Задание 15.1

Для какого наибольшего целого неотрицательного числа A выражение:

$$(x > A) \lor (y > A) \lor (x + 2y < 80)$$

тождественно истинно, т.е. принимает значение 1 при любых целых неотрицательных х и у?

Залание 15.2

Для какого наибольшего целого неотрицательного числа А выражение истинно

$$(48 \neq y + 2x + z) \lor (A < x) \lor (A < y) \lor (A < z)$$

Задание 15.3

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наибольшего натурального числа A формула

$$ДЕЛ(x, 18) \rightarrow (\neg ДЕЛ(x, A) \rightarrow \neg ДЕЛ(x, 12))$$

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?

Залание 15.4

Укажите наименьшее целое значение A, при котором выражение

$$(2y + 5x < A) \lor (x + y > 80)$$

истинно для любых целых неотрицательных значений х и у.

Залание 15.5

Элементами множества А являются натуральные числа. Известно, что выражение

$$\neg (x \in A) \rightarrow (\neg (x \in \{1, 2, 3, 4, 5, 6\}) \land (x \in \{3, 5, 15\})) \lor \neg (x \in \{3, 5, 15\})$$

истинно (т. е. принимает значение 1) при любом значении переменной x.

Определите наименьшее возможное количество элементов множества А.

Залание 15.6

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа A формула

$$(\text{ДЕЛ}(x, A) \land \text{ДЕЛ}(x, 16)) \rightarrow (\neg \text{ДЕЛ}(x, 16) \lor \text{ДЕЛ}(x, 24))$$

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?

Задание 15.7

Известно, что для некоторого отрезка A формула

$$((x \in A) \to (x^2 \le 64)) \land ((x^2 - 48 \le 2x) \to (x \in A))$$

тождественно истинна (то есть принимает значение 1 при всех вещественных значениях переменной x). Какую наименьшую длину может иметь отрезок A?

Задание 15.8

Определите наименьшее натуральное число A, такое что выражение

$$(X \& 29 \neq 0) \rightarrow ((X \& 17 = 0) \rightarrow (X \& A \neq 0))$$

тождественно истинно (то есть принимает значение 1 при любом натуральном значении переменной X)?

Задание 15.9

Укажите наибольшее целое значение А, при котором выражение

$$(2y + 6x \neq 2020) \lor (A < x + 17) \lor (A < 4y + 988)$$

истинно для любых целых положительных значений х и у.

Задание 15.10

На числовой прямой даны отрезки A = [27; 54], B = [32; 46] и C = [N; 70] и функция

$$F(x) = (\neg (x \in B) \rightarrow \neg (x \in A)) \land (\neg (x \in C) \rightarrow (x \in B))$$

При каком наибольшем числе N функция F(x) истинна более чем для 25 целых чисел x?

Задание 15.11

На числовой прямой даны два отрезка: P = [15, 33] и Q = [35, 48]. Отрезок A таков, что формула

$$((x \in A) \land \neg(x \in Q)) \rightarrow ((x \in P) \lor (x \in Q))$$

тождественно истинна, то есть принимает значение 1 при любом значении переменной x. Какова наибольшая возможная длина отрезка A?

Залание 15.12

Элементами множеств A, P и Q являются натуральные числа, причём $P = \{ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 \}$ и $Q = \{ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 \}$. Известно, что выражение

$$((x \in A) \rightarrow (x \in P)) \land ((x \in Q) \rightarrow \neg (x \in A))$$

истинно (т. е. принимает значение 1) при любом значении переменной x. Определите наибольшее возможное количество элементов множества A.

Задание 15.13

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Для какого наименьшего натурального числа А формула

ДЕЛ
$$(x, A - 21)$$
 \land ДЕЛ $(x, 40 - A) \rightarrow$ ДЕЛ $(x, 90)$

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

Задание 15.14

Для какого наименьшего целого числа А выражение

$$((y-20 < A) \land (10-x < A)) \lor (x \cdot (y+2) > 48)$$

тождественно истинно, т.е. принимает значение 1 при любых целых положительных х и у?

Задание 15.15

Укажите наименьшее целое значение А, при котором выражение

$$(3y + x \ne 22) \lor (A > 5x - 8) \land (A > 2y + 3)$$

истинно для любых целых положительных значений х и у.

Залание 15.16

Для какого наименьшего целого неотрицательного числа А выражение

$$(x - 2y < 3A) \lor (2y > x) \lor (3x > 50)$$

тождественно истинно, т.е. принимает значение 1 при любых целых положительных х и у?

Задание 15.17

Обозначим через m & n поразрядную конъюнкцию неотрицательных целых чисел m и n. Так, например, 12 & $6 = 1100_2$ & $0110_2 = 0100_2 = 4$.

Для какого набольшего целого неотрицательного числа A, *меньшего 50*, выражение

$$(x \& A \neq 0) \lor (x \& 21 \neq 0) \land (x \& 30 \neq 0) \lor (x \& 10 = 0)$$

истинно при любых целых неотрицательных значениях х?

Залание 15.18

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа A формула

$$(ДЕЛ(x, A) \land ДЕЛ(x, 24) \land \neg ДЕЛ(x, 16)) \rightarrow \neg ДЕЛ(x, A)$$

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?

Залание 15.19

Сколько существует целых значений A, при которых формула

$$((x < A) \rightarrow (x \cdot x \le 169)) \land ((y \cdot y < 16) \rightarrow (y \le A))$$

тождественно истинна (то есть принимает значение 1 при любых целых неотрицательных значениях переменных x и y)?

Задание 15.20

Обозначим через m&n поразрядную конъюнкцию неотрицательных целых чисел m и n. Так, например, $14\&5 = 1110_2\&0101_2 = 0100_2 = 4$.

Определите наименьшее натуральное число A, такое что выражение

$$((x \& 26 \neq 0) \lor (x \& 13 \neq 0)) \rightarrow ((x \& 29 = 0) \rightarrow (x \& A \neq 0))$$

тождественно истинно (то есть принимает значение 1 при любом натуральном значении переменной x)?

Задание 15.21

Сколько существует целых значений A, при которых формула

$$((x > 8) \rightarrow (x \cdot x + 3 \cdot x \ge A)) \land ((y \cdot y + 5 \cdot y > A) \rightarrow (y \ge 4))$$

тождественно истинна (то есть принимает значение 1 при любых целых неотрицательных значениях переменных x и y)?

Задание 15.22

На числовой прямой даны два отрезка: P = [3; 15] и Q = [14;25]. Укажите наибольшую возможную длину такого отрезка A, что формула

$$((x \in P) \equiv (x \in Q)) \rightarrow \neg (x \in A)$$

тождественно истинна, то есть принимает значение 1 при любом значении переменной х.

Задание 15.23

Обозначим как ДЕЛ(x, A) утверждение, что целое число x делится на A без остатка. Для приведенного ниже выражения укажите минимальное A, при котором выражение будет истинно для любого x.

$$(\neg ДЕЛ(x, 84) \lor \neg ДЕЛ(x, 90)) \rightarrow \neg ДЕЛ(x, A)$$

Задание 15.24

Обозначим как БОЛЬ(x, A) утверждение, что число x больше A. Сколько существует целых положительных значений параметра A, при которых приведенное ниже выражение истинно для любых натуральных x и y.

$$(БОЛЬ(x * x, 60) \lor \neg БОЛЬ(x, A)) \land (\neg БОЛЬ(y * y, 90) \lor БОЛЬ(y, A))$$

Задание 15.25

Укажите минимально допустимую длину отрезка А, при котором выражение

$$((x^2 + x - 20 \ge 0) \lor (x \in A)) \land ((x^2 - 3x - 18 \le 0) \lor (x \in A))$$

тождественно истинно (то есть принимает значение 1) хотя бы для 10 целых значений x?

Задание 15.26

Укажите минимальное количество целых чисел, которые принадлежат отрезку A, когда выражение

$$((x^2 + x - 20 \ge 0) \lor (x \not\in A)) \land ((x^2 - 3x - 18 \le 0) \lor (x \in A))$$

тождественно истинно (то есть принимает значение 1) хотя бы для 10 целых значений x?

Задание 15.27

Для какого наименьшего целого числа A выражение

$$(x \cdot y > A) \land (x > y) \land (x < 8)$$

тождественно ложно, т.е. принимает значение 0 при любых целых положительных х и у?

Задание 15.28

Укажите наименьшее целое значение А, при котором выражение

$$(x < 9) \rightarrow ((5y < x) \rightarrow (2xy < A))$$

тождественно истинно при любых целых положительных х и у?

Задание 15.29

Укажите **наименьшее** целое значение A, при котором выражение

$$(6x + 4y \ne 34) \lor (A > 5x + 3y) \land (A > 4y + 15x - 35)$$

истинно для любых целых положительных значений х и у.

Задание 15.30

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа A формула

$$(ДЕЛ(x, 34) \land \neg ДЕЛ(x, 51)) \rightarrow (\neg ДЕЛ(x, A) \lor ДЕЛ(x, 51))$$

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?

Залание 15.31

Обозначим за (n & m) поразрядную конъюнкцию чисел n и m. Так, например, $6_{10} \& 10_{10} = 2_{10}$ $(0110_2 \& 1010_2 = 0010_2)$.

Найдите минимальное натуральное значение параметра A, при котором выражение истинно при любом значении x.

$$(x \& 57 \neq 0) \land (x \& 38 \neq 0) \lor (x \& 9 = 0) \lor (x \& A = 0)$$

Задание 15.32

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Для какого наибольшего натурального числа A формула

$$\neg$$
ДЕЛ $(x, A) \rightarrow (ДЕЛ $(x, 35) \rightarrow ДЕЛ(x, 10))$$

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

Задание 15.33

Определите минимальное целое значение параметра A, такое, что выражение

$$(y > 7 - 2x) \lor (2(x + A) \ge (y - A)^2)$$

принимает истинное значение при любых целых положительных значениях х и у.

Задание 15.34

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наибольшего натурального числа A формула

$$ДЕЛ(70, A) \land (\neg ДЕЛ(x, A) \rightarrow (ДЕЛ(x, 18) \rightarrow \neg ДЕЛ(x, 42)))$$

тождественно истинна, то есть принимает значение 1 при любом натуральном x?

Задание 15.35

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Сколько существует целых положительных значений A, таких что формула

$$ДЕЛ(A, 5) \land (\neg ДЕЛ(2020, A) \rightarrow (ДЕЛ(x, 1718) \rightarrow ДЕЛ(2023, A)))$$

тождественно истинна, то есть принимает значение 1 при любом натуральном х?

Задание 15.36

Обозначим через div(n, m) результат целочисленного деления n на m. Для какого наименьшего натурального числа A формула

$$(div(x, 50) > 3) \lor \neg (div(x, 13) > 3) \lor (div(x, A) > 6)$$

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

№	Ответ	№ в сборнике	Ссылка на разбор
		Полякова	
15.1	26		https://youtu.be/zjqQoNRwu9I?t=4091
15.2	11	327	https://youtu.be/UzqJGY5KAOs?t=3668
15.3	36	123	https://youtu.be/GY7f4BX4hls?t=3361
15.4	401	289	https://youtu.be/kKrqEC5y5xY?t=3752
15.5	2	99	https://youtu.be/eZ1q5Bkd7-Y?t=2832
15.6	3	142	https://youtu.be/suVbotl0FtE?t=3425
15.7	14	279	https://youtu.be/9t2adabEuV4?t=5863
15.8	12	161	https://youtu.be/wVDAn43dnuM?t=4035
15.9	995		https://www.youtube.com/watch?v=3L6FDc0Qflg
15.10	60	286	https://youtu.be/YOK93qERhAI?t=4413
15.11	18	115	https://youtu.be/Rq_8-iD1zc0?t=3807
15.12	8	110	https://youtu.be/wyW2YAPfU?t=3551
15.13	30		https://youtu.be/1ufufJ8oDc4?t=5759
15.14	27		https://youtu.be/VYaBmip7yxg?t=3659
15.15	88	338	https://youtu.be/es1iCfN0eoA?t=3928
15.16	5		https://youtu.be/tcu1XUhUO2o?t=3755
15.17	47		https://youtu.be/vgxA oUxukE?t=4600
15.18	16	144	https://youtu.be/COl17q1a84Q?t=3856
15.19	12	264	https://youtu.be/gTgHaHHb4mE?t=3602
15.20	2	171	https://youtu.be/z5vfpkFuwwk?t=5337
15.21	85	257	https://youtu.be/_wahePzTf3Q?t=4373
15.22	11	118	https://youtu.be/dqEglv3sTvo?t=3645
15.23	1260		https://youtu.be/VeYafyMSIYQ?t=3925
15.24	3		https://youtu.be/0qZpFx1A-so?t=5070
15.25	6		https://youtu.be/bmf9WFUQdE8?t=3327
15.26	0		https://youtu.be/-vk0fG-qpuI?t=3965
15.27	42	375	https://youtu.be/O7Paf4e4Pas?t=3375
15.28	17	353	https://youtu.be/Hgy39lvyoL8?t=3518
15.29	45	341	https://youtu.be/Heb3SCWW1tI?t=3383
15.30	3	145	https://youtu.be/8T24N0ybjks?t=3162
15.31	2		https://youtu.be/cOhYldbnyu8?t=4292
15.32	35		https://youtu.be/jMrPf -yCv0?t=2826
15.33	3		https://youtu.be/2s52KYjmVVw?t=4369
15.34	14	401	https://youtu.be/Jic3hOvCwyM?t=5394
15.35	6		https://youtu.be/d0c3P3mcVZQ?t=4227
15.36	1		https://youtu.be/zKdC1Ir8gLw?t=3786