Robot Motion Planning in Dynamic Environment: A Comparative Study

Dharmin Bakaraniya¹ **Advisors**:

Prof. Dr. Erwin Prassler² Dr. Cesar Lopez³

Hochschule Bonn-Rhein-Sieg

June 25, 2019

dharmin.bakaraniya@smail.inf.h-brs.de

²erwin.prassler@h-brs.de

³c.a.lopez.martinez@tue.nl

Introduction I

What is motion planning?

- A mobile robot needs to
 - Reach goal in minimal time
 - Avoid static and moving obstacle
 - Consider kinematics and dynamic constraints

What is our aim?

Find out the "best" planner

Figure: Robot motion planning in dynamic environment

Introduction II

What are the benefits?

- Safer environment for humans and for robots
- Cost effective transportation of goods

State of the art I

Survey of motion planning in dynamic environment (2018)⁴

- Covers 101 research papers published between 1985 and 2016
- Only introduces approaches.
- Contains almost no comparison.

⁴M.G. Mohanan and Ambuja Salgoankar. "A survey of robotic motion planning in dynamic environments". In: Robotics and Autonomous Systems 100 (2018), pp. 171 –185. ISSN: 0921-8890. DOI: https://doi.org/10.1016/j.robot.2017.10.011. URL: http://www.sciencedirect.com/science/article/pii/S0921889017300313.

State of the art II

Collision avoidance algorithm survey (2015)⁵

- Compares collision avoiding algorithms in detail.
- Does not validate the comparison with experiments.
- Mainly focuses on boundary following algorithms.

⁵Michael Hoy, Alexey S. Matveev, and Andrey V. Savkin. "Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey". In: *Robotica* 33.3 (2015), pp. 463 –497. DOI: 10.1017/S0263574714000289.

State of the art III

Field contribution survey (2009)⁶

- Introduces 150 papers from 1986 to 2008. Compares contribution in different area of motion planning
- Only provides contributions of different fields. Does not compare the approaches at all.

⁶Soheil Keshmiri and Shahram Payandeh. "An overview of mobile robotic agents motion planning in dynamic environments". In: *Proceedings of the 14th IASTED International Conference, Robotics and Applications (RA20), MA, Boston.* 2009, pp. 152–159.

State of the art IV

Dated comparison (1992)⁷

- Surveys papers from 1979 to 1989 for all types of motion planning.
- Compares time and complexity
- Significantly old
- Does not compare with common parameters.

⁷Yong K Hwang and Narendra Ahuja. "Gross motion planning—a survey". In: ACM Computing Surveys (CSUR) 24.3 (1992), pp. 219–291.

What is lacking?

Surveys

The surveys do not test the approaches.

Individual published approaches

The individual published approaches test themselves

- on <u>different</u> robots⁸
- with <u>different</u> kinodynamic constraints ⁸
- with <u>different</u> assumptions
- in different environments
- to optimize <u>different</u> parameters ⁸

⁸Michael Hoy; Alexey S. Matveev and Andrey V. Savkin;

[&]quot;Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey"; In: Robotica 33.3 (2015); pp. 463 497. doi: 10.1017/S0263574714000289.

Qualitative Comparison

We qualitatively compare 30+ planners based on

Vehicle type

Holonomic, unicycle or bicycle

Restrictions on obstacle

- Constant or varying direction
- Constant or varying velocity

Obstacle shape

Circular or polygonal

Experiment environment

Simulated and/or real

Experimental setup

Setup

- Robot: KUKA youBot with 2 laser rangefinders
- Environment: Gazebo simulator
- Obstacle: Cylinders with varying velocity and varying direction
- Optimisation parameter: Minimise time

Measured values

- Travel time
- Number of collisions
- Number of re-plans

Test case 1 (Single room single obstacle)

(a) t=0.0s

(b) t=10.0s

Description

- Room size: 4 meters x 3 meters
- Starting position: x=-1.0, y=0.0, theta=0.0
- Goal position: x=1.0, y=1.0, theta=0.0

Test case 2 (Single room two obstacles)

Test case 3 (Double room nine obstacles)

Figure: Test case 3 (Total size: 8m x 6m)

Compared Planners

- Timed elastic band planner (TEB)⁹
- Spline based planner¹⁰.
- Elastic band approach (EBand)¹¹.
- Eband* (EBand2)
- Dynamic window approach* (DWA)¹²

^{*} with obstacle position look ahead of 3 seconds

⁹Christoph Rosmann, Frank Hoffmann, and Torsten Bertram. "Planning of multiple robot trajectories in distinctive topologies". In: European Conference on Mobile Robots (ECMR), 2015, pp. 1–6.

¹⁰Tim Mercy, Ruben Van Parys, and Goele Pipeleers. "Spline-based motion planning for autonomous guided vehicles in a dynamic environment". In: IEEE Transactions on Control Systems Technology (2017).

¹¹Sean Quinlan and Oussama Khatib. "Elastic bands: Connecting path planning and control". In: IEEE International Conference on Robotics and Automation. 1993, pp. 802–807.

¹²Dieter Fox, Wolfram Burgard, and Sebastian Thrun. "The dynamic window approach to collision avoidance".
In: IEEE Robotics & Automation Magazine 4.1 (1997), pp. 23–33.

Results I (Travel time)

Planner	Static single room	Test case 1	Test case 2	Static double room	Test case 3
TEB	5.205	5.972	6.083	27.139	35.330
Spline	5.421	5.574	5.819	-	-
DWA	19.526	17.625	17.114	39.004	-
EBand	6.270	6.570	6.240	30.862	71.968
EBand2	6.270	6.025	6.234	30.862	-

Table: Average time of travel for planners for different test cases

Results II (Re-plans)

Planner	Static single room	Test case 1	Test case 2	Static double room	Test case 3
TEB	0	0	1	0	4
Spline	0	0	0	Fail	Fail
DWA	0	0	2	0	Fail
EBand	0	1	Fail	0	Fail
EBand2	0	1	1	0	Fail

Table: Maximum re-plan attempts of planners for different test cases

Results (collisions)

Planner	Static single room	Test case 1	Test case 2	Static double room	Test case 3
TEB	0	0	0	0	0.75
Spline	0	0	0	-	-
DWA	0	0	0	0	-
EBand	0	0.25	0.5	0	4
EBand2	0	0	0	0	-

Table: Average collisions of planners for different test cases

Results visualised

(a) Ranking comparison for test (b) Ranking comparison for all test case 1 and 2

cases

Verdict

TEB planner performs best for our experiments out of 5 planners.

Conclusion and future work

Conclusion

- Qualitative comparison
- Develop an open source software to help test
- Test cases and framework for objective comparison
- TEB planner performs "best" for given scenarios

Future work

- Test more planners on these test cases.
- Test with humans as obstacles for real robots.
- Test with different models of robots.

References I

Fox, Dieter, Wolfram Burgard, and Sebastian Thrun. "The dynamic window approach to collision avoidance". In: *IEEE Robotics & Automation Magazine* 4.1 (1997), pp. 23–33.

Hoy, Michael, Alexey S. Matveev, and Andrey V. Savkin. "Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey". In: Robotica 33.3 (2015), pp. 463 –497. DOI: 10.1017/S0263574714000289.

Hwang, Yong K and Narendra Ahuja. "Gross motion planning—a survey". In: ACM Computing Surveys (CSUR) 24.3 (1992), pp. 219–291.

Keshmiri, Soheil and Shahram Payandeh. "An overview of mobile robotic agents motion planning in dynamic environments". In: Proceedings of the 14th IASTED International Conference, Robotics and Applications (RA20), MA, Boston. 2009, pp. 152–159.

Mercy, Tim, Ruben Van Parys, and Goele Pipeleers. "Spline-based motion planning for autonomous guided vehicles in a dynamic environment". In: IEEE Transactions on Control Systems Technology (2017).

References II

Mohanan, M.G. and Ambuja Salgoankar. "A survey of robotic motion planning in dynamic environments". In: Robotics and Autonomous Systems 100 (2018), pp. 171 -185. ISSN: 0921-8890. DOI: https://doi.org/10.1016/j.robot.2017.10.011. URL: http://www.sciencedirect.com/science/article/pii/S0921889017300313.

Quinlan, Sean and Oussama Khatib. "Elastic bands: Connecting path planning and control". In: IEEE International Conference on Robotics and Automation. 1993, pp. 802–807.

Rosmann, Christoph, Frank Hoffmann, and Torsten Bertram. "Planning of multiple robot trajectories in distinctive topologies". In: European Conference on Mobile Robots (ECMR). 2015, pp. 1–6.