Q01. Evaluate the following integrals

(a)
$$\int \frac{\mathrm{d}x}{x^2 \sqrt{x^2 - 16}}$$

(b)
$$\int_0^3 \frac{x}{\sqrt{36-x^2}} dx$$
 using a trigonometric substitution

(c)
$$\int_0^{\pi/2} \frac{\cos x}{\sqrt{1+\sin^2 x}} \, \mathrm{d}x$$

(d)
$$\int \frac{x^5}{\sqrt{x^2 + 2}} \, \mathrm{d}x$$

(e)
$$\int_1^3 x^5 \ln x^2 \, \mathrm{d}x$$

(f)
$$\int e^{2x} \cos x \, \mathrm{d}x$$

$$(g) \int_0^2 e^{2x} \cos e^x \, \mathrm{d}x$$

(h)
$$\int \arcsin x \, dx$$

(i)
$$\int \frac{x^2 - x + 6}{x^3 + 3x} \, \mathrm{d}x$$

(j)
$$\int \frac{x^2 - 5x + 16}{(2x+1)(x-2)^2} \, \mathrm{d}x$$

(k)
$$\int \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} dx$$

(1)
$$\int \frac{x \ln x}{\sqrt{x^2 - 1}} \, \mathrm{d}x$$

(m)
$$\int \frac{\sec x \cos 2x}{\sin x + \sec x} \, \mathrm{d}x$$

Q02. An integrand with trigonometric functions in the numerator and denominator can often be converted to a rational integrand using the substitution $u = \tan(x/2)$ or $x = 2\tan^{-1} u = 2\arctan u$.

- (a) With this substitution, prove that $\cos x = \frac{1-u^2}{1+u^2}$ and $\sin x = \frac{2u}{1+u^2}$.
- (b) Using this substitution and part (a), evaluate the following integrals:

i.
$$\int \frac{1}{1 + \cos x} dx$$

ii.
$$\int \frac{dx}{1 - \cos x + \sin x}$$

Q03. It has been shown that $\int e^{x^2} dx$ and $\int x^2 e^{x^2} dx$ do not have elementary antiderivatives. However, $\int (2x^2 + 1)e^{x^2} dx$ does. Evaluate

$$\int (2x^2 + 1)e^{x^2} \, \mathrm{d}x$$

[Hint: integration by parts]

Q04. (a) Evaluate $\int_0^1 \frac{x^4(1-x^4)}{1+x^2} dx$.

(b) Prove, using part (a), that $\frac{22}{7} > \pi$.

Q05. Use integration by parts to prove each of the following *reduction formulas*, for integers $n \geq 2$:

(a)
$$\int (\ln x)^n dx = x(\ln x)^n - n \int (\ln x)^{n-1} dx$$

(b)
$$\int x^n (\ln x)^n dx = \frac{x^{n+1} (\ln x)^n}{n+1} - \frac{n}{n+1} \int x^n (\ln x)^{n-1} dx$$