Part-of-Speech Tagging & Sequence Labeling

Hongning Wang CS@UVa

What is POS tagging

Tag Set

NNP: proper noun

CD: numeral

J: adjective

POS Tagger

Raw Text

Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.

Tagged Text

Pierre_NNP Vinken_NNP ,_,
61_CD years_NNS old_JJ ,_,
will_MD join_VB the_DT
board_NN as_IN a_DT
nonexecutive_JJ director_NN
Nov._NNP 29_CD ._.

Why POS tagging?

- POS tagging is a prerequisite for further NLP analysis
 - Syntax parsing
 - · Basic unit for parsing
 - Information extraction
 - Indication of names, relations
 - Machine translation
 - The meaning of a particular word depends on its POS tag
 - Sentiment analysis
 - Adjectives are the major opinion holders
 - Good v.s. Bad, Excellent v.s. Terrible

Challenges in POS tagging

- Words often have more than one POS tag
 - The back door (adjective)
 - On my back (noun)
 - Promised to back the bill (verb)
- Simple solution with dictionary look-up does not work in practice
 - One needs to determine the POS tag for a particular instance of a word from its context

Define a tagset

- We have to agree on a standard inventory of word classes
 - Taggers are trained on a labeled corpora
 - The tagset needs to capture semantically or syntactically important distinctions that can easily be made by trained human annotators

Word classes

- Open classes
 - Nouns, verbs, adjectives, adverbs
- Closed classes
 - Auxiliaries and modal verbs
 - Prepositions, Conjunctions
 - Pronouns, Determiners
 - Particles, Numerals

Public tagsets in NLP

- Brown corpus Francis and Kucera 1961
 - 500 samples, distributed across 15 genres in rough proportion to the amount published in 1961 in each of those genres
 - 87 tags
- Penn Treebank Marcus et al. 1993
 - Hand-annotated corpus of Wall Street Journal, 1M words
 - 45 tags, a simplified version of Brown tag set
 - Standard for English now
 - Most statistical POS taggers are trained on this Tagset

How much ambiguity is there?

 Statistics of word-tag pair in Brown Corpus and Penn Treebank

		87-tag Original Brown		45-tag Treebank Brown	
Unambiguous (1 tag) Ambiguous (2–7 tags)		44,019 5,490	11%	38,857 8844	18%
Details:	2 tags	4,967		6,731	
	3 tags	411		1621	
	4 tags	91		357	
	5 tags	17		90	
	6 tags	2	(well, beat)	32	
	7 tags	2	(still, down)	6	(well, set, round, open, fit, down)
	8 tags			4	('s, half, back, a)
	9 tags			3	(that, more, in)

Is POS tagging a solved problem?

Baseline

- Tag every word with its most frequent tag
- Tag unknown words as nouns
- Accuracy
 - Word level: 90%
 - Sentence level
 - Average English sentence length 14.3 words
 - $-0.9^{14.3} = 22\%$

Accuracy of State-of-the-art POS Tagger

- Word level: 97%
- *Sentence level:* $0.97^{14.3} = 65\%$

Building a POS tagger

- Rule-based solution
 - Take a dictionary that lists all possible tags for each word
 - 2. Assign to every word all its possible tags
 - Apply rules that eliminate impossible/unlikely tag sequences, leaving only one tag per word

she PRP
promised VBN,VBD
to TO
back VB, JJ, RB, NN!!
the DT
bill NN, VB

R1: Pronoun should be followed by a past tense verb

R2: Verb cannot follow determiner

Building a POS tagger

Statistical POS tagging

— What is the most likely sequence of tags \boldsymbol{t} for the given sequence of words \boldsymbol{w}

$$t^* = argmax_t p(t|w)$$

POS tagging with generative models

Bayes Rule

$$t^* = argmax_t p(t|w)$$

$$= argmax_t \frac{p(w|t)p(t)}{p(w)}$$

$$= argmax_t p(w|t)p(t)$$

- Joint distribution of tags and words
- Generative model
 - A stochastic process that first generates the tags, and then generates the words based on these tags

Hidden Markov models

- Two assumptions for POS tagging
 - 1. Current tag only depends on previous k tags
 - $p(t) = \prod_i p(t_i|t_{i-1}, t_{i-2}, ..., t_{i-k})$
 - When k=1, it is so-called first-order HMMs
 - Each word in the sequence depends only on its corresponding tag
 - $p(\mathbf{w}|\mathbf{t}) = \prod_i p(w_i|t_i)$

Graphical representation of HMMs

- Light circle: latent random variables
- Dark circle: observed random variables
- Arrow: probabilistic dependency

Finding the most probable tag sequence

$$t^* = argmax_t p(t|w)$$

$$= argmax_t \prod_i p(w_i|t_i)p(t_i|t_{i-1})$$

- Complexity analysis
 - Each word can have up to T tags
 - For a sentence with N words, there will be up to T^N possible tag sequences
 - Key: explore the special structure in HMMs!

Trellis: a special structure for HMMs

w_1	w_2	w_3	w_4	w_5
•				
	w ₁			

Trellis: a special structure for HMMs

$$t^{1} = t_{4}t_{1}t_{3}t_{5}t_{7}$$
 $t^{2} = t_{4}t_{1}t_{3}t_{5}t_{2}$

| Computation can be reused!

| w_{1} | w_{2} | w_{3} | w_{4} | w_{5}
| t_{1} | t_{2} | t_{3} | t_{4} | t_{5} | t_{6} | t_{6} | t_{1} | t_{2} | t_{2} | t_{3} | t_{4} | t_{5} | t_{6} | t_{1} | t_{2} | t_{2} | t_{3} | t_{4} | t_{5} | t_{5} | t_{6} | t_{1} | t_{2} | t_{2} | t_{3} | t_{4} | t_{5} | t_{5} | t_{6} | t_{1} | t_{2} | t_{2} | t_{3} | t_{4} | t_{5} | t_{5} | t_{6} | t_{1} | t_{2} | t_{2} | t_{3} | t_{4} | t_{5} |

 t_7

Viterbi algorithm

• Store the best tag sequence for $w_1 \dots w_i$ that ends in t^j in T[j][i]

$$-T[j][i] = \max p(w_1 ... w_i, t_1 ..., t_i = t^j)$$

 Recursively compute trellis[j][i] from the entries in the previous column trellis[j][i-1]

$$-T[j][i] = P(w_i|t^j)Max_k \left(T[k][i-1]P(t^j|t_k)\right)$$
Generating the current fransition from the observation the best i-1 tag tag

The best i-1 tag tag

The programming of TNN sequence tag

Dynamic programming: O(TN)!

Decode $argmax_t p(t, w)$

• Take the highest scoring entry in the last column of the trellis

Keep backpointers in each

Keep backpointers in each trellis to keep track of the most probable sequence

	w_1	W_2	W_3	W_4	w_5
t_1		*		,	
t_2					
t_3					
t_4				*	
t_5					
t_6					
t_7		CS 6501: Tex	t Mining		*

Train an HMMs tagger

- Parameters in an HMMs tagger
 - Transition probability: $p(t_i|t_i)$, $T \times T$
 - Emission probability: p(w|t), $V \times T$
 - Initial state probability: $p(t|\pi)$, $T \times 1$

For the first tag in a sentence

Train an HMMs tagger

- Maximum likelihood estimator
 - Given a labeled corpus, e.g., Penn Treebank
 - Count how often we have the pair of $t_i t_j$ and $w_i t_j$

•
$$p(t_i|t_j) = \frac{c(t_i,t_j)}{c(t_j)}$$

•
$$p(w_i|t_j) = \frac{c(w_i,c_j)}{c(t_i)}$$

Public POS taggers

- Brill's tagger
 - http://www.cs.jhu.edu/~brill/
- TnT tagger
 - http://www.coli.uni-saarland.de/~thorsten/tnt/
- Stanford tagger
 - http://nlp.stanford.edu/software/tagger.shtml
- SVMTool
 - http://www.lsi.upc.es/~nlp/SVMTool/
- GENIA tagger
 - http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/
- More complete list at
 - http://www-nlp.stanford.edu/links/statnlp.html#Taggers

Let's take a look at other NLP tasks

- Noun phrase (NP) chunking
 - Task: identify all non-recursive NP chunks

```
Pierre Vinken , 61 years old , will join IBM 's board as a nonexecutive director Nov. 29 .
```



```
[NP Pierre Vinken] , [NP 61 years] old , will join
[NP IBM] 's [NP board] as [NP a nonexecutive director]
[NP Nov. 2] .
```

The BIO encoding

- Define three new tags
 - B-NP: beginning of a noun phrase chunk
 - I-NP: inside of a noun phrase chunk
 - O: outside of a noun phrase chunk

```
[NP Pierre Vinken] , [NP 61 years] old , will join
[NP IBM] 's [NP board] as [NP a nonexecutive director]
[NP Nov. 2] .
```


POS Tagging with restricted Tagset?

```
Pierre_B-NP Vinken_I-NP ,_O 61_B-NP years_I-NP
old_O ,_O will_O join_O IBM_B-NP 's_O board_B-NP as_O
a_B-NP nonexecutive_I-NP director_I-NP Nov._B-NP
29_I-NP ._O

CS 6501: Text Mining
```

Another NLP task

- Shallow parsing
 - Task: identify all non-recursive NP, verb ("VP") and preposition ("PP") chunks

```
Pierre Vinken , 61 years old , will join IBM 's board as a nonexecutive director Nov. 29 .
```



```
[NP Pierre Vinken] , [NP 61 years] old , [VP will join] [NP IBM] 's [NP board] [PP as] [NP a nonexecutive director] [NP Nov. 2] .
```

CS@UVa

BIO Encoding for Shallow Parsing

- Define several new tags
 - B-NP B-VP B-PP: beginning of an NP, "VP", "PP" chunk
 - I-NP: inside of an NP, "VP", "PP" chunk
 - O: outside of any chunk

```
[NP Pierre Vinken] , [NP 61 years] old , [VP will join] [NP IBM] 's [NP board] [PP as] [NP a nonexecutive director] [NP Nov. 2] .
```


POS Tagging with restricted Tagset?

```
Pierre_B-NP Vinken_I-NP ,_O 61_B-NP years_I-NP old_O ,_O will_B-VP join_I-VP IBM_B-NP 's_O board_B-NP as_B-PP a_B-NP nonexecutive_I-NP director_I-NP Nov._B-NP 29_I-NP ._O
```

Yet Another NLP task

- Named Entity Recognition
 - Task: identify all mentions of named entities (people, organizations, locations, dates)

Pierre Vinken , 61 years old , will join IBM 's board as a nonexecutive director Nov. 29 .


```
[PERS Pierre Vinken] , 61 years old , will join [ORG IBM] 's board as a nonexecutive director [DATE Nov. 2] .
```

CS@UVa

BIO Encoding for NER

- Define many new tags
 - B-PERS, B-DATE,...: beginning of a mention of a person/date...
 - I-PERS, B-DATE,...: inside of a mention of a person/date...
 - O: outside of any mention of a named entity

```
[PERS Pierre Vinken] , 61 years old , will join [ORG IBM] 's board as a nonexecutive director [DATE Nov. 2] .
```


POS Tagging with restricted Tagset?

```
Pierre_B-PERS Vinken_I-PERS ,_0 61_0 years_0 old_0 ,_0 will_0 join_0 IBM_B-ORG 's_0 board_0 as_0 a_0 nonexecutive_0 director_0 Nov_B-DATE 29_I-DATE ._0
```

Sequence labeling

- Many NLP tasks are sequence labeling tasks
 - Input: a sequence of tokens/words
 - Output: a sequence of corresponding labels
 - E.g., POS tags, BIO encoding for NER
 - Solution: finding the most probable label sequence for the given word sequence
 - $t^* = argmax_t p(t|w)$

Comparing to traditional classification problem

Sequence labeling

- $t^* = argmax_t p(t|w)$ - t is a vector/matrix
- Dependency between both
 (t, w) and (t, t)
- Structured output
- Difficult to solve the inference problem

Traditional classification

- $y = argmax_y p(y|x)$ - y is a single label
- Dependency only within (t, w)
- Independent output
- Easy to solve the inference problem

Two modeling perspectives

- Generative models
 - Model the joint probability of labels and words
 - $-t^* = argmax_t p(t|w) = argmax_t p(w|t)p(t)$
- Discriminative models
 - Directly model the conditional probability of labels given the words
 - $-\mathbf{t}^* = argmax_{\mathbf{t}}p(\mathbf{t}|\mathbf{w}) = f(\mathbf{t},\mathbf{w})$

Generative V.S. discriminative models

Discriminative Model's view 1.2 $p(\mathcal{C}_1|x)$ $p(\mathcal{C}_2|x)$ 0.8 0.6 0.40.2 0.2 0.4 0.6 0.8 0 x

Generative V.S. discriminative models

Generative

- Specifying joint distribution
 - Full probabilistic specification for all the random variables
- Dependence assumption has to be specified for $p(\mathbf{w}|\mathbf{t})$ and $p(\mathbf{t})$
- Flexible, can be used in unsupervised learning

Discriminative

- Specifying conditional distribution
 - Only explain the target variable
- Arbitrary features can be incorporated for modeling p(t|w)
- Need training data, only suitable for (semi-) supervised learning

Maximum entropy Markov models

• MEMMs are discriminative models of the labels \boldsymbol{t} given the observed input sequence \boldsymbol{w}

$$-p(\boldsymbol{t}|\boldsymbol{w}) = \prod_{i} p(t_i|w_i, t_{i-1})$$

Design features

- Emission-like features
 - Binary feature functions
 - f_{first-letter-capitalized-NNP}(China) = 1
 - $f_{\text{first-letter-capitalized-VB}}(fly) = 0$

- f_{number-of-vowels-NNP}(China) = 2
- Transition-like features
 - Binary feature functions
 - f_{first-letter-capitalized-NNP-VB}(China) = 1

Not necessarily independent features!

Parameterization of $p(t_i|w_i,t_{i-1})$

- Associate a real-valued weight λ to each specific type of feature function
 - $-\lambda_k$ for $f_{\text{first-letter-capitalized-NNP}}(w)$
- Define a scoring function $f(t_i, t_{i-1}, w_i) = \sum_k \lambda_k f_k(w_i)$
- Naturally $p(t_i|w_i,t_{i-1}) \propto \exp f(t_i,t_{i-1},w_i)$
 - Recall the basic definition of probability
 - P(x) > 0
 - $\sum_{x} p(x) = 1$

Parameterization of MEMMs

$$p(t|w) = \prod_{i} p(t_i|w_i, t_{i-1})$$

$$\propto \prod_{i} \exp(f(t_i, t_{i-1}, w_i))$$

• It is a log-linear model

Constant only related to
$$\lambda$$

$$-\log p(\boldsymbol{t}|\boldsymbol{w}) = \sum_{i} f(t_{i}, t_{i-1}, w_{i}) - C(\boldsymbol{\lambda})$$

• Viterbi algorithm can be used to decode the most probable label sequence solely based on $\sum_i f(t_i, t_{i-1}, w_i)$

Parameter estimation

 Maximum likelihood estimator can be used in a similar way as in HMMs

$$-\lambda^* = argmax_{\lambda} \sum_{t,w} \log p(t|w)$$

$$= argmax_{\lambda} \sum_{t,w} \sum_{i} f(t_i, t_{i-1}, w_i) - C(\lambda)$$
Decompose the training data into such units
$$\begin{array}{c} Decompose the \\ training data into \\ such units \end{array}$$

Why maximum entropy?

 We will explain this in detail when discussing the Logistic Regression models

A little bit more about MEMMs

Emission features can go across multiple observations

$$-f(t_i, t_{i-1}, w_i) = \sum_k \lambda_k f_k(w_i, \boldsymbol{w})$$

Especially useful for shallow parsing and NER tasks

Conditional random field

- A more advanced model for sequence labeling
 - Model global dependency
 - $-p(t|w) \propto \prod_{i} \exp(\sum_{k} \lambda_{k} f_{k}(t_{i}, \mathbf{w}) + \sum_{l} \eta_{l} g_{l}(t_{i}, t_{i-1}, \mathbf{w}))$

