Distribution-free methods Assignment Project Exam Help

https://powcoder.com

Statistics (MAST20005) & Elements of Statistics

Chat powerouser

School of Mathematics and Statistics University of Melbourne

Semester 2, 2022

Aims of this module

- Assignment Project Exam Help
 - Explain the highly used Pearson's chi-squared test

https://powcoder.com

Outline

Assignment Project Exam Help

Sign test

https://powcoder.com

Goodness-of-fit tests (χ^2)

Add WeChat powcoder

More than two classes
Estimating parameters

Tests of independence (contingency tables

Distribution-free methods

- Assignment the roject Exam Help
 - We don't always want to make such assumptions.
 - Instead, we can use distribution-free methods.
 - Her Met in Sarn Alon We (sit that feeth in esis tests.

An aside: distribution-free versus non-parametric

• The term non-parametric is also often used to describe methods ssignments erotects to xam Help

- It is usually a misnomer: the methods typically **do** make use of parameters, but there are usually a large number of them and they ada https://powcoder.com/
 Thus, a better term hight be super-parameteric.
- (Note: we won't be covering any advanced methods of this form in this subject.
- labels 'distribution-free' or 'non-parameteric' being used.

Distribution-free tests

- Even without making distributional assumptions, it is possible to Solar parties of the control o statistics.
 - Can use these as a basis for hypothesis tests.
 - Often the problem of the country of the countr
 - ... the Central Limit Theorem strikes again!

Outline

Assignment Project Exam Help

Sign test

wihttps://powscoder.com

Goodness-of-fit tests (χ^2)

Add WeChat powcoder

More than two classes Estimating parameters

Tests of independence (contingency tables

Extracting information with fewer assumptions

Assignment Project Exam Help

- Specifying a distribution is somewhat analogous to specifying a scale of measurement, so...
- · Howhttps:p/poweroder:com
- Two strategies:
 - 1. **(Sign)** Only record whether a number is smaller or greater than a reference number is. replace them by binary indicator variables.
 - 2. (Ray) (In y revay) mormal and but the order of the units, i.e. replace them by their rank order.
- Each of these throws away some information, but hopefully retains enough to be useful.
- We now look at a few methods that use these strategies.

Aim: test for the median

Assignment Project Exam Help

- Can we test H_0 : $m=m_0$ with very few assumptions?
- (Want to find distribution-free alternatives to tests about the mean utps://www.coder.com
- (Typically consider medians rather than means when distribution-free)

Sign test

Assignment Project Exam Help

- Compute, Y, the number of positive numbers amongst $X_1 m_0, \dots, X_n m_0$
- · In onttps://powsoder.com
- Under H_0 , we have $Y \sim \mathrm{Bi}(n,0.5)$
- Tests proceed as usual...

 Add WeChat powcoder

Example (sign test)

Assignment Project Exam Help

```
H_0 \colon m = 6.2 versus H_1 \colon m < 6.2
```

https://powcoder.com

	i	x_i	$x_i - 6.2$	Sign	-	i	x_i	$x_i - 6.2$	Sign	
Ass	210	6.80	rento	Dr	110	44	18,90	1270	1 41	r
	275	5.70		1 1/	リレ	12	16.90	a1 _{10.70}		ŀ
	3	6.90	0.70	+1		13	10.40	4.20	+1	
	4	5.30	-0.90	-1		14	44.10	37.90	+1	
	5	14110	S:/2/10	OW	CO	T C	2.90	Off 180 -3.80	$-1 \\ -1$	
	6	9.80	3.60	+1		16	2.40	-3.80	-1	
	7	1.70	-4.50	-1		17	4.80	-1.40	-1	
	8	7.00	- 0. 8 0	-	4	18	18.90	12-70	+1	
	9		V V1€	L n	at	19) 440(-1	
	10	19.00	12.80	+1		20	7.90	1.70	+1	

• Y is the number of positive signs. Reject H_0 if Y too small. (If median < 6.2 then expect fewer than 1/2 of the observations to be greater than 6.2.)

Assing Prophet Control of Control

- We observed y = 11, so cannot reject H_0 .
- The ptip $SP_{\nu}(y)$ power of the conject H_0 . (In R: pbinom(11, 20, 0.5))

R code

14 of 66

Assignment Project Exam Help

```
data: https://powcoder.com/
number of successes PO1, number of trians power of trians power of trians power of trians power of trians alternative hypothesis: true probability of

Add We Chas power of trians power of trians
```

Sign test for paired samples

Assignment Project Exam Help

For example:

Use of the sign test

- As it can be insensitive to departures from H_0
 - In other words, large type II error or small power
 - Ten q total Se use Dhi Wicht a trune in put for which comparisons between values are meaningful (e.g. ordinal data)

Wilcoxon one-sample test

Assignment Project Exam Help

- Same null hypothesis $(H_0 : m = m_0)$ against a one-sided or two-sided alternative
- · Det Inteps://powcoder.com
- Replace the data by signed ranks, X_i becomes $\mathrm{sgn}(X_i-m_0)\cdot\mathrm{rank}(|X_i-m_0|)$
- The Ailed sittle estate Wpiothesuc other rigned
- Using this as a basis for a test gives the Wilcoxon signed-rank test, also known as the Wilcoxon one-sample test.

Alternative definitions

Assignment the moject gnexiam Help

- \bullet A popular alternative: V is the sum of the positive ranks only
- ullet V is a bit easier to calculate, esp. by hand
- Ruhttps://powcoder.com
- V and W are deterministically related (can you derive the formula?)
- V and voltage devent by heated) so my terror in the
- Using either statistic leads to equivalent test procedures

Example (Wilcoxon one-sample test)

- Assignment & Project Exam Help
 - Interested in testing: H_0 : m = 3.7 versus H_1 : m > 3.7

https://powcoder.com

	i					Signed rank	
Assig	gh	130	ent ¹ .P	rojec	et E	xam ⁵	Iel p
	3	5.2	1.5	1.5	6	6	•
•	4	5.5	1.8	1.8	7	com ⁷ ₉	
	nti	PS	://po	WC90	der.	com ³	
						9	
		6.4	2.7	2.7	10	10	
	A_{ϱ}^{8}		W ^{1.1} C	ha to 1	DO8V	vcode1	•
	10	4.3	0.6	0.6	2	2	

• The sum of signed ranks is:

$$W = 5 + 1 + 6 + 7 - 3 + 9 + 10 - 4 - 8 + 2 = 25$$

Assignment Project Exam Help

$$V = 5 + 1 + 6 + 7 + 9 + 10 + 2 = 40$$

https://powcoder.com

Decision rule

- What is an appropriate critical region? She with the property of the critical region should be large, so the critical region should be $W \geqslant c$ for a suitable c.
 - (For attempts making provided of the modify this accordingly.)
 - If H_0 is true then $\Pr(X_i < m_0) = \Pr(X_i > m_0) = \frac{1}{2}$.
 - Assignment of the visitors to the ranke are mutually independent (due to symmetry assumption)
 - W is the sum of the integers $1, \ldots, n$, each with a positive or negative sign

• Under H_0 , $W = \sum_{i=1}^n W_i$ where

$$\mathbf{Assignment}_{t_s} \underbrace{\mathbf{Pr}(W_i = -i) = \frac{1}{2}}_{\mathbf{Pr}}, \quad i = 1, \dots, n$$

$$\mathbf{Assignment}_{t_s} \underbrace{\mathbf{Project}}_{\mathbf{V}} \underbrace{\mathbf{Exam}}_{\mathbf{V}} \underbrace{\mathbf{Help}}_{\mathbf{V}}$$

• Similarly, $\mathrm{var}(W_i) = \mathbb{E}(W_i^2) = i^2$ and

• A more advanced argument shows that for large n this statistic approximately follows a formal detribution Welcze fuel in other words,

$$Z = \frac{W - 0}{\sqrt{n(n+1)(2n+1)/6}} \approx N(0,1)$$

- $\Pr(W \geqslant c \mid H_0) \approx \Pr(Z \geqslant z \mid H_0)$, which allows us to determine c.
- In this case, for n=10 and $\alpha=0.05$, we reject H_0 if

Assignment Project Exam Help

(because
$$\Phi^{-1}(0.95)=1.645$$
) which is equivalent to $W \geqslant 1.645 \times \sqrt{\frac{10\cdot 11\cdot 21}{6}}=32.27$

• For A Globle Was well at 25 power of Ft 1/2

Using R

R uses V rather than White effect the property of the property

- To carry out the test, use: wilcox.test
- To Arth Sie /s/npo Willocker is Official 1)/2/
- Note: $\mathbb{E}(V) = n(n+1)/4$ and $\mathrm{var}(V) = n(n+1)(2n+1)/24$. You can derive these in a similar way to W.

Assignment Project Exam Help

```
data: x
V = 40, p-value = 0.1162
alternation for the process of th
```

```
# Calculate exact p-value manually.

> 1 - psignank 30 10 Chat powcoder

[1] 0 About WeChat powcoder
```

```
# Calculate approximate p-value, based on W.
> z <- 25 / sqrt(10 * 11 * 21 / 6)
> 1 - pnorm(z)
[1] 0.1013108
```

Paired samples

- Like other tests, we can use the Wilxcon signed-rank test for paired SShpen Misching differences at the migath and the promassingle distribution.
 - The assumption of symmetry is quite reasonable in this setting, since the same distribution and therefore X = Y = X.
 - Indeed, this test is most often used in such a setting, due to the plausibility of this assumption.

 Add We Chat powcoder

Tied ranks

Assignment William Help

- In practice, the data are reported to finite precision (e.g. due to rounding), so we could have exactly equal values
- · This Nttps://spow.cocler.com
- If this happens, the 'rank' assigned for the tied values should be equal to the average of the ranks they span
- Examed We Chat powcoder Value: 2.1 4.3 4.3 5.2 powcoder Rank: 1 2.5 2.5 4 6 6 6 8
- The presence of ties complicates the derivation of the sampling distribution, but R knows how to do the right thing

Wilcoxon two-sample test

- We can create a two-sample version of the Wilcoxon test. Help two different populations with medians m_X and m_Y respectively.
 - Want to test H_0 : $M_X = M_Y$ against a one-sided or two-sided alterrite S://DOWCOGET.COM
 - Order the **combined** sample and let W be the sum of the ranks of Y_1, \ldots, Y_{n_V} . This is the Wilcoxon rank-sum statistic.
 - Note Athis capture Vinformation and X as well as X (Why2)
 - The test based on this statistic is called the Wilcoxon rank-sum test, also known as the Wilcoxon two-sample test and the Mann-Whitney U test.

Rejection region

- Suppose our alternative hypothesis is $H_1: m_X > m_Y$ Suppose our alternative hypothesis is $H_1: m_X > m_Y$ Will tend to be smaller than X and thus have smaller ranks
 - Therefore, the critical region should be of the form $W \leqslant c$ for a suitable contraction. The suitable contraction of the form $W \leqslant c$ for a suitable contraction.
 - Properties of W (derivation not shown):

Add WEChat powcoder $var(W) = \frac{n_X n_Y (n_X + n_Y + 1)}{12}$

ullet W is approximately normally distributed when n_X and n_Y are large

Alternative definitions

A SM gsniffments the rungfer Cink Linx and mple lep

- U and W are deterministically related (can you derive the formula?)
- U and Whate different (but related) complines distributions
- Using either statistic leads to equivalent test procedures
- Note: $\mathbb{E}(U) = n_X n_Y / 2$ and var(U) = var(W)

Example (Wilcoxon two-sample test)

Assignment in Pwinglect Exam Help

	_								
\overline{X}	117.1	121.3	127.8	121.9	117.4	124.5	119.5	115.1	
Y	123.5	125.3	, 126.5	127.9	122.1	125.6	129.8	117.2	
Y 123.5 125.3 126.5 127.9 122.1 125.6 129.8 117.2 https://powcoder.com									

Want to test H_0 : $m_X = m_Y$ versus H_1 : $m_X \neq m_Y$

Use a salidade Wetchat powcoder

Using R

- Assignment Ewrojectct Exignment Help otherwise it will use a normal approximation

 - To carry out the test, use: wilcox.test
 To writing the sample will the continox

```
> wilcox.test(x, y)
```

Assignment Project Exam Help

```
W = 13, p-value = 0.04988
```

alteriative hypothesis; wc.c.der.com

```
# Calculate exact p-value manually.
> 2 * Aid (1WeChat powcoder
[1] 0.04988345
```

We reject H_0 and conclude that we have sufficient evidence to show that the median weights differ between the two companies.

Outline

Assignment Project Exam Help

Sign test

https://powcoder.com

Goodness-of-fit tests (χ^2)

TwAdd WeChat powcoder

More than two classes Estimating parameters

Tests of independence (contingency tables

Goodness-of-fit tests

- SSISUMMENT BOOK A given model fit a set of data?
 SSISUMMENT OF CLEEN AM Help
 reasonable?
 - We can assess this with a 'goodness-of-fit' test
 - · The nate to Brighty Do We Co Classic Color
 - Unlike most of the other tests we've seen, this operates on categorical (discrete) data
 - Can Accappy it we inuns at a province on the data into separate classes

Binomial model

Assirgnment Broject Exam Help

$$\underset{\bullet \text{ Therefore,}}{\text{https://powcoder.com}} \approx \frac{Z = \frac{Y_1 - np_1}{\sqrt{np_1(1-p_1)}} \approx N(0,1)$$

$$Q_1 = Z^2 \approx \chi_1^2$$

• To test H = We show a provide if |Z| (and, hence, D_1) is too large

• Next, notice that

• Therefore,

$$Add \underset{\mathit{np}_1(1-p_1)}{\underline{\mathsf{WeC}}} h \underbrace{\mathsf{at-poweoder}}_{\mathit{np}_1}$$

- Y_1 is the observed number of successes, np_1 is the expected number of successes
- ullet Y_2 is the observed number of failures, np_2 is the expected number

Assignment Project Exam Help

$$Q_1 = \sum_{i \neq 1}^2 \frac{(Y_i - np_i)^2}{np_i} = \sum_{i = 1}^2 \frac{(O_i - E_i)^2}{E_i} \approx \chi_1^2$$
 where O_i the observed number and E_i is the expected number

• Even though there are two classes, we have only **one** degree of freedom. This is the constraint $Y_1 + Y_2 = n$. Add Wechat powcoder

Multinomial model

Assignmente in roject, Exam Help

- Suppose we have n trials, with Y_i being the number of outcomes in class i
- E(https://powcoder.com
- Now we get,

• k-1 degrees of freedom because $Y_1 + \cdots + Y_k = n$

Setting up the test

- Specify a categorical distribution: p_1, p_2, \dots, p_k Significant to be considered by with this distribution
 - The null hypothesis is that they do (i.e. the p_i define the distinctions://DOWCOder.com
 - The alternative is that they do not (i.e. a different set of probabilities define the distribution)
 - Undenthe null, the test tatilities the tend to be small the easures 'badness-of-fit')
 - Therefore, reject the null if $Q_{k-1} > c$ where c is the $1-\alpha$ quantile from χ^2_{k-1} .

Remarks

Association of Listage and promise with a normal with a no

- Rule of thumb: need to have all $E_i = np_i \geqslant 5$
- The larger the k (i.e. more classes), the more powerful the test. However the seed the larger than the lar
- If any of the E_i are too small, can combine some of the classes until they are large enough
- If QA is very sixt, the increase the new trick of the can be used as a test for rigging of experiments / fake data. Typically need very large n to do this.
- Often refer to the test statistic as χ^2

Example (completely specified distribution)

Proportions of commuters using various modes of transport, based SS19810ement Project Exam Help Other 0.15 0.50

- Did the campaign alter commuters behaviour?
- The Apeded frequencie are nat powcoder

 Bus Frail Car Other
- The value of the test statistic is:

$$\chi^2 = \frac{(26-20)^2}{20} + \frac{(15-12)^2}{12} + \frac{(32-40)^2}{40} + \frac{(7-8)^2}{8} = 4.275$$

- H₀: proportions have not changed,
 H₁: proportions have changed
- We have 4 classes, so the test statistic here has a χ^2_3 distribution.

• Therefore, there is insufficient evidence that the proportions have changed

• The p-value is ://powcoder.com $p = \Pr(\chi_3^2 > 4.275) = 0.233 > 0.05$

Add WeChat powcoder

Assignment Project Exam Help https://powcoder.com Add We Chat. powcoder 7 10 11

Using R

Assignment Project Exam Help

> t1 <- chisq.test(x, p = p)

https://powcoder.com

Chi-squared test for given probabilities

 $\overset{\mathtt{data:}}{\text{Add}} \overset{\mathtt{ddd}}{\text{Add}} \overset{\mathtt{WeChatpowcoder}}{\text{N-squared}} \overset{\mathtt{data:}}{\text{Add}} \overset{\mathtt{data:}}{\text{N-squared}} \overset$

Add We Chat powcoder

[1] 0.2332594

[1] 4.275

> sum(t1\$residuals^2)

Fitting distributions

- As Me don't always have an exact model to compare against Help estimate some of the parameters
 - For example, $Pn(\lambda)$ or $N(\mu, \sigma^2)$
 - We will be to specify H_0
 - We need to adjust the test to take into account that we've used the data to define H₀ (by design, it will be 'closer' to the data than if it we didn't need to do this)
 - The 'cost' of this estimation is 1 degree of freedom for each parameter that is estimated
 - The final degrees of freedom is k-p-1, where p is the number of estimated parameters

Example (Poisson distribution)

Assignment Project Exam Help

- Fifty observations:
 - 7, 4, 3, 6, 4, 4, 5, 3, 5, 5, 5, 3, 2, 5, 4, 3, 3, 7, 6, 6, 4, 3, 9, 11, 6, 7, 4, 5, 7, 4, 5, 8, 4, 8, 9, 3, 9, 7, 7, 9, 3, 10
- Is a Poisson distribution an adequate model for the data?
- H_0 : Poisson, H_1 : something else
- We have any specificative finity of the distribution at the parameters
- Estimate the Poisson rate parameter λ by the MLE, $\hat{\lambda} = \bar{x} = 5.4$
- Now we ask: does the Pn(5.4) model give a good fit?

First, find an appropriate partition of the value (collapse the data):

```
A_{X_1}^{S_{11}} A_{X_1}^{S_{12}} A_{X_1}^{S_{13}} A_{X_1}^{S_{12}} A_{X_1}^{S_{13}} A_{X_1}^{S_{13}}
```

Add WeChat powcoder

Then, prepare the data for the test:

> x <- as.numeric(T1)</pre>

> p3 <- dpois(5, 5.4) > p4 <- dpois(6, 5.4)

```
Assignment Project Exam Help

> n <- sum(x)

> p1 http://s.jpowcoder.com
```

hat powcoder

> p <- c(p1, p2, p3, p4, p5, p6)

Then, run the test:

```
> chisq.test(x, p = p)
```

Assignment Project: Exam Help

```
As a square of the state of the
```

> 1 - And We Chat powcoder

Chi-square pdf df = 4

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

2.7334 6 8 10 12 14

- Needed to adjust p-values as we have estimated the mean
- The critical value is the 0.95 quantile from χ^2_4 , which is 9.488, so we cannot reject H_0

4 Strength ricemetaging the bisson nedstam Help Therefore, this is an adequate fit (at least, until further data

I herefore, this is an adequate fit (at least, until further data proves otherwise)

Add WeChat powcoder

Outline

Assignment Project Exam Help

Sign test

https://powcoder.com

Goodness-of-fit tests (χ^2)

Add WeChat powcoder

More than two classes
Estimating parameters

Tests of independence (contingency tables)

Contingency tables

- Assignment table records the number of observations for each
 - A contingency table records the number of observations for each possible cross-classification of these variables
 - We netering the related to each other
 - For example, height and weight
 - Define height classes & C. A. and weight classes & C. A.
 - Each person is assigned to a single combination (A_i, B_j)
 - A sample of people can be summarised with a $r \times c$ table of counts (a contingency table)

Independence model

 $\textbf{A} \overset{\text{A general model for these data is:}}{\underset{p_{ij}}{\textbf{Project}}} \overset{\text{A seneral model for these data is:}}{\underset{i=1,\ldots,r,}{\textbf{Project}}} \overset{\text{B general model for these data is:}}{\underset{p_{ij}}{\textbf{Project}}} \overset{\text{B general model for these data is:}}{\underset{i=1,\ldots,r}{\textbf{Project}}} \overset{\text{B general model for these data is:}}{\underset{p_{ij}}{\textbf{Project}}} \overset{\text{B general model for these data is:}}{\underset{i=1,\ldots,r}{\textbf{Project}}} \overset{\text{B general model for these data is:}}{\underset{p_{ij}}{\textbf{Project}}} \overset{\text{B general model for these data is:}}{\underset{i=1,\ldots,r}{\textbf{Project}}} \overset{\text{B general model for these data is:}}{\underset{p_{ij}}{\textbf{Project}}} \overset{\text{B general model for these data is:}}{\underset{i=1,\ldots,r}{\textbf{Project}}} \overset{\text{B general model for these data is:}}{\underset{p_{ij}}{\textbf{Project}}} \overset{\text{B general model for these data is:}}{\underset{p_{ij}}{\textbf{Project}}}} \overset{\text{B general model for these data is:}}{\underset{p_{ij}}{\textbf{Project}}} \overset{\text{B general model for these data is:}}{\underset{p_{ij}}{\textbf{Project}}}} \overset{\text{B general model for these data is:}}{\underset{p_{ij}}{\textbf{Project}}} \overset{\text{B general model for these data is:}}{\underset{p_{$

- Are the two variables independent?
 We https://apopwisioeder.com

$$H_0 \colon p_{ij} = \Pr(A_i) \Pr(B_j) \quad \text{versus} \quad H_1 \colon p_{ij} \neq \Pr(A_i) \Pr(B_j)$$

- · This medicam Vires tre hasto per with the dete Pearson's chi-squared statistic
- Show how this works through an example. . .

Example (contingency table)

Assignment were classified by sex, A, Exam Help

https:/	Firstborn	Not firstborn	Total
Female	P 20	22	42
Total	54	96	150

Add WeChat powcoder

Let's test whether these two variables are independent.

Estimating the marginals

Female p_{21} p_{22} p_2

https://powcoder.com

The marginals are:

Add Wechat powcoder

$$p_{\cdot j} = \sum_{i=1}^{r} p_{ij} = \Pr(B_j)$$

• The null hypothesis of independence is just, $H_0 \colon p_{ij} = p_{i\cdot}p_{\cdot j}$

59 of 66

• Data:

	Firstborn	Not firstborn	Total
Male	y_{11}	y_{12}	y_1 .

Assignment Project Exam Help

• Estimates:

https://pow
$$\hat{c}_{\hat{p},j} = \frac{y_i}{n}$$
der.com

 $\overset{\text{where}}{Add} \, \, \overset{\text{where}}{WeChat} \underset{y_{i,j}}{\text{powcoder}} \,$

$$y_{\cdot j} = \sum_{i=1}^{r} y_{ij}$$

• Pearson's χ^2 statistic for given p_{ij} is

Assignment Project Exam Help

• Under H_0 , an estimator of p_{ij} is

https://powcoder.com

This gives the following,

Explanation for degrees of freedom

SSIGNMENT Project that we should have k-p-1 degrees of freedom Help

- We estimated r-1 marginal probabilities for the rows and c-1
- for the columns, which makes p=(r-1)+(c-1) The first Snumber (Light Snumber) (1) The start of the columns of the columns

$$\mathsf{df} = rc - (r-1) - (c-1) - 1 = (r-1)(c-1)$$

Add WeChat powcoder

Using R: set up the data

```
Assignment = Project Exam, Help

+ female = c(first = 20, later = 22))

> x

1 first later/
```

male https://powcoder.com

Add WeChat powcoder

Using R: run the test

Assignment Project Exam Help

https://powcoder.com

```
data:
```

X-squared = 3.418, df = 1, p-value = 0.06449

We do not did enough evidence to tejep of the concept of the conce level.

Chi-square pdf df = 1

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Shaded prob. is 0.064

Using R: more output

Assignment Project Exam Help male 34 74 femal https://powcoder.com > c1\$expected first later male A8d 869 We Chat powcoder female Female 15072 26.88