上海交通大学试卷 (月考卷) (2020至 2021 学年第2学期)

班级号	学号_		姓名(中&法)	
课程名称:	MA160	成绩	,	

Avertissements:

- 1. Les questions sont indépendants. Elles peuvent être traitées dans un ordre quelconque.
- 2. Tous les documents sur papiers et les outils électroniques (téléphone dont smartphone, ordinateur, tablette, etc.) sont interdits.
- 3. Pour l'exercice 2, la qualité de la rédaction sera prise en compte.

Pour le QCM (exercice 1), chaque question a une, et **une seule**, réponse juste. 每一题只有一个正确答案: 单选题

Exemple:

0. 1 + 1 est égal à combien?

(A) 略

$$(B) \ \frac{\sqrt{\pi}}{3}$$

$$(C)$$
 Autre réponse (D) 2

Tableau de réponse

Question	Réponse (A)	Réponse (B)	Réponse (C)	Réponse (D)
0				$\sqrt{}$

Exercice 1 : QCM

Équations différentielles

1. On considère l'équation différentielle

$$(\mathcal{E}) y' + \frac{y}{t} = \frac{1}{t}$$

sur $I =]0, +\infty[$.

- (A) L'unique solution de (\mathcal{E}) sur I est $t \mapsto \frac{1}{t} + 1$.
- (B) L'ensemble des solutions de (\mathcal{E}) sur I est $\mathcal{S}_{\mathcal{E}} = \{t \mapsto K t, K \in \mathbb{R}\}$
- (C) Une solution de (\mathcal{E}) est : $t \mapsto \frac{\sqrt{e^{-2}}}{\pi t} + 1$
- (D) $y = e^{-x/t} + 1$

2. On considère l'équation différentielle

$$(\mathcal{E}) y' + t y = \sqrt{2} t$$

sur $I = \mathbb{R}$. Soit f et g deux solutions de (\mathcal{E}) sur \mathbb{R} . On suppose que f(0) = g(0) = 0. Alors :

- (A) f = g
- (B) f-g peut-être n'importe quelle solution de l'équation homogène associée à (\mathcal{E})
- (C) $f'(0) = g'(0) = \sqrt{2}$
- (D) Il existe $K \in \mathbb{R}^*$ tel que pour tout $t \in \mathbb{R}$, $f(t) g(t) = K e^{-t^2/2}$

3. On considère l'équation différentielle

$$(\mathcal{E}) y'' + y = 2 \cos(t)$$

sur $I = \mathbb{R}$, et la fonction $f: t \mapsto t \sin(t)$.

Soit g une solution de (\mathcal{E}) . On suppose que g'(0) = 0. Alors :

- (A) f = g
- (B) Pour tout $t \in \mathbb{R}$, $g(t) = t \sin(t)$
- (C) $f \neq g$
- (D) Il existe $K \in \mathbb{R}$ tel que pour tout $t \in \mathbb{R}$, $f(t) g(t) = K \cos(t)$

Tableau de réponse

Question	Réponse (A)	Réponse (B)	Réponse (C)	Réponse (D)
1			V	
2	$\sqrt{}$			
3				V

Intégration

4. Une primitive sur
$$\mathbb{R}_+^*$$
 de $t \mapsto \frac{1}{(1+t^2)\arctan(t)} + \frac{1}{2t}$ est :

(A)
$$t \mapsto \frac{1}{\arctan(t)}$$

(C)
$$t \mapsto \frac{2t \arctan(t) + 1}{(1 + t^2)^2 \arctan(t)^2} - \frac{1}{2t^2}$$

(B)
$$t \mapsto \ln(\sqrt{t} \arctan(t))$$

(D)
$$t \mapsto \arctan(\arctan(t))$$

5. Soit
$$f:[0,1]\to\mathbb{R}$$
, continue, telle que $f(0)\in]0,1[$ et $\int_0^1f(t)\mathrm{d}t\leq\frac{1}{2}.$ Alors :

(A) Pour tout
$$x \in [0, 1], f(x) < 1$$
.

(C) Il existe
$$x \in [0, 1]$$
 tel que $f(x) < 0$.

(B) Il existe
$$x \in [0, 1]$$
 tel que $f(x) < x$.

$$\int_0^1 t \arctan(t) dt = \dots$$
 (C) $2 - \frac{3\pi}{8}$

(B)
$$\frac{\pi - 1}{8}$$

(D) Aucune des réponses précédentes

Tableau de réponse

Question	Réponse (A)	Réponse (B)	Réponse (C)	Réponse (D)
4		V		
5		V		
6	$\sqrt{}$			

Exercice 2 : Intégration d'une grosse fraction rationnelle

1. Déterminer les solutions complexes de l'équation

$$z^3 = -1.$$

En utilisant le résultat trouvé, montrer que pour tout $x \in \mathbb{R}$;

$$x^{3} + 1 = (x+1)(x^{2} - x + 1)$$

Réponse

On a $0^3 = 0 \neq -1$, donc 0 n'est pas une solution.

Soit $z \in \mathbb{C}^*$. Écrivons $z = Re^{i\theta}$, avec R > 0 et $\theta \in [0, 2\pi[$. On a les équivalences suivantes :

$$z^{3} = -1 \Leftrightarrow R^{3}e^{3i\theta} = -1$$
$$\Leftrightarrow \begin{cases} R^{3} = 1\\ 3\theta \in \pi + 2\pi\mathbb{Z} \end{cases}$$
$$\Leftrightarrow \begin{cases} R = 1\\ \theta \in \left\{\frac{\pi}{3}, \pi, \frac{5\pi}{3}\right\} \end{cases}$$

L'ensemble des solutions de l'équation $z^3 = -1$ est donc :

$$\{e^{i\pi/3}, -1, e^{-i\pi/3}\}$$

On en déduit que pour tout $x \in \mathbb{R}$,

$$x^{3} + 1 = (x+1)(x - e^{i\pi/3})(x - e^{-i\pi/3}) = (x+1)(x^{2} - 2\cos(\pi/3) + 1) = (x+1)(x^{2} - x + 1)$$

2. Déterminer $(a_1, a_2, a_3, a_4, a_5) \in \mathbb{R}^5$ tel que :

$$\forall x \ge 0, \frac{1}{(x^3+1)(x^2-x+1)} = \frac{a_1}{x+1} + \frac{a_2x+a_3}{x^2-x+1} + \frac{a_4x+a_5}{(x^2-x+1)^2}$$

Réponse

Soit $(a_1, a_2, a_3, a_4, a_5) \in \mathbb{R}$. On a les équivalences suivantes :

$$\forall x \ge 0, \frac{1}{(x^3+1)(x^2-x+1)} = \frac{a_1}{x+1} + \frac{a_2x+a_3}{x^2-x+1} + \frac{a_4x+a_5}{(x^2-x+1)^2}$$

$$\Leftrightarrow \forall x \ge 0, 1 = a_1(x^2-x+1)^2 + (a_2x+a_3)(x^3+1) + (a_4x+a_5)(x+1)$$

$$\Leftrightarrow \forall x \ge 0, 1 = (a_1+a_2)x^4 + (-2a_1+a_3)x^3 + (3a_1+a_4)x^2 + (-2a_1+a_2+a_4+a_5)x$$

$$+ (a_1+a_3+a_5)$$

$$\begin{cases} a_1+a_2=0\\ -2a_1+a_3=0\\ 3a_1+a_4=0\\ -2a_1+a_2+a_4+a_5=0\\ a_1+a_3+a_5=1 \end{cases}$$

$$\Leftrightarrow \begin{cases} a_1=1/9\\ a_2=-1/9\\ a_3=2/9\\ a_4=-1/3\\ a_5=2/3 \end{cases}$$

3. Déterminer des primitives sur \mathbb{R}_+ de :

Pas de justification demandée pour les questions 3.a, 3.b et 3.c

(a)
$$x \mapsto \frac{1}{x+1}$$

Réponse

$$x \mapsto \ln(|x+1|)$$

(b)
$$x \mapsto \frac{2x-1}{x^2-x+1}$$

Réponse

$$x \mapsto \ln(x^2 + x + 1)$$

(c)
$$x \mapsto \frac{2x-1}{(x^2-x+1)^2}$$

Réponse

$$x\mapsto -\frac{1}{x^2-x+1}$$

4. Déterminer une primitive sur \mathbb{R}^+ de $x \mapsto \frac{1}{x^2 - x + 1}$ en détaillant vos calculs.

Réponse

Pour tout $x \in \mathbb{R}$,

$$x^{2} - x + 1 = \left(x - \frac{1}{2}\right)^{2} + \frac{3}{4} = \frac{3}{4} \times \left(\left(\frac{2}{\sqrt{3}}x - \frac{1}{\sqrt{3}}\right)^{2} + 1\right)$$

et donc

$$\frac{1}{x^2 - x + 1} = \frac{2}{\sqrt{3}} \frac{\frac{2}{\sqrt{3}}}{\left(\left(\frac{2}{\sqrt{3}}x - \frac{1}{\sqrt{3}}\right)^2 + 1\right)}$$

Une primitive de $x \mapsto \frac{1}{x^2 - x + 1}$ est donc

$$x \mapsto \frac{2}{\sqrt{3}} \arctan\left(\frac{2}{\sqrt{3}}x - \frac{1}{\sqrt{3}}\right)$$

5. Calculer

$$\int_0^1 \frac{1}{(x^2 - x + 1)^2} \, \mathrm{d}x$$

On pourra effectuer un changement de variable faisant apparaître la fonction tan.

Réponse

$$\int_{0}^{1} \frac{1}{(x^{2} - x + 1)^{2}} dx = \int_{0}^{1} \frac{16}{9} \frac{1}{\left(\left(\frac{2}{\sqrt{3}}x - \frac{1}{\sqrt{3}}\right)^{2} + 1\right)^{2}} dx$$

$$t = \frac{\frac{2}{\sqrt{3}}}{\sqrt{3}} x - \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} \frac{8}{3\sqrt{3}} \frac{1}{(t^{2} + 1)^{2}} dt$$

$$dt = \frac{2}{\sqrt{3}} dx$$

$$= \frac{1}{2\sqrt{3}} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} \frac{1}{(t^{2} + 1)^{2}} dt$$

$$du = \frac{1}{1 + t^{2}} dt$$

$$= \frac{8}{3\sqrt{3}} \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \cos(u)^{2} du$$

$$= \frac{8}{3\sqrt{3}} \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{1}{2} (1 + \cos(2u)) du$$

$$= \frac{8}{3\sqrt{3}} \left[\frac{1}{2} \left(x + \frac{1}{2}\sin(2u)\right) du\right]_{-\frac{\pi}{6}}^{\frac{\pi}{6}}$$

$$= \frac{8}{3\sqrt{3}} \left(\frac{\pi}{6} + \frac{\sqrt{3}}{4}\right)$$

$$= \frac{4\pi}{9\sqrt{3}} + \frac{2}{3}$$

6. Déduire de tout ce qui précède :

$$\int_0^1 \frac{1}{(1+x^3)(x^2-x+1)} \mathrm{d}x$$

Réponse

Il n'y a plus qu'à tout remettre ensemble.