Relación con TL

Definición de valor y vector propio de una TL

Un escalar λ es un autovalor de una transformación lineal $T:\mathbb{V}\to\mathbb{V}$ si existe un vector x diferente de cero tal que

$$T(x) = \lambda x$$

El vector x es un autovector de T correspondiente a λ .

Ejemplo: Hallar los autovalores y autovectores de $T: \mathbb{R}^2 \to \mathbb{R}^2$ definida por T(x,y) = (2x-12y,x-5y).

Como la matriz estándar de T es $A=\begin{pmatrix} 2 & -12 \\ 1 & -5 \end{pmatrix}$, vimos en el ejemplo 1, cuáles son sus autovalores y autovectores.

DIAGONALIZACIÓN

Diagonalización

Definición

Una matriz cuadrada A es diagonalizable si es semejante a una matriz diagonal D.

Es decir, si existe una matriz inversible P tal que $P^{-1}AP$ es una matriz diagonal D,

$$P^{-1}AP = D$$

En este caso, decimos que P diagonaliza a A.

Ejemplo 3.

Del ejemplo 1, podemos ver que
$$P=\begin{pmatrix}4&3\\1&1\end{pmatrix}$$
 diagonaliza a
$$A=\begin{pmatrix}2&-12\\1&-5\end{pmatrix}\text{, ya que}$$

$$P^{-1}AP=\begin{pmatrix}4&3\\1&1\end{pmatrix}^{-1}\begin{pmatrix}2&-12\\1&-5\end{pmatrix}\begin{pmatrix}4&3\\1&1\end{pmatrix}=\begin{pmatrix}-1&0\\0&-2\end{pmatrix}$$

Propiedad

Teorema

Si P diagonaliza a A, es decir, si $P^{-1}AP = D$ entonces A y D tienen los mismos autovalores.

Demostración

Existe una relación entre diagonalización y los autovectores de la matriz.

Teorema

Una matriz cuadrada A $n \times n$ es diagonalizable si y sólo si A tiene n autovectores linealmente independientes.

La demostración de este teorema nos ayudará a determinar la existencia de la matriz P y determinar la matriz D.

Demostración

 (\Rightarrow) Supongamos que A es diagonalizable. Debemos demostrar que A tiene n autovectores linealmente independientes.

Como A es diagonalizable, existe una matriz inversible P tal que $P^{-1}AP$ es una matriz diagonal D. Pongamos

$$P = \begin{pmatrix} p_1 & p_2 & \dots & p_n \end{pmatrix} \text{ y } D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

Entonces,

$$PD = \begin{pmatrix} p_1 & p_2 & \dots & p_n \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

$$= (\lambda_1 p_1 \quad \lambda_2 p_2 \quad \dots \quad \lambda_n p_n) \longrightarrow \mathbb{R} \quad \mathbb{R}$$

La expresión $P^{-1}AP=D$ es equivalente a decir que AP=PD. Notemos que las columnas de AP se pueden expresar de la forma Ap_1,Ap_2,\ldots,Ap_n . Así, la igualdad AP=PD se puede ver como

$$AP = (Ap_1 \ Ap_2 \ \dots \ Ap_n) = (\lambda_1 p_1 \ \lambda_2 p_2 \ \dots \ \lambda_n p_n) = PD$$

De donde,

$$Ap_1 = \lambda_1 p_1; \quad Ap_2 = \lambda_2 p_2; \quad \dots; \quad Ap_n = \lambda_n p_n$$

Como P es inversible, podemos asegurar que:

- sus columnas p_1, p_2, \ldots, p_n no son todas ceros.
- $\lambda_1, \lambda_2, \dots, \lambda_n$ son los autovalores de A y las columnas p_1, p_2, \dots, p_n su autovectores correspondientes.
- $\{p_1, p_2, \dots, p_n\}$ es un conjunto linealmente independiente.

Así, A tiene n autovectores linealmente independientes.

 (\Leftarrow) Supongamos que A tiene n autovectores linealmente independientes p_1,p_2,\ldots,p_n con autovalores correspondientes $\lambda_1,\lambda_2,\ldots,\lambda_n.$ Debemos probar que A es diagonalizable. Sea P la matriz cuyas columnas son los n autovectores, es decir, $P=\begin{pmatrix} p_1 & p_2 & \ldots & p_n \end{pmatrix}$ Los vectores columnas de AP son de la forma $Ap_1 \ Ap_2 \ \ldots \ Ap_n$, entonces

$$AP = (Ap_1 \ Ap_2 \ \dots \ Ap_n) = (\lambda_1 p_1 \ \lambda_2 p_2 \ \dots \ \lambda_n p_n)$$

La matriz del lado derecho, puede obtenerse del producto

$$(p_1 \quad p_2 \quad \dots \quad p_n) \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} = PD$$

Como los autovectores de A son linealmente independientes, entonces P es inversible, y se cumple la expresión AP = PD, o, $P^{-1}AP = D$, lo que significa que A es diagonalizable.

El resultado importante de la demostración es que para las matrices diagonalizables, las columnas de P se forman con los nautovectores linealmente independientes de A y la matriz D se forma con los autovalores correspondientes en la diagonal.

Pasos para diagonalizar una matriz

Sea A una matriz $n \times n$

- **1** Determinar *n* autovectores linealmente independientes p_1, p_2, \ldots, p_n con autovalores correspondientes $\lambda_1, \lambda_2, \ldots, \lambda_n$. Si no existen n autovectores linealmente independientes, A no es diagonalizable.
- 2 Formar la matriz P con p_1, p_2, \ldots, p_n como sus columnas.
- 3 La matriz diagonal $D = P^{-1}AP$ está formada por los autovalores $\lambda_1, \lambda_2, \dots, \lambda_n$ en su diagonal principal.

Observación importante: El orden de los autovectores usado para formar la matriz P, determina el orden que deben tener los autovalores en la matriz D.

Ejemplo 4.

Revisemos lo dicho en el ejemplo 3.

$$P=\begin{pmatrix}4&3\\1&1\end{pmatrix}\text{ diagonaliza a }A=\begin{pmatrix}2&-12\\1&-5\end{pmatrix}\text{, ya que}$$

$$P^{-1}AP=\begin{pmatrix}4&3\\1&1\end{pmatrix}^{-1}\begin{pmatrix}2&-12\\1&-5\end{pmatrix}\begin{pmatrix}4&3\\1&1\end{pmatrix}=\begin{pmatrix}-1&0\\0&-2\end{pmatrix}$$

P tiene como columnas, los autovectores de A y la matriz diagonal, tiene los autovalores correspondientes, en el orden correspondiente.

Ejemplo 5.

Encontremos una matriz P que diagonalice a $A = \begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$

La ecuación característica de A es

$$(1-\lambda)(2-\lambda)^2 = 0$$

Las bases para los autoespacios correspondientes son

$$\lambda = 2$$
: $p_1 = (-1\ 0\ 1)$ y $p_2 = (0\ 1\ 0)$
 $\lambda = 1$: $p_3 = (-2\ 1\ 1)$

Resultan 3 autovectores linealemente independientes, por lo que ${\cal A}$ es diagonalizable y la matriz que diagonaliza a ${\cal A}$ es

$$P = \begin{pmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

Verificar.

Matrices simétricas

Veremos ahora una realción con las matrices antisimétricas. El siguiente teorema se denomina teorema espectral real.

Teorema

Si A es una matriz simétrica de $n \times n$, entonces las siguientes propiedades son verdaderas.

- $oldsymbol{0}$ A es diagonalizable.
- 2 Todos los eigenvalores de A son reales.
- $\textbf{ § } \textbf{ Si } \lambda \text{ es un autovalor de } A \text{ con multiplicidad } k, \text{ entonces } \lambda \\ \text{ tiene } k \text{ autovectores linealmente independientes. Es decir, el } \\ \text{autoespacio de } \lambda \text{ es de dimensión } k.$

La demostración de este teorema sale del alcance de este curso.

Matrices ortogonal

Definici<u>ón</u>

Una matriz cuadrada P se denomina ortogonal si es invertible y si

$$P^{-1} = P^T$$

Ejemplos:

• La matriz $P = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ es ortogonal porque

$$P^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

coincide con P^T .

• La matriz $P = \begin{pmatrix} \frac{3}{5} & 0 & -\frac{4}{5} \\ 0 & 1 & 0 \\ \frac{4}{5} & 0 & \frac{3}{5} \end{pmatrix}$ es ortogonal.

Teorema

Una matriz P de $n \times n$ es ortogonal si y sólo si sus vectores columna forman un conjunto ortonormal.

Ortonormal: Indica que los vectores cumplen dos condiciones:

- Son ortogonales dos a dos.
- la norma de cada vector es 1. (Norma es la longitud del vector, para ello, usamos Pitágoras, como en los números complejos.)

Propiedad

Sea A una matriz simétrica de $n \times n$. Si λ_1 y λ_2 son autovalores distintos de A entonces sus autovectores correspondientes x_1 y x_2 son ortogonales.

Diagonalización ortogonal

Definición

Una matriz A es diagonalizable ortogonalmente si existe una matriz ortogonal P tal que $P^{-1}AP=D$ es diagonal.

Teorema

Sea A una matriz de $n \times n$. Entonces A es diagonalizable ortogonalmente y tiene autovalores reales si y sólo si A es simétrica.

Ejemplo 6.

Determinar una matriz ortogonal P que diagonalice ortogonalmente a $A=\begin{pmatrix} -2 & 2 \\ 2 & 1 \end{pmatrix}$

Solución

- $\begin{array}{ll} \bullet \quad \text{Buscamos los autovalores de } A \\ \det(A-\lambda I) &= \det\begin{pmatrix} -2-\lambda & 2 \\ 2 & 1-\lambda \end{pmatrix} = \lambda^2+\lambda-6 \\ \text{Por lo tanto, los autovalores son } \lambda=2 \text{ y } \lambda=-3 \end{array}$
- 2 Para cada autovalores, buscamos un autovector asociado.

$$A - 2I = \begin{pmatrix} -4 & 2 \\ 2 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & -\frac{1}{2} \\ 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$A + 3I = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

Ejemplo (continuación

$$\binom{1}{2} \cdot \binom{-2}{1} = 1.(-2) + 2, 1 = -2 + 2 = 0$$

Para que los autovectores tengan norma 1, Multiplicamos cada vector por el inverso multiplicativo de su norma

$$\left\| \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\| = \sqrt{1^2 + 2^2} = \sqrt{5} \qquad \longrightarrow \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix}$$
$$\left\| \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\| = \sqrt{(-2)^2 + 1^2} = \sqrt{5} \qquad \longrightarrow \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} -\frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix}$$

Ejemplo (continuación

 $\ensuremath{\mathfrak{o}}$ Usando éstos vectores como columnas, armamos la matriz P que diagonaliza ortogonalmente a A

$$P = \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$$

Verificamos

$$P^TAP = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} -2 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix} = \begin{pmatrix} -3 & 0 \\ 0 & 2 \end{pmatrix}$$

Interpretación

Veamos en un ejemplo cómo se relacionan los temas vistos con anterioridad.

Tomemos la matriz del Ejemplo 1.

$$A = \begin{pmatrix} 2 & -12 \\ 1 & -5 \end{pmatrix}$$

Recordemos que $P=\begin{pmatrix} 4 & 3 \\ 1 & 1 \end{pmatrix}$ diagonaliza a A.

Ahora definamos una TL $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x) = Ax.

La matriz estándar asociada a la transformación es ${\cal A}.$

Hallemos la matriz ${\cal M}$ asociada a la transformación, respecto a las bases

$$B_a = \{(4,1)(3,1)\}$$

$$\begin{split} T(4,1) &= \begin{pmatrix} 2 & -12 \\ 1 & -5 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} -4 \\ -1 \end{pmatrix} = (-1) \begin{pmatrix} 4 \\ 1 \end{pmatrix} + 0 \begin{pmatrix} 3 \\ 1 \end{pmatrix} \\ \Rightarrow [T(4,1)]_B &= \begin{pmatrix} -1 \\ 0 \end{pmatrix} \end{split}$$

$$T(3,1) = \begin{pmatrix} 2 & -12 \\ 1 & -5 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} -6 \\ -2 \end{pmatrix} = 0 \begin{pmatrix} 4 \\ 1 \end{pmatrix} + (-2) \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
$$\Rightarrow [T(3,1)]_B = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$$

Así,

$$M = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$$

$$[v]_{Be} \xrightarrow{A} [T(v)]_{Be}$$

$$P \downarrow \qquad \qquad \downarrow P^{-1}$$

$$[v]_{Ba} \xrightarrow{M} [T(v)]_{Ba}$$

Como sabemos,

$$P^{-1}AP[v]_{B_a} = M[v]_{B_a}$$

Siendo la matriz M una matriz diagonal cuyos elementos de la diagonal son los autovalores de A y la base tomada B_a es la base de autovectores de A.

