직선의 방정식 (The equation of a straight line)

▶ Start ▶ End

$$y = a_1 x + b_1$$
, $y = a_2 x + b_2$ 의 위치관계

Theorem

$$y = a_1x + b_1$$
, $y = a_2x + b_2$ 의 위치관계

(1) $a_1 \neq a_2$: 한 점에서 만남

$$y = a_1x + b_1$$
, $y = a_2x + b_2$ 의 위치관계

- (1) $a_1 \neq a_2$: 한 점에서 만남
- (2) $a_1 = a_2, b_1 \neq b_2$: 평행한 두 직선

$$y = a_1x + b_1$$
, $y = a_2x + b_2$ 의 위치관계

- (1) $a_1 \neq a_2$: 한 점에서 만남
- (2) $a_1 = a_2, b_1 \neq b_2$: 평행한 두 직선
- (3) $a_1 = a_2, b_1 = b_2$: 일치

$$y = a_1x + b_1$$
, $y = a_2x + b_2$ 의 위치관계

- (1) $a_1 \neq a_2$: 한 점에서 만남
- (2) $a_1 = a_2, b_1 \neq b_2$: 평행한 두 직선
- (3) $a_1 = a_2, b_1 = b_2$: 일치
- (4) $a_1 \times a_2 = -1$: 수직

▶ Home ▶ Start ▶ End

$$a_1x+b_1y+c_1=0(a_1^2+b_1^2\neq 0),\, a_2x+b_2y+c_2=0(a_2^2+b_2^2\neq 0)$$
의 위치관계

▶ Home ▶ Start ▶ End

Theorem

$$a_1x+b_1y+c_1=0$$
 $(a_1^2+b_1^2\neq 0),$ $a_2x+b_2y+c_2=0$ $(a_2^2+b_2^2\neq 0)$ 의 위치관계

(1) $a_1b_2 \neq a_2b_1$: 한 점에서 만남

$$a_1x+b_1y+c_1=0$$
 $(a_1^2+b_1^2\neq 0),$ $a_2x+b_2y+c_2=0$ $(a_2^2+b_2^2\neq 0)$ 의 위치관계

- (1) $a_1b_2 \neq a_2b_1$: 한 점에서 만남
- (2) $a_1b_2 = a_2b_1, b_1c_2 \neq b_2c_1$: 평행한 두 직선

$$a_1x+b_1y+c_1=0$$
 $(a_1^2+b_1^2\neq 0),$ $a_2x+b_2y+c_2=0$ $(a_2^2+b_2^2\neq 0)$ 의 위치관계

- (1) $a_1b_2 \neq a_2b_1$: 한 점에서 만남
- (2) $a_1b_2 = a_2b_1$, $b_1c_2 \neq b_2c_1$: 평행한 두 직선
- (3) $a_1b_2=a_2b_1, b_1c_2=b_2c_1$: 일치

▶ Home ▶ Start ▶ End

$$a_1x+b_1y+c_1=0$$
 $(a_1^2+b_1^2\neq 0),$ $a_2x+b_2y+c_2=0$ $(a_2^2+b_2^2\neq 0)$ 의 위치관계

- (1) $a_1b_2 \neq a_2b_1$: 한 점에서 만남
- (2) $a_1b_2 = a_2b_1$, $b_1c_2 \neq b_2c_1$: 평행한 두 직선
- (3) $a_1b_2=a_2b_1, b_1c_2=b_2c_1$: 일치
- (4) $a_1a_2 + b_1b_2 = 0$: 수직

Theorem

서로 평행하지않은 두 직선 $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ 에 대하여

▶ Start ▶ End

Theorem

서로 평행하지않은 두 직선 $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ 에 대하여

$$(a_1x + b_1y + c_1)m + (a_2x + b_2y + c_2) = 0$$

▶ Start ▶ End

Theorem

서로 평행하지않은 두 직선 $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ 에 대하여

$$(a_1x + b_1y + c_1)m + (a_2x + b_2y + c_2) = 0$$

은
$$a_1x + b_1y + c_1 = 0$$
를 제외하고

▶ Start ▶ End

Theorem

서로 평행하지않은 두 직선 $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ 에 대하여

$$(a_1x + b_1y + c_1)m + (a_2x + b_2y + c_2) = 0$$

 $color a_1x + b_1y + c_1 = 0$ 를 제외하고 $a_1x + b_1y + c_1 = 0, a_2x + b_2y + c_2 = 0$ 의 교점을

▶ Start ▶ End

Theorem

서로 평행하지않은 두 직선 $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ 에 대하여

$$(a_1x + b_1y + c_1)m + (a_2x + b_2y + c_2) = 0$$

 $cape = a_1x + b_1y + c_1 = 0$ 를 제외하고 $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ 의 교점을 지나는 직선을 나타낸다.

▶ Start ▶ End

Theorem

서로 평행하지않은 두 직선 $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ 에 대하여

$$(a_1x + b_1y + c_1)m + (a_2x + b_2y + c_2) = 0$$

 $cape = a_1x + b_1y + c_1 = 0$ 를 제외하고 $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ 의 교점을 지나는 직선을 나타낸다.

Theorem

서로 평행하지 않은 두 직선 $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ 에 대하여

▶ Start ▶ End

Theorem

서로 평행하지않은 두 직선 $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ 에 대하여

$$(a_1x + b_1y + c_1)m + (a_2x + b_2y + c_2) = 0$$

은 $a_1x + b_1y + c_1 = 0$ 를 제외하고 $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ 의 교점을 지나는 직선을 나타낸다.

Theorem

서로 평행하지 않은 두 직선 $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ 에 대하여

$$(a_1x + b_1y + c_1)m + (a_2x + b_2y + c_2)n = 0 (m^2 + n^2 \neq 0)$$

Theorem

서로 평행하지않은 두 직선 $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ 에 대하여

$$(a_1x + b_1y + c_1)m + (a_2x + b_2y + c_2) = 0$$

은 $a_1x + b_1y + c_1 = 0$ 를 제외하고 $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ 의 교점을 지나는 직선을 나타낸다.

Theorem

서로 평행하지 않은 두 직선 $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ 에 대하여

$$(a_1x + b_1y + c_1)m + (a_2x + b_2y + c_2)n = 0 (m^2 + n^2 \neq 0)$$

$$extcape a_1x + b_1y + c_1 = 0$$
, $a_2x + b_2y + c_2 = 0$ 의 교점을

Theorem

서로 평행하지않은 두 직선 $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ 에 대하여

$$(a_1x + b_1y + c_1)m + (a_2x + b_2y + c_2) = 0$$

은 $a_1x + b_1y + c_1 = 0$ 를 제외하고 $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ 의 교점을 지나는 직선을 나타낸다.

Theorem

서로 평행하지 않은 두 직선 $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ 에 대하여

$$(a_1x + b_1y + c_1)m + (a_2x + b_2y + c_2)n = 0 (m^2 + n^2 \neq 0)$$

은 $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ 의 교점을 지나는 모든 직전을 나타낸다.

Theorem

점
$$(x_1, y_1)$$
과 직선 $ax + by + c = 0$ 사이의 거리

$$d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

이다.

Theorem

세 점 $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ 로 삼각형이 만들어 질 때

Theorem

세 점 $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ 로 삼각형이 만들어 질 때 삼각형의 넓이는

→ Start → End

Theorem

세 점 $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ 로 삼각형이 만들어 질 때 삼각형의 넓이는

$$S = \frac{1}{2} |(x_1 - x_2)y_3 + (x_2 - x_3)y_1 + (x_3 - x_1)y_2|$$

→ Start → End

Theorem

세 점 $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ 로 삼각형이 만들어 질 때 삼각형의 넓이는

$$S = \frac{1}{2} |(x_1 - x_2)y_3 + (x_2 - x_3)y_1 + (x_3 - x_1)y_2|$$

이다.

Github:

https://min7014.github.io/math20210830001.html

Click or paste URL into the URL search bar, and you can see a picture moving.