一. 选择填空(每题1分,最高得26分)

Α

空格号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
答案	В	В	D	C	В	A	C	C	В	C
空格号	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
答案	C	D	D	В	A	C	В	A	C	D
空格号	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)
答案	C	В	D	C	В	D	C	В	В	C

二. 判断题(每题1分,最高得10分)

若答题表中 1 的个数不是偶数,则第 12 小题不得分

(A)

题号 k	1	2	3	4	5	6	7	8	9	10	11	12
答案 c _i	0	1	0	0	1	1	0	0	1	0	1	1

(B)

题号 k	13	14	15	16	17	18	19	20	21	22	23	24
答案 c_k	0	1	0	1	0	0	0	1	1	0	1	1

(C)

题号 k	25	26	27	28	29	30	31	32	33	34	35	36
答案 c_k	0	0	1	0	1	0	0	0	1	1	1	1

(D)

题号 k	37	38	39	40	41	42	43	44	45	46	47	48
答案 c_k	0	1	0	1	0	0	0	1	1	0	1	1

三. (14分)

(1) 【6 分】1、N0/2、
$$\frac{1}{\sqrt{\pi N_0}} \exp\left[-\frac{(y-1)^2}{N_0}\right]$$

(2)【4分】都是
$$\frac{1}{2}$$
 erfc $\left(\frac{1}{\sqrt{N_0}}\right)$

(3) 【2 分】 1/2,
$$q_2 = \frac{1}{2} \operatorname{erfc} \left(\frac{2}{\sqrt{N_0}} \right)$$

四. (16分)

- (1) 【4 分】 $d_{\min} = \sqrt{2} \sin \frac{\pi}{8}$

(2)【6分】设内圆半径是 x
方法 1: 列出
$$x^2 + 2x^2 - 2 \cdot x \cdot \sqrt{2}x \cdot \cos(\frac{\pi}{4} + \frac{\pi}{3}) = 1$$
,得 $x = \frac{1}{\sqrt{3 + 2\sqrt{2}\sin\frac{\pi}{12}}}$

方法 2: 列出 $\frac{x}{\sqrt{2}} + \sqrt{2}x\sin\frac{\pi}{3} = 1$, 得 $x = \frac{\sqrt{2}}{1+\sqrt{3}}$

平均符号能量是 $\frac{1}{2} + \frac{x^2}{2}$

$$d_{\min} = \sqrt{2}x$$

- (3)【2分】b低
- (4)【2分】a低

五. (16分)

- (1) 【4分】 $p(x) = \frac{1}{8}, x \in (0,8)$, $S = 21 + \frac{1}{3}$
- (2)【6分】1、3、5、7; $S_q=21$; $N_q=\frac{2^2}{12}=\frac{1}{3}$ (3)【6分】0.5、1.5、3、6; $S_q=20+\frac{9}{16}$; $N_q=\frac{37}{48}$

计算方法可以有多种

方法一: 按数学期望的基本定义进行积分

方法二:将数学期望拆成条件数学期望计算

方法三:本题条件下 $S=S_q+N_q$ 成立,学生如果用这个关系来做可以接受。(但此关系不是恒成立的,成立 的条件是: 量化电平位于概率质心)

方法四:第 2 小题可以从量化信噪比 S/Nq=16 反推 Nq,但因为 X 的均值不为零,所以需要扣除 均值部分的 功率: (5+1/3)/16=1/3。

六. (18分)

- (1)【6分】R1=64k, R2=56k, R3=160-64-56=40kbps
- (2) 【4 分】 f_1 =4kHz, f_2 =8kHz。
- (3)【4分】M=16, α =0.25
- (4)【4分】符合教材的标准形式即可。