PATTERN RECOGNITION ASSIGNMENT 2.

Parametric Learning, Nonparametric Techniques.

Due: Oct. 20, 2019.

Do the following problems from the textbook. ¹

1. (10 marks) Problem 4, sect. 3.2, p. 141. Let \boldsymbol{x} be a d-dimensional binary (0 or 1) vector with a multivariate Bernoulli distribution

$$P(\boldsymbol{x}|\boldsymbol{\theta}) = \prod_{i=1}^{d} \theta_i^{x_i} (1 - \theta_i)^{1 - x_i},$$

where $\theta = (\theta_1, ..., \theta_d)^t$ is an unknown parameter vector, θ_i being the probability that $x_i = 1$. Show that the maximum likelihood estimate for θ is

$$\hat{\boldsymbol{\theta}} = \frac{1}{n} \sum_{k=1}^{n} \boldsymbol{x}_k.$$

2. (20 marks) Problem 17, sect. 3.5, p. 145.

The purpose of this problem is to derive the Bayesian classifier for the d-dimensional multivariate Bernoulli case. As usual, work with each class separately, interpreting $P(\mathbf{x}|\mathcal{D})$ to mean $P(\mathbf{x}|\mathcal{D}_i,\omega_i)$. Let the conditional probability for a given category be given by

$$P(\boldsymbol{x}|\boldsymbol{\theta}) = \prod_{i=1}^{d} \theta_i^{x_i} (1 - \theta_i)^{1 - x_i},$$

and let $D = \{x_1, ..., x_n\}$ be a set of n samples independently drawn according to this probability density.

(a) If $\mathbf{s} = (s_1, ..., s_d)^t$ is the sum of the *n* samples, show that

$$P(\mathcal{D}|\boldsymbol{\theta}) = \prod_{i=1}^{d} \theta_i^{s_i} (1 - \theta_i)^{n - s_i}.$$

(b) Assuming a uniform a priori distribution for $\boldsymbol{\theta}$ and using the identity

$$\int_0^1 \theta^m (1 - \theta)^n d\theta = \frac{m! n!}{(m+n+1)!},$$

show that

$$p(\boldsymbol{\theta}|\mathcal{D}) = \prod_{i=1}^{d} \frac{(n+1)!}{s_i!(n-s_i)!} \theta_i^{s_i} (1-\theta_i)^{n-s_i}.$$

- (c) Plot this density for the case d=1, n=1 and for the two resulting possibilities for s_1 .
- (d) Integrate the product $P(x|\theta)p(\theta|\mathcal{D})$ over θ to obtain the desired conditional probability

$$P(\boldsymbol{x}|\mathcal{D}) = \prod_{i=1}^{d} \left(\frac{s_i+1}{n+2}\right)^{x_i} \left(1 - \frac{s_i+1}{n+2}\right)^{1-x_i}.$$

¹Duda, Hart, and Stork, Pattern Classification, Wiley, 2nd edition, 2001

- (e) If we think of obtaining $P(\boldsymbol{x}|\mathcal{D})$ by substituting an estimate $\hat{\boldsymbol{\theta}}$ for $\boldsymbol{\theta}$ in $P(\boldsymbol{x}|\boldsymbol{\theta})$, what is the effective Bayesian estimate for $\boldsymbol{\theta}$?
- 3. (20 marks) Problem 2, sect. 4.3, p. 201.

Consider a normal $p(x) \sim N(\mu, \sigma^2)$ and Parzen-window function $\phi(x) \sim N(0, 1)$. Show that the Parzen-window estimate

$$p_n(x) = \frac{1}{nh_n} \sum_{i=1}^n \phi\left(\frac{x - x_i}{h_n}\right)$$

has the following properties:

(a)

$$\overline{p}_n(x) \sim N(\mu, \sigma^2 + h_n^2)$$

(b)

$$Var[p_n(x)] \simeq \frac{1}{2nh_n\sqrt{\pi}}p(x)$$

(c)

$$p(x) - \overline{p}_n(x) \simeq \frac{1}{2} \left(\frac{h_n}{\sigma} \right)^2 \left[1 - \left(\frac{x - \mu}{\sigma} \right)^2 \right] p(x)$$

for small h_n . (Note: if $h_n = h_1/\sqrt{n}$, this shows that the error due to bias goes to zero as 1/n, whereas the standard deviation of the noise only goes to zero as $\sqrt[4]{n}$.)

4. (20 marks) Problem 8, sect. 4.5, p. 202.

It is easy to see that the nearest-neighbor error rate P can equal the Bayes rate P^* . if $P^* = 0$ (the best possibility) or if $P^* = (c-1)/c$ (the worst possibility). One might ask whether or not there are problems for which $P = P^*$ when P^* is between these extremes.

(a) Show that the Bayes rate for the one-dimensional case where $P(\omega_i) = 1/c$ and

$$P(x|\omega_i) = \begin{cases} 1 & 0 \le x \le \frac{cr}{c-1} \\ 1 & i \le x \le i+1 - \frac{cr}{c-1} \\ 0 & \text{elsewhere} \end{cases}$$

is $P^* = r$.

- (b) Show that for this case that the nearest-neighbor rate is $P = P^*$.
- 5. (30 marks) Problem 9, sect. 3.8, p. 158 (computer exercise).

Consider the Fischer linear discriminant method.

- (a) Write a general program to calculate optimal direction **w** for a Fischer linear discriminant method based on three-dimensional data.
- (b) Find the optimal **w** for categories ω_2 and ω_3 in the table

sample	ω_1			ω_2			ω_3		
	x_1	x_2	<i>x</i> ₃	x_1	x2	<i>x</i> ₃	x_1	<i>x</i> ₂	<i>x</i> ₃
1	0.42	-0.087	0.58	-0.4	0.58	0.089	0.83	1.6	-0.014
2	-0.2	-3.3	-3.4	-0.31	0.27	-0.04	1.1	1.6	0.48
3	1.3	-0.32	1.7	0.38	0.055	-0.035	-0.44	-0.41	0.32
4	0.39	0.71	0.23	-0.15	0.53	0.011	0.047	-0.45	1.4
5	-1.6	-5.3	-0.15	-0.35	0.47	0.034	0.28	0.35	3.1
6	-0.029	0.89	-4.7	0.17	0.69	0.1	-0.39	-0.48	0.11
7	-0.23	1.9	2.2	-0.011	0.55	-0.18	0.34	-0.079	0.14
8	0.27	-0.3	-0.87	-0.27	0.61	0.12	-0.3	-0.22	2.2
9	-1.9	0.76	-2.1	-0.065	0.49	0.0012	1.1	1.2	-0.46
10	0.87	-1.0	-2.6	-0.12	0.054	-0.063	0.18	-0.11	-0.49

- (c) Plot a line representing your optimal direction **w** and mark on it the positions of the projected points.
- (d) In the subspace, fit each distribution with a (univariate) Gaussian, and find the resulting decision boundary.
- (e) What is the training error (the error on the training points themselves) in the optimal subspace you found in (b)?
- (f) For comparison, repeat parts (d) and (e) using instead the nonoptimal direction $\mathbf{w} = (1.0, 2.0, -1.5)^t$. What is the training error in this nonoptimal subspace?