LISTA DE REVISÃO 01 – LINGUAGENS FORMAIS E AUTÔMATOS

- **1.** Sabendo que A = $\{1, 2, 3, 4\}$, B = $\{4, 5, 6\}$ e C = $\{1, 6, 7, 8, 9\}$. Qual o conjunto (A \cap B) \cup C? **R:** O conjunto é $\{1, 4, 6, 7, 8, 9\}$
- 2. José Carlos e Marlene são os pais de Valéria. A família quer viajar nas férias de julho. José Carlos conseguiu tirar suas férias na fábrica do dia 2 ao dia 28. Marlene obteve licença no escritório de 5 a 30. As férias de Valéria na escola vão de 1 a 25. Durante quantos dias a família poderá viajar sem faltar as suas obrigações?

R: São 21 dias, pegamos o maximo da data inicial = 5 e o minimo da data final -> 5 a 25 (que da 21 dias)

3. Em uma classe de 30 alunos, 16 gostam de Matemática e 20 gostam de História. Qual o número de alunos desta classe que gostam de Matemática e História?

R: São 6 alunos, 16 + 20 = 36 - 30 = 6

- **4.** Sejam os conjuntos A com 2 elementos, B com 3 elementos e C com 4 elementos, então pode-se afirmar que:
- a) A ∩ B tem no máximo 1 elemento
- b) A U C tem no máximo 5 elementos

c) (A ∩ B) ∩ C tem no máximo 2 elementos

- d) (A U B) ∩ C tem no máximo 2 elementos
- e) A \cap Ø tem pelo menos dois elementos
- **5.** Em uma pesquisa de mercado, verificou-se que 15 pessoas utilizam pelo menos um dos produtos A ou B. Sabendo que 10 destas pessoas não usam o produto B e que 2 destas pessoas não usam o produto A, qual é o número de pessoas que utilizam os produtos A e B?

R: 10 -> não usam B; 2 -> não usam A; O número de pessoas que utilizam é 3, 15 - 12 = 3

6. Em uma escola que tem 415 alunos, 221 estudam inglês, 163 estudam francês e 52 estudam ambas as línguas. Quantos alunos estudam inglês ou francês? Quantos alunos não

estudam nenhuma das duas?

R: 221(inglês) e 163 (francês) - 52 (ambas) = 332 estudam inglês ou francês e 415 (total de alunos) - 332 = 83 alunos não estudam nenhuma das duas.

7. Determinar o conjunto X tal que:

a)
$$\{a, b, c, d\} \cup X = \{a, b, c, d, e\} -> e$$

b)
$$\{c, d\} \cup X = \{a, c, d, e\} -> a$$

c)
$$\{b, c, d\} \cap X = \{c\} -> c$$

R: O x é {E, A, C}

8. Um levantamento socioeconômico entre os habitantes de uma cidade revelou que, exatamente 17% têm casa própria; 22% têm automóvel; 8% têm casa própria e automóvel. Qual o percentual dos que não têm casa própria nem automóvel?

R: 17 + 22 - 8 = 31%, então 100% - 31% = 69% não possuem casa própria e nem automóvel.

9. Inscreveram-se em um concurso público 700 candidatos para 3 cargos - um de nível superior, um de nível médio e um de nível fundamental. É permitido aos candidatos efetuarem uma inscrição para nível superior e uma para nível médio. Os candidatos ao nível fundamental somente podem efetuar uma inscrição. Sabe-se que 13% dos candidatos de nível superior efetuaram 2 inscrições. Dos candidatos de nível médio, 111 candidatos efetuaram uma só inscrição, correspondendo a 74% dos candidatos desse nível. Qual é então o número de candidatos ao nível fundamental?

R: 111/0,74 = 150(total de candidatos nível médio) - 111(só nível médio) = 39 (médio + superior) -> 39/0.13 = 300 (só nível superior), então só superior = 261, só nível médio = 111 e ambos = 39, logo 261 + 111 + 39 = 411 alunos, faz o total de alunos 700 - 411 = 289 só em fundamental.

10. Da operação A – B sobre os conjuntos a seguir, resulta:

- (A) {0, 2, 4, 6}
- (B) {1, 4, 0, 9}
- (C) {1, 4}
- (D) {1, 4, 0}
- (E) Todas as anteriores
- **11.** Em uma empresa, 60% dos funcionários leem a revista A, 80% leem a revista B, e todo funcionário é leitor de pelo menos uma dessas revistas. Qual o percentual de funcionários que leem as duas revistas?

R: 80% + 60% = 140% - 100% = 40% leem as duas revistas.

12. Em uma prova de matemática com apenas duas questões, 300 alunos acertaram somente uma das questões e 260 acertaram a segunda. Sendo que 100 alunos acertaram as duas e 210 alunos erraram a primeira questão. Quantos alunos fizeram a prova?

R: 260 - 100 = 160 (só a segunda questão) -> 300 - 160 = 140 (só a primeira questão) -> 210

- 160 = 50 (não acertou a primeira), então 100(as duas questões) + 160 + 140 + 50 = 450 alunos fizeram a prova.
- **13.** Escreva uma propriedade que define os conjuntos:
- a) $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \rightarrow A = \{x \in Z \mid 0 \le x \le 9\}$ (são todos os números inteiros de 0 a 9.)
- b) $\{11, 13, 15, 17\} \rightarrow B = \{x \in Z \mid 11 \le x \le 17 \text{ e } x \text{ é impar} \}$ (são números impares entre 11 e 17.)
- **14.** Classifique os conjuntos abaixo em vazio, unitário, finito ou infinito:
- a) A é o conjunto das soluções da equação 2x + 5 = 19 -> x = 7, logo é unitário
- b) B = {x | x é número natural maior que 10 e menor que 11} -> não existe esse número, logo é vazio
- c) C = {1, 4, 9, 16, 25, 36, ... } -> são quadrados perfeitos, então são infinitos.
- d) $D = \{0, 10, 20, 30, ..., 90\} ->$ é finito.
- **15.** Dados os conjuntos A = $\{1, 2\}$, B = $\{1, 2, 3, 4, 5\}$, C = $\{3, 4, 5\}$ e D = $\{0, 1, 2, 3, 4, 5\}$, classifique em verdadeiro (V) ou falso (F):

b) C ⊂ A - <mark>(F)</mark>
c) B ⊂ D - <mark>(V)</mark>
d) D ⊂ B - <mark>(F)</mark>
f) A ⊂ D - <mark>(V)</mark>
g) B ⊂ C - <mark>(V)</mark>
16. Dados os conjuntos A = {a, b, c}, B = {b, c, d} e C = {a, c, d, e}, o conjunto
20. Bados os conjuntos A = {a, b, c}, b = {b, c, a} c c = {a, c, a, c}, b conjunto
(A - C) U (C - B) U (A ∩ B ∩ C)
é:
A - C = B - C - B = A; C, E -> A, B, C, E -> C
a) {a, b, c, e}
b) {a, c, e}
c) A
d) {b, d, e}
e) {b, c, d, e}
17. Dados os conjuntos A = {1, 2, -1, 0, 4, 3, 5} e B = {-1, 4, 2, 0, 5, 7} assinale a afirmação verdadeira:
a) A U B = {2, 4, 0, -1}
b) A ∩ (B - A) = Ø
c) $A \cap B = \{-1, 4, 2, 0, 5, 7, 3\}$
d) (A U B) ∩ A = {-1, 0}
e) Nenhuma das respostas anteriores
18. Dados os conjuntos A = {x ∈ IN -1 < x ≤ 4} e B = {x ∈ Z 0 ≤ x < 2}, o conjunto A ∩ B é igual a:
a) {-1; 0; 1}
b) {-1; 0; 1; 2}
c) {0; 1}
d) {1; 1; 2}

e) {-1; 0; 1; 2; 3; 4}

19. 35 estudantes estrangeiros vieram ao Brasil. 16 visitaram Manaus; 16, São Paulo e 11, Salvador. Desses estudantes, 5 visitaram Manaus e Salvador e, desses 5, 3 visitaram também São Paulo. O número de estudantes que visitaram Manaus ou São Paulo foi:

a) 29

- b) 24
- c) 11
- d) 8
- e) 5

20. Em uma universidade, são lidos apenas dois jornais, X e Y. 80% dos alunos da mesma leem o jornal X e 60%, o jornal Y. Sabendo-se que todo aluno é leitor de pelo menos um dos jornais, assinale a alternativa que corresponde ao percentual de alunos que leem ambos:

80 +60 = 140%; 100 - 140 = 40%

- a) 80%
- b) 14%

c) 40%

- d) 60%
- e) 48%

21. Após um jantar, foram servidas as sobremesas X e Y. Sabe-se que das 10 pessoas presentes, 5 comeram a sobremesa X, 7 comeram a sobremesa Y e 3 comeram as duas. Quantas não comeram nenhuma das sobremesas?

-> 5 + 7 - 3 = 9; 10 - 9 = 1

a) 1

- b) 2
- c) 3
- d) 4
- e) 0

22. Um conjunto A tem 10 elementos e um conjunto B tem 20 elementos. Quantos elementos tem, no mínimo e no máximo, A U B?

R: O mínimo é 20 (Quanto A esta todo no B, então 10 + 20 - 10 = 20), e o máximo é 30 (não têm em comum, então 20 + 10 = 30)

- **23.** No último clássico Corinthians × Flamengo, realizado em São Paulo, verificou-se que só foram ao estádio paulistas e cariocas e que todos eles eram só corinthianos ou só flamenguistas. Verificou-se também que, dos 100.000 torcedores, 85.000 eram corinthianos, 84.000 eram paulistas e que apenas 4.000 paulistas torciam para o Flamengo. Pergunta-se:
- a) Quantos paulistas corinthianos foram ao estádio?

 R: (84.000 4.000 = 80.000) mil paulistas sao corinthianos.)
- b) Quantos cariocas foram ao estádio?

R: (100.000 - 84.000) = 16.000 mil cariocas

c) Quantos não-flamenguistas foram ao estádio?

R: 85.000 mil não flamenguistas

d) Quantos flamenguistas foram ao estádio?

R: 15 mil flamenguistas

e) Dos paulistas que foram ao estádio, quantos não eram flamenguistas?

R: (84.000-4.000) = 80 mil não flamenguistas

f) Dos cariocas que foram ao estádio, quantos eram corinthianos?

R: 15.000(flamenguistas) - 4.000 (paulistas flamenguistas) = 11.000 -> 16.000 - 11.000 = 5.000 eram corinthianos

g) Quantos eram flamenguistas ou cariocas?

R: 15.000 + 16.000 - 11.000 = 20 mil são flamenguistas ou cariocas

h) Quantos eram corinthianos ou paulistas?

R: 85.000 + 84.000 - 80.000 = 89.000 eram corinthianos ou paulistas

- i) Quantos torcedores eram não-paulistas ou não-flamenguistas?
 - R: 16.000 + 85.000 5.000 = 96.000 não eram não-paulistas ou não-flamenguistas.
- **24.** As marcas de cerveja mais consumidas em um bar, num certo dia, foram A, B e S. Os garçons constataram que o consumo se deu de acordo com a tabela a seguir:

Marcas consumidas	Nº de consumidores		
Α	150		
В	120		
S	80		
AeB	60		
BeS	40		
AeS	20		
A, BeS	15		
Outras	70		

a) Quantos beberam cerveja no bar, nesse dia?

R:
$$150 + 120 + 80 - (60 + 20 + 40) + 15 = 350 - 120 + 15 = 245 + 70 = 315$$
 cervejas

b) Dentre os consumidores de A, B e S, quantos beberam apenas duas dessas marcas?

R:
$$45 + 25 + 5 = 75$$
 pessoas.

c) Quantos não consumiram a cerveja S?

R:
$$315 - 80 = 235$$
 pessoas.

d) Quantos não consumiram a marca B nem a marca S?

25. Dos 30 candidatos a vagas em certa empresa, sabe-se que 18 são do sexo masculino, 13 são fumantes e 7 são mulheres que não fumam. Quantos candidatos masculinos não fumam?

26. Considere os seguintes subconjuntos de números naturais:

N =
$$\{0, 1, 2, 3, 4,...\}$$
 P = $\{x \in IN / 6 \le x \le 20\}$ A = $\{x \in P / x \text{ é par }\}$
B = $\{6, 8, 12, 16\}$ C = $\{x \in P / x \text{ é múltiplo de 5}\}$

O número de elementos do conjunto $(A - B) \cap C$ é:

a) 2 (ex: 10, 20...)

- b) 3
- c) 4
- d) 5

e) 6

27. Considere três conjuntos A, B e C, tais que: n(A) = 28, n(B) = 21, n(C) = 20, $n(A \cap B) = 8$, $n(B \cap C) = 9$, $n(A \cap C) = 4$ e $n(A \cap B \cap C) = 3$. Assim sendo, o valor de $n((A \cup B) \cap C)$ é:

a) 3

- c) 20
- d) 21
- e) 24
- 28. Considere os conjuntos representados abaixo:

Represente, enumerando seus elementos, os conjuntos:

a) P, Q e R

- b) $(P \cap Q) R$
 - R: {3}
- c) (P U Q) ∩ R
 - R: { 2, 5, 7 }
- d) $(P \cup R) P$
 - R: {6}
- e) (Q ∩ R) U P
 - R: {2, 3, 4, 5, 7}
- **29.** A e B são dois conjuntos tais que A B tem 30 elementos, A \cap B tem 10 elementos e AUB tem 48 elementos. Então o número de elementos de B A \acute{e} :

$$48 = 30 + x + 10 \rightarrow 48 = 40 + x \rightarrow X = 8$$

a) 8

- b) 10
- c) 12
- d) 15
- e) 18
- 30. Na figura abaixo têm-se representados os conjuntos A, B e C, não disjuntos.

A região sombreada representa qual conjunto?

R: (A ∩ B) – C

- **31.** Em uma pesquisa de opinião, foram obtidos estes dados:
- 600 Entrevistados leem o jornal A.
- 825 Entrevistados leem o jornal B.
- 525 Entrevistados leem o jornal C.
- 180 Entrevistados leem os jornais A e B.
- 225 Entrevistados leem os jornais A e C.
- 285 Entrevistados leem os jornais B e C.
- 105 Entrevistados leem os três jornais.
- 135 Pessoas entrevistadas não leem nenhum dos três jornais.

Considerando-se esses dados, qual o número total de entrevistados?

R: n(A \cup B \cup C) = 600 + 825 + 525 - 180 -225 - 285 + 105 = 1365 -> n(total)= 1365 + 135(não leem) = 1500 é o número total de pessoas entrevistadas

32. Você permite que seus clientes paguem suas contas com periodicidade mensal ou

bimestral. Além disso, o pagamento pode ser feito com cartão de crédito, com cheque ou em dinheiro. Você precisa reduzir suas opções de pagamento, mas para isso é importante saber como tal procedimento pode afetar a satisfação de seus clientes. Resolve então fazer um levantamento dos últimos pagamentos efetuados por 300 clientes, e agrupa os resultados nos subconjuntos abaixo:

Período	Tipo de Pagamento			
	Cartão de crédito	Cheque	Dinheiro	Total
Por mês	35	52	10	97
Por bimestre	65	108	30	203
Total	100	160	40	300

Responda, com base na tabela:

- a) Quantas pessoas pagam com cartão de crédito? E com cheque? E em dinheiro? R: 100 com cartão; 160 com cheque; 40 com dinheiro;
- b) Quantas pessoas pagam por bimestre? E por mês?

R: por bimestre são 203 e por mês 97.

c) Quantas pessoas pagam mensalmente em dinheiro?

R: Em dinheiro são 10 pessoas.

d) Quantas pessoas pagam por mês ou em dinheiro?

R: 97 + 40 - 10 = 127 pessoas pagam por mês ou dinheiro.

33. Estamos acompanhando a vacinação de 200 crianças em uma creche. Analisando as carteiras de vacinação, verificamos que 132 receberam a vacina Sabin, 100 receberam a vacina contra sarampo e 46 receberam as duas vacinas. Vamos orientar os pais das crianças, enviando uma carta para cada um, relatando a vacina faltante.

Total de crianças = 200; Sabin = 132; Sarampo = 100; Ambas (Sabin e Sarampo) = 46

- a) Quantos pais serão chamados para que seus filhos recebam a vacina Sabin?

 R: 200 132 = 68 pais serão chamados.
- b) Quantos pais serão chamados para que seus filhos recebam a vacina contra sarampo? R: 200 - 100 = 100 pais serão chamados.
- c) Quantos pais serão chamados para que seus filhos recebam as duas vacinas?

R: 86 + 54 + 46 = 186; 200 - 186 = 14 pais serão chamados por não receberem nenhuma

34. Considerando que A U B = $\{1, 2, 3, 4, 5, 6, 7, 8\}$, A \cap B = $\{4, 5\}$ e A – B = $\{1, 2, 3\}$, determine o conjunto B.

R: $B = \{4, 5, 6, 7, 8\}$

35. Dados os conjuntos A = $\{0, 1\}$, B = $\{0, 1, 2\}$ e C = $\{2, 3\}$, determine (A U B) \cap (B U C). R: (A U B) \cap (B U C) = $\{0, 1, 2\}$

36. Os senhores A, B e C concorriam à liderança de certo partido político. Para escolher o líder, cada eleitor votou apenas em dois candidatos de sua preferência. Houve 100 votos para A e B, 80 votos para B e C e 20 votos para A e C. Em consequência:

A: 100 + 20 = 120; B: 100 + 80 = 180; C: 80 + 20 = 100;

- a) A venceu, com 120 votos.
- b) A venceu, com 140 votos.
- c) A e B empataram em primeiro lugar.
- d) B venceu, com 140 votos.
- e) B venceu, com 180 votos.
- 37. Chico e sua esposa foram a uma festa com três outros casais. No encontro deles houveram vários apertos de mão. Ninguém apertou a própria mão ou a mão da(o) esposa(o), e ninguém apertou a mão da mesma pessoa mais que uma vez. Após os cumprimentos Chico perguntou para todos, inclusive para a esposa, quantas mãos cada um apertou e recebeu de cada pessoa uma resposta diferente.
- a) Quantas mãos Chico apertou?

R: 3 mãos

b) Quantas mãos a esposa de Chico apertou?

R: 3 mãos

38. Pode existir um grafo G com vértices que têm graus 2,3,3,4,4,5? E vértices com graus 2,3,4,4,5?

R: 2 + 3 + 3 + 4 + 4 + 5 = 21; 21 é ímpar, logo não pode existir um grafo simples com esses graus.

39. Seja G um grafo com 14 vértices e 25 arestas. Se todo vértice de G tem grau 3 ou 5, quantos

vértices de grau 3 o grafo G possui?

R: O grafo G possui 10 vértices de grau 3.

40. Se G é um grafo de 14 vértices e 25 arestas cujos vértices têm graus 3 ou 5, quantos vértices têm grau 3 e quantos têm grau 5?

R: O número de vértices com grau 3 é 10 e o número de vértices com grau 5 é 4.