Intractable Problems Part Three

Announcements

- Problem Set Six due right now.
 - Due Wednesday with a late day.
- Final project distributed at the end of lecture; details later today.

Please evaluate this course on Axess.

Your feedback really makes a difference.

Outline for Today

Pseudopolynomial Time

A quick clarification from last time.

Another Algorithm for 0/1 Knapsack

A totally different approach to knapsack.

FPTAS

• Extremely efficient approximation algorithms.

\$500

45g

\$200

20g

\$900

53g

\$1,500

25g

\$400

35g

\$500

45g

20g

53g

\$400

35g

- You are given a list of n items with weights $w_1, ..., w_n$ and values $v_1, ..., v_n$.
- You have a bag (knapsack) that can carry W total weight.
- Weights are assumed to be integers.
- Question: What is the maximum value of items that you can fit into the knapsack?
- This problem is known to be **NP**-hard.

From Last Time

- There is a DP algorithm that runs in time O(nW), where n is the total number of items and W is the knapsack capacity.
- Claim: This is not a polynomial-time algorithm.
 - Rationale: The number W takes $\Theta(\log W)$ bits to write out, so the runtime is *exponential* in the number of bits of W.
- **Question:** Why is it polynomial in *n*?

Input Structure

Pseudopolynomial Time

- It takes $\Omega(n)$ bits to write out a list of n items, so an algorithm that works with n items and has runtime $O(n^k)$ runs in polynomial time.
- It takes $\Theta(\log n)$ bits to write out the number n, so an algorithm that takes in the number n and has runtime $O(n^k)$ runs in exponential time.

A Different Approach to 0/1 Knapsack

Parameterized Complexity

- Recall: a problem is fixed-parameter tractable if there is an algorithm for it with runtime $O(f(k)\cdot p(n))$ for some function f(k) and polynomial p(n).
- We can pick many different parameters for the same problem and get different algorithms.
- Useful: Depending on which parameters are fixed and can vary, different algorithms can be appropriate.

A Different Algorithm

Our current algorithm asked the following question:

What is the maximum value that fits in *X* space given just the first *k* items?

Here is a different way to think about the problem:

What is the minimum space needed to make *X* value with the first *k* items?

• Can solve 0/1 knapsack by answering this question for all possible profits and finding the highest value that can fit into the knapsack.

A Recurrence Relation

- Let OPT(k, X) be the minimum space necessary to store exactly X value with the first k items. (and ∞ if it's not possible to do so)
- Claim: OPT(k, X) satisfies this recurrence:

$$\mathrm{OPT}(k,X) = \left\{ \begin{array}{c} 0 & \mathrm{if} \ k = 0 \ \mathrm{and} \ X = 0 \\ \infty & \mathrm{if} \ k = 0 \ \mathrm{and} \ X > 0 \\ OPT(k-1,X) & \mathrm{if} \ v_k > X \\ \min \left\{ \begin{array}{c} OPT(k-1,X), \\ w_k + OPT(k-1,X-v_k) \end{array} \right\} & \mathrm{otherwise} \end{array} \right.$$

• Let V denote the maximum possible value obtainable ($V = v_1 + v_2 + ... + v_n$).

$$\operatorname{OPT}(k,X) = \left\{ \begin{array}{c} 0 & \text{if } k = 0 \text{ and } X = 0 \\ \infty & \text{if } k = 0 \text{ and } X > 0 \\ OPT(k-1,X) & \text{if } v_k > X \\ \min \left\{ \begin{array}{c} OPT(k-1,X), \\ w_k + OPT(k-1,X-v_k) \end{array} \right\} & \text{otherwise} \end{array} \right.$$

```
Let DP be an (n + 1) \times (V + 1) table.
Set DP[0][0] = 0.
For X = 1 to V: Set DP[0][X] = \infty
For k = 1 to n, for X = 1 to V:
     If v_k > X, set DP[k][X] = DP[k - 1][X].
      Else, set DP[k][X] = \min \{
         DP[k-1][X], w_k + DP[k-1][X-v_k].
For X = V to 0: if DP[n][X] \leq W, return X.
```

Comparing Algorithms

- Brute-force algorithm: $O(2^n n)$
- First DP algorithm: O(nW).
- This DP algorithm: O(nV).
- Can use first DP algorithm if capacity is fixed and *n* will grow large.
- Can use second DP algorithm if total value is fixed and n will grow large.

An Interesting Observation

Approximation Schemes

- Let P be an optimization problem. Let X^* be the value of the optimal answer for P.
- Let *A* be an algorithm parameterized over two quantities:
 - The input to the problem.
 - An accuracy parameter $\varepsilon \in (0, 1]$.
- A is called an approximation scheme iff it produces a feasible answer X to P satisfying

$$(1 - \varepsilon)X^* \leq X$$

Our Algorithm

- Choose some integer k in terms of ϵ (we'll discuss how later on.)
- Let $v'_i = \lfloor v_i / k \rfloor$ for all v_i .
- Use the value-based DP algorithm to find the value of the optimal solution for the problem instance using values v'_i and the same weights as before.
- Return *k* times this value.

Our Algorithm

• Choose $k = \varepsilon v_{\text{max}} / n$.

- Let $v'_i = \lfloor v_i / k \rfloor$ for all v_i .
- Use the value-based DP algorithm to find the value of the optimal solution for the problem instance using values v'_{i} and the same weights as before.
- Return *k* times this value.

The Math, Part I

- For any feasible solution S to the original problem, let c(S) denote the value of the items in S using the original values and c'(S) denote the value of the items in S using the reduced values.
- Let S^* be the optimal solution to the original problem and S^{*} be the optimal solution to the reduced values.
- Note: Optimal solution to the original problem is $c(S^*)$, and our approximation returns $kc'(S^{**})$.

The Math, Part II

- We want to bound the difference of the optimal solution and our estimate, which is given by $c(S^*)$ $kc'(S^{**})$.
- First, note that $c'(S'^*) \ge c'(S^*)$.
 - Rationale: S'^* is the optimal solution to the reduced problem, so its value in the reduced problem is at least the value of any solution in the reduced problem, including S^* .
- Therefore:

$$c(S^*) - kc'(S^{**}) \le c(S^*) - kc'(S^*)$$

The Math, Part III

- What is $c(S^*)$ $kc'(S^*)$?
- Note that

$$c(S^*)-kc'(S^*) = \sum_{i \in S^*} v_i - k \sum_{i \in S^*} \lfloor \frac{v_i}{k} \rfloor$$

$$= \sum_{i \in S^*} (v_i - k \lfloor \frac{v_i}{k} \rfloor)$$

$$< \sum_{i \in S^*} k$$

$$= nk$$

• So $c(S^*)$ - $kc'(S^{*}) \le nk$

The Math, Part IV

- For notational simplicity, let $X^* = c(S^*)$ and let $X = kc'(S^{**})$. This means that X^* is the optimal solution and X is our solution.
- From before, $X^* X \le nk$, so $X^* nk \le X$.
- Goal: Choose k so that $(1 \varepsilon)X^* \le X$.
- Note: If $nk \le \varepsilon X^*$, then

$$(1 - \varepsilon)X^* = X^* - \varepsilon X^* \le X^* - nk \le X$$

The Math, Part V

- If $kn \le \varepsilon X^*$, then $(1 \varepsilon)X^* \le X$ and we are done.
- So choose k so that $k \le \varepsilon X^* / n$.
- Let v_{max} be the value of the highest-value item that fits into the knapsack.
- Then $X^* \ge v_{\text{max}}$. Set $k = \varepsilon v_{\text{max}} / n$ to get $k = \varepsilon v_{\text{max}} / n \le \varepsilon X^* / n$

as required.

The Runtime

- For any k, the runtime is O(nV/k).
- Since $k = \varepsilon v_{max} / n$, the runtime is $O(n^2V / \varepsilon v_{max})$.
- Note that $V \le nv_{max}$, so the runtime is $O(n^3 / \varepsilon)$.
- A fully polynomial-time approximation scheme (or FPTAS) is an approximation scheme whose runtime is a polynomial in the input size and $1 / \epsilon$.
- This is about as good as it gets if $P \neq NP$!

Why This Matters

- Some (but not all) **NP**-hard problems can be approximated using FPTAS's.
- Even if $P \neq NP$, can still approximate the answer to arbitrary precision in polynomial time.
- If you can settle for an approximate solution, you can often find very fast polynomial-time algorithms.

Dealing with Intractability

• To review:

- If you need an exact answer, you can often do better than brute-forcing the answer.
- If you need an exact answer, you can often find parameterized algorithms that are efficient for your setup.
- If you can settle for an approximate answer, you can sometimes find efficient approximation algorithms.
- Intractable problems are not always as scary as they might seem!

Next Time

- Where to Go From Here
- Further Topics in Algorithms
- Additional Courses in Algorithms
- Final Thoughts!

The Final Project

The Final Project

- Choose and complete *two* of the three problems.
 - Please only submit answers to two problems; you're welcome to do all three, but we will only grade two.
- Each problem combines two of the techniques from the course, so solving two problems demonstrates an understanding of four techniques from the course.
- *Please work independently*. Collaboration is not allowed on this project.
- *Please do not use outside sources*. Refer to the handout for more details.
- Course staff can answer clarifying questions about the problems, but we will not offer as much help as normal.

Good Luck!