Masovne instrukcije drugi dio 19./20.

Zeroth

2. srpnja 2020.

Sadržaj

1	Vektorska analiza			
	1.1	Krivuljni integrali	1	
	1.2	Plošni integrali	1	
	1.3	Zadaci	2	
2	Kompleksna analiza			
	2.1	Teorija	4	
	2.2	Zadaci	7	
3	Rješenja 10			
	3.1	Vektorska analiza	0	
	3.2	Kompleksna analiza	0	

1 Vektorska analiza

1.1 Krivuljni integrali

Teorem 1 Greenov teorem Neka je $\Omega \subseteq \mathbb{R}^2$ otvoren i povezan skup omeđen pozitivno orijentiranom jednostavno zatvorenom krivuljom Γ , te neka je $\mathbf{f}(x,y) = f_1(x,y)\mathbf{i} + f_2(x,y)\mathbf{j}$ glatko vektorsko polje. Tada vrijedo Greenova formula

$$\oint_{\Gamma} f_1(x,y)dx + f_2(x,y) = \iint_{\Omega} \left[\frac{\partial f_2(x,y)}{\partial x} - \frac{\partial f_1(x,y)}{\partial y} \right]$$
(1.1)

1.2 Plošni integrali

Teorem 2 Teorem o divergenciji Neka je Σ zatvorena ploha koja omeđuje tijelo V, te neka je $\mathbf{f}(x,y,z) = f_1(x,y,z)\mathbf{i} + f_2(x,y,z)\mathbf{j} + f_3(x,y,z)\mathbf{k}$ glatko vektorsko polje definirano na nekom podskupu \mathbb{R}^3 koji sadrži plogu Σ . Tada je

$$\iint_{\Sigma} \mathbf{f} \cdot d\mathbf{S} = \iiint_{V} div \mathbf{f} dV \tag{1.2}$$

gdje je

$$div \mathbf{f} = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$$
 (1.3)

 $divergencija\ vektorskog\ polja\ oldsymbol{f}$

Teorem 3 Stokesov teorem Neka je Σ orijentabilna ploha u \mathbb{R}^3 čiji je rub određen jednostavnom zatvorenom krivuljom Γ , te neka je $\mathbf{f} = f_1 \mathbf{i} + f_2 \mathbf{j} + f_3 \mathbf{k}$ glatko vektorsko polje definirano na nekom podskupu \mathbb{R}^3 koji sadrži Σ . Tada vrijedi

$$\oint_{\Gamma} \boldsymbol{f} \cdot d\boldsymbol{r} = \iint_{\Sigma} (rot\boldsymbol{f}) \cdot d\boldsymbol{S}$$

pri čemu je n jedinični vektor na plohu Σ koji je usmjeren tako da je, gledano sa vrha vektora n, krivulja Γ orijentirana pozitivno, tj. suprotno od smjera kretanja kazaljke na satu.

1.3 Zadaci

- 1. Izračunajte $\int_{\Gamma} y \cos x ds$, gdje je Γ luk krivulje $y = \sin x, x \in [0, \frac{\pi}{2}]$
- 2. Izračunajte $\int_{\Gamma} xyds$, gdje je Γ zadana jednadžbom |x|+|y|=1.
- 3. Izračunajte $\int_{\Gamma} (x+y)ds$, gdje je krivulja Γ desna latica leminskate $r^2=a^2cos2\phi$.
- 4. Izračunajte

$$\int_{\Gamma} \frac{x}{\sqrt[4]{x^2 + y^2}},$$

gdje je krivulja Γ kardioida $r=1+\cos\phi,\,\phi\in[0,2\pi]$

- 5. Izračunajte $\int_{\Gamma} (x^2 + y^2) ds$, gdje je krivulja Γ presječnica ploha $x^2 + 2y^2 = 4$, z = y, $y \ge 1$.
- 6. Izračunajte

$$\int_{\Gamma} \frac{x}{y} dx + \ln x dy + z dz,$$

gdje je Γ dio pravca koji sadrži točke A(1, 1, 1) i B(2, 3, 4), usmjeren od točke A prema B.

7. Izračunajte

$$\int_{\Gamma} \left(\frac{2x}{y} + \frac{y}{x}\right) dx + \left(\ln x - \frac{x^2}{y^2}\right) dy,$$

pri čemu je Γ luk krivulje $x=e^t,\;y=t^2+t+1,$ od točke A s parametrom t=0, do točke B s parametrom t=1.

8. Primjenom Greenove formule izračunajte integral

$$\int_{\Gamma} e^{y^2} dx + 2xy e^{y^2} dy,$$

pri čemu je Γ dio krivulje $y=\sqrt{x}$ od točke A(4, 2) do točke B(0, 0).

- 9. Izračunajte $\iint_{\Sigma} z$, gdje je Σ dio sfere $x^2 + y^2 + (z 3)^2 = 4$ za koji je $z \le 2$.
- 10. Izračunajte tok vektorskog polja ${\bf f}=x^3{\bf i}+y^3{\bf j}+z^3{\bf k}$, kroz vanjsku stranu plohe $x^2+y^2=z^2$ za $0\leq z\leq 1$
- 11. Izračunajte plošni integral $\iint_{\Sigma} \mathbf{f} \cdot d\mathbf{S}$, gdje je $\mathbf{f} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, a Σ vanjska strana

dijela plohe $y=x^2$ za koju je $1 \le z \le 4$ i $y \le 4$

- 12. Izračunajte $\iint_{\Sigma} x dy dz + z dx dy,$ gdje je Σ vanjska strana dijela plohe $x^2 + 4y^2 = 1$ za koju je $-1 \le z \le 1$
- 13. $\iint_{\Sigma} x dy dz + y dx dz + z dx dy$ gdje je Σ vanjski dio plašta plohe $x^2+y^2=1$ (ploha nije zatvorena) koji se nalazi između ravnina z=1 i z=2
- 14. Primjenom Stokesove formule izračunajte

$$\oint_{\Gamma} z dx + 2 dy - x dz$$

duž presječnice ploha $x^2+y^2=9$ i y+z=5. Krivulja Γ je orijentirana tako da je njena ortogonalna projekcija u xy-ravnini pozitivno orijentirana

15. Primjenom Stokesovog teorema izračunajte

$$\oint_{\Gamma} y dx + z dy + x dz$$

gdje je Γ presječnica ploha $x^2+y^2+z^2=a^2, a>0, z=-y,$ orijentirana u pozitivnom smjeru. gledano iz točke (0,a,0)

2 Kompleksna analiza

2.1 Teorija

Za skup $G \subset \mathbf{C}$ kažemo da je **otvoren** ako za svaku točku $z \in G$ postoji ϵ -okolina $S_{\epsilon}(z)$ sadržana u G.

Skup $F \subset \mathbf{C}$ je **zatvoren** ako je njegov komplement $\mathbf{C} \backslash F$ otvoren.

Neka je E bilo koji podskup od \mathbf{C} . Točka $z_0 \in E$ je **nutarnja** točka za E ako postoji ϵ -okolina točke z_0 koja je sadržana u E. Točka $z_0 \in \mathbf{C}$ je **rubna** točka za E ako u svakoj ϵ -okolini točke z_0 postoje točke koje pripadaju skupu E, kao i točke koje mu ne pripadaju.

Sa ∂E označavamo **rub(granicu)** skupa E: skup svih rubnih točaka is E

Skup $E \subset \mathbf{C}$ nazivamo **područje** ako je

- 1) otvoren skup;
- 2) **putevima povezan**, tj. svake dvije točke iz E mogu se spojiti izlomljenom linijom koja leži u E.

Područje E nazivamo **jednostruko povezano područje** ako je njegov rub ∂E zatvorena, po dijelovima glatka krivulja.

Teorem 4 Cauchy-Riemannovi uvjeti Neka su funkcije u i v neprekinuto diferencijabilne. Funkcija f = u + iv je diferencijabilna u točki z = x + iy ako i samo ako i i v zadovoljavaju Cauchy-Riemannove uvjete u točki (x,y)

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial v}{\partial x} = -\frac{\partial v}{\partial x}.$$
 (2.1)

Za derivaciju f' vrijedi

$$f'(z) = u'_x + iv'_x = v'_y - iu'_y$$
(2.2)

Funkcija $\psi = \psi(x,y)$ je **harmonijska funkcija** u području $G \subset \mathbb{R}^2$ ako je dvaput neprekinuto diferencijabilna i zadovoljava na G Laplaceovu diferencijalnu jednadžbu:

$$\Delta \psi := \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0 \tag{2.3}$$

Realni i imaginarni dio analitičke ufnkcije su harmonijske funkcije. Dvije takve harmonijske funkcije koje zadovoljavaju Cauchy-Riemannove uvjete zovemo **konjugirani par** harmonijskih funkcija.

Neka je $f'(z_0 \neq 0)$. Kut

$$\phi = argf'(z_0) \tag{2.4}$$

naziva se **kut zakreta**, a

$$\lambda = |f'(z_0)| \tag{2.5}$$

naziva se **omjer preslikavanja** f u točki z_0 .

Pri preslikavanju funkcijom f element luka krivulje zarotira se za kut ϕ te stegne (rastegne) za faktor λ .

Teorem 5 Cauchyjev teorem Ako je f analitička funkcija na području $D \subset C$ i $G \subset D$ jednostruko povezano područje omeđeno zatvorenom krivuljom $\Gamma = \partial G \subset D$, tada je

$$\int_{\Gamma} f(z)dz = 0 \tag{2.6}$$

Dokaz. Vrijedi

$$I = \int_{\Gamma} f(z)dz = \oint_{\Gamma} u(x,y)dx - v(x,y)dy + i \oint_{\Gamma} v(x,y)dx + u(x,y)dy$$
 (2.7)

Funkcija f je analitička na D, pa su na \bar{G} ispunjeni Cauchy-Riemannovi uvjeti:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial v}{\partial x} = -\frac{\partial v}{\partial x}$$
 (2.8)

i primjenom Green-Gaussova teorema slijedi

$$I = \iint_{C} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) dx dy + i \iint_{C} \left(\frac{\partial v}{\partial y} - \frac{\partial u}{\partial x}\right) dx dy = 0$$
 (2.9)

Teorem 6 Taylorov teorem Ako je funkcija f jednoznačna i analitička u nekoj okolini G točke $a \in \mathbb{C}$, tada se ona može prikazati pomoću Taylorova reda oko točke a:

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n$$

Koeficijenti c_n dani su formulom

$$c_n = \frac{1}{n!} f^{(n)}(a)$$

tj.

$$c_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-a)^{n+1}} dz,$$

gdje je Γ zatvorena, pozitivno orijentirana Jordanova krivulja koja sadrži točku a i leži u području G.

Teorem 7 Laurentov red Ako je funkcija f analitička u prstenu

$$D = z : R_2 < |z - a| < R_1,$$

tada se ona može na jednoznačan način prikazati pomoću Laurentova reda

$$f(z) = \sum_{-\infty}^{\infty} c_n (z - a)^n.$$

Koeficijenti c_n računaju se formulom

$$c_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\xi)}{(\xi - a)^{n+1}} d\xi,$$

gdje je Γ bilo koja pozitivno orijentirana zatvorena krivulja koja obuhvaća točku a i leži unutar D.

2.2 Zadaci

- 3.10., 3.11. Ispitaj konvergenciju rediva

- A) $\sum \frac{\cos(in)}{2^n}$ B) $\sum \frac{n\sin(in)}{3^n}$ C) $\sum \frac{e^{i\pi/n}}{\sqrt{n}}$ D) $\sum \frac{(1+i)^n}{2^{n/2}\cos(in)}$ E) $\sum \frac{n!}{(in)^n}$ G) $\sum e^{in}$

- 4.6. Može li funkcija $v = 3^x \sin(y) + y^2$ biti imaginarni dio neke analitičke funkcije?
- 4.7. Odredi analitičku funkciju f kojoj je poznat imaginarni dio $v=2x^2-2y^2+x$
- 4.8. Pokaži da su sljedeće funkcije harmonijske i odredi pripadne konjugirane funkcije
- A) $u = x^2 + 2x u^2$
- B) $u = 2e^x \cos y$ C) $u = \arctan(y/x)$
- 4.9. Odredi analitičku funkciju f ako je poznat njezin realni ili imaginarni dio:
- A) $u = \frac{x}{x^2 + y^2}$, $f(\pi) = 1/\pi$

- B) $u = 2 \sin x \cosh y x$, f(0) = 0C) $v = 2 \cos x \cosh y x^2 + y^2$, f(0) = 2D) $u = x^3 + 6x^2y 3xy^2 2y^2$, f(0) = 0
- 5.10., 5.12. Izračunaj:
- A) $i^{\sin i}$ B) Ln(-i) C) $1^{1/i}$ D) $\tan(\pi i/2)$ E) $\arccos(i)$ F) $(-1)^{\sqrt{2}}$

- 8.1. Izračunaj sljedeće krivuljne integrale:
- A) $\int_{\Gamma} e^z dz$, Γ : parabola $y = x^2$ koja spaja točke $z_1 = 0$ i $z_2 = 1 + i$
- B) $\int_{\Gamma} e^z dz$, Γ : dio pravca od točke $z_1 = 0$ do $z_2 = 1 + i$
- C) $\int_{\Gamma} (z^2 + z\bar{z})dz$, Γ : luk kružnice $z = e^{i\varphi}, \varphi \in [0, \pi]$
- 8.2. Izračunaj sljedeće integrale integrirajući po zadanim krivuljama u pozitivnom smjeru:
- A) $\int_{|z|=5} \frac{dz}{z^2 + 16}$ B) $\int_{|z|=1} \frac{z \sin z}{z^3} dz$
- 9.1. Odredi polumjer konvergencije sljedećih redova:

- A) $\sum_{n=1}^{\infty} n^n z^n$ B) $\sum_{n=1}^{\infty} \frac{z^n}{n^n}$ C) $\sum_{n=1}^{\infty} \frac{n}{2^n} z^n$ D) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2} z^n$ E) $\sum_{n=1}^{\infty} z^{2^n}$

2 Kompleksna analiza

9.11. Razvij u Maclaurinov red sljedeće funkcije

A.
$$\frac{1}{(1+z^3)^2}$$
 B) $\frac{1}{1+z+z^2+z^3}$ C) $\ln(z^2-3z+2)$ D) $\sqrt{z+i}$ ($\sqrt{1}=1$)

9.13. Razvij u Taylorov red oko točke z_0 :

A)
$$f(z) = \sin(3z - 1)$$
, $z_0 = -1$ B) $f(z) = \cosh^2 z$, $z_0 = 0$ C) $f(z) = \cos z$, $z_0 = \frac{\pi}{4}$ D) $f(z) = \ln(3 - z)$, $z_0 = -1$

9.16. Odredi nultočke i njihove kratnosti za funkcije

A)
$$z^6 + 9z^4$$
 B) $z^3 \sin z$ C) $(z - i) \sin z$ D) $\frac{1 - \cot z}{z}$

9.17. Odredi kratnost nultočke $z_0=0$ za funkcije

A)
$$2(\cosh z - 1) - z^2$$
 B) $z^2(e^{z^3} - 1)$ C) $e^{\sin z} - e^{\tan z}$ C) $\frac{\sinh^2 z}{z}$

10.2. Razvij sljedeće funkcije u Laurentov red oko zadane točke i u zadanim područjima

A)
$$\frac{1}{(z-2)(z-3)}$$
, $z_0 = 0$, $D_1 = 2 < |z| < 3$, $D_2 = 3 < |z|$

B)
$$\frac{z^2 - z + 3}{z^3 - 3z + 2}$$
, $z_0 = 0$, $D_1 = 1 < |z| < 2$, $D_2 = 2 < |z|$

C)
$$\frac{1}{z^2+1}$$
, $z_0 = i$, $D = 0 < |z-i| < 2$

10.3. Razvij sljedeće funkcije u Laurentov red u okolini točke $z_0=0$:

A)
$$\frac{\sin^2 z}{z^3}$$
 B) $\frac{e^{2z} - 1}{z^2}$ C) $\frac{e^z}{z(1-z)}$

10.8., 10.9. Odredi singularitete i njihov karakter za funkcije:

A)
$$\frac{1}{z(z^2+1)^2}$$
 B) $z \cdot e^{1/z}$ C) $\exp \frac{z}{1-z}$ D) $\sin(e^{1/z})$ E) $\frac{z^3}{1+z^6}$ F) $\frac{z-2}{z(z^2+9)^3}$

11.1., 11.2. Odredi reziduume u svim singularitetima sljedećih funkcija:

A)
$$\frac{z^2 + z + 1}{z^2(z+1)}$$
 B) $\frac{1}{z-z^3}$ C) $\frac{z^2}{(1+z)^3}$ D) $\frac{1-\cos z}{z^3(z-1)}$ E) $\frac{1}{e^z - 1}$ F) $z^4 \sin \frac{1}{z-2}$ G) $\frac{1}{\sin 1/z}$ H) $\sin \frac{1}{z} - \frac{1}{z}$

11.3. Odredi reziduum u točki ∞ , za funkcije:

A)
$$\frac{1}{z^4(z+1)}$$

B)
$$z\cos^2\frac{\pi}{z}$$

C)
$$\frac{\cos z}{(z^4 - 1)^2}$$

A)
$$\frac{1}{z^4(z+1)}$$
 B) $z\cos^2\frac{\pi}{z}$ C) $\frac{\cos z}{(z^4-1)^2}$ D) $\sin z\sin\frac{1}{z}$

11.14., 11.15., 11.16. Izračunaj integrale

A)
$$\int_C \frac{zdz}{(z-2)(z+1^2)}$$
, $C = \{z : |z+2| = 2\}$ B) $\int_C \frac{e^{2z}dz}{z^3 - 1}$, $C = \{z : |z-1| = 1\}$

B)
$$\int_C \frac{e^{2z}dz}{z^3 - 1}$$
, $C = \{z : |z - 1| = 1\}$

C)
$$\int_C \sin \frac{1}{z-1} dz$$
, $C = \{z : |z-1| = 1\}$ D) $\int_C z \sin \frac{z+1}{z-1} dz$, $C = \{z : |z| = 2\}$

D)
$$\int_C z \sin \frac{z+1}{z-1} dz$$
, $C = \{z : |z| = 2\}$

E)
$$\int_C \frac{dz}{z^4(z^8-16)}$$
, $C = \{z : |z|=2\}$

$$\text{E)} \int_C \frac{dz}{z^4(z^8-16)}, \ C=\{z:|z|=2\} \\ \qquad \qquad \text{F)} \int_C \frac{dz}{(z-3)(z^5-1)}, \ C=\{z:|z|=2\}$$

G)
$$\int_C \frac{dz}{z^3(z^{10}-2)}$$
, $C = \{z : |z|=2\}$ H) $\int_C \frac{z^5 dz}{z^6-1}$, $C = \{z : |z|=2\}$

H)
$$\int_C \frac{z^5 dz}{z^6 - 1}$$
, $C = \{z : |z| = 2\}$

3 Rješenja

3.1 Vektorska analiza

- 1. $\frac{1}{3}(2\sqrt{2}-1)$ 2. 0
- 3. $a^2\sqrt{2}$
- 4. $\pi\sqrt{2}$
- 5. $3\pi 2$
- 6. $\frac{1}{4} \ln 3 + 4 \ln 2 + 6$ 7. $2 + \frac{1}{3}e^2$ 8. $-4e^4$

- 9. 6π
- $10.-\frac{\pi}{10}$ 11. 16
- 12. π
- 14. 18π
- 15. $-a^2\pi\sqrt{2}$

3.2 Kompleksna analiza

- 3.10., 3.11.
- A) Divergira
- B) Konvergira apsolutno
- C) Divergira
- D) Konvergira apsolutno
- E) Konvergira apsolutno
- F) Konvergira apsolutno
- G) Divergira
- 4.6. Ne može

4.7.
$$f(z) = (-4xy - y + C) + i(2x^2 - 2y^2 + x) = 2iz^2 + iz + C$$

4.8.

$$A) v = 2xy + 2y + C$$

B)
$$2e^x \sin y + C$$

C)
$$v = -\frac{1}{2} \ln(x^2 + y^2) + C$$
 D) $v = -\frac{x^2}{2} + \frac{y^2}{2} + C$

4.9.

A)
$$f(z) = \frac{x - iy}{x^2 + y^2} + iC = \frac{1}{z} + iC$$
 $f(\pi) = 1/\pi \to C = 0 \to f(z) = \frac{1}{z}$

B)
$$f(z) = 2\sin x \cosh y - x + i(2\cos x \sinh y - y + C)$$
 $f(0) = 0 \to C = 0$

C)
$$f(z) = 2\sin x \sinh y + 2xy + C + 2i(\cos x \cosh y - x^2 + y^2)$$
 $f(0) = 2 \rightarrow C = 2 - 2i$

A)
$$f(z) = \frac{x - iy}{x^2 + y^2} + iC = \frac{1}{z} + iC$$
 $f(\pi) = 1/\pi \to C = 0 \to f(z) = \frac{1}{z}$
B) $f(z) = 2\sin x \cosh y - x + i(2\cos x \sinh y - y + C)$ $f(0) = 0 \to C = 0$
C) $f(z) = 2\sin x \sinh y + 2xy + C + 2i(\cos x \cosh y - x^2 + y^2)$ $f(0) = 2 \to C = 2 - 2i$
D) $f(z) = x^3 + 6x^2y - 3xy^2 - 2y^2 + i(-2x^3 + 3x^2 + 6y^2x - y^3 + C)$ $f(0) = 0 \to C = 0$

5.10., 5.12.

A)
$$e^{-(\pi/2+2k\pi)\sinh 1}$$
, $k \in \mathbb{Z}$

B)
$$(3\pi/2 + 2k\pi)i$$
, $k \in \mathbb{Z}$

- C) $e^{2k\pi}$
- D) $i \tanh \pi/2$

E)
$$\pi/2 + 2k\pi - i\ln(\sqrt{2} - 1)$$
, $k \in \mathbb{Z}$

F)
$$\cos[\sqrt{2}(\pi + 2k\pi)] + i\sin[\sqrt{2}(\pi + 2k\pi)]$$

8.1. A), B)
$$e(\cos 1 + i \sin 1) - 1$$
 C) -8/3

8.2. A) 0 B)
$$2\pi i$$

9.1.

- A) 0
- B) ∞
- C) 2
- D) 1/4
- E) 1

9.11.

A)
$$\sum_{n=0}^{\infty} (-1)^n (n+1) z^{3n}$$

9.11.
A)
$$\sum_{n=0}^{\infty} (-1)^n (n+1) z^{3n}$$

B) $\sum_{n=0}^{\infty} z^{4n} - \sum_{n=0}^{\infty} z^{4n+1} = 1 - z + z^2 - z^5 + z^8 - \dots$
C) $\ln 2 - \sum_{n=1}^{\infty} \left[\frac{1}{n} + \frac{1}{2^n n}\right] \cdot z^n$
D) $\sum_{n=0}^{\infty} {\binom{1/2}{n}} (-1)^n i^n \cdot z^n$

C)
$$\ln 2 - \sum_{n=1}^{\infty} \left[\frac{1}{n} + \frac{1}{2^n n} \right] \cdot z^n$$

D)
$$\sum_{n=0}^{\infty} \frac{1}{\binom{n}{2}} (-1)^n i^n \cdot z^n$$

9.13.

A)
$$\cos 4 \sum_{n=0}^{\infty} (-1)^n \frac{[3(z+1)]^{2n+1}}{(2n+1)!} - \sin 4 \sum_{n=0}^{\infty} (-1)^n \frac{[3(z+1)]^{2n}}{(2n)!}$$

B) $\frac{1}{2} (1 + \sum_{n=0}^{\infty} n = 0 \infty \frac{4^n}{(2n)!} \cdot z^{2n})$

B)
$$\frac{1}{2}(1 + \sum n = 0 \infty \frac{4^n}{(2n)!} \cdot z^{2n})$$

C)
$$f(z) = \cos[(z - \frac{\pi}{4}) + \frac{\pi}{4}] = \frac{\sqrt{2}}{2}(\cos(z - \frac{\pi}{4}) - \sin(z - \frac{\pi}{4}))$$
, sada razvijemo sinus i kosinus prema formulama

D)
$$\ln 4 - \sum n = 1 \infty (-1)^{2n-1} \frac{(z+1)^n}{n \cdot 4^n}$$

9.16.

A)
$$z_1 = 0$$
, kratnosti 4, $z_2 = 3i$, $z_3 = -3i$, kratnosti 1.

B)
$$z_0=0$$
, kratnosti 4, $z_k=k\pi, k\in\mathbb{Z}, \neq 0$, kratnosti 1 C) $z_1=i, z_k=2k\pi i$, sve kratnosti 1

3 Rješenja

D) $z_0=0,$ kratnosti 1, $z_k=2k\pi i,$ kratnosti 2

9.17.

- A) $z_0 = 0$, kratnosti 4
- B) $z_0 = 0$, kratnosti 5
- C) $z_0 = 0$, kratnosti 3
- D) $z_0 = 0$, kratnosti 1

10.2. A)
$$-\sum n = 0 \infty \frac{2^n}{z^{n+1}} - \sum_{n=0} \infty \frac{z^n}{3^{n+1}}, z \in D_1$$

$$\sum_{n=0} \infty \frac{3^n - 2^n}{z^{n+1}}$$
 B)