PCT/CZ2004/000024 28.04.2004

ČESKÁ REPUBLIKA

ÚŘAD PRŮMYSLOVÉHO VLASTNICTVÍ REC'D 25 MAY 2004 PCT

potvrzuje, že ÚSTAV CHEMICKÝCH PROCESŮ AV ČR, Praha, CZ ZDRAVOTNÍ ÚSTAV SE SÍDLEM V OSTRAVĚ, Ostrava, CZ

podal(i) dne 30.4.2003

přihlášku vynálezu značky spisu PV 2003-1220

a že připojené přílohy se shodují úplně s původně podanými přílohami této přihlášky.

Achneiden

Za předsedu: Ing. Eva Schneiderová

PRIORITY

BEST AVAILABLE COPY

181315/HK

Způsob dehalogenační detoxifikace halogenovaných aromatických nebo/a cyklických sloučenin

Oblast techniky

Vynález se týká dehalogenační detoxikace halogenovaných aromatických nebo/a cyklických sloučenin. Tento způsob obzvláště vhodný pro detoxifikaci polyhalogenovaných aromatických sloučenin, zejména vysoce polychlorovaných bifenylů, dibenzo-p-dioxinů a dibenzofuranů, jakož i sloučenin podobných dioxinům, v půdách, uhlíkatých sorbentech, olejích a pískových sedimentech.

Dosavadní stav techniky

Mezi perzistentní kontaminující látky patří především polychlorované dibenzo-p-dioxiny, dibenzofurany a dioxinoidní sloučeniny. Jsou to chemicky stálé látky, které mohou být jen velmi obtížně odstraněny z životního prostředí chemickými, tepelnými a biologickými postupy. Uvedené sloučeniny jsou toxické a jsou zařazeny mezi teratogenní a karcinogenní látky. Tvoří se při tepelných procesech, například při spalování komunálních, nemocničních a dalších rizikových odpadů, při metalurgických a hutnických procesech a při realizaci řady jiných tepelných technologií, nebo se vyrábějí za účelem jejich použití v energetice, zemědělství a dalších odvětvích.

Z dosud používaných technologií pro destrukci uvedených toxických látek se především využívá reakce těchto sloučenin se sodíkem nebo alkoxidy alkalických kovů, popsaná v EP 1 153 645. Chemický rozklad, popsaný v EP-A-O 021 294, je založen na reakci halogenované aromatické látky s alkalickým kovem nebo se směsí alkoholu s hydroxidem alkalického kovu, případně s uhličitanem alkalického kovu při teplotě 140 až 220 °C. Alkalický rozklad polychlorovaných bifenylů uhličitanem sodným probíhá při teplotě 370 až 400 °C v přítomnosti oxidačního

činidla a katalyzátoru tvořeného rutheniem, případně platinou nebo palladiem, jak je to popsáno v JP 11 253 795, US 4 059 677, US 4 065 543 a JP 10 087 519. Podle US 5 151 401 lze také použít platinu na hlinitanu zinečnatém. JP 11 114 538 popisuje tlakový rozklad polychlorovaných bifenylů a polyfluorovaných dibenzo-p-dioxinů hydroxidem vápenatým při teplotě 100 až 300 °C. Patentové dokumenty WO 00/48968 a JP 11 197 756 popisují katalytickou redukci polyfluorovaných dibenzo-p-dioxinů v alkalickém prostředí v přítomnosti hydrazinu, thiosíranu, hydrochinonu a oxidu titaničitého na uhlíkové nosné matrici, případně v prostředí hydroxidu a uhličitanu zinečnatého nebo hydroxidu a uhličitanu olovnatého, která probíhá při teplotě 200 až 500 °C.

Tepelný rozklad halogenovaných aromatických sloučenin vyžaduje dosažení teplot 1200 až 1400 °C. Tento rozkladný proces je však diskutabilní, neboť při možnosti jeho praktické využitelnosti nejsou vzaty v úvahu vratné procesy probíhající v plynné fázi a označované jako tzv. de-novosyntetické reakce, při kterých v teplotním rozmezí 180 až 450 °C zpětně vznikají z příslušných prekurzorů katalytickým procesem na pevné fázi škodlivé látky.

Při tepelné detoxifikaci halogenovaných aromatických sloučenin je vhodná přítomnost některých kovů, mezi které například patří hliník, železo a měď, případně jejich oxidy, ale i roztavený hliník nebo v inertní atmosféře hliník, hořčík, křemík, titan nebo berylium při teplotě 450 až 650 °C, jak je to patrné z patentových dokumentů JP 11 253 908, EP 0 170 714 a EΡ 184 342. Patent US 3 697 608 popisuje použití dechloračního činidla, tvořeného chloridem železnatým nebo chloridem železitým s chloridy alkalických kovů v tavenině.

Katalytický rozklad halogenovaných aromatických látek je považován za velmi perspektivní, pokud jde o jeho praktické využití při likvidaci uvedených toxických látek. Nicméně výše popsané rozkladné procesy nepředstavují optimální řešení pro dehalogenační detoxifikaci halogenovaných aromatických

sloučenin vzhledem k tomu, že uvedené chemické procesy jsou finančně nákladné, v případě sodíkové metody aplikačně nebezpečné a v případě spalovací metody energeticky náročné a problematické vzhledem ke zpětným de-novosyntetickým reakcím.

EP-A-0 184 342 popisuje použití kovových katalyzátorů k organických halogenovaných sloučenin, polychlorovaných bifenylů, v plynné fázi v rozmezí teplot 450 až 650 °C ve striktně neoxidační atmosféře velmi čistého dusíku nebo vzácného plynu. Patentový dokument JP 11 904 popisuje použití kovového hydridu a palladia uhlíkové matrici pro detoxifikaci organických halogenovaných aromatických sloučenin. Oxidační katalytický halogenovaných sloučenin při teplotě katalyzovaný rutheniem je popsán v patentu US 4 039 623. Podle Organohalogen Compd. 40, 583-590 (1999) se dosahuje rozkladu polychlorovaných bifenylů při teplotě již 150 až 300 °C za katalytického systému $\text{TiO}_2 - \text{V}_2 \text{O}_5 - \text{WO}_3$. V patentových dokumentech US 3 972 979 a US 3 989 806 se popisuje katalytická dehalogenace hexachlorbenzenu při teplotě 500 °C za použití katalyzátoru tvořeného mědí na zeolitu nebo chromitým na nosiči. Rozklad dioxinů v přítomnosti aminů nebo amoniových solí při teplotě nižší než 300 °C je popsán v EP 0 914 877 a US 6 291 737. Dehalogenace sloučenin v inertní atmosféře a za použití katalyzátorů obsahujících vápník, baryum, zinek, nikl, měď, železo, hliník, palladium, platinu, vanad, wolfram, molybden, rhodium a chrom, případně ve formě oxidů, křemičitanů nebo hlinitanů, při hmotnostním poměru katalyzátoru k dehalogenované látce 1:1 až 1:30 a při teplotě 150 až 550 $^{\circ}$ C jsou popsané v patentech US 5 276 250 a US 5 387 734. V článku Pekárek V. a kol., ESPR-Environ Sci & Pollut Res 10(1),39-43 (2003) je popsán systém dehalogenace popílkem ze spalování kominálního odpadu, využívající kombinace mědi a uhlíku.

Nevýhodami všech výše uvedených dehalogenačních způsobů je, že jsou energeticky velmi náročné nebo/a nevedou k úplné detoxifikaci dehalogenovaného materiálu nebo/a nepředstavují uzavřený nerizikový bezodpadový cyklus.

Podstata vynálezu

Výše uvedené nevýhody jsou do značné míry eliminovány způsobem dehalogenační detoxifikace halogenovaných aromatických nebo/a cyklických sloučenin podle vynálezu, jehož podstata spočívá v tom, že se alespoň jedna halogenovaná aromatická nebo/a cyklická sloučenina zahřívá na nosné matrici v uzavřeném systému na teplotu 200 až 500 °C v přítomnosti mědi v kovové formě nebo/a ve formě sloučeniny mědi, donoru vodíku, uhlíku a alespoň jedné dodatečné redukující látky, schopné redukovat měďnaté a měďné ionty za uvedené teploty na elementární měď.

Výhodně je alespoň jedna z dodatečných redukujících látek tvořena sloučeninou mědi, mající charakter redukující látky.

Výhodně je nosnou matricí materiál kontaminovaný halogenovanou nebo/a cyklickou sloučeninou, určenou k dehalogenační detoxifikaci.

Pod pojmem "uzavřený systém" je třeba rozumět reakční prostor, ve kterém jsou před započetím dehalogenační detoxifikace přítomny reakční složky dehalogenačního procesu pod vzdušnou atmosférou, a který po jeho uzavření zabraňuje přístupu kyslíku z okolní atmosféry do reakčního prostoru.

Z Pekárek V. a kol., ESPR-Environ Sci & Pollut Res 10(1),39-43 (2003) je zřejmé, že při dehalogenačním procesu představují detoxifikované dehalogenované produkty a vysoce toxické látky, vznikající de-novosyntézou, dva typy koncových produktů jedné a téže reakce a že si tvorba detoxifikovaných dehalogenovaných produktů a tvorba vysoce toxických látek, vznikajících novosyntézou, vzájemně konkurují, přičemž průběh této jediné reakce v tom či opačném směru závisí na volbě reakčních podmínek. V případě oxidační kyslíkové atmosféry probíhá převážně novosyntéza, zatímco v případě bezkyslíkaté inertní atmosféry převažuje dehalogenační reakce. Podstata

řešení podle vynálezu spočívá v nalezení podmínek, za kterých výhradně probíhá uvedená dehalogenační reakce.

Uhlík v dehalogenačním systému především odstraňuje kyslík z reakčního systému po jeho uzavření a v některých případech také zprostředkuje dodání dostatečného množství donoru vodíku, vzhledem k tomu, že na uhlíku jsou za obvyklých podmínek adsorbovány zejména organické látky a voda. Je prokázáno, že se uhlík s destruovanou krystalickou strukturou zplynuje za tvorby oxidu uhelnatého a oxidu uhličitého v přítomnosti katalyticky působící mědi již při teplotě 200 °C a vytváří tak redukční, případně inertní plynnou atmosféru. Redukční schopnost oxidu uhelnatého je však velmi omezena, neboť tato sloučenina, která je meziproduktem tvorby oxidu uhličitého, je v podstatě v plynné fázi a její množství je omezeno množstvím kyslíku v uzavřeném dehalogenačním systému. Bylo takto zjištěno, že uhlík není sobě schopen realizovat uspokojivý dehalogenačního procesu. Ve specifických případech, kdy ani nebo ostatní složky dehalogenačního procesu nejsou schopné poskytnout dostatečné množství donoru vodíku, nezbytné do dehalogenačního systému přidat donor vodíku jako takový, například ve formě vody nebo parafínového oleje.

V případě, že má být dehalogenačně detoxifikována koncentrovaná halogenovaná aromatická nebo/a cyklická látka, tj. látka nenacházející se na kontaminované matrici, potom je možné tuto matrici do dehalogenačního systému přidat. Výhodně se v tomto případě použije matrice, která ve své struktuře obsahuje uhlík nebo která má charakter donoru vodíku a která v průběhu dehalogenačního procesu neslinuje. Jako příklady takové matrice lze uvést aktivní koks, živce, hydratované křemičitany a detoxifikované popílky. Jako velice vhodné matrice lze uvést detoxifikované popílky ze spaloven odpadů, neboť většina těchto popílku obsahuje ve své struktuře nejen uhlík a donory vodíku, ale i měď ve velmi účinné formě z hlediska dehalogenačního procesu. Je známo, že zahřátím popílků z elektrofiltrů nebo z rukávových filtrů, které obsahují například dibenzo-p-dioxiny,

dibenzofurany a bifenyly, na teplotu asi 300 °C se dosáhne určité míry detoxifikace uvedených popílků. Popílky s nízkým obsahem nespáleného uhlíku a s velice nízkým obsahem mědi se detoxifikují podstatně hůře a mají i po detoxifikaci vysokou zbývající toxicitu. V některých případech jsou tyto popílky po detoxifikaci dokonce toxičtější než před detoxifikací, neboť například výšechlorované dibenzo-p-dioxiny a dibenzofurany se dechlorují na podstatně toxičtější tetrachlor-p-dioxiny a tetrachlordibenzofurany, zatímco v případě mnoha popílků detoxifikace vůbec neprobíhá v důsledku nepřítomnosti potřebných reakčních složek dehalogenačního procesu.

Přidání mědi nebo měďné nebo měďnaté sloučeniny v případě, že matrice měď nebo její sloučeninu neobsahuje v dostatečném množství, je nezbytné pro úspěšný průběh dehalogenačního procesu. Aktivní formy mědi jsou pro dehalogenační proces vhodnější. V dále zařazených příkladech je neomezujícím způsobem uvedeno použití některých sloučenin mědi, které se ukázaly být obzvláště vhodné pro průběh dehalogenačního procesu. Velice dobrých výsledků bylo také dosaženo za použití mědnatých solí organických kyselin.

Použití alespoň jedné dodatečné redukující látky vedle uhlíku schopné redukovat měďnaté a měďné ionty za teploty dehalogenačního procesu na elementární měď tvoří podstatu vynálezu, neboť v tomto případě dochází k vratnému procesu ve směru $\text{Cu} \to \text{Cu}^{1+} \to \text{Cu}^{2+}$ a zpět, při kterém vždy znovu vzniká nascentní forma mědi umožňující úspěšný průběh dehalogenačního procesu podle vynálezu. Schopnost této nascentní formy mědi tvořit na aromatickém jádru intermediární komplexní sloučeniny je natolik vysoká, že dehalogenace probíhá i v polohách, které jsou termodynamicky velmi stabilní, takže se dosahuje za optimalizovaných podmínek stupně dehalogenace až 99,9 % i u značně stabilních halogenovaných aromatických nebo/a cyklických sloučenin.

V následující části popisu bude vynález blíže objasněn pomocí konkrétních příkladů jeho provedení, přičemž tyto

příklady mají pouze ilustrační charakter a nikterak neomezují rozsah vynálezu, který je vymezen definicí patentových nároků a obsahem popisné části.

Příklady provedení vynálezu

Příklad 1

V rámci tohoto příkladu je studována závislost dehalogenační detoxifikace na teplotě. K matrici 960 silikagelu, který byl kontaminován 40 g hexachlorbenzenu, bylo přidáno 45 g oxidu mědnatého, 100 g aktivního uhlí a 100 g kyseliny mravenčí ve funkci dodatečné redukující látky. Systém byl uzavřen proti přístupu atmosférického kyslíku a zahříván po dobu 4 hodin při teplotě 260 a 300 °C (příklad la resp. 1b). Podmínky experimentu nebyly optimalizovány. Získané výsledky jsou uvedeny v následující tabulce 1. Tabulka 1

T °C	C ₆ H ₆ %	MCD	7:07	T			
260 (la)	70	MCB %	DICB %	TriCB %	TeCB %	PeCB %	HCB %
		21	-	_			
300 (1ь)	100	-	_				
C6H6 - benz	en. MCB - n	onochlorb o-	D'CD	<u> </u>	-	-	-

C₆H₆ - benzen, MCB - monochlorbenzen, DiCB - dichlorbenzen, TriCB - trichlorbenzen, TeCB - tetrachlorbenzen, PeCB - pentachlorbenzen, HCB - hexachlorbenzen.

K matrici 960 živce, který byl kontaminován 40 hexachlorbenzenu, bylo přidáno 45 g oxidu mědnatého, aktivního uhlí a 45 g kyseliny citrónové ve funkci dodatečné redukující látky. Systém byl uzavřen proti přístupu atmosférického kyslíku a zahříván po dobu 4 hodin při teplotách 200, 250, 300 a 350 °C (příklad 1c, 1d, 1e resp. 1f). Podmínky experimentu nebyly optimalizovány. Získané výsledky uvedeny v následující tabulce 2.

Tabulka 2

T °C	C6H6%	MCB %	DiCD 0/	T :00 04	<u> </u>		
200 (1c)			DICE 70	TriCB %	LIECB %	PeCB %	HCB %
	0,5	0,2	8,9	59,7	30,7		
250 (1d)	9,1	54,5	35,9	0,5			
300 (1e)	93,1	6.9		0,5		-	
350 (11)	100			-	-	<u>.</u> .	
				dichlorhan			

C₆H₆ - benzen, MCB - monochlorbenzen, DiCB - dichlorbenzen, TriCB - trichlorbenzen, TeCB - tetrachlorbenzen, PeCB - pentachlorbenzen, HCB - hexachlorbenzen.

Z výsledku závislosti dehalogenačního procesu na teplotě vyplývá, že stupeň dehalogenace výrazně závisí na chemickém složení systému a stabilitě dehalogenované sloučeniny. V některých případech i poměrně malý teplotní rozdíl (40 °C) podstatně ovlivňuje výsledek dehalogenace, zatímco v jiných případech reakce úspěšně probíhají až při vyšších teplotách.

Příklad 2

rámci tohoto příkladu jе porovnávána dehalogenace hexachlorbenzenu v nepřítomnosti dodatečné redukující látky a v přítomnosti dodatečné redukující látky. K matrici 960 g živce, který byl kontaminován 40 g hexachlorbenzenú bylo přidáno 60 g hydroxidu mědnatého a 100 g aktivního koksu (Litvínov). Dehalogenace byla provedena bez dodatečné redukující látky (příklad 2a) a za přítomnosti 64 g formaldehydu ve funkci dodatečné redukující látky (příklad 2b). Systém byl uzavřen proti přístupu atmosférického kyslíku a zahříván po dobu 4 hodin při teplotě 300 °c. Podmínky experimentu optimalizovány. Získané výsledky jsou uvedený v následující tabulce 3.

Tabulka 3

Pokus	C ₆ H ₆ %	MCR %	DiCP 9/	T:00 01			
2a	-0-075	1.1CB 70	DICE %	TriCB %	TeCB %	PeCB %	НСВ %
2b	993		4,6	82,6	12,8	-	_
<u> </u>		0,7		-	-	_	
C ₆ H ₆ - benz	en, MCB - m	onochlorhen	zan DiCD	3: 11			

C₆H₆ - benzen, MCB - monochlorbenzen, DiCB - dichlorbenzen, TriCB - trichlorbenzen, TeCB - tetrachlorbenzen, PeCB - pentachlorbenzen, HCB - hexachlorbenzen.

K matrici 960 g silikagelu, který byl kontaminován 40 g hexachlorbenzenu, bylo přidáno 45 g oxidu mědnatého a 100 g aktivního uhlí. Dehalogenace byla provedena bez dodatečné redukční látky (příklad 2c) a za přítomnosti 45 g kyseliny citrónové ve funkci dodatečné redukující látky (příklad 2d). Systém byl uzavřen proti přístupu atmosférického kyslíku a zahříván po dobu 4 hodin při teplotě 260 °C. Podmínky experimentu nebyly optimalizovány. Získané výsledky jsou uvedeny v následující tabulce 4.

Tabulka 4

	Pokus	C ₆ H ₆ %	MCB %	DiCB %	TriCB %	TeCR %	PaCP 9/	HCB %
	2c	-	-	-	7.4	72.5	20.1	HCB %
Į	2d	12,1	55,6	32,3	-		-	

C₆H₆ - benzen, MCB - monochlorbenzen, DiCB - dichlorbenzen, TriCB - trichlorbenzen, TeCB - tetrachlorbenzen, PeCB - pentachlorbenzen, HCB - hexachlorbenzen.

Výše uvedené výsledky ukazují, že pouhá přítomnost uhlíkové redukující složky je pro úplný průběh dehalogenace nedostatečná a že k úplné dehalogenaci dochází pouze v přítomnosti dodatečné redukující látky.

K matrici 960 živce, který byl kontaminován hexachlorbenzenu bylo přidáno 42 g oxidu mědnatého a 100 g Dehalogenace byla provedena bez uhlí. přídavku dodatečné redukující látky (příklad 2e) a za přítomnosti 64 g formaldehydu ve funkci dodatečné redukující látky (příklad 2f). Systém byl uzavřen proti přístupu atmosférického kyslíku a zahříván po dobu 3 hodin při teplotě 300 °C. experimentu nebyly optimalizovány. Získané výsledky uvedeny v následující tabulce 5.

Tabulka 5

Pokus	C ₆ H ₆ %	MCB %	DiCB %	TriCB %	TeCR %	PaCP 9/	HCB %
2e	1,5	33	64.1	1 4	-	TECD 76	BCB %
2f	100	-					<u> </u>
CH hom	TOT MCCD					-	-

C₆H₆ - benzen, MCB - monochlorbenzen, DiCB - dichlorbenzen, TriCB - trichlorbenzen, TeCB - tetrachlorbenzen, PeCB - pentachlorbenzen, HCB - hexachlorbenzen.

Výše uvedené výsledky rovněž ukazují, že přítomnost dodatečné redukující látky je v daném systému nezbytná pro úspěšný průběh dehalogenačního procesu.

Příklad 3

V rámci tohoto příkladu je dehalogenován dekachlorbifenyl. K matrici 960 g produktu Silcal (křemičitanová matrice), který byl kontaminován 40 g dekachlorbifenylu, bylo přidáno 42 g oxidu mědného, 100 g aktivního uhlí a 15 g kyseliny citrónové

ve funkci dodatečné redukující látky. Systém byl uzavřen a dobu 4 hodin při teplotě 280 °C. zahříván po dehalogenačního procesu nebyly optimalizovány. Po dehalogenaci obsahoval 99 용 bifenylu, 2,2',6,6'-tetrachlorbifenylu, 0,3 % 2,2',6-trichlorbifenylu a 0,5 % di- a monochlorbifenylů. Získané výsledky dokazují, že i při neoptimalizovaných podmínkách je dehalogenační účinnost systému podle vynálezu vysoká, neboť i při nižším množství redukující dodatečné látky a °C teplotě 280 bylo deset chlorových atomů v molekule dekachlorbifenylu dehalogenováno z 99 용.

Příklad 4

V rámci tohoto příkladu je studována závislost dehalogena na čase. K matrici 960 g extrahovaného popílku ze spaloven komunálního odpadu, který byl kontaminován hexachlorbenzenu, bylo přidáno 45 g oxidu mědnatého, aktivního uhlí a 45 g kyseliny vinné ve funkci dodatečné redukující látky. Systém byl uzavřen proti atmosférického kyslíku a zahříván při teplotě 300 °C po dobu 1, 2 a 3 hodin (příklad 4a, 4b resp. 4c). Podmínky experimentu nebyly optimalizovány. Získané výsledky jsou uvedeny následující tabulce 6.

Tabulka 6

	T		<u> </u>				
t (h)	C ₆ H ₆ %	MCB %	DiCB %	TriCB %	TeCB %	PeCB %	HCR %
l (4a)	95,2	4,8	_	_		-	ACD 70
2 (4b)	99,9	0,1	_				
3 (4c)	99,99	0,01				<u> </u>	<u> </u>
CIT			<u> </u>] -		-

C₆H₆ - benzen, MCB - monochlorbenzen, DiCB - dichlorbenzen, TriCB - trichlorbenzen, TeCB - tetrachlorbenzen, PeCB - pentachlorbenzen, HCB - hexachlorbenzen

K matrici 960 g živce, který byl kontaminován 40 g hexachlorbenzenu, bylo přidáno 45 g oxidu mědnatého, 100 g aktivního koksu (Ostrava) a 45 g kyseliny citrónové ve funkci dodatečné redukující látky. Systém byl uzavřen proti přístupu atmosférického kyslíku a zahříván při teplotě 300 °C po dobu l,

2, 3 a 4 hodin (příklad 4d, 4e, 4f resp. 4g). Podmínky experimentu nebyly optimalizovány. Získané výsledky jsou uvedeny v následující tabulce 7.

Tabulka 7

t (h)	C ₆ H ₆ %	MCB %	DiCB %	TriCB %	TeCB %	PeCB %	HCB %
1 (4d)	26,3	64,8	8,9				
2 (4e)	48,8	50,2	1	-	-	-	-
3 (4f)	69,2	30,7	0,1	-	_	-	-
4 (4g)	93,1	6,9	-	-	_	_	-

C₆H₆ - benzen, MCB - monochlorbenzen, DiCB - dichlorbenzen, TriCB - trichlorbenzen, TeCB - tetrachlorbenzen, PeCB - pentachlorbenzen, HCB - hexachlorbenzen

Výše uvedené výsledky ukazují, že doba dehalogenace výrazně ovlivňuje stupeň dehalogenace, přičemž míra tohoto vlivu se může mezi jednotlivými dehalogenovanými sloučeninami výrazně lišit v důsledku odlišné chemické stability jednotlivých dehalogenovaných sloučenin a zvoleného složení reakčních složek dehalogenačního systému.

Příklad 5

V rámci tohoto příkladu je studována závislost průběhu dehalogenace na charakteru matrice. K 960 g tří různých typů matric, které byly kontaminovány 40 g hexachlorbenzenu, bylo přidáno 45 g oxidu mědnatého, 100 g aktivního uhlí a 45 g kyseliny citrónové ve funkci dodatečné redukující látky. Systémy byly uzavřeny proti přístupu atmosférického kyslíku a zahřívány po dobu 4 hodin při teplotě 300 °C. V rámci této studie byly použity následující typy matric: A - živec, B - extrahovaný popílek ze spaloven komunálních odpadů a C - silikagel. Podmínky experimentu nebyly optimalizovány. Získané výsledky jsou uvedeny v následující tabulce 8.

Tabulka 8

matrice	C ₆ H ₆ %	MCB %	DiCB %	TriCB %	TeCB %	PeCB %	HCB %
A-živec	93,1	6,9					
B-popilek	100	-	-	-	_	-	-
C-silikagel	99,2	0,8	-	-	-	_	-

C₆H₆ - benzen, MCB - monochlorbenzen, DiCB - dichlorbenzen, TriCB - trichlorbenzen, TeCB - tetrachlorbenzen, PeCB - pentachlorbenzen, HCB - hexachlorbenzen

Získané výsledky pro jednotlivé typy matric ukazují, charakter matrice má poměrně malý vliv na průběh dehalogenačního procesu. Z výsledků rovněž vyplývá, extrahovaný popílek nebo popílek po dehalogenačním procesu jsou dobře využitelné v rámci dalších dehalogenačních procesů. Jinak je zřejmé, že i na méně vhodných matricích lze úspěšně realizovat dehalogenační proces při vhodné optimalizaci podmínek, za kterých je tento proces prováděn.

Příklad 6

V rámci tohoto příkladu byly dehalogenovány polychlorované bifenyly. K matrici 20 kg dehalogenovaných popílků ze spalovny komunálních odpadů, který byl kontaminován 1,2 kg produktu Delor 103 (polychlorovaný bifenyl, obsahující jako převládající komponentu trichlorovaný bifenyl), byl přidán 1 kg oxidu mědnatého, 2 kg ostravského aktivního koksu a 1 kg kyseliny citrónové ve funkci dodatečné redukující látky. Systém byl uzavřen pro přístupu atmosférického kyslíku a zahříván po dobu 4 hodin při teplotě 300 °C. Podmínky experimentu byly optimalizovány. Výsledky dehalogenační detoxifikace popílku jsou uvedeny v následující tabulce 9.

Tabulka 9

DODO	I - TEF	[ng PCB/g]	[ngTEQ PCB/g] PMS = 0
PCB81	0,0001	0,56	0,000056
PCB77	0,0001	23,4	0,00234
PCB126	0,1	< 0,06	PMS
PCB169	0,01	< 0,11	. PMS
PCB123	0,0001	0,29	0,000029
PCB118	0,0001	9,28	0,000928
PCB114	0,0005	0,05	0,000025
PCB105	0,0001	3,32	0,000332
PCB167	0,00001	< 0.08	PMS
PCB156	0,0005	< 0,07	PMS
PCB157	0,0005	< 0,06	PMS
PCB189	0,0001	< 0,11	PMS
Suma PCB		37	0,0037

Je použito číslování toxických polychlorovaných bifenylů (PCB) podle Ballschmitera; I-TEF znamená toxický ekvivalent k přepočtu koncentračních jednotek (ng PCB/g) na koncentrační jednotky zahrnující toxicitu (ng TEQ PCB/g); PMS = pod mezí stanovitelnosti.

Ze získaných výsledků je zřejmé, že polychlorované bifenyly typu Deloru byly dehalogenačně detoxifikovány ve 100% míře.

Příklad 7

V rámci tohoto příkladu byla provedena dehalogenační detoxifikace polychlorovaných dibenzo-p-dioxinů a dibenzofuranů v popílcích ze spalovny nebezpečných odpadů. Ke 20 kg popílku z rukávových filtrů spalovny nebezpečných odpadů, který byl mimo jiné kontaminován polychlorovanými dibenzo-p-dioxiny (PCDD) a dibenzofurany (PCDF), byly přidány 2 kg ostravského aktivního koksu, 1 kg oxidu mědnatého a 1 kg kyseliny citrónové ve funkci dodatečné redukující látky. Systém byl uzavřen proti přístupu atmosférického kyslíku a zahříván po dobu 4 hodin při teplotě

300 °C. Podmínky experimentu byly optimalizovány. Výsledky takto provedené dehalogenační detoxifikace jsou uvedeny v následující tabulce 10

Tabulka 10

				•		
	I-TEF	A	B	A	B	
	1-1151	ng PCDD/F/g		ng PCI	ng PCDD/F TEQ/g	
2378TCDD	1		<u>-</u>	(P	MS=0)	
12378PeCDD	1	1,30	< 0,0060	.1,3	PMS	
123478HxCDD	=	7,97	< 0,0060	7,97	PMS	
123678HxCDD	0,1	15,7	< 0,0080	1,57	PMS	
123789HxCDD	0,1	27,3	< 0,0080	2,73	PMS	
1234678HpCDD	0,1	21,5	< 0,0090	2,15	PMS	
OCDD	0,01	307	0,0102	3,07	0,000102	
TCDD	0,0001	960	0,0475	0,096	0,00000475	
PeCDD		32,3	0,0371	1	,	
HxCDD		92,2	< 0,032			
HpCDD		419	< 0,042			
Suma PCDD		573	< 0,018			
2378TCDF		2076	0,0846	18,9	0,000107	
12378PeCDF	0,1	9,14	< 0,006	0,914	PMS	
23478PeCDF	0,05	18,8	0,0034	0,94	0,00017	
123478HxCDF	0,5	35,4	0,011	17,7	0,0055	
	0,1	67	0,0079	6,7	0,00079	
123678HxCDF	0,1	74,6	0,0051	7,46	0,00051	
234678HxCDF	0,1	200	0,0085	20	0,00085	
123789HxCDF	0,1	7,88	< 0,005	0,788	PMS	
1234678HpCDF	0,01	536	0,0245	5,36	0,000245	
1234789HpCDF	0,01	112	< 0,006	1,12	PMS	
OCDF	0,0001	5640	0,0676	0,564	0,00000676	
TCDF		238	0,177	0,504	0,00000076	
PeCDF		423	0,0869			
HxCDF		881	0,0843			
HpCDF		1050	0,0431			
Suma PCDF		8232	0,459	61,5	0.00007	
Suma PCDD/F		10308	0,54	.80	0,00807	
		-			0,0082	

A - kontaminace popílku před dehalogenační detoxifikací; B - zbytková kontaminace po dehalogenační detoxifikaci; I-TEF, TEQ a PMS viz legenda k tabulce 9; DD - dibenzo-p-dioxin; DF - dibenzofuran; TC - tetrachlor; Pe - pentachlor; Hx - hexachlor; Hp - heptachlor; OC - oktachlor.

Z výše uvedených výsledků je zřejmé, že polychlorované dibenzo-p-dioxiny byly dehalogenovány z 99,996 % a detoxifikovány z 99,9994 % a že polychlorované dibenzofurany byly dehalogenovány z 99,995 % a detoxifikovány z 99,99 %. Z těchto výsledků jednoznačně vyplývá, že dehalogenační detoxifikací podle vynálezu mohou být účinně rozloženy i velmi stabilní a nejvíce toxické sloučeniny persistentních organických kontaminujících látek.

PATENTO VÉ NÁROKY

- 1. Způsob dehalogenační detoxifikace halogenovaných aromatických nebo/a cyklických sloučenin, v y z n a č e n ý t í m, že se alespoň jedna halogenovaná aromatická nebo/a cyklická sloučenina zahřívá na nosné matrici v uzavřeném systému na teplotu 200 až 500 °C v přítomnosti mědi v kovové formě nebo/a ve formě sloučeniny mědi, donoru vodíku, uhlíku a alespoň jedné dodatečné redukující látky, schopné redukovat měďnaté a měďné ionty za uvedené teploty na elementární měď.
- 2. Způsob podle nároku 1, v y z n a č e n ý t í m, že alespoň jedna z dodatečných redukujících látek je tvořena sloučeninou mědi, mající charakter redukující látky.
- 3. Způsob podle nároku 1 nebo 2, v y z n a č e n ý t í m, že nosnou matricí je materiál kontaminovaný halogenovanou aromatickou nebo/a cyklickou sloučeninou, určenou k dehalogenační detoxifikaci.

Zastupuje:

Anotace

Název vynálezu: Způsob dehalogenační detoxifikace halogenovaných aromatických nebo/a cyklických sloučenin

Způsob dehalogenační detoxifikace halogenovaných aromatických nebo/a cyklických sloučenin, jehož podstata spočívá v tom, že se alespoň jedna halogenovaná aromatická nebo/a cyklická sloučenina zahřívá na nosné matrici v uzavřeném systému na teplotu 200 až 500 °C v přítomnosti mědi v kovové formě nebo/a ve formě sloučeniny mědi, donoru vodíku, uhlíku a alespoň jedné další redukující látky, schopné redukovat měďnaté a měďné ionty za uvedené teploty na elementární měď.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
\square image cut off at top, bottom or sides
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потикв.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.