

資料前處理 -特徵縮放 與 獨熱編碼 Feature Scaling and One Hot Encoding

國立東華大學電機工程學系楊哲旻

Outline

1 特徵縮放

2 重新縮放 與 平均值正規化

3

獨熱編碼

資料前處理 01. 特徵縮放

若是**連續型**的資料使用**特徵縮放(Feature Scaling)**的方式,更能讓模型更加擬和數據。考量輸入值的範圍及單位通常較不一致,如身高(cm)與身體質量指數(kg/m²)的範圍就有相當大的差別,此時會得到像左圖一樣相當狹長,利用此種比例進行求解時,由於的更新不能太快,會使得更新過慢,導致整體梯度下降法收斂過慢。

資料前處理 02. 重新縮放 與 平均值正規化

₩ 重新縮放(Rescaling)

將每一維特徵線性映射到目標範圍[a, b],即將最小值映射為a,最大值映射為

b, 常用目標範圍為最小最大正規化(min-max normalization) [0, 1] 和 [-1, 1]

Range scaling:
$$x' = a + \frac{(x - min(x))(b - a)}{max(x) - min(x)}$$

平均值正規化(Mean normalization)

Mean normalization:
$$x' = \frac{x - average(x)}{max(x) - min(x)}$$

資料前處理 03. 獨熱編碼

離散型的資料則使用**獨熱編碼(One-Hot Encoder)**,它又稱為虛擬變數(Dummy variables),常用於特徵與標籤中,讓每個特徵或標籤的類別彼此距離是相同的,二進制化的原因是不同值之間存在一些有正確的距離關係,但特徵數量會變多

編碼前的資料

ID	交通工具		
0	大眾交通工具		
1	走路		
2	機車		
3	走路		
4	機車		
•••	•••		

排序型編碼

ID	交通工具	
0	2	
1	0	
2	1	
3	0	
4	1	
•••	•••	

獨熱編碼

ID	走路	機車	大眾交通工具
0	0	0	1
1	1	0	0
2	0	1	0
3	1	0	0
4	0	1	0
•••	•••	•••	•••