MATE 6540: Tarea 1

Due on 20 de septiembre *Prof. Iván Cardona* , C41, 20 de septiembre

Sergio Rodríguez

Problem 1

Sea d una métrica sobre X, entonces:

$$d'(x,y) = \frac{d(x,y)}{1 + d(x,y)} \tag{1}$$

es una métrica acotada tal que $\mathcal{T}_d = \mathcal{T}_{d'}$.

Demostraremos lo siguiente:

- a) d' define una métrica
 - 1. $d'(x,y) \ge 0$, $\forall x, y \in X$
 - $2. d'(x,y) = 0 \iff x = y, \forall x, y \in X$
 - 3. $d'(x,y) = d'(y,x), \forall x, y \in X$
 - 4. $d'(x,z) \le d'(x,y) + d'(y,z), \forall x, y, z \in X$
- b) d' es acotada
- c) $\mathcal{T}_d = \mathcal{T}_{d'}$

- a) Usamos las propiedades métricas de d para demostrar las mismas para d':

 - 1. $d(x,y) \geq 0$, $\forall x,y \in X \Longrightarrow \frac{d(x,y)}{1+d(x,y)} = d'(x,y) \geq 0$, $\forall x,y \in X$. 2. $(d(x,y) = 0 \Longleftrightarrow x = y, \ \forall x,y \in X) \Longrightarrow \left(\frac{d(x,y)}{1+d(x,y)} = d'(x,y) = 0 \Longleftrightarrow x = y, \ \forall x,y \in X\right)$. 3. $d'(x,y) = \frac{d(x,y)}{1+d(x,y)} = \frac{d(y,x)}{1+d(y,x)} = d'(y,x), \ \forall x,y \in X$.

 - 4. No me dio tiempo...
- b) Al ser métrica, sabemos que d' está acotada por abajo. Falta demostrar que está acotada por arriba. Suponga, por contradicción, que d'(x,y)>1. Entonces $\frac{d(x,y)}{1+d(x,y)}>1$, y como d es no negativa, d(x,y) > 1 + d(x,y). Lo cual es una contradicción. X
 - d' es acotada.
- c) No me dio tiempo, mi idea era usar el corolario 1.10 para comparar las bases dadas por las bolas abiertas dependientes de cada métrica.

MEP

Problem 2

 $Si\left\{\mathcal{T}_{\alpha}\right\}_{\alpha\in\Lambda}$ es una familia de topologías sobre X, demuestre que \bigcap \mathcal{T}_{α} es una topología sobre X. ¿Es $\bigcup \mathcal{T}_{\alpha}$ una topología?

Sea $\mathcal{T} = \ \bigcap$. Tenemos que demostrar:

- a) $\emptyset, X \in \mathcal{T}$,
- b) $U, V \in \mathcal{T} \Longrightarrow U \cap V \in \mathcal{T}, y$
- $\mathrm{c)} \ \left\{ U_{\gamma} \right\}_{\gamma \in \Lambda'} \subseteq \mathcal{T} \Longrightarrow \bigcup_{\gamma \in \Lambda'} \mathcal{T}_{\gamma} \in \mathcal{T}.$

Demo:

- a) Tome $\beta \in \Lambda$, entonces \mathcal{T}_{β} es una topología sobre X, por lo tanto, $\emptyset, X \in \mathcal{T}_{\beta}$, pero β fue seleccionada arbitrariamente, por lo tanto, $\emptyset, X \in \mathcal{T}_{\alpha}, \quad \forall \alpha \in \Lambda \Longrightarrow \emptyset, X \in \mathcal{T}$, por definición de la intersección.
- b) Tome $U,V\in\mathcal{T}$, entonces $U,V\in\mathcal{T}_{\alpha},\ \ \forall \alpha\in\Lambda$ por definición de intersección. Pero \mathcal{T}_{α} es una topología $\forall \alpha\in\Lambda$, por lo tanto $U\cap V\in\mathcal{T}_{\alpha} \forall \alpha\in\Lambda\Longrightarrow U\cap V\in\mathcal{T}.$
- c) Tome $\left\{U_{\gamma}\right\}_{\gamma\in\Lambda'}\subseteq\mathcal{T}$, entonces $\left\{U_{\gamma}\right\}_{\gamma\in\Lambda'}\subseteq\mathcal{T}_{\alpha},\ \ \forall \alpha\in\Lambda,$ pero \mathcal{T}_{α} es una topología $\forall \alpha\in\Lambda,$ por lo tanto $\bigcup_{\gamma\in\Lambda'}U_{\gamma}\in\mathcal{T}_{\alpha},\ \ \forall \alpha\in\Lambda\Longrightarrow\bigcup_{\gamma\in\Lambda'}U_{\gamma}\in\mathcal{T}.$
- $\therefore \mathcal{T} = \bigcap_{\alpha \in \Lambda} \mathcal{T}_{\alpha}$ es una topología sobre X.

MEP

En general, $\bigcup_{\alpha\in\Lambda}\mathcal{T}_{\alpha}$ no es una topología. Considere el siguiente contraejemplo:

$$X \coloneqq \{a,b,c\}, \quad \mathcal{T}_1 \coloneqq \{\emptyset,\{a\},\{b\},\{a,b\},\{a,c\},X\}, \quad \mathcal{T}_2 \coloneqq \{\emptyset,\{a\},\{c\},\{a,b\},\{b,c\},X\}.$$

No es difícil verificar que ambos \mathcal{T}_1 y \mathcal{T}_2 son topologías sobre X. Note que $\{b\}, \{c\} \in \mathcal{T}_1 \cup \mathcal{T}_2$, pero $\{b\} \cup \{c\} = \{b,c\} \notin \mathcal{T}_1 \cup \mathcal{T}_2$.

 $\therefore \mathcal{T}_1 \cup \mathcal{T}_2$ no es una topología.

Problem 3

Sea $\{\mathcal{T}_{\alpha}\}_{\alpha\in\Lambda}$ una familia de topologías sobre X. Demuestre que existe una topología única más pequeña que contiene todas las colecciones \mathcal{T}_{α} , y una topología única más grande contenida en todas las colecciones \mathcal{T}_{α} .

Demo:

Sea $\mathcal{T}:=\bigcap_{\alpha\in\Lambda}\mathcal{T}_{\alpha}$. Note que, por la definición de la intersección, $\mathcal{T}\subseteq\mathcal{T}_{\beta},\ \ \forall\beta\in\Lambda$. Además, \mathcal{T} es una topología, por el problema 2. Entonces \mathcal{T} es una topología que contiene todas las colecciones \mathcal{T}_{α} , falta demostrar que \mathcal{T} es la colección más grande que cumple con ambas condiciones. Sea \mathcal{T}' una topología tal que $\mathcal{T}'\subseteq\mathcal{T}_{\beta},\ \ \forall\beta\in\Lambda$. Pero entonces $\mathcal{T}'\subseteq\bigcap_{\alpha\in\Lambda}\mathcal{T}_{\alpha}=\mathcal{T}.$ \therefore \mathcal{T} es la topología más grande contenida en todas las colecciones \mathcal{T}_{α} .

El otro lado no me dio tiempo, pero mi idea era utilizar $\bigcup_{\alpha \in \Lambda} \mathcal{T}_{\alpha}$ como base para una topología y argumentar que es la topología más pequeña que contiene a $\mathcal{T}_{\alpha}, \ \ \forall \alpha \in \Lambda.$

MEP

Problem 4

Demuestre que la colección

$$\mathcal{C} = \{ [a, b) \mid a < b \land a, b \in \mathbb{Q} \}$$
 (2)

es una base que genera una topología distinta a la topología de límites inferiores sobre \mathbb{R} .

Para demostrar que $\mathcal C$ es una base para cierta topología, tenemos que demostrar:

- a) $\bigcup \mathcal{C} = X$, y
- b) $\forall B_1, B_2 \in \mathcal{C}$, y $\forall x \in B_1 \cap B_2$, $\exists B_3 \in \mathcal{C}$ tal que $x \in B_3 \subseteq B_1 \cap B_2$.

Demo:

- a) Note que $\mathbb{R}=\bigcup_{n=1}^{\infty}\subseteq\bigcup_{[a,b)\in\mathcal{C}}[a,b)=\bigcup\mathcal{C}\subseteq\mathbb{R}.$ $\therefore\bigcup\mathcal{C}=\mathbb{R}.$
- b) Tome $[a,b), [c,d) \in \mathcal{C}$. Si $b \leq c$, entonces $[a,b) \cap [c,d) = \emptyset$, y la proposición b) es vacíamente cierta. Si b > c, entonces $[a,b) \cap [c,d) \neq \emptyset$. Ahora tome $x \in [a,b) \cap [c,d) = [c,b) \in \mathcal{C}$. $\exists [c,b) \in \mathcal{C}$ tal que $x \in [c,b) \subseteq [a,b) \cap [c,d)$.
- $\therefore \mathcal{C}$ es una base para cierta topología sobre X.

Ahora, note que $[\sqrt{\pi}, \sqrt{\pi} + 1)$ es abierto en \mathbb{R}_l , pero $[\sqrt{\pi}, \sqrt{\pi} + 1) \notin \mathcal{T}_{\mathcal{C}}$, ya que no es unión arbitraria de elementos básicos (note que el extremo izquierdo tiene que estar incluido, pero es irracional).

 $:: \mathcal{T}_{\mathcal{C}}$ es una topología distinta a la topología de límites inferiores sobre \mathbb{R} .

MEP

Problem 5

Sea $X = \{f \mid f : [0,1] \rightarrow [0,1]\}$. Para cada subconjunto A de [0,1], defina

$$B_A = \{ f \in X \mid f(x) = 0, \forall x \in A \}.$$
 (3)

Demuestre que $\mathcal{B} = \{B_A \mid A \subseteq [0,1]\}$ es una base para una topología sobre X.

Nuevamente, tenemos que demostrar:

- a) $\mid \mathcal{B} = X, y$
- b) $\forall B_1, B_2 \in \mathcal{B}$, y $\forall x \in B_1 \cap B_2, \exists B_3 \in \mathcal{B}$ tal que $x \in B_3 \subseteq B_1 \cap B_2$.

Demo:

- a) Note que $\bigcup \mathcal{B} = \bigcup_{A \subseteq [0,1]} B_A$, entonces es claro que $\bigcup \mathcal{B} \subseteq X$. Ahora, tome $f \in X$, y considere $A \coloneqq \{x \in [0,1] \mid f(x) = 0\} \subseteq [0,1]$. Entonces $f \in B_A$ por construcción, por lo tanto, $f \in \bigcup_{A \subseteq [0,1]} B_A = \bigcup \mathcal{B} \Longrightarrow X \subseteq \mathcal{B}$. $\therefore \mid \mathcal{B} = X$
- b) Ahora tome $B_A, B_C \in \mathcal{B}$, y tome:

$$g \in B_A \cap B_C = \{ f \in X \mid f(x) = 0, \forall x \in A \land f(x) = 0, \forall x \in C \}$$
$$= \{ f \in X \mid f(x) = 0, \forall x \in A \cap C \} = B_{A \cap C} \in \mathcal{B}$$
(4)

- $\therefore \exists B_{A\cap C} \in \mathcal{B}$ tal que $g \in B_{A\cap C} \subseteq B_A \cap B_C$
- $\div \ensuremath{\mathcal{B}}$ es una base para cierta topología sobre X.

MEP