INTRODUCTION TO CATEGORY THEORY

ROBERT CARDONA, MASSY KHOSHBIN, AND SIAVASH MORTEZAVI

Abstract. Module Theory.

0. MATH 697 Homework Zero

Exercise 0.1. (DF §10.2 Theorem 4): Prove Theorem 4 (Isomorphism Theorems):

(1) (The First Isomorphism Theorem for Modules) Let M,N be R-modules and let $\varphi:M\to N$ be an R-modules homomorphism. Then $\ker\varphi$ is a submodule of M and $M/\ker\varphi\cong\varphi(M)$.

Proof. Let M,N be R-modules and let $\varphi:M\to N$ be an R-modules homomorphism. Then by definition $\varphi(x+y)=\varphi(x)+\varphi(y)$ and $\varphi(rx)=r\varphi(x)$ for all $x,y\in M,\ r\in R$. We want to show that $\ker\varphi=\{m\in M:\varphi(m)=0\}$ is a submodule. Observe that since M is a module then M is an abelian group by definition so there exists $0\in M$ such that m+0=m for all $m\in M$. In particular $\varphi(0)=\varphi(0+0)=\varphi(0)+\varphi(0)$ implying $\varphi(0)=0$. Conclude that $0\in\ker\varphi\neq\emptyset$. Now let $r\in R,\ x,y\in\ker\varphi$. Observe that $\varphi(x+ry)=\varphi(x)+\varphi(ry)=\varphi(x)+r\varphi(y)=0+r\cdot 0=0+0=0$. Hence $x+ry\in\ker\varphi$. Conclude by the submodule criterion that $\ker\varphi$ is in fact a submodule.

Now define $\Phi: M/\ker \varphi \to \varphi(M)$ by $\Phi(m + \ker \varphi) = \varphi(m)$. We want to show that this mapping is a well-defined bijective homomorphism. We first show well-definedness. Suppose $m + \ker \varphi = m' + \ker \varphi$ it follows by property of cosets that $m - m' \in \ker \varphi$, in particular $\varphi(m - m') = \varphi(m) - \varphi(m') = 0$ and hence $\varphi(m) = \varphi(m')$. But since $\varphi(m) = \Phi(m + \ker \varphi)$ and $\varphi(m') = \Phi(m' + \ker \varphi)$ we have $\Phi(m + \ker \varphi) = \Phi(m' + \ker \varphi)$. Conclude that Φ is in fact well-defined.

Suppose that $\Phi(m + \ker \varphi) = \Phi(m' + \ker \varphi)$. Then it follows that $\varphi(m) = \varphi(m')$ and so $\varphi(m - m') = 0$ and so $m - m' \in \ker \varphi$. By property of cosets it follows that $m + \ker \varphi = m' + \ker \varphi$ and hence Φ is injective.

Let $n \in \varphi(M)$. Then by definition of image of φ there exists $m \in M$ such that $n = \varphi(m)$. It is immediate that $m + \ker \varphi \in M/\ker \varphi$ and we can conclude that Φ is surjective.

Now we must show that Φ is an R-module homomorphism. Let $x,y\in M/\ker\varphi$ where $x=m+\ker\varphi$ and $y=m'+\ker\varphi$ for some $m,m'\in M$ and let $r\in R$. Observe that

$$\Phi(x+y) = \Phi(m+m'+\ker\varphi)$$

$$= \varphi(m+m')$$

$$= \varphi(m) + \varphi(m')$$

$$= \Phi(m+\ker\varphi) + \Phi(m'+\ker\varphi)$$

$$= \Phi(x) + \Phi(y)$$

and

$$\Phi(rx) = \Phi(r(m + \ker \varphi))$$

$$= \Phi(rm + \ker \varphi)$$

$$= \varphi(rm)$$

$$= r\varphi(m)$$

$$= r\Phi(m + \ker \varphi)$$

$$= r\Phi(x)$$

Hence we have shown that Φ is a well-defined bijective homomorphism and thus we can conclude by definition of R-module isomorphism that $M/\ker \varphi \cong \varphi(M)$.

(2) (The Second Isomorphism Theorem) Let A, B be submodules of the R-module M. Then $(A+B)/B \cong A/(A\cap B)$.

Proof. Define $\varphi: A \to (A+B)/B$ by $\varphi(a) = a+B$. This mapping is clearly well-defined. We want to show that φ is a homomorphism. Let $r \in R$, $a, a' \in A$ and observe that

$$\varphi(a+a') = a+a'+B$$

Date: June 9, 2013.

$$= a + B + a' + B$$
$$= \varphi(a) + \varphi(a')$$

and

$$\varphi(ra) = ra + B$$

$$= r(a + B)$$

$$= r\varphi(a)$$

and so φ is an R-module homomorphism by definition. Observe that $\ker \varphi = \{a \in A : \varphi(a) = 0\} = \{a \in A : a + B = 0\} = \{a \in A : a \in B\} = A \cap B$. Now let $x \in (A+B)/B$ then x = a+b+B for some $a \in A$, $b \in B$. But observe that a+b+B=a+B by absorbption. So φ is immediately surjective. In particular we have $\varphi(A) = (A+B)/B$. Conclude by the First Isomorphism Theorem for Modules that $A/\ker \varphi = A/(A\cap B) \cong (A+B)/B = \varphi(A)$.

(3) (The Third Isomorphism Theorem) Let M be an R-module, and let A and B be submodules of M with $A \subseteq B$. Then $(M/A)/(B/A) \cong M/B$.

Proof. Define $\varphi M/A \to M/B$ by $\varphi(m+A) = m+B$. We need to show φ is well-defined. Suppose m+A=m'+A then $m-m' \in A \subseteq B$ by property of cosets. It also follows that m+B=m'+B. Hence $\varphi(m+A)=m+B=m'+B=\varphi(m'+A)$ and hence φ is well-defined.

Now we must show φ is an R-module homomorphism. Let $m, m' \in M$ and $r \in R$. Observe that

$$\varphi((m+A) + (m'+a)) = \varphi(m+m'+A)$$

$$= m + m' + B$$

$$= (m+B) + (m'+B)$$

$$= \varphi(m+A) + \varphi(m'+A)$$

and

$$\varphi(r(m+A)) = \varphi(rm+A)$$

$$= rm + B$$

$$= r(m+A)$$

$$= r\varphi(m+A)$$

and hence we can conclude by definition that φ is an R-module homomorphism.

Observe that $\ker \varphi = \{x \in M/A : \varphi(x) = 0\} = \{m + A^* \varphi(m + A) = m + B = 0\} = \{m + A : m \in B\} = B/A$. Let $m + B \in M/B$. Clearly $\varphi(m + A) = m + B$ and hence φ is surjective. Now by the First Isomorphism Theorem for Modules we have $(M/A)/\ker \varphi = (M/A)/(B/A) \cong M/B = \varphi(M/A)$.

(4) (The Fourth or Lattice Isomorphism Theorem) Let N be a submodule of the R-module M. There is a bijection between the submodules of M which contain N and the submodules of M/N. The correspondence is given by $A \leftrightarrow A/N$, for all $A \supseteq N$. The correspondence cummutes with the processes of taking sums and intersections (i.e., is a lattice isomorphism between the lattice of submodules of M/N and the lattice of submodules of M which contain N).

Proof. Let N be a submodule of M. Define $S = \{K : K \text{ is a submodule of } M, N \subseteq K\}$, $T = \{L : L \text{ is a submodule of } M/N\}$. Define $\varphi : S \to T$ by $\varphi(K) = K/N$. We want to show that this mapping is bijective.

Let $K_1, K_2 \in S$ and suppose that $\varphi(K_1) = \varphi(K_2)$. Then $K_1/N = K_2/N$. We want to show that $K_1 = K_2$. Let $x \in K_1$, then $x + N \in K_1/N = K_2/N$, in particular there exists $y \in K_2$ such that x + N = y + N. By property of cosets it follows that $x - y \in N$. But since $N \subseteq K_2$ by construction $x - y \in K_2$. Since K_2 is a submodule of M, it is closed under addition and so $(x - y) + y = x \in K_2$. Conclude that $K_1 \subseteq K_2$. By symmetric argument $K_2 \subseteq K_1$ and hence $K_1 = K_2$. Thus by definition φ is injective.

Let L be a submodule of M/N. Consider the natural projection map $\pi: M \to M/N$ defined by $\pi(m) = m + N$. We want to show that there exists $K \in S$ such that $\varphi(K) = L$. To do this we will show that $\pi^{-1}(L)$ is a submodule of M and that $N \subseteq \pi^{-1}(L)$. Recall that $\pi^{-1}(L) = \{m \in M : \pi(m) \in L\}$. Observe that $0 \in \pi^{-1}(L)$ since $\pi(0) = 0$ and hence $\pi^{-1}(L) \neq \emptyset$. Let $x, y \in \pi^{-1}(L)$ and $r \in R$. Observe that $\pi(x + ry) = \pi(x) + r\pi(y)$. Since $\pi(y) \in L$ by definition and L is a submodule of M/N, it follows that since scalar multiplication is closed $r\pi(y) \in L$. Thus it follows that $\pi(x) + r\pi(y) \in L$ and hence $x + ry \in \pi^{-1}(L)$. Thus by the submodule criterion we can conclude that $\pi^{-1}(L)$ is in fact a submodule. Now let $n \in N$ and observe that $\pi(n) = n + N = 0 + N \in L$ so by definition it follows that $n \in \pi^{-1}(L)$. Conclude that $N \subseteq \pi^{-1}(L)$ and hence φ is surjective.

П

Conclude φ is bijective and result follows.

Exercise 0.2. (DF $\S10.2$ Exercise 1): Use the submodule criterion to show that the kernels and images of R-module homomorphisms are submodules.

MATH 697 3

Proof. Let M, N be R-modules and $\varphi: M \to N$ an R-module homomorphism. Recall that $\ker \varphi = \{m \in M : \varphi(m) = 0\}$ and $\operatorname{im} \varphi = \{n \in N : \text{there exists } m \in M \text{ with } \varphi(m) = n\}.$

Observe that $\varphi(0) = 0$ so $0 \in \ker \varphi \neq \emptyset$. Let $m, m' \in M$, $r \in R$. Now $\varphi(m + rm') = \varphi(m) + r\varphi(m') = 0 + r \cdot 0 = 0 + 0 = 0$. So $m + rm' \in \ker \varphi$. Thus by the submodule criterion $\ker \varphi$ is a submodule.

Observe that $\varphi(0) = 0 \in N$ so $0 \in \operatorname{im} \varphi \neq \emptyset$. Let $n, n' \in N$, $r \in R$. Then there exists $m, m' \in M$ such that $\varphi(m) = n$ and $\varphi(m') = n'$. Now consider n + rn'. $\varphi(m + rm') = \varphi(m) + r\varphi(m') = n + rn'$ so $n + rn' \in \operatorname{im} \varphi$. Conclude by submodule criterion that $\operatorname{im} \varphi$ is in fact a submodule.

Exercise 0.3. (DF $\S10.2$ Exercise 2): Show that the relation "is R-module isomorphic to" is an equivalence relation on any set of R-modules.

Proof. Let X be a set of R-modules.

- Let $M \in X$. Observe that M is isomorphic to M trivially. So relation is reflexive.
- Let $M, N \in X$. Suppose M is isomorphic to N then by definition there exists $\varphi : M \to N$ that is bijective. Immediately we have $\varphi^{-1} : N \to M$ which is also bijective so N is isomorphic to M. By definition the relation is symmetric.
- Let $L, M, N \in X$. Suppose L is isomorphic to M, then by definition there exists $\varphi : L \to M$ a bijective R-module homomorphism. Suppose M is isomorphic to N, then there exists $\Phi : M \to N$ a bijective R-module homomorphism. Observe that $\varphi \circ \Phi : L \to N$ is again a bijective R-module homomorphism by property of composition of mappings. Hence by definition L is isomorphic to N.

Conclude that the relation "is R-module isomorphic to" is an equivalence relation on any set of R-modules.

Exercise 0.4. (DF §10.3 Exercise 3): Give an explicit example of a map from one R-module to another which is a group homomorphism but not an R-module homomorphism.

 $\label{eq:def-def-def-def} Department \ of \ Mathematics, \ California \ State \ University \ Long \ Beach \\ E-mail \ address: \ \texttt{mrrobertcardona@gmail.com} \ \ \text{and} \ \ \texttt{massy255@gmail} \ \ \text{and} \ \ \texttt{siavash.mortezavi@gmail}$