Network/System Co-simulation Platform for Design Space Exploration of IoT Applications

Zhuoran Zhao¹, Vasileios Tsoutsouras², Dimitrios Soudris² and Andreas Gerstlauer¹

¹The University of Texas at Austin ²National Technical University of Athens

Background

- Growing complexity and scale of future IoT applications
 - Distributed data collection, aggregation and processing
 - Tightly coupled communication and computation workload
 - Non-obvious interactions and tradeoffs
- Networks-of-Systems (NoS) environment
 - System & network architecture configurations
 - Application mapping and offloading
 - Complex application/network/system interactions
- Network and system co-design
 - Traditionally designed in isolation
 - ➤ Joint consideration of design parameters from applications to network configurations and system platform definitions

Network/System Co-Design

Flexible NoS simulation platform to instantiate various network/system configurations for exploration

Related Work

IoT design space exploration

- Application-specific with over-simplified models
 - Smart camera networks [Devarajan'06, Quaritsch'07]
 - Healthcare systems [Doukas'12, Catarinucci'15]
- Limited design space exploration
- Network and system simulation
 - Existing network simulators
 - Traditional network simulators (ns-3, OMNeT++) model system devices without detailed system architectures
 - State-based system models and over-simplified network models in WSN-oriented simulators [Sommer'09, Bai'11, Du'11, Damm'10]
 - Existing system simulators
 - Host-compiled TLM simulation [Bringmann'15]
 - Simple network extension [Fummi'08, Banerjee'09]
 - Comprehensive NoS simulation platform are lacking

Outline

✓ Introduction

- ✓ Motivation, background
- ✓ Related work

NoS simulation platform overview

- System simulation model
- Network simulation backplane

Experimental setup

- IoT application case studies
- Exploration results
- Simulation speed and accuracy

NoS Simulation Platform Overview

- System simulation model
 - SystemC-based host-compiled device model [Razaghi'14]
 - Capture system-wide interactions between application, OS and underlying hardware components
- Network simulation backplane
 - OMNeT++/INET network simulation framework

System Simulation Model

- Host-compiled (HC) system simulator
 - Source-level back-annotated application model
- Our work

- Network stack model [lwIP]
- Abstract multi-core OS and processor model [Razaghi'14]
- Network interface & hardware peripheral models
- Transaction-level modeling (TLM) base [SystemC]

Application Task Model

- Function-level performance back-annotation
 - Function-level profiling/annotation pass [LLVM]
 - Back-annotation with average per-function execution time

Network Stack Model

Open source lightweight TCP/IP stack [lwIP]

Network Interface Model

- SystemC network interface card (NIC) stub model
 - Interfacing with detailed NIC model in OMNET++
- Generic interruption controller (GIC) model
 - Distribute interruption signals from NIC upon packet arrival
- NIC driver
 - Interrupt service routine (ISR) triggered by GIC
 - Notify IwIP to read network packet data from NIC through bus TLM

Network Simulation Backplane

- Detailed NIC model in OMNeT++
 - Media access (MAC) and physical (PHY) layer simulation
 - Interfacing with NIC stub through OMNeT++ message
- SystemC/OMNeT++ integration
 - Scheduled and synchronized globally by OMNeT++
 - Multiple device instances in given network topology

Experimental Setup

- IoT application case studies
 - Vision graph discovery
 - ECG diagnosis
- Target platform
 - Raspberry Pi 3 with 1.2 GHz ARM Cortex A-53
 - Raspberry Pi 0 with 1.0 GHz ARM11
- WLAN client-server topology
- Design space exploration parameters
 - Application task offloading levels
 - System configurations
 - Single core client (C:1×)
 - Single/dual core server (S:1 \times , S:2 \times)
 - Device type: Pi0, Pi3, Pi4 (Pi3 with twice the frequency)
 - 802.11 WLAN (b@11Mbps, g@9Mbps, g@54Mbps)

NoS Simulation Setup

- SystemC system instances
 - Profiling using HW counters [PAPI]
 - FIFO scheduler in OS model
- INET/OMNeT++
 - Network-related timing information
 - Star-like client-server topology

Vision Graph Discovery

- Vision graph discovery in smart camera networks
 - Discover view overlaps among a set of cameras
 - 4 execution stages, 3 offloading levels, 2-6 clients
 - Implemented in C++ with OpenCV
 - Performance metrics: throughput, client core utilization

ECG Diagnosis

ECG monitoring

- Recognize abnormal heartbeat from raw ECG signals
- 4 execution stages, 4 offloading levels, 2-6 clients
- Implemented in C
- Performance metrics: throughput, client core utilization

Vision Graph Discovery Throughput

- Output-to-output delay with 6 clients
 - Server- and computation-bound at O-2
 - Balanced at O-0 and O-1

Vision Graph Discovery Throughput

- Output-to-output delay with 2 clients
 - Computation and communication balanced
 - Client-bound at O-0 and O-1

ECG Diagnosis Throughput

- Output-to-output delay with 2 and 6 clients
 - Always computation and communication balanced
 - Server-bound at O-1,2,3
 - Client-bound at O-0

Client Core Utilization

- Mainly affected by offloading level and client count
 - Lower offloading increases client load
 - Lower client count increases throughput
- Network configuration impact
 - ECG diagnosis: 13.7% 31.6%
 - Vision graph discovery: 11.5% 19.5%

Server Core Utilization

- Mainly affected by offloading level
 - Higher offloading increases server load
 - Client count affects throughput and server load
- Up to 20% core utilization for lwIP stack

ECG diagnosis

NoS Design Space

- IoT design space exploration
 - 6-client setup with different app., system and net. config.
 - Non-obvious parameter interactions

Simulation Speed and Accuracy

- Simulation speed
 - Vision graph discovery: 0.39 sim. seconds/s
 - ECG: 0.18 sim. seconds/s
 - > Larger communication requires more simulation events
- Simulation accuracy
 - >95% for system simulator

Summary & Conclusions

- Networks-of-Systems (NoS) simulator
 - SystemC based host-compiled system model
 - INET/OMNeT++ integration
 - > Fast, comprehensive and flexible NoS simulator
- NoS design space exploration
 - IoT application case studies
 - Significant network/system interactions

Future work

- Accuracy validation against more real world setups
- Various metrics such as quality and reliability
- Network/system co-optimization