Total No. of Questions: 10 | [Total No. of Printed Pages:

Roll No.

CS/IT-402(N)

B. E. (Fourth Semester) EXAMINATION, Dec., 2009

(New Scheme)

(Common for CS & IT Engg. Branch)

DISCRETE STRUCTURE

Time: Three Hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Attempt any one question from each Unit. All questions carry equal marks.

Unit-I

- 1. (a) Write the principle of mathematical induction and prove by it that $n(n^2 + 5)$ is an integer multiple of 6 for all positive integers n. 10
 - (b) Consider the following relation on $\{1, 2, 3, 4, 5, 6\}$, $R = \{(i, j) : |i - j| = 2\}$: 10
 - (i) Is 'R' is reflexive.
 - (ii) Is 'R' is symmetric.
 - (iii) Is 'R' is transitive.
 - (iv) Draw a graph of R.

2. (a) If A, B, C, D are any four sets then prove that: $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$

(b) If $f: X \to Y$ is one-one and onto, then prove that $f^{-1}: Y \to X$ is also one-one and onto.

Unit-II

3. (a) Let G be the set of the non-zero real numbers and let $a*b = \frac{ab}{2}$, then show that (G, *) is an abelian group.

10

- (b) Write short notes on the following: 5 each
 - (i) Homomorphism and isomorphism
 - (ii) Cosets

Or

- 4. (a) If H_1 and H_2 are normal subgroups of a group G, then prove that $H_1 \cap H_2$ is also a normal subgroup of G. 10
 - (b) Define field and prove that the set $F = \{0, 1, 2,, 6\}$ under addition and multiplication modulo 7 is a field.

Unit — III

5. (a) Show that the following language is not a finite state language:

$$L = \{1^i 0^j 1^{i+j} \mid i \ge 1, j \ge 1\}$$

- (b) Prove that the following are tautologies or contradiction or contingency:
 - (i) $(p \rightarrow (q \land r)) \rightarrow (\sim r \rightarrow \sim q)$
 - (ii) $(p \lor q) \land \{p \lor (\sim q)\} \land \{(\sim p) \lor q\} \land \{(\sim p) \lor (\sim q)\}$

Or

6. (a) How a finite state machine can be designed to add positive integers of any size?

(b) Write the following in disjunctive normal form: 10

$$((x' \lor y') \land z) \lor (x' \land (x \lor z))$$

Unit-IV

- 7. (a) Explain Eulerian graph. Show that a connected graph G is an Euler graph if and only if it can be decomposed into circuits.
 - (b) Find the shortest path between 'a' to 'z' in the graph shown below, where the numbers associated with the edges are the distance between vertices:

 10

- 8. (a) Write short notes on the following:
 - (i) Planer graphs
 - (ii) Isomorphism of graphs
 - (iii) Graph coloring
 - (iv) Chromatic number
 - (b) Prove that a graph G is disconnected if and only if its vertex set V can be partitioned into two non-empty disjoint subsets V₁ and V₂ such that there exists no edge in G whose one end vertex is in V₁ and the other in V₂.

Unit-V

9. (a) Let L = { 1, 2, 3, 4, 6, 8, 9, 12, 18, 24 } be ordered by the relation '|' where x/y mean 'x divides y'. Show R. T. O.

that D_{24} the set of all divisors of the integer 24 of L is a sublattice of the lattice (L, |).

(b) Find the general solution of:

$$s(k) - 3s(k-1) - 4s(k-2) = 4^{k}$$
Or

- 10. (a) In how many ways can 12 students be partitioned into four teams A₁, A₂, A₃ and A₄, so that each team contains three students?
 - (b) Determine the discrete numeric function corresponding to the following generating function: 10

$$A(z) = \frac{z^5}{5 - 6z + z^2}$$