Curso de Ciência da computação Disciplina: Matemática discreta Professor: Carlos Roberto Silva

Atividade 8 - Introdução a Teoria dos Códigos

Gabarito

1) (6,0) Na palavra binária

Codificou-se uma data. O sistema utilizado consistiu em escrevê-la primeiro na forma de 6 dígitos decimais seguidos (por exemplo, 290296 quer dizer 29 de Fevereiro de 1996) e passar esse número para a base 2 (no exemplo acima 290296 transforma-se em 10001101101111111000) e em seguida codificar de acordo com a regra:

$$\{0,1\}^2 \to C \subset \{0,1\}^6$$

$$00 \to 000000$$

$$01 \to 001110$$

$$10 \to 111000$$

$$11 \to 110011$$

Na palavra recebida há 3 bits que não se conhecem (foram apagados) e possivelmente outros que estão trocados.

a) Encontre os 3 bits apagados;

011110	000000	001110	000000	110011	001010	111000	000000	001110
$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	\sim	$\overline{}$	$\overline{}$	$\overline{}$
erro	00	01	00	11	erro	10	00	01

Bits apagados da esquerda para a direita

b) Quantos bits e em que posições estão errados?

Resp.: 2 bits, 2ª e 34ª posições

c) De que data se trata?

$$\underbrace{011110}_{01} \underbrace{000000}_{00} \underbrace{001110}_{01} \underbrace{000000}_{00} \underbrace{110011}_{11} \underbrace{001110}_{01} \underbrace{111000}_{10} \underbrace{000000}_{00} \underbrace{001110}_{01}$$

$$= 1 + 2^5 + 2^6 + 2^8 + 2^9 + 2^{12} + 2^{16} = 1 + 32 + 64 + 256 + 512 + 4096 + 65536 = 70497$$
 (7 de abril de 1997)

- 2) (2,0) Considere o código $C = \{01101,00011,10110,11000\}$. Usando descodificação por distância mínima, descodifique as seguintes palavras recebidas:
 - *a*) 00000
 - \rightarrow d(00000,01101) = 3
 - $\rightarrow d(00000,00011) = 2$
 - \rightarrow d(00000, 10110) = 3
 - $\rightarrow d(00000, 11000) = 2$

Portanto as palavras recebidas, após a descodificação são 00011 ou 11000 que pertencem a \mathcal{C}

- b) 01111
- \rightarrow d(01111,01101) = 1
- \rightarrow d(01111,00011) = 2
- \rightarrow d(01111, 10110) = 3
- \rightarrow d(01111, 11000) = 4

Portanto a palavra recebida, após a descodificação é 01101 que pertencem a C

- c) 01101
- $\rightarrow d(01101,01101) = 0$
- \rightarrow d(01101,00011) = 3
- $\rightarrow d(01101, 10110) = 4$
- \rightarrow d(01101, 11000) = 3

Portanto a palavra recebida, após a descodificação é 01101 que pertencem a C

- d) 11001
- $\rightarrow d(11001,01101) = 2$
- \rightarrow d(11001,00011) = 3
- \rightarrow d(11001, 10110) = 3
- \rightarrow d(11001, 11000) = 1

Portanto a palavra recebida, após a descodificação é 11000 que pertencem a C

- 3) (2,0) Considere um canal binário com probabilidade de troca de símbolos $P(recebido\ 1|enviado\ 0)=0,3$ e $P(recebido\ 0|enviado\ 1)=0,2.$ Se for usado o código binário $\{000,101,111\}$ para enviar uma mensagem através desse canal, descodifique, usando máxima verossimilhança, as palavras recebidas:
 - a) 010

$$P(010|000) =$$

 $P(recebido\ 0|enviado\ 0).\ P(recebido\ 1|enviado\ 0).\ P(recebido\ 0|enviado\ 0) = 0,5.0,3.0,5 = 0,075 = 7,5\%$

$$P(010|101) =$$

 $P(recebido\ 0|enviado\ 1).\ P(recebido\ 1|enviado\ 0).\ P(recebido\ 0|enviado\ 1) = 0,2.0,3.0,2 = 0,012 = 1,2\%$

$$P(010|111) =$$

 $P(recebido\ 0|enviado\ 1).\ P(recebido\ 1|enviado\ 1).\ P(recebido\ 0|enviado\ 1) = 0,2.0,5.0,2 = 0,02 = 2\%$

Portanto, após a descodificação por máxima verossimilhança a mensagem enviada foi 0000.

b) 011

$$P(011|000) =$$

 $P(recebido\ 0|enviado\ 0).\ P(recebido\ 1|enviado\ 0).\ P(recebido\ 1|enviado\ 0) = 0,5.0,3.0,3 = 0,045 = 4,5\%$

$$P(011|101) =$$

 $P(recebido\ 0|enviado\ 1).\ P(recebido\ 1|enviado\ 0).\ P(recebido\ 1|enviado\ 1) = 0,2.0,3.0,5 = 0,03 = 3\%$

$$P(011|111) =$$

 $P(recebido\ 0|enviado\ 1).\ P(recebido\ 1|enviado\ 1).\ P(recebido\ 1|enviado\ 1) = 0,2.0,5.0,5 = 0,05 = 5\%$

Portanto, após a descodificação por máxima verossimilhança a mensagem enviada foi 111.

c) 001

$$P(001|000) =$$

 $P(recebido\ 0|enviado\ 0).\ P(recebido\ 0|enviado\ 0).\ P(recebido\ 1|enviado\ 0) = 0.5.0,5.0,3 = 0.075 = 7.5\%$

$$P(001|101) =$$

 $P(recebido\ 0|enviado\ 1).\ P(recebido\ 0|enviado\ 0).\ P(recebido\ 1|enviado\ 1) = 0,2.0,5.0,5 = 0,05 = 5\%$

$$P(001|111) =$$

 $P(recebido\ 0|enviado\ 1).\ P(recebido\ 0|enviado\ 1).\ P(recebido\ 1|enviado\ 1) = 0,2.0,2.0,5 = 0,02 = 2\%$

Portanto, após a descodificação por máxima verossimilhança a mensagem enviada foi 000.

d) 110

$$P(110|000) =$$

 $P(recebido\ 1|enviado\ 0).\ P(recebido\ 1|enviado\ 0).\ P(recebido\ 0|enviado\ 0) = 0,3.0,3.0,5 = 0,045 = 4,5\%$

$$P(110|101) =$$

 $P(recebido\ 1|enviado\ 1). P(recebido\ 1|enviado\ 0). P(recebido\ 0|enviado\ 1) = 0.5.0,3.0,2 = 0.03 = 3\%$

$$P(110|111) =$$

 $P(recebido\ 1|enviado\ 1).\ P(recebido\ 1|enviado\ 1).\ P(recebido\ 0|enviado\ 1) = 0,5.0,5.0,2 = 0,05 = 5\%$

Portanto, após a descodificação por máxima verossimilhança a mensagem enviada foi 111.