

——WiFi bulb control module

V2.0 28-11-2018 Num: DMPL01CN

■ Size: 15mm × 20mm

■ Color : white

Applications

- Bulb
- light belt
- Ceiling lamp
- Spotlight
- Other commercial and scene light

Features

- Module specifications
 - Built-in ESP WiFi chip
 - Support multi-channel LED control
 - Built-in LED driving control algorithm, support dimming, color adjustment and rhythm control
 - Supporting Local Area Network Priority Control
 - Support cloud control
 - Support IR control
 - Support Google Assistant, Amazon Alexa, Tmal Genue, Xiaodu, Dingdong, Xiaomi,
 - Support Android and iOS device control
- Wi-Fi specifications
 - Support 802.11 b/g/n/e/i
 - Support AP mode
 - Support OTA
 - Support big batch manufacturing

Model

Name	Antenna
DMP-L1	PCB antenna on board

Classical Application

Module Information

Smart bulb control pins: 5

■ Working temperature: -40°C-125°C

Achieve Update

Date	Version	Content
2018-1-10	V1.0	Inition
2018-11-1	V2.0	Revise the Definition of Pins

Index

1. Introduction	3
2. Interface Definition	5
3. Examples	
4. Electronical Characteristics	
5. Power Consumption	10
6. Wi-Fi RF Characteristics	
7. The Recommended Sold Temperature Curve	12
Appendix 1: 9W bulb referenced circuit	13
Appendix 2: IR Code Table	
Appendix 3.	

1. Introduction

The core processor of DMP-L1 module adopts industrial chip ESP8285. The chip integrates an enhanced version of the Tensilica's L106 Diamond Series 32-bit core processor in smaller size packages. ESP8285 has complete Wi-Fi network function and can be used independently from the controller. Its built-in cache memory greatly provides CPU performance.

- DMP-L1 module supports standard IEEE802.11 b/g/n/e/i protocol and complete TCP/IP protocol stack.
- DMP-L1 module uses built-in Flash, which can make the chip work at 40 C 125 C.
- DMP-L1 module has built-in LED control algorithm, which can make its external IO control LED driver.
- DMP-L1 module has built-in DoHome cloud service, and can use DoHome series APP to control LFD
- DMP-L1 module contains external infrared interface, which can support infrared remote control at the same time.
- DMP-L1 module has built-in factory test program, which can make the factory big batch production quickly.

Fig 1.1 Block for DMP-L1

The main parameters can be shown as follows.

Table 1.1 Parameters

Types	Items	Parameters
	Frequency scope	2.4G~2.5G(2400M~2483.5M)
		802.11b: +20 dBm
	Transmit power	802.11g: +17 dBm
W: E:		802.11n: +14 dBm
Wi-Fi		802.11b: -91 dbm (11Mbps)
	Receiving sensitivity	802.11g: -75 dbm(54Mbps)
		802.11n: -72 dbm(MCS7)
	Antenna	PCB onboard antenna
	CPU	Tensilica L106 32 bit MCU
	D 1 1	UART/SDIO/SPI/I2C/I2S/IR control
	Perpherl	GPIO/ADC/PWM/SPI/I2C/I2S
	Working voltage	2.5V ~ 3.6V
Hardware	Working current	Average current: 80 mA
	Working temperature	-40 ℃ ~125 ℃
	Environment	-40 ℃ ~ 125 ℃
	temperature	
	Size	16mm x 24mm x 3mm
	Wi-Fi mode	Station/SoftAP/SoftAP+Station
	Security mode	WPA/WPA2
	Encryption type	WEP/TKIP/AES
Software	Update firmware	UART Download/OTA (by internet)
	Software develop	Non-RTOS/RTOS/Arduino IDE etc.
	Network protocol	IPv4, TCP/UDP/HTTP/FTP/MQTT
	User configuration	AT+ command/cloud sever/ Android/iOS A
octor		

2. Interface Definition

Fig 2.1 Pins definition for DMP-L1

Pins definitions are listed as follows.

Table 2.1 Pins definition

Num	Pin name	type	Function Illustration	
1	R	О	Default is red LED control pin, PWM output, IO12	
2	G	O	Default is green LED control pin, PWM output, IO14	
3	В	O	Default is blue LED control pin, PWM output, IO5	
4	W	O	Default is white LED control pin, PWM output, IO4	
5	Y	0	Default warm white LED control pin, PWM output, IO13	
6	GND	P	GND	
7	VCC	P	Power: 3.3V/200mA	
8,12	GND	P	GND	
9	RX0	I/O	GPIO3; used for built in Flash as UART Rx	
10	TX0	I/O	GPIO1; used for built in Flash as UART Tx	

11	RST	I	Reset (effective when low level), has a pull-up resistance inside
13	ADC	I/O	Analog interface with voltage range: 0-1V
14	D16	I/O	GPIO16; wake up from deep sleep
15	EN	I	Enable, high level: effective, with a pull-up resistance inside
16	IRAD	I	IR input, see the appendix
17	D0	I/O	GPIO0; SPI_CS2;

Shape and Size:

Fig 2.2 Shape and Size for DMP-L1

Fig 2.3 Size for DMP-L1

Table 2.2 Size for DMP-L1

Length	Width	Height	PAD (two sides)	PAD (bottom)
20mm	15mm	2.3mm	0.85 mm x 1mm	1mm*1.5mm

Fig. 2.3 Layout for DMP-L1

3. Examples

The minimum system is from DMP-L1 as follows (R/G/B/W is PWM control)

DMP-L1 is supported as DoHome APP by scan the following QR code, and also can download the APP associated with iOS and Android by searching "DoHome" at the App stores.

Fig. 3.1 DoHome APP QR code

Now, DMP-L1 can be controlled by many smart voice box, such as, Amazon Alexa, Google Assistant, Tmall Genue, JD Dingdong, Xiaomi, Xiaodu, and so on, which is also can be seen at the app help.

4. Electronical Characteristics

Table 4.1 Electronics

Param	eters	Condition	Min	Classical	Max	Unite
Store	Гетрегаture	-	-40	Normal	125	$^{\circ}$ C
Sold T	emperature	IPC/JEDEC J-STD-020	-	-	260	$^{\circ}$
Worki	ng Voltage	-	2.5	3.3	3.6	V
	$V_{\rm IL}/V_{\rm IH}$	-	$-0.3/0.75V_{IO}$	-	0.25V _{IO} /3.6	V
I/O	$V_{\rm OL}/V_{\rm OH}$	-	N/0.8V _{IO}	-	$0.1V_{IO}/N$	V
	I_{MAX}	-	-	-	12	mA
Electro quanti	ostatic release ty (Human model)	TAMB=25℃	-	-	2	KV
Electro quanti	ostatic release ty (Human model)	TAMB=25℃	-	-	0.5	KV

5. Power Consumption

Table 5.1 Power Consumption

Parameters	Min	Classical	Max	Unite
Tx802.11b, CCK 11Mbps, POUT=+17dBm	-	170	-	mA
Tx802.11g, OFDM 54 Mbps, POUT =+15dBm	-	140	-	mA
Tx802.11n,MCS7,POUT =+13dBm	-	120	-	mA
Rx 802.11b, 1024 Bytes, -80dBm	-	50	1-10°	mA
Rx 802.11g, 1024 Bytes, -70dBm	-	56		mA
Rx 802.11n, 1024 Bytes, -65dBm	- 8	56	-	mA
Modem-sleep①	26	15	-	mA
Light-sleep②	<u>-</u>	0.9	7-	mA
Deep-sleep③	- **	20	-	μΑ
close		0.5	-	μΑ

Note

①: Modem-Sleep mode can be used for the case that CPU is always working, e.g., PWM or I2S etc. If WiFi is connected and no data is to transmitted, in this case, WiFi modem can be closed to save power energy. For example, if at DTIM3 status, keep asleep at 300ms, Then, the module can wake up to receive the Beacon package within 3ms and the current being 15mA.

- ②: Light-Sleep mode can used for the case that CUP can stop the application temporally, e.g., Wi-Fi Switch. If Wi-Fi is connected and there is no data packet to transmitted, by the 802.11 standard (e.g., U-APSD), module can close Wi-Fi Modem and stop CPU to save power. For example, at DTIM3, keep up sleeping at 300ms, it would receive the Beacon package from AP after each 3ms, then the whole average current is about 0.9mA.
- ③ Deep-Sleep mode is applied to the case that Wi-Fi is not necessary to connect all the time, just send a data packet after a long time (e.g., transmit one temperate data each 100s) . it just need 0.3s-1s to connect AP after each 300s, and the whole average current is much smaller 1mA.

6. Wi-Fi RF Characteristics

The data in the following Table is gotten when voltage is 3.3V and 1.1V in the indoor temperature environment.

Table 6.1 Wi-Fi RF Characteristics

Parameters	Min	Classical	Max	Unite
Input frequencey	2412	-	2484	MHz
Input impedance	-	50	-	Ω
Input reflection	-	-	-10	dB
At 72.2Mbps, output power consumption for PA	15.5	16.5	17.5	dBm
At 11b mode, output power consumption for PA	19.5	20.5	21.5	dBm
Sensibility	-	-	-	-
DSSS, 1Mbps	-	-98	-	dBm
CCK11, Mbps	-	-91	-	dBm
6Mbps(1/2 BPSK)	-	-93	4-V	dBm
54Mbps(3/4 64-QAM)	-	-75	-	dBm
HT20, MCS7(65 Mbps, 72.2 Mbps)	- 0	-72	-	dBm
Adjacent Inhibition				
OFDM, 6Mbps		37	\-	dB
OFDM, 54Mbps	X	21	-	dB
HT20, MCS0	5.	37	-	dB
HT20, MCS7	- 73	20	-	dB
Doctors of his				

7. The Recommended Sold Temperature Curve

Fig. 7.1 Temperature Curve when Sold

Appendix 1: 9W bulb referenced circuit

Appendix 2: IR Code Table

Code library corresponding to the default program

Appendix 3.

3.	
From DOIT	o' Lechue
Official site	www.doit.am
Chinese book	ESPDuino 智慧物联开发宝典
Online shop	www.smartarduino.com
Forum	https://github.com/SmartArduino/SZDOITWiKi/wiki
IoT Application	智能建筑云 光伏监控云 Doit 玩家云
$cto_{I,2}$	免费TCP 公网调试服务
Contact Us	
Emails	yichone@doit.am
	yichoneyi@163.com

Skype	yichone
WhatsAPP	008618676662425
WeChat	18676662425
QQ	123433772

DMP-L1

From Espressif ESP8266	
Chip	ESP8266 Quick Start Guide
Software	ESP8266 SDK Start Guide
	<u>ESP8266 SDK</u>
Download Tools	ESP8266 Download Tool
Others	ESP8266 Forum
	ESP8266 Resources

Disclaimer and Copyright Notice

The information in this article, including the URL for reference, if there is any change, without prior notice.

Documents are provided by the current version without any guarantee responsibility, including merchantability, suitable for any particular purpose or non-infringement guarantees, and any guarantees presented by any proposal, specification, or sample mentioned elsewhere. This document has no any responsibility, including the use of the information within this document produced by the infringement of any patent rights. This document in this, by estoppel or otherwise, grant any intellectual property licensing, whether express or implied license.

The Wi-Fi alliance marks shall be owned by the Wi-Fi alliance.

All the mentioned brand names, trademarks and registered trademarks presented in this document are the property of their respective owners, and hereby declare.

Notice

Because of the product update or other reasons, this manual may change. Doctors of Intelligence & Technology Co., LTD Keeps the right to change the contents of this manual in the absence of any notice or reminders. This manual is used only as a guide, Doctors of Intelligence & Technology Co., LTD would try their best to provide the accurate information in this manual, but it does not ensure that the manual content is completely right and national, all the statements in this manual, and information and advice do not mean to provide any express or implied guarantees.