

Z-Stack/Z-Tool Serial Port Interface

Document Number: F8W-2003-0001

Texas Instruments, Inc. San Dieg Califania USA (419) 542-1200

TABLE OF CONTENTS

1. 1N	NIRODUCTION	
1.1	Purpose	1
1.2	SCOPE	
1.3	ACRONYMS	1
1.4	APPLICABLE DOCUMENTS	
1.5	Overview	1
1.₫	Interface Mechanism	2
2. SY	YSTEM COMMANDS	5
2.1	Introduction	5
2.2	SYS_PING	5
2.3	SYS_VERSION	
2.4	SYS_SET_EXTENDED_ADDRESS	
2.5	SYS_GET_EXTENDED ADDRESS	ار 7
2.◀	SYS_RAM_READ	
2.7	SYS_RAM_WRITE	8
2.8	SYS_SET_NV	
2.9	SYS_GET_NV	
2.10		
2.11		
2.12		
2.13	~ - ~	
2.14		
2.15		
2.1		
2.17	-	
2.18		
2.19		
2.20		
2.21		
2.22	SYS_GET_TIME_ALIVE	18
3. M	AC INTERFACE	19
3.1	Introduction	
3.2	ZMAC_INIT_REQUEST	
3.3	ZMAC_DATA_REQUEST	
3.4	ZMAC_ASSOCIATE_REQUEST	
3.5	ZMAC_ASSOCIATE_RESPOND	
3.◀	ZMAC_DISASSOCIATE_REQUEST	
3.7	ZMAC_GET_REQUEST	
3.8	ZMAC_ORPHAN_RESPOND	
3.9	ZMAC_POLL_REQUEST	
3.10		
3.11	`	
3.12	`	
3.13	`	
3.14		
3.15		
3.1◀	ZMAC_PURGE_REQUEST	37

4.	\mathbf{M}^{A}	AC CALLBACK INTERFACE	38
	4.1	INTRODUCTION	38
	4.2	NWK ASSOCIATE INDICATION	
	4.3	NWK_ASSOCIATE_CONFIRMATION	
	4.4	NWK_DISASSOCIATE_INDICATION	
	4.5	NWK_DISASSOCIATE_CONFIRMATION	
	4.	NWK_BEACON_NOTIFY_INDICATION	
	4.7	NWK_ORPHAN_INDICATION	
	4.8	NWK SCAN CONFIRMATION	
	4.9	NWK START CONFIRMATION	
	4.10	NWK_SYNCHRONIZATION_LOSS_INDICATION	
	4.11	NWK_POLL_CONFIRMATION	
	4.12	NWK COMM STATUS INDICATION	
	4.13	NWK_DATA_CONFIRMATION	
	4.14	NWK_DATA_INDICATION	
	4.15	NWK_RX_ENABLE_CONFIRMATION	
	4.1 ∮	NWK_PURGE_CONFIRMATION	
	•	VK INTERFACE	50
	5.1	INTRODUCTION	
	5.2	NLDE_DATA_REQUEST	
	5.3	NLME_NETWORK_FORMATION_REQUEST	
	5.4	NLME_PERMITJOINING_REQUEST	
	5.5	NLME_JOIN_REQUEST	
	5. 4	NLME_LEAVE_REQUEST	
	5. 7	NLME_RESET_REQUEST	
	5.8	NLME_SYNC_REQUEST	
	5.9	NLME_GET_REQUEST	
	5.10	NLME_SET_REQUEST	
	5.11	NLME_NETWORKDISCOVERY_REQUEST	
	5.12	NLME_ROUTEDISCOVERY_REQUEST	
	5.13	NLME_DIRECTJOIN_REQUEST	
	5.14	NLME_ORPHANJOIN_REQUEST	
	5.15	NLME_STARTROUTER_REQUEST	•
6.	NV	WK CALLBACK INTERFACE	62
	4 .1	INTRODUCTION	
	1 .2	NLDE_DATA_CONFIRMATION	
	1 .3	NLDE_DATA_INDICATION	
	4 .4	NLME_NETWORKFORMATION_CONFIRMATION	
	1 .5	NLME_JOIN_CONFIRMATION	
	4. 4	NLME_JOIN_INDICATION	
	4 .7	NLME_LEAVE_CONFIRMATION	
	4 .8	NLME_LEAVE_INDICATION	
	. 9	NLME_SYNC_INDICATION	
	4 .10	NLME_NETWORKDISCOVERY_CONFIRMATION	
	إ .11	NLME_STARTROUTER_CONFIRMATION	
7.	AF	FINTERFACE	
	7.1	INTRODUCTION	
	7.1 7.2	AF_INIT_REQUEST	
	7.2 7.3	AF_REGISTER_REQUEST	
	7.3 7.4	AF_REGISTER_REQUEST AF_SENDMSG_REQUEST	
	/ . +	M_0PM/NDQ_VEQUE)	, 8
8	ΔF	CALLBACK INTERFACE	70

8.1	AF_INCOMINGDATA_INDICATION	70
9. ZD	O INTERFACE	71
9.1	Introduction	
9.2	ZDO_AUTOAPPENDENDDEVICEBIND_REQUEST	71
9.3	ZDO_AUTOFINDDESTINATION_REQUEST	71
9.4	ZDO_NETWORKADDRESS_REQUEST	
9.5	ZDO_IEEEADDRESS_REQUEST	
9.₫	ZDO_NODEDESCRIPTOR_REQUEST	
9. 7	ZDO_POWERDESCRIPTOR_REQUEST	
9.8	ZDO_SIMPLEDESCRIPTOR_REQUEST	
9.9	ZDO_ACTIVEENDPOINT_REQUEST	
9.10	ZDO_MATCHDESCRIPTOR_REQUEST	
9.11	ZDO_COMPLEXDESCRIPTOR_REQUEST	
9.12	ZDO_USERDESCRIPTOR_REQUEST	
9.13	ZDO_ENDDEVICEBIND_REQUEST	
9.14	ZDO_BIND_REQUEST	
9.15	ZDO_UNBIND_REQUEST	
9.1₫	ZDO_MGMT_NWKDISC_REQUEST	
9.1 7	ZDO_MGMT_LQI_REQUEST	
9.18	ZDO_MGMT_RTG_REQUEST	
9.19	ZDO_MGMT_BIND_REQUEST	
9.20	ZDO_MGMT_DIRECT_JOIN_REQUEST	
9.21	ZDO_USERDESCRIPTOR_SET_REQUEST	
9.22	ZDO_END_DEVICE_ANNCE	
9.23	ZDO_MGMT_LEAVE_REQUEST	
9.24	ZDO_MGMT_PERMIT_JOIN_REQUEST	
9.25	ZDO_SYSTEM_SERVER_DISC_REQUEST	
9.2	ZDO_NETWORK_START_REQUEST	
10. Z	ZDO CALLBACK INTERFACE	86
10.1	Introduction	
10.2	ZDO_NETWORKADDRESS_RESPONSECB	
10.3	ZDO_IEEEADDRESS_RESPONSECB	
10.4	ZDO_NODEDESCRIPTOR_RESPONSECB	
10.5	ZDO_POWERDESCRIPTOR_RESPONSECB	
10.◀	ZDO_SIMPLEDESCRIPTOR_RESPONSECB	
10.7	ZDO_ACTIVEENDPOINT_RESPONSECB	
10.8	ZDO_MATCHDESCRIPTOR_RESPONSECB	
10.9	ZDO_USERDESCRIPTOR_RESPONSECB	
10.10	ZDO_ENDDEVICEBIND_RESPONSECB	
10.11	ZDO_BIND_RESPONSECB	
10.12	ZDO_UNBIND_RESPONSECB	
10.13	ZDO_MGMT_NWKDISC_RESPONSECB	
10.14	ZDO_MGMT_LQI_RESPONSECB	
10.15	ZDO_MGMT_RTG_RESPONSECB	
10.1◀	ZDO_MGMT_BIND_RESPONSECB	
10.17	ZDO_MGMT_DIRECT_JOIN_RESPONSECB	
10.18	ZDO_USERDESCRIPTOR_SET_RESPONSECB	
10.19	ZDO_MGMT_LEAVE_RESPONSECB	
10.20	ZDO_MGMT_PERMIT_JOIN_RESPONSECB	
10.21	ZDO_SYSTEM_SERVER_DISC_RESPONSECB	99
11. A	APPLICATION INTERFACE	100
11 1	INTRODUCTION	100

Z-Stack/Z-1001 Serial Port Interface	<u> </u>
11.2 USERTEST_REQUEST	100
LIST OF FIGURES	

1. Introduction

1.1 Purpose

This defument defines the Serial Pat Interface (SPI) that is used for communication between the Z-Tablest program and the target. The Z-Tablest program issues commands to the target and receives appropriate responses. The communication occurs over a RS-232 serial pat.

1.2 Scope

This d cument defines

- The link layer process used to exchange packets were the RS-232 serial link
- A set 1 c numands that can be issued by the Z-T 11 test pr gram t the target
- Appr priate responses for each of those commands
- The famat feach fithe command and the response messages

1.3 Acronyms

BB	Baseband
CCA	Clear Channel Assessment
MAC	Media Access C ntr 1
NHLE	Next Higher Layer Entity
NWK	Netw 1k
PHY	Physical Layer
PIB	Pers nal Information Base
SPI	Serial Pat Interface

1.4 Applicable Documents

1. Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Standard 802.15.4, May 12, 2003.

1.5 Overview

The serial part interface enables the Z-Tablest program to issue commands to and receive responses from the target. The following functionalities are enabled by these messages.

- 1. System commands: These messages all with the tester to other device configuration, access memory location, set the debug message filter, control message tracing in each software component, and reset the target.
- 2. MAC interface commands: The test can issue MAC commands to access the MAC layer functions of the target.

- 3. NWK interface commands: The tester can issue NWK commands to out of NWK layer functionalities of the target.
- 4. AF interface commands: The tester can issue AF commands to call AF layer functions of the target.
- 5. ZDO interface commands: The test can issue ZDO commands to access the ZDO functionalities of the target.
- 4. Applicatin-specific commands: The tester can issue applicatin-specific commands paired with programmed message interfaces from the Test Total and capabilities within Monito Teston the target.

In Z-Stack, each I the ab we functionalities can be enabled I disabled using compiler flags. One benefit I compiling tu unnecessary functionalities is saving the collespace which plays a significant role in embedded system development. The details I have these compiler flags in preprocess I can be found in the Z-Stack Compiler Options document.

1.6 Interface Mechanism

A link layer protein is necessary so that messages can be exchanged between the tester and target over an RS-232 serial link. The purpose of the link layer protein is to frame the messages in packets for proper transmission and reception and to ensure message integrity.

The physical transmission uses: no Parity; 8 data bits and 1 stop bits for each byte.

The transmissi n rate will be 38.4 kbps.

The Z-T of program must send one message at a time and wait for either the expected response message to a time out before sending the next message of resending the current message.

Fields that are multi-byte fields are transmitted M st Significant byte first.

There is no provision for retransmission of lost packets

The link layer packet has the fill wing firmat.

SOP CMD	LEN	Data	FCS
---------	-----	------	-----

Figure 1 Z-Stack Message Format

SOP (Start Packet): This is a ne byte field with value equal t 0x02 that defines the start each link level packet.

CMD (Command ID): This is a two byte field (MSByte transmitted first) with a value denoting the Command Identification (ID) for this message. This field is described in detail below.

LEN (Length): This ne byte field is the number 1 bytes in the Data field. If the Data field contains no information this LEN field has a value 10 and the total length 1 the command is 5 bytes (0 data message).

Data: This field contains the actual data to be transmitted. This is a field which varies in size according to the command.

FCS (Frame check sequence): This is a ne byte field that is used to ensure packet integrity. This field is computed as an XOR of all the bytes in the message starting with CMD and through the last byte of data. The receiver XORs all the received data bytes as indicated above and then XORs the received FCS field. If the sum is not equal to zero, the received packet is in error.

The CMD, LEN and data fields are application message dependant but shown here to fully illustrate the link level protect. The CMD, LEN and data fields are separately described in the succeeding sections of this document.

In terms f packet err handling, the preedure is as fill ws:

- Assuming the start I message indicat I is unkn wn and there is a buffer c Intaining received data bytes t be processed, the first element I the procedure is SOP detection:
 - o Parse the buffer until a SOP is detected and return the buffer leating that indicat
- Next, the SOP must be validated (since ther data elements in the buffer may match the SOP). The SOP validation procedure is as follows:
 - The field after the SOP is the CMD and the ne fill wing is the LEN. Use the LEN field toparse the propertive message to the location of the FCS. Use the FCS to check the prential message and validate the SOP location. If validated, message parsing continues with the next SOP (immediately after the FCS just processed).
 - Otherwise, the SOP is no validated and the procedure continues with SOP detection.
- Once the SOP is detected and validated, message processing continues with successive message sequences as denoted in Figure 1.
- Computation of invalid FCS on a message shall result in invocation of the SOP detection procedure beginning with the field after the failed FCS since failed FCS could have resulted from an errore as LEN field.

1.6.1 Command ID (CMD)

The Command ID field is a 14 bit field broken up in to the following 2 sub fields:

Command Type is a mast significant 4 bits of the CMD field and is used to rate messages. Each bit (3-0) of this sub field is defined as:

- Bit 0 Response Bit if set, this bit indicates a response message (each response message is described below).
- Bit 1 Subscripti n Bit if set, this bit indicates that this message was the result n a subscripti n to a callback service.
- Bit 2 Debug/Trace Bit if set, this bit indicates that this message is either a Debug → Te M1L2(i)TJ 194. -1.73252

0x500 – 0x5FF SPI Interface Commands
0x400 – 0x4FF Sequence Interface Commands
0x800 – 0x8FF APS Interface Commands
0x900 – 0x9FF AF Interface Commands
0xA00 – 0xAFF ZDO Interface Commands
0xB00 – 0xBFF Device Interface Commands

Remember that the *Command Number* and *Command Type* sub fields are combined to make a unique *Command ID*. That means the messages can share *Command Numbers* as long as the *Command Types* are different. For example, a MAC Command, its response, and a MAC subscription (callback) message can all have the same *Command Number*, but the *Command Type* for each is different.

2. System Commands

2.1 Introduction

These messages are used to issue system related commands.

2.2 SYS_PING

2.2.1 Description

This command issues PING requests to verify if a device is active and check the capability of the device.

2.2.2 Usage

The command message format is as follows

Cmd=0x0007	Len=0x00
------------	----------

2.2.3 SYS_PING_RESPONSE

The response to this command has the following format.

Cmd=0x1007	Len=0x02	Capabilities
------------	----------	--------------

Capabilities – 1 bit field. This field represents the interfaces that this device can handle (compiled into the device). Bit weighted and defined as:

MT_CAP_MAC	0x0001
MT_CAP_NWK	0x0002
MT_CAP_AF	0x0004
MT_CAP_ZDO	0x0008
MT_CAP_USER_TEST	0x0010
MT_CAP_SEQ	0x0020
MT_CAP_BOOTLOAD	0x8000

2.3 SYS_VERSION

2.3.1 Description

This command is used to request for the device's version string.

2.3.2 Usage

The command message format is as follows

Cmd=0x0008	Len=0x00
------------	----------

2.3.3 SYS_VERSION_RESPONSE

The response to this command has the following format.

Cmd=0x1008	Len	Versi n
------------	-----	---------

Len – length Versi String in bytes. This is the number Characters no including the null termination.

Versi n – device defined ASCII string (NOT null terminated).

2.4 SYS_SET_EXTENDED_ADDRESS

2.4.1 Description

This command is used to set the \P 4-bit extended address.

2.4.2 Usage

The command message format is as follows

Cmd=0x0010	Len = 8	ExtAddress
------------	---------	------------

ExtAddress – 8 bytes – The device's extended address.

2.4.3 SYS_SET_EXTENDED_ADDRESS_RESPONSE

The response to this command has the following format.

Cmd=0x1010	Len=0x01	Status
------------	----------	--------

The status is a success (0) \uparrow fail (1).

2.5 SYS GET EXTENDED ADDRESS

2.5.1 Description

This command is used to read the extended address from the device.

2.5.2 Usage

The command message format is as follows

Cmd=0x0011	Len = 0x00
Cina oncorr	2011 01100

2.5.3 SYS GET EXTENDED ADDRESS RESPONSE

The response to this command has the following format.

Cmd=0x1011	Len=0x08	ExtAddress
------------	----------	------------

ExtAddress – 8 bytes – The device's extended address.

2.6 SYS_RAM_READ

2.6.1 Description

This command is used by the tester to read a single memory location in the target RAM. The command accepts an address value and returns the memory value present in the target RAM at that address.

2.6.2 Usage

The command message format is as follows

Cmd=0x0001	Len=0x02	Address
------------	----------	---------

Address is a 2 byte field and contains the address of the memory location that needs to be read.

2.6.3 SYS_RAM_READ_RESPONSE

The response to this command has the following format.

Cmd=0x1001 Len=0x03	Status	Value
---------------------	--------	-------

Status is a ne byte field and is either success(0) ne fail(1). The fail status is returned if the address value in the command message was ne within the valid range.

Value is a byte field that contains the data read from the target RAM.

2.7 SYS RAM WRITE

2.7.1 Description

This command is used by the tester towrite to a particular location in the target RAM. The command accepts an address location and a memory value. The memory value is written to the address location in the target RAM.

2.7.2 Usage

The command message format is as follows

Cmd=0x0002 Len=0x04	Address	Value
---------------------	---------	-------

Address is a 2 byte field that indicates the address of the memory 1 cation that is to be written.

Value is a byte field that contains the data value that is to be written to the memory location.

2.7.3 SYS_RAM_WRITE_RESPONSE

The response has the following format.

Cmd=0x1002	Len=0x01	Status
------------	----------	--------

Status is a success (0) fail (1). The fail status is returned if the address leatin in the command message was not within the valid range.

2.8 SYS_SET_NV

2.8.1 Description

This command is used by the tester towrite to a particular item in non-volatile memory. The command accepts an attribute ID and an attribute value. The attribute value is written to the location specified for the attribute ID in the target.

2.8.2 Usage

The command message format is as follows

Cmd=0x0012 Len=variable	Attribute	Value
-------------------------	-----------	-------

Len is a 1 byte field that indicates the tal length of the Attribute and Value fields that fall w.

Attribute is a 1 byte field that indicates the ID 1 the leating that is to be written.

Value is a byte array that contains the data value that is to be written.

2.8.3 SYS_SET_NV_RESPONSE

The response has the following format.

Cmd=0x1012	Len=0x01	Status
------------	----------	--------

Status is a success (0) fail (1). The fail status is returned if the address leating in the command message was not within the valid range.

2.9 SYS_GET_NV

2.9.1 Description

This command is used by the tester toread a single memory item in the target non-volatile memory. The command accepts an attribute ID value and returns the memory value present in the target for the specified attribute ID.

2.9.2 Usage

The command message format is as follows

Attribute

Attribute is a 1byte field and contains the location that needs to be read.

2.9.3 SYS NV GET RESPONSE

The response to this command has the following format.

	1			
Cmd=0x1013	Len=variable	Status	Attribute	Value

Len is a 1 byte field that indicates the tall length of the Status, Attribute, and Value fields that fall w.

Status is a ne byte field that indicates either success(0) 1 fail(1). Failure status is returned if the attribute ID in the command message was not within the valid range.

Attribute is a 1 byte field that indicates the ID 1 the data value that is being returned.

Value is a byte array that contains the data returned from the target.

2.10 SYS_GET_DEVICE_INFO

2.10.1 Description

This command is used by the tester to read a block of active parameters for the target device.

2.10.2 Usage

The command message format is as follows

Cmd=0x0014	Len=0x00
------------	----------

2.10.3 SYS_GET_DEVICE_INFO_RESPONSE

The response to this command has the following format.

Cmd=0x1014	Len=0x03	Status	IEEEAddress	Sh #tAddress	Device	Device	NumAss •	Ass Devices
					Type	State	Devices	List

Status is a ne byte field and is either success(0) ne fail(1). The fail status is returned if the address value in the command message was ne within the valid range.

IEEEAddress is an 8 byte field.

Sh tAddress is a 2 byte field.

DeviceType is a 1 byte field indicating device type, where bits 0 t 2 indicate the capability f 1 the device t perate as a c 1 dinat 1, r 1 ter, 1 end device, respectively.

DeviceState is a 1 byte field indicating the state of the device with different possible states as shown below:

Descripti n	Value	
Initialized - not started automatically		
Initialized - not connected to anything	0x01	
Discovering PAN's to join	0x02	
Joining a PAN	0x03	
ReJoining a PAN, only for end devices	0x04	
Joined but not yet authenticated by trust center	0x05	
Started as device after authentication	0x0	
Device joined, authenticated and is a router	0x07	
Starting as Zigbee Coordinator	0x08	
Started as Zigbee Coordinator	0x09	
Device has lost information about its parent	0x0A	

NumAss Devices is a 1 byte field specifying the number of devices being ass tiated to the target device.

Ass DevicesList is a variable length array 14-bits specifying the netw 14 address(es) 14 device(s) ass variable to the target device.

2.11 SYS_GET_NV_INFO

2.11.1 Description

This command is used by the tester toread a block of parameters from Non-Volatile storage of the target device.

2.11.2 Usage

The command message format is as follows

0x00

2.11.3 SYS GET NV INFO RESPONSE

The response to this command has the following format.

Status is a ne byte field. A value of zer indicates success. Failure is indicated by a non-zer value, representaing a bit mask of each item that failed to be retrieved from NV memory. Bit0 is used for the first item (IEEEAddress), bit1 for the second item (ScanChannels), and so forth. Data values for failed items are returned as one of more bytes of 0xFF, the typical value read from erased NV memory.

IEEEAddress is an 8 byte field. This is the device's unique **∮**4-bit extended address.

ScanChannels is a 4 byte field. This represents a bit-mask of channels to be scanned when starting the device.

PanID is a 1 byte field. Specifies the Pan ID tostart or join. Set to0xFFFF toselect a PAN after scanning.

SecurityLevel is a 1 byte field. This specifies the network messaging security level, zerodisables security.

PreC InfigKey is a 14-byte field. This specifies the pre-c Infigured security key.

2.12 SYS_SET_PANID

2.12.1 Description

Store a PanID value into Non-Volatile memory to be used the next time the target device resets.

2.12.2 Usage

The command message format is as follows

$Cmd=0x001B \qquad Len = 0x01 \qquad PanID$

PanID – 1 byte – The device's PanID.

2.12.3 SYS_SET_PANID_RESPONSE

The response to this command has the following format.

Cmd=0x101B	Len=0x01	Status
------------	----------	--------

The status is a success (0) • fail (n • -zer • NV err • c • de).

2.13 SYS_SET_CHANNELS

2.13.1 Description

This command is used to store a channel select bit-mask into Non-Volatile memory to be used the next time the target device resets.

2.13.2 Usage

The command message format is as follows

Cmd=0x001C	Len = 0x04	Channels
------------	------------	----------

Channels – 4 bytes – A bit-mask representing the channel(s) t scan the next time the target device resets.

2.13.3 SYS_SET_CHANNELS_RESPONSE

The response to this command has the following format.

Cmd=0x101C	Len=0x01	Status
------------	----------	--------

The status is a success (0) • fail (n • -zer • NV err • c • le).

2.14 SYS_SET_SECURITY_LEVEL

2.14.1 Description

This command is used to store a security level value into Non-Volatile memory to be used the next time the target device resets.

2.14.2 Usage

The command message format is as follows

Cmd=0x001D Le	n = 0x01	SecLevel
---------------	----------	----------

SecLevel – 1 byte – Security level touse the next time the target device resets. Zerois used todisable security.

2.14.3 SYS SET SECURITY LEVEL RESPONSE

The response to this command has the following format.

Cmd=0x101D	Len=0x01	Status
------------	----------	--------

The status is a success (0) • fail (n n-zer NV err • c de).

2.15 SYS_SET_PRECONFIG_KEY

2.15.1 Description

This command is used to store a pre-configured key array into No-Volatile memory to be used the next time the target device resets.

2.15.2 Usage

The command message format is as follows

Cmd=0x001E Len = 0x10 PreCfgKey

 $\label{eq:preconfigured} PreCfgKey-1 \P \ bytes-An \ array \ representing \ the \ pre-c \ \ \ figured \ key \ t \ \ use \ the \ next \ time \ the \ target \ device \ resets.$

2.15.3 SYS SET PRECONFIG KEY RESPONSE

The response to this command has the following format.

Cmd=0x101E	Len=0x01	Status
------------	----------	--------

The status is a success (0) 1 fail (n n-zer NV err 1 c de).

2.16 Debug Messages

These messages are used by the tester to set debug threshold level for each software component in the target and receive debug messages from them. The tester uses the Set Debug Threshold command to set the threshold value for debug messages from each software component. The target sends asynchronous debug messages that exceed the threshold value to the tester.

2.16.1 SYS SET DEBUG THRESHOLD

2.16.1.1 Description

This command is used by the tester to set the debug threshold level for a particular software component in the target.

2.16.1.2 Usage

The command message format is as follows

Cmd=0x0003	Len=0x02	C mp nentID	Thresh 1d
------------	----------	-------------	-----------

ComponentID is a 1 byte field that uniquely identifies a particular software component on the target. The list of software components and their identifiers is listed in Appendix A.

Threshold is a 1 byte field that specifies the threshold value for reporting debug messages by that software component. Its value can be set to CRITICAL (0x01), ERROR(0x02), INFORMATION(0x03) of TRACE(0x04). The software component will report all debug messages whose value exceeds the threshold. The current implementation only supports two levels of differentiation, either ON(>0x00) of OFF(0x00)

2.16.1.3 SYS SET DEBUG THRESHOLD RESPONSE

The response message has the following format

Cmd=0x1003	Len=0x01	Status
------------	----------	--------

The status field is 1 byte and indicates success(0) • fail(1). The fail status is returned if the component identifier in the command message was not valid.

2.16.2 SYS DEBUG MESSAGE

This message is sent by the tester to the target.

ComponentID is a 1 byte field that identifies the software component within the target that produced the debug message. The list of components and their identifiers is listed in Appendix A.

Value is a 1 byte field that indicates the severity \P the debug message. It takes values \P CRITICAL(0x01), ERROR(0x02), INFORMATION(0x03) \P TRACE(0x04).

Parameter Cant is a 1 byte field and indicates the number of parameters included in the message

TimeStamp is a 2 byte field and indicates the time Tecurrence The debug.

The debug message can have up t 3 parameters. The number 1 parameters is c nationed in the Parameter unt field (1 byte, ranges fr no 0-3) and the parameters themselves are c nationed (if present) in the parameter and parameter fields (2 bytes each).

The length field has a value \(\cdot 5 + 2n \) where n refers t \(\cdot \) the number \(\cdot \) parameters included in the message.

2.17 SYS_RESET

2.17.1 Description

This command is sent by the tester to reset the target device.

2.17.2 Usage

The command message format is as follows

Cmd=0x0005	Len=0x01	Type
------------	----------	------

The type field is 1 byte and requests a target device reset (0) reservable serial boulander reset (1). If the target device does no support serial boulanding, boulander reset commands are ignored and no response is sent from the target.

2.17.3 SYS_RESET_RESPONSE

The response has the following format.

Cmd=0x1005	Len=0x01	Type
------------	----------	------

The type field indicates which reset peration is being reported – target device (0) of serial boulonder (1). This response is sent from the target device of serial boulonder after the requested reset is complete.

2.18 Callback Messages

Each I the filwing layer interfaces consists I 2 parts (command and callback). The commands are fillwed by an immediate response message, but the callbacks are asynchronous and can occur at unexpected times. With this command the tester can subscribe I unsubscribe from these callbacks.

2.18.1 SYS_CALLBACK_SUBSCRIBE

2.18.1.1 Description

This command subscribes/unsubscribes tolayer callbacks.

2.18.1.2 Usage

The command message format is as follows.

Cmd=0x000 ∮ Len=	0x03 CommandID	Acti n
-------------------------	----------------	--------

SubCommandID is a 2 byte field that contains the Command ID field of the expected callback message. Refer to Appendix A of the following callback sections for valid command IDs. A value of 0xFFFF indicates all callbacks.

Acti is a 1 byte field that contains the acti in the command (0 – unsubscribe, 1 – subscribe).

2.18.2 SYS CALLBACK SUBSCRIBE RESPONSE

Cmd=0x100	Len=0x01	Status
-----------	----------	--------

Status is a 1 byte field that indicates SUCCESS TFAILURE (see appendix fT failure c Tes).

2.19 SYS KEY EVENT

2.19.1 Description

Sends a key event to the device registered application. The device register application means that the application registered for key events with OnBoard. Not all applications support all keys, so you must know what keys the application supports.

2.19.2 Usage

The command message format is as follows.

Cmd=0x001 ∮	Len=0x02	Shift	Key
--------------------	----------	-------	-----

Shift is a byte field with a B lean value. True (0x01) means that the shift was enabled.

Key is a byte field with bit values f ? the keys. The f **l **wing table has the key types:

Key Event	Bit
Key 1	0
Key 2	1
Key 3	2
Key 4	3
Key 5	4
Key ∮	5
Key 7	•
Key 8	7

2.19.3 SYS KEY EVENT RESPONSE

Cmd=0x101	Len=0x01	Status
-----------	----------	--------

Status is a 1 byte field that indicates SUCCESS(0) ¬ FAILURE (see appendix f¬ failure c¬des). Failure means that an applicati¬n was registered t¬receive the key event.

2.20 SYS_APP_MSG

2.20.1 Description

Use this message to send raw data to an application. The request message may of may not get a response message. There could also be multiple and/or asynchronous response messages.

2.20.2 Usage

The command message format is as follows.

Cmd=0x0018	Len=0x01 + data length	Endp int	Data
------------	------------------------	----------	------

Endpoint is a byte field – this represents the application endpoint to send the data to Don't use this field to send ZDO messages (endpoint 0).

Data – a variable length field – raw data packet t send t the application.

2.20.3 SYS_APP_MSG_RESPONSE

Cmd=0x1018	Len=var	Endp int	Data
------------	---------	----------	------

Endpoint is a byte field – this represents the application endpoint the data is from.

Data is a variable length field – raw data packet fr n an applicati n endp int.

2.21 SYS_LED_CONTROL

2.21.1 Description

Use this message to ntri LEDs in the target board.

2.21.2 Usage

The command message from is as follows.

Cmd=0x0019 Len=2	LED	M_de
------------------	-----	------

LED is a byte field with the fill wing possible values:

Value	Descripti n
1	LED 1
2	LED 2
3	LED 3
4	LED 4
0xFF	All LEDs

Made is a byte field with the fall wing passible values:

Value	Descripti n
0	LED Off
1	LED On
2	Blink
3	Flash
4	Tggle

2.21.3 SYS_LED_CONTROL_RESPONSE

Cmd=0x1019	Len=0x01	Status
------------	----------	--------

Status is a 1 byte field that will be SUCCESS(0) 7 FAILURE(1).

2.22 SYS_GET_TIME_ALIVE

2.22.1 Description

This command is used to request the length of the time period since the device's last reset in unit of second.

2.22.2 Usage

The command message format is as follows.

Cmd=0x001A	Len=0x00
------------	----------

2.22.3 SYS_GET_TIME_ALIVE_RESPONSE

Cmd=0x101A	Len=0x04	Sec nds
------------	----------	---------

Sec and is a 4 byte field that will indicate the time duration in seconds.

3. MAC Interface

3.1 Introduction

These commands all with the tester to issue commands to the MAC layer in the target and receive responses. Each of these messages has a corresponding message that is returned by the target. The response message only indicates that the command message was received and executed. The result of the command execution will be conveyed to the tester via a callback message interface (defined in the next section), if applicable.

3.2 ZMAC_INIT_REQUEST

3.2.1 Description

This command is used to initialize the ZMAC on the current device (on behalf of the next higher layer).

3.2.2 Usage

Cmd	Length
0x0082	0x00

3.2.3 ZMAC_INIT_RESPONSE

Cmd	Length	Status
0x1082	0x01	1byte

Status indicates SUCCESS > FAILURE

3.3 ZMAC_DATA_REQUEST

3.3.1 Description

This command is used to send (on behalf of the next higher layer) MAC Data Frame packet.

3.3.2 Usage

Cmd	Length	DestAddressM •le	DestAddress	DestPanID	SrcAddressM de
0x0083	0x1C - 0x82	1 byte	8 bytes	2 bytes	1 byte

Handle	TxOpti ns	L gicalChannel	P wer	KeyS urce	Security Level
1 byte	1 byte	1 byte	1byte	8 bytes	1 byte

KeyIdM de	KeyIndex	MSDULength	MSDU
1 byte	1 byte	1 byte	0-102 bytes

DestAddressMode: Specifies the famat of the destination address.

Descripti n	Value
Address N Present	0x00
Address 1 ∮ bit	0x02
Address 4 4 bit	0x03
Bradcast	0xFF

DestAddress: Address of the destination. **DestPanID**: PAN ID of the destination.

SrcAddressMode: Specifies the format of the source address.

Descripti n	Value
Address N Present	0x00
Address 1 ∮ bit	0x02
Address 44 bit	0x03
Br adcast	0xFF

Handle: Handle of the packet.

TxOption: Transmitting ptions

Descripti n	Value
Ackn wledged transmissi n	0x01
GTS transmissi n (unused)	0x02
Indirect transmissi n	0x04
N retransmit transmissi n	0x10
N c firm transmissi	
Use PIB value MAC_ALT_BE f the minimum back ff exp nent transmissi n	0x40

LogicalChannel: Channel that data frame will be transmitted.

Power: Power level that data frame will be transmitted.

KeySource: Key Source of this data frame.

SecurityLevel: Security Level **1** this data frame.

Descripti n	Value
N osecurity is used	0x00

MIC-32 authenticati n is used	0x01
MIC-¶4 authenticati n is used	0x02
MIC-128 authenticati n is used	0x03
AES encrypti n is used	0x04
AES encrypti and MIC-32 authenticati are used	0x05
AES encrypti and MIC-44 authenticati are used	0x0 4
AES encrypti n and MIC-128 authenticati n are used	0x07

KeyIdMode: Key Id M de 1 this data frame.

Descripti n	Value
Key is n → used / Key is determined implicitly	0x00
Key is determined fr n the 1-byte key index	0x01
Key is determined fr n the 4-byte key index	0x02
Key is determined from the 8-byte key index	0x03

KeyIndex: Key Index \checkmark this data frame.

MSDULength: Length of the data

MSDU: Actual data.

3.3.3 ZMAC_DATA_RESPONSE

Cmd	Length	Status
0x1083	1 byte	1byte

Status indicates SUCCESS > FAILURE

3.4 ZMAC_ASSOCIATE_REQUEST

3.4.1 Description

This command is used to request (In behalf of the next higher layer) an association with a condinator

3.4.2 Usage

Cmd	Length	L gicalChannel	ChannelPage	CondAddressMode	C ••• dAddress	CondPanID
0x0084	0x19	1 byte	1 byte	1 byte	8 bytes	2 bytes

Capability Inf mati n	KeyS urce	SecurityLevel	KeyIdM de	KeyIndex
1 byte	8 bytes	1 bytes	1 bytes	1 byte

LogicalChannel: The channel that the device will ass iate.

ChannelPage: The channel page that the device will ass iate.

CoordAddressMode: Specifies the famat of the condinator device address.

Descripti 1	Value
Address N Present	0x00
Address 1 ∮ bit	0x02
Address 44 bit	0x03
Bradcast	0xFF

CoordAddress: Address I the Condinat CoordPanID: PAN ID I the condinat Coo

CapabilityInformation: Bit map which specifies the perational capabilities of the device.

KeySource: Key Source of this data frame.

SecurityLevel: Security Level of this data frame.

Descripti n	Value
N security is used	0x00
MIC-32 authenticati n is used	0x01
MIC-14 authenticati n is used	0x02
MIC-128 authenticati n is used	0x03
AES encryptin is used	0x04
AES encryptin and MIC-32 authenticatin are used	0x05
AES encrypti and MIC-44 authenticati are used	0x0 4
AES encrypti n and MIC-128 authenticati n are used	0x07

KeyIdMode: Key Id M de 1 this data frame.

Descripti n	Value
Key is n → used / Key is determined implicitly	0x00
Key is determined fr n the 1-byte key index	0x01
Key is determined fr In the 4-byte key index	0x02
Key is determined fr n the 8-byte key index	0x03

KeyIndex: Key Index of this data frame.

3.4.3 ZMAC_ASSOCIATE_RESPONSE

Cmd	Length	Status
0x1084	0x01	1 byte

Status indicates SUCCESS > FAILURE

3.5 ZMAC_ASSOCIATE_RESPOND

3.5.1 Description

This command is used to send (In behalf of the next higher layer) an association response message.

3.5.2 Usage

Cmd	Length	DeviceExtendedAddress	Ass CSh ItAddress	Status
0x0085	0x1 ∮	8 bytes	2 bytes	1 byte

KeyS arce	SecurityLevel	KeyIdM de	KeyIndex
8 bytes	1 bytes	1 bytes	1 byte

DeviceExtendedAddress: Extended Address of the device requesting association.

AssocShortAddress: The short address all tated to the device.

Status: Indicates success ? failure

Descripti n	Value
SUCCESS	0x00
FAILURE	0x01

KeySource: Key Source of this data frame.

SecurityLevel: Security Level **1** this data frame.

Descripti n	Value
N ∕security is used	0x00
MIC-32 authenticati ↑ is used	0x01
MIC-44 authenticati n is used	0x02
MIC-128 authenticati n is used	0x03
AES encrypti n is used	0x04
AES encryptin and MIC-32 authenticatin are used	0x05
AES encrypti n and MIC-44 authenticati n are used	0x0 4

Α	ES encryptin and MIC-128 authenticatin are used	0x07

KeyIdMode: Key Id M de f this data frame.

Descripti n	Value
Key is n → used / Key is determined implicitly	0x00
Key is determined fr n the 1-byte key index	0x01
Key is determined fr In the 4-byte key index	0x02
Key is determined fr n the 8-byte key index	0x03

KeyIndex: Key Index **→** this data frame.

3.5.3 ZMAC_ASSOCIATE_RESPOND_RESPONSE

Cmd	Length	Status
0x1085	0x01	1 byte

Status indicates SUCCESS > FAILURE

3.6 ZMAC_DISASSOCIATE_REQUEST

3.6.1 Description

This command is used to request (In behalf of the next higher layer) a disassociation of the device from the condinator.

3.6.2 Usage

Cme	l Length	DeviceAddressM ele	DeviceAddress	DevicePanID	Disass ciateReas n	TxIndirect
0x00	8 ∮ 0x18	1 byte	8 bytes	2 bytes	1 byte	1 byte

KeyS arce	SecurityLevel	KeyIdM de	KeyIndex
8 bytes	1 bytes	1 bytes	1 byte

DeviceAddressMode: Specifies the famat of the device address.

Descripti n	Value
Address N Present	0x00

Address 1 ∮ bit	0x02
Address 44 bit	0x03
Br adcast	0xFF

DeviceAddress: The address of the device (specified by the mode above)

DevicePanID: Pan ID 1 the device.

DisassociateReason: Reas n disass ciatin.

TxIndirect: Transmit indirect.

KeySource: Key Source of this data frame.

SecurityLevel: Security Level **1** this data frame.

Descripti n	Value
N security is used	0x00
MIC-32 authenticati is used	0x01
MIC-44 authenticati n is used	0x02
MIC-128 authenticati n is used	0x03
AES encryptin is used	0x04
AES encryptin and MIC-32 authenticatin are used	0x05
AES encrypti and MIC-44 authenticati are used	0x0 4
AES encrypti and MIC-128 authenticati an are used	0x07

KeyIdMode: Key Id M de 1 this data frame.

Descripti n	Value
Key is n → used / Key is determined implicitly	0x00
Key is determined fr n the 1-byte key index	0x01
Key is determined fr n the 4-byte key index	0x02
Key is determined fr n the 8-byte key index	0x03

KeyIndex: Key Index of this data frame.

3.6.3 ZMAC_DISASSOCIATE_RESPONSE

Cmd	Length	Status
0x108 ∮	0x01	1byte

Status indicates SUCCESS > FAILURE

3.7 ZMAC_GET_REQUEST

3.7.1 Description

This command is used to read (on behalf of the next higher layer) a MAC PIB attribute.

3.7.2 Usage

Cmd	Length	Attribute
0x0087	0x01	1 byte

Attribute: Speicifies the MAC PID Attributes

Descripti n	Value
ZMacAckWaitDurati n	0x40
ZMacAss eiati nPermit	0x41
ZMacAut Request	0x42
ZMacBattLifeExt	0x43
ZMacBattLeftExtPeri ds	0x44
ZMacBeac nMSDU	0x45
ZMacBeac nMSDULength	0x4 ∮
ZMacBeac nOrder	0x47
ZMacBeac nTxTime	0x48
ZMacBSN	0x49
ZMacC •• dExtendedAddress	0x4A
ZMacC TdSh TtAddress	0x4B
ZMacDSN	0x4C
ZMacGTSPermit	0x4D
ZMacMaxCSMABack ffs	0x4E
ZMacMinBE	0x4F
ZMacPanId	0x50
ZMacPr miscu usM de	0x51
ZMacRxOnIdle	0x52
ZMacSh #Address	0x53
ZMacSuperframeOrder	0x54
ZMacTransacti nPersistenceTime	0x55
ZMacAss viatedPanC vid	0x5 ∮

ZMacMaxBE	0x57
ZMacMaxFrameT alWaitTime	0x58
ZMacMaxFrameRetries	0x59
ZMacResp nseWaitTime	0x5A
ZMacSyncSymb 1Offset	0x5B
ZMacTimestampSupp ted	0x5C
ZMacSecurityEnabled	0x5D
ZMacPhyTransmitP wer	0xE0
ZMacL gicalChannel	0xE1
ZMacExtendedAddress	0xE2
ZMacAltBe	0xE3

3.7.3 ZMAC_GET_RESPONSE

Cmd	Length	Status
0x1087	0x01	1byte

Status indicates SUCCESS > FAILURE

3.8 ZMAC_ORPHAN_RESPOND

3.8.1 Description

This command is used to send a response to the Orphan Indication message.

3.8.2 Usage

Cmd	Length	OrphanExtendedAddress	OrphanSh TAddress	Ass ciatedMember
0x0089	0x1 ∮	8 bytes	2 bytes	1 byte

KeyS arce	SecurityLevel	KeyIdM de	KeyIndex
8 bytes	1 bytes	1 bytes	1 byte

OrphanExtendedAddress: Extended address of the device sending the ophan notification.

OrphanShortAddress: All tated short address of the ophaned device.

AssociatedMember: TRUE if the phaned device is associated with this condinator.

KeySource: Key Source of this frame.

SecurityLevel: Security Level 1 this frame.

Descripti n	Value	
N security is used	0x00	
MIC-32 authenticati n is used		
MIC-14 authenticati n is used	0x02	
MIC-128 authenticati n is used	0x03	
AES encrypti n is used	0x04	
AES encrypti and MIC-32 authenticati are used	0x05	
AES encrypti and MIC-44 authenticati are used	0x0 4	
AES encrypti n and MIC-128 authenticati n are used	0x07	

KeyIdMode: Key Id M de f this frame.

Descripti n	Value
Key is n → used / Key is determined implicitly	0x00
Key is determined fr n the 1-byte key index	0x01
Key is determined fr n the 4-byte key index	0x02
Key is determined fr n the 8-byte key index	0x03

KeyIndex: Key Index **→** this frame.

3.8.3 ZMAC_ORPHAN_RESPOND_RESPONSE

Cmd	Length	Status
0x1089	0x01	1byte

Status indicates SUCCESS > FAILURE

3.9 ZMAC_POLL_REQUEST

3.9.1 Description

This command is used to send a MAC data request pol

3.9.2 Usage

Cmd	Length	C • dAddressM de	C•••dAddress	CondPanID
0x008F	0x1 ∮	1 byte	8 bytes	2 bytes

KeyS arce	SecurityLevel	KeyIdM de	KeyIndex
8 bytes	1 bytes	1 bytes	1 byte

CoordAddressMode: Specified the f mat I the c idinat I address

Descripti 1	Value
Address N Present	0x00
Address 1 ∮ bit	0x02
Address 4 bit	0x03
Bradcast	0xFF

CoordAddress: Condinator address
CoordPanID: PAN Id of the condinator
KeySource: Key Source of this frame.

SecurityLevel: Security Level 1 this frame.

Descripti 🕦	Value
N security is used	0x00
MIC-32 authenticati n is used	0x01
MIC-44 authenticati n is used	0x02
MIC-128 authenticati → is used	0x03
AES encrypti → is used	0x04
AES encryptin and MIC-32 authenticatin are used	0x05
AES encrypti and MIC-44 authenticati are used	0x0 ∮
AES encryptin and MIC-128 authenticatin are used	0x07

KeyIdMode: Key Id M de 1 this frame.

Descripti n	Value
Key is n → used / Key is determined implicitly	0x00
Key is determined fr n the 1-byte key index	0x01
Key is determined fr n the 4-byte key index	0x02
Key is determined fr n the 8-byte key index	0x03

KeyIndex: Key Index **→** this frame.

3.9.3 ZMAC_POLL_RESPONSE

Cmd	Length	Status
0x108F	0x01	1byte

Status indicates SUCCESS > FAILURE

3.10 ZMAC_RESET_REQUEST

3.10.1 Description

This command is used to send a MAC Reset command to reset MAC state machine.

3.10.2 Usage

Cmd	Length	Set Default
0x0081	0x01	1 byte

Set Default:

3.10.3 ZMAC_RESET_RESPONSE

Cmd	Length	Status
0x1081	0x01	1byte

Status indicates SUCCESS > FAILURE

3.11 ZMAC_RX_ENABLE_REQUEST

3.11.1 Description

This command contains timing information that tells the device when to enable of disable its receiver, in order to schedule a data transfer between itself and another device. The information is sent from the upper layers directly to the MAC sub-layer.

3.11.2 Usage

Cmd	Length	DeferPermit	RxOnTime	RxOnDurati n
0x008A	0x09	1 byte	4 bytes	4 bytes

DeferPer	mit:
----------	------

RxOnTime:

RxOnDuration:

3.11.3 ZMAC_RX_ENABLE_RESPONSE

Cmd	Length	Status
0x108A	0x01	1byte

Status indicates SUCCESS 7 FAILURE

3.12 ZMAC_SCAN_REQUEST

3.12.1 Description

This command is used to send a request to the device to perform a network scan.

3.12.2 Usage

Cmd	Length	ScanChannels	ScanType	ScanDurati 1	ChannelPage	MaxResults
0x008B	0x13	4 bytes	1 byte	1 byte	1 byte	1 byte

KeyS arce	SecurityLevel	KeyIdM de	KeyIndex
8 bytes	1 bytes	1 bytes	1 byte

ScanChannels: Channels t be scanned.

ScanType: Type **1** the scan.

Descripti n	Value
Energy detect scan	0x00
Active scan	0x01
Passive scan	0x02
Orphan Scan	0x03

ScanDuration: Durati n 1 the scan.

ChannelPage: Channel Page of this frame.

MaxResults: Maximum number 7 PAN descript 7 results.

KeySource: Key Source of this frame.

SecurityLevel: Security Level of this frame.

Descripti n	Value
N ∕security is used	0x00

MIC-32 authenticati n is used	0x01
MIC-44 authenticati n is used	0x02
MIC-128 authenticati n is used	0x03
AES encrypti → is used	0x04
AES encryptin and MIC-32 authenticatin are used	0x05
AES encrypti ↑n and MIC- ↓ authenticati ↑n are used	0x0 4
AES encrypti and MIC-128 authenticati are used	0x07

KeyIdMode: Key Id M de 1 this frame.

Descripti n	Value
Key is n → used / Key is determined implicitly	0x00
Key is determined fr n the 1-byte key index	0x01
Key is determined fr n the 4-byte key index	0x02
Key is determined fr on the 8-byte key index	0x03

KeyIndex: Key Index **→** this frame.

3.12.3 ZMAC_SCAN_RESPONSE

Cmd	Length	Status
0x108B	0x01	1byte

Status indicates SUCCESS > FAILURE

3.13 ZMAC_SET_REQUEST

3.13.1 Description

This command is used to request the device to write a MAC PIB value.

3.13.2 Usage

Cmd	Length	Attribute	AttributeValue
0x008C	0x02-0x10	1 byte	1-15 bytes

Attribute: MAC PID

	1
ZMacAckWaitDurati 🕦	0x40
ZMacAss ciati Permit	0x41
ZMacAut Request	0x42
ZMacBattLifeExt	0x43
ZMacBattLeftExtPeri ds	0x44
ZMacBeac nMSDU	0x45
ZMacBeac nMSDULength	0x4 ∮
ZMacBeac nOrder	0x47
ZMacBeac nTxTime	0x48
ZMacBSN	0x49
ZMacC •• dExtendedAddress	0x4A
ZMacC TdSh TtAddress	0x4B
ZMacDSN	0x4C
ZMacGTSPermit	0x4D
ZMacMaxCSMABack ffs	0x4E
ZMacMinBE	0x4F
ZMacPanId	0x50
ZMacPr miscu usM de	0x51
ZMacRxOnIdle	0x52
ZMacSh #Address	0x53
ZMacSuperframeOrder	0x54
ZMacTransacti nPersistenceTime	0x55
ZMacAss tiatedPanC 11d	0x5 ∮
ZMacMaxBE	0x57
ZMacMaxFrameT alWaitTime	0x58
ZMacMaxFrameRetries	0x59
ZMacResp nseWaitTime	0x5A
ZMacSyncSymb 1Offset	0x5B
ZMacTimestampSupp Ited	0x5C
ZMacSecurityEnabled	0x5D
ZMacPhyTransmitP wer	0xE0
ZMacL gicalChannel	0xE1
ZMacExtendedAddress	0xE2
ZMacAltBe	0xE3

AttributeValue: 1-1 **∮** bytes value **∮** the attribute

3.13.3 ZMAC_SET_RESPONSE

Cmd	Length	Status
0x108C	0x01	1byte

Status indicates SUCCESS > FAILURE

3.14 ZMAC START REQUEST

3.14.1 Description

This command is used to request the MAC to transmit beacons and become a condinator

3.14.2 Usage

Cmd	Length	StartTime	PanID	L gicalChannel	ChannelPage	Beac nOrder
0x008D	0x23	4 bytes	2 bytes	1 byte	1 byte	1 byte

SuperFrameOrder	PanC dinat	BatteryLifeExt	C ••• dRealignment
1 byte	1 byte	1 byte	1 byte

RealignKeyS urce	RealignSecurityLevel	RealignKeyIdM de	RealignKeyIndex
8 bytes	1 bytes	1 bytes	1 byte

Beac	KeyS urce_	Beac SecurityLevel	Beac nKeyIdM de	Beac nKeyIndex
81	bytes	1 bytes	1 bytes	1 byte

StartTime: The time t begin transmitting beac as relative t the received beac a.

PanID: The PAN ID touse. This parameter is ignored if Pan Condinator is FALSE.

LogicalChannel: The legical channel touse. This parameter is ignored if Pan Condinator is FALSE.

Channel Page: The channel page to use. This parameter is ignored if Pan Condinator is FALSE.

BeaconOrder: The exp nent used t calculate the beac n interval.

SuperFrameOrder: The exp nent used to calculate the superframe duration.

PanCoordinator: Set t TRUE t start a network as PAN c ordinator.

BatteryLifeExt: If this value is TRUE, the receiver is disabled after MAC_BATT_LIFE_EXT_PERIODS full

back of periods following the interframe spacing period of the beacon frame

34

 $\textbf{CoordRealignment}: \textbf{Set t} \bullet \textbf{TRUE t} \bullet \textbf{transmit a c} \bullet \textbf{dinat} \bullet \textbf{realignment pri} \bullet \textbf{t} \bullet \textbf{changing the superframe}$

c nfigurati n.

RealignKeySource: Key Source of this frame.

RealignSecurityLevel: Security Level **1** this frame.

Descripti n	Value
N security is used	0x00
MIC-32 authenticati n is used	0x01
MIC-44 authenticati n is used	
MIC-128 authenticati n is used	0x03
AES encrypti n is used	
AES encryptin and MIC-32 authenticatin are used	
AES encrypti and MIC-44 authenticati are used	0x0 4
AES encrypti and MIC-128 authenticati an are used	0x07

RealignKeyIdMode: Key Id M de 1 this frame.

Descripti n	Value
Key is n → used / Key is determined implicitly	0x00
Key is determined fr n the 1-byte key index	0x01
Key is determined fr n the 4-byte key index	0x02
Key is determined fr n the 8-byte key index	0x03

RealignKeyIndex: Key Index 1 this frame.

BeaconKeySource: Key Source 1 this frame.

BeaconSecurityLevel: Security Level 1 this frame.

Descripti 🕥	Value
N security is used	0x00
MIC-32 authenticati → is used	0x01
MIC-44 authenticati n is used	0x02
MIC-128 authenticati n is used	0x03
AES encrypti n is used	0x04
AES encrypti n and MIC-32 authenticati n are used	0x05

AES encryptin and MIC-44 authenticatin are used	0x0 ∮
AES encryptin and MIC-128 authenticatin are used	0x07

BeaconKeyIdMode: Key Id M de of this frame.

Descripti n	Value
Key is n → used / Key is determined implicitly	0x00
Key is determined fr n the 1-byte key index	0x01
Key is determined fr n the 4-byte key index	0x02
Key is determined fr n the 8-byte key index	0x03

BeaconKeyIndex: Key Index of this data frame.

3.14.3 ZMAC_START_RESPONSE

Cmd	Length	Status
0x108D	0x01	1byte

Status indicates SUCCESS > FAILURE

3.15 ZMAC_SYNCHRONIZE_REQUEST

3.15.1 Description

This command is used to request synchronization to the current network beacon

3.15.2 Usage

Cmd	Length	L gicalChannel	ChannelPage	TrackBeac n
0x008E	0x03	1 byte	1 byte	1 byte

LogicalChannnel: The legical channel touse.

ChannelPage: The channel page touse.

TrackBeacon: Set to TRUE to antinue tracking beacons after synchronizing with the first beacon. Set to FALSE to all synchronize with the first beacon.

3.15.3 ZMAC_SYNCHRONIZE_RESPONSE

Cmd	Length	Status
0x108E	0x01	1byte

Status indicates SUCCESS TAILURE.

3.16 ZMAC_PURGE_REQUEST

3.16.1 Description

This command is used to send a request to the device to purge a data frame.

3.16.2 Usage

Cmd	Length	msduHandle
0x0090	0x01	1 byte

msduHandle: Handle 1 this frame

3.16.3 ZMAC_PURGE_RESPONSE

Cmd	Length	Status
0x1090	0x01	1byte

Status indicates SUCCESS > FAILURE

4. MAC CALLBACK INTERFACE

4.1 Introduction

This message interface enables the target MAC to issue callbacks to the tester. Each message has a response to a message that is sent by the tester to the target. The response message only indicates successful reception of the callback message. These messages are subscription messages. Refer to SYS_CALLBACK_SUBSCRIBE for a description of the subscription mechanism.

4.2 NWK_ASSOCIATE_INDICATION

4.2.1 Description

This function is used to indicate the reception of an association request command.

4.2.2 Usage

Cmd	Length	DeviceAddress	CapabilityInf mati n
0x2081	0x14	8 bytes	1 byte

KeyS urce	SecurityLevel	KeyIdM de	KeyIndex
8 bytes	1 bytes	1 bytes	1 byte

DeviceAddress: Address I the ass ciated device

CapabilityInformation: capability of the associated device

KeySource: Key Source of this frame.

SecurityLevel: Security Level 1 this frame.

Descripti n	Value
N security is used	0x00
MIC-32 authenticati n is used	0x01
MIC-44 authenticati n is used	0x02
MIC-128 authenticati n is used	0x03
AES encryptin is used	0x04
AES encryptin and MIC-32 authenticatin are used	0x05
AES encrypti n and MIC-44 authenticati n are used	
AES encrypti n and MIC-128 authenticati n are used	0x07

KeyIdMode: Key Id M de I this frame.

Descripti 🕦	Value
Key is n → used / Key is determined implicitly	0x00
Key is determined fr n the 1-byte key index	0x01
Key is determined fr n the 4-byte key index	0x02
Key is determined fr n the 8-byte key index	0x03

KeyIndex: Key Index **→** this frame.

4.3 NWK_ASSOCIATE_CONFIRMATION

4.3.1 Description

This function is used to inform the upper layers of the initiating device whether its request to associate was successful of unsuccessful.

4.3.2 Usage

Cmd	Length	Status	All eatedAddress
0x2082	0x0E	1 byte	2 bytes

KeyS urce	SecurityLevel	KeyIdM de	KeyIndex
8 bytes	1 bytes	1 bytes	1 byte

Status: Status I the ass Ciati In

AllocatedAddress: All cated address

KeySource: Key Source of this frame.

SecurityLevel: Security Level **1** this frame.

Descripti n	Value
N security is used	0x00
MIC-32 authenticati n is used	0x01
MIC-44 authenticati n is used	
MIC-128 authenticati n is used	0x03
AES encrypti → is used	0x04
AES encrypti and MIC-32 authenticati are used	0x05
AES encryptin and MIC-44 authenticatin are used	
AES encrypti n and MIC-128 authenticati n are used	0x07

KeyIdMode: Key Id M de f this frame.

Descripti n	Value
Key is n → used / Key is determined implicitly	0x00
Key is determined fr n the 1-byte key index	0x01
Key is determined fr n the 4-byte key index	0x02
Key is determined fr n the 8-byte key index	0x03

KeyIndex: Key Index **→** this frame.

4.4 NWK_DISASSOCIATE_INDICATION

4.4.1 Description

This function is used to indicate the reception of a disassociation notification command.

4.4.2 Usage

Cmd	Length	DeviceAddress	Disass ciateReas n
0x208	0x14	8 bytes	1 byte

KeyS urce	SecurityLevel	KeyIdM de	KeyIndex
8 bytes	1 bytes	1 bytes	1 byte

DeviceAddress: Address I the initiating device

DisassociateReason: Reas I I the disass viation

KeySource: Key Source of this frame.

SecurityLevel: Security Level 1 this frame.

Descripti n	Value
N∕security is used	0x00
MIC-32 authenticati → is used	0x01
MIC-44 authenticati n is used	
MIC-128 authenticati n is used	0x03
AES encryptin is used	0x04
AES encrypti n and MIC-32 authenticati n are used	0x05
AES encryptin and MIC-44 authenticatin are used	0x0 4

AES encrypti and MIC-128 authenticati are used	0x07

KeyIdMode: Key Id M de 1 this frame.

Descripti n	Value
Key is n → used / Key is determined implicitly	0x00
Key is determined fr n the 1-byte key index	0x01
Key is determined fr In the 4-byte key index	0x02
Key is determined fr n the 8-byte key index	0x03

KeyIndex: Key Index **→** this frame.

4.5 NWK_DISASSOCIATE_CONFIRMATION

4.5.1 Description

This function is sent as the result of a disassociation request.

4.5.2 Usage

Cmd	Length	Status	DeviceAddressM de	DeviceAddress	PanID
0x2087	0x0c	1 byte	1 byte	8 bytes	2 byte

Device Address:

Status: SUCCESS FAILURE

4.6 NWK_BEACON_NOTIFY_INDICATION

4.6.1 Description

This function is used to send parameters contained within a beacon frame received by the MAC sub-layer to the next higher layer. The function also sends a measure of the link quality and the time the beacon was received.

4.6.2 Usage

Cmd	Length	BSN	TimeStamp	C 1dAddressM de	C ••• dAddress	C•••dPanID
0x2083	0x23 − 0x 4 3	1 byte	4 bytes	1 byte	8 bytes	2 bytes

SuperFrameSpec	L gicalChannel	GTSPermit	LinkQuality	SecurityFailure
2 bytes	1 byte	1 byte	1 byte	1 byte

KeyS urce	SecurityLevel	KeyIdM de	KeyIndex

8 bytes	1 bytes	1 bytes	1 byte

PendingAddrSpec	AddrList	SDULength	SDU
1 byte	0-32 bytes	1 byte	0-32 bytes

BSN: Beac n sequence number.

TimeStamp: Time stamp when the beac n is received.

CoordAddressMode:

Descripti 1	Value
Address N Present	0x00
Address 1 ∮ bit	0x02
Address 44 bit	0x03
Bradcast	0xFF

 $\textbf{CoordAddress:} \ \, \textbf{Address} \, \, \textbf{\ref{address:}} \ \, \textbf{the c \ref{adinata}}.$

CoordPanID: PAN ID 1 the c 1 dinat 1.

SuperFrameSpec: The superframe specificati **1 1** the netw **1**k.

LogicalChannel: The legical channel of the network.

GTSPermit: TRUE if c dinat accepts GTS requests.

LinkQuality: The link quality **1** the received beac **1**.

SecurityFailure: Set t TRUE if there was an err in the security pressing.

KeySource: Key Source of this frame.

SecurityLevel: Security Level 1 this frame.

Descripti n	Value
N ∕security is used	0x00
MIC-32 authenticati → is used	0x01
MIC-44 authenticati n is used	0x02
MIC-128 authenticati n is used	0x03
AES encrypti → is used	0x04
AES encrypti and MIC-32 authenticati are used	0x05

42

AES encryptin and MIC-44 authenticatin are used	0x0 ∮
AES encrypti and MIC-128 authenticati are used	0x07

KeyIdMode: Key Id M de 1 this frame.

Descripti n	Value
Key is n → used / Key is determined implicitly	0x00
Key is determined fr n the 1-byte key index	0x01
Key is determined fr In the 4-byte key index	0x02
Key is determined fr n the 8-byte key index	0x03

KeyIndex: Key Index **→** this frame.

PendingAddrSpec: The beac in pending address specification.

AddrList: The list f device addresses f which the sender f the beac has data.

SDULength: Length **1** the SDU data.

SDU: Actual SDU data. Can be 0-32 bytes

4.7 NWK_ORPHAN_INDICATION

4.7.1 Description

This function allows the MLME to noify the next higher layer of an opphaned device.

4.7.2 Usage

Cmd	Length	OrphanAddress
0x208a	0x13	8 bytes

KeyS urce	SecurityLevel	KeyIdM de	KeyIndex
8 bytes	1 bytes	1 bytes	1 byte

OrphanAddress:

KeySource: Key Sarce of this frame.

SecurityLevel: Security Level **1** this frame.

Descripti n	Value
N security is used	0x00
MIC-32 authenticati is used	0x01

MIC-44 authenticati n is used	0x02
MIC-128 authenticati n is used	0x03
AES encrypti → is used	0x04
AES encrypti and MIC-32 authenticati are used	0x05
AES encrypti and MIC-44 authenticati are used	0x0 ∮
AES encrypti n and MIC-128 authenticati n are used	0x07

KeyIdMode: Key Id M de 1 this frame.

Descripti n	Value
Key is n ¶used / Key is determined implicitly	0x00
Key is determined fr n the 1-byte key index	0x01
Key is determined fr n the 4-byte key index	0x02
Key is determined fr n the 8-byte key index	0x03

KeyIndex: Key Index **→** this frame.

4.8 NWK_SCAN_CONFIRMATION

4.8.1 Description

This function reports the results of a channel scan request.

4.8.2 Usage

Cmd	Length	Status	EDMaxEnergy	ScanType
0x208c	0x09 - 0x29	1 byte	1 byte	1 byte

ChannelPage	UnscannedChannels	ResultC unt	Results
1byte	4 bytes	1 byte	0-32 bytes

Status: Status of the scan request

EDMaxEnergy: Maximum p sible energy detect value

ScanType: Type → scan request

Descripti n	Value
Energy detect scan	0x00

Active scan	0x01
Passive scan	0x02
Orphan Scan	0x03

ChannelPage: The channel page of the scan

ResultListSize: The number of PAN descriptors returned in the results list

Results: List f energy measurements PAN descript s (depends the scan type)

4.9 NWK_START_CONFIRMATION

4.9.1 Description

This function reports the success of the start request.

4.9.2 Usage

Cmd	Length	Status
0x208e	0x01	1 byte

Status: SUCCESS 7 FAILURE

4.10 NWK_SYNCHRONIZATION_LOSS_INDICATION

4.10.1 Description

This function indicates the loss of synchronization of a network beacon

4.10.2 Usage

Cmd	Length	Reas	PANId	L gicalChannel	ChannelPage
0x2080	0x10	1 byte	2bytes	1byte	1byte

KeyS arce	SecurityLevel	KeyIdM de	KeyIndex
8 bytes	1 bytes	1 bytes	1 byte

Reason: Reas n that synchr nizati n was 1 st

LogicalChannel: Legical channel for this frame.

ChannelPage: Channel page f this frame.

KeySource: Key Source of this frame.

SecurityLevel: Security Level 1 this frame.

Descripti n	Value
N security is used	0x00
MIC-32 authenticati n is used	0x01
MIC-44 authenticati n is used	0x02
MIC-128 authenticati n is used	0x03
AES encrypti n is used	0x04
AES encrypti and MIC-32 authenticati are used	0x05
AES encrypti and MIC-44 authenticati are used	0x0 4
AES encrypti n and MIC-128 authenticati n are used	0x07

KeyIdMode: Key Id M de 1 this frame.

Descripti n	Value
Key is n • used / Key is determined implicitly	0x00
Key is determined fr n the 1-byte key index	0x01
Key is determined fr n the 4-byte key index	0x02
Key is determined fr n the 8-byte key index	0x03

KeyIndex: Key Index **→** this frame.

4.11 NWK_POLL_CONFIRMATION

4.11.1 Description

This function reports the results of a polling attempt.

4.11.2 Usage

Cmd	Length	Status
0x208b	0x01	1 byte

Status: SUCCESS 7 FAILURE

4.12 NWK_COMM_STATUS_INDICATION

4.12.1 Description

This function reports a community status error.

4.12.2 Usage

ID	Length	Status	SrcAddressM de	SrcAddress	DestAddressM de	DestAddress	PanID	Reas
0x208d	0x21	1 byte	1 byte	8 bytes	1 byte	8 bytes	2 bytes	1 byte

KeyS arce	SecurityLevel	KeyIdM de	KeyIndex
8 bytes	1 bytes	1 bytes	1 byte

Status: Status I the indicati n.

SrcAddressMode: Indicates the famat of the source address

Descripti 1	Value
Address N Present	0x00
Address 1 ∮ bit	0x02
Address 4 4 bit	0x03
Br adcast	0xFF

SrcAddress: Address **1** the initiating device

DestAddressMode:

Descripti n	Value
Address N Present	0x00
Address 1 ∮ bit	0x02
Address 44 bit	0x03
Br adcast	0xFF

DestAddress: Address 1 the rem 1 device

PanID: PAN ID 1 the rem e device

Reason: The reas $^{\bullet}$ the event.

KeySource: Key Source of this frame.

SecurityLevel: Security Level 1 this frame.

Descripti n	Value
N security is used	0x00
MIC-32 authenticati ↑ is used	0x01
MIC-44 authenticati n is used	0x02

MIC-128 authenticati n is used	0x03
AES encrypti n is used	0x04
AES encrypti and MIC-32 authenticati are used	0x05
AES encryptin and MIC-44 authenticatin are used	0x0 4
AES encrypti and MIC-128 authenticati are used	0x07

KeyIdMode: Key Id M de 1 this frame.

Descripti n	Value
Key is n → used / Key is determined implicitly	0x00
Key is determined fr n the 1-byte key index	0x01
Key is determined fr n the 4-byte key index	0x02
Key is determined fr n the 8-byte key index	0x03

KeyIndex: Key Index **→** this frame.

4.13 NWK_DATA_CONFIRMATION

4.13.1 Description

This function is used to send the results of a request to transfer a data SPDU (MSDU) from a local SSCS entity to a single peer SSCS entity, or multiple peer SSCS entities.

4.13.2 Usage

Cmd	Length	Status	msduHandle	Timestamp	Timestamp2
0x2084	0x08	1 byte	1 byte	4 bytes	2 bytes

Status: Status I the frame

msduHandle: Handle 1 the frame

Timestamp: The time, in back offs, at which the data were received

Timestamp2: The time, in internal MAC timer units, at which the data were recieved

4.14 NWK_DATA_INDICATION

4.14.1 Description

This function indicates the transfer of a data SPDU (MSDU) from the MAC sub-layer to the local SSCS entity.

4.14.2 Usage

Cmd	Length	SrcAddressM de	SrcAddress	DestAddressM •le	DestAddress
0x2085	0x2C - 0x92	1 byte	8 bytes	1 byte	8 bytes

Timestamp	Timestamp2	SrcPanID	DestPanID	mpduLinkQuality	Lqi	Rssi	Dsn
4 bytes	2 bytes	2 bytes	2 bytes	1 byte	1 byte	1 byte	1 byte

KeyS urce	SecurityLevel	KeyIdM de	KeyIndex	MSDULength	MSDU
8 bytes	1 bytes	1 bytes	1 byte	1 byte	0-102 bytes

SrcAddressMode:

Descripti n	Value
Address N Present	0x00
Address 1 ∮ bit	0x02
Address 44 bit	0x03
Br adcast	0xFF

SrcAddress: Address **↑** the initiating device

DestAddressMode:

Descripti 1	Value
Address N ? Present	0x00
Address 1 ∮ bit	0x02
Address 44 bit	0x03
Br adcast	0xFF

DestAddress: Address f the rem te device

Timestamp: The time, in back ffs, at which the data were received

Timestamp2: The time, in internal MAC timer units, at which the data were received

SrcPanID: Pan Id **1** the initiating device **DestPanID**: Pan Id **1** the rem **1** the device

mpduLinkQuality:

Lqi: Raw LQI of the received data frame.

Rssi: Raw RSSI of the received data frame.

Dsn:

KeySource: Key Source of this frame.

SecurityLevel: Security Level **1** this frame.

Descripti n	Value
N recurity is used	0x00
MIC-32 authenticati n is used	0x01
MIC-44 authenticati n is used	0x02
MIC-128 authenticati n is used	0x03
AES encrypti n is used	0x04
AES encrypti and MIC-32 authenticati are used	0x05
AES encrypti and MIC-44 authenticati are used	0x0 4
AES encrypti n and MIC-128 authenticati n are used	0x07

KeyIdMode: Key Id M de 1 this frame.

Descripti n	Value
Key is n → used / Key is determined implicitly	0x00
Key is determined fr n the 1-byte key index	0x01
Key is determined fr n the 4-byte key index	0x02
Key is determined fr n the 8-byte key index	0x03

KeyIndex: Key Index 16 this frame.

MSDULength: Length 16 the data

MSDU: The actual data

4.15 NWK_RX_ENABLE_CONFIRMATION

4.15.1 Description

This function reports the results of an RX enable attempt.

4.15.2 Usage

Cmd	Length	Status
0x208f	0x01	1 byte

Status: SUCCESS 7 FAILURE

4.16 NWK_PURGE_CONFIRMATION

4.16.1 Description

This function reports the results of a purge attempt.

4.16.2 Usage

Cmd	Status	Length	msduHandle
0x2090	1 byte	0x02	1 byte

msduHandle: Applicatin-defined handle value assitiated with the data request.

Status: SUCCESS > FAILURE

5. NWK Interface

5.1 Introduction

These commands all with the tester to issue commands to the NWK layer in the target and receive responses. Each of these messages has a corresponding message that is returned by the target. The response message only indicates that the command message was received and executed. The result of the command execution will be conveyed to the tester via a callback message interface (defined in the next section), if applicable.

5.2 NLDE_DATA_REQUEST

5.2.1 Description

This command enables the tester to request the transfer of data from the local APS sub-layer to a peer APS sub-layer entity.

5.2.2 **Usage**

The message f mat is as f lows.

SecurityEnable	Disc verR ute	RadiusC unter
----------------	---------------	---------------

Status is a 1 byte field that indicates SUCCESS TFAILURE (see appendix fT NLDE status c des).

5.3 NLME_NETWORK_FORMATION_REQUEST

5.3.1 Description

This command is used by tester to request (on behalf of the next higher layer) that the device be initiated as a condinator.

5.3.2 Usage

The message f mat is as f ll ws

Cmd = 0x0102	Len = 0x03	PanID	ScanChannels	ScanDurati n	Beac nOrder	SuperFameOrder	BatteryLifeExtensi n

PanID is a 2 bytes short address of the intended device.

ScanChannels is a 4 bytes field indicates the list of channels in bit map format.

ScanDurati n is a byte field represents the scanning time.

Beac norder is a byte field which represents the beac norder type. This parameter doesn't make sense in a normbeac norder device. If this value is set to anything other than BEACON_ORDER_NO_BEACONS (0xf) and the device is compiled as a mesh mode device, the response message's status field will be set to ZNwkInvalidParam (0xc1).

SuperFrameOrder is a byte field which specifies the length of the active portion of the superframe. This parameter doesn't make sense in a non-beacon device. If this value is set to anything other than BEACON_ORDER_NO_BEACONS (0xf) and the device is compiled as a mesh mode device, the response message's status field will be set to ZNwkInvalidParam (0xc1).

BatteryLifeExtensi in is a byte field which indicates whether NLME will request that the ZigBee c identifies started supporting battery life extensi in mide.

5.3.3 NLME NETWORK FORMATION RESPONSE

Cmd = 0x1102	Len = 0x01	Status
--------------	------------	--------

Status is a 1 byte field that indicates SUCCESS TFAILURE (see appendix fT NLME status c Tes).

5.4 NLME_PERMITJOINING_REQUEST

5.4.1 Description

This command is used by the tester to define how the next higher layer of a condinator device would permit devices to join its network for a fixed period.

5.4.2 Usage

Cmd = 0x0103	Len = 0x01	PermitDurati n
Cilia - 0x0103	LCII — UAUI	1 CilliuDulati Pi

PermitDuration is a byte field which indicates the length of time during which the ZigBee condinaton will be allowing associations. The values 0x00 and 0xff indicate that permission is disabled or enabled, respectively.

5.4.3 Response

Cmd = 0x1103	Len = 0x01	Status

Status is a 1 byte field that indicates SUCCESS ¬ FAILURE (see appendix f¬ NLME status c¬les).

5.5 NLME_JOIN_REQUEST

5.5.1 Description

This command is used by tester to make a request (on behalf of the next higher layer) to join the device itself of another device to a network.

5.5.2 Usage

The message f mat is as f lows.

Cmd = 0x0104 Len = $0x0a$ PanID Channel Capab	Cmd = 0x0104	04 Len = 0x0a	PanID	Channel	CapabilityInf •
---	--------------	----------------	-------	---------	-----------------

PanID is a 2 bytes field and indicates the short address of the intended device.

Channel is a byte field and specifies the channel of the intended device.

CapabilityInf is a byte field which is a bitmap which specifies the perational capabilities if the joining device. The meaning if each bit is specified in the following table.

Meaning	Bit map
Alternate Pan c Idinat I	0
Device type	1
P wer s urce	2
Receiver n when idle	3

Reserved	4-5
Security capability	•
All tate address	7

5.5.3 NLME_JOIN_RESPONSE

Cmd = 0x1104	Len = 0x01	Status

Status is a 1 byte field that indicates SUCCESS TFAILURE (see appendix fT NLME status c Tes).

5.6 NLME_LEAVE_REQUEST

5.6.1 Description

This command is used by tester to make a request (on behalf of the next higher layer) that the device itself of the its child devices leave the network.

5.6.2 Usage

The message f mat is as f l ws

nd = 0x0105 Len = 0x0A DeviceAddress Rem veChildren Reass viate

DeviceAddress is an 8-byte field that specifies which device is being asked t leave the network. An address of zero is used t indicate the device itself. An 8-byte IEEE extended address is used t indicate the device's children.

Rem veChildren(a 1 byte field) indicates whether the device, specified by the DeviceAddress, should rem ve its children.

Reass ciate (a 1 byte field) indicates whether the device, specified by the DeviceAddress, should reass ciate after it leaves. It has value if either 1 1 0. If the filed has a value if 1, the device being asked to leave from the current parent is requested to rejoin the network again after the leave. Otherwise, it does not reass ciate.

5.6.3 NLME LEAVE RESPONSE

Cmd = 0x1105	Len = 0x01	Status

Status is a 1 byte field that indicates SUCCESS 7 FAILURE (see appendix f 7 NLME status c des).

5.7 NLME_RESET_REQUEST

5.7.1 Description

This command is used by tester to make a request (In behalf of the next higher layer) that the NWK layer perform a reset operation

5.7.2 Usage

The message f mat is as f lows

$$Cmd = 0x010$$
 Len = 0x00

5.7.3 NLME_RESET_RESPONSE

Status is a 1 byte field that indicates SUCCESS ¬ FAILURE (see appendix f¬ NLME status c¬les).

56

5.8 NLME_SYNC_REQUEST

5.8.1 **Usage**

The message f mat is as f l ws

	Cmd = 0x0107	Len = 0x08	Track
--	--------------	------------	-------

Track is a 1 byte field. 1 = track beac ns, = 0 d n track beac ns.

5.8.2 NLME_SYNC_RESPONSE

Cmd = 0x1107 Len = 0x01 Status	Cmd = 0x1107	Len = 0x01	Status
------------------------------------	--------------	------------	--------

Status is a 1 byte field that indicates SUCCESS TFAILURE (see appendix fT NLME status c les).

5.9 NLME_GET_REQUEST

5.9.1 Description

This command is used by tester to make a request (on behalf of the next higher layer) to read the value of an attribute from the NWK information base (NIB).

5.9.2 Usage

The message f mat is as f lows

Cmd = $0x0108$ Len = $0x02$	NIBAttribute	Index	Value
-----------------------------	--------------	-------	-------

NIBAttribute is a byte field which identifies the intended attribute ¶ the NIB.

Index is a byte field and is used to index into table NIB items.

Value is a twobyte field that contains the data value

5.9.3 NLME_GET_RESPONSE

Cmd = 0x1108	Len = $0x0B$	Status	NIBAttributeValue
Cina cirrio	Ben onoB	Stetters	1 (12) Ittlicate (talas

Status is a 1 byte field that indicates SUCCESS ¬ FAILURE.

NIBAttributeValue is a 14 byte field to store the attribute value. The field is 14 bytes to accommodate the largest attribute.

5.10 NLME_SET_REQUEST

5.10.1 Description

This command is used by tester to make a request (In behalf of the next higher layer) to set the value of an attribute in the NWK information base (NIB).

5.10.2 Usage

The message f mat is as f ll ws

Cmd = 0x0109	Len = 0x0C	NIBAttribute	Index	NIBAttributeValue

NIBAttribute is a byte field which identifies the intended attribute of the NIB.

Index is a 1 byte field which contains the index into table NIB items.

NIBAttribute Value is a 14 byte field which specifies the value of the NIBAttribute. The field is 14 bytes to accommodate the largest attribute.

5.10.3 NLME_SET_RESPONSE

Cmd = 0x1109	Len = 0x01	Status

Status is a 1 byte field that indicates SUCCESS • FAILURE.

5.11 NLME_NETWORKDISCOVERY_REQUEST

5.11.1 Description

This command is used by tester to scan channels for networks.

5.11.2 Usage

The message f mat is as f lows

Cmd = 0x010B	Len $=0x5$	ScanChannels	ScanDurati n

ScanChannels is a 4 byte field which is the netw k scan list

ScanDurati is a 1 byte field which scan durati in is 2 times the beac in order values.

5.11.3 NLME_NETWORKDISCOVERY_RESPONSE

Cmd = 0x110B	Len = 0x01	Status

Status is a 1 byte field that indicates SUCCESS **7** FAILURE.

5.12 NLME_ROUTEDISCOVERY_REQUEST

5.12.1 Description

This command is used by tester to fice a route discovery.

5.12.2 Usage

The message f mat is as f ll ws

Cmd = 0x010C	Len = 0x3	DestAddress	Repair

DestAddress is a 2 byte field which address t da rate fa.

Repair is a 1 byte field which specifies a rate repair peration if set to TRUE.

5.12.3 NLME_ROUTEDISCOVERY_RESPONSE

Cmd = 0x110C	Len = 0x01	Status

Status is a 1 byte field that indicates SUCCESS > FAILURE.

5.13 NLME_DIRECTJOIN_REQUEST

5.13.1 Description

This all ws the tester threquest the initial and another device that network.

5.13.2 Usage

The message f mat is as f ll ws

Cmd = $0x010D$ Len = $0x9$ Extended	Address CapabilityInf
-------------------------------------	-----------------------

ExtendedAddress is an 8 byte field – ¶4 byte address 🥤 child device.

CapabilityInf is a 1 byte field – capability inf matin f the child device.

5.13.3 NLME_ DIRECTJOIN _RESPONSE

Status is a 1 byte field that indicates SUCCESS ¬ FAILURE.

5.14 NLME_ORPHANJOIN_REQUEST

5.14.1 Description

This command is used by tester to search for its parent.

5.14.2 Usage

The message f mat is as f lows

Cmd = 0x010E Len =0x5 ScanChannels ScanDurati

ScanChannels is a 4 byte field – Channels n which todiscover parent.

ScanDurati n is a 1 byte field – Time durati n t scan each channel.

5.14.3 NLME_ORPHANJOIN_RESPONSE

Cmd = 0x110E	Len = 0x01	Status

Status is a 1 byte field that indicates SUCCESS **7** FAILURE.

5.15 NLME_STARTROUTER_REQUEST

5.15.1 Description

This command is used by tester to request the device to start functioning as a router.

5.15.2 Usage

The message f mat is as f ll ws

Cmd = 0x010F Len = 0x3 Beac n Order SuperFrameOrder BatteryLifeExtensi n
--

Beac nOrder is a 1 byte field – beac norder

SuperFrameOrder is a 1 byte field – superframe ?der

BatteryLifeExtensi is a 1 byte field – true if the device is a battery perated device.

5.15.3 NLME STARTROUTER RESPONSE

Cmd = 0x110F	Len = $0x01$	Status

Status is a 1 byte field that indicates SUCCESS ¬ FAILURE.

6. NWK Callback Interface

6.1 Introduction

This message interface enables the target NWK to issue callbacks to the tester. Each message has a response to a message that is sent by the tester to the target. The response message only indicates successful reception of the callback message. These messages are subscription messages. Refer to SYS_CALLBACK_SUBSCRIBE for a description of the subscription mechanism.

6.2 NLDE_DATA_CONFIRMATION

6.2.1 Description

This message is issued by the target NWK to the tester to report the results of a request to transfer a data PDU from a local APS sub-layer entity to a single peer APS sub-layer entity.

6.2.2 Usage

The message f mat is as f ll ws

Cmd=0x0180	Len=0x02	NSDUHandle	Status

NSDUHandle is a byte field which indicates the transactinh handle (that was created when the data request was issued)

Status is a 1 byte field that indicates SUCCESS ¬ FAILURE (see appendix f¬ NLDE status c¬les).

6.3 NLDE_DATA_INDICATION

6.3.1 Description

This message is issued by the target NWK to the tester to indicate the transfer of a data PDU from the NWK layer to the local APS sub-layer entity.

6.3.2 Usage

The packet f mat is as f l ws

Cmd=0x0181	Len=var	SrcAddress	NSDULength	NSDU	LinkQuality

SrcAddress is a 2 byte field which is the short address of the source device.

NSDULength is a byte field which indicates the length of the NSDU.

NSDU is the actual netw k data packet which is size indicated by NSDULength.

LinkQuality is a byte field which indicates the link quality measured during recepti n.

6.4 NLME NETWORKFORMATION CONFIRMATION

6.4.1 Description

This message is used by the target NWK toinform the tester of the result of a previous association request command.

6.4.2 Usage

The message f mat is as f lows

Cmd=0x0182	Len=0x01	Status

Status is a 1 byte field that indicates SUCCESS TFAILURE (see appendix fT NLME status c Tes).

6.5 NLME_JOIN_CONFIRMATION

This command is issued by the target NWK (totester) to noify the next higher layer of the results of its request to join itself of another device to a network.

6.5.1 Usage

The packet f mat is as f lows.

Cmd=0x0183	Len=0x09	DeviceAddress	PanId	Status

DeviceAddress is an 8 byte field which specifies the IEEE extended address of the device

PanId is a 2 byte field that indicates the PAN identifier of the network towhich the device has joined.

Status is a 1 byte field that indicates SUCCESS TFAILURE (see appendix fT NLME status c les).

6.6 NLME JOIN INDICATION

6.6.1 Description

This message is sent by the target to noify the next higher layer of a remote join request.

6.6.2 Usage

The message f mat is as f lows

Cmd = 0x0184	Len = 0x0b	Sh TtAddress	ExtendedAddress	CapabilityInf •

Sh ***tAddress is a 2 byte field which indicates the netw ***k address *** an entity that has been added t ***the netw ***k. Extended Address is a 8-byte field which specifies the IEEE extended address *** the same entity.

CapabilityInf is a byte field which is a bitmap which specifies the perational capabilities of the joining device.

6.7 NLME_LEAVE_CONFIRMATION

6.7.1 Description

This message is sent by the target to indicate to the next higher layer that the device itself of another device is leaving the network.

6.7.2 Usage

The message f mat is as f ll ws

Cmd=0x0185	Len=0x01	DeviceAddress	Status
Cilia-onoros	LCII-OAO1	Devicer laaress	Status

Status is a byte field that indicates SUCCESS TFAILURE.

6.8 NLME_LEAVE_INDICATION

6.8.1 Description

This message is sent by the target to indicate a remove leave request to the next higher layer of a condinator.

6.8.2 Usage

The message f mat is as f ll ws

Cmd=0x018 ∮	Len=0x9	DeviceAddress	Status
--------------------	---------	---------------	--------

DeviceAddress is an 8 byte field. The 44 bit IEEE address an entity that has rem ved itself from the network NULL in the case that the device issuing the primitive has been rem ved from the network by its parent.

Status is a 1 byte field that indicates SUCCESS 7 FAILURE (see appendix f 7 NLME status c 7les).

6.9 NLME SYNC INDICATION

6.9.1 Description

This message is sent by the target to indicate a sync request to the next higher layer of a condinator.

6.9.2 Usage

The message f mat is as f l ws

Cmd=0x0189	Len=0x01	Status
Cilia-0x0107	LCII-OAO1	Status

Status is a 1 byte field that indicates SUCCESS ¬ FAILURE (see appendix f¬ NLME status c¬les).

6.10 NLME_NETWORKDISCOVERY_CONFIRMATION

6.10.1 Description

This message is sent by the target to indicate that the network discovery is complete.

6.10.2 Usage

The message f mat is as f ll ws

Number is a 1 byte field that contains the number of networks found

PanID_x is a 2 byte field PAN Id f network f and.

L_gicalChannel_x is a 1 byte field. Network channel.

Beac nOrder_x is a 1 byte field Beac n Order f and f network.

SuperFrameOrder_x is a 1 byte field Super Frame 1 der 1 f 1 and netw 1 k.

RaterCapacity_x is a 1 byte field – Rater capacity faind network (fran beaca).

DeviceCapacity_x is a 1 byte field – Device capacity f 1 f and netw 1k (fr n beac 1).

Versi _n_x is a 1 byte field - netw _nk versi _n.

StackPr file_x is a 1 byte field. F and netw k's pr file ID.

SecurityLevel_x is a 1 byte field - Netw k's security level.

6.11 NLME_STARTROUTER_CONFIRMATION

6.11.1 Description

This message is sent by the target to the next higher layer of the results of its request to start a router.

6.11.2 Usage

The message f mat is as f ll ws

Cmd=0x018F	Len=0x01	Status

Status is a 1 byte field that indicates SUCCESS ¬ FAILURE (see appendix f¬ NLME status c¬les).

7. AF Interface

7.1 Introduction

This message interface enables the target AF to issue callbacks to the tester. Each message has a response to a message that is sent by the tester to the target. The response message only indicates successful reception of the callback message. These messages are subscription messages. Refer to SYS_CALLBACK_SUBSCRIBE for a description of the subscription mechanism.

7.2 AF_INIT_REQUEST

7.2.1 Description

This command enables the tester to initialize the target AF.

7.2.2 **Usage**

The message f mat is as f lows.

Cmd = 0x0900	Len = $0x01$
--------------	--------------

7.3 AF REGISTER REQUEST

7.3.1 Description

This command enables the tester to register an application's endpoint description.

7.3.2 Usage

The message f mat is as f lows.

Cmd = x0901	Len = var	Endp int	AppPr fileID	AppDeviceID	AppDevice Versi n	ApFlags
-------------	-----------	----------	--------------	-------------	----------------------	---------

AppNumInClusters	AppOutClusterList	AppNumOutClusters	AppOutClusterList	Latency

Endp int is a byte field which specifies the endp int if the device

AppPr fileID is a 2 byte field which specifies the pr file id f the application

AppDeviceID is a 2 byte field which specifies the device description id for this endpoint

AppDeviceVersi in is a byte field which specifies the versi in if the device description

AppFlags is a byte field which specifies if a complex identifier is available

AppNumInClusters is a byte field which specifies the number of Input cluster Ids following in the AppInClusterList

AppInClusterList is a variable length field fisize 'AppNumInClusters' and is the list finput Cluster Ids.

AppNumOutClusters is a byte field which specifies the number of Output cluster Ids following in the AppOutClusterList

AppOutClusterList is a variable length field fsize 'AppNumOutClusters' and is the list fOutput Cluster Ids.

Latency is a byte field and has any if the fill wing values 0x00(n LatencyReqs), 0x01 (fastBeacins) and 0x02(sl wBeacins).

7.3.3 AF_REGISTER_RESPONSE

Cmd = 0x1901	Len = 0x01	Status

Status is a 1 byte field that indicates SUCCESS • FAILURE (see appendix f • AF status c • les).

7.4 AF_SENDMSG_REQUEST

7.4.1 Description

This command is used by tester to build and send a KVP of MSG message. For KVP messages, the code must be built with the following compiler directive: -DAF_KVP_SUPPORT=TRUE

7.4.2 Usage

The message f mat is the f l wing:

Cmd = 0x09	902	Len = var		FrameType	e	TxOpti n	S	Radius			
DestAddr	Des	stEndp i nt	S	rcEndp i nt	Ī	ClusterId		AddOrSei	nd	TransId	
CmdType	Atı	tribDataType	e	AttribId]	Err C de	7	ΓransDatal	Len	TransDa	ta

FrameType is a byte field which specifies either FRAMETYPE_KVP ¬ FRAMETYPE_MSG.

TxOpti as is a byte field which consists of the AFTx Opti as bit fields; zerofo none.

Radius is a byte field representing the number 1 h ps all wed t deliver the message; usually use 7.

DestAddr is the 1¶-bit ZigBee netw k address f the message.

DestEndp int is a byte field which specifies the destination endp int of the message.

SrcEndp int is a byte field which specifies the rigination endpoint of the message.

ClusterId is a 2-byte field which specifies the cluster ID (ly the LSB is used in V1.0 netw ks.)

AddOrSend is a byte field indicating t ADD_MESSAGE ? SEND_MESSAGE; MSG set t 0.

TransId is a byte field which specifies the transactin sequence number if the message.

CmdType is a byte field which specifies the KVP command type of the message; MSG set tozero

AttribDataType is a byte field which specifies the KVP data type ↑ the message; MSG set t *zer • }

AttributeID is a 2-byte field which specifies the attribute ID; MSG set t zer

Err C de is a byte field which specifies the KVP err c de, if any; MSG set t zer?

TransDataLen is a byte field which specifies the length of the Transaction Data field.

TransData is a variable length field size TransDataLength and is the transacti data frame.

7.4.3 AF_SENDMSG_RESPONSE

Status is a 1 byte field that indicates SUCCESS ¬ FAILURE (see appendix f¬ AF status c¬les).

8. AF Callback Interface

8.1 AF INCOMINGDATA INDICATION

8.1.1 Description

This callback message is in response to incoming data to any of the registered endpoints on this device.

8.1.2 Usage

The message f mat is the f l wing:

Cmd = 0x09	903	Len = var	FrameType	WasBr ad	cast	LinkQual	ity	Securi	ityUse
SrcAddr	Sro	eEndp int	DestEndp int	ClusterId	Т	TransCnt		ansId	
CmdType	At	tribDataType	e AttribId	Err C de	Tra	ansDataLen	,	TransDa	ıta

FrameType is a byte field which specifies either FRAMETYPE_KVP • FRAMETYPE_MSG.

WasBr adcast is a byte field indicating whether the inc ming message was br adcast.

LinkQuality is a byte field which indicates the link quality measured during receptin.

SecurityUse is a 1 byte field which indicates the type \P security used \P the transacti \P .

SrcAddr is the 14-bit ZigBee netw 1k address 1 the source device sending the message.

SrcEndp int is a byte field which specifies the source endp int of the message.

DestEndp int is a byte field which specifies the destination endpoint of the message.

ClusterId is a 2-byte field which specifies the cluster ID (**nly the LSB is used in V1.0 netw***)ks.)

TransCnt is a byte field indicating the number of concatenated KVP messages in the transaction data; MSG set to 0.

TransId is a byte field which specifies the transaction sequence number of the message.

CmdType is a byte field which specifies the KVP command type of the message; MSG set to zero.

AttributeID is a 2-byte field which specifies the attribute ID; MSG set t zer?

Err C de is a byte field which specifies the KVP err c de, if any; MSG set t zer?

TransDataLen is a byte field which specifies the length of the Transaction Data field.

TransData is a variable length field of size TransDataLength and is the transaction data frame.

9. ZDO Interface

9.1 Introduction

These commands all with the tester to issue commands to the ZDO layer in the target and receive responses. Each of these messages has a corresponding message that is returned by the target. The response message only indicates that the command message was received and executed. The result of the command execution will be conveyed to the tester via a callback message interface (defined in the next section), if applicable.

9.2 ZDO_AUTOAPPENDENDDEVICEBIND_REQUEST

9.2.1 Description

This command will tell the ZDO to request an End Device Bind. The ZDO will send the message to the ZigBee condinator based on the information found in the AF Endpoint description for the passed in endpoint.

9.2.2 Usage

The message f mat is as f ll ws.

Cmd = 0x0A00	Len = 0x01	Endp int
01110		2

Endp int – byte - Which endp int to issue the End Device Bind request for.

9.2.3 ZDO_AUTOAPPENDENDDEVICEBIND_RESPONSE

$Cmd = 0x1A00 \qquad L$	en = 0x01	Status
-------------------------	-----------	--------

Status is a 1 byte field that indicates SUCCESS(0) ¬ FAILURE.

9.3 ZDO AUTOFINDDESTINATION REQUEST

9.3.1 Description

This function will issue a Match Description Request for the requested endpoint outputs. This message will generate a broadcast message.

9.3.2 Usage

The message f mat is as f l ws.

Cmd = 0x0A01	Len = 0x01	Endp int

Endp int – byte - Which endp int to issue the End Device Bind request for.

9.3.3 ZDO AUTOFINDDESTINATION RESPONSE

Cmd = 0x1A01

Status is a 1 byte field that indicates SUCCESS(0) → FAILURE.

9.4 ZDO NETWORKADDRESS REQUEST

9.4.1 Description

This message will request the device to send a "Network Address Request". This message sends a broadcast message looking for a 14 bit address with a known 44 bit IEEE address. You must subscribe to "ZDO Network Address Response" to receive the response to this message. The response message listed below only indicates whether on the message was received properly.

9.4.2 Usage

The message f mat is as f lows.

Cmd = 0x0A02	Len = 0x09	IEEEAddr	ReqType	StartIndex	SecuritySuite

IEEEAddr - 8 bytes – **∮**4 bit address bait.

ReqType – byte – fill wing ptins:

Value	Descripti n
0	Single device resp nse
1	Extended – include ass viated devices

StartIndex – 1 byte – Starting index int the list of children. This is used toget more of the list if the list is tolarge from emessage.

SecuritySuite - 1 byte -. Security ptins. i

9.4.3 ZDO_NETWORKADDRESS_RESPONSE

Cmd = 0x1A02	Len = 0x01	Status

Status is a 1 byte field that indicates SUCCESS 7 FAILURE (see appendix f 7 APSME status c des).

9.5 ZDO IEEEADDRESS REQUEST

9.5.1 Description

This command will request a device's IEEE 44-bit address. You must subscribe to "ZDO IEEE Address Response" to receive the data response to this message. The response message listed below only indicates whether on the message was received properly.

9.5.2 Usage

The message f mat is as f lows.

Sh \uparrow tAddr – 1 \oint bits – sh \uparrow t address \uparrow the destinati \uparrow device.

ReqType – byte – f l wing pti ns:

Value	Descripti n
0	Single device resp nse
1	Extended – include ass iated
	devices

StartIndex – 1 byte – Starting index int the list of children. This is used toget more of the list if the list is to large from emessage.

SecuritySuite - 1 byte -. Security ptins.

9.5.3 ZDO IEEEADDRESS RESPONSE

Cmd = 0x1A03	Len = $0x01$	Status
	Len - onor	Status

Status is a 1 byte field that indicates SUCCESS • FAILURE.

9.6 ZDO_NODEDESCRIPTOR_REQUEST

9.6.1 Description

This command is generated to inquire about the Note Descripton information of the destination device.

9.6.2 Usage

The message f mat is as f lows

Cmd = 0x0A04 Len = 5 DstAddr NWKAddrOfInterest SecuritySuite
--

DstAddr – 1 bit –NWK address \checkmark the device generating the inquiry.

 $NWKAddrOfInterest-1\cdot{\P}$ bit - NWK address $\ref{eq:standard}$ the destinati $\ref{eq:standard}$ device being queried .

SecuritySuite - 1 byte -. Security ptins.

9.6.3 ZDO_NODEDESCRIPTOR_RESPONSE

Cmd = 0x1A04	Len = 0x01	Status
--------------	------------	--------

Status is a 1 byte field that indicates SUCCESS ¬ FAILURE.

9.7 ZDO_POWERDESCRIPTOR_REQUEST

9.7.1 Description

This command is generated to inquire about the Power Descriptor information of the destination device.

9.7.2 Usage

The message f mat is as f lows

Cmd = 0x0A05	Len = 5	DstAddr	NWKAddrOfInterest	SecuritySuite
--------------	---------	---------	-------------------	---------------

DstAddr - 1 bit -NWK address 1 the device generating the inquiry.

NWKAddrOfInterest − 1¶ bit - NWK address ¶ the destinati n device being queried.

SecuritySuite - 1 byte -. Security ptins.

9.7.3 ZDO_POWERDESCRIPTOR_RESPONSE

Cmd = 0x1A05	Len = 0x01	Status

Status is a 1 byte field that indicates SUCCESS ¬ FAILURE.

9.8 ZDO_SIMPLEDESCRIPTOR_REQUEST

9.8.1 Description

This command is generated to inquire as to the Simple Descript of the destination device's Endpoint.

9.8.2 Usage

The message f mat is as f l ws

Cmd = 0x0A0 Len	= ♣ DstAddr	NWKAddrOfInterest	Endp int	SecuritySuite
-----------------	--------------------	-------------------	----------	---------------

DstAddr - 1 bits -NWK address \checkmark the device generating the inquiry.

NWKAddrOfInterest - 1 bit - NWK address 1 the destinati 1 device being queried.

Endp int – byte – represents the application endp int the data is from.

SecuritySuite - 1 byte -. Security ptins.

9.8.3 ZDO_SIMPLEDESCRIPTOR_RESPONSE

Cmd =
$$0x1A0$$
 Len = $0x01$ Status

Status is a 1 byte field that indicates SUCCESS ¬ FAILURE.

9.9 ZDO_ACTIVEENDPOINT_REQUEST

9.9.1 Description

This command is generated to request a list of active endpoint from the destination device.

9.9.2 Usage

The message f mat is as f lows

Cmd = 0x0A07	Len = 5	DstAddr	NWKAddrOfInterest	SecuritySuite

DstAddr – 1 ₱ bit – NWK address → the device generating the request..

NWKAddrOfInterest − 1¶ bit - NWK address ¶ the destinati n device being queried.

SecuritySuite - 1 byte -. Security ptins.

9.9.3 ZDO ACTIVEENDPOINT RESPONSE

Cmd = 0x1A07	I en - 0v01	Status
CIIIG - UXIAUI	LCII - UAUI	Status

Status is a 1 byte field that indicates SUCCESS TFAILURE.

9.10 ZDO_MATCHDESCRIPTOR_REQUEST

9.10.1 Description

This command is generated to request a list of active endpoint from the destination device.

9.10.2 Usage

The message f mat is as f lows

Cmd = 0x0A08	Len = var	DstAddr	NWKAddı	OfInterest	Pr	fileID	
NumInClusters	InClusterLis	st NumO	utClusters	OutClusterL	ist	Securi	tySuite

DstAddr - 1 bit -NWK address 1 the device generating the request..

NWKAddrOfInterest − 1 • bit - NWK address • the destinati • device being queried.

Pr fileID – 1¶ bit – Pr file ID t match.

NumInClusters – byte – Number → ClusterIds in the InClusterList.

InClusterList – byte array – Array Tinput cluster IDs – (NumInClusters * 2) lng.

NumOutClusters – byte – Number T ClusterIds in the OutClusterList.

OutClusterList – byte array – Array Tutput cluster IDs – (NumOutClusters * 2) ling.

SecuritySuite - 1 byte -. Security ptins.

9.10.3 ZDO_MATCHDESCRIPTOR_RESPONSE

Cmd = 0x1A08 Len = 0x01 Status	Cmd = 0x1A08	Len = $0x01$	Status
------------------------------------	--------------	--------------	--------

Status is a 1 byte field that indicates SUCCESS ¬ FAILURE.

9.11 ZDO_COMPLEXDESCRIPTOR_REQUEST

9.11.1 Description

This command is generated to request for the destination device's complex descriptor.

9.11.2 Usage

The message f mat is as f lows

Cmd = 0x0A09	Len = 5	DstAddr	NWKAddrOfInterest	SecuritySuite
				i

 $DstAddr-1 \cite{-1mu}$ bits – NWK address $\cite{-1mu}$ the device generating the request .

NWKAddrOfInterest − 1 bit - NWK address the destinati device being queried.

SecuritySuite - 1 byte -. Security ptins.

9.11.3 ZDO_COMPLEXDESCRIPTOR_RESPONSE

Cmd = 0x1A09	$I_{on} = 0 \times 0.1$	Status
CIIId = 0x1A09	Len = $0x01$	Status

Status is a 1 byte field that indicates SUCCESS ¬ FAILURE.

9.12 ZDO_USERDESCRIPTOR_REQUEST

9.12.1 Description

This command is generated to request for the destination device's user descriptor.

9.12.2 Usage

The message f mat is as f ll ws

Cmd = 0x0A0A	Len = 5	DstAddr	NWKAddrOfInterest	SecuritySuite

 $DstAddr-1\cdot{\rlap/}{\rlap/}\ bits-NWK$ address $\cdot{\rlap/}{\rlap/}\ the$ device generating the request .

NWKAddrOfInterest - 1 bit - NWK address 1 the destinatin device being queried.

SecuritySuite - 1 byte -. Security ptins.

9.12.3 ZDO_USERDESCRIPTOR_RESPONSE

Cmd = 0x1A0A	Len = 0x01	Status

Status is a 1 byte field that indicates SUCCESS ¬ FAILURE.

9.13 ZDO_ENDDEVICEBIND_REQUEST

9.13.1 Description

This command is generated to request an End Device Bind with the destination device.

9.13.2 Usage

The message f mat is as f lows

Cmd = 0x0A0B	Len = var	Ds	stAddr	LealC	dinat 🕦	Endp	nt	Pr fileID	
NumInClusters	InClusterLis	st	NumOu	tClusters	OutClu	sterList	Secui	ritySuite	

DstAddr - 1 bits -NWK address 1 the device generating the request.

LealCodinat 1 - 1 bit - Leal codinates's short address. In the case of source binding, it's the short address of the source address.

Endp int – byte – Device's Endp int.

PrfileID – 1 bit – Prfile ID t match.

NumInClusters – byte – Number → ClusterIds in the InClusterList.

InClusterList – byte array – Array finput cluster IDs – (NumInClusters * 2) ling.

NumOutClusters – byte – Number T ClusterIds in the OutClusterList.

OutClusterList – byte array – Array 1 utput cluster IDs – (NumOutClusters * 2) lag.

SecuritySuite - 1 byte -. Security ptins.

9.13.3 ZDO_ENDDEVICEBIND_RESPONSE

Cmd = 0x1A0B	Len = 0x01	Status
Cilia – OXII IOD	Len - onor	Status

Status is a 1 byte field that indicates SUCCESS • FAILURE.

9.14 ZDO_BIND_REQUEST

9.14.1 Description

This command is generated to request a Bind.

9.14.2 Usage

The message f mat is as f l ws

Cmd = 0x0A0	OC	Len = 24	DstAddr	SrcAddress	SrcEndp int
ClusterID	DstAddrM de		DstAddress	DstEndp int	SecuritySuite

DstAddr - 1 bits -destinati $\hat{}$ address $\hat{}$ the device generating the bind request

SrcAddress − 8 bytes − ¶4 bit Binding source IEEE address

SrcEndp int – 8 bits – Binding s urce endp int.

ClusterID − 2 byte − Cluster ID t •match in messages.

DstAddrM de – 1 byte – Destinati n address m de: 01 f n Gr up address; 03 f n Extended address.

DstAddress – 8 bytes / 2bytes – Binding destinati n IEEE address. Not be confused with DstAddr.

DstEndp int- 8 bits / 0 byte - Binding destination endp int. It is used only when DstAddrM de is 44 bits extended address

SecuritySuite - 1 byte -. Security ptins.

9.14.3 ZDO BIND RESPONSE

G 1 0 140G	I 0.01	Ctrit
Cmd = 0x1A0C	Len = $0x01$	Status

Status is a 1 byte field that indicates SUCCESS ¬ FAILURE.

9.15 ZDO_UNBIND_REQUEST

9.15.1 Description

This command is generated torequest an UnBind.

9.15.2 Usage

The message f mat is as f l ws

Cmd = 0x0A0	0D	Len = 24	DstAddr	SrcA	Address	SrcEndp int
ClusterID	Dst	tAddrM de	DstAddre	ss	DstEndp int	SecuritySuite

DstAddr - 1 bits -destinati **a** address **t** the device generating the bind request.

SrcAddress − 8 bytes − ¶4 bit Binding source IEEE address

SrcEndp int – 8 bits – Binding s urce endp int.

ClusterID – 2 byte – Cluster ID t match in messages.

DstAddrM de – 1 byte – Destination address mode: 01 for Group address; 03 for Extended address.

DstAddress − 8 bytes − ¶4 bit Binding destinati ↑ IEEE address. N ↑ t be c fused with DstAddr.

DstEndp int – 8 bits – Binding destination endp int.

SecuritySuite - 1 byte -. Security ptins.

9.15.3 ZDO UNBIND RESPONSE

Cmd = 0x1A0D	Len = $0x01$	Status
Cina - ONTHOD	Len - onor	Status

Status is a 1 byte field that indicates SUCCESS TFAILURE.

9.16 ZDO_MGMT_NWKDISC_REQUEST

9.16.1 Description

This command is generated to request the destination device to perform a network discovery.

9.16.2 Usage

The message f mat is as f l ws

Cmd = 0x0A0E	Len = $0x8$	DstAddr	ScanChannels	ScanDurati n	StartIndex

DstAddr - 1 bits -netw 1k address 1 the device perf 1 ming the disc very.

ScanChannels- 32 bits - Bit Mask f r channels t scan

ScanDurati n is a byte field represents the scanning time.

StartIndex – 8 bits – Where t start in the response array list. The result may contain more entries than can be reported, so this field all wis the user to retrieve the responses anywhere in the array list.

9.16.3 ZDO_MGMT_NWKDISC_RESPONSE

Cmd = 0x1A0E	Len = 0x01	Status

Status is a 1 byte field that indicates SUCCESS ¬ FAILURE.

9.17 ZDO_MGMT_LQI_REQUEST

9.17.1 Description

This command is generated to request the destination device to perform a LQI query of their devices in the network.

9.17.2 Usage

The message f mat is as f ll ws

Cmd = 0x0A0F	Len = $0x3$	DstAddr	StartIndex

DstAddr − 1 bits –netw k address the device generating the query.

StartIndex -8 bits - Where t start in the response array list. The result may contain more entries than can be reported, so this field allows the user to retrieve the responses anywhere in the array list.

9.17.3 ZDO_MGMT_LQI_RESPONSE

Cmd = 0x1A0F	Len = 0x01	Status

Status is a 1 byte field that indicates SUCCESS ¬ FAILURE.

9.18 ZDO_MGMT_RTG_REQUEST

9.18.1 Description

This command is generated to request the Routing Table of the destination device

9.18.2 Usage

The message f mat is as f lows

Cmd = 0x0A10	Len = $0x3$	DstAddr	StartIndex

DstAddr - 1 bits -netw k address f the device being queried.

StartIndex -8 bits - Where t start in the response array list. The result may contain more entries than can be reported, so this field allows the user to retrieve the responses anywhere in the array list.

9.18.3 ZDO MGMT RTG RESPONSE

Cmd = 0x1A10	Len = $0x01$	Status
	Den - onor	Status

Status is a 1 byte field that indicates SUCCESS TFAILURE.

9.19 ZDO_MGMT_BIND_REQUEST

9.19.1 Description

This command is generated to request the Binding Table of the destination device.

9.19.2 Usage

The message f mat is as f ll ws

Cmd = 0x0A11	Len = $0x3$	DstAddr	StartIndex

DstAddr – 1¶ bits –netw **1**k address **1** the device being queried.

StartIndex – 8 bits – Where t start in the response array list. The result may contain more entries than can be reported, so this field allows the user to retrieve the responses anywhere in the array list.

9.19.3 ZDO_MGMT_BIND_RESPONSE

Cmd = 0x1A11	Len = $0x01$	Status

Status is a 1 byte field that indicates SUCCESS 7 FAILURE.

9.20 ZDO_MGMT_DIRECT_JOIN_REQUEST

9.20.1 Description

This command is generated to request the Management Direct John Request of a designated device.

9.20.2 Usage

The message f mat is as f ll ws

|--|

 $DstAddr-1 \cite{Linear Model of the device to which the device specified in DeviceAddress is to \cite{Linear Model of the device to which the device specified in DeviceAddress is to \cite{Linear Model of the device to the device to \cite{Linear Model of the \cite{Linear Model of$

DeviceAddress – 8 bytes – The $\P 4$ bit IEEE Address $\P 4$ the device y q want t be j q ined t q the device at DstAddr.

CapInf • 8 bits – The perating capabilities f the device being directly j ined. Bit weighted values f il w: Can y it please verify if the table bel w is accurate? I understand that f is a r inter, the value sh ind be 0x8E, and f is an ED, it's 0x80, and I'm in sure if these jive with this table?

Bit	Descripti n
0	Alternate PAN C dinat
1	Device type: 1 – ZigBee R atter 0 – End Device
2	P wer S urce: 1 – Mains p wered
3	Receiver n when idle
4-5	Reserved
7	Security capability Reserved

9.20.3 ZDO_MGMT_DIRECT_JOIN_RESPONSE

Cmd = 0x1A12	Len = 0x01	Status

Status is a 1 byte field that indicates SUCCESS ¬ FAILURE.

9.21 ZDO_USERDESCRIPTOR_SET_REQUEST

9.21.1 Description

This command is generated towrite a User Descript of value to the targeted device.

9.21.2 Usage

The message f mat is as f ll ws

Cmd = 0x0A13	Len =	DstAddr	NWKAddrOfInterest	DescLen	Descript 1	SecuritySuite
	var					

DstAddr − 1¶ bits –netw nk address nthe device generating the set request.

NWKAddrOfInterest – 1 bit - NWK address $\hat{}$ the device targeted f $\hat{}$ the set request.

DescLen − 8 bits − Length, in bytes, ↑ the user descript ↑.

Descript → byte array – User descript → array (can be up t →1 ∮ bytes).

SecuritySuite - 1 byte - Security ptins.

9.21.3 ZDO_USERDESCRIPTOR_SET_RESPONSE

Cmd = 0x1A13	Len = $0x01$	Status
	Len - onor	Status

Status is a 1 byte field that indicates SUCCESS TFAILURE.

9.22 ZDO_END_DEVICE_ANNCE

9.22.1 Description

This command is generated to request an End Device Announce.

9.22.2 Usage

The message f mat is as f lows

		Cmd = 0x0A14	Len = $0xC$	DevAddr	DeviceAddress	SecuritySuite	Capabilities
--	--	--------------	-------------	---------	---------------	---------------	--------------

DevAddr -1 bits - netw $\hat{}$ k address $\hat{}$ the device generating the request.

DeviceAddress − 8 bytes − The ¶4 bit IEEE Address ↑ the device being ann need.

SecuritySuite - 1 byte - Security ptins.

Capabilities – 1 byte – MAC capabilities – see capabilities field TZDO_MGMT_DIRECT_JOIN_REQUEST f bit definitins.

9.23 ZDO_MGMT_LEAVE_REQUEST

9.23.1 Description

This command is generated to request a Management Leave Request for the target device.

9.23.2 Usage

The message f mat is as f ll ws

Cmd = 0x0A15	Len = $0xA$	DstAddr	DeviceAddress

DstAddr − 1¶ bits –netw k address f the device generating the request.

DeviceAddress − 8 bytes − The ¶4 bit IEEE Address ¶ the target device y n want t leave.

9.23.3 ZDO_MGMT_LEAVE_RESPONSE

|--|

Status is a 1 byte field that indicates SUCCESS 7 FAILURE.

9.24 ZDO_MGMT_PERMIT_JOIN_REQUEST

9.24.1 Description

This command is generated to set the Permit Join for the destination device.

9.24.2 Usage

The message f mat is as f ll ws

Cmd = 0x0A1	Len = $0x4$	DstAddr	Durati n	TC Significance

DstAddr − 1¶ bits -netw 1k address 1 the destination device whose Permit Join information is to be modified.

Durati n-1 byte – The durati n to permit joining. 0 = j on disabled. 0xff = j on enabled. 0x01-0xfe = number seconds to permit joining.

TC Significance – 1 byte - Trust Center Significance.

9.24.3 ZDO_MGMT_PERMIT_JOIN_RESPONSE

Status is a 1 byte field that indicates SUCCESS ¬ FAILURE.

9.25 ZDO_SYSTEM_SERVER_DISC_REQUEST

9.25.1 Description

The command is used for local device to discover the location of a particular system server of servers as indicated by the ServerMask parameter. The destination addressing on this request is 'broadcast to all RxOnWhenIdle devices'.

9.25.2 Usage

The message f mat is as f lows

Cmd = 0x0A17	Len = 0x03	Server Mask	Securiy Suite

Server Mask is a tw byte field with bit settings signifying the system server capabilities of the device.

Security Suite: ne byte security ptin.

9.25.3 ZDO_SYSTEM_SERVICE_DISC_RESPONSE

= 0x01	Status
=	UXUI

Status is a 1 byte field that indicates SUCCESS **7** FAILURE.

9.26 ZDO_NETWORK_START_REQUEST

9.26.1 Description

In the case where compiler flag HOLD_AUTO_START is defined by default, device will start from HOLD state. Issuing this command will trigger the device to leave HOLD state to from a join a network.

9.26.2 Usage

The command message format is as follows

Cmd=0x0A18	Len=0x00
------------	----------

There is n parameter f this c mmand.

9.26.3 SYS_NETWORK_START_RESPONSE

Cmd=0x1A18	Len=0x01	Status
CIIId-OAITIIO	LCII—OAO I	Status

Status is a 1 byte field that will be SUCCESS(0) → FAILURE(1).

10. ZDO Callback Interface

10.1 Introduction

These commands all with the tester to issue commands to the ZDO layer in the target and receive responses. Each of these messages has a corresponding message that is returned by the target. The response message only indicates that the command message was received and executed. The result of the command execution will be conveyed to the tester via a callback message interface (defined in the next section), if applicable. These messages are subscription messages. Refer to SYS_CALLBACK_SUBSCRIBE for a description of the subscription mechanism.

10.2 ZDO_NETWORKADDRESS_RESPONSECB

10.2.1 Description

This callback message is in response to the ZDO Network Address Request.

10.2.2 Usage

The message f mat is as f lows

Cmd = 0x0A8	Len = var		SrcAddrM de	SrcAddr Status		IEEEAddr
nwkAddr	Nu	mAss •Dev	StartIndex	Ass DevList		

SrcAddrM de – byte – indicates that the SrcAddr is either 1 ₱ bits (2) → ₱4 bits (3)

SrcAddr − 8 bytes 1 1 bits − S urce address, size is dependent 1 SrcAddrM le

Status – byte – this field indicates either SUCCESS TFAILURE.

nwkAddr − 1¶ bit − sh t netw k address fresp nding device

NumAss ◆Dev – byte – the number → ass ◆iated devices

StartIndex – byte - Starting index int the list f ass ciated devices f this rep t.

Ass DevList – array 11 bit short addresses – list 1 network address for associated devices. This list can be a partial list if the entire list doesn't fit into a packet. If it is a partial list, the starting index is StartIndex.

10.3 ZDO_IEEEADDRESS_RESPONSECB

10.3.1 Description

This callback message is in response to the ZDO IEEE Address Request.

10.3.2 Usage

The message f mat is as f ll ws

Cmd = 0x0A81	Len = var	SrcAddrM de	SrcAddr	Status	IEEEAddr
NumAss Dev	StartIndex	Ass DevLis	it		

SrcAddrM de – byte – indicates that the SrcAddr is either 1¶ bits (2) 1 ¶4 bits (3)

SrcAddr − 8 bytes 1 4 bits − S urce address, size is dependent 1 SrcAddrM le

Status – byte – this field indicates either SUCCESS 7 FAILURE.

IEEEAddr – 8 bytes – ¶4 bit IEEE address → s ruce device

NumAss *Dev – byte – the number ★ ass *tiated devices

StartIndex – byte - Starting index int the list associated devices for this report.

Ass DevList – array 11 bit short addresses – list 1 network address for associated devices. This list can be a partial list if the entire list doesn't fit into a packet. If it is a partial list, the starting index is StartIndex.

10.4 ZDO_NODEDESCRIPTOR_RESPONSECB

10.4.1 Description

This callback message is in response to the ZDO Note Descript Request.

10.4.2 Usage

The message f mat is as f ll ws

Cmd = 0x0A82	Len = 18	Status	Status SrcAdd		NWKAddrOfInterest		N de Type		ComplexDescriptor Available		
UserDescript Available	APSFlags	Frequence Band	1		- · · · · · · · · · · · · · · · · · · ·		Buffer Size	Tra Siz	nsfer e	Server Mask	

Status – byte – this field indicates either SUCCESS → FAILURE.

SrcAddr − 1¶ bit − the message's source network address.

NWKAddrOfInterest − 1¶ bits − Device's short address of this Note descriptor

N deType – 8 bits – defined as f l ws:

Bits	Name	Descripti n
7-5	N deL gicalType	Identifies N de as ZigBee C dinat de her ZigBee device type
4-0	N/A	Reserved

N deL gicalType						
Туре	Value					
ZigBee C dinat	0					
ZigBee R uter	1					
ZigBee End Device	2					
Reserved	3-7					

Cmd = 0x0A83	Len = 9	Status	SrcAddr	NWK.	AddrOfInterest	N deCurrentP we	erM de
N deAvailableP	werS urces	N deCi	urrentP wer	Surce	N deCurrentP	werS urceLevel	

Status – byte – this field indicates either SUCCESS \P FAILURE.

SrcAddr - 1 bit – the message's s $\$ urce netw $\$ k address.

 $NWKAddrOfInterest-1 \cite{Linear Linear Li$

N deCurrentP werM de - 8 bits - Indicates P wer M de

N deCurrentP werM de						
Descripti n	Value					
Receiver permanently 1 1 periodically 1	0					
Receiver periodically comes on	1					
Receiver comes on when stimulated	2					
Reserved	0x3 - 0xf					

N deAvailableP werS arces – 8 bits – Bit field sh wing available p wer s arces

N deAvailableP werS urces							
Descripti n Value							
Constant (Mains) power	0						
Recharable battery	1						
Disp sable battery	2						
Reserved	0x3 - 0xf						

N deCurrentP werS arce – byte – Indicates current p wer s arce. Same values as N deAvailableP werS arces

N deCurrentP werS arceLevel – byte – Indicates charge status of p wer supply

10.6 ZDO_SIMPLEDESCRIPTOR_RESPONSECB

10.6.1 Description

This callback message is in response to the ZDO Simple Descript Request.

10.6.2 Usage

The message f mat is as f l ws

Cmd = 0x0A84	4	Len = v	ar S	Status	SrcAd	dr	N	IWKAddrOfInterest		Endp int	AppP	r ¶D
AppDevID	Aj	ppDevVe	r	AppFl	ppFlags AppI		οIn	nClusterC u nt	Aj	ppInClusterLis	t	
AppOutCluster	rC^	unt	App	OutClus	sterList							

Status – byte – this field indicates either SUCCESS → FAILURE.

SrcAddr - 1 bit – the message's s~urce netw~k address.

 $NWKAddrOfInterest-1 \P \ bits-Device's \ sh \ref{thm:thm:thm:mesp} \ address \ that \ this \ resp \ref{thm:thm:mesp} \ address \ that \ this \ resp \ref{thm:thm:mesp} \ address \ that \ this \ resp \ref{thm:thm:mesp} \ address \ that \ this \ resp \ref{thm:thm:mesp} \ address \ that \ this \ resp \ref{thm:thm:mesp} \ address \ that \ this \ resp \ref{thm:thm:mesp} \ address \ that \ this \ resp \ref{thm:thm:mesp} \ address \ that \ this \ resp \ref{thm:thm:mesp} \ address \ that \ this \ resp \ref{thm:thm:mesp} \ address \ that \ this \ resp \ref{thm:thm:mesp} \ address \ address \ that \ this \ resp \ref{thm:thm:thm:mesp} \ address \ addr$

Endp int − 8 bits

AppPr $\Pi D - 1$ bits – The pr Π bits endp int.

AppDevID – 1 ₱ bits – The Device Descripti ID f this endp int.

AppDevVer – 8 bits – Defined as the fill wing finat

AppDevVer						
Descripti 1	Value					
Versi 1.00	0					
Reserved	0x1 - 0xf					

AppFlags – 8 bits – Defined as the fill wing filmat

AppFlags						
Descripti n	bit					
ComplexDescript AvailableFlag	0					
Reserved	1					
Reserved	2					
Reserved	3					

AppInClusterC ount – byte – The number of input clusters in the AppInClusterList:

AppInClusterList – byte array – List finput cluster IDs supp ted

AppOutClusterCount – byte – The number of output clusters in the AppOutClusterList:

AppOutClusterList - byte array - List 1 utput cluster IDs supp 1ted

10.7 ZDO ACTIVEENDPOINT RESPONSECB

10.7.1 Description

This callback message is in response to the ZDO Active Endpoint Request.

10.7.2 Usage

The message f mat is as f ll ws

Cmd = 0x0A85	Len = var	Status	SrcAddr	NWKAddrOfInterest	ActiveEndp intC unt	ActiveEndp intList

Status – byte – this field indicates either SUCCESS → FAILURE.

SrcAddr - 1 bit – the message's source network address.

NWKAddrOfInterest − 1 bits − Device's sh t address that this resp se describes.

ActiveEndp intC unt - 8 bits - Number of active endp int in the list

ActiveEndp intList – byte array – Array f active endp ints in this device.

10.8 ZDO_MATCHDESCRIPTOR_RESPONSECB

10.8.1 Description

This callback message is in response to the ZDO Match Description Request.

10.8.2 Usage

The message f mat is as f l ws

Cmd = 0x0A8	Len = var	Status	SrcAddr	NWKAddrOfInterest	MatchC unt	MatchEPList
-------------	-----------	--------	---------	-------------------	------------	-------------

Status – byte – this field indicates either SUCCESS → FAILURE.

SrcAddr − 1 the message's source network address.

 $NWKAddrOfInterest-1 \P \ bits-Device's \ sh extit{nt} \ address \ that \ this \ resp extit{ns} \ edescribes.$

MatchCount – 8 bits – Number of active endpoints in the list

MatchEndp intList – byte array – Array f active endp ints in this device.

10.9 ZDO_USERDESCRIPTOR_RESPONSECB

10.9.1 Description

This callback message is in response to the ZDO User Description Request.

10.9.2 Usage

The message f mat is as f ll ws

Cmd = 0x0A8F	DescLen	Descript 1
--------------	---------	------------

Status – byte – this field indicates either SUCCESS → FAILURE.

SrcAddr - 1 bit – the message's source network address.

 $NWKAddrOfInterest-1 \P\ bits-Device's\ sh \ref{thm:thm:thm:mass} \ address\ that\ this\ resp \ref{thm:thm:mass} \ se\ describes.$

DescLen – 8 bits – Length, in bytes, **1** the user descript **1**

Descript **1** − byte array − User descript **1** array (can be up t •1 • bytes).

10.10 ZDO_ENDDEVICEBIND_RESPONSECB

10.10.1 Description

This callback message is in response to the ZDO End Device Bind Request.

10.10.2 Usage

The message f mat is as f ll ws

Cmd = 0x0A87	Len = 3	Status	SrcAddr

Status – byte – this field indicates status f the bind request with the f l wing values:

Status			
Descripti n	Value		
SUCCESS	0		
NOT SUPPORTED	1		
TIMEOUT	2		
NO MATCH	3		
Reserved	0x04 – 0xFF		

 $SrcAddr-1 \c/{\hspace{-0.1cm}\rule[-1.2ex]{0.8ex}{0.8ex}}\ bit$ – the message's s~urce netw~k address.

10.11 ZDO_BIND_RESPONSECB

10.11.1 Description

This callback message is in response to the ZDO Bind Request.

10.11.2 Usage

The message f mat is as f ll ws:

Cmd = 0x0A88	Len = 1	Status	SrcAddr

Status – byte – this field indicates status of the bind request with the following values:

Status			
Descripti n	Value		
SUCCESS	0		
NOT SUPPORTED	1		
TABLE FULL	2		
Reserved	0x03 - 0xFF		

SrcAddr - 1 bit – the message's source network address.

10.12 ZDO_UNBIND_RESPONSECB

10.12.1 Description

This callback message is in response to the ZDO UnBind Request.

10.12.2 Usage

The message f mat is as f l ws

Cmd = 0x0A89	Len = 1	Status	SrcAddr
--------------	---------	--------	---------

Status – byte – this field indicates status 1 the bind request with the f 1 wing values:

Status			
Descripti n	Value		
SUCCESS	0		
NOT SUPPORTED	1		

NO ENTRY	2
Reserved	0x03 – 0xFF

95

RtgC unt − 1 byte − T al number f entries available in the device.

StartIndex – 1 byte – Where in the tal number fentries this respase starts.

RtgListCount – 1 byte – Number of entries in this response.

RtgList – list – an array TRtgList items. RtgListCount contains the number Titems in this table.

RtgList Item				
Name	Size	Descripti n		
Destinati n Address	2 bytes	Netw k destinati address		
Next H p	2 bytes	Next h p netw k address		
Status	1 byte	R te status: 0x00 Active 0x01 Disc very Underway 0x02 Disc very Failed 0x03 Inactive 0x04 – 0x07 Reserved		

10.16 ZDO_MGMT_BIND_RESPONSECB

10.16.1 Description

This callback message is in response to the ZDO Management Binding Table Request.

10.16.2 Usage

The message f mat is as f l ws

10.17.2 Usage

The message f mat is as f ll ws

Cmd =	Len =	SrcAddr	Status
0x0A8E	0x03		

SrcAddr - 1 bit - S arce address ${}^{\frown}$ the message

Status – byte – this field indicates either SUCCESS (0) → FAILURE (1).

10.18 ZDO_USERDESCRIPTOR_SET_RESPONSECB

10.18.1 Description

This callback message is in response to the ZDO User Descript Test Request.

10.18.2 Usage

The message f mat is as f ll ws

Cmd =	Len =	Status	SrcAddr
0x0A90	0x03		

Status – byte – this field indicates status ${}^{\blacktriangleleft}$ the request with the ${}^{\blacktriangleleft}$ wing values:

SrcAddr - 1 bit - S arce address 1 the message

Status			
Descripti 1	Value		
SUCCESS	0		
NOT SUPPORTED	1		
Reserved	0x04 - 0xFF		

10.19 ZDO_MGMT_LEAVE_RESPONSECB

10.19.1 Description

This callback message is in response to the ZDO Management Leave Request.

10.19.2 Usage

The message f mat is as f ll ws

Cmd =	Len =	Status	SrcAddr
0x0A91	0x03		

Status – byte – this field indicates either SUCCESS (0) → FAILURE (1).

10.20 ZDO MGMT PERMIT JOIN RESPONSECB

10.20.1 Description

This callback message is in response to the ZDO Management Permit Jon Request.

10.20.2 Usage

The message f mat is as f l ws

Cmd =	Len =	Status	SrcAddr
0x0A92	0x03		

Status – byte – this field indicates either SUCCESS (0) → FAILURE (1).

SrcAddr − 1¶ bit − S urce address ¶ the message

10.21 ZDO_SYSTEM_SERVER_DISC_RESPONSECB

10.21.1 Description

This callback message is in response to the ZDO System Service Discovery Request. Upon receiving the request, remove devices shall compare the ServerMask parameter to the Server Mask field in their own Node descriptor. If no bits are found to match, no action is taken.

10.21.2 Usage

The message f mat is as f lows

Cmd - 0v0 4 02	L an - 0x02	Ctatus	Cuo A d du	Camron Mools
Cmd = 0x0A93	Len = 0x03	Status	SrcAddr	Server Mask

Status – 1 byte – this field indicates either SUCCESS (0) → FAILURE (1).

SrcAddr − 1 bit − S urce address f the address.

Server Mask -1 bits - each bit signifies n e system server capability n the n de. The bit setting is defined in the fill wing table:

Bit Number	Assignment
0	Primary Trust Center
1	Backup Trust Center
2	Primary Binding Table Cache
3	Backup Binding Table Cache
4	Primary Disc very Cache
5	Backup Disc very Cache
4 – 15	Reserved

11. Application Interface

11.1 Introduction

This interface all ws the tester to issue application-specific commands to the target and receive responses. The actual commands and responses will depend on the application and will be decided later.

11.2 USERTEST_REQUEST

11.2.1 Description

This message is sent to the target in order to test the functions defined for individual applications (which internally use attributes and cluster IDs from various device descriptions).

11.2.2 Usage

The message f mat is as f lows

Cmd=0x0B51 Len=0x08	Endp int	C nmand	Param1	Param2
---------------------	----------	---------	--------	--------

Endp int is a byte field that indicates the endp int if the application

Command is a two-byte field that is used to identify the application command to invoke

Param1 is a tw byte field that is used as the first parameter 1 the

Param2 is a two-byte field which is used as the second parameter of the command (usually an attribute value). This value is no necessary for some commands.

11.2.3 USERTEST RESPONSE

Cmd=0x1B51	Len=0x01	Status
------------	----------	--------

Status is a 1 byte field that indicates SUCCESS 7 FAILURE (see appendix f 7 failure c des).

Appendix A Status Codes and Query types

MAC Callback ID codes

Callback Name	Callback ID
SPI_CB_NWK_SYNC_LOSS_IND	0x2080
SPI_CB_NWK_ASSOCIATE_IND	0x2081
SPI_CB_NWK_ASSOCIATE_CNF	0x2082
SPI_CB_NWK_BEACON_NOTIFY_IND	0x2083
SPI_CB_NWK_DATA_CNF	0x2084
SPI_CB_NWK_DATA_IND	0x2085
SPI_CB_NWK_DISASSOCIATE_IND	0x208 ∮
SPI_CB_NWK_DISASSOCIATE_CNF	0x2087
SPI_CB_NWK_GTS_CNF	0x2088
SPI_CB_NWK_GTS_IND	0x2089
SPI_CB_NWK_ORPHAN_IND	0x208a
SPI_CB_NWK_POLL_CNF	0x208b
SPI_CB_NWK_SCAN_CNF	0x208c
SPI_CB_NWK_SECURITY_ERR_IND	0x208d
SPI_CB_NWK_START_CNF	0x208e

NWK Callback ID codes

Callback Name	Callback ID
SPI_CB_NLDE_DATA_CNF	0x0180
SPI_CB_NLDE_DATA_IND	0x0181
SPI_CB_NLME_INITCOORD_CNF	0x0182
SPI_CB_NLME_JOIN_CNF	0x0183
SPI_CB_NLME_JOIN_IND	0x0184
SPI_CB_NLME_LEAVE_CNF	0x0185
SPI_CB_NLME_LEAVE_IND	0x018 ∮
SPI_CB_NLME_SYNC_IND	0x0189
SPI_CB_NLME_NWK_DISC_CNF	0x018D
SPI_CB_NLME_START_ROUTER_CNF	0x018F

AF Callback ID codes

Callback Name	Callback ID
SPI_CB_AF_DATA_IND	0x0903

ZDO Callback ID codes

Callback Name	Callback ID
SPI_CB_ZDO_NWK_ADDR_RSP	0x0A80
SPI_CB_ZDO_IEEE_ADDR_RSP	0x0A81
SPI_CB_ZDO_NODE_DESC_RSP	0x0A82
SPI_CB_ZDO_POWER_DESC_RSP	0x0A83
SPI_CB_ZDO_SIMPLE_DESC_RSP	0x0A84
SPI_CB_ZDO_ACTIVE_EPINT_RSP	0x0A85
SPI_CB_ZDO_MATCH_DESC_RSP	0x0A8 ∮
SPI_CB_ZDO_END_DEVICE_BIND_RSP	0x0A87
SPI_CB_ZDO_BIND_RSP	0x0A88
SPI_CB_ZDO_UNBIND_RSP	0x0A89
SPI_CB_ZDO_MGMT_NWKDISC_RSP	0x0A8A
SPI_CB_ZDO_MGMT_LQI_RSP	0x0A8B
SPI_CB_ZDO_MGMT_RTG_RSP	0x0A8C
SPI_CB_ZDO_MGMT_BIND_RSP	0x0A8D
SPI_CB_ZDO_MGMT_DIRECT_JOIN_RSP	0x0A8E
SPI_CB_ZDO_USER_DESC_RSP	0x0A8F

NLME Status values

STATUS	VALUE
NLME_SUCCESS	0x00
NLME_FAILURE	0x01
NLME_ILLEGAL_REQUEST	0x02
NLME_UNKNOWN_DEVICE	0x03
NLME_STARTUP_FAILURE	0x04
NLME_NO_SHORT_ADDRESS	0x05
NLME_UNAVAILABLE_KEY	0x0 ∮
NLME_FRAME_TOO_LONG	0x07
NLME_FAILED_SECURITY_CHECK	0x08
NLME_INVALID_PARAMETER	0x09
NLME_UNSUPPORTED_ATTRIBUTE	0x0A
NLME_NOT_JOINED	0x0B
NLME_ALREADY_JOINED	0x0C
NLME_NOT_POSSIBLE	0x0D
NLME_TX_FAIL	0x0E
NLME_TX_ERROR	0x0F
NLME_RX_SUCCESS	0x10
NLME_RX_FAILURE	0x11
NLME_ALREADY_PRESENT	0x12
NLME_NO_NETWORKS	0x13
NLME_TABLE_FULL	0x14

NLME RX_STATE values

RX_STATE	VALUE
NLME_RX_CHECK	0x00
NLME_RX_DISABLE	0x01
NLME_RX_ENABLE	0x02
NLME_RX_TRACK	0x03

NLDE Status values

STATUS	VALUE
NLDE_SUCCESS	0x00
NLDE_INVALID_TARGET	0x01
NLDE_INVALID_PARAMETER	0x02
NLDE_BUFFER_FULL	0x03
NLDE_MEMORY_ERROR	0x04
NLDE_INVALID_NETWORK_STATE	0x05
NLDE_FAILURE	0x0 ∮

AF Status values

STATUS	VALUE
afStatus_SUCCESS	0x00
afStatus_FAILED	0x01
afStatus_MEM_FAIL	0x02
afStatus_INVALID_PARAMETER	0x03

Discovery: Query types and values

QUERY TYPE	QUERY VALUE
NWK_ADDR_LIST	NULL
IEEE_ADDR_LIST	NULL
SIMPLE_DESC	Endp int
NODE_DESC	NULL

Transaction Codes

TRANSACTION CODE	VALUE
TRANSACTIONCODE_OK	0x00
TRANSACTIONCODE_INVALID_ENDPOINT	0x01
TRANSACTIONCODE_INVALID_INTERFACE	0x02
TRANSACTIONCODE_INVALID_ATTRIBUTEID	0x03
TRANSACTIONCODE_INVALID_TRANSTYPE	0x04
TRANSACTIONCODE_INVALID_TRANSDATALENGTH	0x05
TRANSACTIONCODE_INVALID_TRANSDATA	0x0 ∮

ⁱ Currently, it is no supported in Z-Stack to enable security for each single ZDO command. The parameter "In order to turn security", users need to set SECURITY to 1 in f8wConfig.cfg. Then devices will form the network with security in and all over the air message are encrypted and authenticated.