## R2.B.09

# Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel, Lesli Natasha A. Navarro, Joachim Alfonso A.

#### Musical Chords BACKGROL



2 or more notes



Played together



Follow "rules of harmony"

(Leino, Brattico, Tervaniemi, & Vurst, 2007)

Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

#### Musical Chords BACKGROU

Each has a name C5

Amaj C#

**D7 F#** 

Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

#### Musical Chords BACKGROU

Each has a root note

**C5** 

**Amaj** C#

**D7 F#** 

Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

#### Musical Chords BACKGROU

Each has a type

**C5** 

Amaj C#

**D7 F#** 

#### Musical Chords BACKGROUND

Non-extended vs Extended

Chord types

Am

E

C

A

Non-extended More common chord type

Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

#### Musical Chords

#### BACKGROUND

Non-extended vs
Extended

Chord types

AmM7

Extension

C

A

Extended
Less common chord type

Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

#### Chord Identification DEFINITION

The determination of the name of the chord from the notes that constitute it

Definition of chord identification

#### Chord Identification PROBLEN

"The general music learning public places a high demand on chord-based representations of popular music."

Humphrey, Bello, & Cho, n.d., par. 1

#### Chord Identification PROBLEM

A majority of the general music learning public can't do this by themselves.

Why?

Inference

#### PROBLEM



## PROBLEM

#### Rare amongst musiclearning individuals

Zatorre, Perry, Beckett, Westbury, & Evans, 1998

## PROBLEM

Expressed in a low percentage of the human population

Baharloo, Service, Risch, Gitschier, & Freimer, 2000

## PROBLEM

Acquired through favorable genes or early music training

Baharloo, Service, Risch, Gitschier, & Freimer, 2000

#### Neural networks

#### DEFINITION



Computational model of neurons in a brain

Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

#### Neural networks

#### DEFINITION



Many of these make up a neural network

Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

#### Artificial Neural Networks (ANNs)



#### ANN learns by repetitive training

Colina, Perez, & Paraan, 2017

Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

## ANN training & testing



Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

## Why neural networks? PROBLEM

Previous studies with neural network implementations have not included extended chords in their research

Osmalskyj, Embrechts, Piérard, & Van Droogenbroeck, 2012 Perera & Kodithuwakku, 2005 Zhou & Lerch, 2015

Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

#### Problem statement

#### PROBLEM

Using neural networks to identify both common and extended chords is unexplored

Osmalskyj, Embrechts, Piérard, & Van Droogenbroeck, 2012 Perera & Kodithuwakku, 2005 Zhou & Lerch, 2015

Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

#### OBJECTIVE

Develop a neural network that quickly identifies common and extended musical chords

#### Level 0

#### PROCESS



Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

#### 1 Procurement

#### PROCESS



#### 2 Dataset Prep & Rn

#### PROCESS



## 3 ANN Development

#### PROCESS



## 4 Training, Testing, DC PROCESS



RESULTS

Peak validation accuracy after 2400 epochs



Mean total response time, 30 samples



Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

#### RESULTS

Peak validation accuracy after 2400 epochs





#### Irregular and sporadic

Validation accuracy trends

Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

#### RESULTS

Peak validation accuracy after 2400 epochs





#### Model is underfitting

Bodik, 2018

RESULTS

Mean total response time, 30 samples



| Null hypothesis | Alternative hypothesis |
|-----------------|------------------------|
| r ≥ 10ms        | r < 10ms               |

#### T-test for one mean

Sample size = 30; Significance = 5%

Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

RESULTS

Mean total response time, 30 samples



| Null hypothesis        | Alternative hypothesis |
|------------------------|------------------------|
| t ≥ -1.6 <sub>99</sub> | t < -1.699             |

#### T-test for one mean

Sample size = 30; Significance = 5%

#### RESULTS

Mean total response time, 30 samples



| Null hypothesis        | Alternative hypothesis |
|------------------------|------------------------|
| t ≥ -1.6 <sub>99</sub> | t < -1.699             |
| $t_{3ms} = -17.19$     |                        |

#### T-test for one mean

Sample size = 30; Significance = 5%

RESULTS

Mean total response time, 30 samples





#### T-test for one mean

Sample size = 30; Significance = 5%

#### Conclusion

CLOSING

The proposed ANN design is inaccurate...



But ANNs can be used for real-time tasks



Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

#### Recommendations

CLOSING

Revise ANN design

More training

Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro



Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro

#### References

Baharloo, S., Service, S., Risch, N., Gitschier, J., & Freimer, N. (2000). Familial aggregation of absolute pitch. *American Journal of Human Genetics*, 67, 755-758. doi:10.1086/303057.

Chord. (2004). In *The concise Oxford dictionary of music* (4th ed.) Oxford, UK: Oxford University Press.

Colina, N. C. A., Perez, C. E., & Paraan, F. N. C. (2017). Simple techniques for improving deep neural network outcomes on commodity hardware. *AIP Conference Proceedings*, *1871*, 040001. doi:10.1063/1.4996523.

Daniel, G. (2013). *Principles of artificial neural networks* (3rd ed.) Chicago, IL: World Scientific.

Fujishima, T. (1999). Realtime chord recognition of musical sound: A system using common Lisp music. Retrieved from

http://www.music.mcgill.ca/~jason/mumt621/papers5/fujishima\_1999.pdf.

Kidd, P. (2017). pyrtmidi: Real-time MIDI I/O for Python [GitHub repository]. Retrieved August 23, 2017, from <a href="https://github.com/patrickkidd/pyrtmidi">https://github.com/patrickkidd/pyrtmidi</a>.

Nickolls, J., Buck, I., Garland, M., & Skadron, K. (2008). Scalable parallel programming with CUDA. *ACM Queue*, *6*(2), 40-53.

Osmalskyj, J., Embrechts, J-J., Piérard, S., & Van Droogenbroeck, M. (2012, May 9). Neural networks for musical chords recognition. Retrieved at <a href="http://jim.afim-asso.org/jim12/pdf/jim2012\_08\_p\_osmalskyj.pdf">http://jim.afim-asso.org/jim12/pdf/jim2012\_08\_p\_osmalskyj.pdf</a>.

Perera, N., & Kodithuwakku, S. R. (2005, December 15). Music chord recognition using artificial neural networks. *1st Proceedings of the International Conference on Information and Automation*, 304-308.

Root. (2004). In *The concise Oxford dictionary of music* (4th ed.) Oxford, UK: Oxford University Press.

Stark, A. M., & Plumbley, M. D. (2009). Real-time chord recognition for live performance [PDF file]. Retrieved at https://www.eecs.gmul.ac.uk/~markp/2009/StarkPlumbley09-icmc.pdf.

Zatorre, R. J., Perry, D. W., Beckett, C. A., Westbury, C. F., & Evans, A. C. (1998). Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. *Proceedings of the National Academy of Sciences*, *95*, 3172-3177. Retrieved at <a href="http://www.pnas.org/content/95/6/3172.full">http://www.pnas.org/content/95/6/3172.full</a>.

Zhou, X., & Lerch, A. (2015). Chord detection using deep learning. *16<sup>th</sup> International Society for Music Information Retrieval Conference*, 52-58. Retrieved at <a href="http://ismir2015.uma.es/articles/96\_Paper.pdf">http://ismir2015.uma.es/articles/96\_Paper.pdf</a>.

Real-Time Identification of Common and Extended Musical Chords using Artificial Neural Networks

Coronel Navarro