Лекция 10

Ilya Yaroshevskiy

January 12, 2021

Contents

1 Гомотопия путей 1

2 Степенные ряды 3

1 Гомотопия путей

Определение (Гомотопия двух путей). $\gamma_0, \gamma_1: [a,b] \to O \subset \mathbb{R}^m$ — непрерывны $\Gamma: [a,b] \times [0,1]$ - непрерывное, такое что: $\Gamma(\cdot,0) = \gamma_0, \ \Gamma(\cdot,1) = \gamma_1$

• Гомотопия связанная, если $\gamma_0(a)=\gamma_1(a),\ \gamma_0(b)=\gamma_1(b),\ \forall u\in[0,1]\quad \Gamma(a,u)=\gamma_0(a),\ \Gamma(b,u)=\gamma_0(b)$

• Гомотопия петельная $\gamma_0(a)=\gamma_0(b), \gamma_1(a)=\gamma_1(b)$ $\forall u\in [0,1] \quad \Gamma(a,u)=\Gamma(b,u)$

Теорема 1. V - локально потенциальное векторное поле в $O \subset \mathbb{R}^m$ γ_0, γ_1 — связанно гомотопные пути Тогда $\int_{\gamma_0} V_i dx_0 = \int_{\gamma_1} \sum V_i dx_i$

Примечание. То же самое выполнено для петельных гомотопий

Ргооf. $\gamma_u(t):=\Gamma(t,u),\ t\in[a,b]\ u\in[0,1]$ $\Phi(u)=\int_{\gamma_u}\sum V_idx_i$ Проверим: Φ - локально постоянна $\forall u_0\in[0,1]\ \exists W(u_0): \forall u\in W(u_0)\cap[0,1]\ \Phi(u)=\Phi(u_0)$ Γ - непрерывна на $[a,b]\times[0,1]$ - компакт ⇒ Γ - равномерно непрерывна

 $\forall \delta > 0 \ \exists \sigma > 0 \ \forall t, t' \ |t - t'| < \sigma \ \forall u, u' \ |u - u'| < \sigma \ |\Gamma(t, u) - \Gamma(t', u')| < \frac{\delta}{2}$ Лемма $3 \gamma : [a, b] \rightarrow O$ Тогда $\exists \delta > 0$ со свойством Если $\tilde{\gamma}, \tilde{\tilde{\gamma}}$ — близки к γ T.e. $\forall t \in [a, b]$

- $|\tilde{\gamma}(t) \gamma(t)| < \delta$
- $|\tilde{\tilde{\gamma}} \gamma(t)| < \delta$

то $\gamma, \tilde{\gamma}, \tilde{\tilde{\gamma}} - V$ - похожие

Возьмем параметр δ из Леммы 3 для пути γ_{u_0}

Если $|u-u_0|<\sigma$ $|\Gamma(t,u)-\Gamma(t,u_0)|<\frac{\delta}{2},$ при $t\in[a,b],$ т.е. γ_u и γ_{u_0} — похожи по Лемме 3

Построим кусочно гладкий путь
$$\tilde{\gamma}_{u_0}$$
 $\frac{\delta}{4}$ - близкий к γ_{u_0} $\forall t \in [a,b]$ $|\gamma_{u_0}(t) - \tilde{\gamma}_{u_0}| < \frac{\delta}{4}$ и кусочно гладкий путь $\tilde{\gamma}_u$ $\frac{\delta}{4}$ - близкий к γ_u Тогда $\tilde{\gamma}_{u_0}$ и $\tilde{\gamma}_u - \delta$ - близкие к γ_{u_0} \Rightarrow они V - похожие \Rightarrow $\Rightarrow \int_{\gamma_u} \sum V_i dx_i \stackrel{\text{def}}{==} \int_{\tilde{\gamma}_u} \dots \stackrel{\text{def}}{==} \int_{\gamma_{u_0}} \dots$ т.е. $\Phi(u) = \Phi(u_0)$, при $|u - u_0| < \delta$

Определение. Область $O \subset \mathbb{R}^m$ - называется **односвязной** если в ней любой замкнутый путь гомотопен постоянному пути

Примечание. Выпуклая облать — одновязна

Примечание. Гомеоморфный образ однозвязного множества односвязный

 $\Phi:O o O'$ — гомеоморфизм, γ - петля в O', Φ^{-1} — петля в O

 $\Gamma:[a,b]\to [0,1]\to O$ - гомотопия $\Phi^{-1}(\gamma)$ и постоянного пути $\tilde{\gamma}\equiv A$

 $\Phi \circ \Gamma$ — гомотопия γ с постоянным путем $\Phi(A)$

Теорема 2. $O \subset \mathbb{R}^m$ — односвязная область

V — локально потенциальное векторное поле в O

 ${
m Torдa}\ V$ — потенциальное в O

Proof. Теорема. Эквивалентны:

- 1. V потенциальное
- 2. ...
- 3. \forall кусочно гладкой петли $\gamma\colon \int_{\gamma} \sum V_i dx_i = 0$

V - локально постояно, γ_0 — кусочно гладкая петля, тогда γ_0 гомотопна постоянному пути $\gamma_1 \Rightarrow$ $\int_{\gamma_0}=\int_{\gamma_1}=\int_a^b\langle V(\gamma_1|t|),\underbrace{\gamma_1'(t)}\rangle dt=0\Rightarrow V$ — потенциально

Следствие 1. Теорема Пуанкаре верна в односвязной области

Дифференциальный критерий:

$$\frac{\partial V_i}{\partial x_j} = \frac{\partial V_j}{\partial x_j} \tag{1}$$

П

Лемма Пуанкаре: (1) $\Rightarrow V$ — локально потенциально

Теорема 3 (о веревочке).

- $O = \mathbb{R}^2 \setminus \{(0,0)\}$
- $\gamma:[0,2\pi]\to O$ $t \mapsto (\cos t, \sin t)$

Тогда эта петля не стягиваема

 $V(x,y)=(rac{-y}{x^2+y^2},rac{x}{x^2+y^2})$ — векторное поле в \mathbb{R}^2

Проверим что $\frac{\partial V_1}{\partial y} = \frac{\partial V_2}{\partial x}$:

$$\frac{\partial V_1}{\partial y} = \frac{-(x^2 + y^2) + 2y^2}{(x^2 + y^2)^2}, \quad \frac{\partial V_2}{\partial x} = \frac{(x^2 + y^2) - 2x^2}{(x^2 + y^2)^2}$$
(2)

Равенство частных производных выполняется если $(x,y) \neq (0,0) \Rightarrow V$ — локально потенциально При этом

$$\int_{\gamma} \sum V_i dx_i = \int_0^{2\pi} \left(\frac{-\sin t}{\cos^2 t + \sin^2 t} \cdot (-\sin t) + \frac{\cos t}{\cos^2 t + \sin^2 t} \cdot \cos t \right) dt = \int_0^{2\pi} 1 dt = 2\pi$$
 (3)

 $(3)\Rightarrow$ петля не стягиваема(Если бы была стягиваема, то интеграл изначально должен был быть равен 0, т.к. интеграл при гомотопиях не меняется), а поле V — не потенциально

2 Степенные ряды

Теорема 4 (о равномерной сходимости и непрерывности степенного ряда). $\sum a_n(z-z_0)^n \quad 0 < R \le +\infty$

- 1. $\forall r: 0 < r < R$ Ряд сходится равномерно в шаре $\overline{B(z_0,r)}$
- 2. $f(z) = \sum_{n=0}^{+\infty} a_n (z-z_0)^n$ непрерывна в $B(z_0,R)$

Proof.

- 1. Если 0 < r < R, то при $z = z_0 + r$ ряд абсолютно сходится (по теореме о радиусе сходимости), т.е. $\sum |a_n| \cdot r^n$ конечна признак Вейрештрасса:
 - при $|z z_0 \le r|$ $|a_n(z z_0)^n| \le |a_n| \cdot r^n$
 - $\sum |a_n|r^n$ конечна

 \Rightarrow есть равномерная сходимость на $\overline{B(z_0,r)}$

2. Следует из 1. и теоремы Стокса-Зайдля Если z удовлетворяет $|z-z_0| < R \Rightarrow \exists r_0 < R \quad z \in B(z_0,r_0)$ На $B(z_0,r_0)$ есть равномерная сходимость $\Rightarrow f$ — непрерывна в z

Определение. $f: \mathbb{C} \to \mathbb{C}$ Произвдоная:

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \tag{4}$$

Примечание. $f(z_0 + h) = f(z_0) + f'(z_0)h + o(|h|)$

Лемма 1. $w, w_0 \in \mathbb{C}, \ |w| < r, \ |w_0| < r$ Тогда $|w^n - w_0^n| \le n \cdot r^{n-1} \cdot |w - w_0|, \ n \in \mathbb{N}$

Proof.
$$w^n - w_0^n = (w - w_0)(w^{n-1} + \underbrace{w^{n-2}w_0}_{\text{по модулю} \le r^{n-1}} + \dots + w_0^{n-1})$$

Теорема 5 (о дифференцируемости степенного ряды).

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n \quad 0 < R < +\infty \quad f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 (5)

$$\sum_{n=1}^{\infty} na_n (z - z_0)^{n-1} \tag{6}$$

Тогда:

- 1. Радиус сходимости ряда (6) равен R
- 2. $\forall z \in B(z_0, R) \; \exists f'(z) \; \text{и} \; f'(z) = (6)$

Proof.

3

1. По формуле Адамара $R=\frac{1}{\lim \sqrt[n]{a_n}}$ Ряд (6) сходится при каком-то $z\Leftrightarrow \sum na_n(z-z_0)^n$ — сходится Смторим на частичные суммы

$$\frac{1}{\lim \sqrt[n]{na_n}} = \frac{1}{1 \cdot \lim \sqrt[n]{a_n}} = R \tag{7}$$

2. $a \in B(z_0, R)$, $\exists x < R$, $a \in B(z_0, r)$ $a = z_0 + w_0$, $|w_0| < r$ $z = z_0 + w$, |w| < r

$$\frac{f(z) - f(a)}{z - a} = \sum_{n=0}^{+\infty} a_n \cdot \frac{(z - z_0)^n - (a - z_0)^n}{z - a} = \sum_{n=1}^{+\infty} a_n \cdot \frac{w^n - w_0^n}{w - w_0}$$
 (8)

Последнее выражение по модулю по Лемме $\leq n \cdot r^{n-1} \cdot |a_n|$, ряд $\sum n r^{n-1} |a_n|$ — сходится по 1., т.е. ряд (8) равномерно сходится в круге $z \in B(z_0,r)$

$$\lim \frac{f(z) - f(a)}{z - a} = \sum_{n=1}^{+\infty} a_n \cdot \lim \frac{(z - z_0)^n - (a - z_0)^n}{z - a} = \sum n a_n (a - z_0)^{n-1}$$
 (9)