Cálculo 1

Rotação em torno do eixo $\mathcal{O}y$

Considere a função $f(x) = \operatorname{sen}(x)$ definida no intervalo $[0, \pi]$ e denote por \mathcal{A} a região compreendida abaixo do seu gráfico e acima do eixo $\mathcal{O}x$. Se girarmos essa região em torno do eixo $\mathcal{O}y$ vamos obter um sólido \mathcal{S} cujo volume queremos calcular neste texto.

Vamos usar uma ideia parecida com aquela utilizada quando discutimos a rotação em torno do eixo $\mathcal{O}x$. Ela consiste em fazermos aproximações para o volume de \mathcal{S} utilizando algum sólido cujo volume sabemos calcular. Mais especificamente, dado um número $n \in \mathbb{N}$, dividimos o intervalo $[a,b] = [0,\pi]$ em n subintervalos de igual tamanho $\Delta x = \frac{(b-a)}{n}$, considerando os pontos

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b,$$

em que $x_k = a + k\Delta x$, para cada $k = 0, 1, 2, \dots, n$.

Fixado um número $k \in \{1, 2, ..., n\}$, vamos escolher um ponto $x_k^* \in [x_{k-1}, x_k]$ e construir um retângulo cuja base é o intervalo $[x_{k-1}, x_k]$ e altura é $f(x_k^*)$. Ao rotacionarmos este retângulo em torno do eixo $\mathcal{O}y$ vamos obter uma espécie de anel cuja espessura é exatamente $x_k - x_{k-1} = \Delta x$. O volume deste anel pode ser calculado como a diferença do volume de dois cilindros, e vale exatamente

$$\pi x_k^2 f(x_k^*) - \pi x_{k-1}^2 f(x_k^*) = \pi (x_k - x_{k-1})(x_k + x_{k-1}) f(x_k^*) = 2\pi \Delta x \left(\frac{x_k + x_{k-1}}{2}\right) f(x_k^*).$$

Figura 4: O retângulo Figura 5: Parte do anel

Observe agora que o número $(x_k + x_{k-1})/2$ pertence ao intervalo $[x_{k-1}, x_k]$. De fato, ele é exatamente o ponto médio deste intervalo. Assim, se desde o início tivéssemos escolhido $x_k^* = (x_k + x_{k-1})/2$, o volume do anel seria exatamente $2\pi x_k^* f(x_k^*) \Delta x$.

Procedendo como acima, variando k de 1 até n, e chamando de S_n o sólido obtido quando rotacionamos os n retângulos em torno do eixo $\mathcal{O}y$, concluímos que uma aproximação para o volume do sólido S é

volume(
$$S_n$$
) = $\sum_{k=1}^n 2\pi x_k^* f(x_k^*) \Delta x = \sum_{k=1}^n g(x_k^*) \Delta x$,

em que $g(x) = 2\pi x f(x)$. Uma vez que a aproximação se torna melhor quando n cresce, concluímos que o volume de S é dado por

volume(S) =
$$\lim_{n \to +\infty} \sum_{k=1}^{n} g(x_k) \Delta x = \int_a^b g(x) dx = \int_a^b 2\pi x f(x) dx$$
.

Lembrando agora que $f(x) = \text{sen}(x), \ a = 0$ e $b = \pi$, o volume V do sólido em questão é dado pela integral definida

$$V = \int_0^{\pi} 2\pi x \operatorname{sen}(x) dx.$$

A fim de calcular esta integral vamos primeiro determinar uma primitiva para a função $x \operatorname{sen}(x)$. Para tanto, vamos usar a técnica de integração por partes com as escolhas u = x e $dv = \operatorname{sen}(x)dx$. Um cálculo direto mostra que du = dx e $v = -\cos(x)$, de modo que

$$\int x \operatorname{sen}(x) dx = -x \cos(x) - \int (-\cos(x)) dx = -x \cos(x) + \sin(x) + K,$$

onde K é uma constante. Assim, o volume é dado por

volume(S) =
$$2\pi \left(-x\cos(x) + \sin(x)\right)\Big|_{x=0}^{x=\pi} = 2\pi \left\{-\pi\cos(\pi) + \sin(\pi)\right\} = 2\pi^2$$
.

Vamos finalizar observando que o procedimento acima é mais geral do que parece. De fato, seja $f:[a,b] \to [0,+\infty)$ uma função contínua, com $a \ge 0$, e \mathcal{A} a região compreendida entre o gráfico de f e o eixo $\mathcal{O}x$. Quando giramos \mathcal{A} em torno do eixo $\mathcal{O}y$, obtemos um sólido \mathcal{S} cujo volume é dado por

volume(
$$S$$
) = $\int_{a}^{b} 2\pi x f(x) dx$.

É importante não confundir a fórmula acima com aquela que nos dá o volume quando giramos em torno do eixo $\mathcal{O}x$, que é exatamente $\int_a^b \pi f(x)^2 dx$.

Tarefa

Figura 1: A região \mathcal{A}

Denote por \mathcal{A} a região delimitada pelo gráfico das funções f(x) = x e $g(x) = x^2$. Use a fórmula do texto para calcular o volume do sólido \mathcal{S} obtido ao girarmos \mathcal{A} em torno do eixo $\mathcal{O}y$. Note que esta região não é a região abaixo do gráfico de uma função, mas sim a região compreendida entre duas funções. Assim, não será possível aplicar diretamente a fórmula. Porém, pode-se obter o resultado desejado como a diferença entre os volumes de dois outros sólidos.

Figura 2: Parte do sólido \mathcal{S}

Figura 3: O sólido ${\mathcal S}$