Теоретическая справка для первого занятия по теории

Поляризация и поляризатор

Уравнение плоской волны следующее: $\overline{E} = \overline{E_0} \cos(\omega t - kx)$.

Плоская волна называется линейно поляризованной, если электрический вектор \vec{E} лежит в одной плоскости. Эта плоскость называется плоскостью поляризации. Например, естественный свет мы не можем считать поляризованным, так как он является случайной смесью компонент с различными поляризациями.

Получить поляризованный свет можно, например, пропустив естественный через пластинку турмалина. Такие пластинки сильно поглощают лучи, направление поляризации которых перпендикулярно оптической оси. А лучи, электрический вектор которых параллелен, проходят через пластинки практически без поглощения. Всякий прибор, служащий для получения поляризованного света, называется поляризатором.

Пластинка λ/2

В работе с квантовой криптографией используются так называемые пластинки $\frac{\lambda}{2}$. Пусть у нас есть линейно поляризованная плоская волна, который распространяется вдоль оси x. Компоненты поля \vec{E} по осям y и z изменяются следующим образом:

$$E_y = E_{0y}\cos(\omega t - kx);$$
 $E_z = E_{0z}\cos(\omega t - kx)$

А теперь рассмотрим пластинку, которая вдоль оси у изменит фазу

компоненты E_y на π :

$$E_y = -E_{0y}\cos(\omega t - kx);$$
 $E_z = E_{0z}\cos(\omega t - kx)$

Свет остался линейно поляризованным, но в зеркальном направлении. Пластинка с такими свойствами называется пластинкой $\frac{\lambda}{2}$.

Направление поляризации до и после пластинки (рис. 1)

Поляризационный светоделитель

Поляризационный светоделитель (бимсплиттер) — это оптическое устройство, которое разделяет пучок света на два в зависимости от поляризации. Компоненты пучка с вертикальной поляризацией бимсплиттер пропускает, а компоненты с горизонтальной поляризацией отражает в перпендикулярном направлении.

Поляризационный светоделитель (рис.2)

Закон Малюса

Допустим, что два поляризатора поставлена друг за другом так, что их оси OA_1 и OA_2 образуют некоторый угол. Первый поляризатор пропустил свет, электрический вектор $\overline{E_0}$ которого параллелен его оси OA_1 . Обозначим через I_0 интенсивность этого света. Электрический вектор можно разложить на два направления. Проходя через второй поляризатор, остается только параллельная компонента. Электрический вектор теперь равен $\overline{E_0} \cdot \cos(\alpha)$. Так как $I{\sim}E^2$, то можно сделать следующий вывод:

$$I = I_0 \cdot \cos^2(\alpha)$$

Угол Брюстера

Направим неполяризованный свет к поверхности под углом α . Угол α выберем таким, чтобы отраженный луч и преломленный были перпендикулярны. В таком случае отражаться будет свет только с одной из двух компонент. То есть свет будет линейно поляризованным при отражении. Данный угол называется углом Брюстера.

