Advanced Analytics for Data Science (BIP)

Analysis of University Satisfaction through IRT: A Survey into Students' Expectations and Perceptions

Antonio Cola

University of Naples Federico II

October 20, 2023

- 1 Introduction
- 2 Exploratory Analysis
- 3 Models
- 4 Test
- **6** Conclusion

1 Introduction

Introduction •0

- 2 Exploratory Analysis
- Models

Introduction

The dataset, available on **Kaggle**, is the result of a survey conducted through Google Forms by the University Grant Commission of Bangladesh. The original dataset has been cleaned and reduced in terms of both observations and variables for improved usability:

Observations	500	
Variables	87	
Missing Data	7971	

Table 1: Original Dataset

Observations	346	
Variables	20	
Missing Data	0	

Table 2: After Cleaning Dataset

- Introduction
- 2 Exploratory Analysis
- 3 Models

Distribution of items

The overall trend of the distribution of items is positive.

Exploratory Analysis

Correlation

The **correlation** values of the items are all positive, ranging from a minimum of 0.18 to a maximum of 0.65.

Figure 7: Correlation Matrix

Correlation

Cronbach's Alpha Coefficient measures how different questions or items within the tool are correlated with each other, providing an indication of internal cohesion.

$$\alpha = \frac{k}{k-1} \left(1 - \frac{\sum_{i=1}^{k} \sigma_{y_i}^2}{\sigma_y^2} \right) = 0.79$$

Where k represents the number of items, $\sigma_{v_i}^2$ the variance associated with each item i and σ_v^2 the variance associated with the total scores

$$\left(y = \sum_{i=1}^k y_i\right).$$

- Introduction
- 2 Exploratory Analysis
- 3 Models

Graded Response Model (IRT)

Graded Response Model (Hiroshi Samejima, 1969) is specifically designed to handle ordinal or categorical data:

$$\log \frac{p(Y_{ij} \ge y|\theta_i)}{p(Y_{ii} < y|\theta_i)} = \lambda_j(\theta_i - \beta_{iy}) \quad \textit{with} \quad j = 1, ..., J \quad \textit{and} \quad y = 1, ..., I_j - 1$$

Figure 8: Item Probability Functions

Graded Response Model (IRT)

Item 1 had the lowest slope and is, therefore, the least informative item. On the other hand, Item 3 had the highest slope and provides the highest amount of statistical information. Items tended to provide the most information between [-3, 0] θ range .

Models

Figure 9: Item Information Curves

Models

Linear Regression on Latent Varible θ

The **latent variable** or **ability** θ could represent the overall satisfaction of the individual's university experience. Once the latent variable θ was obtained, we proceeded with a more in-depth analysis through linear regression.

Figure 10: Linear Regression Model

Linear Regression Diagnostic

As can be seen from the plotted graphs, homoscedasticity, linearity, and normality of residuals are verified.

Figure 11: Residuals Distributions

- Introduction
- 2 Exploratory Analysis
- 3 Models
- 4 Test

Chi-Squared Test (Indipendence)

The test statistic, also known as **Chi-Squared Test**, can be calculated as follow:

$$X^{2} = n \left(\sum_{i=1}^{k} \sum_{j=1}^{h} \frac{(n_{ij})^{2}}{n_{i.} n_{.j}} - 1 \right)$$

Variable 1	Variable 2	Chi-Squared	p-value	Signif.
$abilty(\theta)$	regular	223.4845	5.371×10^{-02}	
$abilty(\theta)$	first_aspect	671.4013	2.763×10^{-03}	**
$abilty(\theta)$	improvements	4520.5157	3.399×10^{-04}	***
$abilty(\theta)$	edu_perception	236.9464	1.326×10^{-02}	*
$abilty(\theta)$	uni_perception	254.4025	1.465×10^{-03}	**

Table 3: Chi-Squared Test Table

- Introduction
- 2 Exploratory Analysis
- Models
- 4 Test
- **6** Conclusion

References

- [1] Agresti A. Analysus of Ordinal Categorical Data. Wiley, 2 edition, 2010.
- [2] Agresti A. Categorical Data Analysis. Wiley, 3 edition, 2013.
- [3] Dobson A An Introduction to Generalized Linear Model. Springer, 2 edition, 1990.
- [4] Frank B Baker, Seock-Ho Kim, et al. The basics of item response theory using Springer, 2017.
- [5] Li Cai and Mark Hansen. Limited-information goodness-of-fit testing of hierarchical item factor models. British Journal of Mathematical and Statistical Psychology, 66(2), 2013.

- [6] R Philip Chalmers. mirt: A multidimensional item response theory package for the r environment. Journal of statistical Software, 48, 2012.
- Lee I Cronbach [7] Coefficient alpha and the internal structure of tests. psychometrika, 16(3):297-334, 1951.
- [8] Piccolo D. Statistica. Il Mulino, 3 edition, 2010.
- [9] Murphy K. P. Machine Learning: A Probabilistic Perspective. MIT press, 1 edition, 2012.
- [10] Fumiko Samejima. Graded response model. In Handbook of modern item response theory, pages 85-100. Springer, 1997.

Thanks!