Question Number	Scheme	Mark	XS.
1.	$P(\text{Not } 6) = 1 - \frac{1}{6} = \frac{5}{6}$	B1	(1)
	P(6 on third throw) = $\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6} = 0.116$ 3 probabilities multiplied	M1 A1ft	
	$= \frac{25}{216} = 0.1157 (accept 0.116)$	A1	(3)
		(4 m	arks)
2.	Observe real world problem Devise a statistical model and collect data Compare observed against expected outcomes and test the model Refine model if necessary	B1 B1 B1 B1 (4 m	(4) arks)
3. (a)	$P(B \mid A) = Probability of B$, given A has occurred	B1, B1	(2)
(b)	A & B no overlap	B1 B1	(2)
	$P(\text{Amber is late}) = 0.5 \times 0.02$ $= 0.01$	M1 A1 cao	(2)
	complete diagram	M1	
	0.49; 0.01	B1	
	0.49 0.198; 0.002	B1	
	0.27 L A $0.27; 0.03$	B1	(4)
(e)	P $B = 0.010.03$ intersections, three of them added 0.198	M1 A1 cao (12 m	(2) arks)

ft = follow-through mark; cao = correct answer only

1

Question Number		Scheme	Marks	
4.	(a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A2 (-1 eeoo) (3)	
	(b)	$E(X) = (1 \times 0.1) + (2 \times 0.1) + \dots + (8 \times 0.25)$ = 5.2 $E(X^2) = (1^2 \times 0.1) + (2^2 \times 0.1) + \dots + (8^2 \times 0.25)$	M1 A1 M1	
		$= 32.8$ $Var (X) = E(X^2) - \{E(X)\}^2$ $= 32.8 - (5.2)^2 = 5.76 (\$)$	A1 M1 A1 cso (6)	
	(c)	$E(Y) = 2E(X) + 3 = 13.4$ $Var(Y) = 2^{2} Var(X)$ $= 4 \times 5.76 = 23.04$	B1 M1 A1 (3)	
5.	(a)	Bell shaped curve; symmetrical about the mean; 95% of data lies within	(12 marks) B1; B1 (2)	
"	()	2sd of mean; asymptotic etc (any 2).		
	(b)	$P(X < 3500) = 0.01 \Rightarrow \mu - 3500 = 2.3263\sigma$	M1 A1	
		$P(X < 5500) = 0.025 \Rightarrow 5500 - \mu = 1.96\sigma$ solving for μ and σ	A1 M1	
		σ = 466.6028 accept 466.6/467	A1	
		$\mu = 4585.4583 \qquad \text{accept } 4585.5/4590$	A1 (6)	
	(c)	$P(X < 4000) = P\left(Z < \frac{4000 - 4585.4583}{466.6028}\right)$	M1 A1ft	
		= P(Z < -1.25)	A1	
		=0.1056	A1 (4) (12 marks)	
			(12 marks)	

(*) indicates final answer is given on question paper; ft = follow-through mark

Question Number		Scheme	Marks
6.	(a)	Frequency densities – 5, 0, 10, 4, 110, 75, 1.7	B1
		Graph: scales and labels, shape, correct frequency densities	B1, M1, A1
	(b)	$\Sigma fy = 2888.5$ 2888.5	B1 (4)
		Mean weight = $14 + \frac{2888.5}{50 \times 10}$ = 19.777 accept 19.78/19.8	M1 A1
		$S_y = \sqrt{\frac{171503.75}{50} - \left(\frac{2888.5}{50}\right)^2}$	M1
		= 9.62819 awrt 9.63	A1
		Standard deviation of weight = $\frac{9.62819}{10}$ = 0.96219 accept 0.963/0.96	A1ft (6)
•		(NB: Using $n - 1$ gives 0.9725)	
	(c)	$Q_2 = 20.0 + \frac{(25 - 12)}{22} \times 0.2$	M1
		= 20.118 accept $20.1/20.12$	A1 (2)
	(<i>d</i>)	Median – data skewed	B1
		Mean – lower value; fewer complaints	B1 (2) (14 marks)

awrt = anything which rounds to

Question Number	Scheme	Mark	s
7. (a)	$\Sigma t = 169; \ \Sigma c = 357$		
	$S_{cc} = 14245 - \frac{357^2}{10} = 1500.1$	M1 A1	
	$S_{tt} = 168.9, \ S_{ct} = 492.7$	A1, A1	
	$r = \frac{492.7}{\sqrt{1500.1 \times 168.9}}$	M1 A1	
	= 0.97883 accept 0.979	A1	(7)
(b)	Since r close to 1, value supports use of regression line	B1 B1	(2)
(c)	$b = \frac{S_{ct}}{S_{tt}} = \frac{492.7}{168.9} = 2.91711$	B1	
	$a = \bar{c} - b\bar{t} = \frac{357}{10} - \frac{492.7}{168.9} \times \frac{169}{10} = -13.59917$	B1	
	c = -13.6 + 2.92t	B1	(3)
(<i>d</i>)	3 extra ice-creams are sold for every 1 °C increase in temperature	B1	(1)
(e)	$c = -13.6 + 2.92 \times 16 = 33.12$	M1 A1	
	i.e. 33 ice-creams	A1	(3)
(f)	Temperature likely to be outside range of validity	B1	(1)
		(17 ma	arks)