

BRAIN TUMOR RADIOGENOMIC CLASSIFICATION - AN ADAPTED SWIN TRANSFORMER APPROACH

By

M. Satya Sai Teja (Enrolment No. 20/11/EC/011)

under the guidance of

Dr. Anupama Namburu, School of Engineering, Jawaharlal Nehru University, Delhi

OVERVIEW

- Introduction
- Acknowledgement
- Objective
- Tools and Technologies
- Methodology

- Swin-T Architecture
- Results
- Novelty
- Conclusion
- References

INTRODUCTION

- Glioblastoma is a common and deadly type of brain cancer in adults.
- This aggressive cancer has a poor prognosis, making treatment very challenging.
- To understand its genetics, doctors need to perform surgery to get a tissue sample.
- Analyzing the genetic characterization of the tumor through these invasive surgical methods take several weeks.
- Development of an accurate method to predict the genetics of cancer through radiogenomics, refines the type of therapy required.

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to everyone who supported me this project:

- Dr. Anupama Namburu, for her invaluable guidance, insightful feedback, and encouragement throughout this study.
- Sai Sivakesh and Pravith Potluri, for their constructive discussions and suggestions.
- RSNA-MICCAI organizations, for their collaborative effort in formulating the problem statement, organizing the challenge, and providing the BraTS 2021 dataset.

OBJECTIVE

- Genetic sequence O6-Methylguanine-DNA-Methyltransferase (MGMT) promoter methylation acts favourably for prognosis and responsiveness to chemotherapy.
- Develop a predictive model, using the techniques from Computer Vision, Machine Learning, Deep Learning and Radiogenomics.
- By training and testing this model with MRI (Magnetic Resonance Imaging) scans, we estimate the probability of MGMT promoter methylation.
- Improve treatment decision making and enhance patient outcomes.

TOOLS AND TECHNOLOGIES

TOOLS

- Python
- Pandas
- Numpy
- OpenCV

- Pydicom
- Pytorch
- Scikit-learn
- Seaborn

TECHNOLOGIES

- Radiogenomics
- Computer Vision
- Machine Learning
- Deep Learning
- Swin Transformer

METHODOLOGY

PHASE 1

- Visualization
- Analysis
- Preprocessing
- Augmentation

PHASE 2

- Data Loading
- Dataset Retrieval
- Modelling
- Training

PHASE 3

- Optimization
- Prediction
- Evalution
- Submission

METHODOLOGY

```
Training/Validation/Testing
     -- FLAIR
       Image-2.dcm
     - T1wCE
       Image-2.dcm
```

BraTS21ID, MGMT_value 00001,0.5 00013,0.5 00015,0.5 etc.

SWIN-T ARCHITECTURE

original transformer

vision transformer

SWIN-T ARCHITECTURE

Architecture of Swin-T

Transformer Block

SWIN-T ARCHITECTURE

IMPLEMENTATION

- Convert the loaded image to sequence of patches
- Patch Embeddings
- Positional Encoding
- Transformer Encoder
- Token Classification
- Training and Fine-Tuning
- Evaluation

0 2 3 5 6	1 0 1
3 5 6	0
5	1
6	-
	1
1005	1
1007	1
1008	1
1009	0
	0
	1009 1010

df

after splitting df in 80:20 ratio

df_valid


```
df_train['BraTS21ID_full'][481]

'00481'

df_train['FLAIR'][481]

'../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/00481/FLAIR/'
```

dataframe manipulation for easy access of the images from each BraTS21_ID folder

<pre>df_valid.head()</pre>						
raTS21ID	MGMT_value	BraTS21ID_full	FLAIR	T1w	T1wCE	T2w
563	0	00563	/input/rsna- miccai-brain- tumor- radiogenomic	/input/rsna- miccai-brain- tumor- radiogenomic	/input/rsna- miccai-brain- tumor- radiogenomic	/input/rsna- miccai-brain- tumor- radiogenomic
195	0	00195	/input/rsna- miccai-brain- tumor- radiogenomic	/input/rsna- miccai-brain- tumor- radiogenomic	/input/rsna- miccai-brain- tumor- radiogenomic	/input/rsna- miccai-brain- tumor- radiogenomic
28	1	00028	/input/rsna- miccai-brain- tumor- radiogenomic	/input/rsna- miccai-brain- tumor- radiogenomic	/input/rsna- miccai-brain- tumor- radiogenomic	/input/rsna- miccai-brain- tumor- radiogenomic
608	1	00608	/input/rsna- miccai-brain- tumor- radiogenomic	/input/rsna- miccai-brain- tumor- radiogenomic	/input/rsna- miccai-brain- tumor- radiogenomic	/input/rsna- miccai-brain- tumor- radiogenomic
21	0	00021	/input/rsna- miccai-brain- tumor- radiogenomic	/input/rsna- miccai-brain- tumor- radiogenomic	/input/rsna- miccai-brain- tumor- radiogenomic	/input/rsna- miccai-brain- tumor- radiogenomic

df_valid

Visualisation of different MRI types (FLAIR, T1w, T1wCE, T2w)

BraTS21_ID (478)

BraTS21_ID (551)

apply voit_lut

```
a = load_dicom_images_3d("00481")
print(a.shape)
print(np.min(a), np.max(a), np.mean(a), np.median(a))

(1, 256, 256, 64)
0.0 1.0 0.05419003281395742 0.00012306291639827978
```


Parametric values

BraTS ipynb Optimizer Batch Depth Patch Learning Epochs Patience version sizeembedding (VIT Model) Adam0.00110 10 Linear - version 2 projection 3 (Swin VIT Adam0.0013 Linear Model) projection - version 1 (Swin VIT 2 12 0.0015 AdamConv2D Modelprojection - version 4 (Swin VIT 0.0005 10 10 16 AdamConv2D Model) projection - version 5 (Swin VIT Adam0.0003 15 10 16 Conv2D Model) projection version 21 (Swin VIT Adam0.0002 25 10 16 Conv2D Model) projection version 23

Validation ensemble AUC and accuracy after prediction

```
df_valid["MGMT_pred"] = 0
 for m, mtype in zip(modelfiles, mri_types):
      pred = predict(m, df_valid, mtype, "train")
      df_valid["MGMT_pred"] += pred["MGMT_value"]
  df_valid["MGMT_pred"] /= len(modelfiles)
  auc = roc_auc_score(df_valid["MGMT_value"], df_valid["MGMT_pred"])
  print(f"Validation Ensemble AUC: {auc:.4f}")
  predicted_labels = (df_valid["MGMT_pred"] >= 0.5).astype(int)
  actual_labels = df_valid["MGMT_value"]
  accuracy = accuracy_score(actual_labels, predicted_labels)
  print(f"Validation Ensemble Accuracy: {accuracy:.4f}")
Predict: FLAIR-best.pth FLAIR (117, 8)
Predict: T1w-best.pth T1w (117, 8)
Predict: T1wCE-best.pth T1wCE (117, 8)
Predict: T2w-best.pth T2w (117, 8)
Validation Ensemble AUC: 0.6693
Validation Ensemble Accuracy: 0.6714
```


ROC curve obtained on df_valid

df_valid[MGMT_pred]

submission[MGMT_value]

Submiss	ion and Description	Private Score (i)	Public Score ①
©	BraTS (VIT Model) - Version 2 Succeeded (after deadline) - 1mo ago - BraTS (VIT Model) Versio	0.44390	0.43208
©	BraTS (Swin VIT Model) - Version 1 Succeeded (after deadline) · 1mo ago · Notebook BraTS (Swin VIT	0.58305	0.56421
€	BraTS (Swin VIT Model) - Version 4 Succeeded (after deadline) · 1mo ago · Notebook BraTS (Swin VIT	0.59593	0.58694

Submiss	sion and Description	Private Score (i)	Public Score (i)	
©	BraTS (Swin VIT Model) - Version 5 Succeeded (after deadline) - 1mo ago - Notebook BraTS (Swin VIT	0.61586	0.62896	
©	BraTS (Swin VIT Model) - Version 21 Succeeded (after deadline) - 13d ago - Notebook BraTS (Swin VIT	0.61503	0.61945	
€	BraTS (Swin VIT Model) - Version 23 Succeeded (after deadline) · 13d ago · Notebook BraTS (Swin VIT	0.61125	0.62262	

Initial submissions and poor performance

Best submissions sorted based on private scores

#	Δ	Team	Members		Score
1	- 1039	[Tunisia.ai] I love this co mpetition			0.62174
2	- 595	Minh Phan		@	0.61881
3	- 676	Cedric Soares			0.61732
4	- 469	Leaky Folds		(0.61562

Surpassed the fourth best submission by "Leaky Folds" with a private AUC score of 0.61586

NOVELTY

- Introduction of the latest computer vision techniques, such as Vision Transformers and their variants, in the field of brain tumor radiogenomics.
- Development of a transformer model that incorporates patch embedding and positional embedding layers from the Vision Transformer.
- Incorporation of Shifted Windows and a hierarchical structure from the Swin Transformer, resulting in a hybrid model that combines elements of both the Vision Transformer and Swin Transformer.

CONCLUSION

- Submission was evaluated based on the area under the ROC curve between the predicted probability and the observed target.
- Obtained an AUC score of 0.61586
- Predict genetic subtypes of glioblastoma from MRI scans and reduce invasive procedures to enhance patient outcomes.
- Represents a significant advancement in precision medicine for neuro-oncology

REFERENCES

- Radiogenomic classification for MGMT promoter methylation status
- Structural and Advanced Imaging in predicting MGMT promoter methylation
- RSNA MICCAI Brain Tumor Radiogenomic Classification Challenge
- **Q** Vision Transformer Model
- EfficientNet3D Brain Tumor Radiogenomic Classification

THANK YOU

Presentation by M. Satya Sai Teja