Prognózovanie

OBSAH PREDNÁŠKY

- Prognózovanie
 - cieľ, postup, klasifikácia metód
- Kvantitatívne metódy
 - Rôzne typy priemerov, lineárna regresia, metóda harmonických váh
- Kvalitatívne metódy
 - Odhad predajcov, skupinový posudok, prieskum trhu, metóda Delphi

Štruktúra činností výrobnej logistiky

Prognózovanie

- **Plánovanie** je nevyhnutnou súčasťou práce manažéra.
- Prognózovanie mu z časti pomáha redukovať neurčitosť pri vytvorení konkrétnych plánov
- Ciele prognózovania:
 - Odhad predaja výrobkov, tj. budúcich požiadaviek na výrobu, od čoho sa následne odvíja
 - Odhad spotreby materiálov, energie a ďalších zdrojov
 - Ale cieľom môže byť napr. aj odhad vývoja cien, inflácie a pod.

Postup pri prognózovaní

- 1. Určenie cieľa prognózy.
- 2. Určenie časového horizontu prognózy.
- 3. Výber metódy prognózovania.
- 4. Zber a analýza vhodných informácií a ich spracovanie pre účely prognózy.
- 5. Monitorovanie kvality prognóz.

Klasifikácia metód prognózovania

A. Kvantitatívne

- Sú založené <u>na analýze a spracovaní historických údajov</u> a ich extrapolácii na obdobie prognózy, alebo
- Na hľadaní (kauzálnych) vzťahov časovej rady údajov použitých pre prognózovanie.

B. Kvalitatívne

- Sú založené viac <u>na subjektívnych informáciách zákazníkov,</u> <u>predajcov, manažérov, expertov</u>, na základe ktorých sa následne robí numerický odhad.
- Používajú sa vtedy, ak je potrebná prognóza rýchlo, alebo ak nemáme dostatok informácií pre použitie kvantitatívnych metód.

Kvantitatívne metódy prognózovania (1)

- Využívajú časovú radu údajov.
- Časová rada údajov je časovo usporiadaná sekvencia údajov, pozorovaní získaných v nejakom pravidelnom (rovnakom) časovom intervale (napr. deň, mesiac, rok a pod.).
- Princíp je v tom, že sa predpokladá nasledovné: vývoj a vzťahy medzi hodnotami v minulosti budú pokračovať aj v budúcnosti.
- Dátovú množinu je možné v niektorých prípadoch rozšíriť o ďalšie vstupujúce atribúty a budovať prediktívny model (viac viď. predmet Objavovanie znalostí)

Dôležité faktory kvantitatívneho prognózovania

- Časový horizont prognózy na koľko intervalov dopredu je potrebné stanoviť prognózu
 - Strategická prognóza na 3 5 časových intervalov (kríza alebo konjunktúra skupiny výrobkov, požiadavky na nové výrobky, výkony nadväzujúcich odvetví, vývoj cien vstupov ...)
 - Taktická prognóza na jeden časový interval (pre účely kapacitného plánovania, objednávok vstupov s dlhými dodacími lehotami, pre účely operatívneho plánovania ...)
- Koľko hodnôt prognózovanej veličiny do minulosti vziať do úvahy – rozsah hodnôt a ich závažnosť.
 - z hľadiska štatistiky čím viac (min. 3-5), ale
 - čím staršie údaje, tým menší vplyv na prognózovanú hodnotu

Typy modelov chovania časovej rady údajov

- Konštantný model (K) v dlhom časovom období sa sledované hodnoty pohybujú v úzkom intervale.
- Trendový model (T) krivka má jasný trend (stúpajúci alebo klesajúci) – vyznačuje sa trvalou kvalitou zmeny.
- Cyklický model (C) je charakteristický tým, že po určitom čase sa hodnoty zhruba opakujú.
- **4. Sezónny model (S)** podobný ako cyklický, podobnosť ale súvisí s obdobím, periód teda môže byť viac a rôznej dĺžky.
- Kombinovaný model je kombináciou druhého typu modelu s tretím alebo štvrtým.

Konštantný model

Trendové modely

Cyklický model

Kombinovaný model (sezónny trendový)

Metódy kvantitatívnej prognózy (1)

- Aritmetický priemer $Y_{n+1} = \frac{1}{n} \sum_{i=1}^{n} Y_i$
 - zo všetkých hodnôt časovej rady údajov
- Kĺzavý priemer $Y_{n+1} = \frac{1}{n-m} \sum_{i=m+1}^{n} Y_i$
 - do prognózy sa zahŕňa len (n m) posledných hodnôt, nie najstaršie hodnoty
- Vážený priemer $Y_{n+1} = \frac{\sum_{i=1}^{n} Y_i w_i}{\sum_{i=1}^{n} w_i}$
 - Umožňuje znížiť vplyv starších hodnôt vhodným nastavením váh w_i

Príklad

Typ výrobkov	n-3	n-2	n-1	n
1.	100	150	120	130
2.	50	70	40	80
3.	150	120	110	80
4.	100	100	100	100
5.	20	40	80	90

Aritmetický priemer

Vážený priemer

Metódy kvantitatívnej prognózy (2)

 Exponenciálne vyrovnávanie – zohľadňuje vplyv chyby prognózy z poslednej predchádzajúcej prognózy.

$$Y_{n+1} = Y_n + \alpha (A_n - Y_n) = \alpha A_n + Y_n (1 - \alpha)$$

- $-Y_n$ je prognózou v predchádzajúcom intervale
- $-A_n$ je skutočná hodnota v tomto intervale
- a určuje, aký veľký vplyv na prognózu má skutočná hodnota z predchádzajúceho časového intervalu

Exponenciálne vyrovnávanie

Lineárna regresia (1)

- Lineárna regresia je najjednoduchší typ regresie.
- V lineárnej regresii sú dáta aproximované (modelované) pomocou priamky.
 - Táto metóda je vhodná pre konštantné a trendové modely
- Dvojrozmerná lineárna regresia modeluje cieľový atribút Y (predikovaný atribút) ako lineárnu funkciu iného, známeho atribútu X (tzv. predikujúci atribút v našom prípade čas): $Y = \alpha + \beta \cdot X$
 - Ide teda o rovnicu priamky, pričom:
 - α je posun jej priesečníka s Y-ovou osou oproti počiatku súradnicovej sústavy
 - β je sklon priamky vzhľadom k X-ovej osi

$$Y = \alpha + \beta \cdot X$$

Lineárna regresia (2)

- Regresné koeficienty α , β možno vypočítať metódou najmenších štvorcov, ktorá minimalizuje súčet štvorcov chýb medzi skutočnými dátami a aproximačnou priamkou
- Ak sú dané trénovacie dáta vo forme bodov $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$, potom regresné koeficienty α , β možno odhadnúť pomocou nasledovných vzťahov:

$$\alpha = \overline{y} - \beta \cdot \overline{x} \qquad \beta = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Lineárna regresia

Metóda harmonických váh

$$PI_n = \frac{Y_n}{Y_{n-1}}$$

pomerový index pre periódu n

$$\overline{PI} = n - 1 \bigcap_{t=2}^{n} PI_{t}^{w(t)}$$

 $\overline{PI} = n - 1 / \bigcap_{t} PI_{t}^{w(t)}$ výsledný (celkový) pomerový index

$$w_{t} = \sum_{j=1}^{t-1} \frac{1}{n-j}$$

harmonické váhy (pre t = 2, ..., n)

$$Y_{n+1} = \overline{PI}.Y_n$$

prognóza pre nasledujúce obdobie

Metóda harmonický váh

Príklad – riešenie

Výrob- ky	n-3	n-2	n-1	n	Aritme- tický priemer	Kĺzavý priemer	Vážený priemer	Exponen- ciálne vyrovná- vanie	Lineár- na regre- sia	metóda harmonic- kých váh
1	100	150	120	130	125	133	128	128	143	134
2	50	70	40	80	60	63	63	72	78	109
3	150	120	110	80	115	103	104	86	50	63
4	100	100	100	100	100	100	100	100	100	100
5	20	40	80	90	58	70	70	88	131	127

Metódy kvalitatívnej prognózy

- Ide hlavne o vystihnutie budúceho vývoja (rast alebo pokles, mierny, alebo prudký a pod.)
- Používajú sa napr.
 - ak treba urobiť prognózu rýchlo alebo
 - ak nie sú k dispozícii dostatočné údaje pre kvantitatívnu prognózu, alebo
 - ak došlo k významným zmenám podmienok, ktoré spôsobia že historická rada údajov je skoro nepoužiteľná
- Vychádza sa pritom z rôznych odhadov, skúseností, praxe a iných foriem kvalitatívneho vyhodnotenia informácií vhodnými osobami

Odhad predajcov

 Prognóza sa uskutoční priamo na základe odhadov predajcov (čo a koľko budú zákazníci v najbližšom období kupovať)

Výhody:

- predajcovia sú jednými z najkompetentnejších (informácie z prvej ruky)
- je známe ich geografické rozloženie

Nevýhody:

- ľudský faktor, t.j. individualita predajcov
- subjektívne posúdenie toho, či sa zákazník na tovar iba informuje, alebo má reálny záujem tovar aj kúpiť
- snaha o vykreslenie reality v lepšom svetle

Skupinový posudok (1)

- Zakladá sa na vedomostiach a skúsenostiach odborníkov pracujúcich v danej oblasti (manažéri, obchodníci, technickí pracovníci).
- Títo odborníci sa stretnú a konsenzuálne vypracujú prognózu.
- Využíva sa komparatívny prístup a analógia.
 Vhodné napr. pri zavádzaní nových výrobkov.

Skupinový posudok (2)

Výhody:

- rýchlosť
- zastúpenie všetkých skupín ľudí, ktorí k tomu majú čo povedať
- Nevýhody:
 - závisí na schopnosti komunikovať, počúvať, dohodnúť sa

Prieskum trhu (1)

- Je systematický prístup vytvárania a testovania hypotéz o trhu. Používa sa najmä pri zavádzaní nových výrobkov.
- Postup:
 - Návrh dotazníka vždy sú tam dve skupiny otázok

 (a. ekonomické a demografické údaje o respondentovi,
 b. otázky súvisiace s jeho záujmom o nový výrobok)
 - 2. Výber spôsobu komunikácie osobne, telefonicky, e-mail, resp. web formulár, klasická pošta
 - 3. Výber reprezentatívnej vzorky respondentov náhodný výber z potenciálnej skupiny zákazníkov
 - 4. Realizácia prieskumu a spracovanie zozbieraných údajov
 - 5. Vytvorenie prognózy za základe zozbieraných a zosumarizovaných údajov

Prieskum trhu (2)

- Výhody:
 - exaktnosť (dá sa získať množstvo informácií)
 - informácie z prvej ruky
- Nevýhody:
 - vyššie náklady
 - dlhšie trvanie

Metóda DELPHI (1)

 Zakladá sa na procese dosiahnutia dohody medzi koordinačnou skupinou odborníkov (Delphi committee - DC) a medzi anonymnou skupinou expertov (ktorí medzi sebou o riešení prognózy nekomunikujú). Používa sa najmä na dlhodobé prognózy, najmä nových výrobkov

Postup:

- 1. DC určí spôsob komunikácie a formuluje otázky na ktoré žiada odpoveď od expertov.
- 2. Experti sformulujú svoje odpovede aj so zdôvodnením a pošlú ich DC.
- 3. DC spracuje stanoviská expertov a vytvorí spoločné stanovisko (konsenzus) 1. variant prognózy a rozošle ho expertom.
- 4. Proces sa opakuje až kým sa nedospeje ku konsenzu všetkých expertov.

Metóda DELPHI (2)

- Výhody:
 - Konsenzus skupiny nezávislých expertov
- Nevýhody:
 - Môže trvať dlho
 - Nemusí byť zaručená anonymita expertov
 - Zle formulované otázky môžu viesť k zlým záverom

Chyby prognózovania

• Chyba prognózy (E_t) je rozdiel medzi skutočnými požiadavkami na výrobu za obdobie t (A_t) a prognózou požiadaviek na toto obdobie (Y_t)

$$E_t = A_t - Y_t$$

- Existujú rôzne kritériá hodnotenia presnosti prognózy
 z dlhodobého hľadiska, napr. za účelom porovnania rôznych
 metód prognózovania, resp. pre monitorovanie prognózy
- Monitorovanie kvality prognóz sleduje, či sa chyba prognózy pohybuje v stanovených medziach
 - napr. CFE okolo nuly, resp. CFE/MAD v rozmedzí ± 3 až 8%,
 - prípadne napr. MAPE v intervale ± 5%

Kritériá hodnotenia presnosti prognózy

- Kumulatívna chyba prognózy (CFE) $CFE = \sum_{t=1}^{n} E_{t}$
- Kvadratická odchýlka chýb prognózy (MSE)
- $MSE = \frac{\sum_{t=1}^{n} E_t^2}{n}$
- Štandardná odchýlka chýb prognózy (σ, *RMSE*)
- $\sigma = \sqrt{\frac{1}{n} \sum_{t=1}^{n} E_t^2}$
- Priemerná absolútna chyba prognózy (MAD, MAE) $MAD = \frac{\sum_{t=1}^{n} |E_{t}|}{n}$
- Priemerná absolútna percentuálna chyba prognózy (MAPE) $MAPE = \frac{100}{n} \cdot \sum_{t=1}^{n} \frac{|E_t|}{A_t}$