The natex package

Nathan Phillips

May 19, 2025

Abstract

A collection of commands focused on consistent notation for mathematics, physics, and engineering. The repository for this package can be found at: https://github.com/amilkyboi/natex.

Contents

1	Incl	uded Packages	2					
2	Con	ommands						
	2.1	Automated Bracing	3					
	2.2	Vector Notation	3					
	2.3	Dirac Notation	4					
	2.4	Set Notation	4					
	2.5	Matrix Notation	5					
	2.6	Linear Operators	5					
	2.7	Probability	5					
	2.8	Trigonometric Functions	6					
	2.9	Other	6					

1 Included Packages

This package requires and includes the ${\tt amssymb},\,{\tt bm},\,{\tt and}\,\,{\tt mathtools}$ packages.

2 Commands

2.1 Automated Bracing

Command	Usage	Output	Definition
\abs	\abs{x}	x	absolute value
\norm	$\operatorname{norm}\{x\}$	x	norm
\comm	$\comm{x}{y}$	[x,y]	commutator
\acomm	$\acomm{x}{y}$	$[x,y]_+$	anticommutator
\pb	\pb{x}{y}	$\{x,y\}$	Poisson bracket
\order	\order{x}	$\mathcal{O}(x)$	order of magnitude
\eval	$\ensuremath{\ensuremath{\text{eval}}\{x\}\{a\}\{b\}}$	$x _a^b$	evaluation limits

2.2 Vector Notation

Command	Usage	Output	Definition
\vb	\vb{x}	x	bold vector
\vu	\vu{x}	\hat{x}	unit vector
\vdot	$\vb{x} \vdot \vb{y}$	$x \cdot y$	dot product
\vcrs	<pre>\vb{x} \vcrs \vb{y}</pre>	x imes y	cross product
\grad	\grad{x}	∇x	gradient
\divr	\divr{\vb{x}}	$ abla \cdot x$	divergence
\curl	$\curl{\vb{x}}$	abla imes x	curl
\slap	\slap{x}	$\nabla^2 x$	scalar Laplacian
\vlap	$\displaystyle \vlap{\vb{x}}$	$oldsymbol{ abla}^2oldsymbol{x}$	vector Laplacian
\dalem	\dalem		d'Alembertian
\del	\del	∇	del

2.3 Dirac Notation

Command	Usage	Output	Definition
\bra	\bra{x}	$\langle x $	bra
\ket	\ket{x}	$ x\rangle$	ket
\ev	$\ensuremath{\ensuremath}\ensuremath{\ens$	$\langle x \rangle$	expectation value
\ip	$\inf\{x\}\{y\}$	$\langle x y\rangle$	inner product
\op	$\op{x}{y}$	$ x\rangle\langle y $	outer product
\mel	$mel{x}{y}{z}$	$\langle x y z\rangle$	matrix element

2.4 Set Notation

Command	Usage	Output	Definition
\N	/N	\mathbb{N}	set of natural numbers
\Z	\Z	$\mathbb Z$	set of integers
\ Q	\ Q	\mathbb{Q}	set of rational numbers
\R	\R	\mathbb{R}	set of real numbers
\C	\C	\mathbb{C}	set of complex numbers
\set	\set{a, b, c}	$\{a,b,c\}$	set notation
\set	\set{a \given b, c}	$\{a \mid b, c\}$	set builder notation

2.5 Matrix Notation

Command	Usage	Output	Definition
\pmx	\pmx{1 & 2 \\ 3 & 4}	$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$	parenthetical matrix
\bmx	\bmx{1 & 2 \\ 3 & 4}	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	bracketed matrix
\vmx	\vmx{1 & 2 \\ 3 & 4}	$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$	vertical matrix
\cmx	\cmx{1 & 2 \\ 3 & 4}	$ \begin{cases} 1 & 2 \\ 3 & 4 \end{cases} $	curly matrix
\tr	\tr \pmx{1 & 2 \\ 3 & 4}	$\operatorname{tr}\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$	trace
\tp	\tp{A}	A^{T}	transpose
\cc	\cc{A}	A^*	complex conjugate
\hc	\hc{A}	A^{\dagger}	Hermitian conjugate

2.6 Linear Operators

Command	Usage	Output	Definition
\sop	\sop{x}	\hat{x}	scalar operator
\vop	\vop{x}	\hat{x}	vector operator

2.7 Probability

Command	Usage	Output	Definition
\erf	\erf	erf	error function
\erfc	\erfc	erfc	complementary error function

2.8 Trigonometric Functions

Command	Usage	Output	Definition
\asin	\asin{x}	$a\sin x$	arcsine
\acos	\acos{x}	$a\cos x$	arccosine
\atan	λx	$\operatorname{atan} x$	arctangent
\asec	\ac{x}	$\operatorname{asec} x$	arcsecant
\arcsec	\arcsec{x}	$\operatorname{arcsec} x$	arcsecant
\acsc	\acsc{x}	$\operatorname{acsc} x$	arccosecant
\arccsc	\arccsc{x}	$\operatorname{arccsc} x$	arccosecant
\acot	\acot{x}	$a\cot x$	arccotangent
\arccot	\arccot{x}	$\operatorname{arccot} x$	arccotangent
\sech	\sch{x}	$\operatorname{sech} x$	hyperbolic secant
\csch	\csch{x}	$\operatorname{csch} x$	hyperbolic cosecant

2.9 Other

Command	Usage	Output	Definition
∖Re	∖Re	Re	real part
\Im	\Im	${ m Im}$	imaginary part
\defas	\defas	≔	defined as
\subtxt	x\subtxt{text}	x_{text}	upright subscript
\suptxt	x\suptxt{text}	x^{text}	upright superscript