4 Аксіоми віддільності

Аналізуючи властивості різних топологічних просторів ми бачили, що їх структура може бути настільки "неприродною", що будь-яка послідовність збігається до будь-яких точок (тривіальний простір), існують точки дотику множин, які не є границями послідовностей їх елементів (простір Зариського) тощо. В математичному аналізі ми не зустрічаємо таких "патологій": там всі послідовності мають лише одну границю, кожна точка дотику є границею тощо. Отже, виникає потреба в інструментах, які дозволили ли б виділити серед топологічних просторів "природні" простори. Такими інструментами є аксіоми віддільності, які разом з аксіомами зліченності дають можливість повністю описати властивості топологічних просторів.

Аксіоми віддільності в топологічному просторі (X, τ) формулюються наступним чином.

 T_0 (Колмогоров, 1935). Для двох довільних різних точок x і y, що належать множині X, існує множина із топологічної структури τ , яка містить рівно одну з цих точок.

$$(\forall x \neq y \in X) : ((\exists V_x \in \tau : x \in V_x, y \notin V_x) \lor (\exists V_y \in \tau : y \in V_y, x \notin V_y)).$$

 T_1 (Picc, 1907). Для двох довільних різних точок x і y, що належать множині X, існують множина V_x із топологічної структури au, яка містить точку x і не містить точки y, і множина V_y із топологічної структури t, яка містить точку y і не містить точки x.

$$(\forall x \neq y \in X) : ((\exists V_x \in \tau : x \in V_x, y \notin V_x) \land (\exists V_y \in \tau : y \in V_y, x \notin V_y)).$$

 T_2 (Хаусдорф, 1914). Для двох довільних різних точок x і y, що належать множині X, існують множина V_x із топологічної структури τ , яка містить точку x, і множина V_y із топологічної структури τ , яка містить точку y, такі що не перетинаються.

$$(\forall x \neq y \in X) : (\exists V_x \sqcup V_y \in \tau) : (x \in V_x \land y \in V_y).$$

 T_3 (В'єторіс, 1921). Для довільної точки x і довільної замкненої множини F, що не містить цієї точки, існують дві відкриті множини V_x і V, що не перетинаються, такі що $x \in V_x$, а $F \subset V$.

$$(\forall x \in X, \overline{F} \subset X) : (\exists V_x \sqcup V \in \tau) : (x \in V_x \land \overline{F} \subset V).$$

 $T_{3^{1}/2}$ (Урисон, 1925). Для довільної точки x і довільної замкненої множини \overline{F} , що не містить цієї точки, існує неперервна числова функція f, задана на просторі X, така що $0 \leq f(t) \leq 1$, до того ж f(x) = 0 і f(t) = 1, якщо $x \in \overline{F}$.

$$(\forall x \in X, \overline{F} \subset X : x \notin \overline{F}) :$$
$$(\exists f : X \to \mathbb{R}^1 : 0 \le f(t) \le 1, f(x) = 0, f(\overline{F}) = 1).$$

 T_4 (В'єторіс, 1921). Для двох довільних замкнених множин $\overline{F_1}$ і $\overline{F_2}$ що не перетинаються, існують відкриті множини G_1 і G_2 , що не перетинаються, такі що $\overline{F_1} \subset G_1$, $\overline{F_2} \subset G_2$.

$$(\forall \overline{F_1}, \overline{F_2} \subset X : \overline{F_1} \cap \overline{F_2} = \varnothing) :$$

$$(\exists G_1, G_2 \in \tau : \overline{F_1} \subset G_1, \overline{F_2} \subset G_2, G_1 \cap G_2 = \varnothing).$$

Визначення 4.1 (Колмогоров, 1935). Топологічні простори, що задовольняють аксіому T_0 , називаються T_0 -просторами, або колмогоровськими.

Визначення 4.2 (Рісс, 1907). Топологічні простори, що задовольняють аксіому T_1 , називаються T_1 -просторами, або досяжними.

Визначення 4.3 (Хаусдорф, 1914). Топологічні простори, що задовольняють аксіому T_2 , називаються $xaycdop\phioвими$, або siddinbhumu.

Визначення 4.4 (В'єторіс, 1921). Топологічні простори, що задовольняють аксіоми T_1 і T_3 , називаються регулярними.

Визначення 4.5 (Тихонов, 1930). Топологічні простори, що задовольняють аксіоми T_1 і $T_{3^{1}/2}$, називаються *цілком регулярними*, або *тихоновськими*.

Визначення 4.6 (Тітце (1923), Александров і Урисон (1929)). Топологічні простори, що задовольняють аксіоми T_1 і T_4 , називаються *нормальними*.

Розглянемо наслідки, які випливають із аксіом віддільності.

Теорема 4.7 (критерій досяжності)

Для того щоб топологічний простір (X, τ) був T_1 -простором необхідно і достатньо, щоб будь-яка одноточкова множина $\{x\} \subset X$ була замкненою.

Доведення. Необхідність. Припустимо, що виконується перша аксіома віддільності: якщо $x \neq y$, то існує окіл $V_x \in \tau : x \notin V_y$. Тоді $\forall y \neq x, y \notin \overline{\{x\}}$, тобто $\overline{\{x\}} = \{x\}$.

Достатність. Припустимо, що $\overline{\{x\}} = \{x\}$. Тоді $\forall y \neq x : \exists V_y \in \tau : x \notin V_y$. Отже виконується перша аксіома віддільності.

Наслідок 4.8

В просторі T_1 будь-яка скінченна множина є замкненою.

Теорема 4.9

Для того щоб точка x була граничною точкою множини M в T_1 -просторі необхідно і достатнью, щоб довільний окіл U цієї точки містив нескінченну кількість точок множини M.

Доведення. Необхідність. Якщо точка $x \in \text{граничною точкою множини } M$, то

$$\forall O(x) \in \tau : O(x) \cap M \setminus \{x\} \neq \varnothing.$$

Припустимо, що існує такий окіл U точки x, що містить лише скінченну кількість точок $x_1, x_2, \ldots, x_n \in M$. Оскільки простір (X, τ) є T_1 -простором, то існує окіл і U точки x, що не містить точку x_i .

Введемо в розгляд множину $V = \bigcap_{i=1}^n U_i$. Ця множина є околом точки x, що не містить точок множини M, за винятком, можливо, самої точки x. Отже, точка x не є граничною точкою множини M, що суперечить припущенню.

Достатність. Якщо довільний окіл U точки x містить нескінченну кількість точок множини M, то вона є граничною за означенням.

Приклад 4.10

Зв'язна двокрапка є колмогоровским, але недосяжним простором.

Приклад 4.11

Простір Зариського є досяжним, але не хаусдорфовим.

Теорема 4.12 (критерій хаусдорфовості)

Для того щоб простір (X, τ) був хаусдорфовим необхідно і достатньо, щоб для кожної пари різних точок x_1 і x_2 в X існувало неперервне ін'єктивне відображення f простору X в хаусдорфів простір Y.

Доведення. Необхідність. Нехай простір (X, τ) є хаусдорфовим. Тоді можна покласти Y = X і f = I — тотожне відображення.

Достатність. Нехай (X, τ) — топологічний простір і

$$(\exists O(f(x_1)) \in \tau_Y, O(f(x_2)) \in \tau_Y) : (O(f(x_1)) \cap O(f(x_2)) = \emptyset),$$

де Y — хаусдорфів, а f — неперервне відображення. Оскільки простір Y є хаусдорфовим, то

$$(\exists O(f(x_1)), O(f(x_2)) \in \tau_Y) : (O(f(x_1)) \cap O(f(x_2)) = \emptyset).$$

Оскільки відображення $f \in$ неперервним, то

$$(\exists O(x_1) \in \tau_X, O(x_2) \in \tau_Y) : (f(O(x_1)) \subset O(f(x_1)) \land f(O(x_2)) \subset O(f(x_2))).$$

Тоді околи $V(x_1) = f^{-1}(f(O(x_1)))$ і $V(x_2) = f^{-1}(f(O(x_2)))$ не перетинаються.

Визначення 4.13. Замкнена множина, що містить точку x разом з деяким її околом, називається *замкненим околом* точки x.

Теорема 4.14 (критерій регулярності)

Для того щоб T_1 -простір (X, τ) був регулярним необхідно і достатньо, щоб довільний окіл U довільної точки x містив її замкнений окіл.

Доведення. Необхідність. Нехай простір (X,τ) є регулярним, x — його довільна точка, а U — її довільний окіл. Покладемо $F = X \setminus U$. Тоді внаслідок регулярності простору (X,τ) існує окіл V точки x і окіл W множини F, такі що $V \cap W = \varnothing$. Звідси випливає, що $V \subset X \setminus W$, отже, $\overline{V} = \overline{X} \setminus W = X \setminus W \subset X \setminus F = U$.

Достатність. Нехай довільний окіл довільної точки x містить замкнений окіл цієї точки, а F — довільна замкнена множина, що не містить точку x. Покладемо $G = X \setminus F \in \tau$. Нехай V — замкнений окіл точки x, що міститься в множині G. Тоді $W = X \setminus V$ є околом множини F, який не перетинається з множиною V.

Приклад 4.15

Розглянемо множину $X=\mathbb{R}$ і введемо топологію так: замкненими будемо вважати всі множини, що є замкненими у природній топології числової прямой, а також множину $A=\left\{\frac{1}{n},n=1,2,\ldots\right\}$. Точка нуль їй не належить, але будь-які околи точки нуль і довільні околи множини A перетинаються. Це означає, що побудований простір не є регулярним, але є хаусдорфовим.

Визначення 4.16. Система $\gamma = \{A_i, i \in I\}$ замкнених підмножин простору X називається його *замкненою базою*, якщо будь-яку замкнену в X множину можна подати у вигляді перетину множин із системи γ .

Визначення 4.17. Система $\delta = \{B_j\}$ замкнених підмножин B_j називається *замкненою передбазою*, якщо будь-яку замкнену в X множину можна подати у вигляді перетину скінченних об'єднань множин із системи δ .

Визначення 4.18. Підмножини A і B простору X називаються $\phi y n \kappa u io-$ нально віддільними, якщо існує дійсна неперервна функція $f: X \to [0,1]$ така, що

$$f(x) = \begin{cases} 0, & x \in A \\ 1, & x \in B. \end{cases}$$

Оскільки замкнені бази і передбази є двоїстими до відкритих, мають місце наступні твердження.

Лема 4.19

Для того щоб система $\gamma = \{A_i, i \in I\}$ замкнених множин із X була замкненою базою в X, необхідно і достатньо, щоб для кожної точки $x_0 \in X$ і для кожної замкненої множини F_0 , що не містить точку x_0 , існувала множина A_{j_0} така, що $x_0 \notin A_{j_0} \supset F_0$.

Вправа 4.20. Доведіть лему.

Лема 4.21

Для того щоб система $\delta = \{B_j, j \in J\}$ замкнених множин із X була замкненою передбазою в X, необхідно і достатньо, щоб для кожної точки $x_0 \in X$ і для кожної замкненої множини F_0 , що не містить точку x_0 , існував скінченний набір елементів $B_{j_1}, B_{j_2}, \ldots, B_{j_n}$ такий, що $x_0 \notin \bigcup k = 1^n B_{j_k} \supset F_0$.

Вправа 4.22. Доведіть лему.

Теорема 4.23 (критерій цілковитої регулярності)

Для того щоб (X, τ) був цілком регулярним (тихоновським) необхідно і достатньо, щоб кожна його точка x_0 була функціонально віддільною від усіх множин із деякої замкненої передбази $\delta = \{F_i, i \in I\}$, що її не містять.

Доведення. Необхідність. Якщо простір (X, τ) є цілком регулярним (тихоновським), то точка x_0 є функціонально віддільною від усіх замкнених множин, що її не містять, а значить, і від усіх множин із деякої замкненої передбази $\delta = \{F_i, i \in I\}$, що її не містять.

Достатність. Нехай F_0 — довільна замкнена в X множина, що не містить точку x_0 , і нехай $F_{i_1}, F_{i_2}, \ldots, F_{i_n}$ — скінченний набір елементів із δ такий, що $x_0 \notin \bigcup_{k=1}^n F_{j_k} \supset F_0$ (за другою лемою). За припущенням, існує неперервна функція $f_k: X \to [0,1]$, яка здійснює функціональну віддільність точки x_0 і замкненої множини F_{i_k} .

Покладемо $f(x) = \sup_k f_k(x)$ і покажемо, що функція f здійснює функціональну віддільність точки x_0 і множини F, а тим більше, точки x_0 і множини $F_0 \subset F$.

Дійсно, $f(x_0) = \sup_k f_k(x_0) = 0$. Далі, оскільки $\forall k = 1, 2, \dots, n$: $f_k(x) \le 1$, із $x \in F$ випливає, що $f(x) = \sup_k f_k(x) = 1$. Крім того, із того що $x \in F = \bigcup_{k=1}^n F_{i_k}$ випливає, що, $x \in F_{i_m}$, $1 \le m \le n$, тобто $f_m(x) = 1$.

Залишилося показати неперервність побудованої функції. Для цього треба довести, що

$$(\forall x' \in X, \varepsilon > 0) : (\exists U \in \tau : X' \in U) : (\forall x \in U) : |f(x) - f(x')| < \varepsilon.$$

Оскільки f_k — неперервна функція, то існує окіл U_k точки x', такий що $\forall x \in U_k : |f_k(x) - f_k(x')| < \varepsilon$.

Покладемо $U = \bigcap_{k=1}^n U_k$. Тоді для кожного $x \in U$ і $\forall k = 1, 2, \dots, n$ виконуються нерівності

$$f_k(x') - \varepsilon < f_k(x) \le \sup_k f_k(x) = f(x),$$

 $f_k(x) < f_k(x') + \varepsilon \le f_k(x') + \varepsilon = f(x') + \varepsilon.$

Звідси випливає, що $f(x' - \varepsilon < f(x) < f(x') + \varepsilon$.

Зауваження 4.24 — Побудова регулярних просторів, які не ϵ тихоновськими ϵ нетривіальною задачею.

Теорема 4.25 (Мала лема Урисона (критерій нормальності))

Досяжний простір X є нормальним тоді і лише тоді, коли для кожної замкненої підмножини $F \subset X$ і відкритої множини U, що її містить, існує такий відкритий окіл V множини F, що $\overline{V} \subset U$, тобто коли кожна замкнена підмножина має замкнену локальну базу.

Доведення. Необхідність. Нехай простір X є нормальним. Розглянемо замкнену множину F та її окіл U. Покладемо $F' = X \setminus U$. Оскільки $F \cap F' = \varnothing$, то існує відкритий окіл V множини F і відкритий окіл V' множини F', такі що $V \cap V' = \varnothing$. Отже, $V \subset X \setminus V'$. З цього випливає, що $\overline{V} \subset \overline{X} \setminus V' = X \setminus V' \subset X \setminus F' = U$.

Достатність. Нехай умови леми виконані, а F і F' — довільні диз'юнктні замкнені підмножини простору X. Покладемо $U = X \setminus F'$. Тоді, оскільки множина U є відкритим околом множини F, то за умовою леми, існує окіл V множини F, такий що $\overline{V} \subset U$. Покладаючи $V' = X \setminus \overline{V}$ безпосередньо переконуємося, що множини V і V' не перетинаються і є околами множини F і F'.

Теорема 4.26 (Велика лема Урисона)

Будь-які непорожні диз'юнктні замкнені підмножини нормального простору є функціонально віддільними.

Зауваження 4.27 — Ця лема — критерій нормальності.