Raport - Lista 4 ZML

Erwin Jasic

5 czerwca 2021

Na początku ustalimy pewne oznaczenia, które ułatwią zapis:

- n liczba obiektów,
- k liczba pomiarów na każdym obiekcie,
- p liczba kolumn w macierzy planu,
- $N = n \cdot k$ liczba zmiennych objaśnianych y_{ij} .

Cel raportu:

Celem raportu jest przeprowadzenie analizy jak zmieniają się poszczególne estymatory (β, γ, ρ) podczas, gdy manimulujemy wartościami n, k i p.

Zadanie 1:

W tym zadaniu przyjmujemy n = 20, k = 3, p = 4.

W podpunkcie (a) generujemy macierz zgodnie z treścią oraz dzielimy ją na n = N/k podmacierzy. Ustalamy $\beta = (3,3,0)' \in \mathbb{R}^{p-1}$. Tworzymy macierz postaci jak w treści z parametrami $\rho = 0.3$ oraz $\gamma = 2$.

Następnie w podpunkcie (b) generujemy n niezależnych wektorów losowych następującej postaci:

$$y_i = (y_{i1}, ..., y_{ik})' \sim N(X_i \beta, \Sigma) \in \mathbb{R}^k,$$

gdzie i = 1, 2, ...n. Zapisujemy dane w postaci jednowymiarowej, a następnie skorzystamy z funkcji gls() (z metodą "REML") z pakietu nlme. Tworzymy ten model zgodnie z treścią.

W podpunkcie (c) będziemy porównywać rzeczywiste wartości parametrów β , ρ i γ z ich estymatorami. Z wykłądu wiemy, że wzór na estymator $\hat{\beta}$ jest równy

$$\hat{\beta} = \left(\sum_{i=1}^{n} X_i' \hat{\Sigma}^{-1} X_i\right)^{-1} \left(\sum_{i=1}^{n} X_i' \hat{\Sigma}^{-1} y_i\right).$$

Z kolei wzór na jego kowariancje jest postaci

$$cov(\hat{\beta}) = \left(\sum_{i=1}^{n} X_i' \hat{\Sigma}^{-1} X_i\right)^{-1}.$$

Porównananie wyników uzyskanych poprzez funkcję vcov() oraz estymacje wzorami.

Norma supremum różnicy:

	Norma
\hat{eta}	0.054
cov	0.090

Porównanie odpowiednich parametrów z ich estymatorem:

	Parametr	Estymator
$\overline{\rho}$	0.3	0.397
γ	2.0	2.198

Wnioski:

Funkcja gls() daje wartości bliskie teoretycznym oszacowaniom. Widzimy to, ponieważ wartościw tabeli są male.

Parametry ρ i γ zostały dobrze oszacowane. Wartości wyestymowane i prawdziwe nie różnią się znacząco. Może się wydawać, że jest to spowodoane tym, że zadaliśmy odpowiednią strukture w funkcji gls().

Zadanie 2

W tym zadaniu mamy powtórzyć podpunkt (a) z zadania 1 i następnie powtórzyć 500 razy podpunkt (b) z zadania 1. Uzyskamy 500 modeli i na ich podstawie wyznaczymy ciąg 500-ciuset estymatorów β , ρ i γ . Następnie na ich podstawie przetestujemy asymtotyczne własności estymatora β oraz asymtotyczne własności estymatora Σ .

Na początek wykonamy polecenia dla β , a następnie dla Σ .

Histogramy dla β_0 oraz β_1 :

Obciążenia dla β_0 oraz β_1 :

	Dane.wyjściowe
Supremum	0.283
Średnia	0.108

Histogramy dla ρ oraz $\gamma :$

Obciążenia dla ρ i γ :

	Dane.wyjściowe
$\overline{\gamma}$	0.00184
ρ	-0.01992

Zadanie 3

Teraz powtórzymy zadanie 2 dla n=500.

Histogramy dla β_0 oraz β_1 :

Możemy zaobserwować lepsze dopasowanie do swojego asymptotycznego rozkładu w przypadku modelu z ilością obiektów równą 500.

Obciążenia dla β_0 oraz β_1 :

	n500
Supremum	0.144
Średnia	0.057

Wyraźnie widać spadek w wartościach obciążeń. Można wysnuć wniosek, że duża ilość obserwacji zmniejsza obciążenie estymatora.

Histogramy dla ρ oraz γ :

W przypadku estymatora dla ρ widzimy, że większa liczba obiektów powoduje zmniejszenie rozrzutu w estymatorze. Histogram dla dużego n jest bardziej skupiony w okół prawdziwej wartości niż dla mniejszego n. Obciążenia dla ρ i γ :

	n500
γ	0.00249
ρ	-0.00144

Nie widzimy specjlanych różnic w porównaniu z wyjściowymi danymi.

Zadanie 4

Teraz powtórzymy zadanie 2 dla k = 30.

Histogramy dla β_0 oraz β_1 :

Widzimy, że histogramy są bardziej skoncentrowane.

Obciążenia dla β_0 oraz β_1 :

	k30
Supremum	0.168
Średnia	-0.057

10

Obiążenia dla większego k są trochę mniejsze.

Histogramy dla ρ oraz γ :

Tak samo jak dla β widzimy, że histogramy są bardziej skoncentrowane dla większego k. Obciążenia dla ρ i $\gamma:$

	k	. 30
γ	-0.00	297
ρ	-0.00	738

Obciążenie dla γ jest podobne, ale dla ρ wyraźne mniejsze.

Zadanie 5

Powtórzymy zadanie 2 dla przypadku, gdzie p=40.

Histogramy dla β_0 oraz β_1 :

Widzimy, że histogramy są dużo szersze (antagonistycznie do przypadku z zadania 4). Obciążenia dla β_0 oraz β_1 :

	p40
Supremum	0.249
Średnia	0.013

Norma supremum jest wyższa niż dla wyjściowych danych, natomiast średnie obciążenie jest lepsze. Histogramy dla ρ oraz γ :

Widzimy wyraźne pogorszenie wykresów. Histogram dla ρ nie przypomina rozkładu normalnego. Obciążenia dla ρ i γ :

	p40
$\overline{\gamma}$	-0.00727
ρ	-0.03112

Obciążenie dla ρ wyraźne wzrosło, ale dla γ jest lepsze.

Zadanie 6

Powtórzymy teraz zadanie 2, ale dla modelu gdzie użyjemy metody "ML" zamiast "REML".

Histogramy dla parametrów β wyglądają podobnie do metody z zadania 2 ("REML"). Obciążenia dla β_0 oraz β_1 :

	ML
Supremum	0.141
Średnia	-0.063

Widzimy, że obciążenie jest trochę lepsze dla metody "ML".

Histogramy dla ρ oraz γ :

Histogramy wyglądają podobnie jak dla tych z metody "ML".

Obciążenia dla ρ i γ :

	ML
γ	-0.08171
ρ	-0.02244

Parametr γ jest znacznie większy w przypadku metody "ML", natomiast parametr ρ jest podobny do tego z metody "REML".

Podsumowanie:

Przeprowadzona analiza z zadań 2-5 pokazuje jak poszczególne parametry n, k i p oddziałowują na estymatory β, γ i ρ . W zależności od tego, który parametr zwiększamy, zmieniają nam się histogramy dla estymatorów, podobnie to wygląda z ich obciążeniem. W zadaniu 6 zobaczyliśmy, że jeśli użyjemy metody "ML" zamiast "REML" w funkcji gls(), to widzimy, że zwiększa nam się obciążenie estymatora wariancji.