Institut für Regelungstechnik

TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG

Prof. Dr.-Ing. W. Schumacher

Prof. Dr.-Ing. T. Form

Prof. em. Dr.-Ing. W. Leonhard

Hans-Sommer-Str. 66 38106 Braunschweig Tel. (0531) 391-3836

Klausuraufgaben	Grundlagen der Elektrotechnik	22.03.2007
NiauSurauryaberi	Grundlagen der Elektrotechnik	22.03.2007

Name:			√orname:		Matr	_ MatrNr.:		
1:	2:	3:	4:	5:	6:	7:	8:	
Summe: Note:								

Alle Lösungen sollen **nachvollziehbar** bzw. **begründet** sein.

Für jede Aufgabe ein neues Blatt verwenden.

Keine Rückseiten beschreiben.

Keine roten Stifte verwenden.

1 Kondensatornetzwerk

In dem gegebenen Netzwerk sind alle Kondensatoren entladen. Der Kondensator C_1 ist über die ideale Diode D und den Schalter S_1 an die Stromquelle I angeschlossen. Nach der Zeit $t_1 = 0,2s$ wird der Schalter S_1 geschlossen. Über dem Kondensator C_1 wird eine Spannung $U_1 = 200 \, V$ gemessen.

- a) Berechnen Sie den Ladestrom I_1 , wenn C_1 als Luftkondensator nach Bild 1 mit einem Plattenabstand d = 0.5 mm und einer Fläche A = $100 mm^2$ realisiert wird. Es sei $\varepsilon_0 = 8,854 \cdot 10^{-12} As/Vm$.
- b) Berechnen Sie die im Netzwerk gespeicherte Energie W.

Nun wird der Schalter S_2 auch geschlossen. Für das Netzwerk gilt: $C_1 = C$, $C_2 = C_3 = 8C$, $C_4 = 4C$

c) Berechnen Sie die Gesamtkapazität $C_{\rm ges}$ des Netzwerkes, wenn R vernachlässigt wird.

Nach Abklingen des Einschwingvorganges:

- d) Berechnen Sie die Spannungen U₁, U₂, U₃ und U₄.
- e) Berechnen Sie die im Netzwerk gespeicherte Energie W*.
- f) Erklären Sie die Differenz der Energie $\Delta W = W W^*$.

2 Kondensator Punkte: 17

Zwischen zwei halbringförmigen Elektroden (Stator) ist eine halbkreisförmige Metallplatte (Rotor) angeordnet, die über eine Welle drehbar gelagert ist. Der Rotor ist beidseitig mit 1mm dickem Papier ($\epsilon_r = 4$) beklebt. Die Anordnung befindet sich im Medium Luft. Randeffekte sind zu vernachlässigen.

Gegeben: r = 4.1cm, $r_1 = 4cm$, $r_2 = 2cm$, d = 1mm, $\epsilon_0 = 8.854 \cdot 10^{-12} As/Vm$

- a) Für die gegebene Anordnung ist ein elektrisches Ersatzschaltbild zu zeichnen.
- b) Berechnen Sie die maximal mögliche Kapazität C_{max} , unter Berücksichtigung der aktiven Fläche.
- c) Berechnen Sie allgemein die Kapazität $C = f(\alpha)$ in Abhängigkeit vom Drehwinkel α für die Bereiche: 1) $0^{0} < \alpha < 180^{0}$, 2) $180^{0} < \alpha < 360^{0}$.
- d) Zeichnen Sie C = $f(\alpha)$ für $\alpha = 0...360^{\circ}$.
- e) Berechnen Sie die maximale Ladung Q_{max} , mit der der Kondensator geladen werden kann, wenn die maximale Quellenspannung $U_Q=500\,\text{V}$ beträgt.
- f) Welche maximal zulässige Spannung $U_{Q_{max}}$ kann an den Kondensator angelegt werden, wenn die Durchschlagfeldstärke in Luft $E_D = 30 \, kV/cm$ beträgt?

3 Gleichstromnetzwerk

Das Netzwerk ist bezüglich der Klemmen A und B durch eine Ersatzspannungsquelle darzustellen, die durch den Widerstand R_L belastet wird.

Gegeben: $I = \frac{3U}{R}$

- a) Berechnen Sie den Innenwiderstand R_i der Ersatzquelle.
- b) Berechnen Sie allgemein die Leerlaufspannung U_L.

Das Netzwerk ist bei Leistungsanpassung durch R_L belastet.

- c) Geben Sie R_L und U_{AB} in Abhängigkeit von R und U an.
- d) Berechnen Sie die im Lastwiderstand R_L umgesetzte Leistung P_{RL} .
- e) Die Stromquelle I ist so zu dimensionieren, dass der durch den Lastwiderstand fließende Strom I_{RL} gleich Null wird. Berechnen Sie den hierfür erforderlichen Strom I^* der Stromquelle.
- f) Berechnen Sie für den Fall e) die von den Quellen abgegebene Leistung P_{Q} .

4 Gleichstromnetzwerk

Der Lastwiderstand R_{L} ist bei dem gegebenen Netzwerk durch eine Brückenschaltung realisiert.

Gegeben: $R_1 = 20\Omega$, U = 20V, I = 1A

- a) Wie groß muss R_2 gewählt werden, damit die Klemmenspannung im Leerlauf $U_{AB} = 30 \, V$ beträgt.
- b) Geben Sie die Spannung U_{AB} als Funktion des Widerstandes R₂ an.
- c) Zeichnen Sie den Spannungsverlauf $U_{AB} = f(R_2)$ für R_2 gleich 0Ω bis 100Ω . Welchen Grenzwert erreicht die Spannung U_{AB} für $R_2 \to \infty$.
- d) Geben Sie die Brückenabgleichbedingung an. Bestimmen Sie R_{κ} so, dass die Brücke abgeglichen ist.
- e) Für den in Fall a) berechneten Wert R_2 und den in Fall d) berechneten Wert $R_{\rm x}$ berechnen Sie die in der Brücke insgesamt umgesetzte Leistung $P_{\rm L}$.

Bemerkung: Falls Sie a) oder d) nicht gelöst haben, rechnen Sie weiter mit $R_2 = R_x = 20\Omega$.

5 Induktion Punkte: 14

Die dargestellte Leiterschleife aus dünnem Kupferdraht wird von einem homogenen Magnetfeld mit der Flussdichte $B(t) = B_0 (1 + \cos \omega t)$ senkrecht durchsetzt. Der Drahtabschnitt hat die Länge b und einen kreisförmigen Querschnitt mit dem Radius r. Der spezifische Widerstand des Kupfers ist ρ . Durch die Schalter S_1 und S_2 können die Drähte der Anordnung unterbrochen werden.

- a) Geben Sie den ohmschen Widerstand R von einem Drahtabschnitt an. Berechnen Sie die Ströme $i_1(t)$, $i_2(t)$ und $i_3(t)$ wenn:
 - b) der Schalter S₁ geschlossen und der Schalter S₂ geöffnet ist.
 - c) die Schalter S₁ und S₂ geschlossen sind.
 - d) der Schalter S₁ offen und der Schalter S₂ geschlossen ist.
 - e) Berechnen Sie für den Fall d) die Spannung U_{s1} über dem Schalter S_1 .

6 Magnetischer Kreis

Der gegebene Elektromagnet besteht aus einem E – förmigen Kern aus Dynamoblech und einem Anker aus Walzstahl. Auf dem mittleren Schenkel ist eine Spule mit N Windungen montiert. Die Querschnittsfläche ist überall quadratisch mit der Seitenlänge h. Die im Luftspalt wirkende Kraft beträgt $F_L = 102\,\text{N}$. Die Streuung in dem Luftspalt ist zu vernachlässigen.

Gegeben:
$$h = 10 mm$$
, $\ell_1 = \ell_2 = 160 mm$, $\ell_4 = \ell_5 = 80 mm$, $\ell_3 = 40 mm$, $\delta = 15 mm$, $\mu_0 = 1,257 \cdot 10^{-6} H/m$

- a) Skizzieren Sie das vollständige Ersatzschaltbild des magnetischen Kreises und tragen Sie alle magnetischen Größen mit ihren Bezugsrichtungen ein.
- b) Berechnen Sie den magnetischen Fluss $\Phi_{\ell 1}$ durch den linken Schenkel.
- c) Berechnen Sie die magnetische Spannung V_δ im Luftspalt.
- d) Berechnen Sie die magnetische Durchflutung Θ. (Die Magnetisierungskurven sind auf dem nächsten Blatt gegeben.)
- e) Berechnen Sie die erforderliche Windungszahl N, wenn die Wicklung aus einer Spannungsquelle U = 220 V gespeist wird und der gesamte Wicklungswiderstand R = 100Ω beträgt.

Magnetisierungskurven von magnetisch weichen Werkstoffen

7 Komplexe Wechselstromrechnung

Bei der dargestellten Wechselspannungsbrücke kann durch Veränderung des Widerstandes R_1 die Phasenlage zwischen der Eingangsspannung \underline{U}_0 und der Brückendiagonalspannung \underline{U}_B eingestellt werden.

Gegeben:
$$\underline{U}_0 = 10 V e^{j0}$$
, $C = 500 \cdot 10^{-9} F$, $R_2 = 1 \cdot 10^3 \Omega$, $\omega = 2 \cdot 10^3 s^{-1}$

- a) Berechnen Sie allgemein und zahlenmäßig für $R_1 = 750 \Omega$ folgende Größen: \underline{U}_{R2} , \underline{U}_{C} , \underline{I}_{2} und \underline{I}_{1} . Die Zahlenwerte sind nach Betrag und Phase in Polarkoordinaten anzugeben.
- b) Das vollständige Zeigerdiagramm mit allen Strömen und Spannungen ist zu entwickeln (Maßstab: $1V \triangleq 1cm$, $1mA \triangleq 1cm$). Die Größen \underline{U}_{R1} , \underline{U}_{B} und \underline{I}_{0} sind nach Betrag und Phase anzugeben.
- c) Die in der Brücke umgesetzte Wirk-, Blind- und Scheinleistung ist zu berechnen.

Der Widerstand R_1 soll von 0Ω bis ∞ verändert werden.

- d) Auf welcher gemeinsamen Kurve bewegen sich die Zeiger der Spannungen \underline{U}_C , \underline{U}_{R1} und \underline{U}_B ? Diese Kurve ist in das Zeigerdiagramm einzuzeichnen.
- e) Über welchen Bereich verändert sich der Phasenwinkel ϕ_{0B} zwischen \underline{U}_0 und \underline{U}_B (\underline{U}_0 Bezugsgröße)?

8 Ortskurven Punkte: 12

Gegeben ist folgendes Wechselstromnetzwerk:

Der Schalter S steht in Position 1.

- a) Berechnen Sie allgemein die Admitanz \underline{Y}_{MC} an den Klemmen M C in Abhängigkeit von der Kreisfrequenz ω . Berechnen Sie die Grenzwerte für $\omega = 0s^{-1}$ und $\omega \to \infty$.
- b) Zeichnen Sie die Ortskurve von \underline{Y}_{MC} und tragen Sie die berechneten Werte ein.

Der Schalter S wird in Position 2 umgeschaltet.

- c) Berechnen Sie allgemein die Impedanz \underline{Z}_{NC} an den Klemmen N C in der Form A + jB.
- d) Um was für einen Schwingkreis handelt es sich hier? Geben Sie die Resonanzbedingung an und berechnen Sie die Resonanzfrequenz ω_0 .
- e) Berechnen Sie die Grenzwerte der Impedanz \underline{Z}_{NC} für $\omega = 0s^{-1}$, $\omega = \omega_0$ und $\omega \to \infty$.
- f) Zeichnen Sie die Ortskurve von \underline{Z}_{NC} . Die Punkte für die Frequenzen nach e), sowie der kapazitive und induktive Bereich sind zu kennzeichnen.