Vorlesung 3 (Montag 19.2.2018)

3 Einführung

Kreditpunkte: Teilnahme an Übungen, einzeln ODER 2er Gruppen möglich, Lösungen der (Teil-) Aufgaben müssen ab 12:30 Uhr (!!) vorgestellt werden und werden vom Betreuer bewertet mit:

- X (0 Punkte): nicht bzw nur sehr rudimentär bearbeitet
- – (1 Punkt): Aufgabe wesentlich bearbeitet aber Pflichtteil nicht abgeschlossen
- o (2 Punkte): Aufgabe abgeschlossen, mit viel Mühe aber es war detaillierte (!) Hilfestellung nötig (Betreuer schaut in das Programm und sucht selber Fehler). Fragen können aber immer gestellt werden.
- + (3 Punkte): Aufgabe abgeschlossen, im wesentlichen keine Probleme

An einem Tag kann es eine oder mehrere (selten bis nicht) Aufgaben geben. Zum Bestehen sind 50% der Gesamt-Punkte nötig.

4 Algorithmen

4.1 Leichte, schwere und unlösbare Probleme

 $t_{\mathcal{P}}(x)$ = Laufzeit eines Programms \mathcal{P} bei Eingabe x. In der theoretischen Informatik: Laufzeit wird auf Modell-Computern untersucht (z.B. *Turing Maschinen*).

n = |x| = "Größe" der Eingabe (z.B. Anzahl der Bits, um das Problem zu kodieren). Zeitkomplexität eines Programms $\mathcal{P} = \text{langsamste } (worst \ case)$ Laufzeit als Funktion von n:

$$T(n) = \max_{x:|x|=n} t(x) \tag{1}$$

Example: Laufzeit

T(n)	T(10)	T(100)	T(1000)
f(n)	23000	46000	69000
g(n)	1000	10000	100000
h(n)	100	10000	1000000

Welches Program ist (asymptotisch) das langsamste?

O notation

 $T(n) \in O(g(n))$: $\exists c > 0, n_0 \ge 0$ mit $T(n) \le cg(n) \ \forall n > n_0$. "T(n) ist höchstens von der Ordnung g(n)."

Typische Zeitkomplexitäten:

Table 1: Wachstum von Funktionen in Abhängigkeit der Inputgröße n.

T(n)	T(10)	T(100)	T(1000)
\overline{n}	10	100	1000
$n \log n$	10	200	3000
n^2	10^{2}	10^{4}	10^{6}
n^3	10^{3}	10^{6}	10^{9}
2^n	1024	1.3×10^{30}	1.1×10^{301}
n!	3.6×10^{6}	10^{158}	4×10^{2567}

Polynomiale Probleme (Klasse P) werden als "leicht" angesehen, exponentielle Probleme werden "schwer" genannt. Für einige (gerade in der Praxis wichtige) Probleme: kein polynomialer Algorithmus bekannt. Es gibt bisher keinen Beweis, dass es nicht doch polynomiale Algorithmen gibt. NP-schwer Probleme, laufen allerdings polynomial auf einen nichtdeterministischen (Modell) Computer.

Entscheidungsprobleme: Nur Ausgaben "Ja"/"Nein" möglich. Bsp: Ist die Grundzustandsenergie eines Systems $\leq E_0$ (gegebener Parameter)?

Man kann für einige Probleme beweisen, dass sie *unentscheidbar* sind, d.h. es gibt *keinen allgemeinen* Algorithmus, der "Ja" und "Nein" für alle möglichen Eingaben=Probleminstanzen ausgibt. Probleme sind aber *beweisbar*, d.h. man kann eine der möglichen Antworten beweisen, aber nicht beide.

- Halteproblem: Hält ein gegebenes Programm bei gegebener Eingabe? (Falls es hält, kann man es beweisen: man lässt es laufen)
- Korrektheitsproblem: Erzeugt ein gegebens Programm die erwünschte Ausgabe für *alle* Eingaben? (Falls nicht, kann man das leicht beweisen: man lässt es für eine Eingabe laufen, wo es nicht stimmt, ggf. systematisch nach solchen EIngabe suchen)

Es gibt (akademische) Funktionen, die sogar *nicht berechnbar* sind: Beweis über Diagonalisierung (analog zum Cantorschen Beweis, dass es nichtrationale Zahlen gibt)

4.2 Rekursion und Iteration

Prinzip der *Rekursion*: Unterprogramm ruf sich selbst auf. Natürlich für rekursive Definitionen.

Beispiel: Fakultät n!:

$$n! = \begin{cases} 1 & \text{falls } n = 1\\ n \times (n-1)! & \text{sonst} \end{cases}$$
 (2)

einfache Übersetzung in C-Funktion

```
double factorial(int n)
{
  if(n==1)
    return(1.0);
  else
    return(n*factorial(n-1));
}
```

Analyse der Laufzeit von factorial () mittels Rekurrenzgleichungen:

$$\tilde{T}(n) = \begin{cases} C & \text{for } n = 1\\ C + \tilde{T}(n-1) & \text{for } n > 1 \end{cases}$$
 (3)

Lösungsmöglichkeit: als DGL: $\frac{d\tilde{T}}{dn} = \frac{\tilde{T}(n) - \tilde{T}(n-1)}{n - (n-1)} = C \to \tilde{T}(n) = CN + K$, mit $\tilde{T}(1) = C \to$

Figure 1: Hierarchie von rekursive Aufrufen bei der Berechnung von factorial(4).

Lösung: $\tilde{T}(n) = Cn$, d.h. Laufzeit linear in n aber exponentiell in der Länge der Eingabe (=Anzahl der Bits).

Auch iterative Berechung der Fakultät über Schleife möglich, auch O(n).

4.3 Divide-and-conquer (Teile und herrsche)

Überlegen Sie sich erst für 5 Minuten einen Algorithmus (Grundidee), der Elementen $\{a_0, \ldots, a_{n-1}\}$ "der Größe nach" sortiert. Dann diskutieren Sie 5 Minuten mit ihrem Nachbarn ihre Lösungen. Welche asymtotische Laufzeit T(n) vermuten Sie für Ihr Verfahren?

ACHTUNG: Lesen Sie den Rest des Abschnitts NICHT, bevor Sie sich etwas überlegt haben

Hier: Prinzip (verwendet Rekursion):

- 1. reduziere Problem auf einige kleinere Probleme
- 2. löse die kleineren Probleme
- 3. setze Lösung des großen Problems aus den Lösungen der kleineren Probleme zusammen.

Beispiel: Sortierung von Elementen $\{a_0, \ldots, a_{n-1}\}$ mittels *Mergesort*. Grundidee: Teile Menge in zwei gleichgroße Mengen, sortiere beide und füge sie dann sortiert zusammen.

```
/** sorts 'n' integer numbers in the array 'a' in ascending **/
/** order using the mergsort algorithm
void mergesort(int n, int *a)
{
  int *b,*c;
                                                /* two arrays */
  int n1, n2;
                                  /* sizes of the two arrays */
                                           /* (loop) counters */
  int t, t1, t2;
  if(n \le 1)
                                    /* at most one element ? */
                                             /* nothing to do */
    return;
                                     /* calculate half sizes */
  n1 = n/2; n2 = n-n1;
  /* array a is distributed to b,c. Note: one could do it
  /* using one array alone, but yields less clear algorithm */
  b = (int *) malloc(n1*sizeof(int));
  c = (int *) malloc(n2*sizeof(int));
  for(t=0; t<n1; t++)
                                                 /* copy data */
      b[t] = a[t];
  for(t=0; t<n2; t++)
      c[t] = a[t+n1];
  mergesort(n1, b);
                                  /* sort two smaller arrays */
  mergesort(n2, c);
  t1 = 0; t2 = 0;
                     /* assemble solution from subsolutions */
  for(t=0; t<n; t++)
    if( ((t1<n1)\&\&(t2<n2)\&\&(b[t1]<c[t2]))||
        (t2==n2))
      a[t] = b[t1++];
    else
      a[t] = c[t2++];
  free(b); free(c);
}
```

Laden Sie sich mergesort.c vom StudIP/kopieren Sie vom Stick.

Erweitern Sie die mergesort() Unterroutine, so dass am Anfang und Ende jeweils das Array a[] vor/nach dem Sortieren angezeigt wird.

__ [Selbsttest] _

Compilieren Sie und lassen Sie mergesort mit Argument 8 laufen. Versuchen Sie die Ausgabe nachzuvollziehen.

Figure 2: Aufruf von $mergesort(4, \{5, 2, 3, 1\})$.

Laufzeit: Aufteilung der Mengen sowie Zusammensetzen: O(n); rekursive Aufrufe: T(n/2).

Rekurrenz:

$$T(n) = \begin{cases} C & (n=1) \\ Cn + 2T(n/2) & (n>1) \end{cases}$$
 (4)

Lösung für große n: $T(n) = \frac{C}{\log 2} n \log n$. Beweis durch Einsetzen

$$T(2n) = C2n + 2T(2n/2)$$

$$= C2n + 2\left(\frac{C}{\log 2}n\log n\right)$$

$$= \frac{C}{\log 2}2n\log 2 + \frac{C}{\log 2}2n\log n$$

$$= \frac{C}{\log 2}2n\log(2n)$$