ECOLE NATIONALE DE LA STATISTIQUE ET DE L'ANALYSE DE L'INFORMATION

PROJECT TITLE

Project Description

TITLE

rédigé par Allemand Instable

Résumé

Lorem ipsum dolor sit amet. Ut expedita sunt est delectus quia ad nostrum delectus eum magni dolor. Eos nemo minima sit deleniti porro et necessitatibus minima ab quia necessitatibus in beatae autem et voluptas labore.

Lorem ipsum dolor sit amet. Ut expedita sunt est delectus quia ad nostrum delectus eum magni dolor. Eos nemo minima sit deleniti porro et necessitatibus minima ab quia necessitatibus in beatae autem et voluptas labore.

contribution

si jamais vous apercevez des fautes dans le polycopié, merci de rédiger une *issue* sur Github à l'adresse :

correctif

LaTeX-Template/issues

contact

mail DEV: redacted@gmail.com

Table des matières

1	Chapter 1	1
		1
	1.2	1
	1.3	1
	1.4	1
	1.5	1
2	Chapter 2	2
		2
		2
	2.3	2
	2.4	2
	2.5	2
3	Chapter 3	3
	3.1	3
	3.2	3
	3.3	3
	3.4	3
	3.5	3
Α	Some Appendix	i
	A.1 with subsection	i
	A.2 and another one	İ
В	Code Examples	ii
С	Testing	iv
_	December 1 of the control of the con	
D	2 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	vi
		Vİ
		Vİ
	and the second s	vi
	D.2.2 Commands Code Examples	'V

Table des figures

\sim 1	Imagaa/angi	laga ppg																١
С. І	Images/ensai_	logo.brig	•		 •													I۷

List of Algorithms

Chapitre 1

Chapter 1

Contents	
1.1	
1.2	
1.3	
1.4	
1.5	

- 1.1
- 1.2
- 1.3
- 1.4
- 1.5

Chapitre 2

Chapter 2

Contents																								
2.1																							2	
2.2																							2	
2.3																							2	
2.4																							2	
2.5																							2	

- 2.1
- 2.2
- 2.3
- 2.4
- 2.5

Chapitre 3

Chapter 3

Contents																									
3.1													 										3	3	
3.2													 										3	3	
3.3													 										3	3	
3.4																							3	3	
3.5				•							•												3	3	

- 3.1
- 3.2
- 3.3
- 3.4
- 3.5

Annexe A

Some Appendix

Contents	
A.1	with subsection
A.2	and another one \hdots
A 1:H	a subsection

A.1 with subsection

A.2 and another one

Annexe B

Code Examples

```
# --- install --- #
install.packages(c("fda", "fda.usc"))

# --- general packages --- #
library(data.table)

# --- FDA packages --- #
library(fda)
library(fda.usc)
```

```
\mid X_1 \mid X_2 \mid \cdots \mid X_p \mid
    # | Jan 1st 12:00 | : | : |
2
    data <- fread("data.csv")</pre>
    # un individu = une ligne
    # donc pour une série temporelle, il faut transposer les observations et avoir la
    → suite des données disposées sur une ligne.
    fdata_standard_index <- fda.usc::fdata(</pre>
8
        mdata = t(X),
        argvals = to_unit_interval(
10
11
        \mbox{\tt\#} on doit ramener les dates dans l'intervalle [0,1]
^{12}
             data[, .(date)]
14
15
```

```
numbasis = num_basis__seq,
type.basis = "bspline",
verbose = TRUE
```

```
fda_optimal_basis <- ...
fdata_obj_temp <- fda_optimal_basis[["fdata.est"]]

fdata_obj <- fda.usc::fdata2fd(fdata_obj_temp)

fpca_result <- fda::pca.fd(

fdobj = fdata_obj,

nharm = 3,

# centrer les données

centerfns = TRUE

)</pre>
```

Regardons désormais à quoi ressemble la sortie :

Annexe C

Testing

In this test we will invoke one command from each file in the commands folder.

- commands/graphics/awesomebox chk:

- commands/graphics/blackbox greenboxed/blackboxed: test validé test validé
- commands/graphics/circled circled: (1)
- commands/graphics/colorize colorize: test validé
- commands/macro/img includeimage: label

FIGURE C. 1 - Images/ensai_logo.png

- commands/macro/macro el: ▷
- commands/maths/convergence **cvL**: $u_n \xrightarrow[n \to +\infty]{\mathbb{L}^p} \ell$
- commands/maths/ensembles intervaleint : $[\![p,q]\!]$
- commands/maths/fonctions_et_operateurs **distnorme / indicatrice** : $\|x-y\|_{\infty}/\mathbb{1}_A$
- commands/maths/limites **grandop** : $\mathcal{O}_{\mathbb{P}}\left(n^{-\frac{1}{5}}\right)$
- commands/maths/preuve

Démonstration. coucou mon loulou

- commands/maths/proba_lettres $\mathbf{E}/\mathbf{P}/\mathbf{IH}$: $\mathbb{E}/\mathbb{P}/\mathbb{H}$
- commands/maths/proba indep: Ш
- commands/maths/property **orthonorm** : \perp
- commands/maths/suites soussuite: $(u_{n_n})_{n\geq 0}$
- commands/definition/custom_colors
- commands/definition/define ra:
- commands/definition/lorem lorem: Lorem ipsum dolor sit amet. Ut expedita sunt est delectus quia ad nostrum delectus eum magni dolor. Eos nemo minima sit deleniti porro et necessitatibus minima ab quia necessitatibus in beatae autem et voluptas labore.
- commands/definition/pgfplot
- commands/definition/redefine
- commands/definition/theorem_styles

Annexe D

Documentation

D.1 Packages & Dependencies

D.2 Commands

D.2.1 Commands Description

Command	location	Description	Example
commands/editor			
\citationrequise	main.tex	Avertissement pour l'éditeur : une citation est à insérer ici	I C(A citation requise E)
\exemplerequis	main.tex	Avertissement pour l'éditeur : un exemple est à insérer ici	concret requis
\editorwarn	main.tex	Avertissement pour l'éditeur	(texte custom)
\editlater	main.tex	Avertissement pour l'éditeur : une modification est à apporter ici	(texte custom)

$commands/graphics/\bigstar$

Description

Displays an environment delimited with a blue line on the left, with an Info Icon located at the left of the line

Command	location	color	symbol
\info	awesomebox.tex	flatuicolors_blue	symbol : 1
\chk	awesomebox.tex	flatuicolors_green	symbol : 🗸
\brain	awesomebox.tex	flatuicolors_purple_ light	symbol : (1)
\warn	awesomebox.tex	flatuicolors_orange_ light	symbol : 🛕
\nope	awesomebox.tex	flatuicolors_red_light	symbol : 😢
\cogs	awesomebox.tex	flatuicolors_imperial	symbol : 🚓
\citer	awesomebox.tex	flatuicolors_corn_ flower	symbol: 55
\avion	awesomebox.tex	flatuicolors_purple_ dark	symbol : }
\question	awesomebox.tex	flatuicolors_aqua	symbol : 😯
\idee	awesomebox.tex	flatuicolors_yellow	symbol : 🧐
\book	awesomebox.tex	flatuicolors_orange_ light	symbol : 🗏
\flask	awesomebox.tex	flatuicolors_blue_ devil	symbol : 🚣

$commands/graphics/\bigstar$

Description

Displays an environment delimited with a blue line on the left, with an Info Icon located at the left of the line

Command	location	short desc.	Example
\blackboxed	blackbox.tex	black rect. box	custom text
\greenboxed	blackbox.tex	green rect. box	custom text
\blueboxed	blackbox.tex	blue rect. box	custom text
\purpleboxed	blackbox.tex	purple rect. box	custom text
\orangeboxed	blackbox.tex	orange rect. box	custom text
\redboxed	blackbox.tex	red rect. box	custom text
\aquaboxed	blackbox.tex	aqua rect. box	custom text
\icon	blackbox.tex	fontawesome icon with text	G itHub
\circled	circled.tex	circled text	
\colorize	colorize.tex	colored text	custom text

$commands/maths/\bigstar$

Description

The commands associated with symbols and other things for mathematics / mathematical environments

Command	location	short desc.	Example
\P	proba_lettres.tex	Probabilité	$:\mathbb{P}$
\E	proba_lettres.tex	Espérance	Œ
\V	proba_lettres.tex	Variance	\mathbb{V}
\ Q	proba_lettres.tex	Rationels	Q
\IR	proba_lettres.tex	Réels	\mathbb{R}
\IH	proba_lettres.tex	Hilbert	H
\indep	proba.tex	symbole indép	Ш
\samelaw	proba.tex	suit la loi de	$X \stackrel{\mathcal{L}}{\sim} Z/\sigma$
\proba	proba.tex	Probabilité de	$\mathbb{P}\left[X >\varepsilon\right]$
\probaloi	proba.tex	Probabilité de $[\cdot]$ selon la loi de $[\cdot]$	$\mathbb{P}_{X Y}\left[2X^2 - 7Y < \eta\right]$
\variance	proba.tex	Variance de $[\cdot]$	$\mathbb{V}\left[\widehat{X}\right]$
\esperance	proba.tex	Espérance de [·]	$\mathbb{E}\left[\widehat{\theta}\right]$
\esperanceloi	proba.tex	Espérance de $[\cdot]$ selon la loi de $[\cdot]$	$\mathbb{E}_{Y X}\left[Y-X\right]$
\esperancesachant	proba.tex	Espérance condi- tionnelle	$\mathbb{E}\left[Y X\right]$
\esploisach	proba.tex	Espérance condi- tionnelle selon une loi	$\mathbb{E}_{Z}\left[U ZU\times\log(\sigma)Z^{2}\right]$
\orthonorm	property.tex	symbol orthonormal	$u \stackrel{\perp}{\ \cdot\ } \mathcal{F}$

Command	location	short desc.	Example
\cvl	convergence.tex	convergence en loi	$u_n \xrightarrow[n \to +\infty]{\mathcal{L}} \ell$
\cvp	convergence.tex	convergence en probabilité	$u_n \xrightarrow[n \to +\infty]{\mathbb{P}} \ell$
\cvps	convergence.tex	convergence presque sûre	$u_n \xrightarrow[n \to +\infty]{\text{p.s}} \ell$
\cvL	convergence.tex	convergence \mathbb{L}^p	$u_n \xrightarrow[n \to +\infty]{\mathbb{L}^p} \ell$
\cvetr	convergence.tex	convergence étroite	$u_n \xrightarrow[n \to +\infty]{\text{\'etroit.}} \ell$
\cvnorme	convergence.tex	convergence en norme	$u_n \xrightarrow[+\infty \to \ell]{\ \cdot\ _n}$
\cvpp	convergence.tex	convergence presque partout	$u_n \xrightarrow[+\infty \to \ell]{n-p.p}$
\tendset	convergence.tex	tend vers dans un ensemble	$u_n \xrightarrow[n \to +\infty]{\mathcal{F}} \ell$
\intervaleint	ensembles.tex	intervalle entier	[p, q]
\R	ensembles.tex	espace \mathbb{R}^p	\mathbb{R}^p
\classespace	ensembles.tex	espace des fonctions de classe k sur un ensemble E	$\mathcal{C}^{k}\left(E ight)$
\continuborne	ensembles.tex	espace des fonctions continues et bornées sur un ensemble ${\cal E}$ dans ${\cal F}$	$\mathcal{C}_{b}^{0}\left(E,F ight)$
\continusupportcompa	act	espace des fonctions continues à support compact sur un ensemble ${\cal E}$ dans ${\cal F}$	$\mathcal{C}_{K}^{0}\left(E,F ight)$

\mesurable	ensembles.tex	espace des fonctions mesurables sur un ensemble ${\cal E}$ dans ${\cal F}$	$m\left(E,F ight)$
\etageepositive	ensembles.tex	espace des fonctions etagées positives sur un ensemble E dans F	$\mathcal{E}_{+}\left(E,F ight)$
\VA	ensembles.tex	espace des variables aléatoires à valeur dans ${\cal E}$	VA[E]
\matrixspace	ensembles.tex	espace des matrices carrées de taille $p \times p$ à coefficients dans E	$\mathcal{M}_{p}\left(E ight)$
\orthonormal	ensembles.tex	symbole orthonor- mal	<u> </u>
\orthonormalselon	ensembles.tex	symbole orthonor- mal selon un produit scalaire	$\mathop{\parallel \cdot \parallel}_{\mathbb{L}^2}$
\grandR	ensembles.tex	symbole de l'en- semble des réels	\mathbb{R}
\grandR H/T/J/W/F/X/ Y/F/I/E/M/B/ N/Z/Q/C/K	ensembles.tex	•	\mathbb{R}
H / T / J / W / F / X / Y / F / I / E / M / B /	ensembles.tex ensembles.tex	semble des réels autres lettres dispo- nibles	\mathbb{R}
H / T / J / W / F / X / Y / F / I / E / M / B / N / Z / Q / C / K		semble des réels autres lettres disponibles symbole de l'ensemble des entiers	
H/T/J/W/F/X/Y/F/I/E/M/B/N/Z/Q/C/K\calR		semble des réels autres lettres disponibles symbole de l'ensemble des entiers naturels autres lettres disponi	${\cal R}$

Command	location	short desc.	Example
\indicatrice	fonctions_et_ operateurs.tex	indicatrice d'un en- semble	$\mathbb{1}_A$
\norme	fonctions_et_ operateurs.tex	norme d'un élé- ment	$\ x\ _{p}$
\dist	fonctions_et_ operateurs.tex	distance issue d'une norme entre deux vecteurs	x-y
\distnorme	fonctions_et_ operateurs.tex	distance issue d'une norme entre deux vecteurs	$\ x-y\ _{\infty}$
\prodscal	fonctions_et_ operateurs.tex	produit scalaire entre deux vecteurs	$\langle x y angle$
\prodscalselon	fonctions_et_ operateurs.tex	produit scalaire (spécifié) entre deux vecteurs	$\langle x y \rangle_{\infty}$
\argmax(\limits)	fonctions_et_ operateurs.tex	argmax	$\operatorname*{argmax}_{x \in E} f(x)$
\argmin(\limits)	fonctions_et_ operateurs.tex	argmin	$\operatorname*{argmin}_{x \in E} f(x)$
\inverse	fonctions_et_ operateurs.tex	inverse d'un élé- ment	A^{-1}
\isdef	fonctions_et_ operateurs.tex	est défini comme	$A \equiv B \\ \mathrm{d\acute{e}f}$
\comm	fonctions_et_ operateurs.tex	commutant d'un ensemble d'opéra- teurs	$\operatorname{Comm}(A)$
\rg	fonctions_et_ operateurs.tex	rang d'un élément	$\operatorname{rg}\left(A ight)$
\im	fonctions_et_ operateurs.tex	image d'un élé- ment	$\operatorname{Im} A$
\pgcd	fonctions_et_ operateurs.tex	pgcd	$\operatorname{pgcd}\left(p,q\right)$
\positive	fonctions_et_ operateurs.tex	partie positive d'un élément	$\left[x^3-x^2\right]_+$

\func	fonctions_et_ operateurs.tex	définition d'une fonction	$f: \begin{array}{ccc} E & \longrightarrow & F \\ x & \longmapsto & f(x) \end{array}$
\petitop	limites.tex	petit o en probabi- lité	$o \left(n^{-\frac{1}{5}} \right)$
\grandop	limites.tex	grand O en proba- bilité	$\mathcal{O}_{\mathbb{P}}\left(n^{-\frac{1}{5}}\right)$
\statrang	suites.tex	k^e valeur ordonnée (ordre croissant)	$Y_n^{(k)}$
\suiteensemble	suites.tex	suite à valeur dans ${\cal E}$	$(E)^{\mathbb{N}}$
\suite	suites.tex	suite « u n »	$(u_n)_{n\geq 0}$
\soussuite	suites.tex	sous suite indexée par \boldsymbol{k}	$(u_{n_k})_{k\geq 0}$
\famille	suites.tex	famille d'objets indexée sur un ensemble ${\cal I}$	$(X_i)_{i\in I}$
\suitecomposition	suites.tex	suite d'images d'une suite x_k par la fonction f	$(f(x_k))_{k\geq 0}$
\suitestatrang	suites.tex	???	$\left(X_k^{(i)}\right)_{\eta,k}$
\famfinie	suites.tex	ensemble fini d'éléments de $[\cdot]$ à $[\cdot]$	$(x_i)_{1,n}$
\fromto	suites.tex	$\text{de}\left[\cdot\right]\grave{\text{a}}\left[\cdot\right]$	$X_{1:p}$
\ordered	suites.tex	élément ordonné (ici k^e)	$X_{(k)}$

definition/custom_colors.tex

Description

Custom colors that can be used in other commands such as \colorize[color] {text}

color name	color	
flatuicolors_orange		
flatuicolors_orange_light		
flatuicolors_red_light		
flatuicolors_tomato		
flatuicolors_yellow		
flatuicolors_green		
flatuicolors_greenish		
flatuicolors_blue		
flatuicolors_blue_light		
flatuicolors_blue_deep		
flatuicolors_blue_devil		
flatuicolors_purple		
flatuicolors_purple_light	_	
flatuicolors_purple_dark		
flatuicolors_rose		
flatuicolors_biscay		
flatuicolors_imperial		
flatuicolors_aqua		
flatuicolors_magenta		
flatuicolors_light_gray		

D.2.2 Commands Code Examples

Command	Arguments	Code	Render
\func	1. {E}	<pre>f: \func{E}{F} {x}{f(x)}</pre>	$f: \begin{array}{ccc} E & \longrightarrow & F \\ x & \longmapsto & f(x) \end{array}$
	2. {F}		
	3. {x}		
	4. {f(x)}		
\samelaw	1. loi suivie : { Z}	X \samelaw Z	$X \overset{\mathcal{L}}{\sim} Z$
	T. IOTGUIVIO . (2)		
\probaloi	1. loi : { X}	\probaloi{X Y} {2X^2 - 7Y < \eta}	$\mathbb{P}_{X Y}\left[2X^2 - 7Y < \eta\right]$
	2. expression : {X^2}		
\esploisach		\esploisach{Z}	$\mathbb{E}_{Z}\left[U ZU\times\log(\sigma)Z^{2}\right]$
	1. loi : {Z}	{Z \times\log U} {U}	
	<pre>2. expression : {Z \times\log</pre>		
	3. sachant: {U}		

Bibliographie

(1) A. Monfort C. Gourieroux and A. Trognon. Pseudo maximum likelihood methods: Theory. *The Econometric Society*, 52(3), 1984. pages 681-700. DOI: https://doi.org/10.2307/1913471.