CSC 576: Mathematical Foundations I

Ji Liu Department of Computer Sciences, University of Rochester

September 20, 2016

1 Notations and Assumptions

In most cases (if without local definitions), we use

- Greek alphabets such as α , β , and γ to denote real numbers;
- Small letters such as x, y, and z to denote vectors;
- Capital letters to denote matrices, e.g., A, B, and C.

Other notations:

- \mathbb{R} is the one dimensional Euclidean space;
- \mathbb{R}^n is the *n* dimensional vector Euclidean space;
- $\mathbb{R}^{m \times n}$ is the $m \times n$ dimensional matrix Euclidean space;
- \mathbb{R}_+ denotes the range $[0, +\infty)$;
- $1_n \in \mathbb{R}^n$ denotes a vector with 1 in all entries;
- For any vector $x \in \mathbb{R}^n$, we use |x| to denote the absolute vector, that is, $|x|_i = |x_i| \ \forall i = 1, \dots, n$;
- \odot denotes the component-wise product, that is, for any vectors x and y, $(x \odot y)_i = x_i y_i$.

Some assumptions:

• Unless explicit (local) definition, we always assume that all vectors are column vectors.

2 Vector norms, Inner product

A function $f: x \in \mathbb{R}^n \to y \in \mathbb{R}_+$ is called a "norm", if the following three conditions are satisfied

- (Zero element) $f(x) \ge 0$ and f(x) = 0 if and only if x = 0;
- (Homogeneous) For any $\alpha \in \mathbb{R}$ and $x \in \mathbb{R}^n$, $f(\alpha x) = |\alpha| f(x)$;
- (Triangle inequality) Any $x, y \in \mathbb{R}^n$ satisfy $f(x) + f(y) \ge f(x + y)$.

The ℓ_2 norm " $\|\cdot\|_2$ " (a special " $f(\cdot)$ ") in \mathbb{R}^n is defined as

$$||x||_2 = (|x_1|^2 + |x_2|^2 + \dots + |x_n|^2)^{\frac{1}{2}}.$$

Because of ℓ_2 is the most commonly used norm (also known as Euclidean norm), we denote it as $\|\cdot\|$ sometimes for short. (Think about it how about $f([x_1, x_2]) = 2x_1^2 + x_2^2$?)

A general ℓ_p norm $(p \ge 1)$ is defined as

$$||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}}.$$

Note that for p < 1, it is not a "norm" since the triangle inequality is violated. ℓ_{∞} norm is defined as

$$||x||_{\infty} = \max\{|x_1|, |x_2|, \cdots, |x_n|\}.$$

One may notice that the ℓ_{∞} norm is the limit of the ℓ_p norm, that is, for any $x \in \mathbb{R}^n$, $||x||_{\infty} = \lim_{p \to +\infty} ||x||_p$. In addition, people use $||x||_0$ to denote the ℓ_0 "norm".

The inner product $\langle \cdot, \cdot \rangle$ in \mathbb{R}^n is defined as

$$\langle x, y \rangle = \sum_{i} x_i y_i.$$

One can show that $\langle x, x \rangle = ||x||^2$. Two vectors x and y are orthogonal if $\langle x, y \rangle = 0$. That is one reason why ℓ_2 norm is so special.

If $p \geq q$, then for any $x \in \mathbb{R}^n$ we have $||x||_p \leq ||x||_q$. In particular, we have

$$||x||_1 \ge ||x||_2 \ge ||x||_{\infty}.$$

To bound from the order sides, we have

$$||x||_1 \le \sqrt{n} ||x||_2 \quad ||x||_2 \le \sqrt{n} ||x||_{\infty}.$$

Proof. To see the first one, we have

$$||x||_1 = \langle 1_n, |x| \rangle \le ||1_n||_2 |||x|||_2 = \sqrt{n} ||x||_2$$

where the last inequality uses the Cauchy inequality. I leave the proof of the second inequality in your homework. \Box

Given a norm " $\|\cdot\|_A$ ", its dual norm is defined as

$$||x||_{A^*} = \max_{||y||_A \le 1} \langle x, y \rangle = \max_{||y||_A = 1} \langle x, y \rangle = \max_z \frac{\langle x, z \rangle}{||z||_A}.$$

Several important properties about the dual norm are

- The dual norm's dual norm is itself, that is, $||x||_{(A^*)^*} = ||x||_A$;
- The ℓ_2 norm is self-dual, that is, the dual norm of the ℓ_2 norm is still the ℓ_2 norm;
- The dual norm of the ℓ_p norm $(p \ge 1)$ is ℓ_q norm where p and q satisfy 1/p + 1/q = 1. Particularly, ℓ_1 norm and ℓ_{∞} norm are dual to each other.
- (Holder inequality): $\langle x, y \rangle \leq ||x||_A ||y||_{A^*}$

3 Linear space, subspace, linear transformation

A set S is a linear space if

- $0 \in S$;
- given any two points $x \in S$, $y \in S$ in S and any two scalars $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}$, we have

$$\alpha x + \beta y \in S$$
.

Note that \emptyset is not a linear space. Examples: vector space \mathbb{R}^n , matrix space $\mathbb{R}^{m \times n}$. How about the following things:

- 0; (no)
- $\{0\}$; (yes)
- $\{x \mid Ax = b\}$ where A is a matrix and b is a vector. (b = 0 yes; otherwise, no)

Let S be a linear space. A set S' is a subspace if S' is a linear space and also a subset of S. Actually, "subspace" is equivalent to "linear space", because any subspace is a linear space and any linear space is a subspace. They are indeed talking about the same thing.

Let S be a linear space. A function $L(\cdot)$ is a linear transformation if given any two points $x, y \in S$ and two scalars $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}$, one has

$$L(\alpha x + \beta y) = \alpha L(x) + \beta L(y).$$

For vector space, there exists a 1-1 correspondence between a linear transformation and a matrix. Therefore, we can simply say "a matrix is a linear transformation".

- Prove that $\{L(x) \mid x \in S\}$ is a linear space if S is a linear space and L is a linear transformation.
- Prove that $\{x \mid L(x) \in S\}$ a linear space assuming S is a linear space, and L is a linear transformation.

How to express a subspace? The most intuitive way is to use a bunch of vectors. A subspace can be expressed by

$$\operatorname{span}\{x_1, x_2, \cdots, x_n\} = \left\{ \sum_{i=1}^n \alpha_i x_i \mid \alpha_i \in \mathbb{R} \right\} = \{X\alpha \mid \alpha\},$$

which is called the range space of matrix X. A subspace can be also represented by the null space of X by

$$\{\alpha \mid X\alpha = 0\}.$$

4 Eigenvalues / eigenvectors, rank, SVD, inverse

The transpose of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as $A^T \in \mathbb{R}^{n \times m}$:

$$(A^T)_{ij} = A_{ji}.$$

One can verify that

$$(AB)^T = B^T A^T.$$

A matrix $B \in \mathbb{R}^{n \times n}$ is the inverse of an invertible matrix $A \in \mathbb{R}^{n \times n}$ if

$$AB = I$$
 and $BA = I$.

B can be denoted as A^{-1} . A has the inverse is equivalent to that A has a full rank (the definition for "rank" will be clear very soon.) Note that the inverse of a matrix is unique. One can also verify that if both A and B are invertible, then

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

The "transpose" and the "inverse" are exchangeable:

$$(A^T)^{-1} = (A^{-1})^T$$
.

When we write A^{-1} , we have to make sure that A is invertible.

Given a square matrix $A \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$ ($x \neq \mathbf{0}$) is called its eigenvector and $\lambda \in \mathbb{R}^n$ is called its eigenvalue, if the following relationship is satisfied

 $Ax = \lambda x$. (The effect of applying the linear transformation A on x is nothing but scaling it.)

Note that

- If $\{\lambda, x\}$ is a pair of eigenvalue-eigenvector, then so is $\{\lambda, \alpha x\}$ for any $\alpha \neq 0$.
- One eigenvalue may correspond to multiple different eigenvectors. "Different" means eigenvectors are different after normalization.

If the matrix A is symmetric, then any two eigenvectors (corresponding to different eigenvalues) are orthogonal, that is, if $A^T = A$, $Ax_1 = \lambda_1 x_1$, $Ax_2 = \lambda_2 x_2$, and $\lambda_1 \neq \lambda_2$, then

$$x_1^T x_2 = 0.$$

Proof. Consider $x_1^T A x_2$. We have

$$x_1^T A x_2 = x_1^T (A x_2) = x_1^T (A x_2) = x_1^T (\lambda_2 x_2) = \lambda_2 x_1^T x_2,$$

and

$$x_1^T A x_2 = (x_1^T A) x_2 = (A^T x_1)^T x_2 \underbrace{=}_{A = A^T} (A x_1)^T x_2 = \lambda_1 x_1^T x_2.$$

Therefore, we have

$$\lambda_2 x_1^T x_2 = \lambda_1 x_1^T x_2.$$

Since $\lambda_1 \neq \lambda_2$, we obtain $x_1^T x_2 = 0$.

A matrix $A \in \mathbb{R}^{m \times n}$ is a "rank-1" matrix, if A can be expressed as

$$A = xy^T$$

where $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$, and $x \neq 0$, $y \neq 0$. The rank of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as

$$\operatorname{rank}(A) = \min \left\{ r \mid A = \sum_{i=1}^{r} x_i y_i^T, \ x_i \in \mathbb{R}^m, y_i \in \mathbb{R}^n \right\}$$
$$= \min \left\{ r \mid A = \sum_{i=1}^{r} B_i, \ B_i \text{ is a "rank-1" matrix} \right\}.$$

Examples: [1,1;1,1], [1,1;2,2], and many natural images have the low rank property. "Low rank" implies that the contained information is few.

We say " $U \in \mathbb{R}^{m \times n}$ has orthogonal columns" if $U^T U = I$, that is, any two columns U_i and U_j of U satisfies

$$U_{i\cdot}^T U_{j\cdot} = 0$$
 if $i \neq j$; otherwise $U_{i\cdot}^T U_{j\cdot} = 1$.

Swapping any two columns in U to get U', U' still satisfies $U'^TU' = I$.

- $\bullet ||Ux|| = ||x|| \quad \forall x.$
- $||U^Ty|| \le ||y|| \quad \forall y$.

If U is a square matrix and has orthogonal columns, then we call it "orthogonal matrix". It has some nice properties

- $U^{-1} = U^T$ (which means that $UU^T = U^TU = I$.)
- ullet U^T is also an orthogonal matrix.
- The effect of applying the transformation U on a vector x is to rotate x, that is, $||Ux|| = ||x|| = ||U^Tx||$.

"SVD" is short for "singular value decomposition", which is the most important concept in linear algebra and matrix analysis. SVD almost explores all structures of a matrix. Given any matrix $A \in \mathbb{R}^{m \times n}$, it can be decomposed into

$$A = U\Sigma V^T = \sum_{i=1}^r \sigma_i U_i \cdot V_i^T$$

where $U \in \mathbb{R}^{m \times r}$ and $V \in \mathbb{R}^{n \times r}$ have orthogonal columns, and $\Sigma = \text{diag}\{\sigma_1, \sigma_2, \cdots, \sigma_r\}$ is a diagonal matrix with positive diagonal elements. σ_i 's are called singular values, which are positive and are arranged in the decreasing order.

- $\operatorname{rank}(A) = r$;
- $||Ax|| \le \sigma_1 ||x||$. Why?

A matrix $B \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD), if the following things are satisfied

- B is symmetric;
- $\forall x \in \mathbb{R}^n$, we have $x^T B x \geq 0$.

The positive definite matrix is defined by adding one more condition

• $x^T B x = 0 \Leftrightarrow x = 0$.

We can also use an equivalent definition for PSD matrices in the following: A matrix $B \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD), if the SVD of B can be written as

$$B = U\Sigma U^T$$

where $U^TU = I$ and Σ is a diagonal matrix with nonnegative diagonal elements. Examples of PSD matrices: I, A^TA .

Assume matrices A and B are invertible. We have the following identity:

$$B^{-1} = A^{-1} - B^{-1}(B - A)A^{-1}.$$

The Sherman-Morrison-Woodbury Formula is very useful to calculate the matrix inverse:

$$(A + UV^{\top})^{-1} = A^{-1} - A^{-1}U(I + V^{\top}A^{-1}U)^{-1}V^{\top}A^{-1}.$$

This result is especially important from the perspective of computation. A special case would be that U and V are two vectors u and v. Then it is in form of

$$(A + uv^{\top})^{-1} = A^{-1} - (1 + v^{\top}A^{-1}u)^{-1}A^{-1}uv^{\top}A^{-1}$$

which can be calculated with complexity $O(n^2)$ if A^{-1} is known.

The Sylvester's determinant theorem is

$$\det(I_m + AB) = \det(I_n + BA).$$

5 Matrix norms (spectral norm, nuclear norm, Frobenius norm)

The Frobenius norm (F-norm) of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as

$$||A||_F = \left(\sum_{1 \le i \le m, 1 \le j \le n} |A_{i,j}|^2\right)^{\frac{1}{2}} = \left(\sum_{i=1} \sigma_i^2\right)^{\frac{1}{2}}$$

If A is a vector, one can verify that $||A||_F = ||A||_2$.

The inner product $\langle \cdot, \cdot \rangle$ in $\mathbb{R}^{m \times n}$ is defined as

$$\langle X, Y \rangle = \sum_{i,j} X_{ij} Y_{ij} = \operatorname{trace}(X^T Y) = \operatorname{trace}(Y X^T) = \operatorname{trace}(X Y^T) = \operatorname{trace}(Y^T X).$$

An important property for trace(AB):

$$\operatorname{trace}(AB) = \operatorname{trace}(BA) = \operatorname{trace}(A^T B^T) = \operatorname{trace}(B^T A^T).$$

One may notice that $\langle X, X \rangle = ||X||_F^2$.

The spectral (trace) norm of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as

$$||A||_{\text{spec}} = \max_{||x||=1} ||Ax|| = \max_{||x||=1, ||y||=1} y^T A x = \sigma_1(A)$$

The nuclear norm of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as

$$||A||_{\mathrm{tr}} = \sum_{i} \sigma_i(A) = \mathrm{trace}(\Sigma)$$

where Σ is the diagonal matrix of SVD of $A = U\Sigma V^T$.

An important relationship

$$||A||_{\text{spec}} \le ||A||_F \le ||A||_{\text{tr}} \quad \text{and} \quad \text{rank}(A)||A||_{\text{spec}} \ge \sqrt{\text{rank}(A)}||A||_F \ge ||A||_{\text{tr}}.$$

The dual norm for a matrix norm $\|\cdot\|_A$ is defined as

$$||Y||_{A^*} := \max_{||X|| \le 1} \frac{\langle X, Y \rangle}{||X||_A} = \max_X \langle X, Y \rangle.$$
 (1)

We have the following properties (think about why it is true):

$$||X||_{\text{spec}^*} = ||X||_{\text{tr}}, \quad ||X||_{F^*} = ||X||_F.$$

6 Matrix and Vector Differential

Let $f(X): \mathbb{R}^{m \times n} \to \mathbb{R}$ be a function with respect to matrix $X \in \mathbb{R}^{m \times n}$. It is differential (or gradient) is defined as

$$\frac{\partial f(X)}{\partial X} = \begin{bmatrix} \frac{\partial f(X)}{\partial X_{11}} & \cdots & \frac{\partial f(X)}{\partial X_{1j}} & \cdots & \frac{\partial f(X)}{\partial X_{1n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(X)}{\partial X_{i1}} & \cdots & \frac{\partial f(X)}{\partial X_{ij}} & \cdots & \frac{\partial f(X)}{\partial X_{in}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(X)}{\partial X_{m1}} & \cdots & \frac{\partial f(X)}{\partial X_{mj}} & \cdots & \frac{\partial f(X)}{\partial X_{mn}} \end{bmatrix}.$$

We provide a few examples in the following

$$\begin{split} f(X) &= \operatorname{trace}(A^TX) = \langle A, X \rangle &\quad \frac{\partial f(X)}{\partial X} = A \\ f(X) &= \operatorname{trace}(X^TAX) &\quad \frac{\partial f(X)}{\partial X} = (A + A^T)X \\ f(X) &= \frac{1}{2} \|AX - B\|_F^2 &\quad \frac{\partial f(X)}{\partial X} = A^T(AX - B) \\ f(X) &= \frac{1}{2} \operatorname{trace}(B^TX^TXB) &\quad \frac{\partial f(X)}{\partial X} = XBB^T \\ f(X) &= \frac{1}{2} \operatorname{trace}(B^TX^TAXB) &\quad \frac{\partial f(X)}{\partial X} = \frac{1}{2}(A + A^T)XBB^T \end{split}$$