

Introduction to Robotics and

Dr. Prashant Upadhyaya

Senior Member-IEEE, Fellow-IETE-Australia, IETE (M)-India Associate Professor, ECE (AU-1)

Chandigarh University

Research Profile - Dr. Prashant Upadhyaya - Google Scholar

BubbleRob: Tutorial

Add a primitive sphere of diameter 0.2 to the scene with

[Menu bar --> Add --> Primitive shape --> Sphere]

	Primitive sphere			
▶	X-size [m]	1.0000e-01	X-subdivisions	
	Y-size [m]	1.0000e-01	Y-subdivisions	
	Z-size [m]	1.0000e-01	Z-subdivisions	
	Sides	32	Faces	16
	Disc subdivisions		✓ Smooth shaded	
	Open ends		Cone	
	✓ Create dynamic and respondable shape ✓ Create pure shape Material density [kg/m^3] 1000.0 OK Cancel			

The created sphere will appear in the <u>visibility layer</u> 1 by default, and be <u>dynamic and respondable</u>.

This means that BubbleRob's body will be falling and able to react to collisions with other respondable shapes (i.e. simulated by the physics engine)

Click on this

Enable Collidable, Measurable and Detectable in the object common properties

Rename the Sphere as bubbleRob

Double Click on this and rename it to bubbleRob and Press ENTER

Open the position dialog on the translation tab, Select the sphere representing BubbleRob's body, and enter 0.02 for Along Z.

This translates all selected objects by 2 cm along the absolute Z-axis, and effectively lifted our sphere a little bit

Add a proximity sensor so that BubbleRob knows when it is approaching obstacles: we select

[Menu bar --> Add --> Proximity sensor --> Cone type]

The proximity sensor is now correctly positioned relative to BubbleRob's body

Rename the Proximity Sensor as sensingNose

Double Click on this and rename it to sensingNose and Press ENTER

✓ Front face detection

Randomized ray detection

Ray count

Fast detection (approximate)

Ray detections count for triggering

Limited angle detection, max. angle [deg]

on't allow detections if distance smaller than [m]

✓ Back face detection

OK

45.00

0.100

Cancel

We select sensingNose, then control-select bubbleRob, then click

[Menu bar --> Edit --> Make last selected object parent].

Creating BubbleRob: Wheel

We will design BubbleRob's wheels. We create a new scene with [Menu bar --> File --> New scene]

We add a pure primitive cylinder with dimensions (0.08,0.08,0.02)

We enable Collidable, Measurable and Detectable in the object common properties for that cylinder, if not already enabled

We set the cylinder's absolute position to

(0.05, 0.1, 0.04)

We set the cylinder's absolute orientation to (-90,0,0)

Rename the cylinder as leftWheel

Double Click on this and rename it to leftWheel and Press ENTER

Copy and paste the leftWheel, and Rename the copy to rightWheel.

Select rightWheel, and set the absolute Y coordinate of the copy to -0.1.

We select the two wheels, copy them, then switch back to scene 1, then paste the wheels.

We now need to add joints (or motors) for the wheels. We click

[Menu bar --> Add --> Joint --> Revolute]

Keep the joint selected, then control-select leftWheel.

Keep the joint selected, then control-select leftWheel.

Rename the joint to leftMotor

Double Click on this and rename it to leftMotor and Press ENTER

TOPPED (8.1 fps) - SIMULATION STOPPED (9.1 fps) - SIMULATION STOPPED

Repeat Step 12 and Step 13: RightMotor

We now need to add joints (or motors) for the wheels. We click

[Menu bar --> Add --> Joint --> Revolute]

Keep the joint selected, then control-select rightWheel.

Keep the joint selected, then control-select rightWheel.

Rename the joint to rightMotor

Double Click on this and rename it to rightMotor and Press ENTER

Now we attach the left wheel to the left motor, the right wheel to the right motor, then attach the two motors to bubbleRob.

Select leftWheel, then control-select leftMotor, then click [Menu bar --> Edit --> Make last selected object parent].

Select rightWheel, then control-select rightMotor, then click [Menu bar --> Edit --> Make last selected object parent].

Attach the two motors to bubbleRob.

Select rightMotor, then control-select leftMotor, then bubbleRob click [Menu bar --> Edit --> Make last selected object parent].

prashant.e9437@cumail.in

Mb: 9411047357

