Домашнее задание № 1

Сергей Миллер 494

8 сентября 2015 г.

Задача 1.

a)

$$b^*(a^*ab)^*a^* \tag{1}$$

Рассмотрим произвольное слово w, несодержащее подслова abb, то есть после любого вхождения подслова ab в w следующий символ либо a, либо ε . Значит w имеет вид

$$b \dots ba \dots aba \dots aba \dots aba \dots a$$
 (2)

Также очевидно, что регулярное выражение (1) задает слова вида (2). **б**)

$$([(a^2 + b^2)^*(ab + ba)]^2)^*(a^2 + b^2)^*$$
(3)

Анаогично рассмотрим произвольное слово w, подходящее под условие. Можно видеть, что это слово непосредственно разбивается на пары символов вида aa, bb, ab, ba (в каждую пару входят 2n и 2n+1 символы). Теперь можно заметить, что условие четности вхождения символов a и b в слово равносильно четности суммарного количества вхождений ab и ba в слово. А это значит, что слово можно разбить на четное число блоков, в которых сначала идет произвольное количество пар вида aa и bb, а после один блок ab или ba. А также после всех блоков опять может встретиться произвольное количество блоков aa и bb. Нетрудно видеть, что данное регуярное выражение задает слова ровно такого вида.

в)

$$([(a^{2} + b^{2})^{*}(ab + ba)]^{2})^{*}(a^{2} + b^{2})^{*}[b + (ab + ba)(a^{2} + b^{2})^{*}a]$$
(4)

Разобьем все подходящие слова w на 2 вида: w_1a и w_1b . Очевидно, что если $w=w_1b$, то w_1 описывается регулярным выражением предыдущей

задачи. Для описания случая $w = w_1 a$ составим регулярное выражение, анлогичное выражению из задачи 16, только здесь будет нечетное число необходимых блоков (так как оно должно описывать слова с нечетным числом символов a и b).

Задача 2. Является.

Рассмотрим два возможных случая:

$$\forall x \in \mathbb{N} \quad \exists p \in \mathbb{N} : p \ge n, \quad p \in \mathbb{P}, \quad p + 2 \in \mathbb{P} \tag{5}$$

когда это верно и неверно. В первом случае в язык будут входить все слова вида $a\ldots a$. То есть язык будет описываться регулярным выражением a^* . Во втором случае длина слов языка ограничена $n_0\in\mathbb{N}: \nexists p\geq n_0: p\in\mathbb{P}, p+2\in\mathbb{P}$ А значит, язык будет регулярным, так как содержит конечное число слов.

Задача 3. Рассмотрим произвольное слово $w \in L(1+e(fe)^*f)$. Если $w = \varepsilon$, то $w \in L((ef)^*)$. Иначе $w = w_{e_0}(w_{f_1}w_{e_1}\dots w_{f_n}w_{e_n})w_{f_0}$, где $w_{f_i} \in L(f)$ и $w_{e_i} \in L(e)$. Видно, что это слово очевидным образом разбивается на части длиной 2, имеющие вид: $w_e w_f$. То есть $w \in L((ef)^*)$. Обратное включение доказывается аналогично.

Задача 4. Докажем оба включения. Пусть, сначала $w \in L(e)$. Проведем индукцию по длине слова w. База индукции: $w_0 \in L(e)$ имеющее минимальную длину, среди всех слов языка. Так как e = ef + g, то $w_0 \in L(ef)$ или $w_0 \in L(g)$. Но, тогда в первом случае $w_0 = w_e w_f$ где $w_e \in L(e), w_f \in L(f)$, а так как $\varepsilon \notin L(f)$, то $|w_f| > 0$, что противоречит минимальности w_0 . Значит $w_0 \in L(g) \subset L(gf^*)$. База доказана. Теперь рассмотрим произвольное $w \in L(e)$. Аналогично базе либо $w \in L(g) \subset L(gf^*)$, либо $w \in L(ef)$ и $w = w_e w_f$, а так как $|w_f| > 0$, то по предположению индукции $w_e \in L(qf^*)$. Тогда очевидно, что и $w \in L(qf^*)$. Обратное включение доказывается аналогичной индукцией по длине слова из рассматриваемого языка. Пусть $w_0L(qf*)$ имеет минимальную длину из всех слов этого языка. Видно, что $w_0L(g)$ (так как иначе слово можно очевидным образом уменьшить). Откуда следует, что $w_0L(e)$. Аналогично рассмотрим произвольное wL(q), и либо $wL(g)\subset L(e)$, либо $w=w_{gf^*}w_f$, причем $w_{gf^*}\in L(e)$ по предположению индукции(так как $|w_f| > 0$ и поэтому $|w_{gf^*}| < |w|$). Тогда очевидно, что $w \in L(e)$. Что и требовалось.

Задача 5.

 $\mathbf{L} = ig\{w|$ в w не встречается подстрока $aa, (w[-1] = b || (w = b \dots ba) ig\}$

Действительно все такие слова имеют два вида: $b \dots bab \dots ba \dots b$ и $b \dots ba$. Поэтому во всех таких словах можно выделить несколько блоков: блок состоящий только из букв b, до первого вхождения a. Остальное слово разобьем на блоки вида: $ab \dots b$. Видно, что только последний блок может состоять ровно из одного символа a. Поэтому все слова такого вида описываются данным регулярным выражением. Обратное включение также очевидно: либо данное слово имеет вид b^*a , либо после каждой буквы a идет непустой блок из b. То есть все слова, описываемые этим регулярным выражением, принадлежат языку L.