# Efeitos Visuais com Orifícios

José Henrique Vuolo

Instituto de Física, Universidade de São Paulo Caixa Postal 66318, CEP 05389-970, São Paulo, SP, Brasil

Trabalho recebido em 15 de agosto de 1995

Neste artigo, são explicados dois efeitos visuais interessantes e instrutivos, que podem ser observados utilizando um anteparo com um orifício, feito com materiais acessíveis. Um dos efeitos é permitir enxergar com razoável nitidez, objetos bem próximos ao olho, com ampliação angular análoga a de uma lupa. O outro efeito é a formação de "sombra na retina", quando um objeto pequeno, muito próximo ao olho é iluminado pela luz proveniente de um orifício. Para melhor compreensão dos efeitos são resumidos o funcionamento do olho humano e a ampliação ângular da lupa.

## I. Ampliação angular da lupa

O olho humano<sup>1</sup> é mostrado esquematicamente na Fig. 1. A formação de uma imagem próxima à retina ocorre devido à refração da luz na córnea. O cristalino é uma lente elástica, que pode ser deformada conforme a ação dos músculos ciliares. Para um olho normal, os músculos ciliares estão relaxados quando o objeto se encontra a uma grande distância e a imagem se forma na retina. Conforme o objeto se aproxima do olho, a imagem definida tende a se formar atrás da retina. Neste caso, o cristalino se alarga pela ação dos músculos ciliares, aumentando a refração, de modo que a imagem definida continue na retina. O ponto mais próximo, para o qual isto ainda é possível, é chamado ponto próximo. Como regra geral, a distância  $L_p$  do ponto próximo ao olho aumenta com a idade, tendo valores típicos de 15 cm para jovens, 25 cm na meia idade e 1 m para pessoas de idade avançada (> 50 anos). Este aumento se deve a deficiências tais como presbiopia e hipermetropia. Entretanto, no caso de miopia, a distância  $L_p$  pode ser bem menor que os valores típicos citados.

A menor distância para imagens nítidas é  $L_p$ . Assim, o melhor ângulo de visão de um objeto pequeno, de altura  $h_0 << L_p$  (ver Fig. 2.a.) é dado por

$$\alpha \cong tg\alpha = \frac{h_0}{L_p} \ . \tag{1}$$

O ângulo de visão do objeto pode ser aumentado por meio de uma lupa, que é uma lente convergente usada junto ao olho, como mostra a Fig. 2.b.

Para um objeto pequeno, a ampliação angular de um instrumento ótico pode ser entendida como a razão do ângulo de visão da imagem formada pelo instrumento para o ângulo de visão do objeto a olho nu.

Em geral, se considera a ampliação angular da lupa para um olho normal, com os músculos ciliares relaxados. Neste caso, a imagem formada pela lupa está a grande distância e a ampliação angular é dada por<sup>2</sup>

$$M_L \cong \frac{\beta}{\alpha} \cong \frac{L_p}{f}$$
 (2)

Assim, nas condições consideradas, a função da lupa consiste em permitir colocar o objeto a uma distância f do olho. Isto é, o objeto é visto pela lupa, da mesma maneira que seria visto a olho nu, se o olho conseguisse formar imagem nítida para um objeto à distância  $f < L_p$ .

<sup>&</sup>lt;sup>1</sup>Descrições detalhadas do funcionamento do olho humano são apresentadas no Capítulo XV da Referência 1 e na Seção 5.7 da Referência 3.

<sup>&</sup>lt;sup>2</sup> Ver Referências 2 e 5, por exemplo. Conforme a acomodação do olho, a imagem pode estar próxima e a ampliação angular da lupa pode ser maior.

José Henrique Vuolo



Figura 1. Desenho esquemático do olho humano e índices de refração envolvidos.





Figura 2. Ângulos de visão de um objeto a olho nu e com uma lupa.

# II. Orifício como lupa

Se um objeto puntiforme está à distância  $s < L_p$  da córnea, a imagem bem definida se formaria num ponto A, atrás da retina, como mostra a Fig. 3.a. Na retina, forma-se uma "imagem borrada" S, que é a imagem processada pelo cérebro do observador.

A Fig. 3.b mostra o que ocorre quando um orifício é colocado na frente da córnea. O ponto A, ainda seria a posição correta para formar imagem definida do objeto puntiforme. Entretanto, a imagem S' na retina é bem melhor definida, neste caso. Usando a linguagem dos fotógrafos, pode-se dizer que a "profundidade de foco" é aumentada permitindo "focalizar melhor o objeto na retina". Para um orifício suficientemente pequeno, a imagem se torna razoavelmente bem definida. A ampliação angular permitida pelo orifício é dada por

$$M_0 = \frac{\gamma}{\alpha} \cong \frac{h_0/s}{h_0/L_p} = \frac{L_p}{s} , \qquad (3)$$

onde  $\alpha$  e  $\gamma$  são os ângulos de visão do objeto a olho nu e através do orifício respectivamente.



Figura 3. Formação de imagem na retina, com e sem orifício.

Portanto, se o orifício permite observar com boa nitidez, um objeto colocado a uma distância  $s < L_p$ , a ampliação angular é a mesma de uma lupa de distância focal f = s, usada com músculos ciliares relaxados.

Uma das limitações do orifício em relação à lupa é a redução de luminosidade, que pode ser resolvida aumentando se a iluminação do objeto. Uma outra limitação, esta insolúvel, é a difração da luz ao passar pelo orifício. Por isso, o diâmetro do orifício não pode ser muito pequeno. Na prática, orifícios com diâmetros de 0,5 a 1,0 mm permitem observar com boa nitidez, objetos a cerca de 10 cm de distância ou menos.

Um outro efeito curioso é o deslocamento da imagem. Na Fig. 3.b, o orifício é colocado para cima, resultando que a imagem na retina também é deslocada para cima. Como o cérebro processa imagens invertidas, o observador enxerga o objeto deslocado para baixo, em relação ao que seria normal. Assim, deslocando o orifício para cima e para baixo, o observador enxerga o objeto deslocando-se em sentidos opostos.

O efeito é o mesmo no caso de míopes que comprimem as pálpebras para melhorar a visão de objetos distantes.

#### Experimento

Um orifício razoável pode ser feito com um alfinete comum em qualquer anteparo fino, mas rígido, tal como um cartão de visitas, folha rígida de alumínio ou plástico. É conveniente pintar tudo de preto com uma caneta hidrográfica.

Se existirem recursos técnicos para tanto, podem ser feitos furos com brocas de 0,6, 0,8 e 1,0 mm, em chapa fina de alumínio, placa de circuito impresso ou outro material disponínel. Desta forma, os orifícios são bem definidos e ainda pode-se escolher o orifício que produz melhor resultado, em cada situação.

O orifício pode ser utilizado junto ao olho, como uma lupa, para observar objetos bem iluminados a cerca de 10 cm do olho. No caso de míopes, esta distância pode ser menor, dependendo do grau de miopia. Como sugestão, pode-se observar os detalhes da Fig. 1 através do orifício e também, sem o orifício, para comparação. Também é interessante observar os deslocamentos aparentes do objeto, conforme o orifício é deslocado para cima ou para baixo, para a direita ou para a esquerda.

No caso de míopes, o orifício pode ser usado para observar objetos distantes, sem usar óculos.



Figura 4. Formação de sombra de um alfinete na retina.

## III. Sombra na retina

Um outro efeito interessante é a formação de sombra na retina quando um pequeno objeto é colocado junto à córnea<sup>3</sup>. Para se formar uma sombra bem definida, pode-se usar uma fonte luminosa puntiforme, bem próxima ao olho, como mostrado na Fig. 4. Nestas condições, o feixe luminoso que atinge a retina é razo-

avelmente colimado e largo, permitindo projetar uma sombra definida na retina.

A fonte puntiforme pode ser realizada com uma fonte luminosa extensa e um orifício, como mostrado na Fig. 4. Se o orifício está a cerca de 5cm do olho, a "imagem" do orifício na retina aparece como um disco luminoso. Quando o objeto é colocado junto à córnea, a sombra projetada na retina constitui uma espécie de imagem não invertida do objeto. Como o cérebro processa imagens invertidas, o observador enxerga o perfil do objeto, invertido e em "branco e preto".

#### Experimento

A experiência pode ser feita usando o orifício usado antes e um alfinete. Olhando para uma fonte de luz extensa, tal como uma luminária no teto ou uma lâmpada próxima, através do orifício a cerca de 5 cm do olho, observa-se um disco luminoso. Quando o alfinete é colocado verticalmente bem próximo ao olho, com a cabeça entre o orifício e pupila, deve surgir a "estranha" imagem invertida do alfinete, no disco luminoso.

#### Referências

- B. N. Begunov y N. P.Zakaznov, 1976, Teoria de Sistemas Opticos, Editorial MIR, Moscú.
- D. Halliday e R. Resnick, 1994, Física 4, 4a Ed., Livros Técnicos e Científicos Editora S/A, Rio de Janeiro.
- 3. E. Hecht and M. Zajac, 1987, *Optics*, 2nd Edition, Addison-Wesley Publishing Company.
- 4. Y. I. Perelmán, 1975, Problemas y experimentos recreativos, Editorial MIR, Moscú.
- P. A. Tipler, 1995, Física-Ótica e Física Moderna
  Vol.4, 3a Ed., Editora Guanabara Koogan, Rio de Janeiro.

<sup>&</sup>lt;sup>3</sup>Esta experiência é descrita na Referência 4.