$$P(n) = \begin{cases} 1 & \text{si} & n=1 \\ \sum_{k=1}^{n-3} \left(P(k) \cdot P(n-k) \right) & \text{si} & n \ge 2 \end{cases}$$

$$P(4) = P(1) \cdot P(4-1) + P(2) \cdot P(4-2) + P(3) \cdot P(4-3) =$$

$$= P(1) \cdot P(3) + P(2) \cdot P(2) + P(3) \cdot P(1) =$$

$$= 1 \cdot 2 + 1 \cdot 1 + 2 \cdot 1 =$$

$$= 2 + 1 + 2 =$$

$$= 5$$

$$P(3) = P(1) \cdot P(2) + P(2) \cdot P(1) =$$
= 1 \cdot 1 + 1 \cdot 1 =

= 1 + 1 =

= 2

$$P(z) = P(1) \cdot P(1) = 1 \cdot 1 = 1$$

Casos base:

O si
$$f=c$$

T_{f,c} si f

c) Sea los matrices A y B, el número de multiplicaciones M es:

 $M = f_A \cdot f_G + C_A \cdot C_B$

	С					
J.	T	1	2	3	4	 5
3.	1					
	2					
	3					
	4					
	:					
	5					

1) Dimensiones relevantes

- El número de emborcaderos: N
- El coste de los trayectos : T

Creo que en este caso solo hay una dimensión, que es T.

T	; A	ß	C	D
Ai	0	1	3	5
В	_	0	2	4
С	_	_	0	7
D	_	~	_	0 utu

Ejemplo de posibles valores Ti,

Siendo i el embarcadero de origen y j el embarcadero de destino. Suponiendo la dirección $A \rightarrow B \rightarrow C \rightarrow D$, entonces $\exists T_{i,j}$, $i \le j \land \exists T_{ij}$, i > j, porque el río solo puede recoverse hacia Θ . En este caso, 4 embarcaderos: N = 4.

2) Instancios triviales

Para este problema, resulta muy cómodo pensar en los casos triviales, y es que cuando ya se está en un embarcadero, viajar a ese mismo embarcadero tiene un coste 0 (ya se está en él).

3) Representación en una estructura

las soluciones podrían representarse en una tabla identica, donde el valor de las casillas represente el coste mínimo para llegar al embarcadero actual;.

Se añadieron los casos base y restricciones

4) Establecer la recurrencia

Finalmente, la ecuación de Bellman obtenida, es:

$$C_{i,j} = \begin{cases} 0 & \text{si } i=j \\ \text{MÍN} \\ i < k \le j \end{cases} \left(T_{i,k} + C_{k,j} \right) \text{si } \ll \text{otro}$$

1) Dimensiones

- Mensaje : 5 = {S₁, ..., S_m}.
 Códigos.

		códigos (r=5)					
Tabla b		1	2	3		r	
	S ₄						
S	Sz			b2,3			
leusaje	S ₃						
Re	:				•	:	
	Sm				* * ,	b,,r	

2) Instancias triviales

$$\begin{cases} m = 1 \rightarrow \\ r = \dots \rightarrow \end{cases}$$

			códigos (r=5)				
	Tabla	C	1	2	3	4	5
Heusaje S		, S _{3, S} ,		د, د		C 3,4	

a) Como los peros deben repartirse en 2 montones, se busca que cada uno pese $\frac{\Sigma(P:)}{z}$ para que la diferencia entre ambos sea mínima.

Exemplo 2 3 1 4 5 7
$$n = 4$$
 11 2 333 4 $P = \{2, 3\}, \{1, 4\}\}$ Solución = $\{\{2, 3\}, \{1, 4\}\}\}$ Diff = 0

$$\sum (P_i) = 2+1+3+4 = 10 \rightarrow Se$$
 busca 5.

	ı		6			
Tabla A	0	1	2	3	4	5
1	✓	/	<u>-</u>	_	_	_
2	✓	\checkmark	/	\bigcirc	_	_
1 2 3 4	\checkmark	\checkmark	\checkmark	✓	_	\bigcirc
4	\checkmark	✓	✓	✓	/	

Sol: {s, 7, 10,8}

$$A_{f,c} = \begin{cases} m_{f,c} & \text{si} & f = n-1 \\ MAX_{c-1 \text{skec+1}} & (A_{f+1,k}) + m_{f,c} & \text{si} & f < n-1 \end{cases}$$