Clustering I

Lecture #16 | GEOG 510 GIS & Spatial Analysis in Public Health

Varun Goel

Outline

- Terminology
- Spatial Autocorrelation
 - Global and Local
- Introducing Time

Clustering?

- What is clustering?
 - Clustering
 - Identifying whether events/values are clustered in space
 - Global, does not tell us "where"
 - Pattern is not random
 - For observations with values, spatial autocorrelation

Clustering?

- What is clustering?
 - Cluster detection
 - Identifying clusters of events/values in space (deviations from expected)
 - Local regions having...
 - High/Low values (e.g., incidence rate)
 - Spatial autocorrelation, scan statistics

Spatial Autocorrelation

- Spatial Autocorrelation
 - The degree of similarity between objects that are located near each other
 - The arrangement or pattern of "values" within the landscape
 - Clustered, Random, Dispersed
 - Can be measured, quantitatively
 - For an entire region (global)
 - In a smaller area within the region (local)

Spatial Autocorrelation

- For areal (polygon), point, or raster data, we measure how variable values are arranged
 - Not simply the locations of the objects, but the **attributes** associated with them
 - Be sure to control for variations in the number of people (at risk)!
 - Not recommended for count data unless population generating counts are exactly the same from place to place

Spatial Pattern

Concepts

- Clustered
 - Objects are configured or distributed near to one another
- Random
 - Objects are configured or distributed such that there is no regular pattern
- Ordered (dispersed)
 - Objects are configured or distributed in a regular or repeating fashion

GLOBAL

http://irjci.blogspot.com/2012/03/how-unequal-is-household-income-in-your.html

http://irjci.blogspot.com/2012/03/how-unequal-is-household-income-in-your.html

Spatial Autocorrelation

- Spatial Autocorrelation
 - The degree of <u>similarity</u> between objects that are located <u>near</u> each other
 - Requires the definition of neighbors to evaluate similarity
 - Note: this is "self" similarity
 - Correlation between variables will come a bit later

Spatial Autocorrelation

- Spatial Autocorrelation
 - We will start by only considering crosssectional data
 - Values at a single point in time (or one value measured over a fixed time period)
 - Strictly spatial clustering, clusters

- Oft-used statistic for describing/testing the spatial autocorrelation within a region
 - Global (considers the whole region)
 - Measures the magnitude of spatial autocorrelation
 - Returns a single result (I)
 - In addition, it provides a p-value
 - The probability associated with $\it I$

- Global value
 - Moran's / ranges from -1 to 1 (continuous)
 - Perfectly dispersed: -1
 - Random: 0
 - Perfectly clustered: 1
 - Similar to Pearson's R (correlation)
 - Compares I of observed data to expected I (CSR)

• Formula

$$I = \frac{n}{S} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_i - \overline{X})(x_j - \overline{X})}{\sum_{i=1}^{n} (x_i - \overline{X})^2}$$

n = number of areas

 w_{ij} = the weight between area i and j

 x_i = the value for area i

 x_i = the value for area j

 \overline{X} = mean of all values

S = sum of all weights

$$S = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}$$

Formula

area i's neighbors
$$I = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_i - \overline{X})(x_j - \overline{X})}{\sum_{i=1}^{n} \sum_{j=1}^{n} (x_i - \overline{X})^2}$$

For every *i*, compare deviation from mean of neighbors' value and self value

n = number of areas w_{ii} = the weight between area *i* and *j* x_i = the value for area i x_i = the value for area j \overline{X} = mean of all values $S = \sum_{i=1}^{n} \sum_{i=1}^{n} w_{ii}$

Varun Goel, Geog 510 #16, CLUSTERING I Slide 15

S = sum of all weights

Figure 4.1 Field arrangements of blue and white cells exhibiting: (A) extreme negative spatial autocorrelation; (B) a dispersed arrangement; (C) spatial independence; (D) spatial clustering; and (E) extreme positive spatial autocorrelation. The values of the *I* statistic are calculated using the equation in Section 4.6 (Source: Goodchild 1986 CATMOG, GcoBooks, Norwich)

- Interpreting output
 - Magnitude
 - The closer to 1, the more clustered the values are
 - The closer to -1, the more dispersed the values are
 - Significance
 - Interpret p-value (e.g., < 0.05)

- Interpreting output
 - Importance
 - Beware significant, but unimportant deviation from random pattern
 - For example, I = 0.04, p < 0.001)
 - Like other inferential statistics, *p*-value is affected by number of observations
 - <u>Personal</u> interpretation system:
 - >0 to 0.1, barely clustered (pretty much random)
 - 0.1 to 0.3, slightly clustered
 - 0.3 to 0.5, moderately clustered
 - >0.5, highly clustered

- Robustness test
 - Multiple neighborhood definitions

Table A2. Moran's I values for NME rate (%) for block group observations, under ten neighborhood definitions.										15.
YEAR	ID(5)	ID(10)	ID(15)	ID(20)	KNN(5)	KNN(10)	KNN(15)	KNN(20)	CON(Q)	CON(R)
2000	0.073	0.076	0.078	0.079	0.106	0.093	0.083	0.079	0.119	0.104

Getis-Ord General G

- Alternate global measure of autocorrelation
 - Detects whether data driven by clusters of high values, low values (or CSR)

$$G = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_{i} x_{j}}{\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j}}$$

Getis-Ord General G

- Detects whether data has clusters of high values, low values, or CSR
 - Returns a single result (G) with corresponding Z score
 - In addition, it provides a p-value
 - ullet The probability associated with G
 - We don't interpret the raw G value
 - Affected by magnitude of values
 - Not transferable
- Available in ArcPro

Global Autocorrelation

- For me, in practice...
 - Start with Moran's I
 - Clustered vs not Clustered
 - Ease of interpretation
 - Check Getis Ord G
 - Nature of Clustering (high/low values)

Stationary vs. Non...

- Autocorrelation
 - Global
 - Assumes that autocorrelation is stationary across space
 - Invariant from place to place
 - Local
 - Assumes that autocorrelation is nonstationary across space
 - Varies from place to place

INCOME INEQUALITY

http://irjci.blogspot.com/2012/03/how-unequal-is-household-income-in-your.html

LISA

- Local Indicator of Spatial Association
 - Local version of Moran's I
 - Iterates through each observation and provides a measure of autocorrelation
 - And, associated p-value
 - Unlike global measures, results can be mapped
 - Reveals the nature of spatial autocorrelation throughout the study area

Varun Goel, Geog 510 #16, CLUSTERING I Slide 25

LISA

- Local Indicator of Spatial Association
 - Observations can be "hot" or "cold" spots (ugh), high or low outliers, or not significant
 - High-High (observation high, neighbors high)
 - Low-Low (observation low, neighbors low)
 - High outlier (observation high, neighbors low)
 - Low outlier (observation low, neighbors high)
 - Extremely useful for understanding "where" spatial autocorrelation is strong/weak

● ● Table - CATCTPBE0015										
	R12	PBER13	PBER14	PBER15	LISA_I	LISA_CL	LISA_P			
498	15789	0.600000	0.290909	0.117647	27.7429107	1	0.0060000			
2827	57692	0.049180	0.048387	0.084746	1.8241487	1	0.0010000			
2833	21101	0.370787	0.406250	0.369369	24.6830557	1	0.0050000			
3487	95238	0.195122	0.225806	0.066667	5.6619757	1	0.0110000			
1	00000	0.059524	0.013889	0.013333	0.1447826	0	0.2190000			
2	00000	0.008621	0.050000	0.010000	-0.0776767	0	0.1390000			
3	18868	0.000000	0.008929	0.000000	0.1503457	0	0.1870000			
4	00000	0.000000	0.000000	0.000000	0.1540371	0	0.1210000			
5	20408	0.031746	0.000000	0.018692	-0.0700253	0	0.080000			
6	18018	0.009434	0.000000	0.000000	0.0949752	2	0.0270000			
7	00000	0.045455	0.000000	0.000000	-0.1869132	4	0.0010000			
8	00000	0.007692	0.008403	0.000000	-0.1011829	0	0.1330000			
9	00000	0.000000	0.000000	0.000000	-0.1869093	0	0.1120000			
10	00000	0.000000	0.000000	0.000000	0.1688026	2	0.0400000			
11	09709	0.000000	0.000000	0.000000	0.1596978	2	0.0140000			
12	00000	0.000000	0.000000	0.000000	0.1176653	0	0.1540000			
13	00000	0.000000	0.583333	0.684211	-0.2310434	0	0.0740000			
14	35714	0.019608	0.021277	0.019802	0.0038928	0	0.4210000			
15	16667	0.035714	0.012346	0.013889	-0.0360511	0	0.4920000			
16	08547	0.000000	0.000000	0.035211	0.1440382	0	0.1110000			
17	99338	0.091837	0.056818	0.023585	0.2728499	0	0.2180000			
18	00000	0.000000	0.000000	0.000000	-0.1822374	0	0.1030000			
19	00000	0.000000	0.000000	0.000000	0.1470644	0	0.1300000			
20	00000	0.000000	0.014286	0.000000	0.1577026	0	0.0930000			
21	12658	0.007194	0.005618	0.000000	0.0603476	0	0.3650000			
22	03774	0.000000	0.000000	0.002976	0.0792863	0	0.4070000			
#obs=8036	#selected=	4	'	,	,	'				

Getis-Ord Gi*

- Local version of Getis Ord G
 - Iterates through each observation and provides a measure of autocorrelation
 (G) and Z score
 - And, associated p-value
- Two versions
 - $-G_i^*$, Considers observation and neighbors
 - $-G_i$, Considers only neighbors

Getis-Ord Gi*

- Local version of Getis Ord G
 - Returns "hot" and "cold" spots
 - But, not outliers
 - Provides the hotness or coldness of each feature, via interpretation of the p-value
 - Basically, how confident we are that this is a true cluster of high/low values

- Often, we are interested in whether things changed over time
 - Did the overall pattern (nature of clustering) change over time?
 - Did the location of local clusters change over time?
 - Were the changes clustered?
 - Where are local clusters of change?

• Did the overall pattern (nature of clustering) change over time?

- Evaluate global clustering method at different points in time, e.g.,

yearly

- Did the location of local clusters change over time?
 - Evaluate local
 clustering method
 at different points
 in time, e.g.,
 yearly, overlay
 results

NMR Percent (incoming kindergarteners)

NMR Percent (incoming kindergarteners)

Solve 25 3.0

Solve 200 2009 2009

Apart Solve 2009

Apart Solve 2009 2009

Apart Solve 2009

- Were the changes clustered?
- Where are local clusters of change?
 Differential Moran's I (and LISA) in GeoDa

NME Rate Change

NME Rate Change

- Bivariate Moran's I and LISA in GeoDa
 - Evaluates observation's value at time *t* to neighbors' values at *t*-1
 - DO NOT USE FOR CORRELATION
 AMONG TWO DIFFERENT VARIABLES
 - Does not consider "in place" correlation
 - Limited usefulness, but possibly interesting

Spatiotemporal Clustering

- Local spacetime clusters (clusters in both space and time)
 - In ArcGIS Pro, not ArcMap
 - Extension of Getis Ord G_i^* to include temporal neighbors
 - Instead of a data layer, think of it as a 3D data cube (2D space + 1D time)
 - Considers spatial patterns and temporal trends
 - A lot of potential output values adds temporal aspect to the hot/cold spatial output

Updates

- Final Project guidelines
 - Uploaded next monday
- Grading
 - Submit all outstanding assignments/exercises by Monday, March 10th.
 - "Midterm" grade released next Friday

Keywords

- Clustering, Cluster detection
- Spatial Autocorrelation
 - Global
 - Moran's I, Getis-Ord G
 - Local
 - LISA, Getis-Ord G_i^* , G_i
- Change over time