Rings

Giannis Tyrovolas

February 21, 2020

1 Introduction

In the "beautiful" mental position that is Hilary of the second year I decided to study rings. What is a ring? Why is it important? We will hopefully learn. But quite possibly not. Let's end this section with a quote.

If you liked it then you should put a ring on it - Beyonce

2 Recap on rings

Let's start this section with the obvious thing we should define. The ring!

Definition 2.1 (Ring). A ring $(R, +, \times)$ is made of a set R (also called the carrier set) and two binary operations $+: R \times R \longrightarrow R$, $\times: R \times R \longrightarrow R$. Such that:

- 1. (R, +) is an abelian group.
- $2. \times is associative$
- 3. \times distributes over + i.e. $\forall a, b, c \in R$

$$a \times (b+c) = a \times b + a \times c \text{ and} (a+b) \times c = a \times c + b \times c$$

If R has a multiplicative identity we call R unital

Theorem 2.2 (Basic properties). 1. Zero is annihilating: $\forall r \in R \ 0_R r = 0_R = r 0_R$

$$2. (-x)y = -xy = x(-y)$$

Proof. 1.
$$0_R r = (0_R + 0_R)r = 0_R r + 0_R r \implies 0_R r = 0_R$$

2. $xy + (-x)y = (x - x)y = 0_R y = 0_R$ Hence by the uniqueness of the inverse of -xy, (-x)y = -xy. Similarly for x(-y)

Definition 2.3 (Unit group). For a *unital* ring R denote U(R) the set of $r \in R$ with a multiplicative inverse.

Theorem 2.4. $(U(R), \times)$ is a group.

Proof. 1. Associativity is inherited

- 2. Identity: $1_R \in U(R)$ trivially.
- 3. Inverse: By definition of U(R)
- 4. Closure: Let $x, y \in U(R)$ then $\exists x^{-1}, y^{-1} \in U(R)$. Then $(xy)(y^{-1}x^{-1}) = 1_R \implies xy \in U(R)$

Definition 2.5 (Subrings). Let R be a ring and $S \subseteq R$ such that S is a ring. Then S is a subring. If R is a unital ring and $1_R \in S$ then S is a unital subring.

Lemma 2.6 (Closure of intersection). Let Q a set of subrings of a ring R. Then $\bigcap_{S \in Q} S$ is a subring of R.

Definition 2.7 (Generated Subring).

$$S[\lambda_1,...,\lambda_n] = \bigcap \{T: T \text{ is a subring of } R \text{ and } \lambda_1,\ldots,\lambda_n \in T \text{ and } S \subseteq T\}$$

Definition 2.8 (Homomorphisms). Let $\phi: R \longrightarrow S$ where R, S rings. And $\forall x, y \in R$:

$$\phi(x+y) = \phi(x) + \phi(y)$$
 and $\phi(xy) = \phi(x)\phi(y)$

Then ϕ is a homomorphism.

If R, S are unital and $\phi(1_R) = 1_S$ then ϕ is a unital homomorphism.

Lemma 2.9 (Inverses). Let $\phi: R \longrightarrow S$ a homomorphism. Then $\phi(0_R) = 0_S$ and $\forall r \in R$, $\phi(-r) = -\phi(r)$. If ϕ is unital then $\forall x \in U(R), \phi(x) \in U(S)$ and $\phi(x)^{-1} = \phi(x^{-1})$.

Proof.

$$\phi(0_R) = \phi(0_R + 0_R) = \phi(0_R) + \phi(0_R) \implies \phi(0_R) = 0_S$$
$$0_S = \phi(0_R) = \phi(x) + \phi(-x) \implies \phi(-x) = -\phi(x)$$

Similarly for $\phi(x)^{-1} = \phi(x^{-1})$

3 Integral Domains and Polynomials

Definition 3.1 (Zero dividers). $r \in R$ is a (left) zero divider if $\exists s \in R^*$ such that $rs = 0_R$

Definition 3.2 (Integral Domains). R is an integral domain if it is a non-trivial, commutative, unital ring with no zero-divisors.

Lemma 3.3. If R is an integral domain then if $x \in R^*$ $xy = xz \implies y = z$

Proof.

$$0_R = xy - xz = x(y-z) \implies y-z = 0 \implies y = z$$
 since x is not a zero-divider

This proof is refered to the notes as "cute". Its a 7 at best.

Theorem 3.4. A finite integral domain is a field.

Proof. Consider $R \longrightarrow R$, $x \mapsto ax$ where $a \in R^*$. This map is injective by cancellation. Since R is finite it is also surjective and hence $\exists r \in R$ such that $ar = 1_R$. By commutativity it is a two sided inverse. So a has an inverse and since a is arbitrary R is a field.

Basic stuff about polynomials, what you'd expect without having done any rings.

Definition 3.5 (Polynomial). Let R be a non-trivial commutative, unital ring. Then we write R[X] the set of R-polynomials with coefficients in R and variable X. These are of the form:

$$p(X) = \sum_{i=0}^{\infty} r_i X^i$$

where $r_i \in R$ and $r_i \in R^*$ for finitely many i.

Two polynomials are equal if all their coefficients are equal. Also let polynomials p, q with coefficients a_i, b_i . Then:

$$(p+q)(X) = \sum_{i=0}^{\infty} (a_i + b_i)X^i$$
 $(pq)(X) = \sum_{i=0}^{\infty} (\sum_{j=0}^{i} a_j b_{i-j})X^i$

Theorem 3.6. The following are equivalent:

- 1. R is an integral domain
- 2. R[X] is an integral domain
- 3. $p, q \in R[X]^* \implies pq \in R[X]^*$ and $\deg pq = \deg p + \deg q$
- 4. A polynomial of degree d has at most d roots

Proof. Most of these are trivial. (2) implies (1) by considering constant polynomials. (3) implies (2) by definition. Now, (1) implies (3) since for deg p = n, deg q = m the coefficient n + mth coefficient of pq is a_nb_m . Since R is an integral domain and $a_n, b_m \neq 0_R$, $a_nb_m \neq 0_R \implies \deg pq = n + m$

For (4) implying (1): Consider the polynomial p(X) = rX, $r \neq 0_R$. Since p(X) has only one root and 0_R is a root there are no other roots. So R is an integral domain.

Now for
$$(1) + (2) \implies (4)$$
.

4 Ideals

Reminder: an *ideal* is subring which can be a kernel of a ring homorphism. It is a subring which is closed under multiplication with the *entire* ring.

These ideals can be broken up in several ways.

Definition 4.1 (Proper). A *proper* ideal is just an ideal which is not equal to the ring. Think of proper subsets.

Definition 4.2 (Principal). An ideal is principal if it is generated by one element.

Example. In $\mathbb{Z}[X]$, $\langle 2, X \rangle$ is not principal. There's no $p \in \mathbb{Z}[X]$ such that 2p = X or Xp = 2. But for $\mathbb{F}[X]$ where \mathbb{F} is a field every ideal is principal.

Definition 4.3 (Prime). A proper ideal is *prime* if $ab \in I \implies a \in I$ or $b \in I$.

Example. For $R = \mathbb{Z}$, $\langle p \rangle$ is prime for any p prime. That is partly how the definition is given.

Definition 4.4 (Maximal). A proper ideal is maximal if there is no strictly "bigger" proper ideal. Basically if you add an element which is not in the ring

Example. For $R = \mathbb{Z} \langle 5 \rangle$ is a maximal ideal, but $\langle 4 \rangle$ is not because, $\langle 4 \rangle \subseteq \langle 2 \rangle$.

Now we can use the information for each of these ideals to determine increasingly precise things about R/I. In all the following examples R is a commutative unital ring and I is proper.

Proposition 4.5. I is prime $\iff R/I$ is an integral domain.

Let's think why this makes sense. If R/I was not an integral domain then we could pick two elements a+I, b+I and $(ab)+I \in I$ hence $a, b \neq I$ but $ab \in I$. A contradiction. Similarly for the other direction.

Proposition 4.6. I is maximal $\iff R/I$ is a field.

The idea is that fields only have one ideal. That alongside with the correspondence theorem means that there are no ideals in R/I hence it is a field.

Corollary 4.7. A maximal ideal is prime.