(b) Amendments to the Claims

A detailed listing of the claims follows which replaces all earlier versions.

 (Currently Amended) A structure comprising a base material characterized in that the base material is coated at least partly with a polyhydroxyalkanoate containing at least one monomer unit selected from the group consisting of those represented by one of the chemical formulae [H] [4] to [8]:

(wherein, the monomer unit is at least one selected from the group consisting of monomer units in which a combination of R1 and "a" is any one of combinations, wherein R1 is vinyl group; and "a" is an integer of 1 to 10).

(wherein, "b" is an integer of 1 to 8; and R2 is one selected from the group consisting of CH₃;

C₂H₃, C₄H₃, vinyl and epoxy groups, and COOR21 (R21 is H, Na or K atom), which are independently applicable to each unit when there are 2 or more units);

(wherein, "c" is an integer of 1 to 8; and R3 is one selected from the group consisting of CH₃?

C₂H₃, C₃H₃ and SCH₃ groups, which are independently applicable to each unit when there are 2 or more units):

(wherein, "d" is an integer of 0 to 8; and R4 is selected from the group consisting of H and a halogen atoms, and CN, NO₂, CH₃, C_2H_5 , C_3H_7 , CF₃, C_2F_5 and C_3F_7 groups when "d" is 0, and selected from the group consisting of CH₃, C_2H_5 and C_3H_7 groups when "d" is 1 to 8, which are independently applicable to each unit when there are 2 or more units),

(wherein, "e" is an integer of 1 to 8),

(wherein, "f" is an integer of 1 to 8; and R6 is one selected from the group consisting of CH_3 , C_2H_5 , C_3H_7 , $(CH_3)_2$ -CH and $(CH_3)_3$ -C group, which are independently applicable to each unit when there are 2 or more units),

(wherein, "g" is an integer of 1 to 8; and R7 is a H or halogen atom, or CN, NO₂, COOR71 (R71 is H, Na, K, CH₃ or C_2H_5), SO₂R72 (R72 is OH, ONa, OK, a halogen atom, OCH₃ or OC_2H_5), CH₃, C_2H_5 , C_3H_5 ,

(wherein, "g" is an integer of 1 to 8; and R7 is H or a halogen atom, or CN, NO₂, COOR71 (R71 is H, Na, K, CH₃ or C_2H_3), SO₂R72 (R72 is OH, ONa, OK, a halogen atom, OCH₃ or OC_2H_3), CH₃, C_2H_3 , C_3H_3 or OC_2H_3). The independently applicable to each unit when there are 2 or more units).

2.-7. (Cancelled)

- (Original) The structure according to claim 1, wherein the base material is particulate.
- (Original) The structure according to claim 8, wherein the base material contains a colorant.
 - 10. (Original) A toner which contains the structure according to claim 8.
- (Original) The structure according to claim 1, wherein the base material is in the form of flat plate or film.
- 12. (Original) The structure according to claim 1, wherein the monomer unit composition in the polyhydroxyalkanoate varies from the structure inside towards the outside of the structure.

13. (Cancelled)

- (Withdrawn) A method for forming an image by supplying the toner according to claim 10 onto a recording medium.
- (Withdrawn) A device for forming an image by supplying the toner according to claim 10 onto a recording medium.
- 16. (Withdrawn Currently Amended) A method for producing a structure having a base material coated with a polyhydroxyalkanoate at least partly, comprising the steps of immobilizing an polyhydroxyalkanoate synthetase on the surface of the base material; and polymerizing a 3-hydroxyacyl coenzyme A selected from the group consisting of those represented by one of the chemical formulae [9], [12] to [15] with the aid of the polyhydroxyalkanoate synthetase to synthesize the polyhydroxyalkanoate comprised of a monomer unit selected from the group consisting of those represented by one of the chemical formulae [1], [4] to [8]:

(wherein, the monomer unit is at least one selected from the group consisting of monomer units in which a combination of R1 and "a" is any one of combinations, wherein R1 is vinyl group; and "a" is an integer of 1 to 10);

(wherein, "b" is an integer of 1 to 8; and R2 is one selected from the group consisting of CH₃; C_2H_3 ; C_3H_3 ; vinyl and epoxy groups, and COOR21 (R21 is H, Na or K-atom), which are independently applicable to each unit when there are 2 or more units);

(wherein, "c" is an integer of 1 to 8; and R3 is one selected from the group consisting of CH₃; C₂H₃, C₃H₃, or SCH₃ groups, which are independently applicable to each unit when there are 2 or more units);

(wherein, "d" is an integer of 0 to 8; and R4 is selected from the group consisting of H and halogen atoms, and CN, NO₂, CH₃, C₂H₅, C_3H_7 , CF₃, C_2F_5 and C_3F_7 groups when "d" is 0, and selected from the group consisting of CH₃, C_2H_5 and C_3H_7 groups when "d" is 1 to 8, which are independently applicable to each unit when there are 2 or more units),

(wherein, "e" is an integer of 1 to 8),

(wherein, "f" is an integer of 1 to 8; and R6 is one selected from the group consisting of CH_3 , C_2H_5 , C_3H_7 , $(CH_3)_2$ -CH and $(CH_3)_3$ -C groups, which are independently applicable to each unit when there are 2 or more units),

(wherein, "g" is an integer of 1 to 8; and R7 is H or halogen atom, or CN, NO₂, COOR71 (R71 is H, Na, K, CH₃ or C_2H_3), SO₂R72 (R72 is OH, ONa, OK, halogen atom, OCH₃ or OC₂H₃), CH₃, C₂H₃, C₃H₅, (CH₃)₂-CH or (CH₃)₃-C group, which are independently applicable to each unit when there are 2 or more units).

(wherein, "g" is an integer of 1 to 8; and R7 is H or halogen atom, or CN, NO_2 , COOR71 (R71 is H, Na, K, CH₃ or C_2H_3), SO_2R72 (R72 is OH, ONa, OK, halogen atom, OCH₃ or OC_2H_3), CH_3 ,

 C_2H_3 , C_3H_7 , $(CH_3)_2$ -CH or $(CH_3)_3$ -C group, which are independently applicable to each unit when there are 2 or more units),

(wherein, ~SCoA is a coenzyme A bound to an alkanoic acid; "a" is an integer of 1 to 10; corresponding to "a" in the monomer unit represented by the formula [1]; and R1 is vinyl group);

(wherein, -SCoA is a coenzyme A bound to an alkanoic acid, "b" is an integer of 1 to 8; corresponding to "b" in the monomer unit represented by the formula [2]; and R2 is one selected from the group consisting of CH₅, C₂H₅, C₈H₇, and vinyl groups, corresponding to R2 in the monomer unit represented by the formula [2];

(wherein, *SCoA is a coenzyme A bound to an alkanoic acid; "C" is an integer of 1 to 8; corresponding to "C" in the monomer unit represented by the formula [3]; and R3 is one selected from the group consisting of CH₃, C₂H₃, C₃H₃ and SCH₃ groups, corresponding to R3 in the monomer unit represented by the formula [3];

$$R_{4} = \frac{OH}{CH-CH_{2} CO-SCoA}$$
[12]

(wherein, -SCoA is a coenzyme A bound to an alkanoic acid; "d" is an integer of 0 to 8, corresponding to "d" in the monomer unit represented by the formula [4]; and R4 is from the group consisting of H and halogen atoms, and CN, NO₂, CH₃, C₂H₅, C₃H₇, CF₃, C₂F₅ and C₃F₇ groups when "d" is 0, and one selected from the group consisting of CH₃, C₂H₅ and C₃H₇ groups when "d" is 1 to 8, corresponding to R4 in the monomer unit represented by the formula [4],

(wherein, -SCoA is a coenzyme A bound to an alkanoic acid; "e" is an integer of 1 to 8, corresponding to "e" in the monomer unit represented by the formula [5],

$$R_s$$
 CH₂S - $\left(-CH_2\right)_{\frac{1}{7}}$ CH-CH₂CO-SCOA [14]

(wherein, -SCoA is a coenzyme A bound to an alkanoic acid; "f" is an integer of 1 to 8, corresponding to "f" in the monomer unit represented by the formula [6]; and R6 is one selected from the group consisting of CH₃, C₂H₅, C₃H₇, (CH₃)₂-CH and (CH₃)₃-C group, corresponding to R6 in the monomer unit represented by the formula [6], and

$$R_7$$
 $S - (-CH_2 -)_g$ $CH - CH_2 - 00 - SCOA$

(wherein, -SCoA is a coenzyme A bound to an alkanoic acid; "g" is an integer of 1 to 8, corresponding to "g" in the monomer unit represented by one of the formulae [7] and [8]; and R7 is one selected from the group consisting of H and halogen atoms, and CN, NO₂, COOR71 (R71 is H, Na, K, CH₃ or C₂H₃), SO₂R72 (R72 is OH, ONa, OK, a halogen atom, OCH₃ or OC₂H₃), CH₃, C₂H₅, C₃H₇, (CH₃)₂-CH and (CH₃)₃-C groups, corresponding to R7 in the monomer unit represented by formulae [7] and [8].

- 17. (Withdrawn) The method for producing a structure according to claim 16, wherein the monomer unit of polyhydroxyalkanoate coating the base material is oxidized into a monomer unit of different species.
 - 18. (Cancelled)
- 19. (Withdrawn) The method for producing a structure according to claim 17, wherein the monomer unit to be oxidized is represented by the formula [16], and the monomer unit of different species is represented by one of the formulae [7] and [8]:

(wherein, "g" is an integer of 1 to 8; and R7 is H or halogen atom, or CN, NO₂, COOR71 (R71 is H, Na, K, CH₃ or C_2H_3), SO₂R72 (R72 is OH, ONa, OK, a halogen atom, OCH₃ or OC₂H₃), CH₃, C_2H_3 , C_3H_3 , (CH₃)₂-CH or (CH₃)₃-C group, which are independently applicable to each unit when there are 2 or more units).

20.-21. (Cancelled)

- 22. (Withdrawn Currently Amended) The method for producing a structure according to one of claims 16 to 19 16. 17 or 19, wherein composition of the 3-hydroxyacyl coenzyme A is varied with time to vary the monomer unit composition in the polyhydroxyalkanoate from the inside towards the outside of the structure.
- 23. (Withdrawn Currently Amended) A method for producing a toner comprising the step of producing the particulate structure according to one of claims 16 to 19 16, 17 or 19.