Stochastic Control Exercises

Jiamin JIAN

Exercise 1:

Let $(\Omega, \mathcal{F}, \mathbb{P}, \{\mathcal{F}_t\}_{t\geq 0})$ be a filtered probability space, where W_t is a Brownian motion. The state process X_t is defined as follows:

$$X_t = \int_0^t a(s) \, ds + W_t,$$

and we define the minimum cost as

$$V = \inf_{a(\cdot) \in \mathcal{A}} \mathbb{E} \Big[\int_0^t a^2(s) \, ds + X_T^2 \Big],$$

where \mathcal{A} is the collection of all \mathcal{F}_t progressively measurable process. Find the value V.

Solution:

Firstly we derive the HJB equation of this control problem. Since

$$dX_t = a(t) dt + dW_t,$$

then for the state process we have $b(X_t, a(t)) = a(t)$ and $\sigma(X_t, a(t)) = 1$. Then we know that the HJB equation is

$$\frac{\partial v}{\partial t} + \inf_{a \in A} [L^a v + a^2] = 0,$$

where $L^a v = a \frac{\partial v}{\partial x} + \frac{1}{2} \frac{\partial^2 v}{\partial x^2}$, and the domain is $[0, T] \times \mathbb{R}$. Since

$$L^{a}v + a^{2} = a\frac{\partial v}{\partial x} + \frac{1}{2}\frac{\partial^{2}v}{\partial x^{2}} + a^{2},$$

then when $a = -\frac{1}{2} \frac{\partial v}{\partial x}$, the term $L^a v + a^2$ can get the minimum value. So we get the HJB equation under the domain $[0, T] \times \mathbb{R}$:

$$\begin{cases} \frac{\partial v}{\partial t} + \frac{1}{2} \frac{\partial^2 v}{\partial x^2} - \frac{1}{4} \left(\frac{\partial v}{\partial x}\right)^2 = 0\\ v(T, x) = x^2 \end{cases}$$

And we have V = v(0,0).

Next we need to solve HJB equation. We denote $\tau = T - t$ and $v(t, x) = u(\tau, x) = u(T - t, x)$, then we have

$$\begin{cases} -\frac{\partial u}{\partial \tau} + \frac{1}{2} \frac{\partial^2 u}{\partial x^2} - \frac{1}{4} \left(\frac{\partial u}{\partial x}\right)^2 = 0\\ u(\tau, x) = x^2 \end{cases}$$

and V = u(T, 0). We suppose

$$u(\tau, x) = \phi_1(\tau)x^2 + \phi_2(\tau)x + \phi_3(\tau),$$

then we have $\phi_1(0) = 1, \phi_2(0) = 0, \phi_3(0) = 0$ and since

$$\begin{cases} \frac{\partial u}{\partial \tau} = \frac{d\phi_1}{d\tau} x^2 + \frac{d\phi_2}{d\tau} x + \frac{d\phi_3}{d\tau} \\ \frac{\partial u}{\partial x} = 2\phi_1 x + \phi_2 \\ \frac{\partial^2 u}{\partial x^2} = 2\phi_1 \end{cases}$$

then we can get the system of ODE as follows

$$\begin{cases} \frac{d\phi_1}{d\tau} + (\phi_1)^2 = 0\\ \frac{d\phi_2}{d\tau} + \phi_1\phi_2 = 0\\ \frac{d\phi_3}{d\tau} - \phi_1 + \frac{1}{4}(\phi_2)^2 = 0 \end{cases}$$

with $\phi_1(0) = 1$, $\phi_2(0) = 0$, $\phi_3(0) = 0$. By calculation, we have $\phi_1(\tau) = (\tau + 1)^{-1}$, $\phi_2(\tau) = 0$ and $\phi_3(\tau) = \ln(\tau + 1)$, then

$$u(\tau, x) = \frac{1}{\tau + 1}x^2 + \ln(\tau + 1),$$

so we can get $u(T,0) = \ln(T+1)$. Since v(t,x) = u(T-t,x), then we have

$$v(t,x) = \frac{1}{T-t+1}x^2 + \ln(T-t+1), (t,x) \in [0,T] \times \mathbb{R}.$$

So $v(t,x) \in C^{1,2}([0,T] \times \mathbb{R})$. Since $\frac{1}{T-t+1} \leq 1$ and $\ln(T-t+1) \leq \ln(T+1)$ for all $t \in [0,T]$, then we know there exists a constant C such that $v(t,x) \leq C(1+|x|^2)$. And v(t,x) is the solution of HJB equation with $a(t,x) = \frac{-x}{T-t+1}$, by the verification theorem, we know that v(t,x) is the solution of the control problem. Thus we have $V = \ln(T+1)$, which means

$$\inf_{a(\boldsymbol{\cdot})\in\mathcal{A}}\mathbb{E}\Big[\int_0^t a^2(s)\,ds + X_T^2\Big] = \ln(T+1).$$