Problem Set 6

Due: In class on Wednesday, March 31. Starred problems are optional.

Problem 6-1. A comparison network with n inputs and r comparators can be described as a list $(i_1, j_1), (i_2, j_2), \ldots, (i_r, j_r)$, where $1 \le i_q, j_q \le n$ for $q = 1, 2, \ldots, r$. The list represents a topological sort of the comparators, where each ordered pair (i_q, j_q) stands for a comparison between the elements on lines i_q and j_q , with the minimum being output on line i_q and the maximum on line j_q .

(a) Give an efficient algorithm for determining the depth of a comparison network so described. (*Hint:* You can't just count the maximum number of comparators incident on a line.)

Define a comparison network as *standard* if $i_q < j_q$ for q = 1, 2, ..., r.

- (b) Give an algorithm to convert a comparison network with n inputs and r comparators into an equivalent standard comparison network with n inputs and r comparators.
- (c) Prove or give a counterexample: For any standard sorting network, if a comparator (i, j), where i < j, is added anywhere in the network, the network continues to sort.

Problem 6-2. A comparison network is a *transposition network* if each comparator connects adjacent lines. Intuitively, a transposition network represents the action over time of a linear systolic array making oblivious comparison exchanges between adjacent array elements.

- (a) Show that if a transposition network with n inputs actually sorts, then it has $\Omega(n^2)$ comparators.
- (b) Prove that a transposition network with n inputs is a sorting network if and only if it sorts the sequence $(n, n-1, \ldots, 1)$.

Problem 6-3. Give an algorithm for sorting N^3 elements on an $N \times N \times N$ mesh in O(N) time.