Math 170A Introduction to Numerical Analysis – Fall 2016

Homework 4 - DUE TUESDAY, NOV 22

- 1. Section 8.3: Do the following two exercises.
 - (a) Consider Jacobi's Method for solving the system Ax = b where

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$

i. Verify that the iteration matrix *G* corresponding to the Jacobi Method for this system is

$$G = \begin{bmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 \end{bmatrix},$$

and verify that the eigenvalues for this matrix are $\lambda_1 = 0.5$ and $\lambda_2 = -0.5$ with corresponding eigenvectors $v_1 = (1, -1)$ and $v_2 = (1, 1)$.

- ii. Suppose that b = (0,0), so that the true solution is x = (0,0). If we choose $x^{(0)} = (5,-1)$, then $e^{(0)} = x x^{(0)} = (-5,1)$. Verify that $e^{(0)} = c_1v_1 + c_2v_2$, where $c_1 = -3$ and $c_2 = -2$.
- iii. Use the fact that $e^{(k)} = c_1 \lambda_1^k v_1 + c_2 \lambda_2^k v_2$ to show that

$$e^{(k)} = \begin{cases} \left(-\frac{5}{2^k}, \frac{1}{2^k}\right) & \text{for } k \text{ even,} \\ \left(-\frac{1}{2^k}, \frac{5}{2^k}\right) & \text{for } k \text{ odd.} \end{cases}$$

Compute $||e^{(3)}||_2$, $||e^{(4)}||_2$, and $||e^{(5)}||_2$.

- iv. For the same coefficient matrix A, suppose that any b and $x^{(0)}$ are chosen so that the initial error is $e^{(0)} = x x^{(0)} = (-5, 1)$. What would you predict that the errors $e^{(1)}$, $e^{(2)}$, $e^{(3)}$, $e^{(4)}$, and $e^{(5)}$ would be?
- (b) Do the above exercise with the Gauss-Seidel Method instead of the Jacobi Method. You will need to find G and its eigenvalues and eigenvectors, as well as c_1 and c_2 . (DO NOT TURN IN This exercise.)
- 2. Section 8.4: 7a, 12.
- 3. Section 1.7: 10bc, 18, 34, 37.
- 4. Section 1.8: 4, 9, 10.

Programming

1. Write a function in Matlab that takes as input a symmetric positive definite matrix A, the right hand side vector b, initial guess $x^{(0)}$, and number of iterations, and returns as output the solution of Ax = b as found by performing the *steepest descent* method. Use basic programming, along with Matlab's built in basic matrix computations, such as addition, subtraction, "division," and multiplication, as needed.

- (a) Write out or print out your function.
- (b) Run the case with A=[9 1; 1 2], b=[1 1] and initial guess [1 1] for 10 iterations. Print out your solution. What is the residual of this result?
- 2. Write a function in Matlab that takes as input a tridiagonal matrix given as three vectors: $n \times 1$ vector v representing the main diagonal, $(n-1) \times 1$ vector v representing the upper diagonal, and $(n-1) \times 1$ vector v representing the lower diagonal. Have this function output the LU factorization with the U as two vectors and the L as one vector representing the diagonals. Also output the number of flops used. Use only basic programming.
 - (a) Write out or print out your function.
 - (b) Run the case with n = 10, v the vector of 2's, w and z the vector of -1's. Write down your results for the diagonals of L and U.
 - (c) Run the case with n = 50 and n = 100 with v the vector of 2's, w and z the vector of -1's. Write down your results for the number of flops used.