

# **Graph Neural Networks Models**

Jay Urbain, PhD - 10/12/2022

## Machine Learning

- We design a model
- The model represents something in the world
- Learn parameters through data



"All models are wrong, some are useful" – George Box

# Supervised Machine Learning

Given an IID dataset:  $\{(x_1, y_1), \dots, (x_N, y_N)\}$ 

Pick  $\theta$  that minimize the Loss

$$L(\theta) = \frac{1}{N} \sum_{i} L(f_{\theta}(x_{i}), y_{i})$$



# Gradient descent learning of model parameters

While not converged, update parameters:

$$\theta = \theta - \gamma \frac{\partial L}{\partial \theta}$$



### Generalization

Goal: Generalize to unseen data.



### Distributed vector representation

Distributed representation - Meaning is distributed among components of a vector.



# Graph neural networks

- Where does the graph come from? Modeling decision.
- You, as a human have defined a graph.
- Each node has an encoded representation.



Graph Representation of Problem



Initial Representation of each node

# Graph neural networks

What we want to do



### **Neural Message Passing**















### Each node now has information from its neighbors



U: Could be any permutation function for combining the network.

# Each node now has information from its neighbors



Works like a CPU clock

# **Graph Neural Message Passing**

#### **Graph Neural Networks: Message Passing**



Works like a CPU clock

# **Graph Neural Message Passing**



Simulation: <a href="https://distill.pub/2021/gnn-intro/">https://distill.pub/2021/gnn-intro/</a>

# Synchronous message passing

**GNNs: Synchronous Message Passing (All-to-All)** 



At first step node learns about itself and its neighbor

Synchronous message passing



At next step node learns about its neighbors neighbors!

# Graph neural network output



Also link prediction, subgraph similarity, etc.

### **Gated GNN**



Permutation invariant combination.

### Graph convolutional networks



https://www.cs.toronto.edu/~yujiali/files/talks/iclr16\_ggnn\_talk.pdf

# Trick: Backward edges



# Adjacency Matrix

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{N} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$



$$N \times A = \begin{bmatrix} 0 \\ a \\ a+b \end{bmatrix}$$

# **GGNN** as Matrix Operation

#### **Node States**

$$H_t = egin{bmatrix} m{h}_t^{n_0} \ dots \ m{h}_t^{n_K} \end{bmatrix}$$
 (num\_nodes x D)

#### Messages to-be sent

$$M_t^k = E_k H_t$$
 (num\_nodes x M)

#### Received Messages

$$R_t = \sum_k AM_t^k$$
 (num\_nodes x M)

$$\underline{\mathsf{Update}}\ H_{t+1} = \mathit{GRU}(H_t, R_t)$$



# **GNN** Operation

### **GGNN** as Matrix Operation

#### **Node States**

$$H_t = egin{bmatrix} m{h}_t^{n_0} \ dots \ m{h}_t^{n_K} \end{bmatrix}$$
 (num\_nodes x D)

#### Messages to-be sent

$$M_t^k = E_k H_t$$
 (num\_nodes x M)

#### Received Messages

$$R_t = \sum_k AM_t^k$$
 (num\_nodes x M)

 $\underline{\mathsf{Update}}\ H_{t+1} = \mathit{GRU}(H_t, R_t)$ 



If we used a vanilla RNN

$$H_{t+1} = \sigma(\mathbf{U}H_t + \mathbf{W}R_t)$$

# Expressing Matrix Operations as Code

# einsum

```
C=np.einsum('bd,qd->bq`, A, B) # C_{b,q} = \sum_d A_{b,d} B_{q,d} D=np.einsum('abc,be,abq->cqe', A, B,C)
```

#  $D_{c,a,e} = \sum_{b} \sum_{a} A_{a,b,c} B_{b,e} C_{a,b,a}$ 

### Pseudocode

```
def GGNN(initial node states, adj):
  node states = initial node states # [N, D]
 for i in range(num_steps):
    messages = {}
    for k in range(num_message_types):
      messages[k] = einsum('nd,dm->nm', edge_transform, node_states) # [N, M]
     received messages = zeros(num nodes, M) # [N, M]
     for k in range(num message types):
       received messages += einsum('nm,nl->lm', messages[k], adj[k])
     node_states = GRU(node_states, received_messages)
   return node_states
```

# SKIP - Graphs and graph signals



$$\mathcal{V} = \{v_1, \dots, v_N\}$$

$$\mathcal{E} = \{e_1, \dots, e_M\}$$

$$\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$$

Graph Signal:  $f: \mathcal{V} 
ightarrow \mathbb{R}^{N imes d}$ 

$$\mathcal{V} \longrightarrow \begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{pmatrix}$$

# SKIP - Graph representations



Adjacency Matrix: A[i,j] = 1 if  $v_i$  is adjacent to  $v_j$  A[i,j] = 0, otherwise

#### Adjacency Matrix

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

A