

74V2G02

DUAL 2-INPUT NOR GATE

- HIGH SPEED: t_{PD} = 3.6ns (TYP.) at V_{CC} = 5V
- LOW POWER DISSIPATION: $I_{CC} = 1\mu A \text{ (MAX.)}$ at $T_A = 25^{\circ}\text{C}$
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28% V_{CC} (MIN.)
- POWER DOWN PROTECTION ON INPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: $|I_{OH}| = I_{OL} = 8mA$ (MIN) at $V_{CC} = 4.5V$
- BALANCED PROPAGATION DELAYS: $t_{PLH} \cong t_{PHL}$
- OPERATING VOLTAGE RANGE:
 V_{CC}(OPR) = 2V to 5.5V
- IMPROVED LATCH-UP IMMUNITY

DESCRIPTION

The 74V2G02 is an advanced high-speed CMOS DUAL 2-INPUT NOR GATE fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS technology.

ORDER CODES

PACKAGE	T&R
SOT23-8L	74V2G02STR

The internal circuit is composed of 3 stages including buffer output, which provide high noise immunity and stable output.

Power down protection is provided on all inputs and 0 to 7V can be accepted on inputs with no regard to the supply voltage. This device can be used to interface 5V to 3V.

PIN CONNECTION AND IEC LOGIC SYMBOLS

June 2003 1/7

INPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN N°	SYMBOL	NAME QND FUNCTION
1, 5	1A, 2A	Data Input
2, 6	1B, 2B	Data Input
7, 3	1Y, 2Y	Data Output
4	GND	Ground (0V)
8	V _{CC}	Positive Supply Voltage

TRUTH TABLE

Α	В	Y
L	L	Н
L	Н	L
Н	L	L
Н	Н	L

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7.0	V
V _I	DC Input Voltage	-0.5 to +7.0	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	- 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	260	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	2 to 5.5	V
V _I	Input Voltage	0 to 5.5	V
V _O	Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time (note 1) ($V_{CC} = 3.3 \pm 0.3V$) ($V_{CC} = 5.0 \pm 0.5V$)	0 to 100 0 to 20	ns/V ns/V

1) V_{IN} from 30% to 70% of V_{CC}

2/7

DC SPECIFICATIONS

		Test Condition		Value							
Symbol	Parameter	V _{CC}		T	T _A = 25°C		C -40 to		-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	3.0 to 5.5		0.7V _{CC}			0.7V _{CC}		0.7V _{CC}		V
V_{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	3.0 to 5.5				0.3V _{CC}		0.3V _{CC}		0.3V _{CC}	V
V _{OH}	High Level Output	2.0	I _O =-50 μA	1.9	2.0		1.9		1.9		
	Voltage	3.0	I _O =-50 μA	2.9	3.0		2.9		2.9		
		4.5	I _O =-50 μA	4.4	4.5		4.4		4.4		V
		3.0	I _O =-4 mA	2.58			2.48		2.4		
		4.5	I _O =-8 mA	3.94			3.8		3.7		
V _{OL}	Low Level Output	2.0	I _O =50 μA		0.0	0.1		0.1		0.1	
	Voltage	3.0	I _O =50 μA		0.0	0.1		0.1		0.1	
		4.5	I _O =50 μA		0.0	0.1		0.1		0.1	V
		3.0	I _O =4 mA			0.36		0.44		0.55	
		4.5	I _O =8 mA			0.36		0.44		0.55	
I _I	Input Leakage Current	0 to 5.5	V _I = 5.5V or GND			± 0.1		± 1		± 1	μΑ
I _{CC}	Quiescent Supply Current	5.5	$V_I = V_{CC}$ or GND			1		10		20	μΑ

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3ns$)

		7	est Co	ondition	Value							
Symbol Parameter		v _{cc}	V _{CC} C _L		T _A = 25°C			C -40 to 85°C			-55 to 125°C	
		V _{CC}	(pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{PLH} t _{PHL}	Propagation Delay	3.3 ^(*)	15			4.7	8.0	1.0	9.5	1.0	10.5	
	Time	3.3 ^(*)	50			5.2	9.0	1.0	10.5	1.0	11.5	nc
		5.0 ^(**)	15			3.6	5.5	1.0	6.5	1.0	7.5	ns
		5.0 ^(**)	50			4.5	7.0	1.0	8.5	1.0	9.5	

^(*) Voltage range is $3.3V \pm 0.3V$ (**) Voltage range is $5.0V \pm 0.5V$

CAPACITIVE CHARACTERISTICS

		Test Condition	Value								
Symbol	Parameter		Т	T _A = 25°C		T _A = 25°C -40 to 85°C			-55 to 125°C		Unit
			Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
C _{IN}	Input Capacitance			4	10		10		10	pF	
C _{PD}	Power Dissipation Capacitance (note 1)			10						pF	

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/2$

TEST CIRCUIT

 C_L = 15/50pF or equivalent (includes jig and probe capacitance) R_T = Z_{OUT} of pulse generator (typically 50 Ω)

WAVEFORM: PROPAGATION DELAY (f=1MHz; 50% duty cycle)

4/7

SOT23-8L MECHANICAL DATA

DIM		mm.		mils				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А	0.90		1.45	35.4		57.1		
A1	0.00		0.15	0.0		5.9		
A2	0.90		1.30	35.4		51.2		
b	0.22		0.38	8.6		14.9		
С	0.09		0.20	3.5		7.8		
D	2.80		3.00	110.2		118.1		
E	2.60		3.00	102.3		118.1		
E1	1.50		1.75	59.0		68.8		
е	0	.65			25.6			
e1		1.95			76.7			
L	0.35		0.55	13.7		21.6		

Tape & Reel SOT23-xL MECHANICAL DATA

DIM		mm.		inch					
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.			
А			180			7.086			
С	12.8	13.0	13.2	0.504	0.512	0.519			
D	20.2			0.795					
N	60			2.362					
Т			14.4			0.567			
Ao	3.13	3.23	3.33	0.123	0.127	0.131			
Во	3.07	3.17	3.27	0.120	0.124	0.128			
Ko	1.27	1.37	1.47	0.050	0.054	0.0.58			
Ро	3.9	4.0	4.1	0.153	0.157	0.161			
Р	3.9	4.0	4.1	0.153	0.157	0.161			

6/7

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

