

Machine Learning

Session 24 - T

Multi-task and Multi-label Learning

Ciência de Dados Aplicada 2023/2024

Concept of Tasks in Machine Learning

 A task in machine learning is a specific objective that the model aims to achieve, such as classifying images or predicting prices;

- Examples of Tasks:
 - Classification (e.g., image classification)
 - Regression (e.g., predicting house prices)

Concept of Label in Machine Learning

- The output or result associated with an input, can be one or multiple per task;
- Examples:
 - Single label: Classifying a image as a dog;
 - Multi-label: Classifying a image as both a dog and a plant.

Single-Task Learning

• Models are trained to perform one task at a time.

Multi-Task Learning

- An approach where a model learns multiple tasks simultaneously, sharing representations;
- Benefits:
 - Improved generalization;
 - Efficiency in learning;
 - Shared information among tasks.

Multi-Label Learning

 A single task where each instance can have multiple labels;

- Benefits:
 - Captures more complex relationships in data;
 - Reflects real-world scenarios where items bolong to multiple categories.

Types of Multi-Task Learning

 Hard parameter sharing: shared hidden layers with task-specific output layers;

 Soft parameter sharing: each task has its parameters but regularization is used to keep them similar;

(a) Hard parameter sharing

(b) Soft parameter sharing

Resources

• Crawshaw, M. (2020). Multi-Task Learning with Deep Neural Networks: A Survey (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2009.09796

 Tarekegn, A. N., Ullah, M., & Cheikh, F. A. (2024). Deep Learning for Multi-Label Learning: A Comprehensive Survey (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2401.16549

Machine Learning

Session 24 - T

Automated Machine Learning

Ciência de Dados Aplicada 2023/2024

What is Automated Machine Learning (AutoML)?

 AutoML is the process of automating the end-to-end process of applying machine learning to real-world problems;

 Simplify and speed up the development of machine learning models, making it accessible to non-experts.

AutoML - Tools and Frameworks

- Google AutoML
- H2O.ai
- Auto-sklearn
- TPOT
- Microsoft Azure AutoML

•

Advanced Topics in AutoML

 Neural Architecture Search (NAS): Automating the design of neural network architectures.

• **Meta-Learning**: Learning how to learn; leveraging past experiences to improve future AutoML tasks.

• Fairness and Ethics: Addressing bias, transparency, and ethical considerations in automated systems.

Resources

Automated Machine Learning. (2019). In F. Hutter, L. Kotthoff, & J. Vanschoren (Eds.), The Springer Series on Challenges in Machine Learning.
 Springer International Publishing.

https://doi.org/10.1007/978-3-030-05318-5

Machine Learning

Session 24 - T

Model Deployment and Monitoring

Ciência de Dados Aplicada 2023/2024

Model Deployment

 Model deployment is the process of making a machine learning model available for use in production environments;

 Models can be deployed in various environments, including onpremise servers, cloud platforms, and edge devices. Each scenario comes with its own challenges and considerations.

Model Deployment and Scalability Session 24

Model Optimization for Deployment

 Model Compression Techniques: To improve deployment efficiency, models can be compressed using techniques like quantization, pruning, and knowledge distillation, reducing their size and computational complexity.

 Latency and Throughput: Optimizing models for low latency and high throughput is essential for real-time applications. Techniques such as hardware acceleration and architectural optimizations can help achieve these goals.

Model Deplyment and Scalability Session 24

Model Monitoring

- Monitoring ensures that deployed models perform as expected over time;
- **Track metrics** like accuracy, latency, and throughput to detect performance issues;
- Monitor for concept drift (changes in the data distribution) and data drift (changes in data characteristics).

Model Versioning

• Managing Versions: Keep track of different versions of deployed models to facilitate rollback if necessary.

• Rollback Strategies: Plan for reverting to previous model versions in case of issues with new deployments.

Model Deplyment and Scalability Session 24

Scalability and Performance

• Scaling Strategies: Implement techniques like load balancing and horizontal scaling to handle increased demand;

 Performance Optimization: Optimize model inference speed and resource utilization for efficient deployment.

Model Deplyment and Scalability Session 24

Resources

• Islam, J. (2022). Machine Learning Model Serving Patterns and Best Practices: A definitive guide to deploying, monitoring, and providing accessibility to ML models in production. Packt Publishing.

Model Deplyment and Scalability
Session 24