LLM

octubre 2023

Predecir la siguiente palabra

The best thing about AI is its ability to

learn	4.5%
predict	3.5%
make	3.2%
understand	3.1%
do	2.9%

Dentro de un contexto

Con atención a lo más relevante

Contextos cada vez más amplios

Infiere reglas del lenguaje

iverger

De las palabras a los conceptos

¿Un modelo conceptual del mundo?

Tipos de actividades basadas en lenguaje

Procesar información

Analizar pliego Analizar comentarios Revisiones de calidad

Generar contenido

Crear informe periódico Responder usuarios Crear descripciones de producto

Transformar contenido

Traducir Adaptar contenido en distintos formatos y tonos

Estrategias

Prompts

Question:
Esta es la entrada
principal, que
representa una
consulta que se
desea responder
utilizando el LLM.

Orchestrator: Convierte la entrada en un prompt, que es una versión mejorada o más detallada de la entrada inicial. Envía el prompt a un LLM y recibe la respuesta.

Estrategias

Embeddings

Embeddings: Se crean vectores semánticos (embeddings) a partir del conjunto de documentos y se almacenan en una BBDD especializada.

Question:
Esta es la entrada
principal, que
representa una
consulta que se
desea responder
utilizando el conjunto
de documentos
privados de los que
se dispone

Q/A Application: Procesa la pregunta, obteniendo sus embeddings que utiliza para para buscar y recuperar información relevante del conjunto de documentos privados.

Con este extracto y la pregunta original se construye un prompt que se envía al LLM para obtener una respuesta detallada.

Estrategias

Fine-Tuning

Base LLM:
Se parte de un modelo
fundacional, como
GPT-4, PaLM o LLaMA 2,
que ha sido
pre-entrenado con una
gran cantidad de
datos.

Fine-tuning: Se realiza otro proceso de entrenamiento sobre el modelo fundacional con otro conjunto de datos, más reducido.

Final LLM: Se obtiene un nuevo modelo más especializado que el fundacional.

Riesgos

Alucinociones

Impacto de los LLM en el mercado laboral

Considerando las **capacidades actuales** del modelo GPT:

El 19% de los trabajos tienen más del 50% de sus tareas expuestas a los GPTs.

Las ocupaciones de salarios más altos generalmente presentan más tareas con alta exposición.

Las ocupaciones que dependen de habilidades de programación y lenguaje son más susceptibles a ser influenciadas por las LLMs.

"No habrá programadores en 5 años."

Emad Mostaque Founder & CEO Stability Al

iverger

Impacto en el desarrollo de software

Los desarrolladores de software que usaron GitHub Copilot de Microsoft completaron tareas un **56 por ciento más rápido** que aquellos que no utilizaron la herramienta.¹

En 2023 el **10% del código** y las pruebas mundiales será escrito por Inteligencia Artificial.²

El impacto directo de la IA en la productividad de la ingeniería de software podría variar entre el **20 y el 45 por ciento del gasto anual** actual (\$899B).³

Google también está en "el camino para reinventar lo que significa hacer desarrollo de software en la era de los modelos generativos".⁴

Impact as a percentage of functional spend, %

Note: Impact is averaged. Excluding software engineering. Source: Comparative Industry Service (CIS),

Source: Comparative Industry Service (CIS), IHS Markit; Oxford Economics; McKinsey Corporate and Business Functions database; McKinsey Manufacturing and Supply Chain 360; McKinsey Sales Navigator; Ignite, a McKinsey database; McKinsey analysis

¹https://arxiv.org/abs/2302.06590

²https://www.forrester.com/report/predictions-2023-artificial-intelligence/RES178186

³https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier

⁴https://twitter.com/DynamicWebPaige/status/1674920912565723136?t=te5THaow6AZJPv-8uAFZhw&s=35

Tipos de actividades basadas en código

Procesar información

Explicar código fuente Generar comentarios Revisiones de calidad Identificar errores

Generar contenido

Scaffolding inteligente Crear pruebas unitarias Corregir errores

Transformar contenido

Refactorizar Aplicar guías de estilo Modernizar aplicaciones Nuevos desarrollos

Mantenimiento Deuda técnica Sistemas Legacy

Niveles de adopción

La mayoría de las organizaciones o no han empezado a adoptar masivamente la IA generativa (Piloto) o se encuentran en un uso individual (Copiloto). Desde Diverger pretendemos situar a las organizaciones en estadios de mayor adopción, como son el de torre de control y piloto automático.

Piloto

Los profesionales de su equipo son responsables de todo el ciclo de trabajo, utilizando herramientas convencionales pero sin asistencia directa de IA.

Copiloto

Los profesionales cuentan con un asistente de IA que sugiere opciones, ayuda a completar tareas y a depurar errores, pero aún se mantiene el control del proceso.

Torre de control

Las organizaciones estandarizan la forma en que se utiliza la IA, implementando plantillas y prácticas comunes para una utilización coherente, predecible y de mayor calidad.

Piloto Automático

Las IA se encargan de tareas completas de, incluyendo pruebas y correcciones, con los profesionales actuando como supervisores del proceso.

¡Gracias!

diverger