第5章 多维随机变量及其分布

前面所研究的随机现象均由单一因素决定,即一维随机变量.然而实际问题中很多随机现象往往由两个或多个随机因素造成的,需用多个随机变量描述.例如:导弹攻击点的坐标(经度、纬度); 学生的高考成绩(语文、数学、英语等).

定义 5.1 设 $X = X(\omega)$ 和 $Y = Y(\omega)$ 为定义在样本空间 Ω 上的随机变量, 由它们构成的向量 (X,Y) 称为二维随机变量.

二维随机向量又称为二维随机变量,需要将 (X,Y) 看作一个整体,不能分开看待,在几何上 (X,Y) 可看作平面上的随机点.

5.1 二维随机变量的分布函数

首先研究二维随机变量的分布函数:

定义 5.2 设 (X,Y) 为二维随机变量, 对任意实数 $x \in (-\infty, +\infty)$ 和 $y \in (-\infty, +\infty)$,

$$F(x,y) = P(X \leqslant x, Y \leqslant y)$$

称为二维随机变量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数.

二维随机变量分布函数 F(x,y) 几何意义: 随机点 (X,Y) 落入以 (x,y) 为右上定点无穷矩形的概率. 对二维随机变量分布函数, 有如下性质:

- 分布函数 F(x,y) 对每个变量单调不减: 固定 y, 当 $x_1 > x_2$ 时有 $F(x_1,y) \ge F(x_2,y)$; 同理固定 x, 当 $y_1 > y_2$ 时有 $F(x,y_1) \ge F(x,y_2)$;
- 对任意 $x \in (-\infty, +\infty)$ 和 $y \in (-\infty, +\infty)$, 分布函数 $F(x, y) \in [0, 1]$, 且

$$F(+\infty, +\infty) = 1$$
, $F(-\infty, y) = F(x, -\infty) = F(-\infty, -\infty) = 0$.

• 分布函数 *F*(*x*, *y*) 关于每个变量右连续.

根据分布函数可推导概率:

$$P(x_1 < X \le x_2, y_1 < Y \le y_2) = F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1).$$

设随机变量 (X,Y) 的联合分布函数为 F(x,y), 将随机变量 X 和 Y 单独看依然是随机变量. 可以根据随机变量的联合分布函数 F(x,y) 研究随机变量 X 和 Y 的分布函数 $F_X(x)$ 和 $F_Y(y)$.

定义 5.3 设二维随机变量 (X,Y) 的联合分布函数为 F(x,y), 称

$$F_X(x) = P(X \leqslant x) = P(X \leqslant x, y < +\infty) = F(x, +\infty) = \lim_{y \to +\infty} F(x, y),$$

为随机变量 X 的边缘分布函数. 同理定义随机变量 Y 的边缘分布函数为:

$$F_Y(y) = P(Y \leqslant y) = P(Y \leqslant y, x < +\infty) = F(+\infty, y) = \lim_{x \to +\infty} F(x, y).$$

例 5.1 设二维随机变量 (X,Y) 的联合分布函数为

$$F(x,y) = A(B + \arctan \frac{x}{2})(C + \arctan \frac{y}{3})(x, y \in \mathbb{R}).$$

求随机变量 X 与 Y 的边缘分布函数和概率 P(Y > 3).

解 对任意 $x \in (-\infty, +\infty)$ 和 $y \in (-\infty, +\infty)$,根据分布函数的性质有

$$1 = F(+\infty, +\infty) = A(B + \frac{\pi}{2})(C + \frac{\pi}{2}),$$

$$0 = F(x, -\infty) = A(B + \arctan\frac{x}{2})(C - \frac{\pi}{2}),$$

$$0 = F(-\infty, y) = A(B - \frac{\pi}{2})(C + \arctan\frac{y}{3}).$$

求解上述方程可得

$$C = \frac{\pi}{2}, \quad B = \frac{\pi}{2}, \quad A = \frac{1}{\pi^2}.$$

从而得到 $F(x,y) = (\pi/2 + \arctan x/2)(\pi/2 + \arctan y/3)/\pi^2$, 进一步得到

$$F_X(x) = \lim_{y \to \infty} \frac{1}{\pi^2} (\frac{\pi}{2} + \arctan \frac{x}{2}) (\frac{\pi}{2} + \arctan \frac{y}{3}) = \frac{1}{\pi} (\frac{\pi}{2} + \arctan \frac{x}{2})$$

同理可得

$$F_Y(y) = \frac{1}{\pi} \left(\frac{\pi}{2} + \arctan \frac{y}{3}\right)$$

最后得到

$$P(Y > 3) = 1 - P(Y \le 3) = 1 - F_Y(3) = 1 - \left(\frac{1}{2} + \frac{1}{\pi}\arctan 1\right) = \frac{1}{4}.$$

前面讲过独立的随机事件 A 和 B 有 P(AB) = P(A)P(B), 下面介绍随机变量的独立性:

定义 5.4 设 X,Y 为二维随机变量, 对任意 $x\in(-\infty,+\infty)$ 和 $y\in(-\infty,+\infty)$, 若事件 $X\leqslant x$ 和 $Y\leqslant y$ 相互独立, 即

$$P(X \leqslant x, Y \leqslant y) = P(X \leqslant x) \cdot P(Y \leqslant y) \quad \Leftrightarrow \quad F(x, y) = F_X(x)F_Y(y),$$

则称随机变量 X 与 Y 相互独立.

5.2 二维离散型随机变量 79

设随机变量 X 与 Y 相互独立, 则 f(X) 与 g(Y) 也相互独立, 其中 f(x) 和 g(y) 是连续或分段连续函数. 例如: 若随机变量 X 与 Y 相互独立, 则 X^2 与 Y^3 相互独立, $\sin X$ 与 $\cos Y$ 相互独立.

5.2 二维离散型随机变量

定义 5.5 若二维随机变量 (X,Y) 的取值是有限个或无限可列的, 称 (X,Y) 为二维离散型随机变量. 设离散型随机变量 (X,Y) 的取值分别为 $(x_i,y_i), i=1,2,\cdots,j=1,2,\cdots,$ 则称

$$p_{ij} = P(X = x_i, Y = y_j)$$

为 (X,Y) 的联合分布列. 二维随机变量的联合分布列可表示为

Y X	y_1	y_2		y_j	• • •
x_1	p_{11}	p_{12}	• • •	p_{1j}	• • •
x_2	p_{21}	p_{22}	• • •	p_{2j}	• • •
:	:	:		:	
x_i	p_{i1}	p_{i2}	• • •	p_{ij}	• • •
:	:	÷		÷	٠.

根据分布列的性质可知 $p_{ij} \ge 0$ 和 $\sum_{i,j} p_{ij} = 1$. 根据二维随机变量 (X,Y) 的联合分布列 p_{ij} ,可得到随机变量 X 的边缘分布列

$$P(X = x_i) = \sum_{j=1}^{\infty} P(X = x_i, Y = y_j) = \sum_{j=1}^{\infty} p_{ij} = p_{i}.$$

同理可得随机变量 Y 的边缘分布列

$$P(Y = y_j) = \sum_{i=1}^{\infty} P(X = x_i, Y = y_j) = \sum_{i=1}^{\infty} p_{ij} = p_{\cdot j}$$
.

将二维随机变量的联合分布列和边缘分布表示在同一个表格中有

Y X	y_1	y_2		y_j		p_{i} .
x_1	p_{11}	p_{12}	• • •	p_{1j}	• • •	p_1 .
x_2	p_{21}	p_{22}		p_{2j}	• • •	p_2 .
÷	:	:		:		:
x_i	p_{i1}	p_{i2}		p_{ij}		p_{i} .
:	:	÷		÷	٠.	:
$p_{\cdot j}$	$p_{\cdot 1}$	$p_{\cdot 2}$		$p_{\cdot j}$		1

例 5.2 有三个数 1,2,3,随机变量 X 表示从这三个数中随机地抽取一个数,随机变量 Y 表示从 1 到 X 中随机抽取一个数. 求 (X,Y) 的联合分布列和边缘分布列.

解 由题意可知随机变量 X 和 Y 的取值为 1,2,3: 当 X=1 时有 Y=1; 当 X=2 时有 Y 等可能取 1,2: 当 X=3 时 Y 等可能取 1,2,3. 从而得到

X Y	1	2	3	p_i .
1	1/3	0	0	1/3
2	1/6	1/6	0	1/3
3	1/9	1/9	1/9	1/3
$p_{\cdot j}$	11/18	5/18	1/9	1

定义 5.6 对离散型随机变量 (X,Y), 若对所有 (x_i,y_i) 有

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j), \quad \text{II} \quad p_{ij} = p_{i}.p_{\cdot j}$$

称离散随机变量 X 与 Y 相互独立.

定理 5.1 对二维离散型随机变量 (X,Y), 定义 5.4 与上述定义等价, 即对所有 (x_i,y_i) 有

$$F(x_i, y_j) = F_X(x_i)F_Y(y_j) \iff p_{i,j} = p_{i\cdot p\cdot j}.$$

证明 首先证明必要性, 根据定义 5.4 分布函数的独立性有

$$\begin{aligned} p_{i,j} &= F(x_i, y_j) - F(x_{i-1}, y_j) - F(x_i, y_{j-1}) + F(x_{i-1}, y_{j-1}) \\ &= F_X(x_i) F_Y(y_j) - F_X(x_{i-1}) F_Y(y_j) - F_X(x_i) F_Y(y_{j-1}) + F_X(x_{i-1}) F_Y(y_{j-1}) \\ &= (F_X(x_i) - F_X(x_{i-1})) F_Y(y_j) - (F_X(x_i) - F_X(x_{i-1})) F_Y(y_{j-1}) \\ &= p_i \cdot F_Y(y_j) - p_i \cdot F_Y(y_{j-1}) = p_i \cdot p_{\cdot j}. \end{aligned}$$

其次证明充分性,根据定义5.6有

$$F(x_i, y_j) = \sum_{l \leqslant i} \sum_{k \leqslant j} p_{lk} = \sum_{l \leqslant i} \sum_{k \leqslant j} p_{l \cdot p \cdot k} = \sum_{l \leqslant i} p_{l \cdot} \sum_{k \leqslant j} p_{\cdot k} = F_X(x_i) F_Y(y_j).$$

定理 5.2 设离散随机变量 X 和 Y 独立、对任意集合 $A, B \in \mathbb{R}$,有事件 $X \in A$ 和 $Y \in B$ 独立.

证明 对离散型随机变量, 不放假设 $A = \{x_1, x_2, \dots, x_k\}$ 和 $B = \{y_1, y_2, \dots, y_l\}$, 则有

$$P(X \in A, Y \in B) = \sum_{i=1}^{k} \sum_{j=1}^{l} p_{ij} = \sum_{i=1}^{k} \sum_{j=1}^{l} p_{i\cdot}p_{\cdot j} = \sum_{i=1}^{k} p_{i\cdot} \sum_{j=1}^{l} p_{\cdot j} = P(X \in A)P(Y \in B).$$

5.3 二维连续型随机变量 81

 y_3

 $1/12 \mid 1/4$

17,5		1, 3,15/4	,			/ 63.06 6 /		,
X Y	y_1	y_2	y_3	p_i .		Y X	y_1	y_2
x_1		1/8			求解可得	$\overline{x_1}$	1/24	1/8
x_2	1/8					x_2	1/8	3/8
$p_{\cdot j}$	1/6				•	$\overline{p_{\cdot j}}$	1/6	1/2

例 5.3 设离散型 X, Y 独立, 求解 (X, Y) 的联合分布律为

例 5.4 将两个球 A, B 放入编号为 1, 2, 3 的三个盒子中, 用随机变量 X 放入 1 号盒的球数, 用随机变量 Y表示 放入 2 号盒的球数, 判断 X 和 Y 是否独立.

解 由题意可知

X Y X	0	1	2	$igg _{p_i.}$
0	1/9	2/9	1/9	4/9
1	2/9	2/9	0	4/9
2	1/9	0	0	1/9
$p_{\cdot j}$	4/9	4/9	1/9	

由此可知 $P(X = 2, Y = 2) \neq P(X = 2) P(Y = 2)$, 所以 X 和 Y 不独立.

5.3 二维连续型随机变量

定义 5.7 设二维随机变量的分布函数为 F(x,y), 如果存在二元非负可积函数 f(x,y) 使得对任意实数对 (x,y) 有

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv,$$

则称 (X,Y) 为二维连续型随机变量, 称 f(x,y) 称为二维随机变量 (X,Y) 的概率密度, 或称为随机变量 X 和 Y 的联合概率密度.

根据概率密度的定义可知概率密度函数 f(x,y) 满足如下性质:

- 1) $f(x,y) \ge 0$.
- 2) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1.$
- 3) 若 f(x,y) 在 (x,y) 连续, 则 $f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$.
- 4) 若 G 为平面上的一个区域,则点 (X,Y) 落入 G 的概率为

$$P((X,Y) \in G) = \int \int_{(x,y) \in G} f(x,y) dx dy.$$

例 5.5 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = \begin{cases} ce^{-(3x+4y)} & x > 0, y > 0\\ 0 & \text{其它} \end{cases}$$

求 P(0 < X < 1, 0 < Y < 2).

解 根据概率密度的性质可知

$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} c e^{-(3x+4y)} dx dy = \frac{c}{12},$$

由此可得 c=12. 进一步可得

$$P(0 < X < 1, 0 < Y < 2) = 12 \int_0^1 \int_0^2 e^{-(3x+4y)} dx dy = (1 - e^{-3})(1 - e^{-8}).$$

例 5.6 设二维随机变量 (X,Y) 的概率密度

$$f(x,y) = \begin{cases} x^2 + axy & 0 \leqslant x \leqslant 1, 0 \leqslant y \leqslant 2\\ 0 & \not\exists \dot{\Xi}, \end{cases}$$

求 $P(X + Y \ge 1)$.

给定二维随机变量的联合概率密度 f(x,y), 下面定义随机变量 X 和 Y 的边缘概率密度:

定义 5.8 设二维随机变量 (X,Y) 的概率密度为 f(x,y), 则随机变量 X 和 Y 的边缘概率密度为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$
 $f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$

上述的边缘概率密度可完全根据边缘分布函数 $F_X(x)$ 的定义导出, 首先可知随机变量 X 的边缘分布函数为

$$F_X(x) = P(X \leqslant x) = P(X \leqslant x, Y < \infty) = F(x, +\infty)$$
$$= \int_{-\infty}^x \int_{-\infty}^{+\infty} f(t, y) dt dy = \int_{-\infty}^x \left(\int_{-\infty}^{+\infty} f(t, y) dy \right) dt,$$

由此可得随机变量 X 的边缘概率密度为

$$f_X(x) = F_X'(x) = \int_{-\infty}^{+\infty} f(x, y) dy.$$

5.3 二维连续型随机变量 83

例 5.7 设二维随机变量 (X,Y) 的概率密度

$$f(x,y) = \begin{cases} cxy & 0 \leqslant x \leqslant y \leqslant 1\\ 0 & \not\exists \Xi, \end{cases}$$

求 $P(X \leq 1/2)$.

解 根据概率密度的性质有

$$1 = \int_0^1 \int_x^1 cxy dy dx = c \int_0^1 x(1 - x^2)/2 dx = c/8,$$

由此可解 c=8. 当 $0 \le x \le 1$ 时随机变量 X 的边缘概率密度为

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{x}^{1} 8xy dy = 4x(1 - x^2),$$

进一步有

$$P(X \le \frac{1}{2}) = \int_0^{\frac{1}{2}} 4x(1-x^2)dx = \frac{7}{16}.$$

下面定义二维连续随机变量的独立性:

定义 5.9 对任意 $x \in (-\infty, +\infty)$ 和 $y \in (-\infty, +\infty)$, 若二维连续随机变量 (X, Y) 的概率密度与边缘概率密度满足

$$f(x,y) = f_X(x)f_Y(y),$$

则称随机变量 X 和 Y 相互独立.

对连续随机变量, 上述独立性定义与基于分布函数的独立性 (定义 5.4) 等价, 即有如下定理:

定理 5.3 设二维随机变量 (X,Y) 的概率密度为 f(x,y), 则有

$$F(x,y) = F_X(x)F_Y(y) \iff f(x,y) = f_X(x)f_Y(y).$$

证明 首先证明充分性: 若二维连续随机变量满足 $F(x,y) = F_X(x)F_Y(y)$, 则有

$$\int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) du dv = \int_{-\infty}^{x} f_X(u) du \int_{-\infty}^{y} f_Y(v) dv$$

对上式两边同时求偏导有

$$f(x,y) = f_X(x)f_Y(y).$$

其次证明必要性: 若 $f(x,y) = f_X(x)f_Y(y)$, 则有

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv = \int_{-\infty}^{x} \int_{-\infty}^{y} f_X(u) f_Y(v) du dv$$