等离子体动理学笔记 plasma kinetic theory note

郑哲轩

2025-06-29

Ι	弗拉	立索夫	(Vlasov)	波动理论										7
1	波动	的物理	持点和数学描	述										9
	1.1	弗拉索	夫方程组									 		9
		1.1.1	常用数学处理	理方法								 		10
		1.1.2	波动的表达	方式								 		11
	1.2	扰动波	场的能量传播	番方程								 		12
		1.2.1	坡印廷 (Pog	ynting)定理	<u>.</u>							 		12
		1.2.2	波的能量传护	潘方程								 		12
		1.2.3	同时考虑时间	间和空间平均	的能量	方程 .						 		13
2	无外	场、空	间均匀的线性	波动问题										15
	2.1	静电波	解									 		15
		2.1.1	束等离子体的	的本征模								 		16
		2.1.2	束等离子体流	波模分析								 		17
	2.2	耗散型	本征模									 		18
		2.2.1	弱耗散($arepsilon_{ m i}$	$\ll \varepsilon_{\rm r}$, $\omega_{\rm i} \ll$	$\omega_{ m r}$)情况	兄下的	色散	方程				 		18
		2.2.2	耗散项 ε_i 的	」来源								 		18
		2.2.3	麦克斯韦(M	Maxwell) 分	布下的等	穿离子	体色間	女方利	呈			 		19
	2.3	平衡分	布为麦克斯韦	卡分布情况下	的静电石	卜 征模						 		19
		2.3.1	电子等离子值	体波(EPW))							 		19
		2.3.2	离子声波(I	(AW)								 		20
	2.4	朗道(Landau) 阻,	尼								 		21
		2.4.1	普莱姆(Ple	emelj)定理								 		21
		2.4.2	朗道积分路征	径								 		21
		2.4.3	介电函数中的	的积分								 		21
		2.4.4	朗道阻尼的特	物理图像								 		21
		2.4.5	朗道阻尼的护	准导								 		22
	2.5	初值问	题、弹道模及	及其物理意义								 		22
	2.6	电磁波	模									 		22
		2.6.1	速度空间各口	句同性下的电	磁波模							 		22
		2.6.2	速度空间各[磁波模-		eibel	不稳	定性	:		 		23

3	均匀]外磁场、空间均匀的线性波动问题	25
	3.1	沿未扰动粒子轨道积分法	25
		3.1.1 粒子的未扰动轨道及弗拉索夫方程	
		3.1.2 弗拉索夫方程的积分	
		3.1.3 电导张量与电磁张量	
		3.1.4 均匀、磁化等离子体色散方程的各种表达式	
	3.2	沿未扰动导心轨道积分法	
	3.3	平行磁场方向传播的电磁波	
	0.0	3.3.1 左右旋波	
		3.3.2 哨声波不稳定性	
	3.4	垂直磁场方向传播的电磁波	
	5.4	3.4.1 电子正常回旋波	
		3.4.2 离子伯恩斯坦(Bernstein)波	27
4	空间]非均匀、外磁场均匀的线性波动问题	2 9
	4.1	流体描述概述	29
		4.1.1 抗磁漂移速度	29
		4.1.2 静电漂移波	29
		4.1.3 电磁漂移波	30
	4.2	密度不均匀时弗拉索夫方程的平衡解	30
	4.3	动理学电磁漂移波	30
	4.4	动理学静电漂移波	30
_	±/, -t-	7 7 7 th chi lill	0.1
5		という。 - 1871年で、ウェル・オストロングでは、1972年には、1972年には、1	31
	5.1	损失锥型速度分布引起的静电不稳定性	31
	5.2	各向异性分布引起的不稳定性	32
		5.2.1 电子静电波不稳定性	
		5.2.2 离子声波不稳定性	32
	5.3	定向漂移引起的不稳定性	32
		5.3.1 東-等离子体不稳定性	32
		5.3.2 离子漂移不稳定性	32
		5.3.3 电流驱动的静电离子回旋波不稳定性	32
		5.3.4 非均匀等离子体中低频漂移波不稳定性	32
ΙΙ	碰	撞和输运	33
6	碰撞	。 [和输运概论	35
-	6.1	自扩散与集体输运	35
	··-	6.1.1 自扩散的描述	
		6.1.2 集体输运的描述	

7	碰撞	算子	37
	7.1	BGK 碰撞项	37
	7.2	玻尔兹曼(Boltzmann)碰撞项	37
	7.3	Fokker-Planck 碰撞项	37
	7.4	Rosenbluth 势	38
	7.5	朗道(Landau)碰撞项	38
	7.6	弹性碰撞的守恒性质	38
	7.7	试探粒子的各种碰撞频率	38
8	输运		39
Ü	8.1	磁化等离子体中的经典输运	39
		8.1.1 弛豫时间近似法	39
		8.1.2 垂直磁场方向的输运	42
9	空运	· 子体的统计理论──碰撞项的统计描述	43
Э	ज ा⊏ा 9.1	6N 维相空间中的概率分布函数	43
	J.1	9.1.1 Γ空间	43
		9.1.2 物理量的宏观测量	43
		9.1.3 相点密度和分布函数	43
	9.2	刘维方程和 BBGKY 方程链	43
		9.2.1 刘维方程的建立	43
		9.2.2 约化分布函数	44
		9.2.3 BBGKY 方程链	44
	9.3	单粒子和双粒子分布函数的动理学方程	44
	9.4	热平衡下的双粒子关联函数	44
	9.5	无磁场时的朗道方程	44
Α	▽算	[子	45
	٠.	· 不同坐标系下的梯度、散度、旋度与拉普拉斯算子的表达式	45
		A.1.1 直角坐标系	45
		A.1.2 柱坐标系	45
		A.1.3 球坐标系	46
	A.2	位矢 r 及其衍生矢量	46
	A.3	▽ 算子的微分性与向量性	47
	A.4	▽ 算子的其他性质	47
	A.5	相关定理	47
В	曲线	坐标系基础	49

Part I 弗拉索夫(Vlasov)波动理论

波动的物理特点和数学描述

1.1 弗拉索夫方程组

分布函数 $f_{\alpha}(t, \mathbf{r}, \mathbf{v})$ 代表了在 t 时刻、位置在体积元 $\mathrm{d}^{3}\mathbf{r}$ 范围内、速度在体积元 $\mathrm{d}^{3}\mathbf{v}$ 范围内的 α 粒子数目。也可以使用它的归一化形式:

$$\hat{f}_{\alpha}(t, \boldsymbol{r}, \boldsymbol{v}) = \frac{f_{\alpha}(t, \boldsymbol{r}, \boldsymbol{v})}{n_{\alpha}(t, \boldsymbol{r})}$$
(1.1a)

$$n_{\alpha}(t, \mathbf{r}) = \int f_{\alpha}(t, \mathbf{r}, \mathbf{v}) d^{3}\mathbf{v}$$
 (1.1b)

分布函数的时间演化,是由动理学方程和麦克斯韦方程组联合描述:

$$\frac{\partial f_{\alpha}}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f_{\alpha}}{\partial \boldsymbol{r}} + \frac{q_{\alpha}}{m_{\alpha}} (\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}) \cdot \frac{\partial f_{\alpha}}{\partial \boldsymbol{v}} = \left(\frac{\partial f_{\alpha}}{\partial t}\right)_{c}$$
(1.2a)

$$\nabla \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \sum_{\alpha} q_{\alpha} \int f_{\alpha} \, \mathrm{d}^3 \mathbf{v} + \frac{\rho_{\text{ext}}}{\varepsilon_0}$$
 (1.2b)

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \tag{1.2c}$$

$$\nabla \cdot \boldsymbol{B} = 0 \tag{1.2d}$$

$$\nabla \times \boldsymbol{B} = \varepsilon_0 \mu_0 \frac{\partial \boldsymbol{E}}{\partial t} + \mu_0 \sum_{\alpha} q_{\alpha} \int \boldsymbol{v} f_{\alpha} \, d^3 \boldsymbol{v} + \mu_0 \boldsymbol{J}_{\text{ext}}$$
 (1.2e)

其中, $\rho_{\rm ext}$ 与 ${m J}_{\rm ext}$ 是外加的电荷密度与电流密度。 $(\partial f_{lpha}/\partial t)_c$ 是碰撞引起的分布函数变化速率,在无碰撞的情况下,此项可以忽略,此时,上述方程组就称为 **弗拉索夫方程组**。

线性问题及其分类

与之前类似,我们可以将物理量根据时空的变化速率的快慢分为零阶量和一阶量:

$$f_{\alpha}(t, \boldsymbol{r}, \boldsymbol{v}) = f_{\alpha, 0}(t, \boldsymbol{r}, \boldsymbol{v}) + f_{\alpha, 1}(t, \boldsymbol{r}, \boldsymbol{v})$$
(1.3a)

$$\boldsymbol{E}(t,\boldsymbol{r}) = \boldsymbol{E}_0(t,\boldsymbol{r}) + \boldsymbol{E}_1(t,\boldsymbol{r}) \tag{1.3b}$$

$$\boldsymbol{B}(t, \boldsymbol{r}) = \boldsymbol{B}_0(t, \boldsymbol{r}) + \boldsymbol{B}_1(t, \boldsymbol{r}) \tag{1.3c}$$

且一阶量远小于零阶量

$$f_{\alpha,1} \ll f_{\alpha,0}, \quad E_1 \ll E_0, \quad B_1 \ll B_0$$
 (1.4)

这样, 我们可以将总演化方程组分开写成零阶方程

$$\frac{\partial f_{\alpha,0}}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f_{\alpha,0}}{\partial \boldsymbol{r}} + \frac{q_{\alpha}}{m_{\alpha}} (\boldsymbol{E}_0 + \boldsymbol{v} \times \boldsymbol{B}_0) \cdot \frac{\partial f_{\alpha,0}}{\partial \boldsymbol{v}} = \left(\frac{\partial f_{\alpha,0}}{\partial t}\right)_c$$
(1.5a)

$$\nabla \cdot \mathbf{E}_0 = \frac{1}{\varepsilon_0} \sum_{\alpha} q_{\alpha} \int f_{\alpha,0} \, \mathrm{d}^3 \mathbf{v} + \frac{\rho_{\text{ext}}}{\varepsilon_0}$$
 (1.5b)

$$\nabla \times \mathbf{E}_0 = -\frac{\partial \mathbf{B}_0}{\partial t} \tag{1.5c}$$

$$\nabla \cdot \boldsymbol{B}_0 = 0 \tag{1.5d}$$

$$\nabla \times \boldsymbol{B}_{0} = \varepsilon_{0} \mu_{0} \frac{\partial \boldsymbol{E}_{0}}{\partial t} + \mu_{0} \sum_{\alpha} q_{\alpha} \int \boldsymbol{v} f_{\alpha,0} \, d^{3} \boldsymbol{v} + \mu_{0} \boldsymbol{J}_{\text{ext}}$$
(1.5e)

和一阶方程

$$\frac{\partial f_{\alpha,1}}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f_{\alpha,1}}{\partial \boldsymbol{r}} + \frac{q_{\alpha}}{m_{\alpha}} (\boldsymbol{E}_{0} + \boldsymbol{v} \times \boldsymbol{B}_{0}) \cdot \frac{\partial f_{\alpha,1}}{\partial \boldsymbol{v}} + \frac{q_{\alpha}}{m_{\alpha}} (\boldsymbol{E}_{1} + \boldsymbol{v} \times \boldsymbol{B}_{1}) \cdot \frac{\partial f_{\alpha,0}}{\partial \boldsymbol{v}} = \left(\frac{\partial f_{\alpha,1}}{\partial t}\right)_{c} (1.6a)$$

$$\nabla \cdot \boldsymbol{E}_{1} = \frac{1}{\varepsilon_{0}} \sum_{\alpha} q_{\alpha} \int f_{\alpha,1} \, \mathrm{d}^{3} \boldsymbol{v}$$
 (1.6b)

$$\nabla \times \mathbf{E}_1 = -\frac{\partial \mathbf{B}_1}{\partial t} \tag{1.6c}$$

$$\nabla \cdot \boldsymbol{B}_1 = 0 \tag{1.6d}$$

$$\nabla \times \boldsymbol{B}_{1} = \varepsilon_{0} \mu_{0} \frac{\partial \boldsymbol{E}_{1}}{\partial t} + \mu_{0} \sum_{\alpha} q_{\alpha} \int \boldsymbol{v} f_{\alpha,1} \, \mathrm{d}^{3} \boldsymbol{v}$$
 (1.6e)

在比较简单的情况下,平衡分布 $f_{\alpha,0}$ 往往取热力学平衡分布——麦克斯韦分布:

$$\hat{f}_{\mathrm{M},\alpha} = \left(\frac{m_{\alpha}}{2\pi T_{\alpha}}\right)^{3/2} \exp\left[-\frac{m_{\alpha}}{2T_{\alpha}}(\boldsymbol{v} - \boldsymbol{u}_{\alpha})^{2}\right]$$

$$= \frac{1}{\sqrt{\pi^{3}}v_{t,\alpha}^{3}} \exp\left[-\frac{(\boldsymbol{v} - \boldsymbol{u}_{\alpha})^{2}}{v_{t,\alpha}^{2}}\right]$$
(1.7)

其中, u_{α} 为粒子宏观流体速度,

$$v_{t,\alpha} = \sqrt{\frac{2T_{\alpha}}{m_{\alpha}}} \tag{1.8}$$

为粒子热速度。

线性波动问题分类 波动问题求解方法

1.1.1 常用数学处理方法

傅里叶(FourierT)变换

傅里叶变换及其逆变换

$$\mathcal{F}[f](\omega) = \int_{-\infty}^{+\infty} f(t)e^{-i\omega t} dt$$
 (1.9a)

$$\mathcal{F}^{-1}[f](t) = \int_{-\infty}^{+\infty} f(\omega) e^{i\omega t} d\omega$$
 (1.9b)

1.1. 弗拉索夫方程组 11

$$\mathcal{F}[\mathcal{F}[f]](t) = f(-t) \tag{1.10a}$$

$$\mathcal{F}^{-1}[\mathcal{F}^{-1}[f]](t) = f(-t) \tag{1.10b}$$

$$\mathcal{F}[f(t-t_0)] = e^{-i\omega t_0} \mathcal{F}[f](\omega)$$
(1.10c)

$$\mathcal{F}^{-1}[f(\omega - \omega_0)] = e^{i\omega_0 t} \mathcal{F}^{-1}[f](t)$$
(1.10d)

$$\mathcal{F}[f(t/\lambda)] = \lambda \mathcal{F}[f](\lambda \omega) \tag{1.10e}$$

$$\mathcal{F}^{-1}[f(\omega/\lambda)] = \lambda \mathcal{F}^{-1}[f](\lambda t) \tag{1.10f}$$

$$\mathcal{F}\left[\frac{\mathrm{d}^m f}{\mathrm{d}t^m}\right] = (\mathrm{i}\omega)^m \,\mathcal{F}[f](\omega) \tag{1.10g}$$

$$\mathcal{F}^{-1}\left[\frac{\mathrm{d}^m f}{\mathrm{d}\omega^m}\right] = (-\mathrm{i}t)^m \,\mathcal{F}^{-1}[f](t) \tag{1.10h}$$

$$\mathcal{F}[f * g] = \mathcal{F}[f]\mathcal{F}[g] \tag{1.10i}$$

$$\mathcal{F}^{-1}[f * g] = \mathcal{F}^{-1}[f]\mathcal{F}^{-1}[g]$$
 (1.10j)

拉普拉斯(Laplace)变换

$$f(t) \stackrel{\mathcal{L}}{\rightleftharpoons} \int_{0}^{+\infty} f(t) e^{-st} dt$$

$$-\frac{i}{2\pi} \int_{c-i\infty}^{c+i\infty} F(s) e^{-st} ds \stackrel{\mathcal{L}}{\rightleftharpoons} F(s)$$
(1.11)

1.1.2 波动的表达方式

平面单色波:

$$f(t, \mathbf{r}) = f_A e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}$$
(1.12)

定义波的相速度为

$$v_p = \frac{\omega}{k} \tag{1.13}$$

波的群速度为

$$v_g = \frac{\mathrm{d}\omega}{\mathrm{d}k} \tag{1.14}$$

取频率 ω 为复数,则可以表示波的不稳定/阻尼:

$$f(t, \mathbf{r}) = f_A e^{\operatorname{Im}(\omega)t} e^{\mathrm{i}[\mathbf{k} \cdot \mathbf{r} - \operatorname{Re}(\omega)]t}$$
(1.15)

当 $\operatorname{Im}(\omega) > 0$ 时,波会增长; 当 $\operatorname{Im}(\omega) < 0$ 时,波会阻尼。

1.2 扰动波场的能量传播方程

1.2.1 坡印廷 (Poynting) 定理

电磁场的能量传播由坡印廷 (Poynting) 定理描述:

$$\frac{\partial w}{\partial t} + \nabla \cdot \mathbf{S} + \mathbf{E} \cdot \mathbf{J} = 0 \tag{1.16a}$$

$$w = \frac{\varepsilon_0}{2} \mathbf{E}^2 + \frac{1}{2\mu_0} \mathbf{B}^2 \tag{1.16b}$$

$$S = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B} \tag{1.16c}$$

其中,w 为电磁场的能量密度,S 为电磁场的能流密度,也被称作坡印廷矢量。

在静态或准静态过程中, 欧姆定律为

$$\boldsymbol{J} = \sigma \boldsymbol{E} \tag{1.17}$$

其中, σ 为电导率。

而一般情况下,有

$$J(t, r) = \sigma(t, r) \cdot *E(t, r)$$

$$J(\omega, k) = \sigma(\omega, k) \cdot E(\omega, k)$$
(1.18)

1.2.2 波的能量传播方程

对于准平面单色波, 扰动电场可写成

$$\mathbf{E}(t) = \frac{1}{2} \left[\mathbf{E}_0(t) e^{-i\omega_0 t} + \mathbf{E}_0^*(t) e^{i\omega_0 t} \right]$$
 (1.19)

其中, ω_0 为实数, E^* 代表 E 的复共轭。 E_0 代表扰动电场的慢变部分($\partial_t E_0 \ll \omega_0 E_0$)。 扰动电场的傅里叶变换为

$$\mathbf{E}(\omega) = \int \mathbf{E}(t)e^{i\omega t} dt
= \int \frac{1}{2} \left[\mathbf{E}_0(t)e^{-i\omega_0 t} + \mathbf{E}_0^*(t)e^{i\omega_0 t} \right] e^{i\omega t} dt
= \frac{1}{2} \left[\mathbf{E}_0(\omega - \omega_0) + \mathbf{E}_0^*(\omega + \omega_0) \right]$$
(1.20)

则频域里的扰动电流为

$$J(\omega) = \boldsymbol{\sigma}(\omega) \cdot \boldsymbol{E}(\omega)$$

$$= \frac{1}{2} \boldsymbol{\sigma}(\omega) \cdot [\boldsymbol{E}_0(\omega - \omega_0) + \boldsymbol{E}_0^*(\omega + \omega_0)]$$
(1.21)

逆傅里叶变换后,得

$$\mathbf{J}(t) = \frac{1}{2\pi} \int \mathbf{J}(\omega) e^{-i\omega t} d\omega
= \frac{1}{2} \left[\left(\boldsymbol{\sigma}|_{\omega_0} + \frac{\partial \boldsymbol{\sigma}}{\partial \omega}|_{\omega_0} i \frac{\partial}{\partial t} \right) \cdot \boldsymbol{E}_0(t) e^{-i\omega_0 t} + \left(\boldsymbol{\sigma}|_{-\omega_0} + \frac{\partial \boldsymbol{\sigma}}{\partial \omega}|_{-\omega_0} i \frac{\partial}{\partial t} \right) \cdot \boldsymbol{E}_0^*(t) e^{i\omega_0 t} \right]
= \frac{1}{2} \left[\boldsymbol{\sigma}|_{\omega_0 + i\partial_t} \cdot \boldsymbol{E}_0(t) e^{-i\omega_0 t} + \boldsymbol{\sigma}|_{-\omega_0 + i\partial_t} \cdot \boldsymbol{E}_0^*(t) e^{i\omega_0 t} \right]$$
(1.22)

考虑 J(t) 为实数,则

$$\sigma^*|_{\omega_0 + i\partial_t} = \sigma|_{-\omega_0 + i\partial_t} \tag{1.23a}$$

$$\left. \boldsymbol{\sigma}^* \right|_{-\omega_0 + \mathrm{i}\partial_t} = \left. \boldsymbol{\sigma} \right|_{\omega_0 + \mathrm{i}\partial_t} \tag{1.23b}$$

在快变周期 $2\pi/\omega_0$ 内,对 $E \cdot J$ 作平均:

$$\langle \boldsymbol{E} \cdot \boldsymbol{J} \rangle = \frac{1}{4} [\boldsymbol{E}_{0}(t) \cdot \boldsymbol{J}_{0}^{*}(t) + \boldsymbol{E}_{0}^{*}(t) \cdot \boldsymbol{J}_{0}(t)]$$

$$= \frac{1}{4} \boldsymbol{E}_{0}^{*}(t) \cdot \left(\boldsymbol{\sigma} + \boldsymbol{\sigma}^{\mathsf{H}} \Big|_{\omega_{0}} \cdot \boldsymbol{E}_{0} + \frac{\mathrm{i}}{8} \frac{\partial}{\partial t} \left[\boldsymbol{E}_{0}^{*}(t) \cdot \frac{\partial \left(\boldsymbol{\sigma} - \boldsymbol{\sigma}^{\mathsf{H}} \right)}{\partial \omega} \Big|_{\omega_{0}} \cdot \boldsymbol{E}_{0} \right]$$

$$= \frac{1}{2} \boldsymbol{E}_{0}^{*}(t) \cdot \boldsymbol{\sigma}_{r} \Big|_{\omega_{0}} \cdot \boldsymbol{E}_{0} - \frac{1}{4} \frac{\partial}{\partial t} \left[\boldsymbol{E}_{0}^{*}(t) \cdot \frac{\partial \boldsymbol{\sigma}_{i}}{\partial \omega} \Big|_{\omega_{0}} \cdot \boldsymbol{E}_{0} \right]$$

$$(1.24)$$

其中,H 代表厄米共轭(转置 T + 复共轭), $\sigma_{\rm r} = \left(\sigma + \sigma^{\rm H}\right)/2$ 代表厄米部分, $\sigma_{\rm i} = \left(\sigma - \sigma^{\rm H}\right)/2$ i 代表反厄米部分。

定义相对介电函数张量:

$$\varepsilon = I + \frac{\mathrm{i}}{2\varepsilon_0 \omega} \sigma \tag{1.25a}$$

$$\boldsymbol{\varepsilon}_{\mathrm{r}} = \boldsymbol{I} - \frac{\boldsymbol{\sigma}_{\mathrm{i}}}{2\varepsilon_{0}\omega} \tag{1.25b}$$

$$\boldsymbol{\varepsilon}_{\mathrm{i}} = \frac{\boldsymbol{\sigma}_{\mathrm{r}}}{2\varepsilon_{\mathrm{o}}\omega} \tag{1.25c}$$

(1.25d)

则电磁波的能量传播方程可写作

$$\frac{\partial w_{\rm r}}{\partial +} \nabla \cdot \mathbf{S} + w_{\rm i} = 0 \tag{1.26a}$$

$$w_{\rm r} = \frac{1}{2\mu_0} \boldsymbol{B}_0^2 + \frac{\varepsilon_0}{2} \boldsymbol{E}_0^* \cdot \frac{\partial \omega \varepsilon_{\rm r}}{\partial \omega} \bigg| \cdot \boldsymbol{E}_0$$
 (1.26b)

$$w_{i} = \varepsilon_{0} \omega \mathbf{E}_{0}^{*} \cdot \boldsymbol{\varepsilon}_{i}|_{\omega_{0}} \cdot \mathbf{E}_{0}$$

$$(1.26c)$$

$$S = \frac{1}{\mu_0} (E_0 \times B_0^* + E_0^* \times B_0)$$
 (1.26d)

若仅考虑静电波,则有

$$\frac{\partial w_{\rm r}^{\rm ES}}{\partial +} w_{\rm i}^{\rm ES} = 0 \tag{1.27a}$$

$$w_{\rm r}^{\rm ES} = \frac{\varepsilon_0}{2} \boldsymbol{E}_0^* \cdot \left. \frac{\partial \omega \boldsymbol{\varepsilon}_{\rm r}}{\partial \omega} \right|_{\omega_0} \cdot \boldsymbol{E}_0 = \frac{\varepsilon_0}{2} E_0^2 \frac{\partial \omega \varepsilon_{\rm r}}{\partial \omega} \right|_{\omega_0}$$
(1.27b)

$$w_{i}^{ES} = \varepsilon_{0} \omega \mathbf{E}_{0}^{*} \cdot \boldsymbol{\varepsilon}_{i}|_{\omega_{0}} \cdot \mathbf{E}_{0} = \varepsilon_{0} E_{0}^{2} \omega_{0} \varepsilon_{i}|_{\omega_{0}}$$

$$(1.27c)$$

可以解得

$$E_0^2 \propto e^{2\gamma t}, \quad \gamma = -\frac{\omega \varepsilon_i}{\partial_\omega (\omega \varepsilon_r)} \bigg|_{\omega}$$
 (1.28)

正/负能波 $\partial_{\omega}(\omega \varepsilon_{\rm r})$ 的符号;

正/负耗散 ε_i 的符号。

1.2.3 同时考虑时间和空间平均的能量方程

无外场、空间均匀的线性波动问题

2.1 静电波解

 $\boldsymbol{B}_1 = 0, \boldsymbol{E}_1 = \nabla \phi_1$

线性化弗拉索夫方程

$$\frac{\partial f_{\alpha,1}}{\partial t} + \mathbf{v} \cdot \frac{\partial f_{\alpha,1}}{\partial \mathbf{r}} - \frac{q_{\alpha}}{m_{\alpha}} \frac{\partial \phi_{1}}{\partial \mathbf{r}} \cdot \frac{\partial f_{\alpha,0}}{\partial \mathbf{v}} = 0$$
 (2.1)

线性化泊松方程

$$\nabla^2 \phi_1 = -\frac{1}{\varepsilon_0} \sum_{\alpha} q_{\alpha} \int f_{\alpha,1} \, \mathrm{d}^3 \boldsymbol{v}$$
 (2.2)

傅里叶变换

$$-i\omega f_{\alpha,k} - f_{\alpha,k}|_{t=0} + i\mathbf{k} \cdot \mathbf{v} f_{\alpha,k} - i\frac{q_{\alpha}}{m_{\alpha}} \phi_{k} \mathbf{k} \cdot \frac{\partial f_{\alpha,0}}{\partial \mathbf{v}} = 0$$
 (2.3a)

$$k^2 \phi_k = \frac{1}{\varepsilon_0} \sum_{\alpha} q_{\alpha} \int f_{\alpha,k} \, \mathrm{d}^3 \boldsymbol{v}$$
 (2.3b)

化简得

$$f_{\alpha,k} = -\frac{q_{\alpha}}{m_{\alpha}} \frac{\phi_k}{\omega - \mathbf{k} \cdot \mathbf{v}} \mathbf{k} \cdot \frac{\partial f_{\alpha,0}}{\partial \mathbf{v}} + i \frac{f_{\alpha,k}(0)}{\omega - \mathbf{k} \cdot \mathbf{v}}$$
(2.4a)

$$\phi_k = \frac{1}{\varepsilon_0 k^2} \sum_{\alpha} q_{\alpha} \int f_{\alpha,k} \, \mathrm{d}^3 \mathbf{v}$$
 (2.4b)

将 2.4a 代入 2.4b 得:

$$\varepsilon(\omega, \mathbf{k}) = 1 + \sum_{\alpha} \chi_{\alpha}(\omega, \mathbf{k})$$
 (2.5a)

$$\chi_{\alpha}(\omega, \mathbf{k}) = \frac{\omega_{p,\alpha}^2}{k^2} \int \frac{\mathbf{k} \cdot \frac{\partial}{\partial \mathbf{v}} \hat{f}_{\alpha,0}}{\omega - \mathbf{k} \cdot \mathbf{v}} d^3 \mathbf{v}$$
 (2.5b)

$$\phi_k = \frac{\mathrm{i}}{k^2 \varepsilon_0 \varepsilon(\omega, \mathbf{k})} \sum_{\alpha} q_{\alpha} \int \frac{f_{\alpha, k}(0)}{\omega - \mathbf{k} \cdot \mathbf{v}} \, \mathrm{d}^3 \mathbf{v}$$
 (2.5c)

其中, ε 为相对介电函数, χ_{α} 为极化率。

对于本征值问题,不考虑时间起点,即 $f_{\alpha,k}(0)=0$,为了使电场扰动不为零,则必须有

$$\varepsilon(\omega, \mathbf{k}) = 0 \tag{2.6}$$

这样就可以得出色散关系。

对于初值问题,则必须考虑时间起点 $f_{\alpha,k}(0)$ 的影响。

2.1.1 束等离子体的本征模

粒子束:

$$f_{\alpha,0} = n_{\alpha,0}\delta(\boldsymbol{v} - \boldsymbol{u}_{\alpha}) \tag{2.7}$$

极化率

$$\chi_{\alpha}(\omega, \mathbf{k}) = \frac{\omega_{p,\alpha}^{2}}{k^{2}} \int \left[\frac{\partial}{\partial \mathbf{v}} \cdot \left(\frac{\mathbf{k} \hat{f}_{\alpha,0}}{\omega - \mathbf{k} \cdot \mathbf{v}} \right) - \hat{f}_{\alpha,0} \mathbf{k} \cdot \frac{\partial}{\partial \mathbf{v}} \left(\frac{1}{\omega - \mathbf{k} \cdot \mathbf{v}} \right) \right] d^{3} \mathbf{v}$$

$$= -\frac{\omega_{p,\alpha}^{2}}{k^{2}} \int \hat{f}_{\alpha,0} \mathbf{k} \cdot \frac{\mathbf{k} \cdot \mathbf{I}}{\left(\omega - \mathbf{k} \cdot \mathbf{v}\right)^{2}} d^{3} \mathbf{v}$$

$$= -\frac{\omega_{p,\alpha}^{2}}{\left(\omega - \mathbf{k} \cdot \mathbf{u}_{\alpha}\right)^{2}} \tag{2.8}$$

相对介电函数

$$\varepsilon = 1 - \sum_{\alpha} \frac{\omega_{p,\alpha}^2}{\left(\omega - \mathbf{k} \cdot \mathbf{u}_{\alpha}\right)^2} \tag{2.9}$$

假设离子静止 $u_i = 0$, 电子流速 $u_e \parallel k$, 则色散关系为

$$\frac{\omega_{p,e}^2}{(\omega - ku_e)^2} + \frac{\omega_{p,i}^2}{\omega^2} = 1 \tag{2.10}$$

忽略离子响应

在忽略离子响应 $(\omega_{p,e}\gg\omega_{p,i})$ 的情况下,色散关系可以简化为

$$\omega = ku_e \pm \omega_{p,e} \tag{2.11}$$

得到快/慢波模。

波能

$$\frac{\partial (\omega \varepsilon)}{\partial \omega} = \omega \frac{\partial \varepsilon}{\partial \omega} = \pm \frac{2\omega}{\omega_{n,e}} \tag{2.12}$$

则快波为正能波,慢波为负能波。

扰动密度

$$n_{e,k} = \int f_{e,k} \, \mathrm{d}^3 \boldsymbol{v} = -\frac{\varepsilon_0}{e} k \phi_k \tag{2.13}$$

快/慢波模同相。

平均扰动速度 考虑粒子流的扰动

$$\Gamma_{\alpha,1} = \int \boldsymbol{v} f_{\alpha,1} \, \mathrm{d}^3 \boldsymbol{v} = n_{\alpha,0} \boldsymbol{u}_{\alpha,1} + n_{\alpha,1} \boldsymbol{u}_{\alpha,0}$$
 (2.14)

则平均扰动速度为

$$u_{e,k} = \frac{n_{e,k}}{n_{e,0}} \left(\frac{\omega}{k} - u_e\right)$$

$$= \mp \sqrt{\frac{\varepsilon_0}{m_e n_{e,0}}} k \phi_k$$
(2.15)

快/慢波模反相。

平均能量密度

2.1. 静电波解 17

2.1.2 束等离子体波模分析

介电函数

$$\varepsilon = 1 - \sum_{\alpha} \frac{\omega_{p,\alpha}^2}{(\omega - \mathbf{k} \cdot \mathbf{u}_{\alpha})^2}$$
 (2.16)

不显含虚部,称为 **反应型**,不稳定性/阻尼来自于波-波相互作用。与之对应的,介电函数显含虚 部的称为 **耗散型**,其不稳定性/阻尼的来源还包括波-粒子相互作用。

典型的束-等离子体系统 离子不响应,本地冷电子密度 $n_{e,0}$ 远大于电子束密度 $n_{b,0}$ 。色散关系:

$$\frac{\omega_{p,b}^2}{(\omega - ku_b)^2} + \frac{\omega_{p,e}^2}{\omega^2} = 1$$
 (2.17)

极限情况:

- 当不存在电子束时,波模退化为简单的电子等离子体波: $\omega = \omega_{p,e}$ 。
- 当不存在本底电子时,波模退化为上节所述的快/慢波: $\omega = ku_b \pm \omega_{p,b}$ 。
- 两者都存在时,会产生波模耦合:

$$(\omega - \omega_1)(\omega - \omega_1) = \epsilon \tag{2.18}$$

其中, ϵ 为耦合系数。若 $\epsilon < -(\omega_1 - \omega_2)^2/4$,则 $\omega_i > 0$,存在不稳定性。当共振($\omega_1 = \omega_2$)时, $\omega_i = \sqrt{-4\epsilon}$ 最大。

渐进行为:

1. 当 $\omega \gg ku_b$ 时, 色散关系

$$\frac{\omega_{p,b}^2}{\omega^2} + \frac{\omega_{p,e}^2}{\omega^2} = 1$$

$$\omega^2 = \omega_{p,e}^2 + \omega_{p,b}^2 \approx \omega_{p,e}^2$$
(2.19)

2. 当 $\omega \ll ku_b$ 时,色散关系

$$\frac{\omega_{p,b}^2}{k^2 u_b^2} + \frac{\omega_{p,e}^2}{\omega^2} = 1$$

$$\omega^2 = \omega_{p,e}^2 / \left(1 - \frac{\omega_{p,b}^2}{k^2 u_b^2}\right)$$
(2.20)

3. 当 $\omega \sim ku_b \gg \omega_{p,e}$ 时,色散关系

$$\frac{\omega_{p,b}^2}{\left(\omega - ku_b\right)^2} = 1$$

$$\omega = ku_b \pm \omega_{p,b}$$
(2.21)

4. 当 $\omega \sim ku_b \ll \omega_{p,e}$ 时,色散关系

$$\frac{\omega_{p,b}^2}{\left(\omega - ku_b\right)^2} + \frac{\omega_{p,e}^2}{\omega^2} = 0$$

$$\omega = ku_b \left/ \left(1 \mp i \frac{\omega_{p,b}}{\omega_{p,e}} \right) \approx ku_b \left(1 \pm i \frac{\omega_{p,b}}{\omega_{p,e}} \right) \right. \tag{2.22}$$

出现不稳定性: $\frac{\omega_i}{\omega_r} = \frac{\omega_{p,b}}{\omega_{p,e}} \ll 1$ 。

5. 当 $\omega \sim ku_b \sim \omega_{p,e}$ 时,数值求解。

2.2 耗散型本征模

介电函数和色散方程具有如下形式:

$$\varepsilon = \varepsilon_{\rm r} + i\varepsilon_{\rm i}, \quad \varepsilon_{\rm i} \neq 0$$
 (2.23a)

$$\omega = \omega_{\rm r} + i\omega_{\rm i}, \quad \omega_{\rm i} \neq 0$$
 (2.23b)

2.2.1 弱耗散 ($\varepsilon_i \ll \varepsilon_r$ 、 $\omega_i \ll \omega_r$) 情况下的色散方程

对介电函数进行 Taylor 展开得

$$\varepsilon(\omega, \mathbf{k}) \approx \varepsilon(\omega_r, \mathbf{k}) + i\omega_i \frac{\partial \varepsilon}{\partial \omega}(\omega_r, \mathbf{k})$$

$$\approx \varepsilon_r(\omega_r, \mathbf{k}) + i \left[\varepsilon_i(\omega_r, \mathbf{k}) + \omega_i \frac{\partial \varepsilon_r}{\partial \omega}(\omega_r, \mathbf{k}) \right]$$
(2.24)

由 $\varepsilon(\omega, \mathbf{k}) = 0$,得

$$\omega_r = \omega_r(\mathbf{k}) \tag{2.25a}$$

$$\omega_i = -\left(\varepsilon_i \left/ \frac{\partial \varepsilon_r}{\partial \omega} \right) \right|_{\omega = \omega_r} \tag{2.25b}$$

2.2.2 耗散项 ε_i 的来源

考虑 2.1 节得到的介电函数:

$$\varepsilon(\omega, \mathbf{k}) = 1 + \sum_{\alpha} \chi_{\alpha}(\omega, \mathbf{k})$$
 (2.5a)

$$\chi_{\alpha}(\omega, \mathbf{k}) = \frac{\omega_{p,\alpha}^2}{k^2} \int \frac{\mathbf{k} \cdot \frac{\partial}{\partial \mathbf{v}} \hat{f}_{\alpha,0}}{\omega - \mathbf{k} \cdot \mathbf{v}} d^3 \mathbf{v}$$
 (2.5b)

其中,被积函数在 $\mathbf{k} \cdot \mathbf{v} = \omega$ 奇异。

将速度分解为垂直波矢方向和平行波矢方向,并利用复平面的路径积分得到

$$\chi_{\alpha}(\omega, \mathbf{k}) = \frac{\omega_{p,\alpha}^{2}}{k^{2}} \int \frac{1}{\omega/k - v_{\parallel}} \left(\frac{\partial}{\partial v_{\parallel}} \int \hat{f}_{\alpha,0} \, d^{2} \mathbf{v}_{\perp} \right) dv_{\parallel}
= \frac{\omega_{p,\alpha}^{2}}{k^{2}} \mathcal{P} \int \frac{\frac{\partial}{\partial v_{\parallel}} \hat{f}_{\alpha,0}}{\omega/k - v_{\parallel}} \, d^{3} \mathbf{v} - i\pi \frac{\omega_{p,\alpha}^{2}}{k^{2}} \left(\frac{\partial}{\partial v_{\parallel}} \int \hat{f}_{\alpha,0} \, d^{2} \mathbf{v}_{\perp} \right) \Big|_{v_{\parallel} = \frac{\omega}{k}}$$
(2.27)

则

$$\varepsilon_r = 1 - \sum_{\alpha} \frac{\omega_{p,\alpha}^2}{k^2} \mathcal{P} \int \frac{\frac{\partial}{\partial v_{\parallel}} \hat{f}_{\alpha,0}}{\omega/k - v_{\parallel}} d^3 \boldsymbol{v}$$
 (2.28a)

$$\varepsilon_{i} = -\pi \sum_{\alpha} \frac{\omega_{p,\alpha}^{2}}{k^{2}} \left(\frac{\partial}{\partial v_{\parallel}} \int \hat{f}_{\alpha,0} \, \mathrm{d}^{2} \boldsymbol{v}_{\perp} \right) \bigg|_{v_{\parallel} = \frac{\omega}{L}}$$
 (2.28b)

相关概念

共振条件 $k \cdot v = \omega$;

共振粒子 速度在 $\mathbf{k} \cdot \mathbf{v} \approx \omega$ 附近的粒子,与波的相互作用时间长,影响较大;

非共振粒子 与波的相互作用时间短,影响较小,但仍有影响;

2.2.3 麦克斯韦(Maxwell)分布下的等离子体色散方程

麦克斯韦 (Maxwell) 分布:

$$f_{\mathrm{M},\alpha} = n_{\alpha,0} \left(\frac{m_{\alpha}}{2\pi T_{\alpha}}\right)^{3/2} \exp\left[-\frac{m_{\alpha}}{2T_{\alpha}}(\boldsymbol{v} - \boldsymbol{u}_{\alpha})^{2}\right]$$

$$= \frac{n_{\alpha,0}}{\sqrt{\pi^{3}}v_{t,\alpha}^{3}} \exp\left[-\frac{(\boldsymbol{v} - \boldsymbol{u}_{\alpha})^{2}}{v_{t,\alpha}^{2}}\right]$$
(1.7)

则极化率为:

$$\chi_{\alpha} = \frac{1 + \xi_{\alpha} Z(\xi_{\alpha})}{k^2 \lambda_{D,\alpha}^2}, \quad \xi_{\alpha} = \frac{\omega}{k v_{t,\alpha}}$$
(2.29)

其中, $\lambda_{D,\alpha}=\sqrt{rac{arepsilon_0 T_{lpha}}{q_{lpha}^2 n_{lpha,0}}}$ 为德拜长度。

$$Z(x) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \frac{e^{-y^2}}{y - x} dy$$

$$= \frac{1}{\sqrt{\pi}} \mathcal{P} \int_{-\infty}^{+\infty} \frac{e^{-y^2}}{y - x} dy + i\sqrt{\pi} e^{-x^2}$$
(2.30)

为等离子体色散函数。

在冷等离子体 $(\xi_{\alpha} \gg 1 \text{ 即 } v_{t,\alpha} \ll \omega/k)$ 近似下,

$$Z_r(\xi_\alpha) \approx -\frac{1}{\xi_\alpha} \left(1 + \frac{1}{2\xi_\alpha^2} + \frac{3}{4\xi_\alpha^4} \right) \tag{2.31a}$$

$$\chi_{r,\alpha} \approx -\frac{\omega_{p,\alpha}^2}{\omega^2} \left(1 + \frac{3k^2 v_{t,\alpha}^2}{2\omega^2} \right)$$
(2.31b)

在热等离子体 $(\xi_{\alpha} \ll 1 \text{ 即 } v_{t,\alpha} \gg \omega/k)$ 近似下,

$$Z_r(\xi_\alpha) \approx 2\xi_\alpha \left(\frac{2}{3}\xi_\alpha^2 - 1\right) \ll 1$$
 (2.32a)

$$\chi_{r,\alpha} \approx \frac{1}{k^2 \lambda_{D,\alpha}^2}$$
(2.32b)

2.3 平衡分布为麦克斯韦分布情况下的静电本征模

流体描述:

• 电子等离子体波(EPW)

$$\omega^2 = \omega_{p,e}^2 + \frac{3}{2}k^2v_{t,e}^2 = \omega_{p,e}^2 \left(1 + 3k^2\lambda_{D,e}^2\right)$$
 (2.33)

• 离子声波(IAW)

$$\omega^2 = k^2 \left(\frac{c_s^2}{1 + k^2 \lambda_{D,e}^2} + \frac{3}{2} v_{t,i}^2 \right)$$
 (2.34)

2.3.1 电子等离子体波(EPW)

- $\omega/k = v_p \gg v_{t,e} \gg v_{t,i}$
- $\omega_{p,e} \gg \omega_{p,i}$

• 忽略离子响应, $\chi_i \approx 0$

$$\chi_{\mathrm{r},e} \approx -\frac{\omega_{p,e}^2}{\omega^2} \left(1 + \frac{3k^2 v_{t,e}^2}{2\omega^2} \right) \tag{2.35a}$$

$$\chi_{i,e} \approx \frac{\sqrt{\pi}}{k^2 \lambda_{D,e}^2} \xi_e e^{-\xi_e^2}$$
 (2.35b)

$$\frac{\partial \chi_{\mathbf{r},e}}{\partial \omega} = -2 \frac{\omega_{p,e}^2}{\omega^3} \left(1 + \frac{3k^2 v_{t,e}^2}{\omega^2} \right) \tag{2.35c}$$

色散方程

$$\frac{\omega_{p,e}^2}{\omega_{\rm r}^2} \left(1 + \frac{3k^2 v_{t,e}^2}{2\omega_{\rm r}^2} \right) = 1 \tag{2.36}$$

解得

$$\omega_{\rm r}^2 = \omega_{p,e}^2 + \frac{3}{2}k^2v_{t,e}^2 = \omega_{p,e}^2 \left(1 + 3k^2\lambda_{D,e}^2\right)$$
 (2.37)

$$\frac{\omega_{\rm i}}{\omega_{\rm r}} = -\varepsilon_{\rm i} / \omega_r \frac{\partial \varepsilon_{\rm r}}{\partial \omega} = -\sqrt{\frac{\pi}{8}} \frac{1}{k^2 \lambda_{D,e}^2} \exp\left(-\frac{1}{2k^2 \lambda_{D,e}^2} - \frac{3}{2}\right)$$
(2.38)

当 $k\lambda_{D,e} \to 0$ 时, $\omega_i/\omega_r \to 0$,即长波的阻尼小。当 $k\lambda_{D,e} = 1/\sqrt{3}$ 时, ω_i/ω_r 最大, $(\omega_i/\omega_r)_{\max} \approx -0.162$, $\omega_r = \sqrt{2}\omega_{p,e}$ 。

波能

$$\frac{\partial \omega \varepsilon_{\rm r}}{\partial \omega} = 2 \frac{\omega_{p,e^2}}{\omega_{\rm r}^2} \approx 2 \tag{2.39}$$

场能和动能各占一半。

2.3.2 离子声波(IAW)

- $v_{t,e} \gg \omega/k = v_p \gg v_{t,i}$
- $\omega_{p,e} \gg \omega_{p,i}$
- $\xi_i \gg 1 \gg \xi_e$

$$\chi_{\mathrm{r},e} \approx \frac{1}{k^2 \lambda_{D,e}^2} \tag{2.40a}$$

$$\chi_{i,e} = \frac{\sqrt{\pi}}{k^2 \lambda_{D,e}^2} \xi_e e^{-\xi_e^2}$$
(2.40b)

$$\chi_{\mathbf{r},i} \approx -\frac{\omega_{p,i}^2}{\omega^2} \left[1 + \frac{3}{2} \frac{k^2 v_{t,i}^2}{\omega^2} \right]$$
 (2.40c)

$$\chi_{i,i} = \frac{\sqrt{\pi}}{k^2 \lambda_{D,i}^2} \xi_i e^{-\xi_i^2}$$
 (2.40d)

色散方程

$$\varepsilon_{\rm r} = 1 + \frac{1}{k^2 \lambda_{D,e}^2} - \frac{\omega_{p,i}^2}{\text{Re}(\omega)^2} \left[1 + \frac{3}{2} \frac{k^2 v_{t,i}^2}{\text{Re}(\omega)^2} \right] = 0$$
 (2.41)

解得

$$\omega_{\rm r} = k v_s \tag{2.42a}$$

$$v_s = \sqrt{\frac{c_s^2}{1 + k^2 \lambda_{D,e}^2} + \frac{3}{2} v_{t,i}^2}$$
 (2.42b)

$$\varepsilon_{i} = \frac{\sqrt{\pi}}{k^{2} \lambda_{De}^{2}} \xi_{r,e} e^{-\xi_{r,e}^{2}} + \frac{\sqrt{\pi}}{k^{2} \lambda_{De}^{2}} \xi_{r,i} e^{-\xi_{r,i}^{2}}$$
(2.43a)

$$\frac{\mathrm{d}\varepsilon_{\mathrm{r}}}{\mathrm{d}\omega} = \frac{2\omega_{p,i}^2}{\omega_{\mathrm{r}}^3} \left[1 + 3\frac{k^2 v_{t,i}^2}{\omega_{\mathrm{r}}^2} \right] \tag{2.43b}$$

$$\frac{\omega_{\rm i}}{\omega_{\rm r}} = -\sqrt{\frac{\pi}{8}} \frac{v_s^3}{c_s^3} \left[\sqrt{\frac{m_e}{m_i}} \exp\left(-\frac{v_s^2}{v_{t,e}^2}\right) + \left(\frac{T_e}{eT_i}\right)^{3/2} \exp\left(-\frac{T_e}{2T_i\left(1 + k^2\lambda_{D,e}^2\right)}\right) \right]$$
(2.43c)

- 长波,且 $T_e\gg T_i$ 时,有 $v_s=\omega/k\gg v_{t,i}$ 、 $|\omega_{\rm i}|\ll \omega_{\rm r}$;
- 短波时,有 $v_s \sim v_{t,i}$,离子与波相互作用强,阻尼大。

波能

$$\frac{\partial \omega \varepsilon_{\rm r}}{\partial \omega} \approx 2 \left(1 + \frac{1}{k^2 \lambda_{D,e}^2} \right) \tag{2.44}$$

长波情况下,由于场被屏蔽,动能远大于场能。

2.4 朗道(Landau)阻尼

2.4.1 普莱姆(Plemelj)定理

对含奇点的柯西型积分来说,当奇点趋于积分路径上时,有

$$\int_{L} \frac{f(z)}{z - z_0} dz = \mathcal{P} \int_{L} \frac{f(z)}{z - z_0} dz + i\pi f(z_0)$$
(2.45)

2.4.2 朗道积分路径

需要保证奇点在定义域内,

2.4.3 介电函数中的积分

2.4.4 朗道阻尼的物理图像

电子等离子体波中的朗道阻尼

非线性朗道阻尼的物理图像

速度与波相速度相近的粒子能够与波长时间地相互作用,发生共振。

线性朗道阻尼的物理机制

2.4.5 朗道阻尼的推导

2.5 初值问题、弹道模及其物理意义

$$\phi_k(\omega, \mathbf{k}) = \frac{\mathrm{i}}{k^2 \varepsilon(\omega, \mathbf{k})} \sum_{\alpha} q_{\alpha} \int \frac{f_{\alpha, k}(0)}{\omega - \mathbf{k} \cdot \mathbf{v}} \,\mathrm{d}^3 \mathbf{v}$$
 (2.46)

逆变换

$$\phi(t, \mathbf{k}) = \int_{-\infty + i0^{+}}^{+\infty + i0^{+}} \phi_{k}(\omega, \mathbf{k}) e^{-i\omega t} d\omega$$

$$= \frac{i}{k^{2}} \sum_{\alpha} q_{\alpha} \int f_{\alpha, k}(0) \int_{-\infty + i0^{+}}^{+\infty + i0^{+}} \frac{e^{-i\omega t}}{(\omega - \mathbf{k} \cdot \mathbf{v})\varepsilon(\omega, \mathbf{k})} d\omega d^{3}\mathbf{v}$$

$$= \frac{i}{k^{2}} \sum_{\alpha} q_{\alpha} \int f_{\alpha, k}(0) \left[\frac{e^{-i\mathbf{k} \cdot \mathbf{v}t}}{\varepsilon(\mathbf{k} \cdot \mathbf{v}, \mathbf{k})} + \sum_{j} \frac{e^{-i\omega_{j}t}}{(\omega_{j} - \mathbf{k} \cdot \mathbf{v}) \partial_{\omega} \varepsilon|_{\omega_{j}}} \right] d^{3}\mathbf{v}$$
(2.47)

其中, ω_j 为由色散方程 $\varepsilon(\omega_j, \mathbf{k}) = 0$ 得到的本征模。 $\omega = \mathbf{k} \cdot \mathbf{v}$ 为弹道模。

2.6 电磁波模

2.6.1 速度空间各向同性下的电磁波模

平衡态: $E_0 = \mathbf{0}$ 、 $B_0 = \mathbf{0}$ 、 $f_{\alpha,0}(\boldsymbol{r}, \boldsymbol{v}) = f_{\alpha,0}(v^2)$ 。

泊松方程

$$\nabla \cdot \boldsymbol{E}_{1} = \frac{1}{\varepsilon_{0}} \sum_{\alpha} q_{\alpha} \int f_{\alpha,1} \, \mathrm{d}^{3} \boldsymbol{v}$$

$$\boldsymbol{k} \cdot \boldsymbol{E}_{k} = \frac{1}{\varepsilon_{0}} \sum_{\alpha} q_{\alpha} \int f_{\alpha,k} \, \mathrm{d}^{3} \boldsymbol{v}$$
(2.48)

波动方程

$$\nabla \times \nabla \times \mathbf{E}_{1} = -\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}_{1}}{\partial t^{2}} - \mu_{0} \frac{\partial}{\partial t} \left(\sum_{\alpha} q_{\alpha} \int \mathbf{v} f_{\alpha,1} \, \mathrm{d}^{3} \mathbf{v} \right)$$

$$\left(k^{2} - \frac{\omega^{2}}{c^{2}} \right) \mathbf{E}_{k} = \mathbf{E}_{k} \cdot \mathbf{k} \mathbf{k} + \mathrm{i} \mu_{0} \omega \sum_{\alpha} q_{\alpha} \int \mathbf{v} f_{\alpha,k} \, \mathrm{d}^{3} \mathbf{v}$$

$$(2.49)$$

弗拉索夫方程

$$\frac{\partial f_{\alpha,1}}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f_{\alpha,1}}{\partial \boldsymbol{v}} + \frac{q_{\alpha}}{m_{\alpha}} (\boldsymbol{E}_{1} + \boldsymbol{v} \times \boldsymbol{B}_{1}) \cdot \frac{\partial f_{\alpha,0}}{\partial \boldsymbol{v}} = 0$$

$$f_{\alpha,k} = -i \frac{q_{\alpha}}{m_{\alpha}} \frac{\boldsymbol{E}_{k}}{\omega - \boldsymbol{k} \cdot \boldsymbol{v}} \cdot \frac{\partial f_{\alpha,0}}{\partial \boldsymbol{v}}$$
(2.50)

其中

$$(\mathbf{v} \times \mathbf{B}_{1}) \cdot \frac{\partial f_{\alpha,0}}{\partial \mathbf{v}} = (\mathbf{v} \times \mathbf{B}_{1}) \cdot \frac{\mathrm{d}f_{\alpha,0}}{\mathrm{d}v^{2}} \frac{\partial v^{2}}{\partial \mathbf{v}}$$

$$= (\mathbf{v} \times \mathbf{B}_{1}) \cdot 2 \frac{\mathrm{d}f_{\alpha,0}}{\mathrm{d}v^{2}} \mathbf{v}$$

$$= 0$$
(2.51)

2.6. 电磁波模 23

则

$$i\mu_{0}\omega q_{\alpha} \int \boldsymbol{v} f_{\alpha,k} \, \mathrm{d}^{3}\boldsymbol{v} = \mu_{0}\omega \frac{q_{\alpha}^{2}}{m_{\alpha}} \int \boldsymbol{v} \frac{\boldsymbol{E}_{k}}{\omega - \boldsymbol{k} \cdot \boldsymbol{v}} \cdot \frac{\partial f_{\alpha,0}}{\partial \boldsymbol{v}} \, \mathrm{d}^{3}\boldsymbol{v}$$

$$= \omega \frac{\omega_{p,\alpha}^{2}}{c^{2}} \int \left[\frac{\partial}{\partial \boldsymbol{v}} \cdot \left(\hat{f}_{\alpha,0} \boldsymbol{E}_{k} \frac{\boldsymbol{v}}{\omega - \boldsymbol{k} \cdot \boldsymbol{v}} \right) - \hat{f}_{\alpha,0} \boldsymbol{E}_{k} \cdot \frac{\partial}{\partial \boldsymbol{v}} \left(\frac{\boldsymbol{v}}{\omega - \boldsymbol{k} \cdot \boldsymbol{v}} \right) \right] \mathrm{d}^{3}\boldsymbol{v}$$

$$= -\omega \frac{\omega_{p,\alpha}^{2}}{c^{2}} \left[\boldsymbol{E}_{k} \int \frac{\hat{f}_{\alpha,0}}{\omega - \boldsymbol{k} \cdot \boldsymbol{v}} \, \mathrm{d}^{3}\boldsymbol{v} + \boldsymbol{k} \cdot \boldsymbol{E}_{k} \int \frac{\boldsymbol{v} \hat{f}_{\alpha,0}}{\left(\omega - \boldsymbol{k} \cdot \boldsymbol{v}\right)^{2}} \, \mathrm{d}^{3}\boldsymbol{v} \right]$$

$$(2.52)$$

代入波动方程得

$$\left(\frac{\omega^{2}}{c^{2}}-k^{2}\right)\boldsymbol{E}_{k}+\boldsymbol{E}_{k}\cdot\boldsymbol{k}\boldsymbol{k}=\omega\sum_{\alpha}\frac{\omega_{p,\alpha}^{2}}{c^{2}}\left[\boldsymbol{E}_{k}\int\frac{\hat{f}_{\alpha,0}}{\omega-\boldsymbol{k}\cdot\boldsymbol{v}}\,\mathrm{d}^{3}\boldsymbol{v}+\boldsymbol{k}\cdot\boldsymbol{E}_{k}\int\frac{\boldsymbol{v}\hat{f}_{\alpha,0}}{\left(\omega-\boldsymbol{k}\cdot\boldsymbol{v}\right)^{2}}\,\mathrm{d}^{3}\boldsymbol{v}\right]$$
(2.53)

考虑 $\bot k$ 方向的波动方程:

$$\left(\frac{\omega^2}{c^2} - k^2\right) \mathbf{k} \times \mathbf{E}_k = \omega \sum_{\alpha} \frac{\omega_{p,\alpha}^2}{c^2} \left[\mathbf{k} \times \mathbf{E}_k \int \frac{\hat{f}_{\alpha,0}}{\omega - \mathbf{k} \cdot \mathbf{v}} d^3 \mathbf{v} + \mathbf{k} \cdot \mathbf{E}_k \int \frac{\mathbf{k} \times \mathbf{v} \hat{f}_{\alpha,0}}{\left(\omega - \mathbf{k} \cdot \mathbf{v}\right)^2} d^3 \mathbf{v} \right]$$
(2.54)

其中

$$\int \frac{\mathbf{k} \times \mathbf{v} \hat{f}_{\alpha,0}}{(\omega - \mathbf{k} \cdot \mathbf{v})^2} d^3 \mathbf{v} = \int \frac{dv_{\parallel}}{(\omega/k - v_{\parallel})^2} \int \mathbf{v}_{\perp} \hat{f}_{\alpha,0} (v_{\perp}^2 + v_{\parallel}^2) d^2 \mathbf{v}_{\perp}$$

$$= 0$$
(2.55)

则 上 k 方向的波动方程可化简为

$$\left[1 - \frac{k^2 c^2}{\omega^2} - \sum_{\alpha} \frac{\omega_{p,\alpha}^2}{\omega} \int \frac{\hat{f}_{\alpha,0}}{\omega - \mathbf{k} \cdot \mathbf{v}} d^3 \mathbf{v} \right] \mathbf{k} \times \mathbf{E}_k = 0$$
 (2.56)

考虑到 $\omega/k \sim c \gg v_{\parallel}$,则色散关系可近似为

$$\omega^2 = k^2 c^2 + \sum_{\alpha} \omega_{p,\alpha}^2 \tag{2.57}$$

2.6.2 速度空间各向异性下的电磁波模——Weibel 不稳定性

平衡分布 $f_{\alpha,0} = f_{\alpha,0}(v_{\parallel}^2, v_{\perp}^2)$ 。则 $(\boldsymbol{v} \times \boldsymbol{B}_1) \cdot \frac{\partial f_{\alpha,0}}{\partial \boldsymbol{v}} \neq 0$ 。磁场扰动

$$\boldsymbol{B}_k = \frac{\boldsymbol{k} \times \boldsymbol{E}_k}{\omega} \tag{2.58}$$

则弗拉索夫方程变为

$$\frac{\partial f_{\alpha,1}}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f_{\alpha,1}}{\partial \boldsymbol{v}} + \frac{q_{\alpha}}{m_{\alpha}} (\boldsymbol{E}_{1} + \boldsymbol{v} \times \boldsymbol{B}_{1}) \cdot \frac{\partial f_{\alpha,0}}{\partial \boldsymbol{v}} = 0$$

$$f_{\alpha,k} = -i \frac{q_{\alpha}}{m_{\alpha}} \frac{1}{\omega - \boldsymbol{k} \cdot \boldsymbol{v}} \left[\boldsymbol{E}_{k} + \boldsymbol{v} \times \left(\frac{\boldsymbol{k}}{\omega} \times \boldsymbol{E}_{k} \right) \right] \cdot \frac{\partial f_{\alpha,0}}{\partial \boldsymbol{v}}$$

$$= -i \frac{q_{\alpha}}{\omega m_{\alpha}} \left(\boldsymbol{E}_{k} + \frac{\boldsymbol{E}_{k} \cdot \boldsymbol{v}}{\omega - \boldsymbol{k} \cdot \boldsymbol{v}} \boldsymbol{k} \right) \cdot \frac{\partial f_{\alpha,0}}{\partial \boldsymbol{v}} \tag{2.59}$$

则

$$i\mu_{0}\omega q_{\alpha}\int \boldsymbol{v}f_{\alpha,k}\,\mathrm{d}^{3}\boldsymbol{v} = \mu_{0}\frac{q_{\alpha}^{2}}{m_{\alpha}}\int \boldsymbol{v}\left(\boldsymbol{E}_{k} + \frac{\boldsymbol{E}_{k}\cdot\boldsymbol{v}}{\omega - \boldsymbol{k}\cdot\boldsymbol{v}}\boldsymbol{k}\right)\cdot\frac{\partial f_{\alpha,0}}{\partial\boldsymbol{v}}\,\mathrm{d}^{3}\boldsymbol{v}$$

$$= -\frac{\omega_{p,\alpha}^{2}}{c^{2}}\left[\int \hat{f}_{\alpha,0}\boldsymbol{E}_{k}\cdot\frac{\partial\boldsymbol{v}}{\partial\boldsymbol{v}}\,\mathrm{d}^{3}\boldsymbol{v} + \int \hat{f}_{\alpha,0}\boldsymbol{k}\cdot\frac{\partial}{\partial\boldsymbol{v}}\left(\frac{\boldsymbol{E}_{k}\cdot\boldsymbol{v}\boldsymbol{v}}{\omega - \boldsymbol{k}\cdot\boldsymbol{v}}\right)\,\mathrm{d}^{3}\boldsymbol{v}\right] \qquad (2.60)$$

$$= -\frac{\omega_{p,\alpha}^{2}}{c^{2}}\left[\boldsymbol{E}_{k} + \boldsymbol{k}\cdot\boldsymbol{E}_{k}\int \frac{\boldsymbol{v}\hat{f}_{\alpha,0}\,\mathrm{d}^{3}\boldsymbol{v}}{\omega - \boldsymbol{k}\cdot\boldsymbol{v}} + \boldsymbol{k}\boldsymbol{E}_{k}\cdot\int \frac{\boldsymbol{v}\hat{f}_{\alpha,0}\,\mathrm{d}^{3}\boldsymbol{v}}{\omega - \boldsymbol{k}\cdot\boldsymbol{v}} + k^{2}\boldsymbol{E}_{k}\cdot\int \frac{\boldsymbol{v}\boldsymbol{v}\hat{f}_{\alpha,0}\,\mathrm{d}^{3}\boldsymbol{v}}{(\omega - \boldsymbol{k}\cdot\boldsymbol{v})^{2}}\right]$$

代入波动方程得

$$\left(\frac{\omega^{2}}{c^{2}} - k^{2}\right) \mathbf{E}_{k} + \mathbf{E}_{k} \cdot \mathbf{k} \mathbf{k} =$$

$$\sum_{\alpha} \frac{\omega_{p,\alpha}^{2}}{c^{2}} \left[\mathbf{E}_{k} + \mathbf{k} \cdot \mathbf{E}_{k} \int \frac{\mathbf{v} \hat{f}_{\alpha,0} \, \mathrm{d}^{3} \mathbf{v}}{\omega - \mathbf{k} \cdot \mathbf{v}} + \mathbf{k} \mathbf{E}_{k} \cdot \int \frac{\mathbf{v} \hat{f}_{\alpha,0} \, \mathrm{d}^{3} \mathbf{v}}{\omega - \mathbf{k} \cdot \mathbf{v}} + k^{2} \mathbf{E}_{k} \cdot \int \frac{\mathbf{v} \mathbf{v} \hat{f}_{\alpha,0} \, \mathrm{d}^{3} \mathbf{v}}{(\omega - \mathbf{k} \cdot \mathbf{v})^{2}} \right]$$

$$(2.61)$$

考虑 $\bot k$ 方向的波动方程:

$$\left(\frac{\omega^{2}}{c^{2}} - k^{2}\right) \mathbf{k} \times \mathbf{E}_{k} =$$

$$\sum_{\alpha} \frac{\omega_{p,\alpha}^{2}}{c^{2}} \left[\mathbf{k} \times \mathbf{E}_{k} + \mathbf{k} \cdot \mathbf{E}_{k} \int \frac{\mathbf{k} \times \mathbf{v} \hat{f}_{\alpha,0}}{\omega - \mathbf{k} \cdot \mathbf{v}} d^{3}\mathbf{v} + k^{2}\mathbf{k} \times \left(\mathbf{E}_{k} \cdot \int \frac{\mathbf{v} \mathbf{v} \hat{f}_{\alpha,0} d^{3}\mathbf{v}}{(\omega - \mathbf{k} \cdot \mathbf{v})^{2}} \right) \right]$$

$$\left(\frac{\omega^{2}}{c^{2}} - k^{2} - \sum_{\alpha} \frac{\omega_{p,\alpha}^{2}}{c^{2}} \right) \mathbf{k} \times \mathbf{E}_{k} = \sum_{\alpha} \frac{\omega_{p,\alpha}^{2}}{c^{2}} k^{2} \int \frac{\mathbf{E}_{k} \cdot \mathbf{v} \mathbf{k} \times \mathbf{v}}{(\omega - \mathbf{k} \cdot \mathbf{v})^{2}} \hat{f}_{\alpha,0} d^{3}\mathbf{v}$$

$$(2.62)$$

得

$$\omega^2 - k^2 c^2 - \sum_{\alpha} \omega_{p,\alpha}^2 \left(1 + \frac{k^2}{\omega^2} \langle v_{\alpha \perp}^2 \rangle \right) \tag{2.63}$$

令

$$\omega_p^2 = \sum \omega_{p,\alpha}^2 \tag{2.64a}$$

$$\langle v_{\perp}^2 \rangle = \frac{1}{\omega_p^2} \sum_{\alpha} \omega_{p,\alpha}^2 \langle v_{\alpha\perp}^2 \rangle$$
 (2.64b)

得

$$\omega^{2} = \frac{k^{2}c^{2} + \omega_{p}^{2}}{2} \left[1 \pm \sqrt{1 + \frac{4k^{2}\omega_{p}^{2}\langle v_{\perp}^{2}\rangle}{\left(k^{2}c^{2} + \omega_{p}^{2}\right)^{2}}} \right]$$
(2.65)

有一对实根与一对纯虚根。当 $k\to 0$ 时,纯虚根 ${\rm Im}(\omega)\to 0$ 。当 $k\gg \omega_p/c$ 时,纯虚根 ${\rm Im}(\omega)\approx \omega_p\sqrt{\langle v_\perp^2\rangle}/c$ 。

均匀外磁场、空间均匀的线性波动问题

平衡量: $E_0 = \mathbf{0}$ 、 $B_0 = \text{const}$ 、 $f_{\alpha,0} = f_{\alpha,0}(\mathbf{v})$ 。 线性化弗拉索夫方程:

$$\left[\frac{\partial}{\partial t} + \boldsymbol{v} \cdot \frac{\partial}{\partial \boldsymbol{r}} + \frac{q_{\alpha}}{m_{\alpha}} (\boldsymbol{v} \times \boldsymbol{B}_{0})\right] f_{\alpha,1} + \frac{q_{\alpha}}{m_{\alpha}} (\boldsymbol{E}_{1} + \boldsymbol{v} \times \boldsymbol{B}_{1}) \cdot \frac{\partial f_{\alpha,0}}{\partial \boldsymbol{v}} = 0$$
(3.1)

3.1 沿未扰动粒子轨道积分法

3.1.1 粒子的未扰动轨道及弗拉索夫方程

相空间的欧拉坐标与拉格朗日坐标

欧拉坐标:

$$\begin{cases} t & \Rightarrow \text{时间} \\ \mathbf{r} & \Rightarrow \text{位置空间} \\ \mathbf{v} & \Rightarrow \text{速度空间} \end{cases}$$
 (3.2)

拉格朗日坐标:

$$\begin{cases} t & \Rightarrow \text{时间} \\ \mathbf{r}_0 & \Rightarrow \text{粒子的初始位置} \\ \mathbf{v}_0 & \Rightarrow \text{粒子的初始速度} \end{cases} \tag{3.3}$$

存在相互转换

$$r = r(t, r_0, v_0)$$

$$v = \frac{Dr}{Dt}(t, r_0, v_0)$$
(3.4)

其中, D 为随流导数。

粒子的未扰动轨道

$$\frac{D^2 \mathbf{r}}{Dt^2} = \frac{1}{m_{\alpha}} \mathbf{F} \left(t, \mathbf{r}, \frac{D \mathbf{r}}{Dt} \right) = \frac{q_{\alpha}}{m_{\alpha}} \frac{D \mathbf{r}}{Dt} \times \mathbf{B}_0$$
 (3.5)

$$\frac{Df_{\alpha}}{Dt} = \frac{\partial f_{\alpha}}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f_{\alpha}}{\partial \boldsymbol{r}} + \frac{q_{\alpha}}{m_{\alpha}} (\boldsymbol{E} + \boldsymbol{v}) \cdot \frac{\partial f_{\alpha}}{\partial \boldsymbol{r}} = 0$$
(3.6)

线性化

$$\frac{\mathrm{D}f_{\alpha}}{\mathrm{D}t} + \frac{q_{\alpha}}{m_{\alpha}} (\mathbf{E}_1 + \mathbf{v} \times \mathbf{B}_1) \cdot \frac{\partial f_{\alpha,0}}{\partial \mathbf{v}} = 0$$
 (3.7)

3.1.2 弗拉索夫方程的积分

将拉格朗日坐标下的线性化弗拉索夫方程对时间 t 积分:

$$f_{\alpha,1}(t, \boldsymbol{r}_0, \boldsymbol{v}_0) = f_{\alpha,1}(t = 0, \boldsymbol{r}_0, \boldsymbol{v}_0) - \frac{q_{\alpha}}{m_{\alpha}} \int_0^t (\boldsymbol{E}_1 + \boldsymbol{v} \times \boldsymbol{B}_1) \cdot \frac{\partial f_{\alpha,0}}{\partial \boldsymbol{v}} d\tau$$
(3.8)

再将拉格朗日坐标 $(t, \mathbf{r}_0, \mathbf{v}_0)$ 变换到欧拉坐标 $(t, \mathbf{r}, \mathbf{v})$,就解出了线性化弗拉索夫方程。对于本征值问题,初值 $f_{\alpha,1}(t=0, \mathbf{r}_0, \mathbf{v}_0) = 0$ 。

3.1.3 电导张量与电磁张量

波动方程

$$\nabla^2 \mathbf{E}_1 - \nabla \nabla \cdot \mathbf{E}_1 = -\frac{1}{c^2} \frac{\partial^2 \mathbf{E}_1}{\partial t^2} - \mu_0 \frac{\partial \mathbf{J}_1}{\partial t}$$
(3.9)

变换

$$k^{2}\boldsymbol{E}_{k} - \boldsymbol{k}\boldsymbol{k} \cdot \boldsymbol{E}_{k} = \frac{\omega^{2}}{c^{2}}\boldsymbol{E}_{k} + i\mu_{0}\omega\boldsymbol{J}_{k}$$
(3.10)

电导张量

$$J_k = \sigma(\omega, k) \cdot E_k \tag{3.11}$$

介电张量

$$\boldsymbol{\varepsilon}(\omega, \boldsymbol{k}) = \varepsilon_0 \boldsymbol{I} + \frac{\mathrm{i}}{\omega} \boldsymbol{\sigma}(\omega, \boldsymbol{k}) \tag{3.12}$$

电磁张量

$$\mathbf{D}(\omega, \mathbf{k}) = \mathbf{k}\mathbf{k} - k^2 \mathbf{I} + \omega^2 \mu_0 \varepsilon(\omega, \mathbf{k})$$
(3.13)

色散方程

$$\det(\mathbf{D}) = 0 \tag{3.14}$$

扰动电流

$$\mathbf{J}_{\alpha,k} = q_{\alpha} n_{\alpha,0} \int \mathbf{v} f_{\alpha,k} \, \mathrm{d}^3 \mathbf{v}$$
 (3.15)

得

$$\boldsymbol{\sigma}_{\alpha} = -\varepsilon_{0} \frac{\omega_{p,\alpha}^{2}}{\omega} \int d^{3}\boldsymbol{v} \int_{0}^{t} d\tau \boldsymbol{v} \frac{\partial \hat{f}_{\alpha,0}}{\partial \dot{\boldsymbol{\xi}}} \cdot \left[\left(\omega - \boldsymbol{k} \cdot \dot{\boldsymbol{\xi}} \right) \boldsymbol{I} + \boldsymbol{k} \dot{\boldsymbol{\xi}} \right] e^{i(\boldsymbol{k} \cdot \boldsymbol{\xi} - \omega \tau)}$$
(3.16)

极化率张量

$$\chi_{\alpha} = \frac{\mathrm{i}}{\omega \varepsilon_0} \boldsymbol{\sigma} \tag{3.17}$$

电磁张量表达式

讨论

波-粒子相互作用

有限拉莫(Larmor)轨道效应: 在色散方程中出现了贝塞尔函数的无穷求和,自变量为 $k_{\perp}r_c$,它们会使波的色散关系产生重大改变。

3.1.4 均匀、磁化等离子体色散方程的各种表达式

3.2 沿未扰动导心轨道积分法

粒子的未扰动轨道

$$\boldsymbol{r} = \boldsymbol{r}_q + \boldsymbol{r}_c \tag{3.18}$$

拉莫回旋运动速度

$$\boldsymbol{v}_c = -\omega_c \hat{\boldsymbol{b}} \times \boldsymbol{r}_c \tag{3.19}$$

则

$$\boldsymbol{r}_c = -\frac{\boldsymbol{v}_c \times \hat{\boldsymbol{b}}}{\omega_c} \tag{3.20}$$

则

$$\boldsymbol{r}_g = \boldsymbol{r} + \frac{\boldsymbol{v}_c \times \hat{\boldsymbol{b}}}{\omega_c} \tag{3.21}$$

准静电与准电磁模近似及其条件

波矢 $\mathbf{k} = k\hat{\mathbf{k}}$ 。 扰动电场 $\mathbf{E}_1 = E_l\mathbf{e}_l + E_t\mathbf{e}_k$ 。

电磁张量

$$\boldsymbol{D} = \frac{k^2 c^2}{\omega^2} \left(\hat{\boldsymbol{k}} \hat{\boldsymbol{k}} - \boldsymbol{I} \right) + \boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_{ll} & \varepsilon_{lt} \\ \varepsilon_{tl} & \varepsilon_{tt} - k^2 c^2 / \omega^2 \end{pmatrix}$$
(3.22)

纯静电条件 $\varepsilon_{lt}=0$,色散关系 $\varepsilon_{ll}(\omega)=0$ 。

准静电条件 $E_l \gg E_t, \varepsilon_{ll} \gg \varepsilon_{lt}$, 频率相对于纯静电的变化

$$\frac{\Delta\omega}{\omega} = \frac{\varepsilon_{lt}\varepsilon_{lt}}{(\varepsilon_{tt} - k^2c^2/\omega^2)\,\partial_{\omega}\varepsilon_{ll}}$$
(3.23)

准电磁

$$\frac{\Delta\omega}{\omega} = \frac{\varepsilon_{lt}\varepsilon_{lt}}{\varepsilon_{ll}\,\partial_{\omega}(\varepsilon_{tt} - k^2c^2/\omega^2)}$$
(3.24)

3.3 平行磁场方向传播的电磁波

3.3.1 左右旋波

$$\omega^2 = k_{\parallel}^2 c^2 + 2\pi\omega \sum_{\alpha} \omega_{p,\alpha}^2 \iint \frac{v_{\perp}^3 \kappa_{\alpha}}{k_{\parallel} v_{\parallel} \pm \omega_{c,\alpha} - \omega}$$
 (3.25)

共振 $\omega - k_{\parallel}v_{\parallel} = \pm \omega_{c,\alpha}$

3.3.2 哨声波不稳定性

3.4 垂直磁场方向传播的电磁波

3.4.1 电子正常回旋波

3.4.2 离子伯恩斯坦(Bernstein)波

空间非均匀、外磁场均匀的线性波动 问题

平衡量:

$$\mathbf{E}_0 = \mathbf{0} \tag{4.1a}$$

$$\boldsymbol{B}_0 = B_0 \boldsymbol{e}_z \tag{4.1b}$$

$$n_{\alpha,0} = n_{\alpha,0}(x) \tag{4.1c}$$

$$\boldsymbol{u}_{\alpha,0} = u_{\alpha,0}\boldsymbol{e}_y \tag{4.1d}$$

4.1 流体描述概述

4.1.1 抗磁漂移速度

运动方程

$$m_{\alpha}n_{\alpha,0}\left(\frac{\partial \boldsymbol{u}_{\alpha,0}}{\partial +}\boldsymbol{u}_{\alpha,0}\cdot\nabla\boldsymbol{u}_{\alpha,0}\right) = q_{\alpha}n_{\alpha,0}\boldsymbol{u}_{\alpha,0}\times\boldsymbol{B}_{0} - \nabla p_{\alpha,0}$$
(4.2)

平衡态: $\frac{\partial}{\partial t} = 0$,则

$$q_{\alpha}n_{\alpha,0}\boldsymbol{u}_{\alpha,0} \times \boldsymbol{B}_0 = \nabla p_{\alpha,0} \tag{4.3}$$

$$\boldsymbol{u}_{\alpha,0,\perp} = \frac{\nabla p_{\alpha,0} \times \boldsymbol{B}_0}{q_{\alpha} n_{\alpha,0} B_0^2} \tag{4.4}$$

等温: $p_{\alpha,0} = T_{\alpha} n_{\alpha,0}$,则

$$\boldsymbol{v}_{D,\alpha} = \frac{T_{\alpha}}{q_{\alpha}B_0^2} \frac{\nabla n_{\alpha,0}}{n_{\alpha,0}} \times \boldsymbol{B}_0 \tag{4.5}$$

4.1.2 静电漂移波

- $ightarrow k = k_{\perp} e_y + k_{\parallel} e_z$.
- 低频 $\omega \ll \omega_{c,i}$, $v_{t,i} \ll \omega/k_{\parallel} \ll v_{t,e}$.
- 冷离子 $T_i \ll T_e$ 。
- 局域近似 $k\gg \nabla n_{\alpha,0}/n_{\alpha,0}$, 可以作局域傅里叶/拉普拉斯变换。

色散关系:

$$(1 + k^2 \lambda_{D,e}^2) \omega^2 - k_{\perp} v_{D,e} \omega - k_{\parallel}^2 c_s^2 = 0$$
(4.6)

解得

$$\omega = \frac{k_{\perp} v_{D,e} \pm \sqrt{k_{\perp}^2 v_{D,e}^2 + 4(1 + k^2 \lambda_{D,e}^2) k_{\parallel}^2 c_s^2}}{2(1 + k^2 \lambda_{D,e}^2)}$$

$$= \frac{k_{\perp} v_{D,e}}{2} \pm \sqrt{\frac{k_{\perp}^2 v_{D,e}^2}{4} + k_{\parallel}^2 c_s^2}, \quad k^2 \lambda_{D,e}^2 \ll 1$$
(4.7)

- 当 $k_{\parallel}\gg k_{\perp}$ 时, $\omega\approx k_{\perp}v_{D,e}/2\pm k_{\parallel}c_{s}\approx\pm k_{\parallel}c_{s}$,声波。
- 当 $k_{\parallel} \ll k_{\perp}$ 时, $\omega \approx k_{\perp} v_{D,e}$,漂移波。

考虑离子热压

$$(1 + k^2 \lambda_{D,e}^2) \omega^2 - k_{\perp} (v_{D,e} - \gamma_i v_{D,i}) \omega - k_{\parallel}^2 c_s^2 = 0$$
(4.8)

解得

$$\omega = \frac{k_{\perp}(v_{D,e} - \gamma_{i}v_{D,i}) \pm \sqrt{k_{\perp}^{2}(v_{D,e} - \gamma_{i}v_{D,i})^{2} + 4(1 + k^{2}\lambda_{D,e}^{2})k_{\parallel}^{2}c_{s}^{2}}}{2(1 + k^{2}\lambda_{D,e}^{2})}$$

$$= \frac{k_{\perp}(v_{D,e} - \gamma_{i}v_{D,i})}{2} \pm \sqrt{\frac{k_{\perp}^{2}(v_{D,e} - \gamma_{i}v_{D,i})^{2}}{4} + k_{\parallel}^{2}c_{s}^{2}}, \quad k^{2}\lambda_{D,e}^{2} \ll 1$$

$$(4.9)$$

4.1.3 电磁漂移波

- 波矢 $\mathbf{k} = k_{\perp} \mathbf{e}_y$ 。
- 局域近似 $k\gg \nabla n_{\alpha,0}/n_{\alpha,0}$, 可以作局域傅里叶/拉普拉斯变换。

$$(\omega - kv_{i,0})^2 = \frac{\omega_{p,i}^2}{1 + \frac{\omega_{p,e}^2}{\omega_{c,e}^2} \left(1 + \frac{\omega_{p,e}^2}{k^2 c^2} + \frac{\omega_{c,e} k_\perp}{\omega k^2 n_{\alpha,0}} \frac{\mathrm{d}n_{\alpha,0}}{\mathrm{d}x}\right)}$$
(4.10)

- 4.2 密度不均匀时弗拉索夫方程的平衡解
- 4.3 动理学电磁漂移波
- 4.4 动理学静电漂移波

静电不稳定性

不稳定性条件:

- 1. 多余的自由能,体系处于非热平衡态;
- 2. 正反馈机制。

自由能来源:

- 外部输入;
- 内部偏离热平衡态。

不稳定性机制

- 波-波相互作用——内部波模耦合(反应型)、外部波(参量过程);
- 波-粒子相互作用——逆朗道阻尼效应。

共振条件:

- 1. $\omega = \mathbf{k} \cdot \mathbf{v}$
- 2. $\omega k_{\parallel}v_{\parallel} = n\omega_{c,\alpha}$
- 3. $\omega_1 \approx \omega_2$
- 4. $\omega_1 \pm \omega_2 \approx \omega_3$

5.1 损失锥型速度分布引起的静电不稳定性

约束条件:

$$\frac{v_{\perp}^2}{v^2} \ge \frac{B_{\min}}{B_{\max}} \tag{5.1}$$

- 5.2 各向异性分布引起的不稳定性
- 5.2.1 电子静电波不稳定性
- 5.2.2 离子声波不稳定性
- 5.3 定向漂移引起的不稳定性
- 5.3.1 束-等离子体不稳定性
- 5.3.2 离子漂移不稳定性
- 5.3.3 电流驱动的静电离子回旋波不稳定性
- 5.3.4 非均匀等离子体中低频漂移波不稳定性

Part II 碰撞和输运

碰撞和输运概论

碰撞: 粒子相互靠近的瞬间发生的强烈的相互作用。

中性粒子 短程相互作用,力程在原子尺度;

带点粒子 长程相互作用,力程为德拜长度。

对于等离子体而言,力程小于德拜长度的相互作用考虑为碰撞,力程大于德拜长度的相互作用考虑为集体运动。

6.1 自扩散与集体输运

自扩散 又称试探粒子近似或弛豫过程。它关注一群试探粒子与等离子体背景粒子间碰撞后,试 探粒子受到的影响。它既不考虑试探粒子之间的碰撞,也不考虑背景粒子受到的反作用。

集体输运 考虑多群密度相近的粒子间的碰撞,包括同类粒子之间的碰撞。

带碰撞项的动理学方程:

$$\frac{\partial f_{\alpha}}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f_{\alpha}}{\partial \boldsymbol{r}} + \frac{q_{\alpha}}{m_{\alpha}} (\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}) \cdot \frac{\partial f_{\alpha}}{\partial \boldsymbol{v}} = \left(\frac{\partial f_{\alpha}}{\partial t}\right)_{\alpha}$$
(6.1)

二体碰撞形式:

$$\left(\frac{\partial f_{\alpha}}{\partial t}\right)_{c} = \sum_{\beta} C_{\alpha\beta}(f_{\alpha}, f_{\beta}) \tag{6.2}$$

对所有碰撞形式:

$$\int C_{\alpha\alpha} \, \mathrm{d}^3 \boldsymbol{v} = 0 \tag{6.3a}$$

$$\int m_{\alpha} \mathbf{v} C_{\alpha\alpha} \, \mathrm{d}^3 \mathbf{v} = 0 \tag{6.3b}$$

$$\int \frac{1}{2} m_{\alpha} v^2 C_{\alpha\alpha} \, \mathrm{d}^3 \boldsymbol{v} = 0 \tag{6.3c}$$

$$\int m_{\alpha} \boldsymbol{v} C_{\alpha\beta} \, \mathrm{d}^{3} \boldsymbol{v} + \int m_{\beta} \boldsymbol{v} C_{\beta\alpha} \, \mathrm{d}^{3} \boldsymbol{v} = 0$$
 (6.3d)

对于弹性碰撞

$$\int C_{\alpha\beta} \, \mathrm{d}^3 \boldsymbol{v} = 0 \tag{6.4a}$$

$$\int \frac{1}{2} m_{\alpha} v^2 C_{\alpha\beta} \, \mathrm{d}^3 \boldsymbol{v} + \int \frac{1}{2} m_{\beta} v^2 C_{\beta\alpha} \, \mathrm{d}^3 \boldsymbol{v} = 0$$
 (6.4b)

定义

$$\mathbf{R}_{\alpha\beta} = \int m_{\alpha} \mathbf{v} C_{\alpha\beta} \, \mathrm{d}^3 \mathbf{v} \tag{6.5}$$

6.1.1 自扩散的描述

试探粒子:

$$\hat{f}_{\alpha}(t=0, \mathbf{v}) = \delta(\mathbf{v} - \mathbf{u}_{\alpha}) \tag{6.6}$$

一阶矩,平行于入射方向,动量慢化

$$\frac{\mathrm{d}p_{\parallel}}{\mathrm{d}t} = -\frac{p_{\parallel}}{\tau_s} \tag{6.7}$$

二阶矩, 平行于入射方向, 能量衰减

$$\frac{\mathrm{d}E_{\parallel}}{\mathrm{d}t} = -\frac{E_{\parallel}}{\tau_{\parallel}} \tag{6.8}$$

二阶矩,垂直于入射方向,能量弥散

$$\frac{\mathrm{d}E_{\perp}}{\mathrm{d}t} = \frac{E_{\perp}}{\tau_{\perp}} \tag{6.9}$$

6.1.2 集体输运的描述

流体方程组

摩擦力

$$\mathbf{F}_{r,\alpha} = \int m_{\alpha} \mathbf{v} \left(\frac{\partial f_{\alpha}}{\partial t} \right)_{c} d^{3} \mathbf{v}$$
 (6.10)

碰撞交换的热量

$$W_{c,\alpha} = \int \frac{1}{2} m_{\alpha} \boldsymbol{w}_{\alpha}^{2} \left(\frac{\partial f_{\alpha}}{\partial t} \right)_{c} d^{3} \boldsymbol{v}$$
 (6.11)

扩散过程 通量流

$$\Gamma_{\alpha} = -D_{\alpha} \nabla n_{\alpha} \tag{6.12}$$

扩散系数

粘滞过程 动量流

$$\Pi_{\alpha} = \dots \tag{6.13}$$

剪切粘滞系数、体粘滞系数

热传导过程 热流

$$\mathbf{q}_{\alpha} = -\kappa_{\alpha} \nabla T_{\alpha} \tag{6.14}$$

热传导系数

Chapter 7

碰撞算子

7.1 BGK 碰撞项

$$\left(\frac{\partial f}{\partial t}\right)_c = -\frac{f - f_0}{\tau_c} = -\nu_c(f - f_0) \tag{7.1}$$

弛豫时间近似,适用于偏离平衡态不远的情况。

7.2 玻尔兹曼(Boltzmann)碰撞项

基本假定:

- 1. 两体碰撞;
- 2. 碰撞前后自由运动;
- 3. 分子混沌,碰撞几率只与 f_1f_2 有关,与关联函数 $P_{12}(f_1, f_2)$ 无关。

$$\left(\frac{\partial f}{\partial t}\right)_{c} = \iint [f_{1}(\boldsymbol{v}_{1}')f_{2}(\boldsymbol{v}_{2}') - f_{1}(\boldsymbol{v}_{1})f_{2}(\boldsymbol{v}_{2})]|\boldsymbol{v}_{1} - \boldsymbol{v}_{2}|\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\,\mathrm{d}\Omega\,\mathrm{d}^{3}\boldsymbol{v}_{2} \tag{7.2}$$

7.3 Fokker-Planck 碰撞项

基本假定:

- 1. 马尔科夫过程;
- 2. 小角散射, $\Delta v \ll v$ 。

$$\left(\frac{\partial f}{\partial t}\right)_{s} = -\frac{\partial}{\partial v} \cdot (f\langle \Delta v \rangle) + \frac{1}{2} \frac{\partial^{2}}{\partial v^{2}} \cdot (f\langle \Delta v \Delta v \rangle) \tag{7.3}$$

其中

$$\langle \Delta \boldsymbol{v} \rangle = \frac{1}{\Delta t} \int \Phi(\boldsymbol{v}, \Delta \boldsymbol{v}) \Delta \boldsymbol{v} \, \mathrm{d}(\Delta \boldsymbol{v})$$
 (7.4a)

$$\langle \Delta \boldsymbol{v} \Delta \boldsymbol{v} \rangle = \frac{1}{\Delta t} \int \Phi(\boldsymbol{v}, \Delta \boldsymbol{v}) \Delta \boldsymbol{v} \Delta \boldsymbol{v} \, \mathrm{d}(\Delta \boldsymbol{v})$$
 (7.4b)

分别为动理学摩擦系数、动理学扩散系数。

7.4 Rosenbluth 势

基本假定:

- 1. Fokker-Planck 碰撞项;
- 2. 两体碰撞;
- 3. 库伦碰撞。

$$\langle \Delta \boldsymbol{v} \rangle = \Gamma_1 \frac{\partial H}{\partial \boldsymbol{v}_1} \tag{7.5a}$$

$$\langle \Delta \boldsymbol{v} \Delta \boldsymbol{v} \rangle = \Gamma_1 \frac{\partial^2 G}{\partial \boldsymbol{v}_1 \, \partial \boldsymbol{v}_1} \tag{7.5b}$$

$$\Gamma_1 = \frac{q_1^4}{\varepsilon_0 m_1^2} \ln \Lambda \tag{7.5c}$$

$$H(\mathbf{v}_1) = \frac{q_2^2}{q_1^2} \frac{m_1 + m_2}{m_2} \int \frac{f_2(\mathbf{v}_2)}{|\mathbf{v}_1 - \mathbf{v}_2|} d^2 \mathbf{v}_2$$
 (7.5d)

$$G(\mathbf{v}_1) = \frac{q_2^2}{q_1^2} \int |\mathbf{v}_1 - \mathbf{v}_2| f_2(\mathbf{v}_2) \,\mathrm{d}^2 \mathbf{v}_2$$
 (7.5e)

(7.5f)

7.5 朗道(Landau)碰撞项

基本假定:

- 1. 玻尔兹曼(Boltzmann)碰撞项;
- 2. 库伦碰撞;
- 3. 小角散射, $\Delta v \ll v$ 。

$$\left(\frac{\partial f_{\alpha}}{\partial t}\right)_{c} = \frac{\Gamma_{\alpha}}{2} \sum_{\beta} \frac{q_{\beta}^{2}}{q_{\alpha}^{2}} m_{\alpha} \frac{\partial}{\partial \boldsymbol{v}_{\alpha}} \cdot \int \frac{\partial^{2} |\boldsymbol{v}_{\alpha} - \boldsymbol{v}_{\beta}|}{\partial \boldsymbol{v}_{\alpha} \partial \boldsymbol{v}_{\alpha}} \cdot \left(\frac{f_{\beta}}{m_{\alpha}} \frac{\partial f_{\alpha}}{\partial \boldsymbol{v}_{\alpha}} - \frac{f_{\alpha}}{m_{\beta}} \frac{\partial f_{\beta}}{\partial \boldsymbol{v}_{\beta}}\right) d^{3} \boldsymbol{v}_{\beta}$$
(7.6)

7.6 弹性碰撞的守恒性质

7.7 试探粒子的各种碰撞频率

Chapter 8

输运

8.1 磁化等离子体中的经典输运

8.1.1 弛豫时间近似法

$$\frac{\partial f_1}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f_0}{\partial \boldsymbol{r}} + \frac{\boldsymbol{F}}{m} \cdot \frac{\partial f_0}{\partial \boldsymbol{v}} = -\nu f_1 \tag{8.1}$$

若考虑定态问题 $\partial_t f_1 = 0$,则

$$f_1 = -\frac{1}{\nu} \left(\boldsymbol{v} \cdot \frac{\partial f_0}{\partial \boldsymbol{r}} + \frac{\boldsymbol{F}}{m} \cdot \frac{\partial f_0}{\partial \boldsymbol{v}} \right)$$
(8.2)

粒子流与扩散系数

假定:

- 1. $\nabla n \neq 0$
- $2. \ \nabla T = 0$
- 3. u = 0
- 4. F = 0

则

$$f_{1} = -\frac{1}{\nu} \boldsymbol{v} \cdot \frac{\partial f_{0}}{\partial \boldsymbol{r}}$$

$$= -\frac{\hat{f}_{M}}{\nu} \boldsymbol{v} \cdot \nabla n$$
(8.3)

粒子流

$$\Gamma = \int \boldsymbol{v} f_{1} d^{3} \boldsymbol{v}$$

$$= -\frac{\nabla n}{\nu} \cdot \int \hat{f}_{M} \boldsymbol{v} \boldsymbol{v} d^{3} \boldsymbol{v}$$

$$= -\frac{\nabla n}{\nu} \cdot \langle \boldsymbol{v} \boldsymbol{v} \rangle$$

$$= -\frac{T}{\nu m} \nabla n$$
(8.4)

扩散系数

$$D = \frac{T}{\nu m} \tag{8.5}$$

40 CHAPTER 8. 输运

电流、电导率与迁移率

假定:

1. $\nabla n = 0$

2. $\nabla T = 0$

3. u = 0

4. $\mathbf{F} = q\mathbf{E} \neq 0$

则

$$f_1 = -\frac{q}{\nu m} \mathbf{E} \cdot \frac{\partial f_0}{\partial \mathbf{v}} \tag{8.6}$$

电流

$$\mathbf{J} = q \int \mathbf{v} f_{1} d^{3} \mathbf{v}
= -\frac{q^{2}}{\nu m} \mathbf{E} \cdot \int \frac{\partial f_{0}}{\partial \mathbf{v}} \mathbf{v} d^{3} \mathbf{v}
= \frac{q^{2}}{\nu m} \mathbf{E} \cdot \int \frac{\partial \mathbf{v}}{\partial \mathbf{v}} f_{0} d^{3} \mathbf{v}
= \frac{q^{2} n}{\nu m} \mathbf{E}$$
(8.7)

电导率

$$\sigma = \frac{q^2 n}{\nu m} \tag{8.8}$$

电流引起的粒子流

$$\Gamma = \frac{1}{q} \mathbf{J} = \frac{qn}{\nu m} \mathbf{E} = \mu n \mathbf{E}$$
(8.9)

迁移率

$$\mu = \frac{\sigma}{qn} = \frac{q}{\nu m} \tag{8.10}$$

粘滞张量与粘滞系数

假定:

1. $\nabla n = 0$

 $2. \ \nabla T = 0$

3. $\boldsymbol{u} \neq \boldsymbol{0}$, $\nabla \cdot \boldsymbol{u} \neq 0$

4. F = 0

则

$$f_1 = -\frac{1}{\nu} \mathbf{v} \cdot \frac{\partial f_0}{\partial \mathbf{r}} \tag{8.11}$$

粘滞张量

$$\Pi = \int m \boldsymbol{w} \boldsymbol{w} f_{1} \, \mathrm{d}^{3} \boldsymbol{v}
= -\frac{m}{\nu} \int \boldsymbol{w} \boldsymbol{w} \boldsymbol{v} \cdot \frac{\partial f_{0}}{\partial \boldsymbol{r}} \, \mathrm{d}^{3} \boldsymbol{v}
= -\frac{m}{\nu} \int (\boldsymbol{v} - \boldsymbol{u}) (\boldsymbol{v} - \boldsymbol{u}) \boldsymbol{v} \cdot \frac{\partial f_{0}}{\partial \boldsymbol{r}} \, \mathrm{d}^{3} \boldsymbol{v}
= -\frac{m}{\nu} \nabla \cdot \int f_{0} \boldsymbol{v} \boldsymbol{w} \boldsymbol{w} \, \mathrm{d}^{3} \boldsymbol{v} + \frac{m}{\nu} \int f_{0} \boldsymbol{v} \cdot \nabla [(\boldsymbol{v} - \boldsymbol{u}) (\boldsymbol{v} - \boldsymbol{u})] \, \mathrm{d}^{3} \boldsymbol{v}
= -\frac{m}{\nu} \nabla \cdot \int f_{0} \boldsymbol{v} \boldsymbol{w} \boldsymbol{w} \, \mathrm{d}^{3} \boldsymbol{v} - \frac{m}{\nu} \int f_{0} [(\boldsymbol{v} \cdot \nabla \boldsymbol{u}) \boldsymbol{w} + \boldsymbol{w} (\boldsymbol{v} \cdot \nabla \boldsymbol{u})] \, \mathrm{d}^{3} \boldsymbol{v}
= -\frac{m}{\nu} \nabla \cdot \left(\boldsymbol{u} \int f_{0} \boldsymbol{w} \boldsymbol{w} \, \mathrm{d}^{3} \boldsymbol{v} \right) - \frac{m}{\nu} \int f_{0} [(\boldsymbol{w} \cdot \nabla \boldsymbol{u}) \boldsymbol{w} + \boldsymbol{w} (\boldsymbol{w} \cdot \nabla \boldsymbol{u})] \, \mathrm{d}^{3} \boldsymbol{v}
= -\frac{nT}{\nu} [(\nabla \cdot \boldsymbol{u}) \boldsymbol{I} + \nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\mathsf{T}}]$$
(8.12)

粘滞系数

$$\varsigma = \frac{nT}{\nu} = mnD \tag{8.13}$$

热流与热传导系数

假定:

- 1. $\nabla n \neq 0$
- 2. $\nabla T \neq 0$
- 3. $\nabla nT = 0$
- 4. u = 0
- 5. F = 0

则

$$f_1 = -\frac{1}{\nu} \cdot \frac{\partial f_0}{\partial \mathbf{r}} \tag{8.14}$$

热流

$$q = \int \frac{1}{2} m \mathbf{w}^{2} \mathbf{w} f_{1} d^{3} \mathbf{v}$$

$$= -\frac{m}{2\nu} \int \mathbf{w}^{2} \mathbf{w} \mathbf{v} \cdot \frac{\partial f_{0}}{\partial \mathbf{r}} d^{3} \mathbf{v}$$

$$= -\frac{m}{2\nu} \nabla \cdot \left(n \int \mathbf{v}^{2} \mathbf{v} \mathbf{v} \hat{f}_{M} d^{3} \mathbf{v} \right)$$

$$= -\frac{m}{6\nu} \nabla \left(n \int v^{4} \hat{f}_{m} d^{3} \mathbf{v} \right)$$

$$= -\frac{5nT}{2\nu m} \nabla T$$
(8.15)

热传导系数

$$\kappa = \frac{5nT}{2\nu m} \tag{8.16}$$

42 CHAPTER 8. 输运

8.1.2 垂直磁场方向的输运

垂直磁场的扩散系数

除 $B \neq 0$ 外,其他假设与之前相同。则

$$\nu f_1 + \boldsymbol{v} \cdot \frac{\partial f_0}{\partial \boldsymbol{r}} + \frac{q}{m} (\boldsymbol{v} \times \boldsymbol{B}) \cdot \frac{\partial f_1}{\partial \boldsymbol{v}} = 0$$
 (8.17)

其中,若 f_0 各向同性,则

$$(\boldsymbol{v} \times \boldsymbol{B}) \cdot \frac{\partial f_0}{\partial \boldsymbol{v}} = 0 \tag{8.18}$$

$$D_{\perp} = \frac{1}{1 + \omega_o^2 / \nu^2} D_{\parallel} \tag{8.19a}$$

$$D_H = \frac{\omega_c/\nu}{1 + \omega_c^2/\nu^2} D_{\parallel} \tag{8.19b}$$

$$\sigma_{\perp} = \frac{1}{1 + \omega_c^2 / \nu^2} \sigma_{\parallel} \tag{8.19c}$$

$$\sigma_H = \frac{\omega_c/\nu}{1 + \omega_c^2/\nu^2} \sigma_{\parallel} \tag{8.19d}$$

$$\kappa_{\perp} = \frac{1}{1 + \omega_c^2 / \nu^2} \kappa_{\parallel} \tag{8.19e}$$

$$\kappa_H = \frac{\omega_c/\nu}{1 + \omega_c^2/\nu^2} \kappa_{\parallel} \tag{8.19f}$$

Chapter 9

等离子体的统计理论——碰撞项的统 计描述

9.1 6N 维相空间中的概率分布函数

9.1.1 Γ空间

由 N 个全同粒子组成的体系,其状态可以由 3N 个位置 \mathbf{r}_i 和 3N 个速度 \mathbf{v}_i 确定。这 6N 维相空间被称为 Γ 空间。 Γ 空间中每一个点表示这个系统的一个状态。此系统在 Γ 空间中的轨迹满足力学规律:

$$\frac{\mathrm{d}\boldsymbol{r}_i}{\mathrm{d}t} = \boldsymbol{v}_i, \quad \frac{\mathrm{d}\boldsymbol{v}_i}{\mathrm{d}t} = \frac{\boldsymbol{F}_i}{m}, \quad i = 1, 2, \cdots, N$$
(9.1)

其中, F_i 包括了粒子 i 受到的所有力,包括系统内的相互作用和外力作用。

- 9.1.2 物理量的宏观测量
- 9.1.3 相点密度和分布函数

9.2 刘维方程和 BBGKY 方程链

9.2.1 刘维方程的建立

考虑 N 个全同粒子组成的体系在 6N 维相空间中的概率分布函数: $f_N(\{\boldsymbol{r}_i,\boldsymbol{v}_i\})$,则有刘维方程:

$$\frac{\partial f_N}{\partial t} + \sum_{i=1}^{N} \left(\boldsymbol{v}_i \cdot \frac{\partial f_N}{\partial \boldsymbol{r}_i} + \frac{\boldsymbol{F}_i}{m} \cdot \frac{\partial f_N}{\partial \boldsymbol{v}_i} \right) = 0$$
(9.2)

用概率分布函数来描述体系有以下优势:

1. 实际上无法知道每个粒子的初始状态,用概率分布相当于对所有可能的初始条件进行系综平均

- 9.2.2 约化分布函数
- 9.2.3 BBGKY 方程链
- 9.3 单粒子和双粒子分布函数的动理学方程
- 9.4 热平衡下的双粒子关联函数

物理意义:在热平衡的等离子体中,其他粒子对这两个粒子之间关联的影响,相当于在每个粒子周围包上了一层异种电荷的云,从而屏蔽了普通的库伦势,而使它变成了屏蔽库伦势。

9.5 无磁场时的朗道方程

附录 A

▽ 算子

A.1 不同坐标系下的梯度、散度、旋度与拉普拉斯算子的表达式

A.1.1 直角坐标系

$$\nabla = \frac{\partial}{\partial x} \mathbf{e}_x + \frac{\partial}{\partial y} \mathbf{e}_y + \frac{\partial}{\partial z} \mathbf{e}_z \tag{A.1}$$

梯度

$$\nabla f = \frac{\partial f}{\partial x} \mathbf{e}_x + \frac{\partial f}{\partial y} \mathbf{e}_y + \frac{\partial f}{\partial z} \mathbf{e}_z \tag{A.2}$$

散度

$$\nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} \tag{A.3}$$

旋度

$$\nabla \times \mathbf{A} = \begin{vmatrix} \mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_{x} & A_{y} & A_{z} \end{vmatrix}$$
(A.4)

拉普拉斯算子

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$
 (A.5)

A.1.2 柱坐标系

梯度

$$\nabla f = \frac{\partial f}{\partial R} \mathbf{e}_R + \frac{1}{R} \frac{\partial f}{\partial \varphi} \mathbf{e}_{\varphi} + \frac{\partial f}{\partial Z} \mathbf{e}_Z \tag{A.6}$$

散度

$$\nabla \cdot \mathbf{A} = \frac{1}{R} \frac{\partial}{\partial R} (RA_R) + \frac{1}{R} \frac{\partial A_{\varphi}}{\partial \varphi} + \frac{\partial A_Z}{\partial Z}$$
(A.7)

46 附录 $A. \nabla$ 算子

旋度

$$\nabla \times \mathbf{A} = \begin{vmatrix} \frac{1}{R} \mathbf{e}_R & \mathbf{e}_{\varphi} & \frac{1}{R} \mathbf{e}_Z \\ \frac{\partial}{\partial R} & \frac{\partial}{\partial \varphi} & \frac{\partial}{\partial Z} \\ A_R & RA_{\varphi} & A_Z \end{vmatrix}$$
(A.8)

拉普拉斯算子

$$\nabla^2 f = \frac{1}{R} \frac{\partial}{\partial R} \left(R \frac{\partial f}{\partial R} \right) + \frac{1}{R^2} \frac{\partial^2 f}{\partial \varphi^2} + \frac{\partial^2 f}{\partial Z^2}$$
 (A.9)

A.1.3 球坐标系

梯度

$$\nabla f = \frac{\partial f}{\partial r} \mathbf{e}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \mathbf{e}_\theta + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \varphi} \mathbf{e}_\varphi \tag{A.10}$$

散度

$$\nabla \cdot \mathbf{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (A_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial A_\varphi}{\partial \varphi}$$
(A.11)

旋度

$$\nabla \times \mathbf{A} = \frac{1}{r^2 \sin \theta} \begin{vmatrix} \mathbf{e}_r & r \mathbf{e}_{\theta} & r \sin \theta \mathbf{e}_z \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\ A_r & r A_{\theta} & r \sin \theta A_z \end{vmatrix}$$
(A.12)

拉普拉斯算子

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial t h e t a} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial z^2}$$
 (A.13)

位矢 r 及其衍生矢量

$$\nabla r = \frac{\mathbf{r}}{r} = \hat{\mathbf{r}} \tag{A.14}$$

$$\nabla \cdot \mathbf{r} = 3 \tag{A.15}$$

$$\nabla \times \mathbf{r} = 0 \tag{A.16}$$

$$\nabla \frac{1}{r} = -\frac{r}{r^3} \tag{A.17}$$

$$\nabla \frac{1}{r} = -\frac{\mathbf{r}}{r^3}$$

$$\nabla^2 \frac{1}{r} = -4\pi \delta(\mathbf{r})$$
(A.17)
(A.18)

$$\nabla r^2 = 2\mathbf{r} \tag{A.19}$$

$$\nabla \cdot \frac{\mathbf{r}}{r^3} = 4\pi \delta(\mathbf{r}) \tag{A.20}$$

A.3 ▽ 算子的微分性与向量性

$$\nabla(fg) = g\nabla f + f\nabla g \tag{A.21}$$

$$\nabla \cdot (f\mathbf{A}) = \nabla f \cdot \mathbf{A} + f \nabla \cdot \mathbf{A} \tag{A.22}$$

$$\nabla \times (f\mathbf{A}) = \nabla f \times \mathbf{A} + f \nabla \times \mathbf{A} \tag{A.23}$$

$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = (\nabla \times \mathbf{A}) \cdot \mathbf{B} - (\nabla \times \mathbf{B}) \cdot \mathbf{A} \tag{A.24}$$

$$\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{A} - (\nabla \cdot \mathbf{A})\mathbf{B}$$
(A.25)

$$+ (\nabla \cdot \mathbf{B})\mathbf{A} - (\mathbf{A} \cdot \nabla)\mathbf{B} \tag{A.26}$$

$$\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + (\mathbf{A} \cdot \nabla)\mathbf{B}$$
(A.27)

$$+ \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{B} \cdot \nabla)\mathbf{A} \tag{A.28}$$

$$\nabla \times (\nabla \times \mathbf{A}) = \nabla(\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$
(A.29)

$$\nabla \cdot (\mathbf{A}\mathbf{B}) = (\nabla \cdot \mathbf{A})\mathbf{B} + (\mathbf{A} \cdot \nabla)\mathbf{B} \tag{A.30}$$

A.4 ∇ 算子的其他性质

$$\nabla \times (\nabla f) = 0 \tag{A.31}$$

$$\nabla \cdot (\nabla \times \mathbf{A}) = 0 \tag{A.32}$$

$$\nabla f(u) = \nabla u \frac{\mathrm{d}f}{\mathrm{d}u} \tag{A.33}$$

$$\nabla \cdot \mathbf{A}(u) = \nabla u \cdot \frac{\mathrm{d}\mathbf{A}}{\mathrm{d}u} \tag{A.34}$$

$$\nabla \times \mathbf{A}(u) = \nabla u \times \frac{\mathrm{d}\mathbf{A}}{\mathrm{d}u} \tag{A.35}$$

A.5 相关定理

高斯定理

$$\oint_{S} \mathbf{A} \cdot d\mathbf{S} = \int_{V} \nabla \cdot \mathbf{A} \ dV \tag{A.36}$$

斯托克斯定理

$$\oint_{L} \mathbf{A} \cdot d\mathbf{l} = \int_{S} (\nabla \cdot \mathbf{A}) \cdot d\mathbf{S}$$
(A.37)

格林公式

$$\oint_{S} (f\nabla g) \cdot d\mathbf{S} = \int_{V} (f\nabla^{2}g + \nabla f \cdot \nabla g) dV$$
(A.38)

$$\oint_{S} (f\nabla g - g\nabla f) \cdot d\mathbf{S} = \int_{V} (f\nabla^{2}g - g\nabla^{2}f) dV$$
(A.39)

48 附录 A. ▽ 算子

附录 B

曲线坐标系基础

一般性的曲线坐标系可以用一组坐标 (q^1,q^2,q^3) 来表示。定义逆变(contravariant)基矢

$$e^{i} = \frac{\partial q^{i}}{\partial r} = \nabla q^{i} \tag{B.1}$$

以及协变(covariant) 基矢

$$e_i = \frac{\partial \mathbf{r}}{\partial q^i} \tag{B.2}$$

逆变基矢与协变基矢互为互反向量

$$\mathbf{e}^i \cdot \mathbf{e}_j = \delta^i_j \tag{B.3}$$