Вбудовані системи

Таймери лічильники

Блок-схема таймера/лічильника з схемою широтно-імпульсної модуляції

Simplified Atmel AVR ATMega48/88/168/328 Microcontroller PWM Peripheral

Таймер/лічильник 0 мікроконтролера ATMega328

Блок-діаграма таймера/лічильника 0 (8-bit Timer/Counter0)

Блок-діаграма модуля лічильника таймера 0

Блок-діаграма модуля компаратора таймера 0

Регістри управління таймером/лічильником 0

Bit	7	6	5	4	3	2	1	0	
0x24 (0x44)	COM0A1	COM0A 0	COM0B1	COM0B 0	-	_	WGM01	WGM00	TCCR0A
Read/Write	R/W	R/W	R/W	R/W	R	R	R/W	R/W	l
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
0x25 (0x45)	FOC0A	FOC0B	ı	-	WGM02	CS02	CS01	CS00	TCCR0B
Read/Write	W	W	R	R	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
0x15 (0x35)	-	-	-	-	-	OCF0B	OCF0A	TOV0	TIFR0
Read/Write	R	R	R	R	R	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
(0x6E)	-	-	-	-	-	OCIE0B	OCIE0A	TOIE0	TIMSK0
Read/Write	R	R	R	R	R	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Режими роботи таймера/лічильника

Mode	WGM02	WGM01	WGM00	Timer/Counter Mode of Operation	ТОР	Update of OCRx at	TOV Flag Set on ⁽¹⁾⁽²⁾
0	0	0	0	Normal	0xFF	Immediate	MAX
1	0	0	1	PWM, phase correct	0xFF	TOP	BOTTOM
2	0	1	0	СТС	OCRA	Immediate	MAX
3	0	1	1	Fast PWM	0xFF	BOTTOM	MAX
4	1	0	0	Reserved	_	_	_
5	1	0	1	PWM, phase correct	OCRA	TOP	BOTTOM
6	1	1	0	Reserved	_	_	_
7	1	1	1	Fast PWM	OCRA	воттом	TOP

MAX = 0xFF BOTTOM = 0x00

CS02	CS01	CS00	Description
0	0	0	No clock source (Timer/Counter stopped)
0	0	1	clk _{I/O} /(no prescaling)
0	1	0	clk _{I/O} /8 (from prescaler)
0	1	1	clk _{I/O} /64 (from prescaler)
1	0	0	clk _{I/O} /256 (from prescaler)
1	0	1	clk _{I/O} /1024 (from prescaler)
1	1	0	External clock source on T0 pin. Clock on falling edge.
1	1	1	External clock source on T0 pin. Clock on rising edge.

Біти вибору джерела тактових імпульсів та подільника частоти

Використання таймера 0 для реалізації функції millis()

```
#define MICSEC TO OVF ((64 * 256)/(F CPU/1000000L))
#define MILLIS INC (MICSEC TO OVF / 1000)
#define FRACT INC ((MICSEC TO OVF % 1000) >> 3)
#define FRACT MAX (1000 >> 3)
volatile uint32 t timer0 millis = 0;
static uint8 t timer0 fract = 0;
ISR(TIMER0 OVF vect)
  uint32 t m = timer0 millis;
  uint8 t f = timer0 fract;
    m += MILLIS INC;
    f += FRACT INC;
    if(f) = FRACT MAX)  {
        f \rightarrow FRACT MAX;
        m += 1;
    timer0 fract = f;
    timer0 millis = m;
```

```
//продовження
uint32 t millis(void)
  uint32 t m;
  uint8 t oldSREG = SREG;
    cli();
    m = timer0 millis;
    SREG = oldSREG;
  return m;
void InitTimer() (void)
  // fast pwm timer 0
  TCCR0A = (1 << WGM01) | (1 << WGM00);
  TCCR0B = (1 << CS01) | (1 << CS00);
  TIMSK0 = 1 << TOIE0;
  sei();
```

Приклад використання millis

```
#include <avr/io.h>
// підключаємо бібліотеку з функцією millis()
#include "my millis.h"
int main(void)
  uint32_t tmp, delay1 millis;
    InitTimer0();
    delay1 millis = millis();
    DDRB |= 1<<PB5;
    for(;;)
        tmp = millis();
        if((uint32_t)(tmp - delay1 millis) >= 1000) {
            delay1 millis = tmp;
            PORTB ^= 1<<PB5;
  return 0;
```

Аналогово-цифровий перетворювач (ADC)

Аналогово-цифровий перетворювач мікроконтролера ATMega328

Основні параметри АЦП:

- Роздільна здатність 10-біт
- Інтегральна нелінійність 0.5 LSB
- Абсолютна точність ± 2 LSB
- Час перетворення від 65 до 260 мкс
- 8 мультиплексованих вхідних каналів
- Вхідний канал вбудованого датчика температури
- Вибір опорної напруги АЦП 1.1 В
- Постійний режим роботи або режим одиночного перетворення
- Переривання АЦП при завершені перетворення
- Пониження шуму в режимі сну

$$ADC = \frac{V_{IN} \times 1024}{V_{REF}}$$

Регістри керування АЦП

Регістр вибору входу мультиплексора

Bit	7	6	5	4	3	2	1	0	_
(0x7C)	REFS1	REFS0	ADLAR	-	MUX3	MUX2	MUX1	MUX0	ADMUX
Read/Write	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Біти вибору джерела опорної напруги

REFS1	REFS0	Voltage Reference Selection
0	0	AREF, internal V _{REF} turned off
0	1	AV _{CC} with external capacitor at AREF pin
1	0	Reserved
1	1	Internal 1.1V voltage reference with external capacitor at AREF pin

Регістр вибору джерела запуску АЦП перетворення

Bit	7	6	5	4	3	2	1	0	_
(0x7B)	-	ACME	-	_	-	ADTS2	ADTS1	ADTS0	ADCSRB
Read/Write	R	R/W	R	R	R	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

MUX30	Single Ended Input			
0000	ADC0			
0001	ADC1			
0010	ADC2			
0011	ADC3			
0100	ADC4			
0101	ADC5			
0110	ADC6			
0111	ADC7			
1000	ADC8 ⁽¹⁾			
1001	(reserved)			
1010	(reserved)			
1011	(reserved)			
1100	(reserved)			
1101	(reserved)			
1110	1.1V (V _{BG})			
1111	0V (GND)			

Регістр управління АЦП A (ADCSRA)

Bit	7	6	5	4	3	2	1	0	_
(0x7A)	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

ADEN (7) - вмикає або вимикає АЦП (1-включений).

ADSC (6) - запускає перетворення якщо в нього записати 1 (автоматично скидається після завершення перетворення).

ADATE (5) - дозволяє запускати перетворення по перериванню від периферійних пристроїв мікроконтролера якщо встановити в 1.

ADIF (4) - прапор переривання від АЦП.

ADIE (3) - дозвіл переривання від АЦП якщо встановлений в 1.

Біти **ADPS2**, **ADPS1**, **ADPS0** (2 - 0) вибирають режим роботи подільника тактової частоти (робоча частота АЦП від 50kHz до 200kHz):

000 - CLK / 2	
001 - CLK / 2	
010 - CLK / 4	
011 - CLK / 8	
100 - CLK / 16	
101 - CLK / 32	
110 - CLK / 64	
111 - CLK / 128	

ADTS2	ADTS1	ADTS0	Trigger Source
0	0	0	Free running mode
0	0	1	Analog comparator
0	1	0	External interrupt request 0
0	1	1	Timer/Counter0 compare match A
1	0	0	Timer/Counter0 overflow
1	0	1	Timer/Counter1 compare match B
1	1	0	Timer/Counter1 overflow
1	1	1	Timer/Counter1 capture event

Вибір джерела запуску АЦП перетворення (регістр **ADCSRB**)

Прилад використання АЦП

```
#include <avr/io.h>
#include <util/delay.h>
int main(void)
  uint32 t data;
    // Задаємо джерело опорної напруги AVCC =3.3V та вибираємо вхід ADC1
    ADMUX = (1 << REFS0) \mid (1 << MUX0);
    // Включаємо АЦП та задаємо подільник частоти CLK/128
    ADCSRA= (1<<ADEN) | (1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0);
    for(;;)
        // Запускаємо перетворення АЦП
        ADCSRA \mid = (1 << ADSC);
        // Чекаємо закінчення перетворення АЦП
        while (ADCSRA & (1<<ADSC));</pre>
        // Зчитуємо результат перетворення (ADCL | (ADCH << 8));
        data = (ADCW * 330) / 1024;
        // printf("V= %d.%d", data/100, data%100); // Вивід даних
        delay ms(1000);
  return 0;
```

MCP3202 - 12 bit ADC

$$Digital \ Output \ Code \ = \ \frac{4096 {\, \bullet \,} V_{IN}}{V_{DD}}$$

Функціональна схема мікросхеми

	Coi B	nfig its	Channel Selection		
	C1	C2	0	1	
Single Ended	1	0	+	_	
Mode	1	1	_	+	
Pseudo-	0	0	IN+	IN-	
Differential Mode	0	1	IN-	IN+	

Часова діаграма протоколу передачі даних

