1. Prove that the set $\{(x_1, x_2, 0) : x_1, x_2 \in \mathbb{F}\}$ is a subspace of \mathbb{F}^3 .

2. Let
$$A = \begin{bmatrix} 1 & -2 & 0 & 3 \\ 2 & -3 & -1 & -4 \\ 3 & -5 & -1 & -1 \end{bmatrix}$$
.

- (i) Find a basis for Row A and Nul A.
- (ii) Find the inner product of each vector in the basis of RowA with each vector in the basis of NulA.
- 3. Let $\mathbf{u}_1 = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$, and $\mathbf{x} = \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix}$. Show that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal basis for \mathbb{R}^3 then express \mathbf{x} as a linear combination of \mathbf{u}_1 , \mathbf{u}_2 and \mathbf{u}_3 .

4. Suppose W is a subspace of \mathbb{R}^n spanned by n nonzero orthogonal vectors. Explain why $W = \mathbb{R}^n$.

5. Let
$$W = \operatorname{Span} \left\{ \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1\\-1 \end{bmatrix} \right\}$$
 and $\mathbf{y} = \begin{bmatrix} 3\\4\\5\\6 \end{bmatrix}$. Write \mathbf{y} as vector in W and a vector in W .

6. Let $\mathbf{z} = \begin{bmatrix} 2 \\ 4 \\ 0 \\ -1 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 0 \\ -1 \\ -3 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 5 \\ -2 \\ 4 \\ 2 \end{bmatrix}$. Find the best approximation to \mathbf{z} by vectors of the form $c_1\mathbf{v}_1 + c_2\mathbf{v}_2$.

7. Let
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 5 \\ -1 \\ 2 \end{bmatrix}$ and $\mathbf{u}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

a) Show that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is a basis for $W = \text{Span } \{\mathbf{u}_1, \mathbf{u}_2\}$. Do not use row reduction.

b) Show that
$$\mathbf{u}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 is not in W .

c) Use the fact that \mathbf{u}_3 is not in W to construct a nonzero vector v in \mathbb{R}^3 that is orthogonal to \mathbf{u}_1 and \mathbf{u}_2 .

- 8. Find an orthogonal basis for the column space of the matrix $A = \begin{bmatrix} -1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3 \end{bmatrix}$.
- 9. Find an orthonormal basis for the column space of the matrix $A = \begin{bmatrix} 3 & -3 & 0 \\ -4 & 14 & 10 \\ 5 & -7 & -2 \end{bmatrix}$.
- 10. Let $\mathbf{u}_1, \dots, \mathbf{u}_p$ be an orthogonal basis for the subspace W of \mathbb{R}^n , and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be defined by $T(\mathbf{x}) = \mathrm{proj}_W \mathbf{x}$. Show that T is a linear transformation.