Roman, Advanced Linear Algebra

Danny Nygård Hansen 20th November 2022

1 • Vector Spaces

EXERCISE 1.11

Show that if *S* is a subspace of a vector space *V*, then dim $S \le \dim V$. Furthermore, if dim $S = \dim V < \infty$ then S = V.

SOLUTION. Let \mathcal{B} be a basis for S. Then this is linearly independent as a subset of V, hence is contained in a basis \mathcal{B}' for V by Theorem 1.9. Then $\mathcal{B} \subseteq \mathcal{B}'$, so it follows that dim $S \leq \dim V$.

Now assume that dim $S = \dim V < \infty$. Then $|\mathcal{B}| = |\mathcal{B}'|$, but since each basis is finite and one is contained in the other, we must have $\mathcal{B} = \mathcal{B}'$. Hence S = V.

EXERCISE 1.12

Suppose that $V = U \oplus S_1 = U \oplus S_2$. What can you say about the relationship between S_1 and S_2 ? What can you say if $S_1 \subseteq S_2$?

SOLUTION. By Theorem 3.6, all complements of U are isomorphic, so we always have $S_1 \cong S_2$. Assume that $S_1 \subseteq S_2$, and let $s \in S_2$. Then s = u + s' for some $u \in U$ and $s' \in S_1$. But then s' also lies in S_2 , so since the sum $U \oplus S_2$ is direct we have u = 0.

2 • Linear Transformations

EXERCISE 2.15

Suppose that $T \in \mathcal{L}(V, W)$.

(a) Given $L \in \mathcal{L}(U, W)$, show that there exists an $R \in \mathcal{L}(V, U)$ with T = LR if

and only if im $T \subseteq \text{im } L$:

$$V \xrightarrow{-R} U \xrightarrow{I} W$$

(b) Given $R \in \mathcal{L}(V, U)$, show that there exists an $L \in \mathcal{L}(U, W)$ with T = LR if and only if $\ker R \subseteq \ker T$:

$$V \xrightarrow{R} U \xrightarrow{-T} W$$

In particular, both monomorphisms and epimorphisms split.

SOLUTION. (a) Write $W = \ker L \oplus M$ for some subspace $M \subseteq W$. Then the restriction $L|_M \colon M \to \operatorname{im} L$ is bijective, so let $R = (L|_M)^{-1}T$, which is well-defined since $\operatorname{im} T \subseteq \operatorname{im} L$.

(b) Write $V = \ker R \oplus M$ for some subspace $M \subseteq V$. Then $R|_M : M \to \operatorname{im} R$ is bijective. Writing $U = \operatorname{im} R \oplus N$ for some subspace $N \subseteq U$, let $L = T \circ [(R|_M)^{-1}, 0]$. For $v \in \ker R \subseteq \ker T$ we have

$$LRv = L(0) = 0 = Tv$$
,

and for $v \in M$ we have

$$LRv = T(R|_{M})^{-1}Rv = Tv,$$

as required.

EXERCISE 2.22

Let $T \in \mathcal{L}(V)$. If TS = ST for all $S \in \mathcal{L}(V)$, show that $T = \alpha \operatorname{id}_V$ for some $\alpha \in \mathbb{F}$. I.e., the centre of the ring $\mathcal{L}(V)$, with multiplication given by function composition, is the subspace $\langle \operatorname{id}_V \rangle$.

SOLUTION. This is obvious if dim $V \in \{0, 1\}$, so assume that dim $V \ge 2$. First let $v \in V \setminus \{0\}$ and write $V = \langle v \rangle \oplus U$ for some subspace U, and define $S \in \mathcal{L}(V)$ by letting Sv = v and Su = 0 for $u \in U$. If T and S commute, then

$$STv = TSv = Tv$$
.

Hence $Tv \in \langle v \rangle$ (which includes the possibility that Tv = 0).

Next assume that $v, w \in V$ are linearly independent, write $V = \langle v, w \rangle \oplus U_2$ for some subspace U_2 , and define S by letting Sv = w, Sw = v and Su = 0. Let $\alpha \in \mathbb{F}$ be such that $Tv = \alpha v$. Then

$$Tw = TSv = STv = \alpha Sv = \alpha w.$$

Hence $Tv = \alpha v$ for all $v \in V$ as desired.

3 • The Isomorphism Theorems

EXERCISE 3.18

Let *S* be a subspace of *V*. Prove that $(V/S)^* \cong S^0$.

SOLUTION. Let $\pi: V \to V/S$ be the quotient map, such that for every $\varphi \in (V/S)^*$ we have

Consider the map $(V/S)^* \to V^*$ given by $\varphi \mapsto \varphi \circ \pi$. This is injective by the universal property of quotients. Also by this property, a functional $\psi \in V^*$ factors through π if and only if $S \subseteq \ker \psi$, i.e. if $\psi \in S^0$. Hence the image of the above map is precisely S^0 .

8 • Eigenvalues and Eigenvectors

EXERCISE 8.6

An operator $T \in \mathcal{L}(V)$ is *nilpotent* if $T^n = 0$ for some positive $n \in \mathbb{N}$.

- (a) Show that if T is nilpotent, then the spectrum of T is $\{0\}$.
- (b) Find a non-nilpotent operator T with spectrum $\{0\}$.

SOLUTION. (a) Let $\lambda \in \mathbb{F}$ be an eigenvalue of T, and let $v \in V$ be a corresponding eigenvector. Then

$$0 = T^n v = T^{n-1} T v = \lambda T^{n-1} v = \dots = \lambda^n v.$$

Hence $\lambda^n = 0$, since otherwise $v = \lambda^{-n}0 = 0$. But then $\lambda = 0$.

(b) Let $S \in \mathcal{L}(\mathbb{R}^2)$ be rotation by $\pi/2$ radians, and let $0 \in \mathcal{L}(\mathbb{R})$ be the trivial map. Then $T = S \oplus 0 \in \mathcal{L}(\mathbb{R}^3)$ has spectrum $\{0\}$ but is clearly not nilpotent. \square

EXERCISE 8.9

An *involution* is a linear operator $S \in \mathcal{L}(V)$ for which $S^2 = \mathrm{id}_V$. If T is idempotent, what can you say about $2T - \mathrm{id}_V$? Construct a one-to-one correspondence between the set of idempotents on V and the set of involutions.

SOLUTION. Note that by 2 we mean 1+1, where 1 is the multiplicative identity of \mathbb{F} . Since $2^2 = (1+1)^2 = 1+1+1+1=4$, we have $(2T)^2 = 2^2T^2 = 4T^2$ as expected.

Notice that

$$(2T - id_V)^2 = (2T)^2 + id_V^2 - 2 \cdot 2T id_V$$

$$= 4T^2 + id_V - 4T$$

$$= 4T + id_V - 4T$$

$$= id_V,$$

since T is idempotent. Hence the map $T \mapsto 2T - \mathrm{id}_V$ sends idempotents to involutions.

Let 2^{-1} be the multiplicative inverse of 2 = 1 + 1 in \mathbb{F} , and similarly for 4^{-1} . If $S \in \mathcal{L}(V)$ is an involution, then

$$2^{-1}(S + id_V) \circ 2^{-1}(S + id_V) = 4^{-1}(S^2 + S + S + id_V)$$
$$= 4^{-1}(id_V + S + S + id_V)$$
$$= 2^{-1}(S + id_V),$$

so $2^{-1}(S + \mathrm{id}_V)$ is idempotent. And the map $S \mapsto 2^{-1}(S + \mathrm{id}_V)$ is clearly an inverse to the above map, so these give a bijection between the idempotents and involutions on \mathcal{V} .

EXERCISE 8.20

Let $T: \mathcal{M}_n(\mathbb{F}) \to \mathbb{F}$ be a function with the following properties: For all matrices $A, B \in \mathcal{M}_n(\mathbb{F})$ and $\alpha \in \mathbb{F}$,

- (a) $T(\alpha A) = \alpha T(A)$,
- (b) T(A + B) = T(A) + T(B), and
- (c) T(AB) = T(BA).

Show that there exists a $\beta \in \mathbb{F}$ such that $T = \beta$ tr.

SOLUTION. The first two properties say that T is linear, so it suffices to prove the claim on a basis for $\mathcal{M}_n(\mathbb{F})$. Furthermore, the third property implies that T is invariant under similarity, in particular under change of basis.

Let E_{ij} be the matrix whose (i,j)-th entry is 1 and all other entries are 0. Notice that $E_{ij}e_k = \delta_{jk}e_i$, so that $E_{ij}E_{kl} = \delta_{jk}E_{il}$. The matrices E_{ii} and E_{jj} are similar, so $\beta := T(E_{ii}) = T(E_{jj})$. If $i \neq j$, then notice that $E_{ii}E_{ij} = E_{ij}$ but $E_{ij}E_{ii} = 0$. The third property thus implies that

$$T(E_{ij}) = T(E_{ii}E_{ij}) = T(E_{ij}E_{ii}) = T(0) = 0.$$

Hence $T(E_{ij}) = \beta \delta_{ij} = \beta \operatorname{tr} E_{ij}$ as desired.

EXERCISE 8.21

A pair of linear operators $T, S \in \mathcal{L}(V)$ (with dim $V < \infty$) is *simultaneously diagonalisable* if there is an ordered basis V for V such that $V[T]_V$ and $V[S]_V$ are both diagonal. Prove that two diagonalisable operators V and $V[S]_V$ are eously diagonalisable if and only if they commute.

SOLUTION. First assume that T and S are simultaneously diagonalisable, and write $V = (v_1, ..., v_n)$. Then each v_i is an eigenvector for both T and S, so let $Tv_i = \lambda_i v_i$ and $Sv_i = \mu_i v_i$. Then

$$TSv_i = \mu_i Tv_i = \mu_i \lambda_i v_i = \lambda_i \mu_i v_i = \lambda_i Sv_i = STv_i$$

so *T* and *S* commute. Alternatively, we may simply notice that the matrix representations of *T* and *S* commute (since they are diagonal), so

$$\mathcal{V}[TS]_{\mathcal{V}} = \mathcal{V}[T]_{\mathcal{V}} \cdot \mathcal{V}[S]_{\mathcal{V}} = \mathcal{V}[S]_{\mathcal{V}} \cdot \mathcal{V}[T]_{\mathcal{V}} = \mathcal{V}[ST]_{\mathcal{V}},$$

and hence TS = ST.

In order to prove the converse we will need a couple of lemmas, starting with:

Assume that the subspace U is invariant under $T \in \mathcal{L}(V)$. If $v_1, \ldots, v_k \in V$ are eigenvectors of T corresponding to distinct eigenvalues and $v_1 + \cdots + v_k \in U$, then all v_i lie in U.

We prove this claim by induction. For k = 1 this is obvious, so assume that it holds for k - 1. Then let λ_i be the eigenvalue corresponding to v_i , and put $u = v_1 + \cdots + v_k$. Notice that

$$Tu - \lambda_1 u = (\lambda_2 - \lambda_1)v_2 + \dots + (\lambda_k - \lambda_1)v_k.$$

The left-hand side lies in U. Hence each summand on the right-hand side lies in U by induction, and since the eigenvalues are distinct so do v_2, \ldots, v_k . Since U is a subspace, v_1 does as well.

If $T \in \mathcal{L}(V)$ is diagonalisable and the subspace U is invariant under T, then $T|_{U} \in \mathcal{L}(U)$ is also diagonalisable.

Each $u \in U$ is a finite sum of eigenvectors of T corresponding to distinct eigenvalues. Hence each eigenvector also lies in U, so

$$U = \bigoplus_{\lambda \in \operatorname{Spec} T} U \cap E_T(\lambda) = \bigoplus_{\lambda \in \operatorname{Spec} T|_U} E_{T|_U}(\lambda),$$

where the last equality follows since $U \cap E_T(\lambda)$ is precisely the set of eigenvectors of T corresponding to λ that lie in U, i.e. the eigenvectors of $T|_U$ corresponding to λ .

Finally assume that TS = ST. If $v \in E_T(\lambda)$, then

$$TSv = STv = \lambda Sv$$
.

so also $Sv \in E_T(\lambda)$. In other words, every eigenspace of T is invariant under S. By the lemma above, S restricted to $E_T(\lambda)$ is thus diagonalisable, hence has a basis \mathcal{V}_{λ} of eigenvectors of S. But these are also eigenvectors of T. Then $\mathcal{V} = \bigcup_{\lambda \in \operatorname{Spec} T} \mathcal{V}_{\lambda}$ is a basis for V consisting of simultaneous eigenvectors of T and S.

10 • Structure Theory for Normal Operators

EXERCISE 10.5

Prove that if $||Tv|| = ||T^*v||$ for all $v \in V$, where V is complex, then T is normal.

SOLUTION. The assumption implies that

$$\langle T^*Tv, v \rangle = \langle Tv, Tv \rangle = ||Tv||^2 = ||T^*v||^2 = \langle T^*v, T^*v \rangle = \langle TT^*v, v \rangle,$$

so the claim follows from Theorem 9.2(2).

(In fact, this also holds if *V* is real. For then

$$||T^{\mathbb{C}}(v + i u)||^{2} = ||Tv||^{2} + ||Tu||^{2}$$

$$= ||T^{*}v||^{2} + ||T^{*}u||^{2}$$

$$= ||(T^{*})^{\mathbb{C}}(v + i u)||^{2}$$

$$= ||(T^{\mathbb{C}})^{*}(v + i u)||^{2}.$$

so $T^{\mathbb{C}}$ is normal, and hence T is normal.)