Consider an object that is attached to a wall by a spring and forced to oscillate to and fro by a periodic driving function $f(t) = F_0 \cos(\omega t)$. Let x(t) be the object's displacement from equilibrium at time t. Under the assumption of small displacements, the system is governed by the following second order, constant-coefficient, differential equation.

$$mx'' + bx' + kx = F_0 \cos(\omega t) \tag{1}$$

The letter m denotes the mass of the object, k is the spring constant, and the letter b denotes the damping constant. All three of these constants, and the constants F_0 and ω , are assumed to be positive; ω is called the *forcing frequency*. Recall that the *natural frequency* of the system is $\omega_0 = \sqrt{k/m}$. This is the frequency of the oscillations when the system is undamped and unforced: mx'' + kx = 0.

Steady-State Solutions

The general solution to Equation (1) is $x(t) = x_h(t) + x_p(t)$ where $x_h(t)$ is the general solution to the associated homogeneous equation and $x_p(t)$ is a particular solution to the forced equation. When the system is damped, $x_h(t)$ contains decaying exponentials and it approaches zero as $t \to \infty$. After sufficient time has passed, the motion will be governed by $x_p(t)$ and the system is said to have reached steady-state. The steady-state solution, also denoted $x_{ss}(t)$, is periodic with the same frequency as the driver. This is the motion that interests us here.

The steady-state solution for the simple driver $F_0 \cos(\omega t)$ in Equation (1) can be found by substituting $x = A\cos(\omega t) + B\sin(\omega t)$ into (1) and solving for A and B. When the driver is a general periodic function of frequency ω the steady-state solution can be found by a similar method involving the complex Fourier series for the driver.

Steady-State Solution for Any Periodic Driver

We wish to obtain the steady-state solution to

$$mx'' + bx' + kx = f(t) \tag{2}$$

where f is periodic of period P and (circluar) frequency $\omega = 2\pi/P$. Here is how.

1. Obtain the complex Fourier series representation for the driver. ¹

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{in\omega t}$$

2. Substitute $x(t) = a_n e^{in\omega t}$ into the left side of (2) and solve for a_n , assuming that the driver is $c_n e^{in\omega t}$. That is, let $x = a_n e^{in\omega t}$ in

$$mx'' + bx' + kx = c_n e^{in\omega t} \tag{3}$$

and solve for a_n . This turns out to be easy because all of the exponential terms cancel. For the n=0 case substitute $x=a_0$ and the constant a_0 will simply be c_0/k . However, for $n \ge 1$, a_n will be a complex number.

3. Once a_n is found, let $a_{-n} = \overline{a_n}$, and the steady-state solution to (2) is

$$x_{ss}(t) = \frac{c_0}{k} + \sum_{\substack{n = -\infty \\ n \neq 0}}^{\infty} a_n e^{in\omega t} = \frac{c_0}{k} + \sum_{n=1}^{\infty} 2\Re(a_n e^{in\omega t}).$$
 (4)

Here is an example.

Example 1. Obtain the steady-state solution to the mass-spring system x'' + x' + 4x = f(t) where f is periodic of period $P = \pi$ defined on the interval $0 < t < \pi$ as follows.

$$f(t) = \begin{cases} 1 & , & 0 < t < \pi/2 \\ -1 & , & \pi/2 < t < \pi \end{cases}$$

¹Note the switch from k to n for the summation index in the Fourier series. This is to avoid confusion with the spring constant.

Plot the steady-state solution and the driver, suitably scaled to the dimensions of position vs time.

Solution. The driver is odd. See its graph below. Therefore, $c_0 = 0$. Since $P = \pi$, $\omega = 2\pi/P = 2$, so the Fourier series for the driver has the form $f(t) = \sum_{n=-\infty}^{\infty} c_n e^{2int}$ where

$$c_n = \frac{1}{\pi} \int_0^{\pi} f(t)e^{-2int} dt = \frac{1}{\pi} \left(\int_0^{\pi/2} e^{-2int} dt + \int_{\pi/2}^{\pi} (-1)e^{-2int} dt \right)$$

$$= \frac{1}{\pi} \left(\frac{e^{-2int}}{-2in} \Big|_{t=0}^{t=\pi/2} + \frac{e^{-2int}}{2in} \Big|_{t=\pi/2}^{t=\pi} \right)$$

$$= \frac{1}{2\pi i n} \left((1 - e^{-\pi i n}) + (e^{-2\pi i n} - e^{-\pi i n}) \right)$$

$$= \frac{1}{2\pi i n} \left(2 - 2(-1)^n \right)$$

$$= \frac{(-1)^n - 1}{\pi^n} i.$$

The coefficient c_n is pure imaginary. This is always the case when the waveform is odd. Observe also that when n is even, $c_n = 0$. The following plot confirms that these are the correct coefficients.

The driver f and its Fourier approximation $S_9(t)$.

Because there is no constant in the Fourier series for f, there is no constant in the steady-state solution. Therefore,

$$x_{ss}(t) = \sum_{n=1}^{\infty} 2\Re(a_n e^{2int})$$

where a_n is found by substituting $x = a_n e^{2int}$ into the differential equation

$$x'' + x' + 4x = c_n e^{2int}.$$

Doing so yields the following equation

$$-4n^2a_ne^{2int} + 2ina_ne^{2int} + 4a_ne^{2int} = c_ne^{2int},$$

which simplifies to

$$(4-4n^2+2in)a_n=c_n.$$

Consequently, the n^{th} complex Fourier series coefficient for the steady-state solution is $a_n = c_n/(4 - 4n^2 + 2in)$. Observe that these coefficients approach 0 very quickly, implying that the oscillations in the steady-state solution will be completely determined by the first few non-zero harmonics. The amplitude spectrum for the driver is sketched below. The amplitude spectrum for the steady-state solution follows.

The amplitude spectrum for the periodic driver f.

The amplitude spectrum for the steady-state solution x_{ss} .

The following picture shows the driver and the steady-state solution. Five harmonics were used to plot x_{ss} . The picture obtained using just the *first* harmonic in the solution looks essentially the same.

The driver f and the steady-state solution x_{ss} .

A formula for the first harmonic in x_{ss}

First observe that c_n is zero when n is even. For odd n, $c_n = -2i/n\pi$. Therefore,

$$a_n = \frac{c_n}{4 - 4n^2 + 2in} = \frac{-2i}{n\pi(4 - 4n^2 + 2in)}$$
, $n \text{ odd}$.

In particular, when n=1, $a_1=-1/\pi$. Therefore, using just the first harmonic,

$$x_{ss}(t) \approx 2 \Re(a_1 e^{2it}) = -\frac{2}{\pi} \cos(2t)$$
.

The amplitude of the first harmonic is 0.637. The next non-zero harmonic is $-\frac{2}{3\pi\sqrt{9+16^2}}\cos(6t-\delta_3)$ where $\delta_3 = \arctan(16^2/9)$. Its amplitude is 0.013.

A General Formula

The method illustrated in Example 1 is completely general, applying to any piecewise smooth driver of period P. In summary, it proceeds as follows. Begin by expressing the system in the form

$$mx'' + bx' + kx = \sum_{n = -\infty}^{\infty} c_n e^{in\omega t} , \quad \omega = 2\pi/P.$$
 (5)

The steady-state solution will then have the form

$$x_{ss}(t) = \sum_{n = -\infty}^{\infty} a_n e^{in\omega t}$$

where $x = a_n e^{in\omega t}$ is a particular solution to

$$mx'' + bx' + kx = c_n e^{in\omega t}.$$

To find a_n simply substitute $x = a_n e^{in\omega t}$ into the last equation to obtain

$$-mn^2\omega^2 a_n e^{in\omega t} + ibn\omega a_n e^{in\omega t} + ka_n e^{in\omega t} = c_n e^{in\omega t}$$

which implies that

$$a_n = \frac{c_n}{k - mn^2\omega^2 + ibn\omega} \,.$$

Consequently,

$$x_{ss}(t) = \sum_{n=-\infty}^{\infty} \frac{c_n}{k - mn^2\omega^2 + ibn\omega} e^{in\omega t}.$$
 (6)

Three comments:

- 1. The form of the n^{th} complex Fourier coefficient in Equation (6) makes it clear that the higher-order harmonics have almost no effect on the steady-state solution.
- 2. If information about a particular harmonic is needed, say the n^{th} one, its amplitude is $2|a_n|$ (why?). Therefore,

$$n^{\mathrm{th}}$$
 Amplitude = $A_n = \frac{2|c_n|}{\sqrt{(k - mn^2\omega^2)^2 + b^2n^2\omega^2}}$.

3. An explicit formula for the n^{th} steady-state harmonic is given by

$$n^{\text{th}}$$
 Harmonic = $A_n \cos(n\omega t - (\delta_n - \gamma_n))$

where δ_n is the argument of $k - mn^2\omega^2 + ibn\omega$ and γ_n is the argument of c_n .

The following example illustrates these observations.

Example 2. Consider the mass-spring system

$$x'' + 0.1x' + 24x = f(t)$$

where f is the period 2 driver defined in Example 1 of the Complex Fourier Series, Part I handout.

$$f(t) = \begin{cases} t & , & 0 < t < 1 \\ 0 & , & 1 < t < 2 \end{cases}$$

The driver f has period 2.

Since $P=2,\,\omega=2\pi/P=\pi,\,{\rm and}\,\,f(t)=\sum_{n=-\infty}^{\infty}c_ne^{i\pi t}$ where

$$c_0 = \frac{1}{4}$$
 and $c_n = \frac{1}{2} \left(\frac{(-1)^n}{n\pi} i + \frac{(-1)^n - 1}{n^2 \pi^2} \right)$.

Therefore, the steady-state solution x_{ss} has the complex Fourier series

$$x_{ss}(t) = \frac{1/4}{k} + \sum_{\substack{n = -\infty \\ n \neq 0}}^{\infty} \frac{c_n}{k - mn^2 \pi^2 + ibn\pi} e^{in\pi t}$$

where m = 1, b = 0.1, and k = 24. That is,

$$x_{ss}(t) = \frac{1}{96} + \sum_{\substack{n = -\infty \\ n \neq 0}}^{\infty} \frac{c_n}{24 - n^2 \pi^2 + 0.1 i n \pi} e^{i n \pi t}.$$

The following picture shows the amplitude spectrum of the driver.

The driver's amplitude spectrum.

And here is the amplitude spectrum of the steady-state solution.

The amplitude spectrum of the steady-state solution.

The steady-state amplitude spectrum shows that the constant and the first three harmonics are enough to build an almost perfect picture of the steady-state motion. See the plot below, showing a scaled version of the driver and the steady-state approximation using 3 harmonics. The effects of the first two harmonics are especially evident. See Exercise 11 in Exercise Set 5.

The scaled driver (dotted) and the steady-state solution using the constant term and the first three harmonics.

Interesting Observation. Using the constant and the first three harmonics yields only a mediocre approximation of the driver. See the plot in Example 1 of the Part I handout. However, the driver's power spectrum on page 4 of Part I clearly shows that its first three harmonics in the driver carry almost all of its power.