TUTORIAL 4 (Chapter 3)

SECTION A

MULTIPLE CHOICE QUESTIONS

- A1. The Moore's output of a finite state machine depends on _____.
 - (a) the present state only
 - (b) the next state only
 - (c) the present state and primary input
 - (d) the next state and primary input

Ans()

- A2. A finite state machine has 6 states. Using simple binary state assignment system, how many flip flops are required?
 - (a) 3
 - (b) 4
 - (c) 5
 - (d) 6

Ans()

- A3. Which of the following shows a Mealy's output Z, given that K and L are the external inputs to a finite state machine while Q₁ and Q₂ are the flip-flop outputs?
 - (a) $Z=Q_1(K+L)$
 - (b) $Z=Q_1+Q_2$
 - (c) $Z = Q_1 Q_2$
 - (d) $Z=Q_1(Q_1+Q_2)$

Ans()

SECTION B

- B1. A finite state machine has an input w and an output z. The machine is a sequence detector that produces z = 1 when the previous two values of w were 00 or 11; otherwise z = 0.
 - (a) Draw the Moore's state diagram.
 - (b) Derive the state table from part (a).

B2. Figure 1 shows the excitation table for an FSM. The FSM has an input P, and two output Y and Z. Both flip-flops response to a PGT clock signal.

Present state		Input	Output		Next state		Excitation	
Q_{A}	Q_{B}	P	Y	Z	Q_{A}	Q_{B}	D_A	D_{B}
0	0	0	0	0	0	0	0	0
		1	0	0	1	1	1	1
0	1	0	0	1	0	1	0	1
		1	0	0	1	1	1	1
1	0	0	0	1	0	0	0	0
		1	0	0	1	1	1	1
1	1	0	1	1	0	1	0	1
		1	1	0	1	1	1	1

Figure 1

- (a) Derive the minimized Boolean equations for Y, Z, D_A and D_B.
- (b) Draw the schematic diagram for the FSM using the *minimum number of logic gates*.