1

Gate Assignment 1

Tanmay Goyal - AI20BTECH11021

Download all python codes from

https://github.com/tanmaygoyal258/EE3900-Linear -Systems-and-Signal-processing/blob/main/ GateAssignment1/code.py

Download all latex codes from

https://github.com/tanmaygoyal258/EE3900-Linear -Systems-and-Signal-processing/blob/main/ GateAssignment1/main.tex

1 Problem

(EC 2017- Q.7) The input x(t) and output y(t) of a continous time signal are related as:

$$y(t) = \int_{t-T}^{t} x(u) du$$
 (1.0.1)

The system is:

- 1) Linear and Time-variant
- 2) Linear and Time-invariant
- 3) Non-Linear and Time-variant
- 4) Non-Linear and Time-invariant

2 Solution

Definition 1. We say that a system is **linear** if and only if it follows the Principle of Superposition, i.e Law of Additivity and Law of Homogeneity.

Definition 2. A system is said to be **time invariant** if the output signal does not depend on the absolute time, i.e a time delay on the input signal directly equates to the delay in the output signal.

Lemma 2.1. The system relating the input signal x(t) and output signal y(t), given by

$$y(t) = \int_{t-T}^{t} x(u) du$$
 (2.0.1)

is linear and time invariant in nature.

Proof. From (1), we can say the system is linear if it follows both the laws of Additivity and Homogeneity.

Law of Additivity:

Let the two input signals be $x_1(t)$ and $x_2(t)$, and their corresponding output signals be $y_1(t)$ and $y_2(t)$, then:

$$y_1(t) = \int_{t-T}^t x_1(u) du$$
 (2.0.2)

$$y_2(t) = \int_{t-T}^t x_2(u) du$$
 (2.0.3)

$$y_1(t) + y_2(t) = \int_{t-T}^{t} [x_1(u) + x_2(u)] du$$
 (2.0.4)

Now, consider the input signal of $x_1(t) + x_2(t)$, then the corresponding output signal is given by y'(t):

$$y'(t) = \int_{t-T}^{t} [x_1(u) + x_2(u)] du$$
 (2.0.5)

Clearly, from (2.0.4) and (2.0.5):

$$y'(t) = y_1(t) + y_2(t)$$
 (2.0.6)

Thus, the Law of Additivity holds.

Law of Homogeneity:

Consider an input signal kx(t), where k is any constant. Let the corresponding output be given by y'(t), then:

$$y'(t) = \int_{t-T}^{t} kx(u) du$$
 (2.0.7)

$$= k \int_{t-T}^{t} x(u) \, du \tag{2.0.8}$$

$$= ky(t) \tag{2.0.9}$$

Clearly, from (2.0.9),

$$y'(t) = ky(t)$$
 (2.0.10)

Thus, the Law of Homogeneity holds.

Since both the Laws hold, the system satisfies the Principle of Superposition, and is thus, a **linear system**.

From (2), to check for time-invariance, we would introduce a delay of t_0 in the output and input

signals.

Delay in output signal:

$$y(t - t_0) = \int_{t - t_0 - T}^{t - t_0} x(u) du$$
 (2.0.11)

Now, we consider an input signal with a delay of t_0 , given by $x(t - t_0)$, and let the corresponding output signal be given by y'(t), then:

$$y'(t) = \int_{t-T}^{t} x(u - t_0) du$$
 (2.0.12)

Substituting $a = u - t_0$:

$$y'(t) = \int_{t-t_0-T}^{t-t_0} x(a) \, da$$
 (2.0.13)

Clearly, from (2.0.11) and (2.0.13):

$$y'(t) = y(t - t_0) (2.0.14)$$

Thus, the system is **time-invariant**. The correct option is **2**) **Linear and Time-invariant**

Since the given system is an LTI system, it would possess an impulse response h(t), which is the output of the system when the input signal is the Impulse function, given by $\delta(t)$. Thus,

$$h(t) = \int_{t-T}^{t} \delta(u) du \qquad (2.0.15)$$

The Impulse function can be loosely defined as:

$$\delta(t) = \begin{cases} \infty & t = 0 \\ 0 & otherwise \end{cases} \text{ and } \int_{-\infty}^{\infty} \delta(t)dt = 1$$
 (2.0.16)

Since the Impulse function is zero everywhere aside from t=0, the non-zero value of integration is a result of $\delta(0)$. Thus, we can say h(t) will be non-zero only if the limits of integration would include t=0, i.e:

$$h(t) = \begin{cases} \int_{t-T}^{t} \delta(u) du & t-T < 0; t > 0\\ 0 & otherwise \end{cases}$$
 (2.0.17)

$$h(t) = \begin{cases} 1 & 0 < t < T \\ 0 & otherwise \end{cases}$$
 (2.0.18)

The unit step signal, u(t), is given by:

$$u(t) = \begin{cases} 1 & t \ge 0 \\ 0 & otherwise \end{cases}$$
 (2.0.19)

On time-shifting u(t) by T, we get:

$$u(t-T) = \begin{cases} 1 & t-T \ge 0 \\ 0 & otherwise \end{cases} = \begin{cases} 1 & t \ge T \\ 0 & otherwise \end{cases}$$
(2.0.20)

On subtracting (2.0.19) and (2.0.20), we get our impulse response h(t) in terms of the unit step signal:

$$h(t) = u(t) - u(t - T)$$
 (2.0.21)

The unit rectangular signal, rect(t) is given by:

$$rect(t) = \begin{cases} 1 & \frac{-1}{2} \le t \le \frac{1}{2} \\ 0 & otherwise \end{cases}$$
 (2.0.22)

We can obtain the impulse response h(t) in terms of rect(t) using time scaling and shifting as follows:

$$rect(Tt) = \begin{cases} 1 & \frac{-T}{2} \le t \le \frac{T}{2} \\ 0 & otherwise \end{cases}$$
 (2.0.23)

$$rect(Tt + \frac{T}{2}) = \begin{cases} 1 & 0 \le t \le T \\ 0 & otherwise \end{cases} = h(t) \quad (2.0.24)$$

Let the Fourier Transform of h(t) be given by H(f), i.e

$$h(t) \stackrel{\mathcal{F}}{\rightleftharpoons} H(f)$$
 (2.0.25)

$$H(f) = \int_{-\infty}^{\infty} h(t)e^{-j2\pi ft} dt \qquad (2.0.26)$$

From (2.0.18), we can write (2.0.26) as:

$$H(f) = \int_{-\infty}^{0} 0 \, dt + \int_{0}^{T} e^{-j2\pi f t} \, dt + \int_{T}^{\infty} 0 \, dt$$

$$= \frac{1 - e^{-j2\pi f T}}{j2\pi f}$$

$$= \frac{1 - \cos 2\pi f T + j \sin 2\pi f T}{j2\pi f}$$

$$= \frac{2 \sin^{2}(\pi f T) + 2j \sin(\pi f T) \cos(\pi f T)}{j2\pi f}$$

$$= \frac{2 \sin(\pi f T)}{2\pi f} \left(\frac{\sin(\pi f T) + j \cos(\pi f t)}{j}\right)$$

$$= Te^{-j\pi f T} \times \frac{\sin(\pi f T)}{\pi f T}$$

$$= Te^{-j\pi f T} \sin c(\pi f T)$$

$$= Te^{-j\pi f T} \sin c(\pi f T)$$

$$= Te^{-j\pi f T} \sin c(\pi f T)$$

$$= (2.0.33)$$

where sinc(t), the sampling function is defined as:

$$sinc(t) = \begin{cases} 1 & t = 0\\ \frac{\sin(t)}{t} & otherwise \end{cases}$$
 (2.0.34)

Fig. 4: $x_1(t) = \sin t \text{ and } x_2(t) = t$

Fig. 4: $y_1(t)$ and $y_2(t)$

Fig. 4: Law of Additivity

Fig. 4: Law of Homogeneity

Fig. 4: Time invariance