Deep Learning

M Octaviano Pratama, S.Kom., M.Kom

President Director PT Bisa Artifisial Indonesia

Artificial Intelligence

Al in Healthcare: Detect Pneumonia

Al in Healthcare: Skin Cancer Detection

Al in Healthcare

Applications of AI in Healthcare Diagnosis and Treatment Matching Engines Clinical Decision Support Patients with similar profiles Symptoms analyzer Treatments with similar Cost Benefits Ratio Treatment efficacy vs effectiveness Discovery Clinical Trials **Computer Vision Hypothesis Generation** Radiological image Analysis AI **Proof of Concepts** ECG and EEG Healthcare Workflows Patient Flow optimization **Precision medicine** Detect process inefficiencies Genomics £. **Predictive Modeling Risk** Stratification **Mobile Apps** Readmission rate Wellbeing Chronic disease management Hospital acquired infections Emergence of complications **Virtual Assistants** Source: cognit_ae

We Focus on Machine Learning

- Subset dari Artificial Intelligence
- Konsep Machine Learning: Performance, Tasks dan Experience

Machine Learning Application

We Need Data!

- https://archive.ics.uci.edu/ml/index.php
- https://www.kaggle.com/datasets
- https://data.go.id/

- https://www.kaggle.com/ronitf/heart-disease-uci
- http://faculty.neu.edu.cn/yunhyan/NEU surface defect database.html

Model ML: Artificial Neural Network (ANN)

Single Layer Perceptron

Deep Learning

Convolutional Neural Network (CNN)

Recurrent Neural Network (RNN)

Algorithm: Deep Neural Networks

Algorithm: Deep Neural Networks

Heart Disease Classification

This database contains 76 attributes, but all published experiments refer to using a subset of 14 of them. It is integer valued from 0 (no presence) to 4.

age, sex(1 = male; 0 = female), cpchest pain type, trestbpsresting blood pressure, cholserum cholestoral, fbs(fasting blood sugar > 120 mg/dl) (1 = true; 0 = false), restecgresting electrocardiographic results thalachmaximum heart rate achieved, exangexercise induced angina (1 = yes; 0 = no), oldpeakST depression induced by exercise relative to rest slopethe slope of the peak exercise ST segment canumber of major vessels (0-3) colored by flourosopy, thal3 = normal; 6 = fixed defect; 7 = reversable defect target1 or 0

Flow Classification Heart Disease

Create Model

```
model = Sequential()
n cols = X train.shape[1]
model.add(Dense(10, activation='relu',
    input shape=(n cols,)))
model.add(Dense(10, activation='relu'))
model.add(Dense(2, activation='softmax'))
model.compile(optimizer='adam',
    loss='categorical crossentropy',
   metrics=['accuracy'])
```

Create Model

model.summary()

Layer (type)	Output Shape	Param #
dense_16 (Dense)	(None, 10)	140
dense_17 (Dense)	(None, 10)	110
dense_18 (Dense)	(None, 2)	22

Checkpoint Training

- #Checkpoint in Training
- filepath="w{epoch:02d}-{val_acc:.2f}.hdf5"
- #Logger
- •csv_logger = CSVLogger('log.csv',
 append=True, separator=';')

Training

- #Training Model
- •model.fit(X_train, y_train, validation_split=0.2, epochs=100, callbacks=[csv logger, checkpoint])

Model Save / Load

```
#Model Save
•model.save("model.h5")
#Model Load
•model baru = load model('model.h5')
model baru.summary()
```

Testing

```
y_pred = model.predict_classes(X_test)
y_test_ = np.argmax(y_test, axis=1)
print(classification_report(y_test_,
y_pred, target_names=["Sakit","Tidak"]))
```

	precision	recall	f1-score	support
Sakit Tidak	0.77 0.83	0.80	0.79 0.82	41 50
avg / total	0.80	0.80	0.80	91

Model Evaluation

- Precision $(P) = \frac{|Relevan \cap Retrieved|}{|Relevant|}$
- Recall $(R) = \frac{|Relevan \cap Retrieved|}{|Retreived|}$
- F-Score $(F) = 2\frac{P \cdot R}{P+R}$ $Kappa = \frac{P(A)-P(E)}{P(E)-1}$

Precision Recall + Confusion Matrix

$$ext{Precision} = rac{tp}{tp+fp}$$

$$ext{Precision} = rac{tp}{tp+fp} \qquad ext{Accuracy} = rac{tp+tn}{tp+tn+fp+fn}$$

$$ext{Recall} = rac{tp}{tp+fn}$$

$$ext{Recall} = rac{tp}{tp + fn} \hspace{1cm} F = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

```
[[249,
                                                       01,
    0, 261,
                                                       4],
          3, 232,
                                                       0],
                 0, 363,
                                                       0],
           1, 7, 16,
                                                       0],
                0, 35, 1,
                                  15, 11,
                                                       0],
          0, 0, 0, 0, 0, 393, 1, 0, 0, 0, 0, 2, 514, 55, 2, 0, 0, 0, 0, 0,
                                                       0],
```

relevant elements

How many selected items are relevant?

How many items are

Recall =

Medical Image Classification

Pneumonia Image Classification

This database contains of X-Ray images normal Chest, Pneumonia caused by virus and Pneumonia caused by bacteria.

Bacteria

Virus

Normal

Flow Classification Pneumonia Disease

In order to classify images, we Need variant of Neural Networks for Image Classification!

CONVOLUTIONAL NEURAL NETWORKS

Deep Convolutional Neural Networks

Convolutional Neural Networks

$$S(x,W) = \sum_{i=1}^{n} \sum_{j=1}^{m} x_{ij} W_{(i-m,j-n)}; \ Z(S,U) = \sum_{i=1}^{n} \sum_{j=1}^{m} S_{ij} U_{(i-m,j-n)}; \ Softmax(z_i) = \frac{\exp(Z_i)}{\sum_{i=1}^{n} \exp(Z_j)}$$

$$(I \star K)(0,0) = I(0,0)K(0,0) + I(0,1)K(0,1) + I(0,2)K(0,2) + I(1,0)K(1,0) + I(1,1)K(1,1) + I(1,2)K(1,2) + I(2,0)K(2,0) + I(2,1)K(2,1) + I(2,2)K(2,2)$$

$$= 1 \cdot 0 + 0 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 + 0 \cdot 2 + 0 \cdot 0 + 0 \cdot 1 + 1 \cdot 1 + 2 \cdot 0$$

$$= 1$$

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

$I \star K$		
1	4	11
4	11	5
7	7	7

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

$I \star K$		
1	4	11
4	11	5
7	7	7

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

$I \star K$		
1	4	11
4	11	5
7	7	7

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

$I \star K$		
1	4	11
4	11	5
7	7	7

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

$I \star K$		
1	4	11
4	11	5
7	7	7

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

$I \star K$		
1	4	11
4	11	5
7	7	7

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

$I \star K$		
1	4	11
4	11	5
7	7	7

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

Convolution Example

Can be viewed as a "sliding window" operation:

$I \star K$				
1	4	11		
4	11	5		
7	7	7		

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

Convolution Example

Can be viewed as a "sliding window" operation:

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

Convolution Example

*

=

Often called the feature map

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

Feature Visualization

Variant CNN: AlexNet

Variant CNN: ResNet

Variant CNN: Object Detection

Variant CNN: YOLO

Class probability map

Read Dataset

```
path = os.path.abspath('chestxray.ipynb')
path = re.sub('[a-zA-Z\setminus s. ]+\$', '', path)
dirs = os.listdir(path+'../dataset/xray/')
label = 0
X = []
y = \int 7
example data = []
example label = []
```

Read Dataset

```
for i in dirs: #loop all directory
    count = 0 #Temporary variable count
    for pic in glob.glob(path+'/*.jpeg'):
         im = cv2.imread(pic)
        im = cv2.resize(im, (100, 100))
        im = np.array(im)
        count = count + 1
        X.append(im)
        y.append(label)
```

Read Dataset

```
if(count==3):
    example_data.append({str(i):im})
    example_label.append(i)
    label = label + 1
    X = np.array(X)
    y = np.array(y)
```

Data Split

```
X train, X test, y train, y test =
train test split(X, y, test size=0.33,
random state=42)
X train = X train.astype('float32')
X \text{ test} = X \text{ test.astype}('float32')
X train /= 255
X test /= 255
y train = to categorical(y train, 3)
y test = to categorical(y test, 3)
```

Model Creation

```
model = Sequential()
model.add(Conv2D(32, kernel size=(3,
3), activation='relu', input shape=(100,100,3)))
model.add(MaxPooling2D(pool size=(2,2)))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool size=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(9, activation='softmax'))
```

Model Compile

```
epochs = 25
lrate = 0.01
decay = lrate/epochs
sqd = SGD(lr=lrate, momentum=0.9, decay=decay,
nesterov=False)
model.compile(loss='categorical crossentropy',
optimizer=sqd, metrics=['accuracy'])
print(model.summary())
```

Model Training

```
model.fit(X_train, y_train,
validation_data=(X_test, y_test), epochs=epochs,
batch_size=32)
scores = model.evaluate(X_test, y_test, verbose=0)
print("Accuracy: %.2f%%" % (scores[1]*100))
```

Model Evaluation

```
model = model.save('my_model.h5')
model_baru = load_model('my_model.h5')
y_pred = model_baru.predict_classes(X_test)
y_test_ = np.argmax(y_test, axis=1)
print(classification_report(y_test_, y_pred, target_names=mapping.values()))
```

Precision Recall + Confusion Matrix

$$ext{Precision} = rac{tp}{tp+fp}$$

$$ext{Precision} = rac{tp}{tp+fp} \qquad ext{Accuracy} = rac{tp+tn}{tp+tn+fp+fn}$$

$$ext{Recall} = rac{tp}{tp+fn}$$

$$ext{Recall} = rac{tp}{tp + fn} \hspace{1cm} F = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

```
[[249,
                                                       01,
    0, 261,
                                                       4],
          3, 232,
                                                       0],
                 0, 363,
                                                       0],
           1, 7, 16,
                                                       0],
                0, 35, 1,
                                  15, 11,
                                                       0],
          0, 0, 0, 0, 0, 393, 1, 0, 0, 0, 0, 2, 514, 55, 2, 0, 0, 0, 0, 0,
                                                       0],
```

relevant elements

How many selected items are relevant?

How many items are

Recall =

Result

	precision	recall	f1-score	support
NORMAL	0.86	0.87	0.86	83
PNEUMONIA	0.91	0.90	0.91	123
accuracy			0.89	206
macro avg	0.88	0.88	0.88	206
weighted avg	0.89	0.89	0.89	206

Exercise: Skin Cancer Classification

Read skin cancer dataset using the similar techniques as chest x-ray. Classify the image whether the sample images benign or malignant.

Use appropriate techniques like image preprocessing or feature selection to improve your model

The final result is we can create the model that can classify the image whether malignant or benign