Intelligent Learning and Analysis Systems SS19, Exercise Sheet 2

by Andreas Hene, Niklas Mertens, Richard Palme. Tutor: Maximilian Thiessen, Group 3

May 3, 2019

Exercise 3

Lemma 1

Each bucket has exactly size $w = \begin{bmatrix} \frac{1}{\varepsilon} \end{bmatrix}$. \Rightarrow total number of buckets is

$$\frac{m}{w} = \frac{m}{\lceil 1/\varepsilon \rceil} \le \varepsilon m$$

So the current bucket id is at most εm .

Lemma 2

Proof by induction.

Base Case: Let $b_{\text{current}} = 1$, let $(e, f, \Delta) \in \mathcal{D}$. Since there have been no deletions and no decrementations of f until now, we know that f is the true frequency up until this point, i.e. $f = f_e$.

Also, (e, f, Δ) is only deleted when $f \leq 1$, in other words (e, f, Δ) is only deleted when $f_e = f \leq 1 = b_{\text{current}}$ which proves the base case.

Step Case: Let k > 1. Suppose that for $b_{\text{current}} < k$ we know that $f_e \le b_{\text{current}}$ when (e, f, Δ) gets deleted.

Now let $b_{\text{current}} = k$ and $(e, f, \Delta) \in \mathcal{D}$. The true frequency of e in the buckets with ids $\Delta + 1, \ldots, b_{\text{current}}$ is $\leq f + (b_{\text{current}} - 1 - \Delta)$, because f gets decremented by 1 at most $b_{\text{current}} - 1 - \Delta$ times.

Let b' be the bucket id where e was deleted the last time, if it exists. Else set b'=0. By the induction hypothesis, the true frequency of e in buckets $1, \ldots, b'$ is $\leq b'$, if b' exists. The true frequency in buckets $b'+1, \ldots, \Delta$ is 0. So the true frequency f_e at the current time (bucket id b_{current}) is at most $f_e \leq f + b_{\text{current}} - 1 - \Delta + b'$. Since $b' \leq \Delta$, we get: $f_e \leq f + b_{\text{current}} - 1$.

If (e, f, Δ) gets deleted, we have $f \leq 1$, so $f_e \leq f + b_{\text{current}} - 1 \leq b_{\text{current}}$.

Lemma 3

If there is no entry for e in \mathcal{D} , then there are 2 cases:

Case 1: There has never been an entry for e in \mathcal{D} .

Then $f_e = 0 \le \varepsilon m$.

Case 2: There has been an entry for e in \mathcal{D} before.

Let b be the bucket id when e was deleted the last time. Then $f_e \leq b$ by Lemma 2, and $f_e \leq b \leq \varepsilon m$ by Lemma 1.

Lemma 4

 $f \leq f_e$, because f gets incremented by 1 at most f_e times.

If the last time e was deleted was after processing bucket b, then by Lemma 3 the true frequency of e in buckets $1, \ldots, b$ is at most εm . The true frequency of e in buckets $b+1, \ldots, \Delta$ is 0, and the true frequency in buckets $\Delta+1, \ldots, b_{\text{current}}$ is at most f. So:

$$f_e \le \varepsilon m + 0 + f = f + \varepsilon m$$

Exercise 4

 d_i is the number of elements of \mathcal{D} that were last added to \mathcal{D} during processing of bucket B-i+1. Call the i-th summand the contribution of bucket B-i+1 to the sum. We want that the contribution of all summands does not exceed the total size of buckets $B-j+1,\ldots,B$ (which is jw).

So if element e was created during processing of B-i+1, then e survives the deletion/decrementing process i-1 times. This can only happen if e occurs at least i times in buckets $B-i+1, \ldots B$. So e is allowed a contribution of i. So the contribution of all the elements last added to \mathcal{D} during processing of bucket B-i+1 is allowed to be id_i , because this way the contribution of all summands can't exceed the total size of $B-j+1, \ldots B$, i.e.

$$\sum_{i=1}^{B} id_i \le jw$$

Exercise 2

Let $m_1 := |\sigma_1|, m_2 := |\sigma_2|, m := m_1 + m_2$ $m'_1 := \sum_{l=1}^{k-1} A_1[l], m'_2 := \sum_{l=1}^{k-1} A_2[l], m' := \sum_{l=1}^{k-1} A[l].$ $c_k := \text{counter of k-th most frequent item in } A_1 \oplus A_2$ Let $i \in \text{keys}(A)$.

The estimated frequency of i in σ_1 is at most $\frac{m_1 - m'_1}{k}$ smaller than the true frequency of i in σ_1 . The estimated frequency of i in σ_2 is at most $\frac{m_2 - m'_2}{k}$ smaller than the true frequency of i in σ_2 .

This the estimated frequency of i in $\sigma_1 \otimes \sigma_2$ is at most $\frac{m_1 - m_1'}{k} + \frac{m_2 - m_2'}{k} + c_k$ smaller than the true frequency of i in $\sigma_1 \otimes \sigma_2$.

$$\Rightarrow \hat{f}_i \ge f_i - \frac{m - (m_1' + m_2' - kc_k)}{k}$$

Claim: $m'_1 + m'_2 - kc_k \ge m'$

Proof: Case 1: $|\text{keys}(A_1) \cup \text{keys}(A_2)| \le k - 1$

Then $c_k = 0$ and $m' = m'_1 + m'_2$.

Case 2: $|\text{keys}(A_1) \cup \text{keys}(A_2)| \ge k$

In line 5 of Misra-Gries synopses algorithm we have $m'_1 + m'_2 \ge \tilde{m}' + c_k$, since the k-th most frequent item is not in A $(\widetilde{m}' \text{ denotes } m' \text{ at this point of the algorithm}).$

In line 7 of the algorithm, \widetilde{m}' is reduced by $(k-1)c_k$, i.e.

$$m' = \widetilde{m}' - (k-1)c_k \Rightarrow m'_1 + m'_2 \ge m' + kc_k$$

So

$$\hat{f}_i \ge f_i - \frac{m - m'}{k}$$

 $\hat{f}_i \leq f_i$, because $A_1[i]$ and $A_2[i]$ are underestimations of the true frequencies of i in σ_1, σ_2 . So $A_1[i] + A_2[i]$ is an underestimation of f_i in $\sigma_1 \otimes \sigma_2$, so A[i] is an underestimation of f_i as well.