Десятичные дроби. 18 марта

- 1. Пусть p, q > 5 простые числа. Длины периодов дробей $\frac{1}{p}$ и $\frac{1}{q}$ равны a и b соответственно. Найдите длину периода дроби $\frac{1}{nq}$.
- **2.** Докажите, что для каждого положительного действительного α найдутся такие действительные числа $\beta_1, \beta_2, \ldots, \beta_9$, в десятичной записи которых встречаются только цифры 0 и 7, что выполнено равенство $\alpha = \beta_1 + \beta_2 + \ldots + \beta_9$.
- **3.** Пусть (n,10)=1 и $\frac{1}{n}=0$, (A). Докажите, что любое число, которое получается из A циклическим сдвигом, делится на A. Например, $\frac{1}{7}=0$,(142857), а каждое из чисел 428571, 285714, 857142, 571428, 714285 делится на 142857.
- **4.** Пусть p>100 простое число, а m< p натуральное число. а) Пусть p>5 простое такое, что длина периода A дроби $\frac{m}{p}$ равняется 2k для некоторого натурального k. Разделим число A на две части по k цифр в каждой: $A=\overline{A_1A_2}$. Тогда $A_1+A_2=99\ldots 9$. $Hanpumep,\ \frac{1}{7}=0,(142857),$ $a\ 142+857=999.$
- b) Поисследуйте ситуацию, когда длина периода делится на t и мы делим период на t частей.
- **5.** Пусть p очень большое простое число (например, большее 10^{10}), а длина периода дроби $\frac{1}{p}$ равняется p-1, т.е. 10 принадлежит показателю p-1 по модулю p. 1 Докажите, что для любого десятизначного числа K в записи дроби $\frac{1}{p}$ можно выделить десять подряд идущих цифр, которые образуют число K.
- **6.** Дима посчитал факториалы всех натуральных чисел от 80 до 99, нашёл числа, обратные к ним, и напечатал получившиеся десятичные дроби на 20 бесконечных ленточках (например, на последней ленточке было напечатано число $\frac{1}{99!} = 0, \underbrace{00...0}_{155 \text{ нулей}} 10715...$). Саша хочет вырезать из одной

ленточки кусок, на котором записано N цифр подряд и нет запятой. При каком наибольшем N он сможет это сделать так, чтобы Дима не смог определить по этому куску, какую ленточку испортил Саша?

Десятичные дроби. 18 марта

- 1. Пусть p, q > 5 простые числа. Длины периодов дробей $\frac{1}{p}$ и $\frac{1}{q}$ равны a и b соответственно. Найдите длину периода дроби $\frac{1}{2q}$.
- **2.** Докажите, что для каждого положительного действительного α найдутся такие действительные числа $\beta_1, \beta_2, \ldots, \beta_9$, в десятичной записи которых встречаются только цифры 0 и 7, что выполнено равенство $\alpha = \beta_1 + \beta_2 + \ldots + \beta_9$.
- **3.** Пусть (n,10)=1 и $\frac{1}{n}=0$, (A). Докажите, что любое число, которое получается из A циклическим сдвигом, делится на A. Например, $\frac{1}{7}=0$,(142857), а каждое из чисел 428571, 285714, 857142, 571428, 714285 делится на 142857.
- **4.** Пусть p > 100 простое число, а m < p натуральное число. а) Пусть p > 5 простое такое, что длина периода A дроби $\frac{m}{p}$ равняется 2k для некоторого натурального k. Разделим число A на две части по k цифр в каждой: $A = \overline{A_1 A_2}$. Тогда $A_1 + A_2 = 99\dots 9$. $Hanpumep, \frac{1}{7} = 0,(142857),$ a 142 + 857 = 999.
- b) Поисследуйте ситуацию, когда длина периода делится на t и мы делим период на t частей.
- **5.** Пусть p очень большое простое число (например, большее 10^{10}), а длина периода дроби $\frac{1}{p}$ равняется p-1, т.е. 10 принадлежит показателю p-1 по модулю p. 1 Докажите, что для любого десятизначного числа K в записи дроби $\frac{1}{p}$ можно выделить десять подряд идущих цифр, которые образуют число K.
- **6.** Дима посчитал факториалы всех натуральных чисел от 80 до 99, нашёл числа, обратные к ним, и напечатал получившиеся десятичные дроби на 20 бесконечных ленточках (например, на последней ленточке было напечатано число $\frac{1}{99!} = 0, 00...0 10715...$). Саша хочет вырезать из одной

ленточки кусок, на котором записано N цифр подряд и нет запятой. При каком наибольшем N он сможет это сделать так, чтобы Дима не смог определить по этому куску, какую ленточку испортил Саша?

 $^{^{1}{\}rm K}{\rm c}{\rm t}{\rm a}{\rm t}{\rm u},$ конечно ли множество таких простых чисел, неизвестно...

 $^{^{1}{\}rm Kc}$ тати, конечно ли множество таких простых чисел, неизвестно...