Examen de fin d'études secondaires 2014

Section: B

Branche: Mathématiques-2

Numéro d'ordre du candidat

Exercice 1: (11(5+5+1)+11(4+2+2+3)=22 points)

- a) Soit g la fonction définie par : $g(x) = -2 \ln \left| \frac{x-1}{x-2} \right| + \frac{2x-1}{(x-1)(x-2)}$
 - 1) Déterminez le domaine de g et les limites aux bords du domaine.
 - 2) Déterminez la fonction dérivée et étudiez les variations de g. Dressez le tableau de variation.
 - 3) Déduisez-en le signe de la fonction g.
- b) Soit f la fonction définie par $f(x) = (1-2x) \cdot \ln \left| \frac{x-1}{x-2} \right|$ et soit C_f sa courbe représentative.
 - 1) Déterminez le domaine de f, les limites aux bords du domaine et les asymptotes à C_f .
 - 2) Déterminez la fonction dérivée de f.
 - 3) Utilisez les résultats de a) pour déterminer les variations de f et la concavité de C_f . Dressez le tableau de variation.
 - 4) Tracez C_f dans un repère orthonormé.

Exercice 2: (6+3+3+6=18 points)

a) Résolvez les inéquations suivantes :

1)
$$8^{x+1} - 13 \cdot 2^{x+2} + 13 \cdot 4^{\frac{3-1}{2}x} > 60 \cdot 2^{-3x}$$

2)
$$\ln(e-\ln(1-x)) > 1$$

- b) Calculez la limite suivante : $\lim_{x \to +\infty} \left(1 + \ln \frac{x+1}{x-1} \right)^{\left(x^2\right)}$
- c) Déterminez, suivant les valeurs du paramètre m ($m \in \mathbb{R}$), le nombre de solutions de l'équation suivante : $(m-1)e^{2x} + me^x 2 = 0$

Epreuve écrite

Examen de fin d'études secondaires 2014

Section: B

Branche: Mathématiques-2

Numéro d'ordre du candidat

Exercice 3: (4 + 10 = 14 points)

a) A l'aide d'un changement de variable adapté, calculez : $\int_0^{\pi} \frac{3}{1-\sin x} dx$

b) Soient f et g les fonctions définies par $f(x) = e^{-x} \cos^2 x$ et $g(x) = e^{-x} \sin^2 x$

2) Déduisez-en $\int f(x)dx$ et $\int g(x)dx$

Exercice 4: (6 points)

On donne la fonction f définie par $f(x) = \frac{\ln(x+2)}{(x+2)^2}$. C_f est sa représentation graphique dans un repère orthonormé d'unité 2 cm

Pour t>-1, calculez en cm² l'aire A(t) de la surface comprise entre C_f , l'axe (Ox) et la droite d'équation x=t.

Déterminez $\lim_{t\to +\infty} A(t)$.