CHAPTER - 12 LIMITS AND REAL FUNCTIONS

JEE MAIN - SECTION I

2. 2 Coften =
$$\frac{1}{\tan 4n}$$
 $\frac{1}{\cot^2 2n} = \tan^2 2n$

4. 2
$$\sum n^{k} = n + n^{k} + n^{k} + n^{k} + n^{k} + n^{k}$$

 $\vdots \quad 0 \quad \text{and hence use LHR}$

6. 3
$$\lim_{N \to 0} \frac{e^{2N} - 2N - 1}{N^2}$$

$$= \lim_{N \to 0} \frac{1 + 2N + \frac{(2N)^2}{2} - 2N - 1}{N^2} = \frac{2}{N}$$

8. 1 Lt
$$a = \begin{pmatrix} cot n - cos n \\ a \end{pmatrix}$$

$$\begin{pmatrix} cot n - cos n \\ cot n - cos n \end{pmatrix}$$

9. 3
$$Cos A Cos 2A \dots Cos 2^{N-1}A = \frac{Sin 2^N A}{2^N Sin A}$$

12. 4
$$n \rightarrow 0$$
 $\left[1 + \frac{a^n + b^n + c^n}{3} - 1\right]^{\frac{1}{n}}$

14. 1
$$n \rightarrow 3^{+} \Rightarrow [n] = 3 \Rightarrow [n]^{2} = 9$$
 $n \rightarrow 3^{+} \Rightarrow n > 3 \Rightarrow n^{2} > 9$

15. 2
$$\frac{L+}{m\to\infty} = \frac{m \left(\frac{m(m+i)(2m+i)}{6}\right)}{\frac{m^2(m+i)^2}{4}}$$

16. B
$$F(1-) = F(1+)$$
 and $1 \le n \le 2 \implies 3 \cdot g(x+1) = 1$

17. 2

Lt
$$\frac{e^{x}}{n \to 0} = 1$$
, $\frac{Lt}{n \to 0} = \frac{s_1 \cdot n^x}{n} = 1$ and

 $\frac{1}{n \to 0} = \frac{\log (1+n)}{n} = 1$

18. 2
$$n \rightarrow 0^- \Rightarrow |n| = -n$$
 and $(n) = -1$

$$= \frac{n(-1-n)\sin(-1)}{-n}$$

$$= \frac{-n(1+n)\sin(-1)}{-n} = -\sin(-1)when$$

$$= \frac{-n\cos(-1)}{-n}$$

$$= \frac$$

19. 4
$$\log(\frac{a}{b}) = \log a - \log b$$
 and
L+ $\log(1+n) = 1$

SECTION II (NUMERICAL)

21. 3
$$\lim_{N\to\infty} \left[1+1-\cos n \sqrt{\cos 2n} \right]^{\frac{1}{(n+2)}}$$

$$use \lim_{N\to\infty} \left[1+f(n) \right]^{\frac{1}{2}} = 0$$

22. 3

Use when
$$n \to 0 \Rightarrow s / n^{2} n = n^{2}$$

where $n \to 0$
 $x \times (1 + n + \frac{n^{2}}{2}) - p (n - \frac{n^{2}}{2} + \frac{n^{2}}{3}) + y + n^{2} (1 - n)$
 $x \to n^{2}$
 $x - p = 0 \quad x + \frac{p}{2} + y = 0 \quad \frac{x}{2} - \frac{p}{3} - y = 10$
 $x = p \quad 2x + p + 2y = 0 \quad 3x - 2p - 6y = 6s$
 $3x + 2y = 0 \quad 3x + 2y = 0$
 $3x + 2y = 0 \quad 3x + 2y = 0$
 $3x - 18 = 0 \Rightarrow x = 6 \quad y = -9$
 $3x - 18 = 0 \Rightarrow x = 6 \quad y = -9$
 $x + p + y = 6 + 6 - 9 = 3$

25. 1.2
$$f(a) = \underset{n \to 1}{\text{L}} \frac{n^{\alpha} - an + a - 1}{(n - 1)^{2}} \stackrel{\circ}{=} 0$$

$$= \underset{n \to 1}{\text{L}} \frac{an^{\alpha-1} - a}{a(n - 1)} \stackrel{\circ}{=} 0$$

$$= \underset{n \to 1}{\text{L}} \frac{a(a - 1)}{a(n - 1)} \stackrel{\alpha - 1}{=} \frac{a(a - 1)}{2}$$

$$f(a) = \frac{a(a - 1)}{2} \stackrel{\circ}{=} \frac{a(a - 1)}{2} \stackrel{\circ}{=} \frac{a(a - 1)}{2}$$

$$f(b) = \frac{6}{5} = 1 \cdot 2$$

JEE ADVANCED LEVEL SECTION III

27. C Use the expansion
$$(1+n)^{\frac{1}{n}} = e \left(1 - \frac{n}{2} + \frac{11}{24} n^{2} - \dots \right)$$

28. C

$$\frac{1}{n \Rightarrow 0} = \frac{a + b}{n^{2}} + \frac{b + (a - \frac{b}{2})n^{2}}{n^{2}} = \frac{1}{2}$$

$$\frac{1}{n \Rightarrow 0} = \frac{a + b}{n^{2}} + \frac{a - \frac{b}{2}n^{2}}{n^{2}} = \frac{1}{2}$$

$$\frac{1}{n \Rightarrow 0} = \frac{a + b}{n^{2}} + \frac{a - \frac{b}{2}n^{2}}{n^{2}} = \frac{1}{2}$$

29. 3 L+
$$\frac{8}{n^8}$$
 (1- $\cos \frac{n^2}{2}$) (1- $\cos \frac{n^2}{4}$)

30. 3 Equation with root
$$\alpha$$
 and β is $(n-\alpha)(n-\beta)=0$. Use expansion Malkod $e^{n}=1+\frac{n}{1!}+\frac{n^{2}}{2!}+\cdots$

31. D
$$x \to 0^+ \Rightarrow [x] = 0$$

 $x \to 0^- \Rightarrow [x] = -1$
 $RHL = \underset{x \to 0^+}{Lt} f(x) = 0$
 $LHL = \underset{x \to 0^-}{Lt} f(x) = \frac{\sin[x]}{[x]} = \frac{\sin 1}{-1} = -\sin 1$

SECTION IV (More than one correct)

32. A,B By LHR

$$\alpha = Lt_{x \to \frac{\pi}{4}} \frac{3\tan^2 x \sec^2 x - \sec^2 x}{-\sin\left(x + \frac{\pi}{4}\right)}$$

$$=\frac{3\times1\times2-2}{-\sin\frac{\pi}{2}}=-4$$

$$\beta = e^{\frac{\cos x - 1}{\tan x}} = e^{\frac{Lt}{x \to \infty} \frac{-\sin x}{\sec^2 x}} = e^{-\sin 0} = e^0 = 1$$

$$\alpha = -4$$
 $\beta = 1$ are roots

$$(x+4)(x-1)=0$$

$$x^2 + 3x - 4 = 0$$

$$a = 1, b = 3$$

33. A,B,C
$$\frac{|f(x)|}{f(x)} = 1 \text{ when } f(x) > 0$$
$$= -1 \text{ when } f(x) < 0$$
$$= \text{Does not exist when } f(x) = 0$$

34. A,C
$$\underset{x\to 0}{\text{Lt}} \frac{a - \sqrt{a^2 - x^2} - \frac{x^2}{4}}{x^4}, a > 0 \text{ is } L$$

A)
$$a = 2$$
 B) $a = 1$ C) $CL = \frac{1}{64}$ D) $L = \frac{1}{32}$

$$Lt \frac{a - a\left(1 - \frac{x^2}{a^2}\right)^{\frac{1}{2}} - \frac{x^2}{4}}{x^4} = L(Finite)$$

$$\operatorname{Lt}_{x\to 0} a - a \left[1 - \frac{1}{2} \frac{x^2}{a^2} + \frac{\frac{1}{2} \left(\frac{1}{2} - 1 \right)}{1 \times 2} \frac{x^4}{a^4} = \frac{\frac{1}{2} \left(\frac{1}{2} - 1 \right) \left(\frac{1}{2} - 2 \right) x^6}{1 \times 2 \times 3} + \dots \right] - \frac{x^2}{4} = L$$

$$Lt_{x\to 0} = \frac{a-a+\frac{1}{2}\frac{x^2}{a}-\frac{\frac{1}{2}\times-\frac{1}{2}}{2}\frac{x^4}{a^3}+\frac{\frac{1}{2}\times\frac{-1}{2}\times-\frac{1}{2}}{6}\frac{x^6}{a^5}\dots\frac{x^2}{4}=L}{x^4}$$

$$\frac{x^{2}\left(\frac{1}{2a} - \frac{1}{4}\right)}{x^{4}} + \frac{1}{8a^{3}} + \left(\frac{1}{8a^{5}}\right) \stackrel{\nearrow^{0}}{=} x^{2}$$

Limit is finite
$$\Rightarrow \frac{1}{2a} - \frac{1}{4} = 0 \Rightarrow a = 2$$

When a = 2

$$L = Lt_{x\to 0} \frac{1}{8a^3} = \frac{1}{8\times 2^3} = \frac{1}{64}$$

35. A,B
$$f(x) = \frac{a+b}{x^3} + \frac{1+a-b+c}{x^3}x + \frac{\left(\frac{a}{2} + \frac{b}{2} - \frac{c}{2}\right)x^2}{x^3}$$

$$a+b=0$$

 $1+a-b+c=0$
 $\frac{a}{2} + \frac{b}{2} - \frac{c}{2} = 0$
 $a = \frac{-1}{2}b = \frac{1}{2}c = 0$

Limit =
$$\frac{1}{6} \left[-1 - \frac{1}{2} - \frac{1}{2} \right]$$

SECTION V - (Numerical type)

36.
$$2 \qquad \text{Lt}_{x\to 0} \frac{e\left(e^{\cos\alpha^n - 1}\right)}{\alpha^m} = \frac{-e}{2}$$

$$\underset{x\to 0}{Lt} \frac{\left(e^{\cos\alpha^n}-1\right)}{\left(\cos\alpha^n-1\right)} \frac{\left(\cos\alpha^n-1\right)}{\alpha^m} = \frac{-1}{2}$$

$$Lt_{x\to 0} \frac{(1-\cos \alpha^{n})}{\alpha^{m}} = \frac{1}{2}; \frac{1-\cos x}{x^{2}}$$

$$a^m = (\alpha^n)^2$$
; $a^m = \alpha^{2n}$

$$m = 2n$$

$$\frac{m}{n} = 2$$

37.
$$11 \qquad \underset{x\to 0}{\text{Lt}} \frac{1-\cos\left(1-\cos\frac{x}{2}\right)\left(1-\cos\frac{x}{2}\right)^2}{\left(1-\cos\frac{x}{2}\right)^2} = 1$$

$$\operatorname{Lt}_{x \to 0} \frac{1}{2} \left(\frac{1 - \cos \frac{x}{2}}{\left(\frac{x}{2}\right)^2} \right)^2 \frac{\left[\left(\frac{x}{2}\right)^2\right]^2}{2^m x^n} = 1; \operatorname{Lt}_{x \to 0} \frac{1}{2} \left(\frac{1}{2}\right)^2 \frac{x^4}{2^4} \frac{1}{2^m x^n} = 1$$

Lt
$$\frac{1}{2} \frac{1}{2^2} \frac{1}{2^4} \frac{x^4}{2^m x^n} = 1$$
; Lt $\frac{x^4}{x^n} = 2^{m+7}$

Lt
$$_{x\to 0} x^{4-n} = 2^{m+7}$$
 : $n = 4 \Rightarrow m+7 = 0 \Rightarrow m = -7$; $n-m = 4-(-7)=11$

38. C

APAB and APBC are similar

$$CD = \sin \theta OB = \cos \theta AB = \theta$$

$$\therefore PA = f(\theta) = \frac{\theta(\cos \theta - 1)}{(\sin \theta - \theta)}$$

ΔPAB and ΔPBC are similar

$$CD = \sin \theta OB = \cos \theta AB = \theta$$

$$\therefore PA = f(\theta) = \frac{\theta(\cos \theta - 1)}{(\sin \theta - \theta)}$$

$$\lim_{\theta \to 0} PA = \lim_{\theta \to 0} \frac{\theta (\cos \theta - 1)}{(\sin \theta - \theta)}$$

$$= \lim_{\theta \to 0} \frac{\theta(\sin \theta) + (\cos \theta - 1)}{\cos \theta - 1}$$

$$= \lim_{\theta \to 0} \frac{\theta \sin \theta}{1 - \cos \theta} + 1$$
$$= \frac{1}{\frac{1}{2}} + 1 = 3$$

39. A
$$\lim_{\theta \to 0} \theta^2 \frac{PC}{BC} = \lim_{\theta \to 0} \theta^2 \frac{\sin \theta}{\theta \sin \theta}$$

$$= \lim_{\theta \to 0} \left(\frac{\frac{\theta^2 \sin \theta}{\theta}}{a - \sin \theta} \right)$$

$$\lim_{\theta \to 0} \frac{\theta^3}{\theta - \sin \theta} = 6$$

SECTION VI - (Matrix match type)

A)
$$e^{2} \approx 7.8$$

$$|[e^{2}] = 7 \quad [-e^{2}] = -8$$

$$|A \rightarrow 9|$$
B) When $n \rightarrow 0$

$$|\frac{S^{1} \circ n}{n}| = 0 \quad \text{and} \quad \left[\frac{\tan n}{n}\right] = 1$$

$$|B \rightarrow 8|$$