

Learning Objectives

- 1. What are support vector machines?
- 2. What are maximum (soft) margin classifiers?
- 3. What the relation between SVMs and logistic regression?
- 4. How to use SVMs for regression?
- 5. What are relevance vector machines?
- 6. How to use RVMs for regression?
- 7. How to use RVMs for classification?
- 8. What is the mechanism for RVMs to have sparse solutions?

Outlines

- Support Vector Machines
- SVMs and Logistic Regression
- > SVMs for Regression
- Relevance Vector Machines
- > RVMs for Regression
- > RVMs for Classification

Support Vector Machines

■ Problem settings

$$y\left(\mathbf{x}\right) = \mathbf{w}^{T} \boldsymbol{\phi}\left(\mathbf{x}\right) + b$$

- ✓ Two-class classification using linear models
- ✓ Assume that training data set is linearly separable
- Support vector machine approaches
 - ✓ The decision boundary is chosen to be the one for which
 the margin is maximized

Maximum Margin Classifier I

For all data points, $t_n y(\mathbf{x}_n) > 0$

The distance of a point to the decision surface

$$\frac{t_n y(\mathbf{x}_n)}{\|\mathbf{w}\|} = \frac{t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b)}{\|\mathbf{w}\|}$$

The maximum margin solution

$$\underset{\mathbf{w},b}{\operatorname{arg\,max}} \left\{ \frac{1}{\|\mathbf{w}\|} \min_{n} \left[t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b) \right] \right\}$$
 A difficult problem! support vectors

Maximum Margin Classifier II

☐ After rescaling w and b, the point closest to the surface becomes

$$t_n \left(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) + b \right) = 1$$

☐ The constraints for all points become

$$t_n\left(\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n) + b\right) \geqslant 1, \qquad n = 1, \dots, N$$

"=" means active constraints, ">" means inactive constraints

$$\Rightarrow \left| \underset{\mathbf{w}, b}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{w}\|^2 \text{ subject to } t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b) \ge 1, \ n = 1, ..., N \right|$$

An easier problem!

Lagrange Method

☐ Minimize an object function *s. t.* constraints of inequality

$$\min_{x} f(x)$$
 s.t. $g(x) \ge 0$

 \blacksquare By Introducing a Lagrange multiplier $\lambda \ge 0$, then we will have

$$\min_{x} \max_{\lambda \ge 0} \{ \mathcal{L}(x, \lambda) = f(x) - \lambda g(x) \}$$

■ When certain conditions are satisfied, its dual problem is

$$\max_{\lambda \ge 0} \min_{x} \left\{ \mathcal{L}(x, \lambda) = f(x) - \lambda g(x) \right\}$$

 \square By setting derivatives of \mathcal{L} w.r.t. x equal to 0, we will have

$$x = h(\lambda)$$
, and then the problem becomes $\lambda^* = \max_{\lambda \ge 0} Q(\lambda)$

 \square Finally, $x^* = h(\lambda^*)$ is the solution

Dual Representation I

lacktriangle Introducing Lagrange multipliers $a_n\geqslant 0$, then we will have

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b) - 1 \right\}$$

which minimizes the first part and maximizes the second part:

either
$$a_n = 0$$
 or $a_n \neq 0$ $\bigcap t_n \left(\mathbf{w}^T \phi(\mathbf{x}_n) + b \right) = 1$ inactive constraint active constraint : support vectors

 \square By setting derivatives of L w.r.t. \mathbf{w} and b equal 0, we will have

$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n), \quad 0 = \sum_{n=1}^{N} a_n t_n$$

Dual Representation II

■ Eliminating **w** and **b** with $\mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)$, $0 = \sum_{n=1}^{N} a_n t_n$ from L, we will have the dual representation

$$\widetilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$
subject to $a_n \ge 0$, $n = 1, ..., N$

$$\sum_{n=1}^{N} a_n t_n = 0$$

quadratic programming

$$\square$$
 solving a_n

 $a_n \neq 0$: support vectors

where

$$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^{\mathrm{T}} \phi(\mathbf{x}')$$

Classifier Parameters

■ The classifier can be rewritten as

$$y(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b \implies y(\mathbf{x}) = \sum_{n=1}^N a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b \qquad \mathbf{x}_n$$
: support vectors

After finding a by solving the quadratic programming problem, we need to estimate b. For support vectors, $a_n \neq 0$, we will have

$$t_n \left(\sum_{m \in \mathcal{S}} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) + b \right) = 1 \qquad t_n^2 = 1$$

$$b = \frac{1}{N_S} \sum_{n \in S} \left(t_n - \sum_{m \in S} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) \right)$$

where S is the set of support vectors.

Maximum Margin Classifier

☐ Training maximum margin classifiers can be generalized as

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \sum_{n=1}^{N} E_{\infty}(y(\mathbf{x}_n)t_n - 1) + \lambda \|\mathbf{w}\|^2 \qquad \lambda > 0$$

where $E_{\infty}(z)$ is a function that is zero if $z \ge 0$ and ∞ otherwise.

■ Such that only support vectors will be selected to optimize model parameters

Example of Separable Data Classification

Overlapping Class Distributions

Allow some misclassified examples \rightarrow soft margin Introduce slack variables $\xi_n \ge 0, \ n = 1,...,N$

$$t_n y(\mathbf{x}_n) = t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b) \ge 1 \implies t_n y(\mathbf{x}_n) \ge 1 - \xi_n$$

Soft Margin Classifier

$$\frac{C}{1} \sum_{n=1}^{N} \xi_n + \frac{1}{2} \|\mathbf{w}\|^2$$
 $C > 0$: trade-off between minimizing training errors and controlling model complexity

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n - \sum_{n=1}^{N} a_n \{t_n y(\mathbf{x}_n) - 1 + \xi_n\} - \sum_{n=1}^{N} \mu_n \xi_n$$

$$a_n \ge 0$$

KKT conditions:

$$t_n y(\mathbf{x}_n) - 1 + \xi_n \ge 0$$

$$a_n(t_n y(\mathbf{x}_n) - 1 + \xi_n) = 0$$

: support vectors

$$a_{n}(t_{n}y(\mathbf{X}_{n})-1+\xi_{n})=0$$

$$a_{n}=0$$

$$\mu_{n} \geq 0$$

$$\xi_{n} \geq 0$$

$$\mu_{n}\xi_{n}=0$$

$$\mu_{n}\xi_{n}=0$$

Dual Representation

lacktriangle By setting derivatives of L w.r.t. \mathbf{w} , b, and $\{\xi_n\}$ equal 0, we will have

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \quad \Rightarrow \quad \mathbf{w} = \sum_{n=1}^{N} a_n t_n \boldsymbol{\phi}(\mathbf{x}_n)$$

$$\frac{\partial L}{\partial b} = 0 \quad \Rightarrow \quad \sum_{n=1}^{N} a_n t_n = 0$$

$$\frac{\partial L}{\partial \xi_n} = 0 \quad \Rightarrow \quad a_n = C - \mu_n.$$

Dual Representation

Dual representation

$$\widetilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$
subject to $0 \le a_n \le C, n = 1, ..., N$

$$\sum_{n=1}^{N} a_n t_n = 0$$

■ Estimating b

(→ same as hard maximum margin classifiers)

Alternative Formulation

v-SVM (Schölkopf et al., 2000)

$$\widetilde{L}(\mathbf{a}) = -\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

subject to $0 \le a_n \le 1/N$

$$\sum_{n=1}^{N} a_n t_n = 0$$

$$\sum_{n=1}^{N} a_n \ge \underline{v}$$

- Upper bound on the fraction of margin errors
- Lower bound on the fraction of support vectors

Nonseparable Data Classification (v-SVM)

Solutions of the QP Problem

- ☐ Chunking (Vapnik, 1982)
 - Idea: the value of Lagrangian is unchanged if we remove the rows and columns of the kernel matrix corresponding to Lagrange multipliers that have value zero
- ☐ Decomposition methods (Osuna et al., 1996)
- □ Protected conjugate gradients (Burges, 1998)
- Sequential minimal optimization (Platt, 1999)

Outlines

- Support Vector Machines
- SVMs and Logistic Regression
- > SVMs for Regression
- Relevance Vector Machines
- > RVMs for Regression
- > RVMs for Classification

Relation to Logistic Regression I

For data points on the correct side, $\xi = 0$ For the remaining points, $\xi = 1 - y_n t_n$

$$C\sum_{n=1}^{N} \xi_{n} + \frac{1}{2} \|\mathbf{w}\|^{2} \Longrightarrow \sum_{n=1}^{N} E_{SV}(y_{n}, t_{n}) + \lambda \|\mathbf{w}\|^{2}$$
 where $\lambda = (2C)^{-1}$
$$E_{SV}(y_{n}, t_{n}) = [1 - y_{n}t_{n}]_{+} \text{: hinge error function}$$
 where $[\cdot]_{+}$ denotes the positive part

Relation to Logistic Regression II

☐ From maximum likelihood logistic regression

$$p(t=1|y) = \sigma(y)$$

$$p(t=-1|y) = 1 - \sigma(y) = \sigma(-y)$$

$$\Rightarrow p(t|y) = \sigma(yt)$$

■ Error function with quadratic regularization

$$\sum_{n=1}^{N} E_{LR}(y_n t_n) + \lambda \|\mathbf{w}\|^2$$
where $E_{LR}(yt) = \ln(1 + \exp(-yt))$

Relation to Logistic Regression III

Cross-Entropy

b: Bernoulli parameter

y: natural parameter

$$-\ln p(t|b) = -t \ln b - (1-t)\ln(1-b)$$

$$-\ln p(t|y) = -\ln \sigma(yt) = \ln(1 + e^{-yt}) \qquad b = \sigma(y)$$

Cross-Entropy with prior

$$-\ln p(t|b) + \alpha^{-1}\mathbf{w}^T\mathbf{w} = -t\ln b - (1-t)\ln(1-b) + \alpha^{-1}\mathbf{w}^T\mathbf{w}$$

$$-\ln p(t|y) + \alpha^{-1}\mathbf{w}^T\mathbf{w} = \ln(1 + e^{-yt}) + \alpha^{-1}\mathbf{w}^T\mathbf{w}$$

softplus:
$$\ln(1+e^{-x})$$

Comparison of Error Functions

Multiclass SVMs

- One-versus-the-rest: K separate SVMs
 Can lead inconsistent results (Figure 4.2)
 Imbalanced training sets
 - Positive class: +1, negative class: -1/(K-1)
- An objective function for training all SVMs simultaneously
- \square One-versus-one: K(K-1)/2 SVMs
- ☐ Error-correcting output codes

 Generalization of the voting scheme of the *one-versus-one*

Outlines

- Support Vector Machines
- SVMs and Logistic Regression
- SVMs for Regression
- Relevance Vector Machines
- > RVMs for Regression
- > RVMs for Classification

SVMs for Regression I

Simple linear regression: minimize $\frac{1}{2}\sum_{n=1}^{N} \{y_n - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$ ε -insensitive error function

$$E_{\varepsilon}(y(\mathbf{x}) - t) = \begin{cases} 0, & \text{if } |y(\mathbf{x}) - t| < \varepsilon \\ |y(\mathbf{x}) - t| - \varepsilon, & \text{otherwise} \end{cases}$$

SVMs for Regression II

Minimize

$$C\sum_{n=1}^{N} E_{\varepsilon} \left(y(\mathbf{x}_n) - t_n \right) + \frac{1}{2} \|\mathbf{w}\|^2$$

$$C\sum_{n=1}^{N} \left(\xi_n + \hat{\xi}_n\right) + \frac{1}{2} \|\mathbf{w}\|^2$$

where
$$t_n \leq y(\mathbf{x}_n) + \varepsilon + \xi_n$$

 $t_n \geq y(\mathbf{x}_n) - \varepsilon - \hat{\xi}_n$
 $\xi_n \geq 0, \ \hat{\xi}_n \geq 0$

Dual Problem

$$L = C \sum_{n=1}^{N} \left(\xi_n + \hat{\xi}_n \right) + \frac{1}{2} \| \mathbf{w} \|^2 - \sum_{n=1}^{N} \left(\mu_n \xi_n + \hat{\mu}_n \hat{\xi}_n \right)$$

$$- \sum_{n=1}^{N} a_n \left(\varepsilon + \xi_n + y_n - t_n \right) - \sum_{n=1}^{N} \hat{a}_n \left(\varepsilon + \hat{\xi}_n - y_n + t_n \right)$$

$$\widetilde{L}(\mathbf{a}, \hat{\mathbf{a}}) = -\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} (a_n - \hat{a}_n) (a_m - \hat{a}_m) k(\mathbf{x}_n, \mathbf{x}_m)$$

$$- \varepsilon \sum_{n=1}^{N} (a_n + \hat{a}_n) + \sum_{n=1}^{N} (a_n - \hat{a}_n) t_n$$
subject to $0 \le a_n, \hat{a}_n \le C$

$$\sum_{n=1}^{N} (a_n - \hat{a}_n) = 0$$

Predictions

$$\mathbf{w} = \sum_{n=1}^{N} (a_n - \hat{a}_n) \phi(\mathbf{x}_n)$$
 (from derivatives of the Lagrangian cost equal 0)

$$y(\mathbf{x}) = \sum_{n=1}^{N} (a_n - \hat{a}_n) k(\mathbf{x}, \mathbf{x}_n) + b$$

KKT conditions:
$$a_n \left(\varepsilon + \xi_n + y_n - t_n \right) = 0$$
$$\hat{a}_n \left(\varepsilon + \hat{\xi}_n - y_n + t_n \right) = 0$$
$$\left(C - a_n \right) \xi_n = 0$$
$$\left(C - \hat{a}_n \right) \hat{\xi}_n = 0$$

$$b = t_n - \varepsilon - \mathbf{w}^T \phi(\mathbf{x}_n) = t_n - \varepsilon - \sum_{m=1}^{N} (a_m - \hat{a}_m) k(\mathbf{x}_n, \mathbf{x}_m)$$

Alternative Formulation

v-SVM (Schölkopf et al., 2000)

$$\begin{split} \widetilde{L}(\mathbf{a}, \hat{\mathbf{a}}) &= -\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} (a_n - \hat{a}_n) (a_m - \hat{a}_m) k(\mathbf{x}_n, \mathbf{x}_m) \\ &+ \sum_{n=1}^{N} (a_n - \hat{a}_n) t_n \\ \text{subject to } 0 \leq a_n, \hat{a}_n \leq C/N \\ &\sum_{n=1}^{N} (a_n - \hat{a}_n) = 0 \\ &\sum_{n=1}^{N} (a_n + \hat{a}_n) \leq \underbrace{vC}_{\text{fraction of points lying outside the tube} \end{split}$$

Example of v-SVM Regression

