

BAB 3

RANGKAIAN PENYESUAI IMPEDANSI

TTH313

Elektronika Telekomunikasi

PEMAKAIAN SMITH CHART PADA RANGKAIAN PENYESUAI IMPEDANSI (IMC)

1. Penggambaran Harga Impedansi dan Admitansi

- Contoh:
 - penentuan titik impendansi dan admittansi yaitu:

Z dan Y pada Smith Chart

(Z-chart dan Y-chart)

2. Normalisasi Impedansi Pada Smith Chart

- Jika Z cukup besar untuk harga resistansi dan reaktansi :
 - maka titik tersebut pada Smith Chart akan berada di daerah lingkaran kecil sehingga diperlukan normalisasi/pembagi tertentu.
- Contoh :
 - Z = 100 + j150 ohm, maka angka pembagi yang dapat dipakai, misalkan N=100,
 - Z ternormalisasi: $Z_n = 1 + j1,5$ ohm

3. Konversi Impedansi ke Admitansi

$$\bullet Y = \frac{1}{Z} = G \pm jB$$

- Keterangan:
- G = konduktansi dalam mho
- B = suseptansi dalam mho
- Dengan bantuan Smith Chart, untuk mengkonversi Z ke Y dan sebaliknya dapat dilakukan dengan membuat titik Z dan Y yang memiliki jarak sama ke pusat lingkaran (R = 1Ω) dan keduanya berbeda 180° satu sama lain.

TTH313 - Elektronika Telekomunikasi

Contoh membaca Z & Y (doble smith-chart)

4. Manipulasi Impedansi Pada Smith Chart

- penambahan kapasitor seri menyebabkan perputaran Z berlawanan arah dengan perputaran jarum jam pada lingkaran resistansi konstan
- penambahan induktor seri menyebabkan perputaran Z searah perputaran jarum jam pada lingkaran resistansi konstan
- Contoh :
 - impedansi Z = 0.5 + j0.8 ohm diseri dengan reaktansi -j1.0 ohm (berupa C) maka Z' = 0.5 + j0.8 j1.0 = 0.5 j0.2 ohm.
 - Z baru ini merepresentasikan harga R seri dengan C.
 - Untuk menggambarkan Z baru di Smith Chart dilakukan dengan memutar titik Z lama sesuai arah komponen yang diseri (berlawanan arah dengan perputaran jarum jam) pada lingkaran R konstan 0,5.

5. Manipulasi Admitansi Pada Smith Chart

- Jika menggunakan "double smith chart" berlaku:
 - □ penambahan induktor paralel menyebabkan perputaran Y berlawanan arah dengan perputaran jarum jam pada lingkaran koduktansi konstan
 - □penambahan kapasitor paralel menyebabkan perputaran Y searah perputaran jarum jam pada lingkaran koduktansi konstan.
- Jika menggunakan "single smith chart", Z-chart dikonversikan ke Y-chart, kemudian berlaku aturan di atas:
 - ✓ penambahan induktor paralel menyebabkan perputaran Y berlawanan arah dengan perputaran jarum jam pada lingkaran koduktansi konstan.
 - ✓ penambahan kapasitor paralel menyebabkan perputaran Y searah perputaran jarum jam pada lingkaran koduktansi konstan.

Kesimpulan manipulasi impedansi dan admitansi pada SC (double SC)

Contoh: Manipulasi Impedansi dan Admitansi Pada Smith Chart

pada Double Smith Chart:

- $Z_1 = (0.2 j 0.2) \Omega$ seri dengan C (-j 0.6 Ω) menjadi $Zt_1 = (0.2 j 0.8) \Omega$.
- $Z_2 = (0.2 + j 0.2) \Omega$ seri dengan L (+j 0.6 Ω) menjadi $Zt_2 = (0.2 + j 0.8) \Omega$.
- $Y_3 = (0,2 j 0,2)$ mho paralel dengan L (-j 0,6 mho) menjadi $Yt_3 = (0,2 j 0,8)$ mho.
- $Y_4 = (0.2 + j 0.2)$ mho paralel dengan **C** (+j 0.6 mho) menjadi $Yt_4 = (0.2 + j 0.8)$ mho.

Double SC

Contoh: Manipulasi Impedansi dan Admitansi Pada Smith Chart

pada Single Smith Chart:

- Z_1 = (0,2 j 0,2) Ω seri dengan C (-j0,6 Ω) menjadi Zt_1 = (0,2 j 0,8) Ω
- $Y_2 = (0.2 + j 0.2)$ mho paralel dengan **C** (+j0.6) mho menjadi $Yt_2 = (0.2 + j 0.8)$ mho
- $Z_3 = (0.6 j 0.6) \Omega$ seri dengan L (+j1.0 Ω) menjadi $Zt_3 = (0.6 + j 0.4) \Omega$
- $Y_4 = (1 + j + 1, 4)$ mho paralel dengan L (-j2,8 mho) menjadi $Yt_4 = (1 j + 1, 4)$ mho

Single SC

6. Penyesuai Impedansi Pada Smith Chart

- a. Penyesuai impedansi 2 elemen.
- Prosedur pemakaian Smith Chart untuk desain penyesuai impedansi 2 elemen:
 - Tentukan titik Z_{beban} (R_L) dan Z_{sumber} konjugate (R_S*) atau Z_{sumber} (R_S) dan Z_{beban} konjugate (R_L*).
 - Tentukan titik X yang merupakan pertemuan Z titik: $[Z_{beban} (R_L) dan Z_{sumber} konjugate (R_S^*)]$ atau $[Z_{sumber} (R_S) dan Z_{beban} konjugate (R_L^*)]$ yang sudah diputar pada Resistansi (R) dan lingkaran Konduktansi (G) yang konstan.
 - Jarak pemutaran titik Z_{beban} (R_L) dan Z_{sumber} konjugate (R_S^*) atau [Z_{sumber} (R_S) dan Z_{beban} konjugate (R_L^*)] menentukan harga dan jenis komponen reaktif yang digunakan sebagai penyesuai impedansi.

Penyesuai Impedansi Pada Smith Chart (cont')

 Contoh pemakaian Smith Chart pada penyesuai impendansi tipe L dengan :

$$R_S = (0,2-j0,4) \Omega dan R_L = (2,5-j2,5) \Omega atau Y_L = (0,2+j0,2) mho$$

- Sehingga diperoleh dua kemungkinan pemakaian komponen yang digunakan:
- (solusi I), L1 dengan reaktansi (+j) 1,4 ohm dan C1 dengan suseptansi (+j) 0,8 mho
- (solusi II), C2 dengan reaktansi (-j) 0,6 ohm dan L2 dengan suseptansi (-j) 1,2 mho

b.Penyesuai impedansi 3 elemen

Prosedur desain IMC 3 elemen (T atau Π section):

- Gambar lengkungan Q konstan pada Q tertentu.
 (Titik-titik Q pada Smith Chart didefinisikan sama dengan Q pada impedansi seri yaitu rasio reaktansi terhadap resistansi)
- Gambar titik Z_{beban} (R_L) dan Z_{sumber} konjugate (R_S *) atau Z_{sumber} (R_S)dan Z_{beban} konjugate (R_L *).
- Putar salah satu titik dengan 3 kali pemutaran pada lingkaran Reaktansi (R) dan lingkaran Konduktansi (G) konstan sehingga bertemu pada titik lainnya. Pemutaran titik dilakukan di dalam lengkung Q yang sudah diplot.
- Jarak pemutaran titik ke titik lainnya merupakan harga komponen reaktif yang digunakan sebagai rangkaian IMC.

b.Penyesuai impedansi 3 elemen

Prosedur desain IMC 3 elemen (T atau Π section):

- Gambar lengkungan Q konstan pada Q tertentu.
 (Titik-titik Q pada Smith Chart didefinisikan sama dengan Q pada impedansi seri yaitu rasio reaktansi terhadap resistansi)
- Gambar titik Z_{beban} (R_L) dan Z_{sumber} konjugate (R_S^*) atau Z_{sumber} (R_S)dan Z_{beban} konjugate (R_L^*).
- Tentukan ujung rangkaian yang akan digunakan untuk menentukan nilai Q. Untuk rangkaian Π , yang menentukan nilai Q adalah impedansi yang lebih kecil. Sedangkan untuk rangkaian Π , yang menentukan adalah impedansi yang lebih besar.
- Putar salah satu titik dengan 3 kali pemutaran pada lingkaran Reaktansi (R) dan lingkaran Konduktansi (G) konstan sehingga bertemu pada titik lainnya. Pemutaran titik dilakukan di dalam lengkung Q yang sudah diplot.
- Jarak pemutaran titik ke titik lainnya merupakan harga komponen reaktif yang digunakan sebagai rangkaian IMC.

Contoh IMC Π section

 $R_S=1+j0,2$ $R_L=0,6+j0,2$

Contoh IMC T section

$$R_S=0,4-j0,2$$

 $R_L=1-j0,2$

Persamaan-persamaan untuk denormalisasi:

• Komponen C seri:

$$C = \frac{1}{\omega . X . N}$$

Komponen L seri:

$$L_{E} = \frac{X.N}{\omega}$$

Komponen C paralel:

$$C = \frac{B}{\omega . N}$$

Komponen L paralel:

$$L = \frac{N}{\omega . B}$$

- X = reaktansi (jarak 2 titik) yang terbaca dari Smith Chart
- B = suseptansi (jarak 2 titik) yang terbaca dari Smith Chart
- N = angka penormalisasi
- $\omega = 2.\pi.f$

Contoh soal:

1. Rancanglah suatu IMC dua elemen yang menyepadankan beban $Z_L = 200 - j100 \Omega$ dan saluran transmisi dengan $Z_0 = 100 \Omega$ pada frekuensi kerja 500 MHz

Contoh soal:

- 2. Rancanglah IMC 2-elemen dengan Smith Chart yang bisa menyepadankan sumber sebesar 25 j15 ohm dengan beban 100 j25 ohm pada 60 MHz dan IMC harus bersifat LPF
 - Solusi:

Contoh soal:

- 3. Rancanglah IMC T-section dengan Smith Chart yang menyepadankan sumber sebesar 15 + j15 Ω dengan beban 225 Ω pada frekuensi 30 MHz dengan faktor kualitas Q = 5 !
 - Solusi:

Latihan soal:

• Rancanglah dua buah IMC-2 elemen yang berfungsi untuk menyesuaikan penguat sinyal kecil dengan spesifikasi Y_{in} = 7 + j12 milli mhos dan Y_{out} =0.4+j1.4 milli mhos, jika digunakan impedansi sumber sebesar = 50Ω dan impedansi beban sebesar 50Ω ! Rangkaian bekerja pada frekuensi 100 MHz bersifat menghambat sinyal DC.

SELESAI THANK YOU