Imperial College

London

Reminder of W ightarrow au u equation and method

$$N_{Data}^{W o au
u} = (N_{Data}^{ au controlregion} - N_{MC}^{Background}) X_{\epsilon_{ au_{IJV}}}^{\epsilon_{CJIV}},$$

- ▶ Tau control region is signal region (without CJV to increase stat.) plus requirement of 1 $\tau_{hadronic}$ candidate with $p_T > 20\,\text{GeV}$, $|\eta| < 2.3$:
- Use Tau POG approved discriminant: "byTightCombinedIsolationDeltaBetaCorr3Hits"
- ▶ Use Tau POG antilepton discriminant: choice of loose or tight working points
- Pre-approval number was with loose, result was 95

Update

- ▶ Bug fix to include Z+2j: $N_{MC}^{Background}$ changes from 15.4 to 16.4 for loose antilepton discriminant, result changes to $92 \pm 23(stat.) \pm 19(syst.)$
- Propose using tight antilepton discriminant because of better purity (see table), result is $76 \pm 25(stat.) \pm 19(syst.)$

Discriminant	W o e u	$W o \mu u$	W o au u	Bkg	Data
againste μ loose	2 ± 1	0 ± 0	26 ± 4	16.4 ± 3.2	47 ± 7
againste μ tight	0.4 ± 0.4	0 ± 0	20 ± 4	12.4 ± 2.2	32 ± 6