

Sanmina

Curso básico para la generación de programas en AOI SAKI

Parte 1 ePM

Ing. Ana
Victoria Ramos

WHAT WE MAKE, MAKES A DIFFERENCE

Concept to Delivery / Advanced Technology / Manufacturing & Global Supply Chain Solutions / Systems & Intelligence

1 Da doble click abre el icono del software ePM-AOI

1.1 Espera a que abra la aplicación

Generacion de .Json (ePM)

1.2 Da click en el icono Job Wizard

1.3 Da click en **C-Type Using gerber + CAD**

1.4 Seleciona Gerber

Cargar Gerber (ePM)

- 1.5 Selecciona el gerber a cargar
- 1.6 Defina la unidad de medida inches o mm
- 1.7 Da clic en IMPORT

1.8 Da clic en **board size**

1.9 Da clic en uno de los extremos de la pcb y después clic en el borde opuesto automáticamente se ajustará el borde del panel

Borde del panel (ePM)

1.10 Da clic en **Apply** y después en **OK** el borde del panelizado se colocara en color azul

Width(mm):		362.576		
Height(mm):		221.788		
V	Calculate	Gerb	er[Outer]	
a a mila fan an l				
argin(mm)				
,	0.0			
0.0	Pa	nel	0.0	
	0.0			
+ 5	Stretch		- Reduce)
argin(mm)		À)	
1	0.0	V		

Área de trabajo (ePM)

1.11 Seleciona Word Area

1.12 Marque el borde de una ubicación del panelizado da clic en **OK**

1.13 Selecciona **Layer** y verifica que se tenga un solo layer, en caso de tener más de uno haz **MERGE**

1.14 Da clic en Mask Pin

1.15 Espera a que complete y verifica que el el área se marca en azul da clic en **OK**

1.16 Selecciona el CAD XY

1.17 Carga el archivo .csv descargado de Factory

1.18 Da clic en **Appending Import**

1.19 Oriente el CAD según se encuentre el Gerber Nota: Para rotar seleciona **Edit Rotate** , para hacer espejo selecciona **Mirror**

1.20 Da Click en . fit cords para transponer el gerber y el cad

1.21 Seleccione un componente del cad

1.22 Seleccione los pad del mismo componente en el gerber

1.23 Da clic en **Appy** y **Close**

1.24 Da clic en **Add Foot** Seleccionar el componente

1.25 Verifica que este seleccionado Auto Detect Mouse Up Event

	Part Name :
	Footprint Name :
	Package Name :
	All Apply: Applied Parts Table
	Check Rotation Difference
FAL	Itomatic Fit to Mask Pin
6	☑ Location ☐ Rotation
[Package Body(Chip Type)
[]	Show Message
V	Auto Detect Mouse Up Event
Î	Add Footprint
	Close

Add Foot (ePM)

- 1.26 Da clic en **play** para detectar los componentes
- 1.27 Selecciona los pad del componente de cada número de parte

1.28 Cuando ya todos los números de parte se generan da clic en **Close**

Footprint N Package N	
All Apply : Check Rotat	
✓ Location ☐ Package Bo ☐ Show Messag	Rotation dy(Chip Type)
Auto Detect Mo	ouse Up Event
44 4	
	Add Footprint

1.29 das clic en teaching

1.30 Espera a que termine y se muestre una ventana Emergente que mostrará los componentes registrados

Da clic en Close

Multiplicar (ePM)

1.31 Das clic en array

1.32 Seleccione un grupo único de componentes

Multiplicar (ePM)

- 1.33 Verificar el **Array Number**
- 1.34 Das clic en **OK**

1.35 Selecciona Fiducial

1.36 Da clic en el fiducial y después en Generate y cuando termines en close

1.37 Damos clic en exportar

1.38 Seleciona **SAKI Standard** y **Export**

