e6-PositionCtrl: 定点位置控制器设计实验

四旋翼无人机定点位置控制器设计实验(SITL->HITL->FLY)

当前位置: [安装目录]\RflySimAPIs\5.RflySimFlyCtrl\1.BasicExps\e6-PositionCtrl\

序号	实验名称	简介	文件地址	
1	基础	复现四旋翼 Simulink 仿真, 分析控制作用在轴和轴的解耦;	e6.1\Readme.pdf	免费版
		对系统进行扫频以绘制 bode 图,分析闭环位置控制系统		
		稳定裕度,完成硬件在环仿真。		
2	基础	调节 PID 控制器的相关参数改善系统控制性能,并记录超	e6.2\Readme.pdf	免费版
		调量和调节时间,得到一组满意的参数。在得到满意参数		
		后,对系统进行扫频以绘制 Bode 图,观察系统幅频响应、		
		相频响应曲线,分析其稳定裕度。		
3	基础	建立位置控制通道的传递函数模型,使用 MATLAB	e6.3\Readme.pdf	免费版
		"ControlSystemDesigner"设计校正控制器,使 得加入校正		
		环节后系统速度控制环阶跃响应稳态误差 , 相位裕		
		度>75°截止频率>2.0rad/s。位置控制环截止频率>1rad/s,		
		相位裕度>60°; 使用自己设计的控制器进行软件在环仿		
		真实验和硬件在环仿真实验;使用自己设计的控制器进行		
		实飞实验。		
4	定点位置控制器设计	让多旋翼实现位置定点控制飞行。	e6.4\Readme.pdf	免费版

所有文件列表

序号	实验名称	简介	文件地址	
1	定点位置控制器设计实验	四旋翼无人机定点位置控制器设计实验(SITL->HITL->FLY)	Readme.pdf	免费版
2	基础	复现四旋翼 Simulink 仿真,分析控制作用在轴和轴的解耦;对	e6.1\Readme.pdf	免费版
		系统进行扫频以绘制 bode 图,分析闭环位置控制系统稳定裕		
		度;完成硬件在环仿真。		
3	基础	调节 PID 控制器的相关参数改善系统控制性能,并记录超调量	e6.2\Readme.pdf	免费版
		和调节时间,得到一组满意的参数。在得到满意参数后,对系		
		统进行扫频以绘制 Bode 图,观察系统幅频响应、相频响应曲		
		线,分析其稳定裕度。		
4	基础	建立位置控制通道的传递函数模型,使用 MATLAB	e6.3\Readme.pdf	免费版
		"ControlSystemDesigner"设计校正控制器,使 得加入校正环节		
		后系统速度控制环阶跃响应稳态误差 , 相位裕度>75°截止频		
		率>2.0rad/s。位置控制环截止频率>1rad/s,相位裕度>60°;使		
		用自己设计的控制器进行软件在环仿真实验和硬件在环仿真		
		实验;使用自己设计的控制器进行实飞实验。		
5	定点位置控制器设计	让多旋翼实现位置定点控制飞行。	e6.4\Readme.pdf	免费版

备注

注 1: 各版本区别说明详见: https://rflysim.com/doc/zh/RflySimVersions.pdf。更高版本获取请见: https://rflysim.com/download.html, 或咨询: service@rflysim.com/doc/zh/RflySimVersions.pdf。更高版本获取请见: https://rflysim.com/download.html, 或咨询: