Arquitetura de Computadores II 3.ª Frequência / Exame

Departamento de Informática / Universidade de Évora $4\ {\rm de\ janeiro\ de\ }2024$

Identifique todas as folhas. Responda e justifique as respostas nas caixas de texto.

Perguntas rápidas

1.	[1 valor] Um programa P é posto em execução em dois processadores X e Y, da mesma arquitetura,
	com as características indicadas na tabela. Qual o processador com maior desempenho e qual o speedup
	em comparação com o outro de menor desempenho?

	X	Y
Frequência de relógio	1 GHz	800 MHz
CPI médio	1.5	1.3

1		

2. [1 valor] Um processador, com frequência de relógio de 2 GHz, executa 10^6 instruções de três classes diferentes em 1.42 ms. Preencha os espaços em falta na tabela abaixo:

Classe	X	Y	Z
Instruções	120000		600000
CPI	4	2	

3.	[1 valor]	Quais os motivos que dão origem a um CPI maior que 1 numa implementação pipelined?
4.	[1 valor]	Considere uma implementação RISC-V 2-way static multiple issue, em que cada issue packe

4.	[1 valor] Considere uma implementação RISC-V 2-way static multiple issue, em que cada issue packet
	pode conter uma instrução aritmética ou salto, e uma instrução de acesso à memória. Se 20% das
	instruções de um programa forem de acesso à memória, qual o speedup que se obtém, numa situação
	ideal, face a uma implementação pipelined simples?

- 1	
L	

5.	[1 valor]	Um	processador	da arqu	uitetura	RISC-V	$_{\mathrm{tem}}$	uma	cache	direct	mapped	de	32	KiB	com	blocos
	de 4 wo	rds. (Quantas linha	as tem a	cache?	•										

- 6. [0.5 valores] Se, ao traduzir um endereço virtual para endereço físico, o número de página físico não se encontrar na tabela de páginas, obtém-se um: \bigcirc *Miss.* \bigcirc *Page fault.* \bigcirc *Segmentation fault.*
- 7. [1 valor] Se um endereço virtual tiver 36 bits, uma página tiver 8 KiB, e cada tabela de segundo nível de uma tabela de páginas com dois níveis tiver 4096 posições, quantas posições terá a tabela de primeiro nível?

RISC-V — implementação pipeline de 5 andares

8. [3 valores] Pretende-se que a implementação RISC-V *pipelined* suporte a execução da instrução spc (store program counter), que é uma instrução do tipo S com dois argumentos:

	31					0
spc imm(rs1)	$imm_{11:5}$	00000	rs1	funct3	$imm_{4:0}$	opcode
	12	5	5	3	5	7

Esta instrução guarda o valor atual do program counter, em memória, no endereço calculado de modo semelhante às instruções de store, somando o immediate ao registo rs1. Que unidades funcionais (incluindo multiplexers) e que sinais de controlo é necessário acrescentar? Faça as alterações necessárias diretamente no diagrama de blocos da figura e preencha a seguinte tabela com os sinais de controlo. Se for necessário adicionar um sinal de controlo extra, use a coluna vazia da tabela.

ALUSrc	PCSrc	ALUOp	RegWrite	MemRead	MemWrite	MemToReg	

- 9. [0.5 valores] A execução de um programa num processador com execução fora de ordem pode levar a um resultado diferente do obtido na execução do mesmo programa num processador em que as instruções são executadas estritamente por ordem? O Sim O Não
- 10. Considere o código RISC-V seguinte.

```
lui x5, 0x10004 # x5 <-
addi x5, x5, 0x3ac # x5 <-
lw x6, 0(x5) # x5 <-
srli x7, x6, 1 # x6 <-
addi x5, x5, 4 # x5 <-
sw x6, 0(x5) # x5 <-
x6 <-
```

x1 <- 3 indica uma dependência do valor escrito em
x1 há 3 instruções atrás (1 significa instrução anterior). Deixe em branco se não houver dependência.

- (a) [1 valor] Indique todas as dependências de dados nos espaços reservados em comentário.
- (b) [1 valor] Assinale, rodeando com um rectangulo, as dependências que dão origem a conflitos de dados. Por exemplo, x1 <- 3.
- (c) [2 valores] Simule a execução destas instruções no pipeline RISC-V, com *forwarding*. Apresente a evolução do estado do *pipeline* durante a execução, indicando todos os atrasos introduzidos e todos os pontos onde foi necessário o *forwarding* de algum valor.
- 11. Considere um sistema com palavras e endereços de 32 bits, uma cache 2-way set associative com 512 conjuntos, blocos de 8 bytes e estratégia de substituição LRU. A figura mostra apenas as primeiras 4 linhas da cache (índices 0 a 3).

V	D	Tag	Data	V	D	Tag	Data

Hit	$_{ m Miss}$	Endereço
\bigcirc	\bigcirc	0x10040004
\bigcirc	\bigcirc	0x10040008
\bigcirc	\bigcirc	0x10040000
\bigcirc	\bigcirc	0x1004000c
\bigcirc	\bigcirc	0x10042004
\bigcirc	\bigcirc	0x1006a000

(a) [1 valor] Qual a capacidade desta cache para guardar dados?

- (b) [1 valor] Suponha que a *cache* está inicialmente vazia quando se começam a fazer, sequencialmente, acessos a dados nos endereços indicados. Mostre o estado final da cache após estes acessos. Indique também, para cada acesso, se ocorreu um *hit* ou *miss*.
- (c) [1 valor] Calcule o hit rate e o miss rate. Se o hit time for de 2 ciclos de relógio e o miss penalty 50 ciclos, qual o tempo médio de acesso à memória? (se não respondeu à pergunta anterior, escolha um hit rate entre 10% e 90%)

12. [3 valores] A tabela de páginas, cujo conteúdo é parcialmente mostrado na tabela da esquerda, pertence a um processo que corre num processador com um TLB direct mapped, com capacidade para 4 traduções, e estratégia write-through.

Assuma que o TLB inicialmente está vazio. Para cada operação de tradução (acessos indicados na tabela da direita), atualize o conteúdo da TLB, indique se ocorreu um *hit* ou *miss* e, se aplicável, a página virtual cuja tradução será substituída.

Tabela de páginas

Index	Dirty PPN	
		••
4	0	11
5	0	73
6	1	39
7	0	22
8	0	9
9	0	55
10	0	91
11	1	17
		••

-	_	
		 _

V	Dirty	Tag	Physical Page Number

Hit	Miss	Acesso	Virtual Page Number
$\overline{}$	\circ	Leitura	9
\bigcirc	\bigcirc	Leitura	11
\bigcirc	\bigcirc	Escrita	11
\bigcirc	\bigcirc	Leitura	7
\bigcirc	\circ	Escrita	5