

TDA7498MV

100-watt mono BTL class-D audio amplifier

Features

- 100-W output power at THD = 10% with $R_L = 6 \Omega$ and $V_{CC} = 36 V$
- 80-W output power at THD = 10% with $R_1 = 8 \Omega$ and $V_{CC} = 34 \text{ V}$
- Wide-range single-supply operation (14 39 V)
- High efficiency (η = 90%)
- Four selectable, fixed gain settings of nominally 25.6 dB, 31.6 dB, 35.1 dB and 37.6 dB
- Differential inputs minimize common-mode noise
- Standby and mute features
- Short-circuit protection
- Thermal overload protection
- Externally synchronizable

Description

The TDA7498MV is a mono BTL class-D audio amplifier with single power supply designed for home systems and active speaker applications.

It comes in a 36-pin PowerSSO package with exposed pad up (EPU) to facilitate mounting a separate heatsink.

Table 1. Device summary

Order code	Temperature range	Package	Packaging
TDA7498MV	-40 to 85 °C	PowerSSO-36 (EPU)	Tube
TDA7498MVTR	-40 to 85 °C	PowerSSO-36 (EPU)	Tape and reel

Contents TDA7498MV

Contents

5
6
6
7
8
8
8
8
9
11
11
12
18
18
19
20
20
21
21
21
22
23
23
24
26

TDA7498MV List of figures

List of figures

Figure I.	internal block diagram	. ე
Figure 2.	Pin connection (top view, PCB view)	. 6
Figure 3.	Test board	
Figure 4.	Output power (THD = 10%) vs supply voltage	12
Figure 5.	THD vs output power	12
Figure 6.	THD vs frequency (1 W)	13
Figure 7.	THD vs frequency (100 mW)	13
Figure 8.	Frequency response	13
Figure 9.	FFT performance (0 dBFS)	14
Figure 10.	FFT performance (-60 dBFS)	14
Figure 11.	Output power (THD = 10%) vs supply voltage	15
Figure 12.	THD vs output power	15
Figure 13.	THD vs frequency (1 W)	16
Figure 14.	THD vs frequency (100 mW)	16
Figure 15.	Frequency response	
Figure 16.	FFT performance (0 dB)	
Figure 17.	FFT performance (-60 dB)	17
Figure 18.	Applications circuit	
Figure 19.	Standby and mute circuits	
Figure 20.	Turn-on/off sequence for minimizing speaker "pop"	
Figure 21.	Input circuit and frequency response	
Figure 22.	Master and slave connection	
Figure 23.	Typical LC filter for a 8- Ω speaker	
Figure 24.	Typical LC filter for a 6- Ω speaker	
Figure 25.	Behavior of pin DIAG for various protection conditions	
Figure 26.	PowerSSO-36 EPU outline drawing	25

List of tables TDA7498MV

List of tables

Table 1.	Device summary	1
Table 2.	Pin description list	7
Table 3.	Absolute maximum ratings	8
Table 4.	Thermal data	8
Table 5.	Recommended operating conditions	8
Table 6.	Electrical specifications	9
Table 7.	Mode settings	19
Table 8.	Gain settings	20
Table 9.	How to set up SYNCLK	21
Table 10.	PowerSSO-36 EPU dimensions	. 24
Table 11.	Document revision history	26

1 Device block diagram

Figure 1 shows the block diagram of the TDA7498MV.

Figure 1. Internal block diagram

Pin description TDA7498MV

2 Pin description

2.1 Pin-out

Figure 2. Pin connection (top view, PCB view)

TDA7498MV Pin description

2.2 Pin list

Table 2. Pin description list

Number	Name	Туре	Description
1	SUB_GND	PWR	Connect to the frame
2,3	N.C.	-	No internal connection
4,5	N.C.	-	No internal connection
6,7	N.C.	-	No internal connection
8,9	N.C.	-	No internal connection
10,11	OUTN	0	Negative PWM output for audio channel
12,13	PVCC	PWR	Power supply for audio channel
14,15	PGND	PWR	Power stage ground
16,17	OUTP	0	Positive PWM output for audio channel
18	PGND	PWR	Power stage ground
19	VDDPW	0	3.3-V (nominal) regulator output referred to ground for power stage
20	STBY	I	Standby mode control
21	MUTE	I	Mute mode control
22	INP	I	Positive differential input
23	INN	I	Negative differential input
24	ROSC	0	Master oscillator frequency-setting pin
25	SYNCLK	I/O	Clock in/out for external oscillator
26	VDDS	0	3.3-V (nominal) regulator output referred to ground for signal blocks
27	SGND	PWR	Signal ground
28	DIAG	0	Open-drain diagnostic output
29	SVR	0	Supply voltage rejection
30	GAIN0	I	Gain setting input 1
31	GAIN1	I	Gain setting input 2
32	VDDS2	0	Connect to VDDS (pin 26)
33	SGND2	PWR	Connect to SGND (pin 27)
34	VREF	0	Half VDDS (nominal) referred to ground
35	SVCC	PWR	Signal power supply decoupling
36	VSS	0	3.3-V (nominal) regulator output referred to power supply
-	EP	-	Exposed pad for heatsink, to be connected to ground

3 Electrical specifications

3.1 Absolute maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC_MAX}	DC supply voltage for pins PVCCA, PVCCB	44	٧
V _{L_MAX}	Voltage limits for input pins STBY, MUTE, INNA, INPA, INNB, INPB, GAIN0, GAIN1	-0.3 to 3.6	V
T _{j_MAX}	Operating junction temperature	0 to 150	°C
T _{op_MAX}	Operating temperature	-40 to 85	°C
T _{stg}	Storage temperature	-40 to 150	°C

Warning:

Stresses beyond those listed under "Absolute maximum ratings" make cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended operating condition" are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. In the real application, power supply with nominal value rated inside recommended operating conditions, may experience some rising beyond the maximum operating condition for short time when no or very low current is sinked (amplifier in mute state). In this case the reliability of the device is guaranteed, provided that the absolute maximum rating is not exceeded.

3.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Min	Тур	Max	Unit
R _{th j-case}	Thermal resistance, junction to case	-	2	3	°C/W

3.3 Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Min	Тур	Max	Unit
V_{CC}	Supply voltage for pins PVCCA, PVCCB	14	-	39	٧
T _{amb}	Ambient operating temperature	-20	-	85	°C

3.4 Electrical specifications

Unless otherwise stated, the results in *Table 6* below are given for the conditions: $V_{CC}=36$ V, R_L (load) = 6 Ω , $R_{OSC}=R3=39$ k Ω , C8=100 nF, f=1 kHz, $G_V=25.6$ dB and Tamb = 25 °C.

Table 6. Electrical specifications

Parameter	Condition	Min	Тур	Max	Unit
Total quiescent current	No LC filter, no load	-	40	60	mA
Quiescent current in standby	-	-	1	10	μΑ
Output offeet voltage	Play mode	-100	-	100	m\/
Output offset voltage	Mute mode	-60	-	60	mV
Overcurrent protection threshold	$R_L = 0 \Omega$	5.5	7	-	Α
Junction temperature at thermal shutdown	-	-	150	-	°C
Input resistance	Differential input	48	60	-	kΩ
Overvoltage protection threshold	-	42	43	-	V
Undervoltage protection threshold	-	-	-	8	V
Dower transistar on registance	High side	-	0.2	-	Ω
Power transistor on resistance	Low side	-	0.2	-] 32
Output power	THD = 10%	-	100	-	w
	THD = 1%	-	78	-	
Output power	$R_L = 8 \Omega$, THD = 10%, $V_{CC} = 36V$	-	80	-	W
Dissipated power	P _o = 100 W, THD = 10%	-	10	-	W
Efficiency	P _o = 100 W	-	90	-	%
Total harmonic distortion	P _o = 1 W	-	0.1	-	%
	GAIN0 = L, GAIN1 = L	24.6	25.6	26.6	
Closed loop gain	GAIN0 = L, GAIN1 = H	30.6	31.6	32.6	1
Closed-loop gain	GAIN0 = H, GAIN1 = L	34.1	35.1	36.1	dB
	GAIN0 = H, GAIN1 = H	36.6	37.6	38.6	1
Gain matching	-	-1	-	1	dB
Total input noise	A Curve, G _V = 20 dB	-	15	-	μV
Total Input Holse	f = 22 Hz to 22 kHz	-	25	50	μν
Supply voltage rejection ratio	fr = 100 Hz, Vr = 0.5 Vpp, $C_{SVR} = 10 \mu\text{F}$	-	70	-	dB
Rise and fall times	-	-	50	-	ns
Switching frequency	Internal oscillator	290	310	330	kHz
	Total quiescent current Quiescent current in standby Output offset voltage Overcurrent protection threshold Junction temperature at thermal shutdown Input resistance Overvoltage protection threshold Undervoltage protection threshold Power transistor on resistance Output power Output power Dissipated power Efficiency Total harmonic distortion Closed-loop gain Gain matching Total input noise Supply voltage rejection ratio Rise and fall times			$ \begin{array}{c} \text{Total quiescent current} & \text{No LC filter, no load} & - & 40 \\ \text{Quiescent current in standby} & - & - & 1 \\ \text{Quiescent current in standby} & - & - & 1 \\ \text{Quiput offset voltage} & \begin{array}{c} \text{Play mode} & -100 & - \\ \text{Mute mode} & -60 & - \\ \text{Quercurrent protection threshold} & \text{R}_L = 0 \Omega & 5.5 & 7 \\ \text{Junction temperature at thermal shutdown} & - & - & 150 \\ \text{Input resistance} & \text{Differential input} & 48 & 60 \\ \text{Overvoltage protection threshold} & - & 42 & 43 \\ \text{Undervoltage protection threshold} & - & 42 & 43 \\ \text{Undervoltage protection threshold} & - & - & - \\ \text{Power transistor on resistance} & \text{High side} & - & 0.2 \\ \text{Low side} & - & 0.2 \\ \text{Low side} & - & 0.2 \\ \text{THD} = 10\% & - & 100 \\ \text{THD} = 1\% & - & 78 \\ \text{Output power} & \text{R}_L = 8 \Omega_L \text{THD} = 10\%, \\ \text{V}_{CC} = 36\text{V} & - & 80 \\ \text{Dissipated power} & \text{P}_0 = 100 \text{W}, \\ \text{THD} = 10\% & - & 10 \\ \text{Efficiency} & \text{P}_0 = 100 \text{W}, \\ \text{ThD} = 10\% & - & 10 \\ \text{Efficiency} & \text{P}_0 = 100 \text{W}, \\ \text{ThD} = 10\% & - & 0.1 \\ \text{Efficiency} & \text{P}_0 = 100 \text{W}, \\ \text{Total harmonic distortion} & \text{P}_0 = 1 \text{W}, \\ \text{GAIN0} = \text{L, GAIN1} = \text{L}, & 24.6 & 25.6 \\ \text{GAIN0} = \text{L, GAIN1} = \text{L}, & 34.1 & 35.1 \\ \text{GAIN0} = \text{H, GAIN1} = \text{L}, & 34.1 & 35.1 \\ \text{GAIN0} = \text{H, GAIN1} = \text{L}, & 34.1 & 35.1 \\ \text{GAIN0} = \text{H, GAIN1} = \text{L}, & 34.1 & 35.1 \\ \text{GAIN0} = \text{H, GAIN1} = \text{L}, & 34.1 & 35.1 \\ \text{GAIN0} = \text{H, GAIN1} = \text{L}, & 34.1 & 35.1 \\ \text{GAIN0} = \text{H, GAIN1} = \text{L}, & 36.6 & 37.6 \\ \text{GAIN0} = \text{H, GAIN1} = \text{L}, & 34.1 & 35.1 \\ \text{GAIN0} = \text{H, GAIN1} = \text{L}, & 25.6 \\ \text{GAIN0} = \text{H, GAIN1} = \text{L}, & 25.6 \\ \text{GAIN0} = \text{H, GAIN1} = \text{L}, & 25.6 \\ \text{GAIN0} = \text{H, GAIN1} = \text{L}, & 25.6 \\ \text{GAIN0} = \text{H, GAIN1} = \text{L}, & 25.6 \\ \text{GAIN0} = \text{H, GAIN1} = \text{L}, & 25.6 \\ \text{GAIN0} = \text{H, GAIN1} = \text{L}, & 25.6 \\ \text{GAIN0} = \text{H, GAIN1} = \text{L}, & 25.6 \\ \text{GAIN0} = \text{H, GAIN1} = \text{L}, & 25.6 \\ \text{GAIN0} = \text{H, GAIN1} = \text{L}, & 25.6 \\ \text{GAIN0} = \text{H, GAIN1} = \text{L}, & 25.6 \\ \text{GAIN0} = \text{H, GAIN1} = \text{L}, & 25.6 \\ \text{GAIN0} = \text{H, GAIN1} = \text{L}, & $	$ \begin{array}{c} \text{Total quiescent current} & \text{No LC filter, no load} & - & 40 & 60 \\ \text{Quiescent current in standby} & - & - & 1 & 10 \\ \text{Output offset voltage} & \text{Play mode} & -100 & - & 100 \\ \hline \text{Mute mode} & -60 & - & 60 \\ \hline \text{Quiescent current protection threshold} & \text{NLE of } & 5.5 & 7 & - \\ \hline \text{Quiescent current protection threshold} & - & - & 150 & - \\ \hline \text{Quiescent current protection threshold} & - & - & 150 & - \\ \hline \text{Input resistance} & \text{Differential input} & 48 & 60 & - \\ \hline \text{Quervoltage protection threshold} & - & 42 & 43 & - \\ \hline \text{Quervoltage protection threshold} & - & 42 & 43 & - \\ \hline \text{Quert transistor on resistance} & - & - & 8 \\ \hline \text{High side} & - & 0.2 & - \\ \hline \text{Low side} & - & 0.2 & - \\ \hline \text{Low side} & - & 0.2 & - \\ \hline \text{Undupt power} & \text{THD} = 10\% & - & 100 & - \\ \hline \text{THD} = 1\% & - & 78 & - \\ \hline \text{Qutput power} & \text{P}_0 = 100 \text{W}, & - & 80 & - \\ \hline \text{Dissipated power} & \text{P}_0 = 100 \text{W}, & - & 80 & - \\ \hline \text{Closed-loop gain} & \text{QaINO} = \text{L, QaIN1} = \text{L} & 24.6 & 25.6 & 26.6 \\ \hline \text{GAINO} = \text{L, GAIN1} = \text{L} & 30.6 & 31.6 & 32.6 \\ \hline \text{GAINO} = \text{L, GAIN1} = \text{H} & 30.6 & 37.6 & 38.6 \\ \hline \text{Gain matching} & - & - & - & 1 & - & 1 \\ \hline \text{Total input noise} & \text{A Curve, G}_V = 20 \text{dB} & - & 15 & - \\ \hline \text{G}_{2} \text{Plu to 22 kHz} & - & 25 & 50 \\ \hline \text{Supply voltage rejection ratio} & \text{fr} = 100 \text{Hz}, \text{Vr} = 0.5 \text{Vpp}, \\ \hline \text{C}_{SVR} = 10 \mu\text{F} & - & - & 50 & - \\ \hline \text{Rise and fall times} & - & - & - & 50 & - \\ \hline \end{array}$

Table 6. Electrical specifications (continued)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
	Output switching frequency	With internal oscillator (1)	250	-	400	
^T SWR	range	With external oscillator (2)	250	-	400	kHz
V _{inH}	Digital input high (H)		2.3	-	-	V
V _{inL}	Digital input low (L)	7	-	-	0.8	ľ
V	Pin STBY voltage high (H)		2.9	-	-	V
V _{STBY}	Pin STBY voltage low (L)		-	-	0.5	V
V	Pin MUTE voltage high (H)		2.5	-	-	V
V _{MUTE}	Pin MUTE voltage low (L)	7	-	-	0.8	ľ
A _{MUTE}	Mute attenuation	V _{MUTE} < 0.8 V	-	70	-	dB

^{1.} $f_{SW} = 10^6 / ((16 * R_{OSC} + 182) * 4) \text{ kHz}, f_{SYNCLK} = 2 * f_{SW} \text{ with R3} = 39 \text{ k}\Omega \text{ (see Figure 18.)}.$

^{2.} $f_{SW} = f_{SYNCLK} / 2$ with the external oscillator.

4 Characterization curves

Figure 18 on page 18 shows the test circuit with which the characterization curves, shown in the next sections, were measured. *Figure 3* shows the PCB layout.

4.1 Test board

Figure 3. Test board

Characterization curves TDA7498MV

4.2 Characterization curves

Unless otherwise stated the measurements were made under the following conditions:

$$V_{CC}$$
 = 36 V, f = 1 kHz, G_V = 25.6 dB, R_{OSC} = 39 k Ω , C_{OSC} = 100 nF, Tamb = 25 $^{\circ}C.$

4.2.1 For $R_L = 6 Ω$

Figure 4. Output power (THD = 10%) vs supply voltage

Figure 5. THD vs output power

Figure 6. THD vs frequency (1 W)

Figure 7. THD vs frequency (100 mW)

Figure 8. Frequency response

Characterization curves TDA7498MV

Figure 9. FFT performance (0 dBFS)

Figure 10. FFT performance (-60 dBFS)

4.2.2 For $R_L = 8 Ω$

Figure 11. Output power (THD = 10%) vs supply voltage

Figure 12. THD vs output power

Characterization curves TDA7498MV

Figure 13. THD vs frequency (1 W)

Figure 14. THD vs frequency (100 mW)

Figure 15. Frequency response

Figure 16. FFT performance (0 dB)

Figure 17. FFT performance (-60 dB)

18/27

5 Applications information

5.1 Applications circuit

Figure 18. Applications circuit

5.2 Mode selection

The three operating modes of the TDA7498MV are set by the two inputs, STBY (pin 20) and MUTE (pin 21).

- Standby mode: all circuits are turned off, very low current consumption.
- Mute mode: inputs are connected to ground and the positive and negative PWM outputs are at 50% duty cycle.
- Play mode: the amplifiers are active.

The protection functions of the TDA7498MV are realized by pulling down the voltages of the STBY and MUTE inputs shown in *Figure 19*. The input current of the corresponding pins must be limited to $200 \, \mu A$.

Table 7. Mode settings

indus comings					
Mode	STBY	MUTE			
Standby	L ⁽¹⁾	X (don't care)			
Mute	H ⁽¹⁾	L			
Play	Н	Н			

^{1.} Drive levels defined in Table 6: Electrical specifications on page 9

Figure 19. Standby and mute circuits

Figure 20. Turn-on/off sequence for minimizing speaker "pop"

5.3 Gain setting

The gain of the TDA7498MV is set by the two inputs, GAIN0 (pin 30) and GAIN1 (pin31). Internally, the gain is set by changing the feedback resistors of the amplifier.

Table 8. Gain settings

GAIN0	GAIN1	Nominal gain, G _v (dB)
L	L	25.6
L	Н	31.6
Н	L	35.6
Н	Н	37.6

5.4 Input resistance and capacitance

The input impedance is set by an internal resistor Ri = 60 k Ω (typical). An input capacitor (Ci) is required to couple the AC input signal.

The equivalent circuit and frequency response of the input components are shown in *Figure 21*. For Ci = 470 nF the high-pass filter cut-off frequency is below 20 Hz:

$$f_C = 1 / (2 * \pi * Ri * Ci)$$

Figure 21. Input circuit and frequency response

5.5 Internal and external clocks

The clock of the class-D amplifier can be generated internally or can be driven by an external source.

If two or more class-D amplifiers are used in the same system, it is recommended that all devices operate at the same clock frequency. This can be implemented by using one TDA7498MV as master clock, while the other devices are in slave mode, that is, externally clocked. The clock interconnect is via pin SYNCLK of each device. As explained below, SYNCLK is an output in master mode and an input in slave mode.

5.5.1 Master mode (internal clock)

Using the internal oscillator, the output switching frequency, f_{SW} , is controlled by the resistor, R_{OSC} , connected to pin ROSC:

$$f_{SW} = 10^6 / ((R_{OSC} * 16 + 182) * 4) \text{ kHz}$$

where R_{OSC} is in $k\Omega$.

In master mode, pin SYNCLK is used as a clock output pin whose frequency is:

For master mode to operate correctly then resistor R_{OSC} must be less than 60 $k\Omega$ as given below in *Table 9*.

5.5.2 Slave mode (external clock)

In order to accept an external clock input the pin ROSC must be left open, that is, floating. This forces pin SYNCLK to be internally configured as an input as given in *Table 9*.

The output switching frequency of the slave devices is:

$$f_{SW} = f_{SYNCLK} / 2$$

Table 9. How to set up SYNCLK

Mode	ROSC	SYNCLK	
Master	$R_{OSC} < 60 \text{ k}\Omega$	Output	
Slave	Floating (not connected)	Input	

Figure 22. Master and slave connection

5.6 Output low-pass filter

To avoid EMI problems, it may be necessary to use a low-pass filter before the speaker. The cut-off frequency should be larger than 22 kHz and much lower than the output switching frequency. It is necessary to choose the L and C component values depending on the loudspeaker impedance. Some typical values, which give a cut-off frequency of 27 kHz, are shown in *Figure 23* and *Figure 24* below.

Figure 23. Typical LC filter for a 8- Ω speaker

Figure 24. Typical LC filter for a 6- Ω speaker

5.7 Protection function

The TDA7498MV is fully protected against overvoltages, undervoltages, overcurrents and thermal overloads as explained here.

Overvoltage protection (OVP)

If the supply voltage exceeds the value for V_{OVP} given in *Table 6: Electrical specifications on page 9* the overvoltage protection is activated which forces the outputs to the high-impedance state. When the supply voltage falls back to within the operating range the device restarts.

Undervoltage protection (UVP)

If the supply voltage drops below the value for V_{UVP} given in *Table 6: Electrical specifications on page 9* the undervoltage protection is activated which forces the outputs to the high-impedance state. When the supply voltage recovers to within the operating range the device restarts.

Overcurrent protection (OCP)

If the output current exceeds the value for I_{OCP} given in *Table 6: Electrical specifications on page 9* the overcurrent protection is activated which forces the outputs to the high-impedance state. Periodically, the device attempts to restart. If the overcurrent condition is still present then the OCP remains active. The restart time, T_{OC} , is determined by the R-C components connected to pin STBY.

Thermal protection (OTP)

If the junction temperature, T_j , reaches 145 °C (nominally), the device goes to mute mode and the positive and negative PWM outputs are forced to 50% duty cycle. If the junction temperature reaches the value for T_j given in *Table 6: Electrical specifications on page 9* the device shuts down and the output is forced to the high-impedance state. When the device cools sufficiently the device restarts.

5.8 Diagnostic output

The output pin DIAG is an open drain transistor. When any protection is activated it switches to the high-impedance state. The pin can be connected to a power supply (< 39 V) by a pull-up resistor whose value is limited by the maximum sinking current (200 μ A) of the pin.

TDA7498MV R1

Protection logic

Restart

Overcurrent protection

OV, UV, OT protection

Figure 25. Behavior of pin DIAG for various protection conditions

6 Package mechanical data

The TDA7498MV comes in a 36-pin PowerSSO package with exposed pad up (EPU). *Figure 26* shows the package outline and *Table 10* gives the dimensions.

Table 10. PowerSSO-36 EPU dimensions

Symbol	Dimensions in mm			Dimensions in inches		
	Min	Тур	Max	Min	Тур	Max
Α	2.15	-	2.45	0.085	-	0.096
A2	2.15	-	2.35	0.085	-	0.093
a1	0	-	0.10	0	-	0.004
b	0.18	-	0.36	0.007	-	0.014
С	0.23	-	0.32	0.009	-	0.013
D	10.10	-	10.50	0.398	-	0.413
E	7.40	-	7.60	0.291	-	0.299
е	-	0.5	-	-	0.020	-
e3	-	8.5	-	-	0.335	-
F	-	2.3	-	-	0.091	-
G	-	-	0.10	-	-	0.004
Н	10.10	-	10.50	0.398	-	0.413
h	-	-	0.40	-	-	0.016
k	0	-	8 degrees	-	-	8 degrees
L	0.60	-	1.00	0.024	-	0.039
М	-	4.30	-	-	0.169	-
N	-	-	10 degrees	-	-	10 degrees
0	-	1.20	-	-	0.047	-
Q	-	0.80	-	-	0.031	-
S	-	2.90	-	-	0.114	-
Т	-	3.65	-	-	0.144	-
U	-	1.00	-	-	0.039	-
Х	4.10	-	4.70	0.161	-	0.185
Υ	4.90	-	7.10	0.193	-	0.280

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

24/27 Doc ID 16505 Rev 3

Revision history TDA7498MV

7 Revision history

Table 11. Document revision history

Date	Revision	Changes	
30-Nov-2009	1	Initial release.	
28-Jul-2010 2		Removed datasheet preliminary status, updated features list and updated device summary table on page 1 Added operating temperature range to Table 3 on page 8 Updated minimum supply voltage and temperature range in Table 5: Recommended operating conditions on page 8 Updated voltage for logical 1 on pin STBY in Table 6 on page 9	
27-Jan-2011	3	Updated applications circuit in Figure 18 on page 18.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

