

Kickstarter Project

Group 28: Denise Mooren, Seeun Park, Steven Emmink, Sungmin Kim

Derived features

Features derived from other columns in the dataset

Derived Features

reached_deadline

- Derived from columns 'created_at' and 'deadline'
- Value is 1 (true) if the deadline was reached on time
- Value is 0 (false) if deadline was not met

goal_in_USD

- Derived from columns 'fx_rate' and 'goal'
- Goal in USD dollars in floats

cVSI_full_days

- Derived from columns 'created_at' and 'launched_at'
- Number of days between created and launched date in integers

Heatmap of 15 most correlated features on 'fundedInt'

Plots of Derived Features

goal_in_USD

Plots of Derived Features

cVSl_full_days

Model Choice & Cross Validation

Design choices, feature selection, and cross validation scheme

Random Forest

- ♦ Good at handling categorical and numerical data
- Less sensitive to overfitting
- Features of importance were one hot encoded
 - 'name', 'blurb', 'location' and URL features excluded
- Used SelectFromModel to select most important features for training
 - 20 features selected

Cross-Validation Scheme

Nr of Folds	
k = 2	0.74 (+- 0.01)
k = 3	0.74 (+- 0.02)
k = 4	0.74 (+- 0.03)
k = 5	0.74 (+- 0.05)
k = 6	0.75 (+- 0.06)
k = 7	0.73 (+- 0.06)
k = 8	0.74 (+- 0.09)
k = 9	0.72 (+- 0.11)
k = 10	0.72 (+- 0.08)

- Tried several numbers of folds (2 10)
- The most optimum number of folds RF: 6

Parameters

Hyperparameter tuning for the Random Forest Classifier

Hyperparameter tuning

Hyperparameters used:

```
{ 'bootstrap': [True],
    'max_depth': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, None],
    'max_features': ['auto', 'log2', None],
    'min_samples_leaf': [1,2,4],
    'min_samples_split': [2, 5, 10],
    'n_estimators': [200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000] }
```

- Initially used RandomizedSearchCV
 - Performed 6 different random searches with 3 folds CV
- With the results from the random searches performed a more directed grid search
- Best values: (max_depth=20, min_samples_leaf=4, min_samples_split=3, n_estimators=400)

Interpretation

Interpretation of models and feature importances

Most important features

Accuracy score on Cross-Validation: 0.75 (+- 0.06)

[0.70126597 0.76042479 0.78862423 0.73264535 0.72542902 0.77313093]

Model score Random Forest: 0.83

Most important features

Accuracy score on Cross-Validation: 0.74 (+- 0.05)

[0.69664607 0.74566509 0.77074459 0.72628547 0.71702868 0.76221049]

Model score Random Forest: 0.85

			eli5.show_weights(clf)	
			Weight	Feature
feature:	<pre>staff_pickimportance:</pre>	0.12080509261875493	0.1208 ± 0.0210	х0
feature:	<pre>created_at importance:</pre>	0.16465686310589828	0.1647 ± 0.1880	x1
feature:	deadline — importance:	0.19260615931395197	0.1926 ± 0.2092	x2
feature:	goal———importance:	0.1021957098335032	0.1022 ± 0.0630	х3
	launched_at—_importance:			х4
	cVSl_full_days—importance:		INTERNITOR STERRING HONDON STERRING	х5
	goal_in_USDimportance:		0.1264 ± 0.0608	х6

Comparison

Comparison of assigned Naive Bayes Model with Random Forest

Naive Bayes Pros + Cons

STRENGTHS

Gaussian NB = continuous

Categorical NB = categorical

Performs exceptionally well

with categorical data

NB

Model score Gaussain Naive Bayes: 0.61
Model score Categorical Naive Bayes: 0.72

WEAKNESSES

Performance for numerical data is not the best

NB is a poor estimator

Don't have too much faith in predict_proba

Naive Bayes VS Random Forest

```
Accuracy score on Cross-Validation: 0.70 (+- 0.11)
[0.61402088 0.6399064 0.67185672 0.79632796 0.70929709 0.73458735 0.63522635 0.74835748 0.70947709]
Model score Gaussain Naive Bayes: 0.70
```

```
Accuracy score on Cross-Validation: 0.75 (+- 0.06)
[0.699766    0.76114478    0.78574429    0.73246535    0.72452898    0.77421097]
Model score Random Forest: 0.83
```


Thanks!

Any questions?

