PROBLEM SET 3

Due March 2, 2006

Section 3.1.

From Folland's book # 3.1 page 88. Do problems 2, 3, 4.

Section 3.2.

From Folland's book # 3.2 page 92. Do problems 8, 9, 10, 13, 16 (correction: need both measures to be σ -finite), 17 (correction: need ν to be σ -finite also.

Extra Problem 1: Let μ be a positive measure over (X, \mathcal{M}) and let f real be an *extended* μ -integrable function on X. Define

$$\nu(E) := \int_{E} f \, d\, \mu \qquad E \in \mathcal{M}$$

Show that ν is a signed measure on (X, \mathcal{M})

Section 3.3.

Extra Problem 2: Let μ be a positive measure over (X, \mathcal{M}) and let $f: X \to \mathbb{C}$ be a μ -integrable function on X;— i.e. $f \in L^1(\mu)$. Define

$$\nu(E) \, := \, \int_E \, f \, d \, \mu \qquad E \in \mathcal{M}$$

- (a) Show that ν is a complex measure on (X, \mathcal{M})
- (b) In particular, show that if $f \in L^1(\mu)$ takes only real values –i.e. $f: X \to \mathbb{R}$ then ν as defined here is a **finite** signed measure (here use the Extra Problem 1 above).

From Folland's book # 3.3 page 94. Do problem 20.