Applied Statistics and Econometrics Lecture 4

Giuseppe Ragusa

Luiss University

gragusa@luiss.it
http://gragusa.org/

February 19, 2017

Luiss University

Covariance and correlation

- Covariance and correlation are measure of <u>linear</u> dipendence between variables
- The best way of picturing linear association is to immagine to fit a line through the cloud of points in a scatterplot
- The better the could of points be summarized by a line, the stronger is the linear association

Covariance and correlation

The best "line"

In the previous graphics I draw a line through the cloud of points.

Question:

How did I draw this line?

• Put differently: which is the line that better approximate the cloud of points?

3

The best "line"

In the previous graphics I draw a line through the cloud of points.

Question:

How did I draw this line?

• Put differently: which is the line that better approximate the cloud of points?

Answer:

We use the so called method of least squares.

Method of least squares

Hystory

Carl Friedrich Gauss is credited with developing the fundamentals of the basis for least-squares analysis in 1795 at the age of eighteen. But Adrien Marie Legendre, a french mathematician, was the first to publish the method, however.

 Gauss applied this method to predict the location of Ceres, a dwarf planet discovered by Italian Giuseppe Piazzi in 1801.

Carl Gauss

Sample mean

Recall that \bar{Y} was the least squares estimator of μ_{Y} : \bar{Y} solves,

$$\min_{m} \sum_{i=1}^{n} (Y_i - m)^2$$

ullet By taking the first derivative of the objective function and equating to 0, it is easy to see that the solution of $ar{Y}$

$$-2\sum_{i=1}^{n} Y_i + nm = 0 \implies m = \bar{Y} = \sum_{i=1}^{n} Y_i / n$$

5

Now, we do not have to calculate the mean, but the coefficients of a line:

$$Y=b_0+b_1X,$$

where

- ullet b_0 is the intercept
- \bullet b₁ is the slope

Now, we do not have to calculate the mean, but the coefficients of a line:

$$Y=b_0+b_1X,$$

where

- \bullet b₀ is the intercept
- b₁ is the slope

Least squares idea

Among all the possible values of (b_0, b_1) , we pick the ones that give "predictions" that are closer (in the least squares sense) to the observed data:

$$\hat{Y}_i = b_0 + b_1 X_i, \quad i = 1, \dots, n$$

Assume: $b_0 = -0.6$ and $b_1 = 0.14$

Observed data

У	X
-0.032	-0.626
-0.885	0.184
-7.024	-0.836
-2.677	1.595
1.539	0.330
1.785	-0.820
-5.943	0.487

Predictions

$$\hat{Y}_i$$

$$-0.6 + 0.14 \times (-0.626) = -0.68$$

$$-0.6 + 0.14 \times (0.184) = -0.57$$

$$-0.6 + 0.14 \times (-0.836) = -0.71$$

$$-0.6 + 0.14 \times (1.595) = -0.37$$

$$-0.6 + 0.14 \times (0.330) = -0.55$$

$$-0.6 + 0.14 \times (-0.820) = -0.71$$

$$-0.6 + 0.14 \times (-0.487) = -0.63$$

Least squares (intuition)

Predictions and squares

Y_i	$(Y_i - Y_i)^2$
-0.68	0.431
-0.57	0.096
-0.71	39.776
-0.37	5.291
-0.55	4.379
-0.71	6.249
-0.63	29.28

S. (S.)()

Sum of squares

The sum of the squares for the line with $b_0=-0.6$ and $b_1=0.14$ is

$$SSR = 0.431 + 0.096 + 39.776$$

+5.291 + 4.379 + 6.249 + 29.28
=85.50

8

Least squares

OLS

The least squares ("ordinary least squares" or "OLS") estimators of b_0 and b_1 solve

$$\min_{b_0,b_1} \sum_{i=1}^n (Y_i - (b_0 + b_1 X_i))^2$$

9

The OLS estimator solves:

$$\min_{b_0,b_1} \sum_{i=1}^{n} (Y_i - (b_0 + b_1 X_i))^2$$

- The OLS estimator minimizes the average squared difference between the actual values of Y_i and the prediction ("predicted value") based on the estimated line $(b_0 + b_1 X_i)$
- We have a multivariate function in (b_0, b_1) :

$$SSR(b_0, b_i) = \sum_{i=1}^{n} (Y_i - (b_0 + b_1 X_i))^2$$

- SSR stands for sum of squared residuals
- The residuals are

$$\hat{u}_i = Y_i - \hat{Y}_i = Y_i - b_0 - b_1 X_i, \quad i = 1, \dots, n$$

Sum of squares: graphical representation

Refresh your math

• The minimum value of a function f(x) is denoted

$$\min_{x} f(x)$$
.

The argument for which the function achieves its minimum is denoted

$$\arg\min_{x} f(x).$$

• If the function is strictly convex, the necessary and sufficient condition for x_0 to be a minimizer of f(x) is

$$\frac{d}{dx}f(x_0)=0$$

Refresh your math

Example: the math

Let
$$f(x) = 2 + x^2$$
. Then,

$$\min_{x} f(x) = 2$$

and

$$\arg\min_{x} f(x) = 0.$$

Also,

$$\frac{d}{dx}f(x) = 2x \implies \frac{d}{dx}f(0) = 0$$

Graph of $2 + x^2$

Least squares first order conditions

$$\min_{b_0,b_1} \sum_{i=1}^n (Y_i - b_0 - b_1 X_i)^2$$

First order conditions

$$\frac{\partial \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i)^2}{\partial b_0} = 0 \implies -2 \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i) = 0$$

$$\frac{\partial \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_1)^2}{\partial b_1} = 0 \implies -2 \sum_{i=1}^{n} X_i (Y_i - b_0 - b_1 X_i) = 0$$

Solving for the first order conditions

$$\sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i) = 0 \tag{1}$$

$$\sum_{i=1}^{n} X_i (Y_i - b_0 - b_1 X_i) = 0$$
 (2)

• Two equations in two unknowns $(b_0 \text{ and } b_1)$

Solving for the first order conditions

$$\sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i) = 0 \tag{1}$$

$$\sum_{i=1}^{n} X_i (Y_i - b_0 - b_1 X_i) = 0$$
 (2)

- Two equations in two unknowns $(b_0 \text{ and } b_1)$
- Solve for b_0 in (1), to obtain

$$b_0 = \frac{1}{n} \sum_{i=1}^n Y_i - b_1 \frac{1}{n} \sum_{i=1}^n X_i$$

Solving for the first order conditions

$$\sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i) = 0 \tag{1}$$

$$\sum_{i=1}^{n} X_i (Y_i - b_0 - b_1 X_i) = 0$$
 (2)

- Two equations in two unknowns $(b_0 \text{ and } b_1)$
- Solve for b_0 in (1), to obtain

$$b_0 = \frac{1}{n} \sum_{i=1}^n Y_i - b_1 \frac{1}{n} \sum_{i=1}^n X_i$$

• Substitute b_0 into (2) and solve for b_1

$$b_1 = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})(X_i - \bar{X})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

Lest squares solution for b_0 and b_1

The convention is to denote the solution of the first order conditions as $\hat{\beta}_0$ and $\hat{\beta}_1$:

$$b_0 = ar{Y} - b_1 ar{X}$$
 $b_1 = rac{s_{xy}}{s_x^2}$

Remarks

• The underlying assumption for the existence of a solution is that

$$\sum_{i=1}^n (X_i - \bar{X})^2 \neq 0$$

(When does this happen?)

Remarks

The underlying assumption for the existence of a solution is that

$$\sum_{i=1}^n (X_i - \bar{X})^2 \neq 0$$

(When does this happen?)

• If the FOCs can be solved, the FOCs are sufficient for the minimum (why?)

Remarks

- The least squares method that we just used is usually referred to as "ordinary least squares" (OLS)
- Although b₀ and b₁ are the solutions to a mathematical problem, their are function of sample statistics: sample mean of Y, sample mean X, variance X, and covariance of Y and X
- In due time, we will also see how to solve a more complicated OLS problem, one in which we fit planes or hyper-planes instead of lines.

Conditional expectations as object of interest

We are often interested in the expectation of a r.v. conditional to the value of another.

Example (Wage and education)

- You may (and probably should) what would be your wage after you graduate from college
- If educ denotes years of education and wage the wage rate, you are interested in this quantity

$$E[wage|educ = 16],$$

that is, the expected value of wages for individuals with 16 years of education, exactly the same number of years of education you will have

Conditional expectations as object of interest

Example (Wage and education, ctd.)

- Suppose now you want to know whether to continue your education with a master degree
- To see whether completing a master is worth your money you are concerned about this quantity

$$E[wage|educ = 17] - E[wage|educ = 16],$$

that is, the difference in wage due to the extra year of education

Conditional expectations as object of interest

Policy problem: testscore and str

A school superintend must decide whether to hire new 10 new teachers

- she faces a trade-off because hiring 40 new teachers:
 - will reduce the student-per-teacher (STR) ratio by 2, from 22 to 20
 - will increase expenditures by \$1,800,000.

If she reduces the student-teacher ratio by 2, what will the effect be on standardized test scores in her district?

Policy answer

$$E[testscore|str = 20] - E[testscore|str = 22]$$

A linear model for conditional expectations

- The conditional expectation is a population quantity and so we need to estimate its value
- Unfortunately, estimating conditional expectation is quite difficult is we are not willing to make some assumptions on its form
- A very powerful assumption is the linear one:

Linear assumption

Given a conditional expectation btw Y and X, we assume that this expectation is linear in X, that is,

$$E[Y|X] = \beta_0 + \beta_1 X,$$

where β_0 and β_1 are two parameters

$$E[testscore|str] = \beta_0 + \beta_1 str$$

$$E[testscore|str] = \beta_0 + \beta_1 str$$

• What is the expected value of testscore in a district with str = 19?

$$E[testscore|str = 19] = \beta_0 + \beta_1 \times 19$$

$$E[testscore|str] = \beta_0 + \beta_1 str$$

• What is the expected value of testscore in a district with str = 19?

$$E[testscore|str = 19] = \beta_0 + \beta_1 \times 19$$

• What is the expected value of testscore in a district with str = 20?

$$E[testscore|str = 20] = \beta_0 + \beta_1 \times 20$$

$$E[testscore|str] = \beta_0 + \beta_1 str$$

• What is the expected value of testscore in a district with str = 19?

$$E[testscore|str = 19] = \beta_0 + \beta_1 \times 19$$

• What is the expected value of testscore in a district with str = 20?

$$E[testscore|str = 20] = \beta_0 + \beta_1 \times 20$$

• What is the expected value of testscore in a district with str = 23?

$$E[testscore|str = 23] = \beta_0 + \beta_1 \times 23$$

Question: what is the effect of increasing str by 1?

$$E[testscore|str = 20] - E[testscore|str = 19] = (\beta_0 + \beta_1 20) - (\beta_0 + \beta_1 19)$$
$$= \beta_1$$

Interpretation of β_1

Under the linear assumption, β_1 is the change in the CE of testscore when str is increased by 1 unit

Question: what is the effect on the CE of increasing str by Δ ?

$$E[testscore|str=20+\Delta]-E[testscore|str=20]=eta_1 imes\Delta$$

Interpretation of β_1

Under the linear assumption, $\beta_1 \times \Delta$ is the change in the CE of testscore when str is increased by Δ unit

$$E[Y_i|X_i] = \beta_0 + \beta_1 X_i$$

Interpretation of β_1

$$\beta_1 = \frac{\partial E[Y_i|X_i]}{\partial X_i}$$

that is, β_1 is the effect on the CE of Y when X_i is increased by 1 unit

Interpretation of β_0

$$\beta_0 = E[Y_i|X_i = 0]$$

that is, the CE of Y when $X_i=0$

The linear assumption

Linear assumption

lf

$$E[Y|X] = \beta_0 + \beta_1 X$$

then we can write

$$Y = \beta_0 + \beta_1 X + u$$

where

$$E[u|X] = 0$$

.

- *u* is called the regression error
- it consists of omitted factors, or possibly errors in the measurement of Y.
 - In general, these omitted factors are other variables that influence Y, other than the X

The linear assumption

Implications of the linear assumption

- Since E[u|X] = 0 implies that cov(u, X) = 0, the linearity assumption can be interpreted as saying that we are ruling out linear relationship between u and X (that is, the correlation between u and X is zero).
- We will see that this assumption is usually questionable, but for now, we will stick to it

The population linear regression model - general notation

$$Y_i = \beta_0 + \beta_1 X_i + u_i, \quad i = 1, \dots, n$$

- X is the independent variable or regressor
- Y is the dependent variable
- β_0 = intercept
- ullet $\beta_1 = \mathsf{slope}$
- \bullet u_i = the regression error

Terminology in a picture

Figure 3: Observations on Y and X; the population regression line; and the regression error

- Estimation
 - How should we estimate β_0 and β_1 ? (answer: ordinary least squares). What are advantages and disadvantages of OLS?

- Estimation
 - How should we estimate β_0 and β_1 ? (answer: ordinary least squares). What are advantages and disadvantages of OLS?
- Hypothesis testing
 - How to test if β_1 (or β_0) is zero?

- Estimation
 - How should we estimate β_0 and β_1 ? (answer: ordinary least squares). What are advantages and disadvantages of OLS?
- Hypothesis testing
 - How to test if β_1 (or β_0) is zero?
- Confidence intervals
 - How to construct a confidence interval for β_1 ?

Estimation of β_0 and β_1

We already have a way of estimating the intercept and slope using the least squares method:

$$\hat{\beta}_{0} = \bar{Y} - \hat{\beta}_{1}\bar{X}$$

$$\hat{\beta}_{1} = \frac{\frac{1}{n-1}\sum_{i=1}^{n}(Y_{i} - \bar{Y})(X_{i} - \bar{X})}{\frac{1}{n-1}\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}} = \frac{s_{YX}}{s_{X}^{2}}$$

```
\hat{\beta}_0 and \hat{\beta}_1 are obtained by using R
lm1 <- lm(testscore ~ str, data = CASchools)</pre>
lm1
##
## Call:
## lm(formula = testscore ~ str. data = CASchools)
##
## Coefficients:
## (Intercept)
                          str
         698.93 -2.28
##
```

Often the output of the regression is written as:

$$\widehat{testscore} = 698.933 - 2.280 \times str$$

• Estimated slope: $\hat{\beta}_1 = -2.2798$

Often the output of the regression is written as:

$$\widehat{testscore} = 698.933 - 2.280 \times str$$

- Estimated slope: $\hat{\beta}_1 = -2.2798$
- ullet Estimated intercept: $\hat{eta}_0 = 698.9329$

Often the output of the regression is written as:

$$\widehat{testscore} = 698.933 - 2.280 \times str$$

- Estimated slope: $\hat{\beta}_1 = -2.2798$
- Estimated intercept: $\hat{\beta}_0 = 698.9329$
- TestScore denotes the estimated regression line

Graphic representation

Interpretation of estimated intercept and slope

- Districts with one more student per teacher on average have test scores that are 2.28 points lower;
- That is,

$$\frac{\Delta \textit{TestScore}}{\Delta \textit{STR}} = -2.28$$

- The intercept (taken literally) means that, according to this estimated line, districts with zero students per teacher would have a (predicted) test score of 698.9
- This interpretation of the intercept makes no sense ??? it extrapolates the line outside the range of the data ??? here, the intercept is not economically meaningful