1、实验名称及目的

基础实验:调节 PID 控制器的相关参数改善系统控制性能,并记录超调量和调节时间,得到一组满意的参数。在得到满意参数后,对系统进行扫频以绘制 Bode 图,观察系统幅频响应、相频响应曲线,分析其稳定裕度。

2、实验原理

多旋翼位置控制器的 PID 参数调节原理通常是通过实验和系统响应分析的方式进行调 参。调参的目标是寻找最佳的 PID 参数组合,使得控制系统在快速、稳定和鲁棒的同时,能 够准确地跟踪期望位置。

1、比例增益的调节:

增大比例增益(Kp)可以加快系统的响应速度,但过大的比例增益可能引起系统的超调、振荡或不稳定。因此,需要逐渐增加比例增益,并观察系统响应的变化。如果响应过度振荡或不稳定,需要适当减小比例增益。一般来说,合适的比例增益应该能够提供足够的控制力度,同时保持系统的稳定性。

2、积分时间的调节:

积分时间(Ti)用于补偿系统存在的持续性偏差。较大的积分时间可以更好地消除静态误差,但过大的积分时间可能导致系统的响应过度调整、超调或振荡。因此,需要逐渐增加积分时间,并观察系统响应的变化。如果响应过度调整或出现振荡,需要适当减小积分时间。适当的积分时间取决于系统的特性和控制需求。

3、微分时间的调节:

微分时间(Td)用于抑制系统响应中的快速变化部分。过大的微分时间可能引入额外的噪声或不稳定,而过小的微分时间可能无法有效地抑制系统的快速变化。因此,需要逐渐增加微分时间,并观察响应的变化。如果响应不稳定或出现振荡,需要适当减小微分时间。合适的微分时间应该能够平滑系统的响应并抑制快速变化。

调参是一个迭代过程,需要不断尝试不同的参数组合,并通过实验观察系统响应的表现。可以结合手动试错和自动调参算法来进行参数调节。当完成 PID 参数调节后,可以通过扫频实验来绘制系统的 Bode 图。Bode 图显示系统对不同频率输入信号的增益和相位响应。绘制 Bode 图的原理如下:

1、输入频率扫描:

在扫频实验中,输入信号的频率会在一定范围内进行扫描。通常采用等间隔或对数间隔的频率值。

2、测量输出信号:

对于每个输入频率,测量系统输出的响应信号。可以使用传感器测量位置或姿态的反馈信号。

3、计算增益和相位:

根据输入和输出信号,计算系统的增益和相位。增益可以表示为输出幅度与输入幅度的 比值,通常以分贝(dB)为单位。相位表示系统输出与输入信号之间的相对延迟。

4、绘制 Bode 图:

将增益和相位作为频率的函数,绘制 Bode 图。通常使用对数坐标来表示频率,并将增益和相位用线性或极坐标图形表示。绘制 Bode 图:将增益和相位作为频率的函数,绘制 Bode 图。通常使用对数坐标来表示频率,并将增益和相位用线性或极坐标图形表示。

详细内容请参考上层路径文献**错误!未找到引用源。**第 10 讲_实验六_定点位置控制器设计实验.pptx,文献**错误!未找到引用源。**第 12 讲 基于半自主自驾仪的位置控制 V2.pptx。

3、实验效果

调节 PID 控制器的参数,尝试得到一组满意的参数,并使用 MATLAB 系统分析工具得到整 个开环系统的 Bode 图,查看相应闭环系统的相位裕度和幅值裕度。

4、文件目录

例程目录: [安装目录]\RflySimAPIs\5.RflySimFlyCtrl\1.BasicExps\e6-PositionCtrl\e6.2\

文件夹/文件名称		说明	
icon	Init.m	模型初始化参数文件。	
	FlightGear.png	FlightGear 硬件图片。	
	pixhawk.png	Pixhawk 硬件图片。	
	SupportedVehicleTypes.pdf	机架类型修改说明文件。	
	F450.png	F450 飞机模型图片。	
PosCtrl_tune.slx		Simulink 仿真模型文件。	
Init_control.m		控制器初始化参数文件。	

5、运行环境

序号	软件要求	硬件要求	
14.4	秋日安水	名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版	Pixhawk 6C 飞控 ²	1
3	MATLAB 2017B 及以上	数据线、杜邦线等	若干

- ① : 推荐配置请见: https://rflysim.com/doc/zh/HowToInstall.pdf
- ②:须保证平台安装时的编译命令为: px4_fmu-v6c_default, 固件版本为: 1.13.3。其他配套 飞控请见: http://doc.rflysim.com/hardware.html
- ③: 本实验演示所使用的遥控器为: 天地飞 WFLY-ET10、配套接收器为: WFLY-RF209 S。遥控器相关配置见: https://rflysim.com/doc/zh/B/3.1ET10.html

6、实验步骤

Step 1:

模型初始设置

PID 参数步骤与姿态控制的参数调试步骤相同。先调试内环速度环,再调试外环的位置环,先调高度再调水平位置。调试文件在"e6-PositionCtrl\PID-Config\e6.2\PosCtrl_tune.slx"文件夹中。 调节参数的初始状态应是飞行器处于高空悬停状态,将初始高度设置为 100m, 电机的初始转速设置为 557.1420rad/s,这个初始条件对应于飞行器在空中 100m 处悬停。修改"Init control.m"文件中的对应参数如下。

```
ModelInit_PosE = [0, 0, -100];

ModelInit_VelB = [0, 0, 0];

ModelInit_AngEuler = [0, 0, 0];

ModelInit_RateB = [0, 0, 0];

ModelInit_Rads = 557.142;
```

Step 2:

速度控制环参数调节:

首先调节内环 PID 参数。 打开 "e6-PositionCtrl\PID-Config\e6.2\PosControl_tune.slx" 文件中的 "Control System" 子模块中的 "position_control" 模块,即为位置控制系统模型。将其中 x 通道的速度期望部分换成阶跃输入,并将输入输出设置为 "Enable Data logging"

0

在"Init_control.m"文件中修改内环 PID 参数的值。先设定比例项参数,积分和微分参数设为 0, Kvxp 参数设置分别为 1.5、2.0 和 2.5,下图所示。

依次运行"Init_control.m"文件。点击 Simulink 的 "Run"按钮开始仿真,在"Simul ation Data Inspector"中查看输入输出波形,如下图所示。

由小到大逐渐增大比例项系数值,得到阶跃响 应曲线如图。

Step 3:

位置环参数调节:

使用步骤二中得到的速度环参数,在"PosControl_tune.slx"文件中,将 "x_desired" 换为阶跃输入,并将阶跃输入和"x"信号线设置为"Enable Data Logging",如下图所示。

如下图在"Init_control.m"由小增大位置环比例项系数,即"Kpxp"的值,分别为 0.6、 0.8、1.0 和 1.2。

在"Simulation Data Inspector"观察阶跃响应。如下图

Step 4:

扫频得到 Bode 图:

设定信号输入输出点。将"x_desired"输入线设为"Open-loop Input", " x "设置为"Open-loop Output"如下图所示。

得到 Bode 图如下图。

7、参考文献

- [1]. 全权,杜光勋,赵峙尧,戴训华,任锦瑞,邓恒译.多旋翼飞行器设计与控制[M],电子工业出版 社,2018.
- [2]. 全权,戴训华,王帅.多旋翼飞行器设计与控制实践[M],电子工业出版社, 2020.

8、常见问题

Q1: 无

A1: 无