Tables 463

Table of Primitive Polynomials over F₂

If deg(f(x)) = d then $o(f(x)) = 2^d - 1$ and f(x) is primitive for F_{2^d} over F_2 .

x + 1	$x^{11} + x^2 + 1$	$x^{21} + x^2 + 1$
$\begin{vmatrix} x+1 \\ x^2+x+1 \end{vmatrix}$	$\begin{vmatrix} x & +x & +1 \\ x^{12} + x^6 + x^4 + x + 1 \end{vmatrix}$	$\begin{vmatrix} x + x + 1 \\ x^{22} + x^1 + 1 \end{vmatrix}$
$\begin{vmatrix} x + x + 1 \\ x^3 + x + 1 \end{vmatrix}$	$\begin{vmatrix} x & +x & +x & +x + 1 \\ x^{13} + x^4 + x^3 + x + 1 \end{vmatrix}$	$\begin{vmatrix} x + x + 1 \\ x^{23} + x^5 + 1 \end{vmatrix}$
$\begin{vmatrix} x + x + 1 \\ x^4 + x + 1 \end{vmatrix}$	$\begin{vmatrix} x & +x & +x & +x + 1 \\ x^{14} + x^5 + x^3 + x + 1 \end{vmatrix}$	$\begin{vmatrix} x + x + 1 \\ x^{24} + x^4 + x^3 + x + 1 \end{vmatrix}$
$\begin{vmatrix} x + x + 1 \\ x^5 + x^2 + 1 \end{vmatrix}$	$x^{15} + x + 1$	$\begin{vmatrix} x & +x & +x & +x + 1 \\ x^{25} + x^3 + 1 \end{vmatrix}$
$\begin{vmatrix} x + x + 1 \\ x^6 + x + 1 \end{vmatrix}$	$\begin{bmatrix} x & + x + 1 \\ x^{16} + x^5 + x^3 + x^2 + 1 \end{bmatrix}$	$\begin{vmatrix} x + x + 1 \\ x^{26} + x^6 + x^2 + x + 1 \end{vmatrix}$
$\begin{vmatrix} x + x + 1 \\ x^7 + x + 1 \end{vmatrix}$	$x^{17} + x^{3} + 1$	$\begin{vmatrix} x & +x & +x & +x + 1 \\ x^{27} + x^5 + x^2 + x + 1 \end{vmatrix}$
$\begin{vmatrix} x + x + 1 \\ x^8 + x^4 + x^3 + x^2 + 1 \end{vmatrix}$	$\begin{vmatrix} x & +x & +1 \\ x^{18} + x^5 + x^2 + x + 1 \end{vmatrix}$	$\begin{vmatrix} x & +x & +x & +x + 1 \\ x^{28} + x^3 + x^3 + 1 \end{vmatrix}$
$x^{9} + x^{4} + 1$	$x^{19} + x^5 + x^2 + x + 1$	$x^{29} + x^2 + x^2 + 1$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} x & +x & +x & +x & +1 \\ x^{20} + x^3 + 1 \end{vmatrix}$	$\begin{vmatrix} x & +x & +x & +1 \\ x^{30} + x^6 + x^4 + x + 1 \end{vmatrix}$
A TA T1	^	\ \tau \tau \tau \tau \tau \tau \tau \ta

Table of Primitive Polynomials over F3

If deg(f(x)) = d then $o(f(x)) = 3^d - 1$ and f(x) is primitive for F_{3d} over F_{3} .

$ \begin{array}{c} x + 1 \\ x^2 + x + 2 \\ x^3 + 2x^2 + 1 \\ x^4 + x^3 + 2 \end{array} $	$ \begin{array}{c} x^{6} + x^{5} + 2 \\ x^{7} + x^{6} + x^{4} + 1 \\ x^{8} + x^{5} + 2 \\ x^{9} + x^{7} + x^{5} + 1 \end{array} $	$\begin{array}{c} x^{11} + x^{10} + x^4 + 1 \\ x^{12} + x^{11} + x^7 + 2 \\ x^{13} + x^{12} + x^6 + 1 \\ x^{14} + x^{13} + 2 \end{array}$
$x^5 + x^4 + x^2 + 1$	$x^{10} + x^9 + x^7 + 2$	$x^{15} + x^{14} + x^4 + 1$

Additional Primitive Polynomials

If deg(f(x)) = d then $o(f(x)) = q^d - 1$ and f(x) is primitive for F_{q^d} over F_{q^d} .