AD

Research and Development Technical Report

ECOM-0049-F

HIGH ENERGY CAPACITORS

FOR

MODERATE REPETITION RATE

FINAL REPORT

BY

Conrad Halberg and Herbert Rice

MAY 1972

DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited

Details of illustrations in this document may be better studied on microfiche

ECOM

UNITED STATES ARMY ELECTRONICS COMMAND . FORT MONMOUTH, N.J.

CONTRACT NO. DAABO7-71-C-0049

SPRAGUE ELECTRIC COMPANY

NORTH ADAMS, MASSACHUSETTS

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Springfield VA 22151

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

Security Classification	<u> </u>				
· ·	ROL DATA - R & D				
(Security classification of title, body of abetract and indexing 1. ORIGINATING ACTIVITY (Corporate author)	annotation must be entered when the overall report is classified) [28. REPORT SECURITY CLASSIFICATION				
	Unclassified				
Sprague Electric Company North Adams, Massachusetts 01247	28. GROUP				
·					
3. REPORT TITLE					
High Energy Capacitors for Moderate	Repetition Rate				
4 DESCRIPTIVE OTES (Type of report and inclusive dates) Final Report (Period: 30 October 1970) to 29 January 1972)				
5. UTRORIS) (First name, middle initial, lest name)					
Conrad Halberg and Herbert Rice					
6 REPORT DATE	78. TOTAL NO. OF PAGES 7b. NO. OF REFS				
May 1972	118				
84. CONTRACT OR GRANT NO.	98. ORIGINATOR'S REPORT NUMBER(S)				
DAAB07-71-C-0049					
b. PROJECT NO.	A119-51				
1S6 62705A 057					
Task 05	9b. OTHER REPORT NO(5) (Any other numbers that may be assigned this report)				
d. Subtask 36	ECOM-0049-F				
10. DISTRIBUTION STATEMENT					
Approved for public release; distribution					
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY				
	U. S. Army Electronics Command				
	Fort Monmouth, New Jersey 07703 ATTN: AMSEL-TL-SL				
13. ABSTRACT					
Capacitors of six designs wer	-				
	al characteristics. Two designs				
	in Phase II on the basis of these				
measurements and 100,000 ch	arge-discharge life test data.				
•	constructed in three variations				
and further discharge life test					
charge-discharge cycles or un					
was chosen for work in Phase	III.				
In Phase III, capacitors were constructed and discharge life tested for 50,000,000 charge-discharge cycles or until failure. One capacitor failed at 10,000,000 charge-discharge cycles while the remaining five capacitors completed 50,000,000 charge-discharge cycles. All six capacitors met the contract requirements of delivering 12 joules of energy at 900 V and weighing less than six ounces.					

DD FORM 1473

Unclassified
Security Classification

Unclassified

Security Classification						
14. KEY WORDS	LIN		LIN		LIN	
	ROLE	WT	ROLE	WT	ROLE	WT
Capacitors						
Energy Discharge Capacitors				:		
Laser Capacitors	•					
Dielectric						
	!					
	ĺ					
	1					
	'					
	Ì					
	I					
			ļ		ļ	
1						
]		1	
· ·	j					
	1	j				
<u>†</u>						
	}]				
1						
1	İ					
·		•				
·	1					
			ŀ			
		1				
		l				
	ĺ					
		Ì]	
					[
		İ				
ì]				
	İ					
	1					
			,			
	1		}			
	}					
	<u></u>	L	L			

ib

Unclassified
Security Classification

TR ECOM-0049-F MAY 1972 Reports Control Symbol OSD-1366

HIGH ENERGY CAPACITORS FOR MODERATE REPETITION RATE

Final Report

30 October 1970 to 29 January 1972

CONTRACT NO. DAAB07-71-C-0049 DA PROJECT NO. 1S6 62705A 057 05 36

DISTRIBUTION STATEMENT
Approved for public release; distribution unlimited.

Prepared by

Conrad Halberg and Herbert Rice

SPRAGUE ELECTRIC COMPANY
North Adams, Massachusetts 01247

FOR

U. S. ARMY ELECTRONICS COMMAND, FORT MONMOUTH, N. J.

ABSTRACT

Capacitors of six designs were designed, constructed and measured for various electrical characteristics. Two designs were chosen for further work in Phase II on the basis of these measurements and 100,000 charge-discharge life test data.

In Phase II, two designs were constructed in three variations and further discharge life tested for a total of 10,000,000 chargedischarge cycles or until failure. The best design was chosen for work in Phase III.

In Phase III, capacitors were constructed and discharge life tested for 50,000,000 charge-discharge cycles or until failure. One capacitor failed at 10,000,000 charge-discharge cycles while the remaining five capacitors completed 50,000,000 charge-discharge cycles. All six capacitors met the contract requirements of delivering 12 joules of energy at 900 V and weighing less than six ounces.

Preceding page blank

TABLE OF CONTENTS

		Page
	ABSTRACT	iii
	LIST OF ILLUSTRATIONS	vi
	LIST OF TABLES	vii
SECTION I	- INTRODUCTION	
•	1. General	1
	2. Discussion	1
SECTION II	- NARRATIVE AND DISCUSSION	
	1. Objective	3
	2. Phase I Designs	4
	3. Capacitance Change	. 6
	4. Breakdown Test	6
	5. Dielectric Absorption	35
	6. Test Equipment	35
	7. Testing and Evaluation	42
	8. Design Selection	53
	9. End Connection	53
	10. Phase I Extension	55
	11. Phase II	55
	12. Testing and Evaluation	62
	13. Phase III	77
SECTION III	- CONCLUSIONS AND RECOMMENDATIONS	91

Preceding page blank

LIST OF ILLUSTRATIONS

的现在分词,我们是一个人,我们也会有一个人,我们们也是一个人,我们们也是一个人,我们也会有一个人,我们们也是一个人,我们也是一个人,我们们也是一个人,我们们们的

Figure	
1	Comparison of Coated vs Uncoated PETP Film
2	Capacitance vs Temperature
3	Capacitance versus Temperature
4	Capacitance vs Temperature for Metallized Coated* Polysulfone Units
5	Capacitance vs Temperature for Silicone Oil Impregnated Metailized Coated* PETP
6	Capacitance vs Temperature for Bareco Wax Impregnated Metallized Coated* PETP
7	Percentage Capacitance Change vs Temperature
8	CADET III
9	Wiring Diagram for CADET III
10	CADET III with Oven Door Open
11 '	CADET III Test Equipment 1-30 pps Test Station
12	Typical Wave Shapes of Discharge Current
13	Comparison of Film with and without Loss of End Connection
14	(Left to Right) State-of-the-Art, Final Design and Initial Design Capacitors
15	Canacitance Change vs Temperature

LIST OF TABLES

Table	
I	Polymer Film Dielectric Systems Review
IIA	Phase IB - Electrical Evaluation (-40°C) Design A Units - 0.00027" Metallized Coated* PETP Film
IIB	Phase IB - Electrical Evaluation (+25°C) Design A Units - 0.00027" Metallized Coated* PETP Film
IIC	Phase IB - Electrical Evaluation (+40°C) Design A Units - 0.00027" Metallized Coated* PETP Film
IID	Phase IB - Electrical Evaluation (+85°C) Design A Units - 0.00027" Metallized Coated* PETP Film
AIII	Phase IB - Electrical Evaluation (-40°C) Design C Units - 0.00026" Metallized Coated* Polycarbonate Film
IIIB	Phase IB - Electrical Evaluation (+25°C) Design C Units - 0.00026" Metallized Coated* Polycarbonate Film
IIIC	Phase IB - Electrical Evaluation (+40°C) Design C Units - 0.00026" Metallized Coated* Polycarbonate Film
IIID	Phase IB - Electrical Evaluation (+85°C) Design C Units - 0.00026" Metallized Coated* Polycarbonate Film
IVA	Phase IB - Electrical Evaluation (-40°C) Design D Units - 0.00026" Metallized Coated* Polysulfone

Table	
IVB	Phase IB - Electrical Evaluation (+25°C) Design D Units - 0.00026" Metallized Coated* Polysulfone
IVC	Phase IB - Electrical Evaluation (+40°C) Design D Units - 0.00026" Metallized Coated* Polysulfone
IVD	Phase IB - Electrical Evaluation (+85°C) Design D Units - 0.00026" Metallized Coated* Polysulfone
VA	Phase 1B - Electrical Evaluation (-40°C) Design E 0.00027" Metallized Coated* PETP Silicone Oil Impregnated
VB	Phase IB - Electrical Evaluation (+25°C) Design E 0.00027" Metallized Coated* PETP Silicone Oil Impregnated
VC	Phase IB - Electrical Evaluation (+40°C) Design E 0.00027" Metallized Coated* PETP Silicone Oil Impregnated
VD .	Phase IB - Electrical Evaluation (+85°C) Design E 0.00027" Metallized Coated* PETP Silicone Oil Impregnated
VIA	Phase IB - Electrical Evaluation (-40°C) Design F 0.00027" Metallized Coated* PETP Wax Impregnated
VIB	Phase IB - Electrical Evaluation (+25°C) Design F 0.00027" Metallized Coated* PETP Wax Impregnated
VIC	Phase IB - Electrical Evaluation (+40°C) Design F 0.00027" Metallized Coated* PETP Wax Impregnated
VID	Phase IB - Electrical Evaluation (+85°C) Design F 0.00027" Metallized Coated* PETP Wax Impregnated
VII	Breakdown Voltage (Room Temperature)
VIII	Dielectric Absorption Measurements at Various Temperatures Design A 0.00027" Metallized Coated* PETP

THE SECOND PROPERTY OF THE PRO

Table	
IX	Dielectric Absorption Massurements at Various Temperatures Design C 0,00026" Metallized Coated* Polycarbonute
Х	Dielectric Absorption Measurements at Various Temperatures Design D 0.00026" Metallized Coated* Polysulfone
XI	Dielectric Absorption Measurements at Various Temperatures Design E 0.00027" Metallized Coated* PETP Silicone Oil Impregnated
XII	Dielectric Absorption Measurements at Various Temperatures Design F 0.00027" Metallized Coated* PETP Wax Impregnated
XIII	Phase IB - Charge-Discharge Life Test** Design A 0.00027" Metallized Coated* PETP Film
XIIIA	Phase IB - Charge-Discharge Life Test** Design A 0.00027" Metallized Coated* PETP Film
XIV	Phase IB - Charge-Discharge Life Test** Design C 0.00026" Metallized Coated* Polycarbonate Film
xv	Phase IB - Charge-Discharge Life Test** Design F 0.00027" Metallized Coated* PETP Wax Impregnated
XVI	Phase IB - Charge-Discharge Life Test** Design E 0.00027" Metallized Coated* PETP Silicone Oil Impregnated
XVII	Phase IB - Charge-Discharge Life Test** Design D Units - 0.00026" Metallized Coated* Polysulfone
XVIIIA	End Spray Evaluation of 0,00052" Metallized Coated* PETP Film
XVIIIB	End Spray Evaluation of 0.00052" Metallized Coated* PETP Film
XVIIIC	End Spray Evaluation of 0.00052" Metallized Coated* PETP Film

Table	
XIX	Continuation of Phase IB Charge-Discharge Life Testing Design E - 0.00027" Metallized Coated* PETP Silicone Oil Impregnated
XXA	Audible Momentary Breakdown at Elevated Temperature at 1 kV Design A Variation 1 (0.00027" Metallized Coated* PETP, Different Geometry) Spray Process C, Solder Process I
XXB	Audible Momentary Breakdown at Elevated Temperature at 1 kV Design A Variation 2 (0.00027" Metallized Coated* PETP, Standard Design) Spray Process C, Solder Process I
XXC	Audible Momentary Breakdown at Elevated Temperature at 1 kV Design A Variation 3 (0.00027" Metallized Coated* PETP, Standard Design) Spray Process A, Solder Process I
XXD	Audible Momentary Breakdown at Elevated Temperature at 1 kV Design E Variation 1 (0.00027" Metallized Coated* PETP, Different Geometry, Silicone Oil Impregnated) Spray Process C, Solder Process I
XXE	Audible Momentary Breakdown at Elevated Temperature at 1 kV Design E Variation 2 (0.00027" Metallized Coated* PETP, Standard Design, Silicone Oil Impregnated) Spray Process C, Solder Process I
XXF	Audible Momentary Breakdown at Elevated Temperature at 1 kV Design A Variation 3 (0.00027" Metallized Coated* PETP, Standard Design, Silicone Oil Impregnated) Spray Process A, Solder Process I
XXI	Effective Series Inductance
XXII	Charge Discharge Life Testing Design A Variation 1 (0.00027" Metallized Coated* PETP, Different Geometry) Spray Process C, Solder Process I
XXIII	Charge-Discharge Life Testing Design A Variation 2 (0.00027" Metallized Coated* PETP Standard Design) Spray Process C, Solder Process I)

Table	
XXIV	Charge-Discharge Life Testing Design A Variation 3 (0.00027" Metallized Coated* PETP, Standard Design) Spray Process A, Solder Process I
XXV	Charge-Discharge Life Testing Design E Variation 1 (0.00027" Metallized Coated* PETP, Different Geometry, Silicone Oil Impregnated) Spray Process C, Solder Process I
XXVI	Charge-Discharge Life Testing Design E Variation 2 (0.00027" Metallized Coated* PETP Standard Design Silicone Oil Impregnated) Spray Process C, Solder Process I
XXVII	Charge-Discharge Life Testing Design E Variation 3 (0.00027" Metallized Coated* PETP, Standard Design, Silicone Oil Impregnated) Spray Process A, Solder Process I
XXVIII	Initial Measurements of Design E Variation 1 0,00027" Metallized Coated* PETP, Different Geometry Silicone Oil Impregnated
XXIX	Charge-Discharge Life Testing Design E Variation 1 0.00027" Metallized Coated* PETP, Different Geometry Silicone Oil Impregnated
AXXX	Initial Electrical Results 0.00036" Metallized Coated* Polyvinylidene Fluoride
EXXX	Breakdown Voltage 0.00036" Metallized Coated* Polyvinylidene Fluoride
XXXC	Capacitance and Dissipation Factor for Various Frequency 0.00036" Metallized Coated* Polyvinylidene Fluoride
IXXX	Charge-Discharge Testing 30 pps Design E Variation 1 (0.00027" Metallized Coated* PETP, Different Geometry, Silicone Oil Impregnated) Spray Process C, Solder Process I

The state of the s

SECTION I

INTRODUCTION

1. General

The object of this research effort was the development of high-energy capacitors of minimum weight for moderate repetition rate, non-oscillatory discharge applications, such as target and area illuminators. Specifically, the capacitors, when charged to 900 volts and discharged through a 1 ohm resistor in series with a 30 microhenry inductor, had to deliver not less than 12 joules for the entire temperature range of -40°C to +85°C. The corresponding capacitance for this requirement was $30\,\mu\text{F}$, minimum. The repetition the for discharge of the capacitors was to be 10 pulses per second (pps), and the minimum life objective was 5.0×10^7 discharges at ambient temperature of 40°C. The capacitor weight objective was six (6) ounces maximum. Emphasis in the effort was placed on the maximizing of the energy-to-weight ratio.

2. Discussion

There are a number of ways in which the energy-to-weight ratio of capacitors may be increased. The most obvious method is to employ a dielectric and/or impregnant system having a high dielectric constant. More efficient is the use of a dielectric system capable of withstanding high voltage stresses. The energy density increases as the square of the voltage rating, and is also proportional to the dielectric constant.

Still another method involves the use of metallized electrodes. This improves the weight efficiency (energy-to-weight ratio) in two ways. First, metallized electrodes are much thinner than the foil electrodes commonly used. This means a lighter capacitor than obtainable with an energy-comparable foil electrode. Secondly, a metallized capacitor is capable of operating at higher voltage

stresses for a given dielectric thickness. This is due to the "self-healing" character of metallized capacitors. In the event of a dielectric failure in a foil type capacitor, high currents flow at the point of rupture, and the adjacent dielectrics and foils are damaged. Thus, the capacitor shorts, and is rendered inoperable. On the other hand, as the case of a dielectric failure in a metallized capacitor, an electric are is drawn between the two electrodes. This are vaporizes the metal film from around the area of the breakdown. The vaporized metal and gases released from the dielectric increases the pressure in the area of the breakdown. Both the arc length and the pressure increase until the arc can no longer be sustained. The capacitor, thus, remains operable with little or no change in its electrical properties.

SECTION II

NARRATIVE AND DISCUSSION

1. Objective

The objective of this development effort was the development of a light weight high energy capacitor supplying 12 joules of energy at 900 volts. The energy of a capacitor is described by the equation:

The capacity is determined by the equation:

$$C = \frac{A K \epsilon}{T}$$

$$C = \text{Capacity}$$

$$A = \text{Area of the plates in square meters}$$

$$K = \text{Constant } 8.85 \times 10^{-12} \frac{\text{coulombs}^2}{\text{Newton meter}^2}$$

$$\epsilon = \text{Dielectric constant}$$

$$T = \text{Distance between the plates in meters}$$

Since mass is determined by the equation:

Substituting Equation 3 into Equation 2, the result is

$$C = \frac{MK \epsilon}{DT^{Z}}$$
 (4)

Substituting Equation 4 into Equation 1, the result is

$$E = \frac{1/2 \,\mathrm{M} \,\mathrm{K} \,\epsilon \,\mathrm{V}^2}{\mathrm{T}^2 \mathrm{D}} \tag{5}$$

Since in this development effort:

the result is:

$$M = \frac{3.36 \times 10^6 \,\mathrm{T}^2\mathrm{D}}{\epsilon}$$

An equation which relates mass, thickness of the dielectric, density of the dielectric and the dielectric constant results.

From this equation it becomes evident that the mass of a capacitor section excluding margins, extensions and end spray is a balance between the thickness of available material, the density of the material and the dielectric constant. The thickness is the dominant factor. The mass and thickness of the electrodes can be neglected because we are dealing with metallized capacitors. Using this equation a review was made of available dielectric films which would be capable of operating at 900 V. The results of this survey are shown in Table I. As can be seen, the most promising dielectrics were Polyethylene Terephthalate (PETP), Polycarbonate and Polysulfone.

2. Phase I Designs

The designs chosen for Phase I were:

Design A - 0.00027" metallized coated* Polyethylene Terephthalate (PETP)

Design B - 0,00022" metallized coated* Polyethylene Terephthalate

Design C - 0.00026" metallized coated* Polycarbonate

Design D - 0.00027" metallized coated* Polysulfone

Design E - 0.00027" metallized coated* PETP, silicone oil impregnated

Design F - 0.00027" metallized coated* PETP, Bareco wax impregnated

All the dielectric films were coated to aid in the clearing (self healing) of the capacitors. During the clearing the coating helps form

^{*}Metallizing and Coating are Sprague Proprietary Processes

POLYMER FILM DIELECTRIC SYSTEMS REVIEW

Comments	Not available in thin gauge		Dielectric constant too low; density too high to meet the weight requirement			Not available in thin gauges	Dielectric constant too low; difficult to handle in thin gauges	Not available in thin gauges; very large ch. ge of dielectric constant with temperature	Not available in thin gauges; soluble in water	M = mass A = area in meters T = thickness	D = density Kg/meters ³ F = 12 loules	K = 8.85 x 10-12 Coulombs ² V = 110 volts x 10 ⁴	DAABOT-11-C-6600
Breakdown Voltage (Volts/mil)	9, 700	10,000	7,400	10,000	10,000	6,000	11,200	9, 700	6,600	ATD MK V ²	$E = \frac{2}{2} \frac{T^2D}{T^2D}$	ZE T ² D K _t V ² 24 T ² D (8.85×10 ¹²) 81×10 ⁴	M = 3.36×106 T2D
Thick.ess	0.0005"	0,00025"	0,0005"	0, 60024"	0.00024"	0,00025"	0,00025"	5000 0	0.001"	⊙	면 #	M = 23 H = M	X
Dielectric Constant	3.6	3.2	2.2	2.99	3.0	2.3	2.2	9.3	8.8	"C weight would have to be 200 grams noce at low temperature.	•	ffree space eters	
Density (gr/cm ⁻)	1.42	1,25	2,10	1.20	1,25	0.93	0.92	1.38	1.30	t would have to	C = Capacitance V = Voltage	A = area in meters K = permeability of free space T = thickness in illeters	
Dielectric Material	Polyimide Film	PETP	Fluorocarbon Film	Polycarbonate	Polysulfone	Polyeth; ene Film	Polypropylene Film	*Polyvinyl Fluoride Film	Polyvinyl Alcohol Film	*To obtain 12 joules at -40°C weight would have to because of loss of capacitance at low temperature.			
Calculated Section Weight (Grams)	216	96	200	89	89	212	222	80	310	*To obtain 12 joules at -40 because of loss of capacita	(1) $E = \frac{1}{2} \text{ cv}^2$	$\begin{array}{cccc} (\frac{1}{2}) & C = \frac{AK\epsilon}{T} \\ \end{array}$	

gases and reduces the chances for formation of low resistance deposits. A comparison of clearing for coated and uncoated PETP is shown in Figure 1. All designs utilized film which was 4" wide with 3/16" margins.

After metallizing, coating and slitting, sections were rolled, vacuum dried, end-sprayed and had leads attached in the normal manner. The sections were then cleared at 1000 VDC. Sections of Design B failed to withstand the voltage and shorted between 700 - 800 V. Further work on this design was discontinued.

The sections were then encapsulated in steel cans even though the final units were encapsulated in aluminum cans. There was no advantage to warrant the additional cost of aluminum cans in Phase I. Designs E and F were impregnated using standard impregnation techniques.

3. Capacitance Change

The finished units were read for capacitance, dissipation factor and leakage current at -40°C, +25°C, +40°C and +85°C. The results of these measurements are shown in Tables II - VI. The high leakage current of Design D was due to the base polysulfone film being attacked by the solvents during the coating process. The high dissipation factor reading of Design C was due to the long leads necessary for measuring inside the temperature cycling chamber. The change in capacitance with temperature for Designs A, C, D, E and F are shown in Figures 2 through 6. As shown in Figure 7, Designs A, E and F exhibit approximately the same shape curve for percentage capacitance change versus temperature. Design D exhibits an almost perfectly flat profile from -55°C to +85°C, changing only -.11% over the entire temperature range.

4. Breakdown Test

A sample of each design was tested for breakdown voltage. The results of this testing are shown in Table VII. Because breakdown voltage of Design B was below the contract specified operating voltage, further work on this design was discontinued. The slightly higher breakdown voltages of Designs E and F compared to Design A indicated that little dielectric strength was gained by impregnation of this type of unit.

FAULTS POORLY CLEAPED - METALLIZED PETP FILM (NOTE: Carbon deposit in center of clearing)

COMPLETELY CLEARED FAULTS - METALLIZED COATED PETP FILM
(No carbon deposits)

COMPARISON OF COATED VS UNCOATED PETP FILM

Figure 1

TABLE IIA

PHASE IB - ELECTRICAL EVALUATION (-40°C) DESIGN A UNITS - 0.00027" METALLIZED COATED* PETP FILM

(Encapsulated in Steel Cans)

Unit No.	Capacitance ¹ (μ F)	Dissipation ¹ Factor (%)	Leakage Current ² (μΑ)	Leakage Current ³ (μΑ)
41	35.7	1.75	0.22	0.39
42	31.1	1.56	0.18	0.32
43	30.6	1.62	0.20	0.36
44	31.6	1.54	0,20	0.38
45	31.7	1.46	0.35	0.63
4 6	31.4	1.72	0.35	0.67
47	32.1	1.48	0,27	0.48
48	31.7	1.48	0.29	0,52
49	31.5	1.62	0.20	0.54
50	31.8	1.40	0.16	0.47
51	31.5	1.46	0.18	0.35
52	30.8	1.54	0.14	0.27
53	29.7	1.68	0.20	0.33
54	31.2	1.49	0.21	0.44

*Metallizing and Coating are Sprague Proprietary Processes

Note 1 - Capacitance and Dissipation Factor Measured at 1000 Hz

Note 2 - Leakage Current Measured at 500 Volts

Note 3 - Leakage Current Measured at 900 Volts.

DAAB07-71-C-0049

TABLE IIB

PHASE IB - ELECTRICAL EVALUATION (+25°C) DESIGN A UNITS - 0.00027" METALLIZED COATED* PETP FILM

(Encapsulated in Steel Cans)

Unit No.	Capacitance l	Dissipation l Factor	Leakage Current ² (μΑ)	Leakage Current ³
41	37.4	1.05	0.41	0.75
42	32.6	1.05	0,22	0.39
43	31.8	1.10	0.26	0, 43
44	33.3	0.95	0.25	0.45
45	33.2	0.94	0.40	0.70
46	32.9	0.96	0.38	0.72
47	33.3	0.97	0.26	0.47
48	33.2	0.97	0.32	0.58
49	32.8	0.96	0.32	0.56
50	33.4	0.97	0.42	0.72
51	32.8	0.96	0.32	0.59
52	32.2	0.97	0.24	0.41
53	31.0	0.96	0.20	0.34
54	32.5	0.96	0.26	0.45

^{*}Metallizing and Coating are Sprague Proprietary Processes

DAAB97-71-C-0049

Note 1 - Capacitance and Dissipation Factor Measured at 1000 Hz

Note 2 - Leakage Current Measured at 500 Volts

Note 3 - Leakage Current Measured at 900 Volts.

TABLE IIC

PHASE IE - ELECTRICAL EVALUATION (+40°C) DESIGN A UNITS - 0,00027" METALLIZED COATED* PETP FILM

(Encapsulated in Steel Cans)

Unit No.	Capacitance ¹ (μF)	Dissipation ¹ Factor (%)	Leakage Current ² (μΑ)	Leakage Current ³ (µA)
41	37.8	1.05	0.61	1.6
42	32.7	1.08	0.88	1,1
43	31.9	1.10	0.38	0.73
44	33.3	1.09	0.68	0.73
45	33.4	1.12	1.0	2.3
46	32.8	1.00	1.4	2.3
47	33.4	1.09	0.72	1.0
48	33.0	0.97	0.58	1,3
49	32.8	1.05	0.53	1.0
50	33,5	1.05	0.72	1.5
51	33.0	1.06	0.65	1.0
52	32.3	1.06	0.48	0.92
53	31, 2	1.04	0.52	0.92
54	32.7	1.09	0.66	0.90

^{*}Metallizing and Coating are Sprague Proprietary Processes

DAA007-71-G-2049

Note 1 - Capacitance and Dissipation Factor Measured at 1000 Hz

Note 2 - Leakage Current Measured at 500 Volts

Note 3 - Leakage Current Measured at 900 Volts.

TABLE IID

PHASE IB - ELECTRICAL EVALUATION (+85°C) DESIGN A UNITS - 0.00027" METALLIZED COATED* PETP FILM

(Encapsulated in Steel Cans)

Unit No.	Capacitance l (μF)	Dissipation ¹ Factor (%)	Leakage Current ² (μΑ)	Leakage Current ³ (μA)
41	39.0	0.34	17	35
42	33,2	0,30	13	27
43	34.8	0.30	10	20
44	34.9	0.26	12	21
45	34.3	0.27	. 20	35
46	34.7	0.26	17	38
47	34.2	0.25	18	33
48	34.0	0.27	21	40
49	34.5	0.28	13	27
50	34.2	0.29	18	39
51	33.2	0.27	12	25
52	32.2	0.28	12	22
53	33.8	0.29	25	45
54	34.5	0.29	23	43

^{*}Metallizing and Coating are Sprague Proprietary Processes

Note 3 - Leakage Current Measured at 900 Volts.

DAAB07-71-C-0049

Note 1 - Capacitance and Dissipation Factor Measured at 1000 Hz

Note 2 - Leakage Current Measured at 500 Volts

It is noted that the leakage current is higher than anticipated but it is considered that the values listed are within acceptable design limits.

TABLE IIIA

PHASE IB - ELECTRICAL EVALUATION (-40°C) DESIGN C UNITS - 0.00026" METALLIZED COATED* POLYCARBONATE FILM

(Encapsulated in Steel Cans)

Unit No.	Capacitance l (μF)	Dissipation 1, 3 Factor (%)	Leakage Current ² (μΑ)	Leakage Current ⁴ (μ A)
109	Off S	cale	0.19	0.36
110	32.95	6.83	0.70	1.40
111	32.38	2.82	0.20	0.53
112	37.78	2.95	0.12	0.30
113	33.60	3.77	0.18	0.35
114	33.00	12.88	0.24	0.40
115	33.68	4.05	0.26	0.50
116	32,65	4.78	0.26	0.60
117	33.68	3.25	0.76	0.90
118	34.45	5.57	0.20	0.36
119	33.57	4.12	0.50	0.98
120	33.30	3.95	0.18	0.36
121	36.74	3.35	0,22	0.40
122	32.82	4.24	0.75	1.00
123	34.15	3.40	0.20	0.46
124	34.78	3.77	0.20	0.36
125	36.70	4.45	0,20	0.34
126	34.70	3.40	0.10	0.30

*Metallizing and Coating are Sprague Proprietary Processes.

Note 1 - Capacitance and Dissipation Factor Measured at 1000 Hz.

Note 2 - Leakage Current Measured at 500 Volts.

Note 3 - High Dissipation Factor due to long leads necessary for measuring inside the temperature cycling chamber.

Note 4 - Leakage Current Measured at 900 Volts.

DAAB07-71-C-0049

TABLE HIB

PHASE IB - ELECTRICAL EVALUATION (+25°C) DESIGN C UNITS - 0.00026" METALLIZED COATED* POLYCAR BONATE FILM

(Encapsulated in Steel Cans)

109 Off Scale 0.32 0.60 110 33.44 5.32 0.36 0.66 111 32.92 3.00 0.14 0.30	rent4
110 33.44 5.32 0.36 0.66	
14.	
112 28.15 3.27 0.18 0.34	
113 34.08 4.31 0.28 0.50	
114 34.50 9.50 0.22 0.36	
115 34.15 4.27 0.11 0.20	
116 33.10 5.98 0.30 0.60	
117 34.38 3.33 0.44 0.80	
118 34.96 6.45 0.35 0.66	
119 34.10 4.81 0.48 0.90	
120 33.68 4.34 0.17 0.35	
121 37.32 3.55 0.20 0.38	
122 33.30 4.28 0.25 0.46	
123 34.64 3.53 0.28 0.58	
124 33.30 3.20 0.16 0.32	
125 37.25 3.90 0.36 0.68	
126 35.22 3.87 0.36 0.76	

^{*}Metallizing and Coating are Sprague Proprietary Processes.

BAABST-71-C.8848

Note 1 - Capacitance and Dissipation Factor Measured at 1000 Hz.

Note 2 - Leakage Current Measured at 500 Volts.

Note 3 - High Dissipation Factor due to long leads necessary for measuring inside the temperature cycling chamber.

Note 4 - Leakage Current Measured at 900 Volts.

TABLE IIIC

PHASE IB - ELECTRICAL EVALUATION (+40°C) DESIGN C UNITS - 0.00026" METALLIZED COATED* POLYCARBONATE FILM

(Encapsulated in Steel Cans)

Unit No.	Capacitance (µF)	Dissipation ¹ , Factor (%)	3 Leakage Current (μΑ)	Leakage Current ⁴ (μΑ)
109	Off 5	Scale	0.60	1.20
110	33.58	6.87	0.20	0.46
111	34.80	2.80	0.92	1.80
112	28,24	4.23	0.72	1.50
113	34.35	7.30	0.84	1.55
114	34.60	9.03	0.72	1.40
115	34.28	5.40	0.26	0.60
116	33.22	5.97	0.20	0.40
117	34.4 7	5.24	0.30	0.60
118	35.04	7.64	0.50	0.90
119	34.18	5.82	0.90	1.50
120	33.78	6.00	0.28	0.60
121	37.45	5.55	0.18	0.40
122	33.20	9.10	0.26	0.60
123	34.70	5.10	0.40	0.75
124	35.39	5.06	0.50	0.98
125	37.34	6.60	0.58	0.90
126	35.30	4.77	0.42	0.90

*Metallizing and Coating are Sprague Proprietary Processes.

Note 1 - Capacitance and Dissipation Factor Measured at 1000 Hz.

Note 2 - Leakage Current Measured at 500 Volts.

是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就

Note 3 - High Dissipation Factor due to long leads necessary for measuring inside the temperature cycling chamber.

Note 4 - Leakage Current Measured at 900 Volts.

3AAB07-71-C-0049

TABLE IIID

PHASE IB - ELECTRICAL EVALUATION (+85°C) DESIGN C UNITS - 0.00026" METALLIZED COATED* POLYCARBONATE FILM

(Encapsulated in Steel Cans)

Unit No.	Capacitance 1 (μF)	Dissipation ^{1,3} -Factor (%)	Leakage Current ²	Leakage Current ⁴ (μA)
109	Off :	Scale	12.0	20.0
110	33.77	4.95	8.0	11.6
111	33.24	4.60	4.0	6.8
112	28.38	2.50	4.0	7.0
113	34.35	7.10	17.0	35.0
114	34.70	4.06	13.0	27.0
115	34.45	5.45	4.8	9.5
116	33.4 4	5.44	3.6	7.2
117	34,62	5.00	6.2	12.0
118	35.15	5.28	6.2	11,5
119	34.40	5.72	5.8	11.0
120	33.90	6.00	6. 4	12.3
121	37.62	5.80	4.2	7.6
122	32.25	10.62	4.2	8.2
123	34.82	5.20	6.2	10.8
124	35.50	3.35	5.6	11.0
125	37.45	5.62	17.0	28.0
126	35.46	5.10	7.2	15.0

*Metallizing and Coating are Sprague Proprietary Processes.

Note 1 - Capacitance and Dissipation Factor Measured at 1000 Hz.

Note 2 - Leakage Current Measured at 500 Volts.

Note 3 - High Dissipation Factor due to long leads necessary for measuring inside the temperature cycling chamber.

Note 4 - Leakage Current Measured at 900 Volts.

BAABOT-71-C-0019

TABLE IVA

PHASE IB - ELECTRICAL EVALUATION (-40°C) DESIGN D UNITS - 0.00026" METALLIZED COATED* POLYSULFONE

(Encapsulated in Steel Cans)

Unit No.	Capacitance 1 (µF)	Dissipation 1 Factor (%)	Leakage Current ² (μΑ)	Leakage Current ³
133	34.54	1.13	4.0	7.8
134	33.08	1.21	4.7	10.Z
135	34.43	1.06	5.2	7.4
136	34.54	1.06	3.1	12.0
138	34.62	1.13	4.8	8.3
139	33.82	1.06	3.6	7.4
140	34.87	1.10	3.8	6.9
I41	34.84	1.07	4.2	8.3
142	41.38	1.10	2.6	6.6
143	34.35	1.13	3.4	5.9
144	36.68	1.21	2.8	7.1
145	34.68	1.13	2.7	6.4
147	35.18	1.13	2.9	6.3
148	28.27	1.21	2.4	6.0
149	36.44	1.19	2.7	5.8
150	34.13	1.17	2.4	5.7

*Metallizing and Coating are Sprague Proprietary Processes.

Note 1 - Capacitance and Dissipation Factor Measured at 1000 Hz.

Note 2 - Leakage Current Measured at 500 Volts.

是这种的思想的是我们的思想的是,我们是我们的人,我们也不是我们的人,我们也不是我们的人,我们也是我们的人,我们也是我们的人,也可以是这种人的人,我们们是一种人的

Note 3 - Leakage Current Measured at 900 Volts.

DAABOT-71-G-0019

TABLE IVB

PHASE IB - ELECTRICAL EVALUATION (+25°C) DESIGN D UNITS - 0.00026" METALLIZED COATED* POLYSULFONE

(Encapsulated in Steel Cans)

Unit No.	Capacitance (µF)	Dissipation 1 Factor (%)	Leakage Current ² (µA)	Leakage Current ³ (μA)
133	34.57	0.75	43	67
134	35.08	0.83	43	67
135	34.46	1.06	41	58
136	34.55	0.83	38	58
138	34.63	0.75	38	56
139	33.78	1.06	36	54
140	34.98	1.06	35	54
1:41	34.82	0.83	34	50
142	41.38	0,91	40	56
143	34.37	1.05	24	50
144	36.70	0.91	34	52
145	34.55	0.98	36	62
147	35.15	1.06	36	62
148	28.26	1.06	27	48
149	36.50	0.98	33	58
150	34.18	1.06	31	53

*Metallizing and Coating are Sprague Proprietary Processes.

Note 1 - Capacitance and Dissipation Factor Measured at 1000 Hz.

Note 2 - Leakage Current Measured at 500 Volts.

Note 3 - Leakage Current Measured at 900 Volts.

DAAB47-71-G-0017

TABLE IVC

PHASE IB - ELECTRICAL EVALUATION (+40°C) DESIGN D UNITS - 0.00026" METALLIZED COATED* POLYSULFONE

(Encapsulated in Steel Cans)

Unit No.	Capacitance 1 (μF)	Dissipation Factor (%)	Leakage Current ² (μΑ)	Leakage Current ³ (µA)
133	34.58	1.58	48	77
134	35.04	1.73	4 8	81
135	34.43	2.04	49	84
136	34.51	1.73	42	72
138	34.62	1.81	43	79
139	33.80	1.96	40	68
140	34.97	1.58	40	68
141	34.82	1,57	40	70
142	41.30	2.11	45	77
143	34.38	1.73	27	47
144	36.65	1.96	36	62
145	34.55	1.51	27	81
147	35.15	1.58	30	85
148	28.26	1.13	22	63
149	36.44	1.66	27	82
150	34.17	1.51	24	73

^{*}Metallizing and Coating are Sprague Proprietary Processes.

DAAB07-71-G-0049

Note 1 - Capacitance and Dissipation Factor Measured at 1000 Hz.

Note 2 - Leakage Current Measured at 500 Volts.

Note 3 - Leakage Current Measured at 900 Volts.

TABLE IVD

PHASE IB - ELECTRICAL EVALUATION (+85°C) DESIGN D UNITS - 0.00026" METALLIZED COATED* POLYSULFONE

(Encapsulated in Steel Cans)

Unit No.	Capacitance (µF)	Dissipation 1 Factor (%)	Leakage Current ² (µA)	Leakage Current ³ (μΑ)
133	34.62	1.89	82	160
134	35.07	1.81	94	190
135	34.43	1.89	88	140
136	34.57	1.96	82	160
138	34.62	2.04	68	130
139	33.87	2.11	80	145
140	35.04	1.96	76	160
141	34.82	1.81	93	170
142	41.41	1.81	83	180
143	34.42	2.04	43	110
144	36.70	2.11	75	170
145	34.55	2.11	84	160
147	35.14	1.96	98	185
148	38.31	1.96	75	110
149	36.45	2.11	89	170
150	34.21	1,81	70	150

^{*}Metallizing and Coating are Sprague Proprietary Processes.

DAAB?7-T1-C-8849

Note 1 - Capacitance and Dissipation Factor Measured at 1000 Hz.

Note 2 - Leakage Current Measured at 500 Volts.

Note 3 - Leakage Current Measured at 900 Volts.

TABLE VA

PHASE IB - ELECTRICAL EVALUATION (-40°C) DESIGN E 0.00027" METALLIZED COATED* PETP SILICONE OIL IMPREGNATED

(Encapsulated in Steel Cans)

Unit	Capacitance l	Dissipation ¹ Factor (%)	Leakage Current at 500 VDC (\(\mu A\)	Leskage Current at 900 VDC (\mu A)
77	22 20	1 22	0,14	0.24
	32.30	1.23		0.34
78	32.80	1.25	0, 14	0.43
79	33.20	1.25	0.13	0,38
80	32.40	1.26	0, 12	0.30
81	33.20	1.28	0.13	0.80
82	34.40	1,29	0.13	0.35
83	32,30	1,28	0.11	0.35
84	32.20	1.28	0.11	0.30
85	33,20	1,28	0.10	0.32
86	34.70	1,26	0.12	0.31
87	33.80	1.27	0.13	0.35
88	32,30	1,26	0,14	0.35
89	33.10	1,27	0.14	0,33
90	33,20	1,23	0.15	0.31
91	32,10	1,25	0.15	0.28
92	32.50	1,25	0.14	0.43
93	33.20	1,25	0.13	0.23
94	33.20	1.25	0.12	0.29
95	32.90	1, 27	0.13	0.27

*Sprague Proprietary

Note 1 - Capacitance and Dissipation Factor measured at 1000 Hz

DAAB07-71-G-0049

TABLE VB

PHASE IB - ELECTRICAL EVALUATION (+25°C) DESIGN E 0.00027" METALLIZED COATED* PETP SILICONE OIL IMPREGNATED

(Encapsulated in Steel Cans)

Unit	Capacitance 1	Dissipation ¹ Factor	Leakage Current at 500 VDC	Leakage Current at 900 VDC
No.	(μ F)	(%)	<u>(μA)</u>	<u>(μA)</u>
77	32.80	0.49	0.58	1.8
78	34.00	0.48	0.54	2,1
79	33.70	0.47	0.50	1.7
80	33,40	0,47	0.48	1.7
81	34.30	0.48	0.48	2,5
82	35.40	0.38	0.46	1,5
83	33.00	1.37	0.43	2.1
84	33,30	0.41	0.40	1.4
85	33.80	0.38	0, 59	2.1
86	35.20	0.31	0.49	2.0
87	35.50	0.35	0.41	1.8
88	33.40	0,33	0.43	3, 2
89	33.80	0.41	0.44	2.3
90	34.60	0,32	0.40	3.1
91	32.70	0,32	0.39	2.7
92	33.30	0,33	0.37	2,6
.93	32.80	0,38	0.37	2,2
94	37.38	0, 33	0.36	2.1
95	33.70	0, 34	0.35	2.0

*Sprague Proprietary

Note 1 - Capacitance and Dissipation Factor measured at 1000 Hz

BAAB49-11-G-0419

TABLE VC

PHASE IB - ELECTRICAL EVALUATION (+40°C) DESIGN E 0.00027" METALLIZED COATED* PETP SILICONE OIL IMPREGNATED

(Encapsulated in Steel Cans)

Ųnit No.	Capacitance 1 (µF)	Dissipation l Factor (%)	Leakage Current at 500 VDC (\(\mu A\)	Leakage Current at 900 VDC (\(\mu A\)
77	32 . 80	0.49	1,3	3.5
78	34.00	0.48	1.2	3.6
79	33.70	0.47	1.2	4.8
80	33.40	0,47	1.2	4, 0
81	34.30	0.48	1.2	3.6
82	35.40	0.38	1.0	2.9
83	33.00	0.37	1.1	2.7
84	33.80	0.41	1.0	2.7
85	33.80	0.38	1.0	2.4
86	35.20	0,31	0.9	2.6
87	35.50	0.35	0.9	2.6
88	33.40	0.33	1,1	4, 1
89	33.80	0.41	1.0	1.8
90	34.00	0,32	0.7	2.2
91	32.70	°0, 32	0.8	1.6
92	33.30	0.33	1.0	2.0
93	32,80	0,28	0.9	2.2
94	32.80	0.33	0.7	2.6
95	33.20	0.34	1,2	1.9

*Sprague Proprietary

Note 1 - Capacitance and Dissipation Factor measured at 1000 Hz

DAAB07-71-C-0049

TABLE VD

PHASE IB - ELECTRICAL EVALUATION (+85°C) DESIGN E 0.00027" METALLIZED COATED* PETP SILICONE OIL IMPREGNATED

(Encapsulated in Steel Cans)

Unit No.	Capacitance l	Dissipation l Factor (%)	Leakage Current at 500 VDC (\(\mu A\)	Leakage Current at 900 VDC (\(\mu A\)
77	33,00	0.60	35.0	43.0
				43.0
78	34,41	0.58	35.0	60.0
. 79	34.20	0.58	31,0	38.0
80	33.40	0.60	32.0	75.0
81	34.30	0.58	32.0	57.0
82	35.70	0.60	28.0	38.0
83	33.50	0.60	32.0	71.0
84	34.00	0.59	28.0	48.0
85	33.90	0.59	29.0	53.0
86	35,20	0.60	31.0	20.0
87	35.90	0.60	32,0	60.0
88	34,20	0.62	28.0	62.0
89	34.10	0.64	34.0	41.0
90	34.40	0.62	26.0	43.0
91	33,00	0,62	31.0	52,0
92	33.70	0.59	37.0	63.0
93	32.20	0.59	33.0	59.0
94	34,30	0.60	40.0	58,0
95	34.10	0.61	37.0	57,0

*Sprague Proprietary

Note 1 - Capacitance and Dissipation Factor measured at 1000 Hz

DAAR67-71-C-8045

TABLE VIA

PHASE IB - ELECTRICAL EVALUATION (-40°C) DESIGN F 0.00027" METALLIZED COATED* PETP WAX IMPREGNATED

(Encapsulated in Steel Cans)

Unit No.	Capacitance l	Dissipation l Factor	Leakage Current at 500 VDC (μA)	Leakage Current at 900 VDC (μA)
59	33.30	1.22	0.14	0.39
- 60	32.60	1.23	0.13	0.37
61	33,20	1.22	0.10	0.43
62	33.10	1.23	0.11	0.41
63	34.00	1.24	0.10	0.43
64	33.60	1,24	0.10	0.44
65	33.50	1.23	0.11	0.38
66	34.30	1.22	0.12	0.36
67	33,20	1.21	0.11	0.28
68	32.80	1.22	0.13	0.31
69	32.70	1,21	0.10	0.34
70	39.40	1.23	0.13	0, 29
71	33.80	1.24	0.12	0.34
72	33.30	1.24	0.11	0, 33
73	33.50	1.23	0.13	0,38
74	34.70	1.23	0.11	0, 36
75	32.70	1.24	0.12	0.33
76	32.80	1.23	0.13	0.34

*Sprague Proprietary

Note 1 - Capacitance and Dissipation Factor measured at 1000 Hz

DAAB67-71-C-6649

TABLE VIB

PHASE IB - ELECTRICAL EVALUATION (+25°C) DESIGN F 0.00027" METALLIZED COATED* PETP WAX IMPREGNATED

(Encapsulated in Steel Cans)

Unit	Capacitance 1	Dissipation l Factor (%)	Leakage Current at 500 VDC (μΑ)	Leakage Current at 900 VDC (\(\mu A\)
50	. 24 50	0.43	0 (3	2 5
59	34.50	0.42	0.63	2.7
60	33,60	0.50	0.66	2.7
61	34.20	0, 50	0.58	2.4
62	34,20	0.49	0.57	2,4
63	35.20	0.50	0.57	2.3
64	34.60	0.48	0,52	2.5
65	34.70	0.50	0.48	2,2
66	35,20	0.48	0,46	2.1
67	34,20	0.49	0,43	2,0
68	34.00	0.48	0.40	1,7
69	33.20	0.51	0.38	1.7
70	35,40	0.50	0,37	1.7
71	35,20	0.50	0.36	1.6
72	34,00	0.48	0.81	2,3
73	34,10	0.47	0.72	2,3
74	34.50	0.47	0.68	2,2
75	33.70	0.47	0.66	2,2
76	33.70	0.49	0.61	1.9

*Sprague Proprietary

Note 1 - Capacitance and Dissipation Factor measured at 1000 Hz

DAAB4-31-C-0049

TABLE VIC

PHASE IB - ELECTRICAL EVALUATION (+40°C) DESIGN F 0.00027" METALLIZED COATED* PETP WAX IMPREGNATED

(Encapsulated in Steel Cans)

Unit	Capacitance 1	Dissipation l Factor (%)	Leakage Cu. ent at 500 VDC (\(\mu A\)	Leakage Current at 900 VDC (\(\mu A\)
		_		
59	34.70	0.43	2.2	3.8
60	33,40	0.4 6	2, 1	3,5
61	34.40	0.47	2,1	3.7
62	34,50	0.47	1.8	3.4
63	35.30	0.47	1.8	3.3
64	34.80	0.47	1.8	3.1
65	34.80	0.49	1.7	3.1
66	35.40	0.47	1.6	2.8
67	34.20	0.46	1.5	2.6
68	34.50	0,48	1.4	2,3
69	33,60	0.49	1.3	2.3
70	35.50	0.50	1.3	2.3
71	35.10	0.48	1,3	2.4
72	34.00	0.48	1,2	3.0
73	34.20	0.48	1.9	5.1
74	34.60	0,49	1.9	4.5
75	33.80	0.49	1.9	5,1
76	33.80	0.50	1.6	4,2

*Sprague Proprietary

Note 1 - Capacitance and Dissipation Factor measured at 1000 Hz

DAAB07-71-C-0049

TABLE VID

PHASE IB - ELECTRICAL EVALUATION (+85°C) DESIGN F 0.00027" METALLIZED COATED* PETP WAX IMPREGNATED

(Encapsulated in Steel Cans)

Unit	Capacitance l (μF)	Dissipation l Factor	Leakage Current at 500 VDC (\(\mu A\)	Leakage Current at 900 VDC (μA)
59	35.60	0.57	5.0	7.0
60	34.00	0.57	4.4	6.2
61	34.60	0.58	4.3	7.3
62	34.50	0.60	4.1	6.7
63	35.50	0.60	4.0	6.6
64	35.30	0.60	3.8	6.2
65	35.30	0.58	3.8	6.3
66	35.50	0.59	3, 3	4.6
67	34,30	0.60	3, 2	5, 3
68	34.20	0.59	2,8	4.2
69	33.60	0.59	2.8	4.0
70	35.60	0.60	3.0	5.1
71	35.30	0.58	3,2	8.6
72	34.20	0.60	4.7	5.8
73	34.30	0.60	4.8	8.3
74	35.00	0.60	4.3	5.7
75	34,20	0.60	4.5	8.8
76	34.10	0.58	3.8	4.8

*Sprague Proprietary

Note 1 - Capacitance and Dissipation Factor measured at 1000 Hz

DAAB01-71-C-8641

Capacitance Versus Temperature

Capacitance vs Temperature For Silicone Oil Impregnated Metallized Coated* PETP

Capacitance vs Temperature For Bareco Wax Impregnated Metallized Coated* PETP

CAPACITANCE µF

Percentage Capacitance Change vs Temperature

Figure 7

BREAKDOWN VOLTAGE (ROOM TEMPERATURE)

Design A. 0.00027" Metallized Coated* PETF

Unit No.	Breakdown Voltage (VDC)
_	1400
1	1300
2	1500
3	1400
4	1500
5 6	1300
G	Design C, 0.00026" Metallized Coated* Polycarbonate
	1500
1	1400
2	1300
3	1500
4.	1400
5 6	1400
J	Design D, 0.00027" Metallized Coated* Polysuifone
1	1300
2	1400
3	1200
3 4	1300
5	1500
6	1200
	Design E, 0.00027" Metallized Coated PETP
	(Siliconc Oil Impreguated)
1	1500
2	1400 1500
3	1500
4	1400
5	1600
6	
	Design F, 0.00027" Metallized Coated* PETP
	(Barcco Wax Impregnated)
1	1600
ž	1600
3	1500
4	1600
5	1400 1600
6	1000

5. Dielectric Absorption

A sample of each design was tested for dielectric absorption. The results of these tests are tabulated in Tables VIII - XII. The dielectric absorption measurements were made in accordance with Mil-C-19978C paragraph 4.7.15. The data indicate that there is a small decrease in dielectric absorption between -40°C and +25°C and a large increase in dielectric absorption between 25°C and 85°C. Another point is that the dielectric absorption of the impregnated coated PETP units is less than that of the dry PETP units. For uncoated PETP the reverse is true.

6. Test Equipment

It was necessary to design and build special test equipment capable of charging and discharging 32 µF at 900 V ten times per second because of the high repetition rate required by this contract. It was decided to build six test units utilizing conventional thyratron tube switching and one test unit employing a special SCR solid state switch. This test equipment is shown in Figure 3.

Safety features of this test equipment included automatic shutoff in case of test capacitor short; pre-setable counter, time delay required for thyratron tubes; and interlock on test chamber door. A three amp fuse was added to the transformer after one of the transformers failed during use.

Each test set was a self-contained unit. The test voltage was variable from zero to 1200 volts peak and the repetition rate was adjustable from one to over ten pulses per second. Because of the high power requirements, special care was taken in the design and winding of the high voltage transformers. The internal discharge circuitry included a 30 µH coil and a one ohm non-inductive resistor. Charging voltage could be monitored on a peak reading voltmeter.

A pulse voltage divider, and pulse current monitoring jacks were provided on the front panel. Controls also included a five digit pre-setable panel-mounted counter to shut down the test station after a predetermined number of charge-discharge cycles.

After completion of Phase II testing, it was decided that certain modifications to the CADET III test equipment were necessary.

TABLE VIII

DIELECTRIC ABSORPTION MEASUREMENTS AT VARIOUS TEMPERATURES
DESIGN A 0.00027" METALLIZED COATED* PETP

Unit No.	Dissipation Factor	Recovery Voltage (Volts)	Dielectric Absorption (%)
	-	40°C	
47	1.48	7.3	0.81
48 180	1.48 1.48	7.2 6.4	0.80 0.71
	+	25°C	
47	0.97	6.1	0.68
48 180	0.97	5, 2 3, 0	0.58 0.56
	+	40°C	
47	1.09	19	2.12
48 180	1.09	15 12	1.67 1.33
	+	85°C	
47	0.25	63	7.0
48 180	0,27	55 66	6.1 7.3
Discha Discha Recove Dissipa	e Voltage 900 VDC rga Resistor 5 Ω rge Time 10 sec. ery Time 15 min. ation Factor at 1000 Hz ue Proprietary		DAAB07-71-C-0049

TABLE IX

DIELECTRIC ABSORPTION MEASUREMENTS AT VARIOUS TEMPERATURES
DESIGN C 0.00026" METALLIZED COATED* POLYCARBONATE

Unit No.	Dissipation Factor (%)	Recovery Voltage (Volts)	Dielectric Absorption (%)
	-40)°C	
121	0.48	5.7	0.63
125 126	0.43 0.48	5.5 5.6	0.61 0.62
	+25	5°C	
121	0.48	3.4	0,38
125 126	0.45 0.47	5.4 5.7	0.60 0.63
	+40)°C	
121	0.45	5.5	0.61
125 126	0.42 0.45	16 15	1.78 1.67
	+85	5°C	
121	0.40	38	4.2
125 126	0.41 0.42	30. 30	3.3 3.3
Charge	Voltage 930 VDC		
Discha	rge Resistor 5Ω rge Time 10 sec.		
Recove	ry Time 15 min.		DAAB07-71-C-0049
_	ue Proprietary	•	

TABLE X

DIELECTRIC ABSORPTION MEASUREMENTS AT VARIOUS TEMPERATURES

DESIGN D 0.00026" METALLIZED COATED* FOLYSULFONE

Unit No.	Dissipation Factor (%)	Recovery Voltage (Volts)	Dielectric Lbsorption (%)
	-40	0°C	
140 141 145	1.10 1.07 1.13	Unable to read	Unable to read
	+2!	5°C	
140 141 145	1.06 0.83 1.98	>10 >10 >10	>1.1 >1.1 >1.1
	+40	0°C	
140 141 145	1.58 1.57 1.51	Unable to read	Unable to read
	+89	5°C	
140 141 145	1.96 1.81 2.11	Unable to read	Unable to read
Discha Discha Recove Dissipa	Voltage 900 VDC rge Resistor 5Ω rge Time 10 sec. ry Time 15 min. ation Factor at 1000 Hz ue Proprietary		DAAB07-71-C-764+

TABLE XI

DIELEC IRIC ABSORPTION MEASUREMENTS AT VARIOUS TEMPERATURES

DESIGN E 0.00027" METALLIZED COATED* PETP

SILICONE OIL IMPREGNATED

Unit No.	Dissipation Factor (%)	Recovery Voltage (Volts)	Dielectric Absorption (%)
	-4	0°C	
77	1,23	6.6	0.73
84	1,28	6.7	0.75
85	1.28	6.8	0.75
	+2	5°C	
77	0.49	3.8	0.42
84	0.41	4.6	0.51
85	0.35	4.2	0.47
	+4	0°C	
77	0.49	5,0	0,56
84	0.41	9.3	1,03
85	0.38	7.7	0.85
	+8+	5 ° C	
77	0,60	54	6.0
84	0.59	64	7.1
85	0.59	60	6.7
Discha Discha Recove Dissipa	Voltage 900 VDC rge Resistor 5Ω rge Time 10 sec. ry Time 15 min, ation Factor at 1000 Hz		DAAB07-71-G-0648
*Sprag	ue Proprietary		

TABLE XII

DIELECTRIC ABSORPTION MEASUREMENTS AT VARIOUS TEMPERATURES
DESIGN F 0.00027" METALLIZED COATED* PETP
WAX IMPREGNATED

Unit No.	Dissipation Factor (%)	Recovery Voltage (Volts)	Dielectric Absorption (%)
	-40	0°C	
66	1,22	6.2	0.69
69	1.21	7.1	0.79
72	1.24	7.0	0.78
	+2	5°C	
66	0.48	3,4	0.38
69	0.51	3.6	0.40
72	0.48	3.7	0.41
	+4	0°C	
66	0,47	4,8	0.53
69	0.49	4,5	0.51
72	0,48	5.0	0.56
	+8	5°C	
66	0.59	63	7.0
69	0.59	55	6.1
72	0.60	66	7.3
	Voltage 900 VDC		
	rge Resistor 5Ω		
	rge Time 10 sec.		B44845 51 51 54 54
	ery Time 15 min.		DAAB07-71-C-0044
•	ation Factor at 1000 Hz		
*Sprag	que Proprietary		

Constant No. 264 and 24-26-26-27

Figure 8

After approximately 20 million charge-discharge cycles, the thyratron tubes had aged to the extent that replacement was necessary. Since the test station of solid state design had performed flawlessly for more than 20 million charge-discharge cycles, and this was the second set of thyratron tubes, it was decided to convert the conventional test stations to solid state switching. This was accomplished on a one-at-a-time basis, so that the testing schedule was not disrupted. It was also decided at this time to increase the range of the counters by a factor of ten. Additional circuitry was added to the basic counter circuit to accomplish this extension.

A schematic drawing of one of the test sets is shown in Figure 9. Figure 10 shows the CADET III test equipment and test oven.

An eighth test station was constructed in an effort to provide backup capabilities in case of equipment failure, and to gain additional information at higher repetition rates. This test station had capabilities of from 1 - 30 pps at voltages ranging from 200 - 1200 volts. A much larger transformer was required because of the much higher power requirements necessitated by the higher repetition rate. Also, a change in basic design was required by the high repetition rate and resonant charging utilized. This test station also utilized solid state switching and all the safety features included in stations one through seven as well as extended counter range. A drawing of the circuit is shown in Figure 11.

7. Testing and Evaluation

A six-piece sample of Designs A, C, D, E and F were charge-discharge life tested utilizing CADET III test equipment at 10 pps and 40°C. Design C was partially tested on CADET II because CADET III had not been completed. Design A was tested on both CADETS II and III. Photographs showing a typical discharge current wave for both CADETS II and III are shown in Figure 12. It is interesting to note that while the duration of the current wave from CADETS II and III are about equal, the amplitude is considerably higher for CADET III. Because of differences in the circuitry, there is no undershoot on CADET III. The results of the initial charge-discharge testing are tabulated in Tables XIII - XVII. Tables XIII and XIIIA indicate there is little difference in the results between the two pieces of test equipment. Each group of capacitors had one failure. The unit (#51) which shorted on CADET III was a catastrophic failure caused by a rapid rise in the dissipation factor (DF). This caused the unit

A STATE OF THE STA

Wiring Diagram for CADET III

DAAB07-71-0-0049

CADET III With Oven Door Open

CADET III Test Equipment 1-30 pps Tert Station

CADET II (50% sectom)

200 A/

CADET III (50) sec/cm)

Typical Wave Shapes Of Discharge Current

Figure 12

(The circuitry of these two pieces of equipment is entirely different CADET II has two $32\,\mu\text{H}$ inductors together while CADET III has only a single $30\,\mu\text{H}$ inductor. Also the discharge devices are different. CADET II uses spark gaps while CADET III uses SCR switching).

TABLE XIII

palational desirations de constitute en con-

PHASE IB - CHARGE-DISCHARGE LIFE TEST** DESIGN A 0.00027" METALLIZED COATED* PETP FILM

(Encapsulated in Steel Cans)

Unit No.	Capacitance (µF)	Dissipation Factor (%)	Leakage Current
		0 Cycles	
41	37 .4 0	0.86	0,41
42	32.60	0.73	0.22
43	31,80	0.80	0. 26
44	33,30	0.95	0. 25
45	33,20	0.94	0.40
46	32,90	0.96	0. 26
		5000 Cycles	
41	38.53	0.94	2.0
42	33.77	0.84	1.3
43	33,58	0.84	0, 25
44	34.34	0.94	0.22
45	34.38	0.84	1.0
46	33,83	0.84	1.25
		10,000 Cycles	
41	38.54	0.84	2.3
42	33,77	0.74	2,0
43	33,60	0.84	0.27
44	34.36	0.94	0, 27
45	34.38	0.74	1,1
46	33.84	0.84	1,5
		25,000 Cycles	
41	38,53	1.04	3,7
42	38.77	0.84	2,35
43	33.51	0.94	0,60
44	34.35	0.94	0,38
45	34.36	0.94	1,5
46	33.81	0.94	1,9
		50,000 Cycles	
41	38.50	1,04	0,16
42	33.80	0.74	1,9
43	29.28	5,34	0, 75
44	34.31	0.94	0, 3
45	34.37	0,84	1,25
46	33.77	0.84	1,65
		100, 000 Cycles	
41	38.57	1.04	0,25
42	33.94	0.94	1.8
43	29.28	5.34	0,80
44	34.28	1.04	2.5
45	34.38	0.84	1.7
46	33.83	0.84	1.8

^{*}Metallizing and Coating are Sprague Proprietary Processes.

Leakage Current at 500 VDC Test Temperature 40°C

Measurement Temperature 25°C.

Load 30µH plus 1 ohm resistor. Repetition Rate 0.1 pps.+

Test Voltage 900 VDC. Peak Current 300 amps.

47

DAAB41-11-C-8444

^{**}Test Conditions: Capacitance and Dissipation Factor at 1000 Hz.

⁺CADET II test equipment used in accordance with proposal. This equipment is limited to 0. lpps for capacitors in the 30-35 µF range.

TABLE XIIIA

PHASE IB - CHARGE-DISCHARGE LIFE TEST DESIGN A 0.00027" METALLIZED COATED* PETP FILM

(Encapsulated in Steel Cans)

		Dissipation	
Unit	Capacitance	Factor	Leakage Current
No.	<u>(μF)</u>	(%)	<u>(μA)</u>
		0 Cycles	
49	32.82	0.97	0.32
50	33.43	0.97	0.42
51	32.81	0.96	0.32
52	32,24	0.97	0.24
53	31,05	0.96	0.20
54	32.53	0.96	0.26
		100,000 Cycles	
49	33.87	0.94	1.0
50	34,42	0.94	1.25
51	34.00	0.65	1.35
52	failed 37,00		1.35
53	32.19		1 2
53 54	33.69	0.94 1.24	1.3 1.25
34	33.07	1,01	1.49
		200,000 Cycles	
49	33.85	0.94	0.0022
50	3 4.43	0.92	2.05
51	34.00	0.94	1.61
53	32.22	0,94	1.45
54	33.68	1,24	2.05
		500,000 Cycles	
49	33.82	0.94	0.08
50	34.37	1.04	0.08
51	33.97	0.61	0.10
53*	0.0019	3,64	0.125
54	33,72	1.34	0.08
	it No. 53 failed to		
	1	,000,000 Cycles	
49	33.82	0.94	0,0026
50	34.30	0.94	
51*	34.04	0.94	2.5
54	33.50	2.44	8.6
	t No. 51 removed		l.75 O cycles.
		,500,000 Cycles	
49			.
	33.85	0.49	2.55
50 54	34.30 Off scale . :	1.04 removed from tes	2.9 t 1,028,402 cycles.
			, ono, ton cycles.
		,000,000 Cycles	
49	33.82	0.94	1.85
50	34.31	0.94	1.90

Test Temperature 40°C. Measurement Temperature 25°C.

Load 30µH plus 1 ohm resistor. Repetition Rate 10 pps. +

Test Voltage 900 VDC. _ Peak Current 450 amps.

^{*}Metallizing and Coating are Sprague Proprietary Processes.

**Test Conditions: Capacitance and Dissipation Factor at 1000 Hz.

Leakage Current at 500 VDC.

⁺CADET III Test equipment used. (Dusigned to run 10 pps repetition rate)

TABLE XIV

Constitution of the board

PHASE IB - CHARGE-DISCHARGE LIFE TEST** DESIGN C 0.00026" METALLIZED COATED* POLYCARBONATE FILM

(Encapsulated in Steel Cans)

		Dissipation	
Unit	Capacitance	Factor	Leakage Current
No.	(μ F)	(%)	(μA)

		0 Cycles	
109	34.65	0.70	0,38
110	33,45	0,47	0.18
111	32.90	0.45	0.16
112	28.15	0,45	0,16
113	34.45	0,56	0.30
114	34.08	0.61	0, 20
		1000 Cycles	
109	22 10	/ 04	0.7/
110	33.18	6.94	0.36
	33.39	0.32	0.12
111	32,92	0.51	0,105
112	28.18	1,04	0, 11
113	34.43	0,53	0, 235
114	34.04	0.45	0.22
		10,000 Cycles	
109***	Off Scale (H	igh DF)	
110	33,41	0.62	0, 20
111	32,88	0.62	0,17
112	28,18	0.62	0.17
113	34,04	1.04	0, 32
114	34,45	0.62	0, 23
	2.5	5,000 Cycles***	•
110	33,40	0,39	0,24
111	32, 4 1		
112	28,16	0,45	0.22
113	•	0.32	0.25
114	34,05 34,41	1,24 0,57	0,50 0,38
	34,44		0. 30
	50), 000 Cycles***	•
110	33,41	0,42	0,24
111	33.90	0.45	0, 23
112	28.11	0.40	0, 25
113	34.04	1,30	0,60
114	34,43	0.6	0.45
	10	0,000 Cycles***	*
110		-	
110	33,40	0, 36	0, 265
111	32,97	0,41	0, 22
112	28,14	0.54	0.30
113	34,08	1.04	2,0
114	34,40	0.62	0.32

^{*}Metallizing and Coating are Sprague Proprietary Processes.

Leakage Current at 500 VDC.

Test Temperature 40°C.

Measurement Temperature 25°C,

Load 30µH plus 1 chm resistor,

*Repetition Rate 0.1 pps up to and including 10,000

cycles

10 pps from 10,000 cycles upward.

Test Voltage 900 VDC.

Peak Current 450 amps.

49

74491 11 4 44

^{**}Test Conditions: Capacitance and Dissipation Factor at 1000 Hz.

^{***109} Failed 6469 Cycles.

^{****}CADET III test equipment used from 10,001 to 100,000 cycles. Repetition rate increased from 0,1 pps to 10 pps.

^{*}CADET II test equipment was limited to 0, 1pps and CADET III test equipment designed to run test at 10pps in accordance with proposal.

TABLE XV

PHASE IB - CHARGE-DISCHARGE LIFE TEST** DESIGN F 0.00027" METALLIZED COATED* PETP WAX IMPREGNANT

(Encapsulated in Steel Cans)

		Dissipation	
Unit	Capacitance	Factor	Leskage Current
No.	<u>(μF)</u>	(%)	<u>(μΑ)</u>
		0 Cycles	
59	34,50	0,42	0,63
62	34,20	0.49	0,57
63	35,20	0, 50	0,57
67	34, 20	0.49	0,43
68	34.00	0.48	0,40
71	35.20	0,50	0.36
		5000 Cycles	
59***	25.54	6.14	Short
62	34.00	0.94	0.475
63	34.84	1.04	0.28
67	34, 03	1.04	0, 165
68	33.68	1.04	0.15
71	34.75	1.04	0.35
		10,000 Cycles	
62	33.99	0.94	0,50
63	34.81	1.04	0.28
67	34.01	0.94	0.195
68	33.69	0.94	0.0045
71	34.76	0.94	0,31
		20,000 Cycles	
62	34.00	0, 94	0, 285
63	34.82	0.94	0.245
67	34.00	0.94	0.15
68	33,62	0.94	0.145
71	34, 73	0.94	0.335
		40,000 Cycles	
62	34.01	0,94	0.26
63	34.82	0,94	0.235
67	33,99	0.94	0,135
68	33.69	0.94	0.125
71+++	Cannot Rea	d (Shor!)	
		100,000 Cycles	
62	34,03	0,94	0,49
63	34.87	1.04	0,50
67	34.02	0, 94	0, 23
68	33.68	0, 94	0,25

^{*}Metallizing and Coating are Sprague Proprietary Processes.

Leakage Current at 500 VDC. Test Temperature 40°C.

Messurement Temperature 25°C, Load 30µH plus 1 ohm resistor.

+Repetition Rate 10pps.
Test Voltage 900 VDC.

Peak Current 450 amps.

P44897-11-(,-8449

The first figure of the second

^{**}Test Conditions: Capacitance and Dissipation Factor at 1000 Hz.

⁺CADET III test equipment used. (Designed to run 10pps repetition rate.)

^{***59} Failed 3200 Cycles. ****71 Failed 33,800 Cycles.

TABLE XVI

PHASE IB - CHARGE-DISCHARGE LIFE TEST** DESIGN E 0.00027" METALLIZED COATED* PETP SILICONE OIL IMPREGNATED

(Encapsulated in Steel Cans)

	Y	Dissipation	
Unit	Capacitance	Factor	Leakage Current
No.	(F)	<u>(%)</u>	(i+ A)
		0 Cycles	
78	34.00	0, 67	0,54
80	33,40	0.97	0.48
83	33,00	0.67	0.43
90	34.00	0.80	0.40
92	33.30	0.77	0.37
94	33.38	0.66	0,36
		5000 Cycles	
78	33.85	1,04	0.25
80	34, 20	0.32	0,0016
83	33.11	0.65	5,0
90	34.19	0.94	0.14
92	33, 51	0.94	2, 245
94	34.15	0.)4	0.29
		10,000 Cycles	
78	33.87	0.94	0.1
80	34,18	0.94	0.7
83	33,11	0.94	0.8
90	34.18	0.96	0.07
92	33,57	0.94	0.13
94	34.13	0.94	0.17
		25,000 Cycles	
70	225.02	0.04	0.14
78	33:87	0.94	0.14
80	34.23	1.04	0.10
83	33.15	0.94	1.35
90	34.25	0.94	0.175
92	35,61	0.94	0.25
94	34,17	0.57	0.315
		50,000 Cycles	
78	33.88	0.65	0.25
80	34.19	0.94	0.002
83	33,15	0,84	0.90
90	34, 21	0,57	0,15
92	33.58	0.84	0.20
94	34,14	0.94	0.265
		100,000 Cycles	
78	33.88	0.65	0, 24
80	34.18	0.94	0,0015
83	33.15	0.84	0.95
90	34, 22	0.74	0.16
92	33.59	0.84	0, 24
94	34.14	0.94	0.25
, -		٠.,٠	V,

Leakage Current at 500 VDC. Test Temperature 40°C. Measurement Temperature 25°C. Load 30 µH plus 1 ohm resistor. Repetition Rate 10 pps. Test Voltage 900 VDC. Peak Current 450 amps. __ CADET III test equipment used.

^{*}Metallizing and Coating are Sprague Proprietary Processes.
**Test Conditions: Capacitance and Dissipation Factor at 1000 Hz.

TABLE XVII

PHASE IB - CHARGE-DISCHARGE LIFE TEST** DESIGN D UNITS - 0.00026" METALLIZED COATED*POLYSULFONE

0 Cycles

Unit No.	Capacitance (μF)	Dissipation Factor (%)	Leakage Current (µA)
134	34.95	0.56	2.5
135	34.30	0.52	3
136	34.38	0.68	2.4
138	34 .7 8	0.49	1.8
139	33.62	0.32	1.2
140	34.80	0.55	3.0
		100 Cycles	
134	Shorted 42	cycles	
135	Shorted 86	cycles	
136	Shorted 56	•	
138	Shorted 95	•	
139	Shorted 36	•	
140	Shorted 50	•	

*Metallizing and Coating are Sprague Proprietary Processes.

**Test Conditions: Capacitance and Dissipation Factor at 1000 Hz.

Leakage Current at 500 VDC.

Test Temperature 40°C.

Measurement Temperature 25°C. Load 30 µH plus 1 ohm resistor.

Repetition Rate 10 pps. + Test Voltage 900 VDC. Peak Current 450 amps.

+CADET III test equipment used. (Designed to run 10pps repetition rate).

DAAR97-71-C-0049

The same of the sa

to heat which eventually caused the dielectric to melt. For the type of units tested, the higher repetition rate of CADET III only seems to accelerate the rate of failures. The higher repetition rate of CADET III quickens the loss of connection between the electrode and end spray, thus raising the DF and causing the unit to heat. This heat rise can become so high that the dielectric can no longer withstand the voltage and the unit fails. A photograph showing loss of metal along the end connection edge of the film is shown in Figure 13.

After this limited testing the discharge life test data indicate that Design E performed the best with no failure after 100,000 charge-discharge cycles. Designs A, C and F exhibited life test results of approximately the same level of performance. This level was only slightly lower than that exhibited by Design E. Units of Design D failed before 100 cycles, again indicating dielectric of poor quality.

8. Design Selection

Design A was chosen over Design C for use in Phase II because the PETP is much easier to coat and metallize with consistently good results than the polycarbonate. The lower DF of the coated polycarbonate compared to the coated PETP would not be a distinct advantage at a 10 pps repetition rate. At higher repetition rates, the coated polycarbonate should perform better than coated PETP. Design F was not chosen because the wax impregnation did not improve the break lown voltage significantly and increased the weight. Also wax would not conduct the heat out of the section as well as the silicone oil.

Design D was eliminated because of the extremely poor discharge life test results. Design B had previously been eliminated when units of this design would not withstand the necessary voltage.

9. End Connection

Considerable time was spent in an effort to develop better mechanical and electrical connections between the electrode and the metal end spray. Sections were rolled using 2" wide 0.00052" metallized coated* PETP film. The sections were processed in the normal manner with the exception of the end spray - lead

^{*}Metallizing and Coating are Sprague Proprietary Processes

Red oduced how cook

LOSS OF METAL AND END CONNECTION

NO LOSS OF END CONNECTION

COMPARISON OF FILM WITH AND WITHOUT LOSS OF END CONNECTION

attachment method. All the experimental groups received 10,000 charge-discharge cycles at 2500 volts and 40°C or were removed from test due to excessive failures. The result of this testing is shown in Table XVIII. The data indicate that Spray Process C, control solder method gave the best results. Table XVIII also indicates a slight advantage using Spray Process A and lead attachment using Solder Process I.

10. Phase I Extension

It was decided to extend the testing on Design E units because of the extremely good initial results achieved with this design. This was easily done because test equipment would be idle during the initial stages of Phase II.

The extended life test data on Design E is shown in Table XIX. As the extended data indicate, Design E performed extremely well.

11. Phase II

A decision was made to include three end-connection grant etric variations for both Design A (0.00027" metallized coated*PL and Design E (0.00027" metallized coated*PETP, silicone oil impacted in the Phase II program. The three variations were:

Variation 1 - A different geometry with a longer electrode length terminated with Spray Process C, Solder Process I. The purpose of these units was that the longer electrode length would reduce the peak current per linear inch and extend the life of the end connection.

Variation 2 - Standard design with Spray Process C, Solder Process I. This experimental group used the best spray process from the end spray evaluation.

Variation 3 - Standard design with Spray Process A, Solder Process I. This was the second best spray process of the end evaluation.

These capacitors were rolled and processed using the same techniques as in Phase I. The only deviation from the processes used in Phase I was the variations in end spray. The 4" long units were encapsulated in aluminum cans while shorter units were encapsulated in steel cans because aluminum cans were not available at that time and the delay required to secure the cans was unnecessary.

^{*}Metallizing and Coating are Sprague Proprietary Processes

TABLE XVIIIA

					CONTROL	SPR AY A	CONTROL SPRAY AND SOLDER PROCESS	R PROCES	•					
	O Cyc. es	3	100 Cycles	Yele.	200	500 Cycles	1000 Cycles	yeles	2000 Cycles	cles.	\$000 Cycles		10, 000 Cycles	Szelee
Š	Cap (MF)	DE (%)	Cap (m.F.)	DF(%)	Cap(ul)	DF (%)	Cap(HF)	DF(%)	Captur	DF(%)	Cap(uF) DF(%)	DF(%)	CORPE DE	DE(%)
-	9.075	0.47	9.064	9. \$	9.059	0.49	9,050	1.65	9.043	0.49	9.023	•	8.845	0.56
~	9.440	0.51	97 458	0.50	9.430	6.49	9.420	0.65	9.411	0.49	4.385	•	1.951	6.03
•	8.990	0.61	9. 962	0.63	6.111	10.91	3.125	14.91	removed	from teel	removed from test exdupray losse from electrods	losse fr	om electro	4
•	8.880	0.55	8.854	0.53	8.845	0.54	8. 628	0,65	9.826	o. 4	6.793	0, 79	removed	removed from tast
•	8.895	0.55	8.852	0.73	8.885	0.54	8.874	0.62	8.899	0.49	9.068	0,49	8.847	0.4
				•,	SPRAY PROCESS A, CONTROL SOLDER	CESS A,	CONTROL!	SOLDER						
•	8.857	0, 48	8.852	0.74	8.834	95.0	8.822	0.62	6.015	0.48	8.871	9 .4	6.885	3 .0
•	8.892	0. 72	8.879	0.95	6.875	69.0	8.861	0.70	6.835	1.41	4.607	1.30	8.646	1.51
•	6.680	0.47	8, 865	0,47	8.851	o. 4	6.843	6.65	8.849	0.4	. 809	0,48	. 463	‡
o 56	6.887	0.47	6.870	0,46	8.869	0.49	9.854	0.65	8.858	6, 49	8.851	0. #	8.725	0.46
91	8.840	1.38	6.807	3, 24	9.700	17.91	1.330	12.5	removed	from test	removed from best loss of connection between	shaw etton	Bethless	
				CON	CONTROL SPRAY PROCESS, SOLDER PROCESS	Y PROCE	SS, SOLDE	R PROCES		endepray and electrode	•			
=	8.830	0.62	6.810	0.54	8.805	0.48	8.871	0.49	8.802	0.53	6.802	0.48	9, 106	0.4
21	8.695	0.62	8.674	0.49	8.655	0.55	8.655	0.49	8.649	0.53	8.609	0.48	2.877	0.45
13	8.765	0.73	8.752	0.49	8.736	0.55	8.734	0.49	069.	0.53	.688	0.47	3.905	\$.00
1 4	8.715	0.71	8.705	0.49	8.697	0.53	8.693	0.49	8.693	0.53	6,693	0.58	8.581	9. 54
18	8.796	0.65	8.753	0.49	8. 741	0.53	8.796	0.99	8.740	0,53	8.742	0.47	8.177	0.54
				80	SPP AY PROCESS B, CONTROL SOLDER	CESS B, C	CONTROL 8	OLDER						
16	8.972	c. 60	8.943	0.45	6. 922	0. 53	8.918	0.49	8.883	0.53	6.899	0.47	8. 975	2.80
1.7	8.950	0.57	4.897	0.45	8.885	0. 62	8.060	5.31	5.644	6. 73	3.689	2. 10	removed	removed from test
18	11.230	0, 70	11.250	9.6	11.140	1.91	10.270	3.21	7. 873	9, 54	7.637	9.48	7. 351	1.61
19	8.958	0.55	8.941	0.49	8. 928	0.53	8.924	0.53	8.918	9. %	8,911	0, 48	8.283	3.11
07	8.8%	09.0	8.831	0.49	£. 367	0.49	8.861	0.53	6.853	95.0	6.651	97 .0	4.806	8.11
Tested at 2! Cap & DF IT *Sprague Pt	00 volts, 500 mesured at 14 oprietary	orows, 4.	Tested at 2500 volts, 500 imps, 40°C, and 32kH load Cap & DF measured at 1000 Hz *Sprague Proprietary	Peol J									BAARTII COM	ŋ ŧ i

TABLE XVIIIB

END SPR AY EVALUATION
of
0.00052" METALLIZED COATED* PETP FILM

SPRAY PROCESS E, CONTROL SOLDER

	0 0	0 Cycles	100 Cycles	cles	500 Cycles	::1	1000 Cycles	el.	2000 Cycles	#1	5000 Cycles	·	10, 000 Cycles
No.	Cap(µF)	Cap(µF) DF(%)	Cap(µF)	DF(%)	Cap(µF)	DF (%)	Cap(µF) DF(%)	DF(%)	Cap(uF) DF(%)	F(%)	Cap(µF) DF(%)		Cap(µF) DF(%)
21	8.796	6.70	8.802	0.50	8.769	0.48	off scal	e - remo	off scale - removed from test	4			
22	9.180	6.74	9.181	0.50	9.160	6.49							•
23	8.830	0.74	8.812	1.04	2.888	15.91	2.467	27.91	remove	removed from test			
24	8.864	42.0	8.962	0.49	8.925	0.49	8.920	0.49	8.884	0.45	8.881	0.44	8.880 0.49
25	8,883	0.73	8.886	0.49	6.675	6.81	5.770	1.61	8.33	6.61	4. 786	7.21	4.762 7.21
57				•	SPR AY P	ROCESS D	SPRAY PROCESS D, CONTROL SOLDER	SOLDER					
97	9, 030	0.71	9.021	0.75	9.025	0.56	9.031	0.56	9.015	0.49	7.799	0.79	8.603 1.71
27	8.990	92 .0	8.997	0.78	8.989	0.56	9.000	0.53	7.932	0.49	9.005	0.64	off scale
87	8.895	0.65	8.897	0.75	8.903	0.56	8.907	95.0	8.980	0.49	8.900	0.44	off scale
67	8.974	0.75	8.872	0.75	8.945	0.56	8.883	1.01	7.613	0.49	7.504	0.44	7.450 0.49
30	8.930	0.75	8.920	0.75	8.928	0.56	8.940	0.49	8.907	0.45	8.339	0.44	8.376 0.490
Tested at 2500 volts, Cap & DF measured a	Tested at 2500 volts, 500 amps Cap & DF measured at 1000 Hz	00 amps, 1000 Hz	Tested at 2500 volts, 500 amps, 40°C, and 32µH load Cap & DF measured at 1000 Hz	peol Hq									DAA 801-11-C-8844

*Sprague Proprietary

TABLE XVIIIC

of 0,00052" METALLIZED COATED* PETP FILM END SPRAY EVALUATION

SPRAY PROCESS C, CONTROL SOLDER

	10,000 Cycles	Cap(4F) DF(%)	8 708 0 45				8.527 0.45	0 ± 0 ± 0 0				Removed From Test							Removed From Test
	5000 Cycles	Cap(4F) DF(%)	8,702 0.47		0	8.762	8.533 0.46 8.141 0.46				4.169 2		8.513 2.71	7 2000		Off Scale			4.510 0.96 }
2000	×	Cap(µr) DE(%)			STATE OF STA	Part Available					: :	No Data Available				rest Continuing			allable.
1000 Cvcles	Captur Drawn	Cap(ht) Dr (70)	8.709 · 0.65 7	8.479 0.47	8.779 0.47			CONTROL SPRAY, SOLDER PROCESS 2	6.192 0.76				8.685 2.51	SPRAY PROCESS F, CONTROL SOLDER	8 897 0 50	24	C 05.0 008.8		
500 Cycles	Cap(uF) DF(%)		8.715 0.49	8.480 0.49	8.783 0.49	8.556 0.49	8.158 0.49	OL SPRAY, SOI	9.209 0.55	9.253 0.54	9.019 0.54			PROCESS F, CO	8,904 0.49	0.49	0.49	0.49	6.31
	DF(%) Ca		0.45	0.45 8	0.45 8.	0.45 8.	0.45 8.	CONTR	0.54 9.	0.54 9.	0.54 9.	0.54 8.	0.54 8.	SPRAY	0.54 8.9	0.54 9.355	0.54 8.921	0.54 7.334	2.91 7.430
100 Cycles	Cc P(HF)		6. (14	8.479	8.785	8.556	8.161		9.223	9.310		8.959	9,039		8.915	8.384	8.926	9.038	8.804
0 Cycles	Cap(µF) DF(%)	8.730 0.45		8.470 0.45	8.802 0.45	8.573 0.45	8.174 0.45		9.228 0.54	9.325 0.53	9.032 0.53	8.959 0.49	9.030 0.70		8.920 0.55	88 0.56	35 0.55	49 0.57	15 0.55
	No.	36		37 8.	38 8.	39 8.	40 8.	•	6	42 9.	43 9.	44 8.	45 9.0		46 8.9	47 8.388	48 8.935	43 9,049	50 8.815 0.55 8.804 Tested at 2500 motal con

Tested at 2500 volts, 500 amps, 40°C, and 32μH load Cap & DF measured at 1000 Hz *Sprague Proprietary

LEGEND FOR TABLES XVIIIA - XVIIIC

Report Heading	Actual Description
Control Spray	Endspray applied in conventional state-of-the-art manner.
Spray Process A	Endspray was applied at a distance of approximately 8" between the spray nozzle and the top of the section.
Spray Process B	Capacitor chilled to -55°C temperature before spraying to prevent shrinkage of the film due to end spray heat.
Spray Process C	Pure tin metal used as endspray material.
Spray Process D	Four coats (approximately 1-3 mils each) of normal endspray formulation per end.
Spray Process E	State-of-the-art vacuum deposition of aluminum precoat prior to standard endspray.
Spray Process F	A 45° angle was used in applying the spray to obtain maximum theoretical contact of spray and electrode.
Control Solder	Leads attached onto endspray using 60/40 tin/lead solder with electric soldering iron (state-of-the-ar soldering procedure).
Solder Process 1	Pre-tinned leads attached to endspray using carbon tip resistance soldering (no added solder).
Solder Process 2	Pre-tinned leads attached to endspray during the endspraying process using the heat of the melting endspray to solder the lead to the endspray.

TABLE XIX

CONTINUATION OF PHASE IB CHARGE-DISCHARGE LIFE TESTING

DESIGN E - 0.00027" METALLIZED COATED* PETPSILICONE OIL IMPREGNATED

Unit No.	Capacitance (µF)	Dissipation Factor (%)	Leakage Current (µA)
		0 Cycles	
78	34.00	0.67	0, 54
80	33.40	0.97	0.48
83	33.00-	0.67	0.43
90	34.00	0.80	0.40
92	33.30	0.77	0.37
94	33. 38	0.66	0.36
		5,000 Cycles	
78	3 3. 85	1.04	0.25
80	34.20	0.32+	0.0016+
83	33.11	0.65	5. 0
90	34.19	0.94	0.14
92	33. 51	0.94	0.245
94	34. 15	0.94	0.29
		10,000 Cycles	
78	33.87	0.94	0.1
80	34.18	0.94	0.7
83	33.11	0.94	0.8
90	3 4. 18	0.96	0.07
92	33.57	0.94	0.13
94	34.13	0.94	0.17
		25,000 Cycles	
78	33.87	0: 94	0.14
80	34.23	1.04	0.14
83	33. 15	0.94	0.10
90	34.25	0.94	1.35
92	35.61	0.94	0.175
94	34.17	0.57	0.25 0.315
		50,000 Cycles	
78	33.88	0.65	0.25
80	34.19	0.94	+ 500.0
83	33. 15	0.84	0.90
90	34. 21	0.57	0.15
92	33.58	0.84	0,20
94	34. 14	u . 9 4	0.265
		100,000 Cycles	
78	33.88	0.65	0.24
80	34.18	0.94	0.0015+
83	33.15	0.84	0.95
90	34, 22	0.74	0.16
92	33. 59	0.84	0.24
94	34.14	0.94	0.25
		60	Contract No. DAAB07-71-C-0049

TABLE XIX (CONTINUED)

CONTINUATION OF PHASE IB CHARGE-DISCHARGE LIFE TESTED DESIGN E - 0.00027" METALLIZED COATED*PETP SILICONE OIL IMPREGNATED

		Dissipation	
Unit	Capacitance	Factor	Leakage Current
No.	<u>(μF)</u>	(%)	<u>(μA)</u>
		500, 000 Cycles	
78	34.05	0.84	0.32
80	34.20	0.99	0.70
83	33.30	0.94	1,30
90	34.55	0.84	0,22
92	33, 66	0.94	0.80
94	34.10	0.94	0.55
	1	, 000, 000 Cycles	
78	33.88	0.79	0.32
80	34.10	0.70	0.75
83	33.10	0.76	1.80
90	34.10	0.70	0.25
92	33.48	0.72	0.98
94	34.04	0.70	0.50
	2	2,000,000 Cycles	
78	33.80	0.84	0.28
80	34.00	0.84	0.68
83	33.00	0.75	0.90
90	34.00	0.79	0.22
92	33.25	0.79	0.80
94	34.20	0.84	0.50
	5	5, 000, 000 Cycles	
78	33.75	0.74	0.34
80	34.09	0.74	0.92
83	34. 12	0.74	1.40
90	34.06	0.74	1.30
92	33.90	0.74	0.26
94	36.04	0.74	0.88
	10	0,000,000 Cycles	
78	33. 65	0.94	0.48
80	33.84	0.84	0.98
83	32.85	0.74	0.27
90	33.78	0.65	0.22
92	33,27	0.76	0.94
94	35, 68	0.74	0.68

*Sprague Proprietary Capacitance and Dissipation Factor at 1000 Hz Leakage Current at 500 V Test Temperature 40°C up to 100,000 cycles 25°C after 100,000 cycles Measuring Temperature 25°C Repetition Rate 10 pps Load $32 \mu H + 1\Omega$ resistor Current = 450 anip. Reading error

Contract No. DAABOT-71 - C-0049

The finished encapsulated units were cleared at 1000 volts at 70°C. The number of audible clearing was recorded. These data are recorded in Table XX.

A sample of each design was measured for inductance. The readings are shown in Table XXI. The inductance measurements were in the range of values expected for capacitors of this size and construction.

12. Testing and Evaluation

A sample of six units of each design variation was discharge life tested for 10,000,000 charge-discharge cycles (at 10 pps and 40°C) or until failure. The results of this testing are shown in Tables XXII - XXVII.

Two things are evident from these data:

Silicone oil impregnated units performed better than their dry (unimpregnated) counterparts.

Variation 1 units performed better than standard design units.

The reason that the silicone oil impregnated units performed better than the unimpregnated ones was not due to any appreciable increase in dielectric strength caused by the impregnant, but rather from the silicone oil acting as a heat transfer medium to conduct heat away from the end connections and windings to be dissipated by the can.

The probable reason for the greater success of Variation 1 capacitors was that the longer electrode length of these units lowered the peak discharge current per unit of length to a value at which a connection between the metallized electrode and end spray metal could be maintained.

On the basis of the discharge life test data, silicone oil impregnated units of Variation 1 design were selected for use in Phase III.

TABLE XXA

AUDIBLE MOMENTARY BREAKDOWN AT ELEVATED TEMPERATURE AT 1 kV DESIGN A VARIATION 1

(0.00027" METALLIZED COATED* PETP, DIFFERENT GEOMETRY)
SPRAY PROCESS C, SOLDER PROCESS I

Unit No.	No. of Breakdowns
151	26
152	20
153	21
154	26
155	33
156	17
157	17
158	22

Test Voltage 1000 VDC Test Temperature 70°C *Sprague Proprietary

TABLE XXB

AUDIBLE MOMENTARY BREAKDOWN AT ELEVATED TEMPERATURE AT 1 kV DESIGN A VARIATION 2

(0.00027" METALLIZED COATED* PETP, STANDARD DESIGN)
SPRAY PROCESS C, SOLDER PROCESS I

Unit No.	No. of Breakdowns
200	10
201	12
202	18
203	20
204	15
205	22
206	18
207	16

Test Voltage 1000 VDC Test Temperature 70°C *Sprague Proprietary

TABLE XXC

AUDIBLE MOMENTARY BREAKDOWN AT ELEVATED TEMPERATURE AT 1 kV DESIGN A VARIATION 3

(0.00027" METALLIZED COATED* PETP, STANDARD DESIGN) SPRAY PROCESS A, SOLDER PROCESS I

Unit No.	No. of Breakdowns
174	18
175	22
176	17
177	15
178	10
179	19

Test Voltage 1000 VDC Test Temperature 70°C *Sprague Proprietary

TABLE XXD

AUDIBLE MOMENTARY BREAKDOWN AT ELEVATED TEMPERATURE AT 1 kV DESIGN E VARIATION 1 (0.00027" METALLIZED COATED* PETP, DIFFERENT GEOMETRY, SILICONE OIL IMPREGNATED) SPRAY PROCESS C, SOLDER PROCESS I

Unit No.	No. of Breakdowns
180	10
181	12
182	16
183	9
184	ıí
185	18
Test Voltage 1000 VDC	
Test Temperature 70°C	DAAWS 21 0 0000
*Sprague Proprietary	DAAB07-71-C-0049

TABLE XXE

AUDIBLE MOMENTARY BREAKDOWN AT ELEVATED TEMPERATURE AT 1 kV DESIGN E VARIATION 2

(0.00027" METALLIZED COATED* PETP, STANDARD DESIGN, SILICONE OIL IMPREGNATED)
SPRAY PROCESS C, SOLDER PROCESS I

Unit No.	No. of Breakdowns
193	20
194	18
195	14
196	22
197	17
198	19
Test Voltage 1000 VDC	
Test Temperature 70°C	DAAB07-71-C-0049
*Sprague Proprietary	

TABLE XXF

AUDIBLE MOMENTARY BREAKDOWN AT ELEVATED TEMPERATURE AT 1 kV DESIGN A VARIATION 3 (0.00027" METALLIZED COATED* PETP, STANDARD DESIGN, SILICONE OIL IMPREGNATED) SPRAY PROCESS A, SOLDER PROCESS I

Unit No.	No. of Breakdowns
186	10
187	15
188	16 .
189	19
190	27
191	18
192	22

Test Voltage 1000 VDC Test Temperature 70°C *Sprague Proprietary

TABLE XXI EFFECTIVE SERIES INDUCTANCE

Unit No.	Effective Series Lyductance (pH)	Unit No.	Effective Series Inductance (pH)
(0, 00027" Metallia Spray 1	Design A Variation 1 (0.00027" Metallized Coated's PETP, Different Geometry) Spray Process C, Soider Process I	(0, 6/027" Metalliz. Spi	Design E Variation 1 (0.00027" Metallized Coated* PETP, Different Geometry, Silicone Oil Impregnated) Spray Process C, Solder Process I
151	0.0326	180	0.0364
153	0.0310	182	0.0401
1 54	0.0355	2. 4.3. 4.3.	0.0380
156	0.0325	185	0.0363
157	0.0331		
158	0.0332	THE STATE OF THE S	Design E Variation 2
		(0.0002/" Metallises	(0.000k/" Metalliked Costed* Th. 17, Standard Lessign, Stateond Cal Impregnated) Spray Process (1. Solder Process)
11-1-17 :: (2000 0)	opposite Cresings A versual of the control of the c		
Terrain Control	Exemple Control (Colder Process)	159	0.0381
		160	0.0454
200	0.0320	161	0.0362
167	0.0310	162	0.0336
202	0.0298	163	0.0414
203	0.0290	164	0.0380
507	0.0310	165	0.0380
205	0.0300		
902	0.0306		Design E Variation 3
202	0.0308	10,00027" Metallize	(0.00027" Metallized Coated* PETP, Standard Design, Silicone Oll Impregnated) Spray Process A, Solder Process I
	Design A Variation 3		
(0.00027" Metal	(0. 00027" Metallized Coated* PETP, Standard Design)	186	0.0363
Sorav	Spray Process A. Solder Process I	187	0.0322
		188	0.6324
174	0.0327	189	0.0311
175	0.0319	061	0.0314
171	0.0368	161	0.0360
171	0.0325	192	0.0401
178	0.0334		
179	0.0312		DAAB97-31-C-8649

Sprague Proprietary

TABLE XXII

CHARGE-DISCHARGE LIFE TESTING DESIGN A VARIATION 1 (0.00027" METALLIZED COATED* PETP, DIFFERENT GEOMETRY) SPRAY PROCESS C, SOLDER PROCESS 1

Uait No.	Capacitance (µF)	Dissipation Factor (%)	Leakage Current (μΑ)
		0 Cycles	
153	32.65	0.69	2.00
15 4	31.40	0.71	1.00
155	33,35	0.74	0.82
156	33.58	0.71	1.40
157	31.90	0.66	0.68
158	31.43	0.66	0.30
	. 1,	000,000 Cycles	
153	32.25	0.75	1.82
154	31.72	0, 57	0.60
155	33,16	0.70	0 32
156	34.16.	0.74	1.30
157	30.40	0.74	0.68
158	31.28	0.57	0.40
	5, (000,000 Cycles	
153 *SHO	PRT		
154	31,22	0,62	1.90
155	32, 97	0.62	2,50
156	32.85	0.64	1.60
157	27.70	0.65	0.92
158	31.10	0.56	2.00
∓Failed 2	2, 433, 283		

*Sprague Proprietary

Capacitance and Dissipation Factor at 1000 Hz

Leakage Current at 500 V

Repetition Rate 10 pps

Test Temperature 40°C

Measuring Temperature 25°C

Load $30\mu H + 1\Omega$ resistor

Test Voltage 900 V

Peak current = 450 Amps

CHARGE-DISCHARGE LIFE TESTING DESIGN A VARIATION 1 (0.00027" METALLIZED COATED* PETP, DIFFERENT GEOMETRY) SPRAY PROCESS C, SOLDER PROCESS I

Unit No.	Capacitance (µF)	Dissipation Factor (%)	Leakage Current (μΑ)
	10,0	000,000 Cycles	
154	30.15	0.66	0,80
155	32.77	0.64	0.44
156	31.62	0.81	3,50
157	24.50	0.62	0.70
158	30.80	0.63	0.85

*Sprague Proprietary
Capacitance and Dissipation Factor at 1000 Hz
Leakage Current at 500 V
Repetition Rate 10 pps
Test Temperature 40°C
Measuring Temperature 25°C
Load $30\,\mu\text{H} + 1\Omega$ resistor
Test Voltage 900 V
Peak current \approx 450 Amps.

TABLE XXIII

CHARGE-DISCHARGE LIFE TESTING DESIGN A VARIATION 2 (0.00027" METALLIZED COATED* PETP STANDARD DESIGN) SPRAY PROCESS C, SOLDER PROCESS I

0 Cycles

Unit No.	Capacitance · (μF)	Dissipation Factor (%)	Leakage Current
200	30.40	<u>_</u>	
201	29.00	0, 54	0.50
202	28.65	0.64	0.80
203		0.64	0.60
204	29.98	0.64	0.80
205	29.38	0.64	0.78
203	30.45	0.66	0.90
	:	1,000,000 Cycles	
200	Failed 238, 9	250	
201	28.65		
202	28.50	0.75	0.98
203	Failed 938,6	0.85	0.75
204	29.00		
205	Failed 256, 3	0.82 22	0.95
	5	,000,000 Cycles	
201	Failed 1,098,	504	
202	Failed 2, 568,	300	
204	Failed 1, 687,	352	

Leakage Current at 500 V Test Temperature 40°C Measuring Temperature 25°C Repetition Rate 10 pps Load 30 µH + 1 12 resistor Test Voltage 900 V Peak Current = 450 A.

*Sprugue Proprietary

72

TABLE XXIV

CHARGE-DISCHARGE LIFE TESTING DESIGN A VARIATION 3

(0.00027" METALLIZED COATED* PLTP, STANDARD DESIGN)
SPRAY PROCESS A, SOLDER PROCESS I

Unit No.	Capacitance (μ F)	Dissipation Factor (%)	Leakage Current (µA)
	0 C	ycles	
200 201 202	30.40 29.00 28.65	0.54 0.64 0.64	0.50 0.80 0.60
203 204 205	29.98 29.38 30.45	0.64 0.64 0.66	0.80 0.78 0.90
	1,000,0	00 Cycles	
200* 201 202 203+ 204 205# *Failed 238,9 +Failed 938,6 #Failed 256,3	52	0.75 0.82 0.82	0.98 0.75 0.95

5,000,000 Cycles

201** Short 202++ Open 204## Short **Failed 1,098,506 ++Failed 2,568,300 ##Failed 1,681,352

Capacitance and Dissipation Factor at 1000 Hz Leakage Current at 500 V Test Temperature 40°C Measuring Temperature 25°C Repetition Rate 10 pps Load $30\mu H + 1\Omega$ resistor Test Voltage 900 V Peak Current* 450 A. *Sprague Proprietary

TABLE XXV

CHARGE-DISCHARGE LIFE TESTING DESIGN E VARIATION 1

(0.00027" METALLIZED COATED* PETP, DIFFERENT GEOMETRY, SILICONE OIL IMPREGNATED)
SPRAY PROCESS C, SOLDER PROCESS I

Unit No.	Capacitance (µF)	Dissipation F ictor (%)	Leakage Current (μΑ)
	0 C	ycles	
180	32.13	0.61	0.32
181	31.78	0.57	0.76
182	32.30	0.53	0.38
183	31.20	0.57	0.75
184	32.29	0.5 4	0.70
185	30 <u>.</u> 60	0.53	0.90
	1,000,	000 Cycles	
180	32.10	0.65	0.25
181	31.70	0.61	0.25
182	32.30	0.63	0.18
183	31.10	0.65	0.68
184	32.35	0.63	0.70
185	30.90	0.63	0.25
	5,000,	000 Cycles	
180	32.30	0.62	0.15
181	31.74	0.62	0.12
182	32.45	0.65	0.24
183	31.40	0.61	0.25
184	32.37	0.62	0.78
185	30.95	0.62	0.72
	10,000,0	000 Cycles	
180	32.25	0.57	0.18
181	31.65	0.57	0.16
182	32.44	0.53	0.22
183	31.35	0.57	2.00
184	32.32	0.53	0.32
185	30.94	0.53	0.98

Capacitance and Dissipation Factor at 1000 Hz Leakage Current at 500V Test Temperature 40°C Measuring Temperature 25°C Repetition Rate 10 pps Load $30\mu H + 1\Omega$ resistor Test Voltage 900 V Peak Current * 450 A. *Sprague Proprietary

DAA687-11-C-0649

TABLE XXVI

CHARGE-DISCHARGE LIFE TESTING DESIGN E VARIATION 2 (0.00027" METALLIZED COATED* PETP STANDARD DESIGN SILICONE OIL IMPREGNATED) SPRAY PROCESS C, SOLDER PROCESS I

0 Cycles

Unit	Capacitance	Dissipation Factor	Leakage Current 500 V (μΑ)
No.	(µF)	(%)	
193	34, 17	0, 69	0.40
	34.09	0.74	0.38
194	35.75	0,74	0.38
195	34. 35	0.74	0.95
196	34.14	0.74	0.95
197 198	33.74	0.74	0.40
	5,0	00,000 Cycles	
193	3410	0.70	0.30
194	Open 2,567,	323	
195	35.79	0.70	0.40
196	34.29	0.70	1.60
197	34.10	0.70	0.30
198	33.70	0.70	0.34
	10,	000,000 Cyc.es	
193	34. 08	0.73	0.98
195	35.70	0.73	0.43
196	34. 35	0.74	0.38
197	34.06	0.74	υ . 52
198	33.67	0.74	0.28

Capacitance and Dissipation Factor at 1000 Hz
Leakage Current at 500 VDC
Repetition Rate 10 pps
Test Temperature 40°C
Measuring Temperature 25°C
Load 30 µH plus 1 ohm resistor
Test Voltage 900 VDC
Peak Current ~ 450 amps.
*Sprague Proprietary

TABLE XXVII

CHARGE-DISCHARGE LIFE TESTING **DESIGN E VARIATION 3**

(0.00027" METALLIZED COATED* PETP, STANDARD DESIGN, SILICONE OIL IMPREGNATED) SPRAY PROCESS A, SOLDER PROCESS I

Unit	Capacitance (µF)	Dissipation Factor (%)	Leakage Current (μΑ)
	0 0	Cycles .	
186	33.56	0.76	0.68
187	39.43	0.74	1.50
188	34, 05	0.71	0.80
190	33,71	0.74	0.40
191	33,55	0.69	0.98
192	35.22	0.74	0.40
	1,000,0	000 Cycles	
186	33.50	0.70	0.46
167	34.40	0.71	0.30
188	34.10	0.70	0.40
190	33.65	0.73	0.60
191	33,50	0.71	0.40
192	35.20	0.69	0.60
	5,000,0	000 Cycles	
186	33.72	0.70	0.23
187	34.42	0.71	0.38
188	34.88	0.69	0.35
190*	Open		
191	33.62	0.69	0.30
192	35.25	0.69	0.45
*Failed 3,	226, 368		
	10,000,0	000 Cycles	
186	33.56	0.68	0.26
187	34.30	0.74	0.20
188	33.95	0.74	0.50
191	33.70	0.80	0.30
192	35, 15	0.81	0.24

Capacitance and Dissipation Factor at 1000 Hz Leakage Current at 500 V Test Temperature 40°C Repetition Rate 10 pps Measuring Temperature 25°C Load $30\mu H + 1\Omega$ resistor Peak Current* 450 A Peak Voltage 900 V. *Sprague Proprietary

13. Phase III

Units of Design E Variation 1 were produced in the same manner as in Phase II with the exception that plated aluminum cans and covers were used. The cans and covers were plated with electroless nickel followed by a hot tin dip. With the plating, the units could be hermetically encapsulated using standard tin-lead solder. A comparison among the state-of-the-art metallized paper capacitor, the initial contract design units and the final design is shown in Figure 14.

After initial electrical measurements shown in Table XXVIII, six capacitors were discharge life tested. Twelve additional capacitors were shipped to the U. S. Army Electronics Command, Fort Monmouth, New Jersey. The results of this testing are shown in Table XXIX. It can be seen that only one unit of the six which were tested failed to meet the 50,000,000 charge-discharge cycles objective. This unit was removed from test after 10,000,000 charge-discharge cycles because of loss of capacitance from an initial reading of 31.65 µF to 19.25 μ F after 10,000,000 charge-discharge cycles. It should be pointed out that this was not a catastrophic failure such as a short or open but was still operable. The dissipation factor had also risen to 3.30%. It is interesting to note that the large loss of capacitance and rise in dissipation factor occurred between 5,000,000 and 10,000,000 discharge cycles. It should be noted that the capacitance on this unit dropped about 6% between 0 and 2.5 million cycles. This is a considerably higher capacitance drop than was exhibited by the other units. Because of this capacitance change, it may be possible to screen out infant mortalities such as this unit by use of a burn-in. It appears that a burn-in of less than 10% of the expected life could eliminate possible early failures.

Apparently, new methods of measurements will have to be devised to screen out early failures. However, on the basis of present state-of-the-art capacitors, a failure at 10,000,000 charge-discharge cycles could not be considered an early failure, especially when the repetition rate of 10 pps is considered.

Late in Phase III, a new film (Polyvinylidene Fluoride) became available in engineering sample quantities. This is an extruded biaxially oriented film with a dielectric constant of 11.0. A sample of the film was processed and capacitors were rolled. Because of the limited amount of film available, it was decided to roll capacitors of only approximately 5 µF. The initial electrical measurements on

(Left to Right) State-of-the-Art, Final Design and Initial Design Capacitors

Figure 14

TABLE XXVIII

INITIAL MEASUREMENTS OF DESIGN E VARIATION 1 0.00027" METALLIZED COATED* PETP, DIFFERENT GEOMETRY SILICONE OIL IMPREGNATED

Unit No.	Capacitance (µF)	Dissipation Factor (%)	Leakage Current(µA)	Weight in Grams
110.	(μΓ)	(/0)	(μλ)	Grams
208	30.65	0.72	0.38	164
209	31.10	0.62	0.72	162
210	31.65	0.62	0.50	162
211	36.25	0.75	0.54	165
212	35.22	0.62	0.84	166
213	36.68	0.62	0.84	169
214	31.96	0.69	2.5	174
215	32.60	0.55	14.0	176
216	32.85	0.59	3.2	175
217	32.41	0.55	2.6	176
218	32.41	0.57	3.0	176
219	32.27	0.60	2.8	172
220	31.24	0.54	2.3	175
221	33.51	0.64	3.0	173
222	32.48	0.65	1.2	171
223	32.32	0,62	3.0	174
224	31.63	0.42	3.0	178
225	32.90	0,52	1,3	181
226	31.67	0.59	2.4	176
227	32.26	0.56	2,7	175
228	32.37	0.56	3.6	175
229	32.11	0.55	4.2	177
230	32.39	0.53	6.0	177
231	31.04	0,53	2.5	178
232	32.99	0.55	7.4	175
233	32.67	0.59	0.15	175

Capacitance and Dissipation Factor at 1000 Hz
Leakage Current at 500 VDC
*Sprague Proprietary

TABLE XXIX

CHARGE-DISCHARGE LIFE TESTING DESIGN E VARIATION 1 0.00027" METALLIZED COATED* PETP, DIFFERENT GEOMETRY, SILICONE OIL IMPREGNATED

0 Cycles

Unit	Capacitance	Dissipation Factor	Leakage Current
No.	(μF)	(%)	(µA)
208	30,65	0.72	0.38
209	31.10	0.62	0.72
210	31.65	0.62	0.50
211	36.25	0.75	0.54
212	35.22	0.62	0.84
213	36.58	0.62	0.98
		2,500,000 Cycles	
208	31.75	0.68	0.40
209	31.00	0.75	0.68
210	30.66	0.68	0.75
211	36.00	0.75	0.54
212	35.20	0.60	0.80
213	36.60	0.61	0.85
		5,000,000 Cycles	
208	31.50	0.66	0.45
209	30, 90	0.76	0.75
210	30.00	0.75	0.70
211	36.50	0.76	0.60
212	34.90	0.72	0.76
213	36.50	0.69	0.85
		10, 000, 000 Cycles	
208	31.15	0.61	0.32
209	30.62	0.61	0.18
210	19.25	3.30	0.54
211	36.00	0.75	0.68
212	34.75	0.70	0.70
213	36.40	0.69	0.80

DAAB**-*1-C-004*

CHARGE-DISCHARGE LIFE TESTING DESIGN E VARIATION 1 0.00027" METALLIZED COATED* PETP, DIFFERENT GEOMETRY, SILICONE OIL IMPREGNATED

12,500,000 Cycles

Unit No.	Capacitance (µF)	Dissipation Factor (%)	Leakage Current (µA)
208	31.18	0,62	0.40
209	30.55	0.65	0.25
210	Removed fr		
211	36.08	0.75	0.70
212	34.70	0.70	0.65
213	36.00	0.76	0.75
		15, 000, 000 Cycles	
208	31.10	0.60	0.45
209	30.25	0.70	0.38
211	35. 95	0.69	0.60
212	34.15	0.65	0.45
213	36.05	0.71	0.65
	1	7,500,000 Cycles	
208	31.15	0.57	0.96
209	29.65	0.75	0.36
211	35.90	0.69	0.58
212	34.45	0.65	0.40
213	36.05	0.71	0.65
	;	20,000,000 Cycles	
208	31.05	0.60	0.75
209	29.95	0.70	0.45
211	35.95	0.65	0.58
212	34.55	0.60	0.42
213	36.10	0.70	0.68

CHARGE-DISCHARGE LIFE TESTING DESIGN E VARIATION 1

0.00027" METALLIZED COATED* PETP, DIFFERENT GEOMETRY, SILICONE OIL IMPREGNATED

22,500,000 Cycles

Unit No.	Capacitance (µF)	Dissipation Factor (%)	Leakage Current (µA)
208	31.00	0.70	0.65
209	29.75	0.69	0.80
211	35.70	0.65	0.60
212	35.50	0.70	0.45
213	36.08	0.69	0.70
	i	25, 000, 000 Cycles	
208	31.05	0.70	0.70
209	29.65	0.65	0.70
211	35.10	0.75	0.60
212	39.50	0.70	0.68
213	35.95	0.75	0.80
	;	27, 500, 000 Cycles	
208	31.08	0.70	0.65
209	29.60	0.70	0.80
210	35.10	0.70	0.60
212	34.48	0.70	0.80
213	35.60	0.80	0.65
	;	30, 000, 000 Cycles	
208	31.10	0.70	0.80
209	29.55	1.70	0.80
211	35.06	0.53	0.25
212	34.40	0.71	1.00
213	35.50	0.90	6.80

CHARGE-DISCHARGE LIFE TESTING DESIGN E VARIATION 1 0.00027" METALLIZED COATED* PETP, DIFFERENT GEOMETRY, SILICONE OIL IMPREGNATED

32, 500, 000 Cycles

Factor Leakage Current
(µA)
0.75
0.60
0.58
0.60
0.80
les
0.80
0.70
0.65
0.70
0.85
les
0.80
0.88
0.90
0.74
0.80
les
0.12
0,82
0.62
0.62
0.50

344801-71-C-0041

CHARGE-DISCHARGE LIFE TESTING DESIGN E VARIATION 1 0.00027" METALLIZED COATED* PETP, DIFFERENT GEOMETRY, SILICONE OIL IMPREGNATED

42,500,000 Cycles

Unit No.	Capacitance	Dissipation Factor (%)	Leakage Current
208	31.05	0.52	0.26
209	29.35	1.60	0.80
210	35.08	0.66	0.70
211	35.30	0.60	0.68
212	35.30	0.60	0.68
213	27.65	0.60	0.58
		45, 000, 000 Cycles	
208	31.00	0.58.	0.60
.209	29.30	1.50	0.85
211	35.05	0.60	0.76
212	35.50	0.58	0.46
213	27.00	0.66	0.44
		47, 500, 000 Cycles	
208	31.00	0.58	0.25
209	29.28	1.60	0.75
211	35.30	0.60	0.80
212	33.40	0.68	0.40
213	26.08	0.58	0,60
		50, 000, 000 Cycles	
208	31.05	1.56	0.20
209	29.25	1.74	0.82
211	35.23	0.56	0.84
212	33.35	0.66	0.22
213	24.82	0.59	0.40

Capacitance and Dissipation Factor at 1000 Hz
Leakage Current at 500 VDC
Repetition Rate 10 pps
Test Temperature 40°C
Measuring Temperature 25°C
Load 30 µH plus 1 ohm resistor
Peak Current z 450 amps.
*Sprague Proprietary

DAABOY-71-G-0040

these units are shown in Table XXX. The leakage currents and dissipation factors are much higher for these capacitors than for any of the designs used in Phase I. This is due to the basic nature of the film and not because of any degrading of the film's properties due to coating.

The electrical characteristics were measured at various temperatures. There was a tremendous capacitance loss at the lower temperatures which would necessitate a much larger size unit at room temperature to maintain a constant amount of energy at the lower temperature. Capacitance change vs. temperature is shown in Figure 15.

These units failed before 500 charge-discharge cycles because of the high DF and high leakage currents on discharge life testing at 10 pps.

Very late in Phase III the eighth test station of CADET III was received. Because of the lack of time very little data was gathered with this unit. The results of the discharge life test at 30 pps are shown in Table XXXI. It is interesting to note that the Design E Variation 1 type units performed well with only 1 failure in six units tested for 10,000,000 charge-discharge cycles.

TABLE XXXA

INITIAL ELECTRICAL RESULTS 0.00036" METALLIZED COATED*POLYVINYLIDENE FLUORIDE

Unit No.	Capacitance (μF)	Dissipation Factor (%)	Leakage Current (µA)
1	4.957	1.20	4.0
2	4.995	1.20	3.6
3	4.993	1.20	Short
4	5.001	1.20	Short
5	4.993	1.2	3.0
6	4.956	1.2	4.6
7	5.318	1.2	3.2
8	4.986	1.2	3.2
9	5.236	1.2	3.0
10	4.981	1.2	2.8
11	5.015	1.2	3.0
12	4.970	1.2	3.2
13	5.149	1.3	4.2
14	5.076	1.2	3.0
15	5.040	1.2	3.2
16	4.980	1.2	3.6
17	5.047	1.2	3.4
18	5.106	1.5	4.4
19	5.082	1.2	4.4
20	5.164	1.2	3.8

Capacitance and Dissipation Factor at 1000 Hz Leakage Current at 500 VDC *Sprague Proprietary

TABLE XXXB

BREAKDOWN VOLTAGE 0.00036" METALLIZED COATED*POLYVINYLIDENE FLUORIDE

Unit No.	Breakdown Voltage (Volts)
1	1400
2	2100
3	1800
4	1300

*Sprague Proprietary

TABLE XXXC

CAPACITANCE AND DISSIPATION FACTOR FOR VARIOUS FREQUENCY
0.00036" METALLIZED COATED*POLYVINYLIDENE FLUORIDE

Unit No.	Capacitance (μF)	Dissipation Factor (%)	Capacitance (µF)	Dissipation Factor (%)
. 1 Hz			1. kHz	
5	5.017	0.95	4.9516	1.16
` 9	Cannot Read		5.2040	12.90
16	4.9892	0.93	4.9282	1.14
19	5.0920	0.95	5.0316	1.21
2 kHz			5 kHz	
5	4.9373	1.37	4.9214	2.084
9	5.1972	16.10	5,2167	29.405
16	4.9260	1.34	4.8980	1.94
19	5.0173	1.51	5.0008	2.33
10 kHz				
5	4.9362	3.08		
9	5.3001	58.6		
16	4.9094	2.96		
19	5.0162	2.03		

*Sprague Proprietary

Capacitance Change vs Temperature

Figure

TABLE XXXI

CHARGE-DISCHARGE TESTING 30 pps DESIGN E VARIATION 1
(0.00027" METALLIZED COATED* PETP, DIFFERENT GEOMETRY,
SILICONE OIL IMPREGNATED)
SPRAY PROCESS C, SOLDER PROCESS I

0 Cycles

Unit No.	Capacitance (µF)	Dissipation Factor (%)	Leakage Current (μA)		
	·				
234	30,94	0.53	0.98		
235	31.35	0.57	0.20		
236	32.25	0.87	0.18		
237	32.36	0.55	0.26		
238	32.55	0.65	0.53		
239	31.82	0.77	0.65		
		10,000,000 Cycles			
234	30.80	0.75	0,88		
235	31.00	0.64	0,20		
236	31.32	0.70	0.80		
237	Shorted 7, 860, 553				
238	31.62	0.85	0.75		
239	31.60	C.79	0.70		

Capacitance and Dissipation Factor at 1000 Hz
Leakage Current at 500 VDC
Test Voltage 900 VDC
Test Temperature 40°C
Measurement Temperature 25°C
Load 32 µH plus 1 ohm resistor
Pulse Rate 30 pps
Peak Current ≈ 400 amps.
*Sprague Proprietary

SECTION III

CONCLUSIONS AND RECOMMENDATIONS

- 1. Capacitors weighing approximately six ounces, and capable of supplying 12 joules of energy for 50,000,000 charge-discharge cycles at 10 pps can be produced using metallized coated*

 0.00027" PETP and silicone oil as an impregnant. The design objectives of the contract were accomplished.
- 2. At a repetition rate of 10 pps, silicone oil impregnated units exhibit longer life than do dry unimpregnated units of the same construction.
- 3. Silicone oil acts more as a heat transfer medium to conduct heat away from the capacitor windings and end connectors rather than increase the dielectric strength of the unit.
- 4. By increasing the length of the electrode, the life of a metallized coated energy storage capacitor is increased due to the reduction in current per length of electrode.
- 5. Polysulfone with the present coating system is not a satisfactory dielectric for high repetition rate energy storage capacitors.
- 6. Coated polycarbonate performed satisfactorily as a dielectric for energy storage capacitors and it may be superior to coated PETP at higher repetition rates.
- 7. Additional work may prove coated Polyvinylidene Fluoride to be a good dielectric at low repetition rates and where loss of capacitance at low temperatures is not a critical factor.
- 8. A coated PETP silicone oil impregnated capacitor will operate satisfactorily at 30 pps for at least 10,000,000 charge-discharge cycles.

^{*}Metallizing and Coating are Sprague Proprietary Processes

- 9. Additional work should be conducted at higher temperatures and repetition rates on metallized coated capacitors.
- 10. Additional work should be conducted in an effort to measure the determining factors of the life of a capacitor.