Introduction

Security

1

Security: Objectives

- Defense against non-authorized activities (adversaries)
 - Initiated by someone "from inside"
 - Initiated by someone "from outside"
- > Types of illegal activities:
 - Access to information
 - Information modification
 - Resource usage
 - · CPU, memory, printer, network, etc.
 - Denial of Service (DoS)
 - Vandalism
 - Interference with the normal system behavior without any benefit for the attacker

Security

Security in computing systems: Complex problems

- ▷ Computers can do a lot of damage in a short time frame
 - They manage an always growing amount of data/information
 - They process and communicate very fast
- - Systems are getting more complex with time
 - Time-to-market is each time shorter
- Networks allow:
 - · Anonymous (?) attacks from anywhere
 - · Automatic propagation of cyberplagues
 - The existence and exploitation of hostile hosts and applications
- ▷ In general users are not careful
 - Because they are not aware of the problems and solutions
 - · Because they take risks

Security

3

Security:

Pragmatic approach

- - Cost-efficiency balance
- ▷ Security is expensive
 - Dedicated technology, skilled people
 - · Use only the minimum required
- > Protection, value e punishment
 - Good protection for the most frequent attacks
 - Less interference with daily work than the damage caused by attackers
 - Police and courts for tracking and prosecuting attackers
 - · It is critical to avoid the notion of total impunity

Security

.

Security lexicon

- - A system weakness that makes it sensible to attacks
 - Design / development / installation
- Attack
 - A set of steps that lead to the execution of illegal activities
 - · Usually exploiting vulnerabilities
- - · Damage resulting from an attack
- ▶ Defense
 - Set of policies and mechanisms aiming at
 - · Reducing the amount of vulnerabilities
 - · Detect as fast as possible actual and past attacks
 - · Reduce the risks of systems

© André Zúquete / João Paulo Barraca

Security

5

Hackers, crackers and hats

- ▶ Hacker
 - Someone with high skills to overcome barriers and set complex things to work
- - · Hacker that is an attacker, a malicious adversary
- Black hat
 - · A hacker with a malicious goal
- ▶ White hat
 - A hacker that is payed for discovering problems
- Ethical hacker
 - · A pro bono white hat

Security

Security risks

- Information, time and money
 - · Destruction or tampering of information
- Confidentiality
 - Non-authorized access to information
- ▶ Privacy
 - Non-authorized gathering of personal information
 - · Data warehousing on personal information
- ▷ Resource availability
 - Disruption of computing systems / networks
- Impersonation
 - Of people / of services
 - Non-authorized exploitation of personal accounts / profiles

© André Zúquete / João Paulo Barraca

Security

Main vulnerability sources

- ⊳ People
 - Ignorant or careless
 - Hostile

https://www.pinterest.pt/pin/457256168394094122/

- Applications with bugs
 - Root kits help newcomers to exploit well-known vulnerabilities
- Malware
 - Trojan horses, worms, virus
- Defective administration
 - Systems get more complex as they evolve
 - Security restrictions vs. flexible operation
 - Most people cannot understand security jargon in order to manage security configurations
 Default configurations may not be the most secure ones
- Communications over uncontrolled/unknown/unsafe network links

© André Zúguete / João Paulo Barraca

Security

Security mechanisms

Mechanisms implement policies

- · Policies define, at an higher level, what needs to be done
- Mechanisms are used to deploy policies

Generic security mechanisms

- Confinement (sandboxing)
- Authentication
- Access control
- Privileged execution
- Filtering
- Logging
- Inspection
- Auditing
- Cryptographic algorithms
- Cryptographic protocols

http://devhumor.com/media/human-error-dave

Security

Security level offered by a computer

Depends on:

- · Available security policies
- Correctness and effectiveness of their specification / implementation

- NCSC Trusted Computer System Evaluation Criteria (TCSEC, Orange Book)
 - Classes: **D**, **C** (1, 2), **B** (1, 2, 3) e **A** (1)
 - · D: insecure (minimum protection level)
 - · A1: most secure
 - · Very demanding and expensive protection policies
 - · Formal validation of specification
 - · Highly supervised implementation
- EC Information Technology Security Evaluation Criteria (ITSEC)
 - · Levels: E1 to E6
 - · Formal specification level
 - · Correctness of implementation

Security

Security policies for distributed systems

- Must encompass several hosts and networks
 - Security Domains
 - · Definition of the set of hosts and networks of the domain
 - Definition of the set of accepted/authorized users
 - Definition of the set of accepted/not accepted activities
 - Security gateways
 - · Definition of the set of allowed in-out interactions
- > Perimeter defense vs. Defense in depth

© André Zúquete / João Paulo Barraca

Security

13

Attacks to distributed systems

- Attacks to hosts
 - Stealing
 - Intrusion
 - Impersonation (of users)
 - Denial of service

Attacks to networks

- Packet inspection
- Packet tampering / injection
- Traffic interception
- Traffic replaying
- Host impersonation
- · Denial of service (jamming, flooding, deception, etc.)
- Other
 - Covert channels

© André Zúquete / João Paulo Barraca

Security

14

On the Internet, nobody knows you're a dog."

Attack models

- · Conceived for exploiting well-known, common vulnerabilities
- Coded for many scenarios and targets
 - e.g. phishing
- · Mean survivability time
 - · Time between two consecutive automatic attacks
 - There are "network sensors" that help to compute it

> Target-specific attacks

- Conceived for a particular person / host / network
 - e.g. spear-phishing
- · Idealized and conducted in real-time by specialists

Security

Security:

Mechanisms for distributed systems (2/5)

- > Trusted Operating Systems
 - Security levels, certification
 - · Secure execution environments for servers
 - Sandboxing / virtual machines

Firewalls & Security Appliances

- Traffic control between networks
- Monitoring (traffic load, etc.)

Secure communications / VPNs

- · Secure channels over insecure, public networks
- · Secure extension of organizational networks

Security:

Mechanisms for distributed systems (3/5)

- > Authentication
 - Local
 - Remote (network authentication)
 - · Single Sign-On

Certification Authorities / PKI

· Management of public key certificates

Encryption of files and sessions

- Privacy / confidentiality of network data
- Privacy / confidentiality of long-term stored data

Security

19

Security:

Mechanisms for distributed systems (4/5)

- ▷ Intrusion detection
 - Detention of forbidden / abnormal activities
 - Network-Based / Host-based

Vulnerability scanners

- Scanning for problem fixing or exploitation
- Network-based / Host-based

Penetration testing

- · Vulnerability assessment
- Demo penetration attempts
- Testing of installed security mechanisms
- Assessment of badly implemented security policies

Security

Security: Mechanisms for distributed systems (5/5)

- - Detection of virus, worms or other cyber plagues
- > Security administration
 - Development of security policies
 - Distributed enforcement of policies
 - · Co-administration / outsourcing of security services
- - Capacity to detect and react to security incidents in real-time
 - Means for a rapid and effective incident reaction

Security