INSTABILITY OF GROMOV NON-SQUEEZING

YASHA SAVELYEV

ABSTRACT. We show that the Gromov non-squeezing phenomenon disappears after an arbitrarily small, general (non-symplectic) C^{∞} perturbation of the symplectic form on the range. In particular the lcs non-squeezing theorem in [2] is sharp, (in the sense that the lcs condition cannot be removed.)

One of the most fascinating early results in symplectic geometry is the so called Gromov non-squeezing theorem appearing in the seminal paper of Gromov [1]. The most well known formulation of this is that there does not exist a symplectic embedding $B_R \to D^2(r) \times \mathbb{R}^{2n-2}$ for R > r, with B_R the standard closed radius R ball in \mathbb{R}^{2n} centered at 0. Gromov's non-squeezing is C^0 persistent in the following sense.

We say that a symplectic form ω on $M \times N$ is *split* if $\omega = \omega_1 \oplus \omega_2$ for symplectic forms ω_1, ω_2 on M respectively N.

Theorem 0.1. Given R > r, there is an $\epsilon > 0$ s.t. for any symplectic form ω' on $S^2 \times T^{2n-2}$ C^0 -close to a split symplectic form ω and satisfying

$$\langle \omega, A \rangle = \pi r^2, A = [S^2] \otimes [pt],$$

there is no symplectic embedding $\phi: B_R \hookrightarrow (S^2 \times T^{2n-2}, \omega')$.

This theorem is generalized in [2] to lcs forms ω' . We show here that this persistence disappears if we take a completely general ω' . In particular the theorem of [2] is a truly lcs phenomenon.

Theorem 0.2. Given R > r and every $\epsilon > 0$ there is a (necessarily non-closed by above) 2-form ω' on $S^2 \times T^{2n-2}$ C^{∞} ϵ -close to a split symplectic form ω , satisfying $\langle \omega, A \rangle = \pi r^2$, and such that there is an embedding $\phi : B_R \hookrightarrow S^2 \times T^{2n-2}$, with $\phi^* \omega' = \omega_{st}$? We call such an embedding symplectic in analogy with the classical symplectic case. Moreover, ϕ can be chosen so that

$$\phi(B_R) \subset (S^2 \times T^{2n-2} - \bigcup_i \Sigma_i),$$

where Σ_i are certain hypersurfaces explained in the proof.

Proof. Let R, r, ϵ be given. Let

$$M' = [0, r]^2 \times \mathbb{R}^{2n-2}.$$

We first construct a 2-form ω'' on M', C^{∞} -nearby to the standard symplectic form ω and a symplectic embedding $\phi: Cube(R) \to M'$, where Cube(R) denotes the closed cube in \mathbb{R}^{2n} with side R.

For simplicity we take in what follows n=2, with construction obviously generalizing to any n. Let p,q be the coordinates on $sq=[0,r]^2\subset\mathbb{R}^2$. Let (p,q,s,t) be the natural coordinates on M', and let g be the standard Euclidean metric on M'.

Define the following surface S_0 in M':

$$S_0 = \{(p, q, f_l(p), 0) \mid (p, q) \in sq\},\$$

where

$$f_l:[0,r]\to\mathbb{R}$$

is a smooth function satisfying:

$$f(0) = 0, \forall p : f'(p) \ge 0,$$

f is constant near 0 and r and the g-length of the graph of f is l, (g being the standard Eucledian metric). Then S_0 is a ω -symplectic surface whose ω -orthogonal spaces are spanned by $\frac{\partial}{\partial s}$, $\frac{\partial}{\partial t}$. Define

$$S_{s,t} := S_0 + (0,0,s,t), \quad 0 \le s \le R, 0 \le t \le R.$$

Then

$$C := \bigcup_{s,t} S_{s,t}$$

is a domain in M' that is diffeomorphic to the standard closed cube in \mathbb{R}^4 , folliated by the surfaces $S_{s,t}$. Let $\mathcal{F} \subset TC$ denote the 2-dimensional distribution corresponding to this folliation, that is $\mathcal{F}(z)$ is the sub-space of vectors tangent to the leaf through z = (p, q, s, t). And let $V \subset TC$ denote the ω -orthogonal distribution, that is the distribution with

$$V(p,q,s,t) = span(\frac{\partial}{\partial s},\frac{\partial}{\partial t}),$$

by the observations above.

Let $h: C \to \mathbb{R}$, be a smooth function (that is a function with a smooth extension to a neighborhood of C) satisfying:

- h > 0.
- $d_{C^{\infty}}(h) < \frac{\epsilon}{2}$.
- $h = \frac{\epsilon}{2}$ on a open (in \mathbb{R}^4) subset $L_l \subset C$, chosen so that the g-volume of L_l tends to ∞ as l tends to ∞ .
- h=0 on a neighborhood of ∂C , with the latter the topological boundary.

Let ω_{ϵ} be the 2-form on C, preserving the splitting

$$TC \simeq \mathcal{F} \oplus V$$
,

and such that:

$$\forall z \in C, \forall v, w \in V(z) \subset T_zC : \omega_{\epsilon}(v, w) = \omega(v, w),$$

and

$$\forall z \in C, \forall v, w \in \mathcal{F}(z) : \omega_{\epsilon}(v, w) = \omega(v, w) + h(z) \cdot \omega_{g}(v, w),$$

Where ω_g is the g-area 2-form on the corresponding leaf, with same orientation as ω . Since the g-area of each leaf $S_{s,t}$ can be made arbitrarily large, by taking l to be sufficiently large, the ω_{ϵ} -area of each leaf $S_{s,t}$ can be assumed to be R^2 . Moreover we clearly have

$$d_{C^0}(\omega,\omega_{\epsilon}) = \epsilon/2$$

on C.

By construction (specifically properties of h) ω_{ϵ} extends to a 2-form ω'' on M' coinciding with ω outside a compact set, and satisfying:

$$d_{C^{\infty}}(\omega'',\omega)<\epsilon.$$

Now fix a symplectomorphism

$$\phi_0: [0,R]^2 \to (S_0,\omega''|_{S_0}),$$

and define

$$\phi: Cube(R) \to C$$

by

$$\phi(p, q, s, t) = \phi_0(p, q) + (0, 0, s, t),$$

by construction $\phi^*\omega'' = \omega_{st}$.

Now since $\omega'' = \omega$ outside a compact set K, we obviously get an induced 2-form ω' , on M, C^{∞} ϵ -nearby to a split symplectic form, s.t. there is a symplectic embedding:

$$\phi: (Cube(R), \omega_{st}) \to (M, \omega').$$

Moreover, by construction we may insure that

$$\operatorname{image}(\phi) \subset M - \bigcup_{i} \Sigma_{i},$$

where

$$\Sigma_i = S^2 \times (S^1 \times \ldots \times S^1 \times \{pt\} \times S^1 \times \ldots \times S^1) \subset M,$$

where the singleton $\{pt\} \subset S^1$ replaces the i'th factor of $T^{2n-2} = S^1 \times \ldots \times S^1$. And so we are done.

References

- $[1] \ \text{M. Gromov}, \textit{Pseudo holomorphic curves in symplectic manifolds.}, \textit{Invent. Math.}, 82 \ (1985), \textit{pp. } 307-347.$
- [2] Y. SAVELYEV, Gromov Witten theory of a locally conformally symplectic manifold and the Fuller index, arXiv, (2016). Email address: yasha.savelyev@gmail.com

UNIVERSITY OF COLIMA, CUICBAS