COMP8760

Lecture 3

Worksheet for Practice

Sanjay Bhattacherjee

- 1. Consider the set $\mathbb{Z}_{11} = \{0, 1, 2, ..., 10\}$. How many elements are there in the set \mathbb{Z}_{11} ? **Note:** The number of elements in \mathbb{Z}_{11} is called its cardinality and is denoted as $|\mathbb{Z}_{11}|$.
- 2. Consider the set \mathbb{Z}_{11} and the operation + (mod 11) on its elements. Create a table for all operations $x + y \pmod{11}$ where $x, y \in \mathbb{Z}_{11}$. We will call it the "addition table of \mathbb{Z}_{11} ".
- 3. From the table in question 2, find the element \bar{x} for each $x \in \mathbb{Z}_{11}$ such that

$$x + \bar{x} = 0 \pmod{11}$$
.

Hint: In the row corresponding to the number x, find the column \bar{x} with the entry 0. Such a pair x, \bar{x} are additive inverses of each other with respect to $+ \pmod{11}$.

4. Prove that $(\mathbb{Z}_{11}, + \pmod{11})$ is a group.

Hint: Show that all four properties (closure, associativity, identity and inverse) hold.

Note: This proof is for advanced learning only. You may skip this question.

- 5. Find all numbers $1 \le x \le 20$ that are mutually prime to 20. We will denote this set of numbers as \mathbb{Z}_{20}^* .
- 6. Find all numbers $1 \le x \le 11$ that are mutually prime to 11. We will denote this set of numbers as \mathbb{Z}_{11}^{\star} .
- 7. What is the value of $|\mathbb{Z}_{11}^{\star}|$?
- 8. What is the value of $\phi(11)$?
- 9. What is the relationship between $\phi(11)$ and \mathbb{Z}_{11}^{\star} ?
- 10. Consider the set $\mathbb{Z}_{11}^{\star} = \{1, 2, \dots, 10\}$ of all $1 \leq x \leq 11$ that are mutually prime to 11 and the operation \cdot (mod 11) on its elements. Create a table for all operations $x \cdot y$ (mod 11) where $x, y \in \mathbb{Z}_{11}^{\star}$. We will call it the "multiplication table of \mathbb{Z}_{11}^{\star} ".
- 11. From the table in question 10, find the element \bar{x} for each $x \in \mathbb{Z}_{11}^{\star}$ such that

$$x \cdot \bar{x} = 1 \pmod{11}$$
.

Hint: In the row corresponding to the number x, find the column \bar{x} with the entry 1. Such a pair x, \bar{x} are multiplicative inverses of each other with respect to \cdot (mod 11).

12. Prove that $(\mathbb{Z}_{11}^{\star}, \cdot \pmod{11})$ is a group.

Hint: Show that all four properties (closure, associativity, identity and inverse) hold.

Note: This proof is for advanced learning only. You may skip this question.

- 13. What is the value of 3^{10} where $3 \in \mathbb{Z}_{11}^{\star}$?

 In other words, find the value of $3^{10} = \underbrace{3 \times 3 \times \cdots \times 3}_{10 \text{ times}}$ (mod 11).
- 14. For any $x \in \mathbb{Z}_{11}^{\star}$, let us define $x^{10} = \underbrace{x \times x \times \cdots \times x}_{10 \text{ times}}$ (mod 11). Find the values of x^{10} for all $x \in \mathbb{Z}_{11}^{\star}$.