

Dynamic Spectrum Access using An **Experiments in Cognitive Radio and** Ontology-Rule Hybrid Architecture

Allen Ginsberg, Jeffrey D. Poston, and William D. Horne The MITRE Corporation McLean, Virginia

Background

- What is a radio?
- Anything that utilizes spectrum:
- State-of-the-art: Software Defined Radio (SDR)
- uses software for the modulation and demodulation of waveforms
- SCA reference model (CORBA & POSIX based)
- Spectrum Allocation
- Spectrum use regulated by each nation & international treaty
- key governing principle: avoid interference.
- use static allocation scheme
- e.g., Analog TV uses UHF, VHF bands, etc.
- Has spectrum become scarce?
- More an issue of inefficiency of static allocation
- · there is plenty of unutilized spectrum at any given place and time
- Dynamic Spectrum Access
- Could be compatible with allocation to primary (licensed) users
- Allow secondary users to access when primary is not using

What is Cognitive Radio?

- At least the following:
- Device architecture & infrastructure for dynamic spectrum access
- Policies & conventions that allow CRs to coexist
- Many research approaches, e.g., game theory
- Our approach: use semantic technologies
- Why?
- Build upon DARPA XG approach to policy checking.
- Spectrum policy will evolve, not disappear.
- Dynamic access must coexist with those policies.
- · All radios must be policy-compliant (behavior guided by policy)
- Formal representation of policy allows flexibility, etc. in CR development

Radio that understands policy can do more

Knowledge-driven differential-response

Case Study: Dynamic Frequency Selection (DFS)

- Allows 5GHz wireless devices to coexist with legacy radar
- The FCC DFS rules require 2 device types: Master & Client
- Clien
- · must associate with a Master before using channel in band.
- can only use channel if Master says "ok."
- must vacate channel if Master sends vacate signal
- if client has radar-sensing capability, it must report detected radar to associated master (and then vacate channel)
- Master
- must listen for 60 sec for radar prior to allowing first use of channel and refrain from permitting use if radar detected
- monitor for radar for channels in use
- if radar detected, broadcast vacate signal to clients.
- Channel must be vacated within 10 seconds of radar detection
- refrain from using the channel after radar detected for at least 30 min.

Basic DFS Design Profiles - Scenarios

Notional Radar Source

Enhanced DFS Design Profiles - Scenarios

(Involving Knowledge-Driven Differential Response)

Enhanced DFS Scenario-1: Master-Swapping

Enhanced DFS Scenario-2: Gradient-Surfing

Prototype Simulation using Beacon-Based **Spectrum Access**

- OWL Ontology
- Jena rules
- use of custom built-in feature
- Radio hardware and radio propagation emulated in Java;
- In terms of DFS scenarios
- positive beacon is Master signaling channel available
- negative beacon is radar signal (or master sending vacate signal)
- "Semantic beacons" could be important in future CR apps

Example Tactical Military Scenario

WNW and SRW (and other tactical waveforms) need significant spectrum → Competing for same available spectrum!

Current spectrum management processes not sufficient for dynamic, multi-waveform environment

- Embed "cognitive" modules into radios to provide:
- Automated frequency selection & deconfliction
- Adaptive to changes in mission needs and environment

Smart Radio Could Improve Response During Complex **Public Safety Events**

First responder effectiveness requires improved communications capabilities & interoperability

Cognitive Radios can help address the following issues*:

- Multiagency spectrum assignments & coordination
- **Network control and management**
- Predefined user configurations
- Incident-specific configurations including "scenesense" automatic configuration
- Embedding policy considerations at the communications device level

Telecommunications Council (NPSTC) SDR Working Group, at Cognitive Radios * List derived from presentation by John S. Powell, Chair, National Public Safety Conference, Las Vegas, NV, Mar 2004

Context-Aware Radios Could Improve Both Safety & **Customer Experience**

Domain aware radios, aviation and passenger systems (Portable Electronic Devices (PEDs)), can adjust behavior during a flight ensuring compliance with regulations and limiting interference to critical systems

Portable Electronic Device (PED) (future versions of current systems under review in RTCA SC-202) understands "context" and operates according to domainincludes mandatory override/shutdown to ensure protection of avionics

Present Day Community Approach to DFS Interpretation & Implementation

DFS policy/technical-specs required 4+ years to develop;

This pace of rulemaking is a barrier to rapid innovation in

the CR arena.

Issue for CR apps

Cognitive Radio Community Architecture

Formal Representation of A DFS Design Profile

- Suppose after sensing radar all activity can be terminated within 1 sec...
- Then checking for radar every 9 sec suffices

```
R1: If
```

Channel InUse (?ch, t_{now})

LastRadarCheckTime (?ch,?t)

$$t_{now}$$
 - ?t >= 9

hen

Required(radar_check,?ch, t_now)

(2: If

RadarDectected (?ch,?t)

$$t_{now} >= 2t$$

$$t_{now}$$
 - ?t <= 9

ChannelInUse (?ch, t_{now})

Then

Required (vacate_signal,?ch, t_{now})

 These are deduction rules: statements about what this design requires. They do not cause a device to perform the required actions.

-radar_check, vacate_signal are constants. They denote "abstract" actions

 $-\,t_{now}$ is a constant denoting the "current instant of time"

-?ch, ?t are variables over channels and instants of time.

The semantics of the above (and the predicates) are either defined in an ontology and/or by other axioms.

Ontology+rules form precise representation of what is required, doesn't say how to implement.

e.g., use DB for keeping track of radar check times? How far back in time?

Observations

- No "impedance mismatch", in principle, between rules and ontologies at this level
- Rules are simply "axioms" built upon the deductive backbone of well-defined concepts in the ontology
- Standard model-theoretic semantics determines what follows from what
- No instance management or epistemological issues per se
- no need to consider non-monotonicity, e.g., CWA
- time/temporal-change viewed sub specie aeternitas
- .

everything works as intended by this design. The whole point because this is a specification of what "laws" will hold true if is to capture those intentions.

Implementation Level: Rules to Guide **Device Behavior**

-An imperative (ECA) rule: invokes actions, causes things to happen.

causes things to happen.

Ideally, would like RIF++ based translator to somehow "translate" R1, R2 into ECA-1.

Question: what happened to time?

General Answer: different ontology at this level. For example, no such thing as a RadarCheckAlarm at design level.

Also BroadcastVacateSignal invokes a procedure in the SDR implementation: cannot expect complete semantics for it.

Our RIF use case does *not* require this notion of translation: translation *within dialects* will also benefit collaborative development of cognitive radio.

Observations

- Implementation ontologies different from design level
- observationally/operationally defined/measurable notions. Reduction of higher level theoretical notions to
- e.g., at higher level notion of radar involves some reference to function or purpose; at device level concern is how to detect certain features of waveforms.
- How much higher level stuff to put in device level? (tradeoffs)
- Rules at device level tend to be imperative, e.g., ECA
- The "arrow of time" is real at this level
- Standard model-theoretic semantics is not the whole story
- Instance management issues
- Epistemological issues

Key issue in a nutshell: how (and how much) to preserve relationships

among policy & design worldviews and implementation worldview?

Cognitive Radio Architecture

(Transcends design and implementation levels)

Device Architecture: World Model & Self Model

- World Model is the "external world" according to the CR
- what things are present, facts about its user, etc.
- Self Model is what the CR knows about itself
- current goals, capabilities (e.g., radar sensing), etc.
- Management of world & self models
- what goes in, how it gets it, how long it stays, and how it gets
- obviously must be sensible with respect to the rules, ontology, and reasoning mechanisms that CR uses
- this will be determined to a great extent by the underlying SDR and the PAAL layer

Device Architecture for Enhanced DFS Service

Then

Attempt to move in the direction indicated by h2 until the signal strength of r is below the required threshold and then attempt to associate with m

Thoughts...

- When thinking about ontology+rule interaction
- Different levels entail different considerations
- Community architecture (policy) & design profile levels
- Think in sub specie aeternitas mode: rules+ontology together describe
- How to make it possible to reason about policy & design profiles
- Implementation level
- Designing something whose behavior is guided (in a causal sense) by
- Guarantees need for rules with imperative semantics
- Be clear about the structure of self and world models and how managed: this will help to figure out how rules should be written.
- Relations among ontologies at different levels fundamental to "real" understanding
- not necessarily needed in app.
- but essential to RIF++ !!!

Closing Remarks

- The regulatory community, tech standards orgs, and the technology developers must have some shared understanding of how to formally specify CR behaviors;
- semantic technologies offers a framework for developing A Cognitive Radio Community Architecture based on this shared understanding;
- This requires knowedge representation in the form of both ontologies and rules;
- understanding of the rules from specific rule-based RIF offers the means to decouple the community's inference engines;