2021-2022 学年线性代数 I (H) 小测

任课老师: 刘康生 考试时长: 90 分钟

一、 设矩阵
$$A = \begin{pmatrix} a & -1 & 1 \\ -1 & a & -1 \\ 1 & -1 & a \end{pmatrix}, \ \beta = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$
 假设线性方程组 $Ax = \beta$ 有解但解不唯一.

- (1) 求 a 的值;
- (2) 给出 $Ax = \beta$ 的一般解.
- 二、设

$$P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

定义 $\mathbf{R}^{3\times2}$ 上映射 σ :

$$\sigma(A) = PAQ.$$

- (1) 验证 σ 是线性映射;
- (2) 求 $\operatorname{im} \sigma$ 和 $\ker \sigma$;
- (3) 验证关于 σ 的维数公式.
- 三、设 $B \in 3 \times 1$ 矩阵, $C \in 1 \times 3$ 矩阵,证明: $r(BC) \le 1$; 反之,若 $A \in A$ 是秩为 1 的 3×3 矩阵,证明: 存在 3×1 矩阵 B 和 1×3 矩阵 C, 使得 A = BC.
- 四、 设 $B = \{\beta_1, \beta_2, \dots, \beta_n\}$ 是实数域 \mathbf{R} 上线性空间 V 的一组基, $T \in \mathcal{L}(V)$, $T(\beta_1) = \beta_2$, $T(\beta_2) = \beta_3$, \cdots , $T(\beta_{n-1}) = \beta_n$, $T(\beta_n) = \sum_{i=1}^n a_i \beta_i (a_i \in \mathbf{R})$.求 T 在 B 下的表示矩 阵. 在什么条件下 T 是同构映射?
- 五、 设 A^* 是 n 阶方阵 A 的伴随矩阵, 求 A^* 的秩.
- 六、 判断下列命题的真伪,若它是真命题,请给出简单的证明;若它是伪命题,给出理由 或举反例将它否定.
 - (1) 给定线性空间 V 的非零向量 v 和线性空间 W 的向量 w,总存在线性映射 T : $V \to W$,使得 T(v) = w;
 - (2) 若线性方程组有 m 个方程, n 个变量, 且 m < n, 则这个方程组一定有非零解;
 - (3) 若方阵 $A^3 = 0$. 则 E + A 和 E A 都是可逆矩阵;
 - (4) 若方阵 $A^2 = A$, 则 E + A 和 E A 都是可逆矩阵.