

FDA Guidance: Exposure-Response Relationships in Drug Development

This presentation provides a comprehensive overview of FDA recommendations for studying exposure-response relationships in drugs and biologics.

We'll explore how these crucial analyses support dose selection and optimize benefit-risk assessment throughout development and regulatory review.

DZ by David Zhang

Key Concepts

Exposure-Response Relationship

Describes how drug exposure (concentration, AUC, Cmax) relates to pharmacologic, efficacy, and safety responses.

Clinical Importance

Enables appropriate dose selection and efficient trial design. Supports benefit-risk assessment and informs product labeling.

Regulatory Impact

Provides scientific basis for approval decisions. Helps establish safe and effective dosing guidelines.

Study Design Recommendations

口 Data Collection Timeline

Gather exposure-response data from early and late-phase clinical trials.

Essential Design Elements
Include multiple dose levels to ensure broad exposure range.

🖄 Sampling Strategy

Collect adequate PK samples for robust population modeling.

Population Considerations

Account for factors affecting exposure: age, organ function, drug interactions.

Data Analysis Recommendations

Graphical Exploration

Start with scatterplots and boxplots of exposure versus response.

Model Development

Apply population PK/PD models and statistical regression techniques.

Variability Assessment

3

Account for inter-individual differences through covariate inclusion.

Safety Analysis

Evaluate adverse events with respect to exposure thresholds.

Regulatory Applications

Dose Selection

Justifies dosing regimens for clinical trials and commercial use.

Population Bridging

Facilitates extending findings between different patient groups or formulations.

Labeling

Informs precise dosing instructions for different populations.

Risk Management

Supports strategies to minimize adverse effects while maintaining efficacy.

Best Practices

Common Pitfalls to Avoid

Narrow Exposure Range \bot \vdash ٦г Inadequate dose levels prevent defining complete E-R curve **Insufficient Sampling** AA Poor PK collection leads to unreliable concentration estimates **Missing Covariates** Overlooking important factors causes biased E-R relationships **Isolated Analyses** ## ## Failing to integrate efficacy and safety E-R gives incomplete picture

Key Takeaways

Scientific Foundation

Well-designed E-R assessments provide critical understanding of drug behavior.

Regulatory Impact

E-R analyses strengthen submissions and support approval decisions.

Patient Benefit

Optimal dose selection ensures safe and effective drug use across populations.

