EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRES

VIDEO ANALYSIS

OPEN CV FOR VIDEO PROCESSING

Date	04 November 2022
Team ID	PNT2022TMID1340
Project Name	Emerging Methods for Early Detection of Forest Fires

Importing The ImageDataGenerator Library import keras from keras.preprocessing.image import ImageDataGenerator Define the parameters/arguments for ImageDataGenerator class

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,rot ati on_range=180,zoom_range=0.2, horizontal_flip=True) test_datagen=ImageDataGenerator(rescale=1./255) *Applying ImageDataGenerator functionality to trainset*

x_train=train_datagen.flow_from_directory(r'/content/drive/MyDriv e/Dataset/train_set',target_size=(128,128),batch_size=32, class_mode='binary')

Found 436 images belonging to 2 classes.

Applying ImageDataGenerator functionality to testset

x_test=test_datagen.flow_from_directory(r'/content/drive/MyDrive / Dataset/test_set',target_size=(128,128),batch_size=32, class_mode='binary')

Found 121 images belonging to 2 classes.

Import model building libraries

#To define Linear initialisation import Sequential from keras.models import Sequential #To add layers import Dense from keras.layers import

Dense

#To create Convolution kernel import Convolution2D from keras.layers import Convolution2D #import Maxpooling layer

from keras.layers import MaxPooling2D #import flatten layer from keras.layers import Flatten import warnings warnings.filterwarnings('ignore')

Initializing the model

model=Sequential()

Add CNN Layer

```
model.add(Convolution2D(32, (3,3),input_shape=(128,128,3),activation='relu'))
#add maxpooling layer model.add(MaxPooling2D(pool_size=(2,2)))
#add flatten layer model.add(Flatten())
```

```
Add Hidden Layer
```

```
#add hidden layer model.add(Dense(150,activation='relu'))
#add output layer
model.add(Dense(1,activation='sigmoid')
)
```

Configure the learning process

model.compile(loss='binary_crossentropy',optimizer="adam",metrics=[
"ac curacy"])

Train the model model.fit_generator(x_train,steps_per_epoch=14,epochs=10,validation_ da ta=x_test, validation_steps=4) Epoch 1/10 1.3060 - accuracy: 0.7775 - val loss: 0.5513 val_accuracy: 0.8512 Epoch 2/10 14/14 [=======] - 26s 2s/step - loss: 0.3178 - accuracy: 0.8807 - val loss: 0.1299 val accuracy: 0.9421 Epoch 3/10 14/14 [=======] - 26s 2s/step - loss: 0.2226 - accuracy: 0.9106 - val_loss: 0.1311 val_accuracy: 0.9421 Epoch 4/10 0.1836 - accuracy: 0.9174 - val_loss: 0.1129 val_accuracy: 0.9339 Epoch 5/10

14/14 [=======] - 30s 2s/step - loss:

0.1675 - accuracy: 0.9243 - val_loss: 0.0925 -

val accuracy: 0.9669

```
Epoch 6/10
 14/14 [========] - 26s 2s/step - loss:
 0.1884 - accuracy: 0.9289 - val_loss: 0.1287 - val_accuracy:
 0.9339
Epoch 7/10
 14/14 [=======] - 28s 2s/step - loss:
 0.1724 - accuracy: 0.9335 - val_loss: 0.0926 -
 val_accuracy: 0.9752
 Epoch 8/10
 14/14 [=======] - 26s 2s/step - loss:
0.1510 - accuracy: 0.9404 - val_loss: 0.0757 -
 val accuracy: 0.9752 Epoch 9/10
14/14 [=======] - 26s
                                                    0.173 -
2s/step - loss:
                                                    2
accuracy: 0.9174 - val_loss: 0.0537 - val_accuracy: 0.9835
Epoch 10/10
           14/14 [=======] - 26s
    0.154 -
2s/step - loss:
                                                    6
accuracy: 0.9312 - val_loss: 0.0573 - val_accuracy: 0.9835
 <keras.callbacks.History at 0x7f05d66a9c90>
```

Save The Model

model.save("forest1.h5")

Predictions

#import load_model
from keras.model from
keras.models import
load_model #import
image class from keras
from
tensorflow.keras.preproce

```
ssing import image
#import numpy import
numpy as np #import cv2
import cv2 #load the
saved model model =
load model("forest1.h5")
img=image.load_img(r'/co
ntent/drive/MyDrive/Data
set/te st set/forest/
0.48007200 1530881924
_final_forest.jpg')
x=image.img_to_array(img) res =
cv2.resize(x, dsize=(128, 128),
interpolation=cv2.INTER_CUBIC)
#expand the image shape
x=np.expand_di ms(res,axis=0)
pred= model.predict(x)
 1/1 [======] - 0s
126ms/step pred
array([[0.]],
dtype=float32) OpenCV
For Video Processing
pip install twilio
Looking in indexes: https://pypi.org/simple, https://us-
python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: twilio in
/usr/local/lib/python3.7/dist-packages (7.15.1)
Requirement already satisfied: pytz in /usr/local/lib/python3.7/dist-
packages (from twilio) (2022.5)
Requirement already satisfied: requests>=2.0.0 in
/usr/local/lib/python3.7/dist-packages (from twilio) (2.23.0)
```

```
Requirement already satisfied: PyJWT<3.0.0,>=2.0.0 in
/usr/local/lib/python3.7/dist-packages (from twilio) (2.6.0)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1
in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0-
>twilio) (1.24.3)
Requirement already satisfied: certifi>=2017.4.17 in
/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio)
(2022.9.24)
Requirement already satisfied: idna<3,>=2.5 in
/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio)
(2.10)
Requirement already satisfied: chardet<4,>=3.0.2 in
/usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio)
(3.0.4)
pip install playsound
Looking in indexes: https://pypi.org/simple, https://us-
python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: playsound in
/usr/local/lib/python3.7/dist-packages (1.3.0)
#import opency library import
cv2 #import
numpy import numpy
as np
#import image function from keras
from keras.preprocessing import
image #import load_model from
keras
from keras.models import load_model
#import client from twilio API from
twilio.rest import Client
#import playsound package from playsound
import playsound
```

WARNING:playsound:playsound is relying on another python subprocess. Please use `pip install pygobject` if you want playsound to run more efficiently.

#load the saved model
model=load_model("forest1.h
5") #define video
video=cv2.VideoCapture(0) #define
the features
name=['forest','with fire']