To Do

Read Sections 7.1 - 7.3.

Do Problems 1-12

Assignment 5 is due Monday December 5.

Last Class

- (1) Multinomial Likelihood Function
- (2) Likelihood Ratio Goodness of Fit Test
- (3) Pearson Goodness of Fit Test

Likelihood Ratio Goodness of Fit Test Statistic

$$\Lambda(\theta_0) = -2\log\left[\frac{L(\theta_0)}{L(\widetilde{\theta})}\right]$$

$$= -2\log\left[\prod_{j=1}^{k} \left(\frac{E_j}{Y_j}\right)^{Y_j}\right]$$

$$=2\sum_{j=1}^{k}Y_{j}\log\left(rac{Y_{j}}{E_{j}}
ight)$$

= 2*{sum [observed * log (observed /expected)]}

Observed Value

The observed value of the likelihood ratio test statistic is

$$\lambda(\theta_0) = 2\sum_{j=1}^k y_j \log\left(\frac{y_j}{e_j}\right)$$

If $e_j \ge 5$ for all j then p-value $\approx P(W \ge \lambda(\theta_0))$ where

 $W \sim \chi^2(k-1-(no. parameters estimated assuming <math>H_0$ is true))

Today's Class

- 1) Two-Way Tables and Multinomial Models
- 2) Two-Way Tables and Testing for Independence of Two Variates

Bivariate Categorical Data

Data collected in January

PROGRAM/	Canadian	Non-Canadian	Total
HOMETOWN	Hometown	Home town	
Computer Science	35	43	78
Non-Computer Science	18	69	87
Total	53	112	165

Is there a relationship between hometown and program?

Bivariate Categorical Data

Previously we summarized these data using relative risk as a numerical summary.

Proportion of CS students with Canadian hometown = 35/78 = 0.448.

Proportion of Non-CS students with Canadian hometown = 18/87 = 0.206.

The relative risk of a Canadian hometown among CS students as compared to non-CS students = (35/78)/(18/87) = 2.17.

Two-Way Tables and Testing for Independence of Two Variates

Suppose *n* individuals are classified according to two different variates which have two possible values. The data can be displayed in a two way table:

	В	В	Total
Α	y ₁₁	y ₁₂	$r_1 = y_{11} + y_{12}$
Ā	y ₂₁	y ₂₂	n - r ₁
Total	$c_1 = y_{11} + y_{21}$	n - c ₁	n

The row and column totals will be useful in calculating expected frequencies.

Model

Let Y_{11} = number of $A \cap B$ outcomes, Y_{12} = number of $A \cap B$ outcomes, Y_{21} = number of $\overline{A} \cap B$ outcomes and Y_{22} = number of $\overline{A} \cap B$ outcomes.

Then

 $(Y_{11}, Y_{12}, Y_{21}, Y_{22}) \sim Multinomial(n, \theta_{11}, \theta_{12}, \theta_{21}, \theta_{22})$ where $\theta_{11} = P(A \cap B)$, $\theta_{12} = P(A \cap B)$, $\theta_{13} = P(A \cap B)$, $\theta_{21} = P(A \cap B)$, and $\theta_{21} = P(A \cap B)$.

Hypothesis of Independence

The null hypothesis is that the variates *A* and *B* are independent, or

$$H_0$$
: $P(A \cap B) = P(A)P(B)$.

Let $P(A) = \alpha$ and $P(B) = \beta$ then the null hypothesis may be written as

$$H_0$$
: $\theta_{11} = \alpha \beta$.

Likelihood Function

The likelihood function (ignoring constants) is

$$L(\theta_{11}, \theta_{12}, \theta_{21}, \theta_{22}) = \theta_{11}^{y_{11}} \theta_{12}^{y_{12}} \theta_{21}^{y_{21}} \theta_{22}^{y_{22}}$$

The maximum likelihood estimates are

$$\hat{\theta}_{ij} = \frac{y_{ij}}{n}, i = 1, 2; j = 1, 2$$

and the maximum likelihood estimators are

$$\widetilde{\theta}_{ij} = \frac{Y_{ij}}{n}, i = 1, 2; j = 1, 2$$

Parameter Estimation under the Null Hypothesis

If H_0 : $\theta_{11} = \alpha \beta$ is true, then the likelihood function under H_0 is

$$L(\alpha, \beta) = (\alpha \beta)^{y_{11}} [\alpha (1-\beta)]^{y_{12}} [(1-\alpha)\beta]^{y_{21}} [(1-\alpha)(1-\beta)]^{y_{22}}$$

$$= \alpha^{y_{11}+y_{12}} (1-\alpha)^{y_{21}+y_{22}} \beta^{y_{11}+y_{21}} (1-\beta)^{y_{y_{12}+y_{22}}}$$

$$0 < \alpha < 1, \ 0 < \beta < 1$$

Parameter Estimation under the Null Hypothesis

The maximum likelihood estimates under H_0 : $\theta_{11} = \alpha \beta$ are

$$\hat{\alpha} = \frac{y_{11} + y_{12}}{n}, \quad \hat{\beta} = \frac{y_{11} + y_{21}}{n}$$

and the maximum likelihood estimators are

$$\tilde{\alpha} = \frac{Y_{11} + Y_{12}}{n}, \quad \tilde{\beta} = \frac{Y_{11} + Y_{21}}{n}$$

Parameter Estimation under the Null Hypothesis

Why do these estimates make sense? The estimate of $P(A) = \alpha$ is

$$\hat{\alpha} = \frac{y_{11} + y_{12}}{n} = \frac{\text{no. of times outcome A occurred}}{n}$$

The estimate of $P(B) = \beta$ is

$$\hat{\beta} = \frac{y_{11} + y_{21}}{n} = \frac{\text{no. of times outcome B occurred}}{n}$$

Likelihood Ratio Test Statistic

The likelihood ratio test for testing $H_0: \theta_{11} = P(A \cap B) = P(A)P(B) = \alpha\beta$ is

$$\Lambda = -2\log \left[\frac{L(\tilde{\alpha}, \tilde{\beta})}{L(\tilde{\theta}_{11}, \tilde{\theta}_{12}, \tilde{\theta}_{21}, \tilde{\theta}_{22})} \right]$$

$$= 2 \left[Y_{11} \log \left(\frac{Y_{11}}{E_{11}} \right) + Y_{12} \log \left(\frac{Y_{12}}{E_{12}} \right) + Y_{21} \log \left(\frac{Y_{21}}{E_{21}} \right) + Y_{22} \log \left(\frac{Y_{22}}{E_{22}} \right) \right]$$

which is of the form

2*{sum [observed * log (observed /expected)]}

Observed value of likelihood ratio test statistic

The observed value of the likelihood ratio test statistic is

$$\lambda = 2 \left[y_{11} \log \left(\frac{y_{11}}{e_{11}} \right) + y_{12} \log \left(\frac{y_{12}}{e_{12}} \right) + y_{21} \log \left(\frac{y_{21}}{e_{21}} \right) + y_{22} \log \left(\frac{y_{22}}{e_{22}} \right) \right]$$

Note that
$$e_{11} = n\hat{\alpha}\hat{\beta} = n\left(\frac{r_1}{n}\right)\left(\frac{c_1}{n}\right) = \frac{r_1c_1}{n}$$

and the other expected frequencies can be obtained by subtraction from the row and column totals.

Observed [Expected]

	В	B	Total
A	y_{11} $[e_{11} = r_1 \cdot c_1/n]$	y_{12} $[e_{12} = r_1 - e_{11}]$	$r_1 = y_{11} + y_{12}$
A	$y_{21} = c_1 - e_{11}$	y_{22} $[e_{22} = r_2 - e_{21}]$	$r_2 = y_{21} + y_{22}$
Total	$c_1 = y_{11} + y_{21}$	n - c ₁	n

Degrees of Freedom for the Chi-squared Approximation

What are the degrees of freedom for the Chi-squared approximation? How many parameters in the original model?

 $(Y_{11}, Y_{12}, Y_{21}, Y_{22}) \sim \text{Multinomial}(n; \theta_{11}, \theta_{12}, \theta_{21}, \theta_{22})$

How many parameters in the model assuming H_0 : $\theta_{11} = \alpha \beta$ is true? Why do the degrees of freedom make sense?

Approximate p-value

$$p-value \approx P(W \ge \lambda)$$
 where $W \sim \chi^2(1)$
= $2[1-P(Z \le \sqrt{\lambda})]$ where $Z \sim G(0,1)$

Example

Expected values in [brackets].

PROGRAM/	Canadian	Non-Canadian	Total
HOMETOWN	Hometown	Home town	
Computer	35	43	78
Science	[(78*53)/165	[78 - 25.05	
	= 25.05]	= 52.95]	
Non-Computer	18	69	87
Science	[53 - 25.05	[87 – 27.95	
	= 27.95]	= 59.05]	
Total	53	112	165

Example

$$\lambda = 2[35\log\left(\frac{35}{25.05}\right) + 43\log\left(\frac{43}{52.95}\right) + 18\log\left(\frac{18}{27.95}\right) + 69\log\left(\frac{69}{57.05}\right)] = 11.15$$

$$p-value \approx 2[1-P(Z \le \sqrt{11.15})] = 2[1-P(Z \le 3.34)]$$

= 0.00084

Since the *p*-value is less than 0.001 there is very strong evidence based on the data against the hypothesis that the variates hometown and program are independent.

	Canadian Hometown	Non-Canadian Hometown	Total
CS/Bioinfomatics	20	20	40
ACTSC/STAT/ FARM/DD/BUS	7	17	24
OTHER	8	16	24
Total	35	53	88

Is there relationship between hometown and program?

Larger Two-Way Tables

Individuals are classified according to each of two variates *A* and *B*.

For A, an individual can be any of a mutually exclusive types $A_1, A_2, ..., A_a$.

For B, an individual can be any of b mutually exclusive types $B_1, B_2, ..., B_b$.

Larger Two-Way Tables

Let Y_{ij} = the number that have A-type A_i and B-type B_j in a random sample of size n.

Let θ_{ij} be the probability a randomly selected individual is of type A_i and B_{j} .

 $(Y_{11}, Y_{12}, ..., Y_{ab})$ has a

Multinomial($n; \theta_{11}, \theta_{12}, \dots, \theta_{ab}$) distribution.

Larger Two-Way Tables

The observed data can be arranged into an $a \times b$ two-way table:

	B_1	B_2	•••	B_{b}	Total
A_1	y ₁₁	y ₁₂	• • •	y _{1b}	<i>r</i> ₁
A_2	y ₂₁	y ₂₂	•••	y _{2b}	r ₂
•	•	•	• • •	:	•
A _a	<i>y</i> _{a1}	y _{a2}	• • •	y ab	r _a
Total	C ₁	C ₂	• • •	c _b	n

Hypothesis of Independence for a Two Way Table

Let
$$\alpha_i = P(\text{an individual is type } A_i)$$

 $\beta_j = P(\text{an individual is type } B_j)$

To test whether A and B are independent variates we test

H₀:
$$\theta_{ij} = \alpha_i \beta_j$$

for all $i = 1, 2, ..., a$ and $j = 1, 2, ..., b$.

Expected Frequencies under Hypothesis of Independence

It can be shown that the expected frequencies under H_0 are:

$$e_{ij} = \frac{r_i c_j}{n}$$
 $i = 1, 2, ..., a;$ $j = 1, 2, ..., b$

Likelihood Ratio Test Statistic

The likelihood ratio test statistic for testing the hypothesis of independence is

$$\Lambda = 2\sum_{i=1}^{a} \sum_{j=1}^{b} Y_{ij} \log \left(\frac{Y_{ij}}{E_{ij}}\right)$$

with observed value

$$\lambda = 2\sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij} \log \left(\frac{y_{ij}}{e_{ij}}\right)$$

Expected values in [brackets].

	Canadian Hometown	Non-Canadian Hometown	Total
CS/Bioinfomatics	20 [40x35/88 = 15.91]	20 [40 - 15.91 = 24.09]	40
ACTSC/STAT/ FARM/DD/BUS	7 [40x35/88 = 9.55]	17 [24 – 9.55 = 14.45]	24
OTHER	8 [35 – 15.91- 9.55 = 9.55]	16 [24 - 9.55 = 14.45]	24
Total	35	53	88

Expected values in [brackets].

	Canadian Hometown	Non-Canadian Hometown	Total
CS/Bioinfomatics	20 [15.91]	20 [24.09]	40
ACTSC/STAT/ FARM/DD/BUS	7 [9.55]	17 [14.45]	24
OTHER	8 [9.55]	16 [14.45]	24
Total	35	53	88

$$\lambda = 2\sum_{i=1}^{3} \sum_{j=1}^{2} y_{ij} \log \left(\frac{y_{ij}}{e_{ij}} \right) = 3.3069$$

Expected values in [brackets].

	Canadian Hometown	Non-Canadian Hometown	Total
CS/Bioinfomatics	20 [15.91]	20 [24.09]	40
ACTSC/STAT/ FARM/DD/BUS	7 [9.55]	17 [14.45]	24
OTHER	8 [9.55]	16 [14.45]	24
Total	35	53	88

What are the degrees of freedom for the Chi-squared approximation?

Approximate Chi-squared Distribution and p-value

Under the hypothesis of independence ∧ has approximately a

 $\chi^2((a-1)\cdot(b-1))$ distribution

if *n* is reasonably large and the expected frequencies are all at least five.

Approximate Chi-squared Distribution and p-value

REMINDER:

1) If
$$(a-1)\cdot(b-1)=1$$
 then

$$p-value \approx P(W \ge \lambda)$$
 where $W \sim \chi^2(1)$
= $2[1-P(Z \le \sqrt{\lambda})]$ where $Z \sim G(0,1)$

2) If
$$(a-1) \cdot (b-1) = 2$$
 then

$$p-value \approx P(W \ge \lambda) = e^{-\lambda/2}$$

where $W \sim \chi^2(2) = Exponential(2)$

Expected values in [brackets].

	Canadian Hometown	Non-Canadian Hometown	Total
CS/Bioinfomatics	20 [15.91]	20 [24.09]	40
ACTSC/STAT/ FARM/DD/BUS	7 [9.55]	17 [14.45]	24
OTHER	8 [9.55]	16 [14.45]	24
Total	35	53	88

$$p - value \approx e^{-3.3069/2} = 0.1914$$

Conclusion

Since the *p*-value = 0.1914 there is no evidence based on the data against the null hypothesis of independence between the two variates hometown and program.