Min-entropy

- In some applications other types of entropy is more appropriate.
- X, p(X) Min-entropy of a distribution is defined as: $H_{\infty}(X) = -\log \max_{x} p(x)$
- Example:
 p(x₁)=2⁻¹

Min-entropy is an important security measure for

• $p(x_2) = p(x_3)....p(x_{256}) = 2^{-8}$ random number generators.

- H(X)~ 7.8 bits
- $H_{\infty}(X) = -\log_2(2^{-1}) \sim 1$ bit
- Min-entropy measures the success chance of the best guess.

Min-entropy

- Shannon entropy is expected uncertainty:
 Not a good measure for success chance of best guess
- Example: $X = \{0,1\}^3$,
- p(000)=9/16, $p(001)=...p(111)=1/16=2^{-4}$
- $H(X) = -(7/16) \log(2^{-4}) 9/16 \log(9/16)$ = 2.22 bit
- H_∞(X) ~1 bit
- Entropy relations for min-entropy are different..

From data to distribution

GPA	Hours Playing Video Games
3.95	1
3.65	7
3.55	5
	3
2.98	10
1.50	17
1.75	18
2.20	9
3.00	6
3.00	5
3.00	5
3.15	⊚Study.com

GPA	Hours Playing Video Games	
4.00	0	
2.50	15	
4.00	3	
3.90	5	
3.75	5	
3.80	0	
2.90	13	
3.10	8	
3.25	7	
3.40	8	
3.30	9	
3.90	12	

Distribution from data

Hours GPA	0-5 hours	6-10 hours	>11 hours
<2.5	0	1/24	3/24
2.51 - 3.2	3/24	2/24	1/24
3.21 - 4	8/24	5/24	1/24

- p(play<6 h)= 11/24
- p(6 < play < 10 h) = 8/24
- p(play>11 h)= 5/24
- p(GPA<2.5)=3/24
- p(GPA: 2.51-3.2)=6/24
- p(GPA: 3.21-4)= 14/24
- Prob GPA>3.2, for students who play more than 11 h
- p(GPA > 3.2 | play>11h) = p(GPA > 3.2, play>11h) / p(play>11h)
- = (1/24)/(5/24) = 1/5

Summary

- Measures
 - -H(X)
 - -H(X,Y)
 - H(X|Y), H(X|Y=y)
 - -I(X;Y)
 - D(X || Y)

- Relations
- $D(X||Y) \ge 0$
 - \rightarrow I(X;Y) \geq 0, H(X) \geq H(X|Y), log₂(N) \geq H(X)
- $H(X) \geq H(f(X))$

Min-entropy