ESAME DI MECCANICA RAZIONALE

CORSO DI LAUREA IN ARCHITETTURA – INGEGNERIA ALMA MATER – UNIVERSITÀ DI BOLOGNA

4 Luglio 2025

ISTRUZIONI. Il tempo a disposizione per la risoluzione è di 120 minuti. Risposte non giustificate non verranno conteggiate.

In un piano verticale è dato un riferimento cartesiano $O\hat{\imath}_1\hat{\imath}_2$ come in figura. Un corpo rigido è costituito da due aste, $\overline{OP_1}$ e $\overline{OP_2}$, di lunghezza 2ℓ e ℓ rispettivamente: le due aste sono saldate in O in modo da formare un angolo di $\frac{\pi}{2}$. In tale punto, inoltre, una cerniera ideale permette al corpo di muoversi ruotando liberamente mantenendosi nel piano. In P_1 , è saldato il centro di un disco, complanare al dispositivo, di raggio $r=2\eta\ell$ per un certo $\eta\in(0,1)$, e massa m; all'estremità P_2 dell'asta più corta è invece saldata una massa puntiforme di valore 2m. Infine, il punto P_2 è collegato ad un punto C sull'asse verticale passante per O da una molla di costante elastica k e lunghezza a riposo trascurabile. Il punto C si trova nel semiasse negativo delle ordinate a distanza ℓ dall'origine.

- A Si calcoli la posizione del centro di massa del sistema e la sua distanza dall'origine del riferimento.
- **B** Si assuma $2mg = k\ell$. Si determinino le posizioni di equilibrio del sistema utilizzando come parametro lagrangiano l'angolo θ in figura, e dire se esse sono stabili o instabili.
- C Il momento di inerzia di un disco omogeneo di massa M e raggio R rispetto all'asse ad esso ortogonale e passante per il suo centro è $I = \frac{1}{2}MR^2$. Si calcoli il momento d'inerzia del sistema rispetto all'asse ortogonale al piano e passante per il perno.
- **D** Si calcoli il lavoro eseguito dalla forza elastica agente su P_2 durante un moto che inizia con $\theta = \frac{\pi}{2}$ e termina con $\theta = 0$.
- E Trascurando l'effetto della molla, qual è il periodo delle piccole oscillazioni del sistema attorno alla sua configurazione di equilibrio? Che lunghezza $\hat{\ell}$ dovrebbe avere un pendolo semplice per produrre (nella stessa approssimazione) lo stesso periodo?

A Con riferimento alla figura, abbiamo che

$$\overrightarrow{OP_1} = 2\ell \cos \theta \hat{\imath}_1 - 2\ell \sin \theta \hat{\imath}_2, \qquad \overrightarrow{OP_2} = -\ell \sin \theta \hat{\imath}_1 - \ell \cos \theta \hat{\imath}_2.$$

Di conseguenza, detto G il centro di massa,

$$\overrightarrow{OG} = \frac{\overrightarrow{mOP_1} + 2\overrightarrow{mOP_2}}{3m} = \frac{2\ell}{3}(\cos\theta - \sin\theta)\hat{\imath}_1 - \frac{2\ell}{3}(\cos\theta + \sin\theta)\hat{\imath}_2.$$

Per calcolare la distanza dall'origine,

$$d^2(O,G) = \|\overrightarrow{OG}\|^2 = \frac{4\ell^2}{9} \left((\cos\theta - \sin\theta)^2 + (\cos\theta + \sin\theta)^2 \right) = \frac{8\ell^2}{9},$$

da cui $d(O,G) = \frac{2\sqrt{2}}{3}\ell$.

B L'energia potenziale può essere scritta come somma di un contributo gravitazionale e uno elastico. Essendo $\langle \hat{\imath}_2, \overrightarrow{OG} \rangle = -\frac{2\ell}{3}(\cos\theta + \sin\theta)$ e $d^2(C, P_2) = 2\ell^2 - 2\ell^2\cos\theta$ (per il teorema del coseno) abbiamo che

$$V(\theta) = -2mg\ell(\cos\theta + \sin\theta) + k\ell^2(1 - \cos\theta) = -\left(k\ell^2 + 2mg\ell\right)\cos\theta - 2mg\ell\sin\theta + k\ell^2.$$

Imponendo $2mg = k\ell$ e trascurando costanti additive globali, possiamo studiare

$$V(\theta) = -k\ell^2(2\cos\theta + \sin\theta).$$

Le configurazioni di equilibrio si possono trovare imponendo $V'(\theta) = 0 \Rightarrow 2 \sin \theta = \cos \theta$. Osservando che $\cos \theta = 0$ non può essere soluzione, questo si scrive come $\tan \theta = 1/2$, da cui due possibili soluzioni $\theta_+ = \arctan 1/2$ e $\theta_- = \pi + \arctan 1/2$. Studiando la derivata seconda, $V''(\theta) = k\ell^2(2\cos\theta + \sin\theta)$, avendo θ_+ seno e coseno positivo questo ha $V''(\theta_+) > 0$, ovvero il punto è di equilibrio stabile; viceversa θ_- ha seno e coseno negativi, e quindi $V''(\theta_-) < 0$, ovvero θ_- è di equilibrio instabile.

C Il momento di inerzia del disco in P_1 rispetto all'asse ortogonale al piano e passante per il suo centro è $\frac{1}{2}mr^2$. Per il teorema di Huygens–Steiner, il momento rispetto all'asse parallelo passante per O sarà quindi $\frac{1}{2}mr^2 + m(2\ell)^2$. Aggiungendo il contributo della massa in P_2 , si ottiene

$$I = \frac{1}{2}mr^2 + m(2\ell)^2 + 2m\ell^2 = \frac{1}{2}mr^2 + 6m\ell^2 = 2(3+\eta^2)m\ell^2.$$

D Essendo la forza conservativa, osservando che il potenziale elastico è $V_{\rm el}(\theta) = \frac{1}{2}kd^2(P_2,C) = k\ell^2(1-\cos\theta)$, il lavoro si ottiene come differenza del potenziale

$$W = V(\pi/2) - V(0) = k\ell^2.$$

E Avendo calcolato il momento di inerzia I rispetto ad O, che è anche centro istantaneo di rotazione, possiamo osservare che il sistema è un pendolo fisico avente massa $m_{\rm tot}=3m$, in cui il centro di massa dista dal centro istantaneo di rotazione stesso $d_{\rm cm}=\frac{2\sqrt{2}}{3}\ell$. Dalla teoria generale è noto che il periodo delle piccole oscillazioni è

$$au = 2\pi \sqrt{rac{I}{m_{
m tot} g d_{
m cm}}} = 2\pi \sqrt{rac{2(3+\eta^2)m\ell^2}{3mgrac{2\sqrt{2}}{3}\ell}} = 2\pi \sqrt{rac{(3+\eta^2)\ell}{g\sqrt{2}}}.$$

Questa quantità è uguale al periodo del pendolo semplice di lunghezza $\hat{\ell} = \frac{3+\eta^2}{\sqrt{2}}\ell$.