Lecture notes on Markov Processes

Written by
Manuel Hinz

mh@mssh.dev.or.s6mlhinz@uni-bonn.de

Based on the lectures of Prof. Dr. Patrik Ferrari ferrari@uni-bonn.de

University of Bonn Winter semester 2024 Last update: October 8, 2024

Contents

Chapter 0 Manuel's notes	. 2
Chapter 1 Continuous time Markov chains	. 3
1.1 Markov chain, transition function, infinitesimal description	
1.2 Examples	. 4
List of Lectures	. 5

Chapter 0: Manuel's notes

Warning

These are unofficial lecture notes written by a student. They are messy, will almost surely contain errors, typos and misunderstandings and may not be kept up to date! I do however try my best and use these notes to prepare for my exams. Feel free to email me any corrections to mh@mssh.dev or s6mlhinz@uni-bonn.de. Happy learning!

General Information

• Ecampus: Ecampus link

• Basis: Basis link

• Website: None

 \bullet Time slot(s): Tuesday 12-14 and Thursday 12-14

• Exams: Oral

• Exercises: To be handed in each **Friday** until **noon**

There are tutorials in the second week (14.10.24 and 16.10.24)!

Start of lecture 01 (08.10.24)

Chapter 1: Continuous time Markov chains

Two motivating examples:

1.1 Markov chain, transition function, infinitesimal description

We have a **countable state space** \mathcal{S} and define

- Ω = {right-continuous functions ω : ℝ₊ →
 S with finitely many jumps in any finite time intervals}
- σ -algebra $\mathcal{F} := \sigma(\{\omega \to \omega(t) \text{ which is measurable } \forall t \geq 0\})$
- time shift operator: $(\theta_s \omega)(t) := \omega(s+t)$

Definition 1.1. Denote $X(t,\omega) := \omega(t)$. Assume we have a collection of probability measures $\{\mathbb{P}^x, x \in \mathcal{S}\}$ on (Ω, \mathcal{F}) , a right-continuous filtration $\{\mathcal{F}_t, t \geq 0\}$ on (Ω, \mathcal{F}) . X is a continuous time Markov chain (MC) if

- (a) X is adapted to $\{\mathcal{F}_t, t \geq 0\}$
- (b) <u>Initial condition:</u> $\mathbb{P}^x(X(0) = x) = 1$
- (c) Markov property: $\forall x \in \mathcal{S}, Y$ measurable function on $\Omega, s \geq 0$:

$$\mathbb{E}^x (Y \circ \theta_s \mid \mathcal{F}_s) = \mathbb{E}^{X(s)}(Y), \mathbb{P}^x \ a.s.$$

Example. $Y = \max_{0 \le t \le 1} X(t) \to Y \circ \theta_s = \max_{s \le t \le s+1} X(t)$

<u>Here:</u> Time homogenous processes!

Definition 1.2. A transition function is function $p_t(x, y), x, y \in \mathcal{S}, t \geq 0$ s.t.

- (a) **Positivity:** $p_t(x,y) \ge 0$
- (b) Normalized: $\sum_{y \in \mathcal{S}} p_t(x, y) = 1$
- (c) **Continuity:** $\lim_{t \to 0} p_t(x, x) = p_0(x, x) = 1$
- (d) Chapman-Kolmogorov equation: $\forall s, t \geq 0 \ \forall x, y \in \S$:

$$p_{s+t}(x,y) = \sum_{z \in \mathcal{S}} p_s(x,z) p_t(z,y)$$

Given a transition function, we can construct \mathbb{P}^x as follows:

Finite dimensional distributions, $0 < t_1 < \cdots < t_n$:

$$\mathbb{P}^{x}(X(t_{1}) = x_{1}, X(t_{2} = x_{2}), \dots, X(t_{n}) = x_{n}) := p_{t_{1}}(x, x_{1}) \cdot p_{t_{2} - t_{1}}(x_{1}, x_{2}) \cdot \dots \cdot p_{t_{n} - t_{n-1}(x_{n-1}, x_{n})}$$

Page 3 of 5

measurable w.r.t.?

We will see while constructing, that this part is tricky, might just $be \leq 1$

extend to full time \mathbb{R}_+ by the Kolmogorov(-Daniell) extension theorem, where the consistency, $\mathbb{P}^x(X(t) = y) = p_t(x, y)$, relations follow by the Chapman-Kolmogorov equation.

Example. $0 < t_2 < \cdots < t_n$

$$\sum_{x_1 \in S} \mathbb{P}^x \left(X(t_1) = x_1, \dots, X(t_n) = x_n \right) = \mathbb{P}^x \left(X(t_2) = x_2, \dots, X(t_n) = x_n \right)$$

We are still in the same setting, therefore we use the same t_1 as previously

By modeling we often think at the basic biological/ physical properties of the system \rightarrow typically we have transition rates, because for $x \neq y$: $\begin{cases} p_{\epsilon}(x,y) = O(\epsilon), & p_{\epsilon}(x,x) = 1 - O(\epsilon) \\ p_{0}(x,y) = 0, & p_{0}(x,x) = 1 \end{cases}$

Definition 1.3. For a Markov chain X we define the <u>transition rates</u> from x to y $(x \neq y)$ by:

$$\tilde{q}(x,y) = := \frac{d}{dt} p_t(x,y) \mid_{t=0}$$

Definition 1.4. A Q-matrix (or generator) is a collection of numbers $\{q(x,y): x,y \in \mathcal{S}\}$ s.t.:

- (a) $q(x,y) \ge 0 \forall x \ne y$
- (b) $\sum_{y \in \mathcal{S}} q(x, y) = 0$, Notation: $c(x) := q(x, x) = \sum_{y \in \mathcal{S} \setminus \{x\}} q(x, y)$

c(x) is the rate of leaving site x

Warning

It is not automatic that transition rates gives a Q-matrix For instance: $\tilde{q}(x,y) = \infty$

For **finite** state space,

Markov chain \iff Transition function \iff Q-matrix Goal: Under which condition is the equivalence still true?

1.2 Examples

Example (Discrete to continuous MC). <u>Given:</u> Markov chain Y in discrete time $t \in \mathbb{Z}_+$, i.e. transition matrix $P = (P(x, y))_{x,y \in \mathcal{S}}$

$$\mathbb{P}(Y(n+1) = y \mid Y(n) = x) = P(x, y)$$

Consider a Poisson process(PP) with intensity 1, at each event time of the PP, there will be a jump of the continuous time MC X. The jumps follow the discrete time MC Y $\Longrightarrow p_t(x,y) = \sum_{n \geq 0} \frac{e^{-t}t^n}{n!} P^n(x,y)$ in this case Q = P - 1

Example (Finite S). $p_t(x,y) = \left(e^{tQ}(x,y)\right) := \sum_{n\geq 0} \frac{t^n}{n!} Q^n(x,y)$

Example (Birth and death processes). $S = \{0, 1, ..., \}, X(t) = Population size at time t. Then$

- $q(k, k+1) = \rho_k, k \ge 0$
- $q(k+1,k) = \lambda_k, g \ge 1$
- $q(k,k) = -\rho_k \lambda_k$ with $\lambda_0 = 0$
- which implies $q(k, l) = 0 \forall |k l| \ge 2$

Depending on the choice of ρ_k , λ_k it is possible that the chain goes to ∞ in finite time.

Here will be one of the main problems: If Q is finite / a normed operator, everything is well defined. Otherwise we have to use a different definition of the exponetial . . .

List of Lectures

• Lecture 01: Introduction