Stream ciphers Feb-24

State of the art

- eSTREAM Project
 - ECRYPT Network of Excellence
 - Call for stream ciphers; 34 candidates
 - Profile 1. Stream ciphers for software applications with high throughput requirements
 - HC-128, Rabbit, Salsa20/12, SOSEMANUK
 - Profile 2. Stream ciphers for hardware applications with restricted resources
 - Grain v1, MICKEY v2, Trivium

Feb-24 Stream Ciphers 28

28

eSTREAM performance

- RC4 126 Mb/s ^(*)
- Salsa 20/12 643 Mb/s
- Sosemanuk 727 Mb/s
- (*) AMD Opteron 2.2. GHz (Linux)

Feb-24 Stream Ciphers 29

29

Stream ciphers Feb-24

Stream Ciphers

CONTENT SCRAMBLING SYSTEM
(CSS) (PVD)

Feb-24 Stream Ciphers 30

30

Suppose you house a prefix of solelytes of the Dio You can compare a prefix of solelytes of the sheam.	Key. But you can	the key But you can	eln	· do
a prefix of the sheam.				

Stream ciphers Feb-24

Content Scrambling System

- Easy to break in 2¹⁷ steps (<< 2⁴⁰)
- Known-plaintext attack
 - A prefix | 1-20 of the (cleartext) movie is known =>
 a prefix of the keystream | 1-20 can be computed
 - E.g., 20 initial bytes in mpeg
- For details
 - https://www.cs.cmu.edu/~dst/DeCSS/Kesden/

Feb-24 Stream Ciphers

32

Content Scrambling System

- Attack algorithm
 - For all possible initial setting of LFSR-17 (2¹⁷)
 - 1. Run LFSR-17 to get 20 bytes of output
 - 2. Subtract LFSR-17 $|_{1-20}$ from keystream $|_{1-20}$ and obtain a candidate output of LFSR-25 $|_{1-20}$
 - 3. Check whether LFSR-25 ₁₋₂₀ is consistent with LSFR-25
 - a. If it is consistent then we have found correct initial setting of both and the algorithm is finished!
 - b. Otherwise, go to 1 and test the next LFSR-17 initial setting
 - Using key, generate entire CSS output
 - Complexity
 - At most, the attack need to try all the possible initial setting of LFSR-17 (2¹⁷)

eb-24 Stream Ciphers 33

33