

Cost Aware Best Arm Identification

Kellen Kanarios, Qining Zhang, Lei Ying {kellenkk, qiningz, leiying}@umich.edu

https://arxiv.org/abs/2402.16710

Multi Armed Bandits

- Online sequential decision making.
- Many real world applications.

Observe a random reward r_t sampled from v_{A_t}

Learning / Implementation Phase

 Real world problems often have different objectives between learning and implementation

- Learning: Minimize cost of trials
- Implementation: Cost is subsidized want most effective.

Recommendation

 Learning: Minimize cost to display ads Implementation: Click through rate.

Cost Aware BAI

• Best Arm Identification (Garivier, et al. 2016) — Each arm has same cost

BAI

$$\min \tau$$

s.t $\Pr(\hat{a}_{\tau} = a^*) \ge 1 - \delta$

CBAI

$$\min \sum_{a} \mathbb{E} \left[c_a N_a(\tau) \right]$$
s.t $\Pr(\hat{a}_{\tau} = a^*) \ge 1 - \delta$

Cost Optimal Best Arm Identification

- Asymptotic optimality in incurred cost.
- Asymptotic lower bound on the cost for fixed confidence.

$$\mathbb{E}\left[\sum_{a} c_{a} N_{a}(\tau_{\delta})\right] \geq T^{*}(\mu) \log(1/\delta) + o(\log(1/\delta)$$

$$T^{*}(\boldsymbol{\mu})^{-1} = \sup_{\boldsymbol{w} \in \Sigma_{K}} \inf_{\boldsymbol{\lambda} \in \{a^{*}(\boldsymbol{\lambda}) \neq a^{*}(\boldsymbol{\mu})\}} \sum_{a} \frac{w_{a}}{c_{a}} d(\mu_{a}, \lambda_{a}).$$

Our Algorithm: CTAS

- Cost Aware Track and Stop
- Each arm makes up an optimal proportion of the final cost.
- Idea: track optimal proportion and stop as soon as possible.

Algorithm	Optimal?	$w_1(t) \ (1.5, 1)$	$w_2(t) (1, 0.1)$	$w_3(t) (0.5, 0.01)$
TAS CTAS	×	$0.46 \\ 0.23$	$\begin{array}{c} 0.46 \\ 0.72 \end{array}$	$0.08 \\ 0.05$

- Optimal proportions for heterogeneous cost. (mean reward, mean cost) for each arm.
- Stopping is same as BAI: ASAP
- Use Generalized Likelihood Ratio.

Theoretical Results

Asymptotically optimal in expectation:

Under CTAS (for suitable choices)

$$\limsup_{\delta \to 0} \frac{\mathbb{E}\left[\sum_{a} c_a N_a(\tau_{\delta})\right]}{\log(1/\delta)} \le T^*(\mu)$$

Low Complexity Algorithm

Idea: pull arm $a_t \in \arg\min_{a \in \mathcal{R}} \sqrt{c_a} N_a(t)$

Asymptotically optimal in two armed Gaussian bandits.

	CO	CTAS	TAS	d-LUCB
Gaussian	85	1712	2410	82
Bernoulli	58	1995	2780	60
Poisson	96	3260	4633	101

Time (sec) of each algorithm over 1000 trajectories.

Numerical Results

