Второй коллоквиум по МА-2

Денис Козлов Telegram

Версия от 17.12.2020 16:12

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

 $0.29 \\ 0.30$

0.31 Сформулируйте свойство непрерывности интеграла (о предельном переходе под знаком интеграла).

Теорема. Пусть все функции f_n ограничены и интегрируемы на D, а также $f_n \rightrightarrows f$ на D. Тогда функция f будет интегрируема на D и

$$\lim_{n \to \infty} \int_D f_n(x) dx = \int_D f(x) dx.$$

0.32 Сформулируйте свойство аддитивности интеграла.

Теорема. Пусть D — жорданово множество, а функция f — ограничена и интегрируема на D. Пусть A и B это дизъюнктные (непересекающиеся) жордановы подмножества D. Тогда:

$$\int\limits_{A\sqcup B} f(x)dx = \int\limits_{A} f(x)dx + \int\limits_{B} f(x)dx.$$

0.33 Как вводится понятие заряда на кольце множеств? Покажите, что для заряда справедлива формула включения-исключения.

Определение. Функция ν , определенная на некотором кольце множеств, называется зарядом, если

- a) $\nu(\varnothing) = 0;$
- b) $\nu(A \sqcup B) = \nu(A) + \nu(B)$ (аддитивность).

Таким образом, мера — это неотрицательный заряд.

 $\Pi pumep$. Пусть f это ограниченная интегрируемая функция на множестве D. В силу свойства аддитивности интеграла имеем

$$\nu(A) = \int_{A} f(x)dx.$$

Теорема. Для заряда справедлива формула включений-исключений:

$$\nu(A \cup B) = \nu(A) + \nu(B) - \nu(A \cap B).$$

Доказательство. Заметим, что $A \cup B = A \sqcup (B \setminus A)$ и $B = (B \setminus A) \sqcup (A \cap B)$.

• С одной стороны имеем

$$\nu(A \cup B) = \nu(A \sqcup (B \setminus A)) = \nu(A) + \nu(B \setminus A).$$

• С другой стороны имеем

$$\nu(A) + \nu(B) - \nu(A \cap B) = \nu(A) + \nu((B \setminus A) \sqcup (A \cap B)) - \nu(A \cap B) = \nu(A) + \nu(B \setminus A) + \nu(A \cap B) - \nu(A \cap B) = \nu(A) + \nu(B \setminus A) + \nu(B \setminus$$

То есть оба выражения равны $\nu(A) + \nu(B \setminus A)$, из чего делаем вывод:

$$\nu(A \cup B) = \nu(A) + \nu(B \setminus A) = \nu(A) + \nu(B) - \nu(A \cap B).$$

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73