Computational Methods in Physics

Electric Fields and potentials

Aurora Leso

 $1187622\\ lesoaurora@gmail.com\\ year~2021$

Physics degree

Physics and astronomy Departement, G.Galilei UniPd

0.1 Introduction

The aim of the program is to simulate electric field and potential in different situations. Tho options are three (since now): two charges, two conductors, two spheres.

0.2 Physics concepts

0.2.1 Charges

For a charge Q, potential and electric fields are basically

$$V = \frac{Q}{4\pi\epsilon_0 \cdot r} \qquad E = \frac{Q}{4\pi\epsilon_0 \cdot r^2} \tag{1}$$

where \mathbf{r} is the distance from the origin of an axis system \mathbf{Oxy} or \mathbf{Oxyz} .

Considering that potential and electric field are additive, V^{tot} and E^{tot} are basically the sum of the ones generated by each charge in the space we are considering.

The plots show what we attend for a configuration where Q1=10 C, Q2=-10 C, r1=(1.5,2) r2=(2,2).

Figure 1: Charges potential and electric field

0.2.2 Conductors

For conductors, the situation is similar to the previous one. These object are characterized by the fact that E=0 inside them.

According to Gauss theorem, for a sphere of radius R and total charge Q, we thus obtain

$$E = \begin{cases} \frac{Q}{4\pi\epsilon_0 \cdot r^2} & r \le R \\ 0 & r > R \end{cases}$$

and, for the potential:

$$V = \begin{cases} \frac{Q}{4\pi\epsilon_0 \cdot R} & r \le R \\ \frac{Q}{4\pi\epsilon_0 \cdot r^2} & r > R \end{cases}$$

The latter can be demonstrated through the Poisson's theorem, as explained in section [0.2.3].

As for charges, potential and electric field are additive, so the $E^{\rm tot}$ and $V^{\rm tot}$ are the sum of the contributes of each conductor.

0.2.3 Spheres

The situation regarding this case is a little more complicated. According to Poisson's theorem,

$$E = -\nabla V \qquad \nabla V = -\frac{\rho}{\epsilon_0} \tag{2}$$

What we have to do, is basically finding a way to compute the potential. Then, by changing its sign and derivating it, we can find the electric field.

In the 2D case, we have to

- create a (x,y) grid;
- set the charge distribution;
- set the border conditions (in my case, border is set to zero);
- after setting a convergence threshold, we use Gauss-Seidel method and compute V.
- by deriving -V, we obtain E=(Ex,Ey).

3D case should be similar, a bit more complicated to program, but similar.

Following these steps, by creating two spheres of centers C1=(4,2) and C2=(7,7),rays r1=1 ua and r2=1 ua, charges $\rho_1=60\frac{C}{ua^3}$ and $\rho_2=-60\frac{C}{ua^3}$, we obtain

Figure 2: Spheres potential and electric field