Zusammenfassung Quantum Computing

Henrik Tscherny

7. September 2023

Inhaltsverzeichnis

1	Basi	c	2			
	1.1	QBits	2			
	1.2	Complex Numbers	2			
	1.3	Matrices	2			
2	Gate	es	3			
	2.1	Phase Kickback	4			
	2.2	Bloch Sphere	4			
	2.3	No-Cloning-Theorem	4			
	2.4	Quantum Teleportation	5			
3	Mea	surement	6			
	3.1	Projective Measurement	6			
4	Deu	tsch Algorithm	7			
5	Deu	tsch-Jozsa Algorithm	8			
6	Grovers Algorithm 1					
7	Simons Algorithms 1					
8	Shor	rs Algorithm	12			
		RSA	13			
9	Adia	abatic Quantum Computing	14			
10	Erro	or Correction	15			

11 Quantum Complexity Theory1711.1 Relations between Classes18

1 Basic

1.1 QBits

- state of a single QB: $|s\rangle = a_0|0\rangle + a_1|1\rangle = a_0\begin{bmatrix}1\\0\end{bmatrix} + a_1\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}a_0\\a_1\end{bmatrix}$
- state of two QBs: $|s\rangle = a_0|00\rangle + a_1|01\rangle + a_2|10\rangle + a_3|11\rangle$
- basis vectors: $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- $P(|0\rangle) = |a_0|^2$, $P(|1\rangle) = |a_1|^2$
- $\sum_{i=0}^{2^{n}-1} |a_{i}| = 1 \text{ (for n-qubit system)}$
- tensor product: $|00\rangle = |0\rangle \otimes |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
- **entanglement**: non-serperable state (can not be written as the product of qubits, the qubits are statistical dependent) Example: $|\psi\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$

1.2 Complex Numbers

- z = a + ib= $r \cdot e^{i\varphi}$ = $r \cdot (cos\varphi + i \cdot sin\varphi)$ with $a, b \in \mathbb{R}$ and $i^2 = -1$
- conjugate: $\bar{z} = a bi$

1.3 **Matrices**

• **Transpose**: A^{T} swap rows and cols

• Conjugate: A^* each entry is the conjugate

• **Adjunct**: A^{\dagger} transpose + conjugate

• Unitary: $UU^{\dagger} = UU^{-1} = I = U^{\dagger}U$ adjunct is also the inverse

• Note: every unitary operator can be written as its eigenbases

2 **Gates**

• every gate is reversible (as gates are unitary matrices)

• Hardamard Gate:

$$-H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$-H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

- applying H splits the probabilities in $\frac{1}{2}$ for each (simulate coinflip)

- H is self inverse as it is unitary

- recursive definition for Hardamard:
$$H^{\otimes n} = H \otimes H^{\otimes n-1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes H^{\otimes n-1} = \frac{1}{\sqrt{2}} \begin{bmatrix} H^{\otimes n-1} & H^{\otimes n-1} \\ H^{\otimes n-1} & -H^{\otimes n-1} \end{bmatrix}$$
$$H^{\otimes 1} = H$$

• Pauli Gates:

- Pauli-X: Swaps
$$|0\rangle$$
 and $|1\rangle$, $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

- Pauli-Y: Swaps amplitudes, (adds phase?), negates amplitudes of $|1\rangle$ $Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$

- Pauli-Z: Negates amplitudes of
$$|1\rangle$$
 $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

3

• CNot:

- negates the target if the controller is active

permutation matrix

$$- CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

2.1 Phase Kickback

• U: one qubit unitary gate

• $|\phi\rangle$: some base state

• applying U to $|\psi\rangle$ yields $e^{i\phi}|\psi\rangle$

• the global phase factor of a quantum state is not measurable (symmetry)

• using **ancilla** qubits the global phase can be turned intro a relative phase which is measurable

2.2 Bloch Sphere

• a Bloch Sphere can be used to visualize the state of a single qubit

2.3 No-Cloning-Theorem

• it is impossible to create an identical copy of an arbitrary quantum state

• the depicted setup does not exist:

$$|\psi\rangle$$
 U $|\psi\rangle$ $|\psi\rangle$

there exists no unitary transformation that copies $|\psi\rangle$

- Proof:
 - Assume towards contradiction it is possible to clone $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$
 - If $\alpha = 1$, $\beta = 0$ then $U|00\rangle = |00\rangle$
 - If $\alpha = 0$, $\beta = 1$ then $U|10\rangle = |11\rangle$
 - more general: $U(|\psi\rangle|0\rangle) = U((\alpha|0\rangle + \beta|1\rangle)|0\rangle) = \alpha|00\rangle + \beta|11\rangle$
 - however we need to obtain: $|\psi\psi\rangle = (\alpha|0\rangle + \beta|1\rangle) \otimes (\alpha|0\rangle + \beta|1\rangle) = \alpha^2|00\rangle + \alpha\beta|01\rangle + \alpha\beta|10\rangle + \beta^2|11\rangle$
 - however $\alpha|00\rangle+\beta|11\rangle=\alpha^2|00\rangle+\alpha\beta|01\rangle+\alpha\beta|10\rangle+\beta^2|11\rangle$ is not possible
 - Contradiction!

2.4 Quantum Teleportation

- not copying a quantum state but transferring it
- use quantum entanglement and classical communication
- setup:
 - A, B generate an entangled pair of qubits (Bell state) $\beta_{00} = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$
 - A, B separate but take their entangled bits with them
 - A create a quantum state $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ which shall be send to B

_

- Input state: $|\psi_0\rangle = |\psi\rangle|\beta_{00}\rangle = \frac{1}{\sqrt{2}}(\alpha|0\rangle(|00\rangle + |11\rangle) + \beta|1\rangle(|00\rangle + |11\rangle)$
- Perform CNot: $\frac{1}{\sqrt{2}} (\alpha | 0 \rangle (|00\rangle + |11\rangle) + \beta | 1 \rangle (|10\rangle + |01\rangle))$
- Apply Hadamard: $\frac{1}{2} \left(\alpha(|0\rangle + |1\rangle)(|00\rangle + |11\rangle) + \beta(|0\rangle |1\rangle)(|10\rangle + |01\rangle) \right)$
- A now measures the first to qubits and can infer the state of Bs bits

*
$$|00\rangle \rightarrow \alpha|0\rangle + \beta|1\rangle$$

*
$$|01\rangle \rightarrow \alpha |1\rangle + \beta |0\rangle$$

*
$$|10\rangle \rightarrow \alpha|0\rangle - \beta|1\rangle$$

*
$$|11\rangle \rightarrow \alpha |1\rangle - \beta |0\rangle$$

depending on the outcome A gives B a classical message to manipulate
 Bs bits accordingly

3 Measurement

- Measurements are described by a set of operators $\{M_m\}$ with $M_m^{\dagger}M_m = I$ the index m refers to the possible measurement outcomes
- $P(m) = \langle \psi | M^{\dagger} M | \psi \rangle$
- ullet after measurement the system is in state: $\dfrac{M_{\scriptscriptstyle m} |\psi\rangle}{\sqrt{\langle\psi|M^\dagger M|\psi\rangle}}$
- Measurement collapses the state to a basis vector with probabilities of the square of the amplitudes

3.1 Projective Measurement

• described by an **Observable** M, which is a Hermitian operator

- the possible outcomes of the measurement correspond to the eigenvalues of the observable
- getting result m when measuring $|\psi\rangle$ with probability $P(m) = \langle \psi | P_m | \psi \rangle$
- expected value: $E(M) = \sum_{m} m \cdot P(m)$
- given that outcome *m* occurred the state is now: $\frac{P_m|\psi\rangle}{\sqrt{P(m)}}$

Example: Measuring in computational base

•
$$M_0 = |0\rangle\langle 0| = \begin{bmatrix} 1\\0 \end{bmatrix} \begin{bmatrix} 1&0 \end{bmatrix} = \begin{bmatrix} 1&0\\0&0 \end{bmatrix}$$

•
$$M_1 = |1\rangle\langle 1| = \begin{bmatrix} 0\\1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0\\0 & 1 \end{bmatrix}$$

• Be
$$|\psi\rangle = a|0\rangle + b|1\rangle$$

$$-\ P(0) = \langle \psi | M_0^\dagger M_0 | \psi \rangle = \langle \psi | P_0 | \psi \rangle = \begin{bmatrix} a^* & b^* \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = |a|^2$$

$$-P(1) = \langle \psi | M_1^{\dagger} M_1 | \psi \rangle = \langle \psi | P_1 | \psi \rangle = \begin{bmatrix} a^* & b^* \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = |b|^2$$

$$\bullet \ \ M = Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

(measuring the computational base is like measuring the observable Pauli-Z)

4 Deutsch Algorithm

- function $f: \{0,1\} \rightarrow \{0,1\}$ that is either balanced or constant
- classical: compute f on every input
- quantum: one call of f is needed
- quantum oracle:

$$- U_f : |x\rangle|y\rangle \xrightarrow{U_f} |x\rangle|y \oplus f(x)\rangle$$

- $|x\rangle$ input to function
- $|y\rangle$ qubit to write function result to

- $-|y \oplus f(x)\rangle$, the XOR ensures that the oracle is reversible (as each image has a unique preimage)
- initializing $y = |0\rangle$ we only get the function value $|x\rangle |f(x)\rangle$ as $0 \oplus x =$ x
- initializing $y = |-\rangle$ we get phase kickback to $|x\rangle|-\rangle \xrightarrow{U_f} (-1)^{f(x)}|x\rangle|-\rangle$ (a phase is applied to the input qubit)

$$\begin{cases} |x\rangle|-\rangle & f(x) = 0\\ -|x\rangle|-\rangle & f(x) = 1 \end{cases}$$

- Note: this is called a phase oracle $(U_f|x\rangle|-\rangle = (-1)^{f(x)}|x\rangle|-\rangle)$

$$-|\psi_0\rangle = |00\rangle$$

$$-|\psi_1\rangle = |01\rangle$$

$$- |\psi_2\rangle = |+-\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle |-\rangle + |1\rangle |-\rangle)$$

$$\begin{array}{l} -\ |\psi_3\rangle = U_f \frac{1}{\sqrt{2}}(|0\rangle|-\rangle + |1\rangle|-\rangle) = \frac{1}{\sqrt{2}}(U_f|0\rangle|-\rangle + U_f|1\rangle|-\rangle) \overset{\text{phase oracle}}{=} \\ \frac{1}{\sqrt{2}}((-1)^{f(0)}|0\rangle|-\rangle + (-1)^{f(1)}|1\rangle|-\rangle) \\ (|-\rangle \text{ can be omitted as its not needed)} \end{array}$$

- case
$$f(0) = f(1)$$
:
$$\begin{cases} |\psi_3\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), & f(0) = f(1) = 0\\ |\psi_3\rangle = -\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), & f(0) = f(1) = 1\\ |\psi_3\rangle = \pm \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = \pm |+\rangle \end{cases}$$

- case
$$f(0) \neq f(1)$$
:
$$\begin{cases} |\psi_3\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle), & f(0) = 0 \land f(1) = 1\\ |\psi_3\rangle = -\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle), & f(0) = 1 \land f(1) = 0 \end{cases}$$

$$|\psi_3\rangle = \pm \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) = \pm |-\rangle$$
$$- |\psi_4\rangle = \begin{cases} \pm |0\rangle, & f(0) = f(1) \\ \pm |1\rangle, & f(0) \neq f(1) \end{cases}$$

• measuring 0 iff function is constant and 1 iff function is balanced

5 Deutsch-Jozsa Algorithm

- generalized version of Deutsch Algorithm to n qubits
- $f: \{0,1\}^n \to \{0,1\}$
- f is constant iff $\forall x, f(x) = c$
- f is balanced iff $|\{x \mid f(x) = 0\}| = |\{x \mid f(x) = 1\}|$
- classical: $2^{n-1} + 1$ function calls (input half the possible inputs)
- quantum: one call of f in needed (exponential speed up)

$$|0\rangle^{\otimes n} \stackrel{n}{/} H^{\otimes n} \qquad \qquad H^{\otimes n} \qquad \qquad H^{\otimes n} \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

-
$$|\psi_0\rangle = |00...0\rangle|-\rangle = |0\rangle^{\otimes n}|-\rangle$$
 (we can get the $|-\rangle$ by $H|1\rangle$)

$$- |\psi_1\rangle = H^{\otimes n}|0\rangle^{\otimes n}|-\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle|-\rangle \text{ (uniform distribution)}$$

$$- |\psi_2\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} U_f |x\rangle |-\rangle \stackrel{\text{phase oracle}}{=} \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle |-\rangle$$
 (|-\rangle can be omitted)

- Note:
$$H^{\otimes n}|x\rangle = \frac{1}{\sqrt{2^n}} \sum_{z \in \{0,1\}^n} (-1)^{x \cdot z} |z\rangle, \ (*)$$

$$- |\psi_{3}\rangle = \frac{1}{\sqrt{2^{n}}} \sum_{x \in \{0,1\}^{n}} (-1)^{f(x)} H^{\otimes n} |x\rangle |-\rangle$$

$$\stackrel{(*)}{=} \frac{1}{\sqrt{2^{n}}} \sum_{x \in \{0,1\}^{n}} (-1)^{f(x)} \frac{1}{\sqrt{2^{n}}} \sum_{z \in \{0,1\}^{n}} (-1)^{x \cdot z} |z\rangle$$

$$= \frac{1}{2^{n}} \sum_{x \in \{0,1\}^{n}} \sum_{z \in \{0,1\}^{n}} (-1)^{f(x) + x \cdot z} |z\rangle$$

- consider the amplitude of $|0\rangle^{\otimes n}$ is $\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x)}$ case f constant:

$$\begin{cases} \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^0 = \frac{1}{2^n} 2^n = 1, & f(x) = 0\\ \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^1 = \frac{1}{2^n} (-2^n) = -1, & f(x) = 1 \end{cases}$$

- hence if f is constant the probability of measuring all zeros is 1
- hence if f is balanced half of the sum is 1 and half is -1 hence the probability of measuring all zeros is 0
- \rightarrow measure and iff we get 000...0 then f(x) is constant else balanced

6 Grovers Algorithm

• Problem: given an unstructured database, find an element \hat{x} within this database

•
$$f: \{0,1\}^n \to \{0,1\}$$
 with $f(\hat{x}) = 1$, $f(\neg \hat{x}) = 0$ $(x, \hat{x} \in \{0,1\}^n)$

- classical: $\frac{N+1}{2} \in O(N)$
- quantum: $\frac{\pi}{4}\sqrt{N} \in O(\sqrt{N})$
- Steps:
 - 1. generate uniform distribution on all elements:

$$-H^{\otimes n}|000...0\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$$
$$-|s\rangle = H^{\otimes n+1}|000...0\rangle |1\rangle = |0\rangle^{\otimes n}|-\rangle$$

- 2. Grover Iteration:
 - (a) Negate the amplitude of \hat{x} (Oracle \hat{U}_f)

$$-\hat{U_f}|s\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} H^{\otimes n} |x\rangle |-\rangle \quad \text{(as in Deutsch-Josza)}$$

(b) Mirror/Reflect/Diffuse all amplitudes a at the mean value m(Diffusion \hat{D})

$$-a := 2 \cdot m - a$$

– mirroring as a quantum state:
$$\sum_{i=0}^{N-1} a_i |i\rangle$$
 (*)

- mean value of amplitudes:
$$\sum_{j=0}^{N-1} \frac{a_j}{N} \ (**)$$

- combining (*) and (**) we get:
$$|s\rangle = \sum_{i=0}^{N-1} \left(2 \cdot \sum_{i=0}^{N-1} \frac{a_i}{N} - a_i\right) |i\rangle$$

$$- D_N = \begin{bmatrix} -1 + \frac{2}{N} & \dots & \frac{2}{N} \\ \vdots & -1 + \frac{2}{N} & \vdots \\ \frac{2}{N} & \dots & -1 + \frac{2}{N} \end{bmatrix}$$

- Note: D_N can be expressed as a local operation (leq3 bits involved)
- 3. Measure $|x\rangle$ and return it off $\hat{x} > c$ (c is some constant)
- The number of grover iterations T is capped by $(2T + 1)\frac{1}{\sqrt{N}}$ since every iteration rotates by $\frac{2}{\sqrt{N}} \Rightarrow T = \frac{\pi}{4}\sqrt{4}$
- doing more than the necessary number of iteration degrades the result

7 Simons Algorithms

Precursor to Shors algorithm

- function $f: \{0,1\}^n \to \{0,1\}^n$
- Goal: is the function a bijection or does f have a period s
- $\exists s \in \{0,1\}^n, \forall x, y \in \{0,1\}^n : f(x) = f(y) \leftrightarrow x \oplus y \in \{0^n, s\}$
 - 1. Input Quantum Oracle $U_f:|a\rangle|b\rangle \to |a\rangle|b\oplus f(a)\rangle$
 - 2. Initialize register *R* with $|a\rangle|b\rangle = |0...0\rangle|0...0\rangle$
 - 3. bring *a* in uniform superposition $H^{\otimes n}|a\rangle|b\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle|0...0\rangle$

4. apply U_f to R yields $\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle |f(x)\rangle$ Entangles Registers

- 5. measure $y := |b\rangle$
 - the state to measure is $\frac{1}{\sqrt{2}}(|\hat{x}\rangle + |\hat{x} \oplus s\rangle)|f(\hat{x}\rangle$
 - if f is a bijection then we get $f^{-1}(y)$
 - if f is periodical there are two preimages (x, x') of y with $x \oplus x' =$
- 6. apply Hadamard to $|a\rangle$: $H^{\otimes n}|a\rangle$

- state:
$$\frac{1}{\sqrt{2}} \sum_{z \in \{0,1\}^n} \frac{1}{\sqrt{2}} \left((-1)^{\hat{x} \cdot z} + (-1)^{(\hat{x} \oplus s) \cdot z} \right) |z\rangle |\hat{x}\rangle$$

- amplitudes: $a_z = \frac{1}{\sqrt{2^{n+1}}} \left((-1)^{\hat{x} \cdot z} + (-1)^{(\hat{x} \oplus s) \cdot z} \right)$
- $z \cdot s$ is even then $a_z = \pm \frac{1}{\sqrt{2^{n+1}}}$
- $z \cdot s$ is odd: $a_z = 0$
- 7. measure $z := |a\rangle$
- 8. return z
- since we square we only get values of z that are even
- those are half of the possible values (the rest is odd) (2^{n-1} many)
- -n-1 of them are linearly independent and define a lin. sys. of equations $(z_1 \cdot t = 0, z_2 \cdot t = 0, ..., z_{n-1} \cdot t = 0)$
- if f(0) = f(s) return periodic, else bijective

8 **Shors Algorithm**

Goal: Find prime factor $z \cdot r = n$ for some $n \in \mathbb{N}$ that is not a prime power

- 1. Make a random guess $a \in \{2, ..., n-1\}$
- 2. calculate z := gcd(a, n) and return z if $z \neq 1$ (the guess was very lucky and a prime factor was guessed, other factor is $\frac{n}{2}$)
- 3. calculate the period of a in $(\mathbb{Z}/n\mathbb{Z})^{\times}$: $a^p \equiv 1 \mod n$ (Quantum) (Ordnung von a innerhalb der primen Restklassengruppe)
 - choose q with $n^2 \le q < 2n^2$

- initialize input quantum register with: $\frac{1}{\sqrt{q}} \sum_{p=0}^{q-1} |p\rangle |0\rangle$ (superposition of all possible periods)
- initialize output quantum register with: $\frac{1}{\sqrt{q}} \sum_{p=0}^{q-1} |p\rangle |a^p| \mod n$ (superposition of the remainders of the calculation $a^p \mod n$)
- Example q = 16, a = 7: $\frac{1}{4}(|0\rangle|1\rangle) + |2\rangle|4\rangle + |3\rangle|13\rangle + |4\rangle|1\rangle + |5\rangle|1\rangle) + |6\rangle|4\rangle + |7\rangle|13\rangle + |8\rangle|1\rangle + |9\rangle|1\rangle) + |10\rangle|4\rangle + |11\rangle|13\rangle + |12\rangle|1\rangle + |13\rangle|1\rangle) + |14\rangle|4\rangle + |15\rangle|13\rangle)$ (Clearly the period p = 4 with (1, 7, 4, 13))
- measuring the output/reminder register yields a superposition of all elements with the same reminder (uniformly random which exactly) Example: $\frac{1}{2}(|1\rangle + |5\rangle + |9\rangle + |13\rangle)|7\rangle$ (all elements with reminder 7)
- apply QFT_n to input register to get the period p Example: $\frac{1}{2}(|0\rangle + |4\rangle + |8\rangle + |12\rangle)$ (amplitudes for each element may have changed sign/phase)
- measuring the input register yields $\{\frac{j \cdot n}{p} | j = 0, ..., 3\}$ Example: $\{0, 4, 8, 12\}$
- calculate p using $\frac{j}{p} = \frac{y}{n}$ (y...output measurement) (only works if j and p have no common divisors hence measuring 0 or 8 in the Example necessitates a new run as the state is now destroyed)
- 4. GoTo (1) if: p is odd (we cannot calculate $\frac{p}{2} \in \mathbb{N}$)
- 5. calculate $z := gcd(a^{\frac{p}{2}} 1, n)$
 - return z if $z \neq 1$ as its a factor of n
- 6. calculate $z := gcd(a^{\frac{p}{2}} + 1, n)$
 - if z = n Goto (1), as we have a multiple of n
 - else return z
- $(a^{\frac{p}{2}} 1) \cdot (a^{\frac{p}{2}} + 1) = a^p 1 = k \cdot n$
- hence either the first or the second term must have a common divisor with n

Note: applying QFT to $|0\rangle$ yields a uniform superposition as a Hadamard-transformation

8.1 RSA

- asymetric encryption
- key generation:
 - 1. choose $p, q \in \mathbb{P}$ at random
 - 2. calculate $n = p \cdot q$ (this is the modulus for the public/private key)
 - 3. compute $\varphi(n) = (p-1)(q-1)$ (number of coprime integers)
 - 4. choose *e* s.t. $1 < e < \varphi(n)$ and *e* and $\varphi(n)$ are coprime (e: encryption exponent)
 - 5. calculate $e \cdot d \equiv 1 \pmod{\varphi(n)}$ (d: decryption exponent) (calculation by adv. eucl. alg.)
 - 6. keys are:

– Public: (*e*, *n*)

- Private: (d, n)

9 Adiabatic Quantum Computing

- Hermitian Matrix: conjugate transpose is self inverse $(A^{\dagger} = A)$
- alternative approach to quantum computing based on time evolution of quantum states
- time evolution is described by **Schrödingers equation** $(i\hbar \frac{\partial |\psi(t)\rangle}{\partial t} = \mathcal{H})|\psi(t)\rangle)$
- $|\psi(t)\rangle = \sum_{j=1}^{n} \alpha_{j} e^{-i\lambda_{j}t/\hbar} |\phi_{j}\rangle$ (j: energy level, $|\phi_{j}\rangle$: energy state of j-th level, λ_{j} : energy of j-th level)
- Adiabatic Theorem: a systems energy state does not change under adiabatic change of the Hamiltonian over time
- $T \propto \frac{1}{(\min_{t} \Delta \lambda_{t})^{2}}$
- update equation: $\mathcal{H}_t = (1 \frac{t}{T})\mathcal{H}_{init} + \frac{t}{T}\mathcal{H}_{final}$
- basic ideal: Morphing a initial Hamiltonian gradually into a final one without changing the energy states of the system

$\mathcal{H}_{ extit{init}}$	Initial		Final	$\mathcal{H}_{ extit{final}}$	
Eigen Vector	Energy	Adiabatic Process		Energy	Eigen Vector
00⟩	1		-1	$\frac{ 00\rangle+ 01\rangle+ 10\rangle+ 11\rangle}{2}$	
01⟩	2		0	$\frac{ 00\rangle - 01\rangle + 10\rangle - 11\rangle}{2}$	
10⟩	3		1	$\frac{ 00\rangle+ 01\rangle- 10\rangle- 11\rangle}{2}$	
11⟩	4		2	$\frac{ 00\rangle - 01\rangle - 10\rangle + 11\rangle}{2}$	

• Quantum Annealing accelerates the transition by ignoring the adiabatic theorem

•

10 Error Correction

- qubits cannot be completely shielded from the environment, hence they interact with it
- quantum computers are considered open systems
- the environment is denoted as $|e\rangle$ which is usually quite complex
- types of errors that can occur are:

- no error: $I: \alpha|0\rangle + \beta|1\rangle$

- phase flip: $Z : \alpha |0\rangle - \beta |1\rangle$

- bit flip:: $X : \alpha |1\rangle + \beta |0\rangle$

- both: $X \cdot Z : \alpha |1\rangle - \beta |0\rangle$

- all possible errors in a system can be reduced to a combination of those errors
- Idea: use redundancy for error correction $(0 \rightarrow 000, 1 \rightarrow 111)$
- Bit correction:
 - σ_x -error
 - $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \rightarrow \alpha|000\rangle + \beta|111\rangle$
 - through the use of two CNot gates the error can be located an fixed using Pauli gates

- possible errors and fixes:

Error location	$\left \psi^{encoded} ight angle$	$\ket{\psi^{decoded}}$	M.o.	Operator on 1st qubit
no-error	$\alpha 000\rangle + \beta 111\rangle$	$\alpha 000\rangle + \beta 100\rangle$	00⟩	None
1 <i>st</i> qubit	$\alpha 100\rangle + \beta 011\rangle$	$\alpha 111\rangle + \beta 011\rangle$	11)	\hat{X} on 1 <i>st</i> qubit
2nd qubit	$\alpha 010\rangle + \beta 101\rangle$	$\alpha 010\rangle + \beta 110\rangle$	10>	None
3 <i>rd</i> qubit	$\alpha 001\rangle + \beta 110\rangle$	$\alpha 001\rangle + \beta 101\rangle$	01⟩	None

 the encoding works using CNot gates, the decoding uses CNots and a Tofoli Gate:

• Phase correction:

- σ_z -error
- Similar approach as bit correction but change to sign base first

$$- \ |0\rangle \rightarrow |+++\rangle = \frac{|000\rangle + |111\rangle}{\sqrt{2}}, |1\rangle \rightarrow |---\rangle = \frac{|000\rangle - |111\rangle}{\sqrt{2}}$$

- perform encode/decode using Hardamard gates
- circuit for phase correction:

- both corrections can be combined into one (Shors 9-Qubit Code)
 - both encodings for phase and bit flips are applied

$$- \ |0\rangle \rightarrow \tfrac{(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)}{\sqrt{8}} = |0_L\rangle$$

$$-~|1\rangle \rightarrow \tfrac{(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)}{\sqrt{8}} = |1_L\rangle$$

- circuit for the 9-qubit shor code:

11 Quantum Complexity Theory

- P: Deterministic Polynomial Time
- NP: Non-deterministic Polynomial Time
 - $L \in NP$: solution can be verified in polynomial time by a DTM
 - L is NP-hard: $\forall \bar{L} \in NP$: $\bar{L} \leq_p L$ (all problems in NP can be reduced to L)
 - NPC: $L \in NP$ and L is NP-hard (those are the hardest problems in NP (only polynomial time differences))
- **RP**: Randomized Polynomial
 - $-: P = 1 \text{ if } w \notin L$
 - P > 0.5 if w ∈ L
 - runtime is P
- BPP: Bounded Error Probabilistic Polynomial
 - $P \ge 0.75$ if w ∈ L
 - $P \ge 0.75$ if $w \notin L$
 - runtime is P
- PSPACE: Deterministic Polynomial Space
- **EXP**: Deterministic Exponential Time
- IP: Interactive Polynomial Time
 - V: Verifier, $V(w,r,m_1...m_i)=m_{i+1}:\Gamma^*\times\Gamma^*\times\Gamma^*\to\Gamma^*\cup\{\text{accept, reject}\}$

- P: Prover, has unlimited computational power, $P(w, m_1...m_i) = m_{i+1}$: $\Gamma^* \times \Gamma^* \to \Gamma^*$
- V and P interact, $(V(w,r) \leftrightarrow P(w))(w,r)$ = accept if exists a message sequence that accepts
- $w \in L$ → $Pr(V \leftrightarrow P \text{ accetps } w) \ge 2/3$
- $w \notin L$ → $Pr(V \leftrightarrow \bar{P} \text{ accetps } w) \le 1/3$
- QIP: Quantum Interactive Polynomial Time
- MA: Merlin-Arthur
 - like IP but only message, message length is poly and poly many random bits
- QMA: Quantum Merlin-Arthur

11.1 Relations between Classes

$$P \subseteq RP \subseteq \left\{ \begin{array}{l} NP \subseteq MA \\ \checkmark \nearrow \\ BPP \subseteq BQP \end{array} \right\} \subseteq QMA \subseteq \left\{ \begin{array}{l} PSPACE \\ = \\ IP \\ = \\ QIP \end{array} \right\} \subseteq EXP \subseteq R \subsetneq \left\{ \begin{array}{l} RE \\ = \\ MIP^* \end{array} \right\} \subsetneq ALL$$

12 Quantum Cryptography

12.1 BB84 Protocol

- 1. A, B want to communicate securely
- 2. A generates random bits and random bases
- 3. A measures each bit in its randomly assigned base and remembers measurement and initialization
- 4. A send the measurements to B
- 5. B guesses that bases man measures the received qubits
- 6. B remembers measurement
- 7. A, B publish measurement bases

- 8. A, B use measurement where to bases agree to forge a secret key
- 9. A, B convert + to 0 and to 1
- 10. an eavesdropper will be detected when A, B compare their keys