A3Data <> Pedro Blöss

Teste Técnico Cientista de Dados

Conteúdo

- 1. Introdução
 - a. Problema e dados
 - b. Método
- 2. Questões e hipóteses
- 3. Análise de inconsistências
- 4. Classificação dos incidentes
- 5. Tipo de incidente
- 6. Análise temporal
 - a. Evolução de ocorrências e fatalidades
 - b. Períodos (meses, horários, etc) de maior incidência
- 7. Locais e rotas
- 8. Análise sobre características gerais de aeronaves
 - a. motor, fabricante, etc
- 9. Principais cenários de acidentes
- 10. Principais fatores
- 11. Conclusões

Introdução: Dados

Neste teste, analisamos a base de dados "Ocorrências Aeronáuticas na Aviação Civil Brasileira".

A base de dados contém 2 arquivos:

 ocorrencia.csv: informações e características sobre ocorrências de acidentes.

- Ex: tipo, localidade, dia, horário, etc.
- Dimensões: 2027 registros e 19 variáveis.
- <u>aeronave.csv</u>: informações e características sobre aeronaves.
 - Ex: qtd motores, peso máx., categoria, origem, destino, etc.
 - Dimensões: 2043 registros e 22 variáveis.

As bases possuem as variáveis "codigo_ocorrencia" e "dia extracao" em comum.

Metodologia científica

Introdução: Objetivos

Responder às questões:

- Identificar padrões principais sobre ocorrências
- Quais são os principais fatores contribuintes para acidentes, e para acidentes graves?
- Quais são os principais insights que tiramos sobre os dados?

Questões e hipóteses

- Quais são as principais causas de acidentes? (e de acidentes mais graves?)
- Há horários e locais mais propícios a ocorrências? Imagina-se que existem rotas mais perigosas, por exemplo.
- Quais ocorrências são investigadas e possuem recomendações?
- Existem **tipos de naves** com **mais chances de acidentes**? (De um determinado fabricante, peso, etc)
- Supostamente, naves mais antigas são menos seguras, pois supostamente tecnologias mais modernas são mais robustas e têm maiores padrões de qualidade.
- Provavelmente, há menos incidentes mais graves. Quais são as principais diferenças com acidentes não graves?
- Será que a data da ocorrência influencia nos dados? Por exemplo, ocorrências antigas tem mais chances de já serem investigadas?

Análise de inconsistências

Possíveis inconsistências:

- Dados faltantes
 - 10 colunas possuem dados faltantes inicialmente.
 - Há colunas com alta taxa de faltantes
 - (ex: saida_pista com 87,46%)
- "Falsos não faltantes" (Ex: "n/a", "não atribuído",
 "-", etc)
 - Encontrados: "***" e "****".
 - Então, na realidade temos 22 colunas com faltantes (Fig. 3).
- Dados incongruentes

	coluna	Qtd faltantes	% faltantes
0	saida_pista	1787	87.469408
1	quantidade_fatalidades	1688	82.623593
2	dia_publicacao	1042	51.003426
3	relatorio_publicado	1042	51.003426
4	status_investigacao	209	10.230054
5	numero_relatorio	209	10.230054
6	quantidade_assentos	18	0.881057
7	quantidade_motores	9	0.440529
8	ano_fabricacao	4	0.195791
9	aerodromo	3	0.146843

Fig. 1: Valores faltantes

•	sera_investigada	aerodromo	uf		
	***	SJOG	RO	0	
	SIM	****	RO	2	
	SIM	****	RR	3	
	SIM	****	RS	4	
	***	****	GO	5	

Fig. 2: Falsos não faltantes

	coluna	Qtd faltantes	% faltantes
0	saida_pista	1787	87.469408
1	quantidade_fatalidades	1688	82.623593
2	aerodromo	1229	60.156632
3	destino_voo	1204	58.932942
4	origem_voo	1110	54.331865
5	dia_publicacao	1042	51.003426
6	relatorio_publicado	1042	51.003426
7	status_investigacao	209	10.230054
8	numero_relatorio	209	10.230054
9	sera_investigada	206	10.083211
10	fabricante	110	5.384239
11	nivel_dano	69	3.377386
12	tipo_motor	28	1.370534
13	tipo_operacao	26	1.272638
14	categoria_aviacao	25	1.223691
15	quantidade_assentos	18	0.881057
16	modelo	15	0.734214
17	quantidade_motores	9	0.440529
18	categoria_registro	9	0.440529
19	equipamento	5	0.244738
20	ano_fabricacao	4	0.195791
21	uf	2	0.097895

Fig. 3: "Novos" valores faltantes

Classificação de incidente

Tipo de incidente

Fig. 1. Frequência de tipo de ocorrência, para cada classificação.

- Acidentes não graves tem na maioria incidentes por:
 - perda de controle
 - falha no motor
- Já incidentes graves têm como maiores tipos de acidentes:
 - o perda de controle no solo
 - o problemas com trem de pouso
 - falha no motor em voo

Entende-se que os seguintes **fatores** são **importantes** contribuintes para acidentes:

- motor
- perda de controle em solo e em voo
- trem de pouso

Período da ocorrência: Evolução das ocorrências e fatalidades

A qtd de ocorrências teve crescimento até 2013, e depois leve decaimento.

Outliers: 2 eventos de taxa de fatalidade muito alta ocorreram, em 09/2006 e 07/2007.

Referências:

 $\frac{\text{https://q1.qlobo.com/mato-qrosso/noticia/2016/09/acidente-com-aviao-da-gol-que-mato}{\text{u-}154-pessoas-completa-}10-anos.\text{html}$

https://www.cnnbrasil.com.br/nacional/acidente-da-tam-em-congonhas-completa-15-an os-veja-o-que-mudou-na-aviacao-brasileira/

Período da ocorrência: Evolução por mês do ano e por horário

Fig. 2

No geral, há menos ocorrências em Junho.

Incidentes graves ocorreram mais em Agosto.

Acidentes aconteceram mais no final e início do ano.

Na madrugada (00 - 06) o movimento é menor, consequentemente há menos ocorrências.

Há picos de ocorrências às 13h e 20h.

Podem ser horários tipicamente associados a períodos de refeição.

Locais e rotas

Posição	Class	Aeroporto	Passageiros pagos (2019) ^[1]	Gestão	Cidade servida	Unidade federativa
1	-	Aeroporto Internacional de São Paulo-Guarulhos	42 248 207	GRU Airport	São Paulo	São Paulo
2	-	Aeroporto de São Paulo- Congonhas	22 281 896	Infraero	São Paulo	São Paulo
3	-	Aeroporto Internacional de Brasília	16 569 442	Inframérica	Brasília	Distrito Federal
4	-	Aeroporto Internacional Tom Jobim-Rio Galeão	13 518 783	Rio Galeão	Rio de Janeiro	
5	-	Aeroporto Internacional de Belo Horizonte-Confins	10 734 359	CCR Aeroportos	Belo Horizonte	▲ Minas Gerais
6	A 1	Aeroporto Internacional de Viracopos-Campinas	10 199 171	Viracopos	Complexo Metropolitano Expandido	São Paulo
7	v 1	Aeroporto do Rio de Janeiro- Santos Dumont	8 933 777	Infraero	Rio de Janeiro	
8	-	Aeroporto Internacional do Recife-Guararapes	8 638 608	Aena Internacional	Recife	Pernambuco
9	-	Aeroporto Internacional de Porto Alegre-Salgado Filho	8 106 869	Fraport	Porto Alegre	Rio Grande do Sul
10	-	Aeroporto Internacional de Salvador-Dep. Luís Eduardo Magalhães	7 351 020	Vinci Airports	Salvador	Bahia

 $Ref.: https://pt.wikipedia.org/wiki/Lista_de_aeroportos_do_Brasil_por_movimento$

Naturalmente, **aeroportos mais movimentados** tem maior espaço amostral para acidentes.

Então, espera-se que existam mais acidentes para localidades como:

São Paulo, Brasília, Rio de Janeiro, Recife, BH, Porto Alegre.

Localidades com aeroportos **não tão movimentados** tiveram **altas frequências** de ocorrências:

Manaus, Campo Grande, Goiânia.

Características de Motor

Não há diferenças estatisticamente significantes. O tipo de motor "Pistão" é o mais frequente, e também é o que tem mais acidentes graves.

Frequência de quantidade_motores x classificação

Para acidentes não graves, geralmente há 1 motor.

Para acidentes graves, há uma distribuição similar de 1 e 2 (qtd motores).

Características de Fabricante

Frequência de fabricante x classificação (20 mais incidentes)

A distribuição de fabricantes por classificações de ocorrência é bastante similar.

Há fabricantes com maior frequência de ocorrência, mas podem ser fabricantes mais comuns.

Frequência: fabricantes mais incidentes e seus locais mais incidentes

Para identificar se os fabricantes são mais comuns, vemos os locais.

Locais com alta taxa de acidentes e baixo tráfego aéreo relativo são frequentes nos fabricantes suspeitos: (Goiânia, Campo Grande, Manaus)

Ano de fabricação

Em média, há mais ocorrências para aeronaves com anos de fabricação mais antigos, nos anos 80 e nos anos 90.

Locais **sem muito tráfego** e **alta taxa de ocorrências** possuem **aeronaves mais antigas**, comparando às idades de aeronaves de locais mais movimentados (SP, RJ, ...)

Nível de dano

Contraintuitivamente, **incidentes graves** possuem mais **níveis baixos de danificação**.

Locais sem muito tráfego e alta taxa de ocorrências possuem uma proporção maior de dano "substancial" e "destruída", comparando às idades de aeronaves de locais mais movimentados (SP, RJ, ...)

Conclusões e comentários

Potenciais pontos de atenção:

- Problemas:
 - o em motor
 - perda de controle (em solo e em voo)
 - trem de pouso
- Período:
 - meses de extremidades (Janeiro/Dezembro),
 - horários 13h e 20h.
- Locais e rotas: Goiânia, Manaus, Campo Grande
- Motor: quantidade 2
- Fabricantes suspeitos
- Ano de fabricação antigo

Voos com características suspeitas de alta probabilidade de acidentes podem ser monitorados com cautela.

Agradecimentos

Obrigado!

Pedro Blöss Braga

Referências:

- Magalhães, N. Marcos & De Limpa, Antonio C., "Noções de Probabilidade e Estatística", edusp.
- Bolfarine, Heleno & Sandoval, Monica C., "Introdução à Inferência Estatística", SBM.