BATTLE OF NEIGHBORHOODS-TORONTO

Introduction:

Toronto is the capital of Ontario and is the most populous city in Canada. Toronto is the most ethically diverse city in Canada thereby it has unique food culture. Toronto's landscape is distinctly different than the rest of the country. There are various restaurants of local cuisine and many restaurants of various international cuisines such as Italian, Indian, Chinese, Mexican, Thai etc. According to the "The Canadian Restaurant Industry Landscape" there are more European menu type restaurants in Toronto than in the rest of Canada, making up 5.3 percent of the Toronto landscape, compared to 3.2 nationwide. According to the study 9.6 percent restaurants in Toronto are Asian, whereas Asian restaurants only account for 6.6 percent nationwide. One of the USA's favorite menu type 'hamburger,' does not have as strong of a presence in Canada and is even less predominant is Toronto. As a nation, approximately 6.1 percent of Canadian restaurants serve a 'hamburger' menu type. So we can say Toronto is the best place for foodies.

Problem description:

Let's say I travel to different places in Toronto and it is very difficult to me to identify the best restaurants in that area. In these situations, we need to find the right place to eat with reasonable cost. So the possible analysis can be done on these:

- 1. Which is the most nearest restaurant?
- 2. Which is the most visited restaurant?
- 3. What is the most famous cuisine in that area?

So in this project I will be analyzing the Toronto data to find the solutions of the above problem statements.

Target Audience:

A visitor who wants to find the best restaurant nearby

Data:

Requirements:

The required data for this project is the Toronto dataset and the co-ordinates of latitudes and longitudes. For the given scenarios we need the restaurants data set of Toronto and the location of those restaurants. Similarly, we need the details of the restaurant such as what type of food it serves such as famous cuisine etc,

Data acquisition:

We can collect the data from https://geo.nyu.edu/catalog/nyu 2451 34572. This dataset has neighborhood which has a total of 5 boroughs and 306 neighborhoods. We can get the location such as longitude and latitude coordinates of the restaurants by using "geopy library". After removing unwanted data the dataset looks like this:

	Postal Code	Borough	Neighborhood	Latitude	Longituc
0	МЗА	North York	Parkwoods	43.753259	-79.32965
1	M4A	North York	Victoria Village	43.725882	-79.31557
2	M5A	Downtown Toronto	Regent Park, Harbourfront	43.654260	-79.36063
3	M6A	North York	Lawrence Manor, Lawrence Heights	43.718518	-79.46476
4	M7A	Downtown Toronto	Queen's Park, Ontario Provincial Government	43.662301	-79.38949
5	М9А	Etobicoke	Islington Avenue	43.667856	-79.53224
6	6 M1B Scarb	Scarborough	Malvern, Rouge	43.806686	-79.19435
7	МЗВ	North York	Don Mills	43.745906	-79.35218
8	M4B	East York	Parkview Hill, Woodbine Gardens	43.706397	-79.30993
9	M5B	Downtown Toronto	Garden District, Ryerson	43.657162	-79.37893
10	M6B	North York	Glencairn	43.709577	-79.44507
11	M9B	Etobicoke	West Deane Park, Princess Gardens, Martin Grov	43.650943	-79.55472
12	M1C	Scarborough	Rouge Hill, Port Union, Highland Creek	43.784535	-79.16049
13	МЗС	North York	Don Mills	43.725900	-79.34092

We should append the two datasets such as the Toronto dataset and the location dataset which we got by using geopy library. So this dataset contains the Postal Code, Borough, Neighborhood and geographical coordinates.

Foursquare API:

We use Foursquare API to fetch the nearest venue so that we can use it to form a cluster. In this project I will be using Foursquare API to find the venues within 500 meters radius.

Ven Catego	Venue Longitude	Venue Latitude	Venue	Neighborhood Longitude	Neighborhood Latitude	Neighborhood	:
Bakı	-79.362017	43.653447	Roselle Desserts	-79.360636	43.65426	Regent Park, Harbourfront	0
Coffee Sh	-79.361809	43.653559	Tandem Coffee	-79.360636	43.65426	Regent Park, Harbourfront	1
Breakfast S _I	-79.361149	43.653947	Morning Glory Cafe	-79.360636	43.65426	Regent Park, Harbourfront	2
Distributi Cen	-79.358008	43.653249	Cooper Koo Family YMCA	-79.360636	43.65426	Regent Park, Harbourfront	3
S	-79.359874	43.654735	Body Blitz Spa East	-79.360636	43.65426	Regent Park, Harbourfront	4

Methodology:

Exploratory analysis:

For this analysis we need to scrap the data from the following link https://en.wikipedia.org/wiki/List of postal codes of Canada: M .

The data which is acquired consists of the neighborhoods, boroughs of the city Toronto. I am using Beautiful Soup to get the data from the given Wikipedia link. The acquired dataset is in the following form:

	Postal Code	Borough	Neighborhood		
0	M1A	Not assigned	NaN		
1	M2A	Not assigned	NaN		
2	МЗА	North York	Parkwoods		
3	M4A	North York	Victoria Village		
4	M5A	Downtown Toronto	Regent Park, Harbourfront		

Since we are interested in the data whose Neighborhood is assigned we should vomit the records whose Neighborhood is not defined.

Then the dataset looks like this:

	Postal Code	Borough	Neighborhood
0	МЗА	North York	Parkwoods
1	M4A	North York	Victoria Village
2	M5A	Downtown Toronto	Regent Park, Harbourfront
3	M6A	North York	Lawrence Manor, Lawrence Heights
4	M7A	Downtown Toronto	Queen's Park, Ontario Provincial Government

After this we need to append the respective latitude and longitude coordinates to to the neighborhoods. This can be achieved through "geopy library"

Then the resulting dataset looks like this:

	Postal Code	Borough	Neighborhood	Latitude	Longitude
0	M5A	Downtown Toronto	Regent Park, Harbourfront	43.654260	-79.360636
1	M7A	Downtown Toronto	Queen's Park, Ontario Provincial Government	43.662301	-79.389494
2	M5B	Downtown Toronto	Garden District, Ryerson	43.657162	-79.378937
3	M5C	Downtown Toronto	St. James Town	43.651494	-79.375418
4	M4E	East Toronto	The Beaches	43.676357	-79.293031

Now using Folium the data in the dataframe can be visualized :

Inferential Analysis:

By using K-means clustering we can divide the area into 'n' number of clusters. Here I have taken n=5.

Result:

By using Foursquare we can fetch the list of venues in each cluster.

The list of most common venues in the cluster 0 are as follows:

	Borough	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
	Downtown Toronto	0	Coffee Shop	Bakery	Pub	Park	Breakfast Spot	Restaurant	Café	Theater	Yoga Studio	Mexican Restaurant
	Downtown Toronto	0	Coffee Shop	Sushi Restaurant	Gym	Diner	Park	Mexican Restaurant	Japanese Restaurant	Italian Restaurant	Hobby Shop	Wings Joint
:	Downtown Toronto	0	Clothing Store	Coffee Shop	Middle Eastern Restaurant	Restaurant	Bubble Tea Shop	Café	Japanese Restaurant	Italian Restaurant	Cosmetics Shop	Bookstore
;	Downtown Toronto	0	Coffee Shop	Café	Cocktail Bar	Gastropub	American Restaurant	Gym	Beer Bar	Italian Restaurant	Lingerie Store	Department Store
	Downtown Toronto	0	Coffee Shop	Cocktail Bar	Bakery	Cheese Shop	Café	Restaurant	Beer Bar	Seafood Restaurant	French Restaurant	Pub

Since we are more interested in finding a restaurant, the most visited in Downtown Toronto is Sushi Restaurant. So the most famous cuisine in that area is "Japanese".

We have several coffee shops nearby in that area.

Discussion:

Before concluding the most famous venue nearby user ratings can also be included for the better user experience.

Conclusion:

The most visited restaurant near by is "Sushi restaurant" which is Japanese Cuisine.