Componentes de un PC

Componentes de un ordenador IV: Buses, Puertos y tarjetas de Expansión

Unidad de Trabajo 6

Tabla de contenidos

- 1. Buses
 - 1. Bus Micro-Chipset
- 2. Conectores Internos o Ranuras de Expansión (Buses)
 - 1. ISA
 - 2. PCI
 - 3. AGP
 - 4. PCI express
 - 5. De comunicaciones
- 3. Conectores Internos de Almacenamiento (Buses)
 - 1. Floppy
 - 2. IDE
 - 3. SCSI
 - 4. SATA
 - 5. SAS

Tabla de contenidos

- 3. Conectores externos.
 - 1. Sonido
 - 2. Red
 - 3. Serie
 - 4. Paralelo
 - 5. Joystick
 - 6. USB
 - 7. FireWire
- 4. Tarjetas
 - 1. Gráficas
 - 2. Otras tarjetas
 - 3. En portátiles
 - 1. PCMCIA
 - 2. ExpressCard

Recuerda: Comunicaciones ...

Recuerda

- Bus de datos. Se encarga de transportar datos entre los dispositivos del sistema
 - Bidireccional, recibe datos de los dispositivos de entrada (teclado, escaner, ratón), envía datos a los dispositivos de salida (impresora, monitor ..) envía y recibe datos a dispositivos como HD, disquetera, lectores de CD ...
- Buses de direcciones. El procesador utiliza este bus para indicar una dirección de la memoria a la que desea acceder (para leer o escribir) o para seleccionar un dispositivo con el que trabajar.
 - Cada dispositivo y posición de memoria tiene una Dº única
 - Por el bus de direcciones se indica la dirección donde dejar o de donde recoger los datos.
- Bus de control. Transportan señales de control que informan del estado de los dispositivos, el sentido del flujo de información por el bus de datos, etc.

1. Buses

- Canal por el que fluye la información entre dos o más dispositivos, es decir, canal de comunicación entre dispositivos.
- Un bus en el que sólo se pueden comunicar dos dispositivos es un **puerto**.
- En los PC, los buses, se encuentran normalmente:
 - Micro con chipset
 - Micro con memoria
 - Tarjetas internas: PCI, ISA, AGP y PCIe
 - Conexión exterior: Serie, paralelo, USB, firewire, e-sata ...
 - Almacenamiento: IDE, SATA, SCSI ...

1.1. Bus Micro - Chipset

- En las placas más antiguas con chipset puente norte el FSB (Frontal Side Bus) comunica el micro con el puente norte.
- En las placas más modernas este bus ha sido reemplazado por buses como:
 - QPI (Quick Path Intel), comunica el micro con el puente norte
 - DMI (Direct Media Interface)
 - en placas Intel con puente norte comunica el chipset norte con el sur
 - en placas Intel sin puente norte comunica el micro con el chipset
 - HyperTransport (AMD).

2. Conectores

- Conectores Internos (Buses)
 - Ranuras de Expansión
 - ISA
 - PCI
 - PCI-e
 - AGP
 - Almacenamiento
 - IDE*
 - PATA/SATA*
 - SCSI/SAS*

- Conectores Externos
- (Puertos)
 - USB *
 - Serie *
 - Paralelo *
 - Firewire*
 - eSATA *
 - Video *
 - Audio *
 - Red *

^{*} Antes la controladora y conector no integrados

^{*} Actualidad controladora y conector pueden estar o no integrados en la placa

2.1. ISA (Industry Standard Architecture)

- Fue desarrollado en 1980 por IBM (intel 8088 y 8086).
- Maneja un bus de direcciones de 20 bits, un bus de datos de 8 y diversas señales de control.
- En 1983 el bus de datos se amplió a 16 bits, permitiendo pasar de velocidades de transmisión de 5,33 MHz a 8,33 MHz
- En 1988 nace EISA (Extended ISA) como evolución de ISA, amplia a 32 bits y velocidad 8,33 MHz (para mantener compatibilidad con ISA)

Conector ISA

- Estándar desarrollado por Intel en 1993
- Al contrario que los ISA, el bus opera independientemente del procesador, lo que permite usar PCI en sistemas que no estén basados en procesadores Intel (como AMD ...).
- Inicialmente permitía una frecuencia máxima de 33 MHz con un bus de 32 bits
- Se mejoró el rendimiento del bus ampliando la frecuencia de trabajo a 66 MHz y ampliando a 64 bits.

- A 33 MHz un slot de 32 bits soporta un máximo de transferencia de datos de:
 - MHz es 1.000.000 Hz
 - Hz es un ciclo por segundo

Velocidad de transmisión= ancho de bus * frecuencia

```
32 \text{ bits} = 32/8 = 4 \text{ bytes}
```

33 MHz = 33 * 1.000.000 Hz = 33.000.000 Hz

33.000.000 Hz * 4 Bytes= 132.000.000 bytes/seg = 132 * 10⁶=

132 MB/s

132.000.000 bytes/seg = 132.000.000/1024=128906,25 KB/sg

128906,25/1024=125,885009765625 MB/s

Conectores PCI

- Utiliza un conector de 124 pines (188 en el caso de implementación de 64 bits) pero únicamente 47 de estas conexiones se emplean en una tarjeta de expansión.
- En 1998 IBM, HP y Compaq sacan al mercado una nueva evolución de PCI denominada PCI-X (PCI eXtended)
 - optimiza el protocolo para permitir frecuencias de 133 MHz (1066 MB/s)
 - Conecta dispositivos que necesitan gran ancho de banda,
 Giga Ethernet, fibra óptica, etc
 - Se utiliza en Servidores
- Existe PCI-X de 64 bits a 266MHz y a 533MHz pero ha sido casi completamente reemplazado por PCI-e (PCI-Express)

Conector AGP

2.3. AGP (Accelerated Graphics Port)

- Diseñado en 1996 basándose en PCI, para conectar tarjetas gráficas.
- Se encuentra situado al lado de las ranuras PCI con un único conector de 8 cms de base.
- Es de 32 bits y se comunica directamente con memoria través del puente norte.
- Cuenta con diferentes versiones:

Versión	Velocidad	Tasa de transferencia	Voltaje
AGP 1X	66 MHz	264 MB/s	3,3v
AGP 2X	133 MHz	528 MB/s	3,3v
AGP 4X	266 MHz	1GB/s	3,3v ó 1,5v *
AGP 8X	533 MHz	2 GB/s	0,7v ó 1,5v

^{*} Para adaptarse a los diseños de las tarjetas gráficas

2.3. AGP (Accelerated Graphics Port)

- Bus dedicado a los gráficos que mejora hasta 4 veces el rendimiento de PCI.
- El bus PCI tiene 32 líneas físicas donde se multiplexan direcciones y datos :
 - Se envía la dirección del periférico al que se va a acceder
 - Se envía o recibe los datos.
- El bus AGP dispone de 32 bits pero:
 - En el mismo ciclo de reloj manda la dirección del dispositivo al que quiere acceder y los datos
 - En el mismo ciclo 1, 2, 4 y 8 transferencias dependiendo de la versión (1x,2x,4x,8x)
- Por tanto AGP mucho más rápido que PCI

Conector AGP

- También se llama 3GIO, tercera generación de E/S.
- Sucesor de la tecnología PCI y AGP
- Al contrario de PCI que transfiere datos en paralelo, trabaja con conexiones serie punto a punto.
- Los dispositivos conectados al bus PCI comparten el ancho de banda del bus, mientras que las conexiones punto a punto de la PCI express mantiene el rendimiento del bus ya que no tiene que compartirlo.
- El tamaño de los slot vería según el ancho de bus o número de líneas serie disponible :
 - 1x un canal
 - 2x dos canales
 - 4x cuatro canales
 - 16 x dieciséis canales
 - 32 x treinta y dos canales

- Incluye:
 - Gestión de energía
 - Capacidad de transferir datos entre dispositivos sin necesidad de pasar primero por el controlador.

Ej. De capturadora de video a tarjeta gráfica sin pasar por MP.

Bus Architecture	Max Transfer Rate
ISA	8 MBps
PCI	133 MBps
AGP 2x	533 MBps
AGP 4x	1,066 MBps
PCI Express x1	250 MBps
PCI Express x2	500 MBps
PCI Express x4	1,000 MBps
PCI Express x8	2,000 MBps
PCI Express x16	4,000 MBps
PCI Express x32	8,000 MBps

PCI-e x4, x16, x1, x16 - Normal de 32 bits

- ¿Qué es el PCI express 2.0 y 3.0?
- Busca en internet una placa que tenga PCI express 2.0, otra con PCI express 3.0 y anota las placas
- ¿Qué ocurre si tienes una tarjeta gráfica PCI express 2.0 pero la placa tiene bus PCI express x1?

- AMR (Audio Modem Riser)
 - Se usa para tarjetas modem o de sonido, de bajo coste.
 - Requieren que la CPU realicen la mayor parte del trabajo.
 - Intel 1998
- CNR (Communication and Networking Riser)
 - Se usa para tarjetas modem, de sonido y de red.
 - Requiere el uso intensivo del microprocesador
 - Incompatible con AMR
- ACR (Advanced Comunications Riser)
 - Desarrollado por VIA y AMD.
 - Alternativa a AMR.
 - Permite modem, audio, red, DSL y redes inalámbricas.

«No se utilizan en la actualidad. Hoy en dia, para tarjetas de red y sonido: PCI, PCI-e y USB»

Actividad

 Ordena los siguientes buses de menor a mayor velocidad

BUS	Nº de orden
PCI express (x8)	
PCI (32 bits)	
EISA	
PCI X (133 Mhz)	
AGP (4x)	
AGP (8x)	
ISA (16 bits)	
PCI express (x16)	
ISA (8 bits)	
PCI X (266 Mhz)	
PCI (64bits)	

3.1. Conectores internos Almacenamiento

- Los principales son:
 - Floppy
 - Sirve para manejar la disquetera.
 - Antiguamente no estaban integradas en la placa

• IDE

- Sirven para conectar HD y grabadoras o lectores de CD/DVD.
- Interfaz de precio económico y facilidad de instalación (sin tarjeta)
- Normalmente 2 canales para conectar 4 dispositivos IDE (2 por canal)
- Conexión en paralelo

3.1. Conectores internos Almacenamiento

• SCSI

- Diseñado para conectar todo tipo de dispositivos, no solo para unidades de almacenamiento.
- Se pueden conectar más dispositivos (del 0 al 7 o hasta el 15 dependiendo de la controladora)
- Se utilizan en servidores
- Conexión en paralelo
- Existen conectores SCSI de 50, 68 y 80 pines

SCSI 68 pines

SATA

- Surge para sobrepasar los límites del interface
 Parallel ATA
- Compatible con todos los SO
- Conexión de HD, Unidades Ópticas CD/DVD/Blu-Ray
- Tecnología Serie
- SAS ó Serial Attached SCSI
 - Permite conexión y desconexión en caliente
 - Aumenta la velocidad de transferencia frente a SCSI
 - Mayor número de dispositivos conectados
 - Tasa de transferencia constate para cada dispositivo.

Los discos SATA pueden ser utilizados por controladoras SAS pero no al revés

Actividad

- ¿Puede un controlador SAS utilizar un discos SATA?
- ¿Puede un controlador SATA utilizar un discos SAS?
- Ordena cronológicamente
 - SATA
 - SAS
 - SCSI Ultra

4. Conectores externos

- La tendencia es que desaparezcan los puertos serie, paralelo, teclado, etc y sean sustituidos por puertos USB, Firewire o SCSI.
 - VGA (gráfica)
 - Permite mostrar imágenes procedentes del ordenador
 - Su calidad define la calidad de imagen (refresco, número de pixel, etc)

4. Conectores externos

- HDMI (High-Definition Multimedia Interface)
 - HDMI provee una interfaz entre cualquier fuente de audio y vídeo digital
 - Transmite audio y video
- DVI (Digital Visual Interface)
 - Interfaz de vídeo diseñada para obtener la máxima calidad de visualización posible en pantallas digitales, tales como los monitores de cristal líquido de pantalla plana y los proyectores digitales.

Sonido

 Controla la transformación de sonidos analógicos en digital y viceversa.

Red

- Comunica un ordenador con el resto de ordenadores conectados a la red.
- Actualmente siempre integrado en placa

4. Conectores externos

Paralelo

- Transmite simultáneamente datos por varios canales
- Existen tres versiones que se diferencian por el sentido de la transmisión y la velocidad.
- Puerto físico LPT1.
- Prácticamente ha desaparecido.

Serie

- La transmisión de datos se realiza por una línea full-duplex.
- Los puertos físicos son el COM1 y COM2
- La distancia máxima son 4 o 5 metros.

Joystick

- Interface que permitía 2 joystick analógicos.
- Actualmente se conecta por USB

Actividad

Rellena la siguiente tabla

Imagen	Externo/Interno	Nombre
UNNOCCATARA SA SA CASA SA CASA CASA CASA CASA CA		
IDE1		

- **USB** (Universal Serial Bus)
 - Fue creado por un conjunto de empresas de la industria electrónica para proporcionar conexiones bidireccionales de velocidad media/alta
 - Se eliminan tarjetas controladoras para periféricos (conectividad Plug and Play)
 - Una gran flexibilidad (hasta 128 dispositivos por bus)
 - Puede proporcionar alimentación a dispositivos de bajo consumo situados a menos de 5 metros.

4.1. USB

- Usb 3.0
 - Retrocompatibilidad: Dispositivos USB 1.0, USB 1.1, y USB 2.0 se podrán usar en conectores del nuevo estándar 3.0
 - Mayor velocidad: Llegando a ser hasta 10 veces más rápido que USB 2.0. Tasa de transferencia 600MB/s
 - Mayor potencia eléctrica: Así como los anteriores estándares pasaban 100 mAh a los dispositivos conectados, el nuevo USB 3.0 será capaz de pasar hasta 900 mAh.
 - Se pueden conectar más dispositivos sin alimentación externa

4.1. USB

USB Especificación	MB/s Tasa transferencia	MP3 5MB aprox.	AVI 700MB aprox.
1.0	0,192MB/s	27seg	1h
1.1	1,5MB/s	4seg	8min
2.0	60MB/s	<1seg	12seg
3.0	600MB/s	<1seg	1,5seg

- Busca información en Internet sobre la extensión USB on the Go.
- Anota para que sirve y la URL donde los has encontrado.

4.2. Conectores externos

- FIREWIRE (IEEE 1394)
 - Interfaz de alta velocidad diseñada por Apple para conexiones de periféricos.
 - Tasa de transferencia de hasta 393MB/s
 - Conexión de hasta 64 dispositivos con cables de hasta 4,25 metros.
 - Es desconectable en caliente.
 - se usa en cámaras digitales, escáneres, discos extraíble, impresoras..
 - En ordenadores ha tenido más aceptación el USB, se puede encontrar en portátiles al igual que los puertos infrarojos o las tarjetas PCMCIA

Diapositiva 42

hay de 4 y de 6 contactos Camino; 14/02/2011 C1

4.2. Conectores externos

- eSATA (External Serial Advanced Technology Attachment)
 - Diseñada para sobrepasar los límites de USB
 - Es una interfaz SATA con salida externa para conectar dispositivos como discos duros externos.
 - Alcanza velocidades de hasta 3GB/s
 - Permite conexión de dispositivos en caliente

Diapositiva 43

hay de 4 y de 6 contactos Camino; 14/02/2011 C2

4.2. Controladores y conectores externos

Tabla 2.8 Comparativa de las velocidades para los distintos conectores

Estándar	Velocidad MBps
Puerto Serie	0,014
Puerto Paralelo Estándar	0,115
USB 1.1	1,5
Puerto Paralelo ECP/EPP	3
IEEE 1394 (Firewire)	12,5 - 50
USB 2.0	60
Canal Fibra Óptica	100 - 400

Actividad

Actividad Placa A

- Mira la siguiente imagen y contesta a las siguientes peguntas
 - ¿Que tipo de placa base crees que es?
 - ¿Cuantas ranuras de memoria tiene?
 - ¿Cuantas ranuras de expansión tiene y de qué tipo?

Actividad Placa A

