Diseño, desarrollo, implementación y prueba de un simulador cuántico para el algoritmo de Simon

Autor: Rodrigo Arias Mallo **Director:** Vicente Moret Bonillo

18 de febrero de 2016

Introducción

Resumen: Resolución de un problema mediante un algoritmo cuántico. Simulación y comprobación de los resultados.

- Presentación del problema
- Solución clásica
- Solución cuántica
- Complejidad teórica
- Simulador
- Resultados experimentales
- Conclusiones y trabajo futuro

Problema de Simon

Sea f una función binaria

$$f: \{0,1\}^n \to \{0,1\}^n$$

que cumple la propiedad

$$f(x) = f(y) \iff y = x \oplus s$$

con $x, y, s \in \{0, 1\}^n$ y el período $s \neq 0$.

Objetivo: Encontrar s tratando la función f como una caja negra.

Función f de ejemplo

Ejemplo de 2 bits, y un período ${m s}=01$

$f(\boldsymbol{x})$
00
00
01
01

$$f(\mathbf{x}) = f(\mathbf{y}) \iff \mathbf{y} = \mathbf{x} \oplus \mathbf{s}$$

 $f(00) = f(01) \iff 01 = 00 \oplus 01$
 $f(10) = f(11) \iff 11 = 10 \oplus 01$

Solución clásica

 Una solución sencilla consiste en probar entradas hasta obtener una salida repetida.

$$f(00) = f(01) \implies 01 = 00 \oplus s \implies s = 00 \oplus 01 = 01$$

- ▶ Hay $2^n/2$ salidas diferentes.
- ▶ Es necesario probar en el peor caso $2^n/2 + 1$ entradas: $O(2^n)$.

Solución cuántica: $O(2^n) \to O(n)$

- Para solucionar este problema, Daniel R. Simon propuso una solución empleando la computación cuántica.
- ▶ Soluciona el problema en O(n).

Primero se inicializa el circuito con ceros.

$$|\psi_0\rangle = |00,00\rangle$$

Se aplica el operador de Hadamard sobre la línea superior, obteniendo un estado **entrelazado**.

$$|\psi_1\rangle = \frac{1}{2} \Big(|00,00\rangle + |01,00\rangle + |10,00\rangle + |11,00\rangle \Big)$$

El operador U_f definido como $U_f |x\rangle |y\rangle = |x\rangle |y \oplus f(x)\rangle$, realiza el cómputo de f en **paralelo**.

$$|\psi_2\rangle = \frac{1}{2} \Big(|00, f(00)\rangle + |01, f(01)\rangle + |10, f(10)\rangle + |11, f(11)\rangle \Big)$$

Finalmente el operador de Hadamard se aplica de nuevo, produciendo el efecto de **interferencia**.

$$\begin{split} |\psi_3\rangle &= 1/4 \big(+ |00,00\rangle + |01,00\rangle + |10,00\rangle + |11,00\rangle \\ &+ |00,00\rangle - |01,00\rangle + |10,00\rangle - |11,00\rangle \\ &+ |00,01\rangle + |01,01\rangle - |10,01\rangle - |11,01\rangle \\ &+ |00,01\rangle - |01,01\rangle - |10,01\rangle + |11,01\rangle \big) \end{split}$$

Obteniéndose

$$|\psi_3\rangle = 1/2 (|\mathbf{00}, 00\rangle + |\mathbf{00}, 01\rangle + |\mathbf{10}, 00\rangle - |\mathbf{10}, 01\rangle)$$

Al medir la línea superior se obtienen vectores ${\pmb x}$ tal que ${\pmb x}\cdot {\pmb s}=0$, con igual probabilidad.

$$x \in \{00, 10\}$$

Complejidad teórica

Una vez obtenidos n-1 vectores ${\boldsymbol x}$ linealmente independientes, se puede resolver el sistema de ecuaciones y calcular ${\boldsymbol s}$.

$$\begin{cases} \mathbf{x}^{(1)} \cdot \mathbf{s} = 0 \\ \mathbf{x}^{(2)} \cdot \mathbf{s} = 0 \\ \vdots \\ \mathbf{x}^{(n-1)} \cdot \mathbf{s} = 0 \end{cases}$$

El número de ejecuciones promedio E[R] será:

$$E[R] = \sum_{j=1}^{\infty} j \cdot p(R = j)$$

Siendo p(R = j) la probabilidad de terminar en j iteraciones.

Complejidad teórica

Construyendo una recurrencia, se calcula ${\cal E}[{\cal R}]$

$$E[R] = \prod_{j=0}^{n-2} (1-2^{j-n+1}) \cdot \sum_{p=1}^{\infty} p \cdot 2^{(p-n+1)(-n+1)} \cdot \binom{p-1}{n-2}_{q=2}$$

Obteniéndose computacionalmente los valores:

\overline{n}	2	3	4	5	6	7	8	9	10
E[R]	2.00	3.33	4.47	5.54	6.57	7.59	8.59	9.60	10.60
$\frac{E[R]}{n}$	1.00	1.11	1.12	1.11	1.10	1.08	1.08	1.07	1.06

Se observa una complejidad lineal: O(n)

Simulador cuántico

Realiza la simulación del circuito, la medición y el procesado clásico final, imitando el comportamiento de un ordenador cuántico.

Problema: La simulación cuántica es muy costosa.

Diseño del simulador

Permite reutilizar el estado final $|\psi_3\rangle$ tras la simulación cuántica para realizar las mediciones.

Estructuras de datos

- Para almacenar los estados y operadores se emplean matrices huecas.
- ▶ Permiten ahorrar espacio y reducir el número de operaciones.
- Implementados en paquetes de cálculo como scipy
- Varios formatos (COO y CSR).

El simulador está implementado en python empleando los paquetes qutip, scipy y numpy.

Análisis de la simulación

- Análisis de tiempo y espacio de la simulación
- Análisis de complejidad del circuito cuántico.
- La simulación del circuito cuántico se divide en dos etapas QC_0 y QC_f para permitir un análisis más detallado.

Tiempo de la simulación

Figura: Tiempo de simulación en escala logarítmica.

Espacio de la simulación

Figura: Espacio necesario para la simulación en bytes (escala logarítmica). El espacio requerido sin emplear matrices huecas, usando matrices densas se muestra como S_D . La memoria disponible para la simulación es $S_{MAX}=2^{29}$.

Complejidad experimental del algoritmo de Simon

Figura: Número esperado de iteraciones a medida que aumentan los qubits. Se observa el valor experimental R_{μ} comparado con el teórico R'_{μ} .

Conclusiones

- La computación cuántica puede resolver algunos problemas **mucho** más rápido que la computación clásica.
- ► Realizar la simulación de un circuito cuántico es muy costoso.
- La simulación de circuitos permite comprobar los resultados teóricos.

Trabajo futuro

- Probar otros algoritmos cuánticos.
- Realizar el análisis de un algoritmo cuántico de forma automática, para determinar su complejidad.

Gracias por su atención.