1. Zbadać poprawność następującego rozumowania: Gdybyś był inteligentny, to studiowałbyś matematykę. Lecz ty nie studiujesz matematyki. Zatem nie jesteś inteligentny.

3

2. Bez posługiwania się diagramem Venna udowodnić, że dla każdych zbiorów A, B i C mamy $A - (B \cup C) = (A - B) - C$.

3. Niech $\{f_t: t \in R\}$ będzie indeksowaną rodziną funkcji rzeczywistych takich, że $f_t(x) = x^2 - 2tx + 1$ dla $x \in R$. Wyznaczyć $\bigcup_{t \in R} A_t$ i $\bigcap_{t \in R} A_t$, gdy $A_t = f_t^{-1}(\{0\})$ dla $t \in R$. (Może umiesz odpowiedzieć na pytania: 1. Czy x = 0 jest elementem zbioru A_t ? 2. Czy $x \neq 0$ jest elementem zbioru A_t ? Dla jakiego t? 3. Czy istnieje t takie, że $A_t = \emptyset$?)

3

4. Udowodnić, że zbiory $R \times R$ i R są równoliczne. Następnie udowodnić, że zbiór wszystkich okręgów w R^2 jest mocy continuum.

4

6. Zakładamy, że dla liczb $a, b \in Z$ mamy $a \sim b$ wtedy i tylko wtedy, gdy liczba 2a + 3b jest podzielna przez 5.

(a) Wykazać, że \sim jest relacją równoważności na zbiorze Z. (b) Wyznaczyć zbiór ilorazowy Z/\sim .

- 7. Dany jest zbiór częściowo uporządkowany (A,\leqslant) oraz podzbiory B i C zbioru A. Zapisać symbolicznie następujące zdania:
 - 1. W A nie ma elementu minimalnego;
 - 2. Istnieje element największy w A;
 - 3. Każdy element B jest mniejszy od pewnego elementu C;
 - 4. C jest zbiorem wszystkich elementów minimalnych w A.
- 8. Wykazać równoliczność zbioru liczb rzeczywistych R i zbioru ciągów zer i jedynek $\{0,1\}^N$.