Page 1 of 2

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

05-006891

(43) Date of publication of application: 14.01.1993

(51) Int. CI.

H01L 21/3205 H01L 21/90

(21) Application number: 03-155022

(71) Applicant: FUJITSU LTD

(22) Date of filing:

27. 06. 1991

(72) Inventor: KARASAWA AKITAKA

(54) MANUFACTURE OF SEMICONDUCTOR DEVICE

(57) Abstract:

PURPOSE: To improve coverage ratio of wiring metal even if an aspect ratio of a hole is large by previously forming a stopper film at a position for surrounding a hole near a bottom of a hole to be formed and forming a sidewall on its inner wall.

CONSTITUTION: A polysilicon film 2 is deposited on a silicon substrate 1, and patterned to form a polysilicon film pattern (stopper film). Then, after an SiO2 film is deposited, it is coated with SOG to flatten the surface. A resist pattern is formed on an insulator layer 4, and with it as a mask it is isotropically etched until it reaches the surface of a stopper 2. Then, the region of the layer 4 to be surrounded by the stopper 2 is reactive ion etched until the surface of the substrate 1 is exposed to form a sidewall 3 on the inner wall of the stopper 2. Thus, generation of a wiring metal thin layer on a tapered surface is

prevented, and wiring metal 5 deposited in the hole 6 becomes substantially uniform to improve its coverage ratio.

LEGAL STATUS

[Date of request for examination] [Date of sending the examiner's decision of rejection] [Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for application]

Searching PAJ Page 2 of 2

[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998, 2003 Japan Patent Office

(19) 日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-6891

(43)公開日 平成5年(1993)1月14日

(51) Int.Cl.5

識別記号

FΙ

技術表示箇所

H 0 1 L 21/3205

21/90

A 7353-4M

7353-4M

庁内整理番号

H01L 21/88

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号

特願平3-155022

(71)出願人 000005223

富士通株式会社

(22)出顧日

平成3年(1991)6月27日

神奈川県川崎市中原区上小田中1015番地

(72)発明者 柄沢 章孝

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(74)代理人 弁理士 井桁 貞一

(54) 【発明の名称】 半導体装置の製造方法

(57)【要約】

本発明は、スルーホール或いはコンタクト ホールにおける配線メタルのカパレージ率の改善に関 し、ホールのアスペクト比が大きい場合においても配線 メタルのカパレージ率を改善することが可能な方法を提 供することを目的とする。

【構成】 形成されるホールの底部近傍の, 該ホールを 囲む位置に、予めストッパー膜を形成する工程と、該ス トッパー膜の内壁にサイドウォールを形成する工程とよ り構成する。

本発明の原理説明図

1

【特許請求の範囲】

【請求項1】 基板上に第1の開口部を有する第1の絶 緑膜を形成する工程と, 該第1の開口部を含む第1の絶 緑膜上に、第1の絶縁膜上とは異なる第2の絶縁膜を形 成し、表面を平坦化する工程と、前記第2の絶縁膜上 に、前記第1の開口部に対応する位置に第2の開口部を 有するマスク層を形成する工程と、該マスク層をマスク として, 前配第2の絶縁膜を等方性エッチングし, 前配 第1の絶縁膜表面までエッチングする工程と、該マスク 層をマスクとして、前記第1の開口部内に埋め込まれて 10 善することが可能な方法を提供することを目的とする。 いる第2の絶縁膜層を異方性エッチングし、第1の絶縁 膜層の側壁にサイドウォールを形成する工程と、前配マ スク層を除去した後、前記工程により形成されたコンタ クトホール上に配線層を形成する工程を有することを特 徴とする半導体装置の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、スルーホール或いはコ ンタクトホールにおける配線メタルのカパレージ率の改 善に関する。

【0002】近年における半導体デバイスの微細化、高 集積化の傾向に伴い、スルーホール或いはコンタクトホ ール(以下単にホールと呼ぶ)は微細化し、そのために メタル配線は高い信頼性が要求されるようになってきて いる。そのためにホールにおいては、配線メタルの高い カパレージ率が必要不可欠になっている。

[0003]

【従来の技術】通常、ホールにおけるカパレージ率は、 ホール内の側壁に堆積するメタル層の厚さ(b) とホール 外の周辺表面に堆積するメタル層の厚さ(a) の比(b/a) で表し、1より小さい値である。若し、ホール内の側壁 に堆積するメタル層の厚さが一様でない場合には、b と して最小の厚さをとる。

【0004】従来、カバレージ率を改善する(1に近づけ ること)するためには、ホールの側壁にテーパー部を設 け、擂鉢型ホールを形成することにより行っていた。図 4(a)は、従来のホールに設けられたメタル配線の一例を 模式的に示す図である。図において21は基板、24は絶縁 膜層、25は配線メタル、26はホールの基板表面における 関口部である。図において、先ず絶縁層24上に、開口部 40 26を有するマスク層(図示せず)を形成した後、該マス ク層を介して絶録層24を途中まで等方性エッチングした 後、同じマスクを用いて残りの絶縁層24を異方性エッチ ングしてコンタクトホールを形成する。次いでコンタク トホールの底面、側面並びに擂鉢部のテーパー面に配線 メタルを堆積する。

[0 0 0 5]

【発明が解決しようとする課題】しかし、近時LSI、YLS 1 においては、ホール口径の微細化のみならず、アスペ クト比(ホールの深さと口径の比) も大きくなってきて 50 を全面に塗布して表面を平坦化する。 即ち,ポリS1膜

いる。アスペクト比が大きい場合には、図4(b)に示され るように, ホール底部のコーナに配線メタルの薄層部が 生じ、その結果テーパー面上においても配線メタルの薄 層部が生じ易く,配線の接触不良。 更には断線を招くこ

とがある。。そのため、これまでのように単に、ホール の側壁にテーパー部を設ける方法によってカバレージ率 を改善することは殆ど困難である。

【0006】そこで、本発明は、ホールのアスペクト比 が大きい場合においても配線メタルのカパレージ率を改

【課題を解決するための手段】上記の問題は、形成され るホールの底部近傍の該ホールを囲む位置に、予めスト ッパー膜を形成する工程と、該ストッパーの内壁にサイ ドウォールを形成する工程とを有する配線メタル形成方 法によって解決される。

【0008】図1は本発明の原理説明図である。図にお いて2 は半導体基板1 の上に設けられたストッパー。 3 はストッパー2 の内壁に設けられたサイドウォール, 4 は該ストッパー2 を覆って、ホール6 用の開口を有する 絶縁体膜, 5 はホール6 を覆って形成される配線メタル である。

[0009]

[0007]

【作用】図1 において、ストッパー膜2 が存在すること によって絶縁膜4 の等方性エッチングのみで、ホール6 と同心的にテーパー面を有する擂鉢部を形成することが できる。更に、又、ストッパー膜2の内壁にサイドウォ ールを形成することによりSi基板1に垂直なストッパー 膜2 の側壁を被覆し、ホール6 の底周辺部の形状を滑ら かにすることで、ホール底部コーナにおける配線メタル 薄層部の発生を防止する。 その結果, テーパ面上におけ る配線メタル薄層部の発生も防止され、配線メタルのホ ール6 への堆積は略一様になり、カパーレッジ率が向上 する.

[0010]

【実施例】本発明の実施例について、図を参照しながら 以下に説明する。図2,3は本実施例である,通常のMOSF ET製造工程の中において、ホールのメタル配線製造にお ける各ステップを説明する図である。

【0011】先ず、図2(a)に示されるように、シリコン (SI)基板1 に、厚さ100 乃至200mmのポリSi膜2を堆積 し、形成せんとするサイズが約1 μm のホール6 の位置 に対応するパターニングを行なって、ポリSi膜パターン 2 を形成する。このポリSi膜パターン2 が後にエッチン グのストッパー膜2 となる。

【0012】続いて、図2(b)に示されるように、Si基板 1 表面の露出した部分を埋め、又,ポリSi膜パターン2 を覆って全面に、厚さ約100 乃至200mm の二酸化シリコ ン(SiO₂)膜4'を堆積した後,スピンオングラス(SOG)4''

.7

パターン2 は二酸化シリコン(S10₄)膜4'とスピンオングラス(S0G)4''より成る,厚さ約500nm の絶縁体層4 により埋め込まれた形になる。尚,二酸化シリコン(S10₄)の代わりに,燐珪酸ガラス(PSG) を用いることも可能である。

【0013】次に、図2(c)に示されるように、絶縁体層4の上にレジスト膜を形成し、ポリSi膜パターン2の位置に対応するパターニングを行って、レジストパターン7を形成する。

【0014】次に、図3(d)に示されるように、レジスト 10 パターン? をマスクにして、絶縁層4 に対し、ストッパー2 の表面に達するまで等方性エッチングを行う。エッチングには、弗酸溶液のような、ストッパー2 のポリSi 膜と絶縁層4 との選択比を有する溶液によるウェットエッチングが用いられる。

【0015】次いで、図3(e)に示されるように、レジス 2 トパターン7 をマスクにして、ストッパー2 で囲まれる 3 絶縁体層4 領域に対して、Si基板1 表面が露出するまで 反応性イオンエッチング(RIE) を行う。RIE にはフレオ 4'ン系のガスのような、ストッパー2 のポリSi膜と絶縁層 20 4'4 との選択比を有するガスが用いられる。 5 5

【0016】この工程において、ストッパー2 の内壁にはサイドウォール3 が形成される。最後に、図3(f)に示

【図1】

本発明の原理説明図

されるように、形成されたホール6 にアルミニウム(Al) のような配線メタルが堆積されてホールに対する配線が 工程が完了する。

[0017]

【発明の効果】本発明によって、アスペクト比の大きいホールに対する配線メタルのカパレッジ率は、従来よりも格段に改善され、その結果、LSI、VLSI 製造の歩留まり、及び信頼性の著しい向上が可能になる。

【図面の簡単な説明】

7 【図1】 本発明の原理説明図

【図2】 本発明の実施例を示す図 (その1)

【図3】 本発明の実施例を示す図(その2)

【図4】 従来例の説明図

【符号の説明】

1, 21 SI基板

2 ストッパー膜

3 サイドウォール

4' SiO₂ 膜

20 4'' SOG 膜

(0)

5,25 配線メタル

6,26 コンタクトホール閉口部

7 レジストパターン

[図2]

本発明の実施例を示す図(その1)

(Q)

【図3】

木発明の実施例を示す図(その2)

【図4】

従来例の説明図

