Question - 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

- The Optimal value of alpha for ridge = 2 and for lasso = 0.0001. With these alphas ,R2 of the model = 0.83.
- Doubling the alpha values using Ridge and Lasso, the optimal value R2 around 0.82 but there is slight change in co-efficient values. These values are derived in assignment submission (code from jupiter notebook).
- Please find the co-efficients are listed below in table between Normal & Doubled alpha for both Ridge & Lasso.

Ridge Co-efficient	Ridge Doubled Alpha Co-Efficient	
Total_sqr_footage 0.202244	Total_sqr_footage 0.149028	
GarageArea 0.110863	GarageArea 0.091803	
TotRmsAbvGrd 0.063161	TotRmsAbvGrd 0.068283	
OverallCond 0.046686	OverallCond 0.043303	
LotArea 0.044597	LotArea 0.038824	
Total_porch_sf 0.033294	Total_porch_sf 0.033870	
CentralAir_Y 0.028923	CentralAir_Y 0.031832	
LotFrontage 0.02337	LotFrontage 0.027526	
Neighborhood_StoneBr 0.020848	Neighborhood_StoneBr 0.026581	
OpenPorchSF 0.020776	OpenPorchSF 0.022713	
MSSubClass_70	MSSubClass_70	
Alley_Pave 0.017279	Alley_Pave 0.021672	
Neighborhood_Veenker 0.016795	Neighborhood_Veenker 0.020098	
BsmtQual_Ex 0.01671	BsmtQual_Ex 0.019949	
KitchenQual_Ex0.015551	KitchenQual_Ex0.019787	
HouseStyle_2.5Unf 0.014707	HouseStyle_2.5Unf 0.018952	
MasVnrType_Stone 0.014389	MasVnrType_Stone 0.018388	
PavedDrive_P 0.013578	PavedDrive_P 0.017973	
RoofMatl_WdShngl 0.013377	RoofMatl_WdShngl 0.017856	
PavedDrive_Y 0.012363	PavedDrive_Y 0.016840	

LASSO

Lasso Co-Efficient	Lasso Doubled Alpha Co-Efficient	
Total sqr footage 0.202244	Total sqr footage 0.204642	
GarageArea 0.110863	GarageArea 0.103822	
TotRmsAbvGrd 0.063161	TotRmsAbvGrd 0.064902	
TotRmsAbvGrd 0.063161 OverallCond 0.046686 LotArea 0.044597	OverallCond 0.042168	
LotArea 0.044597	CentralAir Y 0.033113	
CentralAir_Y 0.033294	Total_porch_sf 0.030659	
Total_porch_sf 0.028923	LotArea 0.025909	
Neighborhood_StoneBr 0.023370	BsmtQual Ex 0.018128	
	Neighborhood StoneBr 0.017152	
Alley_Pave 0.020848 OpenPorchSF 0.020776	Alley_Pave 0.016628	
MSSubClass_70	OpenPorchSF 0.016490	
LandContour_HLS 0.017279	KitchenQual_Ex0.016359	
KitchenQual_Ex0.016795	LandContour_HLS 0.014793	
BsmtQual_Ex 0.016710	MSSubClass_70	
Condition1_Norm 0.015551	MasVnrType_Stone 0.013292	
Neighborhood_Veenker 0.014707	Condition1_Norm 0.012674	
MasVnrType_Stone 0.014389	BsmtCond_TA 0.011677	
PavedDrive_P 0.013578	SaleCondition_Partial 0.011236	

LotFrontage	0.013377	LotConfig_CulDSac 0.008776
PavedDrive_Y	0.012363	PavedDrive_Y 0.008685

Question 2-

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Answer

Based on the derived facts on optimum lambda value in both regression model.

Ridge Regression Model values	Lasso Regression Model values	
Lambda = 2	Lambda = 0.0001	
Mean Squared Error – 0.00183	Mean Squared Error – 0.00186	
R2 value = 0.82	R2 value = 0.82	

Based on value statistics are almost same between Ridge & Lasso , however Lasso helps in feature reduction (as coefficients of them are zero).

So I will choose Lasso Regression model for this prediction assignment for final model

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Answer

The most important predictor variables in Lasso model (after doubling alpha value).

•	Total_sqr_footage	- 0.204642
•	GarageArea	- 0.103822
•	TotRmsAbvGrd	-0.064902
•	OverallCond	-0.042168
•	CentralAir_Y	-0.033113

After removing the top five predictor above, built another Lasso model where R2 for this model = 0.73 and MSE = 0.0028

New Top five predictors are listed below.

LotFrontage - 0.146535

Total_porch_sf -0.072445

HouseStyle_2.5Unf -0.062900

HouseStyle_2.5Fin - 0.050487

Neighborhood_Veenker -0.042532

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

As per Occam's Razor

- A model should be as simple as necessary but not simpler than that.
- When in doubt, choose a simpler model.
- Advantages of simplicity are generalisability, robustness, requirement of a few assumptions and less data required for learning

Bias-Variance Tradeoff

- Bias measures how accurately a model can describe the actual task at hand.
- Variance measures how flexible the model is with respect to changes in the training data.
- As complexity increases, bias reduces and variance increases, and we aim to find the optimal point where the total model error is the least.

Regularization

- Regularization helps model perform well with unseen data while identifying necessary underlying patterns
 in it. By adding a penalty term to the cost function used by OLS.
- Ridge and Lasso regression methods, which both allow some bias to get a significant decrease in variance, thereby pushing the model coefficients towards 0.
- In Lasso, some of these coefficients become 0, thus resulting in model selection and, hence, easier interpretation, particularly when the number of coefficients is very large.
- Ideally, we want to reduce both bias and variance because the expected total error of a model is the sum of the errors in bias and variance, as shown in the figure given below.

