

Fake News Detection - Approach

Nityanandan Paramasivam

THE OBJECTIVE

Develop a model to detect if a given news article is a fake one or a legitimate one.

Challenge: The data contains only text data and there are no numerical data except id, which is only used to identify records

I have handled the data here using text analytics modules from Scikit-Learn. It will actually convert that into numerical data and we can fit them into models

APPROACH

Problem Definition:

 Predicting whether a given news is real or fake

Data Exploration:

 Checking if there are any missing data

Data Preparation:

- Data was prepared using the CountVectorizer module
- Transform a count matrix to a normalized tf-idf representation

Splitting the data:

 The tf-idf matrix is split into train and test sets

Validation:

- Accuracy
- Precision
- Recall
- F1 score
- 5 fold cross validation

Modelling:

- Logistic Regression
- Decision Tree Classifier
- Random Forest Classifier
- Naïve Bayes Classifier
- KNN Classifier

DATA EXPLORATION

- There were a lot of missing data in the dataset
- They are all unique news, headlines and names of authors
- These cannot be imputed
- So I filled all of them with empty values

Before Filling:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20800 entries, 0 to 20799
Data columns (total 5 columns):
    Column Non-Null Count Dtype
    id
           20800 non-null int64
    title 20242 non-null object
    author 18843 non-null object
                           object
    text
            20761 non-null
    label
            20800 non-null int64
dtypes: int64(2), object(3)
memory usage: 812.6+ KB
None
```

After Filling and adding a new feature:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20800 entries, 0 to 20799
Data columns (total 6 columns):
    Column Non-Null Count Dtype
    id
            20800 non-null int64
1 title
            20800 non-null object
    author
            20800 non-null object
                           object
    text
            20800 non-null
    label
            20800 non-null int64
    total
            20800 non-null
                           object
dtypes: int64(2), object(4)
memory usage: 975.1+ KB
None
```

DATA PREPARATION

- We create a new column in the dataset to add all the previous columns.
- This adds a new feature which contains the title, author and the news
- Now we use CountVectorizer from Scikit-learn to filter and tokenize the stopwords and also help in text pre-processing.
- This builds a dictionary of features and transforms documents to feature vectors.
- Then we use the TfidfTransformer from Scikit-learn to transform a count matrix to a normalized tf-idf representation.

Data before adding new feature

	id	title	author	text	label
0	0	House Dem Aide: We Didn't Even See Comey's Let	Darrell Lucus	House Dem Aide: We Didn't Even See Comey's Let	1
1	1	FLYNN: Hillary Clinton, Big Woman on Campus	Daniel J. Flynn	Ever get the feeling your life circles the rou	0
2	2	Why the Truth Might Get You Fired	Consortiumnews.com	Why the Truth Might Get You Fired October 29,	1
3	3	15 Civilians Killed In Single US Airstrike Hav	Jessica Purkiss	Videos 15 Civilians Killed In Single US Airstr	1
4	4	Iranian woman jailed for fictional unpublished	Howard Portnoy	Print \nAn Iranian woman has been sentenced to	1

Data after adding new feature

	id	title	author	text	label	total
0	0	House Dem Aide: We Didn't Even See Comey's Let	Darrell Lucus	House Dem Aide: We Didn't Even See Comey's Let	1	House Dem Aide: We Didn't Even See Comey's Let
1	1	FLYNN: Hillary Clinton, Big Woman on Campus	Daniel J. Flynn	Ever get the feeling your life circles the rou	0	FLYNN: Hillary Clinton, Big Woman on Campus
2	2	Why the Truth Might Get You Fired	Consortiumnews.com	Why the Truth Might Get You Fired October $29,\dots$	1	Why the Truth Might Get You Fired Consortiumne
3	3	15 Civilians Killed In Single US Airstrike Hav	Jessica Purkiss	Videos 15 Civilians Killed In Single US Airstr	1	15 Civilians Killed In Single US Airstrike Hav
4	4	Iranian woman jailed for fictional unpublished	Howard Portnoy	Print \nAn Iranian woman has been sentenced to	1	Iranian woman jailed for fictional unpublished

After fitting data into TfldfTransformer:

tfidf

<20800x3611325 sparse matrix of type '<class 'numpy.float64'>'
 with 20406542 stored elements in Compressed Sparse Row format>

test_tfidf

• Logistic Regression:

[[2398 1 [120 25	-				
		precision	recall	f1-score	support
	0	0.95	0.94	0.94	2564
	1	0.94	0.95	0.95	2636
accur	racy			0.94	5200
macro	avg	0.95	0.94	0.94	5200
weighted	avg	0.95	0.94	0.94	5200

• Cross Validation:

[0.93814103 0.94551282 0.94839744 0.94134615 0.94647436]

Decision Tree Classifier:

[[2460 1 [89 25	[04] [547]]				
		precision	recall	f1-score	support
	0	0.97	0.96	0.96	2564
	1	0.96	0.97	0.96	2636
accur	acy			0.96	5200
macro	avg	0.96	0.96	0.96	5200
weighted	avg	0.96	0.96	0.96	5200

• Cross Validation:

[0.96057692 0.9625 0.96153846 0.96346154 0.96570513]

Random Forest Classifier:

[[2490 74] [63 2573]				
	precision	recall	f1-score	support
(0.98	0.97	0.97	2564
í	0.97	0.98	0.97	2636
accuracy	/		0.97	5200
macro av	g 0.97	0.97	0.97	5200
weighted av	g 0.97	0.97	0.97	5200

• Cross Validation:

Naïve Bayes Classifier:

[[2561 3] [1126 1510]]]			
	precision	recall	f1-score	support
0	0.69	1.00	0.82	2564
1	1.00	0.57	0.73	2636
accuracy			0.78	5200
macro avg	0.85	0.79	0.77	5200
weighted avg	0.85	0.78	0.77	5200

• Cross Validation:

[0.77532051 0.75833333 0.77532051 0.77211538 0.77307692]

K Nearest Neighbor Classifier:

[[1780 7 [354 22	_				
		precision	recall	f1-score	support
	0	0.83	0.69	0.76	2564
	1	0.74	0.87	0.80	2636
accur	racy			0.78	5200
macro	avg	0.79	0.78	0.78	5200
weighted	avg	0.79	0.78	0.78	5200

• Cross Validation:

[0.76442308 0.78012821 0.79935897 0.7849359 0.78365385]

SORTING MODELS AS PER THE ACCURACY

	Model	Score
2	Random Forest	97.365385
1	Decision Tree	96.288462
0	Logistic Regression	94.500000
4	Naive Bayes	78.288462
3	KNN	78.115385

- We can see that the accuracy of Random Forest, Decision Tree and Logistic Regression is better than Naïve Bayes and KNN.
- This is because Random forest is better at handling high dimensional spaces and large training samples than KNN and Naïve bayes.
- Decision Tree and Logistic regression are better here compared to KNN because there is no distance metric. KNN determines neighborhoods, so there must be a distance metric. This implies that all the features must be numeric.

THANK YOU