

MPE TEST REPORT

Applicant NOKIA Shanghai Bell Co. Ltd.

FCC ID 2ADZRHA030WB

Product 7368 Intelligent Services Access Manager CPE

Brand NOKIA

Model HA-030W-B

Report No. R1901B0001-M2

Issue Date February 19, 2019

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC 47 CFR Part 1 1.1310**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Song yan tan
Performed by: Songyan Fan

Approved by: Guangchang Fan

Guangchang Fan

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

Report No: R1901B0001-M2

Table of Contents

1	Test	t Laboratory	. :
		Notes of the Test Report	
		Test facility	
		Testing Location	
		Laboratory Environment	
		scription of Equipment under Test	
		kimum conducted output power (measured) and antenna Gain	

IPE Test Report Report No: R1901B0001-M2

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein . Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 Test facility

CNAS (accreditation number:L2264)

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS).

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

IC (recognition number is 8510A)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement.

VCCI (recognition number is C-4595, T-2154, R-4113, G-10766)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic emission measurement.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000
Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

1.4 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C	
Relative humidity	Min. = 30%, Max. = 70%	
Ground system resistance	< 0.5 Ω	
shippy paign in abacked and found you law and in compliance with requirement of standards		

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

2 Description of Equipment under Test

Client Information

Applicant	NOKIA Shanghai Bell CO. Ltd.		
Applicant address	No. 388, Ningqiao Rd. Pilot Free Trade Zone, Shanghai, China		
Manufacturer	TAICANG T&W ELECTRONICS CO.,LTD		
Manufacturer address	89# Jiang Nan RD, Lu Du, Taicang, Jiangsu, China		

General Technologies

Application Purpose:	Class II Permissive Change
Model	HA-030W-B
SN	1
Hardware Version	PEM2
Software Version	Null
Date of Testing:	January 16, 2018 ~ March 7, 2018

HA-030W-B (Report No:R1901B0001-M2) is a variant model of HA-030W-B (Report No: Y1804B0039-M1V2). Test values duplicated from Original for variant. There is no test for variant in this report. The detailed product change description please refers to the FCC class II permissive change application letter.

3 Maximum conducted output power (measured) and antenna Gain

the numeric gain (G) of the antenna with a gain specified in dB is determined by Numeric gain (G)= 10° (antenna gain/10)

Band	Maximum Conducted Output Power (dBm)		Antenna Gain	Numeric gain
	(dBm)	(mW)	(dBi)	(dB)
Wi-Fi 2.4G	28.67	736.207	3	1.995
Wi-Fi 5G	29.50	891.251	4	2.512

According to section 1.1310 of FCC 47 CFR Part 1, limits for maximum permissible exposure (MPE) are as following

TABLE 1 - LIMITS FOR MAXIMUN PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time
(MHz)	Strength	Strength		100
	(V/m)	(A/m)	(mVV/cm2)	(minutes)
	(A) Limits for Occu	upational/Controlle	d Exposures	
0.3-3.0	614	1.63	*(100)	6
3-30	1842/f	4.89/f	*(900/f2)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
(B)	Limits for General	Population/Uncont	rolled Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f2)	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

f = frequency in MHz

- Note1. Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational / controlled limits apply provided he or she is made aware of the potential for exposure.
- Note2: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

^{* =} Plane-wave equivalent power density

The maximum permissible exposure for 1500~100,000MHz is 1.0.So

Band	The maximum permissible exposure		
Wi-Fi 2.4G	1.0mW/cm ²		
Wi-Fi 5G	1.0mW/cm ²		

IMPORTANT NOTE: To comply with the FCC RF exposure compliance requirements, the antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter. No change to the antenna or the device is permitted. Any change to the antenna or the device could result in the device exceeding the RF exposure requirements and void user's authority to operate the device.

RF Exposure Calculations:

The following information provides the minimum separation distance for the highest gain antenna provided. This calculation is based on the conducted power, considering maximum power and antenna gain. The formula shown in KDB 447498 D01 is used in the calculation.

Equation from KDB 447498 D01 General RF Exposure Guidance v06 (10/23/2015) is:

S= PG /
$$4 \square R^2$$

Where: S = power density (in appropriate units, e.g. mW/cm²)

P = Time-average maximum tune up procedure (in appropriate units, e.g., mW)

G = the numeric gain of the antenna

R = distance to the center of radiation of the antenna (20 cm = limit for MPE)

Band	PG (mW)	Test Result (mW/cm ²)	Limit Value (mW/cm ²)	The MPE ratio (mW/cm ²)
WiFi 2.4G	1468.926	0.292	1.000	0.292
WiFi 5G	2238.721	0.445	1.000	0.445

Note: **R** = 20cm

∏= 3.1416

The MPE ratio = Mac Test Result ÷ Limit Value

So the simultaneous transmitting antenna pairs as below:

∑of MPE ratios=WiFi 2.4G + WiFi 5G =0.292+0.445=0.737<1.0

Note: For transmitters, minimum separation distance is 20cm, even if calculations indicate MPE distance is less.

Report No: R1901B0001-M2

ANNEX A: The EUT Appearance

A.1 EUT Appearance

Front Side

Back Side

Picture 1 EUT