Machine Learning Projects

The Same and The Different

Bijay Gurung / @bglearning
Python User Group Nepal
Meetup #14

Outline

- 1 machine_learning() # What and Why
- 2 compare(normal_prog, ml_prog)
- for perspective in perspectives:
 for topic in perspective:
 discuss(topic.same)
 discuss(topic.different)

What and Why Machine Learning?

Programming

What and Why Machine Learning? Cats!

How can we detect cats in an image?

Cats!

"So many variations!":

ML: "So much data!" :D

Why Machine Learning?

Because for a lot of problems we can't explicitly define the solution.

ML Programming

ML Programming

ML Programming

Source: Software 2.0

Approaches

Approaches | Extremes

Approaches | Extremes

"They are doing the same thing: computation"

Approaches | Extremes

"ML is different; it's experiments, it's science!"

ML Project | Approaches

The Software Engineering approach:
 Treat ML projects like any other software project.

 The Academic approach: Not think of ML projects as software projects.

ML Project | Approaches

- The Software Engineering approach:
 Treat ML projects like any other software project.
 - > Needs to pay heed to what's different.

 The Academic approach: Not think of ML projects as software projects.

ML Project | Approaches

- The Software Engineering approach:
 Treat ML projects like any other software project.
 - > Needs to pay heed to what's different.

- The Academic approach: Not think of ML projects as software projects.
 - > Needs to pay heed to what's the **same**.

Normal vs ML Projects

Perspectives:

Project/ Project Manager Product Owner Developer DevOps

Project/ Product Owner

Project Manager

Developer

DevOps

Requirements | The Same

Both have the same goals:

Solve Problems, Add Value

Requirements | The Same

Requirements | The Different

More questions to ask:

- Is ML necessary?
- What's the expectation for the ML component?

Requirements | The Different

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

Feasibility | The Same

Needs to be feasible from various perspectives:

- Technical
- Economic
- Legal
- Operational
- Schedule

Feasibility | The Different

For ML, need to look at technical feasibility for the ML component:

- Do we have the necessary data? If not, can we acquire it?
- What's the state-of-the-art in this area?

Project/ Product Owner

Project Manager

Developer

DevOps

Iterative Approach | The Same

Iterate! Iterate! Iterate!

Iterative Approach | The Same

Have intermediate outputs

Iterative Approach | The Different

 What are "intermediate outputs" in ML projects?

Iterative Approach The Different

Charts

Records

Drive value. effect, alter, change, deliver **Actions** Curate, recommend, **Predictions** understand, infer, learn climb it. Structure, link, metadata, tag, Reports explore, interact, share

Clean, aggregate, visualize, question

Collect, display, plumb individual records

The Data Value Pyramid.

Intermediate outputs as we

Source: Agile Data Science

Task formulation & Planning | The Same

- Need to have some level of planning: a systematic approach
- Formulate tasks with clear what, why, and how

Task formulation & Planning | The Different

 Put in more areas for flexibility in the process.

Because: ML projects have a big experimental component.

Task formulation & Planning | The Different

 Put in more areas for flexibility in the process.

A lot of ML projects are experimental.

Eg: <u>Kanban</u> vs Sprints

Task formulation & Planning | The Different

 Put in more areas for flexibility in the process.

A lot of ML projects are experimental.

Do away with User Stories?

in list Doing

Task formulation & Planning | The Different

 Try to be more precise about what "Done" means

Task formulation & Planning | The Different

Try to be more precise about what

"Done" means

PM: "Is the task Done?"

MLE:

Try out LightGBM on
Dataset.v1 so that we
know how it performs
compared to other models
in list Doing

"Yes... umm... no. I've a feeling it needs more tuning... " Project/ Product Owner

Project Manager

Developer

DevOps

Version Control | The Same

Version Control your code!

Think about reproducibility

"I think you should be more explicit here in step two."

Multi-experimental-branch Tendency

Formulate a policy

Flexibility | The Same

 Balance between future-proofing and getting things done

Flexibility | The Same

 Balance between future-proofing and getting things done

Flexibility | The Different

 A lot of the flexibility is for experimentation rather than for changes in product features and implementation.

Flexibility | The Different

Which one should I do?

class MyModel(Model):

Source: Writing Code for NLP Research, AllenNLP

Components & Abstractions | The Same

Break into cohesive, de-coupled components

Components & Abstractions | The Same

 Break into cohesive, de-coupled components; ML is small part of a bigger whole

Source: Hidden Technical Debt in Machine Learning

Components & Abstractions | The Different

 Components can "entangle" in weird ways.

Components & Abstractions | The Different

 Components can "entangle" in weird ways.

The CACE principle:

Changing Anything Changes Everything

Components & Abstractions | The Different

 Components can "entangle" in weird ways.

The CACE principle:

Changing Anything Changes Everything Why?

Dependence on both code and data

Testing | The Same

 Standard tests (unit tests, integration tests, etc) important

Testing | The Same

- Standard tests (unit tests, integration tests, etc) important
- Focus on critical and/or riskier parts

Testing | The Different

More tests necessary!

Source: A rubric for ML production readiness

Good Practices | The Same

- Use of linters, style-guides, etc
- Readable, well-commented code

Documentation

Good Practices | The Different

Data Documentation

Table	Table Notes	Field	Definition	Example Value	Field Notes	
website_actions	Tracks user actions on the website; updated nightly	user_id	User ID	55555	Tie to user table	
	0 50 50000	action	User action on website	watched_video	Values: clicked_button, watched_video, signed_up_for_thing	
		object_id	Object a user interacted with	222	Tie to object table	
		timestamp	Date and time of user interaction	2018-01-02 1:01:01	Data appears from 1/1/18 to present	

Source: Field Notes: Building Data Dictionaries

Good Practices | The Different

Experimental logs

Experimenter	git SHA	Background Search Method	Model	Dataset	Train Acc	Validation Acc	Notes
Pradeep	fc8d6ca3	Lucene	QAMNS (50d)	Intermediate	0.3114	0.3045	patience=20
Pradeep	fc8d6ca3	Lucene	QAMNS (300d)	Intermediate	0.8317	0.3864	patience=20
Pradeep	fc8d6ca3	BOW-LSH question+answers Glove 50d	QAMNS (50d)	Intermediate	0.3008	0.35	patience=20
Pradeep	fc8d6ca3	BOW-LSH question+answers Glove 50d	QAMNS (300d)	Intermediate	0.7466	0.4227	patience=20
Pradeep	fc8d6ca3	BOW-LSH question+answers Glove 300d	QAMNS (50d)	Intermediate	0.3946	0.3591	patience=20
Pradeep	fc8d6ca3	BOW-LSH question+answers Glove 300d	QAMNS (300d)	Intermediate	0.7311	0.4227	patience=20
Pradeep	fc8d6ca3	BOW-LSH+IDF question+answers Glove 300d	QAMNS (300d)	Intermediate	0.7446	0.4227	patience=20
Pradeep	fc8d6ca3	BOW-LSH+IDF question+answers Paragram 300d	QAMNS (300d)	Intermediate	0.7853	0.3955	patience=20
Pradeep	fc8d6ca3	Lucene	QAMNS (300d)	SciQ	0.5551	0.571	patience=6
Pradeep	fc8d6ca3	BOW-LSH question+answers Glove 300d	QAMNS (300d)	SciQ	0.5434	0.524	patience=6

Source: Writing Code for NLP Research, AllenNLP

Project/ Product Owner

Project Manager

Developer

DevOps

Deployment & Maintenance | The Same

 Need Continuous Integration, Build Automation, Monitoring, etc

Deployment & Maintenance | The Different

 Also need to monitor data, model performance, etc.

Deployment & Maintenance | The Different

How is MLOps different from DevOps?

- Data/model versioning != code versioning how to version data sets as the schema and origin data change
- Digital audit trail requirements change when dealing with code + (potentially customer) data
- . Model reuse is different than software reuse, as models must be tuned based on input data / scenario.
- To reuse a model you may need to fine-tune / transfer learn on it (meaning you need the training pipeline)
- Models tend to decay over time & you need the ability to retrain them on demand to ensure they remain useful in a
 production context.

Source: MLOps, Microsoft

Deployment & Maintenance | The Different

Essence:

Not just code artefacts, overall application performance

Also, data, model artefacts, and their operational behavior

Thinking Meta

Where is the difference coming from?

ML projects:

- Depend on/tightly coupled with data (in addition to code & infrastructure)
- Can be thought of as being "Two phase"
- Is usually highly experimental

Where is the similarity coming from?

ML Projects:

 Have ML component as just one part of a bigger system that's meant to solve a problem.

Wrapping Up

What?

Machine Learning Projects are both same as and different than "normal" software projects.

So What?

When doing ML projects, it's best to:

- Use Software Engineering principles
- And also think about the unique challenges of ML projects

So What?

When doing ML projects, it's best to:

- Use Software Engineering principles
- And also think about the unique challenges of ML projects

Now What? Up to you:)