LECTURE 1

Introduction to Multiagent Systems

Course description, requirements, and grading available [here]

SUMMARY

1. Introduction	1
2. Agents	5
3. Characteristics/properties of agents	6
4. Intelligent agents	

1. Introduction

Artificial Intelligence

- Symbolic AI
 - o symbolic representation of knowledge
 - o logic, expert systems, rule based systems,...
- Computational Intelligence
 - o numerical representation of knowledge
 - o fuzzy systems, evolutionary computation, ML, MAS

Application domains

- medicine
- bioinformatics
- software engineering (Search-based software engineering SBSE)
- psychology
- financial
- *e-business*: e-commerce, e-banking, e-gambling, etc
- computer vision
-

Distributed Artificial Intelligence (DAI)

- a research and application field which brings together and draws on results, concepts and ideas from many disciplines, including:
 - o AI
 - o SE
 - o Sociology
 - o Economics

- Organization and management science
- o Philosophy
- o Game theory
- Social sciences
- o ...
- the study, construction and application of **multiagent systems (MAS)**, that is, systems in which several interacting (intelligent) agents pursue some set of goals or perform some set of tasks.
 - o agent
 - model the concept of human agent
 - computational entity such as a software program or a robot that can be viewed as perceiving and acting upon its environment
 - perception through sensors, actions through effectors/actuators
 - acts autonomously on behalf of their users

[https://www.educba.com/agents-in-artificial-intelligence/]

- agents?
 - o human agent
 - eyes, ears, skin, etc. for **sensors**
 - hands, fingers, legs, mouth, etc. for **effectors**
 - powered by muscles
 - o robot
 - camera, infrared, etc. for **sensors**
 - grippers, wheels, lights, speakers for **effectors**
 - often powered by motors
 - o software agent
 - functions as sensors
 - information provided as input in the form of encoded bit strings or symbols
 - functions as effectors
 - results deliver the output

- o MAS
 - multiple agents in a common environment

- 1975-1980
- distributed (descentralized) solutions to AI problems
- directions
 - DPS (distributed problem solving)
 - field of DAI in which the objective lies in getting individual agents to work and interact with each other in order to solve problems that require a collective effort
 - o traditionally there are two disciplines in DAI
 - MAS
 - in which several agents coordinate their knowledge and activities and reason about the processes of coordination.
 - initial work on behaviour coordination.
 - toy problems from the Agent/MAS domains
 - o robotic football
 - o predator and prey problem
 - o Wumpus agent
 - Vacuum cleaning agent
 - DPS
 - the work of solving a particular problem is divided among a number of nodes that divide and share knowledge about the problem and the developing solution.
 - Characteristics
 - o speed up the solution process
 - o expertise and problem solving may be distributed
 - o the knowledge may be distributed
 - o the solution may need to be distributed in order the solution to be executed
 - initial work on task decomposition and solution synthesis.
 - DPS \leftrightarrow MAS

Agents

- an important research and development area in the field of Computer Science and of AI
- are considered a new important way in conceptualization and implementation of different kind of applications
- agents vs. **intelligent** agents
- are related to other programming paradigms (e.g. OOP) → the agent oriented programming paradigm (AOP)

- agent-oriented techniques represent exciting new means of analysis, designing and building complex software systems.
- are a new paradigm for developing software applications
- agent based computing has been hailed as a "new revolution in software"
- applications

> industrial applications

- process control (robotics)
- manufacturing (intelligent manufacturing, ERP, BPM)
- air traffic control

> commercial applications

- information management
- electronic commerce
- business process management
 - viewing a BP as a society of negotiating, service providing agents

> medical applications

- patient monitoring
- health care
- > sciences
 - geography (GIS geographical information systems)
 - meteorology
 - weather forecasting, climatology, etc

> entertainment

- games
- interactive theater and cinema
- > other
 - web mining, information retrieval, data mining, search engines, etc
- agents are frequently used nowadays in:
 - > sociology, biology
 - cognitive psychology
 - social psychology
 - > computer science

emotional agents

o affective computing

DAI – Agents

- o the long term of **DAI** is to develop methods and mechanisms that enable **agents** to interact as well as humans (or even better) and to understand the interaction among intelligent entities wheathet they are computational, human or both
- o the goal raises a number of challenging issues that are all centered around the elementary question of "WHEN and HOW to interact with WHOM"

DAI - traditional AI

 both DAI and traditional AI deal with computational aspects of intelligence, but they do so from different points of view

Traditional AI	DAI
Cognitive processes within individuals	Social processes in groups of individuals

Concentrates on agents as "intelligent stand-	Concentrates on agents as "intelligent	
alone systems" and on intelligence as a	connected systems" and on intelligence as a	
property of systems that act in isolation	property of systems that interact	
DAI is a generalization of traditional AI		

2. Agents

- o continuous interaction with the environment
- o sensor input, action output

An agent in its environment. The interaction between the agent and the environment is usually an ongoing, non-terminating one.

- One of the agent tasks/goals is to assist the user by making tasks for him, or teaching the user what he has to do
 - o It has to successfully accomplish the task it was delegated to do

Owhat an agent is?

- there is no such an agreement
- there is no universally accepted definition of the term agent
- there is a general consensus that <u>autonomy</u> is central to the notion of agency
- An agent is a computer system that acts in behalf of a user, it is situated in some environment and that is capable of <u>autonomous</u> action in this environment, in order to meet its design objectives.

1. autonomy

• agents are able to act without intervention of humans or other systems, they have **control** both over their **internal state** and over their behavior.

Why agents?

delegation

- o computers perform tasks for us, autonomously (without our intervention)
- o give control to computers
 - o fly-by-wire aircrafts
 - o fly-by-wire cars
 - o intelligent braking systems
 - o cruise control systems
 - o etc

programming progression

○ programming has progressed
 machine code → assembly language → machine-independent programming languages
 → sub-routines → procedures and functions → ADTs → objects → AGENTS

- [intelligence]
 - o implement a rational/intelligent behavior
- o **Delegation** + **Intelligence** ⇒ the need to build computer systems that can act effectively on our behalf to accomplish the tasks we delegated to them
 - ability of computer systems to act independently
 - the ability of computer systems to act in a way that represents our best interests while interacting with other humans/systems
- Examples of trivial agents
 - a control system (e.g. thermostat)
 - software daemons
 - 1. background processes in an operating system which monitor a software environment and perform actions to modify it
 - actions: software actions (e.g. changing an icon on the screen, executing a program, etc)
 - 2. e.g. **biff** command (UNIX)

3. Characteristics/properties of agents

- o an agent is characterized by
 - an **architecture part**, named the behavior of the agent
 - 1. the action accomplished after a perceptual sequence
 - the **program part**, the internal part of the agent
 - 1. the task of AI is to develop the program part of the agent
 - 2. a function that implements the way to pass from perception to action
 - 3. the program part of an agent may be summarized as

Function AGENT-PROGRAM (p: Perception) returns an Action static: memory memory ← UPDATE-MEMORY (memory, p) a ← CHOOSE-OPTIMAL-ACTION (memory) memory ← UPDATE-MEMORY (memory, a) returns a EndFunction

Skeleton of an agent [2]

- o **performance measure** (conceptually is outside the **agent**)
 - evaluates the success of the agent's performance
- o an **agent** is one that is capable of flexible autonomous actions in order to meet its design objectives
 - flexibility
 - 1. **reactivity:** the ability to perceive their environment and to respond to changes that occur in it

- **2. pro-activeness**: ability to exhibit a *goal-directed behavior* by taking the initiative in order to satisfy their design objectives
 - behavior not driven only by events, but capable of generating goals and acting **rationally** to achieve them
 - rationality
 - o reasonable/acceptable decisions
 - agents select actions that make sense from the point of view of the information possessed by the agent and its goals (or the task for which it was designed)
 - o in some situations (e.g. dynamic environments) **learning** is needed for preserving the agents' rationality
 - **learning** agents **intelligent** agents
 - rational agent selects actions to maximize the performance measure
 - ideal rational agent
 - o for each possible percept sequence, such an agent selects the action that maximizes its performance measure
- 3. social ability
 - agents are capable of interacting with the agents (and possible humans) in order to meet their design objectives

4. Intelligent agents

- o an **intelligent agent** must be endowed with:
 - o an initial knowledge
 - o the capability of **learning**
 - the **learning** capability assures the <u>autonomy</u> of the agent the capability to deduce its behavior from its own experience
 - the agents that operate based only on their initial knowledge are not autonomous
 - they will act successfully only if their knowledge remains valid, loosing their **flexibility**
- o an **intelligent agent** usually has a utility function, a measure of its actions' performance
 - \circ *u*: *States* $\rightarrow \Re$
 - u associates to an environment state a real number (a measure of the state's success degree)
 - the agent prefers, at a given moment, the state having the maximum *utility*

Bibliography

- [1] Weiss, G. (Ed.): Multiagent Systems: *A Modern Approach to Distributed Artificial Intelligence*, MIT Press, 1999 (available at www.cs.ubbcluj.ro/~gabis/weiss/Weiss.zip)
- [2] Şerban Gabriela, Sisteme Multiagent în Inteligenta Artificiala Distribuita. Arhitecturi si Aplicatii, Editura RisoPrint, Cluj-Napoca, 2006
- [3] Czibula Gabriela, Sisteme inteligente. Instruire automată, Editura RisoPrint, Cluj-Napoca, 2008