UBC MATH CIRCLE 2024 PROBLEM SET 1 SOLUTIONS

Problem 1. Find all pairs of integers (a, n) for which the following holds.

$$\frac{(a+1)^n - a^n}{n} \in \mathbb{Z}.$$

Solution. The only pairs of integers for which (1) holds are (a, n) = (a, 1) for $a \in \mathbb{Z}$. Indeed, suppose that n > 1. Let p be the smallest prime such that $p \mid n$. Evidently if $p \mid a$ then $(a+1)^n - a^n \equiv 1 \mod p$ and (1) fails. Hence we may assume that $a \not\equiv 0 \mod p$. Let $b = a^{-1} \mod p$. We have that

$$(a+1)^n \equiv a^n \mod p$$

and multiplying by b^n gives

$$((a+1)b)^n \equiv 1 \mod p.$$

In particular, $(a+1)b \not\equiv 0 \mod p$. Let d be the order of $(a+1)b \mod p$ (i.e. the smallest integer such that $((a+1)b)^d \equiv 1 \mod p$). The computation above shows that $d \mid n$, but we also know that

$$((a+1)b)^{p-1} \equiv 1 \mod p$$

by Fermat's little theorem. Therefore $d \mid (p-1)$ and d < p. Since p is the smallest prime factor of n and $d \mid n$, it follows that d = 1. But then $(a+1)b \equiv 1 \mod p$ and $a+1 \equiv a \mod p$ which is a contradiction. Thus n = 1.

Problem 2. Find all integers x and y for which $x^3 - y^2 = 9$. (As a bonus problem, what happens when 9 is replaced by 7?)

Solution. We show that $x^3 - y^2 = 9$ has no integer solutions. First note that x, y have opposite parity since otherwise the left hand side is even. We split the proof into three cases: (i) x is even and y is odd, (ii) $x \equiv -1 \mod 4$ and y is even, and (iii) $x \equiv 1 \mod 4$ and y is even.

- (i) (x is even and y is odd) Then $-y^2 \equiv x^3 y^2 \equiv 1 \mod 4$. Since -1 is not a square modulo 4, there are no solutions.
- (ii) $(x \equiv -1 \mod 4 \text{ and } y \text{ is even})$ Then $(-1)^3 \equiv x^3 y^2 \equiv 1 \mod 4$ which is clearly false, hence this case also has no solutions.
- (iii) $(x \equiv 1 \mod 4 \text{ and } y \text{ is even})$ We rewrite the equality $x^3 y^2 = 9$ as

$$y^{2} + 1 = x^{3} - 8 = (x - 2)(x^{2} + 2x + 4).$$

For any $y \in \mathbb{Z}$, the left hand side is positive, hence $x \geq 3$. Since $x \equiv 1 \mod 4$, we have $x \geq 5$ and therefore $x - 2 \geq 3$. Thus there exists a prime $p \mid (x - 2)$. Reducing the equality above modulo p gives

$$y^2 \equiv -1 \mod p$$

Since x-2 is odd, p is odd. Thus p is an odd prime for which -1 is a square modulo p and we conclude that $p \equiv 1 \mod 4$. However, the choice of $p \mid (x-2)$ was entirely arbitrary. Thus if $x-2=\prod_{i=1}^r p_i$ is the prime factorization of x-2, then $p_i \equiv 1$

Date: January 28, 2024.

mod 4 for all $i \in \{1, ..., r\}$. In particular, $x - 2 \equiv 1 \mod 4$ and $x \equiv 3 \mod 4$ which is a contradiction.

Problem 3. Find all polynomials $f \in \mathbb{R}[x]$ such that for all real numbers a, b, c satisfying ab + bc + ca = 0, we have

$$f(a - b) + f(b - c) + f(c - a) = 2f(a + b + c).$$

Solution. Setting a=b=c=0 implies that 3f(0)=2f(0) and f(0)=0. Now taking b=c=0 and letting a vary shows that f(a)+f(-a)=2f(a) so that f(a)=f(-a) for all $a \in \mathbb{R}$. In particular, every monomial of f has even degree. We now make the substitution x=a-b, y=b-c, z=c-a and w=a+b+c (so that x+y+z=0). The given condition becomes $2w^2=x^2+y^2+z^2$. Therefore, the original functional equation is equivalent to finding all polynomials $f \in \mathbb{R}[x]$ with f(0)=0 and satisfying

$$f(x) + f(y) + f(x+y) = 2f(\sqrt{x^2 + xy + y^2})$$
 for all $x, y \in \mathbb{R}$.

Here we have used the fact that f(z) = f(-x - y) = f(x + y) as well as the equality $f(w) = f(\sqrt{(x^2 + y^2 + z^2)/2}) = f(\sqrt{x^2 + xy + y^2})$. In particular, the left and right hand side define the same polynomial. Suppose that deg f = 2n. Equating monomials of degree 2n, we find that

$$x^{2n} + y^{2n} + (x+y)^{2n} = 2(x^2 + xy + y^2)^n.$$

Taking y = tx and factoring out x^{2n} we should have

$$1 = t^{2n} + (1+t)^{2n} = 2(1+t+t^2)^{2n}$$

for all $t \in \mathbb{R}$. Assume $n \geq 3$. Let $\omega = \frac{-1+\sqrt{-3}}{2}$ be a primitive 3-rd root of unity. Since $1+\omega+\omega^2=0$ and $n\geq 3$, it follows that ω is a root of the right hand side with multiplicity at least 3. Hence it must be a root of the left hand side with multiplicity at least 3. Let g denote the polynomial on the left hand side. Then

$$g''(\omega) = 2n(2n-1)(\omega^{2n-2} + (1+\omega)^{2n-2})$$

$$= 2n(2n-1)(\omega^{2n-2} + (-\omega^2)^{2n-2})$$

$$= 2n(2n-1)\omega^{2n-2}(1+\omega^{2n-2})$$

$$\neq 0$$

In particular ω is not a triple root of g, a contradiction. Hence deg $f \leq 4$ so that $f = ax^4 + bx^2$ are the only possible solutions. Clearly any linear combination of solutions is also solution, hence it is enough to check that x^4 and x^2 are solutions. Indeed

$$x^{2} + y^{2} + (x + y)^{2} = 2(x^{2} + xy + y^{2})$$
$$x^{4} + y^{4} + (x + y)^{4} = 2(x^{2} + xy + y^{2})^{2}$$

which concludes the proof.