

Aplicações de Processamento Digital de Sinais - 4456S-04

Experiência E2: Transformada de Fourier em Tempo Discreto-DTFT, Transformada de Fourier Discreta-DFT e Transformada Rápida de Fourier-FFT

Objetivos

- a) Determinação de curvas de módulo e fase baseadas na DTFT.
- b) Determinação de valores de módulo e fase baseadas na DFT e na FFT.
- c) Prática na utilização do MATLAB para análise e projeto de sistemas em tempo discreto.

Atividade Teórica

Considere os pares de equações da DTFT (1 e 2) e da DFT (3 e 4) de N pontos abaixo:

$$X(\Omega) = \sum_{n=-\infty}^{n=\infty} x[n] e^{-j\Omega n} \qquad (1) \qquad x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{j\Omega n} d\Omega \qquad (2)$$

$$X_k = \sum_{n = \langle N \rangle} x[n] e^{-j2\pi nk/N}$$
 (3)
$$x[n] = \frac{1}{N} \sum_{k = \langle N \rangle} X_k e^{j2\pi nk/N}$$
 (4)

a) Determinar a expressão da DTFT do sinal $x_1[n]$ abaixo. A partir da equação encontrada, calcular os valores de $X_1(0)$, $X_1(1)$, $X_1(\pi)$ e $X_1(2\pi)$. Ver tabelas DTFT. (**0,5 ponto**)

$$x_1[n] = \begin{cases} 1, |n| \le 5 \\ 0, |n| > 5 \end{cases}$$

b) Determinar a expressão DTFT inversa do sinal $X_2(\Omega)$ apresentado abaixo. A partir da equação encontrada, calcular os valores de $x_2[0]$, $x_2[1]$ e $x_2[2]$. Ver tabelas DTFT. (**0,5 ponto**)

$$X_2(\Omega) = \frac{2}{1 - 0.5e^{-j\Omega}}$$

c) Utilizando a definição da DFT representada pela equação (3), determinar a expressão da DFT de N=256 pontos do sinal $x_3[n]$ apresentado a seguir (considerar $n_0=16$ amostras). A partir da equação encontrada, calcular os valores de X_0 , $X_{N/2}$ e X_N . (0,5 ponto)

$$x_3[n] = u[n] - u[n - n_0]$$

d) Repetir o item anterior considerando N = 16 (DFT de 16 pontos) e N = 8 (DFT de 8 pontos). (**0,5 ponto**)

Atividade Prática (utilizando o MATLAB)

- a) Utilizar a definição da DTFT apresentada na equação (1) para calcular 1000 valores de $X_1(\Omega)$ no intervalo de -2π até 2π . Apresentar os gráficos de módulo e fase e comparar com os valores calculados anteriormente. (3 pontos)
- b) Utilizando <u>integração numérica</u> e a definição da DTFT inversa apresentada na equação (2), determinar $x_2[n]$ no intervalo $-1 \le n \le 10$ e apresentar o gráfico. Comparar com os valores de $x_2[n]$ anteriormente calculados. Ver a **função** *trapz* do MATLAB. (**3 pontos**)
- c) Utilizar a **função fft** do MATLAB para calcular os valores dos coeficientes X_k da DFT do sinal $x_3[n]$, com N=256, N=16 e N=8 pontos, para $0 \le k \le N$ (lembrar que $\Omega=2\pi k/N$). Apresentar os gráficos de módulo para cada caso e comparar com os valores calculados anteriormente. Qual a relação entre os valores calculados com N=256, N=16 e N=8 pontos? (**2 pontos**)