

Тамарин Вячеслав

9 ноября 2020 г.

Оглавление

1	Введение в теорию сложности вычислений			5
		1.0.1	Напоминания	5
		1.0.2	Детерминированная машина Тьюринга	6
	1.1	Класс	ы сложности	8
		1.1.1	Классы DTIME и Р	8

ОГЛАВЛЕНИЕ 4

Глава 1

Введение в теорию сложности вычислений

Лекция 1: †

1.0.1 Напоминания

Обсудим, что мы решаем.

Обозначение.

- Алфавит будет бинарный $\{0,1\}$;
- Множество всех слов длины $n: \{0,1\}^n$;
- Множество всех слов конечной длины $\{0,1\}^*$;
- Длина слова x: |x|.

Определение 1

Язык (задача распознавания, decision problem) — $L \subseteq \{0,1\}^*$.

Индивидуальная задача — пара, первым элементом которой является условие, а второй — решение; принадлежит $\{0,1\}^* \times \{0,1\}^*$.

Массовая задача — некоторое множество индивидуальных задач, то есть бинарное отношение на $\{0,1\}^*$.

Определение 2

Будем говорить, что алгоритм **решает задачу поиска** для массовой задачи R, если для условия x он находит решение w, удовлетворяющее $(x, w) \in R$.

Можем сопоставить массовой задаче, заданной отношением R, язык

$$L(R) - \{x \mid \exists w \colon (x, w) \in R\}.$$

Пример 1.0.1 (Массовая задача и соответствующий язык).

$$\widehat{FACTOR} = \{(n, d) \mid d | n, \ 1 < d < n\}.$$

Здесь условием задачи является натуральное число n, а решением некоторый (не 1, и не n) числа n. Данной задаче соответствует язык

$$L(\widetilde{\mathrm{FACTOR}}) =$$
 множество всех составных чисел.

1.0.2 Детерминированная машина Тьюринга

Определение 3: Детерминированная машина Тьюринга

Детерминированная машина Тьюринга —

- конечный алфавит (с началом ленты и пробелом): $\Sigma = \{0, 1, \triangleright, _\}$;
- несколько лент, бесконечных в одну сторону;
- читающие/пишущие головки, по одной на каждую ленту;
- конечное множество состояний, в том числе начальное (q_S/q_0) , принимающее (q_Y/q_{acc}) и отвергающее (q_N/q_{rej}) ;
- ullet управляющее устройство (программа), содержащее для каждых $q, c_1, \dots c_k$ одну инструкцию вида

$$(q, c_1, \dots c_k) \mapsto (q', c'_1, \dots c'_k, d_1, \dots d_k),$$

где $q,q'\in Q$ — состояния, $c_i,c_i'\in \Sigma$ — символы, обозреваемые головками, $d_i\in \{\to,\leftarrow,\cdot\}$ — направления движения головок.

ДМТ **принимает** входное слово, если заканчивает работу в q_{acc} , и **отвергает**, если заканчивает в q_{rej} .

ДМТ M распознает язык A, если принимает все $x \in A$ и отвергает все $x \notin A$.

$$A = L(M)$$
.

Замечание. Обычно есть отдельная строка только для чтения, куда записаны входные данные, и строка только для вывода, куда нужно поместить ответ. Остальные строки будут рабочими.

Определение 4

Время работы машины M на входе x — количество шагов (применений инструкций) до достижения q_{acc} или q_{rej} .

Используемая память — суммарное крайнее правое положение всех головой на paboux лентах.

Теорема 1.0.1. Для любого $k \in \mathbb{N}$, работу ДМТ M c k рабочими лентами, работающую t шагов, можно промоделировать на ДМТ c двумя рабочими лентами за время $\mathcal{O}(t \log t)$, где константа $O(\ldots)$ зависит только от размеров записи машины M).

• Перестроим исходную МТ:

- Запишем все ленты в одну строку по символу из всех лент по очереди.
- Будем бегать «лентой по головке»: выровняем все ленты, чтобы головки стояли друг над другом и далее будем сдвигать нужную ленту.
- Заметим, что двустороннюю ленту можно смоделировать на односторонней с увеличением количества операций в константу раз: разрезаем двустороннюю пополам и записываем элементы через один.
- Теперь поймем, как экономично сдвигать ленты в однострочной записи.

Разобьем строку на блоки начиная от позиции головки в две стороны: справа блоки R_i , слева L_i . При этом $|L_i| = |R_i| = 2^i$. Раздвинем символы, заполняя пустоту специальными символами пустоты, так, чтобы в каждом блоке ровно половина элементов были пустыми.

Далее будем поддерживать такое условие:

- 1. В блоке либо информация, либо пусто, либо наполовину пусто
- $2.~L_i$ пустой, согда R_i полный
- 3. L_i наполовину пустой, согда R_i наполовину полный
- 4. L_i полный, согда R_i пустой

Рис. 1.1: Построение новой МТ

Пусть нужно подвинуть головку влево. Найдем слева первый не пустой блок L_i . Возьмем из него правую половину и разложим по пустым $L_{< i}$ так, чтобы порядок сохранился и каждый из $L_{< i}$ стал полупустым, а первый символ попал под головку.

Так получится сделать, так как всего перемещаемых символов 2^{i-1} , а в j-й блок будет помещено 2^{j-1} символов, поэтому всего в $L_{< i}$ поместится

$$1 + 2 + 4 + \ldots + 2^{i-2} = 2^{i-1} - 1.$$

И один символ под головку.

Чтобы инвариант сохранился нужно теперь исправить правую часть.

Так как первые i-1 левых блоков были пусты, первые i-1 правых блоков полны, а R_i пуст. Заполним половину в R_i символами из R_{i-1} . Теперь R_{i-1} пустой, а меньшие полные. Проделаем ту же операцию еще раз для i-1, потом для i-2 и так далее.

Кода мы дойдем до R_1 , положим туда элемент из-под головки.

Итого, инвариант сохранился.

Рис. 1.2: Структура блоков

• Посчитаем количество операций. В алгоритме мы переносим различные отрезки из одного места в другое. Чтобы делать это за линию, сначала скопируем нужный участок на вторую ленту, а затем запишем с нее.

Тогда при перераспределении происходит $c \cdot 2^i$ операций: каждый символ переносили константное число раз (на вторую ленту, со второй ленты) плюс линейное перемещение от L_i к R_i несколько раз.

Докажем, что с i-м блоком происходят изменения не чаще 2^{i-1} шагов. Пусть L_i пустой хотя бы наполовину заполнен. Когда мы забрали половину из него, мы заполнили все $L_{< i}$ и $R_{< i}$ наполовину.

Поэтому, чтобы изменить L_i еще раз, нужно сначала опустошить все $L_{< i}$. При перераспределении в левой части становится на один элемент меньше, а всего там 2^{i-1} заполненное место. Для того, чтобы все они ушли из левой половины, придется совершить 2^{i-1} сдвигов.

Итого, для t шагов исходной машины будет

$$\sum_{i} c \cdot 2^{i} \cdot \frac{t}{2^{i-1}} = \mathcal{O}(t \log t).$$

Теорема 1.0.2 (Об универсальной МТ). Существует ДМТ U, выдающая на входе (M, x) тот же результат, что дала бы машина M на входе x, за время $\mathcal{O}(t \log t)$, где t — время работы M на входе x.

□ Используем прием из прошлой теоремы 1.0.1.

1.1 Классы сложности

1.1.1 Классы РТІМЕ и Р

Определение 5: Конструируемая по времени функция

Функция $t \colon \mathbb{N} \to \mathbb{N}$ называется конструируемой по времени, если

- $t(n) \geqslant n$:
- ullet двоичную запись t(|x|) можно найти по входу x на ДМТ за t(|x|) шагов.

Определение 6: Класс DTIME

Язык L принадлежит классу DTIME[t(n)], если существует ДМТ M, принимающая L за время $\mathcal{O}(t(n))$, где t конструируема по времени.

Константа может зависеть от языка, но не от длины входа.

Определение 7: Класс Р

Класс языков, распознаваемых за полиномиальное время на ДМТ —

$$\mathbf{P} = \bigcup_{c} \mathtt{DTIME}[n^c].$$

Будем обозначать задачи, заданные отношениями волной.

Определение 8

Массовая задача R полиномиально ограничена, если существует полином p, ограничивающий длину кратчайшего решения:

$$\forall x \ \Big(\exists u \colon (x, u) \in R \Longrightarrow \exists w \colon \big((x, w) \in R \land |w| \leqslant p(|x|)\big)\Big).$$

Массовая задача R полиномиально проверяема, если существует полином q, ограничиваю-

щий время проверки решения: для любой пары (x, w) можно проверить принадлежность $(x, w) \stackrel{?}{\in} R$ за время q(|(x, w)|).

Определение 9: Класс $\widetilde{\mathtt{NP}}$

 $\widetilde{\text{NP}}$ — класс задач поиска, задаваемых полиномиально ограниченными полиномиально проверяемыми массовыми задачами.

Определение 10: Класс \widetilde{P}

 $\widetilde{\mathtt{P}}$ — класс задач поиска из $\widetilde{\mathtt{NP}}$, разрешимых за полиномиальное время.

То есть класс задач поиска, задаваемых отношениями R, что для всех $x \in \{0,1\}^*$ за полиномиальное время можно найти w, для которого $(x,w) \in R$.

Ключевой вопрос теории сложности $\widetilde{P} \stackrel{?}{=} \widetilde{NP}$

Определение 11: Класс NP

NP — класс языков (задач распознавания), задаваемых полиномиально ограниченными полиномиально проверяемыми массовыми задачами:

$$NP = \{ L(R) \mid R \in \widetilde{NP} \}.$$

 $\it Замечание.\ L\in {\tt NP},$ если существует массовая п.о.п.п. 1 задача, такая, что

$$\forall x \in \{0,1\}^* \colon x \in L \iff \exists w \colon (x,w) \in R.$$

Определение 12: Класс Р

Р— класс языков (задач распознавания), распознаваемых за полиномиальное время.

$$\mathbf{P} = \{L(R) \mid R \in \mathbf{P}\}.$$

Замечание. Очевидно, P ⊂ NP.

Ключевой вопрос теории сложности Р $\stackrel{?}{=}$ NP

¹полиномиально ограниченная полиномиально проверяемая