Algèbre linéaire et bilinéaire

Table des matières

1.	Rappels d'algèbre linéaire.	1
	1.1. Sous-espaces vctoriels. · · · · · · · · · · · · · · · · · · ·	1
	1.2. Familles de vecteurs et bases.	1
	1.3. Applications linéaires. · · · · · · · · · · · · · · · · · · ·	1

1. Rappels d'algèbre linéaire.

1.1. Sous-espaces vctoriels.

Définition 1.1. Soit E un espace vectoriel sur \mathbb{K} . On dit que $F \subseteq E$ est un sous-espace vectoriel si (1) $\forall (x,y) \in F^2, \forall \lambda \in \mathbb{K}, \lambda x + y \in F$,

(2) $0 \in F$.

Proposition 1.2. Soit F, G des sous-espaces vectoriels de E. Alors $F \cap G$ et F + G sont des sous-espaces vectoriels de E.

Définition 1.3. Soit $A \subseteq E$ un sous-ensemble, on peut definir le plus petit sous-espace vectoriel contenant A par : Vect $(A) = \left\{ \sum_{i=1}^{n} \lambda_i a_i, a_i \in A, \lambda_i \in \mathbb{K} \right\}$.

Remarque 1.4. Si $A = \{v\}, v \in E, v \neq 0, \text{Vect}(A) = \text{Vect}(v) = kv.$

Définition 1.5. Soit $F, G \subseteq E$ des sous-espaces vectoriels. On dit que F et G sont en somme directe si $F \cap G = \{0\}$.

1.2. Familles de vecteurs et bases.

Définition 1.6. Soit $(x_1,...,x_n) \in E^n$, $(\lambda_1,...,\lambda_n)$. On dit que $(x_1,...,x_n)$ est une famille libre si $\lambda_1 x_1 + ... + \lambda_n x_n = 0 \Rightarrow \lambda_1 = ... = \lambda_n = 0$

Définition 1.7. Une famille infinie est libre si toute sous-famille finie est libre.

Définition 1.8. Soit $\mathcal{F} = (x_1, ..., x_n) \in E^n$. On dit que \mathcal{F} est génératrice de E si $\text{Vect}(\mathcal{F}) = E$.

Définition 1.9. On appelle base de *E* toute famille libre et génératrice de *E*.

Définition 1.10. On appelle dimension de E le cardinal d'une base de E.

Proposition 1.11 (changement de base). Soit $\mathcal{E} = e_1, ..., e_n$ et $\mathcal{F} = f_1, ..., f_n$ deux bases de E. Soit $x \in E$. Il existe d'unique $(x_1, ..., x_n) \in \mathbb{K}^n$ tel que $x = \sum_{i=1}^n x_i e_i$.

On note
$$[x]_{\mathcal{E}} := \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \in M_{nx1}(\mathbb{K})$$
, et $\mathrm{Pass}_{\mathcal{E}}^{\mathcal{F}} = ([f_1]_{\mathcal{E}} \dots [f_n]_{\mathcal{E}}) \in M_{nxn}(\mathbb{K})$ On a :

$$[x]_{\mathcal{E}} = \operatorname{Pass}_{\mathcal{E}}^{\mathcal{F}}[x]_{\mathcal{F}}.$$

1.3. Applications linéaires.

Définition 1.12. Soit $u: E \to F$ une application. On dit que u est linéaire si $\forall x, y \in E^2, \forall \lambda \in \mathbb{K}$, $u(\lambda x + y) = \lambda u(x) + u(y)$.

Notation 1.13. On note $\mathcal{L}(E,F)$ l'espace vectoriel des applications linéaires de E dans F et $\mathcal{L}(E)$ l'espace vectoriel des endomorphismes.

Définition 1.14. Soit E un espace vectoriel, $u \in \mathcal{L}(E)$ On appelle noyau de u l'ensemble $\ker(u) = \{x \in E | u(x) = 0\}.$

Définition 1.15. Soit E un espace vectoriel, $u \in \mathcal{L}(E)$. On appelle image de u l'ensemble $\text{Im}(u) = \{y \in F | \exists x \in E, y = u(x)\}.$

Théorème 1.16 (théorème du rang). Soit E un espace vectoriel de dimension finie, $u: E \to E$. $\dim(E) = \dim(\ker(u)) + \dim(\dim(u))$.

Démonstration. Notons $p := \dim(\ker(u)), n := \dim(E)$. Soit $(e_1, ..., e_p)$ une base de $\ker(u)$. Par le théorème de la base incomplète, on note $(e_1, ..., e_p, (e_{p+1}, ..., e_n))$.

Une base de $\mathcal{I}m(u)$ est $\mathrm{Vect}(u(e_1),...,u(e_p),u(e_{p+1}),...,u(e_n)) = \mathrm{Vect}(u(e_{p+1}),...,u(e_n))$. Verifions que $(u(e_{p+1}),...,u(e_n))$ est une famille libre. Soit $(\lambda_{p+1},...,\lambda_n) \in \mathbb{R}$

$$\begin{split} \lambda_{p+1}u(e_{p+1})+\ldots+\lambda_nu(e_n)&=0 \Leftrightarrow u\big(\lambda_{p+1}e_{p+1}+\ldots+\lambda_ne_n\big)=0\\ &\Leftrightarrow \lambda_{p+1}e_{p+1}+\ldots+\lambda_ne_n\in\ker(u)\\ &\Leftrightarrow \exists \big(\lambda_1,\lambda_p\big)\in\mathbb{R}, \lambda_{p+1}e_{p+1}+\ldots+\lambda_ne_n=\lambda_1e_1+\ldots\lambda_pe_p \end{split}$$

Or $\lambda_1 e_1 + ... \lambda_p e_p \neq 0$ car c'est une famille libre. D'où, $\mathrm{Vect} \big(u \big(e_{p+1} \big), ..., u(e_n) \big)$ libre. Ainsi, on a $\dim \big(\mathrm{Vect} \big(u \big(e_{p+1} \big), ..., u(e_n) \big) \big) = \dim (\mathcal{I} m(u)) = n - p = \dim(E) - \dim(\ker(u)).$ On a bien montré, $\dim (\ker(u)) + \mathrm{rg}(u) = \dim(E)$.

Corollaire 1.17. Soit $u: E \to E$ un endomorphisme, $\ker(u) = 0 \Leftrightarrow u$ injective $\Leftrightarrow u$ surjective.

Démonstration.

- (1) \Rightarrow Soit f une application linéaire injective. On a nécessairement $0_E \in \ker(f)$ or f est injective, donc $\forall x \in E, x \neq 0_E \Rightarrow f(x) \neq 0$ d'où $\ker(f) = \{0_E\}$. \Leftrightarrow Soit f une application linéaire tel que $\ker(f) = \{0_E\}$. Supposons par absurde f non injective. Alors $\exists u \neq v \in E, f(u) = f(v)$. Donc f(u v) = f(u) f(v) = 0 impossible car $u \neq v$.
- (2) \Rightarrow Supposons f injective. Alors $\ker(f) = \{0\} \Rightarrow \dim(\ker(f)) = 0 \Rightarrow \dim(\mathcal{I}m) = \dim(E) = \dim(F)$ d'où f surjective.

 \Leftarrow Supposons f surjective. Alors $\dim(\mathcal{I}m) = \dim(F) \Rightarrow \dim(\ker(f)) = 0$ d'où f injective.

Théorème 1.18. Soit $f \in \mathcal{L}(E, F), g \in \mathcal{L}(F, G)$.

$$[g \circ f]_{\varepsilon}^{\mathcal{F}} = [g]_{\mathcal{F}}^{\mathcal{G}}[f]_{\varepsilon}^{\mathcal{F}}.$$

Corollaire 1.19. Soit $E, \mathcal{E}, \mathcal{F}$ deux bases de E, et $u \in \mathcal{L}(E)$. On note $P = \mathcal{P}ass_{\mathcal{E}}^{\mathcal{F}} = [id_E]_{\mathcal{F}}^{\mathcal{E}}$ $[u]_{\mathcal{F}} = [id_E]_{\mathcal{F}}^{\mathcal{F}} [u]_{\mathcal{F}} [id_E]_{\mathcal{F}}^{\mathcal{E}} = P^{-1} [u]_{\mathcal{F}} P.$

$$\begin{aligned} p(x) &\in \mathbb{K}(x) \\ u(p(x)) &= p(u(x)) = \lambda x, \lambda \in \mathbb{K} \\ u(p(x)) &= u(\lambda x) = \lambda u(x) \Leftrightarrow u(x) = \lambda_2 x \end{aligned}$$