Máj farmakológiája

Pórszász Róbert

Máj funkciói

Funkció	Példa
Szénhidrát anyagcsere	Glükoneogenesis, glikogén raktározás
Zsír anyagcsere	Koleszterin bioszintézis, lipid katabolizmus Epeelválasztás
Fehérje anyagcsere	Albumin, globulin, alvadási faktorok
Aminosav anyagcsere	Zsír-szénhidrát acs. Kapcsolása Aromás aminosav Ornitin-urea ciklus → ammónia képződés Glutation rendszer
CYP450 rendszer	Fázis 1, fázis 2 reakciók

Májkárosodás lehetséges okai

- Farmakológiai vagy kémiai anyagok bejutása
 - Inhaláció
 - Orális
 - Parenterális
- Ipari mérgek (CCl₄, C₂HCl₃, sárga foszfor)
- Farmakonok (l. később részletesen)
- Gomba toxinok (hőstabil biciklusu<u>s oktape</u>ptidek)
 - Amanita muscaria (Légyölő galóca)
 - Amanita phalloides (Gyilkos galóca)
 - Galerina marginata (Fenyő tőkegomba) (mind a három amatoxint tartalmaz) → RNS polimeráz II ↓

Májkárosodás mechanizmusai

- Szabad gyök → Peroxidáció → sejt károsodás
- Intracelluláris fehérjékhez kötődés
- Apoptotikus utak aktivációja
- Epesav szállítással összefüggő fehérjékkel való reakció

Ezek következménye:

- Cholestasis, hepatocita necrosis, epeút károsodás
- Lipid és fehérje metabolizmus gátlása, szabad zsírsavak mitokondriális oxidációjának károsodása → laktát acidózis és ic. TG felhalmozódás → microvesicularis steatosis

Gyógyszer metabolit → hepatocita szenzitizáció → toxikus citokinek Constitutive Androstane Receptor (CAR)

Hepatotoxicitás 3 útja

- 1. Direkt májtoxikus típus
 - pl.: CCl₄, Amanita muscaria/phalloides
- 2. Indirekt májtoxikus típus
 - Cholestasist létrehozó anyagok, pl.:
 - oralis contraceptivumok,
 - C-17 anabolikus szteriodok
 - Imipramin
 - Chlorpromazin
 - Tolbutamide
- 3. Idiosyncrasia
 - Halothane, INH, phenytoin, carbamazepine

Direkt májkárosodás

Máj szövettani változás	Toxin	
Centrilobularis zonalis necrosis	CCl_4 , $\mathrm{C}_2\mathrm{HCl}_3$	
Periportalis károsodás	Sárga foszfor	
Masszív máj necrosis	Amanita phalloides (10 mg halálos, melyet egyetlen gomba is tartalmazhat)	
Microvesicularis zsír depositio	Tetracycline (>1,5 g/nap i.v.)	
Bridging hepaticus necrosis	Methyldopa	
Hepaticus granuloma	Sulfonamidok	
Steatohepatitis	Reverse transcriptase inhibitorok (zidovudine, didanosine), protease inhibitorok (indinavir, ritonavir)	
Sinusoidokat bélelő sejtsor károsodás	Cyclophosphamide, melphalan, busulfan	

Idiosyncrasia alapú májkárosodás

- Enyhe, tranziens, nem-progresszív szérum aminotranszferáz emelkedés
 - Isoniazid, valproate, phenytoin, statins, halothane
- Extrahepatikus minifesztáció (betegek ¼)
 - Kiütés, ízületi fájdalom, láz, leukocitózis, eosinophilia

Autoantitestek: anti-LKM2 (liver kidney microsomal)

Microsomalis Antitest	Antigén	Betegség
Anti-LKM 1	Cytochrome P450 2D6	Autoimmune Hepatitis type II and Chronic Hepatitis C (10%)
Anti-LKM 2	Cytochrome P450 2C9	Drug Induced Hepatitis (Tienilic acid induced)
Anti-LKM 3	Cytochrome P450 1A2	Chronic Hepatitis D

Gyógyszer indukálta cholestasis lehetséges okai

Károsodás	Gyógyszer
Enyhe cholestasis limitált hepatocelluláris károsodással	Ösztrogén, 17,α-szubsztituált androgének
Gyulladásos cholestasis	Phenothiazinok, amoxicillin-clavulánsav kombináció, oxacillin, erythromycin
Sclerotizáló cholangiitis	Floxuridine intrahepatikus infúzió (colon cc máj metjének kezelésére)
Ductopeniás cholestasis	Rejectio, carbamazepine, chlorpromazine, TCA

Epesavak

Primér epesavak:

- Kólsav
- Kenodezoxikólsav

Secunder epesavak:

- Dezoxikólsav
- Litokólsav

Epe termelés és kiürülés

- Epetermelés fokozása (koleretikus (cholagog) hatás)
 - Epesavak

 - Glaubersó (nátrium szulfát, Na₂SO₄ O=S=O
 Mentol (TRPM8 agonista)
 Retek (Raphanus sativus)

 - Secretin
 - Fehérje bomlástermékek
- Epekiürülés fokozása (*kolekinetikus* hatás)
 - CCK
 - Curcuma domestica/longa/xanthorizza kurkumin (dicinnamiol-metán) (www.kurkuma.hu)
 - Glaubersó
 - Keserűső (magnézium szulfát, $MgSO_4$) Mg^{2+} $\left[\begin{array}{c} 0 \\ 0 \end{array}\right]^{2-}$

Kenodezoxikólsav (CDCA) Ursodezoxikólsav (UDCA)

Epe lipid (koleszterin) tartalmát csökkentik

Himalája medve (Yutan)

Epesavak megkötése

- Cholestiramine
- Cholestipol
- Ind: hasmenés, primer biliaris cirrhosis, pruritus

Acetaminophen (Paracetamol) toxicitás

Acetaminophen (Paracetamol) toxicitás

- Akut: 4 h nagy dózis (>25 g) → >300 μg/ml súlyos, < 150 μg/ml enyhe
- Krónikus: Napi limit 4g! (Alkoholista 2 g!)
- Rumack-Matthew nomogram

Fig. 1. Semilogarithmic plot of plasma acetaminophen levels vs. time.

Rumack BH, Matthew H, Acetaminophen Poisoning and Toxicity. Pediatrics 1975 (55)871-876

Single Acute Acetaminophen Overdose Nomogram

Nomogram: acetaminophen plasma concentration vs time after acetaminophen ingestion (adapted with permission from Rumack and Matthew. Pediatrics. 1975;55:871-876). The nomogram has been developed to estimate the probability of whether a plasma acetaminophen concentration in relation to the interval postingestion will result in hepatotoxicity and, therefore, whether acetylcysteine therapy should be administered.

CAUTIONS FOR USE OF THIS CHART-

- 1. Time coordinates refer to time postingestion.
- Graph relates only to plasma concentrations following a single, acute overdose ingestion.
- 3. The Treatment Line is plotted 25% below the Rumack-Matthew Line to allow for potential errors in plasma acetaminophen assays and estimated time from ingestion of an overdose (Rumack et al. Arch Intern Med. 1981;141(suppl):380-385).

Acetaminophen (Paracetamol) toxicitás

Acetaminophen (Paracetamol) toxicitás kezelése

- Mérgezést követő 30 percen belül
 - Gyomormosás
 - Orvosi szén v. cholestiramine

- Mérgezést követően 8 órán belül (24-36 h)
 - Szulfhidril vegyületek adása
 - Cysteamine, cystein, N-acetylcystein (5%, 140 mg/kg telítő, 70 mg/kg fenntartó 4 óránként 15-20 dózisig)
 - Máj transzplantáció (májelégtelenség fennáll az Nacetylcystein kezelés ellenére)
 - Májelégtelenség tünetei: progresszív sárgaság, coagulopathia, confusio

Halothane máj toxicitás

- Idiosyncrasia
- Genetikai predispositio (felnőttek, obesitas, nők)
- Láz, hányinger, hányás, leukocitózis, eozinofilia, sárgaság

Methyldopa májtoxicitás

- < 1 % vírusos vagy chr. hepatitishez hasonló kép vagy cholestasis 1-20 héten belül
- Bridging necrosis vagy macronodularis cirrhosis
- Reversibilis
- ACEI és ARB esetén is előfordulhat

Isoniazid májtoxicitás

- Szérum aminotranszferáz ↑ (toxikus metabolit (acetylhydrazine) okozza), gyors acetilálóknál súlyosabb
- Májbiopszia: bridging necrosis vagy vírus hepatitisre jellemző kép
- Az INH kezelt betegek 1 %-a érintett, de ezek 10 %-a súlyos eset
- Súlyosbítja: alkohol, rifampin, pyrazinamide

Valproát toxicitás

- Kezeltek 45 %-ánál asymptomaticus szérum aminotranszferáz ↑
- Therápiát nem kell félbeszakítani
- Sárgaság és encephalopathia kialakulása esetén szövettan: bridging necrosis epeút károsodással
- Metabolitja a 4-pentenoát felelős

Phenitoin májtoxicitás

- Ritkán hepatitis-szerű kép → fulmináns májkárosodással
- Láz, lymphadenopathia, kiütések (Stevens-Johnson sy., exfoliativ dermatitis), leukocytosis, eosinophilia
- Toxikus metabolitok (elektrofil arén-oxidok).
 Normálisan epoxid-hidrolázzal átalakul. Genetikai v. szerzett defektus → arén-oxidok máj makromolekuláihoz kötődnek.
- Therápia kezdetét 2 hónappal követi.

Amiodaron májtoxicitás

- 15-50 % enyhe szérum aminotranszferáz ↑
- Hepatomegália
- Anyavegyület és a dezetil-amiodaron a hepatocita lizoszómáiban és mitokondriumaiban valamint az epeutak epitéliumában deponálódik
- A gyógyszer abbahagyását kövtően hónapokig fennállhat.

Erythromycin hepatotoxicitás

- Gyerekeknél kolesztatikus reakció
- 2-3 hét múlva kezdődik (h. h. láz, jobb felső quadrans hasi fájdalom, sárgaság leukocytosis
- Máj biopszia: cholestasis, portalis gyulladás, PMN, eosinophil, hepatocita necrosis

Orális fogamzásgátló okozta májtoxicitás

- Intrahepaticus cholestasis viszketéssel, sárgasággal
- Reverzibilis
- Epekő! UH

Trimethoprim-sulfamethoxazole májtoxicitás

- Vizelet fertőtlenítésre
- Pneumocystis carinii prophylaxis
- Latencia néhány hét
- Eosinophilia, kiütés, hypersensitiv reakció
- Acut hepatocellularis necrosis

Májtoxicitás statinok alkalmazása esetén

- 1-2 %
- 3x reverzibilis aminotranszferáz ↑
- Centrilobularis necrosis/cholestasis
- Gyógyszer felfüggesztését mérlegelni kell.

Flatulencia ellenes szerek

• Simeticone (ESPUMISAN, INFACOL, LAXBENE, METEOSPASMYL, SAB SIMPLEX)

• α-galaktozidáz (Beano)

Májvédő szerek

- Silymarin (Silybum marianum, máriatövis, őszbogáncs, szamárkóró, Milk Thistle): silibinin, melyet az érett termés tartalmaz (Cardui mariae fructus)
 - Ind: gombamérgezés, cirrhosis, chr. Hepatitis, chr. Alkoholizmus
- Antibiotikumok (pl. neomycin)
- Lactulose \rightarrow bakteriális bomlás \rightarrow karboxilsav \rightarrow nem szívódik fel \rightarrow H₂O \rightarrow hasmenés.
 - ammónia felszívódása gátolt, baktérium flóra megváltozik
 - Ind: székrekedés, hepaticus encephalopathia
- Acidum thiocticum, tioktánsav, liponsav
 - Ind: Amanita phalloides mérgezés, alkoholos májlézió, hepatitis
- Kolin és metionin
 - Ind: zsírmáj

Silymarin tartalmú készítmények

Extractum fumariae officinalis = orvosi füstike kivonat (fumarin, fumársav, flavonoid tartalmú

Egyéb májvédő készítmények

Illóolajok: alfa- és béta-pinén, kamfén, cineol, mentol, menton, borneol

Fulmináns hepatitis therápiája

- Folyadék: 21/die
- Hypertoniás dextrose infusio 300 g glucose/die
- Parenteralis folsav, egyéb vitaminok
- Albumin infusio
- Mannitol infusio az agyödéma csökkentésére
- Parenteralis K vitamin, friss fagyasztott plasma infusio
- DE protrombin adása kontraindikált!!! a DIC veszély miatt!
- Acidosis kezelése
- Hemoperfusio
- Máj transplantatio

Encephalopathiával társuló májelégtelenség therápiája

- Ammónia képződés csökkentése
 - protein felvétel csökkentése, növényi fehérjék preferálása
 - neomycin
 - lactulose
- Ammónia beépülés fokozása
 - arginin infusio
 - Zn pótlás (karbamoil-phosphat synthase számára fontos)

Cirrhosis kezelése

- Antioxidansok adása → csökkentik a fibrosis kialakulását
- Portalis hypertensio kezelése
 - ß-blokkolók pl. propranolol csökkenti a blood flow-t a splanchnicus területen
 - Isosorbide-5-mononitrát javítja a collateralis átáramlást
- Vérzésben
 - somatostatin vagy octreotid
 - Sengstaken-Blakemore szonda
 - Sclerotizálás (Aetoxisclerol)
- Ascites kezelése
 - aldosteron antagonisták
 - furosemid
 - albumin infusio

Akut vírus hepatitis kezelése

- Hepatitis A megelőzése
 - személyi higiene
 - aktív immunizácio (HAV vaccina)
 - fejlődő országokba való beutazás veszélye

donor screening

orvosok számára: aktív immunizáció HBV recombinans

vaccinák (Recombivax, Engerix B)

• Valószinűsíthető HBV fertőzésben

2 napon belül passiv immunizatio anti-HBs

hyperimmunglobulin (HBIG) adása

hatásosság: 75-80 %

revaccinatio 1 hónappal később

újszülötteknek: HBsAG + anyának: passzív+aktív immunizáció

Chr. HBV infectio kezelése

- Protein- és energia gazdag ételek
- Alcohol abstinentia
- Aspirin mellőzése
- Antiviralis therapia
 - lamivudin + IFN-alpha (INTRON-A, Roferon A)
 - IFN-alpha 3x 10 ME/hét sc. 4-6 hónapig
 - Mellékhatások: influenzaszerű kép, alvászavarok, psychosis, myelosuppressio, májkárosodás

Chronicus HCV infectio terápiája: ribavirin + IFN-alpha

Kegyelemmel teljes Karácsonyi Ünnepeket!