Transformations

Math 430, Winter 2017

What do we do if our assumptions are violated?

- 1. Change your assumptions (hard, need more stats)
- 2. Transform *y*, *x*, or both

Transformations can...

- address non-linear patterns (i.e. linear on transformed scale)
- stabilize variance
- correct skew
- · minimize the effects of outliers
- estimate percentage effects

Transforming the response

Example

How is job difficulty related to salary?

Linearity and normality

Mean function may be nonlinear. Residuals have slightly heavy-tailed distribution.

Constant variance and influence

Variance seems to be increasing. No troubling influential values.

Power transformations

Let, U be a strictly positive variable, then the *power family of transformations* is defined by

$$\psi(U,\lambda) = U^{\lambda}$$

• Try values in the range [-1, 1] and see how they help problems, {-1, -1/2, 0, 1/3, 1/2, 1} is recommended

Sometimes expansions to the range [-2, 2] is necessary

Rules of thumb

- **log rule**: if values range over more than 1 order of magnitude and are strictly positive, then the natural log is likely helpful
- range rule: if the range is considerably less than 1 order of magnitude, then transformations are unlikely to help
- square roots are useful for count data

Estimating λ

Approach:

- Minimize $RSS(\hat{\lambda})$
- · Use an inverse response plot

Application:

Use the invResPlot function found in the car package

invResPlot

invResPlot(salary_mod) # prints lambda and RSS in console

Transforming the linear model

Approach 1: Create a new column in the data frame

```
library(dplyr)
salarygov <- mutate(salarygov, lmaxsalary = log(MaxSalary))
log_mod1 <- lm(lmaxsalary ~ Score, data = salarygov)
tidy(log_mod1)

## term estimate std.error statistic p.value
## 1 (Intercept) 7.825242067 1.864010e-02 419.80678 0.000000e+00
## 2 Score 0.001889238 3.695849e-05 51.11783 3.553568e-199</pre>
```

Approach 2: Apply the transformation in the 1m formula

```
log_mod2 <- lm(log(MaxSalary) ~ Score, data = salarygov)
tidy(log_mod2)

## term estimate std.error statistic p.value
## 1 (Intercept) 7.825242067 1.864010e-02 419.80678 0.0000000e+00
## 2 Score 0.001889238 3.695849e-05 51.11783 3.553568e-199</pre>
```

Transformed linear model?

Linearity and normality

The mean function appears to be linear and the residuals are well-approximated by the normal distribution.

Constant variance and influence

There are no influential points and the appears to be constant.

Interpreting the slope?

Making predictions?

We can still use predict to make predictions...

```
newdata <- data.frame(Score = 469) # avg. difficulty score
cip <- predict(log_mod2, newdata = newdata, interval = "confidence")
cip

## fit lwr upr
## 1 8.711295 8.697832 8.724757</pre>
```

but we need to back-transform

```
exp(cip)
## fit lwr upr
## 1 6071.097 5989.913 6153.381
```

Box-Cox transformation

We can automate the selection of the power transformation using the **modified power family** originally defined by Box and Cox (1964)

$$\psi_M(Y, \lambda_y) = \begin{cases} \operatorname{gm}(Y)^{1-\lambda_y} \times (Y^{\lambda_y - 1})/\lambda_y & \lambda_y \neq 0 \\ \operatorname{gm}(Y) \times \log(Y) & \lambda_y = 0 \end{cases}$$

where $gm(Y) = exp(\sum log(y_i)/n)$

- Transforming for normality of residuals
- λ can be estimated via maximum likelihood

Box-Cox transformation

boxCox(salary_mod) # to get the plot

Box-Cox transformation

##

bcPower Transform(salary_mod)) # print the estimate

bcPower Transformation to Normality
##

Est.Power Std.Err. Wald Lower Bound Wald Upper Bound
Y1 0.1292 0.0647 0.0025 0.256
##

Likelihood ratio tests about transformation parameters

LR test, lambda = (0) 3.927686 1 0.04749724

LR test, lambda = (1) 179.872520 1 0.00000000

LRT df

pval

Transforming the predictor

Example

How are tree height and tree diameter related for the Western red cedar?

invTranPlot

invTranPlot(Height ~ Dbh, data = ufcwc) # prints lambda and RSS in console

Transforming the linear model

Approach 1: Create a new column in the data frame

```
ufcwc <- mutate(ufcwc, ldbh = log(Dbh))
rc_mod1 <- lm(Height ~ ldbh, data = ufcwc)
tidy(rc_mod1)

## term estimate std.error statistic p.value
## 1 (Intercept) -463.3144 32.437870 -14.28313 6.505273e-29
## 2 ldbh 119.5192 5.531705 21.60621 5.761417e-46</pre>
```

Approach 2: Apply the transformation in the 1m formula

```
rc_mod2 <- lm(Height ~ log(Dbh), data = ufcwc)
tidy(rc_mod2)

## term estimate std.error statistic p.value
## 1 (Intercept) -463.3144 32.437870 -14.28313 6.505273e-29
## 2 log(Dbh) 119.5192 5.531705 21.60621 5.761417e-46</pre>
```

Transformed linear model?

Linearity and normality

The mean function appears to be linear and the residuals are well-approximated by the normal distribution.

Constant variance and influence

There are no influential points and the appears to be roughly constant.

Prediction

If you added a new column to the data frame...

```
newdata <- data.frame(ldbh = log(600))
predict(rc_mod1, newdata = newdata, interval = "prediction")
### fit lwr upr
## 1 301.2415 234.8101 367.673</pre>
```

If you transformed **Dbh** in the model formula...

```
newdata2 <- data.frame(Dbh = 600)
predict(rc_mod2, newdata = newdata2, interval = "prediction")
## fit lwr upr
## 1 301.2415 234.8101 367.673</pre>
```

Transforming both variables

Example

How is the volume of a ship's cargo related to the time required to load and unload the cargo?

Approaches

Approach 1:

- 1. Use an inverse transformation plot to choose a transformation for X
- 2. Transform X, then use an inverse response plot to choose a transformation for Y

Approach 2:

Transform X and Y simultaneously using the Box-Cox procedure

Graphical approach

```
invTranPlot(Time ~ Tonnage, data = glakes, lambda = c(-1, -.5, -.33, 0, .33, .5, 1))
```


lambda RSS ## 1 0.9591321 3313.093 ## 2 -1.0000000 13096.852

Graphical approach

```
cargo_mod1 <- lm(Time ~ I(Tonnage^{.33}), data = glakes) invResPlot(cargo_mod1, lambda = c(-1, -.5, -.33, 0, .33, .5, 1))
```


Transformed linear model?

cargo_mod2 <- lm(log(Time) ~ I(Tonnage^.33), data = glakes)</pre>

Linearity and normality

The mean function appear to be linear and the residuals are well-approximated by the normal distribution.

Constant variance and influence

There are no influential points and the appears to be roughly constant.

Box-Cox approach

Transformed linear model?

cargo_bcmod <- lm(log(Time) ~ I(Tonnage^.25), data = glakes)</pre>

Linearity and normality

The mean function appears to be linear and the residuals are well-approximated by the normal distribution.

Constant variance and influence

There are no influential points and the appears to be roughly constant.

A note on log transformations

If we apply a log transformation to both the response and the predictor, then

$$\%\Delta Y \approx \beta_1 \times \%\Delta x$$

- So, for every 1% increase in x, the model predicts a β_1 % increase in Y
- β_1 needs to be small for this to work out (see p.79 for details)

Issues with Transformations

- You're often guessing
 - Statistics is an art AND a science!
- Changes the interpretation of the parameters
 - need to back-transform to provide interpretable results
- Changes SEs of the parameters
- Not always easy to keep track of all your assumptions