QG 人工智能组 2025 年暑期培训任务书

总体概括

- 2025 年暑假训练营开始时间为 07 月 07日,持续时间为 42 天,共 6 周。
- 训练营期间,每位实习生需每两天上交一次学习笔记(和代码);每位实习生需每周上交一次周记,周记字数不得少于800字;每周举行一次小组会议,及时跟进实习生进度。
- 本次训练营培训主要在于掌握差分隐私、多智能体一致性和车联网的基础理论知识,吸收并复现本团队的现有成果,以及基础工程能力的培养,为将来进行学术研究,参加比赛打好基础。

培养目标

- 学习差分隐私、多智能体一致性和车联网的基础理论知识,吸收并复现本团队的现有成果,了解差分隐私数据 轨迹发布和切换拓扑多智能体的发展脉络和研究热点。通过实际的论文锻炼,培养实习生进行学术研究的基本 素质,具备一定的查找和阅读论文的能力,为未来学术研究做准备。
- 培养一定的工程开发能力,为将来参加比赛及参与本团队项目开发做准备。

时间安排

• 培训时间: 07.07~08.17

• 每日学习时段

上午: 08: 30~11: 30下午: 14: 30~17: 30晚上: 19: 30~22: 30

参与人员

23级: 张秉瀚、王韵清、张奕霖、邹欣潼、罗彬

24级: 陈英锐、李文争、陆潇锋、林钰莹、李兆希

具体安排

24级

时间段	学习内容	要求	备注
07.07 - 07.09	MAS基础理 论学习	了解多智能体一致性问题中的 一些基本内容(如多智能体一 致性的基本概念、邻居智能 体、一致性、稳定性、收敛 率、固定拓扑与切换拓扑 等)。	阅读学习《多智能体一致性研究》的第一章。
07.10 - 07.12	DP与CAV基 础理论学习	了解差分隐私中的一些基本内容(如差分隐私的基本概念、敏感度、隐私预算、隐私噪声机制等);了解车联网的基础知识(如车联网架构、多车辆编队等)。	观看学习 <u>http://www.gautamkamath.com/CS</u> 860-fa2020.html上的第 1 ~ 7 节。完成 《Feedback-based platoon control for connected autonomous vehicles under different communication network topologies》的仿真复现。
07.13- 07.15	仿真复现团 队现有成果	完成以下论文的仿真复现: 1. Motif(MAS) 2. DSG(MAS) 3. HSBMAS(MAS) 4. AWDP(DP) 5. 基于多车辆集群的多编队一致性协议	复现结果与论文中的 基本一致 。
07.16 - 07.18	机器学习与 MindSpore 框架的学习	掌握传统的机器学习与深度学习知识,并使用MindSpore框架实现相应代码了解CANN工具链,以及ModelZoo模型获取与适配	观看 <u>https://www.bilibili.com/video/BV1Wv41</u> <u>1h7kN/?spm_id_from=333.337.search-card.al</u> <u>l.click</u> 。着重学习MindSpore的官方文档。
7.19- 7.20	昇腾硬件模 型转化与部 署流程	开发板的烧录与部署 昇腾ATC工具转化实践 (PyTorch → ONNX → OM) 模型推理测试与分析	查阅官方相关文档。
07.21- 07.29	中期考核	届时公布	
07.30- 08.05	立体大模型 结构学习	模型模块分层设计(感知层、 认知层、决策层) 多源数据融合(图像 + 遥感 + 路网 + 文本) 模型组件复用与拆解示例 路况预测,时空建模方法 (Transformer+图神经网络)	
08.06- 08.17	最终考核	届时公布	

注:

1. 在暑期学习过程中,任何作业和文档均要求使用 git 保存到GitHub仓库中,仓库目录结构要求如下所示:

- 2. 要求每两天 (23: 59前) 上交一次学习笔记和代码, 笔记字数原则上不少于800字。
- 3. 要求每周日(23:59前)上交一次周记,周记字数不得少于800字。
- 4. 每召开一次小组会议,每位实习生对所做工作进行汇报,并进行答疑解惑以及交流。

23级

项目安排

时间	内容	要求	人员	备注
07.10 - 07.16	立体大模型结构学习	基本熟悉立体大模型及其在低空经 济场景的应用,自行组织组会讨论 学习结果	全员参加	模型模块分层设计(感知层、认知层、决策层) 多源数据融合(图像+遥感+路网+文本) 模型组件复用与拆解示例 路况预测,时空建模方法 (Transformer+图神经 网络)
07.17 - 08.15	基于Deeseek的昇腾 NPU Kernel算子优化 项目开发	根据团队相关领域与相关框架相结合并开发	全员参加	

学习安排

时间	内容	要求	人员	备注
07.06 - 07.31	学习中高难度的数据结构和算法	持续学习,并刷题巩固。	全员参加	
08.01 - 08.15	巩固提升数学建模知识, 学习机器 学习和深度学习的进阶知识	巩固数学基础的同时,提升个人编程求解问 题能力,加强对各模型的理解。	全员参加	
08.16 - 08.24	学习计算机基础理论知识	通过看书、博客、视频等回顾基础知识,并深入研究。	全员参加	