MIDS W207 Applied Machine Learning

Spring Week 8 Live Session Slides

Clustering vs Classification

Clustering

Classes are not defined beforehand. Data mining searches for homogeneous groups, groups of objects that have common properties.

K-Means Clustering: Finding k

K-Means Clustering: Finding k

K-Means Clustering: Finding k

K-Means Algorithm

Algorithm 1 k-means algorithm

- 1: Specify the number k of clusters to assign.
- 2: Randomly initialize k centroids.
- 3: repeat
- 4: **expectation:** Assign each point to its closest centroid.
- 5: maximization: Compute the new centroid (mean) of each cluster.
- 6: **until** The centroid positions do not change.

K-Means Algorithm: Types: DBSCAN

K-Means Algorithm: Types: Hierarchical

K-Means Limitations

Gaussian Distribution

Probability density function f(x) is a function of x given μ and σ 1 1 x –

$$N(x \mid \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \exp(-\frac{1}{2} (\frac{x - \mu}{\sigma})^2)$$

Gaussian Mixture Models

Linear combination of Gaussians

Gaussian Mixture Models

Gaussian Distribution Contd.

$$f(x\mid \mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Gaussian Distribution Contd.

$$f(x \mid \mu, \Sigma) = \frac{1}{\sqrt{2\pi |\Sigma|}} \exp \left[-\frac{1}{2}(x - \mu)^{t} \Sigma^{-1}(x - \mu)\right]$$

Expectation Maximization

E-Step

$$r_{ic} = rac{ ext{Probability Xi belongs to c}}{ ext{Sum of probability Xi belongs to c., c., ... c.}} = rac{\pi_c \mathcal{N}(x_i \; ; \; \mu_c, \Sigma_c)}{\sum_{c'} \pi_{c'} \mathcal{N}(x_i \; ; \; \mu_{c'}, \Sigma_{c'})}$$

M-Step

$$\prod = \frac{\text{Number of points assigned to cluster}}{\text{Total number of points}}$$

$$\mu = \frac{1}{\text{Number of points}} \sum_{i} r_{ic} x$$
assigned to cluster

$$\sum_{c} = \frac{1}{\sum_{\text{Number of points}} \sum_{i} r_{ic} (x_{i} - \mu_{c})^{T} (x_{i} - \mu_{c})$$

Expectation Maximization

Curse of Dimensionality

Principal Component Analysis

Component	Initial Eigenvalues		
	Total	% of Variance	Cumulative %
1	5.994	59.938	59.938
2	1.654	16.545	76.482
3	1.123	11.227	87.709
4	.339	3.389	91.098
5	.254	2.541	93.640
6	.199	1.994	95.633
7	.155	1.547	97.181
8	.130	1.299	98.480
9	.091	.905	99.385
10	.061	.615	100.000

Principal Component Analysis (Terms)

Dimensionality: It is the number of features or variables present in the given dataset. More easily, it is the number of columns present in the dataset.

Correlation: It signifies that how strongly two variables are related to each other.

Orthogonal: It defines that variables are not correlated to each other, and hence the correlation between the pair of variables is zero.

Eigenvectors: If there is a square matrix M, and a non-zero vector v is given. Then v will be eigenvector if Av is the scalar multiple of v.

Covariance Matrix: A matrix containing the covariance between the pair of variables is called the Covariance Matrix.

Principal Component Analysis Terms

- Getting the dataset.
- Representing data into a structure.
- 3. Standardize the data
- 4. Getting the covariance
- 5. Calculating Eigenvalues and Eigenvectors
- 6. Sorting the Eigenvectors
- 7. Calculating the new features or principal components
- 8. Remove less or unimportant features from the new dataset.

Code Review

Eigenfaces: Key Idea

Assume that most face images lies on a low dimensional subspace determined by the first k (k < < < d) directions of maximum variance

Use PCA to determine the vectors or Eigenfaces $\mathbf{u_1}$, $\mathbf{u_2}$,.... $\mathbf{u_k}$ that span the subspace

Represent all face images in the dataset as linear combinations of eigenfaces. Find the coefficients by dot product.

Training images x_1, \dots, x_m

Face x in "face space" coordinates (dot products):

$$\mathbf{x} \to [\mathbf{u}_{1}^{T}(\mathbf{x} - \mu), ..., \mathbf{u}_{k}^{T}(\mathbf{x} - \mu)]$$

$$= [w_{1}, ...w_{k}]$$
This vector is

This vector is the representation of the face.

Recognition with Eigenfaces

Given novel image x:

Project onto subspace:

$$[w_1, ..., w_k] = [u_1^T(\mathbf{x} - \mu), ..., u_k^T(\mathbf{x} - \mu)]$$

- Classify as closest training face in k-dimensional subspace
- This is why it's a generative model.

Code Review