False Discovery Rate Control using Covariates

Kyurhi Kim

Seoul National University

November 12, 2023

Contents

- False Discovery Rate
- 2 Local FDR

- 3 FDR control using covariates
 - AdaPT
 - CAMT

False Discovery Rate

Kyurhi Kim (SNU) SNU November 12, 2023 3/39

Multiple testing

• conduct m hypothesis tests simultaneously

$$H_{0i}$$
 vs H_{1i} , $i = 1, 2, ..., m$

• Issue : How can we control type I error in multiple testing?

	H0 retained	H0 rejected	Total
Actual H0	TN	FP	<i>T</i> 0
Actual H1	FN	TP	T1
Total	N	Р	m

Multiple testing

- **FWER** : $\mathbb{P}(FP > 0)$
 - Bonferroni gaurantees $\mathbb{P}\left(\mathrm{FP}>0\right)\leq\alpha$
 - the resulting thresholds often suffer from low power
- FDR control is suggested to increase power while maintaining some threshold on error

Kyurhi Kim (SNU) SNU November 12, 2023 5/

False Discovery Rate

• False Discovery Proportion (FDP): proportion of false discoveries among total rejections

$$FDP(t) = \frac{\text{number of False Positives}}{\text{number of Positives}} = \frac{FP}{P}$$

False Discovery Rate (FDR): expected FDP

$$\mathsf{FDR} = \mathbb{E}\left(\mathsf{FDP}(\mathsf{t})\right)$$

Benjamini-Hochberg Procedure

BH procedure step

- Sort the p-values and give the smallest p-value rank 1: $p_1, p_2, ..., p_m$
- ② Compute BH-critical value $(\frac{i}{m}\alpha)$ for each p-value alpha: desired false discovery rate
 - i: the rank
 - m: the total number of p-values
- Find the largest i for which the p-value is less than the corresponding critical value
- **①** Let k be the largest i s.t. $p_{(i)} \leq \frac{i}{m}\alpha$, then reject hypotheses 1,...,k

8/39

 From a Bayesian perspective, it is natural to conditioning on the actual value of z, in other words

$$\mathbb{P}(H_{0j}|z_j=z)$$

• Efron et al(2001), Newton et al. proposed the local false discovery rate as

$$\mathbb{P}(H_{0j}|z_j=z)=\frac{\pi_0f_0(z_j)}{f(z_j)}$$

where $f(z) = \pi_0 f_0(z) + \pi_1 f_1(z)$ is the marginal density of z-values and $f_0(z)$ is the null density, and π_0 is proportion of genes that are not differently expressed

posterior probability of gene j being not differentially expressed

$$\tau_0(z_j) = \mathbb{P}(\text{jth gene is null}|z_j)$$

$$= \frac{\pi_0 f_0(z_j)}{f(z_j)}$$

$$= \frac{\pi_0 f_0(z_j)}{\pi_0 f_0(z_j) + (1 - \pi_0) f_1(z_j)}$$

10 / 39

local fdr procedure

Obtain the z-score for each of the genes

$$z_j = \Phi^{-1}(1-p_j)$$

- ② Rank the genes on the basis of the z-scores, starting with the largest ones
- **1** The posterior probability of non-differential expresison of gene j, is given by $\tau_0(z_j)$
- **②** Conclude gene j to be differentially expressed if $\widehat{ au_0}(z_j) < c_0$

11/39

Kyurhi Kim (SNU) SNU Novemb

FDR control using covariates

FDR control using covariates

- for each hypothesis H_i , $i \in [n]$ observe not only a p-value $p_i \in [0, 1]$ but also a predictor x_i lying in some generic space χ
- Unlike p_i , x_i carries only indirect information about the hypothesis i.e. capture some side information

13/39

AdaPT: adaptive p-value thresholding

• AdaPT(adaptive p-value thresholding) is a iterative method for FDR control with general side information

```
Algorithm 1 AdaPT
Input: predictors and p-values (x_i, p_i)_{i \in [n]}, initialization s_0, target FDR level \alpha
Procedure:

1: for t = 0, 1, \ldots do

2: \widehat{\text{FDP}}_t \leftarrow \frac{1+A_t}{R_t \vee 1};

3: if \widehat{\text{FDP}}_t \leq \alpha then

4: Reject \{H_i: p_i \leq s_t(x_i)\};

5: Return s_t;

6: end if

7: s_{t+1} \leftarrow \text{UPDATE}((x_i, \tilde{p}_{t,i})_{i \in [n]}, A_t, R_t, s_t);

8: end for
```

Figure: algorithm of AdaPT

AdaPT procedure

• For each step t=0,1,2,... consider rejection threshold at step t: $s_t(x)$, and compute:

$$R_t = |i: p_i \le s_t(x_i)|$$

$$A_t = |i: p_i \ge 1 - s_t(x_i)|$$

$$F\hat{\mathsf{DP}}_t = \frac{1 + A_t}{R_t \vee 1}$$

- If $\widehat{\mathsf{FDP}}_t \leq \alpha$, procedure stop and the set of R_t is returned (i.e. reject $\{H_i : p_i \leq s_t(x_i)\}$)
- Otherwise, update the rejection threshold under two protocols, and continue
 - rejection threshold must be more stringent : $s_{t+1}(x_i) \leq s_t(x_i)$
 - ② partially mask the p-values determining R_t and A_t

$$\widetilde{p}_{t,i} = egin{cases} p_i, & \text{if } s_t(x_i) < p_i < 1 - s_t(x_i) \ \{p_i, 1 - p_i\}, & \text{otherwise} \end{cases}$$

AdaPT procedure

• To select
$$s_{t+1}(x)$$
,
$$\begin{cases} x_1, x_2, ..., x_n \\ \widetilde{p}_{t,1}, ..., \widetilde{p}_{t,n} \\ A_t, R_t \end{cases}$$

any such update rule is OK

• AdaPT procedure repeats by estimating FDP and updating the threshold until the target FDR level is reached: $\hat{\text{FDP}}_t \leq \alpha$ or $R_t = 0$

16/39

Figure: AdaPT(step0)

Figure: AdaPT(step1)

Kyurhi Kim (SNU) SNU November 12, 2023 18 / 39

Figure: AdaPT(step2)

19/39

Figure: AdaPT(step3)

Figure: AdaPT(step4)

21/39

AdaPT

Theorem1 (Lei and F, 2016)

Assume that

- null p-values are independent of each other and of the non-null p-values (i.e. $\{p_i : i = 1,...,n\}$ are independent)
- the null p-values are uniform or mirror conservative

Then the AdaPT procedure controls the FDR at level α , conditional on $(x_i)_{i=1}^n$ and $(p_i)_{i\notin H_0}$

22/39

AdaPT: How to choose thresholding rules?

- ullet Although AdaPT controls FDR at level lpha, its power depends on the quality of the updates
- Assume a two groups model conditional on the predictors x_i, and we assume:

$$H_i|x_i \sim \mathsf{Bernoulli}(\pi_1(x_i))$$

$$p_i|H_i,x_i \sim \begin{cases} f_0(p|x_i) \text{ (i.e. Unif)}, & \mathsf{if } H_i = 0 \\ f_1(p|x_i), & \mathsf{if } H_i = 1 \end{cases}$$

• Also, assume that (x_i, H_i, p_i) are independent for $i \in [n]$

Thresholding rules: two-groups model and local fdr

define the conditional mixture density

$$f(p \mid x) = (1 - \pi_1(x))f_0(p \mid x) + \pi_1 f_1(p \mid x) = 1 - \pi_1(x) + \pi_1(x)f_1(p \mid x)$$

and define the conditional local fdr

$$fdr(p \mid x) = \mathbb{P}(H_i \text{is null } | x_i = x, p_i = p) = \frac{1 - \pi_1(x)}{f(p \mid x)}$$

• Unless $f_1(p|x)$ is known a priori, it is possible to make the conservative identifying assumption that

$$1 - \pi_1(x) = \inf_{p \in [0,1]} f(p \mid x) = f(1 \mid x)$$

attributing as many observations as possible to the null hypothesis

• then, estimate

$$\widehat{fdr}(p \mid x) = \frac{\widehat{f}(1 \mid x)}{\widehat{f}(p \mid x)}$$

optimal threshold under the two groups model

Theorem2 (Lei and F, 2016)

Assume that

- $f_1(p \mid x_i)$ is continuously non-increasing, $f_0(p \mid x_i)$ is continuously non-decreasing, and uniformly bounded away from ∞
- ② probability measure ν on χ is a discrete measure supported on $x_1,...,x_n$ with $\nu(x_i: fdr(0 \mid x_i) < \alpha, fdr(0 \mid x_i) > 0) > 0$

Then $\max_{s} Pow(s; \nu)$ s.t. $FDR(s; \nu) \leq \alpha$ has at least a solution, and all solutions are level surfaces of local FDR

(note that $\mathsf{Pow}(\mathsf{s};\nu) = \mathbb{P}(\mathsf{H} \;\mathsf{is}\;\mathsf{rejected}\,|\,\mathsf{H}=1) = \mathbb{P}(P \leq s(X)\,|\,\mathsf{H}=1))$

EM to estimate $\pi_1(\cdot)$ and $\mu(\cdot)$ based on $D_t = (x_i, \widetilde{p}_{t,i})$

• To estimate local FDR, we need to estimate $\widehat{f}(p|x)$

```
Algorithm 2 EM algorithm to estimate \pi_1(\cdot) and \mu(\cdot) based on D_t = (x_i, \tilde{p}_{t,i})_{i \in [n]}

Input: data D_t, number of iterations m, initialization \hat{\theta}^{(0)}, \hat{\beta}^{(0)};

for r = 1, 2, \dots, m do

(E-step):

\hat{H}_i^{(r)} \leftarrow \mathbb{E}_{\hat{\theta}^{(r-1)}, \hat{\beta}^{(r-1)}}[H_i \mid D_t], \quad i \in [n];
\hat{y}_i^{(r,1)} \leftarrow \mathbb{E}_{\hat{\theta}^{(r-1)}, \hat{\beta}^{(r-1)}}[y_i H_i \mid D_t, H_i = 1]/\hat{H}_i^{(r)}, \quad i \in [n];
(M-step):
\hat{\theta}^{(r)} \leftarrow \text{glm}\left(\hat{H}^{(r)} \sim \phi_{\pi}(x), \text{ family = binomial}\right);
\hat{\beta}^{(r)} \leftarrow \text{glm}\left(\hat{y}^{(r,1)} \sim \phi_{\mu}(x), \text{ family = } \dots(1 \text{ink} = \zeta), \text{ weights = } \hat{H}^{(r)}\right);
end for

Output: \hat{\pi}_1(x) = \left(1 + e^{-\phi_{\pi}(x)'\hat{\theta}^{(m)}}\right)^{-1}, \quad \hat{\mu}(x) = \zeta^{-1}\left(\phi_{\mu}(x)'\hat{\beta}^{(m)}\right).
```

Figure: EM algorithm

Updating the threshold

For the previous model, level surfaces of the local FDR are given by

$$c = \frac{f(1|x)}{f(s(x)|x)} = \frac{\pi_1(x)h(1;\mu(x)) + 1 - \pi_1(x)}{\pi_1(x)h(s(x);\mu(x)) + 1 - \pi_1(x)}$$

• For various widely-used exponential families, $h(p; \mu)$ is decreasing w.r.t. p, in which case,

$$s(x;c) = f^{-1}(\frac{h(1;\mu(x))}{c} + \frac{1-\pi_1(x)}{\pi_1(x)} \frac{1-c}{c};\mu(x))$$

- Given a chosen local FDR level c, s_t can be evolved by $s_{t+1} = \min(s_t(x), s(x; c))$
- Choice of c can be computed in the following way
 - ullet Estimate local FDR for each $p_{t,i}^{'}$ where $p_{t,i}^{'}$ is the minimum element in $\widetilde{p}_{t,i}$)
 - Set c as the largest value of lfdr among all partially masked p-values

applying AdaPT

Number of Rejections (Gene/Drug Response)

Figure: AdaPT

AdaPT summary and limitation

- AdaPT: iteratively estimates the p-value thresholds using partially censored p-values
- However, AdaPT is computationally intensive and may suffer from significant power loss when the signal is sparse, and covariate is not very informative
- Zhang and Chen, 2020, proposed a new procedure to incorporate covariate information: Covariate Adaptive Multiple Testing (CAMT)

29 / 39

- Consider m hypotheses $H_i i = 1, 2, ..., m$ and corresponding p_i
- Consider two-component mixture model

$$H_i|x_i \sim \mathsf{Bernoulli}(1-\pi_{0i})$$

 $p_i|H_i,x_i \sim (1-H_i)f_0 + H_if_{1,i}$

• Optimal Rejection rule based on local fdr takes the form of

$$\frac{f_{1,i}(p_i)}{f_0(p_i)} \geq \frac{(1-t)\pi_{0i}}{t(1-\pi_{0i})}$$

where $t \in (0,1)$ is a cutoff value

30 / 39

- Since $f_{1,i}$ is unidentifiable without extra assumptions on its form, and consistent estimation of the decision rule is difficult, this paper suggested a rejection rule that can mimic some characteristics of the optimal rule
- ullet First, replace $rac{f_{1,i}}{f_0}$ by a surrogate function h_i which satisfy

$$egin{cases} h_i(p)>0 & ext{for p} \in [0,1] \ \int_0^1 h_i(p) dp = 1 \ ext{h is decreasing} \end{cases}$$

In this article, beta density is suggested

$$h_i(p) = (1 - k_i)p^{-k_i}, 0 < k_i < 1$$

where k_i is a parameter that depends on x_i

Based on the surrogate likelihood ratio, the rejection rule is given by

$$h_i(p_i) \geq w_i(t) := \frac{(1-t)\pi_i}{t(1-\pi_i)}$$

for some weights π_i to be determined later

- In this article, EM-type algorithm is proposed to estimate π_i and k_i . and model both π_i and k_i as functions of the covariate x_i
- Suppose

$$p_i|H_i, x_i \sim (1 - H_i)f_0 + H_i f_{1,i}$$

 $x_i|H_i \sim (1 - H_i)g_0 + H_i g_1$

where $H_i \stackrel{iid}{\sim} \mathsf{Bernoulli}(1-\pi_0)$

- Using Bayes rule, we have $f(p_i \mid x_i) = \pi(x_i) f_0(p_i) + (1 \pi(x_i)) f_{1,i}(p_i)$ where $\pi(x) = \frac{g_0(x)\pi_0}{g_0(x)\pi_0 + g_1(x)(1-\pi_0)} = f(H_i = 0 \mid x_i = x)$
- Therefore, π_i is the conditional probability that the ith hypothesis is under the null give the covariate x_i

• To motivate estimation procedure for π_i and k_i , let's define

$$\pi_{ heta}(x) = rac{1}{1 + e^{- heta_0 - heta_1' x}} ext{ and } k_{eta}(x) = rac{1}{1 + e^{-eta_0 - eta_1' x}}$$

• Conditional on x_i and marginalizing over H_i ,

$$f(p_i | x_i) = \pi_{\theta}(x_i) f_0(p_i) + (1 - \pi_{\theta}(x_i)) f_{1,i}(p_i)$$

$$= f_0(p_i) \left\{ \pi_{\theta}(x_i) + (1 - \pi_{\theta}(x_i) \frac{f_{1,i}(p_i)}{f_0(p_i)}) \right\}$$

• Replacing $\frac{f_{i,i}}{f_0}$ by surrogate likelihood ratio whose parameters k_i depend on x_i ,

$$\widetilde{f}(p_i|x_i) = f_0(p_i) \left\{ \pi_{ heta}(x_i) + (1 - \pi_{ heta}(x_i)(1 - k_{eta}(x_i))p_i^{-k_{eta}(x_i)}
ight\}$$

• Take a log scale and summing up the individual log likelihoods, null density is a nuisance parameter that does not depend on θ and β :

$$\sum_{i=1}^m log \widetilde{f}(p_i|x_i) = \sum_{i=1}^m log \left\{ \pi_{\theta}(x_i) + (1 - \pi_{\theta}(x_i)(1 - k_{\beta}(x_i))p_i^{-k_{\beta}(x_i)} \right\} + C_0$$
 where $C_0 = \sum_{i=1}^m log f_0(p_i)$

 Above discussions motivate the following optimization problem for estimating the unknown parameters

$$\max_{\theta = (\theta_0, \theta_1)' \in \Theta, \beta = (\beta_0, \beta_1)' \in \mathfrak{B}} \sum_{i=1}^m log\{\pi_i + (1 - \pi_i)(1 - k_i)p^{-k_i}\}$$

where
$$log(\frac{\pi_i}{1-\pi_i}) = \theta_0 + \theta_1^{'}x_i$$
, $log(\frac{k_i}{1-k_i}) = \beta_0 + \beta_1^{'}x_i$

 This can be solved using the EM algorithm together with the Newton's method in its M-step

Last Algorithm

$$\begin{split} \hat{\pi}_i &= W(1/(1+e^{-\tilde{\chi}_i'\hat{\theta}}), \epsilon_1, \epsilon_2) \\ &:= \begin{cases} \epsilon_1, & \text{if } 1/(1+e^{-\tilde{\chi}_i'\hat{\theta}}) \leq \epsilon_1, \\ 1/(1+e^{-\tilde{\chi}_i'\hat{\theta}}), & \text{if } \epsilon_1 < 1/(1+e^{-\tilde{\chi}_i'\hat{\theta}}) < 1 - \epsilon_2, \\ 1 - \epsilon_2, & \text{otherwise,} \end{cases} \\ &\text{and } \hat{k}_i = 1/(1+e^{-\tilde{\chi}_i'\hat{\beta}}) \text{ with } \tilde{x}_i = (1, x_i')', \text{ and} \\ &\hat{w}_i(t) = \frac{(1-t)\hat{\pi}_i}{t(1-\hat{\pi}_i)}. \\ \hat{t} &= \max \left\{ t \in [0,1] : \frac{1+\sum_{i=1}^m 1\{(1-\hat{k}_i)(1-p_i)^{-\hat{k}_i} > \hat{w}_i(t)\}}{1 \vee \sum_{i=1}^m 1\{(1-\hat{k}_i)p_i^{-\hat{k}_i} \geq \hat{w}_i(t)\}} \leq \alpha \right\}. \end{split}$$

- Use winsorization to prevent $\hat{\pi}_i$ from being too close to zero
- ullet In numerical studies, $\epsilon_1=0.1$ and $\epsilon_2=10^{-5}$ appeared to perform reasonably well
- ullet Then, reject the ith hypothesis if $(1-\widehat{k_i})p_i^{-\widehat{k_i}} \geq \widehat{w_i}(\widehat{t})$

Compare AdaPT vs CAMT

AdaPT

- use partially censored p-values to determine the threshold, which can discard useful information about the alternative distribution of p-values
- requires multiple stages
- Unknown whether it controls FDR with dependent p-values

CAMT

- use all the p-values to determine the threshold, and therefore exhibit more power when signal is sparse
- a single-stage procedure
- achieves asymptotic FDR control even when p-values are dependent

36 / 39

Figure: CAMT

Figure: CAMT

References

- Christopher R. Genovese, "A Tutorial on False Discovery Control", Department of Statistics Carnegie Mellon University
 - Bradely Efron and Robert Tibshirani, "Empirical Bayes Methods and False Discovery Rates for Microarrays", Genet Epidemiol. 2002 Jun;23(1):70-86. doi: 10.1002/gepi.1124.
- Lihua Lei and William Fithian, "AdaPT: An interactive procedure for multiple testing with side information", J. R. Statist. Soc.B (2018)80, Part 4, pp. 649–679
- R. Yurko, M. G'Sell, K. Roeder, and B. Devlin, "A selective inference approach for false discovery rate control using multiomics covariates yields insights into disease risk", PNAS, 2020 Jun; vol. 117 (26) 15028-15035
- X. Zhang and J. Chen, "Covariate Adaptive False Discovery Rate Control With Applications to Omics-Wide Multiple Testing", Journal of The American Statistical Association, 2022, vol.117 no.537,411-427