

Cairo University Faculty of Computers and Artificial Intelligence

Learning project

Menna-Allah Hamdy

20190558

Course Name: Learning from data

Under supervision of

Dr. Elshimaa Elgendi

Spring 2021-2022

Developing computer programs coded by python that detects the genuine banknote using:

- SVM with hard margins coded by Scikit
- SVM with soft margins coded by Scikit

Support Vector Machine -SVM-

- For two-group classification problems, a support vector machine (SVM)
 which is a supervised machine learning model that employs classification or
 regression problems. SVM models can categorize fresh text after being
 given sets of labelled training data for each category.
 - They have two key benefits over newer algorithms like neural networks: greater speed and greater performance with a limited number of samples (in the thousands). This makes the algorithm particularly well suited to text classification problems, where it's usual to only have access to a few thousand labelled samples in dataset.
 - There're two types of SVM (Soft Margin SVM & Hard Margin SVM) there are differences between them, like that:
 - Hard Margin SVM is quite sensitive to outliers.
 - Soft Margin SVM avoids iterating over outliers.

In this diagram you can notice overfitting of hard margin SVM.

 Soft-margin SVM can choose a decision boundary that has non-zero training error even if the dataset is linearly separable, and is less likely to overfit. You can notice that decreasing C value causes the classifier to leave linear separability in order to gain stability.

You need to set the best value of C in SVM. The more optimal value of C will give you more accuracy.

SVM Hard Margin

• Kernal type : Linear

• C = 1

[[189 6] [0 148]]

SVM Soft Margin

• Kernal type : Linear

• C = 1

[[587 19] [2 490]]				
	precision	recall	f1-score	support
0	1.00	0.97	0.98	606
1	0.96	1.00	0.98	492
accuracy			0.98	1098
macro avg	0.98	0.98	0.98	1098
weighted avg	0 08	0 08	0 08	1008

