Лабораторная работа №14

Модели обработки заказов

Алиева Милена Арифовна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	25
Сп	исок литературы	26

Список иллюстраций

3.1	Модель оформления заказов клиентов одним оператором	8
3.2	Отчёт по модели оформления заказов в интернет-магазине	9
3.3	Модель оформления заказов клиентов одним оператором с изме-	
	ненными интервалами заказов и времени оформления клиентов	11
3.4	Отчёт по модели оформления заказов в интернет-магазине с из-	
	мененными интервалами заказов и времени оформления клиентов	12
3.5	Построение гистограммы распределения заявок в очереди	14
3.6	Отчёт по модели оформления заказов в интернет-магазине при	
	построении гистограммы распределения заявок в очереди	15
3.7	Гистограмма распределения заявок в очереди	16
3.8	Модель обслуживания двух типов заказов от клиентов в интернет-	
	магазине	17
3.9	Отчёт по модели оформления заказов двух типов	17
3.10	Модель обслуживания двух типов заказов с условием, что число	
	заказов с дополнительным пакетом услуг составляет 30% от общего	
	числа заказов	19
3.11	Отчёт по модели оформления заказов двух типов заказов	19
3.12	Модель оформления заказов несколькими операторами	21
3.13	Отчет по модели оформления заказов несколькими операторами	21
3.14	Модель оформления заказов несколькими операторами с учетом	
	отказов клиентов	23
3.15	Отчет по модели оформления заказов несколькими операторами с	
	учетом отказов клиентов	23

Список таблиц

1 Цель работы

Реализовать модели обработки заказов и провести анализ результатов. [1]

2 Задание

Реализовать с помощью gpss модель оформления заказов клиентов одним оператором, построить гистограмму распределения заявок в очереди, реализовать модель обслуживания двух типов заказов от клиентов в интернет-магазине, реализовать модель оформления заказов несколькими операторами.

3 Выполнение лабораторной работы

- 1. Порядок блоков в модели соответствует порядку фаз обработки заказа в реальной системе:
- 1) клиент оставляет заявку на заказ в интернет-магазине;
- 2) если необходимо, заявка от клиента ожидает в очереди освобождения оператора для оформления заказа;
- 3) заявка от клиента принимается оператором для оформления заказа;
- 4) оператор оформляет заказ;
- 5) клиент получает подтверждение об оформлении заказа (покидает систему).

Модель будет состоять из двух частей: моделирование обработки заказов в интернет-магазине и задание времени моделирования. Для задания равномерного распределения поступления заказов используем блок GENERATE, для задания равномерного времени обслуживания (задержки в системе) – ADVANCE. Для моделирования ожидания заявок клиентов в очереди используем блоки QUEUE и DEPART, в которых в качестве имени очереди укажем орегаtor_q Для моделирования поступления заявок для оформления заказов к оператору используем блоки SEIZE и RELEASE с параметром орегаtor — имени «устройства обслуживания».

Требуется, чтобы модельное время было 8 часов. Соответственно, параметр блока GENERATE – 480 (8 часов по 60 минут, всего 480 минут). Работа программы начинается с оператора START с начальным значением счётчика завершений, равным 1; заканчивается – оператором TERMINATE с параметром 1, что задаёт ординарность потока в модели.

Таким образом, получаем модель (рис. 3.1).

Рис. 3.1: Модель оформления заказов клиентов одним оператором

После запуска симуляции получаем отчёт (рис. 3.2).

Рис. 3.2: Отчёт по модели оформления заказов в интернет-магазине

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator_q.

Далее идёт информация о блоках текущей модели, в частности, ENTRY COUNT –

количество транзактов, вошедших в блок с начала процедуры моделирования.

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 33 заказа от клиентов (значение поля OWNER=33), но одну заявку оператор не успел принять в обработку до окончания рабочего времени (значение поля ENTRIES=32). Полезность работы оператора составила 0, 639. При этом среднее время занятости оператора составило 9, 589 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более одной ожидающей заявки от клиента;
- CONT=0 на момент завершения моделирования очередь была пуста;
- ENTRIES=32 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=31 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0, 001 заявок от клиентов в среднем были в очереди;
- AVE. TIME=0.021 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=0, 671 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях:

- XN=33 порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора;
- PRI=0 все клиенты (из заявки) равноправны;
- BDT=489, 786 время назначенного события, связанного с данным транзактом;
- ASSEM=33 номер семейства транзактов;
- CURRENT=5 номер блока, в котором находится транзакт;

• NEXT=6 – номер блока, в который должен войти транзакт.

Для выполнения упражнения необходимо скорректировать модель в соответствии с изменениями входных данных: интервалы поступления заказов распределены равномерно с интервалом 3.14 ± 1.7 мин; время оформления заказа также распределено равномерно на интервале 6.66 ± 1.7 мин.

Изменим интервалы поступления заказов и время оформления клиентов (рис. 3.3).

Рис. 3.3: Модель оформления заказов клиентов одним оператором с измененными интервалами заказов и времени оформления клиентов

После запуска симуляции получаем отчёт (рис. 3.4).

Рис. 3.4: Отчёт по модели оформления заказов в интернет-магазине с измененными интервалами заказов и времени оформления клиентов

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 152;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 71 заказ от клиентов (значение поля OWNER=71), но оператор успел принять в обработку до окончания рабочего времени только 70 (значение поля ENTRIES=70). Полезность работы оператора составила 0,991. При этом среднее время занятости оператора составило 6,796 мин.

2. Далее требуется построить гистограмму распределения заявок, ожидающих обработки в очереди в примере из предыдущего упражнения. Для построения гистограммы необходимо сформировать таблицу значений заявок в очереди, записываемых в неё с определённой частотой. Команда описания такой таблицы QTABLE имеет следующий формат: Name QTABLE A,B,C,D Здесь Name — метка, определяющая имя таблицы. Далее должны быть заданы операнды: А задается элемент данных, чьё частотное распределение будет заноситься в таблицу (может быть именем, выражением в скобках или системным числовым атрибутом (СЧА)); В задается верхний предел первого частотного интервала; С задает ширину частотного интервала — разницу между верхней и нижней границей каждого частотного класса; D задаёт число частотных интервалов

Рис. 3.5: Построение гистограммы распределения заявок в очереди

Здесь Waittime — метка оператора таблицы очередей QTABLE, в данном случае название таблицы очереди заявок на заказы. Строка с оператором TEST по смыслу аналогично действиям оператора IF и означает, что если в очереди 0 или 1 заявка, то осуществляется переход к следующему оператору, в данном случае к оператору SAVEVALUE, в противном случае (в очереди более одной заявки) происходит переход к оператору с меткой Fin, то есть заявка удаляется из системы, не попадая на обслуживание. Строка с оператором SAVEVALUE с помощью операнда Custnum подсчитывает число заявок на заказ, попавших в очередь. Далее оператору ASSIGN присваивается значение СЧА оператора Custnum.

Получим отчет симуляции и проанализируем его (рис. 3.6).

Рис. 3.6: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=353.895;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=10;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 98 заказов от клиентов (значение поля OWNER=98), но оператор успел принять в обработку до оконча-

ния рабочего времени только 54 (значение поля ENTRIES=54). Полезность работы оператора составила 0,987. При этом среднее время занятости оператора составило 6,470 мин.

Проанализируем гистограмму (рис. 3.7).

Рис. 3.7: Гистограмма распределения заявок в очереди

Частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок - 17 - обрабатывалось 10-12 минут, 14 заявок - 12-14 минут, 12 заявок - 8-10 минут, в остальных диапазонах 0-4 заявок.

3. Необходимо реализовать отличие в оформлении обычных заказов и заказов с дополнительным пакетом услуг. Такую систему можно промоделировать с помощью двух сегментов. Один из них моделирует оформление обычных заказов, а второй - заказов с дополнительным пакетом услуг. В каждом из сегментов пара QUEUE-DEPART должна описывать одну и ту же очередь, а пара блоков SEIZE-RELEASE должна описывать в каждом из двух сегментов одно и то же устройство и моделировать работу оператора. Код моделирования (рис. 3.8).

Рис. 3.8: Модель обслуживания двух типов заказов от клиентов в интернетмагазине

Отчёт по модели (рис. 3.9).

Рис. 3.9: Отчёт по модели оформления заказов двух типов

Результаты работы модели:

• модельное время в начале моделирования: START TIME=0.0;

- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=17;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 42 заказ от клиентов (значение поля OWNER=42), но оператор успел принять в обработку до окончания рабочего времени только 40 (значение поля ENTRIES=40). Полезность работы оператора составила 0,947. При этом среднее время занятости оператора составило 11,365 мин.

Скорректируем модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов. Будем использовать один блок order, а разделим типы заявок с помощью переходов оператором TRANSFER. Каждый заказ обрабатывается 10 ± 2 минуты, после этого зададим оператор TRANSFER, в котором укажем, что с вероятностью 0.7 происходит обработка заявки (переход к блоку noextra RELEASE operator), а с вероятностью 0.3 дополнительно заказ обрабатывается еще 5 ± 2 минуты (переход к блоку extra ADVANCE 5,2) и только после этого является обработанным (рис. 3.10).

Рис. 3.10: Модель обслуживания двух типов заказов с условием, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов

Проанализируем результаты моделирования (рис. 3.11).

34	0				7 to	8				
FEC XN							PARAM	ETER	VALUE	
OPERATOR.	_0	1	U	33	25	0.054		0.781	3.220	U
QUEUE	0	MAX CO	ONT. EN	TRY E	NTRY(0)	AVE.CON	IT. AVE	.TIME	AVE. (-0) 3.220	RETRY
OPERATOR									0 0	
PACTITEV		NTDIEC	ITTI	7.57	F TIME	AVATT	OWNED	DEND IN	TER RETRY	DETAV
		11	TERMIN	ATE		1		0	0	
			GENERA			1		0		
								0		
NOEXTRA		0.00						0	15.0	
			ADVANC			8			0	
			TRANSF			33		0	0	
			ADVANC			33			0	
		4	DEPART			33		0	0	
		3	SEIZE			33		0	0	
						33		0	0	
		1	GENERA	TE		33		0	0	
LABEL		LOC	BLOCK	TYPE	ENT	RY COUNT	CURRE	NT COUN	T RETRY	
	OLLIMION	_~			10000	.000				
	OPERATOR				10000					
	OPERATOR				10001	000				
	NOEXTRA				UNSPE					
	NAME EXTRA	2			VA: UNSPE					
	0.	.000		480	.000	11	1		0	
								IES SI		
	START I	PTME		marm .	and the same			THO 000	OD T OD O	

Рис. 3.11: Отчёт по модели оформления заказов двух типов заказов

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=11;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 34 заказа от клиентов (значение поля OWNER=34), но оператор успел принять в обработку до окончания рабочего времени только 33 (значение поля ENTRIES=33). Полезность работы оператора составила 0,766. При этом среднее время занятости оператора составило 11,146 мин.

4. Реализуем последнюю модель - в интернет-магазине заказы принимают 4 оператора. Интервалы поступления заказов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интервале 10 ± 2 мин. обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня

С помощью строки operator STORAGE 4 указываем, что у нас 4 оператора, затем к обычной процедуре генерации и обработки заявки добавляется, что заявку обрабатывает один оператор operator, 1, сегмент моделирования времени остается без изменений (рис. 3.12).

Рис. 3.12: Модель оформления заказов несколькими операторами

Далее получим и проанализируем отчет (рис. 3.13).

	START I	TIME		END	TIME	BLOCKS	FA	CILITIES	STOR	AGES	
0.000			END TI 480.0			9		0	1		
	NAME	2			7	7AT HE					
	OPERATOR				1000						
	OPERATOR				1000						
	OFFICE				1000	31.000					
LABEL		LOC	BLO	CK TYPE	E	NTRY COL	JNT	CURRENT C	OUNT	RETRY	
		1	GEN	ERATE		93		0		0	
				UE				0		0	
				ER				0		0	
		4	DEP	ART		93		0		0	
		5	ADV	ANCE		93		2		0	
		6	LEA	VE		91		0		0	
		7	TER	MINATE		91		0		0	
		8	GEN	ERATE		1		0		0	
		9	TER	MINATE		1		0		0	
QUEUE		MAX C	ONT.	ENIRY	ENIRY (J) AVE.	CONT	. AVE.IIM	E A	VE. (-U)	RETRY
OPERATO:	R_Q	1	0.	93	93	0.0	000	0.00	0	0.000	0
STORAGE		CAP.	REM.	MIN. M	AX. EI	NTRIES A	AVL.	AVE.C.	UTIL.	RETRY	DELAY
OPERATO	R	4	2	0	4	93	1	1.926	0.482	0	0
FEC XN	DDT	RDT		ASSEM	CHIPPI	ENT NEV	TT.	PARAMETER	17	ATTIE	
95				95				LANGUETER		ALVE.	
93				93							
94				94							
96	0	960	000	96	0	8					
90	0	960.	000	96							

Рис. 3.13: Отчет по модели оформления заказов несколькими операторами

Результаты работы модели:

• модельное время в начале моделирования: START TIME=0.0;

- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Далее в упражнении изменим модель: требуется учесть в ней возможные отказы клиентов от заказа - когда при подаче заявки на заказ клиент видит в очереди более двух других заявок, он отказывается от подачи заявки, то есть отказывается от обслуживания (используем блок TEST и стандартный числовой атрибут Qi текущей длины очереди j).

Добавим строчку TEST LE Q\$operator_q, 2, которая проверяет больше ли в очереди клиентов, чем два, если нет - клиент поступает на обработку, иначе уходит. Также в ранее проанализированном отчете видно, что клиентов в очереди не было больше 2, поэтому увеличим время обработки заказов до 30 ± 2 мин., чтобы проверить результаты изменений модели (рис. 3.14).

Рис. 3.14: Модель оформления заказов несколькими операторами с учетом отказов клиентов

Проанализируем полученный отчет (рис. ~ 3.15).

Рис. 3.15: Отчет по модели оформления заказов несколькими операторами с учетом отказов клиентов

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

4 Выводы

В процессе выполнения данной лабораторной работы я реализовала с помощью gpss модель оформления заказов клиентов одним оператором, построила гистограмму распределения заявок в очереди, реализовала модель обслуживания двух типов заказов от клиентов в интернет-магазине, реализовала модель оформления заказов несколькими операторами.

Список литературы

1. Королькова А.В., Кулябов Д.С. Лабораторная работа 14. Модели обработки заказов [Электронный ресурс].