Gewöhnliche Differentialgleichungen Hausaufgaben Blatt 5

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: December 4, 2024)

Problem 1. Sei $A: \mathbb{R} \to \mathbb{R}^{2\times 2}$. Gegeben ist die Differentialgleichung $\dot{x} = A(t)x$ durch

$$\dot{x}_1 = (3t - 1)x_1 - (1 - t)x_2,$$

$$\dot{x}_2 = -(t+2)x_1 + (t-2)x_2.$$

- (a) Zeigen Sie, dass die Wronski-Determinante w durch $w = c \cdot e^{2t^2 3t}, c \in \mathbb{R}$ gegeben ist.
- (b) Eine Lösung der Differentialgleichung ist durch $\varphi_1: \mathbb{R} \to \mathbb{R}^2, \varphi_1(t) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{t^2}$ gegeben. Bestimmen Sie mit Hilfe der Wronski-Determinante w eine weitere von φ_1 linear unabhängige Lösung der Differentialgleichung.

(Hinweis: Setzen Sie dazu mit Begründung bei der Wronski-Determinante aus Teil a) für c einen festen Wert ein und benutzen Sie als Ansatz für die zweite Lösung $\varphi_2(t) = (u(t), v(t))^T$.)

Proof. (a) Das Gleichungsssystem können wir umschreiben als

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \underbrace{\begin{pmatrix} 3t - 1 & t - 1 \\ -(t+2) & t - 2 \end{pmatrix}}_{A(t)} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

mit Spur Tr(A)(t) = 4t - 3. Die Wronski-Determinante ist damit bestimmt durch die Gleichung

$$\dot{w} = (4t - 3)w$$

Die DGL hat Lösung

$$w = e^{\int 4t - 3dt} = c \cdot e^{2t^2 - 3t}$$

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

(b) Die Wronski-Matrix ist gegeben durch

$$W = \begin{pmatrix} e^{t^2} & u(t) \\ -e^{t^2} & v(t) \end{pmatrix}$$

mit Determinante

$$\det(W) = [u(t) + v(t)]e^{t^2} = c \cdot e^{2t^2 - 3t}.$$

Wir wählen c = 1 und damit

$$u(t) + v(t) = e^{t^2 - 3t}$$
.

Eine Lösung ist

$$u(t) = v(t) = \frac{1}{2}e^{t^2 - 3t}.$$

Problem 2. Gegeben sei die Differentialgleichung $\dot{x} = Ax$ mit $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$.

- (a) Bestimmen Sie die reellen Eigenschwingungen und mit diesen die allgemeine Lösung der Differentialgleichung und eine Fundamentalmatrix.
- (b) Bestimmen Sie mit den reellen Eigenschwingungen die Lösung der Differentialgleichung zum Anfangswert $x(1) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.
- Proof. (a) A hat charakteristisches Polynom $\lambda^2 2\lambda + 2$ und damit Eigenwerte $1 \pm i$. Da die Eigenwerte unterschiedlich sind, ist A diagonalisierbar. Die Eigenvektoren sind $(i,1)^T$ und $(-i,1)^T$ und damit die Eigenschwingungen

$$x_1(t) = e^{(1+i)t} \begin{pmatrix} i \\ 1 \end{pmatrix}, \qquad x_2(t) = e^{(1-i)t} \begin{pmatrix} -i \\ 1 \end{pmatrix}$$

Eine Fundamentalmatrix ist

$$B(t) = e^{t} \begin{pmatrix} ie^{it} & -ie^{-it} \\ e^{it} & e^{-it} \end{pmatrix}.$$

(b) Wir stellen den Anfangsvektor als linear Kombination der Eigenvektoren dar:

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix} = \left(\frac{1}{2} - i\right) \begin{pmatrix} i \\ 1 \end{pmatrix} + \left(\frac{1}{2} + i\right) \begin{pmatrix} -i \\ 1 \end{pmatrix}.$$

Zur Lösung der DGL wenden wir die Übergangsmatrix auf den Anfangsvektor an. Es ist aber bekannt, wie die Übergangsmatrix auf der Eigenschwingungen wirkt, wenn sich der Anfangszustand zur Zeit t=0 befände, und die Lösung ist

$$x(t) = \left(\frac{1}{2} - i\right) e^{(1+i)t} \begin{pmatrix} i\\1 \end{pmatrix} + \left(\frac{1}{2} + i\right) e^{(1-i)t} \begin{pmatrix} -i\\1 \end{pmatrix}$$

$$= e^{t} \begin{pmatrix} e^{it} \left(1 + \frac{i}{2}\right) + \left(1 - \frac{i}{2}\right) e^{-it}\\ \left(\frac{1}{2} - i\right) e^{it} + \left(\frac{1}{2} + i\right) e^{-it} \end{pmatrix}$$

$$= 2e^{t} \begin{pmatrix} \cos t - \frac{1}{2} \sin t\\ \frac{1}{2} \cos t + \sin t \end{pmatrix}$$

Da die Anfangszeit aber bei t=1 ist, kriegen wir die Lösung durch $t \to t-1$, also

$$x(t) = e^{t-1} \begin{pmatrix} 2\cos(t-1) - \sin(t-1) \\ \cos(t-1) + \sin(t-1) \end{pmatrix}.$$

Problem 3. (a) Berechnen Sie die Fundamentalmatrizen und Lösungen von

i)
$$\dot{x} = Ax$$
, $x(0) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$ mit $A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$ und
ii) $\dot{x} = Bx$, $x(0) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ mit $B = \begin{pmatrix} 0 & -1 & 1 \\ -3 & -2 & 3 \\ -2 & -2 & 3 \end{pmatrix}$.
iii) $\dot{x} = Cx$, $x(0) = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$ mit $C = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$.

(b) Wir erweitern a.iii) zu
$$\dot{x}=Cx+c(t)$$
 mit $c(t)=\begin{pmatrix} -t\,e^{-t}\\ e^{-t}\\ 1+t \end{pmatrix}$. Lösen Sie dieses Anfangswertproblem.

Proof. (a) i) A ist orthogonal diagonalisierbar mit Eigenwerte 4,2 und zugehörige Eigenvektoren $(-1,1)^T$ und $(1,1)^T$. Die allgemeine Lösung ist

$$x(t) = Ae^{4t} \begin{pmatrix} -1\\1 \end{pmatrix} + Be^{2t} \begin{pmatrix} 1\\1 \end{pmatrix}.$$

Da

$$\begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

ist

$$x(t) = e^{4t} \begin{pmatrix} -1 \\ 1 \end{pmatrix} + e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

ii) Die Eigenwerte von B sind -1, 1, 1. Da $B - \mathbb{I}$ Rang 1 hat, ist B diagonaliserbar. Die Eigenvektoren sind

$$\begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, \qquad \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \qquad \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.$$

Da

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix},$$

ist die Lösung

$$x(t) = \frac{1}{2}e^{-t} \begin{pmatrix} 1\\3\\2 \end{pmatrix} - \frac{1}{2}e^{t} \begin{pmatrix} -1\\1\\0 \end{pmatrix}$$

iii) C hat Eigenwerte -1, 1, 1. Da C-1 aber Rang 2 hat, ist C nicht diagonalisierbar. Der Eigenraum zum Eigenwert -1 ist $\mathrm{span}((0,1,0)^T)$ und der Eigenraum zum Eigenwert 1 ist $\mathrm{span}((-1,0,1)^T)$. Dann betrachten wir

$$(C-1)^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Deren Kern können wir einfach ablesen:

$$\ker(C - 1)^2 = \operatorname{span}\left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}\right)$$

Wir wählen als zweiter verallgemeinerter Eigenvektor $(1,0,0)^T$, da $(C-1)(1,0,0)^T = (-1,0,1)^T$. Nun schreiben wir den Anfangsvektor als lineare Kombination

$$\begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} = 3 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - 2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

und C in Jordan-Normalform C=D+N, wobei D diagonaliserbar und N nilpotent mit Index 2 ist. Die Matrixexponential ist

$$\exp(Ct) = \exp(Dt) \exp(Nt) = \exp(Dt)(1 + Nt).$$

Die Lösung der DGL ist

$$x(t) = 3e^{-t} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - (2+t)e^{t} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} - e^{t} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

(b) Die Lösung ist

$$x(t) = x_h(t) + \int_0^t e^{Cs} c(s) ds,$$

wobei x_h die Lösung der homogenen Gleichung ist. Eingesetzt ist

$$\int_{0}^{t} e^{Cs} c(s) \, ds = \int_{0}^{t} \begin{pmatrix} e^{s} (1-s) & 0 & -e^{s} s \\ 0 & e^{-s} & 0 \\ e^{s} s & 0 & e^{s} (s+1) \end{pmatrix} \begin{pmatrix} -se^{-s} \\ e^{-s} \\ 1+s \end{pmatrix}$$

$$= \int_{0}^{t} \begin{pmatrix} -t \left(-s + e^{s} (s+1) + 1\right) \\ e^{-2s} \\ e^{s} (s+1)^{2} - s^{2} \end{pmatrix} dt$$

$$= \begin{pmatrix} e^{t} \left(-t^{2} + t - 1\right) + \frac{1}{6} \left(2t^{3} - 3t^{2} + 6\right) \\ \frac{1}{2} - \frac{e^{-2t}}{2} \\ -\frac{t^{3}}{3} + e^{t} \left(t^{2} + 1\right) - 1 \end{pmatrix}$$

Die Allgemeine Lösung ist also

$$x(t) = 3e^{-t} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - (2+t)e^{t} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} - e^{t} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$+ \begin{pmatrix} e^{t} \left(-t^{2} + t - 1\right) + \frac{1}{6} \left(2t^{3} - 3t^{2} + 6\right) \\ \frac{1}{2} - \frac{e^{-2t}}{2} \\ -\frac{t^{3}}{3} + e^{t} \left(t^{2} + 1\right) - 1 \end{pmatrix}. \qquad \Box$$

Problem 4. Beurteilen Sie, ob die folgenden 3 Behauptungen wahr oder falsch sind.

Sie müssen bei dieser Aufgabe keine Begründungen angeben.

Für jede richtig beantwortete Frage gibt es einen Punkt.

Für jede falsch beantwortete Frage wird ein Punkt abgezogen.

Für jede nicht beantwortete Frage gibt es keine Punkte.

Die gesamte Aufgabe wird mit mindestens 0 Punkten bewertet (sie können also nicht z.

B. -1 Punkte bekommen). Insgesamt können bis zu 3 Punkte erreicht werden.

	Wahr	Falsch
Die Differentialgleichung $\dot{x}(t) = \frac{\arctan(t)x^3}{1+x^2} + e^{-t^2}\sin(x) + 1$, $x(t_0) = \frac{\arctan(t)x^3}{1+x^2} + \frac{1}{2}\sin(x) + \frac{1}{2}$		
x_0 hat für alle $(t_0, x(t_0)) \in \mathbb{R}^2$ eine eindeutige Lösung.		
Die Funktionen $\varphi_1, \ldots, \varphi_n, \varphi_i(t) = e^{\mu_i t}, i = 1, \ldots, n$, genau dann		
\mathbb{R} -linear unabhängig sind, wenn $\mu_1, \dots, \mu_n \in \mathbb{R}$ paarweise ver-		
schieden sind.		
Es sei $\dot{x} = f(t,x), x(t_0) = x_0, f: Z_{a,b} \to \mathbb{R}$. Ist f in x lipschitz-		
stetig, so ist f auch in x stetig, womit es nach dem Satz von Picard-		
Lindelöf eine eindeutige Lösung gibt.		

		Wahr	Falsch
Proof.	Die Differentialgleichung $\dot{x}(t) = \frac{\arctan(t)x^3}{1+x^2} + e^{-t^2}\sin(x) + 1$, $x(t_0) = \frac{\arctan(t)x^3}{1+x^2} + \frac{1}{2}\sin(x) + \frac{1}{2}$	×	
	x_0 hat für alle $(t_0, x(t_0)) \in \mathbb{R}^2$ eine eindeutige Lösung.		
	Die Funktionen $\varphi_1, \ldots, \varphi_n, \varphi_i(t) = e^{\mu_i t}, i = 1, \ldots, n$, genau dann		×
	\mathbb{R} -linear unabhängig sind, wenn $\mu_1, \ldots, \mu_n \in \mathbb{R}$ paarweise ver-		
	schieden sind.		
	Es sei $\dot{x} = f(t,x), x(t_0) = x_0, f: Z_{a,b} \to \mathbb{R}$. Ist f in x lipschitz-		×
	stetig, so ist f auch in \boldsymbol{x} stetig, womit es nach dem Satz von Picard-		
	Lindelöf eine eindeutige Lösung gibt.		