Data Processing

Técnicas de Perceção de Redes

Mestrado Integrado em Engenharia de Computadores e Telemática DETI-UA

Qualitative Data

- Most monitored data is qualitative.
 - An event (with description) at a specific time (with a time-stamp).
 - 00:01:23.4566 IP Packet [from A to B with 64 bytes]
 - 21:04:23.4566 Error [id 404]

→ ...

- Must be converted to quantitative data.
- Some is pre-processed and it is already presented as quantitative.
 - Packets sent: 5467.
 - Bytes seen in the last 10 minutes: 18471947.
 - May require some additional processing.
 - Packets sent at 1s: 300pkts, Packets sent at 2s: 350pkts → Packets sent between 1s-2s: 350-300=50pkts.

Qualitative → Quantitative Data (1)

- Events must be defined, identified and grouped:
 - All packets from IP 10.0.0.1,
 - All 400 errors accessing site X, etc...
- Sampling/Counting Interval
 - Time window in each the number of a specific event is counted, associated with a time index, and stored.
 - Minimum timescale.
- Events are counted in each sampling interval Δt .

Qualitative → Quantitative Data (2)

- Results in discrete time sequences for event:
 - For $\Delta t=1$: $X_k = \{3,0,2,4,3,4,2,4,3,4,2,5,3,2,5,2\}$

$$X_0 = 3, X_1 = 0, ..., X_{12} = 2$$

- For $\Delta t = 4$: $Y_k = \{9, 13, 14, 12\}$
- Time sequences may be multi-dimensional:
 - Time sequences of n-tuples.
 - e.g., Number of packets, upload e download.
 - $Z_k = \{(3,9), (0,45), ...(67,90)\}$

Time Windows and Entity Profile

- Sampling/Counting Window.
 - Provides time series of multiple metrics.
 - e.g., number of packets received by a terminal each second.
- Observation Window.
 - Features/Characteristics extraction Window.
 - Uses multiple Sampling/Counting Windows,
 - Statistics of respective time series.
 - Provides a n-tuple characterizing an entity behavior at a specif time.
 - e.g., 2-tuple with mean and variance of the number of packets received by a terminal in 30 seconds (30 counting 1s windows).
- Entity Profile
 - Pattern from multiple Observation Windows.
 - Provides a model to classify entities and detect anomalies.
 - May include time dynamics over time.

N-Dimensional Features Space

- A features' n-tuple defines a point in a N-Dimensional space that describes an entity behavior at a specific time.
- Allows to detect and define repetitive events and evolution over time.
- Allows to classify and discriminate behaviors.
- Allows to detect anomalies.

Data Formats

- The ideal data format is a n-tuple per time interval.
 - n metrics measured over time (n per observation).
 (x1,x2,x3,x4,..,xn)_k
 - Bi-dimensional data structure (time x metrics).
 - Optimal storing digital format:
 - Binary storage (array/matrix).
 - Sparse matrices could be advantageous.
 - Usage of fixed formats with integer indexes.
 - Avoid complex data structures with complex indexing of data, e.g.: python dictionaries.
 - Text formats are acceptable only in test scenarios.
 - Non-relational databases could also be an option.

Observation Window (1)

- An observation is constructed based on multiple sampling/counting metrics.
- Sampling/counting metrics should <u>quantify</u> activity events:
 - Start/End of activity.
 - Traffic Flows, Calls, Service usage, etc...
 - Amount of activity.
 - Traffic per sampling interval, activity duration, actions per sampling interval, etc...
 - Activity targets
 - → IP addresses contacted, UCP/TCP ports used, services user IDs, points of access, etc...

Observation Window (2)

decision

decision

Sequential

Decision interval is equal to

window size.

decision

decision

decision

Sliding

Allows for longer periods of observation, while maintaining a short period of decision.

time

decision

Multiple Observation Windows

- At each decision time point.
 - Construct observation widows with different lengths.

Entity Profiling

Characterization of the observation windows after multiple observations.

Profile Comparison

- A profile allows to:
 - Classify entity into groups,
 - Groups may be known or inferred.

Profile

- Group "similar" entities ,
- Detect anomalous behaviors,
- Predict future events.

Observation Features

- Time-independent descriptive statistics.
 - Mean, variance, quantiles, etc...
- Time-dependent descriptive statistics.
 - Time-relations between metrics over time
 - → E.g., length of silences [number of sampling slots with metric equal to zero], length of activity [number of sampling slots with metric greater than zero], etc...
 - (Pseudo-)Periodicity components.
 - Time dependent.
 - Time multi-fractality (repetition of "similar events" in multiple time-scale).
 - → Auto-correlation, FFT, CWT, DWT, and other spectral/frequency analysis.
- (Parameters of) Probabilistic functions/models.
 - Base function/model may be time independent or time dependent.

Descriptive Statistics (1)

For a (equally) sampled-continuous time process:

$$X = \{x'_t = x_k, T_0 + k\Delta t \le t < T_0 + (k+1)\Delta t, k = 1, 2, \dots, N\}$$

- Mean: $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$
- Median: $m_d = F^{-1}(0.5)$
- Variance: $Var(X) = \sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i \mu)^2$
- nth Central Moment: $m_n = \frac{1}{N} \sum_{i=1}^{N}^{i=1} (x_i \mu)^n$
- Quantiles/Percentiles

$$Y = \{y_j\}_{1 \le j \le N} = \operatorname{sorted}(\{x_k\}_{1 \le k \le N})$$

- ◆ 64th percentile (64%)=0.64 quantile
- Quartiles: 25%, 50%, and 75%

Descriptive Statistics (2)

Skewness:

 Measure of the asymmetry of the probability distribution about its mean.

• Excess Kurtosis:

- Measure of the "tailedness" of the probability distribution.
 - "-3" constant is used to normalize kurtosis to zero for a normal distribution.

$$k = \frac{m_4}{\sigma^4} = \frac{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^4}{\left[\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)^2\right]^2} - 3$$

Descriptive Statistics (3)

Covariance

Metric that quantifies how much two random variables have simultaneous variations:

$$Cov_{X,Y} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_X)(y_i - \mu_Y)$$

- Correlation coefficient
 - Normalized covariance, varies between -1 and 1:

$$\rho_{X,Y} = \frac{\text{Cov}_{X,Y}}{\sigma_X \sigma_Y} \quad \sigma_X = \sqrt{\text{Var}(X)}$$

- Correlation matrix
 - Defined by a (MxM) matrix, to quantify the correlation between M variables X;

$$C = \{c_{i,j}\}, i, j = 1, \dots, M$$

 $c_{i,j} = \rho_{X_i, X_j}$

universidade de aveiro

Periodicity Analysis (1) Autocorrelation

- Autocorrelation
 - Correlation between the process and a shifted version (in time, by k samples) of the same process:

$$r_k = \frac{\sum_{i=1}^{N-k} (x_i - \mu_X)(x_{i+k} - \mu_X)}{\sum_{i=1}^{N} (x_i - \mu_X)^2}$$

- Autocorrelation local maximums (peaks), reveal periodicity.
 - Differences between positions (k) of local maximums give periodicity.

Periodicity Analysis (2) Periodograms

- Periodogram
 - ◆ Frequency analysis → Spectral density estimation: Energy per frequency.
 - Given by the modulus squared of the discrete Fourier transform.
 - → For a signal x_i sampled every Δt :

$$S(f) = \frac{\Delta t}{N} \left| \sum_{n=1}^{N} x_n e^{-j2\pi nf} \right|^2, -\frac{1}{2\Delta t} < t \le \frac{1}{2\Delta t}$$

 The inverse of the frequencies with higher energy give the different periods (of periodicity).

Periodicity Analysis (3) Scalograms

- Scalogram
 - Joint Frequency/Time analysis → Wavelet Analysis
 - Energy per frequency/time.

$$\Psi_x^{\psi}(\tau, s) = \frac{1}{\sqrt{|s|}} \int_{+\infty}^{-\infty} x(t) \psi^*(\frac{t - \tau}{s}) dt$$

Wavelet functions

$$\psi^*(t)$$

Periodicity Analysis (4) Scalograms

• Given by the normalized modulus squared of the Wavelet transform. $|\nabla \psi(\tau, s)|^2$

$$\hat{E}_x(\tau, s) = \frac{\left|\Psi_x^{\psi}(\tau, s)\right|^2}{\sum_{\tau' \in \mathbf{T}} \sum_{s' \in \mathbf{S}} \left|\Psi_x^{\psi}(\tau', s')\right|^2}$$

Averaged over time.

$$\bar{e}_x(s) = \frac{1}{|\mathbf{T}|} \sum_{\tau \in \mathbf{T}} \hat{E}_x(\tau, s), \forall s \in \mathbf{S}$$

Stochastic Process

 A collection of variables indexed by a time variable, representing the evolution of some system over time.

$$X = \{x_t = a, t \in T\}$$

- Discrete variables: $a \in A, A = \{\alpha_1, \alpha_2, \dots, \alpha_S\}$
- Continuous variables: $a \in \mathbb{R}$
- Discrete time: $T = \{T_0 + k\Delta t, k \in \mathbb{N}_0\}$
- Continuous time: $T = \mathbb{R}_0$
- A continuous time process never exists in practice, what exists is a Sample-Continuous time process:

$$x_t = x'_{T_k}, t \in \mathbb{R}, T_k \le t < T_{k+1}$$

Multivariate Stochastic Processes

Variables belong to a multidimensional space of dimension N.

$$X = \{x_t = \vec{a}, t \in T\}$$

Discrete variables:

$$\vec{a} \in A, A = {\{\vec{\alpha}_1, \vec{\alpha}_2, \dots, \vec{\alpha}_S\}, \vec{\alpha}_i \in \mathbb{R}^N}$$

Continuous variables:

$$\vec{a} \in \mathbb{R}^N$$

Probability Functions (1)

Discrete

- Probability Mass Function (PMF)
- $\sum_{\forall a \in A} \mathrm{pmf}_X(a) = 1$

Continuous

- Probability Density Function (PDF)
- $f_X(a) = Pr[X = a], a \in \mathbb{R}$
- $\int_{-\infty}^{+\infty} f_X(x) dx = 1$
- Cumulative Density Function (CDF)
- $F_X(a) = Pr[X \le a] = \int_{-\infty}^a f_X(x) dx$

Probability Functions (2)

- Inference and interpretation
 - Histogram with bins $B = \{b_1, b_2, \dots, b_{M+1}\}$

$$n_i = \text{count}(b_i \le X < b_{i+1}), i = 1, 2, \dots, M$$

$$f_X(a) = \frac{n_i}{N(b_{i+1} - b_i)}, \exists i, b_i \le a < b_{i+1}$$

$$F_X(a) = \sum_{i=1}^{j} \frac{n_i}{N(b_{i+1} - b_i)}, \max_j : a < b_{j+1}$$

Statistical Univariate Distributions

- Most commonly used distributions:

- Continuous
 - Uniform: $f_X(a) = \begin{cases} \frac{1}{a_{\max} a_{\min}}, a \in [a_{\min}, a_{\max}] \\ 0, \text{otherwise} \end{cases}$
 - Normal/Gaussian: $f_X(a) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(a-\mu)^2}{2\sigma^2}}$
 - Exponential: $f_X(a) = \lambda e_{1.6}^{-\lambda a}$

Multivariate Distributions

- Joint probability of a multidimensional variable.
- Incorporates correlation (ρ) between dimensions.
- E.g., 2-Dimensions Gaussian:

$$f_X((a_1, a_2)) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{z}{2(1-\rho^2)}}$$

$$z = \frac{(a_1 - \mu_1)^2}{\sigma_1^2} - \frac{2(a_1 - \mu_1)(a_2 - \mu_2)}{\sigma_1 \sigma_2} + \frac{(a_2 - \mu_2)^2}{\sigma_2^2}$$