This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

BUNDESREPUBLIK DEUTSCHLAND

① Offenlegungsschrift① DE 43 04 343 A 1

G 02 B 3/00 G 02 B 5/00 G 02 B 5/18 G 02 B 5/32

DEUTSCHES PATENTAMT 21) Aktenzeichen:22) Anmeldetag:

P 43 04 343.7 13. 2. 93

Offenlegungstag:

18. 8. 94

(7) Anmelder:

Leuze Electronic GmbH + Co, 73277 Owen, DE

(72) Erfinder:

Quapil, Gerald, Dipl.-Ing., 7440 Nürtingen, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

- (54) Aus einem Lichtsender mit Sendeoptik und einem Lichtempfänger mit Empfangsoptik bestehende lichtelektrische Einrichtung
- An einem Lichtsender mit Sendeoptik und einem Lichtempfänger mit Empfangsoptik bestehende lichtelektrische Einrichtung.

Bei bekannten Einrichtungen dieser Art sind die Sende- und Empfangsoptiken als refraktive Optiken (Linsen) ausgebildet. Diese einschließlich deren Halterungen beanspruchen ein relativ großes Einbauvolumen. Außerdem ist der Realisierungsaufwand für die Erzielung zufriedenstellender Abbildungseigenschaften häufig erheblich. Die neuen Einrichtungen sollen eine Verringerung ihrer Gesamtbaugröße bei optimalen Fokussierungseigenschaften ermöglichen.

Der Lichtsender (11) strahlt kohärentes oder teilkohärentes Licht ab, und die Sende- und/oder Empfangsoptik 'ist mindestens teilweise durch eine diffraktive Optik (12, 13) verkörpert.

Nummer: Int. Cl.⁵: Offenlegungstag: **DE 43 04 343 A1 G 01 V 9/04**18. August 1994

F16.2

F16.1

Beschreibung

Die Erfindung bezieht sich auf eine lichtelektrische Einrichtung gemäß dem Oberbegriff des Anspruchs 1.

Die Sende- und Empfangsoptiken bekannter derartiger Einrichtungen (Einweg-Lichtschranken, Reflexionslichtschranken, Lichttaster, Entfernungsmeßeinrichtungen etc.) sind als refraktive Optiken ausgebildet.

Abgesehen vom Volumen und Gewicht solcher Optiken lassen deren Abbildungseigenschaften unter der 10 Voraussetzung eines vertretbaren Realisierungsauf-

wands häufig zu wünschen übrig.

Im Aufsatz "Binäre Optik" von W.B. Veldkamp und Thomas J. Mc Hugh, Spectrum der Wissenschaft, Juli 1992, Seiten 44-50, sind optische Elemente mit völlig 15 neuen Abbildungseigenschaften beschrieben, die, nicht wie Linsen und Spiegel, Licht brechen oder reflektieren, sondern beugen.

Ausgehend hiervon liegt der Erfindung die Aufgabe zugrunde, die Baugröße von lichtelektrischen Einrich- 20 tungen der gattungsgemäßen Art durch die Verwendung kleinvolumiger Fokussierungselemente mit optimalen Fokussiereigenschaften zu reduzieren.

Diese Aufgabe ist erfindungsgemäß mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst.

Weiterbildungen und zweckmäßige Ausgestaltungen der Erfindung sind in den Unteransprüchen charakteri-

Die Erfindung wird im nachstehenden anhand der Reflexions-Lichttaster schematisch veranschaulicht.

Fig. 1 die Frontansicht eines mit einer binären bzw. diffraktiven Optik (Beugungslinse) ausgerüsteten Licht-

Fig. 2 eine Seitenansicht des Lichttasters gemäß Fig. 1, teilweise im Schnitt,

Fig. 3 eine Teil-Seitenansicht eines mit einer kombinierten refraktiven und diffraktiven Optik ausgestatte-

Fig. 4 eine Ansicht gemäß Fig. 2, wobei die Empfangsoptik durch einen als diffraktive Optik (Beugungslinse) ausgebildeten Umlenk- und Fokussierungsspiegel

Fig. 5 eine Ansicht des mit jeweils einer Beugungslin- 45 se kombinierten Lichtsenders und Lichtempfängers eines Lichttasters.

In den Fig. 1 bis 3 ist mit 10 das Gehäuse eines Reflexions-Lichttasters bezeichnet, in dem ein kohärentes Licht abstrahlenden Lichtsender 11, eine diffraktive 50 Sendeoptik (Beugungslinse) 12, eine diffraktive Empfangsoptik 13 und ein Lichtempfänger 14 mit einer diesem nachgeschalteten, nicht dargestellten Auswerteschaltungsanordnung untergebracht sind. Im Bedarfsfall kann auch nur dem Lichtsender 11 oder dem Lichtemp- 55 fänger 14 eine diffraktive Optik zugeordnet sein. Erforderlichenfalls können die binären Sendeoptiken 12, 13 durch ein dünnes, auswechselbares Schutzfenster 15, 16 aus geeignetem Material abgedeckt sein.

Die geometrische Beugungsstruktur 17 der diffrakti- 60 ven bzw. binären Optiken 12 und 13 wird jeweils entsprechend dem speziellen Anwendungsfall berechnet und auf ein geeignetes dünnes optisches Trägermaterial 18, z. B. auf ein Glasplättchen, aufgebracht. Dies kann durch Ätzen, Bedampfen durch holographische Metho- 65 den oder durch Warmprägen von Reliefstrukturen geschehen.

Falls es zur Kompensation von durch Sendelicht ver-

schiedener Wellenlänge verursachten Aberrationen erforderlich ist, kann, wie an sich bekannt, die Sende- und/ oder Empfangsoptik 12 bzw. 13 auch mit einer refraktiven Linse 19 bzw. 20 kombiniert werden (siehe hierzu Fig. 3).

Als Lichtquelle bzw. Lichtsender können Laserdioden oder herkömmliche Laser verwendet werden, beispiels-

weise CO₂- und He-Ne-Laser.

Durch Stabilisierung der Wellenlänge, Leistung und Temperatur der Laser-Lichtquelle lassen sich konstante spektrale Eigenschaften erzielen. Die dadurch bedingte Schmalbandigkeit ermöglicht wiederum einen störungsfreien Paralleleinsatz mehrerer mit verschiedener Laserstrahl-Wellenlänge arbeitender und mit entsprechend angepaßten diffraktiven Optiken (Beugungslinsen) ausgestatteter Geräte.

Zur Erzielung einer vergleichsweise besseren Winkelauflösung und größerer Brennweiten wird in Weiterbildung der Erfindung die Empfangsoptik als das Empfangsstrahlenbündel auf den Lichtempfänger umlenkender und fokussierender diffraktiver Spiegel ausgebildet. In Fig. 4 ist ein solcher Spiegel mit 21 und der zugehörige Lichtempfänger mit 14' bezeichnet.

Eine besonders kompakte Bauweise lichtelektrischer Einrichtungen der gattungsgemäßen Art läßt sich erzielen, wenn die Laser-Sendediode unmittelbar mit einer diffraktiven Optik kombiniert wird, desgleichen der

Lichtempfänger.

Fig. 5 zeigt eine derartige Ausgestaltung eines Licht-Zeichnung erläutert, die als Ausführungsbeispiel einen 30 tasters. Der Lichtsender 11 und der Lichtempfänger 14 sind hierbei jeweils mit einer Beugungslinse 22, 23 kombiniert. Gegebenenfalls kann auch nur die Optik des Lichtsenders oder diejenige des Lichtempfängers durch eine Beugungslinse verkörpert sein.

> Die Funktionsweise der Einrichtung nach den Fig. 1 bis 3 ist folgende: Der im Ausführungsbeispiel als Laserdiode ausgebildete Lichtsender 11 strahlt kohärentes Licht ab. Das Sendelichtstrahlenbündel 24 wird von der diffraktiven Optik 12 (binäre Optik, lichtbeugende Linse) auf einen im Abstand a vom Reflexlichttaster befindlichen Gegenstand 25 fokussiert. Ein Anteil 24' des Sendelichtstrahlenbündels wird auf die diffraktive Optik 13 zurückreflektiert und gelangt von dieser fokussiert auf den Lichtempfänger 14. In einer dem Licht-Empfänger 14 nachgeschalteten nicht dargestellten Auswerteeinheit wird das Empfangssignal bewertet.

> Es ist ersichtlich, daß durch den Verzicht auf refraktive Optiken eine bedeutend raumsparendere Bauweise von Lichtschranken und dergleichen lichtelektrischen

Abtasteinrichtungen ermöglicht wird.

Werden in bestimmten Anwendungsfällen kombinierte Anordnungen aus refraktiven und diffraktiven Linsen erforderlich (siehe Fig. 3), so ergibt sich im Vergleich mit für derartige Anwendungsfälle sonst notwendigen Kombinationen aus refraktiven Linsen ein beträchtlich geringerer Raumbedarf und Kostenaufwand.

Kohärentes Licht kann gegebenenfalls auch mittels Interferenzfilter oder durch geeignete Spiegelanordnungen bei Verwendung nicht kohärentes Licht aussendender Lichtquellen erzeugt werden.

Teilkohärentes Licht kann beispielsweise mit einer spektral begrenzten Leuchtdiode (z. B. GAS-Diode) er-

zeugt werden.

Die durch die Erfindung erzielbare Baugrößenreduzierung lichtelektrischer Einrichtungen bezogen auf den bisher für den sende- und empfangsseitigen Gesamtfokussierungsaufwand erforderlichen Platzbedarf liegt in der Größenordnung von 100 bis 200%. ---

- 1. Aus einem Lichtsender mit Sendeoptik und einem Lichtempfänger mit Empfangsoptik und diesem nachgeschalteter Auswerteanordnung bestehende Einrichtung zum Erfassen von in den Lichtstrahlengang gelangenden Objekten und Konfigurationen, dadurch gekennzeichnet, daß der Lichtsender (11) kohärentes oder teilkohärentes Licht abstrahlt und die Sende- und/oder Empfangsoptik 10 mindestens teilweise durch eine diffraktive Optik (12, 13) verkörpert sind.
- 2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Sende- und/oder Empfangsoptik aus der Kombination einer diffraktiven Optik (12, 15) mit einer refraktiven Optik (19, 20) gebildet ist.
- 3. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Beugungsstruktur der Elemente der diffraktiven Optik (12, 13) für den jeweiligen Anwendungsfall berechnet und die Oberfläche eines optischen Trägermaterials (18) mit der berechneten Struktur versehen wird.
- 4. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die jeweilige Beugungsstruktur in die Oberfläche des Trägermaterials (18) durch Ätzen, Bedampfen oder durch Holografie eingebracht ist.
- 5. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Lichtsender eine Laserlichtquelle verwendet wird.
- 6. Einrichtung nach Anspruch 5, gekennzeichnet durch die Verwendung einer Laserdiode als Lichtsender.
- 7. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Laser- 35 Lichtquelle hinsichtlich ihrer Leistung, Temperatur und Wellenlänge stabilisiert ist.
- 8. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Lichtsender (11) und/oder der Lichtempfänger (14) mit 40 einer diffraktiven Optik (21, 22) versehen ist.
- Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Empfangsoptik durch einen das Empfangsstrahlenbündel auf den Lichtempfänger (14) umlenkenden und fokussierenden diffraktiven 45 Spiegel (21) gebildet ist.

Hierzu 1 Seite(n) Zeichnungen

50