TP2: Régression linéaire - Travaux pratiques

Visseho Adjiwanou, PhD.

31 October 2021

Exercice 1

Supposons que $y = \alpha + \beta * x + \epsilon$, où les ϵ sont indépendants et identiquement distribuées (iid) avec la moyenne 0 et la variance σ^2 . Supposons que les données sont divisées uniformément en deux groupes désignés par les indices a et b, et β est estimé par $\beta^* = (y_a - y_b)/(x_a - x_b)$ où y_a est la moyenne de toutes les observations y du groupe a, etc. 1. Définir la forme algébrique de y_a , y_b , x_a , x_b 2. Montrer que β^* est un estimateur sans biais de β 3. Trouver la variance de β^* , $Var\beta^*$ 4. Démontrer que $Var\beta^* = (2\sigma)^2/T(x_a - x_b)^2$ dans le cas spécifique où le nombre d'observations dans chaque groupe est T/2, T étant le nombre total d'observations 5. Comment répartiriez-vous les observations entre les deux groupes? Pourquoi?

Exercice 2

upposons que nous ayons les échantillons x_1 , x_2 et x_3 , choisis au hasard dans une distribution de moyenne 4 et variance 9. Vous avez deux estimations de la moyenne: $\mu^* = (x_1 + x_2 + x_3)/3$ et $\mu^{**} = (x_1 + x_2 + x_3)/4$

- 1. Calculez l'espérance des deux estimateurs $(E\mu^* \text{ et } E\mu^{**})$
- 2. Calculer leurs variances
- 3. Quel estimateur choisirez-vous? Pourquoi?

Exercice 3

L'erreur quadratique moyenne (EQM ou MSE en anglais) de l'estimateur $\hat{\theta}$ est défini par $MSE(\hat{\theta}) = E(\hat{\theta} - \theta)^2$, $(\hat{\theta} - \theta)$ est appelé l'erreur d'échantillonnage, et $E(\hat{\theta} - \theta)$ est le biais. 1. Définissez dans votre propre mot votre compréhension de MSE 2. Démontrez que $MSE(\hat{\theta}) = E[\hat{\theta} - E(\hat{\theta})]^2 + [E(\hat{\theta}) - \theta]^2 = \text{Variance} + \text{biais carré}$

Exercice 4

Démontrer que la valeur attendue d'une fonction de perte constituée du carré de la différence entre β et son estimation (c'est-à-dire le carré de l'erreur d'échantillonnage) est identique à la somme de la variance et du biais au carré.

Exercice 5

La vraie relation entre X et Y dans la population est donnée par: $Y_i = 2 + 3X_i + \epsilon_i$. Supposons que les valeurs de X dans l'échantillon de 10 observations sont 1, 2,..., 10. Les valeurs des termes d'erreurs sont tirées au hasard parmi une population normale de moyenne nulle et de variance 1.

• $\epsilon_1 = 0.464$

- $\epsilon_2 = 0.137$
- $\epsilon_3 = 2,455$
- $\epsilon_4 = -0.323$
- $\epsilon_5 = -0.068$
- $\epsilon_6 = 0.296$
- $\epsilon_7 = -0.288$
- $\epsilon_8 = 1,298$
- $\epsilon_9 = 0.241$
- $\epsilon_1 0 = -0.957$
- 1. Déterminez les 10 valeurs observées de X et Y
- 2. Placez les informations sur un graphique en utilisant (ggplot)
- 3. Utilisez les formules des moindres carrés pour estimer (manuellement) les coefficients de régression et leurs erreurs standard et comparer les résultats avec les valeurs vraies
- 4. Tracez la droite estimée (ou prédite) en utilisant R dans le même graphique qu'en 2.
- 5. Estimer les paramètres en utilisant cette fois-ci R.

Exercice 6

Examinez les données ci-dessous sur les prix et les quantités d'oranges vendues dans un supermarché sur douze jours consécutifs.

Prix (.01\$/lb)	Quantité (lb)
100	55
90	70
80	90
70	100
70	90
70	105
70	80
65	110
60	125
60	115
55	130
50	130

Soit X_i le prix demandé et Y_i la quantité vendue le jour de la vente. Supposons en outre que la fonction de demande est de la forme $Y_i = \alpha + \beta * X_i + \epsilon_i$ et que les hypothèses de base du modèle de régression normale classique sont satisfaites.

- 1. Rappeler ces hypothèses.
- 2. Estimer les paramètres du modèle (manuellement)
- 3. Estimer la droite de régression de l'échantillon et représenter-la dans un graphique en même temps que les nuages de points (avec ggplot)
- 4. Calculer les estimations biaisées et non biaisées de la variance du terme d'erreur
- 5. Calculez la variance estimée de α^* et de β^* .
- 6. Calculer le R^2 et Commenter.
- 7. Comparer vos résultats avec ce que vous obtenez avec R. Relier chaque estimation de R à ce que vous estimez manuellement.

8. Qu'avez-vous du tableau de régression R que vous n'avez pas encore calculé manuellement? Avez-vous une idée de ce qu'il faut faire?