Neural Network Approximation of the Runge Function and Its Derivative

Your Name: Chiu Bo Hsiang Student ID: 112652037

September 23, 2025

1 Method

We approximate the Runge function

$$f(x) = \frac{1}{1 + 25x^2}, \qquad x \in [-1, 1], \tag{1}$$

and its derivative

$$f'(x) = \frac{-50x}{(1+25x^2)^2},\tag{2}$$

using a multilayer perceptron (MLP). The model is trained with a joint loss:

$$\mathcal{L} = MSE(\hat{f}(x), f(x)) + \lambda MSE(\hat{f}'(x), f'(x)), \qquad (3)$$

where λ balances the derivative term.

2 Experiment Settings

Table 1 lists the training configuration used. Replace any fields as needed.

Table 1: Training configuration

Item	Value	
Model	MLP (64, 64), activation: tanh	
Optimizer	Adam, learning rate 1e-3, weight decay 1e-6	
Batch size	128	
Epochs (max)	5000 with early stopping (patience 150)	
Derivative weight λ	0.1	
Data	Train: 256 Val: 128 Sampling: uniform on $[-1, 1]$	

3 Results

Figures 1-3 present the function/derivative fits and the training/validation loss curves. Place the three image files produced by your code in the same folder as this .tex file: fig_f_fit.png, fig_df_fit.png, fig_losses.png.

4 Quantitative Metrics

Table 2 and Table 3 summarize the errors on a dense grid of 1000 points. Replace the placeholders with your program's outputs (shown in Colab console).

Figure 1: True function f(x) vs. NN prediction $\hat{f}(x)$ together with training/validation samples.

Figure 2: True derivative f'(x) vs. predicted derivative $\hat{f}'(x)$.

Table 2: Function f(x) metrics

Value
1.04×10^{-8} 4.62×10^{-4}

Figure 3: Training/Validation loss curves in log scale: total, function-only, and derivative-only.

Table 3: Derivative f'(x) metrics

Metric	Value
MSE Max Error	$9.53 \times 10^{-6} \\ 1.17 \times 10^{-2}$

5 Discussion

The network fits f(x) extremely well (MSE $\sim 10^{-8}$). Learning f'(x) is harder; errors are larger (MSE $\sim 10^{-5}$), but still small. Training and validation curves are close, indicating good generalization without severe overfitting. Increasing λ could further reduce derivative error at the cost of slightly worse function error; using Chebyshev sampling near the interval boundaries can also help.

References

[1] Carl Runge, "Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten," 1901.