يوسف أحمد محمد ابراهيم

Assignment 2

Extra

Question 1:

1. code:

```
module array();
         bit [11:0] my_array[4];
         initial begin
             my_array[0] = 12'h012;
             my_array[1] = 12'h345;
             my_array[2] = 12'h678;
             my_array[3] = 12'h9AB;
11
             $display("*** a. using for loop: ***");
12
             for(int i = 0; i < 4; i++)
                 $display(">>> my_array[%0d][5:4] = %0d <<<", i, my_array[i][5:4]);
             $display("*** b. using foreach: ***");
             foreach(my_array[j])
                 $display(">>> my_array[%0d][5:4] = %0d <<<", j, my_array[j][5:4]);
17
     endmodule
```

2. Results:

```
*** a. using for loop: ***
 >>> my array[
                       0][5:4] = 1 <<<
 >>> my array[
               1][5:4] = 0 <<<
                   2][5:4] = 3 <<<
# >>> my array[
                       3] [5:4] = 2 <<<
 >>> my array[
 *** b. using foreach: ***
                   0][5:4] = 1 <<<
 >>> my array[
                       11[5:4] = 0 <<<
# >>> my array[
                       2][5:4] = 3 <<<
 >>> my array[
 >>> my array[
                       3][5:4] = 2 <<<
```

Question 2:

1. RTL design:

```
module ALU 4 bit (
         input clk,
         input
                reset,
         input [1:0] Opcode, // The opcode
         input signed [3:0] A, // Input data A in 2's complement
                signed [3:0] B, // Input data B in 2's complement
         input
         output reg signed [4:0] C // ALU output in 2's complement
         );
11
12
        reg signed [4:0] Alu_out; // ALU output in 2's complement
                                           = 2'b00; // A + B
        localparam
                           Add
15
        localparam
                           Sub
                                           = 2'b01; // A - B
        localparam
                           Not A
                                            = 2'b10; // ~A
17
        localparam
                           ReductionOR B = 2'b11; // B
19
        // Do the operation
        always @* begin
21
           case (Opcode)
22
              Add:
                              Alu out = A + B;
23
              Sub:
                              Alu out = A - B;
              Not A:
                              Alu out = \sim A;
25
              ReductionOR B: Alu out = |B;
             default: Alu out = 5'b0;
27
           endcase
28
        end // always @ *
29
        // Register output C
        always @(posedge clk or posedge reset) begin
32
           if (reset)
             C <= 5'b0;
           else
             C<= Alu out;</pre>
        end
     endmodule
```

The design is working properly.

2. Verification plan:

τ	Label	Design Requirement Description	Stimulus Generation	Functional Coverage	Functionality Check
2	RESET test	When the reset is asserted, outputs should be low.	Directed at the start and the end of the simulation, and called in radomization step.	•	check_result() task checks that output is 0 during reset.
3	RANDOMIZE test	Output of the dut design is equal to the output of the golden model	Randomized test using rand_stimuls class with constraints 90%	•	check_result() verifies correct output using golden model.

3. packege code:

```
package ALU_pkg;
1
         typedef enum logic [1:0] {
             Not A,
             ReductionOR_B
         } opcode_e;
 8
9
         class alu_input;
10
             rand logic
                                clk;
11
             rand logic
12
                               reset;
             rand opcode_e Opcode;
13
             rand logic [3:0] A;
14
             rand logic [3:0] B;
15
16
17
             // no need for constructor
18
             constraint c1 {
19
20
                 reset dist {0 := 9, 1 := 1};
21
         endclass
22
     endpackage
23
```

4. Testbench code:

```
import ALU_pkg::*;
     module ALU tb();
         logic
                              clk;
         logic
                              reset;
         opcode e
                              Opcode:
         logic signed [3:0] A;
         logic signed [3:0] B;
         logic signed [4:0] C;
         logic signed [4:0] C_exp;
10
11
         integer correct count, error count;
12
13
         alu_input my_input;
14
15
         ALU 4 bit dut(.*);
16
17
         initial begin
18
             clk = 0;
19
20
             forever
                  #1 clk = ~clk;
21
22
         end
23
         initial begin
25
             correct count = 0;
             error count = 0;
26
27
             Opcode = Add;
28
                      = 0;
             Α
29
             В
                      = 0;
             //reset test
31
             reset = 0;
32
             check result();
33
```

4. Testbench code:

```
//randomize test
             my_input = new();
             repeat(20) begin
                 assert(my_input.randomize());
                 reset = my_input.reset;
                 Opcode = my_input.Opcode;
                 A = my_input.A;
                 B = my_input.B;
                 check_result();
             $display("*** ERROR count: %0d, CORRECT count: %0d", error_count, correct_count);
         end
        always @(posedge clk, posedge reset) begin
             if (reset)
                  C_exp <= 5'b0;
                  case (Opcode)
                      Add:
                                      C_{exp} \leftarrow A + B;
                                      C_exp <= A - B;
                      Sub:
                     Not_A:
                                      C_exp <= ~A;
                      ReductionOR_B: C_exp <= |B;</pre>
                 endcase
        end
         task check_result();
             @(negedge clk);
             if(C != C_exp) begin
                 $display("*** ERROR! at time %Ot, C = %Od, Expected = %Od***",
                      $time, C, C_exp);
                  error_count++;
             end
             else
71
                 correct_count++;
         endtask
     endmodule
```

5. Do file:

```
vlib work
vlog 2_ALU_pkg.sv 2_ALU.v 2_ALU_tb.sv +cover -covercells
vsim -voptargs=+acc work.ALU_tb -cover
add wave *
coverage save 2_ALU_tb.ucdb -onexit -du work.ALU
coverage exclude -src 2_ALU.v -line 26 -code s
coverage exclude -src 2_ALU.v -line 26 -code b

run -all
```

Excluded default case as it will never occur.

6. Qesta sim wave snippets (unsigned radix)


```
# *** ERROR count: 0, CORRECT count: 21

# ** Note: $stop : 2_ALU_tb.sv(47)

# Time: 42 ns Iteration: 1 Instance: /ALU_tb

# Break in Module ALU_tb at 2_ALU_tb.sv line 47
```

7. Statement coverage report:

```
Statement Coverage:
   Enabled Coverage
                               Bins
                                        Hits
                                               Misses Coverage
   Statements
                                                    0 100.00%
-----Statement Details-----
Statement Coverage for instance /\ALU_tb#dut --
   Line
               Item
                                       Count
                                                Source
 File 2_ALU.v
                                                module ALU_4_bit (
                                                    input clk,
                                                    input reset,
                                                    input [1:0] Opcode, // The opcode
                                                    input signed [3:0] A, // Input data A in 2's complement
                                                    input signed [3:0] B, // Input data B in 2's complement
   8
                                                    output reg signed [4:0] C // ALU output in 2's complement
   10
   11
   12
                                                   reg signed [4:0]
                                                                       Alu_out; // ALU output in 2's complement
   13
   14
                                                   localparam
                                                                     Add
                                                                                   = 2'b00; // A + B
                                                                                   = 2'b01; // A - B
   15
                                                   localparam
                                                                     Sub
                                                                     Not_A
                                                                                    = 2'b10; // ~A
   16
                                                   localparam
   17
                                                   localparam
                                                                     ReductionOR_B = 2'b11; // |B
   18
   19
                                                   // Do the operation
                                                   always €* begin
   20
                                                      case (Opcode)
   21
```

7. Statement coverage report :

92 93	21			case (Opcode)
94	22	1	4	Add: Alu_out = A + B;
95 96	23	1	5	Sub: Alu_out = A - B;
97 98	24	1	7	Not_A: Alu_out = ~A;
99 100	25	1	5	ReductionOR_B: Alu_out = B;
101 102	26			default: Alu_out = 5'b0;
103 104	27			endcase
105	28			end // always @ *
107			•	ciu // aiways e ·
108 109	29			
110 111	30		/	// Register output C
112 113	31	1	24 a	always @(posedge clk or posedge reset) begin
114 115	32			if (reset)
116 117	33	1	6	C <= 5'b0;
118 119	34			else
120	35	1	18	C<= Alu_out;
121			Control description of the control o	

8. Branch coverage report:

```
Branch Coverage:
  Enabled Coverage
                        Bins
                                Hits
                                      Misses Coverage
                                      0 100.00%
                           6
  Branches
     Branch Coverage for instance /\ALU_tb#dut
            Item
  Line
                               Count
                                      Source
 File 2_ALU.v
 -----CASE Branch------
  21
                                 21
                                      Count coming in to CASE
  22
             1
                                           Add:
                                                       Alu_out = A + B;
                                  5
  23
              1
                                           Sub:
                                                       Alu_out = A - B;
  24
              1
                                           Not A:
                                                       Alu_out = ~A;
  25
              1
                                           ReductionOR_B: Alu_out = |B;
Branch totals: 4 hits of 4 branches = 100.00%
------IF Branch------
                                 24
                                      Count coming in to IF
  32
                                  6
                                           if (reset)
  34
                                 18
                                           else
Branch totals: 2 hits of 2 branches = 100.00%
```

9. Toggle coverage report:

```
-----Toggle Details-----
Toggle Coverage for instance /\ALU_tb#dut --
                                                       1H->θL
                                                                                                  "Coverage"
                                                                  0L->1H
                                           A[0-3]
                                                                                                      100.00
                                     Alu_out[4-0]
                                                                                                      100.00
                                           B[0-3]
                                                                                                      100.00
                                           C[4-0]
                                                                                                      100.00
                                                                       1
                                                                                                     100.00
                                      Opcode[0-1]
                                                                                                     100.00
                                              c1k
                                            reset
                                                                                                      100.00
Total Node Count
                               22
Toggled Node Count =
Untoggled Node Count =
                           100.00% (44 of 44 bins)
Toggle Coverage
Total Coverage By Instance (filtered view): 100.00%
```

Question 3:

1. RTL design:

```
module FSM_010(clk, rst, x, y, users_count);
         parameter IDLE = 2'b00;
         parameter ZERO = 2'b01;
11
         parameter ONE = 2'b10;
12
         parameter STORE = 2'b11;
13
         input clk, rst, x;
15
         output y;
16
         output reg [9:0] users count;
17
         reg [1:0] cs, ns;
19
         always @(*) begin
21
              case (cs)
22
                  IDLE:
23
                      if (x)
                          ns = IDLE;
25
                      else
                          ns = ZERO;
27
                  ZERO:
                      if (x)
29
                          ns = ONE;
                      else
                          ns = ZERO;
32
                  ONE:
                      if (x)
                          ns = IDLE;
                      else
                          ns = STORE;
                  STORE:
                      if (x)
                          ns = IDLE;
                      else
41
                          ns = ZERO;
42
                  default:
                              ns = IDLE;
43
              endcase
         end
```

```
45
         always @(posedge clk or posedge rst) begin
46 🗸
             if(rst) begin
47 🗸
                  cs <= IDLE;
48
49
              end
             else begin
51
                  cs <= ns;
52
              end
53
         end
54
         always @(posedge clk or posedge rst) begin
55 🗸
             if(rst) begin
57
                  users_count <= 0;
58
             end
             else begin
59 🗸
                  if (cs == STORE)
61
                      users_count <= users_count + 1;
62
              end
63
         end
64
65
         assign y = (cs == STORE)? 1:0;
66
67
     endmodule
```

2. Verification plan:

91	Label	Design Requirement Description	Stimulus Generation	Functional Coverage	Functionality Check
2	RESET test	When the reset is asserted, outputs should be low.	Directed at the start and the end of the simulation, and called in radomization step.	•	check_result() task checks that output is 0 during reset
3	RANDOMIZE test	Output of the dut design is equal to the output of the golden model	Randomized test using rand_stimuls class with constraints 90% deactive reset,	•	check_result() verifies correct output using golden model.

3. packege code:

```
package FSM_pkg;
         class fsm_transaction;
 3
             rand logic x;
 4
             rand logic rst;
 5
 6
             constraint c1 {
                  rst dist {1 := 1, 0 := 90};
 8
 9
                  x dist {0 := 67, 1:= (100 - 67)};
10
         endclass
11
     endpackage
12
```

4. Testbench code:

```
import FSM pkg::*;
     module FSM 010_tb();
         logic clk;
         logic rst;
         logic x;
         logic y;
         logic [9:0]users_count;
10
         logic y_exp;
11
         logic [9:0]users count exp;
12
13
         integer correct count, error count;
14
15
         fsm_transaction my_input;
17
         FSM 010 dut(.*);
         FSM_010_golden golden(clk, rst, x, y_exp, users_count_exp);
18
19
         initial begin
21
             clk = 0;
22
              forever
23
                 #1 clk = \simclk;
24
         end
25
         initial begin
27
             correct count = 0;
28
             error_count = 0;
29
             x = 0;
             //reset test
32
             rst = 1;
             check_result();
             //randomize test
             my_input = new();
              repeat(10000) begin
                  assert(my_input.randomize());
                  rst = my_input.rst;
                 x = my input.x;
41
                  check_result();
42
              end
```

4. Testbench code:

```
$display("*** ERROR count: %0d, CORRECT count: %0d", error_count, correct_count);
$stop;
end

task check_result();

@(negedge clk);
if(y != y_exp || users_count != users_count_exp) begin

| $display("*** ERROR! at time %0t, y = %0d, Expected = %0d***",
| $time, y, y_exp);
| error_count++;
end
else
| correct_count++;

endtask

endmodule
```

5. Do file:

```
vlib work
vlog 3_golden_model.sv 3_FSM_pkg.sv 3_FSM_010.v 3_FSM_tb.sv +cover -covercells
vsim -voptargs=+acc work.FSM_010_tb -cover
add wave *
coverage save 3_FSM_tb.ucdb -onexit -du work.FSM_010
coverage exclude -du FSM_010 -togglenode {users_count[6]}
coverage exclude -du FSM_010 -togglenode {users_count[7]}
coverage exclude -du FSM_010 -togglenode {users_count[8]}
coverage exclude -du FSM_010 -togglenode {users_count[9]}
```

6. Qesta sim wave snippets (Unsigned):


```
# *** ERROR count: 0, CORRECT count: 10001
# ** Note: $stop : 3_FSM_tb.sv(45)
# Time: 20002 ns Iteration: 1 Instance: /FSM_010_tb
# Break in Module FSM_010_tb at 3_FSM_tb.sv line 45
```

since users_count is 10 bits, it is difficult to get 100% coverage for it, i need to make alot more loops.

7. Statement coverage report:

```
Statement Coverage for instance /\FSM_010_tb#dut --
                 Item
                                                     Source
  File 3_FSM_010.v
                                                     module FSM_010(clk, rst, x, y, users_count);
    9
                                                      parameter IDLE = 2'b00;
                                                      parameter ZERO = 2'b01;
    10
    11
                                                      parameter ONE = 2'b10;
                                                      parameter STORE = 2'b11;
    12
    13
    14
                                                       input clk, rst, x;
    15
                                                      output y;
    16
                                                      output reg [9:0] users_count;
    17
    18
                                                      reg [1:0] cs, ns;
    19
                                           10245
                                                      always @(*) begin
    20
                    1
                                                        case (cs)
    21
                                                          IDLE:
    22
    23
                                                            if (x)
    24
                    1
                                            1014
                                                             ns = IDLE;
    25
                                                            else
                    1
                                            1073
                                                              ns = ZER0;
    26
    27
                                                          ZERO:
```

7. Statement coverage report :

27			ZERO:
28			if (x)
29	1	1785	ns = ONE;
30			else
31	1	1821	ns = ZERO;
32			ONE:
33			if (x)
34	1	1767	ns = IDLE;
35			else
36	1	1195	ns = STORE;
37			STORE:
38			if (x)
39	1	404	ns = IDLE;
40			else
41	1	1185	ns = ZERO;
42	1	1	<pre>default: ns = IDLE;</pre>
43			endcase
44			end
45			
46	1	7505	always @(posedge clk or posedge rst) begin
47			if(rst) begin

7. Statement coverage report :

48	1	200	cs <= IDLE;
49			end
50			else begin
51	1	7305	cs <= ns;
52			end
53			end
54			
55	1	5981	always @(posedge clk or posedge rst) begin
56			if(rst) begin
57	1	200	users_count <= 0;
58			end
59			else begin
60			if (cs == STORE)
61	1	1168	users_count <= users_count + 1;
62			end
63			end
64			
65	1	5828	assign y = (cs == STORE)? 1:0;

8. Branch coverage report:

7 8	Branch Covera		Bins	Hits	Misses Coverage
9					
10 11	Branches		21	21	0 100.00%
12	========	=========	====Branch Det	ails====	
13					
14 15	Branch Cover	age for instance	≥ /\FSM_010_tb#	dut	
16	Line	Item			Source
17 18	File 3_FSM	010 v			
19			CASE B	ranch	
20	21			10245	Count coming in to CASE
21	22	1		2087	IDLE:
22 23	27	1		3606	ZERO:
24	21	1		3000	ZERO:
25	32	1		2962	ONE:
26	77	4		1500	CTORE -
27 28	37	1		1589	STORE:
29	42	1		1	<pre>default: ns = IDLE;</pre>
30 31	Branch total	s: 5 hits of 5 l	nranches = 100	99%	
32	bi diicii cocar	3. 3 11113 01 3 1	or anches = 100.	00%	
33			IF Bra	nch	
34	23				Count coming in to IF
35	23	1		1014	if (x)
36 37	25	1		1073	else
38	1 23	-		10/3	
39	Branch total	s: 2 hits of 2 l	oranches = 100.	00%	
40			TE D		
41 42	28		IF Bra	nch 3606	Count coming in to IF
43	28	1		1785	if (x)
44		_		2.03	21 (17)
45	30	1		1821	else
46 47	Branch total	s: 2 hits of 2 l	pranches = 100.	00%	

8. Branch coverage report:

```
-----IF Branch-----
                                                   Count coming in to IF
                                           2962
        33
                      1
                                           1767
                                                         if (x)
        35
                      1
                                           1195
                                                         else
    Branch totals: 2 hits of 2 branches = 100.00%
             -----IF Branch-----
        38
                                           1589
                                                   Count coming in to IF
        38
                     1
                                            404
                                                         if (x)
        40
                                           1185
                                                         else
    Branch totals: 2 hits of 2 branches = 100.00%
                 -----IF Branch-----
       47
                                           7505
                                                  Count coming in to IF
       47
                     1
                                            200
                                                     if(rst) begin
        50
                                           7305
                                                     else begin
70
    Branch totals: 2 hits of 2 branches = 100.00%
                 -----IF Branch-----
        56
                                           5981
                                                  Count coming in to IF
                                                     if(rst) begin
        56
                     1
                                            200
        59
                      1
                                           5781
                                                     else begin
    Branch totals: 2 hits of 2 branches = 100.00%
                  -----IF Branch-----
        60
                                           5781
                                                  Count coming in to IF
                     1
                                           1168
                                                       if (cs == STORE)
        60
                                           4613
                                                   All False Count
    Branch totals: 2 hits of 2 branches = 100.00%
                    -----IF Branch-----
       65
                                         5827
                                                 Count coming in to IF
       65
                     1
                                                  assign y = (cs == STORE)? 1:0;
                                         1185
       65
                     2
                                                  assign y = (cs == STORE)? 1:0;
                                         4642
    Branch totals: 2 hits of 2 branches = 100.00%
```

9. FSM coverage:

140	=======	===========	===FSM Detail	.s=====				
141 142	FSM Covera	FSM Coverage for instance /\FSM_010_tb#dut						
143	15ii covera	. S. Coverage To. Instance / (CSozo_comade						
144	FSM_ID: cs							
145	Curren	Current State Object : cs						
146								
147 148	State	State Value MapInfo :						
149	Line	State Name	Val	.ue				
150								
151	22	IDLE		0				
152	27	ZERO		1				
153	32	ONE		2				
154	37	STORE		3				
155	Covere	d States :						
156								
157		State	Hit_cou					
158		TDLE	10					
159 160		IDLE ZERO		317 336				
161		ONE		67				
162		STORE		.85				
163	Covered Transitions :							
164								
165	Line	Trans_ID	Hit_cou	int	Transition			
166	26				TDLF > 7500			
167	26	0)53)67	IDLE -> ZERO			
168 169	29 48	1 2		67 54				
170	36	3		.85	ZERO -> IDLE ONE -> STORE			
171	34	4		82	ONE -> IDLE			
172	41	5		68	STORE -> ZERO)		
173	39	6		17	STORE -> IDLE			
174								
175								
176	Summar	у	Bins	Hits	Misses Coverag	ge		
177		-				-		
178	FS	M States	4	4	0 100.00)%		
179	FS	M Transitions	7	7	0 100.00)%		

10. Toggle coverage:

Enabled Coverage	Bins Hits	Misses Co	verage	
Toggles	28 28	0 1	.00.00%	
	Toggle Details			===
Toggle Coverage for instanc	ce /\FSM_010_tb#dut			
	Node	1H->0L	. 0L->1H	"Coverage
	-11-			
	cs[1-0]		. 1	100.0 100.0
	ns[1-0]			100.0
	rst			
	users_count[5-0]			100.
	x			100.0
		1	. 1	100.0
Total Node Count =	14			
Toggled Node Count =	14			
Untoggled Node Count =	0			
Toggle Coverage =	100.00% (28 of 28 bins)			
Total Coverage By Instance	(filtered view): 100.005	%		