

wherein R^1 , R^2 and R^3 , which may be same or different, represent hydrogen atom, C₃-C₆ cycloalkyl group, halo C₃- C_{ϵ} cycloalkyl group or $-A^{1}-A^{2}$ (in this formula, A^{1} represents C_1-C_8 alkylene group, C_3-C_6 alkenylene group or C_3-C_6 alkynylene group; G, which may be same or different, represents hydrogen atom, halogen atom, cyano group, nitro group, halo $C_1 C_6$ alkyl group, $C_3 - C_6$ cycloalkyl group, halo C_3-C_6 cycloalkyl group, C_1-C_6 alkoxycarbonyl group, $di(C_1-C_6)$ alkoxyphosphoryl group in which the (C_1-C_6) alkoxy groups may be same or different, $di(C_1-C_6)$ alkoxythiophosphor χ 1 group in which the (C_1-C_6) alkoxy groups may be same or different, diphenylphosphino group, diphenylphosphon group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkyl-

sulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_6

CI

The chart in the second

enine in in an entrope

akylsulfonyl group, heterocyclic group (as used herain, the term "heterocyclic group" means pyridyl group pyridine-N-oxide group, pyrimidinyl group, furyl group, tetrahydrofuryl group, thienyl group, tetrahydrothie yl group, tetrahydropyranyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, imidazolyl group, triazolyl group or pyrazolyl group), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, $C_1 \ C_6$ alkyl group, halo $C_1 \ -C_6$ alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo $C_{f a}$ - C_6 alkylsulfonyl group, or $-Z^3-R^4$ (in this formula, Z^3 represents -O-, -S-, -SO-, -SO $_2$ -, -N(R 5)- (in this formula, R lacktree represents hydrogen atom, C_1-C_6 alkylcarbonyl group, halo C_1-C_6 alkylcarbonyl group, C_1-C_6 alkoxycarbonyl group, phenylcarbonyl group, substituted phenylcarbonyl group having at least one, same or different substituents selected from the group consisting of halogen atom, $C_1\text{--}C_6$ alkyl group, halo $C_1\text{--}C_6$ alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, phenyl C1-C4 alkoxycarbonyl group, substituted

Cont

÷

phenyl C₁-C₄ alkoxycarbonyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, C_1-C_6 alkylsulfonyl group or halo $C_1 - C_6$ alkylsulfonyl group), -C (=0) - or $-C(=NOR^6)$ - (in this formula, R^6 represents hydrogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_3-C_6 alkenyl group, halo C_3 C_6 alkenyl group, C_3 $-C_6$ alkynyl group, C_3-C_6 cycloalkyl group, phenyl C_1-C_4 alkyl group, or substituted phenyl C_1 - C_1 alkyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group), and R^4 represents hydrogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_3-C_6 alkenyl group, halo C_3-C_6 alkenyl group, C_3-C_6 alkynyl group, hal C_3-C_6 alkynyl group, C_3-C_6 cycloalkyl group, halo C_3-C_6 cycloalkyl group, C_1-C_6 alkoxy C_1-C_6 alkyl group, C_1-C_6 alkylthio C_1-C_6 alkyl group, formyl group, C_1-C_6 alkylcarbonyl group, halo C_1-C_6 alkylcarbonyl group, C_1-C_6

Etinent in the Filth

 λ koxycarbonyl group, mono (C_1-C_6) alkylaminocarbonyl group, $di(C_1-C_6)$ alkylaminocarbonyl group in which the (C_1-C_1) alkyl groups may be same or different, mono (C_1-C_2) C_{ϵ}) alky aminothiocarbonyl group, di(C_1 - C_{ϵ}) alkylaminothiocarbonyl group in which the (C_1-C_6) alkyl groups may be same or d_{i} fferent, $di(C_1-C_6)$ alkoxyphosphoryl group in which the $(\mathbf{t}_1 - \mathbf{C}_6)$ alkoxy groups may be same or different, $di(C_1 C_6)$ alkoxythiophosphoryl group in which the (C_1-C_6) alkoxy groups may be same or different, phenyl group, substituted phenyl group having at least one, same or different $\$ substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1 - C_6 alkylsulforyl group and halo C_1 - C_6 alkylsulfonyl group, phenyl C_1-C_4 alkyl group, substituted phenyl (C_1-C_4) alkyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfiny group, halo $C_1 - C_6$ alkylsulfinyl group, $C_1 - C_6$ alkylsulfolyl group and halo C₁-C6 alkylsulfonyl group, heterocyclic \group (the term heterocyclic group is as defined above), \(\) or substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same &r

different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group); and a represents an integer of 1 to 4); further, R^1 and R^2 may be taken conjointly to form 4- to 7-membered rings which may be intercepted by 1 to 3, same or different exygen atom, sulfur atom or nitrogen atom;

X, which may be same or different, represents halogen atom, cyano group, nitro group, C3-C6 cycloalkyl group, halo C₃-C₆ cycloalkyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, $C_1 - C_6$ alkoxy group, halo $C_1 - C_6$ alkoxy group, $C_1 - C_6$ alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group,

l'Li

cont

halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, hald C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, or $-A^2-R^7$ [in this formula, A^2 represents -O-, -S-, -SO-, -SO₂-, -NR⁸- (in this formula R^s represents hydrogen atom, C_1-C_6 alkylcarbonyl group, halo C₁-C₆ alkylcarbonyl group, C₁-C₅ alkoxycarbonyl group, phenylcarbonyl group, substituted phenylcarbonyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo $C_1 - C_6$ alkylthio group, $C_1 - C_6$ alkylsulfinyl group, halo C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, phenyl C_1 - C_4 alkoxycarbonyl group or substituted phenyl C_1 - C_4 alkoxycarbonyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alk thio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group), -C(=0)-, $-C(=NOR^6)-$ (in this formula, R^6 is as defined above), C_1-C_1 alkylene group, halo C_1 - C_6 alkylene group, C_2 - C_6 alkenylene group, halo C_2 - C_6 alkenylene group, C_2 - C_6 alkynylene group or halo C_3-C_6 alkynylene group; and

(1) in cases where A^2 represents -O-, -S-, -SO-

elineile irmistel

 $-SO_2$ - or $-NR^8$ - (in this formula, R^8 is as defined above), R represents hydrogen atom, halo C3-C5 cycloalkyl group, hald C3-C6 cycloalkenyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C1-C6 alkyl group, halo C1-C6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C1-C6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, or $-A^3-R^9$ (in this formula, A^3 represents C_1 - C_6 alkylene group, halo C_1 - C_6 alkylene group, C_3-C_6 alkenylene group, halo C_3-C_6 alkenylene group, C_3-C_6 alkynylene group or halo C_3-C_6 alkynylene group; and R9 represents hydrogen atom, halogen atom, C_3-C_6 cycloalkyl group, halo C_3-C_6 cycloalkyl group, C_1-C_6 alkoxycarbonyl group, phenyl group, substituted plenyl group having at least one, same or different substituents selected from the group consisting of halogen

atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C1-C6 alkylsulfonyl group, or $-A^4-R^{10}$ (in this formula, A^4 represents -O-, -S-, -SO-, $-SO_2-$ or -C(=0)-; and \mathbb{R}^{10} represents C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_3-C_6 alkenyl group, halo C_3-C_6 alkenyl group, C_3-C_6 cycloalkyl group, halo C_3-C_6 cycloalkyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_N alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, \mathcal{H}_{alo} C_1-C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group));

(2) in cases where A^2 represents -C(=0) - or

:=

Circuit hand bud

-C (=NOR 6) - (In this formula, R 6 is as defined above), R 7 represents hydrogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C_2 C_6 alkenyl group, halo C_2 $-C_6$ alkenyl group, C_3-C_6 cycloalkyl group, halo C_3-C_6 cycloalkyl group, C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, $mono(C_1-C_6)$ alkylamino group, $di(C_1-C_6)$ alkylamino group in which the (C_1-C_6) always groups may be same or different, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-c_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, $\c C_1-C_6$ alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, phenylamino group, substituted phenylamino group hav ng, on the ring thereof, at least one, same or different substituents selected from the group consisting $d_{\mathbf{f}}$ halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl

group, C_1 - C_ϵ alkoxy group, halo C_1 - C_ϵ alkoxy group, C_1 - C_ϵ alkylthio group, halo C_1 - C_ϵ alkylthio group, C_1 - C_ϵ alkylsulfinyl group, halo C_1 - C_ϵ alkylsulfinyl group, C_1 - C_ϵ alkylsulfonyl group and halo C_1 - C_ϵ alkylsulfonyl group; and

in cases where A^2 represents C_1-C_6 alkylene (3)group, halo \mathcal{O}_{1} - \mathcal{O}_{6} alkylene group, \mathcal{C}_{2} - \mathcal{C}_{6} alkenylene group, halo C_2 - C_6 alkehylene group, C_2 - C_6 alkynylene group or halo C₃-C₆ alkynylene group, R⁷ represents hydrogen atom, halogen atom, C_3-C_6 cycloalkyl group, halo C_3-C_6 cycloalkyl group, C_1-C_6 a koxycarbonyl group, tri (C_1-C_6) alkylsilyl group in which the (C_1-C_6) alkyl groups may be same or different, thenyl group, substituted phenyl group having at least one, same or different substituents selected from the g_{χ}^{\dagger} oup consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alk lsulfonyl group, heterocyclic group (the term heter cyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, $C_1 \not\!\!\!\!/ C_6$ alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, $halo C_1-C_6$ alkoxy group, C_1-C_6 alkylthio group, halo $C_1 + C_6$ alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkyl-

sulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alky sulfonyl group, or $-A^5-R^{11}$ (in this formula, A^5 represents -O-, -S-, -SO- or -SO₂-; and R¹¹ represents C_3-C_{ϵ} cycloalkyl group, halo C_3-C_{ϵ} cycloalkyl group, phenyl group, substituted phenyl group having at lest one, same on different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl \P group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, or $-A^6-R^{12}$ (in this formula, A^6 represents C_1-C_6 alkylene group, halo C_1-C_6 alkylene group, C_2-C_6 alkenylene group, halo C_2 - C_6 alkenylene group, C_2 - C_6 alkynylene group or halo C₃-C₆ alkynylene group; and R¹² represents hydrogen atom, halogen atom, C₃-C₆ cycloalkyl group, halo C₃-C₆ cycloalkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group,

Conf

alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group, halo C_1-C_6 alkylsulfony group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo $C_1 - C_6$ alkoxy group, $C_1 - C_6$ alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1 - C_6 alkyls ulfonyl group, phenoxy group, substituted phenoxy group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C₁-C₆ alky sulfinyl group, C₁-C₆ alkylsulfonyl group and halo C_1 - ∂_{i_1} alkylsulfonyl group, phenylthio group, substituted phenylthio group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo $C_1 - C_6$ alkyl group, $C_1 - C_6$ alkowy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different

substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, C_1 - C_6 alkyl-sulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group))];

n represents an integer of 0 to 4; further, X may be taken conjointly with the adjacent carbon atom on the phenyl ring to form a fused ring (as used herein, the term fused ring means naphthalene, tetrahydronaphthalene indene, indane, quinoline, quinazoline, chroman, i chroman, indole, indoline, benzodioxane, benzodioxole, benzofuran, dihydrobenzofuran, benzothiophene, dihadrobenzothiophene, benzoxazole, benzothiazole, benzimidazole or indazole), and said fused ring may have at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group, halo C1-C6 alkylsulfonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl \sqrt{group} , halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, hald C_1-C_6 alkoxy group, C1-C6 alkylthio group, halo C1-C6 alkylthio

group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), and substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfinyl group, Calcallylsulfonyl group;

Q represents an N-, S- or O-containing, optionally substituted, heterocyclic group or fused heterocyclic group, selected from the group consisting of the following formulas Q1 to Q60;

Q35 Q36 Q37 Q39 Q38 Q40 Q41 ellinerie irmine i lie Q45 Q42 Q44 Q43 Q48 Q49 Q47 Q46 Q52 Q53 Q50 Q51 Q56 Q54 Q55 Q59 Q60 Q57 Q58

kin these formulas, Y, which may be same or different, represents halogen atom, cyano group, nitro group, halo C₃-C₆ cycloalkyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1 C_6 alkylthio group, C_1 $-C_6$ alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, or $-A^2-R^7$ (in this formula, A^2 and R' are as defined above); m represents an integer of 0 to 6; R13 in the formula Q22 and Q23 represents hydrogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₃-C₆ alkenyl group, halo C_3-C_6 alkenyl group, C_3-C_6 alkynyl group, halo C₃-C₆ alkynyl group, C₃-C₆ cycloalkyl group, halo C₃-C₆ cycloalkyl group, C₁-C₆ alkoxy C₁-C₆ alkyl group, halo C_1-C_6 alkoxy C_1-C_6 alkyl group, C_1-C_6 alkylthio C_1 - C_6 alkyl group, halo C_1 - C_6 alkylthio C_1 - C_6

alkyl group, C_1-C_6 alkylsulfinyl C_1-C_6 alkyl group, halo $C_1 - C_6$ alkylsulfinyl $C_1 - C_6$ alkyl group, $C_1 - C_6$ alkylsulfonyl C_1-C_6 alkyl group, halo C_1-C_6 alkylsulfonyl C_1-C_6 alkyl group, Ch-C₆ alkylsulfonyl group, halo C₁-C₆ alkylsulfonyl group, C_1-C_6 alkylcarbonyl group, halo C_1-C_6 alkylcarbonyl group, C_1-C_6 alkoxycarbonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo $\sqrt{C_1-C_6}$ alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, phenyl C_1-C_4 alkyl group, substituted phenyl C_1-C_4 alkyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 allyl group, halo C_1-C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_6 - C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, phenylcarbonyl group, or substituted phenylcarbonyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C1-C6 alkylthio group, C1-C6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group,

-

 C_1-C_s alkylsulfonyl group and halo C_1-C_s alkylsulfonyl group);

alternatively, Y may be taken conjointly with adjacent carbon atom on the ring to form a fused ring (the fused ring is as defined above), and said fused ring may have at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alk group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group, halo $C_{1} - C_{6}$ alkylsulfonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, group, heterocyclic group (the term heterocyclic group is as defined above), and substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substatuents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group

Co

and halo C_1-C_{ϵ} alkylsulfonyl group;

W represents O, S or $N-R^{13}$ (in this formula, R^{13} is as defined above); and Z^1 and Z^2 represent oxygen atom or sulfur atom;

provided that when X, R^1 and R^3 simultaneously represent hydrogen atom, Z^1 and Z^2 simultaneously represent oxygen atom, Q represents Q27, and Y is a chlorine atom of 2-position, then R^2 is not 1,2,2-trimethylpropyl group.

2. A phthalamide derivative according to Claim 1, wherein R1, R2 and R3, which may be same or different, represent hydrogen atom, C3-C6 cycloalkyl group, halo C_3-C_6 cycloalkyl group or $-A^1$ -(G), (in this formula, A^1 represents C₁-C₈ alkylene group, C₃-C₆ alkenylene group or C₃-C₆ alkynylene group; G, which may be same or different, represents hydrogen atom, halogen atom, cyano group, nitro group, halo C₁-C₆ alkyl group, C₃-C₆ cycloalkyl group, halo C3-C6 cycloalkyl group, C1-C6 alkoxycarbonyl group, di(C1-C6) alkoxyphosphoryl group in which the (C₁-C₆) alkoxy groups may be same or different, di(C1-C6) alkoxythiophosphoryl group in which the (C_1-C_6) alkoxy groups may be same or different, diphenylphosphino group, diphenylphosphono group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C1-C6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio

-

group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, heterocyclic group (as used herein, the term "heterocyclic group" means pyridyl group, pyridine-N-oxide group, pyrimidinyl group, furyl group, tetrahydrofuryl group, thienyl group, tetrahydrothienyl group, tetrahydropyranyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, imidazolyl group, triazolyl group or pyrazolyl group), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, or $-Z^3-R^4$ (in this formula, Z^3 represents -O-, -S-, -SO-, $-SO_2-$, $-N(R^5)-$ (in this formula, R^5 represents hydrogen atom, C₁-C₆ alkylcarbonyl group, halo C₁-C₆ alkylcarbonyl group, C₁-C₆ alkoxycarbonyl group, phenylcarbonyl group, substituted phenylcarbonyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group,

 C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, phenyl C₁-C₄ alkoxycarbonyl group, substituted phenyl C_1-C_4 alkoxycarbonyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, C_1-C_6 alkylsulfonyl group or halo C_1-C_6 alkylsulfonyl group), -C(=0) - or -C(=NOR⁶) - (in this formula, R⁶ represents hydrogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_3-C_6 alkenyl group, halo C_3-C_6 alkenyl group, C_3-C_6 alkynyl group, C_3-C_6 cycloalkyl group, phenyl C_1-C_4 alkyl group, or substituted phenyl C₁-C₄ alkyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group), and R4 represents hydrogen atom, C1-C6 alkyl group, halo C_1-C_6 alkyl group, C_3-C_6 alkenyl group, halo C_3-C_6 alkenyl group, C₃-C₆ alkynyl group, halo C₃-C₆ alkynyl group, C_3-C_6 cycloalkyl group, halo C_3-C_6 cycloalkyl group, C_1-C_6 alkoxy C_1 - C_6 alkyl group, C_1 - C_6 alkylthio C_1 - C_6 alkyl

-

group, formyl group, C_i-C_{ϵ} alkylcarbonyl group, halo C_1-C_6 alkylcarbonyl group, C_1-C_6 alkoxycarbonyl group, mono (C_1-C_6) alkylaminocarbonyl group, $di(C_1-C_6)$ alkylamino carbonyl group in which the (C_1-C_6) alkyl groups may be same or different, mono (C_i-C_6) alkylaminothiocarbonyl group, di(C₁-C₆) alkylaminothiocarbonyl group in which the (C_1-C_6) alkyl groups may be same or different, $di(C_1-C_6)$ alkoxyphosphoryl group in which the (C_1-C_6) alkoxy groups may be same or different, $di(C_1-C_6)$ alkoxythiophosphoryl group in which the (C_1-C_6) alkoxy groups may be same or different, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, phenyl C_1-C_4 alkyl group, substituted phenyl (C_1-C_4) alkyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group

(the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group); and r represents an integer of 1 to 4); further, R^1 and R^2 may be taken conjointly to form 4- to 7-membered rings which may be intercepted by 1 to 3, same or different oxygen atom, sulfur atom or nitrogen atom;

X, which may be same or different, represents halogen atom, cyano group, nitro group, C3-C6 cycloalkyl group, halo C_3 - C_6 cycloalkyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6

alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, or $-A^2-R^7$ [in this formula, A^2 represents -O-, -S-, -SO-, -SO₂-, -NR⁸- (in this formula R^{ϵ} represents hydrogen atom, C_1-C_{ϵ} alkylcarbonyl group, halo C_1-C_6 alkylcarbonyl group, C_1-C_6 alkoxycarbonyl group, phenylcarbonyl group, substituted phenylcarbonyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁-C₆ alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, phenyl C₁-C₄ alkoxycarbonyl group or substituted phenyl C_1-C_4 alkoxycarbonyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C₁-C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group), -C(=0)-, $-C(=NOR^6)-$ (in this formula, R^6 is as defined above), C_1-C_6 alkylene group, halo C_1-C_6 alkylene group, C_2-C_6 alkenylene group, halo C_2-C_6 alkenylene group, C_2-C_6 alkynylene group or halo C_3-C_6 alkynylene group; and

in cases where A² represents -O-, -S-, -SO-, (1) $-SO_2$ - or $-NR^9$ - (in this formula, R^9 is as defined above), R^7 represents hydrogen atom, halo C_3-C_6 cycloalkyl group, halo C3-C6 cycloalkenyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C₁-C₆ alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, or -A3-R9 (in this formula, A3 represents C₁-C₆ alkylene group, halo C₁-C₆ alkylene group, C_3-C_6 alkenylene group, halo C_3-C_6 alkenylene group, C_3 - C_6 alkynylene group or halo C_3 - C_6 alkynylene group; and R° represents hydrogen atom, halogen atom, C_3-C_6 cycloalkyl group, halo C_3-C_6 cycloalkyl group, C_1-C_6 alkoxycarbonyl group, phenyl group, substituted phenyl group having at least one, same or different substit-

uents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁-C₆ alkoxy group, halo C₁-C₆ alkoxy group, C₁-C₆ alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, or $-A^4-R^{10}$ (in this formula, A^4 represents -O-, -S-, -SO-, $-SO_2-$ or -C(=O)-; and R^{10} represents C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_3-C_6 alkenyl group, halo C_3-C_6 alkenyl group, C_3-C_6 cycloalkyl group, halo C_3-C_6 cycloalkyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁-C₆ alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C₁-C₆ alkylthio group, halo C₁-C₆ alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group));

(2) in cases where A^2 represents -C(=0) - or $-C(=NOR^{\circ})$ - (in this formula, R° is as defined above), R^{7} represents hydrogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C2-C6 alkenyl group, halo C2-C6 alkenyl group, C₃-C₆ cycloalkyl group, halo C₃-C₆ cycloalkyl group, C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, mono (C_1-C_6) alkylamino group, di (C_1-C_6) alkylamino group in which the (C_1-C_6) alkyl groups may be same or different, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, phenylamino group, substituted phenylamino group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C₁-C₆ alkoxy group, C₁-C₆ alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group; and

in cases where A^2 represents C_1-C_6 alkylene (3) group, halo C_1-C_6 alkylene group, C_2-C_6 alkenylene group, halo C_2 - C_6 alkenylene group, C_2 - C_6 alkynylene group or halo C₃-C₆ alkynylene group, R⁷ represents hydrogen atom, halogen atom, C_3-C_6 cycloalkyl group, halo C_3-C_6 cycloalkyl group, C_1-C_6 alkoxycarbonyl group, tri(C_1-C_6) alkylsilyl group in which the (C_1-C_6) alkyl groups may be same or different, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, $C_1 \stackrel{\searrow}{-} C_6$ alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C1-C6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio

=

group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_{ϵ} alkylsulfonyl group and halo C_1-C_{ϵ} alkylsulfonyl group, or $-A^5-R^{11}$ (in this formula, A^5 represents -O-, -S-, -SO- or -SO₂-; and R¹¹ represents C₃-C₆ cycloalkyl group, halo C₃-C₆ cycloalkyl group, phenyl group, substituted phenyl group having at lest one, same or different substituents selected from the group consisting of halogen atom, C1-C6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C₁-C₆ alkylthio group, halo C₁-C₆ alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, or $-A^6-R^{12}$ (in this formula, A^6 represents $\text{C}_1\text{--}\text{C}_6$ alkylene group, halo C_1 - C_6 alkylene group, C_2 - C_6 alkenylene group, halo C_2 - C_6 alkenylene group, C_2 - C_6 alkynylene group or halo $C_3\text{--}C_6$ alkynylene group; and R^{12} represents hydrogen atom, halogen atom, C₃-C₆ cycloalkyl group, halo C₃-C₆ cycloalkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy

group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group, halo C_1-C_6 alkylsulfonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo $C_1 - C_6$ alkylsulfinyl group, $C_1 - C_6$ alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, phenoxy group, substituted phenoxy group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, phenylthio group, substituted phenylthio group having at least one, same or different substituents selected from the group consisting of halogen atom, C1-C6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C₁-C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as

defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group))];

n represents an integer of 0 to 4; further, X may be taken conjointly with the adjacent carbon atom on the phenyl ring to form a fused ring (as used herein, the term fused ring means naphthalene, tetrahydronaphthalene, indene, indane, quinoline, quinazoline, chroman, isochroman, indole, indoline, benzodioxane, benzodioxole, benzofuran, dihydrobenzofuran, benzothiophene, dihydrobenzothiophene, benzoxazole, benzothiazole, benzimidazole or indazole), and said fused ring may have at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C_1-C_6 alkylsulfonyl group, halo C_1-C_6 alkylsulfonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6

alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group and halo C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), and substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group;

Q is an optionally substituted, heterocyclic or fused heterocyclic group represented by one of the following formulas Q26 to Q28 and Q32 to Q34;

(in these formulas, Y, which may be same or different, represents halogen atom, cyano group, nitro group, halo C_3 - C_6 cycloalkyl group, phenyl group, substituted phenyl group having at least one, same or different substit-

uents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁-C₆ alkoxy group, halo C₁-C₆ alkoxy group, C₁-C₆ alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C₁-C₆ alkylthio group, halo C₁-C₆ alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, or $-A^2-R^7$ (in this formula, A^2 and R^7 are as defined above); m represents an integer of 0 to 4;

alternatively, Y may be taken conjointly with adjacent carbon atom on the ring to form a fused ring (the fused ring is as defined above), and said fused ring may have at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, phenyl

group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₅ alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C₁-C₆ alkylthio group, halo C₁-C₆ alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, $C_1 - C_6$ alkylsulfonyl group and halo $C_1 - C_6$ alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), and substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group; and

 $\ensuremath{\text{Z}}^1$ and $\ensuremath{\text{Z}}^2$ represent oxygen atom or sulfur atom.

3. A phthalamide derivative according to Claim 2, wherein R^1 , R^2 and R^3 , which may be same or different, represent hydrogen atom, C_3 - C_6 cycloalkyl group, halo C_3 - C_6 cycloalkyl group or $-A^1$ - $(G)_r$ (in this formula, A^1 represents C_1 - C_6 alkylene group, C_3 - C_6 alkenylene group or C_3 - C_6 alkynylene group; G, which may be same or different, represents hydrogen atom, halogen atom, cyano group, nitro group, halo C_1 - C_6 alkyl group, C_3 - C_6

cycloalkyl group, halo C3-C6 cycloalkyl group, C1-C6 alkoxycarbonyl group, $di(C_1-C_6)$ alkoxyphosphoryl group in which the (C_1-C_6) alkoxy groups may be same or different, $di(C_1-C_6)$ alkoxythiophosphoryl group in which the (C_1-C_6) alkoxy groups may be same or different, diphenylphosphino group, diphenylphosphono group, phenyl group, substituted phenyl group having at least one, same $or_{\tilde{\chi}}$ different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (as used herein, the term "heterocyclic group" means pyridyl group, pyridine-N-oxide group, pyrimidinyl group, furyl group, tetrahydrofuryl group, thienyl group, tetrahydrothienyl group, tetrahydropyranyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, imidazolyl group, triazolyl group or pyrazolyl group), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆

alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, or $-Z^3-R^4$ (in this formula, Z^3 represents -0-, -S-, -S0-, $-SO_2-$, $-N(R^5)-$ (in this formula, R^5 represents hydrogen atom, C₁-C₆ alkylcarbonyl group, halo C₁-C₆ alkylcarbonyl group, C_1 - C_6 alkoxycarbonyl group, phenylcarbonyl group, substituted phenylcarbonyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, phenyl C_1 - C_4 alkoxycarbonyl group, substituted phenyl C1-C4 alkoxycarbonyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, C_1-C_6 alkylsulfonyl group or halo C_1-C_6 alkylsulfonyl group), -C(=0) - or -C(=NOR⁶) - (in this formula, R⁶ represents hydrogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₃-C₆ alkenyl group, halo C₃-C₆ alkenyl group, C₃-C₆ alkynyl group, C_3 - C_6 cycloalkyl group, phenyl C_1 - C_4 alkyl group, or substituted phenyl C_1 - C_4 alkyl group having, on the ring thereof, at least one, same or different

7

substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group), and R4 represents hydrogen atom, C1-C6 alkyl group, halo C_1-C_6 alkyl group, C_3-C_6 alkenyl group, halo C_3-C_6 alkenyl group, C_3-C_6 alkynyl group, halo C_3-C_6 alkynyl group, C₃-C₆ cycloalkyl group, halo C₃-C₆ cycloalkyl group, C_1-C_6 alkoxy C_1-C_6 alkyl group, C_1-C_6 alkylthio C_1-C_6 alkyl group, formyl group, C_1-C_6 alkylcarbonyl group, halo C₁-C₆ alkylcarbonyl group, C₁-C₆ alkoxycarbonyl group, mono (C₁-C₆) alkylaminocarbonyl group, $di(C_1-C_6)$ alkylaminocarbonyl group in which the (C_1-C_6) alkyl groups may be same or different, mono (C_1-C_6) alkylaminothiocarbonyl group, $di(C_1-C_6)$ alkylaminothiocarbonyl group in which the (C_1-C_6) alkyl groups may be same or different, $di(C_1-C_6)$ alkoxyphosphoryl group in which the (C_1-C_6) alkoxy groups may be same or different, di(C1-C6) alkoxythiophosphoryl group in which the (C_1-C_6) alkoxy groups may be same or different, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylΞ

sulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, phenyl C_1-C_4 alkyl group, substituted phenyl (C_1-C_4) alkyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C1-C6 alkylsulfonyl group); and r represents an integer of 1 to 4); further, R1 and R² may be taken conjointly to form 4- to 7-membered rings which may be intercepted by 1 to 3, same or different oxygen atom, sulfur atom or nitrogen atom;

X, which may be same or different, represents halogen atom, cyano group, nitro group, amino group, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_3 - C_6 cycloalkyl group, halo C_3 - C_6 cycloalkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio

group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group, halo C₁-C₆ alkylsulfonyl group, mono(C₁- C_6) alkylamino group, di(C_1 - C_6) alkylamino group in which the (C_1-C_6) alkyl groups may be same or different, C_1-C_6 alkylcarbonylamino group, halo C₁-C₆ alkylcarbonylamino group, C_1-C_6 alkoxycarbonyl group, or tri(C_1-C_6) alkylsilylethynyl group in which the (C₁-C₆) alkyl groups may be same or different; and n represents an integer of 0 to 4; further, X may be taken conjointly with the adjacent carbon atom on the phenyl ring to form a fused ring (as used herein, the term fused ring means naphthalene, tetrahydronaphthalene, indene, indane, quinoline, quinazoline, chroman, isochroman, indole, indoline, benzodioxane, benzodioxole, benzofuran, dihydrobenzofuran, benzothiophene, dihydrobenzothiophene, benzoxazole, benzothiazole, benzimidazole or indazole), and said fused ring may have at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C1-C6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group, halo C_1-C_6 alkylsulfonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6

ŗ

alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), and substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group;

Q represents an optionally substituted, heterocyclic or fused heterocyclic group, having one of the following formulas Q26, Q27, Q28 or Q32:

$$Q26$$
 $Q27$ $Q28$ $Q32$

(in these formulas, Y, which may be same or different, represents halogen atom, cyano group, nitro group, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, halo C_3 - C_6 cycloalkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, halo

Ē

 C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group, halo C₁-C₆ alkylsulfonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, phenoxy group, substituted phenoxy group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group; and m represents an integer of 0 to 4;

alternatively, Y may be taken conjointly with

ţ

adjacent carbon atom on the ring to form a fused ring (the fused ring is as defined above), and said fused ring may have at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C_1-C_6 alkylsulfonyl group, halo C_1-C_6 alkylsulfonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), and substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group; and

 Z^1 and Z^2 represent oxygen atom or sulfur

atom.

4. A heterocyclic amine derivative represented by the following general formula (IV'):

$$Q'-NH_2$$
 (IV')

wherein:

(1) in cases where Q' represents one of Q26, Q28-Q31 and Q33-Q39,

Y, which may be same or different, represents hydrogen atom, halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group or halo C_1 - C_6 alkylsulfonyl group, m represents an integer of 1 to 4, and at least one of Y, of which total number is m, is perfluoro C_2 - C_6 alkyl

group;

and

in a case where Q' represents Q27 and Q32:

Y, which may be same or different, represents hydrogen atom, halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group or halo C_1 - C_6 alkylsulfonyl group, m represents an integer of 1 to 4, and at least one of Y, of which total number is m, is perfluoro C_2 - C_6 alkyl group, halo C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group.

5. An agrohorticultural insecticide containing, as an active ingredient thereof, a phthalamide derivative represented by the following general formula (I):

$$X_{n} = \begin{bmatrix} Z^{1} \\ N(R^{1})R^{2} \\ N(R^{3})Q \end{bmatrix}$$
 (I)

wherein R^1 , R^2 and R^3 , which may be same or different, represent hydrogen atom, C_3-C_6 cycloalkyl group, halo

 C_3-C_6 cycloalkyl group or $-A^1$ -(G)_r (in this formula, A^1 represents C₁-C₆ alkylene group, C₃-C₆ alkenylene group or C₃-C₆ alkynylene group; G, which may be same or different, represents hydrogen atom, halogen atom, cyano group, nitro group, halo C₁-C₆ alkyl group, C₃-C₆ cycloalkyl group, halo C₃-C₆ cycloalkyl group, C₁-C₆ alkoxycarbonyl group, $di(C_1-C_6)$ alkoxyphosphoryl group in which the (C_1-C_6) alkoxy groups may be same or different, di(C1-C6) alkoxythiophosphoryl group in which the (C_1-C_6) alkoxy groups may be same or different, diphenylphosphino group, diphenylphosphono group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C1-C6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C₁-C₆ alkylthio group, halo C₁-C₆ alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, heterocyclic group (as used herein, the term "heterocyclic group" means pyridyl group, pyridine-N-oxide group, pyrimidinyl group, furyl group, tetrahydrofuryl group, thienyl group, tetrahydrothienyl group, tetrahydropyranyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, imidazolyl group, triazolyl group or pyrazolyl group), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or

different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C1-C6 alkylsulfonyl group, or $-Z^3-R^4$ (in this formula, Z^3 represents -0-, -S-, -S0-, $-SO_2-$, $-N(R^5)-$ (in this formula, R^5 represents hydrogen atom, C_1 - C_6 alkylcarbonyl group, halo C_1 - C_6 alkylcarbonyl group, C_1 - C_6 alkoxycarbonyl group, phenylcarbonyl group, substituted phenylcarbonyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, phenyl C₁-C₄ alkoxycarbonyl group, substituted phenyl C_1-C_4 alkoxycarbonyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, C_1-C_6 alkylsulfonyl group or halo C_1-C_6 alkylsulfonyl group), -C(=0) - or -C(=NOR6)- (in this formula, R6 represents hydrogen

atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_3-C_6 alkenyl group, halo C_3-C_6 alkenyl group, C_3-C_6 alkynyl group, C3-C6 cycloalkyl group, phenyl C1-C4 alkyl group, or substituted phenyl C_1-C_4 alkyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group), and R^4 represents hydrogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_3-C_6 alkenyl group, halo C_3-C_6 alkenyl group, C₃-C₆ alkynyl group, halo C₃-C₆ alkynyl group, C_3-C_6 cycloalkyl group, halo C_3-C_6 cycloalkyl group, C_1-C_6 alkoxy C_1-C_6 alkyl group, C_1-C_6 alkylthio C_1-C_6 alkyl group, formyl group, C_1-C_6 alkylcarbonyl group, halo C_1-C_6 alkylcarbonyl group, C_1-C_6 alkoxycarbonyl group, mono (C_1-C_6) alkylaminocarbonyl group, di (C_1-C_6) alkylaminocarbonyl group in which the (C1-C6) alkyl groups may be same or different, mono (C_1-C_6) alkylaminothiocarbonyl group, di(C1-C6) alkylaminothiocarbonyl group in which the (C_1-C_6) alkyl groups may be same or different, $di(C_1-C_6)$ alkoxyphosphoryl group in which the (C_1-C_6) alkoxy groups may be same or different, di (C_1-C_6) alkoxythiophosphoryl group in which the (C_1-C_6) alkoxy groups may be same or different, phenyl group, substituted phenyl group having at least one, same or

different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₅ alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, phenyl C_1-C_4 alkyl group, substituted phenyl (C_1-C_4) alkyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C₁-C₆ alkoxy group, halo C₁-C₆ alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo $C_1\text{--}C_6$ alkylsulfonyl group); and r represents an integer of 1 to 4); further, R1 and R2 may be taken conjointly to form 4- to 7-membered rings which may be intercepted by 1 to 3, same or different oxygen atom, sulfur atom or nitrogen atom;

X, which may be same or different, represents halogen atom, cyano group, nitro group, C3-C6 cycloalkyl group, halo C3-C6 cycloalkyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, or $-A^2-R^7$ [in this formula, A^2 represents -O-, -S-, -SO-, -SO₂-, -NR⁸- (in this formula R⁸ represents hydrogen atom, C₁-C₆ alkylcarbonyl group, halo C_1-C_6 alkylcarbonyl group, C_1-C_6 alkoxycarbonyl group, phenylcarbonyl group, substituted phenylcarbonyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6

alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C1-C6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, phenyl C₁-C₄ alkoxycarbonyl group or substituted phenyl C_1-C_4 alkoxycarbonyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group), -(=0)-, $-C(=NOR^6)-$ (in this formula, R^6 is as defined above), C_1-C_6 alkylene group, halo C_1-C_6 alkylene group, C_2-C_6 alkenylene group, halo C_2-C_6 alkenylene group, C_2-C_6 alkynylene group or halo C_3-C_6 alkynylene group; and

in cases where A^2 represents -O-, -S-, -SO-, -SO₂- or -NR⁸- (in this formula, R⁸ is as defined above), R⁷ represents hydrogen atom, halo C_3 - C_6 cycloalkyl group, halo C_3 - C_6 cycloalkenyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkyl-thio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkyl-sulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as

defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C₁-C₆ alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, or -A3-R9 (in this formula, A3 represents C_1 - C_6 alkylene group, halo C_1 - C_6 alkylene group, C₃-C₆ alkenylene group, halo C₃-C₆ alkenylene group, C_3-C_6 alkynylene group or halo C_3-C_6 alkynylene group; and R9 represents hydrogen atom, halogen atom, C_3-C_6 cycloalkyl group, halo C_3-C_6 cycloalkyl group, C_1-C_6 alkoxycarbonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, or $-A^4-R^{10}$ (in this formula, A^4 represents -O-, -S-, -SO-, $-SO_2-$ or -C(=0)-; and R^{10} represents C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_3-C_6 alkenyl group, halo C_3-C_6 alkenyl group, C₃-C₆ cycloalkyl group, halo C₃-C₆ cycloalkyl group, phenyl group, substituted phenyl group having at least one, same or different substit-

uents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C₁-C₆ alkoxy group, C₁-C₆ alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C₁-C₆ alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group));

(2) in cases where A^2 represents -C (=0) - or -C (=NOR 6) - (in this formula, R^6 is as defined above), R^7 represents hydrogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_2 - C_6 alkenyl group, halo C_2 - C_6 alkenyl group, C_3 - C_6 cycloalkyl group, halo C_3 - C_6 cycloalkyl group, C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, mono $(C_1$ - $C_6)$ alkylamino group, di $(C_1$ - $C_6)$ alkylamino group in which the $(C_1$ - $C_6)$ alkyl groups may be same or different, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy

group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, phenylamino group, substituted phenylamino group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo $C_1\text{--}C_6$ alkylsulfinyl group, $C_1\text{--}C_6$ alkylsulfonyl group and halo $C_1\text{--}C_6$ alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group; and

in cases where A^2 represents C_1 - C_6 alkylene group, halo C_1 - C_6 alkylene group, C_2 - C_6 alkenylene group, halo C_2 - C_6 alkenylene group, C_2 - C_6 alkynylene group or halo C_3 - C_6 alkynylene group, R^7 represents hydrogen atom, halogen atom, C_3 - C_6 cycloalkyl group, halo C_3 - C_6 cycloalkyl group, tri(C_1 - C_6)

alkylsilyl group in which the (C_1-C_6) alkyl groups may be same or different, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁-C₆ alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C1-C6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, or $-A^5-R^{11}$ (in this formula, A^5 represents -O-, -S-, -SO- or -SO₂-; and R¹¹ represents C₃-C₆ cycloalkyl group, halo C₃-C₆ cycloalkyl group, phenyl group, substituted phenyl group having at lest one, same or different substituents selected from the group consisting of halogen atom, C1-C6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C₁-C₆ alkylthio group, halo C₁-C₆ alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6

alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, or $-A^6-R^{12}$ (in this formula, A^6 represents $\text{C}_1\text{--}\text{C}_6$ alkylene group, halo C_1-C_6 alkylene group, C_2-C_6 alkenylene group, halo C_2 - C_6 alkenylene group, C_2 - C_6 alkynylene group or halo C_3 - C_6 alkynylene group; and R^{12} represents hydrogen atom, halogen atom, C_3-C_6 cycloalkyl group, halo C_3-C_6 cycloalkyl group, C₁-C₆ alkoxy group, halo C₁-C₆ alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C₁-C₆ alkylsulfonyl group, halo C₁-C₆ alkylsulfonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, phenoxy group, substituted phenoxy group having at least one, same or

different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C₁-C₆ alkoxy group, halo C₁-C₆ alkoxy group, C₁-C₆ alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C1-C6 alkylsulfonyl group, phenylthio group, substituted phenylthio group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C1-C6 alkylsulfonyl group))];

n represents an integer of 0 to 4; further, X may be taken conjointly with the adjacent carbon atom on the phenyl ring to form a fused ring (as used herein, the term fused ring means naphthalene,

tetrahydronaphthalene, indene, indane, quinoline, quinazoline, chroman, isochroman, indole, indoline, benzodioxane, benzodioxole, benzofuran, dihydrobenzofuran, benzothiophene, dihydrobenzothiophene, benzoxazole, benzothiazole, benzimidazole or indazole), and said fused ring may have at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group, halo C1-C6 alkylsulfonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C1-C6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), and substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group,

 C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group;

Q represents an N-, S- or O-containing, optionally substituted, heterocyclic group or fused heterocyclic group, selected from the group consisting of the following formulas Q1 to Q60;

(in these formulas, Y, which may be same or different, represents halogen atom, cyano group, nitro group, halo C₃-C₆ cycloalkyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, or $-A^2-R^7$ (in this formula, A^2 and R^7 are as defined above); m represents an integer of 0 to 6; R¹³ in the formula Q22 and Q23 represents hydrogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₃-C₆ alkenyl group, halo C_3-C_6 alkenyl group, C_3-C_6 alkynyl group, halo C_3-C_6 alkynyl group, C_3-C_6 cycloalkyl group, halo C_3 - C_6 cycloalkyl group, C_1 - C_6 alkoxy C_1 - C_6 alkyl group, halo C_1 - C_6 alkoxy C_1 - C_6 alkyl group, C_1 - C_6 alkylthio C_1 - C_6 alkyl group, halo C_1 - C_6 alkylthio C_1 - C_6 alkyl

group, C₁-C₆ alkylsulfinyl C₁-C₆ alkyl group, halo C₁-C₆ alkylsulfinyl C_1 - C_6 alkyl group, C_1 - C_6 alkylsulfonyl C_1 - C_6 alkyl group, halo C₁-C₆ alkylsulfonyl C₁-C₅ alkyl group, C_1-C_6 alkylsulfonyl group, halo C_1-C_6 alkylsulfonyl group, C_1-C_6 alkylcarbonyl group, halo C_1-C_6 alkylcarbonyl group, C₁-C₆ alkoxycarbonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C1-C6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, phenyl C1-C4 alkyl group, substituted phenyl C1-C4 alkyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C1-C6 alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, phenylcarbonyl group, or substituted phenylcarbonyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6

alkylsulfonyl group and halo C_i-C_ϵ alkylsulfonyl group); alternatively, Y may be taken conjointly with adjacent carbon atom on the ring to form a fused ring (the fused ring is as defined above), and said fused ring may have at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo $C_1 - C_6$ alkylsulfinyl group, $C_1 - C_6$ alkylsulfonyl group, halo C_1-C_6 alkylsulfonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, $C_1 - C_6$ alkylthio group, halo $C_1 - C_6$ alkylthio group, $C_1 - C_6$ alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), and substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group;

W represents O, S or $N-R^{13}$ (in this formula, R^{13} is as defined above); and Z^1 and Z^2 represent oxygen atom or sulfur atom.

6. An agrihorticultural insecticide according to Claim 5, wherein R^1 , R^2 and R^3 , which may be same or different, represent hydrogen atom, C3-C6 cycloalkyl group, halo C_3-C_6 cycloalkyl group or $-A^1$ -(G)_r (in this formula, A^1 represents C_1-C_6 alkylene group, C_3-C_6 alkenylene group or C₃-C₆ alkynylene group; G, which may be same or different, represents hydrogen atom, halogen atom, cyano group, nitro group, halo C1-C6 alkyl group, C_3-C_6 cycloalkyl group, halo C_3-C_6 cycloalkyl group, C_1-C_6 alkoxycarbonyl group, $di(C_1-C_6)$ alkoxyphosphoryl group in which the (C_1-C_6) alkoxy groups may be same or different, $di(C_1-C_6)$ alkoxythiophosphoryl group in which the (C_1-C_6) alkoxy groups may be same or different, diphenylphosphino group, diphenylphosphono group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C1-C6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (as used herein, the term "heterocyclic group" means pyridyl group, pyridine-N-oxide group, pyrimidinyl group, furyl group, tetrahydrofuryl group, thienyl group, tetra-

hydrothienyl group, tetrahydropyranyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, imidazolyl group, triazolyl group or pyrazolyl group), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C1-C6 alkylthio group, C1-C6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, or $-Z^3-R^4$ (in this formula, Z^3 represents -O-, -S-, -SO-, $-SO_2-$, $-N(R^5)-$ (in this formula, R^5 represents hydrogen atom, C₁-C₆ alkylcarbonyl group, halo C₁-C₆ alkylcarbonyl group, C_1 - C_6 alkoxycarbonyl group, phenylcarbonyl group, substituted phenylcarbonyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C1-C6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, phenyl C₁-C₄ alkoxycarbonyl group, substituted phenyl C₁-C₄ alkoxycarbonyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy

group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, C_1-C_6 alkylsulfonyl group or halo C_1-C_6 alkylsulfonyl group), -C(=0) or -C(=NOR⁶)- (in this formula, R⁶ represents hydrogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_3-C_6 alkenyl group, halo C₃-C₆ alkenyl group, C₃-C₆ alkynyl group, C₃-C₆ cycloalkyl group, phenyl C₁-C₄ alkyl group, or substituted phenyl C_1 - C_4 alkyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group), and R4 represents hydrogen atom, C1-C6 alkyl group, halo C₁-C₆ alkyl group, C₃-C₆ alkenyl group, halo C₃-C₆ alkenyl group, C_3-C_6 alkynyl group, halo C_3-C_6 alkynyl group, C₃-C₆ cycloalkyl group, halo C₃-C₆ cycloalkyl group, C₁-C₆ alkoxy C_1 - C_6 alkyl group, C_1 - C_6 alkylthio C_1 - C_6 alkyl group, formyl group, C_1-C_6 alkylcarbonyl group, halo C_1 - C_6 alkylcarbonyl group, C_1 - C_6 alkoxycarbonyl group, mono (C_1-C_6) alkylaminocarbonyl group, di (C_1-C_6) alkylaminocarbonyl group in which the (C_1-C_6) alkyl groups may be same or different, mono(C_1-C_6) alkylaminothiocarbonyl group, di(C1-C6) alkylaminothiocarbonyl group

in which the (C_1-C_6) alkyl groups may be same or different, di(C_1 - C_6) alkoxyphosphoryl group in which the (C_1-C_6) alkoxy groups may be same or different, $di(C_1-C_6)$ alkoxythiophosphoryl group in which the (C_1-C_6) alkoxy groups may be same or different, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C1-C6 alkylsulfonyl group, phenyl C_1 - C_4 alkyl group, substituted phenyl $(C_1$ - $C_4)$ alkyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group,

halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group); and r represents an integer of 1 to 4); further, R^1 and R^2 may be taken conjointly to form 4- to 7-membered rings which may be intercepted by 1 to 3, same or different oxygen atom, sulfur atom or nitrogen atom;

X, which may be same or different, represents halogen atom, cyano group, nitro group, C_3-C_6 cycloalkyl group, halo C₃-C₆ cycloalkyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, or $-A^2-R^7$ [in this formula, A^2 represents -O-, -S-, -SO-, -SO₂-, -NR⁸- (in this formula R⁸ represents hydrogen atom, C₁-C₆ alkyl-

carbonyl group, halo C₁-C₆ alkylcarbonyl group, C₁-C₆ alkoxycarbonyl group, phenylcarbonyl group, substituted phenylcarbonyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C1-C6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, phenyl C_1 - C_4 alkoxycarbonyl group or substituted phenyl C_1 - C_4 alkoxycarbonyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group), -C(=0)-, $-C(=NOR^6)-$ (in this formula, R^6 is as defined above), C_1-C_6 alkylene group, halo C_1-C_6 alkylene group, C_2-C_6 alkenylene group, halo C_2 - C_6 alkenylene group, C_2 - C_6 alkynylene group or halo C_3 - C_6 alkynylene group; and

(1) in cases where A^2 represents -O-, -S-, -SO-, $-SO_2$ - or $-NR^8$ - (in this formula, R^8 is as defined above), R^7 represents hydrogen atom, halo C_3 - C_6 cycloalkyl group, halo C_3 - C_6 cycloalkenyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of

1

halogen atom, C_1-C_ϵ alkyl group, halo C_1-C_ϵ alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C1-C6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, or $-A^3-R^9$ (in this formula, A^3 represents C₁-C₆ alkylene group, halo C₁-C₆ alkylene group, C_3-C_6 alkenylene group, halo C_3-C_6 alkenylene group, C_3-C_6 alkynylene group or halo C_3-C_6 alkynylene group; and R9 represents hydrogen atom, halogen atom, C_3-C_6 cycloalkyl group, halo C_3-C_6 cycloalkyl group, C_1-C_6 alkoxycarbonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁-C₆ alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, or

 $-A^4-R^{10}$ (in this formula, A^4 represents -O-, -S-, -SO-, $-SO_2-$ or -C(=0)-; and R^{10} represents C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_3-C_6 alkenyl group, halo C_3-C_6 alkenyl group, C3-C6 cycloalkyl group, halo C3-C6 cycloalkyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo $C_1\text{--}C_6$ alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C1-C6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group));

(2) in cases where A^2 represents -C(=0) - or $-C(=NOR^6)$ - (in this formula, R^6 is as defined above), R^7 represents hydrogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_2 - C_6 alkenyl group, halo C_2 - C_6 alkenyl group, C_3 - C_6 cycloalkyl group, halo C_3 - C_6 cycloalkyl group, C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group,

 $mono(C_1-C_6)$ alkylamino group, $di(C_1-C_6)$ alkylamino group in which the (C_1-C_6) alkyl groups may be same or different, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, phenylamino group, substituted phenylamino group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C₁-C₆ alkoxy group, C₁-C₆ alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo $C_1\text{--}C_6$ alkylsulfinyl group, $C_1\text{--}C_6$ alkylsulfonyl group and halo C1-C6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group; and

(3) in cases where A2 represents C1-C6 alkylene group, halo C₁-C₆ alkylene group, C₂-C₆ alkenylene group, halo C_2 - C_6 alkenylene group, C_2 - C_6 alkynylene group or halo C3-C6 alkynylene group, R7 represents hydrogen atom, halogen atom, C_3-C_6 cycloalkyl group, halo C_3-C_6 cycloalkyl group, C_1-C_6 alkoxycarbonyl group, tri(C_1-C_6) alkylsilyl group in which the (C_1-C_6) alkyl groups may be same or different, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁-C₆ alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C1-C6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, or $-A^5-R^{11}$ (in this formula, A^5 represents -O-, -S-, -SO- or -SO₂-; and R¹¹ represents C₃-C₆ cycloalkyl group, halo C₃-C₆ cycloalkyl group, phenyl group, substituted phenyl group having at lest

Ŧ.

one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C₁-C₆ alkyl group, C₁-C₆ alkoxy group, halo C₁-C₅ alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C₁-C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, or $-A^6-R^{12}$ (in this formula, A^6 represents C_1-C_6 alkylene group, halo C_1-C_6 alkylene group, C_2-C_6 alkenylene group, halo C_2 - C_6 alkenylene group, C_2 - C_6 alkynylene group or halo C₃-C₆ alkynylene group; and R¹² represents hydrogen atom, halogen atom, C₃-C₆ cycloalkyl group, halo C₃-C₆ cycloalkyl group, C₁-C₆ alkoxy group, halo C₁-C₆ alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group, halo C_1-C_6 alkylsulfonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom,

 C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C₁-C₆ alkoxy group, C₁-C₆ alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, phenoxy group, substituted phenoxy group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, phenylthio group, substituted phenylthio group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C1-C6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆

alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group))];

n represents an integer of 0 to 4; further, X may be taken conjointly with the adjacent carbon atom on the phenyl ring to form a fused ring (as used herein, the term fused ring means naphthalene, tetrahydronaphthalene, indene, indane, quinoline, quinazoline, chroman, isochroman, indole, indoline, benzodioxane, benzodioxole, benzofuran, dihydrobenzofuran, benzothiophene, dihydrobenzothiophene, benzoxazole, benzothiazole, benzimidazole or indazole), and said fused ring may have at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group, halo C₁-C₆ alkylsulfonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C1-C6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C₁-C₆ alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), and substituted heterocyclic group (the term heterocyclic group

is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfinyl group; and halo C_1 - C_6 alkylsulfonyl group;

Q is an optionally substituted, heterocyclic or fused heterocyclic group represented by one of the following formulas Q26 to Q28 and Q32 to Q34;

(in these formulas, Y, which may be same or different, represents halogen atom, cyano group, nitro group, halo C_3 - C_6 cycloalkyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkyl-

sulfonyl group and halo C_1 - C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkyl-sulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, or - A^2 - A^2 (in this formula, A^2 and A^2 are as defined above); m represents an integer of 0 to 4;

alternatively, Y may be taken conjointly with adjacent carbon atom on the ring to form a fused ring (the fused ring is as defined above), and said fused ring may have at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group, halo C_1 - C_6 alkylsulfonyl group, benyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio

group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), and substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkyl group, C_1 - C_6 alkylhio group, halo C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group; and

 $\ensuremath{\text{Z}}^1$ and $\ensuremath{\text{Z}}^2$ represent oxygen atom or sulfur atom.

7. An adrihorticultural insecticide according to Claim 6, wherein R^1 , R^2 and R^3 , which may be same or different, represent hydrogen atom, C_3 - C_6 cycloalkyl group, halo C_3 - C_6 cycloalkyl group or $-A^1$ - $(G)_r$ (in this formula, A^1 represents C_1 - C_8 alkylene group, C_3 - C_6 alkenylene group or C_3 - C_6 alkynylene group; G, which may be same or different, represents hydrogen atom, halogen atom, cyano group, nitro group, halo C_1 - C_6 alkyl group, C_3 - C_6 cycloalkyl group, halo C_3 - C_6 cycloalkyl group, C_1 - C_6 alkoxycarbonyl group, di $(C_1$ - $C_6)$ alkoxyphosphoryl group in which the $(C_1$ - $C_6)$ alkoxy groups may be same or different, di $(C_1$ - $C_6)$ alkoxy groups may be same or different,

PCZ

1

diphen lphosphino group, diphenylphosphono group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C1-C6 alkyl group, halo C_1-C_6 alk group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, \mathcal{O}_1 -C₆ alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alky sulfinyl group, halo C₁-C₆ alkylsulfinyl group, $C_1 + C_6$ alkylsulfonyl group and halo $C_1 - C_6$ alkylsulfonyl group heterocyclic group (as used herein, the term "heterocyclic group" means pyridyl group, pyridine-N-oxide group, pyrimidinyl group, furyl group, tetrahydrofuryl group, thienyl group, tetrahydrothienyl group, tetrahydropyranyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, imidazolyl group, triazolyl group or pyrazolyl group), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alky $\frac{1}{4}$ sulfonyl group, or $-Z^3-R^4$ (in this formula, Z^3 represents -O-, -S-, -SO-, -SO₂-, -N(R 5)- (in this formula, R 5 represents hydrogen atom, C₁-C₆ alkylcarbonyl group, halo C₁-C₆ alkylcarbonyl group, C_1 - C_6 alkoxycarbonyl group, phenylcarbonyl group,

substituted phenylcarbonyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_{ϵ} alkyl group, halo C_1-C_{ϵ} alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylth o group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfohyl group and halo C_1-C_6 alkylsulfonyl group, phenyl $C_1 - C_4$ alkoxycarbonyl group, substituted phenyl C₁-C₄ alkoxycarbonyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo $C_1 - C_6$ alkylsulfonyl group, $C_1 - C_6$ alkylsulfonyl group or halo C_1-C_6 alkylsulfonyl group), -C (=0) or -C(=NOR 6)- (in this formula, R^6 represents hydrogen atom, C_1 - C_6 alkyl group, halo C_4 - C_6 alkyl group, C_3 - C_6 alkenyl group, halo C_3-C_6 alkenyl group, C_3-C_6 alkynyl group, C_3-C_6 cycloalkyl group, phenyl C_1-C_4 alkyl group, or substituted phenyl C_1-C_4 alkyl \group having, on the ring thereof, at least one, same or different substituents selected from the group consilsting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_4-C_6 alkyl,_

e linerie in bind

sulfonyl group and halo C_1 - C_ϵ alkylsulfonyl group), and R^4 represents hydrogen atom, C_1 - C_6 alkyl group, halo C_1-C_6 alkeryl group, C_3-C_6 alkeryl group, halo C_3-C_6 alkeryl group, C_3-C_6 alkynyl group, halo C_3-C_6 alkynyl group, C₃-C₆ cycloalkyl group, halo C₃-C₆ cycloalkyl group, C₁-C₆ alkoxy C_1 - C_6 alkyl group, C_1 - C_6 alkylthio C_1 - C_6 alkyl group, formyl group, C₁-C₆ alkylcarbonyl group, halo C_1-C_6 alkylcarbon \mathcal{M} group, C_1-C_6 alkoxycarbonyl group, $mono(C_1-C_6)$ alkylaminocarbonyl group, $di(C_1-C_6)$ alkylaminocarbonyl group in which the (C_1-C_6) alkyl groups may be same or different, mono (C_1-C_6) alkylaminothiocarbonyl group, $di(C_1-C_6)$ alkylaminothiocarbonyl group in which the (C_1-C_6) alky $\begin{cases} \begin{cases} \begin{cases$ different, $di(C_1-C_6)$ alkoxyphosphoryl group in which the (C_1-C_6) alkoxy groups may be\same or different, di (C_1-C_6) alkoxythiophosphoryl group in which the (C_1-C_6) alkoxy groups may be same or different, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio \group , C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, phenyl C_1-C_4 alkyl group, substituted phehyl (C_1-C_4) alkyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group halo C_1-C_6

alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1-C_0 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C1-C6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from th \grave{a} group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1 - C_6 alkyxy group, C_1 - C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfo \hbar yl group); and r represents an integer of 1 to 4); further, R^1 and R^2 may be taken conjointly to form 4- to 7-membered rings which may be intercepted by 1 to 3, same of different oxygen atom, sulfur atom or nitrogen atom;

X, which may be same of different, represents halogen atom, cyano group, nitro group, amino group, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_3 - C_6 cycloalkyl group, halo C_3 - C_6 cycloalkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group, halo C_1 - C_6 alkylsulfonyl group, mono C_1 - C_6) alkylamino group, di(C_1 - C_6) alkylamino group in which the $(C_1$ - C_6) alkyl groups may be same or different, C_1 - C_6

Ch

Con

alkylcarbonylamino group, halo C_1 - C_6 alkylcarbonylamino group, C_1-C_6 alkoxycarbonyl group, or tri (C_1-C_6) alkylsilylethynyl group in which the (C₁-C₆) alkyl groups may be same of different; and n represents an integer of 0 to 4; further, X may be taken conjointly with the adjacent carbon atom on the phenyl ring to form a fused ring (as used herein, the term fused ring means naphthalene, tet ahydronaphthalene, indene, indane, quinoline, quinazoline, chroman, isochroman, indole, indoline, benzodioxane, benzodioxole, benzofuran, dihydrobenzofuran, benzothiophene, dihydrobenzothiophene, benzoxazole benzothiazole, benzimidazole or indazole), and said fused ring may have at least one, same or different substituents selected from the group consisting of halogen atom C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1+C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group, halo d_1-C_6 alkylsulfonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_6 - C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), and substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group;

Q represents an optionally substituted, heterocyclic or fused heterocyclic group represented by one of the following formulas Q26, Q27, Q28 and Q32:

(in these formulas, Y, which may be same or different, represents halogen atom, cyano group, nitro group, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, halo C_3 - C_6 cycloalkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy halo C_1 - C_6 alkoxy halo C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group, halo C_1 - C_6 alkylsulfonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consist-

U

ing of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfiny group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulf $\partial_{\mathbf{n}}$ yl group and halo C_1-C_6 alkylsulfonyl group, phenoxy group, substituted phenoxy group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 a kylsulfonyl group and halo C_1-C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as defined above) having at leas $\c t$ one, same or different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo C_1-C_6 alky sulfonyl group; and m represents an integer of 0 to 4;

alternatively, Y may be taken conjointly with adjacent carbon atom on the ring to form a fused ring (the fused ring is as defined above), and said fused ring may have at least one, same or different substituents selected from the group consisting of

halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_0 alkoxy group, halo C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfin χ group, halo C_i-C_ϵ alkylsulfinyl group, C_i-C_ϵ alkylsul onyl group, halo C1-C6 alkylsulfonyl group, phenyl group, substituted phenyl group having at least one, same o $oldsymbol{k}$ different substituents selected from the group consisting of halogen atom, C_1-C_6 alkyl group, halo C_1-C_6 alkyl group, C_1-C_6 alkoxy group, halo C_1-C_6 alkoxy group, $C_1 - C_6$ alkylthio group, halo $C_1 - C_6$ alkylthio group, C_1-C_6 alky sulfinyl group, halo C_1-C_6 alkylsulfinyl group, $C_1 - C_6$ alkylsulfonyl group and halo $C_1 - C_6$ alkylsulfonyl group, heterocyclic group (the term heterocyclic group \(\)s as defined above), and substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents $\$ elected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, $halo C_1$ - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1-C_6 alkylthio group, C_1-C_6 alkylsulfinyl group, halo C_1-C_6 alkylsulfinyl group, C_1-C_6 alkylsulfonyl group and halo $\[\downarrow_1 - C_6 \]$ alkylsulfonyl group;

 Z^1 and Z^2 represent oxygen atom or sulfur atom.

A method for using an agrohorticultural insecticide characterized by treating an objective crop or applying to soil with an effective quantity of an

amen.

and

contol.
B1:

agrohorticultural insecticide according to any one of Claims 5, 6 and 7 for the purpose of controlling noxious organisms doing harm to useful crops.