
CSC 373 Lecture Plan for Week 11

Coping with NP-completeness

So far...

- * Techniques for writing (hopefully) efficient algorithms (greedy, dynamic programming, network flows, linear programming).
- * Techniques for showing that problems cannot be solved efficiently (if P != NP, then every NP-complete problem D does not belong to P).
- * Traditional point of view:
 - P = "easy"
 - NP-complete = "hard"
- * But:
 - definition of NP-completeness based on worst-case analysis
 (maybe inputs encountered in practice are rarely worst-case)
 - for "real-world" input sizes (>= 10^9), even n^2 runtime is inefficient!

Approximation algorithms

Not possible to solve NP-hard problems *exactly* and *in polytime* (unless P = NP).

In practice, sometimes sacrifice on efficiency: use exponential-time algorithm and hope inputs don't trigger worst-case behaviour. Particularly useful on restricted families of inputs:

- * A problem that's hard in general may be easy for inputs of a certain type. For example:
 - 2SAT.
 - Independent set on a tree.
 - Many graph problems are easy on trees or other restricted kinds of graphs. Others not (e.g., planar 3-colouring still NP-complete).

Sometimes sacrifice on exactness, particularly for optimization problems: instead of searching for *best* solution, settle for "good enough" solution. But what does that mean exactly?

For minimization problems, let OPT(x) be the minimum _value_ of any solution for input x. Suppose we have an approximation algorithm that generates solutions with approximate value A(x). By definition, $OPT(x) \le A(x)$ for all inputs (since OPT(x) is minimum).

The "approximation ratio" of our algorithm is a function r(n) such that A(x) <= r(n) * OPT(x) for all n and all inputs x of size n, i.e., approximation ratio gives a bound on how much larger than optimum our approximate value might be -- it gives a guarantee that approximate values cannot be "too" large compared to optimum.

Vertex Cover:

* Approx algo 1: greedy strategy -- next week's tutorial...

* Approx algo 2: Repeatedly pick an edge and put both endpoints in C, then remove all edges incident on the two endpoints, until no edge remains. Then, |C| <= 2 * OPT because all covers include at least one endpoint from every edge in C (all edges in C are disjoint, i.e., with no endpoint in common) so in particular, OPT >= |C|/2. This shows approximation ratio <= 2. To show approximation ratio = 2, need an example where algorithm performs that badly -- in this case, use n disjoint edges! Algorithm returns 2n endpoints but n of them are sufficient. Q: In general, how can we compute ratio without knowing OPT? (Particularly for NP-hard problems, like VC, TSP, bin packing?) A: Use a lower bound. Find another value LB that's easy to compute and for which you can prove LB <= OPT and A <= r * LB. For example... * Approx algo 3: - Create linear program from input graph: variables: x_1,...,x_n (one for each v_i in V) obj. function: minimize $x_1 + ... + x_n$ constraints: $0 \le x_i \le 1$ for all i $x_i + x_j >= 1$ for each (v_i, v_j) in E (As an Integer Program -- domain for each $x_i = Z$ -- this is completely equivalent to MinVertexCover, including NP-hardness.) - Compute optimal solution to linear program: x^*_1 , x^*_2 , ..., x^*_n (linear program "relaxation": allow real values for variables). - Create cover as follows: for each v_i in V, put v_i in C iff $x^*_i >= 1/2$. (C is a cover because constraint $x_i + x_j >= 1$ quarantees at least one of x^*_i , $x^*_j >= 1/2$ for each edge (v_i, v_j) . Approximation ratio? Consider minimum vertex cover C'. For i = 1, ..., n, let $x'_i = 1$ if v_i in C'; $x'_i = 0$ otherwise. $x'_i = 0$, ..., $x'_i = 0$ is a solution to linear program that satisfies all constraints with 0-1 values so $|C'| = \sum x'_i >= \sum x^*_i$

where x^*_i is optimal solution to linear program with no restriction on values, so guaranteed to be at least as small as any other solution, including those with additional restrictions.

For i = 1, ..., n, let $x\sim_i = 1$ if $x*_i >= 1/2$; $x\sim_i = 0$ othewise. Then, for each i, $x\sim_i <= 2$ $x*_i$ so

 $|C| = \sum_{x=1}^{\infty} x^{-i} \le 2 \sum_{x=1}^{\infty} (by equation above)$ Hence, |C| is no more than twice the size of a minimum vertex cover.

How well can problems be approximated? Even though all NP-complete problems "equivalent" to each other (in one sense), approximation ratios for corresponding optimization problems all over the place.

- * VC: constant approx ratio 2.
- * Set Cover (in textbook): approx ratio log n (not constant but limited).
- * Knapsack: approx ratio 1+epsilon in time $O(n^3/epsilon)$, for all constants epsilon in (0,1]!
- * TSP: no finite ratio, unless P=NP!

Traveling Salesman Problem (TSP):

- * Given graph G with edge weights w(e), find a "tour" (Hamiltonian cycle) with minimum total weight.
- * NP-hard: no polytime solution.

* NP-hard to approximate with constant ratio: Suppose we have an algorithm with approx ratio C(n), i.e., guaranteed to find tour with total weight <= C * OPT. We show how this algorithm could be used to solve an NP-hard problem.

Given an input G to HamCycle problem, construct an instance of TSP G' as follows: on the same vertex set as G, put in all possible edges with w(e) = 1 if e in G, w(e) = Cn+1 if e not in G.

Any tour in G' that uses only edges with weight 1 has total weight n; any tour in G' that uses at least one edge with weight Cn+1 has total weight > Cn.

If G contains a Ham cycle, then G' contains a tour with total weight n; if G does not contain a Ham cycle, then all tours in G' have total weight > Cn+1 (they must contain at least one edge not in G). So now, run approx. algorithm on G'. If algo returns answer with total weight <= C*n, then G contains a Ham cycle; if algo returns answer with total weight > Cn+1, then G does not contain a Ham cycle. As this solves the Ham cycle problem, approx algorithm cannot run in polytime.

For Next Week

* Readings: Sections 9.2.3, 9.2.4, 9.2.5.

* Self-Test: None for this week...