INTRUCTIVO: Modelos y Métricas

BASE TEORICAS: Revisemos un contexto de qué criterios medir y su valor.

Métricas

¿Que métricas podemos utilizar?

Matriz de confusión

Exactitud (Accuracy)

- Predicciones correctas.
- Dividido (/)
- Número total de predicciones

CONCLUSION: SE USA CUANDO EL NUMERO PARECIDO DE LAS MUESTRAS **SELECCIONADAS**

Sensibilidad (Recall)

Permite encontrar todos los casos relevantes:

- falso negativos

Sensibilidad (Recall)

Permite encontrar todos los casos relevantes:

- Numero de verdadero positivos
- Dividido (/)
- · Numero de verdadero positivos + falso negativos

48 / 48 + 2 = 0.96

Precisión

Permite encontrar solo los casos

- Numero de verdadero positivos + falso

Precisión

Permite encontrar solo los casos relevantes:

- Numero de verdadero positivos
- Dividido (/)
- Numero de verdadero positivos + falso positivos

48 / 48 + 5 = 0.905

Puntuación F1 (F1 Score)

Es una combinación entre **Sensibilidad** (*Recall*) y **Precisión**

Utilizando la media harmonica:

F1 = 2 * (sensibilidad * precision) / (sensibilidad * precision) 2 * (0.96 * 0.905) / (0.96 * 0.905) = 0.93

Métricas

¿Que métricas podemos utilizar?

Error absoluto medio

Error cuadrado medio

Error cuadrático medio

Error absoluto medio (MAE)

Es básicamente la media del error absoluto de cada predicción. Muy fácil de entender.

$$\frac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i|$$

Error cuadrado medio (MSE)

Es básicamente la media del error absoluto de cada predicción pero cuadrado.

$$\frac{1}{n}\sum_{i=1}^{n}(y_{i}-\hat{y}_{i})^{2}$$

Error cuadrático medio (RMSE)

Es básicamente la media del error absoluto de cada predicción pero cuadrado y después cogiendo la raíz cuadrada.

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$$

PASOS:

- 1. Descargar el recurso publicado en aula virtual. El recurso trata acerca de precios de casas.
- 2. Aplicar el siguiente comando:

pip install seaborn

3. Importamos y revisamos el contenido:

4. Realizamos correlaciones entre el precio del inmueble y sus variables. Para el contamos con la creación de un mapa de "calor".

```
train = pd.read_csv("train.csv")
train.head()

plt.figure.Figure(figsize = (20,10))

#corr: correlación heatmap: grafico de matriz
#abs = valor absoluto con etiquetas true
sns.heatmap(train.corr().abs(), annot=True)
```


Conclusión no existe variables que relacionen lo suficiente con el precio.

5. Entonces empezamos a enfocarnos en precio y el valor que tiene con los demás.

Ordenamos de forma descendente.

Como observamos el mayor valor se encuentra con "OveralQual".

6. Ahora vamos a mostrar una gráfica alusiva entre OveralQual y SalePrice.

```
#sns.heatmap(train.corr().abs(), annot=True)

corr = train.corr().abs()  #correlaciones absolutas
#Obtener la columna Precios y la relacion con las demás v.

corr_SP = corr.loc[:, ['SalePrice']]

sns.boxplot(x='OverallQual', y='SalePrice', data=train)

sns.boxplot(x='OverallQual', y='SalePrice', data=train)
```

 Ahora escogemos las correlaciones de 0.5 hacia arriba de acuerdo a la lista y hacemos un mapa.

```
corr = train.corr().abs()  #correlaciones absolutas
#Obtener la columna Precios y la relacion con las demás variables
corr_SP = corr.loc[:, ['SalePrice']]
sns.boxplot(x='OverallQual', y='SalePrice', data=train)

train_selec = train.loc[:,[
"OverallQual", "GrLivArea", "GarageCars", "GarageArea", "TotalBsmtSF",
"1stFlrSF", "FullBath", "TotRmsAbvGrd", "YearBuilt"]]
plt.figure.Figure(figsize = (20,10))
sns.heatmap(train_selec|.corr().abs(), annot=True)
```


8. Ahora creamos una gráficas comparativas con los valores más altos de correlación.

```
"OverallQual", "GrLivArea", "GarageCars", "GarageArea", "TotalBsmtSF",

"1stFlrSF", "FullBath", "TotRmsAbvGrd", "YearBuilt"]]

plt.figure.Figure(figsize = (20,10))

sns.heatmap(train_selec.corr().abs(), annot=True)

train_selec2 = train.loc[:,["OverallQual", "GrLivArea", "GarageCars"]]

sns.pairplot(train_selec2)
```


Para empezar a dividir datos y generar nuestro modelo.

9. Importamos las librerías, y los componentes X, Y

```
from sklearn.model_selection import train_test_split

X = train.loc[:,["OverallQual","GrLivArea","GarageCars"]]
Y = train.loc[:,["SalePrice"]]

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.30, random_state=33)
```

Se escogido solamente las 3 primeras columnas. Y selección de precios.

La cantidad de elementos implicados para el tamaño del test es 30% de los elementos y aleatorizado. Lo restante pasa al entrenamiento.

10. Creamos el modelo lineal, usamos los elementos seleccionados para el entrenamiento.

```
from sklearn.linear_model import LinearRegression
lm = LinearRegression()
lm.fit(X_train, y_train)
```

Ejecutamos para empiece el ajuste al modelo lineal.

```
In [57]: from sklearn.linear_model import LinearRegression
...:
...: lm = LinearRegression()
...: lm.fit(X_train, y_train)
Out[57]: LinearRegression()
```

11. Ahora debemos observar si obtenemos interpolado y luego mostrar coeficientes.

```
print(lm.intercept_)

lm.coef_
print(str(lm.coef_))
```

Resultado:

```
...: lm.coef_
...: print(str(lm.coef_))
[-98211.22722987]
[[26073.55023041 55.45399707 20534.91339951]]
```

Con ello tenemos los coeficientes de la regresión con los valores de entrenamiento.

12. Ahora aplicamos con los valores de test empezamos a realizar predicciones y tendremos un conjunto de datos.

```
predicciones = lm.predict(X_test)
print(predicciones)
```

Resultado: Y_test

```
print(predicciones)

[[288324.40067172]

[192961.70200842]

[207556.27484465]

[235338.72737838]

[243944.26853069]

[356774.97627209]

[191187.17410207]

[111639.03621061]

[107313.62443889]

[268139.14573704]
```

13. Vamos a convertir el resultado como tabla en el estilo de dataframe.

```
DataFramePredicciones = pd.DataFrame(predicciones)

DataFramePredicciones.reset_index(drop = True, inplace = True)

y_test.reset_index(drop = True, inplace = True)

df_unido = y_test.join(DataFramePredicciones)

print(df_unido)
```

Resultado

```
SalePrice
                            0
0
        275500
                288324.400672
1
        127500 192961.702008
2
        143000 207556.274845
                235338.727378
3
        225000
4
        232000 243944.268531
        150500
               130898.507677
433
434
       107000 100260.795205
435
        186500 198673.463707
                200347.255225
436
        208900
437
        130500 119236.233810
[438 rows x 2 columns]
```

El reset index aplica el reseteo de índice "0"

14. Ahora aplicamos métricas para observar si lo obtenido presenta muchos errores.

```
#METRICAS
from sklearn import metrics
print('MAE', metrics.mean_absolute_error(y_test, predicciones))
print('MSE', metrics.mean_squared_error(y_test, predicciones))
print('RMSE', np.sqrt(metrics.mean_absolute_error(y_test, predicciones)))
sns.displot(train.loc[:,['SalePrice']])
```

Leyenda:

- Error Absoluto Medio (MAE)
- Error Cuadrado Medio (MSE)
- Error Cuadrático Medio (RMSE)

Resultado:

15. Para tratamiento homogéneo de casas con alto precio como las de bajo precio y otorgar las mismas probabilidades utilizamos el recurso de la media cuadrática de errores.

```
from sklearn.metrics import mean_squared_log_error
print('Log RMSE', np.sqrt(metrics.mean_squared_log_error(y_test, predicciones)))
```

Resultado:

Log RMSE 0.22639145935348678

16. Procedemos ahora el proceso de test.

```
test = pd.read_csv('test.csv')
X = test.loc[:,["OverallQual","GrLivArea","GarageCars"]]
predicciones = lm.predict(X)
# => Lanza error

#Revisamos si cuenta con valores nulos
X.isna().sum()
#Corregimos colocando el valor de 0 en vez de null
X['GarageCars'].fillna(0,inplace = True)
```

Resultado obtenido del error: La ejecución es por grupo de líneas de código presentados.

```
OverallQual 0
GrLivArea 0
GarageCars 1
dtype: int64
```

```
predicciones = lm.predict(X)
DataFramePredicciones = pd.DataFrame(predicciones)
DataFramePredicciones.reset_index(drop = True, inplace = True)
X_test.reset_index(drop = True, inplace = True)
df_entrega = X.join(DataFramePredicciones)
print(df_entrega)
#Se obtiene las columnas y la columna resultante "0"
```

Obtenemos el resultado matricial:

```
OverallQual
                  GrLivArea
                             GarageCars
0
               5
                        896
                                    1.0 102378.218699
1
               6
                                    1.0 152463.349663
                       1329
2
                       1629
               5
                                    2.0 163560.911954
3
               6
                       1604
                                    2.0 188248.112257
4
               8
                       1280
                                   2.0 222428.117666
                                    0.0 66638.738496
1454
               4
                       1092
1455
               4
                                   1.0 87173.651895
                       1092
               5
1456
                                    2.0 141102.043139
                       1224
1457
               5
                       970
                                   0.0 85946.901083
1458
               7
                                   3.0 256816.358728
                       2000
[1459 rows x + 4 columns]
```

17. Convertimos las predicciones para luego exportarlo y finalmente comparar gráficas.

```
predicciones = lm.predict(X)
DataFramePredicciones = pd.DataFrame(predicciones)
DataFramePredicciones.reset_index(drop = True, inplace = True)
id = test.loc[:,['Id']]
id.reset_index(drop = True, inplace = True)
df_entrega = id.join(DataFramePredicciones)
print(df_entrega)

df_entrega.columns = ['Id', 'SalePrice']
df_entrega.to_csv('entrega.csv', index = False)

sns.displot(df_unido.loc[:,['SalePrice']], color="skyblue", label="X", kde=True)
sns.displot(df_entrega.loc[:,['SalePrice']], color="red", label="X", kde=True)
```

Resultado:

```
Ιd
0
      1461
           102378.218699
1
      1462 152463.349663
2
      1463 163560.911954
3
      1464 188248.112257
4
      1465 222428.117666
       . . .
1454
      2915
           66638.738496
1455
      2916
           87173.651895
1456
     2917 141102.043139
      2918
            85946.901083
1457
1458
      2919
            256816.358728
[1459 rows x 2 columns]
```


Conclusión:

La comparativa entre ambas gráficas promueve una cercanía, con medias de errores tratados.