Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Системне програмування Лабораторна робота №2

«Створення модульних проектів на Асемблері та вивчення форматів представлення чисел»

Виконав:

студент групи ІО-24

Довгань М. С.

Перевірив:

Порєв В. М.

Тема: Створення модульних проектів на Асемблері та вивчення форматів представлення чисел.

Мета: навчитися створювати модульні проекти на Асемблері, а також закріпити знання основних форматів представлення чисел у комп'ютері. **Завдання:**

- 1. Створити у середовищі Microsoft Visual Studio проект з ім'ям Lab2.
- 2. Написати вихідний текст програми згідно варіанту завдання. Вихідний текст повинен бути у вигляді двох модулів на асемблері: головний модуль, у якому описується загальний хід виконання програми від початку і до завершення. Цей модуль містить точку входу у програму, впродовж роботи викликає процедури з інших модулів. Вихідний текст головного модуля записати у файл main2.asm; другий модуль, який містить процедуру, яка викликається з головного модуля. Цей модуль записати у файл module.asm.
- 3. Додати файли модулів у проект. У цьому проекті кожний модуль може окремо компілюватися.
- 4. Скомпілювати вихідний текст і отримати виконуваний файл програми.
 - 5. Перевірити роботу програми. Налагодити програму.
- 6. Отримати результати кодовані значення чисел згідно варіанту завдання.
 - 7. Проаналізувати та прокоментувати результати та вихідний текст.

Індивідуальний варіант завдання:

Номер варіанту (N) згідно списку студентів у журналі. Виконати завдання для числових значень X та Y, які обчислюються за формулами:

$$X = N + 10$$
, отже: $X = 9 + 10 = 19$, $Y = 2 \cdot X$, отже: $Y = 2 \cdot 19 = 38$.

Запрограмувати на асемблері вивід шістнадцяткових значень для всіх типів даних згідно таблиці. Надати таблицю, заповнену кодами-результатами.

Виконання завдання:

Роздруківка коду програми:

```
module.inc:
EXTERN StrHex MY : proc
module.asm:
.586
.model flat, c
.code
; процедура StrHex_MY записує текст шістнадцятькового коду
;перший параметр - адреса буфера результату (рядка символів)
;другий параметр - адреса числа
;третій параметр - розрядність числа у бітах (має бути кратна 8)
StrHex MY proc
      push ebp
      mov ebp, esp
      mov ecx, [ebp+8] ;кількість бітів числа
      cmp ecx, 0
      jle @exitp
      shr ecx, 3
                              ;кількість байтів числа
      mov esi, [ebp+12] ;адреса числа
```

```
@cycle:
     mov dl, byte ptr[esi+ecx-1]
                                        ;байт числа - це дві hex-цифри
     mov al, dl
     shr al, 4 ; старша цифра
     call HexSymbol MY
     mov byte ptr[ebx], al
     mov al, dl ;молодша цифра
     call HexSymbol MY
     mov byte ptr[ebx+1], al
     mov eax, ecx
     cmp eax, 4
     jle @next
     dec eax
     and eax, 3
                                         ;проміжок розділює групи по вісім
цифр
     cmp al, 0
     jne @next
     mov byte ptr[ebx+2], 32 ;код символа проміжку
     inc ebx
@next:
     add ebx, 2
     dec ecx
     jnz @cycle
     mov byte ptr[ebx], 0 ;рядок закінчується нулем
@exitp:
     pop ebp
     ret 12
     StrHex MY endp
     ;ця процедура обчислює код hex-цифри
      ;параметр - значення AL
     ;результат -> AL
     HexSymbol MY proc
```

mov ebx, [ebp+16] ;адреса буфера результату

```
and al, OFh
      add al, 48
                                           ; так можна тільки для цифр 0 - 9
      cmp al, 58
      jl @exitp
      add al, 7
                                           ; для цифр A, B, C, D, E, F
@exitp:
      ret
HexSymbol MY endp
end
main2.asm:
.386
.model flat, stdcall
option casemap : none
include module.inc
include \masm32\include\user32.inc
include \masm32\include\kernel32.inc
includelib \masm32\lib\user32.lib
includelib \masm32\lib\kernel32.lib
.const
      mainWindowTitle db "Лабораторна робота №2", 0
      mainWindowText db "Здоровенькі були!", 13, 10, 13, 10,
                                 "Лабораторну роботу виконав: ", 13, 10,
                                 "студент групи ІО-24,", 13, 10,
                                 "Довгань М. С.", 0
      windowTask1 db "Цілий 8-бітовий тип", 0
      windowTask2 db "Цілий 16-бітовий тип", 0
      windowTask3 db "Цілий 32-бітовий тип", 0
      windowTask4 db "Цілий 64-бітовий тип", 0
      windowTask5 db "Плаваюча точка 32-бітовий тип", 0
      windowTask6 db "Плаваюча точка 64-бітовий тип", 0
      windowTask7 db "Плаваюча точка 80-бітовий тип", 0
```

```
lastWindowTitle db "Програма завершила роботу", 0
      lastWindowText db "Дякую за увагу!", 0
.data
     textRes db 64 dup(?)
      num1 db 19
      num2 db -19
     num3 dw 19
      num4 dw -19
     num5 dd 19
      num6 dd -19
     num7 dq 19
     num8 dq -19
      num9 dd 19.0
      num10 dd -38.0
      num11 dd 19.19
     num12 dq 19.0
     num13 dq -38.0
      num14 dq 19.19
     num15 dt 19.0
      num16 dt -38.0
      num17 dt 19.19
.code
main:
      invoke MessageBoxA, 0, ADDR mainWindowText, ADDR mainWindowTitle, 0
      push offset textRes
      push offset num1
      push 8
      call StrHex_MY
      invoke MessageBoxA, 0, ADDR textRes, ADDR windowTask1, 0
      push offset textRes
      push offset num2
      push 8
      call StrHex MY
      invoke MessageBoxA, 0, ADDR textRes, ADDR windowTask1, 0
```

```
push offset textRes
push offset num3
push 16
call StrHex MY
invoke MessageBoxA, 0, ADDR textRes, ADDR windowTask2, 0
push offset textRes
push offset num4
push 16
call StrHex_MY
invoke MessageBoxA, 0, ADDR textRes, ADDR windowTask2, 0
push offset textRes
push offset num5
push 32
call StrHex_MY
invoke MessageBoxA, 0, ADDR textRes, ADDR windowTask3, 0
push offset textRes
push offset num6
push 32
call StrHex_MY
invoke MessageBoxA, 0, ADDR textRes, ADDR windowTask3, 0
push offset textRes
push offset num7
push 64
call StrHex_MY
invoke MessageBoxA, 0, ADDR textRes, ADDR windowTask4, 0
push offset textRes
push offset num8
push 64
call StrHex MY
invoke MessageBoxA, 0, ADDR textRes, ADDR windowTask4, 0
push offset textRes
push offset num9
```

```
push 32
call StrHex MY
invoke MessageBoxA, 0, ADDR textRes, ADDR windowTask5, 0
push offset textRes
push offset num10
push 32
call StrHex MY
invoke MessageBoxA, 0, ADDR textRes, ADDR windowTask5, 0
push offset textRes
push offset num11
push 32
call StrHex_MY
invoke MessageBoxA, 0, ADDR textRes, ADDR windowTask5, 0
push offset textRes
push offset num12
push 64
call StrHex_MY
invoke MessageBoxA, 0, ADDR textRes, ADDR windowTask6, 0
push offset textRes
push offset num13
push 64
call StrHex MY
invoke MessageBoxA, 0, ADDR textRes, ADDR windowTask6, 0
push offset textRes
push offset num14
push 64
call StrHex MY
invoke MessageBoxA, 0, ADDR textRes, ADDR windowTask6, 0
push offset textRes
push offset num15
push 80
call StrHex MY
invoke MessageBoxA, 0, ADDR textRes, ADDR windowTask7, 0
```

```
push offset textRes
push offset num16
push 80
call StrHex_MY
invoke MessageBoxA, 0, ADDR textRes, ADDR windowTask7, 0

push offset textRes
push offset num17
push 80
call StrHex_MY
invoke MessageBoxA, 0, ADDR textRes, ADDR windowTask7, 0

invoke MessageBoxA, 0, ADDR lastWindowText, ADDR lastWindowTitle, 0

invoke ExitProcess, 0
```

end main

Результати виконання програми:

Аналіз виконання роботи:

Значення кодованих чисел (Таблиця переведення з шістнадцяткового коду в двійковий)

Тип даних, які обробляє програма	Значення	Результати виконання програми	
		Шістнадцятковий код	Двійковий код
Цілий 8-бітовий	19	13	0001 0011
	-19	ED	1110 1101
Цілий 16-бітовий	19	0013	0000 0000 0001 0011
	-19	FFED	1111 1111 1110 1101
Цілий 32-бітовий	19	0000 0013	0000 0000 0000 0000 0000 0000 0001 0011
	-19	FFFF FFED	1111 1111 1111 1111 1111 1111 1110 1101
Цілий 64-бітовий	19	0000 0000 0000 0013	0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0011
	-19	FFFF FFFF FFFF FFED	1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111

_			
			1111 1111 1110 1101
32-бітовий із плаваючою точкою	19.0	4198 0000	0100 0001 1001 1000 0000 0000 0000 0000
	-38.0	C218 0000	1100 0010 0001 1000 0000 0000 0000 000
	19.19	4199 851F	0100 0001 1001 1001 1000 0101 0001 1111
64-бітовий із плаваючою точкою	19.0	4033 0000 0000 0000	0100 0000 0011 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
	-38.0	C043 0000 0000 0000	1100 0000 0100 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
	19.19	4033 30A3 D70A 3D71	0100 0000 0011 0011 0011 0000 1010 0011 1101 0111 0000 1010

			0011 1101 0111 0001
80-бітовий із плаваючою точкою	19.0	4003 9800 0000 0000 0000	0100 0000 0000 0011 1001 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
	-38.0	C004 9800 0000 0000 0000	1100 0000 0000 0100 1001 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
	19.19	4003 9985 1EB8 51EB 851F	0100 0000 0000 0011 1001 1001 1000 0101 0001 1110 1011 1000 0101 0001 1110 1011 1000 0101 0001 1111

Створена мною програма виконує завдання лабораторної роботи, відповідно до мого індивідуального варіанту завдання та обчислених значень. Обчислені мною значення на початку заносяться до програми у різних форматах - db, dw, dd, dq, dt, тобто, створюються перемінні розміром від одного байту (db - define byte), до десяти байтів (dt - define ten

bytes), а також два байти (dw - define word), чотири байти (dd - define double word) та вісім байтів (dq - define quad word). На початку програма видає користувачеві стартове вікно-привітання. Після цього програма обробляє значення і вони виводяться у формі шістнадцяткових кодів, кожен в окремому підписаному вікні для усіх типів даних згідно таблиці, наведеної вище. При виведенні усіх значень, останнім вікном є вікно, яке повідомляє користувача про те, що було виведено всі значення, і програма завершує свою роботу.

Висновок: під час виконання даної лабораторної роботи я створив свій перший модульний проект на мові програмування Асемблер та вивчив, використав і закріпив знання форматів представлення чисел.