Assignment-based Subjective Questions

1. From your analysis of the categorical variables from the dataset, what could you infer about their effect on the dependent variable? (3 marks)

The Categorical variables in the dataset are season, yr, mnth, holiday, weekday, workingday, weathersit. Each of these categorical variables hold different values.

Effect on Dependent variable 'cnt':

Season – Winter and Summer has positive correlation whereas Spring has negative correlation.

Yr – yr has a positive correlation.

Mnth – September holds positive correlation and January holds negative correlation.

Workingday holds a positive correlation.

Weathersit- cloudy and rainy weather situations hold negative correlation.

2. Why is it important to use **drop_first=True** during dummy variable creation? (2 mark)

When we are creating dummy variables for a particular categorical column, It will divided into (k-1) sub columns. In that case, when we use drop_first=true it will remove one extra column form the sub columns and reducing the size of number of columns which will help in further modelling.

3. Looking at the pair-plot among the numerical variables, which one has the highest correlation with the target variable? (1 mark)

The temp variable has the highest correlation with the target variable 'cnt'.

- 4. How did you validate the assumptions of Linear Regression after building the model on the training set? (3 marks)
 - 1) The training set shows us a positive linear relationship when we for all variables with the target variable.
 - 2) The error terms of the training set have been distributed normally.
 - 3) The r2_score difference between training and testing data set is relatively low which is a good sign of prediction.
- 5. Based on the final model, which are the top 3 features contributing significantly towards explaining the demand of the shared bikes? (2 marks)

The top 3 features explaining the demand for shared bikes are:

- 1) Rainy (It shows a negative correlation of -0.2969)
- 2) temp (It shows a positive correlation of 0.4354)
- 3) yr (It shows a positive correlation of 0.2348)

General Subjective Questions

1. Explain the linear regression algorithm in detail.

(4 marks)

Linear Regression is a machine learning algorithm based on supervised learning. It performs a regression task. Regression models a target prediction value based on independent variables. It is mostly used for finding out the relationship between variables and forecasting. Different regression models differ based on – the kind of relationship between dependent and independent variables they are considering, and the number of independent variables getting used.

Linear regression performs the task to predict a dependent variable value (y) based on a given independent variable (x). So, this regression technique finds out a linear relationship between x (input) and y(output). Hence, the name is Linear Regression.

In the figure above, X (input) is the work experience and Y (output) is the salary of a person. The regression line is the best fit line for our model.

Hypothesis function for Linear Regression:

$$y = \theta_1 + \theta_2.x$$

Linear regression is divided into 2 parts:

- 1) Simple Linear regression (SLR)
- 2) Multiple Linear regression (MLR)
- 2. Explain the Anscombe's quartet in detail.

(3 marks)

Anscombe's Quartet can be defined as a group of four data sets which are nearly identical in simple descriptive statistics, but there are some peculiarities in the dataset that fools the regression model if built. They have very different distributions and appear differently when plotted on scatter plots.

It was constructed in 1973 by statistician Francis Anscombe to illustrate the importance of plotting the graphs before analyzing and model building, and the effect of other observations on statistical

properties. There are these four data set plots which have nearly same statistical observations, which provides same statistical information that involves variance, and mean of all x,y points in all four datasets.

This tells us about the importance of visualising the data before applying various algorithms out there to build models out of them which suggests that the data features must be plotted in order to see the distribution of the samples that can help you identify the various anomalies present in the data like outliers, diversity of the data, linear separability of the data, etc. Also, the Linear Regression can be only be considered a fit for the data with linear relationships and is incapable of handling any other kind of datasets.

3. What is Pearson's R?

(3 marks)

Pearson's r is a numerical summary of the strength of the linear association between the variables. If the variables tend to go up and down together, the correlation coefficient will be positive. If the variables tend to go up and down in opposition with low values of one variable associated with high values of the other, the correlation coefficient will be negative.

The Pearson's correlation coefficient varies between -1 and +1 where:

- r = 1 means the data is perfectly linear with a positive slope (i.e., both variables tend to change in the same direction)
- r = -1 means the data is perfectly linear with a negative slope (i.e., both variables tend to change in different directions)
- r = 0 means there is no linear association
- r > 0 < 5 means there is a weak association
- r > 5 < 8 means there is a moderate association
- r > 8 means there is a strong association.
- 4. What is scaling? Why is scaling performed? What is the difference between normalized scaling and standardized scaling? (3 marks)

Scaling is a step of data Pre-Processing which is applied to independent variables to normalize the data within a particular range. It also helps in speeding up the calculations in an algorithm.

Most of the times, collected data set contains features highly varying in magnitudes, units and range. If scaling is not done then algorithm only takes magnitude in account and not units hence incorrect modelling. To solve this issue, we have to do scaling to bring all the variables to the same level of magnitude.

It is important to note that scaling just affects the coefficients and none of the other parameters like t-statistic, F-statistic, p-values, R-squared, etc.

Normalization/Min-Max Scaling:

It brings all of the data in the range of 0 and 1. sklearn.preprocessing.MinMaxScaler helps to implement normalization in python.

MinMax Scaling:
$$x = \frac{x - min(x)}{max(x) - min(x)}$$

Standardization Scaling:

Standardization replaces the values by their Z scores. It brings all of the data into a standard normal distribution which has mean (μ) zero and standard deviation one (σ).

Standardisation:
$$x = \frac{x - mean(x)}{sd(x)}$$

5. You might have observed that sometimes the value of VIF is infinite. Why does this happen? (3 marks)

If there is perfect correlation, then VIF = infinity. This shows a perfect correlation between two independent variables. In the case of perfect correlation, we get R2 = 1, which lead to 1/(1-R2) infinity. To solve this problem we need to drop one of the variables from the dataset which is causing this perfect multicollinearity.

An infinite VIF value indicates that the corresponding variable may be expressed exactly by a linear combination of other variables (which show an infinite VIF as well).

6. What is a Q-Q plot? Explain the use and importance of a Q-Q plot in linear regression.

(3 marks)

Q-Q Plots (Quantile-Quantile plots) are plots of two quantiles against each other. A quantile is a fraction where certain values fall below that quantile. For example, the median is a quantile where 50% of the data fall below that point and 50% lie above it. The purpose of Q Q plots is to find out if two sets of data come from the same distribution. A 45 degree angle is plotted on the Q Q plot; if the two data sets come from a common distribution, the points will fall on that reference line

A Q Q plot showing the 45 degree reference line:

If the two distributions being compared are similar, the points in the Q–Q plot will approximately lie on the line y = x. If the distributions are linearly related, the points in the Q–Q plot will approximately lie on a line, but not necessarily on the line y = x. Q–Q plots can also be

used as a graphical means of estimating parameters in a location-scale family of distributions.

A Q—Q plot is used to compare the shapes of distributions, providing a graphical view of how properties such as location, scale, and skewness are similar or different in the two distributions.