

Mark Scheme (Results)

January 2022

Pearson Edexcel International Advanced Subsidiary Level In Physics (WPH12) Paper 01: Waves and Electricity

Question Number	Answer	Mark
1	C is the correct answer as $V = W/Q$	(1)
	A is not the correct answer as volts are not equivalent to energy/time	
	B is not the correct answer as volts are not equivalent to power/time	
	D is not the correct answer as volts are not equivalent to power/charge	
2	A is the correct answer as $v = h/m\lambda$	(1)
	B is not the correct answer as v is not = $h/q\lambda$	
	C is not the correct answer as v is not = $m\lambda/h$	
	D is not the correct answer as v is not = $q\lambda/h$	
3	D is the correct answer as the sum of e.m.f. = the sum of p.d.	(1)
	A is not the correct answer as this does not include the p.d. across R_2	
	B is not the correct answer as this does not include the p.dacross R_2	
	C is not the correct answer as this does not include the p.d. across R_1	
1	B is the correct answer as a thermistor is a semiconductor	(1)
	A is not the correct answer as this would occur when temperature decreases	
	C is not the correct answer as this would occur when temperature decreases	
	D is not the correct answer as this, although it does occur, has a lesser effect	
	than the release of more conduction electrons	
5	B is the correct answer as the light bends towards the normal when	(1)
	travelling from L to M (so $v_L > v_M$) but bends away from the normal when	
	travelling from M to N, but there is not as much of a change of direction	
	as there was from L to M.	
	A is not the correct answer as light bends away from the normal travelling	
	from M to N so v_N must be greater than v_M	
	C is not the correct answer as light bends towards the normal travelling from L	
	to M so v_L must be greater than v_M	
	D is not the correct answer as light bends away from the normal travelling	
	from M to N, so v_N must be greater than v_M	
Ó	C is the correct answer as light travels faster in L than in M	(1)
	A is not the correct answer as light travels faster in L than in M	
	B is not the correct answer as light travels faster in L than in N	
	D is not the correct answer as light travels faster in N than in M	
1	D is the correct answer as X and Z are in two adjacent node to node	(1)
	sections, which will always be in antiphase with each other	
	A is not the correct answer as W and X are between the same pair of nodes,	
	between which all points are in phase	
	B is not the correct answer as W and Y are in two adjacent node to node	
	sections, which will always be in antiphase with each other	
	C is not the correct answer as X and Y are in two adjacent node to node	
`	sections, which will always be in antiphase with each other	(4)
3	A is the correct answer as the graph shown is a V-I graph for a diode	(1)
	B is not the correct answer as the graph is not that for a filament lamp	
	C is not the correct answer as the graph is not that for an ohmic conductor	
	D is not the correct answer as the graph is not that for a thermistor	

9	B is the correct answer as $\lambda/8$ is one eighth of a full wave cycle, and so is $\pi/4$ radians	(1)
	A is not the correct answer as this is equivalent to a path difference of $\lambda/4$ C is not the correct answer as this is equivalent to a path difference of $\lambda/16$ D is not the correct answer as this is equivalent to a path difference of $\lambda/32$	
10	C is the correct answer as power for the whole circuit = $\mathcal{E} \times I$ and I increases whilst e.m.f. remains the same	(1)
	A is not the correct answer as increased intensity increases the number of conduction electrons released by the LDR B is not the correct answer as the potential difference across the LDR will decrease, causing the potential difference across the resistor to increase D is not the correct answer as the resistance of an LDR decreases as light intensity increases	

Question Number	Answer		Mark
11a	Use of $R = \rho l/A$ $\rho = 1.1 \times 10^{-6} \Omega \text{ m}$ $\frac{\text{Example of calculation}}{\rho = \frac{RA}{l}} = \frac{(2.0 \Omega) (2.5 \times 10^{-7} \text{m}^2)}{0.45 \text{ m}} = 1.11 \times 10^{-6} \Omega \text{ m}$	(1) (1)	2
11b	Use of $R = V/I$ Use of $I = nqvA$ $v = 4.2 \times 10^{-4} \text{ m s}^{-1}$ $\frac{\text{Example of calculation}}{I = V/R = (3.0 \text{ V}) / 2.0 \Omega} = 1.5\text{A}$ $v = \frac{I}{nqA} = \frac{1.5 \text{ A}}{(9.0 \times 10^{28} \text{ m}^{-3})(1.60 \times 10^{-19} \text{ C}) (2.5 \times 10^{-7} \text{m}^2)}$ $= 4.17 \times 10^{-4} \text{ m s}^{-1}$	(1) (1) (1)	3
11c	Halving length halves resistance Which doubles the current I = nqvA related to drift velocity doubling (so suggestion is correct)	(1) (1) (1)	3
	Total for question 11		8

Question Number	Answer		Mark
12a	Either		
	Ultrasound is (partially) reflected (from boundaries)	(1)	
	(Measure) the <u>time</u> taken or <u>time</u> delay (for signal to return)	(1)	
	Calculate expected time for pulse to return (if no air gap) Or Compare to known time for pulse to return	(1)	
	If time for pulse to return < time calculated, air gap is present	(1)	
	Or		
	Ultrasound is (partially) reflected (from boundaries)	(1)	
	(Measure) the <u>time</u> taken or <u>time</u> delay (for signal to return)	(1)	
	Calculate distance for pulse to travel	(1)	
	If distance pulse returns from < thickness of RSJ, air gap is present Or If distance pulse returns from = thickness of RSJ, no air gap	(1)	4
12b	(Higher frequency) gives smaller wavelength	(1)	
	(Smaller wavelength leads to) high level of detail/resolution	(1)	
	(Smaller wavelength) can detect small(er) objects/gaps Or (With 20kHz) the detail would not be sufficient to identify air gaps Or (With 20kHz,) air gaps might be smaller than the wavelength	(1)	3
	Total for question 12		7

Question Number	Answer				Mark
*13					
	IC points	IC mark	Max linkage marl	Max final mark	
	6	4	2	6	
	5	3	2	5	
	4	3	1	4	
	3	2	1	3	
	2	2	0	2	
	1	1	0	1	
	0	0	0	0	
	The following lines of reason		w the marks should	be awarded for structure and	
				Number of marks awarded for structure of answer and sustained line of reasoning	
		coherent and logic y sustained lines of oughout		2	
	Answer is partial and lines of reason	lly structured with soning	some linkages	1	
	Answer has no li	inkages between po	ints and is	0	
	 One A mi Rele Freq 	on energy is to one interaction in the interaction	gy/frequency is one is instantane is the kinetic ene	hotons and electrons required (for electron release)	6
	Total for que	estion 13			6

Question Number	Answer		Mark
14a	Calculates θ (using tan)	(1)	
	Calculates d using $\frac{1}{\text{number of lines per m}}$	(1)	
	Use of $n\lambda = d\sin\theta$	(1)	
	$\lambda = 6.3 \times 10^{-7} \mathrm{m}$	(1)	4
	Example of calculation $\tan \theta = \frac{0.500 \text{ m}}{1.690 \text{ m}}$, therefore $\theta = 16.5^{\circ}$ $d = \frac{1}{450,000} = 2.22 \times 10^{-6} \text{ m}$. $\lambda = \frac{d\sin \theta}{n} = \frac{(2.22 \times 10^{-6} \text{m})(\sin 16.5^{\circ})}{(1)} = 6.31 \times 10^{-7} \text{ m}$		
14b	(Waves from the different slits meet and) superposition/interference takes place	(1)	
	(Bright dots are where) waves are in phase	(1)	
	(Superposition/interference) is constructive	(1)	3
14c	White dot at O	(1)	
	Spectra seen (either side of O)	(1)	2
	Total for question 14		9

Question Number	Answer		Mark
15a	Difficult to judge/measure the exact position of node Or Ruler is not close to the string (so there might be parallax error)	(1)	1
15bi	Calculates gradient by best fit or plotted points from graph	(1)	
	Recognises distance between adjacent nodes = $\lambda/2$ Or Recognises that speed of waves on the string = 2 × gradient	(1)	
	Use of $v = \sqrt{\frac{T}{\mu}}$ to find T	(1)	
	Use of $T = mg$ with $g = 9.81$ Nkg ⁻¹ (accept $W = mg$)	(1)	
	m = 0.21 kg	(1)	5
	Example of calculation Gradient = $\frac{2.7 \text{ m}}{0.080 \text{ s}}$ = 33.75 ms ⁻¹ Speed = 2 × gradient = 67.5 ms ⁻¹ $v = \sqrt{T/\mu}, 67.5 \text{ m s}^{-1} = \sqrt{\frac{T}{4.5 \times 10^{-4} \text{ kg m}^{-1}}}$ $T = 2.05 \text{ N}$ $m = \frac{W}{g} = \frac{T}{g} = \frac{2.05 \text{N}}{9.81 \text{ Nkg}^{-1}} = 0.209 \text{ kg}$		
15bii	Straight line with shallower gradient drawn, starting from origin Line has a gradient of around 0.7 × line drawn	(1) (1)	2
	(Graph line if continued to the last value for $1/f$ should be between 1.8 and 2.0m for d).		
	Total for question 15		8

Question Number	Answer		Mark
16a	Transverse: vibrations/oscillations are perpendicular to the direction of (wave) travel Longitudinal: vibrations/oscillations are parallel to the direction of (wave)	(1)	
	travel	(1)	2
16bi	The light is (incident on the boundary) along the normal Or The angle of incidence is 0° Or The light hits (prism A) at right angles	(1)	1
16bii	Normal line correctly drawn at right angles to boundary (by eye)	(1)	
	Reflected ray in correct direction from boundary (by eye)	(1)	
	Refracted ray in correct direction from boundary (by eye)	(1)	
	Correct refraction at the right hand side of the glass block (by eye) and either TIR or correct direction refraction at the left hand side (by eye)	(1)	4
	incident ray MP4 incident ray MP4 air 60° glass B		
16biii	Use of $n_1 \sin \theta_1 = n_2 \sin \theta_2$ with 30°, 1.40 and 1.55 substituted correctly Angle of refraction = 27°	(1) (1) (1)	3
	Example of calculation $n_1 \sin \theta_1 = n_2 \sin \theta_2$, so 1.40 (sin 30°) = 1.55 (sin r), $r = 26.8$ °		
16c	Light (emerging) is polarised Only transverse waves can be polarised	(1) (1)	2
	Total for question 16		12

Question	Answer		Mark
Number			
-	Either Uses resistors in parallel formula correctly Adds series resistance Use of $V = IR$ to find whole circuit current Current in the 6.0 Ω resistor = 0.67(A) Use of $Q = It$ 4.2 × 10 ¹⁸ (electrons) Or Uses resistors in parallel formula correctly Uses potential divider to calculate V across parallel section Use of $V = IR$ to find current in 6.0 Ω resistor Current in the 6.0 Ω resistor = 0.67(A) Use of $Q = It$ 4.2 × 10 ¹⁸ (electrons)	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	6
17b	$\frac{\text{Example of calculation}}{\frac{1}{Rp}} = \frac{1}{3.0\Omega} + \frac{1}{6.0\Omega}, \text{ so } R_{\text{parallel}} = 2.0 \ \Omega$ $\text{Total circuit resistance} = 4.0 \ \Omega + 2.0 \ \Omega = 6.0 \ \Omega$ $I = V / R = 12 \ V / 6.0 \ \Omega = 2.0 \ A$ $\text{Current in } 6.0 \ \Omega \text{ resistor is } 1/3 \text{ of } 2.0 \text{A} = 0.67 \ A$ $\text{No. of electrons per second} = \frac{\text{current}}{\text{charge per electron}} = \frac{0.67 \ A}{1.60 \times 10^{-19} \text{C}}$ $= 4.2 \times 10^{18} \text{ electrons per second}$ $\text{(Student is correct that) resistance in circuit/parallel is greater}$	(1)	
170	V is the same So if student uses $P = V^2/R$ Power in whole circuit would be less, so student incorrect Or (Student is correct that) resistance in circuit/parallel is greater	(1) (1) (1)	
	This leads to current being lower So if student used $P = VI$ with same V Power in whole circuit would be less, so student incorrect Or	(1) (1) (1) (1)	
	(Student is correct that) resistance in circuit/parallel is greater This leads to current being lower Effect of decreasing current > the effect of increasing resistance Power in whole circuit would be less, so student incorrect	(1) (1) (1) (1)	4
	(MP4 via any method is dependent on awarding MP2 & MP3) Total for question 17		10
	1 out for question 17		10

Question Number	Answer		Mark
18a	Conversion of eV into J Use of $E = hf$ Use of $v = f\lambda$ with $v = 3.00 \times 10^8 \text{ ms}^{-1}$ $\lambda = 654 \text{ (nm)}$, so light (for this transition) is red $\frac{\text{Example of calculation}}{1.9 \text{ eV} \times (1.60 \times 10^{-19} \text{ JeV}^{-1})} = 3.04 \times 10^{-19} \text{ J}$ $f = \frac{E}{h} = \frac{3.04 \times 10^{-19} \text{ J}}{6.63 \times 10^{-34} \text{Js}} = 4.59 \times 10^{14} \text{ Hz}$ $\lambda = \frac{v}{f} = \frac{3.00 \times 10^8 \text{ ms}^{-1}}{4.59 \times 10^{14} \text{ Hz}} = 6.54 \times 10^{-7} \text{ m}$	(1) (1) (1) (1)	4
18b	Converts 8.60 light years into metres Use of $I = P/A$ Use of $A = 4\pi r^2$ Power of Sirius $A = 9.73 \times 10^{27}$ W Example of calculation $8.60 \times 365 \times 24 \times 60 \times 60 \times (3.00 \times 10^8 \text{ ms}^{-1}) = 8.14 \times 10^{16} \text{ m}$ $P = I \times A = (1.17 \times 10^{-7} \text{ Wm}^{-2}) (4\pi) (8.14 \times 10^{16} \text{ m})^2 = 9.73 \times 10^{27} \text{ W}$	(1) (1) (1) (1)	4
18c	Atoms have fixed/certain/discrete energy levels Or Emitted photons have discrete energy Only certain transitions are possible (in a hydrogen atom) Or Some transitions are not possible (in a hydrogen atom) (For MP2, allow "differences in energy (levels)" for "transitions")	(1) (1)	2
	Total for question 18		10