STAT1 SCEPTRE vs Seurat With Pvalue QC Individual

2023-04-04

Introduction

This is a followup analysis of Gene's STAT1-analysis-v2 writeup, with two main differences: The ChIP-seq data is from CD14+ monocytes rather than K562 and the Seurat QC is matched to that of SCEPTRE. Here, we consider two ways of determining transcription factor target genes: those that are in the hTFtarget database and those that have at least one ChIP-seq peak within 5kb of their TSS. These two align reasonably well; see the table below.

Table 1: Comparing target genes identified based on database and based directly on ChIP-seq data (at least one peak within 5kb).

Database	ChIP-seq	FALSE	TRUE
FALSE		2744	2145
TRUE		1855	7761

Compare SCEPTRE and Seurat results with ChIP-seq scores

Let's first look at how the SCEPTRE and Seurat discoveries align with each other.

Table 2: Comparing SCEPTRE versus Seurat discoveries.

SCEPTRE	Seurat	FALSE	TRUE
FALSE		6424	1407
TRUE		596	4280

This table suggests that SCEPTRE and Seurat results have decent, but imperfect, agreement. Also note that the total numbers of discoveries made by the two methods are nearly the same. Next, let's look at how the SCEPTRE and Seurat discoveries align with the ChIP-seq target genes (as identified by either the hTFtarget database or directly from the ChIP-seq data).

Table 3: Comparing SCEPTRE to database.

Database	SCEPTRE	FALSE	TRUE	Prop
FALSE		2640	1259	0.323
TRUE		5191	3617	0.411
Prop		0.663	0.742	

Table 4: Comparing Seurat to database.

Database	Seurat	FALSE	TRUE	Prop
FALSE TRUE Prop		2282 4738 0.675	1617 4070 0.716	0.415 0.462

Table 5: Comparing SCEPTRE to ChIP-seq binary scores.

ChIP-seq	SCEPTRE	FALSE	TRUE	Prop
FALSE		2308	1195	0.341
TRUE		5523	3681	0.4
Prop		0.705	0.755	

Table 6: Comparing Seurat to ChIP-seq binary scores.

ChIP-seq	Seurat	FALSE	TRUE	Prop
FALSE TRUE Prop		2062 4958 0.706	1441 4246 0.747	$0.411 \\ 0.461$

Table 7: Enrichment odds ratios, comparing to database and our ChIP-seq target assignments with pvalue quantile threshold equal to 0.75

Ground truth	Method	SCEPTRE	Seurat
database ChIP-seq		1.461 1.287	1.212 1.225