CS 214 – DATA STRUCTURES FALL 2015

Lecture 7 – Linked Lists Group **B & C** November 13th 2017 Dr. Mai Hamdalla

mai@fci.helwan.edu.eg

TREES

Linear Data Structures

Tree ADT

- A non-linear, <u>directed</u>, <u>acyclic</u> structure of linked nodes.
 - <u>directed</u>: Has one-way links between nodes.
 - <u>acyclic</u>: No path wraps back around to the same node twice.

-binary tree: One where each node has at most two children.

Tree Structures

Tree Structures - Examples

John

Terminology (I)

- Node: an object containing a data value and children links.
 - root: the topmost node of a tree.
 - leaf: a node that has no children.
 - branch: any internal node; neither the root nor a leaf

- parent: a node that has at least one descendant.
- child: a node that has an ancestor.
- sibling: a node with a common parent node.

Terminology (II)

Terminology (III)

- **Path**: a sequence of edges from one node to another.
- Size: the number of nodes in a tree.

- **Subtree**: the smaller tree of nodes within a tree.
- Height: length of the longest path from the root to any node.
- Level: length of the path from a root to a given node

- Depth of a node: is its distance from the root.
 - A is at depth zero.
 - E is at depth 2.
- Depth of a tree: is the depth of its deepest node.
 - This tree has depth 3

BINARY TREE

Binary Tree - Recursive definition

- A tree is either:
 - empty (null), or
 - a root node (vertex)that contains:
 - data,
 - a left subtree, and
 - a right subtree.

The left and/or right subtree could be empty.

- If a binary tree has only right sub trees, then it is called right skewed binary tree.
- If a binary tree has only left sub trees, then it is called left skewed binary tree.

Full Binary Tree

 A binary tree in which every node other than the leaves has <u>exactly</u> two children.

Complete Binary Tree

 A binary tree in which every level, except possibly the last, is <u>completely filled</u>, and all nodes are as <u>far left</u> as possible.

TREE DEFINITIONS

Tree has 16 nodes Tree has degree 4 Tree has depth 5 Node 0 is the root Node 1 is internal Node 4 is a leaf 4 is a child of 1 1 is the parent of 4 0 is grandparent of 4 3, 4 and 5 are siblings

Selected Samples of Binary Trees (I)

Neither complete nor full

Complete but not full

Full but not complete

Complete and full

19 Binary Trees

Selected Samples of Binary Trees (II)

Tree A
Size 9 Depth 3

Tree B Size 5 Depth 4

EXPRESSION TREES

Example: Expression Trees

- It is a binary tree contains an arithmetic expression with some operators and operands.
- Leaves are operands (constants or variables)
- The internal nodes contain operators
- For each node contains an operator, its left subtree gives the left operand, and its right subtree gives the right operand.
- Great importance in syntactical analysis and parsing, along with the validity of expressions

Expression Trees

Expression Trees

•
$$a = (b + c) * d$$

Expression Trees

Expression tree for (a + b * c) + ((d * e + f) * g)

BINARY TREE TRAVERSAL

Tree Traversals

- An examination of the elements of a tree.
- Common orderings for traversals:
 - pre-order: process root node, then its left subtrees followed by its right subtree
 - in-order: process left subtree, then root node, then right subtree
 - post-order: process left/right subtrees, then root node

Traversal example

• in-order (LVR):

Traversal example

• pre-order (VLR):

Traversal example

post-order (LRV):

Exercise

Pre-order Traversal:

42 15 27 48 9 86 12 5 3 39

In-order Traversal:

15 48 27 42 86 5 12 9 3 39

Post-order Traversal:

48 27 15 5 12 86 39 3 9 42

BINARY TREE IMPLEMENTATION

A tree node for integers

 A basic tree node stores data and left/right links.

Basic Binary Tree Operations

- Create the tree, leaving it empty.
- Determine whether the tree is empty or not
- Determine whether the tree is full or not
- Find the size of the tree.
- Find the depth of the tree.
- Traverse the tree, visiting each entry
- Clear the tree to make it empty

Tree Implementation

```
typedef struct node_type{
  entry_type info;
  node_type *right, *left;
} tree_node;

typedef tree_node *tree;
```

Tree Initialization

Pre: None.

Post: The tree is initialized to be empty.

```
void create_tree(tree *t) {
    *t = NULL;
}
```

In-order Tree Traversal

Pre: The tree is initialized.

Post: The tree has been traversed in infix order sequence.

```
void inorder traversal (tree t,
              void(*pvisit)(entry type)){
  <u>if</u>(t){
    inorder traversal(t->left, pvisit);
     (*pvisit) (t->info);
    inorder traversal(t->right, pvisit);
```

How can we write inorder_traversal Iteratively?

```
void inorder traversal(tree *pt,
                          void (* pvisit)(entry type)){
   stack s;
   void *p=(void *)(*pt);
/* p will be Pushed in the stack; we do not define it
TreeNode * to avoid modifying Stack.h to include Tree.h*/
   if(p) {
      create stack(&s);
      do{
         while(p){
                                                     entry
           push (p, &s);
           p=(void *)(((tree node *)p)->left); \checkmark
                                                 entry
        if(!is stack empty(&s)){
        //This is redundant check; always 1
                                                      entry
           pop(&p, &s);
            (*pvisit) (((tree node *)p)->entry);
           p = (void *) (((tree node *)p) -> right);
      }while(!is stack empty(&s) || p);
   } }
```

Pre-order Tree Traversal

Pre: The tree is initialized.

Post: The tree has been traversed in prefix order sequence.

```
void preorder traversal (tree type t,
       void(*pvisit)(entry type)){
    if(t){
        (*pvisit) (t->info);
        Preorder(t->left, pvisit);
        Preorder (t->right, pvisit);
```

Post-order Tree Traversal

Pre: The tree is initialized.

Post: The tree has been traversed in Postfix order.

```
void post order (tree t,
        void(*pvisit)(EntryType)){
 if(t){
   post order(t->left, pvisit);
   post order(t->right, pvisit);
    (*pvisit) (t->info);
```

Tree Size

Tree Depth

```
int tree depth(tree t) {
    if (!t)
        return 0;
    int a= tree depth(t->left);
    int b= tree depth(t->right);
    return (a>b)? 1+a : 1+b;
```

Clear Tree

```
void clear tree(tree *t) {
 if (*t) {
    clear tree(&(*t)->left);
    clear tree(&(*t)->right);
    free(*t);
    *t=NULL;
```

Tree Empty

Pre: The tree is initialized.

Post: If the tree is empty (1) is returned, otherwise (0) is returned.

```
int is_tree_empty(... .) {
    return (!t);
}
```

Tree Full

Pre: The tree is initialized.

Post: If the tree is full (1) is returned. Otherwise (0) is returned.

```
int is_tree_full(......) {
    return 0;
}
```

CS 214 – DATA STRUCTURES FALL 2015

Lecture 7 – Linked Lists Group **B & C** November 13th 2017 Dr. Mai Hamdalla

mai@fci.helwan.edu.eg