

(12) TEVEL

DTIC ELECTE APR 3 0 1980

79 12 20 013

This document has been approved for public release and sale; its distribution is unlimited.

ADAPTRONICS, INC.

Westgate Research Park 1750 Old Meadow Road • McLean, Virginia 22102

ADI-Ref - 542

This research was sponsored by the Defense Advanced Research Projects Agency

1400 Wilson Boulevard, Arlington, Virginia 22209

DARPA Order No.: 3700-9410-62712E DARPA OHEL-3799
Contract No. 2 MDA903-79-C-0186, WDARPA OHEL-3799

DARPA Monitor: Dr. Michael J. Buckley AFML Monitor: Dr. Henry Graham, AFML/LLM Contract Effective Date: January 31, 1979 Contract Expiration Date: September 30, 1979

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either express or implied, of the Defense Advanced Research Projects Agency or the United States Government.

Prepared by:

ADAPTRONICS, INC. WW Westgate Research Park 1750 Old Meadow Road McLean, Virginia 22102

> This document has been approved for public release and sale; its distribution is unlimited.

003350

FOREW ORD

This Final Technical Report presents the results obtained under Contract MDA903-79-C-0186, DARPA Order Number 3700-9Y10-62712E. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either express or implied, of the Defense Advanced Research Projects Agency or the United States Government.

This contract with the Defense Supply Service - Washington was initiated by the Defense Advanced Research Projects Agency and was under the technical direction of Dr. Michael J. Buckley, Program Manager, Material Sciences Office, DARPA, and Dr. Henry Graham, Air Force Materials Laboratory/LIM.

The Program Manager for Adaptronics was Dr. Anthony N. Mucciardi, the Principal Investigator was Mr. Dixon Cleveland, and major contributors to the work were Messrs. Peter M. Garafola and Basil A. Decina.

The reaction-bonded silicon nitride process data used in this work was obtained by and provided to Adaptronics by the AiResearch Manufacturing Company and AiResearch Casting Company which are Divisions of the Garrett Corporation. Garrett obtained the data from experimental work performed under Phase 2 of an Air Force Materials Laboratory project [1] to demonstrate capability of increased yield of slip-cast ceramic vanes as components for high-performance turbine engines. Mr. David W. Richerson of AMC and Michael E. Rorabaugh of ACC were primarily responsible for the data collection and compilation.

ABSTRACT

A program was conducted to model the modulus of rupture (MOR) strength using Adaptive Learning Networks (ALN's) for aircraft engine components produced by a slip-cast, reaction-bonded, silicon-nitride production process. The primary objectives of the work were to identify key process variables and to predict optimum values for those variables as a guide for further experimentation. Nonlinear models have been synthesized that predict MOR with an average error of about 4 ksi over a range from 18.6 to 47.8.

The manufacturing and analysis work done to date has demonstated the feasibility of modeling the slip-cast RBSN process with the Adaptive Learning Network methodology and is viewed as the first iteration in the optimization procedure which is ultimately aimed at finding those manufacturing conditions which will produce the strongest, most consistent material strengths.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER 2. GOVT ACCESSION NO AD-A083 730	. 3. RECIPIENT'S CATALOG NUMBER			
A. TITLE (and Subtitle) INVESTIGATION INTO ADAPTIVE CONTROL OF A SLIP- CASTING, REACTION-BONDED SILICON-NITRIDE PROCESS VIA ADAPTIVE: LEARNING NETWORK MODELING	5. TYPE OF REPORT & PERIOD COVERED Final Technical Report 31 Jan 1979 thru 30 Sept 1979 6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(*) Dixon Cleveland Peter M. Garafola Basil A. Decina Anthony N. Mucciardi	8. CONTRACT OR GRANT NUMBER(3) MDA903-79-C-0186			
9. PERFORMING ORGANIZATION NAME AND ADDRESS Adaptronics, Inc. Westgate Research Park 1750 Old Meadow Road McLean, Virginia 22102	PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS Program Element: 62712E Program Code: 9Y10 ARPA Order: 3700			
11. CONTROLLING OFFICE NAME AND ADDRESS Defense Advanced Research Projects Agency 1400 Wilson Blvd. Arlington, VA 22209	12. REPORT DATE November 30, 1979 13. NUMBER OF PAGES 87			
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) Alexandria Division Defense Supply Service - Washington 5001 Eisenhower Avenue Alexandria, VA	IS. SECURITY CLASS. (of this report) Unclassified ISA. DECLASSIFICATION/DOWNGRADING SCHEDULE			

- Dr. M. J. Buckley, DARPA, 2 copies
- Dr. H. Gramham, AFML/LLM, 1 copy
- Dr. Norm Tallon, AFML, 1 copy Mr. D. W. Richerson, AiResearch Manufacturing Co., 1 copy
- Mr. M. E. Rorabaugh, AiResearch Casting Co., 1 copy
- 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
- 18. SUPPLEMENTARY NOTES
- 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Silicon Nitride Process

Slip Casting

Adaptive Learning Networks

Adaptive Control

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

A program was conducted to model the modulus of rupture (MOR) strength using Adaptive Learning Networks (ALN's) for aircraft engine components produced by a slip-cast, reaction-bonded, silicon-nitride production process. The primary objectives of the work were to identify key process variables and to predict optimum values for those variables as a guide for further experimentation. Nonlinear models have been synthesized that predict MOR with an average error of about 4 ksi over a range from 18.6 to 47.8.

The manufacturing and analysis work done to date has demonstrated the feasibility

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

roduce the strongest, most	finding those manufacturing conditions which will consistent material strengths.
Shine Separate Like 21 a ye benjinan asnakongo e	
phine depletie inches ou a yearly sit -cocos o	
Shipe depletie 180m ou a 10 becompt schemosty e vancing sit -cooping a vancing sit -cooping a	
Shipe depletie 180m ou a 10 becompt schemosty e vancing sit -cooping a vancing sit -cooping a	

TABLE OF CONTENTS

		<u> E</u>	Page
1.	INTRO	DDUCTION1	I -1
	1.1	The Role of Modeling in Process Optimization	1-1 1-2
	1.2	Requirements of the Modeling Algorithm	1-2 1-3 1-3
	1.3	Summary of Work Performed to Date	1-4
2.	DATA	BASE	2-1
	2.1	Parameterization of Particle Size Distributions	2-2 2-2 2-2 2-4
	2.2	Parameterization of the Sintering and Nitriding Temperature Profiles	2-9
3.	ADAP	TIVE LEARNING NETWORK MODELING	3-1
	3.1 3.2	ALN Models	3-2 3-2 3-2
		3.2.4 Strength Variance Modeled as a Function of the Intermediate Process Variables	
	3.3	Summary of Key Effects	3-27
		(Continue	ed)

TABLE OF CONTENTS (Continued)

4.	CONCLUSIONS AND RECOMMENDATIONS	-1
5.	REFERENCES	<u> </u>
6.	REPORT DISTRIBUTION	5-1
ADDE	NDIX 1 SLIP-CAST REACTION-BONDED SILICON-NITRIDE DATA BASE	1 -1

LIST OF FIGURES

Figure	Page
2.1	Actual Particle Size Distributions and Corresponding Values
	for Mean Strength, Shown in Order of Mean Resulting Strength2-3
2.2	Actual and Fitted Particle Size for the 14 Powders Used in the
	35 Experiments2-6
2.3	Temperature vs. Time Profiles for the Sintering Process2-10
2.4	Temperature vs. Time Profiles for the Nitriding Process2-13
3. 1a	ALN Model Predicting Strength as a Function of Independent
	Variables3-3
3. 1b	Contours of Strength Plotted as a Function of Independent
	Variables3-4
3. 2a	ALN Model Predicting Strength as a Function of Particle Size
	Distribution Parameters3-5
3.2b	Contours of Strength Plotted as a Function of Particle Size
	Distribution Parameters3-6
3.3a	ALN Model Predicting Strength Variance as a Function of Inde-
	pendent Variables3-7
3.3b	Contours of Strength Variance Plotted as a Function of Inde-
3. 4a	pendent Variables
3. 4a	ALN Model Predicting Mean Strength as a Function of Inter-
3.4b	mediate Process Variables3-10 Contours of Strength Plotted as a Function of Intermediate
3.40	Process Variables
3.5a	ALN Model Predicting Strength Variance as a Function of Inter-
3. Ja	mediate Process Variables3-12
3.5b	Contours of Strength Variance Plotted as a Function of Inter-
3.32	mediate Process Variables
3.6a	ALN Model Predicting Slip pH as a Function of Independent
	Variables3-14
3.6b	Contours of pH Plotted as a Function of Independent Variables3-15
3.7a	ALN Model Predicting Green Density as a Function of Indepen-
	dent Variables3-16
3.7b	Contours of Green Density Plotted as a Function of Independent
	Variables3-17
3.8a	ALN Model Predicting Weight Gain as a Function of Independent
	Variables3-19
3.8b	Contours of Weight Gain Plotted as a Function of Independent
	Variables3-20
3.9a	ALN Model Predicting Nitrided Density as a Function of Inde-
	pendent Variables
3.9b	Contours of Nitrided Density Plotted as a Function of Inde-
2 40-	pendent Variables3-22
3. 10a	ALN Model Predicting Alpha as a Function of Independent
2 102	Variables3-23
3. 100	Contours of Alpha-Silicon-Nitride Plotted as a Function of Independent Variables3-24
	Independent variables

(Continued)

LIST OF FIGURES (Continued)

Figure	Page
3.11a	ALN Model Predicting Beta as a Function of Independent Variables3-25
3.11b	Contours of Percent Beta-Silicon-Nitride Plotted as a Function of Independent Variables3-26
3.12a	ALN Model Predicting % Si ₂ ON ₂ as a Function of Independent Variables
3.12b	Contours of Percent Si ₂ ON ₂ Plotted as a Function of Independent Variables3-29
3.13a	Flow Chart of Predominant Slip Cast RBSN Process Effects3-30
3.13b	Flow Chart of Predominant Slip Cast RBSN Process Effects3-31
	LIST OF TABLES
Table	Page
2.1	Particle Size Distribution Fitting2-5

1. INTRODUCTION

This work involves the Adaptive Learning Network (ALN) modeling of a slip-cast, reaction-bonded silicon-nitride (RBSN), ceramic production process. The primary objectives of the work are to identify the key parameters of the production process, to seek an optimum set of parameter values, and to develop control procedures which yield highest and most consistent part strengths.

1.1 THE ROLE OF MODELING IN PROCESS OPTIMIZATION

Optimization of the ceramics manufacturing process involves an experimental search for the ideal manufacturing conditions. Typically an iterative procedure is employed. At each round or iteration of the search procedure, several manufacturing experiments are performed. The experimenter then analyzes the results and, based on this analysis, formulates hypotheses on parameter regions which are projected to yield improved performance. These projections form the basis for designing the next round of experiments. The experimental results at each round serve to confirm or reject the hypotheses formed in earlier rounds and will influence further experimentation accordingly.

The efficiency and effectiveness of the search procedure is highly dependent upon the adequacy of the analysis function. Implicit in any analysis is the formulation of a model of the process. The model is the tool which gives the ability to predict future performance of the process based upon past observations.

Modeling has three primary roles in process optimization. First, it is used to guide the experimental search such that a minimum amount of experimental time, cost, and effort are incurred in converging on the optimum. Second, the modeling will reveal which variables are important, what their optimum values are, and to what tolerances they must be controlled. Third, if certain important variables have not been measured, model performance metrics will indicate that crucial information is missing, which will guide the experimenters in identifying additional variables to be instrumented in subsequent experiments.

1.1.1 Guiding the Search

Due to the expense and time of performing the laboratory experiments, it is desired that each experiment provide a maximum amount of new information about better manufacturing conditions. The procedure for designing the next experiment consists of two steps. First, the model is updated, or retrained, using all the data gathered to date. Secondly, the model is interrogated, or searched, for regions of highest predicted strength. The search is permitted to range somewhat beyond the region of data already collected, and typically the highest areas are outside the data regions. Though the model is not expected to be highly accurate outside the data regions, it is a good hypothesis that collection of further experimental data in the high areas will yield the most useful results. Subsequent experiments are then performed in these projected high regions.

The optimization process is complete when the peak operating conditions have been found. Three conditions must be satisfied to verify the peak. First, the model surface must exhibit a major peak or high region where any deviations from that area result in lower predicted strength. Secondly, all the regions on and surrounding the peak should be well supported by experimental data. Third, the accuracy of the model, as judged on the data immediately surrounding the peak, should be quite high, indicating that the model properly accounts for all key variables and adequately represents the process.

1.1.2 Determining Controls and Tolerances

Once the optimization is complete, the optimum values of the manufacturing parameters may be found by locating the model peak. Control tolerances are then determined by varying each parameter from its optimum value and observing the consequent effect on predicted strength.

Nonlinear variable interaction in the peak region should also be examined to determine whether a deviation on one parameter significantly varies the tolerance on another. Trade-off analyses may be undertaken to determine whether some non-optimum set point would produce less parameter sensitivity and thus more reliable results. These control analyses are performed by investigation of models and do not require further laboratory experimentation.

1.1.3 Finding Missing Information

If one or more crucial process parameters are not measured in the production experiments, there is no way for the modeling algorithm to identify them specifically. But, by an analysis of the accuracy of the models, it can be determined whether further information is needed to model the process accurately, and an estimate of the importance of that missing information can be obtained from the model errors. Knowledge of the need for further information is very useful to the experiment designer as he seeks to identify additional variables which must be measured. Highly accurate model performance is an indication that all the meaningful variables have been accounted for.

1.2 REQUIREMENTS OF THE MODELING ALGORITHM

The effectiveness of a process optimization procedure is highly dependent upon the power of the modeling algorithm. There are four key requirements on the modeling algorithm which are generally not fully met by conventional modeling approaches but which are met by the Adaptive Learning Network methodology.

1.2.1 Nonlinearity

When modeling a process for the purpose of optimization, the final model must embody a convex surface to represent the region of the optimum peak. A linear representation is not adequate because it has no finite optimum. In a polynomial expansion, a convex surface can be no less than a quadratic in each

input variable, and in many instances the degree may be higher. Processes such as ceramics manufacturing are very likely to have subtle but distinct nonlinear interactions between variables. The ALN method automatically considers higher order terms and nonlinear interactive terms for all candidate input variables.

1.2.2 Automatic Synthesis of Model Structure

In most conventional modeling approaches, the user selects the mathematical structure of the model, or a small set of possible structures, and the algorithm determines the coefficient values which produce the best fit to the data. Specifying a model structure for a process as complex as a ceramics manufacturing process is very difficult, and if the proper model structure is not chosen, the model accuracy will be poor no matter how good or complete the data is.

The ALN model synthesis algorithm automatically generates the model structure as well as the coefficient values. The routine generates its models by systematically incorporating only those polynomial terms and functions which provide the maximum performance improvement with minimum increased model complexity. The structure synthesis procedure thus automatically selects the most important process variables and defines, in mathematical terms, their relationships to material strength.

1.2.3 Prevention of Overfit

A trained model is said to be "overfitted" if it produces small errors on the data upon which it was trained but performs poorly on similar data that were not used in training. An overfitted model is thus not useful as a predictive tool which can forecast, with acceptable accuracy, what the results of a future experiment will be.

In process optimization, where prediction of the results of future experiments is important to the minimization of the number of experiments which are to be performed, and in control synthesis, where variable sensitivities must be accurately estimated, overfit must be minimized. Overfit generally occurs when the model is more complex than is statistically justified by the given data base.

On the other hand, it is desirable to obtain as much information from the data as possible to support a model of a complex process. The ALN algorithm employs information theoretic measures which permit the growth of model complexity up to but not beyond the extent justified by the given data base.

^{1/}The ALN structure uses the form of a polynomial, rather than an exponential or some other transcendental form; however, the polynomial expansion is a very powerful, general representation that can mathematically approximate any continuous function.

1.2.4 Treatment of Limited Data Bases

Most conventional modeling approaches require more observations than there are variables. In the early stages of ceramics optimization, this situation does not exist. It is desirable to vary on the order of 100 factors but there may be only 25 to 50 experimental observations. In conventional experimental designs, only a few parameters are varied while all others are held constant. The ALN method can extract meaningful models from a limited data base, even when the number of varying parameters far exceeds the number of experimental observations.

In summary, the ALN modeling procedure is specifically suited for the non-linearity, unknown-structure, non-overfit, and limited-data requirements for optimization of complex processes.

1.3 SUMMARY OF WORK PERFORMED TO DATE

Laboratory work was performed by the Garrett Corporation on a slip-cast RBSN process to produce test bars under 35 different sets of manufacturing conditions. For each condition, the manufacturing parameters were recorded and test bars were destructively tested to obtain data on the resulting material strengths. The strength parameters were room-temperature modulus-of-rupture (MOR) and Weibul modulus. Adaptronics, Inc. performed the modeling analysis of the data.

In the course of the modeling, three types of models were synthesized. First, strength and strength variance were modeled as a function of the independent input variables, such as slip proportions and sintering temperatures. Second strength and strength variance were modeled as a function of the intermediate process variables, such as nitrided density and weight gain. Third, the intermediate process variables were modeled as a function of the independent inputs. The combination of these three sets of models shows the overall flow of effects through the production process. Actual material strengths varied from approximately 19 to 48 ksi, and the models predicted these strengths with an average error of 4 ksi over the total range of 29 ksi. Key process parameters and the means by which they influenced strength were identified.

The manufacturing and analysis work done to date has demonstrated the feasibility of modeling the slip-cast RBSN process with the Adaptive Learning Network methodology and is viewed as the first iteration in the optimization procedure which is ultimately aimed at finding those manufacturing conditions which will produce the strongest, most consistent material strengths.

2. DATA BASE

Process variables and resulting part strengths were recorded for 35 different production conditions. Approximately twenty test bars were manufactured at each condition, and the bars were destuctively stress-tested to determine their strengths in terms of room temperature modulus-of-rupture (MOR) and strength variance, which inversely is related to Weibul Modulus. For the work done to date, the strength resulting from a certain production condition is taken to be the average strength of the twenty test bars. A listing of the data base is presented in Appendix 1. From this listing, it can be seen which process variables were measured and/or computed as well as the numerical ranges of the variables.

The raw particle size distribution (PSD) data and the sintering and nitriding temperature histories are continuous curves. For use in modeling, discrete parameters of the curves must be computed. It is as crucial to compute "important" parameters from continuous data as it is to instrument any significant, but directly measurable, discrete variable. Discovering useful waveform parameters is often complicated due to the very large number of possibilities. In practice, several specific parameters from each of several categories are computed and input to an ALN training algorithm which selects the most useful of the parameters presented to it. Based on which variables are selected, knowledge of the physical process, and experience from other processes which may have some similarities, new parameters are formulated and tested in further ALN training. Ultimately it is desirable to reduce any curve to three or four key descriptors.

2.1 PARAMETERIZATION OF PARTICLE SIZE DISTRIBUTIONS

To begin the parameterization of the PSD curves, the cumulative distribution curves were differentiated and scaled to provide relative particle size density functions.

Twenty-six parameters (numbers 67 through 92 in the data base) were computed from the PSD curves. Five parameters indicated the percentage, by weight, of particles greater than specified sizes (40, 20, 10, 5, and 1 micrometer(s)). These percentage parameters were tantamount to evaluating the cumulative curves at specified size points. Five parameters indicated the particle size, in logarithmic form, for which specified percentage levels (20, 50, 80, 95, and 98) were achieved. These size parameters were tantamount to evaluating the cumulative curves at specified percentage points. The next parameter was the size of the largest particle found in a sample of the powder. Six parameters indicated the amount of weight in six adjacent size bins (.0 to .3, .3 to 1.0, 1.0 to 3.0, 3.0 to 10.0, 10.0 to 30.0, and above 30.0). Five parameters were the ratios of weights in the various bins. The final four parameters were the first four moment-generating functions indicating average, variance, skew, and kurtosis of the density function.

2.1.1 Modeling Strength as a Function of the PSD Parameters

When modeling strength from the above original PSD parameters, the variables that were selected by the networks were shape parameters, most particularly the second and fourth moment generating functions and the number of particles greater than 40 μm . The second moment is variance which indicates the spread or width of the distribution. The fourth moment is kurtosis, which is a rough indicator of uni- versus bi-modality of a curve.

Investigation into the models shows that high strengths are achieved with (a) a broad variance, (b) high kurtosis, i.e., uni-modality, and (c) no particles larger than 40 μ m. These analyses are borne out by a visual inspection of the PSD curves. For this purpose, the PSD curves for the 14 powders are shown in Figure 2.1. The curves are arranged in order of their average resulting strengths. The first four curves, $A_4B_6^{-1}$ (top two), A_4B_9 , and A_2B_6 produced the strongest parts, and each had the properties selected by the models. The very low strength curves were multimodal. The A_2B_7 curve had too small a spread.

2.1.2 Hypothesis of an Ideal Particle Size Distribution

From the above results, it was hypothesized that an ideal particle size distribution would be of the form:

$$p(s) = As^{n} \exp \left[-\frac{n}{m} \left(\frac{s}{a}\right)^{m}\right]$$
 (1)

where

s = particle size

p(s) = particle size distribution

A = normalization scale factor

a = value of s at which p(s) peaks

n = constant controlling the rise rate of p(s)

m = constant controlling the fall rate of p(s)

This curve is unimodal, which accounts for the kurtosis constraint, but the coefficients a, n, and m permit a range of shapes to fit the "good" PSD curves.

2.1.3 Fitting the Distributions

The first step in testing the ideal distribution hypothesis involved fitting the actual particle-size distributions with the postulated formula and finding the coefficients a, n, and m which gave the least-squares error fit to each of the actual distributions. The curve fitting approach employed a gradient accelerated search to find the optimum values of the coefficients a, n, and m.

Letters A, B, D, F, and G indicate subprocesses: A - starting powder, B - powder preparation, D - slip preparation, F - sintering, and G - nitriding. The subscripts indicate the manufacturing condition number. Thus A₂B₆ indicates the second starting powder processed by the sixth procedure. The specific condition parameters are given in the Appendix.

FIGURE 2.1: ACTUAL PARTICLE SIZE DISTRIBUTIONS AND CORRESPONDING VALUES FOR MEAN STRENGTH, SHOWN IN ORDER OF MEAN RESULTING STRENGTH

A gradient search was selected over a regression fitting approach because of the difficulty of linearizing the theoretical formula. The optimum coefficient values are considered to be those which produce the minimum total deviation between the postulated and actual curves. The total deviation, or fitting error, is defined to be the sum of the squares of the density differences between the two curves at each point along the size axis.

2.1.4 The Gradient Accelerated Search Algorithm

The starting values of a, n, and m are nominal values which are the same for each actual distribution. This starting point, and the resulting error, is initially defined to be the best-to-date, and the error gradient is computed at that point. To find the next trial point, a step is then taken from the best-to-date point along the gradient vector. The size of the first step is user-specified and is small. The resulting theoretical curve is compared to the actual distribution, and the fitting error is computed. If the resulting error is reduced, the trial point becomes the best-to-date.

Rather than recomputing the gradient and moving in a new direction, the next step is taken along the original gradient. The step is taken from the new best-to-date point but the step size is doubled (acceleration). Motion continues along the same gradient line with the step size continually doubling until the performance no longer improves. The search then returns to the most recent best-to-date point, computes a new gradient vector, resets the step size to the original small value, and proceeds along the new gradient vector.

The search is stopped when the first (small) step along a newly computed gradient vector does not produce an improvement. The search is then within one small step of the peak, which is considered to be sufficiently close.

The acceleration feature of the search allows small steps to be taken to pinpoint the peak, but avoids the excessive computation time of a fixed-step-size search which always "creeps" along.

A potential problem with gradient searches is that they can get "trapped" on local non-optimum peaks. It has been established that the <u>search space</u> for the particle-size distributions is unimodal over the region of interest so there is no problem of identifying the global peak.

2.1.5 Fitting Results

The theoretical curves fitted to each of the fourteen actual particle-size distributions are shown by the heavy lines in Figure 2.2. Table 1 gives the values of the coefficients which were found, the residual error resulting from the optimum fit, and the strengths of the test bars which were manufactured from the powder.

An analysis of these data shows that the psd's which yield high strength typically have high values of n accompanied by low values of m, which indicates that excessive amounts of powder below .3 μM and above 20.0 μM are undesirable. Also, those psd's which can be fitted closely by the theoretical curve result in higher ceramic strengths than those curves which cannot be fitted well. This tends to support the hypothesis that such a curve is ideal.

TABLE 2.1: PARTICLE SIZE DISTRIBUTION FITTING COEFFICIENTS

Powder	Condition	Fitted	Coeffi	cient	Values	RMS Fitting	Streng	ths (M	OR)
Number	Numbers	_a,	n,	m,	n/m	Error	mean	min	max
A 1B 1	1-11	3.63	1.09	1.50	0.73	. 107	26.5	18.6	33.3
A ₁ B ₂	12-15	3.55	0.90	1.52	0.59	.103	30.4	26.8	39.3
A1B3	16-17	3.63	1.13	1.47	0.76	. 124	26.3	24.6	28.0
A1B4	18-20	3.89	1.25	1.52	0.82	.113	27.4	25.9	29.4
A2B1	21	5.88	2.36	0.47	5.02	.103	33.1	33.1	33.1
A ₂ B ₆	22 - 25, 30	4.68	3.49	0.59	5.91	.089	43.1	41.4	45.0
A2B 17	26	6.61	3.81	3.16	1.21	.091	27.7	27.7	27.7
A3B1	27	4.57	3.05	0.37	0.68	.068	36.1	36.1	36.1
A3B5	28-29	8.31	0.96	3.04	0.31	.071	27.6	27.1	28.0
A3B9	31	17.72	.79	1.80	.44	.ø15	40.5	26.9	46.7
A4B6	32	18.85	. 79	1.80	.44	.994	46.5	40.5	5Ø.2
A4B9	33	17.84	3.91	. 75	5.21	.ø12	36.3	15.9	56.Ø
A4B6	34	17.52	5.Ø	.85	5.88	.ø12	47.9	39.∅	54.7
A4B9	35	17.69	5.Ø	.67	7.46	.ø13	44.0	39.8	48.5

Fitted Distribution: $p(s) = A s^n exp[-n/m(s/a)^m]$

s = article size

p(s) = particle size distribution

A = normalization scale factor

a = value of s at which p(s) peaks

n = constant controlling rise rate of p(s)

m = constant controlling fall rate of p(s)

FIGURE 2.2: ACTUAL AND FITTED PARTICLE SIZE DISTRIBUTIONS FOR THE 14 POWDERS USED IN THE 35 EXPERIMENTS

(continued)

FIGURE 2.2: ACTUAL AND FITTED PARTICLE SIZE DISTRIBUTIONS FOR THE 14 POWDERS USED IN THE 35 EXPERIMENTS

(continued)

FIGURE 2.2: ACTUAL AND FITTED PARTICLE SIZE DISTRIBUTIONS FOR THE 14 POWDERS USED IN THE 35 EXPERIMENTS

2.2 PARAMETERIZATION OF THE SINTERING AND NITRIDING TEMPERATURE PROFILES

Seven different sintering runs and three different nitriding runs were used among the 35 production conditions. The temperature-versus-time profiles of the sintering and nitriding runs are shown in Figures 2.3 and 2.4 respectively, with the resulting average strengths are shown on the right of the Figures.

2.2.1 Sintering Profile Parameters

Fourteen parameters (numbers 113 through 136 in the data base) were computed from each of the seven sintering temperature profiles. The first six parameters are the duration times that the sintering temperatures were above specified temperatures (200°, 400°, 600°, 800°, 900°, and 1000°C). The next six parameters are the degree hours above the (same) specified temperatures, i.e., the areas under the curve and above the threshold temperature. The final two parameters are the rise and fall times between 21° and 900° C.

2.2.2 Nitriding Profile Parameters

Fourteen parameters (numbers 141 through 154 in the data base) were computed from each of three nitriding temperature profiles. The parameters are the same as the sintering variables except that the specified temperature levels were 400, 600, 800, 1000, 1200, and 1300 °C. No rise or fall times wee computed as these were very rapid with respect to the overall nitriding times.

Condition Numbers

1.6, F, 13, 16, 18, 19, 21, 22, 25, 27, 28 MOR MEAN = 31.6000 MIN. = 23.2000 MAX. = 45.5000

Condition Number 26

MOR MEAN = 27.700 MIN. = 27.7000 MAX. = 27.7000

Condition Numbers

2, 3, 8, 9, 12, 14, 17, 23 MOR MEAN = 28.8000 MIN. = 21.0000 MAX. = 41.8000

FIGURE 2.3: TEMPERATURE VS. TIME PROFILES FOR THE SINTERING PROCESS

Condition Numbers

4, 5, 10, 11, 15, 20, 24, 29 MOR MEAN = 29.3000 MIN. = 18.6000 MAX. = 41.4000

Condition Numbers 30, 31

MOR MEAN = 42.1500 MIN. = 40.5000 MAX. = 43.8000

FIGURE 2.3 (continued)

Condition Numbers 32, 33

MOR MEAN = 41.5500 MIN. = 36.6000 MAX. = 46.5000

Condition Numbers 34, 35

MOR MEAN = 46.1000

MIN. = 44.3000 MAX. = 47.9000

FIGURE 2.3 (continued)

Condition Numbers 1-29

MOR MEAN = 30.1 MIN. = 18.6

Condition Numbers 30-33

MOR MEAN = 41.2 MIN. = 36.6 MAX. = 46.5

Condition Numbers 34-35

MOR MEAN - 46.1 MIN. = 44.3 MAX. = 47.9

FIGURE 2.4: TEMPERATURE VS. TIME PROFILES FOR THE NITRIDING PROCESS

3. ADAPTIVE LEARNING NETWORK MODELING

3.1 ALN MODELS

Several ALN models of the ceramics manufacturing process were generated using the Adaptronics, Inc. PNETTR(3) model synthesis algorithm. The models discussed here were trained using all 35 data points provided by AiResearch. Three categories of models were developed: (1) strength and strength variance were modeled as a function of the independent process input variables, (2) strength and strength variance were modeled as a function of dependent intermediate process variables, and (3) the dependent intermediate process variables were modeled as a function of the independent process input variables.

Figures 3.1a through 3.12a show the models from each of the three respective categories. All model inputs and outputs have been linearly scaled to zero mean and unit standard deviation (see Appendix 1 for scaling factors) to allow an evaluation of relative variable importance by comparison of coefficient magnitudes. The predominant mathematical terms of the models, in unitized partial derivative form, are shown along with the network block diagrams. These partial derivatives are quantitative estimates of the relationships between variables.

Also shown in each ALN figure are the ranges, R, of values over which the models were trained, the standard deviation, S, of the data, and the RMS error that the models produced. There are two error metrics. The first is the RMS error, e, that was obtained on the 35 data points used in training, and the second is the RMS error, E, that the model would be expected to make on new data which was not used in the training process, E. Model usefulness should be judged by the second metric, the expected error. It must be emphasized that the expected error is a valid estimate only if the new data presented to the model is statistically similar to the original training data, i.e., that the values of the input and output variables are within the range of the training data. The model performance measure, P = 1-E/S, is unity minus the ratio the expected error on new data to the standard deviation of the original data. If this number is equal to zero, the model is of no value; if it is equal to unity, the model is a perfect predictor.

To provide visual insight to the models, contour plots of the ALN's are presented in Figures 3.1b through 3.12b. These diagrams show each network's output as a function of its two most predominant inputs. If a model has more than two inputs, the values of those inputs, for plotting purposes, are held constant at their mean value. The curves on the plots show contours of constant model output, and the numbers next to the curves indicate the model output value.

The asterisks on the contour diagrams show the locations of the 35 data points used in the model synthesis. Models are expected to be most accurate in the vicinity of the data and less accurate further away from the data. There are not always 35 asterisks on each plot. In many cases several observations had identical values for the two parameters being plotted, so an asterisk may represent several points.

3.2 MODEL INTERPRETATIONS

Investigation of the model structures leads to the following hypotheses about the slip-cast, reaction-bonded silicon-nitride manufacturing process. Because of the small amount of data used in the model synthesis, these interpretations should be viewed as no more than hypotheses about the process. It is intended that the interpretations be used only as guides for further experimentation and not as definitive statements about the chemical process.

3.2.1 Mean Strength Modeled as a Function of the Independent Variables: (Figures 3.1 and 3.2)

The presence of oxygen in the starting powder has a detrimental effect on strength; therefore a low amount (less than 0.5 percent) of oxygen in the starting powder is desirable.

The use of larger amounts of media quantity (above 10 Kg ${\rm Al}_2{\rm O}_3$) in the powder preparation has a positive effect on the ultimate ceramic strength.

Increasing the number of particles greater than 40 m generally reduces strength. There are two notable exceptions to this trend as shown by the A_2B_1 and A_3B_1 powders in Figure 3.2b. Both of these had approximately one percent of the particles greater than 40 m yet still achieved actual strengths of 33 and 36 ksi respectively, and these two data points account for the quadratic term in model. But the majority of the data lies to the left on the plot, with less than 0.33% of particles greater than 40 m, and in this region it is apparent that smaller percentages of large particles contribute to higher strength.

Increasing the standard deviation, or spread, of the particle size distribution has a minor positive effect on strength. Very narrow distributions should be avoided.

3.2.2 Strength Variance Modeled as a Function of the Independent Variables: (Figure 3.3)

Decreasing the rise coefficient (n) of the fitted particle size distribution tends to decrease strength variance. Lowering n corresponds to increasing the proportion of smaller particles in the overall size distribution and is in keeping with the requirement for a broad particle size distribution.

Increasing the coefficient of skewness of the particle size distribution tends to reduce the strength variance. Thus, though the total distribution should be relatively broad and its mean shifted twoard the smaller sizes, its shape should be skewed toward the larger sizes.

Shorter sintering times (less than 10 hours) at temperatures greater than 900°C appear to decrease the strength variance.

(R) Range of the Data : 29.1 (ksi) Min = 18.69, Max = 47.80

(S) Standard Deviation : 7.82 (ksi)
(e) RMS Error on Training Data Base : 3.88 (ksi)
(E) Expected RMS Error on New Data : 4.6 (ksi)

(P) Model Performance Measure (1-E/S) : 0.41

Partial Derivatives of Mean MOR with Respect to the Model Input Variables:

Oxygen in Starting Powder (%) :-7.71 (ksi/%) Media Quantity (AL_2O_3 ,kg) : 1.03 (ksi/kg)

FIGURE 3.1a: ALN MODEL PREDICTING STRENGTH AS A FUNCTION OF INDEPENDENT VARIABLES

* - indicates location of training data

FIGURE 3.1b: CONTOURS OF STRENGTH PLOTTED AS A FUNCTION OF INDEPEND-ENT VARIABLES

(R) Range of the Data : 29.1 (ksi) Min = 18.69 Max = 47.80

(S) Standard Deviation : 7.82 (ksi)
(e) RMS Error on Training Data Base : 4.17 (ksi)
(E) Expected RMS Error on New Data : 5.14 (ksi)

(P) Model Performance Measure (1-E/S) : .34

Partial Derivative of MOR Mean with Respect to the Model Input Variables:

Percent Greater than 40 μm :-37.90 (ksi/%) Standard Deviation of log of PSD : 3.15 (ksi/ M)

FIGURE 3.2a: ALN MODEL PREDICTING STRENGTH AS A FUNCTION OF PARTICLE SIZE DISTRIBUTION PARAMETERS

CONTOURS OF CONSTANT STRENGTH (KSI)

* - indicates location of training data

FIGURE 3.2b: CONTOURS OF STRENGTH PLOTTED AS A FUNCTION OF PARTICLE SIZE DISTRIBUTION PARAMETERS

PSD Rise Coeff.
$$x_{96}$$
 - .5 x_{96} + .75 x_{117} - .59 x_{91} - .29 $x_{117}x_{96}$ - .95 x_{117}^2 - .26 $x_{96}x_{91}$ - .39 $x_{117}x_{91}$ + .15 $x_{117}x_{96}x_{91}$ MOR Standard. Deviation + .49 x_{117}^2 + .85

(R) Range of the Data : 10.82 (ksi); Min = 2.84 Max = 13.66

(S) Standard Deviation : 2.19 (ksi)
(e) RMS Error on Training Data Base : 1.22 (ksi)
(E) Expected RMS Error on New Data : 1.70 (ksi)

(P) Model Performance Measure (1-E/S) : 0.22

Partial Derivatives of MOR Standard Deviation with Respect to the Model Input Variables:

Fitted PSD Rise Coefficient (B) : .81 (ksi)
Coefficient of Skewness :-.73 (ksi)
Sintering Time Greater Than 900°C Hrs : .68 (ksi/°C Hrs)

FIGURE 3.3a: ALN MODEL PREDICTING STRENGTH VARIANCE AS A FUNCTION OF INDE-PENDENT VARIABLES

PARTICLE SIZE DISTRIBUTION RISE COEFFICIENT (n)

* - indicates location of training data

FIGURE 3.3b: CONTOURS OF STRENGTH VARIANCE PLOTTED AS A FUNCTION OF INDEPENDENT VARIABLES

3.2.3 Mean Strength Modeled as a Function of the Intermediate Process Variables: (Figure 3.4)

High strength results from high nitrided density and high weight gain during the nitriding process. As would be expected from a chemical analysis, the weight gain should approach the theoretical maximum of approximately 62%. The nitrided density would ideally be above 2.75 gm/cm³.

Low percentages of Alpha-Silicon-Nitride (less than 75 percent) in the final analysis yield high strength.

3.2.4 Strength Variance Modeled as a Function of the Intermediate Process Variables (Figure 3.5)

Decreasing the ratio of Silicon Oxy-Nitride to Alpha-Silicon-Nitride tends to decrease strength variance.

Decreasing the ratio of Beta- to Alpha-Silicon Nitride appears to decrease strength variance if the ratio is .25 or higher to start with. Decreasing this ratio implies increasing Alpha which (from Section 3.2.3) would reduce strength, so it appears that there is a small tradeoff between strength and variance. Since low Alpha has a greater positive effect on strength than it has an adverse effect on variance, it is recommended that Alpha be minimized.

Decreasing the 1/30 viscosity appears to reduce strength variance to a small degree.

3.2.5 <u>Intermediate Process Variables as a Function of the Independent Variables:</u>

Slip pH: (Figure 3.6)

Slip pH appears to be highly nonlinearly dependent upon percent of solids in the slip and the percent of manganese in the starting powder. The model is quite biased, however, by observation number 26, which came from the ${\rm A_2B_{17}}$ powder, had an extremely low solids content of 52%, and resulted in a moderately low mean strength of 27.7 ksi.

Green Density: (Figure 3.7)

Increasing the percentage of slip additive $\mathrm{NH_4OH}$ results in increased Green Density.

For values between 0.00 and 0.04 percent, the amount of deflocculant does not significantly affect green density, but above about 0.04 percent, additional defloculant appears to increase Green Density.

Increasing the quantity of milling medium AL_2O_3 and increasing the slip aging time both cause minor increases in the Green Density of the parts.

% Wt. Gain x₁₅₅ - .37x₁₅₅ + .25x₁₅₆ - .61x₁₅₇ - .61x₁₅₇ MOR Mean Value Alpha x₁₅₇ - .61x₁₅₇

(R) Range of the Data : 29.1 (ksi) Min = 18.69,
Max = 47.80

(S) Standard Deviation : 7.82 (ksi)
(e) RMS Error on Training Data Base : 3.59 (ksi)
(E) Expected RMS Error on New Data : 4.72 (ksi)

(P) Model Performance Measure (1-E/S) : 0.40

Partial Derivatives of Mean Strength with Respect to Model Input Variables:

Nitrided Density (gm/cm^3) : 24.4 $(ksi/(gm/cm^3)$ Weight Gain (%) : 1.63 (ksi/%) Alpha (Rel. %) :- 0.80 (ksi/%)

FIGURE 3.4a: ALN MODEL PREDICTING MEAN STRENGTH AS A FUNCTION OF INTER-MEDIATE PROCESS VARIABLES

CONTOURS OF CONSTANT STRENGTH (KSI)

* - indicates location of training data

FIGURE 3.4b: CONTOURS OF STRENGTH PLOTTED AS A FUNCTION OF INTER-MEDIATE PROCESS VARIABLES

(R) Range of the Data : 10.82 (ksi) Min = 2.84Max = 13.66

(S) Standard Deviation : 2.19 (ksi) (e) RMS Error on Training Data Base : 1.23 (ksi)
(E) Eexpected RMS Error on New Data : 1.63 (ksi)
(P) Model Performance Measure (1-E/S) : 0.26

Partial Derivatives of MOR Standard Deviation with Respect to the Model Input Variables:

Ratio $\text{Si}_2\text{ON}_2/\text{Alpha}$ (%/%) : 33.95 (ksi) Ratio Beta/Alpha (%/%) : 8.76 (ksi) Viscosity 1/30 (CPS) : 0.02 (ksi/CPS)

FIGURE 3.5a: ALM MODEL PREDICTING STRENGTH VARIANCE AS A FUNCTION OF INTER-MEDIATE PROCESS VARIABLES

CONTOURS OF CONSTANT VARIANCE (KSI)

* - indicates location of training data

FIGURE 3.5b: CONTOURS OF STRENGTH VARIANCE PLOTTED AS A FUNCTION OF INTERMEDIATE PROCESS VARIABLES

$$x_{5}$$
 2.17 - 2.58 x_{5} - 1.52 x_{98} + 5.22 x_{5} x_{98}
Solids Content x_{98} - 1.18 x_{5} - 1.31 x_{98} 2

: 2.2 (-) Min = 4.9, Max = 5.9(R) Range of the Data

(S) Standard Deviation : 0.545 (-)

(e) RMS Error on Training Data : 0.19 (-)
(E) Expected Error on New Data : 0.34 (-)
(P) Model Performance Measure (1-E/S) : .37

Partial Derivatives of Ph with Respect to the Model Input Variables:

% Manganese in Starting Powder (%) :-69.66 (-/%)
Solids Content in Slip (%) :- .21 (-/%) Solids Content in Slip (%)

FIGURE 3.6a: ALN MODEL PREDICTING SLIP PH AS A FUNCTION OF INDEPENDENT VARIABLES

CONTOURS OF CONSTANT PH (-)

* - indicates location of training data

FIGURE 3.6b: CONTOURS OF PH PLOTTED AS A FUNCTION OF INDEPEND-ENT VARIABLES

 $:0.24 \text{ (gm/cm}^3) \text{ Min} = 1.54$ (R) Range of the Data Max = 1.78

 $:0.05 (gm/cm^3)$ (S) Standard Deviation :0.05 (gm/cm³)
(e) RMS Error on Training Data Base :0.02 (gm/cm³)
(E) Expected RMS Error on New Data :0.03 (gm/cm³)

(P) Model Performance Measure (1-E/S) :0.40

Partial Derivatives of Green Density with Respect to the Model Input Variables:

Additive NH₄OH (% Wght) : 2.50 (gm/cm³/%)
Deflocculant (% Wght) : 2.25 (gm/cm³/%)
Media Quantity (kg) : 0.01 (gm/cm³/Kg)
Slip Aging Time (Days) : 0.003 (gm/cm³/day)

FIGURE 3.7a: ALN MODEL PREDICTING GREEN DENSITY AS A FUNCTION OF INDEPENDENT VARIABLES

CONTOURS OF CONSTANT GREEN DENSITY (GM/CM³)

* - indicates location of training data

FIGURE 3.7b: CONTOURS OF GREEN DENSITY PLOTTED AS A FUNCTION OF INDEPENDENT VARIABLES

Weight Gain: (Figure 3.8)

Weight gain increases proportionally to the particle size distribution ratio [(Weight Bin3 plus Weight Bin5) divided by Weight Bin4]. This ratio reflects the width of the PSD, indicating that a broad PSD yields high weight gain.

Increasing the percentage of iron in the starting powder tends to decrease the weight gain.

Decreasing the slip aging time appears to cause a minor increase in weight gain.

Nitrided Density: (Figure 3.9)

From the quadratic nature of the model, it appears that weight gain is relatively insensitive to the amount of deflocculant if the deflocculant is less than about 0.04% of the slip, but above 0.04%, additional deflocculant increases weight gain. But because of the very limited data above 0.03%, this conclusion must be considered to be very weak.

Decreasing the skewness, i.e., increasing the amount of small particle sizes, of the particle size distribution tends to increase the nitrided density.

Increasing the solids content of the slip appears to cause a minor increase in the nitrided density.

Alpha: (Figure 3.10)

Decreasing the amount of ${\rm Fe}_2{\rm O}_3$ additive in the slip decreases the proportion of Alpha-Silicon-Nitride in the final analysis.

Decreasing the amount of oxygen in the starting powder decreases the proportion of Alpha-Silicon Nitride.

Decreasing the slip temperature causes a minor decrease in the percentage of Alpha-Silicon-Nitride in the final analysis.

Beta: (Figure 3.11)

A lower percentage of Manganese in the starting powder results in a higher proportion of Beta-Silicon-Nitride in the final analysis.

Lower percentages of deflocculant in the slip preparation result in higher proportions of Beta-Silicon-Nitride.

Decreasing the 20th percentile size of the PSD (i.e., increasing the number of small particles) tends to increase slightly the proportion of Beta-Silicon-Nitride in the final product.

Decreasing the slip temperature has a minor tendency to increase the final percentage of Beta-Silicon-Nitride.

* Fe
$$x_2$$
 - .07 - .73 x_2 - 66 x_{103} - .82 x_2x_{103} + .36 x_{88} - x_{155} Weight Gain Bin3+5/Bin4 x_{88} -

(R) Range of the Data : 7.7 (%) Min = 53.5, Max = 61.2
(S) Standard Deviation : 1.78 (%)
(e) RMS Error on Training Data Base : 0.89 (%)
(E) Expected RMS Error on New Data : 1.19 (%)
(P) MOdel Performance Measure (1-E/S) : 0.33

Partial Derivatives of % Weight Gain with Respect to the Model Input Variables

Ratio (Bin3 + Bin5)/Bin4 : 4.01 (%/%)
Fe in Starting Powder (%) :-1.71 (%/%)
Slip Aging Time (days) :-0.14 (%/day) Ratio (Bin3 + Bin5)/Bin4

FIGURE 3.8a: ALN MODEL PREDICTING WEIGHT GAIN AS A FUNCTION OF INDEPENDENT VARIABLES

CONTOURS OF CONSTANT WEIGHT GAIN (%)

RATIO (Wt. BIN3 + Wt. BIN5) /Wt. BIN4

* - Indicates location of training data

FIGURE 3.8b: CONTOURS OF WEIGHT GAIN PLOTTED AS A FUNCTION OF INDEPENDENT VARIABLES

: .33 (gm/cm^3) Min = 68.4, Max = 89.3 (R) Range of the Data

(S) Standard Deviation : .08 (gm/cm³)

(e) RMS Error on Training Data Base : .03 (gm/cm³)

(E) Expected RMS Error on New Data : .05 (gm/cm³)

(P) Model Performance Measure (1-E/S) : .37

Partial Derivatives of Nitrided Density with Respect to the Model Input Variables

Deflocculant (% of Wght) : $2.64 \text{ (gm/cm}^3/\text{%)}$ Coefficient of Skewness : $-0.09 \text{ (gm/cm}^3/\text{-)}$ Solids Content (% of Weight) : $0.05 \text{ (gm/cm}^3/\text{%)}$

FIGURE 3.9a: ALN MODEL PREDICTING NITRIDED DENSITY AS A FUNCTION OF INDE-PENDENT VARIABLES

CONTOURS OF CONSTANT NITRIDED DENSITY (GM/CM³)

PERCENT DEFLOCCULANT

* - Indicates location of training data

FIGURE 3.9b: CONTOURS OF NITRIDED DENSITY PLOTTED AS A FUNCTION OF INDEPENDENT VARIABLES

- (R) Range of the Data : 20.9 (Rel. %) Min = 68.4 Max = 89.3
- (S) Standard Deviation : 6.0 (Rel. %) (e) RMS Error on Training Data Bases : 3.0 (Rel. %)
- (E) Expected Error on New Data : 3.80 (Rel. %)
 (P) Model Performance Measure (1-E/S) : 0.37

Partial Derivatives of Alpha with Respect to the Model Input Variables:

Slip Additive Fe₂O₃ (%) : 3.72.0 (%/%) Oxygen Content in Starting Pwdr.(%): 3.78 (%/%) Slip Temperature (°F) : 0.84 (8/8)

FIGURE 3.10a: ALN MODEL PREDICTING ALPHA AS A FUNCTION OF INDEPENDENT VARIABLES

CONTOURS OF CONSTANT ALPHA (%)

* - Indicates location of training data

FIGURE 3.10b: CONTOURS OF ALPHA-SILICON-NITRIDE PLOTTED AS A FUNCTION OF INDEPENDENT VARIABLES

Mn
$$x_5$$

-1.14 x_5 - .53 x_{67}

-20% Size x_{67}

Deflocculant x_{99}

Slip Temp. x_{104}

: 21.4 (Rel. %) Min = 7.8, Max = 29.2 (R) Range of the Data

(R) Range of the Data : 21.4 (Rel. %)
(S) Standard Deviation : 6.1 (Rel. %) (e) RMS Error on Training Data Base : 2.78 (Rel. %)
(E) Expected Error on New Data : 3.91 (Rel. %)

(P) Model Performance Measure (1-E/S) : 0.36

Partial Derivatives of Beta with Respect to the Model Input Variables:

% Manganese in Starting Powder : -347.7 (%/%) Deflocculant (% of Weight) : -262.3 (%/%)
20 Percentile Size (Log) : - 1.39 (%/-)
Slip Temperature (°F) : - 0.98 (%/°F) : - 0.98 (%/°F)

FIGURE 3.11a: ALN MODEL PREDICTING BETA AS A FUNCTION OF INDEPENDENT VARIABLES

CONTOURS OF CONSTANT BETA (%)

PERCENT MANGANESE IN STARTING POWDER

* - Indicates location of training data

FIGURE 3.11b: CONTOURS OF PERCENT BETA-SILICON-NITRIDE PLOTTED AS A FUNCTION OF INDEPENDENT VARIABLES

Titanium in the starting powder increases the percentage of silicon-oxy-nitride in final material.

Adding Fe₂O₃, however, appears to reduce slightly the amount of silicon-oxy-nitride.

3.3 SUMMARY OF KEY EFFECTS

The key hypotheses obtained from the networks are diagrammed in Figures 3.13a and b. High average strength results primarily from high weight gain and high nitrided density, which in turn are achieved with a broad, unimodal particle size distribution with with a small mean size and with low iron in the starting powder. Low alpha-silicon-nitride also improves strength and is achieved by minimizing oxygen in the starting powder and by using smaller amounts of ferris oxide additive in the slip preparation.

Low strength variance, i.e., high Weibull modulus, is achieved by minimizing silicon-oxy-nitride and to a lesser extent by using smaller particle sizes. The silicon-oxy-nitride appears to be increased most by titanium in the starting powder.

Production conditions yielding high average strengths also yield fairly consistent strengths, i.e., high Weibul modulus, while low average strengths are generally accompanied by large variation in part strengths.

Within the range of the 35 data observations used in this analysis, it does not appear that slip pH, green density, or sintering parameters have a significant impact on strength or strength variance. Though nitriding parameters, such as temperatures, times or nitrogen pressures, were not selected by the networks, it must be pointed out that there was not significant variation of those parameters in the data base. Further data should be collected to determine the affects of nitriding on strength and strength variance.

%Ti - x159 Si2ON2 .87x9 - .32x101Fe₂O₃ ×₁₀₁

: 5.5 (%) Min = 0.0, Max = 5.5(R) Range of the Data

(S) Standard Deviation : 1.29 (%)
(e) RMS Error on Training Data Base : 1.0 (%)
(E) Expected RMS Error on New Data : 1.06 (%)
(P) Model Performance Measure C1-E/S) : 0.18

Partial Derivatives OF % Si2ON2 with Respect to the Model Input Variables

% Titanium in Starting Powder : 56.12 (%/%)
% Slip Additive (Fe₂O₃) : -41.28 (%/%)

% Slip Additive (Fe₂O₃)

FIGURE 3.12a: ALN MODEL PREDICTING % Si2ON2 AS A FUNCTION OF INDEPENDENT VARIABLES

CONTOURS OF CONSTANT $si_2^{ON}_2$

* - Indicates location of training data

FIGURE 3.12b: CONTOURS OF PERCENT Si $_2$ ON $_2$ PLOTTED AS A FUNCTION OF INDEPENDENT VARIABLES

FIGURE 3.13a: FLOW CHART OF PREDOMINANT SLIP CAST RBSN PROCESS EFFECTS

FIGURE 3.13b: FLOW CHART OF PREDOMINANT SLIP CAST RBSN PROCESS EFFECTS

4. CONCLUSIONS AND RECOMMENDATIONS

The Adaptive Learning Network methodology has been demonstrated to be a powerful tool for the analysis of a slip-cast, reaction-bonded, silicon-nitride manufacturing process. Though the data is limited (only 35 manufacturing variations were available), many trends have been identified which will be useful in guiding a continued search for the optimum manufacturing conditions.

The models developed to date do not exhibit clear cut peaks showing optimum values parameter settings; rather, they show trends which suggest that further variations of the parameters will yield improved material properties. It appears that strengths well above 48 ksi (the strongest achieved to date) are possible.

There was little variation of the nitriding parameters in the given data base, so the impacts of nitriding on material strength could not be estimated. In future work it is recommended that data be collected for a wide range of nitriding conditions.

It is also recommended that future work address high temperature strengths as well as room temperature strengths, so that strengths may be optimized for the operational environment of the RBSN materials

5. REFERENCES

Ceramic Components for Turbine Engines, Fifth and Sixth Interim (Quarterly) Technical Reports, AiResearch Manufacturing Company, Contract F33615-77-C-5171, AFML Wright-Patterson AFB, June and September 1979.

6. REPORT DISTRIBUTION

- Dr. Michael J. Buckley
 Defense Advanced Research Projects Agency
 1400 Wilson Boulevard
 Arlington, Virginia 22209
- Dr. Henry Graham
 Air Force Materials Laboratory/LLM
 Wright-Patterson Air Force Base
 Dayton, Ohio 45433
- 3. Dr. Norman Tallon Air Force Materials Laboratory Wright Patterson Air Force Base Dayton, Ohio 45433
- 4. Mr. David W. Richerson AiResearch Manufacturing Co., Garrett Corporation 111 South 34th Street Phoenix, Arizona 85010
- 5. Mr. Michael E. Rorabaugh
 AiResearch Casting Co., Garrett Corporation
 2525 West 190th Street
 Torrance, California 90509

APPENDIX 1

SLIP-CAST REACTION-BONDED SILICON-NITRIDE DATA BASE

Notes:

- (1) The data base is in two parts. Section 1 presents the following statistics for each variable in the data base: mean, standard deviation, range, minimum value, and maximum value. Section 2 presents the 35 individual values of each variable.
- (2) In Section 2, an asterisk next to a zero entry indicates that no measurement was made for that entry.
- (3) Particle size data is given in the following log form:

s = size in micrometers

x = log size

 $x = 10 \log (10s)$

 $s = 10 \frac{x-10}{10}$

SUBPROCESS A STARTING POWDER

Parameter Number	Mean	Standard			
and Name	Value	Deviation	Range	Min.	Max.
1 CALCIUM PERCENTAGE	. 8249	. 8185	.0300	. 6999	.6300
2 IRON PERCENTAGE	1.3951	.7609	1.6880	. 4200	2.0000
3 ALUMINUM PERCENTAGE	. 2081	.1193	.2000	. 8666	. 2000
4 MAGNESIUM PERCENTAGE	. 6663	.6021	. 0050	. 6628	. 6676
5 MANGANESE PERCENTAGE	6160.	.0164	.6436	9199	. 0500
6 CARBON PERCENTAGE	.0149	.0414	0000	. 0000	. 6000
7 POTASSIUM PERCENTAGE	.0114	.0318	. 6000	. 6000	. 6666
8 OXYGEN PERCENTAGE	. 2846	. 1946	. 4300	. 0000	. 4300
9 TITANIUM PERCENTAGE	1050.	.6188	0090	0000	6090
10 OXYGEN ANALYSIS (PRCNT)	1.1377	.7262	1.3500	.4100	1.7600
11 OXYGEN AVALVSIS +/- PRCNT	.7354	.3148	. 2580	9991.	7 9999
12 AVE FACE SIZE CHICAL	223 6714	A 25.5.5	166 0000	128.0000	276.8808
14 MAX PART SIZE VIDTH	194.4286	71.7511	200.0000	50.0000	250.0000
15 SURFACE AIREA (M2/GM)	3.7286	2.5290	4.6000	1.4000	6.9000
16 20 PRCNTILE SIZE (LOG)	12.7389	6.1626	12.6622	. 0000	12.6622
17 50 PRCNTILE SIZE (LOG)	15.1637	7.2290	16.0367	0000	16.0357
18 80 PRCNTILE SIZE (LOG)	17.2880	7.7601	17.8795	. 6000	17.8796
19 95 PRCNFILE SIZE (LOG)	19.4059	8.3459	20.8235	. 6000	20.8235
28 98 PRCNTILE SIZE (LOG)	21.2549	8.8542	23.6667	0000	23.6667
21 MAX PART SIZE (LOG)	28.4571	11.6750	34.0000	. 6666	34.0000
PRCNI	6.3143	8.7524	1.2000	6666	1.2000
23 PRCNT .GT. 20 MICROMETERS	16.7114	27.1721	2.2000	0000	2.2000
PRCNI	24.8342	31.6483	0008.	gaga.	E 4 0190
25 PRCNI .GI. 5 MICROMETERS	2001.4002	29.3924	24.0190	9999	93 1000
- 4	1461	1267	25.5540	8000	2540
WGHT BINZ	3.9320	3.0006	6.4460	. 8000	6.4460
	24.1768	18.0128	39.2810	0000	39.2810
-	32.6260	18.3052	46.2190	0000	46.2190
-	14.0640	14.6299	6.1310	. 8000	6.1310
WGHT B	10.7702	18.8483	1.6690	0000	1.6690
RATIO	200	. 0647	1395	agga.	6661.
34 RATIO BIN3/BIN4	EREG.	.3748	2001	9999	1327
PATIO	.6242	4394	9894	9999	9884
RATIO	1.2321	.8538	. 9825	. 8000	. 9825
_	14.5748	6.7981	14.7192	0000	14.7192
39 STAND, DEV. OF LOG PSD	3.0257	1.2496	9.6979	. 8000	3.6979
_	6211	.5884	.4148	6000	.4148
41 KURTOSIS OF LOG PSD	3.7389	1.6703	4.8631	6666	4.8631
42 RAYTO STO DEV/PIEAN	1969	.0864	.2444	0000	.2444
43 RMS DEV FROM FITTED PSD-	0145	1510.	6800.	6089	. 9696
44 FITTED PSD PEAK(MICM) (A)	14.1543	6.2129	14.7780	. 8000	14.7780
45 FITTED PSD RISE COEF. (B)	2.7009	1.8234	4.2600	0000	4.2600
46 FITTED PSD FALL COEF. (C)	6099.	9662.	2000	. 9999	. 5000

SUBPROCESS B POWDER PREPARATION

	Max.	. 0306	6.0000	. 2000	.0050	.0500	0090	. 1000	2.9700	1.1760	16.9999	0000	9999	13.0600	.0300	9998	4.6000	275.0000	260.6000	6.5000	9000	16.1503	17.8/18	20 1010	23.3333	34.0000	. 4000	2.5000	21.5000	88.7978	91.1000	2.9940	16.8068	67 2070	21.2786	. 6230	. 3681	.6369	.3161	1.0041	9647	9795.71	4.020		9.1100	.3336	0130	17.0900	1.5000	
	Min.	0000	0000	0000	0000	9000	. 0000	9999	. 0000	. 6000	16.0000	. 6000	0000	10.1000	0000	9909	3.1000	22.0000	22.8000	4.3000	BOOD.	10.0879	14.8007	24 1629	21.5625	25.0000	. 0000	. 8000	6.5000	51.1600	80.2000	.3860	1.9150	45 6600	4.9778	.2300	.0285	.1323	9691	1608		2000	3.0464	1989.1-	3.6143	.1762	9116.	15.6000	6700	
	Range	. 0300	6.6666	. 2000	. 6050	.0500	0090	1000	2.9700	1.1750	. 6000	. 6666	. 8000	3.7600	. 6366	.0000	1.5000	253.0000	228.0000	2.2000	8000	6.0633	3.0051	2 1 1 2 0	1 7708	9.0000	. 4000	1.7000	16.9000	37.6370	17.5000	2.6090	14.8918	20.13/0	16.2930	. 2930	.3396	. 5037	.2071	. 8433	9967	3.7285	1.4/21	1010.	3.0963	. 1568	2,0016	2.6306	3.9100	
Standard	Deviation	.0139	2.3212	.0928	. 6623	. 0232	.0279	.0464	2.6191	9096	4.4791	. 9285	.3769	3.4868	. 6050	. 2544	1.2889	111.8230	101.0530	2.3139	. 6088	2.3292	1.3019	1.1536	9429	4.0694	.2622	1.4966	7.5051	14.2123	6.8417	1.1853	6.8318	1000.1	7.3803	9905.	.1436	. 2007	. 1401	.3403	7291.	1.4384		1106.	4406.	6050	.0028	1.1410	1.3571	
	Mean	1688.	1.5714	.0629	9100	.0157	68189	.0314	1.8834	. 7389	14.6286	.2286	1111	10.0531	.0291	.1316	3.7857	161.6286	147.6000	8.7286	8000	11.8049	19.9061	18.6609	22.2890	30.5143	.2743	1.6829	11.4143	62.2941	85.1771	2.6366	12.2862	9789.77	16.9087	. 5056	.2645	.4830	. 2160	1474	6269.	14.7181	4.2793	11/9'-	3.6119	. 2957	9010.	16.4928	1.9869	
Parameter Number	and Name	47 CALCIUM PERCENTAGE	48 IRON PERCENTAGE	49 ALUMINUM PERCENTAGE	50 MAGNESIUM PERCENTAGE	51 MANGANESE PERCENTAGE	52 TITANIUM PERCENTAGE	53 VANADIUM PERCENTAGE	54 OXYGEN AUALYSIS (PRCNT)	55 OXYGEN ANALYSIS +/- PRCNT	56 BALL MILL TIME (HRS)	57 VIBRATICH MILL TIME (HRS)	58 AIR CLASSIFY (YES/NO)	_	60 ADDITIVES FE203	-	•	63 MAX PART SIZE LENGTH	MAX PARI SIZE		66 STORAGE THE (HOURS)		68 50 PRCNILLE SIZE (LOG)			72 MAX PART SIZE (LOG)	-	74 PRCNT .GT. 20 MICROMETERS	76 PRCNT .GT. 18 MICROMETERS		77 PRCNT .GT. 1 MICROMETERS	78 KENT BINI . B-S 3		or well bins 1. 25.5.	82 WGHT BINS 105-30.	-	84 RATIO BINZ/BIN4	RATIO	RATIO			SO TIKE PROPERTY OF LOS PED					94 RMS DEV FROM FITTED PSD-		96 FITTED PSD RIDE COEF. (B) 97 FITTED PSD FALL COEF. (C)	

SUBPROCESS D SLIP PREPARATION

Parameter Number		Standard			
and Name	Mean	Deviation	Range	Min.	Max.
98 SOLIDS CHINI (WGHT PRCNT)	73.5429	3.9304	9999	75.8688	76.0000
99 DEFLOCULANT (WGHT, PRCNT)	. 8358	.0128	9110.	.0310	. 6428
100 ADDITIVE ACID (WGHT, PRCNT)	1100.	. 0025	0000	9000	. 8868
	.0249	.0113	.0300	. 0000	. 6366
	.6931	. 0051	6000	. 0600	. 0000
103 AGING TIME (DAYS)	12.7143	8.3000	8.0000	13.0600	21.0000
	70.5143	1.9918	4.0000	69.0000	73.8888
1695 PH	5.7314	.5450	1.6000	4.9000	6.9000
VISCOSITY	84.7000	30.3372	6000	100.0000	160.0000
VISCOSITY	112.3143	46.7673	\$3.0000	186.6668	133.8000
160 VISCOSITY 1/12 (CPS)	176.7714	84.0192	183.0000	192.0000	375.0000
(HIXOTROP-I	1.9974	.4336	1.9500	1.7500	3.7999

SUBPROCESS F SINTERING

	Max.	4.0000	1100.0000	126.0000	30.2500	23.0000	17.2500	14.5000	12.7508	12.0000	13798.1000	9914.9840	6296.4348	3091.3010	1725.3680	460.0000	25.7508	4.6000	1.6908	. 4909	. 6066	1.7200	1.9000
	Min.	4.0000	1100.0000	70.0000	20.0000	18.7500	16.0000	9.0000	7.2600	5.5000	13675.4500	8340.6470	4424.0590	1923.7080	1113.2090	470.8352	4.2500	3.7590	00000	.0000	6000	1.7200	6606
	Range	. 0000	0000	55.0000	10.2500	.2500	1.2500	5.5000	8.5000	6.5000	122.6445	1574.4370	1872.3768	1167.5930	612.1689	9.1648	21.5000	.7500	1.6900	4000	0000	. 6668	1.9000
Standard	Deviation	3.3693	25.1947	67.8990	6.0200	2.9071	1.8150	2.3792	2.4005	2.8694	1385.5080	1968.1850	879.9263	508.3044	267.1816	19.2607	9.1121	.3962	3786	7169	0000	0490	.6372
	Mean	6.8286	1086.2860	49.4671	25.0571	20.4786	15.9357	19.9867	9.0429	7.4786	13226.0500	8660.0120	5807.1910	2308.4160	1309.699	485.1411	16.3786	3.9143	0431	9226	00000	1 7011	. 5029
Parameter Number	ind Name	A STATEBING TIME (HOURS)	, ,	2 VACINIM (MICRO)							a nec upo et sad nec c												131 PERCENT WEIGHT LOSS
D	B	:		. :	: :			•	::	•		• •	::	::	•	•	::	• •	- :	- :	- :	-	

SUBPROCESS G NITRIDING

	Mean	Deviation	Range	Min.	Max.
URNACE LOAD (GMS)	3372.8678	291.3684	1110.0000	3358.0000	4460.0000
	95.4286	38.4219	100.0000	100.0000	200 . 0000
EAK-UP RATE	9.7714	.6363	9999	10.0000	10.000
HOURS PRIOR NZ FLOW	8.3714	1.3863	4.8000	2.8868	9 . 0000
NIMOSPHERE PRCNT NZ	9096.	. 0000	. 8000	9096	9096
ATMOSPHEKE PRCNT H2	.0400	. 8666	9000	. 8488	. 6408
HITRID, TIME (DAYS)	17.6857	2.8968	7.8998	12.8888	19.0000
(DEG. C)	1397.2570	9.7111	10.6666	1400.0000	1410.0000
SHIELDING Ø=NO.1=VES	. 4000	. 4899	1.6000	. 6666	1.0000
400 DEG C DAYS	19.5118	3.7302	9.6666	11.5417	21.2083
600 DEG C DAYS	19.4359	3.7368	9.6562	11.4792	21.1364
860 DEG C DAYS	19.3354	3.7292	9.6146	11.4167	21.0313
1968 DEG C DAYS	18.9958	3.7693	9.3645	11.3438	20.7083
1100 DEG C DAYS	8.8950	.4438	.3229	9.0313	9.3542
1268 DEG C DAYS	5.9366	.4265	.9167	6.8184	6.9271
1300 DEG C DAYS	2.8964	.4785	. 8333	3.0000	3.8333
GT. 460 DEG C	14216.5000	2437.9410	5827.5590	9494.7930	15322.3500
GT. 600 DEG C	10321.9300	1692.8130	3895.7620	7192.3760	11088.1400
GT. 800 DEG C	6444.9730	950.3013	1968.1370	4903.5080	6871.6450
GT. 1000 DEG C	2602.1430	239.6866	64.1199	2627.8810	2692.0010
.GT. 1100 DEG C	1328.3710	117.8926	223.5337	1352.0140	1675.6480
1200	586.9573	75.7266	161.1487	600.2432	761.3918
1300	143.1379	32.3109	61.6078	149.5817	211.1896
	57.6771	1.7850	3.3000	65.8000	59.1006
HATOTOGO DEMOTTO COMPONDA	2 6886	6868	0660	2.7696	2.7688

FINAL ANALYSIS

Paı	ramet	arameter Number	H			Standard			
and	Nam F	e	1		Mean	Deviation	Range	Min.	Max
157	ALPHA	CX-RAV REL.	PRCNT	-	86.8513	6.8065	11.0000	71.9888	82.9888
158	BETA	CX-RAY REL.			14.0800	6.0172	11.3000	11.6000	22.9000
159	SIZON	2 (X-RAY REL.			2.6200	1.2855	5.5000	90000	5.5000
160	SI	(X-RAY REL.			.2200	.6480	1.6000	0000	1.6008
161	RATIO	ALPHA/BETA			5.9416	2.5544	4.0069	3.1397	7.1466
162	RATIO	DETA/ALPHA			.2057	.0940	.1786	.1399	.3105
163	RATIO	SI ZONE/ALPHA			.0320	.0156	. 8663	0000	. 0663
164	RATIO	SIZON2/BETA			.2039	.1388	.4741	00000	. 4741
165	PORE	SIZE DIST.			6000	.0000	.0000	. 8008	8008

STRENGTH DATA

Max.	48 . 5666 39 . 8666 44 . 3666 3 . 8666 45 . 7666 17 . 5566
Min.	27.1666 14.4666 23.1466 3.1266 24.7676 7.1766
Range	21.4696 25.4696 21.1608 26.993 16.3758
Standard	8.3387 7.938 7.8244 2.1916 8.639 9.6406
Mean	28.3799 23.3086 32.3213 4.9383 84.3078 8.8281 9.9619
Parameter Number and Name	166 MOR MAXIMUM VALUE (KSI): 167 MOR MINIMUM VALUE (KSI) 168 MOR HEAT VALUE (KSI) 169 MOR STANG, DEVIATION 170 WEIBULL CHARACTERISTIC 171 WEIBULL SLOPE (SHAPE) 172 CORRELATION COEF

DATA HASE SUPPLIED BY	AIRFSEARCH CASTING COMPANY	TORRANCE , CALIFORNIA
ANAP IRCAICS.INC.	IP CASTING BEAPTIVE CONTROL	J08542

FEBRUARY 1979 REVISED 12/04/79

200342			INKANGE , CALIFORNIA	ALIT OKNIA						
SURFICESS & STANTING FOLCER	CER									
SUBPROCESS DESIGNATION ABDEG	UN ABOFG	ANDFG	ABOFG	AUUFG	ABDFG	ASOFG	ABDFG	ABDFG	ABOFG	ABDFG
FRUCESS CONT NUMBER	====	111121	11122	11131	11132	11211	11212	112211	11222	11231
CRSERVALIGN NUPRER	-	۰	•	•	S	9		æ	6	01
PAHANETER NUMBER AND NAME										
	160.	.030	.010	.030	.030	.030	.030	.030	.030	.030
2 IFCN PERCENTAGE	2.036	2.030	2.090	2.000	2.000	2.000	2.000	2.000	2.000	2.000
3 ALUMINUM PERCENTASE	.210	.200	.200	.200	. 200	.200	.200	.200	.209	.200
4 PAGALSTUM PERCENTAGE	.001	100.	100.	.307	100.	100.	100.	100.	100.	100.
S PENGENESE PERCENIDGE	0:0.	.050	.050	.050	.050	.050	.05	.050	.050	.050
C CARREN PERCENTAGE	0.0000	0.000	0.000	0.000	.030	0.000	.000.0	0.000	.000	0.000
	0.000	00000	•	00000	0.000	0.000	₹000.0	• 300.0	• 00000	00000
P CYCEN PERCENIAGE	04.0	056.	054.	054.	05.6.	0.4.	000	056	050	054.
TO CAVER ANALYSIS CORCAL	097	1.760	1.760	1.760	1.760	090.	090.	1.760	1.160	1.760
11 CAYGEN ANALYSIS +/- PRENT	.950	950	920	. 350	. 950	. 950	.950	. 950	.950	. 450
	3.200	3.206	3.200	3.200	3.200	3.200	3.200	3.200	3.200	3.200
	275.000	275.000	-	C	275.000	275.000	275.000	275.000	215.000	275.000
IN MAX PART SIZE WIDTH	250.000	250.000	250.000	250.000		250.000	250.000	520.000	250.000	250.000
SURFACE AREA	2.990	6.900	2.900	2.900	5.900	2.900	2.900	2.900	2.900	2.900
SC PRENITE SIZE	12.662	15.662	12.662	12.662	12.662	12.66.2	15.662	12.662	12.662	12.662
SC PPCAFILE	15.036	15.036	15.036	15.036	15.036	15.036	15.036	15.036	15.036	15.036
	17.840	17.880	17.840	17.810	17.880	17.880	17.840	17.880	17.880	17.880
	20.824	26.824	20.824	20.824	20.824	20.824	20.824	20.03	20.824	20.824
2.5	23.651	23.667	23.667	23.667	23.661	23.661	23.667	23.667	23.667	23.667
21	34 . 000	24.000	34.000	34.000	34.000	34.000	00.	24.000	34.000	34.000
22 FPCK1 .61.40	1.230	1.200	1.299	1.200	202	1.200	02.	1.200	1.200	1.200
	2.200	2.200	2.200	2.200	2.200	7 900	2.200	2 400	2.200	7 900
24	0000	0010 43	006.	0000	50.01	50.000	200	010	2000	
26	93.300	52.300	93.300	93.500	93.300	93.300	93.300	92.306	93.300	93.300
	.234	.254	.254	.254	254	. 254	.254	.254	.254	.254
WENT HINZ	914.9	6.446	911.9	946.9	946.9	946.9	6.416	9.4.9	944.9	961.9
	39.281	39.281	39.241	39.241	39.281	39.281	39.281	29.281	39.201	39.281
36 LCF1 HINA 35-10.	46.219	DE.219	46.219	46.219	16.219	46.219	46.219	46.219	46.219	46.219
WEET BINS 105	6.1.1	(.131	6.131	6.131	6.131	6.131	6.131	6.131	1:1:9	6.131
11 DATE DINSTREAM	600.1	1 19	6901	690-1	600.1	1119	651.	1139	687	1139
1111	050.	.850	.850	. 450	.850	. 050	.850	.850	.650	.850
1111	.133	.133	.133	.133	.133	.133	.133	.133	.133	.1:3
FAIIC	686.	.989	.989	. 989	6 96 .	. 989	.989	686.	989.	686.
F 7 1 1 C	.96.	.783	•		. 983	. 983		.983	. 983	.983
11831	14.715	14.719	14.719	14.719	14.719	14.719	14.719	14.719	19.719	14.719
STAND. DEV. CF 106 PS0	3.598	3.598	3.59#	23	3.598	3.598	3.598	3.598	3.598	3.598
	316.	.415	.415	.415	616.	614.	616.	51.	61.	614.
KLRICS	3.46.	4.863	4.863	4.163	598.	696.	2000	794.	1.01	
	.214	***	62.	.244	1000		600	655	600	
45 KPS GOVEROM FILLO PSU	600-	14.770	14.770	14.770	14.770	14.770	14.770	19.770	19.770	14.770
	0 30	0.26.0	26	. 26	0.260	26	4.260	4.260	1.260	4.260
CITTED PSD FALL	0.5.	.50	5.1	.50	.50	.50	.500	.50	20	.500

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

		180FG	6		.030	-	.200	.607	.050	000	.430	090.	1.760	026.	000	.000 25	006	299	0.36	086	2 199	000	N	.200	.800	705	54		.281		699	.139	.850	.133	188	1 617.	.598	.415	.863	.244	6000	2560	.500	
					0	0 2	0	_		• • • •		•	-		275	0 250	9	2 12		11	23		1 0	2	0	9.6		.0	1 39		6	61	0	~		6	8 3	יש	*	•	6			
12/04/79		ABOF 0	18		.03	2.00	.20	00.	20.	0.00	. 43	.0	1.76	26.	. 5	250.00	L)	~	S	- 0	23.66	34.00	-	2.20	7.90	93.30	.2	9	19.28	16.21	1.66	-	.85	.1.	96	14.71	3.59	14.	4.86	. 2	10	4.26	. 50	
FEBRUARY REVISED 1		AB0FG 13121	1.1		.03	2.000	.200	00	.050	00000	.430	.06	16	95	2.00	.00	5.90	12.662	15.036	17.880	23.667	34.000	.20	. 20	80	93.300	.25	*	39.281	46.219	1.669	.139	.850	.133	986	14.719	~	.415	4.863	.244	6000-	0 - 26.0	.500	
•		AB0FG	16			2.000	.200	00	.050	00000	. 43		1.760	. 95	275.000		5.90	12.662	2	33	23.667	0	20	2.200	7.80	93.300	•	946.9	39.281	46.219	1.669	.139	.850	.133	. 48 .	•	5	14.	98	.244	600	26	.50	
*		ARDF 6	15		.030	2.000	.200	0	•	100000		.060	1.760	. 750	, ,	250.000	5.900	vD.	5.0	8 .	23.667	4.0	1.2	2.200	7.800	93.300	. 25	w	39.281	46.219	1.669	.139	.850	.133	PH 9	14.719	3.598	.415			6000-	1.26		
SUPPLIED BY ASTING COMPANY CALIFORNIA		A B O F G	-		.030	2.000	.200	00	.050	00000	.430	90.	16	. 950	2 . 0 0	.00	5.90	99.	. 33	. 88	23.667	00	.20	2.200	~	93.500	•	9	39.281	46.219	1.669	.139	.850	.133	498	17	3.598	.415	4.863	.24	600	26	.50	
DATA BASE AIRESEARCH CA. TORRANCE ,		ABDF 6	-		•	2.000	.200	00	. 05	00000	•	090.	1.769	•	75.00	00	5.900	12.662	י מ	•	23.667	4.00	-	20	÷ .	93.300	.25	9	39.281	46.219	1.669	.139	.850	.133	186.	7	3.548	. 41	4.863	.24	600	4 260	. 50	
AIA		AHDF G	2			0	.200	0	•	00000		090.	1.760	056.		256.000		12.662	15.036	17.880	23.667	34.000	1.200	2.200	7.800	93.300	.254	6.446	29.281	46.219	1.669	.139	. 450	.133	.983		-,		4.863	2	003	36	5.0	
ROL	ICER	4 -	=			2.000	.200	100.	330.	00000	.436	090.	1.760	056.	275.000	250.000	5.900	12.662	15.036	17.880	23.661	34.000	1.200	2.200	7.800	93.300	.254	966.9		46.219		.139	.850	.133		14.713	•	.415	4 - 863	.244	•	- 0	.500	
SLIP CASTING ACAPTIVE CONIROL JOBS42	SUPPLICESS A STARTING PCHCE	SURPROCESS DESIGNATION FROCESS CCCC NUMBER	CRSERVATION NUMBER	PARAPETER NUMBER AND NAME				4 MENESTUM PERCENTAGE	E PINGINESE PEPCENTAGE	2 DETACATION DERCENTAGE		9 TITANIUM PERCENTAGE				14 PAX FART SIZE WIOTH		SC PRCAFILE	SO PRENTILE SIZE		15 ST PRINTILE SIZE (LOG)		PRCNI	FFCNI	PECNI	26 PRCNI GI. 3 MICROMETERS	WEHT HINI .0-53	LEFT BINZ .		30 MCHT BING 105-10.	LCH1 PINE 305	RATTE BINZ/BIN	RATIC	FATIC	TARLIC BINCESTRA	FIRST			KURTOS I		AS CITAGO DES DEACHTEE PSD	FITTED PSD RISE	FITTED PSD	

		AB0F6 26112 30		.030	.360	09 4.	.003	.020	0.000	000	.050	.140	1.060	30.000	125,000	5.00	0000	24.667	26.297	27.632	28.227	31.000	22.800	200	98.961	100.000	0.000	00.	13.661	36.850	.45	00000	910.	2.691	411	23.20) [7]	.05	.51	.137	•	0	006.	
		ABCFG 35131 29		.010	1.500	090.	-005	040.	.130	101	.060	.500	.380	æ	50	190.060	1.500	19.117	51.347	23.103	24.333	33.000	008.	36.00	19.335	97.100	00000	2.900	60.615	37.224	1.476	110.	.437	916.	198 1	17.676	3.870	551	2.869	.219	007	20.000	0	7
1979		ABDF 6 35111 28		.010	1.500	• 0 € 0	.005	040.	.130	001.	090.	.500	.380	æ	00.	00.05	1.500	19.117	21.347	23.103	24.333	33.000	.800	30.00		97.10			40.635	37.224	1.476	.071	.437	6	200	17.676	3.87	. 55	2.869	.219	.00	00	1.010	317.5
FEBRUARY REVISED 1.		ABDF G 31111 27		0	1.500	90	.005	040.	.130	340	.060	.500	.380		00	90.06	002.1	19.117	21.347	23.103	24.333	33.000	.800	2000	79.335	97.100	0.000	2.900	40-635	37.224	1.476	.071	.437	916.	1 161	17.676	3.87	551	2.869	.219	00	00.	1.010	3.210
		ARDF G 27111 26		.030	.300	004.	.003	.020	000.	.000.0	.050	.140	.150	30	125.000	5.00	. 200	24.667	26.207	27.632	28.227	31.000	22.800	000.00	98.961	100.000	0.000	0.000	13-661	36.850	48.450	000.0	• 016	2.697	910.	23.244	3.190	-1.054	3.570	.137	. 04	20.000	0	000.
-		ABDF6 26211 25		.030	.300	004.	-	• 05	•000.0	100000	. 05	.140	.15	30.00	0000	25.00	35	99	26.207	.63	.22	00	22.800		96.961	100.000	0.000	0.000	13.661	36.850	48.450	0.000	910.	2.697		24	, ,	-1.034	3.57	.137	04	00		000.
DATA HASE SUPPLIED BY IRESEARCH CASTING COMPANY TORRANCE , CALIFORNIA		ABDF6 26131 24		.030	.300	004.	.003	.02	0.000	1000-0	.050	.140	.150		125.000	25	0000	24.667	26.207	27.632	28.227	31.000	22.800	000.00	98.961	100.000	0.000	0.000	11.661	36.850	48.450	0.000	910.	2.697	277	24.244	3.190	-1.054	3.570	.137	.04	00	006.	2000
DATA HASE SU Research cast Torrance , ca		AHDF 6 24121 23		.030	.300	004.	.003	•	.000.0	*000.0	020	.140	.150	30	125.000	25.00	0000	24.667	26.207	27.632	28.227	31.000	22.800	00.00	98.961	100.000	0.000	00000	13.661	36.850	8	000.0	.076	. 2.691	9100	24.244	3.190	-1.054	3.570	.137		20.000	006.	996.
DIA AIRES		AHDF6 26111 22		.030	.300	006.	.003	.020	* 000° a	.000.0	.050	.140	.150	0	0	125.000	0000	24.667	26.207	21.632	28.227	31.000	22.800	00.00	58.961	100.000	0.000	•	13.661	36.850	46.450	•	.076	2.691	972	24.244	3.190	-1.054	2.570	.137	044	0	006.	090.
10r	CER	CN AHOF G 21111 21		.030	002.	004.	.013	.020	0.000	10000	0 50.	.140	.150	50 . 030	125.000	125.090		24.667	26.297	27.632	28.221	31.000	22.800	000.00	98.961	100.000	00000	0.000	13.661	36.850	48.450	00000	.076	2.697	10.0	21.244	3.190	-1.034	3.570	.137	- 04	0	006.	ອ ວິດ.
ADAPTRCAICS THE SLIP EASTING ADAPTIVE CONTROL JCHS42	SUEFFICESS & STARTING PCKEER	SUMPROCESS DESIGNATION FROCESS COE NUMBER CRSERVATION NUMBER	THAN ONE UTION IN THE		2 IFCN PERCENTAGE	3 ALUPINUM PERCFNIAGE		E PANGANESE PERCENTAGE	E CERBEN PERCENTAGE	A CAVEEN OFFICENTAGE	S LITANICH PERCENTAGE	IC CYTGEN ANALYSIS (PRCNT)		AVG FART		MAX PART SIZE		12 ST PECATIFE SIZE (LUG)			20 9E PRENTILE S12E (LOG)	MAX FART SIZE	22 FECNI GI.40 MICROFIERS	DOCAL CT. 10	FRCN1 .61. 5			THE H	25 MCFT BINA 3-5-13-	WEHI	WEHT	F 111C	F 1116	RATIC	33 CATTO DINE STORY	1001	STANG.	COEF. 0			43 RAS CLV FROM FITTED PSU	FITTED PSD PEAK	FITTED PSD RISE COEF.	46 FILLE PSD FALL COEF. CC

	9
	-
3	-
-	4
9	0
-	-
	N
-	-
ď	
4	
>	
~	0
8	w
w	S
ī	-
_	>
	W
	~

) BY	CASTING COMPANY	CALTERDATA
Lel.	3	-
=		2
_	9	u
ā	z	-
=	Ξ	=
S	S	ī
•	4	
HASE	C	•
2	-	
-	0	2
-	~	TODDANCE
4	4	<
-	~	0
DATA	~,	9
	=	:
	=	
	AIRESEARCH	

SLIP CASTING ACAPTIVE CCNTROL JCBE42 SLEFECESS A STAFFING FCWER.

ABDFG ABDFG 46112 49212 34 35		0 0	. 42	00.00	00. 00	100. 100.	.000.	00.00	00.0 000.	0.00		2 3	.000 120.0	.000 50.00	1.40	.000.	.0000.		.000 .000.	.000.0 .000.	.000.	0000	200-0	.000	.000.	.000.	.000.	0.000	00.0	.000.	.000.	.000.	.000.		000.0	.000.	.000.	.000.	.000.	.000.	.000.	0.000.
49212 49212 33		•	.450	•	.002	1000	.0000-		.000	-	014.	000.	0.000	0000	1.400	0.000.0	*000*	.000.	.000.	.000.	.000.	•000		.000	.000.	*0000	*000	*000	.000	*000*	*000	.000-	.000	•060	*000	.000.	.000.	.000.	.000.	.000.	.000.	0.000*
46212 32		0.000	.420	0.000	.002	100.		.00	0.000	•	016.	000.		50	-	.000.3		•	.000.3	•	.000.0		. 000-3				.000.3	*000		(0000)	•	0.000.	00	50000	000	.000		0	0	.00	.00	.000.3
10N ABUF 6 39312 31		0:0.	. 5.5.0	.200	.002	910.	-	0	062.	.045	9	000	20.00	00.0	1.20		.000.0	.0000.0	.00	00.	.000		1000	0000		.00	.000	00000	000	.009	.00	.000	0000		000	.00			.00		•	0.0000
SUMPROCESS DESIGNATION FROCESS CONE NUMBER CRISENVALION NUMBER	PARAPETER NUMBER AND NAME	CALCIUP PERCE	-	<	PAGNE STUR	2	E CFRECH PERCENTAGE	PCTASSIUM PERCEN	CAYGEN PERCENTAGE	IIIANILM PERCEN	CITCH ANALYSIS (P	A C	FART SIZE	MAX FART SIZE	SURFACE AREA	2C PECNTILE SIZE	C PRCATILE SIZE	HO FRENTLE SIZE	95 PRCATILE SIZE (L	TILE SI	PEN FART SIZE (LOG)	PRCNI .GT.40 MICROMETER	CECKI GI TO MICROPELED	.61.5	PRCNI .GT. 1 MICROMETER	WEHT HINI	LEHT BINZ	29 WEFT BINS 1S-1.	SNI S IHON	16+1 HING 30 5	C BINZ/EIN9	PATIC			FIRST	STANE. DEV. CF LO	G CCEF. OF SKENNESS L	I KLATCS IS OF LCG PSC		3 RPS CIV FROM FITTED PSD	FILLED PSD PEAK (MICK) (45 FITTED PSD RISE COEF. (E)

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

H	COMPANY	IA
IEO	2	ORN
SUPPLIED	CASTING	CALIFORNIA
SU	AST	CA
SE	0	•

SLIP CASTING ACAPTIVE CCATRCL JORS42	RCL	PINE	DATA BASE S RESEARCH CAS FORRANCE . C	SUPPLIED BY STING COMPANY CALIFORNIA	, A		FEBRUARY REVISED 1	2164/19		
SUBFACCESS F FCWCER PREFAFFIICA	FFIICA									
SUBPROCESS DESIGNATION ARDFG FRUCESS CCDE NUMBER 11111 CBSFRVATION NUMBER 1	DN 4HDFG 11111	ABDF6 11121 2	ABDF G 11122 3	ABOF 6 11131	ABDF G 11132 5	ABOF G 11211 6	AB0F6 11212 7	ABDFG 11221 8	ABDF6 11222 9	ABDFG 11231 10
PRAPETER NUMBER AND NAME	;							;	;	
٠.	369.	0.030	.03	•	.030	.030	.030	.030	.030	.030
	000.0	000.3	000.5	000.0	000.0	2000	000.0	300	000.0	000.6
SC MEETING PERCENTAGE	002.	002.	002.	002.	067.	002.	002.	002.	002.	2000
CI PENGENESE PERCENTAGE	050	050.	.050	.050	0.00	020	.050	.050	630.	.050
	.069	090.	090.	090	050.	090	090.	090.	090	090.
53 VANACIUM PERCENTAGE	1130	.100	.100	.100	.100	.100	.100	.100	.100	.100
	2.910	2.970	2.970	•	2.970	2.970	2.970	2.970	2.970	2.970
CIYGEN ANALYSIS	1.175	1.175	1.175	-	1.175	:	1.175	1.175	-	1.175
NALL WILL TIME	16.000	16.000	16.000	16.000	16.000	16.030	16.000	16.000	16.000	16.000
ST VIBRALION MILL LIFE THESE	000.0	000.0	00000	•	0000	000.0	0000	000.0	000.0	0000
	10.100	16.160	10.100	10.100	10.100	10.100	10.100	10.100	10.100	10.100
	.030	.030	.030	•	.030	•	.030	.030		.030
	0.000.0	6.000.	.000.0	.000.0	0.0000	0.000.	.000.0	0000.0	00000	0.00
ES AVE FAFT SIZE (PICH)	3.100		3.100			,	3.100	", ;	3.100	3.100
	250.000	250.000	250.000	250.000	250.000	250.000	250.000	250.000	250.000	250.000
65 SURFACE AREA (P2/GP)	6.500		6.500)	9	6.500	9	6.500	6.500
SE STORAGE TIME CHOURS)	0.000.0	0.000.0	.0000.0	0.000.	0.000.	.000.0	*000*0	0	. 0000.0	00000
TO SECRITLE SIZE (LOG)	10.081	10.087	10.087	10.087	10.087	10.087	10.087	10.087	10.087	10.08
SA NO PROBLEE SIZE (LUS)	17.141	11.147	17.747	14.861	17.147	17.147	17.747	17.747	17.147	17.74
10 95 PPCATILE SIZE (LOG)	20.192	20.192	20.192	20.192	20.192	20.192	20.192	50.192	20.192	20.192
11 94 PECNTILE SIZE (LOG)	21.563	21.563	21.563	21.563	21.563	21.563	21.563	21.563	21.563	21.563
72 PRCNI GI 40 MICROMETERS	000.40	00000	000.45	000	060.40	000.40	000.40	000	0000	1000
74 PRCNI .GT.20 MICROMETERS	.800	.800	. 800	. 800	. 800	. 800	.800	. 800	.800	.800
75 FFCNT .GT.10 MICROPETERS	5.500	5.500	5.500	5.500	5.500	5.500	5.500	5.500	5.500	5.500
TE FFCN1 GI. S PICROMETERS	51.160	51.160	51.160	51.160	51.160	51.160	51.169	51.160	51.160	51.160
18 MGHT HINI .O-SX	2.994	2.994	2.994		2.994	2.994	2.994	2.994	2.994	2.99
19 KCF1 HINZ .3-S-1.	16.90€	16.806	16.806		16.80€	16.806	16.806	16.806	16.806	16.806
PC KEFT PINS 15-3.	29.040	29.040	29.040	29.040	29.040	29.040	29.040	29.040	29.040	29.040
12 LEHT HING 10N-10.	4.977	4.977	45.650		4.917	43.660	43.660	43.660	45.650	199.66
33 W(HT BIN6 305	.523	.523	.523	.523	.523	. 523	.523	.523	. 523	.58.
14 RATIC BINZ/BINA	.368	.368	.369	.368	.368	. 368	.368	. 368	.368	.368
BE RATIC BIN3/BIN4	.636	.636	.636	.636	.636	. 636	.636	.636	.636	. £ 36
1179	1 - 104	1.004	1.004	1.004	1.004	1.094	1.004	1.004	1.00	1.00
RATIC	.145	.145	. 745	. 745	.745	. 745	.745	. 745	.745	.745
FIRST MOMEN	13.574	13.574	13.574	13.574	13.574	13.574	13.574	13.574	13.574	13.574
STANE. DEV. CF LOG PSC	4.520	4.520	4.520	. 52	4.520	4.520	4.520	4.520	4.520	4.520
91 CCEF. OF SKEWNESS LOG PSD	2000	1.014	1.016	463	3.014	3.014	3.014	3.014	3.014	3.0.5
			.333		.333	.333	.333	.333	.333	.333
	.012	.012	.012	.012	.012	.012	.012	.012	.012	.01
		15.660	15.660	99.	15.660	99.	15.660	15.660	15.660	15.66
96 FILTED PSD RISE COFF. (E)	1.090	1.090	1.090	1.090	1.090	1.090	1.090	1.090	1.090	1.09
-	1.536	000.1	20	5	1.300	1.500	1.500	1.000	1.500	1.500

	6
	-
5	-
-	4
5	0
-	-
	2
_	-
AR	
4	
>	
~	0
8	W
u	S
L	-
-	>
	ш
	RE

PAA	
Z	ė
002	
E C E	
70%	
~ × =	
SUPPLIE STING C	
3-4	
500	1
<	
mo.	٠
A H W	
£ 5 5	
- ~ Z	
AAA	
4 00 2	
0 40	
E -	
-	
~	

SLIP CASTING ADAPTIVE CONTROL JCHE42

SUBP. CCESS P FOUNDER PREPARATION	11 ON									
ATTA AST 20 22 30 Greens		ABDEC	908	ABOFG	AGOFG	AHOFG	AOF	H L	ABBE	APOFG
PROCESS COST NUMBER	21111	26111	26121	26131	26211	27111	31111	35111	35131	26112
	;							!		
PARAPETER NUMBER AND NAME		9	9			0	000			
40 IFON PERCENTAGE	0.00	00000	0.000.0	00000	0.0000	0.0000	.000.0	0.000	0.000	0.000
49 ALUMINUM PERCENTAGE	0.039.	.000	.000	.000.0	-	000	.000	00	.000	.00
	4000.0	.000	.000	0.000.0	0.030	000	.000	0	000.	0.000
_	0.000.0	.000	.000	0.000.0	.000.0	.000	.000	2	.090	00000
	.000.0	.000	.000	.000.0	0.000.0	. 000	.000	00	.000	0.000
	9.000.	300.	.000	.000.0	.000.0	.000	.000	00	.000	00000
SA CYYGEN ANALYSIS (PRCNT)	.000.0	-	1.790	1.790	1.790	000	.000	11.110	=	1.790
-	0.000	æ .	,	. 895	. 895	.000	0000	000.	00.	. 895
SE PELL PILL TIME (HRS)	00.		16.000	16.000	16.000	000	000	00000	000	00.
AIR CLASSIFY (0000	00001	0000	1.000	0000	000-1	3 5	300-0	000.0	1000
	7.0		12.000	12.000	12.000	000	10	00000		.86
	.03	.030	.030	.030	.030	. 03	.03	.030		.030
	-	0.000.0	0.0000	.000.0	0.0000	.00	0	.002	.002	.000.0
AVG FART SIZE	. 30	4.700	4.730	4.700	4.790	.00	0	6.300	6.300	4.700
	.000.0	31.000	31.000	31.000	31.000	• 000 • 0		250.000	250.000	31.000
	0.000.0	21.000	31.000	31.000	31.000	. 000	0		60	31.000
	3.000	2.400	3.400	3.400	3.400	1.000	0	11.100	11.100	3.400
STORAGE TIME	.0000.0	0.0000	0.000	*000*0	₩00000	0.00	0	•0000•0	•00000	00000
20 PRCNTILE SIZE (106)	14.290	13.731	13.731	13.731	13.731	7.06	13.027	13.156	13.156	13.731
SE PRENTILE SIZE (106)	17.273	16.688	16.688	16.688	16.688	8.40	16.473	18.000	18.000	16.688
PE PECNILLE SIZE (LOG)	21.206	15.236	15.236	19.236	19.256	9.33	20.045	20.438	20.438	19.236
70 95 FRUNILL SIZE (106)	25.84e	22 041	22 001	22 901	22.00.1	5.5	24.943	141.77	161.22	22 941
MAX FART SIZE (106)	32.000	25.000	25.000	25.000	25.000	3.00	31.000	23.000	32.000	25.000
PRCNT .GT. 40 MICROMETERS	1.000	0.000	0.000	0.000	0.000	00.00	1.200	.300	.300	00000
PRCNI	8.300	1.900	1.900	1.900	1.900	.00	4.800	2.100	2.100	1.900
PFCN1 .61.10	28.260	14.500	14.500	14.500	14.500	0.30	20.300	\$5.300	. 25.300	14.500
76 PRCNT .GT. 5 MICRCMETERS	71.026	72.992	12.902	12.902	12.902	95.929	66.178	14.220	74.220	12.902
PRCN1 .61. 1	12.400	91.800	91.800	91.800	91.800	9.90	91.400	87.900	006-18	91.800
WENT HINI	.762	1.262	1.262	1.262	1.262	00000	2.393	2.816	2.816	1.262
	9.8.6	2000	86.69	80.00	6.938	0110	102.9	3.584	9.284	856.9
ST TOTAL BING 1 -5-10	10.00	50 400	0	18.070	50.000	67.63	223.62	13.690	13.680	20.01
CENT HINS	25.494	14.270	14.270	14.270	14.270	30	18.147	24.708	24.708	14.270
	2.106	.230		.230	.250	00.00	2.153	.592	.592	.230
FILL RINZ/EIN	.146	.119	.119	.119	.119	00	.135	.190	061.	.119
	.315	.324	. 324	.324	. 324		.550	.280	.280	.324
RATIC	.522	.244	.244	.244	.244	12	.396	.505	.505	.244
PALLE BINZ+3/EINA	. 4 : 5	.442	.442	.442	.442	.048	.685	.469	.469	.442
FATIC BINS+E/BINA	.837	.564	1	.568	. 56	91.	•	. 785	. 185	. 568
LIKST MOMENT OF LOG PSD	16.731	15.704	15.704	15.704	2.5	::		16.151	16.131	13.704
or carriers and and	110	2000	3.932	3.932	000	: :				2000
KEDICATE OF THE DELL	1. 524	100.4	100.0	100.	4.097	5.432	3.744	1.717	3.7.17	760.4
	136	.250	250	- 250	25	0.0		566	568	.250
HPS EFV		.008	800.	.008	.008	.008	.005	.005	500.	.008
	17.650	16.729	16.720	16.720	16.720	18.230	16.600	19.240	19.240	16.720
	2.360	1.490	3.490	3.490	. 43	.81		096.	.960	3.496
97 FIFTE PS9 FALL COEF. (C)	016.	.590	.590	.530	065.	• 16	.370	3.046	2.049	.590

	6
	-
6	-
-	4
9	0
-	-
	2
>	-
A.	
-	
~	0
œ	SE
w	S
L	-
	>
	RE

### PROPOSE PRESIDENTION CONTINUES PRODUCE PREPARATION							
Control Cont	S O POWDER PREPAR	r I on					
0.000	ROCESS CEDE NUMBER	BCF 931	90	ABDF 6	611	80F 921	
0.000: 0.000: 0.000: 0.000: 0.000: 0.000 0.000: 0.000: 0.000: 0.000: 0.000: 0.000 0.000: 0.00	CHSERVALICN NUMBER	11	25	33	54		
0.000. 0.000.<	UP PERCENIAGE	.00	0.000.0	.00	000.	0.000	
0.0000. 0.0000	PERCENT PGE	.00	.000.0	.00	.000	0.000	
0.000. 0.000.<	NUM PERCENTAGE	.990	.000.0	.0000.0	0.0000	0.000.0	
0.0000 0.00000 0	STUM PERCENTAGE	0000	0.000	*000.0	.000.0	0.000	
1.000 0.00	NESE PERCENTAGE	222.	• 00000	• 000 •	00000	0.000	
0.0000	TUM PERCENTAGE		• 000.0	*000	00000	0000	
0.000		00000	.000.0	.000.0	2.080	00000	
16.000 16.000 16.000 16.000 10.000 0.000		0.0000	00000	0.000.0	094.	0.000	
0.000 0.000 13.46c 14.20d 17.20d 17.2		16.000	16.000	16.000	16.000	15.000	
13.46¢ 12.46¢ 13		0.000	0.000	0.000	0.000	0.000	
15.88 to 15.		000.0	000-0	000.0	000.0	00000	
0.000		13.896	12.860	13.850	0.00	13.860	
4.80 C 4.20 0 4.70 0 4.60 0 22.00 0 25.00 0 20.00 0 17.00 0 4.30 C 2.60 0 20.00 0 17.00 0 4.30 C 2.60 0 4.00 0 17.00 0 15.54 2 12.20 0 17.00 0 0.00 0 17.80 0 17.27 0 17.735 17.595 20.56 2 20.58 0 19.92 0 19.435 22.72 7 22.66 7 22.00 0 22.22 7 23.60 0 22.00 0 24.00 0 24.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 2.00 0 24.00 0 24.00 0 25.00 0 2.00 0 24.00 0 0.00 0 0.00 0 2.00 0 24.00 0 0.00 0 24.50 0 2.50 0 2.00 0 24.00 0 25.00 0 2.00 0 2.00 0 24.00 0 3.50 0 2.00 0 2.00 0 24.00 0 3.50 0 2.00 0 2.00 0 2.00 0 4.00 0 2.00 0		0.000.0	0.000	0.000	0.000	0.000	
22.000 25.000 20.000 17.000 22.000 25.000 20.000 17.000 0.0004 0.0004 0.0004 0.0004 15.5042 12.200 15.231 15.448 17.800 17.278 17.735 17.595 20.562 20.588 19.920 19.435 22.727 22.667 22.000 21.375 23.600 25.000 0.000		9 . H O C	4.200	4.700	4.600	4.600	
22.000 25.000 20.000 17.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000		22.000	25.000	20.000	17.000	22.000	
4,300 2,800 4,000 4,300 15,542 12,200 15,231 15,448 17,894 17,276 17,535 17,548 17,804 17,276 17,535 17,548 17,804 17,276 17,575 17,548 22,727 22,667 22,000 21,375 25,600 24,000 24,000 24,000 0 0 0 0 0 1 25,000 24,000 24,000 0 0 0 0 0 0 0 1 25,000 19,000 13,500 0 0 0 1 26,000 19,000 13,500 0 <td< td=""><td></td><td>22.010</td><td>25.000</td><td>20.000</td><td>17.000</td><td>22.030</td><td></td></td<>		22.010	25.000	20.000	17.000	22.030	
15.544 2 12.200 10.000 0.000 115.544 117.85 117.85 117.85 120.56 120.56 117.85 117.85 117.85 120.56 120.56 117.85 117.85 117.85 117.85 117.85 117.85 117.85 117.85 117.85 117.85 117.85 117.85 117.85 117.85 117.86 117.87 117.86 117.87 117.86 117.87 117.86 117.87 117.86 117.87 117.86 117.87 117.86 117.87 117.86 118.87 117.86 118.87 117.86 117.87 117.86 118.87 117.86 117.87 117.86 117.87 117.86 117.87 117.87 117.86 117.87 117.86 117.87 117.86 117.87 117.86 117.87 117.86 117.87 117.86 117.87 117.80		4 . 300	2.800	4.000	4.300	4.300	
22.727 22.667 22.000 21.375 22.727 22.667 22.000 22.227 22.567 22.000 22.227 22.667 22.000 22.227 22.667 22.000 22.000 22.227 22.0000 22.0000 22.0000 22.0000 22.0000 22.0000 22.0000 22.0000 22.0000 22.0000 22.0000 22.0000 22.0000 22.0000 22.0000 22.0000 22.00000 22.0000 22.0000 22.0000 22.0000 22.00000 22.00000 22.00000 22.00000 22.00000 22.00000 22.00000 22.00000 22.00000 22.00000 22.00000 22.00000 22.00000 22.00000 22.00000 22.00000 22.00000 22.00000000		0.0004	10000	0.000	16.000	0.000	
20.562 20.588 19.920 19.435 22.727 22.667 22.000 21.375 23.600 22.667 22.000 22.227 25.000 2.000 0.000 0.000 3.500 2.5000 19.000 13.500 85.765 68.311 81.936 83.920 97.600 86.310 92.200 94.500 97.600 86.310 92.200 94.500 11.835 17.989 10.264 10.580 61.265 43.311 62.936 70.420 24.00 10.884 4.184 4.615 11.835 17.989 10.264 10.580 61.265 42.311 62.936 70.420 24.270 23.0 0.000 0.000 23.5 4.3311 62.936 70.420 24.270 25.0 3.000 0.000 25.0 4.3311 62.936 70.420 25.2 4.0 19.889 10.264 10.580 25.2 4.0 19.889 10.264 16.535 3.200 5.003 4.159 3.386 2.300 5.003 4.159 3.386 2.300 5.003 4.159 3.386 2.300 5.003 4.159 3.386 2.300 5.003 4.159 3.386 2.300 5.003 4.159 3.386 2.300 5.003 4.159 3.386 2.300 5.003 4.159 3.386 2.300 5.003 4.159 3.386		17.800	17.278	17.735	17.595	17.872	
22.727 22.667 22.000 21.375 23.600 22.000 23.000 22.227 25.000 25.000 24.000 2.000 3.500 24.000 0.000 0.000 24.500 25.000 19.000 13.500 85.765 68.311 81.936 83.220 97.600 86.310 92.200 94.500 97.600 86.310 92.200 94.500 0.601 2.601 2.641 4.184 4.615 11.835 17.989 10.264 10.580 61.265 42.311 62.936 70.420 24.000 10.884 4.184 4.615 24.00 10.884 4.184 4.615 2.400 10.884 4.184 11.500 0.000 0.000 0.039 .251 .066 .066 0.35 .352 .352 .152 0.302 .312 .362 .335 3.200 5.003 4.159 3.386588827 -1.574 -1.516 3.956 2.123 6.074 6.098 0.17.720 18.850 17.840 17.520 4.570 3.510 3.510 5.003		20.562	20.588	19.920	19.435	20.167	
23.640 22.500 23.000 22.227 25.000 25.000 24.000 24.000 3.5000 2.000 2.000 .300 24.500 25.000 19.000 13.500 85.765 68.311 81.936 83.920 97.600 86.300 92.200 94.500 0.601 2.616 3.616 4.615 11.835 17.989 10.264 10.580 61.265 42.311 62.936 70.420 24.20 10.884 4.184 4.615 11.835 17.989 10.264 10.580 61.265 42.311 62.936 70.420 24.27 24.311 62.936 70.420 25.25 25.936 70.420 25.25 25.936 70.930 25.25 25.936 70.930 25.25 25.936 70.930 25.25 25.936 70.930 25.25 25.936 70.930 25.25 25.936 70.930 25.25 25.936 70.930 25.25 25.936 70.930 25.25 25.936 70.930 25.25 25.936 70.930 25.25 25.936 70.930 25.25 25.936 70.930 25.25 25.930 25.25 25.930 25.95 25.9		22.121	22.667	22.000	21.375	22.324	
25.000 25.000 24.000 24.000 2 0.000 3.500 0.000		23.640	22.500	23.000	22.221	23.533	
24.500 25.000 13.00 2.00		25.000	25.000	24.000	24.000	25.000	
24.550 24.560 85.765 68.311 81.936 97.600 86.300 92.200 94.500 0.600 2.806 86.301 81.936 83.720 94.500 0.600 2.400 10.884 4.184 4.615 11.815 1		0000	0000	0.000	000.0	0.000	
85.765 68.311 81.936 83.920 97.600 86.300 92.200 94.500 0.040 2.400 10.884 4.184 4.184 4.615 11.815 17.989 10.264 10.580 61.265 4.770 19.090 13.500 0.000 0.		20.5.00	20.00	000.5	005.1	21.400	
97.600 86.300 92.200 94.500 0.600 0.600 2.016 3.616 .885 2.400 10.884 4.184 4.184 4.615 11.835 17.989 10.264 10.580 61.265 42.331 62.936 70.420 24.20 2.30 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		165.765	68.311	81.936	83.320	88.797	
0.640 2.416 3.616 .885 2.400 10.884 4.184 4.615 11.815 17.989 10.264 10.580 61.265 42.770 19.000 13.50 2.730 0.000 0.000 0.000 .059 .251 .066 .066 .192 .415 .153 .150 .232 .667 .230 .192 .232 .667 .230 .192 .232 .667 .302 .192 .232 .667 .302 .16 .265 .987 .465 .342 .265 .250 .358 .358 .267 .253 .16.535 .268 .15.751 16.449 16.535 .269 .350 .358 .205 .269 .253 .205 .185 .2123 6.074 6.098 .17.720 18.850 17.840 17.520 4.570 .790 3.510 5.000		97.600	86.300	92.200	94.500	97.700	
2.400 10.884 4.184 4.615 11.815 17.989 10.264 10.580 61.265 42.311 62.936 70.420 24.216 24.770 19.000 13.500 .019 .251 .066 .066 .192 .415 .163 .150 .232 .667 .230 .192 .232 .667 .230 .192 .232 .667 .230 .192 .234 .667 .230 .192 .235 .200 5.003 4.159 16.535 3.200 5.003 4.159 16.535 3.200 5.003 4.159 .205 .185 .318 6.024 .17.720 18.850 17.840 17.520		0.640	2.816	3.616	.885	. 385	
11.835 17.989 10.284 10.280 61.265 42.311 62.936 70.420 24.271 24.271 19.000 0.000 0.000 0.019 2.230 0.000 0.000 0.000 0.019 2.231 0.667 0.230 0.000 0		2.400	10.884	4.184	4.615	1.915	
24.216 24.770 19.000 13.500 -0.19 2 -2.51 0.000 0.000 -0.19 2 -2.51 0.066 0.066 -1.19 2 -4.15 .153 .150 -2.32 .667 .2.30 .192 -2.32 .667 .2.30 .2.16 -2.32 .667 .2.30 .2.16 -2.32 .667 .2.30 .2.16 -2.34 .1.59 16.535 3.200 5.003 4.159 16.535 -2.58 -827 -1.574 -1.516 -2.58 .2.03 4.159 3.386 -2.58 .2.05 -1.57 -1.516 6.098 -2.53 .2.05 -2.53 .2.05 -2.53 .2.05 -2.53 .2.05 -2.53 .2.05 -2.53 .2.05 -2.53 .2.05 -2.53 .2.05		11.835	11.989	10.264	080.01	67 297	
.230 .230 0.000 0.000 0.000 0.0193 .251 .066 .066 .066 .066 .066 .066 .152 .152 .153 .152 .152 .152 .252 0.000 0.0		20.00	24.770	19.000	13.500	21.270	
.039 .251 .066 .066 .192 .415 .163 .150 .236 .572 .302 .192 .232 .667 .230 .216 .255 .987 .465 .342 17.265 15.751 16.449 16.535 3.200 5.003 4.159 3.386 588827 -1.574 -1.516 3.99E 2.123 6.074 6.098 .185 .318 6.074 6.098 .185 .004 .012 .012 17.720 18.850 17.840 17.520		.230	230	0.000	0.000	.230	
.193 .415 .153 .150 .296 .572 .302 .192 .232 .667 .230 .216 .585 .987 .465 .342 17.265 15.751 16.449 16.535 3.200 5.003 4.159 3.386 588827 -1.574 -1.516 3.556 2.123 6.074 6.098 .185 .318 6.074 6.098 .17.720 18.850 17.840 17.520 4.570 .790 3.510 5.000		.039	.251	990.	990.	.028	
.236 .572 .302 .192 .232 .667 .230 .216 .236 .987 .465 .342 17.265 15.751 16.449 16.535 3.200 5.003 4.159 3.386 5881.574 -1.516 3.55 2.123 6.074 6.098 .185 .015 .012 17.720 18.850 17.840 17.520 4.570 .790 3.510 5.000		:61.	.415	.163	.150	.132	
.232 .667 .230 .216 .585 .987 .465 .342 .17.265 15.751 16.449 16.535 3.200 5.003 4.159 3.386 568827 -1.574 -1.516 3.556 2.123 6.074 6.098 .185 .318 .253 .205 .015 .004 .012 .012 17.720 18.850 17.840 17.520 4.570 .790 3.510 5.000		362.	.572	.302	.192	.316	
.585 .987 .465 .342 17.265 15.751 16.449 16.535 3.200 5.003 4.159 3.386 568827 -1.574 -1.516 3.56 2.123 6.074 6.098 .185 .318 .253 .205 .015 .004 .012 .012 17.720 18.850 17.840 17.520 4.570 .790 3.510 5.000		.232	199.	.230	• 216	.161	
3,200 5,003 4,159 15,535 3,200 5,003 4,159 3,386 -,588 -,827 -1,574 -1,516 3,556 2,123 6,074 6,098 3,185 318 ,253 ,205 17,720 18,850 17,840 17,520 4,570 ,790 3,510 5,000		588	196.	. 465	. 342	866.	
568827 -1.574 -1.516 5.558827 -1.574 -1.516 5.558123 6.074 6.098 185318253205 015004012 17.720 18.850 17.840 17.520 4.570 .790 3.510 5.000		1 200	1000	10.449	16.000	2000	
3.556 2.123 6.074 6.098 .185 .318 .253 .205 .015 .004 .012 .012 17.720 18.850 17.840 17.520 4.570 .790 3.510 5.000		003	108	-1.574	-1.516	-1.080	
.185 .318 .253 .205 .015 .004 .012 .012 17.720 18.850 17.840 17.520 4.570 .790 3.510 5.000		355.1	1.123	6.074	860.A	6.111	
.015 .004 .012 .012 17.720 18.850 17.840 17.520 4.570 .790 3.510 5.000		.185	.318	.253	.205	.176	
17.720 18.850 17.840 17.520 4.510 .790 3.510 5.000		.015	+00.	.012	.012	.013	
4.570 .790 3.510 5.000		17.720	18.850	17.840	17.520	17.630	
		013.0	.790	3.510	6000	2.000	

ADAPTRONICS.INC. SLIP CASTING ACAPTIVE CCNTROL JCBS12		AIRE	SEARCH CAS	DATA HASE SUPPLIED BY AIRESEARCH CASTING COMPANY TORRANCE , CALIFORNIA	× 2	•	FEBRUARY 1979 REVISED 12.04/7	2104/79		
SLBFKCESS E SLIP PREPARATION	I CN									
SUBPROCESS DESIGNATION ABOFG	N ABOFG	ARDFG	ABDFG	ABDFG	ABDFG	ABDFG	ABDFG	AHDFG	ABDFG	ABDFG
PROCESS CODE NUMBER	11111	111121	111122	111131	11132	11211	11212	11221	11222	11231
CHSERVATION NUMBER	-	. 2	73		5	9		20	6	10
PARAFETER NUMBER AND NAME										
98 SCLIES CNINT (WGHT PRCNI)	15.000	75.000	75.000	15.000	15.000	75.000	15.000	15.000	15.000	75.000
55 CIFLICLLANT (WEHT. PRCAT)	.042	.042	. 042	.042	.042	.042	.042	.042	.042	.042
10C ACDITIVE ACID (WGHT. PR	00000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
101 AUDITIVE FE203 (WGHI. PR	.030	.030	.030	.030	.030	.030	.030	.030	.030	.030
IC2 ACDITIVE NHAOH (WGHI. PR	000.0	0.000	0.000	00000	0.000	.012	.012	.012	.012	.012
162 AGING TIME (CAYS)	13.000	13.000	13.000	13.000	13.000	13.000	13.000	13.000	13.000	13.000
164 TEMPERATURE (CEG. F)	000.69	69.000	69.000	69.300	69.000	12.300	72.000	72.000	12.000	12.000
105 PH	5.900	2.900	5.900	2.900	5.900	5.800	5.800	5.800	5.800	5.800
106 VISCCSITY 1/60 (CPS)	100.000	100.000	100.000	100.000	100.000	19.000	19.000	19.000	19.000	19.000
107 VISCESTIY 1/39 (CPS)	133.000	122.000	133.000	133,000	133.000	102.000	102.000	162.000	102.000	102.000
ICB VISCOSITY 1/12 (CPS)	192.000	192.000	192.030	192.000	192.000	150.000	150.000	150.000	150.000	150.000
109 THIXOTROPIC INDEX	1.750	1.750	1.750	1.750	1.750	1.900	1.900	1.900	1.900	1.900

ADAPTRONICS, INC. SLIF CASTING ACAPTIVE CONTROL JOBS42	ROL	A 18	ATA BASE S SEARCH CAS RRANCE + C	DATA HASE SUPPLIED BY AIRESEARCH CASTING COMPANY TORRANCE , CALIFORNIA	, N	•	FEBRUARY 1979 REVISED 12/04/7	2104/19		
SUBFRICESS C SLIP PREPARATION	NO I I									
SURPROCESS DESIGNATION ANDFG	ION AHOF G	ABDFG	ABDFG	ABOFG	ABDFG	ABDFG	ABOFG	ABDFG	ABDFG	AEDFG
PROCESS CODE NUMBER	11232	12121	12212	12221	12231	13111	13121	14111	14112	14132
OBSERVATION NUMBER	:	12	13	14	15	16	17	1.8	19	20
PAPPETER NUMBER AND NAME										
98 SOLIDS CNINT (WGHT PRCNT)	75.090	73.000	73.000	73.000	73.000	73.000	73.000	13.000	13.000	73.000
59 DEFLECTLANT (MCHT. PRCAT)	.042	.030	.030	.030	.030	190.	190.	.042	.042	.042
ICO AEDITIVE ACID (WGHI. FR	0.000	00000	00000	0.000	0.000	0.000	0.000	00000	0.00.0	0.000
ICI ACDITIVE FE203 (WGHI. PR	.030	.030	.030	.030	.030	.030	.030	.030	.030	.030
102 ADDITIVE NH 40H (WGHT. PR	.012	000-0	0.000	000.0	0.000	00000	00000	0.000	0.000	00000
103 ACING 11ME (CAYS)	13.000	15.000	000.9	6.000	00009	5.000	2.000	5.000	5.000	5.000
104 TEMPERATURE (CEG. F)	72.000	69.000	68.000	68.000	68.000	000.69	69.000	69.000	000.69	69.000
105 PH	5.H00	5.100	5.100	5.100	5.100	5.700	5.700	5.100	5.100	5.100
196 VISCOSITY 1/60 (CPS)	19.000	105.000	65.000	65.000	65.000	94.000	94.000	95.000	95.000	95.000
	102.000	150.000	88.000	88.000	88.000	135.000	135.000	128.000	128.000	128.000
10e VISCESITY 1/12 (CPS)	150.000	250.000	140.000	140.000	140.090	240.000	240.000	2000.532	205.000	205.000
109 THIXOTROPIC INDEX	1.900	2.380	2.160	2.160	2.160	2.550	2.550	2.160	2.160	2.160

	AEDFG 26112 30	15.000	.006	000000	71.000	\$5.000	62.500
	ABDFG 35131 29	70.000	00000	0.000	72.000	16.000	27.000
2,04/19	ABDFG 35111 28	70.000	500.0	0.000	72.000	16.000	1.670
FEBRUARY 1579 Revised 12.04/7º	ABDFG 31111 27	75.000	.003	0.000	66.000	83.000	151.000
•	ABDF G 27111 26	52.000	00000	0.000	75.000	17.000	32.500
X	ABDF G 26211 25	75.000	0.000	0.000	72.000	67.000	102.000
DATA HASF SUPPLIED BY AIRESEARCH CASTING COMPANY IORRANCE , CALIFORNIA	ABDF G 26131 24	75.000	.004	.030	71.000	97.000	175.000
ATA HASF SI SEARCH CAS RRANCE , C	ABDF 6 24.121 23	75.000	.003	. 030	71.000	97.000	175.000
0 A1RE 10	ABDF 6 26111 22	15.000	.003	.030	71.000	97.000	175,000
R 01.	110N CN AUDFG 21111 21	75.000	. 200	020.	74.000	95.000	135.000
ADAPTRONICS, INC. SLIP CASTING ACAPTIVE CONTROL. JCH542	SUBFACEESS B SLIP PALPARATION SUBPROCESS BESIGNATION AUDFO PROCESS CODE NUMBER 21111 OBSERVATION NUMBER 21	PARAPETER NUMBER AND NAME 98 SCLICS CNINTCUGHT PRONTY	100 AEDITIVE ACID (MEHT. PRCAI)	101 ADDITIVE FE203 (WGHT. PR	105 PEINE INE (LATS) 104 TEMPERATURE (DEG. F) 105 DH	106 VISCCSTIY 1/60 (CPS)	108 VISCOSITY 1/12 (CPS) 105 IFIXOTROPIC INDEX

FEBRUARY 1579 REVISED 12/04/79	
CATA HASE SUPPLIED BY AIRESEARCH CASTING COMPANY TORRANCE , CALIFORNIA	
SLIP CASTING ACAPTIVE CONTROL JOBS42	SUFFREEESS E SLIP PREPARATION

SUMPROCESS DESIGNATION AND G AND FG AND FG CHERNOCESS CCCE NUMBER 39312 46212 47212 CHERNOCESS CCCE NUMBER 31 32 33 46212 47212 CHERNOCESS CCCE NUMBER 31 32 33 33 55.000 FG CHERCOLLANT (MGHT PRCNT) 0.600 75.000 75.000 FELCENTIVE ACID (MGHT PR 0.000 0.000 0.000 0.000 ACIDITIVE ACID (MGHT PR 0.000 0.000 0.000 0.000 FELCENTIVE CLASS (MGHT PR 0.000 C.000 0.000 0.000 FEMPERATURE (DEG. F) 70.000 69.000 73.000 FEMPERATURE (DEG. F) 70.000 69.000 73.000 FEMPERATURE (DEG. F) 70.000 5.000 73.000 FEMPERATURE (DEG. F) 70.000 5.000 73.000 FEMPERATURE (DEG. F) 70.000 5.000 73.000 73.000 FEMPERATURE (DEG. F) 70.000 5.000 73.00	ABDFG	49212	35		15.900	.031	0.000	0.000	0.000	21.000	73.000	4.900	100.000	100.000	375.000	3.700
NI) 75.400 75.000 77.000 75.000 77.000 75.000 77.000 77.000 77.000 77.000 77.000 77.000 77.000 77.50	ABUFG	46112	45		15.000	.031	600.	0.000	0.000	26.000	73.000	5.100	100.000	171.000	275.000	2.700
MEER 39312 BEER 39312 BEER 31 CNT) 75.000 7 CNT) 0.000 PR 0.0000 PR 0.00000 PR 0.0000 PR 0.00000 PR 0.0000 PR 0.00000 PR 0.0000 PR 0.00000 PR 0.00000 PR 0.0000 PR 0.0000 PR 0.00000 PR	ANDFG	49212	3.1		15,000	.0.11	00000	00000	0.000	5.000	73.000	4.900	110.000	240,000	387.500	2.280
CNT PRESTON	ARDFG	46212	3.5		15.000	.031	000.0	000-0	006.3	11.000	69.000	2.000	150.000	2 35 . 9 00	365.000	2.430
SUBPROCESS DESIGNATION BURBER CHSERVETTON NUMBER CHSERVETTON NUMBER SCLIES CNINT (MGHT PRCNI) EFFICELLANT (MGHT PRCNI) EFFICELLANT (MGHT PRCNI) EFFICELLANT (MGHT PRCNI) EFFICELLANT (MGHT PRACOTTIVE NHAOH (MGHT PRACOTTIVE (DEG. F) PH		39312	3.1		75.000	0.000	0.000	00000	00000	090.9	060.02	6.100	67.500	17.000	97.500	1.440
PARAP 59 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	SURPROCESS DESIGNATION	FROCESS CCOL NUMBER	CHSERVETION NUPBER	METER NUMBER AND NAME	SCLIES CNINT (WGHT PRCNI)		ACDITIVE ACID (WGHI. PR	AFOILIVE FEZOS (WGHT. PR	AECITIVE NHACH (WGHI. PR	ACING TIME (CAYS)	TEMPERATURE (DEG. F)	+4	WISCESSITY 1/60 (CPS)	VISCESTTY 1/30 (CPS)	VISCOSITY 1/12 (CPS)	IFTXCTROPIC INCEX

EO BY	AIRESEARCH CASTING COMPANY	HRNIA
SUPPLI	ASTING	TORRANCE , CALIFORNIA
BASE	CH C	VCE .
DATA	AIRESEAR	IORRA

ADAPTHENIES, INC. SLIP CASTING ADAPTIVE CONTROL JCB542

FEBRUARY 1579 REVISED 12/04/79

SUBFRICESS F SINTERING										
SUBPROCESS DESIGNATION ABOFG	TION ABOFG	AHDFG	A 190F G	ABOFG	ABOFG	ABDFG	ABDFG	AHDFG	ABOFG	ABDFG
FROCESS CCOE NUPBER	R 11111	111121	11122	11131	11132	11211	11212	11221	11222	11231
CUSERVATION NUMBER	-	2	•		5	9		Œ	6	10
PARAMETER NUMBER AND NAME										
11C SINTERING TIPE CHOURS)	4.090	4.000	4.090	12.000	12.030	4.000	4.000	4.000	4.000	12.000
111 TEMPERATURE (DEG. C)	1100.000	1100.000	1100.000	1040.000	1040.000	1100.000	1100.000	1100.000	1100.900	1040.000
112 VACUUM (MICRC)	125.000	1.000	1.000	1.000	1.090	125.000	125.000	1.000	1.000	1.000
113 TIME .GT. 200 EEG C HHS		26.750	26.150	20.000	20.000	30.250	30.250	26.750	26.150	20.000
114 11Pf . GF. 400 DEG C HRS	23.030	21.500	21.500	18.750	18.750	23.090	23.000	21.500	21.500	18.750
115 11ME .GT. 600 DEG C HRS	16.030	16.250	16.250	17.250	17.250	16.000	16.009	16.250	16.250	17.250
116 11ME .GT. 800 DEG C HRS	60006	10.750	10.750	14.500	14.590	9.000	9.000	10.750	10.750	14.500
117 11FE .CT. 900 CEG C HRS	7.250	B.250	8.250	12.750	12.750	7.250	7.250	8.250	8.250	12.750
118 11ME .GT. 1000 DEG C HRS	5.500	6.000	000-9	12.000	12.000	£.500	5.500	000.9	00009	12.000
DEG HES . 61.		13463, 306	13463.306	13798.096	13798.096	13675.452	13675.452	13463.306	13463.306	3798.096
EFE PRS .61.	8340.54P	8616.101	8618.181	9914.985	9914.985	8340.548	8340.548	8618.181	8618.181	9914.985
PEG PRS .61. 600		4847.056	4847-056	6296.435	6236.435	4424.058	4424.058	4847.056	4847.056	6296.435
122 DEG HES .61. 800 DEG C		2150.473	2150.473	-,	3091.301	1923.708	1923.708	2150.473	2150.413	3091.301
123 DEG FTS .GT. 900 DEG C		1207.515	1207.515		1725.368	1113.209	1113.209	1207.515	1207.515	1725.368
124 CEG FRS .GT. 1000 DEG C	479.835	£14.490			480.000	470.835	470.835	114.490	614.490	480.000
125 TIME 21-900 DEG C CHRS1		20.000			4.250	25.750	25.750	20.000	20.000	4.250
126 11PE 000-21 CEG C (HHS)	3.750	2.500			4.500		3.750	3.500	3.500	1.500
127 CIYGEN ANALYSIS (PRCNT)	.0000.0	.000.3			0.0000		0.000	.000.0	0000.0	00000
128 OXYGEN ANALYSIS +/- PHCNI	1 0.000 t	.000.0			0.0000		0.000	.000.0	0.000	00000
129 PERPEABILITY	.000.0	0.000			0.000		0.000	.000.0	• 0000 •	0.000
12C GFEEN CENSITY (GM/CM3)	1.720	1.720	1.720	1.710	1.710	1.730	1.730	1.740	1.740	1.730
131 PERCENT WEIGHT LOSS	.000.0	.560			.950		•0000•0	.540	.540	096.

			1.0			99		
		ABCFG 14112 19	4.063	30.250	7.250 5.500	13675.452 8340.548 4424.056 1523.708	470.835 25.750 3.750	0.000 0.000 0.000 1.680
Y 1979 12,04/79		ABEFG 14111 18	1160.000	125.000	9.000 7.250 5.500	13675-452 8340-548 4424-058 1523-708	470.835 25.750	0.0004 0.0004 1.680
FEBRUARY 1979 REVISED 12.047		ABDFG 13121 17	4.000	26.750	16.250 10.759 8.250 6.000	13463.306 8618.181 4847.056 2150.473	514.490 20.000 3.500	0.000* 0.000* 0.000* 1.780 0.000*
		ABDFG 13111 16	4.000	125.000 30.250 23.000	16.000 9.000 7.250 5.500	13675.452 8340.548 4424.058 1923.708	470.835 25.750 3.750	0.000* 0.000* 0.000* 1.750
ANY		ABDFG 12231 15	12,000	20.030	14.500 12.750 12.750	13798.096 9914.985 6296.435 3091.301	480.000 4.250 4.300	0.000 0.000 0.000 1.620 0.000
DATA HASE SUPPLIED BY AIRESEARCH CASTING COMPANY TORRANCE . CALIFORNIA		ABDF6 12221 14	1100.000	26.750	10.750 10.750 8.250 6.000	13463.306 8618.181 4847.056 2150.473	514.490 20.000 3.500	0.000* 0.000* 0.000* 1.640
DATA HASE SUPPLIED B RESEARCH CASTING COMP TORRANCE , CALIFORNIA		AHEFG 12212 13	4.000	125.000 30.250 23.000	16.000 9.000 7.250 5.500	8340.548 8340.548 4424.658 1923.708	470.835 25.750	0.000* 0.000* 0.000* 1.620
AIR		ARDFG 12121 12	4.000	26.750	10.750 10.750 8.250 6.000	13463.306 8618.181 4447.056 2150.473	514.490 20.000	0.000* 0.000* 0.000* 1.670
TROL		ION ABBF6 11232 11	12.090	20 - 000	14.550 14.500 12.750	9914.985 9914.985 6296.435 3091.301	480.000 4.250 4.500	0.000* 0.000* 0.000* 1.730
ADAPTRONICS, INC. SLIP CASTING ADAPTIVE CONTROL JCES42	SURFICCESS E SINTERING	SUBPROCESS DESIGNATION FROCESS CCDE NUMBER CUSERVATION NUMBER	PARAMETER NUMBER AND NAME 116 SINTEXING TIME (HOURS) 111 TEMPERATURE (DEG. C)	UACULM (MIC 11ME .61. 11ME .61.	115 TIME .61. 800 DUS C HRS 116 TIME .61. 800 DEG C HRS 117 TIME .61. 900 DEG C HRS 118 TIME .6T. 1000 DEG C HRS	119 CFG FRS .GT. 279 DEG C 120 DEG HYS .GT. 470 DEG C 121 GFG FRS .GT. 600 DEG C 122 EFG FRS .GT. 800 DEG C 123 DEG HPS .GT. 970 DEG C	DEG HRS .GT. 1 11ME 21-900 DE 11PE CO-21 EE	127 CYGEN ANALYSIS (PRCNT) 128 OYGEN ANALYSIS +/- PRCNT 129 PERREPUBLITY 136 GEER CENSITY (GM/CH3) 131 PERCENT WEIGHT LOSS

12.000 0 1040.000 0 1.000 1 1.000 1 17.250 0 12.750 0 12.750 0 12.750 0 12.750 0 12.750 1 17.250 1 17.

AEDFG 14132 20

DATA HASE SUPPLIED BY	AIRESEARCH CASTING COMPANY	TORRANCE , CALIFORNIA
ABAP TRONICS. INC.	SLIP CASTING ADAPTIVE CONTROL	JOH542

FEBRUARY 1979 REVISED 12/C4/79

	OFG	26112			000	000	000	200	150	250	0000.8	6.500	250	944	201	442	191	599	689	250	000	• 0000	0.000.0	.000	720	. 000
	AC	26	. 30			1100.	.0	15.	12.750	10.	. 8	9	5.	8719.	5 694 .	3576.442	1764.	_								
	ABOFG	35131	59		12.000	1640.000	1.000	20.003	18.750				12.000	13798.096	5814.985	6256.435	3091.301	1125.368	480.000	4.250	4.500	• 600 • 0	• 000 • 0	00000	1.660	00000
	ABOFG	35111	28		4.000	1100.000	125.000	30.250	23.000	16.000	9.000	7.250	5.500	615.452	240.548	424.058	523.708	113.209	410.835	25.750	3.750	0.000.0	.0000.0	.0000.0	1.630	000000
	ABDFG	31111	2.1		4.000	1100.000	125.000	30.250	23.000			7.250	5.500	13675.452 1	8340.548	4424.058 4	1923.708	1113.209	470.835	25.750	3.750	0.000	0.000	•00000	1.730	*0000*0
	AHDFG	27111	26		4.000	1100.000	15.000	15.500	12.750	10.250	8.000	005.9	5.250	8719.446	5894.507	3576.442	1764.191	1049.565	461.689	7.250	4.000	0.000	00000	.000.0	1.540	00000
	ABDFG	26211	25		4.000	1100.000	125.000	30.250	23.000	16.000	9.000	7.250	5.530	13675.452	8340.548	4424.038	1923.708	1113.209	410.835	25.750	3.750	0.000.	0.000.0	0.000	1.630	*000*0
	ABOFG	26131	24		12.000	1040.090	1.000	20.000	18.750	17.250	14.500	12.750				6296.435		1725.368	480.000	4.250	4.500	0.000.0	0.000.	0.000.0	1.710	.290
	ABDFG	26121	23		4.000	1100.000	1.000	26.750	21.500			8.250	000.9	12463.306	8618.181	4847.056	2150.473	1207.515	514.490				*000*0			
	ABUFG	26111	5.5		4.000	1100.000	125.000	30.250	23.000	16.000	00006	1.250	€.500	13675.452	8340.548	4424.058	1923.708	1113.209	476.835	25.750	3.750	0.000.	0.000.0	(.000.	1.730	009.
	ION ABUF G	21111	2.1		4.000	1100.696	125.900	30.250	23.000	16.030	9.000	7.250	5.500	13675.452	8349.548		1923.708	1113.209		25.750	3.750	0.030	0.000.	0.000	1.660	0690
SUEFFICESS F SINIERING	SUMPROCESS DESIGNATION ANDFG	FRUCESS CCCC NUMBER	CRSERVATION NUPRER	PARAMETER AUMBER AND NAME	110 SINTENING TIME (HOURS)	111 TEMPEDATURE (CEG. C)	112 VACUUM (MICRC)	113 TIME .GI. 200 DEG C HRS	114 11FE . CT. 460 DEG C HRS	115 TIME .GT. 609 DEG C HRS		11: 11MF .GT. 900 DEG C HRS	118 11FE .ET. 10C0 DEG C HRS		.61. 400	CEG PHS .GT.	DEG PKS .GT. 800	123 DEG HAS .GT. 900 DEG C		125 11PF 21-900 CEG C CHRS)	126 11ME "00-21 DEG C (HRS)	127 OXYGEN ANALYSIS (PRCNT)	128 CITGEN ANALYSIS +/- PRCNI	125 PERMEAFILITY	130 GREEN DENSITY (GM/CM3)	131 PERCENT WEIGHT LOSS

	6
	-
3	-
-	4
6	0
-	-
	2
_	-
AR	
3	0
8	w
u	SE
4	-
_	>
	W
	~

	ADAPTRONICS, INC. SLIP CASTING ADAPTIVE CONTROL JEHS42	101	AIR	DATA BASE SUPPLIED B RESEARCH CASTING COMP TOHRANCE , CALIFORNIA	DATA BASE SUPPLIED BY AIRESEARCH CASTING COMPANY JOHRANCE , CALIFORNIA	À
	SUPPRICESS F SINTERING					
	SUPPROCESS DESIGNATION		PEDFG	ABOFG	ABOFG	ABDFG
	FROCESS CCEE NUMBER	39312	46212	49212	46112	49212
	CHSERVATION NUMBER	11	3.2	53	34	35
	FARAFETER NUMBER AND NAME					
	116 STATERING TIME CHCURS)	4.606	4.000	4.000	4.000	4.000
	CEMPERATURE (DEG. C)	1100.000	1100.000	1100.000	1100.000	1100.000
	112 VACULM (MICRC)	000.0	0.000	0.000	70.300	10.000
	113 11ME .GT. 2CO CEG C HAS	15.500	26.750	26.750	20.000	20.000
	034 .	12.750	21.500	21.590	18.750	18.750
	1 IME . GT. 600 DEG C	13.250	16.250	16.250	17.250	17.250
	116 TIME . GT. ACO DEG C HRS	8.000	10.750	10.750	14.500	14.500
	11ME .GT. 900	6.500	8.250	8.250	12.750	12,750
	11ME . 61. 1000 DEG C HRS	5.259	6.000	000.9	12.000	12.000
	CEG PRS .GT. 200 0EG C	8719.446	13463.306	13463.306	13798.096	13798.096
		5694.507	8618.181	8618.181	9914.985	9914.985
	O 930 009	3576.442	4847.056	4847.056	6296.435	6296.435
	DEG HIS .GT. 809 DEG C	141.491	2150.473	2150.473	3091.331	3091.301
	900 0EG C	1049.565	1267.515	1207.515	1725.368	1725.368
	124 DIE HRS .GT. 1000 DEG C	461.689	14.490	514.490	480.000	480.000
	125 [IME 21-900 DEG C (HRS)	7.250	20.000	29.000	4.250	4.250
		4.000	3.500	3.500	4.500	4.500
	127 CIYGEN ANALYSIS (PRCNI)	0.000.0	C.000.	0.000	1.570	1.690
		.0000.0	00000	0.000.0	.390	004.
	129 PERMEABILITY	. 300 . 0	00000	.000.0	0.000.0	*000*0
		1.730	1.720	1.750	1.740	1.720
***	131 FERCENT WEIGHT LOSS	.000.0	C . 000	• 0000 •	1.000	1.900

CS.INC. CATA BAS TIVE CCAIRGE AIRESEARCH TORBANCE	ATA BAS	SEARCH
CCNIROL	9	AIRE
	•	NIRGL

		ABUFG 11231 10	3350.000	10.000	000.9	060.	19.000	1400.000	00000	21.208	21.031	20.708	9.631	6.010	3.000	11 088 . 137	6871.643	2692.001	1352.014	€00.243	149.582	25.600	2.720
		ABDF6 11222 9	3250.000	10.030	.963	.040	19.000	1400.000	1.000	21.135	21.031	20.708	9.031	6.910	300.5	11688.137	6671.643	2692.001	1252.014	600.243	149.582	26.500	2.140
12.04/79		ABDFG 11221 8	3350,000	10.000	096.	040.	19.000	1400.000	000.00	21.208	21.031	20.108	9.031	6.010	3.000	11 088 . 137	6111.643	2692.001	1352.014	(00.243	149.582	56.100	2.710
FEBRUARY 1579 REVISED 12.04/		ABDF G 11212	3350.000	10.000	000.9	0 60 0	19.000	1400.000	1.000	21.208	21.031	20.708	9.031	6.010	3.000	11088-137	6871.643	2692.001	1352.014	600.243	149.582	57.300	2.760
		ABDFG 11211 6	3350.000	10.000	000.9	040.	19.090	1400.000	000.0	21.208	21.031	20.708	9.031	6.010	3.000	11088-137	6871.643	2692.001	1352.014	600.243	149.582	56.200	2.730
A A		ABDF G 111132 5	3350.000	10.000	000.9	0 60 .	19.030	1400.000	1.039	21.208	21.031	20.708	9.031	6.010	3.000	11088.137	6871.693	2692.001	1352.014	600.243	149.582	26.690	2.680.
ESEARCH CASTING COMPA ORRANCE , CALIFORNIA		ABDFG 111131 4	3350.000	10.000	000.9	040.	19.000	1100.000	0.000	21.135	21.031	20.708	9.031	6.010	3.000	11088.137	6871.643	2692.001	1352.014	600.243	149.582	24.700	2.670
CATA BASE SUPPLIED BY AIRESEARCH CASTING COMPANY TORRANCE , CALIFORNIA		ABDF G 11122	3350.003	10.000	000.9	040.	19.000	1400.000	1.000	21.135	21.031	20.108	9.031	6.010	000.	11088.137	6871.643	2692.001	1352.014	600.243	149.582	56.800	2.690
AIR		ABDF6 11121 2	3350.000	16.000	096.	040.	19.000	1460.000	0.000	21.135	21.031	20.708	9.031	6.010	0000:	11088-137	6871.643	2692.001	1352.014	600.243	145.582	64.400	2.660
IRGL		10N ABBFG 11111 1	103.000	10.000	.960	040.	19.090	1400.000	0.000	21.135	21.031	29.738	9.031	6.010	3.000	11088 -137	6871.643	2692.001	1352.014	600 - 243	149.582	55.890	2.730
ADAPTRCAICS, IAC. SLIF CASTING ACAPTIVE CCAIROL JCBS42	SUEFRCEFSS & ALTRICING	SUMPROCESS DESIGNATION ABDFG PROCESS CODE NUMBER 11111 CRSFRVATION ALMBER 1	PARAMETER NUMBER AND NAME 132 FURNACE LOAD (GMS) 133 VECLUM LEVEL (MICRO)	134 LEAK-UP RATE	136 ATPOSPERF PACAT N2			PEAK TEMP	SHIELDING	141 11ME .GT 400 DEG C DAYS	THE . CT	. GF 100¢	11MF . GT 1100	11ME . EF 1200	141 TIME . ET 139C DEG C DAYS	DEG DAYS .61.		151 DEG CAYS .GT. 1000 DEG C	DEG DAYS .GT. 1100	UEG CAYS .61. 1200			156 NITRIDED DENSITY (GM/CM3)

		ABDF6 14132 20	3250.200 100.000 10.000 6.000 19.000 19.000 19.000 21.208 21.208 21.135 21.135 21.000 21.208 21.000 21.208 21.000 21.208 21.000 21.000	11088-137 6871-643 22692-001 2260-243 149-582 57-600 2-630
		ABCFG 19112 19	0.0000000000000000000000000000000000000	6671.643 672.001 252.014 600.243 145.582 58.600
12,04779		ABDF6 14114 18	3150.000 100.000 10.000 6.000 1400.000 1400.000 21.208 21.135 21.135 21.031 20.000 3.000	11 (88.137 6671.643 2692.0161 1352.0161 660.243 149.582 58.700
FEBRUARY 1979 REVISED 12,047		ABDFG 13121 17	3350.000 100.000 10.000 6.000 1400.000 0.000 21.208	11088-137 6871-643 2692-001 1352-014 600-243 149-582 58-400
		ABOF 6 13111 16	3350.000 100.000 6.000 6.000 1400.000 21.208 21.135 21.031 20.000 21.208 21.030 21.031 20.000 21.031 20.000 21.031	11088-137 6871-643 2692-001 1352-014 600-243 149-582 58-900 2-790
AN Y		ABDF6 12231 15	3350.000 100.000 10.000 6.000 1400.000 1400.000 21.208 21.135 21.135 21.031 20.000 21.208 20.000 20.000 20.000 3.000	11088-137 6871-643 2692-001 1352-014 600-243 149-582 51-200
SUPPLIED B STING COMP CALIFORNIA		ABDF G 12221 14	3350.000 100.000 100.000 6.000 1900.000 1400.000 21.208 21.135 21.031 20.030 21.031 20.030 3.000	11088.137 6871.643 2692.001 1352.014 600.243 149.582 58.000
UATA BASE SUPPLIED BY AIRESEARCH CASTING COMPANY IGRRANCE , CALIFORNIA		A B D F G 12212 13	1950.000 100000 6.000 6.000 19.000 1400.000 1400.000 21.208 21.208 21.135 21.135 21.000 21.000 21.000 21.000 21.000 21.000 21.000 21.000 21.000 21.000 21.000 21.000 21.000	6871.643 6871.643 2692.001 1352.614 600.243 149.582 59.300
AIR		ABOF 6 12121 12	100000 100000 100000 100000 10000 140000 21000 21120 21135 2	11028-137 6871-643 1252-0101 600-243 145-582 57-900
IRCL		ICN ABEFE 11232 11	10000000000000000000000000000000000000	11088 137 6871 643 2692 001 1352 (14 600 243 149 682 56 700
ANAPTRONICS, INC. SLIP CASTING ADAPTIVE CONTRCL JCE542	SUBFECCESS 6 NITRIDING	SUPPROCESS DESIGNATION AUCHE FRUCESS CODE NUMBER 11232 CRSEPVATION NUMBER 11	FURNACE LOAD (CPS) VACUUM LEVEL (FICAO) LCAK-UF RAIE FULRS FAIOR N2 FLOW AIMOSCHERE PROAT N2 AIMOSCHERE PROAT N2 FEAK IEMP (EG. C) SHIELUING O=NO.1=YES IIME .GT 400 DEG C DAYS IIME .GT 400 DEG C DAYS IIME .GT 1100 DEG C DAYS	145 LEG LAYS .GI. 600 DEG C 150 DEG DAYS .GT. 800 DEG C 152 LEG LAYS .GT. 1100 DEG C 153 DEG LAYS .GT. 1200 DEG C 154 LEG LAYS .GT. 1300 DEG C 155 WEIGHT GAIN FRCAT

1979		ABOFG	16111
FERRUARY 1979 REVISED 12/C4/79		ABDFG	(111)
~		AHOFG	27111
>		ABDFG	11676
DATA BASE SUPPLIED BY IRESEARCH CASTING COMPANY TORRANCE , CALIFORNIA		ABDFG	111176
TA BASE SUI EARCH CAST RANCE , CA		ABOFG	16136
DA AIRES 10P		ABDFG	36111
_		ABCFE	21111
ADAPTRONICS, INC. SLIP CASTING ADAPTIVE CONTROL JCRE42	SURP-OCESS G NITRIDING	SUBPROCESS DESIGNATION ABLFG	COURTS COR MINASCO
S			

AE0FG 26112 30	2988.000 10.000 8.000 2.500 2.500 11.000	4.130
ABDF6 35131 29	3250.000 100.000 100.000 10.000 19.000 19.000 21.200 21.200 21.200 21.200 21.200 6.010 6.010 6.010 15.22.351 11688.137 600.243 1252.014 600.243 149.582	7.300
ABDF6 35111 28	3150.000 100.000 100.000 6.000 1140.000 21.208 21.308 21.031 20.708 9.031 6.010 6.010 6.010 15.22.351 11088.137 6.010 13.52.014 149.582	0.6.7
ABDF G 31111 27	3350.000 100.000 100.000 6.000 19.000 1400.000 21.208 21.135 21.031 20.708 9.031 6.010 6.010 15322.351 11088.137 6871.643 522.010 1352.010 149.562	7.120
ABDF G 27111 26	3350.000 100.000 10.000 6.000 19.000 19.000 21.200 21.200 21.200 21.200 21.300 20.708 9.031 6.010 6.010 15322.351 11088.137 6871.643 2692.014 600.243	2.330
A80F6 26211 25	3350.000 100.000 100.000 6.000 .040 19.030 1400.000 21.208 21.135 21.031 20.708 9.031 6.010 6.010 15322.351 11088.137 600.243 149.582	7.130
AEDFG 26131 24	3350.000 100.000 10.000 6.000 19.000 1400.000 21.208 21.135 21.135 21.031 20.708 9.031 6.010 6.010 15322.351 11068.137 6871.643 252.014 1352.014 149.582	20130
APDF 6 26121 23		7.120
ABDFG 26111 22	3350.000 100.000 100.000 6.000 19.000 19.000 21.200 21.200 21.200 21.200 6.010 6.010 6.010 6.010 15222.351 11088.137 6.010 12522.351 149.582	100100
1CN ABEFE 21111 21	2350 . 000 100 . 000 100 . 000 6 . 000 11 . 000 11 . 000 21 . 20 21 . 135 21 . 135 21 . 135 21 . 135 20 . 100 6 . 010 6 . 010 15 . 22 . 151 11088 . 137 6 . 001 149 . 542 6 . 001	2.660
SURPROCESS DESIGNATION FROCESS CODE NUMBER 0935RVATION NUMBER	FURLEF NUMBER AND NAME FURLACE LOAD (GPS) VACUUM LEVEL (PICRO) LEAK-UF RATE HUURS PRIOR N2 FLOU AIMOSPHERE PRONING AIME GET AND OEG C DAYS IIME GT AND OEG C DEG DAYS GT AND OEG C	ITE MINKIUTU DENSITI (GF/CFC)

A N A		ABDF 6 49212 35	4460.000 200.000 10.000 2.000	.960 .040 12.000 1410.000	11.542 11.417 11.417 11.344 9.354 6.927 5.927 3.833 9494.792 7192.374 4903.506 2627.881 1575.548 761.392 211.190 59.100
SUPFLIED B STING COMP CALIFORNIA		AB0F6 46112 34	4460.000 200.000 10.000	.960 .040 12.000 1410.000	11.542 11.479 11.479 11.344 9.354 6.927 5.923 9494.792 7192.374 4903.506 2627.681 761.392 211.190
DATA BASE SUPFLIED BY AIRESEARCH CASTING COMPANY ICRRANCE , CALIFORNIA		AB0F6 49212 33	2988.009 10.000 8.000 2.500	.960 .040 11.000 13.1751	1.000 11.198 11.094 11.094 10.406 1.677 4.906 6.31.841 4122.475 1937.833 403.426 62.401 56.600
814		ABDF6 46212 32	2988.000 10.000 8.000	.960 .040 11.000 1371.000	11.198 11.198 11.094 11.094 10.406 10.406 1.677 8560.276 6331.841 4122.841 1033.3839 402.426 62.401
FROL		JCN ABEFE 39312 31	10.000 10.000 3.660	.960 .040 11.000 1371.000	1.003 11.198 11.034 11.034 10.436 1.677 4.906 6.531.841 4.122.475 10.33.493 403.426 62.401 59.200
SLIP CASTING ACAPTIVE CCATPOL JCH542	SUBFRCCTSS 6 NITRIDING	SUMPROCESS CESIGNATION PROCESS CODE NUMBER CRSERVATION NUMBER	FARAFETER NUMBER AND NAME 132 FURNACE LOAD (GMS) 133 VACULM LEVEL (MICHO) 139 LEAM-UF RATE 135 FURS PRIOR N2 FLOW	ATMOSPHERE ATMOSPHERE NITRIO. TI PEAK LEMP	140 SFIELDING 0=NO,1=YES 141 IME .GT 400 0EG C UAYS 142 IME .GT 60C 0EG C CAYS 143 IME .GT 1100 0EG C CAYS 144 IME .GT 1100 0EG C DAYS 146 IME .GT 1100 0EG C DAYS 146 IME .GT 120C CEG C CAYS 147 IME .GT 120C CEG C CAYS 148 DEG CAYS .GT . 400 0EG C 150 0EG CAYS .GT . 400 0EG C 151 CEG CAYS .GT . 400 0EG C 152 DEG CAYS .GT . 1200 0EG C 153 DEG CAYS .GT . 1200 0EG C 154 DEG CAYS .GT . 1300 0EG C 155 DEG CAYS .GT . 1300 0EG C 156 CAYS .GT . 1300 0EG C 157 DEG CAYS .GT . 1300 0EG C 158 DEG CAYS .GT . 1300 0EG C 159 DEG CAYS .GT . 1300 0EG C 150 DEG CAYS .GT . 1300 0EG C 151 DEG DAYS .GT . 1300 0EG C 152 DEG CAYS .GT . 1300 0EG C 153 WEIGHT GAIN PRCNT

		ABDFG	11231	10		87.200	006.6	2.900	0.000	8.808	111	.033	.293	0.000.0
		ABDFG	11222	6		85.100	11.500	3.400	00000	7.400	.135	040.	.296	.0000.0
1579		ABOFG	11221	8		84.900	11.900	3.200	000.0	7.134	.140	.038	.269	.0000.0
FEBRUARY 1579 REVISED 12/04/79		ABDFG	11212	,		89.000	9.200	1.800	0.000	9.614	.103	.020	961.	.0000.0
#		AUDFG	11211	9		85.100	12.290	2.700	00000	6.975	.143	.032	.221	• 000 • 0
\		ABDFG	11132	S.		85.500	12.030	2.500	0.000	7.125	.140	.029	.208	0.000.
DATA BASE SUPPLIED BY AIRESEARCH CASTING COMPANY FORRANCE , CALIFORNIA		ABDFG	111131	•		19.500	18.300	2.200	0.000	4.344	.230	.028	.120	.0000.0
NTA BASE SUSEARCH CAST		ABDFG	11122	n		84.000	12.500	3.500	00000	6.120	641.	.042	.280	.000.0
D 1 A 1 O I		ABDFG	111121	7		85.700	11.500	5.700	00000	7.452	.134	.032	.235	.000.0
101		IN ABDFG		-		82.900	11.600	3.500	000.0	7.147	.140	₹06€	414.	0.000.0
ICS.INC.		DESIGNATIO	JE NUPBER	N NLPBER	NAME	L. PRCNI	PRCNI	. PRCATI	PRCNI).		44	44		
ADAP IRCAICS INC. SLIP CASTING ACAPTIVE CCATROL JOHS 42	FIRST ANALYSIS	SUBPROCESS DESIGNATION ABDFG	PROCESS CODE NUMBER	CHSFRVATION NLPBER	PARAMETER NUMBER AND NAME	IET ALPHD (X-RAY RFL. PRCNT)	CX-RAY REL	155 SIZON: (X-RAY REL. PRCAT)	(X-RAY REL. PRCNT)	ALPHA /HETA	BE TA /ALPHA	IES FFIIC SIZONZIALPHA	ICA RELIC SIZONZ /BETA	12E 01ST.
SUIP C	FINAL				PARAMETER	157 ALPHD	158 HFTA	155 S120A	160 81	161 RATIC	162 PATIC	163 +1110	164 RFIIC	165 PORE \$12E DIST.

ADAPTRCAICS, INC. SLIP CASTING ACAPTIVE CCATROL JCES 42
SUMPROCESS CESTONALION APCFG ABOFG
11232 1212
85.200 82.700
12.000 13.100
2.800 4.200
00000 0000
7.100 6.313
.233 .321
0.000

						*							
	ABDFG	26112	36		70.300	26.100	3.600	0.000	2.693	.371	150.	.138	.000.0
	ABOFG	35131	29		18.300	18.200	3.400	00000	4.302	.232	.043	.187	.0000.0
	AHDFG	35111	28		18.000	19.000	2.900	00000	4.105	.244	.037	.153	.0000.0
	ABDFG	31111	2.1		19.600	18.000	2.400	0.000	4.422	.226	.030	.133	.000.0
	ABDFG	27111	56		87.100	10.800	2.100	0.000	8.065	.124	.024	194	*000 *0
	ABOFG	26211	25		15.100	23.009	1.300	0.000	3.291	. 304	. 917	.057	.000.0
	ABOFG	26131	24		18.000	18.730	3.300	0.000	4.171	.240	.042	•176	00000
	ABDFG	26121	23		76.830	21.100	2.100	0.000	3.640	.275	.027	.100	.000.0
	APOFG	26111	22		75.400	22.100	5.500	00000	3.412	.293	.033	.113	•00000
	AHCFE	21111	2.1		84.000	13.290	2.800	0.000	6.364	.151	.033	.212	.000.0
	ESISNATION	NUMBER	NUMBER	AME	PRCALL	PRCNI	PRCNI	PRCNI					
ANALYSIS	SUIPROCESS DI	FROCESS CCDE	CBSFRV AT TON	NUMBER ANE N.	IN-RAY REL.	(X-RAY REL.	(X-RAY REL.		ALPHA /BETA	BE TA /ALPHA	SI 20N2 /ALPHA	S120N2/BE 1A	1ZE 01ST.
FIAAL				PARAMETER	157 AIPHA	158 BETA	155 S120N2	16 S.I	161 ROLLC	162 RATIC	163 RATIC	164 FF11C	165 PCRF 917E 01ST.
	FIREL ANALYSIS	DESIGNATION ANCHE APOFG ABOFG ABOFG ABOFG ABOFG ABOFG ABOFG	DESIGNATION ANCEG APOFG ABOFG ABOFF	FINAL ANALYSIS: SUBPROCESS DESIGNATION ANGRE APOFG ABOFG ABOFF ABO	DESIGNATION ANCHE	SAATION AHEFG ARDFG ARDFG ABOFG ABOF	Shallon ancre arore arone aron	Shaflon ancre arore arbre arbr	STATION ANCRE ARDEG ARDE	Shallon ancre apore abore abor	STATION ANCTE APOFG ABOFG ABOFG	STATION ANCRE APOFG ABOFG ABOF	Shallon ancre aports abores ab

FINAL ANALYSIS FINAL ANALYSIS SUIPPROCESS DESIGNATION ABDEG ANDFG ABDEG PROCESS COE NUMBER 31 46212 49212 CRSPRVATICN NLPBEF 31 22 33 IST ALPHA (X-RAY REL. PRCNT) 28.100 25.200 20.900 ISE HETA (X-RAY REL. PRCNT) 28.100 25.200 20.900 ISS SIZONZ (X-RAY REL. PRCNT) 3.000 0.000 ISS SIZONZ (X-RAY REL. PRCNT) 3.000 1.000 3.300 IST (X-RAY REL. PRCNT) 2.434 2.390 3.526 IST (X-RAY REL. PRCNT) 4.11 .418 .284 IST RATIC SIZONZ/META .107 0.000 .0027 ISS RATIO SIZONZ/META 0.0000 0.000	SLIF CASTING ACAFTIVE CCATHOL JCHS42		AIRES	DATA HASE SUPPLIED B RESEARCH CASTING COMP IORRANCE , CALIFORNIA	DATA HASE SUPPLIED BY AIRESEARCH CASTING COMPANY IORRANCE , CALIFORNIA	<u> -</u>
59312 46212 49212 31 22 33 58.400 65.800 73.700 7 28.100 29.900 2 5.000 1.000 3.300 2.424 2.390 3.526 411 .418 .284 .004 0.000 0.003						
\$9312 46212 49212 \$1 22 33 51 22 33 528.100 65.800 73.700 7 528.100 25.200 20.900 2 5500 1.000 2.000 5.500 1.000 3.500 6.434 6.390 3.526 6.411 .418 .284 .044 0.000 .095	ISNATION	AROFG	ANDFG	ABDFG	ABDFG	ABOFG
51 22 33 58.400 65.800 73.700 7 28.100 25.200 20.900 2 5.00 0.000 2.000 2 5.00 1.000 3.500 2 6.11 .418 .284 .044 0.000 .0057 0.000 0.000		39312	46212	4.3212	46112	49212
68.400 65.800 73.700 7 28.100 25.200 20.900 2 500 1.000 2.000 2.424 2.390 3.526 411 .418 .284 .004 0.000 .0027 0.000 0.000		31	3.5	33	34	35
58.400 65.800 73.700 7 28.100 25.200 20.900 2 3.000 1.000 2.000 2.401 2.419 3.526 3.411 .418 .284 3.000 0.000 0.095						
28.100 25.200 23.900 2 3.000 0.000 2.000 2.000 2.000 2.414 2.390 3.526 2.414 2.418 2.844 2.844 2.844 2.844 2.844 2.95 2.9500 0.000 0.000		004-80	65.800	73.700	72.200	71.900
5.000 0.000 2.000 5.00 1.000 3.300 2.414 2.390 3.526 .411 .418 .284 .044 0.000 .0927 .107 0.000 0.000		28.100	25.200	20.900	22.700	22.900
2.424 2.390 3.500 2.424 2.390 3.526 .411 .418 .284 .044 0.000 .027 0.000 0.000		3.000	00000	2.000	0.000	0.000
2.390 3.526 .418 .284 0.000 .027 0.000 .095	CNI	.500	1.000	3.300	1.300	1.600
.418 .284 0.000 .027 0.000 .095 C.000 0.000		2.434	2.390	3.526	3.181	3.146
0.000 0.000 0.000 0.000		.411	.418	.284	.314	,318
0.000 0.0000		.044	0.000	.027	0.000	0.000
.000.0 .000.3		101.	0.000	960.	0.000	0.000
		.00000	.000.3	0.000.0	.000.0	0.000

		ABOFG	11231	10		32.800	22.800	28.020	2.970	29.294	11.425	616.	11231.000
		ABCFG	11222	6		38.400	27.600 22.800	33.260	3.260	34.666	12.417	.978	11222.000
1919		ABEFG	11221	æ		39.900	21,600	25.410	4.230	27.211	7.087	.818	11551.000
FEHRUARY 1979 REVISED 12.04/78		ABDFG	11212			38.000	13.200 12.700 9.700 12.290 19.900 25.600 21.600	31.920	3.490	33.415	11.048	986.	11212.000
		ABBEG	11211	9		32.300	19.900	27.116	3.480	28.519	9.326	.980	11211.000
INF		ABOFG	11132	S		31.400	12.290	24.010	5.310	26.158	5.208	696.	11132.000
SUPPLIED HY		ABDFG	111131	4		26.600	9.700	18.690	5.810	20.149	3.572	816.	11131.000
DATA BASE SUPPLIED BY AIRESEARCH CASTING COMPANY IORRANCE , CALIFORNIA		ABOFG	11122	-		29.430	12.700	25.590	5.729	27.831	5.135	.908	11122.000
AIRE		ABOFG	111121	2		25.900	13.200	21.330	4.370	23.068	5.646	.975	11121.000
IROL		ICN ABEFE	11111	-		27.130	14.400	23.140	3.80€	24.101	1.175	.956	11111.000 11
ADAPTRCATCS, INC. SLIP CASTING ADAPTIVE CCATROL JCRE42	STREVETH DATA	SUMPROCESS DESIGNATION ABEFG	FROCESS CCOE NUMBER	CHSERVATION NUMBER	PARFFERE NUMBER AND NAME	166 PER PAXIMUM VALUE (KSI)	167 MCR PINIMIN VALUE (KSI)	168 PCR P. AN VALLE (KSI)	165 PCP SIAND. DEVIATION	170 WEIPULL CHARACTERISTIC	171 WETBULL SLUPE (SPAPE)	172 CCPRELATION COEF.	

		AEDF	1413	20		31.50	15.30	26.91	6.53	29.41	4.69	.92	14132.00
		ABOFG	14112	13		34.020	23.€00	29.380	2.910	30.655	12.025	166.	12121.000 12212.000 12221.000 12231.000 13111.000 13121.000 14111.000 14112.000 14132.00
Y 1979 12,04/79		ABDFG	14111	18		29.100	19.600	25.920	3.300	27.313	9.435	116.	141111.000
FEBRUARY 1979 REVISED 12.004/79		ABDFG	13121	11		40.300	19.600	28.030	6.330	30.499	5.080	.956	13121.000
		AHDFG	13111	91		31.200	18.100	24.570	4.650	26.452	6.153	166.	13111.000
» «		ABEFG	12231	1.5		38.390	30.500	34.310	2.840	35.542	14.846	.975	12231.000
DATA BASE SUPPLIED HY AIRESEARCH CASTING COMPANY TORRANCE , CALIFORNIA		ABDFG	12221	14		34.300	20.700	26.840	3.960	28.493	8.049	.965	12221.000
DATA BASE SUPPLIED B RESEARCH CASTING COMP TORRANCE , CALIFORNIA		ABCFG	12212	13		37.100	25.100	31.620	3.620	33.166	10.539	156.	12212.000
AIR		ABDFG	12121	12		35.900	16.703	28.939	6.750	31.540	4.901	.948	12121.000
ROL		CA APEFE	11232	=		39.100	23.230	32.960	3.620	34.514	10.999	: 96 .	11232.000
ADAPTRONICS, INC. SLIP CASTING ACAPITUE CCATROL JCR542	STRENGTH DATA	SUPPROCESS DESIGNATION ARCFG	FROCESS CODE NUMBER	CHSCRVATION NUMBER	FARDFETER NUMBER AND NAME	166 MOR MAXIMIM VALUE (KSI)	167 PCR PINIMUM VALUE (KSI)	IEE POR P' AN VALUE (KSI)	169 MCR STAND. DEVIATION	170 WEIBLLE CHARACTERISTIC	171 LFIRLI SLOPE (SHAPE)	172 CERRELATION COEF.	PROCE : S CODE

32

000 000

		ARDFG	26112	30		47.500	36.300	43.800	4.410	45.700	12.100	046.	26 112 . 000
		ABOFG	35131	29		30.660	24.700	27.970	3.230	29.344	10.432	. 989	35131.000 26112.000
12.04/19		ABDFG	35111	28		32.500	21.000	27.130	4.180	28.864	7.681		
FEBRUARY 1579 REVISED 12.04/19		ABOFG	31111	2.7		42.600	23.000	36.090	5.470	38.365	7.815	.968	51111.000 26121.000 26131.000 26211.000 27111.000 31111.000 35111.000
		ABDFG	27111	56		32.600	16.400	27.700	5.350	29.848	6.019	906.	27111.000
AN Y		AHDFG	25211	25		49.400	35.130	45.020	4.570	46.980	11.969	516.	26211.000
DDTA BASE SUPPLIED BY AIRESEARCH CASTING COMPANY TORRANCE , CALIFORNIA		ABDFG	25131	54		48.100	30.500	41.380	4.700	43.382	10.625	986.	26131.000
DATA BASE ESEARCH CA CRRANCE .		ABOFG	26121	23		47.830	22.700	41.820	8.720	45.281	5.536	.919	26121.000
A1 A		ARDFG	26111	2.5		EC.700	21.200	43.470	16.130	47.396	4.903	.950	261111.000
IRCL		ION ABDFG	21111	2.1		31.200	26.300	33.190	3.376	34.551	11.914	186.	21111.000 26
ADAPTRCAICS, INC. SLIP CASTING ACAPTIVE CCAIRGL JCH542	STREWETH DATA	SUBPROCESS DESIGNATION ABOFG	FROCESS CCDE NUMBER	CHSFRVATION NUMBER	PARAPETER NUMBER AND NAME	166 PCR PAXINUM VALUE (KSI)	167 MCR PINIMUM VALUF (KSI)	168 MOR P AN VALUE (KSI)	169 PCR SIAND. CEVILLION	17C WEIFULL CHARACTERISTIC	171 KETHLIL SLOPE (SHAPE)	172 CCRRII AT TUN COEF.	173 PROCE .S CODE

SLIP CASTING ACAPTIVE CCATROL JCHE42

STRENETH DA IA

AB0F6	35		48.500	39.800	44.300	3.120	45.700	17.550	.992	49212.000
ABDFG			54.700	39.300	47.800	5.540	50.200	10.400	686.	49212.000 46112.000
ABDFG	2)		56.000	15.900	36.600	13.660	41.000	2.9.10	616.	49212.000
ABDFG 45212	3.5		50.200	40.500	46.509	3.610	48.000	15.800	.953	46212.000
11CN ABOFG			45.700	26.000	40.500	5.170	42.900	8.500	156.	39312.000
SUMPROCESS DESIGNATION ABDRG PROCESS CODE NUMBER 39312	CBSFRVALICN NUMBER	PARAMETER NUMBER AND NAME	166 MCR MAXIMUM VALUE (KSI)	167 PCR PINIMUM VALUE (KSI)	168 PCR PIFN VALUE (KSI)	169 MCR STAND. DEVIATION	176 WEIPLL CHARACTERISTIC	171 LEIBLIE SLOPE (SPAPE)	172 CCRRELATION COEF.	173 PROCE , S CODE