מבנה הבחינה: בבחינה חמש שאלות.

כל שאלה מזכה ב- 25 נקודות.

הנחיות: כל תשובה תתחיל בעמוד **חדש**.

אין לכתוב בצבע אדום.

אין לכתוב בעיפרון.

אין צורך לכתוב פסידוקוד, אלא אם נדרש במפורש.

חובה להוכיח (או להסביר) כל טענה.

שאלה 1

: נתונה השגרה הבאה

SLOW-SORT(A)

1 $n \leftarrow length[A]$

- 2 for $i \leftarrow 2$ to n
- 3 do QUICKSORT(A,1,i)

א' (10 נקי) תארו את פעולת האלגוריתם (כולל את התנהגותן של שגרת החלוקה ושגרת המיון בכל שלב) אם הקלט הנתון A הוא מערך ממוין בסדר עולה (לא יורד).

ב' (8 נקי) הוכיחו את נכונות האלגוריתם SLOW-SORT (אין צורך להוכיח את נכונות האלגוריתם מיון-מהיר או את נכונות שגרת החלוקה).

ב' (7 נקי) מהו זמן הריצה של האלגוריתם SLOW-SORT במקרה הגרוע!

הוכיחו כל טענה.

שאלה 2

: מצאו פתרון אסימפטוטי הדוק עבור נוסחת הנסיגה הבאה

$$\begin{cases} T(1) = c > 0 \\ T(n) = 16T(n/4) + n^{\alpha} \cdot \lg^{\alpha+1} n \end{cases}$$

הוא פרמטר ממשי חיובי. lpha

רמז: התיחסו לשלושה מקרים אפשריים.

שאלה 3

הנדרשים בזמנים בזמנים בפעולות הבאות הנדרשים , S

- ; O(n) : מתוך זמן הריצה: BUILD(L,S)
 - ; $O(\lg n)$: זמן הריצה ; S ממבנה k המפתח הכנסת : INSERT(S,k)
- $O(\lg n):$ מחיקת המיון המפתחות מתוך המבנה: DEL-MEDIAN(S)
- . $O(\lg n)$: ממויקת האיבר שנכנס אחרון מתוך המבנה : DEL-NEW(S)

. יכול להיות מורכב מכמה מבני נתונים S יכול להיות מורכב מכמה מבני נתונים פשוטים יותר

שאלה 4

0 -המכיל פורה, כל ערכי ה- 0, וידוע שבכל שורה, כל ערכי ה- A[1..m,1..n] המכיל רק ערכי ה- 0, וידוע שבכל שורה, בכל שורה בכל ערכי ה- 0, וכל ערכי ה- 0, וכל ערכי ה- 0, ומספר ערכי ה- 0, בווסף, בכל שורה מספר ערכי ה- 0, גדול או שווה למספר ערכי ה- 0 בשורה הקודמת, ומספר ערכי ה- 0 בשורה הקודמת.

n=8, m=5: לדוגמה

-1	0	0	0	0	0	0	0
-1	0	0	0	0	0	1	1
-1	-1	0	0	0	0	1	1
-1	-1	-1	0	1	1	1	1
-1	-1	-1	1	1	1	1	1

 $\Theta(m+n)$ בזמן בזמן שבמערך אלגוריתם המחשב את מספר האפסים שבמערך

שאלה 5

נתון מערך M של מספרים ממשיים, לא בהכרח שונים זה מזה. נסמן ב- M את מספר תון מערך הערכים השונים המופיעים ב- M (n < m). ברצוננו להעתיק את כל M המספרים למערך אחר של כל M בצורה הבאה: קודם מעתיקים כל M הערכים המופיעים במערך M (עותק אחד של כל ערך), בסדר ממוין; אחר-כך מעתיקים כל הערכים המופיעים במערך M יותר מפעם אחת, בסדר ממוין; אחר-כך מעתיקים כל הערכים המופיעים במערך M יותר מפעמיים, בסדר ממוין; וכן הלאה.

למשל, עבור המערך

										•		,
A	3	1	1	5	5	3	1	3	3	2	4	
												מתקבל
В	1	2	3	4	5	1	3	5	1	3	3	

בזיכרון המתוארות המבצע את הפעולות המתוארות בזמן . $\Theta(m \cdot \lg n)$. מותר הפעולות הפעולות הפעולות נוסף בגודל . $\Theta(n)$.

רמז: השתמשו במבנה נתונים כמבנה עזר.

בהצלחה!