

f https://www.facebook.com/Abdelhamid3bac f

❖ سلسلۃ تمارین حول المتتالیات العددیۃ للشعب الأدبیۃ ❖ آداب وفلسفۃ ❖ لغات أجنبیۃ ❖

- $S_n = u_0 + u_1 + \cdots u_n$ أحسب بدلالة n المجموع: (3
 - $S_n = 1134$:حيث: الطبيعي n حيث العدد الطبيعي
 - ﴿ دورة 2010 الموضوع الأول ﴾
 - بالحدين: (u_n) متتالية حسابية معرفة على (u_n)
 - $u_{15} = 46$, $u_{10} = 31$
 - u_0 عين أساسها وحدها الأول u_0
 - n بدلالة u_n أكتب u_n
 - (u_n) بين أن 6028 حد من حدود المتتالية (3
- $S = u_0 + u_1 + \dots + u_{2009}$: (4
- $.v_n=2 imes 8^n$ بن المتتالية (v_n) المعرفة على $\mathbb N$ بن المتتالية .
- v_0 بين أن (v_n) متتالية هندسية يطلب تعيين أساسها وحدها الأول v_n
 - $S' = v_0 + v_1 ... + v_n : S'$ المجموع n أحسب بدلالة n
 - ﴿ دورة 2010 الموضوع الثاني ﴾
- متتالية هندسية معرفة على مجموعة الأعداد الطبيعية $\mathbb N$ ، أساسها q وحدها (u_n)
 - $.u_4 = 48$ و $u_1 = 6$ الأول u_0 حيث:
 - (u_n) أ- أحسب الأساس والحد الأول للمتتالية (u_n)
 - $u_n=3 imes 2^n$... بـ استنتج أن عبارة الحد العام للمتتالية
- 2) أ- علما أن: 256 = 28، بين أن العدد 768 هو حد من حدود المتتالية
 - $S = u_0 + u_1 + \cdots u_7$ بـ أحسب المجموع S حيث:
- $v_{n}=v_{0}=0$ ومن أجل كل عدد طبيعي $v_{n}=v_{0}=0$ ومن أجل كل عدد طبيعي $v_{n+1}=v_{n}=v_{n}=0$
 - v_3 ، v_2 ، v_1 :احسب
- $.v_n = 3 \times 2^n + 1$: البراجع أنه من أجل كل عدد طبيعي برهن بالتراجع أنه من أجل كل عدد البيعي
 - $S' = v_0 + v_1 \dots + v_7$ حيث: S' حيث عبد أحسب المجموع
 - ﴿ دورة 2011 الموضوع الأول ﴾
 - : عيث: u_0 متتالية هندسية أساسها 3 وحدها الأول عيث (u_n)
 - $u_0+u_3=28$. n أ- أحسب u_0 بكلالة u_0 بدلالة u_0
 - $S_1 = u_0 + u_1 + \dots + u_9$:ب- أحسب المجموع:

- ﴿ دورة 2008 الموضوع الأول ﴾
- $u_n=3n+1$ يلي: $\mathbb N$ متتالية معرفة على الله (u_n)
 - u_2 أحسب u_0 و u_1 (1)
- سابیة یطلب تعیین أساسها، (u_n) بین أن u_n) متتالیة حسابیة یطلب u_n
 - (u_n) عين اتجاه تغير -
- (3 تحقق أن العدد 2008 حد من حدود المتتالية (u_n) . ما رتبته
 - $S = u_0 + u_1 + u_2 + \dots + u_{669}$ أحسب المجموع: (4
 - ﴿ دورة 2008 الموضوع الثاني ﴾
- متتالية عددية معرفة بحدها الأول 7 $u_1=7$ ومن أجل كل عدد طبيعي (u_n)
 - $u_{n+1} = 2u_n + 1: n$ غير معدوم
 - u_4 و u_3 ، u_2 و الم
- 2) من أجل كل عدد طبيعي غير معدوم n، نعرف المتتالية (v_n) كما يأتي:
- v_n ناس متتالية هندسية يطلب تعيين أساسها q وحدها الأول v_n .
 - n بدلالة n ثم استنتج u_n بدلالة n ثم استنتج u_n بدلالة n
 - n بدلالة $S_n=v_1+v_2+\cdots+v_n$ بدلالة بناية $S_n=v_1+v_2+\cdots+v_n$
 - $-v_1+v_2+\cdots+v_n$ د- عين n علما أن $S_n=1016$.
 - ﴿ دورة 2009 الموضوع الأول ﴾
 - ربالعلاقة: $u_1=2$ متتالية حسابية معرفة على \mathbb{N}^* بحدها الأول
 - $u_2 2u_5 = 19$
 - (u_n) أ- أحسب الأساس r للمتتالية (1
 - بـ- أحسب الحد العاشر.
 - n بدلالة u_n بدلالة (2
 - (3 u_n) بين أن العدد (u_n)، محددا رتبته.
 - $S = u_1 + u_2 + \dots + u_{671}$ أحسب المجموع: (4
 - ﴿ دورة 2009 الموضوع الثاني ﴾
 - وأساسها موجب. \mathbb{N} متتالية هندسية معرفة على \mathbb{N}
 - 1) عين أساس هذه المتتالية وحدها الأول u_0 إذا علمت أن:
 - $u_5 = 576$ و $u_3 = 144$
 - $u_n = 18 \times 2^n : n$ تحقق أنه من أجل كل عدد طبيعي (2

f https://www.facebook.com/Abdelhamid3bac f

❖ سلسلة تمارين حول المتتاليات العددية للشعب الأدبية ❖ آداب وفلسفة ❖ لغات أجنبية ❖

﴿ دورة 2012 - الموضوع الأول ﴾

يث: حدود متتابعة لمتتالية حسابية متزايدة تماما أساسها r حيث:

$$a+b+c=9$$

 $\cdot r$ أ- أحسب a، ثم اكتب a و a بدلالة (1

.c مين الأساس r، ثم استنتج $a \times c = -16$ و .

راسامها 5. وأساسها 5. وأساسها 5. $u_0=-2$ وأساسها 5. وأساسها 5. وأساسها 5. وأساسها 5. $u_0=-2$

n بدلالة u_n بدلالة n

 $S = u_0 + u_1 + \dots + u_{15}$ بـ أحسب u_{15} أستنتج المجموع:

 $8v_n - u_n = 0$ بالعلاقة: v_n متتالية عددية معرفة على v_n بالعلاقة: (v_n) (3

 $S' = v_0 + v_1 ... + v_{15} : -$

﴿ دورة 2012 - الموضوع الثاني ﴾

 $u_3=7$ و u_1 متتالية حسابية متزايدة، أساسها u_1 ، حدها الأول u_1

 $T_2 = u_2 \times u_4$ و $T_1 = u_1 \times u_5$ أ- أحسب بدلالة n الجدائين: 1

 $T_2 - T_1 = 27$ بحيث: $T_2 - T_1 = 27$.

2) نضع: 3 = ۲.

n بدلالة u_n أ- أكتب عبارة الحد العام

ب- نضع من أجل كل عدد طبيعي n غير معدوم:

 $S_n = u_1 + u_2 + \dots + u_n$

 $S_n = \frac{3n^2 - n}{2}$:بین أن

 $S_n = 145$: الطبيعي n بحيث: العدد الطبيعي

n بدلالة العدد الطبيعي u_{n+5} أ- أكتب الحد u_{n+5}

 $\frac{u_{n+5}}{n}=3+rac{13}{n}$ غير معدوم: $\frac{13}{n}=3+rac{u_{n+5}}{n}$.

جـ استنتج الأعداد الطبيعية n التي يكون من أجلها العدد $\frac{u_{n+5}}{n}$ طبيعيا.

﴿ دورة 2013 - الموضوع الأول ﴾

متتالية هندسية حدها الأول $v_0=2$ وأساسها 3.

 v_n أ- عير عن v_n بدلالة n

ب- أحسب بدلالة n الفرق: $v_{n+1}-v_n$ ، ثم استنتج اتجاه تغير المتتالية (v_n) .

رأساسها 3، متتالية هندسية حدها الأول $v_0=2$ وأساسها 3،

n أ- عير عن v_n بدلالة v_n

 $v_n=1-5n$ متتالية عددية معرفة على $\mathbb N$ بحدها العام: (v_n) (2

أ- بين أن (v_n) متتالية حسابية يطلب تعيين أساسها، ثم استنتج اتجاه تغيرها.

 $S_2 = v_0 + v_1 + \dots + v_9 :$ ب- أحسب المجموع:

 $.k_n=1+3^n-5n$ نعتبر المتتالية (k_n) المعرفة على $\mathbb N$ بحدها العام: (3

: تحقق أن $k_n = u_n + v_n$ غقق أن

 $S = k_0 + k_1 + \dots + k_9$

﴿ دورة 2011 - الموضوع الثاني ﴾

المتاليتان العدديتان المعرفتان على \mathbb{N} بحديهما العام: (v_n) و (u_n)

 $v_n = 3^{-2n} \cdot u_n = -2n$

عين في كل حالة من الحالات الخمس الاقتراح الصحيح من بين الاقتراحات

الثلاث مع التعليل.

هي متتالية: (u_n) (1

1 هندسية

2 حسابية

3 لا حسابية ولا هندسية

(2) الحد الخامس والأربعون للمتتالية (u_n) يساوي:

-90 1

−92 2

-88 3

 $u_0 + u_1 + \dots + u_n$ يساوي: (3

 $n^2 + 1$ 1

 $-n^2 - n$ 2

 $-n^2 - 1$ 3

هي متتالية هندسية أساسها: (v_n) (4

1/91

9 2

-9 3

 (v_n) المتتالية (5

1 متزايدة

2 متناقصة

3 ليست رتيبة

f https://www.facebook.com/Abdelhamid3bac f

❖ سلسلة تمارين حول المتتاليات العددية للشعب الأدبية ❖ آداب وفلسفة ❖ لغات أجنبية ❖

- 3) x عدد حقیقی، تکون الأعداد x 2، x + 1 بهذا الترتیب حدودا
 - متعاقبة لمتتالية هندسية إذا كان:
 - x = 3 1
 - x = 5 2
 - x = -2 3
- $.v_n=2 imes 3^{n+1}$ متتالية هندسية معرفة على $\mathbb N$ ، حدها العام (v_n) (4
 - أساس المتتالية هو:
 - 2 1
 - 3 2
 - 6 3
 - ﴿ دورة 2014 الموضوع الثاني ﴾
- $v_0=1$ المتتالية العددية المعرفة بما يلي: $v_0=1$ ومن أجل كل عدد طبيعي $v_n=1$ المتتالية العددية المعرفة بما يلي: $v_{n+1}=5v_n+4$
 - v_3 أحسب: v_1 ، و v_3 (1
 - $u_n = v_n + 1 : n$ نضع من أجل كل عدد طبيعي (2
 - $u_0=2$ وحدها الأول q=5 أ- بين أن u_n متتالية هندسية أساسها
 - n بدلالة n بدلالة n بدلالة u_n بدلالة u_n
- جـ- حلل العدد 1250 إلى جداء عوامل أولية، واستنتج أنه حد من حدود المتتالية (u_n) .
 - دث: حيث: S_n المجموع S_n حيث: (3
 - $S_n = u_0 + u_1 + \dots + u_{n-1}$
 - ب- أحسب بدلالة n المجموع S'_n حيث:
 - $S'_n = v_0 + v_1 + \dots + v_{n-1}$
 - ﴿ دورة 2015 الموضوع الأول ﴾
 - عيث: q متتالية هندسية حدها الأول u_0 وأساسها
 - q = 3 و $u_0 = 2$
- u_2 أحسب u_1 و u_2
- u_5 أكتب u_n بدلالة u_n ، ثم استنتج u_5
 - (u_n) عين اتجاه تغير المتتالية (3
- ديث: S_n المجموع S_n حيث: (4
- $S_n = u_0 + u_1 + u_2 + \dots + u_{n-1}$.2 + 6 + 18 + \dots + 486 : بـ استنتج قيمة المجموع:

- ب- أحسب بدلالة n الفرق: $v_{n+1}-v_n$ ، ثم استنتج اتجاه تغير المتتالية (v_n) .
 - n نضع من أجل كل عدد طبيعي غير معدوم n:
 - $S_n = v_0 + v_1 + \dots + v_{n-1}$
 - أ- أحسب بدلالة n المجموع S_n .
 - $S_n=80$ بحيث: n بحيث: العدد الطبيعي n
- ج- أثبت بالتراجع، أنه من أجل كل عدد طبيعي n، العدد: $1-3^n$ يقبل القسمة على 2.
 - ﴿ دورة 2013 الموضوع الثاني ﴾
 - عيث: u_0 متتالية حسابية حدها الأول u_0 وأساسها 5 بحيث:
 - $u_0 + u_1 + u_2 + u_3 = 34$
- u_0 أحسب أ
- $u_n = 5n + 1: n$ بین أنه، من أجل كل عدد طبیعي (2
- $u_{n+1} + u_n 8n = 4033$ عين العدد الطبيعي n بحيث: (3
 - $S = u_0 + u_1 + u_2 + \dots + u_{2013}$ (4)
- $v_n = 2u_n + 1$ المتتالية العددية (v_n) معرفة على $\mathbb N$ بالعبارة: (5
 - أ- أدرس اتجاه تغير المتتالية (v_n) .
 - $S' = v_0 + v_1 + v_2 \dots + v_{2013}$:
 - ﴿ دورة 2014 الموضوع الأول ﴾
- عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاث، في كل حالة من الحالات الأربع الآتية، مع التعليل.
- (u_n) متتالية حسابية أساسها u_n وحدها u_n الحد العام للمتتالية u_n (1) متتالية حسابية أساسها u_n
 - $u_n = 1 + 3n$ 1
 - $u_n = 7 + 3n$ 2
 - $u_n = -5 + 3n$ 3
 - يساوي: $n + 2 + 3 + \dots + n$ يساوي: n = n
 - $\frac{n^2+n}{2}$ 1
 - $\frac{n(n-1)}{2}$ 2
 - $\frac{n^2+1}{2}$ 3

ttps://www.facebook.com/Abdelhamid3bac

❖ سلسلة تمارين حول المتتاليات العددية للشعب الأدبية ❖ آداب وفلسفة ❖ لغات أجنبية ❖

﴿ دورة 2016 - الموضوع الثاني ﴾

نعتبر المتتالية الحسابية (u_n) التي أساسها 3 وحدها الأول u_0 وتحقق:

$$u_0 + u_1 + u_2 + u_3 = 10$$

- u_0 أحسب الحد الأول u_0 .
- n بدلاله u_n بدلاله (2
- $u_n = 145$ عين العدد الطبيعي n بحيث: (3
- $S = u_0 + u_1 + \dots + u_{49}$ أحسب المجموع S حيث: (4
- $v_n = 2u_n + 3$ نعتبر المتتالية (v_n) المعرفة على $v_n = 2u_n + 3$ نعتبر المتتالية (5
 - $S' = v_0 + v_1 + \dots + v_{49}$: أحسب المجموع S' حيث:

﴿ دورة 2017 - الموضوع الأول – الدورة العادية ﴾

حيث: \mathbb{N} متتالية هندسية حدودها موجبة تماما، معرفة على \mathbb{N}

$$u_3 = 320$$
 $u_1 = 20$

- بين أن أساس المتتالية (u_n) هو 4 وحدها الأول هو (1
- . السابع عبارة الحد العام للمتتالية u_n بدلالة n ثم استنتج قيمة حدها السابع (2
 - د) أ- أحسب بدلالة العدد الطبيعي n المجموع S حيث:

$$S = u_0 + u_1 + \dots + u_n$$

ب- استنتج قيمة المجموع 'S حيث:

$$S' = u_0 + u_1 + \dots + u_6$$

﴿ دورة 2017 - الموضوع الثاني – الدورة العادية ﴾

- و: $u_0=-5$ متتالية حسابية معرفة على المجموعة \mathbb{N} بحدها الأول $u_0=-5$ و: $u_3+u_7=50$
 - $\cdot(u_n)$ عين الأساس r للمتتالية (1
 - $u_n = 6n 5 : n$ بين أنه من أجل كل عدد طبيعي (2
- (3) أثبت أن العدد 2017 حد من حدود المتتالية (u_n) . ما هي رتبته
 - عيث: n المجموع S حيث: +

$$S = u_0 + u_1 + \dots + u_n$$

﴿ دورة 2017 - الموضوع الأول – الدورة الاستثنائية ﴾

r نعتبر المتتالية الحسابية (u_n) المعرفة على $\mathbb N$ بحدها الأول وأساسها

- $u_3 + u_5 = 20$ أحسب الحد u_4 علما أن: (1
- $2u_4 u_5 = 7$ أحسب الحد u_5 علما أن: (2
 - u_0 استنتج قیمهٔ r واحسب (3

5) أ- عين باقي القسمة الإقليدية على 5 لكل من الأعداد:

$$.3^{4k}\equiv 1~[5]:$$
 من $k~$ لكل أنه لكل أبية استنتج أنه لكل أبية الم

مين الأعداد الطبيعية n التي من أجلها يكون $1-3^n$ قابلا للقسمة على 3

﴿ دورة 2015 - الموضوع الثاني ﴾

متتالية حسابية حدها الأول u_1 وأساسها r حيث:

$$u_1 - u_3 = 5$$
 و $u_2 = \frac{1}{2}$

 $u_1 + u_3 = 1$. أ- بين أن (1

 $.r=-rac{5}{2}$ بي- عين الحد الأول u_1 ، ثم استنتج أن:

- n بدلالة u_n بدلالة (2
- دث الجموع S_n حيث: (3

$$S_n = u_1 + u_2 + \dots + u_n$$
ب- عين قيمة العدد الطبيعي n التي يكون من أجلها: $S_n = -rac{657}{2}$

n (4 عدد طبیعی غیر معدوم، نضع:

$$T_n = u_1 + 2u_2 + 3u_3 + \dots + nu_n$$

أ- تحقق أنه لكل n من *N:

$$\cdot (n+2)(9-5n) = -5n^2 - n + 18$$

 \mathbb{N}^* من n من أثبت أنه لكل n من

$$T_n = \frac{1}{6}n(n+1)(14-5n)$$

﴿ دورة 2016 - الموضوع الأول ﴾

n بـ التكن (u_n) متتالية عددية معرفة من أجل كل عدد طبيعي

$$u_n = 3n - 2$$

- u_3 و u_2 ، u_1 ، u_0 و (1)
- بين أن المتتالية (u_n) حسابية وعين أساسها.
 - (u_n) أدرس اتجاه تغير المتتالية (3
- 4) بين أن العدد 1954 حد من حدود المتتالية (u_n) وعين رتبته.
 - 5) أ- أحسب بدلالة n المجموع S_n حيث:

$$S_n = u_0 + u_1 + u_2 + \dots + u_n$$

ب- عين العدد n بحيث يكون:

$$S_n = 328$$

f https://www.facebook.com/Abdelhamid3bac

❖ سلسلة تمارين حول المتتاليات العددية للشعب الأدبية ❖ آداب وفلسفة ❖ لغات أجنبية ❖

- ﴿ دورة 2018 الموضوع الأول ﴾
- عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة في كل حالة من الحالات التالية مع التبرير:
 - $u_n=n^2-1:$ ب الله عددية معرفة على الله عددية معرفة على (u_n

 (u_n) المتتالية

- (1) متزایدة تماما (2) متناقصة تماما (3) لیست رتیبة
 - q=2 متتالية هندسية حدها الأول $v_1=3$ وأساسها (v_n)
 - أ- عبارة الحد العام للمتتالية (v_n) هي:
- $v_n = 2 \times 3^n$ (3) $v_n = 3 \times 2^{n-1}$ (2) $v_n = 3 \times 2^n$ (1)
 - $S_n = v_1 + v_2 + \dots + v_n$ يساوى:
 - $2(3^n-1)$ (3) (2^n-1) (2) $3(2^n-1)$ (1)
 - ﴿ دورة 2018 الموضوع الثاني ﴾
- q متتالية هندسية حدودها موجبة تماما، حدها الأول u_0 وأساسها u_0 حيث:

$$u_0 + u_1 = 30$$
 , $u_0 \times u_2 = 576$

- u_0 بين أن: $u_1 = 24$ ، ثم استنتج قيمة u_1
- n بين أن: q=4، ثم اكتب عبارة الحد العام u_n بدلالة q=4
- $u_{n+1}-u_n=18 imes 4^n$: اثبت أنه من أجل كل عدد طبيعي $u_{n+1}-u_n=18 imes 4^n$ ثم استنتج اتجاه تغير المتتالية u_n).
- عين (u_n) عقق أن العدد 1536 حد من حدود المتتالية (u_n) وعين
 - $S_n = u_1 + u_2 + \dots + u_n$ (5)

- $u_n = 3n 2$: عقق أنه من أجل كل عدد طبيعي $u_n = 3n 2$
 - أحسب بدلالة العدد الطبيعي n المجموع S_n حيث: $S_n = u_0 + u_1 + \dots + u_n$
 - نجد العدد الطبيعي n بحيث: (6)

 $_{n} = 33$

﴿ دورة 2017 - الموضوع الثاني – الدورة الاستثنائية ﴾

في كل حالة من الحالات الأربع الآتية، اقتُرحت ثلاث إجابات، منها واحدة فقط صحيحة، يطلب تحديدها مع التعليل.

- 1) الحد السادس لمتتالية حسابية أساسها 3– وحدها الأول 1 هو:
 - -17(1)
 - -14(2)
 - -11(3)
- 2) مجموع 100 حد الأولى لمتتالية هندسية حدها الأول 1 وأساسها 3 هو:
 - $\frac{3^{101}-1}{2}$ (1)
 - $\frac{1-3^{100}}{2}$ (2)
 - $\frac{3^{100}-1}{2}$ (3)
 - 3) نضع من أجل كل عدد حقيقي x:

 $c = 4x \cdot b = 6x - 3 \cdot a = 2x + 2$

الأعداد الحقيقية a، b و c بهذا الترتيب تشكل حدودا متتابعة لمتتالية حسابية

عندما يكون:

- $x = \frac{4}{3} (1)$
- $x=0 \ (2)$
- $x = \frac{3}{4} (3)$
- u_n المتتالية العددية u_n المعرفة بـ $u_0=1$ المعرفة بـ (u_n) المتتالية العددية $u_{n+1}=rac{1}{2}u_n+1$

هي متتالية:

- (1) حسابية أساسها 1
- $\frac{1}{3}$ هندسية أساسها (2)
- (3) لا حسابية ولا هندسية

0000

جميع الحقوق محفوظيّ — BAC —

