Predicting Forest Fire Area

Project Presentation STAN47 2020-12-14 Sara Thiringer

The Task

- Lab 4: Pre-processing and comparison between NN and OLS Regression
- Predict the burned area of forest fires using primarily meteorological data
- Data from the northeast region of Portugal
- Described as "difficult" regression problem
- Focus:
 - Follow process performed by Cortez & Morais (2007)
 - Pre processing
 - Evaluation metrics
 - Comparison NN/non-NN and early-NN/modern-NN

Previous Research

"In [Cortez and Morais, 2007], the output 'area' was first transformed with a In(x+1) function. Then, several Data Mining methods were applied. After fitting the models, the outputs were post-processed with the inverse of the In(x+1) transform. Four different input setups were used. The experiments were conducted using a 10-fold (cross-validation) x 30 runs. Two regression metrics were measured: MAD and RMSE. "(Description from UCI ML repo)

"The proposed solution includes only four weather variables (i.e. rain, wind, temperature and humidity) in conjunction with a SVM and it is capable of predicting the burned area of small fires, which constitute the majority of the fire occurrences." (Cortez & Morais, 2007)

"This study will consider multilayer perceptrons with one hidden layer of H hidden nodes and logistic activation functions and one output node with a linear function." (Cortez & Morais, 2007)

The data

data.head()

	X	Y	month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain	area
0	7	5	mar	fri	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0	0.0
1	7	4	oct	tue	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0	0.0
2	7	4	oct	sat	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0	0.0
3	8	6	mar	fri	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2	0.0
4	8	6	mar	sun	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0	0.0

Geographical aspects

```
# Geographical inspection (X and Y is coordinates in the park)
train_fires.plot(kind = 'scatter', x = 'X', y = 'Y', s = 'area')
```


Geographical aspects

The outcome variable: area (ha)

```
plt.hist(train_fires['area'], color = '#E98074')
plt.savefig('histogram_area', transparent = True)
```


Histograms of area before and after ln(x+1) transformation

Categorical variables

- 2 categorical variables
- Month
- Day

```
# Function for converting month to season
def month to season(month):
    season = 'other'
    if month in ['dec', 'jan', 'feb']:
         season = 'winter'
    if month in ['mar', 'apr', 'may']:
         season = 'spring'
    if month in ['jun', 'jul', 'aug']:
         season = 'summer'
    if month in ['sep', 'oct', 'nov']:
         season = 'fall'
    return season
fires['season'] = fires['month'].apply(month to season)
fires.drop('month', inplace = True, axis = 1)
```

Evaluation metrics

- Trickier for regression than classification if the goal is comparison
- Cortez & Morais (2007) used MAD (MAE) and RMSE
- Custom your own metrics in Keras

$$MAD = 1/N \times \sum_{i=1}^{N} |y_i - \hat{y}_i| = MAE$$

$$RMSE = \sqrt{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2/N}$$

Neural Network Architecture

- 1 hidden layer
- 64 nodes
- ReLU activation


```
model = keras.Sequential([
    layers.Dense(64,
         activation = 'relu',
         input shape = [len(fires train scaled.columns)]),
    layers.Dense(64,
         activation = 'relu'),
    layers.Dense(1)
1)
optimizer = tf.keras.optimizers.RMSprop(0.001)
model.compile(loss = 'mae',
    optimizer = optimizer,
    metrics = [tf.keras.metrics.RootMeanSquaredError(),
              'mae'])
```

Training Phase

Training Phase with Early Stopping

Second Neural Network Architecture

- 3 hidden layers
- 64-100-52-14 nodes
- ReLU activation


```
model2 = keras.Sequential([
    layers.Dense(64,
         activation = 'relu',
         input shape = [len(fires train scaled.columns)]),
    layers.Dense (100,
         activation = 'relu'),
    layers.Dense (52,
         activation = 'relu'),
    layers.Dense(14,
         activation = 'relu'),
    layers.Dense(1)
])
```

Training Phase with Early Stopping

Calculating the Test Results

```
# Predict on test data
y pred = model.predict(fires test scaled)
# Transform predictions
y pred = y pred.reshape(len(y pred))
y pred final = np.expm1(y pred)
# Calculate MAE/MAD
np.mean(np.abs(y test original - y pred final))
# Calculate RMSE
np.sqrt(np.mean((y test original - y pred)**2))
```

Results

	Model 1	Model 2	Paper
MAE (CV)	13.071	13.106	12.71
MAE (test)	1.194	1.233	N/A
RMSE (CV)	46.923	47.03	63.7
RMSE (test)	1.399	2.298	N/A

Histograms of the true and predicted values

Conclusions and Future Considerations

- Cross-validation is important!
- This task is hard to evaluate due to the nature of the outcome variable
 - Continuous
 - Transformations back and forth
 - Many values of 0
- Trying more architectures
- Taking the log twice (what would this result in?)
- Stratifying the split so that both train and test set includes some of the really high values