Digital System Design

Lecture 2 Logic Minimization

Reading Assignment:

 Brown, "Fundamentals of Digital Logic with VHDL, pp. 22 - 56, pp. 168 - 207, pp.211 - 219

Learning Objective:

- Review the Boolean Algebra
- Review all aspects of the synthesis process, starting with an initial design and performing the optimization steps needed to generate a desired final circuit

Analog vs Digital

- Digital Information is more robust to noise than analog information.
- In digital information, exact voltage values are not important, only their class (1 or 0).

Signal Levels for Binary Logic Values

Digital logic gates

Name	Graphic symbol	Algebraic function	Truth table
AND	$x \longrightarrow F$	$F = x \cdot y$	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$
OR	$x \longrightarrow F$	F = x + y	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
Inverter	x— F	F = x'	$\begin{array}{c cc} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array}$
Buffer	x— F	F = x	$\begin{array}{c cc} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array}$

Digital logic gates

			x y F
NAND	$x \longrightarrow F$	F = (xy)'	0 0 1
	y	,	$egin{array}{c ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}$
			1 1 0
			$x y \mid F$
NOD	$x \longrightarrow \Gamma$	$E = (x \pm y)'$	0 0 1
NOR	$y \longrightarrow F$	F = (x + y)'	0 1 0
			$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$
			1 1 0
			x y F
Exclusive-OR	$x \longrightarrow \Gamma$	F = xy' + x'y	0 0 0
(XOR)	$y \longrightarrow F$	$= x \oplus y$	$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
			$\begin{array}{cccc} 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$
			1 1 0
			x y F
Exclusive-NOR	$x \longrightarrow \Gamma$	F = xy + x'y'	0 0 1
or equivalence	$y \longrightarrow F$	$= (x \oplus y)'$	0 1 0
equivalence	•		1 0 0
			1 1 1

Basic Theorems and Properties of Boolean Algebra

Duality

- the binary operators are interchanged; AND ⇔ OR
- the identity elements are interchanged; 1 ⇔ 0

Table 2.1Postulates and Theorems of Boolean Algebra

Postulate 2	(a)	x + 0 = x	(b)	$x \cdot 1 = x$
Postulate 5	(a)	x + x' = 1	(b)	$x \cdot x' = 0$
Theorem 1	(a)	x + x = x	(b)	$x \cdot x = x$
Theorem 2	(a)	x + 1 = 1	(b)	$x \cdot 0 = 0$
Theorem 3, involution		(x')' = x		
Postulate 3, commutative	(a)	x + y = y + x	(b)	xy = yx
Theorem 4, associative	(a)	x + (y + z) = (x + y) + z	(b)	x(yz) = (xy)z
Postulate 4, distributive	(a)	x(y+z) = xy + xz	(b)	x + yz = (x + y)(x + z)
Theorem 5, DeMorgan	(a)	(x + y)' = x'y'	(b)	(xy)' = x' + y'
Theorem 6, absorption	(a)	x + xy = x	(b)	x(x + y) = x

Minterms and Maxterms

• each maxterm is the complement of its corresponding minterm, and vice versa $m_i' = M_i$

Table 2.3 *Minterms and Maxterms for Three Binary Variables*

			M	interms	Maxte	erms				
X	y	Z	Term	Designation	Term	Designation				
0	0	0	x'y'z'	m_0	x + y + z	M_0				
0	0	1	x'y'z	m_1	x + y + z'	M_1				
0	1	0	x'yz'	m_2	x + y' + z	M_2				
0	1	1	x'yz	m_3	x + y' + z'	M_3				
1	0	0	xy'z'	m_4	x' + y + z	M_4				
1	0	1	xy'z	m_5	x' + y + z'	M_5				
1	1	0	xyz'	m_6	x' + y' + z	M_6				
1	1	1	xyz	m_7	x' + y' + z'	M_7				

Conversion Between Canonical Forms

- Easy to convert between minterm and maxterm representations
- ° For maxterm representation, select rows with 0's

sum of minterms = product of maxterms

Three-Way Light Control (\(\chi_{\mathcal{D}} \epsilon \)

Assume that a large room has three doors and that a switch near each door controls a light in the room. It has to be possible to turn the light on or off by changing the state of any one of the switches.

意见新年每多一個 1, status change

x_1	x_2	x_3	$\int f$
0 0 0 0 0 1 1	0 0 1 1 0 0	0 1 0 1 0	0 1 %3 1 %2 0 %2%3 1 %1 0 %1%3
1		$0 \\ 1$	0 11 x1 x2 x3
Ш	L	ш	" "\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Sum-of-products realization

Product-of-sums realization

																	_	
																	_	
																	_	
																	_	
																	_	
																	_	
																	_	
																	_	
																	_	
																	+	
																	+	
																	+	
																	+	
																	+	
																	+	
																	+	
																	+	
																	+	
																	+	

NAND Network

NOR Network

Multilevel NAND Network

Multilevel NOR Network

(b) Inversions needed to convert to NORs

Strategy for Minimization

- A variable either uncomplemented or complemented is called a literal.
- A product term that indicates when a function is equal to 1 is called an *implicant*.
- An implicant that cannot have any literal deleted and still be a valid implicant is called a prime implicant.
- A collection of implicants that accounts for all input combinations in which a function evaluates to 1 is called a cover.
- An essential prime implicant includes a minterm covered by no other prime.
- Cost is number of gates plus number of gate inputs. Assume primary inputs available in both true and complemented form.

An Example

There are 11 implicants: $\overline{x_1}\overline{x_2}\overline{x_3}$ $\overline{x_1}\overline{x_2}x_3$ $\overline{x_1}x_2x_3$ $\overline{x_1}x_2\overline{x_3}$ $\overline{x_1}x_2x_3$ $\overline{x_1}x_2x_3$ $\overline{x_1}x_2$ $\overline{x_1}x_2$ $\overline{x_1}x_2$ $\overline{x_1}x_2$ $\overline{x_1}x_3$ $\overline{x_1}x_3$ $\overline{x_1}x_3$ $\overline{x_2}x_3$ $\overline{x_1}$

There are two prime implicants: \bar{x}_1 x_2x_3

(also essential prime implicants)

Minimization Procedure

- Generate all prime implicants.
- Find all essential prime implicants.
- If essential primes do not form a cover, then select minimal set of non-essential primes.

An Example

There are 5 prime implicants: \overline{x}_1x_3 \overline{x}_2x_3 $x_3\overline{x}_4$ $\overline{x}_1x_2x_4$ $x_2\overline{x}_3x_4$

There are 3 essential prime implicants: \overline{x}_2x_3 $x_3\overline{x}_4$ $x_2\overline{x}_3x_4$

To form a cover: $\overline{x}_2 x_3 + x_3 \overline{x}_4 + x_2 \overline{x}_3 x_4 + ?$

The minimum cost cover: $\overline{x}_2 x_3 + x_3 \overline{x}_4 + x_2 \overline{x}_3 x_4 + \overline{x}_1 x_3$

Multiple-Output Circuits

- Necessary to implement multiple functions.
- Circuits can be combined to obtain lower cost solution by sharing some gates.

(a) Function f₁

(c) Combined circuit for f_1 and f_2

(b) Function f_2

A Tabular Method for Minimization

The function is defined as

$$f(x_1, \dots, x_4) = \sum m(0, 4, 8, 10, 11, 12, 13, 15)$$

Generation of Prime Implicants $P = \{10x0, 101x, 110x, 1x11, 11x1, xx00\}$

$$P = \{10x0, 101x, 110x, 1x11, 11x1, xx00\}$$
$$= \{p_1, p_2, p_3, p_4, p_5, p_6\}$$

List 1

0	0 0 0 0	✓
4 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	✓
10 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V
11 13	1 0 1 1 1 1 0 1	✓
15	1 1 1 1	✓

拉有一個不同的

	4-119 17 10 10 10 10 10 10 10 10 10 10 10 10 10
0,4	0 x 0 0
0,8	x 0 0 0
8,10	1 0 x 0
4,12	x 1 0 0
8,12	1 x 0 0
10,11	1 0 1 x
12,13	1 1 0 x
11,15	1 x 1 1
13,15	1 1 x 1

List 3

0,4,8,12	x x 0 0
----------	---------

Figure 4.36

																	_	
																	_	
																	_	
																	_	
																	_	
																	_	
																	_	
																	_	
																	_	
																	+	
																	+	
																	+	
																	+	
																	+	
																	+	
																	+	
																	+	
																	+	
																	+	

A Tabular Method for Minimization

■ Determination of a Minimum Cover

To find a minimum-cost cover, we construct a *prime implicant cover table* in which there is a row for each prime implicant and a column for each minterm that must be covered. Then we place check marks to indicate the minterms covered by each prime implicant. Figure 4.37a shows the table for the prime implicants derived in Figure 4.36. If there is a single check mark in some column of the cover table, then the prime implicant that covers the minterm of this column is *essential* and it must be included in the final cover. Such is the case with p_6 , which is the only prime implicant that covers minterms 0 and 4. The next step is to remove the row(s) corresponding to the essential prime implicants and the column(s) covered by them. Hence we remove p_6 and columns 0, 4, 8, and 12, which leads to the table in Figure 4.37b.

Now, we can use the concept of *row dominance* to reduce the cover table. Observe that p_1 covers only minterm 10 while p_2 covers both 10 and 11. We say that p_2 dominates p_1 . Since the cost of p_2 is the same as the cost of p_1 , it is prudent to choose p_2 rather than p_1 , so we will remove p_1 from the table. Similarly, p_5 dominates p_3 , hence we will remove p_3 from the table. Thus, we obtain the table in Figure 4.37c. This table indicates that we must choose p_2 to cover minterm 10 and p_5 to cover minterm 13, which also takes care of covering minterms 11 and 15. Therefore, the final cover is

A Tabular Method for Minimization

(a) Initial prime implicant cover table

(b) After the removal of essential prime implicants

	作と	ver		
Prime		Min	term	
implicant	10	11	13	15
p_2	✓	✓		
p_4		\checkmark		✓
p_5			✓	✓

the minimum-cost implementation of the function is

$$f = x_1 \overline{x}_2 x_3 + x_1 x_2 x_4 + \overline{x}_3 \overline{x}_4$$

$$| v |_{\mathcal{X}} \qquad | | x |_{\mathcal{X}} \qquad | x |_{\mathcal{X}}$$

(c) After the removal of dominated rows

A Tabular Method Example

Problem: Use the tabular method to derive a minimum-cost SOP expression for the function

$$f(x_1, \ldots, x_4) = \overline{x}_1 \overline{x}_3 \overline{x}_4 + x_3 x_4 + \overline{x}_1 \overline{x}_2 x_4 + x_1 x_2 \overline{x}_3 x_4$$

assuming that there are also don't-cares defined as $D = \sum (9, 12, 14)$.

Solution: $f(x_1, ..., x_4) = \sum m(0, 1, 3, 4, 7, 11, 13, 15) + D(9, 12, 14)$

List 1

0	0 0 0 0	✓
1	0 0 0 1	✓
4	0 1 0 0	✓
3	0 0 1 1	✓
9	1 0 0 1	✓
12	1 1 0 0	✓
7	0 1 1 1	✓
11	1 0 1 1	✓
13	1 1 0 1	✓
14	1 1 1 0	✓
15	1 1 1 1	✓

List 2

					_
0,1	0	0	0	X	
0,4	0	X	0	0	
1,3	0	0	x	1] 🗸
1,9	X	0	0	1	✓
4,12	X	1	0	0	
3,7	0	X	1	1	_/
3,11	X	0	1	1	V
9,11	1	0	X	1	V
9,13	1	X	0	1	V
12,13	1	1	0	X	V
12,14	1	1	X	0	✓
7,15	х	1	1	1	\ \
11,15	1	X	1	1	V
13,15	1	1	X	1	V
14,15	1	1	1	X	V

List 3

1,3,9,11	x 0 x 1
3,7,11,15	x x 1 1
9,11,13,15	1 x x 1
12,13,14,15	1 1 x x

$$P = \{000x, 0x00, x100, x0x1, xx11, 1xx1, 11xx\}$$

= \{p_1, p_2, p_3, p_4, p_5, p_6, p_7\}

A Tabular Method Example

Prime					term			
implicant	0	1	3	4	7	11	13	15
$p_1 = 0 \ 0 \ 0 \ x$	✓	✓						
$p_2 = 0 \times 0 0$	✓			✓				
$p_3 = x \ 1 \ 0 \ 0$				\checkmark				
$p_4 = x \cdot 0 \cdot x \cdot 1$		✓	✓			✓		
$p_5 = x \times 1 \cdot 1$			✓		✓	✓		✓
$p_6 = 1 \times 1$						\checkmark	✓	✓
$p_7 = 1 \cdot 1 \cdot x \cdot x$							✓	✓

(a) Initial prime implicant cover table

Prime	Minterm
implicant	0 1 4 13
$p_1 = 0 \ 0 \ 0 \ x$	✓ ✓
$p_2 = 0 \times 0 0$	✓ ✓
$p_4 = x \cdot 0 \cdot x \cdot 1$	✓
$p_6 = 1 \times \times 1$	✓

$$C = \{p_2, p_4, p_5, p_6\}$$

the function is implemented as

$$f = \overline{x}_1 \overline{x}_3 \overline{x}_4 + \overline{x}_2 x_4 + x_3 x_4 + x_1 x_4$$