An Unknown Signal

Symbols, Patterns and Signals

Jacob Daniel Halsey

March 2020

1 Least Squares Regression

The least squares calculations have been implemented in the Segment methods lsr_polynomial and lsr_fn. They both use the matrix formula [1]:

$$\boldsymbol{A} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

Where in the case of the polynomial regression:

$$\mathbf{X} = \begin{bmatrix} 1 & x_0 & (x_0)^2 & \dots & (x_0)^k \\ 1 & x_1 & (x_1)^2 & \dots & (x_1)^k \\ \dots & \dots & \dots & \dots \\ 1 & x_k & (x_k)^2 & \dots & (x_k)^k \end{bmatrix}$$

Or in the case of the unknown function f regression:

$$\boldsymbol{X} = \begin{bmatrix} 1 & f(x_0) \\ 1 & f(x_1) \\ \dots & \dots \\ 1 & f(x_k) \end{bmatrix}$$

Y is a vector containing the y values y_0 through to y_k

And the result **A** is the list of coefficients, in the order $a_0 + a_1x + ... + a_kx^k$ or $a_0 + a_1f(x)$.

- 2 K-Fold Validation
- 3 Testing
- 4 Training Data

References

[1] E. W. Weisstein, Least squares fitting-polynomial. [Online]. Available: http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html.