UNIVERSIDAD DEL BÍO BÍO

DEPARTAMENTO DE MATEMÁTICA

ICE - ICQ - ICM - BC - 2021 (1) ÁLGEBRA LINEAL

Guía Transformación Lineal

Transformación Lineal

- 1. Determine si la aplicación dada es una transformación lineal.
 - a) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $T(x,y) = (x^2,y)$
 - b) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, T(x,y,z) = (x+y,x-y,z)
 - c) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}$, T(x,y,z) = 2x y + z

d)
$$T: \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathcal{M}_2(\mathbb{R}), T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+b & 0 \\ 0 & c+d \end{pmatrix}$$

e)
$$T: \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathcal{M}_2(\mathbb{R})$$
 , $Tegin{pmatrix} w & x \ y & z \end{pmatrix} = egin{pmatrix} w+x & 1 \ 0 & y-z \end{pmatrix}$

f)
$$T: \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}$$
 , $Tegin{pmatrix} a & b \ c & d \end{pmatrix} = a+b-c+d$

$$\text{g)} \quad T: \mathcal{M}_3(\mathbb{R}) \longrightarrow \mathcal{M}_3(\mathbb{R}) \ , T(A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} A$$

- g) $T: \mathcal{P}_2(\mathbb{R}) \longrightarrow \mathcal{P}_2(\mathbb{R}), T(a_0 + a_1x + a_2x^2) = (a_0 + a_1 + a_2) + (a_1 + a_2)x + a_2x^2$
- i) $T:\mathcal{P}_2(\mathbb{R})\longrightarrow \mathcal{P}_2(\mathbb{R})$, $T(a_0+a_1x+a_2x^2)=a_1+2a_2x^2$
- 2. Sea T una transformación lineal de \mathbb{R}^2 a \mathbb{R}^2 tal que T(1,0)=(1,1) y T(0,1)=(-1,1). Encuentre:
 - a) T(1,4)
 - b) T(-2,1)
 - c) T(x,y)
- 3. Sea $T:\mathbb{R}^2\longrightarrow\mathbb{R}^3$ tal que T(1,0)=(1,2,3) y T(0,1)=(-1,1,0). Encuentre:
 - a) T(5,2)
 - b) T(x,y)
- 4. Sea $T:\mathbb{R}^2\longrightarrow\mathcal{P}_2(\mathbb{R})$ tal que T(1,1)=1-2t y $T(3,-1)=t+2t^2$. Encuentre:
 - a) T(1,2)
 - b) T(x,y)
- 5.Sea $T:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ una transformación lineal tal que T(1,0,0)=(2,-1,4); T(0,1,0)=(1,5,-2); T(0,0,1)=(0,3,1). Determine
 - a) T(2,3,-2)
 - b) T(x,y,z)
- 6. Dada la transformación lineal $T:\mathcal{M}_2(\mathbb{R})\longrightarrow \mathcal{M}_2(\mathbb{R})$ definida por $T\begin{pmatrix} a & b \\ c & d \end{pmatrix}=\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$.
 - a) Determine el kernel y su dimensión.
 - b) Determine la imagen y su dimensión.
 - c) i, T es monomorfismo?
 - d) iT es invertible?
- 7. Dada la aplicación $f:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ definida por f(x,y,z)=(y,-x,z).
 - a) i, f es una transformación lineal?
 - b) i, f es monomorfismo?
 - c) i, f es epimorfismo?
 - d) i, f es automorfismo?

8. Dada la aplicación lineal $H: \mathcal{P}_3 \longrightarrow \mathcal{P}_2$ definida por $H(a_0 + a_1x + a_2x^2 + a_3x^3) = a_1 + 2a_2x + 3a_3x^2$ determinar

- a) Kernel de H y su dimensión.
- b) Imagen de **H** y su dimensión.

9. Dada la transformación lineal $F: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por F(x,y,z) = (x+2y,y+z,z). Hallar F^{-1} , si existe.

10. Dada una aplicación lineal definida por

$$T(x,y) = egin{pmatrix} 5 & -3 \ 1 & 1 \ 1 & -1 \end{pmatrix} egin{pmatrix} x \ y \end{pmatrix}$$

- a) Hallar una base para el kernel y la imagen.
- b) iT es isomorfismo?
- c) Hallar T^{-1} , si existe.
- 11. Comprobar si la transformación lineal T(x) = Ax con

$$A = egin{pmatrix} 1 & 2 & 3 \ -1 & 2 & 4 \ 0 & 4 & 1 \end{pmatrix}$$

es monomorfismo y epimorfismo.

12. Considere la transformación lineal $T:\mathbb{R}^4\longrightarrow\mathbb{R}^3$ representada por T(x)=Ax donde

$$A = egin{pmatrix} 1 & -2 & 1 & 0 \ 0 & 1 & 2 & 3 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

- a) Encuentre la dimensión del kernel
- b) Encuentre la dimensión de la imagen
- c) ξ Es T monomorfismo?
- d) ¿Es T epimorfismo?
- e) Determine T^{-1} , si existe.