Introduzione ad IEEE 802.11ay

Andrea Sghedoni, MATR. 0000736038, A.A. 2015/2016

Corso di Sistemi e Reti Wireless

INDICE

- Introduzione
- Casi d'uso
- Requisiti funzionali
- Channel Model
- Mobilità
- Tecnologia MIMO
- Conclusioni

Cos'è IEEE 802.11ay ?

- Standard IEEE per Wireless LAN
- Estensione del preesistente standard 802.11ad
- Gruppo di lavoro Task Group ay
- Approvato nel Marzo 2015
- Presunta data di pubblicazione Dicembre 2019

Obiettivi e caratteristiche

- Estendere ed integrare l'802.11ad rendendolo compatibile con nuovi scenari, ambienti di utilizzo e casi d'uso
- Permettere la comunicazione wireless utilizzando onde millimetriche (mmWave), con frequenze intorno ai 60GHz (Extra High Frequency)
- Gestire la mobilità delle stazioni coinvolte nella comunicazione
- Data rate elevati con target massimo sui 20 Gbps

Caso d'uso 1 - Ultra Short Range Communication

- Comunicazione Ultra Short Range tra un chiosco ed un device portatile
- Comunicazione in Line-Of-Sight, minimizzando la probabilità di interferenza
- Goal principale:
 - Sincronizzare dati/files, reperire contenuti multimediali di diversi Gb, offerti dal chiosco, nell'ordine del secondo
- Data rate sui 10 Gbps, circa 10 volte maggiore rispetto all'802.11ad
- Esempi:
 - Stazioni, aeroporti, spazi pubblici

Caso d'uso 1 - Ultra Short Range Communication

@ 70% MAC-App efficiency	Size	11ay Device	11ad Device
4K UHD movie	60 GB	1.1 min @ 10Gbps	11.4 min@1Gbps
HD movie	5 GB	5.7 sec @ 10Gbps	57.1 sec @ 1Gbps
SD movie	1.5 GB	1.7 sec @ 10Gbps	17.1 sec @ 1Gbps
Picture library	1 GB 1.1 sec @ 10Gbps		11.4 sec @ 1Gbps
4K movie trailer	1.2 GB	1.4 sec @ 10Gbps	13.7 sec @ 1Gbps
HD movie trailer	100 MB	0.1 sec @ 10Gbps	1.1 sec @ 1Gbps
E-magazine	250 MB	0.3 sec @ 10Gbps	2.8 sec @ 1Gbps

Caso d'uso 2 - Distribuzione Video/Mass-Data

- Riproduzione simultanea di contenuti streaming su device client
- Numero importante di client posti in una sala conferenze/show room che mostrano contenuti streaming in simultanea
- APs sul soffitto per minimizzare le interferenze dato che la comunicazione non è più nell'ordine del centimetro

Caso d'uso 3 - Mobile Offloading and MultiBand

- Considera device mobili con interfacce di rete 4G e più interfacce WiFi
- Considera device mobili con possibilità di fare switch tra tecnologie diverse
- Caso d'uso illustrato dai documenti ufficiali TG prevede un utente che, durante una videochiamata, entra nel range di un Hotspot 802.11ay
- Il device utente quindi dovrebbe accorgersi dell'Hotspot e fare switch nella tecnologia 802.11ay, portando all'utente benefici in QoS, QoE dei contenuti streaming, dato l'alto data rate offerto dallo standard
- Gestione della bassa mobilità (pedoni)

Requisiti funzionali

- Dipende anche dal caso d'uso/ambiente in cui si intende utilizzare la tecnologia
- In linea di massima si richiede:
 - Banda di frequenza
 - 57 GHz 64 GHz
 - Data rate
 - al più di 20Gbps (cercando di avvicinarcisi sempre di più)
 - Retrocompatibilità con stazioni multigigabit 802.11ad e con gli altri standard preesistenti che operano nella banda di frequenza in questione
 - Range
 - sui 10 m indoor
 - almeno 100 m outdoor
 - Supporto degli ambienti outdoor
 - Supporto alla bassa mobilità

Channel Model

- Si occupa di rappresentare ed analizzare il canale di comunicazione della tecnologia
- Necessità, in fase progettazione, di descrivere ed individuare le componenti di segnale utili che giungono alla stazione ricevente
- 802.11ad si basava su ray-tracing puro
- Il ray tracing non riesce a descrivere al meglio i contributi delle onde radio in ambiente indoor ampi ed ambienti outdoor
- Vi potrebbero essere contributi di onde radio, riflesse da oggetti presenti in modo aleatorio nell'ambiente che non vengono considerate dall'approccio deterministico

Channel Model - approccio

- L'802.11ay utilizza un approccio ibrido, considerando simultaneamente componenti deterministiche ed aleatorie:
 - <u>Componente deterministica</u> → deriva dal ray tracing e dallo studio dell'ambiente
 - <u>Componente stocastica</u> → rappresenta fenomeni che non possono essere rappresentati a priori(ad esempio il passaggio di un'auto nell'ambiente o la presenza di oggetti non prevedibile a priori)
 - <u>Componente empirica</u> → rilevazioni e testing di invio/ricezioni radio nell'ambiente considerato

Channel Model - Quasi-Deterministic Approach(1)

- Modello descritto prende il nome di Quasi-Deterministic Approach, dove la quantità di segnale utile sulla stazione ricevente può essere interpretata come l'aggregazione di 3 tipi di raggio:
 - Raggi D
 - Componente deterministica e raggi che danno il maggior contributo al segnale in arrivo
 - Determinati a priori nell'ambiente in cui si utilizza l'802.11ay
 - Raggi diretti in LOS tra TX e RX
 - raggi riflessi di primo/secondo ordine da oggetti considerati costanti nell'ambiente (es il suolo)

Channel Model - Quasi-Deterministic Approach(2)

Raggi R

- Componente stocastica
- Raggi riflessi da oggetti non considerabili deterministicamente a priori, dipendenti dall'ambiente in cui si va ad operare

Raggi F

- Componente stocastica
- Introdotti per ambienti dinamici
- Componente che rappresenta raggi riflessi
- Possono portare contributi importanti di segnale al RX
- Considerati per un ∆t limitato

Channel Model - Quasi-Deterministic Approach(3)

La mobilità

- Fondamentale importanza se si vuole adottare lo standard con device mobili in ambienti outdoor
- Movimento della stazione RX → Effetto Doppler
- Questo, combinato con i ritardi degli echi sulla stazione ricevente produce uno scostamento di fase e variazione di ampiezza che può portare ad ISI
- Si considera un'esperienza che paragona la configurazione di un canale IEEE 802.11ad con i parametri tipici di un canale mmWave

Parametri

Delay spread (T_s)

 ritardo degli echi dovuto alla propagazione multipath

Banda di coerenza (B_c)

- massima separazione in freq per cui due sinusoidi possono ancora essere correlate in ampiezza, avendo subito attenuazione e sfasamento simili
- \circ B_c = 1/T_s

Doppler Spread (B_d)

- scostamento massimo in frequenza causato dall'effetto Doppler
- $\circ \quad B_d = f_c(\Delta_v) / c$

IEEE 802.11ad system parameters		Millimeter-wave channel parameters	
Sample duration	0.3-0.5 ns	(Delay spread)	3-5 ns
Bandwidth	2160 MHz	Coherence bandwidth	200-350 MHz
Symbol	242 ns	Doppler	170 –
duration	/328 ns	frequency	6700 Hz
Frame	0.1-0.7 ms	Channel	0.15 - 6
Duration		coherence	ms

Tempo coerenza canale (T_c)

- tempo entro il quale i segnali subiscono lo stesso tipo di fading
- \circ T_c = 1/Bd

Considerazioni(1)

- Considerando il canale mmWave in ambiente outdoor:
 - RX con velocità pari a 3 km/h
 - Doppler Spread B_d 170 Hz
 - tempo di coerenza T_c 6ms
 - RX con velocità 120 km/h
 - Doppler Spread B_d 6700 Hz
 - tempo di coerenza canale T_c 0.15ms
- \rightarrow All'aumentare della velocità RX diminuisce il T_c portando a fenomeni di fading temporale

Considerazioni(2)

- Considerando il canale 802.11ad:
 - □ Banda 11ad (2160 MHz) >>> Banda di coerenza B_c (~ 300 MHz)
 - Sistema a banda larga
- → Rischio di introdurre ISI e distorsione del segnale in ricezione

Lo Standard 802.11ay dovrà trovare il giusto trade-off per non introdurre ISI e fading temporale nelle proprie trasmissioni

Tecnologia MIMO

- 802.11ad utilizza prevalentemente la tecnologia SISO
- Tecnologia MIMO:
 - utilizzare sistemi di multi antenne sulla stazioni riceventi e trasmittenti per aumentare la capacità del canale trasmissivo
 - Questo permette agli array multi antenna di comprendere più simboli in simultanea, aumentando di conseguenza il numero di bit in ricezione
 - Sottoclassi:
 - SU-MIMO → La comunicazione rimane 1:1 tra TX e RX
 - MU-MIMO → Stream dati in simultanea per la comunicazione con più utenti riceventi

Beamforming

- tecnica per potenziare il segnale in ricezione, direzionando lato trasmittente la propagazione verso la direzione RX
- rispetto all'antenna omnidirezionale cerca di indirizzare il segnale verso dispositivi target, identificati come riceventi
- funziona bene per le brevi distanze, ottenendo un buon rapporto segnale utile/rumore
- Utilizzo di Phased-Array Antenna, direzionando il lobo principale con maggior guadagno verso una antenna RX

Tecniche MIMO

• Per ottenere tutti i benefici che il MIMO si prefigge:

1. Separazione spaziale

 Predisporre gli array ad una giusta distanza tra loro per evitare interferenze

2. Separazione polarizzazione

 Polarizzare nella stessa maniera array che si intendono far comunicare, ed in maniera diversa dagli altri

3. Hybrid beamforming

 Gli array cercano di non propagare segnale in eventuali direzioni di interferenza

Esperienza

Casi d'uso:

- Home theater
- Sync-and-Go

Antenne PAA:

- 1x4 elementi smartphone
- 1x8 Laptop e TV

Obiettivo:

 Mostrare differenze di performance ed eventuali benefici della tecnologia MIMO, comparandola con la tecnologia SISO, variando inoltre le tecniche viste nella slide precedente

Risultati Home Theater

- Nei primi 1,5 m il throughput (14 Gbps) è completamente raddoppiato rispetto al SISO (7 Gbps)
- Dai 3,5 m il SISO diventa più performante del semplice MIMO, mentre il MIMO Hybrid beamformed continua su prestazioni elevate

Risultati Sync-and-Go

- Andamento simile al caso precedente, con semplice MIMO più performante sotto gli 0,5 m
- MIMO Hybrid beamformed continua su prestazioni elevate per le distanze considerate
- Le distanze sono minori a causa dei requisiti del caso d'uso e del minor numero di elementi negli array PAA dello smartphone

Conclusioni

- Introduzione all'802.11ay definendo Casi d'uso, requisiti funzionali e Channel Model
- Quasi-Deterministic Approach introducendo aleatorietà per ambienti dinamici
- Si prefigge il goal di lavorare su frequenze dei 60GHz con data rate sui 15-20 Gbps
- Necessità di gestione della mobilità dei device, evitando di introdurre ISI e fading temporale nelle comunicazioni
- Adottare tecnologia MIMO in maniera che porti benefici
- Fine lavori previsti nel dicembre 2019

Bibliografia

- [1] Task Group IEEE 802.11ay, "Standard IEEE 802.11ay", http://www.ieee802.org/11/Reports/tgay_update.htm, Mar. 2015 –In corso
 - Documenti della Tgay:
 - Usage model
 - Functional requirements
 - Channel model
- [2] A.Maltsev, A.Sadri, C.Cordeiro, A.Pudeyev, "Practical LOS MIMO Technique for Short-Range Millimeter-Wave systems", http://ieeexplore.ieee.org/document/7324501/, Nov. 2015
- [3] A.Maltsev, I.Bolotin, A.Lomayev, A.Pudeyev, "User Mobility Impact on Millimeter-Wave System Performance", http://ieeex-plore.ieee.org/document/7481505/, Apr. 2016
- [4] A.Maltsev, I.Bolotin, A.Lomayev, A.Pudeyev, "Channel modeling in the next generation mmWave Wi-Fi: IEEE 802.11ay standard", http://ieeexplore.ieee.org/document/7499315/, Giu.2016