

<u>Design</u> <u>Tools</u> Resources and Mode

and Models

Click here to ask an associate for production status of specific part numbers.

Precision, Low-Power, Low-Dropout, SOT23-3 Voltage References

General Description

The MAX6012/MAX6021/MAX6025/MAX6030/MAX6041/ MAX6045/MAX6050 precision, low-dropout, micropower voltage references are available in miniature SOT23-3 surface-mount packages. They feature a proprietary curvature-correction circuit and laser-trimmed thin-film resistors that result in a low temperature coefficient of <15ppm/°C and initial accuracy of better than 0.2%. These devices are specified over the extended temperature range.

These series-mode voltage references draw only 27µA of quiescent supply current and can sink or source up to 500µA of load current. Unlike conventional shunt-mode (two-terminal) references that waste supply current and require an external resistor, devices in the MAX6012 family offer a supply current that's virtually independent of supply voltage (with only a 0.8µA/V variation with supply voltage) and do not require an external resistor. Additionally, these internally compensated devices do not require an external compensation capacitor and are stable with up to 2.2nF of load capacitance. Eliminating the external compensation capacitor saves valuable board area in space-critical applications. Their low dropout voltage and supply-independent, ultra-low supply current make these devices ideal for battery-operated, low-voltage systems.

Applications

- Hand-Held Equipment
- Data Acquisition Systems
- Industrial and Process-Control Systems
- Battery-Operated Equipment
- Hard-Disk Drives

Selector Guide

PART	OUTPUT VOLTAGE (V)	INPUT VOLTAGE (V)
MAX6012	1.247	2.5 to 12.6
MAX6021	2.048	2.5 to 12.6
MAX6025	2.500	(V _{OUT} + 200mV) to 12.6
MAX6030	3.000	(V _{OUT} + 200mV) to 12.6
MAX6041	4.096	(V _{OUT} + 200mV) to 12.6
MAX6045	4.500	(V _{OUT} + 200mV) to 12.6
MAX6050	5.000	(V _{OUT} + 200mV) to 12.6

Pin Configuration appears at end of data sheet.

MAX6012/MAX6021/MAX6025/MAX6030/ MAX6041/MAX6045/MAX6050

Features

- 0.2% (max) Initial Accuracy
- 15ppm/°C (max) Temperature Coefficient
- 35μA (max) Quiescent Supply Current
- 0.8μA/V Supply Current Variation with V_{IN}
- ±500µA Output Source and Sink Current
- 100mV Dropout at 500µA Load Current
- 0.12μV/μA Load Regulation
- 8µV/V Line Regulation
- Stable with C_{LOAD} = 0 to 2.2nF

Ordering Information

PART TEMP RANGE	N- TOP
PACK	
MAX6012AEUR+ -40°C to +85°C 3 SOT	23-3 FZAP
MAX6012AEUR+T -40°C to +85°C 3 SOT	23-3 FZAP
MAX6012BEUR+ -40°C to +85°C 3 SOT	23-3 FZDA
MAX6012BEUR+T -40°C to +85°C 3 SOT	23-3 FZDA
MAX6021AEUR+ -40°C to +85°C 3 SOT	23-3 FZAU
MAX6021AEUR+T -40°C to +85°C 3 SOT	23-3 FZAU
MAX6021BEUR+ -40°C to +85°C 3 SOT	23-3 FZDF
MAX6021BEUR+T -40°C to +85°C 3 SOT	23-3 FZDF
MAX6025AEUR+ -40°C to +85°C 3 SOT	23-3 FZAQ
MAX6025AEUR+T -40°C to +85°C 3 SOT	23-3 FZAQ
MAX6025BEUR+ -40°C to +85°C 3 SOT	23-3 FZDB
MAX6025BEUR+T -40°C to +85°C 3 SOT	23-3 FZDB
MAX6030AEUR+ -40°C to +85°C 3 SOT	23-3 FZDW
MAX6030AEUR+T -40°C to +85°C 3 SOT	23-3 FZDW
MAX6030BEUR+ -40°C to +85°C 3 SOT	23-3 FZDX
MAX6030BEUR+T -40°C to +85°C 3 SOT	23-3 FZDX
MAX6041AEUR+ -40°C to +85°C 3 SOT	23-3 FZAR
MAX6041AEUR+T -40°C to +85°C 3 SOT	23-3 FZAR
MAX6045AEUR+ -40°C to +85°C 3 SOT	23-3 FZAS
MAX6045AEUR+T -40°C to +85°C 3 SOT	23-3 FZAS
MAX6050AEUR+ -40°C to +85°C 3 SOT	23-3 FZAT
MAX6050AEUR+T -40°C to +85°C 3 SOT	23-3 FZAT

Typical Operating Circuit

19-4777; Rev 4; 11/22

Precision, Low-Power, Low-Dropout, SOT23-3 Voltage References

Absolute Maximum Ratings

(Voltages Referenced to GND)	Continuous Power Dissipation ($T_A = +70^{\circ}C$)			
IN0.3V to +13.5V	3-Pin SOT23-3 (derate 4.0mW/°C above +70°C)320mW			
OUT0.3V to (V _{IN} + 0.3V)	Operating Temperature Range40°C to +85°C			
Output Short Circuit to GND or IN (V _{IN} < 6V)Continuous	Storage Temperature Range65°C to +150°C			
Output Short Circuit to GND or IN $(V_{IN} \ge 6V)$ 60s	Lead Temperature (soldering, 10s)+300°C			

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics—MAX6012

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT	1			'			
		l l l l l l l l l l l l l l l l l l l	MANGOAGA	1.243	1.247	1.251	V
Out-14 \ /- 14	.,,	T05°O	MAX6012A	-0.32		0.32	%
Output Voltage	V _{OUT}	T _A = +25°C	MAYGOADD	1.241	1.247	1.253	V
			MAX6012B	-0.48		0.48	%
		$T_A = 0$ °C to +70°C	MAX6012A		6	15	
Output Voltage Temperature	\/	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	IVIAA6012A		6	20	nnm/°C
Coefficient (Note 2)	V _{OUT}	$T_A = 0$ °C to +70°C	MAX6012B		6	25	ppm/°C
		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	IVIAA6012B		6	30	
Line Regulation	ΔV _{OUT} / ΔV _{IN}	2.5V ≤ V _{IN} ≤ 12.6V			8	80	μV/V
Load Regulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤ 500μA			0.12	0.50	
Load Regulation	Δl _{OUT}	Sinking: $-500\mu A \le I_{OUT} \le 0$			0.15	0.60	μV/μΑ
OUT Short-Circuit Current	l	Short to GND Short to IN			4		mA
OUT Short-Circuit Current	ISC				4		
Temperature Hysteresis (Note 3)					130		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hr at T _A = +25°C			50		ppm/ 1000h
DYNAMIC				•			
NI=: \/-14	_	f = 0.1Hz to 10Hz			12		μVp-p
Noise Voltage	eOUT	f = 10Hz to 10kHz			65		μV _{RMS}
Ripple Rejection	ΔV _{OUT} / ΔV _{IN}	V _{IN} = 5V ±100mV, f =	120Hz		86		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value, C _{OUT} = 50pF			30		μs
Capacitive-Load Stability Range	C _{OUT}	Note 4		0		2.2	nF
INPUT	•						
Supply Voltage Range	V _{IN}	Guaranteed by line-re	gulation test	2.5		12.6	V
Quiescent Supply Current	I _{IN}				27	35	μA
Change in Supply Current	I _{IN} /V _{IN}	2.5V ≤ V _{IN} ≤ 12.6V			0.8	2.0	μΑ/V

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT	,						
			NAN VOOCA A	2.043	2.048	2.053	V
Output Valtage	\ \/	T = 125°C	MAX6021A	-0.24		0.24	%
Output Voltage	V _{OUT}	T _A = +25°C	MAY6004B	2.040	2.048	2.056	V
			MAX6021B	-0.39		0.39	%
		$T_A = 0$ °C to +70°C	MAX6021A		6	15	
Output Voltage Temperature	\/ - · · -	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	IVIAX002 IA		6	20	nnm/°C
Coefficient (Note 2)	V _{OUT}	$T_A = 0$ °C to +70°C	MAX6021B		6	25	ppm/°C
		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	IVIAX0021B		6	30	
Line Regulation	ΔV _{OUT} / ΔV _{IN}	2.5V ≤ V _{IN} ≤ 12.6V	•		10	100	μV/V
1	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤ 500μA			0.12	0.55	\//^
Load Regulation	Δl _{OUT}	Sinking: $-500\mu A \le I_{OUT} \le 0$			0.18	0.70	μV/μA
OUT Short-Circuit Current	1	Short to GND			4		m A
OUT Short-Circuit Current	Isc	Short to IN			4		mA
Temperature Hysteresis (Note 3)					130		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hr at T _A = +25°C			50		ppm/ 1000h
DYNAMIC				•			
Noise Valtage		f = 0.1Hz to 10Hz			35		µVр-р
Noise Voltage	eOUT	f = 10Hz to 10kHz			105		μV _{RMS}
Ripple Rejection	ΔV _{OUT} / ΔV _{IN}	V _{IN} = 5V ±100mV, f =	120Hz		84		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value, C _{OUT} = 50pF			70		μs
Capacitive-Load Stability Range	C _{OUT}	Note 4		0		2.2	nF
INPUT	•			•			
Supply Voltage Range	V _{IN}	Guaranteed by line-reg	gulation test	2.5		12.6	V
Quiescent Supply Current	I _{IN}				27	35	μA
Change in Supply Current	I _{IN} /V _{IN}	2.5V ≤ V _{IN} ≤ 12.6V			0.8	2.0	μA/V

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT	,						
			1447/00054	2.495	2.500	2.505	V
Output Valtage	\ \/	T - 125°C	MAX6025A	-0.20		0.20	%
Output Voltage	V _{OUT}	T _A = +25°C	MAYCOOFD	2.490	2.500	2.510	V
			MAX6025B	-0.40		0.40	%
		$T_A = 0$ °C to +70°C	MAYGOOFA		6	15	
Output Voltage Temperature	\ \/	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	MAX6025A		6	20	/°C
Coefficient (Note 2)	Vout	$T_A = 0$ °C to +70°C	MAYCOOFD		6	25	ppm/°C
		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	MAX6025B		6	30	
Line Regulation	ΔV _{OUT} / ΔV _{IN}	(V _{OUT} + 0.2V) ≤ V _{IN} ≤	£ 12.6V		15	140	μV/V
Land Damidation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤ 5	500µA		0.14	0.60	\//
Load Regulation	ΔI _{OUT}	Sinking: -500μA ≤ I _{OU}	T ≤ 0		0.18	0.80	μV/μΑ
Dropout Voltage (Note 5)	V _{IN} - V _{OUT}	I _{OUT} = 500μA			100	200	mV
OUT OL 10: "O 1		Short to GND			4		
OUT Short-Circuit Current	I _{SC}	Short to IN			4		mA mA
Temperature Hysteresis (Note 3)	ΔV _{OUT} / time				130		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hr at T _A = +25°C			50		ppm/ 1000h
DYNAMIC							
NI=: N/=14	_	f = 0.1Hz to 10Hz			50		µVp-p
Noise Voltage	e _{OUT}	f = 10Hz to 10kHz			125		μV _{RMS}
Ripple Rejection	ΔV _{OUT} / ΔV _{IN}	V _{IN} = 5V ±100mV, f =	120Hz		82		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value, C _{OUT} = 50pF			85		μs
Capacitive-Load Stability Range	C _{OUT}	Note 4		0		2.2	nF
INPUT							
Supply Voltage Range	V _{IN}	Guaranteed by line-re	gulation test	V _{OUT} +	0.2	12.6	V
Quiescent Supply Current	I _{IN}				27	35	μA
Change in Supply Current	I _{IN} /V _{IN}	$2.5V \le V_{1N} \le 12.6V$			0.8	2.0	μA/V

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT							
			MAYCOZOA	2.994	3.000	3.006	V
Output Valtage	\ \/	T - 125°C	MAX6030A	-0.20		0.20	%
Output Voltage	V _{OUT}	T _A = +25°C	MANAGOOD	2.988	3.000	3.012	V
			MAX6030B	-0.40		0.40	%
		$T_A = 0$ °C to +70°C	MANGOOOA		6	15	
Output Voltage Temperature		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	MAX6030A		6	20	
Coefficient (Note 2)	V _{OUT}	$T_A = 0$ °C to +70°C	MAYCOOOD		6	25	ppm/°C
		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	MAX6030B		6	30	
Line Regulation	ΔV _{OUT} / ΔV _{IN}	(V _{OUT} + 0.2V) ≤ V _{IN} ≤	12.6V		20	150	μV/V
Load Regulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤ 5	600μA		0.14	0.60	μV/μΑ
Load Regulation	Δl _{OUT}	Sinking: -500μA ≤ I _{OU}	T ≤ 0		0.18	0.80	μν/μΑ
Dropout Voltage (Note 5)	V _{IN} - V _{OUT}	I _{OUT} = 500μA			100	200	mV
		Short to GND			4		4
OUT Short-Circuit Current	I _{SC}	Short to IN			4		mA
Temperature Hysteresis (Note 3)					130		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hr at T _A = +25°C			50		ppm/ 1000h
DYNAMIC	1			'			
ALC: AV III		f = 0.1Hz to 10Hz			65		µVp-p
Noise Voltage	eOUT	f = 10Hz to 10kHz			150		μV _{RMS}
Ripple Rejection	ΔV _{OUT} / ΔV _{IN}	V _{IN} = 5V ±100mV, f =	120Hz		80		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value, C _{OUT} = 50pF			100		μs
Capacitive-Load Stability Range	C _{OUT}	Note 4		0		2.2	nF
INPUT	•						•
Supply Voltage Range	V _{IN}	Guaranteed by line-re	gulation test	V _{OUT} +	0.2	12.6	V
Quiescent Supply Current	I _{IN}	-			27	35	μA
Change in Supply Current	I _{IN} /V _{IN}	2.5V ≤ V _{IN} ≤ 12.6V			0.8	2.0	μA/V

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
OUTPUT	,						
Output Valtage	\ \/	T - 125°C	4.088	4.096	4.104	V	
Output Voltage	V _{OUT}	T _A = +25°C	-0.20		0.20	%	
Output Voltage Temperature	\/	T _A = 0°C to +70°C		6	15	nnm/°C	
Coefficient (Note 2)	V _{OUT}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		6	20	ppm/°C	
Line Regulation	$\Delta V_{OUT} / \Delta V_{IN}$	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		25	160	μV/V	
Load Regulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤ 500μA		0.15	0.70	μV/μΑ	
Load Regulation	Δl _{OUT}	Sinking: -500µA ≤ I _{OUT} ≤ 0		0.20	0.90	μν/μΑ	
Dropout Voltage (Note 5)	V _{IN} - V _{OUT}	Ι _{ΟUΤ} = 500μΑ		100	200	mV	
OUT Short-Circuit Current	la a	Short to GND		4		mA	
OUT SHORT-CIRCUIT CUITETIL	I _{SC}	Short to IN		4			
Temperature Hysteresis (Note 3)	ΔV _{OUT} / time	1000hr at T _A = +25°C		130		ppm	
Long-Term Stability	ΔV _{OUT} / time	1000hr at T _A = +25°C		50		ppm/ 1000h	
DYNAMIC	1		- '			'	
Noine Veltage		f = 0.1Hz to 10Hz		100		μVp-p	
Noise Voltage	e _{OUT}	f = 10Hz to 10kHz		200		μV _{RMS}	
Ripple Rejection	$\Delta V_{OUT}/$ ΔV_{IN}	V _{IN} = 5V ±100mV, f = 120Hz		77		dB	
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value, C _{OUT} = 50pF		160		μs	
Capacitive-Load Stability Range	C _{OUT}	Note 4	0		2.2	nF	
INPUT							
Supply Voltage Range	V _{IN}	Guaranteed by line-regulation test	V _{OUT} +	0.2	12.6	V	
Quiescent Supply Current	I _{IN}			27	35	μΑ	
Change in Supply Current	I _{IN} /V _{IN}	2.5V ≤ V _{IN} ≤ 12.6V		8.0	2.0	μA/V	

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT						
O. A A. V14		T - 105°C	4.491	4.500	4.509	V
Output Voltage	V _{OUT}	T _A = +25°C	-0.20		0.20	%
Output Voltage Temperature	\/	$T_A = 0$ °C to +70°C		6	15	nnm/°C
Coefficient (Note 2)	V _{OUT}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		6	20	ppm/°C
Line Regulation	ΔV _{OUT} / ΔV _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		25	160	μV/V
Load Regulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤ 500μA		0.16	0.80	μV/μΑ
Load Regulation	Δl _{OUT}	Sinking: -500µA ≤ I _{OUT} ≤ 0		0.22	1.00	μν/μΑ
Dropout Voltage (Note 5)	V _{IN} - V _{OUT}	Ι _{ΟUΤ} = 500μΑ		100	200	mV
OUT Short-Circuit Current	laa	Short to GND		4		mA
OUT SHORT-CIRCUIT CUITETIL	I _{SC}	Short to IN		4		111/1
Temperature Hysteresis (Note 3)	ΔV _{OUT} / time			130		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hr at T _A = +25°C		50		ppm/ 1000h
DYNAMIC	1		-			-
Noine Veltage		f = 0.1Hz to 10Hz		110		μVp-p
Noise Voltage	e _{OUT}	f = 10Hz to 10kHz		215		μV _{RMS}
Ripple Rejection	$\Delta V_{OUT} / \Delta V_{IN}$	V _{IN} = 5V ±100mV, f = 120Hz		76		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value, C _{OUT} = 50pF		180		μs
Capacitive-Load Stability Range	C _{OUT}	Note 4	0		2.2	nF
INPUT						
Supply Voltage Range	V _{IN}	Guaranteed by line-regulation test	V _{OUT} +	0.2	12.6	V
Quiescent Supply Current	I _{IN}			27	35	μΑ
Change in Supply Current	I _{IN} /V _{IN}	2.5V ≤ V _{IN} ≤ 12.6V		8.0	2.0	μA/V

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT	,					
O. do. d \/- - -		T - 105°C	4.990	5.000	5.010	V
Output Voltage	V _{OUT}	T _A = +25°C	-0.20		0.20	%
Output Voltage Temperature	TCV	T _A = 0°C to +70°C		6	15	/°C
Coefficient (Note 2)	TCV _{OUT}	T _A = -40°C to +85°C		6	20	ppm/°C
Line Regulation	ΔV _{OUT} / ΔV _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		25	160	μV/V
Load Regulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤ 500μA		0.17	0.85	\//
Load Regulation	Δl _{OUT}	Sinking: -500μA ≤ I _{OUT} ≤ 0		0.24	1.10	μV/μΑ
Dropout Voltage (Note 5)	V _{IN} - V _{OUT}	Ι _{ΟUΤ} = 500μΑ		100	200	mV
OUT Short-Circuit Current	I	Short to GND Short to IN		4		mA
OUT SHOrt-Circuit Current	Isc			4		111/3
Temperature Hysteresis (Note 3)				130		ppm
Long-Term Stability	ΔV _{OUT} / time	1000hr at T _A = +25°C		50		ppm/ 1000h
DYNAMIC	1		1			
Noine Valtage		f = 0.1Hz to 10Hz		120		µVp-р
Noise Voltage	e _{OUT}	f = 10Hz to 10kHz		240		μV _{RMS}
Ripple Rejection	$\Delta V_{OUT}/$ ΔV_{IN}	V _{IN} = 5V ±100mV, f = 120Hz		72		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value, C _{OUT} = 50pF		220		μs
Capacitive-Load Stability Range	C _{OUT}	Note 4	0		2.2	nF
INPUT						
Supply Voltage Range	V _{IN}	Guaranteed by line-regulation test	V _{OUT} + (0.2	12.6	V
Quiescent Supply Current	I _{IN}			27	35	μΑ
Change in Supply Current	I _{IN} /V _{IN}	2.5V ≤ V _{IN} ≤ 12.6V		8.0	2.0	μA/V

Note 5: Dropout voltage is the minimum input voltage at which V_{OUT} changes ≤0.2% from V_{OUT} at V_{IN} = 5.0V (V_{IN} = 5.5V for MAX6050).

Analog Devices | 8 www.analog.com

Note 1: All devices are 100% production tested at T_A = +25°C and are guaranteed by design for T_A = T_{MIN} to T_{MAX} , as specified. Note 2: Temperature Coefficient is measured by the "box" method, i.e., the maximum ΔV_{OUT} is divided by the maximum Δt .

Note 3: Temperature Hysteresis is defined as the change in +25°C output voltage before and after cycling the device from T_{MIN} to T_{MAX}.

Note 4: Not production tested. Guaranteed by design.

Typical Operating Characteristics

 $(V_{IN} = +5V \text{ for MAX}6012/21/25/30/41/45, V_{IN} = +5.5V \text{ for MAX}6050; I_{OUT} = 0; T_A = +25^{\circ}C; unless otherwise noted.) (Note 6)$

Typical Operating Characteristics (continued)

 $(V_{IN} = +5V \text{ for MAX}6012/21/25/30/41/45, V_{IN} = +5.5V \text{ for MAX}6050; I_{OUT} = 0; T_A = +25^{\circ}C; unless otherwise noted.) (Note 6)$

Typical Operating Characteristics (continued)

 $(V_{IN} = +5V \text{ for MAX}6012/21/25/30/41/45, V_{IN} = +5.5V \text{ for MAX}6050; I_{OUT} = 0; T_A = +25^{\circ}C; unless otherwise noted.) (Note 6)$

99/WW

 $$2\mu s$/div$$ V_{IN} = 5.5V \pm 0.25V, AC-COUPLED$

200mV/div

 V_{OUT}

100mV/div

Note 6: Many of the *Typical Operating Characteristics* of the MAX6012 family are extremely similar. The extremes of these characteristics are found in the MAX6012 (1.2V output) and the MAX6050 (5.0V output). The *Typical Operating Characteristics* of the remainder of the MAX6012 family typically lie between these two extremes and can be estimated based on their output voltage.

Pin Description

PIN	NAME	FUNCTION
1	IN	Supply Voltage Input
2	OUT	Reference Voltage Output
3	GND	Ground

Detailed Description

The MAX6012/MAX6021/MAX6025/MAX6030/MAX6041/ MAX6045/MAX6050 precision bandgap references use a proprietary curvature-correction circuit and laser-trimmed thin-film resistors, resulting in a low temperature coefficient of <20ppm/°C and initial accuracy of better than 0.2%. These devices can sink and source up to 500µA with <200mV of dropout voltage, making them attractive for use in low-voltage applications.

Applications Information

Output/Load Capacitance

Devices in this family do not require an output capacitance for frequency stability. They are stable for capacitive loads from 0 to 2.2nF. However, in applications where the load or the supply can experience step changes, an output capacitor will reduce the amount of overshoot (or undershoot) and assist the circuit's transient response. Many applications do not need an external capacitor, and this family can offer a significant advantage in these applications when board space is critical.

Supply Current

The quiescent supply current of these series-mode references is a maximum of $35\mu A$ and is virtually independent of the supply voltage, with only a $0.8\mu A/V$ variation with supply voltage. Unlike series references, shunt-mode references operate with a series resistor connected to the power supply. The quiescent current of a shunt-mode reference is thus a function of the input voltage. Additionally, shunt-mode references have to be biased at the maximum expected load current, even if the load current is not present all the time. The load current is drawn from the input voltage only when required, so supply current is not wasted and efficiency is maximized at all input voltages. This improved efficiency can help reduce power dissipation and extend battery life.

When the supply voltage is below the minimum specified input voltage (as during turn-on), the devices can draw up to 200µA beyond the nominal supply current. The input voltage source must be capable of providing this current to ensure reliable turn-on.

Output Voltage Hysteresis

Output voltage hysteresis is the change in the output voltage at T_A = +25°C before and after the device is cycled over its entire operating temperature range. Hysteresis is caused by differential package stress appearing across the bandgap core transistors. The typical temperature hysteresis value is 130ppm.

Figure 1. Positive and Negative References from Single +3V or +5V Supply

Precision, Low-Power, Low-Dropout, SOT23-3 Voltage References

Turn-On Time

These devices typically turn on and settle to within 0.1% of their final value; 30µs to 220µs depending on the device. The turn-on time can increase up to 1.5ms with the device operating at the minimum dropout voltage and the maximum load.

Positive and Negative Low-Power Voltage Reference

Figure 1 shows a typical method for developing a bipolar reference. The circuit uses a MAX681 voltage doubler/inverter charge-pump converter to power an ICL7652, thus creating a positive as well as a negative reference voltage.

Pin Configuration

Chip Information

TRANSISTOR COUNT: 70

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Precision, Low-Power, Low-Dropout, SOT23-3 Voltage References

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

NOTES:

- 1. D&E DO NOT INCLUDE MOLD FLASH.
- 2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED .15mm (.006").
- 3. CONTROLLING DIMENSION: MILLIMETERS.
- 4. REFERENCE JEDEC TO236-VARIATION AB.
- 5. LEADS TO BE COPLANAR WITHIN 0.10mm.
- DIMENSIONS MEASURED AT FLAT SECTION OF LEAD BETWEEN 0.08mm AND 0.15mm FROM LEAD TIP.
- ⚠ MARKING SHOWN IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
- 8. MATERIAL MUST COMPLY WITH BANNED AND RESTRICTED SUBSTANCES SPEC # 10-0131.
- 9. ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND POFREE (+) PKG. CODES.

]	INCHES		MILLIMETERS			
DIM	MIN	NDM	MAX	MIN	NDM	MAX	
Α	0.035	0.0394	0.044	0.890	1.000	1.120	
A1	0.0004	0.0024	0.004	0.010	0.060	0.100	
b	0.012	0.0165	0.020	0.300	0.420	0.500	
b1	0.012		0.018	0.300		0.450	
_	0.003	0.047	0.071	0.085	0.120	0.180	
⊂1	0.003		0.071	0.080		0.160	
D	0.110	0.115	0.120	2.800	2.920	3.040	
Ε	0.047	0.0512	0.055	1.200	1.30	1.400	
е	0	.037 BS	C.	0.	950 BS	C.	
e1	0	0.075 BSC.			900 BS0	2.	
Н	0.083	0.0925	0.104	2.100	2.350	2.640	
L	0.015	0.0205	0.023	0.400	0.520	0.600	
L1	(0.021 RE	F.	0.54 REF			
S	0.018	0.0213	0.024	0.45	0.540	0.60	
α	0°	2°	8°	0°	2	8°	
PKC	CODES	3: U3−1,	U3-2,	U3-5			

TITLE:

PACKAGE DUTLINE, 3L SDT-23

PPROVAL | DOCUMENT CONTROL NO. | REV. | 2 | 21-0051 | J | /

-DRAWING NOT TO SCALE-

Precision, Low-Power, Low-Dropout, SOT23-3 Voltage References

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
4	11/22	Updated data sheet title, Ordering Information, Electrical Characteristics— MAX6045, Electrical Characteristics—MAX6045, and Electrical Characteristics— MAX6050	1, 6, 7, 8