1. Metric spaces and Banach's FPT (Fixed Point Theorem)

Def 1.1 (Metric and Metric Space)

Let X be a nonempty set, and $d: X^2 \to \mathbb{R}$ be a function satisfying:

- d(x,y) = 0 iff x = y
- d(x,y) = d(y,x)
- $\bullet \ \ d(x,y) \leq d(x,z) + d(z,y)$

Then the function d is called the metric, the pair (X, d) is called the metric space, and the number d(x, y) is called the distance between x and y in X.

Examples

- ullet $(\mathbb{R}^n,d),$ with $d(x,y)=\left(\sum_{i=1}^n(x_i-y_i)^2
 ight)^{rac{1}{2}}$
- $ullet (\mathbb{R}^n,d),$ with $d(x,y)=\max_{i\leq n}|x_i-y_i|$
- ullet (C[a,b],d), with $d(f,g)=\left(\int_a^b|f(x)-g(x)|^2dx
 ight)^{rac{1}{2}}$
- ullet (C[a,b],d), with $d(f,g)=\sup_{a\leq x\leq b}|f(x)-g(x)|$
- ullet $(L^p[a,b],d),$ with $d(f,g)=\left(\int_a^b|f(x)-g(x)|^pdx
 ight)^{rac{1}{p}}$

Def 1.2 (Fixed Point)

A fixed point of the mapping T:X o X is the point $x^* \in X$ such that $T(x^*) = x^*$.

Def 1.3 (Contraction)

Let (X,d) be a <u>metric space</u>. A mapping $T: X \to X$ is called a contraction on X of there exists a constant 0 < k < 1 such that

$$d(T(x),T(y)) \leq kd(x,y)$$

for all $x,y \in X$.

Theorem 1.1 (Banach's FPT)

Let (X,d) be a complete <u>metric space</u> and let $T:X\to X$ be a <u>contraction</u> on X. Then T has a unique <u>fixed point</u> $x^*\in X$.

Corollary 1.1 (Banach's FPT)

The iterative sequence $x_{n+1} = T(x_n)$ for n = 1, 2, ... with arbitrary starting point $x_0 \in X$ converges, under assumptions of Banach's FPT, to the unique fixed point of T. Moreover, the following estimates hold:

- $d(x_m,x^*) \leq rac{k^m}{1-k}d(x_1,x_0)$ the prior estimate,
- $d(x_m, x^*) \leq \frac{k}{1-k} d(x_{m-1}, x_m)$ the posterior estimate.

2. Applications of Banach's FPT

2.1 Applications to real-valued functions

Let $g \in C^1[a,b]$, and suppose we want to find the solution to the equation g(x) = 0 on [a,b]. We note that we can always rewrite this equation as x = g(x) + x, and then out problem is equivalent with finding a fixed point of the function f(x) = x + g(x).

Theorem 2.1 (Differentiable Contraction)

Let (\mathbb{R},d) be a metric space of real numbers with the $\underline{\mathsf{metric}}\ d(x,y) = |x-y|$ and let [a,b] be a closed interval in \mathbb{R} . Moreover, let $f:[a,b] \to [a,b]$ be a continuous and differentiable function such that $\sup_{x \in [a,b]} |f'(x)| \le k < 1$. Then there exists a unique $\underline{\mathsf{fixed point}}\ x^* \in [a,b]$ of f.

Example 2.1

We want to find the solution to the equation cos(x)-2x=0 on $[0,\pi]$. Then we can write this equation as $x=\frac{1}{2}cos(x)$, and try to find the fixed point of the function $f(x)=\frac{1}{2}cos(x)$ on $[0,\pi]$. We have to show that f is a <u>contraction</u> on $[0,\pi]$. To do so, we apply the <u>theorem 2.1</u>. We have

$$\sup_{x \in [0,\pi]} |f'(x)| = \sup_{x \in [0,\pi]} \left| -rac{1}{2} sin(x)
ight| = rac{1}{2} < 1.$$

We have shown that f is a <u>contraction</u> and, by the <u>Banach's FPT</u>, it has a <u>fixed point</u> x^* that is the limit of the sequence $\{x_n\}$ generated by the scheme $x_{n+1} = f(x_n)$ with any starting point $x_0 \in [0, \pi]$.

Note that to show that f is a contraction we could also directly apply the definition:

$$|f(x)-f(y)| = \left|rac{1}{2}cos(x)-rac{1}{2}sin(x)
ight| = \left|sin\left(rac{x+y}{2}
ight)sin\left(rac{x-y}{2}
ight)
ight|
onumber \ \leq \sup_{x,y\in[0,\pi]}\left|sin\left(rac{x+y}{2}
ight)rac{1}{2}|x-y|
ight| = rac{1}{2}|x-y| \leq |x-y|.$$

2.2 Applications to integral equations

We consider integral equations in the following form

$$f(x)=g(x)+\mu\int_a^b k(x,y)f(y)dy,$$

where $f:[a,b]\to\mathbb{R}$ is an unknown function, $g:[a,b]\to\mathbb{R}$, and $k:[a,b]^2\to\mathbb{R}$ are given functions, and μ is a parameter.

The above integral equation can be considered in various function spaces. Here we consider this equation only in (C[a,b],d) with $d(f,g)=\sup_{x\in [a,b]}|f(x)-g(x)|$.

We assume that $g \in C[a,b]$, and that the kernel k is continuous on the square $[a,b]^2$, which implies that k is bounded on $[a,b]^2$, meaning that there exists a constant c, such that $|k(x,y)| \le c$ for all $(x,y) \in [a,b]^2$.

Theorem 2.2

The metric space (C[a,b],d) is complete

Note that our integral equation can be rewritten as T(f) = f, where

$$T(f)(x)=g(x)+\mu\int_a^b k(x,y)f(y)dy.$$

First we have to show that the mapping $T:C[a,b]\to C[a,b]$ is well-defined, but this is obvious, as g and k are both continuous on their domains. Let us now determine for which values of μ the map T is a <u>contraction</u>. We have

$$egin{aligned} d(T(f_1),T(f_2)) &= \sup_{x \in [a,b]} |T(f_1)(x) - T(f_2)(x)| = \sup_{x \in [a,b]} |\mu| \left| \int_a^b k(x,y)(f_1(y) - f_2(y)) dy
ight| \leq \ &\leq |\mu| \sup_{x \in [a,b]} \int_a^b |k(x,y)| |f_1(y) - f_2(y)| dy \leq c |\mu| \sup_{x \in [a,b]} |f_1(x) - f_2(x)| \int_a^b dy = \ &= c |\mu| (b-a) d(f_1,f_2). \end{aligned}$$

It is now required that $c|\mu|(b-a)<1$, or $|\mu|<\frac{1}{c(b-a)}$, for T to be a contraction. Applying the Banach's FPT, we see that the map T has a unique fixed point $f^*\in C[a,b]$.

Theorem 2.3 (Integral equation)

Consider the integral equation

$$f(x) = g(x) + \mu \int_a^b k(x,y) f(y) dy.$$

Suppose that k and g are continuous on $[a,b]^2$ and [a,b] respectively, and assume that the parameter μ satisfies $|\mu|<\frac{1}{c(b-a)}$ with the constant c such that |k(x,y)|< c for all $(x,y)\in [a,b]^2$.

Then the integral equation has a unique solution $f \in C[a, b]$. Moreover, this solution is a limit of the sequence $\{f_n\}$ where f_0 is a continuous function on [a, b], and

$$f_{n+1}=g(x)+\mu\int_a^b k(x,y)f_n(y)dy.$$

2.3 Applications to differential equations

Let's consider the initial value problem

$$x'(t) = f(t,x(t)) \ x(t_0) = x_0$$

where $f:A\subset\mathbb{R}^2 o\mathbb{R}$ is a given function and x(t) is an unknown function that we want to find.

Theorem 2.4 (Picard-Lindelöf)

Let f be continuous on the rectangle

$$R=\{(t,x)\in\mathbb{R}_+ imes\mathbb{R}:|t-t_0|\leq a,|x-x_0|\leq b\}$$

and thus bounded on R, say $|f(t,x)| \le c$ for all $(t,x) \in R$. Suppose that f satisfies the Lipschitz condition on R with respect to the second argument, i.e., there exists a constant k such that

$$|f(t,x)-f(t,y)| \leq k|x-y|$$

 $\text{ for all } (t,x), (t,y) \in R.$

Then the initial value problem has a unique solution, which exists on the interval $[t_0 - \beta, t_0 + \beta]$, where

$$eta = \min \left\{ a, rac{b}{c}, rac{1}{k}
ight\}.$$

Corollary 2.1 (Picard-Lindelöf)

Under the assumptions of Picard-Lindelöf theorem, the sequence given by

$$x_0(t) = x_0 \ x_{n+1}(t) = T(x_n)(t) = x_0 + \int_{t_0}^t f(s,x_n(s)) ds$$

converges uniformly to the unique solution x(t) on $J=[t_0-\beta,t_0+\beta].$

Example 2.2

Consider the differential equation

$$x'(t)=\sqrt{x(t)}+x^3(t),\quad x(1)=2.$$

We have

$$x_1(t) = 2 + \int_1^t \Big(\sqrt{2} + 2^2\Big) ds = 2 + \Big(\sqrt{2} + 8\Big)(t-1)$$
 $x_2(t) = 2 + \int_1^t \Big(\sqrt{x_1(s)} + x_1(s)^3\Big) ds = *\mathrm{hot\ mess*}$

2.4 Applications to matrix equations

Suppose we want to find a solution of the matrix equation

$$Ax = B$$

where $A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^n$.

We note that this equation can be rewritten as

$$x = (I - A)x + b$$

where I is the identity matrix.

Let's define the map $T:\mathbb{R}^n o \mathbb{R}^n$ by

$$Tx = (I - A)x + b.$$

Then the problem of solving the matrix equation Ax = b is equivalent with finding a <u>fixed point</u> of T.

Let's define $\alpha_{ij} = \delta_{ij} - a_{ij}$ where a_{ij} are elements of the matrix A, and δ_{ij} is the Kronecker delta. Using this notation we have

$$(Tx)_i = \sum_{j=1}^n lpha_{ij} x_j + b_i$$

We will show that Ax = b has a unique solution if

$$\sum_{j=1}^n |lpha_{ij}| \leq lpha < 1.$$

for all $i=1,2,\ldots,n$. Consider the matrix space (\mathbb{R}^n,d) , with $d(x,y)=\max_{1\leq i\leq n}|x_i-y_i|$ for $x,y\in\mathbb{R}^n$. We have

$$egin{aligned} d(Tx,Ty) &= \max_i |(Tx)_i - (Ty)_i| = \ &= \max_i \left| \sum_{j=1}^n lpha_{ij} (x_j - y_j)
ight| \leq \ &\leq \max_i \sum_{j=1}^n |lpha_{ij}| |x_j - y_j| \leq \ &\leq \max_i \sum_{j=1}^n |lpha_{ij}| \cdot \max_j |x_j - y_j| = \ &= \max_i \sum_{j=1}^n |lpha_{ij}| \cdot d(x,y). \end{aligned}$$

We notice that if $\sum_{j=1}^n |lpha_{ij}| < 1$, for all $i=1,2,\ldots,n$, then $\max_i \sum_{j=1}^n |lpha_{ij}| < 1$. We have

$$\sum_{i=1}^n |lpha_{ij}| = |a_{i1}| + |a_{i2}| + \dots + |1-a_{ii}| + \dots + |a_{in}| < 1,$$

SO

$$\sum_{j=1, j
eq i}^n |a_{ij}| < 1 - |1 - a_{ii}| < |a_{ii}|.$$

We get the condition for the matrix A for which T is a contraction. This condition is given by

$$|a_{ii}|>\sum_{j=1,j
eq i}^n|a_{ij}|,$$

or, in other words, matrix A should be strictly diagonally dominant.

Theorem 2.5 (Matrix equation)

The matrix equation Ax = b with $A \in \mathbb{R}^{n \times n}$ an $b \in \mathbb{R}^n$ has a unique solution $x \in \mathbb{R}^n$ if A is strictly diagonally dominant. The iteration method is as follows

$$x_{n+1}=(I-A)x_n+b,\quad x_0\in\mathbb{R}^n.$$

In general, we can rewrite the equation Ax = b as Qx = (Q - A)x + b, where $Q \in \mathbb{R}^{n \times n}$. We then have the following iterative scheme

$$Qx_{n+1} = (Q-A)x_n + b.$$

Examples:

- Q = I Richardson method,
- Q diagonal, with $q_{ii}=a_{ii}$ Jacobi method,
- Q = D L with D diagonal, and L lower triangular Gauss-Seidel method.

3. Normed spaces

Def 3.1 (Norm and normed space)

A norm on a vector space X is a real-valued function denoted by $||\cdot||$ which satisfies the following conditions:

- $||x|| \ge 0$ for all x. ||x|| = 0 iff x = 0,
- $||\alpha x|| = |\alpha|||x||$ for any α , and $x \in X$,
- $||x+y|| \le ||x|| + ||y||$ for all $x, y \in X$.

A normed space is a vector space equipped with a norm, depicted by $(X, ||\cdot||)$, or with a shorthand X.

Remark 3.1.1

A norm on X defined the metric $d(\cdot, \cdot)$ on $X \times X$, which is defined by d(x, y) = ||x - y||, and is called the metric induced by the norm $||\cdot||$.

Remark 3.1.2

Every normed space X is a metric space, converse might not be true. For example, a metric defined by

$$d(x,y) = egin{cases} 1, & x = y, \ 0, & x
eq y, \end{cases}$$

then $||\alpha(x-y)|| = d(\alpha x, \alpha y) \neq |\alpha| d(x,y) = |\alpha| ||x-y||$.

Lemma 3.1 (Norm continuity)

The norm $||\cdot||$ defined on X is a continuous mapping of X into \mathbb{R} .

Examples of normed spaces

- ullet $(\mathbb{R}^n,||\cdot||_2)$, with $||x||_2=\left(\sum_{m=1}^n x_i^2
 ight)^{rac{1}{2}}$,
- ullet $(C[a,b],||\cdot||)$, with $||f||=\displaystyle\max_{x\in[a,b]}|f(x)|$,
- $(L^p(\Omega),||\cdot||_{L^p(\Omega)})$, with $\Omega\subset\mathbb{R},\,p\geq 1$ and

$$||f||_{L^p(\Omega)} = egin{cases} \left(\int_\Omega f(x)^p dx
ight)^{rac{1}{p}}, & 1 \leq p < \infty, \ ess \sup_{x \in \Omega} |f(x)|, & p = \infty. \end{cases}$$

Def 3.2 (Norm equivalence)

Two normed spaces $(X, ||\cdot||_1)$, $(X, ||\cdot||_2)$ are called topologically equivalent, or two norms $||\cdot||_1$, and $||\cdot||_2$ are called equivalent if there exist positive constants C_1 , and C_2 , such that

$$|C_1||x||_2 \leq ||x||_1 \leq C_2||x||_2$$

 $\text{ for all } x \in X.$

Theorem 3.1 (Equivalence of norms in finite dimensional spaces)

All norms of finite dimensional space X are equivalent.