8. Semicomputability

[Rogers, Ch. 5]

8.1 Semicomputable relations

Let B be an n-ary relation on \mathbb{N} . We say that B is

• $(\mathcal{G}\text{-})$ semicomputable (s/comp) or $(\mathcal{G}\text{-})$ computably enumerable (c.e.) or recursively enumerable (r.e.) iff B is the halting set of a $\mathcal{G}\text{-}$ program, i.e., $B = HS(\mathcal{P})$ for some $\mathcal{G}\text{-}$ program \mathcal{P} , where

$$HS(\mathcal{P}) =_{df} \{\vec{x} \mid \mathcal{P} \text{ halts on input } \vec{x}\},\$$

or equivalently, iff B = dom(g) for some \mathcal{G} -computable function g.

• semi-decidable (s/dec) or semi-effective iff there is an algorithm which gives positive information (only) on membership of B, i.e. with input \vec{x} , the algorithm halts iff $\vec{x} \in B$.

Notation. We will sometimes drop the ' \mathcal{G} ' in front of 'comp' and 's/comp'.

Notes:

- 1. By CT, B is $(\mathcal{G}$ -)s/comp iff B is s/dec.
- 2. If B is dec, then B is certainly s/dec, since an algorithm which decides B can easily be modified to one which gives positive information only on B. (However, the converse is not true, as we will see!) The analogous result for \mathcal{G} -comp B is:

Theorem 8.1. If B is comp, then B is s/comp.

Proof: Let P be a \mathcal{G} -program that computes χ_B . Then the program

$$P$$
[A] if $Y = 0$ goto A

halts on B. \square

Theorem 8.2 (Post). B is comp iff B and \overline{B} are s/comp.

Proof: (\Rightarrow) Suppose B is comp. By Cor. 7.2, \overline{B} is comp. The result follows from Thm 8.1.

 (\Leftarrow) Suppose B and \overline{B} are s/comp. Then for some indices p,q,

$$B = \mathrm{HS}(\mathcal{P}_p)$$
 and $\overline{B} = \mathrm{HS}(\mathcal{P}_q)$

Intuitively, on any input \vec{x} , we **merge** or **interleave** executions of \mathcal{P}_p and \mathcal{P}_q until one of them halts. Note that, by Theorem 7.6, there is a macro for $stp^{(n)}$. So the program

$$\begin{array}{ccc} [A] & \text{if } \boldsymbol{stp}^{(n)}(\vec{X},p,T) \text{ goto } C \\ & \text{if } \boldsymbol{stp}^{(n)}(\vec{X},q,T) \text{ goto } E \\ & T++ \\ & \text{goto } A \\ [C] & Y++ \end{array}$$

computes χ_B . \square

Theorem 8.3. If B, C are s/comp, then so are $B \cap C$ and $B \cup C$.

Proof: Suppose $B = HS(\mathcal{P}_p)$ and $C = HS(\mathcal{P}_q)$. Then the program

$$\mathcal{P}_p$$
... (re-initialise variables)
 \mathcal{P}_q

halts for inputs in $HS(\mathcal{P}_p) \cap HS(\mathcal{P}_q) = B \cap C$. On the other hand, merging \mathcal{P}_p and \mathcal{P}_q , the program

halts for inputs in $HS(\mathcal{P}_p) \cup HS(\mathcal{P}_q) = B \cup C$.

Intuitively, if B and C are s/dec, then so are $B \cap C$, and $B \cup C$.

Let $(\mathcal{G}\text{-})$ COMP and $(\mathcal{G}\text{-})$ SCOMP be the classes of $\mathcal{G}\text{-}$ comp and $\mathcal{G}\text{-}$ s/comp sets respectively. Then, clearly,

$$PR \subseteq \mathcal{G}\text{-}COMP \subseteq \mathcal{G}\text{-}SCOMP \subseteq \mathcal{D}(\mathbb{N})$$

We devote the rest of the section to the questions concerning the properness of the above " \subseteq " inclusions (except for the leftmost one, which will be answered later, in §11, Exercise 3).

By Corollary 7.2, \mathcal{G} -COMP is closed under \cup , \cap and $\overline{\ }$, and by Thm 8.3, \mathcal{G} -SCOMP is closed under \cup and \cap .

The obvious question now is: Is \mathcal{G} -SCOMP closed under $\overline{}$?

The answer to this question also resolves the question concerning the second " \subseteq " inclusion.

Let
$$W_n = \mathrm{HS}(\mathcal{P}_n) = \operatorname{dom}(\varphi_n)$$
. So for all x ,

$$x \in W_n \iff \varphi_n(x) \downarrow,$$

yielding an *effective listing* of \mathcal{G} -SCOMP:

$$W_0, W_1, W_2, \dots$$

Now let $K = \{x \mid x \in W_x\}$. Then

$$x \in K \iff x \in W_x \iff \varphi_x(x) \downarrow .$$
 (12)

Lemma 8.4. \overline{K} is not s/comp.

Proof: Suppose \overline{K} is s/comp. Then for some n,

$$\overline{K} = W_n. \tag{13}$$

So for all x,

$$x \in W_n \stackrel{(13)}{\Longleftrightarrow} x \in \overline{K} \stackrel{(12)}{\Longleftrightarrow} x \notin W_x.$$

Putting x = n,

$$n \in W_n \iff n \notin W_n$$
,

a contradiction. \Box

Theorem 8.5. K is s/comp, but not comp.

Proof:

K is the domain of $\lambda x \cdot \Phi(x, x)$, which is comp, by the UFT (Thm 7.5). So K is s/comp. Suppose K is comp.

Then by Thm 8.2, \overline{K} is s/comp, contradicting Lemma 8.4.

Notes:

- 1. Note again the use of *diagonalisation* (or *self-reference*, or *self-application*) in the proof of Lemma 8.4.
- 2. The non-computability of K is just another formulation of the unsolvability of HP (see Exercise, p. 7-4).
- 3. \mathcal{G} -COMP $\subset \mathcal{G}$ -SCOMP by Thm 8.5, with witness K.
- 4. Similarly, \mathcal{G} -SCOMP $\subset \mathcal{D}(\mathbb{N})$, by Lemma 8.4, with witness \overline{K} .
- 5. Alternatively, we can argue that $\mathcal{G}\text{-SCOMP} \subset \mathcal{D}(\mathbb{N})$ since $\mathcal{G}\text{-SCOMP}$ is countable by the enumeration W_0, W_1, \ldots whereas $\mathcal{D}(\mathbb{N})$ is uncountable by Cantor's theorem (Thm 1.12(b)). Hence:

EXERCISE:

By re-proving Cantor's theorem in the present context, produce a witness that $\mathcal{G}\text{-SCOMP} \subset \mathcal{P}(\mathbb{N})$. What is the connection between this witness and the one in Note 4?

8.2 Characterisation of semicomputable sets using CT

Although the theorems in this section do not depend on CT, we will give proofs using CT for simplicity (following [Rog67]). (Remember, functions are assumed to be partial, unless explicitly called "total".)

Theorem 8.6. If f is total comp, then ran(f) is s/comp.

Proof^{CT}: Suppose that f is total comp. The following algorithm halts only on inputs in ran(f):

```
"With input x, compute (in turn): f(0), f(1), f(2), \ldots until you find an i with f(i) = x; then halt."
```

By CT there is a \mathcal{G} -program corresponding to this algorithm.

Theorem 8.7. If f is comp, then ran(f) is s/comp.

Proof^{CT}: By modifying the algorithm in the proof of Thm 8.6 as follows:

```
"With input \ x, generate ran(f) by dovetailing \ (interleaving) i.e. in stages: at stage \ n: do n \ steps in the computation of f(0), f(1), f(2), \ldots, f(n-1); halt \ (if and) \ when \ you \ find \ an \ i \ with \ f(i) = x."
```

Theorem 8.8. If f is **total comp** and **strictly increasing**, then ran(f) is comp.

Proof^{CT}: By modifying the algorithm in the proof of Thm 8.6 as follows:

```
"With input x, compute (in turn): f(0), f(1), f(2), \ldots until you find an i with f(i) \geq x; if f(i) = x: output 1; if f(i) > x: output 0." \square
```

The next two theorems can be considered a *converse* to Theorem 8.6.

Theorem 8.9. If B is s/comp and $B \neq \emptyset$, then there exists a **total comp** f such that B = ran(f).

Proof^{CT}: Let g be comp with dom(g) = B.

The following algo computes a total function f with ran(f) = B:

"With input x, generate list of elements of B by dovetailing:

at stage n:

do n steps in the computation of

$$g(0), g(1), g(2), \ldots, g(n-1);$$

for all i < n such that $g(i) \downarrow$ in $\leq n$ steps, add i to list:

output element number x in the list. \square

Note 1: f is an **effective listing** of B. It is **total** (even if B is finite), since it has **repetitions**.

Theorem 8.10. If B is s/comp and infinite, then there exists a total 1-1 comp f such that B = ran(f).

Proof^{CT}: EXERCISE.

Note 2: Here f is an effective listing of B w/o reps.

By combining the above results, we get:

Theorem 8.11.

- (a) Suppose $B \neq \emptyset$. Then B is s/comp iff B is the range of a **total comp** function.
- (b) B is s/comp iff B is the range of a comp function.

Proof: (a) From Thms 8.6 and 8.9.

(b) From Thms 8.7 and 8.9, and since $\emptyset = dom(\lambda x \cdot \uparrow) = ran(\lambda x \cdot \uparrow)$.

Note: This theorem gives the justification for the terminology

"computably enumerable" or "recursively enumerable".

It can be viewed as a *constructive version of Thm 1.11*, part $(1)\Leftrightarrow(2)$. It says (using CT): " $s/dec \iff eff.\ listable$ "

EXERCISES:

- 1. Prove Theorem 8.10.
- 2. Prove: B is s/comp iff B is the range of a **1-1** computable function. (This can be viewed as a constructive version of Thm 1.11, part $(1) \Leftrightarrow (3)$.)

8.3 Enumerability of total computable functions

In §7.4 we defined an (n+1-ary) (\mathcal{G} -computable) universal function for \mathcal{G} -COMP⁽ⁿ⁾ in terms of an enumeration $\varphi_0^{(n)}, \varphi_1^{(n)}, \ldots$ of \mathcal{G} -COMP⁽ⁿ⁾. In this section we show that this cannot be done for \mathcal{G} -TCOMP⁽ⁿ⁾ (even when n=1). It is for this reason that we consider (partial) \mathcal{G} -computable functions as more fundamental than total \mathcal{G} -computable functions.

For any binary function F and $n \in \mathbb{N}$, let

$$F_n =_{df} \lambda x \cdot F(n, x).$$

We now investigate whether the UFT holds for $\mathcal{G}\text{-TCOMP}^{(1)}$, i.e. whether there is a *universal function* $F \in \mathcal{G}\text{-TCOMP}^{(2)}$, for which the sequence

$$F_0, F_1, F_2, \dots \tag{14}$$

enumerates all of $\mathcal{G}\text{-TCOMP}^{(1)}$.

(Note there is a UFT for \mathcal{G} -COMP, by Thm 7.5.)

Theorem 8.12. If $F \in \mathcal{G}\text{-TCOMP}^{(2)}$, then

- (a) for all $n, F_n \in \mathcal{G}\text{-TCOMP}^{(1)}$, but
- (b) we can find a function $h \in \mathcal{G}\text{-TCOMP}^{(1)}$ which is **outside** the enumeration (14), i.e. for all $n, F_n \neq h$.

Proof: (a) Clear.

(b) Define h(x) = F(x, x) + 1, i.e., **diagonalize out!** \square

Corollary 8.13. There exists no UFT for \mathcal{G} -TCOMP.

Notes:

- 1. Note the use of *diagonalisation* again in the proof of Theorem 8.12.
- 2. By CT this theorem says: Given any effective enumeration of some class of total computable functions, we can "diagonalise out" to obtain a total computable function outside the class!
- 3. Thus, although \mathcal{G} -TCOMP is *enumerable* by *classical reasoning* (being a subset of the enumerable set \mathcal{G} -COMP), it is (by CT) *not effectively enumerable*! (See also Exercise 3 below.)
- 4. Why can the method of "diagonalising out" not be used to contradict the UFT for \mathcal{G} -COMP? Because the definition $h(x) \simeq \varphi_x(x) + 1$ does not imply that for all $y, \varphi_y \neq h$. For suppose $h = \varphi_n$. Then the equation

$$\varphi_n(n) \simeq h(n) \simeq \varphi_n(n) + 1$$

just means that $\varphi_n(n) \uparrow$.

EXERCISES:

- 1. Let \mathcal{G} -COMP-PRED be the class of \mathcal{G} -comp predicates, i.e. total functions $P: \mathbb{N} \to 2$. Is there a UFT for \mathcal{G} -COMP-PRED?
- 2. (a) Let PR-DERIV be the set of all PR-derivations. Show how (by Gödel numbering or otherwise) to give an **effective enumeration** of PR-DERIV, and hence (as a sublist) an effective enumeration of the set PR-DERIV⁽¹⁾ of PR-derivations of unary functions. This induces an **effective enumeration** f_0, f_1, f_2, \ldots of PR⁽¹⁾.
 - (b) Let F be the binary *universal function* for $PR^{(1)}$ under the enumeration in (a), i.e. for all m and n, $F(m,n) = f_m(n)$. Clearly F is *effective*, and hence in \mathcal{G} -TCOMP, by CT. But is F **PR**? More generally, is there a UFT for PR at all?
- 3. Show that the set $\{y \mid \varphi_y \text{ is total}\}\$ is not s/comp. (*Hint*: Otherwise there would be a UFT for \mathcal{G} -TCOMP).