

F5. SOK-2011: Økonomisk vekst

Konvergensteori og Solow-modellen med teknologisk utvikling

Konvergens

1. Lik sparerate og befolkningsvekst i alle land (betingelsesløs konvergens)

Prediksjon:

Dersom to land har <u>ulik</u> nivå på BNP per arbeider, men lik...

- Produksjonsfunkjson (f.eks. $Y(t) = K(t)^{\alpha} \cdot L(t)^{1-\alpha}$)
- Sparerate (f.eks s = 0.1)
- Befolkningsvekstrate (f.eks n = 0.02)
- Depresieringsrate i kapitalen (f.eks $\delta = 0.005$)

Vil...

 Det fattigere landet vokse raskere enn det rike landet

$$g_y^{fattig} > g_y^{rik}$$

 Nivået i BNP per arbeidere på sikt konvergere i de to landene

$$y^{fattig} \rightarrow y^{rik}$$

Konvergens

Konvergens

Konvergens

Konvergens

Konvergens

Konvergens

2. Ulik nivå på sparerate og befolkningsvekst, åpent økonomi (betinget konvergens)

Prediksjon:

Dersom to land har <u>lik</u> produksjonsfunksjon (f.eks. $Y(t) = K(t)^{\alpha} \cdot L(t)^{1-\alpha}$), og økonomien er åpent

Men <u>ulik</u> nivå på **sparerate** og **befolkningsvekst**, vil nivået på BNP per arbeider konvergere, <u>gitt at produksjons</u>-faktorene kan flytte fritt mellom landene (åpen økonomi)

De to landene har i utgangspunktet ulike steady-state, men får på sikt lik steady-state

Intuisjon?

Konvergens

2. Ulik nivå på sparerate og befolkningsvekst, åpent økonomi (betinget konvergens)

Eksempel med et fattig og et rikt land:

Malawi: Lav s, høy n

Lav k^{ss}

Mange arbeidere per kapitalenhet

Høy avkastning på kapital Lav avkastning på arbeid Norge:

Høy s, lav n

Høy k^{ss}

Få arbeidere per kapitalenhet

Lav avkastning på kapital Høy avkastning på arbeid

Konvergens

2. Ulik nivå på sparerate og befolkningsvekst, åpent økonomi (betinget konvergens)

Malawi:

Lav s, høy n

Høy avkastning på kapital Lav avkastning på arbeid

Malawiske arbeidere vil flytte til Norge

 $n^M \downarrow$

 $n^N \uparrow$

Norge:

Høy s, lav n

Lav avkastning på kapital Høy avkastning på arbeid

Norske kapitaleiere vil investere i Malawi

 $s^N \downarrow$

 $s^{M} \uparrow$

Konvergens

2. Ulik nivå på sparerate og befolkningsvekst, åpent økonomi (betinget konvergens)

PREDIKSJON

Forskjeller i avkastning på produksjonsfaktorene vil føre til at produksjonsfaktorene flytter dit avkastningen er høyest.

På sikt vil avkastning på produksjonsfaktorene (inntekt), og nivået på produksjon per arbeider utjevnes mellom land.

Hvor gode er prediksjonene?

Land med høy og middels høy inntekt

Hvor gode er prediksjonene?

Noe mangler!

3 type teknologi:

1)
$$A(t)$$
: II to hal fak hor produktivitet

A(t) = A_0 : A_0 :

2) kvaliket til produtsjøns fak horene Kapilal: 9x = e j.t kvaliketen hel kapilalen. — o vetskakn i kvaliken hel tapilalen:

Disse antakelsene er lik

$$\star$$
 $L(t) = L_0 e^{nt}$

$$\star$$
 $I(t) = S(t)$

$$\star$$
 $S(t) = s \cdot Y(t) = \frac{\partial K(t)}{\partial t}$

- Konstant skala-utbytte
- Avtakende grenseproduktivitet
- Łukket økonomi

Arbeid: 9, = emit

kralitet Klobeid, humantapital.

Verstale i tralilet til a-beid: m.

Produksjons hunksjonen:

$$Y(t) = A(t) \cdot F(g_k(t) \cdot K(t), g_k(t) \cdot L(t))$$

$$E(t)$$

$$\star$$
 $L(t) = L_0 e^{nt}$

$$\star$$
 $I(t) = S(t)$

$$\star$$
 $S(t) = s \cdot Y(t) = \frac{\partial R(t)}{\partial t}$

$$T(+) = A(+) \cdot (q_{k}(+) \cdot k(+))^{1-\alpha} 0 < \alpha < 1$$

$$Y(t) = A(t) \cdot F(\underbrace{q_K(t) \cdot K(t)}_{\underline{K}(t)}, \underbrace{q_L(t) \cdot L(t)}_{\underline{L}(t)})$$

A(t)	$= A_0 \cdot e^{g_A \cdot t}$	Total faktorproduktivitet (Hicks-nøytral teknologi)	Vekstrate: g_A
$q_K(t)$	$= e^{j \cdot t}$	Kvalitetsindeks til kapital	Vekstrate: j
$q_L(t)$	$= e^{m \cdot t}$	Kvalitetsindeks til arbeid (Harrod-nøytral teknologi)	Vekstrate: m

Opplegg:

- 1. Se på effekter av diskrete endringer i teknologien (anta at A, q_K og q_L er konstanter)
- 2. Analyse av kontinuerlig vekst i teknologien

<u>Diskrete</u> endringer i teknologi og kvalitet i produksjonsfaktorene

Spørsmål:

Hvilke prediksjoner gir denne modellen i forhold til hva som bestemmer nivået på materiell velferd på lang sikt (hvilken land vil være rik og hvilke vil være fattig)?

Antakelser: A er eksogent gitt og konstant

Teknologien (kvaliteten) knyttet til arbeid (\mathbf{q}_L) og kapital (q_K) er eksogent gitte og konstante

Total produksjon kan beskrives av Cobb-Douglas funksjonen under:

$$Y(t) = A \cdot \left(\underbrace{q_K \cdot K(t)}_{\underline{K}(t)}\right)^{\alpha} \cdot \left(\underbrace{q_L \cdot L(t)}_{\underline{L}(t)}\right)^{1-\alpha}$$

Disse antakelsene er lik

$$\star$$
 $L(t) = L_0 e^{nt}$

$$\star$$
 $I(t) = S(t)$

$$\star$$
 $S(t)$ = $s \cdot Y(t) = \frac{\partial K(t)}{\partial t}$

★ Konstant skala-utbytte

Avtakende grenseproduktivitet

★ Lukket økonomi

$$\frac{\text{Produksjon per innbygger}}{\text{Y}(t)} = \frac{A \cdot (q_{k} \cdot k(t))^{\alpha} \cdot (q_{L} \cdot L(t))^{1-\alpha}}{L(t)} = \frac{A \cdot q_{k}^{\alpha} \cdot q_{L}^{\alpha} \cdot k(t)^{\alpha} \cdot L(t)}{L(t)}$$

$$\frac{\text{Y}(t)}{L(t)} = A \cdot q_{k}^{\alpha} \cdot q_{L}^{\alpha} \cdot \frac{k(t)^{\alpha} \cdot L(t)}{L(t)} = A \cdot q_{k}^{\alpha} \cdot q_{L}^{\alpha} \cdot \frac{k(t)^{\alpha} \cdot L(t)}{L(t)}$$

$$\frac{k(t)}{L(t)} = D \quad \text{Y}(t) = A \cdot q_{k}^{\alpha} \cdot q_{L}^{\alpha} \cdot k(t)$$

Diskrete endringer i teknologi og kvalitet i produksjonsfaktorene

Steady state

Diskrete endringer i teknologien

Hva skjer med produksjon per innbygger dersom teknologien blir bedre?

Diskrete endringer i teknologien

Hva skjer med produksjon per innbygger dersom teknologien blir bedre?

Diskrete endringer i teknologien

Hva skjer med produksjon per innbygger dersom teknologien blir bedre?

Det teknologiske nivået øker fra $A_0 \rightarrow A_1$

y(t)

Produksjonsnivået i tidspunkt t øker fra

$$y(t) = A_0 \cdot q_K^{\alpha} \cdot q_L^{1-\alpha} \cdot k(t)^{\alpha} \text{ til } y(t)' = A_1 \cdot q_K^{\alpha} \cdot q_L^{1-\alpha} \cdot k(t)^{\alpha}$$

En bedre teknologi øker BNP per innbygger ved hver nivå på kapitalintensiteten

MEN! Økningen i produksjon per innbygger vil også føre til at kapitalintensiteten endres!

Diskrete endringer i teknologi og kvalitet i produksjonsfaktorene

Hva skjer med produksjon per innbygger dersom teknologien blir bedre?

De faktiske investeringene øker fra

$$s \cdot A_0 \cdot q_K^{\alpha} \cdot q_L^{1-\alpha} \cdot k^{\alpha} \rightarrow s \cdot A_1 \cdot q_K^{\alpha} \cdot q_L^{1-\alpha} \cdot k^{\alpha}$$

$$\operatorname{Ved} k_0^{SS} \operatorname{er} s \cdot A_1 \cdot q_K^{\alpha} \cdot q_L^{1-\alpha} \cdot \left(k_0^{SS}\right)^{\alpha} > n \cdot k_0^{SS}$$

$$s \cdot A_1 \cdot q_K^{\alpha} \cdot q_L^{1-\alpha} \cdot \left(k_1^{SS}\right)^{\alpha} = n \cdot k_1^{SS}$$
$$y_1^{SS} = A_1 \cdot q_K^{\alpha} \cdot q_L^{1-\alpha} \cdot \left(k_1^{SS}\right)^{\alpha}$$

Diskrete endringer i kvaliteten til arbeid og kapital

Hva skjer med produksjon per innbygger dersom kvaliteten til arbeid og kapital blir bedre?

Dersom kvaliteten til kapital og/eller arbeid øker, vil produksjon per arbeider øke ved hvert nivå på kapitalintensiteten

Diskrete endringer i kvaliteten til arbeid og kapital

Hva skjer med produksjon per innbygger dersom kvaliteten til arbeid og kapital blir bedre?

En økning i kvaliteten til kapitalen

En økning i kvaliteten til arbeidskraften

Diskrete endringer i kvaliteten til arbeid og kapital

Hva skjer med produksjon per innbygger dersom kvaliteten til arbeid og kapital blir bedre?

En økning i kvaliteten til kapitalen

Nytt steady state, med høyere produksjon per arbeider, der:

$$s \cdot A \cdot q_{K,1}^{\alpha} \cdot q_L^{1-\alpha} \cdot \left(k_1^{SS}\right)^{\alpha} = n \cdot k_1^{SS}$$
$$y_1^{SS} = A \cdot q_{K,1}^{\alpha} \cdot q_L^{1-\alpha} \cdot (k_1^{SS})^{\alpha}$$

En økning i kvaliteten til arbeidskraften

Nytt steady state, med høyere produksjon per arbeider, der:

$$s \cdot A \cdot q_K^{\alpha} \cdot q_{L,1}^{1-\alpha} \cdot \left(k_1^{SS}\right)^{\alpha} = n \cdot k_1^{SS}$$
$$y_1^{SS} = A \cdot q_K^{\alpha} \cdot q_{L,1}^{1-\alpha} \cdot \left(k_1^{SS}\right)^{\alpha}$$

<u>Prediksjoner</u>

Rike land karakteriseres av høy s, lav n, høy A, og høyt nivå på q_L , q_K

Fattige land karakteriseres av lav s, og/eller høy n, og/eller lav A, og/eller lavt nivå på q_L, q_K

Kontinuerlig <u>vekst</u> i teknologien og i kvaliteten til arbeid og kapital

Teknologien (total faktorproduktivitet og kvaliteten til produksjonsfaktorene) øker kontinuerlig over tid

Kontinuerlig vekst i teknologien og i kvaliteten til arbeid og kapital

NB:

Pensumboken antar at teknologien er «Hicks-nøytral» (påvirker alle produksjonsfaktorer likt)

$$Y(t) = A(t) \cdot F(K(t), L(t))$$

En vanligere antakelse er at teknologien er «Harrod-neutral» (knyttet til arbeid):

$$Y(t) = F(K(t), A(t) \cdot L(t))$$

Med **Harrod**-neutral teknologi er det ganske enkelt å ta fram et uttrykk for nivået på produksjon per arbeider og vekstraten i BNP per arbeider i steady state.

Med **Hicks**-neutral teknologi er dette ikke mulig med en generell produksjonsfunksjon. Det går likevel å **finne den balanserte vekstbanen** dersom vi bruker en Cobb-Douglas funksjon til å beskrive produksjonen. Vi vil likevel ikke kunne ta fram nivået på produksjon per innbygger i steady state.

Kontinuerlig vekst i teknologien og i kvaliteten til arbeid og kapital

NB:

Pensumboken antar at teknologien er «Hicks-nøytral» (påvirker alle produksjonsfaktorer likt)

$$Y(t) = A(t) \cdot F(K(t), L(t))$$

Jeg vil følge pensumboken.

NB: Jeg har lastet opp et dokument på GitHub der jeg viser hvordan vi kan ta fram vekstraten i steady state da vi bruker en Cobb-Douglas funksjon med Hicks-nøytral teknologi. Jeg viser også hvordan vi løser modellen med Harrod-nøytral teknologi.

Jeg krever ikke at dere lærer denne utledningen.

Kontinuerlig vekst i teknologien og i kvaliteten til arbeid og kapital

$$Y(t) = A(t) \cdot (q_K(t) \cdot K(t))^{\alpha} \cdot (q_L(t) \cdot L(t))^{1-\alpha}$$

$$A(+) = A_{o} \cdot e^{g_{A} \cdot t}$$

$$Total produksjon$$

$$Y(t) = A(t) \cdot (q_{K}(t) \cdot K(t))^{\alpha} \cdot (q_{L}(t) \cdot L(t))^{1-\alpha}$$

$$Q_{L}(+) = e^{m \cdot t}$$

$$Q_{L}(+) = e^{m \cdot t}$$

Produksjon per arbeider

$$y(t) = A(t) \cdot q_K(t)^{\alpha} \cdot q_L(t)^{1-\alpha} \cdot k(t)^{\alpha}$$

Kontinuerlig vekst i teknologien og i kvaliteten til arbeid og kapital

	<u>Nivå</u>	<u>Vekstrate</u>
Teknologi	$A(t) = A_0 \cdot e^{g_A \cdot t}$	$\frac{1}{A(t)} \cdot \frac{\partial A(t)}{\partial t} = g_A$
Kvalitetsindeks: Kapital	$q_K(t) = e^{j \cdot t}$	$\frac{1}{q_K(t)} \cdot \frac{\partial q_K(t)}{\partial t} = j$
Kvalitetsindeks: Arbeid (humankapital)	$q_L(t) = e^{m \cdot t}$	$\frac{1}{q_L(t)} \cdot \frac{\partial q_L(t)}{\partial t} = m$

Kontinuerlig vekst i teknologien og i kvaliteten til arbeid og kapital

Nivå på produksjon per arbeider i tidspunkt t

$$y(t) = A(t) \cdot q_K(t)^{\alpha} \cdot q_L(t)^{1-\alpha} \cdot k(t)^{\alpha}$$

<u>Vekstraten i produksjon per arbeider i tidspunkt t</u>

$$\frac{\partial y(t)}{\partial t} \cdot \frac{1}{y(t)}$$
 $\ln (y(t)) = \ln (A(t)) + \alpha \cdot \ln (\alpha_{x-b} + (1-a) \cdot \ln (q_{k}) + a \cdot \ln (k(t))$

Kontinuerlig vekst i teknologien og i kvaliteten til arbeid og kapital

$$h(y(1) = \ln(A(1)) + \alpha \cdot \ln(q_{k}(1)) + (1-\alpha) \ln(q_{k}(1)) + \alpha \cdot \ln(k(1))$$

$$\frac{1}{y(1)} \cdot \frac{\partial y(1)}{\partial t} = \frac{1}{A(1)} \cdot \frac{\partial x(1)}{\partial t} + \alpha \cdot \frac{1}{q_{k}} \cdot \frac{\partial^{q_{k}}}{\partial t} + (1-\alpha) \cdot \frac{1}{q_{k}} \cdot \frac{\partial^{q_{k}}}{\partial t} + \alpha \cdot \frac{1}{k} \cdot \frac{\partial^{k}}{\partial t}$$

$$g_{y}(t) = g_{x}(t) + \alpha \cdot \frac{1}{k} \cdot \frac{\partial^{k}}{\partial t} + \alpha \cdot \frac{\partial^{k}}{\partial t} + \alpha \cdot \frac{\partial^{k}}{\partial t} + \alpha \cdot \frac{\partial^{k}}{\partial t}$$

Kontinuerlig vekst i teknologien og i kvaliteten til arbeid og kapital

$$g_{y}(t) = g_{A} + \alpha \cdot j + (1-\alpha) \cdot m + \alpha g_{k}(t)$$

$$9_y(t) = \Theta + \times \cdot 9_k(t)$$

Kontinuerlig vekst i teknologien og i kvaliteten til arbeid og kapital

Vekst i produksjon per arbeider

$$\frac{1}{y(t)} \cdot \frac{\partial y(t)}{\partial t} = \frac{1}{A(t)} \cdot \frac{\partial A(t)}{\partial t} + \alpha \cdot \frac{1}{q_K(t)} \cdot \frac{\partial q_K(t)}{\partial t} + (1 - \alpha) \cdot \frac{1}{q_L(t)} \cdot \frac{\partial q_L(t)}{\partial t} + \alpha \cdot \frac{1}{k(t)} \cdot \frac{\partial k(t)}{\partial t}$$

$$q_K(t) = e^{j \cdot t}$$

$$q_L(t) = e^{m \cdot t}$$

$$A(t) = A_0 \cdot e^{g_A \cdot t}$$

$$q_K(t) = e^{j \cdot t}$$

$$q_L(t) = e^{m \cdot t}$$

$$g_{y} = \underbrace{g_{A} + \alpha \cdot j + (1 - \alpha) \cdot m}_{\hat{\theta}} + \alpha \cdot g_{k}$$

$$g_{y} = \theta + \alpha \cdot g_{k}$$

Vekstraten i produksjon per arbeider (materiell velferd) drivs av veksten i teknologien, veksten i kvaliteten i kapital og arbeid (θ), og av veksten i kapitalintensiteten

Kontinuerlig vekst i teknologien og i kvaliteten til arbeid og kapital

Vekst i produksjon per arbeider utenom steady state

$$g_{y}(t) = \theta + \alpha \cdot \left(\frac{s \cdot A_{0} \cdot e^{\theta \cdot t} \cdot k(t)^{\alpha} - n \cdot k(t)}{k(t)}\right)$$

Prediksjoner

Vekstraten i produksjon per arbeider drivs av vekstraten i teknologien og i kvaliteten til arbeid og kapital

Nettoinvesteringene vil øke kontinuerlig som en konsekvens av en kontinuerlig økning i produktiviteten (multiplikatoreffekt).

Konklusjoner så langt

- I fravær av teknologisk utvikling vil veksten i materiell velferd stanse opp på lang sikt (i steady state).
- Nivået på materiell velferd blir bestemt av nivået på spareraten (investeringsraten) og befolkningsvekstraten.
- Konvergensteorien predikerer at fattige land vil vokse raskere enn rike land, fordi de ligger <u>lengre ifra</u> steady state, og som følge av at produksjonsressursene vil «flytte» dit de har størst avkastning
- Dersom teknologien og kvaliteten i produksjonsfaktorene blir bedre over tid, vil det være vekst i
 materiell velferd også på lang sikt.
- Nivået på vekstraten i materiell velferd blir bestemt av nivået på vekstraten i teknologien og kvaliteten til produksjonsfaktorene.
- Kontinuerlig vekst i materiell velferd er helt avhengig av vekstraten i teknologien og kvaliteten til produksjonsfaktorene