

Computer Networks

L8 – Network Layer III

Lecturer: CUI Lin

Department of Computer Science
Jinan University

Topics in Network Layer

- Design Issues
- Internetworking
- Network Layer in the Internet
- Routing Algorithms
- Internet Routing and Multicasting

Routing Algorithms

- The optimality principle
- Shortest path algorithm
- Flooding
- Distance vector routing
- Link state routing
- Hierarchical routing
- Broadcast routing
- Multicast routing
- Anycast routing

Logical Architecture of a Router/L3 Switch

Routing versus Forwarding (1)

A router as having two processes inside:

- Forwarding process (转发): handles each packet as it arrives, looking up the outgoing line (or next hop) in the routing tables.
- Routing process(路由): responsible for filling and updating the routing tables
 - this is where the routing algorithm comes into play

Routing versus Forwarding (2)

- Routing is the process by which all nodes exchange control messages to calculate the routes (路由/路径) that packets will follow
 - Distributed process with *global* goals; Its emphasis is correctness
 - Nodes build a routing table that models the global network
- Forwarding is the process by which a node examines packets and sends them along their paths through the network
 - Involves *local* decisions; emphasis is *efficiency*
 - Nodes obtain next hop from their routing table

Routing Algorithms

- Routing is the process of discovering network paths
 - Model the network as a graph of nodes and links
 - Decide what to optimize (e.g., fairness vs. efficiency)
 - Update routes for changes in topology (e.g., failures)
- Datagrams networks: routing decision must be made anew for every arriving data packet since the best route may have changed since last time
- Virtual circuits networks: routing decision is made only when a new virtual circuit is being set up

Types of Routing Algorithms

- Non-adaptive algorithms / Static routing
 - The routing table is computed in advance, off-line, and downloaded to the routers when the network is booted
 - Routes never change once initial routes have been selected
 - Because it does not respond to failures, static routing is mostly useful for situations in which the routing choice is clear
- Adaptive algorithms / Dynamic routing
 - Use such dynamic information as current traffic, topology, delay, etc. to select routes
 - Change their routing decisions to reflect changes in the topology, and usually the traffic as well

Delivery models

Unicast:

A packet is sent to a single destination

Broadcast:

A packet is sent to all destinations

Multicast:

A packet is sent to a group of destinations

Anycast:

A packet is sent to the nearest member of a group

The Optimality Principle (1)

 This simply states that if router J is on the optimal path from router I to router K, then the optimal path from J to K also falls along this same path.

Each portion of a best path is also a best path

The Optimality Principle (2)

- All optimal routes from a station to other stations in the network, jointly constitute a sink tree
- Routers have to collaborate to build the sink tree for each source station or destination station

Graph abstraction

- Graph abstraction for routing algorithms:
 - Nodes are routers
 - Edges are physical links
 - link cost/weight: delay, cost, bandwidth, congestion level, etc.
- To choose a route between a given pair of routers: find "Good" path
 - Typically means minimum cost path
 - Other definitions possible

Shortest Path Algorithm

- Often used by routing algorithms because it is simple and easy to understand
- Shortest Path Metrics (Path Length)
 - Number of Hops
 - Physical Distance
 - Mean Queuing and Transmission Delay
 - Bandwidth
 - Average Traffic
 - Communication Cost

Shortest Path Algorithm

Dijkstra's algorithm computes a sink tree on the graph:

- Each link is assigned a non-negative weight/distance
- Shortest path is the one with lowest total weight
- Using weights of 1 gives paths with fewest hops

Algorithm:

- Start with sink, set distance at other nodes to infinity
- Relax distance to other nodes
- Pick the lowest distance node, add it to sink tree
- Repeat until all nodes are in the sink tree

Shortest Path Algorithm

A network and first six steps in computing the shortest paths from A to D. Red arrows show the sink tree so far.

Flooding (泛洪)

- A simple method to send a packet to all network nodes
- Basic idea: Forward an incoming packet across every outgoing line, except the one it came through
- Basic problem: how to avoid "drowning by packets"?
 - Use a hop counter: after a packet has been forwarded across N routers, it is discarded.
 - Be sure to forward a packet only once (i.e. avoid directed cycles).
 - Requires sequence numbers per source router.

Flooding – Reduce Looping

- Each router maintains a private sequence number.
 When it sends a new packet, it includes sequence number in the packet, and increase its sequence number.
- For each source router S, a router:
 - Keeps track of the highest sequence number seen from S
 - Whenever it receives a packet from S containing a sequence number lower or equal to the one stored in its table, it discards the packet
 - Otherwise, it updates the entry for S and forwards the packet

Flooding uses

- Flooding has several important uses:
 - An effective approach for broadcasting information to all nodes;
 - Several copies of the same packet may reach nodes
 - Tremendously robust: e.g., military applications
- Theoretical-chooses all possible paths, so it chooses the shortest one.

Distance Vector Routing

Important

- Distance Vector (DV, 距离矢量算法) is a distributed routing algorithm
 - Shortest path computation is split across nodes
 - Distributed version of Bellman-Ford algorithm, used in the Internet (ARPANET) under name RIP (Routing Information Protocol)
 - It works, but very slow convergence after failure

Distance Vector Algorithm

- Each router computes its routing table in a distributed setting:
 - Each router only knows the distance (cost) of to its neighbors (e.g., send echo requests)
 - Each router can talk only to its neighbors using messages
 - All routers run the same algorithm concurrently
 - Nodes and links may fail, messages may be lost

Distance Vector Algorithm

- Each router maintains a table (vector) of costs to all destinations as well as next hops
 - Initialize neighbors with known cost, others with infinity
 - Tables are updated by exchanging information with neighbors
- Routers periodically send copy of vector to neighbors
- On reception of a vector, if neighbor's path to a destination plus cost to that neighbor is better
 - Update the cost and next-hop in local table
- Assuming no changes, will converge to shortest paths

- Consider a simple network, each node run on its own
 - Node A can only talk to B and D

- First exchange, A hear from B and D, finds 1hop routes
 - Node A always learns min (B+3, D+7)

Similarly, B, C and D can learn their 1-hop

routes

То	Cost	Next
Α	0	
В	3	В
С	INF	
D	7	D

T	Ö	Cost	Next
1	4	7	Α
E	3	3	В
(\mathbb{C}	1	С
[)	0	

То	Cost	Next
Α	3	Α
В	0	
С	6	С
D	3	D

То	Cost	Next
Α	INF	
В	6	В
С	0	
D	1	D 2

- Second exchange, A hear from B and D, finds
 2-hop routes
 - Node A always learns min (B+3, D+7)

This process continues to third and subsequent exchange, until converged.27

The Count-to-Infinity Problem

Failures can cause DV to "count to infinity"
 while seeking a path to an unreachable node

A is learned slowly

B doesn't know whether itself is on the path from C

RIP (Routing Information Protocol)

- RIP is a DV protocol with hop count as metric
 - Infinity is 16 hops; limits network size
 - Measures to handle count-to-infinity: split horizon with poisoned reverse rule, ref. <u>link</u>
- Routers send vector every 30 secs
 - Run on top of UDP
 - Timeout in 180s to detect failures
- Specified in RFC 1058

Link State Routing (链路状态路由)

Also Important

- Link state is an alternative to distance vector
 - More computation but better dynamics
- Link State Routing (LSR) is widely used in practice
 - Used in Internet/ARPANET from 1979
 - Modern networks use OSPF and IS-IS

Link State Routing Algorithm

Proceeds in two phases:

- Each node floods information (topology) about its neighbors in LSPs (Link State Packets)
 - all nodes learn the full network graph
- Each node runs Dijkstra's algorithm (or equivalent) to compute the path to take for each destination

Phase 1: Topology Dissemination

- Each node floods LSP (Link State Packet)
 - Use HELLO msg to learn neighbors after boot up

LSP includes a list of neighbors and weights of

links to reach them

E		
Seq. No		
Age		
Α	10	
В	4	
С	1	
D	2	
F	2	

Node E's LSP:

Reliable Flooding

- Sequence number and Age are used for reliable flooding
 - 32 bit Sequence No.: 137 years to wrap around with one packet per second
 - Age to prevent Sequence number confusion: router crashes and lose track of its Seq., or the Seq. is corrupted
 - New LSPs are acknowledged on the lines when they are received and sent on all other lines

Phase 2: Route Computation

- Each node has full topology of entire network
 - By combining all LSPs
- Each node simply run Dijkstra's algorithm
 - Router will know which link to use to each destination
 - Compute the routing table

Routing Table Example

Source Tree for E (from Dijkstra):

E's Table:

То	Next
Α	С
В	С
С	С
D	D
E	
F	F
G	F
Н	С

Goods and Bads of LSR

Goods

- Good consistency of each router information
- Quick convergence for good and bad news

Bads

- Each router need large memory to store the input link states of other routers
- The computation time can be an issue

Hierarchical Routing

- Problem: Scalability
 - Network grows in size, routing table grows proportionally
 - More router memory and CPU time are needed
- Go for suboptimal routes by introducing hierarchical routing and regions, and separate algorithms for intra-region and inter-region routing.

Hierarchical Routing

 Hierarchical routing reduces the work of route computation but may result in slightly longer paths than flat routing

Broadcast Routing

- Broadcasting sends a packet to all destinations simultaneously
- Several ways to implement broadcasting:
 - Send a unicast packet to each destination separately
 - Flood packets to all nodes
 - Multi-destination routing:
 - Each packet contains a list (or bitmap) of all destinations
 - Use sink tree
 - etc.

Multicast Routing

- Multicast sends message to a subset of the nodes, called group
- Examples: live video streaming
- Uses a different tree for each group and source
- Usually sending packets along a spanning tree

Anycast Routing

- For some service, it is getting the right information that matters, rather than the node that is contacted
 - E.g., NTP, CDN, DNS...
- Anycast Routing: a packet is delivered to the nearest member of a group
 - Can be designed based on distance vector and link state routing, by assigning one IP address to all servers in the group

Anycast Routing Example

Routing in the Internet

- The global Internet consists of Autonomous Systems (AS) interconnected with each other:
 - E.g., ISP, company, university

Routing in the Internet

- The global Internet consists of Autonomous Systems (AS) interconnected with each other:
 - E.g., ISP, company, university
- Two-level routing:
 - Intra-AS/Intra-Domain:
 - Each network can use its own routing algorithm
 - Inter-AS/Inter-Domain: AS Prouting Alg
 - All networks use same routing protocol
 - Networks may have different/conflicting goals

Need to use different protocols...

- Interior Gateway Protocols (IGP)
 - RIP, OSPF, IS-IS (similar to OSPF, an ISO standard), ...
 - Only exchange route information within a domain (AS)
 - go out via default gateways
- Exterior Gateway Protocols (EGP)
 - BGP
 - Only exchange route information among domains (AS)

AS, IGP and EGP

OSPF— Interior Routing Protocol

- OSPF (Open Shortest Path First) is link-state routing:
 - Routers flood information to learn topology
 - Then run Dijkstra to compute routes

OSPF

- OSPF divides one large network (AS) into areas connected to a backbone area
 - Helps to scale; summaries go over area borders

Other AS AS Backbone Area 0 R_6 net 6 R_7 R_5 R_9 cnet 2 cnet 8 net 3 cnet 4 net 5 Area 1 Area 3 Area 2

BGP— Exterior Routing Protocol

- BGP (Border Gateway Protocol) computes routes across interconnected ASes
 - Key role is to respect networks' policy constraints
- Example policy constraints:
 - No commercial traffic for educational network
 - Never put Japan on route for traffic of PLA
 - Choose cheaper network
 - Choose better performing network
 - Traffic starting and ending at Tencent shouldn't transit
 360

Border Gateway Protocol

- BGP propagates messages along policy-compliant routes
 - ASes exchange info about who they can reach
 - IP prefix: block of destination IP addresses
 - AS path: sequence of ASes along the path

AS Path

Internet Multicasting

- IP multicasting is not widely used except within a single network, e.g., datacenter, cable TV network.
- Using multicast address (Class D):
 224.0.0.0 ~ 224.255.255.255

Without IP Multicasting

90 Hosts for the video program

IP Multicasting

Internet Multicasting

- Groups have a reserved IP address range (class D, 224.0.0.0/24)
 - Membership in a group handled by IGMP (Internet Group Management Protocol) that runs at routers
- Routes computed by protocols such as PIM (Protocol Independent Multicast):
 - Dense mode uses RPF (Reverse Path Forwarding)
 with pruning
 - Sparse mode uses core-based trees

Thank you! Q & A