Sistema Inteligente de Preprocesamiento, Seguimiento y Predicción de Trayectorias de Objetivos para un Director Optrónico

Diego Alberto Guevara Amaya, Facultad de Ingeniería, Universidad Tecnológica de Bolívar

INTRODUCCIÓN

Los Directores Optrónicos son componentes esenciales para la defensa, la seguridad y la vigilancia en Colombia. Sin embargo, la dependencia de tecnología extranjera para estos sistemas genera limitaciones en términos de costos, autonomía y capacidad de adaptación a las necesidades reales del país, poniendo en riesgo la seguridad nacional y la eficiencia operativa.

El desarrollo de un sistema nacional de preprocesamiento, seguimiento y predicción de trayectorias de objetivos para directores optrónicos tiene el potencial de solucionar estas limitaciones y generar múltiples beneficios. Esta iniciativa estratégica no solo reduciría costos y aumentaría la autonomía tecnológica, sino que también permitiría innovación de soluciones hechas a la medida de los sistemas actuales, bajo las condiciones reales de operación, contribuyendo significativamente al avance tecnológico y la defensa nacional del país.

MATERIALES Y MÉTODOS

Este proyecto propone el desarrollo de un sistema inteligente de preprocesamiento, seguimiento y predicción de trayectorias de objetivos para un director optrónico de manufactura colombiana. El sistema utilizará técnicas de visión computarizada, aprendizaje automático y análisis de datos para lograr un seguimiento preciso y predicciones confiables de la trayectoria de los objetivos.

- 1. Preprocesamiento de imágenes: Se implementará un módulo de preprocesamiento para mejorar la calidad de las imágenes capturadas por el director optrónico, eliminando ruido, mejorando el contraste y corrigiendo distorsiones
- 2. Seguimiento de objetivos: Se aplicarán algoritmos de seguimiento de objetivos robustos, como KLT y YOLO, para identificar y seguir objetos en tiempo real, incluso en entornos complejos y dinámicos.
- 3. Predicción de trayectorias: Se utilizarán filtros de Kalman y modelos basados en redes neuronales recurrentes (RNN) y redes neuronales de memoria a largo plazo (LSTM) para predecir la posición futura de los objetivos con alta precisión.
- 4. Arquitectura de software integrada: Se diseñará una arquitectura de software modular que integre los módulos de preprocesamiento, seguimiento y predicción, garantizando un funcionamiento eficiente en tiempo real.

CONCLUSIÓN

El desarrollo de este sistema representa un avance significativo para Colombia, al reducir la dependencia de tecnología extranjera, mejorando la eficiencia operativa y fortaleciendo las capacidades tecnológicas en visión computarizada y sistemas optrónicos, posicionándose como un actor líder en la región. Además de generar ahorros de recursos y mejoras en los sistemas de defensa, también abrirá nuevas oportunidades para el desarrollo de tecnologías innovadoras y el crecimiento económico del país.

CITAS BILIOGRÁFICAS

- 1. Carlos Arana. Redes neuronales recurrentes: Análisis de los modelos especializados en datos secuenciales. Serie Documentos de Trabajo 797, Buenos Aires, 2021.
- 2. Cédric Bernier, Samuel Nowakowski, and Anne Boyer. Target tracking in the recommendation space toward a new recommender system based on kalman filtering. page 57 64, 2011.
- 3. Agrim Gupta, Justin Johnson, Socially acceptable trajectories with generative adversarial networks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2255–2264, 2018.
- 4. Ting Kong, Weili Fang, Peter E.D. Love, Hanbin Luo, Shuangjie Xu, and Heng Li. Computer vision and long short-term memory: Learning to predict unsafe behaviour in construction. Advanced Engineering.
- 5. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks, 2016.
- 6. Miguel Angel Maestre Trueba. Seguimiento de personas mediante visión por computador para aplicaciones de control de personal. 2015.

RECONOCIMIENTOS

A la Jefatura Integral de Educación Naval de la Armada Nacional de Colombia, por el apoyo económico brindado para la realización de la maestría.

Al Grupo de Investigación en Tecnologías Aplicadas y Sistemas de Información (GRITAS), de la Universidad Tecnológica de Bolívar, que apoya el desarrollo de este proyecto.

INFORMACIÓN ADICIONAL

Para más información consulte el repositorio https://acortar.link/JnSEKR

Dudas y comentarios e-mail: guevarad@utb.edu.co

