Machine Learning

Introduction to Reinforcement Learning

Gabriele Russo Russo Francesco Lo Presti

Laurea Magistrale in Ingegneria Informatica - A.Y. 2023/24

Dipartimento di Ingegneria Civile e Ingegneria Informatica

Reinforcement Learning

- Supervised learning
- Unsupervised learning
- Reinforcement learning
 - Branch of ML dealing with sequential decision-making

Reinforcement Learning

- Agent interacts with environment through actions
- Feedback in the form of reward (or paid cost)
- Goal: maximizing cumulated reward over the long run
- Trial-and-error experience (no complete knowledge of environment a priori)

Example: Tic-Tac-Toe

- State: representation of the board (3x3 matrix)
- Actions: available cells to mark
- ▶ Reward: 1 for a winning move, 0 otherwise

Х	О	0
0	Х	X
		X

Example: AlphaZero by DeepMind

- Software able to play Go, Chess and Shogi ¹
 - ► Board games with huge number of legal positions (i.e., state space)
- Trained via self-play and advanced deep RL techniques
- Superhuman level of play with 24-hour training
- First presented in 2017; in 2019 MuZero, generalization to play Atari games and other board games without prior rule knowledge

¹https://arxiv.org/abs/1712.01815

Example: AlphaDev by DeepMind

- Announced in 2023²
- RL used to develop new C++ sorting algorithm, now accepted in the standard library
- ▶ 70% faster on short sequences (2-3 items), 1.7% faster on long sequences
- State: instructions generated so far and state of the CPU
- Actions: assembly instructions to add
- Reward: based on sorting correctness and efficiency

²https://www.deepmind.com/blog/
alphadev-discovers-faster-sorting-algorithms

Other Examples

- Autonomous vehicles
- Robot control
- Trading
- Autonomous network and computer systems
- Videogames
- **...**

Reinforcement Learning

- Agent, environment, actions, state, rewards, ...
- Modeled depending on the specific task
 - e.g., autonomous car uses different state information compared to chess player
- Formally defined as a Markov Decision Process (MDP)
- A framework to model decision making in situations where outcomes are partly random

Markov Decision Process (MDP)

- Extension of discrete-time Markov chains
- \blacktriangleright At each time step t, the process is in some state s_t
- The decision maker (the agent) chooses an action a_t among those available in state s_t
 - e.g., robot observes current position and decides direction to move; some directions might be blocked by obstacles
- Following a_t , the process moves to (random) state s_{t+1}
 - e.g., autonomous drone chooses an action to reduce altitude;
 actual outcome may depend on (unpredictable) wind speed
- Agent receives a reward (or, equivalently, pays a cost)
 - e.g., robot may get a reward for reaching its final destination
 - e.g., chess player rewarded at the end of a match

Example

Markov Decision Process (2)

What defines an MDP?

- \triangleright S: a (finite) set of states
- \triangleright \mathcal{A} : a (finite) set of actions
- p: state transition probabilities

$$p(s'|s, a) = P[S_{t+1} = s'|S_t = s, A_t = a]$$

- r: reward function (or, c: cost function)
 - 1. $r(s, a) = E[R_t | S_t = s, A_t = a]$
 - 2. $r(s, a, s') = E[R_t | S_t = s, A_t = a, S_{t+1} = s'] \longrightarrow r(s, a) = \sum_{s'} p(s' | s, a) r(s, a, s')$

Markov Property

"The future is independent of the past given the present"

Definition

A state S_t is Markov if and only if

$$P[S_{t+1}|S_1,...,S_t] = P[S_{t+1}|S_t]$$

- ► The state captures all relevant information from the history
- i.e., the state is a sufficient statistic of the future

Objective: Episodic Tasks

- Informally, we said that the agent aims to maximize the collected reward over time
- Let's consider an episodic task, where the agent-environment interaction naturally terminates at some final time step T
 - e.g., the end of a chess match
 - e.g., the time a robot reaches its destination or runs out of battery
- \blacktriangleright At time t, we aim to maximize the expected return G_t

$$G_t = R_t + R_{t+1} + \ldots + R_T$$

Objective: Continuing Tasks

- In many cases the agent-environment interaction does not break naturally into identifiable episodes, but goes on continually without limit
 - e.g., an agent managing VM migration in a Cloud datacenter
 - e.g., the control system of RL-based traffic lights
- ► In this scenario, the goal of the agent is maximizing the expected cumulative discounted reward

$$G_t = R_t + \gamma R_{t+1} + \ldots = \sum_{k=0}^{\infty} \gamma^k R_{t+k}$$

where $\gamma \in [0, 1)$ is the discount factor

Reward vs Cost

You can either maximimize the expected reward or minimize the expected cost

$$G_t = C_t + \gamma C_{t+1} + \ldots = \sum_{k=0}^{\infty} \gamma^k C_{t+k}$$

The two formulations are equivalent; you can easily switch between them by setting

$$r(s,a) = -c(s,a)$$

▶ In the following, we will mostly refer to costs; keep in mind this equivalence

Policy

Definition

A policy π is a distribution over actions given a state s

$$\pi(a|s) = p(A_t = a|S_t = s)$$

- A policy fully defines agent's behavior
- MDP policies depend on the current state only
- Special case: deterministic policy

$$\pi: \mathcal{S} \to \mathcal{A}$$

16

Example: Deterministic Policy

State	Action
s_1	a_1
<i>s</i> ₂	a_1
<i>s</i> ₃	a_2
<i>S</i> 4	a_1

Value Function

Value function is a prediction of future costs

- can be used to evaluate how good/bad states and/or actions are
- and therefore to select actions e.g.

State	a_1	<i>a</i> ₂	<i>a</i> ₃
<i>s</i> ₁	10	5	3
<i>s</i> ₂	8	6	4
5 3	6	5	6
<i>S</i> ₄	5	4	6
<i>S</i> 5	4	3	7
<i>s</i> ₆	1	5	9
<i>5</i> 7	0	9	15

S	$\pi(s)$	
<i>s</i> ₁	a 3	
<i>s</i> ₂	<i>a</i> ₃	
<i>s</i> ₃	a ₂	
<i>S</i> ₄	a ₂	
<i>S</i> 5	a ₂	
<i>s</i> ₆	a ₁	
<i>5</i> 7	a_1	

Value Functions

Action value function (or, Q function)

Expected cost starting from state s, taking action a and then following policy π

$$Q_{\pi}(s,a) = E_{\pi}[G_t|S_t = s, A_t = a]$$

State value function

Expected cost starting from state s and then following policy π

$$V_{\pi}(s) = E_{\pi}[G_t|S_t = s]$$

Action Value Functions

The action value function can be decomposed into two parts:

- immediate cost
- ightharpoonup discounted costs from successor state S_{t+1}

$$Q_{\pi}(s, a) = E_{\pi}[G_{t}|S_{t} = s, A_{t} = a]$$

$$= E_{\pi}[C_{t} + \gamma C_{t+1} + \gamma^{2} C_{t+2} \dots | S_{t} = s, A_{t} = a]$$

$$= E_{\pi}[C_{t} + \gamma (C_{t+1} + \gamma C_{t+2} \dots) | S_{t} = s, A_{t} = a]$$

$$= E_{\pi}[C_{t} + \gamma G_{t+1}|S_{t} = s, A_{t} = a]$$

$$= c(s, a) + \gamma E_{\pi}[G_{t+1}|S_{t} = s, A_{t} = a]$$

Bellman equation:

$$Q_{\pi}(s, a) = c(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) Q_{\pi}(s', \pi(s'))$$

State Value Functions

The value function can be similarly decomposed into two parts:

- ▶ immediate cost C_t
- ▶ discounted cost from successor state $V(S_{t+1})$

$$V_{\pi}(s) = E_{\pi}[G_{t}|S_{t} = s]$$

$$= E_{\pi}[C_{t} + \gamma C_{t+1} + \gamma^{2} C_{t+2} \dots | S_{t} = s]$$

$$= E_{\pi}[C_{t} + \gamma (C_{t+1} + \gamma C_{t+2} \dots) | S_{t} = s]$$

$$= E_{\pi}[C_{t} + \gamma G_{t+1}|S_{t} = s]$$

Bellman equation:

$$V_{\pi}(s) = c(s,\pi(s)) + \gamma \sum_{s'} p(s'|s,\pi(s)) V_{\pi}(s')$$

Optimal Value Function

Optimal action value function

 $Q^*(s; a)$ is the maximum action-value function over all policies

$$Q^*(s,a) = \max_{\pi} Q_{\pi}(s,a)$$

Optimal state value function

 $V^*(s)$ is the minimum value function over all policies

$$V^*(s) = \max_{\pi} V_{\pi}(s)$$

Bellman Optimality Equations

$$Q_{\pi}(s, a) = c(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) Q_{\pi}(s', \pi(s'))$$

$$\downarrow \downarrow$$

$$Q^{*}(s, a) = c(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) \min_{a'} Q^{*}(s', a')$$

$$V^{*}(s) = \min_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = c(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V^{*}(s')$$

Optimal Policy

Given $Q^*(s, a)$ the optimal action when the system is in state s is:

$$\pi^*(s) = a^*(s) = \arg\min_{a \in \mathcal{A}} Q^*(s, a)$$

State	a_1	<i>a</i> ₂	<i>a</i> ₃
<i>s</i> ₁	10	5	3
s 2	8	6	4
<i>s</i> ₃	6	5	6
<i>S</i> ₄	5	4	6
<i>S</i> ₅	4	3	7
<i>s</i> ₆	1	5	9
<i>S</i> 7	0	9	15

Optimal Action
аз
аз
a ₂
a ₂
a ₂
a ₁
a ₁

How to compute V^* ?

- ▶ If we know the optimal value function, we have an optimal policy!
- ▶ But... how do we compute the optimal value function??

Value Iteration

Bellman Equation

$$Q^*(s, a) = c(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) \min_{a'} Q^*(s', a')$$

- ▶ Suppose we know the solution to subproblems $Q^*(s', a')$
- $ightharpoonup Q^*(s,a)$ can be computed by one-step lookahead

$$Q^*(s, a) \leftarrow c(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) \min_{a'} Q^*(s', a')$$

- The idea is to apply these updates iteratively
- Proven to converge (see, Contraction Mapping Theorem in Sutton's book)

Value Iteration: Algorithm

Value Iteration

```
1 i \leftarrow 0
 2 Q_i(s, a) \leftarrow 0, \forall s \in \mathcal{S}, \forall a \in \mathcal{A}(s)
 3 repeat
          forall s \in \mathcal{S} do
 5
                forall a \in \mathcal{A}(s) do
                       Q_{i+1}(s,a) \leftarrow
 6
                        c(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) \min_{a' \in \mathcal{A}(s')} Q_i(s', a')
                 end
 7
           end
 8
        i \leftarrow i + 1
10 until \max_{s,a} |Q_i(s,a) - Q_{i-1}(s,a)| < \epsilon
11 \pi^*(s) = \arg\min_a Q_i(s, a), \forall s \in \mathcal{S}
```

Value Iteration: Alternative Algorithm

Value Iteration - Alternative

```
1 i \leftarrow 0
 2 Q_i(s, a) \leftarrow 0, \forall s \in \mathcal{S}, \forall a \in \mathcal{A}(s)
 з V_i(s) \leftarrow 0, \forall s \in S
 4 repeat
          forall s \in \mathcal{S} do
 5
               forall a \in \mathcal{A}(s) do
 6
                     Q_{i+1}(s,a) \leftarrow c(s,a) + \gamma \sum_{s' \in S} p(s'|s,a) V_i(s)
 7
                end
 8
 9
                V_{i+1}(s) = \min_{a' \in \mathcal{A}(s)} Q_{i+1}(s, a')
        end
10
        i \leftarrow i + 1
11
12 until \max_{s,a} |Q_i(s,a) - Q_{i-1}(s,a)| < \epsilon
13 \pi^*(s) = \arg\min_a Q_i(s, a), \forall s \in \mathcal{S}
```

Example: Maze

- ightharpoonup Consider a $S \times S$ grid
- Episodes start with agent randomly located in a cell in the first column
- ► Goal: reaching target cell (1, *S*)
- Some cells are blocked
- Some cells are slippery: when entering, the agent has a probablity p_{slip} of slipping one cell ahead along her current direction

Example: Maze (2)

- ightharpoonup State: s = (x, y)
- ► Actions: $a \in \{(0,1), (0,-1), (1,0), (-1,0)\}$
- Reward:
 - O for entering the goal cell
 - ▶ -M for exiting the grid or crashing into a blocked cell ($M \gg 1$)
 - ▶ -1 otherwise
- maze.py (--agent mdp)

Maze: Optimal Policy

Maze: Optimal Value Function

Example: Cloud Auto-scaling

- We periodically make a decision about scaling in/out an app component (a thread, a VM, a container, ...)
- We are concerned with 3 objectives:
 - Monetary resource cost (or, resource usage in general)
 - Performance req. satisfaction (e.g., max response time)
 - Scaling overhead

Auto-scaling: MDP formulation

- ▶ State at time slot i: $s_i = (k_i, \lambda_i)$
 - k_i component parallelism
 - $\triangleright \lambda_i$ avg. arrival rate (of requests, jobs, data, ...)
- ▶ Action at time slot i: $a_i \in \{0, +1, -1\}$

MDP Model: Transition Probabilities

- ▶ State of the system $s = (k, \lambda)$
 - ▶ $1 \le k \le K^{max}$ Component parallelism
 - $\triangleright \lambda$ avg. input rate
 - λ is discretized, i.e., $\lambda_i \in \{0, \Delta\lambda, 2\Delta\lambda, (L-1)\Delta\lambda\}$
 - $ightharpoonup \Delta \lambda$ quantization step size, L number of discrete values
- Available actions $A = \{-1, 0, +1\}$
- ► Transition probabilities $p(s'|s, a) = p((k', \lambda')|(k, \lambda), a)$

$$\begin{split} p(s'|s,a) &= P[s_{t+1} = (k',\lambda')|s_t = (k,\lambda), a_t = a] = \\ &= \begin{cases} P[\lambda_{t+1} = \lambda'|\lambda_t = \lambda] & k' = k+a \\ 0 & \text{otherwise} \end{cases} = \\ &= \mathbbm{1}_{\{k'=k+a\}} P[\lambda_{t+1} = \lambda'|\lambda_t = \lambda] \end{split}$$

MDP Model: Cost Function

$$c(s, a, s') = w_{res} \frac{k+a}{K^{max}} + w_{perf} \mathbb{1}_{\{R(s, a, s') > R^{max}\}} + w_{rcf} \mathbb{1}_{\{a \neq 0\}}$$

Resource Cost Performance

Reconfig.

- $w_{res} + w_{perf} + w_{rcf} = 1$, $w_x \ge 0$, $x \in \{res, perf, rcf\}$
- \triangleright R(s, a, s'): performance index, e.g, response time
- $ightharpoonup R^{max}$: reference performance value
- We want to minimize $\sum_{t=0}^{\infty} \gamma^t c(s_t, a_t, s_{t+1}), \quad \gamma \in [0, 1)$

Trading-off Objectives

MDP Resolution

- We can use the Value Iteration algorithm to solve the MDP
 - ► i.e., finding the optimal policy
- Is this enough?
- Unfortunately, solving the MDP requires exact and complete knowledge of the underlying model
 - state transition probabilities
 - cost function
- In practice, we don't have such information!

Reinforcement Learning

 RL aims to learn the optimal policy through interaction and evaluative feedback

Model-free vs Model-based RL

- Model-free RL: no model of the environment is available or used; the optimal policy is learned through experience only
- Model-based RL: a (possibly partial) model of the environment is available and used to derive the optimal policy
 - a partial model can boost learning speed
 - RL may also be used in presence of a complete model instead of VI; e.g., with a large number of rarely visited states VI would unnecessarily run for a long time!
 - You may also try to learn the model online and use it to compute a policy

Value-based vs Policy-based RL

- ➤ Value-based RL: aims to learn the optimal value function through experience; the policy is derived from it
 - Simplest RL algorithms belong to this group
 - ► We will mainly focus on this group in the following
- ► Policy-based RL: aims to directly learn the optimal policy through experience; no explicit computation/learning of the value function
- ► Hybrid approaches: e.g., the Actor-Critic framework

Simple Value-based RL Algorithm

A simple RL algorithm

- 1 $t \leftarrow 0$
- 2 Initialize Q
- 3 Loop
- 4 | $t \leftarrow t+1$
- 5 EndLoop

Q-learning

- Proposed by Chris Watkins in 1989
- One of the most known (and simplest) RL algorithms
- Proven to converge to the optimal policy under mild assumptions
 - ▶ ...after *n* steps, with $n \to \infty$

Q-learning: Action Selection

- How to choose an action at every time step?
- Exploration vs Exploitation dilemma
- Exploitation: using available knowledge to maximize reward
 - ▶ choose the "best" action, i.e., $a_t = \arg \max_a Q(s_t, a)$
- Exploration: discovering more information about the environment
 - choose other actions to learn more about the environment

Q-learning converges only if all state-action pairs are visited an infinite number of times as $t \to \infty$

- you can't exploit all the time
- you can't explore all the time

ϵ -Greedy Exploration

- Popular approach for the exploration-exploitation dilemma
- With probability 1ϵ choose the greedy action $a^* = \arg\max_{a \in \mathcal{A}} Q(s, a)$
- With probability ϵ choose an action at random
- Improvement: ϵ -greedy with decaying ϵ (similar to decaying learning rate in SGD)

Softmax Action Selection

- ightharpoonup Alternative to the ϵ -greedy strategy
- All actions assigned non-zero probability of being chosen
- ▶ Action $a \in A$ is selected with probability

$$\pi(a|s) = \frac{\exp(Q(s, a)/\tau)}{\sum_{a' \in \mathcal{A}} \exp(Q(s, a')/\tau)}$$

- $\triangleright \tau$ is the "temperature"
 - ightharpoonup Small au leads to greedy behavior
 - Large τ leads to random action selection
 - You usually start with a large temperature value and let it decay

Q-learning: Updating Q

With known model, we can compute Q iteratively using:

$$Q(s, \mathbf{a}) \leftarrow c(s, \mathbf{a}) + \gamma \sum_{s' \in S} p(s'|s, \mathbf{a}) \max_{\mathbf{a}'} Q(s', \mathbf{a}')$$

Q-learning uses point estimates on experience $\{s_t, a_t, c_t, s_{t+1}\}$:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha_t \left[r_t + \gamma \max_{a' \in \mathcal{A}} Q(s_{t+1}, a') - Q(s_t, a_t) \right]$$

Learning Rate Target

Q-learning: Algorithm

Q-learning

```
1 t \to 0

2 Initialize Q (e.g., zero-initialized)

3 Loop

4 | choose a_t (e.g., \epsilon-greedy or softmax selection)

5 | observe next state s_{t+1} and reward r_t

6 | Q(s_t, a_t) \leftarrow

Q(s_t, a_t) + \alpha_t \left[ r_t + \gamma \max_{a' \in \mathcal{A}} Q(s_{t+1}, a') - Q(s_t, a_t) \right]

7 | t \leftarrow t + 1

8 EndLoop
```

48

Example: Maze

python maze.py --agent qlearning --episodes N
[-- plot_reward]

- maze.py
- alearning.ipynb

SARSA

- Q-learning is an off-policy algorithm
 - The algorithm uses the greedy policy to update Q, but likely chooses action according to another policy (e.g., ϵ -greedy)
- ► SARSA: on-policy algorithm similar to Q-learning
- The same policy is used to choose next action and to update Q

SARSA: Algorithm

SARSA

9 EndLoop

```
1 t \to 0

2 Initialize Q (e.g., zero-initialized)

3 choose a_t (e.g., \epsilon-greedy or softmax selection)

4 Loop

5 observe next state s_{t+1} and reward r_t

6 choose a_{t+1} (e.g., \epsilon-greedy or softmax selection)

7 Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha_t \left[ r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right]

8 t \leftarrow t+1
```

Dealing with Large State Spaces:

Deep RL

Issues with Tabular RL

So far, we have considered tabular representations of the value function

State/Action	<i>a</i> ₁	a 2	•••
s_1	$Q(s_1, a_1)$	$Q(s_1, a_2)$	•••
<i>s</i> ₂	$Q(s_2, a_1)$	$Q(s_2, a_2)$	
•••	•••		
Sn	$Q(s_n, a_1)$	$Q(s_n, a_2)$	

- ▶ Not ideal as the state space grows...
- ▶ Memory demand: $\mathcal{O}(|\mathcal{S}||\mathcal{A}|)$
- No generalization
- ► How to handle continuous state spaces?

Value Function Approximation

Idea: using a parametric approximation of the value function

$$V_{\pi}(s) pprox \hat{V}(s, oldsymbol{w}), ext{ or } \ Q_{\pi}(s, oldsymbol{a}) pprox \hat{Q}(s, oldsymbol{a}, oldsymbol{w})$$

- $\mathbf{w} \in \mathbb{R}^d$ is a vector of parameters
- ▶ We need to store w instead of the Q table
 - Reduced memory demand if $d < |S| \checkmark$
- ightharpoonup Potential generalization $\sqrt{\ }$
 - ightharpoonup The experience gained in a state used to update w
 - A single update possibly impacts the value of several states!
 - ► Can deal with continuous state spaces ✓

Value Function Approximation (2)

- ▶ How to choose a function \hat{Q} ?
- \blacktriangleright How to determine the value of w?
- We search for a function and a vector w so as to approximate V (or Q) "well"
- First of all, what does "well" means?

Function Approximation: Objective

A simple and natural choice is to minimize MSE:

$$J(\mathbf{w}) = \sum_{\mathbf{s} \in \mathcal{S}} \mu(\mathbf{s}) \left[V_{\pi}(\mathbf{s}) - \hat{V}(\mathbf{s}, \mathbf{w}) \right]^2$$

- $\mu(s) \ge 0$ is a distribution over states
- $\triangleright \mu(s)$ should reflect the importance or frequency of states

Optimizing Parameters

We can compute parameters w through gradient descent

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w}_t) =$$

$$= \mathbf{w}_t + \alpha \sum_{s \in \mathcal{S}} \mu(s) \left[V_{\pi}(s) - \hat{V}(s, \mathbf{w}) \right] \nabla_{\mathbf{w}} \hat{V}(s, \mathbf{w})$$

Two potential issues:

- 1. Summation over all states (may be expensive!)
- 2. We don't have the true values $V_{\pi}(s)$!

Optimizing Parameters: Issue 1

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \sum_{s \in \mathcal{S}} \mu(s) \left[V_{\pi}(s) - \hat{V}(s, \mathbf{w}) \right] \nabla_{\mathbf{w}} \hat{V}(s, \mathbf{w})$$

Gradient computed over all states...

Stochastic gradient descent

one (or few) samples $(s_t, V_{\pi}(s_t))$ at each step

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \left[V_{\pi}(\mathbf{s}_t) - \hat{V}(\mathbf{s}_t, \mathbf{w}) \right] \nabla_{\mathbf{w}} \hat{V}(\mathbf{s}_t, \mathbf{w})$$

Optimizing Parameters: Issue 2

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \sum_{s \in \mathcal{S}} \mu(s) \left[\mathbf{V}_{\pi}(s) - \hat{V}(s, \mathbf{w}) \right] \nabla_{\mathbf{w}} \hat{V}(s, \mathbf{w})$$
How to get exact values?

Stochastic semi-gradient descent:

we replace $V_{\pi}(s_t)$ with a noisy approximation U_t , based on estimated value func.

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \left[U_t - \hat{V}(s_t, \mathbf{w}) \right] \nabla_{\mathbf{w}} \hat{V}(s_t, \mathbf{w})$$

A possible approach (inspired by Q-learning):

$$U_t = r_t + \gamma \hat{V}(s_{t+1}, \boldsymbol{w}_t)$$

Linear Function Approximation

The simplest possible approximation model:

$$\hat{V}(s, oldsymbol{w}) = oldsymbol{w}^T oldsymbol{\phi}(s) = \sum_{i=1}^d w_i \phi_i(s)$$
Weights Features
 $oldsymbol{w} \in \mathbb{R}^d$
 $oldsymbol{\phi} : \mathcal{S} o \mathbb{R}^d$

Update rule becomes very simple:

$$\nabla_{\mathbf{w}} \hat{V}(s, \mathbf{w}) = \boldsymbol{\phi}(s)$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \left[U_t - \hat{V}(s_t, \mathbf{w}_t) \right] \boldsymbol{\phi}(s_t)$$

Linear Function Approximation (2)

We have equivalent formulas for Q:

$$\hat{Q}(s, a, w) = w^{T} \phi(s, a) = \sum_{i=1}^{d} w_{i} \phi_{i}(s, a)$$
Weights
Features
$$w \in \mathbb{R}^{d}$$

$$\phi : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^{d}$$

$$\nabla_{w} \hat{Q}(s, a, w) = \phi(s, a)$$

$$w_{t+1} = w_{t} + \alpha \left[U_{t} - \hat{Q}(s_{t}, a_{t}, w_{t}) \right] \phi(s_{t}, a_{t})$$

Q-learning + Linear FA

Recall Q-learning update

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha_t \left[r_t + \gamma \max_{a' \in \mathcal{A}} Q(s_{t+1}, a') - Q(s_t, a_t) \right]$$

```
1 t \to 0

2 Initialize w

3 Loop

4 | choose action a_t

5 | gather experience \langle s_t, a_t, r_t, s_{t+1} \rangle

6 | U_t \leftarrow r_t + \gamma \max_{a' \in \mathcal{A}} \hat{Q}(s_{t+1}, a', w_t)

7 | w_{t+1} = w_t + \alpha \left[ U_t - \hat{Q}(s_t, a_t, w_t) \right] \phi(s_t, a_t)

8 | t \leftarrow t + 1

9 EndLoop
```

(Linear) FA: Issues

- Linear FA+RL successfully applied on some tasks
- Nonlinear models (e.g., ANNs) have obtained significant results as well
 - e.g., TD-Gammon (1992)
- Efficacy of these approaches strongly depends on the features in use
 - how states (and actions) are represented
 - domain expertise necessary

Deep RL

- We have seen that the key advancement enabled by DNNs is the ability of learning the features
- ▶ Idea: exploiting this ability to learn suitable features for state and action representation

Deep Q Network

- First popular application of DNNs within RL in 2013
 - ► Mnih et al., "Playing Atari with Deep Reinforcement Learning" https://www.cs.toronto.edu/%7Evmnih/docs/dqn.pdf
- Task: playing Atari 2600 games
- Two key innovations:
 - DNN to approximate Q (Deep Q Network)
 - Experience Replay buffer
- Learning algorithm adapted from Q-learning

Example: Atari games

Atari 2600 console (1977-1992)

Example: Atari games

Breakout: https://www.youtube.com/watch?v=TmPfTpjtdgg

Deep Q Network

- Input: state s (possibly preprocessed)
- **Output**: $\hat{Q}(s, a)$, for every action a

Training

- NN training usually based on (large) training set
 - \triangleright collection of examples (x_i, y_i)
- To train a DQN we would need many examples $(s_i, [Q(s_i, a_1) \cdots Q(s_i, a_n)]^T)$
- **Problem:** we don't have true examples of Q(s, a) to use!
 - agent only collects immediate rewards on-line
- We need to estimate Q on-line based on experience (as usual in RL)

Training (2)

Experience

Training Sample

```
 \langle s_{t}, a_{t}, s_{t+1}, r_{t} \rangle \qquad (s_{t}, a_{t}) \to r_{t} + \gamma \max_{a'} \hat{Q}(s_{t+1}, a', \mathbf{w}) 
 \langle s_{t-1}, a_{t-1}, s_{t}, r_{t-1} \rangle \qquad (s_{t-1}, a_{t-1}) \to r_{t-1} + \gamma \max_{a'} \hat{Q}(s_{t}, a', \mathbf{w}) 
 \langle s_{t-2}, a_{t-2}, s_{t-1}, r_{t-2} \rangle \qquad (s_{t-2}, a_{t-2}) \to r_{t-2} + \gamma \max_{a'} \hat{Q}(s_{t-1}, a', \mathbf{w})
```

. . .

- Naive idea: pick mini-batches of last b experience tuples and train the NN
 - i.e., at each iteration, train on most recent experience
- sequential observations likely correlated X
- less recent experience possibly forgotten X

Experience Replay

- Smarter approach: experience replay buffer
- Circular FIFO buffer with capacity B > b
- At each training iteration, b tuples drawn randomly from the buffer
- ▶ correlation between observations reduced/removed ✓
- ▶ if B is large, old observations are "seen" more than once ✓
 - improved data efficiency

Deep Q-learning (DQL)

```
    Initialize w

 2 Initialize empty buffer \mathcal{B}
 3 i \leftarrow 0
 4 Loop
 5
         choose action a
         gather experience \langle s_i, a_i, r_i, s_{i+1} \rangle and add to \mathcal{B}
 6
         sample minibatch of b \langle s_i, a_i, r_i, s_{i+1} \rangle tuples from \mathcal{B}
 7
         y^{(j)} \leftarrow r_i + \gamma \max_{a'} \hat{Q}(s_{i+1}, a', w), j = 1, ..., b
 8
         \mathcal{L}^{(j)} = (y^{(j)} - \hat{Q}(s_i, a_i, \mathbf{w}))^2
                                                            /* Loss */
 9
         update w using, e.g., SGD on the minibatch
10
         i \leftarrow i + 1
11
12 EndLoop
```

Example: Atari

- ► Frames are 210 × 160 pixel images with a 128 color palette
- Input dimensionality reduced via preprocessing
 - RGB to gray-scale conversion
 - down-sampling to 110×84
 - cropped to 84x84 to ease implementation
- State comprises last 4 frames
 - ► why?

Example: Atari

- ▶ NN input: 84 × 84 × 4 image produced by preprocessing
- Conv. layer with 16 8x8 filters with ReLU
- Conv. layer with 32 4x4 filters with ReLU
- Fully-connected layer with 256 ReLU units
- Linear output layer with one unit for each valid action (from 4 to 18 in the considered games)
- Trained using RMSProp for a total of 50 million frames (around 38 days of game experience in total)
- Replay memory stores 1 million most recent frames

Example: Atari

Target Network

- DQN may suffer from instability during training, possibly preventing the algorithm to converge
- In traditional NN training, the training targets do not change over time
- ▶ In DRL, since we don't have ground-truth Q values, we use the approximated \hat{Q} in the update target value:

$$y^{(j)} \leftarrow r_j + \gamma \min_{a'} \hat{Q}(s_{i+1}, a', \boldsymbol{w})$$

-but we keep changing w at each iteration
- Let's use a second neural network to stabilize the targets

Deep Q-learning with Target Network

```
1 Initialize w and w^- = w
 2 Initialize empty buffer \mathcal{B}
 3 i \leftarrow 0
 4 Loop
 5
         choose action a
         gather experience \langle s_i, a_i, r_i, s_{i+1} \rangle and add to \mathcal{B}
 6
         sample minibatch of b \langle s_i, a_i, r_i, s_{i+1} \rangle tuples from \mathcal{B}
 7
         y^{(j)} \leftarrow r_i + \gamma \min_{a'} \hat{Q}(s_{i+1}, a', w^-), j = 1, ..., b
 8
         \mathcal{L}^{(j)} = (\mathbf{y}^{(j)} - \hat{Q}(s_i, a_i, \mathbf{w}))^2
 9
         update w using, e.g., SGD on the minibatch
10
         every C steps: w^- \leftarrow w
11
         i \leftarrow i + 1
12
13 EndLoop
```

Remark

- ▶ DQN can seamlessly work with continuous state spaces
- Action space must be finite

Example: CartPole with DQN

- Environment provided by OpenAl Gym
 - ► Large collection of ready-to-use environments
- DQN implemented using TF-Agents
 - RL library part of Tensorflow ecosystem
- https://www.tensorflow.org/agents/tutorials/1_dqn_ tutorial?hl=en

Policy-based RL

- ► So far, we have considered value-based RL algorithms
 - Learn the value function; get a policy from it
- Now we turn our attention to policy-based RL (or, policy gradient methods)
 - Directly learn a policy
 - Algorithms may still learn the value function, but it is not used to derive the policy

Policy Gradient Methods

Algorithms learn a parameterized policy

$$\pi(a|s, \theta) = P(A_t = a|S_t = s, \theta_t = \theta)$$

 $\theta \in \mathbb{R}^m$ is the vector of policy parameters

 $\pi(a|s,\theta)$ can be any function, as long as it is differentiable w.r.t. parameters θ

Note

To avoid ambiguity, we will keep using $\mathbf{w} \in \mathbb{R}^d$ to denote the vector of parameters used to approximate the value function, if necessary (e.g., $V(s, \mathbf{w})$)

Policy Gradient Methods (2)

- Suppose that $J(\theta)$ is a performance measure of the policy resulting from parameters θ (the higher the better)
- ► To maximize performance, we can update θ by gradient ascent:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha \nabla J(\boldsymbol{\theta}_t)$$

► The expression "policy gradient" refers to all the methods based on the idea introduced above

Policy Approximation: Why?

- Often (but not always), the policy is an easier function to approximate compared to the value function
- Policy parameterization lets action probabilities change smoothly as a function of the learned parameters, while they can change dramatically for a small change in the action values (if a different action gets the highest value)
 - stronger convergence guarantees are available
- Stochastic policies can be learned
- Continuous action spaces are supported

Policy Approximation via Action Preferences

- Let's suppose that the action space is discrete (and not too large)
 - We will discuss later other scenarios
- ► A natural choice for policy approximation is softmax in action preferences:

$$\pi(a|s, \theta) = \frac{e^{h(s,a,\theta)}}{\sum_{a'} e^{h(s,a',\theta)}}$$

 $h(s, a, \theta)$ is a parameterized numerical preference value for every state-action pair

Policy Approximation via Action Preferences

- Note that we don't need any specific strategy to determine the preference values $h(s, a, \theta)$
- They are just a convenient way to parameterize the policy $\pi(a|s,\theta)$
- For instance, we could use a DNN with a softmax output layer to approximate the policy
 - ► Hidden layers compute the action preferences
 - Output layer produces the policy probabilities

Action Preferences vs. Action Values

- ightharpoonup Action values Q(s, a) may differ by a small amount
 - ► Softmax based on *Q* may struggle to approach a deterministic policy (unless a very small temperature coefficient is used)
- Action preferences instead do not need to convergence to specific values (e.g., the optimal value function), but rather to the best values for the policy to learn
 - if a deterministic policy is optimal, preference for the optimal action will be as higher as possible than the other actions
 - if a stochastic policy is optimal, more than one action will have a high preference value (e.g., card games with incomplete information) ...
 - ...and we can learn arbitrary probabilities for actions

Policy Gradient in Episodic Tasks

- Let's consider an episodic task starting in state s₀
- In this case, performance of the policy can be evaluated as

$$J(\theta) = V_{\pi_{\theta}}(s_0)$$

- ▶ How to update θ to improve performance?
- Performance depends both on (1) action selection and
 (2) the distribution of states occurring in the episode
- Both depend on the parameters!
- (2) is particularly difficult as it also depends on the environment

Policy Gradient Theorem

Policy Gradient Theorem

$$\nabla_{\theta} J(\theta) \propto \sum_{s} \mu(s) \sum_{a} Q_{\pi}(s, a) \nabla_{\theta} \pi(a|s, \theta)$$

- Proportionality constant is the average length of an episode
 - ightharpoonup in gradient ascent, constant absorbed by step size α \checkmark
- we don't need the derivative of $\mu(s)$ \checkmark

Policy Gradient Theorem: Proof

To simplify notation, we leave it implicit that π is a function of θ , and that gradients are w.r.t. θ

$$\nabla V_{\pi}(s) = \nabla \left[\sum_{a} \pi(a|s) Q_{\pi}(s, a) \right] =$$

$$= \sum_{a} \nabla [\pi(a|s) Q_{\pi}(s, a)] =$$

$$= \sum_{a} [\nabla \pi(a|s) Q_{\pi}(s, a) + \pi(a|s) \nabla Q_{\pi}(s, a)] =$$

$$= \sum_{a} \left[\nabla \pi(a|s) Q_{\pi}(s, a) + \pi(a|s) \nabla \sum_{s', r'} \rho(s', r'|s, a) (r + V_{\pi}(s')) \right] =$$

Proof (2)

$$=\sum_{\boldsymbol{a}}\left[\nabla\pi(\boldsymbol{a}|\boldsymbol{s})Q_{\pi}(\boldsymbol{s},\boldsymbol{a})+\pi(\boldsymbol{a}|\boldsymbol{s})\nabla\sum_{\boldsymbol{s}',\boldsymbol{r}'}p(\boldsymbol{s}',\boldsymbol{r}'|\boldsymbol{s},\boldsymbol{a})(\boldsymbol{r}+V_{\pi}(\boldsymbol{s}'))\right]=$$

- 1) Reward does not depend on θ (gradient is 0)
- 2) $\sum_{s'} \sum_{r'} p(s', r'|s, a) V_{\pi}(s') = \sum_{s'} p(s'|s, a) V_{\pi}(s')$

$$=\sum_{a}\left[
abla\pi(a|s)Q_{\pi}(s,a)+\pi(a|s)\sum_{s'}p(s'|s,a)
abla V_{\pi}(s')
ight]=$$

Note: we are computing $\nabla V_{\pi}(s)$ and now we have a recursive term $\nabla V_{\pi}(s')$! Let's unroll the recursion...

Proof (3)

$$= \sum_{a} \left[\nabla \pi(a|s) Q_{\pi}(s,a) + \pi(a|s) \sum_{s'} p(s'|s,a) \cdot \right.$$
$$\left. \sum_{a'} \left(\nabla \pi(a'|s') Q_{\pi}(s',a') + \pi(a'|s') \sum_{s''} p(s''|s',a') \nabla V_{\pi}(s'') \right) \right] =$$

After repeated unrolling ...

$$= \sum_{x \in \mathcal{S}} \sum_{k=0}^{\infty} P(s \to x, k, \pi) \sum_{a} \left[\nabla \pi(a|x) Q_{\pi}(x, a) \right]$$

where $P(s \to x, k, \pi)$ is the probability of transitioning from s to x in k steps under policy π .

Proof (4)

We can now write an expression for the gradient of J

$$abla J(oldsymbol{ heta}) =
abla V_{\pi}(s_0) = \sum_{s} \sum_{k=0}^{\infty} P(s_0 \to s, k, \pi) \sum_{a} \left[\nabla \pi(a|s) Q_{\pi}(s, a) \right] =$$

$$= \sum_{s} \eta(s) \sum_{a} \left[\nabla \pi(a|s) Q_{\pi}(s, a) \right] =$$

 $\eta(s)$: avg. number of steps spent in s within an episode

$$=\sum_{s'}\eta(s')\sum_srac{\eta(s)}{\sum_{s'}\eta(s')}\sum_a\left[
abla\pi(a|s)Q_\pi(s,a)
ight]=$$

Proof (5)

$$= \sum_{s'} \eta(s') \sum_{s} \frac{\eta(s)}{\sum_{s'} \eta(s')} \sum_{a} \left[\nabla \pi(a|s) Q_{\pi}(s, a) \right] =$$

$$= \sum_{s'} \eta(s') \sum_{s} \mu(s) \sum_{a} \left[\nabla \pi(a|s) Q_{\pi}(s, a) \right]$$

$$\nabla J(\theta) \propto \sum_{s} \mu(s) \sum_{a} \left[\nabla \pi(a|s) Q_{\pi}(s, a) \right]$$

REINFORCE

- $\triangleright u(s)$ is the on-policy distribution of states under π
 - \blacktriangleright if π is followed, states will occur in that proportion

$$\nabla_{\theta} J(\theta) \propto \sum_{s} \mu(s) \sum_{a} Q_{\pi}(s, a) \nabla_{\theta} \pi(a|s, \theta) =$$

$$= E_{\pi} \left[\sum_{a} Q_{\pi}(s_{t}, a) \nabla_{\theta} \pi(a|s_{t}, \theta) \right]$$

ightharpoonup as we did to approximate the value function, we can perform a stochastic gradient ascent on occurring states s_t

REINFORCE (2)

- lacktriangle We replaced a sum over states with an expectation under π
- We want to do the same with the sum over actions
- First, we need to weigh actions by $\pi(a|s, \theta)$

$$\begin{split} \nabla_{\theta} J(\theta) &\propto E_{\pi} \left[\sum_{a} Q_{\pi}(s_{t}, a) \nabla_{\theta} \pi(a|s_{t}, \theta) \right] = \\ &= E_{\pi} \left[\sum_{a} \pi(a|s_{t}, \theta) Q_{\pi}(s_{t}, a) \frac{\nabla_{\theta} \pi(a|s_{t}, \theta)}{\pi(a|s_{t}, \theta)} \right] = \\ &= E_{\pi} \left[Q_{\pi}(s_{t}, a_{t}) \frac{\nabla_{\theta} \pi(a_{t}|s_{t}, \theta)}{\pi(a_{t}|s_{t}, \theta)} \right] = \\ &= E_{\pi} \left[G_{t} \frac{\nabla_{\theta} \pi(a_{t}|s_{t}, \theta)}{\pi(a_{t}|s_{t}, \theta)} \right] \end{split}$$

REINFORCE (3)

$$\nabla J(\boldsymbol{\theta}) \propto E_{\pi} \left[G_{t} \frac{\nabla_{\boldsymbol{\theta}} \pi(a_{t}|s_{t}, \boldsymbol{\theta})}{\pi(a_{t}|s_{t}, \boldsymbol{\theta})} \right]$$

 \triangleright We can sample G_t for each time step, and we got an

- expression proportional to the gradient
- We can use stochastic gradient ascent to update parameters
- ► The resulting algorithm is REINFORCE (1992)

$$\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t + \alpha G_t \nabla_{\boldsymbol{\theta}} \ln \pi(\boldsymbol{a}_t | \boldsymbol{s}_t, \boldsymbol{\theta})$$

$$\frac{\nabla_{\theta} \pi(a_t | s_t, \theta)}{\pi(a_t | s_t, \theta)} = \nabla_{\theta} \ln \pi(a_t | s_t, \theta)$$

REINFORCE: Algorithm

We also include a discount factor γ

```
1 Initialize \theta (e.g., to 0)
2 Loop
3 | generate episode s_0, a_0, r_1, s_1, ..., r_T following \pi
4 | for t=0,1,...,T do
5 | G_t \leftarrow \sum_{k=t+1}^T \gamma^{k-t-1} r_k
6 | \theta \leftarrow \theta + \alpha \gamma^t G_t \nabla_{\theta} \ln \pi(a_t | s_t, \theta)
7 | end
8 EndLoop
```

Policy Gradient: Another Perspective

- Consider a NN used for multi-class classification
- \triangleright Softmax final layer outputs a probability y_c for all classes c
- Gradient of cross-entropy loss used for training

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \nabla_{\boldsymbol{\theta}} \left[\sum_{c} \bar{y}_{c} \ln y_{c} \right]$$

- ► Intuitively, training will increase prob. *y_c* for the class *c* labeled as correct (ground truth)
 - likelihood maximization
- Replacing classes with "actions", the NN outputs $\pi(a|s,\theta)$
- ▶ REINFORCE update is proportional to $\nabla_{\theta} \ln \pi(a_t | s_t, \theta)$
 - without a ground truth, prob. is increased/decreased based on return

REINFORCE with Baseline

- A slight generalization of REINFORCE involves the use of a baseline b(s)
- ▶ We compare the value of each action to b(s)
- ► The policy gradient theorem remains true

$$\nabla J(\theta) \propto \sum_{s} \mu(s) \sum_{a} (Q(s, a) - b(s)) \nabla \pi(a|s, \theta)$$

Baseline can be useful to reduce the variance of the update and speed learning

$$\theta_{t+1} = \theta_t + \alpha \left(G_t - b(s_t) \right) \nabla \ln \pi(a_t | s_t, \theta)$$

Actor-Critic

- Idea to avoid high variance of returns used by REINFORCE
- ▶ Using the one-step return $G_{t:t+1}$ instead

$$G_{t:t+1} = r_t + \gamma V(s_{t+1})$$

- We call critic the role of the value function used in this way
- ► We call the resulting approach actor-critic

$$\theta_{t+1} = \theta_t + \alpha \left(G_{t:t+1} - \hat{V}(s_t, \mathbf{w}) \right) \nabla \ln \pi(a_t | s_t, \theta) =$$

$$= \theta_t + \alpha \left(r_{t+1} + \gamma \hat{V}(s_{t+1}, \mathbf{w}) - \hat{V}(s_t, \mathbf{w}) \right) \nabla \ln \pi(a_t | s_t, \theta)$$

Actor-Critic (2)

```
1 Initialize \theta and w (e.g., to 0)
 2 Loop
           Initialize s as first state of the episode
 3
           I \leftarrow 1
 4
           while s not terminal do
 5
                 choose action a according to \pi(\cdot|s,\theta)
 6
                 observe s' and r
 7
                 \delta \leftarrow r + \gamma \hat{V}(s', \mathbf{w}) - \hat{V}(s, \mathbf{w})
 8
                 \mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{V}(\mathbf{s}, \mathbf{w})
 9
                 \theta \leftarrow \theta + I\alpha^{\theta}\delta\nabla \ln \pi(a|s,\theta)
10
                 s \leftarrow s'
11
           end
12
13 EndLoop
```

The Continuing Case

- Policy gradient theorem holds for continuing tasks as well
- ► The performance measure $J(\theta)$ must be changed to the average reward
- Proof and updated Actor-Critic alg. in Sutton-Barto, 13.6

Continuous or Large Action Spaces

- Policy gradient methods can be useful in presence of very large or continuous action spaces
 - Computing the learned probability for every action can be expensive/unfeasible
- ► The solution: learn the parameters of a probability distribution, instead of the probability of choosing each action
- Example: policy defined as the normal probability density

$$\pi(a|s,\theta) = \frac{1}{\sigma(s,\theta)\sqrt{2\pi}} \exp\left(-\frac{(a-\mu(s,\theta)^2)}{2\sigma(s,\theta)^2}\right)$$

Example

CartPole with Actor-Critic in TensorFlow:

https://www.tensorflow.org/tutorials/reinforcement_learning/actor_critic?hl=en

Advanced Policy Methods

- Deterministic Policy Gradient (DPG): similar to the theorem proven above, but for deterministic policies
 - ➤ Silver et al. (2014), "Deterministic Policy Gradient Algorithm", http://proceedings.mlr.press/v32/silver14.pdf
- Deep Deterministic Policy Gradient (DDPG): DPG with DNNs
 - Lillicrap et al. (2016), "Continuous control with deep reinforcement learning", https://arxiv.org/abs/1509.02971
- **...**
- Proximal Policy Optimization (PPO): state-of-the-art algorithm
 - Schulman et al., "Proximal Policy Optimization Algorithms", https://arxiv.org/pdf/1707.06347.pdf

Advanced RL Topics

- ► Multi-agent RL
- ► Hierarchical RL
- RL + Heuristic Tree Search
- Transfer RL
- **.**..