<u>Matlab: R2015a</u> IRIS: 20150527

Simulate Permanent Change in Inflation Target

simulate_disinflation.m

by Jaromir Benes

May 27, 2015

Summary

Simulate a permanent change in the inflation target, calculate the sacrifice ratio, and run a simple parameter sensitivity exercise using model objects with multiple parameterizations.

Contents

1	Clear Workspace	2
2	Load Solved Model Object	2
3	Define dates	2
4	Create Model with Higher Steady State Inflation	2
5	Simulate Disinflation	5
6	Sacrifice Ratio	6
7	Change Price and Wage Stickiness and Compare to Baseline	8
8	Help on IRIS Functions Used in This File	1

1 Clear Workspace

Clear workspace, close all graphics figures, clear command window, and check the IRIS version.

```
clear;
close all;
clc;
irisrequired 20140315;

// *#ok<*NASGU>

*#ok<*NOPTS>
```

2 Load Solved Model Object

Load the solved model object built in read_model; run read_model at least once before running this m-file.

```
25 load read_model.mat m;
```

3 Define dates

```
29 startDate = qq(2009,2);
30 endDate = startDate + 39;
31 plotRng = startDate-5 : startDate+19;
```

4 Create Model with Higher Steady State Inflation

Set the steady-state rate of inflation to 3 pct, and solve for the new steady state of nominal variables. Real variables remain unchanged, so they can be fixed here.

```
39  m1 = m;
40  m1.pi = 1.035^(1/4);
41  m1 = sstate(m1,'fix=',{'Y','N','A','RMC','Growth'},'growth=',true);
42  chksstate(m1);
43  m1 = solve(m1)
44  
45  ss = get(m,'sstateLevel');
46  ss1 = get(m1,'sstateLevel');
47  ss & ss1
```

			First-Order		Norm of
Iteration	Func-count	Residual	optimality	Lambda	step
0	23	0.000212136	0.103	0.01	
1	46	6.66933e-09	0.000506	0.001	0.0120627
2	69	1.03342e-12	4.45e-08	0.0001	8.3589e-05
3	92	2.28258e-13	4.61e-09	1e-05	5.0535e-05
4	115	1.53773e-15	3.81e-10	1e-06	4.14635e-05
5	138	1.20788e-19	3.38e-12	1e-07	3.6748e-06
6	161	9.63814e-26	3.18e-14	1e-08	3.28311e-08
7	184	2.97031e-30	1.94e-14	1e-09	2.93497e-11

Local minimum possible.

lsqnonlin stopped because the relative size of the current step is less than the selected value of the step size tolerance.

			Norm of		
Iteration	Func-count	Residual	optimality	Lambda	step
0	7	6.30872	10.5	0.01	
1	14	0.000309159	0.0104	0.001	1.75847
2	21	3.14767e-10	1.03e-05	0.0001	0.0176528
3	28	3.21098e-18	1.04e-09	1e-05	1.78292e-05
4	35	3.31519e-28	1.07e-14	1e-06	1.80093e-09
5	42	0	0	1e-07	1.82985e-14

Local minimum found.

Optimization completed because the size of the gradient is less than the selected value of the function tolerance.

```
m1 =
```

nonlinear model object: [1] parameterisation(s)

number of equations: [4 15 4 0 0]

solution(s) available: [1] parameterisation(s)
comment: 'Simple Sticky Price Business Cycle Model'

user data: empty
export files: [0]

ans =

```
Short: [7.1827 8.2284]
  Infl: [2.5000 3.5000]
 Growth: [3.0000 3.0000]
  Wage: [5.5750 6.6050]
     Y: [1.5519 1.5519]
     N: [0.7470 0.7470]
     W: [1.7314 1.7314]
     Q: [0.8333 0.8333]
     H: [1.5519 1.5519]
     A: [1.0000 1.0000]
     P: [1 1.0000]
     R: [1.0175 1.0200]
    Pk: [1.5312 1.5312]
    Rk: [0.0517 0.0517]
Lambda: [0.6444 0.6444]
    dP: [1.0062 1.0086]
   d4P: [1.0250 1.0350]
    dW: [1.0137 1.0161]
   RMC: [0.8333 0.8333]
    Mp: [0 0]
    Mw: [0 0]
    Ey: [0 0]
    Ep: [0 0]
    Ea: [0 0]
    Er: [0 0]
    Ew: [0 0]
  alpha: [1.0074 1.0074]
  beta: [0.9962 0.9962]
  gamma: [0.6000 0.6000]
  delta: [0.0300 0.0300]
     k: [10 10]
    pi: [1.0062 1.0086]
   eta: [6 6]
   psi: [0.2500 0.2500]
   chi: [0.8500 0.8500]
   xiw: [60 60]
   xip: [300 300]
   rhoa: [0.9000 0.9000]
  rhor: [0.8500 0.8500]
 kappap: [3.5000 3.5000]
 kappan: [0 0]
 Short_: [0 0]
 Infl_: [0 0]
Growth_: [0 0]
  Wage_: [0 0]
```

5 Simulate Disinflation

Simulate the low-inflation model, m, starting from the steady state of the high-inflation model, m1.

```
d1 = sstatedb(m1,startDate-3:endDate);
54
   s = simulate(m,d1,startDate:endDate);
   s = dboverlay(d1,s);
56
57
   s = dbminuscontrol(m,s,d1);
58
59
   plotList = { ...
60
        ' "Inflation, Q/Q PA [Pp Dev]" dP^4 ', ...
61
            ' "Policy rate, PA [Pp Dev]" R^4 ', ...
        ' "Output [Pct Level Dev]" Y ', ...
62
        ' "Hours Worked [Pct Level Dev]" N ', ...
63
        ' "Real Wage [Pct Level Dev]" W/P ', ...
65
        ' "Capital Price [Pct Level Dev]" Pk', ...
66
       };
67
   dbplot(s,plotRng,plotList, ...
       'tight=',true,'highlight=',startDate-5:startDate-1, ...
68
       'transform=',@(x) 100*(x-1));
69
70
   grfun.ftitle('Disinflation');
```


6 Sacrifice Ratio

Sacrifice ratio is the cumulative output loss after a 1% PA disinflation. Divide by 4 to get an annualised figure (reported in the literature).

```
r = -cumsum(100*(s.Y-1))/4
```

```
sacRat =
        tseries object: 47-by-1
       2007Q3:
                       0
       2007Q4:
                        0
       2008Q1:
                        0
       2008Q2:
                        0
       2008Q3:
                        0
                        0
       2008Q4:
       2009Q1:
                 0.02419
       2009Q2:
        2009Q3: 0.065988
```

```
2009Q4: 0.1193
2010Q1: 0.17882
2010Q2: 0.24018
2010Q3: 0.30001
2010Q4: 0.35586
2011Q1: 0.40616
2011Q2: 0.45003
2011Q3: 0.48718
2011Q4: 0.51777
2012Q1: 0.54225
2012Q2: 0.56128
2012Q3: 0.5756
2012Q4: 0.58598
2013Q1: 0.59317
2013Q2: 0.59785
2013Q3: 0.60063
2013Q4: 0.60199
2014Q1: 0.60237
2014Q2: 0.6021
2014Q3: 0.60141
2014Q4: 0.60052
2015Q1: 0.59954
2015Q2: 0.59858
2015Q3: 0.59769
2015Q4: 0.5969
2016Q1: 0.59624
2016Q2: 0.59569
2016Q3: 0.59526
2016Q4: 0.59493
2017Q1: 0.5947
2017Q2: 0.59454
2017Q3: 0.59444
2017Q4: 0.59438
2018Q1: 0.59436
2018Q2: 0.59437
2018Q3: 0.59439
2018Q4: 0.59443
2019Q1:
        0.59446
'Output'
user data: empty
export files: [0]
```

7 Change Price and Wage Stickiness and Compare to Baseline

Create a model object with 8 parameterisations, and assign a range of values to the price stickiness parameter.

```
m(1:8) = m;
    m.xip = [60, 80, 100, 120, 140, 160, 180, 200];
    m = solve(m)
 86
 88
    s = simulate(m,d1,startDate:endDate);
    s = dboverlay(d1,s);
    s = dbminuscontrol(m,s,d1);
 90
91
    dbplot(s,plotRng,plotList,'tight=',true,'transform=',@(x) 100*(x-1));
 92
     grfun.ftitle('Disinflation with More Flexible Prices');
93
 94
 95
     disp('Cumulative output gap (sacrifice ratio):');
 96
     sacRat = -cumsum(100*(s.Y-1))/4;
97
98
    figure();
99
    plot(sacRat);
    grid('on');
100
101
     title('Sacrifice ratio');
102 legend('\xi_p=60','\xi_p=80','\xi_p=100','\xi_p=120', ...
        '\xi_p=140','\xi_p=160','\xi_p=180','\xi_p=200', ...
103
104
        'location','northWest');
105
    sacRat{startDate:endDate}
```

```
m =
       nonlinear model object: [8] parameterisation(s)
       number of equations: [4 15 4 0 0]
       solution(s) available: [8] parameterisation(s)
       comment: 'Simple Sticky Price Business Cycle Model'
       user data: empty
       export files: [0]
Cumulative output gap (sacrifice ratio):
ans =
       tseries object: 40-by-8
       2009Q2: 0.01803
                        0.018324
                                     0.018789
                                                0.019322
                                                           0.019881
                                                                      0.020447
                                                                                 0.021011
                                                                                            0.021567
       2009Q3: 0.047905
                          0.048914
                                     0.050341
                                                0.051927
                                                           0.053567
                                                                      0.055215
                                                                                 0.056847
                                                                                            0.058453
       2009Q4: 0.084259
                        0.08645
                                     0.089312
                                                0.092417
                                                         0.095592
                                                                      0.098761
                                                                                 0.10189
                                                                                            0.10496
       2010Q1: 0.12273
                                                         0.14135 0.14639
                        0.12656
                                     0.13127
                                               0.13628
                                                                                  0.15135
                                                                                             0.1562
       2010Q2: 0.16004
                           0.1659
                                      0.17278
                                                 0.17998
                                                            0.18721
                                                                       0.19437
                                                                                  0.20139
                                                                                             0.20825
       2010Q3: 0.19395
                        0.20213
                                     0.21139
                                                 0.22095
                                                          0.23051
                                                                       0.23992
                                                                                  0.24915
                                                                                             0.25815
```

2010Q4:	0.22316	0.23381	0.24555	0.25755	0.26947	0.2812	0.29267	0.30386
2011Q1:	0.24711	0.26028	0.27448	0.28887	0.30313	0.31712	0.3308	0.34414
2011Q2:	0.26586	0.28144	0.29798	0.31465	0.33112	0.34726	0.36303	0.37842
2011Q3:	0.27984	0.29764	0.31632	0.33506	0.35356	0.37167	0.38938	0.40665
2011Q4:	0.28974	0.30948	0.33004	0.35061	0.37089	0.39076	0.41019	0.42916
2012Q1:	0.29633	0.31769	0.33983	0.36195	0.38377	0.40515	0.42607	0.44651
2012Q2:	0.30036	0.32301	0.34643	0.36983	0.39291	0.41555	0.43772	0.45941
2012Q3:	0.30253	0.32616	0.35057	0.37497	0.39905	0.42271	0.44589	0.46861
2012Q4:	0.30342	0.32776	0.35289	0.37804	0.40289	0.42733	0.45131	0.47483
2013Q1:	0.30351	0.32831	0.35394	0.37961	0.40502	0.43004	0.45462	0.47876
2013Q2:	0.30313	0.3282	0.35415	0.38017	0.40595	0.43138	0.45639	0.48097
2013Q3:	0.30253	0.32774	0.35385	0.38008	0.40609	0.43178	0.45707	0.48196
2013Q4:	0.30187	0.32712	0.35329	0.37961	0.40575	0.43158	0.45704	0.48212
2014Q1:	0.30125	0.32646	0.35263	0.37897	0.40515	0.43104	0.45658	0.48176
2014Q2:	0.30072	0.32586	0.35198	0.37828	0.40444	0.43033	0.45589	0.48111
2014Q3:	0.30029	0.32535	0.35139	0.37762	0.40373	0.42958	0.45512	0.48032
2014Q4:	0.29997	0.32494	0.35089	0.37704	0.40308	0.42887	0.45435	0.47951
2015Q1:	0.29974	0.32462	0.3505	0.37657	0.40252	0.42824	0.45365	0.47874
2015Q2:	0.29958	0.3244	0.3502	0.37619	0.40207	0.4277	0.45304	0.47807
2015Q3:	0.29949	0.32425	0.34998	0.3759	0.40171	0.42727	0.45254	0.47749
2015Q4:	0.29945	0.32416	0.34984	0.3757	0.40144	0.42694	0.45214	0.47703
2016Q1:	0.29944	0.32411	0.34975	0.37556	0.40126	0.4267	0.45184	0.47667
2016Q2:	0.29945	0.3241	0.3497	0.37548	0.40113	0.42653	0.45162	0.4764
2016Q3:	0.29947	0.3241	0.34969	0.37544	0.40106	0.42642	0.45148	0.47621
2016Q4:	0.2995	0.32412	0.34969	0.37543	0.40102	0.42636	0.45138	0.47608
2017Q1:	0.29953	0.32415	0.34971	0.37543	0.40102	0.42633	0.45134	0.47601
2017Q2:	0.29956	0.32418	0.34974	0.37545	0.40103	0.42633	0.45132	0.47597
2017Q3:	0.29959	0.32421	0.34977	0.37548	0.40105	0.42635	0.45132	0.47597
2017Q4:	0.29961	0.32423	0.34979	0.37551	0.40108	0.42637	0.45134	0.47598
2018Q1:	0.29963	0.32426	0.34982	0.37554	0.40111	0.4264	0.45137	0.476
2018Q2:	0.29964	0.32428	0.34984	0.37556	0.40114	0.42643	0.4514	0.47604
2018Q3:	0.29965	0.32429	0.34986	0.37559	0.40116	0.42646	0.45144	0.47607
2018Q4:	0.29966	0.3243	0.34988	0.37561	0.40119	0.42649	0.45147	0.4761
2019Q1:	0.29967	0.32431	0.34989	0.37562	0.40121	0.42651	0.45149	0.47613
Columns 1 thro	ugh 6							
'Output'	'Output'	'Output'	'Output'	'Output'	'Output'			
Columns 7 thro	ugh 8							
'Output'	'Output'							
user data	a: empty							
export f	iles: [0]							

8 Help on IRIS Functions Used in This File

Use either help to display help in the command window, or idoc to display help in an HTML browser window.

help model/subsasgn

help model/solve

help model/sstate

help model/sstatedb

help model/simulate

help dbase/dbplot

help dbase/dboverlay