Statistical Methods of Data Analysis

W. Waltenberge

Statistical Methods of Data Analysis

W. Waltenberger

wolfgang.waltenberger@gmail.com

based on the slides of the year 2018 by R. Frühwirth

VU 260014 (Uni) / SV 142.340 (TU)

October 6, 2025

Syllabus

Statistical Methods of Data Analysis

W. Waltenberge

Part 1: Descriptive Statistics

Part 2: Probabilities

Part 3: Random Variables and Distributions

Part 4: Point Estimators

Syllabus

Statistical Methods of Data Analysis

Part 5: Confidence Intervals

Part 6: Testing Hypotheses

Part 7: Regression and Linear Models

Part 8: Bayes Statistics

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

One-dimensional Features

Two-dimensiona Features

Part I

Descriptive Statistics

Overview Part 1

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

One-dimensional Features

- Introduction
- 2 One-dimensional Features
- Two-dimensional Features

Section 1: Introduction

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Basic Terminology
Features and Scale Types
Statements and Frequencies

One-dimensional Featur

- Introduction
 - Basic Terminology
 - Features and Scale Types
 - Statements and Frequencies
- One-dimensional Features
- Two-dimensional Features

Subsection: Basic Terminology

Statistical Methods of Data Analysis

W. Waltenberger

Introducti

Basic Terminology
Features and Scale Types
Statements and Frequencies

One-dimensional Feature

- Introduction
 - Basic Terminology
 - Features and Scale Types
 - Statements and Frequencies
- One-dimensional Features
- Two-dimensional Features

Basic Terminology

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Basic Terminology
Features and Scale Types
Statements and Frequencies

One-dimensional Fea

Two-dimensional Features

Definition of Statistics

- The collection and storage of data, e.g. by statistical offices.
- The mathematical analysis of data, e.g. the calculation of measures and ratios, the estimation of unknown parameters, the testing of hypotheses

Descriptive Statistics

Description of existing data by measures, tables, graphs.

Basic Terminology

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Basic Terminology
Features and Scale Types
Statements and Frequencies

ne-dimensional Fea

Two-dimensional Features

Inductive (or Inferential) Statistics

- Investigation of patterns and causes that are behind the data and (partially) explain the data.
- Exploratory data analysis: the goal is to generate hypotheses.
- Confirmatory data analysis: aim is to test existing theories, e.g. by estimating parameters or testing hypotheses.

Subsection: Features and Scale Types

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Basic Terminology
Features and Scale Types

Statements and Frequencies

- Introduction
 - Basic Terminology
 - Features and Scale Types
 - Statements and Frequencies
- One-dimensional Features
- Two-dimensional Features

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Basic Terminology
Features and Scale Types

One-dimensional Featur

Two-dimensiona Features

Qualitative Features

- binary (yes/no). Example: EU citizenship.
- categorical (classification). Example: single/divorced/married/widowed.
- ordinal (rank). Example: Grades 1-5.

Quantitative Features

- discrete (integer). Example: counting.
- continuous (real-valued). Example: measuring process.

Statistical Methods of Data Analysis

W. Waltenberger

ntroduction

Basic Terminology
Features and Scale Types

One-dimensional Feature

Two-dimensional

Scale Types

- Nominal Scale: Numerical values are only designations for mutually exclusive categories.
- Ordinal Scale: Order of numbers is essential.
- Interval Scale: Order and differences between values are interpretable in a meaningful way, the zero point is arbitrarily fixed.
- Ratio Scale: Order, differences and ratios are meaningfully interpretable, there is an absolute zero point.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Basic Terminole

Features and Scale Types
Statements and Frequencies

One-dimensional reacti

Two-dimensior Features

Example

- The marital status of a person is coded by numbers (1=single, 2=married, 3=divorced, 4=widowed). Nominal scale.
- A team's standing in the championship is indicated by its rank in the league. Ordinal scale.
- The years (2007, 2008, ...) form an interval scale, since the zero point is arbitrary.
- The Celsius scale of temperature is an interval scale, since the zero point is arbitrarily fixed.
- The Kelvin scale of temperature is a ratio scale, since the zero point is physically fixed.
- The height of a person is given in cm. A ratio scale, the zero value is natural.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Basic Terminology
Features and Scale Types

Two-dimension Features

Example

The following data matrix D compiles several features of eight individuals.

Number	gender	age	education
1	1	34	2
2	2	54	1
3	2	46	3
4	1	27	4
5	1	38	2
6	1	31	3
7	2	48	4
8	2	51	2

Gender: 1=F, 2=M, Age: in years. Education: 1=compulsory school, 2=high school, 3=bachelor's, 4=master's.

Subsection: Statements and Frequencies

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Basic Terminology

Features and Scale Types
Statements and Frequencies

One-dimensional Feat

- Introduction
 - Basic Terminology
 - Features and Scale Types
 - Statements and Frequencies
- One-dimensional Features
- Two-dimensional Features

Statistical Methods of Data Analysis

W. Waltenberger

ntroduction

Basic Terminology

Features and Scale Types

Statements and Frequencies

One-dimensional Featu

Two-dimension Features

The Concept of a Statement

- We call the set of objects of study the **population** Ω .
- A statement A(x) is an expression, depending on properties of the elements $x \in \Omega$.
- For each $x \in \Omega$, A(x) must be either **true** or **false**.

Example

Let A(x) be the statement "x is female". Then A(1) is true and A(2) is false.

Example

Let B(x) be the statement "x is over 50 years old". Then B(2) is true and B(6) is false.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Basic Terminology

Features and Scale Types

Statements and Frequencies
One-dimensional Featur

Two-dimensional Features

Linking Statements

Let A and B be two statements.

Symbol	Name	Meaning
$A \cup B$	disjunction	$A ext{ or } B ext{ (or both)}$
$A \cap B$	conjunction	$A ext{ and } B ext{ (both } A ext{ and } B)$
A'	negation	not A (the opposite of A)
$A \subseteq B$	implication	${\sf from}\ A\ {\sf follows}\ B$

Statistical Methods of Data Analysis

W. Waltenbergei

Basic Terminology
Features and Scale Types
Statements and Frequencies

Two-dimension Features

Definition (Absolute Frequency)

Let A(x) be a statement about $x \in \Omega$. The absolute frequency h(A) of A is the number of elements of Ω for which A(x) is true.

Example

If A(x) is the statement "The person $x \in D$ has at least a bachelor's degree" . Then h(A) = 4.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Basic Terminology

Footures and Scale Types

Statements and Frequencies

One-dimensional Feature

Two-dimensional

Definition (Relative Frequency)

Let A(x) be a statement about $x \in \Omega$. The **relative frequency** f(A) = h(A)/n of A is the absolute frequency h(A) divided by the total number $n = |\Omega| \in \mathbb{N}$ of elements.

Example

If B(x) is the statement "The person $x \in D$ is older than thirty years". Then f(B) = 7/8.

Statistical Methods of Data Analysis

W. Waltenberger

Introducti

Basic Terminology Features and Scale Types

Statements and Frequencies

ne-dimensional Feature

Two-dimension

Special Statements

- $A = \emptyset$: A is never true, h(A) = f(A) = 0.
- $A = \Omega$: A is always true, h(A) = n, f(A) = 1.

Arithemetic Laws for Frequencies

Addition Law

$$A \cap B = \emptyset \implies \begin{cases} h(A \cup B) = h(A) + h(B) \\ f(A \cup B) = f(A) + f(B) \end{cases}$$

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Features and Scale Types
Statements and Frequencies

One-dimensional Featur

Two-dimension Features

Sieve Formula

$$h(A \cup B) = h(A) + h(B) - h(A \cap B)$$

Example

33% of a bank's customers have a home loan, 24% have a loan to finance consumer goods, 11% have both. What is the percentage of customers who have neither a housing loan nor a consumer goods loan?

Section 2: One-dimensional Features

Statistical Methods of Data Analysis

W. Waltenberger

One-dimensional Features

Graphical Representation Kernel Density Estimator Empirical Measures Boxplot and Empirical Distribution Function Examples

Two-dimensiona

- Introduction
- One-dimensional Features
 - Graphical Representation
 - Kernel Density Estimator
 - Empirical Measures
 - Boxplot and Empirical Distribution Function
 - Examples
- Two-dimensional Features

Subsection: Graphical Representation

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

One-dimensional Features

Graphical Representation
Kernel Density Estimator
Empirical Measures

Empirical Measures
Boxplot and Empirical
Distribution Function
Examples

- Introduction
- One-dimensional Features
 - Graphical Representation
 - Kernel Density Estimator
 - Empirical Measures
 - Boxplot and Empirical Distribution Function
 - Examples
- Two-dimensional Features

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

One-dimensional Featul
Graphical Representation
Kernel Density Estimator
Empirical Measures
Boxplot and Empirical
Distribution Function
Examples

Two-dimension

- A picture is worth more than a thousand words!
- Graphical representations of data sets are therefore extremely popular and much in use.
- Qualitative variable: frequency table, pie chart, bar chart.
- Quantitative variable: grouped frequency table, histogram, boxplot, empirical distribution function

Statistical Methods of Data Analysis

Graphical Representation

• Dataset 1 (500 normally distributed values):

PYTHON: matplotlib.pyplot.hist

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Graphical Representation

Empirical Measures
Boxplot and Empirical
Distribution Function

Two-dimensiona

• record 2 = record 1 + contamination (100 values):

PYTHON: matplotlib.pyplot.hist

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

One-dimensional Features

Graphical Representation

Empirical Measures
Boxplot and Empirical
Distribution Function
Examples

Two-dimensiona

• Dataset 3 (50 exam grades):

$Grade\ k$	h(k)	f(k)
1	5	0.10
2	8	0.16
3	22	0.44
4	5	0.10
5	10	0.20
	50	1.00

frequency table

Statistical Methods of Data Analysis

Graphical Representation

• Dataset 3 (50 exam grades):

pie chart

🥏 PYTHON: matplotlib.pyplot.pie

Statistical Methods of Data Analysis

Graphical Representation

• Dataset 3 (50 exam grades):

bar chart

PYTHON: matplotlib.pyplot.bar

Subsection: Kernel Density Estimator

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

One-dimensional Features

Kernel Density Estimator Empirical Measures

Boxplot and Empirical
Distribution Function
Examples

- Introduction
- One-dimensional Features
 - Graphical Representation
 - Kernel Density Estimator
 - Empirical Measures
 - Boxplot and Empirical Distribution Function
 - Examples
- Two-dimensional Features

Kernel Density Estimator

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

One-dimensional Feature Graphical Representation Kernel Density Estimator Empirical Measures Boxplot and Empirical Distribution Function Examples

Two-dimensiona

 The frequency distribution (histogram) can be smoothed with a kernel density estimator.

• The density of the observed feature is thereby approximated by a sum of kernels $K(\cdot)$:

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right)$$

- ullet h is the bandwidth of the kernel density estimator.
- A popular kernel is the Gaussian kernel:

$$K(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

Kernel Density Estimator

Statistical Methods of Data Analysis

Kernel Density Estimator

• record 2:

Smoothing of histogram by kernel density estimators.

🦺 PYTHON: scipy.stats.gaussian_kde

PYTHON: sklearn.neighbors.KernelDensity

Subsection: Empirical Measures

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Graphical Representation

Empirical Measures

Boxplot and Empirical Distribution Function Examples

Two-dimensiona

- Introduction
- One-dimensional Features
 - Graphical Representation
 - Kernel Density Estimator
 - Empirical Measures
 - Boxplot and Empirical Distribution Function
 - Examples
- Two-dimensional Features

Empirical Measures

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

One-dimensional Featur Graphical Representation Kernel Density Estimator Empirical Measures Boxplot and Empirical Distribution Function

- Data lists are often extensive enough that their content is to be summarized by a few empirical measures. Which measures are useful depends on the type of feature.
- Some measures start from the ordered data list $x_{(1)}, \ldots, x_{(n)}$.
- We distinguish between measures of location, dispersion, and skewness.
- A measure of location (or position) indicates the value around which the data is concentrated.
- A measure of dispersion indicates how large the fluctuations of the data are around their central value.
- A skewness measure indicates how symmetrical the data are about their central value.

Empirical Measures

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Graphical Representation
Kernel Density Estimator
Empirical Measures
Boxplot and Empirical

Two-dimension

Measures of Location

Definition (Positional Measure)

Let $x = (x_1, \dots, x_n)$ be a data list. The function $\ell(x)$ is called a position measure for x if the following holds true:

- $\bullet \ \ell(a\boldsymbol{x}+b) = a\ell(\boldsymbol{x}) + b$
- $\bullet \ \min(\boldsymbol{x}) \le \ell(\boldsymbol{x}) \le \max(\boldsymbol{x})$
- Meaningful position measures indicate the "typical" or "central" value of the data list.
- Depending on the scale, different position measures may be meaningful.

Empirical Measures

Statistical Methods of Data Analysis

Empirical Measures

The Mean Value

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Meaningful for ordinal, interval and ratio scales.
- The mean minimizes the following function:

$$\bar{x} = \underset{x}{\operatorname{argmin}} \sum_{i=1}^{n} (x_i - x)^2$$

PYTHON: xbar=numpy.mean(x)

Statistical Methods of Data Analysis

Empirical Measures

Median of Data

$$\tilde{x} = x_{(n/2)}$$

- The median divides the ordered data list into two equal parts.
- Useful for ordinal, interval and ratio scales.
- The median minimizes the following function:

$$\tilde{x} = \underset{x}{\operatorname{argmin}} \sum_{i=1}^{n} |x_i - x|$$

PYTHON: xmed=numpy.median(x)

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

One-dimensional Featur Graphical Representation Kernel Density Estimator

Empirical Measures

Boxplot and Empirica

Distribution Function

Examples

Two-dimensiona Features • The median is a special case of a more general term, the quantile.

lpha-quantile

$$Q_{\alpha} = x_{(\alpha n)}$$

- The α -quantile divides the ordered data list by the ratio $\alpha: 1-\alpha$.
- Meaningful for ordinal, interval, and ratio scales.
- PYTHON: qa=numpy.quantile(x,alpha)
 - Q_0 is the smallest value, Q_1 is the largest value in the data list. $Q_{0.5}$ is the median.
 - The five quartiles $Q_0, Q_{0.25}, Q_{0.5}, Q_{0.75}, Q_1$ form the five point summary of the data list.
- PYTHON: fps=numpy.quantile(x,[0,0.25,0.5,0.75,1])

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

One-dimensional Feature Graphical Representation Kernel Density Estimator Empirical Measures

Examples
Two-dimensional

Two-dimensiona Features

LMS (Least Median of Squares)

LMS value is the midpoint of the shortest interval containing $h=\lfloor n/2\rfloor+1$ data points

- The LMS value is very insensitive to erroneous or atypical data ("outliers").
- The LMS value minimizes the following function:

$$\tilde{x} = \underset{x}{\operatorname{argmin}} \operatorname{med}_{i=1}^{n} (x_i - x)^2$$

 A related measure of position is the "shorth", the mean of all data in the shortest interval containing h data points.

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

One-dimensional Featur
Graphical Representation
Kernel Density Estimator
Empirical Measures
Boxplot and Empirical

Distribution Function
Examples

Two-dimension: Features

Mode

Mode is the most common value of a data list

- Useful mainly for qualitative features.
- For quantitative features, the mode can be determined from the kernel density estimator.
- PYTHON: xmode=scipy.stats.mode(x)

HSM (Half-sample mode)

- Determine the shortest interval containing $h = \lfloor n/2 \rfloor + 1$ data points.
- Repeat the process on the data in that interval until there are two data points left.
- The HSM value is the average of these last two data points.

Statistical Methods of Data Analysis

W. Waltenberge

Introductio

Graphical Representation
Kernel Density Estimator
Empirical Measures
Boxplot and Empirical

Boxplot and Empirical Distribution Function Examples

Two-dimension Features

Dispersion Measures

Definition (Measure of Dispersion)

Let $x = (x_1, \dots, x_n)$ be a data list. A function $\sigma(x)$ is called a measure of dispersion for x if the following holds:

- $\sigma(\boldsymbol{x}) \geq 0$
- Meaningful measures of dispersion quantify the deviation of the data from their central value.
- Measures of dispersion are invariant under a shift of the data.
- Different measures of dispersion are useful depending on the scale and use case.

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Graphical Representation

Empirical Measures

Boxplot and Empirical

Boxplot and Empirical Distribution Function Examples

Two-dimensiona Features

The Standard Deviation

$$s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

- Useful for interval and ratio scales.
- The standard deviation has the same dimension as the data.
- The square of the standard deviation is called variance of the data.
- PYTHON: xstd=numpy.std(x)
- PYTHON: xvar=numpy.var(x)

Statistical Methods of Data Analysis

W. Waltenberge

Introductio

Graphical Representation
Kernel Density Estimator
Empirical Measures
Boxplot and Empirical
Distribution Function

Two-dimensiona Features

Interquartile Distance

$$IQR = Q_{0.75} - Q_{0.25}$$

- The interquartile range is the length of the interval containing the central 50% of the data.
- Useful for ordinal, interval and ratio scales.

PYTHON: xiqr=scipy.stats.iqr(x)

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

One-dimensional Featur Graphical Representation

Empirical Measures

Boxplot and Empirical

Boxplot and Empirical Distribution Function Examples

Two-dimensiona

LoS (Length of the Shorth)

LoS is the length of the shortest interval containing $h = \lfloor n/2 \rfloor + 1$ data points

Meaningful for ordinal, interval and ratio scales.

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

One-dimensional Featur
Graphical Representation
Kernel Density Estimator
Empirical Measures
Boxplot and Empirical
Distribution Function

Two-dimension Features

Skewness Measures

Definition (Measure of Skewness)

Let $x = (x_1, \dots, x_n)$ be a data list. The function $\mathfrak{s}(x)$ is called a skewness measure for x if the following holds:

- $\mathfrak{s}(a\boldsymbol{x}+b) = \operatorname{sgn}(a)\,\mathfrak{s}(\boldsymbol{x})$
- $\mathfrak{s}(x) = 0$ if $\exists b : x b = b x$
- Sensible skewness measures quantify the asymmetry of the data.
- Skewness measures are invariant under translation of the data.
- Different skewness measures are useful depending on the scale.

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

One-dimensional Featur Graphical Representation Kernel Density Estimator

Empirical Measures
Boxplot and Empirical
Distribution Function
Examples

Two-dimensiona Features

The Skewness

$$\gamma = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3}{s^3}$$

- The skewness γ is equal to 0 for symmetric data.
- If $\gamma < 0$, the data is said to be **skewed towards the left**.
- If $\gamma > 0$, the data is said to be **right skewed**.
- Useful for interval and ratio scales.
- PYTHON: xgamma=scipy.stats.skew(x)

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

One-dimensional Feature

Graphical Representation

Empirical Measures Boxplot and Empirical Distribution Function

Distribution Function

Examples

Two-dimensiona Features

Skewness Coefficient

$$SK = \frac{R - L}{R + L}$$

where
$$R = Q_{0.75} - Q_{0.5}, L = Q_{0.5} - Q_{0.25}$$
.

- SK is between -1 (R=0) and +1 (L=0).
- The skewness coefficient is equal to 0 for symmetric data.
- If SK < 0, the data is called **left skewed**.
- If SK > 0, the data is called **right skewed**.
- Useful for ordinal, interval and ratio scales.

Subsection: Boxplot and Empirical Distribution Function

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

One-dimensional Feature
Graphical Representation
Kernel Density Estimator
Empirical Measures

Boxplot and Empirical Distribution Function Examples

Two-dimensiona

- Introduction
- One-dimensional Features
 - Graphical Representation
 - Kernel Density Estimator
 - Empirical Measures
 - Boxplot and Empirical Distribution Function
 - Examples
- Two-dimensional Features

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

One-dimensional Features
Graphical Representation
Kernel Density Estimator
Empirical Measures
Boxplot and Empirical
Distribution Function

Two-dimensiona

 The Boxplot is the graphical representation of the five point summary.

• Comparison of data set 1 and data set 2:

PYTHON: matplotlib.pyplot.boxplot(x)

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

One-dimensional Feat Graphical Representation Kernel Density Estimator Empirical Measures Boxplot and Empirical Distribution Function Examples

Two-dimensional Features

- For ordinal scales "onwards" it is useful to order the data.
- The frequency table can be supplemented by *cumulative* frequencies.
- Data set 3 (50 exam grades):

$Grade\ k$	h(k)	H(k)	f(k)	F(k)
1	5	5	0.10	0.10
2	8	13	0.16	0.26
3	22	35	0.44	0.70
4	5	40	0.10	0.80
5	10	50	0.20	1.00

frequency table with cumulative frequencies

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

One-dimensional Featu Graphical Representation Kernel Density Estimator Empirical Measures Boxplot and Empirical Distribution Function Examples

Two-dimension Features The graphical representation of the cumulative frequencies is called the empirical distribution function of the data list.

Definition (Empirical Distribution Function)

The empirical distribution function $F_n(x)$ of the data list $x=(x_1,\ldots,x_n)$ is the proportion of the data that are less than or equal to x:

$$F_n(x) = f(\vec{x} \le x).$$

• If $x_i \leq x < x_{i+1}$, then:

$$F_n(x) = f(x_1) + \dots + f(x_i).$$

• F_n is a step function. The step points are the data points, the step heights are the relative frequencies of the data points.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

0 " 15 "

Graphical Representation Kernel Density Estimator

Empirical Measures

Boxplot and Empirical Distribution Function Examples

Two-dimensional

empirical distribution function

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Graphical Representation Kernel Density Estimator Empirical Measures

Boxplot and Empirical Distribution Function Examples

Two-dimensional

empirical distribution function

Statistical Methods of Data Analysis

W Waltenberger

Introductio

One-dimensional Features
Graphical Representation
Kernel Density Estimator
Empirical Measures

Boxplot and Empirical Distribution Function Examples

Two-dimensiona Features

- Quantiles can be easily read off the empirical distribution function.
- Median of data set 2:

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

One-dimensional Features Graphical Representation Kernel Density Estimator Empirical Measures

Boxplot and Empirical Distribution Function Examples

Two-dimensiona Features

- Quantiles can be easily read off the empirical distribution function.
- Median of data set 2:

empirical distribution function

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

One-dimensional Features
Graphical Representation
Kernel Density Estimator

Boxplot and Empirical Distribution Function Examples

Two-dimensiona

- Lower tail and upper tail frequencies can also be read off easily.
- What proportion of the data is less than or equal to 6?

empirical distribution function

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

One-dimensional Features
Graphical Representation
Kernel Density Estimator
Empirical Measures
Boxplot and Empirical

Two-dimensional

- Lower tail and upper tail frequencies can also be read off easily.
- What proportion of the data is less than or equal to 6?

empirical distribution function

Subsection: Examples

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

One-dimensional Featur
Graphical Representation
Kernel Density Estimator
Empirical Measures
Boxplot and Empirical
Distribution Function
Examples

Two-dimensiona Features

- Introduction
- One-dimensional Features
 - Graphical Representation
 - Kernel Density Estimator
 - Empirical Measures
 - Boxplot and Empirical Distribution Function
 - Examples
- Two-dimensional Features

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

One-dimensional Feature
Graphical Representation
Kernel Density Estimator
Empirical Measures
Boxplot and Empirical
Distribution Function
Examples

dataset 1: Symmetric, 500 values

Measures of location:

Mean: 4.9532

Median: 4.9518

LMS: 4.8080

Shorth: 4.8002 HSM: 5.0830

Measures of dispersion:

Standard deviation: 1.0255

Interquartile range: 1.4168

Length of the Shorth: 1.3520

• Measures of Skewness:

Skewness coefficient:

Skewness:

0.0375

0.0258

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

O-- di----i---- F-----

Graphical Representation
Kernel Density Estimator
Empirical Measures
Boxplot and Empirical
Distribution Function
Examples

Two-dimensiona Features

dataset 1: mean, median, LMS, Shorth, HSM.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

One-dimensional Feature
Graphical Representation
Kernel Density Estimator
Empirical Measures
Boxplot and Empirical
Distribution Function
Examples

Two-dimensiona Features • dataset 2: dataset 1 + contamination (100 values)

Measures of location:

Measures of skewness:

Mean: 5.4343 Median: 5.0777 Skewness:

LMS: 5.1100

Skewness coefficient: 0.1046

Shorth: 5.0740 HSM: 4.9985

• Measures of dispersion:

Standard deviation: 1.8959

Interquartile range: 1.6152

Length of the Shorth: 1.5918

1.7696

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

O-- dim---i---- F---

Graphical Representation
Kernel Density Estimator
Empirical Measures
Boxplot and Empirical
Distribution Function
Examples

Two-dimensiona

dataset 2: mean, median, LMS, Shorth, HSM.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

One-dimensional Feature
Graphical Representation
Kernel Density Estimator
Empirical Measures
Boxplot and Empirical
Distribution Function
Examples

Two-dimension

• record 3: 50 exam grades

• Measures of position:

Mean: 3.14

Median: 3.0

Mode: 3.0

Measures of dispersion:

Standard deviation: 1.20

Interquartile range: 1.75

Measures of skewness:

Skewness: 0.0765

Skewness coefficient: 0.14

Statistical Methods of Data Analysis

W Waltenberger

Introduction

Graphical Representation Kernel Density Estimator Empirical Measures Boxplot and Empirical Distribution Function

Examples

Two-dimensiona

dataset 3: mean, median, mode.

Section 3: Two-dimensional Features

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

One-dimensional Features

Two-dimensional Features

Quantitative Feature

Correlations

- Introduction
- One-dimensional Features
- 3 Two-dimensional Features
- Qualitative Features
 - Quantitative Features
 - Correlations

Two-dimensional Features

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

One-dimensional Features

Two-dimensional Features

Qualitative Features
Quantitative Feature
Correlations

- Often two or more features of an object are observed simultaneously.
- Examples:
 - height and weight of a person
 - age and income of a person
 - education and gender of a person
- The correlation between the two features is additional information.

Subsection: Qualitative Features

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

One-dimensional Features

Two-dimension Features

Qualitative Features
Quantitative Feature
Correlations

- Introduction
- One-dimensional Features
- Two-dimensional Features
- Qualitative Features
 - Quantitative Features
 - Correlations

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

One-dimensional Features

Two-dimensiona Features Qualitative Feature

Qualitative Features
Quantitative Feature
Correlations

- We first consider two binary features A and B.
- The frequency of the occurrence of A and B can be expressed in an **four-field table** or **contingency table**.
- example:

A="The person is female" B="The person is a smoker"

• Four-field table for 1000 people:

	B	B'	
\overline{A}	228	372	600
A'	136	264	400
	364	636	1000

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

One-dimensional Features

Two-dimension Features

Qualitative Features
Quantitative Feature
Correlations

• General structure of a four-field table:

	B	B'	
A	$h(A \cap B)$	$h(A \cap B')$ $h(A' \cap B')$	h(A)
A'	$h(A'\cap B)$	$h(A'\cap B')$	h(A')
	h(B)	h(B')	n

• Row and column sums are the frequencies of the expressions A,A^\prime and $B,B^\prime.$

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

One-dimensional Features

Two-dimension

Qualitative Features
Quantitative Features
Correlations

ullet The four-field table can be converted to **relative frequencies** using division by n:

	B	B'	
\overline{A}	$f(A \cap B)$	$f(A \cap B')$ $f(A' \cap B')$	f(A)
A'	$f(A' \cap B)$	$f(A'\cap B')$	f(A')
	f(B)	f(B')	1

• row and column sums are the relative frequencies of the expressions A,A' and B,B'.

Statistical Methods of Data Analysis

W. Waltenberge

Introducti

One-dimensional Features

Two-dimension Features

Qualitative Features
Quantitative Feature
Correlations

 The correlation of the two features can be measured by four-field correlation:

Four-field Correlation

$$\rho(A,B) = \frac{f(A \cap B) - f(A)f(B)}{\sqrt{f(A)f(A')f(B)f(B')}}$$

- It is always true: $-1 \le \rho(A, B) \le 1$
- If $\rho(A,B) > 0$, A and B are called **positively coupled**.
- If $\rho(A, B) < 0$, A and B are called **negatively coupled**.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

One-dimensional Features

Features

Qualitative Features

Quantitative Feature Quantitative Feature Correlations

- The sign of $\rho(A,B)$ indicates the **direction** of the coupling.
- \bullet The magnitude of $\rho(A,B)$ indicates the **strength** of the coupling.
- Specifically:

$$A = B \implies \rho(A, B) = 1$$

 $A = B' \implies \rho(A, B) = -1$

- An existing coupling is no proof of a causal relationship!
- The coupling can also result from a common cause for both features.

Subsection: Quantitative Features

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Two-dimensiona Features

Quantitative Features
Correlations

- Introduction
- One-dimensional Features
- 3 Two-dimensional Features
 - Qualitative Features
 - Quantitative Features
 - Correlations

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

One-dimensional Features

Features

Qualitative Features

Quantitative Features

- Preferred representation of two-dimensional features: Scatter Plot.
- Each point corresponds to one object.
- The observed features determine the position of the point in the *x-y*-plane.
- Higher dimensional features can be represented by histograms and scatter plots. Of course, some of the information is lost in the process.

Statistical Methods of Data Analysis

Quantitative Features

• dataset 4: height and weight of 100 individuals

PYTHON: matplotlib.pyplot.scatter(x,y)

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

One-dimensional Features

Two-dimensiona

Qualitative Features

Quantitative Features

• dataset 5: height, weight and age of 100 people.

Feature x_1 : height (in cm)

Feature x_2 : weight (in kg)

Feature x_3 : age (in years)

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

O-- di----- F---

Two-dimensiona

Qualitative Features

Quantitative Features

Correlations

Subsection: Correlations

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

One-dimensional Features

Features

Qualitative Features

Quantitative Features

Correlations

- Introduction
- One-dimensional Features
- 3 Two-dimensional Features
- Qualitative Features
 - Quantitative Features
 - Correlations

Statistical Methods of Data Analysis

W. Waltenberge

Introductio

One-dimensional Features

Two-dimensiona Features

Oualitative Feature

Qualitative Features
Quantitative Feature
Correlations

Properties of scatter plot

- \bullet (\bar{x}, \bar{y}) is the center of the point cloud.
- The projection of the scatter plot onto the x-axis results in the scatter plot of the data list x_1, \ldots, x_n .
- The projection of the point cloud onto the y-axis results in the scatter plot of the data list y_1, \ldots, y_n .
- From the scatter plot of dataset 4, it can be seen that **tendentially** larger height is associated with larger weight.
- There is obviously a relationship between the two features \boldsymbol{x} and \boldsymbol{y} , which intuitively is very obvious.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

One-dimensional Features

Features

Qualitative Features

Quantitative Features

Correlations

- We need a **measure** for this notion of correlation.
- A useful measure is the **empirical correlation coefficient**.
- Let $(x_1, y_1), \ldots, (x_n, y_n)$ be a bivariate sample.
- We compute the **standard scores**:

$$z_{x,i} = \frac{x_i - \bar{x}}{s_x}, \quad z_{y,i} = \frac{y_i - \bar{y}}{s_y}$$

We recall that

$$s_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$
 and $s_y^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^2$

 The empirical correlation coefficient is the mean of the products of the standard scores.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

One-dimensional Features

Two-dimensiona

Qualitative Features

Quantitative Features

Correlations

Definition (Empirical Correlation Coefficient)

The **empirical correlation coefficient** r_{xy} is defined as

$$r_{xy} = \frac{1}{n} \sum_{i=1}^{n} z_{x,i} z_{y,i} = \frac{1}{n} (z_{x,1} z_{y,1} + \dots + z_{x,n} z_{y,n})$$

• It is always true that:

$$-1 \le r_{xy} \le 1$$

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Two-dimensional Features Qualitative Features

Correlations

• r_{xy} is positive if many products are positive, i.e. many pairs of of standard scores have the same sign.

- This is the case when the pairs of standard scores are predominantly in the 1st or 3rd quadrant.
- x and y are then called **positively correlated**.
- r_{xy} is negative if many products are negative, i.e. many pairs of standard scores have different sign.
- This is the case when the pairs of standard scores are predominantly in the 2nd or 4th quadrant.
- x and y are then called **negatively correlated**.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Correlations

One-dimensional Features

Two-dimensional Features Qualitative Features Quantitative Features • Scatter plot of standard scores from dataset 4:

- ullet Obviously x and y are positively correlated, since most of the points are in the 1st and 3rd quadrants.
- $r_{xy} = 0.5562$

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

One-dimensional Features

Two-dimensional Features

Qualitative Features
Quantitative Feature
Correlations

- A positive correlation does not necessarily imply a causal relationship.
- The positive correlation can also be caused by a common cause or a parallel trend.

Example

The number of children born correlates with the number of storks in Austria in the last 30 years. Why?

Example

We see a positive correlation between the price of butter and the price of bread in the last 50 years. Why?

Example

Over the last few hundred years, we observe an anti-correlation between the number of pirates on the world's oceans and global ${\rm CO}_2$ emissions. Why?

Statistical Methods of Data Analysis

W. Waltenberger

O-- di----i---! F--4....

Two-dimensior Features

Qualitative Features
Quantitative Featur
Correlations

standard scores with different correlation coefficients.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

One-dimensional Features

Features

Qualitative Features

Quantitative Features

Correlations

- The correlation coefficient measures the **correlation** of the data.
- The correlation indicates an "affinity" of the point cloud towards a rising or falling **line**, the **major axis**.
- Thus, the correlation indicates the extent of the linear coupling.
- If there is a strong but **nonlinear** relationship between x and y, the correlation may still be very small.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

One-dimensional Features

Two-dimensional

Qualitative Features
Quantitative Features
Correlations

Nonlinear relation between \boldsymbol{x} and \boldsymbol{y}

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

One-dimensional Features

Two-dimensiona Features

Qualitative Features

Quantitative Feature

Correlations

 The correlation coefficient can also be calculated directly from the sample:

$$r_{xy} = \frac{s_{xy}}{s_x s_y}$$

Definition (Covariance)

The quantity

$$s_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

is called the covariance of the data

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Probabilities

Conditional Probability

Part II

Probabilities

Overview Part 2

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

_

1 TODADITICE

- 4 Introduction
- 5 Events
- 6 Probabilities
- Conditional Probability

Section 4: Introduction

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Probabilities

- 4 Introduction
- Events
- 6 Probabilities
- Conditional Probability

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

B 1 1200

Probabilities

- The specific outcome of an experiment generally cannot be accurately predicted; however, the possible outcomes are known.
- Several reasons:
 - The observed objects are a random selection (sample) from a larger population.
 - The observed process is fundamentally indeterministic (quantum mechanics).
 - The observed process is practically indeterministic: lack of knowledge of the initial state (roulette), chaotic system (hydrodynamics, psychology).
- In addition, measurement errors can add stochasticity (randomness) to the result.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Probabilitie

- The goal of probability theory is to assign probabilities to sets of outcomes, called events.
- Two interpretations of probabilities exist.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Probabilitie

Conditional Probability

Frequentist Interpretation

- The probability of an event is its frequency, if the experiment repeat often enough, under the same conditions.
- The statistics based on this interpretation is called 'frequentist'.

Example

The probability of the output '1' when rolling a dice is the limit of the frequency for a large number of rolls.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Probabilities 4

Conditional Probability

Subjective Interpretation

- The probability of an output is a statement about the belief of the person giving the probability.
- The statistics based on this interpretation is called 'Bayesian'.

Example

'The probability that it will rain tomorrow is 40 percent' is a statement about the belief of the person making this statement.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Events

Probabilities

- In practice, the transition between the two approaches is often fluid.
- In many cases the results are identical, only the interpretation is different.
- The Bayesian approach is more comprehensive and flexible.
- The frequentist approach is often simpler, but more limited. Its interpretation is usually clearer.

Section 5: Events

Statistical Methods of Data Analysis

W. Waltenberger

Events

The Sample Space
The Event Algebra
Repeating Experiment

Probabilities 4 1 2 1

- 4 Introduction
- Events
 - The Sample Space
 - The Event Algebra
 - Repeating Experiments
- 6 Probabilities
- Conditional Probability

Subsection: The Sample Space

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

....

The Sample Space
The Event Algebra
Repeating Experiments

Probabilities

- 4 Introduction
- Events
 - The Sample Space
 - The Event Algebra
 - Repeating Experiments
- 6 Probabilities
- Conditional Probability

The Sample Space

Statistical Methods of Data Analysis

W. Waltenberge

muodu

The Sample Space
The Event Algebra
Repeating Experiment

Probabilities

• The notion of a (random) **event** is fundamental to statistics.

- Concretely: the outcome of an experiment, the result of which cannot be predicted exactly.
- ullet The set Ω of all possible outcomes is called **sample space**.
- The sample space Ω can be discrete (finite or countably infinite) or continuous (uncountably infinite).

The Sample Space

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

The Sample Space
The Event Algebra

Probabilities

Conditional Probability

Example

- In roulette, there are 37 possible outcomes. The sample space is discrete and finite.
- If a radioactive source is monitored, the number of decays per second is in principle unbounded. The sample space is discrete and countably infinite.
- The waiting time between two decays can take any value. The sample space is continuous and uncountably infinite.

Subsection: The Event Algebra

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

The Sample Space
The Event Algebra
Repeating Experimen

Probabilities

- 4 Introduction
- Events
 - The Sample Space
 - The Event Algebra
 - Repeating Experiments
- 6 Probabilities
- Conditional Probability

Statistical Methods of Data Analysis

W. Waltenberge

Introducti

Event

The Sample Space
The Event Algebra

Probabilitie

Conditional Probabilit

Definition (Event)

An **event** E is a subset of the sample space Ω . An event E **occurs** if E contains the outcome $\omega \in \Omega$ of the experiment.

Example

The roll of a dice has the sample space $\Omega=\{1,2,3,4,5,6\}$. The event E (even number) is the subset

$$E = \{2, 4, 6\}$$

E occurs when an even number is thrown.

Statistical Methods of Data Analysis

W. Waltenberge

Introducti

Events

The Sample Space
The Event Algebra
Repeating Experime

Probabilities

Conditional Probability

Definition (event algebra)

The set of all events of the sample space Ω is called the event algebra $\Sigma(\Omega)$.

- In the finite or countably infinite case, **any** subset can be considered as an event. The event algebra is called **discrete**.
- In the uncountably infinite case, certain pathological (non-measurable) subsets must be excluded. The event algebra is called **continuous** or **real-valued**.
- Like statements, two events $A \in \Sigma$ and $B \in \Sigma$ can be logically connected.

Statistical Methods of Data Analysis

N. Waltenberger

Introduct

- .

The Sample Space
The Event Algebra

Probabilities

Conditional Probabilit

Linking Events

Disjunction

Symbol	Name	Meaning
$A \cup B$	disjunction	$A ext{ or } B ext{ (or both)}$

conjunction

Symbol	Name	Meaning
$A \cap B$	conjunction	A and B (both A and B)

Negation

Symbol	Name	Meaning
A'	negation	not A (the opposite of A)

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

The Sample Space
The Event Algebra
Repeating Experiment

- With these operators, Σ is a **Boolean algebra**: distributive complementary lattice with zero- and one-elements.
- The null element $0 = \emptyset$ is the **impossible event**.
- The one element $1 = \Omega$ is the sure event.
- An event consisting of only one possible result is called an elementary event.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

E....

The Sample Space
The Event Algebra
Repeating Experimen

Probabilities

Conditional Darkskiller

- \bullet If Ω is (countably or uncountably) infinite, one requires that also countably many unions and intersections of events can be formed
- The event algebra is then a so-called σ -algebra.
- If in the continuous case $\Omega = \mathbb{R}$, then the event algebra $\Sigma(\Omega)$ is the smallest σ -algebra containing all intervals.

Subsection: Repeating Experiments

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Events

The Event Algebra

Repeating Experiments

Probabilitie

- 4 Introduction
- Events
 - The Sample Space
 - The Event Algebra
 - Repeating Experiments
- 6 Probabilities
- Conditional Probability

Repeating Experiments

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

The Sample Space

Repeating Experiments

Probabilitie

Conditional Probability

• The sample space of a dice roll is

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

Consequently, the event algebra $\Sigma(\Omega)$ has six elementary events:

$$e_1 = \{1\}, e_2 = \{2\}, e_3 = \{3\}, e_4 = \{4\}, e_5 = \{5\}, e_6 = \{6\}$$

and a total of $2^6 = 64$ events (subsets of Ω).

• The sample space of a double roll is the Cartesian product $\Omega \times \Omega$:

$$\Omega \times \Omega = \{(i, j) | i, j = 1, \dots, 6\}$$

The ordered pair (i,j) means i on the first throw, j on the second throw. Consequently, the event algebra $\Sigma(\Omega \times \Omega)$ has 36 elementary events e_{ij} :

$$e_{11} = \{(1,1)\}, \dots, e_{36} = \{(6,6)\}$$

Repeating Experiments

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

The Sample Spa

The Event Algebra

Repeating Experiments

Probabiliti:

Conditional Probability

• Similarly, in the case of rolling n times, the sample space is n times the Cartesian product $\Omega \times \Omega \times \ldots \times \Omega$.

Example (event algebra of double throw)

Examples of events in the event algebra of the double roll are:

6 on the first throw: $\{(6,1),(6,2),\ldots,(6,6)\}$

6 on the second throw: $\{(1,6),(2,6),\ldots,(6,6)\}$

Both throws equal: $\{(1,1),(2,2),\dots,(6,6)\}$

Sum of throws equal to 7: $\{(1,6), (2,5), \dots, (6,1)\}$

Repeating Experiments

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Events

The Event Algebra
Repeating Experiments

Probabilitie

Conditional Probability

Example (Repeated Bernoulli Experiment)

An experiment that has only two possible outcomes is called a **Bernoulli experiment** or alternative experiment. There are two outcomes, 1 ("success") and 0 ("failure").

An alternative experiment that is executed n times is described by a sample space with 2^n possible outcomes, namely all sequences of the form (i_1, \ldots, i_n) with $i_i = 0$ or 1.

Often, however, only the **frequency** of the occurrence of 1 (or 0) is of interest. This situation is more comprehensively described by only n+1 outcomes: 1 occurring $0,1,2,\ldots$ or n times. If the event E_1 denotes a single occurrence of 1, then E_1 is the union of multiple elementary events of the original event algebra:

$$E_1 = \{(e_1, e_0, \dots, e_0), (e_0, e_1, e_0, \dots, e_0), \dots, (e_0, \dots, e_0, e_1)\}$$

An example is an n-fold coin flip.

Section 6: Probabilities

Statistical Methods of Data Analysis

W. Waltenberge

Introducti

Events

Probabilities

Probability Measures

Law of Large Numbers

Conditional Probabil

- 4 Introduction
- 5 Events
- 6 Probabilities
 - Probability Measures
 - Law of Large Numbers
- Conditional Probability

Subsection: Probability Measures

Statistical Methods of Data Analysis

N. Waltenberger

Industrial

Events

Probabilities
Probability Measures

Law of Large Numbers

Conditional Prob

- 4 Introduction
- Events
- 6 Probabilities
 - Probability Measures
 - Law of Large Numbers
- Conditional Probability

Statistical Methods of Data Analysis

W. Waltenbergei

Introducti

Events

Probabilities

Probability Measures

onditional Probability

Definition (probabilitymeasure)

Let Σ be an event algebra, A and B events in Σ , and P a mapping from Σ into $\mathbb{R}.$ P is called a **probability measure** if the following holds:

1. positivity
$$P(A) \geq 0, \ \forall A \in \Sigma$$

2. additivity:
$$A \cap B = \mathbf{0} \implies$$

$$P(A \cup B) = P(A) + P(B)$$

3. normalization
$$P(\mathbf{1}) = 1$$

Statistical Methods of Data Analysis

W. Waltenbergei

Introducti

Events

Probabilities

Probability Measures

Conditional Probability

Definition (probability space)

If Σ is a σ -algebra, which must be assumed for infinite event spaces, one requires for countable J:

4.
$$\sigma$$
-additivity: $A_i \in \sigma, \ i \in J; \ A_i \cap A_j = \mathbf{0}, \ i \neq j \Longrightarrow P(\bigcup_{i \in J} A_i) = \sum_{i \in J} P(A_i)$

 Σ is then called normalized, and (Σ, P) a **probability space**. P is also called a **probability distribution**.

Statistical Methods of Data Analysis

Probability Measures

Calculating laws for probability

If (Σ, P) is a probability space, then:

- P(0) = 0
- P(1) = 1
- \bullet 0 < P(A) < 1, $\forall A \in \Sigma$
- $P(A') = 1 P(A), \forall A \in \Sigma$
- $A \subseteq B \implies P(A) \le P(B), \ \forall A, B \in \Sigma$
- $P(A \cup B) = P(A) + P(B) P(A \cap B), \forall A, B \in \Sigma$
- If Σ has at most countably many elementary events $\{e_i \mid i \in I\}$, then $\sum_{i \in I} P(e_i) = 1$.

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Events

Probabilities

Probability Measures

Law of Large Numbers

- In a discrete event algebra, the probability of an event is equal to the sum of the probabilities of the elementary events whose union it is.
- Therefore, in this case, a probability measure is **uniquely determined** by the values it assigns to the elementary events.
- On the other hand, any positive function defined on the set of elementary events that satisfies the normalization condition can be uniquely continued to a probability measure.
- \bullet Thus, one can define infinitely many distributions on a discrete event algebra Σ .

Statistical Methods of Data Analysis

W. Waltenberge

Introducti

Events

Probability Measures
Law of Large Numbers

- In a continuous event algebra, the probability of each elementary event is 0.
- Therefore, the probability of an event can no longer be determined by summation.
- Instead, a density function f(x) is given which assigns a nonnegative value f(x) to each elementary event x.
- The probability of an event A is determined by **integration** over the density:

$$P(A) = \int_A f(x) \, \mathrm{d}x$$

• The density function is **normalized** to 1:

$$\int_{\mathbb{R}} f(x) \, \mathrm{d}x = 1$$

Subsection: Law of Large Numbers

Statistical Methods of Data Analysis

W. Waltenberger

Events

Probabilities
Probability Measures
Law of Large Numbers

Conditional Probabili

- 4 Introduction
- Events
- 6 Probabilities
 - Probability Measures
 - Law of Large Numbers
- Conditional Probability

Law of Large Numbers

Statistical Methods of Data Analysis

Law of Large Numbers

• We consider a simple random experiment: coin toss.

- Two possible outcomes: Heads (H), Tails (T).
- Assumption: symmetric coin, H and T equally probable
- Experiment is repeated *n* times

n	$h_n(H)$	$f_n(H)$	$ f_n(H) - 0.5 $
10	6	0.6	0.1
100	51	0.51	0.01
500	252	0.504	0.004
1000	488	0.488	0.012
5000	2533	0.5066	0.0066

frequency table

Law of Large Numbers

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Introduction

Probabilities

Probability Measures

Law of Large Numbers

onditional Probabilit

evolution of the relative frequency of \boldsymbol{H}

Law of Large Numbers

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Event

Probabilities
Probability Measures
Law of Large Numbers

Conditional Probability

- The relative frequency of the event K seems to converge towards the limit value 0.5.
- This limit is called the **probability** P(K).

Empirical Law of Large Numbers

$$\lim_{n \to \infty} f_n(K) = P(K)$$

 The mathematical problem of this definition lies in the fact that the existence of the limit cannot be seen a priori and in fact need not exist in the classical analytic sense, but only in a broader, statistical sense.

Section 7: Conditional Probability

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Probabilities

Conditional Probability

Coupling and Conditional Probability Bayes' Theorem

Independenc

- 4 Introduction
- Events
- 6 Probabilities
- Conditional Probability
 - Coupling and Conditional Probability
 - Bayes' Theorem
 - Independence

Subsection: Coupling and Conditional Probability

Statistical Methods of Data Analysis

Coupling and Conditional

Probability

- Conditional Probability
 - Coupling and Conditional Probability
 - Bayes' Theorem
 - Independence

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Probabilitie

Conditional Probability
Coupling and Conditional

Coupling and Conditional Probability Bayes' Theorem Independence

- ullet We now consider two events A and B that can occur in an experiment.
- Question: Is there a relationship between the events?
- Such a connection is called a **coupling**.
- \bullet **Positive Coupling**: The more often A occurs, the more often B tends to occur.
- ullet Negative Coupling: The more often A occurs, the less often B also tends to occur.
- We can quantify the meanings of 'often' and 'rarely' with the frequency table.

Statistical Methods of Data Analysis

W. Waltenberger

Introducti

riobabilities

Coupling and Conditional Probability Bayes' Theorem • The frequency of the occurrence of A and B can be summarized in a **four-field table** or **contingency table**.

• Example:

A='The person under study is female' B='The person under study has diabetes'

• Four-field table for 1000 persons:

	B	B'	
\overline{A}	19	526	545
A'	26	429	455
	45	955	1000

Statistical Methods of Data Analysis

Coupling and Conditional Probability

• Ordinary relative frequencies are relative to the size n of the entire data set:

$$f(A \cap B) = \frac{h(A \cap B)}{n}$$

Conditional relative frequencies are relative to the occurrence of the other feature:

$$f(A|B) = \frac{h(A \cap B)}{h(B)} = \frac{f(A \cap B)}{f(B)}$$

• f(A|B) is called the conditional relative frequency of A given

Statistical Methods of Data Analysis

W. Waltenberge

Introduc

Drobabilitia

Conditional Probability

Coupling and Conditional Probability
Bayes' Theorem The four-field table results in the following conditional relative frequencies:

$$f(A|B) = \frac{19}{45} = 0.422, \quad f(A|B') = \frac{526}{955} = 0.551$$

- Thus, it can be assumed that the two features are coupled.
- f(A|B) > f(A) indicates a positive coupling, f(A|B) < f(A) indicates a negative coupling.

• If the data originate from a random experiment, then

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Probabilities

Conditional Probability
Coupling and Conditional
Probability
Bayes' Theorem

combinations of events can also be assigned probabilities.

• Probability table:

	B	B'	
\overline{A}	$P(A \cap B)$	$P(A \cap B')$	P(A)
A'	$P(A' \cap B)$	$P(A \cap B')$ $P(A' \cap B')$	P(A')
	P(B)	P(B')	1

 By the empirical law of large numbers, these probabilities are the limits of the respective relative frequencies.

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Coupling and Conditional Probability

Bayes' Theorem

• The conditional relative frequencies converge towards a limit with $n \to \infty$:

$$f_n(A|B) = \frac{f_n(A \cap B)}{f_n(B)} \rightarrow P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Definition (Conditional probability)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

is called the conditional probability of A under condition B, provided that $P(B) \neq 0$.

Statistical Methods of Data Analysis

W. Waltenbergei

Introduct

LVCIICS

Tiobabilities

Coupling and Conditional Probability

Bayes' Theorem

Example (The symmetric cube)

If the cube is completely symmetric, the elementary events $e_i = \{i\}$ are assigned equal probabilities:

$$P(e_i) = \frac{1}{6}, \ 1 \le i \le 6$$

We define the following events:

$$O = \{1, 3, 5\}, E = \{2, 4, 6\}$$

Then for example

$$P(e_1|O) = \frac{P(e_1 \cap O)}{P(O)} = \frac{P(e_1)}{P(O)} = \frac{1}{3}$$

$$P(e_1|E) = \frac{P(e_1 \cap E)}{P(E)} = \frac{P(\mathbf{0})}{P(E)} = 0$$

Statistical Methods of Data Analysis

W. Waltenberge

Introductio

Events

Probabilities

Coupling and Conditional
Probability

Bayes' Theorem

Example (Continuation)

$$P(O|e_1) = \frac{P(e_1 \cap O)}{P(e_1)} = \frac{P(e_1)}{P(e_1)} = 1$$

$$P(e_1 \cup e_3 | O) = \frac{P((e_1 \cup e_3) \cap O)}{P(O)} = \frac{P(e_1 \cup e_3)}{P(O)} = \frac{2}{3}$$

$$P(e_1 \cup e_2 | O) = \frac{P((e_1 \cup e_2) \cap O)}{P(O)} = \frac{P(e_1)}{P(O)} = \frac{1}{3}$$

Statistical Methods of Data Analysis

Coupling and Conditional

Probability

The

Product Formula

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

follows immediately from the definition of conditional probabilities; as well as the formula for

Inverse Probability

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Both formulas are also valid for relative frequencies!

Subsection: Bayes' Theorem

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Events

Probabilities

Conditional Probability

Coupling and Conditional

Bayes' Theorem

- 4 Introduction
- Events
- 6 Probabilities
- Conditional Probability
 - Coupling and Conditional Probability
 - Bayes' Theorem
 - Independence

Statistical Methods of Data Analysis

W. Waltenberger

Introducti

Probabilitie

Conditional Probability

Coupling and Conditional

Probability

Probability

Bayes' Theorem

Definition (Decomposition)

The events B_1, B_2, \dots, B_m form a **decomposition** of the sample space Ω if the following holds:

- **1** Non-overlapping: $B_i \cap B_j = \emptyset, i \neq j$
- **2** Completeness: $B_1 \cup B_2 \cup \ldots \cup B_m = \Omega$

Theorem

If the events B_1, B_2, \dots, B_m form a decomposition of the sample space Ω , it the follows that:

$$P(B_1) + P(B_2) + \ldots + P(B_m) = P(\Omega) = 1$$

Statistical Methods of Data Analysis

W. Waltenberger

Introducti

Events

Probabilitie

Conditional Probability Coupling and Conditional Probability

Bayes' Theorem Independence • Let B_1, \ldots, B_m be a decomposition. It follows that:

Total Probability

$$P(A) = P(A|B_1)P(B_1) + ... + P(A|B_m)P(B_m)$$

Example

A factory produces resistors with $10\,k\Omega$ (35% of production), with $22\,k\Omega$ (45%) and with $47\,k\Omega$ (20%). After two years of continuous operation, 98% of the $10\,k\Omega$ resistors are still functional, 96% of the $22\,k\Omega$ resistors, and 92% of the $47\,k\Omega$ resistors. What proportion of all resistors is still functional after two years?

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Events

Probabilities

Conditional Probability

Coupling and Conditional

Probability

Bayes' Theorem

• Let B_1, \ldots, B_m be a decomposition. It follows that:

Bayes' Theorem

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{P(A)}$$

$$= \frac{P(A|B_i)P(B_i)}{P(A|B_1)P(B_1) + \dots + P(A|B_m)P(B_m)}$$

• $P(B_i)$ will be the **a-priori** probability of B, $P(B_i|A)$ is called the **a-posteriori** probability.

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Events

Probabilities 4

Conditional Probability

Coupling and Conditional

Probability

Bayes' Theorem Independence

Example

A company buys components from two suppliers, where the share of the first one is 65%. The rate of defective components of supplier 1 is equal to 3%, that of supplier 2 is equal to 4%.

- What is the total rate of defective components?
- What is the probability that a flawless part comes from supplier 2?
- What is the probability that a defective component comes from supplier 1?

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Events

Probabilities

Conditional Probability

Coupling and Conditional

Probability

Bayes' Theorem

Example

A component is supplied by four companies, and 20% comes from company 1, 30% comes from company 2, 35% comes from company 3, and 15% comes from company 4. The probability that the component fails in test operation within 24 hours is 0.02 for company 1, 0.015 for company 2, 0.025 for company 3, and 0.02 for company 4. A component fails in test operation after 16 hours. The probability that it comes from company i is to be calculated by means of Bayes' theorem.

Subsection: Independence

Statistical Methods of Data Analysis

W. Waltenberger

Industrial Control

Events

Probabilities 4

Conditional Probability Coupling and Conditional Probability

Bayes I neore

Independence

- 4 Introduction
- Events
- 6 Probabilities
- Conditional Probability
 - Coupling and Conditional Probability
 - Bayes' Theorem
 - Independence

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Events

Probabilitie

Conditional Probability
Coupling and Conditional
Probability
Bayes' Theorem
Independence

Two events are positively coupled if

$$P(A|B) > P(A)$$
 or $P(A \cap B) > P(A)P(B)$

Two events are negatively coupled if

$$P(A|B) < P(A) \quad P(A \cap B) < P(A)P(B)$$

ullet If neither positive nor negative coupling is present, then A and B are mutually **independent**.

Statistical Methods of Data Analysis

W. Waltenberge

Introducti

Events

Probabilities

Conditional Probability
Coupling and Conditional
Probability
Bayes' Theorem
Independence

Definition (Independence)

Two events A and B are called **stochastically independent** if

$$P(A \cap B) = P(A)P(B)$$

The events A_1, A_2, \ldots, A_n are called independent if:

$$P(A_1 \cap \ldots \cap A_n) = P(A_1) \cdot \ldots \cdot P(A_n)$$

For n > 2, pairwise independence of any two events A_i and A_j is not generally sufficient!

Statistical Methods of Data Analysis

W. Waltenberger

Introducti

Events

riobabilities

Conditional Probability
Coupling and Conditional
Probability
Bayes' Theorem
Independence

Example

We consider flipping a fair coin twice (heads H/tails T). The possible outcomes are $\Omega=\{HH,HT,TH,TT\}$. We define the events:

$$E_1=\{HH,HT\}\dots \text{head on first throw}$$

$$E_2=\{HH,TH\}\dots \text{head on second throw}$$

$$E_3=\{HH,TT\}\dots \text{even number of heads}$$

Then, for all $i \neq j$:

$$P(E_i \cap E_j) = \frac{1}{4} = P(E_i) \cdot P(E_j)$$

but

$$P(E_1 \cap E_2 \cap E_3) = \frac{1}{4} \neq \frac{1}{8} = P(E_1) \cdot P(E_2) \cdot P(E_3)$$

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Probabilities

Independence

Conditional Probability
Coupling and Conditional
Probability
Bayes' Theorem

• If A and B are independent, then P(A|B) = P(A) and P(B|A) = P(B).

• The four-field table for two independent events:

	B	B'	
\overline{A}	P(A)P(B)	P(A)P(B')	P(A)
A'	P(A')P(B)	P(A')P(B')	P(A')
	P(B)	P(B')	1

Statistical Methods of Data Analysis

W. Waltenberger

Introducti

Events

Probabilities

Conditional Probability

Coupling and Conditional

Probability

Bayes' Theorem

Independence

• The coupling can be measured by the **four-field correlation**:

Four-field Correlation

$$\rho(A,B) = \frac{P(A \cap B) - P(A)P(B)}{\sqrt{P(A)P(A')P(B)P(B')}}$$

Properties of Four-field Correlation

- $-1 \le \rho(A, B) \le 1$
- \bullet $\rho(A,B)=0 \iff A \text{ and } B \text{ independent}$
- ullet $ho(A,B)>0 \iff A ext{ and } B ext{ positively coupled}$
- $\rho(A,B) < 0 \iff A \text{ and } B \text{ negatively coupled}$

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Conditional Probabili

Coupling and Conditional Probability Bayes' Theorem Independence

- The sign of $\rho(A,B)$ indicates the **direction** of the coupling.
- \bullet The magnitude of $\rho(A,B)$ indicates the ${\bf strength}$ of the coupling.
- Specifically:

$$A = B \implies \rho(A, B) = 1$$

$$A = B' \implies \rho(A, B) = -1$$

- An existing coupling is no proof for a causal relationship!
- The coupling can also result from a common cause for both events.

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Dark - Lillet

Probabilitie

Conditional Probability
Coupling and Conditional
Probability
Bayes' Theorem
Independence

- Two events can be considered independent if there is no connection whatsoever between them. The occurrence of one event cannot affect the probability of the other.
- Two elementary events are never independent, since their
 ∩-connection is always the impossible event.
- Two elementary events are even highly 'mutually dependent' since the occurrence of one precludes the occurrence of the other with complete certainty.
- If E_1 and E_2 are two independent events of a probability space (Σ,P) , then E_1 and E_2' , E_1' and E_2 , and E_1' and E_2' are also independent.

Statistical Methods of Data Analysis

W. Waltenbergei

Introducti

Lveiits

Probabilities

Conditional Probability
Coupling and Conditional
Probability
Bayes' Theorem
Independence

Example (rolls with two distinguishable dice)

There are 36 elementary events $e_{ij} = \{(i,j)\}, \ 1 \le i,j \le 6$. The event E_i^1 of rolling an i on the first roll is thus composed of:

$$E_i^1 = e_{i1} \cup e_{i2} \cup \ldots \cup e_{i6}$$
 and analogously $E_j^2 = e_{1j} \cup e_{2j} \cup \ldots \cup e_{6j}$

Clearly, $E_i^1 \cap E_j^2 = e_{ij}$.

If we can assume that all elementary events are **equally probable**, then:

$$P(E_i^1) = \frac{1}{6}, \ P(E_j^2) = \frac{1}{6}$$

$$P(E_i^1 \cap E_j^2) = P(e_{ij}) = \frac{1}{36} = P(E_i^1) \cdot P(E_j^2)$$

Statistical Methods of Data Analysis

W. Waltenbergei

Introduct

Probabilitie:

Conditional Probability
Coupling and Conditional
Probability
Bayes' Theorem
Independence

Example (Continuation)

Thus, in this case, the elementary events of the simple throw are also **equally probable** and the two partial throws are **independent**.

Conversely, if we assume that for both partial throws the elementary events are equally probable, and that E_i^1 and E_j^2 are independent for all i and j, then the e_{ij} are equally probable.

If the partial rolls are not independent, then the e_{ij} are no longer equally probable, **despite** e_i and e_j being equally probable! An example of this is the 'rolling' a very large dice, which can be rotated by a mere 90^o each time. E.g. the elementary event e_{34} is then no longer possible and must therefore be assigned a probability of 0.

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Probabilities

Conditional Probability
Probability
Bayes' Theorem
Independence

Example (Repetition of an alternative experiment)

The event algebra has 2^n elementary events, namely sequences of the form (i_1,\ldots,i_n) , $i_j=0$ or 1. If the repetitions are independent, and p denotes the probability of 1 occurring, the probability of a sequence

$$P(\{(i_1,\ldots,i_n)\}) = p^{n_1}(1-p)^{n_0}$$

where n_0 or n_1 denotes the number of occurrences of 0 or 1, respectively. Clearly, $n_0+n_1=n$.

Statistical Methods of Data Analysis

W. Waltenberger

Random Variable

Moments

Functions of Randon Samples

Part III

Random Variables and Distributions

Overview Part 3

Statistical Methods of Data Analysis

W. Waltenberger

Random Variable

. .

Functions of Random Samples

- Random Variables
- Moments
- Functions of Random Samples

Section 8: Random Variables

Statistical Methods of Data Analysis

W. Waltenberger

Random Variables

Racio Torme

Discrete Random Variable Continuous Random Variab

Convolution

Moments

Functions of Random Samples

Random Variables

- Basic Terms
- Discrete Random Variable
- Continuous Random Variable
- Independence
- Convolution
- Moments
- Functions of Random Samples

Subsection: Basic Terms

Statistical Methods of Data Analysis

W. Waltenberger

Random Variable

Basic Terms

Discrete Random Variable Continuous Random Variabl Independence

8 Random Variables

- Basic Terms
- Discrete Random Variable
- Continuous Random Variable
- Independence
- Convolution
- Moments
- Functions of Random Samples

Basic Terms

Statistical Methods of Data Analysis

W. Waltenberger

Random V

dasic Terms Discrete Random Variable Continuous Random Variabl ndependence

Moments

Functions of Random Samples

Definition (Random Variable)

A mapping X:

$$\omega \in \Omega \mapsto x = X(\omega) \in \mathbb{R}$$

that assigns a real number to each element ω of the sample space Ω is called a (one-dimensional or univariate) random variable.

- \bullet If Ω is finite or countably infinite, any mapping X is allowed.
- \bullet If Ω is uncountably infinite, X must be a ${\bf measurable}$ mapping.
- Since the value of a random variable depends on the outcome of the experiment, we can assign probabilities to the possible values.

Basic Terms

Statistical Methods of Data Analysis

W. Waltenberge

Random Vari

Discrete Random Variable Continuous Random Variable Independence

Moments

Functions of Randor

- If the random variable *X* takes only finitely or countably infinitely many values, it is called **discrete**.
- If the random variable X takes a continuum of values, it is called continuous or real-valued.

Example

The mapping that assigns the number of eyes i to the elementary event e_i when rolling the dice is a discrete random variable. Of course, the mapping $e_i : \longrightarrow 7 - i$ would also be a discrete random variable.

Example

The mapping assigning a lifetime x to the decay of a particle is a continuous random variable.

Subsection: Discrete Random Variable

Statistical Methods of Data Analysis

W. Waltenberger

Discrete Random Variable

- 8 Random Variables
 - Basic Terms
 - Discrete Random Variable
 - Continuous Random Variable
 - Independence
 - Convolution
- Moments
- Functions of Random Samples

Statistical Methods of Data Analysis

W. Waltenberge

Random Variables

Discrete Random Variable
Continuous Random Variable
Independence

Moments

Functions of Random

- Discrete random variables are often the result of counting operations.
- Discrete random variables occur in many areas: for example, counting events in a fixed time interval (Poisson distribution) or counting successes in repeated alternative trials (binomial distribution),
- In the following, we assume that the values of a discrete random variable are nonnegative integers. This is not a restriction because any countable set of real numbers can be mapped bijectively to (a subset of) \mathbb{N}_0 .
- The event algebra is the power set (set of all subsets) P of \mathbb{N}_0 .

Statistical Methods of Data Analysis

W. Waltenberger

Random Variables

Discrete Random Variable
Continuous Random Variab

Convolution

Moments

Functions of Random

• If a probability measure P is defined on the event algebra $\Sigma(\Omega)$, then a probability measure can also be defined on the power set P of \mathbb{N}_0 using the random variable X.

Definition (Distribution of a Discrete Random Variable)

Let $\Sigma(\Omega)$ be a discrete event algebra. The discrete random variable $X:\Omega\mapsto\mathbb{N}_0$ induces a probability measure on \mathbb{N}_0 by means of.

$$P_X(\{k\}) = P(X^{-1}(k)) = P(\{\omega | \boldsymbol{X}(\omega) = k\})$$

 P_X is called the **distribution** of X, and it is discrete.

Statistical Methods of Data Analysis

W. Waltenberge

Random Variabl

Discrete Random Variable

Continuous Random Variab Independence

Convolution

Moments

Functions of Random Samples

Example

We assign the number 0 to the even numbers of the cube, and the number 1 to the odd numbers:

$$X: \omega \mapsto \mod(\omega, 2)$$

The distribution of X is then given by

$$P_X(0) = P(X^{-1}(0)) = P(\{2, 4, 6\}) = \frac{1}{2}$$

 $P_X(1) = P(X^{-1}(1)) = P(\{1, 3, 5\}) = \frac{1}{2}$

Statistical Methods of Data Analysis

W. Waltenberger

Random Variab

Discrete Random Variable
Continuous Random Variab

Independence Convolution

Moments

Functions of Random Samples

Example

We assign the sum of the numbers of eyes to the outcome of a double roll:

$$X:(i,j)\mapsto i+j$$

The values of X are the natural numbers from 2 to 12. The distribution of X is then given by

$$P_X(k) = P(X^{-1}(k)) = \sum_{i+j=k} P(\{(i,j)\}) = \begin{cases} \frac{k-1}{36}, & k \le 7 \\ \frac{13-k}{36}, & k \ge 7 \end{cases}$$

Statistical Methods of Data Analysis

W. Waltenberge

Random Variab

Discrete Random Variable

Continuous Random Variable
Independence
Convolution

Moments

Functions of Random

• The numbers $P_X(k)$ can be regarded as function values of a spectral function f_X :

$$f_X(x) = \begin{cases} P_X(k), & \text{if } x = k \\ 0, & \text{else} \end{cases}$$

Definition (Discrete Density Function)

The function $f_X(x)$ is called **probability density function** or density of a random variable X for short

Statistical Methods of Data Analysis

W Waltenberge

Random Variables

Discrete Random Variable Continuous Random Variable Independence

Functions of Randon

• The density of the random variable X = i + j:

Statistical Methods of Data Analysis

W. Waltenberge

Random Variables

Discrete Random Variable Continuous Random Variable Independence

Moments

Functions of Randor Samples • The probability $P_X(E)$ of an event E can be conveniently calculated using the density of X:

$$P_X(E) = \sum_{k \in E} f_X(k)$$

Definition (Discrete Distribution Function)

If X is a discrete random variable, the **distribution function** F_X of X is defined by:

$$F_X(x) = P(X \le x)$$

Obviously,

$$F_X(x) = \sum_{k \le x} f_X(k) = \sum_{k \le x} P_X(\{k\})$$

Statistical Methods of Data Analysis

W. Waltenberger

Random Variables

Basic Terms

Discrete Random Variable Continuous Random Variab Independence

Convolution

Moments

Functions of Randon Samples

• The distribution function of the random variable X = i + j:

Statistical Methods of Data Analysis

W. Waltenberge

Random Variable

Discrete Random Variable Continuous Random Variabl Independence

Convolution

. .

Functions of Random

Properties of a Discrete Distribution Function ${\cal F}$

- F has a step in all points within the range of values.
- ullet The height of the step at point k is equal to $f_X(k)$
- $0 \le F(x) \le 1, \ \forall x \in \mathbb{R}$
- $x \le y \implies F(x) \le F(y), \ \forall x, y \in \mathbb{R}$
- $\lim_{x \to -\infty} F(x) = 0$; $\lim_{x \to \infty} F(x) = 1$
- The probability that r falls within the interval (a,b] is F(b)-F(a):

$$P(r \le a) + P(a < r \le b) = P(r \le b) \Longrightarrow$$

 $P(a < r \le b) = F(b) - F(a)$

Statistical Methods of Data Analysis

W. Waltenberge

Random Variable

Discrete Random Variable Continuous Random Variab

Convolution

Moments

Functions of Random Samples

Important Discrete Distribution Families

- Poisson distribution $Po(\lambda)$
- ullet Bernoulli or alternative distribution $\mathrm{Al}(p)$
- Binomial distribution Bi(n, p)
- Hypergeometric distribution Hy(N, M, n)

Subsection: Continuous Random Variable

Statistical Methods of Data Analysis

W. Waltenberger

Continuous Random Variable

Random Variables 8 Random Variables

- Basic Terms
- Discrete Random Variable
- Continuous Random Variable
- Independence
- Convolution
- Moments
- Functions of Random Samples

Statistical Methods of Data Analysis

W. Waltenberge

Random Variab

Discrete Random Variable

Continuous Random Variable
Independence
Convolution

Moments

Functions of Random

- So far, only random variables defined on discrete event algebras were treated.
- Let us now drop this restriction, i.e. let us permit uncountably many elementary events. This is necessary, if we wish to describe any types of measurements.
- ullet A function X defined on such an uncountable set of elementary events can take on arbitrary real values.

Statistical Methods of Data Analysis

W. Waltenberge

Random Variab

Discrete Random Variable

Continuous Random Variable Independence

Convolution

Moments

Functions of Random

Definition (Continuous Distribution Function)

Let (Σ, P) be a probability space over a countable outcome space Ω . Let X be a random variable, i.e., a (measurable) function of Ω in \mathbb{R} . The function F_X , defined by:

$$F_X(x) = P(X \le x)$$

is called the **distribution** function of X. The probability that X falls within an interval $(x, x + \delta x]$ is then:

$$P(x < X \le x + \Delta x) = F_X(x + \Delta x) - F_X(x) = \Delta F_X.$$

Statistical Methods of Data Analysis

W. Waltenberge

Random Varia

Discrete Random Variable

Continuous Random Variable
Independence
Convolution

Moments

Functions of Random

Properties of a Continuous Distribution Function

- $0 \le F(x) \le 1, \ \forall x \in \mathbb{R}$
- $x_1 \le x_2 \implies F(x_1) \le F(x_2), \ \forall x_1, x_2 \in \mathbb{R}$
- $\lim_{x\to-\infty} F(x) = 0$; $\lim_{x\to\infty} F(x) = 1$

Definition (quantile)

Let $F_X(x)$ be a continuous distribution function. The value x_α , for which

$$F_X(x_\alpha) = \alpha, \quad 0 < \alpha < 1,$$

is called the α -quantile of the distribution of X. The function

$$x = Q_X(\alpha) = F_X^{-1}(\alpha), \quad 0 < \alpha < 1$$

is called the **quantile function** of the distribution of X.

Statistical Methods of Data Analysis

W. Waltenberge

Random Variabl

Discrete Random Variable

Continuous Random Variable Independence Convolution

Moments

Functions of Random

Definition (quartile)

The quantiles to the values $\alpha=0.25, 0.5, 0.75$ are called **quartiles**. The quantile to the value $\alpha=0.5$ is called the **median** of the distribution.

 Quantiles can also be defined for discrete distributions, in which case they are not always unique.

Statistical Methods of Data Analysis

W. Waltenberge

Random Variab Basic Terms

Discrete Random Variable

Continuous Random Variable Independence

Moments

Functions of Random Samples

Definition (Continuous density function)

If F_X is differentiable, X is called a **continuous random** variable. For the distribution of X, according to the main theorem of integral calculus:

$$P_X(x_1 < X \le x_2) = F_X(x_2) - F_X(x_1) = \int_{x_1}^{x_2} f_X(x) dx$$

where $f_X(x) = F_X'(x)$. The derivative of the distribution function, the function f_X , is called the **probability density function** or, again, the density of X for short.

Statistical Methods of Data Analysis

W. Waltenberger

Basic Terms

Discrete Random Variabl

Continuous Random Variable Independence

Convolution

Moments

Functions of Random

Statistical Methods of Data Analysis

W. Waltenberger

Random Variables
Basic Terms
Discrete Random Variable

Continuous Random Variable Independence Convolution

Moments

Functions of Random

• The probability measure P_X is called the distribution of X. It is defined on an event algebra Σ consisting of sets of real numbers and containing at least all intervals and their unions as elements.

• In analogy with discrete random variables, the probability P_X of a set $M \in \Sigma$ can be easily specified using density:

$$P_X(M) = \int_M f_X(x) \, \mathrm{d}x$$

• The probability of a single point is always equal 0:

$$P_X(\{x\}) = \int_x^x f_X(x) \, \mathrm{d}x = 0$$

Statistical Methods of Data Analysis

W. Waltenberge

Random Variables

Basic Terms

Continuous Random Variable Independence

Moments

Functions of Random

Therefore

$$P_X((x_1, x_2]) = P_X((x_1, x_2)) = P_X([x_1, x_2]).$$

- More generally, a statement about continuous random variables is obtained by replacing summation with integration in a statement about discrete random variables.
- \bullet E.g. for a discrete density f:

$$\sum_{k \in \mathbb{N}_0} f(k) = 1$$

similarly, for a continuous density f:

$$\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = 1$$

Statistical Methods of Data Analysis

W. Waltenbergei

Random Variable Basic Terms

Discrete Kandom Variable

Continuous Random Variable

Independence

Convolution

Moments

Functions of Random Samples

Important continuous distribution families

- Normal distribution $No(\mu, \sigma^2)$
- Gamma distribution Ga(a, b), with the special cases
 - ${\color{blue} \bullet}$ Exponential distribution ${\rm Ex}(\tau)$
 - Chisquare distribution $\chi^2(n)$
- ullet Student's or t-distribution $\mathrm{t}(n)$
- Beta distribution Be(a, b)
- Uniform distribution Un(a, b)

Subsection: Independence

Statistical Methods of Data Analysis

W. Waltenberger

Random Variables

Discrete Random Variable Continuous Random Variable

Independence

Convolution

Moment

Functions of Random Samples

- Random Variables
 - Basic Terms
 - Discrete Random Variable
 - Continuous Random Variable
 - Independence
 - Convolution
- Moments
- Functions of Random Samples

Statistical Methods of Data Analysis

W. Waltenberger

Random Variat

Discrete Random Variable Continuous Random Variabl

Independence

Moments

Functions of Rando Samples

Definition (Independent Random Variable)

Two random variables X and Y are called independent if for all pairs (A,B) of events:

$$P(X \in A \cap Y \in B) = P_X(A) \cdot P_Y(B)$$

Definition (Joint Distribution Function)

The joint distribution function F_{XY} of X and Y is defined by

$$F_{XY}(x,y) = P(X \le x \cap Y \le y)$$

Statistical Methods of Data Analysis

W. Waltenberge

Random Variables

Discrete Random Variable

Independence

Convolution

Moments

Functions of Random Samples

Definition (Common Density)

If X and Y are discrete random variables, their joint density is defined by:

$$f_{XY}(x,y) = P(X = x \cap Y = y)$$

If X and Y are continuous random variable, their joint density is defined by

$$f_{XY}(x,y) = \frac{\partial^2 F_{XY}}{\partial x \ \partial y}$$

Statistical Methods of Data Analysis

W. Waltenberge

Random Variables
Basic Terms

Discrete Random Variable Continuous Random Variable

Independence

Moment

Functions of Random Samples

Theorem

Two random variables X and Y are independent if and only if their joint distribution function is the product of their individual distribution functions:

$$F_{XY}(x,y) = F_X(x) \cdot F_Y(y)$$

Theorem

Two random variables X and Y are independent if and only if their joint density is the product of their individual density functions:

$$f_{XY}(x,y) = f_X(x) \cdot f_Y(y)$$

Subsection: Convolution

Statistical Methods of Data Analysis

W. Waltenberger

Random Variables

Basic Terms

Continuous Random Variab

Convolution

Moments

Functions of Randor Samples

- Random Variables
 - Basic Terms
 - Discrete Random Variable
 - Continuous Random Variable
 - Independence
 - Convolution
- Moments
- Functions of Random Samples

Convolution

Statistical Methods of Data Analysis

W. Waltenberge

Random Varial

Discrete Random Variable

Continuous Random Varial Independence

_onvolutio

ivioments

Functions of Random

Definition (Convolution)

Let X and Y be two **independent** random variables and Z=X+Y be their sum. The distribution of Z is called the **convolution** of the distributions of X and Y.

Example

An experiment measures the lifetime X of an unstable particle, with a measurement error Y. If X and Y are independent, the distribution of the observation Z=X+Y is the convolution of the distributions of X and Y, respectively.

Convolution

Statistical Methods of Data Analysis

W. Waltenberger

Random Variables

Basic Terms

Discrete Random Variable Continuous Random Variab Independence

Convolution

Moments

Functions of Random

Theorem

Let X and Y be two **independent** random variables and Z=X+Y be their sum. Then the density of Z is the **convolution product** of the densities of X and Y.

• If X and Y are discrete, then:

$$f_Z(n) = \sum_k f_X(n-k)f_Y(k)$$

• If X and Y are continuous, then:

$$f_Z(z) = \int_{\mathbb{R}} f_X(z - y) f_Y(y) \,dy$$

It should be noted that the effective integration range may depend on z.

Section 9: Moments

Statistical Methods of Data Analysis

W. Waltenberger

Random Variable

Moments

Variance

Skewness

Error Propagatio

- Random Variables
- Moments
 - Expectation
 - Variance
 - Skewness
 - Error Propagation
- 10 Functions of Random Samples

Subsection: Expectation

Statistical Methods of Data Analysis

Expectation

- Moments
 - Expectation
 - Variance
 - Skewness
 - Error Propagation

Statistical Methods of Data Analysis

W. Waltenberge

Random Variable

Moments

Expectation

Variance

5 c .

Error Propagatio

Functions of Random

Definition (Expectation)

Let X be a (discrete or continuous) random variable with density f(x). Further, let g be any continuous real- or complex-valued function. Let $\mathsf{E}_X[g] = \mathsf{E}[g(X)]$ be defined by:

$$\mathsf{E}[g(X)] = \sum_{k \in \mathbb{N}_0} g(k) f(k) \quad \text{or} \quad \mathsf{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) \, \mathrm{d}x$$

 $\mathsf{E}_X[g] = \mathsf{E}[g(X)]$ is called the **expectation** of g(X).

Statistical Methods of Data Analysis

W. Waltenberger

Random Variable

. .

Expectation

Variance

Skewness

Error Propagatio

Functions of Random

Definition (expectation of random variables)

If g(x)=x, then $\mathsf{E}[g(X)]=\mathsf{E}[X]$ is called the **expectation** or the **mean** of X.

$$\mathsf{E}[X] = \int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x \, \operatorname{but} \ \, \mathsf{E}[X] = \sum_{k \in \mathbb{N}_0} k \, f(k)$$

Properties of the Expectation

- $\mathsf{E}[c] = c, \ c \in \mathbb{R}$
- $\bullet \ \mathsf{E}[aX+b] = a\mathsf{E}[X] + b$
- $E[X_1 + X_2] = E[X_1] + E[X_2]$
- ullet X_1 and X_2 independently \Longrightarrow $\mathsf{E}[X_1X_2]=\mathsf{E}[X_1]\cdot\mathsf{E}[X_2]$

Statistical Methods of Data Analysis

Random Variable

.....

Expectation

Variance

Error Propagatio

Functions of Rando

• The expectation is a **location parameter**.

 The expectation may not exist. An example is the Cauchy distribution with the density

$$f(x) = \frac{1}{\pi(1+x^2)}, \ x \in \mathbb{R}$$

In this case, the median is a suitable location parameter.

Statistical Methods of Data Analysis

.

Random Variable

Italiuolli valiabi

Moments

Expectation

Skewness

Error Propagation

Functions of Random

Definition (moments)

Let X be a random variable. The expectation of $g(x)=(x-a)^k$, if it exists, is called k-th moment of X around a. The k-th moment around 0 is denoted by μ_k' . The k-th moment around the expected value $\mathrm{E}[X]$ is called **central moment** μ_k .

- The expectation is the first moment around 0.
- The central moments μ_1, \ldots, μ_k can be calculated from the moments around 0 μ'_1, \ldots, μ'_k , and vice versa.
- Even if all moments of a distribution exist, it is still not uniquely determined.

Subsection: Variance

Statistical Methods of Data Analysis

W. Waltenberger

Random Variable

Expectation

Variance

. .

Random Variables

- Moments
 - Expectation
 - Variance
 - Skewness
 - Error Propagation
- 10 Functions of Random Samples

Variance

Statistical Methods of Data Analysis

Variance

Definition (Variance)

The second central moment μ_2 is called the **variance** of X, denoted by var[X]. The root of the variance is called the **standard deviation** of X, denoted by $\sigma[X]$.

- The standard deviation is a scale parameter that describes the width of the distribution.
- The standard deviation has the same dimension as the values of the random variables.
- Variance and standard deviation are (like all central moments) invariant against translations.
- The variance may not exist. An example is the distribution with density

$$f(x) = \frac{1}{(2+x^2)^{3/2}}, \ x \in \mathbb{R}$$

Variance

Statistical Methods of Data Analysis

W. Waltenberger

Random Variable

. .

Expectati

Variance

Error Propagatio

Functions of Random

Properties of the Variance

- $var[X] = E[X^2] (E[X])^2$
- $\operatorname{var}[aX + b] = a^2 \operatorname{var}[X]$
- For independent X_1, \ldots, X_n :

$$\operatorname{var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \operatorname{var}[X_{i}]$$

Subsection: Skewness

Statistical Methods of Data Analysis

W. Waltenberger

Random Variable

Moments

Expectat

Skewness

Error Propagatio

Functions of Randor

- Random Variables
- Moments
 - Expectation
 - Variance
 - Skewness
 - Error Propagation
- 10 Functions of Random Samples

Skewness

Statistical Methods of Data Analysis

W. Waltenberge

Random Variable

.....

Variance

Skewness

Error Propagatio

Functions of Random

Definition (Skewness)

The reduced third central moment $\gamma = \mu_3/\sigma^3$ is called the skewness.

• The skewness measures the asymmetry of a distribution. If the skewness is positive (negative), the distribution is called right skewed (left skewed). For symmetric distributions, it is 0.

Skewness

Statistical Methods of Data Analysis

W. Waltenberge

Random Variable

Expectat

Skewness

Error Propagatio

Functions of Random

Definition (Kurtosis)

The reduced fourth central moment $\kappa = \mu_4/\sigma^4$ is called the curvature or kurtosis.

- The kurtosis of the normal distribution is 3.
- Distributions with higher kurtosis have more pronounced tails than distributions with lower kurtosis.

Subsection: Error Propagation

Statistical Methods of Data Analysis

W. Waltenberger

Random Variable

Momento

Expectati

Variance

Error Propagation

iunctions of Pa

- Random Variables
- Moments
 - Expectation
 - Variance
 - Skewness
 - Error Propagation
- 10 Functions of Random Samples

Error Propagation

Statistical Methods of Data Analysis

W. Waltenberger

Random Variable

. .

Expectati

Charman

Error Propagation

Functions of Ran

Affine Transformations

- Let X be a random variable with density f(x) and Y = aX + b.
- Then the density g(y) of Y is equal to

$$g(y) = \frac{1}{|a|} f\left(\frac{y-b}{a}\right)$$

• Furthermore,

$$\begin{aligned} \mathsf{E}[Y] &= a \mathsf{E}[X] + b \\ \mathsf{var}[Y] &= a^2 \mathsf{var}[X] \\ \gamma[Y] &= \mathrm{sgn}(a) \gamma[X] \\ \kappa[Y] &= \kappa[X] \end{aligned}$$

Error Propagation

Statistical Methods of Data Analysis

vv. vvaitelibeig

Random Variable

. .

Expectati

Variance

Error Propagation

Nonlinear Transformations

- Let X be a random variable with density f(x) and Y = h(X).
- If h(x) is bijective, the density g(y) of Y is equal to

$$g(y) = \left| \frac{\mathrm{d}h^{-1}}{\mathrm{d}y} \right| f\left(h^{-1}(y)\right)$$

• The expectation and variance of Y = h(X) can be calculated **approximately** using the Taylor expansion of h(x).

Error Propagation

Statistical Methods of Data Analysis

W. Waltenberger

Random Variable

viomen

Variance

J KEWIIESS

Expectation

Error Propagation

ullet Expanding around x_0 , the linear approximation reads

$$h(x) \approx h(x_0) + h'(x_0)(x - x_0)$$

• With a choice of $x_0 = \mathsf{E}[X]$ we obtain

Theorem

$$\begin{aligned} \mathsf{E}[h(X)] &\approx h(\mathsf{E}[X]) \\ \mathsf{var}[h(X)] &\approx h'(\mathsf{E}[X])^2 \cdot \mathsf{var}[X] \end{aligned} \text{ (linear error propagation)}$$

• If the expansion is extended to the 2nd order, the improved approximation reads:

Theorem

$$\mathsf{E}[h(X)] \approx h(\mathsf{E}[X]) + \frac{1}{2}h''(\mathsf{E}[X]) \cdot \mathsf{var}[X]$$

Section 10: Functions of Random Samples

Statistical Methods of Data Analysis

W. Waltenberger

Random Variable

Moments

Functions of Random Samples

Sample Mean
Sample Variance

- Random Variables
- Moments
- Functions of Random Samples
 - Basic Terminology
 - Sample Mean
 - Sample Variance
 - Sample Median

Subsection: Basic Terminology

Statistical Methods of Data Analysis

W. Waltenberger

Random Variable

M----

Functions of Randor

Basic Terminology

Sample Mean Sample Varian Random Variables

9 Moments

- Functions of Random Samples
 - Basic Terminology
 - Sample Mean
 - Sample Variance
 - Sample Median

Statistical Methods of Data Analysis

Basic Terminology

- Let X_1, \ldots, X_n be independent random variables that all have the same distribution F.
- They then form a **random sample** of the distribution F.
- A random variable

$$Y = h(X_1, \dots, X_n)$$

is called a **sample function**.

• In many cases, we wish to determine the moments of the distribution of Y.

Subsection: Sample Mean

Statistical Methods of Data Analysis

W. Waltenbergei

Random Variable

Moments

Functions of Random Samples

Basic Terminolog

Sample Mean

Sample Varia

Sample Median

- Random Variables
- Moments
- Functions of Random Samples
 - Basic Terminology
 - Sample Mean
 - Sample Variance
 - Sample Median

Sample Mean

Statistical Methods of Data Analysis

Sample Mean

Definition (Sample Means)

The sample mean \overline{X} of the sample X_1, \ldots, X_n is defined by

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Moments of the Sample Mean

If F has the mean μ and the variance σ^2 , the following holds true

•
$$\mathsf{E}[\overline{X}] = \mu$$

$$\bullet \ \ \mathsf{E}[\overline{X}] = \mu$$

$$\bullet \ \ \mathsf{var}[\overline{X}] = \frac{\sigma^2}{n}$$

Subsection: Sample Variance

Statistical Methods of Data Analysis

Sample Variance

- 10 Functions of Random Samples
 - Basic Terminology
 - Sample Mean
 - Sample Variance
 - Sample Median

Sample Variance

Statistical Methods of Data Analysis

Sample Variance

Definition (Sample Variance)

The sample variance S^2 of the sample X_1, \ldots, X_n is defined by

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

Moments of the Sample Variance

If F has a variance σ^2 , then:

$$\mathsf{E}[S^2] = \sigma^2$$

If the fourth central moment μ_4 of F exists, then:

$$\operatorname{var}[S^2] = \frac{\mu_4}{n} - \frac{\sigma^4(n-3)}{n(n-1)}$$

Subsection: Sample Median

Statistical Methods of Data Analysis

W. Waltenberger

Random Variable

Moments

Functions of Random Samples

Basic Terminolo Sample Mean Sample Variance

Sample Variance

Random Variables

9 Moments

- Functions of Random Samples
 - Basic Terminology
 - Sample Mean
 - Sample Variance
 - Sample Median

Sample Median

Statistical Methods of Data Analysis

Sample Median

Definition (Sample Median)

The sample median \tilde{X} of the sample X_1, \ldots, X_n is defined by

$$\tilde{X} = \begin{cases} X_{((n+1)/2)}, & n \text{ odd} \\ \frac{1}{2} \left(X_{(n/2)} + X_{(n/2+1)} \right), & n \text{ even} \end{cases}$$

Moments of the Sample Median

If F has median m and density f, then:

- $\bullet \ \lim_{n \to \infty} \mathsf{E}[\tilde{X}] = m$
- $\bullet \lim_{n \to \infty} \mathrm{var}[\tilde{X}] = \frac{1}{4 \, n f^2(m)}, \quad \text{if } f(m) > 0$

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Normally Distributed Data

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Estimator

Mixture Models and the EM Algorithm

Part IV

Point Estimators

Overview Part 4

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distributed Data

Exponentially Distribute
Data

Poisson Distributed Data

Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

- Point Estimators
- Normally Distributed Data
- Exponentially Distributed Data
- Poisson Distributed Data
- 15 Data from Bernoulli and Drawing Experiments
- 16 Maximum Likelihood Estimator
- Mixture Models and the EM Algorithm

Section 11: Point Estimators

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Basic Terminology Sample Moments and Samp Median

Normally Distributed Data

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

- Point Estimators
 - Basic Terminology
 - Sample Moments and Sample Median
- Normally Distributed Data
- Exponentially Distributed Data
- 14 Poisson Distributed Data
- 15 Data from Bernoulli and Drawing Experiments
- 16 Maximum Likelihood Estimator
- Mixture Models and the EM Algorithm

Subsection: Basic Terminology

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Basic Terminology

Sample Moments and Sampl

Median

Data

Data Distribute

Poisson Distributed Data

Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

- Point Estimators
 - Basic Terminology
 - Sample Moments and Sample Median
- 12 Normally Distributed Data
- Exponentially Distributed Data
- 14 Poisson Distributed Data
- 15 Data from Bernoulli and Drawing Experiments
- 16 Maximum Likelihood Estimator
- Mixture Models and the EM Algorithm

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Basic Terminology

Sample Moments and Samp
Median

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Data

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

• A point estimator is a sample function designed to provide as accurate an approximation as possible for an unknown distribution parameter ϑ :

$$T = g(X_1, \dots, X_n)$$

- The function $g(x_1, \ldots, x_n)$ is called the estimator.
- \bullet The construction of sensible point estimators for a parameter ϑ is the central task of estimation theory.
- ullet Many point estimators are conceivable for a parameter $\vartheta.$ However, a 'good' point estimator should meet certain requirements.

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Basic Terminology

Sample Moments and Sampl

Normally Distributed Data

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the FM Algorithm

Definition (Bias)

A point estimator T for the parameter ϑ is called **unbiased** if for all values of ϑ :

$$\mathsf{E}_{\vartheta}[T] = \vartheta$$

T is called **asymptotically unbiased** if:

$$\lim_{n\to\infty} \mathsf{E}_{\vartheta}[T] = \vartheta$$

- If the unknown parameter is ϑ , then the expectation of the point estimator is equal to ϑ .
- An unbiased point estimator has random deviations from the true value ϑ , but no systematic bias.

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Basic Terminology

Sample Moments and Sampl

Normally Distributed Data

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli an Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Definition (MSE)

The **mean squared error (MSE)** of a point estimator T for parameter ϑ is defined by:

$$\mathsf{MSE}[T] = \mathsf{E}_{\vartheta}[(T - \vartheta)^2]$$

Definition (MSE-consistency)

A point estimate T for parameter ϑ is called **mean squared** error consistent (MSE-consistent) if:

$$\lim_{n\to\infty}\mathsf{MSE}[T]=0$$

Statistical Methods of Data Analysis

W. Waltenbergei

Point Estimators

Basic Terminology

Sample Moments and Sampl

Normally Distributed Data

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli an Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Definition (MSE-efficiency)

A point estimator T_1 is called more **MSE-efficient** than the point estimator T_2 if for all allowed ϑ :

$$\mathsf{MSE}[T_1] \leq \mathsf{MSE}[T_2]$$

Definition (Efficiency)

An unbiased point estimator T_1 is called **efficient** than the unbiased point estimator T_2 if for all possible ϑ :

$$var[T_1] \leq var[T_2]$$

An unbiased point estimator T is called **efficient** if its variance is minimal.

Basic Terminology

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Basic Terminology

Sample Moments and Sample

Normally Distribute Data

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli as Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Definition (Fisher Information)

Let X_1, \ldots, X_n be a sample with a joint density $g(x_1, \ldots, x_n | \vartheta)$. The expectation

$$I_{\vartheta} = \mathsf{E}\left[-\frac{\partial^2 \ln g(X_1, \dots, X_n | \vartheta)}{\partial \vartheta^2}\right]$$

is called the Fisher information of the sample.

Theorem of Rao and Cramèr

Let X_1, \ldots, X_n be a sample with joint density $g(x_1, \ldots, x_n | \vartheta)$. The variance of an unbiased estimator T for the parameter ϑ is bounded from below by:

$$\mathrm{var}[T] \geq 1/I_{\vartheta}$$

Subsection: Sample Moments and Sample Median

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Basic Terminology

Sample Moments and Sample Median

Data

Exponentially Distribute Data

Poisson Distributed Data

Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

- Point Estimators
 - Basic Terminology
 - Sample Moments and Sample Median
- 12 Normally Distributed Data
- Exponentially Distributed Data
- 14 Poisson Distributed Data
- 15 Data from Bernoulli and Drawing Experiments
- 16 Maximum Likelihood Estimator
- Mixture Models and the EM Algorithm

Sample Moments and Sample Median

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminology
Sample Moments and Sample

Normally Distributed Data

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli an Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Theorem

- Let X_1,\ldots,X_n be a sample from the distribution F with expectation $\mu.$ Then the sample mean \overline{X} is an unbiased point estimator of $\mu.$
- If F has finite variance σ^2 , then:

$$\mathrm{var}(\overline{X}) = \frac{\sigma^2}{n}$$

• In this case, \overline{X} is MSE-consistent.

Sample Moments and Sample Median

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Basic Terminology

Sample Moments and Sample

Normally Distributed Data

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli ar Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Theorem

- Let X_1, \ldots, X_n be a sample from the distribution F with expectation μ and variance σ^2 . Then the sample variance S^2 is an unbiased point estimator of σ^2 .
- If F has a finite fourth central moment μ_4 , then:

$$\operatorname{var}(S^2) = \frac{\mu_4}{n} - \frac{(n-3)\sigma^4}{n(n-1)}$$

• In this case S^2 is MSE-consistent.

Sample Moments and Sample Median

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Basic Terminology

Sample Moments and Sample

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli a Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Theorem

- Let X_1, \ldots, X_n be a sample from the continuous distribution F with median m and density f. Then the sample median \tilde{X} is an asymptotically unbiased point estimator of m.
- ullet For symmetric F, \tilde{X} is unbiased.
- \bullet Asymptotically, the sample median \tilde{X} has a variance

$$\mathrm{var}(\tilde{X}) \approx \frac{1}{4nf(m)^2}$$

ullet The sample median is MSE-consistent provided that f(m)>0.

Section 12: Normally Distributed Data

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Normally Distributed Data

The Gauß or Norma Distribution

Estimate of the Mean
Estimate of the Variance

Exponentially Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm Point Estimators

- Normally Distributed Data
 - The Gauß or Normal Distribution
 - Estimate of the Mean
 - Estimate of the Variance
 - Estimate of the Median
- Exponentially Distributed Data
- 14 Poisson Distributed Data
- 15 Data from Bernoulli and Drawing Experiments
- 16 Maximum Likelihood Estimator

Subsection: The Gauß or Normal Distribution

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distribute

The Gauß or Normal Distribution

Estimate of the Mean
Estimate of the Variance
Estimate of the Median

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

- Point Estimators
- Normally Distributed Data
 - The Gauß or Normal Distribution
 - Estimate of the Mean
 - Estimate of the Variance
 - Estimate of the Median
- Exponentially Distributed Data
- 14 Poisson Distributed Data
- 15 Data from Bernoulli and Drawing Experiments
- 16 Maximum Likelihood Estimator

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distribute

The Gauß or Normal

Estimate of the Mean
Estimate of the Variance
Estimate of the Median

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

The Normal Distribution $No(\mu, \sigma^2)$

- The normal distribution is one of the most important families of distributions in science and engineering. We denote it by $\mathrm{No}(\mu,\sigma^2)$.
- Its density is:

$$f_{\text{No}}(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- The normal distribution with $\mu=0$, $\sigma=1$ is called **standard normal distribution**. Its density is often denoted as $\varphi(x)$.
- ullet Its distribution function $\Phi(x)$ can not be written in closed form.
- The mode M (the maximum of the density function) and the median m are at $x=\mu$.

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distribute

The Gauß or Normal Distribution

Estimate of the Mean Estimate of the Variance Estimate of the Median

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihoo Estimator

Mixture Models and the EM Algorithm

The moments and CF of the normal distribution

Let $X \sim \text{No}(\mu, \sigma^2)$. Then:

- $\bullet \ \mathsf{E}[X] = \mu$
- $\bullet \ \operatorname{var}[X] = \sigma^2$
- $\kappa[X] = 3$
- \bullet The α quantile of the standard normal distribution is denoted by $z_{\alpha}.$
- The α quantile of $No(\mu, \sigma^2)$ is equal to $\mu + \sigma z_{\alpha}$.

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Normally Distributed Data

The Gauß or Normal

Estimate of the Mean
Estimate of the Variance
Estimate of the Median

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Statistical Methods of Data Analysis

W. Waltenbergei

Point Estimators

Normally Distribute

The Gauß or Normal Distribution

Estimate of the Mean
Estimate of the Variance
Estimate of the Median

Exponentially Distributed Data

Poisson Distributed Dat

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

four normal distributions (density functions)

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Normally Distribute Data

The Gauß or Normal

Estimate of the Mean
Estimate of the Variance

Exponentially Distributed Data

Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

four normal distributions (distribution functions)

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distribute

The Gauß or Normal Distribution

Estimate of the Mean
Estimate of the Variance
Estimate of the Median

Exponentially Distributed Data

Data Division I Division

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm One of the reasons for why the normal distribution is so important, is the central limit theorem. In its simplest formulation it reads:

Central Limit Theorem

Let X_1, \ldots, X_n be a sample from the distribution F with mean μ and variance σ^2 . Then the distribution of

$$U_n = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

for $n \to \infty$ converges to the standard normal distribution.

• Clearly, if F is a normal distribution, then U_n is exactly standard normally distributed for all n.

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distribute

The Gauß or Normal Distribution

Estimate of the Mean
Estimate of the Variance
Estimate of the Median

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihoo Estimator

Mixture Models and the EM Algorithm

Definition (Standard Score)

Let X be a normally distributed random variable with mean μ and variance $\sigma^2.$ Then

$$Z = \frac{X - \mu}{\sigma}$$

is the **standard score** of X.

Theorem

If X is normally distributed, then the standard score Z is standard-normally distributed.

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distribute

The Gauß or Normal Distribution

Estimate of the Mean
Estimate of the Variance
Estimate of the Median

Exponentially Distributed Data

Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Probability contents of the standard normal distribution

$$P(-1 \le X \le 1)$$

Statistical Methods of Data Analysis

N. Waltenberge

Point Estimator

Normally Distributed

The Gauß or Normal Distribution

Estimate of the Mean
Estimate of the Variance
Estimate of the Median

Exponentially Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Probability contents of the standard normal distribution

$$P(-2 \le X \le 2)$$

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distribute

The Gauß or Normal Distribution

Estimate of the Mean
Estimate of the Variance

Exponentially Distributed Data

Poisson Distributed Dat

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Probability contents of the standard normal distribution

$$P(-3 \le X \le 3)$$

Statistical Methods of Data Analysis

W. Waltenbergei

Point Estimator

Normally Distributed

The Gauß or Normal

Estimate of the Mean
Estimate of the Variance

Exponentially Distributed Data

Poisson Distributed Da

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Fisher information of a normally distributed variable

Let X_1, \ldots, X_n be a sample from the normal distribution $\operatorname{No}(\mu, \sigma^2)$. Then:

$$\bullet \ I_{\mu} = \frac{n}{\sigma^2}$$

$$I_{\sigma^2} = \frac{n}{2\sigma^4}$$

Subsection: Estimate of the Mean

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Normally Distributed Data

Distribution

Distribution

Estimate of the Variance

Exponentially Distributed Data

Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

- Point Estimators
- Normally Distributed Data
 - The Gauß or Normal Distribution
 - Estimate of the Mean
 - Estimate of the Variance
 - Estimate of the Median
- Exponentially Distributed Data
- 14 Poisson Distributed Data
- 15 Data from Bernoulli and Drawing Experiments
- 16 Maximum Likelihood Estimator

Statistical Methods of Data Analysis

.

Point Estimator

Normally Distributed

The Gauß or Norm

Estimate of the Mean
Estimate of the Variance

Exponentially Distributed

Poisson Distributed Dat

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Theorem

Let X_1, \ldots, X_n be a sample from the normal distribution $\operatorname{No}(\mu, \sigma^2)$ and \overline{X} be the sample mean. Then:

- \overline{X} is normally distributed according to $No(\mu, \sigma^2/n)$.
- ullet \overline{X} is an unbiased and consistent estimator of μ .
- \bullet \overline{X} is efficient.

Subsection: Estimate of the Variance

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Normally Distribute

Distribution

Estimate of the Mean
Estimate of the Variance

Estimate of the Median

Data

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm Point Estimators

- Normally Distributed Data
 - The Gauß or Normal Distribution
 - Estimate of the Mean
 - Estimate of the Variance
 - Estimate of the Median
- Exponentially Distributed Data
- 14 Poisson Distributed Data
- 15 Data from Bernoulli and Drawing Experiments
- 16 Maximum Likelihood Estimator

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distribute Data

Distribution
Estimate of the Mean
Estimate of the Variance

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Theorem

Let X_1, \ldots, X_n be a sample from the normal distribution $\operatorname{No}(\mu, \sigma^2)$ and S^2 be the sample variance. Then:

- $(n-1)S^2/\sigma^2$ is χ^2 -distributed with n-1 degrees of freedom.
 - $\bullet \ \mathsf{E}[S^2] = \sigma^2$
- S^2 is an unbiased and consistent estimator of σ^2 .
- \bullet S^2 is asymptotically efficient.

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distribute

The Gauß or Normal Distribution

Estimate of the Variance
Estimate of the Median

Exponentially Distributed Data

Poisson Distributed Dat

Data from Bernoulli and Drawing Experiments

Maximum Likelihoo Estimator

Mixture Models and the EM Algorithm

Digression: The χ^2 distribution $\chi^2(n)$

 \bullet The density of the $\chi^2(n)$ distribution with n degrees of freedom is:

$$f_{\chi^2}(x;n) = \frac{1}{2^{n/2}\Gamma(\frac{n}{2})} \, x^{n/2-1} e^{-x/2} \cdot I_{[0,\infty)}(x)$$

- It is the gamma distribution Ga(n/2, 2).
- The $\chi^2(2)$ distribution is the exponential distribution Ex(2).
- The mode of the density is at $x = \max(n-2,0)$.
- The density of the $\chi^2(1)$ distribution has a pole at x=0.
- For $n \to \infty$, the $\chi^2(n)$ distribution converges to the normal distribution $\operatorname{No}(n,2n)$.
- If X_1,\ldots,X_n are independent and standard normally distributed, then $Y=\sum_{i=1}^n X_i^2$ is $\chi^2(n)$ -distributed with n degrees of freedom.

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Normally Distribute Data

Distribution

Estimate of the Variance

Estimate of the Variano
Estimate of the Median

Data Distributed

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimator

Normally Distribute

The Gauß or Norma

Estimate of the Mear

Estimate of the Variance

Estimate of the Median

Data

1 0133011 D13t11Dutcu Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihoo Estimator

Mixture Models and the EM Algorithm

The moments of the $\chi^2(n)$ distribution

Let $X \sim \chi^2(n)$. Then:

- \bullet $\mathsf{E}[X] = n$
- $\bullet \ \operatorname{var}[X] = 2n$
- $\bullet \gamma[X] = \sqrt{8/n}$
- $\kappa[X] = 3 + 12/n$
- \bullet The α quantile of the $\chi^2(n)$ distribution is denoted by $\chi^2_{\alpha;n}.$

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distribute

The Gauß or Normal
Distribution
Estimate of the Mean
Estimate of the Variance

Exponentially Distributed Data

Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihoo Estimator

Mixture Models and the EM Algorithm

Digression: The gamma distribution Ga(a, b)

• The density of the gamma distribution is:

$$f_{\text{Ga}}(x; a, b) = \frac{x^{a-1}e^{-x/b}}{b^a\Gamma(a)} \cdot I_{[0,\infty)}(x)$$

 Its distribution function is the regularized incomplete gamma function:

$$F_{Ga}(x; a, b) = \int_0^x \frac{t^{a-1}e^{-t/b}}{b^a\Gamma(a)} dt = \frac{\gamma(a, x/b)}{\Gamma(a)}$$

- The mode M is at m=(a-1)b when $a\geq 1$.
- The α quantile of the $\mathrm{Ga}(a,b)$ distribution is denoted by $\gamma_{\alpha;a,b}$.

Statistical Methods of Data Analysis

V. Waltenberger

Point Estimators

Normally Distribute

The Gauß or Norma Distribution

Estimate of the Mean
Estimate of the Variance

Exponentially Distributed

Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihoo Estimator

Mixture Models and the EM Algorithm

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distribute

The Gauß or Normal Distribution

Estimate of the Variance

Exponentially Distributed

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

The moments of the Ga(a, b) distribution

With $X \sim \operatorname{Ga}(a, b)$:

- $\bullet \ \mathsf{E}[X] = ab$
- $\operatorname{var}[X] = ab^2$
- $\bullet \gamma[X] = 2/\sqrt{a}$
- $\kappa[X] = 3 + 6/a$

Other properties of the Ga(a, b) distribution

- If $X \sim \operatorname{Ga}(a,b)$, then $cX \sim \operatorname{Ga}(a,cb)$
- $\bullet \ \gamma_{\alpha;a,b} = b \, \gamma_{\alpha;a,1}$
- If $X_1 \sim \operatorname{Ga}(a_1, b)$ and $X_2 \sim \operatorname{Ga}(a_2, b)$ are independent, $Y = X_1 + X_2 \sim \operatorname{Ga}(a_1 + a_2, b)$

Subsection: Estimate of the Median

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distribute

The Gauß or Norma Distribution

Estimate of the Varian

Estimate of the Median

Exponentially Distributed Data

r olason Bistribatea Batt

Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

- Point Estimators
- Normally Distributed Data
 - The Gauß or Normal Distribution
 - Estimate of the Mean
 - Estimate of the Variance
 - Estimate of the Median
- Exponentially Distributed Data
- 14 Poisson Distributed Data
- 15 Data from Bernoulli and Drawing Experiments
- 16 Maximum Likelihood Estimator

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distributed Data

The Gauß or Normal Distribution Estimate of the Mean Estimate of the Variance Estimate of the Median

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Theorem

Let X_1, \ldots, X_n be a sample from the normal distribution $\operatorname{No}(\mu, \sigma^2)$ and \tilde{X} be the sample median. Then:

$$\bullet \ \mathsf{E}[\tilde{X}] = \mu$$

$$\bullet \ \mathrm{var}[\tilde{X}] \approx \frac{2 \, \pi \sigma^2}{4 \, n} \approx 1.57 \cdot \frac{\sigma^2}{n}$$

Thus, for large n, the variance of \tilde{X} is more than 50 percent larger than the variance of \overline{X} .

 However, there are distributions for which the sample median has a smaller variance than the sample mean, as shown in the following example.

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distribute

The Gauß or Norma Distribution

Estimate of the Mean
Estimate of the Variance
Estimate of the Median

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Digression: The t distribution t(n)

 \bullet The density of the ${\bf t}(n)$ distribution with n degrees of freedom is:

$$f_{\rm t}(x;n) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi} \Gamma(\frac{n}{2})} \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2}$$

- The t(1) distribution is also called the Cauchy or (in particle physics) Breit–Wigner distribution.
- The k-th moment μ_k exists only for k < n.
- For $n \to \infty$, the t(n) distribution converges to the standard normal distribution.

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Normally Distribute

The Gauß or Normal

Estimate of the Mean

Estimate of the Variance

Estimate of the Median

Data Data

Data from Bernoulli and

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Normally Distributed

The Gauß or Normal Distribution

Estimate of the Mean

Estimate of the Median

Estimate of the iviedial

Data Distributed

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

The moments of the t(n) distribution

Let $X \sim \operatorname{t}(n)$. Then:

•
$$E[X] = 0, \quad n > 1$$

$$\bullet \ \operatorname{var}[X] = \frac{n}{n-2}, \quad n > 2$$

•
$$\gamma[X] = 0, \quad n > 3$$

•
$$\kappa[X] = \frac{3n-6}{n-4}, \quad n > 4$$

• The α quantile of the t(n) distribution is denoted by $t_{\alpha;n}$.

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Normally Distributed

The Gauß or Norma

Estimate of the Mea

Estimate of the Varianc

Estimate of the Median

Data

Poisson Distributed Dat

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Example

Let X_1,\dots,X_n be a sample from the t distribution t(3). The variance of \overline{X} is equal to.

$$\mathrm{var}(\overline{X}) = \frac{3}{n}$$

The variance of \tilde{X} for large n is equal to

$$\mathrm{var}(\tilde{X}) = \frac{1}{4 \, n f(0)^2} = \frac{1.8506}{n} \approx 0.62 \cdot \frac{3}{n}$$

Thus, it is almost 40 percent smaller than the variance of \overline{X} .

Section 13: Exponentially Distributed Data

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Normally Distributed Data

Exponentially Distributed Data

The Exponential Distributio
Estimate of the Mean

Poisson Distributed Data

Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

- Point Estimators
- Normally Distributed Data
- Exponentially Distributed Data
 - The Exponential Distribution
 - Estimate of the Mean
- Poisson Distributed Data
- 15 Data from Bernoulli and Drawing Experiments
- 16 Maximum Likelihood Estimator
- Mixture Models and the EM Algorithm

Subsection: The Exponential Distribution

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Normally Distributed

Exponentially Distributed Data

The Exponential Distribution
Estimate of the Mean

Poisson Distributed Data

Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

- Point Estimators
- 12 Normally Distributed Data
- Exponentially Distributed Data
 - The Exponential Distribution
 - Estimate of the Mean
- Poisson Distributed Data
- 15 Data from Bernoulli and Drawing Experiments
- 16 Maximum Likelihood Estimator
- Mixture Models and the EM Algorithm

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distributed

Exponentially Distributed Data

The Exponential Distribution
Estimate of the Mean

Poisson Distributed Data

Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

The Exponential Distribution $Ex(\tau)$

- The exponential or waiting time distribution is an important family of distributions in science and engineering. We denote it by $\mathrm{Ex}(\tau)$.
- Its density is:

$$f_{\rm Ex}(x;\tau) = \frac{1}{\tau} e^{-x/\tau}$$

Its distribution function is:

$$F_{\rm Ex}(x;\tau) = 1 - e^{-x/\tau}$$

- The exponential distribution is a special case of the **gamma** distribution: $Ex(\tau)$ is equal to $Ga(1, \tau)$.
- The mode M is at x=0.

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Normally Distributed

Exponentially Distribute Data

The Exponential Distribution

Poisson Distributed Data

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the

Statistical Methods of Data Analysis

vv. vvaltenberg

Point Estimator

Normally Distributed

Data
The Exponential Distribution

The Exponential Distribution Estimate of the Mean

Data from Removalli and

Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm • The α quantile of the exponential distribution $\operatorname{Ex}(\tau)$ is:

$$\gamma_{\alpha;1,\tau} = -\tau \ln(1-\alpha)$$

- Consequently, the median of the distribution is at $x = \tau \ln 2$.
- The exponential distribution is the distribution of a waiting time without memory: The distribution is independent of the time at which the timing starts.
- This behavior is typical for physical processes like the radioactive decay of an atom or the decay of an unstable elementary particle.

Statistical Methods of Data Analysis

vv. vvaitenberg

Point Estimators

Normally Distributed

Exponentially Distribute

The Exponential Distribution
Estimate of the Mean

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

The moments of the exponential distribution

Let $X \sim \operatorname{Ex}(\tau)$. Then:

- $\mathsf{E}[X] = \tau$
- $\bullet \ \operatorname{var}[X] = \tau^2$
- $\gamma[X] = 2$
- $\bullet \ \kappa[X] = 9$

Fisher information of an exponentially distributed sample

Let X_1, \ldots, X_n be a sample from the exponential distribution $\operatorname{Ex}(\tau)$. Then:

$$I_{\tau} = \frac{n}{\tau^2}$$

Subsection: Estimate of the Mean

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Normally Distributed

Exponentially Distribute

The Exponential Distributio

Poisson Distributed Data

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Point Estimators

- 12 Normally Distributed Data
- Exponentially Distributed Data
 - The Exponential Distribution
 - Estimate of the Mean
- Poisson Distributed Data
- 15 Data from Bernoulli and Drawing Experiments
- 16 Maximum Likelihood Estimator
- Mixture Models and the EM Algorithm

Estimate of the Mean

Statistical Methods of Data Analysis

vv. vvaltenberg

Point Estimator

Normally Distributed

Exponentially Distributed Data

The Exponential Distribution

Poisson Distributed Data

Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Theorem

Let X_1, \ldots, X_n be a sample from the exponential distribution $\operatorname{Ex}(\tau)$ and \overline{X} be the sample mean. Then:

- \overline{X} is gamma distributed according to $Ga(n, \tau/n)$.
- ullet \overline{X} is an unbiased and consistent estimator of au.
- \bullet \overline{X} is efficient.
- \overline{X} is asymptotically normally distributed with mean $\mu=\tau$ and variance $\sigma^2=\tau^2/n$.

Section 14: Poisson Distributed Data

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

Estimation of the Mean

Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the

- Point Estimators
- 12 Normally Distributed Data
- Exponentially Distributed Data
- 1 Poisson Distributed Data
 - The Poisson Process
 - Estimation of the Mean
- Data from Bernoulli and Drawing Experiments
- 16 Maximum Likelihood Estimator
- Mixture Models and the EM Algorithm

Subsection: The Poisson Process

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Normally Distribute

Exponentially Distributed Data

Poisson Distributed Dat

The Poisson Process

ata from Bernoulli and

Maximum Likelihood

Mixture Models and the

- Point Estimators
- 12 Normally Distributed Data
- Exponentially Distributed Data
- 14 Poisson Distributed Data
 - The Poisson Process
 - Estimation of the Mean
- Data from Bernoulli and Drawing Experiments
- 16 Maximum Likelihood Estimator
- Mixture Models and the EM Algorithm

Statistical Methods of Data Analysis

Point Estimator

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data
The Poisson Process

Estimation of the Mean

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

- We observe a process in which certain events occur at random times.
- If the waiting times between events are independent and exponentially distributed with mean τ , we speak of a **Poisson process** with intensity $\lambda=1/\tau$.
- The number X of events per time unit is then independent and **Poisson-distributed** according to $Po(\lambda)$.
- Conversely, if the number X of events per unit time is independent and Poisson-distributed according to $\operatorname{Po}(\lambda)$, then the waiting times are exponentially distributed with mean $\tau=1/\lambda$.
- In a Poisson process of intensity λ , the number of events per time interval of length T is again Poisson distributed according to $\operatorname{Po}(\lambda T)$.
- The sum of two Poisson processes is again a Poisson process. Its intensity is the sum of the intensities of the summands.

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimator

Normally Distributed Data

Exponentially Distributed Data

Poisson Distributed Data
The Poisson Process
Estimation of the Mean

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Examples of Poisson processes

- The number of decays per unit time in a (large) radioactive source.
- The number of particles per unit time in cosmic radiation.
- The number of pixel errors on a LCD display.
- The number of rare events per time unit (insurance claims, suicides, accidents).

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data The Poisson Process

Estimation of the Mean

Maximum Likelihood

Mixture Models and the

The Poisson distribution $Po(\lambda)$

• The density of the Poisson distribution is:

$$f_{\text{Po}}(k;\lambda) = \frac{\lambda^k}{k!} \cdot e^{-\lambda}, \quad k \in \mathbb{N}_0$$

ullet The mode M is equal to

$$M = \begin{cases} \lfloor \lambda \rfloor, & \text{if } \lambda \notin \mathbb{N} \\ \lambda \text{ and } \lambda - 1, & \text{if } \lambda \in \mathbb{N} \\ 0, & \text{if } \lambda = 0 \end{cases}$$

• The distribution function can be expressed by the distribution function of the gamma distribution Ga(k + 1, 1):

$$F_{Po}(k; \lambda) = 1 - F_{Ga}(\lambda; k + 1, 1)$$

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Normally Distributed Data

Exponentially Distribute
Data

Poisson Distributed Data

The Poisson Process

Estimation of the Mean

Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Statistical Methods of Data Analysis

W. Waltenbergei

Point Estimators

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Dat

The Poisson Process

Estimation of the Mean

Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

The moments of the Poisson distribution

let $X \sim Po(\lambda)$. Then:

- $E[X] = \lambda$
- $var[X] = \lambda$
- $\gamma[X] = 1/\sqrt{\lambda}$
- $\kappa[X] = 3 + 1/\lambda$

Fisher information of a Poisson distributed sample

Let X_1, \ldots, X_n be a sample from the Poisson distribution $Po(\lambda)$.

$$I_{\lambda} = \frac{n}{\lambda}$$

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distributed Data

Exponentially Distribute Data

Poisson Distributed Data
The Poisson Process
Estimation of the Mean

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the

The Poisson distribution for large λ

- A random variable distributed according to $Po(\lambda)$ can be represented as a sum of λ Po(1)-distributed random variables.
- Therefore, according to the central limit theorem, the Poisson distribution for $\lambda \to \infty$ must tend toward a normal distribution.
- The following figure shows the distribution function of the Poisson distribution $Po(\lambda)$ with $\lambda=25$, and the distribution function of the normal distribution $No(\mu,\sigma^2)$ with $\mu=\lambda=25$ and $\sigma^2=\lambda=25$.

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

The Poisson Process

Maximum Likelihood

Mixture Models and the

Subsection: Estimation of the Mean

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimator

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Data The Poisson Process

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

- Point Estimators
- Normally Distributed Data
- Exponentially Distributed Data
- Poisson Distributed Data
 - The Poisson Process
 - Estimation of the Mean
- 15 Data from Bernoulli and Drawing Experiments
- 16 Maximum Likelihood Estimator
- Mixture Models and the EM Algorithm

Estimation of the Mean

Statistical Methods of Data Analysis

vv. vvaitemberg

Point Estimator

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Data
The Poisson Process
Estimation of the Mean

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Theorem

Let X_1, \ldots, X_n be a sample from the Poisson distribution $\operatorname{Po}(\lambda)$ and \overline{X} be the sample mean. Then:

- \bullet \overline{X} is an unbiased and consistent estimator of λ .
- \bullet \overline{X} is efficient.
- \overline{X} is asymptotically normally distributed with mean $\mu=\lambda$ and variance $\sigma^2=\lambda/n$.

Section 15: Data from Bernoulli and Drawing Experiments

Statistical Methods of Data Analysis

V. Waltenberge

Point Estimators

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Dat

Data from Bernoulli and Drawing Experiments

Experiments
Estimation of Probability of

ampling Experiments

Maximum Likelihood Estimator

Mixture Models and th EM Algorithm Point Estimators

12 Normally Distributed Data

Exponentially Distributed Data

14 Poisson Distributed Data

15 Data from Bernoulli and Drawing Experiments

- Repeating Bernoulli Experiments
- Estimation of Probability of Success
- Sampling Experiments
- 16 Maximum Likelihood Estimator
 - Mixture Models and the EM Algorithm

Subsection: Repeating Bernoulli Experiments

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Normally Distributed Data

Data Distributed

Poisson Distributed Dat

Data from Bernoulli an Drawing Experiments

Repeating Bernoulli Experiments

Estimation of Probability o Success Sampling Experiments

Maximum Likelihood Estimator

Mixture Models and th EM Algorithm

- Point Estimators
- Normally Distributed Data
- Exponentially Distributed Data
- 14 Poisson Distributed Data
- 15 Data from Bernoulli and Drawing Experiments
 - Repeating Bernoulli Experiments
 - Estimation of Probability of Success
 - Sampling Experiments
- 16 Maximum Likelihood Estimator
- Mixture Models and the FM Algorithm

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Repeating Bernoulli Experiments

Estimation of Probability o

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

The alternative or Bernoulli distribution Al(p)

- A Bernoulli experiment or alternative experiment has two possible outcomes, "success" and "failure" respectively.
- \bullet The random variable X assigns the value 1 to success and 0 to failure.
- If p is the probability of success, the density $f_{\rm Al}(x;p)$ is as follows:

$$f_{Al}(0;p) = 1 - p, \ f_{Al}(1;p) = p$$

or

$$f_{Al}(x;p) = p^x (1-p)^{1-x}, \quad x \in \{0,1\}$$

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments Repeating Bernoulli

Experiments
Estimation of Probability o
Success

Maximum Likelihood Estimator

Mixture Models and th EM Algorithm

- If the alternative test is performed n times independently, there are 2^n possible outcomes, namely all sequences of the form $e=(i_1,\ldots,i_n), \quad i_j\in\{0,1\}.$
- ullet The discrete random variable Y maps the sequence e to the frequency of 1:

$$Y(\boldsymbol{e}) = \sum_{j=1}^{n} i_j$$

• The range of values of Y is the set $\{0,1,\ldots,n\}$. Mapped to the number k $(0 \le k \le n)$ are all sequences where 1 occurs exactly k times. There are C_k^n such sequences, and each has probability $p^k(1-p)^{n-k}$.

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimator

Normally Distributed

Exponentially Distribute

Poisson Distributed Dat

Data from Bernoulli and Drawing Experiments

Repeating Bernoulli Experiments

Estimation of Probability o Success Sampling Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

The binomial distribution Bi(n, p)

ullet Therefore, the density f of Y is:

$$f_{\text{Bi}}(k; p, n) = \binom{n}{k} p^k (1-p)^{n-k}, \ 0 \le k \le n$$

- The distribution of Y is called **binomial distribution** $\mathrm{Bi}(n,p)$ with parameters n and p.
- The following holds:

$$\sum_{k=0}^{n} f_{Bi}(k; p, n) = \sum_{k=0}^{n} \binom{n}{k} p^{k} (1-p)^{n-k} = 1$$

This is just the binomial theorem.

Statistical Methods of Data Analysis

N. Waltenberger

Point Estimators

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Repeating Bernoulli Experiments

Estimation of Probability o Success

Sampling Experiment

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Statistical Methods of Data Analysis

vv. vvaltelibei

Point Estimator

Normally Distribute

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli an Drawing Experiments

Repeating Bernoulli Experiments

Estimation of Probability o Success Sampling Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm ullet The mode M is equal to

$$M = \begin{cases} \lfloor (n+1)p \rfloor, & \text{if } p = 0 \text{ or } (n+1)p \notin \mathbb{N} \\ (n+1)p \text{ and} \\ (n+1)p - 1, & \text{if } (n+1)p \in \{1,\dots,n\} \\ n, & \text{if } p = 1 \end{cases}$$

• The distribution function can be expressed by the distribution function of the beta distribution Be(x; n-k, k+1):

$$F_{\text{Bi}}(k; n, p) = F_{\text{Be}}(1 - p; n - k, k + 1)$$

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimato

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Repeating Bernoulli Experiments

Estimation of Probability of Success

Marrian I Haliba

Mixture Models and the EM Algorithm

Digression: The beta distribution Be(a, b)

• The density of the beta distribution is:

$$f_{\text{Be}}(x; a, b) = \frac{x^{a-1}(1-x)^{b-1}}{B(a, b)} \cdot I_{[0,1]}(x)$$

 Its distribution function is the regularized incomplete beta function:

$$F_{\text{Be}}(x; a, b) = \int_0^x \frac{t^{a-1}(1-t)^{b-1}}{B(a, b)} dt$$

• The mode M is at x = (a-1)/(a+b-2) when a, b > 1.

Statistical Methods of Data Analysis

vv. vvaltenberg

Point Estimator

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Dat

Data from Bernoulli and Drawing Experiments

Repeating Bernoulli Experiments

Estimation of Probability o Success

Sampling Experimen

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

The moments of the Be(a, b) distribution

let $X \sim \text{Be}(a, b)$. Then:

$$\bullet \ \mathsf{E}[X] = \frac{a}{a+b}$$

$$\bullet \ \operatorname{var}[X] = \frac{ab}{(a+b)^2(a+b+1)}$$

•
$$\kappa[X] = \frac{6(a-b)^2 + 3ab(a+b+2)}{ab(a+b+2)(a+b+3)}$$

• The α quantile of the $\mathrm{Be}(a,b)$ distribution is denoted by $\beta_{\alpha;a,b}$.

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Dat

Data from Bernoulli and Drawing Experiments

Repeating Bernoulli Experiments

Estimation of Probability o Success

Sampling Experimen

Maximum Likelihood Estimator

Mixture Models and th EM Algorithm

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimator

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Repeating Bernoulli Experiments

Estimation of Probability of Success

Sampling Experiments

Estimator

Mixture Models and the EM Algorithm

The moments of the binomial distribution

Let $X \sim \text{Bi}(n, p)$. Then:

- E[X] = np
- $\operatorname{var}[X] = np(1-p)$
- $\kappa[X] = 3 \frac{6}{n} + \frac{1}{np(1-p)}$

Fisher information of a binomial distributed observation

Let X be an observation from the binomial distribution $\mathrm{Bi}(n,p)$. Then:

$$I_p = \frac{n}{p(1-p)}$$

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distributed Data

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments Repeating Bernoulli Experiments

Estimation of Probability o Success

Maximum Likelihoo Estimator

Mixture Models and the EM Algorithm

The Binomial Distribution for Large n

- A random variable distributed according to $\mathrm{Bi}(n,p)$ can be represented as a sum of n Bernoulli distributed random variables.
- Therefore, according to the central limit theorem, the binomial distribution for $n\to\infty$ and fixed p must tend toward a normal distribution.
- The following figure shows the distribution function of the binomial distribution $\mathrm{Bi}(n,p)$ with n=200 and p=0.1, and the distribution function of the normal distribution $\mathrm{No}(\mu,\sigma^2)$ with $\mu=np=20$ and $\sigma^2=np(1-p)=18$.

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Repeating Bernoulli Experiments

Estimation of Probability of Success

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimator

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Dat

Data from Bernoulli and Drawing Experiments Repeating Bernoulli

Experiments
Estimation of Probabilit

Sampling Experiment

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

The binomial distribution for large n and $p = \lambda/n$

• In the limit $n \to \infty$ and $p = \lambda/n \to 0$ the binomial distribution $\mathrm{Bi}(n,p)$ tends to the Poisson distribution $\mathrm{Po}(\lambda)$:

$$\lim_{n \to \infty} \binom{n}{k} (\lambda/n)^k (1 - \lambda/n)^{n-k} = \frac{\lambda^k}{k!} \cdot e^{-\lambda}$$

ullet Thus, if the number of trials n is increased and the probability of success is decreased in inverse proportion, the number of successes is asymptotically Poisson distributed.

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Normally Distribute

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Repeating Bernoulli Experiments

Estimation of Probability o Success

Maximum Likelihood Estimator

Mixture Models and the

Subsection: Estimation of Probability of Success

Statistical Methods of Data Analysis

N. Waltenberge

Point Estimators

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Dat

Data from Bernoulli and Drawing Experiments Repeating Bernoulli

Estimation of Probability of Success

Sampling Experiment

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

- Point Estimators
- 12 Normally Distributed Data
- Exponentially Distributed Data
- Poisson Distributed Data
- 15 Data from Bernoulli and Drawing Experiments
 - Repeating Bernoulli Experiments
 - Estimation of Probability of Success
 - Sampling Experiments
- 16 Maximum Likelihood Estimator
- Mixture Models and the FM Algorithm

Estimation of Probability of Success

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimator

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Estimation of Probability of Success

Sampling Experimen

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Theorem

Let k be an observation from the binomial distribution $\mathrm{Bi}(n,p)$. Then:

- $\hat{p} = k/n$ is an unbiased estimator of p.
- \hat{p} is efficient.
- \hat{p} is asymptotically normally distributed with mean $\mu=p$ and variance $\sigma^2=p(1-p)/n$.

Subsection: Sampling Experiments

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distributed Data

Exponentially Distributed Data

Poisson Distributed Dat

Data from Bernoulli an Drawing Experiments Repeating Bernoulli

Experiments Estimation of Probability o

Sampling Experiments

Maximum Likelihood Estimator

Mixture Models and th EM Algorithm

- Point Estimators
- 12 Normally Distributed Data
- Exponentially Distributed Data
- 14 Poisson Distributed Data
- 15 Data from Bernoulli and Drawing Experiments
 - Repeating Bernoulli Experiments
 - Estimation of Probability of Success
 - Sampling Experiments
- 16 Maximum Likelihood Estimator
- Mixture Models and the FM Algorithm

Sampling Experiments

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments Repeating Bernoulli Experiments Estimation of Probability of Success

Sampling Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Drawing and Placing Back

- ullet Given a population of N objects, of which M objects exhibit a certain **property** E.
- n objects are drawn, each object having the same probability of being drawn.
- Each object drawn is immediately put back.
- ullet The number of objects drawn exhibiting feature E is a random variable X.
- X is then **binomially distributed** according to Bi(n, M/N).
- If N and M are much larger than n, X is binomially distributed to a good approximation even if drawn objects are **not** put back.
- ullet An example of this is a survey in which the sample size n is much smaller than N and M.

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments Repeating Bernoulli Experiments

Estimation of Probability o Success Sampling Experiments

Maximum Likelihood

Mixture Models and the EM Algorithm

Pulling without Putting Back

- ullet Population of N objects, of which M objects exhibit **feature** E.
- n objects are drawn, each object having the same probability of being drawn.
- Once drawn, objects are **not** put back.
- ullet The number of objects with feature E is a random variable X.
- The distribution of X is called a **hypergeometric distribution** $\mathrm{Hy}(N,M,n)$.

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distributed

Exponentially Distribute

Poisson Distributed Dat

Data from Bernoulli and Drawing Experiments

Repeating Bernoulli Experiments

Success Probabilit

Sampling Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

The hypergeometric distribution Hy(N, M, n)

• Its density is:

$$f_{\text{Hy}}(m) = \frac{\binom{M}{m} \binom{N-M}{n-m}}{\binom{N}{n}}, \quad 0 \le m \le \min(n, M)$$

ullet The mode D is equal to

$$D = \left| \frac{(n+1)(M+1)}{N+2} \right|$$

Statistical Methods of Data Analysis

vv. vvaitenberg

Point Estimator

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Dat

Data from Bernoulli and Drawing Experiments Repeating Bernoulli Experiments

Sampling Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

The moments of the hypergeometric distribution

Let $X \sim \mathrm{Hy}(N,M,n)$ and p = M/N. Then:

$$\bullet \ \mathsf{E}[X] = \frac{nM}{N} = np$$

$$\bullet \ \operatorname{var}[X] = \frac{nM}{N} \frac{N-M}{N} \frac{N-n}{N-1} = np(1-p) \frac{N-n}{N-1}$$

- The term (N-n)(N-1) in the variance is called **correction** for finiteness. It is close to 1 if $N \gg n$.
- If $N\gg n$ and $M\gg n$, the hypergeometric distribution can be approximated by the binomial distribution since in this case drawing from the sample does not significantly change the composition of the population.

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Repeating Bernoulli Experiments

Estimation of Probability o Success

Sampling Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimator

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Repeating Bernoulli Experiments

Success

Sampling Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Estimating the Number of Feature Carriers

Theorem

Let k be an observation from the hypergeometric distribution $\mathrm{Hy}(N,M,n)$ with known N but unknown M. Then:

$$\bullet \ \hat{M} = \frac{kN}{n} \ \text{is an unbiased estimator of} \ M.$$

$$\bullet \ \operatorname{var}[\hat{M}] = M \, \frac{N-M}{n} \frac{N-n}{N-1}$$

Statistical Methods of Data Analysis

W. Waltenbergei

Point Estimator

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Repeating Bernoulli Experiments

Success
Sampling Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Estimating the size of the population

Theorem

Let k be an observation from the hypergeometric distribution $\mathrm{Hy}(N,M,n)$ with known M but unknown N. Then:

- $\hat{N} = \frac{nM}{k}$ is a biased estimator of N.
- $1/\hat{N} = \frac{k}{nM}$ is an unbiased estimator of 1/N.
- With linear error propagation we obtain:

$$\begin{split} \mathsf{E}[\hat{N}] &\approx N + \frac{N-M}{M} \frac{N-n}{n} \\ \mathsf{var}[\hat{N}] &\approx N \, \frac{N-M}{M} \frac{N-n}{n} \end{split}$$

Section 16: Maximum Likelihood Estimator

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distribute

Exponentially Distribute Data

Poisson Distributed Dat

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the

- Point Estimators
- 12 Normally Distributed Data
- Exponentially Distributed Data
- 14 Poisson Distributed Data
- 15 Data from Bernoulli and Drawing Experiments
- 6 Maximum Likelihood Estimator
- 17 Mixture Models and the EM Algorithm

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Definition (ML Estimator)

• Let X_1, \ldots, X_n be a sample with joint density $g(x_1, \ldots, x_n | \vartheta)$. The function

$$L(\vartheta|X_1,\ldots,X_n)=g(X_1,\ldots,X_n|\vartheta)$$

is called the likelihood function of the sample.

- The plausible or maximum likelihood estimator $\hat{\vartheta}$ is that value of ϑ that maximizes the likelihood function of the sample.
- Often, instead of the likelihood function, we maximize its logarithm, the log-likelihood function $\ell(\vartheta) = \ln L(\vartheta)$.
- In simple cases we can maximize analytically. If this is not possible, we maximize numerically.

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimator

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli an Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm • The ML estimator is invariant under (differentiable) transformations of the parameter: if $\hat{\vartheta}$ is the ML estimator of ϑ , then $h(\hat{\vartheta})$ is the ML estimator of $h(\vartheta)$.

Example (ML estimator of a Bernoulli parameter)

Let X_1, \ldots, X_n be a sample from the Bernoulli distribution $\mathrm{Al}(p)$. The joint density is:

$$g(x_1, ..., x_n | p) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} = p^{\sum x_i} (1-p)^{n-\sum x_i}$$

Therefore, the log-likelihood function is:

$$\ell(p) = \sum_{i=1}^{n} X_i \ln p + \left(n - \sum_{i=1}^{n} X_i\right) \ln(1-p)$$

Statistical Methods of Data Analysis

··· ···

Point Estimators

Normally Distribute

Exponentially Distribute Data

Poisson Distributed Data

Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Example (Continuation)

Deriving w.r.t. p results in:

$$\frac{\partial \ell(p)}{\partial p} = \frac{1}{p} \sum_{i=1}^{n} X_i - \frac{1}{1-p} \left(n - \sum_{i=1}^{n} X_i \right)$$

Setting the derivative to zero and solving for p yields:

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$$

The ML estimator is unbiased and efficient.

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Example (ML estimator of a Poisson parameter)

Let X_1,\ldots,X_n be a sample from the Poisson distribution $\operatorname{Po}(\lambda)$. The joint density is:

$$g(x_1, \dots, x_n | \lambda) = \prod_{i=1}^n \frac{\lambda^{x_i} e^{-\lambda}}{x_i!}$$

Therefore, the log-likelihood function is:

$$\ell(\lambda) = \sum_{i=1}^{n} [X_i \ln \lambda - \lambda - \ln(x_i!)]$$

Deriving to λ yields:

$$\frac{\partial \ell(\lambda)}{\partial \lambda} = \frac{1}{\lambda} \sum_{i=1}^{n} X_i - n$$

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli an Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Example (Continuation)

Setting the derivative to zero and solving for λ yields:

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$$

. The ML estimator is unbiased and efficient.

Statistical Methods of Data Analysis

W. Waltenbergei

Point Estimators

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Example (ML estimator of a mean lifetime)

Let X_1, \ldots, X_n be a sample from the exponential distribution $\operatorname{Ex}(\tau)$. The joint density is:

$$g(x_1, \dots, x_n | \tau) = \prod_{i=1}^n \frac{e^{-x_i/\tau}}{\tau}$$

Therefore, the log-likelihood function is:

$$\ell(\tau) = \sum_{i=1}^{n} \left[-\ln \tau - \frac{1}{\tau} X_i\right]$$

Deriving to τ yields:

$$\frac{\partial \ell(\tau)}{\partial \tau} = -\frac{n}{\tau} + \frac{1}{\tau^2} \sum_{i=1}^{n} X_i$$

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Example (Continuation)

Setting the derivative to zero and solving for τ yields:

$$\hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$$

The ML estimator is unbiased and efficient.

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Example (ML estimator of the parameters of a normal distribution)

Let $X = (X_1, \dots, X_n)$ be a sample from the normal distribution $No(\mu, \sigma^2)$. The joint density is:

$$g(x_1, ..., x_n | \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp \left[-\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

Therefore, the log-likelihood function is:

$$\ell(\mu, \sigma^2 | \mathbf{X}) = \sum_{i=1}^n \left[-\ln \sqrt{2\pi} - \frac{1}{2} \ln \sigma^2 - \frac{(X_i - \mu)^2}{2 \sigma^2} \right]$$

Deriving by μ and σ^2 yields:

$$\frac{\partial \ell(\mu, \sigma^2)}{\partial \mu} = \sum_{i=1}^n \frac{X_i - \mu}{\sigma^2}, \quad \frac{\partial \ell(\mu, \sigma^2)}{\partial \sigma^2} = \sum_{i=1}^n \left[-\frac{1}{2\sigma^2} + \frac{(X_i - \mu)^2}{2\sigma^4} \right]$$

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimator

Normally Distributed

Exponentially Distribute

Poisson Distributed Dat

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the

Example (Continuation)

Zeroing the derivatives and solving for μ and σ^2 yields:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{n-1}{n} S^2$$

The ML estimator of μ is unbiased and efficient. The ML estimator of σ^2 is asymptotically unbiased and asymptotically efficient.

The ML estimator of σ is equal to

$$\hat{\sigma} = \sqrt{\frac{n-1}{n}} S$$

It is also asymptotically unbiased and asymptotically efficient.

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

- The normalized likelihood function can be interpreted as an a posteriori distribution of the estimated parameter.
- ullet For large n, the variance of the likelihood estimate $\hat{\vartheta}$ can therefore be determined from the second central moment of the normalized likelihood function.
- If the estimated parameter ϑ is the mean of a normal distribution, then this procedure is exact for any n:

$$L(\vartheta) = \frac{1}{\sigma^n \sqrt{2\pi^n}} \exp\left[-\frac{n}{2\sigma^2} \left((\hat{\vartheta} - \vartheta)^2 + \frac{1}{n} \sum (x_i - \hat{\vartheta})^2 \right) \right]$$

• If $L(\vartheta)$ is normalized, it is the 'density' of a normal distribution with mean $\hat{\vartheta}$ and variance $\frac{\sigma^2}{n}$, i.e. the variance of the estimate $\hat{\vartheta} = \frac{1}{n} \sum x_i$.

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Normally Distributed Data

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Example (Estimation of the parameter a of a gamma distribution)

The sample $\boldsymbol{X}=(X_1,\ldots,X_n)$ consists of n=200 values drawn independently from a $\mathrm{Ga}(a,1)$ distribution:

$$f(x_i|a) = \frac{x_i^{a-1}e^{-x_i}}{\Gamma(a)}, \quad i = 1, \dots, n$$

The (unknown) true value of a is $a_{\rm t}=2$. The log-likelihood function is

$$\ln L(a|\mathbf{X}) = \sum_{i=1}^{n} \ln f(X_i|a) = (a-1) \sum_{i=1}^{n} \ln X_i - \sum_{i=1}^{n} X_i - n \ln \Gamma(a)$$

Statistical Methods of Data Analysis

vv. vvaitelibeig

Point Estimator

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Data

Maximum Likelihood

Estimator

Mixture Models and the

Example (Continuation)

Numerical maximization of $\ln L(a)$ results in the maximum likelihood estimate \hat{a} . The experiment is repeated N times and the estimates of each experiment $(\hat{a}^{(k)}, k=1,\ldots,N)$ are histogrammed. Comparison of the individual (normalized) likelihood function with the histogram (N=500) shows good agreement between the standard deviations.

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Dat

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Normally Distributed Data

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Example (Continuation)

With known b, the Fisher information of the sample with respect to a is equal to

$$I_a = n \frac{\mathrm{d}^2 \ln \Gamma(a)}{\mathrm{d}a^2} \approx 128.99$$

This corresponds to a standard deviation $\sigma=0.088$. Thus, the ML estimator is practically efficient.

Because of $\mathsf{E}[\overline{X}]=a,\,\overline{X}$ is an unbiased estimator of a for all n. However, it has a larger standard deviation than the ML estimator:

$$\sigma[\overline{X}] = \sqrt{\frac{a}{n}} = 0.1$$

On the other hand, it is much easier to calculate.

Statistical Methods of Data Analysis

N. Waltenberger

Point Estimator

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the

• The ML estimator has the following important property:

Theorem

If the first two derivatives of $L(\vartheta)$ exist, the information $I_g(\vartheta)$ exists for all ϑ , and if $E\left[(\ln L)'\right]=0$, then the maximum likelihood estimate $\hat{\vartheta}$ is asymptotically normally distributed with mean ϑ and variance $1/I_g(\vartheta)$. $\hat{\vartheta}$ is therefore asymptotically unbiased and asymptotically efficient.

• From this, the following follows immediately:

Theorem

The likelihood estimator $\hat{\vartheta}$ is consistent (under the same assumptions).

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Dat

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the

Example (ML estimation of the location parameter of a Cauchy distribution)

Let $X = (X_1, \dots, X_n)$ be a sample from the Cauchy distribution t(1) with location parameter μ . The joint density is:

$$g(x_1, \dots, x_n | \mu) = \prod_{i=1}^n \frac{1}{\pi[1 + (x_i - \mu)^2]}$$

Therefore, the log-likelihood function is:

$$\ell(\mu|\mathbf{X}) = -n \ln \pi - \sum_{i=1}^{n} \ln[1 + (X_i - \mu)^2]$$

The maximum $\hat{\mu}$ of $\ell(\mu|\mathbf{X})$ must be found numerically.

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimators

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Dat

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Example (Continuation)

It can be shown that the Fisher information of the sample is equal to

$$I_{\mu} = \frac{n}{2}$$

Therefore, for large samples, the variance of the ML estimator $\hat{\mu}$ must be approximately equal to 2/n.

The sample median \tilde{X} is also a consistent estimator for μ . Its variance is asymptotically equal to $\pi^2/(4n)\approx 2.47/n$. Thus, it is about 23 percent larger than the variance of the ML estimator.

The sample mean \overline{X} , on the other hand, is **no** consistent estimator for μ . Indeed, one can show that \overline{X} has the same distribution as a single observation.

Statistical Methods of Data Analysis

N. Waltenberger

Datas Estimates

Normally Distributed

Exponentially Distribute

Poisson Distributed Dat

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the

Example (Continuation)

Simulation of 10000 samples of size n = 100:

The correlation between \tilde{x} and $\hat{\mu}$ is about 90%.

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Dat

Data from Bernoulli an Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Example (Continuation)

The standard deviation of the ML estimator can again be approximately estimated from the normalized likelihood function of a sample:

Statistical Methods of Data Analysis

VV. VValtenberge

Point Estimator

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Data

Drawing Experiments

Maximum Likelihood

Estimator

Mixture Models and the EM Algorithm

Example (ML estimation of the upper limit of a uniform distribution)

Let X_1, \ldots, X_n be a sample from the uniform distribution $\mathrm{Un}(0,b)$ with upper limit b. The joint density is:

$$g(x_1, ..., x_n | b) = \frac{1}{b^n}, 0 \le x_1, ..., x_n \le b$$

Therefore, the largest value of the likelihood function is at:

$$\hat{b} = \max_{i} X_i$$

Since the maximum sits at the boundary of the variable's domain, the usual asymptotic properties do not apply.

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Normally Distributed

Exponentially Distribute

Poisson Distributed Data

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Example (Continuation)

The density of $\hat{b} = \max_{i} X_i$ is:

$$f(x) = \frac{nx^{n-1}}{b^n}$$

From this, expectation and variance can be calculated:

$$\mathsf{E}[\hat{b}] = \frac{bn}{n+1}, \quad \mathsf{var}[\hat{b}] = \frac{b^2n}{(n+2)(n+1)^2}$$

The estimator is asymptotically unbiased, but the variance approaches zero, as does $1/n^2!$ The estimator is also not asymptotically normally distributed.

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Dat

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Example (Continuation)

Simulation of 10000 samples (b = 1) of size n = 25 or n = 100:

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the

 If the likelihood function is (approximately) normal, the log-likelihood function is (approximately) parabolic.

• In this case, error intervals of the ML estimator can be read from the log-likelihood function.

Width of the log-likelihood function

Let $\ell(\vartheta)$ be the log-likelihood function of the parameter ϑ , further $\hat{\vartheta}$ be the ML estimator and $\sigma[\hat{\vartheta}]$ its standard deviation. Then, approximately:

$$\ell(\hat{\vartheta}-k\sigma[\hat{\vartheta}])=\ell(\hat{\vartheta}+k\sigma[\hat{\vartheta}])=\ell(\hat{\vartheta})-k^2/2$$

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimator

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Data

Data from Bernoulli an Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm • If two parameters $\boldsymbol{\vartheta}=(\vartheta_1,\vartheta_2)$ are estimated simultaneously, the log-likelihood function $\ell(\boldsymbol{\vartheta})$ is asymptotically an elliptic paraboloid.

- The contour lines of $\ell(\vartheta)$ are then ellipses.
- If a contour line is to have the probability content $1-\alpha$, then its height z is equal to

$$z = \ell(\boldsymbol{\hat{\vartheta}}) - \frac{1}{2}\chi_{1-\alpha;2}^2 = \ell(\boldsymbol{\hat{\vartheta}}) + \ln(\alpha)$$

- For example, the ellipse with $1-\alpha=0.95$ is the contour line to the height $z=\ell(\hat{\vartheta})-2.996$.
- ullet The covariance matrix of the ML estimator $\hat{artheta}$ can be approximated by the inverse negative Hessian matrix at the maximum.

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli a Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the

Example

Mean μ and standard deviation σ of a normal distribution are estimated from a sample of size n=500. The true values are $\mu=5, \sigma=1.5$, the estimated values are $\hat{\mu}=4.980, \hat{\sigma}=1.529$. The inverse negative Hessian matrix in the maximum of log-likelihood function is equal to.

$$\mathbf{V} = \begin{pmatrix} 0.0047 & 0\\ 0 & 0.0023 \end{pmatrix}$$

This corresponds to a standard error of $\sigma[\hat{\mu}]=0.0684$ and $\sigma[\hat{\sigma}]=0.0483$. The inverse Fisher information matrix is equal to

$$\mathbf{I}_{\mu,\sigma} = \begin{pmatrix} 0.0045 & 0\\ 0 & 0.0022 \end{pmatrix}$$

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimators

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Example (Continuation)

Contour lines of log-likelihood function with probability contents 0.3935, 0.9, 0.95, 0.99.

Statistical Methods of Data Analysis

W. Waltenbergei

Point Estimators

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and th

Numerical Calculation of the Hessian matrix

- Let $\ell(\vartheta_1,\vartheta_2)$ be the log-likelihood function, with maximum in $(\hat{\vartheta}_1,\hat{\vartheta}_2).$
- Furthermore let $\varepsilon_1, \varepsilon_2 > 0$ and

$$\mathbf{L} = \begin{pmatrix} \ell(\hat{\vartheta}_1 - \varepsilon_1, \hat{\vartheta}_2 - \varepsilon_2) & \ell(\hat{\vartheta}_1, \hat{\vartheta}_2 - \varepsilon_2) & \ell(\hat{\vartheta}_1 + \varepsilon_1, \hat{\vartheta}_2 - \varepsilon_2) \\ \ell(\hat{\vartheta}_1 - \varepsilon_1, \hat{\vartheta}_2) & \ell(\hat{\vartheta}_1, \hat{\vartheta}_2) & \ell(\hat{\vartheta}_1 + \varepsilon_1, \hat{\vartheta}_2) \\ \ell(\hat{\vartheta}_1 - \varepsilon_1, \hat{\vartheta}_2 + \varepsilon_2) & \ell(\hat{\vartheta}_1, \hat{\vartheta}_2 + \varepsilon_2) & \ell(\hat{\vartheta}_1 + \varepsilon_1, \hat{\vartheta}_2 + \varepsilon_2) \end{pmatrix}$$

The Hessian matrix is then equal to

$$\mathbf{H} = \left(\begin{array}{cc} \frac{\mathbf{L}_{21} + \mathbf{L}_{23} - 2\,\mathbf{L}_{22}}{\varepsilon_1^2} & \frac{\mathbf{L}_{11} + \mathbf{L}_{33} - \mathbf{L}_{13} - \mathbf{L}_{31}}{4\,\varepsilon_1\varepsilon_2} \\ \frac{\mathbf{L}_{11} + \mathbf{L}_{33} - \mathbf{L}_{13} - \mathbf{L}_{31}}{4\,\varepsilon_1\varepsilon_2} & \frac{\mathbf{L}_{12} + \mathbf{L}_{32} - 2\,\mathbf{L}_{22}}{\varepsilon_2^2} \end{array} \right)$$

Section 17: Mixture Models and the EM Algorithm

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Dat

Data from Bernoulli and Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

- Point Estimators
- 12 Normally Distributed Data
- Exponentially Distributed Data
- Poisson Distributed Data
- 15 Data from Bernoulli and Drawing Experiments
- 16 Maximum Likelihood Estimator
- Mixture Models and the EM Algorithm

Mixture Models and the EM Algorithm

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli an Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

 Experimental observations often come from different distributions, e.g. signal and background.

• Such data can be described by a mixture model.

Definition (Mixture Model)

A **mixture model** with k components is a distribution whose density has the following form:

$$f(x) = \sum_{j=1}^{k} w_j f_j(x), \quad w_j \ge 0, \quad \sum_{j=1}^{k} w_j = 1$$

The w_j are nonnegative and are called the **weights** of the components.

• The components f_j are typically normal distributions or other simple distributions.

Statistical Methods of Data Analysis

N. Waltenberge

Point Estimators

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

• The l-th moment μ'_l around 0 of the mixture is the mixture of the corresponding moments μ'_{lj} around 0 of the components:

$$\mu_l' = \sum_{j=1}^k w_j \mu_{lj}'$$

expectation and variance of a mixture distribution

Let a mixture distribution consist of k components with means μ_j and variances σ_j^2 . Then the mean μ and variance σ^2 of the mixture distribution are given by:

$$\mu = \sum_{j=1}^{k} w_j \mu_j, \qquad \sigma^2 = \sum_{j=1}^{k} w_j (\mu_j^2 + \sigma_j^2) - \mu^2$$

Statistical Methods of Data Analysis

....

Point Estimators

Normally Distributed Data

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Example

• A mixture distribution of k normally distributed components has 3k-1 parameters:

$$\boldsymbol{\vartheta} = (\mu_1, \dots, \mu_k, \sigma_1^2, \dots, \sigma_k^2, w_1, \dots, w_{k-1})$$

• A mixture distribution of k exponentially distributed components has 2k-1 parameters:

$$\boldsymbol{\vartheta} = (\tau_1, \dots, \tau_k, w_1, \dots, w_{k-1})$$

Statistical Methods of Data Analysis

W. Waltenberge

Point Estimator

Normally Distributed Data

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli an Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

- The estimation of the parameters can be performed with the maximum likelihood method.
- In the case of a mixture of normal distributions, the log-likelihood function of a sample ${\pmb X}$ of size n is:

$$\ell(\boldsymbol{\vartheta}) = \sum_{i=1}^{n} \ln \left(\sum_{j=1}^{k} w_j \cdot \varphi(x_i; \mu_j, \sigma_j^2) \right)$$

- The log-likelihood function must be maximized numerically, subject to the constraint $\sum_{i=1}^{k} w_i = 1$.
- The log-likelihood function may have several local maxima. In this case, repeated maximization with different initial values is recommended.

Statistical Methods of Data Analysis

Point Estimator

Normally Distributed

Exponentially Distribute Data

Poisson Distributed Data

Data from Bernoulli and Drawing Experiments

Estimator

Mixture Models and the EM Algorithm

- One method for maximizing the log-likelihood function is the EM algorithm.
- The EM algorithm is iterative. The choice of initial values can influence which local maximum is reached.
- In each iteration, Bayes' theorem is used to calculate the a posteriori probabilities p_{ij} that observation i comes from component j.
- The means and variances of the components are then estimated by weighted sample means and weighted sample variances, respectively.
- These two steps are iterated until the estimate stabilizes.
- The log-likelihood function cannot get smaller in any iteration; however, reaching the global maximum is **not** guaranteed.

Statistical Methods of Data Analysis

VV. VValtenberge

Point Estimators

Normally Distributed Data

Exponentially Distributed Data

Poisson Distributed Dat

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

EM algorithm for a mixture of normal distributions

- Choice of initial values for mixture parameters $\vartheta = (\mu_1, \dots, \mu_k, \sigma_1^2, \dots, \sigma_k^2, w_1, \dots, w_k)$
- ② Calculation of p_{ij} and p_j for observation X_i , component φ_j :

$$p_{ij} = \frac{w_j \, \varphi(X_i; \mu_j, \sigma_j^2)}{\sum_{l=1}^k w_l \, \varphi(X_i; \mu_l, \sigma_l^2)}, \quad p_j = \sum_{i=1}^n p_{ij}$$

Estimation of weights and moments:

$$w_j = \frac{p_j}{n}, \ \mu_j = \frac{\sum_{i=1}^n p_{ij} X_i}{p_j}, \ \sigma_j^2 = \frac{\sum_{i=1}^n p_{ij} (X_i - \mu_j)^2}{p_j}$$

Repeat steps 2 and 3 until convergence.

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimator

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Dat

Data from Bernoulli a Drawing Experiments

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Example

Data set 2 is a mixture of 500 values from $\mathrm{No}(5,1)$ and 100 values from $\mathrm{No}(8,9)$. The EM algorithm yields the following estimates of the mixture parameters:

$$\mu_1 = 4.946, \sigma_1 = 1.053, w_1 = 0.850$$

$$\mu_2 = 8.206, \sigma_2 = 2.944, w_2 = 0.150$$

Maximizing the log-likelihood function with the simplex algorithm of Nelder and Mead yields almost identical values:

$$\mu_1 = 4.946, \sigma_1 = 1.052, w_1 = 0.850$$

$$\mu_2 = 8.195, \sigma_2 = 2.946, w_2 = 0.150$$

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimator

Normally Distributed

exponentially Distribute Data

Poisson Distributed Dat

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

Example (Continuation)

Densities of components and mixture density:

Statistical Methods of Data Analysis

W. Waltenberger

Point Estimator

Normally Distribute

Exponentially Distribute Data

Poisson Distributed Dat

Data from Bernoulli and

Maximum Likelihood Estimator

Mixture Models and the EM Algorithm

A-posteriori probabilities p_{ij} :

Statistical Methods of Data Analysis

W. Waltenberger

Basic Terminology

General Construction According to Neyman

Normally Distributed Data

Exponentially Distributed Data

Poisson Distributed Data

Binomially Distributed

Data from Other Distributions

Part V

Confidence Intervals

Overview Part 5

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminolog

General Construction
According to Neymon

Normally Distribute Data

Exponentially Distribute Data

Poisson Distributed Data

Binomially Distributed

Data from Othe

- Basic Terminology
- General Construction According to Neyman
- 20 Normally Distributed Data
- 21 Exponentially Distributed Data
- 22 Poisson Distributed Data
- 23 Binomially Distributed Data
- 24 Data from Other Distributions

Section 18: Basic Terminology

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminology

According to Neyma

Data

Exponentially Distribute Data

Poisson Distributed Data

Binomially Distributed Data

Data from Othe Distributions

Basic Terminology

- General Construction According to Neyman
- 20 Normally Distributed Data
- 21 Exponentially Distributed Data
- 22 Poisson Distributed Data
- 23 Binomially Distributed Data
- 24 Data from Other Distributions

Basic Terminology

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminology

General Constructio

Normally Distributed Data

Exponentially Distribute Data

Poisson Distributed Data

Binomially Distributed

Data from Oth Distributions

- Apart from the estimated value itself, its distribution around the true value is also of interest.
- We want to determine an interval from a sample that contains the true value with a certain probability.

Definition (Confidence Interval)

Let $\boldsymbol{X}=(X_1,\ldots,X_n)$ be a sample from the distribution F with unknown parameter ϑ and $0<\alpha<1$. An interval with boundaries $G_1=g_1(\boldsymbol{X})$ and $G_2=g_2(\boldsymbol{X})$ is called an **confidence interval** with a certainty $1-\alpha$ if:

$$P(G1 \le G2) = 1$$

$$P(G1 \le \vartheta \le G2) \ge 1 - \alpha$$

Such an interval is called a $(1-\alpha)$ confidence interval. α is called the **significance level**.

Basic Terminology

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminology

General Constructio
According to Neyma

Normally Distributed Data

Exponentially Distribute Data

Poisson Distributed Data

Binomially Distributed

Data from Othe Distributions

- For each value of certainty $1-\alpha$ there are many different confidence intervals.
- \bullet If F is continuous, there are infinitely many confidence intervals with certainty $1-\alpha.$
- If F is discrete, the confidence is usually greater than $1-\alpha$.
- The confidence interval is called **symmetric** if:

$$P(\vartheta \le G_1) = P(\vartheta \ge G_2)$$

• The confidence interval is called **one-sided** if:

lower tail:
$$P(\vartheta \leq G_2) \geq 1 - \alpha$$
 or

upper tail:
$$P(G_1 \leq \vartheta) \geq 1 - \alpha$$

Section 19: General Construction According to Neyman

Statistical Methods of Data Analysis

N. Waltenberge

General Construction

According to Neyman Normally Distributed

Exponentially Distribute

Data

Binomially Distributed

Data from Othe

18 Basic Terminology

19 General Construction According to Neyman

20 Normally Distributed Data

21 Exponentially Distributed Data

22 Poisson Distributed Data

23 Binomially Distributed Data

24 Data from Other Distributions

General Construction According to Neyman

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminology

General Construction According to Neyman

Data

Exponentially Distribute

Data

Poisson Distributed Data

Binomially Distributed Data

Data from Othe Distributions • Let Y = h(X) be a sample function. The distribution G of Y depends on the unknown parameter ϑ .

• For each value of ϑ , we determine a **prediction interval** $[y_1(\vartheta), y_2(\vartheta)]$ of significance level α :

$$P(y_1(\vartheta) \le Y \le y_2(\vartheta)) \ge 1 - \alpha$$

• If the observation is equal to $Y=y_0$, the confidence interval $[G_1(Y),G_2(Y)]$ is given by:

$$G1 = \min_{\vartheta} \{ \vartheta | y_1(\vartheta) \le y_0 \le y_2(\vartheta) \}$$

$$G2 = \max_{\vartheta} \{ \vartheta | y_1(\vartheta) \le y_0 \le y_2(\vartheta) \}$$

General Construction According to Neyman

Statistical Methods of Data Analysis

W. Waltenberger

General Construction

According to Neyman Normally Distributed

Exponentially Distribute

Poisson Distributed Data

Binomially Distributed

Data from Othe

Example

Let X be a sample of $\mathrm{No}(\mu,\sigma^2)$ with unknown variance σ^2 . Then $(n-1)S^2/\sigma^2$ is χ^2 -distributed with n-1 degrees of freedom. Therefore:

$$P\left(\frac{\sigma^2 \chi_{\alpha/2;n-1}^2}{n-1} \le S^2 \le \frac{\sigma^2 \chi_{1-\alpha/2;n-1}^2}{n-1}\right) = 1 - \alpha$$

The expression in the parenthesis can be transformed to:

$$\frac{(n-1)S^2}{\chi^2_{1-\alpha/2:n-1}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{\alpha/2:n-1}}$$

From this follows

$$G_1(\mathbf{X}) = \frac{(n-1)S^2}{\chi_{1-\alpha/2;n-1}^2}, \quad G_2(\mathbf{X}) = \frac{(n-1)S^2}{\chi_{\alpha/2;n-1}^2}$$

General Construction According to Neyman

Statistical Methods of Data Analysis

W. Waltenberger

Basic Terminology

General Construction According to Neyman

Normally Distributed Data

Exponentially Distribute

Poisson Distributed Data

Binomially Distributed Data

Data from Othe Distributions

Blue: prediction interval for $\sigma^2=3$; red: confidence interval for $S^2=5$.

Section 20: Normally Distributed Data

Statistical Methods of Data Analysis

Normally Distributed

Data

- Normally Distributed Data
 - Mean
 - Variance
 - Difference between Two Mean Values

Subsection: Mean

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminology

Normally Distributed

Data

Mean

Difference between Two Mean Values

Exponentially Distributed Data

Poisson Distributed Data

Binomially Distributed

Data

Data from Othe Distributions

- Basic Terminology
- 19 General Construction According to Neyman
- 20 Normally Distributed Data
 - Mean
 - Variance
 - Difference between Two Mean Values
- 21 Exponentially Distributed Data
- 22 Poisson Distributed Data
- 23 Binomially Distributed Data
- 24 Data from Other Distribution

Statistical Methods of Data Analysis

W. Waltenberger

Basic Terminology

General Construction According to Neyman

Normally Distributed Data

Mean

Difference between Two Mean Values

Exponentially Distributed Data

Poisson Distributed Data

Binomially Distributed Data

Data from Othe Distributions

- Let X be a sample from the normal distribution $No(\mu, \sigma^2)$.
- \overline{X} is normally distributed according to $No(\mu, \sigma^2/n)$.
- If σ^2 is known, the standard score is

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

standard normally distributed. From

$$P(-z_{1-\alpha/2} \le Z \le z_{1-\alpha/2}) = 1 - \alpha$$

then follows

$$P(\overline{X} - z_{1-\alpha/2}\sigma/\sqrt{n} \le \mu \le \overline{X} + z_{1-\alpha/2}\sigma/\sqrt{n}) = 1 - \alpha$$

Normally Distributed

Mean

Difference between Two Mean

Exponentially Distributed Data

Poisson Distributed Data

Binomially Distributed Data

Data from Othe Distributions

Symmetric CI for the Mean, Known Variance

$$G_1(\mathbf{X}) = \overline{X} - z_{1-\alpha/2}\sigma/\sqrt{n}, \quad G_2(\mathbf{X}) = \overline{X} + z_{1-\alpha/2}\sigma/\sqrt{n}$$

 The lower and upper tail confidence intervals are constructed, analogously.

Lower tail CI for the mean, known variance

$$G_1(\mathbf{X}) = -\infty, \quad G_2(\mathbf{X}) = \overline{X} + z_{1-\alpha}\sigma/\sqrt{n}$$

Upper tail CI for the mean, known variance

$$G_1(\mathbf{X}) = \overline{X} - z_{1-\alpha}\sigma/\sqrt{n}, \quad G_2(\mathbf{X}) = \infty$$

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminolog

According to Neyman

Normally Distributed
Data

Mean

Difference between Two Mean Values

Exponentially Distributed Data

Poisson Distributed Data

Binomially Distributed Data

Data from Othe Distributions

Quantiles of the standard normal distribution

α	$z_{1-\alpha/2}$	$z_{1-\alpha}$
0.001	3.29	3.09
0.002	3.09	2.88
0.005	2.81	2.58
0.01	2.58	2.33
0.02	2.33	2.05
0.05	1.96	1.64
0.1	1.64	1.28

PYTHON: scipy.stats.norm.ppf

Statistical Methods of Data Analysis

• If σ^2 is unknown, σ^2 is estimated by the sample variance S^2 . The standard score

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$

is then t-distributed with n-1 degrees of freedom. From

$$P(-t_{1-\alpha/2;n-1} \le T \le t_{1-\alpha/2;n-1}) = 1 - \alpha$$

follows

Symmetric CI for the Mean, Unknown Variance

$$G_1(\boldsymbol{x}) = \overline{X} - t_{1-\alpha/2;n-1} S / \sqrt{n}, \ G_2(\boldsymbol{X}) = \overline{X} + t_{1-\alpha/2;n-1} S / \sqrt{n}$$

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminology

Normally Distributed

Normally Distributed
Data
Mean

Variance

Exponentially Distributed Data

Poisson Distributed Data

Binomially Distributed

Data

Data from Othe Distributions

Example

A sample of size n=50 from the standard normal distribution has sample mean $\overline{X}=0.0540$ and sample variance $S^2=1.0987$. If the variance is assumed to be known, the symmetric 95%-confidence interval for μ is:

$$G_1 = 0.0540 - 1.96/\sqrt{50} = -0.2232$$

$$G_2 = 0.0540 + 1.96/\sqrt{50} = 0.3312$$

If the variance is assumed to be unknown, the symmetric 95%-confidence interval for μ is:

$$G_1 = 0.0540 - 2.01 \cdot 1.0482 / \sqrt{50} = -0.2439$$

$$G_2 = 0.0540 + 2.01 \cdot 1.0482 / \sqrt{50} = 0.3519$$

Subsection: Variance

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminology

ccording to Neyma

Data Distribut

Mean

Difference between Two Mear Values

Exponentially Distributed Data

Poisson Distributed Data

Binomially Distributed Data

Data from Othe Distributions

- Basic Terminology
- 19 General Construction According to Neyman
- 20 Normally Distributed Data
 - Mean
 - Variance
 - Difference between Two Mean Values
- 21 Exponentially Distributed Data
- Poisson Distributed Data
- 23 Binomially Distributed Data
- Data from Other Distributions

Variance

Statistical Methods of Data Analysis

- Let X_1, \ldots, X_n be a sample from the normal distribution $No(\mu, \sigma^2)$.
- $(n-1)S^2/\sigma^2$ is χ^2 -distributed with n-1 degrees of freedom. From

$$P\left(\chi^2_{\alpha/2;n-1} \leq \frac{(n-1)S^2}{\sigma^2} \leq \chi^2_{1-\alpha/2;n-1}\right) = 1-\alpha$$

follows

Symmetric CI for the Variance

$$G_1(\mathbf{X}) = \frac{(n-1)S^2}{\chi^2_{1-\alpha/2;n-1}}, \quad G_2(\mathbf{X}) = \frac{(n-1)S^2}{\chi^2_{\alpha/2;n-1}}$$

Variance

Statistical Methods of Data Analysis

Lower Tail CI for the Variance

$$G_1(\mathbf{X}) = 0, \quad G_2(\mathbf{X}) = \frac{(n-1)S^2}{\chi^2_{\alpha;n-1}}$$

Upper Tail CI for the Variance

$$G_1(\mathbf{X}) = \frac{(n-1)S^2}{\chi_{1-\alpha;n-1}^2}, \quad G_2(\mathbf{X}) = \infty$$

Variance

Statistical Methods of Data Analysis

W. Waltenberger

Basic Terminology

According to Neyman

Normally Distributed Data

Mean

Difference between Two Mean Values

Exponentially Distributed Data

Poisson Distributed Data

Binomially Distributed Data

Data from Othe Distributions

Example

A sample of size n=50 from the normal distribution ${\rm No}(0,4)$ has sample variance $S^2=4.3949.$ The symmetric 95%-confidence interval for σ^2 is:

$$G_1 = 49 \cdot 4.3949 / 70.2224 = 3.0667$$

$$G_2 = 49 \cdot 4.3949 / 31.5549 = 6.8246$$

If the quantiles of the χ^2 distribution $\chi^2(n-1)$ are replaced by the quantiles of the normal distribution $\mathrm{No}(n-1,2(n-1))$, the confidence intervalis:

$$G_1 = 49 \cdot 4.3949/68.4027 = 3.1483$$

$$G_2 = 49 \cdot 4.3949/29.5973 = 7.2760$$

Subsection: Difference between Two Mean Values

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminolog

According to Neyma

Data Distribut

Mean

Difference between Two Mean

Exponentially Distributed Data

Poisson Distributed Data

Binomially Distributed

Data

Data from Othe Distributions

- Basic Terminology
- 19 General Construction According to Neyman
- Normally Distributed Data
 - Mean
 - Variance
 - Difference between Two Mean Values
- 21 Exponentially Distributed Data
- Poisson Distributed Data
- 23 Binomially Distributed Data
- 24 Data from Other Distributions

Statistical Methods of Data Analysis

W. Waltenberger

Basic Terminolog

General Construction According to Neyman

Normally Distributed Data

Variance

Difference between Two Mean

Exponentially Distributed Data

Poisson Distributed Data

Data Distributed

Data from Othe Distributions

- Let X_1, \ldots, X_n and Y_1, \ldots, Y_m be two independent samples from the normal distributions $\operatorname{No}(\mu_x, \sigma_x^2)$ respectively, $\operatorname{No}(\mu_y, \sigma_y^2)$.
- We are looking for a confidence interval for $\mu_x \mu_y$. The difference $D = \overline{X} \overline{Y}$ is normally distributed according to $\operatorname{No}(\mu_x \mu_y, \sigma^2)$, with $\sigma_D^2 = \sigma_x^2/n + \sigma_y^2/m$.
- If the variances are known, the standard score of D is standard normally distributed. From

$$P\left(-z_{1-\alpha/2} \le \frac{D - (\mu_x - \mu_y)}{\sigma_D} \le z_{1-\alpha/2}\right) = 1 - \alpha$$

follows

Symmetric CI for the Difference between Two Mean Values

$$G_1(\mathbf{X}) = D - z_{1-\alpha/2}\sigma_D, \quad G_2(\mathbf{X}) = D + z_{1-\alpha/2}\sigma_D$$

Statistical Methods of Data Analysis

W. Waltenberger

Basic Terminology

Normally Distributed

Data Distribute

Mean

Difference between Two Mean

Exponentially Distributed

Poisson Distributed Data

Binomially Distributed Data

Data from Othe Distributions If the variances are unknown and equal, then

$$S^{2} = \frac{(n-1)S_{x}^{2} + (m-1)S_{y}^{2}}{n+m-2}$$

and $(n+m-2)S^2/\sigma^2$ is χ^2 -distributed with k=n+m-2 degrees of freedom.

The standard score

$$T = \frac{D - (\mu_x - \mu_y)}{S_D}$$

with $S_D = S\sqrt{1/n + 1/m}$ is therefore t-distributed with k = n + m - 2 degrees of freedom.

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminology

According to Neyma

Normally Distributed Data

Mean

Variance

Difference between Two Mean Values

Exponentially Distributed Data

Poisson Distributed Data

Binomially Distributed Data

Data from Oth Distributions

From

$$P\left(-t_{1-\alpha/2;k} \le T \le t_{1-\alpha/2;k}\right) = 1 - \alpha$$

follows

Symmetric CI for the Difference between Two Means, Unknown Variance

$$G_1(\mathbf{X}) = D - t_{1-\alpha/2;k} S_D, \quad G_2(\mathbf{X}) = D + t_{1-\alpha/2;k} S_D$$

with k = n + m - 2.

Statistical Methods of Data Analysis

W. Waltenberger

Basic Terminology

According to Neyman

Normally Distributed Data

Mean

Varianc

Difference between Two Mean Values

Data Distributed

Poisson Distributed Data

Binomially Distributed Data

Data from Othe Distributions

Example

A sample of $\mathrm{No}(2,4)$ of size n=50 has sample mean $\overline{X}=2.1080$ and sample variance $S_x^2=4.3949$; a second sample of $\mathrm{No}(1,4)$ of size m=25 has sample mean $\overline{X}=1.6692$ and sample variance $S_x^2=5.2220$. If the variances are assumed to be known, the 95%-confidence interval for $\mu_x-\mu_y$ is:

$$G_1 = 0.4388 - 1.96 \cdot 0.4899 = -0.5213$$

$$G_2 = 0.4388 + 1.96 \cdot 0.4899 = 1.3990$$

Statistical Methods of Data Analysis

W. Waltenberger

Dasic Terminology

General Constructio According to Neyma

Normally Distribute

Data

. . .

variance

Difference between Two Mean Values

Data

Poisson Distributed Data

Binomially Distributed Data

Data from Othe Distributions

Example (Continuation)

If the variances are assumed to be unknown, $S^2=4.6668$ and $S_D=0.5292$. The 95%-confidence interval for $\mu_x-\mu_y$ is then:

$$G_1 = 0.4388 - 1.993 \cdot 0.5292 = -0.6158$$

$$G_2 = 0.4388 + 1.993 \cdot 0.5292 = 1.4935$$

Section 21: Exponentially Distributed Data

Statistical Methods of Data Analysis

W. Waltenberger

Basic Terminology

Normally Distribute

Exponentially Distributed Data

Poisson Distributed Data

Data Distributed

Data from Othe Distributions

- Basic Terminology
- 19 General Construction According to Neyman
- Normally Distributed Data
- 21 Exponentially Distributed Data
- 22 Poisson Distributed Data
- 23 Binomially Distributed Data
- 24 Data from Other Distributions

Exponentially Distributed Data

Statistical Methods of Data Analysis

W. Waltenberge

Caparal Capatrustia

Normally Distributed

Exponentially Distributed Data

Poisson Distributed Data

Binomially Distribute

Data from Othe Distributions

- Let X be a sample from the exponential distribution $\mathrm{Ex}(\tau)$.
- Then the sample mean \overline{X} is gamma distributed according to $\operatorname{Ga}(n,\tau/n)$ and has the following density:

$$f(x) = \frac{x^{n-1}}{(\tau/n)^n \Gamma(n)} \exp\left(-\frac{x}{\tau/n}\right)$$

• Therefore, for any τ :

$$P\left(\gamma_{\alpha/2;n,\tau/n} \le \overline{X} \le \gamma_{1-\alpha/2;n,\tau/n}\right) = 1 - \alpha$$

Exponentially Distributed Data

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminology

According to Neyma

Normally Distribute Data

Exponentially Distributed Data

Poisson Distributed Data

Binomially Distributed

Data from Oth

From this follows

$$P\left(\gamma_{\alpha/2;n,1/n} \le \frac{\overline{X}}{\tau} \le \gamma_{1-\alpha/2;n,1/n}\right) = 1 - \alpha$$

and

$$P\left(\frac{\overline{X}}{\gamma_{1-\alpha/2;n,1/n}} \le \tau \le \frac{\overline{X}}{\gamma_{\alpha/2;n,1/n}}\right) = 1 - \alpha$$

Thus:

Symmetric CI for the Mean

$$G_1(\boldsymbol{X}) = \frac{\overline{X}}{\gamma_{1-\alpha/2;n,1/n}}, \quad G_2(\boldsymbol{X}) = \frac{\overline{X}}{\gamma_{\alpha/2;n,1/n}}$$

Exponentially Distributed Data

Statistical Methods of Data Analysis

W. Waltenberger

Gasic Terminology

ccording to Neyma

Normally Distribute Data

Exponentially Distributed Data

Poisson Distributed Data

Binomially Distribute

Data from Othe Distributions

Lower tail CI for the Mean Value

$$G_1(\boldsymbol{X}) = 0, \quad G_2(\boldsymbol{X}) = \frac{\overline{X}}{\gamma_{\alpha;n,1/n}}$$

Upper tail CI for the Mean Value

$$G_1(\boldsymbol{X}) = \frac{\overline{X}}{\gamma_{1-\alpha;n,1/n}}, \quad G_2(\boldsymbol{X}) = \infty$$

Section 22: Poisson Distributed Data

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminology

Normally Distributed

Exponentially Distributed

Poisson Distributed Data

Binomially Distributed Data

Data from Othe Distributions

- Basic Terminology
- 19 General Construction According to Neyman
- 20 Normally Distributed Data
- 21 Exponentially Distributed Data
- 22 Poisson Distributed Data
- 23 Binomially Distributed Data
- 24 Data from Other Distributions

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminology

Normally Distributed Data

Exponentially Distributed Data

Poisson Distributed Data

nomially Distributed ta

Data from Otho Distributions

- Let K be an observation from the Poisson distribution $Po(\lambda)$.
 - The quantiles of the Poisson distribution can be calculated using the distribution function of the gamma distribution.
 - For the calculation of the confidence interval, therefore, the **quantiles of the gamma distribution** can be used.

Symmetric CI for the Mean

$$G_1(K) = \gamma_{\alpha/2;K,1}, \quad G_2(K) = \gamma_{1-\alpha/2;K+1,1}$$

Statistical Methods of Data Analysis

W. Waltenberge

General Construction

Normally Distributed Data

Exponentially Distribute Data

Poisson Distributed Data

Binomially Distributed
Data

Data from Othe

• If n observations K_1, \ldots, K_n are available, then $L = \sum K_i$ is Poisson distributed with mean $n\lambda$. The symmetric confidence interval for λ is then:

Symmetric CI for the Mean

$$G_1(L) = \gamma_{\alpha/2;L,1/n}, \quad G_2(L) = \gamma_{1-\alpha/2;L+1,1/n}$$

• This interval is **conservative** in the sense that the coverage is practically always greater than $1-\alpha$.

Statistical Methods of Data Analysis

W. Waltenberger

Basic Terminology

General Construction

Normally Distribute

Exponentially Distributed Data

Poisson Distributed Data

nomially Distribute ata

Data from Oth Distributions

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminology

General Construction According to Neyman

Normally Distributed Data

Exponentially Distributed Data

Poisson Distributed Data

Binomially Distribute Data

Data from Othe Distributions The one-sided confidence intervals are determined in an analogous way.

Lower tail CI for the Mean Value

$$G_1(L) = 0, \quad G_2(L) = \gamma_{1-\alpha;L+1,1/n}$$

Upper tail CI for the Mean Value

$$G_1(L) = \gamma_{\alpha;L,1/n}, \quad G_2(L) = \infty$$

Statistical Methods of Data Analysis

W. Waltenberger

Basic Terminology

General Constructio

Normally Distributed Data

Exponentially Distributed Data

Poisson Distributed Data

nomially Distribute ata

Data from Oth Distributions

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminology

General Construction

Normally Distribute

Exponentially Distributed

Poisson Distributed Data

nomially Distribute ata

Data from Oth Distributions

Section 23: Binomially Distributed Data

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminology

General Construction

Normally Distribute Data

Exponentially Distributed Data

Poisson Distributed Data

Binomially Distributed

Data from Othe

Data

18 Basic Terminology

- General Construction According to Neyman
- Normally Distributed Data
- 21 Exponentially Distributed Data
- 22 Poisson Distributed Data
- Binomially Distributed Data
- 24 Data from Other Distributions

Statistical Methods of Data Analysis

W. Waltenberge

General Construction

Normally Distributed Data

Exponentially Distribute Data

Poisson Distributed Data

Binomially Distributed

Data from Othe Distributions

Data

- Let K be an observation from the binomial distribution $\mathrm{Bi}(n,p)$.
- The quantiles of the binomial distribution can be calculated using the distribution function of the beta distribution.

Symmetric CI according to Clopper and Pearson

$$G_1(K) = \beta_{\alpha/2;K,n-K+1}, \quad G_2(K) = \beta_{1-\alpha/2;K+1,n-K}$$

- Special cases: for K = 0, $G_1(0) = 0$, for K = n, $G_2(n) = 1$.
- This interval is **conservative** in the sense that the certainty is practically always greater than $1-\alpha$.

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminology

According to Neyman

Exponentially Distribute

Data

Binomially Distributed

Data

Data from Other

 The one-sided confidence intervals are determined in an analogous way.

Lower tail CI according to Clopper and Pearson

$$G_1(K) = 0, \quad G_2(K) = \beta_{1-\alpha;K+1,n-K}$$

• If K=0, the left-hand confidence interval extends from 0 to $\beta_{1-\alpha;1,n}=1-\sqrt[n]{\alpha}$.

Upper tail CI according to Clopper and Pearson

$$G_1(K) = \beta_{\alpha;K,n-K+1}, \quad G_2(K) = 1$$

• If K = n, the right-hand confidence interval extends from $\beta_{\alpha:n,1} = \sqrt[n]{\alpha}$ to 1.

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminology

According to Neyman Normally Distributed

Exponentially Distributed

Poisson Distributed Data

Binomially Distributed Data

Data from Othe Distributions • For sufficiently large n, $\hat{p} = K/n$ is approximately normally distributed according to No(p, p(1-p)/n).

• The standard score

$$Z = \frac{\hat{p} - p}{\sigma[p]}$$

is then approximately standard normally distributed.

From

$$P(-z_{1-\alpha/2} \le Z \le z_{1-\alpha/2}) = 1 - \alpha$$

follows

$$P(\hat{p} - z_{1-\alpha/2}\sigma[p] \le p \le \hat{p} + z_{1-\alpha/2}\sigma[p]) = 1 - \alpha$$

Statistical Methods of Data Analysis

Binomially Distributed

Data

- Since p is not known, $\sigma[p]$ must be approximated.
- **bootstrap method**: p is approximated by \hat{p} :

$$\sigma[p] \approx \sigma[\hat{p}] = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Symmetric bootstrapped CI

$$G_1(K) = \hat{p} - z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
$$G_2(K) = \hat{p} + z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$G_2(K) = \hat{p} + z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Statistical Methods of Data Analysis

Binomially Distributed

Data

• **Robust method**: p is chosen so that $\sigma[p]$ is maximally large, i.e. p=0.5 and

$$\sigma[p] \approx \frac{1}{2\sqrt{n}}$$

Symmetric CI using the Robust Method

$$G_1(K) = \hat{p} - z_{1-\alpha/2} \frac{1}{2\sqrt{n}}$$
$$G_2(K) = \hat{p} + z_{1-\alpha/2} \frac{1}{2\sqrt{n}}$$

$$G_2(K) = \hat{p} + z_{1-\alpha/2} \frac{1}{2\sqrt{n}}$$

Statistical Methods of Data Analysis

W. Waltenberger

Basic Terminology

General Constructi According to Neyn

Normally Distribute Data

Exponentially Distributed Data

Poisson Distributed Data

Binomially Distributed Data

Data from Othe

• procedure according to Agresti-Coull: We set

$$c = z_{1-\alpha/2}, K' = K + c^2/2, n' = n + c^2, p' = K'/n'$$

and

$$\sigma[p'] = \sqrt{\frac{p'(1-p')}{n'}}$$

Symmetric CI according to Agresti-Coull

$$G_1(K) = p' - z_{1-\alpha/2} \sqrt{\frac{p'(1-p')}{n}}$$
$$G_2(K) = p' + z_{1-\alpha/2} \sqrt{\frac{p'(1-p')}{n}}$$

Statistical Methods of Data Analysis

Basic Terminology

General Construction According to Neyman

Normally Distributed Data

Exponentially Distribute

Poisson Distributed Data

Binomially Distributed Data

Data from Othe Distributions

Example

In a survey of n=400 people, k=157 people claim to know product X. We are looking for a 95% confidence interval for the degree of familiarity, p.

Clopper-Pearson:

$$G_1(k) = \beta_{0.025;157,244} = 0.3443$$

 $G_2(k) = \beta_{0.975;158,243} = 0.4423$

Approximation by normal distribution:

 $\hat{p}=0.3925,\,z_{0.975}=1.96.$ Using the bootstrap procedure, $\sigma[\hat{p}]=0.0244$ is obtained. The limits of the confidence interval are therefore

$$G_1 = 0.3925 - 1.96 \cdot 0.0244 = 0.3446$$

 $G_2 = 0.3925 + 1.96 \cdot 0.0244 = 0.4404$

Statistical Methods of Data Analysis

W. Waltenbergei

Basic Terminology

General Construction According to Neyman

Data

Exponentially Distributed Data

Poisson Distributed Data

Binomially Distributed Data

Data from Othe

Example (Continuation)

Using the robust procedure, we get $\sigma[\hat{p}]=0.025$ and the bounds

$$G_1 = 0.3925 - 1.96 \cdot 0.025 = 0.3435$$

$$G_2 = 0.3925 + 1.96 \cdot 0.025 = 0.4415$$

The robust interval is only marginally larger than the bootstrap interval.

With the Agresti-Coull correction, we get $\hat{p} = 0.3936$. The limits of the confidence interval are then

$$G_1 = 0.3936 - 1.96 \cdot 0.0244 = 0.3457$$

$$G_2 = 0.3936 + 1.96 \cdot 0.0244 = 0.4414$$

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminology

General Construction

Normally Distributed

Exponentially Distributed

Poisson Distributed Data

Binomially Distributed

Data from Othe

Data

Section 24: Data from Other Distributions

Statistical Methods of Data Analysis

W. Waltenberge

Basic Terminology

General Construction

Normally Distribute Data

Exponentially Distribute

Poisson Distributed Data

Binomially Distributed

Data from Other Distributions

Basic Terminology

- 19 General Construction According to Neyman
- 20 Normally Distributed Data
- 21 Exponentially Distributed Data
- 22 Poisson Distributed Data
- 23 Binomially Distributed Data
- 24 Data from Other Distributions

Data from Other Distributions

Statistical Methods of Data Analysis

W. Waltenberge

General Construction

Normally Distributed Data

Exponentially Distribute Data

Poisson Distributed Data

Binomially Distributed Data

Data from Other Distributions

• Let $X = (X_1, ..., X_n)$ be a sample from distribution F with mean μ and variance σ^2 .

 \bullet Given the central limit theorem, the standard score Z of the sample mean

$$Z = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$

converges against a normal distribution for large samples. Thus, approximately

$$P(\overline{X} - z_{1-\alpha/2}S/\sqrt{n} \le \mu \le \overline{X} + z_{1-\alpha/2}S/\sqrt{n}) \approx 1 - \alpha$$

Approximate CI for the Mean

$$G_1(\mathbf{X}) = \overline{X} - z_{1-\alpha/2} S / \sqrt{n}, \quad G_2(\mathbf{X}) = \overline{X} + z_{1-\alpha/2} S / \sqrt{n}$$

Data from Other Distributions

Statistical Methods of Data Analysis

W. Waltenberger

Basic Terminology

According to Neyma

Normally Distributed Data

Exponentially Distribute Data

Poisson Distributed Data

inomially Distributed ata

Data from Other Distributions

Example

For exponentially distributed samples of size n, the following table lists the confidence of 95%-confidence interval approximated by the normal distribution, estimated from N=20000 samples:

n	25	50	100	200	400
$1-\alpha$	0.9112	0.9289	0.9408	0.9473	0.9476

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Tests

Non-Parametric Tests

Part VI

Testing Hypotheses

Overview Part 6

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Tests

- 25 Introduction
- **26** Parametric Tests
- 27 Non-Parametric Tests

Section 25: Introduction

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Tests

- 25 Introduction
- 26 Parametric Tests
- 27 Non-Parametric Tests

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

- We observe a sample X_1, \ldots, X_n from a distribution F.
- We wish to determine whether the observations are compatible with some assumption about F.
- The assumption is called the **null hypothesis** H_0 .
- If F is specified up to one or more parameters, the test is called parametric.
- If the form of F is not specified, the test is called **nonparametric** or **parameter free**.
- The test determines whether the sample is consistent with the hypothesis, not whether the hypothesis is correct!
- If the sample is consistent with the hypothesis, the hypothesis may still deviate from the truth, albeit only to a limited extent.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Te

Non-Parametric Tests

General Procedure

- A test statistic T is calculated from the sample.
- The range of values of T is divided, depending on H_0 , into a rejection region (critical region) C and an acceptance region C'.
- ullet The acceptance region is usually a **prediction interval** for T.
- If the value of T falls within the rejection range, H_0 is discarded.
- \bullet Otherwise, H_0 is retained for the time being.
- ullet However, this is not a confirmation of H_0 . It simply means that the data are consistent with the hypothesis.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Tests Non-Parametric Test

One-sided and Two-sided Tests

- ullet If the acceptance region is a two-sided prediction interval for T, the test is called **two-sided**. The critical region then breaks down into two disjoint intervals.
- If the acceptance region is an interval of the form $T \leq c$ or $T \geq c$, the test is called **one-sided**. The critical region is then an interval of the form T > c or T < c.

Tests and Confidence Intervals

- In many cases, the acceptance region is a confidence interval for the tested parameter.
- The null hypothesis is rejected if the hypothesized value is outside the confidence interval, as it is considered to be insufficiently plausible.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Parametric T

Non-Parametric Tests

The p-value

- A test can alternatively be formulated using the p-value P(T).
- ullet The p-value indicates how likely it is to observe the value T or an even more extreme value, given the null hypothesis.
- One-sided test: if $F_0(x)$ is the distribution function of T under the null hypothesis, then the p-value is equal to

$$P(T) = F_0(T)$$
 or $p = 1 - F_0(T)$

ullet Two-sided test: If $F_0(x)$ is the distribution function of T under the null hypothesis, then the p-value is equal to

$$P(T) = 2\min(F_0(T), 1 - F_0(T))$$

• The null hypothesis is rejected if $P(T) < \alpha$.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Parametric Te

Non-Parametric Test

Significance and Power

- In any hypothesis test, we distinguish between two types of errors.
 - Type I error: The hypothesis H_0 is rejected although it is true.
 - Type II error: The hypothesis H_0 is retained, although it is not true.
- The distribution of T under H_0 is determined.
- The rejection region is determined such that the probability of a type I error is at most equal to a value of α .
- α is called the **significance level**, or the **test size**. Common values are $\alpha=0.05,0.01,0.005$.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Parametric Te

- Once the rejection region is defined, the probability of a type II error of an ,,alternative hypothesis" H_1 , $\beta(H_1)$ can be calculated
- $1 \beta(H_1)$ is called the **power** of the test for H_1 .
- The power should never be smaller than α .
- The test is called **unbiased**, if the power is never less than α .
- A goal of test theory is to construct unbiased tests with maximum power (uniformly most powerful unbiased test, UMPU).

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Tests

Section 26: Parametric Tests

Statistical Methods of Data Analysis

W. Waltenberger

......

Parametric Tests

Basics Fests for Normally Distribute

Tests for Poisson Distribute

Tests for Poisson Distributed Data

Distributed Data

Likelihood-Ratio Tests

- 25 Introduction
- 26 Parametric Tests
 - Basics
 - Tests for Normally Distributed Data
 - Tests for Poisson Distributed Data
 - Tests for Binomially Distributed Data
 - Likelihood-Ratio Tests
- 27 Non-Parametric Tests

Subsection: Basics

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Test

Basics

Tests for Poisson Distribute

Tests for Poisson Distributed Data

Distributed Data
Likelihood-Ratio Tests

- 25 Introduction
- 26 Parametric Tests
 - Basics
 - Tests for Normally Distributed Data
 - Tests for Poisson Distributed Data
 - Tests for Binomially Distributed Data
 - Likelihood-Ratio Tests
- 27 Non-Parametric Tests

Basics

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

arametric Tests

Basics

Tests for Normally Distributed

Data

Tests for Poisson Distributed

Data

Likelihood-Ratio Tests

- We consider a sample X_1, \ldots, X_n from a distribution F specified up to one or more parameters.
- ullet Hypothesis tests about F are called **parametric**.
- A null hypothesis H_0 can be thought of as a subset of the parameter space Θ .
- The test decides whether the sample is consistent with the hypothesis.
- Before testing, be sure that the assumed parametric form is reasonable.

Basics

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Parametric Tests Basics Tests for Normally Distributer Data

Data
Tests for Binomially
Distributed Data

Non Parametric Tests

- ullet First, the test statistic T and the significance level lpha are chosen.
- ullet The critical region C is then defined such that

$$P(T \in C | \vartheta \in H_0) \le \alpha$$

- ullet An **alternative hypothesis** H_1 to the null hypothesis H_0 can be formulated
- ullet H_1 can also be constructed as a subset of the parameter space $\Theta.$
- If the significance level α is fixed, the power of the test can be computed for each $\vartheta \in H_1$:

$$1 - \beta(\vartheta) = P(T \in C | \vartheta \in H_1)$$

• $1 - \beta(\vartheta)$ is called the **power function** of the test.

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Parametric Tests

Basics Tests for Normally Distribut

Tests for Poisson Distributed

Tests for Binomially Distributed Data

.. _ . _ . _

Example with Exponential Distribution

- X_1, \ldots, X_n is an exponentially distributed sample of $Ex(\tau)$.
- The hypothesis $H_0: \tau = \tau_0$ is to be tested given the sample.
- As test statistic T we choose the sample mean: $T = \overline{X}$.
- Under H_0 , T has the following density:

$$f(t) = \frac{t^{n-1}}{(\tau_0/n)^n \Gamma(n)} \exp\left(-\frac{t}{\tau_0/n}\right)$$

- T is thus distributed according to $Ga(n, \tau_0/n)$.
- The symmetric prediction interval $[y_1(\tau_0),y_2(\tau_0)]$ for T at confidence $1-\alpha$ is given by:

$$y_1(\tau_0) = \gamma_{\alpha/2; n, \tau_0/n}, \quad y_2(\tau_0) = \gamma_{1-\alpha/2; n, \tau_0/n}$$

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Tests

Basics

Tests for Normally Distributed

Data
Tests for Poisson Distributed

Tests for Binomially Distributed Data Likelihood-Ratio Tests

Non-Parametric Tests

ullet Therefore, the rejection region at significance lpha is the set

$$C = [0, y_1(\tau_0)] \cup [y_2(\tau_0), \infty[$$

- So H_0 is rejected if T is too "far away" from the hypothetical value τ_0 .
- The power of the test for any given value of τ is given by:

$$1 - \beta(\tau) = P(T \in C) = G(y_1(\tau)) + 1 - G(y_2(\tau))$$

where G is the distribution function of the $\operatorname{Ga}(n,\tau/n)$ -distribution.

• The test is biased because, e.g. for $\tau_0 = 1$ and n = 25.

$$1 - \beta(0.986) = 0.0495 < \alpha$$

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Basics

Tests for Normally Distribute

Tests for Poisson Distribute

Tests for Binomially Distributed Data

Likelihood-Ratio Tests

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Basics

Tests for Normally Distributed

Tests for Poisson Distribute Data

Tests for Binomially Distributed Data

Likelihood-Ratio Tests

Subsection: Tests for Normally Distributed Data

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Test

Tests for Normally Distributed

Tests for Poisson Distributed

Data

Distributed Data
Likelihood-Ratio Tests

- 25 Introduction
- 26 Parametric Tests
 - Basics
 - Tests for Normally Distributed Data
 - Tests for Poisson Distributed Data
 - Tests for Binomially Distributed Data
 - Likelihood-Ratio Tests
- 27 Non-Parametric Tests

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Parametric Tests
Basics

Tests for Normally Distributed Data

Tests for Poisson Distributec Data

Tests for Binomially Distributed Data Likelihood-Ratio Tests

Non-Parametric Tests

Expected Value with Known Variance

- X_1, \ldots, X_n is a normally distributed sample of $\operatorname{No}(\mu, \sigma^2)$ with known σ^2 .
- The hypothesis $H_0: \mu = \mu_0$ is to be tested against the alternative hypothesis $H_1: \mu \neq \mu_0$.
- ullet As the test statistic T we choose the standard score of the sample mean:

$$T = \frac{\sqrt{n}(\overline{X} - \mu_0)}{\sigma}$$

- Under H_0 , $T \sim \text{No}(0,1)$.
- H_0 is rejected if T is not within the prediction interval at significance α of the standard normal distribution.

Statistical Methods of Data Analysis

Tests for Normally Distributed

Two-sided Test

• The hypothesis H_0 is rejected if

$$|T| = \frac{\sqrt{n} |\overline{X} - \mu_0|}{\sigma} > z_{1-\alpha/2}$$

The power function for a value μ is given by:

$$1 - \beta(\mu) = P(T \in C) = G(z_{\alpha/2}) + 1 - G(z_{(1-\alpha)/2})$$

where G is the distribution function of the $No(\sqrt{n}(\mu-\mu_0)/\sigma,1)$ -distribution.

The test is unbiased.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Test

Basics
Tests for Normally Distributed

Data

Tests for Poisson Distributer

Tests for Binomially Distributed Data

Likelihood-Ratio Tests

Statistical Methods of Data Analysis

W. Waltenberger

Introducti

Parametric Tests

Tests for Normally Distributed

Tests for Poisson Distributed

Tests for Binomially
Distributed Data

Likelihood-Ratio Tests

One-sided Test

- The hypothesis $H_0: \mu \leq \mu_0$ is to be tested with the test statistic T against the alternative hypothesis $H_1: \mu > \mu_0$.
- H_0 is rejected if T is "too large".
- ullet A rejection region with significance level lpha is

$$C = [z_{1-\alpha}, \infty[$$

 \bullet Thus, the hypothesis H_0 is rejected if

$$T = \frac{\sqrt{n} \left(\overline{X} - \mu_0 \right)}{\sigma} > z_{1-\alpha}$$

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Parametric Tests

Tests for Normally Distributed

Tests for Poisson Distributer

Data
Tests for Binomially

Distributed Data Likelihood-Ratio Tests

Non Parametric Tests

• The power function for a value $\mu > \mu_0$ is given by:

$$1 - \beta(\mu) = P(T \in C) = 1 - G(z_{1-\alpha})$$

where G is the distribution function of the $\operatorname{No}(\sqrt{n}(\mu-\mu_0)/\sigma,1)$ -distribution.

• Analogously, one can test for $H_0: \mu \geq \mu_0$ and $H_1: \mu < \mu_0$.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Tests

Tests for Normally Distributed Data

Tests for Poisson Distributed

Tests for Binomially Distributed Data

Likelihood-Ratio Tests

Statistical Methods of Data Analysis

W. Waltenbergei

Introduct

Parametric Tests Basics

Tests for Normally Distributed Data

Tests for Poisson Distributed

Tests for Binomially Distributed Data

Von-Parametric Tests

Expected Value with Unknown Variance: t-Test

- X_1, \ldots, X_n is a normally distributed sample of $\operatorname{No}(\mu, \sigma^2)$ with unknown σ^2 .
- The hypothesis $H_0: \mu = \mu_0$ is to be tested against the alternative hypothesis $H_1: \mu \neq \mu_0$.
- As test statistic T we choose the standard score of the sample mean, using the sample variance S^2 :

$$T = \frac{\sqrt{n}(\overline{X} - \mu_0)}{S}$$

• Under H_0 , $T \sim t(n-1)$.

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Parametric Tests Basics Tests for Normally Distributed

Data Teete for Poisson Distributed

Tests for Poisson Distributed

Tests for Binomially
Distributed Data
Likelihood-Ratio Tests

Likelihood-Katio Tests

• H_0 is rejected if T does not fall within the prediction interval at significance α of the t-distribution with n-1 degrees of freedom.

ullet The rejection region with significance level lpha is given as

$$C =]-\infty, t_{\alpha/2;n-1}] \cup [t_{1-\alpha/2;n-1}, \infty[$$

where $t_{p;n}$ is the quantile of the t-distribution with n degrees of freedom at significance p.

ullet Thus, the hypothesis H_0 is rejected if

$$|T| = \frac{\sqrt{n} \left| \overline{X} - \mu_0 \right|}{S} > t_{1-\alpha/2;n-1}$$

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Parametric Test

Tests for Normally Distributed

Tests for Poisson Distributed

Tests for Binomially

Distributed Data Likelihood-Ratio Tests

Non Parametric Tests

• The power for a value μ is given by:

$$1 - \beta(\mu) = P(T \in C) = G(z_{\alpha/2}) + 1 - G(z_{(1-\alpha)/2})$$

where G is the distribution function of the non-central $\mathrm{t}(n-1,\delta)$ -distribution with

$$\delta = \sqrt{n}(\mu - \mu_0)/\sigma$$

The test is unbiased.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Tests

Tests for Normally Distributed Data

Tests for Poisson Distributed

Tests for Binomially

Likelihood-Ratio Tests

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Parametric Tests

Tests for Normally Distributed Data

Tests for Poisson Distributed Data

Tests for Binomially Distributed Data Likelihood-Ratio Tests

Non-Parametric Tests

Equality of Two Expected Values

- X_1, \ldots, X_n and Y_1, \ldots, Y_m are two independent normally distributed samples of $\operatorname{No}(\mu_x, \sigma_x^2)$ and $\operatorname{No}(\mu_y, \sigma_y^2)$.
- The hypothesis $H_0: \mu_x = \mu_y$ is to be tested against the alternative hypothesis $H_1: \mu_x \neq \mu_y$.
- ullet If the **variances are known**, we choose as test statistic T the difference of the sample means:

$$T = \overline{X} - \overline{Y}$$

• Assuming H_0 , $T \sim \text{No}(0, \sigma_x^2/n + \sigma_y^2/m)$.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Test

Tests for Normally Distributed Data

Tests for Poisson Distributer

Tests for Binomially Distributed Data

Likelihood-Ratio Tests

The default score

$$Z = \frac{T}{\sqrt{\sigma_x^2/n + \sigma_y^2/m}}$$

is then standard normally distributed.

ullet Thus, the hypothesis H_0 is rejected if

$$|Z| > z_{1-\alpha/2}$$

or

$$\frac{|\overline{X} - \overline{Y}|}{\sqrt{\sigma_x^2/n + \sigma_y^2/m}} > z_{1-\alpha/2}$$

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Parametric Tes

Basics

Tests for Normally Distributed Data

Tests for Poisson Distributed

Tests for Binomially Distributed Data Likelihood-Ratio Tes

Non-Parametric Tests

• If the variances are unknown and equal, the variance can be estimated from the combined ('pooled') sample:

$$S^{2} = \frac{(n-1)S_{x}^{2} + (m-1)S_{y}^{2}}{n+m-2}$$

• Under H_0 ,

$$T = \frac{\overline{X} - \overline{Y}}{\sqrt{S^2(1/n + 1/m)}}$$

t-distributed with n+m-2 degrees of freedom.

• Thus, the hypothesis H_0 is rejected if

$$|T| > t_{1-\alpha/2;n+m-2}$$

where $t_{1-\alpha/2;n+m-2}$ is the quantile of the t-distribution with n+m-2 degrees of freedom.

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Parametric Tests

Basics

Tests for Normally Distributed

Data
Tests for Poisson Distributed
Data

Tests for Binomially Distributed Data Likelihood-Ratio Tests

Ion-Parametric Tests

t-Test for Paired Samples

- Paired samples $(X_1,Y_1),\ldots,(X_n,Y_n)$ occur when the same quantity is measured twice for each observed object, before and after a given intervention.
- The effect of the intervention is described by the differences $W_i=Y_i-X_i, i=1,\dots,n.$
- We assume that W_1, \ldots, W_n is normally distributed with mean μ_w and unknown variance σ_w^2 .
- The hypothesis $H_0: \mu_w = 0$ (the intervention had no effect) is to be tested against the alternative hypothesis $H_1: \mu_w \neq 0$.
- This is performed via the t-test for individual samples.

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Parametric Tests Basics Tests for Normally Distributed

D**ata** Tests for Poisson Distributed

Tests for Binomially Distributed Data

Likelihood-Ratio Tests

Non-Parametric Tests

Test of Variance

- X_1, \ldots, X_n is a normally distributed sample with unknown expected value μ and unknown variance σ^2 .
- The hypothesis $H_0: \sigma^2 = \sigma_0^2$ is to be tested against the alternative hypothesis $H_1: \sigma^2 \neq \sigma_0^2$.
- ullet For the test statistic T we choose:

$$T = \frac{(n-1)S^2}{\sigma_0^2}$$

• Assuming H_0 , T is χ^2 -distributed with n-1 degrees of freedom.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Parametric Tes

Basics
Tests for Normally Distributed

Tests for Poisson Distributed

Tests for Binomially Distributed Data

Non-Parametric Tests

ullet Thus, the hypothesis H_0 is rejected if

$$T<\chi^2_{\alpha/2;n-1}\quad\text{or}\quad T>\chi^2_{1-\alpha/2;n-1}$$

where $\chi^2_{p;k}$ is the p-quantile of the χ^2 -distribution with k degrees of freedom.

• The power function for a value σ^2 is given by:

$$1 - \beta(\sigma^2) = G(\sigma_0^2/\sigma^2 \cdot \chi_{\alpha/2;n-1}^2) + 1 - G(\sigma_0^2/\sigma^2 \cdot \chi_{1-\alpha/2;n-1}^2)$$

where G is the distribution function of the $\chi^2(n-1)$ -distribution.

• The test is not unbiased.

Statistical Methods of Data Analysis

N. Waltenberger

Introduction

в.

arametric re

Tests for Normally Distributed Data

Tests for Poisson Distribute

Tests for Binomially Distributed Data

Distributed Data Likelihood-Ratio Tests

Subsection: Tests for Poisson Distributed Data

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Basics Fests for Normally Distribute

Tests for Poisson Distributed Data

Tests for Binomially Distributed Data Likelihood-Ratio Tests

- 25 Introduction
- 26 Parametric Tests
 - Basics
 - Tests for Normally Distributed Data
 - Tests for Poisson Distributed Data
 - Tests for Binomially Distributed Data
 - Likelihood-Ratio Tests
- 27 Non-Parametric Tests

Statistical Methods of Data Analysis

W. Waltenberger

Introduc

Parametric Tests Basics

Data
Tests for Poisson Distributed

Tests for Binomially Distributed Data Likelihood-Ratio Test

Non-Parametric Tests

Test for Two-sided Expected Value

- Let X_1, \ldots, X_n be a Poisson distributed sample $Po(\lambda)$.
- The hypothesis $H_0: \lambda = \lambda_0$ is to be tested against the alternative hypothesis $H_1: \lambda \neq \lambda_0$.
- As test statistic T we choose the sample sum:

$$T = \sum_{i=1}^{n} X_i$$

- T is Poisson distributed according to $Po(n\lambda)$.
- ullet H_0 is rejected if T is "too small" or "too large", i.e. if

$$\sum_{k=0}^T \frac{(n\lambda_0)^k e^{-n\lambda_0}}{k!} < \alpha/2 \text{ or } \sum_{k=T}^\infty \frac{(n\lambda_0)^k e^{-n\lambda_0}}{k!} < \alpha/2$$

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Parametric Tests

Basics

Tests for Normally Distribute

Tests for Poisson Distributed Data

Tests for Binomially Distributed Data Likelihood-Ratio Tests

Non-Parametric Tests

 If the distribution function of the Poisson distribution is expressed by the distribution function of the gamma distribution, the following critical region is obtained:

$$n\lambda_0 < \gamma_{\alpha/2;T,1}$$
 or $n\lambda_0 > \gamma_{1-\alpha/2;T+1,1}$

• H_0 is thus rejected if $n\lambda_0$ is not within the confidence interval based on observation T.

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Parametric Tests Basics Tests for Normally Distributed

Tests for Poisson Distributed Data

Tests for Binomially Distributed Data Likelihood-Ratio Tests

Non-Parametric Tests

One-sided Test for Expected Value

• The hypothesis $H_0: \lambda \leq \lambda_0$ is rejected if T is "too large" and thus the p-value is too small:

$$P(T) = \sum_{k=T}^{\infty} \frac{(n\lambda_0)^k e^{-n\lambda_0}}{k!} < \alpha \quad \text{or} \quad n\lambda_0 < \gamma_{\alpha;T,1}$$

• The hypothesis $H_0: \lambda \geq \lambda_0$ is rejected if T is "too small" and thus the p-value is too small:

$$P(T) = \sum_{k=0}^{T} \frac{(n\lambda_0)^k e^{-n\lambda_0}}{k!} < \alpha \quad \text{or} \quad n\lambda_0 > \gamma_{1-\alpha;T+1,1}$$

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Parametric Tests

Tests for Normally Distribute Data

Tests for Poisson Distributed Data

Tests for Binomially Distributed Data Likelihood-Ratio Tests

Non Parametric Tests

Example

A manufacturer aims to produce no more than 25 defective components per day on average in a factory. A sample of 5 days results in 28,34,32,38 and 22 defective components. Has the manufacturer achieved his goal?

The test statistic T = 154. Therefore,

$$P(T) = \sum_{k=T}^{\infty} \frac{(125)^k e^{-125}}{k!} = 0.0067 < 0.01$$

$$\gamma_{0.01;154,1} = 126.61 < 154$$

Thus, the hypothesis can be refuted at a significance level of 1 percent.

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Parametric Tests

Basics
Tests for Normally Distributed

Tests for Poisson Distributed Data

Tests for Binomially Distributed Data Likelihood-Ratio Tests

Non-Parametric Tests

Approximation by Normal Distribution

- If n is sufficiently large, the distribution of T can be approximated by a normal distribution $No(n\lambda, n\lambda)$.
- ullet H_0 is rejected if the standard score

$$Z = \frac{T - n\lambda_0}{\sqrt{n\lambda_0}}$$

is not within a prediction interval of level $1-\alpha$ of the standard normal distribution.

Example

Given the last example, the approximation yields:

$$Z = 2.5938 > z_{0.99} = 2.3263$$

Thus, the hypothesis can be rejected at a significance level of 1 percent.

Subsection: Tests for Binomially Distributed Data

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Parametric Tests

Tests for Normally Distribute

Tests for Poisson Distributed

Tests for Binomially Distributed Data Likelihood-Ratio Tests

- 25 Introduction
- 26 Parametric Tests
 - Basics
 - Tests for Normally Distributed Data
 - Tests for Poisson Distributed Data
 - Tests for Binomially Distributed Data
 - Likelihood-Ratio Tests
- 27 Non-Parametric Tests

Statistical Methods of Data Analysis

W. Waltenberge

Introductio

Parametric Tests

Basics

Tests for Manually Distributed

Data Tests for Poisson Distributed

Tests for Binomially Distributed Data Likelihood-Ratio Tests

lon-Parametric Tests

Bipartite Test for Parameter p

- k is an observation from the binomial distribution Bi(n, p).
- The hypothesis $H_0: p=p_0$ is to be tested against the alternative hypothesis $H_1: p \neq p_0$.
- H_0 is rejected if k assuming H_0 is not in the symmetric prediction interval $[y_1(p_0),y_2(p_0)]$, i.e., is "too small" or "too large".

Statistical Methods of Data Analysis

Tests for Binomially Distributed Data

This is the case if either

$$\sum_{i=0}^{k} \binom{n}{i} p_0^i (1 - p_0)^{n-i} = F_{\text{Be}}(p_0; k, n - k + 1) < \alpha/2$$

or

$$\sum_{i=k}^{n} {n \choose i} p_0^i (1-p_0)^{n-i} = F_{\text{Be}}(1-p_0; n-k, k+1) < \alpha/2$$

holds where $F_{\text{Be}}(x; a, b)$ is the distribution function of Be(a, b).

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Parametric Tests

Basics

Tests for Normally Distributed Data

Tests for Poisson Distribute

Tests for Binomially Distributed Data

N D T . .

One-sided Test for Parameter p

- The hypothesis $H_0: p \le p_0$ is to be tested on the basis of the observation k against the alternative hypothesis $H_1: p > p_0$.
- ullet H_0 is rejected if k is "too large" and thus the p-value is too small:

$$P(k) = \sum_{i=k}^{n} {n \choose i} p_0^i (1 - p_0)^{n-i} = F_{Be}(p_0; k, n - k + 1) < \alpha$$

• The hypothesis $H_0: p \ge p_0$ is rejected if k is "too small" and thus the p-value is too small:

$$P(k) = \sum_{i=0}^{k} {n \choose i} p_0^i (1 - p_0)^{n-i} = F_{\text{Be}}(1 - p_0; n - k, k + 1) < \alpha$$

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Parametric Test

Tests for Normally Distribute Data

Tests for Poisson Distributed

Tests for Binomially Distributed Data Likelihood-Ratio Tests

Non-Parametric Tests

Example

A manufacturer claims that no more than 2 percent of a certain component are defective. In a sample of size 300, 9 pieces are defective. Can the manufacturer's claim be refuted?

$$P(k) = \sum_{i=9}^{300} {300 \choose i} 0.02^{i} 0.98^{300-i} = 0.1507$$

The manufacturer's claim cannot be refuted at a 5 percent significance level.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Tests

Basics
Tests for Normally Distributed
Data

Tests for Poisson Distributed

Tests for Binomially Distributed Data

Nam Danamatria Tarta

Approximation by Normal Distribution

- If n is sufficiently large, the distribution of k can be approximated by a normal distribution No(np, np(1-p)).
- \bullet H_0 is rejected if the standard score is

$$Z = \frac{k - np_0}{\sqrt{np(1 - p_0)}}$$

does not lie within a prediction interval of level $1-\alpha$ of the standard normal distribution

• Two-sided test: H_0 is rejected if

$$Z < z_{\alpha/2}$$
 or $Z > z_{1-\alpha/2}$

• One-sided test: H_0 is rejected if

$$Z < z_{\alpha}$$
 or $Z > z_{1-\alpha}$

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Tests

Basics

Tests for Normally Distribute Data

Tests for Poisson Distributed

Tests for Binomially Distributed Data

Likelihood-Ratio Tests

Example

Given the last example, the approximation yields:

$$Z = 1.2372 < z_{0.95} = 1.6449$$

Thus, the hypothesis cannot be rejected.

Subsection: Likelihood-Ratio Tests

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Test

Tests for Normally Distribut

Tests for Poisson Distributer

Tests for Binomially

Likelihood-Ratio Tests

- 25 Introduction
- 26 Parametric Tests
 - Basics
 - Tests for Normally Distributed Data
 - Tests for Poisson Distributed Data
 - Tests for Binomially Distributed Data
 - Likelihood-Ratio Tests
- 27 Non-Parametric Tests

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

- Parametric Tests

 Basics
 Tests for Normally Distributed
 Data
- Tests for Binomially Distributed Data
- Likelihood-Ratio Tests

Non-Parametric Tests

- A hypothesis is called **simple** if it has no free parameters, i.e. if the statistical model is completely defined.
- Given two **simple** hypotheses $H_0: \theta = \theta_0$, and $H_1: \theta = \theta_1$, and data X, a test can be constructed from the ratio of the likelihoods.

$$\Lambda(\boldsymbol{X}) := \frac{L(\theta_0|\boldsymbol{X})}{L(\theta_1|\boldsymbol{X})}$$

- The null hypothesis H_0 is rejected if the test statistic is below a certain value, $\Lambda(\boldsymbol{X}) \leq \eta$.
- Here η is chosen such that $\alpha = P(\Lambda(\boldsymbol{X}) \leq \eta | H_0)$. As usual, the significance level ("test size") α is again freely chosen. Common values are $\alpha = 0.05, 0.1$ or 0.01.

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Parametric Tests
Basics
Tests for Normally Distributed

Data Tests for Poisson Distributed

Data

Distributed Data

Likelihood-Ratio Tests

Example (Likelihood-Ratio Test)

Let $X=(X_1,\ldots,X_n)$ be a sample from a normal distribution $N(\mu,\sigma^2)$ with fixed μ . We test for the *variance* of the distribution, with $H_0:\sigma^2=\sigma_0^2$ and $H_1:\sigma^2=\sigma_1^2,\sigma_1^2>\sigma_0^2$.

The likelihood ratio is

$$\Lambda(\mathbf{X}) = \frac{L(\sigma_0^2 | \mathbf{X})}{L(\sigma_1^2 | \mathbf{X})} = \left(\frac{\sigma_0^2}{\sigma_1^2}\right)^{-\frac{n}{2}} \exp\left\{-\frac{\sigma_0^{-2} - \sigma_1^{-2}}{2} \sum_{i=1}^n (X_i - \mu)^2\right\}$$

• $\sum_{i=1}^{n}(X_i-\mu)^2$ is the only term of the likelihood ratio that depends on the data, therefore H_0 is rejected if the sum is extreme enough under the null hypothesis. Since we required that $\sigma_1^2>\sigma_0^2$, we can restrict ourselves to test whether the sum is too large (one-sided test).

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Parametric Tests

Basics
Tests for Normally Distributed
Data
Tests for Poisson Distributed
Data

Tests for Binomially Distributed Data

Likelihood-Ratio Tests

Ion-Parametric Tests

Neyman-Pearson lemma

The likelihood-ratio test is the test with asymptotically maximum power, for a given significance level α .

- A hypothesis that is not *simple* is called **composite**.
- Often the alternative hypothesis H_1 is constructed as the complement of the null hypothesis, i.e. $H_0: \theta \in \Theta_0, H_1: \theta \in \Theta_0^C$.
- The alternative hypothesis $H_1:\theta\in\Theta$ can also be formulated to *contain* the null hypothesis $H_0:\theta\in\Theta_0$, with $\Theta_0\in\Theta$. In this case we speak of a **nested model**. The Neyman-Pearson lemma holds for the likelihood-ratio test:

$$\Lambda(\mathbf{X}) = \frac{\sup\{L(\theta|\mathbf{X}) : \theta \in \Theta_0\}}{\sup\{L(\theta|\mathbf{X}) : \theta \in \Theta\}}$$

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Parametric Tests
Basics
Tests for Normally Distributed
Data
Tests for Poisson Distributed

Distributed Data

Likelihood-Ratio Tests

Linciniosa riacio rese

Wilks' Theorem

For nested models, under H_0 the test statistic $T=-2\ln\Lambda(\boldsymbol{X})$ converges asymptotically towards a $\chi^2(n)$ -distribution with n degrees of freedom, where n is given as the difference of the dimensionalities of Θ and Θ_0 : $n=\dim(\Theta)-\dim(\Theta_0)$.

• Wilks' theorem can be used to specify η : $\eta = \chi^2_{1-\alpha;n}$, where α is again the significance level and n is the number of degrees of freedom of the test.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Test

Fests for Normally Distribute Data

Tests for Poisson Distribute

Data

Tests for Binomiall Distributed Data

Likelihood-Ratio Tests

Non-Parametric Tests

Example (Likelihood Ratio Test for P_{λ})

We construct a test for the intensity parameter λ of a Poisson distribution, $H_0: \lambda = \lambda_0, H_1: \lambda \neq \lambda_0$. Let $\boldsymbol{X} = (X_1, \dots, X_n)$ be a sample of the distribution.

- The supremum of the alternative hypothesis H_1 (the "maximum likelihood") is at $\hat{\lambda}=\overline{X}$.
- From this follows for the likelihood ratio $\Lambda(X)$:

$$\Lambda(\boldsymbol{X}) = e^{n(\overline{X} - \lambda_0)} \prod_{i=1}^n \left(\frac{\lambda_0}{\overline{X}}\right)^{X_i}$$

• The test statistic $T = -2 \ln \Lambda(\boldsymbol{X})$:

$$T = -2n \left[\overline{X} - \lambda_0 + \overline{X} \ln \left(\frac{\lambda_0}{\overline{X}} \right) \right]$$

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Parametric Tec

n .

Tests for Normally Distribut

Tests for Poisson Distributed

Data

Distributed Data

Likelihood-Ratio Tests

Non-Parametric Tests

Example (Likelihood Ratio Test for P_{λ} , continued)

• The test statistic $T = -2 \ln \Lambda(\boldsymbol{X})$:

$$T = 2n \left[\lambda_0 - \overline{X} + \overline{X} \ln \left(\frac{\overline{X}}{\lambda_0} \right) \right]$$

• According to Wilks' theorem T is asymptotically χ^2 -distributed with one degree of freedom. The 95% quantile of $\chi^2(1)$ is 3.84. The critical region of the test at a significance level of 5% is therefore

$$C = [3.84, \infty)$$

Section 27: Non-Parametric Tests

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Non-Parametric Tests

Non-Parametric Test

The Kolmogorov-Smirnov Tes

25 Introduction

26 Parametric Tests

- 27 Non-Parametric Tests
 - The Chi-squared Test
 - The Kolmogorov-Smirnov Test

Non-Parametric Tests

Statistical Methods of Data Analysis

W. Waltenberge

Non-Parametric Tests
The Chi-squared Test

 A test that checks the hypothesis whether the data can come from a certain distribution is called a goodness-of-fit test.

- The distribution may be completely determined or determined up to unknown parameters.
- A goodness-of-fit test may precede a parametric test to check its applicability.

Subsection: The Chi-squared Test

Statistical Methods of Data Analysis

W. Waltenberger

....

Non-Parametric Tests

rametric Tests

25 Introduction

26 Parametric Tests

- 27 Non-Parametric Tests
 - The Chi-squared Test
 - The Kolmogorov-Smirnov Test

Statistical Methods of Data Analysis

W. Waltenberger

Introducti

Parametric Tes

Non-Parametric Tests
The Chi-squared Test

The Chi-squared Test for Discrete Data

- The sample X_1, \ldots, X_n comes from a discrete distribution with finite range of values $\{1, \ldots, k\}$.
- We test the hypothesis H_0 that the density f has values $f(j) = p_j, j = 1, \dots, k$:

$$H_0: P(X_i = j) = p_j, j = 1, \dots, k$$

VS.

$$H_1: P(X_i = j) \neq p_j$$
, for at least one j

- Let Y_j be the number of observations equal to j.
- Under the null hypothesis, Y_1, \ldots, Y_k is multinomially distributed according to $\operatorname{Mu}(n, p_1, \ldots, p_k)$ and $\operatorname{E}[Y_j] = np_j$.

Statistical Methods of Data Analysis

N. Waltenberge

Introduc

Parametric Tes

Non-Parametric Tests
The Chi-squared Test
The Kolmogorov-Smirnov

Excursion: the Multinomial Distribution $Mu(n, p_1, \dots, p_d)$

• The Bernoulli experiment can be generalized to allow not only two, but d elementary events e_1,\ldots,e_d , to which are assigned the probabilities p_1,\ldots,p_d , which only must satisfy

$$\sum_{i=1}^{d} p_i = 1$$

• Performing the **generalized alternative experiment** *n* times, the elementary events are the sequences of the form:

$$(e_{i_1},\ldots,e_{i_n}),\ 1\leq i_j\leq d$$

Statistical Methods of Data Analysis

W Waltenberge

Introduc

Danier state Tasta

Non-Parametric Test
The Chi-squared Test

• If the *n* observations are independent, then:

$$P(e_{i_1}, \dots, e_{i_n}) = \prod_{j=1}^n P(e_{i_j}) = \prod_{j=1}^n p_{i_j} = \prod_{i=1}^d p_i^{n_i}$$

Where n_i is the number of occurrences of e_i . Therefore, the sum of n_i is n.

- The d-dimensional random variable $\boldsymbol{X}=(X_1,\ldots,X_d)$ maps the sequence (e_{i_1},\ldots,e_{i_n}) to the vector (n_1,\ldots,n_d) . In this way $n!/(n_1!\cdots n_d!)$ sequences are mapped onto the same vector.
- ullet Therefore, the density of $oldsymbol{X}$ is:

$$f_{\mathbf{X}}(n_1, \dots, n_d) = \frac{n!}{n_1! \dots n_d!} \prod_{i=1}^d p_i^{n_i}, \sum_{i=1}^d n_i = n, \sum_{i=1}^d p_i = 1$$

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Parametric Tes

Non-Parametric Tests
The Chi-squared Test

- The distribution of X is called a **multinomial distribution** with parameters n and p_1, \ldots, p_d : $P_X = \operatorname{Mu}(n, p_1, \ldots, p_d)$
- A simple example of a multinomially distributed random vector is a histogram (grouped frequency distribution), which is used to graphically represent the (absolute) experimental frequencies.
- ullet X_i is the number of times the outcome of the random variable R falls into group i.
- Let the probability that R falls into group i be equal to p_i .
- If n outcomes are filled into the histogram, the group contents (X_1,\ldots,X_d) are multinomially distributed according to $\operatorname{Mu}(n,p_1,\ldots,p_d)$.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Tests

Non-Parametric Tests
The Chi-squared Test

The Kolmogorov-Smirnov Tes

• A histogram

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Parametric Test

Non-Parametric Tests

The Chi-squared Test

The Moments of the $Mu(n, p_1, \dots, p_d)$ -distribution

Let
$$\boldsymbol{X} = (X_1, \dots, X_d) \sim \operatorname{Mu}(n, p_1, \dots, p_d)$$
. Then:

- $\mathsf{E}[X_i] = np_i$
- $\operatorname{var}[X_i] = np_i(1-p_i)$
- $\bullet \ \operatorname{cov}[X_i,X_j] = -np_ip_j$

Definition (Covariance)

The **covariance** of two random variables X and Y is defined by:

$$cov[X, Y] = E[XY] - E[X]E[Y]$$

If cov[X, Y] = 0, X and Y are called **uncorrelated**.

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Parametric Tests

Non-Parametric Tests

The Chi-squared Test

Properties of Covariance

- $occup [aX + b, cY + d] = ac \cdot cov[X, Y]$
- $\bullet \ \operatorname{var}[X+Y] = \operatorname{var}[X] + \operatorname{var}[Y] + 2 \mathrm{cov}[X,Y]$
- ocv[X,X] = var[X]

Definition (Correlation)

The **correlation coefficient** $\rho[X,Y]$ is defined by:

$$\rho[X,Y] = \frac{\text{cov}[X,Y]}{\sqrt{\text{var}[X]\text{var}[Y]}}$$

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Test

Non-Parametric Test

The Chi-squared Test

The Kolmogorov-Smirnov Te

Properties of Correlation Coefficient

- $-1 \le \rho[X, Y] \le 1$
- $\rho[X, X] = 1$

Statistical Methods of Data Analysis

W. Waltenbergei

Introduct

Parametric Te

Non-Parametric Test
The Chi-squared Test

Definition (Covariance Matrix)

Let $X = (X_1, \dots, X_d)$ be a random vector. If all variances and covariances exist, they are combined in the **covariance matrix** $\mathbf{C} = \mathsf{Cov}[X]$:

$$\mathbf{C}_{ij} = \mathsf{cov}[X_i, X_j]$$

Similarly, the correlations are summarized in the **correlation** matrix $\mathbf{R} = \mathsf{Cor}[X,Y]$:

$$\mathbf{R}_{ij} = \rho[X_i, X_j]$$

- The covariance matrix is always symmetric and positive definite. All eigenvalues are real and positive.
- The correlation matrix is also **symmetric** and **positive definite**. All diagonal elements are equal to 1.

Statistical Methods of Data Analysis

W. Waltenberge

Introduc

Parametric Test

The Chi-squared Test

• The test statistic compares the observed frequencies Y_j with their expected values:

$$T = \sum_{j=1}^{k} \frac{(Y_j - np_j)^2}{np_j}$$

- The null hypothesis is rejected if T is large.
- The critical region can be determined according to the following result.

Theorem

Under the null hypothesis, the random variable T is asymptotically (i.e. for $n\to\infty$) χ^2 -distributed with k-1 degrees of freedom.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Parametric Tes

Non-Parametric Tests
The Chi-squared Test

ullet If the test is to have significance level lpha, H_0 is rejected if

$$T \ge \chi^2_{1-\alpha;k-1}$$

where $\chi^2_{1-\alpha;k-1}$ is the $(1-\alpha)$ quantile of the χ^2 -distribution with k-1 degrees of freedom.

• The reason that T has only k-1 degrees of freedom is because:

$$\sum_{j=1}^{k} Y_j = n$$

- As a rule of thumb, n should be large enough so that $np_j > 5, j = 1, \dots, k$.
- If this is not the case, the rejection range should be determined by simulation.

Statistical Methods of Data Analysis

The Chi-squared Test

Example

We use a sample of size 50 to test whether a die is fair, that is, whether the number of eyes X has the following distribution:

$$P(X = 1) = \dots = P(X = 6) = \frac{1}{6}$$

A simulation of N = 100000 samples yields:

$$\overline{T} = 5.000, \quad S_T^2 = 9.789$$

The 0.95 quantile of the χ^2 -distribution with five degrees of freedom is $\chi^2_{0.95:5} = 11.07$, and

$$P(T \ge 11.07) = 0.048$$

Statistical Methods of Data Analysis

The Chi-squared Test

The Chi-squared Test for Continuous Data

- Let the sample X_1, \ldots, X_n come from a continuous distribution F.
- We test the hypothesis $H_0: F(x) = F_0(x)$.
- \bullet To this end, we divide the range of values of X into k groups G_1,\ldots,G_k .
- Let Y_i be the number of observations in group G_i .
- Under the null hypothesis, Y_1, \ldots, Y_k is multinomially distributed according to $Mu(n, p_1, ..., p_k)$ and $E[Y_i] = np_i$, with.

$$p_j = P(X \in G_j | H_0)$$

The test continues as in the discrete case.

Statistical Methods of Data Analysis

W. Waltenberger

Introduc

Parametric Test

Non-Parametric Tests
The Chi-squared Test

Unknown Parameters

• The null hypothesis need not be fully specified. We consider the case where the p_i still depend on unknown parameters ϑ :

$$P(X \in G_j) = p_j(\vartheta)$$

ullet The statistic T is now a function of the unknown parameters:

$$T(\boldsymbol{\vartheta}) = \sum_{j=1}^{k} \frac{(Y_j - np_j(\boldsymbol{\vartheta}))^2}{np_j(\boldsymbol{\vartheta})}$$

• First, the parameters are estimated, by ML estimation or minimization of T:

$$\tilde{\boldsymbol{\vartheta}} = \arg\min_{\boldsymbol{\vartheta}} T(\boldsymbol{\vartheta})$$

Statistical Methods of Data Analysis

W. Waltenber

Introduction

Parametric Te

Non-Parametric Test
The Chi-squared Test

 The critical region can be determined according to the following result.

Theorem

If m parameters are estimated from the sample, $T(\hat{\boldsymbol{\vartheta}})$ is asymptotically χ^2 -distributed with k-1-m degrees of freedom.

• If the test is to have significance level α , H_0 is rejected if

$$T \ge \chi^2_{1-\alpha;k-1-m}$$

where $\chi^2_{1-\alpha;k-1-m}$ is the $(1-\alpha)$ quantile of the χ^2 -distribution with k-1-m degrees of freedom.

Statistical Methods of Data Analysis

W. Waltenberge

Introductio

Parametric Te

Non-Parametric Tests The Chi-squared Test

Example

Angabe: The number of work-related accidents was surveyed in a large company over a period of 30 weeks. The following shows the number of accidents in each week:

$$X = \{8, 0, 0, 1, 3, 4, 0, 2, 12, 5, 1, 8, 0, 2, 0, 1, 9, 3, 4, 5, 3, 3, 4, 7, 4, 0, 1, 2, 1, 2\}$$

We test the hypothesis that the observations are Poissonian, i.e. distributed according to $Po(\lambda)$.

Lösung: The observations are divided into five groups:

The frequencies of the groups are:

$$Y_1 = 6, Y_2 = 5, Y_3 = 8, Y_4 = 6, Y_5 = 5$$

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Parametric Tests

Non-Parametric Tests
The Chi-squared Test

The Kolmogorov-Smirnov 1

Example (Continuation)

The estimated value for λ is the sample mean:

$$\tilde{\lambda} = 3.1667$$

The expected values of Y_j assuming $H_0 = \text{Po}(\tilde{\lambda})$ are:

The test statistic T is equal to T=21.99. The 99% quantile of the χ^2 -distribution with three degrees of freedom is equal to $\chi^2_{0.99;3}=11.35$. Thus, the hypothesis that the observations are Poisson distributed must be rejected.

Subsection: The Kolmogorov-Smirnov Test

Statistical Methods of Data Analysis

W. Waltenbergei

Introduction

arametric Tests

Non-Parametric Tests
The Chi-squared Test
The Kolmogorov-Smirnov Test

- 25 Introduction
- 26 Parametric Tests
- 27 Non-Parametric Tests
 - The Chi-squared Test
 - The Kolmogorov-Smirnov Test

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Tes

Non-Parametric Tests
The Chi-squared Test
The Kolmogorov-Smirnov Test

One Sample

- Let the sample X_1, \ldots, X_n be realizations of a continuous distribution with distribution function F.
- We test the hypothesis $H_0: F(x) = F_0(x)$.
- The test statistic D_n is the maximum absolute deviation of the empirical distribution function $F_n(x)$ of the sample from the hypothesized distribution function $F_0(x)$:

$$D_n = \max_{x} |F_n(x) - F_0(x)|$$

• For samples from F_0 , the distribution function of $\sqrt{n}D$ for $n \to \infty$ tends to:

$$K(x) = 1 - 2\sum_{k=1}^{\infty} (-1)^{k-1} e^{-2k^2 x^2}$$

Statistical Methods of Data Analysis

The Kolmogorov-Smirnov Test

• The quantiles $K_{1-\alpha}$ can be calculated from the asymptotic distribution function.

• The null hypothesis is rejected if

$$\sqrt{n}D_n > K_{1-\alpha}$$

- If parameters of F_0 are estimated before the test, the quantiles are no longer valid.
- In this case, the rejection range must be determined by simulation.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Parametric Tests

Non-Parametric Tests
The Chi-squared Test

The Chi-squared Test
The Kolmogorov-Smirnov Test

 \mathcal{D}_n , the test statistic of the Kolmogorov-Smirnov test.

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Parametric Te

Non-Parametric Tests
The Chi-squared Test
The Kolmogorov-Smirnov Test

Two Samples

- ullet We test whether two samples of size n or $\ m$ are from the same distribution F.
- The test size is the maximum absolute difference of the empirical distribution functions:

$$D_{n,m} = \max_{x} \left| F_n^1(x) - F_m^2(x) \right|$$

• The null hypothesis is rejected if

$$\sqrt{\frac{nm}{n+m}}D_{n,m} > K_{1-\alpha}$$

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Multidimensional

Simple Regression

Multiple Regression

Data Reconciliation

Part VII

Regression and Linear Models

Overview Part 7

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Multidimensional

Simple Regression

Multiple Regression

- 28 Introduction
- 29 Multidimensional Random Variable
- 30 Simple Regression
- **31** Multiple Regression
- Data Reconciliation

Section 28: Introduction

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Multidimensiona

Simple Regression

Multiple Regression

- 28 Introduction
- 29 Multidimensional Random Variable
- 30 Simple Regression
- **11** Multiple Regression
- 32 Data Reconciliation

Introduction

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Multidimensiona

Simple Regression

Multiple Regression

- Regression analysis examines the dependence of observations on various variables.
- influence (predictor) variable (independent variable) $x = (x_1, \dots, x_r)$.
- ullet outcome variable (dependent variable) Y.
- regression model:

$$Y = f(\boldsymbol{\beta}, \boldsymbol{x}) + \varepsilon$$

with regression coefficients β and error term ε .

- The objective is to **estimate** β using observations $Y_1, \ldots, Y_n, n \ge r$.
- One influence variable: single regression; Multiple influence variables: multiple regression.

Introduction

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Multidimension Random Variab

Simple Regression

Multiple Regression

.....

- Each observation Y_i has an error term ε_i .
- The error terms need not all have the same distribution, nor need they be independent.
- It is often assumed that the random vector $\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_n)$ has a **multivariate normal distribution**.
- However, other distributions of ε are also conceivable.

Section 29: Multidimensional Random Variable

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Multidimensional Random Variable

Marginal Distributions and Conditional Distributions The Multivariate Normal Distribution

Multivariate Error Propagatio

March B.

Multiple Regression

28 Introduction

- 29 Multidimensional Random Variable
 - Basic Terminology
 - Marginal Distributions and Conditional Distributions
 - The Multivariate Normal Distribution
 - Multivariate Error Propagation
- 30 Simple Regression
- 31 Multiple Regression
- 32 Data Reconciliation

Subsection: Basic Terminology

Statistical Methods of Data Analysis

29 Multidimensional Random Variable

 Basic Terminology Basic Terminology

The Multivariate Normal Distribution

Multivariate Error Propagation

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Multidimensiona

Basic Terminology

Marginal Distributions and Conditional Distributions The Multivariate Normal

Aultivariate Error Propagatio

Simple Regression

Multiple Regression

Data Reconciliation

Definition (Multidimensional Random Variable)

A mapping \boldsymbol{X} :

$$\omega \in \Omega \mapsto \boldsymbol{x} = \boldsymbol{X}(\omega) \in \mathbb{R}^d$$

that assigns a real vector $x \in \mathbb{R}^d$ to each element ω of the sample space Ω is called a d-dimensional random variable.

- Each component of a *d*-dimensional random variable is itself a random variable.
- Each component can be discrete or continuous.

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Multidimensional

Basic Terminology

Marginal Distributions and Conditional Distributions The Multivariate Normal

Multipoint Form December

Willitivariate Error Propag

Multiple Regressio

Data Reconciliation

Definition (distribution function)

If ${\pmb X}=(X_1,\dots,X_d)$ is a d-dimensional random variable, then its distribution function $F_{\pmb X}$ is given by

$$F_{\mathbf{X}}(x_1,\ldots,x_d) = P(X_1 \le x_1 \cap \ldots \cap X_d \le x_d)$$

Definition (density function)

If $X = (X_1, ..., X_d)$ is a d-dimensional discrete random variable, then its density function f_X is given by

$$f_{\mathbf{X}}(x_1,\ldots,x_d) = P(X_1 = x_1 \cap \ldots \cap X_d = x_d)$$

defined.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Multidimensional Random Variable

Basic Terminology

Conditional Distributions and Conditional Distributions The Multivariate Normal

Multivariate Error Propagation

Simple Regression

Multiple Regression

Data Reconciliation

Example

The bivariate (two-dimensional) random variable $\boldsymbol{X}=(X_1,X_2)$ assigns the numbers of eyes (i,j) to the outcome (e_i,e_j) of the roll with two dice. If all outcomes are equally probable, $P_{\boldsymbol{X}}$ is given by:

$$P_{\mathbf{X}}\left(\{(i,j)\}\right) = \frac{1}{36}$$

The density f_X is:

$$f_{\mathbf{X}}(x_1, x_2) = .$$

$$\begin{cases} \frac{1}{36}, & x_1 \in \{1, \dots, 6\} \cap x_2 \in \{1, \dots, 6\} \\ 0, & \text{other} \end{cases}$$

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Multidimensional

Basic Terminology

Marginal Distributions ar Conditional Distributions The Multivariate Normal

Multivariate Error Propagatio

Simple Regression

Multiple Regressi

Data Reconciliation

Statistical Methods of Data Analysis

W. Waltenberger

Multidimensiona

Basic Terminology

Marginal Distributions and Conditional Distributions The Multivariate Normal Distribution

Multivariate Error Propagation

Simple Regression

Multiple Regressio

Data Reconciliation

Example (Continuation)

Therefore, the distribution function F_X is:

$$F_{\mathbf{X}}(x_1, x_2) = P(X_1 \le x_1 \cap X_2 \le x_2) = \sum_{i \le x_1 \cap j \le x_2} f(i, j)$$

For example, $F_X(3,4) = \sum_{i < 3 \cap i < 4} \frac{1}{36} = \frac{12}{36} = \frac{1}{3}$.

• Given the countability of the elementary events, they can also be uniquely mapped onto $\mathbb R$ by a univariate random variable Y, e.g.:

$$Y:(e_i,e_j)\longrightarrow 6i+j-6$$

The set of values of Y are the natural numbers between 1 and 36, and P_Y is given by:

$$P_Y(\{k\}) = \frac{1}{36}, \ 1 \le k \le 36$$

Statistical Methods of Data Analysis

W. Waltenberger

Introducti

Multidimensional

Basic Terminology

Marginal Distributions an Conditional Distributions

The Multivariate Normal Distribution

Multivariate Error Propagatio

Jilipic Regressi

Multiple Regression

Data Reconciliation

Definition (density function)

If $X = (X_1, \dots, X_d)$ is a d-dimensional continuous random variable, then its density function f_X is given by

$$f_{\mathbf{X}}(x_1,\ldots,x_d) = \frac{\partial^d F_{\mathbf{X}}}{\partial x_1 \ldots \partial x_d}$$

defined.

Definition (moments)

- Expectation: $E[X] = (E[X_1] \cdots E[X_d])$
- Covariance matrix: $Cov[X]_{ij} = cov[X_i, X_j]$

Subsection: Marginal Distributions and Conditional Distributions

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

lultidimensiona andom Variable

Basic Terminology

Marginal Distributions and Conditional Distributions

Distribution

Willitivariate Error Propagatio

wuitiple Regression

Data Pacanciliation

- 28 Introduction
- 29 Multidimensional Random Variable
 - Basic Terminology
 - Marginal Distributions and Conditional Distributions
 - The Multivariate Normal Distribution
 - Multivariate Error Propagation
- 30 Simple Regression
- **11** Multiple Regression
- 32 Data Reconciliation

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Multidimensional Random Variable

Marginal Distributions and Conditional Distributions The Multivariate Normal

Aultivariate Error Propagation

Simple Regressio

Multiple Regress

• If X_1 and X_2 are two (discrete or continuous) univariate random variables, then $\boldsymbol{X}=(X_1,X_2)$ is a bivariate random variable. The distribution (distribution function, density) of \boldsymbol{X} is also called the **joint distribution** of X_1 and X_2 .

• The following problem now arises: can we calculate the distribution of X_1 or X_2 from the joint distribution?

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Multidimension

Basic Terminology

Marginal Distributions and

Conditional Distributions
The Multivariate Normal

Multivariate Error Propagatio

Simple Regression

Multiple Regressio

Data Reconciliation

• Let F be the distribution function and f be the density of continuous random variables $\boldsymbol{X}=(X_1,X_2)$. Then the distribution function F_1 of X_1 is given by:

$$F_1(x_1) = P(X_1 \le x_1) = P(X_1 \le x_1 \cap -\infty < X_2 < \infty) =$$

$$= \int_{-\infty}^{x_1} \int_{-\infty}^{\infty} f(x_1, x_2) dx_2 dx_1$$

It follows that

$$f_1(x_1) = \int_{-\infty}^{\infty} f(x_1, x_2) \, \mathrm{d}x_2$$

is the density of X_1 .

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Aultidimensiona

Basic Terminolo

Marginal Distributions and

Conditional Distributions
The Multivariate Normal

Multipution

C: 1 D :

Multiple Regression

Data Reconciliation

Definition (marginal distribution)

Let $\boldsymbol{X}=(X_1,X_2)$ be a bivariate continuous random variable with distribution function F and density f. The distribution of X_1 is called the **marginal distribution** of X_1 with respect to \boldsymbol{X} . Its density f_1 is:

$$f_1(x_1) = \int_{-\infty}^{\infty} f(x_1, x_2) dx_2.$$

Analogously, if $X = (X_1, X_2)$ is discrete with density f, then the density f_1 of the marginal distribution of X_1 with respect to X is given by:

$$f_1(k_1) = \sum_{k_2} f(k_1, k_2)$$

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Multidimensional Random Variable Basic Terminology Marginal Distributions and Conditional Distributions The Multivariate Normal Distribution

Multivariate Error Propagat

Multiple Regressio

Data Reconciliatio

- The distributions of X_1 and X_2 can be calculated from the joint distribution of X_1 and X_2 .
- The reverse process is generally not possible because the joint distribution also contains information about correlations (couplings) between X_1 and X_2 .
- Let X_1 and X_2 be two discrete random variables with a joint density $f(k_1,k_2)$ and marginal densities $f_1(k_1)$ and $f_2(k_2)$. Then the conditional probability of the event $X_1=k_1$ under the condition $X_2=k_2$ is given by:

$$P(X_1 = k_1 | X_2 = k_2) = \frac{P(X_1 = k_1 \cap X_2 = k_2)}{P(X_2 = k_2)} = \frac{f(k_1, k_2)}{f_2(k_2)}$$

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Multidimensiona Random Variabl

Basic Terminol

Marginal Distributions and Conditional Distributions

Distribution

Multivariate Error Propagati

Simple Regression

iviuitipie Regression

Data Reconciliation

Definition (Conditional Density)

Let $X=(X_1,X_2)$ be a bivariate discrete random variable with density $f(k_1,k_2)$ and marginal distribution densities $f_1(k_1)$ and $f_2(k_2)$, respectively. The function $f(k_1|k_2)$, defined by:

$$f(k_1|k_2) = \frac{f(k_1, k_2)}{f_2(k_2)}$$

is called the conditional density of X_1 given X_2 .

• For fixed k_2 , the conditional density is the density of a distribution, the **conditional distribution** of X_1 given $X_2 = k_2$.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Multidimensiona

Basic Terminolo

Marginal Distributions and Conditional Distributions The Multivariate Normal Distribution

Multivariate Error Propagation

ompre regressie

Data Reconciliation

• If $X = (X_1, X_2)$ is continuous, then analogously $f(x_1|x_2)$ is defined by:

$$f(x_1|x_2) = \frac{f(x_1, x_2)}{f_2(x_2)} \ (f_2(x_2) \neq 0)$$

- $f(x_1|x_2)$ is for fixed x_2 the density of a distribution, the distribution of X_1 conditioned by $X_2 = x_2$.
- It can easily be verified that $f(x_1|x_2)$ is indeed a density:

$$\int_{-\infty}^{\infty} f(x_1|x_2) \, \mathrm{d}x_1 = \int_{-\infty}^{\infty} \frac{f(x_1, x_2)}{f_2(x_2)} \, \mathrm{d}x_1 = \frac{f_2(x_2)}{f_2(x_2)} = 1$$

and analogously for discrete X.

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Aultidimensional

Basic Terminolog

Marginal Distributions and

The Multivariate Normal

Multivariata Error Propagatio

Simple Regression

Marie Barrier

Data Reconciliation

Conditional Density Properties

$$f(x_1, x_2) = f(x_1|x_2) \cdot f_2(x_2)$$
$$f_1(x_1) = \int_{-\infty}^{\infty} f(x_1|x_2) \cdot f_2(x_2) \, \mathrm{d}x_2$$

and analogously for discrete densities.

<u>Definition</u> (independence of random variables)

If the (unconditional) density of the marginal distribution of X_1 is equal to the density conditioned by X_2 , then X_1 and X_2 are called **independent**.

$$X_1$$
 and X_2 independent $\iff f(x_1|x_2) = f_1(x_1)$.

Statistical Methods of Data Analysis

W Waltenberger

Introductio

Multidimensiona

Basic Terminology

Marginal Distributions and

The Multivariate Normal

Distribution

Multivariate Error Propagati

Multiple Descrip

iviuitipie Regressioi

Data Reconciliation

• For independent random variables X_1 and X_2 :

$$f(x_1|x_2) = f_1(x_1) \iff f(x_2|x_1) = f_2(x_2)$$

 $\iff f(x_1, x_2) = f_1(x_1) \cdot f_2(x_2)$

and analogously for discrete X.

Properties of Independent Random Variables

- $f(x_1, x_2) = f_1(x_1) \cdot f_2(x_2)$
- $E[X_1X_2] = E[X_1] \cdot E[X_2]$
- $\bullet \ \operatorname{cov}[X_1, X_2] = \rho[X_1, X_2] = 0$
- Uncorrelated random variables are not necessarily also independent!

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

- Multidimensional
 Random Variable
 Basic Terminology
 Marginal Distributions and
 Conditional Distributions
- The Multivariate Normal Distribution
- Simple Regression
- Multiple Description
- Data Reconciliatio

• If $X = (X_1, \dots, X_d)$, d > 2, then the definitions of the marginal distribution, conditional densities and independence must be generalized accordingly.

- The density $f_{i_1,...,i_m}$ of the marginal distribution of X_{i_1},\ldots,X_{i_m} is obtained by integrating or summing over all other variables.
- The density of X_i given X_j is given by:

$$f(x_i|x_j) = \frac{f_{i,j}(x_i, x_j)}{f_j(x_j)}$$

where $f_{i,j}(x_i,x_j)$ is the marginal distribution density of X_i,X_j .

• X_{i_1}, \ldots, X_{i_k} are called independent if the densities of their joint distributions are the product of the densities of the marginal distributions of each X_{i_i} .

Statistical Methods of Data Analysis

W. Waltenbergei

Introduct

Multidimensional Random Variable

Basic Terminolog

Marginal Distributions and

The Multivariate Normal

Multivariate Error Propagation

.

Multiple Regressio

. .

Data Reconciliation

Example (The Acceptance or Detection Probability)

Let X be a random variable with density f(x). If X takes the value x, then there is a probability a(x) that x is actually observed. One now defines a random variable I that is 1 if x is observed and 0 otherwise. Then I is Bernoulli distributed under the condition X=x according to $\mathrm{Al}(a(x))$:

$$P(I = 1|X = x) = a(x)$$

 $P(I = 0|X = x) = 1 - a(x)$

Therefore, the joint density of X and I is:

$$f(x,1) = a(x)f(x)$$

$$f(x,0) = [1 - a(x)]f(x)$$

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Multidimensional

Basic Terminolo

Marginal Distributions and

Conditional Distributions
The Multivariate Normal

Multipoints From Donorosti

Simple Perrorrien

Multiple Regressio

Data Reconciliation

Example (Continuation)

Because experimentalists can only work with observed quantities, they restrict their sample to the detected events, i.e. they need the density of X under the condition that X is observed:

$$f_A(x) = f(x|I=1) = \frac{f(x,1)}{f_2(1)} = \frac{a(x)f(x)}{\int a(x)f(x) dx}$$

As a concrete example, consider the measurement of a lifetime. Let the measurement start at t_{\min} and end at t_{\max} . Then a(t) has the following shape:

$$a(t) = \begin{cases} 0, \text{ for } t \leq t_{\min} \\ 1, \text{ for } t_{\min} < t \leq t_{\max} \\ 0, \text{ for } t > t_{\max} \end{cases}$$

Statistical Methods of Data Analysis

Waltenberger

Introductio

Multidimensiona

Basic Terminolo,

Marginal Distributions and Conditional Distributions

The Multivariate Normal Distribution

Multivariate Error Propagation

Simple Pagraction

Multiple Regression

Data Reconciliation

Example (Continuation)

For the measured probability density:

$$f_A(t) = \begin{cases} 0, \ t \le t_{\min} \\ \frac{\frac{1}{\tau} \exp(-t/\tau)}{\exp(-t_{\min}/\tau) - \exp(-t_{\max}/\tau)}, \ t_{\min} \le t < t_{\max} \\ 0, \ t > t_{\max} \end{cases}$$

The denominator $[\exp(-t_{\min}/\tau) - \exp(-t_{\max}/\tau)]$ corrects for those particles that decay before t_{\min} or after t_{\max} .

The detection probability a(t) can also have a much more complicated dependence on t. For example, whether or not a decay can be observed at t may depend on the nature and geometric configuration of the decay products.

Subsection: The Multivariate Normal Distribution

Statistical Methods of Data Analysis

N. Waltenberger

Introductio

ıltidimensional ndom Variable

Basic Terminology

Marginal Distributions and

The Multivariate Normal Distribution

Multivariate Error Propagation

M IC L D

marcipie megression

28 Introduction

- 29 Multidimensional Random Variable
 - Basic Terminology
 - Marginal Distributions and Conditional Distributions
 - The Multivariate Normal Distribution
 - Multivariate Error Propagation
- 30 Simple Regression
- **11** Multiple Regression
- 32 Data Reconciliation

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Multidimensiona

Basic Terminology

Marginal Distributions an

Conditional Distributions
The Multivariate Normal

Multipariete Form December

materialiate Error i ropagati

Multiple Regression

Waltiple Regression

Data Reconciliation

The multivariate normal distribution $No(\mu, \mathbf{V})$

• Its density is:

$$f(\boldsymbol{x}) = \frac{1}{(2\pi)^{\frac{d}{2}}\sqrt{|\mathbf{V}|}} \, \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}}\mathbf{V}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)$$

Moments

Let $X = (X_1, \ldots, X_d) \sim \text{No}(\mu, \mathbf{V})$. Then holds:

- ullet $\mathsf{E}[X] = \mu$
- ullet Cov $[oldsymbol{X}] = oldsymbol{V}$
- V⁻¹ is also symmetric and positive definite, and is called a weight or information matrix.

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Multidimensiona

Basic Terminology

Marginal Distributions and

The Multivariate Normal

Multivariate Error Propagation

Simple Regression

iviuitipie Regression

Data Reconciliation

Linear Transformations

Let $X \sim \text{No}(\mu, \mathbf{V})$ and \mathbf{H} be a $m \times d$ matrix. Then $Y = \mathbf{H}X \sim \text{No}(\mathbf{H}\mu, \mathbf{H}\mathbf{V}\mathbf{H}^T)$.

Marginal Distributions

Each marginal distribution of a normal distribution is itself a normal distribution. The mean and matrix of the marginal distribution are obtained by removing the corresponding columns and rows.

Conditional Distributions

Each conditional distribution of a normal distribution is again a normal distribution.

Statistical Methods of Data Analysis

W. Waltenberge

Introducti

Multidimensiona Random Variable

Basic Terminology
Marginal Distributions and
Conditional Distributions
The Multivariate Normal
Distribution

Multivariate Error Propagation

Simple Regression

Multiple Regression

• If $X \sim \operatorname{No}(\mu, V)$, then V can be put to diagonal form as a positive definite symmetric matrix using an orthogonal transformation (rotation):

$$\mathbf{U}\mathbf{V}\mathbf{U}^{\mathrm{T}} = \mathbf{D}^{2}$$

• All diagonal elements of ${\bf D}^2$ are positive. The random variable ${\bf Z}={\bf D}{\bf U}({\bf X}-{\boldsymbol \mu})$ is then distributed according to a multivariate standard normal distribution, i.e.:

$$\mathsf{E}[oldsymbol{Z}] = oldsymbol{0}, \quad \mathsf{Cov}[oldsymbol{Z}] = oldsymbol{I}$$

The rotation \mathbf{U} is called a **principle axis transformation**.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Multidimensiona

Basic Terminology

Marginal Distributions an

The Multivariate Normal

Multivariate Error Propagation

C. I.B.

Multiple Regression

The bivariate normal distribution

• For d=2 and $\mu=0$, the density can be written as follows:

$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}}\exp\left[-\frac{1}{2(1-\rho^2)}\left(\frac{x^2}{\sigma_x^2} - \frac{2\rho xy}{\sigma_x\sigma_y} + \frac{y^2}{\sigma_y^2}\right)\right]$$

• $\rho = \sigma_{xy}/(\sigma_x\sigma_y)$ is the correlation coefficient. If X and Y are uncorrelated, i.e. $\rho = 0$, it follows:

$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left[-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\right)\right] = f_1(x) \cdot f_2(y)$$

 Two uncorrelated normally distributed random variables with a joint normal distribution are therefore independent.

Statistical Methods of Data Analysis

N. Waltenberger

Introduction

Multidimensional

Random Variabl

Marginal Distributions and

The Multivariate Normal Distribution

ultivariate Error Propagation

Simple Regression

Multiple Regression

Data Reconciliation

density function of a bivariate normal distribution

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Multidimensional

Rasic Terminology

Marginal Distributions an

The Multivariate Normal Distribution

Multivariate Error Propagati

Simple Regression

Multiple Regression

Data Reconciliation

contour lines of a bivariate normal distribution

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Multidimensiona

Basic Terminology

Marginal Distributions an

The Multivariate Normal

Multivariate Error Propagation

Simple Regression

Multiple Regression

Data Reconciliation

• The **conditional density** f(y|x) is given by

$$\begin{split} f(y|x) &= \frac{f(x,y)}{f(x)} = \\ &= \frac{1}{\sqrt{2\pi}\sigma_y\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2\;\sigma_y^2\;(1-\rho^2)} \left(y - \frac{\rho\;y\;\sigma_y}{\sigma_x}\right)^2\right] \end{split}$$

ullet Y|X=x is therefore a normally distributed random variable with expectation

$$\mathsf{E}[Y|X] = \rho \, x \, \sigma_y / \sigma_x$$

 E[Y|X] is called the conditional expectation or regression of y on x.

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Random Variable
Basic Terminology
Marginal Distributions and

The Multivariate Normal Distribution

Simple Regression

Multiple Regression

Data Reconciliatio

- Depending on the sign of ρ , the conditional expectation of Y falls or grows as X grows.
- If $\rho = 1$, X and Y are proportional: $Y = X \sigma_y / \sigma_x$.
- The contour lines of the density function are ellipses.
- The **principle axis transformation** is that rotation which aligns the ellipses with the axes.
- In the case d=2 it only depends on ρ . If $\rho=0$, X and Y are already independent, and the rotation angle is equal to 0. If $\rho \neq 0$, the rotation matrix U is equal to

$$U = \begin{pmatrix} \cos \varphi & -\sin \varphi & \sin \varphi & \cos \varphi \end{pmatrix} \text{ with } \varphi = -\frac{1}{2} \operatorname{arccot} \frac{\sigma_y^2 - \sigma_x^2}{2\rho\sigma_x\sigma_y}$$

Statistical Methods of Data Analysis

V. Waltenberger

Introduction

Multidimensional

Basic Terminology

Marginal Distributions and Conditional Distributions

The Multivariate Normal Distribution

Multivariate Error Propagati

Simple Regression

Multiple Pegrecoion

Data Reconciliation

Principal axis and regression lines of a bivariate normal distribution

Subsection: Multivariate Error Propagation

Statistical Methods of Data Analysis

Multidimensional Random Variable

- Basic Terminology
- Marginal Distributions and Conditional Distributions
- The Multivariate Normal Distribution
- Multivariate Error Propagation

- Multivariate Error Propagation

Multivariate Error Propagation

Statistical Methods of Data Analysis

W. Waltenberger

Introducti

Multidimensiona Random Variable

Marginal Distributions and Conditional Distributions
The Multivariate Normal

Multivariate Error Propagation

Simple Regression

Multiple Regression

Data Reconciliation

Affine Transformations

- Let X be a random variable with density f(x) and Y = AX + b with regular A.
- ullet The density g(y) of Y is then equal to

$$g(\boldsymbol{y}) = \frac{1}{|\mathbf{A}|} f\left(\mathbf{A}^{-1}(\boldsymbol{y} - \boldsymbol{b})\right)$$

• Furthermore, for any A:

$$\mathsf{E}[m{Y}] = m{A} \cdot \mathsf{E}[m{X}] + m{b}$$
 $\mathsf{Cov}[m{Y}] = m{A} \cdot \mathsf{Cov}[m{X}] \cdot m{A}^{\mathrm{T}}$

Multivariate Error Propagation

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Multidimensiona Random Variable

Marginal Distributions and Conditional Distributions The Multivariate Normal

Multivariate Error Propagation

Simple Regression

Multiple Regression

Data Reconciliation

Nonlinear Transformations

- Let X be a random variable with density f(x) and Y = h(X).
- If h(x) is bijective, the density g(y) of Y is equal to

$$g(\boldsymbol{y}) = \left| \frac{\partial \boldsymbol{h}^{-1}}{\partial \boldsymbol{y}} \right| f\left(\boldsymbol{h}^{-1}(\boldsymbol{y})\right)$$

• The expectation and variance of Y = h(X) can be calculated approximately using the Taylor expansion of h(x), even if h(x) is not bijective.

Multivariate Error Propagation

Statistical Methods of Data Analysis

W. Waltenberge

Introductio

Marginal Distributions and Conditional Distributions The Multivariate Normal

Multivariate Error Propagation

Simple (teglession

......

ullet With the expansion point x_0 we obtain in linear approximation

$$m{h}(m{x}) pprox m{h}(m{x}_0) + \mathbf{H}(m{x}_0)(m{x} - m{x}_0), \quad \mathbf{H} = rac{\partial m{h}(m{x})}{\partial m{x}}$$

ullet With the choice $oldsymbol{x}_0 = \mathsf{E}[oldsymbol{X}]$ it follows that:

Theorem

$$\begin{split} \mathsf{E}[\boldsymbol{h}(\boldsymbol{X})] &\approx \boldsymbol{h}(\mathsf{E}[\boldsymbol{X}]) \\ \mathsf{Cov}[\boldsymbol{h}(\boldsymbol{X})] &\approx \mathbf{H} \cdot \mathsf{Cov}[X] \cdot \mathbf{H}^\mathrm{T} \quad \text{(Linear Error Propagation)} \end{split}$$

Section 30: Simple Regression

Statistical Methods of Data Analysis

V. Waltenberger

Introductio

Multidimensiona

Simple Regression

Tests, Confidence and Prediction Intervals Robust Regression Polynomial Regression

Multiple Regression

Data Reconciliation

- 28 Introduction
- 29 Multidimensional Random Variable
- 30 Simple Regression
 - Linear Regression
 - Tests, Confidence and Prediction Intervals
 - Robust Regression
 - Polynomial Regression
- 31 Multiple Regression
- 32 Data Reconciliation

Subsection: Linear Regression

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

29 Multidimensional Random Variable

Simple Regression

Linear Regression

Tests, Confidence and Prediction Intervals Robust Regression Polynomial Regression

Multiple Regression

- 30 Simple Regression
 - Linear Regression
 - Tests, Confidence and Prediction Intervals
 - Robust Regression
 - Polynomial Regression
- 31 Multiple Regression
- 32 Data Reconciliation

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Multidimensiona

Simple Regression

Linear Regression

Tests, Confidence and Prediction Intervals

Prediction Intervals
Robust Regression
Polynomial Regression

Multiple Regression

Data Reconciliation

• The simplest regression model is a straight line:

$$Y = \alpha + \beta x + \varepsilon$$
, $\mathsf{E}[\varepsilon] = 0$, $\mathsf{var}[\varepsilon] = \sigma^2$

- Let Y_1, \ldots, Y_n be the results for the values x_1, \ldots, x_n of the predictor variable x.
- α and β can be estimated using the principle of least sum of squared errors.
- The following objective function is minimized:

$$SS = \sum_{i=1}^{n} (Y_i - \alpha - \beta x_i)^2$$

• gradient of SS:

$$\frac{\partial SS}{\partial \alpha} = -2\sum_{i=1}^{n} (Y_i - \alpha - \beta x_i), \ \frac{\partial SS}{\partial \beta} = -2\sum_{i=1}^{n} x_i (Y_i - \alpha - \beta x_i)$$

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Multidimensional

Simple Regressio

Linear Regression

Prediction Intervals
Robust Regression
Polynomial Regression

Multiple Regression

Data Reconciliation

• Zeroing the gradient results in the **normal equations**:

$$\sum_{i=1}^{n} Y_i = n\alpha + \beta \sum_{i=1}^{n} x_i$$
$$\sum_{i=1}^{n} x_i Y_i = \alpha \sum_{i=1}^{n} x_i + \beta \sum_{i=1}^{n} x_i^2$$

• The estimated regression coefficients are:

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i Y_i - \bar{x} \sum_{i=1}^{n} Y_i}{\sum_{i=1}^{n} x_i^2 - n\bar{x}^2}$$

$$\hat{\alpha} = \overline{Y} - \hat{\beta}\bar{x}$$

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Multidimensiona

Simple Regression

Tests, Confidence a Prediction Intervals Robust Regression

Polynomial Regres

Multiple Regressio

Data Reconciliation

• It is true that:

$$\mathsf{E}[\hat{\alpha}] = \alpha, \quad \mathsf{E}[\hat{\beta}] = \beta$$

• The following is an unbiased estimator of the variance of the error term:

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^{n} r_i^2$$

with

$$r_i = Y_i - \hat{Y}_i, \quad \hat{Y}_i = \hat{\alpha} + \hat{\beta}x_i$$

• The r_i are called the **residuals** of the regression.

Statistical Methods of Data Analysis

W. Waltenberg

Introduction

Multidimensional

Simple Regression

Tests, Confidence and Prediction Intervals Robust Regression

Multiple Regression

Data Reconciliation

 The covariance matrix of the estimated regression coefficients is obtained by linear error propagation:

$$\begin{split} \mathsf{Cov}[\hat{\alpha},\hat{\beta}] &= \sigma^2 \left(\begin{array}{cc} \frac{\sum x_i^2}{n \left(\sum x_i^2 - n \bar{x}^2\right)} & -\frac{\sum x_i}{n \left(\sum x_i^2 - n \bar{x}^2\right)} \\ -\frac{\sum x_i}{n \left(\sum x_i^2 - n \bar{x}^2\right)} & \frac{1}{\sum x_i^2 - n \bar{x}^2} \end{array} \right) \end{split}$$

Statistical Methods of Data Analysis

Linear Regression

Example

Data set 4:

$$\bar{x} = 167.60$$

$$r_{xy} = 0.5562$$

$$\bar{y} = 76.16$$

$$\hat{a}=23.37$$

$$s_x = 8.348$$

$$\hat{b} = 0.3150$$

$$s_y = 4.727$$

$$b = 0.3150$$

Statistical Methods of Data Analysis

W Waltenberger

Multidimensional

Simple Regressio

Linear Regression

Tests, Confidence and Prediction Intervals Robust Regression

Multiple Regression

Data Reconciliation

Example (Continuation)

scatter plot with regression line

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

lultidimensional

Simple Regression

Simple Regression

Linear Regression

Prediction Intervals
Robust Regression

Polynomial Regress

withitiple Regressio

Data Reconciliation

• The spread of the values Y_i is due to various reasons:

- \bullet There are systematic differences due to different values of x.
- In addition, there is the random scattering of the data.

Explained Sum of Squares
$$SS^* = \sum_{i=1}^n (\hat{Y}_i - \overline{Y})^2 = r_{xy}^2 n s_Y^2$$
 Residual Sum of Squares
$$SS_R = \sum_{i=1}^n (Y_i - \hat{Y}_i)^2 = (1 - r_{xy}^2) n s_Y^2$$
 Total Sum of Squares
$$SS_T = \sum_{i=1}^n (Y_i - \overline{Y})^2 = n s_Y^2$$

Statistical Methods of Data Analysis

W. Waltenberge

Introductio

Multidimension

Simple Regression

Tests, Confidence a Prediction Intervals

Robust Regression

Multiple Regressio

Data Reconciliation

Decomposition of Variability

$$SS_T = SS^* + SS_R$$

 The goodness of the regression line can be determined by the coefficient of determination:

Coefficient of determination of the regression

$$B = \frac{SS^*}{SS_T} = r_{xy}^2$$

 It indicates what proportion of the total variability can be explained by the correlation of x and Y.

Subsection: Tests, Confidence and Prediction Intervals

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Multidimensional Random Variable

Simple Regression
Linear Regression
Tests, Confidence and
Prediction Intervals

Robust Regression Polynomial Regression

Multiple Regressi

- 28 Introduction
- 29 Multidimensional Random Variable
- 30 Simple Regression
 - Linear Regression
 - Tests, Confidence and Prediction Intervals
 - Robust Regression
 - Polynomial Regression
- 31 Multiple Regression
- 32 Data Reconciliation

Statistical Methods of Data Analysis

N. Waltenberge

Introduct

Multidimensional Random Variable

Simple Regression
Linear Regression
Tests, Confidence and
Prediction Intervals
Robust Regression
Polynomial Regression

Multiple Regression

Data Reconciliation

• If $\beta=0$, the result does not depend on the influence variables at all.

• A test of the null hypothesis $H_0: \beta = 0$ against $H_1: \beta \neq 0$ is based on the following theorem.

Theorem

If ε is normally distributed, then:

$$\frac{\hat{\alpha} - \alpha}{\hat{\sigma}_{\hat{\alpha}}}, \quad \frac{\hat{\beta} - \beta}{\hat{\sigma}_{\hat{\beta}}}$$

is t-distributed with n-2 degrees of freedom, where

$$\hat{\sigma}_{\hat{\alpha}}^2 = \frac{\hat{\sigma}^2 \sum x_i^2}{n \left(\sum x_i^2 - n \bar{x}^2\right)}, \quad \hat{\sigma}_{\hat{\beta}}^2 = \frac{\hat{\sigma}^2}{\sum x_i^2 - n \bar{x}^2}$$

Statistical Methods of Data Analysis

W. Waltenberge

Introductio

Multidimensional

Simple Regression

Linear Regression

Tests, Confidence and

Prediction Intervals
Robust Regression

Polynomial Regressio

.....

• The null hypothesis $H_0: \beta = 0$ is rejected, if the test statistic

$$T = \frac{\hat{\beta}}{\hat{\sigma}_{\hat{\beta}}}$$

is relatively small or relatively large, i.e. if

$$\frac{|\hat{\beta}|}{\hat{\sigma}_{\hat{\beta}}} > t_{1-\alpha/2;n-2}$$

where $t_{p;n-2}$ is the p-quantile of the t-distribution with n-2 degrees of freedom.

• An analogous test can be performed for the null hypothesis $H_0: \alpha = 0$.

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Multidimensiona Random Variable

Simple Regression
Linear Regression
Tests, Confidence and
Prediction Intervals
Robust Regression
Polynomial Regression

Multiple Regression

Data Reconciliatio

Symmetric Confidence Intervals

$$\hat{\alpha} \pm \hat{\sigma}_{\hat{\alpha}} \cdot t_{1-\alpha/2;n-2}, \quad \hat{\beta} \pm \hat{\sigma}_{\hat{\beta}} \cdot t_{1-\alpha/2;n-2}$$

- For $n \gtrsim 50$, the quantiles of the t-distribution can be replaced by quantiles of the standard normal distribution.
- We want to predict the outcome $Y_0 = Y(x_0)$ for a given value x_0 of the influence variable x.
- The expected value of Y_0 is

$$\mathsf{E}[Y_0] = \hat{\alpha} + \hat{\beta}x_0$$

• The variance of $\mathsf{E}[Y_0]$ is obtained by error propagation:

$$\mathrm{var}[\mathsf{E}[Y_0]] = \sigma^2 \left[\frac{1}{n} + \frac{(\bar{x} - x_0)^2}{\sum x_i^2 - n\bar{x}^2} \right]$$

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Multidimensional

Simple Regression
Linear Regression
Tests, Confidence and
Prediction Intervals
Robust Regression
Polynomial Regression

Multiple Regression

Data Reconciliation

• Since Y_0 scatters around its expected value with variance σ^2 , we get:

$$\mathrm{var}[Y_0] = \sigma^2 \left[\frac{n+1}{n} + \frac{(\bar{x} - x_0)^2}{\sum x_i^2 - n\bar{x}^2} \right]$$

• The symmetric prediction interval for Y_0 with certainty α is therefore the same:

$$\hat{\alpha} + \hat{\beta}x_0 \pm t_{1-\alpha/2;n-2}\hat{\sigma}\sqrt{\frac{n+1}{n} + \frac{(\bar{x} - x_0)^2}{\sum x_i^2 - n\bar{x}^2}}$$

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Multidimensional

Simple Regression Linear Regression

Tests, Confidence and Prediction Intervals

Polynomial Regression

Willitiple Regressio

prediction bands for $\mathsf{E}[Y]$ and Y

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Multidimensional Random Variable

Simple Regression
Linear Regression
Tests, Confidence and
Prediction Intervals
Robust Regression

Multiple Regression

Data Reconciliation

 The adequacy of the model can be checked by examining the studentized residuals (residual errors).

• The residual r_k has the variance

$$\mathrm{var}[r_k] = \sigma^2 \left[1 - \frac{1}{n} - \frac{(x_k - \bar{x})^2}{\sum x_i^2 - n\bar{x}^2} \right]$$

• The studentized residual is then:

$$r'_{k} = \frac{r_{k}}{\hat{\sigma}\sqrt{1 - \frac{1}{n} - \frac{(x_{k} - \bar{x})^{2}}{\sum x_{i}^{2} - n\bar{x}^{2}}}}}$$

• It has expectation 0 and variance 1.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Multidimensional

Simple Regression
Linear Regression
Tests, Confidence and
Prediction Intervals
Robust Regression

Multiple Regress

Data Barrasiliatia

regression line and studentized residuals

Statistical Methods of Data Analysis

W Waltenberger

Introduction

Multidimensional

Simple Regression
Linear Regression
Tests, Confidence and
Prediction Intervals

Polynomial Regression

regression line and studentized residuals

Subsection: Robust Regression

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

29 Multidimensional Random Variable

Random Variabl

Linear Regression
Tests, Confidence and

Prediction Intervals

Robust Regression

Multiple Regression

- 30 Simple Regression
 - Linear Regression
 - Tests, Confidence and Prediction Intervals
 - Robust Regression
 - Polynomial Regression
- 31 Multiple Regression
- 32 Data Reconciliation

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Aultidimensional Random Variable

Linear Regression
Tests, Confidence and
Prediction Intervals
Robust Regression

Polynomial Regres

Multiple Regressio

- As an LS estimator, the regression line is not robust, i.e. sensitive to outliers.
- ullet Single outliers in the outcome variable y usually result in a slight distortion of the regression line.
- ullet Single outliers in the influence variable x, so-called leverage points, can cause catastrophic distortions.

Statistical Methods of Data Analysis

Waltenberger

Introduction

Multidimensional

Simple Regression

Robust Regression

Multiple Regressio

linear regression with outliers

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Multidimension Random Varia

Linear Regression

Tests, Confidence and
Prediction Intervals

Robust Regression

Multiple Pegroccien

- LMS (Least Median of Squares): Instead of the sum of the error squares, the median of the error squares is minimized.
- "Exact fit property": The LMS straight line passes through two data points.
- Calculation is performed combinatorially.
- LTS (Least Trimmed Squares): The sum of a fixed number $h \le n$ of squared errors is minimized.
- Calculation iterative (FAST-LTS).
- Both methods are authored by P. Rousseeuw.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Multidimensional

Simple Regression

Tests, Confidence and

Robust Regression

Polynomial Regression

Multiple Regressi

Subsection: Polynomial Regression

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

29 Multidimensional Random Variable

Simple Regressio

Linear Regression
Tests, Confidence and
Prediction Intervals
Robust Regression

Polynomial Regression

Multiple Regressi

- 30 Simple Regression
 - Linear Regression
 - Tests, Confidence and Prediction Intervals
 - Robust Regression
 - Polynomial Regression
- 31 Multiple Regression
- 32 Data Reconciliation

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Multidimension Random Variab

Simple Regression
Linear Regression
Tests, Confidence and
Prediction Intervals
Robust Regression
Polynomial Regression

Multiple Regression

Data Reconciliatio

 If the relationship between x and Y is not approximately linear, one can try to fit a polynomial.

• The model is then:

$$Y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_r x^r + \varepsilon, \quad \mathsf{E}[\varepsilon] = 0, \ \mathsf{var}[\varepsilon] = \sigma^2$$

- Let again Y_1, \ldots, Y_n be the results for the values x_1, \ldots, x_n of the influence variables x.
- In matrix vector notation:

$$Y = X\beta + \varepsilon$$
, $E[\varepsilon] = 0$, $Cov[\varepsilon] = \sigma^2 I$

with

$$\mathbf{X} = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^r \\ 1 & x_2 & x_2^2 & \cdots & x_2^r \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^r \end{pmatrix}$$

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Multidimensiona Random Variabl

Simple Regressi

Tests, Confidence and Prediction Intervals Robust Regression Polynomial Regression

Multiple Description

Data Reconciliation

• The following target function is minimized:

$$SS = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{\mathrm{T}}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

• gradient of SS:

$$\frac{\partial SS}{\partial \boldsymbol{\beta}} = -2\mathbf{X}^{\mathrm{T}}(\boldsymbol{Y} - \mathbf{X}\boldsymbol{\beta})$$

• Zeroing the gradient results in the **normal equations**:

$$\mathbf{X}^{\mathrm{T}}\mathbf{Y} = \mathbf{X}^{\mathrm{T}}\mathbf{X}\boldsymbol{\beta}$$

• The solution is:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\boldsymbol{Y}$$

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Multidimensional Random Variable

Simple Regressio

Tests, Confidence and Prediction Intervals

Robust Regression

Polynomial Regression

Multiple Regression

Data Reconciliation

- $\hat{\beta}$ is an unbiased estimator of β .
- An unbiased estimate of the variance of the error term is given by:

$$\hat{\sigma}^2 = \frac{1}{n-r-1} \sum_{i=1}^{n} r_i^2$$

with the vector of residuals

$$r = Y - \hat{Y}, \quad \hat{Y} = X\hat{\beta}$$

• The covariance matrix of estimated regression coefficients:

$$\mathsf{Cov}[\hat{\boldsymbol{\beta}}] = \sigma^2 \left(\mathbf{X}^{\mathrm{T}} \mathbf{X} \right)^{-1}$$

• The covariance matrix of residuals r:

$$\mathsf{Cov}[\boldsymbol{r}] = \sigma^2 \left[\mathbf{I} - \mathbf{X} \left(\mathbf{X}^{\mathrm{T}} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathrm{T}} \right]$$

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Multidimensional

Simple Regression

Tests, Confidence and Prediction Intervals

Polynomial Regression

Multiple Regressi

regression parabola and studentized residuals

Section 31: Multiple Regression

Statistical Methods of Data Analysis

V. Waltenberger

Introductio

Multidimensiona

Simple Regression

Multiple Regression

Estimation, Tests, and Prediction Intervals Weighted Regression Nonlinear Regression

- 23 Introduction
- 29 Multidimensional Random Variable
- 30 Simple Regression
- **31** Multiple Regression
 - The Linear Model
 - Estimation, Tests, and Prediction Intervals
 - Weighted Regression
 - Nonlinear Regression
- 32 Data Reconciliation

Subsection: The Linear Model

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Multidimensional Random Variable

Simple Regression

The Linear Model

Estimation, Tests, an

Weighted Regressio Nonlinear Regressio

- 28 Introduction
- 29 Multidimensional Random Variable
- 30 Simple Regression
- **31** Multiple Regression
 - The Linear Model
 - Estimation, Tests, and Prediction Intervals
 - Weighted Regression
 - Nonlinear Regression
- 32 Data Reconciliation

The Linear Model

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Multidimensional Random Variable

Simple Regression

The Linear Model

Estimation, Tests, and Prediction Intervals Weighted Regression Nonlinear Regression

Data Reconciliation

• If the outcome Y depends on several influence variables, the simplest linear regression model is:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_r x_r + \varepsilon$$
, $\mathsf{E}[\varepsilon] = 0$, $\mathsf{var}[\varepsilon] = \sigma^2$

- Let again Y_1, \ldots, Y_n be the results for n values x_1, \ldots, x_n of the influence variables $x = (x_1, \ldots, x_r)$.
- In matrix vector notation:

$$Y = X\beta + \varepsilon$$
, $E[\varepsilon] = 0$, $Cov[\varepsilon] = \sigma^2 I$

with

$$\mathbf{X} = \begin{pmatrix} 1 & x_{1,1} & x_{1,2} & \cdots & x_{1,r} \\ 1 & x_{2,1} & x_{2,2} & \cdots & x_{2,r} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n,1} & x_{n,2} & \cdots & x_{n,r} \end{pmatrix}$$

Subsection: Estimation, Tests, and Prediction Intervals

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

29 Multidimensional Random Variable

Simple Regression

30 Simple Regression

Multiple Regression
The Linear Model
Estimation, Tests, and
Prediction Intervals
Weighted Regression

31 Multiple Regression

The Linear Model

- Estimation, Tests, and Prediction Intervals
- Weighted Regression
- Nonlinear Regression

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Multidimensiona

Simple Regression

Multiple Regression The Linear Model Estimation, Tests, and

Weighted Regression

Data Reconciliation

• The following objective function is minimized:

$$SS = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{\mathrm{T}}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

ullet gradient of SS:

$$\frac{\partial SS}{\partial \boldsymbol{\beta}} = -2\mathbf{X}^{\mathrm{T}}(\boldsymbol{Y} - \mathbf{X}\boldsymbol{\beta})$$

• Zeroing the gradient results in the **normal equations**:

$$\mathbf{X}^{\mathrm{T}}\mathbf{Y} = \mathbf{X}^{\mathrm{T}}\mathbf{X}\boldsymbol{\beta}$$

• The solution is:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\boldsymbol{Y}$$

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Multidimensional

Simple Regression

The Linear Model
Estimation, Tests, and

Prediction Intervals

Nonlinear Regress

Data Reconciliatio

- $\hat{\beta}$ is an expectation-trusted estimator of β .
- The variance of the error term is estimated expectation-trusted by:

$$\hat{\sigma}^2 = \frac{1}{n - r - 1} \sum_{i=1}^{n} r_i^2$$

with

$$r = Y - \hat{Y}, \quad \hat{Y} = X\hat{\beta}$$

• The covariance matrix of estimated regression coefficients:

$$\mathsf{Cov}[\hat{\boldsymbol{\beta}}] = \sigma^2 \left(\mathbf{X}^{\mathrm{T}} \mathbf{X} \right)^{-1}$$

• The covariance matrix of the residuals r:

$$\mathsf{Cov}[\boldsymbol{r}] = \sigma^2 \left[\mathbf{I} - \mathbf{X} \left(\mathbf{X}^{\mathrm{T}} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathrm{T}} \right]$$

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Multidimension Random Variab

Simple Regression

Multiple Regress
The Linear Model

Estimation, Tests, and Prediction Intervals

Nonlinear Regress

Data Reconciliation

• If $\beta_k = 0$, the result does not depend at all on the influence variables x_k .

• A test of the null hypothesis $H_0: \beta_k = 0$ against $H_1: \beta_k \neq 0$ is based on the following theorem.

Theorem

If ε is normally distributed, then

$$\frac{\hat{\beta}_k - \beta_k}{\hat{\sigma}_{\hat{\beta}_k}}$$

t-distributed with n-r-1 degrees of freedom, where $\hat{\sigma}_{\hat{\beta}_k}^2$ is the k-th diagonal element of the estimated covariance matrix.

$$\hat{\sigma}^2 \left(\mathbf{X}^{\mathrm{T}} \mathbf{X} \right)^{-1}$$

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Multidimensional

Simple Regression

Multiple Regressi

Estimation, Tests, and

Weighted Regressi

Data Reconciliation

• The null hypothesis $H_0: \beta_k = 0$ is rejected, if the test statistic

$$T = \frac{\hat{\beta}_k}{\hat{\sigma}_{\hat{\beta}_k}}$$

is relatively small or relatively large, i.e. if

$$\frac{|\hat{\beta}_k|}{\hat{\sigma}_{\hat{\beta}_k}} > t_{1-\alpha/2;n-r-1}$$

ullet The symmetric confidence interval for eta_k with 95% confidence is:

$$\hat{\beta}_k \pm \hat{\sigma}_{\hat{\beta}_k} \cdot t_{1-\alpha/2;n-r-1}$$

Estimation, Tests, and Prediction Intervals

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Multidimensional Random Variable

Simple Regression

The Linear Model
Estimation, Tests, and
Prediction Intervals
Weighted Regression

Data Reconciliation

• We now want to predict the outcome $Y_0 = Y(x_0)$ for a given value $x_0 = (x_{01}, \dots, x_{0r})$ of the influence variable.

- We extend x_0 by the value 1: $x_+ = (1, x_{01}, \dots, x_{0r})$.
- ullet The expected value of Y_0 is then

$$\mathsf{E}[Y_0] = \boldsymbol{x}_+ \cdot \hat{\boldsymbol{\beta}}$$

• The variance of $\mathsf{E}[Y_0]$ is obtained by error propagation:

$$\mathsf{var}[\mathsf{E}[Y_0]] = \sigma^2 oldsymbol{x}_+ \left(\mathbf{X}^\mathrm{T} \mathbf{X} \right)^{-1} oldsymbol{x}_+^\mathrm{T}$$

Estimation, Tests, and Prediction Intervals

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Multidimensional

Simple Regression

Multiple Regression
The Linear Model
Estimation, Tests, and

Weighted Regress Nonlinear Regress

Data Reconciliatio

• Since Y_0 scatters around its expected value with variance σ^2 , we get:

$$\mathsf{var}[Y_0] = \sigma^2 \left[1 + \boldsymbol{x}_+ \left(\mathbf{X}^\mathrm{T} \mathbf{X} \right)^{-1} \boldsymbol{x}_+^\mathrm{T} \right]$$

ullet The symmetric prediction interval for Y_0 with certainty lpha is therefore the same:

$$\boldsymbol{x}_{+}\cdot\hat{\boldsymbol{\beta}}\pm t_{1-\alpha/2;n-k-1}\hat{\sigma}\sqrt{1+\boldsymbol{x}_{+}\left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\boldsymbol{x}_{+}^{\mathrm{T}}}$$

Subsection: Weighted Regression

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Multidimensional

Simple Regression

The Linear Model

Estimation, Tests, and

Weighted Regression Nonlinear Regression

Data Reconciliation

- 28 Introduction
- 29 Multidimensional Random Variable
- 30 Simple Regression
- Multiple Regression
 - The Linear Model
 - Estimation, Tests, and Prediction Intervals
 - Weighted Regression
 - Nonlinear Regression
- 32 Data Reconciliation

Weighted Regression

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Aultidimensional Landom Variable

Simple Regression

Multiple Regressio
The Linear Model
Estimation, Tests, and
Prediction Intervals

Weighted Regression Nonlinear Regression

Data Reconciliation

 In the general case, the error term can have any covariance matrix:

$$oldsymbol{Y} = \mathbf{X}oldsymbol{eta} + oldsymbol{arepsilon}, \quad \mathsf{Cov}[oldsymbol{arepsilon}] = \mathbf{V}$$

If V is known, the objective function is:

$$SS = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{\mathrm{T}}\mathbf{G}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}), \quad \mathbf{G} = \mathbf{V}^{-1}$$

• gradient of SS:

$$\frac{\partial SS}{\partial \boldsymbol{\beta}} = -2\mathbf{X}^{\mathrm{T}}\mathbf{G}(\boldsymbol{Y} - \mathbf{X}\boldsymbol{\beta})$$

Zeroing the gradient results in the normal equations:

$$\mathbf{X}^{\mathrm{T}}\mathbf{G}\mathbf{Y} = \mathbf{X}^{\mathrm{T}}\mathbf{G}\mathbf{X}\boldsymbol{\beta}$$

• The solution is:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathrm{T}}\mathbf{G}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{G}\mathbf{Y}$$

Weighted Regression

Statistical Methods of Data Analysis

W. Waltenberge

Introductio

Multidimensional

Simple Regression

Multiple Regression
The Linear Model
Estimation, Tests, and

Weighted Regression

Data Reconciliation

• Covariance matrix of the estimated regression coefficients:

$$\mathsf{Cov}[\hat{oldsymbol{eta}}] = \left(\mathbf{X}^{\mathrm{T}}\mathbf{G}\mathbf{X}\right)^{-1}$$

covariance matrix of residuals r:

$$\mathsf{Cov}[m{r}] = \mathbf{V} - \mathbf{X} \left(\mathbf{X}^{\mathrm{T}} \mathbf{G} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathrm{T}}$$

Tests and prediction intervals can be modified accordingly.

Subsection: Nonlinear Regression

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Multidimensional Random Variable

Simple Regression

Multiple Regression
The Linear Model
Estimation, Tests, and
Prediction Intervals
Weighted Regression
Nonlinear Regression

Data Reconciliation

- 28 Introduction
- 29 Multidimensional Random Variable
- 30 Simple Regression
- 31 Multiple Regression
 - The Linear Model
 - Estimation, Tests, and Prediction Intervals
 - Weighted Regression
 - Nonlinear Regression
- 32 Data Reconciliation

Nonlinear Regression

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Aultidimensional Random Variable

Simple Regression

Multiple Regression
The Linear Model
Estimation, Tests, and
Prediction Intervals
Weighted Regression
Nonlinear Regression

Data Reconciliatio

 In practice, the dependence of the results on the regression coefficients is often nonlinear:

$$oldsymbol{Y} = oldsymbol{h}(oldsymbol{eta}) + oldsymbol{arepsilon}, \quad \mathsf{Cov}[oldsymbol{arepsilon}] = oldsymbol{V}$$

• If V is known, the objective function is:

$$SS = [Y - h(\beta)]^{\mathrm{T}}G[Y - h(\beta)], \quad G = V^{-1}$$

- SS can be minimized using the Gauss-Newton method.
- For this h is linearized at a point β_0 :

$$m{h}(m{eta}) pprox m{h}(m{eta}_0) + m{H}(m{eta} - m{eta}_0) = m{c} + m{H}m{eta}, \quad m{H} = \left. rac{\partial m{h}}{\partial m{eta}}
ight|_{m{eta}_0}$$

Nonlinear Regression

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Multidimensiona

Simple Regression

The Linear Model
Estimation, Tests, and
Prediction Intervals
Weighted Regression
Nonlinear Regression

Data Reconciliatio

• The β estimate is:

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{H}^{\mathrm{T}}\mathbf{G}\mathbf{H}\right)^{-1}\mathbf{H}^{\mathrm{T}}\mathbf{G}(\boldsymbol{Y}-\boldsymbol{c})$$

- h is linearized again at the point $oldsymbol{eta}_1 = \hat{oldsymbol{eta}}.$
- The procedure is iterated until the estimate does not change significantly.
- ullet Many other methods for minimizing SS are available.

Section 32: Data Reconciliation

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Multidimensional

Simple Regression

Multiple Regression

Data Reconciliation

- 28 Introduction
- 29 Multidimensional Random Variable
- 30 Simple Regression
- 31 Multiple Regression
- 22 Data Reconciliation

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Multidimensional

Simple Regression

Multiple Regression

Data Reconciliation

Linear Constraints

Let $Y = (Y_1, ..., Y_n)^T$ be a vector of observations of the n unknown quantities $\beta = (\beta_1, ..., \beta_n)$:

$$oldsymbol{Y} = oldsymbol{eta} + oldsymbol{\epsilon}, \mathsf{Cov}[oldsymbol{\epsilon}] = oldsymbol{V},$$

with known V. Moreover, assume that the quantities β m must satisfy the following independent linear constraints with r unknown parameters $\boldsymbol{\vartheta} = (\vartheta_1, \dots, \vartheta_r)^{\mathrm{T}}$:

$$\mathbf{A}\boldsymbol{\beta} + \mathbf{B}\boldsymbol{\vartheta} = \boldsymbol{c}$$

Where **A** is a matrix of dimension $m \times n$, **B** is a matrix of dimension $m \times r$, and c a $m \times 1$ dimensional column vector.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Multidimensional Random Variable

Simple Regression

Multiple Regression

Data Reconciliation

Example (Continuation)

 β and ϑ are estimated according to the principle of least sum of squares of error. The objective function is

$$S(\boldsymbol{\beta}) = (\boldsymbol{Y} - \boldsymbol{\beta})^{\mathrm{T}} \mathbf{G} (\boldsymbol{Y} - \boldsymbol{\beta}), \mathbf{G} = \mathbf{V}^{-1}$$

under the condition:

$$\mathbf{A}\boldsymbol{\beta} + \mathbf{B}\boldsymbol{\vartheta} = \boldsymbol{c}.$$

The problem is determined if $r \le m$ and consistent if $m \le n + r$. The minimization of S can be done using m Lagrangians $\lambda = (\lambda_1, \dots, \lambda_m)^T$. The extended objective function is

$$L(\boldsymbol{\beta},\boldsymbol{\vartheta},\boldsymbol{\lambda}) = (\boldsymbol{Y} - \boldsymbol{\beta})^{\mathrm{T}}\mathbf{G}(\boldsymbol{Y} - \boldsymbol{\beta}) + 2\boldsymbol{\lambda}^{\mathrm{T}}(\mathbf{A}\boldsymbol{\beta} + \mathbf{B}\boldsymbol{\vartheta} - \boldsymbol{c})$$

with gradients

$$\frac{\partial L}{\partial \boldsymbol{\beta}} = -2\mathbf{G}(\boldsymbol{Y} - \boldsymbol{\beta}) + 2\mathbf{A}^{\mathrm{T}}\boldsymbol{\lambda}, \frac{\partial L}{\partial \boldsymbol{\vartheta}} = 2\mathbf{B}^{\mathrm{T}}\boldsymbol{\lambda}, \frac{\partial L}{\partial \boldsymbol{\lambda}} = 2(\mathbf{A}\boldsymbol{\beta} + \mathbf{B}\boldsymbol{\vartheta} - \boldsymbol{c})$$

Statistical Methods of Data Analysis

W. Waltenbergei

Introduction

Multidimensional

Simple Regression

Multiple Regression

Data Reconciliation

Example (Continuation)

Zeroing the gradient leads to the following system of linear equations:

$$\mathbf{G}oldsymbol{eta} + \mathbf{A}^{\mathrm{T}}oldsymbol{\lambda} = \mathbf{G}oldsymbol{Y}$$
 $\mathbf{B}^{\mathrm{T}}oldsymbol{\lambda} = \mathbf{0}$ $\mathbf{A}oldsymbol{eta} + \mathbf{B}oldsymbol{artheta} = oldsymbol{c}$

With the additional assumption $m \le n$ and the labels $G_A = .(AVA^T)^{-1}, V_B = (B^TG_AB)^{-1}$ we obtain the following closed-form solution:

$$\begin{split} \hat{\boldsymbol{\beta}} &= \boldsymbol{Y} + \boldsymbol{V} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{G}_{\boldsymbol{A}} [\boldsymbol{I} - \boldsymbol{B} \boldsymbol{V}_{\boldsymbol{B}}{}^{\mathrm{T}} \boldsymbol{G}_{\boldsymbol{A}}] (\boldsymbol{c} - \boldsymbol{A} \boldsymbol{Y}) \\ \hat{\boldsymbol{\vartheta}} &= \boldsymbol{V}_{\boldsymbol{B}} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{G}_{\boldsymbol{A}} (\boldsymbol{c} - \boldsymbol{A} \boldsymbol{Y}) \end{split}$$

The joint covariance matrix of $\hat{oldsymbol{eta}}$ and $\hat{oldsymbol{artheta}}$ is:

$$\mathsf{Cov}\left[\begin{pmatrix}\hat{\boldsymbol{\beta}}\\ \hat{\boldsymbol{\vartheta}}\end{pmatrix}\right] = \begin{pmatrix} V + V A^{\mathrm{T}} G_A (B V_B B^{\mathrm{T}} G_A - I) A V & -V A^{\mathrm{T}} G_A B V_B \\ -V_B V^{\mathrm{T}} G_A A V & V_B \end{pmatrix}$$

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Multidimensional

Multiple Regression

Data Reconciliation

Example (Continuation)

If the constraints do not contain unknown parameters, the following applies:

$$\hat{oldsymbol{eta}} = oldsymbol{Y} + oldsymbol{V} oldsymbol{A}^{\mathrm{T}} G_{A} (oldsymbol{c} - oldsymbol{A} oldsymbol{Y}), \mathsf{Cov}[\hat{oldsymbol{eta}}] = oldsymbol{V} - oldsymbol{V} oldsymbol{A}^{\mathrm{T}} G_{A} A oldsymbol{V}$$

The χ^2 statistic of the balance is defined by:

$$\chi^2 = (\boldsymbol{Y} - \hat{\boldsymbol{\beta}})^{\mathrm{T}} \mathbf{G} (\boldsymbol{Y} - \hat{\boldsymbol{\beta}})$$

If ${\bf Y}$ is normally distributed with covariance matrix ${\bf V}={\bf G}^{-1}$, then χ^2 -distributed with m-r degrees of freedom.

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Multidimensional

Simple Regression

Multiple Regression

Data Reconciliation

Example (balancing angles in triangle)

In a triangle, the angles $\boldsymbol{\beta}=(\beta_1,\beta_2,\beta_3)$ are measured. Let the values in degrees be $\boldsymbol{Y}=(34.26,86.07,59.52)$, the measurement errors $\sigma_1=0.1,\sigma_2=0.08,\sigma_3=0.12$. The measured angles must obey the constraint $\beta_1+\beta_2+\beta_3=180$.

- $\mathbf{A} = (1, 1, 1), c = 180, \text{ and } \mathbf{V} = \text{diag}(.1^2, .08^2, .12^2).$
- Furthermore, $G_A = (AVA^T)^{-1} = 32.468$.
- Thus $\hat{\beta} = Y + VA^{T}G_{A}(c AY) = (34.31, 86.10, 59.59)$

•
$$\operatorname{Cov}[\hat{\boldsymbol{\beta}}] = \mathbf{V} - \mathbf{V}\mathbf{A}^{\mathrm{T}}\mathbf{G}_{\mathbf{A}}\mathbf{A}\mathbf{V} = 10^{-2} \cdot \begin{pmatrix} .68 & -.21 & -.47 \\ -.21 & .51 & -.30 \\ -.47 & -.30 & .77 \end{pmatrix}$$
.

All estimated values are negatively correlated.

• $\chi^2 = (Y - \hat{\beta})^T \mathbf{G} (Y - \hat{\beta}) = 0.846, p = 0.36$. The errors seem to be realistic.

Statistical Methods of Data Analysis

W. Waltenberger

Introduct

Multidimensional

Simple Regression

Multiple Regression

Data Reconciliation

Nonlinear Constraints

If the constraints are nonlinear, they can be written in the following general form:

$$\boldsymbol{h}(\boldsymbol{\beta},\boldsymbol{\vartheta})=\mathbf{0}$$

First, h is linearized at appropriate point (β_0, ϑ_0) :

$$\boldsymbol{h}(\boldsymbol{\beta},\boldsymbol{\vartheta}) \approx \boldsymbol{h}(\boldsymbol{\beta}_0,\boldsymbol{\vartheta}_0) + \mathbf{A}_0(\boldsymbol{\beta} - \boldsymbol{\beta}_0) + \mathbf{B}_0(\boldsymbol{\vartheta} - \boldsymbol{\vartheta}_0) = \mathbf{A}_0\boldsymbol{\beta} + \mathbf{B}_0\boldsymbol{\vartheta} - \boldsymbol{c}_0$$

with

$$\mathbf{A}_0 = rac{\partial m{h}}{\partial m{eta}}, \mathbf{B}_0 = rac{\partial m{h}}{\partial m{artheta}}, m{c}_0 = \mathbf{A}_0 m{eta}_0 + \mathbf{B}_0 m{artheta}_0 - m{h}(m{eta}_0, m{artheta}_0).$$

The estimation follows as in the linear case. Then h is estimated at the point $\beta_1, \vartheta_1 = \hat{\beta}, \hat{\vartheta}$ is re-linearized. It is repeated until the constraints are satisfied well enough.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distributions

Binomially Distributed Data

Poisson Distributed Data

Normally Distributed Data

Exponentially Distribute

Markov Chain Monte Carlo

Part VIII

Bayes Statistics

Overview Part 8

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Prior distribution

Binomially Distributed Data

Poisson Distributed Data Normally Distributed

Exponentially Distributed Data

- 33 Introduction
- Prior distributions
- 35 Binomially Distributed Data
- 36 Poisson Distributed Data
- 37 Normally Distributed Data
- 38 Exponentially Distributed Data
- 39 Markov Chain Monte Carlo

Section 33: Introduction

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distribution

Binomially Distributed Data

Poisson Distributed Data Normally Distributed

Exponentially Distributed

- 33 Introduction
- 34 Prior distributions
- 35 Binomially Distributed Data
- 36 Poisson Distributed Data
- 37 Normally Distributed Data
- 38 Exponentially Distributed Data
- 39 Markov Chain Monte Carlo

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distributions

Binomially Distributed Data

Normally Distributed Data

Exponentially Distributed Data

- In Bayesian statistics probabilities are interpreted as rational assessments or degrees of belief about the true state of the world.
- Both data and unknown parameters of distributions are considered as random variables.
- Prior information about the unknown parameters is summarized by the **prior distribution**.
- The information contained in the data is used to update the information expressed by the prior distribution. Specifically, application of Bayes' theorem produces the posterior distribution of the parameters, conditional on the observations.
- The posterior distribution can be used for estimation of parameters, calculation of credible intervals, for testing and forecasting, for model choice etc.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distribution

Binomially Distributed Data

Normally Distributed
Data

Exponentially Distributed Data

- Choice of the prior introduces a subjective component into data analysis.
- This can have a noticeable effect in particular for small samples.
- There are ways of constructing priors that minimize this effect.
- For large samples the effect of the prior is usually negligible.
- In this case, Bayesian analysis gives approximately the same results as frequentist methods.
- The posterior contains more information than frequentist point and interval estimators.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distribution

Binomially Distributed Data

Normally Distributed
Data

Exponentially Distribute Data

- The sample space $\mathcal Y$ is the set of all possible samples y.
- The **parameter space** Θ is the set of all possible values of the parameters ϑ .
- The **prior density** $\pi(\vartheta)$ reflects our belief whether a value ϑ describes the true distribution of the data.
- The likelihood function $p(y|\vartheta)$ gives the probability of observing data y if ϑ is the true parameter.
- After observation of y our belief about ϑ can be updated, by using Bayes' theorem to compute the **posterior density**:

$$p(\vartheta|\mathbf{y}) = \frac{p(\mathbf{y}|\vartheta)\pi(\vartheta)}{\int_{\Theta} p(\mathbf{y}|\vartheta)\pi(\vartheta)\,\mathrm{d}\vartheta}$$

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

rior distribution

Binomially Distributed Data

Normally Distributed

Exponentially Distribute Data

Markov Chain Monte Carlo

- The posterior distribution describes our belief about ϑ given the observation y.
- If new data become available, the posterior can be used as again as the prior.
- If the normalizing integral cannot be computed analytically, one has to resort to numerical or Monte-Carlo methods.
- Common point estimators of ϑ are the **posterior mean**, the **posterior mode**, and the **posterior median** of $p(\vartheta|\boldsymbol{y})$.
- In addition, credible intervals and HPD intervals can be constructed from the posterior density.

Section 34: Prior distributions

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Prior distributions

Binomially Distributed Data

Poisson Distributed Data

Exponentially Distribute

Markov Chain Monte

33 Introduction

- Prior distributions
- 35 Binomially Distributed Data
- 36 Poisson Distributed Data
- Normally Distributed Data
- 38 Exponentially Distributed Data
- 39 Markov Chain Monte Carlo

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distributions

Binomially Distributed Data

Normally Distributed
Data

Exponentially Distribute Data

- The choice of the prior can have a large effect for small samples.
- We distinguish between informative and non-informative priors.
- \bullet An informative prior describes actual information about $\vartheta.$ The information can be objective or subjective.
- A non-informative prior describes the absence of such information.
- In all cases the sensitivity of the result on the prior has to be studied.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distributions

Binomially Distributed Data

Normally Distributed Data

Exponentially Distributed Data

Markov Chain Mont Carlo

- The prior does not have to be normalized, as the normalizing constant cancels out in Bayes' theorem.
- Priors that can be normalized are called proper; otherwise they are called improper.
- An improper prior may lead to a proper posterior.
- The choice of the prior is frequently based on computational convenience.
- For some types of likelihood functions there exist priors that give a posterior from the same family of distributions.
- Such priors are called **conjugate** priors.
- In a few cases a non-informative prior is also a conjugate prior.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distributions

Binomially Distributed Data

Normally Distributed Data

Exponentially Distributed Data

Markov Chain Mor

- There are several proposals for choosing a non-informative prior:
 - Principle of maximal entropy
 - Invariance under parameter transformations: Jeffrey's prior
 - Minimal influence of the prior on the posterior: Reference prior
- ullet For univariate artheta Jeffrey's prior and Reference prior are identical in most cases; this is no longer true in the multivariate case.

Statistical Methods of Data Analysis

W. Waltenberger

Introducti

Prior distributions

Binomially Distributed

Poisson Distributed Data

Data

Exponentially Distributes

Exponentially Distribute Data

Markov Chain Mont

Continuous distributions with maximal entropy

- \bullet E[X] and var[X] fixed: normal distribution
- \bullet $X \ge 0$, $\mathsf{E}[\ln X]$ and $\mathsf{var}[\ln X]$ fixed: lognormal distribution
- $X \ge 0$, $\mathsf{E}[X]$ and $\mathsf{E}[\ln X]$ fixed: Gamma distribution
- $X \ge 0$, E[X] fixed: exponential distribution
- ullet $X \in [a,b]$: uniform distribution in [a,b]

Discrete distributions with maximal entropy

- $X \in \{1, ..., n\}$: uniform distribution on $\{1, ..., n\}$
- $X \in \mathbb{N}$, $\mathsf{E}[X]$ fixed: geometric distribution

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distributions

Binomially Distributed Data

Normally Distributed

Exponentially Distribute Data

Markov Chain Mon

- **Jeffrey's prior** is constructed such that it is invariant under a transformation of ϑ .
- Let $\tau = h(\vartheta)$ and $\pi_J(\vartheta)$ Jeffrey's prior in ϑ .
- The transformed prior in τ is equal to

$$\pi(\tau) = \pi_{\rm J}(\vartheta) \left| \frac{\mathrm{d}\vartheta}{\mathrm{d}\tau} \right|$$

The transformed Fisher information is equal to

$$I(\tau) = I(\vartheta) \left(\frac{\mathrm{d}\vartheta}{\mathrm{d}\tau}\right)^2$$

Jeffrey's prior is therefore chosen as

$$\pi_{\rm J}(\vartheta) \propto \sqrt{I(\vartheta)}$$

Section 35: Binomially Distributed Data

Statistical Methods of Data Analysis

W. Waltenberge

Introductio

Prior distribution

Binomially Distributed Data

Poisson Distributed Data Normally Distributed

Exponentially Distributed

- 33 Introduction
- 34 Prior distributions
- 35 Binomially Distributed Data
- 36 Poisson Distributed Data
- **10** Normally Distributed Data
- 38 Exponentially Distributed Data
- 39 Markov Chain Monte Carlo

Statistical Methods of Data Analysis

W. Waltenberge

Introductio

Prior distribution

Binomially Distributed Data

Normally Distributed

Exponentially Distribute Data

Markov Chain Mont

- We consider a Bernoulli experiment repeated n times with probability of success ϑ .
- The number Y of successes is then binomially distributed according to $\mathrm{Bi}(n,\vartheta)$.
- We want to obtain a statement about the success probability ϑ from an observation y.
- To do this, we need an a-priori distribution of ϑ .
- ullet The maximum entropy principle yields the uniform distribution Un(0,1)=Be(1,1) as the a-priori distribution:

$$\pi(\vartheta) = I_{[0,1]}(\vartheta)$$

• The likelihood function is equal to

$$p(y|\vartheta) = \binom{n}{y} \vartheta^y (1-\vartheta)^{n-y}$$

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

rior distributions

Binomially Distributed Data

Normally Distributed
Data

Exponentially Distributed Data

Markov Chain Mont

Bayes' theorem provides the a-posteriori density:

$$p(\vartheta|y) \propto \vartheta^y (1-\vartheta)^{n-y} I_{[0,1]}(\vartheta)$$

- Since the a-posteriori density is proportional to the density of the beta distribution $\mathrm{Be}(y+1,n-y+1)$, it must be identical to it.
- The expected value of the a-posteriori distribution is equal to

$$\mathsf{E}[\vartheta|y] = \frac{y+1}{n+2}$$

• The mode of the a-posteriori distribution is equal to

$$\hat{\vartheta} = \frac{y}{n}$$

and thus the maximum likelihood estimator of ϑ .

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distribution

Binomially Distributed Data

Poisson Distributed Data

Data

Data

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distribution

Binomially Distributed Data

Poisson Distributed Dat Normally Distributed Data

Exponentially Distribute Data

Markov Chain Mont

The Fisher information of an observation is equal to

$$I(\vartheta) = \frac{1}{\vartheta(1-\vartheta)}$$

- Jeffrey's prior is thus Be(0.5, 0.5).
- Bayes' theorem again provides the a-posteriori density:

$$p(\vartheta|y) \propto \vartheta^{y-0.5} (1-\vartheta)^{n-y-0.5} I_{[0,1]}(\vartheta)$$

- Since the a-posteriori density is proportional to the density of the beta distribution Be(y+0.5,n-y+0.5), it must be identical to it.
- The expected value of the a-posteriori distribution is equal to

$$\mathsf{E}[\vartheta|y] = \frac{y + 0.5}{n + 1}$$

• The mode of the a-posteriori distribution is equal to

$$\hat{\vartheta} = \frac{y - 0.5}{n - 1}$$

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distributions

Binomially Distributed Data

Poisson Distributed Data

Data

Data

Markov Chain Monte Carlo

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distributions

Binomially Distributed Data

Normally Distributed
Data

Exponentially Distribute

Markov Chain Mont

- If prior information about ϑ is available, it can be included via a suitable a-priori density.
- It is computationally the simplest if the a-priori distribution is also a beta distribution.
- Let

$$\pi(\vartheta) = \frac{\vartheta^{a-1}(1-\vartheta)^{b-1}}{B(a,b)}$$

• Then the a-posteriori density is equal to

$$p(\vartheta|y) \propto \vartheta^{y} (1 - \vartheta)^{n-y} \vartheta^{a-1} (1 - \vartheta)^{b-1}$$
$$= \vartheta^{y+a-1} (1 - \vartheta)^{n-y+b-1}$$

• The a-posteriori distribution is again a beta distribution, namely Be(y+a,n-y+b).

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Binomially Distributed

Data Distributed

Poisson Distributed Data

Normally Distributed

Data

Exponentially Distributed Data

Markov Chain Mont

 Obviously, an a-priori beta distribution with a binomial likelihood function again gives an a-posteriori beta distribution.

- Therefore, the beta distribution is the **conjugate** a-priori distribution to the binomial distribution.
- The expected value of the a-posteriori distribution is equal to

$$\mathsf{E}[\vartheta|y] = \frac{a+y}{a+b+n}$$

• The mode of the a-posteriori distribution is equal to

$$\hat{\vartheta} = \frac{a+y-1}{a+b+n-2}$$

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Dates disease sets a

Binomially Distributed

Poisson Distributed Data

Normally Distributed Data

Exponentially Distribute Data

Markov Chain Mon

 The expected value of the a-posteriori distribution can be written as a weighted average of a-priori information and data:

$$\begin{split} \mathsf{E}[\vartheta|y] = & \frac{a+y}{a+b+n} = \frac{a+b}{a+b+n} \frac{a}{a+b} + \frac{n}{a+b+n} \frac{y}{n} \\ = & \frac{a+b}{a+b+n} \times \text{a-priori expectation} \\ + & \frac{n}{a+b+n} \times \text{average of data} \end{split}$$

• a and b can be interpet as "a-priori data":

a number of successes a-priori

b number of failures a-priori

a+b number of attempts a-priori

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distribution

Binomially Distributed Data

Poisson Distributed Data Normally Distributed

Exponentially Distributed

Markov Chain Mont

• If the number of trials a-priori is set equal to 0, we get **Haldane's prior**:

$$\pi_{H=} \frac{1}{\vartheta(1-\vartheta)}$$

- Haldane's prior can be interpreted as Be(0,0), but is improper.
- The a-posteriori mean is then equal to the ML estimator.
- ullet Paradox: The a-priori distribution without any prior information gives the values artheta=0 and artheta=1 the highest probability!

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distributions

Binomially Distributed Data

Poisson Distributed Data

Exponentially Distribute

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distributions

Binomially Distributed Data

Poisson Distributed Data

Normally Distributed Data

Exponentially Distributed Data

Statistical Methods of Data Analysis

W. Waltenberge

Introducti

rnor distributions

Binomially Distributed Data

Normally Distributed Data

Exponentially Distributed Data

Markov Chain Mont

• We now want to construct ranges of the parameter space Θ that contain the true value of ϑ with a certain confidence $1-\alpha$.

- Such a range is called a **credible (or credibility) region**. It is usually an interval (credible interval).
- The simplest construction of a credibile interval $[\vartheta_1(y), \vartheta_2(y)]$ uses the quantiles of the a-posteriori distribution.
- The symmetric credible interval is:

$$\vartheta_1(y) = q_{\alpha/2}, \quad \vartheta_1(y) = q_{1-\alpha/2}$$

where q_p is the p-quantile of the a-posteriori distribution $p(\vartheta|y)$.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distribution

Binomially Distributed Data

Poisson Distributed Data Normally Distributed

Exponentially Distribute

Markov Chain Mont

Example

Let y=4 be the number of successes in n=20 independent alternative trials with probability of success ϑ . With the uniform distribution as an a-priori distribution, the a-posteriori distribution of ϑ is a $\mathrm{Be}(5,17)$ distribution. The symmetric credible interval with $1-\alpha=0.95$ then has the limits

$$\vartheta_1(y) = \beta_{0.025;5,17} = 0.0822$$

 $\vartheta_2(y) = \beta_{0.975;5,17} = 0.4191$

The expected value of the a-posteriori distribution is equal to

$$\mathsf{E}[\vartheta|y] = \frac{5}{22} = 0.2273$$

The mode of the a-posteriori distribution is

$$\hat{\vartheta} = \frac{4}{20} = 0.2$$

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distributions

Binomially Distributed Data

Poisson Distributed Data

Data

Data

Statistical Methods of Data Analysis

W. Waltenberger

Introducti

Prior distribution

Binomially Distributed Data

Poisson Distributed Data

Normally Distributed

Exponentially Distribute

Markov Chain Mont

Example (Continuation)

Using Jeffrey's prior, the a-posteriori distribution of ϑ is a Be(4.5,16.5) distribution. The symmetric credible interval with $1-\alpha=0.95$ then has the limits

$$\vartheta_1(y) = \beta_{0.025;4.5,16.5} = 0.0715$$

 $\vartheta_2(y) = \beta_{0.975;4.5,16.5} = 0.4082$

The expected value of the a-posteriori distribution is equal to

$$\mathsf{E}[\vartheta|y] = \frac{4.5}{21} = 0.2143$$

The mode of the a-posteriori distribution is the same

$$\hat{\vartheta} = \frac{3.5}{19.5} = 0.1795$$

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distributions

Binomially Distributed Data

Poisson Distributed Data

Exponentially Distribute

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Prior distributions

Binomially Distributed Data

Normally Distributed
Data

Exponentially Distributed Data

Markov Chain Monte Carlo

- ullet The symmetric credible interval contains values of artheta that have lower a-posteriori probabilities than some points outside the interval.
- A range in which all values of ϑ have higher a-posteriori probability than all values outside the range is called a high-posterior density range, or **HPD** range for short.
- If the a-posteriori density is unimodal, the HPD range is an HPD interval.
- In this case, the ϑ_1, ϑ_2 bounds of the HPD interval are obtained as the solution of the system of equations:

$$\begin{split} p(\vartheta_2|y) - p(\vartheta_1|y) &= 0 \\ P(\vartheta_2|y) - P(\vartheta_1|y) &= 1 - \alpha \end{split}$$

Here $P(\vartheta|y)$ is the a-posteriori distribution function.

Statistical Methods of Data Analysis

W. Waltenberger

Introducti

Prior distributions

Binomially Distributed Data

Poisson Distributed Data Normally Distributed

Exponentially Distribute

Markov Chain Mont

The system of equations must be solved numerically.

Example (Continuation)

The HPD interval with $1 - \alpha = 0.95$ has the limits

$$\vartheta_1(y) = 0.06921, \quad \vartheta_1(y) = 0.3995$$

With a length of 0.3303, it is shorter than the symmetric credible interval, which has a length of 0.3369.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distributions

Binomially Distributed Data

Poisson Distributed Data

Exponentially Distribute

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distribution

Binomially Distributed Data

Poisson Distributed Data

Exponentially Distribute

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distribution

Binomially Distributed Data

Normally Distributed
Data

Exponentially Distribute Data

Markov Chain Mont

Example

An alternative trial is repeated n=20 times and does not yield a single success (k=0). What can be said about the probability of success ϑ ?

- With a-priori density $\pi(\vartheta)=1$, the a-posteriori distribution is $\mathrm{Be}(1,21)$. The mode is equal to 0, and the expected value is equal to 0.0455. The HPD interval with $1-\alpha=0.95$ is equal to [0,0.1329].
- With Jeffrey's prior, the a-posteriori distribution is Be(0.5, 20.5). The mode is equal to 0, and the expected value is equal to 0.0238. The HPD interval with $1-\alpha=0.95$ is equal to [0,0.0905].
- If it is known that ϑ is rather small, e.g. Be(0.5,5) can be chosen as a-priori distribution. The a-posteriori distribution is then Be(0.5,25). The mode is equal to 0, the expected value is equal to 0.0196, and the HPD interval is equal to [0,0.0747].

Statistical Methods of Data Analysis

W. Waltenberge

Introducti

rior distribution

Binomially Distributed

Poisson Distributed Data Normally Distributed

Exponentially Distribute

Markov Chain Mon

Example (Continuation)

- The likelihood estimator of ϑ is equal to 0.
- The one-sided Clopper-Pearson confidence interval is equal to [0,0.1391].
- The approximation by normal distribution is only useful with the correction according to Agresti-Coull, otherwise the confidence interval shrinks to zero. The estimate is $\hat{\vartheta}=0.0833$, the symmetric confidence interval is [-0.0378, 0.2045], the left-hand confidence interval is [0, 0.1850].

Section 36: Poisson Distributed Data

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Prior distribution

Binomially Distributed Data

Poisson Distributed Data

Normally Distributed Data

Exponentially Distributed Data

- 33 Introduction
- 34 Prior distributions
- 35 Binomially Distributed Data
- 36 Poisson Distributed Data
- 37 Normally Distributed Data
- 38 Exponentially Distributed Data
- 39 Markov Chain Monte Carlo

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distributions

Binomially Distributed Data

Poisson Distributed Data

Data

Exponentially Distributed Data

- Observing a Poisson process yields the values $y = y_1, \dots, y_n$.
- We want to obtain an estimate of the intensity λ of the process from the data.
- The likelihood function is:

$$p(\boldsymbol{y}|\lambda) = \prod_{i=1}^{n} \frac{\lambda^{y_i} e^{-\lambda}}{y_i!} \propto \lambda^{\sum y_i} e^{-n\lambda}$$

- It depends only on $s = \sum y_i$.
- As non-informative a-priori distributions we may consider:
 - The improper density $\pi(\lambda) = 1$
 - Jeffrey's prior $\pi_J(\lambda) = \lambda^{-1/2}$, also improper

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

rior distribution

Binomially Distributed Data

Poisson Distributed Data

Normally Distributed Data

Exponentially Distribute Data

Markov Chain Mont

• With $\pi(\lambda) = 1$, the a-posteriori density is proportional to the likelihood function:

$$p(\lambda|s) \propto \lambda^s e^{-n\lambda}$$

• Since the a-posteriori density is proportional to the density of the gamma distribution $\mathrm{Ga}(s+1,1/n)$, it must be identical to it:

$$p(\lambda|s) = \frac{\lambda^s e^{-n\lambda}}{n^{-(s+1)}\Gamma(s+1)}$$

• The expected value of the a-posteriori distribution is equal to:

$$\mathsf{E}[\lambda|s] = \frac{s+1}{n}$$

• The mode of the a-posteriori distribution is equal to

$$\hat{\lambda} = \frac{s}{n}$$

and thus the maximum likelihood estimator of λ .

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distributions

Binomially Distributed Data

Poisson Distributed Data

Normally Distributed Data

Exponentially Distributed

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

rior distributions

Binomially Distributed Data

Poisson Distributed Data

Normally Distributed Data

Exponentially Distributed Data

Markov Chain Mont

• With $\pi(\lambda) = \lambda^{-1/2}$ the a-posteriori density is:

$$p(\lambda|s) \propto \lambda^{s-0.5} e^{-n\lambda}$$

• Since the a-posteriori density is proportional to the density of the gamma distribution $\mathrm{Ga}(s+0.5,1/n)$, it must be identical to it:

$$p(\lambda|s) = \frac{\lambda^{s-0.5}e^{-n\lambda}}{n^{-(s+0.5)}\Gamma(s+0.5)}$$

• The expected value of the a-posteriori distribution is equal to

$$\mathsf{E}[\lambda|s] = \frac{s + 0.5}{n}$$

• The mode of the a-posteriori distribution is equal to

$$\hat{\lambda} = \frac{s - 0.5}{r}$$

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distributions

Binomially Distributed Data

Poisson Distributed Data

Normally Distributed Data

Exponentially Distributed

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distribution

Binomially Distributed Data

Poisson Distributed Data

Exponentially Distribute

Markov Chain Mont

 If prior information about λ is available, it can be included by a suitable a-priori density.

- It is computationally the simplest if the a-priori distribution is a gamma distribution.
- Let

$$\pi(\lambda) = \frac{b^a \lambda^{a-1} e^{-b\lambda}}{\Gamma(a)}$$

This is the density of the gamma distribution Ga(a, 1/b).

• Then the a-posteriori density is equal to

$$p(\lambda|s) \propto \lambda^s e^{-n\lambda} \lambda^{a-1} e^{-b\lambda}$$
$$= \lambda^{s+a-1} e^{-(b+n)\lambda}$$

• The a-posteriori distribution is the gamma distribution Ga(a+s,1/(b+n)). Thus, the gamma distribution is conjugate to the Poisson distribution.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Dates disastructure

Binomially Distributed Data

Poisson Distributed Data

Normally Distributed Data

Exponentially Distributed Data

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

- 1101 0130113001313

Binomially Distributed Data

Poisson Distributed Data

Exponentially Distribute

Markov Chain Mon

The expected value of the a-posteriori distribution is equal to

$$\mathsf{E}[\lambda|s] = \frac{a+s}{b+n}$$

• The mode of the a-posteriori distribution is equal to

$$\hat{\lambda} = \frac{a+s-1}{b+n}$$

 The expected value of the a-posteriori distribution can be written as a weighted average of a-priori information and data:

$$\begin{split} \mathsf{E}[\lambda|s] &= \frac{a+s}{b+n} = \frac{b}{b+n} \frac{a}{b} + \frac{n}{b+n} \frac{s}{n} \\ &= \frac{b}{b+n} \times \text{a-priori expectation} \\ &+ \frac{n}{b+n} \times \text{average of data} \end{split}$$

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distribution

Binomially Distributed Data

Poisson Distributed Data

Normally Distributed Data

Exponentially Distribute Data

Markov Chain Mont

ullet The a-priori parameters a and b can be interpetted as follows:

a sum of data a-priori

b number of data a-priori

• If $b \ll n$, dominate the data:

$$\mathsf{E}[\lambda|s] \approx \frac{s}{n}$$

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distribution

Binomially Distributed Data

Poisson Distributed Data

Normally Distributed Data

Exponentially Distributed

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

rior distribution

Binomially Distributed Data

Poisson Distributed Data

Data

Exponentially Distributed Data

Markov Chain Mont Carlo • Credible intervals $[\lambda_1(s), \lambda_2(s)]$ can be easily constructed using the quantiles of the a-posteriori gamma distribution.

• The symmetric credible interval is equal to

$$\left[\gamma_{\alpha/2;a+s,1/(b+n)},\gamma_{1-\alpha/2;a+s,1/(b+n)}\right]$$

The one-sided credible intervals are

$$[0,\gamma_{\alpha;a+s,1/(b+n)}] \quad \text{and} \quad [\gamma_{\alpha;a+s,1/(b+n)},\infty]$$

HPD ranges can be determined using numerical methods.

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Prior distributions

Binomially Distributed Data

Poisson Distributed Data

Normally Distributed

Exponentially Distribute Data

Markov Chain Mont

Example

You measure the background radiation in a laboratory over a period of 20 seconds. The count values are

$$6, 2, 6, 1, 6, 8, 5, 3, 8, 4, 2, 5, 7, 8, 5, 4, 7, 9, 4, 4\\$$

Their sum is equal to s=104. Using Jeffrey's prior, the a-posteriori distribution is the gamma distribution ${\rm Ga}(104.5,0.05)$. Its expectation is 5.225, and its mode is 5.1750. The symmetric credible interval at $1-\alpha=0.95$ is [4.2714,6.2733], the HPD interval is [4.2403,6.2379]. Since the distribution is almost symmetric, the two intervals are practically the same length.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distributions

Binomially Distributed Data

Poisson Distributed Data

Normally Distributed Data

Exponentially Distributed Data

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Prior distribution

Binomially Distributed Data

Poisson Distributed Data

Normally Distributed Data

Exponentially Distribute Data

Markov Chain Mont

Example

An observation from a Poisson distribution has the value k=0. What can be said about the mean λ ?

- With a-priori density $\pi(\lambda)=1$, the a-posteriori distribution is ${\rm Ga}(1,1)$. The mode is 0, and the mean is 1. The HPD interval with $1-\alpha=0.95$ is [0,2.9957].
- With Jeffrey's prior, the a-posteriori distribution is Ga(0.5,1). The mode is 0, and the mean is 0.5. The HPD interval with $1-\alpha=0.95$ is [0,1.9207].
- If it is known that λ is significantly smaller than 1, for example, Ga(0.5,0.5) can be chosen as the a-priori distribution. The a-posteriori distribution is then Ga(0.5,0.6667). The mode is 0, the mean is 0.3333, the HPD interval is [0,1.2805].
- The likelihood estimator of λ is 0.
- The lower confidence interval is [0, 2.9957], so it is identical to the HPD interval with improper a-priori density.

Section 37: Normally Distributed Data

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Prior distribution:

Binomially Distributed Data

oisson Distributed Data

Normally Distributed Data

Exponentially Distributed

Markov Chain Monte

33 Introduction

34 Prior distributions

35 Binomially Distributed Data

36 Poisson Distributed Data

37 Normally Distributed Data

38 Exponentially Distributed Data

39 Markov Chain Monte Carlo

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Prior distributions

Binomially Distributed Data

Normally Distributed Data

Exponentially Distribute Data

Markov Chain Mont

- We consider a normally distributed sample $\mathbf{y} = (y_1, \dots, y_n)$.
- We want to obtain an estimate of the mean and variance of the distribution from which the data are drawn.
- We first assume that the variance σ^2 is known.
 - Then the likelihood function is:

$$p(\boldsymbol{y}|\mu,\sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(y_i - \mu)^2}{2\sigma^2}\right]$$

• In the absence of any prior information about the actual value of μ , we choose the improper a-priori density $\pi(\mu)=1$, which is also Jeffrey's prior.

Statistical Methods of Data Analysis

W. Waltenberge

Introductio

Prior distributions

Binomially Distributed Data

Poisson Distributed Data

Normally Distributed Data

Exponentially Distribute Data

Markov Chain Mont

Then the a-posteriori density is equal to

$$p(\mu|\boldsymbol{y}, \sigma^2) \propto \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(y_i - \mu)^2}{2\sigma^2}\right]$$
$$\propto \exp\left[-\frac{n(\mu - \bar{y})^2}{2\sigma^2}\right]$$

- Since the a-posteriori density is proportional to the density of the normal distribution $No(\bar{y}, \sigma^2/n)$, it must be identical to it.
- The expected value of the a-posteriori distribution is equal to

$$\mathsf{E}[\mu|\boldsymbol{y}] = \bar{y}$$

and thus the maximum likelihood estimator of μ .

• The mode is also equal to \bar{y} .

Statistical Methods of Data Analysis

W. Waltenberge

Introductio

Data

Prior distributions

Binomially Distributed Data

Normally Distributed

Exponentially Distribute

Markov Chain Mon

- If prior information about μ is available, it can be included by a suitable a-priori density.
- The computationally simplest case is if the a-priori distribution is also a normal distribution.
- Let

$$\pi(\mu|\sigma^2) = \frac{1}{\sqrt{2\pi}\tau_0} \exp\left[-\frac{(\mu - \mu_0)^2}{2\,\tau_0^2}\right]$$

• Then the a-posteriori density is equal to

$$p(\mu|\boldsymbol{y}, \sigma^2) \propto \exp\left[-\frac{n(\mu - \bar{y})^2}{2\sigma^2}\right] \exp\left[-\frac{(\mu - \mu_0)^2}{2\tau_0^2}\right]$$

 $\propto \exp\left[-\frac{a(\mu - b/a)^2}{2}\right]$

with

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Prior distribution

Binomially Distributed Data

Poisson Distributed Data

Normally Distributed Data

Exponentially Distribute Data

Markov Chain Mont

$$a = \frac{1}{\tau_0^2} + \frac{n}{\sigma^2} \quad \text{und} \quad b = \frac{\mu_0}{\tau_0^2} + \frac{n\bar{y}}{\sigma^2}$$

• The a-posteriori distribution is therefore the normal distribution ${\rm No}(\mu_n, au_n^2)$ with

$$\mu_n = \frac{b}{a} = \frac{\frac{\mu_0}{\tau_0^2} + \frac{ny}{\sigma^2}}{\frac{1}{\tau_0^2} + \frac{n}{\sigma^2}}, \quad \tau_n^2 = \frac{1}{a} = \frac{1}{\frac{1}{\tau_0^2} + \frac{n}{\sigma^2}}$$

• The mean μ_n is the weighted average of the prior information μ_0 and the mean of the data \bar{y} , where the weights are given by the **precision**, i.e. the inverse variance.

Statistical Methods of Data Analysis

W. Waltenberge

Introducti

rior distributions

Binomially Distributed Data

Poisson Distributed Data

Normally Distributed Data

Exponentially Distribute Data

Markov Chain Mont Carlo

- The precision $1/\tau_n^2$ is the sum of the precision of the prior information μ_0 and the precision of the mean value of the data \bar{y} .
- The smaller the precision of the prior information is, i.e. the larger τ_0^2 is, the smaller is the influence of the prior information on the a-posteriori distribution.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distributions

Binomially Distributed Data

Normally Distributed

Exponentially Distribute

Markov Chain Mont

• If the variance σ^2 is unknown, we need a joint a-priori density for μ and σ^2 .

- The calculation is simpler if we use the precision $\zeta = 1/\sigma^2$ instead of the variance σ^2 .
- A possible choice is the improper a-priori density

$$\pi(\mu,\zeta)=\frac{1}{\zeta}$$

Then:

$$p(\mu, \zeta | \boldsymbol{y}) \propto \frac{1}{\zeta} \prod_{i=1}^{n} \sqrt{\zeta} \exp \left[-\frac{\zeta}{2} \sum_{i=1}^{n} (y_i - \mu)^2 \right]$$
$$\propto \zeta^{n/2 - 1} \exp \left[-\frac{\zeta}{2} \sum_{i=1}^{n} (y_i - \mu)^2 \right]$$

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distribution

Binomially Distributed Data

Poisson Distributed Dat

Normally Distributed Data

Exponentially Distribute Data

Markov Chain Mont

• Integration over μ gives the a-posteriori density of ζ :

$$p(\zeta|\boldsymbol{y}) \propto \int \zeta^{n/2-1} \exp\left[-\frac{\zeta}{2} \sum_{i=1}^{n} (y_i - \mu)^2\right] d\mu$$
$$\propto \zeta^{(n-3)/2} \exp\left[-\frac{\zeta}{2} \sum_{i=1}^{n} (y_i - \bar{y})^2\right]$$

• ζ is therefore a-posteriori gamma distributed according to $\operatorname{Ga}((n-1)/2,2/\sum(y_i-\bar{y})^2)$. Because of

$$\sum (y_i - \bar{y})^2 = \sum y_i^2 - n\bar{y}^2$$

the distribution depends only on $s_1 = \sum y_i$ and $s_2 = \sum y_i^2$ i.e. on the sample mean \bar{y} and the sample variance S^2 .

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

rior distributions

Binomially Distributed

Poisson Distributed Data

Normally Distributed Data

Exponentially Distribute Data

Markov Chain Mon

• The a-posteriori density of σ^2 is obtained by the transformation $\sigma^2=1/\zeta$:

$$g(\sigma^2) = \frac{p(1/\sigma^2|\boldsymbol{y})}{\sigma^4}$$

ullet The distribution of σ^2 is an inverse gamma distribution.

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Prior distribution

Binomially Distributed

Poisson Distributed Data

Normally Distributed Data

Exponentially Distribute Data

Markov Chain Mont

The Inverse Gamma Distribution IG(a, b)

• The density of the inverse gamma distribution is:

$$f_{\rm IG}(x;a,b) = \frac{(1/x)^{a+1}e^{-1/(xb)}}{b^a\Gamma(a)} \cdot I_{[0,\infty)}(x)$$

Its distribution function is:

$$F_{IG}(x; a, b) = 1 - F_{Ga}(1/x; a, b)$$

• The mean is 1/(b(a-1)) when a>1; the mode is m=1/(b(a+1)).

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distributions

Binomially Distributed

Poisson Distributed Data

Normally Distributed

Exponentially Distribute Data

Markov Chain Mont

 \bullet We obtain the a-posteriori distribution of μ conditioned by ζ from

$$p(\mu|\zeta, \mathbf{y}) = \frac{p(\mu, \zeta|\mathbf{y})}{p(\zeta|\mathbf{y})}$$

$$\propto \zeta^{0.5} \exp\left\{-\frac{\zeta}{2} \left[\sum (y_i - \mu)^2 - \sum (y_i - \bar{y})^2\right]\right\}$$

$$\propto \zeta^{0.5} \exp\left[-\frac{n\zeta}{2} (\mu - \bar{y})^2\right]$$

$$= \frac{1}{\sigma} \exp\left[-\frac{n}{2\sigma^2} (\mu - \bar{y})^2\right]$$

• This is the normal distribution $No(\bar{y}, \sigma^2/n)$.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distribution

Binomially Distributed

Poisson Distributed Data

Normally Distributed Data

Exponentially Distribute Data

Markov Chain Monte

• Finally, we obtain the a-posteriori distribution of μ by integrating over ζ :

$$p(\mu|\mathbf{y}) \propto \int \zeta^{n/2-1} \exp\left[-\frac{\zeta}{2} \sum_{i=1}^{n} (y_i - \mu)^2\right] d\zeta$$
$$\propto \frac{1}{\left[\sum (\mu - y_i)^2\right]^{n/2}}$$

• The default score

$$t = \frac{\mu - \bar{y}}{S/\sqrt{n}}$$

is a-posteriori t-distributed with n-1 degrees of freedom is.

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Data

Prior distributions

Binomially Distributed
Data

Normally Distributed Data

Exponentially Distribute

Markov Chain Mont Carlo

- If one wants an actual a-priori density for ζ , the gamma distribution is a good choice, since it is the conjugate distribution.
- \bullet The a-posteriori distribution $p(\zeta|{\boldsymbol y})$ is then again a gamma distribution.

Example

From a normally distributed data set of size n=100 from $\mathrm{No}(10,\sqrt{2}),\ \bar{y}=9.906$ and S=1.34981 are given. The a-posteriori density of μ is a $\mathrm{t}(n-1)$ distribution scaled by S/\sqrt{n} and shifted by \bar{y} . The HPD interval with $1-\alpha=0.95$ is equal to [9.6382,10.1739].

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distributions

Binomially Distributed

Poisson Distributed Data

Normally Distributed Data

Exponentially Distributed

Markov Chain Monte

Statistical Methods of Data Analysis

W. Waltenbergei

Introduction

Prior distributions

Binomially Distributed

Poisson Distributed Data

Normally Distributed Data

Exponentially Distribute Data

Markov Chain Mont Carlo

Example (Continuation)

The a-posteriori density $p(\sigma^2|\mathbf{y})$ of the variance σ^2 is the inverse gamma distribution

$$IG((n-1)/2, 2/(S^2(n-1))) = IG(49.5, 0.0110879)$$

The HPD interval with $1-\alpha=0.95$ is equal to [1.3645, 2.4002].

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distributions

Binomially Distributed

Poisson Distributed Data

Normally Distributed Data

Data Distributed

Markov Chain Monte

Section 38: Exponentially Distributed Data

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distribution

Binomially Distributed

Poisson Distributed Data Normally Distributed

Exponentially Distributed Data

Markov Chain Monte

- 33 Introduction
- 34 Prior distributions
- 35 Binomially Distributed Data
- 36 Poisson Distributed Data
- Normally Distributed Data
- 38 Exponentially Distributed Data
- 39 Markov Chain Monte Carlo

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distributio

Binomially Distributed Data

Poisson Distributed Data
Normally Distributed

Exponentially Distributed Data

Markov Chain Mont

- We consider an exponentially distributed sample $y = (y_1, \dots, y_n), n > 1.$
- We want to obtain an estimate of the mean τ of the exponential distribution from which the data are drawn.
- The likelihood function is:

$$p(\boldsymbol{y}|\tau) = \prod_{i=1}^{n} \frac{1}{\tau} \exp\left(-\frac{y_i}{\tau}\right) = \frac{1}{\tau^n} \exp\left(-\frac{\sum y_i}{\tau}\right)$$

- The Fisher information is equal to $I_{\tau}=n/\tau^2$; Jeffrey's prior is therefore $\pi_{\rm J}(\tau)=\tau^{-1}$ and hence improper.
- The a-posteriori distribution is then proportional to

$$p(\tau|\mathbf{y}) \propto \frac{1}{\tau^{n+1}} \exp\left(-\frac{\sum y_i}{\tau}\right) = \frac{1}{\tau^{n+1}} \exp\left(-\frac{s}{\tau}\right)$$

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

rior distributions

Binomially Distributed Data

Normally Distributed

Exponentially Distributed Data

Markov Chain Mont Carlo • The a-posteriori distribution is therefore the inverse gamma distribution IG(n, 1/s).

• The mean is s/(n-1), the mode is s/(n+1).

Example

There is an exponentially distributed sample of size n=50. The sum of the data is s=102.58. The a-posteriori mean is 2.0935, the a-posteriori mode is 2.0114. The HPD interval with $1-\alpha=0.95$ is [1.5389, 2.6990].

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distributions

Binomially Distributed

Poisson Distributed Data

Exponentially Distributed

Markov Chain Monte Carlo

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Prior distribution

Binomially Distributed Data

Poisson Distributed Data Normally Distributed Data

Exponentially Distributed Data

Markov Chain Mont Carlo • The likelihood function can also be parameterized with the mean rate λ :

$$p(\mathbf{y}|\lambda) = \prod_{i=1}^{n} \lambda \exp(-\lambda y_i) = \lambda^n \exp(-\lambda \sum y_i) = \lambda^n \exp(-\lambda s)$$

- Jeffrey's prior is $\pi_J(\lambda) = \lambda^{-1}$.
- The a-posteriori distribution is then proportional to

$$p(\lambda|\mathbf{y}) \propto \lambda^{n-1} \exp(-\lambda s)$$

- The a-posteriori distribution is therefore the gamma distribution $\operatorname{Ga}(n,1/s)$ with mean n/s and mode (n-1)/s. The mean is equal to the maximum likelihood estimator of λ .
- The gamma distribution is also the conjugate a-priori distribution.

Section 39: Markov Chain Monte Carlo

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distribution

Binomially Distributed

Poisson Distributed Data Normally Distributed

Exponentially Distributed

Markov Chain Monte Carlo

- 33 Introduction
- 34 Prior distributions
- 35 Binomially Distributed Data
- 36 Poisson Distributed Data
- **10** Normally Distributed Data
- 38 Exponentially Distributed Data
- 39 Markov Chain Monte Carlo

Statistical Methods of Data Analysis

W. Waltenberge

Prior distribution

Binomially Distributed

Poisson Distributed Data Normally Distributed Data

Exponentially Distributed

Markov Chain Monte

 The sequence X₀, X₁,... of discrete random variables is called a discrete Markov chain if the Markov property holds:

$$P(X_{n+1} = j | X_1 = i_1, \dots, X_n = i_n) = P(X_{n+1} = j | X_n = i_n)$$

• The transition probabilities are calculated in a **transition** matrix $p_{ij}^{(n)}$, with:

$$p_{ij}^{(n)} = P(X_{n+1} = j | X_n = i)$$

 $p_{ij}^{(n)}$ is an **stochastic matrix**: the row sums are 1.

- In a **time homogeneous** Markov chain, $p_{ij}^{(n)} = p_{ij}$ holds for all n.
- Let $\pi^{(0)}$ be the density of X_0 . Then the density of X_n is.

$$\pi^{(n)} = \pi^{(0)} \, p_{ij}^{(n)}$$

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distribution

Binomially Distributed Data

Normally Distributed

Exponentially Distributed

Markov Chain Monte Carlo • Under certain circumstances (the chain must be irreducible, all states must be positively recurrent), a temporally homogeneous Markov chain has a **stationary distribution** π , with

$$\pi = \pi p_{ij}$$

• Obviously, π is a left eigenvector of p_{ij} with the eigenvalue $\lambda=1.$

Example

Simple weather model. States: sunny=1, rainy=2. Transition matrix:

$$p_{ij} = \begin{pmatrix} 0.9 & 0.1 \\ 0.4 & 0.6 \end{pmatrix}$$

Statistical Methods of Data Analysis

W. Waltenberger

Introductio

Prior distribution

Binomially Distributed

Poisson Distributed Data

Normally Distributed Data

Exponentially Distribute Data

Markov Chain Monte Carlo

Example (Continuation)

Evolution over time, starting from a sunny day:

n	P(1)	P(2)
0	1.0	0.0
1	0.9	0.1
2	0.85	0.15
3	0.825	0.175
4	0.813	0.188
5	0.806	0.194

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distribution

Binomially Distributed

Poisson Distributed Data

Normally Distributed Data

Exponentially Distribute Data

Markov Chain Monte Carlo

Example (Continuation)

Time evolution, starting with a rainy day:

n	P(1)	P(2)
0	0.0	1.0
1	0.4	0.6
2	0.6	0.4
3	0.7	0.3
4	0.75	0.25
5	0.775	0.225

Stationary distribution:

$$\pi = \begin{pmatrix} 0.8 & 0.2 \end{pmatrix}$$

Statistical Methods of Data Analysis

W. Waltenberge

Introductio

Prior distribution

Binomially Distributed Data

Normally Distributed

Data

Exponentially Distributed Data

Markov Chain Monte Carlo • A discrete Markov chain is called **reversible** if the condition of **detailed balance** holds, i.e. if there is a distribution p_{ij} for which holds:

$$\pi_{i} p_{ij}^{(n)} = \pi_{j} p_{ji}^{(n)}$$

- In that case p_{ij} is a stationary distribution of the chain.
- For **continuous** random variables X_i , the transition matrix is replaced by a **transition kernel** q(x,y) with:

$$\int q(x,y) \, \mathrm{d}y = 1$$

• If at time n the state of the chain is equal to x, then the State y at time n+1 is given by q(x,y).

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

Prior distributions

Binomially Distributed Data

Normally Distributed
Data

Exponentially Distribute Data

Markov Chain Monte

- Markov Chain Monte Carlo (MCMC) proceeds in reverse: given a target distribution $\pi(x)$, we look for a transition kernel q(x,y) that has $\pi(x)$ as its stationary distribution.
- It is in general not possible to find such a kernel explicitly. A convenient solution is the Metropolis—Hastings algorithm.
- Assume that for some x, y

$$\pi(x)q(x,y) > \pi(y)q(y,x)$$

Then the chain evolves from x to y more often than from y to x.

• To correct this, the frequency of evolutions from x to y is reduced by introducing an **acceptance probability** $\alpha(x,y) < 1$.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distribution

Binomially Distributed
Data

Poisson Distributed Data

Exponentially Distribute

Markov Chain Monte

From the detailed balance condition we get

$$\alpha(x,y) = \min \left[1, \frac{\pi(y)q(y,x)}{\pi(x)q(x,y)} \right]$$

• $\alpha(x,y)$ can be calculated without knowledge of the normalization constant of $\pi(x)$!

The Metropolis-Hastings Algorithm

- Generate a starting value x_0 .
- For i=1,...,N:
 - Generate a proposal value y from $q(x_{i-1}, y)$ and u from $\mathrm{Un}(0, 1)$.
 - If $u \leq \alpha(x_{i-1}, y)$, set $x_i = y$, otherwise $x_i = x_{i-1}$.
- Discard the first n links of the chain (,,burn-in").

Statistical Methods of Data Analysis

W. Waltenberge

Introduction

Prior distribution

Binomially Distributed Data

Poisson Distributed Data Normally Distributed

Exponentially Distributed

Markov Chain Monte

 The M-H algorithm can be used to draw from densities with unknown normalization, such as posteriori densities.

• If q(x,y) = q(y,x), then the acceptance probability is

$$\alpha(x,y) = \min\left[1, \frac{\pi(y)}{\pi(x)}\right]$$

- If $\pi(y) > \pi(x)$, then take the proposed step; otherwise take the step with probability $\pi(y)/\pi(x)$. This is the basis of **optimization by "simulated annealing"**.
- If q(x,y)=g(y-x), then the chain is a **random walk**, as y=x+z, z being the noise term with a distribution g(z). If g(x) is symmetric, the probability of acceptance reduces again as above.

Statistical Methods of Data Analysis

W. Waltenberger

Introduction

Prior distributions

Binomially Distributed Data

Poisson Distributed Data

Data Distributed

Exponentially Distribute
Data

Markov Chain Monte

Carlo

• In case q(x,y)=p(y) does not depend on x, the algorithm is also called **Independence Sampler**, and p(y) is called the **Proposal Density**. The acceptance probability is

$$\alpha(x,y) = \min \left[1, \frac{\pi(y)p(x)}{\pi(x)p(y)} \right]$$

Statistical Methods of Data Analysis

W. Waltenberge

Introduct

rior distributions

Binomially Distributed Data

Normally Distributed Data

Exponentially Distribute Data

Markov Chain Monte Carlo

Literature

- S. Chib and E. Greenberg, Understanding the Metropolis-Hastings Algorithm. The American Statistician 49/4, 1995.
- L. Tierney, Markov Chains for Exploring Posterior Distributions. The Annals of Statistics 22/4, 1994.
- W.K. Hastings, Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika 57/1, 1970.
- O. Cencic and R. Frühwirth, Data reconciliation with non-normal distributions I: linear constraints. Submitted to Computers & Chemical Engineering.