Solutions to Homework #9.

1. Problem 3(b)(d) from Section 5.2 (make sure to prove your answer)

Solution: In both parts of the problem we will denote the given relation simply as \sim (ignoring the notations introduced in the book). Also, we will explicitly describe the equivalence class of each element, even though this was not formally asked in the book.

3(b): First we check that \sim is an equivalence relation. Take any $(x,y) \in \mathbb{R} \times \mathbb{R}$. Since x = x, by definition we have $(x,y) \sim (x,y)$, so \sim is reflexive.

Now take two points $(x, y), (z, w) \in \mathbb{R} \times \mathbb{R}$, and suppose that $(x, y) \sim (z, w)$. By definition this means x = z. But then also z = x and hence $(z, w) \sim (x, y)$. Thus, \sim is reflexive.

Finally, take three points $(x,y),(z,w),(u,v) \in \mathbb{R} \times \mathbb{R}$, and suppose that $(x,y) \sim (z,w)$ and $(z,w) \sim (u,v)$. By definition of \sim this means x=z and z=u. By transitivity of equality we get x=u and hence $(x,y) \sim (u,v)$. Thus, \sim is transitive.

Now we describe the equivalence classes. Fix a point $(a, b) \in \mathbb{R} \times \mathbb{R}$. By definition its equivalence class is

$$[(a,b)] = \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid (x,y) \sim (a,b)\} = \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid x=a\}$$

= {all points on the plane whose first coordinate is equal to a}.

Geometrically, each equivalence class here is a vertical line.

3(d): Proof of the fact that \sim is an equivalence relation is analogous to 3(b). Let us now describe the equivalence classes. Take any $(a,b) \in \mathbb{R} \times \mathbb{R}$. Then

$$[(a,b)] = \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid (x,y) \sim (a,b)\} = \{(x,y) \in \mathbb{R} \times \mathbb{R} \text{ s.t. } |x+y| = |a+b|\}.$$

Since $|a+b| \ge 0$, the equality |x+y| = |a+b| holds $\iff x+y = |a+b|$ or x+y = -|a+b|. Each of the equations x+y = |a+b| and x+y = -|a+b| defines a line with slope -1 passing through the point (a+b,0) in the first case and -(a+b,0) in the second case. Note that if a+b=0, the two lines are the same; otherwise they are different.

Thus, if $a + b \neq 0$, the equivalence class [(a, b)] is the union of two lines with slope -1 passing through (a + b, 0) and -(a + b, 0), respectively. If a + b = 0, the equivalence class [(a, b)] is the line with slope -1 passing through (0, 0).

2. Define a relation \sim on \mathbb{Z} by $x \sim y \iff x^2 \equiv y^2 \mod 5$ (that is, $x \sim y \iff 5 \mid (y^2 - x^2)$). Prove that \sim is an equivalence relation and describe the equivalence classes with respect to \sim : find the number of distinct equivalence classes and explicitly describe the elements in each class.

Solution: (1) reflexivity: For any x we have $x^2 - x^2 = 0$. Since $5 \mid 0$, we have $x \sim x$.

- (2) symmetry: Take any $x, y \in \mathbb{Z}$, and suppose that $x \sim y$, so that $5 \mid (y^2 x^2)$. By divisibility properties we have $5 \mid c(y^2 x^2)$ for any $c \in \mathbb{Z}$. In particular, this is true for c = -1. Since $(-1)(y^2 x^2) = x^2 y^2$, we deduce that $5 \mid (x^2 y^2)$ and hence $y \sim x$.
- (3) transitivity. Take any $x, y, z \in \mathbb{Z}$, and suppose that $x \sim y$ and $y \sim z$, so that $5 \mid (y^2 x^2)$ and $5 \mid (z^2 y^2)$. Using the divisibility property $((c \mid a) \land (c \mid b)) \Rightarrow (c \mid (a+b))$, we get $5 \mid ((y^2 x^2) + (z^2 y^2)) = z^2 x^2$, so $x \sim z$.

By definition for any $a \in \mathbb{Z}$ we have

$$[a] = \{x \in \mathbb{Z} \text{ s.t. } x \sim a\} = \{x \in \mathbb{Z} \text{ s.t. } a \sim x\} = \{x \in \mathbb{Z} \text{ s.t. } 5 \mid (x^2 - a^2)\}$$

(The second equality above holds since \sim is symmetric).

Next observe that since $x^2 - a^2 = (x - a)(x + a)$, we have

$$5 \mid (x^2 - a^2) \iff 5 \mid (x - a) \text{ or } 5 \mid (x + a).$$

The " \Rightarrow " holds by Euclid's lemma (since 5 is prime) and " \Leftarrow " holds by the divisibility property " $(u \mid v) \Rightarrow (u \mid vw) \forall w \in \mathbb{Z}$ ". Thus,

$$[a] = \{x \in \mathbb{Z} \text{ s.t. } 5 \mid (x - a) \text{ or } 5 \mid (x + a)\}$$

$$= \{x \in \mathbb{Z} \text{ s.t. } x - a = 5k \text{ or } x + a = 5k \text{ for some } k \in \mathbb{Z}\}$$

$$= \{x \in \mathbb{Z} \text{ s.t. } x = 5k + a \text{ or } x = 5k - a \text{ for some } k \in \mathbb{Z}\}.$$

In particular, we get $[0] = \{\text{all multiples of 5}\};$

[1] = {all integers of the form
$$5k + 1$$
 or $5k - 1$ with $k \in \mathbb{Z}$ }
= {all integers of the form $5k + 1$ or $5k + 4$ with $k \in \mathbb{Z}$ }

(the set of all integers of the form 5k-1 with $k \in \mathbb{Z}$ is the same as the set of all integers of the form 5k+4 with $k \in \mathbb{Z}$ since we can write 5k-1 as 5(k-1)+4 and 5k+4 as 5(k+1)-1). Similarly,

[2] = {all integers of the form
$$5k + 2$$
 or $5k - 2$ with $k \in \mathbb{Z}$ }
= {all integers of the form $5k + 2$ or $5k + 3$ with $k \in \mathbb{Z}$ }

From the above description we see that the classes [0], [1] and [2] are distinct and their union is the set of all integers (the division with remainder theorem tells us that any integer has the form 5k, 5k + 1, 5k + 2, 5k + 3 or 5k + 4 for some $k \in \mathbb{Z}$). Since distinct equivalence classes cannot overlap, there is no room for any additional equivalence classes, so we have the total of 3 distinct equivalence classes: [0], [1] and [2].

- **3.** For each of the following functions determine whether it is injective and whether it is surjective (include detailed justifications):
 - (a) $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$
 - (b) $f: \mathbb{R} \to \mathbb{R}_{>0}$ given by $f(x) = x^2$
 - (c) $f: \mathbb{Q}_{>0} \to \mathbb{Q}_{>0}$ given by $f(x) = x^2$
 - (d) $f: \mathbb{R}_{\geq 0} \to [0,1)$ given by $f(x) = \frac{x}{x+1}$. Here [0,1) is the half-open interval $\{x \in \mathbb{R} \mid 0 \leq x < 1\}$.

Solution: (a) Neither injective nor surjective. The function f is not injective since $1 \neq -1$ but f(1) = f(-1) = 1. The function f is not surjective since -1 lies in the codomain of f, but there is no $x \in \mathbb{R}$ such that $x^2 = -1$.

- (b) Surjective, but not injective. The proof of non-injectivity is the same as in (a). For surjectivity note that this time the codomain is non-negative reals $\mathbb{R}_{\geq 0}$. If we take any $y \in \mathbb{R}_{\geq 0}$ and let $x = \sqrt{y}$ (which is defined since $y \geq 0$), then $f(x) = (\sqrt{y})^2 = y$. Thus, f hits every element in the codomain and thus f is surjective.
- (c) Injective, but not surjective. Take any $a_1, a_2 \in \mathbb{Q}_{\geq 0}$ and suppose that $f(a_1) = f(a_2)$, so that $a_1^2 = a_2^2$. This means that $a_2 = \pm a_1$, but since a_1 and a_2 are both non-negative by assumption, we must have $a_2 = a_1$. Thus, $f(a_1) = f(a_2)$ implies $a_1 = a_2$ for all a_1, a_2 in the domain of f, so f is injective. The function f is not surjective since $\sqrt{2}$ is irrational and hence there is no $a \in \mathbb{Q}$ such that $a^2 = 2$ (in particular, no $a \in \mathbb{Q}_{\geq 0}$ such that $a^2 = 2$).
- (d) Both injective and surjective. First we prove injectivity. Take any $a_1, a_2 \in \mathbb{R}_{\geq 0}$, and suppose that $f(a_1) = f(a_2)$, so that $\frac{a_1}{a_1+1} = \frac{a_2}{a_2+1}$. Cross multiplying, we get $a_1(a_2+1) = a_2(a_1+1)$, so $a_1a_2 + a_1 = a_1a_2 + a_2$ and hence $a_1 = a_2$.

Surjectivity: We need to show that for any $b \in [0,1)$ there exists $a \in \mathbb{R}_{\geq 0}$ such that $\frac{a}{a+1} = b$; in other words, for any $b \in [0,1)$ the equation $\frac{a}{a+1} = b$ can be solved for a with $a \in \mathbb{R}_{\geq 0}$.

Solving $\frac{a}{a+1} = b$, we get a = (a+1)b = ab+b, so a(1-b) = b and $a = \frac{b}{1-b}$. Recall that by assumption $0 \le b < 1$, so $0 < 1 - b \le 1$. The inequalities $b \ge 0$ and 1 - b > 0 ensure that $\frac{b}{1 - b} \ge 0$, so a defined by $a = \frac{b}{1 - b}$ does lie in the domain of f. Let us now check that f(a) = b for this a (which would complete the proof of surjectivity). We have

$$f(a) = f(\frac{b}{1-b}) = \frac{\frac{b}{1-b}}{\frac{b}{1-b}+1} = \frac{b}{b+(1-b)} = b,$$

as desired.

4. Problem 5 in Section 6.1 (make sure to prove your answer)

Solution: The function f is not injective. For instance, $f(6) = f(2 \cdot 3) = 2 + 3 = 5 = f(5)$. We claim that f is surjective. By definition we need to show that for every $b \in \mathbb{N}$ there exists $n \in \mathbb{N}$ such that f(n) = b. We give a separate argument for b even and b odd.

Case 1: b is even. Then b=2k for some $k \in \mathbb{Z}$; moreover, $k \geq 1$ since $b \in \mathbb{N}$ by assumption. If we define $n=2^k$, then $f(n)=\underbrace{2+\ldots+2}_{k \text{ times}}=2k=b$.

Case 2: b is odd. Since 1 = f(1) and 3 = f(3), we can assume that $b \ge 5$. Let $k = \frac{b-3}{2}$ (note that $k \in \mathbb{N}$ since b is odd and $b \ge 5$). Then $b = 3 + 2k = 3 + \underbrace{2 + \ldots + 2}$ and hence $b = f(3 \cdot 2^k)$.

k times

5. Problem 12 in Section 6.1.

Solution: (a) We need to show that for every $c \in C$ there exists $b \in B$ such that g(b) = c.

Take any $c \in C$. We are given that $g \circ f : A \to C$ is surjective, so there exists $a \in A$ s.t. $(g \circ f)(a) = c$, that is, g(f(a)) = c. Define b = f(a). Then $b \in B$ (since f is a function from A to B) and g(b) = c, so b has required properties.

We now give an example showing that the converse fails. Let $A = \{1\}$, $B = C = \{1,2\}$, and define $f: A \to B$ and $g: B \to C$ by f(1) = 1 and g(b) = b for all $b \in B$. Then g is bijective, so in particular surjective, but $g \circ f$ is not surjective; in fact, there are no surjective functions from A to C since |A| = 1 < 2 = |C|.

(b) We need to show that for all $a_1, a_2 \in A$ the equality $f(a_1) = f(a_2)$ implies $a_1 = a_2$.

So suppose $a_1, a_2 \in A$ and $f(a_1) = f(a_2)$. Applying g to both sides, we get $g(f(a_1)) = g(f(a_2))$ or, equivalently, $(g \circ f)(a_1) = (g \circ f)(a_2)$. Since $g \circ f$ is injective by assumption, it follows that $a_1 = a_2$.

We now give an example showing that the converse fails. Let $A = B = \{1,2\}$, $C = \{1\}$, and define $f: A \to B$ by f(x) = x and $g: B \to C$ by g(1) = g(2) = 1. Then f is bijective, so in particular injective, but $g \circ f$

is not injective; in fact, there are no injective functions from A to C since |A| = 2 > 1 = |C|.

- **6.** Let $f: A \to B$ be a function. Define a relation \sim_f on A by $a \sim_f b \iff$ f(a) = f(b).
 - (a) Prove that \sim_f is an equivalence relation
 - (b) Fix an integers $n \geq 2$, let $A = \mathbb{Z}$ and $B = \{0, 1, \dots, n-1\}$. Construct a function $f:A\to B$ such that the equivalence classes with respect to the relation \sim_f defined above are precisely the congruence classes $\mod n$ (that is, the equivalence classes with respect to $\equiv \mod n$). Your f should be given by a simple verbal description.

Solution: (a) The proof is analogous to Problem 1. In fact, both relations in Problem 1 are special cases of the relation described in this problem (in both cases we can take $A = \mathbb{R} \times \mathbb{R}$ and $B = \mathbb{R}$ with function $f: A \to B$ given by f((x,y)) = x in Problem 3(b) and f((x,y)) = |x+y| in Problem 3(d)).

Define $f:A\to B$ by f(a)= the remainder of dividing a by n. From the first definition of congruences given in the book it is clear that the equivalence classes with respect to \sim_f are precisely the congruence classes $\mod n$.

- 7. Let A and B be non-empty finite sets, n = |A| and m = |B|. Use the fundamental principle of counting to prove that
 - (a) The total number of functions from A to B is equal to m^n .
 - (b) The total number of injective functions from A to B is equal to $m(m-1) \dots (m-n+1)$ if $m \ge n$ and is equal to 0 if m < n.

Solution: (a) Write $A = \{a_1, \ldots, a_n\}$. To define a function f from A to Bwe need to define $f(a_1), f(a_2), \ldots, f(a_n)$. Each of these values could be any element of B, so we have m = |B| choices for $f(a_i)$ for each i (without any additional restrictions). By FPC, the number of choices for the sequence $(f(a_1), \ldots, f(a_n))$ is $\underbrace{m \cdot \ldots \cdot m}_{n \text{ times}} = m^n$.

(b) Again write $A = \{a_1, \dots, a_n\}$. This time we have m choices for $f(a_1)$, m-1 choices for $f(a_2)$ (since $f(a_2)$ must be different from $f(a_1)$), m-2choices for $f(a_3)$ (since $f(a_3)$ must be different from $f(a_1)$ and $f(a_2)$) etc. If $m \geq n$, we will m - n + 1 choices for the last value $f(a_n)$ and hence the total number of ways to choose an injective function from A to B is $m(m-1) \dots (m-n+1)$. If m < n, then we will have 0 choices for $f(a_{m+1})$, so there are no injective functions from A to B.