Model averaging, selection and adequacy Taming the BEAST in London

Louis du Plessis

Department of Zoology, University of Oxford

July 2017

What goes into a BEAST model?

Introduction

Model selection

Model averaging

Model adequacy

References

demographic model

molecular clock model

What is a model?

Model consists of:

- ► Tree prior
- Site model
- Clock model
- ▶ Priors
- Hyperpriors

How can we decide which model components to use?

- ▶ **Model selection:** Which model is better?
- ▶ Model adequacy: Is the model any good?
- ▶ **Model averaging:** If you don't want to choose...

Bayesian phylogenetics

Posterior:

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

Bayesian phylogenetics

Posterior:

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

Should actually write:

$$p(\theta|D,M) = \frac{p(D|M,\theta)p(\theta|M)}{p(D|M)}$$

▶ D: Data

► M: Model

lacktriangleright eta: Particular parameterization of model M

Bayesian phylogenetics

Posterior:

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

Should actually write:

$$p(\theta|D,M) = \frac{p(D|M,\theta)p(\theta|M)}{p(D|M)}$$

▶ D: Data

► M: Model

lacktriangleright eta: Particular parameterization of model M

P(D|M) is the marginal probability of the data under model M

Marginal likelihood of the data

Need to calculate the marginal likelihood of the data to do Bayesian model selection:

$$P(D|M) = \int_{\theta} P(D|M,\theta) P(\theta|M) d\theta$$

Marginal likelihood of the data

Need to calculate the marginal likelihood of the data to do Bayesian model selection:

$$P(D|M) = \int_{\theta} P(D|M,\theta) P(\theta|M) d\theta$$

Calculate Bayes factors:

$$BF_{M_1,M_2} = \frac{P(D|M_1)}{P(D|M_2)}$$

Marginal likelihood of the data

Need to calculate the marginal likelihood of the data to do Bayesian model selection:

$$P(D|M) = \int_{\theta} P(D|M,\theta) P(\theta|M) d\theta$$

Calculate Bayes factors:

$$BF_{M_1,M_2} = \frac{P(D|M_1)}{P(D|M_2)}$$

- ▶ Models do **not** need to be nested!
- ► Cannot compare models on **different** datasets!
- ightharpoonup P(D|M) is **difficult** to calculate!

In Tracer:

- ► HME (Harmonic mean estimate)
- ► AIC_M

Model selection

Model averaging

Model adequacy References

In Tracer:

- ► HME (Harmonic mean estimate)
- ► AIC_M

"The total unsuitability of the harmonic mean estimator should have been apparent within an hour of its discovery." - Radford Neal (http://radfordneal.wordpress.com/2008/08/17/

 ${\tt the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever})$

Model selection

Model averaging

Model adequacy

In Tracer:

- ► HME (Harmonic mean estimate)
- ► AIC_M

"The total unsuitability of the harmonic mean estimator should have been apparent within an hour of its discovery." - Radford Neal (http://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever)

Only use the AIC_M if you are short on time!

Model selection

Model averaging

Model adequacy

In Tracer:

- ► HME (Harmonic mean estimate)
- ► AIC_M

"The total unsuitability of the harmonic mean estimator should have been apparent within an hour of its discovery." - Radford Neal (http://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever)

Only use the AIC_M if you are short on time!

In BEAST and BEAST2:

- ► Stepping stone
- Path-sampling

Model selection

Model averaging

Model adequacy

In Tracer:

- ► HME (Harmonic mean estimate)
- ► AIC_M

"The total unsuitability of the harmonic mean estimator should have been apparent within an hour of its discovery." - Radford Neal (http://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever)

Only use the AIC_M if you are short on time!

In BEAST and BEAST2:

- ► Stepping stone
- Path-sampling

Stepping stone and path-sampling are the best that is currently available!

Model selection

Model averaging

Model adequacy

Model selection in Tracer

Introduction

Model selection

Model averaging

Model adequacy References

Model selection in BEAST2

troduction

Model selection

Model averaging

Model selection in BEAST2

Introduction

Model selection

Model averaging

Model adequacy

Nuisance parameters

Marginalization:

$$P(\phi) = \int_{\theta} P(\phi, \theta) d\theta = \int_{\theta} P(\phi|\theta) P(\theta) d\theta$$

- ► We can get rid of parameters we are not interested in by integrating them out!
- ► Effectively taking an average across all possible values of the parameter
- ► Estimates remaining parameters while taking into account uncertainty in nuisance parameters

Nuisance parameters

Marginalization:

$$P(\varphi) = \int_{\theta} P(\varphi, \theta) d\theta = \int_{\theta} P(\varphi|\theta) P(\theta) d\theta$$

- ► We can get rid of parameters we are not interested in by integrating them out!
- ► Effectively taking an average across all possible values of the parameter
- ► Estimates remaining parameters while taking into account uncertainty in nuisance parameters
- e.g. BEAST naturally takes into account phylogenetic uncertainty by integrating over all possible tree topologies!

Model averaging

We can actually integrate out components of the model in the same way! (nuisance models?)

Reversible-jump MCMC (RJMCMC):

- Specify the state space of different models
- Need to tell your MCMC sampler how to step between different models
- ▶ Not easy to implement correctly (see [Green, 1995])

Simple example

Stepping from JC69 to K80 means introducing an extra parameter

BModelTest

Averages over different nucleotide substitution models

Figure adapted from [Bouckaert and Drummond, 2017]
All models with transition/transversion split

Introduction

Model selection

Model averaging

Model adequacy

References

BModelTest

All time-	with/without	with/without	with/without
reversible	estimated	Gamma rate	invariant
models	frequencies	heterogeneity	sites
203	× 2	× 2	× 2

= 1,624 models!

BModelTest

All timereversible estimated frequencies heterogeneity with/without invariant sites

203 × 2 × 2 × 2

Introduction

Model selection

Model averaging

Model adequacy

= 1,624 models!

- ▶ BModelTest takes nucleotide model uncertainty into account
- ➤ The estimated rates are the average rates averaged over all models in the set of models allowed
- ► Support for a particular model is proportional to the time the chain spends in that model

Model adequacy

(courtesy of David Duchêne)

Is the model actually any good?

Introduction

Model selection

Model averaging

Model adequacy

Model adequacy

(courtesy of David Duchêne)

Is the model actually any good? Basic idea:

Simulated data with estimated parameter should be similar to the empirical data

References I

- Bouckaert, R. R. and Drummond, A. J. (2017). bmodeltest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology, 17(1):42.
- Green, P. J. (1995). Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika, 82(4):711–732.

Introduction

Model selection

Model averaging

Model adequacy