Discrete Structures and Theory of Logic Lecture-27

Dharmendra Kumar August 27, 2020

Lattices as algebraic system

A lattice is an algebraic system $< L, \land, \lor >$ with two binary operations \land and \lor on L which are satisfy commutative, associative, absorption and idempotent properties.

Sublattice

Let $< L, \land, \lor >$ be a lattice and let $S \subseteq L$ be a subset of L. Then $< S, \land, \lor >$ is said to be sublattice of $< L, \land, \lor >$ iff $< S, \land, \lor >$ is also a lattice.

Example: Consider the following lattice $L = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8\}$.

Let $S_1 = \{a_1, a_2, a_4, a_6\}$, $S_2 = \{a_3, a_5, a_7, a_8\}$, and $S_3 = \{a_1, a_2, a_4, a_8\}$. Find out $< S_1, \prec>, < S_2, \prec>,$ and $< S_3, \prec>$ sublattices or not.

Lattice Homomorphism

Let $< L, \otimes, \oplus >$ and $< S, \wedge, \vee >$ be two lattices. A mapping f: L \rightarrow S is called lattice homomorphism from the lattice $< L, \otimes, \oplus >$ to $< S, \wedge, \vee >$ if for any $(a,b) \in L$, $f(a \otimes b) = f(a) \wedge f(b) \text{ and } f(a \oplus b) = f(a) \vee f(b)$

Lattice Isomorphism

A homomorphism f: $L \to S$ is said to be isomorphism if f is bijective. If there exists isomorphism between two lattices, then the lattices are called isomorphic.

Lattice Endomorphism

A homomorphism is said to be endomorphism if both lattices are same.

Lattice Automorphism

An isomorphism is said to be autoomorphism if both lattices are same.

Order-preserving

Let $< P, \preceq >$ and $< Q, \preceq' >$ be two POSETs. A mapping f: $P \rightarrow Q$ is said to be order-preserving relatie to the ordering \prec in P and \prec' in Q iff for any $a,b \in P$ such that $a \prec b$, $f(a) \prec' f(b)$.

Note: If f is homomorphism, then f is order-preserving.

Order-isomorphic

Two POSETs $< P, \preceq >$ and $< Q, \preceq' >$ are called order-isomorphic if there exists a mapping f: $P \rightarrow Q$ which is bijective and if both f and f^1 are order-preserving.

Note: It may happen that a mapping f: $P \rightarrow Q$ is bijective and order-preserving, but that f^1 is not order-preserving.

Direct product or Cartesian product

Let $< L, \otimes, \oplus >$ and $< S, \wedge, \lor >$ be two lattices. The algebraic system $< L \times S, *, + >$ in which the binary operations + and * on L×S are such that for any (a_1, b_1) and (a_2, b_2) in L×S

$$(a_1, b_1) * (a_2, b_2) = (a_1 \otimes a_2, b_1 \wedge b_2)$$

 $(a_1, b_1) + (a_2, b_2) = (a_1 \oplus a_2, b_1 \vee b_2)$

is called the direct product of the lattices $< L, \otimes, \oplus >$ and $< S, \wedge, \vee >$.

Note: $L^2 = L \times L$ and $L^3 = L \times L \times L$

Example: Let $L = \{0,1\}$ and the lattice $\langle L, \prec \rangle$ is

Find the lattices $< L^2, \prec_2 >$ and $< L^3, \prec_3 >$.

Solution: Lattices $< L^2, \prec_2 >$ and $< L^3, \prec_3 >$ are drawn as following:-

Note: The partial ordering relation \leq^n on L^n can be defined for any $a,b \in L^n$, where $a = (a_1, a_2, ..., a_n)$ and $(b_1, b_2, ..., b_n)$, as $a \prec_n b \Leftrightarrow a_i \leq b_i$, \forall i.

Where \leq means the relation of "less than or equal to" on $\{0,1\}$.

Example: Consider the chains of divisors of 4 and 9, that is $L_1 = \{1,2,4\}$ and $L_2 = \{1,3,9\}$, and the partial order relation of "division" on L_1 and L_2 . Draw the Hasse diagram for $L_1 \times L_2$.

Solution: Hasse diagram for this lattice can be drawn as following:-

Example: Let S be any set containing n elements and P(S) be its power set. Then the lattice $\langle P(S), \cap, \cup \rangle$ or $\langle P(S), \subseteq \rangle$ is isomorphic to the lattice $\langle L^n, \prec_n \rangle$.

Exercise

- 1. Find all the sublattices of the lattice $\langle D(n), / \rangle$, for n = 12.
- 2. Draw the diagram of a lattice which is the direct product of the five element lattice and a two element lattice.

9