Vida Artificial: aplicações na Robótica e Jogos

Eduardo do Valle Simões

Instituto de Ciências Matemáticas e de Computação - USP

Cópias das Transparências e material didático:

http://www.icmc.usp.br/~simoes/

email: simoes@icmc.usp.br

Eu, Robô – Asimov:

http://www.apple.com/trailers/fox/i_robot/trailer3/ap_sm.html

"Será a Vida Artificial possível?"

Contexto

Computação Evolutiva:

→ Processos Naturais como Ferramentas de Implementação

Estuda:

■ Inter-relações entre os organismos e o meio ambiente (Algoritmos Genéticos)

Evolução através da Seleção Natural

Características:

- Tamanho;
- Cor da Pele...

Mecanismos de Estímulo-Resposta:

- Estudo da Inteligência:
 - Biologia: Funcional → neurônios, cérebro...
 - Computação : Mecanismos → cognição
 - Inteligência Computacional: Modelos → Inteligência Artificial
 - Computação Bioinspirada: Sistemas Adaptativos ->
 Inteligência Emergente

→ Suprema Ferramenta para a Sobrevivência

■ Inteligência → Dispersão

Computação Evolutiva: Conceito

Sistemas de Computação Tradicionais:

→ Tentar exaustivamente todas as possíveis soluções e escolher a mais adequada

- Baseados em uma população de soluções
- Sobrevivência dos melhores
- Função de avaliação
- Problemas
 - Não garante melhor solução
 - Máximos locais
 - Overfitness → Oportunismo: pode não funcionar em todos os casos

- Mecanismos inspirados na evolução biológica:
 - Avaliação (genótipo x fenótipo)
 - Seleção natural (ranking x tournament)
 - Reprodução
 - Mutação
 - Crossover
 - Reconstituição da população

Algoritmo:

- 1 Inicie a População.
- 2 Repita enquanto critério de parada não for satisfeito:
 - 1 Calcule a aptidão de cada possível solução (cromossomo).
 - 1 Selecione cromossomos para a reprodução.
- 5 Gere novos cromossomos utilizando operadores evolutivos.
- 6 Componha a nova população.

Exemplo de Crossover:

Exemplo de Mutação:

- Computação Evolutiva:
 - → Uma Seleção Natural Artificial dos mais adequados agentes ou soluções
- Premissa mais importante:
 - → Especificar *o que* é desejado do robô, sem definir *como* ele deve fazer para obter o comportamento desejado

Estudo dos Mecanismos Naturais:

- Nível Microscópico (Molecular):
 - Algoritmos Genéticos
- Nível Macroscópico (Comportamental):
 - Complementaridade entre o ambiente natural e os organismos

Interação entre Organismo e Ambiente:

 Comportamento: propriedade emergente da interação entre organismo e meio ambiente

 "O ambiente não é apenas uma entidade complexa e variável, mas um mundo de oportunidades"

por J.J. Gibson (1950)

Aplicação: Robótica Evolutiva

Robótica Evolutiva

Processo Evolucionário:

Robótica Evolutiva

- Configuração da Rede Neural
- Velocidade de movimento
 - Selecionamento dos Sensores

Controlador: Redes Neurais Artificiais

Redes Neurais Artificiais (cérebro dos Robôs):

Controlador: Redes Neurais Artificiais

 Generalização – Aprendizado por Tutor – Processa inf. ruidosa

Aplicações da Computação Evolutiva na Robótica

Experimentos

Efeito da Mutação:

Efeito da Mutação:

Diferentes Populações:

Robôs Reais

Predação

Competição entre Espécies

- 120 Gerações: (1 min.)
- Pontuação do Melhor Robô
 - Média da População

Competição entre Espécies

Espécie 1 – Um sensor frontal

Espécie 2 – Dois sensores, um frontal e outro lateral

Espécie 3 – Três sensores, um frontal e dois laterais

Conclusão

 A Computação Evolutiva pode contribuir muito com Problemas Reais:

e.g. Robótica & Indústria

 Possibilita auto-programação de sistemas complexos

Adaptatividade

Evolução Contínua X Busca de Solução