Deep Learning

Redes neuronales convolucionales (CNN)

- 1. Introducción a las CNNs
- 2. Concepto de imagen
- 3. Capas de la CNN
- 4. Cómo construir una CNN desde cero

1. Introducción a las CNNs

Computer vision

Principales tareas

Clasificación

Regresión

Segmentación

Seguimiento de objetos

Detección de objetos

Recuperación de imágenes basada en el contenido

2. Concepto de imagen

Concepto de imagen

Imágenes en blanco y negro

157	153	174	168	150	162	129	151	172	161	155	156
155	182	163	74	75	62	33	.17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	100	5	124	191	111	120	204	166	15	56	180
194	68	197	251	297	299	259	228	227	87		201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	161
189	197	165	84	10	168	134	11	31	62	22	141
199	168	191	193	168	227	178	143	182	106	36	190
205	174	155	252	236	231	140	178	228	43	95	23
190	216	116	149	236	187	85	150	79	38	218	24
190	224	147	100	227	210	127	102	36	101	255	22
190	214	173	66	103	143	96	50	2	109	249	211
187	196	235	75		=	47		6	217	255	21
183	202	237	145			12	108	200	128	243	230
196	206	123	207	177	121	123	200	175	13	96	211

157	153	174	168	150	152	129	151	172	161	156	156
156	182	163	74	75	62	33	17	130	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	166	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	195	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	107	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	256	211
183	202	237	146	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

Imágenes en color (RGB)

3. Capas de las CNNs

Tipos de tensores según la dimensionalidad

- Convolutional layers
- Activation function
- Pooling layers
- Batchnormalization layers

- Flatten layers
- Dropout layer
- Dense layers

Capas convolucionales

Parámetros

- Canales de entrada
- Número de filtros por capa
- Tamaño de cada filtro
- Desplazamiento
 (movimiento) del filtro
- Relleno

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee

interactive example of a convolutional layer

Capas BatchNormalization

Parámetros

• Número de características.

Funciones de Activación

$$\begin{array}{l} \text{Sigmoid} \\ \sigma(x) = \frac{1}{1+e^{-x}} \end{array}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

 $\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$

Capas Pooling

https://pub.towardsai.net/introduction-to-pooling-layers-in-cnn-dafe61eabe34

Parámetros

- Tamaño del Kernel
- Desplazamiento (movimiento) del filtro
- Relleno

Capas flatten

Capas Dropout

Original network

Network with some nodes dropped out

Capas Dense

Parámetros

- Tamaño entrada
- Tamaño de salida

4. Cómo construir una CNN desde cero

5.EXTRA RESOURCES

Documentación

- https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.h tml
- https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html
- https://pytorch.org/docs/stable/generated/torch.nn.MaxPool 2d.html
- https://pytorch.org/docs/stable/generated/torch.nn.Flatten.h tml

Deep Learning

Redes neuronales convolucionales (CNN)

