1. The means model and the effects model for two-way ANOVA are equivalent.

True

False

2. Consider the means model for two-way ANOVA as described in our video:

$$Y_{ijk} = \mu_{jk} + \varepsilon_{ijk}$$

where Y_{ijk} is the i^{th} measurement of the response in the j^{th} level of the τ factor and the k^{th} level of the α factor; and $i=1,...,n_{jk}$.

 n_{ik} is the total number of observations in the study/experiment.

False

True

3. In the two-way ANOVA effects model, au_j can be interpreted as:

the true difference between the grand mean and the mean of the response in the j^{th} level of the τ factor, holding the α factor constant.

the true difference between the grand mean and the mean of the response in the j^{th} level of the τ factor, holding the α factor at its mean value.

The causal effect of the j^{th} level of the au factor, adjusting for the lpha factor.

the true difference between the grand mean and the mean of the response in the j^{th} level of the τ factor, adjusting for the α factor.

4. The error term in the two-way ANOVA means model is assumed to be distributed as:

$$\varepsilon_{ijk} \stackrel{i}{\sim} N(0, \sigma_i^2).$$

$$\varepsilon_{ijk} \overset{iid}{\sim} N(0, \sigma_i^2).$$

$$\varepsilon_{ijk} \stackrel{iid}{\sim} N(0, \sigma^2).$$

$$\varepsilon_{ijk} \stackrel{id}{\sim} N(0, \sigma^2).$$

5. Consider the two-way ANOVA effects model:

$$Y_{ijk} = \mu + \tau_j + \alpha_k + \varepsilon_{ijk}$$

and suppose that, for all levels of α , the mean response for units in τ_1 is greater than the mean response for units in τ_2 . Then, necessarily, the move from τ_1 to τ_2 causes the increase in the mean response.

True

False

3/3 points

Factor A	factor B	Response
1	1	10.9
2	1	9.2
3	1	8.0
1	2	8.6
2	2	11.1
3	2	7.3
1	3	9.9
3	3	8.5

Suppose that the data frame above is an entire two-factor study. Does this data frame constitute a full factorial design?

Yes

No