18 May 2020

11.7 Problem set: Radian measures and standard trigonometry ratios

1. A right $\triangle ABC$ is shown with side lengths 1, $\sqrt{3}$, and 2, as marked. Identify each true statement

$$\Box$$
 (a) $1^2 + (\sqrt{3})^2 = 2^2$

$$\Box \text{ (b) } \cos A = \frac{1}{2}$$

$$\Box (c) \sin B = \frac{\sqrt{3}}{2}$$

$$\Box$$
 (d) $m\angle A = 60^{\circ}$

$$\Box \text{ (e) } \cos B = \frac{\sqrt{3}}{2}$$

$$\square$$
 (f) $m \angle A = 2 \times m \angle B$

2. Two similar, right isosceles triangles $\triangle HAT \sim \triangle CAB$ have a scale factor k=3. Angles $\angle H$ and $\angle C$ measure 90° and HA=HT=1, as shown.

(a) Find the exact length of the hypotenuse TA

(c) Find the altitude of $\triangle CAB$, BC

В

3. Convert the angle radian measure to degrees. (recall $360^{\circ} = 2\pi$ radians)

(a) $\frac{\pi}{6}$

(b) $\frac{\pi}{4}$

(c) $\frac{2\pi}{3}$

4.	Convert the degree measure t	o radians (state an	exact value, i.e.	a fraction times π)
----	------------------------------	---------------------	-------------------	--------------------------

(a) 60°

(b) 45°

(c) 135°