

Unidad 2:

Resolución de problemas mediante búsquedas y heurísticas

2.1 Introducción a los fundamentos de búsqueda

Contenido

- Planear y buscar.
- Identificar problemas adecuados para ser resueltos mediante algoritmos de búsqueda.
- Representar espacios de problemas de una forma adecuada para ser procesados mediante algoritmos de búsqueda.

- ¿Qué es planear?
- ¿Qué es buscar?
- ¿Qué relación tienen con la IA?

https://www.geeksforgeeks.org/search-algorithms-in-ai/

Planear y buscar (1)

- Planear antes de llevar a cabo una acción es inteligente.
- Distintos niveles de detalle según el contexto.
- Alcanzar una meta lo mejor posible.
- Los planes no suelen salir como se espera. El entorno cambia constantemente.
- La búsqueda es un modo de guiar la planificación mediante etapas en el plan.

Planear y buscar (2)

Original plan

Hurbans, R. (2020). Grokking Artificial Intelligence Algorithms. Manning Publications.

Planear y buscar (3)

Adjusted plan

Hurbans, R. (2020). Grokking Artificial Intelligence Algorithms. Manning Publications.

Planear y buscar (4)

- La búsqueda sirve para nuestra planificación inicial y para obtener resultados deseados si el entorno cambia.
- Los ajustes en el plan casi nunca se pueden anticipar.
- Se trata de buscar y evaluar futuros estados con el objetivo de encontrar rutas de estados optimas hasta que el objetivo es alcanzado.
- Buscar es una herramienta antigua pero potente.

¿Qué hace a un algoritmo bueno o malo?

Coste de computación

Coste de computación (1)

- Cada función lleva a cabo diferentes operaciones.
- Estas consumen tiempo de procesamiento.
- Mientras más tiempo de procesamiento, más "cara" será una función.

https://www.jnttek.com/what-does-what-processor-ram-ssd/

Coste de computación (2)

- La notación Big O [info] (cota superior asintótica) sirve para describir la complejidad de un algoritmo o función.
- Permite modelar el número de operaciones necesarias a medida que el tamaño de la entrada se incrementa.
- Ejemplos:
 - print("Hola mundo")equivale a O(1)
 - Una función que itera e imprime cada elemento de una lista de tamaño n equivale a O(n)
 - Una función que compara un elemento de una lista de tamaño n con otra lista de tamaño n equivale a O(n²)
- Cuanto mayor sea O, peor rendimiento habrá.

Ordena de mayor a menor computación el coste de los siguientes algoritmos.

 $O(2^{n})$

O(n!)

O (log n)

 $O(2^n)$

O(1)

 $O(n^2)$

 $O(n^2)$

O (n log n)

O(n!)

O (log n)

O (n log n)

O(1)

SISTEMAS INTELIGENTES

Hurbans, R. (2020). Grokking Artificial Intelligence Algorithms. Manning Publications.

Coste de computación (3)

- Los mejores algoritmos serán aquellos cuyo nº de operaciones permanezca más constante a medida que la entrada crece.
- Coste de computación -> Algoritmos inteligentes.
- Teóricamente, podemos resolver casi cualquier problema por fuerza bruta, pero en realidad esto podría tomar horas o incluso años, lo que lo hace irrealizable en escenarios reales.

Problemas aplicables a los algoritmos de búsqueda (1)

- Cualquier problema que requiera una serie de decisiones para resolver un problema pueden realizarse con algoritmos de búsqueda.
- Depende del problema y el tamaño del espacio.
- Solución óptima VS Solución posible.

Problemas aplicables a los algoritmos de búsqueda (2)

Hurbans, R. (2020). Grokking Artificial Intelligence Algorithms. Manning Publications.

Problemas aplicables a los algoritmos de búsqueda (2)

Hurbans, R. (2020). Grokking Artificial Intelligence Algorithms. Manning Publications.

Representando estados (1)

- Un ordenador requiere que la información pueda ser representada de una forma que pueda procesarse.
- Necesitamos codificarla lógicamente para que pueda ser procesada.

¿Cuál es la diferencia entre datos e información?

- Datos:
 - Hechos en bruto sobre algo.
- Información:
 - Interpretaciones sobre esos hechos que proporcionan detalles sobre los datos en un dominio específico.
 - Requiere contexto y procesamiento de datos para proporcionar significado.

Representando estados (2)

¿Cómo podemos representar los datos?

Hurbans, R. (2020). Grokking Artificial Intelligence Algorithms. Manning Publications.

Árboles (1)

- Permiten simular una jerarquía de valores u objetos.
- Una jerarquía es una organización en la que un objeto está relacionado con otros objetos debajo de él.
- Se trata de un gráfico acíclico conectado, cada nodo tiene un arco o arista o brazo a otro nodo y no hay ciclos.

Árboles (2)

- Nodo: Cada valor u objeto representado.
- Nodo raíz: El nodo que se encuentra en el nivel de profundidad cero.
- Nodo padre: Cuando un nodo tiene nodos conectados, en el nodo raíz es el nodo padre..
- Nodo hijo: El nodo conectado de un nodo padre.
- Nodo hoja: Un nodo sin hijos.
- Descendiente: Un nodo conectado con otro siguiendo un camino distinto del nodo raíz del árbol.

- Ancestro: Un nodo conectado con otro siguiendo el camino del nodo raíz del árbol.
- Profundidad: El nivel en el que se encuentra un nodo (empezando por cero).
- Altura: El máximo nivel de un árbol (empezando por cero).
- Camino: Secuencia de nodos y aristas que conectan nodos que no están directamente conectados.
- Grado: Nº de hijos del nodo.

Árboles (3)

SISTEMAS INTELIGENTES

¿Cuál es el árbol que representa la siguiente solución para el laberinto?

Hurbans, R. (2020). Grokking Artificial Intelligence Algorithms. Manning Publications.

Tipos de algoritmos de búsqueda

Bibliografía

Esta presentación se basa principalmente en información recogida en las siguientes fuentes:

- Hurbans, R. (2020). Grokking Artificial Intelligence Algorithms. Manning Publications.
- Russell, S. & Norvig, P. (2010). Artificial Intelligence: A modern approach. 3^a Ed. Prentice-Hall.