

Multiple Linear Regression model

x ₁ Age	X ₂ Income (hundred thousand dollar)	y Balance (thousand dollar)
32		5.651202
22	0.708148	7.321263
45	0.290905	5.167304
78	0.510828	5.609367
54	0.892947	9.406379
39	0.896293	9.379439
42	0.125585	2.734997
51	0.207243	4.876649
21	0.051467	3.584138
19	0.44081	5.437239

(x, x,2) >> >

Multiple Linear Regression model

 $\times \rightarrow \gamma$

x ₁ Age	X ₂ Income (hundred thousand dollar)	y Balance (thousand dollar)
32	0.550798	5.651202
22	0.708148	7.321263
45	0.290905	5.167304
78	0.510828	5.609367
54	0.892947	9.406379
39	0.896293	9.379439
42	0.125585	2.734997
51	0.207243	4.876649
21	0.051467	3.584138
19	0.44081	5.437239

For given Training Set $T = \{ (x_{11}, x_{12}, y_1), (x_{21}, x_{22}, y_2), \dots, (x_{n1}, x_{n2}, y_n) \}$, we need to solve

$$Min \quad J(\beta_5, \beta_4, \beta_3, \beta_2, \beta_1, \beta_0) = \sum_{i=1}^{n} (yi - (\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i}))^2 \dots (1)$$

$$\mathbf{u} = \begin{bmatrix} \beta_{2} \\ \beta_{1} \\ \beta_{0} \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} x_{11} & x_{12} & 1 \\ x_{21} & x_{22} & 1 \\ x_{21} & x_{22} & 1 \end{bmatrix} \begin{bmatrix} \beta_{1} \\ \beta_{2} \\ \beta_{3} \\ \beta_{0} \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} y_{1} \\ y_{2} \\ y_{2} \\ y_{n} \end{bmatrix}$$

$$Y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ y_n \end{bmatrix}$$

The Least Square problem reduces to

$$Min_{(u)}$$
 $J(u) = (Y - Au)^T (Y - Au)$

$$u = \begin{bmatrix} \beta_2 \\ \beta_1 \\ \beta_0 \end{bmatrix} = (A^T A)^{-1} A^T Y$$

Quadratic Regression model with two variables

Quadratic Regression model with two variables $f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4 x_1^2 + \beta_5 x_2^2$

Quadratic Regression model with two variables

 $f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4 x_2^2 + \beta_5 x_1^2$

For given Training Set
$$T = \{(x_{11}, x_{12}, y_1), (x_{21}, x_{22}, y_2), \dots, (x_{n1}, x_{n2}, y_n)\}$$
, we need to solve

$$Min \quad J(\beta_5, \beta_4, \beta_3, \beta_2, \beta_1, \beta_0) = \sum_{i=1}^{n} (yi - (\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{1i} x_{2i} + \beta_4 x_{2i}^2 + \beta_5 x_{1i}^2))^2 \quad(1)$$

$$\mathbf{u} = \begin{bmatrix} \beta_{5} \\ \beta_{4} \\ \beta_{3} \\ \beta_{2} \\ \beta_{1} \\ \beta_{0} \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} x_{11}^{2} & x_{21}^{2} & x_{11}x_{12} & x_{12} & x_{11} & 1 \\ x_{21}^{2} & x_{22}^{2} & x_{21}x_{22} & x_{22} & x_{21} & 1 \\ & & & & & & \\ x_{n1}^{2} & x_{n2}^{2} & x_{n1}x_{n2} & x_{n2} & x_{n1} & 1 \end{bmatrix} \stackrel{\beta_{r}}{\rho_{r}} \qquad Y = \begin{bmatrix} y_{11} & y_{11} & y_{12} & y_{13} & y_{$$

The Least Square problem reduces to

$$Min_{(u)}$$
 $J(u) = \underbrace{I}_{\Sigma} (Y - Au)^T (Y - Au)$

$$Y = \begin{bmatrix} y_2 \\ \\ \\ y_n \end{bmatrix}$$

$$\mathbf{u} = \begin{bmatrix} \beta_5 \\ \beta_4 \\ \beta_3 \\ \beta_2 \\ \beta_1 \\ \beta_0 \end{bmatrix} = (A^T A)^{-1} A^T \mathbf{Y}$$

Train RMSE = 0.4621

$$\beta_{4} = \begin{bmatrix} \mu_{9}^{9} \chi_{12}^{3} + \mu_{812}^{3} + \mu_{7} \chi_{11} \chi_{12}^{2} + \dots \\ \beta_{9} \chi_{22}^{3} + \beta_{1} \chi_{21}^{3} + \beta_{7} \chi_{21} \chi_{22}^{2} + \dots \\ \beta_{9} \end{bmatrix}$$

Multiple Regression model working with k variables

x ₁	X ₂	х3		x _k
32	0.550798	283		2
22	0.708148	483	-	3
45	0.290905	514	-	4
78	0.510828	681	-	3
54	0.892947	357	-	2
39	0.896293	569	-	4
42	0.125585	259	-	2
51	0.207243	512	-	2
21	0.051467	266	-	5
19	0.44081	491	-	3

У		
Balance		
(thousand dollar)		
5.651202		
7.321263		
5.167304		
5.609367		
9.406379		
9.379439		
2.734997		
4.876649		
3.584138		
5.437239		

WER ILL

 $\rho(x)$ Multiple Regression model working with k variables

Linear Function:-
$$f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + ... + \beta_k x_k$$

$$\omega \in \mathbb{R}^K \quad b \in \mathbb{R}$$

$$\omega \in \mathbb{R}^K \quad b \in \mathbb{R}$$

For given Training Set $T = \{ (x_{11}, x_{12}, ..., x_{1k}, y_1), (x_{21}, x_{22}, ..., x_{2k}, y_2),, (x_{n1}, x_{n2}, ..., xnk, y_n) \}, we solve$

Min
$$J(\beta_k, ..., \beta_4, \beta_3, \beta_2, \beta_1, \beta_0) = \sum_{i=1}^{n} (yi - (\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + ... + \beta_k x_k))^2$$

$$\mathbf{u} = \begin{bmatrix} \beta_k \\ \beta_2 \\ \beta_1 \\ \beta_0 \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} x_{11} & x_{21} & -- & x_{1k-1} \\ x_{21} & x_{22} & -- & x_{2k} & 1 \\ \\ x_{n1} & x_{n2} & -- & x_{nk-1} \end{bmatrix}$$

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

The Least Square problem reduces to

$$Min_{(u)} J(u) = (Y - Au)^{T} (Y - Au)$$

$$\mathbf{u} = \begin{bmatrix} \beta_k \\ \beta_2 \\ \beta_1 \\ \beta_0 \end{bmatrix} = (A^T A)^{-1} A^T \mathbf{Y}$$

https://colab.research.google.com/drive/1APfTBXi3U 1ADX1P mLkJ8DyhVCQBegtE?usp=sharing

$$\beta_{0}(x) = 1$$

$$\beta_{1}(x) = 26$$

$$\phi_{1}(x) = 26$$

$$\phi_{2}(x) = 26$$

$$\phi_{2}(x) = 26$$

$$\phi_{2}(x) = 26$$

$$\phi_{3}(x) = 26$$

$$\phi_{4}(x) = 26$$

$$\phi_{1}(x) = 26$$

$$\phi_{2}(x) = 26$$

$$\phi_{3}(x) = 26$$

$$\phi_{1}(x) = 26$$

$$\phi_{1}(x) = 26$$

$$\phi_{1}(x) = 26$$

$$\phi_{2}(x) = 26$$

$$\phi_{3}(x) = 26$$

$$\phi_{1}(x) = 26$$

$$\phi_{1}(x) = 26$$

$$\phi_{2}(x) = 26$$

$$\phi_{3}(x) = 26$$

$$\phi_{1}(x) = 26$$

$$\phi_{1}(x) = 26$$

$$\phi_{2}(x) = 26$$

$$\phi_{3}(x) = 26$$

$$\phi_{1}(x) = 26$$

$$\phi_{2}(x) = 26$$

$$\phi_{3}(x) = 26$$

$$\phi_{3}(x) = 26$$

$$\phi_{4}(x) = 26$$

$$\phi_{1}(x) = 26$$

$$\phi_{2}(x) = 26$$

$$\phi_{3}(x) = 26$$

$$\phi_{3}(x) = 26$$

$$\phi_{4}(x) = 26$$

$$\phi_{5}(x) = 26$$

$$\phi_{7}(x) =$$

$$\min\left(\frac{\sum_{i=1}^{N}\left(r_{i}-\left\{\beta_{0}+\beta_{1}\times_{1}-\beta_{2}\times_{1}\right\}\right)^{2}\right)}{\beta_{0},\beta_{i},\beta_{2}}$$

$$\left(y-Au\right)=\left[y_{1}-\frac{\beta_{2}M_{11}}{-\beta_{2}M_{12}}-\frac{\beta_{2}M_{12}}{-\beta_{1}}\right]$$

$$(y-Au) = \begin{cases} y_1 - \beta_2 N_{11} \\ -\beta_2 N_{12} \\ -\beta_1 \end{cases}$$

$$U = \begin{cases} \beta_2 \\ \beta_1 \\ \beta_0 \end{cases}$$

$$(y - Au) = \begin{bmatrix} y_1 - \beta_2 x_{11} - \beta_1 x_{12} - \beta_0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$$

$$\min_{u} (y-Au)^{T}(y-Au) =$$

$$\Delta'(y-Ay) = 0$$

$$\Delta'(y-Ay) = \sqrt{\Delta'(y-Ay)}$$

$$\Delta'(y-Ay) = \sqrt{\Delta'(y-Ay)}$$

 $\frac{f_{2}(x)}{f_{2}(x)} = \frac{f_{2}(x)}{f_{3}(x)} + \frac{f_{3}(x)}{f_{3}(x)} + \frac{f_{4}(x)}{f_{4}(x)} + \frac{f$

$$\int (\mathbf{x}) = \beta_0 + \beta_1 \chi_1 + \beta_2 \chi_2 + \beta_3 \chi_1 \chi_2 + \beta_4 \chi_1^2 + \beta_5 \chi_2^2 + \beta_6 \chi_1 \chi_2^2 + \beta_7 \chi_1^2 \chi_2 + \beta_7 \chi_1^2 \chi_2 + \beta_8 \chi_1^3 + \beta_9 \chi_2^3$$

$$\phi_0(x) = 1 = W^T\phi(x)$$

$$\phi_1(x) = x_1$$

$$\phi_2(x) = x_2$$

$$\phi_{q}(x) = \chi_2^3$$

$$\phi(x) = \begin{bmatrix} \phi_0(x) \\ \phi_2(x) \\ \vdots \\ \phi_q(x) \end{bmatrix}$$

$$W = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix}$$

 $A = \begin{cases} P_0(x) & P_0(x) & P_0(x) \\ P_0(x_2) & - & - \end{cases}$ $P_0(x_w) & P_1(x_w) & P_0(x_w)$

$$f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \beta_{n+1} x_1 x_2 + \beta_{n+2} x_2 x_3 + \dots$$

$$\omega = \begin{cases} \beta_{m}, \\ \beta_{m}, \\ \vdots \\ \beta_{l} \end{cases}$$

=> Here,
$$\Phi_{o}(x) = 1$$

 $\Phi_{o}(x) = \infty$

$$\Phi_2(x): x_2$$

$$\Phi_{m}(x): x_{n}^{m}$$

$$f(x) = \omega^{T}\Phi(x)$$

$$f(x) = \omega^T \Phi(x)$$

$$\bar{\Phi}(x) = \bar{\Phi}_{m-1}(x)$$

Exact =>
$$\frac{\int_{\infty}^{\infty} \sum_{x=1}^{\infty} \left(y_{1}^{2} - \omega^{T} \phi(x_{1})\right)^{2} + \sum_{x=1}^{\infty} \omega^{T} \omega}{\omega^{T}}$$

$$A = \begin{bmatrix}
\phi_{m}(x_{1}) & \phi_{m,1}(x_{1}) & \cdots & \phi_{o}(x_{1}) \\
\phi_{m}(x_{2}) & \phi_{m,1}(x_{2}) & \cdots & \phi_{o}(x_{2}) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{m}(x_{N}) & \phi_{m,1}(x_{N}) & \cdots & \phi_{o}(x_{N})
\end{bmatrix}$$

$$\Rightarrow \omega = (A^{T}A)^{T} A^{T} y \qquad \Rightarrow (A^{T}$$

$$\begin{aligned}
&\text{Min } J(w) = \frac{1}{2} \sum_{i=j}^{N} (y_i - w^{T} \varphi(x_i))^{2} + \frac{\lambda_{2}}{2} w^{T} w \\
&\text{WER}^{m} \\
&\text{Vw} J(w) = \lambda w + \sum_{i=j}^{N} (y_i - w^{T} \varphi(x_i)) \varphi(x_i) \\
&\text{We } R^{m} \\
&\text{We }$$

Introduct Descont Algo

Introduce
$$W \in \mathbb{R}^m$$

Repeat

 $W(k^{+1}) = W^{(k)} - n_k \left(-\frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w \right)$

While $W(x_1) = W(x_2) - 2 \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w \varphi(x_1) \right) \varphi(x_1) + \lambda w^{(k)} = \frac{2}{1-1} \left(y_1 - w$

$$\frac{\gamma_{k}}{\gamma_{k}} = \frac{n_{k}}{C}$$

$$\gamma_{k} = \frac{n_{k}}{C}$$

$$\gamma_{k} = \frac{n_{k}}{C}$$

Relationship in data

Intendize we cam

Repeat

Lick a sybset B from Training Set T with cardinality R

We have the company of the co

3D Data with Logarithmic Relationship and Noise

Fitting a Curve to 3D Data with Logarithmic Relationshi

$$\varphi(x) = \begin{bmatrix} \varphi_1(x) \\ \varphi_2(x) \end{bmatrix} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_n \end{bmatrix}$$

$$\varphi_{m(x)} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_n \end{bmatrix}$$

- We already have learned about polynomial basis functions
- Another class are radial basis functions (RBF). Typical representatives are Gaussian basis functions

Radial Basis Function (RBF)

$$\phi_j(\mathbf{x}) = \exp\left(-\frac{1}{2s_j^2} \|\underline{\mathbf{x} - \mathbf{c}_j}\|^2\right)$$

Min $\frac{1}{2} \sum_{i=1}^{N} (y_i - \omega^i \varphi(x_i))^2 + \frac{\lambda}{2} \omega^i \omega$ W

$$\Delta = \left[\begin{array}{ccc} \Phi_{1}(X_{1}) & \Phi_{2}(X_{1}) & \Phi_{3}(X_{1}) & \Phi_{4}(X_{1}) \\ \hline \Phi_{1}(X_{1}) & \Phi_{2}(X_{1}) & \Phi_{3}(X_{1}) & \Phi_{4}(X_{1}) \\ \hline \end{array} \right]$$

RMSE =
$$\begin{cases} \frac{1}{1} \leq (y_i - f(x_i))^2 \\ \frac{1}{1} \leq \frac{1}{1} \leq (y_i - f(x_i))^2 \\ \frac{1}{1} \leq (y_i - f(x_i))^2 \end{cases}$$
SST