

CPSC 340 – Tutorial 2

Lironne Kurzman lironnek@cs.ubc.ca

University of British Columbia

September 20th, 2021

Training, Testing, and Validation Set

- Given training data, we would like to learn a model to minimize error on the testing data
- How do we decide decision tree depth?
- We care about test error.
- But we can't look at test data.
- So what do we do?????

Training, Testing, and Validation Set

- Given training data, we would like to learn a model to minimize error on the testing data
- One answer: Use part of your train data to approximate test error. Split training objects into training set and validation set:

Train model on the training data. Test model on the validation data

Cross Validation

Isn't it wasteful to only use part of your data? k-fold cross-validation:

Train on k-1 folds of the data, validate on the other fold. Repeat this k times with different

splits, and average the score.

Figure 1: Adapted from Wikipedia

Note: if examples are ordered, split should be random

Naive Bayes: Tips (Frequentist View)

$$P(color = white)$$

:= "probability of color being white"

:= "proportion of white things"

Naive Bayes: Tips (Frequentist View)

Bayes Theorem:

$$P(Y|X) = rac{P(X|Y)P(Y)}{P(X)}$$

$$P(\text{shape} = \text{"circle"} \mid \text{color} = \text{"black"}) = \frac{P(\text{shape} = \text{"circle"}, \text{color} = \text{"black"})}{P(\text{color} = \text{"black"})}$$

Naive Bayes: Tips (Frequentist View)

$$P(\text{shape} = \text{"circle"} \mid \text{color} = \text{"black"}) = \frac{P(\text{shape} = \text{"circle"}, \text{color} = \text{"black"})}{P(\text{color} = \text{"black"})}$$

:= "probability of shape being circle given color is black"

:= "proportion of circles among black items"

Naive Bayes: The Naïve Part

Naive Bayes Example

headache	runny nose	fever	flu
N	Y	Y	N
Y	N	N	N
N	N	N	N
Y	Y	Y	Y
Y	Y	N	Y
N	N	Y	Y

headache	runny nose	fever	flu
Y	N	Y	?

Naive Bayes Example

p(headache=Y flu=N)	1/3
p(headache=Y <mark>flu=Y</mark>)	2/3
p(runny nose=N flu=N)	2/3
p(runny nose=N flu=Y)	1/3
p(fever=Y flu=N)	1/3
p(fever=Y <mark>flu=Y</mark>)	2/3
p(flu=N)	1/2
p(flu=Y)	1/2

References

 Based off slides from 2017 and from 2021S by Nam Hee Gordon kim