NP-Completeness Reductions

CS240

Spring 2024

Rui Fan

- CLIQUE Given a graph with n nodes, is there a clique with n/3 nodes?
 - □ I.e., are there n/3 nodes s.t. they're all connected to each other?
 - □ Actually, the CLIQUE problem asks if there's a k-clique, for an arbitrary k. But we consider k=n/3 for simplicity.
- CLIQUE ∈ NP.
 - ☐ The witness is a purported n/3-clique.
 - □ The verifier just checks there are n/3 nodes, and they're are all connected.

- Show some NP-complete problem reduces to CLIQUE.
 - □ The problem you reduce from has to be NPcomplete, not just in NP.
 - □ Note, you're reducing from the NPC problem to your problem, not the other way around.
 - ☐ You can choose any NP-complete problem to reduce from.
 - Decide on the right problem can make the task a lot easier. But this takes careful thought.

M

- 3-CNF-SAT
 - Given a Boolean formula that's an AND of ORs, where each OR has 3 literals, is it satisfiable?
 - $\Box (A \lor B \lor \neg C) \land (A \lor \neg B \lor C) \land (\neg A \lor \neg B \lor \neg D) \in 3 CNF SAT.$
 - Set A=B=C=true, D=false.
 - □ Each OR unit is called a clause. Each literal is either a variable or its negation.
 - A special kind of SAT. SAT allows other formula types, besides ANDs of ORs, and allows any number of variables per clause.
- Assume we've already proven 3-CNF-SAT is NP-complete.
- We show 3-CNF-SAT \leq_P CLIQUE.
- The reduction says that given a 3-CNF-SAT formula ϕ , we can create in polytime a graph G, such that ϕ is satisfiable if and only if G has an n/3-clique.
 - This is actually quite remarkable. Why should a graph be related to a formula?
 - □ But we'll see how to construct a special graph that captures the satisfiability of a 3-CNF formula.

10

Reducing 3-CNF-SAT to CLIQUE

- Let ϕ be a 3-CNF formula with m clauses.
- Let C be a clause in ϕ . Then C has 3 literals.
 - Make 3 vertices in G corresponding to the literals.
 - So G has 3m vertices total.
 - Let n be the number of nodes in G. Then m = n/3.
- Now, add in an edge between two vertices u, v if both conditions below hold.
 - \square u, v correspond to literals from different clauses of ϕ .
 - □ The literals corresponding to u and v are not negations of each other.
 - We say u and v are consistent.

b/A

Reducing 3-CNF-SAT to CLIQUE

- □3 vertices for each clause.
- □ For vertices u,v, add edge (u,v) if u,v are from different clauses, and are consistent (not negations of each other).

$$\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$$

$$C_1 = x_1 \lor \neg x_2 \lor \neg x_3$$

Source: Introduction to Algorithms, Cormen et al

b/A

Proving the reduction works

- We first need to show the reduction runs in polytime.
 - ☐ Yes. If there are n clauses, the reduction takes O(n²) time.
- Recall the graph has n = 3m nodes, so m = n/3.
- Show $\phi \in 3$ -CNF-SAT \Leftrightarrow G \in m-CLIQUE.
 - $\square(\Rightarrow)$ If ϕ has a satisfying assignment, then G has an m clique.
 - \square (\Leftarrow) If G has an m clique, then ϕ is satisfiable.

M

∃ sat. assignment ⇒ ∃ m clique

- In the satisfying assignment, every clause has to be true, since we AND them.
- In each clause, at least one literal has to be true, since we OR them.
- So for each clause, pick a true literal.
 - \square We pick m = n/3 literals.
- The true literal corresponds to a vertex in the graph.
 - □ Pick m vertices corresponding to the m literals we picked.
- Claim The selected vertices form an m-clique.
- Proof Consider any 2 vertices u, v we selected.
 - □ u,v come from different triples.
 - Because they come from literals from different clauses.

MA.

∃ sat. assignment ⇒ ∃ m clique

- Proof ctd u,v are consistent. I.e. they don't correspond to a literal in one clause, and its negation in another clause.
 - Because we only picked true literals.
 - \square So there's an edge (u,v), by construction.
 - □ So any 2 of the m selected vertices are connected. So the vertices are an m-clique.
- **Ex** ϕ has a satisfying assignment $x_1 = x_2 = x_3 = T$.
 - ☐ The corresponding nodes form a 3-clique.

$$C_1 = x_1 \vee \neg x_2 \vee \neg x_3 \qquad \phi = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$$

$$C_2 = \neg x_1 \vee x_2 \vee x_3$$

$$C_3 = x_1 \vee x_2 \vee x_3$$

\exists m clique $\Rightarrow \exists$ sat. assignment

- Consider the m vertices in the clique.
- - ☐ For any pair of vertices, they're connected.
 - □ There are no edges between vertices from the same clause.
- - □ We don't add edges between such vertices.
- For the literals corresponding to the clique vertices, set all of them to be true in the formula.
 - □ This is a valid assignment, since we never set a literal and its negation both to true.
 - □ We have one true literal per clause.
 - □ So every clause is true.
 - □ So the formula is true.

r,e

- We've shown CLIQUE∈NP.
- We've shown 3-CNF-SAT ≤_P CLIQUE.
 - We found a polytime reduction, constructing a graph G s.t. for every 3-CNF-SAT formula φ
 - If φ is satisfiable, G has an n/3-clique.
 - If G has an n/3-clique, then ϕ is satisfiable.
- So CLIQUE is NP-complete.

M

SUBSET-SUM is NP-complete

- Recall that in SUBSET-SUM, we are given a set of numbers $S = \{s_1, ..., s_n\}$ and a target value t, and we want to find a subset $S' \subseteq S$ summing to t, i.e. $\sum_{s \in S'} s = t$.
- SUBSET-SUM ∈ NP.
 - ☐ The witness is a subset S' of S.
 - ☐ The verifier simply checks that S' sums up to t.
- To show SUBSET-SUM is NP-complete, we show 3-CNF-SAT \leq_P SUBSET-SUM.
 - □ 3-CNF-SAT is a flexible problem used in many reductions.
- Given a 3-CNF formula ϕ , we construct in polytime a set S and target t s.t.
 - $\ \square \ \phi$ is satisfiable implies there's a subset of S summing to t.
 - \square If there's a subset of S summing to t, then ϕ is satisfiable.
 - \square This construction is the polytime reduction \leq_P .

The reduction

- Suppose ϕ contains n variables $x_1, ..., x_n$ and k clauses $C_1, ..., C_k$.
 - Assume WLOG that no clause contains a variable and its negation, since those clauses are automatically satisfied.
- The reduction creates a set S with 2n+2k numbers, two for each variable and clause.
 - □ Each number has n+k digits, with one digit corresponding to each variable and each clause.
 - □ The numbers are in base 10.

		x_1	x_2	x_3	C_1	C_2	C_3	C_4
ν_1	=	1	0	0	1	0	0	1
ν_1'	=	1	0	0	0	1	1	0
ν_2	=	0	1	0	0	0	0	1
ν_2'	=	0	1	0	1	1	1	0
ν_3	=	0	0	1	0	0	1	1
ν_3'	=	0	0	1	1	1	0	0
s_1	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
<i>s</i> ₂	=	0	0	0	0	1	0	0
s_2'	=	0	0	0	0	2	0	0
<i>S</i> ₃	=	0	0	0	0	0	1	0
s_3'	=	0	0	0	0	0	2	0
S4	=	0	0	0	0	0	0	1
s_4'	=	0	0	0	0	0	0	2
t	=	1	1	1	4	4	4	4

- SUBSET-SUM instance for $\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3).$
- Each row except last represents a base-10 number in S. Last row is target t.

The reduction

- For each variable x_i , S contains two numbers v_i and v'_i .
 - $\ \ \ \ \ \ v_i$ and v_i' both have a 1 in x_i 's digit, and 0's in all the other variable digits.
 - □ If x_i appears in clause C_j , then the j'th clause digit in v_i is 1.
 - □ If $\neg x_i$ appears in clause C_j , then the j'th clause digit in v'_i is 1.
 - $\ \square$ All other clause digits in v_i and v_i' are 0.
- For each clause C_j , S contains two numbers s_j and s_j .
 - \square s_j has a 1 in the C_j digit, and s'_j has a 2 in this digit.
 - \square s_i and s_i' are 0's elsewhere.
- Target t is 1 in all the variable digits and 4 in all the clause digits.

		x_1	x_2	x_3	C_1	C_2	C_3	C_4
v_1	=	1	0	0	1	0	0	1
ν_1'	=	1	0	0	0	1	1	0
ν_2	=	0	1	0	0	0	0	1
ν_2'	=	0	1	0	1	1	1	0
ν_3	=	0	0	1	0	0	1	1
ν_3'	=	0	0	1	1	1	0	0
s_1	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
s_2	=	0	0	0	0	1	0	0
s_2'	=	0	0	0	0	2	0	0
<i>S</i> ₃	=	0	0	0	0	0	1	0
s_3'	=	0	0	0	0	0	2	0
S ₄	=	0	0	0	0	0	0	1
s_4'	=	0	0	0	0	0	0	2
t	=	1	1	1	4	4	4	4

- SUBSET-SUM instance for $\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3).$
- Each row except last represents a base-10 number in S. Last row is target t.

$\phi \in 3-CNF-SAT \Rightarrow (S,t) \in SUBSET-SUM$

- Suppose there's a satisfying assignment ρ to ϕ .
- We form a subset S' of S summing to t based on ρ.
 - \square If $x_i = T$ in ρ , include v_i in S'.
 - \square If $x_i = F$ in ρ , include v_i' in S'.
- Claim 1 Any variable digit x_i sums to 1.
 - \square Either v_i or v_i' is in S', but not both.
 - □ Both v_i and v'_i cause digit x_i to be 1.

		x_1	x_2	x_3	C_1	C_2	C_3	C_4
ν_1	=	1	0	0	1	0	0	1
ν_1'	=	1	0	0	0	1	1	0
ν_2	=	0	1	0	0	0	0	1
ν_2'	=	0	1	0	1	1	1	0
ν_3	=	0	0	1	0	0	1	1
ν_3'	=	0	0	1	1	1	0	0
s_1	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
s_2	=	0	0	0	0	1	0	0
s_2'	=	0	0	0	0	2	0	0
s_3	=	0	0	0	0	0	1	0
s_3'	=	0	0	0	0	0	2	0
<i>S</i> ₄	=	0	0	0	0	0	0	1
s_4'	=	0	0	0	0	0	0	2
t	=	1	1	1	4	4	4	4

- SUBSET-SUM instance for $\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3).$
- Each row except last represents a base-10 number in S. Last row is target t.
- Lightly shaded rows sum to t, and correspond to a satisfying assignment $x_1 = F$, $x_2 = F$, $x_3 = T$.

$\phi \in 3-CNF-SAT \Rightarrow (S,t) \in SUBSET-SUM$

- Claim 2 Any clause digit C_j sums to ≥ 1 .
 - □ Since ρ is a satisfying assignment, C_j must have one true literal in ρ .
 - □ If the literal is x_i , then $x_i = T$ in ρ , and $v_i \in S'$.
 - v_i has a 1 in clause digit C_j , by construction.
 - □ If the literal is $\neg x_i$, then $x_i = F$ in ρ , and $v'_i \in S'$.
 - v'_i has a 1 in clause digit C_j , by construction.

		x_1	x_2	<i>x</i> ₃	C_1	C_2	C_3	C_4
ν_1	=	1	0	0	1	0	0	1
ν_1'	=	1	0	0	0	1	1	0
ν_2	=	0	1	0	0	0	0	1
ν_2'	=	0	1	0	1	1	1	0
ν_3	=	0	0	1	0	0	1	1
ν_3'	=	0	0	1	1	1	0	0
s_1	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
s_2	=	0	0	0	0	1	0	0
s_2'	=	0	0	0	0	2	0	0
s_3	=	0	0	0	0	0	1	0
s_3'	=	0	0	0	0	0	2	0
<i>S</i> ₄	=	0	0	0	0	0	0	1
s_4'	=	0	0	0	0	0	0	2
t	=	1	1	1	4	4	4	4

- SUBSET-SUM instance for $\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3).$
- Each row except last represents a base-10 number in S. Last row is target t.
- Lightly shaded rows sum to t, and correspond to a satisfying assignment $x_1 = F$, $x_2 = F$, $x_3 = T$.

NA.

$\phi \in 3-CNF-SAT \Rightarrow (S,t) \in SUBSET-SUM$

- Claim 3 Any clause digit C_j sums to \leq 3.
 - \Box C_i includes 3 literals.
 - □ The v or v' corresponding to each literal is either in S' or not.
 - □ If it's in S', it contributes 1 to C_i .
- Each clause digit C_j sums to between 1 to 3 using the current elements of S'.
 - \square Add s_i to S' if the sum is 3.
 - \square Add s'_i to S' if the sum is 2.
 - □ Add $\{s_j, s_j'\}$ to S' if the sum is 1.
- Now digit C_j sums to 4.
- Since all the variable digits sum to 1 by Claim 1, we have that S' sums to t.
- Thus, φ is satisfiable ⇒ there's a subset of S summing to t.

		x_1	x_2	x_3	C_1	C_2	C_3	C_4
v_1	=	1	0	0	1	0	0	1
v_1'	=	1	0	0	0	1	1	0
ν_2	=	0	1	0	0	0	0	1
ν_2'	=	0	1	0	1	1	1	0
ν_3	=	0	0	1	0	0	1	1
ν_3'	=	0	0	1	1	1	0	0
s_1	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
s_2	=	0	0	0	0	1	0	0
s_2'	=	0	0	0	0	2	0	0
s_3	=	0	0	0	0	0	1	0
s_3'	=	0	0	0	0	0	2	0
<i>S</i> ₄	=	0	0	0	0	0	0	1
s_4'	=	0	0	0	0	0	0	2
t	=	1	1	1	4	4	4	4

- SUBSET-SUM instance for $\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3).$
- Each row except last represents a base-10 number in S. Last row is target t.
- Lightly shaded rows sum to t, and correspond to a satisfying assignment $x_1 = F, x_2 = F, x_3 = T$.

$(S,t) \in SUBSET - SUM \Rightarrow \phi \in 3 - CNF - SAT$

- Assume there's a subset S' summing to t.
 - □ We use S' to form a satisfying assignment ρ for ϕ .
- Notice the largest sum in any digit is 6.
 - □ Each variable digit sums to ≤ 2 .
 - \square Each clause digit has three 1's among the v_i, v_i' values, since the clause contains 3 literals.
 - □ The s_j, s_j' values also sum to ≤ 3 .
- Thus, there are no "carries" when we add values from S, i.e. the sum in each column comes only from values in that column.
- So since S' sums to 1 in the variable digits, it contains either v_i or v'_i , but not both.
- If $v_i \in S'$, set $x_i = T$. If $v_i' \in S'$, set $x_i = F$.
 - □ Call this assignment ρ . Note ρ is valid, i.e. either $x_i = T$ or $x_i = F$, but not both.
 - \square We show ρ satisfies ϕ .

		x_1	x_2	x_3	C_1	C_2	C_3	C_4
ν_1	=	1	0	0	1	0	0	1
ν_1'	=	1	0	0	0	1	1	0
ν_2	=	0	1	0	0	0	0	1
ν_2'	=	0	1	0	1	1	1	0
ν_3	=	0	0	1	0	0	1	1
ν_3'	=	0	0	1	1	1	0	0
s_1	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
s_2	=	0	0	0	0	1	0	0
s_2'	=	0	0	0	0	2	0	0
S3	=	0	0	0	0	0	1	0
s_3'	=	0	0	0	0	0	2	0
S4	=	0	0	0	0	0	0	1
s_4'	=	0	0	0	0	0	0	2
t	=	1	1	1	4	4	4	4

- SUBSET-SUM instance for $\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3).$
- Each row except last represents a base-10 number in S. Last row is target t.
- Lightly shaded rows sum to t, and correspond to a satisfying assignment $x_1 = F$, $x_2 = F$, $x_3 = T$.

$(S,t) \in SUBSET - SUM \Rightarrow \phi \in 3 - CNF - SAT$

- Consider a clause C_i .
 - □ Since C_j 's clause digit in t is 4, and s_j and s_j' sum to ≤ 3 in this digit, S' must contain either a v_i or v_i' that has a 1 in clause digit C_i .
 - □ If $v_i \in S'$ and v_i has 1 in digit C_j , then x_i occurs in clause C_i .
 - Since we set $x_i = T$ in ρ , clause C_j is satisfied.
 - □ If $v'_i \in S'$ and v'_i has 1 in digit C_j , then $\neg x_i$ occurs in clause C_i .
 - Since we set $x_i = F$ in ρ , clause C_j is satisfied.
- In this way, all clauses satisfied.
 - \square So $\phi \in 3$ -CNF-SAT.

		x_1	x_2	x_3	C_1	C_2	C_3	C_4
v_1	=	1	0	0	1	0	0	1
ν_1'	=	1	0	0	0	1	1	0
ν_2	=	0	1	0	0	0	0	1
ν_2'	=	0	1	0	1	1	1	0
ν_3	=	0	0	1	0	0	1	1
ν_3'	=	0	0	1	1	1	0	0
s_1	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
s_2	=	0	0	0	0	1	0	0
s_2'	=	0	0	0	0	2	0	0
S3	=	0	0	0	0	0	1	0
s_3'	=	0	0	0	0	0	2	0
S4	=	0	0	0	0	0	0	1
s_4'	=	0	0	0	0	0	0	2
t	=	1	1	1	4	4	4	4

- SUBSET-SUM instance for $\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3).$
- Each row except last represents a base-10 number in S. Last row is target t.
- Lightly shaded rows sum to t, and correspond to a satisfying assignment $x_1 = F$, $x_2 = F$, $x_3 = T$.

10

SUBSET-SUM is NP-complete

- The reduction runs in polynomial time.
 - □ It creates 2n+2k+1 numbers, each with n+k digits. Each digit is computed in O(1) time.
- So 3-CNF-SAT \leq_P SUBSET-SUM. Since SUBSET-SUM \in NP, then SUBSET-SUM is NP-complete.
- But didn't we show SUBSET-SUM ∈ P by dynamic programming?
 - □ The dynamic program ran in O(nW) time, where n is the number of elements in S, and W is the sum of the elements.
 - □ So did we prove P=NP!?
- No ⊗, because O(nW) is not polynomial in the input size.
 - ☐ The input has n numbers, each with O(log W) bits.
 - □ So the input size is O(n log W).
 - ☐ The running time O(nW) is exponential in the input size.
 - □ For example, in the previous reduction, we had 2n+2k+1 numbers, but the sum of the numbers is $W \le (2n+2k+1)10^{n+k}$.

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V.

YES: vertices and faces of a dodecahedron.

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V.

NO: bipartite graph with odd number of nodes.

Claim. 3-SAT \leq P DIR-HAM-CYCLE.

Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable.

Construction. Given 3-SAT instance Φ with n variables \mathbf{x}_{i} and k clauses.

- Construct G to have 2ⁿ Hamiltonian cycles.
- Intuition: traverse path i from left to right \Leftrightarrow set variable $x_i = 1$.

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

For each clause: add a node and 6 edges.

Claim. Φ is satisfiable iff G has a Hamiltonian cycle.

Pf. \Rightarrow

- Suppose 3-SAT instance has satisfying assignment x*.
- Then, define Hamiltonian cycle in G as follows:
 - if $x_i^* = 1$, traverse row i from left to right
 - if $x_i^* = 0$, traverse row i from right to left
 - for each clause C_j , there will be at least one row i in which we are going in "correct" direction to splice node C_i into tour

Claim. Φ is satisfiable iff G has a Hamiltonian cycle.

Pf. ⇐

- Suppose G has a Hamiltonian cycle Γ .
- If Γ enters clause node C_i , it must depart on mate edge.
 - thus, nodes immediately before and after C_j are connected by an edge e in G
 - removing C_j from cycle, and replacing it with edge e yields Hamiltonian cycle on G { C_j }
- Continuing in this way, we are left with Hamiltonian cycle Γ' in $G \{C_1, C_2, \ldots, C_k\}$.
- Set $x_i^* = 1$ iff Γ ' traverses row i left to right.
- Since Γ visits each clause node C_j , at least one of the paths is traversed in "correct" direction, and each clause is satisfied. •

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

All 13,509 cities in US with a population of at least 500 Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

Optimal TSP tour

Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

11,849 holes to drill in a programmed logic array Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

Optimal TSP tour

Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

HAM-CYCLE: given a graph G = (V, E), does there exists a simple cycle that contains every node in V?

Claim. HAM-CYCLE \leq_P TSP. Pf.

• Given instance G = (V, E) of HAM-CYCLE, create n cities with distance function

$$d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ 2 & \text{if } (u, v) \notin E \end{cases}$$

TSP instance has tour of length ≤ n iff G is Hamiltonian.