BLOCK MATRIX MULTIPLICATION

WHY SHOULD WE CARE?

$$\mathbf{S} = \mathbf{Q}\mathbf{K}^{\top} \in \mathbb{R}^{N \times N}, \quad \mathbf{MASSMARISMEN}, \quad \mathbf{O} = \mathbf{K}\mathbf{V} \in \mathbb{R}^{N \times d},$$
 Let's ignore the softmax for a

Suppose for a moment that we wont to do the following operation

$$Q = \begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \\ Q_4 \\ (4,1) \end{bmatrix}$$

	2,128)×(123, 2) =(2.1	-)		
	(Q, K,	Q, K2	Q, K3	Q, K4	
S=	Q ₂ K,	Q, K,	Q ₂ K ₃	Q ₂ K ₄	
	Q ₃ K ₁	Q3K2	Q, K,	Q ₃ k ^r 4	
	Q,K,	Q _u K _z	اعرائه	Q_{i} k_{ij}	
	ORIGINAL = (8,8) BLOCK = (4,4)				

Let's muttiply by V

	Q, W,	Q, K,	Q, K3	Q, K4	
S=	Q ₂ K ⁷ 1	$Q_2 K_2^T$	$Q_2 K_3^{T}$	Q ₂ K ^T 4	
	Q ₃ K ₁	Q3 K2	Q, K,	Q ₃ K ₄	
	Q,K,	QuKz	Q, kz	$Q_{i}W_{ij}$	
	ORIGINAL = (8,8) BLOCK = (4,4)				

PSENDO CODE

```
FOR EACH BLOCK Q; O_i = 2 \text{EROES}(2,128) // \text{OUTAT IS INVIALLY BEROES}
FOR EACH BLOCK k_J
O_i \leftarrow O_i + \left(Q_i k_J^2\right)^{V_J}
END FOR
END FOR
```

WAIT... What happened to the SOFTMAX?

Let's restore it... with a twist!

	(2,128)×(123, 2)=(2.2)					(2,128)×(123, 1) = (2.1)			
	QK	Q, KZ	Q, K3	Q, K,		Pn	Piz	Pis	Pin
S=	Q ₂ K,	Q2 K2	Q ₂ K ₃	Q2 K4	SOFT MAX* P =	P21	P22	P23	P24
	Q, Ki	Q3 K2	Q, k ^z ,	Q ₃ K ₄		P31	P ₃₂	P33	P34
	Q,K,	QuKz	٩لړ	$Q_{\iota_{\iota}} \vec{k}_{\iota_{\iota}}$		Pul	Puz	Puz	P44
	ORIGINAL = (8,8) BLOCK = (4,4)					origi Bloca	NAL = (8,8) 4,4)	

* Note: Pi= soft max* (Q, K,)

Piz = noft max* (Q, K,)

etc...

This is a 2×2 matrix

Let's multiply by V

WRONG!

BEEN INDIPENDENTLY CALCULATED,
SO THE MAX FLENENT FOR EACH ROW
WEACH BLOCK IS NOT THE
GLOBAL FOR EACH ROW, BUT THE
ONE LOCAL TO EACH BLOCK

PSEUDO CODE

FOR EACH BLOCK Q;

O: = 2ENOES(2,128) // OUTANT IS INVITALLY REFORES

FOR EACH BLOCK KJ

O: <-O: + P3 VJ

END FOR

HOW CAN WE FIX THE PREVIOUS

ITERATION'S OUTPUT?

IF ONLY WE HAD A WAY TO FIX THE SOFTMAX...

THE ONLINE SOFTMAX

$$M_0 = -\infty$$
 $l_0 = 0$

for $i = 1$ to N
 $m_i = \max(m_{i-1}, X_i)$
 $l_i = l_{i-1} \cdot e^{m_{i-1} - m_i} + e^{X_i - m_i}$

for $N = 1$ to N
 $N \leftarrow e^{N}$

THE IDEA

IF WE CAN "FIX" THE

SOFTMAX WHILE ITERATING ON

A ROW, WE CAN ALSO FIX

BLOCKS OF ROWS, SINCE

THE SOFTMAX IS APPLIED

INDEPENDENTLY TO EACH

ROW

Let's see how to apply
the omline softmax here...

O1 = P11V1 + P12V2 + P13V3 + P14V4 WE NEED TO FIX THESE

FOR EACH BLOCK Q; $O_i = 2\text{EROES}(2,129) // \text{ output is invitably series}$ $FOR EACH BLOCK <math>K_J$ $F_S = \text{cmf}^3 \text{cmax}(G_1 K_3)$ $O_i \leftarrow O_i + F_S V_J$ END FOR

INITIALIZATION

$$M_0 = \begin{bmatrix} -\infty \\ -\infty \end{bmatrix}$$

$$l_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$0_0 = \begin{bmatrix} 0 & 0 & \dots & 00 \\ 0 & 0 & \dots & 00 \end{bmatrix}$$
2x129 matrix

STEP 1

TEP
$$\Delta$$
 $M_1 = \max(\text{row}\max(Q_1 k_1), M_0)$
 $S_1 = Q_1 k_1^T$
 $C_1 = \text{row}\sup[\exp(S_1 - m_1)] + C_0 \cdot \exp(m_0 - m_1)$
 $C_1 = \exp(S_1 - m_1)$
 $C_1 = \exp(\exp(m_0 - m_1)) \cdot C_0 + C_1 V_1$

STEP 2

$$m_2 = \max(\text{row}\max(Q_1 k_1^2), m_1)$$

 $S_2 = Q_1 k_2^T$
 $l_2 = \text{row}\sup[\exp(S_2 - m_2)] + l_1 \cdot \exp(m_1 - m_2)$
 $\rho_{12} = \exp(S_2 - m_2)$
 $O_1 = \text{diag}(\exp(m_1 - m_2))O_1 + \rho_{12} V_2$

AND SO ON UNTIL THE LAST STEP. THEN, WE APPLY THE "R" NORMALIZATION FACTOR.

STEP 5

$$O_5 = \left[\text{olig}(\ell_u) \right]^{-1} O_4$$

Algorithm 1 FlashAttention-2 forward pass

```
Require: Matrices \mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d} in HBM, block sizes B_c, B_r.
```

- 1: Divide **Q** into $T_r = \left[\frac{N}{B_r}\right]$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \left[\frac{N}{B_c}\right]$ blocks
- $\mathbf{K}_1, \dots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \dots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each. 2: Divide the output $\mathbf{O} \in \mathbb{R}^{N \times d}$ into T_r blocks $\mathbf{O}_i, \dots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, and divide the logsum exp Linto T_r blocks L_i, \ldots, L_{T_r} of size B_r each.
- 3: for $1 \le i \le T_r$ do FOR EACH Q; BLOCK
- Load \mathbf{Q}_i from HBM to on-chip SRAM.
- On chip, initialize $\mathbf{O}_i^{(0)} = (0)_{B_r \times d} \in \mathbb{R}^{B_r \times d}, \ell_i^{(0)} = (0)_{B_r} \in \mathbb{R}^{B_r}, m_i^{(0)} = (-\infty)_{B_r} \in \mathbb{R}^{B_r}.$ for $1 \leq j \leq T_c$ do FOR EACH K3 BLOCK Load $\mathbf{K}_j, \mathbf{V}_j$ from HBM to on-chip SRAM. 5:
- 6:
- 7:
- On chip, compute $\mathbf{S}_i^{(j)} = \mathbf{Q}_i \mathbf{K}_j^T \in \mathbb{R}^{B_r \times B_c}$. 8:
- On chip, compute $m_i^{(j)} = \max(m_i^{(j-1)}, \operatorname{rowmax}(\mathbf{S}_i^{(j)})) \in \mathbb{R}^{B_r}$, $\tilde{\mathbf{P}}_i^{(j)} = \exp(\mathbf{S}_i^{(j)} m_i^{(j)}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\ell_i^{(j)} = e^{m_i^{j-1} m_i^{(j)}} \ell_i^{(j-1)} + \operatorname{rowsum}(\tilde{\mathbf{P}}_i^{(j)}) \in \mathbb{R}^{B_r}$.

 On chip, compute $\mathbf{O}_i^{(j)} = \operatorname{diag}(e^{m_i^{(j-1)} m_i^{(j)}})^{-1} \mathbf{O}_i^{(j-1)} + \tilde{\mathbf{P}}_i^{(j)} \mathbf{V}_j$.
- 10:
- end for 11:
- On chip, compute $\mathbf{O}_i = \operatorname{diag}(\ell_i^{(T_c)})^{-1} \mathbf{O}_i^{(T_c)}$. 12:
- On chip, compute $L_i = m_i^{(T_c)} + \log(\ell_i^{(T_c)})$. 13:
- Write \mathbf{O}_i to HBM as the *i*-th block of \mathbf{O} . 14:
- Write L_i to HBM as the *i*-th block of L. 15:
- 16: end for
- 17: Return the output $\mathbf{0}$ and the logsum exp L.