参考答案

第1章 遗传因子的发现

第] 节 孟德尔的豌豆杂交实验(一)

第1课时 一对相对性状的杂交实验

【本节聚焦】

- 1.两性 自花传粉 自交 纯种
- 2.性状 同一种性状的不同表现类型
- 3.显性性状 性状分离
- 4.(1)遗传因子 融合 传递
 - (2)体细胞 遗传因子 遗传因子 遗传因子
 - (3)配子 遗传因子 配子 配子
 - (4)随机的

【夯实基础】

- 1.B 2.D 3.C 4.D 5.B 6.D 7.C 8.C 9.C 10.A 11.B 12.B 13.C
- 14.(1)①去雄 ③套上纸袋
 - (2)白花植株 红花植株 相对性状
 - (3)RR、Rr和rr 1:2:1 红花和白花 3:1

第2课时 分离定律的应用

【本节聚焦】

体细胞 控制同一性状的 形成配子 分离 分离

【夯实基础】

- 1.B 2.B 3.D 4.B 5.B 6.B 7.B 8.D 9.D 10.B 11.B 12.B 13.A 14.(1)红果
 - (2) Dd DD : Dd = 1 : 2
 - (3)将红果番茄连续多次自交

【能力提升】

- 15.C 16.A 17.B 18.B 19.A
- 20.(1)白花 A
 - (2)全为红花或红花:白花=3:1
 - (3)2:1
 - (4)紫茎
 - (5)绿茎:紫茎=3:1

第2节 孟德尔的豌豆杂交实验(二)

第1课时 两对相对性状的杂交实验

【本节聚焦】

- 1.产生配子 分离 自由组合 雌配子 雄配子 4 YR、Yr、yR、yr 1:1:1:1 受精 16 9 YYRR、YYRr、YyRr、YyRr、YYrr、Yyrr、yyRR、yyRr、yyrr 4 黄色圆粒、黄色皱粒、绿色圆粒、绿色皱粒 9:3:3:1
- 2.自由组合定律 控制不同性状 分离和组合 形成配子 分离 自由组合

【夯实基础】

1.D 2.D 3.C 4.D 5.A 6.C 7.B 8.A 9.A 10.B

【能力提升】

11.B 12.D 13.A 14.B 15.B

16.(1) $\frac{1}{4}$

(2)4 BBAA, BBaa, bbAA, bbaa

 $(3)\frac{1}{9} \quad \frac{4}{9}$

 $(4)\frac{1}{9}$

第2课时 自由组合定律的应用和拓展

【本节聚焦】

- 1.杂交育种 优良性状 优良性状 筛选
- 2.基因 基因型 表型

【夯实基础】

1.B 2.A 3.C 4.A 5.C 6.C 7.A 8.B

【能力提升】

- 9.D 10.C 11.C
- 12.(1)自由组合定律(或分离定律和自由组合定律)
 - (2) 紫:红:白=9:3:4

$$13.(1)\frac{1}{4}$$
 19

- (2)a.三种植株所得 F_1 中没有开红花(或全部开白花)的,则提供花粉的植株的基因型为 aabbdd c.三种植株所得 F_1 中有两种开红花(或一种开白花)的,则提供花粉的植株的基因型为 aaBBDD
- (3)方法一: 让基因型为 aaBBDD 的植株分别与未知的两种种子长成的植株杂交,得到 F_1 ,让 F_1 自交得 F_2 。若 F_2 中红花:白花 = 9:7则未知种子的基因型为 AAbbDD,若 F_2 中红花:白花 = 27:37,则 未知种子的基因型为 AAbbdd。

方法二:让基因型为 aaBBDD 的植株分别与未知的两种种子长成的植株杂交,得到 F_1 ,让 F_1 与基因型 为 aabbdd 的植株测交得 F_2 ,若 F_2 中红花:白花 = 1:3,则未知种子的基因型为 AAbbDD,若 F_2 中红花:白花 = 1:7,则未知种子的基因型为 AAbbdd。

方法三:让基因型为 aabbdd 的植株与基因型为 aaBBDD 的植株杂交得到基因型为 aaBbDd 的植株 F_1 ,让 F_1 分别与未知的两种种子长成的植株杂交得到 F_2 ,若 F_2 中红花:白花 =1:1,则未知种子的基因型为 AAbbDD,若 F_2 中红花:白花 =1:3,则未知种子的基因型为 AAbbdd。

第2章 基因和染色体的关系

第] 节 减数分裂和受精作用

第1课时 减数分裂(一)

【本节聚焦】

- 1.睾丸 曲细精管 精原 精原
- 2.复制一次 连续分裂两次 四 减数分裂 I 减数分裂 II 精子
- 3. 同源染色体 联会 非姐妹染色单体 互换 同源染色体
- 4.配对 形状和大小 父方 母方
- 5.着丝粒 姐妹染色单体
- 6.卵巢 不均等分裂 次级卵母细胞 极体 不均等分裂 卵细胞 极体 卵细胞 三个极体 退化消失 变形
- 7.减数分裂 I

8.

【夯实基础】

1.D 2.A 3.C 4.A 5.D 6.A 7.C 8.D

【能力提升】

9.C 10.B 11.D

- 12.减数第一次分裂前(四分体时) 次级精母细胞 4 8 2 同源染色体 姐妹染色单体 减数第一次分裂前的间/减数分裂前的间 减数第一次分裂后 减数第二次分裂后
- 13.(1)卵巢 A、B、D D、E
 - (2)有丝分裂后 4 次级卵母细胞或极体
 - (3)A-D-E-F-C

第2课时 减数分裂(二)与受精作用

【本节聚焦】

- 1.卵细胞 精子 受精卵 染色体数目 染色体数目 染色体 精子(父方) 卵细胞(母方)
- 2.多样性 遗传物质 随机性 自然环境 优越性

【夯实基础】

1.B 2.D 3.B 4.C 5.B 6.C 7.D 8.B 9.A 10.C

【能力提升】

- 11.(1)精细胞或精子 2C或4C
 - (2)次级 与正常小鼠相比,突变小鼠曲细精管中核 DNA 相对含量为 4C 的细胞数目基本不变,核 DNA 相对含量为 2C 的细胞增多
 - (3)促进生殖器官的发育以及生殖细胞的形成
- 12.(1)DNA 复制(或染色体复制) 着丝粒分裂
 - (2)乙、丙 甲
 - (3)8 次级卵母细胞和(第一)极体

第2节 基因在染色体上

【本节聚焦】

1.染色体 基因在染色体上 行为 平行关系

基因行为	染色体行为
在杂交过程中保持完整性和独立性	在配子形成和受精过程中具有相对稳定的形态结构
在体细胞中成对存在,一个来自父方,一个来自	在体细胞中成对存在,同源染色体一条来自父方,一条
母方	来自母方
在配子中只有成对基因中的一个	在配子中只有成对的染色体中的一条
非等位基因在形成配子时自由组合	非同源染色体在减数第一次分裂后期自由组合

2.短 快 少 4 同型的 XX 异型的 XY

3.(1)

- (2)(控制果蝇的红眼与白眼的性状的)基因位于(X)染色体上。
- (3)线性排列
- 4.杂合子 一对同源染色体 等位 独立性 减数分裂 等位 同源染色体 两个配子
- 5.非同源染色体 非等位 分离或组合 减数分裂 同源染色体 等位 非同源染色体 非等位

【夯实基础】

1.B 2.A 3.B 4.B 5.D 6.D 7.D 8.A

【能力提升】

9.D 10.B 11.A 12.C 13.A

- 14.(1)红眼
 - (2)基因分离
 - (3)X 白眼雌果蝇与纯合红眼雄 雌果蝇都是红眼,雄果蝇都是白眼
 - (4)ddrr ddee 正常翅灰体:正常翅黑檀体:翅外展灰体:翅外展黑檀体=1:1:1:1(或正常翅正常眼:正常翅粗糙眼:翅外展正常眼:翅外展粗糙眼=1:1:1:1,应与前面基因型相对应)

第3节 伴性遗传

【本节聚焦】

- 1.性染色体上 性别
- $2.(1)X^{B}X^{B}$ $X^{B}X^{b}$ $X^{b}X^{b}$ $X^{B}Y$ $X^{b}Y$

(2)

(3)

- 3.特点:①患者男性远多于女性(男性发病率高于女性);②男性患者的基因只能从母亲那里传来(母患儿必患),以后只能传给女儿;③隔代遗传(任选两点回答)
- 4.特点:①患者中女性多于男性(男性发病率高于女性),但部分女性患者病症较轻;②男性患者与正常女性婚配的后代中,女性都是患者,男性正常(父患女必患);③连续遗传(任选两点回答)
- 5.只有男性患病,女性不会患病

【夯实基础】

1.C 2.D 3.B 4.D 5.B 6.C 7.C 8.D 9.C 10.A 11.B 12.B 13.D

【能力提升】

14.C 15.C 16.D 17.C

18.(1)常染色体隐性遗传或伴 X 染色体隐性遗传

(2)①3 ②
$$HHX^{T}Y$$
 或 $HhX^{T}Y$ $\frac{1}{36}$ ③ $\frac{1}{60000}$ ④ $\frac{3}{5}$

第3章 基因的本质

第1节 DNA 是主要的遗传物质

【本节聚焦】

- 1.R型 加热杀死的 S型细菌 活的 S型菌 转化因子
- 2.蛋白 RNA 酯 DNA DNA 稳定遗传变化
- 3.T2 噬菌体 放射性同位素标记 DNA 蛋白质外壳 性状 DNA

【基础夯实】

- 1.D 2.B 3.A 4.C 5.A 6.A 7.D 8.C 9.D 10.C 11.C
- 12.(1)多糖和蛋白质 R
 - (2)DNA R型和S型
 - (3)将 DNA 和蛋白质分离开,单独地观察它们各自的作用
 - (4)S型细菌的 DNA 和 DNA 酶
- 13.(1)用含32P的培养基培养大肠杆菌,再用噬菌体侵染被32P标记的大肠杆菌
 - (2)使噬菌体和细菌分离 2 部分噬菌体未侵染进入细菌 增高
- 14.(1)放射性同位素标记法
 - (2)原料、能量、酶、场所 模板
 - (3)RNA RNA 和蛋白质
 - (4)减弱

第2节 DNA 的结构

【本节聚焦】

- 1.脱氧核苷酸 A、T、G、C
- 2.(1)脱氧核苷酸链 反向平行
- (2)脱氧核糖 磷酸 外 基本骨架 内
- (3)氢键 A T G C
- 3. 羟基 游离磷酸基团

【基础夯实】

- 1.C 2.A 3.A 4.D 5.C 6.C 7.B 8.D 9.C 10.C 11.C 12.B 13.D 14.A
- 15.(1)①双螺旋 磷酸和脱氧核糖 ②氢键
 - (2)碱基 脱氧核苷酸 碱基对
 - (3)36% 小
 - (4)碱基排列顺序的差别
- 16.(1)腺嘌呤核糖核苷酸
 - (2)RNA 细胞质
 - (3)脱氧核苷酸 脱氧核糖、磷酸、碱基 A、G、C、T、U 7
 - (4)脱氧核糖 胞嘧啶 磷酸

第3节 DNA 的复制

【本节聚焦】

1. ¹⁵N ¹⁴N 不同时刻 离心 ¹⁵N/¹⁴N-DNA

2.解旋 模板、原料、能量、酶 双螺旋结构 碱基互补配对

【基础夯实】

1.C 2.B 3.D 4.C 5.C 6.C 7.C 8.C 9.D 10.B

【能力提升】

- 11.D 12.D 13.D 14.D 15.C
- 16.(1)密度梯度离心 DNA 60
 - (2)全保留复制
 - (3)试管内存在两条 DNA 单链带
 - $(4)^{15}N$

第 4 节 基因通常是有遗传效应的 DNA 片段

【本节聚焦】

1.4 种碱基的排列顺序 碱基排列顺序的千变万化 碱基特定的排列顺序 物质基础

2.DNA RNA

【基础夯实】

- 1.C 2.B 3.B 4.C 5.B 6.A 7.D 8.A 9.A 10.B
- 11.(1) X 染色体和 Y 染色体(有同源区段 II, 在减数分裂时) 能够联会(配对) X 染色体和 Y 染色体上的基因不完全相同
 - $(2)X^aY^A$ 或 X^AY^a X^AX^a
 - (3)0.49%

【能力提升】

12.D

- 13.(1)常
 - (2)N+1
 - (3)灰翅:白翅=8:1 $\frac{1}{2}$
 - (4)①灰翅雄性:白翅雌性=1:1 白翅雄性:灰翅雌性=1:1 ②不能 无论导入性染色体还是常染色体后代表现型都一样,雌性和雄性个体灰翅和白翅比例均为1:1

第4章 基因的表达

第 1 节 基因指导蛋白质的合成

【本节聚焦】

- 1.DNA 上的碱基排列顺序 mRNA 上的密码子排列顺序 mRNA 上的密码子排列顺序 肽链上的氨基酸排列顺序
- 2.RNA 聚合 模板 碱基互补配对 游离的核糖核苷酸 RNA 细胞核及拟核
- 3.核糖体 密码子 反密码子 密码子 具有一定氨基酸序列的肽链 2 肽键 终止密码子

4.64 起始 甲硫氨酸 终止 硒代半胱氨酸 简并性

5.遗传信息 DNA 复制 转录 翻译 RNA 复制 逆转录

【基础夯实】

1.D 2.A 3.B 4.B 5.B 6.B 7.C 8.B 9.B 10.A 11.C 12.C 13.D

【能力提升】

14.C 15.D

- 16.(1)细胞核 基因的选择性表达
 - (2)翻译 核糖体 ACU
 - (3)25%
 - (4)少量的 mRNA 可以迅速合成大量的蛋白质
- 17.(1)中心法则
 - (2)DNA 复制 翻译 RNA 复制
 - $(3)3'\cdots TGCCTA\cdots 5'$ $3'\cdots UGCCUA\cdots 5'$ 2 2

第2节 基因表达与性状的关系

【本节聚焦】

- 1.酶的合成 有关蛋白质
- 2.形态、结构、功能 基因选择性表达
- 3.时间、部位及表达水平 甲基化 抑制 碱基序列 表达 表型 表观遗传
- 4.多种 多种 环境因素

【基础夯实】

1.D 2.C 3.B 4.B 5.D 6.A 7.D 8.D 9.D 10.B

【能力提升】

11.C 12.D

- 13.(1)核糖核苷酸 RNA 聚合酶
 - (2)核糖体 相同
 - (3) $+RNA \xrightarrow{gh} -RNA \xrightarrow{gh} +RNA \xrightarrow{\text{翻译}}$ 蛋白质
 - (4)生物的亲缘关系越远, DNA 中碱基排列顺序差异越大, 杂种双链 DNA 形成的氢键就越少, 热稳定性 越低, M 值越大
- 14.(1)拟核 tRNA
 - (2)阻遏蛋白 RNA 聚合酶 物质和能量的浪费
 - (3)空间结构 停止表达
 - (4)基因与基因表达产物 基因与环境

第5章 基因突变及其他变异

第] 节 基因突变和基因重组

【本节聚焦】 略

【基础夯实】

1.A 2.B 3.C 4.C 5.C 6.B 7.B 8.A 9.A 10.C

【能力提升】

- 11.D 12.D 13.B 14.D 15.B 16.B
- 17.(1)均发生了碱基替换,均发生了隐性突变
 - (2)等位基因、非等位基因
 - (3)AaBB AABb
- 18.(1)没有
 - (2)DNA→mRNA→蛋白质 噬菌体
 - (3)不属于 DNA 甲基化不改变基因的碱基序列
 - (4)A 基因来自卵细胞,P 序列甲基化,A 基因不能表达 正常鼠:侏儒鼠=1:1

第2节 染色体变异

【本节聚焦】

- 1.(1)①染色体 基因 分子水平 结构 数目 新基因的产生 未形成新的基因 ②染色体变异 基因 突变和基因重组
 - (2)①染色体结构 猫叫综合征 增加某一片段 ②缺失 重复 易位 倒位 ③基因的数目 排列顺序 性状 不利
- 2.(1)个别染色体 染色体组
 - (2)非同源染色体 形态 功能 遗传信息
 - (3)①受精卵 两 ②a.受精卵 三个或三个以上 三倍体 四倍体 c.茎秆粗壮 果实 糖类 蛋白质 d.迟缓 结实率低 ③a.配子 一半 配子染色体数目 b.弱小 高度不育

【基础夯实】

1.C 2.A 3.A 4.B 5.A 6.D

【能力提升 A】

- 7.C 8.C 9.C 10.D 11.C 12.C 13.D
- 14.(1)分生组织 中期 ①若二者的染色体形态结构和数目相同,则变异是由基因突变导致 ②若二者的 染色体不同,则是由染色体变异导致
 - (2)①分别让其自交 ②b.若后代有阔叶和窄叶两种性状,则为显性突变

【能力提升 B】

- 15.C 16.B 17.C
- 18.(1)强 染色体(数目)变异
 - (2)秋水仙素 前 纺锤体
 - (3)减数分裂时同源染色体联会紊乱 属于
 - (4)4 3
- 19.(1)红:粉红:白=3:6:7
 - (2)7 8
 - (3)aaBb 或 AaBB 红花:粉红花:白花=3:6:55

第3节 人类遗传病

【本节聚焦】

- 1.(1)遗传物质改变
 - (2)单基因遗传病 多基因遗传病 染色体异常遗传病
- 2.(1)遗传咨询 产前诊断

- (2)遗传病的产生和发展
- (3)①家庭病史 ②遗传病的传递方式 ③再发风险率 ④终止妊娠 产前诊断
- (4)出生前 羊水检查 B超检查 基因诊断
- (5)近亲 适龄
- 3.(1)遗传信息
- (2)①遗传信息 全部 DNA 序列 遗传信息 ②1% ③1990 ④组成 结构 功能 ⑤2.0万~2.5万4.单基因 抗维生素 D 佝偻病 白化病 色盲 两对及两对以上 染色体异常 染色体数目异常

【基础夯实】

1.D 2.C 3.D 4.C

【能力提升】

5.A 6.B 7.C 8.C 9.B 10.A 11.A 12.C

13.(1)常 隐 (2)7、11、12、13 (3) $\frac{1}{8}$ (4)4 1 (5) $\frac{1}{4}$

14.B 15.C 16.C

17.(1)常染色体隐性遗传 伴 X 染色体隐性遗传

(2)① AaX^TX^T AAX^TY 或 AaX^TY ② $\frac{1}{36}$ ③ $\frac{1}{600}$ ④ $\frac{2}{5}$

第6章 生物的进化

第] 节 生物有共同祖先的证据

【本节聚焦】 略

【基础夯实】

- 1.A 2.C 3.D 4.A 5.D 6.D 7.A 8.B
- 9.(1)黑猩猩 酵母菌
- (2)亲缘关系越近 亲缘关系越远
- (3)这些生物有着共同的原始祖先

【能力提升】

10.D 11.B 12.B

13.2467

第2节 自然选择与适应的形成

【本节聚焦】

- 1.(1)①一定的功能 ②生存 繁殖
- (2)①所有的 ②一定的
- 2.(1)①用进废退 获得性遗传 ②古老的 ③适应形成的
- (2)①自然选择 定向选择 ②a.自然选择 b.共同祖先 c.进化 ③性状

【基础夯实】

1.D 2.D 3.D 4.A 5.D 6.D 7.C

【能力提升】

8.D 9.D 10.B 11.A 12.C 13.D

- 14.(1)后代数目超过环境承受的能力 不定向的 原材料
 - (2) 自然选择 生物与生物之间以及生物与无机环境之间的斗争
 - (3)性状与环境相适应 改造自己形成适合环境的性状 自然选择

第3节 种群基因组成的变化与物种的形成

第1课时

【本节聚焦】 略

【基础夯实】

- 1.B 2.C 3.D 4.B
- 5.(1)55% 45%
 - (2)42.5% 32.5% 55% 45%
 - (3)没有发生进化 种群的基因频率没有发生改变
 - (4)种群 突变和基因重组 种群基因频率的改变

【能力提升】

- 6.D 7.D 8.C 9.A 10.D 11.B 12.A 13.C
- 14.(1)AA 占 36%、Aa 占 48%、aa 占 16%
 - (2)没有迁入和迁出,没有基因突变,不同翅色的个体生存和繁殖的机会是均等的
 - (3)如果该性状适应环境,则控制白翅的基因频率会增大;如果该性状不适应环境,则控制白翅的基因频率会减小。

第2课时

【本节聚焦】 略

【基础夯实】

- 1.B 2.B 3.B 4.C
- 5.不一定。自然界中有些植物在外界因素(如低温)的影响下,可能实现染色体的加倍,从二倍体变为四倍体,而四倍体和二倍体存在生殖隔离,并没有经过长期的地理隔离。
- 6.共向点是都能阻断种群间的基因交流。生殖隔离产生的根本原因是种群基因库的差异。生殖隔离的结果 是形成新的物种。
- 7. ①生物进化是种群基因频率的改变,这种改变可大可小,不一定会突破物种的界限,即生物进化不一定导致物种的形成,生物进化是量变,物种形成是质变。②新物种的形成是长期进化的结果,所以新物种的形成一定存在生物进化。

【能力提升】

- 8.B 9.C 10.A 11.B
- 12.(1)遗传变异 甲、乙两岛环境不同且有地理隔离 种群基因频率的改变
 - (2)已存在生殖隔离
 - (3)形成新的物种
 - (4)1%、18%、81% 逐渐下降

第4节 协同进化与生物多样性的形成

【本节聚焦】 略

【基础夯实】

1.D 2.A 3.D 4.C 5.C 6.C 7.D 8.B 9.B

【能力提升】

- 10.C 11.D 12.A 13.A 14.D 15.B 16.D
- 17.(1)所有鳉鱼所含有的全部基因 突变和基因重组
 - (2)生殖隔离 物种 基因多样性
 - (3)低温导致甲水草幼苗或种子有丝分裂过程中纺锤体形成受到抑制,进而导致染色体组成倍增加形成四倍体水草乙
 - (4)50% 25% 52.4% 没有
- 18.(1)捕食者往往捕食个体数量多的物种。
 - (2)生物通过有性生殖,实现了基因的重组,这就增强了生物变异的多样性。
 - (3)基因突变对生物适应性的影响并不是非益即害或非害即益的,大量的基因突变是中性的,自然选择对这些基因突变不起作用,这些基因突变经过长期积累,会导致种群间遗传物质出现较大的差别。
 - (4)不是。