

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ

KATEDRA INFORMATYKI STOSOWANEJ

Analiza i modelowanie oprogramowania

Dokumentacja projektowa - automatyczny parking

Autor: Mateusz Grzeliński, Agata Sidło, Katarzyna Lambrecht, Katarzyna Wilczak

Kierunek studiów: Informatyka

Semestr: V

Spis treści

1.	Ogólny opis systemu				
	1.1.	Cel (przeznaczenie) systemu	3		
	1.2.	Udziałowcy i użytkownicy	3		
	1.3.	Podstawowe cele udziałowców i użytkowników	3		
	1.4.	Granice systemu	4		
	1.5.	Lista funkcji systemu	5		
2.	Anal	iza Dziedziny	8		
	2.1.	Klasy i opis atrybutów	8		
	2.2.	Diagramy klas - relacje	9		
	2.3.	Diagramy stanów dla wybranych klas	10		
	2.4.	Słownik pojęć	11		
3.	SRS	- specyfikacja wymagań	13		
	3.1.	Ogólny diagram przypadków użycia	13		
	3.2.	Definicje przypadków użycia	13		
4.	Arch	Architektura systemu			
	4.1.	Wyliczenie warstw lub wyliczenie podstawowych komponentów będących odrębnymi			
		programami (nadawca-odbiorca, klient-serwer). Zamodelowanie ich jako klas z odpo-			
		wiednim zestawem metod.	14		
	4.2.	Specyfikacja interfejsu pomiędzy komponentami	14		
5.	Projekt oprogramowania				
	5.1.	Sekcja	15		
6.	Proje	ekt interfejsu użytkownika IRS	16		
	6.1.	Sekcja	16		
7.	Projekt bazy danych DBDD				
	7.1.	Diagram ERD	17		
	7.2.	Specyfikacja kwerend	17		

1. Ogólny opis systemu

1.1. Cel (przeznaczenie) systemu

Celem systemu automatyczny parking jest umożliwienie komputerowej obsługi pobierania opłat za pozostawienie pojazdu na parkingu na określony czas. System rozpoznaje ze zdjęcia tablice rejestracyjne pojazdów i na tej podstawie umożliwia wjazd samochodów na parking, a także opuszczenie go.

1.2. Udziałowcy i użytkownicy

- Właściciel posiada parking, jest kierownikiem zarządzającym pracownikami, system prezentuje mu zebrane statystki
- Klient osoba, która korzysta z usług automatycznego parkingu i wjeżdza samochodem na jego teren
- Operator osoba kontrolująca parking w danej chwili, w przypadku błędów, przegląda zarejestrowane zdjęcia i poprawia czas wjazdu i wyjazdu

1.3. Podstawowe cele udziałowców i użytkowników

Udziałowcy	Cel	Priorytet
Klient	Wjechanie na parking	Wysoki
Klient	Opuszczenie parkingu	Wysoki
Klient	Wpisanie numeru rejestracyjnego	Wysoki
Klient	Potwierdzenie zdjęcia	Wysoki
Klient	Anulowanie wpisanego numeru rejestracyjnego	Średni
Klient	Uiszczenie opłaty	Wysoki
Operator	Przeglądanie zdjęć	Średni
Operator	Poprawa czasu wjazdu i wyjazdu w bazie	Średni
Właściciel	Wyświetlenie statystyk	Niski

4 1.4. Granice systemu

W aktualnym systemie klient podjeżdża do terminala, naciska przycisk i odbiera bilet z godziną wjazdu. Przy opuszczaniu parkingu wkłada otrzymany przy wjeździe bilet i dokonuje opłaty. W naszym systemie klient, wjeżdżając na parking, nie musi podjeżdżać do terminala i czekać na wydrukowanie kartki z godziną wjazdu. System zrobi zdjęcie tablicy rejestracyjnej i sam otworzy szlaban. W ten sposób oszczędzany jest papier oraz tusz. Operator nie musi dbać o to żeby ich nie zabrakło. Musi jedynie interweniować w przypadku oszustwa.

1.4. Granice systemu

Rys. 1.1. Granice systemu automatyczny parking

1.5. Lista funkcji systemu

Rys. 1.2. Diagram czynności: Klient wjeżdża na parking

Rys. 1.3. Diagram czynności: Klient opuszcza parking

Rys. 1.4. Diagram czynności: Operator weryfikuje wykryte oszustwo

Rys. 1.5. Diagram czynności: Właściciel wyświetla statystyki

2. Analiza Dziedziny

2.1. Klasy i opis atrybutów

Klasa	Atrybut	Opis
Pojazd	NumerRejestracyjny	Numer rejestracyjny pojazdu
	Marka	Marka pojazdu
	Model	Model pojazdu
Samochód		
Motor		
Autobus		
Parking	WolneMiejscaZwykłe	Określa ilość wolnych miejsc dla samochodów na parkingu
	WolneMiejscaAutobusowe	Określa ilość wolnych miejsc dla autobusów na parkingu
MiejsceParkingowe	Numer	Numer miejsca parkingowego
	Тур	Typ miejsca parkingowego
	Status	Określa status miejsca - wolne/zajęte
Wjazd	DataWjazdu	Data wjazdu na parking
	CzasWjazdu	Czas wjazdu na parking
	Pojazd	Określa pojazd, którego dotyczy wjazd
Wyjazd	DataWyjazdu	Data wyjazdu z parkingu
	CzasWyjazdu	Czas wyjazdu z parkingu
	Pojazd	Określa pojazd, którego dotyczy wyjazd
Terminal	Status	Status określa możliwość wjazdu/wyjazdu na/z parkingu
Szlaban	Status	Określa, czy szlaban jest otwarty/zamknięty
Operator	Id	Id operatora
	Imię	Imię operatora
	Nazwisko	Nazwisko operatora
BazaZdjęć		

2.2. Diagramy klas - relacje

Rys. 2.1. Diagram klas i relacje między nimi

2.3. Diagramy stanów dla wybranych klas

Rys. 2.2. Diagram stanów dla klasy Wjazd

2.4. Słownik pojęć

Rys. 2.3. Diagram stanów dla klasy Wyjazd

2.4. Słownik pojęć

- System służy do obsługi automatycznego parkingu, przetwarza zdjęcia, rejestracje pojazdów, oblicza płatności, wykrywa oszustwa, a także zbiera dane statystyczne
- Pojazd należy do klienta, na podstawie rejestracji pojazdu jest on wpuszczany i wypuszczany z parkingu
- Wjazd klasa reprezentująca zdarzenie wjazdu pojazdu na parking
- Wyjazd klasa reprezentująca zdarzenie wyjazdu pojazdu z parkingu

12 2.4. Słownik pojęć

• BazaZdjęć - baza posiadająca zdjęcia tablic rejestracyjnych pojazdów aktualnie znajdujących się na parkingu

- Operator pracownik parkingu, identyfikowany na podstawie Id, ma możliwość przeglądania Bazy
 Zdjęć i ustalania czasu wjazdu/wyjazdu w razie błędu w systemie
- Terminal kieruje szlabanem, zbiera informacje o ilości wolnych miejsc na parkingu, przetworzeniu płatności.
- Szlaban może być otwarty lub zamknięty, jego status zależy od terminala

3. SRS - specyfikacja wymagań

3.1. Ogólny diagram przypadków użycia

Rys. 3.1. Przypadki użycia

3.2. Definicje przypadków użycia

4. Architektura systemu

- 4.1. Wyliczenie warstw lub wyliczenie podstawowych komponentów będących odrębnymi programami (nadawca-odbiorca, klient-serwer). Zamodelowanie ich jako klas z odpowiednim zestawem metod.
- 4.2. Specyfikacja interfejsu pomiędzy komponentami

5. Projekt oprogramowania

5.1. Sekcja..

6. Projekt interfejsu użytkownika IRS

6.1. Sekcja...

7. Projekt bazy danych DBDD

- 7.1. Diagram ERD
- 7.2. Specyfikacja kwerend