Linear Algebra HW10

Aamod Varma

November 12, 2024

Problem 1

Proof. (1). We have $T^4 = I$. The minimal polynomial is,

$$z^4 - 1 = 0$$

whose factors are,

$$z^4 - 1 = (z+1)(z-1)(z+i)(z-i)$$

So the roots $\lambda_1, \ldots, \lambda_4$ are all distinct which means that the operator T is diagonalizable.

(2). We have $T^4 = T$ whose characteristic equation is,

$$z^4-z$$

which can be factored as,

$$z^4 - z = z(z^3 - 1) = z((z - 1)(z^2 + 1 + z))$$

And we know that z^2+1+z has zeroes as $\frac{-1\pm\sqrt{-3}}{2}$

Which means that we have four distinct λ which implies that T is diagonizable.

(3). Let T be defined as T(a,b)=(b,0). We see that $T^2=T^4$. However the matrix for this defined on e_1,e_2 is just (01;00). The only eigenvalue is 0 so we cannot diagonalize it.

Chapter 6

Problem 3

Proof. (a). We have f defined as $f((x_1, x_2), (y_1, y_2)) = |x_1y_1| + |x_2y_2|$

But we see that f((-1,0),(1,0)) = 1 but f((1,0),(1,0)) = -1

So its not homogeneous hence cannot be an inner product.

(b). We have $f((x_1, x_2, x_3), (y_1, y_2, y_2)) = x_1y_1 + x_3y_3$

But we see that f((0,1,0),(0,1,0)) = 0

So its not definite hence is not an inner product.