Ассоциативные правила

Виктор Китов

v.v.kitov@yandex.ru

Решаемая задача

Транзакции в магазине

TID	Items
1	{Bread, Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread, Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

Пример правила:
$${Diapers} \longrightarrow {Beer}.$$

Применения: анализ рыночных корзин (market basket analysis), медицинская диагностика, анализ данных в др. областях.

- Проблемы:
 - вычислительная сложность перебора всех правил.
 - статистическая значимость правил
 - совместная встречаемость не означает причинно следственной связи (correlation vs. causation)
 - (например, товары дежат рядом на одной полке)

Пример генерации правил в политике

Данные по голосованиям ("товары"):

- 1. Republican
- 2. Democrat
- 3. handicapped-infants = ves
- 4. handicapped-infants = no water project cost sharing = ves
- water project cost sharing = no
- 7. budget-resolution = ves
- 8. budget-resolution = no
- physician fee freeze = yes

- 18. aid to Nicaragua = no
- 19. MX-missile = yes
- 20. MX-missile = no 21. immigration = yes
- 22. immigration = no
- 23. synfuel corporation cutback = yes
- 24. synfuel corporation cutback = no
- 25. education spending = yes
- 26. education spending = no

Определение принадлежности к партии (предпочтения)

Association Rule	Confidence
{budget resolution = no, MX-missile=no, aid to El Salvador = yes }	91.0%
$\longrightarrow \{ \text{Republican} \}$	
{budget resolution = yes, MX-missile=yes, aid to El Salvador = no }	97.5%
$\longrightarrow \{ Democrat \}$	
{crime = yes, right-to-sue = yes, physician fee freeze = yes}	93.5%
$\longrightarrow \{\text{Republican}\}$	
{crime = no, right-to-sue = no, physician fee freeze = no}	100%
$\longrightarrow \{Democrat\}$	

Бинарное представление

- ullet $I = \{i_1, i_2, ... i_d\}$ все товары, ищем наборы из этих товаров
- ullet $T = \{t_1, t_2, ... t_N\}$ все транзакции, t_i подмножество I
- Поддержка (support)

$$\sigma(X) = \big| \{ t_i | X \subseteq t_i, \ t_i \in T \} \big|$$

Ассоциативное правило

ullet Ассоциативное правило X o Y, где X,Y - наборы товаров, $X \cap Y = \emptyset$

Свойства ассоциативного правила:

Support,
$$s(X \longrightarrow Y) = \frac{\sigma(X \cup Y)}{N}$$
;
Confidence, $c(X \longrightarrow Y) = \frac{\sigma(X \cup Y)}{\sigma(X)}$.

- $X \cup Y$ наборы X и Y одновременно встретились (пересечение).
- Примеры расчетов.
- Правило с низкой поддержкой может появиться случайно, нет смысла делать промоакции для редких правил.
- Уверенность измеряет, насколько правило надежно.

Mepa lift

Mepa lift показывает, полезнее ли правило случайного угадывания:

$$\begin{aligned} & \operatorname{lift}(A \to B) = \frac{\operatorname{support}(A \cup B)}{\operatorname{support}(A) \cdot \operatorname{support}(B)} = \\ & = \frac{|\{A \cup B \subseteq x \mid x \in X_{\operatorname{train}}\}| \cdot |X_{\operatorname{train}}|}{|\{A \subseteq x \mid x \in X_{\operatorname{train}}\}| \cdot |\{B \subseteq x \mid x \in X_{\operatorname{train}}\}|} \end{aligned}$$

Нахождение правил

- Нахождение правил состоит из 2х этапов:
 - $lue{1}$ генерация частых наборов (support \geq minsup)
 - ② генерация уверенных правил по наборам (confidence ≥ minconf)
- Первая задача вычислительно сложнее.
 - полный перебор: сложность $O(N(2^k-1)w)$ для наборов длины k, #транзакций N и средней длины транзакции w.
 - решения: $\downarrow k$ (Apriori), \downarrow число сравнений с транзакциями (FP-growth)

Apriori

• У следующих правил - одинаковая поддержка:

```
 \begin{array}{ll} \{ \mbox{Beer, Diapers} \} &\longrightarrow \{ \mbox{Milk} \}, & \{ \mbox{Beer, Milk} \} &\longrightarrow \{ \mbox{Diapers}, \mbox{Milk} \}, \\ \{ \mbox{Diapers, Milk} \} &\longrightarrow \{ \mbox{Beer, Diapers} \}, & \{ \mbox{Diapers} \} &\longrightarrow \{ \mbox{Beer,Milk} \}. \\ \end{array}
```

- Идея алгоритма Apriori если набор частый, то все его поднаборы тоже частые.
- Математически это свойство антимонотонности поддержки:

$$X' \subset X \Rightarrow \sigma(X') \geq \sigma(X)$$

Идея Apriori

Поиск, использующий антимонотонность

Экономия вычислений

• Экономия перебора:

$$\left(\begin{array}{c} 6 \\ 1 \end{array}\right) + \left(\begin{array}{c} 6 \\ 2 \end{array}\right) + \left(\begin{array}{c} 6 \\ 3 \end{array}\right) \rightarrow \left(\begin{array}{c} 6 \\ 1 \end{array}\right) + \left(\begin{array}{c} 4 \\ 2 \end{array}\right) + 1$$

- Алгоритм:
 - ullet проход наборам одного товара, выбор частых F_1
 - для k = 1, 2, 3, ... пока $F_k \neq \emptyset$:
 - ullet генерация F_{k+1} комбинацией $\left\{F_k
 ight\}_k$

Генерация F_k

- Не должны генерироваться кандидаты, содержащие нечастые k поднаборы.
- Перебор кандидатов должен быть полным (среди потенциально подходящих).
- Сгенерированные кандидаты не должны дублироваться.

•
$$\{a, b, c, d\} = \{a, b\} + \{c, d\} = \{a, b, c\} + \{d\} = \{a\} + \{b, c, d\} = \dots$$

- Подходы генерации:
 - полный перебор, сложность C_k^d , d=#товаров, k-длина набора

Подходы генерации

- Подходы генерации
 - $F_{k-1} \times F_1$: комбинация всех F_{k-1} и F_1 , сложность $O(|F_{k-1}| \times |F_1|)$
 - могут генерироваться повторения: {Bread, Diapers}+{Milk}={Bread,Milk}+{Diapers}=...
 - решение: объединять только наборы по возрастанию в лексикографическом порядке: {Bread, Diapers}+{Milk}, {Bread,Milk}+{Diapers}
 - $F_{k-1} \times F_{k-1}$: объединяются только при условии

$$a_i = b_i, i = 1, 2, ...k - 2; \ a_{k-1} \neq b_{k-1}$$

 перебор полный и †эффективность от лексикографического упорядочивания.

Генерация правил

- \bullet Для набора длины k существует $2^k 2$ правил
 - ullet по набору X генерируем Y o X Y
 - X-частый, значит и поднаборы Y, X Y-частые.
 - ullet игнорируем $\emptyset o Y$ и $Y o \emptyset$
- Оптимизация перебора правил: если $X \to Y X$ малой уверенности (confidence), то любое $X' \to Y X'$, $X' \subset X$ тоже малой уверенности, т.к. $\sigma(X') \ge \sigma(X)$
 - $conf(X \to Y X) = \frac{\sigma(Y)}{\sigma(X)} \ge \frac{\sigma(Y)}{\sigma(X')} = conf(X' \to Y X')$
 - т.е. если conf(bcd => a) мало, то conf(cd => ab) еще меньше.

Оптимизация перебора правил в Apriori

Использование принципа для оптимизации перебора правил:

Компактное представление частых наборов

- Для компактного представления частых наборов достаточно знать только нерасширяемые частые наборы (maximal frequent itemsets).
- Все поднаборы нерасширяемые частые наборов частые. Но теряется информация о поддержке.

FP-growth

FP-growth алгоритм использует структуру данных для компактного представления наборов и их поддержек.

- Узлы частые товары, упорядоченные по ↓поддержки.
- Узлы, отвечающие одинаковым товарам соединены указателем (уровень дерева)

Полное FP-дерево

Полное FP-дерево

Transaction Data Set

Items
{a,b}
{b,c,d}
{a,c,d,e}
{a,d,e}
{a,b,c}
{a,b,c,d}
{a}
{a,b,c}
{a,b,d}
{b,c,e}

Поиск частых наборов

Можем найти частые наборы, оканчивающиеся на заданный суффикс, например "e":

Извлеченные наборы

• Находим поддержку {e}: сумируем поддержки всех путей, заканчивающихся на е, получим 3.

(a) Prefix paths ending in e

(c) Prefix paths ending in de

(b) Conditional FP-tree for e

(d) Conditional FP-tree for de

Извлеченные наборы

- Т.к. {e} частый, то ищем частые поднабры с расширенным суффиксом: de,ce,be,ae.
- Рассмортим de. Строим условное FP-дерево при условии окончания на е.
 - Обновляем счетчики: например, путь null->b:2->c:2->e:1 содержит {b,c}. Т.к. условие=окончание на е, то пересчитываем поддержку:

$$null - > b: 1 - > c: 1 - > e: 1$$

- ② некоторые товары могут перестать быть частыми в условном дереве, например "b", т.к. #{b,e}=1.
- § убираем узлы с "e" (т.к. счетчики выше уже учитывают наличие "e" в конце)

Заключение

- Ассоциативные правила эффективный метод извлечения интерпретируемых зависимостей в дискретных данных.
 - анализ покупательских корзин, политика, экология и др.
- Нужно быстро
 - искать частотные наборы (Apriori, FP-growth)
 - правила (Apriori)
- FP-growth быстрее Apriori.
- Развернутый обзор темы.