Constructing triangles

October 21, 2013

$1 \quad x0a2c8d4a7e3a85b9$

How many triangles can be drawn where we know two angles and the side length is known between two known between the two angles?

Ans None
Only one
More than one

Hint 1 Let's draw an example of a triangle where the side length is known between 2-two angles. Let's look at when a side of length 4-4 is between a pair of 75° 75° angles.

Hint 2 The other two sides can be drawn at 75° 75° angles and are equal in length. The sides meet at a 30° 30° angle to complete the triangle.

This triangle is unique, meaning no other triangle exists that satisfies these conditions with the same shape and size.

Hint 3 When the side length is known between two known angles, only one triangle can be drawn.

Tags: Constructing triangles, CC.7.G.A.2

Version: e08d4e9d.. 2013-10-20-4a925246.. 2013-10-21

2 x18341f6f8d24d96e

How many triangles can be drawn with side lengths 9, 12 and 15?

Ans None
Only one
More than one

Hint 1 A triangle is a plane figure with 3-three straight sides and 3-three angles. Can we satisfy the definition given the conditions? Let's try to draw a triangle given the conditions.

Hint 2 In general, the longest any side of a triangle must be is always shorter than the sum of the two other sides. Because 9+12=21, the two sides 9+12=21, and 9+12=21, the two sides 9+12

We can create a triangle whose sides to satisfy the given conditions with a unique size and shape.

Hint 3 Given the conditions, only one triangle can be drawn.

Tags: Constructing triangles, CC.7.G.A.2

Version: d17e39e1.. 2013-10-20-49159f6f.. 2013-10-21

3 x1afa3df30210708e

Draw a <u>right</u> triangle with side lengths 5a, 12a and 13a, where a is any positive number.

Given these criteria, is the triangle unique **Is there a unique triangle that satisfies the given conditions? [[? interactive-graph 1]]

Ans Yes No

Hint 1 Lets start by choosing a value for a where a > 0a is any positive number, then we can draw a right triangle with side lengths 5a, 12a and 13a.

Hint 2 Choosing a = 1, we can draw a <u>right</u> triangle with side lengths 5, 12 and 13. This is a <u>right triangle</u>.

Hint 3 Choosing a = 0.5, we can draw a right triangle with side lengths 2.5, 6 and 6.5.

Hint 4 The triangle is not unique. We can let a be any nonzero-positive number and draw many triangles with the same shape but different sizes.

Tags: Constructing triangles, CC.7.G.A.2

Version: e7274d62.. 2013-10-20-f00b6980.. 2013-10-21

4 x1c875467bbf94500

Draw a triangle with side length 4 between two 70° angles.

Given these criteria is the triangle unique **Is there a unique triangle that satisfies the given conditions? [[? interactive-graph 1]]

Ans Yes

Hint 1 Lets start by drawing the side whose length is 4.

Hint 2 From the side 4, lets draw 2-two 70° angles. Since we have 2-two equal angles, we have an isosceles triangle. An isosceles triangle has at least 2-two sides equal in length.

Since we have $\frac{2-\text{two}}{70^{\circ}}$ angles, the third angle must be 40° . The sum of $\frac{3-\text{three}}{20^{\circ}}$ angles in a triangle will always be 180° .

Hint 3 We know the measure of 2-two angles and the length of the side between the angles, so we can draw only 1-one triangle.

Hint 4 The triangle is unique.

Tags: Constructing triangles, CC.7.G.A.2

Version: dd847b40.. 2013-10-20-7647d185.. 2013-10-21

5 x1da87b180aca0e3d

How many triangles can be drawn which have side lengths of 5 and 10?

Ans None
Only one
More than one

Hint 1 We do not know the length of the third side so we are free to choose any length. Thus, we cannot create a unique triangle with only two side lengths.

Hint 2 We can draw many triangles with side lengths 5 and 10.

Hint 3 If we only know 2-two side lengths, more than one triangle can be drawn.

Tags: Constructing triangles, CC.7.G.A.2

Version: ed0bdb35.. 2013-10-20-d74ae956.. 2013-10-21

6 x25470998d7b41ee4

How many triangles can be drawn which have two 45° angles and two sides of length 2?

Hint 1 A triangle is a plane figure with 3-three straight sides and 3-three angles. The 3-three angles always add up to 180°.

We Since we have two 45° angles. The third angle x, the third angle is 90° :

$$\frac{180^{\circ}}{180^{\circ}} = 45^{\circ} + 45^{\circ} + x$$

$$\underline{180^{\circ}} = 90^{\circ} + x$$

$$\underline{x} = 180^{\circ} - 90^{\circ}$$

$$\underline{x} = 90^{\circ}$$

$$= 180^{\circ} - 2 \cdot 45^{\circ}$$

$$= 90^{\circ}$$

The third angle x is 90° so let Let's draw a right triangle.

Hint 2 We can draw a right triangle and make two of its sides of length 2. The sides with length 2 are in must be between the 45° and 90° angles.

This triangle is unique, meaning no other triangle exists with exactly the same shape and size.

Hint 3 Given the conditions, only one triangle can be drawn.

Tags: Constructing triangles, CC.7.G.A.2

Version: 5c0563e0.. 2013-10-20-2c26d431.. 2013-10-21

7 x2bce84b97313fd2b

Draw a triangle where the with two angles 31° and 90° where side length 3 is not between *not* between the two angles 31° and 90° .

Given these criteria is the triangle unique **Is there a unique triangle that satisfies the given conditions? [[? interactive-graph 1]]

Hint 1 Lets start by drawing a right angle which is 90°. Then, let's draw the side of length 3 next to the right angle, so our base is length 3.

Hint 2 The length of 3 is not between 2-two angles 31° and 90° .

Since we drew the side of length 3 next to the right angle, the 31° angle must be *opposite* the side of length 3 .

Hint 3 We know the measure of 2-two angles and the length of 1-one side not between the angles, so we can draw only 1-one triangle.

Hint 4 The triangle is unique.

Tags: Constructing triangles, CC.7.G.A.2

Version: 1215aaf1.. 2013-10-17-4c8a5b03.. 2013-10-21

8 x31c216ff88dad8e7

How many triangles can we draw with side lengths 4, 4 and 7?

Hint 1 A triangle is a plane figure with 3-three straight sides and 3-three angles. Can we satisfy the definition given the conditions? Let's try to draw a triangle given the conditions.

Hint 2 In general, the longest any side of a triangle must be is always shorter than the sum of the two other sides. Because 4 + 4 = 8, the two sides4 and 4 meet to form 2 angles with the side of length 7. other two sides:

$$7 < 4 + 4$$

$$4 < 7 + 4$$

We can create 3 angles with the 3 sides to satisfy the definition of a triangle a triangle with a unique size and shape.

Hint 3 Given the conditions, only one triangle can be drawn.

Tags: Constructing triangles, CC.7.G.A.2

Version: 33683619..2013-10-20-7bc13eed.. 2013-10-21

9 x38cc51ab93842600

How many triangles can be drawn with side lengths 1, 1 and 22.5?

Ans None Only one More than one

Hint 1 A triangle is a plane figure with 3-three straight sides and 3-three angles. Can we satisfy the definition given the conditions? Let's try to draw a triangle given the conditions.

Hint 2 In general, the longest any side of a triangle must be is always shorter than the sum of the two other other two sides. Because 1+1=22.5>1+1, the two side lengths sides 1 and 1 cannot meet to form a third angle —over the third side 2.5.

We cannot create 3-three angles to satisfy the definition of a triangle.

Hint 3 Given the conditions, no triangles can be drawn.

Tags: Constructing triangles, CC.7.G.A.2

Version: aeb719e4.. 2013-10-18-05f2acc5.. 2013-10-21

$10 ext{ x4c335bfbee0cba92}$

Draw a right triangle with at least $\frac{2}{2}$ two sides of equal length.

Given these criteria is the triangle unique **Is there a unique triangle that satisfies the given conditions? [[? interactive-graph 1]]

Ans Yes

Hint 1 Lets start by drawing. A right triangle has one 90° angle.

A triangle with at least 2-two equal side lengths is called an isosceles triangle. We do not know the side lengths.

Hint 2 We can draw many right triangles with 2 two sides of equal length.

Hint 3 The triangle is not unique.

Tags: Constructing triangles, CC.7.G.A.2

Version: 5f71c91d.. 2013-10-20-381a8a90.. 2013-10-21

11 x531e157ba7c498eb

How many triangles can be drawn where the measures of all 3-three angles are the same?

Ans None
Only one
More than one

Hint 1 A triangle is a plane figure with 3-three straight sides and 3-three angles. What triangle or triangles would satisfy the conditions?

Let's try to draw a triangle where the measures of all 3 three angles is the same.

Hint 2 The 3-three angle measures in a triangle must sum to $\frac{180^{\circ}180^{\circ}}{180^{\circ}}$. Because we know the measure of all 3-three angles must be the same, we know all 3-three angles have measure $\frac{180^{\circ}}{3} = 60^{\circ} \frac{180^{\circ}}{3} = 60^{\circ}$.

This is an equilateral triangle.

Hint 3 Is this triangle unique or do other equilateral triangles exist with a different size?

We can draw many equilateral triangles with the same shape but different sizes.

Hint 4 More than one triangle can be drawn with all 3 three angles measures equal.

Tags: Constructing triangles, CC.7.G.A.2

Version: 47228a28.. 2013-10-20 1ab79063.. 2013-10-21

12 x572fecbc70b353aa

Draw a right triangle that is also an isosceles triangle and has two sides of length 3.

Given these criteria is the triangle unique **Is there a unique triangle that satisfies the given conditions? [[? interactive-graph 1]]

Ans Yes

Hint 1 Lets start by drawing. A right triangle has one 90° angle.

An isosceles triangle has at least 2-two side lengths equal. We are given 2-two side lengths both equal to 3.

Hint 2 Let's draw $\frac{1}{1}$ one side length 3 as the height vertically (up and down) from the 90° angle. Let's draw the other side length 3 as the base horizontally (left and right) from the 90° angle.

Hint 3 Since we are given the measures of 2-two sides and the angle between them, we can draw only 1-one triangle.

Hint 4 The triangle is unique.

Tags: Constructing triangles, CC.7.G.A.2

Version: b8c14c25.. 2013-10-20-42221dd1.. 2013-10-21

13 x651844ecfaac48e9

Draw a right triangle with two 45° angles.

Given these criteria is the triangle unique **Is there a unique triangle that satisfies the given conditions? [[? interactive-graph 1]]

Hint 1 Lets start by drawing. A right triangle has one 90° angle.

The triangle we want is an isosceles right triangle. An isosceles right triangle has two 45° angles.

Hint 2 We know the measure of all 3-three angles but not the length of any side. Therefore, we can draw many triangles of various sizes all with a pair of 45° angles.

Hint 3 The triangle is not unique.

Tags: Constructing triangles, CC.7.G.A.2

Version: <u>525a66e3.. 2013-10-20-fb842816.. 2013-10-21</u>

14 x6763ceb1ec0ceb41

How many triangles can be drawn where the lengths of all 3-three sides are equal to 1?

Hint 1 A triangle is a plane figure with 3-three straight sides and 3-three angles. Is there a triangle or triangles that satisfy the conditions? Let's try to draw a triangle with all side lengths equal to 11.

Hint 2 The result is an equilateral triangle with equal side lengths and equal angles measures:

This triangle is unique, meaning no other triangle exists that has all sides equal to $\frac{1}{4}$ 1.

Hint 3 In general, if the lengths of all 3-three sides are known, only one triangle can be drawn.

Tags: Constructing triangles, CC.7.G.A.2

Version: ca634aaf.. 2013-10-20 e412934c.. 2013-10-21

15 x67ee6010588311f2

**How many triangles can be drawn with side lengths 4, 6 and $\frac{10}{12}$ **

Ans None Only one More than one

Hint 1 A triangle is a plane figure with 3-three straight sides and 3-three angles. Can we satisfy the definition given the conditions? Let's try to draw a triangle given the conditions.

Hint 2 In general, the longest any side of a triangle must be is always shorter than the sum of the two other other two sides. Because 4+6=1011>6+4, the two sides 4 and 6 and 4 cannot meet to form a third angle —over the third side 11.

We cannot create 3-three angles to satisfy the definition of a triangle.

Hint 3 Given the conditions, no triangles can be drawn.

Tags: Constructing triangles, CC.7.G.A.2

Version: 9421cd19... 2013-10-18 edcac7f5... 2013-10-21

16 x67fd10caf4f54df2

Draw a <u>right</u> triangle with side lengths 3a, 4a and 5a, where a is any positive number.

Given these criteria is the triangle unique **Is there a unique triangle that satisfies the given conditions? [[? interactive-graph 1]]

Hint 1 Lets start by choosing a value for a where a > 0a is any positive number, then we can draw a right triangle with side lengths 3a, 4a and 5a.

Hint 2 If a = 1, then we can draw a <u>right</u> triangle with side lengths 3, 4 and 5. This is a right triangle.

Hint 3 If a = 2, then we can draw a right triangle with side lengths 6, 8 and 10.

We can let a be any positive number and draw many triangles of same shape but different sizes.

Hint 4 The triangle is not unique. Multiple triangles satisfy the conditions.

Tags: Constructing triangles, CC.7.G.A.2

Version: 95e0a049.. 2013-10-20 0b713fdb.. 2013-10-21

17 x6d7be6276bcb5815

Draw a right triangle with a height 4 and base 5.

**Given these criteria is the triangle unique **Is there
a unique triangle that satisfies the given conditions?** [[?
interactive-graph 1]]

Ans Yes

Hint 1 Lets start by drawing. A right triangle has a 90° angle.

The height of length 4 is drawn vertically (up and down) from the 90° angle. The base of length 5 is drawn horizontally (left and right) from the 90° angle.

Hint 2 Since we are given the measures of 2-two sides and the angle between them, we can draw only 1-one triangle.

Hint 3 The triangle is unique.

Tags: Constructing triangles, CC.7.G.A.2

Version: 41522448.. 2013-10-20-77539544.. 2013-10-21

$18 ext{ } ext{x}72d893d1e3229dfd$

How many triangles can we draw with side lengths 3 and 4?

Ans None
Only one
More than one

Hint 1 We can draw many triangles with side lengths 3 and 4.

Hint 2 Without knowing at least 1 one angle measure, we cannot create a unique triangle with side lengths 3 and 43 and 4.

Hint 3 If we only know 2—two side lengths, more than one triangle can be drawn.

Tags: Constructing triangles, CC.7.G.A.2

Version: af92749c.. 2013-10-20 7f5a7177.. 2013-10-21

19 x892857b71e427c39

How many triangles can be drawn with angles 60° , 60° and 70° ?

Ans None Only one

More than one

Hint 1 A triangle is a plane figure with 3-three straight sides and 3-three angles. In a triangle, the sum of the three angle measures is 180°.

Hint 2 Let's add together the angles measures 60° , 60° and 70° :

sum of angle measures
$$= 60^{\circ} + 60^{\circ} + 70^{\circ}$$

$$= 120^{\circ} + 70^{\circ}$$

$$= 190^{\circ}$$

$$> 180^{\circ}$$

sum of angle measures=
$$60^{\circ} + 60^{\circ} + 70^{\circ}$$

= $120^{\circ} + 70^{\circ}$
= 190°

The sum of the 3—three angle measures is greater than 180° .

Hint 3 No triangle can be drawn that satisfies the given conditions.

Tags: Constructing triangles, CC.7.G.A.2

Version: 88ce2f2f.. 2013-10-20-b659944d.. 2013-10-21

20 xb880da8414b8f195

Draw an obtuse triangle with angles $45^{\circ},\,35^{\circ}$ and $100^{\circ}.$

Is there a unique triangle that satisfies the given conditions? [[? interactive-graph 1]]

Ans Yes

Hint 1 Lets start by drawing. While keeping one angle constant, we can change the side lengths to create one of the other two angles.

For example, while keeping a 45° angle, we can change the side lengths to create the 35° angle. The third angle will have measure 100° .

Hint 2 We know the measure of three angles but not the length of any side. We can draw many triangles of same shape but different sizes.

Hint 3 The triangle is not unique.

Tags: Constructing triangles, CC.7.G.A.2 Version: 6879cae0... 2013-10-21

21 xb9aa47b3de982d55

Draw an isosceles triangle with two 70° angles.

Given these criteria is the triangle unique **Is there a unique triangle that satisfies the given conditions? [[? interactive-graph 1]]

Ans Yes
No

Hint 1 Lets start by drawing an isosceles triangle with 2-two 70° angles. An isosceles triangle has at least 2-two side lengths equal and 2-two angles equal.

Hint 2 We do not know the side lengths, so we can draw many triangles.

Hint 3 The triangle is not unique.

Tags: Constructing triangles, CC.7.G.A.2

Version: 3bc9edc0.. 2013-10-18-c30a9e63.. 2013-10-21

22 xbd061a8700fced6c

How many right triangles can be drawn with angles 40° and $60^{\circ}?^{}$

Ans None Only one More than one

Hint 1 A triangle is a plane figure with 3-three straight sides and 3-three angles. In a triangle, the sum of the three angle measures is 180°.

A right triangle has a 90° angle.

Hint 2 Let's add together the angle measures 40° , 60° and 90° :

sum of angle measures
$$= 40^{\circ} + 60^{\circ} + 90^{\circ}$$
$$= 190^{\circ}$$
$$> 180^{\circ}$$

sum of angle measures=
$$40^{\circ} + 60^{\circ} + 90^{\circ}$$

= 190°

The sum of the 3-three angles is greater than 180°.

Hint 3 No triangle can be drawn that satisfies the given conditions.

Tags: Constructing triangles, CC.7.G.A.2

Version: 69a54880.. 2013-10-20-24dc4864.. 2013-10-21

$23 \times c001c788d01d9e5f$

Draw a triangle with two angles 58° and 90° where side length 4 is not between *not* between the two angles 58° and 90°.

Given these criteria is the triangle unique **Is there a unique triangle that satisfies the given conditions? [[? interactive-graph 1]]

Ans Yes

Hint 1 Lets start by drawing a right angle which is 90°. Then, let's draw the side of length 4 next to the right angle, so our base has a length of 4.

Hint 2 The side of length 4 is not between $\frac{2-\text{two}}{2}$ angles 58° and 90°.

Since we drew the side of length 4 next to the right angle, the 58° angle must be *opposite* the side of length 4 .

Hint 3 We know the measure of 2—two angles and the length of 1—one side not between the angles, so we can draw only 1—one triangle.

Hint 4 The triangle is unique.

Tags: Constructing triangles, CC.7.G.A.2

Version: 9534c031.. 2013-10-17 c15babbe.. 2013-10-21

$24 ext{ } ext{xc} ext{256611ab7d92e83}$

Draw a triangle with side length 5 between two 58° angles.

Given these criteria is the triangle unique **Is there a unique triangle that satisfies the given conditions? [[? interactive-graph 1]]

Ans Yes
No

Hint 1 Lets start by drawing the length of 1—one side, which we know is 5.

Hint 2 From the side 5, lets draw 2-two 58° angles. Since we have 2-two equal angles, we have an isosceles triangle. An isosceles triangle has at least 2-two sides equal in length.

Since we have 2-two 58° angles, the third angle must be

Since we have $\frac{2 \text{ two }}{58^{\circ}}$ angles, the third angle must be 64° . The sum of $\frac{3 \text{ three}}{180^{\circ}}$ angles in a triangle will always be 180° .

Hint 3 We know the measure of 2—two angles and the length of the side between the angles, so we can draw only 1—one triangle.

Hint 4 The triangle is unique.

Tags: Constructing triangles, CC.7.G.A.2

Version: 5ba2ed08.. 2013-10-17-7d6f4977.. 2013-10-21

25 xc40b1278855716df

Draw a right triangle with side lengths 3, 4 and 5.

**Given these criteria is the triangle unique **Is there
a unique triangle that satisfies the given conditions?** [[?
interactive-graph 1]]

Hint 1 Lets start by drawing. We know the lengths of all 3-three sides. How many triangles can we draw?

Hint 2 The triangle with side lengths 3, 4 and 5 is a right triangle. Since we are given the measures of 3-three sides, we can draw only 1-one triangle.

Hint 3 The triangle is unique.

Tags: Constructing triangles, CC.7.G.A.2

Version: <u>b5262e6e.. 2013-10-17-</u>3adc68e6.. 2013-10-21

26

Draw an obtuse triangle with angles 45°, 35° and 100°. **Given these criteria is the triangle unique?**? interactive graph 1

Ans Yes No

Hint 1 Lets start by drawing. While keeping one angle constant, we can change the side lengths to create one of the other two angles. For example, while keeping a 45° angle, we can change the side lengths to create the 35° angle. The third angle will have measure 100° .

Hint 2 We know the measure of 3 angles but not the length of any side. We can therefore draw many triangles of the same shape but with different sizes.

Hint 3 The triangle is not unique. Tags: Constructing triangles, CC.7.G.A.2Version: 71b1e27f.. 2013-10-20

26 xdba9a2b900c8bbcd

How many triangles can be drawn with side lengths 1, 2 and $\frac{34}{4}$?

Ans None Only one More than one

Hint 1 A triangle is a plane figure with 3-three straight sides and 3-three angles. Can we satisfy the definition given the conditions? Let's try to draw a triangle given the conditions.

Hint 2 In general, the longest any side of a triangle must be is always shorter than the sum of the two other other two sides. Because 1+2=34>2+1, the two sides 1 and 2 and 1 cannot meet to form a third angle —over the third side 4.

We cannot create 3-three angles to satisfy the definition of a triangle.

Hint 3 Given the conditions, no triangles can be drawn.

Tags: Constructing triangles, CC.7.G.A.2
Version: 2feade91... 2013-10-18-950a8286... 2013-10-21

27 xe06107bc78ca0b3c

How many triangles can we draw with angles 30° , 50° and 100° ?

Ans None
Only one
More than one

Hint 1 A triangle is a plane figure with 3-three straight sides and 3-three angles. The 3-three angles measures must add up to 180°. Let's add together the angles 30°, 50° and 100°:

total angle measure =
$$30^{\circ} + 50^{\circ} + 180^{\circ}$$

= 180°

So, at least 1-one triangle exists. Let's drawit.

Hint 2 We know the measure of 3-three angles but not the length of any side. We can draw many triangles with the same shape but different sizes.

Hint 3 When only the measures of all 3-three angles are known, more than one triangle can be drawn.

Tags: Constructing triangles, CC.7.G.A.2
Version: 089fe1ab.. 2013-10-20-7c205db7.. 2013-10-21

$28 \times e937d430ba8d75d8$

How many triangles can we draw that have one angle measure equal to 45° and one side of length 5?

Ans None
Only one
More than one

Hint 1 A triangle is a plane figure with 3-three straight sides and 3-three angles.

The 3-three angles measures always add up to 180° . We only know 1-one angle is 45° . We can't find the measures of the other 2-two angles.

Hint 2 We know the length of only 1—one side is 5. Depending if we place the side of length 5 next to or across from the 45° angle, we can draw many triangles with different shapes and different sizes.

Hint 3 If we only know <u>1 angle and 1 one angle and one</u> side length, more than one triangle can be drawn.

Tags: Constructing triangles, CC.7.G.A.2

Version: ba0688a0.. 2013-10-20 e1956610.. 2013-10-21

29 xf51994a651ca1d7f

Draw a triangle with angles 30°, 50° and 100°.

Given these criteria is the triangle unique **Is there a unique triangle that satisfies the given conditions? [[? interactive-graph 1]]

Ans Yes

Hint 1 Lets start by drawing. While keeping 1—one angle, we can change the side lengths to create 1—one of the other 2—two angles.

While keeping a 100° angle, we can change the side lengths to create the 50° angle. The final angle will be 30° .

Hint 2 We know the measure of 3-three angles but not the length of any side. We can draw many triangles of same shape but different sizes.

Hint 3 The triangle is not unique.

Tags: Constructing triangles, CC.7.G.A.2

Version: ac2e7f53.. 2013-10-18-d7e4aa43.. 2013-10-21

30 xf9872931929ac56c

Draw a right triangle with side lengths 5, 12 and 13.

**Given these criteria is the triangle unique **Is there
a unique triangle that satisfies the given conditions?** [[?
interactive-graph 1]]

Ans Yes

Hint 1 Lets start by drawing. We know the lengths of all 3-three sides. How many right triangles can we draw?

Hint 2 Since we are given the lengths of all 3-three sides, we can draw only one triangle.

Note the triangle right triangle with side lengths 5, 12 and 13 is a right triangle.

Hint 3 The triangle is unique.

Tags: Constructing triangles, CC.7.G.A.2

Version: 81990b3f.. 2013-10-20-ba30b682.. 2013-10-21