Проект

Перед началом выполнения проекта, необходимо изменить имя вашего ноутбука/ПК на вашу фамилию на английском языке (наприм обязательно выполнить код в ячейках ниже (их 4) (в случае не выполнения, будут вычиляться 5 баллов из проекта). В случае е установлен нужно установить.

```
B [7]:
 1 import os
 2 os.getlogin()
Out[7]:
'Никита'
B [2]:
 1 import socket
 2 socket.gethostbyname(socket.gethostname())
Out[2]:
'26.225.141.103'
B [4]:
 1 !whoami
B [5]:
 1 from datetime import datetime
    current_time = datetime.now()
   print(current_time)
 5 print("Demidovich N.M") # написать здесь свою фамилию и инициалы
2022-12-24 19:07:37.673293
```

Скачайте таблицы в формате .csv из pgadmin и далее считайте данные таблицы.

Предобработка данных и их изучение.

- 1. Выведите по 5 строк с каждой таблицы.
- 2. Введите информацию о каждой таблицы и изучите их (возможно есть какие-то странности. Опишите полученные данные.
- 3. Проверьте данные на пропуски и дубликаты.
- 4. Вычислите сводную (описательную) статистику о данных датафреймов (таблиц) и выведите ее.
- 5. Если в некоторых столбцах нужно изменить данные, измените их и аргументируйте зачем их стоит изменить (например, дата дог datetime64, а не object).

Задания:

Demidovich N.M

- 1. Найдите все параметры ПК, имеющие 8х или 40х CD и цену более 600. Отсортируйте по скорости и цене.
- 2. Для каждого производителя, выпускающего лаптоты с объёмом жесткого диска не менее 10 Гбайт и ОЗУ не менее 64 мб, найти с Выведите производителей и скорость. *Нарисуйте график зависимости скоростей от полученных моделей ноутбуков*.
- 3. Найдите номера моделей, тип и цены всех ноутбуков производителя А. Отсортируйте по убыванию цены. Постройте гистограмму
- 4. Найдите производителя, номер модели и цену среди ноутбуков с наибольшей стоимостью до 1000; *Нарисуйте график зависимо производителей ноутбуков*.
- 5. Найдите для каждой модели ПК их количество и максимальное и минимальное ram, сгруппируйте по моделям; переименуйте ког "max/min_ram";
- 6. Проверьте гипотезу: «Самые дорогие ноутбуки у производителя А». Опишите полученный результат.
- 7. Постройте матрицы корреляции для всех таблиц. Необязательно, но, если будет желание, нарисовать график тепловой карты ма используя функцию heatmap из библиотеки seaborn.
- 8. Нарисуйте график (*не графики, на одном графики должно отображаться всё*) зависимости цены ноутбука/ПК от объёма жестко наблюдения, существует ли какая-то зависимость и т.п.
- 9. Найдите: а. количество товаров каждого типа у каждого производителя; постройте график ріе, на должно отображаться доля каж самый дорогой товар каждого типа, вывести тип и цену; с. производителей, делающих ноутбуки и пк ценой более 600 долларов, і принтеры, вывести производителя.
- 10. Выведите новую цену каждого ноутбука и ПК получив её как модель+цена+гат. Дайте колонке название 'strange sum' ;
- 11. Найти производителей, делающих ноутбуки и ПК, но не принтеры;
- 12. Найдите производителя ПК и модель, чья цена ниже средней цены ноутбука, а гат и скорость больше в 1.5 и 1.2 раза соответств
- 13. Написать общий вывод о полученных результатах (какие важные закономерности были вами обнаружены или получены и т.п.)

```
B [5]:
```

```
import pandas as pd

machine danhыe maGnuyы
data = pd.read_csv('laptop.csv')
```

1. Выведите по 5 строк с каждой таблицы.

B [4]:

```
1 # вывод первых 5 строк фрейма
data.head()
```

Out[4]:

	code	model	speed	ram	hd	price	screen
0	1	1298	350	32	4	700.0	11
1	2	1321	500	64	8	970.0	12
2	3	1750	750	128	12	1200.0	14
3	4	1298	600	64	10	1050.0	15
4	5	1752	750	128	10	1150.0	14

2. Введите информацию о каждой таблицы и изучите их (возможно есть какие-то странности. Опишите полученные данные.

B [10]:

```
1 data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 7 columns):
# Column Non-Null Count Dtype
   code 6 non-null
                             int64
    model
            6 non-null
                             int64
    speed 6 non-null
                             int64
            6 non-null
                             int64
    ram
            6 non-null
    hd
                             int64
    price 6 non-null
                             float64
    screen 6 non-null
                             int64
dtypes: float64(1), int64(6) memory usage: 464.0 bytes
```

- 3. Проверьте данные на пропуски и дубликаты.
- 4. Вычислите сводную (описательную) статистику о данных датафреймов (таблиц) и выведите ее.
- 5. Если в некоторых столбцах нужно изменить данные, измените их и аргументируйте зачем их стоит изменить (например, дата дог datetime64, а не object).

B [11]:

```
1 # проверка на дубли
2 data.duplicated().sum()
```

Out[11]:

0

3. Проверьте данные на пропуски и дубликаты.

B [12]:

```
1 # проверка на пропуски data.isna().sum()
```

Out[12]:

code 0 model 0 speed 0 ram 0 hd 0 price 0 screen 0 dtype: int64

Предобработка данных и их изучение:

Задание №1: Выведите по 5 строк с каждой таблицы

```
B [6]:
 1 laptop = pd.read_csv('laptop.csv')
2 laptop.head()
Out[6]:
   code model speed ram hd
                               price screen
          1298
                 350
                       32
                          4
                               700.0
                                         11
      2
          1321
                 500
                       64
                          8
                               970.0
                                         12
      3
          1750
                 750 128 12 1200.0
                                        14
3
      4
          1298
                 600
                       64 10 1050.0
                                         15
      5
          1752
                 750 128 10 1150.0
                                        14
B [7]:
 1 pc = pd.read_csv('pc.csv')
 2 pc.head()
Out[7]:
   code model speed ram hd cd price
0
          1232
                 500
                       64
                           5 12x
                                  600.0
1
          1260
     10
                 500
                       32 10 12x 350.0
2
     11
          1233
                 900 128 40 40x
                                  980.0
                 800 128 20 50x 970 0
3
     12
          1233
      2
          1121
                 750 128 14 40x 850.0
B [8]:
 1
    printer = pd.read_csv('printer.csv')
    printer.head()
 2
Out[8]:
   code model color
                      type price
0
          1276
                           400.0
      1
                  n Laser
      2
          1433
                       Jet 270.0
2
          1434
                       Jet 290.0
      3
          1401
                  n Matrix 150.0
      5
          1408
                  n Matrix 270.0
B [9]:
    product = pd.read_csv('product.csv')
 product.head()
Out[9]:
   maker model
                  type
0
           1232
                   PC
           1233
1
                   PC
       Α
           1276 Printer
```

Задание №2: Введите информацию о каждой таблицы и изучите их (возможно есть какие-то странности. Опишите полученн

3

1298

Laptop 1401 Printer

```
B [18]:
```

1 laptop.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5 \,
Data columns (total 7 columns):
     Column Non-Null Count Dtvpe
 #
                             int64
a
    code
             6 non-null
 1
    model
            6 non-null
                             int64
 2
     speed 6 non-null
                             int64
 3
    ram
             6 non-null
                             int64
 4
    hd
             6 non-null
                             int64
    price
            6 non-null
                             float64
    screen 6 non-null
                             int64
dtypes: float64(1), int64(6)
memory usage: 464.0 bytes
B [19]:
 1 pc.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 12 entries, 0 to 11 \,
Data columns (total 7 columns):
 # Column Non-Null Count Dtype
0
    code
             12 non-null
                             int64
    model
             12 non-null
                             int64
    speed 12 non-null
                             int64
             12 non-null
                             int64
             12 non-null
                             int64
             12 non-null
    cd
                             object
    price 12 non-null
                             float64
dtypes: float64(1), int64(5), object(1)
memory usage: 800.0+ bytes
B [20]:
 1 printer.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 5 columns):
 # Column Non-Null Count Dtype
             6 non-null
                             int64
    model
           6 non-null
    color 6 non-null
                             object
    type
             6 non-null
                             object
    price 6 non-null
                             float64
dtypes: float64(1), int64(2), object(2)
memory usage: 368.0+ bytes
B [21]:
 1 product.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16 entries, 0 to 15
Data columns (total 3 columns):
# Column Non-Null Count Dtype
             16 non-null
    maker
                             object
    model
             16 non-null
                             int64
             16 non-null
    type
                             object
dtypes: int64(1), object(2)
memory usage: 512.0+ bytes
В таблице laptop - 6 записей, в таблице pc - 12, в таблице printer - 6, в таблице product, содержащей информацию о всей технике из во
```

В таблице laptop - 6 записеи, в таблице рс - 12, в таблице printer - 6, в таблице product, содержащей информацию о всей технике из во количество - 16, в то время как если сложить количество всех записей в 3-х предыдущих таблицах (6+12+6), получится 24. Это связан модели имеют одинаковые характеристики

Задание 3: Проверьте данные на пропуски и дубликаты

```
B [10]:
```

```
duplicated = laptop.duplicated().sum()
isna = laptop.isna().sum()
print(duplicated)
 4 print(isna)
a
code
           0
model
          0
speed
          0
ram
           0
hd
           0
price
           0
screen
          0
dtype: int64
B [9]:
 duplicated = pc.duplicated().sum()
 isna = pc.isna().sum()
print(duplicated)
 4 print(isna)
0
code
         0
model
          0
speed
          0
ram
          0
hd
          0
\mathsf{cd}
price
          0
dtype: int64
B [31]:
 duplicated = printer.duplicated().sum()
 isna = printer.isna().sum()
print(duplicated)
 4 print(isna)
0
code
          0
model
          0
color
          0
type
          0
price
dtype: int64
B [32]:
 duplicated = product.duplicated().sum()
 2 isna = product.isna().sum()
 3 print(duplicated)
 4 print(isna)
0
maker
          0
model
          0
          0
type
dtype: int64
```

Пропуски и дубликаты во всех таблицах отсутствуют

Задание 4: Вычислите сводную (описательную) статистику о данных датафреймов (таблиц) и выведите ее

B [45]

```
1 laptop.describe()
```

Out[45]:

	code	model	speed	ram	hd	price	screen
count	6.000000	6.000000	6.000000	6.000000	6.00000	6.000000	6.000000
mean	3.500000	1452.833333	566.666667	80.000000	9.00000	1003.333333	13.000000
std	1.870829	231.131492	163.299316	39.191836	2.75681	177.951304	1.549193
min	1.000000	1298.000000	350.000000	32.000000	4.00000	700.000000	11.000000
25%	2.250000	1298.000000	462.500000	64.000000	8.50000	955.000000	12.000000
50%	3.500000	1309.500000	550.000000	64.000000	10.00000	1010.000000	13.000000
75%	4.750000	1642.750000	712.500000	112.000000	10.00000	1125.000000	14.000000
max	6.000000	1752.000000	750.000000	128.000000	12.00000	1200.000000	15.000000

B [46]:

```
1 pc.describe()
```

Out[46]:

	code	model	speed	ram	hd	price
count	12.000000	12.000000	12.000000	12.000000	12.000000	12.000000
mean	6.500000	1206.916667	608.333333	88.000000	13.666667	675.000000
std	3.605551	52.397880	153.494645	43.417634	9.670323	261.342687
min	1.000000	1121.000000	450.000000	32.000000	5.000000	350.000000
25%	3.750000	1204.250000	500.000000	56.000000	8.000000	387.500000
50%	6.500000	1232.000000	550.000000	96.000000	10.000000	725.000000
75%	9.250000	1233.000000	750.000000	128.000000	15.500000	875.000000
max	12.000000	1260.000000	900.000000	128.000000	40.000000	980.000000

B [47]:

```
1 printer.describe()
```

Out[47]:

	code	model	price
count	6.000000	6.000000	6.000000
mean	3.500000	1373.333333	296.666667
std	1.870829	72.060160	94.162979
min	1.000000	1276.000000	150.000000
25%	2.250000	1316.250000	270.000000
50%	3.500000	1404.500000	280.000000
75%	4.750000	1426.750000	372.500000
max	6.000000	1434.000000	400.000000

B [48]:

```
1 product.describe()
```

Out[48]:

```
        count
        16.000000

        mean
        1464.500000

        std
        305.022622

        min
        1121.000000

        25%
        1272.000000

        75%
        1361.000000

        max
        2113.000000
```

Задание №5: Если в некоторых столбцах нужно изменить данные, измените их и аргументируйте зачем их стоит изменить (н иметь тип данных datetime64, а не object)

```
B [125]:
```

```
laptop["model"] = laptop["model"].astype(object)
pc["model"] = pc["model"].astype(object)
printer["model"] = printer["model"].astype(object)
product["model"] = product["model"].astype(object)
```

Наименования моделей должны иметь тип object, а не int64. При желании так же можно изменить тип данных в столбцах "price" с floa цена каждого продукта является целочисленным числом

Задания:

Задание №1: Найдите все параметры ПК, имеющие 8х или 40х CD и цену более 600. Отсортируйте по скорости и цене

B [130]:

```
new_pc_1 = pc[pc['cd'] == '8x']
new_pc_2 = pc[pc['cd'] == '40x']
new_pc = pd.concat([new_pc_1, new_pc_2])
new_pc = new_pc.sort_values(['speed', 'price'])
new_pc
```

Out[130]:

	code	model	speed	ram	hd	cd	price
6	4	1121	600	128	14	40x	850.0
7	5	1121	600	128	8	40x	850.0
4	2	1121	750	128	14	40x	850.0
2	11	1233	900	128	40	40x	980.0

Задание №2: Для каждого производителя, выпускающего лаптоты с объёмом жесткого диска не менее 10 Гбайт и ОЗУ не мен скорости таких лаптопов. Выведите производителей и скорость. *Нарисуйте график зависимости скоростей от полученных

B [67]:

```
new_laptop_1 = laptop[laptop['hd'] >= 10]
new_laptop_2 = laptop[laptop['ram'] >= 64]
new_laptop = pd.concat([new_laptop_1, new_laptop_2])
new_laptop = pd.merge(product['maker'], new_laptop['speed'], left_index = True, right_index = True)
new_laptop
```

Out[67]:

	maker	speed
1	Α	500
2	Α	750
2	Α	750
3	Α	600
3	Α	600
4	Α	750
4	Α	750
5	Α	450
5	Α	450

B [2]:

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
```

B [65]:

```
1 plt.plot(new_laptop['speed'])
2 plt.ylabel("Скорость")
3 plt.xlabel("Индекс модели")
4 plt.locator_params(axis = 'x', nbins = 10)
5 plt.show()
```


Задание №3: Найдите номера моделей, тип и цены всех ноутбуков производителя А. Отсортируйте по убыванию цены. Пост изменения цены

```
B [129]:
```

```
new_laptop = pd.merge(laptop, product, how = 'inner')
new_laptop = product[product['maker'] == 'A']
new_laptop = new_lap[['maker', 'model', 'type', 'price']]
new_laptop = new_lap.sort_values('price', ascending = 0)
new_laptop
```

Out[129]:

	model	type	price	maker
5	1752	Laptop	1150.0	Α
1	1298	Laptop	1050.0	Α
2	1298	Laptop	950.0	Α
0	1298	Laptop	700.0	Α

Задание №4: Найдите производителя, номер модели и цену среди ноутбуков с наибольшей стоимостью до 1000; *Нарисуйтє цен от всех производителей ноутбуков

```
B [18]:
```

```
new_laptop = pd.merge(laptop, product, how = 'inner')
new_laptop = new_laptop[new_laptop['price'] < 1000]
new_laptop = new_laptop[new_laptop['price'] == max(new_laptop['price'])]
new_laptop = new_laptop[['maker', 'model', 'price']]
new_laptop</pre>
```

Out[18]:

```
        maker
        model
        price

        3
        C
        1321
        970.0
```

B [120]:

```
1 #6оже как...
```

Задание №5: Найдите для каждой модели ПК их количество и максимальное и минимальное ram, сгруппируйте по моделям; макс. и мин. в "max/min ram"

```
B [123]:
```

```
1  new_pc = pd.merge(pc, product, how = 'inner')
2  new_pc = new_pc[new_pc['ram'] == max(new_pc['ram'])]

B [122]:
1  #6οже κακ...
```

Задание №6: Проверьте гипотезу: «Самые дорогие ноутбуки у производителя А». Опишите полученный результат

B [13]:

```
new_laptop = pd.merge(laptop, product, how = 'inner')
pd.pivot_table(new_laptop, index=['maker'], values = ['price'])
```

Out[13]:

price

Maker A 962.5

- A 962.
- B 1200.0C 970.0

Как мы видим из этой таблицы, самые дорогие ноутбуки у производителя В

Задание №7: Постройте матрицы корреляции для всех таблиц. Необязательно, но, если будет желание, нарисовать график корреляции используя функцию heatmap из библиотеки seaborn

```
B [121]:
```

```
1 #6оже как...
```

Задание №8: Нарисуйте график (*не графики, на одном графики должно отображаться есё*) зависимости цены ноутбука/ПК диска. Опишите ваши наблюдения, существует ли какая-то зависимость и.т.п

B [72]:

```
pc = pc[['hd', 'price']].sort_values('hd')
laptop = laptop[['hd', 'price']].sort_values('hd')
```

B [54]:

1 рс #таблица зависимости цены от объёма жесткого диска ПК

Out[54]:

	hd	price
0	5	600.0
5	5	600.0
7	0	9E0 0

- **10** 8 350.0
- **1** 10 350.0
- **9** 10 400.0
- **11** 10 350.0
- **4** 14 850.0
- **6** 14 850.0
- 3 20 970.08 20 950.0
- **2** 40 980.0

B [55]:

1 laptop #таблица зависимости цены от объёма жесткого диска ноутбука

Out[55]:

	IIu	price
0	4	700.0
1	8	970.0
3	10	1050.0
4	10	1150.0
5	10	950.0
2	12	1200.0

B [73]:

```
plt.plot(pc['hd'], pc['price'])

plt.title("Зависимость цены ПК от объема жесткого диска")

plt.xlabel("Объем жесткого диска")

plt.ylabel("Цена")

plt.show()
```


B [74]:

```
plt.plot(laptop['hd'], laptop['price'])

plt.title("Зависимость цены ноутбука от объёма жесткого диска")

plt.xlabel("Объем жесткого диска")

plt.ylabel("Цена")

plt.show()
```


Как мы видим из графиков, как правило, цена возрастает с увеличением объёма жесткого диска

Задание №9: Найдите:

- а. количество товаров каждого типа у каждого производителя; постройте график pie, на должно отображаться доля каждого b. самый дорогой товар каждого типа, вывести тип и цену;
- с. производителей, делающих ноутбуки и пк ценой более 600 долларов, но которые не производят принтеры, вывести прои

```
B [123]:

1 #6οже κακ...
```

Задание №10: Выведите новую цену каждого ноутбука и ПК получив её как модель+цена+ram. Дайте колонке название 'stran

```
B [36]:

1    new_table = pd.concat([pc, laptop])
    new_table = new_table[['model', 'price', 'ram']]

3    strange_sum = []
    for i in range(len(new_table)):
        strange_sum.append(new_table.iloc[i]['model'] + new_table.iloc[i]['price'] + new_table.iloc[i]['ram'])
    new_table['strange_sum'] = strange_sum
    new_table
```

Out[36]:

	model	price	ram	strange_sum
0	1232	600.0	64	1896.0
1	1260	350.0	32	1642.0
2	1233	980.0	128	2341.0
3	1233	970.0	128	2331.0
4	1121	850.0	128	2099.0
5	1233	600.0	64	1897.0
6	1121	850.0	128	2099.0
7	1121	850.0	128	2099.0
8	1233	950.0	128	2311.0
9	1232	400.0	32	1664.0
10	1232	350.0	64	1646.0
11	1232	350.0	32	1614.0
0	1298	700.0	32	2030.0
1	1321	970.0	64	2355.0
2	1750	1200.0	128	3078.0
3	1298	1050.0	64	2412.0
4	1752	1150.0	128	3030.0
5	1298	950.0	64	2312.0

Задание №11: Найти производителей, делающих ноутбуки и ПК, но не принтеры

```
B [10]:

1 new_product = product[product['type'] != 'Printer']
new_product
3 #а как дальше то блять
```

Out[10]:

	maker	model	type
0	Α	1232	PC
1	Α	1233	PC
3	Α	1298	Laptop
6	Α	1752	Laptop
7	В	1121	PC
8	В	1750	Laptop
9	С	1321	Laptop
12	E	1260	PC
14	E	2112	PC
15	Е	2113	PC
В []:		
1			

localhost:8888/notebooks/ОДиВ/Финальный проект. Демидович.ipynb