Math 69: Logic Winter '23

Homework assigned January 9, 2023

Credit Statement

Prof. Marcia Groszek

Student: Amittai Siavava

I worked on these problems alone, with reference to class notes and the following books:

(a) A Mathematical Introduction to Logic by Herbert Enderton.

Problem 8.

Prove Theorem 17F: A set of expressions is decidable iff both it and its complement (relative to the set of all expressions) are effectively enumerable.

Remark: Two semidecision procedures make a whole.

Let Σ be a set of expressions, with Γ as its complement.

We first prove that if Σ is decidable then both Σ and Γ are effectively enumerable:

Suppose Σ is decidable, then we can always determine whether a wff α is in Σ or is not in Σ . Therefore, we can implement an enumeration algorithm as follows:

- (i) Pick an arbitrary wff, β , that has not yet been listed as a member of Σ or β .
- (ii) If $\beta \in \Sigma$, then list it as an element of Σ .
- (iii) However, if $\beta \notin \Sigma$, then list it as an element of Γ .
- (iv) Repeat from step 1.

We then prove that if both Σ and its complement, Γ , are effectively enumerable then Σ is decidable. Assume that both Σ and Γ are effectively enumerable. Then, by definition of effectively enumeration, we may list members of Σ and non-members of Σ (i.e. members of Γ), and every member or non-member will eventually be listed in the appropriate category even if the enumeration might never end in the case of an infinite Σ or Γ . Consequently, by checking the listed wffs we may always determine whether a wff β is in Σ or not in Σ , implying that Σ is decidable.