Δυαδικά νευρωνικά δίκτυα για τυπωμένα ηλεκτρονικά

Παναγιώτης Παπανικολάου

7 Ιουλίου 2023

Εισαγωγή

Τυπωμένα ηλεκτρονικά 🖶 📑

Κανονική εκτύπωση με ειδικά μελάνια

Τυπωμένα ηλεκτρονικά 🖶 📑

- Ντένες
- Αισθητήρες
- LED
- Transistors
- Νπαταρίες
- Ηλιακά πάνελ

Τυπωμένα ηλεκτρονικά 🖶 📑

- ▶ Πολύ φτηνά 👍
- Πολύ μεγάλη έκταση/κατανάλωση

Ubiquitous computing

Υπολογιστικά στοιχεία **στα πάντα.**

Εκτυπωμένο machine learning

- Νολλές εφαρμογές classification
- Δύσκολα υλοποιήσιμο

Δυαδικά νευρωνικά δίκτυα(ΒΝΝ)

- $lackbox{ Weights/activations } \in \{-1,1\}$
- ▶ 1 bit quantization

Δυαδικά νευρωνικά δίκτυα(ΒΝΝ)

 ${\tt Multiply-accumulate} \, \to \, {\tt XNOR-popcount}$

- Χαμηλές απαιτήσεις 👍
- 🕨 Λιγότερο αξιόπιστα 📭

Προηγούμενες εργασίες

- Ναλογικοί νευρώνες
- ▶ Bespoke decision trees, SVMs
- Bespoke approximate MLPs
- Stochastic computing
- Sea of gates

Στόχος 🔘

Εξέταση ΒΝΝ ως προς την υποστήριξη τυπωμένου ΜL

Υλοποίηση framework για αυτόματη δημιουργία τυπωμένου BNN από dataset

Framework

Datasets

- ▶ Cardio 🂝
- ▶ GasId 👱
- ▶ Pendigits 🗹
- ► HAR 🕏
- ► Redwine ¶
- ▶ Whitewine ¶

Models

Dataset	full precision	BNN	TNN	MLPC
cardio	92	88	90	88
gasId	90	81	88	-
Har	74	51	52	-
pendigits	99	87	92	94
redwine	60	54	58	56
whitewine	57	51	50	54

Παράλληλη υλοποίηση

1. Χωρισμένα θετικά/αρνητικά στοιχεία

Παράλληλη υλοποίηση

2. Ενιαίο άθροισμα

Παράλληλη υλοποίηση

