

Loan Approval Predictions Using Logistic Regression

Isaac Turk

Background

As of September 30, 2024, Synchrony reported total loan receivables of **\$102.193 billion**

Consumer installment loans and credit card receivables <u>each</u> accounted for **\$10.286** billion of the total loan receivables

Synchrony's net charge-off rate for the full year 2023 was <u>4.84%</u>, which was below their target underwriting range of <u>5.5%-6.0%</u>

My goal with this mini-project is to help lower that charge-off rate even more by creating a model to classify if a customer is likely to default

About the Data

Dataset contained <u>45,000</u> observations and <u>14 variables</u>

Synthetic dataset created to understand financial risk factors and simulating loan approval models

Each observation is a loan request (age, education, credit history, income, etc.)

Data Cleaning

- Standardized categorical columns for better usability
- Removed outliers based on variables like loan amount and income
- This eliminated around 5,000 observations from our dataset

Exploratory Data Analysis

- Distribution of loan statuses
- Credit history vs. Loan amount
- Correlation

Exploratory Data Analysis cont.

- Distribution of loan statuses
- Credit history vs. Loan amount
- Correlation

Exploratory Data Analysis cont.

- Distribution of loan statuses
- Credit history vs. Loan amount
- Correlation

Model Development

- Decided to use <u>Logistic</u>
 <u>Regression</u>
- · Why?
 - o Ideal for binary classification tasks
 - Provides easy interpretability
 - Computationally efficient

Model Development cont.

- Based on correlation analysis, we used our top 5 predictors:
 - o previous_loan_defaults_on_file
 - o loan_percent_income
 - loan_int_rate
 - o person_income
 - o person_home_ownership

Model Performance

- Train Accuracy: 89%
- Test Accuracy: 89%
- Class 0 (Decline):
 - o F-score: 93%
- Class 1 (Approve):
 - o F-score: 74%
- Pseudo R² Value: 0.331
- AUC (Area Under Curve): 0.946

Model Performance cont.

- Classification Threshold: 0.5
 - Overall Accuracy: 88.76%
 - Sensitivity (Recall for Approvals): 72.62%
 - Specificity (Recall for Declines): 93.4%

Summary Insights

This logistic regression model aims to reduce loan charge-offs by identifying customers likely to default

The key predictors in our model were:

Our model ended up with a 0.946 AUC and test accuracy of 88.76%

If they had any previous loans on file

The loan represented as a percentage of their income

The loan interest rate

The customer's income

The customer's homeownership type

Business Impact

Potential to improve underwriting by focusing on high-risk borrowers

Implement model to improve approval criteria and reduce net charge-offs

Future Work

Use more advanced models like Random Forest and XGBoost to improve recall on approved loans

Use real-world data for better insights and predictions

Incorporate tools like SHAP or LIME to help explain individual predictions

Thank You!

Q&A