Number Theory

Jatinder Singh

June, 2022

Contents

1		isibility and Primes	:	
		Divisibility		
	1.2	Greatest Common Divisor		
	1.3	Least Common Multiple		
	1.4	Prime Numbers		
2 N	Mo	Modular Arithmetic		
	2.1	Congruence		
	2.2	Residue Systems		
	2.3	Modular Arithmetic with Prime Moduli		
	2.4	Primitive Roots and Indices	1	

Chapter 1

Divisibility and Primes

1.1 Divisibility

Definition 1.1. Let $a, b \in \mathbb{Z}$. Then we say **a** divides **b**, written as $a \mid b$, if there exists another integer q such that b = aq.

Theorem 1.2. $\forall a \in \mathbb{Z}, a \mid 0 \text{ and } 1 \mid a$

Theorem 1.3. Let $a, b, c, d \in \mathbb{Z}$. Then

- (a) if $a \mid b$ then $a \mid bc$;
- (b) if $a \mid b$ and $b \mid c$ then $a \mid c$;
- (c) if $a \mid b$ and $a \mid c$ then $a \mid bx + cy$, for all $x, y \in \mathbb{Z}$;
- (d) if $a \mid b$ and $c \mid d$ then $ac \mid bd$;
- (e) if $d \mid a$ and $d \mid (a+b)$ then $d \mid b$.

Theorem 1.4. Let $a, b \in \mathbb{Z}$. Then $a \mid b \iff a \mid |b| \iff |a| \mid |b|$.

Theorem 1.5. $\forall a, b \in \mathbb{Z}, (a \mid b) \land (b \neq 0) \implies |a| \leq |b|.$

Corollary 1.5.1. $\forall a, b \in \mathbb{Z}, (a \mid b) \land (|b| < |a|) \implies b = 0.$

Corollary 1.5.2. $\forall a, b \in \mathbb{N}, a \mid b \implies a \leq b$.

Corollary 1.5.3. $\forall a, b \in \mathbb{Z}, (a \mid b) \land (b > 0) \implies a \leq b$.

Theorem 1.6. $\forall a, b \in \mathbb{Z}, (a \mid b) \land (b \mid a) \Longrightarrow |a| = |b|.$

Corollary 1.6.1. $\forall a, b \in \mathbb{N}, (a \mid b) \land (b \mid a) \implies a = b.$

Theorem 1.7. For integers a and b with $a \neq 0$, there exist unique integers q and r such that b = aq + r and $0 \le r < |a|$.

1.2 Greatest Common Divisor

Definition 1.8. Let $a \in \mathbb{Z}$. Then $D_a^+ = \{n \in \mathbb{N} : x \mid a\}$. So $D_8^+ = \{1, 2, 4, 8\}, D_{12}^+ = \{1, 2, 3, 4, 6, 12\}$ and $D_{-36}^+ = \{1, 2, 3, 6, 12, 18, 36\}$.

Remark. $D_0^+ = \mathbb{N}$ since $\forall n \in \mathbb{N}, n \mid 0$.

Theorem 1.9. Let $a \in \mathbb{Z}$. Then $D_a^+ = D_{|a|}^+$.

Theorem 1.10. $\forall a \in \mathbb{Z} - \{0\}, \max(D_a^+) = |a|.$

Theorem 1.11. Let $a \in \mathbb{Z} - \{0\}$. The $D_a^+ \subseteq \{1, 2, \dots, |a|\}$ is a nonempty finite set.

Theorem 1.12. Let $a, b \in \mathbb{Z}$ not both zero. Then $D_a^+ \cap D_b^+$ has a largest element.

Definition 1.13. Let $a, b \in \mathbb{Z}$ not both zero. Then $gcd(a, b) = max(D_a^+ \cap D_b^+)$

Remark. If a = b = 0 then $gcd(0,0) = max(D_0^+ \cap D_0^+) = max(\mathbb{N} \cap \mathbb{N}) = max(\mathbb{N})$ is not defined.

Theorem 1.14. Let a and b be integers not both zero. Then gcd(a,b) = gcd(b,a).

Theorem 1.15. $\forall a \in \mathbb{Z} - \{0\}, (\gcd(a, 0) = |a|) \land (\gcd(a, a) = |a|).$

Theorem 1.16. Let a and b be integers not both zero. Then gcd(a,b) = gcd(|a|,|b|).

Theorem 1.17. Let a and b be nonzero integers. Then $1 \leq \gcd(a,b) \leq \min(|a|,|b|)$.

Theorem 1.18. Let a and b be integers not both zero. Then $d = \gcd(a, b) \iff (d \in \mathbb{N}) \land (d \mid a) \land (d \mid b) \land (\forall k \in \mathbb{N}, k \mid a \land k \mid b \implies k \leq d).$

Theorem 1.19. Let a and b be integers not both zero and suppose b = aq + r for some integers q and r. Then gcd(a,b) = gcd(a,r).

Theorem 1.20. Let a and b be integers and suppose $a \neq 0$. If $a \mid b$ then gcd(a,b) = |a|.

Theorem 1.21 (Bezout's Identity). Let a and b be integers not both zero. Then gcd(a,b) can be written as a linear combination of a and b i.e., there exist integers x and y such that gcd(a,b) = ax + by. Moreover gcd(a,b) is the smallest positive linear combination of a and b.

Theorem 1.22. If gcd(a,b) = 1 and $a \mid bc$ then $a \mid c$.

Theorem 1.23. Let a and b be integers not both zero. Then $gcd(a,b) = d \iff [(d \in \mathbb{N}) \land (d \mid a) \land (d \mid b) \land (\forall k \in \mathbb{N}, k \mid a \land k \mid b \implies k \mid d].$

Theorem 1.24. Let a and b be integers not both zero. Then $gcd(a,b) = 1 \iff \exists s, t \in Z \ni as + bt = 1$.

Theorem 1.25. Let a and b be integers not both zero and let $d = \gcd(a, b)$ then $\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.

1.3 Least Common Multiple

Definition 1.26. Let $a \in \mathbb{Z} - \{0\}$. Define $M_a^+ = \{x \in \mathbb{N} : a \mid x\}$.

Definition 1.27. Let a and b be nonzero integers. The **least common** multiple of a and b is the smallest $m \in \mathbb{N}$ which $a \mid m$ and $b \mid m$. So $lcm(a,b) = min(M_a^+ \cap M_b^+)$.

Theorem 1.28. Let a and b be nonzero integers. Then $lcm(a,b) = m \iff (m \in \mathbb{N}) \land (a \mid m) \land (b \mid m) \land (\forall k \in \mathbb{N}, a \mid k \land b \mid k \implies m \leq k)$

Theorem 1.29. Let a and b be nonzero integers. Then $\max(|a|,|b|) \le \text{lcm}(a,b) \le |ab|$.

Theorem 1.30. Let a and b be nonzero integers. If $a \mid b$ then lcm(a,b) = |b|.

Theorem 1.31. Let a and b be nonzero integers. Then $lcm(a,b) = m \iff (m \in \mathbb{N}) \land (a \mid m) \land (b \mid m) \land (\forall k \in \mathbb{N}, a \mid k \land b \mid k \implies m \mid k)$

Theorem 1.32. Let a and b be nonzero integers. Let $a = p_1^{e_1} \times p_2^{e_2} \times \cdots \times p_k^{e_k}$ and $b = p_1^{f_1} \times p_2^{f_2} \times \cdots \times p_k^{f_k}$ be the decomposition of a and b with $e_i \ge 0$ and $f_i \ge 0$ for each $1 \le i \le k$. Then

$$lcm(a,b) = p_1^{max\{e_1,f_1\}} \times p_2^{max\{e_2,f_2\}} \times \dots \times p_k^{max\{e_k,f_k\}}$$

Theorem 1.33. Let a and b be nonzero integers. Then $gcd(a,b) \cdot lcm(a,b) = ab$

Corollary 1.33.1. If gcd(a,b) = 1 then lcm = ab.

1.4 Prime Numbers

Definition 1.34. A prime number is an integer p > 1 whose only positive divisors are 1 and p. So, let $p \in \mathbb{Z}$ with p > 1. Then

$$p \text{ is prime } \iff \forall x \in \mathbb{N}, x \mid p \implies (x = 1) \lor (x = p)$$

$$\iff \forall x \in \mathbb{N}, (x \neq 1) \land (x \neq p) \implies x \nmid p$$

Definition 1.35. An integer n > 1 that is not prime is said to be **composite**. So, let $n \in \mathbb{Z}$ with n > 1. Then n is composite $\iff \exists x \in \mathbb{N}, (x \neq 1) \land (x \neq n) \land (x \mid n)$.

Theorem 1.36. Let $p \in \mathbb{Z}$ with p > 1. Then p is prime $\iff \forall a, b \in \mathbb{N}, p = ab \implies (a = 1) \lor (b = 1)$.

Theorem 1.37. An integer n > 1 is composite $\iff \exists a, b \in \mathbb{N} \ni n = ab \ and \ 1 < a < n \ and \ 1 < b < n$.

Theorem 1.38. Let p and q be prime numbers. If $p \mid q$, then p = q.

Theorem 1.39. Every integer larger than 1 is divisible by a prime number.

Theorem 1.40. There are an infinite number of primes.

Theorem 1.41. Let n > 1 be an integer. If n is a composite number then there exists a prime number p such that $p \le \sqrt{n}$ and $p \mid n$.

Theorem 1.42. Let p be a prime. Then $\forall a \in \mathbb{Z}, \gcd(a, p) = 1$ or $\gcd(a, p) = p$.

Theorem 1.43. If p is prime then

- (a) $gcd(a, p) = 1 \iff p \nmid a;$
- (b) $gcd(a, p) = p \iff p \mid a$.

Theorem 1.44. If p is prime and $p \mid ab$ then $p \mid a$ or $p \mid b$.

Theorem 1.45. If p is prime and p divides a product $a_1a_2\cdots a_n$ of integers, then p must divide at least one of the factors of the product.

Theorem 1.46 (Fundamental theorem of arithmetic). Let n > 1 be a natural number. Then n can be written as a product of one or more primes.

Chapter 2

Modular Arithmetic

2.1 Congruence

Definition 2.1. Let n be a fixed positive integer and a, b be integers. Then we say 'a is congruent to b modulo n' written as $a \equiv b \pmod{n} \iff n \mid a-b$.

Theorem 2.2. Let a be an integer. Then $a \equiv 0 \pmod{n} \iff n \mid a$.

Theorem 2.3. For arbitrary integers a and b we have

$$a \equiv b \pmod{n} \iff a \mod n = b \mod n$$

_

Theorem 2.4 (Properties of Congruences).

- (a) $a \equiv a \pmod{n}$.
- (b) If $a \equiv b \pmod{n}$ then $b \equiv a \pmod{n}$.
- (c) If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ then $a \equiv c \pmod{n}$.

Theorem 2.5. Suppose $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then

- (a) $a + c \equiv b + d \pmod{n}$.
- (b) $a \cdot c \equiv b \cdot d \pmod{n}$.
- (c) $\forall k \in \mathbb{N}, a^k \equiv b^k \pmod{n}$.
- (d) $P(a) \equiv P(b) \pmod{n}$ where $P(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_m x^m$ be an mth degree polynomial with integer coefficients.

Corollary 2.5.1. If $a \equiv b \pmod{n}$ then for any integer c we have $a + c \equiv b + c \pmod{n}$ and $ac \equiv bc \pmod{n}$.

Theorem 2.6 (Cancellation). If $ac \equiv bc \pmod{n}$ then $a \equiv b \pmod{\frac{n}{g}}$ where $g = \gcd(c, n)$.

Corollary 2.6.1. If $ac \equiv bc \pmod{n}$ and gcd(c, n) = 1 then $a \equiv b \pmod{n}$.

Corollary 2.6.2. If $ac \equiv bc \pmod{n}$ where p is prime and $p \nmid c$ then

$$a \equiv b \pmod{p}$$
.

Theorem 2.7. Let p be a prime. We have

- (a) If $a \times b \equiv 0 \pmod{p}$ then $a \equiv 0 \pmod{n}$ or $b \equiv 0 \pmod{p}$.
- (b) $a^2 \equiv b^2 \pmod{p} \iff a \equiv \pm b \pmod{p}$.

Theorem 2.8. The linear congruence

$$ax \equiv b \pmod{n}$$

has a solution $\iff \gcd(a,n) \mid b$.

Theorem 2.9. The linear congruence

$$ax \equiv b \pmod{n}$$

has exactly gcd(a,n) incongruent modulo n provided $gcd(a,n) \mid b$. These residues can be written in compact form as:

$$x \equiv x_0 + t(\frac{n}{\gcd(a, n)}) (mod n) \text{ for } t = 0, 1, 2, \dots, g - 1.$$

Corollary 2.9.1. If gcd(a, n) = 1 then the linear congruence $ax \equiv b \pmod{n}$ has a unique solution modulo n.

Theorem 2.10 (Chinese Remainder Theorem). Let $n_1, n_2, n_3, \dots, n_r$ be positive integers which are pairwise prime. Then the simultaneous linear congruences

$$x \equiv a_1 \pmod{n_1}$$

 $x \equiv a_2 \pmod{n_2}$
 \vdots
 $x \equiv a_r \pmod{n_r}$

has a solution satisfying all these equations. Moreover, the solution is unique modulo $n_1 \times n_2 \times \cdots \times n_r$.

2.2 Residue Systems

Definition 2.11. A set of integers $\{r_1, r_2, \dots, r_s\}$ is called a complete residue system modulo n if for each integer a there is one and only one r_i such that $a \equiv r_i \pmod{n}$.

Theorem 2.12. The set $\{0,1,2,\cdots,n-1\}$ forms a complete residue system modulo n.

Theorem 2.13. A set of integers $\{r_1, r_2, \dots, r_s\}$ is called a complete residue system modulo n if

- (a) $r_i \equiv r_j \pmod{n} \implies r_i = r_j$; meaning they are pairwise incongruent.
- (b) for each integer a there is one r_i such that $a \equiv r_i \pmod{n}$.

Theorem 2.14. Any complete residue system modulo n has n elements.

Theorem 2.15. A set of integers $\{r_1, r_2, \dots, r_n\}$ is a complete residue system modulo n if $r_i \equiv r_j \pmod{n} \implies r_i = r_j$; meaning they are pairwise incongruent.

Theorem 2.16. A set of integers $\{r_1, r_2, \dots, r_n\}$ is a complete residue system modulo n if for each integer a there is one r_i such that $a \equiv r_i \pmod{n}$.

Theorem 2.17. If $\{r_1, r_2, \dots, r_n\}$ is a complete residue system modulo n then $\{r_1 + k, r_2 + k, \dots, r_n + k\}$ is also a complete residue system modulo n for any integer k.

Definition 2.18. A set of integers $\{r_1, r_2, \dots, r_s\}$ is called a reduced residue system modulo n if

- (a) $gcd(r_i, n) = 1$ for each i;
- (b) for each integer a relatively prime to n there is one and only one r_i such that $a \equiv r_i \pmod{n}$.

Theorem 2.19. Let n > 1 be a positive integer. Then the set $U_n = \{a \in \mathbb{N} : 1 \le a \le n \text{ and } \gcd(a,n) = 1\}$ forms a reduced residue system modulo n.

Theorem 2.20. A set of integers $\{r_1, r_2, \dots, r_s\}$ is a reduced residue system modulo n if

- (a) $gcd(r_i, n) = 1$ for each i;
- (b) $r_i \equiv r_j \pmod{n} \implies r_i = r_j$; meaning they are pairwise incongruent.

(c) for each integer a relatively prime to n there is one r_i such that $a \equiv r_i \pmod{n}$.

Theorem 2.21. Any two reduced residue systems modulo n have the same number of elements.

Definition 2.22. The number of elements in a reduced residue system modulo n is denoted by $\phi(n)$, called Euler's phi function or the totient function. So $\phi(n)$ is the number of elements between 1 and n that are relatively prime to n. Hence $\phi(n) = |U_n|$.

Theorem 2.23. A set of integers $\{r_1, r_2, \dots, r_{\phi(n)}\}$ is a reduced residue system modulo n if

- (a) $gcd(r_i, n) = 1$ for each i;
- (b) $r_i \equiv r_j \pmod{n} \implies r_i = r_j$; meaning they are pairwise incongruent.

Theorem 2.24. A set of integers $\{r_1, r_2, \dots, r_{\phi(n)}\}$ is a reduced residue system modulo n if

- (a) $gcd(r_i, n) = 1$ for each i;
- (b) for each integer a relatively prime to n there is one r_i such that $a \equiv r_i \pmod{n}$.

Theorem 2.25. If $\{r_1, r_2, \dots, r_{\phi(n)}\}$ is a reduced residue system modulo n and gcd(a, n) = 1 then $\{ar_1, ar_2, \dots, ar_{\phi(n)}\}$ is also a reduced residue system modulo n.

2.3 Modular Arithmetic with Prime Moduli

Theorem 2.26 (Fermat's Little Theorem). Let a be an integer and p be a prime number which does not divide a. Then

$$a^{p-1} \equiv 1 \pmod{n}$$

Theorem 2.27. Let a be an integer and p be a prime number which does not divide a. Show that $a^{-1} \equiv a^{p-2} \pmod{n}$.

Corollary 2.27.1. Let $a, n \in \mathbb{Z}$ and gcd(a, n) = 1. Then $a^{n-1} \not\equiv 1 \pmod{n} \implies n$ is composite.

Remark. Converse of the Fermat's Little Theorem is not true. $2^{340} \equiv 1 \pmod{341}$ but 341 is composite.

Corollary 2.27.2. Let a be any integer and p be a prime number. Then

$$a^p \equiv a \pmod{n}$$

Theorem 2.28. Let p be prime. Then

$$x^2 \equiv 1 \pmod{p} \iff x \equiv 1 \lor x \equiv -1 \pmod{n}$$

Theorem 2.29 (Wilson's Theorem).

$$p \text{ is prime } \iff (p-1)! \equiv -1 \pmod{p}$$

2.4 Primitive Roots and Indices

Definition 2.30. Let n > 1 and gcd(a, n) = 1. The order of a modulo n is the smallest positive integer k such that $a^k \equiv 1 \pmod{n}$.

Theorem 2.31. If $a \equiv b \pmod{n}$ then a and b have the same order.

Theorem 2.32. If gcd(a, n) > 1 then $a^k \not\equiv 1 \pmod{n}$ for any positive integer k.

Theorem 2.33. Let a modulo n have order k. Then $a^h \equiv 1 \pmod{n} \iff k \mid h$.

Corollary 2.33.1. Let a modulo n have order k. Then $k \mid \phi(n)$

Theorem 2.34. Let a modulo n have order k. Then $a^i \equiv a^j \pmod{n} \iff i \equiv j \pmod{k}$.

Theorem 2.35. Let a modulo n have order k. Then the integers a, a^2, \dots, a^k are incongruent modulo n.

Theorem 2.36 (Order Formula). Let a modulo n have order k. Then a^s has order $\frac{k}{\gcd(s,k)}$ where s is a positive integer.