

Graphical Excellence

Principles

- 1. Graphical excellence is the well-designed presentation of interesting data---a matter of substance, of statistics, and of design.
- 2. Graphical excellence consists of complex ideas communicated with clarity, precision and efficiency.

Graphical Excellence

- 3. Graphical excellence is that which gives to the viewer the greatest number of ideas in the shortest time with the **least ink** in the **smallest space**
- Graphical excellence is nearly always multivariate.
- 5. And graphical excellence requires telling the truth about the data.

Summary of Tufte's Principles

- 1. Tell the truth Graphical integrity
- 2. Do it effectively with clarity, precision... Design aesthetics

Graphical Integrity

JOHNS HOPKINS

Engineering for Professionals

- 5 different vertical scales to show price
- 2 different
 horizontal
 scales to show
 time
 (based on
 comparison of
 image space
 units to value
 changes)

Avoid Distortion

18mpg in 1978, 0.6 inch line

27.5 mpg in 1985, 5.3 inch line

Measuring Misrepresention

Visual attribute value should be directly proportional to data attribute value

Size of effect shown in graphic

Lie factor =

Size of effect in data

- Effect in data: 27.5 18.0 / 18.0 = 53% increase
- Effect in Image: 5.3 0.6 / 0.6 inches = 783%
- Lie = 783 / 53 = 14.8

Size Encoding

Don't use areas (or volume) to show one dimensional data

More generally, the number of information carrying dimensions <= number of data dimensions

Summary of Tufte's Principles

- 1. Tell the truth Graphical integrity
- 2. Do it effectively with clarity, precision... Design aesthetics

2. Design Aesthetics

 Set of principles to help guide designers in arriving at a visually pleasing result that properly conveys the data

JOHNS HOPKINS

Design Principles

Maximize data-ink ratio

= proportion of graphic's ink devoted to the non-redundant display of data-information

Relationship of Actual Rates of Registration to Predicted Rates (104 cities 1960).

Example

Maximize Data Density

Maximize data density and the size of the data matrix within reason

Data Density Examples

Maximize data density and the size of the data matrix within reason

181 numbers / square inch

NEW YORK CITY'S WEATHER FOR 1980

New York Times, January 11, 1981, p. 32.

Design Principles

Avoid 3D

- Data is multivariate
- Doesn't necessarily mean 3D projection

How can we enhance mulitvariate data on inherently 2D

surfaces?

Tufte's-Macro/Micro

Provide the user with both views (overview + detail)

Carefully designed view can show a macro structure (overview) as well as micro structure (detail) in one space

Conclusion

- To achieve graphical excellence we must consider integrity and design
- Design principles must be followed to create effective visualizations

© The Johns Hopkins University 2016, All Rights Reserved.