

Correlação Linear

Felipe Figueiredo

Correlação

Correlação Linear

Associação de duas amostras (quantitativa)

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Discussão da aula passada

Discussão da leitura obrigatória da aula passada

Correlação Linear

Felipe Figueiredo

Sumário

Introdução

- Associação entre duas variáveis contínuas
- Coeficiente de correlação de Pearson
- Interpretação
- Resumo
 - Causalidade
 - Resumo
- Aprofundamento
 - Aprofundamento

Dispersão (Revisão)

- A variância (assim como o DP) é uma medida da dispersão da amostra
- P: o quanto os dados se desviam da média?
- Medida sumária: um único número para a amostra

Interpretação

Quanto maior a variância...

... maior a dispersão em relação ao centro.

Correlação

Linear

Felipe

Figueiredo

Linear

Felipe Figueiredo

Visualização – Dispersão "pequena" Correlação Linear Felipe Figueiredo Introdução Introdução Resumo Aprofundamento

29

Visualização - Dispersão "pequena" - boxplot

Correlação Linear

Felipe Figueiredo

Intro

Correlação Linear

Felipe Figueiredo

Intro

Visualização - Dispersão "grande" - boxplot

Correlação Linear

Felipe Figueiredo

Intro

Dispersão "conjunta" entre duas variáveis

Correlação Linear

Felipe Figueiredo

Intro

Pareando duas amostras, podemos tentar observar:

Podemos usar um raciocínio análogo para comparar quanto uma

- a dispersão no eixo horizontal (difícil)
- a dispersão no eixo vertical (difícil)

amostra se desvia em relação à outra

• a "dispersão conjunta" entre ambas (fácil)

Visualização – Dispersão "pequena" Correlação Linear Felipe Figueiredo Introdução Introdução Resumo Aprofundamento R G G COVERÇÃO COVERÇÃO COVERÇÃO RESUMO Aprofundamento

Dispersão – casos extremos

- Correlação Linear

Felipe Figueiredo

Intro

Nos dois casos extremos temos:

duas variáveis perfeitamente associadas

• Esta dispersão conjunta é a base para entender a associação

duas variáveis não associadas

Visualização - Dispersão conjunta "inexistente"

(2 0

-20

Correlação Linear

Felipe Figueiredo

Intro

Visualização - Dispersão amostras independentes

Correlação Linear

Felipe Figueiredo

Intro

Medida de associação entre duas variáveis contínuas

G cov = 23.1

Correlação Linear

Felipe Figueiredo

O DP é uma medida a dispersão de uma variável contínua. • Existe um análogo para duas variáveis, simultaneamente.

O nome desta solução é coeficiente de correlação r.

Tipos de variáveis envolvidas

INTO

Correlação Linear

Felipe Figueiredo

Introdução

Correlação Associação

> earson terpretação

Anrofundamento

- Considere duas amostras X e Y, de dados numéricos contínuos.
- Vamos representar os dados em pares ordenados (x,y) onde:
 - X: variável independente (ou variável explanatória)
 - Y: variável dependente (ou variável resposta)

Medidas de associação

- Quando uma associação é forte, podemos identificá-la subjetivamente
- Para isto, analisamos o gráfico de dispersão dos pares (x,y)
- Um gráfico deste tipo é feito simplesmente plotando os pontos no plano cartesiano

Medidas de associação

Correlação Linear Felipe Figueiredo

Introdu

Associação
Pearson
Interpretação

Resumo

Aprofundamen

- Se uma amostra é dependente de outra, é razoável assumir que isso possa ser observável por estatísticas sumárias
- Como resumir esta informação em uma única grandeza numérica?

Correlação Linear Felipe Figueiredo Introdução Correlação Associação Peurson Interpritação Resumo Aprofundament (a) Positive correlation between x and y Fonte: Triola, 2004

Correlação Linear

Felipe Figueiredo

Correlação
Associação

Coeficiente de correlação

Definição

O coeficiente de correlação r é a medida da direção e força da associação entre duas variáveis.

INTO

Correlação Linear

Felipe Figueiredo

Introdução

Correlação
Associação
Pearson

Pocumo

Aprofundamento

Correlação

Correlação Linear

Felipe Figueiredo

ntroducão

Correlação
Associação

Resumo

Aprofundamento

Interpretação

- Uma forte associação positiva corresponde a uma correlação próxima de 1.
- Uma forte associação negativa corresponde a uma correlação próxima de -1.
- A ausência de associação corresponde a uma correlação próxima de 0.

IC e Teste de significância

Correlação Linear Felipe

Figueiredo

- Se tivéssemos os dados de toda a população, poderíamos calcular o parâmetro ρ
- Na prática, só podemos calcular a estatística r da amostra
- Utilizamos r como estimador para ρ, e testamos a significância estatística da forma usual
 Podemos apresentar o Intervalo de Confiança em torno de r

Introdução

Associação
Pearson

Resumo

Aprofundament

Exemplo

Correlação Linear Felipe

Exemplo

Correlação Linear Felipe

Associação perfeita

Pearson's product-moment correlation

data: G and G
t = 355106730, df = 28, p-value < 2.2e-16
alternative hypothesis: true correlation
is not equal to 0
95 percent confidence interval:
1 1
sample estimates:
cor

Associação "forte"

data: G and GP t = 28.803, df = 28, p-value < 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.9653236 0.9922253 sample estimates: cor 0.9835406

Pearson's product-moment correlation

Exemplo

Correlação Linear

Felipe

Associação "moderada"

Pearson's product-moment correlation

data: G and GM
t = 5.6488, df = 28, p-value = 4.727e-06
alternative hypothesis: true correlation
is not equal to 0
95 percent confidence interval:
 0.5013686 0.8631382
sample estimates:
 cor
 0.7298133

Exemplo – amostras independentes

Correlação Linear Felipe

Associação inexistente

Pearson's product-moment correlation

data: G and seq(1, 30)

t = -0.64301, df = 28, p-value = 0.5254

alternative hypothesis: true correlation
is not equal to 0

95 percent confidence interval:
-0.4608704 0.2505266

sample estimates:
cor
-0.1206304

Exemplo

Correlação Linear Felipe

Associação "fraca"

Pearson's product-moment correlation

Exemplo

Exemplo 17.1

Correlação Linear

Felipe Figueiredo

Pesquisadores queriam entender por que a insulina varia tanto entre indivíduos. Imaginaram que a composição lipídica das células do músculo afetam a sensibilidade do músculo para a insulina.

Para isto, eles injetaram insulina em 13 jovens adultos, e determinaram quanta glicose eles precisariam injetar nos sujeitos para manter o nível de glicose sanguínea constante. A quantidade de glicose injetada para manter o nível sanguíneo constante é, então, uma medida da sensibilidade à insulina.

Introdução

Correlação
Associação
Pearson
Interpretação

Resumo

Exemplo

Correlação Linear

Felipe Figueiredo

Pearson

Exemplo 17.1

Os pesquisadores fizeram uma pequena biópsia nos músculos para aferir a fração de ácidos graxos poli-insaturados que tem entre 20 e 22 carbonos (%C20-22). Como variável resposta, mediram o índice de sensibilidade à insulina.

Quais são as variáveis?

- Qual é a variável independente (X)?

Qual é a variável dependente (Y)?

Exemplo 17.1

Correlação
Linear

Felipe Figueiredo

Associação Pearson

Table 17.1. Correlation Between %C20-22 and Insulin Sensitivity

% C20–22 Polyunsaturated Fatty Acids	Insulin Sensitivity (mg/m²/min)
17.9	250
18.3	220
18.3	145
18.4	115
18.4	230
20.2	200
20.3	330
21.8	400
21.9	370
22.1	260
23.1	270
24.2	530
24.4	375

Quais são as variáveis?

Independente: conteúdo lipídico (contínua)

Esta relação pode ser expressa como

insulina ~ conteúdo lipídico

Exemplo 17.1: Diagrama de dispersão dos dados

Obs: na verdade, r = 0.77.

Correlação Linear

Felipe Figueiredo

Pearson

Correlação Linear

Felipe Figueiredo

Pearson

Exemplo 17.1

- Tamanho da amostra: n = 13
- Premissa: ambas variáveis tem o mesmo n
- Premissa: mensurações vem da mesma população
- Premissa: população Normal

H₀: Não há relação entre as variáveis na população:

 $H_0: \rho = 0$

Table 17.1. Correlation Between %C20–22 and Insulin Sensitivity

% C20–22 Polyunsaturated Fatty Acids	Insulin Sensitivity (mg/m²/min)
17.9	250
18.3	220
18.3	145
18.4	115
18.4	230
20.2	200
20.3	330
21.8	400
21.9	370
22.1	260
23.1	270
24.2	530
24.4	375

Exemplo 17.1

Resultados

- r = 0.77, p = 0.0021.
- Interpretação: se não houver relação entre as variáveis (H₀), existe apenas 0.21% de chance de observamos uma correlação tão (ou mais) forte com um estudo deste tamanho
- IC = [0.38, 0.93]
- Interpretação: (...) temos 95% de confiança que a correlação real está entre 0.38 e 0.93.
- (...) e que ela é positiva!

Correlação Linear

Felipe Figueiredo

ntrodução

Correlação Associação

Pearson nterpretação

Correlação Linear

Felipe

Figueiredo

orofundamento

Saída típica de um programa

Correlação Linear

Felipe Figueiredo

Introdução

Correlação Associação Pearson

Resumo

.

Resultados brutos do exemplo

Pearson's product-moment correlation

Exemplo 17.1

Por que estas variáveis parecem correlacionadas? Considere 4 possibilidades:

- o conteúdo lipídico das membranas determina a sensibilidade à insulina
- A sensibilidade à insulina de alguma forma afeta o conteúdo lipídico
- 3 tanto o conteúdo lipídico quanto a sensibilidade à insulina estão sob o efeito de algum outro fator (talvez algum hormônio)
- 4 as duas variáveis não são correlacionados na população, e a estimativa observada nessa amostra é mera coincidência

Correlação Linear

Felipe Figueiredo

Introducão

Correlação Associação Pearson

Posumo

Mantra

Correlação Linear

Felipe Figueiredo

Repita várias vezes mentalmente

Correlação não implica causalidade

Interpretando o r

- Se $r \approx 0$, então X e Y não variam juntos (independentes, i.e., não têm associação linear)
- Se r > 0, então quando uma aumenta, a outra aumenta em proporção direta (associação linear positiva)
- Se r < 0, então quando uma aumenta, a outra diminui em proporção inversa

(associação linear negativa)

Interpretando o teste de correlação

- Nunca devemos ignorar a última possibilidade (erro tipo I)!
- o p-valor indica quão rara é essa coincidência
- neste caso, em apenas 0.21% dos experimentos não haveria uma correlação real, e estaríamos cometendo um erro de interpretação

Correlação Linear

Felipe Figueiredo

Pearson

Correlação Linear

Correlação Linear

Felipe

Figueiredo

Interpretação

Felipe Figueiredo Associação Interpretação Porém...

Correlação Linear

Felipe Figueiredo

ntroducão

Correlação Associação

Interpretação Resumo

Aprofundamento

Exemplo - correlação sem causalidade

- Em alguns países a mortalidade infantil é negativamente correlacionada com o número de telefones per capita
- Mas comprar mais telefones não vai salvar crianças!
- Explicação alternativa: a melhoria da condições financeiras pode afetar ambas as variáveis

Causa x efeito

- Se há uma relação de causalidade entre as duas variáveis, a correlação será não nula (positiva ou negativa)
- Quanto maior for a relação de dependência entre as variáveis, maior será o módulo da correlação.
- Se as variáveis não são relacionadas, a correlação será nula.

Correlação Linear

Felipe Figueiredo

ntrodução

Resumo Causalidade

Aprofundamento

Correlação Linear

Felipe Figueiredo

Introdução

Correlação
Associação
Pearson
Interpretação

Resumo

Aprofundamento

Causalidade?

Cuidado!

por uma terceira variável

• Mas não podemos inverter a afirmativa lógica do slide anterior!

Duas variáveis podem parecer correlacionadas pois são influenciadas

- Isto é, ao observar uma forte correlação, gostaríamos de concluir que uma variável causa este efeito na outra
- Infelizmente isto n\u00e3o \u00e9 poss\u00edvel!

Lembre-se

A significância do teste indica a probabilidade de se cometer um erro do tipo I (falso positivo).

Correlação Linear

Felipe Figueiredo

Introdução

Correlação

Resumo Causalidade

Mantra

Correlação Linear

Felipe Figueiredo

ntrodução Correlação

Causalidade Resumo

Aprofundamento

Exemplo

Correlação Linear

Felipe Figueiredo

Introdução Correlação

> Causalidade Resumo

Aprofundamento

Gasto com C&T (EUA) x Suicídios por enforcamento

Correlação: 0.992082

Fonte: Spurious correlations

Correlação não implica causalidade

Repita várias vezes mentalmente

Exemplo

INTO

Correlação Linear

Felipe Figueiredo

Introdução Correlação Resumo

Causalidade

Aprofundamento

Produção de mel x Prisões por posse de maconha

Correlação: -0.933389

Fonte: Spurious correlations

Exemplo

Afogamentos em piscina x Filmes com Nicholas Cage

Correlação: 0.666004

Fonte: Spurious correlations

Correlação Linear

Felipe Figueiredo

Introdução
Correlação
Resumo
Causalidade
Resumo

Mantra

Correlação Linear

Felipe Figueiredo

Introdução

Correlação

Causalidade

Aprofundamento

Repita várias vezes mentalmente

Correlação não implica causalidade

Resumo

- É necessário investigar a relação entre as variáveis!
- O que pode explicar a relação observada? (pense nas quatro perguntas anteriores)

Correlação Linear

Felipe Figueiredo

ntroducão

Corrolação

Resumo Causalidade

Resumo

Aprofundament

Causa e efeito

Ao encontrar uma forte correlação, deve-se sempre se perguntar:

- Há uma relação direta de causa e efeito entre as variáveis?
 (X causa Y?)
- Há uma relação inversa de causa e efeito entre as variáveis? (Y causa X?)
- É possível que a relação entre as variáveis possa ser causada por uma terceira variável (ou mais) que não foi analisada? (variável de confundimento)
- É possível que a relação entre duas variáveis seja uma coincidência? (erro tipo I)

Estas perguntas estão fora do escopo da Bioestatística!

Só o especialista pode investigar (e discutir) estas possibilidades.

Aprofundamento

Leitura obrigatória

- Capítulo 17, pular as seções:
 - cálculo do r, do IC, do p-valor
 - correlação de Spearman, e seu cálculo
 - Interpretação do r²

Leitura recomendada

Capítulo 17: Interpretação do r² e Correlação de Spearman

Correlação Linear

Felipe Figueiredo

Introdução

Correlação

Causalidade

Aprofundamen

Correlação Linear

Felipe Figueiredo

Introdução

Daguesa

Aprofundamento
Aprofundamento