Department of Mathematics

Indian Institute of Technology Bhilai

IC152: Linear Algebra-II Tutorial Sheet 3

1. Show that the following matrix A is Hermitian

$$A = \begin{bmatrix} 3 & 2-i & -3i \\ 2+i & 0 & 1-i \\ 3i & 1+i & 0 \end{bmatrix}.$$

Prove that there exists a unitary matrix U such that A can be written as $A = UDU^{-1}$ for a diagonal matrix D.

Observe that $A^* = A$ and hence A is Hermitian. The chaacteristic polynomial for A is (x+1)(x+2)(x-6). As eigenvalues are distinct, A is diagonalizable. The eigenspaces corresponding to distinct eigenvalues are $E_{-1} = <(-1, 1+2i, 1)^t>$, $E_{-2} = <(1+3i, -2-i, 5)^t>$ and $E_6 = <(1-22i, 6-9i, 13)^t>$. It can be checked that for unitary

A can be written as $A = UDU^{-1}$.

2. Let A be an $n \times n$ complex matrix. Prove that A is Hermitian if and only if X^*AX is real for all vectors X in \mathbb{C}^n .

Assume A is Hermitian, then $(X^*AX)^* = X^*A^*X = X^*AX$ and hence X^*AX is real. Conversely, if X^*AX is real then, $(X^*AX)^* = X^*AX$ which implies, $X^*(A^*-A)X = 0$ which implies $A^* = A$.

3. Find out a real symmetric matrix B and a real skew-symmetric matrix C such that the following matrix A can be written as A = B + iC

$$A = \left[\begin{array}{cc} 2 & 1+i \\ 1-i & 3 \end{array} \right]$$

Can every Hermitian matrix A can be written in a similar fashion?

Every Hermitian matrix A can be written as $A = \frac{A+\bar{A}}{2} + i\frac{A-\bar{A}}{2i}$, where $B = \frac{A+\bar{A}}{2}$ and $C = \frac{A-\bar{A}}{2i}$ are real (as $\bar{B} = B$) symmetric ($B^t = B$) and real ($\bar{C} = C$) skew-symmetric ($C^t = -C$) matrices. For given Hermitian matrix A, we can construct in a similar way.

4. Find out Hermitian matrices B and C such that the following matrix A can be written as A = B + iC

$$A = \left[\begin{array}{cc} i & 2 \\ 2+i & 1-2i \end{array} \right].$$

Generalize it for any complex $n \times n$ matrix.

Every complex matrix A can be written as $A = \frac{A+A^*}{2} + i\frac{A-A^*}{2i}$, where $B = \frac{A+A^*}{2}$ and $C = \frac{A-A^*}{2i}$ are Hermitian matrices. For given complex matrix A, we can construct in a similar way.

- 5. Find the minimal polynomial for the following linear operators
 - (i) $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ defined as Tf = f'.
 - (ii) $T: M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R})$, defined as $T(A) = A^t$
- 6. Let V be an n-dimensional vector space and let T be a linear operator on V. Suppose that there exists some positive integer k so that $T^k=0$. Prove that $T^n=0$. As $T^k=0$ for some integer k, it means x^k is an annihilating polynomial for T. As minimal polynomial divides any annihilating polynomial, the minimal polynomial of T will be x^m , $1 \le m \le k$, i.e. $T^m=0$. Moreover, by Cayley-Hamilton theorem, $1 \le m \le n$. Thus $T^n=T^{n-m}T^m=0$.
- 7. Find a minimal polynomial of the following matrix without finding characteristic polynomial

$$A = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right]$$

Clearly $A^2 = 0$ but $A \neq 0$. Therefore the minimal polynomial dividing annihilating polynomial x^2 is either x or x^2 . But x can not be the minimal polynomial as $T \neq 0$. Hence minimal polynomial is x^2 .

8. Let $a, b, c \in \mathbb{R}$, then show that for the following matrix characteristic and minimal polynomials are same

$$A = \left[\begin{array}{ccc} 0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a \end{array} \right]$$

The characteristic polynomial for the given matrix is $x^3 - ax^2 - bx - c$. The choices for minimal poynomial are

- (i) A two degree monic polynomial of the type $x^2 + px + q$
- (ii) One degree monic polynomial of the type x + p
- (iii) Characteristic polynomial

Note that the choice (ii) is not possible as A is not a scalar multiple of identity for any choices of $a, b, c \in \mathbb{R}$. Moreover, upon computation, the matrix $B = A^2 + pA + qI \neq O$ for any choice of $p, q \in \mathbb{R}$ as $B_{31} = 1 \neq 0$

- 9. Prove that if $T \in L(V, V)$ is annihilated by a polynomial over \mathbb{C} having distinct roots, then T is diagonalizable. As a direct application of this result, show the following
 - (a) Let T be a linear operator on a complex vector space such that $T^k = I$ for some positive integer k. Then T is diagonalizable.
 - (b) Prove that every matrix A satisfying $A^2 = A$ is diagonalizable.

Let $p(x) = (x - c_1)(x - c_2) \cdots (x - c_k)$, where $c_1, c_2, \cdots c_k$ are distinct, be an annihilating polynomial for T. As minimal polynomial divides any annihilating polynomial, the minimal polynomial must be the product of distinct linear factors and therefore T must be diagonalizable.

- (a) As $x^k 1$ annihilates T and has distinct roots in \mathbb{C} , T must be diagonalizable
- (b) As $x^2 x = x(x 1)$ is an annihilating polynomial for T with the distinct roots 0, 1 and hence T must be diagonalizable.
- 10. Compute the minimal polynomial for the following matrices

(i)
$$A = \begin{bmatrix} 3 & -1 & 0 \\ 0 & 2 & 0 \\ 1 & -1 & 2 \end{bmatrix}$$
 (ii) $B = \begin{bmatrix} 3 & 0 & 1 \\ 2 & 2 & 2 \\ -1 & 0 & 1 \end{bmatrix}$

- (i) Characteristic polynomial for the matrix A is $(x-3)(x-2)^2$. Thus we have two choices for the minimal polynomial: (x-3)(x-2) or $(x-3)(x-2)^2$. Upon computation we see that (A-3I)(A-2I) = O hence (x-3)(x-2) is the minimal polynomial.
- (ii) Characteristic polynomial for the matrix B is $(x-2)^3$. We have three choice for the minimal polynomial, namely, $(x-2), (x-2)^2$ and $(x-2)^3$. Observe that the matrix $B \neq 2I$. Thus x-2 can not be the minimal polynomial. Upon computation, we find that $B^2 \neq 0$, hence $(x-2)^3$ is the minimal polynomial.
- 11. Verify Cayley-Hamilton theorem for the following
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined as T(x,y) = (2x + 5y, 6x + y)

(b)
$$A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

12. Let characteristic polynomial of a matrix A be $x^2 - x + 1$. Compute A^3 and A^5 . As A satisfies it's characteristic polynomial (by Cayley-Hamilton theorem), we get $A^2 - A + I = 0$ which implies $A^2 = A - I$. Now $A^3 = AA^2 = A(A - I) = A^2 - A = A - I - A = -I$. Similarly, $A^5 = A^3A^2 = -I(A - I) = I - A$