	$F_X(x)$ is <u>right-continuous</u> => for any <u>decreasing</u> (x_n)	least number satisfying $P(X \le Q_X(\alpha)) = \alpha$
Sample Space Ω ⇒ set of all outcomes (mutually	$\lim_{n\to\infty} x_n = x_l \implies \lim_{n\to\infty} F_X(x_n) = F_X(x_l)$	i.e. $Q_X(\alpha) = F_X^{-1}(\alpha)$ Q(1/2) is <u>median</u> & k-th percentile is $Q(k/100)$
Event E ⊆ O J=> any <u>subset of sample space</u> Extreme Events => null event Ø J & universal event S J	To check that function is valid CDE, must obey: $ Monotonicity \forall x_1, x_2 \in \mathbb{R}, x_1 < x_2 \implies F_X(x_1) \le F_X(x_2) $ $ F_X(-\infty) = 0, F_X(\infty) = 1 $	Uniform(A,b) => TODO: HEREEE!!!!!
Elementary Event => singleton subsets of S	$\frac{F_X}{F_X}$ is right-continuous	Exp(Λ) ⇒ TODO: HEREEE!!!!!
Null event o never & universal event S always -occurs	Simple Properties $0 \le F_X(x) \le 1, \forall x \in \mathbb{R}$	Normal(M, \(\Sigma\)2) => TODO: HEREEE!!!!! Lognormal => TODO: HEREEE!!!!!
	$P_X(a < X \le b) = F_X(b) - F_X(a)$ for finite intervals $(a, b] \subseteq \mathbb{R}$	
	Moments of RRVs Expectation E[X] => the mean µX of distribution of X	
E_1, E_2, \dots are Mutually Exclusive $\Rightarrow \forall i, j. E_i \cap E_j = \emptyset$ i.e. they're pairwise-disjoint	$\frac{Discrete}{Discrete} \Rightarrow E_{\chi}[g(X)] = \sum_{\chi} g(x)p_{\chi}(x)$ $Continuous \Rightarrow E_{\chi}[g(X)] = \int_{-\infty}^{\infty} g(x)f_{\chi}(x)dx$	
E ₁ , E ₂ , are Independent =>	Linearity \Rightarrow $E[\alpha g(X) + h(X) + \beta] = \alpha E[g(X)] + E[h(X)] + \beta$ Sum \Rightarrow for any $X_1,, X_n \models$	
	$E[\sum_{i=1}^{n} X_{i}] = \sum_{i=1}^{n} E[X_{i}] E[\overline{X}] = E[\frac{\sum_{i=1}^{n} X_{i}}{n}] = \frac{\sum_{i=1}^{n} E[X_{i}]}{n}$	
$\{E_{i_1}, E_{i_2}, \dots, E_{i_n}\}\$ If events A, B are <u>independent</u> , then \overline{A} , B are <u>also</u>	Independent $\Rightarrow E[\Pi_{:}^{n}, X_{:}] = \Pi_{:}^{n}, E[X_{:}]$	
independent	Independent and Identically Distributed (i.i.d.) \Rightarrow $E(\overline{X}) = \mu_{\overline{X}}$	
	$\frac{ E(X)^{2} + \mu_{X} }{n - \text{th Raw Moment}} \mu_{B}' E[X^{B}] \Rightarrow \text{i.e. about zero}$	
	μ_n = E[(X - E[X]) ⁿ]	
$E_1, E_2, \dots \in \mathcal{F} \Longrightarrow \bigcup_i E_i \in \mathcal{F}$	Variance $\sigma_X^2 = Var(X) = E[(X - E(X))^2]$	
Ø € F	$\frac{\text{Var}(X) = \text{E}[X^2] - (\text{E}[X])^2}{\text{Var}(aX + b) = a^2 \text{Var}(X)}$	
	Sum \Rightarrow for <u>independent</u> $X_1,, X_n$	
(Ø) Ollis smallest & P(O) lis largest = a-algebras	$\frac{\operatorname{Var}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \operatorname{Var}(X_i)}{\sum_{i=1}^{n} X_i + \sum_{i=1}^{n} \operatorname{Var}(X_i)}$	
o(g) => for lamity of subsets g \(\sigma \), its smallest	$Var(\overline{X}) = Var\left(\frac{\sum_{i=1}^{n} X_i}{n^2}\right) = \frac{\sum_{i=1}^{n} Var(X_i)}{n}$ Independent and Identically Distributed (i.i.d.) \Rightarrow	
- destructs assess Cl/suista directions)	Independent and Identically Distributed (i.i.d.) => $Var(\overline{X}) = \frac{\sigma_{\overline{X}}^2}{n}$	
$\sigma(f) = \{f^{-1}[F] F \in \mathcal{E}\}$ i.e. all pre-images	$\frac{ \nabla ar(X) }{ n } = \frac{1}{ n }$ Standard Deviation $\sigma_X = sd(X) = \sqrt{Var(X)}$	
trace d-algebra of BEF = BAAAAEF}	n -th Standardized Moment $\tilde{\mu}_{n} = \frac{\mu_{n}}{R} = \frac{E[(X - E[X])^{n}]}{R}$	
To per the later than the later	γναι(κ)	
	Skewness $\gamma_1 = \tilde{\mu}_3 = \frac{E[(X-\mu)^3]}{\sigma^3}$ measures asymmetry positive skew \Rightarrow distribution leans left	
for pairwise-disjoint events $E_1, E_2, \dots \in \mathcal{F}$	negative skew => distribution leans right	
Immediate Basic Results: $P(\overline{E}) = 1 - P(E)$	Moment Generating Function (MGF). $M_X(t) = E[e^{tX}]$	
$\frac{P(\emptyset) = 0}{P(A \cup B) = P(A) + P(B) - P(A \cap B)}$	$E[X^n] = \frac{d^n M_X}{dt^n}$ if open interval around $\underline{t} = 0$ Jexists	
	because $e^{tX} = 1 + tX + \frac{t^2X^2}{2!} + \frac{t^3X^3}{3!} + \dots + \frac{t^nX^n}{n!} + \dots$	
	so $M_X(t) = E[e^{tX}] = 1 + tE[X] + \frac{t^2 E[X^2]}{2!} + \dots + \frac{t^n E[X^n]}{n!} + \dots$	
(Ω, F) with probability measure P on it	Sum \Rightarrow for independent $X_1,, X_n$	
Conditional Probability Conditional Probability $\Rightarrow P(A \mid B) = \frac{P(A \cap B)}{P(B)}$ where	$let X = \sum_{i=1}^{n} X_i \implies M_X(t) = \prod_{i=1}^{n} M_{X_i}(t)$	
A, B ⊆ Ω and P(B) ≠ 0	Discrete Random Variables Discrete RRV iff countable supp(X)	
	Let supp(X) = $\{x_1, x_2,\}$ be ordered s.t. $x_1 < x_2 <$ CDE F_X [will be monotonic increasing step function,	
Probability measure P(+ R)	i.e. $F_X(x_i) = F_X(x_{i-1}) + P_X(X = x_i)$	
If A, B are independent then P(A B) = P(A)	i.e. $P_X(X = x_i) = F_X(x_i) - F_X(x_{i-1})$ Probability Mass Function (PMF) $p(x) = P_X(X = x)$	
A_1, A_2 are Conditionally Independent given B J iff $P(A_1 \cap A_2 \mid B) = P(A_1 \mid B)P(A_2 \mid B)$	0 ≤ p(x) ≤ 1, ∀x ∈ R	
Law Of Total Probability ⇒ for any events {B ₁ , B ₂ ,}	$\frac{\sum_{x \in \text{supp}(X)} p(x) = 1}{p(x_i) = F(x_i) - F(x_{i-1})}$	
U.B. O.A. J.	$F(x_i) = \sum_{j=1}^{i} p(x_j)$	
$P(A) = P(A \cap B) + P(A \cap \overline{B}) = P(A \mid B)P(B) + P(A \mid \overline{B})P(\overline{B})$	Bernoulli(P) => TODO: HEREEE!!!!!	
P(B)	Binomial(N,p) => TODO: HEREEE!!!!! Poisson(P) => TODO: HEREEE!!!!!	
	Poisson(Λ) ⇒ TODO: HEREEE!!!!!	
(Ω, \mathcal{F}, P) is a <u>probability space</u> , (E, \mathcal{E}) is a <u>measurable</u>	Uniform(U) => TODO: HEREEE!!!!! Negative Binomial Distribution(U) => TODO:	
<u>space</u> For every <u>B ∈ E</u> the pre-image of <u>B</u> under <u>X</u> is in <u>F</u> ,	HEREEE!!!!! Poisson Binomial Distribution => TODO: HEREEE!!!!!	
i.e. x [B]=(SEII]X(S)EBJEJ	Continuous Random Variables XJis (Absolutely) Continuous RRV if ∃f _X : R → R such	
$g(X)(s) = (g \circ X)(s)$ is also random variable, for	that $F_X(x) = \int_{u=-\infty}^x f_X(u)du$	
measurable function $g: E \to E$	f_X called Probability Density Function (PDF) of X $P_X(a < X \le b) = P_X(X \le b) - P_X(X \le a)$	
takes on value in <u>B</u> ∈ E	$P_X(a < X \le b) = F_X(b) - F_X(a) = \int_a^b f_X(x) dx$	
$P_X(X \in B) = P(X^{-1}[B]) = P(\{s \in \Omega \mid X(s) \in B\})$ Also called Pushforward Measure of <u>P</u> jonto (E, \mathcal{E})	$P_X(X=x)=P_X(\{x\})=0$ and $P_X(X \in \{x_1, x_2,\})=P_X(X=x_1)*P_X(X=x_2)*$ for	
Also selled the Desket like Distribution of VI	countable sets	
Real Random Variables	Properties of PDFs: $F_X(x) = \int_{-\infty}^X f_X(t)dt$ & $f_X(x) = \frac{d}{dx} F_X(x)$	
Real Random Variable is RV who's co-domain is $E = \mathbb{R}$ Support supp (X) \Rightarrow is range of X] i.e. $\sup(X) = X[\Omega]$ Simple RRV iff finite $\sup(X)$	$f_X(x) \ge 0$ & $\int_{-\infty}^{\infty} f_X(x) dx = 1$	
Discrete RRV iff countable supp(X)	$ \frac{f_X(x) \cdot h \approx P_X(X \in [x, x+h))}{f_X(x) \cdot h \approx P_X(X \in [x, x+h))} $	
	Quantiles and Percentiles: The lower and upper quartiles and median of sample	
	of data are the points $(\frac{1}{4}, \frac{3}{4}, \frac{1}{2})$ -way through the ordered dataset, respectively	
	$\underline{\alpha}$ -quantile $\underline{Q_X(\alpha)}$ => for continuous \underline{X} J and $\underline{0 \le \alpha \le 1}$, the	