Visión por Computador II

CEAI, FIUBA

Profesores:

- Javier A. Kreiner, javkrei@gmail.com
- Andrés F. Brumovsky, abrumov@gmail.com

Tercera clase:

- VGG Network
- Programación
 - Implementación de una VGG Network
- Residual networks, bloque residual
- Ejemplo: Red residual vs red 'normal'
- Transfer Learning
 - Programación
 - 50 Utilizar VGG Network pre-entrenada para el problema de gatos/perros
 - Utilizar ResNet-50 pre-entrenada para el mismo problema

VGG - 16

CONV = 3×3 filter, s = 1, same MAX-POOL = 2×2, s = 2

[Simonyan & Zisserman 2015. Very deep convolutional networks for large-scale image recognition]

VGG-16

- ILSVRC 2014
- La misma estructura se repite
- Receptive fields pequeños, de 3x3
- 16 capas
- ReLU como no-linearidad
- 3 FC layers al final
 - Paper original: Very deep convolutional networks for large-scale image recognition -> https://arxiv.org/pdf/1409.1556
 - 'Filosofía'/metodología de VGG:
 - o si la salida de una capa tiene la misma resolución que la capa anterior, mantenemos la cantidad de canales
 - si la salida de una capa divide por dos cada dimensión, <u>duplicamos l</u>a cantidad de canales

Keras, método funcional de armar redes

Ejercicio de programación, implementar VGG con método funcional

colab: https://colab.research.google.com/drive/1A3bP-1NMi-WnxzVySzUf0UfAFut2cE1R?usp=sharing

Problemas al entrenar redes muy profundas

- Gradientes que explotan o tienden a cero
 - o Para este problema es común usar Batch Normalization
- Degradación de la performance de entrenamiento
 - Vamos a ver Redes Residuales para esto

Batch Normalization

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\widehat{\mu_{\mathcal{B}}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\widehat{\sigma_{\mathcal{B}}^2} \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{\widehat{x}_i - \widehat{\mu_{\mathcal{B}}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \widehat{\gamma} \widehat{x}_i + \widehat{\beta} \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

Redes residuales

- A medida que las redes se hacen más profundas (aumentan las capas) se vuelven más difíciles de entrenar, hay una degradación de la performance en el training set
- Esto indica que no todas las redes son igual de fácil de optimizar
- Si tomáramos una red y le agregamos una capa que sea la identidad, por construcción la red expandida tendría la misma performance
- Este argumento implica que la red extendida bien entrenada debe tener al menos la misma performance que la red original
 - Los experimentos muestran que en la práctica se entrenan más fácil que una red 'común' para la misma complejidad

Bloque residual

- Supongamos que queremos aproximar H(x)
- Y supongamos que ya tenemos una aproximación con x
- Podemos en vez aproximar el residuo: R(x) = H(x) x
- O sea H(x) = R(x) + x
- Esto es lo que se quiere lograr con las conexiones residuales o 'skip connections'

$$\alpha^{(l)} \longrightarrow \omega^{(l+1)}\alpha^{(l)} + b^{(l+1)} = z^{(l+1)} \longrightarrow \mathcal{F}(z^{(l+1)}) = \alpha^{(l+1)}$$

$$\alpha^{(l+1)} \longrightarrow z^{(l+2)} = \omega^{(l+2)}\alpha^{(l+1)} + b^{(l+2)} \longrightarrow \mathcal{F}(z^{(l+2)} + \alpha^{(l)})$$

Bloque residual

paper: Deep Residual Learning for Image Recognition,
 https://arxiv.org/pdf/1512.03385.pdf

Comparación entre red residual y 'normal'

colab:

https://colab.research.google.com/drive/1HOG1cwWKBkWj_LwDfsCPi5j544UP_88W?usp=sharing

Resnet

paper original: Deep Residual Learning for Image Recognition, https://arxiv.org/pdf/1512.03385.pdf

Cuadro comparativo

	Models	Batch-size / Epochs	Baseline		
			Top-1	Top-5	# de parámetros
j	ResNet-50	1024 / 90	75.7 <u>0</u> %	92.78%	23 millones
	GoogLeNet-v1	1024/80	69.26%	89.31%	millones
	VGG-16	256 / 60	68.23%	88.47%	138 millones
	AlexNet	1024 / 88	57.43%	80.65%	61 millones

Transfer learning

- Las redes actuales tienen muchos millones de parámetros
- Los datasets son también enormes y posiblemente privados
- Se requieren un gran poder de cóm<u>pu</u>to (tiempo/dinero) para entrenarlas
- Lo que podemos hacer es utilizar redes que ya fueron entrenadas (por otros, en internet) y utilizarlas para inicializar una red
- Posibilidades:
 - Congelar todos los layers excepto la <u>última cap</u>a, reemplazar entrenar esa, en este caso se puede pre-computar y guardar a disco
 - Entrenar las las últimas capas, usando los pesos existentes para inicializar, o entrenarlas de cero
 - Reemplazar las última capas con otra arquitectura y entrenar O usar los pesos como inicialización y entrenar toda la red

Depende de cuán grande sea nuestro dataset y de cuánto tiempo de cómputo tengamos

Workflow de transfer learning con Keras

A. Opción uno

- Instanciar un modelo base y cargarlo con sus pesos pre-entrenados
- 2. Congelar todos los layers del modelo base seteando trainable=false
- 3. Crear un nuevo modelo agregando capas luego de la salida del modelo base
- 4. Entrenar el modelo en el dataset que tenemos

B. Otra opción (más liviana):

- 1. Instanciar el modelo base y cargar los pesos pre-entrenados
 - 2. Correr el modelo sobre nuevo dataset y guardar la salida. Con esto extraemos las features del modelo ya entrenado
- 3. Usar estas features como entrada para un modelo más pequeño

En esta segunda opción solo corremos el modelo pre-entrenado una vez en los datos.

Transfer Learning con Keras:

colab:

https://colab.research.google.com/drive/177_2H4LATJPmgqTg5xDOLkxdEo0G3xCX?usp=sharing

Tercer intento de resolver el problema con transfer learning

- Ejemplo con VGG pre-entrenada
- Ejemplo con ResNet pre-entrenada