CS 524: Introduction to Optimization Lecture 21 : Constraint logic calculus

Michael Ferris

Computer Sciences Department University of Wisconsin-Madison

October 23, 2023

Review

- Turn on indicator:
- Suppose $f(x) \leq \mathcal{M}$ for all $x \in X$, and $\delta \in \{0,1\}$
- Then

$$f(x) > 0 \Rightarrow \delta = 1$$

is implied by the inequality (linear if f is):

$$f(x) \leq \mathcal{M}\delta$$

- Turn on constraint:
- Assume $g(x) \leq \mathcal{M}$ for all $x \in X$
- Then

$$\delta = 1 \Rightarrow g(x) \leq 0$$

is implied by the inequality (linear if g is):

$$g(x) \leq \mathcal{M}(1-\delta)$$

Light Bulb Calculus

- See Williams, Chapter 9 for further information.
- ullet In the above, we showed rules for indicator variables (often denoted δ) to
 - Imply that a constraint holds
 - Be implied by a constraint holding
- We now consider rules that allow us to apply logical conditions to these indicator variables.
- Having logical conditions is a powerful modeling tool

Constraint Logic Programming

Binary variables δ_i represent statements P_i as indicators:

$$\delta_i = \begin{cases} 1 & \text{if statement } P_i \text{ is true} \\ 0 & \text{if statement } P_i \text{ is false} \end{cases}$$

 P_i could be "do project i" or " $f(x) \le 0$ "

 δ_i is an indicator variable for whether the statement is true or false.

Standard boolean algebra notation for connectives between statements:

- ∨ means 'or'
- ∧ means 'and'
- ¬ means 'not'
- → means 'implies'
- \leftrightarrow means 'if and only if'

Other connectives such as "nor" or "nand" are also used in the literature.

General Statement

MIP Constraint

at least k out of n are true

$$\sum_{i=1} \delta_i \ge k$$

$$P_1 \vee P_2 \vee \cdots P_n$$

$$\sum_{i=1}^{i=1} \delta_i \ge 1$$

exactly k out of n are true

$$\sum_{i=1}^{n} \delta_i = k$$

at most k out of n are true

$$\sum_{i=1}^{n} \delta_i \le k$$

if at least k out of n are true then n+1 is true

then
$$n+1$$
 is true
$$\delta_{n+1} \geq \frac{\sum_{i=1}^{n} \delta_i - k + 1}{n - k + 1}$$
$$(P_1 \wedge \cdots P_k) \rightarrow (P_{k+1} \vee \cdots P_n) \quad \sum_{i=1}^{k} (1 - \delta_i) + \sum_{i=1}^{n} \delta_i \geq 1$$

$$(P_1 \wedge \cdots P_k) \to (P_{k+1} \vee \cdots P_n)$$

- GAP: Generalized Assignment Problem
- We have a set $I = \{1, 2, ..., m\}$ of machines
- and a set $J = \{1, 2, \dots, n\}$ of jobs that must be performed on the machines.
- Each machine $i \in I$ has a capacity of b_i units of work
- Each job $j \in J$ requires a_{ij} units of work to be completed if it is scheduled on machine i.
- All jobs must be assigned to exactly one machine.
- Suppose there is a fixed cost h_i of assigning any jobs to machine i

GAP Models

$$egin{aligned} \min \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} + \sum_{i \in I} h_i z_i \ & \sum_{j \in J} a_{ij} x_{ij} \leq b_i & orall i \in I \ & \sum_{i \in I} x_{ij} = 1 & orall j \in J (one mach perjob) \end{aligned}$$

 z_i is 1 if machine i is on

$$x_{ij}, z_i \in \{0, 1\}$$
 $\forall i \in I, j \in J$

Fixed Cost Logic

• Logic 1:

$$\sum_{j\in J} x_{ij} > 0 \Rightarrow z_i = 1 \quad \forall i \in I$$

• Turn on indicator:

$$\sum_{j \in J} x_{ij} \leq \mathcal{M} z_i \quad \forall i \in I$$

- ▶ vub_eq_1: $\mathcal{M} = |J|$ ($\forall i \in I$)
- ▶ vub_eq_2: $\mathcal{M}_i = |\{j : j \text{ may be assigned to } i\}|$
- Logic 2:

$$x_{ij} > 0 \Rightarrow z_i = 1 \quad \forall i \in I, \forall j \in J$$

Turn on indicator: vub_eq_3

$$x_{ii} \leq z_i \quad \forall i \in I, \ \forall j \in J$$

More Fixed Cost Logic

• Logic 3:

$$\sum_{j\in J} a_{ij} x_{ij} > 0 \Rightarrow z_i = 1 \quad \forall i \in I$$

• Turn on indicator: vub_eq_4

$$\sum_{j\in J} a_{ij} x_{ij} \leq \mathcal{M} z_i \quad \forall i \in I$$

 $ightharpoonup \mathcal{M}_i = b_i$, so can replace capacity constraints

Which is Best?!?!?

See gap.gms - probably too small example to determine (possibly 4 + 2)

An issue

- What about $f(x) \ge 0 \Rightarrow \delta = 1$?
- This requires thought from the modeler and is not always doable
- Idea is to find $\epsilon>0$ so that any x that satisfies $f(x)+\epsilon>0$ also satisfies $f(x)\geq 0$ and conversely, and then apply our "Turn on indicator" to $f(x)+\epsilon$
- Example: suppose x_1 and x_2 are binary, then

$$f(x) = x_1 + x_2 - 1 \ge 0$$

is equivalent to

$$x_1 + x_2 > 0$$
, that is $f(x) + 1 > 0$

so $\epsilon=1$ will work here. Several similar examples will be used below.

Some Additional Problems on GAP

- lacktriangledown If you use k or more machines, then you must pay a penalty cost of λ
- ② If you operate machine one or two, then you may not operate both machines 3 and 5
- If you operate both machine 1 and machine 3, then you may use no more than 50% of the capacity of machine 5
- **Q** Each job $j \in J$ has a duration (or length) d_j . Minimize makespan.

- ullet If you use k or more machines, then you must pay a penalty cost of λ
- Need (earlier) "turn on indicator" logic for z_i
- Model $\sum_{i \in I} z_i \ge k \Rightarrow \delta_1 = 1$
- Add $\lambda \delta_1$ to objective function
- Use $f(z) = \sum_{i \in I} z_i (k-1)$ so f(z) > 0 is equivalent to $\sum_{i \in I} z_i \ge k$. Then $f(z) \le (|I| k + 1)$, so "Turn on indicator" leads to:

$$\sum_{i \in I} z_i - (k-1) \le (|I| - k + 1)\delta_1$$

- If you operate machine one or two, then you may not operate both machines 3 and 5
- Split the modeling of $z_1 + z_2 \ge 1 \Rightarrow z_3 + z_5 \le 1$ in two:
 - $ightharpoonup z_1 + z_2 \ge 1 \Rightarrow \delta_2 = 1$
 - $\delta_2 = 1 \Rightarrow z_3 + z_5 \le 1$

Gap 2, cont.

• First implication is equivalent (by binary z_i) to $z_1 + z_2 > 0 \Rightarrow \delta_2 = 1$ so can use "Turn on indicator" with $\mathcal{M} = 2$:

$$z_1 + z_2 \leq 2\delta_2$$

(Note: could also model (better) as $\delta_2 \geq z_1, \delta_2 \geq z_2$)

• Second implication is the "Turn on constraint" (with $g(z) = z_3 + z_5 - 1$ bounded by $\mathcal{M} = 1$ resulting in:

$$z_3 + z_5 - 1 \leq (1 - \delta_2).$$

- If you operate both machine 1 and machine 3, then you may use no more than 50% of the capacity of machine 5
- Model $z_1 + z_3 \ge 2 \Rightarrow \sum_{j \in J} a_{5j} x_{5j} \le 0.5 b_5$ as
 - $z_1 + z_3 > 1 \Rightarrow \delta_3 = 1$
 - $\delta_3 = 1 \Rightarrow \sum_{j \in J} a_{5j} x_{5j} \le 0.5 b_5$

GAP 3, Cont.

• Bound (on f) for $z_1 + z_3 > 1 \Rightarrow \delta_3 = 1$ has $\mathcal{M} = 1$ leading to:

$$z_1 + z_3 - 1 \le \delta_3$$

• Bound (on g) for $\delta_3=1\Rightarrow \sum_{j\in J}a_{5j}x_{5j}\leq 0.5b_5$ has $\mathcal{M}=b_5-0.5b_5=0.5b_5$ leading to:

$$\sum_{i \in J} a_{5j} x_{5j} - 0.5 b_5 \le 0.5 b_5 (1 - \delta_3)$$

or equivalently:

$$\sum_{i \in I} a_{5j} x_{5j} + 0.5 b_5 \delta_3 \le b_5$$

- Each job $j \in J$ has a duration (or length) d_j . Minimize makespan.
- MINIMAX again. (No integer variables needed)
- Let $t \ge \max_{i \in I} \{ \sum_{j \in J} d_j x_{ij} \}$.

 $\min t$

$$t \ge \sum_{j \in J} d_j x_{ij} \quad \forall i \in I$$