

Probeklausur: Technische Mechanik II

SS2012, 06.06.2012

TM II STS/06-12

Kinematik des Punktes und der Scheibe

Name:	MatrNr.:	-			
Studienrichtung:	Punktzahl (Prozent):	(%)	Note:	

Vorab:

- Nicht erlaubt sind: Handy, Smartphones, Laptops bzw. sonstige portable PC's. Verwendung gilt als Täuschungsversuch. Zudem Korrektur-Fluid, und rote Stifte. Bei Verwendung werden die entsprechenden Teile nicht gewertet.
- Hilfsmittel sind: Stifte, Lineal/Geodreieck, Zirkel, Taschenrechner, Skripte, Vorlesungsunterlagen.
- Berechnen Sie stets 3 relevante Ziffern.

Aufgabe 1

Ein Fahrzeug beschleunigt am Punkt A aus dem Stand mit $a_0 = 1 \text{ m/s}^2$ bis zum Punkt B.

a) Welche Geschwindigkeit wird bei B erreicht? (R=400 m)

b) Zu Beginn der Kurvenfahrt (Punkt B) endet der Beschleunigungsvorgang und ein Bremsmanöver wird eingeleitet. In der Kurve (R=400 m) wird dabei so gebremst, dass die Gesamtbeschleunigung immer $a=10 \text{ m/s}^2$ ist.

Wie groß ist der Betrag der Tangentialbeschleunigung $a_t(v)$, mit der das Fahrzeug in der Kurve verzögert wird? Wie groß ist ihr Zahlenwert bei Kurveneintritt (Punkt B)

Probeklausur: Technische Mechanik II

SS2012, 06.06.2012

TM II STS/06-12

Kinematik des Punktes und der Scheibe

Aufgabe 2

Für den dargestellten Kurbeltrieb sind die Geschwindigkeiten v_{B} und v_{C} für die aktuelle Lage auf

- a) rechnerischem und
- b) zeichnerischem Wege zu ermitteln.
- c) Die Winkelgeschwindigkeit des mittleren Gelenkstabs BC ist anzugeben.

Gegeben: $l=100 \text{ mm}, \omega=10 \text{ s}^{-1}$

Probeklausur: Technische Mechanik II

SS2012, 06.06.2012

TM II STS/06-12

Kinematik des Punktes und der Scheibe

Aufgabe 3

Eine Punktbewegung ist gegeben durch die Parametergleichungen ($b = \frac{cm}{s^2}$, $c = s^{-1}$)

$$r(t) = b \cdot t^2$$

$$\varphi(t) = c \cdot t$$

a) Skizzieren Sie die Bahn des Punktes in Polarkoordinaten durch Positionen zu den Zeiten

$$t=\{0.0 \text{ s}; 0.4 \text{ s}; 0.6 \text{ s}, 1.0 \text{ s}, 1.2 \text{ s}, 1.5 \text{ s}\}$$

b) Bestimmen Sie die Geschwindigkeit und Beschleunigung in Polarkoordinaten