William Stallings
Data and Computer
Communications
7th Edition

Bab 14
Jaringan Selular Tanpa Kabel

Prinsip prinsip Jaringan Selular

- Dasar teknologi untuk telepon bergerak, sistem komunikasi pribadi, networking tanpa kawat dll.
- Perkembangan radio telepon bergerak
 - Menggantikan sistem transmitter/receiver kekuatan tinggi
 - Mendukung untuk 25 saluran di atas 80km
 - Menggunakan kekuatan yang lebih rendah, cakupan lebih pendek, lebih banyak pemancar

Organisasi Jaringan Selular

- Berbagai pemancar berkekuatan rendah
 - 100w atau lebih sedikit
- Area dibagi menjadi sel
 - Masing-Masing dengan antena sendiri
 - Masing-Masing dengan cakupan frekwensi sendiri
 - Dilayani oleh setasiun dasar
 - Pemancar, penerima, unit kendali
 - Sel bersebelahan dengan frekwensi yang berbeda untuk menghindari crosstalk

Bentuk Sel

Bujur Sangkar

- Jarak d sel mempunyai empat tetangga pada jarak d dan empat pada jarak akar2 d
- lebih baik Jika semua antena yang bersebelahan sama jauh
 - · Memilih sederhana dan menswitch antena baru

Sudut Enam

- Menyediakan antena yang sama jauh
- Radius menggambarkan sebagai radius circum-circle
 - Jarak dari pusat ke puncak panjang sisnya sama
- Jarak tengah radius sel R adalah akar 3 R
- Tidak selalu sudut enam
 - Pembatasan Secara petabumi
 - Kondisi-Kondisi propagasi sinyal lokal
 - Penempatan antena

Geometri Selular

(a) Square pattern

(b) Hexagonal pattern

Frekuensi Reuse

- Kekuatan kontrol dasar transceiver
 - Mengijinkan komunikasi di dalam sel frekwensi yang diberi
 - Membatasi kekuatan sel yang bersebelahan
 - Mengijinkan re-use frekwensi di sel yang dekat
 - Menggunakan frekwensi sama untuk berbagai percakapan
 - 10–50 frekwensi tiap sel
- E.G.
 - Semua N sel menggunakan frekwensi yang sama
 - K total frekwensi digunakan di dalam sistem
 - Masing-masing sel mempunyai K/N frekwensi
 - Mengedepankan Layanan Telepon selular (AMPS) K=395, N=7 yang memberi 57 frekwensi stiap sel diatas rata-rata

Karakter Frekuensi Reuse

- D= jarak tengah sel minimum yang menggunakan band frekwensi sama (disebut cochannels)
- R= radius dari suatu sel
- d= jarak tengah sel yang bersebelahan (d= R)
- N= jumlah sel di dalam pola ulangan
 - faktor Reuse
 - Masing-Masing sel dalam pola menggunakan band frekwensi yang unik
- Pola sel bersudut enam, mengikuti nilai-nilai kemungkinan N
 - N= I2+ J2+ (Aku x J), I, J= 0, 1, 2, 3,...
- Kemungkinan nilai-Nilai N adalah 1, 3, 4, 7, 9, 12, 13, 16, 19, 21,...
- D/R=akar 3N
- D/D=akar N

Pola Frekuensi Reuse

- (a) Frequency reuse pattern for N = 4
- (b) Frequency reuse pattern for N = 7

(c) Black cells indicate a frequency reuse for N = 19

Meningkatkan Kapasitas (1)

- Menambahkan saluran baru
 - Tidak semua saluran digunakan untuk memulai
- Frekwensi yang meminjam
 - diambil dari Sel bersebelahan yang terlampau banyak
 - Atau menugaskan frekwensi dengan dinamis
- Sel splitting
 - Distribusi Non-Uniform jalur dan topografi
 - Sel lebih kecil didalam area penggunaan yang tinggi
 - Sel asli 6.5

 13 km
 - 1.5 km membatasi secara umum
 - Lebih banyak frekuensi handoff
 - · Lebih banyak base station

Sel Splitting

Meningkatkan Kapasitas (2)

Sektor sel

- Sel dibagi menjadi sektor-sektor
- 3– 6 sektor tiap sel
- Masing-Masing dengan channel sendiri
 - Subsets saluran sel
- Antena Terarah

Microcells

- Antena-antena bergerak dari bukit dan bangunan besar ke sisi bangunan kecil dan sisi bangunan besar
 - Bahkan tiang lampu di jalan
- Membentuk microcells
- Kekuatan yang dikurangi
- Baik untuk jalan kota, sepanjang jalan dan di dalam bangunan besar

Contoh Frekuensi Reuse

(b) Cell radius = 0.8 km

Operasi Sistem Selular

- Base station pada pusat tiap sel
 - Antena, pengontrol, transceivers
- pengontrol menghandle proses panggilan
 - Jumlah unit dapat digunakan serentak
- BS menghubungkan switching telekomunikasi gerak
- kantor (MTSO)
 - Satu MTSO melayani berbagai BS
 - MTSO ke BS dihubungkan lewat kawat atau tanpa kawat
- MTSO:
 - Menghubungkan panggilan antar dan dari unit ke jaringan telekomunikasi
 - Menugaskanh saluran suara
 - Melaksanakan handoffs
 - Memonitor panggilan penagihan
- Otomatis

Ikhtisar Sistem Selular

Kanal

- Kanal Kontrol
 - Pengaturan dan pemeliharaan panggilan
 - Menetapkan hubungan antara unit gerak derngan BS paling dekat
- Kanal Traffic
- Membawa data dan suara

Tipe panggilan pada Area Single MTSO (1)

- Initialisasi unit gerak
- Meneliti dan memilih saluran kendali yang disediakan paling kuat
- Secara otomatis memilih BS antena sel
 - Pada umumnya tetapi tidak selalu paling dekat (keganjilan perkembangbiakan)
- Handshake untuk mengidentifikasi pemakai dan penempatan daftar
- Meneliti ulang untuk memungkinkan pergerakan
 - Perubahan sel
- Monitor unit gerak untuk halaman (lihatlah di bawah)
- Mobile originated call
 - Memeriksa saluran disediakan gratis
 - Memonitor pemain (dari BS) dan menantikan kosong
 - Mengirimkan nomor pada saluran pre-selected
- Pemberian Nomor Halaman
 - MTSO mencoba untuk menghubungkan ke unit gerak
 - Pesan pemberian nomor halaman mengirim kepada BSS yang tergantung pada nomor;jumlah [yang] gesit disebut
 - Sinyal pemberian nomor halaman pada saluran yang disediakan

Tipe Panggilan dalam Area Single MTSO (2)

- Penerimaan Panggilan
 - Unit gerak mengenali nomor pada [saluran yang disediakan
 - Bereaksi Terhadap BS yang mengirimkan jawaban ke MTSO
 - MTSO yang menetapkan sirkit antar panggilan disebut BSS
 - MTSO memilih tersedia saluran lalu lintas di dalam sel dan memberitahu BSS
 - BSS memberitahu saluran unit gerak
- Ongoing call
 - Voice/Data ditukar sampai BSS masing-masing dan MTSO
- Handoff
 - Unit gerak pindah dari cakupan sel ke dalam cakupan sel yang lain
 - Kanal traffic mengubah ke BS yang baru
 - memberi pelayanan ke pemakai tanpa gangguan

Langkahlangkah Panggilan

Fungsi lain

- Menghalangi Panggilan
 - Selama langkah panggilan mobile-initiated, jika semua jalur sibuk, gerak lagi
 - Setelah nomor gagal, nada sibuk dikembali[kan
- Penghentian Panggilan
 - Pemakai menggantung/kan atas
 - MTSO di/memberi tahu
 - Saluran lalu lintas pada dua BSS di/melepaskan
- Drop Panggilan
 - BS tidak bisa memelihara kekuatan isyarat diperlukan
 - Lalu lintas drop dan MTSO yang diberitahu
- Panggilan ke/dari pelanggan dan yang ditetapkan
 - MTSO menghubungkan ke PSTN
 - MTSO dapat menghubungkan pemakai dan menetapkan langganan via PSTN
 - MTSO dapat menghubungkan ke MTSO remote via PSTN atau via mempersembahkan bentuk
 - Mampu menghubungkan pemakai dalam area nya dan pemakai

Pengaruh Propagasi Gelombang Radio

Kekuatan isyarat

- Kekuatan isyarat antara BS dan unit yang cukup kuat untuk memelihara mutu isyarat di penerima
- Tidak cukup kuat untuk menciptakan terlalu banyak gangguan cochannel
- Suara gaduh bervariasi
 - Pengapian mobil menyiarkan lebih besar di kota dibanding di bagian pinggir kota
 - Sumber isyarat lain bertukar
 - Kekuatan isyarat bervariasi sebagai fungsi jarak dari BS
 - Kekuatan isyarat bervariasi dengan dinamis sebagai unit

Memudar

 Sekalipun kekuatan isyarat dalam cakupan yang efektif, propagasi isyarat mengganggu isyarat

Faktor-faktor Desain

- Efek perkembangbiakan
 - Dinamis
 - Susah untuk meramalkan
- Tingkatan kekuatan transmit maksimum pada BS dan unit
- Tingginya antena unit
- Tersedia tingginya antena BS
- Faktor ini menentukan ukuran dari sel yang individu
- Didasarkan data [yang] empiris
- Menerapkan model untuk memberi lingkungan petunjuk ukuran sel
- E.G. model oleh Okumura et al yang disuling oleh Hata
 - Analisa yang terperinci area Tokyo
 - Informasi kerugian alur yang diproduksi untuk suatu lingkungan yang berkenaan dengan kota
 - Model Hata's adalah suatu perumusan yang empiris
 - Mempertimbangkan variasi kondisi dan lingkungan

Fading

- Variasi waktu dari isyarat yang diterima
- Disebabkan oleh perubahan di dalam transmisi path(s)
- E.G. kondisi-kondisi angkasa (hujan)
- Bergeraknya (unit) antena

Propagasi Multipath

Refleksi

- Permukaan sanak keluarga besar ke panjang gelombang isyarat
- Mempunyai pergeseran fasa dari aslinya
- Batalkan aslinaya atau meningkatkannya

Difraksi

- Tepi badan yang tak dapat tembus adalah sanak keluarga besar ke panjang gelombang
- Dapat menerima isyarat sekalipun tidak ada garis arah (LOS) ke pemancar

Scattering

- Ukuran hambatan dalam panjang gelombang
 - · Penerang menempatkan/mengeposkan dll.
- Jika LOS, diffracted dan menyebar isyarat tidak penting
 - Isyarat yang dicerminkan mungkin
- Jika tidak (ada) LOS, menyebar dan diffraksi adalah alat-alat resepsi yang utama

Refleksi, Difraksi, Scattering

Efek Propagasi Multipath

- Isyarat mungkin batal dalam kaitan dengan beda fase
- Interferensi Intersymbol (ISI)
 - Pengiriman denyut nadi lorong pada frekwensi diberi antara antena dan unit
 - Dapat mengirimkan berbagai salinan pada beda waktu
 - Denyut nadi yang tertunda bertindak sebagai suara gaduh yang membuat sulit kesembuhan informasi bit
 - Perubahan pemilihan waktu sebagai perpindahan Unit
 - lebih keras Untuk mendisain isyarat yang untuk menyaring ke luar efek multipath

Dua Pulsa dalam Time-Variant Multipath

Tipe-tipe Fading

- Fast Fading
 - Perubahan kekuatan lebih cepat di atas jarak separuh panjang gelombang
 - 900MHz panjang gelombang adalah 0.33m
 - 20-30dB
- Slow Fading
 - Perubahan lebih lambat dalam kaitan dengan bangunan yang tingginya berbeda, gap di dalam bangunan dll.
 - Di atas jarak lebih panjang dibanding faast fading
- Flat fading
 - Nonselective
 - Mempengaruhi semua frekwensi dalam proporsi sama
- Selektif Fading
 - Komponen frekwensi berbeda berpengaruh dengan cara yang berbeda

Mekanisme kompensasi Error (1)

- Forward error correction
 - bisa diterapkan Di dalam aplikasi transmisi digital
 - Secara Khas, perbandingan total bit mengirim kepada bit data antara 2 dan 3
 - Ongkos Exploitasi besar
 - kapasitas One-Half atau sepertiga
 - Mencerminkan kesukaran atau lingkungan tanpa kabel
- Adaptive equalization
 - Transmisi yang diberlakukan bagi pembawa analog atau informasi digital
 - pertempuran Interferensi Intersymbol yang digunakan
 - Pengumpulan energi lambang dibubarkan kembali bersamasama ke dalam interval waktu asli nya
 - Teknik memasukkan yang disebut lumped analog sirkit dan isyarat digital canggih yang memproses algoritma

Mekanisme kompensasi Error (2)

Diversity

- Fakta yang didasarkan pada saluran individu yang mengalami peristiwa memudar
- Menyediakan berbagai saluran logis antara penerima dan pemancar
- Mengirimkan bagian dari isyarat di masing-masing saluran
- Tidak menghapuskan kesalahan
- Mengurangi tingkat kesalahan
- Persamaan, koreksi kesalahan pemain depan kemudian mengatasi tingkat kesalahan yang dikurangi
- Melibatkan phisik alur transmisi
 - Keaneka Ragaman ruang
 - Berbagai antena dekat menerima pesan atau menempatkan berbagai antena terarah
- Lebih dari biasanya, keaneka ragaman mengacu pada keaneka ragaman waktu atau frekwensi

Keaneka Ragaman Frekwensi

- Isyarat dibentangkan di suatu luas bidang yang frekwensinya lebih besar atau melanjutkan berbagai frekwensi carrier
- E.G. menyebar spektrum (lihat bab 9)

Generasi Analog Pertama

- Jaringan Telepon selular yang]asli
- Jalur Analog
- Awal 1980 di dalam Amerika Utara
- Mengedepankan Layanan Telepon(AMPS)
- AT&T
- Juga umum di Amerika Selatan, Australia Austria, dan Negeri China

Spectral Allocation dalam North America

- Dua 25-MHz band dialokasikan ke AMPS
- Satu dari BS ke unit (869–894 MHZ)
- lain Dari gesit untuk mendasarkan setasiun (824–849 MHZ)
- Band dipisah di dalam dua untuk mendorong kompetisi
- Pada setiap pasar dua operator dapat diakomodasikan
- Operator dialokasikan hanya 12.5 MHZ pada setiap arah
- spaced 30 kHz terpisah
- Total 416 saluran saban operator
- Twenty-One] dialokasikan untuk kendali
- 395 untuk membawa panggilan
- Mengendalikan saluran 10 kbps saluran data
- Saluran percakapan membawa analog yang menggunakan modulasi frekwensi
- Mengendalikan informasi juga percakapan yang diteruskan dalam burst sebagai data
- Jumlah saluran tidak cukup untuk pasar yang paling utama
- Untuk AMPS, frekwensi reuse dimanfaatkan

Operasi

- Telepon AMPS-capable mempunyai modul tugas klasifikasi (NAM) di memori read-only
 - NAM berisi jumlah telepon
 - Ditugaskan oleh penyedia layanan
 - Nomor urut telepon
 - Ditugaskan oleh pabrikan
 - Kapan telepon dipasang, memancarkan nomor telepon dan nomor urut ke MTSO (Gambar 14.5)
 - MTSO mempunyai database unit yang dicuri untuk dilaporkan
 - Menggunakan nomor urut untuk mengunci hingga orang tak dapa mencuri unit
 - MTSO menggunakan nomor telepon untuk penagihan
 - Jika telepon digunakan di (dalam) kota [yang] remote,
 [jasa;layanan] masih ditagihkan ke penyedia [jasa;layanan]
 [yang] lokal pemakai

Urutan Panggilan

- Mula-mula pelanggan menyetem dalam jumlah dan tekan mengirimkan
- 2. MTSO mengesahkan nomor telepon dan pemakai cek yang diberi hak untuk menempatkan panggilan
 - Beberapa penyedia layanan memerlukan suatu PIN ke pencurian konter
- 3. MTSO mengeluarkan pesan ke telepon pemakai yang menandakan jalur siap digunakan
- 4. MTSO mengirimkan bunyi isyarat untuk menghubungi penerima
 - Semua operasi, 2 melalui/sampai 4, terjadi di dalam 10 s dalam memulai panggilan
- 5. Ketika penerima menjawab, MTSO menetapkan sirkit dan informasi penagihan ketika salah satu menggantun, MTSO melepaskan sirkit, saluran radio gratis, dan menyudahi informasi penagihan

Pengontrol Saluran AMPS

- 21 full-duplex 30-kHz mengendalikan saluran
- Memancarkan data digital menggunakan FSK
- Data dipancarkan di frame
- Mengendalikan informasi suara selama percakapan
- Unit atau setasiun dasar memasukkan/menyisipkan burst data
- Memadamkan transmisi suara FM untuk sekitar 100 m
- Menggantikan dengan suatu pesan FSK-ENCODED
- Pertukaran yang digunakan untuk pesan mendesak
- Merubah tingkatan kekuatan
- Handoff

Generasi kedua CDMA

- Kualitas Sinyal bagus
- Kapasitas data] lebih besar
- Mendukung data digital
- Kanal traffic digital
 - Lalu Lintas pemakai (data atau digitized suara) dikonversi ke analog untuk transmisi
- Encryption
 - sederhana Ke encrypt jalur digital
- koreksi dan Pendeteksian kesalahan
 - (lihat bab 6)
 - Resepsi suara [yang] sangat jelas
- Kanal akses
- Kanal dengan dinamis digunakan via Time divisi berbagai akses (TDMA) atau divisi kode berbagai akses (CDMA)

Code Division Multiple Access

- Masing-Masing sel mengalokasikan luas bidang frekwensi
 - Split in two
 - Separuh untuk membalikkan, separuh untuk pemain depan
 - Direct-Sequence menyebar spektrum (DSSS) (lihat bab 9)

Keuntungan Code Division Multiple Access

- Keaneka Ragaman frekwensi
 - Frequency-Dependent pelemahan transmisi (menyiarkan burst, selektipfading) mepunyai lebih sedikit efek
- perlawanan Multipath
 - DSSS memperdaya multipath yang memudar dengan keaneka ragaman frekwensi
 - Juga memotong kode yang digunakan hanya memperlihatkan korelasi salib rendah dan autocorrelation rendah
 - Versi isyarat delay lebih dari satu memotong interval tidak bertentangan dengan syarat dominan banyak
- Keleluasaan Pribadi
 - Dari spektrum yang tersebar (lihat bab 9)
- Penurunan(Pangkat, Derajad) yang lemah
- Dengan FDMA atau TDMA, menetapkan jumlah para pemakai yang dapat mengakses sistem secara serempak
 - Dengan CDMA,ketika para pemakai mengakses sistem secara serempak, menyiarkanlah tingkatan dan karenanya kesalahan menilai peningkatan
 - Secara berangsur-angsur sistem menurunkan pangkat

Code Division Multiple Access

Self-Jamming

- Kecuali jika semua para pemakai disamakan, transmisi tiba dari berbagai para pemakai tidak akan dengan sempurna dibariskan pada batasan-batasan chip
- Penyebaran urutan dari para pemakai yang berbeda bukan orthogonal
- Beberapa korelasi salib
- Dari salah satu TDMA atau FDMA
 - Di Mana,karena frekwensi atau waktu guardbands yang layak, berturut-turut, isyarat yang diterima adalah orthogonal

Jauh-dekat masalah

- Isyarat semakin dekat ke penerima diterima dengan lebih sedikit pelaifan dibanding isyarat yang lebih jauh pergi
- Dengan ketiadaan [orthogonalas yang lengkap, transmisi dari unit lebih sukar untuk dipulihkan

Penerima RAKE

- Jika berbagai versi isyarat tiba lebih dari satu memotong interval terpisah, penerima dapat memulihkan isyarat dengan menghubungkan urutan chip dengan isyarat yang datang/yang berikutnya Isyarat sisa[nya] memperlakukan sebagai suara gaduh
- Capaian lebih baik jika penerima mencoba untuk memulihkan isyarat dari berbagai lur dan berkombinasi dengan keterlambatan pantas
- Isyarat biner asli tersebar oleh XOR dengan kode yang memotong
- Menyebar urutan yang diatur untuk transmisi di saluran tanpa kabel
- efek Multipath menghasilkan berbagai salinan isyarat
 - Masing-Masing dengan suatu sejumlah waktu berbeda menunda (? 1, ? 2, dll.)
 - Masing-Masing dengan suatu faktor pelemahan berbeda (a1, a2, dll.)
 - penerima Demodulates mengkombinasikan isyarat
 - Demodulated memotong arus yang yang diberi makan ke dalam berbagai correlators, masing-masing tertunda oleh jumlah berbeda
 - Isyarat yang dikombinasikan menggunakan faktor yang diperkirakan dari saluran

Prinsip Penerima RAKE

IS-95

- generasi ke dua rencana CDMA
- Terutama menyebar di Amerika Utara
- Struktur trnsmisi berbeda pada link pemain depan dan pembalik

Struktur kanal IS-95

(a) Forward channels

Link Forward IS-95 (1)

- Sampai 64 CDMA dengan masing-masing pendudukan 1228-kHz luas bidang yang sama
- Empat jenis saluran:
 - Pilot (Kanal 0)
 - Isyarat berlanjut pada saluran tunggal
 - Mengijinkan unit untuk memperoleh informasi pemilihan waktu
 - Menyediakan acuan untuk proses demodulasi
 - Menyediakan perbandingan kekuatan isyarat untuk penentuan handoff
 - Terdiri dari semua nol
 - Sinkronisasi (Kanal 32)
 - 1200-bps kanal digunakan oleh setasiun untuk memperoleh informasi identifikasi tentang sistem selular
 - Waktu sistem, merindukan status kode, revisi protokol, dan lain lain

IS-95 Forward Link (2)

- Pemberian Nomor Halaman (kanal 1 sampai 7)
 - Berisi pesan untuk orang atau setasiun
- Jalur (kanal 8 untuk 31 dan 33 untuk 63)
 - 55 saluran kanal
 - Spesifikasi asli mendukung data tingkat sampai 9600 bps
 - Revisi menambahkan tingkat sampai 14,400 bps
- Semua saluran menggunakan luas bidang sama
 - Memotong kode antar saluran
 - Memotong kode 64 orthogonal 64-bit kode yang diperoleh dari 64 x 64 Walsh Matrix

Proses Forward Link

- suara Lalu lintas disandikan pada 8550 bps
- Bit tambahan untuk pendeteksian kesalahan
 - Nilai sekarang 9600 bps
- Kapasitas penuh tidak menggunakan manakala pemakai tidak mengatakan
- Menenangan data periode menempatkan . ke klas khusus rendah seperti 1200 bps
- 2400 bps menilai digunakan untuk memancarkan penumpang sementara di dalam latar belakang menyiarkan
- 4800 bps menilai untuk mencampur digitized data pemberian isyarat dan pidato/suara
- Data dipancarkan dalam 20 m Majulah koreksi kesalahan
 - Convolutional encoder dengan tingkat tarip½
 - Penggandaan data efektif menilai untuk 19.2 kbps
 - Karena data yang lebih rendah menilai encoder bit keluaran (lambang kode yang disebut replicated)untuk menghasilkan 19.2-kbps
- Data yang terselip di antara halaman dalam blok untuk mengurangi efek kesalahan dengan menyebar

Scrambling

- Setelah interleaver, data aduk
- Topeng keleluasaan pribadi
- Mencegah pengiriman pola yang berulang
 - Mengurangi kemungkinan para pemakai yang mengirimkan pada kekuatan puncak pada waktu sama
- berebut Dilaksanakan oleh kode [yang] panjang
 - Pseudorandom jumlah diturunkan dari 42-bit-long bergeser daftar
 - Bergeserlah daftar initialized dengan nomor urut elektronik pemakai
 - Keluaran dari generator kode panjang adalah pada suatu tingkat tarip 1.2288 Mbps
 - 64 kali 19.2 kbps
 - Satu bit di dalam 64 terpilih (dengan decimator fungsi)
 - Menghasilkan arus XORED dengan keluaran blok interleaver

Pengendalian Daya

- Langkah berikutnya memasukkan/menyisipkan kekuatan mengendalikan informasi di saluran lalu lintas
 - Untuk mengendalikan keluaran kekuatan antena
 - Merampok saluran lalu lintas tingkat 800 bps dengan mencuri bit kode
 - 800-bps saluran membawa informasi yang mengarahkan unit untuk merubah tingkatan keluaran
 - Menggerakkan arus kendali multiplexed ke dalam 19.2 kbps
 - Mengganti beberapa kode menggigit, menggunakan generator kode panjang untuk menyandi bit

DSSS

- Menyebar 19.2 kbps untuk 1.2288 Mbps
- Penggunaan satu baris Walsh acuan/matriks
 - yang ditugaskan Ke setasiun gesit selama [panggil/hubungi] susunan
 - Jika 0 diperkenalkan ke XOR, 64 bit dari baris ditugaskan mengirim
 - Jika 1 XOR diperkenalkan, bitwise baris di/mengirim
- Bit akhir menilai 1.2288 Mbps
- Menggigit arus yang yang diatur ke pengangkut menggunakan QPSK
 - Data yang dipecah jadi aku dan Q (in-phase dan kwadratur) saluran
 - Data pada setiap saluran XORED dengan kode yang singkat unik
 - Pseudorandom angka-angka dari 15-bit-long bergeser daftar

Forward Link Transmissio

Reverse Link

- Sampai 94 Kanal CDMA
 - Masing-Masing pendudukan 1228-kHz luas bidang yang sama
 - Mendukung sampai 32 akses menggali dan 62 saluran lalu lintas
- Kanal trafik unik
 - Masing-Masing setasiun mempunyai kode panjang unik menyembunyikan nomor urut [yang] didasarkan pada
 - 42-bit nomor; jumlah, 242– 1 topeng [yang] berbeda
 - Mengakses saluran yang digunakan untuk memulai panggilan, bereaksi terhadap pemberian nomor halaman penggali pesan, dan untuk penempatan membaharui

Proses Reverse Link dan Spreading

- Langkah-Langkah pertama sama seperti saluran pemain depan
 - Convolutional encoder menilai 1/3
 - Melipat-Tigakan data efektif menilai ke max. 28.8 kbps
 - Data menghalangi terselip di antara halaman
- Penyebaran menggunakan Walsh acuan/matriks
 - Menggunakan dan bermaksud berbeda dari saluran pemain depan
 - Data dari blok interleaver yang dikelompokkan di dalam unit 6 bit
 - Masing-Masing 6-bit unit bertindak sebagai index untuk memilih baris acuan/matriks (26= 64)
 - Mengayuhlah diganti/ digantikan untuk masukan
 - Data menilai diperluas oleh faktor 64/6 untuk 307.2 kbps
 - yang dilaksanakan Untuk meningkatkan resepsi pada BS
 - Sebab persandian orthogonal [yang] mungkin, persandian blok meningkatkan algoritma pengambilan keputusan pada penerima
 - Juga computationally efisien
 - Walsh format modulasi blok yang error-correcting kode
 - (n, k)= (64, 6) dan dmin= 32
 - Sesungguhnya, semua jarak 32

Data Burst Randomizer

- Mengurangi gangguan campur tangan dari setasiun lain
- Penggunaan kode panjang menyembunyikan untuk memperlancar data ke luar di atas frame 20 m

DSSS

- Merindukan kode unik ke XORED dengan keluaran randomizer
- 1.2288-Mbps arus data akhir
- yang diatur Menggunakan ORTHOGONAL QPSK rencana modulasi
- Berbeda dengan saluran maju yang digunakan untuk unsur penundaan di dalam modulator untuk menghasilkan orthogonalas
 - saluran Maju, menyebar kode orthogonal
 - Berasal dari Walsh acuan/matriks
 - Membalik saluran orthogonalas dalam menyebar kode tidak dijamin

Reverse Link Transmissi on

Sistem Generasi Ketiga

- Sasaran untuk menyediakan komunikasi tanpa kabel wajar kecepatan tinggi untuk mendukung multimedia, data, dan video di samping menyatakan
- ITU'S Yang Internasional Telekomunikasi Gesit untuk tahun 2000 (IMT-2000) prakarsa menggambarkan ITU'S pandangan third-generation kemampuan sebagai:
 - Menyatakan kwalitas dapat diperbandingkan ke PSTN
 - 144 kbps tersedia untuk para pemakai di atas area yang besar
 - 384 kbps tersedia untuk pejalan kaki di area yang kecil
 - Pen; Dukungan untuk 2.048 Mbps untuk penggunaan kantor
 - Tingkat Tarip data [yang] tidak setangkup dan simetris
 - Pen; Dukungan untuk packet-switched dan circuit-switched jasa
 - Alat penghubung adaptip ke Internet
 - Lebih [] penggunaan efisien tersedia spektrum
 - Pen;Dukungan untuk variasi [dari;ttg] peralatan [yang] gesit
 - Fleksibilitas untuk mengijinkan pengenalan tentang teknologi dan jasa [yang] baru

Daya Penggerak

- Kecenderungan ke arah telekomunikasi [yang] pribadi umum
 - Kemampuan orang untuk mengidentifikasi dirinya dan menggunakan manapun sistem komunikasi serentak, dalam kaitan dengan rekening/tg-jawab tunggal
- Akses komunikasi [yang] umum
 - Menggunakan one's terminal di dalam suatu lingkungan yang luas untuk menghubungkan ke jasa informasi
 - e.g. terminal jinjing yang akan bekerja di kantor, jalan, dan naik pesawat terbang dengan sama dengan baik
- GSM selular yang teleponi dengan modul identitas langganan, melangkah ke arah gol
- Jasa komunikasi pribadi (PCSS) dan jaringan komunikasi pribadi (PCNS) juga membentuk sasaran hasil untuk third-generation tanpa kabel
- Teknologi adalah divisi waktu penggunaan digital berbagai akses atau code-division berbagai akses
- Pcs handsets kekuatan yang rendah, kecil dan cahaya

Interface Alternatif (1)

- IMT-2000 tutup spesifikasi satuan alat penghubung radio untuk capaian yang dioptimalkan dalam lingkungan radio yang berbeda
- Lima alternatif untuk memungkinkan evolusi lembut dari sistem yang berjalan
- Alternatif mencerminkan evolusi dari generasi kedua
- Dua spesifikasi tumbuh menganggur pada European Telekomunikasi Institut yang Standard (ETSI)
 - Kembangkan suatu UMTS (sistem telekomunikasi umum) sebagai 3G Europe's standard tanpa kabel
 - Ter/Memasukkanlah dua standard
 - · Wideband CDMA, atau W-Cdma
 - Secara penuh memanfaatkan CDMA teknologi
 - Menyediakan data tinggi menilai dengan penggunaan luas bidang yang efisien
 - IMT-TC, atau TD-CDMA
 - Kombinasi W-Cdma dan TDMA teknologi
 - Diharapkan untuk menyediakan alur upgrade untuk GSM sistem TDMA-BASED

Interface Alternatif (2)

- CDMA2000
 - Asal Amerika Utara
 - serupa Untuk, tetapi tidak cocok/bertentangan dengan, W-Cdma
 - Sebagian karena penggunaan standard tingkat tarip chip yang berbeda
 - Juga, cdma2000 menggunakan multicarrier, tidak menggunakan dengan W-Cdma
- IMT-SC merancang untuk TDMA-ONLY jaringan
- IMT-FC dapat digunakan oleh kedua-duanya TDMA dan FDMA carriers
 - Untuk menyediakan beberapa 3G jasa
 - Perkembangan Digital Mengenai Eropa Telekomunikasi Cordless (DECT) standard

IMT-2000 Terrestrial Radio Interfaces

Pertimbangan Desain CDMA— Tingkat Bandwidth dan Chip

- Teknologi dominan untuk 3G sistem adalah CDMA
 - Tiga CDMA rencana berbeda telah diadopsi
 - Membagi bersama beberapa isu disain yang umum
- Luas Bidang
 - Membatasilah pemakaian saluran untuk 5 MHZ
 - Luas bidang lebih tinggi meningkatkan kemampuan penerima untuk memecahkan multipath
 - Tetapi tersedia spektrum terbatas dengan bersaing kebutuhan
 - 5 MHZ batas atas layak pada kaleng apa dialokasikan untuk 3G
 - 5 MHZ adalah enoughfordata tingkat 144 dan 384 kHz
- Memotonglah tingkat tarip
 - Dengan luas bidang, tingkat tarip chip tergantung pada data diinginkan menilai, kebutuhan untuk kendali kesalahan, dan pembatasan luas bidang
 - Memotong tingkat 3 Mcps atau lebih layak

Pertimbangan Desain CDMA— Multirate

- Ketetapan berbagai fixed-data-rate saluran ke pemakai yang ditentukan
- Tingkat tarip data berbeda menyajikan saluran yang berbeda
- Lalu lintas pada masing-masing saluran logis dapat diswitch dengan bebas melalui jaringan yang ditetapkan tanpa kabel ke tujuan berbeda
- Dengan fleksibel mendukung berbagai aplikasi bersama dari pemakai
- Secara efisien menggunakan tersedia kapasitas dengan hanya menyediakan kapasitas yang diperlukan untuk masing-masing layanan
- yang dicapai Dengan TDMA rencana di dalam CDMA saluran [yang] tunggal
 - Nomor; Jumlah slot berbeda saban membingkai [yang] ditugaskan untuk tingkat tarip data [yang] berbeda
 - Subchannels pada data ditentukan menilai dilindungi oleh koreksi kesalahan dan teknik menyisipkan antar halaman
- Alternatif: menggunakan berbagai kode CDMA
 - Memisahkan persandian dan menyisipkan antar halaman
 - Memetakan untuk memisahkan saluran CDMA

Waktu Dan Kode Multiplexing

(a) Time multiplexing

(b) Code multiplexing