#### CSC 349-07: Design and Analysis of Algorithms

Winter 2023

P vs NP: March 7, 2023

Instructor: Rodrigo Canaan Scribe: Ishaan Sathaye

## 1 Announcements

- No new programming assignment
- Quiz 3 and other quizzes missed retake this Thursday (March 9, 2023)
- Look out for an activity next week

# 2 Complexity

## 2.1 Big O

Big O time complexity does not care about multiplicative constants. For example, consider a matrix multiplication algorithm. Reading a contiguous chunk of memory would be faster than reading columns in another matrix. However, Big O does not care about this.

### 2.2 Polynomial vs. Non-Polynomial

Time complexities such as  $O(n^2)$ ,  $O(n^3)$ ,  $O(2^n)$ , O(n!), and  $O(n^n)$  are all polynomial time complexities and bounded by a polynomial.

An example of a non-polynomial time complexity would be  $O(2^n)$ , which is significantly worse than something like  $O(n^{100})$ .

### 3 NP

### 3.1 Decision Problems<sup>1</sup>

**Definition 1** A problem for which any proposed solution can be quickly checked for correctness.

#### Examples:

- Finding x: Is there an x that satisfies C some constraint?
- Path Finding: Is there a path from u to v in a graph G?
- Knapsack: Is there a knapsack that has a value of 100 while not going over the weight of 15?

 $<sup>^1\</sup>mathrm{We}$  will be focusing more on these types of NP Problems

- **Prime Number**: Does the number n have any factors f with  $f \leq n$  and  $f \neq 1$ ?
- Sudoku: Is there a solution to a given Sudoku board?

#### 3.1.1 Path Finding Algorithm

#### FINDPATH()

- 1. Check Edges  $\rightarrow$  polynomial
- 2. Solve Subproblems  $\rightarrow$  **polynomial**  $\rightarrow$  O(n+m)

#### 3.1.2 Sudoku Algorithm

Note 2 An  $O(n^3)$  algorithm, which makes it a polynomial time algorithm.

#### CheckSudoku and SolveSudoku

**Input:** B = a Sudoku board, S = a set of Sudoku boards which are solutions to B

**Goal:** Is there a solution to B?

## CHECKSUDOKU(B, S)

- 1. For each cell  $\rightarrow O(n^2)$  cells
  - (a) Check row  $\rightarrow$  O(n)
  - (b) Check column  $\rightarrow O(n)$
  - (c) Check 3x3 grid  $\rightarrow O(n)$

Checking edges is polynomial time.

#### SOLVESUDOKU(B)

- 1. Generate all possible solutions of B
- 2. Check each solution

Solving would be  $\mathrm{O}(n^n)$  making it exponential not polynomial.

## 3.2 Search Problems

**Definition 3** A problem for which a solution is found by searching through a space of possible solutions. Sits in between decision problems and optimization problems.

#### Examples:

- Finding x: Find an x subject to some constraint C.
- Path Finding: Find a path from u to v in a graph G.
- Knapsack: Find a knapsack that has a value of 100 while not going over the weight of 15.
- **Prime Number**: Find a factor or all factors f with  $f \leq n$  and  $f \neq 1$ .
- Sudoku: Find a solution to a given Sudoku board.

### 3.3 Optimization Problems

**Definition 4** Harder problem in general since a solution to this problem would be a solution to a Decision problem.

#### Examples:

- Finding x: Find an  $x^*$  that minimizes/maximizes f(x) subject to some constraint C.
- Path Finding: Find a minimum length path from u to v in a graph G.
- Knapsack: Find a knapsack that  $max(\sum_{i=1}^{n} v_i)$  subject to  $\sum_{i=1}^{n} v_i \leq w$ .
- Maximum Increasing Subsequence: Find a subsequence of a given sequence that is increasing and has the maximum length.

#### 3.4 P vs NP

P stands for polynomial and NP stands for non-deterministic polynomial<sup>2</sup>.

Class of  $\mathbf{NP}$  Problems

- Some decision problems that can be CHECKED in polynomial time.
- Examples: Knapsack (convert from an optimization problem to a decision problem), Independent Set, Traveling Salesperson Problem, Minimum Spanning Tree, Matching, etc.

#### Class of **P** Problems

- Some decision problems that can be SOLVED in polynomial time.
- Examples: Path Finding, Minimum Spanning Tree, Longest Increasing Subsequence, Independent Set on Trees, Bipartite Matching, etc.

<sup>&</sup>lt;sup>2</sup>NP problems would be be solvable in polynomial if we had a deterministic machine.

#### 3.5 P = NP?

Does P = NP? If not, then  $P \subseteq NP$ , essentially  $P \neq NP$ . But does P = NP? We don't know. We can't prove or disprove it. This leads to the mathematical puzzle:



## $\overline{\text{Solve}(P)}$

- 1. Generate all potential solutions of P.
- 2. Check each solution to see if it is correct.

# 4 NP-Complete

**Definition 5 (NP-Complete)** A problem X is NP-complete if:

- 1. X is in NP.
- 2. Every problem in NP is reducible to X in polynomial time.

Note 6 A problem satisfying condition 2 is NP-hard, whether or not it satisfies condition 2.

## 5 Reductions

**Definition 7** A reduction from a decision problem A to a decision problem B  $(A \rightarrow B)$  is a polynomial time algorithm, f:

• That transforms an instance, I, of A into an instance, f(I), of B.

Together with another polynomial time algorithm, h:

• That maps any solution S of f(I) to a solution h(S) of I.

If f(I) has no solution then neither does I.



If such a reduction exists, it implies that B is at least as hard as A.