

Disciplina: Projeto e Engenharia de Software

Professor: Eduardo de Lucena Falção

Tópicos: Notações Assintóticas e Complexidade de Algoritmos Iterativos

1. Defina e explique o significado das notações O, Ω , o, $\omega e \Theta$, para o tempo de execução de algoritmos.

Essas notações são utilizadas, em contextos de tempo de execução de algoritmos, para explicar relações entre duas funções:

- Notação O (big-O): uma função qualquer f(n) será limitada superiormente por uma função qualquer g(n) se existirem constantes positivas c e n_0 tal que $f(n) \le c \cdot g(n)$ para todo $n \ge n_0$. Assim sendo, dizemos que $f(n) \in O(g(n))$
- Notação Ω (big-ômega): uma função qualquer f(n) será limitada inferiormente por uma função qualquer g(n) se existirem constantes positivas c e n_0 tal que $f(n) \ge c \cdot g(n)$ para todo $n \ge n_0$. Assim sendo, dizemos que $f(n) \in \Omega(g(n))$
- Notação Θ : uma função qualquer f(n) será limitada inferiormente e superiormente por uma função qualquer g(n) se existirem constantes positivas c_1 , c_2 e n_0 tal que $c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$ para todo $n \geq n_0$. Assim sendo, dizemos que $f(n) \in \Theta(g(n))$, ou ainda $f(n) \in \Theta(g(n))$ se $f(n) \in O(g(n))$ e $f(n) \in O(g(n))$.
- Notações o (little-o) e ω (little-ômega): essas notações são parecidas às O(g(n)) e $\Omega(g(n))$, mas essas primeiras são limites assintóticos inferior e superior que podem ser folgados ou apertados. Para limites inferior e superior que são sempre folgados utilizamos as letras minúsculas o(g(n)) e $\omega(g(n))$. Sendo assim: $f(n) \in o(g(n))$ se existirem constantes positivas $c \in n_0$ tal que $f(n) < c \cdot g(n)$ para todo $n \ge n_0$; e $f(n) \in \omega(g(n))$ se existirem constantes positivas $c \in n_0$ tal que $f(n) > c \cdot g(n)$ para todo $n \ge n_0$.
- 2. Prove ou mostre um contra-exemplo para cada uma das seguintes afirmações.
 - a. se $f(n) \in O(g(n))$ então $g(n) \in O(f(n))$ $f(n) = n, g(n) = n^2 \Rightarrow n \in O(n^2); n^2 \notin O(n)$ b. $f(n) + g(n) \in \Theta(\min(f(n), g(n)))$ $f(n) = n, g(n) = n^2$

$$min(f(n), g(n)) = min(n, n^2) = n$$

$$f(n) + g(n) = n^2 + n \notin \Theta(n)$$

c. se $f(n) \in O(g(n))$ então $g(n) \in \Omega(f(n))$ $f(n) = n^2$, $g(n) = n^2 \Rightarrow n^2 \in O(n^2) \Rightarrow n^2 \in \Omega(n^2)$

DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO

3. Explique por que a afirmação "o tempo de execução do algoritmo A é pelo menos $O(n^2)$ não faz sentido".

Não faz sentido pois a notação big-O já representa o pior caso, então não tem como ser "pelo menos" $O(n^2)$, uma vez que isso dá a entender que ainda há um caso pior.

- 4. Prove que:
 - a. 8n + 128 = O(n)

$$f(n) = 8n + 128, g(n) = n$$

$$f(n) \le c \cdot g(n) \Rightarrow 8n + 128 \le cn, para c = 9$$

$$\Rightarrow$$
 $(9 - 8)n \ge 128 \Rightarrow n = 128 \Rightarrow n_0 = 128$

Sendo assim, para c = 9 e $n_0 = 128$, foi demonstrado que

$$f(n) = 8n + 128 \text{ \'e limitado superiormente por } g(n) = n$$

b. $8n + 128 = O(n^2)$

$$f(n) = 8n + 128, g(n) = n^2$$

$$f(n) \le c \cdot g(n) \Rightarrow 8n + 128 \le cn^2$$
, para $c = 1$

$$\Rightarrow n^2 - 8n - 128 \ge 0 \Rightarrow n' \le (-8) e n'' \ge 16 \Rightarrow n_0 = 16$$

Sendo assim, para c = 1 e $n_0 = 16$, foi demonstrado que f(n) = 8n + 128

 \acute{e} limitado superiormente por $g(n) = n^2$

c. $n^2/2 - 3n = \Theta(n^2)$

$$f(n) = \frac{n^2}{2} - 3n, g(n) = n^2$$

$$c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \Rightarrow c_1 n^2 \le \frac{n^2}{2} - 3n \le c_2 n^2$$

 $para c_1 = \frac{1}{4} e c_2 = \frac{1}{2}$, temos:

$$\frac{1}{4}n^2 \le \frac{1}{2}n^2 - 3n \le \frac{1}{8}n^2$$

$$\Rightarrow (\frac{1}{4} - \frac{1}{2}) + 3n \le 0 \Rightarrow -\frac{1}{4}n^2 + 3n \le 0 \Rightarrow n(\frac{1}{4}n - 3) \ge 0 \Rightarrow n' \ge 0, n'' \ge 12$$

$$\Rightarrow \frac{1}{2}n^2 - 2n \le \frac{1}{2}n^2 \Rightarrow 2n \ge 0 \Rightarrow n''' \ge 0$$

Sendo assim, para $c_1 = \frac{1}{4}$, $c_2 = \frac{1}{2}$ e $n_0 = 12$, foi demonstrado que

$$f(n) = \frac{n^2}{2} - 3n$$
 é limitado superiormente e inferiormente por $g(n) = n^2$

d. $5n^3 + 3n = \Omega(n^2)$

DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO

- 5. Analise detalhadamente a complexidade dos seguintes algoritmos e responda as perguntas de forma objetiva.
 - a. busca

Quantas vezes são executadas as seguintes instruções?

<u> </u>	, ,
int i = 0	1
i < tamanho	tamanho + 1
i++	tamanho
if(v[i] == val)	tamanho
return i	1
return -1	1

• Qual a complexidade de tempo no pior caso e no melhor caso? *Pior caso:* O(n); *melhor caso:* $\Omega(1)$

. .

b. insertion-sort

```
void insertionSort(int* v, int tamanho) {
	for (int i = 1; i < tamanho; i++) {
		for (int j = i; j > 0 && v[j - 1] > v[j]; j--) {
			 int temp = v[j - 1];
			 v[j - 1] = v[j];
			 v[j] = temp;
			 }
	}

// analisando j (para as comparações):
	// quando i = 1 \Rightarrow j \in \{1, 0\} \Rightarrow 2 comparações
	// quando i = 2 \Rightarrow j \in \{2, 1, 0\} \Rightarrow 3 comparações
	// quando i = 3 \Rightarrow j \in \{3, 2, 1, 0\} \Rightarrow 4 comparações
	// ...
	// quando i = n-2 \Rightarrow j \in \{n - 2, n - 3, ..., 1, 0\} <math>\Rightarrow n-1 comparações
	// quando i = n-1 \Rightarrow j \in \{n - 1, n - 2, ..., 1, 0\} \Rightarrow n comparações

\Rightarrow 2 + 3 + 4 + ... + n comparações (PA)
```



```
\Rightarrow s_{n} = \frac{n(a_{1} + a_{n})}{2} = \frac{n(2 + n)}{2} = \frac{n^{2} + 2n}{2}
// analisando j--:
    // quando i = 1 \Rightarrow 1 execução
    // quando i = 2 \Rightarrow 2 execuções
    // quando i = 3 \Rightarrow 3 execuções
    // ...
    // quando i = n-2 \Rightarrow n-2 execuções
    // quando i = n-1 \Rightarrow n-1 execuções

\Rightarrow 1 + 2 + ... + n-2 + n-1 execuções (PA)
\Rightarrow s_{n} = \frac{n(a_{1} + a_{n})}{2} = \frac{n(1 + n - 1)}{2} = \frac{n^{2}}{2}
```

• Quantas vezes são executadas as seguintes instruções?

2	,
int i = 1	1
i < tamanho	tamanho
i++	tamanho - 1
int j = i	tamanho - 1
j > 0 && v[j-1] > v[j]	(tamanho²+2 tamanho)/2
j	tamanho²/2
int temp = v[j-1]	tamanho²/2
v[j - 1]	tamanho²/2
v[j] = temp	tamanho²/2

• Qual a complexidade de tempo da função **insertionSort** no pior caso e no melhor caso?

Pior caso: O(n³); melhor caso: \Omega(n^2)

DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO

c. selection-sort

```
void troca(int* v, int i, int j) {
     int temp = v[i];
     v[i] = v[j];
     v[j] = temp;
} // custo c. O(1), \Omega(1)
void selectionSort(int* v, int tamanho) {
     for (int i = 0; i < (tamanho - 1); i++) {
          int iMenor = i;
          for (int j = i+1; j < tamanho; j++) {
                if (v[j] < v[iMenor])
                     iMenor = j;
          troca(v, i, iMenor);
     }
// int i = 0 \Rightarrow 1 execução
// i < (n-1) \Rightarrow n execuções
// i++ ⇒ n-1 execuções
// int iMenor = i ⇒ n-1 execuções
// int j = i+1 \Rightarrow n-1 execuções
// analisando j < n:</pre>
  // quando i=0 \Rightarrow j \in \{1, 2, ..., n-1, n\} \Rightarrow n execuções
  // quando i=1 \Rightarrow j \in \{2, 3, ..., n-1, n\} \Rightarrow n-1 execuções
  // quando i=2 \Rightarrow j \in \{3, 4, ..., n-1, n\} \Rightarrow n-2 execuções
  // quando i=n-2 \Rightarrow j \in \{n-1, n\} \Rightarrow 2 execuções
  // \Rightarrow 2, 3, 4, ..., n-1, n (execuções)
  // \Rightarrow s_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2+n)}{2} = \frac{n^2 + 2n}{2} execuções
  // Total: parcelaForDeFora x parcelaForDeDentro
  // Total: (n-1) \cdot \frac{n^2+2n}{2} = \frac{n^3+2n^2-n^2-2n}{2} = \frac{n^3+n^2-2n}{2}
// analisando j++, if (v[j] < v[iMenor]) e iMenor = j:
  // quando i=0 ⇒ n-1 execuções
  // quando i=1 ⇒ n-2 execuções
  // quando i=2 ⇒ n-3 execuções
  // quando i=n-2 ⇒ 1 execução
  // \Rightarrow 1, 2, 3, ..., n-2, n-1 (execuções)
  // \Rightarrow s_n = \frac{n(a_1 + a_n)}{2} = \frac{n(1+n-1)}{2} = \frac{n^2}{2} execuções
  // Total: parcelaForDeFora x parcelaForDeDentro
  // Total: (n-1) \cdot \frac{n^2}{2} = \frac{n^3 - n^2}{2} execuções cada
// analisando troca(v, i, iMenor):
  // Total: custoDaFunção x quantidadeDeRepDoForDeFora
  // Total: c \cdot (n-1) = cn - c = O(n)
```


DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO

• Quantas vezes são executadas as seguintes instruções?

int i = 0	1
i < (tamanho - 1)	n
i++	n-1
int iMenor = i;	n-1
int j = i+1	n-1
j < tamanho	$(n^3+n^2-2n)/2$
j++	$(n^3-n^2)/2$
$if(v[j] \le v[iMenor])$	$(n^3-n^2)/2$
iMenor = j	$(n^3-n^2)/2$
troca(v, i, iMenor)	cn-c

- Qual a complexidade de tempo da função **selectionSort** no pior caso e no melhor caso?
 - $O(n^3)$ $e \Omega(n^3)$.
- Qual a complexidade de tempo da função **troca** no pior caso e no melhor caso?
 - O(1) e $\Omega(1)$.
- d. bubble-sort

```
void bubbleSort(int* v, int n) {
    for (int varredura = 0; varredura < n - 1; varredura++) {
        bool trocou = false;
        for (int i = 0; i < n - varredura - 1; i++) {
            if (v[i] > v[i + 1]) {
                troca(v, i, i+1);
                 trocou = true;
            }
        }
        if (trocou == false)
            return;
    }
}
// analisando i<n-varredura -1:
    // quando v=0 \Rightarrow i \in \{0, 1, 2, ..., n-2, n-1\} <math>\Rightarrow n execuções
    // quando v=1 \Rightarrow i \in \{0, 1, 2, ..., n-3, n-2\} <math>\Rightarrow n-1 execuções
    // . . .

    // quando v=n-2 \Rightarrow i \in \{0, 1\} \Rightarrow 2 execuções
    // \Rightarrow 2, 3, ..., n-1, n (execuções)
```



```
// \Rightarrow s_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2 + n)}{2} = \frac{n^2 + 2n}{2} \ execuções // \ \text{Total} = \text{execuçõesDoForDeFora x execuçõesDoForDeDentro} // \ \text{Total} = (n-1) \cdot \frac{n^2 + 2n}{2} = \frac{n^3 + 2n^2 - n^2 - 2n}{2} = \frac{n^3 + n^2 - 2n}{2} // \ \text{analisando dentro do for:} // \ \text{quando v=0} \Rightarrow \text{n-1 execuções} // \ \text{quando v=1} \Rightarrow \text{n-2 execuções} // \ \dots // \ \text{quando v=n-2} \Rightarrow i \in \{0\} \Rightarrow \text{1 execução} // \Rightarrow \text{1, 2, 3, ..., n-2, n-1 (execuções)} // \Rightarrow s_n = \frac{n(a_1 + a_n)}{2} = \frac{n(1 + n - 1)}{2} = \frac{n^2}{2} \ execuções // \ \text{Total: parcelaForDeFora x parcelaForDeDentro} // \ \text{Total: } (n-1) \cdot \frac{n^2}{2} = \frac{n^3 - n^2}{2} \ execuções \ cada
```

Quantas vezes são executadas as seguintes instruções?

int varredura = 0	1
varredura < n - 1	n
varredura++	n-1
bool trocou = false	n-1
int i = 0	n-1
i < n - varredura - 1	$(n^3+n^2-2n)/2$
i++	$(n^3-n^2)/2$
if(v[i] > v[i+1])	$(n^3-n^2)/2$
troca(v, i, i+1)	$(n^3-n^2)/2$
trocou = true;	$(n^3-n^2)/2$
if (trocou == false)	n-1
return	1

 Qual a complexidade de tempo da função bubbleSort no pior caso e no melhor caso?

$$O(n^3)$$
 $e \Omega(n^3)$.

e. foo

```
void foo(int n) {
    int c = 0;
    for (int i = n; i >= 1; i = i/2) {
        for (int j = 0; j < i; j++) {
            c++;
        }
    }
    return c;
}

// analisando i>=1

// quando i=n \Rightarrow i \in \{n, n/2, n/4, ..., 1\}

// S_n = \frac{a_1 \cdot (q^n - 1)}{q - 1} = \frac{1 \cdot (\frac{1}{2^n} - 1)}{\frac{1}{2} - 1} = \frac{\frac{1 - 2^n}{2^n}}{\frac{1}{2}} = \frac{1 - 2^n}{2^n} \cdot \frac{-1}{2} = \frac{2^n - 1}{2^{n+1}} = \frac{2^n}{2^{n+1}} - \frac{1}{2^{n+1}}

// S_n = 2^{n-n-2} - 2^{-n-1} = 2^{-2} - 2^{-n-1}
```

• Quantas vezes são executadas as seguintes instruções?

<u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
int c = 0	1
int i = n	1
i >= 1	
i = i/2	
j < i	
j++	
c++	
return c	

• Qual a complexidade de tempo da função foo no pior caso e no melhor caso?