# DECISION MAKING AND SCENARIOS MODULE 4.4 – New Product Venture

# Formulation and Evaluation of Alternative Scenarios

Professor Robert Holthausen Professor Richard Lambert



# Agenda – Valuation of a Proposed New Product Venture and Evaluation of Alternative Scenarios

- Introduction and Spreadsheet Set up
- Forecasting of Future Cash Flows
- Valuation (NPV and IRR)
- Formulation and Evaluation of Alternative Scenarios
- Expanding Beyond the Time Horizon

#### **Iterative Process**

- Translate your project idea into the future economic actions, transactions, events needed to carry out the project and your best estimate of the outcomes
- Map those predictions into forecasted financial statements.
- Calculate the NPV of the forecasted cash flows
- Rethink your strategy
  - Consider Alternative Courses of Action
  - Alternative Scenarios

# **Reality Checks**

- Do the statements make sense?
- Is our forecasted sales price realistic?
- Can we reasonably expect to sell that many?
- Do we have the capability of producing that many?
- Are the balances of receivables, inventory and liabilities reasonable?

#### Let's Start with Sales

- This is the source of all our inflows.
- Remember that we assumed the following in our spreadsheet

| Operating Phase - Sales                      |          |
|----------------------------------------------|----------|
| Iniitial Sales Volume (in units) - Starts in |          |
| Year 3                                       | 2000     |
| Sales Growth Rate per year                   | 0.00%    |
|                                              |          |
| Sales Price Per Unit                         | \$100.00 |
| Product Gross Margin Pct                     | 55.00%   |
| Inflation Rate for Sales and COGS            | 0.00%    |

- These assumptions (at this point) partly reflect
  - our best estimate of what we think will happen
  - Simplifications to make it easier to check if our spreadsheet was working

## What If Analysis? – Sales Volume

- Our calculations assumed that Volume will be 2,000 units per year
  - What if Sales Volume is different?
- How big are profits (in present value terms) at different sales levels?
- Go back to the spreadsheet and change the "INITIAL SALES VOLUME" cell
  - All the calculations will automatically update

| Operating Phase - Sales                                |          |
|--------------------------------------------------------|----------|
| Iniitial Sales Volume (in units) - Starts in<br>Year 3 | 2000     |
| Sales Growth Rate per year                             | 0.00%    |
| Sales Price Per Unit                                   | \$100.00 |
| Product Gross Margin Pct                               | 55.00%   |
| Inflation Rate for Sales and COGS                      | 0.00%    |

## What If Analysis? – Sales Volume

- Our calculations assumed that Sale Volume is 2,000 units per year
  - What if they're not?
- How big are profits (in present value terms) at different sales levels?
- Go back to the spreadsheet and change the "INITIAL SALES VOLUME" cell
  - All the calculations will automatically update

| Operating Phase - Sales                                |          |      |
|--------------------------------------------------------|----------|------|
| Iniitial Sales Volume (in units) - Starts in<br>Year 3 | 5000     | 2400 |
| Sales Growth Rate per year                             | 0.00%    |      |
| Sales Price Per Unit                                   | \$100.00 |      |
| Product Gross Margin Pct                               | 55.00%   |      |
| Inflation Rate for Sales and COGS                      | 0.00%    |      |

WHARTON ONLINE

# Re-calculation of NPV if Sales Volume is 20% Higher or 20% Lower than our Base-Line Forecasted Case

| Sales Volume in Units Per Year | NPV      | IRR   |
|--------------------------------|----------|-------|
| 2,400 (20% higher)             | \$61,961 | 17.7% |
| 2,000 (original forecast)      | \$26,624 | 11.5% |
| 1,600 (20% lower)              | -\$8,712 | 4.0%  |

Note that if Sales Falls Short of our Forecast by 20%, we'll lose money!

WHARTON ONLINE

#### At What Sales Volume Does our New Venture "Break Even?"

- Breakeven means earns a Net Present Value of Zero
- Equivalently, it means that the Venture Earns an IRR of 6%
- We could try to figure this out by trial and error by putting in different volume levels
  - we know from the prior slide that the Breakeven Volume will be slightly above 1,600 units a year
- Or we can use a built in function in Excel called GOALSEEK to do this for us

#### **GOALSEEK** – an Excel Function to solve this

- We have set up the spreadsheet such that
  - There is a cell that contains the Sales Volume per year (We can put in an arbitrary number. Goalseek will change the number)
  - There is a cell that contains the results of the NPV calculation
- Under the Data Tab, choose "What If Analysis" and "Goalseek".
- Choose to Set the Cell with the NPV formula in it Equal to 0.0 by changing the Cell with the Volume in it.
- This asks Excel to find the Sales Volume per year that results in the Overall NPV of the project (discounted at 6%) to equal 0.0
- Equivalently, this finds the Sales Volume such that the project earns a 6% rate of return (after tax)

WHARTON ONLINE

#### **GOALSEEK Calculation of Break-Even Volume**

| Sales Volume in Units Per Year | NPV      | IRR   |
|--------------------------------|----------|-------|
| 2,000 (Original Forecast)      | \$26,624 | 11.5% |
| 1,698 (Breakeven Volume)       | \$0      | 6.0%  |

- This is an Important Calculation to make
- In our case, we have a "margin of safety" of approximately 300 units of sales per year (relative to our forecast) before we start to lose money
- In many proposed new ventures, the breakeven point will turn out to be well ABOVE your forecasted sales volume
  - THIS MEANS YOU NEED TO RETHINK YOUR PLANS AND SEE IF THERE IS A WAY TO MODIFY YOUR STRATEGY OR PLANS FOR EXECUTING IT

# **Another Concern – Costs of Providing the Product or Service**

- Our calculations assume we have a product gross margin of 55%.
  - This means that if our sales price is \$100, it will cost \$45 to make each unit, leaving a margin of \$55 to cover the rest of our costs
- But how much margin of safety do we have there?

| Operating Phase - Sales                             |          |
|-----------------------------------------------------|----------|
| Iniitial Sales Volume (in units) - Starts in Year 3 | 2000     |
| Sales Growth Rate per year                          | 0.00%    |
| Sales Price Per Unit                                | \$100.00 |
| Product Gross Margin Pct                            | (55.00%) |
| Inflation Rate for Sales and COGS                   | 0.00%    |

# Scenarios – How does NPV change with Profit Margin (As a Percent of Sales Price); Sales Volume = 2,000 units per year

| Profit Margin Percentage | NPV       | IRR   |
|--------------------------|-----------|-------|
| 65%                      | \$71,820  | 19.5% |
| 55% (original forecast)  | \$26,624  | 11.5% |
| 45%                      | -\$18,571 | 1.7%  |

- If the Margin is only 45%, we lose money!
  - We can use GoalSeek to fine tune this
- Are there other ways to produce and deliver the product or provide the service that will cost less?

#### Scenario – How Much will Sales Grow?

- This is one of the most important considerations in new ventures
- Sales often grow during initial part of the Operating Phase
- We've assumed NO GROWTH let's change that!
- Assume (for simplicity) that sales grows at a constant rate during the operating phase

| Operating Phase - Sales                             |          |
|-----------------------------------------------------|----------|
| Iniitial Sales Volume (in units) - Starts in Year 3 |          |
| Sales Growth Rate per year                          | 0.00%    |
| Sales Price Per Unit                                | \$100.00 |
| Product Gross Margin Pct                            | 55.00%   |
| Inflation Rate for Sales and COGS                   | 0.00%    |

# Growth In Sales -- What if Sales Volume Starts at 2,000 but Grows by 25% Year?

| INCOME STATEMENT       |             |             |                  |            |            |                   |            |                  |
|------------------------|-------------|-------------|------------------|------------|------------|-------------------|------------|------------------|
|                        | <u>1</u>    | <u>2</u>    | 3                | <u>4</u>   | <u>5</u>   | <u>6</u>          | <u>7</u>   | 8                |
| Sales Revenue          | \$0         | \$          | \$200,000        | \$250,000  | \$312,500  | \$390,625         | \$488,281  | \$21,973         |
| Cost of Goods Sold     | \$ <u>0</u> | \$ <u>0</u> | \$ <u>90,000</u> | \$112,500  | \$140,625  | \$ <u>175,781</u> | \$219,727  | \$21,973         |
| Gross Margin           | \$0         | \$0         | \$110,000        | \$137,500  | \$171,875  | \$214,844         | \$268,555  | \$0              |
| Depreciation Expense   | \$10,000    | \$10,000    | \$10,000         | \$10,000   | \$10,000   | \$10,000          | \$10,000   | \$0              |
| Research & Development | \$20,000    | \$20,000    | \$0              | \$0        | \$0        | \$0               | \$0        | \$0              |
| SG&A                   | \$25,000    | \$25,000    | \$55,000         | \$62,500   | \$71,875   | \$83,594          | \$98,242   | \$0              |
| Other Losses (Gains)   | <u>\$0</u>  | <u>\$0</u>  | <u>\$0</u>       | <u>\$0</u> | <u>\$0</u> | <u>\$0</u>        | <u>\$0</u> | <u>(\$3,000)</u> |
| Pre-tax Income (Loss(  | (\$55,000)  | (\$55,000)  | \$45,000         | \$65,000   | \$90,000   | \$121,250         | \$160,313  | \$3,000          |
| Tax Expense (Benefit)  | (\$26,120)  | (\$23,600)  | \$ <u>17,800</u> | \$27,200   | \$37,760   | \$50,820          | \$66,725   | \$1,200          |
| Net Income (Loss)      | (\$28,880)  | (\$31,400)  | \$27,200         | \$37,800   | \$52,240   | \$70,430          | \$93,588   | \$1,800          |

- Note the Increase in Sales!
- Sales Goes up Faster than Total Costs
  - Because some of the costs are fixed!

# With 25% Growth in Sales – More Working Capital

| CASH FLOW STATEMENT          | 0          | <u>1</u>   | <u>2</u>   | <u>3</u>   | <u>4</u>   | <u>5</u>   | <u>6</u>            | <u>7</u>   | <u>8</u>   |
|------------------------------|------------|------------|------------|------------|------------|------------|---------------------|------------|------------|
| Net Income                   |            | (\$28,880) | (\$31,400) | \$27,200   | \$37,800   | \$52,240   | <del>\$70,430</del> | \$93,588   | \$1,800    |
| Add Depreciation             |            | \$10,000   | \$10,000   | \$10,000   | \$10,000   | \$10,000   | \$10,000            | \$10,000   | \$0        |
| Minus Change in Accts Rec    |            | \$0        | \$0        | (\$20,000) | (\$5,000)  | (\$6,250)  | (\$7,813)           | (\$9,766)  | \$48,828   |
| Minus Change in Inventory    |            | \$0        | \$0        | (\$9,000)  | (\$2,250)  | (\$2,813)  | (\$3,516)           | (\$4,395)  | \$21,973   |
| Plus Change in Accts Payable |            | \$0        | \$0        | \$4,950    | \$788      | \$1,434    | \$1,793             | \$2,241    | (\$11,206) |
| Plus Change in Wages Payable |            | \$7,500    | \$0        | \$9,000    | \$2,250    | \$2,813    | \$3,516             | \$4,395    | (\$29,473) |
| Other                        |            | <u>\$0</u> | <u>\$0</u> | <u>\$0</u> | <u>\$0</u> | <u>\$0</u> | <u>\$0</u>          | <u>\$0</u> | (\$5,000)  |
| Cash From Operations         |            | (\$11,380) | (\$21,400) | \$22,150   | \$43,588   | \$57,424   | \$74,410            | \$96,063   | \$26,922   |
| Investment in PPE            | (\$70,000) | \$0        | \$0        | \$0        | \$0        | \$0        | \$0                 | \$0        | \$0        |
| Disposal of PPE              | \$0        | \$0        | \$0        | \$0        | \$0        | \$0        | \$0                 | \$0        | \$5,000    |
| Net Cash Inflow (Outflow)    | (\$70,000) | (\$11,380) | (\$21,400) | \$22,150   | \$43,588   | \$57,424   | \$74,410            | \$96,063   | \$31,922   |

Unlike the Constant Sales Case, Note that there is continued additional investment in Working Capital, with it all released in the last period

#### **Net Present Value as a Function of Sales Growth**

| Growth In Sales Volume | NPV       | IRR   |
|------------------------|-----------|-------|
| 0% (Original Forecast) | \$26,624  | 11.5% |
| 25% Per Year           | \$132,624 | 25.1% |

- Growth Makes a HUGE difference in Profitability!
- Note that Sales Volume goes from 2,000 units to 4,883 units per year
- Do we have the PRODUCTIVE CAPACITY to handle this much volume?
- If not, we'll need to add more productive capacity. When? How much? How much will it cost? Will it be worth it?

#### Inflation

- A common mistake in doing these calculations is using the same initial period prices will persist for all future periods.
  - But prices often change over time, especially in periods of inflation
- We can incorporate this by building anticipated inflation into the future prices
- Be careful not all prices go up at the same rate
  - Example: The tax shield from depreciation is usually set based on the original purchase price of the assets
- In some sectors of the economy, prices go DOWN over time, not up

## **Exploration of Scenarios – Inflation Rate**

 Suppose the Inflation Rate in our New Product Venture applies Only to Sales and Cost of Goods

| Inflation Rate Per Year | NPV       | IRR   |
|-------------------------|-----------|-------|
| 0% (original)           | \$26,624  | 11.5% |
| 10%                     | \$77,298  | 19.2% |
| 50%                     | \$398,227 | 42.5% |

- But if the Inflation Rate is that high, shouldn't the discount rate be higher than 6%?
- Keep track of whether Sales Revenue is increasing because of
  - Higher Sales Prices
  - Higher Sales Volume (if this is the reason, this might require more capacity)

### Other Scenarios To Explore – Discount Rate

- Discount Rate
  - Higher expectations about inflation should imply higher discount rates
  - Higher risk should imply higher discount rates
- Higher discount rates will result in lower present values

## Other Scenarios To Explore - Time Related Factors

- Credit Policy Suppose we allow people to pay later
  - Collecting later is bad
  - But will it Allow us to Sell to more customers?
  - Do we think Sales will increase enough to offset the cost of later collections?
  - Will we run into customer defaults?
- Different Patterns of Growth and Decline for Sales
- Length of Time the Operating Phase lasts
  - How quickly will competitors come in and take away sales?
- Time to Market (sales start in year 3)
  - Faster time to market will result in higher present values

#### Interactions with Our Other Products and Activities

- Do the revenues from this new product cannibalize the **revenues** from our other products?
  - Or will they make our other products more attractive to customers?
- Does this product venture cannibalize scarce resources that our other products use?
- Will we learn things in doing this product venture that we can apply to other products?

## **Tentative Summary**

- Our baseline case (no growth) has a positive NPV
- But it doesn't take much to go wrong to change that
- If Sales are expected to grow, things look much better
- There are many things that are difficult to quantify this is where the ART mixes with the SCIENCE in business strategy discussions

### **Next**

- We have one more thing we want to take another look at and that's what happens at the end of the project
- Or whether this is, in fact, the end.





# ONLINE