

CHALMERS UNIVERSITY OF TECHNOLOGY

9/23/2019 Chalmers

Probability theory and statistics

- a quick refresher

9/23/2019

Sample space, events and random experiments

- A random experiment is a process that produces random outcomes.
- The sample space is the set of all possible outcomes in an experiment.
- An event is the outcome, or a subset of possible outcomes, of an experiment.

9/23/2019

Example: roll a die

- Sample space: $S = \{1, 2, ..., 6\} = 6$ outcomes
- Events:

• "At least
$$3$$
" = $\{3, 4, 5, 6\}$

• "Six" =
$$\{6\}$$

• "
$$0dd$$
" = $\{1, 3, 5\}$

Probabilities

$$P(\text{at least 3}) = 4/6$$

 $P(\text{six}) = 1/6$

$$P(\text{odd}) = 3/6$$

Venn diagrams of set operations

Union: $A \cup B$

Intersection: $A \cap B$

Mutually exclusive: $A \cap B = \phi$

9/23/2019

Conditional probability

• The *conditional* probability of an event *A* given the knowledge that event *B* occurred

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A,B)}{P(B)}$$

Note also

$$P(A,B) = P(A|B)P(B) = P(B|A)P(A)$$

Mutually exclusive and exhaustive events

Events E_1, E_2, \dots, E_n are

 mutually exclusive if they cannot occur simultaneously

$$E_i \cap E_j = \phi, i \neq j$$

exhaustive if they cover the sample space

$$E_1 \cup E_2 \cup \cdots \cup E_n = \bigcup_{i=1}^n E_i = S$$

Total law of probability

• For mutually exclusive and exhaustive events $E_1, E_2, ..., E_n$ we get for any other event B

$$P(B) = \sum_{i=1}^{n} P(B|E_i)$$

Bayes' rule

Bayes' rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

• For mutually exclusive and exhaustive events $E_1, E_2, ..., E_n$ we get

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{\sum_{i=1}^{n} P(B|E_i)}$$

- Assume that 0.0015 individuals in our population has a certain disease D.
- When testing for the disease
 - an ill person always tests positive
 - a healthy person tests positive with probability 0.0002
- Given that you tested positive, what is the probability that you have the disease?

Example (cont.)

Bayes' rule:
$$P(\text{ill} | +) = \frac{P(+|\text{ill})P(\text{ill})}{P(+)}$$

- We have
 - P(ill) = 0.0015 and P(healthy) = 1 0.0015 = 0.9985
 - P(+|i|l) = 1, P(+|healthy) = 0.002
- The denominator
 - P(+) = P(+|ill)P(ill) + P(+|healthy)P(healthy)

$$P(\text{ill } | +) = \frac{P(+|\text{ill})P(\text{ill})}{P(+)} = \frac{1 \cdot 0.0015}{1 \cdot 0.0015 + 0.002 \cdot 0.9985} = 0.43$$

Random variables and probability distributions

 A random variable is a function of the outcomes in a random experiment.

 $X:S \to \mathbb{R}$

 Assumes values according to a probability distribution. $P(a \le X \le b) = ?$

- Discrete r.v.: finite or countable number of values,
- P(X=a)>0

 Continuous r.v: takes all real values in given intervals

$$P(X = a) = 0$$

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Probability distributions

- Typically depend on one or more parameters
- Common discrete distributions
 - Uniform: U(a,b)
 - Binomial: Bin(n, p)
 - Geometric: Geo(p)
 - Hypergeometric: HGeo(N, K, n)
 - Poisson: $Poi(\lambda)$
 - Negative binomial: NB(r, p)

Probability distributions

- Common continuous distributions
 - *Uniform: U*[*a*, *b*]
 - Normal (Gaussian): $N(\mu, \sigma^2)$
 - Student's t: t_{n-1}
 - Exponential: $Exp(\lambda)$
 - Chi-square: χ_{n-1}^2
 - Beta: Beta(α , β)

Statistical inference

Estimation and analysis of these parameters in random samples to draw conclusions of the underlying population.

Two main paradigms:

- Frequentism
- Bayesianism

Classical or frequentist probability theory:

- Probabilities are *frequencies* of random repeatable experiments
- Probabilities quantify variability.
- Parameters are (unknown) constants.

Bayesian probability theory:

- Probabilities correspond to reasonable expectation of an event.
- Probabilities quantify uncertainty.
- Unknown parameters are treated as random variables.

9/23/2019

DID THE SUN JUST EXPLODE? (IT'S NIGHT, SO WE'RE NOT SURE.)

FREQUENTIST STATISTICIAN:

BAYESIAN STATISTICIAN:

Bayes' rule interpretation

We have prior information P(A) of event A, and then update the posterior probability P(A|B) as more information/data B is achieved.

9/23/2019

Random number $p \in (0,1)$ Random numbers $q_1, q_2, q_3, ...$

- If $q_i < p$ Alice wins
- If $q_i > p$ Bob wins

First to 6 wins the game.

Only the scores are visible!

What is the probability that Alice wins?

For known p:

- $P(Bob) = (1 p)^3$
- P(Alice) = 1 P(Bob)

$$p = 0.5 \Rightarrow P(Alice) = 7/8$$

Frequentists approach (ML):

$$\widehat{p} = 5/8 \Rightarrow P(Alice) \approx 0.95$$

Fair odds: 19:1

- Bayesian approach
 - Consider p a random variable.
 - Let $D = \{n_A = 5, n_B = 3\}$ denote our observed data
 - The expected probability that Bob wins is given by

$$E_B = \int_0^1 (1-p)^3 P(p|D) dp$$

likelihood

prior

Bayes' rule

$$P(p|D) = \frac{P(D|p)P(p)}{P(D)} = \frac{P(D|p)P(p)}{\int_0^1 P(D|p')P(p')dp'}$$

- The likelihood P(D|p):
 - Let X = the number of times Alice wins out of 8
 - Probability of winning = p

$$X \sim \text{Bin}(n_A, p)$$

• The likelihood of observing our data, given p becomes

$$P(X = 5) = {8 \choose 5} p^5 (1 - p)^3$$

- The prior P(p):
 - Assume $p \sim U(0,1) \Rightarrow P(p) = \text{constant}$

$$E_B = \int_0^1 (1-p)^3 P(D|p) dp = \frac{\int_0^1 p^5 (1-p)^6 dp}{\int_0^1 p^5 (1-p)^3 dp} = 1/11$$

$$E_A = 1 - 1/11 = 10/11$$

Beta-integral:
$$\int_0^1 p^{m-1} (1-p)^{n-1} dp = \frac{\Gamma(m)\Gamma(n)}{\Gamma(n+m)}$$
, $\Gamma(n) = (n-1)!$

CHALMERS UNIVERSITY OF TECHNOLOGY

Example

Simulation confirms Bayesian computation!

Frequentist approach

- $P(Alice) \approx 0.95$
- Fair odds: 19:1

Bayesian approach

- $P(Alice) \approx 0.91$
- Fair odds: 10:1

Bayesianism versus frequentism

What is the probability of an event?

- Frequentists: the relative frequency of the event in a large number of trials.
- Bayesians: a reasonable expectation, quantifying personal beliefs and prior knowledge, and including the degrees of certainty in these beliefs.

Bayesianism versus frequentism

Frequentists:

- A distribution parameter θ is an (unknown) *constant*.
- $P(\theta = a) = ?$ becomes meaningsless.
- The density of a random variable $X: f_{\theta}(X)$

Bayesians:

• An unknown parameter θ is treated as a random variable.

• The density of a random variable X is a *conditional* probability: $f(X|\theta)$

The likelihood function

The likelihood function introduces a third view

- The density of X as a function of θ : $L_x(\theta)$
- Same thing, different names

$$L_{\theta}(x) = f_{\theta}(x) = f(x|\theta)$$

• But with Bayesian statistics we can use Bayes' theorem on heta

$$f(\theta|x) = \frac{f(x,\theta)}{f(x)} = \frac{f(x|\theta)f(\theta)}{\int f(x|\theta')f(\theta')d\theta'}$$

Bayesianism versus frequentism

Frequentists:

• X is random, but θ is not.

Bayesians:

• θ is random, but after having seen data, x is not

Frequentism versus Bayesianism

The effect of different priors

Bayesian feature: different priors will give different posteriors

9/23/2019

Chalmers

34

- Alice has moved to a new city
- She takes the bus to work
- Out of 5 attempts:
 - 2 got her to the right place
 - 3 forced her to walk another 20 min

What is the proportion of "good" buses for her to take?

Let θ = the fraction of "good" buses.

• **Prior** $f(\theta)$: Uniform(0, 1)

Let X = the number of good buses of n

• Likelihood $f(x|\theta)$: Bin (n,θ)

Observed data:

$$\bullet \quad \widehat{\theta} = 2/5 = 0.4$$

Parameter update, given observed data

- $f(\theta|x) \propto f(x|\theta)f(\theta)$

Example

Assume for simplicity $\theta \in \{0.\,0,0.\,1,0.\,2,...\,,0.\,9,1.\,0\} = 11\,\text{values}$

θ -values	prior	likelihood	prior × likelihood	posterior
0	0.0909	0	0	0
0.1	0.0909	0.0729	0.0066	0.0437
0.2	0.0909	0.2048	0.0186	0.1229
0.3	0.0909	0.3087	0.0281	0 1852
0.4	0.0909	0.3456	0.0314	0.2074
0.5	0.0909	0.3125	0.0284	0.1875
0.6	0.0909	0.2304	0.0209	0.1383
0.7	0.0909	0.1323	0.0120	0.0794
0.8	0.0909	0.0512	0.0047	0.0307
0.9	0.0909	0.0081	0.0007	0.0049
1	0.0909	0	0	0
Totals:	1		0.1515	1

Example

We can predict new values

$$P(\text{good bus tomorrow}|x) =$$

$$= \sum_{\theta} P(\text{good bus tomorrow}|\theta, x) p(\theta|x)$$

$$=\sum_{\theta}\theta\cdot p(\theta|x)$$

$$= 0.429$$

- Prior 1: U(0, 1)
 - $p(\theta) = \text{const}$
- **Prior 2:**
 - $p(\theta) \propto \theta^{-\frac{1}{2}} (1-\theta)^{-\frac{1}{2}}$
 - more weight on extreme values
- **Prior 3:**
 - $p(\theta) \propto \theta^{100} (1-\theta)^{100}$
 - most weight in the centre $\theta = 0.5$

•
$$p(\theta) = \text{const}$$

~ Beta(1, 1)

•
$$p(\theta) \propto \theta^{-\frac{1}{2}} (1-\theta)^{-\frac{1}{2}}$$

$$\sim \text{Beta}\left(\frac{1}{2}, \frac{1}{2}\right)$$

Prior 3:

•
$$p(\theta) \propto \theta^{100} (1-\theta)^{100}$$

• most weight around
$$\theta = 0.5$$

~ Beta(101, 101)

• **Prior 1:** Beta(1, 1)

• **Posterior 1:** Beta(3, 4)

• Prior 2: Beta $\left(\frac{1}{2}, \frac{1}{2}\right)$

• Posterior 2: Beta(2.5, 2.5)

• Prior 3: Beta(101, 101)

Posterior 3: Beta(103, 104)

Beta-prior + binomial likelihood

⇒ Beta-posterior

Beta (α, β) + "x of n successes" \implies Beta $(\alpha + x, \beta + n)$

Example

- Prior 1: $P(\text{good bus tomorrow}|x) \approx 0.429$
- Prior 2: $P(\text{good bus tomorrow}|x) \approx 0.417$
- Prior 3: $P(\text{good bus tomorrow}|x) \approx 0.498$

9/23/2019

Chalmers

• The more data, the less important the prior

Conjugate priors

- We have a sample of observed data: $x_1, ..., x_n$
- We have a corresponding likelihood function (or samling distribution): $f(x|\theta)$
- A prior $f(\theta)$ is called a *conjugate prior* if the corresponding posterior $f(\theta|x)$ belongs to the same family of distributions.

Bayes' theorem:

$$f(\theta|x) = \frac{f(x|\theta)f(\theta)}{f(x)}$$

Conjugate priors

Likelihood	Parameter	Prior	Posterior
Bernoulli			
Binomial	p	Beta	Beta
Geometric			
Negative binomial			
Exponential	λ		Gamma
Gamma(α , β), α known	β	Gamma	
Poisson	λ		
$\mathcal{N}(\mu, \sigma^2)$, μ known	σ^2		
$\mathcal{N}(\mu, \sigma^2)$, σ^2 known	μ	Normal	Normal
Multinomial	p_1, \dots, p_K	Dirichlet	Dirichlet

Conjugate priors

Conjugacy is mutual, e.g.

Dirichlet \propto Multinomial \times Dirichlet

Multinomial ∝ Dirichlet × Multinomial

Bayes' theorem:

$$f(\theta|x) = \frac{f(x|\theta)f(\theta)}{f(x)}$$

The exponential family of distributions

• The *exponential family* of distributions over x, given parameters η , takes the form

$$f(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta})\exp\left\{\boldsymbol{\eta}^{\mathrm{T}}u(\mathbf{x})\right\}$$

- The function u(x) is called a *sufficient statistic* for η , i.e. it contains all information needed to estimate η .
- All members of the exponential family has conjugate priors.
- Products of exponential family members also have conjugate priors.

Example: the Bernoulli distribution

$$f(x|p) = p^{x}(1-p)^{1-x}$$

$$= \exp\{\ln(p^{x}(1-p)^{1-x})\}$$

$$= \exp\{x \ln p + (1-x) \ln(1-p)\}$$

$$= \exp\{x \ln \left(\frac{p}{1-p}\right) + \ln(1-p)\}$$

$$= \exp\{x\eta - \ln(1+e^{\eta})\}$$

$$= \left(\frac{1}{1+\exp(\eta)}\right) \exp\{x\eta\}$$

$$f(x|\eta) = h(x)g(\eta) \exp\{\eta\}$$

$$\text{substitute } \left[\eta = \ln\left(\frac{p}{1-p}\right)\right]$$

$$f(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta})\exp\left\{\boldsymbol{\eta}^{\mathrm{T}}u(\mathbf{x})\right\}$$

substitute
$$\left[\eta = \ln \left(\frac{p}{1-p} \right) \right]$$

9/23/2019

Chalmers

Examples of exponential family members

- Bernoulli
- Geometric
- Gamma
- Exponential
- Poisson
- Beta
- Normal
- Beta
- Dirichlet
- Chi-squared

Also:

- Binomial, with fixed number of trials
- Multinomial, with fixed number of trials
- Negative binomial, with fixed number of failures

Uninformative priors

- When nothing is known, we may want to play equal weights to all parameter values
 - ⇒ Uniform distribution
- Gives the same parameter estimate as Maximum Likelihood
- Not invariant under parameterization

$$X \sim U[a,b], Y = f(X) \Rightarrow Y \sim U[f(a),f(b)]$$

Jeffrey's prior

- Uninformative prior
- Invariant under transformation
- Given by

$$p(\theta) \propto \sqrt{\det(\mathcal{I}(\theta))}$$

where $\mathcal{I}(\theta)$ is the *Fisher information*

$$\mathcal{I}(\boldsymbol{\theta}) = -\boldsymbol{E}_{\boldsymbol{\theta}} \left[\frac{d^2 \log f(\boldsymbol{X}|\boldsymbol{\theta})}{d\boldsymbol{\theta}^2} \right]$$

Flat prior 0.0 0.2 0.4 0.6 0.8 1.0 Jeffrey's prior

0.0

0.2

0.4

0.6

8.0

1.0

Fisher information

• For a random variable X with density $f(x|\theta)$:

The Fisher information =

= "information content of X in terms of estimating θ "

Example: Jeffrey's prior

Let $X \sim \text{Bin}(n, p)$. We want a prior for p.

$$f(x|p) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

$$\log f(x|p) = x \log p + (n-x)\log(1-p)$$

$$\frac{d}{dp}\log f(x|p) = \frac{x}{p} - \frac{n-x}{1-p}$$

$$\frac{d^2}{dp^2}\log f(x|p) = -\frac{x}{p^2} - \frac{n-x}{(1-p)^2}$$

$$\mathcal{I}(p) = -E_p \left[\frac{d^2}{dp^2} \log f(x|p) \right] = -\frac{np}{p^2} - \frac{n - np}{(1 - p)^2} = \frac{n}{p(1 - p)}$$

$$E_p[X] = np$$

Example: Jeffrey's prior

$$f(p) \propto \sqrt{\mathcal{I}(p)} \propto p^{-1/2} (1-p)^{-1/2} \sim \operatorname{Beta}\left(\frac{1}{2}, \frac{1}{2}\right)$$

Note: Jeffrey's prior is generally not conjugate.

Flat prior

Jeffrey's prior

Reference priors

- Maximize the distance between the prior and the posterior
 - Kullback-Leibler divergence
 - Hellinger distance

Inference in classical statistic

Based on a sample $x_1, ..., x_n$ from some density $f_{\theta}(x)$.

Parameter estimation

Estimate the parameter θ using Maximum Likelihood

$$\widehat{\theta} = \operatorname{argmax}_{\theta} \log L_{\theta}(x_1, \dots, x_n)$$

Confidence intervals

A 95% confidence interval for heta is an interval $\left(heta^{ ext{lo}}, heta^{ ext{up}}\right)$ such that

$$P(\theta^{\text{lo}} \leq \theta \leq \theta^{\text{up}}) = 0.95.$$

Note: θ^{lo} and θ^{up} are random variables, *not* θ .

Inference in classical statistic

Based on a sample $x_1, ..., x_n$ from some density $f_{\theta}(x)$.

Hypothesis testing

We want to test the hypothesis

$$H_0: \theta = \theta_0$$

 $H_1: \theta \neq \theta_0$

using som test statistic T (function of the sample). We reject H_0 on 5% significance level if $\widehat{\theta} \geq \theta^{\mathrm{up}}$ or $\widehat{\theta} \leq \theta^{\mathrm{lo}}$ where again

$$P(\theta^{\text{lo}} \leq \theta \leq \theta^{\text{up}}) = 0.95$$

Bayesian inference: parameter estimation

Based on a sample $D = \{x_1, ..., x_n\}$ from some density $f(x|\theta)$.

Parameter estimation

The most likely estimate of θ is the maximum of the posterior

$$\widehat{\boldsymbol{\theta}} = \operatorname{argmax}_{\boldsymbol{\theta}} P(\boldsymbol{\theta}|\boldsymbol{D})$$

Note: if the prior $P(\theta)$ is the uniform distribution, then this estimate is the same as the Maximum Likelihood estimate.

Bayesian inference: credible intervals

Based on a sample $D = \{x_1, ..., x_n\}$ from some density $f(x|\theta)$.

Credible intervals

A 95% *credible* interval for θ is an interval $\left(\theta^{lo},\theta^{up}\right)$ such that the posterior

$$P\left(\theta^{\text{lo}} \leq \theta \leq \theta^{\text{up}}|D\right) = 0.95.$$

$$\int_{\theta^{\text{lo}}}^{\theta^{\text{up}}} p(\theta|D)d\theta = 0.95$$

Note: Now θ is a random variable with prior $P(\theta)$.

Bayesian inference: credible intervals

However, the credible interval is **not** unique. We need additional conditions.

For an $(1 - \alpha)$ -interval

Equal-tailed interval (ETI)

$$P(\theta \leq \theta^{lo}|D) = P(\theta \geq \theta^{up}) = \alpha/2$$

Bayesian inference: credible intervals

However, the credible interval is **not** unique. We need additional conditions.

For an $(1 - \alpha)$ -interval

Equal-tailed interval (ETI)

$$P(\theta \leq \theta^{lo}|D) = P(\theta \geq \theta^{up}) = \alpha/2$$

Highest density interval (HDI)

$$C = \{\theta : p(\theta|D) \ge k\}$$
 where

$$\int_{\theta:p(\theta|D)\geq k}p(\theta|D)d\theta=1-\alpha$$

Confidence intervals vs credible intervals

- A 95% credible interval contains the true value θ with probability 95%.
 - i.e. based on data there is a 95% probability that the interval contains θ
 - Statement after data is collected
- A 95% *confidence interval* contains the true value of θ 95% of the time.
 - i.e. 95% of the samples we draw will cover the true value of θ
 - Statement before data is collected

Bayesian inference: hypothesis testing

Bayes factor

We want to test the hypothesis

$$H_0$$
: $\theta = \theta_0$

$$H_1: \theta \neq \theta_0$$

The Bayes factor is the ratio of the posteriors

$$\frac{P(H_1|D)}{P(H_0|D)} = \frac{P(D|H_1)}{P(D|H_0)} \frac{P(H_1)}{P(H_0)}$$

Bayes factor

Bayes factor	Evidence against H ₀
1-3	Very weak
3-20	Positive
20-150	Strong
> 150	Very strong

Summary

- Bayesianism versus frequentism
- The choice of priors
 - Conjugate priors
 - Uninformative priors
 - Jeffrey's prior
 - Reference priors
- Exponential family
- Frequentist versus Bayesian inference
 - Parameter estimation
 - Confidence intervals credible intervals
 - Hypothesis testing Bayes factor

