Biomolecules

EXERCISE [PAGES 320 - 321]

Exercise | Q 1.1 | Page 320

Select the most correct choice.

CH₂OH-CO-(CHOH)₄ -CH₂OH is an example of

- 1. Aldohexose
- 2. Aldoheptose
- 3. Ketotetrose
- 4. Ketoheptose

Solution: Ketoheptose

Exercise | Q 1.2 | Page 320

Select the most correct choice.

Open chain formula of glucose does not contain

- 1. formyl group
- 2. anomeric hydroxyl group
- 3. primary hydroxyl group
- 4. secondary hydroxyl group

Solution: anomeric hydroxyl group

Exercise | Q 1.3 | Page 320

Select the most correct choice.

Which of the following does not apply to CH₂NH₂ – COOH?

- 1. Neutral amino acid
- 2. L Amino acid
- 3. Exists as zwitter ion
- 4. Natural amino acid

Solution: L - Amino acid

Exercise | Q 1.4 | Page 320

Select the most correct choice.

Tryptophan is called essential amino acid because

- 1. it contains aromatic nucleus
- 2. it is present in all the human proteins
- 3. it cannot be synthesised by human body
- 4. it is essential constituent of enzymes

Solution: it cannot be synthesised by human body

Exercise | Q 1.5 | Page 320

Select the most correct choice.

A disulphide link gives rise to the following structure of a protein.

- 1. Primary
- 2. Secondary
- 3. Tertiary
- 4. Quaternary

Solution: Tertiary

Exercise | Q 1.6 | Page 320

Select the most correct choice.

RNA has _____.

- 1. A U base pairing
- 2. P-S-P-S backbone
- 3. double helix
- 4. G C base pairing

Solution: RNA has A - U base pairing.

Exercise | Q 2.1 | Page 320

Give scientific reasons:

The disaccharide sucrose gives negative Tollens test while the disaccharide maltose gives a positive Tollens test.

Solution:

1. The structure of sucrose contains glycosidic linkage between C-1 of α -glucose and C-2 of β -fructose.

- 2. Since the potential aldehyde and ketone groups of both the monosaccharide units are involved in the formation of the glycosidic bond (i.e., α , β -1,2- glycosidic bond), sucrose is a non-reducing sugar and gives negative Tollen's test.
- 3. The glycosidic bond in maltose is in between C-1 of one glucose ring and C-4 of the other (i.e., α -1,4-glycosidic linkage).
- 4. The hemiacetal group at C-1 of the second ring is not involved in the glycosidic linkage. Hence, maltose is a reducing sugar and gives positive Tollen's test.

Exercise | Q 2.2 | Page 320

Give scientific reasons:

On complete hydrolysis DNA gives equimolar quantities of adenine and thymine.

Solution:

- 1. Both the strands of DNA double helix are complementary to each other.
- 2. That is a number of bases on each strand are equal and complementary to each other.
- 3. As adenine pairs with thymine; the number of adenine bases on one strand and thymine on another are equal in number.

Thus, on complete hydrolysis DNA gives equimolar quantities of adenine and thymine.

Exercise | Q 2.3 | Page 320

Give scientific reasons:

α-Amino acids have high melting points compared to the corresponding amines or carboxylic acids of comparable molecular mass.

Solution:

- 1. This is due to the peculiar structure called zwitter ion structure of α -amino acids.
- 2. α-Amino acid molecule contains both acidic carboxyl (–COOH) group as well as basic amino (–NH₂) group.
- 3. Proton transfer from the acidic group to the basic group of amino acid forms a salt, which is a dipolar ion called zwitter ion.

Thus, α -amino acids have high melting points compared to the corresponding amines or carboxylic acids of comparable molecular mass.

Exercise | Q 2.4 | Page 320

Give scientific reasons:

Hydrolysis of sucrose is called inversion.

Solution:

1) Sucrose (C₁₂H₂₂O₁₁) is dextrorotatory (+66.5°). On hydrolysis with dilute acid or an enzyme called invertase, sucrose gives equimolar mixture of D-(+)-glucose and D-(–)-fructose.

$$\begin{array}{c} C_{12}H_{22}O_{11} + H_2O \xrightarrow{H^+} C_6H_{12}O_6 \\ \text{Sucrose} \end{array} + \begin{array}{c} C_6H_{12}O_6 \\ \text{D-(+)-Glucose} \end{array} + \begin{array}{c} C_6H_{12}O_6 \\ \text{D-(-)-Fructose} \end{array}$$

2) Since the laevorotation of fructose (-92.4°) is larger than the dextrorotation of glucose (+52.7°), the hydrolysis product has net laevorotation.

Hence, hydrolysis of sucrose is also called inversion of sucrose.

Exercise | Q 2.5 | Page 320

Give scientific reasons:

On boiling egg albumin becomes opaque white.

Solution:

- 1. Proteins when subjected to high temperature undergo disruption of noncovalent interactions which are responsible for the specific shape of protein. That is, it undergoes denaturation.
- 2. Denaturation disturbs the specific structure of egg albumin which causes a change in the physical properties.

Thus, on boiling egg albumin becomes opaque white.

Exercise | Q 3.1 | Page 321

The following statement applies to DNA only, some to RNA only, and some to both. Label them accordingly.

The polynucleotide is double stranded.	(
The polymoreolide is deable strained.	\/

Solution:

The polynucleotide is double-stranded. (DNA)

Exercise | Q 3.1 | Page 321

The following statement applies to DNA only, some to RNA only, and some to both. Label them accordingly.

The polynucleotide contains uracil. (_____)

Solution:

The polynucleotide contains uracil. (RNA)

Exercise | Q 3.1 | Page 321

both. Label them	ассо	rdingl	ly.		•	some	to RNA	A only,	and so	ome to		
The polynucleotid	e cont	ains D)-ribose	e. (RN /	<u>A)</u>							
Exercise Q 3.1	Page	321										
both. Label them The polynucleotid Solution: The polynucleotid Exercise Q 3.2	lynucleotide contains D-ribose. (RNA) Se Q 3.1 Page 321 Iowing statement applies to DNA only, some to RNA only, and some to abel them accordingly. Iynucleotide contains guanine. () On: Iynucleotide contains guanine. (Both DNA and RNA) Se Q 3.2 Page 321 The sequence of the complementary strand for the following segment of a colecule. TITTAAG - 3' On: Sel Strand 5' - C G T T T A A G - 3' Sel Strand 5' - G C A A A T T C - 5' Sel Strand Strand											
Write the sequen DNA molecule.	ice of	the co	omple	menta	ry stra	ind for	the to	llowin	g segn	nent of	а	
5' - CGTTTAAG -	3'											
Solution:												
Original strand	5'	-	С	G	Т	Т	Т	Α	Α	G	-	3'
			1	1	1	1	↓	\downarrow	1	\		
Complementary strand	3'	-	G	С	A	A	A	Т	Т	С	-	5'
Exercise Q 3.2	Page	321	•	•	,	,	•	•	•	•	_ '	•

Write the sequence of the complementary strand for the following segment of a DNA molecule.

5' - CCGGTTAATACGGC - 3'

Solution:

Original strand	5'	-	С	С	G	G	Т	Т	Α	Α	Т	Α	С	G	G	С	-	3'	
																			l

			\	\	\	\	1	\	1	\downarrow	\downarrow	\downarrow	\	\	\	\downarrow		
Complementary strand	3'	-	G	G	С	С	Α	A	Т	Т	A	Т	G	С	С	G	1	5'

Exercise | Q 3.3 | Page 321

Write the names and schematic representations of all the possible dipeptides formed from alanine, glycine and tyrosine.

Solution:

Glycylglycine: Gly-Gly
 Alanylalanine: Ala-Ala
 Tyrosyltyrosine: Tyr-Tyr
 Glycylalanine: Gly-Ala
 Alanylglycine: Ala-Gly
 Glycyltyrosine: Gly-Tyr
 Tyrosylglycine: Tyr-Gly
 Tyrosylalanine: Tyr-Ala
 Alanyltyrosine: Ala-Tyr

Exercise | Q 3.4 | Page 321

Give two evidences for presence of formyl group in glucose.

Solution:

- 1. Glucose gets oxidized to a six-carbon monocarboxylic acid called gluconic acid on reaction with bromine water which is a mild oxidizing agent. Thus, the carbonyl group in glucose is in the form of formyl (–CHO).
- Hemiacetal group of glucopyranose structure is a potential aldehyde (formyl) group. It imparts reducing properties to glucose. Thus, glucose gives positive Tollen's test or Fehling test.

Exercise | Q 4.1 | Page 321

Draw a neat diagram for the following:

Haworth formula of glucopyranose

Solution:

Exercise | Q 4.2 | Page 321

Draw a neat diagram for the following:

Zwitter ion

Solution:

Exercise | Q 4.3 | Page 321

Draw a neat diagram for the following:

Haworth formula of maltose

Solution:

Exercise | Q 4.4 | Page 321

Draw a neat diagram for the following:

Secondary structure of protein

Solution:

∝ - Helix:

Backbone of α-Helix

β - pleated sheet

Exercise | Q 4.6 | Page 321

Draw a neat diagram for the following:

dCMP

Solution:

Exercise | Q 4.7 | Page 321

Draw a neat diagram for the following:

One purine base from nucleic acid

Solution:

Adenine A:

Guanine G:

Exercise | Q 4.8 | Page 321

Draw a neat diagram for the following:

Enzyme catalysis

Solution:

