Navttac Mid Exam

Question 1

```
In [113]: a=5
for i in range(1,a+1):
    print("*" * i)
    if i == a:
        for z in range(a-1,0,-1):
            print("*" * z)

*
    **
    ***
    ***
    ***
    ***
    ***
    ***
    ***
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    **
    *
    **
    *
    **
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
    *
```

Question 2

Out[81]:

	YearOfBirth	LifeExpantancy
0	1930	59.7
1	1940	62.9
2	1950	70.2
3	1965	69.2
4	1973	71.4
5	1982	74.5
6	1987	75.0
7	1992	75.7
8	2010	78.7

```
In [82]: # a. Decide dependent and independent
```

Ans. YearOfBirth is independent & LifeExpantancy is dependent

```
In [83]: ## b. scatter plot
    import matplotlib.pyplot as plt

df.plot(kind="scatter",x="YearOfBirth",y="LifeExpantancy")
    plt.title("YearOfBirth vs LifeExpantancy")
    plt.show()
```

YearOfBirth vs LifeExpantancy


```
In [84]: ## c. find out linear Regression model
         import numpy as np
         from sklearn.metrics import mean absolute error, mean squared error
         from sklearn.linear model import LinearRegression
         from sklearn.model selection import train_test_split
         x = np.array(df["YearOfBirth"]).reshape(-1,1)
         y = np.array(df["LifeExpantancy"])
         x_train ,x_test ,y_train ,y_test = train_test_split(x,y,test_size=0.2 ,random_state=42)
         x train ,x test ,y train ,y test
Out[84]: (array([[1982],
                  [1930],
                  [2010],
                  [1950],
                  [1973],
                  [1965],
                 [1987]], dtype=int64),
          array([[1992],
                 [1940]], dtype=int64),
          array([74.5, 59.7, 78.7, 70.2, 71.4, 69.2, 75.]),
          array([75.7, 62.9]))
In [85]: model = LinearRegression()
         model.fit(x train , y train)
Out[85]:
          ▼ LinearRegression
          LinearRegression()
In [86]: y preds = model.predict(x test)
         y preds
         y_test,y_preds
Out[86]: (array([75.7, 62.9]), array([75.86958128, 64.41293103]))
```

```
In [87]: mean_absolute_error(y_test ,y_preds)
Out[87]: 0.8412561576354669
In [88]: ## d.
         DateOfBirth = 2002
         mylifeExpentancy = model.predict([[DateOfBirth]])
         print("My life expantancy is ",mylifeExpentancy)
         My life expantancy is [78.07278325]
 In [ ]:
         need tobe predicted = np.array(range(1930,2011,5)).reshape(-1,1)
         need tobe predicted
Out[89]: array([[1930],
                 [1935],
                 [1940],
                 [1945],
                 [1950],
                 [1955],
                 [1960],
                 [1965],
                 [1970],
                 [1975],
                 [1980],
                 [1985],
                 [1990],
                 [1995],
                 [2000],
                 [2005],
                 [2010]])
```

Out[91]:

	need_tobe_predicted	y_need_pred
0	1930	62.209729
1	1935	63.311330
2	1940	64.412931
3	1945	65.514532
4	1950	66.616133
5	1955	67.717734
6	1960	68.819335
7	1965	69.920936
8	1970	71.022537
9	1975	72.124138
10	1980	73.225739
11	1985	74.327340
12	1990	75.428941
13	1995	76.530542
14	2000	77.632143
15	2005	78.733744
16	2010	79.835345

```
In [92]: ## e. plot line plot of predicted values
plt.plot(dataPred["need_tobe_predicted"],dataPred["y_need_pred"]);
plt.xlabel("need_tobe_predicted")
plt.ylabel("y_need_pred")
```

Out[92]: Text(0, 0.5, 'y_need_pred')

Question 3

Question 4

Out[103]:

	name	score	attempts	qualify
а	Anastasia	12.5	1	yes
b	Dima	9.0	3	no
С	Kathrine	16.5	2	yes
d	James	NaN	3	no
е	Emily	9.0	2	no
f	Micheal	20.0	3	yes
g	Matthews	14.5	1	yes
h	Laura	NaN	1	no
i	Kelvin	8.0	2	no
j	jonas	19.0	1	yes

In [118]: data.iloc[0:3]

Out[118]:

	name	score	attempts	qualify
а	Anastasia	12.5	1	yes
b	Dima	9.0	3	no
С	Kathrine	16.5	2	yes

In []: