W2025: VO104.504, UE104.694

Diskrete Mathematik & Geometrie

Aufgabenblatt 1 (15 Okt 2025: EiMA/Logik, Funktionen)

Aufgabe 1:a. Zeigen Sie, dass für Aussagen A, B und C

$$((A \lor B) \lor C) \Leftrightarrow (A \lor (B \lor C)) \text{ (Assoziativität)}$$

und folgern Sie (ohne Benutzung einer Wahrheitstafel), dass

$$(A \Rightarrow (B \lor C)) \Leftrightarrow (A \land \neg B) \Rightarrow C).$$

<u>Aufgabe 1:b.</u> Entscheiden Sie ob folgende Aussagen wahr oder falsch sind, wenn A, B, \dots Aussagen bezeichnen (die wahr oder falsch sein können):

- (i) $A \vee (\neg A)$;
- (ii) $(\neg B \land (A \Rightarrow B)) \Rightarrow A$;
- (iii) Assoziativität: $A \wedge (B \wedge C) \Leftrightarrow (A \wedge B) \wedge C$;
- (iv) $C \vee (\neg \neg C \wedge A \wedge (B \vee C)) \Leftrightarrow \neg \neg C \wedge (C \vee (A \wedge B)).$

<u>Aufgabe 1:c.</u> Sind eine Implikation $A \Rightarrow B$ und ihre Prämisse A wahr, so folgt das die Konklusion B wahr ist; kann man etwas über den Wahrheitsgehalt der Prämisse A aussagen, wenn Implikation und Konklusion wahr sind? Man betrachte die folgenden zwei Beispiele:

- (i) A bezeichne die Aussage $\forall x, y \in \mathbb{R} : x, y > 0 \Rightarrow \frac{x+y}{2} \geq \sqrt{xy}$ (Ungleichung von arithmetischem und geometrischem Mittel).
 - (a) Entscheiden Sie, ob diese Aussage wahr oder falsch ist und begründen Sie Ihre Entscheidung.
 - (b) Entscheiden Sie, ob der folgende "Beweis" der Aussage A richtig oder falsch ist; lokalisieren Sie im zweiten Fall den/die Fehler und entscheiden Sie (mit Begründung), ob man den Beweis so modifizieren kann, dass er richtig wird: "Wir multiplizieren die Ungleichung $\frac{x+y}{2} \geq \sqrt{xy}$ mit 2, also folgt $x+y \geq 2\sqrt{xy}$. Jetzt bringen wir $2\sqrt{xy}$ auf die linke Seite der Ungleichung, also folgt $x+y-2\sqrt{xy} \geq 0$. Nun formen wir die linke Seite um und erhalten $(\sqrt{x}-\sqrt{y})^2 \geq 0$. Da das Quadrat einer reellen Zahl stets nichtnegativ ist, ist diese Ungleichung wahr, und wir schliessen daraus, dass die Aussage A wahr ist."
- (ii) A bezeichne die Aussage $\forall x > 0 : x + 1 \le 2x$.
 - (a) Entscheiden Sie, ob diese Aussage wahr oder falsch ist und begründen Sie Ihre Entscheidung.
 - (b) Entscheiden Sie, ob der folgende "Beweis" der Aussage A richtig oder falsch ist; lokalisieren Sie im zweiten Fall den/die Fehler und entscheiden Sie (mit Begründung), ob man den Beweis so modifizieren kann, dass er richtig wird: "Wir multiplizieren die Ungleichung $x+1 \le 2x$ mit x-1, also folgt $x^2-1 \le 2x^2-2x$. Jetzt bringen wir alle Terme von der linken auf die rechte Seite, dadurch erhalten wir $0 \le x^2-2x+1$. Nun formen wir die rechte Seite um, und erhalten $0 \le (x-1)^2$. Da das Quadrat einer reellen Zahl stets nichtnegativ ist, ist diese Ungleichung wahr, und wir schliessen daraus, dass die Aussage A wahr ist."

<u>Aufgabe 1:d.</u> Sei $f: X \to Y$ eine Funktion, $A \subseteq X$, und $B := \{f(a) : a \in A\}$. Welche der folgenden Aussagen müssen dann gelten?

- (i) $\forall x \in X : (x \in A \Rightarrow f(x) \in B)$.
- (ii) $\forall x \in X : (f(x) \in B \Rightarrow x \in A).$
- (iii) $A \subseteq f^{-1}(B)$.
- (iv) $f^{-1}(B) \subseteq A$.

<u>Aufgabe 1:e</u>. Seien X und Y Mengen und $f:X\to Y$ und $g:Y\to X$ Abbildungen. Zeigen Sie:

- (i) Ist g Linksinverse von f, d.h., $g \circ f = \mathrm{id}_X$, so ist f injektiv;
- (ii) Ist g Rechtsinverse von f, d.h., $f \circ g = \mathrm{id}_Y$, so ist f surjektiv.

Aufgabe 1:f. Entscheiden Sie ob folgende Aussagen wahr oder falsch sind:

- (i) Eine Inverse einer Abbildung ist gleichzeitig Rechts- und Linksinverse.
- (ii) Eine Abbildung kann mehrere Linksinverse haben.
- (iii) Jede bijektive Abbildung besitzt eine Inverse.
- (iv) Die Inverse einer Abbildung ist immer eindeutig.

W2025: VO104.504, UE104.694

Diskrete Mathematik & Geometrie

Aufgabenblatt 2 (22 Okt 2025: Gruppen, Körper)

<u>Aufgabe 2:a.</u> Bestimmen Sie die Anzahl der Elemente von S_n für $n \in \mathbb{N}^{\times}$. Geben Sie für n = 1, 2, 3 die Elemente von S_n und ihre Kompositionen an.

Aufgabe 2:b. Entscheiden Sie, ob diese Aussagen wahr oder falsch sind:

- (i) Jede Gruppe hat eine Umkehrabbildung.
- (ii) Eine Permutationsgruppe ist nie abelsch.
- (iii) S_3 ist die Symmetriegruppe eines gleichseitigen Dreiecks.
- (iv) S_4 kann als Symmetriegruppe eines Quadrats realisiert werden.

<u>Aufgabe 2:c.</u> Für $m \in \mathbb{N} \setminus \{0,1\}$ bezeichne $\mathbb{Z}_m = \mathbb{Z}/\sim$ die Menge der Restklassen $x' = \{x, x \pm m, x \pm 2m, \ldots\}$ der Äquivalenzrelation

$$x \sim y : \Leftrightarrow \exists k \in \mathbb{Z} : y = k m + x;$$

weiters definieren wir Addition und Multiplikation auf \mathbb{Z}_m durch

$$x' + y' := (x + y)'$$
 und $x' \cdot y' := (x \cdot y)'$.

Entscheiden Sie, ob diese Aussagen wahr oder falsch sind:

- (i) Die so definierte Multiplikation ist wohldefiniert.
- (ii) Für jedes m ist $(\mathbb{Z}_m, +)$ eine abelsche Gruppe.
- (iii) Für jedes m ist $(\mathbb{Z}_m^{\times}, \cdot)$ eine abelsche Gruppe (wobei $\mathbb{Z}_m^{\times} := \mathbb{Z}_m \setminus \{0'\})$.
- (iv) Für jedes m sind die so definierten "Restklassenoperationen" verträglich, d.h., sie erfüllen die Distributivgesetze

$$\forall x', y', z' \in \mathbb{Z}_m : \begin{cases} (x' + y') \cdot z' = x' \cdot z' + y' \cdot z'; \\ x' \cdot (y' + z') = x' \cdot y' + x' \cdot z'. \end{cases}$$

<u>Aufgabe 2:d.</u> Zeigen Sie: \mathbb{Z}_p ($p \in \mathbb{N}$ Primzahl) sind Körper. Stellen Sie die Additions- und Multiplikationstabellen \mathbb{Z}_2 und von \mathbb{Z}_5 auf.

[Achtung: Wählen Sie verschiedene Bezeichnungen für Elemente von \mathbb{Z} und von $\mathbb{Z}_p!$]

<u>Aufgabe 2:e</u>. Sei $K = \{0,1\}$ versehen mit der Addition von \mathbb{Z}_2 und der Multiplikation

$$\cdot: K \times K \to K, \ (x,y) \mapsto x \cdot y := y.$$

Zeigen Sie: (K, +) und (K^{\times}, \cdot) sind abelsche Gruppen, aber nur eines der beiden Distributivgesetze gilt. Entscheiden Sie, ob $(K, +, \cdot)$ ein Körper ist (vgl Arbeitsmaterial 100:5(48ff)).

Aufgabe 2:f. Entscheiden Sie, ob diese Aussagen wahr oder falsch sind:

- (i) Jeder Körper hat unendlich viele Elemente.
- (ii) In einem Körper ist stets $(-1) \cdot x = -x$.
- (iii) Gilt 1 = -1 in einem Körper K, so ist Char(K) = 2.
- (iv) Es gibt einen Körper K mit Char(K) = 1.