LIS in NlogNI Inkrleaving Strings Regulor Expression - 17 Poisnous graph. matrit and Absolute Difference. - Auto-complete (Hint)

$$\frac{\xi_{9}}{5} \rightarrow \begin{pmatrix} 10 & 22 & 9 & 33 & 21 & 50 & 41 & 45 & 48 \end{pmatrix}$$

return list size ();

2 Inkricoving Strings >

Given A, B, C find whether C is formed by the interleaving of A and B.

$$S1, S2, S3, i, j$$

$$S1(i) = = S3(i+j)$$

$$S1, S2, S3, i, j+1$$

$$S1, S2, S3, i, j+1$$

```
# (00000
   ap [w] (m] , x1,j dp(i)(j) = -1
     int interleaving ( s1, s2, s3, i, j, int(7(7 dp))
           ig(i=-sl\cdot length()) & j=-s2\cdot length())d refurn \frac{1}{2}
           if (aprillig) != -i) of return aprillig); }
           ¥ ( s)[i) == s3[i+j]) d
                   11 = inkricaving (s1, s2, s3, i+1, j, dp);
           y ( 32 [j] == 13 (i+j]) d
                   12 = inkrleaving (s1, 52, 53, 1, j+1, dp);
           aprissij = Max ( 61, 82);
return Max ( 61, 82);
                                             \begin{cases} \exists \cdot C \rightarrow \emptyset (N \times m) \end{cases}
                                      [Bottom - up - # todo]
```

Bottom-up idea.

A = "aabcc"

B = "dbbca"

am - tom.

C = "aadbbcbcac"

		_	d	b	b	C	a
		0	1	2	3	h	5
-	0	t	8	7	3	8	6_
a	١	1	*	t	ŧ	7	+
a	2	ナ	t				
Ь	3	· P					
<u>C</u>	4	1					
C	5	f					

3 Regular Expression - 1

Implement wildcard pattern matching with support for '?' and '*' for strings A and B.

- '.': Matches any single character.
- '*': Matches zero or more of the preceding element.

The matching should cover the entire input string (not partial).

Sl- abcbbxyt s2= ab*c.*t

			a	b	☆	<u>_</u>	•	A	<u>→</u> ;
	-	- 0	~	2	3	ч	5	6	7
1			1	t	В	8	8	8	3
_	O	-	at	<u> </u>	+	R	f	8	7
α	١	3	٥١	_5_		P	1	J.	7
Ь	2	₽	8	オ	7	8	8	5	-
C			1	· ·	1	4	7_	4	+
	3		<u> </u>	0	2	f	4	1	F
Ь	ч	_	3	3		0	٠.	4	P.
b	5	1	1	1	t_	\$	7	-	5
Х	6	<u> </u>	2	В	f	3	f	オ	+
	7	d	4	P	8	f	P	4	+
y			l D	D	P	Ą	8	+	4
t	8		1	1	'1	Ъ	D		
·	j								

* - ap[i][j-2]

```
# lode - dp [N+1] [m+1]; Yi,j dp li)[j] = false;
  for (iso; i=N; iat) }
       for (j=0; j = m", j++)?
              16 (i=0 &d j==0) of depliation = tom; 3
              else if (j==0) of april(j) = false; }
             Pls1 / (i==0) {
                       if ( 52[j-1) == (*)){
                       \begin{cases} dp(i)(j) = dp(i)(j^{-2}); \end{cases}
                       शर्द
                              aplintin = false;
              elock
                 \delta(s|[i-i] = s2(j-i)||s2(j-i) = (-1)/4
                       dp (i)(j) = dp (i-1)(j-1);
                else if ( (2(j-i) == (*)) {
                       $1 = dp(i)[j·2];
                        id(s^{2(j-2)} == 1.7) s^{2(j-2)} == s^{2(i-1)}
                              {2 = dp(i-1)(j);
                       return dp (N)(m);
```


You are given an undirected unweighted graph consisting of A vertices and M edges given in a form of 2D Matrix B of size M x 2 where (B[i][0], B][i][1]) denotes two nodes connected by an edge.

You have to write a number on each vertex of the graph. Each number should be 1, 2 or 3. The graph becomes Poisonous if for each edge the sum of numbers on vertices connected by this edge is odd.

Calculate the number of possible ways to write numbers 1, 2 or 3 on vertices so the graph becomes poisonous. Since this number may be large, return it modulo 998244353.

	1.0
(2)	4
	=

T	1	2
_	1	3
ľ	1	٧
r	2	3
	2	4
-	3	4
Ι.		

observation

- if graph is non bi-partite, then ans -s 0

- if graph is bi-partite.

yellow → 3, green = 4

yellow colored nodes $-\xi$ and green colored nodes $-\delta$ yellow colored nodes $-\delta$ and green colored nodes $-\delta$ $\frac{\partial^2}{\partial x^2}$ $\frac{\partial^2}{\partial x^2}$

i. ans = 2 yellow-colored nods + 2 gran colored nods

[T.(→ O(N+F)] S.(→ O(N))

(4) Matrix and Absolute Difference -

Given a matrix C of integers, of dimension A x B.

For any given K, you are not allowed to travel between cells that have an absolute difference greater than K.

Return the minimum value of K such that it is possible to travel between any pair of cells in the grid through a path of adjacent cells.

NOTE:

Adjacent cells are those cells that share a side with the current cell.

Gy -1

Bim's Algo Kruskal's Algo

