Algorithmic Game Theory

LECTURE 2

RITWIZ KAMAL | IIEST, SHIBPUR

Main topics covered:

- Mechanism Design
 - Single-item Auctions
 - Sealed-bid Auctions
 - First-price Auctions
 - Second-price Auctions
 - Some useful terms
 - Second-price auctions as Ideal auctions
- Case Study : Sponsored Search Auctions

Course Goal:

To understand how to design systems with strategic participants that have good performance guarantees

Single-item Auctions

- Setup:
 - Seller has a "single" item (e.g., an old-fashioned smartphone)
 - 'n' strategic bidders
 - \triangleright Each bidder *i* has a valuation v_i (max amount that bidder is willing to pay)
 - ► This valuation is private (unknown to seller and other bidders)
- What does a bidder want?
 - \blacktriangleright A bidder wants to acquire the item as cheaply as possible given the maximum selling price is v_i
- Bidder Utility Model
 - Quasilinear Utility Model ~~(just another complicated name!)~~
 - If bidder i loses, utility=0!
 - If bidder i wins at price p, utility=(v_i p)

RITWIZ KAMAL | IIEST, SHIBPUR

12/23/2019

Sealed-bid Auctions

- Setup:
 - Each bidder *i* privately communicates a bid b_i to the seller
 - The seller decided who wins
 - The seller decides on a selling price
- Selection Rule

Item is given to the highest bidder!

- Implementation of 3rd step
 - ► There are many reasonable ways
 - ► The choice, however, significantly affects bidder behaviour
 - **Example:**

If the seller decides to charge nothing to winner, it becomes a game of who names the highest number!

First-price Auctions

- Winner pays her bid
- Disadvantages:
 - Hard for bidder to figure out how to bid
 - ► Hard for seller/auction designer to predict an outcome

Example:

- Consider a valuation=birth month + birth day
- Minimum=2 (1st Jan) | Maximum=43 (31st Dec)
- Question→ what bid should we submit?

Turns out, there is no dominant strategy for first-price auctions!

Second-Price Auctions (Vickery Auctions)

- Winner pays second-highest bid
 If winner bids \$100, 2nd highest bid is \$90 → winner pays \$(90+x) where x is a small increment
- It is a sealed-bid type auction
- Is there a dominant strategy for bidding in this case ?
 YES!

<u>Proposition 1</u> \rightarrow In a second-price auction, every bidder i has a dominant strategy: set the bid b_i equal to her private valuation v_i .

<u>Proposition 2</u> → Non-negative utility: In a second-price auction, every truthful bidder is guaranteed a non-negative utility.

☐ Advantages:

- 1. Bidder doesn't have to worry about her competitors' valuations
- 2. Drastically different from First-price auctions where bidding one's valuation would have guaranteed 0 utility!

Proof of Proposition 1

Let,

- Bidder i has a valuation v_i
- b_{-i} is the vector of of all bids with ith component removed
- B= $\max_{(j \mid = i)} b_j$ (i.e., highest bid by some other bidder)

To show: Bidder i's utility is maximised by setting bid $b_i = v_i$

There are only 2 possible outcomes →

- 1. $b_i < B \rightarrow bidder i loses \rightarrow utility = 0$
- 2. $b_i \ge B \rightarrow bidder i wins \rightarrow utility = (v_i B)$

Therefore, considering these two cases we can conclude:

If $v_i < B$, maximum utility bidder i can obtain= max $\{0, v_i - B\} = 0$ [which she obtains by bidding truthfully and losing]

If $b_i \ge B$, maximum utility bidder i can obtain= max $\{0, v_i - B\} = (v_i - B)$ [which she obtains by bidding truthfully and winning]

.....

Conclusion: A truthful bidder never regrets participating in a second-price auction!

Proof of Proposition 2

To show: Truthful bidder has non-negative utility

We know, Losers receive utility 0.

Now,

If bidder i is the winner, she receives a utility = v_i - p, where p= 2^{nd} highest bid Since, i is the winner and a truthful bidder, we can say v_i is the highest bid

Therefore, $p < v_i \rightarrow (v_i - p) \ge 0$

 $(v_i - p) \ge 0$

This is always true!

Some Useful Terms

Dominant Strategy Incentive Compatible (DSIC)

An auction is called DSIC if truthful bidding is the dominant strategy for every bidder and if truthful bidders always obtain non-negative utility

Social Welfare / Social Surplus

Social Welfare of an outcome of a single-item auction is defined as

$$\sum_{i=1}^{n} v_i \cdot x_i$$

where, x_i is 1 if i wins and 0 if i loses and v_i is the valuation of i

An auction is *welfare maximizing* if, when bids are truthful, the auction outcome has the maximum possible social welfare

Second-price auctions as Ideal auctions

A second-price single-item auction satisfies the following:

- [strong incentive guarantees] It is a DSIC auction
- [strong performance guarantees] It is welfare maximising
- [computational efficiency] It can be implemented in time polynomial (indeed, linear) in the size of the inputs, meaning the number of bits necessary to represent the numbers $v_{1,...}v_n$

Case Study: Sponsored Search Auctions (1/3)

BACKGROUND:

When we query a web search, we get a results page like this

Attorney | Definition of Attorney by Merriam-Webster

Case Study: Sponsored Search Auctions (2/3)

The basic model of sponsored search auctions:

- There are 'k' slots for sale to advertisers
- Each slot will contain a unique Ad i.e., not identical to any other Ad
- Each slot will be assigned to only 1 advertiser
- The Ads will be in an ordered list i.e., higher slots are more valuable than lower slots
- The difference between different slots is quantified using the click-through-rates (CTRs) CTR (α_j) of a slot j = Probability that the user clicks on this slot $\alpha_1 \geq \alpha_2 \geq ... \geq \alpha_j \geq ... \geq \alpha_k$
- Each advertiser i has a quality score β_i (the higher the better)
- CTR of advertiser i in slot j = β_i.α_i
- The advertiser also has a private valuation v_i on for each click on her link
- Expected value derived by advertiser = v_i.α_i

Case Study: Sponsored Search Auctions (3/3)

- What do we want for an ideal sponsored search auction?
 - 1. DSIC: Truthful bidding is dominant strategy
 - 2. Social Welfare Maximization: Assignment of bidders should maximize $\sum_{i=1}^{n} v_i$. x_i , where x_i is now the CTR of the slot
 - 3. Computational Efficiency: Polynomial (or even near-linear) running time
- ➤ Our Design Approach →
 - > STEP 1: Assume, without justification that bidders bid truthfully. Then how do we assign bidders to slots so that (2) and (3) hold?

Using the natural greedy algorithm could be a possible solution

> STEP 2: Given our answer to step 1, how should we set selling price so that (1) holds?

Something analogous to second-price rule.

Myerson's lemma comes to our rescue here!

RITWIZ KAMAL | IIEST, SHIBPUR

References

Twenty Lectures on Algorithmic Game Theory by Tim Roughgarden, 2016, Cambridge University Press

https://www.youtube.com/playlist?list=PLEGCF-WLh2RJBqmxvZ0_ie-mleCFhi2N4

THANK YOU

RITWIZ KAMAL | IIEST, SHIBPUR

16