Banc d'essai de Boite de Transfert Principale d'hélicoptère★

Pas de corrigé pour cet exercice.

On s'intéresse à la conception d'un banc d'essai de boite de transfert principale d'hélicoptère.

Objectif

- ▶ Dimensionner l'arbre en sortie de la BTP qui fera la jonction avec le banc d'essai.
- ▶ Déterminer les roulements qui assureront la liaison entre l'arbre 1 et le support S.
- ► Concevoir la liaison pivot entre l'arbre de sortie et le bâti.

Dimensionnement de l'arbre

Objectif

Déterminer le diamètre minimal de l'arbre et son matériau.

La modélisation retenue pour déterminer le diamètre de l'arbre est la suivante :

- ▶ l'arbre est modélisé par une poutre cylindrique de révolution de longueur H. Une section de la poutre est repérée par l'abscisse z suivant l'axe (C, \overrightarrow{z}) . On note $\overrightarrow{CG} = z\overrightarrow{z}$;
- ▶ l'action des vérins est modélisée par un seul effort : $F_v \overrightarrow{z}$;
- ▶ le couple moteur est modélisé par un moment : $C_1 \overrightarrow{z}$.

Modélisation des efforts sur l'arbre de sortie de la BTP

Question 1 Exprimer le torseur de cohésion en chaque section de la poutre. À quel(s) type(s) de sollicitation(s) l'arbre est-il soumis?

Correction

On considère que l'arbre n'est soumis qu'à de la torsion pure. On note :

- $ightharpoonup au_{Max}$: la contrainte tangentielle de cisaillement maximale en MPa;
- ▶ I_0 : le moment quadratique polaire en mm⁴;
- ▶ *d* : le diamètre de l'arbre en mm.

On note:

La Martinière

► *K* : coefficient dépendant du type de matériau;

► R_e : limite élastique à la traction (en MPa);

► *s* : coefficient de sécurité.

La condition de résistance en torsion peut éventuellement s'écrire $\tau_{\max} < \frac{KR_e}{s}$.

Famille matériau	de x	Pourcentage de carbone	K
Aciers		Inférieur à 0,2 %	0,5
		Entre 0,2 % et 0,32 %	0,6
		Entre 0,32 % et 0,45 %	0,7
		Entre 0,45 % et 1,7 %	0,8
Fonte		Supérieur à 1,7 %	Entre 0,77
			et 1

Question 2 On recommande un coefficient de sécurité s = 1, 2. À partir des données précédentes, exprimer de manière littérale quel doit être le diamètre minimum de l'arbre.

Correction

Question 3 En utilisant l'annexe, donner une liste des matériaux présentant le meilleur compromis prix - résistance élastique.

Correction

Question 4 On choisit un acier dont la teneur en carbone est comprise entre 0,32% et 0,45%. On prendra $R_e=1000\,\mathrm{MPa}$. Déterminer le diamètre de l'arbre.

Correction

