8 9 10 S

APELLIDO y nombre (en letra de imprenta):

Examen de Análisis Matemático II - 2022 - 7/7/2022

Parte teórica - 22

- 8. (10 puntos) Sea f
 una función acotada en el intervalo [a,b] y sea
nP,Qdos particiones de [a,b]. Demostrar lo siguiente.
 - a) Si $P \subset Q$, entonces $s(f, P) \leq s(f, Q)$.
 - b) $s(f,P) \leq S(f,Q)$. (Dar por sabida la afirmación análoga a la de (a) para sumas superiores.)
- 9. (11 puntos) Demostrar la fórmula de sustitución: Si f y g son funciones tales que f y g' son continuas, entonces

$$\int_{g(a)}^{g(b)} f = \int_{a}^{b} (f \circ g) g'.$$

10. (9 puntos) Encontrar el polinomio de Taylor de orden n de la función $g\left(x\right)=1/\left(1+x^2\right)$ alrededor de a=0, y verificarlo. Sugerencia: Considerar $y=-x^2$ en el producto

$$(1-y)(1+y+y^2+y^3+\cdots+y^n)$$

y para la verificación usar el siguiente resultado: Sea f una función con derivadas de todos los órdenes en el punto a. Si P es un polinomio en x-a de grado menor o igual que n tal que

$$\lim_{x \to a} \frac{f(x) - P(x)}{(x - a)^n} = 0,$$

entonces P es el polinomio de Taylor de orden n de f alrededor de a.

APELLIDO y nombre (en letra de imprenta):

Examen de Análisis Matemático II - 2022 - 7/7/2022

Parte teórica - 21

8. (12 puntos) Demostrar el primer criterio de integrabilidad: Sea $f:[a,b] \to \mathbb{R}$ una función acotada. Si existen $\ell \in \mathbb{R}$ y una sucesión de particiones $\{P_n\}$ de [a,b] tales que

$$\lim_{n \to \infty} s(f, P_n) = \lim_{n \to \infty} S(f, P_n) = \ell,$$

entonces f es integrable en [a,b] y $\int_{a}^{b} f(x) dx = \ell$.

9. (9 puntos) Sea $\Gamma:(0,\infty)\to\mathbb{R}$ la función Γ , definida por

$$\Gamma\left(x\right) = \int_{0}^{\infty} t^{x-1}e^{-t} dt.$$

Mostrar que $\Gamma(x+1) = x\Gamma(x)$ para todo $\mathbf{x} \geq \mathbf{1}$. Dar por sabido que $\lim_{\beta \to \infty} \beta^x e^{-\beta} = 0$ para todo x > 0.

10. (9 puntos) Sea $\sum_{n=0}^{\infty} a_n (x-a)^n$ una serie de potencias tal que

$$\lim_{n \to \infty} \sqrt{a_n} = \ell \ge 0$$

 $(\ell \text{ un número real})$. Mostrar que que el radio de convergencia de la serie es igual a $1/\ell$, con la convención de que $1/0 = \infty$. Dar por sabido el criterio de la raíz para la convergencia de series numéricas.