Question 3. Réflexion et réfraction par une sphère (15 points)

Une source localisée au point $\vec{r}_s=(6,-4,0)^T$ cm dans le vide émet de la lumière unidirectionnelle de polarisation transverse électrique (TE) vers un cylindre de verre d'indice de réfraction $n_r=1.5$, de rayon R=2 cm et de hauteur h=10 cm. Ce cylindre (axe dans la direction z) est centré à z=5 cm. Vous supposerez que le rayon lumineux touche la surface du cylindre au point $\vec{r}_c=(2,0,2)^T$ cm.

- (a) (10 points) Déterminez la direction du faisceau de lumière réfléchie et réfractée par la sphère.
- (b) (5 points) Calculez le rapport entre l'intensité lumineuse du rayon réfracté et celle du rayon réfléchi.

Solution

(a) (10 points) Déterminez la direction du faisceau de lumière réfléchie et réfractée par la sphère.

La direction initiale du faisceau de lumière est

$$\hat{u}_i = \frac{\vec{r}_c - \vec{r}_s}{|\vec{r}_c - \vec{r}_s|}$$

en utilisant les données fournies dans le devoir on obtient

$$\hat{u}_i = (-2/3, 2/3, 1/3)^T$$

Nous avons aussi besoin de la normale sortante à la surface. Comme $0 \le z_c \le h$, la normale correspond à un rayon du cylindre partant du point $\vec{a} = (0,0,z_c)$ et se dirigeant vers \vec{r}_c . On obtient donc

$$\hat{i} = \frac{\vec{r_c} - \vec{a}}{|\vec{r_c} - \vec{a}|} = (1, 0, 0)^T$$

Pour définir le plan plan de réflexion ou de réfraction, nous aurons besoin aussi de

$$\hat{j} = \frac{\hat{u}_i \times \hat{i}}{|\hat{u} \times \hat{i}|} = \left(0, \frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}}\right) = (0, 0.4472, -0.8944)^T$$

$$\hat{k} = \hat{i} \times \hat{j} = \left(0, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right) = (0, 0.8944, 0.4472)^T$$

Le sinus de l'angle d'incidence (ou de réflexion) est donc

$$\sin(\theta_i) = \hat{u}_i \cdot \hat{k} = 0.7453$$

alors que le sinus de l'angle de réfraction est

$$\sin(\theta_t) = \frac{n_i}{n_t} \sin(\theta_i) = 0.4969$$

Finalement la direction du faisceau réfléchi sera

$$\hat{u}_r = \hat{i}\cos(\theta_i) + \hat{k}\sin(\theta_i) = (2/3, 2/3, 1/3)^T$$

et la direction du faisceau réfracté (transmis) sera

$$\hat{u}_t = -\hat{i}\cos(\theta_t) + \hat{k}\sin(\theta_t) = (-0.8678, 0.444, 0.2222)^T$$

(b) (5 points) Calculez le rapport entre l'intensité lumineuse du rayon réfracté et celle du rayon réfléchi.

Pour une onde transverse électrique, les intensités réfléchie R et réfractée T sont

$$R = \left(\frac{\sin(\theta_t - \theta_i)}{\sin(\theta_t + \theta_i)}\right)^2$$
$$T = 1 - R$$

On obtient donc

$$\frac{I_t}{I_r} = \frac{1 - R}{R} = 8.61$$