סיבוכיות

הגדרות בסיסיות

מחלקת P:

[זו מחלקת הבעיות שקיים עבורן פתרון פולינומי (שרץ בזמן פולינומי ביחס לגודל הקלט).]

. נמצאת ב-P אם קיים אלגוריתם המכריע את במפה L נמצאת ב-L נמצאת ב-L

[לרוב חושבים על שפות כעל אוסף מחרוזות בינאריות (ניתן כך לייצג כל מידע סופי – למשל לקודד גרף). למשל שפת הגרפים המכילים מסלול המילטוני מכילה קידודים של גרפים שכאלה.]

מחלקת NP:

[בעיקרון זו מחלקת הבעיות שקיים עבורן אלגוריתם פולינומי אי-דטרמיניסטי – אבל יש לנו הגדרות שקולות הרבה יותר נחמדות מזה.]

שפה $P_L(x)$ אם קיים אלגוריתם אימות $V_L(x,y)$ ופולינום $L\!\in\!N\!P$

- $V_L\left(x,y
 ight)=\mathcal{T}$ -ן $\left|y
 ight|\leq p_L(x)$ עם עד ע כך ש- ע כך אזי קיים עד $x\in L$
 - $V_L(x,y) = \mathcal{F}$, אזי לכל $x \notin L$ אם •
- |x| הוא פולינומי ב-|x|+|y| הוא פולינומי ב- $V_L(x,y)$ האלגוריתם ן [$|y| = p_L(|x|)$] אַן פולינום ב-|y| פולינום היא גם פולינום, לכן אם - ו פולינום ב-פולינום ב-q(|y|)), אז זמן הריצה שלו הוא $V_L(x,y) = q(|y|)$ לכן כיוון ש $q\circ p_L$ לכן כיוון ש $V_L(x,y)=q(|y|)=q(p_L(|x|))=(q\circ p_L)(|x|)$.[[|x| -פולינומי ב

[השאלה המרכזית של מדעי המחשב בימים אלה:

P = NP האם

שאלה 1 [סגירות לאיחוד של NP]

 $L_1, L_2 \in NP$ נתונות

 $L = L_1 \cup L_2 \in NP$ הוכיחו כי

<u>פתרון</u>:

 $-L_2$ ין בין עד ל- L_1 ידוע כי קיים אלגוריתם אימות וחסם פולינומי על גודל עד ל- L_1 ידוע כי קיים אלגוריתם אימות וחסם נסמנם:

$$V_{L_1}(x, y)$$
 $p_{L_1}(x, y)$
 $V_{L_2}(x, y)$ $p_{L_2}(x, y)$

נדרש:

- $V_L(x,y)$ אלגוריתם אימות
 - $p_L(x)$ פולינום
 - עד •

 $x \in L_2$ או $x \in L_1$ או מילה , $x \in L_2$ או מילה אויה מראה מראה לי

אלגוריתם האימות:

$$V_{L}(x, y) = V_{L_{1}}(x, y) \vee V_{L_{2}}(x, y)$$

כיוון ש- $V_L(x,y)$ ו- $V_{L_1}(x,y)$ פולינומים ב- $V_L(x,y)$ גם $V_L(x,y)$ פולינומים ב- $V_{L_2}(x,y)$ פולינומים ב- $V_L(x,y)$ פולינומים ב-פסה"כ הרצת שני האלגוריתמים, אז זמין הריצה הכולל יהיה סכום זמני הריצה, שכמובן גם פולינומי]].

 $x \in L_1$ אם , $x \in L$ אם , $x \in L$

. y אזי קיים עד ע $V_L(x,y) = \mathcal{T}$ ולכן ולכן $V_L(x,y) = \mathcal{T}$ עבור אותו y

 $V_{L_{1}}\left(x,y
ight)$ אם $V_{L_{2}}\left(x,y
ight)=\mathcal{F}$ ולכן $V_{L_{4}}\left(x,y
ight)=\mathcal{F}$ ולכן $x
ot\in L_{1},x
ot\in L_{2}$ אם $x
ot\in L_{1}$

:גודל העד

$$p_L(x) = \max(p_{L_1}(x), p_{L_2}(x))$$

. לכן הוא פולינומי ב|x| וסיימנו

הערה לגבי שאר השאלות בתרגול זה

בשאר התרגול אנו נראה רק ראשי פרקים של ההוכחות (ונוכיח אותן בנפנוף ידיים אינטנסיבי), כי אנחנו רוצים להספיק להראות מגוון כמה שיותר גדול – זה **לא אומר** שניתן להוכיח בנפנוף ידיים אנחנו רוצים להספיק להראות מגוון כמה שיותר גדול באתר כדי לראות את פרטי הפורמליזציה.

שאלה 2 [סגירות לחיתוך של NP]

 $L_1 \cap L_2 \in NP$ יש להוכיח כי $L_1, L_2 \in NP$ עבור

:אלגוריתם האימות יבצע

$$V_L(x, y) = V_{L_1}(x, y_1) \wedge V_{L_2}(x, y_2)$$

 $y_2 - y_1 + y_1$ בעיה: לאו דווקא קיים קשר בין

למשל, L_1 יכולה להיות שפת הגרפים שמכילים מסלול המילטוני, וְ- L_2 יכולה להיות שפת הגרפים שמכילים מס' אי-זוגי של קדקודים.

העד בראשון יהיה המסלול, והשני יהיה מס' הקדקודים – אין שום קשר בין שני סוגי המידע הללו. איך צריך להיראות בעצם עד עבור החיתוך?

למשל בדוגמה הנ"ל – עלינו לתת גם את המסלול וגם את כמות הקדקודים.

 $y=\left\langle y_{1},y_{2}
ight
angle$ לכן נדרוש שהעד שלנו יהיה פשוט שרשור של שני העדים – כלומר

שאלה 3 [סגירות לכוכב קליני]

$$L = L_1^* \in NP$$

במקרה זה אנו מקבלים מילה ארוכה שמורכבת ממילים שונות (ויתכן גם באורך שונה). לכן העד ראשית צריך להראות שזו בכלל מילה שמורכבת ממילים ב- $L_{
m l}$ – לכן הוא יכיל את המידע שייתן לנו לראות את הפירוק למילים של x. בנוסף, עליו להכיל את העדים עבור כל אחת מתתי-המילים.

כלומר העד מכיל:

- x_i ,פירוק של x ל-n תתי-מילים.
- עדים משורשרים לכל תת-מילה. n
- $y = \langle \langle x_1, x_2, \dots, x_n \rangle, \langle y_1, y_2, \dots, y_n \rangle \rangle$ בסה"כ:

אלגוריתם האימות:

- $.V_{L_{\!\scriptscriptstyle 1}}\left(x_{\!\scriptscriptstyle i},y_{\!\scriptscriptstyle i}
 ight)$ את הרץ את מילה $x_{\!\scriptscriptstyle i}$ הרץ את
 - ${\mathcal F}$ אם קיבלת ${\mathcal F}$, החזר \circ
- [[כלומר אם לא קיבלנו ${\mathcal F}$ בשום שלב [] מחזר ${\mathcal T}$

$$[V_L(x,y)=V_{L_1}(x_1,y_1)\wedge V_{L_1}(x_2,y_2)\wedge \cdots]$$
 [אפקטיבית:

|x| -בינומי פולינומי באנוריתם פולינומי ב, $V_L\left(x_i,y_i
ight)$ הפעלות של

גודל העד – יש לנו כמה אפשרויות לבצע זאת:

- הוא (לפחות החלק הראשון) הוא בעד יכיל ממש את המחרוזת את בעד יכיל ממש את המחרוזת בעד יכיל ממש את המחרוזת (O(|x|) בוודאות ודאות בעד יכיל ממש את המחרוזת החלק הראשון) הוא
- 2. ניתן לשמור בחלק הראשון של העד את **מיקומי הפיצול** (או את אורכי תתי-המחרוזות) כל מספר שכזה ניתן לייצוג ב- $\log |x|$ סיביות, לכן הגודל הכולל הוא $\log |x|$.

שתי השיטות טובות לנו (שתיהן מניבות גודל פולינומי).

הראשונה עדיפה ב-worst case, אבל השנייה עדיפה ב-best case וב-worst case [אבל שוב, עבורנו זה לא באמת רלוונטי].

רדוקציה פולינומית

(אם: $A \leq_p B$ נאמר כי שפה $A \leq_p B$ ניתנת לרדוקציה פולינומית ל-

- $x \in A \Leftrightarrow f(x) \in B$ קיימת f כך ש
 - f קיים אלגוריתם פולינומי לחישוב ullet

[נקודה זו חשובה כי אחרת ניתן לבצע עבודה קשה (למשל עם זמן חישוב אקספוננציאלי) ברדוקציה עצמה ובכך לייצר מופע של בעיה קלה לפתרון – לדוגמה בשביל למצוא מסלול המילטוני בגרף, ברדוקציה נייצר רשימה של **כל** המסלולים בגרף ואז רק נצטרך לבדוק האם מסלולים הם המילטוניים או לא.]

שאלה 4 [מסלולי ומעגלי המילטון]

- G קיים מעגל המילטוני HamCycle(G)
- G -ם t -ל -S קיים מסלול המילטוני מ-G G קיים G

. HamPath \leq_p HamCycle :סעיף ראשון: יש להוכיח

.(s,t) <u>רעיון ראשון</u>: נוסיף לגרף את הצלע

דוגמה למצב בו זה עובד]

 $f(G) \in HamCycle$ אז $G \in HamPath$ כאן באמת אם

 $f(G) \in HamCycle$ אך $G \notin HamPath$ עבורו G עבורו

דוגמה למצב בו זה לא עובד

(s o t) נוסיף קדקוד בין s ל-s וקשתות ביניהם (בעיון שני:

. $HamPath_p ≥ HamCycle$: יש להוכיח:

ניתן שלל רעיונות ובעיות בהם (או למה הם עובדים):

- tן. sן נבחר שני קדקודים שכנים ונקרא להם
- לא יעבוד אם הם לא שכנים **על המעגל ההמילטוני**. ←
- .(שמחובר אליו) און "בור" בור" (שכולם מחובר אליו) און מלך" s
 - גרף עם שני קדקודים וקשת ביניהם סותר זאת. ←
 - 3. נבצע את 1 על כל קשת בגרף ונבדוק OR ביניהם.
 - . מגעיל ממש אבל כנראה יעבוד ←
- נוסיף קשת $(u,v)\in E$ -נוסיף ער קרע נוסיף א נוסיף נוסיף v נוסיף ער נוסיף $u\in V$ נוסיף נוסיף א נוסיף s נוסיף s . (u,t)

תרגול 13

- יכול להיות שיעבוד; אנחנו לא מצליחים לסתור זאת כרגע. ←
- נפצל קדקוד כלשהו v לקדקוד נכנס v_{in} (כל הקשתות שנכנסו ל-v יכנסו אליו) וקדקוד יוצא .5 (כל הקשתות שיצאו מ-v יצאו ממנו) ולא נוסיף קשת ביניהם.
 - זה יעבוד, וזה גם הפתרון הרשמי. ←

[At Most 3SAT] אלה 5

יש לכל היותר 3 ליטרלים. φ יש לכל היותר 3 ליטרלים. At Most 3SAT = קבוצת כל נוסחאות ה-CNF פעולות קפעולות שביניהן שביניהן של פסוקיות המכילות רק פעולות φ

הוכיחו:

At Most 3SAT
$$\leq_p$$
 3SAT

[אותו הדבר, אבל שיש בדיוק 3 ליטרלים] 3SAT]

<u>פתרון</u>:

ניקח את הנוסחה ונשנה אותה כך:

- פסוקית עם 3 ליטרלים נשאיר כפי שהיא.
- פסוקית עם שני ליטרלים מהצורה $\left(a_{\scriptscriptstyle 1} \lor a_{\scriptscriptstyle 2}\right)$ נהפוך להיות •

$$(a_1 \lor a_2 \lor y_1) \land (a_1 \lor a_2 \lor \overline{y}_1)$$

פסוקית עם ליטרל אחד מהצורה $\left(a_{_{3}}
ight)$ נהפוך להיות ullet

$$.(a_3 \vee y_1 \vee y_2) \wedge (a_3 \vee \overline{y}_1 \vee y_2) \wedge (a_3 \vee y_1 \vee \overline{y}_2) \wedge (a_3 \vee \overline{y}_1 \vee \overline{y}_2)$$

מדוע זו רדוקציה פולינומית?

כי מס' הליטרלים (שזה גודל הקלט) בנוסחה גדל לכל היותר פי 12.

[אגב, אם קלט של בעיה הוא **מספר** n, ויש רדוצקיה f שמקיימת כי n בעיה הוא n בעיה הוא n אז מה סדר גודל הרדוקציה? האם היא פולינימית? התוצאה של n הוא n אז מה סדר גודל הרדוקציה ועם n ביות, לכן $n = 2^{\log n}$ כלומר הרדוקציה אקספוננציאלית!]

משפט [שייכות ל-NP לפי רדוקציה]

 $L \in NP$ תהי

 $L' \in NP$ אם $L' \leq_p L$ אם $L' \leq_p L$

<u>הוכחה</u>:

אלגוריתם אימות:

 $V_L \left(f(x), y \right)$ ונקרא לעד $f(x) \in L$ נדרוש עד ע

12.6.2014

מנכונות הרדוקציה,:

$$x \in L' \Leftrightarrow f(x) \in L$$

$$V_L(f(x), y) = T$$
 ולכן

$$f(x)$$
 -ב פולינומי ב- $V_L(f(x),y)$ וּ- $f(x)$ גם פולינומי ב- $f(x)$

x-פולינומים ב- f(x) פולינומים ב-

פולינומי ב-x כי f פולינומית [ולכן גם היא בכל צעד בריצה שלה כותבת ערך לפלט, אורך f(x)[x - 1]הפלט שלה הוא לכל היותר פולינומי

שאלה 6 [צביעה]

 $c:V o \{1,\dots,k\}$ צביעה היא פונקציה

 $c(u,v) \in E$ לכל $c(u) \neq c(v)$ בביעה חוקית היא צביעה בה

$$4-Color = \{ G: צבעים -4 צביע ב-4 מרף צביע ב-4 מרף צביע ב-4 צבעים -4 מרף צביע ב-4 מרף צ$$

 $.4-Color \in NP$ הוכיחו כי

אלגוריתם אימות:

- עד: צביעה חוקית •
- בדוק כי הצביעה מכילה 4 צבעים לכל היותר ובדוק כי כל 2 קדקודים סמוכים שונים בצבעם. זה לוקח $\mathrm{O}(|E|)$ כי בדיקת 2 קדקודים סמוכים = בדיקת הקשת שביניהם.

$$: 3 - Color \leq_p 4 - Color$$

נגדיר שפונקציית הרדוקציה מוסיפה קדקוד חדש ומחברת אותו לכל הגרף.

- אם הגרף המקורי 3-צביע אז ניתן לצבוע את הקדקוד הרביעי בצבע נוסף ולכן הגרף המתקבל הוא 4-צביע.
- אם הגרף המקורי אינו 3-צביע אז חייבים לפחות 4 צבעים כדי לצבוע אותו. כיוון שהקדקוד החדש מחובר לכל הקדקודים הקודמים, בכל צביעה ב-4 צבעים של הגרף המקורי הקדקוד החדש מחובר לקדקודים בכל ארבעת הצבעים הקיימים, לכן חייבים להשתמש בצבע חדש עבורו – כלומר הגרף החדש דורש לפחות 5 צבעים.

12.6.2014 תרגול 13