# מעבדת ארכיטקטורת מעבדים מתקדמת ומאיצי חומרה

פרויקט גמר

מיכאל קדיק 316645415 עמית ניסני 205664345

# תיאור הפרויקט

בפרויקט זה התבקשנו לייצר CPU MIPS based MCU המבוסס על Single Cycle MIPS, המשתמש בMemory Mapped I/O ובעל תמיכה בפסיקות. לשם כך, יצרנו יחידות כמו Timer, ו-INTCTL ,GPIO



Figure 1. System architecture

את ה-GPIO מימשנו עפ"י הנדרש בפרויקט כפי שצוין באיור הבא.



Figure 2. GPIO peripheral connection using Memory Mapped I/O

את ה-Timer מימשנו כפי שנדרש בהגדרת הפרויקט כך שהוא תומך בפסיקות ובהוצאת אות PWM ע"י שימוש בoutput compare mode כפי שניתן לראות באיור הבא.



Figure 3. Basic Timer design

את התמיכה בפסיקות מימשנו ע"י רכיב INTCTL עפ"י הדרישות בהגדרת הפרויקט כפי שניתן לראות באיור הבא.



Figure 4. Interrupt controller design

בכדי ליצור את כל המצוין למעלה, השתמשנו ברכיבי חומרה עליהם נפרט באיורים הבאים.

#### Top

רכיב זה הינו ה- top level entity שלנו ומטרתו לסנכרן בין המעבד, רכיב ה-IO וה- BUS ולשמש כמעטפת חיצונית גם כן.



Figure 5. RTL Viewer of MIPS

| Timing Models                   | Final                      |
|---------------------------------|----------------------------|
| Logic utilization (in ALMs)     | 1,624 / 41,910 ( 4 % )     |
| Total registers                 | 1657                       |
| Total pins                      | 65 / 499 (13 %)            |
| Total virtual pins              | 0                          |
| Total block memory bits         | 90,112 / 5,662,720 ( 2 % ) |
| Total DSP Blocks                | 2/112(2%)                  |
| Total HSSI RX PCSs              | 0/9(0%)                    |
| Total HSSI PMA RX Deserializers | 0/9(0%)                    |
| Total HSSI TX PCSs              | 0/9(0%)                    |
| Total HSSI PMA TX Serializers   | 0/9(0%)                    |
| Total PLLs                      | 0/15(0%)                   |
| Total DLLs                      | 0/4(0%)                    |

Figure 6. Logic Usage

#### **MIPS**

רכיב זה הינו ה- CPU ותפקידו לסנכרן בין כל רכיבי החומרה השונים המפורטים בהמשך הדו"ח (IFETCH,IDECODE,CONTROL,EXECUTE,DMEMORY).



Figure 7. Graphical description of MIPS



Figure 8. RTL Viewer of MIPS

| Name            | Direction | Size | Functionality       |
|-----------------|-----------|------|---------------------|
| clock           | IN        | 1    | שעון                |
| reset           | IN        | 1    | אתחול               |
| enable          | IN        | 1    | PC אפשור            |
| INTR_in         | IN        | 1    | בקרה                |
| read_from_bus   | IN        | 32   | BUS-קריאת מידע מה   |
| IO_read_out     | OUT       | 1    | בקרה                |
| write_data_IO   | OUT       | 32   | BUS-כתיבת מידע אל ה |
| Instruction_out | OUT       | 32   | פקודה שמתבצעת כרגע  |
| MemRead_out     | OUT       | 1    | בקרה                |
| Memwrite_out    | OUT       | 1    | בקרה                |
| INTA_out        | OUT       | 1    | בקרה                |
| GIE_out         | OUT       | 1    | בקרה                |

Table 1. Port Table of MIPS

#### **IFETCH**

תפקידו של רכיב זה הוא להביא את הפקודה שיש לבצע ולקדם את ה-pc לפקודה הבאה (שאינה בהכרח הפקודה העוקבת, כמו למשל אם יש jump).



Figure 9. Graphical description of IFETCH



Figure 10. RTL Viewer of IFETCH

| Name          | Direction | Size | Functionality         |
|---------------|-----------|------|-----------------------|
| clock         | IN        | 1    | שעון                  |
| reset         | IN        | 1    | אתחול                 |
| enable        | IN        | 1    | PC אפשור              |
| Add_result    | IN        | 8    | כתובת הסתעפות         |
| ALU_Result    | IN        | 32   | משמש לפקודת קפיצה     |
| IntAddress    | IN        | 32   | כתובת למיקופ בוקטור   |
|               |           |      | הפסיקה                |
| J_addr        | IN        | 8    | כותבת קפיצה           |
| INTA          | IN        | 1    | בקרה                  |
| Jump          | IN        | 1    | בקרה                  |
| Zero          | IN        | 1    | בקרה                  |
| Beq           | IN        | 1    | בקרה                  |
| Bne           | IN        | 1    | בקרה                  |
| Jr            | IN        | 1    | בקרה                  |
| Instruction   | OUT       | 32   | פקודה לביצוע          |
| PC_plus_4_out | OUT       | 10   | כתובת של פקודה הבאה   |
| PC_out        | OUT       | 10   | כתובת של פקודה נוכחית |

Table 2. Port Table of IFETCH

#### **IDECODE**

תפקידו של רכיב זה הוא לפענח את הפקודה שיש לבצע, בנוסף ברכיב זה נמצא register filen ולכן מתבצעת בו גם כתיבה לרגיסטרים.



Figure 11. Graphical description of IDECODE



Figure 12. RTL Viewer of IDECODE

| Name            | Direction | Size | Functionality                  |
|-----------------|-----------|------|--------------------------------|
| clock           | IN        | 1    | שעון                           |
| reset           | IN        | 1    | אתחול                          |
| Instruction     | IN        | 32   | הפקודה הנוכחית לפענוח          |
| read_data       | IN        | 32   | המידע בכתיבה                   |
|                 |           |      | לרגיסטרים                      |
| ALU_result      | IN        | 32   | תוצאת הפעולה ב- ALU            |
| RegWrite        | IN        | 1    | בקרה                           |
| MemtoReg        | IN        | 1    | בקרה                           |
| RegDst          | IN        | 1    | בקרה                           |
| Jump            | IN        | 1    | בקרה                           |
| Jr              | IN        | 1    | בקרה                           |
| Shift           | IN        | 1    | בקרה                           |
| INTR            | IN        | 1    | בקרה                           |
| PC_plus_4       | IN        | 10   | כתובת של הפקודה הבאה<br>לביצוע |
| read_data_1_out | OUT       | 32   | המידע מרגיסטר 1                |
| read_data_2_out | OUT       | 32   | 2 המידע מרגיסטר                |
| Sign_extend     | OUT       | 32   | סיגנל מורחב בהתאם              |
|                 |           |      | לסימן                          |
| J_addr          | OUT       | 8    | כתובת קפיצה                    |
| GIE             | OUT       | 1    | בקרה                           |

Table 3. Port Table of IDECODE

# **CONTROL**

תפקידו של רכיב זה הוא לייצר את קווי הבקרה בהתאם לפקודה הנוכחית.



Figure 13. Graphical description of CONTROL



Figure 14. RTL Viewer of CONTROL

| Direction | Size            | Functionality                                                                                                 |
|-----------|-----------------|---------------------------------------------------------------------------------------------------------------|
| IN        | 1               | שעון                                                                                                          |
| IN        | 1               | אתחול                                                                                                         |
| IN        | 6               | ביטים 26-31 בפקודה                                                                                            |
| IN        | 6               | ביטים 0-5 בפקודה                                                                                              |
| OUT       | 1               | קו בקרה לבחירת כתובת                                                                                          |
|           |                 | יעד הכתיבה לרגיסטר                                                                                            |
| OUT       | 1               | קו בקרה ה <sub>בורר</sub> איזה                                                                                |
|           |                 | -a B מידע יכנס לכניסה                                                                                         |
|           |                 | ALU                                                                                                           |
| OUT       | 1               | קו בקרה הבורר בין                                                                                             |
|           |                 | המידע שיכִתב לתוך                                                                                             |
|           |                 | הרגיסטרים (מהזכרון או                                                                                         |
|           |                 | מה-ALU)                                                                                                       |
| OUT       | 1               | קו בקרה הבורר את                                                                                              |
|           |                 | כתובת הרגיסטר לכתיבה                                                                                          |
| OUT       | 1               | קו בקרה המבחין האם יש                                                                                         |
|           |                 | לקרוא מהזכרון                                                                                                 |
| OUT       | 1               | קו בקרה המבחין האם יש                                                                                         |
| OUT       | 1               | לכתוב לזכרון                                                                                                  |
| 001       | ı               | קו בקרה המבחין האם יש                                                                                         |
| OUT       | 1               | shift פעולת                                                                                                   |
| 001       | ı               | קו בקרה המבחין האם יש                                                                                         |
| OUT       | 1               | פעולת קפיצה                                                                                                   |
| 001       | ı               | קו בקרה המבחין האם יש<br>פעולת קפיצה לתוך ערך                                                                 |
|           |                 | פעוזונ זופיצוז זונון ערן<br>השמור ברגיסטר                                                                     |
| OUT       | 1               | קו בקרה המבחין האם יש                                                                                         |
| 001       | •               | יון ביון דרומברדן דואם ס<br>פעולת הסתעפות                                                                     |
| OUT       | 1               | קו בקרה המבחין האם יש                                                                                         |
| 331       | •               | ון בון דרונגבודן דאם ס<br>פעולת הסתעפות                                                                       |
| OUT       | 4               | קו בקרה הבורר איזה                                                                                            |
|           | •               | ין בין הייי אייי אייי<br>פעולה יש לעשות ב-ALU                                                                 |
|           | IN IN IN IN OUT | IN 1 IN 6 IN 6 IN 6 OUT 1 |

Table 4. Port Table of CONTROL

#### **EXECUTE**

תפקידו של רכיב זה הוא ביצוע הפעולות הנדרשות בכדי לבצע את הפקודה.



Figure 15. Graphical description of EXECUTE



Figure 16. RTL Viewer of EXECUTE

| Name            | Direction | Size | Functionality        |
|-----------------|-----------|------|----------------------|
| clock           | IN        | 1    | שעון                 |
| reset           | IN        | 1    | אתחול                |
| Read_data_1     | IN        | 32   | מידע מרגיסטר 1       |
| Read_data_2     | IN        | 32   | מידע מרגיסטר 2       |
| Sign_extend     | IN        | 32   | immidiateמידע משדה   |
|                 |           |      | מורחב                |
| Function_opcode | IN        | 6    | ביטים 0-5 של הפקודה  |
| ALUSrc          | IN        | 1    | בקרה                 |
| PC_plus_4       | IN        | 10   | כתובת של הפקודה הבאה |
|                 |           |      | לביצוע               |
| Shamt           | IN        | 5    | ביטים 6-10 בפקודה    |
| ALU_ctl         | IN        | 4    | בורר איזה פקודה יש   |
|                 |           |      | ALU -לבצע ב          |
| ALU_Result      | OUT       | 32   | תוצאת ה-ALU          |
| Add_Result      | OUT       | 8    | תוצאת חישוב כתובת    |
|                 |           |      | ההסתעפות             |
| Zero            | OUT       | 1    | בקרה                 |

Table 5. Port Table of EXECUTE

#### **DMEMORY**

תפקידו של רכיב זה הוא לבצע קריאה מהזכרון או כתיבה לזכרון.



Figure 17. Graphical description of DMEMORY



Figure 18. RTL Viewer of DMEMORY

| Name       | Direction | Size | Functionality      |
|------------|-----------|------|--------------------|
| clock      | IN        | 1    | שעון               |
| reset      | IN        | 1    | אתחול              |
| address    | IN        | 10   | כתובת כתיבה לזכרון |
| write_data | IN        | 32   | מידע שנכתב לזכרון  |
| MemRead    | IN        | 1    | בקרה               |
| Memwrite   | IN        | 1    | בקרה               |
| read_data  | OUT       | 32   | מידע שיוצא מהזכרון |

Table 6. Port Table of DMEMORY

#### **GPIO**

תפקידו של רכיב זה הוא לסנכרן בין כל רכיבי ה-IO השונים והעברת המידע מהם אל ה-BUS.



Figure 19. Graphical description of GPIO



Figure 20. RTL Viewer of GPIO

| Name        | Direction | Size | Functionality                                        |
|-------------|-----------|------|------------------------------------------------------|
| Data_in     | IN        | 32   | מידע שנכנס לרכיב                                     |
| Address_Bus | IN        | 12   | כתובת                                                |
| MemRead     | IN        | 1    | בקרה                                                 |
| Memwrite    | IN        | 1    | בקרה                                                 |
| GIE         | IN        | 1    | אות בקרה המאפשר<br>פסיקות גלובליות                   |
| INTA        | IN        | 1    | אות בקרה המגיע<br>מהCPU ומעיד על אישור<br>פסיקה      |
| reset       | IN        | 1    | אתחול                                                |
| clock       | IN        | 1    | שעון                                                 |
| key_1       | IN        | 1    | לחצן 1                                               |
| key_2       | IN        | 1    | לחצן 2                                               |
| key_3       | IN        | 1    | לחצן 3                                               |
| SW_in       | IN        | 8    | מתגים                                                |
| Data_out    | OUT       | 32   | מידע שיוצא מהרכיב                                    |
| HEXO_out    | OUT       | 7    | מידע לאחר קידוד<br>שנכתב על ה-HEX                    |
| HEX1_out    | OUT       | 7    | שנכונב על ה-HEX<br>מידע לאחר קידוד<br>שנכתב על ה-HEX |
| HEX2_out    | OUT       | 7    | מידע לאחר קידוד<br>שנכתב על ה-HEX                    |
| HEX3_out    | OUT       | 7    | מידע לאחר קידוד<br>שנכתב על ה-HEX                    |
| HEX4_out    | OUT       | 7    | מידע לאחר קידוד<br>שנכתב על ה-HEX                    |
| HEX5_out    | OUT       | 7    | מידע לאחר קידוד<br>שנכתב על ה-HEX                    |
| LEDR_out    | OUT       | 8    | מידע שמופיע על הלדים                                 |
| INTR        | OUT       | 1    | קו בקרה המודיע ל CPU<br>שיש בקשה לפסיקה              |
| Out_Signal  | OUT       | 1    | PWM אות                                              |

Table 7. Port Table of GPIO

#### **TIMER**

תפקידו של רכיב זה הוא לשמש בתור Basic Timer המאפשר יצירת פסיקות בהתאם לקינפוגים שונים, כמו כן ניתן להוציא בעזרתו אות PWM.



Figure 21. Graphical description of TIMER



Figure 22. RTL Viewer of TIMER

| Name       | Direction | Size | Functionality       |
|------------|-----------|------|---------------------|
| Data_in    | IN        | 32   | מידע הנכנס לרכיב    |
| BTCTL      | IN        | 8    | רגיסטר שבעזרתו      |
|            |           |      | מקונפג השעון        |
| BTCCR_en   | IN        | 2    | אפשור כתיבה         |
|            |           |      | לרגיסטרים BTCL0,    |
|            |           |      | BTCL1               |
| BTCNT_en   | IN        | 1    | אפשור כתיבה לרגיסטר |
|            |           |      | BTCNT               |
| reset      | IN        | 1    | אתחול               |
| clock      | IN        | 1    | שעון                |
| BTCNT_out  | OUT       | 32   | ערך הספירה של       |
|            |           |      | הטיימר              |
| Set_BTIFG  | OUT       | 1    | פסיקה של השעון      |
| Out_Signal | OUT       | 1    | שנוצר ע"י PWM אות   |
|            |           |      | הטיימר              |

Table 8. Port Table of TIMER

# **INTCTL**

תפקידו של רכיב זה הוא לנהל ולשלוט על כל הפסיקות.



Figure 23. Graphical description of INTCTL



Figure 24. RTL Viewer of INTCTL

| Name        | Direction | Size | Functionality        |
|-------------|-----------|------|----------------------|
| Data_in     | IN        | 32   | מידע הנכנס לרכיב     |
| Address     | IN        | 12   | כתובת                |
| irq         | IN        | 8    | מודיע על בקשות פסיקה |
| INTA        | IN        | 1    | בקרה                 |
| reset       | IN        | 1    | אתחול                |
| clock       | IN        | 1    | שעון                 |
| CS          | IN        | 1    | מעיד על פניה לרכיב   |
| Memwrite_IO | IN        | 1    | בקרה                 |
| Memread_IO  | IN        | 1    | בקרה                 |
| GIE         | IN        | 1    | בקרה                 |
| Data_out    | OUT       | 32   | מידע היוצא מהרכיב    |
| INTR        | OUT       | 1    | בקרה                 |

Table 9. Port Table of INTCTL

#### **D\_LATCH**

# רכיב עזר שמשומש בבקר הפסיקות.



Figure 25. Graphical description of D\_LATCH



Figure 26. RTL Viewer of D\_LATCH

| Name | Direction | Size | Functionality |
|------|-----------|------|---------------|
| D    | IN        | 1    | 1 קבוע        |
| EN   | IN        | 1    | אפשור כתיבה   |
| CLR  | IN        | 1    | איפוס         |
| Q    | OUT       | 1    | מוצא          |

Table 10. Port Table of D\_LATCH

# **HEX**

רכיב עזר המשמש לקידוד המידע שמוצג ב-HEX.



Figure 27. Graphical description of HEX



Figure 28. RTL Viewer of HEX

| Name       | Direction | Size | Functionality    |
|------------|-----------|------|------------------|
| Hex_input  | IN        | 4    | ערך שרוצים להציג |
| Hex_output | OUT       | 7    | המרה להצגה       |

Table 11. Port Table of HEX

#### **BidirPin**

ורכיבי ה-IO-ורכיבי ה-CPU ולהעביר מידע בין ה-Data bus רכיב שתפקידו לשמש



Figure 29. Graphical description of BidirPin



Figure 30. RTL Viewer of BidirPin

| Name  | Direction | Size | Functionality        |  |
|-------|-----------|------|----------------------|--|
| Dout  | IN        | 32   | מידע היוצא מהרכיב אל |  |
|       |           |      | ה-BUS                |  |
| en    | IN        | 1    | BUS-אפשור כתיבה ל    |  |
| Din   | OUT       | 32   | אל BUS-מידע הנכנס מה |  |
|       |           |      | הרכיב                |  |
| lOpin | INOUT     | 32   | ה-BUS                |  |

Table 12. Port Table of BidirPin

כמו כן, בדקנו את ה-fmax ואת המסלול הקריטי עבור המימוש שלנו בפרויקט. ניתן לראות אותם באיורים הבאים.

|   | Fmax      | Restricted Fmax | Clock Name | Note |
|---|-----------|-----------------|------------|------|
| 1 | 37.93 MHz | 37.93 MHz       | clock      |      |

Figure 31. Fmax



Figure 32. Critical Path

ניתן לראות כי המסלול הקריטי עובר בכל הרכיבים, כצפוי ממעבד Single Cycle. כמו כן, ניתן לראות כי על אף שהוספנו רכיבי IO, המסלול הקריטי הוא עדיין נמצא ב-CPU כן, ניתן לראות כי על אף שהוספנו רכיבי מהזיכרון וגם כתיבה חזרה אל ה-RF.

בכדי לבדוק את נכונות המימוש שלנו ושאכן המעבד מבצע את כל הפקודות כנדרש וכל רכיבי החומרה, כולל רכיבי ה-IO מבצעים את תפקידם הרצנו את הקודים לבדיקה שפורסמו. חלק מהתוצאות מצורפות לדו"ח באיורים הבאים.

תחילה הרצנו את test3.asm ובדקנו שכל הערכים נכנסים כמו שצריך למקומות המיועדים להם. את התוצאות ניתן לראות באיור הבא.



Figure 33. Modelsim simulation results

בתוכנית זו בדקנו שאכן כל הערכים שצריכים להכנס את הרגיסטרים וקווי הברקה של הטיימר אכן נכתבים כמו שצריך. ניתן לראות שאכן ה-BTCTL מקבל את הערך 0x06 הטיימר אכן נכתבים כמו שצריך. ניתן לראות שאכן ה-BTIP = 110 ,BTSSEL = 00. כמו כנדרש. בהתאם לכך ביטי הקנפוג משתנים בהתאם, timer\_clock פוא בדיוק כמו כן, ניתן לראות שהשעון שבאמצעותו הטיימר סופר, BTSSEL הוא בדיוק כמו השעון הרגיל בהתאם לBTSSEL. עם זאת, ניתן לראות באמצעות שנובחר שעון נכון גם השעונים הנדרשים בהתאם לחלוקה, ולכן עבור BTSSEL אחר היה נבחר שעון נכון גם כן. לבסוף, ניתן לראות שלאחר הקנפוג ואפשור הטיימר השעון אכל מתחיל לספור עפ"י הערך של BTCNT.

בנוסף, בדקנו את נכונות המימוש שלנו באמצעות הSignal Tap ב- Quartus. מכיוון שלא מצאנו קודים לבדיקה שבודקים את היווצרות אות ה-PWM מהטיימר, כתבנו קוד קצר לבדיקה של דבר זה. ניתן לראות את התוצאות באיור הבא.



Figure 34. Signal Tap Verification

ניתן לראות שאכן נוצר אות PWM בDuty cycle מסוים בהתאם לערכים שנכנסו ל-BTCL0 ו-BTCL1. כמו כן, לאחר לחיצה על כפתור מסוים, ניתן לראות שהערך של BTCL0. כמו כן, לאחר לחיצה על כפתור מסוים, ניתן לראות שהערך של BTCL1 קטן, ולכן הזמן בין BTCL0 ל –BTCL1 גדל, כלומר ערך האות הוא 0, וה-ptcl משתנה, בהתאם למה שהיינו מצפים לראות.