In Silico Comparison of Photons versus Carbon Ions in Single Fraction Therapy of Lung Cancer

Kristjan Anderle

Introduction

Most Common Cancers Worldwide in 2012

Most Common Causes of Cancer Death Worldwide in 2012

Stereotactic Body Radiation Treatment (SBRT)

- High precision treatment with photons
- Delivers high dose (up to 30 Gy)
 in few fractions (1-3)
- Good results for lung cancer in early stages
- Limited for:
 - Multiple tumors
 - Large tumors

3D Treatment Plan Example

Particle Therapy

- Advantageous dose profile for radiotherapy
- Bragg peak depends on particle energy
- No or small dose tail after the Bragg peak
- Currently, mostly static targets are treated (head & neck, pelvic)

Source:NIRS,2016

Motion Effects in Particle Therapy

Range Changes

Interplay

Motion Effects in Particle Therapy

Range Changes

Interplay

Compensations:

- Include range-changes in target definition (range ITV)
- Optimization in all motion states (4D-optimization)

 Rescanning: instead of delivering the whole dose at once, it is delivered in N steps

In Silico Study

- Comparison of lung cancer treatment simulations between SBRT and active scanning carbon-ions (PT)
- 23 lung cancer patients were actually treated with SBRT
- Comparison:
 - Dose to the tumor
 - Dose to critical organs
 - Dose escalation

Treatment planning – Cohort I

- 19 patients, 26 tumors
- Planning objectives:
 - Single fraction of 24 Gy
 - Tumor $D_{99\%} > 100\%$
 - Critical organs limits
- Single field uniform optimization with range ITV
- 10 dose calculations per patient:
 - Without motion, static (end-inhale and end-exhale)
 - With motion, without compensation, 4D-interplay (4x)
 - With motion, with compensation, 4D-rescanning (4x)

Treatment Plan Examples

Treatment Plan Examples

Results – Dose to Tumors

No difference in tumor dose between SBRT and static PT (3D)

Results – Dose to Tumors

- No difference in tumor dose between SBRT and static PT (3D)
- Without motion compensation the tumor dose is too low (4D interplay)

Results – Dose to Tumors

- No difference in tumor dose between SBRT and static PT (3D)
- Without motion compensation the tumor dose is too low (4D interplay)
- Rescanning mitigates tumor motion sufficiently (4D rescan)

Results - Dose to Critical Organs

Clinical Trial RTOG 0617

- A RTOG 0617 trial compared 60 Gy and 74 Gy dose to tumors
- In contrast to inital hypothesis, higher dose led to higher mortality
- The only significant difference between two groups was dose to the heart (V5)

(Bradley, JD et al, Lancet Oncology, 2015)

Average Heart V5

Treatment planning – Cohort II

- 8 patients, 24 tumors
- Different fractionation schemes
 - 3 tumors in 2 patients received 3 x 9 Gy
 - 2 tumors received 1 x 20 Gy
 - 1 tumor received 1 x 22 Gy
 - 1 tumor received 5 x 7 Gy
 - All others 1 x 24 Gy
- Intensity modulated particle therapy optimization with rescanning
 - Range ITV
 - 4D-optimization

Treatment planning – Cohort II

- 8 patients, 24 tumors
- Different fractionation schemes
 - 3 tumors in 2 patients received 3 x 9 Gy
 - 2 tumors received 1 x 20 Gy
 - 1 tumor received 1 x 22 Gy
 - 1 tumor received 5 x 7 Gy
 - All others 1 x 24 Gy
- Intensity modulated particle therapy optimization with rescanning
 - Range ITV
 - 4D-optimization

Dose ecalation to 1 x 24 Gy

Intensity Modulated Particle Therapy Optimization for Multiple Targets

Target 1 & 2 Target 1 Target 2 Each target optimized individually: **Targets** optimized simultaneously: 25 75 105 ose (%) 50 100

Treatment Plan Examples

All 5 targets received planned dose with SBRT and PT (CTV $D_{99\%} > 100 \%$)

Treatment Plan Examples

Heart

Target

PT

Esophagus

Planning dose not met with PT (SBRT $D_{99\%} = 100\%$, PT $D_{99\%} = 75\%$)

Results – Dose to Critical Organs

Average Heart V5

Results – Dose Escalation

1 tumor: 1 x 22 Gy 2 tumors: 1 x 21 Gy 2 tumors: 3 x 9 Gy

5 tumors: 1 x 24 Gy

Heart Dose Volume Histogram

Conclusions

- PT delivers the same dose to tumors as SBRT,
 while depositing significantly less dose to normal tissue
- PT could deliver full ablative dose in single fraction, where SBRT could not

- Patient selection for PT:
 - ✓ Multiple targets
 - ✓ Large tumors
 - x Small tumors with large motions

Outlook

- First lung cancer patients treated with active scanning carbon-ions at NIRS, Chiba (Japan)
- As part of a LOEWE grant, results from this study will be used for actual lung cancer treatment at MIT – especially the multiple target case.

Exzellente Forschung für Hessens Zukunft

Acknowledgments

GSI

C. Graeff

M. Durante

A. Eichhorn

M. Prall

S. Hild

FC

J. Stroom

C. Greco

N. Pimentel

S. Vierra

UK Erlangen

C. Bert

T. Brandt

J. Wölfelschneider

Universitätsklinikum Erlangen

