FONCTIONS PART3 E04

EXERCICE N°1 (Le corrigé)

Soit la fonction définie sur \mathbb{R} par $f(x)=2x^3-6x^2-2x+6$.

1) Vérifier que pour tout réel x par : f(x)=2(x-1)(x+1)(x-3) . $2(x-1)(x+1)(x-3) = 2(x-1)(x^2-2x-3) = 2[x^3-2x^2-3x-x^2+2x+3]$

$$2(x-1)(x+1)(x-3) = 2(x-1)(x-2x-3) = 2(x-2x-3x-x+2x+2x+3)$$

$$= 2(x^3-3x^2-x+3) = 2x^3-6x^2-2x+6 = f(x)$$

Remarque : On ne commence pas par écrire f(x), on ne l'écrit qu' à la fin.

2) En déduire les racines de f sur \mathbb{R} .

D'après la question précédente les racines sont : $\begin{bmatrix} -1 \\ \end{bmatrix}$; 1 et 3

Remarque:

$$f(x)=2(x-1)(x+1)(x-3)$$

3) Étudier le signe de f(x) sur \mathbb{R} .

f(x) est un produit de quatre facteurs, nous allons donc étudier le signe de chacun des facteurs puis dresser un tableau bilan à l'aide de la règle des signes.

- 2 > 0 est vrai quelque soit la valeur de x.
- $-x-1 > 0 \Leftrightarrow x > 1$
- $x+1 > 0 \Leftrightarrow x > -1$
- $x-3 > 0 \Leftrightarrow x > 3$

Attention on range les valeurs dans l'ordre croissant.

x	$-\infty$		-1		1		3		+∞
2		+		+		+		+	
x-1		_	0	_		+		+	
x+1		-		+	0	+		+	
x-3		_		-		_	0	+	
f(x)		_	0	+	0	_	0	+	

La dernière ligne du tableau nous indique le signe de f(x) en fonction de x