

실험 보고서

No.	학번	이름
조		
1		
2		
3		
4		
5		

2016년 12월 8일

실험 목적

- 광 측정 센서(cds : 광도전셀)를 사용하기 위한 회로를 구성한다.
- PUT 을 이용하여 스피커를 동작시킨다

실험 내용

- 온도센서 회로 구성
 - 간단한 온도센서 회로 구성
- PUT을 이용하여 스피커를 동작
 - 전압에 변화에 따른 스피커 구성

준비물

- 파워 서플라이
- 오실로스코프
- 트랜지스터 (npn)
- 저항
- CSD(광센서)
- 브레드보드
- 기타 공구
- 스피커

- 디지털 멀티미터
- PUT(prgramerble uijuction trngester
- OP-AMP(LM324)
- 커패시터
- LED
- 점퍼 케이블

1. CDS

CDS (GL5537)

- 광도전 셀

Туре	Max. Voltage	Max. power	Environmental temp.	Spectrum peak value	
GL5516	150	90	-30~+70	540	
GL5528	150	100	-30~+70	540	
GL5537-1	150	100	-30~+70	540	
GL5537-2	150	100	-30~+70	540	

1. CDS (3)

◎ 실험 1

- 회로를 구성 전에 CDS 센서를 어두운 곳과 밝은 곳에서 멀티미터로 저항을 측정하여 차이를 비교해 보시오.

- A의 파형의 변화에 대해 서술하시오.

2. PUT를 이용한 스피커 작동

PUT(Programmable Unijunction Transistor) – 2N6027

MAXIMUM RATINGS (T_{.1} = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Dissipation* Derate Above 25°C	P _F 1/θ _{JA}	300 4.0	mW mW/°C
DC Forward Anode Current* Derate Above 25°C	I _T	150 2.67	mA mA/°C
DC Gate Current*	I _G	±50	mA
Repetitive Peak Forward Current 100 μs Pulse Width, 1% Duty Cycle 20 μs Pulse Width, 1% Duty Cycle*	I _{TRM}	1.0 2.0	Α
Non-Repetitive Peak Forward Current 10 μs Pulse Width	I _{TSM}	5.0	Α
Gate to Cathode Forward Voltage*	V_{GKF}	40	V
Gate to Cathode Reverse Voltage*	V_{GKR}	-5.0	٧
Gate to Anode Reverse Voltage*	V_{GAR}	40	٧
Anode to Cathode Voltage* (Note 1)	V _{AK}	±40	V
Capacitive Discharge Energy (Note 2)	E	250	μJ
Power Dissipation (Note 3)	P _D	300	mW
Operating Temperature	T _{OPR}	-50 to +100	°C
Junction Temperature	TJ	-50 to +125	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

*Indicates JEDEC Registered Data

 Anode positive, R_{GA} = 1000 Ω Anode negative, R_{GA} = open

2. E = 0.5 • CV² capacitor discharge energy limiting resistor and repetition.

3. Derate current and power above 25°C.

PUTs 40 VOLTS, 300 mW

PIN ASSIGNMENT		
1	Anode	
2	Gate	
3	Cathode	

3. PUT을 이용한 스피커 작동

◎ 실험 3

- 박자가 있는 형태의 출력 만들기

- Vcc(4~6V)를 인가하였을 때 스피커의 변화에 대하여 설명하시오.
 - 커패시터의 용량을 변경하여 차이점에 대해 설명하시오.