Meta-genomics

Scope	Question	Answer
One gene – 16S rRNA	Who are there?	Genus, Species, OTUs
All genes – metagenomics	What can they do?	Functional potentials
All genes – metatranscriptomic	What are they doing?	Metabolic pathways Biological function

What is 16S rRNA?

- 16S ribosomal RNA the component of the 30S small subunit of a prokaryotic ribosome that binds to the Shine-Dalgarno sequence during protein synthesis
- Approximately 1,500 nt in length

Why 16S rRNA as the marker gene?

- SIMILAR enough both Bacteria and Archaea have it
- DIFFERENT enough to differential different species
- SHORT enough easy (easier) to sequence
- LONG enough to contain both conserve and variable domains

The Bioinformatics Black Box

Inside the blackbox

- **1. Upstream analyses** quality control, separate samples (de-barcoding, de-multiplexing)
- **2. Middle tier analyses** organize sequences into biological groups (OTUs, ASVs, taxa)
- **3. Downstream analyses** compare microbial compositions of the samples diversity analysis

Chaos organizing

OTU (operational taxonomic unit) picking – based on **% sequence identity**

TTTACTGTTTTGCATTAGTA

OTU1

CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
TCTACGGGAGCAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC

OTU2

TITACTGTTTTGCATTAGTA
TGTACTGTTTGTGCATTAGTA
TITACTGTTTGTGCATTAGTA
TITACTGTTTTGCATTAGTA
TITACTGTTTTGCATTAGTA
TITACTGTTTTGTATTAGTG
TITACTGTTTGTGCATTAGTA
TGTACTGTTTTGCATTAGTA
TGTACTGTTTTGCATTAGTA

CATCCGCCACAAAGCAGTT

OTU3

GGTACGGGAGCAGCAGTCA
GGTACGGGAGCAGCAGTCA
TGTACGGGAGCAGCAGTCA
GGTACTGGAGCAGCAGTCA
GGTACTGGAGCAGCAGTCA
GGTACGGGAGCAGCAGTCA
TGTACGGGAGCAGCAGTCT

OTU4

CCTACGGGAGACAGCAGTG CCTACGAGAGACAGCAGTG CCTACGGGAGACAGCAGTG CCTACGGGAGACAGCAGTG CCTACAGGAGACAGCAGTG

TTTACTGTTTTGCATTAGTA

TTTACTGTTTTGCATTAGTA

OTU5

CATAAGCCACAAAGCAGTT CATACGCCACAACGCAGTT CATAAGCCACAAAGCAGTT

OTU6

GGTACGGGAGCAGCAGTCA GGTACGAGAGCAGCAGTCA GGTACGCGAGCAGCAGTCA GGTACGGGAGCAGCAGTCA GGTACGGGAGCAGCAGTCA GGTACAGGAGCAGCAGTCA GGTACGGGAGCAGCAGTCA

OTU7

CCTACGCCCAGGCAGCAGCC CCTACGCCCAGGCAGCAGCC CCTACGAACAGGCAGCAGCC CCTACGCCCAGGCAGCAGCC CCTACGCCCAGGCAGCAGCC CCTACGACCAGGCAGCAGCC

CCTACGGGAGGCAGCAGTT

CCTACGGGAGGCAGCAGTT

TTTACTGTTTTGCATTAGTA

TTTACTGTTTTGCATTAGTA

OTU10

ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT

CCTACGGGAGGCAGCAGTT

OTU8

TITACTGTTTTGCATTAGTA
TITACTGTTTTGCATTAGTA
TITACTGTTTTGCATTAGTA
TITACTGTTTTGCATTAGTA
TGTACTGTTTTGCATTAGTA
TTTACTGTTTTGCATTAGTA
TTTACTGTTTTGCATTAGTA
TTTACTGTTTTGCATTAGTA
TTTACTGTTTTGCATTAGTA

OTU9

CCTACGGGAGGCAGCAGTT
CCTACGGGAGACAGCAGTT
CCTACACGAGGCAGCAGTA
CCTACGGGAGGCAGCAGTT
CCTACGGGAGGCAGCAGTT
CCTACAGGAGGCAGCAGTT

TTTACTGTTTTGCATTAGTA

OTU11

CATCCGCCACAAAGCAGTT
CATAAGCCACAAAGCAGTT
CATAAGCCACAAAGCAGTT
CATAAGCCACAAAGCAGTT
CATAAGCCACAAAGCAGTT
CATCAGCCACAAAGCAGTT
CATCAGCCACAAAGCAGTT
CATCAGCCACAAAGCAGTT
CATAAGCCACAAAGCAGCC

ASV (amplicon sequence variants) clustering – denoise sequences based on sequence quality error model

ASV1

CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
TCTACGGGAGACAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTG
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC

ASV2

TITACTGTTTTGCATTAGTA
TGTACTGTTTTGCATTAGTA
TITACTGTTTTGCATTAGTA
TITACTGTTTTGCATTAGTA
TITACTGTTTTGCATTAGTA
TITACTGTTTTGTATTAGTG
TITACTGTTTGTGCATTAGTA
TGTACTGTTTTGCATTAGTA
TGTACTGTTTTGCATTAGTA

ASV3

GGTACGGGAGCAGCAGTCA
GGTACGGGAGCAGCAGTCA
GGTACTGGAGCAGCAGTCA
GGTACTGGAGCAGCAGTCA
GGTACTGGAGCAGCAGTCA
GGTACGGGAGCAGCAGTCA
TGTACGGGAGCAGCAGTCT

ASV4

CCTACGGGAGACAGCAGTG CCTACGAGAGACAGCAGTG CCTACGGGAGACAGCAGTG CCTACGGGAGACAGCAGTG CCTACAGGAGACAGCAGTG

ASV5

CATAAGCCACAAAGCAGTT CATACGCCACAACGCAGTT CATAAGCCACAAAGCAGTT

ASV6

GGTACGGGAGCAGCAGTCA GGTACGAGAGCAGCAGTCA GGTACGCGAGCAGCAGTCA GGTACGGGAGCAGCAGTCA GGTACGGGAGCAGCAGTCA GGTACAGGAGCAGCAGTCA GGTACGGGAGCAGCAGTCA

ASV7

CCTACGCCCAGGCAGCAGCC CCTACGCCCAGGCAGCAGCC CCTACGAACAGGCAGCAGCC CCTACGCCCAGGCAGCAGCC CCTACGCCCAGGCAGCAGCC CCTACGACCAGGCAGCAGCC

ASV8

TTTACTGTTTTGCATTAGTA
TTTACTGTTTGTGCATTAGTA
TTTACTGTTTTGCATTAGTA
TTTACTGTTTTGCATTAGTA
TTTACTGTTTTGCATTAGTA
TTTACTGTTTTGCATTAGTA
TTTACTGTTTTGCATTAGTA
TTTACTGTTTTGCATTAGTA
TTTACTGTTTTGCATTAGTA

ASV9

CCTACGGGAGGCAGCAGTT CCTACGGGAGACAGCAGTT CCTACACGAGGCAGCAGTA CCTACGGGAGGCAGCAGTT CCTACGGGAGGCAGCAGTT CCTACAGGAGGCAGCAGTT

ASV10

ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT

ASV11

CATCCGCCACAAAGCAGTT
CATAAGCCACAAAGCAGTT
CATAAGCCACAAAGCAGTT
CATAAGCCACAAAGCAGTT
CATAAGCCACAAAGCAGTT
CATCAGCCACAAAGCAGTT
CATCAGCCACAAAGCAGTT
CATCAGCCACAAAGCAGTT
CATAAGCCACAAAGCAGCC

DADA2 Pipeline

Identify representative sequences

OTU1

CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
TCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTG
CCTACGAGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC

OTU2

TTTACTGTTTTGCATTAGTA
TGTACTGTTTTGCATTAGTA
TTTACTGTTTTGCATTAGTA
TTTACTGTTTTGCATTAGTA
TTTACTGTTTTGCATTAGTA
TTTACTGTTTTGCATTAGTG
TTTACTGTTTTGTATTAGTG
TTTACTGTTTTGTGCATTAGTA
TGTACTGTTTTGCATTAGTA

OTU3

GGTACGGGAGCAGCAGTCA
GGTACGGGAGCAGCAGTCA
TGTACGGGAGCAGCAGTCA
GGTACTGGAGCAGCAGTCA
GGTACTGGAGCAGCAGTCA
GGTACGGGAGCAGCAGTCA
TGTACGGGAGCAGCAGTCT

OTU4

CCTACGGGAGACAGCAGTG
CCTACGAGAGACAGCAGTG
CCTACGGGAGACAGCAGTG
CCTACGGGAGACAGCAGTG
CCTACAGGAGACAGCAGTG

OTU5

CATAAGCCACAAAGCAGTT CATACGCCACAACGCAGTT CATAAGCCACAAAGCAGTT

OTU6

GGTACGGGAGCAGCAGTCA
GGTACGAGAGCAGCAGTCA
GGTACGCGAGCAGCAGTCA
GGTACGGGAGCAGCAGTCA
GGTACGGGAGCAGCAGTCA
GGTACAGGAGCAGCAGTCA
GGTACAGGAGCAGCAGTCA
GGTACAGGAGCAGCAGTCA

OTU7

CCTACGCCCAGGCAGCAGCC CCTACGCCCAGGCAGCAGCC CCTACGAACAGGCAGCAGCC CCTACGCCCAGGCAGCAGCC CCTACGCCCAGGCAGCAGCC CCTACGACCAGGCAGCAGCC

OTU8

TITACTGTTTTGCATTAGTA
TITACTGTTTGCATTAGTA
TITACTGTTTTGCATTAGTA
TITACTGTTTTGCATTAGTA
TGTACTGTTTGCATTAGTA
TITACTGTTTTGCATTAGTA
TITACTGTTTTGCATTAGTA
TITACTGTTTTGCATTAGTA
TITACTGTTTTGCATTAGTA

OTU9

CCTACGGGAGGCAGCAGTT
CCTACGGGAGACAGCAGTT
CCTACACGAGGCAGCAGTA
CCTACGGGAGGCAGCAGTT
CCTACGGGAGGCAGCAGTT
CCTACAGGAGGCAGCAGTT
CCTACAGGAGGCAGCAGTT

OTU10

ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT

OTU11

CATCCGCCACAAAGCAGTT
CATAAGCCACAAAGCAGTT
CATAAGCCACAAAGCAGTT
CATAAGCCACAAAGCAGTT
CATAAGCCACAAAGCAGTT
CATCAGCCACAAAGCAGTT
CATCAGCCACAAAGCAGTT
CATCAGCCACAAAGCAGCC

Taxonomy assignment

Lactobacillus reuteri

CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
TCTACGGGAGGCAGCAGTC
TCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTG
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC
CCTACGGGAGGCAGCAGTC

Streptococcus mitis

TITACTGTTTTGCATTAGTA
TGTACTGTTTTGCATTAGTA
TITACTGTTTTGCATTAGTA
TITACTGTTTTTGCATTAGTA
TITACTGTTTTTGCATTAGTA
TITACTGTTTTTGTATTAGTG
TITACTGTTTTTGTATTAGTA
TGTACTGTTTTTGCATTAGTA
TGTACTGTTTTTGCATTAGTA

Fusobacterium nucleatum

CCTACGGGAGACAGCAGTG CCTACGAGAGACAGCAGTG CCTACGGGAGACAGCAGTG CCTACGGGAGACAGCAGTG CCTACAGGAGACAGCAGTG

Streptococcus mutans

GGTACGGGAGCAGCAGTCA
GGTACGGGAGCAGCAGTCA
TGTACGGGAGCAGCAGTCA
GGTACTGGAGCAGCAGTCA
GGTACTGGAGCAGCAGTCA
GGTACGGGAGCAGCAGTCA
TGTACGGGAGCAGCAGTCT

Veillonella parvula

CCTACGCCCAGGCAGCAGCC CCTACGCCCAGGCAGCAGCC CCTACGAACAGGCAGCAGCC CCTACGCCCAGGCAGCAGCC CCTACGCCCAGGCAGCAGCC CCTACGACCAGGCAGCAGCC

Selenomonas artemidis

CATAAGCCACAAAGCAGTT CATACGCCACAACGCAGTT CATAAGCCACAAAGCAGTT GGTACGGGAGCAGCAGTCA GGTACGAGAGCAGCAGTCA GGTACGCGAGCAGCAGTCA GGTACGGGAGCAGCAGTCA GGTACGGGAGCAGCAGTCA GGTACAGGAGCAGCAGTCA GGTACGGGAGCAGCAGTCA

Streptococcus parasanguinis

Aggregatibacter actinomycetemcomitans

Streptococcus parasanguinis

TTTACTGTTTTGCATTAGTA
TTTACTGTTTGTGCATTAGTA
TTTACTGTTTTGCATTAGTA
TTTACTGTTTTGCATTAGTA
TGTACTGTTTGTGCATTAGTA
TTTACTGTTTTGCATTAGTA
TTTACTGTTTTGCATTAGTA
TTTACTGTTTTGCATTAGTA
TTTACTGTTTTGCATTAGTA

Porphyromonas gingivalis

CCTACGGGAGGCAGCAGTT CCTACGGGAGACAGCAGTT CCTACACGAGGCAGCAGTA CCTACGGGAGGCAGCAGTT CCTACGGGAGGCAGCAGTT CCTACAGGAGGCAGCAGTT ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT
ACTAAGAGAGGCAGCAGTT

Lactobacillus plantarum

CATCCGCCACAAAGCAGTT
CATAAGCCACAAAGCAGTT
CATAAGCCACAAAGCAGTT
CATAAGCCACAAAGCAGTT
CATAAGCCACAAAGCAGTT
CATCAGCCACAAAGCAGTT
CATCAGCCACAAAGCAGTT
CATCAGCCACAAAGCAGCC

Downstream analyses

- Alpha diversity analyze the complexity of the microbial community in each sample
- Beta diversity compare the complexity of different groups of samples (e.g., health vs disease)
- Differential analysis identify organisms with different relative abundance in different groups
- Functional inferring associate functions with species identified

Workshop Objectives

- I know R
- I have used R
- I have used R to analyze NGS data
- I like R

Methodology

- Mostly copy and paste
- Provide a comprehensive online tutorial
- There are more tutorials out there (Web, Youtube)
- Google is your good friend