实验六 利用MSI设计组合逻辑电路

要求:内容1、内容2、内容3做完要分别检查。

内容1:

1、原理

$$F_{0} = \overline{A} \overline{B} \overline{C} \overline{D}$$

$$F_{1} = \overline{A} \overline{B} \overline{C} \overline{D}$$

$$F_{2} = \overline{A} \overline{B} \overline{C} \overline{D}$$

$$F_{3} = \overline{A} \overline{B} \overline{C} \overline{D}$$

$$F_{4} = \overline{A} \overline{B} \overline{C} \overline{D}$$

$$F_{5} = \overline{A} \overline{B} \overline{C} \overline{D}$$

$$F_{6} = \overline{A} \overline{B} \overline{C} \overline{D}$$

$$F_{7} = \overline{A} \overline{B} \overline{C} \overline{D}$$

A	В	С	F_0	F_1	F_2	F_3	F ₄	F_5	F_6	F ₇
0	0	0	D	1	1	1	1	1	1	1
0	0	1	1	D	_1	1	1	1	1	1
0	1	0	1	1	D	1	1	1	1	1
0	1	1	1	1	1	D	1	1	1	1
1	0	0	1	1	1	1	D	1	1	1
1	0	1	1	1	1	1	1	D	1	1
1	1	0	1	1	1	1	1	1	D	1
1	1	1	1	1	1	1	1	1	1	\overline{D}

2、线路连接,按教材提示连接。G1作为数据输入端。 当G1为低电平时,Yo-Y7均输出高电平;当G1为高电平 时,Yo-Y7根据地址输入选择相应的输出端输出低电平。

注意: 地址输入端S2、S1、So与74LS197的Q3、Q2、Q1依次连接。

3、静态测试 地址输入端接模拟开关,输出端接0-1显示器。对照真值表检测。

4、动态测试

用74LS197连接成8进制。其输出作为地址输入端。观测记录输入输出波形。

内容2:

1、自行设计,根据功能表列出 Y的输出表达式,与151芯片输出 表达式比较后获得151芯片接法。

S_1	S_0	Y
0 0	0	A.B A+B
1 1	0	$\begin{vmatrix} A \oplus & B \\ \overline{A} \end{vmatrix}$

S ₁	S ₀	A	В	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

2、74LS151输出表达式

$$Z=\overline{S2S1S0D0} + \overline{S2S1S0D1} + \overline{S2S1S0D2} + \overline{S2S1S0D3} + S2\overline{S1S0D4} + S2\overline{S1S0D5} + S2\overline{S1S0D6} + S2\overline{S1S0D7}$$

使用151芯片实现Y输出 Y=S1SoAB+S1SoAB+S1SoAB+S1SoAB +S1SoAB+S1SoAB+S1SoAB =mo*Do+m1*D1+m2*D2+m3*D3+m4*D4 +m5*D5+m6*D6+m7*D7(151输出表达式)

=**mo*****o**+**m1B**+**m2B**+**m3**+**m4B**+**m5B**+**m6**+**m7*****o** 与**151**的输出表达式对比得出

令S₂=S₁,S₁=S₀,S₀=A, D₁=D₂=D₄=B,D₅=B 置D₀,D₇=o(低电平),D₃,D₆=₁(高电平) Y=Z 3、静态测试,用"o-1"显示器检查输出是否符合真值表。注意接电源,接地,附加控制端应接低电平。

内容3:

1、设计

半加/减器与全加/减器有区别:只考虑两个加/减数本身,不考虑来自相邻位的进位或借位。

	输入	输出		
S	A	В	Y	C (进/借位)
0	0	0	0	О
О	0	1	1	О
О	1	0	1	О
0	1	1	0	1
1	О	0	0	O
1	0	1	1	1
1	1	0	1	0
1	1	1	0	0

№2、设计流程: 真值表->卡诺图->逻辑表达式->选择器件实现。

(1) 根据真值表直接列出Y和C的逻辑表达式

化简逻辑表达式可得到Y,C关于S,A,B的输出表达式。

(2) 采用卡诺图化简的方法,以Y为例

AB S	00	01	11	10
0	О	1	0	1
1	0	1	0	1

Y=AB+AB,同理可得C的输出表达式。

(3)选择器件实现(门电路或138芯片或151芯片) 以138芯片实现为例

Y= $\overline{S}\overline{A}B+\overline{S}A\overline{B}+\overline{S}A\overline{B}+\overline{S}A\overline{B}=\overline{m_1}$ m2m5m6 C= $\overline{S}AB+\overline{S}\overline{A}B=\overline{m_3}\overline{m_5}$ 以151芯片实现为例,输出表达式对比得出 令S2=S,S1=A,So=B,置Do,D3,D4,D7=o(低电平), D1,D2,D5,D6=1(高电平) Y=Z= SAB+SAB+SAB+SAB = m1+m2+m5+m6

令S2=S,S1=A,So=B, 置Do,D1,D2,D4,D6,D7=o(低电平),D3,D5=1(高电平) C=Z=m3+m5

- 3、静态测试,用"o-1"显示器检查输出是否符合真值表。
- 4、动态测试。74LS197接成8进制计数器,CP1接10KHz方波观测S、A、B、Y、C以及CP1的输出波形,检查是否符合真值表。

内容4

1、在Basys3实验板实现一个六输入二输出的ALU,即完成1bit ALU,包括功能控制端S2、S1、So(拨码开关),数据输入端Ao、Bo、Cn(拨码开关),数据输出端Y、Cn+1(LED灯),ALU功能表见实验指导书P59,要求使用74LS系列IP核实现,TA检查结果。

2、在在Basys3实验板实现一个十二输入二输出的ALU,即完成4bit ALU,包括功能控制端S2、S1、So(拨码开关),数据输入端A、B、Cn、A1、B1、A2、B2、A3、B3(拨码开关),数据输出端Y、Cn+1(LED灯),4bit全加器/全减器运算需考虑上一位的进位/借位,ALU功能表参照实验指导书P59,要求使用74LS系列IP核实现TA检查结果。

实验内容4提示:

(1)全加器、全减器的概念,实现可参考实验指导书P55-57,采用1片74LS138或2片74LS151实现

全加器真值表

	输入		输	出
A _i	B_{i}	C_{i-1}	S_i	C_{i}
0	0	0	0	0
0	O	1	1	0
0	1	0	1	0
0	1	1	O	1
1	О	0	1	0
1	O	1	O	1
1	1	0	0	1
1	1	1	1	1

全减器真值表

Ai	Bi	D i-1	Ci	Di
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

- (2) 可使用IP核包括xup_74LSo8_1.o(与门), xup_74LS32_1.o(或门), xup_74LSo4_1.o(非门), xup_74LS151_1.o(八选一数据选择器), xup_74LS138_1.o(3-8线译码器)在..\source_lib\74IP目录下;
- (3)根据 xup_74LS151_1.o(八选一数据选择器)IP核代码可以看出S_n是高电平时74LS151清零,因此ALU的清零功能可使用S_n端口:
- (4) ibit ALU的输出(Y、Cn+1) 控制,即由S2、S1、So控制ALU的运算结果输出,均可选择74LS151实现;
- (5) vivado block design不允许有悬空的输入引脚,因此门电路芯片未使用的输入引脚都接GND(GND绑定拨码开关实现);
- (6) 1 bit ALU仿真测试文件alu_1_tb.v,在..\3_Create_IPI\sources目录下,注意要将实例名和参数表按实际更改。仿真时间长度设为7000ns,以验证全部真值表;

仿真测试:

```
always begin

for (IN1=0000000; IN1<111111; IN1=IN1+1)

#100;
end
```

(7) 约東文件的设置,可运行Run Synthesis,综合通过后选择Open Synthesized Design,菜单windows打开I/O ports窗口,在窗口中根据Basys3实验板用户手册的引脚对应表绑定输入输出端口,然后ctrl+S保存为.xdc约束文件即可。

(8) 1_bit ALU功能实现后,可将其封装为自定义IP核,新建工程block design 使用该IP核实现4bit ALU。 在现有工程下封装自定义1_bit ALU IP核步骤:

1)左侧导航打开Project Setting,设置新生成IP核所属

类别;

打开Tools菜单,选择Create an Package IP...,在弹出窗口中点击Next,选择封装现有工程中的block design,点击Next设定新生成IP核路径;

③ 点击Next, Finish后, Package IP窗口自动打开,全部默认设置,选择Reviews and Package后,点击Package IP 按钮,则新生成IP核alu_1_v1_o。

(9) 采用自定义IP核alu_1_v1_o实现4bit ALU时, Project Settings的Repository Manager中需要添加前面 设置的alu_1_v1_o所在路径和alu_1_v1_o所使用IP核的路 径;

(10) 4 bit ALU中前一级的进位/借位与下一级ALU运算输入A、B一起作为输入端进入下一级ALU的运算。

下 字验七 译码显示电路

1、使用protues仿真软件完成实验七8位学号的显示,设计并仿真