Final Project Submission

Please fill out:

- Student name: Group 5 -
- · Student pace: part time
- Scheduled project review date/time:
- Instructor name:
- · Blog post URL:

Business Understanding

To develop a predictive model that accurately estimates the sale price of houses in King County, Washington, based on various features such as the number of bedrooms, bathrooms, square footage, location attributes (like waterfront proximity), house condition, grade, year built and renovated. This model aims to assist potential buyers, sellers, and real estate stakeholders in understanding and predicting house prices within the region.

Importing Dependancies

Data Understanding

In [4]:

```
# Get information about the dataset, including data types and missing v
house_data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):

Data	COTUMNS (COCAT	ZI COIUMIIS).						
#	Column	Non-Null Count	Dtype					
0	id	21597 non-null	int64					
1	date	21597 non-null	object					
2	price	21597 non-null	float64					
3	bedrooms	21597 non-null	int64					
4	bathrooms	21597 non-null	float64					
5	sqft_living	21597 non-null	int64					
6	sqft_lot	21597 non-null	int64					
7	floors	21597 non-null	float64					
8	waterfront	19221 non-null	object					
9	view	21534 non-null	object					
10	condition	21597 non-null	object					
11	grade	21597 non-null	object					
12	sqft_above	21597 non-null	int64					
13	sqft_basement	21597 non-null	object					
14	yr_built	21597 non-null	int64					
15	yr_renovated	17755 non-null	float64					
16	zipcode	21597 non-null	int64					
17	lat	21597 non-null	float64					
18	long	21597 non-null	float64					
19	sqft_living15	21597 non-null	int64					
20	sqft_lot15	21597 non-null	int64					
dtype	es: float64(6),	int64(9), object	t(6)					
memor	memory usage: 3.5+ MB							

Out[5]:

25% count mean std min 5 1.000102e+06 21597.0 id 4.580474e+09 2.876736e+09 2.123049e+09 3.904930e+ 21597.0 5.402966e+05 3.673681e+05 7.800000e+04 3.220000e+05 4.500000e+ bedrooms 21597.0 3.373200e+00 9.262989e-01 1.000000e+00 3.000000e+00 3.000000e+ 21597.0 bathrooms 2.115826e+00 7.689843e-01 5.000000e-01 1.750000e+00 2.250000e+ sqft_living 21597.0 2.080322e+03 9.181061e+02 3.700000e+02 1.430000e+03 1.910000e+ sqft_lot 21597.0 1.509941e+04 4.141264e+04 5.200000e+02 5.040000e+03 7.618000e+ 21597.0 1.500000e+ floors 1.494096e+00 5.396828e-01 1.000000e+00 1.000000e+00 1.190000e+03 sqft_above 21597.0 1.788597e+03 8.277598e+02 3.700000e+02 1.560000e+ yr_built 21597.0 1.971000e+03 2.937523e+01 1.900000e+03 1.951000e+03 1.975000e+ yr_renovated 3.999464e+02 0.000000e+00 0.000000e+00 0.000000e+ 17755.0 8.363678e+01 21597.0 9.807795e+04 5.351307e+01 9.800100e+04 9.803300e+04 9.806500e+ zipcode lat 21597.0 4.756009e+01 1.385518e-01 4.715590e+01 4.747110e+01 4.757180e+ 21597.0 -1.222140e+02 1.407235e-01 -1.225190e+02 -1.223280e+02 -1.222310e+ sqft_living15 21597.0 1.986620e+03 6.852305e+02 3.990000e+02 1.490000e+03 1.840000e+ sqft lot15 21597.0 2.727444e+04 6.510000e+02 5.100000e+03 7.620000e+ 1.275828e+04

Data Preparation

Out[6]: 0

```
In [7]:
          1 # Check for missing values in the dataset
          2 house_data.isnull().sum()
Out[7]: id
                             0
        date
                             0
        price
                             0
        bedrooms
                             0
        bathrooms
                             0
        sqft_living
                             0
        saft lot
        floors
                             0
        waterfront
                          2376
        view
                            63
        condition
                             0
                             0
        grade
        sqft_above
                             0
        sqft basement
                             0
        yr_built
                             0
        yr_renovated
                          3842
        zipcode
                             0
        lat
                             0
                             0
        long
        sqft_living15
                             0
                             0
        sqft_lot15
```

dtype: int64

Visualizations

```
In [9]:
          1
             sqft_living = house_data["sqft_living"]
          2
          3
            # Create the histogram
            plt.figure(figsize=(10, 6))
          5
            plt.hist(sqft_living, bins=20, edgecolor="black", alpha=0.7)
            plt.xlabel("Sqft Living")
            plt.ylabel("Frequency")
          7
             plt.title("Distribution of Sqft Living")
          9
         10
            plt.grid(True)
         11
            plt.tight_layout()
         12
         13
            plt.show()
```


It shows a positive skew, meaning that while most homes fall within a smaller square footage range, there are a few homes with exceptionally large square footage. These larger values, though fewer, extend the tail of the distribution to the right, indicating a positive skew. This suggests that while the majority of homes are smaller, there are a few larger homes that are exceptions.

```
In [10]:
             bedrooms = house_data['bedrooms']
           2
             # Create the histogram
           3
           4 plt.figure(figsize=(10, 6))
             plt.hist(bedrooms, bins=20, edgecolor="black", alpha=0.7)
             plt.xlabel("Bedrooms")
           7
             plt.ylabel("Frequency")
             plt.title("Distribution of Bedrooms")
          10
             plt.grid(True)
             plt.tight_layout()
          11
          12
          13
             plt.show()
```


There is a significant peak at 2 to 3 bedrooms, indicating that most homes have this number of bedrooms.

```
In [11]:
              #checking the distribution of number of bathrooms
           2
           3
             bathrooms = house_data['bathrooms']
           4
           5
             # Create the histogram
             plt.figure(figsize=(10, 6))
           6
             plt.hist(bathrooms, bins=20, edgecolor="black", alpha=0.7)
           7
             plt.xlabel("Bathrooms")
             plt.ylabel("Frequency")
           9
          10
             plt.title("Distribution of Bathrooms")
          11
          12 plt.grid(True)
          13
             plt.tight_layout()
          14
             plt.show()
          15
```


Most Common: Houses with 3 bathrooms have the highest frequency.

Lower Frequencies: Counts beyond 4 bathrooms have much lower frequencies, suggesting they are less common.

Number of Houses by Condition

Most of the houses are in average to good condition.

```
In [13]:  # Distribution of houses by grade
    ave_prices = house_data[['grade', 'price']].groupby('grade').mean().sor
    plt.figure(figsize=(12, 6))
    sns.barplot(x='grade', y='price', data=ave_prices, label='Price')
    plt.xticks(rotation=45, ha='right')
    plt.xlabel("Grade")
    plt.ylabel("Price")
    plt.title('House prices by grade')
    plt.show()
```


Houses under average

Feature Engineering

```
In [14]:
               # Explore specific columns related to the features mentioned in the bus
               relevant_columns = ['date','price', 'bedrooms', 'bathrooms', 'floors',
                                      'waterfront', 'condition', 'grade', 'yr_built', 'yr
               relevant data = house data[relevant columns]
               relevant_data
Out[14]:
                       date
                               price bedrooms bathrooms floors sqft living sqft lot waterfront co
               0 10/13/2014 221900.0
                                            3
                                                     1.00
                                                            1.0
                                                                      1180
                                                                              5650
                                                                                         NO
                   12/9/2014 538000.0
                                            3
                                                     2.25
                                                                     2570
                                                                             7242
                                                            2.0
                                                                                         NO
                   2/25/2015 180000.0
                                            2
                                                     1.00
                                                            1.0
                                                                      770
                                                                             10000
                                                                                         NO
                   12/9/2014 604000.0
                                                     3.00
                                                            1.0
                                                                      1960
                                                                              5000
                                                                                         NO
                   2/18/2015 510000.0
                                            3
                                                     2.00
                                                            1.0
                                                                      1680
                                                                              8080
                                                                                         NO
              ...
                   5/21/2014 360000.0
                                                     2.50
           21592
                                             3
                                                            3.0
                                                                      1530
                                                                              1131
                                                                                         NO
                   2/23/2015 400000.0
           21593
                                            4
                                                     2.50
                                                            2.0
                                                                     2310
                                                                             5813
                                                                                         NO
                   6/23/2014 402101.0
                                            2
                                                     0.75
                                                                     1020
                                                                             1350
           21594
                                                            2.0
                                                                                         NO
           21595
                   1/16/2015 400000.0
                                            3
                                                     2.50
                                                            2.0
                                                                      1600
                                                                             2388
                                                                                         NO
           21596 10/15/2014 325000.0
                                                     0.75
                                                            2.0
                                                                      1020
                                                                              1076
                                                                                         NO
          21597 rows × 12 columns
In [15]:
               # identify unique values in the columns
            2 print(house_data["waterfront"].unique())
            3 print()
            4 print(house_data["condition"].unique())
               print()
               print(house data["grade"].unique())
          ['NO' 'YES']
          ['Average' 'Very Good' 'Good' 'Poor' 'Fair']
```

['7 Average' '6 Low Average' '8 Good' '11 Excellent' '9 Better' '5 Fair'

'10 Very Good' '12 Luxury' '4 Low' '3 Poor' '13 Mansion']

Out[16]:		date	price	bedrooms	bathrooms	floors	sqft_living	sqft_lot	waterfront	CI
	0	10/13/2014	221900.0	3	1.00	1.0	1180	5650	NO	
	1	12/9/2014	538000.0	3	2.25	2.0	2570	7242	NO	
	2	2/25/2015	180000.0	2	1.00	1.0	770	10000	NO	
	3	12/9/2014	604000.0	4	3.00	1.0	1960	5000	NO	
	4	2/18/2015	510000.0	3	2.00	1.0	1680	8080	NO	
	21592	5/21/2014	360000.0	3	2.50	3.0	1530	1131	NO	
	21593	2/23/2015	400000.0	4	2.50	2.0	2310	5813	NO	
	21594	6/23/2014	402101.0	2	0.75	2.0	1020	1350	NO	
	21595	1/16/2015	400000.0	3	2.50	2.0	1600	2388	NO	
	21596	10/15/2014	325000.0	2	0.75	2.0	1020	1076	NO	
	21597	rows × 13 co	olumns							

```
In [17]:
             # Convert 'date' column to datetime
           2
             relevant_data['date'] = pd.to_datetime(relevant_data['date'])
           3
             # Define a function to get the season based on the month
           4
             def get_season(month):
                 if month in [3, 4, 5]: # Spring: March, April, May
           6
           7
                     return 'Spring'
           8
                 elif month in [6, 7, 8]: # Summer: June, July, August
           9
                     return 'Summer'
                 elif month in [9, 10, 11]: # Fall: September, October, November
          10
          11
                     return 'Fall'
          12
                 else: # Winter: December, January, February
          13
                     return 'Winter'
          14
          15 # Create 'season' column based on 'date'
          relevant_data['season'] = relevant_data['date'].dt.month.apply(get_seas
          17
             relevant_data.head(15)
```

Out[17]:

	date	price	bedrooms	bathrooms	floors	sqft_living	sqft_lot	waterfront	condition
0	2014- 10-13	221900.0	3	1.00	1.0	1180	5650	NO	Average
1	2014- 12-09	538000.0	3	2.25	2.0	2570	7242	NO	Average
2	2015- 02-25	180000.0	2	1.00	1.0	770	10000	NO	Average
3	2014- 12-09	604000.0	4	3.00	1.0	1960	5000	NO	Very Good
4	2015- 02-18	510000.0	3	2.00	1.0	1680	8080	NO	Average
5	2014- 05-12	1230000.0	4	4.50	1.0	5420	101930	NO	Average
6	2014- 06-27	257500.0	3	2.25	2.0	1715	6819	NO	Average
7	2015- 01-15	291850.0	3	1.50	1.0	1060	9711	NO	Average
8	2015- 04-15	229500.0	3	1.00	1.0	1780	7470	NO	Average
9	2015- 03-12	323000.0	3	2.50	2.0	1890	6560	NO	Average
10	2015- 04-03	662500.0	3	2.50	1.0	3560	9796	NO	Average
11	2014- 05-27	468000.0	2	1.00	1.0	1160	6000	NO	Gooc
12	2014- 05-28	310000.0	3	1.00	1.5	1430	19901	NO	Gooc
13	2014- 10-07	400000.0	3	1.75	1.0	1370	9680	NO	Gooc
14	2015- 03-12	530000.0	5	2.00	1.5	1810	4850	NO	Average
4									•

Out[18]:		date	price	bedrooms	bathrooms	floors	sqft_living	sqft_lot	waterfront	conditi
	0	2014- 10-13	221900.0	3	1.00	1.0	1180	5650	0	Avera
	1	2014- 12-09	538000.0	3	2.25	2.0	2570	7242	0	Avera
	2	2015- 02-25	180000.0	2	1.00	1.0	770	10000	0	Avera
	3	2014- 12-09	604000.0	4	3.00	1.0	1960	5000	0	V Gc
	4	2015- 02-18	510000.0	3	2.00	1.0	1680	8080	0	Avera
	21592	2014- 05-21	360000.0	3	2.50	3.0	1530	1131	0	Avera
	21593	2015- 02-23	400000.0	4	2.50	2.0	2310	5813	0	Avera
	21594	2014- 06-23	402101.0	2	0.75	2.0	1020	1350	0	Avera
	21595	2015- 01-16	400000.0	3	2.50	2.0	1600	2388	0	Avera
	21596	2014- 10-15	325000.0	2	0.75	2.0	1020	1076	0	Avera
	21597	rows ×	14 columr	ıs						

```
In [19]:
                # Extract grade number and condition using regex
                # Add grade number (grade_no) column
             2
             3
                import re
             4
                relevant_data[['grade_no', 'condition']] = relevant_data['grade'].str.e
                relevant data
Out[19]:
                   date
                            price bedrooms bathrooms floors sqft_living sqft_lot waterfront conditi
                  2014-
                         221900.0
                                          3
                0
                                                   1.00
                                                           1.0
                                                                    1180
                                                                            5650
                                                                                          0
                                                                                               Avera
                   10-13
                  2014-
                         538000.0
                1
                                          3
                                                   2.25
                                                                    2570
                                                                                          0
                                                           2.0
                                                                            7242
                                                                                              Avera
                   12-09
                  2015-
                                                                                                  1
                         180000.0
               2
                                          2
                                                   1.00
                                                           1.0
                                                                     770
                                                                            10000
                                                                                          0
                  02-25
                                                                                               Avera
                  2014-
                         604000.0
                                          4
                                                   3.00
                                                           1.0
                                                                    1960
                                                                            5000
                                                                                          0
                                                                                              Avera
                   12-09
                  2015-
                         510000.0
                                          3
                                                   2.00
                                                                    1680
                                                                                          0
                4
                                                           1.0
                                                                            8080
                                                                                                 Gc
                  02-18
                                          ...
                                                                                          ...
                  2014-
                                                                                                 Gc
           21592
                         360000.0
                                          3
                                                   2.50
                                                           3.0
                                                                    1530
                                                                             1131
                                                                                          0
                  05-21
                  2015-
           21593
                         400000.0
                                          4
                                                   2.50
                                                           2.0
                                                                    2310
                                                                            5813
                                                                                          0
                                                                                                 Gc
                  02-23
                  2014-
                         402101.0
                                          2
           21594
                                                   0.75
                                                           2.0
                                                                    1020
                                                                            1350
                                                                                          0
                                                                                              Avera
                  06-23
                  2015-
           21595
                         400000.0
                                          3
                                                   2.50
                                                           2.0
                                                                    1600
                                                                            2388
                                                                                          0
                                                                                                 Gc
                  01-16
                  2014-
           21596
                         325000.0
                                          2
                                                   0.75
                                                           2.0
                                                                    1020
                                                                             1076
                                                                                          0
                                                                                              Avera
                   10-15
           21597 rows × 15 columns
In [20]:
                # convert grade_no values to int
                relevant_data['grade_no'] = relevant_data['grade_no'].astype('int64')
In [21]:
                print(relevant_data.columns)
           Index(['date', 'price', 'bedrooms', 'bathrooms', 'floors', 'sqft_living',
                   'sqft_lot', 'waterfront', 'condition', 'grade', 'yr_built',
                   'yr_renovated', 'renovated', 'season', 'grade_no'],
```

dtype='object')

Out[22]:

	date	price	bedrooms	bathrooms	floors	sqft_living	sqft_lot	waterfront	condition
0	2014- 10-13	221900.0	3	1.00	1.0	1180	5650	0	Average
1	2014- 12-09	538000.0	3	2.25	2.0	2570	7242	0	Average
2	2015- 02-25	180000.0	2	1.00	1.0	770	10000	0	Low Average
3	2014- 12-09	604000.0	4	3.00	1.0	1960	5000	0	Average
4	2015- 02-18	510000.0	3	2.00	1.0	1680	8080	0	Gooc
5	2014- 05-12	1230000.0	4	4.50	1.0	5420	101930	0	Excellen
6	2014- 06-27	257500.0	3	2.25	2.0	1715	6819	0	Average
7	2015- 01-15	291850.0	3	1.50	1.0	1060	9711	0	Average
8	2015- 04-15	229500.0	3	1.00	1.0	1780	7470	0	Average
9	2015- 03-12	323000.0	3	2.50	2.0	1890	6560	0	Average
10	2015- 04-03	662500.0	3	2.50	1.0	3560	9796	0	Gooc
11	2014- 05-27	468000.0	2	1.00	1.0	1160	6000	0	Average
12	2014- 05-28	310000.0	3	1.00	1.5	1430	19901	0	Average
13	2014- 10-07	400000.0	3	1.75	1.0	1370	9680	0	Average
14	2015- 03-12	530000.0	5	2.00	1.5	1810	4850	0	Average
4									>

```
In [23]:
                # Drop irrelevant columns and assign the result back to engineered data
                relevant_data = relevant_data.drop(['date', 'grade', 'yr_renovated', 'y
             2
             3
                relevant_data
Out[23]:
                      price
                            bedrooms bathrooms floors
                                                         sqft_living sqft_lot waterfront renovated
                0 221900.0
                                    3
                                             1.00
                                                               1180
                                                                       5650
                                                                                     0
                                                                                                0
                                                     1.0
                1 538000.0
                                    3
                                             2.25
                                                     2.0
                                                              2570
                                                                       7242
                                                                                     0
                                                                                                1
                2 180000.0
                                    2
                                             1.00
                                                     1.0
                                                               770
                                                                      10000
                                                                                     0
                                                                                                0
                  604000.0
                                    4
                                             3.00
                                                     1.0
                                                              1960
                                                                       5000
                                                                                     0
                                                                                                0
                  510000.0
                                             2.00
                                                              1680
                                                                       8080
                                    3
                                                     1.0
                                                                                     0
                                                                                                0
                                    ...
                                                      ...
            21592 360000.0
                                    3
                                             2.50
                                                     3.0
                                                              1530
                                                                       1131
                                                                                     0
                                                                                                0
            21593 400000.0
                                    4
                                             2.50
                                                     2.0
                                                              2310
                                                                       5813
                                                                                     0
            21594 402101.0
                                    2
                                             0.75
                                                     2.0
                                                              1020
                                                                       1350
                                                                                     0
                                                                                                  Sι
                                    3
            21595 400000.0
                                             2.50
                                                     2.0
                                                              1600
                                                                       2388
                                                                                     0
                                                                                                0
            21596 325000.0
                                    2
                                             0.75
                                                     2.0
                                                              1020
                                                                                     0
                                                                                                0
                                                                       1076
```

21597 rows × 11 columns

Data Visualizations

```
In [24]:
           1
              # # Pairplot
              # sns.pairplot(relevant_data)
              # plt.show()
In [25]:
              relevant_data.price.describe()
Out[25]:
         count
                   2.159700e+04
                   5.402966e+05
          mean
          std
                   3.673681e+05
          min
                   7.800000e+04
          25%
                   3.220000e+05
          50%
                   4.500000e+05
                   6.450000e+05
          75%
                   7.700000e+06
          max
          Name: price, dtype: float64
```


Average house prices are highest during spring and slightly lower during winter.

Renovated houses have a higher average price indicating renaovations had a small impact on the value of the house.

```
In [28]:
              # Distribution of house price by age
           2
             House_age = relevant_data['house_age']
           3
             Price = relevant_data['price']
             plt.figure(figsize=(12,6))
           4
           5
             plt.bar(House_age, Price)
           6
             plt.xlabel('House Age in Years')
           7
              plt.ylabel('House Price')
             plt.title('House prices by house age')
           8
           9
          10
              plt.show()
```


The houses are priced at 2 million dollars and above where the age is below 50 years. On the contrary majority of the houses over 50 years are priced below 2 million dollars.

```
In [29]:
              # Distribution of houses by floors
             # Get the number of houses with each number of floors
           2
           3
              average_prices = relevant_data.groupby('floors')['price'].mean().reset_
             # Find the index of the maximum value
             max_index = average_prices['price'].idxmax()
           6
           7
             # Bar plot using Seaborn with average prices
           8
           9
              plt.figure(figsize=(8, 6))
              sns.barplot(x='floors', y='price', data=average_prices, color='skyblue'
          10
          11
          12
              # Highlight the bar with the maximum value
          13
              plt.bar(max_index, average_prices.loc[max_index, 'price'], color='orang
          14
             plt.title('Average House Prices by floors')
          15
             plt.xlabel('Number of floors')
          16
          17
              plt.ylabel('Average Prices')
          18
          19 plt.show()
```


Houses with 2.5 floors are the most priced at slightly above 1 million dollars and the least priced houses have 1 floor.

Checking for outliers

Removing outliers using z-score


```
In [33]:
              #removing outlier with '33' bedrooms
              relevant_data=relevant_data[relevant_data['bedrooms']!=33]
In [34]:
              # Calculate Z-score for 'price'
           2
              z_scores = stats.zscore(relevant_data['price'])
           3
             threshold = 3 # Define a threshold for extreme values (e.g., 3 standar
           4
           5
             # Detect outliers
             outliers = relevant_data['price'][np.abs(z_scores) > threshold]
           6
             # Remove outliers
             relevant_data1 = relevant_data[np.abs(z_scores) <= threshold]</pre>
In [35]:
              # Pairplot
           1
           2
             # sns.pairplot(relevant_data)
             # plt.show()
```



```
In [38]:
              #create a scatter plot for the numeric columns to observe their relation
           2
              numeric_columns = relevant_data.select_dtypes(include=['number'])
           3
             # Iterate through each numeric column and create scatter plots
           4
              for column in numeric columns.columns:
                  plt.scatter(relevant_data[column], relevant_data['price'], alpha=0.
           6
           7
                  plt.title(f'Scatter Plot of {column} against Price')
                  plt.xlabel(column)
           8
                  plt.ylabel('Price')
           9
          10
                  plt.grid(True)
          11
                  plt.show()
```


Correlation

```
In [39]: 1 relevant_data.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 21596 entries, 0 to 21596

Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype						
0	price	21596 non-null	float64						
1	bedrooms	21596 non-null	int64						
2	bathrooms	21596 non-null	float64						
3	floors	21596 non-null	float64						
4	sqft_living	21596 non-null	int64						
5	sqft_lot	21596 non-null	int64						
6	waterfront	21596 non-null	int64						
7	renovated	21596 non-null	int32						
8	season	21596 non-null	object						
9	grade_no	21596 non-null	int64						
10	house_age	21596 non-null	int64						
dtypes: float64(3), int32(1), int64(6), object(1)									
memory usage: 1.9+ MB									

```
Group 5 Project - Jupyter Notebook
In [40]:
              numeric_df = relevant_data.select_dtypes(include=['float64', 'int64'])
               corr_price = numeric_df.corr()['price'].sort_values()
            2
            3
               corr_price
Out[40]: house_age
                          -0.053965
          saft lot
                           0.089879
          floors
                           0.256820
          waterfront
                           0.264308
          bedrooms
                           0.315961
          bathrooms
                           0.525915
          grade_no
                           0.667964
          sqft_living
                           0.701929
          price
                           1.000000
          Name: price, dtype: float64
In [41]:
               relevant_data.columns
Out[41]: Index(['price', 'bedrooms', 'bathrooms', 'floors', 'sqft_living', 'sqft_lo
                   'waterfront', 'renovated', 'season', 'grade_no', 'house_age'],
                 dtype='object')
In [42]:
               # Correlation table
            2
               cols = ['price', 'bedrooms', 'bathrooms', 'floors', 'sqft_living', 'sqf
                        'waterfront', 'renovated', 'grade_no', 'house_age']
            3
            4
               corr = relevant_data[cols].corr()
               corr
Out[42]:
                          price bedrooms bathrooms
                                                        floors sqft_living
                                                                           sqft_lot waterfront ren
                       1.000000
                                 0.315961
                                            0.525915
                                                     0.256820
                                                                0.701929
                                                                          0.089879
                                                                                    0.264308
                price
                                                                                              0
            bedrooms
                       0.315961
                                 1.000000
                                            0.527870
                                                     0.183707
                                                                0.593178
                                                                         0.033602
                                                                                    -0.002054
                                                                                              0.
                      0.525915
                                 0.527870
                                                     0.502574
                                                                         0.088368
           bathrooms
                                            1.000000
                                                                0.755755
                                                                                    0.063628
                                                                                              0.
                                 0.183707
                                                     1.000000
                                                                         -0.004824
               floors
                      0.256820
                                            0.502574
                                                                0.353941
                                                                                    0.020794
                                                                                              0.
                       0.701929
                                 0.593178
                                            0.755755
                                                     0.353941
                                                                1.000000
                                                                          0.173449
                                                                                    0.104635
            sqft_living
                                                                                              0.
              sqft_lot
                       0.089879
                                 0.033602
                                            0.088368
                                                     -0.004824
                                                                0.173449
                                                                          1.000000
                                                                                    0.021458
                                                                                              0.
            waterfront
                       0.264308
                                -0.002054
                                            0.063628
                                                     0.020794
                                                                0.104635
                                                                          0.021458
                                                                                    1.000000
```

renovated

grade_no

house_age -0.053965

0.117546

0.667964

0.018354

0.366174

-0.160736

0.046738

0.665834

-0.507166 -0.489175

0.003705

0.458783

0.050825

0.762776

-0.318140

0.005089

0.114726

-0.052939

0.074267

0.082817

0.024491

0.

0.

- The strongest positive correlation (0.7) is between price and square footage of living area, indicating that larger homes tend to have higher prices.
- The second strongest positive correlation (0.67) is between price and the grade_no, suggesting that the higher the grade the higher the price.
- The third strongest positive correlation (0.32) is between price and number of bedrooms, implying that more bedrooms in a home also contribute to its price, but to a lesser extent than bathrooms.
- The weakest positive correlation (0.05) is between price and year built, meaning that newer homes have slightly higher prices than older homes, but the effect is negligible.
- Price and Year Renovated is only (0.12). Reasons could be:
 - Renovations might cater to personal preferences rather than broad market appeal.
 - Recent renovations might indicate potential underlying issues with the property.

Modelling

```
In [44]: 1 import statsmodels.formula.api as sm
```

```
In [46]:
```

```
# Build the simple linear regression model and display the results of to import statsmodels.api as sm

baseline_model = sm.OLS(y, sm.add_constant(x_baseline))
baseline_results = baseline_model.fit()
print(baseline_results.summary())
```

OLS Regression Results

=======================================	.=====	•					
====							
Dep. Variable: 0.493		pri	ce	R-squar	ed:		
Model:		0	LS	Adj. R-	squared:		
0.493							
Method: e+04		Least Squar	es	F-stati	stic:		2.097
Date:	Wed	d, 03 Jan 20	24	Prob (F	-statistic):	
0.00							
Time:		21:44:	56	Log-Lik	celihood:	-	-3.0005
e+05							
No. Observations: e+05		215	96	AIC:			6.001
Df Residuals:		215	94	BIC:			6.001
e+05							
Df Model:			1				
Covariance Type:		nonrobu	st				
==========		========	====:		=======	=======	
====	_				p. L. I	F0 025	
0.0751	coet	std err		t	P> t	[0.025	
0.975] 							
const -4.40	1e+04	4410.123	-9	9.980	0.000	-5.27e+04	-3.5
4e+04							
sqft_living 280	.8688	1.939	144	4.820	0.000	277.067	28
4.670							
==========		========	====:		=======	=======	
====		14001 4	0.2	Daniel de	Net		
Omnibus:		14801.4	92	Durbin-	·watson:		
1.982 Prob(Omnibus):		0.0	00	Jangua	Pops (3P).		54264
2.481		0.0	00	Jar que-	Bera (JB):		34204
Skew:		2.8	20	Prob(JE	8) •		
0.00		2.0	20	1100(31	,,,.		
Kurtosis:		26.9	01	Cond. N	lo.		5.63
· · - · · · · · · · · · · · · · · · · ·				20	•		

Notes:

- $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.63e+03. This might indicate that ther e are

strong multicollinearity or other numerical problems.

Intepretation of the Baseline model

- The R squared of the model is 0.49 interpreted as the proportional extent to which independent variable, Squarefoot of living area, explains the change in price.
- The probability of the F Statistic is well below the alpha value of 0.05 which shows that model is stastically significant.
- The coefficients of the model (const (which is the y intercept) and the sqft_living) are both statistically significant with a p value well below 0.05.
- For each increase in sqft living we see a corresponding increase of 281 in price.

Building a Multiple regression Model

```
In [50]:  # Build the simple linear regression model and display the results of to import statsmodels.api as sm

baseline_model = sm.OLS(y, sm.add_constant(x_baseline))
baseline_results = baseline_model.fit()
print(baseline_results.summary())
```

OLS Regression Results

========	=======	=========		.=======	=======	:=====
==== Dep. Variab	le:	prio	ce R-squa	ared:		
0.607		01	ר אקי ד			
Model: 0.607		OI	_S Adj. F	R-squared:		
Method:		Least Square	es F-stat	istic:		6
672. Date:	We	d, 03 Jan 202	24 Prob ([F-statistic]):	
0.00						=
Time: e+05		21:44:5	o8 Log-Li	kelihood:	_	2.9729
No. Observa	tions:	2159	96 AIC:			5.946
e+05 Df Residual:	s:	2159	90 BIC:			5.946
e+05			F			
Df Model: Covariance	Type:	nonrobus	5 st			
		========				
====	coef	std err	t	P> t	[0.025	
0.975]					-	
	-1.166e+06	1.55e+04	-75.151	0.000	-1.2e+06	-1.1
4e+06 grade no	1.417e+05	2200.325	64.409	0.000	1.37e+05	1.4
6e+05						
<pre>sqft_living 1.371</pre>	155.1451	3.176	48.843	0.000	148.919	16
	4.247e+04	3484.316	12.188	0.000	3.56e+04	4.9
3e+04 renovated	4.715e+04	8921.922	5.285	0.000	2.97e+04	6.4
6e+04	2007 4004	67. 40F	50 455		2775 440	400
house_age 8.816	3907.1281	67.185	58.155	0.000	3775.440	403
========	=======	========	-======	:=======:	=======	=====
==== Omnibus:		17739.22	21 Durbir	n-Watson:		
1.977						
Prob(Omnibus	s):	0.00	00 Jarque	e-Bera (JB):	1	.33922
Skew:		3.46	56 Prob(J	IB):		
0.00		40.00	-1 Cl	N -		2 20
Kurtosis: e+04		40.95	51 Cond.	NO.		2.28
========		========		.=======		=====
====						

Notes:

- $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.
- $\[2\]$ The condition number is large, 2.28e+04. This might indicate that ther e are

strong multicollinearity or other numerical problems.

OLS Regression Results

OLS Regression Results							
====							
Dep. Variab	le:	price	e R-squ	uared:			
Model:		OLS	Adj.	R-squared:			
0.645 Method:		Least Squares	s F-sta	ntistic:		4	
368.		zease squa. es	. 500			·	
Date: 0.00	We	d, 03 Jan 2024	l Prob	(F-statisti	c):		
Time:		21:44:58	B Log-l	ikelihood:		-2.9618	
e+05 No. Observa	tions:	21596	AIC:			5.924	
e+05 Df Residual	c ·	21586	BIC:			5.925	
e+05	J.					3.723	
Df Model: Covariance	Tyne:	nonrobust					
========					=======		
====	(-44		p. [+]	[0.025		
0.975]	соет	std err	τ	P> t	[0.025		
const	-1.017e+06	1.61e+04	-63.270	0.000	-1.05e+06	-9.8	
5e+05 bedrooms	-4.573e+04	2134.899	-21.418	0.000	-4.99e+04	-4.1	
5e+04							
bathrooms 6e+04	5.282e+04	3477.102	15.192	0.000	4.6e+04	5.9	
floors 7e+04	1.692e+04	3436.267	4.923	0.000	1.02e+04	2.3	
sqft_living 6.344	179.8298	3.324	54.106	0.000	173.315	18	
sqft_lot 0.177	-0.2495	0.037	-6.781	0.000	-0.322	-	
	7.512e+05	1.84e+04	40.838	0.000	7.15e+05	7.8	
renovated 3e+04	1.759e+04	8509.590	2.067	0.039	907.193	3.4	
grade_no 3e+05	1.291e+05	2159.160	59.791	0.000	1.25e+05	1.3	
	3957.4099	66.448	59.557	0.000	3827.168	408	
=====	=======	========	:======		=======		
Omnibus: 1.976		15650.966	Durbi	n-Watson:			
Prob(Omnibu	s):	0.000) Jarqı	ue-Bera (JB)	:	96655	
6.213 Skew:		2.888	B Prob((JB):			
0.00 Kurtosis:		35.261	L Cond.	No.		5.45	
e+05 =======	=======	=========			========	=====	
====							

Notes.

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 5.45e+05. This might indicate that ther e are

strong multicollinearity or other numerical problems.

Interpretation of results

- R-squared: 0.646 Indicates that the model explains 64.6 % of the variance in the dependent variable (price).
- Adj. R-squared: 0.645 Similar to R-squared but adjusts for the number of predictors in the model.
- Prob (F-statistic): 0.00 The probability associated with the F-statistic, suggesting the overall significance of the model.
- Coefficients: Each predictor variable's coefficient represents the change in the dependent variable (price) per unit change in that predictor, holding other predictors constant.

Intercept (const): -1.017e+06

bedrooms: -4.573e+04bathrooms: 5.282e+04floors: 1.692e+04

sqft_living: 179.8298sqft_lot: -0.2495

waterfront: 7.512e+05
renovated: 1.759e+04
grade_no: 1.291e+05
house age: 3957.4099

- Statistical Significance (P-values): P>|t| values for each coefficient indicate the
 probability of observing the data if the null hypothesis (that the coefficient is zero) is
 true.
- Variables with a P-value less than a significance level (commonly 0.05) are typically
 considered statistically significant. For instance, bathrooms, floors, sqft_living, sqft_lot,
 waterfront, renovated, grade_no, house_age,seem significant since their P-values are
 0.000.

Recomendations

Our potential homeowners are advised to focus on the variables on the final model when looking for competitively priced homes. These are majorly square feet of the living space, bathrooms and bedrooms. Where one is looking to buy a home at favorable prices a potential homeowner will need to compromise on one or two items. e.g. waterfront homes or square feet of living area. Our stakeholders are advised to purchase homes in the spring or summer in order to get a good variety of homes to pick from. Further Data Collection: Explore additional data beyond the current predictors to refine the model. Factors like proximity to amenities, neighborhood trends, or specific architectural styles could further enhance price prediction accuracy.