MATH129A – Linear Algebra Midterm #1 Study Guide Created By: Zayd Hammoudeh

Section 1.1 - Systems of Linear Equations

Linear Equation – An equation with variables $x_1, x_2, ..., x_n$ that can be written in the form: $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$

Coefficients: $a_1, a_2, ..., a_n$ can be real or complex

Linear System or System of Linear Equations – Collection of one or more linear equations. Solution: A set of numbers $(s_1, s_2, ..., s_n)$ that makes each equation a true statement when substituted for variables $(x_1, x_2, ..., x_n)$ respectively.

Solution Set: Set of all possible solutions for a linear system.

Possible Solution Sets:

- No solution
- One solution
- Infinite solutions

Consistent Linear System – Has one or infinite solutions

Inconsistent Linear System – Has no solution Coefficient Matrix – A matrix containing the coefficients for each variable in each equation in the linear system.

Augmented Matrix – A matrix of a system containing the coefficient matrix and an added column containing the constants from the right hand side of the equation.

Techniques to Simplify a Linear System

1.Replace one equation with sum of itself and the
multiple of another linear system (equation)

2.Interchange two equations

3. Multiply all terms in an equation by a non-zero constant

Row Equivalent Matrices – Any two matrices where a series of elementary row operations can transform one matrix into another.

Row Operation Reversibility

– All row operations can be undone to get the previous

matrix

 $\mathbf{m} \times \mathbf{n} \quad \mathbf{Matrix} - \mathbf{Composed} \quad \text{of } m \text{ rows}$ of n columns

Equivalent Linear Systems – Any two linear systems with the **same solution** set.

Approaches to Find the Solution Set of a Linear System

- 1. Solve equations by substitution.
- 2. Multiply and add the equations
- 3. Graphically
 - a. Look at the intersection of the equations.

Section 1.2 - Row Reduction and Echelon Forms

Key Properties					
If two augmented matrices are row equivalent, then the systems have the same solution set.	Reduced echelon form is unique	Echelon form is not unique	All linear systems have a reduced echelon form.	Location of leading entries is the same between standard and reduced echelon form.	

Echelon Matrix Criteria

- 1. All non-zero rows are above all zero rows.
- 2. The leading entries of lower rows are to the right of all those in upper rows.
 - a. Forms a "step pattern".
- 3. The entries in a column below a leading entry are zero.

Reduced (Row) Echelon Matrix Criteria

- 1. All criteria of a standard echelon matrix.
- 2. All leading entries equal 1.
- 3. The entries in a column above a leading entry are 0.

Theorem #1: Any matrix has one and only one reduced echelon form.

Pivot Position – A position in a given matrix that corresponds to a "1" in reduced echelon form.

Pivot Position – A column that contains a pivot position.

Pivot – A non-zero number in a pivot position that is used as needed to create zeros via row operations.

Gaussian
Elimination: Same
concept as row
reduction.

Non-zero row/column: A row/column with at least one nonzero entry.

Leading entry – Leftmost nonzero entry in a row.

Row Reduction Algorithm (Gaussian Elimination) Forms an Echelon Matrix

- 1. Begin with the left most non-zero entry that is a pivot position. Move that position to the top of the matrix.
- Select a non-zero entry in the pivot column as a pivot. If necessary, interchange rows to move this entry into the pivot position.
- 3. Use row operations to create zeros in all positions below the pivot.
- Cover (i.e. ignore) the rows containing the pivot position and cover (ignore) all rows above it.
 Apply steps 1-3 to the sub matrix that remains. Repeat the process until there are no more non-zero rows remaining.
- 5. Create zeros above each pivot and scale each pivot to 1.

Gauss-Jordan Elimination

Forms the Reduced Echelon Matrix

Basic Variable: Can only exist in a single solution set equation. Correspond to a pivot in the reduced echelon matrix.

Free Variable: Can be assigned to any number since it has no pivot. Free variable quantity dictates the resulting solution set's shape (e.g., plane, line etc.).

Parametric Description of Solution Sets

- Free variables act as parameters
- Each basic variable is represented by an equation made up of constants and/or free variables.

Theorem 1-2: Existence and Uniqueness Theorem

A linear system is consistent if and only if the rightmost column of the augmented matrix is not a pivot column – that is, if and only if an echelon form of the augmented matrix has no row in the form:

 $[\mathbf{0} \dots \mathbf{0} \ b]$ with b non-zero

If a linear system is consistent, then the solution set contains either:

- i) A unique solution, when there is no free variable
- ii) Infinitely many solutions when there is at least one free variable.

Example: Parametric Description of a Solution Set

Augmented Matrix

$$\begin{bmatrix} 1 & 6 & 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & -4 & 0 & 5 \\ 0 & 0 & 0 & 0 & 1 & 7 \end{bmatrix}$$

Parametric Description of the Solution Set

$$\begin{cases} x_1 = -6x_2 - 3x_4 \\ x_2 \text{ is free} \\ x_3 = 5 + 4x_4 \\ x_4 \text{ is free} \\ x_5 = 7 \end{cases}$$

Section 1.3 - Vector Equations

Vector – An ordered list of numbers	Column Vector – A matrix with only one column.	Vector Equality – Two vectors of the same size with all corresponding entries equal.	Vector Addition – Sum obtained by adding the corresponding entries of two vectors.	Scalar Multiple – Given a number, c , and a vector, \vec{v} , it is the vector obtained when c is multiplied by each element in \vec{u}
u and v are in \mathbb{R} Cartesian plane) corresponds to t	the fourth point in m whose vertices	Scalar Multiples of a Fixed Vector – Along a line between the vector point and the origin.	Zero Vector $(\vec{0})$ – A vector whose entries are all zeros.	Linear Combination – Given vectors $\overrightarrow{v_1}, \dots, \overrightarrow{v_n}$ and scalars c_1, \dots, c_n , then the linear combination vector \overrightarrow{y} is: $\overrightarrow{y} = c_1 \overrightarrow{v_1} + \dots + c_n \overrightarrow{v_n}$

Algebraic Properties in \mathbb{R}^n

Commutative $\vec{u} + \vec{v} = \vec{v} + \vec{u}$	Associative $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$	$ \begin{array}{c} Identity \\ \vec{\boldsymbol{u}} + \vec{\boldsymbol{0}} = \vec{\boldsymbol{u}} \end{array} $	Inverse $\vec{u} - \vec{u} = -\vec{u} + \vec{u} = \vec{0}$
Distributive $c(\vec{u} + \vec{v}) = c\vec{u} + d\vec{v}$	Distributive $(c+d)\vec{v} = c\vec{v} + d\vec{v}$	Associative $c(d\vec{u}) = (cd)\vec{u}$	$ \begin{array}{c c} & u & u & \overline{u} & \overline{u} & \overline{u} \\ \hline & & \text{Identity} \\ & 1\vec{u} & = \vec{u} \end{array} $

The Vector Equation and the Augmented Matrix

A vector equation:

 $x_1\overrightarrow{a_1} + x_2\overrightarrow{a_2} + \cdots + x_n\overrightarrow{a_n} = \overrightarrow{b}$ has the same solution set as the linear system whose augmented matrix is:

$$[\overrightarrow{a_1} \ \overrightarrow{a_2} \ ... \ \overrightarrow{a_n} \ \overrightarrow{b}]$$

In particular, \vec{b} can be generated by a linear combination of $\vec{a_1}, \dots, \vec{a_n}$ if and only if there exists a solution to the linear system corresponding to the augmented matrix.

Subset of \mathbb{R}^n Spanned / Generated by $\overrightarrow{\mathbf{v}_1}, \overrightarrow{\mathbf{v}_2}, \dots \overrightarrow{\mathbf{v}_n}$

Generated by $\overrightarrow{v_1}, \overrightarrow{v_2}, ... \overrightarrow{v_p}$ If $\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_p}$ are in \mathbb{R}^n , then the set of all linear combinations of $\overrightarrow{v_1}, \overrightarrow{v_2}, ... \overrightarrow{v_p}$ is denoted by:

$$span\{\overrightarrow{v_1},\overrightarrow{v_2},...,\overrightarrow{v_n}\}$$

It is the set of all linear combination vectors that can be written in the form:

$$c_1\overrightarrow{v_1} + c_2\overrightarrow{v_2} + \cdots + c_n\overrightarrow{v_n}$$

Geometric De	Geometric Description of Spans of Vectors				
$\overrightarrow{0}$ (Zero Vector)	A point – The origin				
One non-zero vector \overrightarrow{u}	A line through the origin and \vec{u}				
Two vectors \vec{u} and \vec{v} that are scalar multiples	A line through the origin and \vec{u}				
Two vectors \vec{u} and \vec{v} not scalar multiples	A plane through the origin, $ec{u}$, and $ec{v}$				

Mem	bers	of Al	l Spans

- Zero vector ($\vec{0}$)
- Scalar multiples of the original vectors

How to Determine if a Vector is in a Span Check if the system is consistent

	Important Notation					
	Vector \vec{u} in \mathbb{R}^3 Not a vector Set of Directions					
$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$	(u_1,u_2,u_3)	$< u_1, u_2, u_3 >$	$[u_1, u_2, u_3]$ It is a $1x3$ matrix	$\{\overrightarrow{v_1},\overrightarrow{v_2},,\overrightarrow{v_n}\}$		

Gaussian Elimination – Same concept as row reduction.

Non-zero row/column – A row/column with at least one non-zero entry.

Theorem #1-3: If A is an $m \times n$ matrix with columns $\overrightarrow{a_1}, \dots, \overrightarrow{a_n}$ and if $\overrightarrow{b} \in \mathbb{R}^m$, then **the matrix equation**:

$$A\vec{x} = \vec{b}$$

has the same solution set as the vector equation:

$$x_1\overrightarrow{a_1} + x_2\overrightarrow{a_2} + \dots + x_n\overrightarrow{a_n} = \overrightarrow{b}$$

which has the same solution set as the system of linear equations whose augmented matrix is:

$$\begin{bmatrix} \overrightarrow{a_1} & \overrightarrow{a_2} & \dots & \overrightarrow{a_n} & \overrightarrow{b} \end{bmatrix}$$

Theorem #1-4: Let A be an $m \times n$ matrix. Then the following statements are equivalent meaning they are either all true or all false.

- a) For all $\vec{b} \in \mathbb{R}^m$, the equation $A\vec{x} = \vec{b}$ has a solution.
- b) Each $\vec{b} \in \mathbb{R}^m$ is a linear combination of the columns of A.
- c) The columns of A span \mathbb{R}^m
- d) The (coefficient) matrix A has a pivot position in every row.

Relationship between Spans and Free Variables

$A\vec{x}=\vec{0}$	General Solution Structure
$\vec{x} = \vec{0}$ (Trivial Only)	$span\{\vec{0}\} = \vec{0}$
1 Free Variable	$span\{\vec{u}\}$ – Line through \vec{u} and the origin
2 Free Variables	$span\{\vec{u}, \vec{v}\}$ – Plane through \vec{u} , \vec{v} , and the origin
p Free Variables	$span\{\overrightarrow{v_1},\overrightarrow{v_2},,\overrightarrow{v_p}\} - \\ $

Row-Vector Rule for Computing $A\vec{x}$

Theorem #1-5: If A is an $m \times n$ matrix, \vec{u} and \vec{v} are vectors in \mathbb{R}^m , and c is a scalar, then:

a)
$$A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v}$$

b)
$$A(c\vec{u}) = cA\vec{u}$$

If the product $A\vec{x}$ is defined (i.e., the sizes correspond), then the i^{th} entry in $A\vec{x}$ is the sum of products of the corresponding entries from row i of A and from the vector \vec{x} . It is formally:

$$b_i = \sum_{j=1}^n a_{i,j} b_j$$

Matrix Equation Definition

If A is an $m \times n$ matrix with columns $\overrightarrow{a_1}, ..., \overrightarrow{a_n}$ and if $\overrightarrow{x} \in \mathbb{R}^n$, then the product, of A and \overrightarrow{x} , denoted by $A\overrightarrow{x}$, is the linear combination of the columns of A using the corresponding entries in \overrightarrow{x} as the weights; that is:

$$A\vec{x} = [\overrightarrow{a_1} \quad \overrightarrow{a_2} \quad \dots \quad \overrightarrow{a_n}] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \overrightarrow{a_1} + x_2 \overrightarrow{a_2} + \dots + x_n \overrightarrow{a_n}$$

Section 1.5 – Solution Sets of Linear Systems

Homogeneous Linear System: $A\vec{x} = \vec{0}$

- $A m \times n$ Matrix
- \vec{x} Vector in \mathbb{R}^n
- $\vec{0}$ Zero vector in \mathbb{R}^m

Trivial Solution: $\vec{x} = \vec{0}$ (in \mathbb{R}^n)

• Exists for all homogeneous systems

Nontrivial Solution: Any non-zero vector solution to the equation: $A\vec{x} = \vec{0}$

- If it exists, there are infinitely many.
- Requires at least one free variable.

Non-Homogenous System: $A\vec{x} = \vec{b}$ where \vec{b} is not the zero vector.

- May be inconsistent.
- If its solution exists, it is in the form: $\vec{x} = \vec{p} + \vec{v_h}$

$$x = p + \nu_h$$
If A is $m \times n$ then $x \in \mathbb{D}^1$

- o If A is $m \times n$, then $x \in \mathbb{R}^n$
- $\circ \vec{p}$ Particular solution for the specific non-homogenous system
- $\circ \overrightarrow{v_h}$ Solution set for the homogenous system

Theorem #1-6: Suppose the equation $A\vec{x} = \vec{b}$ is consistent for some given \vec{b} , and let \vec{p} be any solution to that particular non-homogenous system. Then the solution set of $A\vec{x} = \vec{b}$ (if it exists) is the set of all vectors of the form:

$$\overrightarrow{w} = \overrightarrow{p} + \overrightarrow{v_h}$$

where $\overrightarrow{v_h}$ is any solution of the homogenous equation $A\vec{x} = \vec{0}$.

Solution Set Notations

Augmented Matrix

$$\begin{bmatrix} 1 & 6 & 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & -4 & 0 & 5 \\ 0 & 0 & 0 & 0 & 1 & 7 \end{bmatrix}$$

Parametric Description of the Solution Set $x_1 = -6x_2 - 3x_4$

$$\begin{cases} x_1 - 6x_2 & 5x \\ x_2 & \text{is free} \\ x_3 = 5 + 4x_4 \\ x_4 & \text{is free} \\ x_5 = 7 \end{cases}$$

Parametric Vector Form

$$\vec{x} = \begin{bmatrix} -6x_2 - 3x_4 \\ x_2 \\ 5 + 4x_4 \\ x_4 \\ 7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 5 \\ 0 \\ 7 \end{bmatrix} + x_2 \begin{bmatrix} -6 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -3 \\ 0 \\ 4 \\ 1 \\ 0 \end{bmatrix}$$

For \vec{b} to span all of R^m , there **must** be a pivot in every row of echelon matrix of A.

Section 1.7 - Linear Independence

Span Review

• One Vector - At most a line

 \circ Exception: $\vec{0}$ vector

• Two Vectors: At most a plane

o Exception: Scalar multiples and the zero vector

Linear Independence

A set of vectors $S = \{\overrightarrow{v_1}, \overrightarrow{v_2}, ..., v_{\overrightarrow{p}}\}$ are linearly independent if:

$$x_1\overrightarrow{v_1} + x_2\overrightarrow{v_2} + \dots + x_p\overrightarrow{v_p} = \overrightarrow{\mathbf{0}}$$

has only the trivial solution

Linear Dependence

A set of vectors $S = \{\overrightarrow{v_1}, \overrightarrow{v_2}, ..., v_{\overrightarrow{p}}\}$ are linearly dependent if there exists a set of non-zero weights $c_1, c_2, ..., c_p$ such that:

$$c_1\overrightarrow{v_1} + c_2\overrightarrow{v_2} + \dots + c_p\overrightarrow{v_p} = \overrightarrow{0}$$

Note: This requires at least one free variable.

Linear Dependence Relation: For vectors $\{\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_p}\}$, it is defined as:

$$c_1\overrightarrow{v_1} + c_2\overrightarrow{v_2} + \dots + c_p\overrightarrow{v_p} = \overrightarrow{0}$$

where $\{c_1, c_2, ..., c_p\}$ are not all zero.

Note: The values of $\{c_1, c_2, ..., c_p\}$ are not unique. If one exists, an infinite number exist.

Procedure: Checking for Linear Independence

Step #1: Create the coefficient matrix.

Step #2: Perform Gaussian elimination to find the echelon matrix.

Step #3: Check linear independence

- If there is a pivot in every column, the vectors are linearly independent.
- If there is a free variable, the vectors are linearly dependent.

Linear Independence of One Vectors

- Zero Vector ({0}) This is always linearly dependent.
- Any Non-Zero Vector $(\{\vec{v}\}\ \text{where}\ \vec{v} \neq \vec{0})$ then linearly independent.

Linear Independence of Two Vectors – A set of two vectors $\{v_1, v_2\}$ is linearly dependent if at least one of the vectors is a scalar multiple of the other.

• "At least one" – Because of the case of the zero ($\vec{0}$) vector.

For a set of vectors to be **linearly independent**, the echelon matrix made from those vectors must have no free variables.

 There must be a pivot in every column. Linear Dependence Summary: If a set of n vectors of m-dimensions are linearly independent, then they span an n dimensional shape.

Theorem #1-7: An indexed set $S = \{v_1, v_2, ..., v_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.

In fact, if S is linearly dependent and $v_1 \neq 0$, then some v_j (where j > 1) is a linear combination of the preceding vectors: v_1, \dots, v_{j-1} .

Theorem #1-8: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent.

That is any set $\{v_1, v_2, ..., v_p\}$ in \mathbb{R}^n is linearly dependent if:

Proof: More pivots than columns in an $n \times p$ matrix so at least one free variable.

Theorem #1-9: If a set $S = \{v_1, v_2, \dots, v_p\}$ contains the zero vector, then the set is linearly dependent.

Proof: If the zero vector is reordered to be v_1 , then $1\overrightarrow{v_1} + 0\overrightarrow{v_2} + \cdots + 0\overrightarrow{v_p} = \overrightarrow{0}$

Section 1.8 – Introduction to Linear Transformations

Function – A rule that assigns to	Transformation (T) from \mathbb{R}^n to \mathbb{R}^m : A rule that assigns to each vector $\vec{x} \in \mathbb{R}^n$ a vector $T(\vec{x}) \in \mathbb{R}^m$	Domain of $T: \mathbb{R}^n$	Image of \vec{x} : For a given $x \in R^n$, it is the transformed value $T(\vec{x})$	Range: Set of all images $T(\vec{x})$. Note: The range may be (and
each element in a set A exactly one element from set B.		Codomain of $T: \mathbb{R}^m$		often is) only a subset of the codomain.
Linear Transformations: Preserve vector addition and scalar multiplication				

Properties of Matrix Transformations

Requirements of Linear Transformation		Zero Vector Properties		$m(\rightarrow 1) \rightarrow m(\rightarrow 1) \rightarrow m(\rightarrow 1)$
$T(\overrightarrow{u} + \overrightarrow{v}) = T(\overrightarrow{u}) + T(\overrightarrow{v})$	$T(c\vec{u}) = cT(\vec{u})$	$T(\vec{0}) = \vec{0}$	$T(\vec{0}) = T(0\vec{u})$	$T(c\vec{u}+d\vec{v})=cT(\vec{u})+dT(\vec{v})$

Types of Matrix Transformations

Contraction $T(\vec{x}) = r\vec{x},$	Dilation $T(\vec{x}) = r\vec{x}$,	Projection onto an Axis Matrices in the form: $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} $ Projection onto (x_1x_2) -plane	Shear Transformations Maps line segments onto line segments. Deforms the shape of the original input.
where $0 \le r \le 1$	where $r>1$	$\begin{bmatrix} 0 & 0 \ 0 & 1 \end{bmatrix}$ – Projection onto the x_2 -axis	$\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$

Reflection through the Origin	Reflection through the x_1 -axis	Reflection through the x_2 -axis	Reflection through the line $x_1 = x_2$
Matrix in the Form of:	Matrix in the Form of:	Matrix in the Form of:	Matrix in the Form of:
[-1 0]	[-1 0]	[1 0]	[0 1]
<u> </u>	[0 1]	<u>[0 −1]</u>	[1 0]
Twice as Long and 1.5 Times as	High Rotation about Origin	through 90°	

Twice as Long and 1.5 Times as High

Matrix in the Form of:

Matrix in the Form of: $\begin{bmatrix}
2 & 0 \\
0 & 1.5
\end{bmatrix}$ Rotation about Origin through 90° Matrix in the Form of: $\begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix}$

Section 2.1 - Matrix Operations

 a_{ij} or (i,j)-entry – Given A an $m \times n$ matrix, it is the element in the i^{th} row and j^{th} column of A

Diagonal Entries – In A an $m \times n$ matrix, it is the entries a_{11} , a_{22} , etc.

Diagonal Matrix – A **square** $n \times n$ matrix whose non-diagonal entries are 0.

Example: Identity matrix

Equal Matrices – Two matrices having the same size (i.e., equal number of rows and columns) and whose corresponding entries are equal.

Matrix Sum – Given two matrices of the same size, the matrix sum is equivalent to the sum of the corresponding columns.

Matrix Multiplication

If A is an $m \times n$ matrix and if B is an $n \times p$ matrix composed of the columns $\overrightarrow{b_1}, \overrightarrow{b_2}, \dots, \overrightarrow{b_p}$, then the **product** AB is an $m \times p$ matrix whose columns are: $A\overrightarrow{b_1}, A\overrightarrow{b_2}, \dots, A\overrightarrow{b_p}$ such that:

$$AB = A \begin{bmatrix} \overrightarrow{b_1} \ \overrightarrow{b_2} \ \dots \ \overrightarrow{b_p} \end{bmatrix} = \begin{bmatrix} A\overrightarrow{b_1} \ A\overrightarrow{b_2} \ \dots \ A\overrightarrow{b_p} \end{bmatrix}$$

Row-Product Rule

If the product of AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding entries from row i of A and column j of B such that:

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Size of a Matrix Multiplication: Given a matrix A of size $m \times n$ and a matrix B of size $n \times p$, then the matrix multiplication AB is of size $n \times p$.

Non-Commutativity of Matrix Multiplication In most cases, $AB \neq BA$

Cancelation Laws Do Not Hold For Matrix Multiplication Generally, if AB = AC, it cannot be assumed that B = CZero Matrix Product

If AB = 0, you cannot generally assume A = 0 or B = 0

Powers of a Matrix

If A is an $n \times n$ matrix and k is a positive integer, then A^k denotes the product of k copies of A such that:

$$A^k = A \dots A$$

Zero Power – Given a square matrix A, then A^0 is the identity matrix.

Transpose of a Matrix

Given an $m \times n$ matrix A, then transpose of A is an $n \times m$ matrix whose columns are formed from the corresponding rows of A.

Transpose Multiplication Row: The transpose of the product of matrices equals the product of their transposes in reverse order.

Theorem #2-1: Let A, B, and C be matrices of the same size and let r and s be scalars, then:

a.
$$A + B = B + A$$
 (Commutative)

b.
$$(A + B) + C = A + (B + C)$$
 (Associative)

c.
$$A + 0 = A$$
 (Identity)

d.
$$r(A + B) = rA + rb$$

e.
$$(r+s)A = rA + sA$$

$$f. \ \ r(sA) = (rs)A$$

Theorem #2-2: Given I_m is the identity matrix of size $m \times m$ and A is an $m \times n$ matrix, and that B and C have sizes for which the indicated sums and products exist, then

a.
$$A(BC) = (AB)C$$
 (Associative)

b.
$$A(B + C) = AB + AC$$
 (Left Distributive Law)

c.
$$(B + C)A = BA + CA$$
 (Right Distributive Law)

d.
$$r(AB) = (rA)B = A(rB)$$
, for any scalar r

e.
$$I_m A = A = A I_n$$

Theorem #2-3: Let *A* and *B* be matrices whose sizes are appropriate for the following sums and products:

a.
$$(A^T)^T = A$$

b.
$$(A + B)^T = A^T + B^T$$

c.
$$(rA)^T = rA^T$$
, for any scalar r

d.
$$(AB)^T = B^T A^T$$

Note: The reverse order of the product.

Midterm #1 Theorems

Theorem #1: Any matrix has one and only one reduced echelon form.

Theorem 1-2: Existence and Uniqueness Theorem

A linear system is consistent if and only if the rightmost column of the augmented matrix is not a pivot column – that is, if and only if an echelon form of the augmented matrix has no row in the form:

 $[\mathbf{0} \dots \mathbf{0} \ b]$ with b non-zero

If a linear system is consistent, then the solution set contains either:

- i) A unique solution, when there is no free variable
- ii) Infinitely many solutions when there is at least one free variable.

Theorem #1-3: If A is an $m \times n$ matrix with columns $\overrightarrow{a_1}, ..., \overrightarrow{a_n}$ and if $\overrightarrow{b} \in \mathbb{R}^m$, then the matrix equation:

$$A\vec{x} = \vec{b}$$

has the same solution set as the vector equation:

$$x_1\overrightarrow{a_1} + x_2\overrightarrow{a_2} + \dots + x_n\overrightarrow{a_n} = \overrightarrow{b}$$

which in turn has the same solution set as the system of linear equations whose augmented matrix is:

$$\begin{bmatrix} \overrightarrow{a_1} & \overrightarrow{a_2} & \dots & \overrightarrow{a_n} & \overrightarrow{b} \end{bmatrix}$$

Theorem #1-4: Let A be an $m \times n$ matrix. Then the following statements are equivalent meaning they are **either all true or all false**.

- a) For all \vec{b} in \mathbb{R}^m , the equation $A\vec{x} = \vec{b}$ has a solution.
- b) Each \vec{b} in \mathbb{R}^m is a linear combination of the columns of A.
- c) The columns of A span \mathbb{R}^m
- d) The (coefficient) matrix A has a pivot position in every row.

Theorem #1-5: If A is an $m \times n$ matrix, \vec{u} and \vec{v} are vectors in \mathbb{R}^m , and c is a scalar, then:

- a) $A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v}$
- b) $A(c\vec{u}) = cA\vec{u}$

Theorem #1-6: Suppose the equation $A\vec{x} = \vec{b}$ is consistent for some given \vec{b} , and let \vec{p} be any solution to that particular non-homogenous system. Then the solution set of $A\vec{x} = \vec{b}$ is the set of all vectors of the form:

$$\overrightarrow{w} = \overrightarrow{p} + \overrightarrow{v_h}$$

where $\overrightarrow{v_h}$ is any solution of the homogenous equation $A\vec{x} = \vec{0}$.

Theorem #1-7: An indexed set $S = \{v_1, v_2, ..., v_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.

In fact, if S is linearly dependent and $v_1 \neq 0$, then some v_j (where j>1) is a linear combination of the preceding vectors: v_1,\dots,v_{j-1} .

Theorem #1-8: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent.

That is any set $\{v_1, v_2, ..., v_p\}$ in \mathbb{R}^n is linearly dependent if:

Proof: More pivots than columns in an $n \times p$ matrix so at least one free variable.

Theorem #1-9: If a set $S = \{v_1, v_2, \dots, v_p\}$ contains the zero vector, then the set is linearly dependent.

Proof: If the zero vector is reordered to be v_1 , then

$$1\overrightarrow{v_1} + 0\overrightarrow{v_2} + \dots + 0\overrightarrow{v_p} = \overrightarrow{0}$$

Theorem #2-1: Let *A*, *B*, and *C* be matrices of the same size and let *r* and *s* be scalars, then:

- a. A + B = B + A (Commutative)
- b. (A+B)+C=A+(B+C) (Associative)
- c. A + 0 = A (Identity)
- $d. \ r(A+B)=rA+rb$
- e. (r+s)A = rA + sA
- f. r(sA) = (rs)A

Theorem #2-2: Given I_m is the identity matrix of size $m \times m$ and A is an $m \times n$ matrix, and that B and C have sizes for which the indicated sums and products exist, then

- a. A(BC) = (AB)C (Associative)
- **b.** A(B+C) = AB + AC (Left Distributive Law)
- c. (B+C)A = BA + CA (Right Distributive Law)
- d. r(AB) = (rA)B = A(rB), for any scalar r
- e. $I_m A = A = A I_n$

Theorem #2-3: Let A and B be matrices whose sizes are appropriate for the following sums and products:

- a. $(A^T)^T = A$
- **b.** $(A + B)^T = A^T + B^T$
- c. $(rA)^T = rA^T$, for any scalar r
- $d. (AB)^T = B^T A^T$

Note: The reverse order of the product.

Proofs for the Algebraic Properties of \mathbb{R}^n

Name	Description	Terms
Commutative (Vector Addition)	$\vec{u} + \vec{v} = \vec{v} + \vec{u}$	
Inverse (Vector Addition)	$\vec{u} + (-\vec{u}) = (-u) + u = \vec{0}$	
Associative (Vector Addition)	$\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$	• \vec{u} , \vec{v} , \vec{w} – Vectors
Associative (Scalar Multiplication)	$c(d\vec{u}) = (cd)\vec{u}$	• $\vec{0}$ – Zero vector
Distributive Law (Vector Addition)	$c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}$	
Distributive Law (Scalar Multiplication)	$(c+d)\vec{u} = c\vec{u} + d\vec{u}$	• c,d – Real constants
Identity (Vector Addition)	$\vec{u} + \vec{0} = \vec{u}$	
Identity (Scalar Multiplication)	$1\vec{u} = \vec{u}$	

Proof of the Commutative Property of Vector Addition

1. Suppose \vec{u} and \vec{v} are any real vector in \mathbb{R}^n in the form:

$$\vec{u} = (u_1, u_2, ..., u_n)$$
 and $\vec{v} = (v_1, v_2, ..., v_n)$

2. By the definition of vector addition:

$$\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$

3. By the commutative property of real number addition:

$$(u_1 + v_1, u_2 + v_2, ..., u_n + v_n) = (v_1 + u_1, v_2 + u_2, ..., v_n + u_n)$$

4. By the definition of vector addition and the definition of \vec{u} and \vec{v} :

$$(v_1 + u_1, v_2 + u_2, ..., v_n + u_n) = \vec{v} + \vec{u}$$
 (QED)

Proof of the Inverse Property of Vector Addition

1. Suppose \vec{u} is any real vector in \mathbb{R}^n in the form:

$$\vec{u} = (u_1, u_2, \dots, u_n)$$

2. By the definition of scalar multiplication:

$$-\vec{u} = (-1)u = (-u_1, -u_2, \dots, -u_n)$$

3. By the definition of vector addition:

$$\vec{u} + (-\vec{u}) = (u_1 + (-u_1), u_2 + (-u_2), \dots, u_2 + (-u_n))$$

4. By the inverse property of real number addition:

$$(u_1 + (-u_1), u_2 + (-u_2), \dots, u_2 + (-u_n)) = (0,0,\dots,0)$$

5. By definition of the zero vector:

$$(0,0,...,0) = \vec{0}$$
 (QED)

Proof of the Associative Property for Vector Addition

1. Suppose \vec{u} , \vec{v} , and \vec{w} are any real vector in \mathbb{R}^n in the form:

$$\vec{u}=(u_1,u_2,\dots,u_n) \text{ and } \vec{v}=(v_1,v_2,\dots,v_n) \text{ and } \vec{w}=(w_1,w_2,\dots,w_n)$$

2. By the definition of vector addition:

$$\vec{v} + \vec{w} = (v_1 + w_1, v_2 + w_2, \dots, v_n + w_n)$$

3. By the definition of vector addition:

$$\vec{u} + (\vec{v} + \vec{w}) = (u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), \dots, u_n + (v_n + w_n))$$

4. By the associative property of real number addition:

$$(u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), \dots, u_n + (v_n + w_n))$$

= $((u_1 + v_1) + w_1, (u_2 + v_2) + w_2, \dots, (u_n + v_n) + w_n)$

- 5. By the definition of vector addition and the definition of \vec{u} and \vec{v} :
- $(\vec{u} + \vec{v}) + \vec{w} = ((u_1 + v_1) + w_1, (u_2 + v_2) + w_2, ..., (u_n + v_n) + w_n)$ (QED)

Proof of the Associative Property for Scalar Multiplication

- 1. Suppose c and d are any real number and \vec{u} is any real vector in \mathbb{R}^n in the form: $\vec{u}=(u_1,u_2,...,u_n)$
- 2. By the definition of scalar multiplication:

$$d\vec{u} = (du_1, du_2, \dots, du_n)$$

3. By the definition of vector addition:

$$c(d\vec{u}) = (c(du_1), c(du_2), \dots, c(du_n))$$

4. By the associative property of real number multiplication:

$$(c(du_1), c(du_2), ..., c(du_n)) = ((cd)u_1, (cd)u_2, ..., (cd)u_n)$$

5. By the definition of scalar multiplication:

$$((cd)u_1,(cd)u_2,\dots,(cd)u_n)=(cd)\vec{u} \text{ (QED)}$$

Proof of the Distributive Law for Vector Addition

- 1. Suppose c is any real number and \vec{u} and \vec{v} are any real vector in \mathbb{R}^n in the form: $\vec{u}=(u_1,u_2,...,u_n)$ and $\vec{v}=(v_1,v_2,...,v_n)$
- 2. By the definition of vector addition:

$$\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$

3. By the definition of scalar multiplication:

$$c(\vec{u} + \vec{v}) = (c(u_1 + v_1), c(u_2 + v_2), ..., c(u_n + v_n))$$

4. By the distributive law over real number addition:

$$(c(u_1+v_1),c(u_2+v_2),...,c(u_n+v_n))=(cu_1+cv_1,cu_2+cv_2,...,cu_n+cv_n)$$

5. By the defintition of vector addition:

$$(cu_1 + cv_1, cu_2 + cv_2, \dots, cu_n + cv_n) = c(u_1, u_2, \dots u_n) + c(v_1, v_2, \dots, v_n)$$

6. By the definition of scalar multiplication, and the definition of \vec{u} and \vec{v} :

$$c\vec{u} + c\vec{v} = (cu_1 + cv_1, cu_2 + cv_2, ..., cu_n + cv_n)$$
 (QED)

Proof of the Distributive Law for Scalar Multiplication

- 1. Suppose c and d are any real number and \vec{u} is any real vector in \mathbb{R}^n in the form: $\vec{u}=(u_1,u_2,\dots,u_n)$
- 2. By the definition of scalar multiplication:

$$(c+d)\vec{u} = ((c+d)u_1, (c+d)u_2, ..., (c+d)u_n)$$

 ${\it 3. \ } \ {\it By the \ } {\it distributive \ law \ over \ real \ number \ addition};$

$$((c+d)u_1, (c+d)u_2, ..., (c+d)u_n) = (cu_1 + du_1, cu_2 + du_2, ..., cu_n + du_n)$$

4. By the definition of vector addition:

$$(cu_1 + du_1, cu_2 + du_2, ..., cu_n + du_n) = (cu_1, cu_2, ..., cu_n) + (du_1, du_2, ..., du_n)$$

5. By the definition of scalar multiplication and the definition of \vec{u} :

$$(cu_1, cu_2, ..., cu_n) + (du_1, du_2, ..., du_n) = c\vec{u} + du^{-}$$
 (QED)

Proof of the Identity Property for Vector Addition

1. Suppose $\vec{0}$ is the zero vector of length n and \vec{u} is any real vector in \mathbb{R}^n in the form: $\vec{u}=(u_1,u_2,\dots,u_n)$

2. By the definition of vector addition:

$$\vec{u} + \vec{0} = (u_1 + 0, u_2 + 0, ..., u_n + 0)$$

3. By the identity property of real number addition:

$$(u_1 + 0, u_2 + 0, ..., u_n + 0) = (u_1, u_2, ..., u_n)$$

4. By the **definition of** \vec{u} :

$$\vec{u} = (u_1, u_2, \dots, u_n) \text{ (QED)}$$

Proof of the Identity Property for Scalar Multiplication

1. Suppose \vec{u} is any real vector in \mathbb{R}^n in the form:

$$\vec{u} = (u_1, u_2, \dots, u_n)$$

2. By the definition of scalar multiplication:

$$1\vec{u} = (1u_1, 1u_2, \dots, 1u_n)$$

3. By the identity property of real number multiplication: $(1u_1,1u_2,...,1u_n) \ = (u_1,u_2,...,u_n)$

$$(1u_1, 1u_2, \dots, 1u_n) = (u_1, u_2, \dots, u_n)$$

4. By the **definition of** \vec{u} :

$$\vec{u} = (u_1, u_2, \dots, u_n) \text{ (QED)}$$