

Unlocking the prognostic potential of blood-based gene expression data from ADNI and ANMERGE

CBI / LKC School of Medicine

Eric LIM JIT KAI Mohammad Neamul Kabir Han Wenhao

Feb/01/2023

Table of content

- Story Line of the project
- Methodology
- Modeling and optimization
- Work to be done

Story Line of the project

Main proposals:

- 1. Presence of batch effect. Metadata allow us to check their technical factors and confounding factors.
- Derive predictive ability from the conversion duration data and APOE4 alleles.(via survival analysis, Boruta and local modeling)

Methodology

- Data cleaning
- Definition of conversion (labeling)
- Survival analysis:
 Cox proportional-hazards model
- Set the threshold for gene selection(p<=0.05)
- Split the training set to three based on the value of APOE4
- Boruta gene selection

Definition of Conversion(class label)

Definition of class label									
Definition start diagnosis end diagnosis Class label count									
Converter	MCI	Dementia	1	95 (29%)					
Non-converter	MCI	MCI	0	234 (71%)					

	Dataset for local modeling									
class label $APOE4 = 0$ $APOE4 = 1$ $APOE4 = 2$										
1	49	41	5							
0	145	72	17							
Sum	194	113	22							

Apply Boruta for feature selection

- We considered genes with a p-value lower than 0.05 for survival analysis as significant genes and applied them for model training.
- There are 1715 genes are identified as significant genes.

The shape of dataset (num of sample, num of genes)									
	Base modeling Local modeling								
	All samples	oles $APOE4 = 0$ $APOE4 = 1$ $APOE4 = 2$							
Before Boruta	Before Boruta (329, 1715) (194, 1715) (113, 1715) (22, 1715)								
After Boruta	oruta (329, 135) (194, 80) (113, 113) (22, 50)								

Modeling and optimization

- Applying Boruta for gene selection
- Model optimization for RF and SVM
- Simple classifiers testing(LG, KNN, NB)
- Local modeling for all above

Hyperparameter tuning for RF model

	Optimal hyperparameter and accuracy									
	dataset	n_estimators	max_depth	accuracy						
Daga madaling	All	50	10	0.73						
Base modeling	All_boruta	80	20	0.75						
	APOE4_0	20	10	0.75						
	APOE4_1	30	10	0.68						
I and madeling	APOE4_2	10	10	0.77						
Local modeling	APOE4_0_boruta	20	10	0.78						
	APOE4_1_boruta	40	10	0.83						
	APOE4_2_boruta	20	10	0.85						

Hyperparameter tuning for SVM model

	Optimal hyperparan	neter and accuracy	(rbf kernel)	
	dataset	C	gamma	accuracy
Daga madaling	All	100	0.0001	0.74
Base modeling	All_boruta	1.0	0.01	0.84
	APOE4_0	10	0.0001	0.78
	APOE4_1	100	0.0001	0.73
	APOE4_2	0.01	1e-9	0.77
Local modeling	APOE4_0_boruta	10	0.01	0.86
	APOE4_1_boruta	1.0	0.01	0.83
	APOE4_2_boruta	1.0	0.01	1.00

Hyperparameter tuning for SVM model

	Optimal hyperparameter and accuracy (Linear kernel)								
	dataset	C	accuracy (linear)	accuracy (rbf)					
Base	All	0.01	0.73	0.74					
modeling	All_boruta	0.01	0.79	0.84					
	APOE4_0	0.01	0.75	0.78					
	APOE4_1	0.01	0.70	0.73					
Local	APOE4_2	0.01	0.72	0.77					
A	APOE4_0_boruta	0.1	0.83	0.86					
	APOE4_1_boruta	0.1	0.79	0.83					
	APOE4_2_boruta	0.1	1.00	1.00					

Boruta improve the base model performance

	Comparison of evaluation metrics for the optimal base models									
	accu	ıracy	preci	sion	recall		F1 score		AUC	
RF	0.71	0.76	0.36	0.83	0.09	0.24	0.15	0.36	0.63	0.79
SVM (rbf)	0.74	0.83	0.57	0.89	0.44	0.49	0.49	0.62	0.74	0.86
SVM (linear)	0.73	0.81	0.55	0.70	0.44	0.61	0.49	0.64	0.74	0.86
LG	0.73	0.74	0.54	0.57	0.42	0.53	0.47	0.54	0.75	0.80
KNN	0.70	0.73	0.50	0.72	0.07	0.16	0.12	0.25	0.55	0.67
Naïve bayes	0.64	0.74	0.41	0.55	0.58	0.64	0.48	0.59	0.66	0.79

me	tric
without Boruta	with Boruta

Boruta + Local modeling

balanced metric score

without Boruta

with Boruta

	Comparison of balanced evaluation metrics for the local modeling										
	accu	ıracy	preci	precision		recall		F1 score		AUC	
RF	0.72	0.79	0.44	0.78	0.15	0.35	0.20	0.46	0.57	0.83	
SVM (rbf)	0.76	0.85	0.64	0.80	0.35	0.66	0.42	0.71	0.72	0.89	
SVM (linear)	0.73	0.82	0.52	0.70	0.36	0.68	0.41	0.68	0.73	0.85	
LG	0.75	0.83	0.62	0.73	0.35	0.65	0.42	0.68	0.74	0.86	
KNN	0.72	0.78	0.33	0.71	0.10	0.33	0.14	0.41	0.54	0.70	
Naïve bayes	0.66	0.82	0.40	0.64	0.47	0.72	0.42	0.68	0.63	0.84	

Balanced metric score = \sum (class weight * metric score)

Comparison of optimal models

Modeling type	optimal model	accuracy	precision	recall	F1-score	AUC
	SVM (rbf)	0.83	0.89	0.49	0.62	0.86
Base modeling	SVM (linear)	0.81	0.7	0.61	0.64	0.86
modering	LG	0.74	0.57	0.53	0.54	0.8
	NB	0.74	0.55	0.64	0.59	0.79
	SVM (rbf)	0.85	0.8	0.66	0.71	0.89
Local	SVM (linear)	0.82	0.7	0.68	0.68	0.85
modeling	LG	0.83	0.73	0.65	0.68	0.86
	NB	0.82	0.64	0.72	0.68	0.84

Work to be done

Apply oversampling strategy (SMOTE):

- Boruta + SMOTE + baseline modeling
- SMOTE + Local modeling
- Boruta + SMOTE + Local modeling

Appendix: Comparison of evaluation metrics for local modeling

	APOE4	accu	ıracy	preci	sion	rec	call	F1 s	score	A	UC
	0	0.75	0.79	0.47	0.80	0.08	0.26	0.14	0.39	0.57	0.79
RF	1	0.66	0.79	0.46	0.86	0.29	0.54	0.35	0.63	0.67	0.87
	2	0.77	0.81	0	0.20	0	0.20	0	0.20	0	0.93
	0	0.78	0.86	0.71	0.77	0.29	0.64	0.38	0.69	0.68	0.89
SVM (rbf)	1	0.73	0.80	0.65	0.80	0.53	0.63	0.58	0.69	0.77	0.88
	2	0.77	1.00	0	1.00	0	1.00	0	1.00	0.77	0.99
	0	0.75	0.81	0.54	0.66	0.30	0.62	0.37	0.63	0.69	0.85
SVM (linear)	1	0.70	0.79	0.59	0.71	0.53	0.71	0.56	0.71	0.78	0.83
(====)	2	0.72	1.00	0	1.00	0	1.00	0	1.00	0.88	0.99
	0	0.77	0.82	0.69	0.67	0.28	0.61	0.38	0.63	0.70	0.85
LG	1	0.71	0.82	0.61	0.83	0.53	0.68	0.57	0.73	0.78	0.84
	2	0.72	0.95	0	0.80	0	0.80	0	0.80	0.88	0.99
	0	0.74	0.77	0.15	0.67	0.04	0.14	0.06	0.23	0.53	0.63
KNN	1	0.66	0.75	0.67	0.72	0.17	0.53	0.27	0.60	0.54	0.77
	2	0.81	1.00	0.20	1.00	0.20	1.00	0.20	1.00	0.65	1.00
	0	0.64	0.82	0.35	0.64	0.43	0.74	0.37	0.68	0.60	0.84
Naïve bayes	1	0.66	0.81	0.55	0.74	0.63	0.78	0.58	0.76	0.70	0.84
	2	0.77	0.82	0	0.20	0	0.20	0	0.20	0.5	0.86

metric					
without Boruta	with Boruta				

Weekly update (Feb/08/2023)

- Story Line
- Exchange the accuracy with AUC as criteria of hyperparameter tuning for RF and SVC
- Apply oversampling strategy after Boruta gene selection
- Methods have been provided: **SMOTE**, **ADASYN**, Borderline SMOTE, SVMSMOTE, KMeansSMOTE, RandomOverSampler, SMOTEENN, SMOTETomek
- Work to be done

Story line

Oversampling

	Shape of dataset									
class label	All samples	APOE4 = 0	APOE4 = 1	APOE4 = 2						
1	95	49	41	5						
0	234	145	72	17						
Sum	329	194	113	22						

SMOTE

Shape of dataset									
class label	All samples	APOE4 = 0	APOE4 = 1	APOE4 = 2					
1	234	145	72	17					
0	234	145	72	17					
Sum	468	290	144	34					

SMOTE VS. without **SMOTE** (Boruta + base modeling)

	Comparison of evaluation metrics for the optimal base models										
	accuracy		precision		recall		F1 score		AUC		
RF	0.76	0.87	0.83	0.90	0.24	0.85	0.36	0.87	0.79	0.93	
SVM (rbf)	0.83	0.90	0.89	0.86	0.49	0.95	0.62	0.90	0.86	0.97	
SVM (linear)	0.81	0.92	0.70	0.91	0.61	0.92	0.64	0.92	0.86	0.97	
LogReg	0.74	0.90	0.57	0.86	0.53	0.95	0.54	0.90	0.80	0.96	
KNN	0.73	0.63	0.72	0.58	0.16	0.98	0.25	0.72	0.67	0.63	
Naïve bayes	0.74	0.76	0.55	0.75	0.64	0.80	0.59	0.77	0.79	0.83	

me	tric
without SMOTE	with SMOTE

SMOTE VS. without **SMOTE** (Boruta + local modeling)

	Comparison of evaluation metrics for the optimal local models										
	accuracy		precision		recall		F1 score		AUC		
RF	0.79	0.89	0.78	0.90	0.35	0.87	0.46	0.88	0.83	0.95	
SVM (rbf)	0.85	0.90	0.80	0.88	0.66	0.92	0.71	0.90	0.89	0.97	
SVM (linear)	0.82	0.88	0.70	0.85	0.68	0.89	0.68	0.87	0.85	0.97	
LogReg	0.83	0.90	0.73	0.90	0.65	0.91	0.68	0.91	0.86	0.97	
KNN	0.78	0.70	0.71	0.65	0.33	0.95	0.41	0.77	0.70	0.70	
Naïve bayes	0.82	0.83	0.64	0.86	0.72	0.80	0.68	0.82	0.84	0.90	

Balanced metric score = \sum (class weight * metric score)

metric					
without SMOTE	with SMOTE				

Comparison of optimal models

Modeling type	optimal model	accuracy	precision	recall	F1-score	AUC
	RF	0.87	0.90	0.85	0.87	0.95
	SVM (rbf)	0.90	0.86	0.95	0.90	0.97
Base modeling	SVM (linear)	0.92	0.91	0.92	0.92	0.97
	LogReg	0.90	0.86	0.95	0.90	0.97
	NB	0.76	0.75	0.80	0.77	0.83
	RF	0.89	0.90	0.87	0.88	0.95
	SVM (rbf)	0.90	0.88	0.92	0.90	0.97
Local modeling	SVM (linear)	0.88	0.85	0.89	0.87	0.97
	LogReg	0.90	0.90	0.91	0.91	0.97
	NB	0.83	0.86	0.80	0.82	0.90

Work to be done

- Correct the oversampling methods
- Evaluate the data preprocessing methods
- Try other oversampling strategy(ADASYN)

Appendix: Comparison of evaluation metrics for local modeling(with boruta)

	APOE4	accu	ıracy	preci	sion	rec	all	F1 s	score	A	UC
	0	0.79	0.90	0.80	0.91	0.26	0.89	0.39	0.90	0.79	0.96
RF	1	0.79	0.85	0.86	0.87	0.54	0.82	0.63	0.84	0.87	0.91
	2	0.81	0.94	0.20	1.00	0.20	0.87	0.20	0.92	0.93	0.98
	0	0.86	0.92	0.77	0.90	0.64	0.94	0.69	0.92	0.89	0.98
SVM (rbf)	1	0.80	0.83	0.80	0.82	0.63	0.86	0.69	0.84	0.88	0.93
	2	1.00	0.97	1.00	0.96	1.00	1.00	1.00	0.98	0.99	0.99
	0	0.81	0.92	0.66	0.90	0.62	0.94	0.63	0.92	0.85	0.98
SVM (linear)	1	0.79	0.87	0.71	0.87	0.71	0.87	0.71	0.87	0.83	0.94
(11110111)	2	1.00	0.54	1.00	0.37	1.00	0.60	1.00	0.44	0.99	0.99
	0	0.82	0.92	0.67	0.92	0.61	0.94	0.63	0.93	0.85	0.98
LogReg	1	0.82	0.85	0.83	0.85	0.68	0.86	0.73	0.85	0.84	0.94
	2	0.95	0.94	0.80	0.96	0.80	0.93	0.80	0.94	0.99	0.99
	0	0.77	0.66	0.67	0.60	0.14	0.95	0.23	0.73	0.63	0.65
KNN	1	0.75	0.72	0.72	0.66	0.53	0.95	0.60	0.78	0.77	0.73
	2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99
	0	0.82	0.82	0.64	0.86	0.74	0.77	0.68	0.81	0.84	0.88
Naïve bayes	1	0.81	0.82	0.74	0.83	0.78	0.82	0.76	0.82	0.84	0.91
	2	0.82	0.97	0.20	1.00	0.20	0.93	0.20	0.96	0.86	0.99

metric
without SMOTE with SMOTE

Feb 17 2023 weekly update

- Correction of errors
- Correction the pipeline and evaluation

Modified pipeline and evaluation methods

Survival analysis + boruta + SMOTE + base modeling

	Accuracy	Balanced accuracy	precision	recall	F1-score	AUC
RF	0.62	0.51	0.31	0.24	0.26	0.51
SVC(rbf)	0.57	0.54	0.35	0.47	0.37	0.54
SVC(linear)	0.57	0.54	0.35	0.47	0.37	0.54

	Distribution of class label (training set)									
label	label Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 percentage									
0	187	187	187	187	188	71%				
1	76	76	76	76	76	29%				

	Distribution of class label (testing set)									
label	labelFold 0Fold 1Fold 2Fold 3Fold 4percentage									
0	47	47	47	47	46	71%				
1	19	19	19	19	19	29%				

Mar 01 Weekly Update

- Remove the data leakage
- Generate the result for whole pipeline

Result: Base modeling

	Accuracy	Balanced accuracy	precision	recall	F1-score	AUC
RF	0.66	0.49	0.20	0.08	0.11	0.49
SVC(rbf)	0.52	0.54	0.34	0.59	0.41	0.54
SVC(linear)	0.58	0.44	0.18	0.13	0.15	0.52
RF + SMOTE	0.64	0.51	0.32	0.22	0.24	0.52
SVC (rbf) + SMOTE	0.57	0.54	0.35	0.47	0.37	0.54
SVC (linear) + SMOTE	0.62	0.52	0.32	0.31	0.31	0.50
RF + ADASYN	0.63	0.54	0.35	0.29	0.31	0.55
SVC (rbf) + ADASYN	0.38	0.51	0.23	0.8	0.36	0.51
SVC (linear) + ADASYN	0.61	0.52	0.32	0.31	0.31	0.51

Result: Local modeling

	Accuracy	Balanced accuracy	precision	recall	F1-score	AUC
RF	0.68	0.49	0.17	0.07	0.10	0.50
SVC(rbf)	0.62	0.5	0.08	0.26	0.12	0.47
SVC(linear)	0.66	0.50	0.32	0.19	0.23	0.44
RF + SMOTE	0.66	0.50	0.31	0.20	0.21	0.49
SVC (rbf) + SMOTE	0.63	0.50	0.30	0.27	0.27	0.48
SVC (linear) + SMOTE	0.63	0.49	0.29	0.25	0.25	0.48
RF + ADASYN	0.69	0.52	0.34	0.22	0.24	0.48
SVC (rbf) + ADASYN	0.56	0.49	0.22	0.39	0.26	0.43
SVC (linear) + ADASYN	0.65	0.50	0.30	0.24	0.25	0.51

Base modeling vs. Local modeling

	Accu	ıracy	Bala accu	nced racy	prec	ision	rec	call	F1-s	core	AU	J C
RF	0.66	0.68	0.49	0.49	0.20	0.17	0.08	0.07	0.11	0.10	0.49	0.50
SVC(rbf)	0.52	0.62	0.54	0.5	0.34	0.08	0.59	0.26	0.41	0.12	0.54	0.47
SVC (linear)	0.58	0.66	0.44	0.50	0.18	0.32	0.13	0.19	0.15	0.23	0.52	0.44
RF + SMOTE	0.64	0.66	0.51	0.50	0.32	0.31	0.22	0.20	0.24	0.21	0.52	0.49
SVC (rbf) + SMOTE	0.57	0.63	0.54	0.50	0.35	0.30	0.47	0.27	0.37	0.27	0.54	0.48
SVC (linear) + SMOTE	0.62	0.63	0.52	0.49	0.32	0.29	0.31	0.25	0.31	0.25	0.50	0.48
RF + ADASYN	0.63	0.69	0.54	0.52	0.35	0.34	0.29	0.22	0.31	0.24	0.55	0.48
SVC (rbf) + ADASYN	0.38	0.56	0.51	0.49	0.23	0.22	0.8	0.39	0.36	0.26	0.51	0.43
SVC (linear) + ADASYN	0.61	0.65	0.52	0.50	0.32	0.30	0.31	0.24	0.31	0.25	0.51	0.51

Evaluation metric				
Base modeling	Local modeling			

Mar 10 Weekly Update

- Applied Scikit survival on dataset
- Predict the risk of conversion
- Predict the conversion time using regression

Distribution of conversion duration and research duration

Concordance index

- It measures the ability of a model to correctly rank the survival times of pairs of individuals.
- The C-index ranges from 0.5 (indicating a model with no predictive ability) to 1.0 (indicating a model with perfect predictive ability).
- alpha (hyper-parameter): Weight of penalizing the squared hinge loss in the objective function.
- alpha determines the amount of regularization to apply: A smaller value increases the amount of regularization and a higher value reduces the amount of regularization.

Result of conversion risk prediction

Model	Optimal C-index	Optimal alpha
Linear Survival SVM	0.498	0.00024

Result of conversion time prediction

Table 1. Dataset splitting

	Sample size	percentage
training	244	80%
testing	62	20%

Table 2. Evaluation scores of prediction

	MSE (days)	RMSE (days)
Scores	818	28

Conversion time: real vs. predicted

Comparison between predicted survival time and real survival time

