Исследование магнитооптических свойств теллуритных стёкол

Работу выполнили:

Сарафанов Ф.Г., Платонова М.В., Геликонова В.Г.

Научный руководитель:

Яковлев А.И.

Нижний Новгород - 2017

Цели и актуальность

Цели

- Исследовать магнитооптические свойства теллуритных стёкол
- Определить материальную константу постоянную Верде
- Обработать результаты

Актуальность

- Теллуритные стекла обладают оптической активностью и могут быть использованы в качестве магнитооптического материала в изоляторах и вращателях Фарадея
- Возможность изготовления образцов с большой апертурой
- Возможность изменять постоянную Верде, меняя состав стекол

Понятие поляризации

Для электромагнитных волн вектора \vec{E} и \vec{B} перпендикулярны друг другу и вектору скорости распространения волны \vec{V}

Поляризация - характеристика движения вектора \vec{E}

Волна называется **линейно поляризованной**, если разность фаз амплитуд \vec{E} и \vec{B} равна $\pi+\pi \mathbf{k}$ и **эллиптически поляризованной** во всех остальных случаях.

Круговая поляризация - вариант эллиптической, при котором $\phi = \frac{\pi}{2}$ Зависимость напряженности поля

$$\begin{cases} E_{x} = E_{1} \cos \left(-kz + \omega t + \phi_{1}\right) \\ E_{y} = E_{2} \cos \left(-kz + \omega t + \phi_{2}\right) \\ E_{z} = 0 \end{cases}$$
 (1)

Понятие двулучепреломления

Эффект двулучепреломления наблюдается в анизотропных средах (в нашей работе - теллуритных стеклах). В связи с существованием эллипсоида преломления волна при прохождении через среду распадается на две: сферическую (обыкновенную) и эллипсоидальную (необыкновенную).

$$v_{1,2} = \frac{c}{V_{1,2}}$$

Вращатель и фильтр Фарадея

Вращатель Фарадея - вещество, способное вращать плоскость поляризации в магнитном поле. **Изолятор Фарадея** - вещество, поворачивающее плоскость поляризации на $\frac{\pi}{4}$. В нашей работе вращателями Фарадея являются теллуритные стекла.

или фильтр Фарадея

5/10

2 – поляризатор

Материальная константа: постоянная Верде

V – постоянная Верде – физическая величина, характеризующая угол, на который повернется плоскость поляризации при данных длине образца и магнитном поле:

$$\Theta = V \int B(x) dx \tag{2}$$

где Θ – угол, на который поворачивается плоскость поляризации.

Схема установки

- 1 диодный лазер
 - $\lambda_1=531$ нм,
 - $\lambda_2=658$ нм,
 - $\lambda_3=1064$ нм
- 2 поляризатор

- **3** магнит
- 4 призма Глана
- **5** фильтр
- **6** камера
- **7** образец

Результаты эксперимента

Ллина образца при к-й плоскость поляризации повернулась бы на $\frac{\pi}{a}$ —

Выводы

В ходе этого эксперимента мы

- исследовали магнитооптические свойства теллуритных стекол
- определили материальную константу постоянную Верде
- определили лучший и худший образец
- определили длину образца, при к-й теллуритное стекло стало бы изолятором Фарадея

Спасибо за внимание!

Презентация подготовлена в издательской системе LaTeX с использованием пакетов PGF/TikZ и Beamer