§ 19. Многочлены как функции. Корни многочленов

Б.М.Верников

Уральский федеральный университет, Институт естественных наук и математики, кафедра алгебры и фундаментальной информатики

Значение многочлена

Пусть $f(x) = \alpha_n x^n + \alpha_{n-1} x^{n-1} + \cdots + \alpha_1 x + \alpha_0$ — многочлен над кольцом R. Многочлен f можно рассматривать как отображение (или, что то же самое, функцию) из кольца R в себя, сопоставляющее каждому элементу $\xi \in R$ элемент $f(\xi) \in R$, определяемый равенством

$$f(\xi) = \alpha_n \xi^n + \alpha_{n-1} \xi^{n-1} + \dots + \alpha_1 \xi + \alpha_0.$$

Элемент $f(\xi)$ называется значением многочлена f(x) в кольце R при $x=\xi.$

Равенство многочленов как последовательностей и как функций

В предыдущем параграфе мы, не оговаривая этого в явном виде, имели в виду, что многочлены f и g равны, если у них равны коэффициенты при x^i для всех натуральных i и равны свободные члены. Если вернуться к исходному опредению многочлена как бесконечной последовательности неотрицательных чисел, это определение можно сформулировать так: многочлены $f=(a_0,a_1,\ldots,a_n,\ldots)$ и $g=(b_0,b_1,\ldots,b_n,\ldots)$ над одним и тем же кольцом R равны, если $a_i=b_i$ для всех $i\geq 0$. В этом случае говорят, что многочлены f и g равны как последовательности.

Если же рассматривать многочлены как функции, то можно ввести другое понятие равенства многочленов. Говорят, что многочлены f и g над одним и тем же кольцом R равны как функции, если $f(\xi)=g(\xi)$ для любого $\xi\in R$.

Связь между равенством многочленов как последовательностей и их равенством как функций

Возникает естественный вопрос: эквивалентны ли два введенных понятия равенства многочленов? Очевидно, что если многочлены равны как последовательности, то они равны и как функции. В самом деле, в этом случае $f=g=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0$, и потому $f(\xi)=g(\xi)=a_n\xi^n+a_{n-1}\xi^{n-1}+\cdots+a_0$ для любого $\xi\in R$. Но, как показывает следующий пример, обратная импликация неверна.

Пример многочленов, равных как функции, но не равных как последовательности

Пусть F — конечное поле. В силу леммы о степенях элементов в конечной группе (см. § 4), существует такое натуральное число k, что для любого элемента $\xi \in F \setminus \{0\}$ выполнено равенство $\xi^k = 1$, а значит и равенство $\xi^{k+1} = \xi$. Последнее равенство, очевидно, верно и при $\xi = 0$. Следовательно, оно верно для любого $\xi \in F$. Это означает, что многочлены x^{k+1} и x над полем F равны как функции. В то же время, очевидно, что они различны как последовательности.

В дальнейшем мы увидим, что для многочленов над бесконечным полем примеров такого рода уже не существует, и два введенных выше понятия равенства многочленов эквивалентны (см. следствие о равенстве многочленов ниже в данном параграфе).

Теорема Безу (1)

Пусть f(x) — многочлен степени $n\geq 1$ над полем F, $\alpha\in F$, а q(x) и r(x) — частное и остаток от деления многочлена f(x) на $x-\alpha$ соответственно. Тогда $\deg r(x)<\deg (x-\alpha)=1$, т. е. $\deg r(x)\leq 0$. С другой стороны, $\deg \left(q(x)(x-\alpha)\right)\geq \deg (x-\alpha)=1$. Учитывая замечание о степени произведения и суммы многочленов, имеем:

$$\deg f(x) = \deg(q(x)(x - \alpha) + r(x)) = \deg(q(x)(x - \alpha)) =$$

$$= \deg q(x) + \deg(x - \alpha) = \deg q(x) + 1,$$

откуда $\deg q(x) = \deg f(x) - 1 = n - 1$.

Теорема Безу

Пусть $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0$ — многочлен над полем F и $\alpha\in F$.

- (i) Остаток от деления f(x) на $x \alpha$ равен $f(\alpha)$.
- (ii) Обозначим частное от деления f(x) на $x-\alpha$ через $b_{n-1}x^{n-1}+b_{n-2}x^{n-2}+\cdots+b_0$. Тогда

$$b_{n-1}=a_n,\; b_k=a_{k+1}+\alpha b_{k+1}$$
 при $k=0,1,\ldots,\; n-2$ и $f(\alpha)=a_0+\alpha b_0.$

Теорема Безу (2)

Доказательство. Обозначим частное и остаток от деления f(x) на $x-\alpha$ через q(x) и r(x) соответственно. Тогда $f(x)=q(x)(x-\alpha)+r(x)$, где deg r< deg $(x-\alpha)$. Последнее означает, что deg $r\leqslant 0$, т.е. $r\in F$. Подставив α вместо x в равенство $f(x)=q(x)(x-\alpha)+r(x)$, имеем $f(\alpha)=q(\alpha)\cdot 0+r$, откуда $r=f(\alpha)$. Учитывая, что $a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=\\ =(b_{n-1}x^{n-1}+b_{n-2}x^{n-2}+\cdots+b_1x+b_0)(x-\alpha)+f(\alpha)=\\ =b_{n-1}x^n+(-\alpha b_{n-1}+b_{n-2})x^{n-1}+\cdots+(-\alpha b_1+b_0)x+(-\alpha b_0+f(\alpha)),$ получаем, что $b_{n-1}=a_n$, $-\alpha b_{n-1}+b_{n-2}=a_{n-1}$, ..., $-\alpha b_1+b_0=a_1$, $-\alpha b_0+f(\alpha)=a_0$, откуда вытекают равенства (1).

Схема Горнера

На формулах (1) основан упрощенный алгоритм деления многочлена f на двучлен $x-\alpha$ и нахождения значения $f(\alpha)$, известный под названием схема Горнера. Для осуществления алгоритма составляется таблица из двух строк. В первой строке записываются коэффициенты многочлена fпо убыванию степеней (без пропусков, если некоторая степень отсутствует, то на соответствующем месте записывается нуль). Вторая строка заполняется с учетом формул (1): первое число переносится из первой строки, каждое последующее получается путем умножения предыдущего (только что полученного) числа из второй строки на число lpha и сложения результата с числом из первой строки, стоящим над заполняемой клеткой второй строки. Последнее число во второй строке (под свободным членом f) и будет значением $f(\alpha)$, а числа с первого по предпоследнее – коэффициентами частного в порядке убывания степеней. Для удобства проведения вычислений число lpha выписывают слева от первого элемента второй строки.

Корень многочлена

Определение

Пусть f(x) — многочлен над полем F. Элемент $\alpha \in F$ называется корнем многочлена f(x), если $f(\alpha)=0$ (другими словами, если α — корень уравнения f(x)=0).

Из теоремы Безу вытекает

Следствие из теоремы Безу

Пусть f(x) — многочлен над полем F и $\alpha \in F$. Элемент α является корнем многочлена f(x) тогда и только тогда, когда $f(x) = q(x)(x-\alpha)$ для некоторого многочлена $q(x) \in F[x]$.

Доказательство. Необходимость. В силу теоремы Безу,

$$f(x) = q(x)(x - \alpha) + f(\alpha)$$

для некоторого многочлена q(x). Если lpha — корень многочлена f(x), то f(lpha)=0, и потому f(x)=q(x)(x-lpha).

Достаточность. Если $f(x) = q(x)(x - \alpha)$, то

$$f(\alpha) = q(\alpha)(\alpha - \alpha) = q(\alpha) \cdot 0 = 0.$$

Следствие доказано.

Кратность корня многочлена

Определение

Натуральное число k называется κ ратностью корня α многочлена f(x), если $f(x)=g(x)(x-\alpha)^k$ для некоторого многочлена g(x) такого, что $g(\alpha)\neq 0$.

Если многочлен f(x) степени >0 над полем F имеет в этом поле ровно m попарно различных корней $\alpha_1, \ \alpha_2, \ \ldots, \ \alpha_m$ и кратность корня α_i равна k_i , где $i=1,2,\ldots,m$, то f(x) делится на $(x-\alpha_1)^{k_1}(x-\alpha_2)^{k_2}\cdots(x-\alpha_m)^{k_m}$. Поэтому $k_1+k_2+\cdots+k_m\leqslant \deg f$. Ясно также, что число корней многочлена не превосходит суммы их кратностей. Следовательно, спрведливо следующее утверждение.

Следствие о числе корней и степени многочлена

Как число корней многочлена степени > 0, так и сумма кратностей всех его корней, не могут быть больше степени многочлена.

Эквивалентность двух понятий равенства многочленов над бесконечным полем

Следствие о числе корней и степени многочлена влечет следующее утверждение.

Следствие о равенстве многочленов

Многочлены f и g над бесконечным полем F равны как последовательности тогда и только тогда, когда они равны как функции.

Доказательство. Как уже отмечалось выше в данном параграфе, необходимость справедлива для многочленов над произвольным кольцом.

Достаточность. Предположим, что многочлены f и g над бесконечным полем F равны как функции. Пусть $\xi \in F$. Тогда $f(\xi) = g(\xi)$, откуда $(f-g)(\xi) = 0$. Иными словами, любой элемент поля F является корнем многочлена (f-g)(x). Таким образом, этот многочлен имеет бесконечное множество корней. Поскольку, в силу следствия о числе корней и степени многочлена, число корней многочлена степени > 0 не может быть больше степени многочлена, это означает, что $\deg(f-g) \leq 0$. Иными словами, $f-g=\alpha$ для некоторого $\alpha \in F$. При этом $\alpha=0$, поскольку в противном случае α , вопреки сказанному выше, не является корнем многочлена f-g. Иными словами, f-g=o, т.е. f и g равны как последовательности.

Рациональные корни многочленов с целыми коэффициентами

Следующее утверждение позволяет отыскивать рациональные корни многочленов с целыми коэффициентами (если они существуют, конечно).

Предложение о рациональных корнях многочленов

Пусть $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ — многочлен над $\mathbb Q$ с целыми коэффициентами, а $\frac{p}{q}$ — рациональное число и несократимая дробь. Если $\frac{p}{q}$ — корень многочлена f(x), то р является делителем a_0 , а q — делителем a_n . В частности, если $a_n\in\{1,-1\}$, то все рациональные корни многочлена f(x) являются целыми числами и делят свободный член a_0 .

Доказательство. Поскольку $\frac{p}{q}$ — корень многочлена f(x), имеем: $a_n(\frac{p}{q})^n+a_{n-1}(\frac{p}{q})^{n-1}+\cdots+a_1\cdot\frac{p}{q}+a_0=0$. Умножив обе части этого равенства на q^n , получим: $a_np^n+a_{n-1}p^{n-1}q+\cdots+a_1pq^{n-1}+a_0q^n=0$. Отсюда получаем: $a_0q^n=p(-a_np^{n-1}-a_{n-1}p^{n-2}q-\cdots-a_1q^{n-1})$. Поэтому p делит a_0q^n . Так как числа p и q взаимно просты, p делит a_0 . Аналогично, из равенства $a_np^n=q(-a_{n-1}p^{n-1}-\cdots-a_1pq^{n-2}-a_0q^{n-1})$ вытекает, что q делит a_n .

Целые корни многочленов с целыми коэффициентами

Из предложения, доказанного на предыдущем слайде, непосредственно вытекает

Следствие о целых корнях многочленов

Если f(x) — многочлен над $\mathbb Q$ с целыми коэффициентами, старший коэффициент которого равен 1 или -1, то все рациональные корни многочлена f(x) являются целыми числами и делят свободный член этого многочлена.

Интерполяционный многочлен Лагранжа (1)

Предположим, что мы знаем значения некоторой функции f(x) в (n+1)-й точке x_0, x_1, \ldots, x_n : $f(x_0) = y_0, f(x_1) = y_1, \ldots, f(x_n) = y_n$, и хотим приблизить эту функцию многочленом. Иными словами, мы хотим найти многочлен p(x) такой, что $p(x_0) = y_0, p(x_1) = y_1, \ldots, p(x_n) = y_n$. Любой многочлен с таким свойством называется интерполяционным многочленом, соответствующим набору пар

$$(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n).$$
 (2)

Многочлен минимальной степени среди интерполяционных многочленов, соответствующих набору пар (2), называется *интерполяционным многочленом Лагранжа*, соответствующим этому набору пар. Оказывается, он всегда существует и определен однозначно.

Теорема об интерполяционном многочлене

Пусть x_0, x_1, \ldots, x_n — попарно различные, а y_0, y_1, \ldots, y_n — произвольные действительные числа. Тогда существует, и притом только один, интерполяционный многочлен Лагранжа p(x), соответствующий набору пар (2), причем $\deg p(x) \leqslant n$.

Интерполяционный многочлен Лагранжа (2)

$$p_i(x) = \prod_{\substack{j=0 \ j\neq i}}^n \frac{x - x_j}{x_i - x_j} = \frac{x - x_0}{x_i - x_0} \cdots \frac{x - x_{i-1}}{x_i - x_{i-1}} \cdot \frac{x - x_{i+1}}{x_i - x_{i+1}} \cdots \frac{x - x_n}{x_i - x_n}.$$

Очевидно, что $\deg p_i(x)=n,\ p_i(x_i)=1$ и $p_i(x_j)=0$ при $j=0,1,\dots,n,$ $j\neq i.$ Далее, положим $p(x)=y_0p_0(x)+y_1p_1(x)+\dots+y_np_n(x).$ Очевидно, что $p(x_i)=y_i$ для всякого $i=0,1,\dots,n.$ Таким образом, p(x) — интерполяционный многочлен Лагранжа, соответствующий набору пар (2). А из замечания о степени произведения и суммы многочленов (см. § 18) вытекает, что $\deg p(x)\leqslant n.$

Предположим, что q(x) — отличный от p(x) интерполяционный многочлен, соответствующий набору пар (2). Положим r(x)=p(x)-q(x). Тогда $r(x)\neq o$ и $r(x_i)=p(x_i)-q(x_i)=y_i-y_i=0$ для всех $i=0,1,\ldots,n$. Иными словами, x_0,x_1,\ldots,x_n — попарно различные корни многочлена r(x). В силу следствия о числе корней и степени многочлена, $\deg r(x)\geqslant n+1>\deg p(x)$. Таким образом, степень многочлена p(x) меньше степени любого другого интерполяционного многочлена, соответствующего набору пар (2). Следовательно, p(x) — единственный интерполяционный многочлен Лагранжа, соответствующий этому набору пар.