Aula 3 - Assintotas e Limites no infinito

Muller Moreira S Lopes

Universidade Federal do Rio Grande do Norte

21 de agosto de 2023

• Seja o exemplo apresentado na aula passada:

Calcule o limite abaixo, se existir:

• A operação de limite estuda para qual valor a função f(x) se aproxima a medida em que valores mais próximos de um valor predeterminado (no caso 2) são tomados.

- Um limite existe se, e somente se, os limites laterais convergirem para o mesmo valor.
- O valor de f(x) assume valores cada vez mais altos a medida em que $x \to 0^+$. Desta forma, diz-se que o limite à direita **tende ao infinito**:

$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$

• Analogamente, o limite à esquerda tende para o "menos infinito":

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

• Portanto o limite não existe.

- Um limite existe se, e somente se, os limites laterais convergirem para o mesmo valor.
- O valor de f(x) assume valores cada vez mais altos a medida em que $x \to 0^+$. Desta forma, diz-se que o limite à direita **tende ao infinito**:

$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$

• Analogamente, o limite à esquerda tende para o "menos infinito":

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

• Portanto o limite não existe.

- Um limite existe se, e somente se, os limites laterais convergirem para o mesmo valor.
- O valor de f(x) assume valores cada vez mais altos a medida em que $x \to 0^+$. Desta forma, diz-se que o limite à direita **tende ao infinito**:

$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$

Analogamente, o limite à esquerda tende para o "menos infinito":

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

Portanto o limite n\u00e3o existe.

- Um limite existe se, e somente se, os limites laterais convergirem para o mesmo valor.
- O valor de f(x) assume valores cada vez mais altos a medida em que $x \to 0^+$. Desta forma, diz-se que o limite à direita **tende ao infinito**:

$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$

Analogamente, o limite à esquerda tende para o "menos infinito":

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

Portanto o limite n\u00e3o existe.

Assíntotas

• Neste exemplo, a função f(x) se aproxima indefinidamente da reta vertical x=0 a medida em que $x\to 0^+$ e $x\to 0^-$, sem cruzá-la na reta x=0.

Definicão

A reta vertical x=a é uma assíntota vertical da função f(x) desde que ac menos um dos itens a seguir sejam satisfeitos:

1
$$\lim_{x \to a^+} f(x) = \infty$$

$$\lim_{x \to a^-} f(x) = \infty$$
 2
$$\lim_{x \to a^+} f(x) = -\infty$$

$$\lim_{x \to a^-} f(x) = -\infty$$

• Neste exemplo, a reta x = 0 é uma assíntota vertical de f(x), satisfazendo os itens 1 e 4.

Assíntotas

• Neste exemplo, a função f(x) se aproxima indefinidamente da reta vertical x=0 a medida em que $x\to 0^+$ e $x\to 0^-$, sem cruzá-la na reta x=0.

Definição

A reta vertical x=a é uma assíntota vertical da função f(x) desde que ao menos um dos itens a seguir sejam satisfeitos: ou seja, ir pro infinito

1
$$\lim_{x \to a^+} f(x) = \infty$$

$$\lim_{x \to a^-} f(x) = \infty$$
 2
$$\lim_{x \to a^+} f(x) = -\infty$$

$$\lim_{x \to a^-} f(x) = -\infty$$

• Neste exemplo, a reta x = 0 é uma assíntota vertical de f(x), satisfazendo os itens 1 e 4.

Assíntotas verticais

• Exemplos de funções com assíntotas verticais:

$$f(x) = \frac{x}{x^2 - 9}$$

Assíntotas em $x=\pm 3$

$$f(x) = tg(x)$$

Infinitas assíntotas em $x=\frac{\pi}{2}+k\pi$, em que $k\in\mathbb{Z}.$

• Seja a função:

• A função f(x) se aproxima de zero a medida em que valores cada vez mais altos de x são usados.

Esta tendência é expressada pelo limite

$$\lim_{x \to \infty} f(x) = 0$$

• Seja a função:

$$f(x) = e^{-x}$$

• A função f(x) se aproxima de zero a medida em que valores cada vez mais altos de x são usados.

Esta tendência é expressada pelo limite:

$$\lim_{x \to \infty} f(x) = 0$$

- Observando o gráfico da função $f(x)=e^{-x}$, percebe-se que a reta horizontal y=0 se comporta exatamente como uma assíntota de f(x).
- Assíntotas horizontais são definidas ao estudar como a função se comporta ao tender ao infinito.

Definicão

A reta horizontal y=b é uma assíntota horizontal da função f(x) desde que ao menos um dos casos a seguir sejam satisfeitos:

$$\lim_{x\to\infty}f(x)=b \qquad \text{ ou } \qquad \lim_{x\to-\infty}f(x)=b$$

• Neste exemplo, a reta y=0 é uma assíntota horizontal de f(x), satisfazendo o item 1.

- Observando o gráfico da função $f(x)=e^{-x}$, percebe-se que a reta horizontal y=0 se comporta exatamente como uma assíntota de f(x).
- Assíntotas horizontais são definidas ao estudar como a função se comporta ao tender ao infinito.

Definição

A reta horizontal y=b é uma assíntota horizontal da função f(x) desde que ao menos um dos casos a seguir sejam satisfeitos:

$$\lim_{x \to \infty} f(x) = b \qquad \text{ ou } \qquad \lim_{x \to -\infty} f(x) = b$$

• Neste exemplo, a reta y=0 é uma assíntota horizontal de f(x), satisfazendo o item 1.

Encontando Assíntotas

As assíntotas de uma função podem ser identificadas sem a necessidade de se olhar seu gráfico.

- Assíntotas verticais:
 - De forma geral, ocorrem nos valores de x em que a função realiza uma operação inválida, mas a função é válida em valores próximos a x. Ex: $\frac{1}{6}$, $\ln(0)$.
 - Além disso, o ponto deve satisfazer uma das condições da definição de assíntota vertical.
- Assíntotas horizontais:
 - Obtidas ao estudar os limites:

$$\lim_{x \to \infty} f(x)$$

$$\lim_{x \to -\infty} f(x)$$

• Assíntotas horizontais existem se um destes limites tendem para um valor diferente de $\pm\infty$.

Encontando Assíntotas

As assíntotas de uma função podem ser identificadas sem a necessidade de se olhar seu gráfico.

- Assíntotas verticais:
 - De forma geral, ocorrem nos valores de x em que a função realiza uma operação inválida, mas a função é válida em valores próximos a x. Ex: $\frac{1}{0}$, $\ln(0)$.
 - Além disso, o ponto deve satisfazer uma das condições da definição de assíntota vertical.
- Assíntotas horizontais:
 - Obtidas ao estudar os limites:

• Assíntotas horizontais existem se um destes limites tendem para um valor diferente de $\pm\infty$.

ullet Em alguns casos, uma função f(x) pode se aproximar de uma reta inclinada.

Definicão

A reta y=ax+b é uma assíntota da função f(x) desde que ao menos um dos itens a seguir sejam satisfeitos:

$$\lim_{x \to \infty} [f(x) - (ax+b)] = 0 \qquad \text{ou} \qquad \lim_{x \to -\infty} [f(x) - (ax+b)] = 0$$

• Em alguns casos, uma função f(x) pode se aproximar de uma reta inclinada.

Definição

A reta y=ax+b é uma assíntota da função f(x) desde que ao menos um dos itens a seguir sejam satisfeitos:

$$\lim_{x\to\infty}\left[f(x)-(ax+b)\right]=0 \qquad \text{ ou } \qquad \lim_{x\to-\infty}\left[f(x)-(ax+b)\right]=0$$

Exemplo

A reta y=2x é uma assíntota da função $f(x)=\frac{2x^3}{x^2+4}$ pois o limite:

$$\lim_{x \to \infty} \left[\frac{2x^3}{x^2 + 4} - 2x \right] = \lim_{x \to \infty} \frac{2x^3 - 2x^3 - 8x}{x^2 + 4} = \lim_{x \to \infty} \frac{-8x}{x^2 + 4}$$

$$\lim_{x \to \infty} \left[\frac{2x^3}{x^2 + 4} - 2x \right] = \lim_{x \to \infty} \frac{-8x}{x^2 + 4} \frac{\frac{1}{x^2}}{\frac{1}{x^2}} = \lim_{x \to \infty} \frac{\frac{-8}{x}}{1 + \frac{4}{x^2}} = \frac{\frac{-8}{\infty}}{1 + \frac{4}{\infty}}$$

$$\lim_{x \to \infty} \left[\frac{2x^3}{x^2 + 4} - 2x \right] = \frac{-0}{1 + 0} = 0$$

Analogamente $\lim_{x\to -\infty} \left[\frac{2x^3}{x^2+4}-2x\right]=0$. Portanto, a reta y=2x é uma assíntota de f(x) tanto no ∞ quanto no $-\infty$.

Exemplo

A reta y=2x é uma assíntota da função $f(x)=\frac{2x^3}{x^2+4}$ pois o limite:

$$\lim_{x \to \infty} \left[\frac{2x^3}{x^2 + 4} - 2x \right] = \lim_{x \to \infty} \frac{2x^3 - 2x^3 - 8x}{x^2 + 4} = \lim_{x \to \infty} \frac{-8x}{x^2 + 4}$$

$$\lim_{x \to \infty} \left[\frac{2x^3}{x^2 + 4} - 2x \right] = \lim_{x \to \infty} \frac{-8x}{x^2 + 4} \frac{\frac{1}{x^2}}{\frac{1}{x^2}} = \lim_{x \to \infty} \frac{\frac{-8}{x}}{1 + \frac{4}{x^2}} = \frac{\frac{-8}{\infty}}{1 + \frac{4}{\infty}}$$

$$\lim_{x \to \infty} \left[\frac{2x^3}{x^2 + 4} - 2x \right] = \frac{-0}{1 + 0} = 0$$

Analogamente $\lim_{x\to -\infty}\left[\frac{2x^3}{x^2+4}-2x\right]=0$. Portanto, a reta y=2x é uma assíntota de f(x) tanto no ∞ quanto no $-\infty$.

- f(x) em azul.
- Assíntota y = 2x em vermelho.

vou meio que ignorar esse assunto

Encontre as assíntotas da função:

$$f(x) = \frac{x}{x^2 - 9}$$

- Assíntotas verticais:
 - A função realiza uma divisão por zero quando $x = \pm 3$.
 - Estudando os limites laterais quando $x \to 3$:

$$\lim_{x \to 3^+} \frac{x}{x^2 - 9} = \frac{\lim_{x \to 3^+} x}{\lim_{x \to 3^+} (x^2 - 9)} = \frac{3}{9^+ - 9} = \frac{3}{0^+} = \infty$$

Nota:

Nesta notação, 9^+ significa que o valor tende a 9 pela direita, logo "é um pouco maior" do que 9. Isto serve para lidar com possíveis trocas de sinal que podem ocorrer nestas subtrações, como veremos nos próximos limites laterais.

Encontre as assíntotas da função:

$$f(x) = \frac{x}{x^2 - 9}$$

- Assíntotas verticais:
 - A função realiza uma divisão por zero quando $x=\pm 3$.
 - Estudando os limites laterais quando $x \to 3$:

$$\lim_{x \to 3^+} \frac{x}{x^2 - 9} = \frac{\lim_{x \to 3^+} x}{\lim_{x \to 3^+} (x^2 - 9)} = \frac{3}{9^+ - 9} = \frac{3}{0^+} = \infty$$

Nota:

Nesta notação, 9^+ significa que o valor tende a 9 pela direita, logo "é um pouco maior" do que 9. Isto serve para lidar com possíveis trocas de sinal que podem ocorrer nestas subtrações, como veremos nos próximos limites laterais.

• Limite lateral quando $x \to 3^-$

$$\lim_{x \to 3^-} \frac{x}{x^2 - 9} = \frac{\lim_{x \to 3^-} x}{\lim_{x \to 3^-} (x^2 - 9)} = \frac{3}{9^- - 9} = \frac{3}{0^-} = -\infty$$

• Analogamente, os limites laterais quando $x \to -3$ são:

$$\lim_{x \to -3^+} \frac{x}{x^2 - 9} = \frac{\lim_{x \to -3^+} x}{\lim_{x \to -3^+} (x^2 - 9)} = \frac{-3}{9^+ - 9} = \frac{-3}{0^+} = -\infty$$

$$\lim_{x \to -3^{-}} \frac{x}{x^2 - 9} = \frac{\lim_{x \to -3^{-}} x}{\lim_{x \to -3^{-}} (x^2 - 9)} = \frac{-3}{9^{-} - 9} = \frac{-3}{0^{-}} = \infty$$

• Portanto, f(x) possui assíntotas tanto em x=3 quanto em x=-3.

• Assíntotas horizontais:

Quando $x \to \infty$:

$$\lim_{x \to \infty} \frac{x}{x^2 - 9} = \lim_{x \to \infty} \frac{x}{x^2 - 9} \frac{\frac{1}{x^2}}{\frac{1}{x^2}} = \lim_{x \to \infty} \frac{\frac{1}{x}}{1 - \frac{9}{x^2}} = \frac{0}{1 - \frac{9}{\infty}} = \frac{0}{1 - 0} = 0$$

Quando $x \to -\infty$:

$$\lim_{x \to -\infty} \frac{x}{x^2 - 9} = \lim_{x \to -\infty} \frac{1}{x - \frac{9}{x}} = \frac{1}{-\infty - \frac{9}{-\infty}} = \frac{1}{-\infty + 0} = 0$$

• Logo, a reta y=0 é uma assíntota horizontal quando $x\to\infty$ e quando $x\to-\infty$.

Gráfico da função de exercício

Encontre as assíntotas da função:

$$f(x) = \frac{2x^2}{\sqrt{x^2 - 16}}$$

- Assíntotas verticais:
 - A função realiza uma divisão por zero quando $x=\pm 4$. Além disso, ela não é definida nas regiões em que $\|x\| \leq 4$.
 - Estudando o limite à direita quando $x \to 4$:

$$\lim_{x \to 4^+} \frac{2x^2}{\sqrt{x^2 - 16}} = \left(\lim_{x \to 4^+} 2x^2\right) \left(\lim_{x \to 4^+} \frac{1}{\sqrt{x^2 - 16}}\right) = 32 \times \infty = \infty$$

- Portanto a reta x=4 é uma assíntota da função.
- Neste caso, o limite à esquerda não existe pois a função não é definida na região em que $\|x\| \le 4$.

Encontre as assíntotas da função:

$$f(x) = \frac{2x^2}{\sqrt{x^2 - 16}}$$

- Assíntotas verticais:
 - A função realiza uma divisão por zero quando $x=\pm 4$. Além disso, ela não é definida nas regiões em que $||x|| \le 4$.
 - Estudando o limite à direita quando $x \to 4$:

$$\lim_{x \to 4^+} \frac{2x^2}{\sqrt{x^2 - 16}} = \left(\lim_{x \to 4^+} 2x^2\right) \left(\lim_{x \to 4^+} \frac{1}{\sqrt{x^2 - 16}}\right) = 32 \times \infty = \infty$$

- Portanto a reta x=4 é uma assíntota da função.
- Neste caso, o limite à esquerda não existe pois a função não é definida na região em que $\|x\| \le 4$.

• Analogamente x=-4 também é uma assíntota de f(x), pois:

$$\lim_{x \to -4^-} \frac{2x^2}{\sqrt{x^2 - 16}} = \left(\lim_{x \to -4^-} 2x^2\right) \left(\lim_{x \to -4^-} \frac{1}{\sqrt{x^2 - 16}}\right) = 32 \times \infty = \infty$$

• Assíntotas horizontais: Como $x \neq 0$, temos:

$$\lim_{x \to \infty} \frac{2x^2}{\sqrt{x^2 - 16}} = \lim_{x \to \infty} \frac{2x^2}{\sqrt{x^2 - 16}} \frac{\sqrt{\frac{1}{x^2}}}{\sqrt{\frac{1}{x^2}}}$$

$$\lim_{x \to \infty} \frac{2x^2}{\sqrt{x^2 - 16}} = \lim_{x \to \infty} \frac{\frac{2x^2}{|x|}}{\sqrt{1 - \frac{16}{x^2}}}$$

• Analogamente x=-4 também é uma assíntota de f(x), pois:

$$\lim_{x \to -4^-} \frac{2x^2}{\sqrt{x^2 - 16}} = \left(\lim_{x \to -4^-} 2x^2\right) \left(\lim_{x \to -4^-} \frac{1}{\sqrt{x^2 - 16}}\right) = 32 \times \infty = \infty$$

• Assíntotas horizontais: Como $x \neq 0$, temos:

$$\lim_{x \to \infty} \frac{2x^2}{\sqrt{x^2 - 16}} = \lim_{x \to \infty} \frac{2x^2}{\sqrt{x^2 - 16}} \frac{\sqrt{\frac{1}{x^2}}}{\sqrt{\frac{1}{x^2}}}$$

$$\lim_{x \to \infty} \frac{2x^2}{\sqrt{x^2 - 16}} = \lim_{x \to \infty} \frac{\frac{2x^2}{|x|}}{\sqrt{1 - \frac{16}{x^2}}}$$

• Como $x \to \infty$ implica que x > 0, temos pela definição de módulo:

$$\lim_{x \to \infty} \frac{2x^2}{\sqrt{x^2 - 16}} = \lim_{x \to \infty} \frac{\frac{2x^2}{x}}{\sqrt{1 - \frac{16}{x^2}}}$$

$$\lim_{x \to \infty} \frac{2x^2}{\sqrt{x^2 - 16}} = \lim_{x \to \infty} \frac{2x}{\sqrt{1 - \frac{16}{x^2}}}$$

Aplicando os limites:

$$\lim_{x \to \infty} \frac{2x^2}{\sqrt{x^2 - 16}} = \frac{\lim_{x \to \infty} 2x}{\lim_{x \to \infty} \sqrt{1 - \frac{16}{x^2}}} = \frac{\lim_{x \to \infty} 2x}{1}$$

• De forma não intencional, uma assíntota oblíqua foi identificada.

• Como $x \to \infty$ implica que x > 0, temos pela definição de módulo:

$$\lim_{x \to \infty} \frac{2x^2}{\sqrt{x^2 - 16}} = \lim_{x \to \infty} \frac{\frac{2x^2}{x}}{\sqrt{1 - \frac{16}{x^2}}}$$

$$\lim_{x \to \infty} \frac{2x^2}{\sqrt{x^2 - 16}} = \lim_{x \to \infty} \frac{2x}{\sqrt{1 - \frac{16}{x^2}}}$$

Aplicando os limites:

$$\lim_{x \to \infty} \frac{2x^2}{\sqrt{x^2 - 16}} = \frac{\lim_{x \to \infty} 2x}{\lim_{x \to \infty} \sqrt{1 - \frac{16}{x^2}}} = \frac{\lim_{x \to \infty} 2x}{1}$$

• De forma não intencional, uma assíntota oblíqua foi identificada.

• Portanto, a função f(x) não possui uma assíntota horizontal quando $x \to \infty$, pois:

$$\lim_{x \to \infty} \frac{2x^2}{\sqrt{x^2 - 16}} = \lim_{x \to \infty} 2x = \infty$$

• Analogamente para $x \to -\infty$:

$$\lim_{x \to -\infty} \frac{2x^2}{\sqrt{x^2 - 16}} = \lim_{x \to -\infty} \frac{\frac{2x^2}{-x}}{\sqrt{1 - \frac{16}{x^2}}}$$

$$\lim_{x \to -\infty} \frac{2x^2}{\sqrt{x^2 - 16}} = \lim_{x \to -\infty} \frac{-2x}{\sqrt{1 - \frac{16}{x^2}}} = \lim_{x \to -\infty} -2x = \infty$$

- f(x) também não possui assíntotas horizontais quando $x \to -\infty$.
- Outra assíntota oblíqua foi identificada.

Gráfico da função de exercício

Curiosidade

- A função f(x) se comporta como a reta y=2x quando valores positivos muito altos de x são usados.
- Assim, a reta y=2x é uma assíntota oblíqua de f(x) quando $x\to\infty$.
- Analogamente, a reta y=-2x é uma assíntota oblíqua de f(x) quando $x\to -\infty.$

Curiosidade

- A função f(x) se comporta como a reta y=2x quando valores positivos muito altos de x são usados.
- Assim, a reta y=2x é uma assíntota oblíqua de f(x) quando $x \to \infty$.
- Analogamente, a reta y=-2x é uma assíntota oblíqua de f(x) quando $x\to -\infty.$

Curiosidade

- f(x) em azul.
- Assíntota y = 2x em vermelho.
- Assíntota y = -2x em laranja.

