Project details.md 3/21/2023

Vepley AI model details

Model details

Input

X: The angle of the joint in the frame. Calculated by the following formula:

```
np.math.atan2(np.linalg.det([landmark1, landmark2]), np.dot(landmark1, landmark2))
```

Which is the angle between the two vectors.

 $\$ \mathrm{atan2}\left(\frac{\begin{vmatrix} A_x & A_y \ B_x & B_y \end{vmatrix}} {\Vert\mathbf{A}\rVert\thof{B}}\rVert, \frac{\mathbf{A}\cdot\mathbf{B}} {\Vert\mathbf{A}\rVert\thof{B}}\rVert}\

```
	atan2\left(rac{ig|A_x \quad A_yig|}{\|\mathbf{A}\|\|\mathbf{B}\|}, rac{\mathbf{A}\cdot\mathbf{B}}{\|\mathbf{A}\|\|\mathbf{B}\|}
ight)
```

We calculate the following angles:

```
PARSE_LANDMARKS_JOINTS = [
       [0, 1], [1, 2], [2, 3], [3, 4], # thumb
       [0, 5], [5, 6], [6, 7], [7, 8], # index finger
       [5, 9], [9, 10], [10, 11], [11, 12], # middle finger
       [9, 13], [13, 14], [14, 15], [15, 16], # ring finger
       [13, 17], [17, 18], [18, 19], [19, 20] # little finger
]
```

Project details.md 3/21/2023

With the number above is the index of the joint in the frame.

By calculating the angle between the joints we get the input with 20 features.

Y: the label of the action.

Model

We use a simple deep neural network with 4 layers.

```
LAYERS = [512, 256, 256, len(Actions)]
```

Then we use the following activation function:

```
ACTIVATION = [ "relu", "relu", "sigmoid"]
```

The model is trained using keras library with the following parameters:

```
EPOCHS = 100
BATCH_SIZE = 32
```

Output

The output is the probability of the action.

Project_details.md 3/21/2023

Dataset details

Total of 5 people.

Each frame has 2D coordinates of 21 joints.

Batch 1: VepleyAl_dataset_Dataset_full_1

• Idle: 800

Pickup_item: 798Use_item: 798

Aim: 798Shoot: 800total: 3994

Batch 2: VepleyAl_dataset_Dataset_full_2

• Idle: 800

Pickup_item: 798Use_item: 800

Aim: 798Shoot: 798total: 3994

Batch 3: VepleyAl_dataset_Dataset_full_3

• Idle: 798

Pickup_item: 798Use_item: 800

Aim: 798Shoot: 800total: 3994

Batch 4: VepleyAl_dataset_Dataset_full_4

• Idle: 800

Pickup_item: 800Use_item: 798

Aim: 798Shoot: 798total: 3994

Batch 5: VepleyAl_dataset_Dataset_full_5

• Idle: 798

Pickup_item: 798Use_item: 798

Aim: 798Shoot: 798total: 3990

Project_details.md 3/21/2023

Batch 6: VepleyAl_dataset_Dataset_full_6

• Idle: 796

Pickup_item: 798Use_item: 798

• Aim: 798

Shoot: 798total: 3988

Batch 7: VepleyAl_dataset_Dataset_full_7

• Idle: 800

• Pickup_item: 800

• Use_item: 798

• Aim: 798

• Shoot: 798

• total: 3994

Batch 8: VepleyAl_dataset_Dataset_full_8

• Idle: 798

• Pickup_item: 798

• Use_item: 798

• Aim: 798

• Shoot: 798

• total: 3990

Batch 9: VepleyAl_dataset_Dataset_full_9

• Idle: 798

• Pickup_item: 798

• Use_item: 798

• Aim: 798

• Shoot: 798

• total: 3990

Batch 10: VepleyAl_dataset_DS_01

• Idle: 798

• Pickup_item: 798

• Use_item: 798

• Aim: 798

• Shoot: 798

• total: 3990

Batch 11: VepleyAl_dataset_DS_02

• Idle: 798

• Pickup_item: 798

• Use_item: 800

Project_details.md 3/21/2023

Aim: 800Shoot: 800

• total: 3996