

HCM University of Technology

MACHINE ELEMENTS

ME2007

Project Report

Submitted To: Submitted By:

Phan Dinh Huan Nguyen Quy Khoi

Asst. Professor 1852158

Faculty of Mechanical CC02

Engineering HK192

Contents

Mot	or Design	7
1.1	Nomenclature	7
1.2	Calculate η_{sys}	8
1.3	Calculate P_{motor}	8
1.4	Calculate n_{motor}	8
1.5	Choose motor	9
1.6	Calculate power, rotational speed and torque	9
	1.6.1 Power	9
	1.6.2 Rotational speed	10
	1.6.3 Torque	10
Gea	rbox Design (Helix gears)	11
2.1	Nomenclature	11
2.2	Choose material	13
2.3	Calculate $[\sigma_H]$ and $[\sigma_F]$	13
	2.3.1 Working cycle of bearing stress	13
	2.3.2 Working cycle of equivalent tensile stress	13
	2.3.3 Aging factor	14
	2.3.4 Calculate $[\sigma_H]$, $[\sigma_{F1}]$, $[\sigma_{F2}]$	14
2.4	Transmission Design	15
	1.1 1.2 1.3 1.4 1.5 1.6 Gea 2.1 2.2 2.3	1.2 Calculate η_{sys}

		2.4.1	Determine basic parameters	15
		2.4.2	Determine gear meshing parameters	15
		2.4.3	Basic parameters	16
		2.4.4	Find $[\sigma_{Hw}]$, $[\sigma_{Fw1}]$ and $[\sigma_{Fw2}]$	17
		2.4.5	Contact stress analysis	17
		2.4.6	Bending stress analysis	18
		2.4.7	Force on shafts	19
3	Bea	ring Des	sign	21
	3.1	Nomer	nclature	21
	3.2	Choose	e bearing type	23
	3.3	Bearin	g dimensions	23
		3.3.1	Calculate basic dynamic load rating	23

List of Tables

1.1	System overall specifications	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
2.1	Gearbox specifications																ā	20

List of Figures

1	Mechanical transmission system of a belt conveyor	•	5
2	Input load diagram		6

Design Problem

 D_{bc} pulley diameter, mm

 F_t tangential force, N

L service life, years

T working torque, $N \cdot mm$

t working time, s

 v_{bc} conveyor belt speed, m/s

 δ_u error of speed ratio, %

Figure 1: Mechanical transmission system of a belt conveyor

Given the mechanical transmission system in figure 1, determine the specifications for each machine element.

- 1. Electric motor
- 2. Elastic coupling
- 3. Gearbox
- 4. Chain drive
- 5. Belt conveyor

Figure 2: Input load diagram

Design parameters The chosen parameters are given in column 8:

- $F_t = 4500 (N)$
- $v_{bc} = 3.05 \, (\text{m/s})$
- $D_{bc} = 500 \, (\text{mm})$
- L = 4 (years)
- $T_1 = T (N \cdot mm), t_1 = 12 (s)$
- $T_2 = 0.7T (N \cdot mm), t_2 = 60 (s)$
- $\delta_u \leq \pm 5\%$

The machine works in one direction for 300 days, 2 shifts per day, 8 hours each and the load is low. Also, for the rest of this report, we will consider shaft 1 is the one connected to the electric motor, while shaft 2 is the connection between the chain drive and gearbox.

Chapter 1

Motor Design

1.1 Nomenclature

n_{bc}	rotational speed of belt	u_{hg}	transmission ratio of helical
	conveyor, rpm		gear
n_{sh}	rotational speed of shaft, rpm	u_{sys}	transmission ratio of the
P_{m}	maximum operating power of		system
	belt conveyor, kW	T_{motor}	motor torque, $N \cdot mm$
P_{motor}	calculated motor power to	T_{sh}	shaft torque, $N \cdot mm$
	drive the system, kW	η_b	bearing efficiency
P_{sh}	operating power of shaft, kW	η_c	coupling efficiency
P_{w}	operating power of the belt	η_{ch}	chain drive efficiency
	conveyor given a workload,	η_{hg}	helical gear efficiency
	kW	η_{sys}	efficiency of the system
u_{ch}	transmission ratio of chain	1	shaft 1
	drive	2	shaft 2

1.2 Calculate η_{sys}

From table (2.3):

$$\eta_c = 1$$

$$\eta_b = 0.99$$

$$\eta_{hg} = 0.96$$

$$\eta_{ch} = 0.95$$

$$\eta_{sys} = \eta_c \eta_b^3 \eta_{hg} \eta_{ch} \approx 0.88$$

1.3 Calculate P_{motor}

$$P_{m} = \frac{F_{t}v_{bc}}{1000} \approx 13.73 \text{ (kW)}$$
From equation (2.13):
$$P_{w} = P_{m} \sqrt{\frac{\left(\frac{T_{1}}{T}\right)^{2} t_{1} + \left(\frac{T_{2}}{T}\right)^{2} t_{2}}{t_{1} + t_{2}}} \approx 10.41 \text{ (kW)}$$

$$P_{motor} = \frac{P_{w}}{\eta_{sys}} \approx 11.76 \text{ (kW)} < P_{m}$$

1.4 Calculate n_{motor}

$$n_{bc} = \frac{6 \times 10^4 v}{\pi D_{bc}} \approx 116.5 \text{ (rpm)}$$
 $u_{ch} = 5 \text{ (table (2.4))}$
 $u_{hg} = 5 \text{ (table (2.4))}$
 $u_{sys} = u_{ch} u_{hg} = 25$
 $n_{motor} = u_{sys} n_{bc} \approx 2912.54 \text{ (rpm)}$

1.5 Choose motor

To work normally, the maximum operating power of the chosen motor must be no smaller than both estimated P_{motor} and P_m . Since $P_{motor} < P_m$ for our case, the minimum operating power of choice is P_m . In similar fashion, its rotational speed must also be no smaller than estimated n_{motor} .

Thus, from table (P1.3), we choose motor 4A160M2Y3 which operates at 18.5 kW and 2930 rpm

$$\Rightarrow P_{motor} = 18.5 \text{ kW}, n_{motor} = 2930 \text{ (rpm)}$$

Recalculating u_{sys} with the new P_{motor} and n_{motor} , we obtain:

$$u_{sys} = \frac{n_{motor}}{n_{bc}} \approx 25.15$$

Assuming $u_{hg} = const$:

$$u_{ch} = \frac{u_{sys}}{u_{hg}} \approx 5.03$$

1.6 Calculate power, rotational speed and torque

Let us denote P_{sh1} , n_{sh1} and T_{sh1} be the transmitted power, rotational speed and torque onto shaft 1, respectively. Similarly, P_{sh2} , n_{sh2} and T_{sh2} will be the transmitted parameters onto shaft 2. These notations will be used throughout the next chapters.

1.6.1 Power

$$P_{ch} = P_m \approx 13.73 \text{ (kW)}$$

$$P_{sh2} = \frac{P_{ch}}{\eta_b \eta_{ch}} \approx 14.59 \text{ (kW)}$$

$$P_{sh1} = \frac{P_{sh2}}{\eta_b \eta_{hg}} \approx 15.35 \text{ (kW)}$$

1.6.2 Rotational speed

$$n_{sh1} = n_{motor} = 2930 \text{ (rpm)}$$

 $n_{sh2} = \frac{n_{sh1}}{u_{hg}} = 586 \text{ (rpm)}$

1.6.3 Torque

$$T_{motor} = 9.55 \times 10^{6} \frac{P_{motor}}{n_{motor}} \approx 60298.63 \text{ (N} \cdot \text{mm)}$$

$$T_{sh1} = 9.55 \times 10^{6} \frac{P_{sh1}}{n_{sh1}} \approx 50047.56 \text{ (N} \cdot \text{mm)}$$

$$T_{sh2} = 9.55 \times 10^{6} \frac{P_{sh2}}{n_{sh2}} \approx 237825.99 \text{ (N} \cdot \text{mm)}$$

In summary, we obtain the following table:

	Motor	Shaft 1	Shaft 2
P(kW)	18.5	15.35	14.59
и	5	5.03	3
n (rpm)	2930	2930	586
$T(N \cdot mm)$	60298.63	50047.56	237825.99

Table 1.1: System overall specifications

Chapter 2

Gearbox Design (Helix gears)

2.1 Nomenclature

$[\sigma_H]$	permissible contact stress, MPa	F_r	radial force, N
$[\sigma_H]_{max}$	permissible contact stress due to	F_t	tangential force, N
	overload, MPa	H	surface roughness, HB
$[\sigma_F]$	permissible bending stress, MPa	K_d	coefficient of gear material
$[\sigma_F]_{max}$	permissible bending stress due	K_F	load factor from bending stress
	to overload, MPa	K_{FC}	load placement factor
AG	accuracy grade of gear	K_{FL}	aging factor due to bending
a	center distance, mm		stress
b	face width, mm	K_{Fv}	factor of dynamic load from
c	gear meshing rate		bending stress at meshing area
d	pitch circle, mm	$K_{F\alpha}$	factor of load distribution from
d_a	addendum diameter, mm		bending stress on gear teeth
d_b	base diameter, mm	$K_{F\beta}$	factor of load distribution from
d_f	deddendum diameter, mm		bending stress on top land
F_a	axial force, N	K_H	load factor of contact stress

K_{HL}	aging factor due to contact stress	T	input torque, $N \cdot mm$
K_{Hv}	factor of dynamic load from	v	rotational velocity, m/s
	contact stress at meshing area	X	gear correction factor
$K_{H\alpha}$	factor of load distribution from	Y_F	tooth shape factor
	contact stress on gear teeth	Y_{β}	helix angle factor
$K_{H\beta}$	factor of load distribution from	Y_{ε}	contact ratio factor
	contact stress on top land	у	center displacement factor
k_x	a coefficient	z_H	contact surface's shape factor
k_y	a coefficient	z_M	material's mechanical properties
m	traverse module, mm		factor
m_F	root of fatigue curve in bending	Zmin	minimum number of teeth
	stress test		corresponding to β
m_H	root of fatigue curve in contact	z_v	virtual number of teeth
	stress test	$z_{oldsymbol{arepsilon}}$	meshing condition factor
m_n	normal module, mm	α	normal pressure angle,
m_{η}	normar module, mm		normal pressure angle,
N_{FE}	working cycle of equivalent		following Vietnam standard
	working cycle of equivalent	$lpha_t$	following Vietnam standard
	working cycle of equivalent tensile stress corresponding to		following Vietnam standard (TCVN 1065-71), i.e. $\alpha = 20^{\circ}$
N_{FE}	working cycle of equivalent tensile stress corresponding to $[\sigma_F]$	$lpha_t$	following Vietnam standard (TCVN 1065-71), i.e. $\alpha = 20^{\circ}$ traverse pressure angle, $^{\circ}$
N_{FE}	working cycle of equivalent tensile stress corresponding to $[\sigma_F]$ working cycle of bearing stress	$lpha_t$ $arepsilon_lpha$	following Vietnam standard (TCVN 1065-71), i.e. $\alpha = 20^{\circ}$ traverse pressure angle, $^{\circ}$ traverse contact ratio
N_{FE}	working cycle of equivalent tensile stress corresponding to $[\sigma_F]$ working cycle of bearing stress corresponding to $[\sigma_F]$	$lpha_t$ $arepsilon_lpha$	following Vietnam standard (TCVN 1065-71), i.e. $\alpha = 20^{\circ}$ traverse pressure angle, $^{\circ}$ traverse contact ratio face contact ratio
N_{FE}	working cycle of equivalent tensile stress corresponding to $[\sigma_F]$ working cycle of bearing stress corresponding to $[\sigma_F]$ working cycle of equivalent	$lpha_t$ $arepsilon_lpha$ $arepsilon_eta$	following Vietnam standard (TCVN 1065-71), i.e. $\alpha = 20^{\circ}$ traverse pressure angle, $^{\circ}$ traverse contact ratio face contact ratio helix angle, $^{\circ}$
N_{FE}	working cycle of equivalent tensile stress corresponding to $[\sigma_F]$ working cycle of bearing stress corresponding to $[\sigma_F]$ working cycle of equivalent tensile stress corresponding to	$egin{array}{c} lpha_t \ arepsilon_{lpha} \ arepsilon_{eta} \ eta_b \ eta_b \end{array}$	following Vietnam standard (TCVN 1065-71), i.e. $\alpha = 20^{\circ}$ traverse pressure angle, $^{\circ}$ traverse contact ratio face contact ratio helix angle, $^{\circ}$ base circle helix angle, $^{\circ}$
N_{FE} N_{FO}	working cycle of equivalent tensile stress corresponding to $[\sigma_F]$ working cycle of bearing stress corresponding to $[\sigma_F]$ working cycle of equivalent tensile stress corresponding to $[\sigma_H]$	$lpha_t$ $arepsilon_lpha$ $arepsilon_eta$ eta_b ψ_{ba}	following Vietnam standard (TCVN 1065-71), i.e. $\alpha = 20^{\circ}$ traverse pressure angle, $^{\circ}$ traverse contact ratio face contact ratio helix angle, $^{\circ}$ base circle helix angle, $^{\circ}$ width to shaft distance ratio
N_{FE} N_{FO}	working cycle of equivalent tensile stress corresponding to $[\sigma_F]$ working cycle of bearing stress corresponding to $[\sigma_F]$ working cycle of equivalent tensile stress corresponding to $[\sigma_H]$ working cycle of bearing stress	$lpha_t$ $arepsilon_lpha$ $arepsilon_eta$ eta_b ψ_{ba} ψ_{bd}	following Vietnam standard (TCVN 1065-71), i.e. $\alpha = 20^{\circ}$ traverse pressure angle, $^{\circ}$ traverse contact ratio face contact ratio helix angle, $^{\circ}$ base circle helix angle, $^{\circ}$ width to shaft distance ratio face width factor
N _{FE} N _{FO} N _{HE}	working cycle of equivalent tensile stress corresponding to $[\sigma_F]$ working cycle of bearing stress corresponding to $[\sigma_F]$ working cycle of equivalent tensile stress corresponding to $[\sigma_H]$ working cycle of bearing stress corresponding to $[\sigma_H]$	$lpha_t$ $arepsilon_lpha$ $arepsilon_eta$ eta_b ψ_{ba} ψ_{bd} σ_b	following Vietnam standard (TCVN 1065-71), i.e. $\alpha = 20^{\circ}$ traverse pressure angle, $^{\circ}$ traverse contact ratio face contact ratio helix angle, $^{\circ}$ base circle helix angle, $^{\circ}$ width to shaft distance ratio face width factor ultimate strength, MPa

permissible σ_{Flim}^o bending stress subscript for pinion 1 corresponding to working cycle, subscript for driven gear **MPa** subscript for variable value after σ_{Hlim}^{o} permissible contact correction stress corresponding to working cycle, **MPa**

2.2 Choose material

From table (6.1), the material of choice for both gears is steel 40X with $S \le 100$ (mm), HB250, $\sigma_b = 850$ (MPa), $\sigma_{ch} = 550$ (MPa).

Table (6.2) also gives $\sigma_{Hlim}^{o} = 2\text{HB} + 70$, $S_{H} = 1.1$, $\sigma_{Flim}^{o} = 1.8\text{HB}$, $S_{F} = 1.75$

Therefore, they have the same properties except for their surface roughness H.

The reasoning is given on p.91, where $H_2 = H_1 - 10 \div 15$

For the pinion, $H_1 = \text{HB250} \Rightarrow \sigma^o_{Hlim1} = 570 \text{ (MPa)}, \ \sigma^o_{Flim1} = 450 \text{ (MPa)}$

For the driven gear, $H_2 = \text{HB}240 \Rightarrow \sigma^o_{Hlim2} = 550 \text{ (MPa)}, \ \sigma^o_{Flim2} = 432 \text{ (MPa)}$

2.3 Calculate $[\sigma_H]$ and $[\sigma_F]$

2.3.1 Working cycle of bearing stress

Using equation (6.5):

$$N_{HO1} = 30H_1^{2.4} = 17.07 \times 10^6 \text{ (cycles)}$$

$$N_{HO2} = 30H_2^{2.4} = 15.4749 \times 10^6 \text{ (cycles)}$$

2.3.2 Working cycle of equivalent tensile stress

Since $H_1, H_2 \le \text{HB350}, m_H = 6, m_F = 6.$

Both gears meshed indefinitely, thus c = 1.

From working condition, we calculate:

$$L_h = 8 \left(\frac{\text{hours}}{\text{shift}} \right) \times 2 \left(\frac{\text{shifts}}{\text{day}} \right) \times 300 \left(\frac{\text{days}}{\text{year}} \right) \times 4 \text{ (years)} = 19200 \text{ (hours)}$$

Applying equation (6.7) and T_1 , T_2 , t_1 , t_2 in the initial parameters:

$$N_{HE1} = 60n_{sh1}cL_h \left[\left(\frac{T_1}{T} \right)^3 \frac{t_1}{t_1 + t_2} + \left(\frac{T_2}{T} \right)^3 \frac{t_2}{t_1 + t_2} \right] \approx 1.53 \times 10^9 \text{ (cycles)}$$

$$N_{HE2} = 60n_{sh2}cL_h \left[\left(\frac{T_1}{T} \right)^3 \frac{t_1}{t_1 + t_2} + \left(\frac{T_2}{T} \right)^3 \frac{t_2}{t_1 + t_2} \right] \approx 0.31 \times 10^9 \text{ (cycles)}$$

$$N_{FE1} = 60n_{sh1}cL_h \left[\left(\frac{T_1}{T} \right)^{m_F} \frac{t_1}{t_1 + t_2} + \left(\frac{T_2}{T} \right)^{m_F} \frac{t_2}{t_1 + t_2} \right] \approx 0.89 \times 10^9 \text{ (cycles)}$$

$$N_{FE2} = 60n_{sh2}cL_h \left[\left(\frac{T_1}{T} \right)^{m_F} \frac{t_1}{t_1 + t_2} + \left(\frac{T_2}{T} \right)^{m_F} \frac{t_2}{t_1 + t_2} \right] \approx 0.18 \times 10^9 \text{ (cycles)}$$

2.3.3 Aging factor

For steel, $N_{FO1} = N_{FO2} = 4 \times 10^6$ (MPa). Applying equations (6.3) and (6.4) yield (if K_{HL} , $K_{FL} < 1$, $K_{HL} = 1$ and $K_{FL} = 1$ according to the properties given on p.94):

$$K_{HL1} = {}^{m} \sqrt[m]{N_{HO1}/N_{HE1}} \approx 0.47 < 1 \Rightarrow K_{HL1} = 1$$
 $K_{HL2} = {}^{m} \sqrt[m]{N_{HO2}/N_{HE2}} \approx 0.61 < 1 \Rightarrow K_{HL2} = 1$
 $K_{FL1} = {}^{m} \sqrt[m]{N_{FO1}/N_{FE1}} \approx 0.41 < 1 \Rightarrow K_{FL1} = 1$
 $K_{FL2} = {}^{m} \sqrt[m]{N_{FO2}/N_{FE2}} \approx 0.53 < 1 \Rightarrow K_{FL2} = 1$

2.3.4 Calculate $[\sigma_H]$, $[\sigma_{F1}]$, $[\sigma_{F2}]$

Since the motor works in one direction, $K_{FC} = 1$. In ideal conditions, we assume $Z_R Z_V K_{xH} = 1$ and $Y_R Y_s K_{xF} = 1$ according to p.92:

$$[\sigma_{H1}] = \sigma^o_{Hlim1} K_{HL1} / S_{H1} \approx 518.18 \text{ (MPa)}$$

 $[\sigma_{H2}] = \sigma^o_{Hlim2} K_{HL2} / S_{H2} \approx 500 \text{ (MPa)}$
 $[\sigma_{F1}] = \sigma^o_{Flim1} K_{FC1} K_{FL1} / S_{F1} \approx 257.14 \text{ (MPa)}$
 $[\sigma_{F2}] = \sigma^o_{Flim2} K_{FC2} K_{FL2} / S_{F2} \approx 246.86 \text{ (MPa)}$

The mean permissible contact stress must be lower than 1.25 times of either

 $[\sigma_{H1}]$ or $[\sigma_{H2}]$, whichever is smaller:

$$[\sigma_H] = \frac{1}{2} ([\sigma_{H1}] + [\sigma_{H2}]) \approx 509.09 \text{ (MPa)} \le 1.25 [\sigma_H]_{min} = 1.25 [\sigma_{H2}]$$

The permissible contact stress and bending stress due to overload are calculated as follows:

$$[\sigma_H]_{max} = 2.8\sigma_{ch} = 1540 \,(\text{MPa})$$

$$[\sigma_F]_{max} = 0.8\sigma_{ch} = 440 \,(\text{MPa})$$

2.4 Transmission Design

2.4.1 Determine basic parameters

Examine table (6.5) gives $K_a = 43$

Assuming symmetrical design, table (6.6) also gives $\psi_{ba} = 0.5$

$$\Rightarrow \psi_{bd} = 0.53 \psi_{ba} (u_{hg} + 1) = 1.59$$

From table (6.7) , using interpolation, we approximate $K_{H\beta} \approx 1.108, K_{F\beta} \approx 1.2558$

Since the gear system only consists of involute gears and it is also a speed reducer gearbox, we estimate a using equation (6.15a) gives:

$$a = K_a(u_{hg} + 1)\sqrt[3]{\frac{T_{sh1}K_{H\beta}}{[\sigma_H]^2 u_{hg}\psi_{ba}}} \approx 113.7 \text{ (mm)}$$

According to SEV229-75 standard, we choose $a_w = 125 \text{ mm}$

2.4.2 Determine gear meshing parameters

Find m Applying equation (6.17) and choose m from table (6.8):

$$m = (0.01 \div 0.02) a_w = 1.25 \div 2.5 \text{ (mm)} \Rightarrow m = 1.5 \text{ (mm)}$$

Find z_1 , z_2 , b_w Let $\beta = 14^\circ$. Combining equation (6.18) and (6.20), we come up with the formula to calculate z_1 . From the result, z_1 is rounded up to the nearest odd number (preferably a prime number).

$$z_{1} = \frac{2a_{w} \cos \beta}{m(u_{hg} + 1)} \approx 26.95 \Rightarrow z_{1} = 27$$

$$z_{2} = u_{hg} z_{1} = 135$$

$$\Rightarrow b = \psi_{ba} a_{w} = 62.5 \text{ (mm)}$$

Correct β There are 2 approaches for correction involving the change of either α or β . Because altering α leads to many other corrections $(d_1, d_2 \text{ and } a_w)$, β will be used instead.

Since z_1 is rounded, we must find β to obtain the correct angle, ensuring that $\beta \in (8^{\circ}, 20^{\circ})$. Using equation (6.32):

$$\beta_w = \arccos \frac{m(z_1 + z_2)}{2a_w} \approx 13.59^\circ$$

Find x_1 , x_2 To find x_1 and x_2 , we will follow the calculation scheme provided in p.103. Since $\beta_w \approx 13.59^\circ \in (12, 17]$, $z_{min} = 16$, which leads to z_1 satisfying condition $z_1 \ge z_{min} + 2 > 10$, according to table (6.9). Combined with $u_{hg} = 5 \ge 3.5$, we obtain $x_1 = 0.3$, $x_2 = -0.3$, disregarding the calculation of y.

2.4.3 Basic parameters

$$d_{1} = d_{w1} = \frac{mz_{1}}{\cos \beta} \approx 41.67 \text{ (mm)}$$

$$d_{2} = d_{w2} = \frac{mz_{2}}{\cos \beta} \approx 208.33 \text{ (mm)}$$

$$d_{3} = d_{1} + 2(1 + x_{1})m \approx 45.57 \text{ (mm)}$$

$$d_{4} = d_{2} + 2(1 + x_{2})m \approx 210.43 \text{ (mm)}$$

$$d_{5} = d_{2} - (2.5 - 2x_{2})m \approx 203.68 \text{ (mm)}$$

$$d_{5} = d_{1} - (2.5 - 2x_{2})m \approx 203.68 \text{ (mm)}$$

$$d_{5} = d_{1} - (2.5 - 2x_{2})m \approx 203.68 \text{ (mm)}$$

2.4.4 Find $[\sigma_{Hw}]$, $[\sigma_{Fw1}]$ and $[\sigma_{Fw2}]$

In this section, we will try to approximate these parameters based on the factors Z_R , Z_V , K_{xH} and Y_R , Y_s , K_{xF} to substitute to equation (6.1) and (6.2):

$$[\sigma_{Hw}] = [\sigma_H] Z_R Z_V K_{xH}$$
$$[\sigma_{Fw}] = [\sigma_F] Y_R Y_S K_{xF}$$

Assuming smooth surface condition, $Z_R = 1$.

$$Z_V = 0.85v^{0.1} \approx 1.02$$
 with $H \le 350$.

In case of v > 5 (m/s), $K_{xH} = 1$.

The pair of gears are properly polished, which makes $Y_R = 1.1$

$$Y_s = 1.08 - 0.0695 \ln(m) \approx 1.05$$

Since d_{a1} , $d_{a2} \le 400$ (mm), $K_{xF} = 1$, which leads to:

$$[\sigma_{Hw}] = 520.93 \, (\text{MPa})$$

$$[\sigma_{Fw1}] = 297.51 \text{ (MPa)}$$

$$[\sigma_{Fw2}] = 285.61 \text{ (MPa)}$$

2.4.5 Contact stress analysis

From section 6.3.3. in the text, contact stress applied on a gear surface must satisfy the condition below:

$$\sigma_H = z_M z_H z_{\varepsilon} \sqrt{2T_{sh1} K_H \frac{u_{hg} + 1}{b u_{hg} d_{w1}^2}} \le [\sigma_{Hw}]$$

Find z_M $z_M = 274$, according to table (6.5)

Find
$$z_H$$
 $\beta_b = \arctan(\cos \alpha_t \tan \beta_w) \approx 12.76^\circ \Rightarrow z_H = \sqrt{2 \frac{\cos \beta_b}{\sin(2\alpha_{tw})}} \approx 1.72$

Find z_{ε} Obtaining z_{ε} through calculations:

$$\varepsilon_{\alpha} = \frac{\sqrt{d_{a1}^2 - d_{b1}^2} + \sqrt{d_{a2}^2 - d_{b2}^2} - 2a_w \sin \alpha_{tw}}{2\pi m \frac{\cos \alpha_t}{\cos \beta_w}} \approx 1.41$$

$$\varepsilon_{\beta} = b \frac{\sin \beta_w}{m\pi} \approx 3.12 > 1 \Rightarrow z_{\varepsilon} = \varepsilon_{\alpha}^{-0.5} \approx 0.86$$

Find K_H We find K_H using equation $K_H = K_{H\beta}K_{H\alpha}K_{H\nu}$

From table (6.13), $v \le 10 \text{ (m/s)} \Rightarrow AG = 8$

From table (P2.3), using interpolation, we approximate:

$$K_{Hv} \approx 1.07, K_{Fv} \approx 1.18$$

From table (6.14), using interpolation, we approximate:

$$K_{H\alpha} \approx 1.1, K_{F\alpha} \approx 1.29$$

 $\Rightarrow K_H \approx 1.3$

Find σ_H After calculating z_M , z_H , z_{ε} , K_H , we get the following result:

$$\sigma_H \approx 477.51 \, (\text{MPa}) \le [\sigma_{Hw}] \approx 509.09 \, (\text{MPa})$$

2.4.6 Bending stress analysis

For safety reasons, the following conditions must be met:

$$\sigma_{F1} = 2 \frac{T_{sh1} K_F Y_{\varepsilon} Y_{\beta} Y_{F1}}{b d_{w1} m_n} \le [\sigma_{Fw1}]$$

$$\sigma_{F2} = \frac{\sigma_{F1} Y_{F2}}{Y_{F1}} \le [\sigma_{Fw2}]$$

Find Y_{ε} Knowing that $\varepsilon_{\alpha} \approx 1.41$, we can calculate $Y_{\varepsilon} = \varepsilon_{\alpha}^{-1} \approx 0.71$

Find
$$Y_{\beta}$$
 $Y_{\beta} = 1 - \frac{\beta_w}{140} \approx 0.9$

Find Y_F Using formula $z_v = z \cos^{-3}(\beta_w)$ and table (6.18):

$$z_{v1} = z_1 \cos^{-3}(\beta_w) \approx 29.4 \Rightarrow Y_{F1} \approx 3.54$$

 $z_{v2} = z_2 \cos^{-3}(\beta_w) \approx 147.01 \Rightarrow Y_{F2} \approx 3.63$

Find K_F Using $K_{F\beta}$, $K_{F\alpha}$, $K_{F\nu}$ calculated from the sections above, we derive: $K_F = K_{F\beta}K_{F\alpha}K_{F\nu} \approx 1.91$

Find σ_F Since $m_n = m \cos \beta_w \approx 1.46$, substituting all the values, we find out that:

$$\sigma_{F1} \approx 130.83 \,(\text{MPa}) \leq [\sigma_{Fw1}] \approx 297.51 \,(\text{MPa})$$

 $\sigma_{F2} \approx 115.98 \,(\text{MPa}) \leq [\sigma_{Fw2}] \approx 285.61 \,(\text{MPa})$

2.4.7 Force on shafts

$$F_t = \frac{2T_{sh1}}{d_{w1}} \approx 2402.28 \text{ (N)}$$

$$F_r = F_t \tan \alpha_{tw} \approx 899.55 \text{ (N)}$$

$$F_a = F_t \tan \beta_w \approx 580.75 \text{ (N)}$$

In summary, we have the following table:

	pinion	driving gear			
H (HB)	250	240			
$[\sigma_F]$ (MPa)	257.14	246.86			
$[\sigma_H]$ (MPa)	509	.09			
$[\sigma_H]_{max}$ (MPa)	154	.0			
$[\sigma_F]_{max}$ (MPa)	440				
a_w (mm)	100				
b (mm)	50				
m (mm)	1.5				
d_w (mm)	33.33	166.67			
d_a (mm)	37.23	168.77			
d_f (mm)	30.48	162.02			
d_b (mm)	31.32	156.62			
u_{hg}	5				
v (m/s)	5				
x (mm)	0.3	-0.3			
Z	21	105			
α_{tw} (°)	20.65				
$\beta_{\scriptscriptstyle W}$ (°)	19.0	09			

Table 2.1: Gearbox specifications

Chapter 3

Bearing Design

3.1 Nomenclature

[<i>s</i>]	permissible safety factor	h_n	distance between bearing lid and
$[\sigma]$	permissible static strength, MPa		bolt, mm
[au]	permissible torsion, MPa	hr	tooth direction
a_w	shaft distance, mm	K_{x}	surface tension concentration
b_O	rolling bearing width, mm		factor
C_d	basic dynamic load rating, N	K_{y}	diminish factor
cb	role of gear on the shaft (active	K_{σ}	combined influence factor in
	or passive)		tension
cq	rotational direction of the shaft	K_{τ}	combined influence factor in
d	base shaft diameter, mm		shear
d_w	gear diameter, mm		
F_a	axial force, N		
F_r	radial force, N		
F_t	tangential force, N		
F_{x}	applied force, N		

k_d	temperature factor	W	section modulus, mm ³
k_t	load condition factor	W_O	polar section modulus, mm ³
k_{σ}	fatigue stress concentration	X	dynamic radial load factor
	factor in tension	Y	dynamic axial load factor
$k_{ au}$	fatigue stress concentration	α	contact angle, °
	factor in shear	α_{tw}	traverse meshing angle, °
L	rated life in million revolutions,	β	helix angle, °
	million rev	ψ_{σ}	mean stress influence factor
L_h	rated life in hours, h	$\psi_{ au}$	mean shear influence factor
l	length (general), mm	σ_{-1}	endurance limit at stress ratio of
l_m	hub length (general), mm		-1, MPa
M	moment, $N \cdot mm$	σ_a	tensile stress amplitude, MPa
M_e	equivalent moment, N·mm	σ_b	ultimate strength, MPa
M_{max}	maximum moment at the cross	σ_{ch}	yield limit, MPa
	section, $N \cdot mm$	σ_m	mean tensile stress, MPa
m	load-life exponent	σ_{td}	static strength, MPa
Q	equivalent dynamic load, kN	$ au_{-1}$	endurance limit at shear ratio of
q	standardized coefficient of shaft		-1, MPa
	diameter	$ au_a$	shear stress amplitude, MPa
R	reaction force, N	$ au_m$	mean shear stress, MPa
r	shoulder fillet radius, mm	sh1	subscript for shaft 1
\bar{r}	position of applied force on the	sh2	subscript for shaft 2
	shaft, mm	x	subscript for x-axis
S	length defined by table (6.1),	у	subscript for y-axis
	mm	z	subscript for z-axis
S	calculated safety factor		
s_{σ}	safety factor in tensile stress		
$s_{ au}$	safety factor in shear stress		
T	torque at the cross section 2		
	$N \cdot mm$		

3.2 Choose bearing type

As for the types, we will examine $\frac{F_a}{F_r}$ at A_1 , B_1 , A_2 and B_2 in the 2 shafts from the previous chapter, where F_a are $|F_{z12}|$ in case of shaft 1 and $|F_{z21}|$ in case of shaft 2, which are axial loads; F_r is the magnitude of reaction force R_y from the shaft onto a bearing along y-axis, which is essentially a radial load. The larger ratio in a shaft will be our ratio of choice to determine the bearing type.

Taking our results from the shaft design chapter:

$$\begin{cases} R_{A1y} \approx -341.74 \text{ (N)} \\ R_{B1y} \approx -583.72 \text{ (N)} \\ F_{z12} \approx 580.75 \text{ (N)} \end{cases} \text{ and } \begin{cases} R_{A2y} \approx 3708.15 \text{ (N)} \\ R_{B2y} \approx -462.64 \text{ (N)} \\ F_{z21} \approx -580.75 \text{ (N)} \end{cases}$$

yields

$$\begin{cases}
\left| \frac{F_{z12}}{R_{A1y}} \right| \approx 1.7 \\
\frac{F_{z12}}{R_{B1y}} \right| \approx 0.99
\end{cases}$$

$$\begin{cases}
\left| \frac{F_{z21}}{R_{A2y}} \right| \approx 0.16 \\
\frac{F_{z21}}{R_{B2y}} \right| \approx 1.26
\end{cases}$$

Since 1.7 > 1 and 1.26 > 1, the 2 pairs of bearings are double row angular contact ball bearings with $\alpha_{sh1} = \alpha_{sh2} = 36^{\circ}$; AG = 0 according to the recommendations on p.212 and p.213.

3.3 Bearing dimensions

3.3.1 Calculate basic dynamic load rating

$$C_d = Q \sqrt[m]{L}$$

Find equivalent dynamic load

Since we only use angular contact ball bearings, the following formula applies:

$$Q = (XVF_r + YF_a)k_tk_d$$

Since the inner ring rotates, V = 1. The design problem also does not give any further information about operating temperature, which gives $k_t = 1$. In addition, we get $k_d = 1$ from table (11.3) based on the machine's condition (low load and power rating).

From the previous section, $\alpha_{sh1} = 36^{\circ}$, $\alpha_{sh2} = 36^{\circ}$. Inspecting table (11.4), $e_{sh1} = e_{sh2} = 0.95$. These values are then compared with $\left| \frac{F_a}{VF_r} \right|$ to look up the correct column.

For shaft 1,
$$\left| \frac{F_a}{VF_r} \right| = \left| \frac{F_{z12}}{VR_{A1y}} \right| \approx 1.7 > e_1 \Rightarrow X_1 = 0.6, Y_1 = 1.07.$$

For shaft 2, $\left| \frac{F_a}{VF_r} \right| = \left| \frac{F_{z21}}{VR_{B2y}} \right| \approx 1.26 > e_2 \Rightarrow X_2 = 0.6, Y_2 = 1.07.$

Recall that the forces are in absolute values, the parameters are substituted to the formula to obtain:

$$Q_1 \approx 826.45 \, (\mathrm{kN})$$

$$Q_2 \approx 1389.39 \, (kN)$$

Find rated life

Equation (11.2) is rearranged to calculate L:

$$L = L_h 60 n_{sh} \times 10^{-6}$$

In our transmission system, since the gearbox is a speed reducer working 2 shifts daily, we approximate $L_h \approx 30000$ (hours) according to table (11.2), which gives: $L_1 \approx 5274$ (million rev)

 $L_2 \approx 1054.8$ (million rev)

Combining the results and letting m=3 (ball bearings are used in this case) yield:

$$C_{d1} = 14385.63 (N)$$