

SEQUENCE LISTING

<110> CANON KABUSHIKI KAISHA, et al.

<120> Kit for immobilizing organic substance, organic substance-immobilized structure, and manufacturing methods therefor

<130> 10002556W001

<150> JP2004-016858

<151> 2004-01-26

<160> 181

<170> MS-WORD

<210> 1

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> anodisk membrane-binding peptide

<400> 1

Val Tyr Ala Asn Gln Thr Pro Pro Ser Lys Ala Arg
1 5 10

<210> 2

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> anodisk membrane-binding peptide

<400> 2

Gln Ser Ser Ile Thr Thr Arg Asn Pro Phe Met Thr
1 5 10

<210> 3

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> anodisk membrane-binding peptide

<400> 3

Phe Met Asn His His Pro Asn Ser Gln Gln Tyr His
1 5 10

<210> 4

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> anodisk membrane-binding peptide

<400> 4

Gln Tyr Thr Ser Ser Gly Ile Ile Thr Ser Ser Ala
1 5 10

<210> 5
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 5
His His His Pro Glu Asn Leu Asp Ser Thr Phe Gln
1 5 10

<210> 6
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 6
Gln Pro His Met His Arg Ser Ser His Gln Asp Gly
1 5 10

<210> 7
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 7
Asn Thr Thr Met Gly Pro Met Ser Pro His Ser Gln
1 5 10

<210> 8
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 8
Ala Ala His Phe Glu Pro Gln Thr Met Pro Met Ile
1 5 10

<210> 9
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 9
Asp His Gln Leu His Arg Pro Pro His Met Met Arg
1 5 10

<210> 10
<211> 12

<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 10
Val Ser Arg His Gln Ser Trp His Pro His Asp Leu
1 5 10

<210> 11
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 11
Met Met Gln Arg Asp His His Gln His Asn Ala Gln
1 5 10

<210> 12
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 12
Val Thr Leu His Thr Val Asp His Ala Pro Gln Asp
1 5 10

<210> 13
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 13
Ser Val Ser Val Gly Met Lys Pro Ser Pro Arg Pro
1 5 10

<210> 14
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 14
His Leu Gln Ser Met Lys Pro Arg Thr His Val Leu
1 5 10

<210> 15
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 15
Ile Pro Asn Ala Glu Thr Leu Arg Gln Pro Ala Arg
1 5 10

<210> 16
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 16
Val Gly Val Ile Ser Ser Trp His Pro His Asp Leu
1 5 10

<210> 17
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 17
Thr Val Pro Ile Tyr Asn Thr Gly Ile Leu Pro Thr
1 5 10

<210> 18
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 18
Tyr Thr Met His His Gly Ser Thr Phe Met Arg Arg
1 5 10

<210> 19
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 19
Ser Met Met His Val Asn Ile Arg Leu Gly Ile Leu
1 5 10

<210> 20
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 20
Ala Pro Met His His Met Lys Ser Leu Tyr Arg Ala
1 5 10

<210> 21
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 21
Met Met Gln Arg Asp His His Gln His Met Arg Arg
1 5 10

<210> 22
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 22
Met Lys Thr His His Gly Asn Asn Ala Val Phe Leu
1 5 10

<210> 23
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 23
Leu Glu Pro Leu Pro His Thr Pro Arg Met Tyr Ala
1 5 10

<210> 24
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 24
Gln Leu Tyr Glu Pro Asp Ser Gly Pro Trp Ala Pro
1 5 10

<210> 25
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 25
Trp Met Thr Lys Met Pro Thr Thr His Thr Arg Tyr
1 5 10

<210> 26
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 26
His His Pro Met Tyr Ser Met Thr Arg Ala Leu Pro
1 5 10

<210> 27
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 27
Gly Ser Ala His Ser Arg Asn Asp Ala Ala Pro Val
1 5 10

<210> 28
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 28
His Ser Pro Leu Met Gln Tyr His Met Ser Gly Thr
1 5 10

<210> 29
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 29
Thr Ala His Met Thr Met Pro Ser Arg Phe Leu Pro
1 5 10

<210> 30
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 30
Ala Cys Pro Pro Thr Gln Ser Arg Tyr Cys
1 5 10

<210> 31
<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> anodisk membrane-binding peptide

<400> 31

Ala Cys Asn Gly Met Leu Ala Phe Gln Cys
1 5

<210> 32

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> anodisk membrane-binding peptide

<400> 32

Ala Cys Thr Pro Lys Pro Gly Lys His Cys
1 5 10

<210> 33

<211> 1680

<212> DNA

<213> Pseudomonas cichorii

<220>

<223> Pseudomonas cichorii YN2 ; FERM BP-7375

<400> 33

atagtaaca agagtaacga tgagttgaag tatcaaggct ctgaaaacac	60
aatcctgtcg ttgggctgcg tggaaaggat ctactggctt ctgctcgaat	120
caggccatca agcaaccggc gcacagcgtc aaacatgtcg cgcaacttgg	180
aagaacgtac tgctggtaa atccgggctg caaccgacca gcgatgaccg	240
gatccggcct ggagccagaa cccgccttat aaacgttatt tgcaaaccta	300
cgcaaggaac tccacgactg gatcgatgaa agtaacctcg ccccaagga	360
gggcacttgc tgatcaacct catgaccgaa gccatggcgc cgaccaacac	420
ccggcggcag tcaaacgctt ttgcgaaacc ggtagcaaaa gcctgctcga	480
cacctggcca aggatcttgtt acacaacggc ggcatgccga gccaggtaa	540
tgcgaggctcg gcaagaggct gggcgtgacc gaaggcgcgg tggtgtttcg	600
ctggaaactga tccagtacaa gccgaccacc gagcaggat acgaacgccc	660
gtgccgccc agatcaacaa gttctacgtt ttgcacctga gcccggacaa	720
cggttctgcc tgcgcaacaa cgtgcaaacc ttcatcgta gctggcgaaa	780
gaacagcgag agtggggcct gtcgaccc tacatcgatccc tcaaggaagc	840
gttaccgcga tcacccggcag caaagacgtg aacatgtcg ggcctgctc	900
acttgcaccc cgctgctggg ccattacgcg gcgatggcg aaaacaaggt	960
accttgcgtgg tgagcgtgct tgataccacc ctgcacagcg atgttgcctt	1020

gaacagaccc	ttgaagccgc	caagcgccac	tcgtaccagg	ccggcgtact	ggaaggcccgc	1080
gacatggcga	aggcttcgc	ctggatgcgc	cccaacgatc	tgatctggaa	ctactgggtc	1140
aacaattacc	tgcttaggcaa	cgaaccgccc	gtgttcgaca	tcctgttctg	gaacaacgac	1200
accacacggt	tgcccgccgc	gttccacggc	gacctgatcg	aactgttcaa	aaataaccca	1260
ctgattcgcc	cgaatgcact	ggaagtgtgc	ggcaccccca	tcgaccta	gcaggigacg	1320
gccgacatct	tttccctggc	cggcaccaac	gaccacatca	ccccgtggaa	gtccgtctac	1380
aagtccggcgc	aactgttgg	cggcaacgtt	gaattcgtgc	tgtcgagcag	cgggcataatc	1440
cagagcatcc	tgaacccgccc	gggcaatccg	aaatcgcgct	acatgaccag	caccgaagtg	1500
gcggaaaatg	ccgatgaatg	gcaaggcgaat	gccaccaagc	ataccgattc	ctggtggtcg	1560
cactggcagg	cctggcaggc	ccaacgctcg	ggcgagctga	aaaagtcccc	gacaaaacttg	1620
ggcagcaagg	cgtatccggc	aggtaagcgc	gcccaggca	cgtacgtca	cgaacggtaa	1680

<210> 34
 <211> 1683
 <212> DNA
 <213> Pseudomonas cichorii
 <220>
 <223> Pseudomonas cichorii YN2 ; FERM BP-7375

<400> 34	atgcgcgata	aacctgcgag	ggagtcacta	cccaccccg	ccaagttcat	caacgcacaa	60
	agtgcgatta	ccggcctgcg	tggccggat	ctggttcga	cttgcgcag	tgtcgccccc	120
	catggcctgc	gccaccccg	gcacacggcg	cgacacgcct	tgaaactggg	tggtaacttg	180
	ggacgcgtgt	tgctggcgca	caccctgcat	cccaccaacc	cgcaagacgg	tcgtttcgac	240
	gatccggcgt	ggagtccaa	tcccttttat	cgtgcagcc	tgcaggcgta	cctgagctgg	300
	cagaagcagg	tcaagagctg	gatgcacgaa	agcaacatga	gcccggatga	ccgcgcccgt	360
	gcgcacttcg	cgttcgcct	gtcaacgat	gccgtgtcgc	cgtccaacag	cctgtcaat	420
	ccgcgtggcg	tcaaggaaat	cttcaactcc	ggcggcaaca	gcctggcg	cgggatcgcc	480
	catctggtcg	atgaccttt	gcacaacgat	ggcttgc	ggcaagtcac	caggcatgca	540
	ttcgaggttg	gcaagaccgt	cgccaccacc	accggcgccg	tggtgttgc	caacgagctg	600
	ctggagctga	tccaatacaa	gccgatgagc	gaaaagcagt	attccaaacc	gctgcgggg	660
	gtgccgcccac	agatcaacaa	gtactacatt	tttgcaccta	gccccataa	cagttcgic	720
	cagttcgcc	tcaagaacgg	cctgcaaacc	ttcgtcatca	gtggcgcaa	tccggatgta	780
	cgtcaccgcg	aatggggcct	gtcgacctac	gtcgaagcgg	tggaagaagc	catgaatgtc	840
	tgccggccaa	tcacccggcgc	gcccggaggc	aacctgatgg	gcccgtgcgc	tggcgggctg	900
	accattgctg	ccctgcaggg	ccacttgcaa	gccaagcgcac	agctgcgcgg	cgtcicccagc	960

ggcacgtacc tggtaggcct gctcgacagc caactggaca gcccggccac actcttcgcc 1020
 gacgaacaga ccctggaggc ggccaagcgc cgctccctacc agaaagggtgt gcttggaggc 1080
 cgcgacatgg ccaagggtttt cgccctggatg cgccccaaacg atttgatctg gagctacttc 1140
 gtcaacaatt acctgatggg caaggagccg ccggcggtcg acattctcta ctggaaacaat 1200
 gacaacacac gcctgcccgc cgccctgcat ggtgacttgc tggacttctt caaggacaaac 1260
 ccgctgagcc atccgggtgg ccttggaaatg tgccggcaccc cgatcgactt gcaaaagggtc 1320
 accgtcgaca gttttagcgt ggccggcatc aacgatcaca tcacccgtg ggacgcggtg 1380
 tatcgctcaa ccctgttgct cggtaggcgag cgtcgcttgc ttctggccaa cagcggtcat 1440
 gtgcagagca ttctcaaccc gccaacaat ccgaaagcca actacccgta aggtgcaaaa 1500
 ctaaggcaggc accccaggccttggatcactac gacgccaagc ccgtcgacgg tagctggtg 1560
 acgcaatggc tgggtggat tcaggagcgc tcggcgccgc aaaaagaaac ccacatggcc 1620
 ctccggcaatc agaattatcc accgatggag gcccggcccg ggacttacgt ggcgtgcgc 1680
 tga 1683

<210> 35

<211> 559

<212> PRT

<213> Pseudomonas cichorii YN2 ; FERM BP-7375

<400> 35

Met	Ser	Asn	Lys	Ser	Asn	Asp	Glu	Leu	Lys	Tyr	Gln	Ala	Ser	Glu	Asn
1								10							15

Thr	Leu	Gly	Leu	Asn	Pro	Val	Val	Gly	Leu	Arg	Gly	Lys	Asp	Leu	Leu
								25				30			

Ala	Ser	Ala	Arg	Met	Val	Leu	Arg	Gln	Ala	Ile	Lys	Gln	Pro	Val	His
								35			40				45

Ser	Val	Lys	His	Val	Ala	His	Phe	Gly	Leu	Glu	Leu	Lys	Asn	Val	Leu
								50			55				60

Leu	Gly	Lys	Ser	Gly	Leu	Gln	Pro	Thr	Ser	Asp	Asp	Arg	Arg	Phe	Ala
								65			70			75	80

Asp	Pro	Ala	Trp	Ser	Gln	Asn	Pro	Leu	Tyr	Lys	Arg	Tyr	Leu	Gln	Thr
								85			90			95	

Tyr	Leu	Ala	Trp	Arg	Lys	Glu	Leu	His	Asp	Trp	Ile	Asp	Glu	Ser	Asn
								100			105			110	

Leu	Ala	Pro	Lys	Asp	Val	Ala	Arg	Gly	His	Phe	Val	Ile	Asn	Leu	Met
								115			120			125	

Thr	Glu	Ala	Met	Ala	Pro	Thr	Asn	Thr	Ala	Ala	Asn	Pro	Ala	Ala	Val
								130			135			140	

Lys	Arg	Phe	Phe	Glu	Thr	Gly	Gly	Lys	Ser	Leu	Leu	Asp	Gly	Leu	Ser
								145			150			155	160

His Leu Ala Lys Asp Leu Val His Asn Gly Gly Met Pro Ser Gln Val

165	170	175
Asn Met Gly Ala Phe Glu Val Gly Lys Ser Leu Gly Val Thr Glu Gly		
180	185	190
Ala Val Val Phe Arg Asn Asp Val Leu Glu Leu Ile Gln Tyr Lys Pro		
195	200	205
Thr Thr Glu Gln Val Tyr Glu Arg Pro Leu Leu Val Val Pro Pro Gln		
210	215	220
Ile Asn Lys Phe Tyr Val Phe Asp Leu Ser Pro Asp Lys Ser Leu Ala		
225	230	235
Arg Phe Cys Leu Arg Asn Asn Val Gln Thr Phe Ile Val Ser Trp Arg		
245	250	255
Asn Pro Thr Lys Glu Gln Arg Glu Trp Gly Leu Ser Thr Tyr Ile Glu		
260	265	270
Ala Leu Lys Glu Ala Val Asp Val Val Thr Ala Ile Thr Gly Ser Lys		
275	280	285
Asp Val Asn Met Leu Gly Ala Cys Ser Gly Gly Ile Thr Cys Thr Ala		
290	295	300
Leu Leu Gly His Tyr Ala Ala Ile Gly Glu Asn Lys Val Asn Ala Leu		
305	310	315
Thr Leu Leu Val Ser Val Leu Asp Thr Thr Leu Asp Ser Asp Val Ala		
325	330	335
Leu Phe Val Asn Glu Gln Thr Leu Glu Ala Ala Lys Arg His Ser Tyr		
340	345	350
Gln Ala Gly Val Leu Glu Gly Arg Asp Met Ala Lys Val Phe Ala Trp		
355	360	365
Met Arg Pro Asn Asp Leu Ile Trp Asn Tyr Trp Val Asn Asn Tyr Leu		
370	375	380
Leu Gly Asn Glu Pro Pro Val Phe Asp Ile Leu Phe Trp Asn Asn Asp		
385	390	395
400		
Thr Thr Arg Leu Pro Ala Ala Phe His Gly Asp Leu Ile Glu Leu Phe		
405	410	415
Lys Asn Asn Pro Leu Ile Arg Pro Asn Ala Leu Glu Val Cys Gly Thr		
420	425	430
Pro Ile Asp Leu Lys Gln Val Thr Ala Asp Ile Phe Ser Leu Ala Gly		
435	440	445
Thr Asn Asp His Ile Thr Pro Trp Lys Ser Cys Tyr Lys Ser Ala Gln		
450	455	460
Leu Phe Gly Gly Asn Val Glu Phe Val Leu Ser Ser Ser Gly His Ile		
465	470	475
480		
Gln Ser Ile Leu Asn Pro Pro Gly Asn Pro Lys Ser Arg Tyr Met Thr		
485	490	495
Ser Thr Glu Val Ala Glu Asn Ala Asp Glu Trp Gln Ala Asn Ala Thr		

500

505

510

Lys His Thr Asp Ser Trp Trp Leu His Trp Gln Ala Trp Gln Ala Gln
 515 520 525

Arg Ser Gly Glu Leu Lys Lys Ser Pro Thr Lys Leu Gly Ser Lys Ala
 530 535 540

Tyr Pro Ala Gly Glu Ala Ala Pro Gly Thr Tyr Val His Glu Arg
 545 550 555

<210> 36
 <211> 560
 <212> PRT
 <213> *Pseudomonas cichorii* YN2 ; FERM BP-7375

<400> 36
 Met Arg Asp Lys Pro Ala Arg Glu Ser Leu Pro Thr Pro Ala Lys Phe
 1 5 10 15

Ile Asn Ala Gln Ser Ala Ile Thr Gly Leu Arg Gly Arg Asp Leu Val
 20 25 30

Ser Thr Leu Arg Ser Val Ala Ala His Gly Leu Arg His Pro Val His
 35 40 45

Thr Ala Arg His Ala Leu Lys Leu Gly Gly Gln Leu Gly Arg Val Leu
 50 55 60

Leu Gly Asp Thr Leu His Pro Thr Asn Pro Gln Asp Arg Arg Phe Asp
 65 70 75 80

Asp Pro Ala Trp Ser Leu Asn Pro Phe Tyr Arg Arg Ser Leu Gln Ala
 85 90 95

Tyr Leu Ser Trp Gln Lys Gln Val Lys Ser Trp Ile Asp Glu Ser Asn
 100 105 110

Met Ser Pro Asp Asp Arg Ala Arg Ala His Phe Ala Phe Ala Leu Leu
 115 120 125

Asn Asp Ala Val Ser Pro Ser Asn Ser Leu Leu Asn Pro Leu Ala Ile
 130 135 140

Lys Glu Ile Phe Asn Ser Gly Gly Asn Ser Leu Val Arg Gly Ile Gly
 145 150 155 160

His Leu Val Asp Asp Leu Leu His Asn Asp Gly Leu Pro Arg Gln Val
 165 170 175

Thr Arg His Ala Phe Glu Val Gly Lys Thr Val Ala Thr Thr Gly
 180 185 190

Ala Val Val Phe Arg Asn Glu Leu Leu Glu Leu Ile Gln Tyr Lys Pro
 195 200 205

Met Ser Glu Lys Gln Tyr Ser Lys Pro Leu Leu Val Val Pro Pro Gln
 210 215 220

Ile Asn Lys Tyr Tyr Ile Phe Asp Leu Ser Pro His Asn Ser Phe Val
 225 230 235 240

Gln Phe Ala Leu Lys Asn Gly Leu Gln Thr Phe Val Ile Ser Trp Arg

245	250	255
Asn Pro Asp Val Arg His Arg Glu Trp Gly Leu Ser Thr Tyr Val Glu		
260	265	270
Ala Val Glu Glu Ala Met Asn Val Cys Arg Ala Ile Thr Gly Ala Arg		
275	280	285
Glu Val Asn Leu Met Gly Ala Cys Ala Gly Gly Leu Thr Ile Ala Ala		
290	295	300
Leu Gln Gly His Leu Gln Ala Lys Arg Gln Leu Arg Arg Val Ser Ser		
305	310	315
320		
Ala Thr Tyr Leu Val Ser Leu Leu Asp Ser Gln Leu Asp Ser Pro Ala		
325	330	335
Thr Leu Phe Ala Asp Glu Gln Thr Leu Glu Ala Ala Lys Arg Arg Ser		
340	345	350
Tyr Gln Lys Gly Val Leu Glu Gly Arg Asp Met Ala Lys Val Phe Ala		
355	360	365
Trp Met Arg Pro Asn Asp Leu Ile Trp Ser Tyr Phe Val Asn Asn Tyr		
370	375	380
Leu Met Gly Lys Glu Pro Pro Ala Phe Asp Ile Leu Tyr Trp Asn Asn		
385	390	395
400		
Asp Asn Thr Arg Leu Pro Ala Ala Leu His Gly Asp Leu Leu Asp Phe		
405	410	415
Phe Lys His Asn Pro Leu Ser His Pro Gly Gly Leu Glu Val Cys Gly		
420	425	430
Thr Pro Ile Asp Leu Gln Lys Val Thr Val Asp Ser Phe Ser Val Ala		
435	440	445
Gly Ile Asn Asp His Ile Thr Pro Trp Asp Ala Val Tyr Arg Ser Thr		
450	455	460
Leu Leu Leu Gly Gly Glu Arg Arg Phe Val Leu Ala Asn Ser Gly His		
465	470	475
480		
Val Gln Ser Ile Leu Asn Pro Pro Asn Asn Pro Lys Ala Asn Tyr Leu		
485	490	495
Glu Gly Ala Lys Leu Ser Ser Asp Pro Arg Ala Trp Tyr Tyr Asp Ala		
500	505	510
Lys Pro Val Asp Gly Ser Trp Trp Thr Gln Trp Leu Gly Trp Ile Gln		
515	520	525
Glu Arg Ser Gly Ala Gln Lys Glu Thr His Met Ala Leu Gly Asn Gln		
530	535	540
Asn Tyr Pro Pro Met Glu Ala Ala Pro Gly Thr Tyr Val Arg Val Arg		
545	550	555
560		
<210> 37		
<211> 20		
<212> DNA		
<213> Artificial Sequence		

<220>		
<223> Primer for PCR multiplication		
<400> 37		
tgctggaact gatccagtag	20	
<210> 38		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer for PCR multiplication		
<400> 38		
gggttgagga tgctctggat gtg	23	
<210> 39		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer for PCR multiplication		
<400> 39		
cgagcaagct tgctcctaca ggtaaaggc	29	
<210> 40		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer for PCR multiplication		
<400> 40		
gtattaagct tgaagacgaa ggagtgttgc	29	
<210> 41		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer for PCR multiplication		
<400> 41		
ggaccaagct tctcgctca gggcaatgg	29	
<210> 42		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer for PCR multiplication		
<400> 42		
catccaagct tcttatgatc gggcatgcc	30	

<210> 43
 <211> 45
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Primer for PCR multiplication

<400> 43
 agtggatcct ccgagcttag taacaaggat aacgatgagt tgaag 45

<210> 44
 <211> 45
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Primer for PCR multiplication

<400> 44
 atactcgaga ctactagtcc gttcgtgcac gtacgtgcct ggcgc 45

<210> 45
 <211> 45
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Primer for PCR multiplication

<400> 45
 atactcgaga ctactagtgc gcacgcgcac gtaagtcccg ggcgc 45

<210> 46
 <211> 45
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Primer for PCR multiplication

<400> 46
 agtggatcct ccgagctccg cgataaacct gcgagggagt cacta 45

<210> 47
 <211> 58
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Coding chain for peptide of SEQ ID:1

<400> 47
 gatccgtta tgcgaatcag actccgcctt ctaaggcgcg gggtgaggt tcggagct 58

<210> 48
 <211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Complimentary chain for ssDNA of SEQ ID:1

<400> 48
ccgaacctcc accccgcgcc ttagaaggcg gagtctgatt cgcataaacg 50

<210> 49
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:2

<400> 49
gatcccagtc ttcgattacg actcggaaatc ctttatgac tggtaggt tcggagct 58

<210> 50
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:2

<400> 50
ccgaacctcc accagtata aaaggattcc gagtcgtaat cgaagactgg 50

<210> 51
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:3

<400> 51
gatcctttat gaatcatcat ccgaattcgc agcagtatca tggtaggt tcggagct 58

<210> 52
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:3

<400> 52
ccgaacctcc accatataac tgcgtcgaat tcggatgtat attcataaag 50

<210> 53
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:4

<400> 53
gatcccagta tacgtcgtcg ggtattatata cgtcgtctgc tggtaggt tcggagct 58

<210> 54
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:4

<400> 54
ccgaacctcc accagcagac gacgtaataa taccgcacga cgtatactgg 50

<210> 55
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:5

<400> 55
gatcccagcc gcataatgcat cgaggatctc atcaggatgg gggtgaggt tcggagct 58

<210> 56
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:5

<400> 56
ccgaacctcc acccccatcc tcatgagaac tccgatgcat atgcggctgg 50

<210> 57
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:6

<400> 57
gatccaatac tactatgggg ccgatgagtc ctcatagtca gggtgaggt tcggagct 58

<210> 58
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:6

<400> 58
ccgaacctcc accctgacta tgaggactca tcggcccat agtagtattg 50

<210> 59
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:7

<400> 59
gatcccatca tcatccggag aatttggatt ctactttca gggtgaggt tcggagct 58

<210> 60

<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:7

<400> 60
ccgaacctcc accctgaaaa gtagaatcca aattctccgg atgatgatgg 50

<210> 61
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:8

<400> 61
gatccgctgc tcatttttag cctcagacta tgcctatgtat tggtgagggt tcggagct 58

<210> 62
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:8

<400> 62
ccgaacctcc accaatcata ggcatagtct gaggctcaaa atgaggcagcg 50

<210> 63
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:9

<400> 63
gatccgatca tcagcttcat cgtcccccgc atatgtatgag gggtggagggt tcggagct 58

<210> 64
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:9

<400> 64
ccgaacctcc acccctcatc atatgcggag gacgatgaag ctgatgatcg 50

<210> 65
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:10

<400> 65

gatccgttgc gcgtcatcg tcgtggatc cgcatgatct tggtaggt tcggagct 58
<210> 66
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:10

<400> 66
ccgaacctcc accaagatca tgccgtatgcc acgactgtat acgcgaaacg 50

<210> 67
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:11

<400> 67
gatccatgtat gcagagggat catcatcagc ataatgcgcata ggtggaggt tcggagct 58

<210> 68
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:11

<400> 68
ccgaacctcc accctgcgcata ttatgctgtat gatgtatccct ctgcattat 50

<210> 69
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:12

<400> 69
gatccgttac ttttatacg gtggatcatg cggcgcaaga tggtaggt tcggagct 58

<210> 70
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:12

<400> 70
ccgaacctcc accatcttgc ggccatgtat ccaccgtatg aagagtaacg 50

<210> 71
<211> 58
<212> DNA
<213> Artificial Sequence

<220>

<223> Coding chain for peptide of SEQ ID:13

<400> 71
gatccctctgt ttctgtgggt atgaagccga gtcctaggcc tggtaggt tcggagct 58

<210> 72

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Complimentary chain for ssDNA of SEQ ID:13

<400> 72

ccgaacctcc accaggccta ggactcggt tcataaccac agaaacagag 50

<210> 73

<211> 58

<212> DNA

<213> Artificial Sequence

<220>

<223> Coding chain for peptide of SEQ ID:14

<400> 73

gatccccatct tcagtctatg aagcctcgta ctcatgtgtt gggtaggt tcggagct 58

<210> 74

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Complimentary chain for ssDNA of SEQ ID:14

<400> 74

ccgaacctcc acccaacaca tggatcggag gcttcataga ctgaagatgg 50

<210> 75

<211> 58

<212> DNA

<213> Artificial Sequence

<220>

<223> Coding chain for peptide of SEQ ID:15

<400> 75

gatccattcc taatgttagt actttgcgtc agcctgcgcg tggtaggt tcggagct 58

<210> 76

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Complimentary chain for ssDNA of SEQ ID:15

<400> 76

ccgaacctcc accacgcgca ggctgacgca aagtctcagc attagaaatg 50

<210> 77

<211> 58

<212> DNA

<213> Artificial Sequence

<220>

<223> Coding chain for peptide of SEQ ID:16

<400> 77

gatccgttcg cgtcatcagt tcgtggcatc cgcatgatct tggtgaggt tcggagct 58

<210> 78

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Complimentary chain for ssDNA of SEQ ID:16

<400> 78

ccgaacctcc accaagatca tgcggatgcc acgaactgat gacgcgaacg 50

<210> 79

<211> 58

<212> DNA

<213> Artificial Sequence

<220>

<223> Coding chain for peptide of SEQ ID:17

<400> 79

gatccacgtt gccgatttat aatacgggaa tttttagggac gggtgagggt tcggagct 58

<210> 80

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Complimentary chain for ssDNA of SEQ ID:17

<400> 80

ccgaacctcc acccgtcctc aaaaatccccg tattataaat cggcacgtg 50

<210> 81

<211> 58

<212> DNA

<213> Artificial Sequence

<220>

<223> Coding chain for peptide of SEQ ID:18

<400> 81

gatcctataac tatgtatcat gggtcgacgt ttatacggcg gggtgagggt tcggagct 58

<210> 82

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Complimentary chain for ssDNA of SEQ ID:18

<400> 82

ccgaacctcc accccgcccgt ataaacgtcg acccatgatg catagtagat 50

<210> 83

<211> 58

<212> DNA

<213> Artificial Sequence

<220>

<223> Coding chain for peptide of SEQ ID:19

<400> 83

gatcctcgat gatgcgttg aatattcgtc tcgggattct tggtgaggt tcggagct 58

<210> 84

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Complimentary chain for ssDNA of SEQ ID:19

<400> 84

ccgaacctcc accaagaatc ccgagacgaa tattcacatg catcatcgag 50

<210> 85

<211> 58

<212> DNA

<213> Artificial Sequence

<220>

<223> Coding chain for peptide of SEQ ID:20

<400> 85

gatccgcgcc gatgcgtcat atgaagagtc tgtatcgcc gggtgaggt tcggagct 58

<210> 86

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Complimentary chain for ssDNA of SEQ ID:20

<400> 86

ccgaacctcc acccgccccga tacagactct tcatatgtatcgcgcg 50

<210> 87

<211> 58

<212> DNA

<213> Artificial Sequence

<220>

<223> Coding chain for peptide of SEQ ID:21

<400> 87

gatccatgtat gcagagggat catcatcagc atatgcgcag gggtgaggt tcggagct 58

<210> 88

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Complimentary chain for ssDNA of SEQ ID:21

<400> 88
ccgaacctcc accctgcgc atatgcgtat gatgatccct ctgcatacatg 50

<210> 89
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:22

<400> 89
gatccatgaa gactcatcat ggtataataatg cgggtttct gggtgaggt tcggagct 58

<210> 90
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:22

<400> 90
ccgaacctcc acccagaaac accgcattat taccatgtat agtcttcatg 50

<210> 91
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:23

<400> 91
gatccttgga gccgcttcct catactccctc ggatgtatgc gggtgaggt tcggagct 58

<210> 92
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:23

<400> 92
ccgaacctcc acccgatac atccgaggag tatgaggaag cggctccaag 50

<210> 93
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:24

<400> 93
gatcccagct gtatgagcct gattctgggc cgtggctcc gggtgaggt tcggagct 58

<210> 94
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:24

<400> 94
ccgaacctcc acccggagcc cacggcccag aatcaggctc atacagctgg 50

<210> 95
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:25

<400> 95
gatcctggat gactaagatg cctactacgc atactaggta tggtgagggt tcggagct 58

<210> 96
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:25

<400> 96
ccgaacctcc accataaccta gatatcgtag taggcatctt agtcatccag 50

<210> 97
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:26

<400> 97
gatccccatca tcctatgtat tctatgacta gggcggttgcc tggtgagggt tcggagct 58

<210> 98
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:26

<400> 98
ccgaacctcc accaggcaac gcccttagtca tagaatacat aggtatgtgg 50

<210> 99
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:27

<400> 99
gatccggtag tgctcattct cggaatgtat ctgctccgtt gggtggagggt tcggagct 58

<210> 100
<211> 50

<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:27

<400> 100
ccgaacctcc acccacagga gcagcatcat tccgagaatg agcactaccg 50

<210> 101
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:28

<400> 101
gatcccattc gccttgatg cagtatata tgtcggtac gggtgagggt tcggagct 58

<210> 102
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:28

<400> 102
ccgaacctcc acccgatccc gacatatgt actgcataa aggcaatgg 50

<210> 103
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:29

<400> 103
gatcctatgc gcatatgacg atgccgttc ggttttgcc gggtgagggt tcggagct 58

<210> 104
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:29

<400> 104
ccgaacctcc acccgcaaa aaccgagacg gcatcgat atgcgcata 50

<210> 105
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:30

<400> 105
gatccgcttg tccgcctacg cagtctcggt attgcgggg aggttcggag ct 52

<210> 106

<211> 44

<212> DNA

<213> Artificial Sequence

<220>

<223> Complimentary chain for ssDNA of SEQ ID:30

<400> 106

ccgaacctcc accgcaatac cgagactgcg taggcggaca agcg 44

<210> 107

<211> 52

<212> DNA

<213> Artificial Sequence

<220>

<223> Coding chain for peptide of SEQ ID:31

<400> 107

gatccgcttg taatggcatg ttggccttc agtgcggtagg aggttcggag ct 52

<210> 108

<211> 44

<212> DNA

<213> Artificial Sequence

<220>

<223> Complimentary chain for ssDNA of SEQ ID:31

<400> 108

ccgaacctcc accgcaactga aaggccaaca tgccattaca agcg 44

<210> 109

<211> 52

<212> DNA

<213> Artificial Sequence

<220>

<223> Coding chain for peptide of SEQ ID:32

<400> 109

gatccgcttg tacgccgaag ccgggcaagc attgcggtagg aggttcggag ct 52

<210> 110

<211> 44

<212> DNA

<213> Artificial Sequence

<220>

<223> Complimentary chain for ssDNA of SEQ ID:32

<400> 110

ccgaacctcc accgcaatgc ttgccccgt tcggcgtaaca agcg 44

<210> 111

<211> 972

<212> DNA

<213> Artificial Sequence

<220>

<223> HPR coding artificial sense-sequence

<400> 111
 gtttatgc_{ca} accaaacccc accaagcaag gcgaggggtg gaggttcg_{ca} acttaccct_t 60
 accttctac_g acaattcat_g tccta_{at}gtc tcta_{ac}atcg tacggata_c tattgtcaat 120
 gagcta_{ag}at cagaccctcg tattgccc_{gc} agcattc_{tc} gtcticactt ccacgact_{gc} 180
 ttgttaat_g gtttgtacgc atcgatctt_g ttagacaaca caacatcatt tcgaacagag 240
 aaagatgc_{gt} ttggaaacgc aaactcggca agaggattc cagtgtt_{ga} tagaatgaaa 300
 gccgcgg_{tg} gg agatgc_{at} ccc_{aa}agaacc gtttcatgc_g cagatttgc_t caccat_{tg}ca 360
 gctcaacaat ctgtactt_{tt} ggcgggaggt_t ctttctt_{gg}a gagtttcc_{ttt} gggcagaaga 420
 gatagcttac aagcatttct_t gga_tt_{tt}gct_t aatgcaaa_tc ttccagctcc attttcaca 480
 ct_{tt}ccacaac ttaaagacag ct_{tt}tagaaat gttggc_{ct}ca accgttcttc tgatctcg_{tt} 540
 gcactgtcc_g gggcccacac atttggtaaa aatcagtgtc gg_{tt}tattat ggacagatta 600
 tacaacttca gcaacaccgg_t tttacc_{cc}gat cctactctca acactactt_a tctccaaact_t 660
 ct_{tc}cg_{tg}gac tatgtccc_ct caatggtaat ctaagcgc_{tt} tgg_{tg}gattt tgatctac_{gt} 720
 acgccaacga tt_{tt}tgacaa caaatactat gtgaatctcg aagaggaaaa aggactt_{at}c 780
 caaagc_gacc aagagtgtt ctctagcccc aatgccact_g acacaatccc ttgg_{tg}gaga 840
 tcatttgc_{ta} atagcacaca aacattcttc aatgcattt_g tggaggc_{gt} ggataggat_g 900
 ggaaacat_{ta} cac_{ct}ttac aggaactcaa ggacagat_{ca} ggttgaatt_t taggg_{tg}tg_{tg} 960
 aactccaaact_t ct 972

<210> 112
 <211> 120
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Primer for PCR multiplication

<400> 112
 gtttatgc_{ca} accaaacccc accaagcaag gcgaggggtg gaggttcg_{ca} acttaccct_t 60
 accttctac_g acaattcat_g tccta_{at}gtc tcta_{ac}atcg tacggata_c tattgtcaat 120

<210> 113
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Primer for PCR multiplication

<400> 113
 gtttatgc_{ca} accaaacccc accaagcaag 30

<210> 114
 <211> 120
 <212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 114

tgttgtctaa caagatcgat gcgtcacaac cattaacaaa gcagtcgtgg aagtgaagac 60

gaaggatgct cgccgcata cgagggtctg atcttagctc attgacaata gtatcccgt 120

<210> 115

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 115

tgttgtctaa caagatcgat gcgtcacaac 30

<210> 116

<211> 120

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 116

atcgatcttg ttagacaaca caacatcatt tcgaacagag aaagatgcgt ttggaaacgc 60

aaactcggca agaggatttc cagtgattga tagaatgaaa gccgcggtgg agagtgcgt 120

<210> 117

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 117

atcgatcttg ttagacaaca caacatcatt 30

<210> 118

<211> 120

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 118

tcttctgccca aaaggaactc tccaagaagg acctccggcc aaagtgcacag attgttgcgc 60

tgcaatggtg agcaaattctg cgcatgaaac ggttcttggg catgcactct ccaccgcggc 120

<210> 119

<211> 30

<212> DNA

<213> Artificial Sequence

<220>
<223> Primer for PCR multiplication

<400> 119
tcttctgccc aaaggaactc tcacaagg 30

<210> 120
<211> 120
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for PCR multiplication

<400> 120
gagttccttt gggcagaaga gatacgatcc aagcatttct ggatcttgct aatgc当地 60
ttccagctcc attcttcaca ctccacaaac ttaaagacag ctttagaaat gtggccctca 120

<210> 121
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for PCR multiplication

<400> 121
gagttccttt gggcagaaga gatacgatcc 30

<210> 122
<211> 120
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for PCR multiplication

<400> 122
ccgggtttgc tgaagggtta taatctgtcc ataataaacc gacactgatt ttaccaa 60
gtgtggcccc cggacagtgc aacgagatca gaagaacggt tgaggccaaat atttctaaag 120

<210> 123
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for PCR multiplication

<400> 123
ccgggtttgc tgaagggtta taatctgtcc 30

<210> 124
<211> 120
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for PCR multiplication

<400> 124

tacaacctca gcaacaccgg tttacccgat cctactctca acactactta tctccaaact 60

cttcgtggac tatgtcccct caatggtaat ctaagcgctt tggtgattt tgatctacgt 120

<210> 125

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 125

tacaacctca gcaacaccgg tttacccgat 30

<210> 126

<211> 120

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 126

cagtggcatt ggggctagag aacaactctt ggtcgcttg gataagtctt tttcctctt 60

cgagattcac atagtatttg ttgtcaaaaa tcgttggcgt acgttagatca aaatccacca 120

<210> 127

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 127

cagtggcatt ggggctagag aacaactctt 30

<210> 128

<211> 120

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 128

ctctagcccc aatgccactg acacaatccc ttttgtgaga tcatttgcta atagcacaca 60

aacattcttc aatgcatttg tggaggcgat ggataggatg ggaaacatta cacccttac 120

<210> 129

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 129

ctctagcccc aatgccactg acacaatccc 30

<210> 130
<211> 72
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for PCR multiplication

<400> 130
agagttggag ttcaccaccc tacaattcaa cctgatctgt ctttgaggttc ctgttaaggagg 60
tgtaatgttt cc 72

<210> 131
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for PCR multiplication

<400> 131
agagttggag ttcaccaccc tacaattcaa 30

<210> 132
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for PCR multiplication

<400> 132
agtccggatcc gtttatgcga atcagactcc gccttctaag ggcgcgggtg gaggttcg 58

<210> 133
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for PCR multiplication

<400> 133
aggcctcgag agagttggag ttcaccaccc taca 34

<210> 134
<211> 1695
<212> DNA
<213> Artificial Sequence

<220>
<223> GroEL coding artificial sense-sequence

<400> 134
gtttatgcga atcagactcc gccttctaag ggcgcgggtg gaggttcgat ggcagctaaa 60
gacgtaaaat tcggtaacga cgctcggtgtg aaaatgctgc gcccgtaaa cgtactggca 120
gatgcagtga aagttaccct cggccaaaa ggcgttaacg tagttctgga taaatctttc 180
ggtgccaccca ccatcaccaa agatgggttt tccgttgctc gtgaaatcga actggaaagac 240

aagttcgaaa atatgggtgc gcagatggtg aaagaaggta cctctaaagc aaacgacgct 300
gcagggcagc gtaccaccac tgcaaccgtt ctggctcagg ctatcatcac tgaaggctgt 360
aaagctgttg ctgcggccat gaacctgatg gacctgaaac gtggtatcga caaagcggtt 420
accgctgcag ttgaagaact gaaagcgctg tccgtaccat gctctgactc taaagcgatt 480
gctcagggttg gtaccatctc cgcttaactcc gacgaaaccg taggttaact gatcgctgaa 540
gcgtatggaca aagtccgtaa agaaggcggtt atcaccgttg aagacggtac cggtctgcag 600
gacgaactgg acgtgggttga aggtatgcag ttgcaccgtg gctacctgtc tccttacitc 660
atcaacaagc cggaaactgg cgcagtagaa ctggaaagcc cgttcatacct gctggctgac 720
aagaaaaatct ccaacatccg cggaaatgctg ccgttctgg aagctgttgtc caaagcaggc 780
aaaccgctgc ttatcatcgc tgaagatgtt gaaggcgaag cgctggcaac tgctgttgtt 840
aacaccatcc gtggcatcgt gaaagtgcgt gcggtaaag caccgggtt cggcgatcgt 900
cgtaaagcta tgctgcagga tatcgcaacc ctgactggcg gtaccgtat ctctgaagag 960
atcggtatgg agcgtggaaaa agcaaccctg gaagacctgg gtctaggctaa acgtgttgtt 1020
atcaacaag acaccaccac tatcatcgat ggcgtgggtt aagaagctgc aatccaggc 1080
cggttgtctc agatccgtca gcagattgtt gaagcaactt ctgactacga ccgtgaaaaaa 1140
ctgcaggaac gcgttagcgtt actggcaggc ggcgttgcag ttatcaaagt gggtgctgtc 1200
accgaaggtaa aatgaaaga gaaaaaagca cgcgttgaag atgccttgcga cgcgaccgtt 1260
gctgcgttag aagaaggcgtt ggttgttgtt ggtggtgttgc cgtcgatccg cgtacgtct 1320
aaactggctg accgtcggtgg tcagaacgaa gaccagaacg tgggtatcaa agttgcactg 1380
cgtcaatgg aagctccgtt gcgtcagatc gtattgaact gcggcgaaga accgtctgtt 1440
gttgcataaca ccgttaaagg cggcgcacggc aactacggtt acaacgcagc aaccgaagaa 1500
tacggcaaca tgcgtcgat gggtatccgtt gacccaacca aagtaactcg ttctgctctg 1560
cgtacgcag ctctgtggc tggcctgtatg atcaccaccg aatgcgttgtt taccgacgtt 1620
ccgaaaaacg atgcgttgta cttagggcgtt gctggcgtt gggcggcat gggtggcatg 1680
ggcggcaiga tgtaa 1695

〈210〉 135

〈211〉 120

<212> DNA

<213> Artificial Sequence

220

〈223〉 Primer for PCR multiplication

〈400〉 135

gtttatgcga atcagactcc gccttctaag gcgcgggtg gaggttcgat ggcagctaaa 60

gacgtaaaat tcggtaacga cgctcgtgtg aaaatgcgc gcggcgtaaa cgtactggca 120

<210> 136
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for PCR multiplication

<400> 136
gttatgcga atcagactcc gccttctaag 30

<210> 137
<211> 120
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for PCR multiplication

<400> 137
gagcaacgga aacaccatct ttggtgatgg tcggtgacc gaaagattt tccagaacta 60
cgttacggcc tttggaccg agggtaactt tcactgcatt tgccagtacg ttacgccgc 120

<210> 138
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for PCR multiplication

<400> 138
gagcaacgga aacaccatct ttggtgatgg 30

<210> 139
<211> 120
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for PCR multiplication

<400> 139
agatggtgtt tccgttgctc gtgaaatcga actggaagac aagttcgaaa atatgggtgc 60
gcagatggtg aaagaagtgg cctctaaagc aaacgacgct gcaggcgacg gtaccaccac 120

<210> 140
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for PCR multiplication

<400> 140
agatggtgtt tccgttgctc gtgaaatcga 30

<210> 141
<211> 120
<212> DNA
<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 141

aaccgcttgcgataccacgtttcaggatcatcggttcatgcccgacaaacagctt 60
cagacacctcagtgtatgatagccctgagccatgtacggttgcgtgggtacgtcgccgtc 120

<210> 142

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 142

aaccgcttgcgataccacgtttcaggatc 30

<210> 143

<211> 120

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 143

gtggtatcgacaaagcggttaccgctgcagtttgaagaactgaaagcgctgtccgttaccat 60
gctctgactctaaggcgattgctcaggatgttaccatctcgcttaactccgacgaaaccg 120

<210> 144

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 144

gtggtatcgacaaagcggttaccgctgcag 30

<210> 145

<211> 120

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 145

tcaaccacgtccagttcgctctgcagacccgttaccgttcaacgggtataacgccttct 60
tttaccgacttgtccatcgcttcagcgatcagttaacctacgtttcgctcgagtttagcg 120

<210> 146

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 146
tcaaccacgt ccagttcgtc ctgcagacccg 30

<210> 147

<211> 120

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 147
gacgaactgg acgtgggttga aggtatgcag ttcgaccgtg gctacctgtc tccttacttc 60
atcaacaaggc cgaaaactgg cgcagtagaa ctggaaagcc cgttcatcct gctggctgac 120

<210> 148

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 148
gacgaactgg acgtgggttga aggtatgcag 30

<210> 149

<211> 120

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 149
cttcgccttc tacatcttca gcgatgataa gcagcggtt gcctgccttg gcaacagctt 60
ccagaaccgg cagcatttcg cggatgttgg agatttctt gtcagccagc aggatgaacg 120

<210> 150

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 150

cttcgccttc tacatcttca gcgatgataa 30

<210> 151

<211> 120

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 151

tgaagatgtta gaaggcgaag cgctggcaac tgctgttgtt aacaccattc gtggcatcgt 60

gaaagtgcgt gcggtaaag caccggctt cgccatcg tggtaaagcta tgctgcagga 120

<210> 152

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 152

tgaagatgt aaggcgaag cgctggcaac 30

<210> 153

<211> 120

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 153

cacaacacgt tttagcctgac ccaggttttc cagggttgct tttccagct ccataccat 60

tccttcagag atcacggtag cggcgttcag ggttgcata tcctgcagca tagctttacg 120

<210> 154

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 154

cacaacacgt tttagcctgac ccaggttttc 30

<210> 155

<211> 120

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 155

gtcaggctaa acgttttgat atcaacaaag acaccaccat tatcatcgat ggcgtgggt 60

aagaagctgc aatccaggcc cggtttgtc agatccgtca gcagattgaa gaagcaactt 120

<210> 156

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 156

gtcaggctaa acgttttgat atcaacaaag 30

<210> 157

<211> 120
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for PCR multiplication

<400> 157
tctttcattt caacttcggt agcagcaccc actttgataa ctgcaacgcc gcctgccagt 60
ttcgctacgc gttccctgcag tttttcacgg tcgttagtcag aagttgcttc ttcaatctgc 120

<210> 158
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for PCR multiplication

<400> 158
tctttcattt caacttcggt agcagcaccc 30

<210> 159
<211> 120
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for PCR multiplication

<400> 159
accgaagtgtt aatgaaaga gaaaaaagca cgcgttgaag atgccttgca cgcgaccgt 60
gctgcggtag aagaaggcgt gtttgcgtt ggtgggttgt cgctgatccg ctagcgtct 120

<210> 160
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for PCR multiplication

<400> 160
accgaagtgtt aatgaaaga gaaaaaagca 30

<210> 161
<211> 120
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for PCR multiplication

<400> 161
agttaatac gatctgacgc agcggagctt ccattgcacg cagtgcact ttgataacca 60
cgttctggtc ttctgttctga ccacgcaggc cagccagttt agacgcgtacg cggatcagcg 120

<210> 162
<211> 30
<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 162

agttaatac gatctgacgc agcggaggctt , 30

<210> 163

<211> 120

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 163

gcgttagatc gtattgaact gcccgaaga accgtctgtt gttgctaaca ccgttaagg 60

cggcgacggc aactacggtt acaacgcagc aaccgaagaa tacggcaaca tgatcgacat 120

<210> 164

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 164

gcgttagatc gtattgaact gcccgaaga 30

<210> 165

<211> 120

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 165

caggtcggta accatgcatt cgggggtat catcaggcca gccacagaag ctgcgtactg 60

cagagcagaa cgagttactt tgggggtc caggataccc atgtcgatca tggccgta 120

<210> 166

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 166

caggtcggta accatgcatt cgggggtat 30

<210> 167

<211> 95

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for PCR multiplication

<400> 167
 ttacatcatg ccgccccatgc caccatgcc gcccataccg ccagcagcgc ctaagttagc 60
 tgcattttt ttcggcaggc cggttaaccat gcatt 95

<210> 168
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Primer for PCR multiplication

<400> 168
 aggcctcgag ttacatcatg ccgccccatgc 30

<210> 169
 <211> 33
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Primer for PCR multiplication

<400> 169
 ttacatcatg ccgccccatgc caccatgcc gcc 33

<210> 170
 <211> 8
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> anodisk membrane-binding peptide

<400> 170
 Tyr Ala Gln Thr Pro Pro Ser Arg
 1 5

<210> 171
 <211> 12
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> anodisk membrane-binding peptide

<400> 171
 Leu Tyr Ala Gln Gln Thr Pro Pro Ser Arg Ser Arg
 1 5 10

<210> 172
 <211> 16
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> anodisk membrane-binding peptide

<400> 172
 Val Tyr Ala Asn Gln Thr Pro Pro Ser Arg Ala Arg Ala Lys Ala Arg
 1 5 10 15

<210> 173
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> anodisk membrane-binding peptide

<400> 173
Val Tyr Ala Asn Gln Thr Pro Pro Ser Lys Ala Arg Tyr Ala Gln
1 5 10 15
Thr Pro Pro Ser Arg
20

<210> 174
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:170

<400> 174
gatcctatgc gcagactccg ccttctcggt gggagggttc ggagct 46

<210> 175
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:170

<400> 175
ccgaacctcc accccgagaa ggcggagtct gcgcata 38

<210> 176
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<223> Coding chain for peptide of SEQ ID:171

<400> 176
gatccctcta tgcgcaacag actccgcctt ctgggtctcg gggtgagggt tcggagct 58

<210> 177
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Complimentary chain for ssDNA of SEQ ID:171

<400> 177
ccgaacctcc accccgagac cgagaaggcg gagtctgttg cgcataagag 50

<210> 178
<211> 70
<212> DNA
<213> Artificial Sequence

<220>

<223> Coding chain for peptide of SEQ ID:1

<400> 178

gatccgttta tgcgaatcag actccgcctt ctcgcgcacg cgcaaaggcg cggggtgagg 60
gttcggagct 70

<210> 179

<211> 62

<212> DNA

<213> Artificial Sequence

<220>

<223> Complimentary chain for ssDNA of SEQ ID:1

<400> 179

ccgaacctcc accccgcgcc ttgcgcgtg cgcgagaagg cggagtcgtga ttgcataaaa 60
cg 62

<210> 180

<211> 82

<212> DNA

<213> Artificial Sequence

<220>

<223> Coding chain for peptide of SEQ ID:1

<400> 180

gatccgttta tgcgaatcag actccgcctt ctaaggcgcg gtatgcgcag actccgcctt 60
ctcggggtgtt aggttcggagg ct 82

<210> 181

<211> 74

<212> DNA

<213> Artificial Sequence

<220>

<223> Complimentary chain for ssDNA of SEQ ID:1

<400> 181

ccgaacctcc accccgagaa ggcggagtct gcgcataaccg cgccttagaa ggcggagtct 60
gattcgcata aacg 74