Spatial stock assessment simulation experiment

Yellowfin tuna

ICES SS Team

FRANCISCO IZQUIERDO, GIANCARLO M. CORREA, MARTA COUSIDO, MARIA GRAZIA PENNINO & SANTIAGO CERVIÑO

Team SS ICES

Team SS ICES

VS

Pseudoyear

Fine-scale model configuration with all provided data (**0 to 28+ pseudoyears**, k seasonal dev., M each quarter ...)

Year

Simplified model with parameter inputs that we would have in a real case (**0 to 7+ years**, k base, M at age ...)

Modeling approach

2. CPUE standardization

Fishing and species distribution are dynamic processess correlated along space and time, so an autoregressive CPUE model may be adequate to take into account this spatiotemporal dependence structure

Besag spatiotemporal model via INLA

$$Z_{st} \sim Gamma(\mu_{st}, \phi)$$

$$log(\mu_{st}) = \alpha + U_{st} + g(t); U_{st} = W_{st} + \rho U_{st-1},$$

$$W_{st} \sim N(0, \Sigma) \& g RW2$$

We construct a **spatial correlation** matrix (neighbour locations) and we add a **temporal AR1** process interaction

2. CPUE standardization

Prediction step

Condition: the sum of the **4 area** CPUE indices values must result in the total **1 area** CPUE index

- We sum predicted values by grid cells what provides a scaled areal CPUE index
- This allowed us to set constant catchability Q parameters

Year

Natural mortality (M) summed across seasons for each age. **Maturity** values averaged across seasons for each age

All parameter fixed unless R0

All parameter fixed as provided unless the **single k value** (0.45) used

Recruitment **settlements** tried in different months of the year (1,4,7 and 10)

1 Area

Modeling steps

- **Input data** 01 Input Catch, LFD (N25) **Assumption 1:** standardized CPUE
- Selectivity Selex at length (year) Selex at age (pseudoyear) All fleets DN unless LL (logistic)
- **Recruitment deviations** Recdevs advanced options suggested from SS Main period starting in 1970

Tagging

1 Area

Modeling steps

- **Input data** Input Catch, LFD (N25) **Assumption 1:** standardized CPUE
- Selectivity 02 Selex at length (year) Selex at age (pseudoyear) All fleets DN unless LL (logistic)
- **Recruitment deviations** Recdevs advanced options suggested from SS Main period starting in 1970

Tagging

1 Area

Modeling steps

- **Input data** Input Catch, LFD (N25) **Assumption 1: standardized CPUE**
- Selectivity Selex at length (year) Selex at age (pseudoyear) All fleets DN unless LL (logistic)
- **Recruitment deviations** 03 Recdevs advanced options suggested from SS Main period starting in 1970

Tagging

1 Area

Modeling steps

- Input data
 Input Catch, LFD (N25)
 Assumption 1: standardized CPUE
- Selectivity
 Selex at length (year)
 Selex at age (pseudoyear)
 All fleets DN unless LL (logistic)
- Recruitment deviations
 Recdevs advanced options
 suggested from SS
 Main period starting in 1970

04 Tagging

1 Area

Modeling steps

- **Input data** Input Catch, LFD (N25) **Assumption 1:** standardized CPUE
- Selectivity Selex at length (year) Selex at age (pseudoyear) All fleets DN unless LL (logistic)
- **Recruitment deviations** Recdevs advanced options suggested from SS Main period starting in 1970

Tagging 04

4 Areas

- Input data
 Input Catch, LFDs (N25),
 Assumption 1: standardized
 CPUE scaled by area
- **Selectivity**Assumption 2: mirrored selex
 parameters of the same fleets
 across areas
 Assumption 3: Q parameter
 constant across areas for LLCPUE
- Recruitment settlements
 Recdevs same than 1A
 First, we estimated recruitment
 in all areas (no time-varying)

4 Areas

- Input data
 Input Catch, LFDs (N25),

 Assumption 1: standardized
 CPUE scaled by area
- O2 Selectivity

 Assumption 2: mirrored selex
 parameters of the same fleets
 across areas

 Assumption 3: Q parameter
 constant across areas for LLCPUE
- Recruitment settlements
 Recdevs same than 1A
 First, we estimated recruitment
 in all areas (no time-varying)

4 Areas

- Input data
 Input Catch, LFDs (N25),

 Assumption 1: standardized
 CPUE scaled by area
- **Selectivity**Assumption 2: mirrored selex
 parameters of the same fleets
 across areas
 Assumption 3: Q parameter
 constant across areas for LLCPUE
- Recruitment settlements
 Recdevs same than 1A
 First, we estimated recruitment
 in all areas (no time-varying)

4 Areas

- Input data
 Input Catch, LFDs (N25),

 Assumption 1: standardized
 CPUE scaled by area
- **Selectivity**Assumption 2: mirrored selex
 parameters of the same fleets
 across areas
 Assumption 3: Q parameter
 constant across areas for LLCPUE
- Recruitment settlements
 Recdevs same than 1A
 First, we estimated recruitment
 in all areas (no time-varying)

O4 Tagging
Once recruitment in all areas,
include tag (same settings
than 1A)

O5 Movement

Define movement. Different
options tested (no difference).

Assumption 4: areas 3-4 similar in
terms of CPUE, and Chl.a maps

Recruitment settlementsAssumption 5: recruitment apportionment

by area may not be constant along time Assumption 6: there is no recruitment in area 3, based on articles and Chl.a maps

- O4 Tagging
 Once recruitment in all areas,
 include tag (same settings
 than 1A)
- O5 Movement

 Define movement. Different
 options tested (no difference).

 Assumption 4: areas 3-4 similar in
 terms of CPUE, and Chl.a maps
- Recruitment settlements

 Assumption 5: recruitment apportionment
 by area may not be constant along time
 Assumption 6: there is no recruitment in
 area 3, based on articles and Chl.a maps

- Once recruitment in all areas, include tag (same settings than 1A)
- O5 Movement

 Define movement. Different
 options tested (no difference).

 Assumption 4: areas 3-4 similar in
 terms of CPUE, and Chl.a maps
- Recruitment settlements

 Assumption 5: recruitment apportionment by area may not be constant along time

 Assumption 6: there is no recruitment in area 3, based on articles and Chl.a maps

*LL of the models practically the same

- Once recruitment in all areas, include tag (same settings than 1A)
- O5 Movement

 Define movement. Different
 options tested (no difference).

 Assumption 4: areas 3-4 similar in
 terms of CPUE, and Chl.a maps
- Recruitment settlements

 Assumption 5: recruitment apportionment by area may not be constant along time

 Assumption 6: there is no recruitment in area 3, based on articles and Chl.a maps

- Once recruitment in all areas, include tag (same settings than 1A)
- O5 Movement

 Define movement. Different
 options tested (no difference).

 Assumption 4: areas 3-4 similar in
 terms of CPUE, and Chl.a maps
- **Recruitment settlements**Assumption 5: recruitment apportionment by area may not be constant along time

 Assumption 6: there is no recruitment in area 3, based on articles and Chl.a maps

*LL of the models practically the same

O4 Tagging
Once recruitment in all areas,
include tag (same settings
than 1A)

O5 Movement
Define movement. Different
options tested (no difference).
Assumption 4: areas 3-4 similar in
terms of CPUE, and Chl.a maps

06 Recruitment settlements

Assumption 5: recruitment apportionment by area may not be constant along time Assumption 6: there is no recruitment in area 3, based on articles and Chl.a maps

1 Area

Fine-scale model configuration (biology, growth, etc.). Recruitment each pseudoyear

Simpler model configuration (biology, growth, etc.).Recruitment in each season of the year

1 Area

4 Areas

Fine-scale model configuration (biology, growth, etc.). Recruitment settlements RW (areas 1,2,4) in each pseudoyear

Simpler model configuration (biology, growth, etc.).Recruitment settlements RW areas (1,2,4) in the first season of each year

4 Areas

MODEL	CV_SSB	CV_Rec	CV_expRate	Conv. rate
1A_25_PY	0.1377	0.1552	0.1250	0.95
1A_25_Y	0.1262	0.2002	0.1152	0.83
4A_25_PY	0.1989	0.2016	0.2057	0.7
4A_25_Y	0.1403	0.2222	0.1302	0.99

6. Conclusions

- ✓ Importance of standardizing the CPUE to take into account the spatiotemporal structure and make catchability parameters comparable among areas
- ✓ Need for studies in order to configure the spatial movement and recruitment areas
- ✓ In general terms, there were no large differences between the fine-scale configuration (pseudoyear) and the simplified configuration (year), so the decision must be based on the species available information
- ✓ Importance of a spatially explicit model for management
- ✓ Balance between model complexity and computational costs
- ✓ Identification of informative data for movement and recruitment

THANKS!

Do you have any questions?

francisco.izquierdo@ieo.csic.es marta.cousido@ieo.csic.es gcorrea@uw.edu

https://github.com/FranIzquierdo/NOAA-YFT-workshop-IEO-team https://github.com/gmoroncorrea/SpatialStockAssessment_SpanishGroup https://github.com/aaronmberger-nwfsc/Spatial-Assessment-Modeling-Workshop