oc+ 16/25 Petection 04 COGS 300 Intro circuits -> a cognitive system needs a communication medium. > estimation Gognitive systems approximate + manage embodinent, or Movement (basic mechanics) - sensors - actuators pwm (signal encoding) roact ugnitive system - modularity (servo) intraction ul (a environment) control (> measurement (encoders) -> long-distance sensing + signal noise (filtr) ~ unitive -> self-adjusting (PID) -> prediction (probability 101) Retection (modeling) Granditional probability (modeling, bayes) -> repented measurements (Bouses Filter) -> inference (Brugus vets) -> classification (Hoday)

& CASES. AUST! ! sensor (ava = x on > 2 ax a 1500 prediction Classifier ER EL (K CL label (action) SR Sm SL 2/15 100 drive_fud. 10° 100 20° 20° 100 100 turn_left 40° 30° 100 50 turn-left F F T 50° 40° 100 50 turn-right T T generate trainer model live data prediction Today we'll mustly talk about classifiers. Catura we can haven Hom. True detection two out to be hard. > GOFAI. Good of fashioned Al approaches assured we could just find the perfect formula. If you my that min your short, you will fail.

	tend of a vall of me is a process.
	very hard for a human to inderstand.
	Try it out:
	install processing video.
	→ sketch > import library > manage librarie
	Missli deep vision
	MShII JAVAFK Gadd Ho sketch.
	emotion detection Paul
×	Plse detection - class.
×	try out a kew.
	Go when does it work?
	- When does it fail ?
	> my?

Design a Inbelling protocol:

- 1. Decide which cases need to be classified
- 2. Determine which features could be added
- 3. Petermine which labels are needed.
- 4. Resign experimental apparatus + por 1001.

human maunhe parts parts

COGS 300	Detection 04	Oct16/25
warm up:	Draw a maze. It can be a sing	sle line,
Sing's	or it can brand LETT branch	
7 - 1 - 1	ene some equivalent lumni event Koev fr: oct 17	

0 G circuits -> estimation movement (embodiment) G sensor -> actuator -> signal encoding (pwm) -> modularity (servos) cyber nef PID vetics compol G measurement -> signal noise -> pudiction Detection (modelling) G probability (Bruyu) -> repeated Bayes (history) -> inference (Baye) nels) 7 Llassification Good ol' fashioned Al Machine learning

Classified SR Sm Si		Ma label
T 6 T	1	
	100000 11	NS.
	trainer	
live -	> midel	
	predictio	