

Universidad Simón Bolívar

Departamento de Computación y Tecnología de la Información

Estructuras Discretas I. CI-2525

Práctica 8

1.- Determine si existe dominación asintótica, del tipo O grande u Ω entre las funciones que se indican a continuación:

i.
$$f_1: N \to R, f_1(n) = n^2$$

ii.
$$f_2: N \to R, f_2(n) = n^2 + 1000n$$

iii.
$$f_3: N \to R, f_3(n) = \begin{cases} n \text{ si } n \text{ es par} \\ n^3 \text{ si } n \text{ es impar} \end{cases}$$

iv.
$$f_4: N \to R, f_4(n) = \begin{cases} n \sin n < 100 \\ n^3 \sin n > 100 \end{cases}$$

v.
$$f_5: N \to R, f_5(n) = \ln(n^{\ln(2n)})$$

2.- Suponga $f: N \to R$, f es $O\left(n^{\frac{1}{2}}\right)$. Suponga que definimos $g: N \to R$ por,

$$g(n) = \begin{cases} f(n) + f\left(\frac{n}{2}\right) + f\left(\frac{n}{2^2}\right) + \dots + f(1) \\ 0 \text{ en otro caso} \end{cases}$$
Demuestre que g es $O\left(n^{\frac{1}{2}}\ln(n)\right)$

3.-Suponga que $f: N \to R^{\geq 0}$, $g: N \to R^{\geq 0}$, $h: N \to R^{\geq 0}$, $w: N \to R^{\geq 0}$ donde f es O(g) y h es O(w). Demuestre que,

a.
$$f + h \operatorname{es} O(g + w)$$

b. $f \cdot h \operatorname{es} O(g \cdot w)$

4.-Suponga que f es $O(n^{\frac{-1}{3}})$. Determine $\lim_{n\to\infty} f(n)$

6.- Sean $f: N \to \mathbb{R}^{\geq 0}$, $g: N \to \mathbb{R}^{\geq 0}$. Justifique que,

Para cada $t: N \to R^{\geq 0}$, $t \in O(f+g)$ si y solo si $t \in O(\max\{f,g\})$

7.-Sean $f: N \to R$ y $g: N \to R$ tal que f es $O\left(\frac{1}{n}\right)$. Suponiendo que a es positivo demuestre que,

a.
$$\frac{f(n)}{1+\frac{a}{\sqrt{n}}}$$
 es $O(\frac{1}{n})$

b.
$$(1 + \frac{a}{\sqrt{n}})f(n) es O(\frac{1}{n})$$

c.
$$1 + \frac{a}{\sqrt{n}} + f(n)$$
 es $O((1 + \frac{a}{\sqrt{n}})(1 + O(\frac{1}{n}))$

8.- Suponga que $e^x = 1 + \frac{x}{11} + \frac{x^2}{21} + \dots + \frac{x^n}{n!} + \dots$ y converge para $|x| \le r$ donde r es fijo y positivo. Demuestre que $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + O(x^{n+1})$.

9.- Demuestre que $\sqrt[n]{n} = 1 + \frac{\ln(n)}{n} + O(\frac{\ln(n)^2}{n^2})$. Utilice el resultado del problema 8.

- 10) Utilice la definición de Θ para demostrar que $3n^2 + 180n = \Theta(n^2)$
- 11) Sean f y g dos funciones de los naturales en los reales no negativos. Mostrar que:

$$max(f(n),g(n)) = \Theta(f(n) + g(n))$$

- 12) Muestre que $(n+a)^b = \Theta(n^b)$, donde a y b son números reales y b > 0
- 13) Halle una aproximación asintótica con error absoluto $O(n^{-2})$ de la expresión:

$$(3n^2 - n^{-1} + O(n^{-4}))(10n^2 + \ln(n) + O(n^{-5}))$$
, donde $O()$ es O grande

14) Sea T(n) dado por la siguiente recurrencia:

$$T(n) = 2.T(\lfloor n/2 \rfloor) + 2.T(\lfloor n/2 \rfloor) + n^2$$
 $para \ n \ge 2 \ y \ T(1) = 0$

- a) Demuestre que $T(n) = \Theta(n^2 \log_2 n / n \text{ es potencia de 2}),$
- b) ¿Qué habría que demostrar para poder concluir que $T(n) = \Theta(n^2 \log_2 n)$? Utilice el Teorema de suave crecimiento o regla de la uniformidad
- c) Utilice el Teorema Maestro para concluir que $T(n) = \Theta(n^2 \log_2 n)$ Ayuda:

$$- \frac{1}{(1-x)^k} = \sum_{n \geq 0} \binom{k+n-1}{n} x^n$$

- [x] es la parte entera por debajo del número real x, es decir, el mayor entero menor o igual a x, y [x] es la parte entera por arriba del número real x, es decir, el menor entero mayor o igual a x