t' \neq 1$ или $s' \neq p$. Тогда по предложению 2 имеем $\gamma(R(m'_1+t'), R(m'_1+s')) = \gamma(R(m'_2+t'), R(m'_2+s'))$. Таким образом, $\pi(u', m'_1) \sim \pi(u', m'_2)$.

3. Так как $\pi(u',m_1') \neq \pi(u',m_2')$, мы имеем $\gamma(R(m_1'+t'),R(m_1'+s')) \neq \gamma(R(m_2'+t'),R(m_2'+s'))$ для некоторого $1 \leq t' < s' \leq p$. Без ограничения общности пусть $R(m_1'+t') < R(m_1'+s')$ и $R(m_2'+t') > R(m_2'+s')$. Очевидно, что $\omega_{m_1'+t'} = \omega_{m_1'+s'} = \omega_{m_2'+t'} = \omega_{m_2'+s'}$. Пусть $\omega_{m_1'+t'} = a$. Тогда из предложения 2 следует, что $R(l_{m_1'+t'}+r) > R(l_{m_1'+s'}+r)$ и $R(l_{m_2'+t'}+r) < R(l_{m_2'+s'}+r)$, где $r = |\varphi(a)|$.

Так как слова $\omega_{m_1+1}\dots\omega_{m_1+n}$ и $\omega_{m_2+1}\dots\omega_{m_2+n}$ содержат символы $\omega_{l_{m'_1+s'}+r}$ и $\omega_{l_{m'_2+s'}+r}$, то $\pi(u,m_1)\neq\pi(u,m_2)$.

Рассмотрим произвольное подслово u слова ω . Для каждой перестановки π из H_u рассмотрим ее произвольное вхождение (u,m), такое что $\pi=\pi(u,m)$. Определим отображение $\Psi_u: H_u \to H_{u'}$ по правилу $\Psi_u(\pi)=\pi'$, где (u',m') — предок вхождения (u,m) и $\pi'=\pi(u',m')$.

Для каждой перестановки π' из $H_{u'}$ рассмотрим ее произвольное вхождение (u',m'), такое что $\pi'=\pi(u',m')$. Определим отображение $\Lambda_u:H_{u'}\to H_u$ по правилу $\Lambda_u(\pi')=\pi$, где (u',m')— предок вхождения (u,m) и $\pi=\pi(u,m)$.

Лемма 2. Пусть u-nodcлово слова ω длины не менее k+1. Тогда верны следующие утверждения:

- (1) Если и имеет одного предка u', то $f(u) \leq f(u')$.
- (2) Если и имеет двух предков u_1' и u_2' , то $f(u) \le f(u_1') + f(u_2')$.
- (3) Если и имеет одного предка u' и $E_{u'} = \emptyset$, то $E_u = \emptyset$ и f(u) = f(u').

Доказательство. 1. Рассмотрим отображение $\Psi_u: H_u \to H_{u'}$, определенное выше. Пусть $\pi_1 = \pi(u, m_1)$ и $\pi_2 = \pi(u, m_2)$ — два различных элемента множества H_u . Тогда по предложению 4 $\Psi_u(\pi_1) \neq \Psi_u(\pi_2)$. Значит Ψ_u — инъекция и $f(u) = |H_u| \leq |H_{u'}| \leq f(u')$.

2. Рассмотрим отображение $\Psi_u: H_u \to H_{u_1'} \cup H_{u_2'}$, определенное выше. Пусть $\pi_1 = \pi(u, m_1)$ и $\pi_2 = \pi(u, m_2)$ — два различных элемента множества H_u . Тогда по предложению 4 $\Psi_u(\pi_1) \neq \Psi_u(\pi_2)$. Значит Ψ_u — инъекция и $f(u) = |H_u| \leq |H_{u_1'} \cup H_{u_2'}| \leq f(u_1') + f(u_2')$.

3. Рассмотрим отображение $\Lambda_u: H_{u'} \to H_u$, определенное выше. Пусть $\pi'_1 =$ $\pi(u',m_1')$ и $\pi_2'=\pi(u',m_2')$ — два различных элемента множества $H_{u'}$. Так как $E_{u'}=\emptyset$, мы имеем $\pi_1'\nsim\pi_2'$. Отсюда по пункту 1 предложения 5 мы получаем что $\Lambda_u(\pi'_1) \neq \Lambda_u(\pi'_2)$. Значит Λ_u — инъекция и $f(u') = |H_{u'}| \leq |H_u| = f(u)$. Вместе с неравенством $f(u) \le f(u')$ доказанным выше, мы получаем что f(u) =f(u').

Докажем что $E_u = \emptyset$. Предположим противное. Тогда существуют вхождения (u, m_1) и (u, m_2) слова u такие, что $\pi(u, m_1) \sim \pi(u, m_2)$. Тогда по пункту 2предложения 5 мы имеем $\pi(u', m_1') \sim \pi(u', m_2')$, что противоречит $E_{u'} = \emptyset$. \square

Лемма 3. Пусть $u0\ u\ u1 - noдслова\ слова\ \omega$. Тогда f(u0) = f(u1) = 1.

Для доказательства леммы 3 потребуется еще несколько вспомогательных утверждений.

Предложение 6. Пусть u - nodcлово слова $\omega \ u \ |u| \le k+1$. Тогда f(u) = 1. Доказательство. В этом случае $u = 0^l 1^r$ для $0 \le l + r \le k + 1$, либо $u = 1^l 0^r$ для $0 \le l + r \le k + 1$, либо $u = 1^l 01^r$ для $0 \le l + r \le k$. Нетрудно убедиться, что во всех случаях f(u) = 1.

Предложение 7. Пусть u0 u u11 - подслова слова ω . Тогда f(u0) = f(u11) =

Доказательство. Пусть $u = u_1 1$. Так как 1^{k+1} не является подсловом слова ω , то $u = 1^l$ для $0 \le l \le k - 2$. В этом случае f(u0) = f(u11) = 1. Пусть $u = u_10$. Если $u_1 = u_2 0$, то $u = 0^l$ для 0 < l < k, так как 0^{k+2} не является подсловом слова ω . В этом случае также очевидно, что f(u0) = f(u11) = 1. Рассмотрим случай $u=u_210$. Пусть $u_1=u_21$. Доказательство будем вести индукцией по длине слова u.

База индукции для $|u| \le k-1$ следует из предложения 6. Теперь докажем переход для $|u| \ge k$. Очевидно, что $u0 = u_2 100 = u_1 00$ имеет ровно одного предка u'_111 , а $u11 = u_1011$ имеет ровно одного предка u'_10 , где u'_1 — предок u_1 . Так как $|u_1'| \le |u_1| < |u_1| + 1 = |u|$, то по предположению индукции $f(u_1'0) =$ $f(u_1'11) = 1$. Применяя лемму 2, мы получаем, что $f(u0) \le f(u_1'11) = 1$ и $f(u11) \le f(u'_10) = 1$. Следовательно f(u0) = f(u11) = 1.

Доказательство Леммы 3. Пусть $u10 \in F(\omega)$. Тогда $|u| \leq k-1$, так как иначе $u=x01^{k-1}$ для некоторого слова x, и $u0=x01^{k-1}0$ не является подсловом ω . Поэтому можно считать, что u1 продолжается вправо только единицей, то есть u11 — подслово слова ω . Тогда по предложению 7 f(u0)=f(u11) = 1. Докажем, что f(u1) = 1. Пусть это не так. Тогда существуют вхождения $(u1, m_1)$ и $(u1, m_2)$ слова u1 такие, что $\pi(u1, m_1) \neq \pi(u1, m_2)$. Тогда $\pi(u11, m_1) \neq \pi(u11, m_2)$. Противоречие.

Доказательство Теоремы 1. Пусть $|u| \ge k+1$ и u имеет двух предков. Тогда эти предки имеют вид v0 и v1. По лемме $3 \ f(v0) = f(v1) = 1$. По пункту 2 леммы 2 мы получаем $f(u) \le f(v0) + f(v1) = 2$.

Пусть u имеет одного предка. Доказательство будем вести индукцией по длине слова u. База для $|u| \le k$ следует из предложения 6. Докажем переход для $|u| \ge k+1$. Очевидно что $|u'| \le |u|$. Пусть |u'| = |u|. Тогда все некрайние символы слова u есть блоки второго типа, то есть нули. Поэтому в этом случае $u = a0^l b$ для $0 \le l \le k+1$, где a и b — некоторые символы. Нетрудно убедиться что в этом случае f(u)=1. Осталось рассмотреть случай |u'|<|u|. Тогда по предположению индукции мы имеем $f(u')\leq 2$. Отсюда по пункту 1 леммы 2 $f(u)\leq f(u')\leq 2$.

Следствие 2. Пусть слово и имеет единственного предка u' и f(u)=2. Тогда f(u')=2.

Доказательство. По лемме 2 имеем $f(u)=2\leq f(u')$. С другой стороны, по теореме 1 $f(u')\leq 2$. Отсюда f(u')=2.

5. Вклад специальных слов

Лемма 4. Пусть u- специальное вправо слово $u\ u \ge k+1$. Тогда верны следующие утверждения:

- (1) f(u) = 2 если и только если и имеет предков v0 и v1, причем $v = v_210$ для некоторого слова v_2 .
- (2) Echu f(u) = 1, mo u = s0, $s \to cy \phi \phi u \kappa c (01^k)^k$.
- (3) $E_{CAU} u n_{AO} coe c_{AO} c_{O}, mo u = 001^{k}0.$

Доказательство. Если $u=u_11$, то $u=1^l$ для некоторого $0< l \le k-1$. Тогда f(u)=1. Рассмотрим случай $u=u_10$. Так как u — специальное вправо слово, то u имеет предков v0 и v1, где v — некоторое слово. Если $v=v_11$, то поскольку v0 и v1 — подслова ω , мы имеем $v=1^l$ для $0\le l \le k-1$. В этом случае $f(u)=f(0^l0)=1$. Пусть $v=v_10$. Если $v_1=v_20$ то поскольку v0 и v1 — подслова ω , мы имеем $v=0^l$ для $0\le l \le k$. В этом случае f(u)=1 и u=s0, где s — суффикс $(01^k)^k$. Рассмотрим случай $v=v_210$. Тогда $u=u_1001^k0$. Пусть (u,m_1) и (u,m_2) — произвольные вхождения слова u, имеющие предки $(v0,m_1')$ и $(v1,m_2')$ соответственно. Тогда $\gamma(R_\omega(m_1+|u_1|+1),R_\omega(m_1+|u_1|+k+3))=\gamma(0.00...,0.01...)=\{<\}$ и $\gamma(R_\omega(m_2+|u_1|+1),R_\omega(m_1+|u_1|+k+3))=\gamma(0.001,0.000...)=\{>\}$. Поэтому в этом случае f(u)=2, причем u будет плохим только если $|u_1|=0$, то есть v_2 — пустое слово и $u=001^k0$.

Следствие 3. Пусть v — специальное вправо слово длины $n \ge k+1$. Тогда либо f(v0) + f(v1) - f(v) = 0, либо f(v0) + f(v1) - f(v) = 1 и v — суффикс $(01^k)^k0$.

Доказательство немедленно следует из леммы 3 и леммы 4. $\hfill\Box$

Пемма 5. Пусть f(u) = 2 и и продолжается вправо символом а однозначно. Тогда f(ua) = 2.

Доказательство. Рассмотрим вхождения (u,m_1) и (u,m_2) слова u такие, что $\pi(u,m_1)\neq\pi(u,m_2)$. Тогда $\gamma(R(m_1+t),R(m_1+s))\neq\gamma(R(m_2+t),R(m_2+s))$ для некоторых $1\leq t< s\leq |u|$, а значит $\pi(ua,m_1)\neq\pi(ua,m_2)$.

Напомним, что при $n \ge k + 2$ имеем

$$\lambda(n+1) - \lambda(n) = \sum_{u \in A(n)} (f(ua) - f(u)) + \sum_{v \in B(n)} (f(v0) + f(v1) - f(v));$$

где слово u продолжается вправо единственным образом символом a, B(n) — множество специальных вправо слов длины n, A(n) — множество неспециальных вправо слов длины n. По следствию 3 f(v0) + f(v1) - f(v) = 0, за

исключением слов ограниченной длины. Кроме того, по лемме 5, если f(u)=2 и u продолжается вправо символом a однозначно, то f(ua)-f(u)=0. Таким образом, чтобы найти $\lambda(n+1)-\lambda(n)$, надо найти число слов $u\in A(n)$, таких что f(ua)=2 и f(u)=1.

6. Случай
$$f(u) = 1, f(ua) = 2$$

Лемма 6. Пусть u- слово длины $n\geq k+1$, которое продолжается вправо однозначно символом a. Тогда f(ua)=2 u f(u)=1 тогда u только тогда, когда ua- плохое слово или u- суффикс $\varphi^s((01^k)^k0)$, содержащий $\varphi^s(10)$ как собственный суффикс, u a=0.

Для доказательства леммы 6 нам потребуется ряд вспомогательных утверждений.

Лемма 7. Пусть (u, m_1) и (u, m_2) — два вхождения слова и длины $n \ge k+1$, (u', m_1') и (u', m_2') — предки вхождений (u, m_1) и (u, m_2) , |u'| = p. Тогда верны следующие утверждения:

- (1) Пусть u' = 1x1 u $u = 0<math>\varphi(x)0$. Тогда если $\pi(u', m_1') \sim \pi(u', m_2')$, то $\pi(u, m_1) \sim \pi(u, m_2)$.
- (2) Пусть u' = 0x0 u $u = s_1\varphi(x)s_2$, где s_1 u s_2 суффикс u префикс $\varphi(0)$ соответственно, u $|s_1| + |s_2| = k + 2$. Тогда если $\pi(u', m_1') \sim \pi(u', m_2')$, то $\pi(u, m_1) \sim \pi(u, m_2)$.
- (3) Пусть u' = 0x0 u $u = s_1 \varphi(x) s_2$, где s_1 u s_2 суффикс u префикс $\varphi(0)$ соответственно, u $|s_1| + |s_2| \le k + 1$. Тогда если $\pi(u', m_1') \sim \pi(u', m_2')$, то $\pi(u, m_1) = \pi(u, m_2)$.
- (4) $\Pi y cmv \ u' = 0x0 \ u \ u = s_1 \varphi(x) s_2$, $v de \ s_1 \ u \ s_2 cy \phi \phi u \kappa c \ u \ npe \phi u \kappa c \ \varphi(0)$ $coom e m c m e e h h o, \ u \ |s_1| + |s_2| > k + 2$. $To v da \ e c n u \ \pi(u', m_1') \sim \pi(u', m_2')$, $mo \ \pi(u, m_1) \neq \pi(u, m_2)$.

Доказательство. Все пункты доказываются аналогично. Поэтому докажем только пункт 1. Пусть $1 \leq t < s \leq n$. Тогда по предложению 3 $\gamma(R(m_1+t),R(m_1+s)) \neq \gamma(R(m_2+t),R(m_2+s))$ возможно только если $m_1+t=l_{m_1'+t'}+r$, $m_1+s=l_{m_1'+s'}+r$, $m_2+t=l_{m_2'+t'}+r$, $m_2+s=l_{m_2'+s'}+r$ для некоторого $1 \leq r \leq |\varphi(a)|$, где $\omega_{m_1'+t'}=\omega_{m_1'+s'}=\omega_{m_2'+t'}=\omega_{m_2'+s'}=a$. Пусть $R(m_1+t) < R(m_1+s)$ и $R(m_2+t) > R(m_2+s)$. Отсюда из предложения 2 следует, что $R(m_1'+t') > R(m_1'+s')$ и $R(m_2'+t') < R(m_2'+s')$. Так как $\pi(u',m_1')\sim\pi(u',m_2')$, то $\gamma(R(m_1+t),R(m_1+s))=\gamma(R(m_2+t),R(m_2+s))$ для всех t' и s' кроме случая t'=1 и s'=p. Рассмотрим случай t'=1, s'=p. Так как $m_1+1=l_{m_1'+1}+1$, $m_1+n=l_{m_1'+p}+1$, $m_2+1=l_{m_2'+1}+1$, $m_2+n=l_{m_2'+p}+1$, то $\gamma(R(m_1+1),R(m_1+n))\neq\gamma(R(m_2+1),R(m_2+n))$ по предложению 2. Поэтому $\pi(u,m_1)\sim\pi(u,m_2)$.

Предложение 8. Пусть слово s = ua имеет единственного предка s' = u'b; f(s) = 2, f(u) = 1 и $E_{s'} = \emptyset$. Тогда f(s') = 2, f(u') = 1 и a — первый символ слова $\varphi(b)$.

Доказательство. По следствию 2 имеем f(s') = 2. Докажем что u имеет только одного предка. Пусть это не так, тогда u специально вправо, то есть u0 и u1 — подслова ω . Тогда по лемме 3 f(ua) = 1, что противоречит условию леммы.

Итак, u имеет ровно одного предка. Легко видеть, что это либо u', либо s'. Пусть s' — предок u. Так как f(s') = 2 и $E_{s'} = \emptyset$, то по лемме 2 получаем f(u) = f(s') = 2. Пришли к противоречию.

Значит u' — предок u и a — первый символ слова $\varphi(b)$. Предположим, что f(u')=2. Тогда существуют вхождения (u',m_1') и (u',m_2') слова u' такие, что $\pi(u',m_1')\neq\pi(u',m_2')$. Отсюда по случаю 3 предложения 5 мы имеем $\pi(u,m_1)\neq\pi(u,m_2)$, где (u',m_1') и (u',m_2') — предки вхождений (u,m_1) и (u,m_2) , то есть $f(u)\geq 2$. Противоречие, а значит f(u')=1.

Предложение 9. Пусть слово s = ua имеет единственного предка s'; f(s) = 2, f(u) = 1 и s' - nлохое слово. Тогда s - mоже плохое слово.

Доказательство. Пусть s'=0x0. Пусть $s=s_1\varphi(x)s_2$, где s_1 и s_2 — суффикс и префикс $\varphi(0)$ соответственно. Рассмотрим случай $|s_1| + |s_2| \le k + 1$. Покажем, что в этом случае f(s)=1. Пусть это не так. Тогда существуют вхождения (s, m_1) и (s, m_2) слова s такие, что $\pi(s, m_1) \neq \pi(s, m_2)$. Отсюда по предложению 4 получаем, что $\pi(s', m'_1) \neq \pi(s', m'_2)$. Так как f(s') = 2 и s' — плохое слово, то $\pi(s',m_1') \sim \pi(s',m_2')$. Отсюда по лемме 7 $\pi(s,m_1) = \pi(s,m_2)$ — получили противоречие, а значит $|s_1|+|s_2| \ge k+2$. Теперь рассмотрим случай $|s_1|+|s_2| >$ k+2. Нетрудно видеть, что в этом случае слово u имеет предок s' и при этом $u = s_1 \varphi(x) s_2'$, где $|s_1| + |s_2'| \ge k + 2$ и $s_2 = s_2' a$. Так как s' — плохое слово, то существуют вхождения (s',m_1') и (s',m_2') слова s' такие, что $\pi(s',m_1')\sim$ $\pi(s', m_2')$. Отсюда по лемме 7 имеем $\pi(u, m_1) \neq \pi(u, m_2)$, то есть f(u) = 2. Пришли к противоречию, а значит $|s_1| + |s_2| = k + 2$. Отсюда из леммы 7 легко видеть, что s порождает пару сопряженных перестановок, то есть s — плохое слово. Осталось рассмотреть случай s' = 1x1. Тогда $s = 0\varphi(x)0$. Так как s' плохое слово, то существуют вхождения (s', m'_1) и (s', m'_2) слова s' такие, что $\pi(s', m_1') \sim \pi(s', m_2')$. Отсюда по лемме 7 имеем $\pi(s, m_1) \sim \pi(s, m_2)$, то есть s — плохое слово.

Предложение 10. Пусть слово $u = u_1 0$ имеет двух предков, f(u) = 2 и $f(u_1) = 1$. Тогда $u_1 - \Im$ от суффикс слова $\varphi((01^k)^k0)$.

Доказательство. Пусть слово u имеет предков v0 и v1. Так как f(u)=2, то по лемме 4 $v=v_210$ для некоторого слова v_2 . Если v_2 — суффикс 01^{k-1} , то все доказано. В противном случае, имеем $v_2=v_301^{k-1}$ для некоторого слова v_3 . Пусть $v_3=v_40$. Тогда слово u_1 имеет предок $v=v_4001^k0$. Рассмотрим вхождения (v,m_1) и (v,m_2) слова v такие, что $\omega_{m_1+|v|+1}=0$ и $\omega_{m_2+|v|+1}=1$. Тогда легко видеть, что $\gamma(R_\omega(m_1+|v_4|+1),R_\omega(m_1+|v_4|+k+3))=\{>\}$ и $\gamma(R_\omega(m_2+|v_4|+1),R_\omega(m_1+|v_4|+k+3))=\{<\}$. Отсюда f(v)=2. Тогда по пункту 3 предложения 5 имеем $f(u_1)=f(v)=2$ — противоречие, а значит $v=v_4101^k0$.

Докажем, что v — суффикс слова $(01^k)^k0$. Пусть это не так. Тогда $v=x(01^k)^k0$ для некоторого слова x, что противоречит тому, что v0 и v1 — подслова слова ω . Значит v — суффикс слова $(01^k)^k0$. Отсюда u_1 — это суффикс слова $\varphi((01^k)^k0)$, что и требовалось доказать.

Предложение 11. Пусть u — слово длины $n \ge k+1$, которое продолжается вправо однозначно символом a; f(ua) = 2 u f(u) = 1. Тогда либо ua — плохое слово, либо u — суффикс $\varphi^s((01^k)^k0)$, содержащий $\varphi^s(10)$ как собственный суффикс, u a = 0.

Доказательство. Пусть s=ua. Будем считать, что s не является плохим словом. Рассмотрим последовательность слов $s=s_0,s_1,\ldots,s_m$ такую, что s_i является единственным предком s_{i-1} для $1\leq i\leq m$, а слово s_m имеет двух предков. Пусть $s_i=s_i'a_i$, где a_i — некоторый символ. Докажем, что s_1 не является плохим. Предположим противное. Тогда по предложению 9 s тоже является плохим словом. Отсюда $E_{s_1}=\emptyset$. Отсюда по предложению 8 получаем, что $f(s_1)=2,$ $f(s_1')=1$ и a_0 — первый символ $\varphi(a_1)$. Аналогично рассматривая s_1 и s_2 , получаем, что $E_{s_2}=\emptyset,$ $f(s_2)=2,$ $f(s_2')=1$ и a_1 — первый символ $\varphi(a_2)$. Таким образом, $E_{s_i}=\emptyset,$ $f(s_i)=2,$ $f(s_i')=1$ и a_{i-1} — первый символ $\varphi(a_i)$ для любого $1\leq i\leq m$. Из того, что $a_m=0$ следует, что $a=a_0=0$. Так как $f(s_m)=2$ и $f(s_m')=1$, то по предложению 10 s_m' — суффикс слова $\varphi((01^k)^k0)$. Отсюда по индукции легко доказать, что u — суффикс $\varphi^m((01^k)^k0)$. При этом $E_{s_m}=\emptyset$. Отсюда по лемме 4 $s_m=x001^k0$ для некоторого непустого x, то есть $s_m'=x001^k$. Поэтому $\varphi(10)$ — суффикс s_m' . Отсюда по индукции легко доказать, что $\varphi^m(10)$ — собственный суффикс u.

Доказательство Леммы 6. Необходимость доказана в предложении 11. Докажем теперь достаточность. Пусть ua – плохое слово. Тогда f(ua)=2. Если f(u)=2, то существуют вхождения (u,m_1) и (u,m_2) слова u такие, что $\pi(u,m_1)\neq\pi(u,m_2)$. Тогда $\gamma(R(m_1+t),R(m_1+s))\neq\gamma(R(m_2+t),R(m_2+s))$ для некоторых $1\leq t< s\leq |u|$, а значит $\pi(ua,m_1)\nsim\pi(ua,m_2)$. Тогда ua не является плохим словом, то есть f(u)=1.

Пусть u — суффикс слова $\varphi^s((01^k)^k0)$, содержащий $\varphi^s(10)$ как собственный суффикс. Докажем, что f(u0)=2, f(u)=1, и $E_{u0}=\emptyset$ индукцией по s. Докажем базу индукции для s=1. Слово $\varphi((01^k)^k0)$ имеет предок $(01^k)^k0$. Так как $f((01^k)^k0)=1$, то по пункту 1 леммы 2 имеем $f(\varphi((01^k)^k0))=1$. Так $\varphi((01^k)^k0)0$ имеет предки $(01^k)^k00$ и $(01^k)^k01$, то по лемме 4 $f(\varphi((01^k)^k0)0)=2$ и $E_{\varphi((01^k)^k0)0}=\emptyset$. Докажем переход. Так как u — суффикс слова $\varphi^s((01^k)^k0)$, то u имеет предок u' и u' — суффикс слова $\varphi^{s-1}((01^k)^k0)$. По предположению индукции мы имеем f(u'0)=2, f(u')=1, и $E_{u'0}=\emptyset$. Отсюда по пункту 3 леммы 2 f(u0)=2 и $E_{u0}=\emptyset$. По пункту 1 леммы 2 имеем $f(u)\leq f(u')=1$. Отсюда f(u)=1, что и требовалось доказать.

7. ХАРАКТЕРИЗАЦИЯ И ПЕРЕЧИСЛЕНИЕ ПЛОХИХ СЛОВ

Обозначим через $C_{bad}(n)$ число плохих слов длины n. Основными результатами раздела являются леммы 8 и 9.

Лемма 8. Пусть $n = c_1(2,k)\lambda_1^s + c_2(2,k)\lambda_2^s + 1$ для некоторого натурального s. Тогда $C_{bad}(n) = c_1(1,0)\lambda_1^s + c_2(1,0)\lambda_2^s$. Для остальных n имеем $C_{bad}(n) = 0$.

Лемма 9. Пусть u-nроизвольное плохое слово, полученное из 001^k0 на n-ой итерации. Тогда $|u|=c_1(2,k)\lambda_1^n+c_2(2,k)\lambda_2^n+1$.

Для доказательства лемм 8 и 9 потребуется ряд вспомогательных утверждений.

Предложение 12. Пусть u-nлохое слово длины $n \ge k+1$, u'-eдинственный предок u. Тогда u'-nлохое слово u f(u')=2.

Доказательство. Так как u — плохое слово, то существуют вхождения (u, m_1) и (u, m_2) слова u такие, что $\pi(u, m_1) \sim \pi(u, m_2)$. Тогда по предложению 5 мы

имеем $\pi(u', m_1') \sim \pi(u', m_2')$. Следовательно, u' порождает хотя бы одну пару сопряженных перестановок, то есть u' — плохое слово и $f(u') \geq 2$. Отсюда по теореме 1 f(u') = 2.

Напомним, что в лемме 4 мы доказали, что если u- плохое слово, имеющее двух предков, то $u=001^k0$.

Будем говорить, что плохое слово u получается из слова 001^k0 на n-ой итерации, если существует последовательность слов $u=u_0, u_1, ..., u_n=001^k0$ такая, что u_i является единственным предком u_{i-1} для $1 \le i \le n$.

Предложение 13. Пусть ω — неподвижная точка морфизма φ , u — плохое слово длины $n \ge k+1$. Тогда и получается из слова 001^k0 на некоторой итерации s.

Доказательство немедленно следует из леммы 4 и предложения 12.

Таким образом, все плохие слова получаются из слова 001^k0 неоднократным применением морфизма φ с обрезанием справа и слева некоторого количества символов.

Предложение 14. Пусть ω — неподвижная точка морфизма φ , u' — единственный предок u u u' — плохое слово. Тогда верны следующие утверждения:

- (1) Пусть u' = 0x0. Тогда и является плохим словом если и только если u -это одно из слов $01^k \varphi(x)0$, $1^l \varphi(x)01^{k+1-l}$, где 0 < l < k+1.
- (2) Пусть u' = 1x1. Тогда слово $u = 0\varphi(x)0$ является плохим.

Доказательство. Доказательство немедленно следует из леммы 7.

Пусть X_n и Y_n — множества плохих слов вида 0x0 и 1y1 соответственно, полученных из 001^k0 на n-ой итерации. Мощности множеств X_n и Y_n обозначим через x_n и y_n соответственно.

Пусть X'_n и Y'_n — множества слов, полученных из множеств X_n и Y_n соответственно удалением крайних символов.

Предложение 15. Все слова из множества X_n' содержат d_n нулей и e_n единии, и все слова из Y_n' содержат d_n+1 нулей и e_n-1 единии. Для d_n и e_n выполнены рекуррентные соотношения $d_{n+1}=d_n+e_n, e_{n+1}=k(d_n+1)$.

Доказательство. Проведем доказательство индукцией по n. База для n=1 следует из того что $X_1=\{01^k\varphi(01^k)0\}$ и $Y_1=\{1^l\varphi(01^k)01^{k+1-l}|0< l< k+1\}$. Докажем переход. Рассмотрим слово $v=1y1\in Y_{n+1}$. Тогда v имеет предок v'=0x0 и $v=1^l\varphi(x)01^{k+1-l}$ для 0< l< k+1. Так как $\varphi(0)=01^k, \varphi(1)=0$, то y содержит d_n+e_n+1 нулей и kd_n+k-1 единиц. Теперь рассмотрим слово $u=0y0\in X_{n+1}$. Если u имеет предок u'=0x0, то $u=01^k\varphi(x)0$. Тогда y содержит d_n+e_n нулей и kd_n+k единиц. Если u имеет предок u'=1x1, то $u=0\varphi(x)0$. По предположению индукции x содержит d_n+1 нулей и e_n-1 единиц. Тогда u содержит d_n+e_n нулей и kd_n+k единиц. Таким образом, любое слово из X'_{n+1} содержит d_n+e_n нулей и kd_n+k единиц, а любое слово из Y'_{n+1} содержит d_n+e_n+1 нулей и kd_n+k-1 единиц. Лемма доказана. \square

Итак, мы доказали что выполнены рекуррентные соотношения $d_{n+1}=d_n+e_n,e_{n+1}=k(d_n+1).$ Сделаем замену $d_n=d_n'-1,\,e_n=e_n'.$ Тогда реккурентные

соотношения примут следующий более удобный вид:

$$d'_{n+1} = d'_n + e'_n, d'_{n+1} = kd'_n.$$

Таким образом
$$\left(\begin{array}{c} d'_n \\ e'_n \end{array} \right) = A^n \left(\begin{array}{c} 2 \\ k \end{array} \right)$$
 где $A = \left(\begin{array}{c} 1 & 1 \\ k & 0 \end{array} \right).$

Предложение 16. Для x_n и y_n выполнены рекуррентные соотношения x_{n+1} $x_n + y_n, y_{n+1} = kx_n.$

Доказательство. Действительно, рассмотрим произвольное слово $u = 0x0 \in$ X_n . Тогда из него могут быть получены плохие слова $01^k \varphi(x)0, 1^l \varphi(x)01^{k+1-l},$ то есть из u получается одно слово из X_{n+1} и k слов из Y_{n+1} . Если $u=1y1\in$ Y_n , то из него может быть получено ровно одно плохое слово 0 arphi(y) 0. Таким образом, в этом случае из u получается одно слово из X_{n+1} . Отсюда $x_{n+1} =$ $x_n + y_n, y_{n+1} = kx_n.$

Доказательство Леммы 9. Пусть u = 0x0. Тогда по предложению 15 слово x содержит d_n нулей и e_n единиц. Тогда $|u|=d_n+e_n+2=d'_n+e'_n+1$. Так как $\binom{d'_n}{e'_n}=A^n\binom{2}{k}$, то $d'_n+e'_n=\|A^n\binom{2}{k}\|$, где под нормой вектора понимается сумма модулей его координат. Отсюда $|u|=c_1(2,k)\lambda_1^n+c_2(2,k)\lambda_2^n+$

Пусть u=1x1. Тогда по предложению 15 слово x содержит d_n+1 нулей и e_n-1 единиц. Тогда $|u|=d_n+e_n+2=d_n'+e_n'+1$. Так как $\left(egin{array}{c} d_n' \\ e_n' \end{array}
ight)=A^n\left(egin{array}{c} 2 \\ k \end{array}
ight),$ то $d_n' + e_n' = \|A^n \begin{pmatrix} 2 \\ k \end{pmatrix}\|$, где под нормой вектора понимается сумма модулей его координат. Отсюда $|u| = c_1(2,k)\lambda_1^n + c_2(2,k)\lambda_2^n + 1$. Доказательство Леммы 8.

Рассмотрим произвольное плохое слово u длины n. Так как $n = c_1(2,k)\lambda_1^s +$ $c_2(2,k)\lambda_2^s+1$, то u получено из 001^k0 на s-ой итерации. Тогда $C_{bad}(n)=x_s+y_s$. Отсюда из предложения 16 мы получаем что $x_s+y_s=\|A^s\begin{pmatrix}1\\0\end{pmatrix}\|$. Отсюда $C_{bad}(n) = c_1(1,0)\lambda_1^s + c_2(1,0)\lambda_2^s$. Лемма доказана.

8. Основная теорема

Определим множества $T_n=\{y\varphi^n(10)0\}$, где y — произвольный непустой суффикс слова $\varphi^n((01^k)^{k-1}01^{k-1})$. Определим множество $T=\bigcup_{n\geq 1}T_n$. Докажем, что классы T_n не пересекаются.

Лемма 10. Пусть $m, l \in \mathbb{N}, m \neq l$. Тогда $T_m \cap T_l = \emptyset$.

Доказательство. Предположим противное, тогда существует слово x, такое, что $x \in T_m$ и $x \in T_l$. Пусть m > l. Так как $x \in T_m$ и $x \in T_l$, то $\varphi^l(10)$ — суффикс слова $\varphi^m(10)$. Поэтому $\varphi^m(10) = z\varphi^l(10)$ для некоторого слова z. Нетрудно заметить, что $z=\varphi^l(z')$ для некоторого слова z'. Отсюда $\varphi^{m-l}(10)=z'10$. Но, как нетрудно заметить, $\varphi^n(10)$ заканчивается либо на 01^k , либо на 0^k . Пришли к противоречию, а значит $T_m \cap T_l = \emptyset$.

Введем последовательность $a_s = |\varphi^s((01^k)^k0)0|$ — последовательность длин самых длинных слов из T_s . Используя стандартную технику, нетрудно получить, что $a_s = c_1(k+1,k^2)\lambda_1^s + c_2(k+1,k^2)\lambda_2^s + 1$. Пусть b_s — длина плохих слов, полученных из 001^k0 на s-1-ой итерации. Тогда по лемме 9 имеем $b_s = c_1(2,k)\lambda_1^{s-1} + c_2(2,k)\lambda_2^{s-1} + 1$. Отсюда $b_s = c_1(1,1)\lambda_1^s + c_2(1,1)\lambda_2^s + 1$. Введем последовательность $m_s = C_{bad}(b_s)$. По лемме 8 $m_s = c_1(1,0)\lambda_1^{s-1} + c_2(1,0)\lambda_2^{s-1}$.

Можно показать, что, начиная с s=2, при $k\geq 3$ выполняется неравенство $b_{s+2}< a_s < b_{s+3}$. Заметим также, что $|\varphi^s(10)0|=b_s$.

Пемма 11. Пусть $n > k^2 + k + 1$ и k > 3. Тогда верны следующие утверждения:

- (1) Ecnu $a_s < n < b_{s+3}$, mo $\lambda(n) \lambda(n-1) = 2$.
- (2) Ecsu $n = b_{s+3}$, mo $\lambda(n) \lambda(n-1) = 2 + m_{s+3}$.
- (3) Ecnu $b_{s+3} < n \le a_{s+1}$, mo $\lambda(n) \lambda(n-1) = 3$.

Доказательство. Все случаи аналогичны, поэтому рассмотрим только первый случай. Так как $n>k^2+k+1$, то по следствию 3 f(v0)+f(v1)-f(v)=0 для любого специального вправо слова v длины n. Отсюда $\lambda(n)-\lambda(n-1)=\sum_{u\in A(n)}(f(ua)-f(u))$, где A(n) — множество неспециальных вправо слов длины n и слово u продолжается вправо единственным образом символом a. Таким образом, чтобы найти $\lambda(n)-\lambda(n-1)$, надо найти число слов $u\in A(n)$ таких, что f(ua)=2 и f(u)=1. По лемме 6 мы получаем, что в этом случае либо ua — плохое слово, либо $u0\in T_s$ для некоторого s. Из определения T_m следует, что для любого $t\in [b_m+1,a_m]$ существует ровно одно слово из T_m , длина которого равна t, для остальных t в T_m нет слов длины t. Поэтому, если $a_s < n < b_{s+3}$ и ua имеет длину n, то $u0 \in T_{s+1}$ или $u0 \in T_{s+2}$. По лемме 10 получаем, что таких слов всего два. Поэтому для $a_s < n < b_{s+3}$ имеем $\lambda(n)-\lambda(n-1)=C_{bad}(n)+2=2$.

Предложение 17. Сумма $\sum_{j=1}^s a_j - \sum_{j=1}^{s+2} (b_j - m_j)$ может быть представлена в виде $M_1 \lambda_1^{s+1} + M_2 \lambda_2^{s+1} + W$, где $M_1 = \frac{1}{\lambda_1 - 1} (c_1 (1 + k, k^2) + c_1 (1, 0) \lambda_1 - c_1 (1, 1) \lambda_1^2)$, $M_2 = \frac{1}{\lambda_2 - 1} (c_2 (1 + k, k^2) + c_2 (1, 0) \lambda_2 - c_2 (1, 1) \lambda_2^2)$ и W — некоторая константа.

Доказательство проверятся непосредственными вычислениями, используя определения чисел $a_j,\,b_j$ и m_j .

Теперь мы можем доказать основную теорему.

Теорема 2. Пусть $n>k^2+k+1$ и k>2. Тогда комбинаторная сложность перестановки δ_{ω} может быть вычислена следующим образом: при $a_s< n< b_{s+3}$ $\lambda(n)=2n+M_1\lambda_1^{s+1}+M_2\lambda_2^{s+1}+W_1$, где $M_1=\frac{1}{\lambda_1-1}(c_1(1+k,k^2)+c_1(1,0)\lambda_1-c_1(1,1)\lambda_1^2)$, $M_2=\frac{1}{\lambda_2-1}(c_2(1+k,k^2)+c_2(1,0)\lambda_2-c_2(1,1)\lambda_2^2)$ и W_1 — некоторая константа; при $b_{s+3}\leq n\leq a_{s+1}$ $\lambda(n)=3n-a_{s+1}+M_1\lambda_1^{s+2}+M_2\lambda_2^{s+2}+W_2$, где $M_1=\frac{1}{\lambda_1-1}(c_1(1+k,k^2)+c_1(1,0)\lambda_1-c_1(1,1)\lambda_1^2)$, $M_2=\frac{1}{\lambda_2-1}(c_2(1+k,k^2)+c_2(1,0)\lambda_2-c_2(1,1)\lambda_2^2)$ и W_2 — некоторая константа.

Доказательство. Доказательство немедленно следует из леммы 11 и предложения 17. □

Как следует из теоремы 2, перестановочная сложность представляет собой кусочно-линейную функцию с перегибами в точках a_s , $b_s - 1$ и b_s . В частности,

при k=6 $\overline{\lim}_{n\to\infty}\frac{\lambda(n)}{n}=\lim_{s\to\infty}\frac{\lambda(a_s)}{a_s}=2\frac{15}{19}$ и $\underline{\lim}_{n\to\infty}\frac{\lambda(n)}{n}=\lim_{s\to\infty}\frac{\lambda(b_{s+3}-1)}{b_{s+3}-1}=\frac{15}{19}$

 $2\frac{5}{12}$. При k=2 последовательности a_s и b_s связаны неравенствами $b_{s+1} < a_s < 1$ сомир доказать, что при $a_s < n < b_{s+2}$ $\lambda(n) =$ при k=2 последовательности d_s и b_s связаны неравенствами $b_{s+1} < d_s < b_{s+2}$. Аналогично случаю k>2 можно доказать, что при $a_s < n < b_{s+2}$ $\lambda(n)=n+N_1\lambda_1^{s+1}+N_2\lambda_2^{s+1}+Q_1$, где $N_1=\frac{1}{\lambda_1-1}(c_1(1+k,k^2)+c_1(1,0)-c_1(1,1)\lambda_1)$, $N_2=\frac{1}{\lambda_2-1}(c_2(1+k,k^2)+c_2(1,0)-c_2(1,1)\lambda_2)$ и Q_1 — некоторая константа; при $b_{s+2} \le n \le a_{s+1}$ $\lambda(n)=2n-a_{s+1}+N_1\lambda_1^{s+2}+N_2\lambda_2^{s+2}+Q_2$, где $N_1=\frac{1}{\lambda_1-1}(c_1(1+k,k^2)+c_1(1,0)-c_1(1,1)\lambda_1)$, $N_2=\frac{1}{\lambda_2-1}(c_2(1+k,k^2)+c_2(1,0)-c_2(1,1)\lambda_1)$ и Q_2 — некоторая константа.

Кроме того, в данном случае мы имеем $\overline{\lim}_{n\to\infty}\frac{\lambda(n)}{n}=\lim_{s\to\infty}\frac{\lambda(b_{s+3})}{b_{s+3}}=2\frac{1}{3}$ и $\underline{\lim}_{n\to\infty} \frac{\lambda(n)}{n} = \lim_{s\to\infty} \frac{\lambda(b_{s+3}-1)}{b_{s+3}-1} = 2.$

9. Связи с комбинаторной сложностью

Комбинаторная сложность C(n) может быть вычислена с помощью стандартной техники [4] и также может быть выражена через собственные числа матрицы A. В частности, при k=6 $\overline{\lim}_{n\to\infty}\frac{C(n)}{n}=2\frac{6}{13}$ и $\underline{\lim}_{n\to\infty}\frac{C(n)}{n}=2\frac{2}{9}$. При k=2 имеем $\overline{\lim}_{n\to\infty}\frac{C(n)}{n}=1\frac{2}{3}$ и $\underline{\lim}_{n\to\infty}\frac{C(n)}{n}=1\frac{1}{2}$. Таким образом, перестановочная сложность неподвижных точек морфизмов вида $\varphi(0)=01^k, \varphi(1)=0$ для $k \ge 2$ асимптотически приблизительно в полтора раза больше комбинаторной.

Список литературы

- [1] S.V. Avgustinovich, The number of distinct subwords of fixed length in the Morse-Hedlund sequence, Sibirsk. zhurnal issledovaniya operatsii. 1:2 (1994), 3-7. MR1304871
- [2] S.V. Avgustinovich, A. Frid, T. Kamae, P. Salimov, Infinite permutations of lowest maximal pattern complexity, Theoretical Computer Science, 412 (2011), 2911–2921. MR2830255
- [3] S.V. Avgustinovich, S. Kitaev, A. Pyatkin and A. Valyuzhenich, On squarefree permutations, Journal of Automata, Languages and Combinatorics, 16:1 (2011), 3–10.
- [4] J. Cassaigne, Complexité et facteurs spéciaux, Bull. Belg. Math. Soc., 4 (1997), 67–88. MR1440670
- [5] D.G. Fon-Der-Flaass and A.E. Frid, On periodicity and low complexity of infinite permutations, European J. Combin., 28:8 (2007), 2106-2114. MR2351513
- [6] M.A. Makarov, On permutations generated by infinite binary words, Sib. Elektron. Mat. Izv., 3 (2006), 304-311. (in Russian). MR2276028
- [7] M.A. Makarov, On the permutations generated by the Sturmian words, Sib. Math. J., 50:3 (2009), 674–680, Zbl 1224,68068
- [8] A. Valyuzhenich, Permutation complexity of the fixed points of some uniform binary morphisms, EPTCS **63** (2011), 257–264.
- [9] S. Widmer, Permutation complexity of the Thue-Morse word, Adv. in Appl. Math., 47:2 (2011), 309–329. MR2803805

Александр Андреевич Валюженич Институт математики им. С. Л. Соболева СО РАН, пр. академика Коптюга 4, 630090, Новосибирск, Россия E-mail address: graphkiper@mail.ru