Workload Characterization of Commercial Mobile Benchmark Suites

Victor Kariofillis, Natalie Enright Jerger

Do we focus enough on mobile devices?

- Over 18 billion mobile devices
- Around 2 billion computers
- 1% of top tier publications focus on mobile computing (2018 study) [1]
- Mobile SoCs are distinct
 - Tight integration of hardware components
 - Significant heterogeneity
 - Rapid evolution

Do we focus enough on mobile devices?

- Over 18 billion mobile devices
- Around 2 billion computers
- 1% of top tier publications focus on mobile computing (2018 study) [1]
- Mobile SoCs are distinct
 - Tight integration of hardware components
 - Significant heterogeneity
 - Rapid evolution

Do we focus enough on mobile devices?

- Over 18 billion mobile devices
- Around 2 billion computers
- 1% of top tier publications focus on mobile computing (2018 study) [1]
- Mobile SoCs are distinct
 - Tight integration of hardware components
 - Significant heterogeneity
 - Rapid evolution

Mobile SoCs are different

design trends on performance, energy, and user satisfaction," in 2016 IEEE HPCA

Which benchmarks can we use?

- Popular benchmarks (e.g., SPEC CPU, PARSEC) are not representative of mobile workloads [3]
- How about academic mobile benchmarks?
 - Narrowly focused on specific domains, thus limiting their utility
 - e.g., BBench for web browsing
 - e.g., ARBench for augmented reality
 - Difficult to keep them up-to-date and sometimes even working

How about commercial mobile benchmarks?

Devices." in MEDEA 2008

Commercial mobile benchmarks

Widely used by industry

Used in academic research

- A lot of options
 - Difficult to choose
 - Running all of them would t
- There's one problem
 - We don't know what their ru

Here's where our work comes in

Our contributions

- Analysis of the runtime performance characteristics of commercial mobile benchmark suites
- Provide researchers with in-depth insights into the behavioural patterns
 - Judiciously select benchmarks aligned with their specific requirements
- Propose a representative benchmark set
 - Reduces execution time by 75%

Benchmarks

• 7 benchmark suites – 18 individual benchmarks

Benchmark Suite	Benchmark Name
3DMark	Slingshot
	Slingshot Extreme
	Wild Life
	Wild Life Extreme
Antutu	CPU
	GPU
	Mem
	UX
Aitutu	-

Benchmark Suite	Benchmark Name
Geekbench v5	CPU
	Compute
Geekbench v6	CPU
	Compute
GFXBench	High Level
	Low Level
	Special Tests
PCMark	Storage
	Work

Methodology

- Qualcomm Snapdragon 888 Board
 - Android 11
- Qualcomm Snapdragon Profiler
 - Over 190 metrics CPU, GPU, Al Engine, Memory, Temperature

Analysis consists of 3 parts

Temporal Behaviour

CPU Heterogeneity

Similarity & Redundancy

Examine the values of the metrics across the entire benchmark's runtime

Check the usage levels of the three CPU core clusters

Evaluate how similar various the benchmarks are

Let's look at some of the observations we made

Temporal Behaviour

Benchmarks that include multi-core or multithreaded components show high CPU load levels

CPU Load = CPU Frequency * CPU Utilization

Usage of GPU resources is not limited to GPU-related benchmarks

Newer benchmarks are not always more computationally intensive

GPU Load = GPU Frequency * GPU Utilization

Benchmarks make little use of the Al engine

AIE Load = AIE Frequency * AIE Utilization

The memory footprint of benchmarks is moderate

Average System Memory Used

Highest Average (3DMark Wild Life Extreme)

Highest Memory Usage (Single Point)

CPU Heterogeneity

GPU tests tend to use only the energy-efficient cores

■ 0% - 25% **■** 25% - 50% **■** 50% - 75% **■** 75% - 100%

Workloads tend not to exploit more than one type of core concurrently

Similarity & Redundancy

Benchmark Similarity

- 18 benchmarks with many more sub-benchmarks
 - Over 110 minutes of runtime on a real device
 - Using simulators take a lot longer [4]
 - Finding similarity is a prerequisite to find redundancy
- 3 clustering algorithms
 - K-means
 - Partitioning Around Medoids (PAM)
 - Agglomerative Hierarchical Clustering
- How do we know the right number of clusters?
- 5 clusters is the sweet spot

[4] A. Sandberg et al., "Full speed ahead: Detailed architectural simulation at near-native speed," in 2015 IEEE International Symposium on Workload Characterization

Benchmark Similarity

Benchmark Redundancy

- All these benchmarks take a lot of time to execute
- Select a representative subset
 - Antutu Covers all areas
 - GFXBench Special Tests Highest Al engine load
 - Geekbench 5 CPU Highest CPU load while stressing all CPU clusters
 - Geekbench 6 Compute Highest GPU load

	Original Set	Reduced Set
Running Time (sec)	4429.5	1108.36
Running Time Reduction	-	75%

Conclusion

- We thoroughly explored commercial mobile benchmark suites
- Our analysis offers important insights for the computer architecture community
- The proposed representative benchmark set reduces execution time by 75%

I'll be happy to answer your questions

Victor Kariofillis, Natalie Enright Jerger – viktor.karyofyllis@mail.utoronto.ca

