Virtual Private Networks

BGP/MPLS IP VPNs

Enzo Mingozzi
Professor @ University of Pisa
enzo.mingozzi@unipi.it

Corporate WANs

 The Wide Area Network (WAN) infrastructure is the set of links interconnecting border routers

Virtual Private Networks

- Private: exclusive use, independent addressing and routing
- Virtual: the actual infrastructure is shared

- Virtual backbone overlay on top of PN
 - Leased lines (L1, dedicated circuit)
 - Frame Relay (L2, pachet switched)

- Virtual backbone overlay on top of PN
 - GRE or IPSec tunneling over Internet

- CE routers at different sites peer with each other
- The overlay is visible to the VPN's routing algorithm

Pros

- Achieves the fundamental goals of a VPN
 - Connectivity, private addressing, privacy of traffic

Cons

- VPN is implemented by Customer Edge (CE) routers
 - Requires network management expertise
- IGP scaling routing limitations (mesh of CE peers)
- Amount of configuration required for adding a new site
- If provider managed
 - Scaling of management limitations with multiple customers

- PE-based VPN
 - scales with the number of customers
- Simple routing config at CEs

- How to achieve VPN goals?
 - private addressing, isolation of traffic

Constrain traffic at forwarding time with ACLs

- How to achieve VPN goals?
 - private addressing, isolation of traffic
- Constrain routing information distribution

- How to achieve VPN goals?
 - private addressing, isolation of traffic
- BGP/MPLS IP VPNs

BGP/MPLS IP VPNs

 Originally developed as a Cisco solution for provider-provisioned VPNs

 Following its success, standardized afterwards as RFC 4364

Also known as L3VPNs

Example network

- Customer sites
 - Multiple sites may be attached to the same PE
 - One CE may be attached to multiple PEs
 - Multiple networks within each site

Isolation of traffic

Per-VPN routing and forwarding tables (VRF)

Isolation of traffic

- Per-VPN routing and forwarding tables (VRF)
 - VRF look-up based on associating interfaces to CE (physical or logical) to VRFs by configuration

Run one routing protocol instance per VPN

Route distribution

Use iBGP to carry all routes

- Supports route filtering
- Supports route distribution between remote routers

Route distribution

- Use iBGP to carry all routes
 - Can only distribute one route to a given address prefix

Multiprotocol extensions for BGP

- BGP-4, originally supporting IPv4 only, has been extended to carry routing information for multiple Network Layer protocols (e.g. IPv6)
 [RFC 4760], referred as MP-BGP
- New attributes: Multiprotocol Reachable NLRI, and Multiprotocol Unreachable NLRI
- Network Layer protocol identified by the pair
 - Address Family Identifier (AFI): e.g. 1 (IPv4), 2 (IPv6)
 - Subsequent AFI: e.g. 1 (unicast), 2 (multicast)

VPN-IP addresses

- Define a new address family VPN-IPv4
 - AFI=1 (IPv4), SAFI=128 (MPLS-labeled VPN address)
- VPN-IP addresses are obtained from customer site addresses by pre-pending an 8-byte identifier named Route Distinguisher (RD)
- RDs must be unique globally
 - − E.g.,

TYPE (2) AS number (2)	Locally assigned number (4)
------------------------	-----------------------------

VPN-IP addresses

Route distribution

Use iBGP to carry VPN-IP routes

RDs are stripped off when redistributing BGP updates into VRFs

Route distribution

The only purpose of RDs is to make the VPN

routes unique

The target VRF is not inferrable in any manner from the RD

 Use of the BGP (Extended) Community attribute to carry a Route Target to filter routes out

- Broader requirements than simple VPN isolation
 - Support for overlapping VPNs (one site belongs to multiple VPNs)
 - Arbitrary and complex connectivity models

RT import and export policies on a per-VRF basis

Full-mesh: single RT at all sites (in & out)

Hub-and-spoke: RThub and RTspoke

Overlapping VPNs (extranets)

- The advertising PE is the next hop of a route
 - P has no information on the routes
 - VPN-IP addresses are not routable

Tunneling between PE is necessary

- How traffic from a remote PE is demultiplexed?
 - One LSP per VPN is needed between PEs!

- No separate state at P for each PE-PE VPN LSP
- VPN label distribution must be automatic

No separate state at P for each PE-PE VPN LSP

Use MPLS label stacking

VPN label distribution must be automatic

Use MP-iBGP for label distribution

Benefits of BGP/MPLS IP VPNs

Customer

- Offload routing management to the provider
- Access added-value services (firewall, auth)

Provider

- Service multiple VPN customers with a common infrastructure
- VPN management is hidden to the core
- Scale by adding PEs when needed
- MPLS tunneling plays a key enabling role

References

- I. Minei and J. Lucek, MPLS-Enabled
 Applications: Emerging Developments and New Technologies, 3rd Edition, Wiley, Dec. 2010
- RFCs
 - RFC4364, BGP MPLS IP Virtual Private Networks (VPNs), Feb. 2006
 - RFC4760, Multiprotocol Extensions for BGP-4, Jan.
 2007