My Courses / My courses / Algorithms and Data Structures, MSc (Spring 2023) / Mandatory Activities / Graph terminology

Information

A graph is bipartite if its vertex set can be partitioned into two parts, such that there are no edges between vertices in the same part.

Question 8

Answer saved

Marked out of 1.00

Which graphs are bipartite? (The names are explained in Question 1)

- left a. S_n for $n\geq 2$
- \square b. W_n for $n\geq 2$
- $leftup C_n$ for even n
- \square d. K_n for even n
- $leve{ }$ e. P_n for any $n\geq 2$
- \square f. I_n for $n \geq 2$ (the independent graph on n vertices, which has no edges)
- left g. $K_{n,m}$ for any $n\geq 2$, $m\geq 2$
- $ule{\hspace{-0.1cm}\hspace{-0.1cm}\hspace{-0.1cm}}$ h. P_2
- \Box i. K_3

3/14/23, 5:06 PM

Question 9

Answer saved

Marked out of 1.00

Recall that an undirected graph is connected if every pair of vertices is connected by a path.

Which claims are true?

- ☐ a. All bipartite graphs are connected
- □ b. Bipartite graphs of 3 or more vertices can never be connected (there must be at least two vertices in one part, which cannot share an edge by definition.)
- ☑ c. We can determine if a bipartite graph is connected by running Depth-First Search from an arbitrary vertex.
- d. We can determine if a bipartite graph is connected by running Union-Find: union all edge endpoints, then check that there is only one component.
- ☐ e. We can determine if a bipartite graph is connected by checking that every vertex in "left" part has at least one incident edge (which must necessarily go to the "right" part.)
- \Box f. We can determine if a bipartite graph is connected by counting the edges. (It must have $(n/2)^2$ edges.)
- ☑ g. We can determine if a bipartite graph is connected by running Breadth-First Search from an arbitrary vertex.

Ouestion 10

Answer saved

Marked out of 1.00

Let E be the number of edges and V the (total) number of vertices in a bipartite graph.

Let a and b denote the sizes of the two parts.

Select the true statements.

- \triangleleft a. a+b=V
- ightharpoonup b. Possibly, $E \sim \frac{1}{4} V^2$
- \square c. Possibly, $E=\frac{1}{2}V^2$
- ightharpoonup d. Possibly, V < E
- ightharpoonup e. It is guaranteed that $E=O(V^2)$
- \square f. It is guaranteed that V = O(E)
- \square g. It is guaranteed that $V \sim E$
- \Box h. It must be that a=b

Question 11

Incomplete answer

Marked out of 1.00

Question 12
Answer saved
Marked out of 1.00
Start with 4 vertices and no edges. Now add 3 random edges, independently and at random.
(To be quite precise, the random process is this: Repeatedly pick an edge from the $\binom{4}{2}$ different pairs of distinct vertices.)
What is the chance that the resulting graph is bipartite?
\bigcirc a. $\frac{1}{9}$

O d. $\frac{1}{4}$ O e. $\frac{2}{3}$ O f. $\frac{1}{2}$ O g. $\frac{1}{6}$

O c. 0

Oh. $\frac{2}{7}$

Clear my choice