Primeira Prova de MA311, Turma A

Prof. Sergio Antonio Tozoni 09/04/2010

RA:

Nome:

GABARITO

Questão 1 (2,0 pontos). Resolva o seguinte problema de valor inicial:

$$ty' - 3y = t^2 y^{5/2}, \ t > 0, \ y(1) = 1.$$

Questão 2 (2,0 pontos). Determine a solução geral da equação diferencial

$$(y \ln y + ye^x)dx + (x + y \cos y)dy = 0, \ y > 0.$$

Questão 3. Considere a equação diferencial

$$y^{(6)} + 4y^{(4)} = 1 + t^2 + 4t \operatorname{sen}2t.$$
 (1)

Determine:

(a)(1,0 ponto). A solução geral da equação homogênea associada à equação (1).

(b)(1,0 ponto). Usando o *método de coeficientes indeterminados*, encontre a forma da solução particular da equação (1), **SEM** calcular os coeficientes. Escreva a solução geral da equação (1).

Questão 4 (2,0 pontos). Determine a solução geral da equação diferencial

$$t^2y'' - 3ty' + 4y = t^2(\ln t)^{-3}, \ t > 3.$$

 ${\bf Quest\~{a}o}$ 5 (2,0 pontos). Determine a solução geral da equação diferencial

$$2y^2y'' + 2y(y')^2 = 2yy', y > 0, y' > 0.$$

1)
$$ty' - 3y = t^2 y^{5/2}$$
, $t > 0$, $y(1) = 1$
(I) $y' - \frac{3}{t}y = ty^{5/2}$ (injunção de Birmoulli) $m = \frac{5}{2}$
 $v = y^{1-m} = y^{1-5/2} = y^{-3/2}$, $v' = -\frac{3}{2}y^{-5/2}y'$
 $y' = -\frac{2}{3}y^{5/2}v'$, $y = vy^{5/2}$

(I) $v' + \frac{9}{2}v = -\frac{3}{2}t^{11/2} = ty^{5/2} \Rightarrow -\frac{2}{3}v' - \frac{3}{2}v = ty^{11/2}$
 $u(t) = xxp \left(\int \frac{3}{2t} dt \right) = xxp \left(\frac{9}{2} lnt \right) = t^{9/2}$
 $u(t) = y^{1/2} \left(-\frac{3}{2}t^{11/2} dt = -\frac{3}{2}t^{11/2}$

0,2

2)
$$(y \ln y + y e^{x}) dx + (x + y \cos y) dy = 0$$

My = $\ln y + 1 + e^{x} \neq 1 = N_{x} \Rightarrow 0$ made x' exacts

 $(u M) dx + (u N) dy = 0$ $x' \neq x = 0$ $x' \neq x = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$
 $u = \sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{2} + \sqrt{2} = 0$

1,0 se encontrou constamente o fator integrante 1,0 se repolveu constamente o equação exator

30) (I)
$$y^{(6)} + 4y^{(4)} = 1 + t^2 + 4t \text{ sin at}$$

(I) $y^{(6)} + 4y^{(4)} = 0$
 $Q(n) = n^6 + 4n^4 = n^4(n^2 + 4)$
 $\pi_1 = 0$ now com multiplicidade 4

 $\pi_2 = 2i$, $\pi_2 = -2i$ now is some multiplicidade 1

[Yh(t) = C_1 + C_2t + C_3t^2 + C_4t^3 + C_5 \cos 2t + C_7 \text{ sin at}

(Notingão qual de (II))

 $y^{(6)} + 4y^{(4)} = 1 + t^2$

(III)

 $y_{p_1}(t) = t^{2}(A_5t^2 + A_4t + A_2)$
 $y_{p_2}(t) = t^{2}(A_5t^2 + A_4t + A_2)$
 $y_{p_1}(t) = t^{2}(A_5t^2 + A_4t + A_4)$
 $y_{p_2}(t) = t^{2}(A_5t^2 + A_1t + A_4)$
 $y_{p_1}(t) = t^{2}(A_5t^2 + A_1t + A_4)$
 $y_{p_2}(t) = t^{2}(A_5t^2 + A_1t + A_2)$
 $y_{p_1}(t) = t^{2}(A_5t^2 + A_1t + A_2)$
 $y_{p_2}(t) = t^{2}(A_5t^2 + A_1t + A_2)$
 $y_{p_1}(t) = t^{2}(A_5t^2 + A_1t + A_2)$
 $y_{p_2}(t) = t^{2}(A_5t^2 + A_1t + A_2)$
 $y_{p_1}(t) = t^{2}(A_5t^2 + A_1t + A_2)$
 $y_{p_2}(t) = t^{2}(A_5t^2 + A_1t + A_2)$
 $y_{p_1}(t) = y_{p_2}(t)$
 $y_{p_1}(t) = y_{p_2}(t)$
 $y_{p_2}(t) = t^{2}(A_5t^2 + A_1t + A_2t^2 + A_2t^$

4) (x)
$$t^{2}y^{3} - 3ty^{3} + 4y = t^{2} (\ln t)^{-3}, t > 3$$

(equoção de Eule) $x = -3$, $y = 4$, $x = \ln t$
 $x = e^{x}$

(II) $\frac{d^{2}y}{dx^{2}} - 4\frac{dy}{dx} + 4y = x^{-3}e^{2x}$, $x > 0$

(III) $\frac{d^{4}y}{dx^{2}} - 4\frac{dy}{dx} + 4y = 0$

$$Q(n) = n^{2} - 4n + 4 = (n - a)^{2} = 0 \Rightarrow n = 2 \text{ noigh convious qual de (III)}$$

$$W(e^{2x}, x e^{3x}) = \begin{vmatrix} e^{2x} & x e^{2x} \\ e^{2x} & e^{2x} \end{vmatrix} = e^{4x}$$

$$W(e^{2x}, x e^{3x}) = \begin{vmatrix} e^{2x} & x e^{2x} \\ e^{2x} & e^{2x} + 2x e^{2x} \end{vmatrix} = e^{4x}$$

$$W_{1} = e^{-4x} \begin{vmatrix} 0 & x e^{2x} \\ x^{2}e^{2x} & e^{2x} + 2x e^{2x} \end{vmatrix} = -x^{-2} \Rightarrow u_{1} = \frac{1}{x}$$

$$u_{1} = e^{-4x} \begin{vmatrix} 0 & x e^{2x} \\ x^{2}e^{2x} & e^{2x} + 2x e^{2x} \end{vmatrix} = -x^{-2} \Rightarrow u_{2} = \frac{1}{x}$$

$$u_{2} = e^{-4x} \begin{vmatrix} e^{2x} & x^{3}e^{2x} \\ 1e^{2x} & x^{3}e^{2x} \end{vmatrix} = x^{-3} \Rightarrow u_{2} = \frac{1}{2x^{2}}$$

$$u_{3} = e^{-4x} \begin{vmatrix} e^{2x} & -\frac{1}{2x^{2}} & x e^{2x} \\ 1e^{2x} & x^{3}e^{2x} \end{vmatrix} = x^{-3} \Rightarrow u_{3} = \frac{1}{2x^{2}}$$

$$u_{4} = \frac{1}{2x^{2}} = \frac$$

5) (I)
$$2y^{2}y^{3} + 2y(y)^{2} = 2yy^{2}$$
, $y>0$, $y>0$
 $V=y^{2}$, $\frac{dv}{dt} = \frac{dv}{dy}\frac{dx}{dt} = v\frac{dv}{dy}$
(E) $\Rightarrow 2y^{2}v\frac{dv}{dy} + 2yv^{2} = 2yv$
 $\Rightarrow (II) (\frac{dv}{dy} + \frac{1}{2}v = \frac{1}{2}) (1.d.o. lineon)$
 $\mu(y) = xxp(\int \frac{dy}{y}) = y$
 $\int \mu(y) \frac{1}{y}dy = \int dy = y$
 $\int \mu(y) \frac{1}{y}dy = \int dy = y$
(II) $(\frac{y}{y} + C_{1}) = \frac{1}{y} + C_{1}$
 $\int \frac{y}{y} + C_{1} dy - 1 dt = 0$ (2.d.o. reparable)
 $H_{1}(y) = \int \frac{y}{y} + C_{1} dy = \int (1 - \frac{C_{1}}{y} + C_{1}) dy = y - C_{1} \ln|y + C_{1}|$
 $H_{2}(t) = \int -dt = -t$

0,6