U. PORTO
FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO
Curso Data / /
Disciplina Ano Semestre
Nome Jui August Truf Barton
Espaço reservado para o avaliador Notas sobre a resolució de 2º Prom de Archizos de 2019/2020
$m(R) = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$
$M(R) = \begin{bmatrix} 1 & 2 \\ -7 & -4 \end{bmatrix}$
r[m(R)] = 2 = dim R(R2). Dade fre dim R(R2) < dim R3,
entre R(R2) c R3 e R mars é sobrejection
Sebendo fre dim N(R) = dim R² - dim R(R²) = 2-2=0,
$N(R) = \{(0,0)\}\$ e Ban $N(R) = \{\}$
pelo pu Réinjectivz.
Célalo de R(R²):
$R(R^2) = \langle \vec{y} = (a_1b_1c) \in R^3 : \vec{y} = R(\vec{x}), \vec{x} \in R^2 \rangle$
R(x,y) = (x+y, x+2y, -2x-y) = (a,b,c) =
× 9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
O sinteme de equipos é pormial e determinado ($\overline{y} \in R(\mathbb{R}^2)$), se e bo le $C-b+3a=0$ (=) $C=-3a+b$
$R(\mathbb{R}^{1}) = \{ \overline{y} = (a, b, -3a + b) \in \mathbb{R}^{3} \} = \{ \overline{y} = a(1,0,73) + b(0,1,1) \in \mathbb{R}^{3} \}$

WV

b) Afendend as resulted obtide me alínea a), sebe-te fue $N(R) = \frac{1}{2}(0,0)$ e R é injectir

funcas s:

$$m(s) = \begin{bmatrix} -1 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 $\Gamma[u(s)] = d_1u_1 S(\mathbb{R}^3) = 2$ $Cut_{N} = d_1u_1 S(\mathbb{R}^3) = 3 - 2 = 1$ $Como_N(s) \neq \{(0,0,0)\} = u_1 + 1 S mes = injective.$

Funças T:

$$m(T) = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 1 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} -1 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} -1 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\Gamma[u(\tau)] = 3 = \dim T(\mathbb{R}^3)$$

Entre dim $N(T) = \dim \mathbb{R}^3 - \dim T(\mathbb{R}^3) = 3 - 3 = 0$
Como $N(T) = \{(0,0,0)\}$ entre $T \neq injection$.

e) Une funció é bijedin se for injedin e sobrejection.

Atendende ao rentrale obtide me alírea a), sebe-se fre $R(\mathbb{R}^2) \subset \mathbb{R}^3$ e R met e' sobrejective; lope R met é bijective.

Atendendende as would obtide me alines b), to be - se fue dim $S(R^3) = 2 < \dim R^3$, puls fue $S(R^3) \subset R^3 \in S$ not i significant; lope S not i bijective.

Alendendo as resultedo obtido me alínez b), sebe-se pre $N(T) = \{(0,0,0)\}\ e \ T \ e' \ injective. Por nutro ledo, sebendo$ $gru dim <math>T(\mathbb{R}^3) = 3 = \dim \mathbb{R}^3$ entro $T(\mathbb{R}^3) = \mathbb{R}^3$ e Té sobrejectin; lope Té bijectin. Notando fue m (T1) = mi (T), entas $m(T) = \frac{1}{|m(T)|} \left[lof m(T) \right]^{T}$ $| w(T) | = \begin{vmatrix} -1 & 1 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} -1 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = -2$ Cof M(T): $\begin{bmatrix} 2 & -1 & 1 \\ 0 & -1 & 1 \\ -2 & 0 & -2 \end{bmatrix}$ $M(T^{1}) = \frac{1}{-2} \begin{bmatrix} 2 & 0 & -2 \\ -1 & -1 & 0 \\ 1 & 1 & -2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -2 & 0 & 2 \\ 1 & 1 & 0 \\ -1 & -1 & 2 \end{bmatrix}$ $T^{-1}(a,b,c) = \frac{1}{2}\begin{bmatrix} -2 & 0 & 2 \\ 1 & 1 & 0 \\ -1 & -1 & 2 \end{bmatrix}\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \frac{1}{2}\begin{bmatrix} -2a+2c \\ a+b \\ -a-b+2c \end{bmatrix}$ $T^{1}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ $(a_{1}b_{1}c) \longrightarrow (-a+c, \frac{a+b}{2}, \frac{-a-b+2c}{2})$

WW

FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

Curso

Data ____/___/____/

Disciplina

Ano Semestre

Nome

Espaço reservado para o avaliador

$$M_{0 \to E_{3}}^{-1} = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Enter
$$U = \frac{1}{E_{3}, U} = \frac{1}{U \to E_{3}} = \frac$$

$$\begin{bmatrix}
-1 & 0 & 0 \\
2 & 1 & -1 \\
-1 & 1 & 1
\end{bmatrix}$$
 E_{3}

Ww

Designando Ez 2 \[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & 2 & Iz & e & B = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \] $M_{B \to E_2} = E_2 = E_$ Oblém-se, portento, $M(R) = M(R) \stackrel{H}{B}_{+}E_{2} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 2 \\ -1 & 3 \\ -1 & -3 \end{bmatrix}$ 6) M(TSR) = M(T) M(S) M(R) = $E_{3,V} E_{3} B_{,E_{3}} =$ $= \begin{bmatrix} -1 & 0 & 0 \\ 2 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ -1 & 3 \\ -1 & -3 \end{bmatrix} =$ $= \begin{bmatrix} -1 & 0 & 0 \\ 2 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & -8 \\ -1 & -5 \\ 0 & 8 \end{bmatrix} z \begin{bmatrix} 0 & 8 \\ -1 & -29 \\ -1 & 11 \end{bmatrix}_{6, \cup}$

No

4) a) A matriz C é non singular se e to se |C| \$0. < L2 4 - L2-5L1 = 1 4 L1 2 1 B+1 1 (-L3-2L) $= - (1) (-1)^2$ 1 3- β -1 \leftarrow L_2-L_1 \propto -1 β 2 \leftarrow L_3+2L_1 5-50 -1 x+1 10-9B $-(0-(x+1)(4\beta-2))=(x+1)(4\beta-2)$ 1C1 +0 se e hó de x +-1 1 B + 1/2 b) A operação OP1 altera o valor do determinente de metriz A; o déterminente de nove metriz sen ignel as IAI multiplierde por (-2). À opereux OP2 after o valor do determinente de metriz anterior; o déterminente da non metriz sur ignel as determinente antérior multipliade por (-4). A operación OP3 not tem pulque consequência sobre o valor de de himinente. Assim 1B = (-4) (-2) A

Wi

$$\begin{bmatrix} \times \mathbf{I} - m(\tau) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} (=) \begin{bmatrix} x-\alpha & -8 & -b \\ -8 & x-\alpha & -b \\ -b & -b & x-4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} (=)$$

Gntes:
$$m(T) = \begin{cases} 10 & 8 & 4 \\ 8 & 10 & 4 \\ 4 & 4 & 4 \end{cases}$$
 $e \lambda_1 = \alpha = Z$

Célculo des restrutes mbres prépries:

$$\begin{cases} \lambda_2 + \lambda_3 = 22 \\ \lambda_2 \lambda_3 = 40 \end{cases} \qquad \begin{cases} \lambda_2 = 2 \\ \lambda_3 = 20 \end{cases}$$

Valor propries:
$$\lambda_1 = \lambda_2 = 2$$

$$\lambda_3 = 20$$

$$E(z) = \{(x, y, z) \in \mathbb{R}^3 : 2x + 2y + 7 = \{(x, y, -2x - 2y) \in \mathbb{R}^3\} = \{(x, y, -2x - 2y) \in \mathbb{R}^3\} = \{(x, y, -2x - 2y) \in \mathbb{R}^3\}$$
belo he

*

TT	DODTO
U.	PURIU

FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

Curso

Data / /

Disciplina

Ano Semestre

Nome

Espaço reservado para o avaliador

$$[20I - m(T)]\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 10 - 8 - 4 & 0 \\ -8 & 10 - 4 & 0 \\ -4 & -4 & 16 & 0 \end{bmatrix}$$

(=)
$$y = 2 \pm A \times = 2 \pm 2$$

$$E(20) = \{(x,y,z) \in \mathbb{R}^3 : x = y = zz\} = \{(2z, zz, z) \in \mathbb{R}^3\} = \{(2z, zz, z) \in \mathbb{R}^3\}$$

O conjunto V e' um conjunto de très vectous prépries linearmente indépendentes, ja que resulte de renuirat de bases de vectous prépries associades à valores prépries distintes; logo V e' une bare de vectous prépries par o espeço R³.

Nestes condicion à metriz m(T) é diagnalizable.

$$T(2,2,1) = 20(2,2,1) = (40,40,20)$$

$$T(1,0,-2) = 2(1,0,-2) = (2,0,-4)$$

$$T(0,1,-2) = 2(0,1,-2) = (0,2,-4)$$

$$M(T)_{0,E} = \begin{bmatrix} 40 & 2 & 0 \\ 40 & 0 & 2 \\ 20 & -4 & -4 \end{bmatrix}_{0,E}$$

Tabendo fra

$$T(2,2,1) = 20(2,2,1) = (20,0,0)$$

$$T(1,0,-2) = 2(1,0,-2) = 2(0,2,0) U$$

$$T(0,1,-2) = 2(0,1,-2) = (0,0,2) u$$

entas

$$m(T)_{0,0} = \begin{bmatrix} 20 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}_{0,0}$$

c) Considerando

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = I \quad e \quad B = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad extra S$$

$$\vec{M}_{B+E} = \frac{1}{181} \begin{bmatrix} \omega + B \end{bmatrix}^T = \frac{1}{4} \begin{bmatrix} 0 + 0 \\ 2 - 5 + 1 \\ 0 - 2 - 2 \end{bmatrix}^T = \frac{1}{4} \begin{bmatrix} 0 + 2 & 0 \\ 4 - 5 & 2 \\ 0 + 1 - 2 \end{bmatrix}$$

$$|B| = \begin{vmatrix} 2 & 1 & 1 \\ 2 & 0 & 0 \\ 1 & 0 & -2 \end{vmatrix} = (1)(-1)^{3} \begin{vmatrix} 2 & 0 \\ 1 & -2 \end{vmatrix} = 4$$

$$= \frac{1}{4} \begin{pmatrix} 0 & 2 & 0 \\ 4 & -5 & 2 \\ 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} 40 & 10 & 2 \\ 40 & 8 & 0 \\ 0 & 2 & 4 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 80 & 16 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{pmatrix} = \begin{pmatrix} 20 & 4 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \frac{1}{8} \frac{1}{8}$$

A	matriz un triz	m(T) B	,B & KW	seme Julan	Ihunte, tzl	à pue	mutaiz	m(T)	,0 je	fue a	exaste
24	٨	M (T/8,B	= P	m(T	ا سی	2					
			1								
Α	metaiz.				retaiz	de	nude	nça de	ban c	le B	pare
υ,	's oti	, М _{в-}		-1							
		M_{B}	, U	u B				a			
lin	hu	U =	2 1 2 0 1 -2	0 1	2	Вг	2 1 2 0 1 0	1 0 -2			
34	8		8								
			ė	7							
		*		3						* j	
				×							
				9							
			<u>.</u>			2					
	9									В	*
							~				
										,	6
										20-115-2-10-12-1-10-12	,
3		1				285					
								3			ς ,
		3		3	7.					-	
 2 1				_						N. S. C.	
							55				
								5			

WW