

(5)

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
21. Juni 2001 (21.06.2001)

PCT

(10) Internationale Veröffentlichungsnummer
WO 01/44161 A2

(51) Internationale Patentklassifikation⁷: C07C 209/00 (81) Bestimmungsstaaten (*national*): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(21) Internationales Aktenzeichen: PCT/EP00/12173

(22) Internationales Anmeldedatum:
4. Dezember 2000 (04.12.2000)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
199 61 372.9 17. Dezember 1999 (17.12.1999) DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): MERCK PATENT GMBH [DE/DE]; Frankfurter Strasse 250, 64293 Darmstadt (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): BUCHHOLZ, Herwig [DE/DE]; Auf dem Mühlberg 75, 60599 Frankfurt (DE). WELZ-BIERMANN, Urs [DE/DE]; Rebenstrasse 103, 64646 Heppenheim (DE).

(74) Gemeinsamer Vertreter: MERCK PATENT GMBH; Frankfurter Strasse 250, 64293 Darmstadt (DE).

(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: METHOD FOR PRODUCING COMBINATORIAL LIBRARIES OF ARYL-SUBSTITUTED AMINES

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG KOMBINATORISCHER BIBLIOTHEKEN ARYLSUBSTITUIERTER AMINE.

A2

(57) Abstract: The invention relates to a method for producing combinatorial libraries of aryl-substituted amines comprising at least two different compounds of general formula (I). The invention particularly relates to libraries of geminally substituted amines, which comprise at least one substituent R⁴ or R⁵ containing one aryl group, and to the special use of these amines as intermediate stages in the combinatorial synthesis of active substances or as active substances in medicaments.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung kombinatorischer Bibliotheken arylsubstituierter Amine umfassend mindestens zwei verschiedene Verbindungen der allgemeinen Formel (I). Insbesondere betrifft die vorliegende Erfindung Bibliotheken geminal substituierter Amine, welche mindestens einen eine Arylgruppe aufweisenden Substituenten R⁴ oder R⁵ besitzen, sowie die spezielle Verwendung dieser Amine als Zwischenstufen in der kombinatorischen Wirkstoffsynthese oder als Wirkstoffe in Arzneimitteln.

**Verfahren zur Herstellung kombinatorischer Bibliotheken
arylsubstituierter Amine**

5 Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung kombinatorischer Bibliotheken arylsubstituierter Amine umfassend mindestens zwei verschiedene Verbindungen der allgemeinen Formel (I)

10

15

Insbesondere betrifft die vorliegende Erfindung Bibliotheken geminal substituierter Amine, welche mindestens einen eine Arylgruppe aufweisenden Substituenten R⁴ oder R⁵ besitzen, sowie die spezielle Verwendung dieser Amine als Zwischenstufen in der kombinatorischen Wirkstoffsynthese oder als Wirkstoffe in Arzneimitteln.

20

25

Es ist bekannt durch kombinatorische Synthese, ausgehend von mehreren verschiedenen Ausgangsverbindungen, Stoffbibliotheken herzustellen, die ein Gemisch aus verschiedenen Reaktionsprodukten enthalten. Einerseits ist es dann durch geeignetes Screening einer Bibliothek möglich, biologisch aktive Reaktionsprodukte zu identifizieren, die dann anschließend gezielt hergestellt werden können. Andererseits kann eine Bibliothek aber auch wieder in einer weiteren kombinatorischen Synthese eingesetzt werden. Durch Kombination dieser beiden Möglichkeiten können neue Wirkstoffklassen erschlossen werden.

30

35

Voraussetzung für die kombinatorische Synthese von Wirkstoffbibliotheken ist die Zugänglichkeit von geeigneten Ausgangsverbindungen, die entweder bereits ein biologisch aktives Strukturelement enthalten oder dieses durch die kombinatorische Synthese bilden. Ferner müssen die Ausgangsverbindungen geeignet sein möglichst viele der denkbar möglichen Reaktionsprodukte in jeweils möglichst gleicher Ausbeute bereitzustellen, um beim Screening den Einfluss der Konzentration der einzelnen Verbindungen zu vermindern und eine möglichst vollständige kombinatorische Bibliothek zu schaffen.

Aufgabe der Erfindung ist es daher neue Verbindungen bereitzustellen, die ein spezielles biologisch aktives Strukturelement enthalten und die einzeln oder als Bibliothek in der kombinatorischen Synthese von Wirkstoffen eingesetzt werden können.

5

Diese Aufgabe wird durch die Bereitstellung eines Amins der folgenden Formel (I) als Reinstoff oder in einer Stoffbibliothek im Gemisch mit mehreren verschiedenen Aminen der Formel (I), gelöst.

10

Gegenstand der vorliegenden Erfindung ist daher eine kombinatorische Bibliothek umfassend mindestens zwei verschieden substituierte Amine der allgemeinen Formeln (I)

15

worin

20

R^1 und R^2 gleich oder verschieden sein können und unabhängig von
einander

25

H oder A,

verzweigtes oder unverzweigtes Alkenyl mit C₁ bis C₁₀,

verzweigtes oder unverzweigtes Alkinyl mit C₁ bis C₁₀,

Aryl mit C₆ bis C₂₀,

30

ein- oder mehrfach durch A, NO₂, F, Cl, Br, CF₃, NH₂, NHA, NA₂, OH, OA, substituiertes Aryl

Aralkyl mit C₇ bis C₂₀, gegebenenfalls ein- oder mehrfach durch
A, NO₂, F, Cl, Br, NH₂, NHA, NA₂, OH, OA substituiert

Aralkenyl, mit den für Aryl und Alkenyl gegebenen Bedeutungen,

35

Aralkinyl, mit den für Aryl und Alkinyl gegebenen Bedeutungen
Aryloxy,

Arylthio, Arylsulfinyl, Arylsulfonyl, Aralkoxy, Aralkylthio, Aralkylsulfinyl, Aralkylsulfonyl,

oder

35

R^1, R^2 gemeinsam

Cycloalkyrring mit C₂ bis C₈, der gegebenenfalls neben N ein
weiteres Heteroatom aus der Gruppe N, O und S aufweist, und

gegebenenfalls ein- oder mehrfach durch Hal oder C₁- bis C₃-alkyl substituiert ist,
Methyl- oder Ethyl-substituierter Cycloalkytring mit C₄ bis C₁₀,
der gegebenenfalls neben N ein weiteres Heteroatom aus der
5 Gruppe N, O und S aufweist, und gegebenenfalls
ein- oder mehrfach durch Hal oder C₁- bis C₃-alkyl substituiert ist,
ein- oder mehrfach ungesättigter Cycloalkytring mit C₃ bis C₈,
der gegebenenfalls neben N ein weiteres Heteroatom aus der
10 Gruppe N, O und S aufweist, und gegebenenfalls ein- oder
mehrfach durch Hal oder C₁- bis C₃-alkyl substituiert ist
10 R³ H, Methyl, ein- bis dreifach durch F substituiertes Methyl,
R⁴ und R⁵ gleich oder verschieden und unabhängig voneinander
15 H, A,
verzweigtes oder unverzweigtes Alkenyl mit C₁ bis C₁₀, gege-
benenfalls ein- oder mehrfach durch Hal substituiert
verzweigtes oder unverzweigtes Alkinyl mit C₁ bis C₁₀, gege-
benenfalls ein- oder mehrfach durch Hal substituiert,
wobei sowohl A, Alkenyl als auch Alkinyl durch
20 C₁- bis C₆-Alkoxy, C₂- bis C₆-Alkenyloxy, C₂- bis C₆-Alkinyl-,
oxy, ein- oder mehrfach durch Hal, C₁- bis C₆-Alkylthio,
C₁- bis C₆-Alkylsulfinyl, C₁- bis C₆-Alkylsulfonyl, Cyano, NO₂,
C₁- bis C₆-Alkylamino, C₁- bis C₆-Alkoxyamino, Di(C₁- bis
25 C₃-alkyl)-Amino, N-(C₁- bis C₃-alkyl)-N-(C₁- bis C₃-alkoxy)-
amino, N(C₁-bis C₆-alkylsulfonyl)-N-(C₁-bis C₆-alkyl)amino
N(C₁-bis C₆-alkylsulfonyl)-N-(C₁-bis C₆-alkoxy)amino,
Tri-C₁- bis C₆-alkylsilyl Triarylsilyl substituiert sein kann,
Aryl mit C₆ bis C₂₀,
ein- oder mehrfach durch A, NO₂, F, Cl, Br, CF₃, NH₂, NHA, NA₂,
30 OH, OA, substituiertes Aryl
Aralkyl mit C₇ bis C₂₀, gegebenenfalls ein- oder mehrfach durch
A, NO₂, F, Cl, Br, NH₂, NHA, NA₂, OH, OA substituiert
Aralkenyl, mit den für Aryl und Alkenyl gegebenen Bedeutungen,
35 Aralkinyl, mit den für Aryl und Alkinyl gegebenen Bedeutungen
Aryloxy,
Arylthio, Arylsulfinyl, Arylsulfonyl, Aralkoxy, Aralkylthio, Aralkylsul-

finyl, Aralkylsulfonyl,

oder einer der Reste R⁴ oder R⁵ Bindung in einer Doppelbindung,
mit der Maßgabe, daß mindestens einer der beiden Reste R⁴ oder R⁵ ei-
ne Arylgruppe enthält,

5

wobei

A verzweigtes oder unverzweigtes Akyl mit C₁ bis C₁₀, gegebenen-
falls ein- oder mehrfach durch Hal, NO₂, NH₂, NH-(C₁-C₆-alkyl),
N(C₁-C₆-alkyl)₂, OH, O-(C₁-C₆-alkyl), C₁-C₆-alkyl-thio,
C₁-C₆-alkyl-sulfinyl, C₁-C₆-alkyl-sulfonyl, CN, NH-(C₁-C₆-alkoxy),
N-(C₁-C₃-alkyl)-N-(C₁-C₃-alkoxy)amino,
N-(C₁-C₆-alkylsulfonyl)-N-(C₁-C₆-alkyl)amino,
N-(C₁-C₆-alkylsulfonyl)-N-(C₁-C₆-alkoxy)amino,

10

Tri- C₁-C₆-alkylsilyl, Triarylsilyl
substituiert,

Cycloalkyl mit C₃ bis C₈, gegebenenfalls ein- oder mehrfach
durch Hal substituiert,

Methyl- oder Ethyl-substituiertes Cycloalkyl mit C₄ bis C₁₀,
ein- oder mehrfach ungesättigtes Cycloalkyl mit C₃ bis C₈

20

Aryl bzw. Ar

gegebenenfalls ein oder mehrfach durch die bei A gegebenen Sub-
stituenten substituiertes

Phenyl, Naphthyl, Phenanthryl, Anthryl, Indyl, Fluorenyl, Pyridyl,
Pyrrolidinyl oder Indolyl,

25

und

Hal F, Cl, Br, I

bedeuten, oder deren Salze.

30

Insbesondere ist im Rahmen der Erfindung eine entsprechende kombinatori-
sche Bibliothek zu verstehen, welche mindestens zwei verschiedenen substitu-
ierten Amine wie aufgeführt umfaßt, worin R³ für Wasserstoff oder Methyl
steht.

35

In den Rahmen der Erfindung fällt insbesondere eine kombinatorische Bi-
bliothek, welche mindestens zwei entsprechende verschieden substituierte

Amine enthält, worin jeweils R⁴ und R⁵ verschieden sind, mit der Maßgabe, daß mindestens einer der beiden Reste R⁴ oder R⁵ eine Arylgruppe enthält.

5 Insbesondere ist Gegenstand der vorliegenden Erfindung eine kombinatorische Bibliothek umfassend zwei bis 100 verschiedenen substituierte Amine, wie beschrieben,

wobei

R¹ und R² gleich sind und

10 R³ H, Methyl, ein- bis dreifach durch F substituiertes Methyl,
R⁴ H, A,
verzweigtes oder unverzweigtes Alkenyl mit C₁ bis C₁₀, gegebenenfalls ein- oder mehrfach durch Hal substituiert
verzweigtes oder unverzweigtes Alkinyl mit C₁ bis C₁₀, gegebenenfalls ein- oder mehrfach durch Hal substituiert,
15 wobei sowohl A, Alkenyl als auch Alkinyl durch
C₁- bis C₆-Alkoxy, C₂- bis C₆-Alkenyloxy, C₂- bis C₆-Alkinyl-,
oxy, ein- oder mehrfach durch Hal, C₁- bis C₆-Alkylthio,
C₁- bis C₆-Alkylsulfinyl, C₁- bis C₆-Alkylsulfonyl, Cyano, NO₂,
C₁- bis C₆-Alkylamino, C₁- bis C₆-Alkoxyamino, Di(C₁- bis
20 C₃-alkyl)-Amino, N-(C₁- bis C₃-alkyl)-N-(C₁- bis C₃-alkoxy)-
amino, N(C₁-bis C₆-alkylsulfonyl)-N-(C₁-bis C₆-alkyl)amino
N(C₁-bis C₆-alkylsulfonyl)-N-(C₁-bis C₆-alkoxy)amino,
Tri-C₁- bis C₆-alkylsilyl Triarylsilyl substituiert sein kann
und

25 R⁵ Aryl mit C₆ bis C₂₀,
ein- oder mehrfach durch A, NO₂, F, Cl, Br, CF₃, NH₂, NHA,
NA₂, OH, OA, substituiertes Aryl

bedeuten.

Dementsprechend sind Gegenstand der Erfindung insbesondere diejenigen kombinatorische Bibliotheken, umfassend zwei bis 100 verschiedenen substituierte Amine gemäß der allgemeinen Formel (I), in denen die Reste jeweils eine der vorstehend angegebenen bevorzugten Bedeutungen haben. Einige bevorzugte Gruppen von Verbindungenen solcher kombinatorischen bibliotheken können durch die folgenden Teilformeln ausgedrückt werden, die der allgemeinen Formel (I) entsprechen und worin

die nicht näher bezeichneten Reste die bei der Formel (I) angegebene Bedeutung haben, worin jedoch

I. R¹ und R² gemeinsam ein

5 Cycloalkyrling mit C₂ bis C₈ ist, der gegebenenfalls neben N ein weiteres Heteroatom aus der Gruppe N, O und S aufweist, und gegebenenfalls ein- oder mehrfach durch Hal oder C₁- bis C₃- alkyl substituiert ist,

10 Methyl- oder Ethyl-substituierter Cycloalkyrling mit C₄ bis C₁₀ ist, der gegebenenfalls neben N ein weiteres Heteroatom aus der Gruppe N, O und S aufweist, und gegebenenfalls ein- oder mehrfach durch Hal oder C₁- bis C₃-alkyl substituiert ist, ein-oder mehrfach ungesättigter Cycloalkyrling mit C₃ bis C₈ ist, der gegebenenfalls neben N ein weiteres Heteroatom aus der Gruppe N, O und S aufweist, und gegebenenfalls ein- oder mehrfach durch Hal oder C₁- bis C₃-alkyl substituiert ist,

15 und

R³, R⁴ und R⁵ die vorher gegebenen Bedeutungen haben;

II. R¹ H oder A,

20 verzweigtes oder unverzweigtes Alkenyl mit C₁ bis C₁₀,

verzweigtes oder unverzweigtes Alkinyl mit C₁ bis C₁₀,

R² Aryl mit C₆ bis C₂₀,

ein- oder mehrfach durch A, NO₂, F, Cl, Br, CF₃, NH₂, NHA,

NA₂, OH, OA substituiertes Aryl

25 bedeuten

und

R³, R⁴ und R⁵ die vorher gegebenen Bedeutungen haben,

III. R¹ H oder A,

30 verzweigtes oder unverzweigtes Alkenyl mit C₁ bis C₁₀,

verzweigtes oder unverzweigtes Alkinyl mit C₁ bis C₁₀,

R² Aralkyl mit C₇ bis C₂₀, gegebenenfalls ein- oder mehrfach

durch A, NO₂, F, Cl, Br, NH₂, NHA, NA₂, OH, OA substituiert

Aralkenyl, mit den für Aryl und Alkenyl gegebenen Bedeu-

35 tungen, Aralkinyl, mit den für Aryl und Alkinyl gegebenen Be-
deutungen

Aryloxy,

Arylthio, Arylsulfinyl, Arylsulfonyl, Aralkoxy, Aralkylthio,
Aralkylsulfinyl, Aralkylsulfonyl,

bedeuten

5 und

R³, R⁴ und R⁵ die vorher gegebenen Bedeutungen haben,

IV. R¹ Aryl mit C₆ bis C₂₀,

10 ein- oder mehrfach durch A, NO₂, F, Cl, Br, CF₃, NH₂, NHA,
NA₂, OH, OA substituiertes Aryl,

R² Aralkyl mit C₇ bis C₂₀, gegebenenfalls ein- oder mehrfach
durch A, NO₂, F, Cl, Br, NH₂, NHA, NA₂, OH, OA substituiert
15 Aralkenyl, mit den für Aryl und Alkenyl gegebenen Bedeu-
tungen, Aralkinyl, mit den für Aryl und Alkinyl gegebenen Be-
deutungen

Aryloxy,

Arylthio, Arylsulfinyl, Arylsulfonyl, Aralkoxy, Aralkylthio,
Aralkylsulfinyl, Aralkylsulfonyl,

bedeuten

20 und

R³, R⁴ und R⁵ die vorher gegebenen Bedeutungen haben,

V. R¹ Aralkyl mit C₇ bis C₂₀, gegebenenfalls ein- oder mehrfach
durch A, NO₂, F, Cl, Br, NH₂, NHA, NA₂, OH, OA substituiert
25 Aralkenyl, mit den für Aryl und Alkenyl gegebenen Bedeu-
tungen, Aralkinyl, mit den für Aryl und Alkinyl gegebenen Be-
deutungen

R² Aryloxy, Arylthio, Arylsulfinyl, Arylsulfonyl, Aralkoxy, Aralkylthio,
Aralkylsulfinyl, Aralkylsulfonyl,

30 bedeuten

und

R³, R⁴ und R⁵ die vorher gegebenen Bedeutungen haben,

VI: wobei die Reste R¹ und R² die unter I. bis V. gegebenen Bedeutun-
35 gen haben und

R⁴ H, A,

verzweigtes oder unverzweigtes Alkenyl mit C₁ bis C₁₀, gegebenenfalls ein- oder mehrfach durch Hal substituiert
 verzweigtes oder unverzweigtes Alkinyl mit C₁ bis C₁₀, gegebenenfalls ein- oder mehrfach durch Hal substituiert,
 5 wobei sowohl A, Alkenyl als auch Alkinyl durch
 C₁- bis C₆-Alkoxy, C₂- bis C₆-Alkenyloxy, C₂- bis C₆-Alkinyl-oxy, ein- oder mehrfach durch Hal, C₁- bis C₆-Alkylthio,
 10 C₁- bis C₆-Alkylsulfinyl, C₁- bis C₆-Alkylsulfonyl, Cyano, NO₂, C₁- bis C₆-Alkylamino, C₁- bis C₆-Alkoxyamino, Di(C₁- bis C₃-alkyl)-Amino, N-(C₁- bis C₃-alkyl)-N-(C₁- bis C₃-alkoxy)-amino, N(C₁-bis C₆-alkylsulfonyl)-N-(C₁-bis C₆-alkyl)amino
 15 N(C₁-bis C₆-alkylsulfonyl)-N-(C₁-bis C₆-alkoxy)amino, Tri-C₁- bis C₆-alkylsilyl Triarylsilyl substituiert sein kann
 und
 15 R⁵ Aralkyl mit C₇ bis C₂₀, gegebenenfalls ein- oder mehrfach durch A, NO₂, F, Cl, Br, NH₂, NHA, NA₂, OH, OA substituiert
 Aralkenyl, mit den für Aryl und Alkenyl gegebenen Bedeutungen, Aralkinyl, mit den für Aryl und Alkinyl gegebenen Bedeutungen,
 20 Aryloxy, Arylthio, Arylsulfinyl, Arylsulfonyl, Aralkoxy, Aralkylthio, Aralkylsulfinyl, Aralkylsulfonyl
 bedeuten,
 VII. wobei die Reste R¹ und R² die unter I. bis V. gegebenen Bedeutungen haben und
 25 R⁴ und R⁵
 Aryl mit C₆ bis C₂₀,
 ein- oder mehrfach durch A, NO₂, F, Cl, Br, CF₃, NH₂, NHA, NA₂, OH, OA substituiertes Aryl
 bedeuten,
 30 VIII. wobei die Reste R¹ und R² die unter I. bis V. gegebenen Bedeutungen haben und
 R⁴ Aryl mit C₆ bis C₂₀,
 ein- oder mehrfach durch A, NO₂, F, Cl, Br, CF₃, NH₂, NHA, NA₂, OH, OA substituiertes Aryl
 35 und

5 R⁵ Aralkyl mit C₇ bis C₂₀, gegebenenfalls ein- oder mehrfach durch A, NO₂, F, Cl, Br, NH₂, NHA, NA₂OH, OA substituiert
Aralkenyl, mit den für Aryl und Alkenyl gegebenen Bedeutungen, Aralkinyl, mit den für Aryl und Alkinyl gegebenen Bedeutungen,
Aryloxy, Arylthio, Arylsulfinyl, Arylsulfonyl, Aralkoxy, Aralkylthio, Aralkylsulfinyl, Aralkylsulfonyl
bedeuten.

10 IX. wobei die Reste R¹ und R² die unter I. bis V. gegebenen Bedeutungen haben und
R⁴ und R⁵
Aralkyl mit C₇ bis C₂₀, gegebenenfalls ein- oder mehrfach durch A, NO₂, F, Cl, Br, NH₂, NHA, NA₂OH, OA substituiert
15 Aralkenyl, mit den für Aryl und Alkenyl gegebenen Bedeutungen, Aralkinyl, mit den für Aryl und Alkinyl gegebenen Bedeutungen,
Aryloxy, Arylthio, Arylsulfinyl, Arylsulfonyl, Aralkoxy, Aralkylthio, Aralkylsulfinyl, Aralkylsulfonyl
20 bedeuten.

Insbesondere sind solche kombinatorische Bibliotheken, umfassend zwei bis 100 verschiedenen substituierte Amine der allgemeinen Formel (I), Gegenstand der Erfindung,
25 wobei R¹ und R²
gleich oder verschieden sind und unabhängig voneinander
H, Methyl, Ethyl, Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl,
sek.-Butyl, n-Pentyl, 2-Pentyl, 3-Pentyl, (2-Methyl-)butyl,
(3-Methyl-)butyl, n-Hexyl, 2-Hexyl, 3-Hexyl, (2-Methyl-)pentyl,
30 (3-Methyl-)pentyl, (4-Methyl-)pentyl, (1-Ethyl-)butyl, (2-Ethyl-)butyl,
1-(3,3-Dimethyl-)butyl, 1-(2,2-Dimethyl-)butyl,
Vinyl, 1-Propenyl, Allyl, 1-Butenyl, 2-Butenyl, 3-Butenyl,
Isobutenyl,
Ethinyl,
35 Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl
Phenyl, Naphthyl, Phenanthryl, Anthryl, Indyl, Fluorenyl,

p-Fluorophenyl,
Benzyl
2-Pyridyl, Pyrrolidinyl oder Indolyl,
Trimethylsilyl, Trimethylsilylmethyl
5 oder zusammen mit dem N, an das sie gebunden
1-Pyrrolidinyl, 1-Imidazoliny, 1-Pyrazolinyl, 1-Piperidyl,
1-Piperazinyl, 4-Methylpiperidyl oder 4-Morpholinyl,
4-Thiamorpholinyl,
R³ H, Methyl, ein- bis dreifach durch F substituiertes Methyl,
10 R⁴ und R⁵ gleich oder verschieden und unabhängig voneinander
H, Methyl, Ethyl, Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl,
sek.-Butyl, n-Pentyl, 2-Pentyl, 3-Pentyl, (2-Methyl-)butyl,
(3-Methyl-)butyl, n-Hexyl, 2-Hexyl, 3-Hexyl, (2-Methyl-)pentyl,
(3-Methyl-)pentyl, (4-Methyl-)pentyl, (1-Ethyl-)butyl, (2-Ethyl-)butyl,
15 1-(3,3-Dimethyl-)butyl, 1-(2,2-Dimethyl-)butyl,
Vinyl, 1-Propenyl, Allyl, 1-Butenyl, 2-Butenyl, 3-Butenyl,
Isobutenyl,
Ethinyl,
Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl
20 Phenyl, Naphthyl, Phenanthryl, Anthryl, Indyl, Fluorenyl, ,
p-Fluorophenyl, 4-Fluoro-3-methyl-phenyl, p-Chlorphenyl, p-
Methoxyphenyl, 2,6-Dimethylphenyl, 2-Methyl-2-phenyl-propyl,
1-Phenylethynyl, 4-Dimethylaminophenyl, 3-Aminophenyl,
Benzyl
25 2-Pyridyl, Pyrrolidinyl oder Indolyl,
Trimethylsilyl, Trimethylsilylmethyl
oder
R⁴ und R⁵ zusammen Styryl
bedeuten.
30 Weiterhin sind Amine der allgemeinen Formel (I) Gegenstand der Erfindung,
deren Reste R¹ und R² zusammen mit dem Stickstoffatom an das sie ge-
bunden sind einen Ring bilden, der ausgewählt ist aus der Gruppe von 1-
Pyrrolidinyl, 1-Imidazoliny, 1-Pyrazolinyl, 1-Piperidyl, 1-Piperazinyl, 4-
35 Morpholinyl, 4-Thiamorpholinyl, während die Reste R⁴ und R⁵ die oben gege-
benen Bedeutungen haben.

5 Bevorzugt sind entsprechende Amine, worin R¹ und R² jeweils einzeln unabhängig voneinander für Methyl, Ethyl, iso-Propyl, n-Butyl, iso-Butyl, Phenyl, Benzyl, 2-Pyridyl oder Trimethylsilyl, oder zusammen mit dem Stickstoffatom an das sie gebunden sind für 1-Pyrrolidinyl, 1-Piperidyl, 4-Methylpiperidyl, oder 4-Morpholinyl stehen.

10 Insbesondere weisen die erfindungsgemäßen Amine mindestens einen Rest R⁴ oder R⁵ auf, welcher für Phenyl, Benzyl, p-Tolyl, m-Tolyl, 4-Fluorphenyl, 4-Fluor-3-Methylphenyl, 4-Chlorphenyl, 4-Methoxyphenyl, 2,6-Dimethylphenyl, 2-Methyl-2-phenylethyl, 3-Phenyl-prop-2-ynyl, 4-Dimethylaminophenyl, Napthalen-1-yl oder 3-Aminophenyl steht.

15 Gegenstand der vorliegenden Erfindung ist insbesondere auch ein Verfahren zur Herstellung einer kombinatorischen Bibliothek umfassend mindestens zwei verschiedene symmetrisch oder gegebenenfalls unsymmetrisch substituierte Amine der allgemeinen Formeln (I)

20

25

indem

mindestens zwei verschiedene Verbindungen der allgemeinen Formel (II)

30

worin

35

 R^1, R^2 gleich oder verschieden sein können und unabhängig voneinander

H, A,

verzweigtes oder unverzweigtes Alkenyl mit C₁ bis C₁₀,
verzweigtes oder unverzweigtes Alkinyl mit C₁ bis C₁₀.

Aryl mit C₆ bis C₂₀,
 ein- oder mehrfach durch A, NO₂, F, Cl, Br, CF₃, NH₂, NHA, NA₂,
 OH, OA, substituiertes Aryl

5 Aralkyl mit C₇ bis C₂₀, gegebenenfalls ein- oder mehrfach durch
 A, NO₂, F, Cl, Br, NH₂, NHA, NA₂, OH, OA substituiert

Aralkenyl, mit den für Aryl und Alkenyl gegebenen Bedeutungen,
 Aralkinyl, mit den für Aryl und Alkinyl gegebenen Bedeutungen
 Aryloxy,

10 Arylthio, Arylsulfinyl, Arylsulfonyl, Aralkoxy, Aralkylthio, Aralkylsul-
 finyl, Aralkylsulfonyl,

oder
 R¹, R² zusammen

Cycloalkytring mit C₂ bis C₈, der gegebenenfalls neben N ein
 weiteres Heteroatom aus der Gruppe N, O und S aufweist, und
 15 gegebenenfalls ein- oder mehrfach durch Hal oder C₁- bis C₃-alkyl
 substituiert ist,

Methyl- oder Ethyl-substituierter Cycloalkytring mit C₄ bis C₁₀,
 der gegebenenfalls neben N ein weiteres Heteroatom aus der
 Gruppe N, O und S aufweist, und gegebenenfalls
 20 ein- oder mehrfach durch Hal oder C₁- bis C₃-alkyl substituiert ist,
 ein- oder mehrfach ungesättigter Cycloalkytring mit C₃ bis C₈,
 der gegebenenfalls neben N ein weiteres Heteroatom aus der
 Gruppe N, O und S aufweist, und gegebenenfalls ein- oder
 mehrfach durch Hal oder C₁- bis C₃-alkyl substituiert ist

25 A verzweigtes oder unverzweigtes Akyl mit C₁ bis C₁₀, gegebenen-
 falls ein- oder mehrfach durch Hal, NO₂, NH₂, NH-(C₁-C₆-alkyl),
 N(C₁-C₆-alkyl)₂, OH, O-(C₁-C₆-alkyl), C₁-C₆-alkyl-thio,
 C₁-C₆-alkyl-sulfinyl, C₁-C₆-alkyl-sulfonyl, CN, NH-(C₁-C₆-alkoxy),
 N-(C₁-C₃-alkyl)-N-(C₁-C₃-alkoxy)amino,

30 N-(C₁-C₆-alkylsulfonyl)-N-(C₁-C₆-alkyl)amino,
 N-(C₁-C₆-alkylsulfonyl)-N-(C₁-C₆-alkoxy)amino,
 Tri- C₁-C₆-alkylsilyl, Triarylsilyl
 substituiert,

35 Cycloalkyl mit C₃ bis C₈, gegebenenfalls ein- oder mehrfach
 durch Hal substituiert,
 Methyl- oder Ethyl-substituiertes Cycloalkyl mit C₄ bis C₁₀.

ein- oder mehrfach ungesättigtes Cycloalkyl mit C₃ bis C₈

Aryl bzw. Ar

gegebenenfalls ein oder mehrfach durch die bei A gegebenen Substituenten substituiertes

5 Phenyl, Naphthyl, Phenanthryl, Anthryl, Indyl, Fluorenyl, Pyridyl,
 Pyrrolidinyl oder Indolyl,
 und
Hal F, Cl, Br, I
R³ H, Methyl, ein- bis dreifach durch F substituiertes Methyl
10 bedeuten,

mit mindestens einer nukleophilen Verbindung der allgemeinen Formel (IIIa)

15 und/oder mindestens einer nukleophilen Verbindung der allgemeinen Formel
(IIIb)

20 und/oder mit einer Verbindung der allgemeinen Formel (IVa)

worin

R⁴ und R⁵ gleich oder verschieden sein können und unabhängig voneinander

25 H, A,
 verzweigtes oder unverzweigtes Alkenyl mit C₁ bis C₁₀, gegebenenfalls ein- oder mehrfach durch Hal substituiert
 verzweigtes oder unverzweigtes Alkinyl mit C₁ bis C₁₀, gegebenenfalls ein- oder mehrfach durch Hal substituiert,
30 wobei sowohl A, Alkenyl als auch Alkinyl durch
 C₁- bis C₆-Alkoxy, C₂- bis C₆-Alkenyloxy, C₂- bis C₆-Alkinyl-,
 oxy, ein- oder mehrfach durch Hal, C₁- bis C₆-Alkylthio,
 C₁- bis C₆-Alkylsulfinyl, C₁- bis C₆-Alkylsulfonyl, Cyano, NO₂,
 C₁- bis C₆-Alkylamino, C₁- bis C₆-Alkoxyamino, Di(C₁- bis
35 C₃-alkyl)-Amino, N-(C₁- bis C₃-alkyl)-N-(C₁- bis C₃-alkoxy)-
 amino, N(C₁-bis C₆-alkylsulfonyl)-N-(C₁-bis C₆-alkyl)amino

N(C₁-bis C₆-alkylsulfonyl)-N-(C₁-bis C₆-alkoxy)amino,
Tri-C₁- bis C₆-alkylsilyl Triarylsilyl substituiert sein kann,
Aryl mit C₆ bis C₂₀,
ein- oder mehrfach durch A, NO₂, F, Cl, Br, CF₃, NH₂, NHA,
NA₂,OH, OA, substituiertes Aryl
5 Aralkyl mit C₇ bis C₂₀, gegebenenfalls ein- oder mehrfach
durch A, NO₂, F, Cl, Br, NH₂, NHA, NA₂,OH, OA substituiert
Aralkenyl, mit den für Aryl und Alkenyl gegebenen Bedeutun-
gen, Aralkinyl, mit den für Aryl und Alkinyl gegebenen
10 Bedeutungen
Aryloxy,
Arylthio, Arylsulfinyl, Arylsulfonyl, Aralkoxy, Aralkylthio, Aral-
kylsulfinyl, Aralkylsulfonyl, bedeuten,
mit der Maßgabe, daß mindestens einer der beiden Reste R⁴
15 oder R⁵ eine Arylgruppe enthält,
und
Z Li oder MgX mit
X Hal und
Hal Cl, Br oder I
20 Y F, Cl, Br oder I
R^{III} Alkyl mit C₁-C₁₀, Aryl mit C₆-C₂₀ oder ein- bis fünffach durch
Y substituiertes Aryl mit C₆-C₂₀
und
n 1,2 oder 3
25 bedeuten,
in einem aliphatischen oder aromatischen Kohlenwasserstoff als Lösungs-
mittel in Gegenwart einer Titan-, Hafnium- oder Zirkoniumverbindung und ge-
gebenenfalls in Gegenwart eines Cokatalysators in einer parallelen Reaktion
umgesetzt werden, mit der Maßgabe daß Verbindungen der allgemeinen
30 Formeln (IIIB) und (IVa) nicht gemeinsam in einem Reaktionsgemische ein-
gesetzt werden, und gegebenenfalls die als Reaktionsprodukte gebildeten
Amine aus dem Reaktionsgemisch isoliert und gereinigt werden werden.
Geeignete, in diesem erfindungsgemäßen Verfahren einsetzbare Orga-
35 notitanverbindungen sind Verbindungen der allgemeinen Formel (IVa)

- 15 -

worin

 R^{III} iso-Propyl, R^5 Methyl, Phenyl, Cyclopropyl, p-Fluorophenyl

und

n 3

bedeuten.

Als Lösungsmittel kann im erfindungsgemäßen Verfahren ein Lösungsmittel ausgewählt aus der Gruppe Toluol, Tetrahydrofuran, n-Hexan, Cyclohexan, Benzol und Diethylether oder ein Gemisch, bestehend aus mindestens zweien dieser Lösungsmittel, verwendet werden.

Vorzugsweise erfolgt die Reaktion in Gegenwart eines Metalloxids als Katalysator, ausgewählt aus der Gruppe Titanoxid, Hafniumoxid und Zirkoniumdioxid oder einer Organotitanverbindung der allgemeinen Formel (IVb)

worin

n 1, 2, 3, 4,

X Cl, Br, I und

 R^V gleich oder verschieden ein C₁-C₁₀-alkyl oder Aryl mit 6 bis 20 C-Atomen

bedeuten,

und eines Cokatalysators der allgemeinen Formel (V)

oder der allgemeinen Formel (VI)

worin

 R^{IV} C₁-C₁₀-alkyl oder Aryl mit 6 bis 20 C-Atomen

X F, Cl, Br, I, CN

Y (CH₂)_n, O, NH, Bindung,

m 0, 1

n 1 bis 10,

o 0, 1, 2, 3,
 p 0, 1
 und
 q 0, 1
 mit der Maßgabe, daß o = 3 und Y \neq (CH₂)_n, wenn m = 0
 bedeuten,
 oder der allgemeinen Formel (VII)

$$M'^{(m+)}(Oi-Pr)_m, \quad (VII)$$

 worin
 M' Al, Ca, Na, K, Si, Mg
 m 1, 2, 3, 4
 bedeuten
 bei einer Temperatur von 10 bis 30° C unter einer Inertgasatmosphäre
 durchgeführt wird,
 wobei der Katalysator in einer Menge von 0,5 bis 15 mol-% bezogen auf das
 Edukt der allgemeinen Formel (II) und der Cokatalysator in einer Menge von
 0,7 bis 1,2 Äquivalenten bezogen auf das Edukt der allgemeinen Formel (II)
 verwendet wird..
 Gegenstand der vorliegenden Erfindung ist demgemäß auch ein Verfah-
 ren, zu dessen Durchführung eine Verbindung ausgewählt aus der
 Gruppe
 NaO-Pr
 Mg(Oi-Pr)₂
 (CH₃)₃SiCl
 (CH₃)₂CISi(CH₂)₂SiCl(CH₃)₂
 (CH₃)₂CISi(CH₂)₃CN,
 [(CH₃)₃Si]₂O,
 [(CH₃)₃Si]₂NH und
 [(CH₃)₃Si]₂
 als Cokatalysator verwendet wird.
 Gute Ergebnisse werden nach dem erfindungsgemäßen Verfahren erzielt, in-
 dem die als Edukte eingesetzten Verbindungen der allgemeinen Formeln (II-
 la) und (IIIb) jeweils in gleichen Mengen im Überschuß von mindestens 1,05
 mol bis 1,5 mol pro 1 mol Edukt der allgemeinen Formel (II) eingesetzt wer-
 den,

oder wenn (IIIa) und (IIIb) identisch sind, in einer Menge von 2,1 bis 3 mol pro 1 mol Edukt der allgemeinen Formel (II) eingesetzt werden.

5 Gegenstand der Erfindung ist weiterhin die Verwendung der oder eines in einer kombinatorischen Bibliothek gemäß der Ansprüche 1 bis 18 enthaltenen Amine(s) als Zwischenprodukt(e) bei der Herstellung von Wirkstoffen.

10 Es somit wurde gefunden, dass überraschenderweise die geminale Substitution eines vorzugsweise tertiären Amins nicht nur biologische Aktivität bereitstellen kann, sondern deren Herstellung gleichzeitig auch vorteilhafte Eigen-15 schaften bei der kombinatorischen Wirkstoffsynthese aufweist. Ferner wird somit ein Verfahren vorgeschlagen, bei dem eine Vielzahl von Aminen der allgemeinen Formel (I) als Stoffbibliothek hergestellt werden können.

15

20 wobei R¹ und R² gleich oder verschieden sein können und jeweils einzeln unabhängig voneinander für substituiertes oder unsubstituiertes Alkyl, Cycloalkyl, Alkenyl, Cycloalkenyl, Alkinyl, Aryl oder Trialkylsilyl stehen oder R¹ und R² zusammen mit dem Stickstoffatom an das sie gebunden sind einen substituierten oder unsubstituierten Cycloalkyrring bilden können, der neben 25 dem Stickstoffatom noch mindestens ein weiteres Heteroatom enthalten kann, das ausgewählt ist aus der Gruppe bestehend aus Stickstoff, Sauerstoff oder Schwefel,

30 R³ ausgewählt ist aus Wasserstoff und Methyl, das gegebenfalls mit 1-3 Fluoratomen substituiert sein kann,

35 R⁴ und R⁵ gleich oder verschieden sein können und jeweils einzeln unabhängig voneinander für Alkyl, Cycloalkyl, Alkenyl, Cycloalkenyl, Alkinyl, substituiertes oder unsubstituiertes Aryl oder für ein mit substituiertem oder unsubstituiertem Aryl substituiertes Alkyl, Cycloalkyl, Alkenyl, Cycloalkenyl, oder Alkinyl stehen, mit der Maßgabe, dass mindestens ein Rest R⁴ oder R⁵ eine

Arylgruppe enthält; oder ein Salz, insbesondere ein pharmazeutisch unbekanntes Salz, davon.

Die Verbindungen der vorliegenden Erfindung sind wertvoll als -
5 Sympathikomimetika mit anregender Wirkung auf das Zentralnervensystem, insbesondere bei der Behandlung von Depressionen, Fettsucht, Müdigkeit, allergischen Störungen und Nasenschleimhautentzündungen.

10 Alkyl steht vorzugsweise für C₁-10-Alkyl, noch bevorzugter für C₂-8-Alkyl. Cycloalkyl steht vorzugsweise für C₃-8-Cycloalkyl, noch bevorzugter für C₃-7-Cycloalkyl. Alkenyl steht vorzugsweise für C₂-10-Alkenyl, noch bevorzugter für C₂-8-Alkenyl. Cycloalkenyl steht vorzugsweise für C₃-8-Cycloalkenyl, noch bevorzugter für C₃-7-Cycloalkenyl. Alkinyl steht vorzugsweise für C₂-10-Alkinyl, noch bevorzugter für C₂-8-Alkinyl.
15 Aryl steht vorzugsweise für Phenyl, Naphtyl, Anthryl oder Phenanthryl.

20 Spezielle Beispiele für einen Arylrest sind Phenyl, Benzyl, p-Tolyl, m-Tolyl, 4-Fluorphenyl, 4-Fluor-3-Methylphenyl, 4-Chlorphenyl, 4-Methoxyphenyl, 2,6-Dimethylphenyl, 2-Methyl-2-phenylethyl, 3-Phenyl-prop-2-ynyl, 4-Dimethylaminophenyl, Naphtalen-1-yl und 3-Aminophenyl.

25 Spezielle Beispiele für einen Alkylrest sind Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl. Spezielle Beispiele für einen Cycloalkylrest sind Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl. Spezielle Beispiele für einen Alkenylrest sind Vinyl, 1-Propenyl, 2-Propenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl Isobutene.
30 Beispiele für R¹ und R² werden im folgenden beschrieben, wobei Halogen für Fluor, Chlor, Brom bzw. Iod steht.

35 R¹ und R² können gleich oder verschieden sein und unabhängig voneinander für eine C₁-8-Alkylgruppe, eine C₃-7-Cycloalkylgruppe, eine mit einer C₃-7-Cycloalkylgruppe substituierte C₁-6-Alkylgruppe, eine C₃-7-Cycloalkenylgruppe, eine mit einer C₃-7-Cycloalkenylgruppe substituierte C₁-6-Alkylgruppe, eine C₂-8-Alkenylgruppe, eine C₂-8-Alkinylgruppe, eine

mit einer C₁-6-Alkoxygruppe substituierte C₁-6-Alkylgruppe, eine mit einer C₂-6-Alkenyloxygruppe substituierte C₁-6-Alkylgruppe, eine mit einer C₂-6-Alkinyloxygruppe substituierte C₁-6-Alkylgruppe, eine mit einer Mono-, Di- oder Polyhalogen-C₁-6-alkoxygruppe substituierte C₁-6-Alkylgruppe, eine mit einer Mono-, Di- oder Polyhalogen-C₂-6-alkenyloxygruppe substituierte C₁-6-Alkylgruppe, eine mit einer Mono-, Di- und Polyhalogen-C₂-6-Alkinyloxygruppe substituierte C₁-6-Alkylgruppe, eine mit einer C₁-6-Alkylthiogruppe substituierte C₁-6-Alkylgruppe, eine mit einer C₁-6-Alkylsulfinylgruppe substituierte C₁-6-Alkylgruppe, eine mit einer C₁-6-Alkylsulfonylgruppe substituierte C₁-6-Alkylgruppe, eine Mono-, Di- oder Polyhalogen-C₁-8-Alkylgruppe, eine Mono-, Di- oder Polyhalogen-C₂-8-Alkenylgruppe, eine Mono-, Di- oder Polyhalogen-C₂-8-Alkinylgruppe, eine mit einer Cyanogruppe substituierte C₁-6-Alkylgruppe, eine mit einer Cyanogruppe substituierte C₂-6-Alkenylgruppe, eine mit einer Cyanogruppe substituierte C₂-6-Alkinylgruppe, eine mit einer Nitrogruppe substituierte C₁-6-Alkylgruppe, eine mit einer Nitrogruppe substituierte C₂-6-Alkenylgruppe, eine mit einer Nitrogruppe substituierte C₂-6-Alkinylgruppe, eine mit einer C₁-6-Alkylaminogruppe substituierte C₁-6-Alkylgruppe, eine mit einer C₁-6-Alkoxyaminogruppe substituierte C₁-6-Alkylgruppe, eine mit einer Di(C₁-3-alkyl)aminogruppe substituierte C₁-6-Alkylgruppe, eine mit einer N-(C₁-3-alkyl)-N-(C₁-3-alkoxy)aminogruppe substituierte C₁-6-Alkylgruppe, eine mit einer N-(C₁-6-Alkylsulfonyl)-N-(C₁-6-alkyl)aminogruppe substituierte C₁-6-Alkylgruppe, eine mit einer N-(C₁-6-Alkylsulfonyl)-N-(C₁-6-alkoxy)aminogruppe substituierte C₁-6-Alkylgruppe, eine mit einer Tri-C₁-6-Alkylsilylgruppe substituierte C₁-6-Alkylgruppe, eine mit einer Triarylsilylgruppe substituierte C₁-6-Alkylgruppe, eine Phenylgruppe (mit der Maßgabe, dass eine solche Phenylgruppe substituiert sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe), eine mit einer Phenylgruppe substituierte C₁-6-Alkylgruppe (mit der Maßgabe, dass eine solche Phenylgruppe substituiert sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe), eine mit einer Phenylgruppe substituierte C₂-7-Alkenylgruppe (mit der Maßgabe, dass eine solche Phenylgruppe substituiert sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe).

ierte sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe), eine mit einer Phenylgruppe substituierte C₂-6-Alkinylgruppe (mit der Maßgabe, dass eine solche Phenylgruppe substituiert werden kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe), eine mit einer Phenoxygruppe substituierte C₁-6-Alkylgruppe (mit der Maßgabe, dass eine solche Phenoxygruppe substituiert sein kann mit einer oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe), eine mit einer Phenylthiogruppe substituierte C₁-6-Alkylgruppe (mit der Maßgabe, dass eine solche Phenylthiogruppe substituiert sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe), eine mit einer Phenylsulfinylgruppe substituierte C₁-6-Alkylgruppe (mit der Maßgabe, dass eine solche Phenylsulfinylgruppe substituiert sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe), eine mit einer Phenylsulfonylgruppe substituierte C₁-6-Alkylgruppe (mit der Maßgabe, dass eine solche Phenylsulfonylgruppe substituiert sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe), eine mit einer Benzyloxygruppe substituierte C₁-6-Alkylgruppe (mit der Maßgabe, dass die Phenylgruppe einer solchen Benzyloxygruppe substituiert sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe), eine mit einer Benzylthiogruppe substituierte C₁-6-Alkylgruppe (mit der Maßgabe, dass die Phenylgruppe einer solchen Benzylthiogruppe substituiert sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, ei-

ner Trifluormethylgruppe, einer Nitrogruppe, einer C₁₋₆-Alkylgruppe und einer C₁₋₆-Alkoxygruppe), eine mit einer Benzylsulfinylgruppe substituierte C₁₋₆-Alkylgruppe (mit der Maßgabe, dass die Phenylgruppe einer solchen Benzylsulfinylgruppe substituiert sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁₋₆-Alkylgruppe und einer C₁₋₆-Alkoxygruppe), eine mit einer Benzylsulfonylgruppe substituierte C₁₋₆-Alkylgruppe (mit der Maßgabe, dass die Phenylgruppe einer solchen Benzylsulfonylgruppe substituiert sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁₋₆-Alkylgruppe und einer C₁₋₆-Alkoxygruppe), eine mit einer Aminogruppe, die mit einer C₁₋₄-Alkylsulfonylgruppe substituiert ist, substituierte C₁₋₆-Alkylgruppe, stehen.

Beispiele für Ringe, die vorliegen, wenn die Reste R¹ und R² einen Cycloalkyrring, der ggf. neben N noch wenigstens ein weiteres Heteroatom, vorzugsweise N, O oder S enthalten kann, bilden sind wie folgt: 1-Pyrrolidinyl, 1-Imidazolinyl, 1-Pyrazolinyl, 1-Piperidyl, 1-Piperazinyl, 4-Morpholinyl, 4-Thiamorpholinyl.

Besonders bevorzugt stehen die Reste R¹ und R² jeweils einzeln unabhängig voneinander für Methyl, Ethyl, iso-Propyl, n-Butyl, iso-Butyl, Phenyl, Benzyl, 2-Pyridyl oder Trimethylsilyl, oder zusammen mit dem Stickstoffatom an das sie gebunden sind für 1-Pyrrolidinyl, 1-Piperidyl, 4-Methylpiperidyl, oder 4-Morpholinyl.

R³ steht besonders bevorzugt für Wasserstoff.

Beispiele für R⁴ und R⁵ werden im folgenden beschrieben, wobei Halogen für Fluor, Chlor, Brom bzw. Iod steht und Aryl für Phenyl, Naphtyl, Anthryl oder Phenanthryl steht:

R⁴ und R⁵ können gleich oder verschieden sein und unabhängig voneinander für Alkyl, Cycloalkyl, Alkenyl, Cycloalkenyl, Alkinyl stehen, das diesellebe Bedeutung haben kann wie für R¹ und R² beschrieben wurde, oder für

eine Arylgruppe (mit der Maßgabe, dass eine solche Arylgruppe substituiert sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe),

5 eine mit einer Arylgruppe substituierte C₁-6-Alkylgruppe (mit der Maßgabe, dass eine solche Arylgruppe substituiert sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe), eine mit einer Arylgruppe substituierte C₂-7-Alkenylgruppe (mit der Maßgabe, dass eine solche Arylgruppe substituierte sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe), eine mit einer Arylgruppe substituierte C₂-6-Alkinylgruppe (mit der Maßgabe, dass eine solche Arylgruppe substituiert werden kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe), eine mit einer Aryloxygruppe substituierte C₁-6-Alkylgruppe (mit der Maßgabe, dass eine solche Aryloxygruppe substituiert sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe), einer mit einer Arylthiogruppe substituierte C₁-6-Alkylgruppe (mit der Maßgabe, dass eine solche Arylthiogruppe substituiert sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe), eine mit einer Arylsulfinylgruppe substituierte C₁-6-Alkylgruppe (mit der Maßgabe, dass eine solche Arylsulfinylgruppe substituiert sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe), eine mit einer Arylsulfonylgruppe substituierte C₁-6-Alkylgruppe (mit der Maßgabe, dass eine solche Arylsulfonylgruppe substituiert sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe,

einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe), eine mit einer Benzyloxygruppe substituierte C₁-6-Alkylgruppe (mit der Maßgabe, dass die Arylgruppe einer solchen Benzyloxygruppe substituiert sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe), eine mit einer Benzylthiogruppe substituierte C₁-6-Alkylgruppe (mit der Maßgabe, dass die Arylgruppe einer solchen Benzylthiogruppe substituiert sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe), eine mit einer Benzylsulfinylgruppe substituierte C₁-6-Alkylgruppe (mit der Maßgabe, dass die Arylgruppe einer solchen Benzylsulfinylgruppe substituiert sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe), eine mit einer Benzylsulfonylgruppe substituierte C₁-6-Alkylgruppe (mit der Maßgabe, dass die Arylgruppe einer solchen Benzylsulfonylgruppe substituiert sein kann mit einem oder mehreren Substituenten, die ausgewählt sind aus der Gruppe, bestehend aus einem Halogenatom, einer Trifluormethylgruppe, einer Nitrogruppe, einer C₁-6-Alkylgruppe und einer C₁-6-Alkoxygruppe), stehen, mit der Maßgabe, dass mindestens ein Rest R⁴ oder R⁵ eine Arylgruppe enthält.

Besonders bevorzugt stehen R⁴ und R⁵ für Phenyl, Benzyl, p-Tolyl, m-Tolyl, 4-Fluorphenyl, 4-Fluor-3-Methylphenyl, 4-Chlorphenyl, 4-Methoxyphenyl, 2,6-Dimethylphenyl, 2-Methyl-2-phenylethyl, 3-Phenyl-prop-2-ynyl, 4-Dimethylaminophenyl, Naphtalen-1-yl und 3-Aminophenyl.

Eine kombinatorische Bibliothek im Sinne der vorliegenden Erfindung enthält mindestens fünf, vorzugsweise mindestens sieben verschiedene Amine der allgemeinen Formel (I).

Im folgenden wird die Herstellung der Amine der allgemeinen Formel (I) beschrieben.

Die Herstellung der Verbindungen der allgemeinen Formel (I) ist nicht besonders eingeschränkt. Es wurde jedoch gefunden, dass die Verbindungen der allgemeinen Formel (I) vorzugsweise nach einem der folgenden Verfahren hergestellt werden können.

5

Verbindungen der vorliegenden Erfindung, insbesondere geminal symmetrisch substituierte Amine der Formel (I), bei denen R⁴ und R⁵ dieselbe Bedeutung haben, werden vorteilhafterweise hergestellt durch Umsetzung einer Verbindung der allgemeinen Formel (II)

10

15

wobei R¹, R² und R³ die oben angegebene Bedeutung haben und R³ besonders bevorzugt für Wasserstoff oder eine Methylgruppe steht, in einem geeigneten Lösungsmittel mit einer Verbindung der allgemeinen Formel (III)

20

worin der Rest Z für einen Rest MgX mit X = Cl, Br oder J, oder Li steht und R⁴ die oben angegebene Bedeutung hat, und gegebenenfalls mit einer Verbindung der allgemeinen Formel (IV-a)

25

30

wobei Y für F, Cl, Br und I, die Reste R^{III} für einen Alkylrest mit C₁-C₁₀, einen Arylrest mit C₆ - C₂₀ oder einen durch Fluor, Chlor, Brom oder Jod ein- bis fünffach substituierten Arylrest mit C₆ - C₂₀, bevorzugt für einen iso-Propylrest, steht, R⁵ die oben angegebene Bedeutung hat und n eine ganze Zahl von 1 bis 3 ist.

35

Für die Umsetzung eignen sich vorzugsweise Carbonsäureamide, bei denen die Reste R¹ und R², gleich oder verschieden, für einen Alkylrest mit C₁ - C₁₀, einen durch Fluor ein- oder mehrfach substituierten, einschließlich perfluorierten Alkylrest mit C₁ - C₁₀, einen Cycloalkylrest mit C₃ - C₈, einen

5 Arylrest mit C₆ - C₂₀, einen durch Fluor, Chlor, Brom, Jod ein- bis fünffach substituierten Arylrest, einen Alkenylrest mit C₂ - C₁₀, einen Alkinylrest mit C₂ - C₁₀, einen Cycloalkyrling aus den Resten R¹ und R² mit C₃ - C₈, der neben Stickstoff ggf. noch als weiteres Heteroatom ein Stickstoff-, Sauerstoff- oder Schwefelatom enthalten kann, stehen.

Ganz besonders bevorzugt werden als Carbonsäureamide der Formel (II) folgende Verbindungen eingesetzt:

10

15

20

25

30

35

Als Grignardverbindung oder lithiumorganische Verbindung wird für die Umsetzung eine Verbindung der allgemeinen Formel (III) verwendet. In dieser allgemeinen Formel (III) steht der Rest R⁴ vorzugsweise für einen C₁ - C₁₀ Alkylrest, einen durch Fluor ein- oder mehrfach substituierten, einschließlich perfluorierten C₁ - C₁₀ Alkylrest, einen C₃ - C₆ Cycloalkylrest, einen C₂ - C₁₀ Alkenylrest, einen C₂ - C₁₀ Alkinylrest, oder einen Rest -C(R'')(R')CH₂R, wobei R'' für -Si(R)₃, Sn(R)₃, -SR, -OR, -NRR' stehen, wobei R bzw. R', gleich oder verschieden, für einen C₁ - C₁₀ Alkylrest, einen durch Fluor ein- oder mehrfach substituierten, einschließlich perfluorierten C₁ - C₁₀ Alkylrest, einen Alkenylrest mit C₂ - C₁₀, einen Alkinylrest mit C₂ - C₁₀, einen Cyclo-

kylrest mit C₃ - C₆, bedeuten. Insbesondere bevorzugt steht der Rest R⁴ für einen Methyl- oder Cyclopropyl-Rest. R⁴ und R⁵ weisen vorzugsweise in - Position höchstens ein Wasserstoffatom auf.

5 Der Rest Z in der allgemeinen Formel (III) steht vorzugsweise für einen Rest -MgX mit X für Cl oder Br oder der Rest Z steht für Lithium.

Die Umsetzung erfolgt vorzugsweise auch noch mit einer Organotitanverbindung.

10 Als Organotitanverbindungen eignen sich vorzugsweise Verbindungen der oben gezeigten allgemeinen Formel (IV-a) wobei n eine ganze Zahl von 1 bis 3, vorzugsweise 3 ist, Y für Cl, Br oder I steht, die Reste R^{III}, gleich oder verschieden, einen Alkyl-Rest mit C₁ - C₁₀ oder ein Arylrest mit C₆ - C₂₀, bevorzugt Isopropyl bedeuten, und R⁵, gleich oder verschieden von R⁴, die für R⁴ angegebene Bedeutung hat.

Besonders bevorzugt wird als Organotitanverbindungen R⁵Ti(O*i*Pr)₃ verwendet, wobei *i*Pr für einen Isopropylrest steht.

20 Ganz bevorzugt werden Methyl-, Phenyl-, Cyclopropyl- oder p-Fluorophenyl-tri-Isopropyltitane eingesetzt.

Für die Umsetzung sollten die Verbindungen der allgemeinen Formel (III) und (IV) jeweils in Mengen von 0,7 bis 1,3, bevorzugt 0,9 bis 1,1 Äquivalenten, bezogen auf die Verbindung der allgemeinen Formel (II), vorliegen.

25 Die Umsetzung wird vorzugsweise in einem geeigneten Lösungsmittel für die Verbindungen der allgemeinen Formel (II) und (III) und (IV-a) durchgeführt, vorzugsweise in einem geeigneten organischen Lösungsmittel, wie z. B. einem aliphatischen oder aromatischen Kohlenwasserstoff oder Ether, vorzugsweise Toluol, Tetrahydrofuran, n-Hexan, Cyclohexan, Benzol oder Diethylether.

30 Ganz besonders bevorzugt wird eine Lösung der Verbindung der allgemeinen Formel (II) und (IV) und der Cokatalysator vorgelegt und die Verbindungen der allgemeinen Formel (III) langsam zudosiert. Dabei ist es vorteilhaft, wenn

die Zugabe der Grignard- oder Lithiumverbindungen als Lösung in den genannten Lösungsmitteln vorliegt und vorzugsweise durch Zutropfen dem Reaktionsgemisch zugegeben wird. Weiterhin ist es vorteilhaft, während der gesamten Umsetzung das Reaktionsgemisch zu röhren.

5

Das Verfahren zur Herstellung von Aminoverbindungen der allgemeinen Formel (I) wird vorzugsweise bei Raumtemperatur, d. h. bei 20 bis 25 C, unter einer Inertgasatmosphäre durchgeführt.

10

Nach der Umsetzung können die symmetrisch oder unsymmetrisch substituierten Aminoverbindungen in üblicher Weise gereinigt und isoliert werden.

15

Dabei können die Produkte als Salze mit Hilfe von Salzsäurelösungen z. B. 1 molare, etherische Salzsäurelösungen, ausgefällt und abfiltriert, und, wenn nötig, durch Umkristallisation gereinigt werden.

20

Es ist auch möglich, die Produkte aus der organischen Phase mit Hilfe von Säurelösungen, vorzugsweise einer wäßrigen Salzsäurelösung, zu extrahieren, das gewonnene Extrakt mit Hilfe von Laugen, vorzugsweise Natronlauge, auf einen pH > 10 zu stellen und mindestens einmal, vorzugsweise mehrmals, mit getrocknetem Diethylether zu extrahieren. Die dabei gewonnenen organischen Phasen, die das Reaktionsprodukt enthalten, können ggf. getrocknet (über Kaliumcarbonat) und von dem organischen Lösungsmittel unter Vakuum befreit werden.

25

Weiterhin ist es möglich, das Reaktionsprodukt zu isolieren, indem man das organische Lösungsmittel mit Hilfe vom Vakuum entfernt und den verbleibenden Rückstand zur Isolierung des Reaktionsproduktes säulenchromatographisch auftrennt.

30

Verbindungen der vorliegenden Erfindung können auch hergestellt werden durch Umsetzung einer Verbindung der oben dargestellten allgemeinen Formel (II) worin R¹, R² und R³ die für Formel (I) gegebenen Bedeutungen haben, mit einem nukleophilen Reagenz der allgemeinen Formel (III), wobei R⁴ die für Formel (I) gegebenen Bedeutungen hat, in Gegenwart von katalytischen Mengen eines Metallocids, ausgewählt aus der Gruppe Titandioxid, Hafniumdioxid und Zirconiumdioxid.

5

Das Verfahren kann auch in Gegenwart eines Co-Katalysators durchgeführt werden, wobei Alkylsilylhalogenide als Co-Katalysatoren verwendet werden können; und zwar Alkylsilylhalogenide der allgemeinen Formel (V)

10

oder der allgemeinen Formel (VI)

15

worin

20

R^{IV} Alkyl mit 1 bis 10 C-Atomen oder Aryl mit 6 bis 20 C-Atomen,

X F, Cl, Br, I, CN,

25

Y $(\text{CH}_2)_n$, O, NH, Bindung,

m 0,1,

n 1 bis 10,

o 0,2,3,

p 0,1

und

q 0,1 bedeuten, mit der Maßgabe, dass o = 3 und Y $(\text{CH}_2)_n$,
wenn m = 0.

25

Überraschenderweise wird durch die Verwendung des Cokatalysators die üblicherweise bei Titanalkylen, die α - und/oder β -Wasserstoffatome aufweisen, beobachtete α - und/oder β -Eliminierung unterdrückt.

30

Entsprechend kann das Verfahren auch durchgeführt werden indem man

- a) ein Carbonsäureamid der allgemeinen Formel (II), 1 -15 mol-% eines Metalloxids ausgewählt aus der Gruppe Titandioxid, Hafniumdioxid und Zirconiumdioxid, bezogen auf das Carbonsäureamid, und gegebenenfalls einen Cokatalysator bei Raumtemperatur unter Inertgasatmosphäre in einem Lösungsmittel, ausgewählt aus der Gruppe Toluol, THF, n-Hexan, Benzol und Diethylether, vorlegt,

35

5 b) eine Lösung, enthaltend ein nukleophiles Reagenz der allgemeinen Formel (III) zutropft und

 c) unter Röhren nachreagieren lässt und nach Beendigung der Reaktion in üblicher Weise aufarbeitet,

 oder dass man, wenn $Z = MgX$

10 a') Magnesiumspäne, ein Carbonsäureamid der allgemeinen Formel (II), 1 - 15 mol-% eines Katalysators ausgewählt aus der Gruppe Titandioxid, Hafniumdioxid und Zirconiumdioxid, bezogen auf das Carbonsäureamid, bei Raumtemperatur unter Inertgasatmosphäre in einem Lösungsmittel ausgewählt aus der Gruppe Toluol, THF, n-Hexan, Benzol und Diethylether vorgelegt,

15 b') ein in einem Lösungsmittel, ausgewählt aus der Gruppe Toluol, THF, n-Hexan, Benzol und Diethylether, aufgenommenes Alkylhalogenid der allgemeinen Formel (III')

20 $X-R^4$ (III')

 worin R^4 und X die oben angegebenen Bedeutungen haben, zutropft,

25 c') unter Röhren nachreagieren lässt und nach Beendigung der Reaktion in üblicher Weise aufarbeitet.

30 Versuche haben gezeigt, dass mit einem nukleophilen Reagenz der allgemeinen Formel (III), das ein Grignardreagenz sein kann und entweder in situ erzeugt oder als solches zum Reaktionsgemisch hinzugegeben wird, Carbonsäureamide der allgemeinen Formel (II) in Gegenwart von katalytischen Mengen Titandioxid, Hafniumdioxid oder Zirconiumdioxid in einfacher Weise zu symmetrisch substituierten aber auch zuunsymmetrisch substituierten Verbindungen der allgemeinen Formel (I) umgesetzt werden können.

35 Es können nach dem hier beschriebenen Verfahren Carbonsäureamide der allgemeinen Formel (II) mit guten Ausbeuten umgesetzt werden, in denen

R₁, R₂ unabhängig voneinander die folgenden Bedeutungen annehmen können:
H oder A
d. h. verzweigtes oder unverzweigtes Alkyl mit 1 bis 10 C-Atomen,
5 wie Methyl, Ethyl, n- oder i-Propyl, n-, sec- oder t-Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl sowie deren geeigneten Isomere,
oder Cycloalkyl mit 3 - 8 C-Atomen, wie Cyclopropyl, Cyclobutyl,
10 Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl bzw. entsprechende Methyl- oder Ethyl-substituierte Cycloalkylgruppen oder ein- oder mehrfach ungesättigte Cycloalkylgruppen, wie Cyclopentenyl oder Cyclopentadienyl
oder verzweigtes oder unverzweigtes Alkenyl mit 2 bis 10 C-Atomen, wie Allyl, Vinyl, Isopropenyl, Propenyl oder verzweigtes oder unverzweigtes Alkinyl mit 2 bis 10 C-Atomen, wie Ethinyl, Propinyl oder Aryl mit 6 bis 20 C-Atomen wahlweise unsubstituiert oder
15 ein- oder mehrfach substituiert, wie Phenyl, Naphthyl, Anthryl, Phenanthryl, ein- oder mehrfach substituiert durch Substituenten, ausgewählt aus der Gruppe NO₂, F, Cl, Br, NH₂, NHA, NA₂, OH, und OA, wobei A die oben gegebenen Bedeutungen haben kann, einfache, mehrfach oder vollständig halogeniert, vorzugsweise fluoriert, sein kann, oder Aralkyl mit 7 bis 20 C-Atomen, wie Benzyl, gegebenenfalls ein- oder mehrfach substituiert durch Substituenten, ausgewählt aus der Gruppe NO₂, F, Cl, Br, NH₂, NHA, NA₂, OH, und OA, wobei A die oben genannten Bedeutungen annehmen kann und gegebenenfalls einfache, mehrfach oder vollständig halogeniert, vorzugsweise fluoriert, sein kann, oder
20 Aralkenyl bzw. Aralkinyl, wobei jeweils die Aryl-, Alkenyl- und Alkinylgruppe die gegebenen Bedeutungen annehmen können, wie z. B. in Phenylethinyl, und
25 R³ für Wasserstoff oder Methyl steht.

Gute Ausbeuten werden insbesondere auch mit Carbonsäureamiden erzielt, in denen
R¹ und R² gemeinsam einen cyclischen Ring mit 3 - 8 C-Atomen bilden, der
35 neben Stickstoff weitere Heteroatome, wie - S-, -O- oder -N- enthält.

Besonders bevorzugt sind hier Verbindungen, in denen durch R¹ und R² ein einfacher cyclischer Ring gebildet wird, der den Stickstoff des Carbonsäureamids einschließt oder in denen R¹ und R² einen cyclischen Ring bilden, der ein Sauerstoffatom als weiteres Heteroatom enthält.

5

In dieser Weise werden also hohe Ausbeuten erzielt, wenn Verbindungen wie z. B.

10

als Edukt eingesetzt werden.

15

Als nukleophiles Reagenz können Grignard- oder Lithiumverbindungen der allgemeinen Formel (III) verwendet werden, in denen die Reste, R⁴ vorzugsweise für einen Alkylrest mit 1 bis 10 C-Atomen stehen, wie Methyl, Ethyl, n- oder i-Propyl, n-, sec- oder t-Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl sowie deren geeigneten Isomere, oder Cycloalkyl mit 3 - 8 C-Atomen, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl bzw. entsprechende Methyl- oder Ethyl-substituierte Cycloalkylgruppen oder ein- oder mehrfach ungesättigte Cycloalkylgruppen, wie Cyclopentenyl oder Cyclopentadienyl oder für verzweigte oder unverzweigte Alkenylreste mit 2 bis 10 C-Atomen, wie Allyl, Vinyl, Isopropenyl, Propenyl oder verzweigte oder unverzweigte Alkinylreste mit 2 bis 10 C-Atomen, wie Ethinyl, Propinyl stehen.

20

25

Besonders bevorzugt werden Grignardverbindungen wie Methylmagnesiumbromid, Ethylmagnesiumbromid, n- oder i-Propylmagnesiumbromid, i-, sec-, oder tert-Butylmagnesiumbromid, n-Hexylmagnesiumbromid, Cyclohexylmagnesiumchlorid, Allylmagnesiumbromid, Vinylmagnesiumbromid, Cyclopentylmagnesiumbromid, Cyclopentylmagnesiumchlorid, Allylmagnesiumbromid für die Umsetzungen eingesetzt.

30

35

Es wurde festgestellt, dass die geminalen symmetrischen Dialkylierungsreaktionen nur durch Zugabe eines Cokatalysators bereits bei Raumtemperatur einsetzen und in relativ kurzer Reaktionszeit zur vollständigen Umsetzung der Edukte führen. Als Co-Katalysatoren sind in dieser Reaktion Alkylsilylhalogenide geeignet. Insbesondere sind dieses die oben beschriebenen Alkylsilylhalogenide der allgemeinen Formel (V) oder der allgemeinen Formel (VI).

Vorzugsweise werden Alkylsilanhalogene verwendet, in denen R^{IV} Alkyl mit 1 bis 6 C-Atomen bedeutet. Insbesondere bevorzugt werden solche, in denen R^{IV} Alkyl mit 1 bis 3 C-Atomen und X Chlor bedeuten.

Insbesondere sind u. a. die folgenden Siliziumverbindungen als Co-Katalysatoren geeignet:

(CH₃)₃SiCl,
15 (CH₃)₂CISi(CH₂)₂SiCl(CH₃)₂
(CH₃)₂CISi(CH₂)₃CN,
[(CH₃)₃Si]₂O,
[(CH₃)₃Si]₂NH und
[(CH₃)₃Si]₂

20 Es wurde gefunden, dass die Zugabe von 0,7 bis 1,2 Mol, insbesondere 0,9 bis 1,1 Mol, eines Co-Katalysators bezogen auf ein Mol Edukt zu verbesserten Ergebnissen wie z. B. höheren Ausbeuten, niedrigere Reaktionstemperatur oder kürzeren Reaktionszeiten führt.

25 Wie anhand von Beispielen gezeigt werden kann, ist unter günstigen Bedingungen eine vollständige Umsetzung des Carbonsäureamids bereits nach einer Stunde erfolgt.

30 Zur Durchführung des Verfahrens kann getrocknetes handelsübliches Metalloxid, ausgewählt aus der Gruppe Titandioxid, Hafniumdioxid und Zirconiumdioxid, als Katalysator verwendet werden. Vorzugsweise wird pulverförmiges Titan(IV)oxid (TiO₂) verwendet. Hierbei kann es sich im einfachsten Fall um eine technische Qualität handeln. Um nach erfolgter Reaktion eine einfache Abtrennung gewährleisten zu können, ist es vorteilhaft, eine nicht zu feinteilige Qualität zu wählen.

35

Das durch Erhitzen vorgetrocknete Metalloxid, vorzugsweise Titandioxid, wird als Suspension in einem geeigneten, ebenfalls vorgetrockneten organischen Lösungsmittel eingesetzt. Geeignete Lösungsmittel sind z. B. aliphatische oder aromatische Kohlenwasserstoffe oder Ether. Vorzugsweise werden Lösungsmittel ausgewählt aus der Gruppe Toluol, Tetrahydrofuran, n-Hexan, Cyclohexan, Benzol und Diethylether verwendet, die nach dem Fachmann bekannten Methoden vor der Reaktion getrocknet werden. Das Trocknen kann mit Hilfe von Magnesiumsulfat, Calciumchlorid, Natrium, KOH oder durch andere Methoden erfolgen.

Eine bevorzugt Durchführungsform des Verfahrens besteht darin, dass das als Katalysator verwendete Titan(IV)-oxid in einer Menge von 1-15, vorzugsweise 1,5 bis 14, insbesondere 2 bis 10, und ganz besonders bevorzugt 3-6mol-% bezogen auf ein Mol des als Edukt verwendeten Amids in Form einer Suspension vorgelegt wird, welche auf eine Temperatur von 10 - 30 C, vorzugsweise auf 15 - 25 C, besonders bevorzugt auf eine Temperatur von etwa 20 C, eingestellt wird. Unter Inertgasatmosphäre (Stickstoff oder Argon) wird das Edukt entweder als solches in flüssiger Form oder gelöst in einem Lösungsmittel, ausgewählt aus der Gruppe Toluol, Tetrahydrofuran, n-Hexan, Cyclohexan, Benzol und Diethylether unter Rühren langsam zugetropft. Anschließend wird eine der umzusetzenden Menge Edukt entsprechende Menge Cokatalysator, falls notwendig ebenfalls aufgenommen in einem Lösungsmittel, zugetropft. Das erhaltene Reaktionsgemisch wird für kurze Zeit, d. h. für wenige Minuten bei konstant gehaltener Temperatur gerührt. Zu dem so erhaltenen Reaktionsgemisch wird anschließend so viel nukleophiles Reagenz der allgemeinen Formel (III), insbesondere ein Grignardreagenz, langsam im Überschuß zugegeben, dass eine Substitution des geminalen Carbonyl-C-Atoms durch zwei gleiche Substituenten, d. h. also eine symmetrische Substitution des geminalen Carbonyl-C-Atoms erfolgen kann. Die Zugabe eines erfindungsgemäßen, nach dem Fachmann allgemein bekannten Methoden hergestellten, nukleophilen Reagenzes, sollte so langsam erfolgen, dass die Temperatur des Reaktionsgemisches 50 C nicht übersteigt. Es ist vorteilhaft, wenn die Zugabe des nukleophilen Reagenzes, d. h. des Grignardreagenzes oder der Lithiumverbindung unter guter Durchmischung, bevorzugt unter intensivem Rühren erfolgt. Um das Reaktionsgleichgewicht

auf die Seite des gewünschten symmetrisch substituierten Produkts zu verschieben, wird das verwendete nukleophile Reagenz, vorzugsweise ein Grignardreagenz, in einer Menge von 2,1 bis 3 Mol pro Mol reagierendem Edukt hinzugefügt. Vorzugsweise wird das Grignardreagenz in einer Menge von 2,2 bis 2,6 Mol bezogen auf 1 Mol Edukt hinzugefügt.

Nach Beendigung der Zugabe des Grignardreagenzes wird das Reaktionsgemisch bis zur vollständigen Umsetzung noch einige Zeit bei konstanter Temperatur nachgerührt.

Eine andere Variante dieses Verfahrens besteht darin, dass das Grignardreagenz *in situ* hergestellt wird, indem Magnesium mit einem entsprechenden Halogenid umgesetzt wird. Vorzugsweise beträgt bei der *in situ* Herstellung der Grignardverbindungen die Menge an Magnesium die 2- bis 5-fache molare Menge, vorzugsweise 2,8- bis 3,2-fache molare Menge, bezogen auf die als Edukt eingesetzten Verbindungen der allgemeinen Formel (II) und die Menge des Halogenids die 2- bis 3,8-fache molare Menge, bevorzugt 2,2- bis 2,6-fache molare Menge bezogen auf die Verbindung der allgemeinen Formel (II).

Wird dem Reaktionsgemisch kein Co-Katalysator hinzugefügt, kann die Reaktionstemperatur, nachdem die Zugabe des nukleophilen Reagenzes abgeschlossen ist und eine gute Durchmischung erfolgt ist, auf etwa 80 °C, vorzugsweise auf 60 bis 70 °C, insbesondere auf 75 °C eingestellt werden.

Beispielsweise werden 5 mmol Edukt bei 20 °C unter Inertgasatmosphäre zu einer Suspension von 3 mol-% Titan(IV)-oxid in 40 ml getrocknetem Tetrahydrofuran unter Rühren zugetropft. Zu diesem Gemisch werden 5 mmol Co-Katalysator, ebenfalls aufgenommen in getrocknetem Tetrahydrofuran, langsam unter Rühren zugegeben. Es wird für 5 Minuten bei 20 °C nachgerührt und anschließend 12 mmol eines Grignardreagenzes so langsam zugegeben, dass die Temperatur des Reaktionsgemisches nicht über 50 °C ansteigt. Bis zur vollständigen Umsetzung wird noch für eine Stunde nachgerührt.

Nach der Umsetzung kann die Aufarbeitung des Reaktionsgemisches in einer dem Fachmann bekannten Weise erfolgen.

Die Produkte können als Salze mit Hilfe von Salzsäurelösungen, z. B. 1 molare etherische Salzsäurelösungen, ausgefällt und abfiltriert werden, und wenn nötig, durch Umkristallisation gereinigt werden.

5 Zur Entfernung der Lewis-Säure kann beispielsweise eine geeignete Menge gesättigte Ammoniumchlorid-Lösung und Wasser zugegeben und für mehrere Stunden (1 - 3 Stunden) intensiv weiter gerührt werden. Der entstehende Niederschlag wird abgetrennt und mit wenig getrocknetem Ether, vorzugsweise Diethylether, nachgewaschen. Das Filtrat wird durch Zugabe einer geeigneten Lauge, wie einer NaOH-, KOH-, Natrium- oder Kaliumcarbonatlösung, vorzugsweise Natriumhydroxidiösung basisch ($\text{pH} > 10$) eingestellt. Die sich bildenden Phasen werden anschließend getrennt und die wäßrige Phase mehrere Male (z. B. im oben gegebenen Spezialfall dreimal mit je 30 ml) mit Diethylether extrahiert. Die vereinigten organischen Phasen werden mit (z. B. 15 ml) gesättigter Natriumchloridiösung gewaschen und können über Kaliumcarbonat, Magnesiumsulfat oder Natriumsulfat getrocknet und filtriert werden.

20 Die Produkte können auf verschiedenen Wegen nach dem Fachmann bekannten Methoden aufgereinigt werden, wie z. B. in oben beschriebener Weise.

25 Anstatt der in der oben gegebenen allgemeinen Beschreibung der Verfahrensdurchführung können die Grignardreagenzien ebenfalls durch die entsprechenden Lithiumverbindungen ersetzt werden. Die entsprechenden Lithiumverbindungen können, wie auch die Grignardverbindungen, nach dem Fachmann allgemein bekannten Methoden hergestellt werden und können in gleicher Weise wie oben beschrieben, umgesetzt werden.

30 Die Umsetzung erfolgt in Gegenwart einer Organotitanverbindung als Katalysator, welcher in einer Menge von 0,5 bis 5 Mol-%, vorzugsweise 1 bis 3,5 Mol-%, bezogen auf die Verbindung der allgemeinen Formel (II) eingesetzt wird.

35 Als Organotitanverbindungen eignen sich vorzugsweise auch Verbindungen der allgemeinen Formel (IV-b)

worin

n eine ganze Zahl von 1 bis 4,
X Cl, Br, I und
5 R^V gleich oder verschieden ein Alkylrest mit 1 bis 10 C-Atomen oder ei-
nen Arylrest mit 6 bis 20 C-Atomen bedeuten.

Vorzugsweise werden solche Organotitanverbindungen eingesetzt, in denen
10 R^V Isopropyl bedeutet.
Besonders bevorzugt wird als Organotitanverbindung Ti(Oi-Pr)₄ verwendet,
wobei i-Pr einem Isopropylrest entspricht. Die hergestellten symmetrisch sub-
stituierten Aminverbindungen der allgemeinen Formel (I) werden vorzugswei-
se nicht nur in Gegenwart eines Katalysators, sondern können auch in Ge-
genwart einer Verbindung gemäß einer der oben gezeigten allgemeinen
15 Formeln (V) oder (VI) bzw. einer Verbindung der allgemeinen Formel (VII)

20 worin M' für Al, Ca, Na, K, Si oder Mg, vorzugsweise Mg oder Na steht, m ei-
ne ganze Zahl von 1 bis 4 und die Oxidationsstufe des Metalls bedeutet, als
Cokatalysator hergestellt.

25 Ganz besonders bevorzugt werden als Cokatalysatoren folgende Verbindun-
gen eingesetzt:

NaO*i*-Pr,
Mg(O*i*-Pr)₂,
(CH₃)₃SiCl
30 Sofern ein Cokatalysator dem Reaktionsgemisch zugegeben wird, sollte die-
ser in Mengen von 0,7 bis 1,2, bevorzugt 0,9 bis 1,1 Äquivalenten, bezogen
auf die Verbindung der allgemeinen Formel (II), eingesetzt werden.
35 Verbindungen der vorliegenden Erfindung, die geminal unsymmetrisch sub-
stituiert sind, werden vorteilhafterweise hergestellt durch Umsetzung einer

Verbindung der oben dargestellten allgemeinen Formel (II) worin R¹, R² und R³ die für Formel (I) gegebenen Bedeutungen haben, durch Umsetzung mit mindestens zwei nukleophilen Reagenzien der allgemeinen Formel (IIIa) und (IIIb)

5

Z-R⁴ (IIIa)

Z-R⁵ (IIIb)

10 worin

R⁴ und R⁵ die oben gegebenen Bedeutungen haben, wobei,

Z Li oder MgX mit

X Hal und

Hal Cl, Br oder I

15 bedeuten,

welche in situ erzeugt oder direkt zugegeben werden. Insbesondere erfolgt die Durchführung dieses Verfahrens indem es in Gegenwart katalytischer Mengen eines Metalloxids, ausgewählt aus der Gruppe Titandioxid, Hafniumdioxid und Zirkoniumdioxid, durchgeführt wird.

20

Vorzugsweise wird der Katalysator in Gegenwart eines Co-Katalysators eingesetzt wird, insbesondere in Gegenwart eines Alkylsilanhogenids als Co-Katalysators.

25

Geeignete Alkylsilanhogenide sind die oben beschriebenen Verbindungen der allgemeinen Formel (V) oder der allgemeinen Formel (VI). Insbesondere wird zur Durchführung des Verfahrens Titandioxid als Katalysator verwendet.

Das Verfahren ist dadurch gekennzeichnet, dass man

30

a) ein Carbonsäureamid der allgemeinen Formel (II), 1 - 15 mol-% eines Metalloxids ausgewählt aus der Gruppe Titan(IV)-oxid, Hafniumdioxid, Zirconiumdioxid, bezogen auf das Carbonsäureamid, und gegebenenfalls der Co-Katalysator bei 10 - 30 °C unter Inertgasatmosphäre in einem Lösungsmittel, ausgewählt aus der Gruppe Toluol, THF, Hexane, Benzol und Diethylether, vorlegt,

35

5 b) eine Lösung, enthaltend mindestens zwei nukleophile Reagenzien der allgemeinen Formeln (IIIa) und (IIIb), worin R⁴ und R⁵ die oben gegebenen Bedeutungen haben, oder worin die Reste R⁴ und R⁵ miteinander verbunden sind und eine Gruppe mit 2 bis 7 C-Atome bilden oder
10 worin gegebenenfalls R⁴ und R⁵ über ein Heteroatom aus der Gruppe -O-, -NH-, -S- miteinander verbunden sind und gemeinsam eine Gruppe mit 2 bis 6 C-Atomen bilden und X die vorhergehend gegebenen Bedeutungen hat, zutropft und
15 c) unter Rühren nachreagieren lässt und nach Beendigung der Reaktion in üblicher Weise aufarbeitet
oder dass man, wenn Z = MgX
20 a') Magnesiumspäne, ein Carbonsäureamid der allgemeinen Formel (II), 1 -15 mol-% eines Metalloxids, ausgewählt aus der Gruppe Titan(IV)-oxid, Hafniumdioxid, Zirconiumdioxid, bezogen auf das Carbonsäureamid, bei einer Temperatur von 10 bis 30 °C der Gruppe Toluol, THF, Hexane, Benzol und Diethylether vorlegt,
15 b') mindestens zwei verschiedene in einem Lösungsmittel, ausgewählt aus der Gruppe Toluol, THF, Hexane, Benzol und Diethylether, aufgenommene Alkyhalogenide der allgemeinen Formeln (IIIa') und (IIIb')

25 X-R⁴ (IIIa')

X-R⁵ (IIIb')

25 worin jeweils R⁴ und R⁵ die oben angegebenen Bedeutungen haben, zutropft,
c') unter Rühren nachreagieren lässt und nach Beendigung der Reaktion in üblicher Weise aufarbeitet.

30 Der Verfahrensschritt a) bzw. a') wird bei einer Temperatur von 15 bis 25 °C durchgeführt, vorzugsweise bei Raumtemperatur.

35 Als besonders vorteilhaft erweist sich ein Katalysatorsystem bestehend aus einem Metalloxid, ausgewählt aus der Gruppe Titandioxid, Hafniumdioxid und

Zirconiumdioxid, und einem oben beschriebenen Co-Katalysator der allgemeinen Formel (V) oder(VI).

Dieses Katalysatorsystem enthält vorzugsweise eine Verbindung ausgewählt
5 aus der Gruppe
 $(CH_3)_3SiCl$,
 $(CH_3)_2ClSi(CH_2)_2SiCl(CH_3)$
 $(CH_3)_2ClSi(CH_2)_3CN$,
10 $[(CH_3)_3Si_2]_2O$
 $[(CH_3)_3Si_2]_2NH$ und
 $[(CH_3)_3Si_2]_2$
als Co-Katalysator.

Ganz besonders bevorzugt wird ein Katalysatorsystem verwendet, enthaltend
15 Titandioxid als Metalloxid.

Versuche haben gezeigt, dass durch Reaktion von Carbonsäureamiden mit
zwei unterschiedlichen Grignardreagenzien in Gegenwart von Titan(IV)-oxid
(TiO_2) eine Umsetzung bereits unter Einsatz katalytischer Mengen des Titan-
20 reagenzes stattfindet. Weiterhin wurde auch gefunden, dass die gewünsch-
ten geminalen unsymmetrischen Dialkylierungsreaktionen bei Raumtempe-
ratur nur durch Zugabe eines Cokatalysators einsetzen. Unter erfindungsge-
mäßigen Reaktionsbedingungen erfolgt eine vollständige Umsetzung der Car-
bonsäureamide in sehr kurzen Reaktionszeiten. Wird mit geringen Mengen
25 Edukt gearbeitet, ist die Reaktion nach spätestens einer Stunde beendet.

Zur Durchführung des Verfahrens wird Titan(IV)-oxid (TiO_2) als Suspension
in einem geeigneten, getrockneten Lösungsmittel ausgewählt aus der Gruppe
Toluol, Tetrahydrofuran (THF), Hexane, Benzol und Diethylether in einer
30 Menge von 1 bis 15 mol-%, vorzugsweise 3-13 mol-%, bezogen auf die Men-
ge des reagierenden Amids vorgelegt. Die Suspension wird auf eine Tempe-
ratur von 15 bis 30 °C, vorzugsweise auf etwa 20 °C, eingestellt. Unter Inert-
gasatmosphäre (Stickstoff oder Argon) wird das Edukt, entweder als solches
35 in flüssiger Form oder gelöst in einem Lösungsmittel, ausgewählt aus der
Gruppe Tetrahydrofuran, Toluol, Tetrahydrofuran (THF), Hexane, Benzol und
Diethylether unter Röhren langsam zugetropft. Eine der umzusetzenden

Menge Edukt entsprechende Menge Cokatalysator, ebenfalls aufgenommen in einem getrockneten Lösungsmittel, wird zugetropft. Das erhaltene Reaktionsgemisch wird für kurze Zeit, d. h. für wenige Minuten, unter Beibehaltung der Temperatur gerührt. Zu dem erhaltenen Reaktionsgemisch wird dann ein

5 Gemisch, bestehend aus gleichen Mengen zweier unterschiedlicher Grignardreagenzien, so langsam zugegeben, dass die Temperatur des Reaktionsgemischs nicht über 50 C steigt. Um möglichst eine vollständige Umsetzung des Edukts zu erzielen, werden die Grignardreagenzien jeweils im Überschuß zugegeben. Vorzugsweise werden die Grignardreagenzien jeweils in einer

10 Menge von mindestens 1,05 mol bis 1,5 mol pro 1 mol Edukt eingesetzt. Insbesondere werden die Grignardreagenzien in einer Menge von 1,1 bis 1,3 mol bezogen auf 1 mol Edukt eingesetzt. Nach beendeter Zugabe des Grignardreagenzes wird zur vollständigen Umsetzung das erhaltene Reaktionsgemisch bei konstanter Temperatur noch einige Zeit nachgerührt.

15 Beispielsweise werden 5 mmol Edukt bei 20 C unter Inertgasatmosphäre zu einer Suspension von 3 mol-% Titan(IV)-oxid in 40 ml getrocknetem Tetrahydrofuran unter Rühren zugetropft. Zu diesem Gemisch werden 5 mmol Cokatalysator, ebenfalls aufgenommen in getrocknetem Tetrahydrofuran, langsam unter Rühren zugegeben. Es wird für 5 Minuten bei 20 C nachgerührt und anschließend 6 mmol zweier unterschiedlicher Grignardreagenzien so langsam zugegeben, dass die Temperatur des Reaktionsgemischs nicht über 50 C ansteigt. Bis zur vollständigen Umsetzung wird noch für eine Stunde nachgerührt.

20 Verbindungen der vorliegenden Erfindung, werden vorteilhafterweise hergestellt durch Umsetzung einer Verbindung der oben dargestellten allgemeinen Formel (II) wobei R¹, R² und R³ die oben angegebene Bedeutung haben, in einem geeigneten Lösungsmittel mitmindestens je einer Verbindung der oben bezeichneten allgemeinen Formel (III-a) und (III-b) in Anwesenheit einer Organotitanverbindung der allgemeinen Formel (IV-b) als Katalysator.

25 Für die Umsetzung eignen sich vorzugsweise Carbonsäureamide, bei denen die Reste R¹ und R², gleich oder verschieden, für Wasserstoff, einen Alkylrest mit C₁-C₁₀, einen Cycloalkylrest mit C₃-C₈, einen Arylrest mit C₆-C₂₀, einen Alkenylrest mit C₂-C₁₀, einen Alkinylrest mit C₂-C₁₀, einen Cycloalkyl-

ring aus den Resten R¹ und R² bzw. R² und R³ mit C₃-C₈, der neben Stickstoff ggf. noch als weiteres Heteroatom ein Stickstoff-, Sauerstoff- oder Schwefel-Atom enthalten kann, und die Reste R und R' für einen Alkylrest mit C₁-C₁₀, einen Cycloalkylrest mit C₃-C₆ oder einen Arylrest mit C₆-C₂₀ stehen.

5

Besonders bevorzugt wird als Organotitanverbindungen Ti(O*i*Pr)₄, verwendet, wobei *i*Pr für einen Isopropylrest steht.

10

Die erfindungsgemäß hergestellten unsymmetrisch substituierten Aminverbindungen der allgemeinen Formel (I) werden vorzugsweise nicht nur in Gegenwart eines Katalysators, sondern auch in Gegenwart einer Verbindung gemäß einer der allgemeinen Formeln (V), (VI) oder (VII) als Cokatalysator hergestellt.

15

Ganz besonders bevorzugt werden als Cokatalysatoren folgende Verbindungen eingesetzt:

20

25

Das Verfahren zur Herstellung von symmetrisch oder unsymmetrisch substituierten Aminoverbindungen der allgemeinen Formel (I) wird vorzugsweise bei Raumtemperatur, d. h. bei 20 bis 25 C, unter einer Inertgasatmosphäre durchgeführt.

30

Gemäß der Synthese gelingt es, symmetrisch oder unsymmetrisch substituierte Aminoverbindungen der allgemeinen Formel (I) mit ausreichenden Ausbeuten innerhalb angemessenen Reaktionszeiten herzustellen, wobei die Enaminreaktion unter -Eliminierung und die Cyclisierungsreaktion unter β -Hydrideliminierung weitgehend vermieden wird.

35

Andererseits können Produkte der Cyclisierungsreaktion unter β -Hydrideliminierung hergestellt werden, indem in dem oben beschriebenen Verfahren kein Cokatalysator eingesetzt wird.

Nach der Umsetzung können die symmetrisch oder unsymmetrisch substituierten Aminoverbindungen in üblicher Weise gereinigt und isoliert werden, wie z. B. oben beschrieben.

5 Bei der kombinatorischen Synthese der Amine der allgemeinen Formel (I) werden eine Verbindung oder mehrere verschiedene Verbindungen der allgemeinen Formel (II) und/oder mehrere verschiedene Verbindungen der Formeln (III) bzw. (IV) eingesetzt. Es wurde gefunden, dass auf diese Weise eine kombinatorische Bibliothek erhalten werden kann, die im Gemisch mehrere Amine der allgemeinen Formel (I) enthält. Bevorzugt werden 1-10 verschiedene Verbindungen der Formel (II) mit mindestens drei verschiedenen Verbindungen der Formel (III) umgesetzt.

10 Es wurde gefunden, dass die kombinatorische Synthese der Amine der allgemeinen Formel (I) oft alle denkbar möglichen Reaktionsprodukte bereitstellt, so dass mit einem Ansatz eine nahezu vollständige kombinatorische Bibliothek geschaffen werden kann, die als solche in einem Screening eingesetzt werden kann. Ferner wurde gefunden, dass die einzelnen Reaktionsprodukte in jeweils vergleichbaren Mengen hergestellt werden, so dass der Einfluss der Konzentration jeder einzelnen Verbindung beim Screening der Bibliothek im günstigsten Fall vernachlässigt werden kann.

15 Es ist möglich die Bibliotheken der Amine der allgemeinen Formel (I) einem Screening auf biologische Wirksamkeit zu unterwerfen, um solche Amine zu isolieren und zu identifizieren, die besondere Wirkstoffeigenschaften aufweisen.

20 Die Amine der allgemeinen Formel (I) können als Reinstoffe oder mehrere verschiedene können als kombinatorische Bibliothek in einer kombinatorischen Synthese eingesetzt werden bei der die Amine mit einem oder mehreren Reaktionspartnern umgesetzt werden, um modifizierte Amine der allgemeinen Formel (I) zu schaffen. Vorzugsweise wird dabei das Strukturelement der geminalen Substitution der Amine erhalten.

25 Bei der kombinatorischen Synthese zur Schaffung von modifizierten Aminen der allgemeinen Formel (I) können vorteilhafterweise diejenigen Amine ein-

gesetzt werden, die sich in einem biologischen Screeningverfahren bereits als wirksam erwiesen haben. Durch den Einsatz von Aminen der allgemeinen Formel (I) mit biologischer Wirksamkeit bei der Schaffung von modifizierten Aminen besteht die Möglichkeit durch kombinatorischen Synthese eine verbesserte Wirksamkeit zu erreichen.

Durch wiederholte Screening- und Syntheseschritte besteht die Möglichkeit die Wirksamkeit der Amine der allgemeinen Formel (I) gezielt zu steigern.

Das erfindungsgemäße Verfahren zur Herstellung von synthetischen kombinatorische Bibliotheken bietet insbesondere folgende Vorteile:

1. Es lassen sich eine große Anzahl verschiedener Amine herstellen, die in ähnlichen Mengen im Reaktionsgemisch vorliegen.
2. Das Verfahren kann katalytisch geführt werden.
3. Es ist nicht erforderlich, die Ausgangsverbindungen zuträgern, wie dies bei der kombinatorischen Synthese ausgehend von Aminosäuren regelmäßig der Fall ist.
4. Es können einfach zugängliche Ausgangsverbindungen eingesetzt werden.

Verbindungen der allgemeinen Formel (I) bzw (I-a) und ihre physiologisch unbedenklichen Salze können daher zur Herstellung pharmazeutischer Präparate verwendet werden, indem man sie zusammen mit mindestens einem Träger- oder Hilfsstoff und, falls erwünscht, mit einem oder mehreren weiteren Wirkstoffen in die geeignete Dosierungsform bringt. Die so erhaltenen Zubereitungen können als Arzneimittel in der Human- oder Veterinärmedizin eingesetzt werden. Als Trägersubstanzen kommen organische oder anorganische Stoffe in Frage, die sich für die enterale (z. B. orale oder rektale) oder parenterale Applikation oder für die Applikation in Form eines Inhalations-sprays eignen und mit den neuen Verbindungen nicht reagieren, beispielsweise Wasser, pflanzliche Öle, Benzylalkohole, Polyethylenglykole, Glycerin-triacetat und andere Fettsäureglyceride, Gelatine, Sojalecithin, Kohlenhydrate

wie Lactose oder Stärke, Magnesiumstearat, Talk oder Cellulose. Zur oralen Anwendung dienen insbesondere Tabletten, Dragees, Kapseln, Sirupe, Säfte oder Tropfen; von Interesse sind speziell Lacktabletten und Kapseln mit magensaftresistenten Überzügen bzw. Kapselhüllen. Zur rektalen Anwendung dienen Suppositorien, zur parenteralen Applikation Lösungen, vorzugsweise ölige oder wässrige Lösungen, ferner Suspensionen, Emulsionen oder Implantate. Für die Applikation als Inhalations-Spray können Sprays verwendet werden, die den Wirkstoff entweder gelöst oder suspendiert in einem Treibgasgemisch (z. B. Fluorchlorkohlenwasserstoffen) enthalten. Zweckmäßig verwendet man den Wirkstoff dabei in mikronisierter Form, wobei ein oder mehrere zusätzliche physiologisch verträgliche Lösungsmittel zugegen sein können, z. B. Ethanol. Inhalationslösungen können mit Hilfe üblicher Inhalatoren verabfolgt werden. Die erfindungsgemäß beanspruchten Wirkstoffe können auch lyophilisiert und die erhaltenen Lyophilisate z. B. zur Herstellung von Injektionspräparaten verwendet werden. Die angegebenen Zubereitungen können sterilisiert sein und/oder Hilfsstoffe wie Konservierungs-, Stabilisierungs- und/oder Netzmittel, Emulgatoren, Salze zur Beeinflussung des osmotischen Druckes, Puffersubstanzen, Farb- und/oder Aromastoffe enthalten. Sie können, falls erwünscht, auch einen oder mehrere weitere Wirkstoffe enthalten, z. B. ein oder mehrere Vitamine, Diuretika, Antiphlogistika.

Die erfindungsgemäßen Verbindungen gemäß Formel (I) bzw. (I-a) werden in der Regel in Analogie zu anderen bekannten, im Handel erhältlichen Präparaten, insbesondere aber in Analogie zu den in der US-PS- 4 880 804 beschriebenen Verbindungen verabreicht, vorzugsweise in Dosierungen zwischen etwa 1 mg und 1 g, insbesondere zwischen 50 und 500 mg pro Dosierungseinheit. Die tägliche Dosierung liegt vorzugsweise zwischen etwa 0.1 und 50 mg/kg, insbesondere 1 und 10 mg/kg Körpergewicht. Die spezielle Dosis für jeden einzelnen Patienten hängt jedoch von den verschiedensten Faktoren ab, beispielsweise von der Wirksamkeit der eingesetzten speziellen Verbindung, vom Alter, Körpergewicht, allgemeinem Gesundheitszustand, Geschlecht, von der Kost, vom Verabfolgungszeitpunkt und -weg, von der Ausscheidungsgeschwindigkeit, Arzneistoffkombination und Schwere der jeweiligen Erkrankung, welcher die Therapie gilt. Die orale Applikation ist bevorzugt.

Jetzt wird die Erfindung anhand von Beispielen beschrieben.

Beispiele 1-6:

5 Zu einer Lösung von 5,5 mmol der in der Tabelle 1 angegebenen Organotitanverbindung, in 40 ml trockenem Tetrahydrofuran wird bei 20 C unter einer Stickstoffatmosphäre 5 mmol des in der Tabelle 1 angegebenen Amids zugeropft. Es wird 5 min bei 20 C gerührt. Zu dem Reaktionsgemisch werden dann 5,5 mmol des in der Tabelle 1 angegebenen Grignardreagenzien so
10 langsam zugegeben, daß das Reaktionsgemisch nicht über 50 C erwärmt wird. Anschließend wird bei der in Tabelle 1 angegebenen Reaktionstemperatur während der in der Tabelle 1 angegebenen Reaktionszeit gerührt, bis die Umsetzung abgeschlossen ist.

15 Aufarbeitung der Reaktionsprodukte:

Zur Entfernung der Lewis-Säure wird unter heftigem Rühren (1 Stunde) 15 ml gesättigte Ammoniumchlorid-Lösung und 15 ml Wasser zugegeben. Möglicher entstehender Niederschlag wird über Nutsche / Saugflasche abgesaugt
20 und der Filterrückstand mit 2 mal 20 ml getrocknetem Diethylether gewaschen. Das Filtrat wird durch Zugabe von Natriumhydroxid-Lösung basisch (pH>10) eingestellt. Anschließend werden die Phasen im Scheidetrichter getrennt. Die wäßrige Phase wird dreimal mit je 30 ml Diethylether extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid
25 Lösung gewaschen und die abgetrennte organische Phase über Kaliumcarbonat getrocknet und filtriert. Das Lösungsmittel wird am Rotationsverdampfer abrotiert. Der Rückstand wird an 20 g Kieselgel mit einem Laufmittelgemisch Heptan/tert- Butylmethylether 50/1 chromatographiert.

30

35

TABELLE 1

Beispiel Nr.	Amid	Produkt	Aus- beu- te [%]	$R^2MgX /$ $R^2Ti(OiPr)_3$	Reaktions- bedin- gungen
5 1			53	MeTi(OiPr) ₃ PhMgBr	1 Äquivalent 1,1 Äquivalente 15 h / 25°C
10 2			53	PhTi(OiPr) ₃ MeMgBr	0,3 Äquivalent 1,2 Äquivalente 24 h / 25°C
15 3			44	MeTi(OiPr) ₃ PhMgBr	1 Äquivalent 1 Äquivalent 20 h / 25°C
20 4			55	PhTi(OiPr) ₃ PhMgBr	1 Äquivalent 1,1 Äquivalente 24 h / 25°C
25 5			40	PhTi(OiPr) ₃ PhMgBr	1 Äquivalent 1 Äquivalent 24 h / 25°C
30 6			43	MeTi(OiPr) ₃ F-PhMgBr	1 Äquivalent 1 Äquivalent 20 h / 25°C

iPr = Isopropyl, Me = Methyl, Ph = Phenyl, RF = unter Rückfluß

Beispiel 7

5 Titan(IV)-oxid induzierte symmetrische Dialkylierung von Carbonsäureamiden mit Grignardreagizen.

10 Nach der durch Gleichung 1 wiedergegebenen Reaktion wurden das in Tabelle 2 aufgeführte Produkte unter Einsatz von einem Äquivalent $(CH_3)_3SiCl$ als Co-Katalysator hergestellt:

10

15

20

Beisp. Nr.	Amid	Produkt	Aus- beute	R^4MgX	Reak- tions- bedin- gungen
7			95%	PhMgBr	1h / RT / 3 mol-% TiO ₂

25 Tabelle 2: TiO_2 -induzierte Umsetzung von Carbonsäureamiden mit R^4MgX

25

30

Beispiele 8 bis 11:
 Zu einer Lösung von 3 mol% $Ti(O-i\text{-}Propyl)_4$, bezogen auf das in der Tabelle 3 angegebene Amid, in 40 ml trockenem Tetrahydrofuran werden bei 20 C unter einer Stickstoffatmosphäre 5 mmol des in der Tabelle 3 angegebenen Amids und 5 mmol $C(CH_3)_3SiCl_3$ als Cokatalysator zugetropft. Es wird 5 min bei 20 C gerührt. Zu dem Reaktionsgemisch werden dann 12 mmol des in der Tabelle 3 angegebenen Grignardreagenz so langsam zugegeben, daß

35

das Reaktionsgemisch nicht über 50 C erwärmt wird. Anschließend wird bei der in Tabelle 3 angegebenen Reaktionstemperatur während der in der Tabelle 3 angegebenen Reaktionszeit gerührt, bis die Umsetzung abgeschlossen ist.

5

Beispiel 8-a:

Abweichend davon werden im Beispiel 8-a 15 mmol Magnesiumspäne in 10 ml Tetrahydrofuran bei 20 C unter einer Stickstoffatmosphäre vorgelegt. Dazu werden 10 mol%, bezogen auf das in der Tabelle 3 angegebene Amid, Ti(O-iPropyl)₄ und 5 mmol des in der Tabelle 3 angegebenen Amids in Tetrahydrofuran gelöst, zugegeben. Dazu werden 12 mmol Phenylbromid langsam zugetropft, so daß das Gemisch leicht siedet. Während der Reaktionszeit von 1 Stunde und 25 C Reaktionstemperatur wird nach vorheriger Zugabe von 5 mmol des oben angegebenen Cokatalysators nach 1 Stunde das in der Tabelle 3 dargelegte Produkt mit der in der Tabelle 3 angegebenen Ausbeute erhalten. Die Aufarbeitung der Reaktionsprodukte erfolgt wie bei den Beispielen 1-4.

20

25

30

35

TABELLE 3

Beisp.	Amid	Produkt	Ausbeute	R^4MgX	Reaktionsbedingungen
8			84%	PhMgBr	24 h / 60°C / 3 mol% Ti(O <i>i</i> Pr) ₄
8 a			56%	PhBr/Mg	1 h / RF / 10 mol% Ti(O <i>i</i> Pr) ₄
9			95%	PhMgBr	1 h / RT / 3 mol% Ti(O <i>i</i> Pr) ₄ / 5 mmol Cokat
10			71%	BnMgCl	1 h / RT / 3 mol% Ti(O <i>i</i> Pr) ₄ / 5 mmol Cokat
11			70%	BnMgCl	1 h / RT / 3 mol% Ti(O <i>i</i> Pr) ₄ / 5 mmol Cokat

Ph = Phenyl, Bn = Benzyl, *i*Pr = Isopropyl, RF = unter Rückfluß, RT = 25°C, Cokat = (CH_3)₃SiCl.

- 50 -

Beispiele 12 bis 14

Die Tabelle 4 aufgeführten Verbindungen wurden durch Titan(IV)oxid induzierte unsymmetrische Disubstitution von Carbonsäureamiden mit unterschiedlichen Grignardreagenzmischungen hergestellt.

5

10

15

20

25

Nr.	Amid	Produkt	Ausbeute	R ⁴ MgX / R ⁵ MgX	Reaktionsbedingungen
12			75% ^[3]	MeMgBr / PhMgBr	1h / RT / 13 mol-% TiO ₂
13			46% ^[3]	EtMgBr / PhMgBr	1h / RT / 13 mol-% TiO ₂
14			86% ^[3]	n-HexylMgBr / PhMgBr	1h / RT / 13 mol-% TiO ₂

[3] Einsatz von einem Äquivalent (CH₃)₂SiCl als Cokatalysator

30

35

Aus den experimentellen Befunden läßt sich extrapolieren, dass sich in einer Suspension von TiO₂ in Tetrahydrofuran (Einsatz von 13 mol% des Ti-Reagenzes bezüglich des Amids) unter Zugabe von jeweils einem Equivalenter unterschiedlicher Grignardreagenzien, alle Carbonsäureamide zu den entsprechenden geminal unsymmetrisch dialkylierten tertiären Amine umsetzen lassen.

Die Aufarbeitung erfolgte wie bereits bei den vorstehenden Beispielen.

10 Beispiele 15 bis 17

Zu einer Lösung von 3 mol% Ti(O*i*Pr)₄, bezogen auf das in der Tabelle 5 angegebene Amid, in 40 ml trockenem Tetrahydrofuran wird bei 20 C unter einer Stickstoffatmosphäre 5 mmol des in der Tabelle 6 angegebenen Amids und 5 mmol (CH₃)₃SiCl als Cokatalysator zugetropft. Es wird 5 min bei 20 C gerührt. Zu dem Reaktionsgemisch werden dann 12 mmol bzw. jeweils 6 mmol der in der Tabelle 6 angegebenen Grignardreagenzien so langsam zugegeben, daß das Reaktionsgemisch nicht über 50 C erwärmt wird. Anschließend wird bei der in Tabelle 6 angegebenen Reaktionstemperatur während der in der Tabelle 5 angegebenen Reaktionszeit gerührt, bis die Umsetzung abgeschlossen ist.

Abweichend davon werden im Beispiel 17 15 mmol Magnesiumspäne in 10 ml Tetrahydrofuran bei 20 C unter einer Stickstoffatmosphäre vorgelegt. Dazu werden 3 mol%, bezogen auf das in der Tabelle 1 angegebene Amid, Ti(O*i*Pr)₄ und 5 mmol des in der Tabelle 5 angegebenen Amids in Tetrahydrofuran gelöst, zugegeben. Dazu werden jeweils 6 mmol Methylbromid bzw. Phenylbromid langsam zugetropft, so daß das Gemisch leicht siedet. Während der Reaktionszeit von 1 Stunde und 25 C Reaktionstemperatur wird nach vorheriger Zugabe von 5 mmol des oben angegebenen Cokatalysators nach 1 Stunde das in der Tabelle 5 dargelegte Produkt mit der in der Tabelle 5 angegebenen Ausbeute erhalten.

Die Aufarbeitung der Reaktionsprodukte erfolgt wie bei den Beispielen 1-8

TABELLE 5

Beispiel	Amid	Produkt	Ausbeute %	R ² MgX / R ³ MgX	Reaktionsbedingungen
5 15			71	MeMgBr / PhMgBr	1h / 25°C 3mol% Ti(O <i>i</i> Pr) ₄ 5 mmol Cokat
10 16			81	PhMgBr / EnMgCl	24h / 3mol% Ti(O <i>i</i> Pr) ₄
15 17			79	MeMgBr / PhMgBr	3mol% Ti(O <i>i</i> Pr) ₄ 5 mmol Cokatalysator

Me = Methyl

Ph = Phenyl

*i*Pr = iso-Propyl

En = Benzyl

Cokat = (CH₃)₃SiCl

Beispiele 18 bis 105

Folgende Amine der allgemeinen Formel (I) wurden nach folgender allgemeiner Arbeitsvorschrift hergestellt und massenspektroskopisch identifiziert.

5

Zu einer Lösung eines Titanorganyls $Ti(OiPr)_4$ (3 mol% in Bezug auf eingesetztes Amid) in 40 ml trockenem Tetrahydrofuran wurden bei 20 C unter Inertgasatmosphäre (Stickstoff oder Argon) 5 mmol Edukt (1), entweder als Flüssigkeit oder als Lösung in Tetrahydrofuran zugetropft. Es wird dem Reaktionsgemisch zusätzlich 5 mmol des Cokatalysators CH_3SiCl zugegeben und 5 min bei 20 C gerührt. Zum Reaktionsgemisch werden dann 12 mmol eines Aryl-Grignardreagenzes (bei der unsymmetrischen Dialkylierung ein Gemisch aus jeweils 6 mmol zweier unterschiedlicher Grignardreagenzien (2a und 2b), wobei mindestens einer der Grignardreagenzien einen Arylrest enthält) so langsam zugegeben, daß sich das Gemisch nicht über 50 C erwärmt. Es werden 15 ml gesättigte Ammoniumchlorid Lösung und 15 ml Wasser zugegeben und weiter heftig für 1-3 Stunden gerührt. Der entstehende Niederschlag wird abgetrennt und mit wenig getrocknetem Diethylether nachgewaschen. Das Filtrat wird durch Zugabe von 15% Natriumhydroxid Lösung basisch ($pH>10$) eingestellt. Anschließend werden die Phasen getrennt und die wäßrige Phase wird dreimal mit je 30 ml Diethylether extrahiert. Die vereinigten organischen Phasen werden mit 15 ml gesättigter Natriumchlorid Lsg. gewaschen und über Kaliumcarbonat getrocknet und filtriert.

25

Die Produkte können auf verschiedene Wege aufgereinigt werden (siehe Tabelle 6):

30

1. Die organische Phase wird zweimal mit 40 ml einer 0,5 M HCl Lösung extrahiert. Dieses Extrakt wird mit 2 M NaOH Lösung auf $pH>10$ eingestellt und nochmals mit dreimal 30 ml getrocknetem Diethylether extrahiert. Die vereinigten organischen Phasen werden über Kaliuncarbonat getrocknet und das Lösungsmittel unter Vakuum abgezogen.

35

2. Das Lösungsmittel wird im Vakuum abgezogen und der Rückstand wird durch äulenchromatographie isoliert.

- 3.** Das Lösungsmittel wird im Vakuum abgezogen und der Rückstand wird unter Vakuum destilliert.

5

10

15

20

25

30

35

TABELLE 6

Nr. ^a	Struktur	Name	Summenformel	Mol. gew.	Massenspektrum
18 ²		1-(1,1-Diphenyl-ethyl)-piperidin	C ₁₉ H ₂₃ N	265.4	133 (5) [M ⁻ - C ₆ H ₅], 174 (100) [M ⁻ - C ₆ H ₇], 145 (1), 127 (3), 112 (17) [M ⁻ - C ₁₂ H ₉], 105 (15), 91 (14) [C ₆ H ₇], 84 (10) [C ₆ H ₁₀ N ⁻], 69 (2), 56 (5).
19 ²		Dibenzyl-(1-benzyl-1-methylbutyl)-amin	C ₂₅ H ₃₁ N	357.5	541 (4) [M ⁻ - CH ₃], 250 (100) [M ⁻ - C ₆ H ₁₁], 159 (1), 145 (2), 130 (2), 117 (2), 106 (4), 91 (31) [C ₆ H ₇], 65 (9) [C ₆ H ₅].
20 ²		1-(1-Benzyl-1-methyl-2-phenyl-ethyl)-piperidin	C ₂₁ H ₂₇ N	293.5	294 (1) [M ⁻ + H], 202 (100) [M ⁻ - C ₆ H ₇], 187 (2) [M ⁻ - C ₆ H ₁₀], 134 (2), 117 (3), 91 (13) [C ₆ H ₇], 84 (3) [C ₆ H ₁₀ N ⁻], 65 (6) [C ₆ H ₅], 56 (2).
21 ²		4-(1-Benzyl-2-phenyl-ethyl)-morpholin	C ₂₂ H ₂₅ NO	295.4	204 (100) [M ⁻ - C ₆ H ₇], 189 (2) [M ⁻ - C ₆ H ₁₀], 158 (2), 131 (2), 115 (6), 91 (26) [C ₆ H ₇], 65 (10) [C ₆ H ₅].
22 ³		Benzhydryl-diisobutylamin	C ₂₁ H ₂₉ N	295.5	296 (1) [M ⁻ + H], 252 (40) [M ⁻ - C ₆ H ₇], 218 (1) [M ⁻ - C ₆ H ₅], 167 (100) [M ⁻ - C ₆ H ₁₈ N], 152 (7), 115 (1), 91 (2) [C ₆ H ₇], 77 (1) [C ₆ H ₅].
23 ³		Benzhydryl-diobutyl-amin	C ₂₁ H ₂₉ N	295.5	296 (2) [M ⁻ + H], 252 (50) [M ⁻ - C ₆ H ₇], 238 (6) [M ⁻ - C ₆ H ₅], 218 (8) [M ⁻ - C ₆ H ₇], 167 (100) [M ⁻ - C ₆ H ₁₈ N], 152 (6), 91 (3) [C ₆ H ₇], 77 (3) [C ₆ H ₅].
24 ³		Dimethyl-(1,1-benzyl-ethyl)-amin	C ₁₁ H ₁₅ N	239.4	240 (3) [M ⁻ + H], 148 (100) [M ⁻ - C ₆ H ₇], 133 (18) [M ⁻ - C ₆ H ₁₀], 115 (2), 105 (8), 91 (17) [C ₆ H ₇], 77 (3) [C ₆ H ₅], 65 (11) [C ₆ H ₃].
25 ³		(1-Benzyl-2-phenyl-ethyl)-diethyl-amin	C ₁₉ H ₂₃ N	267.4	268 (1) [M ⁻ + H], 176 (100) [M ⁻ - C ₆ H ₇], 147 (4), 130 (1), 118 (2), 105 (5), 91 (7) [C ₆ H ₇], 77 (1) [C ₆ H ₅], 65 (5) [C ₆ H ₃], 51 (2) [C ₆ H ₁], 39 (2) [C ₆ H ₃].
26 ³		(1-Benzyl-2-phenyl-ethyl)-diisopropylamin	C ₂₁ H ₂₉ N	295.5	296 (1) [M ⁻], 204 (100) [M ⁻ - C ₆ H ₇], 162 (30), 120 (23), 103 (4), 91 (11) [C ₆ H ₇], 77 (2) [C ₆ H ₅], 65 (6) [C ₆ H ₃].

Nr. ^a	Struktur	Name	Summen-formel	Mol. gew.	Massenspektrum
27 ³		(1-Benzyl-2-phenyl-ethyl)-diisobutylamin	C ₂₃ H ₃₃ N	323.5	324 (3) [M ⁺ + H], 280 (5) [M ⁺ - C ₃ H ₇], 232 (100) [M ⁺ - C ₃ H ₇], 176 (9), 120 (7), 91 (6) [C ₃ H ₇], 57 (2).
28 ³		(1-Benzyl-2-phenyl-ethyl)-diburyl-amin	C ₂₃ H ₃₃ N	323.5	324 (6) [M ⁺ +H], 280 (1) [M ⁺ - C ₃ H ₇], 232 (100) [M ⁺ - C ₃ H ₇], 190 (5), 148 (3), 105 (2).
29 ³		1-(1-Benzyl-2-phenyl-ethyl)-pyrrolidin	C ₂₁ H ₂₃ N	301.4	174 (100), 130 (2), 115 (5), 105 (13), 91 (21) [C ₃ H ₇], 77 (4) [C ₆ H ₅], 65 (11) [C ₃ H ₅].
30 ³		4-(1-Benzyl-2-phenyl-ethyl)-morpholin	C ₁₉ H ₂₃ NO	281.4	282 (0.5) [M ⁺ + H], 190 (100) [M ⁺ - C ₃ H ₇], 144 (2), 130 (3), 117 (4), 105 (10), 91 (22) [C ₃ H ₇], 77 (4) [C ₆ H ₅], 65 (10) [C ₃ H ₅], 51 (2) [C ₃ H ₃], 44 (7) [C ₂ H ₅ O ⁺].
31 ³		1-(1-Benzyl-2-phenyl-ethyl)-4-methyl-piperazin	C ₂₀ H ₂₅ N ₂	294.4	293 (1) [M ⁺ - H], 203 (100) [M ⁺ - C ₃ H ₇], 160 (17), 146 (2), 117 (4), 105 (9), 91 (25) [C ₃ H ₇], 70 (29), 65 (11) [C ₃ H ₅], 56 (4).
32 ³		(1-Benzyl-2-phenyl-ethyl)-methyl-phenyl-amin	C ₂₂ H ₂₃ N	301.4	300 (1) [M ⁺ - H], 210 (100) [M ⁺ - C ₃ H ₇], 195 (6) [M ⁺ - C ₆ H ₅ N ₂], 132 (20), 117 (7), 104 (6), 91 (24) [C ₃ H ₇], 77 (15) [C ₆ H ₅], 65 (13) [C ₃ H ₅].
33 ³		(1-Benzyl-2-phenyl-ethyl)-methyl-pyridin-2-yl-amin	C ₂₁ H ₂₂ N	302.4	301 (1) [M ⁺ - H], 211 (100) [M ⁺ - C ₃ H ₇], 195 (4) [M ⁺ - C ₆ H ₅ N ₂], 170 (7), 133 (5), 119 (11), 91 (20) [C ₃ H ₇], 78 (9), 65 (13) [C ₆ H ₅].
34 ³		(1-Benzyl-2-phenyl-ethyl)-diphenyl-amin	C ₂₇ H ₂₅ N	363.5	364 (2) [M ⁺ + H], 270 (100) [M ⁺ - C ₃ H ₇], 195 (1) [M ⁺ - C ₁₂ H ₁₆ N], 167 (3) [C ₁₂ H ₂₃ N ⁺], 115 (1), 104 (39), 77 (6) [C ₆ H ₅], 65 (1) [C ₃ H ₅], 51 (4).
35 ³		Dibenzylo-(1-benzyl-2-phenyl-ethyl)-amin	C ₂₉ H ₂₉ N	391.6	392 (1) [M ⁺ + H], 300 (100) [M ⁺ - C ₃ H ₇], 208 (2), 181 (7), 152 (3), 91 (53) [C ₃ H ₇], 65 (14) [C ₆ H ₅].

Nr. ¹	Struktur	Name	Summen-formel	Mol-gew.	Massenspektrum
36 ¹		Di-p-tolylmethyl-diethyl-amin	C ₁₉ H ₂₃ N	267.4	267 (8), [M ⁺] 252 (4) [M ⁺ - CH ₃], 195 (100) [M ⁺ - C ₆ H ₁₂ N], 179 (9), 176 (23) [M ⁺ - C ₆ H ₇], 165 (18) [M ⁺ - C ₆ H ₁₀ N], 105 (4), 91 (8) [C ₆ H ₇], 77 (5) [C ₆ H ₅], 65 (6) [C ₆ H ₅], 58 (8), 56 (5).
37 ¹		Di-p-tolylmethyl-diisobutyl-amin	C ₂₃ H ₃₃ N	323.5	322 (1) [M ⁺ - H], 280 (8) [M ⁺ - C ₃ H ₇], 232 (2) [M ⁺ - C ₆ H ₇], 195 (100) [M ⁺ - C ₆ H ₁₂ N], 180 (9) [M ⁺ - C ₆ H ₁₀ N], 165 (9) [M ⁺ - C ₁₀ H ₂₂ N], 115 (1), 86 (2), 57 (1).
38 ¹		Diisobutyl-di-p-tolylmethyl-amin	C ₂₃ H ₃₃ N	323.5	322 (1) [M ⁺ - H], 279 (8) [M ⁺ - C ₃ H ₈], 266 (49) [M ⁺ - C ₆ H ₇], 232 (6) [M ⁺ - C ₆ H ₁₂ N], 195 (100) [M ⁺ - C ₆ H ₁₀ N], 180 (6) [M ⁺ - C ₆ H ₈ N], 165 (3) [M ⁺ - C ₁₀ H ₂₂ N], 118 (1), 84 (2), 57 (1).
39 ¹		1-Di-p-tolylmethyl-pyrrolidin	C ₁₉ H ₂₃ N	265.4	265 (19) [M ⁺], 250 (1) [M ⁺ - CH ₃], 195 (100) [M ⁺ - C ₆ H ₈ N], 180 (23) [M ⁺ - C ₆ H ₁₀ N], 174 (60) [M ⁺ - C ₆ H ₇], 165 (19) [M ⁺ - C ₆ H ₁₂ N], 152 (2), 115 (3), 105 (10), 91 (7) [C ₆ H ₇], 77 (5) [C ₆ H ₅], 70 (11), 65 (3) [C ₆ H ₅], 50 (3).
40 ¹		4-Di-p-tolylmethyl-piperidin	C ₂₀ H ₂₅ N	279.4	279 (35) [M ⁺], 195 (100) [M ⁺ - C ₆ H ₁₂ N], 188 (50) [M ⁺ - C ₆ H ₇], 180 (12) [M ⁺ - C ₆ H ₁₃ N], 165 (16) [M ⁺ - C ₆ H ₈ N], 115 (2), 105 (7), 91 (3) [C ₆ H ₇], 84 (13) [C ₆ H ₁₀ N], 77 (3) [C ₆ H ₅], 65 (4) [C ₆ H ₅].
41 ¹		4-Di-p-tolylmethyl-morpholin	C ₁₉ H ₂₃ NO	281.4	281 (29) [M ⁺], 195 (100) [M ⁺ - C ₆ H ₈ NO], 190 (10) [M ⁺ - C ₆ H ₇], 180 (2) [M ⁺ - C ₆ H ₁₁ NO], 165 (5) [M ⁺ - C ₆ H ₁₂ NO], 103 (1), 86 (3) [C ₆ H ₅ NO], 56 (5).
42 ³		Di-p-tolylmethyl-methyl-phenyl-amin	C ₂₂ H ₂₅ N	301.4	301 (18) [M ⁺], 286 (9) [M ⁺ - CH ₃], 210 (3) [M ⁺ - C ₆ H ₇], 195 (100) [M ⁺ - C ₆ H ₈ N], 179 (12), 165 (18) [M ⁺ - C ₆ H ₁₀ N], 152 (2), 106 (8) [C ₆ H ₈ N], 91 (5) [C ₆ H ₇], 77 (19) [C ₆ H ₅], 65 (5), 51 (8).

Nr. ^a	Struktur	Name	Summen-formel	Mol. gew.	Massenspektrum	
43 ¹		[Bis-(4-fluoro-phenyl)-methyl]-dimethyl-amin	C ₁₃ H ₁₅ F ₂ N	247.3	247 (43) [M ⁺], 203 (100) [M ⁺ - C ₂ H ₄ N], 183 (24) [M ⁺ - C ₂ H ₅ FN], 152 (32) [M ⁺ - C ₆ H ₅ F], 136 (6), 109 (6), 95 (1) [M ⁺ - C ₆ H ₄ F], 75 (2).	
44 ¹		[Bis-(4-fluoro-phenyl)-methyl]-diethyl-amin	C ₁₇ H ₁₉ F ₂ N	275.3	275 (5) [M ⁺], 260 (26) [M ⁺ - C ₂ H ₅] 246 (3) [M ⁺ - C ₂ H ₅ N], 203 (100) [M ⁺ - C ₂ H ₁₀ N], 183 (18) [M ⁺ - C ₂ H ₁₁ FN], 180 (19) [M ⁺ - C ₆ H ₅ F], 109 (2), 95 (5) [C ₆ H ₄ F], 75 (6), 56 (5).	
45 ¹		[Bis-(4-fluoro-phenyl)-methyl]-diisobutyl-amin	C ₂₁ H ₂₇ F ₂ N	331.5	283 (23) [M ⁺ - C ₃ H ₇], 203 (100) [M ⁺ - C ₂ H ₁₅ N], 183 (14) [M ⁺ - C ₂ H ₁₂ FN], 109 (1), 83 (1), 57 (2).	
46 ¹		[Bis-(4-fluoro-phenyl)-methyl]-dibutyl-amin	C ₂₁ H ₂₇ F ₂ N	331.5	283 (41) [M ⁺ - C ₃ H ₇], 274 (4) [M ⁺ - C ₄ H ₉], 236 (4), 203 (100) [M ⁺ - C ₃ H ₁₅ N], 183 (16) [M ⁺ - C ₂ H ₁₂ FN], 13 (1), 109 (2) [C ₂ H ₅ F], 84 (2), 75 (2), 57 (2).	
47 ¹		1-[Bis-(4-fluoro-phenyl)-methyl]-pyrrolidin	C ₁₇ H ₁₇ F ₂ N	273.3	273 (35) [M ⁺], 218 (2), 203 (100) [M ⁺ - C ₂ H ₅ N], 183 (40) [M ⁺ - C ₂ H ₄ FN], 178 (73) [M ⁺ - C ₆ H ₅ F], 149 (3), 122 (4), 109 (19) [C ₂ H ₅ F], 95 (8) [C ₆ H ₄ F], 83 (6), 75 (13), 70 (13) [C ₆ H ₅ N], 57 (6).	
48 ¹		1-[Bis-(4-fluoro-phenyl)-methyl]-piperidin	C ₁₉ H ₁₉ F ₂ N	287.4	287 (55) [M ⁺], 203 (100) [M ⁺ - C ₂ H ₁₅ N], 192 (73) [M ⁺ - C ₆ H ₅ F], 183 (20) [M ⁺ - C ₂ H ₁₁ FN], 122 (1), 109 (10), 84 (11) [C ₂ H ₁₅ N].	
49 ¹		4-[Bis-(4-fluorophenyl)-methyl]-morpholin	C ₂₁ H ₂₁ F ₂ NO	289.3	289 (46) [M ⁺], 203 (100) [M ⁺ - C ₂ H ₅ NO], 194 (10) [M ⁺ - C ₆ H ₅ F], 183 (18) [M ⁺ - C ₂ H ₉ FNO], 109 (2), 86 (6) [C ₂ H ₅ NO], 56 (14).	

Nr. ^a	Struktur	Name	Summen-formel	Mol. gew.	Massenspektrum
50 ³		[Bis-(4-fluoro-phenyl)-methyl-phenyl-amin]	C ₁₉ H ₁₇ F ₂ N	309.4	309 (35) [M ⁺], 203 (100) [M ⁺ - C ₆ H ₅ N], 183 (29) [M ⁺ - C ₆ H ₄ FN], 163 (1), 133 (2), 104 (4), 77 (19) [C ₆ H ₅] ⁻ .
51 ¹		C,C-Bis-(4-fluoro-3-methyl-phenyl)-methylamin	C ₁₅ H ₁₅ F ₂ N	247.3	248 (7) [M ⁺ + H], 231 (100) [M ⁺ - NH ₂], 183 (1), 137 (43), 123 (4), 109 (23) [C ₆ H ₅ F] ⁻ , 83 (4), 57 (2).
52 ³		[Bis-(4-fluoro-3-methyl-phenyl)-methyl]-trimethylsilylamin	C ₁₈ H ₂₃ F ₂ NSi	319.5	320 (21) [M ⁺ + H], 305 (35) [M ⁺ - CH ₃], 231 (100) [M ⁺ - C ₆ H ₁₆ Si], 211 (30) [M ⁺ - C ₆ H ₁₂ FSi], 195 (32), 163 (1), 134 (1), 107 (2), 73 (6).
53 ¹		[Bis-(4-fluoro-3-methyl-phenyl)-methyl]-dimethyl-amin	C ₁₇ H ₁₉ F ₂ N	275.3	275 (19) [M ⁺], 231 (100) [M ⁺ - C ₆ H ₅ N], 216 (2) [M ⁺ - C ₆ H ₂ N], 201 (4) [M ⁺ - C ₆ H ₁₂ N], 166 (16) [M ⁺ - C ₆ H ₆ F], 109 (2) [C ₆ H ₅ F] ⁻ , 83 (2), 57 (1).
54 ¹		4-[Bis-(4-fluoro-3-methyl-phenyl)-methyl]-diethyl-amin	C ₁₉ H ₂₁ F ₂ N	303.4	303 (5) [M ⁺], 288 (9) [M ⁺ - CH ₃], 274 (3) [M ⁺ - C ₂ H ₅], 246 (5), 231 (100) [M ⁺ - C ₆ H ₁₀ N], 216 (15) [M ⁺ - C ₆ H ₁₃ N], 201 (12) [M ⁺ - C ₆ H ₁₆ N], 194 (13) [M ⁺ - C ₆ H ₆ F], 137 (7), 119 (4), 109 (7) [C ₆ H ₅ F] ⁻ , 83 (7), 56 (6).
55 ¹		1-[Bis-(4-fluoro-3-methyl-phenyl)-methyl]-diisobutyl-amin	C ₂₂ H ₂₁ F ₂ N	359.5	316 (15) [M ⁺ - C ₃ H ₇], 250 (1) [M ⁺ - C ₆ H ₂ F], 231 (100) [M ⁺ - C ₆ H ₁₈ N], 201 (1) [M ⁺ - C ₆ H ₁₉ FN], 133 (1), 109 (1) [C ₆ H ₅ F] ⁻ , 83 (1), 57 (1).
56 ¹		1-[Bis-(4-fluoro-3-methyl-phenyl)-methyl]-dibutyl-amin	C ₂₅ H ₂₁ F ₂ N	359.5	359 (1) [M ⁺], 316 (12) [M ⁺ - C ₃ H ₇], 302 (4), 250 (4) [M ⁺ - C ₆ H ₄ F], 231 (100) [M ⁺ - C ₆ H ₁₈ N], 216 (5) [M ⁺ - C ₆ H ₂₁ N], 201 (6) [M ⁺ - C ₁₀ H ₂₁ N], 136 (2), 109 (1) [C ₆ H ₅ F] ⁻ , 83 (3), 57 (3).

Nr. ^a	Struktur	Name	Summen-formel	Mol-gew.	Massenspektrum
57 ¹		1-[Bis-(4-fluoro-3-methyl-phenyl)-methyl]-pyrrolidin	C ₁₉ H ₂₁ F ₂ N	301.4	301 (17) [M ⁺], 246 (+), 231 (100). [M ⁺ - C ₆ H ₈ N], 216 (15). [M ⁺ - C ₆ H ₁₁ N], 201 (14). [M ⁺ - C ₆ H ₁₄ N], 192 (49). [M ⁺ - C ₆ H ₆ F], 137 (10), 123 (11), 109 (10). [C ₆ H ₆ F], 83 (9). 70 (15). [C ₆ H ₈ N], 57 (5).
58 ¹		1-[Bis-(4-fluoro-3-methyl-phenyl)-methyl]-piperidin	C ₂₀ H ₂₃ F ₂ N	315.4	315 (50) [M ⁺], 231 (100). [M ⁺ - C ₆ H ₁₀ N], 206 (39). [M ⁺ - C ₆ H ₆ F], 84 (2) [C ₆ H ₁₀ N].
59 ¹		4-[Bis-(4-fluoro-3-methyl-phenyl)-methyl]-morpholin	C ₁₉ H ₂₁ F ₂ NO	317.4	317 (23) [M ⁺], 231 (100). [M ⁺ - C ₆ H ₈ NO], 216 (15). [M ⁺ - C ₆ H ₁₁ NO], 208 (11). [M ⁺ - C ₆ H ₆ F], 201 (12). [M ⁺ - C ₆ H ₁₄ NO], 109 (3). [C ₆ H ₆ F], 86 (8). [C ₆ H ₈ NO], 56 (9).
60 ³		[Bis-(4-fluoro-3-methyl-phenyl)-methyl]-methyl-phenyl-amin	C ₂₂ H ₂₁ F ₂ N	337.4	337 (22) [M ⁺], 231 (100). [M ⁺ - C ₆ H ₈ N], 216 (13). [M ⁺ - C ₆ H ₁₁ N], 201 (8). [M ⁺ - C ₆ H ₁₄ N], 137 (2), 109 (3). [C ₆ H ₆ F], 107 (4), 77 (18) [C ₆ H ₅], 63 (3), 51 (8).
61 ³		[Bis-(4-chloro-phenyl)-methyl]-diethyl-amin	C ₁₁ H ₁₉ Cl ₂ N	308.3	307 (7) [M ⁺ - H], 292 (23). [M ⁺ - CH ₃], 258 (+), 235 (100). [M ⁺ - C ₆ H ₁₀ N], 196 (24). [M ⁺ - C ₆ H ₅ Cl], 165 (40), 139 (8), 125 (8), 89 (5), 75 (11).
62 ³		[Bis-(4-chloro-phenyl)-methyl]-diisobutyl-amin	C ₂₁ H ₂₃ Cl ₂ N	364.4	364 (1) [M ⁺], 320 (31) [M ⁺ - C ₃ H ₅], 252 (1) [M ⁺ - C ₆ H ₅ Cl], 236 (100). [M ⁺ - C ₆ H ₁₈ N], 199 (6), 165 (13), 139 (1), 89 (1), 57 (1).
63 ³		[Bis-(4-chloro-phenyl)-methyl]-dibutyl-amin	C ₂₁ H ₂₇ Cl ₂ N	364.4	320 (33) [M ⁺ - C ₃ H ₅], 252 (5). [M ⁺ - C ₆ H ₅ Cl], 236 (100). [M ⁺ - C ₆ H ₁₈ N], 200 (10). [M ⁺ - C ₆ H ₁₉ ClN], 165 (24), 138 (2), 84 (3), 75 (2), 63 (2).

Nr. ^a	Struktur	Name	Summen-formel	Mol. gew.	Massenspektrum
64 ³		[Bis-(4-chlorophenyl)-methyl]-morpholin	C ₁₇ H ₁₇ Cl ₂ NO	322.2	321 (41) [M ⁺ - H], 235 (100) [M ⁺ - C ₆ H ₈ NO], 210 (28) [M ⁺ - C ₆ H ₅ Cl], 199 (18) [M ⁺ - C ₆ H ₅ ClNO], 165 (40), 139 (3), 125 (4), 103 (7), 86 (20) [C ₆ H ₅ NO] 75 (6), 56 (26).
65 ³		[Bis-(4-chlorophenyl)-methyl]-methyl-phenyl-amin	C ₂₀ H ₁₇ Cl ₂ N	342.3	341 (32) [M ⁺ - H], 298 (2), 235 (100) [M ⁺ - C ₇ H ₈ N], 214 (2), 200 (14) [M ⁺ - C ₆ H ₅ Cl], 165 (36), 152 (2), 104 (4), 77 (24) [C ₆ H ₅], 63 (4), 51 (11).
66 ¹		[Bis-(4-methoxyphenyl)-methyl]-diethyl-amin	C ₂₀ H ₂₃ NO ₂	311.4	311 (2) [M ⁺], 227 (100) [M ⁺ - C ₆ H ₁₀ N], 212 (8), 197 (19), 169 (8), 152 (5), 141 (6), 121 (8), 115 (7), 91 (5) [C ₆ H ₅], 84 (8), 77 (7) [C ₆ H ₅], 63 (5).
67 ¹		[Bis-(4-methoxyphenyl)-methyl]-diisobutyl-amin	C ₂₃ H ₃₃ NO ₂	355.5	354 (1) [M ⁺ - H], 298 (1), 248 (2) [M ⁺ - C ₆ H ₁₁ O], 227 (100) [M ⁺ - C ₆ H ₁₈ N], 196 (1), 166 (1), 158 (1), 115 (1), 86 (1), 57 (1).
68 ¹		[Bis-(4-methoxyphenyl)-methyl]-dibutyl-amin	C ₂₅ H ₃₃ NO ₂	355.5	354 (1) [M ⁺ - H], 298 (5), 248 (3) [M ⁺ - C ₆ H ₁₁ O], 227 (100) [M ⁺ - C ₆ H ₁₈ N], 212 (4), 197 (3), 169 (3), 152 (2), 141 (3), 121 (2), 115 (3), 86 (6), 57 (3).
69 ¹		1-[Bis-(4-methoxyphenyl)-methyl]-pyrrolidin	C ₁₉ H ₂₃ NO ₂	297.4	296 (1) [M ⁺ - H], 227 (100) [M ⁺ - C ₆ H ₁₀ N], 190 (4) [M ⁺ - C ₆ H ₁₁ O], 167 (1), 141 (2), 115 (1), 77 (1) [C ₆ H ₅], 63 (1).
70 ¹		1-[Bis-(4-methoxyphenyl)-methyl]-pyridin	C ₂₀ H ₂₃ NO ₂	311.4	311 (2) [M ⁺], 227 (100) [M ⁺ - C ₆ H ₁₀ N], 212 (8), 197 (19), 169 (8), 152 (5), 141 (6), 121 (8), 115 (7), 91 (5) [C ₆ H ₅], 84 (8), 77 (7) [C ₆ H ₅], 56 (5).

Nr. ^a	Struktur	Name	Summen-formel	Mol. gew.	Massenspektrum
71 ¹		[Bis-(4-methoxyphenyl)-methyl]-morpholin	C ₁₉ H ₂₃ NO ₃	313.4	313 (1) [M ⁺], 227 (100) [M ⁺ - C ₆ H ₄ NO], 206 (2) [M ⁺ - C ₆ H ₄ O], 195 (2), 152 (2), 115 (3), 91 (1) [C ₆ H ₅] ⁻ , 77 (1) [C ₆ H ₅] ⁻ , 56 (2).
72 ¹		[Bis-(2,6-dimethylphenyl)-methyl]-dimethyl-amin	C ₁₉ H ₂₃ N	267.4	267 (16) [M ⁺], 252 (1) [M ⁺ - CH ₃] ⁻ , 223 (33) [M ⁺ - C ₆ H ₁₀ N] ⁻ , 207 (100) [M ⁺ - C ₆ H ₉] ⁻ , 192 (15), 179 (3), 162 (43) [M ⁺ - C ₆ H ₉] ⁻ , 146 (6), 131 (4), 119 (10), 103 (4), 91 (7) [C ₆ H ₅] ⁻ , 77 (8) [C ₆ H ₅] ⁻ , 63 (3).
73 ¹		[Bis-(2,6-dimethylphenyl)-methyl]-diethyl-amin	C ₂₁ H ₂₅ N	295.5	295 (9) [M ⁺], 223 (23) [M ⁺ - C ₆ H ₁₀ N] ⁻ , 207 (100) [M ⁺ - C ₆ H ₁₄ N] ⁻ , 190 (44) [M ⁺ - C ₆ H ₉] ⁻ , 178 (6), 151 (6), 117 (4), 103 (5), 91 (7) [C ₆ H ₅] ⁻ , 77 (9) [C ₆ H ₅] ⁻ , 56 (7).
74 ¹		[Bis-(2,6-dimethylphenyl)-methyl]-diisobutyl-amin	C ₂₁ H ₂₇ N	351.6	352 (2) [M ⁺ + H] ⁻ , 308 (15) [M ⁺ - C ₆ H ₇] ⁻ , 246 (13) [M ⁺ - C ₆ H ₉] ⁻ , 223 (100) [M ⁺ - C ₆ H ₁₈ N] ⁻ , 207 (26) [M ⁺ - C ₆ H ₁₇ N] ⁻ , 193 (9), 181 (5), 165 (2), 131 (5), 117 (3), 91 (3) [C ₆ H ₅] ⁻ , 77 (2) [C ₆ H ₅] ⁻ , 57 (2).
75 ¹		[Bis-(2,6-dimethylphenyl)-methyl]-diburyl-amin	C ₂₂ H ₂₅ N	351.6	351 (11) [M ⁺], 303 (8) [M ⁺ - C ₆ H ₅] ⁻ , 294 (5) [M ⁺ - C ₆ H ₉] ⁻ , 246 (72) [M ⁺ - C ₆ H ₉] ⁻ , 223 (60) [M ⁺ - C ₆ H ₁₈ N] ⁻ , 207 (100) [M ⁺ - C ₆ H ₁₇ N] ⁻ , 193 (11), 178 (4), 130 (7), 91 (4) [C ₆ H ₅] ⁻ , 77 (6) [C ₆ H ₅] ⁻ , 57 (5).
76 ¹		1-[Bis-(2,6-dimethylphenyl)-methyl]-pyrrolidin	C ₂₁ H ₂₃ N	293.5	293 (12) [M ⁺], 223 (30) [M ⁺ - C ₆ H ₅ N] ⁻ , 207 (100) [M ⁺ - C ₆ H ₁₂ N] ⁻ , 183 (48) [M ⁺ - C ₆ H ₉] ⁻ , 130 (6), 115 (6), 91 (9) [C ₆ H ₅] ⁻ , 77 (9) [C ₆ H ₅] ⁻ .
77 ¹		1-[Bis-(2,6-dimethylphenyl)-methyl]-piperidin	C ₂₁ H ₂₃ N	307.5	307 (16) [M ⁺], 223 (24) [M ⁺ - C ₆ H ₁₀ N] ⁻ , 207 (100) [M ⁺ - C ₆ H ₁₄ N] ⁻ , 202 (42) [M ⁺ - C ₆ H ₉] ⁻ , 192 (14), 178 (4), 131 (4), 117 (5), 91 (7) [C ₆ H ₅] ⁻ , 77 (7) [C ₆ H ₅] ⁻ .
78 ¹		1-[Bis-(2,6-dimethylphenyl)-methyl]-morpholin	C ₂₁ H ₂₃ NO	309.5	309 (12) [M ⁺], 223 (39) [M ⁺ - C ₆ H ₅ NO] ⁻ , 207 (100) [M ⁺ - C ₆ H ₁₂ NO] ⁻ , 204 (28) [M ⁺ - C ₆ H ₉] ⁻ , 192 (13), 178 (3), 165 (4), 131 (4), 117 (4), 91 (5) [C ₆ H ₅] ⁻ , 77 (5) [C ₆ H ₅] ⁻ , 65 (2) [C ₆ H ₅] ⁻ , 56 (4).
79 ³		[Bis-(2,6-dimethylphenyl)-methyl]-methyl-phenyl-amin	C ₂₁ H ₂₃ N	329.5	240 (3), 223 (100) [M ⁺ - C ₆ H ₄ N] ⁻ , 207 (27) [M ⁺ - C ₆ H ₁₂ N] ⁻ , 192 (7), 178 (2), 165 (2), 152 (1), 133 (48), 119 (11), 105 (16) [C ₆ H ₉] ⁻ , 91 (89) [C ₆ H ₅] ⁻ , 77 (3) [C ₆ H ₅] ⁻ , 65 (1) [C ₆ H ₅] ⁻ .

Nr. ³	Struktur	Name	Summen-formel	Mol. gew.	Massenspektrum
80 ³		Dimethyl-[3-methyl-1-(2-methyl-2-phenyl-propyl)-3-phenyl-butyl]-amin	C ₂₅ H ₃₃ N	323.5	324 (4) [M ⁺ + H], 190 (100) [M ⁺ - C ₁₀ H ₁₃], 119 (44) [C ₉ C ₁₁] ⁻ , 91 (13) [C ₆ H ₇] ⁻ , 77 (2) [C ₆ H ₅] ⁻ , 72 (23), 56 (2).
81 ³		Diethyl-[3-methyl-1-(2-methyl-2-phenyl-propyl)-3-phenyl-butyl]-amin	C ₂₇ H ₃₇ N	351.6	218 (100) [M ⁺ - C ₁₀ H ₁₃], 119 (36) [C ₉ H ₁₁] ⁻ , 100 (29) [C ₆ H ₁₄ N] ⁻ , 91 (15) [C ₆ H ₇] ⁻ , 77 (2) [C ₆ H ₅] ⁻ , 65 (1) [C ₆ H ₃] ⁻ , 56 (2).
82 ³		1-[3-Methyl-1-(2-methyl-2-phenyl-propyl)-3-phenyl-butyl]-pyrrolidin	C ₂₅ H ₃₅ N	349.6	349 (1) [M ⁺], 216 (100) [M ⁺ - C ₁₀ H ₁₃], 119 (39) [C ₉ H ₁₁] ⁻ , 98 (38), 91 (27) [C ₆ H ₇] ⁻ , 77 (4) [C ₆ H ₅] ⁻ , 65 (2) [C ₆ H ₃] ⁻ .
83 ³		1-[3-Methyl-1-(2-methyl-2-phenyl-propyl)-3-phenyl-butyl]-piperidin	C ₂₆ H ₃₇ N	363.6	364 (1) [M ⁺ + H], 230 (100) [M ⁺ - C ₁₀ H ₁₃], 119 (31) [C ₉ H ₁₁] ⁻ , 112 (32) [C ₆ H ₁₄ N] ⁻ , 91 (19) [C ₆ H ₇] ⁻ , 77 (2) [C ₆ H ₅] ⁻ , 65 (1) [C ₆ H ₃] ⁻ .
84 ³		4-[3-Methyl-1-(2-methyl-2-phenyl-propyl)-3-phenyl-butyl]-morpholin	C ₂₇ H ₃₅ NO	365.6	366 (1) [M ⁺ + H], 232 (100) [M ⁺ - C ₁₀ H ₁₃], 119 (62) [C ₉ H ₁₁] ⁻ , 114 (19), 91 (31) [C ₆ H ₇] ⁻ , 77 (4) [C ₆ H ₅] ⁻ , 65 (2) [C ₆ H ₃] ⁻ .
85 ²		Methyl-[3-methyl-1-(2-methyl-2-phenyl-propyl)-3-phenyl-butyl]-phenyl-amin	C ₂₈ H ₃₅ N	385.6	385 (11) [M ⁺], 252 (100) [M ⁺ - C ₁₀ H ₁₃], 134 (22), 119 (64) [C ₉ H ₁₁] ⁻ , 91 (30) [C ₆ H ₇] ⁻ , 77 (8) [C ₆ H ₅] ⁻ , 65 (3) [C ₆ H ₃] ⁻ .
86 ³		Diethyl-(3-phenyl-1-phenylethyynyl-prop-2-ynyl)-amin	C ₂₁ H ₂₁ N	287.4	287 (30) [M ⁺], 272 (37) [M ⁺ - CH ₃], 258 (69) [M ⁺ - C ₂ H ₅], 230 (7), 215 (100) [M ⁺ - C ₆ H ₁₀ N], 186 (29) [M ⁺ - C ₆ H ₅], 128 (6), 115 (5), 104 (5), 91 (2) [C ₆ H ₇] ⁻ , 77 (4) [C ₆ H ₅] ⁻ , 63 (6), 56 (6).

Nr. ^a	Struktur	Name	Summen-formel	Mol gew.	Massenspektrum
87 ³		1-(3-Phenyl-1-phenylethynyl)-prop-2-ynyl-piperidin	C ₂₂ H ₂₁ N	299.4	298 (100) [M ⁺ - H], 284 (2) [M ⁺ - CH ₃], 270 (9) [M ⁺ - C ₂ H ₅], 256 (10) [M ⁺ - C ₃ H ₇], 215 (19) [M ⁺ - C ₆ H ₁₀ N], 198 (15) [M ⁺ - C ₆ H ₅], 163 (1), 141 (1), 115 (3), 84 (2) [C ₆ H ₁₀].
88 ²		(4,4'-Bis(dimethylamino)-benzhydryl)-diisobutyl-amin	C ₂₅ H ₃₉ N ₃	381.6	254 (100) [M ⁺ - C ₈ H ₁₇ N], 237 (12) [M ⁺ - C ₆ H ₁₃ N], 210 (24), 194 (4), 165 (4), 134 (10), 118 (9), 91 (6) [C ₆ H ₅], 77 (3) [C ₆ H ₅], 65 (5) [C ₆ H ₅].
89 ²		(Di-naphthalen-1-yl-methyl)-diethyl-amin	C ₂₂ H ₂₃ N	339.5	339 (20) [M ⁺], 267 (100) [M ⁺ - C ₁₀ H ₁₀ N], 252 (15), 212 (11) [M ⁺ - C ₁₀ H ₇], 181 (2), 152 (3), 127 (9) [C ₁₀ H ₇], 115 (4), 89 (2), 72 (32) [C ₆ H ₁₀ N ⁺], 56 (7).
90 ¹		[Bis-(3-amino-phenyl)-methyl]-dimethyl-amin	C ₁₅ H ₁₉ N ₃	241.3	242 (60) [M ⁺ + H], 197 (100) [M ⁺ - C ₆ H ₅ N], 180 (31) [M ⁺ - C ₆ H ₅ N ₃], 149 (32) [M ⁺ - C ₆ H ₅ N], 132 (9), 117 (5), 106 (4), 91 (5) [C ₆ H ₅], 77 (6) [C ₆ H ₅], 65 (11) [C ₆ H ₅].
91 ¹		[Bis-(3-amino-phenyl)-methyl]-diethyl-amin	C ₁₇ H ₂₃ N ₃	269.4	270 (11) [M ⁺], 197 (100) [M ⁺ - C ₆ H ₁₀ N], 177 (42) [M ⁺ - C ₆ H ₅ N], 106 (5), 72 (34) [C ₆ H ₁₀ N ⁺], 58 (6).
92 ¹		1-[Bis-(3-amino-phenyl)-methyl]-piperidin	C ₁₉ H ₂₁ N ₃	281.4	282 (51) [M ⁺ + H], 258 (1), 198 (100) [M ⁺ - C ₆ H ₅ N], 189 (71), 180 (21) [M ⁺ - C ₆ H ₁₃ N ₂], 168 (3), 153 (5), 130 (6), 106 (19), 84 (68) [C ₆ H ₁₀ N ⁺], 56 (5).
93 ¹		4-[Bis-(3-amino-phenyl)-methyl]-morpholin	C ₂₁ H ₂₁ N ₃ O	283.4	284 (2) [M ⁺ + H], 197 (100) [M ⁺ - C ₆ H ₅ NO], 191 (16) [M ⁺ - C ₆ H ₅ N], 180 (20) [M ⁺ - C ₆ H ₁₁ N ₂ O], 152 (2), 130 (2), 106 (3), 86 (5) [C ₆ H ₅ NO ⁺], 65 (3), 56 (5).
94 ³		Diisobutylstyryl-amin	C ₁₈ H ₂₃ N	231.4	231 (100) [M ⁺], 188 (29) [M ⁺ - C ₆ H ₅], 146 (4), 132 (6), 130 (6), 57 (3).
95 ³		(1-Benzyl-propyl)-diethyl-amin	C ₁₄ H ₂₃ N	205.4	206 (3) [M ⁺ + H], 176 (6) [M ⁺ - C ₆ H ₅], 148 (1), 114 (100) [M ⁺ - C ₆ H ₇], 91 (8) [C ₆ H ₇], 86 (9).

Nr. ^a	Struktur	Name	Summen-formel	Mol. gew.	Massenspektrum
96 ³		4-(1-Benzyl-propyl)-morpholin	C ₁₂ H ₁₅ N	219.3	220 (10) [M ⁺ + H], 190 (4) [M ⁺ - C ₆ H ₅], 128 (100) [M ⁺ - C ₆ H ₅], 91 (8) [C ₆ H ₅], 84 (4), 65 (3), 56 (3).
97 ³		1-(Cyclopentyl-phenyl-methyl)-piperidin	C ₁₄ H ₂₁ N	243.4	244 (7) [M ⁺ + H], 174 (100) [M ⁺ - C ₆ H ₅], 117 (2), 91 (7) [C ₆ H ₅], 69 (1).
98 ³		1-(1-Cyclopentyl-2-phenyl-ethyl)-piperidin	C ₁₈ H ₂₁ N	257.4	258 (4) [M ⁺], 188 (17) [M ⁺ - C ₆ H ₅], 166 (100) [M ⁺ - C ₆ H ₅], 124 (2), 98 (8), 56 (1).
99 ³		Diethyl-(1-phenyl-heptyl)-amin	C ₁₇ H ₂₉ N	247.3	248 (23) [M ⁺ + H], 170 (3) [M ⁺ - C ₆ H ₅], 162 (100) [M ⁺ - C ₆ H ₅], 134 (4), 105 (2), 91 (5) [C ₆ H ₅], 77 (1) [C ₆ H ₅] ⁺ , 56 (2).
100 ³		1-(1-Phenyl-heptyl)-piperidin	C ₁₈ H ₂₉ N	259.4	260 (5) [M ⁺ + H], 174 (100) [M ⁺ - C ₆ H ₅], 145 (1), 118 (1), 91 (2) [C ₆ H ₅], 69 (1), 56 (1).
101 ³		4-(1-Phenyl-heptyl)-morpholin	C ₁₂ H ₂₁ NO	261.4	262 (1) [M ⁺ + H], 184 (2) [M ⁺ - C ₆ H ₅], 176 (100) [M ⁺ - C ₆ H ₅], 132 (1), 117 (2), 105 (9), 91 (12) [C ₆ H ₅], 77 (2) [C ₆ H ₅] ⁺ , 65 (1) [C ₆ H ₅] ⁺ , 56 (2).
102 ²		Diethyl-[1-(4-fluoro-phenyl)-ethyl]-amin	C ₁₂ H ₁₉ FN	195.3	196 (21) [M ⁺ +H], 180 (100) [M ⁺ - CH ₃], 152 (6), 123 (42) [M ⁺ - C ₆ H ₁₀ N], 109 (3), 103 (21) [M ⁺ - C ₆ H ₁₁ FNO], 77 (5) [C ₆ H ₅] ⁺ , 58 (7).
103 ³		1-[1-(4-Fluoro-phenyl)-ethyl]-piperidin	C ₁₃ H ₁₉ FN	207.3	208 (20) [M ⁺ +H], 192 (100) [M ⁺ - CH ₃], 123 (11) [M ⁺ - C ₆ H ₁₀ N], 112 (9) [M ⁺ - C ₆ H ₁₁ F], 109 (10), 103 (13) [M ⁺ - C ₆ H ₁₁ FN].
104 ²		4-[1-(4-Fluoro-phenyl)-ethyl]-morpholin	C ₁₂ H ₁₆ FNO	209.3	210 (8) [M ⁺ + H], 194 (100) [M ⁺ - CH ₃], 123 (34) [M ⁺ - C ₆ H ₁₀ NO], 114 (6) [M ⁺ - C ₆ H ₁₁ F], 109 (7), 103 (25) [M ⁺ - C ₆ H ₁₁ FNO], 56 (9), 77 (6) [C ₆ H ₅] ⁺ .
105 ²		Diphenyl-(1-phenyl-ethyl)-amin	C ₂₀ H ₁₉ N	273.4	273 (100) [M ⁺], 258 (10) [M ⁺ - CH ₃], 197 (16) [M ⁺ - C ₆ H ₄], 184 (6), 169 (65) [C ₁₂ H ₁₉ N] ⁺ , 139 (3), 115 (4), 105 (55), 77 (35) [C ₆ H ₅] ⁺ , 63 (6), 51 (28).

^a 1: Aufreinigung nach Methode 1. - 2: Aufreinigung nach Methode 2. - 3: Aufreinigung nach Methode 3. - 4: Aufreinigung nach Methode 4. - A: 3mol% Ti(OtPr)₄. - B: 100mol% Ti(OtPr)₄.

Beispiel 154 bis 156**Herstellung einer kombinatorischen Bibliothek**

5 Mit folgender allgemeiner Vorschrift wurden verschiedene Bibliotheken dargestellt:
Die in den folgenden Tabellen 7 bis 9 gezeigten Amide werden in THF unter Argon mit dem Katalysator (z.B. $Ti(OiPr)_4$) und dem Cokatalysator (z.B. $(CH_3)_3SiCl$) vorgelegt. Darauf werden möglichst gleichzeitig die verschiedenen Grignardreagenzien zugegeben. Das Gemisch wird weiter gerührt und wie oben beschrieben aufgearbeitet. Die Synthesebedingungen entspricht den oben beschriebenen Einzelsynthesen, nur dass mehrere Amide vorgelegt werden und mehrere verschiedene Grignardreagenzien möglichst gleichzeitig zugegeben werden. Die Stoffmengen wurden dabei so gewählt werden,
10 dass die Addition aller Amide der molaren Menge der Addition aller Grignardreagenzien entspricht. So ist gewährleistet, dass alle denkbaren Produkte erhalten werden können. Die Ergebnisse werden in den Tabellen 7 bis 9 gezeigt.

15

20

25

30

35

TABELLE 7

mögliche Produkte:

23.4 %

8.8 %

6.4 % F

3.8 %

4.0 %

2.2 %

TABELLE 8

nögliche Produkte

Tabelle 9

mögliche Produkte:

7,5 %

8,9 %

6,2 %

7,0 %

5,6 %

9,1 %

Patentansprüche

1. Kombinatorische Bibliothek umfassend mindestens zwei verschiedenen substituierte Amine der allgemeinen Formeln (I)

5

10

worin

R^1 und R^2 gleich oder verschieden sein können und unabhängig von einander

H oder A,

verzweigtes oder unverzweigtes Alkenyl mit C_1 bis C_{10} ,

15

verzweigtes oder unverzweigtes Alkinyl mit C_1 bis C_{10} ,

Aryl mit C_6 bis C_{20} ,

20

ein- oder mehrfach durch A, NO_2 , F, Cl, Br, CF_3 , NH_2 , NHA, NA_2 , OH, OA, substituiertes Aryl

Aralkyl mit C_7 bis C_{20} , gegebenenfalls ein- oder mehrfach durch A, NO_2 , F, Cl, Br, NH_2 , NHA, NA_2 , OH, OA substituiert

25

Aralkenyl, mit den für Aryl und Alkenyl gegebenen Bedeutungen, Aralkinyl, mit den für Aryl und Alkinyl gegebenen Bedeutungen

Aryloxy,

Arylthio, Arylsulfinyl, Arylsulfonyl, Aralkoxy, Aralkylthio, Aralkylsulfinyl, Aralkylsulfonyl,

25

oder

R^1 , R^2 gemeinsam

Cycloalkyrling mit C_2 bis C_8 , der gegebenenfalls neben N ein weiteres Heteroatom aus der Gruppe N, O und S aufweist, und gegebenenfalls ein- oder mehrfach durch Hal oder C_1 - bis C_3 -alkyl substituiert ist,

30

Methyl- oder Ethyl-substituierter Cycloalkyrling mit C_4 bis C_{10} ,

der gegebenenfalls neben N ein weiteres Heteroatom aus der Gruppe N, O und S aufweist, und gegebenenfalls

35

ein- oder mehrfach durch Hal oder C_1 - bis C_3 -alkyl substituiert ist,

ein- oder mehrfach ungesättigter Cycloalkyrling mit C_3 bis C_8 ,

der gegebenenfalls neben N ein weiteres Heteroatom aus der

Gruppe N, O und S aufweist, und gegebenenfalls ein- oder mehrfach durch Hal oder C₁- bis C₃-alkyl substituiert ist

5 R³ H, Methyl, ein- bis dreifach durch F substituiertes Methyl,

10 R⁴ und R⁵ gleich oder verschieden und unabhängig voneinander
H, A,
verzweigtes oder unverzweigtes Alkenyl mit C₁ bis C₁₀, gegebenenfalls ein- oder mehrfach durch Hal substituiert
verzweigtes oder unverzweigtes Alkinyl mit C₁ bis C₁₀, gegebenenfalls ein- oder mehrfach durch Hal substituiert,
wobei sowohl A, Alkenyl als auch Alkinyl durch
C₁- bis C₆-Alkoxy, C₂- bis C₆-Alkenyloxy, C₂- bis C₆-Alkinyloxy, ein- oder mehrfach durch Hal, C₁- bis C₆-Alkylthio,
C₁- bis C₆-Alkylsulfinyl, C₁- bis C₆-Alkylsulfonyl, Cyano, NO₂,
C₁- bis C₆-Alkylamino, C₁- bis C₆-Alkoxyamino, Di(C₁- bis C₃-alkyl)-Amino, N-(C₁- bis C₃-alkyl)-N-(C₁- bis C₃-alkoxy)-amino, N(C₁-bis C₆-alkylsulfonyl)-N-(C₁-bis C₆-alkyl)amino
N(C₁-bis C₆-alkylsulfonyl)-N-(C₁-bis C₆-alkoxy)amino,
Tri-C₁- bis C₆-alkylsilyl Triarylsilyl substituiert sein kann,
20 Aryl mit C₆ bis C₂₀,
ein- oder mehrfach durch A, NO₂, F, Cl, Br, CF₃, NH₂, NHA, NA₂, OH, OA, substituiertes Aryl
Aralkyl mit C₇ bis C₂₀, gegebenenfalls ein- oder mehrfach durch
25 A, NO₂, F, Cl, Br, NH₂, NHA, NA₂, OH, OA substituiert
Aralkenyl, mit den für Aryl und Alkenyl gegebenen Bedeutungen,
Aralkinyl, mit den für Aryl und Alkinyl gegebenen Bedeutungen
Aryloxy,
Arylthio, Arylsulfinyl, Arylsulfonyl, Aralkoxy, Aralkylthio, Aralkylsulfinyl, Aralkylsulfonyl,
30 oder einer der Reste R⁴ oder R⁵ Bindung in einer Doppelbindung,
mit der Maßgabe, daß mindestens einer der beiden Reste R⁴ oder R⁵ eine Arylgruppe enthält,
wobei

35

A verzweigtes oder unverzweigtes Akyl mit C₁ bis C₁₀, gegebenenfalls ein- oder mehrfach durch Hal, NO₂, NH₂, NH-(C₁-C₆-alkyl), N(C₁-C₆-alkyl)₂, OH, O-(C₁-C₆-alkyl), C₁-C₆-alkyl-thio, C₁-C₆-alkyl-sulfinyl, C₁-C₆-alkyl-sulfonyl, CN, NH-(C₁-C₆-alkoxy), N-(C₁-C₃-alkyl)-N-(C₁-C₃-alkoxy)amino, N-(C₁-C₆-alkylsulfonyl)-N-(C₁-C₆-alkyl)amino, N-(C₁-C₆-alkylsulfonyl)-N-(C₁-C₆-alkoxy)amino, Tri- C₁-C₆-alkylsilyl, Triarylsilyl substituiert,

5 Cycloalkyl mit C₃ bis C₈, gegebenenfalls ein- oder mehrfach durch Hal substituiert, Methyl- oder Ethyl-substituiertes Cycloalkyl mit C₄ bis C₁₀, ein- oder mehrfach ungesättigtes Cycloalkyl mit C₃ bis C₈

10 Aryl bzw. Ar gegebenenfalls ein oder mehrfach durch die bei A gegebenen Substituenten substituiertes Phenyl, Naphthyl, Phenanthryl, Anthryl, Indyl, Fluorenyl, Pyridyl, Pyrrolidinyl oder Indolyl, und

15 20 Hal F, Cl, Br, I bedeuten, oder deren Salze.

2. Kombinatorische Bibliothek umfassend mindestens zwei verschiedenen substituierte Amine gemäß Anspruch 1, worin R³ für Wasserstoff oder Methyl steht.

25 30 3. Kombinatorische Bibliothek umfassend mindestens zwei verschiedenen substituierte Amine gemäß Anspruch 1 oder 2, worin jeweils R⁴ und R⁵ verschieden sind, mit der Maßgabe, daß mindestens einer der beiden Reste R⁴ oder R⁵ eine Arylgruppe enthält.

35 4. Kombinatorische Bibliothek umfassend zwei bis 100 verschiedenen substituierte Amine gemäß der Ansprüche 1 bis 3, wobei R¹ und R² gleich sind und R³ H, Methyl, ein- bis dreifach durch F substituiertes Methyl,

R⁴ H, A,
verzweigtes oder unverzweigtes Alkenyl mit C₁ bis C₁₀, gegebenenfalls ein- oder mehrfach durch Hal substituiert
verzweigtes oder unverzweigtes Alkinyl mit C₁ bis C₁₀, gegebenenfalls ein- oder mehrfach durch Hal substituiert,
wobei sowohl A, Alkenyl als auch Alkinyl durch
C₁- bis C₆-Alkoxy, C₂- bis C₆-Alkenyloxy, C₂- bis C₆-Alkinyl-,
oxy, ein- oder mehrfach durch Hal, C₁- bis C₆-Alkylothio,
C₁- bis C₆-Alkylsulfinyl, C₁- bis C₆-Alkylsulfonyl, Cyano, NO₂,
C₁- bis C₆-Alkylamino, C₁- bis C₆-Alkoxyamino, Di(C₁- bis
C₃-alkyl)-Amino, N-(C₁- bis C₃-alkyl)-N-(C₁- bis C₃-alkoxy)-
amino, N(C₁-bis C₆-alkylsulfonyl)-N-(C₁-bis C₆-alkyl)amino
N(C₁-bis C₆-alkylsulfonyl)-N-(C₁-bis C₆-alkoxy)amino,
Tri-C₁- bis C₆-alkylsilyl Triarylsilyl substituiert sein kann
und

R⁵ Aryl mit C₆ bis C₂₀,
ein- oder mehrfach durch A, NO₂, F, Cl, Br, CF₃, NH₂, NHA,
NA₂, OH, OA, substituiertes Aryl
bedeuten.

5. Kombinatorische Bibliothek umfassend zwei bis 100 verschieden substituierte Amine gemäß der Ansprüche 1 bis 3,
wobei
R¹ und R² gemeinsam ein
Cycloalkyrring mit C₂ bis C₈ ist, der gegebenenfalls neben N
ein weiteres Heteroatom aus der Gruppe N, O und S aufweist,
und gegebenenfalls ein- oder mehrfach durch Hal oder C₁- bis
C₃- alkyl substituiert ist,
Methyl- oder Ethyl-substituierter Cycloalkyrring mit C₄ bis C₁₀
ist, der gegebenenfalls neben N ein weiteres Heteroatom aus
der Gruppe N, O und S aufweist, und gegebenenfalls ein- oder
mehrfach durch Hal oder C₁- bis C₃-alkyl substituiert ist,
ein- oder mehrfach ungesättigter Cycloalkyrring mit C₃ bis C₈
ist, der gegebenenfalls neben N ein weiteres Heteroatom aus
der Gruppe N, O und S aufweist, und gegebenenfalls ein- oder
mehrfach durch Hal oder C₁- bis C₃-alkyl substituiert ist,

und

R^3 , R^4 und R^5 die in Anspruch 4 gegebenen Bedeutungen haben.

5 6. Kombinatorische Bibliothek umfassend zwei bis 100 verschieden
 substituierte Amine gemäß der Ansprüche 1 bis 3,
 wobei

R^1 H oder A,

verzweigtes oder unverzweigtes Alkenyl mit C₁ bis C₁₀,

verzweigtes oder unverzweigtes Alkinyl mit C₁ bis C₁₀,

10 R^2 Aryl mit C₆ bis C₂₀,
 ein- oder mehrfach durch A, NO₂, F, Cl, Br, CF₃, NH₂, NHA,
 NA₂, OH, OA substituiertes Aryl

bedeuten

und

15 R^3 , R^4 und R^5 die in Anspruch 4 gegebenen Bedeutungen haben.

7. Kombinatorische Bibliothek umfassend zwei bis 100 verschieden
 substituierte Amine gemäß der Ansprüche 1 bis 3,

wobei

R^1 H oder A,

verzweigtes oder unverzweigtes Alkenyl mit C₁ bis C₁₀,

verzweigtes oder unverzweigtes Alkinyl mit C₁ bis C₁₀,

20 R^2 Aralkyl mit C₇ bis C₂₀, gegebenenfalls ein- oder mehrfach
 durch A, NO₂, F, Cl, Br, NH₂, NHA, NA₂, OH, OA substituiert
 Aralkenyl, mit den für Aryl und Alkenyl gegebenen Bedeu-
 tungen, Aralkinyl, mit den für Aryl und Alkinyl gegebenen Be-
 deutungen

Aryloxy,

Arylthio, Arylsulfinyl, Arylsulfonyl, Aralkoxy, Aralkylthio,

Aralkylsulfinyl, Aralkylsulfonyl,

30 bedeuten

und

R^3 , R^4 und R^5 die in Anspruch 4 gegebenen Bedeutungen haben.

8. Kombinatorische Bibliothek umfassend zwei bis 100 verschieden
 substituierte Amine gemäß der Ansprüche 1 bis 3,

35 wobei

R^1 Aryl mit C₆ bis C₂₀,

ein- oder mehrfach durch A, NO₂, F, Cl, Br, CF₃, NH₂, NHA, NA₂, OH, OA substituiertes Aryl,
R² Aralkyl mit C₇ bis C₂₀, gegebenenfalls ein- oder mehrfach
durch A, NO₂, F, Cl, Br, NH₂, NHA, NA₂, OH, OA substituiert
5 Aralkenyl, mit den für Aryl und Alkenyl gegebenen Bedeutungen, Aralkinyl, mit den für Aryl und Alkinyll gegebenen Bedeutungen
Aryloxy,
Arylthio, Arylsulfinyl, Arylsulfonyl, Aralkoxy, Aralkylthio,
10 Aralkylsulfinyl, Aralkylsulfonyl,
bedeuten
und
R³, R⁴ und R⁵ die in Anspruch 4 gegebenen Bedeutungen haben.

15 9. Kombinatorische Bibliothek umfassend zwei bis 100 verschiedenen substituierte Amine gemäß der Ansprüche 1 bis 3,
wobei
R¹ Aralkyl mit C₇ bis C₂₀, gegebenenfalls ein- oder mehrfach
durch A, NO₂, F, Cl, Br, NH₂, NHA, NA₂, OH, OA substituiert
20 Aralkenyl, mit den für Aryl und Alkenyl gegebenen Bedeutungen, Aralkinyl, mit den für Aryl und Alkinyll gegebenen Bedeutungen
R² Aryloxy, Arylthio, Arylsulfinyl, Arylsulfonyl, Aralkoxy, Aralkylthio,
Aralkylsulfinyl, Aralkylsulfonyl,
25 bedeuten
und
R³, R⁴ und R⁵ die in Anspruch 4 gegebenen Bedeutungen haben.

30 10. Kombinatorische Bibliothek umfassend zwei bis 100 verschiedenen substituierte Amine gemäß der Ansprüche 1 bis 3,
wobei die Reste R¹ und R² die in den Ansprüchen 4 bis 9 gegebenen Bedeutungen haben und
R⁴ H, A,
verzweigtes oder unverzweigtes Alkenyl mit C₁ bis C₁₀, gegebenenfalls ein- oder mehrfach durch Hal substituiert
35 verzweigtes oder unverzweigtes Alkinyll mit C₁ bis C₁₀, gege-

benenfalls ein- oder mehrfach durch Hal substituiert,
wobei sowohl A, Alkenyl als auch Alkinyl durch
C₁- bis C₆-Alkoxy, C₂- bis C₆-Alkenyloxy, C₂- bis C₆-Alkinyl-,
oxy, ein- oder mehrfach durch Hal, C₁- bis C₆-Alkylthio,
5 C₁- bis C₆-Alkylsulfinyl, C₁- bis C₆-Alkylsulfonyl, Cyano, NO₂,
C₁- bis C₆-Alkylamino, C₁- bis C₆-Alkoxyamino, Di(C₁- bis
C₃-alkyl)-Amino, N-(C₁- bis C₃-alkyl)-N-(C₁- bis C₃-alkoxy)-
amino, N(C₁-bis C₆-alkylsulfonyl)-N-(C₁-bis C₆-alkyl)amino
10 N(C₁-bis C₆-alkylsulfonyl)-N-(C₁-bis C₆-alkoxy)amino,
Tri-C₁- bis C₆-alkylsilyl Triarylsilyl substituiert sein kann
und
R⁵ Aralkyl mit C₇ bis C₂₀, gegebenenfalls ein- oder mehrfach
durch A, NO₂, F, Cl, Br, NH₂, NHA, NA₂, OH, OA substituiert
Aralkenyl, mit den für Aryl und Alkenyl gegebenen Bedeutun-
15 gen, Aralkinyl, mit den für Aryl und Alkinyl gegebenen Be-
deutungen,
Aryloxy, Arylthio, Arylsulfinyl, Arylsulfonyl, Aralkoxy, Aralkylthio,
Aralkylsulfinyl, Aralkylsulfonyl
bedeuten.
20 11. Kombinatorische Bibliothek umfassend zwei bis 100 verschieden
substituierte Amine gemäß der Ansprüche 1 bis 3,
wobei die Reste R¹ und R² die in den Ansprüchen 4 bis 9 gegebenen
Bedeutungen haben und
R⁴ und R⁵
25 Aryl mit C₆ bis C₂₀,
ein- oder mehrfach durch A, NO₂, F, Cl, Br, CF₃, NH₂, NHA,
NA₂, OH, OA substituiertes Aryl
bedeuten.
30 12. Kombinatorische Bibliothek umfassend zwei bis 100 verschieden
substituierte Amine gemäß der Ansprüche 1 bis 3,
wobei die Reste R¹ und R² die in den Ansprüchen 4 bis 9 gegebenen
Bedeutungen haben und
R⁴
35 Aryl mit C₆ bis C₂₀,
ein- oder mehrfach durch A, NO₂, F, Cl, Br, CF₃, NH₂, NHA,

NA₂, OH, OA substituiertes Aryl

und

R⁵ Aralkyl mit C₇ bis C₂₀, gegebenenfalls ein- oder mehrfach durch A, NO₂, F, Cl, Br, NH₂, NHA, NA₂, OH, OA substituiert
5 Aralkenyl, mit den für Aryl und Alkenyl gegebenen Bedeutungen, Aralkinyl, mit den für Aryl und Alkinyl gegebenen Bedeutungen,
Aryloxy, Arylthio, Arylsulfinyl, Arylsulfonyl, Aralkoxy, Aralkylthio,
10 Aralkysulfinyl, Aralkysulfonyl
bedeuten.

13. Kombinatorische Bibliothek umfassend zwei bis 100 verschieden substituierte Amine gemäß der Ansprüche 1 bis 3,
wobei die Reste R¹ und R² die in den Ansprüchen 4 bis 9 gegebenen 15 Bedeutungen haben und
R⁴ und R⁵

Aralkyl mit C₇ bis C₂₀, gegebenenfalls ein- oder mehrfach durch A, NO₂, F, Cl, Br, NH₂, NHA, NA₂, OH, OA substituiert
20 Aralkenyl, mit den für Aryl und Alkenyl gegebenen Bedeutungen, Aralkinyl, mit den für Aryl und Alkinyl gegebenen Bedeutungen,
Aryloxy, Arylthio, Arylsulfinyl, Arylsulfonyl, Aralkoxy, Aralkylthio,
Aralkysulfinyl, Aralkysulfonyl
bedeuten.

25

14. Kombinatorische Bibliothek umfassend zwei bis 100 verschieden substituierte Amine gemäß der Ansprüche 1 bis 3,
wobei R¹ und R² gleich oder verschieden sein können und unabhängig voneinander

30

H, Methyl, Ethyl, Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl,
sek.-Butyl, n-Pentyl, 2-Pentyl, 3-Pentyl, (2-Methyl-)butyl,
(3-Methyl-)butyl, n-Hexyl, 2-Hexyl, 3-Hexyl, (2-Methyl-)pentyl,
(3-Methyl-)pentyl, (4-Methyl-)pentyl, (1-Ethyl-)butyl, (2-Ethyl-)butyl,
1-(3,3-Dimethyl-)butyl, 1-(2,2-Dimethyl-)butyl,

35

Vinyl, 1-Propenyl, Allyl, 1-Butenyl, 2-Butenyl, 3-Butenyl,
Isobutenyl,

Ethinyl,
Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl
Phenyl, Naphthyl, Phenanthryl, Anthryl, Indyl, Fluorenyl, ,
p-Fluorophenyl,
5 Benzyl
2-Pyridyl, Pyrrolidinyl oder Indolyl,
Trimethylsilyl, Trimethylsilylmethyl
oder zusammen mit dem N, an das sie gebunden
10 1-Pyrrolidinyl, 1-Imidazolinyl, 1-Pyrazolinyl, 1- Piperidyl,
1-Piperazinyl, 4-Methylpiperidyl oder 4-Morpholinyl,
4-Thiamorpholinyl,
R³ H, Methyl, ein- bis dreifach durch F substituiertes Methyl,
R⁴ und R⁵ gleich oder verschieden und unabhängig voneinander
15 H, Methyl, Ethyl, Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl,
sek.-Butyl, n-Pentyl, 2-Pentyl, 3-Pentyl, (2-Methyl-)butyl,
(3-Methyl-)butyl, n-Hexyl, 2-Hexyl, 3-Hexyl, (2-Methyl-)pentyl,
(3-Methyl-)pentyl, (4-Methyl-)pentyl, (1-Ethyl-)butyl, (2-Ethyl-)butyl,
1-(3,3-Dimethyl-)butyl, 1-(2,2-Dimethyl-)butyl,
Vinyl, 1-Propenyl, Allyl, 1-Butenyl, 2-Butenyl, 3-Butenyl,
20 Isobutenyl,
Ethinyl,
Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl
Phenyl, Naphthyl, Phenanthryl, Anthryl, Indyl, Fluorenyl, ,
p-Fluorophenyl, 4-Fluoro-3-methyl-phenyl, p-Chlorphenyl, p-
25 Methoxyphenyl, 2,6-Dimethylphenyl, 2-Methyl-2-phenyl-propyl,
1-Phenylethynyl, 4-Dimethylaminophenyl, 3-Aminophenyl,
Benzyl
2-Pyridyl, Pyrrolidinyl oder Indolyl,
Trimethylsilyl, Trimethylsilylmethyl
30 oder
R⁴ und R⁵ zusammen Styryl
bedeuten.

35 15. Amin nach einem der Ansprüche 1 bis 3, wobei R¹ und R² zusammen
mit dem Stickstoffatom an das sie gebunden sind einen Ring bilden, der

ausgewählt ist aus der Gruppe von 1-Pyrrolidinyl, 1-Imidazolinyl, 1-Pyrazolinyl, 1-Piperidyl, 1-Piperazinyl, 4-Morpholiny, 4-Thiamorpholinyl.

5 16. Amin nach einem der Ansprüche 1 bis 6, wobei mindestens ein Rest aus R⁴ oder R⁵ für eine Arylgruppe,

10 17. Amin nach einem der Ansprüche 1 bis 3, wobei R¹ und R² jeweils einzeln unabhängig voneinander für Methyl, Ethyl, iso-Propyl, n-Butyl, iso-Butyl, Phenyl, Benzyl, 2-Pyridyl oder Trimethylsilyl, oder zusammen mit dem Stickstoffatom an das sie gebunden sind für 1-Pyrrolidinyl, 1-Piperidyl, 4-Methylpiperidyl, oder 4-Morpholinyl stehen.

15 18. Amin nach einem der Ansprüche 1 bis 3, wobei mindestens ein Rest aus R⁴ und R⁵ für Phenyl, Benzyl, p-Tolyl, m-Tolyl, 4-Fluorphenyl, 4-Fluor-3-Methylphenyl, 4-Chlorphenyl, 4-Methoxyphenyl, 2,6-Dimethylphenyl, 2-Methyl-2-phenylethyl, 3-Phenyl-prop-2-ynyl, 4-Dimethylaminophenyl, Naphtalen-1-yl oder 3-Aminophenyl steht.

20 19. Verfahren zur Herstellung einer kombinatorischen Bibliothek umfassend mindestens zwei verschiedene symmetrisch oder gegebenenfalls unsymmetrisch substituierte Amine der allgemeinen Formeln (I)

oder deren physiologisch verträglichen Salze,
indem

mindestens zwei verschiedene Verbindungen der allgemeinen Formel (II)

35 worin

R^1, R^2 gleich oder verschieden sein können und unabhängig voneinander
H, A,
verzweigtes oder unverzweigtes Alkenyl mit C₁ bis C₁₀,
verzweigtes oder unverzweigtes Alkinyl mit C₁ bis C₁₀,

5 Aryl mit C₆ bis C₂₀,
ein- oder mehrfach durch A, NO₂, F, Cl, Br, CF₃, NH₂, NHA, NA₂,
OH, OA, substituiertes Aryl
Aralkyl mit C₇ bis C₂₀, gegebenenfalls ein- oder mehrfach durch
A, NO₂, F, Cl, Br, NH₂, NHA, NA₂, OH, OA substituiert

10 Aralkenyl, mit den für Aryl und Alkenyl gegebenen Bedeutungen,
Aralkinyl, mit den für Aryl und Alkinyl gegebenen Bedeutungen
Aryloxy,
Arylthio, Arylsulfinyl, Arylsulfonyl, Aralkoxy, Aralkylthio, Aralkylsul-
finyl, Aralkylsulfonyl,

15 oder
 R^1, R^2 zusammen
Cycloalkyrling mit C₂ bis C₈, der gegebenenfalls neben N ein
weiteres Heteroatom aus der Gruppe N, O und S aufweist, und
gegebenenfalls ein- oder mehrfach durch Hal oder C₁- bis C₃-alkyl
substituiert ist,

20 Methyl- oder Ethyl-substituierter Cycloalkyrling mit C₄ bis C₁₀,
der gegebenenfalls neben N ein weiteres Heteroatom aus der
Gruppe N, O und S aufweist, und gegebenenfalls
ein- oder mehrfach durch Hal oder C₁- bis C₃-alkyl substituiert ist,
ein- oder mehrfach ungesättigter Cycloalkyrling mit C₃ bis C₈,
der gegebenenfalls neben N ein weiteres Heteroatom aus der
Gruppe N, O und S aufweist, und gegebenenfalls ein- oder
mehrfach durch Hal oder C₁- bis C₃-alkyl substituiert ist

25 A verzweigtes oder unverzweigtes Akyl mit C₁ bis C₁₀, gegebenen-
falls ein- oder mehrfach durch Hal, NO₂, NH₂, NH-(C₁-C₆-alkyl),
N(C₁-C₆-alkyl)₂, OH, O-(C₁-C₆-alkyl), C₁-C₆-alkyl-thio,
C₁-C₆-alkyl-sulfinyl, C₁-C₆-alkyl-sulfonyl, CN, NH-(C₁-C₆-alkoxy),
N-(C₁-C₃-alkyl)-N-(C₁-C₃-alkoxy)amino,
N-(C₁-C₆-alkylsulfonyl)-N-(C₁-C₆-alkyl)amino,
N-(C₁-C₆-alkylsulfonyl)-N-(C₁-C₆-alkoxy)amino,
35 Tri- C₁-C₆-alkylsilyl, Triarylsilyl

5 substituiert,
 Cycloalkyl mit C₃ bis C₈, gegebenenfalls ein- oder mehrfach durch Hal substituiert,
 Methyl- oder Ethyl-substituiertes Cycloalkyl mit C₄ bis C₁₀, ein- oder mehrfach ungesättigtes Cycloalkyl mit C₃ bis C₈
 Aryl bzw. Ar
 gegebenenfalls ein oder mehrfach durch die bei A gegebenen Substituenten substituiert
 Phenyl, Naphthyl, Phenanthryl, Anthryl, Indyl, Fluorenlyl, Pyridyl, Pyrrolidinyl oder Indolyl,
 und
 Hal F, Cl, Br, I
 R³ H, Methyl, ein- bis dreifach durch F substituiertes Methyl bedeuten,
 mit mindestens einer nukleophilen Verbindung der allgemeinen Formel (IIIa)

$$Z—R^4 \quad (\text{IIIa})$$

20 und/oder mindestens einer nukleophilen Verbindung der allgemeinen Formel (IIIb)

$$Z—R^5 \quad (\text{IIIb})$$

25 und/oder mit einer Verbindung der allgemeinen Formel (IVa)

$$R^5TiY_{3-n}(OR^{III})_n \quad (\text{IVa})$$

worin
 30 R⁴ und R⁵ gleich oder verschieden sein können und unabhängig voneinander
 H, A,
 verzweigtes oder unverzweigtes Alkenyl mit C₁ bis C₁₀, gegebenenfalls ein- oder mehrfach durch Hal substituiert
 verzweigtes oder unverzweigtes Alkinyl mit C₁ bis C₁₀, gegebenenfalls ein- oder mehrfach durch Hal substituiert,
 35 wobei sowohl A, Alkenyl als auch Alkinyl durch

C₁- bis C₆-Alkoxy, C₂- bis C₆-Alkenyloxy, C₂- bis C₆-Alkinyl-,
 oxy, ein- oder mehrfach durch Hal, C₁- bis C₆-Alkylthio,
 C₁- bis C₆-Alkylsulfinyl, C₁- bis C₆-Alkylsulfonyl, Cyano, NO₂,
 C₁- bis C₆-Alkylamino, C₁- bis C₆-Alkoxyamino, Di(C₁- bis
 5 C₃-alkyl)-Amino, N-(C₁- bis C₃-alkyl)-N-(C₁- bis C₃-alkoxy)-
 amino, N(C₁-bis C₆-alkylsulfonyl)-N-(C₁-bis C₆-alkyl)amino
 N(C₁-bis C₆-alkylsulfonyl)-N-(C₁-bis C₆-alkoxy)amino,
 Tri-C₁- bis C₆-alkylsilyl Triarylsilyl substituiert sein kann,
 Aryl mit C₆ bis C₂₀,
 10 ein- oder mehrfach durch A, NO₂, F, Cl, Br, CF₃, NH₂, NHA,
 NA₂.OH, OA, substituiertes Aryl
 Aralkyl mit C₇ bis C₂₀, gegebenenfalls ein- oder mehrfach
 durch A, NO₂, F, Cl, Br, NH₂, NHA, NA₂.OH, OA substituiert
 15 Aralkenyl, mit den für Aryl und Alkenyl gegebenen Bedeutun-
 gen, Aralkinyl, mit den für Aryl und Alkinyl gegebenen
 Bedeutungen
 Aryloxy,
 Arylthio, Arylsulfinyl, Arylsulfonyl, Aralkoxy, Aralkylthio, Aral-
 kylsulfinyl, Aralkylsulfonyl, bedeuten,
 20 mit der Maßgabe, daß mindestens einer der beiden Reste R⁴
 oder R⁵ eine Arylgruppe enthält,
 und
 Z Li oder MgX mit
 X Hal und
 25 Hal Cl, Br oder I
 Y F, Cl, Br oder I
 R^{III} Alkyl mit C₁-C₁₀, Aryl mit C₆-C₂₀ oder ein- bis fünffach durch
 Y substituiertes Aryl mit C₆-C₂₀
 und
 30 n 1,2 oder 3
 bedeuten,
 in einem aliphatischen oder aromatischen Kohlenwasserstoff als Lö-
 sungsmittel in Gegenwart einer Titan-, Hafnium- oder
 35 Zirkoniumverbindung und gegebenenfalls in Gegenwart eines Cokataly-
 sators in einer parallelen Reaktion umgesetzt werden, mit der Maßgabe

daß Verbindungen der allgemeinen Formeln (IIIb) und (IVa) nicht gemeinsam in einem Reaktionsgemische eingesetzt werden,
und gegebenenfalls die als Reaktionsprodukte gebildeten Amine aus dem Reaktionsgemisch isoliert und gereinigt werden..

5

20. Verfahren gemäß Anspruch 19, dadurch gekennzeichnet, daß als Organotitanverbindungen Verbindungen der allgemeinen Formel (IVa)

10

eingesetzt werden,

worin

R^{III} iso-Propyl,

R^5 Methyl, Phenyl, Cyclopropyl, p-Fluorophenyl

15

und

$n = 3$

bedeuten.

20

21. Verfahren gemäß Anspruch 19, dadurch gekennzeichnet, daß ein Lösungsmittel ausgewählt aus der Gruppe Toluol, Tetrahydrofuran, n-Hexan, Cyclohexan, Benzol und Diethylether oder ein Gemisch, bestehend aus mindestens zweien dieser Lösungsmittel, verwendet wird.

25

22. Verfahren gemäß Anspruch 19, dadurch gekennzeichnet, daß die Reaktion in Gegenwart eines Metalloxids als Katalysator ausgewählt aus der Gruppe Titanoxid, Hafniumoxid und Zirkoniumdioxid oder einer Organotitanverbindung der allgemeinen Formel (IVb)

worin

30

$n = 1, 2, 3, 4,$

$X = Cl, Br, I$ und

R^V gleich oder verschieden ein C₁-C₁₀-alkyl oder Aryl mit 6 bis 20 C-Atomen

bedeuten,

35

und eines Cokatalysators der allgemeinen Formel (V)

oder der allgemeinen Formel (VI)

5

worin

R^{IV} C₁-C₁₀-alkyl oder Aryl mit 6 bis 20 C-Atomen

X F, Cl, Br, I, CN

Y (CH₂)_n, O, NH, Bindung,

10

m 0, 1

n 1 bis 10,

o 0, 1, 2, 3,

p 0, 1

und

15

q 0, 1

mit der Maßgabe, daß o = 3 und Y ≠ (CH₂)_n, wenn m = 0 bedeuten,

oder der allgemeinen Formel (VII)

20

worin

M' Al, Ca, Na, K, Si, Mg

m 1, 2, 3, 4

bedeuten

bei einer Temperatur von 10 bis 30° C unter einer Inertgasatmosphäre durchgeführt wird,

25

wobei der Katalysator in einer Menge von 0,5 bis 15 mol-% bezogen auf das Edukt der allgemeinen Formel (II) und der Cokatalysator in einer Menge von 0,7 bis 1,2 Äquivalenten bezogen auf das Edukt der allgemeinen Formel (II) verwendet wird..

30

23. Verfahren gemäß Anspruch 22, dadurch gekennzeichnet, daß eine Verbindung ausgewählt aus der Gruppe

NaO*i*-Pr

Mg(O*i*-Pr)₂

35

(CH₃)₃SiCl

(CH₃)₂ClSi(CH₂)₂SiCl(CH₃)₂

(CH₃)₂ClSi(CH₂)₃CN,

[(CH₃)₃Si]₂O,

[(CH₃)₃Si]₂NH und

[(CH₃)₃Si]₂

5 als Cokatalysator verwendet wird.

24. Verfahren gemäß Anspruch 19, dadurch gekennzeichnet, daß Verbindungen der allgemeinen Formeln (IIIa) und (IIIb) jeweils in gleichen Mengen im Überschuß von mindestens 1,05 mol bis 1,5 mol pro 1 mol Edukt der allgemeinen Formel (II) eingesetzt werden,
10 oder wenn (IIIa) und (IIIb) identisch sind in einer Menge von 2,1 bis 3 mol pro 1 mol Edukt der allgemeinen Formel (II) eingesetzt werden.

25. Verwendung eines in einer kombinatorischen Bibliothek gemäß der Ansprüche 1 bis 18 enthaltenen Amins als Zwischenprodukt bei der Herstellung von Wirkstoffen.
15

20

25

30

35