

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 08248499 A

(43) Date of publication of application: 27.09.96

(51) Int. CI

G03B 17/18

(21) Application number: 07070420

(71) Applicant:

CANON INC

(22) Date of filling: 06.03.95

(72) Inventor:

-1-

MATSUSHIMA HIROSHI

(54) DISPLAY DEVICE FOR CAMERA

(57) Abstract:

PURPOSE: To quickly identify a set exposure quantity and a state display which are hardly recognized by the use of a monochromatic display by using a display member capable of changing the color a display segment for a display device.

CONSTITUTION: In a color liquid crystal display device 12 in a finder, in the display of (a), a bar display 12a capable of changing the color is for a proper exposure without the setting of an exposure correction and displayed with the same color as a TV value and an AV value of other displays, for instance, green. In the display of (b), the bar display 12a is after the exposure correction and displayed with the different color from the TV and AV values of the other displays, for instance, red, for warning. Thus, identification is made easy.

COPYRIGHT: (C)1996,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-248499

(43)公開日 平成8年(1996)9月27日

(51) Int.Cl.6

識別記号

庁内整理番号

FΙ

技術表示箇所

G 0 3 B 17/18

G 0 3 B 17/18

Α

審査請求 未請求 請求項の数8 FD (全8 頁)

(21)出願番号

特願平7-70420

(22)出願日

平成7年(1995)3月6日

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 松島 寛

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 弁理士 田村 光治

(54) 【発明の名称】 カメラの表示装置

(57)【要約】

【目的】 表示装置に表示セグメントの色が変更可能な表示部材を用いることにより、単色の表示では認識しにくい露出設定畳や状態表示を迅速に識別可能にする。

【構成】 ファインダー内カラー液晶表示装置12において、色変更可能なパー表示12aが(a)に示す表示では露出補正が設定されていない適正露出の場合で、他の表示であるTV値やAV値と同じ、例えば緑色で表示し、(b)に示す表示では露出補正がかけられた場合で、警告の意味のため、他の表示であるTV値やAV値と異なる、例えば赤色で表示して識別をし易くする。

-2 1 1 1 1 2 +

(b) 12a -2010 010 24

Patent provided by Sughrue Mion, PLLC - http://www.sughrue.com

٠.

【特許請求の範囲】

【請求項1】 表示セグメントの色が変更可能な表示部材を持ち、眩表示部材には複数のドットセグメントからなるバー表示が含まれ、露出補正を設定可能で、その設定量が眩表示バーに表示可能なカメラの表示装置において、露出補正が設定されている場合と設定されていない場合で、該バー表示の色を変えることを特徴とするカメラの表示装置。

【請求項2】 表示セグメントの色が変更可能な表示部材を持ち、該表示部材には複数のドットセグメントから 10 なるパー表示が含まれ、露出補正を設定可能で、その設定量が該表示パーに表示可能なカメラの表示装置において、該表示パーの色は露出補正の設定量により変えることを特徴とするカメラの表示装置。

【請求項3】 表示セグメントの色が変更可能な表示部材を持ち、該表示部材には複数のドットセグメントからなるパー表示が含まれ、マニュアル露出が可能で、適正露出に対して設定されているAV値, TV値による露出値との偏差が検出可能で、その偏差値が該表示パーに表示可能なカメラの表示装置において、偏差値がない場合 20とある場合で、該パー表示の色を変えることを特徴とするカメラの表示装置。

【請求項4】 表示セグメントの色が変更可能な表示部材を持ち、該表示部材には複数のドットセグメントからなるパー表示が含まれ、マニュアル露出が可能で、適正露出に対して設定されているAV値, TV値による露出値との偏差が検出可能で、その偏差値が該表示パーに表示可能なカメラの表示装置において、該パー表示の色はその偏差値により変えることを特徴とするカメラの表示装置。

【請求項5】 表示セグメントの色が変更可能な表示部材を持ち、該表示部材には複数のドットセグメントからなるパー表示が含まれているカメラの表示装置において、パー表示に表示されている値がゼロの場合とプラスの値の場合とマイナスの値の場合で該パー表示の色を変えることを特徴とするカメラの表示装置。

【請求項6】 表示セグメントの色が変更可能な表示部 定されて 材を持ち、該表示部材はフォーカスの合無マーク表示が したもの 含まれ、オートフォーカス可能なカメラの表示装置にお 示バーの いて、合焦時、前ピン時、後ピン時で、該合無マーク表 40 もよい。 示の色を変えることを特徴とするカメラの表示装置。 【000

【請求項?】 表示セグメントの色が変更可能な表示部材を持ち、該表示部材はフォーカスの合焦マーク表示が含まれ、オートフォーカス可能なカメラの表示装置において、フォーカスエイドによる合焦時とオートフォーカスによる合焦時との合焦マークの表示の色を変えることを特徴とするカメラの表示装置。

【請求項8】 表示セグメントの色が変更可能な表示部 材を持ち、該表示部材はフォーカスの合焦マーク表示が 今まれ、オートフォーカス可能のカススラの事業体際にお いて、オートフォーカスモードにより合焦時の合焦マークの表示の色を変えることを特徴とするカメラの表示装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、表示セグメントの色が変更可能な表示部材を用いることにより、単色の表示では認識しにくかった設定量や状態表示を認識し易くするカメラの表示装置に関するものである。

[0002]

【従来の技術】従来のカメラの表示装置には図8に示すようなものがある。すなわち、露出補正やマニュアル露出時の偏差量表示用のパー表示としては、図8(a)に示すように「0」あっても、図8(b)及び図8(c)に示すように「0」でなくても、表示の色は変わらないものであった。

[0003]

【発明が解決しようとする課題】ところで、前述従来技術では露出の補正かかっているか、いないかの判断やマニュアル露出時に設定されていたAV値/TV値で適正露出が得られるかどうかの判定が分かりにくかった。また、従来のAF合焦マーク(後記する図2を参照すれば、符号12bで示す部分の右端の丸)は合焦時に点灯し、非合焦時には点滅するという一つのセグメントよりなる表示であり、それ以外の情報は読み取れないものであった。

【0004】本発明は、前述従来例の欠点を除去し、パー表示による露出補正表示が認識し易いカメラの表示装置を提供することを目的とする。

30 [0005]

【課題を解決するための手段】前述の目的を達成するために、請求項1に示す本発明は表示セグメントの色が変更可能な表示部材を持ち、該表示部材には複数のドットセグメントからなるパー表示が含まれ、露出補正を設定可能で、その設定量が該表示パーに表示可能なカメラの表示装置において、露出補正が設定されている場合と設定されていない場合で、該パー表示の色を変えるようにしたものである。同じく、請求項2に示す本発明は該表示パーの色は露出補正の設定量により変えるようにしてもよい。

【0006】同じく、請求項3に示す本発明は表示セグメントの色が変更可能な表示部材を持ち、該表示部材には複数のドットセグメントからなるバー表示が含まれ、マニュアル露出が可能で、適正露出に対して設定されているAV値、TV値による露出値との偏差が検出可能で、その偏差値が該表示バーに表示可能なカメラの表示装置において、偏差値がない場合とある場合で、該バー表示の色を変えるようにしたものである。また、請求項4に示す本発明は該バー表示の色はその偏差値により変

含まれ、オートフォーカス可能協協や高級商研基礎におMi6A, PえるようにMarkstopkride.comた、請求項5に示す本発明は

表示セグメントの色が変更可能な表示部材を持ち、該表示部材には複数のドットセグメントからなるバー表示が含まれているカメラの表示装置において、バー表示に表示されている値がゼロの場合とプラスの値の場合とマイナスの値の場合で該バー表示の色を変えるようにしたものである。

【0007】同じく、請求項6に示す本発明は表示セグメントの色が変更可能な表示部材を持ち、該表示部材はフォーカスの合焦マーク表示が含まれ、オートフォーカス可能なカメラの表示装置において、合焦時、前ピン時、後ピン時で、該合焦マーク表示の色を変えるようにしたものである。また、請求項7及び8に示す本発明はフォーカスエイドによる合焦時とオートフォーカスによる合焦時とにより、あるいはオートフォーカスモードにより合焦時の合焦マークの表示の色を変えるようにしてもよい。

[0008]

【作用】以上の構成の請求項1に示すカメラの表示装置 後記する電子ダイアル10の入力値によりダイアル値の は露出補正が設定されている場合と設定されていない場合で、パー表示の色を変えることにより、露出補正が設 20 号を受けている間、DBUSを介しシリアル通信により 定されているか否かの認識をし易くする。また、請求項 マイコン1にカウント値を送る。 【0014】5は閃光発光調光制御回路で、閃光装置の 発光とTTL調光による発光停止機能を制御する回路で ある。また、該閃光発光調光制御回路5はSTCOM信 ある。また、該閃光発光調光制御回路5はSTCOM信

【0009】同じく、請求項3に示すカメラの表示装置は偏差値がない場合とある場合で、パー表示の色を変えることにより、適正露出が得られるか否かの判断をし易くする。また、請求項4に示すカメラの表示装置は適正露出に対する偏差値によりパー表示の色を変えることで、偏差量の度合いを認識し易くする。また、請求項5 30に示すカメラの表示装置は露出補正の設定量あるいは適正露出に対する偏差量がいずれの方向にずれているかが迅速に認識できる。

【0010】以上の構成の請求項6に示すカメラの表示 装置は1セグメントからなる合焦マーク表示の色分けで 合焦またはピント状態が迅速に認識することができる。 また、請求項7及び8に示すカメラの表示装置はフォー カスエイドやAFモードの合焦状態が素早く識別でき る。

[0011]

【実施例】以下、本発明の第1実施例を図1ないし図3に基づいて説明する。図1は本実施例の表示装置を有するカメラの構成を示す電気回路のプロック図である。図1において、1はカメラの各部能誤記を制御するためのマイクロコンピュータ(以下、マイコンという)、2はレンズ制御回路で、マイコン1からのLCOM信号を受けている間、DBUSを介してシリアル通信を行い、モータ駆動情報を受けて撮影レンズ13の焦点調節用モータと絞り羽根制御用モータを駆動制御する。また、同時

よりマイコン1に送っている。

【0012】3はカラーの液晶表示駆動回路で、カメラのパッテリー残量、撮影枚数、TV値、AV値、露出補正量、合焦状態等を撮影者に知らせるための液晶表示装置11,12を駆動するための回路であり、それぞれのセグメントに印加する電圧を色情報により変更可能であり、指定されたセグメントの色を変えることを可能とする液晶駆動回路になっている。また、該液晶表示駆動回路3はマイコン1からDPCOM信号を受けている間、10 DBUSを介しシリアル通信を行い、このシリアル通信により表示データと表示の色のデータを受け取り、そのデータに従って液晶表示装置11,12を駆動する。

【0013】4はスイッチセンス回路で、撮影者が各撮影条件を設定するためのスイッチやカメラの状態を示すスイッチの読み取りマイコン1に送る回路であって、SWCOM信号を受けている間、DBUSを介しシリアル通信によりマイコン1にスイッチデータを送り、また、後記する電子ダイアル10の入力値によりダイアル値のカウントアップ/カウントダウンも行い、SWCOM信号を受けている間、DBUSを介しシリアル通信によりマイコン1にカウント値を送る。

【0014】5は閃光発光調光制御回路で、閃光装置の発光とTTL調光による発光停止機能を制御する回路である。また、該閃光発光調光制御回路5はSTCOM信号を受けている間、DBUSを介してマイコン1とシリアル通信を行い、閃光発光制御に関するデータを受け取り、各種の制御を行う。さらに、この回路5は外付け閃光装置14がカメラに装着された場合のインターフェースの働きも行うので、外付け閃光装置14が装着された場合は外付け閃光装置14と通信を行い、その情報(補助光が有るかないか等)をマイコン1に送り、逆にマイコン1からの制御信号を外付け閃光装置14に伝える役割も行うようになっている。

【0015】6は焦点検出回路で、公知の位相差検出方式によりAFを行うためのラインセンサとその蓄積読み出しのための回路ユニットを有し、マイコン1により制御を行う。すなわち、マイコン1はセンサ出力のA/D値を基に、周知のアルゴリズムで測距を行い、レンズ駆動量を演算した後に合焦するようにレンズ制御回路2に演算で求めたレンズ駆動量を通信し、レンズを駆動して合焦を行う。また、マニュアルフォーカス時はレンズ駆動を行わずに合焦判定のみを行う(フォーカスエイド)

【0016】7は測光回路で、被写体の測光を行い、マイコン1の制御により測光出力をマイコン1に送る。そして、マイコン1は送られた測光出力をA/D変換し、露出条件(絞り、シャッタ速度)の演算に用いる。

ータ駆動情報を受けて撮影レンズ13の焦点調節用モー 【0017】8はシャッタ制御回路で、マイコン1の制 タと絞り羽根制御用モータを駆動制御する。また、同時 御信号に従って不図示のシャッタの先幕及び後幕の走行 にレンズの各種の情報(焦点距離篩かpをvided Ky/b 通偏に Mi5A、P 制御本行 j j www. six 給送 Tom タノチャージモータ制御回路 で、マイコン1からの制御信号に従ってフイルムの給送 (巻き上げ、巻き戻し)を行い、また、ミラーアップ/ チャージ (ミラーダウン) 用モータの制御も行う。

【0018】さらに、SW1はカメラの動作を開始させるスイッチで、オンされたことをマイコン1が認識すると、測光・測距・表示をスタートさせる。SW2はカメラのレリーズボタンと連動するスイッチで、オンされたことをマイコン1が認識すると、露光動作をスタートさせる。SW3はカメラのモード(TV優先、AV優先、マニュアル、プログラム等)を切り替えるためのスイッ 10 チである。また、SWXはX接点で、シャッタの先幕の走行完了のタイミングでオンし、閃光発光のタイミングを前記閃光発光調光制御回路5に知らせる役目をする。

【0019】前記電子ダイアル10はTV値、AV値、 モード等を変更するためのもので、例えばスイッチSW 3のモード切り替えスイッチボタンを押しながら電子ダ イアル10を回転させると、TV優先→AV優先→マニ ュアル→プログラム→TV優先→AV優先→マニュアル →プログラム・・・と変更され、撮影者の意図するモー ドに変更される。また、電子ダイアル10を逆回転させ 20 た時は、プログラム→マニュアル→AV優先→TV優先 →プログラム→・・とモードは変更される。また、モー ド切り替えスイッチSW3と電子ダイアル10によりT V優先がモードとして設定されている場合には、電子ダ イアル10を回転させることにより撮影者の希望とする TV値を設定することができ、同じくAV優先がモード として設定されている場合には、電子ダイアル10を回 転させることにより撮影者の希望とするAV値を設定す ることができる。

【0020】また、SW4はマニュアル時にAV値をセ 30 ットするためのスイッチで、スイッチSW3と電子ダイアル10によりマニュアルが選択されている場合に、スイッチSW4を押さずに電子ダイアル10を回転させると、回転した分のTV値がアップ/ダウンしてTV値の設定が可能となり、スイッチSW4を押しながら電子ダイアル10を回転させると、回転した分のAV値がアップ/ダウンしてAV値の設定が可能となる。

【0021】前記液晶表示装置11は外部液晶表示装置で、液晶表示駆動回路3で駆動される。また、前記液晶表示装置12はファインダー内カラー液晶表示装置で、同じく液晶表示駆動回路3で駆動され、その表示内容は左からTV値、AV値、バー表示12a(露出補正量/露出の偏差量を表示)、合魚マーク12bである。さらに、前記外付け閃光装置14はカメラ本体とは別の電源を有している。

【0022】以上の構成の本実施例の動作を図2のフローチャートを用いて説明する。まず、ステップ1ではカメラのスイッチが押された等の原因により、カメラの電源が入り、ステップ2へ進む。ステップ2ではスイッチ

の切り替えを行い、変化があった場合は液晶表示駆動回路3に通信をして表示データや表示の色を修正し、ステップ3へ進む。ステップ3ではスイッチSW1が押されているか否かの判定を行い、押されている場合は測光/測距のためにステップ7へ進み、押されていない場合はステップ4へ進む。

【0023】ステップ4では電源をオフするかどうかの 判定を行い、オフする場合はステップ5へ進み、オフし ない場合はステップ2へ戻る。つまり、何等かの要因で カメラの電源が立ち上がった場合には一定時間、電源を 起こしておくことによりスイッチの状態のチェックや表示の切り替えを行う。ステップ5ではカメラのファイン ダー内や外部の不必要な部分の表示を液晶表示駆動回路 3により消灯し、電源をオフにし、ステップ6で終了する。

【0024】一方、前記ステップ3でステップ7へ進むと、測光回路7により被写体の測光を行い、測光出力をマイコン1によりA/D変換し、露出条件(絞り、シャッタ速度)の演算を行い、ステップ8へ進む。ステップ8では焦点検出回路6を用いてラインセンサに蓄積し、読み出しを行い、そのセンサ出力のA/D値を基に公知のアルゴリズムで測距を行い、レンズ駆動量を演算した後に、合焦するようにレンズ制御回路2に演算で求めたレンズ駆動量を通信し、レンズを駆動し合焦させ、ステップ9へ進む。

【0025】ステップ9ではステップ7で演算されたA V値/TV値を設定されたTV値/AV値とは色分けす るよう液晶表示駆動回路3によりファインダー内液晶表 示装置12及び外部液晶表示装置11に表示し、また、 ステップ8の測距結果が合焦ならば、合焦表示も行い、 ステップ10へ進む。

【0026】ステップ10ではカメラの状態がレリーズを許可して良い状態か否かの判定を行う。例えば、AFモードが「ワンショットモード」である場合はステップ8の測距結果が合焦ならばレリーズが許可され、スイッチSW2のチェックを行うためにステップ11へ進み、合焦でない場合はスイッチのチェックのためにステップ2へ戻る。ここで、スイッチSW1がオンの場合は再び測光/測距/表示を行う。

【0027】ステップ11ではスイッチSW2が押されているか否かの判定を行い、スイッチSW2がオンの場合はレリーズ動作を行うためにステップ12へ進み、オフの場合はスイッチのチェックのためにステップ2へ戻る。ここで、スイッチSW1がオンの場合は再び測光/測距/表示を行う。ステップ12ではレリーズ動作が開始され、給送モータ/チャージモータ制御回路9により、ミラーをアップするとともに、ステップ7で決められた絞り量をレンズ制御回路2によりレンズ13に通信し、設定露光量が得られるように絞り込み動作を行い、

センス回路4の情報を基に、モローデの個心語が内閣心語を使Mi6A、Pはテップの:lwawa.進動ue.com

【0028】ステップ13ではシャッタ制御回路8を用 いてステップ?で決められたTV量が得られるように不 図示のシャッタ先幕及び後幕の走行制御を行い、ステッ プ14へ進む。ステップ14では給送モータ/チャージ モータ制御回路9により、ミラーをダウンすると同時 に、シャッタのチャージを行い、ステップ?でレンズ制 御回路2によりレンズに通信し絞り込まれていた絞りを 開放に戻し、ステップ15へ進む。ステップ15では給 送モータ/チャージモータ制御回路9を用いてマイコン 1からの制御信号に従ってフイルムの巻き上げを行い、 ステップ2へ戻り、一連の動作を終了する。

【0029】次に、本実施例の液晶表示装置11,12 による表示例について、図3の表示例を用いて説明す る。図はファインダー内液晶表示装置12のパー表示1 2 a を示し、解出補正の設定量の表示やマニュアル解出 時には設定AV値/TV値による露光畳とカメラの測光 露出値の偏差量の表示に用いている。始めに、パー表示 12 a が露出補正の設定量を表示する場合の例につい て、図3 (a) は露出補正量が「0」の設定していない 状態を示した表示であり、図3(b)は「-0.5」の 20 露出補正が設定されている状態を示し、図3の(a)と (b) では異なる色で表示している様子を示している。 例えば、露出補正が設定されていない場合はファインダ 一内液晶表示装置12の他の表示であるTV値やAV値 と同じ色(例えば緑)で表示し、露出補正がかけられた 場合は露出補正がかかっていることの警告の意味で、液 晶表示装置12の他の表示であるTV値やAV値とは異 なる色(例えば赤)で表示する。

【0030】次に、バー表示12aがマニュアル露出時 の偏差量を表示する場合の例について、図3(a)は測 30 光値と設定値の差が「0」で適正露出であることを示し ており、図3(b)は測光値と設定値の差が「-0. 5」で適正露出より0.5段アンダーである状態を示 し、同様に図3の(a)と(b)では異なる色で表示し ている。例えば、適正露出でない場合はファインダー内 液晶表示装置12の他の表示であるTV値やAV値と同 じ色(例えば緑)で表示し、適正露出の場合は、その状 態を判断しやすくするために液晶表示装置12の他の表 示であるTV値やAV値とは異なる色(例えば赤)で表 示する。

【0031】以上のように、本実施例を用いることによ り、露出補正が設定されているか、設定されていないか の認識が単色のパー表示に対して非常にしやすくなり、 撮影をスムーズに行うことが可能になる。また、マニュ アル酸出の場合は、設定AV値/TV値による酸光量と カメラの測光露出値の差があるかどうかの認識が素早く できるようになる。

【0032】図4ないし図6は本発明の第2実施例によ る表示例を示すものである。なお、カメラの作動のため の電気回路のブロック図は前連築eh馬施側eb園梯であるMiGA、P晶表示装置Max2sの他の表示であるTV値やAV値とは少

ので省略する。本実施例では露出補正の設定量やマニュ アル解出の偏差量により色分けをすることにより、値の 幅を認識し易いようにする。このようにすることによ り、露出補正の時は露出補正が設定されてない場合、露 出補正が少し設定されている場合、露出補正がたくさん 設定されている場合等の識別や、露出補正が設定されて いない場合、露出補正がプラス側に設定されている場 合、露出補正がマイナス側に設定されている場合等の認 識がし易くなる。

【0033】また、マニュアル露出の場合は、設定値が 適正露出である場合、適正露出の近辺に設定値がある場 合、適正露出に対して掛け離れた設定値である場合等の 識別がし易くなる。さらに、設定値が適正露出である場 合、適正露出に対して設定値がアンダーである場合、適 正露出に対してオーバーである場合等の識別がし易くす

【0034】次に、本実施例の表示例について、図4 (a) ~ 図4 (c) はファインダー内液晶表示装置12 のパー表示で、露出補正の設定量の表示やマニュアル露 出時には設定AV値/TV値による露光量とカメラの測 光露出値の偏差量の表示に用いている。始めに、パー表 示が露出補正の設定量を表示する場合の例について、図 4 (a) は露出補正量が「0」の設定していない状態を 示し、図4(b)は「-0.5」の露出補正が設定され ている状態を示し、図4 (c) は「-1.5」の露出補 正が設定されている状態を示し、それぞれ異なる色で表 示している様子を示している。

【0035】例えば、露出補正が設定されていない場合 はファインダー内液晶表示装置12の他の表示であるT V値やAV値と同じ色(例えば緑)で表示し、露出補正 が±0.5段以内かけられた場合は露出補正が少しかか っていることの警告の意味で、液晶表示装置12の他の 表示であるTV値やAV値とは少し異なる色(例えば 青) で表示し、露出補正が±1段より以上かけられた場 合は露出補正がたくさんかかっていることの警告の意味 で、液晶表示装置12の他の表示であるTV値やAV値 とは少し異なる色(例えば赤)で表示する。

【0036】次に、パー表示がマニュアル露出時の偏差 量を表示する場合の例について、図4 (a) は測光値と 設定値の差が「0」で適正露出であることを示し、図4 (b) は測光値と設定値の差が「-0.5」で適正露出 より0.5段アンダーである状態を示し、図4(c)は 測光値と設定値の差が「-1、5」で適正露出より1. 5段アンダーである状態を示し、それぞれ異なる色で表 示している様子を示している。

【0037】例えば、適正露出である場合は液晶表示装 置12の他の表示であるTV値やAV値と同じ色(例え ば緑)で表示し、適正露出より少し離れている(±0.

5以内)の場合はその状態を判断し易くするために、液

40

し異なる色(例えば青)で表示し、適正露出よりたくさん離れている(\pm 1.5以上)の場合はその状態を判断し易くするために、液晶表示装置12の他の表示であるTV値やAV値とは少し異なる色(例えば赤)で表示する。以上は、X04による設定量によりパー表示の色分けをする表示例である。

【0038】次いで、図5により「ゼロ」、「プラスの値」、「マイナスの値」で色分けする表示例について説明する。始めに、パー表示が露出補正の設定量を表示する場合について、図5(a)は露出補正量が「0」の設 10定していない状態を示し、図5(b)は「+1.5」の露出補正が設定されている状態を示し、図5(c)は「-1.5」の露出補正が設定されている状態を示し、スラースを表示している状態を示し、それぞれ異なる色で表示する様子を示している。

【0039】次に、バー表示がマニュアル露出時の偏差 量を表示する場合について、図5(a)は測光値と設定 値の差が「0」で適正露出であることを示し、図5 (b)は測光値と設定値の差が「+1.5」で適正露出 より1.5段オーパーである状態を示し、図5(c)は 測光値と設定値の差が「-1.5」で適正露出より1. 5段アンダーである状態を示し、それぞれ異なる色で表 示している様子を示している。

【0040】以上のように本実施例を用いることによ り、露出補正が設定されているか、設定されていない か、設定されている場合は少し設定されているか、また はたくさん設定されているかの認識が単色のパー表示に 対し非常にし易くなり、撮影がスムーズに行うことが可 能となる。また、プラスの補正がかけられているか、マ イナスの補正がかけられているかの認識がし易くなる。 そして、マニュアル露出の場合は、設定AV値/TV値 30 による露光量とカメラの測光露出値の差があるかどう か、また、差がある場合はたくさんあるのか、少しなの か、プラスなのか、マイナスであるのかの認識が素早く できるようになる。また、図5に示すように±2段まで しか表示できないパー表示において、±2.5段以上を 表示する場合は、図6に示すようにパー表示の色を変更 することにより、マニュアル露光時の仕様感を向上でき る。 すなわち、図6 (a) は「0」の場合、図6 (b) はマイナス2の場合、図6 (c) はマイナス2. 5段以 上の場合、をそれぞれ示す。

【0041】図7は本発明の第3実施例による表示例を示すものである。なお、本実施例もカメラの作動のための電気回路のプロック図は前述第1実施例と同様であるので省略する。本実施例では一つのセグメントからなる合無マークの色分けにより、合無/非合焦の内容以外の内容を表示するものである。そこで、図7はファインダー内液晶表示装置12の右端の合焦マーク12bのセグメントを表わし、図7(a)、図7(b)、図7(c)はそれぞれ表示の色が異なることを示す。従来は、図示の合体マーク12bが長端表示時は北合類で、長灯時は

合焦を表わし、非合焦時に現在のピント位置が前ピンであるのか、後ピンであるのかは、単色の一つのセグメントで分かりやすく表示することは難しかった。そこで、本実施例においては、合焦マークの色分けを用いることにより一つのセグメントで、合焦、前ピン、後ピンの表で行い、図7(a)は合焦状態、図7(b)は前ピン状態、図7(c)は後ピン状態、をそれぞれ表わしている。本実施例を用いることにより、マニュアルフォーカス時に前ピン/後ピンが分かるので、ピントリングを回動する方向が素早く分かり、ピント合わせがしやすくなる。なお、非合焦の内容について、図7(b)における表示色での点滅表示の場合はものすごく前ピンで、図7(c)における表示色での点滅表示の場合はものすごく

10

【0042】さらに、本発明の第4実施例を前記図?を参照して説明する。本実施例では一つのセグメントからなる合焦マークの色分けにより、合焦/非合焦がどのAFモードの結果であるかの内容を表示するものである。すなわち、前述の実施例と同様に、図?はファインダー内液晶表示装置12の右端の合焦マーク12bのセグメントを表わし、図?(a),図?(b),図?(c)はそれぞれ表示の色が異なっている。従来は、図示の合焦マーク12bが点滅表示時は非合焦で、点灯時は合焦を表わし、この結果がどのAFモードの結果であるかは単色の一つのセグメントで分かりやすく表示することは難しかった。

後ピンを表わすように設定してもよい。

【0043】そこで、本実施例においては、合焦マーク の色分けを用いることにより一つのセグメントで、ワン ショットAF(一度ピントが合うとスイッチSW1オフ までフォーカスロックするAFモード)、サーポAF (スイッチSW1オン中は常にピントを合わせるAFモ ード)、フォーカスエイド(マニュアルフォーカス)の AFモードを区別可能なように表示を行う。例えば、図 7 (a) はワンショットAF時のセグメントの色を表わ し、(a)の色で点灯表示の場合はワンショットAFで 合焦したことを示し、同じ色で点滅表示の場合はワンシ ョットAFで非合焦であったことを示す。図7(b)は サーポAF時のセグメントの色を表わし、(b)の色で 点灯表示の場合はサーポAFで合焦したことを示し、同 40 じ色で点滅表示の場合はサーポAFで非合焦であったこ とを示す。図7(c)はマニュアルフォーカス時のセグ メントの色を表わし、(c)の色で点灯表示の場合はマ ニュアルフォーカスで合焦したことを示し、同じ色で点 滅表示の場合はマニュアルフォーカスで非合焦であった ことを示す。本実施例により、ファインダー内にAFモ ードを表わす専用セグメントを持たずにAFのモードの 状態が分かり、撮影中に素早い判断が可能となる。

[0044]

はそれぞれ表示の色が異なることを示す。従来は、図示 【発明の効果】以上説明したように、請求項1に示す発の合魚マーク12bが点滅表示時域時合焦をJoy点面時はMi6A、P朗はMirp表示による露出補正表示において、露出補正が

設定されているか否かでパー表示の色を変えることにより、その識別がし易くでき、また、請求項2に示す発明は露出補正の設定量に応じて該パー表示の色を変えることにより、その設定量の認識がし易くできる。

【0045】さらに、請求項3に示す発明はマニュアル 露出による撮影時に、適正露出に対して設定されている A V値、T V値による露出値との偏差の有無により該バー表示の色を変えることにより、適正露出が得られるか 否かの判断がし易くでき、また、請求項4に示す発明は同じく適正露出に対して設定されているA V値、T V値による露出値との偏差量に応じて該バー表示の色を変えることにより、その偏差量の度合いを認識し易くできる。また、請求項5に示す発明はバー表示に表示されている値がゼロの場合とプラスの値の場合とマイナスの値の場合で該バー表示の色を変えることにより、露出補正の設定量あるいは適正露出に対する偏差量がいずれの方向にずれているかが迅速に認識できる。

【0046】そして、請求項6に示す発明はオートフォーカス可能でフォーカスのための合焦マークを有し、合焦時、前ピン時、後ピン時により該合焦マークの色を変えることにより、合焦/非合焦以外の内容を一つのセグメントで表示可能にする。また、請求項7及び8に示す発明はフォーカスエイドとオートフォーカスとにより、あるいはオートフォーカスモードにより、合焦時に該合焦マークの色を変えることにより、同様に合焦/非合焦以外の内容を一つのセグメントで表示可能にする。

【図面の簡単な説明】

【図1】本発明に係る第1実施例の表示装置を有するカメラの構成を示す電気回路のプロック図である。

12

【図2】その動作を説明するフローチャートである。

【図3】その表示装置による表示例で、(a)は露出補正量設定なしの状態、(b)は露出補正設定の場合、をそれぞれ示す。

【図4】本発明の第2実施例によるカメラの表示装置の表示例で、(a) は露出補正量設定なしの場合、(b) はそのアンダー設定の場合、(c) はよりアンダー設定の場合である。

否かの判断がし易くでき、また、請求項4に示す発明は 【図5】同じく別の表示例で、(a)は露出補正量「ゼ同じく適正露出に対して設定されているAV値、TV値 10 ロ」の場合、(b)は「プラス」設定の場合、(c)はによる露出値との偏差量に応じて該バー表示の色を変え 「マイナス」設定の場合である。

【図6】同じく、さらに別の表示例で、(a)は偏差量「ゼロ」の場合、(b)は偏差量が表示範囲内の場合、(c)は偏差量が表示範囲外の場合、をそれぞれ示す。

【図7】本発明の第3実施例によるカメラの表示装置の表示例で、(a)は合無の場合、(b)は前ピンの場合、(c)は後ピンの場合である。

【図8】従来例のカメラの表示装置の表示例の種々の状態である。

【符号の説明】

1・・マイクロコンピュータ(マイコン)、2・・レンズ制御回路、3・・液晶表示駆動回路、4・・スイッチセンス回路、5・・閃光発光調光制御回路、6・・焦点検出回路、7・・測光回路、8・・シャッタ制御回路、9・・給送モータ/チャージモータ制御回路、10・・電子ダイアル、11・・外部液晶表示装置、12・・ファインダー内カラー液晶表示装置、13・・撮影レンズ、14・・外付け閃光装置、SW1,SW2,SW3,SW4・・スイッチ。

[図3] [図1] 制御回路 制御同路 制御回路 LCOM 11外部液晶表示装置 测光间的 ٩..... 📆 液晶表示 SW マイクロ (b) 经回债额 12 aバー表示 DPCOM 125 BD -1112111 SW2 7/1 SWCOM 12b 焦点検出 スイッチ センス回路 ファインダ内 SRCOM 液晶表示装置 /./. SW3.4 制御田路 電子ダイアル SW X 16 Patent provided by Sughrue Mion, PLLC - http://www.sughrue.com

