The algebraic small object argument as a saturating operation

Evan Cavallo

University of Gothenburg and Chalmers University of Technology

joint work in progress with Christian Sattler

Weak factorization systems

 \otimes On a category \mathscr{E} , pair $(\mathcal{L}, \mathcal{R})$ of $\mathcal{L}, \mathcal{R} \subseteq \mathsf{Ob} \, \mathscr{E}^{\rightarrow}$

Weak factorization systems

 \otimes On a category \mathscr{E} , pair $(\mathcal{L}, \mathcal{R})$ of $\mathcal{L}, \mathcal{R} \subseteq \mathsf{Ob} \, \mathscr{E}^{\rightarrow}$

 \otimes Often generated by a set $S \subseteq \mathsf{Ob}\,\mathscr{E}^{\rightarrow}$ of left maps

$$\mathcal{R} = \{\text{maps right lifting against all } f \in \mathcal{S}\}$$

 \otimes (complemented mono, split epi) in Set generated by $\{0 \mapsto 1\}$

(make right mining against and 1.2.2)

- \otimes (triv cofib, Kan fib) on PSh(Δ) generated by $\{\Lambda_k^n \mapsto \Delta^n \mid k \leq n \in \mathbb{N}\}$
- 24.12.17 Categorical Logic & Higher Categories

Generation by a category

 \otimes *f* right lifts against $u: \mathcal{J} \to \mathcal{E}^{\to}$ when

 \otimes (complemented mono, split epi) in **AbGrp** generated by full subcategory of $\mathscr{E}^{\rightarrow}$ containing $\begin{matrix} 0 & \mathbb{Z} \\ \downarrow & & \downarrow \Delta \\ \mathbb{Z} & \mathbb{Z} \times \mathbb{Z} \end{matrix}$

⊗ "uniform fibrations" in, e.g., cubical sets (used in models of HoTT)

```
\downarrow Y
```


- The left factor is a transfinite composite of cobase changes of coproducts of generating maps
- \otimes Any left map is a retract (in $\mathscr{E}^{\rightarrow}$) of one of these

Saturation

Def. $\mathcal{A} \subseteq \operatorname{Ob} \mathscr{E}^{\rightarrow}$ is saturated when it is closed under coproducts, cobase change, transfinite composition, and retracts.

 \otimes When $(\mathcal{L}, \mathcal{R})$ is generated from \mathcal{S} by the SOA, \mathcal{L} is the least saturated class containing \mathcal{S} .

Saturation for categories?

- \otimes Garner's algebraic small object argument (2008) generates a WFS given $u \colon \mathscr{J} \to \mathscr{E}^{\to}$
- \otimes Builds left factors as transfinite composites

$$X_0 \longrightarrow X_1 \longrightarrow X_2 \longrightarrow \cdots \longrightarrow X_{\kappa}$$

... but step maps may not be left maps!

Saturation for categories?

- \otimes Garner's algebraic small object argument (2008) generates a WFS given $u \colon \mathcal{J} \to \mathscr{E}^{\to}$
- ⊗ Builds left factors as transfinite composites

$$X_0 \longrightarrow X_1 \longrightarrow X_2 \longrightarrow \cdots \longrightarrow X_K$$

... but step maps may not be left maps!

 $\otimes \$: see

as a colimit in the category LeftMap of left-structured maps

Result

 \otimes Left factors are built by colimits of diagrams in **LeftMap**:

(c) colimits of diagrams factoring through ${\mathcal J}$

$$\mathscr{I} \stackrel{d}{\longrightarrow} \mathscr{J} \stackrel{u}{\longrightarrow} \mathrm{LeftMap}$$

 \otimes and "vertical" composition $\circ \longmapsto \circ \longmapsto \circ$

Wrap-up

⊗ Can parlay idea into universal property of the double category of left-structured maps

 \otimes Under conditions on $u \colon \mathcal{J} \to \mathcal{E}^{\to}$, form of colimits can be further constrained, *cf.* Athorne's coalgebraic cell complexes (2014)

⊗ Saturation principle for wrs generated by a set is a special case

Thank you!

References

- [1] Thomas Athorne. "Coalgebraic Cell Complexes". PhD thesis. University of Sheffield, 2014. URL: etheses.whiterose.ac.uk/6285.
- [2] John Bourke and Richard Garner. "Algebraic weak factorisation systems I: Accessible AWFS". In: *Journal of Pure and Applied Algebra* 220.1 (2016), pp. 108–147. DOI: 10.1016/j.jpaa.2015.06.002.
- [3] Richard Garner. "Understanding the small object argument". In: *Applied Categorical Structures* 17 (2009), pp. 247–285. DOI: 10.1007/s10485-008-9137-4.
- [4] Daniel G. Quillen. *Homotopical Algebra*. Lecture Notes in Mathematics. Springer, 1967. DOI: 10.1007/BFb0097438.
- [5] Jiří Rosický. "Accessible Model Categories". In: *Applied Categorical Structures* 25 (2017), pp. 187–196. DOI: 10.1007/s10485-015-9419-6.