AMENDMENTS TO THE SPECIFICATION

Please **AMEND** page 1, lines 4-7 in the specification, as follows:

This application claims the benefit of U.S. Provisional Application Nos. 60/491,258 filed July 31,2003, 60/493,767 filed August 11, 2003, 60/496,908 filed August 22, 2003, and 60/501,832 filed September 11, 2003, and of International Application PCT/US04/02064, filed January 28, 2004, which are hereby incorporated by reference in their entirety.

Please REPLACE Table 1, pages 20-25 in the specification, as follows:

TABLE 1
THE OPEN READING FRAMES OF VACCINIA VIRUS

	Transla		Si	.ze		
Gene ^a	Start	Stopb	aa	W C	Characteristics ^d	References
C23L*	5008	4277	244	26.4	Nonessential; B29R Acidic ^e (4.2)	Perkus, et al. (1990b)
C22L*	6113	5748	122	13.6	Nonessential; B28R Hydrophobic N-terminus	Perkus, et al. (1990b)
C21L*	6815			13.4	Nonessential; B27R	Perkus, et al. (1990b)
C20L*	7132		103	12.5	Nonessential; B26R Basic (9.0)	Perkus, et al. (1990b)
C19L*	7856		259	30.5	Nonessential; B25R Hydrophobic N-terminus	Perkus, et al. (1990b)
C18L*	8693		150	17.5	Nonessential; B24R Acidic (4.8)	Perkus, et al. (1990b)
C17L*	9947		386	44.9	Nonessential; B23R	Perkus, et al. (1990b)
C16L*	10539		181	21.0	Nonessential; B22R	Perkus, et al. (1990b)
C15L*	11153	10881	91	10.5	Nonessential; B21R	Perkus, et al. (1990b)
C14L	. 12212	11967	82	9.3	Nonessential Basic (9.2)	Perkus, et al. (1990b)
C13L	12510	12316	65	7.4	Nonessential Acidic (4.0)	Perkus, et al. (1990b)
C12L	13733	12675	353	40.4	Serine Protease Inhibitor Nonessential Acidic (4.8)	Kotwal and Moss (1988b) Perkus, et al. (1990b)
C11R	14178	14603	142	15.8	Growth Factor	Blomquist, et al. (1984); Brown, et al. (1985); Reisner (1985)
		•			Nonessential	Buller, et al. (1988); Perkus, et al. (1990b)
		,			EGF-like type A domain Hydrophobic C-terminus	· ·
C10L	15754	14762	331	38.5	Nonessential Acidic (4.5)	Perkus, et al. (1990b)
C9L	18136	16235	634	74.7	Nonessential	Perkus, et al. (1990b); Kotwal and Moss (1988b)
C8L	18733	18182	184	21.6	Nonessential	Kotwal and Moss (1988b); Perkus, et al. (1990b)
					Acidic (4.4)	101100) 60 61. (13300)

C7L	19257	18808	150	18.0	Nonessential	Kotwal and Moss (1988b); Perkus, et al. (1990a,b)
CSL	19939	19487	151	17.4	Host range function Nonessential	Perkus, et al. (1990a) Kotwal and Moss (1988b); Perkus, et al. (1990b)
C5L	20680	20069	204	24.5	Acidic (4.8) Nonessential	Kotwal and Moss (1988b); Perkus, et al. (1990b)
C4L	21693	20746	316	37.2	Acidic (4.8)) Nonessential	Kotwal and Moss (1988b);
C3L	22551	21763	262	28.6	Nonessential	Perkus, et al. (1990b)
0013	77437	21/03	203	20.0	MONESSENCIAL	Kotwal and Moss (1988a,b); Perkus, et al. (1990b)
	•				C4B binding protein homolog; virokine	Votual and Warm (2000a)
C2L	24156	22621	512	59.2	Nonessential	Kotwal and Moss (1988a) Kotwal and Moss (1988b); Perkus, et al. (1990b)
			•		Hydrophobic N-terminus	(====,
CIL	24900	24229	224	26.4	Nonessential	Kotwal and Moss (1988b); Perkus, et al. (1990b)
					Basic (9.0)	, , , , , , , , , , , , , , , , , , , ,

Reprinted from *Virology*, Vol. 179, S. J. Goebel, G. P. Johnson, M. E. Perkus, S. W. Davis, J. P. Winslow and E. Paoletti, "The Complete DNA Sequence of Vaccinia Virus", pgs. 247-266 (1990), with permission from Elsevier.

TABLE 1-Continued

	Transla		Si	ze		
Gene ^a	Start	Stopb	 	M _r	Characteristics	References
N1L	25240	24890	117	14.0	Nonessential	Kotwal and Moss (1988b);
						Perkus, et al. (1990b)
					Virokine	Kotwal and Moss (1988a)
	05005	05260	400		Acidic (4.2)	m-1 7 7 44 (1000 1)
N2L	25886	25362	175	20.8	Nonessential	Kotwal and Moss (1988a,b);
						Perkus, et al. (1990b)
M1L	27346	25931	472	54.2	Nonessential	Perkus, et al. (1990b)
11.2.					Homology to KlL	Perkus, et al. (1990a)
M2L	27986	27327	220	25.1	Nonessential	Perkus, et al. (1990b)
					Hydrophobic N-terminus	•
K1L	28975	28124	284	32.6	Host range function	Gillard, et al. (1986);
					•	Perkus, et al. (1989)
					Nonessential	Perkus, et al. (1990b)
K2L	30313	29207	369	42.3	Serine protease inhibitor	Rourgnell, at al. (1988)
KZU	20020	27201	505	72.0	Nonessential	Perkus, et al. (1990b)
					Basic (9.3)	(2000)
K3L	30629	30366	88	10.5	Nonessential	Perkus, et al. (1990b)
					Basic (9.3)	
					Translation initiation fa	
K4L	31955	30684	424	48.9		Boursnell, et al. (1988)
	20400	20222		45.0	Nonessential	Perkus, et al. (1990b)
K5L	32497	32090	136	15.2	Nonessential	Perkus, et al. (1990b)
K6L	32764	32522	81	9.1	Basic (10.2) Nonessential	Perkus, et al. (1990b)
K7R	32903			17.5		Perkus, et al. (1990b)
K/K	52700	33347	7.10	7/•0	Acidic (4.4)	102300, 00 021 (123300)
					Hydrophobic C-terminus	
F1L	34097	33420	716	26.4	Nonessential	Perkus, et al. (1990b)
S TT	3403/	33420	220	40.4	Acidic (4.4)	101700\ er al. (13300)
					Hydrophobic C-terminus	

F1L	34097	33420	226	26.4	Nonessential Acidic (4.4) Hydrophobic C-terminus	Perkus, et al. (1990b)
F2L	34552	34112	147	16.3	Retroviral protease Nonessential dUTPase	Slabaugh and Roseman (1989) Perkus, et al. (1990b)
F3L	36018	34579	480	55.7	Nonessential	Perkus, et al. (1990b)
F4L	36988	36032	319	37.0	Ribonucleotide reductase (small subunit)	-
					Nonessential Acidic (4.6)	Perkus, et al. (1990b)
F5L	37985	37023	321	36.5	Multiply hydrophobic	
F6L	38239	38018	74	8.6	Acidic (4.1)	
F7L		38258			- (Lys-Asn)	
F8L	38878	38684	65.	7.8	Basic (9.9)	
F9L	39576	38941	212	23.8	Hydrophobic C-terminus	
F10L	40882	39566	439	52.2	Protein kinase 2nd signatu	ure
F11L	41969	40908	354	39.7	-	
F12L	43919	42015	635	73.2	•	
F13L	45079	43964	372	41.8	Envelope antigen	Hirt, et al. (1986)
F14L	45318.	45100	73	8.3	Acidic (2.9)	
		45595	159	18.6		
		46078		26.6		
F17R	46833	47135	101	11.3		
E1L	48574	47138	479	55.6	-	
E2L	50784			85.9	•	
E3L	51483				Acidic (4.9)	
E4L	52318	51542		29.8	Acidic (4.9)	
·· •					Transcription factor	•

TABLE 1-Continued

Gene ^a	<u>Transl</u> Start	ation Stopb	<u>Si</u> aa	ze Mr	Characteristics	References
E5R	52395	53387	331	39.1	(ts: C19??) ^f Basic (9.8)	Condit, et al. (1983)
E6R	53527	55227		66.7	-	•
E7R E8R	55314	55811 56757		19.5		
E9L		56770		31.9 117.0	Basic (9.3) DNA Polymerase ts: C42, NG26;	Earl, et al., 1986
					PAAr, Aphidicolin	Traktman, et al. (1989b)
E10R	59819	60103	95	10.8	DNA polymerase family B s	ignature
E11L	60490	60104		14.9	-	
Oll	62477	60480	666	77.6	Leucine Zipper Motif	
O2L	62851	62528	108	12.4	Glutaredoxin	
IlL	63935	63000	312	35.8	-	•
12L	64163	63945	73	8.4	Hydrophobic C-terminus Acidic (3.9)	
I3L		64167	269	30.0	-	
I4L	67371	65059	771	87.0	Ribonucleotide reductase (large subunit) Nonessential	Schmitt and Stunnenberg (1988) Tengelsen, et al. (1988) Perkus, et al. (unpublished) Child, et al., (1990)
					Divalent Fe-S ferredoxin binding region signature	, , ,
I5L	67637	67401	79		Basic (9.9)	
I6L	68804	67659	382	43.4	Basic (9.2)	
17L 18R	70068 70074	68800 72101		49.0 77.6	- ATP/GTP binding motif A	
G1L G2R	73883 74209	72111 74868		67.9 25.7	-	

G3L G4L G5R G6R G7L G8R G9R	76723 78300 78331	73883 74844 76519 77217 77188 79110 80152	111 1 124 1 434 4 165 1 371 4 260 2 340 3	4.0 9.9 8.9 1.9 9.9	Hydrophobic N-terminus Acidic (4.8) Acidic (4.8) Hydrophobic C-terminus	
L1R L2R L3L L4R L5R	80940 82245 82270	80905 81200 81196 83022 83418	250 2 87 1 350 4 251 2 128 1	0.2 0.6 8.5	Hydrophobic near C-termin Multiply hydrophobic Structural protein, VP8 Basic (10.0)	Yang, et al. (1988)
J1R J2R	83378 83855	83836 84385	153 1 177 2		Thymidine kinase Nonessential ATP/GTP binding motif A	Weir and Moss (1983); Hruby et al. (1983) Mackett, et al. (1982)
J3R J4R	84454 85370	85452 85924	333 1 185 2		Basic (10.0) RNA Polymerase subunit ts: C7, C20	Broyles and Moss (1986) Hooda-Dhingra, et al. (1989); Thompson, et al. (1989)
J5L J6R	86403 86510	86005 90367	133 1 1286 14		Hydrophobic C-terminus RNA Polymerase subunit ts: E8, E13, E72 C51, C53, C65	Broyles and Moss (1986) Ensinger (1987) Hooda-Dhingra, et al., (1989); Thompson, et

TABLE 1—Continued

Gene ^a	Transla			ze		
	Start	Stopb	aa	M _C	Characteristics	References
			<u> </u>	,		
H1L	90882	90370	171	19.7	Basic (9.6)	
H2R	90896	91462		21.5	Hydrophobic N-terminus	
H3L	92442			37.5	Multiply hydrophobic	
H4L	94830			93.6	-	
H5R	95016	95624		22.3	-	
H6R	95628			36.7	Basic (10.0)	
					DNA topoisomerase	Shuman and Moss (1987)
H7R	96609	97046	146	16.9	-	,
D1R	97093	99624	844	96.7	mRNA capping enzyme (small subunit)	Morgan, et al. (1984)
D2L	100026	99589	146	16.9	ts: E52, E94	Seto, et al. (1987)
		100729		28.0	ts: C5, C35	Seto, et al. (1987)
D4R		101385		25.0	-	5660) CE WI. (1507)
D5R		103774		90.0	ts: C17, C24, E69	Seto, et al. (1987)
NCU	707.774	100/14	, 03	2010	ATP/GTP binding motif A	5000) 00 ul. (1707)
D6R	103818	105728	637	73.8	Early transcription	Broyles and Fesler (1990)
DOK	102010	100110	007	7310	factor subunit	Broyles and reside (1990)
					ts: C46, E93	Seto, et al. (1987)
					Hydrophobic N-terminus	55507 55 42. (250.)
D7R	105758	106240	161	17.9	RNA polymerase subunit	Ahn, et al. (1990)
DIR	103/50	700740	101	4.16.5	ts: C21, E45	Seto, et al. (1987)
					Acidic (4.5)	00007 00 022, (2307)
D8L	107120.	106209	304	35.3	Carbonic anhydrase	Niles, et al. (1986)
מטע	101110.	100107	301	5515	Transmembrane	Niles and Seto (1988)
					Cell surface binding	Maa, et al (1990)
					Multiply hydrophobic	11111
					Basic (9.1)	·.
D9R	107162	107800	213	25.0	mare (ser)	
D10R		108543		28.9	_	

D11L	110442 108550	631 72.4	NTPase	Rodriguez, et al. (1986); Broyles and Moss (1987)
			ts: C36, C50, E17 Basic (9.0)	Seto, et al. (1987)
D12L	111340 110480	287 33.4	mRNA capping enzyme (small subunit)	Niles, et al. (1989)
D13L	113026 111374	551 61.9	ts: C33, C43, E101 Rifampicin resistance	Seto, et al. (1987) Tartaglia and Paoletti (1985); Baldick and Moss (1987)
1			Acidic (5.0)	
A1L	113502 113053		-	
A2L	114197 113526		-	·
A3L	116372 114441		Major core protein P4b	Rosel and Moss (1985)
A4L	117270 116428	3 281 30.8	Acidic (4.6)	
A5R	117308 117799	164 19.0	Acidic (4.2)	
A6L	118917 117802	372 43.1	-	
A7L	121073 118944	710 82.3	Early transcription factor subunit	Gershon and Moss (1990)
A8R	121127 121990	288 33.6	-	
A9L	122285 121989	99 11.1	•	
Alol.	124961 122289	891 102.3	Major core protein P4a	Van Meir and Wittek (1988)
Allr	124976 125929	318 36.1	Hydrophobic C-terminus Acidic (4.7)	•
A12L	126512 125937	7 192 20.5	Basic (10.1)	
A13L	126748 126539	70 7.7	Basic (9.7)	
A14L	127128 126859	90 10.0	-	
A15L	127580-127299	94 11.0		
A16L	128700 127567	378 43.6	Hydrophobic C-terminus	
A17L	129314 128706	203 23.0	Hydrophobic center	
			Acidic (4.1)	
A18R	129329 13080	7 493 56.7	Basic (9.3)	

TABLE 1—Continued

Gene ^a	Transl Start	ation Stopb	Si aa	ze Mr	Characteristics	References
		·				
A19L	131024	130794	77	8.3	•	
A20R	131377	132654	426	49.2	-	
A21L	131378	131028	117	13.6	Hydrophobic N-terminus	·
A22R	132620	133147			Basic (9.9)	
A23R	133170			44.6	m	
A24R	134315	137806	1164	133.4	RNA polymerase subunit; ts: C27, C29, C32,	Hooda-Dhingra, et al. (1990)
					C47, C62 Leucine Zipper Pattern	Hooda-Dhingra, et al, (1990)
A25L	138011	137817	65	7.5	A-type inclusion protein (cowpox virus) Acidic (3.3)	Funahashi, et al. (1988);
A26L	138948	137983	322	37.3		Funahashi, et al. (1988);
A27L	139330	139001	110	12.6	Fusion protein	Rodriguez & Esteban (1987)
A28L	139771	139334	146	16.3	.	(2007)
A29L	140689	139775		35.4		
A30L	140885	140655	77	8.7	Basic (9.9)	
A31R	141045	141416	124	14.2	Basic (9.0)	
					Ribonucleoprotein RNA-bin	ding region signature
A32L	142288	141389	300	34.4	Basic (9.2) ATP/GTP Binding motif A	
A33R	142316	142870	185	20.5		
A34R	142897	143400	168	19.5	Basic (10.1)	
A35R	143447	143974	176	20.0	Acidic (4.0)	
A36R	144044	144706	221	25.1	Acidic (4.4)	
A37R	144773	145561	263	29.9		
A38L	146678	145848	277	31.6	Multiply hydrophobic	
A39R	146695	147903	403	45.7		

A40R	147932 148435	168 19.3	Hydrophobic N-terminus	
A41L	149155 148499	219 25.1	Acidic (4.8)	
A42R	149334 149732	133 15.0	Basic (9.9)	
			Profilin	
A43R	149773 150354	194 22,6	•	
A44L	151733 150696	346.39.4	3B-Hydroxy-5-ene steroid dehydrogenase	
A45R	151780 152154	125 13.8	Superoxide dismutase	
A46R	152147 152788	214 24.7	=	
A47L	153690 152959	244 28,3	Basic (10.0)	
	153789 154400	204 23.2	Thymidylate kinase Smith, et al. (1	989a1
			ATP/GTP binding motif A	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			Acidic (5.0)	
A49R	154451 154936	162 18.8		
A50R	154972 156627	552 63.4	DNA Ligase Colinas, et al.	(1990):
			Smith, et al. (1	
			and Smith (1989)	
_			Nonessential Colinas, et al.	
A51R	156683 157684	334 37.7		•
A52R	157757 158326	190 22.7	Hydrophilic N-terminus	<u>.</u>
A53R	158635 158943	103 12.0	•	noublished)
A54L	158743 158474		Basic (10.4)	refund was and
		.,	Nonessential Davis, et al. (u	noublished)
A55R	159442 161133	564 64.7	Nonessential Davis, et al. (u	-
A56R	161186 162130		J	
			Hemagglutinin Shida (1986)	,,,,
			Hydrophobic C-terminus	
			Acidic (3.9)	
A57R	162278 162730	151 17.4	-	

TABLE 1—Continued

Gene ^a	Translation Start Stop	Size	e M C	Characteristics	References
B1R	162884 1637	33 300 3	34.3	ts: C2, C3, C25 Protein Kinase Basic (9.1)	Traktman, et al. (1989a) Howard and Smith (1989)
B2R	163876 1645	32 219 2	24.6	-	
B3R	164571 1649			Acidic (4.7)	
B4R	165603 1672			-	
B5R	167383 1683		35.1	Multiply hydrophobic	
_			–	Acidic (4.4)	
				Complement control protein	ns ·
				C3L homologue	
B6R	168432 1689	50 173 2	20.1	-	•
B7R	168991 1695	36 182 2	21.3	Hydrophobic N-terminus	
B8R	169594 1704	09 272 3	31.2	Hydrophobic N-terminus	
B9R	170499 1707	29 77	8.8	-	
B10R	170695 1711		18.9	•	
B11R	171267 1715	30 88	9.9	Acidic (3.6) M(DT) DVTNV	
B12R	171600 1724	48 283 3	33.4	Protein Kinase	Howard and Smith (1989)
B13R	172562 1729	09 116 3	12.8	Hemorrhage-inducing	Pickup, et al. (1986)
		١		Serine Protease Inhibitor	Kotwal and Moss (1989);
		•		Nonessential	Perkus, et al. (1990b)
				Acidic (4.6)	
B14R	172887 1735	52 222 3	24.9	Hemorrhage-inducing	Pickup, et al. (1986)
				Serine Protease Inhibitor	, -
				Nonessential	Perkus, et al. (1990b)
				Acidic (4.3)	
B15R	173632 1740	78 149	17.4	Nonessential	Perkus, et al. (1990b)
	101000 10		20 -	Acidic (4.5)	March 1 (1000)
B16R	174272 1751	41 290	32.5	Nonessential	Perkus, et al. (1990b)
				Kinase-related	
2127	197010 1971	01 140	10 5	transforming protein	Desire of 1 (1000b)
B17L	176212 1751		39.5	Nonessential	Perkus, et al. (1990b)
B18R	1/0349 1/80	/U 5/4	08.1	Nonessential	Perkus, et al. (1990b)

B19R	178145	179203	353	40.9	Hydrophobic N-terminus Nonessential	Perkus,	et al.	(1990b)
B2OR	179300	179680	127	15.5	Nonessential Acidic (4.1)	Perkus,		•
B21R*	180585	180857	91	10.5	Nonessential; C15L	Perkus,	et al.	(1990b)
B22R*	181199	181741	181	21.0	Nonessential; C16L	Perkus,	et al.	(1990b)
B23R*	181791	182948	386	44.9	Nonessential; C17L .	Perkus,	et al.	(1990b)
B24R*	183045	183494	150	17.5	Nonessential; C18L	Perkus,	et al.	(1990b)
					Acidic (4.8)			
B25R*	183882	184658	259	30.5	Hydrophobic N-terminus			
					Nonessential; C19L	Perkus,	et al.	(1990b)
B26R*	184606	184914	103	12.5	Nonessential; C20L	Perkus,	et al.	(1990b)
				1	Basic (9.0)			
B27R*	184923	185261	113	13.4	Nonessential; C21L	Perkus,	et al.	(1990b)
B28R*	185625	185990	122	13.6	Nonessential; C22L	Perkus,	et al.	(1990b)
					Hydrophobic N-terminus			
B29R*	186730	187461	244	26.4	Nonessential; C23L	Perkus,	et al.	(1990b)
					Acidic (4.2)			

 $^{^{\}it a}$ Open reading frames enumerated as described in text.

^b Translation stop does not incude the three bases of termination codon.

 $^{^{}c}\mathit{M}_{r}$ values calculated for the nascent, unprocessed polypeptide chain are presented as kDa.

Functions or activities indicated in bold type are known functions of vaccinia virus. Those indicated in *italics* have been identified in this study on the basis of similarity to existing proteins. All others are possible functions previously described by other investigators.

^a Acidic proteins: p/ < 5.0; basic proteins: p/ > 9.0. p/ presented within parentheses.

Temperature-sensitive mutants indicated by ts. Those first isolated by Condit et al. (1983) are prefaced with C; i begin with E. Mutant C19, while not localized to a particular open reading frame, appears to map in the vincinity of I

^{*} Open reading frames repeated in both left and right termini of genome.

Please REPLACE References, pages 26-28, in the specification as follows:

REFERENCES

- AHN, B.-Y., JONES, E. V., and Moss, B. (1990). Identification of the vaccinia virus gene encoding an 18-kilodalton subunit of RNA polymerase and demonstration of a 5' poly(A) leader on its early transcript. J. Virol. 64, 3019–3024.
- BAIROCH, A. (1989). "PROSITE: A Dictionary of Protein Sites and Patterns," 2nd ed. University of Geneva, Geneva.
- BALDICK, C. J., Jr., and Moss, B. (1987). Resistance of vaccinia virus to rifampicin conferred by a single nucleotide substitution near the predicted NH₂ terminus of a gene encoding an M, 62,000 polypeptide. Virology 156, 138–145.
- BAROUDY, B. M., and Moss, B. (1982). Sequence homologies of diverse length tandem repetitions near ends of vaccinia virus genome suggest unequal crossing over. *Nucleic Acids Res.* 10, 5673–5679.
- BAROUDY, B. M., VENKATESAN, S., and Moss, B. (1982). Incompletely base-paired flip-flop terminal loops link the two DNA strands of the vaccinia virus genome into one uninterrupted polynucleotide chain. *Cell* 28, 315–324.
- BAUSE, E. (1983). Structural requirements of N-glycosylation of proteins: Studies with proline peptides as conformational probes. *Biochem. J.* 209, 331–336.
- BLOMQUIST, M. C., HUNT, L. T., and BARKER, W. C. (1984). Vaccinia virus 19-kilodalton protein: Relationship to several mammalian proteins, including two growth factors. *Proc. Natl. Acad. Sci. USA* 81, 7363–7367.
- BOURSNELL, M. E. G., FOULDS, I. J., CAMPBELL, J. I., and BINNS, M. M. (1988). Nonessential genes in the vaccinia virus *Hindili* K fragment: A gene related to serine protease inhibitors and a gene related to the 37K vaccinia virus major envelope antigen. *J. Gen. Virol.* 69, 2995–3003.
- Brown, J. P., Twardzik, D. R., Marquardt, H., and Todaro, G. J. (1985). Vaccinia virus encodes a polypeptide homologous to epidermal growth factor and transforming growth factor. *Nature (London)* 313, 491–492.
- BROYLES, S. S., and FESLER, B. S. (1990). Vaccinia virus gene encoding a component of the viral early transcription factor. *J. Virol.* 64, 1523–1529.
- BROYLES, S. S., and Moss, B. (1986). Homology between RNA polymerases of poxviruses, prokaryotes, and eukaryotes: Nucleotide sequence and transcriptional analysis of vaccinia virus genes encoding 147-kDa and 22-kDa subunits. *Proc. Natl. Acad. Sci. USA* 83, 3141–3145.
- BROYLES, S. S., and Moss, B. (1987). Identification of the vaccinia virus gene encoding nucleoside triphosphate phosphohydrolase I, a DNA-dependent ATPase. J. Virol. 61, 1738–1742.
- Buller, M. L., Chakrabarti, S., Cooper, J. A., Twardzik, D. R., and Moss, B. (1988). Deletion of the vaccinia virus growth factor gene reduces virus virulence. *J. Virol.* 62, 866–874.
- CHILD, S. J., PALUMBO, G. J., BULLER, R. M. L., and HRUBY, D. E. (1990). Insertional inactivation of the large subunit of ribonucleotide reductase encoded by vaccinia virus is associated with reduced virulence in vivo. Virology 174, 625-629.
- COLINAS, R. J., GOEBEL, S. J., DAVIS, S. W., JOHNSON, G. P., NORTON, E. K., and PAOLETTI, E. (1990). A DNA ligase gene in the Copenhagen strain of vaccinia virus is nonessential for viral replication and recombination. *Virology* 179, 267–275.

- ONDIT, R. C., MOTYCZKA, A., and SPIZZ, G. (1983). Isolation, characterization and physical mapping of temperature-sensitive mutants of vaccinia virus. *Virology* 128, 429–443.
- DAVISON, A. J., and Moss, B. (1989). Structure of vaccinia virus late promoters. J. Mol. Biol. 210, 771–784.
- DEFILIPPES, F. M. (1982). Restriction enzyme mapping of vaccinia virus DNA. J. Virol. 43, 136–149.
- EARL, P. L., JONES, E. V., and Moss, B. (1986). Homology between DNA polymerase of poxviruses, herpesviruses, and adenoviruses: Nucleotide sequence of the vaccinia virus DNA polymerase gene. *Proc. Natl. Acad. Sci. USA* 83, 3659–3663.
- EARL, P. L., and Moss, B. (1987). Vaccinia virus. *In* "Genetic Maps" (S. J. O'Brien, Ed.), Vol. 4, pp. 116-123. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
- EISENBERG, D., SCHWARZ, E., KOMAROMY, M., and WALL, R. (1984). Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 179, 125-142.
- ENSINGER, M. J. (1982). Isolation and genetic characterization of temperature-sensitive mutants of vaccinia virus WR. J. Virol. 43, 778–790.
- Ensinger, M. J. (1987). Phenotypic characterization of temperaturesensitive mutants of vaccinia virus with mutations in a 135,000-M_r subunit of the virion-associated DNA-dependent RNA polymerase. J. Virol. 61, 1842–1850.
- ERNST, H., DUNCAN, R. F., and HERSHEY, J. W. B. (1987). Cloning and sequencing of complementary DNAs encoding the α-subunit of translational initiation factor eIF-2: Characterization of the protein and its messenger RNA. J. Biol. Chem. 262, 1206–1212.
- FRANKE, C. A., REYNOLDS, P. L., and HRUBY, D. E. (1989). Fatty acid acylation of vaccinia virus proteins. J. Virol. 63, 4285-4291.
- FUNAHASHI, S., SATO, T., and SHIDA, H. (1988). Cloning and characterization of the gene encoding the major protein of the A-type inclusion body of cowpox virus. J. Gen. Virol. 69, 35–47.
- GARON, C. F., BARBOSA, E., and Moss, B. (1978). Visualization of an inverted terminal repetition in vaccinia virus DNA. *Proc. Natl. Acad. Sci. USA* 75, 4863–4867.
- GERSHON, P. D., and Moss, B. (1990). Early transcription factor subunits are encoded by vaccinia virus late genes. *Proc. Natl. Acad.* Sci. USA 87, 4401–4405.
- GILLARD, S., SPEHNER, D., DRILLIEN, R., and KIRN, A. (1986). Localization and sequence of a vaccinia virus gene required for multiplication in human cells. *Proc. Natl. Acad. Sci. USA* 83, 5573–5577.
- Guo, P., Goebel, S., Davis, S., Perkus, M. E., Languet, B., Des-METTRE, P., Allen, G., and Paoletti, E. (1989). Expression in recombinant vaccinia virus of the equine herpesvirus 1 gene encoding glycoprotein gp13 and protection of immunized animals. J. Virol. 63, 4189–4198.
- HANGGI, M., BANNWARTH, W., and STUNNENBERG, H. G. (1986). Conserved TAAAT motif in vaccinia virus late promoters: Overlapping TATA box and site of transcription initiation. *EMBO J.* 5, 1071–1076.
- HATTORI, M., and SAKAKI, Y. (1986). Dideoxy sequencing method using denatured plasmid templates. *Anal. Biochem.* 152, 232–237.
- HIRASHIMA, S., HIRAI, H., NAKANISHI, Y., and NATORI, S. (1988). Molecular cloning and characterization of cDNA for eukaryotic transcription factor S-II. *J. Biol. Chem.* 263, 3858–3863.
- HIRT, P., HILLER, G., and WITTEK, R. (1986). Localization and fine structure of a vaccinia virus gene encoding an envelope antigen. J. Virol. 58, 757–764.
- Hooda-Dhingra, U., Thompson, C. L., and Condit, R. C. (1989). Detailed phenotypic characterization of five temperature-sensitive mutants in the 22- and 147-kilodalton subunits of vaccinia virus DNA-dependent RNA polymerase. *J. Virol.* 63, 714-729.
- HOODA-DHINGRA, U., PATEL, D. D., PICKU (1990). Fine structure mapping and p

- temperature-sensitive mutations in the second largest subunit of vaccinia virus DNA-dependent RNA polymerase. *Virology* **174**, 60–69.
- Howard, S. T., and Smith, G. L. (1989). Two early vaccinia virus genes encode polypeptides related to protein kinases. *J. Gen Virol.* 70, 3187–3201.
- HRUBY, D. E., MAKI, R. A., MILLER, D. B., and BALL, L. A. (1983). Fine structure analysis and nucleotide sequence of the vaccinia virus thymidine kinase gene. *Proc. Natl. Acad. Sci. USA* 80, 3411–3415.
- KERR, S. M., and SMITH, G. L. (1989). Vaccinia virus encodes a polypeptide with DNA ligase activity. *Nucleic Acids Res.* 17, 9039–9050.
- KLEIN, P., KANEHISA, M., and DELISI, C. (1985). The detection and classification of membrane-spanning proteins. *Biochem. Biophys. Acta* 815, 468–476.
- KLINTROT, I.-M., HOOG, J.-O., JORNVALL, H., HOLMGREN, A., and LUTH-MAN, M. (1984). The primary structure of calf thymus glutaredoxin: Homology with the corresponding *Escherichia coli* protein but elongation at both ends and with an additional half-cystine/cysteine pair. *Eur. J. Biochem.* 144, 417–423.
- Kotwal, G. J., and Moss, B. (1988a). Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. *Nature (London)* 335, 176–178.
- Kotwal, G. J., and Moss, B. (1988b). Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant. *Virology* 167, 524–537.
- Kotwal, G. J., and Moss, B. (1989). Vaccinia virus encodes two proteins that are structurally related to members of the plasma serine protease inhibitor superfamily. J. Virol. 63, 600–606.
- Kozak, M. (1986). Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. *Cell* 44, 283–292.
- Kwiatkowski, D. J., and Bruns, G. A. P. (1988). Human profilin: Molecular cloning, sequence comparison, and chromosomal analysis. *J. Biol. Chem.* 263, 5910–5915.
- KYTE, J., and DOOLITTLE, R. F. (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132.
- LIPMAN, D. J., and PEARSON, W. R. (1985). Rapid and sensitive protein similarity searches. *Science* 227, 1435–1441.
- LUNDBERG, L. G., THORESSON, H.-O., KARLSTROM, O. H., and NYMAN, P. O. (1983). Nucleotide sequence of the structural gene for dUT-Pase of *Escherichia coli* K-12. *EMBO J.* 2, 967–971.
- Luu, T. V., Lachance, Y., Labrie, C., Leblanc, G., Thomas, J. L., Strickler, R. C., and Labrie, F. (1989). Full length cDNA structure and deduced amino acid sequence of human 3β-hydroxy-5-ene steroid dehydrogenase. *Mol. Endocrinol.* 3, 1310–1312.
- Lux, S. E., John, K. M., and Bennett, V. (1990). Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. *Nature (London)* 334, 36–42.
- MAA, J.-S., RODRIGUEZ, J. F., and ESTEBAN, M. (1990). Structural and functional characterization of a cell surface binding protein of vaccinia virus. *J. Biol. Chem.* **265**, 1569–1577.
- MACKETT, M., and ARCHARD, L. C. (1979). Conservation and variation in *Orthopoxvirus* genome structure. *J. Gen. Virol.* 45, 683–701.
- MACKETT, M., SMITH, G. L., and Moss, B. (1982). Vaccinia virus: A selectable eukaryotic cloning and expression vector. *Proc. Natl. Acad. Sci. USA* 79, 7415–7419.
- MAXAM, A. M., and GILBERT, W. (1980). Sequencing end-labeled DNA with base-specific chemical cleavages. *In* "Methods in Enzymology" (L. Grossman and K. Moldave, Eds.), Vol. 65, pp. 499–560. Academic Press, New York.
- MERCHLINSKY, M., and Moss, B. (1989). Nucleotide sequence re-

- quired for resolution of the concatemer junction of vaccinia virus DNA. J. Virol. 63, 4354-4361.
- MORGAN, J. R., COHEN, L. K., and ROBERTS, B. E. (1984). Identification of the DNA sequence encoding the large subunit of the MRNA-capping enzyme of vaccinia virus. J. Virol. 52, 206-214.
- Moss, B. (1985). Replication of poxviruses. *In* "Virology" (B. Fields, R. M. Chanock, and B. Roizman, Eds.), pp. 685–703. Raven Press, New York.
- Moss, B. (1990). Poxviridae and their replication. *In* "Virology" (B. N. Fields *et al.*, Eds.), 2nd ed., pp. 2079–2111. Raven Press, New York.
- Moss, B., WINTERS, E., and COOPER, N. (1981). Instability and reiteration of DNA sequences within the vaccinia virus genome. *Proc. Natl. Acad. Sci. USA* 78, 1614–1618.
- NILES, E. G., CONDIT, R. C., CARO, P., DAVIDSON, K., MATUSICK, L., and SETO, J. (1986). Nucleotide sequence and genetic map of the 16-kb vaccinia virus *Hind*III D fragment. *Virology* 153, 96-112.
- NILES, E. G., LEE-CHEN, G.-J., SHUMAN, S., MOSS, B., and BROYLES, S. S. (1989). Vaccinia virus gene D12L encodes the small subunit of the viral mRNA capping enzyme. *Virology* 172, 513–522.
- NILES, E. G., and SETO, J. (1988). Vaccinia virus gene D8 encodes a virion transmembrane protein. J. Virol. 62, 3772-3778.
- NYSTROM, L.-E., LINDBERG, U., KENDRICK-JONES, J., and JAKES, R. (1979). The amino acid sequence of profilin from calf spleen. *FEBS Lett.* 101, 161–165.
- PANICALI, D., and PAOLETTI, E. (1982). Construction of poxviruses as cloning vectors: Insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. *Proc. Natl. Acad. Sci. USA* 79, 4927–4931.
- PATEL, D. D., RAY, C. A., DRUCKER, R. P., and PICKUP, D. J. (1988). A poxvirus-derived vector that directs high levels of expression of cloned genes in mammalian cells. *Proc. Natl. Acad. Sci. USA* 85, 9431–9435.
- PERKUS, M. E., GOEBEL, S. J., DAVIS, S. W., JOHNSON, G. P., LIMBACH, K., NORTON, E. K., and PAOLETTI, E. (1990a). Vaccinia virus host range genes. *Virology* 179, 276–286.
- PERKUS, M. E., GOEBEL, S. J., DAVIS, S. W., JOHNSON, G. P., NORTON, E. K., and PAOLETTI, E. (1990b). Deletion of fifty five open reading frames from the termini of vaccinia virus. *Virology*, in press.
- PERKUS, M. E., LIMBACH, K., and PAOLETTI, E. (1989). Cloning and expression of foreign genes in vaccinia virus, using a host range selection system. *J. Virol.* 63, 3829–3836.
- PICKUP, D. J., INK, B. S., Hu, W., RAY, C. A., and JOKLIK, W. K. (1986). Hemorrhage in lesions caused by cowpox virus is induced by a viral protein that is related to plasma protein inhibitors of serine proteases. *Proc. Natl. Acad. Sci. USA* 83, 7698–7702.
- PLUCIENNICZAK, A., SCHROEDER, E., ZETTLENEISSEL, G., and STRECK, R. E. (1985). Nucleotide sequence of a cluster of early and late genes in a conserved segment of the vaccinia virus genome. *Nucleic Acids Res.* 13, 985–998.
- Rao, J. K. M., and Argos, P. (1986). A conformational preference parameter to predict helices in integral membrane proteins. *Biochem. Biophys. Acta* 869, 197–214.
- REISNER, A. H. (1985). Similarity between the vaccinia virus 19K early protein and epidermal growth factor. *Nature (London)* 313, 801–803.
- RODRIGUEZ, J. F., and ESTEBAN, M. (1987). Mapping and nucleotide sequence of the vaccinia virus gene that encodes a 14-kilodalton fusion protein. J. Virol. 61, 3550–3554.
- RODRIGUEZ, J. F., KAHN, J. S., and ESTEBAN, M. (1986). Molecular cloning, encoding sequence, and expression of vaccinia virus nucleic acid-dependent nucleoside triphosphatase gene *Proc. Natl. Acad. Sci. USA* 83, 9566–9570.
- ROSELLI FARL P.I. WEIR L.P. and MO.

- TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the *HindIII* H genomic fragment. *J. Virol.* 60, 436–449.
- ROSEL, J. L., and Moss, 8. (1985). Transcriptional and translational mapping and nucleotide sequence analysis of a vaccinia virus gene encoding the precursor of the major core polypeptide 4b. J. Virol. 56, 830–838.
- SCHMITT, J. F. C., and STUNNENBERG, H. G. (1988). Sequence and transcriptional analysis of the vaccinia virus *Hindlli I fragment*. *J. Virol.* 62, 1889–1897.
- SETO, J., CELENZA, L. M., CONDIT, R. C., and NILES, E. G. (1987). Genetic map of the vaccinia virus *Hind*III D fragment. *Virology* 160, 110–119.
- SHIDA, H. (1986). Nucleotide sequence of the vaccinia virus hemagglutinin gene. *Virology* 150, 451–462.
- SHIDA, H., TOCHIKURA, T., SATO, T., KONNO, T., HIRAYOSHI, K., SEKI, M., ITO, Y., HATANAKA, M., HINUMA, Y., SUGIMOTO, M., TAKAHASHI-NISHI-MAKI, F., MARUYAMA, T., MIKI, K., SUZUKI, K., MORITA, M., SASHIYAMA, H., and HAYAMI, M. (1987). Effect of the recombinant vaccinia viruses that express HTLV-I envelope gene on HTLV-I infection. *EMBO J.* 6, 3379–3384.
- SHUMAN, S., and Moss, B. (1987). Identification of a vaccinia virus gene encoding a type i¹DNA topoisomerase. *Proc. Natl. Acad. Sci. USA* 84, 7478–7482.
- SLABAUGH, M. B., and ROSEMAN, N. A. (1989). Retroviral protease-like gene in the vaccinia virus genome. *Proc. Natl. Acad. Sci. USA* 86, 4152–4155.
- SLABAUGH, M. B., ROSEMAN, N., DAVIS, R., and MATTHEWS, C. (1988). Vaccinia virus-encoded ribonucleotide reductase: Sequence conservation of the gene for the small subunit and its amplification in hydroxyurea-resistant mutants. J. Virol. 62, 519–527.
- SMITH, G. L., CHAN, Y. S., and KERR, S. M. (1989a). Transcriptional mapping and nucleotide sequence of a vaccinia virus gene encoding a polypeptide with extensive homology to DNA ligases. *Nucleic Acids Res.* 17, 9051–9062.
- SMITH, G. L., DECARLOS, A., and CHAN, Y. S. (1989b). Vaccinia virus encodes a thymidylate kinase gene: Sequence and transcriptional mapping. *Nucleic Acids Res.* 17, 7581–7590.
- SMITH, G. L., HOWARD, S. T., and CHAN, Y. S. (1989c). Vaccinia virus encodes a family of genes with homology to serine protease inhibitors. *J. Gen. Virol.* 70, 2333–2343.
- SPEHNER, D., GILLARD, S., DRILLIEN, R., and KIRN, A. (1988). A cowpox virus gene required for multiplication in chinese hamster ovary cells. *J. Virol.* 62, 1297–1304.
- SRI WIDADA, J., FERRAZ, C., and LIAUTARD, J. P. (1989). Total coding sequence of profilin cDNA from *Mus musculus* macrophage. *Nucleic Acids Res.* 17, 2855.
- TABOR, S., and RICHARDSON, C. C. (1987). DNA sequence analysis.

- with a modified bacteriophage T7 polymerase. *Proc. Natl. Acad. Sci. USA* 84, 4767–4771.
- TAMIN, A., VILLARREAL, E. C., WEINRICH, S. L., and HRUBY, D. E. (1988). Nucleotide sequence and molecular genetic analysis of the vaccinia virus *HindIII* N/M region encoding the genes responsible for resistance to alpha-amanitin. *Virology* 165, 141–150.
- Tartaglia, J., and Paoletti, E. (1985). Physical mapping and DNA sequence analysis of the rifampicin resistance locus in vaccinia virus. *Virology* 147, 394–404.
- TENGELSEN, L. A., SLABAUGH, M. B., BIBLER, J. K., and HRUBY, D. E. (1988). Nucleotide sequence and molecular genetic analysis of the large subunit of ribonucleotide reductase encoded by vaccinia virus. *Virology* 164, 121–131.
- THOMPSON, C. L., HOODA-DHINGRA, U., and CONDIT, R. C. (1989). Fine structure mapping of five temperature-sensitive mutants in the 22-and 147-kilodalton subunits of vaccinia virus DNA-dependent RNA polymerase. *J. Virol.* 63, 705–713.
- TRAKTMAN, P., ANDERSON, M. K., and REMPEL, R. E. (1989a). Vaccinia virus encodes an essential gene with strong homology to protein kinases. *J. Biol. Chem.* 264, 21,458–21.461.
- TRAKTMAN, P., KELVIN, M., and PACHECO, S. (1989b). Molecular genetic analysis of vaccinia virus DNA polymerase mutants. *J. Virol.* 63, 841–846.
- VAN MEIR, E., and WITTEK, R. (1988). Fine structure of the vaccinia virus gene encoding the precursor of the major core protein 4a. *Arch. Virol.* 102, 19–27.
- VENKATESAN, S., BAROUDY, B. M., and Moss, B. (1981). Distinctive nucleotide sequences adjacent to multiple initiation and termination sites of an early vaccinia virus gene. *Cell* 125, 805–813.
- VENKATESAN, S., GERSHOWITZ, A., and Moss, B. (1982). Complete nucleotide sequences of two adjacent early vaccinia virus genes located within the terminal repetition. *J. Virol.* 44, 637–646.
- VON HEIJNE, G. (1986). A new method for predicting signal sequence cleavage sites. *Nucleic Acids Res.* 14, 4683–4690.
- WEINRICH, S. L., and HRUBY, D. E. (1986). A tandemly-oriented late gene cluster within the vaccinia virus genome. *Nucleic Acids Res.* 14, 3003–3016.
- Weir, J. P., and Moss, B. (1983). Nucleotide sequence of the vaccinia virus thymidine kinase gene and the nature of spontaneous frameshift mutations. *J. Virol.* 46, 530–537.
- WITTEK, R., MULLER, H. K., MENNA, A., and WYLER, R. (1978). Length heterogeneity in the DNA of vaccinia virus is eliminated on cloning the virus. *FEBS Lett.* **90**, 41–46.
- YANG, W.-P., KAO, S.-Y., and BAUER, W. R. (1988). Biosynthesis and post-translational cleavage of vaccinia virus structural protein VP8. *Virology* 167, 585–590.
- YUEN, L., and Moss, B. (1987). Oligonucleotide sequence signalling transcriptional termination of vaccinia virus early genes. *Proc. Natl. Acad. Sci. USA* 84, 6417–6421.

Please **REPLACE** Table 2, pages 29-45 in the specification, as follows:

 $\label{eq:TABLE 2} TABLE\ 2$ Features and Homologies of Open Reading Frames of the Vaccinia MVA Strain

ORF'	START	ÅΛ ^b	kDac	name / (putative)	BLAST4			references
laft L	STOP	unele:		function / homologies	expect	AA ld	(%)	
left to	erminal	region		261				
		136	14.9	35k major secr. protein				(Patel et al., 1990)
193Rh	6412	244		chemokine receptor (f')		11114		(Graham et al., 1997)
C23L		244		VAC (C23L/B29R)	6.0e-57	41/42	97	(Goebel et al., 1990)
		253		VAR-II G3R	8.9e-51	46/49	93	(Shchelkunov et al., 1995)
		246		CPX ORF B	5.6e-49	40/42	95	(Hu et al., 1994)
		258		SFV T1 protein	2.5e-20	23/42	54	(Upton et al., 1987)
		260		Myxoma virus T1/35kDa	1.5e-14	21/42	50	(Graham et al., 1997)
002L/	7784	176	19.7	secr. TNF receptor (f)				(Upton et al., 1991a)
192Rh	7254	355		CPX crmB	5.le-71	76/83	91	(Hu et al., 1994)
		348		VAR-BSH G2R	1.0e-66	73/83	87	(Shchelkunov et al., 1995)
		326		Myxoma virus T2	4.9e-30	21/37	56	(Upton et al., 1991a)
		325		Rabbit fibroma Virus T2	1.8e-28	17/36	47	(Upton et al., 1987)
		202		CPX C4L	8.7e-15	30/51	58	(Safronov et al., 1996)
		346		'HS TNF receptor protein	1.9e-08	14/26	53	(Heller et al., 1990)
C19L		259		VAC (C19L/B25R)	0.00026	16/19	84	(Goebel et al., 1990)
		277		human CD40L receptor	0.0015	11/24	45	(Stamencovic et al., 1989)
				30 matches to TNF receptors	< 0.39			(and 1909)
				and surface proteins				
003L/	3780	102	12.1	45k ankk-like protein				(Called a Lange
191Rh	8472	102	15.1	(f1)				(Goebel et al., 1990)
C17L	10472	386		VAC C17L/B23R	1.3e-39	62/63	98	(Casha) and 1000
004L/	9558	233	26.9	45k ank-like protein	1.36-39	02/03	98	(Goebel et al., 1990)
190R ^b	8857	A	20.7	(f2)				(Goebel et al., 1990)
C17L	0037	386		VAC (CI7L/B23R)	6.2e-159	110/110	100	(Casha) as at 1000
DIL		91		VAR-BSH	9.1e-31	46/49	93	(Goebel et al., 1990)
J.0	'	669		CPX host range	1.1e-13	22/50	44	(Shchelkunov et al., 1995)
		452		VAR-I D6L (BSH:D8L)	1.7e-11	21/50	42	(Spehner et al., 1988)
		574		VAR-I BIOR (BSH: BIGR)	1.7e-11	22/73	30	(Shehelkunov et al., 1995)
		574		VAC B18R (WR: B17R)	8.6e-05	22/73	30	(Shchelkunov et al., 1995)
		634		VAC C9L	0.00011	11/24	45	(Goebel et al., 1990)
i		585		VAR-I GIR	0.00011	22/74	43 29	(Kotwal and Moss, 1988a)
		516		orf virus	0.00013	15/49	30	(Shchelkunov et al., 1995)
		153		VAR-1 D7L (BSH:DIOL)	0.0088	12/28	42	(Sullivan et al., 1995b) (Shchelkunov et al., 1995)
<u> </u>	-1	130		THE DIE CONTINUE	0.017	14140	74	(Sucherkundy et al., 1995)
005R	10203	140	15.5	Growth factor (EGF				(Twardzik et al., 1985)
	10625			receptor binding)				(Stroobant et al., 1985)
CIIR		142		VAC	2.9e-82	99/104	95	(Goebel et al., 1990)
D2R		140		VAR-1 (BSH:D4R)	3.6e-74	106/140		(Shchelkunov et al., 1995)
		138		CPX D5R	3.4e-95	101/114		(Safronov et al., 1996)
		169		human epiregulin	2.2e-14	29/78	37	D30783
				100 matches to growth factor	<0.10			
				like sequences				

006L C10L D5L	11758	326 331 331 330 316 316 315 82 418	37.9	37.9k protein VAC CPX D6L VAR-BSH (I: D3L) VAR-I D11L (BSH:D14L) VAC C4L CPX D16L Ectromelia 42K protein FPV BamH1 ORF1	1.7e-235 7.7e-235 3.6e-233 1.7e-94 1.8e-92 2.3e-92 1.2e-50 3.0e-11	264/268 264/268 169/171 34/68 30/68 31/68 78/82 13/41	98 98 97 44 54 45 95	(Venkatesan et al., 1982) (Goebel et al., 1990) (Safronov et al., 1996) (Shchelkunov et al., 1995) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Safronov et al., 1996) (Senkevich et al., 1993a) (Tomley et al., 1988)
007R	12263 12538	91 242 184	10.6	28k virulence factor (f) CPX D7R VAC-WR 21.7k protein	1.5e-51 5.3e-51	42/47 41/47	89 87	(Senkevich et al., 1993a) (Safronov et al., 1996)
D4R		242 241		VAR-I (BSH:D6R) Ectromelia 28k secreted virulence factor	3.7e-50 3.7e-50	41/47 41/47	87 87	(Kotwal and Moss, 1988a) (Shchelkunov et al., 1995) (Senkevich et al., 1993a)
008L D7L	13414 13052	120 126 138 124 68	13.7	13.7k protein VAR-BSH (I:D5L) Ectromelia 16k protein CPX D8L 7.8k protein (VAC-WR)	1.9e-83 7.8e-81 3.2e-67 1.3e-34	57/64 58/60 49/60 53/64	89 96 81 82	(Shchelkunov et al., 1995) (Senkevich et al., 1993a) (Safronov et al., 1996) (Kotwal and Moss, 1988a)
009L	13745 13473	90 669 634	10.7	77k CPX hr protein (f1) CPX host range gene VAC C9L	2.7e-46 1.7e-05	43/52 9/33	82 27	(Spehner et al., 1988) (Safronov et al., 1996) (Goebel et al., 1990)
010L	14186 13758	142 669 634	16.1	77k CPX hr protein (f2) CPX host range gene VAC C9L	2.2e-91 9.2e-21	133/142 26/63		(Spehner et al., 1988) (Safronov et al., 1996) (Goebel et al., 1990)
D6L		452 150 439 558		VAR-I (BSH: D8L) VAC C18L/B24R AT ankyrin repeat protein VAR-I B6R (BSH:B5R) 30 matches with ankyrin repeat containing proteins	4.5e-13 1.3e-11 9.5e-07 4.0e-05 2.7e-05 to 0.016	27/29 19/52 23/59 28/113	93 36 38 24	(Shchelkunov et al., 1995) (Goebel et al., 1990) (Zhang et al., 1992) (Shchelkunov et al., 1995)
011L	14682 14275	135 669	15.8	77k CPX hr protein (f3) CPX host range gene	7.6e-80	54/64	84	(Spehner et al., 1988) . (Safronov et al., 1996)
D6L 012L	15183	452 90	10.3	VAR-1 (BSH: D8L) 77k CPX hr protein (f4)	9.2c-78	52/64	81	(Shchelkunov et al., 1995) (Spehner et al., 1988)

Reprinted from *Virology*, Vol. 244, G. Antoine, F. Scheiflinger, F. Dorner, and F. G. Falkner, "The Complete Genomic Sequence of the Modified Vaccinia Ankara Strain: Comparison with Other Orthopoxviruses", pgs. 365-396, (1998), with permission from Elsevier.

ORF ²	START	AA^b	kDac	name / (putative)	BLAST	BLAST		references
left	STOP terminal	regio	n i	function / homologles*	expect	AA id	(%)	
			Ц 1	MAD I (DOLL BOLL)	24 66	20104	4.1	
D6L	14911	452		VAR-I (BSH: D8L)	2.2e-52	80/85	94	(Shchelkunov et al., 1995)
İ	1	669		CPX host range gene	8.1e-51	77/85	90	(Spehner et al., 1988)
]		153		VAR-1 D7L (BSH: DIOL)	2.9e-17.	19/45	42	(Shchelkunov et al., 1995)
ł		634		VAC C9L	1.3e-13	19/45	42	(Goebel et al., 1990)
		1161		C. botulinum NTNH protein	0.00019	6/12	50	(Hulson et al., 1996)
	1	202		Capripox	0.00058	15/58	25	(Cao et al., 1995)
		895		UDP glucose dehydrogenase	0.00051	6/19	31	(Bult et al., 1996)
		516		orf virus ank-like	0.0064	16/49	32	(Sullivan et al., 1995b)
		673		rabbit fibroma 77.2k protein	0.0072	12/30	40	(Massung et al., 1992)
013L	15420	71	8.5	77k CPX hr protein (f5)				(Spehner et al., 1988)
	15205	669		CPX host range gene	5.2e-44	68/69	98	(Safronov et al., 1996)
D6L	- }	452		VAR (BSH; D8L)	7.9e-42	64/67	95	(Shchelkunov et al., 1995)
	İ	673		rabbit fibroma 77.2k protein	0.0052	8/26	30	(Massung et al., 1992)
[386		VAC C17L/B23R	0.018	14/33	42	(Goebel et al., 1990)
		202		Capripox	0.023	10/19	52	(Sullivan et al., 1995b)
		574		VAC B18R (WR: B17R)	0.71	12/28	42	(Goebel et al., 1990)
		574		VAR BI9R (BSH:BI6R)	0.71	12/28	42	(Shchelkunov et al., 1995)
014L	16205	109	13.1	75k auk-like gene (f1)				(Various) and Mana 1000 A
C9L	15876	634		VAC	3.9e-73	109/109	100	(Kotwal and Moss, 1988a)
10,2	113070	614		CPX DIIL	1.6c-70	105/109		(Goebel et al., 1990)
D9L		91		VAR (I: D6.5L)	1.3e-70 1.2e-52	78/91	85	(Safronov et al., 1996)
שלע	1	437		CPX DIL	3.7e-19	28/67		(Shchelkunov et al., 1995)
		673		rabbit fibroma 77.2K protein	0.021	5/16	41	(Safronov et al., 1996)
015L	16786	96	11.2		0.021	2/10	31	(Massung et al., 1992)
C9L	16496	634	11.2	75k ank-like gene (f2) VAC	1 A . 52	00100	100	(Kotwal and Moss, 1988a)
CYL	10490	614		CPX DIIL	4.0e-53	80/80	100	(Goebel et al., 1990)
	l				3.9e-25	48/80	60	(Safronov et al., 1996)
	- [437		CPX DIL	9.6e-12	14/36	38	(Safronov et al., 1996)
	1	172		VAR-Garcia 1966 B11L	0.0001	17/17	100	(Massung et al., 1996)
		141		integrase (simian foamy v.)	0.033	10/24	41	(Schweizer and Neumann, 1995)
	lanen.	669		CPX host range gene	0.043	9/17	52	(Spehner et al., 1988)
016L	17759	297	35.0	75k ank-like gene (f3)				(Kotwal and Moss, 1988a)
C9L	16866	634		VAC	3.4e-208	291/294		(Goebel et al., 1990)
		614		CPX DIIL	1.4e-130		71	(Sufronov et al., 1996)
D7L	}	153		VAR-1 (BSH:D10L)	8.4e-68	84/109	77	(Shchelkunov et al., 1995)
		669		CPX host range gene	4.5e-17	24/61	39	(Spehner et al., 1988)
		452		CPX D9L	2,2e-16	23/61	37	(Safronov et al., 1996)
D8L	Ì	668		VAR-BSH (I:D6L)	3.3e-16	21/61	34	(Shchelkunov et al., 1995)
		386		VAC C17L/B23R	2.9e-08	11/24	45	(Goebel et al., 1990)
}		833		CPX D3L	0.0085	13/58	22	(Safronov et al., 1996)
		574		VAC BISR (WR:BI7R)	0.012	13/40	32	(Goebel et al., 1990)
	1	202		Capripox virus	0.084	11/29	37	(Sullivan et al., 1995b)
		574		VAR-I BI9R (BSH:BI6R)	0.090	13/40	32	(Shchelkunov et al., 1995)

017L C8L	18335 17802	177 184 182 182 795	20.8	20.8k protein VAC CPX D12L VAC B7R VAC H4L (RAP94)	1.2e-125 5.0e-118 8.3e-06 0.60	125/129 119/126 16/67 12/45		(Kotwal and Moss, 1988a) (Goebel et al., 1990) (Safronov et al., 1996) (Goebel et al., 1990) (Goebel et al., 1990)
018L C7L DIIL	18859 184 07	150 150 150 185 197 170 158 128	18.0	host range protein VAC VAR-BSH (I:D8L) Swinepox virus ORF SwF8a Capripox virus ORF CF8a CPX D4L Myxoma virus ORF MF8 VAR-BSH D3L (I:D1.5L)	1.6e-106 4.2e-106 3.4e-35 1.4e-31 3.5e-17 5.6e-13 5.4e-06	150/150 149/150 31/82 29/87 19/60 16/43 18/60		(Perkus et al., 1991) (Kotwal and Moss, 1988a) (Shchelkunov et al., 1995) (Schnitzlein and Tripathy, 1991) (Gershon and Black, 1989a) (Safronov et al., 1996) (Jackson and Bults, 1992) (Shchelkunov et al., 1995)
019L C6L D9L	19541 19068	157 151 156 156 159 151 181 149	18.2	18.2k protein VAC VAR (BSH: D12L) CPX D14L Capripox virus ORF T3a Rabbit fibroma virus T3Aa VAC C16L/B22R VAR C4R VAC-WR K7R	7.6e-104 1.6e-99 1.3e-96 4.4e-07 0.0047 0.2 0.29 0.40	151/151 145/150 141/150 24/76 16/46 12/46 8/13 8/13	96	(Kotwal and Moss, 1988a) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Safronov et al., 1996) (Gershon and Black, 1989a) (Upton et al., 1987) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Kotwal and Moss, 1988a)
020L <i>N1L</i>	20025 19684	113	13.2	14k virulence factor, secreted protein (f) VAC	2.6c-60	92/102	90	(Kotwal and Moss, 1988a) (Kotwal and Moss, 1988b) (Goebel et al., 1990)
PIL		117 117 107		CPX P1L VAR-BSH, virokine Rabbit fibroma virus	7.3e-58 6.6e-56 0.015	85/102 88/102 10/17	83 86 58	(Shchelkunov et al., 1995) (Safronov et al., 1996) (Massung et al., 1992)
021L N2L	20656 20144	170 175 175	20.3	alpha-amanitin sensitive protein CPX P2L VAC	3.0c-118	138/142		(Tamin et al., 1991) (Kotwal and Moss, 1988a) (Safronov et al., 1996)
P2L		177		VAR	6.1e-118 9.7e-115	137/142 135/142		(Goebel et al., 1990) (Shchelkunov et al., 1995)
022L KIL	20981 20685	98 284 284	11.0	33k host range gene (f) VAC CPX MIL	1.8c-56 2.3c-56	86/88 86/88	97 97	(Gillard et al., 1986) (Altenburger et al., 1989) (Safronov et al., 1996)
CIL		66 65		VAR human NOTCH 2	2.0e-39 0.00036	63/66 17/41	95 41	(Shchelkunov et al., 1995) (Katsanis et al., 1996)

ORF ^a	START	AAh	kDac	name / (putative)	BLAST ⁴	BLAST	HSS	references
	STOP			function / homologies?	expect	AA id	(%)	i oto i checo
left to	erminal	reglo	n:				1 /5 /	
023L	22296	369	42.3	serpin SPI-3, cell-cell			1 W	(Boursnell et al., 1988)
	21187			fusion mutation				(Altenburger et al., 1989)
K2L		369		VAC	1.2e-258	365/369	98	(Goebel et al., 1990)]
C2L		373		CPX M2L	1.2c-256	331/337	, ,	(Safronov et al., 1996)
		373		VAR-BSH	9.9e-249	321/337	95	(Shchelkunov et al., 1995)
		373		Ectromelia virus H14-B	6.5e-244	312/337		U67964
		386		HS plasminogen activator inhibitor l	1.1c-35	30/68	44	(Loskutoff et al., 1987)
		58		CPX SPI 3 protein	8.2e-33	57/58	98	gi:1168082
		369		Myxoma virus MAP1 gene	7.3e-32	33/131	25	(Upton et al., 1990a)
		397		mouse protease nexin	1.5e-29	31/67	46	(Vassalli et al., 1993)
		397		humane glia derived neurite- promoting factor	8.7e-27	30/65	46	A03911
		320		Swinepox SPI like protein	3.6e-21	20/70	28	(Massung et al., 1993)
		417		a-1 antitrypsin, human	2.2e-20	26/66	39	(Ciliberto et al., 1985)
		383		Corticosteroid-binding protein (rabbit)	9.0e-20			(Seralini et al., 1989)
		390		squamous cell carcinoma antigen	1.90-17			(Schneider et al., 1995)
024L	22612	88	10.5	IFN resistance, eIF-2a				(Beattie et al., 1991)
	22346	0.0		homolog				(Davies et al., 1992)
W21		88		CPX M3L	2.6e-61	88/88	100	(Safronov et al., 1996)
K3L		88		VAC	1.4e-60	87/88	98	(Goebel et al., 1990)
C3L		88 86		VAR-I	1.0e-52	73/88	82	(Shchelkunov et al., 1995)
		OU		SPV C8 protein	4.1e-22	20/44	45	(Massung et al., 1993)
				translation initiation factor 2 family	1.2e-08/ 0.45			
025L	23938 22664	424	48.9	phosphollpase D-like protein				(Cao et al., 1997)
K4L		424		VAC	1.5e-306	423/424	99	(Goebel et al., 1990)
		424		CPX M4L	2.1e-303	416/424		(Safronov et al., 1996)
		437		human HU-K4	2.8e-135	53/95	55	U60644
		372		D. discoideum	2.5e-91	28/47	59	(Giorda et al., 1989)
		516		C. elegans	6.6e-89	31/61	50	gi: 2435624
		2327		C. elegans	2.8e-52	36/60	60	gi: 2291241
		635		C. elegans	1.1e-24	19/53	35	(Wilson et al., 1994)
		377		FPV major envelope protein	2.9e-23	19/61	31	(Calvert et al., 1992)
		371		Myxoma virus env protein	3.6e-22	18/51	35	U43549
		378		Orf virus env protein B2L	1.2e-21	21/71	29	(Sullivan et al., 1994)
MC021L		388			3.2e-21	20/63	31	(Senkevich et al., 1997)
Cl7L		372		VAR-BSH	4.6e-19	15/52	28	(Shchelkunov et al., 1995)
		372		VAC FI3L	4.98-17	15/52	28	(Goebel et al., 1990)

026L	24478 23966	170	19.1	lysophospholipase-like protein (f1)				(Upton & Buller, unpub.)
		276		CPX M5L	2.6e-110	161/170	94	(Safronov et al., 1996)
		277		Ectromelia virus H14-E	2.7c-109	160/170	94	X94355 U67964
K5L	1	136		VAC	5.5a-69	107/108	99	(Goebel et al., 1990)
		134		VAC-WR	8.3e-63	98/101	97	(Boursnell et al., 1988)
	}	313		HS lysophospholipase	3.3e-35	35/105	33	U67963
		323		homolog	1.2e-13	30/94	31	297050
				poss. oxidoreductase M.				
	1	324		tuberculosum	3.1c-5	13/58	22	U95973
				Lysophospholipase isolog				
	1	313		A. thaliana	0.047	13/30	43	U32747
	}			H. influenza probable				
	1			lysophospholipase L2				
027L	24694 24500	64	7.0	lysophospholipase-like protein (f2)				(Upton & Buller, unpub.)
K6L		81		VAC	5.3e-42	63/63	100	(Boursnell et al., 1988)
	}	276		CPX M5L	2.4e-36	57/58	98	(Safronov et al., 1996)
		277		Ectromelia virus H14-E	2,4c-36		98	U67964
		313		HS lyophospholipase homolog		34/53	64	U67963
		323		hyp. oxidoreductase M.	9.9c-14	22/54	40	Z97050
	1	40.4		tuberculosis				
		530		dihydrotestosterone/androsta nediol UDP-glucuronosyl-	7.0e-05	6/17	35	A48633
	j			transferase				

central	conse	rved	region:		
028R	24864	149	17.5	17.5k protein	(Goebel et al., 1990)
K7R	25313	149		VAC	6.1e-105 149/149 100 (Goebel et al., 1990)
		161		CPX M6R	1.6e-101 144/149 96 (Safronov et al., 1996)
C4R		[49		VAR	4.9e-101 143/149 100 (Shchelkunov et al., 1995)
		236		Swinepox (sc76)	0.00017 19/49 95 (Massung et al., 1993)
029L	26046	222	25.9	25.9k protein	(Roseman and Slabaugh, 199
FIL	25378	226		VAC	2.7e-158 208/211 98 (Goebel et al., 1990)
		238		CPX GIL	7.0e-148 166/189 87 (Safronov et al., 1996)
CSL		251		VAR-I	6.6e-147 184/200 92 (Shchelkunov et al., 1995)
030L	26501 26058	147	16.2	dUTPase	(Roseman and Slabaugh, 199 (Roseman <i>et al.</i> , 1996)
F2L		147		VAC	2.9e-102 147/147 100 (Goebel et al., 1990)
		147		CPX G2L	8.2e-100 144/147 97 (Safronov et al., 1996)
C6L		147		VAR	1.1e-97 142/147 96 (Shchelkunov et al., 1995)
		164		human dUTPase	4.1e-61 49/69 71 (Ladner et al., 1996)

ORF ²	START STOP	AΛb	kDa ^c	name / (putative) function / homologles ^e	BLAST ^d expect	BLAST ^c AA id	HSS ^r (%)	references
left t	erminal	regio	u:				\ 75.7	
		142		Swinepox virus	8.0c-56	43/70	61	(Massung et al., -1993)
		159		orf virus	1.5e-49	45/69	65	(Mercer et al., 1989)
		178		avlan adenovirus	6.6e-49	40/70	57	(Akopian et al., 1992)
		1124		FIV pol polyprotein	1.5e-26	49/117	41	(Talbott et al., 1989)
				dUTPase pyrophosphatase family	>4.2e-06			, , , , , , , , , , , , , , , , , , , ,
031L	27955 26525	476	55.3	kelch-like protein				(Senkevich et al., 1993b) (Roseman and Slabaugh, 1990)
F3L		480		VAC	0.0	292/294	QQ	(Goebel et al., 1990)
		485		CPX G3L	0.0	287/293		(Safronov et al., 1996)
C7L		179		VAR-I	1.9e-124			(Shchelkunov et al., 1995)
		500		Swinepox virus protein C13	4.4e-46	39/133	29	(Massung et al., 1993)
		564		VAC A55R	2,8e-21	17/51	33,	(Goebel et al., 1990)
		689	•	kelch protein D.melanogaster		21/65	32	(Xue and Cooley, 1993)
		512		CPX DISL	1.4e-16	15/33	45	(Safronov et al., 1996)
		512		VAC C2L	1.6e-16	15/33	45	(Goebel et al., 1990)
		625		T27E9.4 C. elegans	3.7e-14	15/59	25	Z82059
		624		human KIAA0132 protein	1.9e-13	13/60	21	D50922 o.k
		817		R09A8.3 (C. elegans)	1.1c-12	17/45	37	(Wilson et al., 1994)
		611		C47D12.7 (C. elegans)	2.4e-12	22/91	24	(Wilson et al., 1994)
		530		Swinepox virus	3.0e-09	14/58	24	(Massung et al., 1993)
		589		MM ^m actin binding protein	1.9e-09	18/88	20	U65079
		521		CPX C3L	1.2e-08	15/37	40	(Safronov et al., 1996)
		509		Myxoma virus MT-9	2.5e-08	17/58	29	(Upton et al., 1990a)
		202		Murine IAP-promoted placenta (MIPP) expressed	4.3e-08	17/56	30	(Chang-Yeh et al., 1991)
		326	•	protein	3.9e-06	22/80	27	Z99708
		559		A. thaliana hyp. protein	9.0e-6	12/31	38	(Senkevich et al., 1993b)
		916		Ectromelia virus p65	0.00016	13/42	30	(Way et al., 1995)
		172		B-scruin (L. polyphemus) VAR-I JBR (BSH; J6R)	0.018	15/36	41	(Shchelkunov et al., 1995)
032L	28925	319	37.0	ribonucleotide reductase				(Slabaugh et al., 1988)
	27966			(small subunit)				(Roseman and Slabaugh, 1990)
D.41		319		CPX G4L	2.3e-231	317/319		(Safronov et al., 1996)
F4L		319		VAC	3.5e-231	317/319		(Goebel et al., 1990)
C8L		333		VAR-BSH ribonucleotide reductase family	4.1e-228 >2.2e-10	313/319	98	(Shchelkunov et al., 1995)

033L	29250 28957	97	11,1	36.5k major membrane protein precursor (f1)				(Roseman and Slabaugh, 1990)
C9L	20,5,	348		VAR-BSH	1.9e-36	51/53	96	(Chahallennan as al 1006)
	1	323		CPX G5L	2.4e-19	47/77	61	(Shchelkunov et al., 1995)
F5L	1	321		VAC	3.3e-19	42/70		(Safronov et al., 1996)
1.00		1584					60	(Goebel et al., 1990)
		1304		non-receptor tyrosin kinase	0.00038	15/35	42	(Tan and Spudich, 1990)
034L	29875	218	24.0	(Dictyostelium discoideum)				
V34L	1	210	24.8	36.5k major membrane				(Roseman and Slabaugh, 1990)
	29219	200		protein precursor (f2)				
		323		CPX GSL	8.2e-155	215/217		(Safronov et al., 1996)
FSL	}	321		VAC	6.4e-155	215/217		(Goebel et al., 1990)
C9L	_	348		VAR-BSH	6.8c-141	186/210	88	(Shehelkunov et al., 1995)
035L	30129	74	8.6	8.6k protein				(Roseman and Slabaugh, 1990)
F6L	29905	74		VAC .	5.5e-47	74/74	100	(Goebel et al., 1990)
C10L		72		VAR	2.3e-38	62/70	88	(Shchelkunov et al., 1995)
		-		,	2.00-30	02110	UU	(oucheigning at at., 1993)
036L	30387	80	9.4	9.4k protein				(Roseman and Slabaugh, 1990)
CHL	30145	79		VAR	2.9e-44	34/43	79	(Shchelkunov et al., 1995)
F7L		92		VAC	1.9e-43	65/65	100	(Goebel et al., 1990)
				- 4.				(
037L	30731	65	7.9	7.9k protein				(Roseman and Slabaugh, 1990)
F8L	30534	65		VAC	5.1c-43	63/65	96	(Goebel et al., 1990),
C12L		65		VAR-I	3.1e-41	61/65	93	(Shehelkunov et al., 1995)
038L	31429	212	23.8	23.8k proteln				(Roseman and Slabaugh, 1990)
F9L	30791	212		VAC	7.1e-148	212/212	100	(Goebel et al., 1990),
C13L	*****	212		VAR	1.2c-144	207/212		(Chahalkunan at al 1000)
		215		Swinepox virus	8.1e-72	39/93	41	(Shehelkunov et al., 1995)
MC016L		213		MCV subtype 1	2.8e-62	71/152	46	(Massung et al., 1993)
11100100		225		Orf virus	5.1c-39	27/84	32	(Senkevich et al., 1996)
		243		FPV protein FP2				(Mercer et al., 1995)
		243		MCV subtype 1 MC069R	2.8e-17	26/58	44	(Binns et al., 1988)
		250		VAC LIR	7.7e-12	23/58	39	(Senkevich et al., 1996)
		250		VAR MIR	1.1e-07	20/58	34	(Goebel et al., 1990),
		230		AW MIK	i.1e-07	20/58	34	(Shchelkunov et al., 1995)
039L	32735	439	52.1	serine/threonlne protein				(Lin and Broyles, 1994)
	31416			kinase 2				(Wang and Shuman, 1995)
FIOL		439		VAC	0.0	429/439	97	(Goebel et al., 1990).
CI4L		439		VAR-BSH	0.0	424/439		(Shchelkunov et al., 1995)
		440		Swinepox virus	2.2e-233	151/214		(Massung et al., 1993)
MC017L		443		MCV subtype I	2.3e-198	178/282		(Senkevich et al., 1996)
		498		orf virus	2.2c-162	198/366		(Mercer et al., 1995)
040L	33012	84	9.6	30 7k projek (51)				
C15L	32758	354	7.V	39.7k protein (f1) VAR	C 64 27	50164	70	/DL 1 - H
FIIL	32130	354			6.6e-27	50/64	78	(Shehelkunov et al., 1995)
041L	33771	100	11.4	VAC	9.1 c- 27	50/64	78	(Goebel et al., 1990)
IVWLL	133771	100	11.4	39.7k protein (f2)				

ORF ⁴	START STOP		kDa ^c	name / (putative) function / homologies ^e	BLAST ⁴ expect	BLAST ^e AA Id	HSS ^f (%)	references
left te	rminal	region	1:				***	
FIIL CISL	33469	354 354		VAC VAR	3.8e-62 8.8e-58	95/95 90/95	100 94	(Goebel et al., 1990), (Shehelkunov et al., 1995)
042L F12L C16L	35721 33814	635 635 635 352	73.1	73.1k protein VAC VAR-I Myxoma virus	0.0 0.0 3.6c-84	629/635 607/635 28/66		(Goebei et al., 1990), (Shehelkunov et al., 1995) U43549
MC019L		663 640 630		MCV subtype 1 orf virus FPV F12 homolog	4.0e-60 4.8e-39 2.3e-15	29/82 19/61 19/67	35 31 28	(Senkevich et al., 1996) U34774 (Ogawa et al., 1993)
043L	36866 35748	372	41.8	37k major EEV antigen IMCBH sensitive protein palmitylprotein				(Hirt et al., 1986) (Schmutz et al., 1991) (Grosenbach et al., 1997)
F13L C17L		372 372 371 378		VAC VAR-BSH Myxoma virus orf virus	2.1e-268 8.9e-265 2.5e-115 7.6e-108	369/372 364/372 110/200 83/194	97	(Goebel et al., 1990) (Shchelkunov et al., 1995) U43549 (Sullivan et al., 1994)
MC021L		388 377 251 424 424 372 437		MCV subtype 1 FPV major env protein pigeonpox virus CPX M4L. VAC K4L D. discoideum HU-K4 (homo sapiens)	6.1e-98 2.8e-88 1.8e-62 2.1e-18 1.7e-17 1.4e-16	44/113 47/112 47/112 16/52 14/35 28/84 25/94	38 41 41 30 40 33 26	(Senkevich et al., 1996) (Calvert et al., 1992) S27933 (Safronov et al., 1996) (Goebel et al., 1990) (Giorda et al., 1989) U60644
044L <i>F14L</i> C18L	37105 36884	73 73 73	8.3	8.3k protein VAC VAR	2.3e-44 2.1e-35	72/73 57/73	98 78	(Goebel et al., 1990) (Shehelkunov et al., 1995)
045 L F15L C19L MC025L	378533 37377	158 158 161 148 148	18.6	18.6k protein VAC VAR MCV subtype 1 Myxoma virus	2.3e-112 1.4e-107 3.5e-54 5.4e-50	157/158 150/153 52/113 48/112		(Goebel et al., 1990), (Shchelkunov et al., 1995) (Senkevich et al., 1996) U43549
046L F16L C20L MC029L	3855 <i>5</i> 37860	231 231 231 209 230	26.5	26.5k protein VAC VAR Myxoma virus MCV subtype 1	3.3e-159 5.6e-157 8.3e-48 6.9e-45	227/231 222/231 26/58 16/61		(Goebei et al., 1990), (Shcheikunov et al., 1995) U43549 (Senkevich et al., 1996)
047R F17R C21R	38619 38924	101 101 101	11.3	11k DNA binding phosphoprotein VAC VAR	3.0e-69 9.7e-67	100/101 99/101	99 98	(Bertholet et al., 1985) (Kao and Bauer, 1987) (Goebel et al., 1990)
MC030R		102 92 46		MYX MCV subtype 1 orf virus	6.6e-26 1.5e-20 1.3e-06	45/92 33/53 16/29	98 48 62	(Shchelkunov et al., 1995) U43549 (Senkevich et al., 1997) (Mercer et al., 1995)

048L	40360 38921	479	55.6	poly(A) polymerase catalytic subunit				(Gershon et al., 1991)
EIL	207#1	479		VAC	0.0	478/479	99	(Goebel et al., 1990),
EIL		479		VAR-I	0.0	472/479		(Shehelkunov et al., 1995)
MC031L		470		MCV subtype I	1.5e-177			
MCONT		470		ivicy subtype i	1.36-177	114/1/5	UJ	(Senkevich et al., 1997)
049L	42570	737	85.9	85.9k protein				(Ahn et al., 1990a)
E2L	40357	737		VAC	0.0	735/737	99	(Goebel et al., 1990),
E2L		737		VAR-I	0.0	731/737	99	(Shehelkunov et al., 1995)
MC032L		748		MCV subtype I	8.3e-127	59/198	29	(Senkevich et al., 1997)
050L E3L E3L	43269 42697	190 190 192	21.5	dsRNA dependent PK inhibitor, host range VAC VAR-BSH	1.4e-129 8.6e-126	188/190 111/114		(Chang et al., 1992) (Chang et al., 1995b) (Gocbel et al., 1990), (Shchelkunov et al., 1995)
		1175		dsRNA specific ADA (rat)	7.2e-12	22/47	46	(O'Connell et al., 1995)
		1226		dsRNA specific ADA (human)		21/47	44	(Kim et al., 1994)
		551		human protein kinase p68 INF inducible kinase family	3.8e-05 >0.00099	22/42	52	(Meurs et al., 1990)
051L	44103 43324	259	29.8	RNA polymerase subunit				(Ahn et al., 1990a) (Broyles and Pennington, 1990)
E4L		259		VAC	1.6c-182	258/259	99	(Goebel et al., 1990)
E4L		259		VAR-BSH	3.2e-180	255/259	98	(Shchelkunov et al., 1995)
MC034L		444		MCV subtype 1	1.2e-84	107/171	62	(Senkevich et al., 1996)
• • • • • • • • • • • • • • • • • • • •		39		orf virus	6.7c-10	21/39	53	(Mercer et al., 1995)
		243		African swine fever virus	0.00034	17/36	47	(Vydelingum et al., 1993)
				TFIIS family	<0.0096	-1	-,	()
052R	44180	331	39.1	39.1k protein				(Goebel et al., 1990)
ESR	45175	331		VAC	1.2e-235	329/331	99	(Goebel et al., 1990)
E5R		341		VAR	3.1c-223	312/331	94	(Shchelkunov et al., 1995)
		332		Taterapox	7.1e-225	300/314	95	(Douglas and Dumbell, 1996)
		329		Camelpox	1.4e-221	206/220		(Douglas and Dumbell, 1996)
		319		Cowpox	1.5e-202			(Douglas and Dumbell, 1996)
		256		Ectromelia	3.8c-153	218/245		(Douglas and Dumbell, 1996)
MC038R		276		MCV subtype I	8.3c-109	94/152	61	(Senkevich et al., 1997)
053R	45312	567	66.7	66.7k pratein				(Goebel et al., 1990)

ORF"	START STOP	AAh	kDa¢	name / (putative) function / homologies ^e	BLAST ¹ expect	BLAST ^e AA id	HSS ^f (%)	references
left te	rminal	region	1;		22,000	1813 14	(70 }	
E6R MC037R		567 565		VAR MCV subtype)	0.0 7.2e-247	555/567 258/451	97 57	(Shchelkunov et al., 1995) (Senkevich et al., 1997)
054R <i>E7R</i> E7R	47082 47582	166 166 60	19.5	17k myristylprotein VAC VAR-I (BSH: E6.5R)	9.7e-116 2.7e-36	166/166 53/60	100 88	(Martin et al., 1997) (Goebel et al., 1990) (Shchelkunov et al., 1995)
055R E8R E8R MC038R	47695 48516	273 273 273 276	31.9	31.9k protein VAC VAR MCV subtype I	4.5e-195 9.9e-192 8.3e-109	272/273 266/273 94/152	99 99 97	(Earl et al., 1986) (Goebel et al., 1990) (Shchelkunov et al., 1993a), (Senkevich et al., 1997)
056L <i>E9L</i> E9L	51543 48523	1006 1006 1005 1008 988	116.9	DNA polymerase VAC VAR BSH Orf virus FPV	0.0 0.0 0.0 0.0	1005/10 06 598/608 199/388	98 51	(Earl et al., 1986) (Goebel et al., 1990), (Shehelkunov et al., 1995) (Mercer et al., 1996) (Binns et al., 1987)
MC039L		1004 964		MCV subtype I C. blennis poxvirus DNA polymerase family	0.0 2.6e-77 >6.0e-06	179/294 175/297 28/82	58	(Senkevich et al., 1997) (Mustafa and Yuen, 1991)
057R EIOR EIOR MC040R	51575 51862	95 95 95 101	10.9	10.9k protein VAC VAR MCV subtype 1	1.2e-65 3.1e-64 5.2e-44	93/95 90/95 58/95	97 100 94	(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1993a) (Senkevich et al., 1997)
058L EIIL EIIL MC041L	52246 51857	129 129 129 132	14.9	14.9k protein VAC VAR MCV subtype l	3.3e-89 4.2e-87 1.8e-30	129/129 125/129 31/96		(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
059L OIL QIL MC042L	52691 52233	152 666 666 783	17.6	77.6k protein (f1) VAC VAR-BSH MCV subtype l leu zipper, bipartite nuclear targeting sequence	6.9e-101 3.4e-92 1.5e-22	151/152 137/152 39/105	90	(Goebel et al., 1990) (Goebel et al., 1990), (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Goebel et al., 1990)
060L 01L Q1L MC042L	54189 52972	405 666 666 783	47.4	77.6k protein (f2) VAC VAR-I MCV subtype 1	5.8e-277 1.7e-269 2.7e-51	399/400 383/400 38/104		(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)

54555 54229	108 108 108 106	12.4	glutaredoxin 1 VAC VAR human glutaredoxin glutaredoxin family	2.0e-74 4.9e-72 3.2e-31 >9.0e-05	108/108 104/108 49/106		(Ahn and Moss, 1992a) (Johnson et al., 1991) (Goebel et al., 1990) (Shehelkunov et al., 1995) (Fernando et al., 1994)	
55639 54701	312 312 312 310 1451	35.9	35.9k protein VAC VAR-BSH MCV subtype 1 transcription initiation protein (S. cerevisiae)	4.7e-208 4.8e-205 3.8e-110 0.029	310/312 305/312 163/307 10/28	97	(Schmitt and Stunnenberg, (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Hansen et al., 1996)	1988)
55867 55646	73 73 73 72 887	8.5	8.5k protein VAC VAR MCV subtype 1 hypothetical yeast protein	5.5e-50 5.5e-50 3.5e-18 8.1e-05	73/73 73/73 20/33 9/24	100 100 60 37	(Schmitt and Stunnenberg, (Goebel et al., 1990) (Shehelkunov et al., 1995) (Senkevich et al., 1996) S48422	1988)
56677 55868	269 269 269 288 209	30.0	DNA binding phospho- protein (F4L interacting) VAC VAR MCV subtype 1 FPV 13 protein	2.1c-173 2.5c-172 9.6e-66 8.4e-35	267/269 265/269 61/149 23/66		(Schmitt and Stunnenberg, (Davis and Mathews, 1993) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) A48563	1988)
59075 56760	771 771 771	87.8	ribonucleotide reductase (large subunit) VAC VAR ribonucleotide red, family	0.0 0.0 >1.8e-05	77]/77] 76]/77]		(Schmitt and Stunnenberg, (Tengelsen et al., 1988) (Goebel et al., 1990) (Shehelkunov et al., 1995)	1988)
59342 59103	79 79 79 82 81 321	8.8	8.8k protein VAC VAR MCV subtype I FPV 9.1k protein formate dep. nitrit reductase protein (H. influenzae) permease (b. subtilis)	6.3e-49 1.2e-47 2.6e-17 1.4e-12 0.00022	79/79 76/79 27/73 13/38 7/18	100 96 36 34 38	(Schmitt and Stunnenberg, (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Binns et al., 1988) (Fleischmann et al., 1995)	1988)
60509 59361	382 382 382 406	43.5	43.5k protein VAC VAR MCV sublype !	8.6e-268 3.1e-267 2.1e-99	382/382 380/382	100	(Schmitt and Stunnenberg, (Goehel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)	1988)

ORF	START STOP	AA	kDac	name / (putative) function / homologies ^e	BLAST ^d expect	BLAST AA id	HSS ⁽ (%)	references
eft te	rminai	region	1:					
		390		FPV 16 protein	1.4c-86	50/136	36	E48563, P12925
				mitochondrial energy			- •	(Goebel et at., 1990)
				transfer proteins signature				(000000 01 00.1, 1770)
68L	61773	423	49.0	core protein,				(Schmitt and Stunnenberg, 1988)
	60502			topolsomerase II				(Kane and Shuman, 1993)
7L	00000	423		YAC	0.0	420/423	90	(Goebel et al., 1990)
(7L		423		VAR	1.5c-306	419/423		(Shchelkunov et al., 1995)
AC049L		515		MCV subtype 1	1.9e-199	126/207		(Sankariah 1 1000)
れていれるロ		421						(Senkevich et al., 1996)
				FPV 17 protein	8.1e-180	185/340		F48563
		464		Amsacta moorei poxvirus	3.2c-14	14/47	29	(Hall and Moyer, 1991)
69R	61776	676	77.6	NPH-II, NTPase, RNA	•			(Shuman, 1992),
	63809	100		helicase		C= 111= 1		(Koonin and Senkevich, 1992)
8 R		676		VAC	0.0	674/676	99	(Goebel et al., 1990)
K8R		676		VAR	0.0	6651676	98	(Shchelkunov et al., 1995)
4C050R		684		MCV subtype 1	7.6e-227	144/272	52	(Senkevich et al., 1997)
		682		FPV virus I8FPV	4.2e-206	98/178	55	(Binns et al., 1988)
				61 matches mainly to RNA	<0.38			•
				helicase family				
70L	65588	591	68.0	68k protein				(Schmitt and Stunnenberg, 1988)
31L	63813	591		VAC .	0.0	590/591	99	(Goebel et al., 1990)
HIL		591		VAR-I	0.0	582/591		(Shchelkunov et al., 1995)
MC056L		593		MCV subtype 1	1.2e-217	183/361		(Senkevich et al., 1997)
		341		FPV	9.4e-75		44	H48563
)71L	65920	111	12.8	12.8k protein				(Schmitt and Stunnenberg, 1988)
	65585			•				(Meis and Condit, 1991)
<i>33L</i>		111		VAC	7,6e-74	111/111	100	(Goebel et al., 1990)
H3L		111		VAR	2.4e-71	108/111		(Shchelkunov et al., 1995)
AC057L		108		MCV subtype I	0.00012		33	(Senkevich et al., 1997)
				•	0.00012	107.0		
)72R	65914	220	25.8	IBT-dependent protein				(Meis and Condit, 1991)
32R	66576	220		VAC	1.9e-155	220/220	100	(Goebel et al., 1990)
H2R		220		VAR	1.le-151	214/220	97	(Shchelkunov et al., 1995)
MC058R		246		MCV subtype 1	2.7e-36	42/135	31	(Senkevich et al., 1997)
)73L	66920	124	14.0	glutaredoxin 2				(Gvakharia et al., 1996)
	66546			membrane protein				(Jensen et al., 1996)
H4L	- · · - · -	124		VAR	4.0e-83	123/124	99	(Shchelkunov et al., 1995)
G4L		124		VAC	7.5e-83	123/124		(Goebel et al., 1990)
VC059L		126		MCV subtype 1	1.1e-21		41	(Senkevich et al., 1997)
)74R	66923	434	49.9	49.8k protein				(Goebel et al., 1990)
35R	68227	434	17.7	VAC	1.6e-305	432/434	99	(Goebel et al., 1990)
HSR	10771	434		VAR	1.9e-303	423/434	97	(Shchelkunov et al., 1995)
MC60R						56/119	47	
NICOUR		437		MCV subtype 1	1.0e-55			(Senkevich et al., 1997)
		1300		HS CG1 protein	0.015	22/82	26	(Print et al., 1994)

i8235 i8426	63 63 63	7.3	RNA polymerase subunit rpo7 VAC VAR MCV subtype 1 35 matches mainly to RNA polymerases	1.1e-40 1.1e-39 9.3e-27 <0.54	63/63 61/63 41/63	100 96 65	(Amegadzie et al., 1992), (Meis and Condit, 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
58428 58925	165 165 165 195	19.0	18.9k protein VAC VAR MCV subtype l	3.8e-116 1.5e-116 3.0e-32	162/165 164/165 27/57	98 99 47	(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
/0005 (8890	371 371 371 402	42.0	42.0k protein VAC VAR MCV subtype 1	5.2e-255 7.1e-255 2.0e-109	370/371 99 369/371 99 69/145 47	1	(Schmitt and Stunnenberg, 1988) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
70036 70818	260 260 260 260 260	29.9	VLTF-1, late transcription factor VAC VAR-I MCV subtype 1 FPV virus FPO	8.6-184 3.1e-183 8.5e-136 3.3e-129	259/260 258/260 185/260 175/250	99 99 71 67	(Keck et al., 1990) (Wright et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Binns et al., 1988)
70838 71860	340 340 340 342 336	38.9	37k myristylprotein VAC VAR MCV subtype ! FPV virus FP1	3.7e-237 9.1e-236 4.8e-79 3.9e-65	317/319 315/319 59/127 59/124	99 98 46 47	(Martin et al., 1997) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Binns et al., 1988)
71861 72613	250 250 250 243 243 212 212	27.3	25k myristylprotein IMV virion protein VAC VAR MCV subtype l FPV virus FP2 VAC F9L VAR C13L	1.8e-175 6.4e-170 6.5e-103 6.2e-95 1.6e-0.7 3.1e-0.7	250/250 249/250 145/243 128/243 20/58 20/58	100 99 59 52 34 34	(Franke et al., 1990) (Martin et al., 1997) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Binns et al., 1988) (Goebel et al., 1990) (Shchelkunov et al., 1995)

ORFª	START STOP	AAb	kDac	name / (putative) function / homologies ^e	BLAST			references
left te	rminal	region	1:	tunction / noniologies.	expect	AA id (<u>%)</u>	
1011 10		213	**	MCV subtype 1 MC016L	1.6e-0.7	13/57	22	(Carlestel 1 1000)
		215		Swinepox	3.3e-0.5	15/51	22 29	(Senkevich et al., 1997)
		413		3 w tho pox	2.26-0.7	17171	29	(Massung et al., 1993)
081R	72645	87	10.3	10.3k protein				(Plucienniczak et al., 1985)
L2R	72908	87		VAC	3.9e-57	87/87	100	
M2R		87		VAR	4.0e-56	85/87	97	(Shchelkunov et al., 1995)
MC070R		93		MCV subtype I	0.064	18/80	22	(Senkevich et al., 1997)
		504		Na* dependent phosphate	6.9e-05	10/39	25	(Wilson et al., 1994)
				transporter C. elegans				
		233		ATPase subunit T. cruzi	0.013	16/44	36	U38184
		2336		Ca2+ channel rat	5.2e+0.2	6/25	24	(Dubel et al., 1992)
		2238		Ca ²⁺ channel mouse	7.1c+0.2	6/25	24	(Coppola et al., 1994)
		1559		ABC transporter yeast	0.40	12/40	30	X97560
A 0.0 T	50050	0.50	10.1	10.61				
082L	73950	350	40 .6	40.6k protein				(Plucienniczak et al., 1985)
L3L	72898	350		VAC	2.2e-251	346/350 98		(Goebel et al., 1990)
M3L		349		VAR	1.5e-241	296/306 96		(Shchelkunov et al., 1995)
MC072L		310		MCV subtype 1	1.5e-88	64/136 47		(Senkevich et al., 1997)
		301		FPV F4 prolein	1.le-80	58/134 43		(Binns et al., 1988)
083R	73975	251	28.5	core protein VP8				(Yang and Bauer, 1988)
	74730			DNA/RNA binding protein				(Baylis and Smith, 1997)
L4R		251		VAC	5.6e-170	251/251	100	(Goebel et al., 1990)
M4R		251		VAR	3.7-169	250/251	99	(Shchelkunov et al., 1995)
MC073R		254		MCV subtype 1	1.7e-76	36/59	61	(Senkevich et al., 1997)
		253		FPV virus FP5	6.4e-55	29/57	50	(Binns et al., 1988)
084R	74740	128	15.1	15.1k protela				,
L5R	75126	128		VAC 14.0k protein	2.9e-89	127/128	99	(Goebel et al., 1990)
M5R		128		VAR	2.0-87	125/128	97	(Shehelkunov et al., 1995)
•	٠	129		FPV FP6	8.le-16	19/45	42	(Drillien et al., 1987)
MC074R		146		MCV subtype I	0.073	10/18	55	(Senkevich et al., 1997)
		152		melatonin receptor D. rerio	0.44	15/66	222	(Reppert et al., 1995)
					•••	10.00		(mopport of and 1999)
085R	75083	153	17.9	dimeric virion protein				(Holzer & Falkner, unpubl.)
JIR	75544	153		VAC	6.0e-103	152/153	99	(Goebel et al., 1990)
LIR		159		VAR-I	1.4c-101	149/153	97	(Shchelkunov et al., 1995)
		147		capripox CF7	6.5e-54	53/90	58	(Gershon and Black, 1989b)
		148		myxoma MF7	4.8e-51	54/93	58	(Jackson and Bults, 1992)
		183		MCV subtype I	1.9e-47	47/93	50	(Senkevich et al., 1997)
MC075R		148		FPV FP7	1.3e-35	37/84	44	(Drillien et al., 1987)
086R	75560	177	20.0	thymidine kinase				(Hruby and Ball, 1982)
	76093			#				(Weir and Moss, 1983)
J2R		177		VAC	5.7e-125	175/177	98	(Goebel et al., 1990)
L2R		177		VAR	2.7e-122	170/177	96	(Shchelkunov et al., 1995)
				38 matches mainly to	<0.18			,
				thymidine kinase family				

76159 77160	333 333 338 343 308	38.9	poly(A) polymerase su, 2'methyl transferase VAC VAR-BSH myxoma MCV subtype l FPV VP39	8.7e-136 9.8e-233 5.7e-288 1.4e-135 1.7e-96	330/333 326/333 247/333 79/144 125/267	99 97 74 54 46	(Gershon et al., 1991) (Gershon and Moss, 1993) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Jackson and Bults, 1990) (Senkevich et al., 1997) (Binns et al., 1988)
77075 77632	185 185 185 185 187 186	21.3	RNA pol subunit rpo22 VAC VAR-BSH myxoma MCV subtype 1 FPV	1.2e-125 7.9e-125 1.5e-86 1.9e-76 2.1e-73	185/185 182/185 124/185 73/132 72/135	100 98 67 55 53	(Broyles and Moss, 1986) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Jackson and Bults, 1990) (Senkevich et al., 1997) (Binns et al., 1988)
78101 77700	133 133 134 137 377 378	15.2	15.2k protein VAC VAR-I MCV subtype l FPV VAR-I A16L (BSH:A17L) VAC A16L	2.4e-95 2.4e-94 5.7e-45 1.4e-43 0.049 0.049	133/133 131/133 60/127 60/130 7/28 7/28	100 98 47 46 25 25	(Plucienniczak et al., 1985) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Drillien et al., 1987) (Shchelkunov et al., 1995) (Goebel et al., 1990)
78207 82067	1286 1286 1286 1289	146.9	RNA pol subunit rpo147 VAC VAR MCV subtype 1 100 matches to RNA pol (large subunit) family	0.0 0.0 0.0 <3.7e-07	1283/1286 1275/1286 556/760	99 99 73	(Broyles and Moss, 1986) (Goebel et al., 1990) (Shehelkunov et al., 1995) (Senkevich et al., 1997)
82579 82064	171 171 171 171 172 173 169	19.7	protein tyrosine/serine phosphatase VAC VAR racoonpox myxoma virus rabbit fibroma virus MCV subtype 1 protein phosphatase family	2.0e-117 1.1e-114 6.0e-111 1.5e-77 1.8e-77 1.4e-65 >2.8e-05	170/171 166/171 157/171 83/138 46/80 60/114	99 97 91 60 57	(Rosel et al., 1986) (Guan et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) B47452 (Mossman et al., 1995a) (Mossman et al., 1995a) (Senkevich et al., 1997)

ORF ^a	START STOP	AAb	kDa ^c	name / (putative) function / homologies*	BLAST ⁴ expect	BLAST ^c AA id	HSS ¹ (%)	references		
left terminal region:										
092R H2R 12R MC083R	82593 83162	189 189 189 191 142	21.5	21.5k protein VAC VAR MCV subtype l myxoma	5.2e-134 1.4e-133 1.4e-71 1.3e-65	188/189 188/189 95/181 93/142	99 99 52 65	(Rosel et al., 1986) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Jackson and Bults, 1990)		
093L H3L	84139 83165	324 324	37.5	immunodominant env protein p35; IMV membrane-associated VAC	3.3e-231	322/324	, 99	(Rosel et al., 1986) (Chertov et al., 1991) (Takahashi et al., 1994)		
I3L MC084L		325 298		VAR-BSH MCV subtype 1	1.7e-225 1.1e-36	311/320 38/117	97 32	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)		
094L H4L 14L MC085L	86527 84140	795 795 795 791 804 484	93.6	RAP 94 (RNA-pol assoc. transer. spec. factor) VAC VAR MCV subtype 1 Orf virus FPV L1L protein	0.0 0.0 0.0 0.0 0.0 2.4c-181	791/795 780/795 327/546 96/131 91/176	99 98 59 73 51	(Ahn and Moss, 1992b) (Kane and Shuman, 1992) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Fleming et al., 1993) 2209386A		
095R H5R I5R	86713 87324	203 203 221 227 220 705	22.3	late transcription factor VLTF-4 VAC VAR orf virus F3R MCV subtype 1 nucleolin Xenopus 31 matches to glu/asp rich proteins	1.8e-128 5.1e-102 3.1e-14 3.1e-09 0.00041 E<0.52	202/203 91/97 29/69 28/64 18/57	99 93 42 43 31	(Kovacs and Moss, 1996) (Rosel et al., 1986) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Fleming et al., 1993) (Senkevich et al., 1997) (Messmer and Dreyer, 1993)		
096R <i>H6R I6R</i> MC087R	87325 88269	314 314 314 318 323 316	36.7	VAC VAR-BSH shope fibroma virus orf virus MCV subtype I FPV L3R 21 matches to topoisomerase family	5.2e-128 1.6e-121	314/314 312/314 119/170 82/138 111/202 159/303	100 99 70 59 54 52	(Shuman and Moss, 1987) (Rosel et al., 1986) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Upton et al., 1990b) (Fleming et al., 1993) (Senkevich et al., 1997) (Zantinge et al., 1996)		
097R H7R 17R MC088R	88306 88746	146 146 146 143	17.0	17.0k protein VAC VAR MCV subtype 1	2.1e-98 6.7e-96 4.3e-30	144/146 141/146 45/115	98 96 3 9	(Rosel et al., 1986) (Gochel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)		

098R 88790 91324 D1R F1R MCO90R	844 96.8 844 844 950 836 868	mRNA capping enzyme, large subunit VAC VAR-BSH MCV subtype 1 shope fibroma vicus ASV NP868R	0.0 0.0 0.0 0.0 0.0 0.0033	842/844 830/844 322/64 243/305 17/55	99 98 64 79 30	(Morgan et al., 1984) (Niles et al., 1986) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Upton et al., 1991b) (Pena et al., 1993)
099L 91723 91283 D2L F2L MC091L	146 16.9 146 146 143 170	VAC VAR (BSH: F3L) Rabbit fibroma virus MCV subtype 1	5.9e-98 1.5e-97 2.0e-27 1.1e-20	146/146 145/146 13/33 19/41	100 99 39 46	(Niles et al., 1986) (Dyster and Niles, 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Upton et al., 1991b) (Senkevich et al., 1996)
100R 91716 D3R 92417 F2R MC092R	233 27.6 237 237 241 268 206	27k structural protein VAC VAR 1:F3R shope fibroma virus MCV subtype 1 rabbit fibroma virus C3	3.8-167 1.5e-162 9.3e-20 3.5e-18 1.6e-09	136/142 131/142 27/100 16/39 26/96	95 92 27 41 27	(Dyster and Niles, 1991) (Goebel et al., 1990) (Shcheikunov et al., 1995) (Upton et al., 1991b) (Senkevich et al., 1997) (Strayer et al., 1991)
101R 92417 D4R 93073 F4R MC093R	218 25.1 218 218 218 226 218 297	uracii DNA glycosylase VAC VAR-BSH shope fibroma virus MCV subtype 1 FPV FPD4 uracii DNA glycosylase UL2 gallid herpesvirus 1	1.4e-157 5.1e-157 1.5e-117 8.4e-91 3.1e-88 0.019	217/218 216/218 151/218 65/113 116/216 8/14	99 99 69 57 53	(Upton et al., 1993) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Upton et al., 1993) (Senkevich et al., 1997) (Tartaglia et al., 1990) L34064
102R 93105 95462 D5R F5R MC094R	785 90.4 785 785 786 791 791 942	90.4k ATP/GTP binding protein VAC VAR shope fibroma C5 MCV subtype 1 FPV virus FPD5 C29E6.4 C. clegans	0.0 0.0 0.0 0.0 0.0 0.0	780/785 774/785 283/450 184/334 170/345 16/56	99 98 62 55 49 28	(Niles et al., 1986) (Shchelkunov et al., 1993c) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Strayer et al., 1991) (Senkevich et al., 1997) (Tarlaglia et al., 1990) (Wilson et al., 1994)
103R 95503 97416	637 73.9	early transcription factor VETF-1				(Broyles and Fesler, 1990) (Gershon and Moss, 1990)

ORF ¹	START STOP	AĀb	kDa¢	name / (putative) function / homologies	BLAST ^d expect	BLAST ^e AA id	HSS ^f (%)	references
left te	rminal	region	1:	, montologica	CAPCUL	AA IU	(/0)	
D6R	·	637		VAC	0.0	635/637	99	(Goebel et al., 1990)
F6R		637		VAR-I	0.0	633/637	99	(Shehallerran et al. 1990)
		635		shope fibroma virus	0.0	212/262	80	(Shehelkunov et al., 1995)
MC095R		635		MCV subtype I	0.0	199/263	75	(Strayer et al., 1991)
		605		FPV	0.0	188/263	71	(Senkevich et al., 1997) (Binns et al., 1990)
					0.0	1001203	,,	(Tartaglia et al., 1990)
		648		Choristoneura biennis EPV	2.7e-08	24/72	33	(Yuen et al., 1991)
		648		Amsacta moorei EPV	4.2e-06	24/77	31	(Hall and Marian 1001)
		706		African swine fever virus	1.5e-05	13/38	34	(Hall and Moyer, 1991)
					1,50-05	13/30	74	(Yanez et al., 1993)
104R	97443	161	17.9	RNA polymerase				(Ahn et al., 1990b)
	97928			subunit rpo18			•	(Duick and Denotes 1000)
D7R		161		VAC	1.4e-108	160/161	99	(Quick and Broyles, 1990) (Goebel et al., 1990)
F7R		161		VAR	2.2e-106	156/161	96	(Shehalkunau
		163		rabbit fibroma C8	3.4e-76	108/161	67	(Shcheikunov et al., 1995) (Strayer et al., 1991)
MC097R		161		MCV subtype 1	4.0c-70	99/158	62	(Sankariah at al 1991)
		161		FPV D7	5.4e-66	95/160	59	(Senkevich et al., 1997) (Binns et al., 1990)
						707100	• • • • • • • • • • • • • • • • • • • •	(Dutus et ut., 1330)
105L	98805	304	35.4	virion transmembrane				(Niles and Seto, 1988)
	97891			protein, carbonic				(Niles et al., 1986)
				anhydrase-like				(Maa et al., 1990)
D&L		304		VAC	2.3e-212	297/304	97	(Goebel et al., 1990)
F8L		304		VAR	2.5e-209	291/304	-	(Shchelkunov et al., 1995)
		304		Camelpox virus	1.1e-207	290/304		X97857
		303		Ectromelia virus	2.2e-207	195/207		X97856
		304		Monkeypox virus	3.0c-207	287/304		X97855
		304		Cowpox virus	9.8c-206	285/304		X97858
				Carbonic anhydrase family	>4.9e-13			
l06R	98847	213	25.0	25k mutT-like protein				(Koonin, 1993)
	99488			•				(Niles et al., 1986)
D9R		213		VAC	1.6c-146	212/213	99	(Goebel et al., 1990)
F9R		213		VAR	5.3e-145	209/213	98	(Shchelkunov et al., 1995)
		218		rabbit fibroma	1.7e-75	105/203	51	(Strayer et al., 1991)
MC098R		212		MCV subtype 1	5.3e-67	54/111	48	(Senkevich et al., 1997)
		78		FPV D9	2.0e-13	25/51	49	(Tartaglia et al., 1990)
MC099R		229		MCV subtype 1	0.0041	13/31	41	(Senkevich et al., 1997)
		248		VAR-I FIOR	0.018	14/32	43	(Shchelkunov et al., 1995)
		225		FPV D10	0.14	15/34	44	(Tartaglia et al., 1990)
		248		VAC DIOR	0.23	11/26	42	(Goebel et al., 1990)

107 R DIOR FIOR MC099R	99485 100231	248 248 248 260 229 225 218 212 136 213 169	28.9	VAC VAR-1 shope fibroma D10 MCV subtype 1 FPV D10 shope fibroma D9 MCV subtype 1 MC098R mutator Synechocystis VAC D9R VAR F9R mutator M. jannaschii	7.4e-173 5.4e-173 3.8e-72 1.4e-54 1.1e-45 1.9e-06 0.13 0.23 0.24 0.24 0.39	245/248 245/248 96/202 44/100 45/102 19/54 12/21 12/27 11/26 11/26 13/25		(Koonin, 1993) (Niles et al., 1986) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Strayer et al., 1991) (Senkevich et al., 1997) (Binns et al., 1990) (Strayer et al., 1991) (Senkevich et al., 1991) (Senkevich et al., 1997) D90899 (Goebel et al., 1990) (Shchelkunov et al., 1995) (Bult et al., 1996)
DIIL NIL MC100R		631 634 637 370 648 648 89 1098 1085 769	72.4	nucleoside triphosphate phosphohydrolase I, DNA helicase VAC VAR MCV subtype I FPV protein 5 Rabbit fibroma C14 protein AmEPV Choristoneura biennis EPV Swinepox virus ASF RAD26 (yeast) HS transcription activator NTPase family	0.0 0.0 7.3e-286 2.8e-275 1.8e-176 6.0e-142 1.1e-136 1.2e-34 1.6e-13 5.1e-05 0.00093 >5.1e-5	214/357 244/368 81/159	99 62 59	(Broyles and Moss, 1987) (Rodriguez et al., 1986) (Koonin and Senkevich, 1992) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) \$42251 F36819 (Hall and Moyer, 1991) (Yuen et al., 1991) (Massung et al., 1993) (Baylis et al., 1993) (Huang et al., 1994) (Okabe et al., 1992)
DI2L N2L MCI0IL	103025 102162	287 287 287 287 295 289	33.3	mRNA capping enzyme, transcription initiation factor VITF VAC VAR Swinepox virus MCV subtype I FPV protein 6	2.0e-198 9.8e-198 4.1e-160 5.8e-126 3.4e-113	284/287 220/287	99 76 61	(Niles et al., 1989) (Weinrich and Hruby, 1986) (Vos et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Massung et al., 1993) (Senkevich et al., 1996) S42252
110L D13L N3L MC102L	104711 103056	551 551 551 551 547 552 584	61.9	rifampicin resistance gene, IMV protein VAC VAR Swinepox virus MCV subtype 1 FPV protein 7 Heliothis armigera EPV	0.0 0.0 4.5e-286 5.4e-248 6.6e-223 9.5e-51	551/551 547/551 357/506 298/494 182/305 54/107	99 70 60	(Tartaglia and Paoletti, 1985) (Weinrich and Hruby, 1986) (Goebel et al., 1990) (Shehelkunov et al., 1995) (Massung et al., 1993) (Senkevich et al., 1996) S42253 (Osborne et al., 1996)

ORF ³	START STOP	AA^b	kDac	name / (pulative) function / homologies ^e	BLAST ^d expect	BLAST ^e AA id	HSS ^r (%)	references
left to	rminal	regio	n;					
AIL AIL MC103L	105187 104735	150 150 150 169 154	16.9	late gene trans-activator, VLTF-2 VAC VAR MCV subtype 1 FPV protein 8	6.8e-103 6.8e-103 6.3e-54 2.8e-50	149/150 149/150 74/147 50/87		(Weinrich and Hruby, 1986) (Keck et al., 1993) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) S42254
112L A2L A2L MC104L	105882 105208	224 224 224 228 606	26.3	late gene trans-activator VAC VAR MCV subtype I orf virus	1.3e-158 1.3e-158 6.4e-127 6.8e-30	224/224 224/224 172/222 43/66	100	(Weinrich and Hruby, 1986) (Passarelli et al., 1996) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Mercer et al., 1995)
A3L MC105L	106109 105879	76 76 76 70	8.9	8.9k protein VAC-WR VAR-BSH (I:A2.5L) MCV subtype 1	1.6e-47 2.1e-47 9.8e-12	73/76 71/76 26/63	96 93 41	(Weinrich and Hruby, 1986) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
114L <i>A3L</i> A4L MC106L	108058 106124	644 644 644 675 657	72.6	major core protein P4b VAC VAR-BSH (I:A3L) MCV subtype I FPV Major core protein P4b	0.0 0.0 8.9e-272 9.1e-220	643/644 636/644 227/357 169/299	98 63	(Rosel and Moss, 1985) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Binns et al., 1989)
115L A4L A5L	108929 108111	272 281 271 268 5179	29.9	membrane associated core protein VAC VAR-BSH (I: A4L) Thermoproteus phage 1 human mucin many matches to Pro-rich proteins	1.1e-145 1.1e-112 1.9e-09 4.5e-07	180/187 165/178 38/127 34/139	96 92 29 24	(Demkowicz et al., 1992) (Cudmore et al., 1996) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Neumann and Zillig, 1990) (Gum et al., 1994)
116R A5R A5R MC108R	108967 109461	164 164 164 165 167	19.0	RNA pol subunit rpo19 VAC VAR-I (BSH:A6R) MCV subtype 1 FPV 54 matches/glu-rich proteins	5.8e-110 7.0e-109 3.3e-51 3.3e-51 <0.51	164/164 162/164 82/151 72/161	100 98 53 44	(Ahn et al., 1992) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) (Kumar and Boyle, 1990)
117L A6L A7L MC109L	110576 109458	372 372 372 461 339	43.1	43.1k protein VAC VAR-BSH (l: A6L) MCV subtype 1 FPV ORF 2 protein	1,2e-248 1,1e-244 4,0e-99 1,9e-95	371/372 364/372 132/367 111/279	97 35	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) B60013

118L A7L A8L MC110L	112732 110600	710 710 710 707	82.3	VETF 82k subunit VAC VAR-BSH (i: A7L) MCV subtype t	0.0 0.0 0.0	708/710 700/710 240/374	98	(Gershon and Moss, 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
119R A8R A8R MCIIIR	112786 113652	288 288 288 435	33.6	33.6k protein VAC VAR-I (BSH;A9R) MCV subtype 1	5,3e-198 3,1e-195 4,4e-94	287/288 284/288 100/169	99 98 59	(Van Meir and Wittek, 1988) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Schkevich et al., 1997)
120L Alol A9L MC112L	113929 113645	94 95 99 128 69	10.5	10.5k protein VAR-BSH (I: A9L) VAC MCV subtype 1 orf virus	9.0e-59 9.4e-55 1.0e-29 3.0e-16	78/79 82/91 47/71 27/45	98 90 66 60	(Van Meir and Wittek, 1988) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Senkevich et al., 1996) (Mercer et al., 1995)
121L A10L A11L MC113L	116605 113930	891 891 892 889	102.2	major core protein P4a VAC VAR-BSH (I: A10L) MCV subtype 1	0.0 0.0 5.8e-289	883/891 442/463 99/177	95	(Van Meir and Wittek, 1988) (Vanslyke et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
122R AIIR AIIR MCII4R	116620 117576	318 318 319 304 148	36.1	36.1k protein VAC VAR-1 (BSH: A12R) MCV subtype 1 FPV 4a gene	3.5e-212 2.7e-154 2.9e-98 1.9e-13	318/318 242/277 92/154 18/32	100 87 59 56	(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) A20158
123L A12L A13L MC115L	118141 117578	187 192 189 178	20.0	virion protein VAC VAR-BSH (l: A12L) MCV subtype 1	4.8e-127 5.9e-64 5.9e-37	127/128 101/144 39/83		(Takahashi et al., 1994) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
124L A/3L A/4L	118377 118165	70 70 68	7.6	structural protein IMV membrane protein p8 VAC VAR-BSH (I: A13L)	2.4e-42 4.1e-20	66/69 37/64	95 57	(Takahashi et al., 1994) (Jensen et al., 1996) (Goebel et al., 1990) (Shehelkunov et al., 1995)
125L	118757 118485	90	10.0	structural protein IMV membrane protein p16				(Takahashi <i>et al.</i> , 1994) (Jensen <i>et al.</i> , 1996)

ORF ^a	START STOP			name / (putative) function / homologies ^e	BLAST ^d expect	BLAST ^e AA id	HSS ^f (%)	references
left te	rminal	region	n:					
A14L A15L MC118L		90 90 94 125		VAC VAR-BSH (I: A14L) MCV subtype 1 human interferon inducible protein	5,3e-62 5.3e-61 7.3e-22 0.23	90/90 88/90 31/72 15/49	100 97 43 30	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Deblandre et al., 1995)
126L A15L A16L MC120L	119209 118925	94 94 94 96	11.0	11k protein VAC VAR-BSH (l:A15L) MCV subtype l	4.1e-63 1.0e-61 6.7e-08	94/94 92/94 17/51	100 97 33	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
127L A16L A17L MC121L	120326 119193	377 378 377 364	43.4	35k myristylprotein VAC VAR-BSH (1:A16L) MCV subtype I	6.3e-288 1.5c-283 6.5e-110	327/327 368/377 45/115		(Martin et al., 1997) (Goebel et al., 1990) (Shehelkunov et al., 1995) (Senkevich et al., 1996)
128L A17L A18L MC122L	120940 120329	203 203 203 179	23.0	IMV membrane protein morphogenesis factor VAC VAR-BSH (I:A17L) MCV subtype 1	1.0e-141 1.0e-141 1.4e-47	201/203 201/203 36/81		(Krijnse-Locker et al., 1996) (Rodriguez et al., 1995) (Wolffe et al., 1996) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
129 R A18 R A18 R MC123 R	120955 122436	493 493 493 694 450	56.8	DNA helicase DNA dependent ATPase VAC VAR-I (BSH:A19R) MCV subtype I Bacteriophage T5 D10 helicase-like protein	0.0 0.0 5.3e-167 0.0066	488/493 478/493 203/403 13/36	98 96 50 36	(Koonin and Senkevich, 1992 (Bayliss and Condit, 1995) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) P11107
130 L <i>A19L</i> A19L MC124L	122650 122417	77 77 76 78 1721	8.3	8.3kb protein VAC VAR-I (BSH: A20L) MCV subtype 1 HS RIZ, zink finger protein	2.9e-50 1.2e-34 1.5e-13 0.0060	77/77 54/64 14/37 7/16	100 84 37 43	(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Buyse et al., 1995)
131L A21L A22L MC125L	123004 122651	117 117 117 114	13.6	13.6k protein VAC VAR-BSH (I: A20L) MCV subtype I	5.3e-83 7.2e-82 2.8e-28	117/117 115/117 23/41		(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)

	003 426 283 426 426 476 1118	49.1	49.1k protein VAC VAR MCV subtype l Pichia klyveri DNA pol	7.6e-298 1.6e-294 3.2e-95 0.069	423/426 418/426 34/131 12/54	99 98 25 22	(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997) Y11606
133R 124 A22R 124 A22R MC127R	213 187 776 187 176 282	21.9	21.9k protein VAR-I (BSH:A23R) VAC MCV subtype !	1.1e-126 1.2e-122 5.8e-43	182/187 174/176 35/85	97 98 41	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Senkevich et al., 1997)
134R 124 A23R 125 A23R MC128R		44.6	44.6k protein VAC VARI (BSH:A24R) MCV subtype l	4.2e-269 1.7e-265 3.5e-136	382/382 377/382 83/143	100 98 58	(Goebel et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
135R 125 129 A24R A25R MC129R			VAC CPX rpo132 VAR-BSH (1:A24R) MCV subtype 1 orf virus 101 matches to RNA pol beta subunit family	0.0 0.0 0.0 0.0 0.0 <0.036	794/796 794/795 789/795 441/565 166/258	99 99 99 78 64	(Hooda-Dhingra et al., 1990) (Amegadzie et al., 1991b) (Goebel et al., 1990) (Patel and Pickup, 1989) (Shchelkunov et al., 1995) (Senkevich et al., 1997) U33419
right term	inal reg	ion:					
136L 129 A25L 129	638 65 441 65 1284	7.5	150k CPX-ATI (f) VAC Cowpox (CPX-ATI)	1.3e-41 3.2e-15	64/65 28/30	98 93	(Funahashi et al., 1988) (Goebel et al., 1990) (Funahashi et al., 1988)
137L 130 A30L 130 A26L MC131L MC133L MC130L		27.1	27.1k protein (f) VAR-BSH (l: A29L) VAC (AT1 flanking protein) MCV subtype 1 MCV subtype 1 MCV subtype 1 VAR-I A28L (BSH:A29L) Camelpox	3.1e-i58 5.6e-142 2.1e-12 4.2e-11 2.3e-10 0.0021 0.051	216/227 195/197 19/59 12/40 14/40 12/37 11/37		(Amegadzie et al., 1991a) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Senkevich et al., 1996) (Senkevich et al., 1996) (Senkevich et al., 1996) (Senkevich et al., 1996) (Shchelkunov et al., 1995) (Meyer and Rziha, 1993)
138L 131 130 A27L A31L		12.5	14k membrane protein EEV protein fusion protein VAC VAR-BSH (I: /A30L) Camelpox virus Cowpox virus	3.3e-70 1.1e-69 1.5e-69 1.6c-69	108/110 107/110 106/110 107/110	97 96	(Rodriguez and Esteban, 1987) (Rodriguez and Smith, 1990) (Gong et al., 1990) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Meyer et al., 1994) (Meyer et al., 1994)

ORF ²	START STOP	AΛb	kDac	name / (putative) function / homologles ^a	BLAST ^d expect	BLAST ^e AA id	HSS ^f (%)	references
left te	rminal	regio	1:					
MC133L		110 110 89 188 546		Ectromelia virus Monkeypox virus Orf virus Myxoma virus MCV subtype 1	6.7c-68 8.3e-67 4.8c-15 2.5e-12 1.5e-11	105/110 103/110 22/57 18/33 26/58	93 38 54 44	(Meyer et al., 1994) (Meyer et al., 1994) (Naase et al., 1991) (Jackson et al., 1996) (Senkevich et al., 1996)
MODEL		148 513		Capripox virus HM2 protein	2.6c-10	21/42	50	(Gershon et al., 1989)
MC131L		212		MCV subtype I	1.5e-05	18/58	31	(Senkevich et al., 1996)
139L A28L A31.5L MC134L	131739 131299	146 146 146 140 140 141 143	16.3	16.3k protein VAC VAR-BSH (I: A3)L) Myxoma virus Capripox virus HM3 protein MCV subtype 1 Amsacta moorei poxvirus	1.7e-103 2.9e-100 1.3e-55 3.3e-55 1.0e-53 2.0e-14	146/146 141/146 30/52 30/49 31/52 16/36		(Amegadzie et al., 1991a) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Jackson et al., 1996) (Gershon et al., 1989) (Senkevich et al., 1996) (Hall and Moyer, 1991)
140 L A29 L A32 L MC135 L	132657 131740	305 305 305 303 126	35.4	RNA pol subunit rpo35 VAC VAR-BSH MCV subtype 1 Capripox virus	3.6e-215 7.5e-211 7.0e-98 2.2e-54	304/305 297/305 51/103 46/61		(Amegadzie et al., 1991a) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996) (Gershon et al., 1989)
141L <i>A30L</i> A33L MC136L	132853 132620	77 77 77 67	8.7	8.7k protein VAC VAR MCV subtype 1	5.5e-48 5.5e-48 9.2e-16	77 <i>1</i> 77 77 <i>1</i> 77 18/40	100 100 45	(Amegadzie et al., 1991a) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
142R <i>A31R</i> A34R MC138R	133013 133390		14.4	14.4k protein VAC VAR MCV subtype 1	2.0e-84 1.6e-79 6.2e-24	118/124 111/114 39/98	95 97 39	(Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
143L A32L A35L MC140L	134169 133360	269 300 270 249	30.8	30.8k protein ATP/GTP binding motif A VAC VAR MCV subtype 1	6.4e-190 1.6e-186 7.6e-95	268/269 263/269 58/94		(Smith et al., 1991) (Koonin et al., 1993) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1996)
144R <i>A33R</i> A36R	134287 134844	185 185 184 185	20.6	EEV glycoprotein VAC VAR Ectromelia	2.1e-124 1.8e-121 2.8e-113	182/185 103/112 165/185	98 91 89	(Roper et al., 1996) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Roper et al., 1996)
145R	134868 135374	168	19.6	EEV glycoprotein virulence factor actln microvilli inducer				(Duncan and Smith, 1992a) (McIntosh and Smith, 1996) (Wolffe et al., 1997)
A34R A37R		168 168 167		VAC VAR-I FPV ORFs BamHI 2,8,11 hepatic lectins homologs HS early T-cell activation	1.2e-117 1.7e-117 <0.056	165/168 164/168 16/66	98 97 24 31	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Tomley et al., 1988) (Hamann et al., 1993)
MC143R		159		antigen CD69 MCV subtype 1 17 matches to lectins	0.080	12/48	25	(Senkevich et al., 1997)

146R A35R A38R MC145R	135418 135948	176 176 60 233	20.0	20.0k protein VAC VAR-I MCV subtype 1	1.4e-126 2.9e-37 1.2e-07	176/176 57/60 18/55	100 95 32	(Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Senkevich et al., 1997)
147 R A36 R A39 R	136015 136641	208 221 216	23.8k	EEV membrane protein virulence factor VAC VAR 19 matches to asn/ser-rich proteins	2.8c-143 2.1c-89 <0.41	140/141 138/177	99 77	(Parkinson and Smith, 1994) (Smith et al., 1991) (Goebel et al., 1990) (Shehelkunov et al., 1995)
148R <i>A37R</i> A40R	136705 137496	263 263 68	29.8	29.8k protein VAC VAR	6.8c-183 4.9e-37	261/262 61/67	99 91	(Goebel et al., 1990) (Shehelkunov et al., 1995)
149L <i>A38L</i> A41L	138589 137756	277 277 277 303 324 323	31.5	31.5k protein VAC VAR Rattus norvegicus CD47 MM integrin assoc, protein human CD47 precursor	9.3e-198 1.6c-187 3.9e-24 1.0e-21 5.0e-19	274/277 259/277 23/86 23/86 28/86	98 93 26 26 32	(Amegadzie et al., 1991a) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Nishiyama et al., 1997) (Lindberg et al., 1993) (Campbell et al., 1992)
150R A39R A42R	138606 138857	83 403 74	9.4	semaphorin-like protein (f1) VAC VAR-I	8.0c-46 8.6c-44	73/76 67/71	96 94	(Kolodkin et al., 1993) (Goebel et al., 1990) (Shchelkunov et al., 1995)
151R	139163 139795	210	23.9	semaphorin-like protein (f2)				(Kolodkin et al., 1993)
A39R A43R		403 139 653		VAC VAR (I:A44R) semaphorin-like protein Alcelaphine herpesvirus 37 matches to semaphorin	3.0-147 1.8c-68 1.7c-20	209/210 91/105 29/79	99 86 36	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Ensser and Fleckenstein, 1995)

ORF'	START STOP	AAb	kDac	name / (putative) function / homologies ^e	BLAST ^d expect	BLAST ^c AA ld	HSS ^f (%)	references
left t	erminal	regio	n:				.)	
				/collapsin gene family				,
152R	139821 140327	168	19.4	NK cell receptor homolog lectin-like protein				(Scheiflinger et al., unpubl.) (Smith et al., 1991)
A40R		168		VAC	6.6e-97	134/137	97	(Gocbel et al., 1990)
A45R		61 233		VAR-I (BSH: A43.5R) HS natural killer (NK) cell protein group 2-A, B	9.6e-36 4.5e-11	54/59 20/74	91 27	(Shchelkunov et al., 1995) (Houchins et al., 1991)
		240		HS type II membrane protein	6.9e-11	16/36	44	(Adamkiewicz et al., 1994)
		182		MM NK cell receptor	5.5e-09	16/36	44	(Giorda et al., 1992)
		179		HS CD 94 127 matches to lectins including NK cell surface proteins and snake venoms	1.7e-07	11/29	37	(Chang et al., 1995a)
153L	141025	219	25.1	25.1k protein				(Smith et al., 1991)
A41L	140366	219		VAC	1.9e-158		99	(Goebel et al., 1990)
A44L		218 244		VAR-BSH (I:A46L) VAC B29R/C23L	1.4e-152	152/159	95	(Shchelkunov et al., 1995)
		258		Rabbit fibroma virus T1	0.0076 0. 057	12/53 13/49	22 26	(Goebel et al., 1990) (Upton et al., 1987)
154R	141197 141583	128	14.5	profilin-like protein				(Blasco et al., 1991) (Smith et al., 1991)
A42R		133		VAC	1.2e-87	85/87	97	(Goebel et al., 1990)
A47R		133 140		VAR-I (BSH:A45R) HS profilin	1.4e·85	82/87	94	(Shchelkunov et al., 1995)
		140		10 matches profilin family	2,2e-23	19/45	42	(Kwiatkowski and Bruns, 1988)
155R	141621 142193	190	22.1	class I membrane				(Smith et al., 1991)
A43R	147173	194		glycoprotein VAC	1.5e-137	162/164	98	(Duncan and Smith, 1992b) (Goebel et al., 1990)
A48R		195		VAR-I (BSH:A46R)	1.9e-128	101/109	92	(Shchelkunov et al., 1995)
		51		HS leukocyte antigen	0.096	7/23	30	X79517
156R	142201	78	8.8	8.8k protein				(Smith et al., 1991)
	142437	78 258		VAC-WR SalF6R rabbit myosin heavy chain	3.9e-45	78/78	100	
		270		144 matches to various asp/glu/lys-rich proteins	0.00048	13/39	33	A02985
157L	143577 142537	346	39.4	3ß-hydroxysterold dehydrogenase (3ß-HSD)				(Moore and Smith, 1992) (Blasco et al., 1991)
A44L		346		VAC	4.5e-249		98	(Goebel et al., 1990)
A47L)	210		VAR-BSH (I: A49L)		185/195	94	(Shchelkunov et al., 1995)
MC152F	`	354 369		MCV subtype 1 FPV	8.2e-104 3.1e-83	123/272 33/85	45 38	(Senkevich et al., 1996) (Skinner et al., 1994)
		207		matches to dihydroflavonol	>2.8e-05	10101	10	(Baker and Blasco, 1992)
				reductases, cholesterol dehydrogenases, UDP- galactose-4-epimerases				(

158R A45R A51R	143624 143989	121 125 125	13.3	superoxide dismutuse-like protein VAC VAR-I BSH A48R 117 matches with superoxide dismutase family	2.1e-82 1.1e-82 <0.027	94/96 93/96	97 96	(Blasco et al., 1991) (Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995)
159R A46R A52R	143979 144701	241 214 240	27.6	27.6k protein VAC VAR-1 (BSH: A49R)	9.6c-167 5.6c-164	238/240 233/240	99 97	(Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995)
160L J1L A47L	145465 144749	238 244 244	27.6	27.6k protein VAR VAC integrin lipid binding motif	5.1e-146 8.2e-135	114/127 121/127	89 95	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Smith et al., 1991)
161 R A48R J2R	145564 146178	204 204 205	23.2	thymidylate kinase VAC VAR 16 matches to thymidylate kinase family	5.2e-140 1.1e-137 <0.49	204/204 161/165	100 97	(Smith et al., 1991) (Goebel et al., 1990) (Shehelkunov et al., 1995)
162R <i>A49R</i> J3R	146202 146690	162 162 162	18.8	18.8k protein VAC VAR	6.0e-106 2.4e-103	159/162 154/162	98 95	(Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995)
163R ASOR J4R	146722 148380	552 552 552 922 559 564	63.5	DNA ligase VAC VAR-I HS DNA ligase III shope fibroma ligase FPV ligase 31 matches mainly to DNA ligase family	0.0 0.0 2.1e-235 9.9e-213 3.0e-195 <0.029	547/552 537/552 102/165 95/200 101/170	99 97 61 47 59	(Kerr and Smith, 1989) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Wei et al.,) (Parks et al., 1994) (Skinner et al., 1994)
164R <i>A51R</i> J5R	148426 149358	310 334 334	34.9	34.9k protein VAC VAR	1.5e-217 9.1e-208	267/274 251/274	97 91	(Antoine et al., 1996) (Goebel et al., 1990) (Shchelkunov et al., 1995)

ORF ¹	START STOP	AAb	kDac	name / (putative) function / homologies*	BLAST ^d expect	BLAST ^e AA ld	HSS ^f	references
left	terminal	regio	n:		- CARP TO C	1111 111	(10)	
				fusion of ASIR/ASSR ORFs				(Antoine et al., 1996)
165R A56R J9R	149416 150363		34.8	hemagglutinin VAC VAR-I(BSH:J7R) raccoonpox 124 matches to various proteins	1.8e-211 4.3e-178 1.5e-91 <0.34	312/315 183/238 74/104	99 76 71	(Shida, 1986) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Cavallaro and Esposito, 1992)
166R A57R J10R	150659 150952		11.4	guanylate kinase (f) VAC VAR (BSH:J8R) MM guanylate kinase HS guanylate kinase 21 matches mainly to guanylate kinases	3.2c-62 2.2e-57 4.3c-24 2.8c-20 <0.20	94/97 88/97 39/91 35/91	96 90 42 38	(Smith et al., 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Brady et al., 1996) (Brady et al., 1996)
167R	151103 152005		34.3	serine/threonine protein kinase	d) 0.4			(Howard and Smith, 1989) (Banham and Smith, 1992) (Lin et al., 1992)
BIR BIR		300 300 283		VAC VAR-I VAC B12R 100 matches mainly to protein kinase family	7.1e-215 2.7e-210 4.9e-49 <0.00031	298/300 289/300 27/53	99 96 50	(Goebel et al., 1990) (Shchelkunov et al., 1995) (Goebel et al., 1990)
168R B2R	152144 152434	219	11.5	24.6k protein (f1) VAC	8.5e-38	54/60	90	(Goebel et al., 1990)
169R B2R	152289 152720	149 143 219	16.1	histone H2A pea 24.6k protein (f2) VAC	0.59 5.7e-86	16/50 124/128	32 96	P40281 (Goebel et al., 1990) (Goebel et al., 1990)
170R B3R	152917 153456	179 124 167 92	20.9	20.9k protein (f) VAC VAC WR VAR-GAR H5R	8.2e-33 5.3e-45 3.4e-06	51/56 51/56 19/28	91 91 67	(Goebel et al., 1990) (Smith et al., 1991) U18339
171R B4R B6R 172R	153683 154216 154107	177 558 558 409	21.4	65k ank-like protein virulence factor (f1) VAC VAR-l (BSH:BSR) 65k ank-like protein	8.5e-107 1.7e-98	151/154 140/154	98 90	(Howard et al., 1991) (Mossman et al., 1996) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Howard et al., 1991)
B4R B6R	155336	558 558 483 1765 516 574 574 668 237 472 474 446 437 634		VIrulence factor (f2) VAC VAR-I (BSH:B5R) MYX M-T5 protein MM ankyrin 3 orf virus VAC B18R VAR-I B19R HS KIAA0379 CPX host range gene VAC WR hr gene VAC MIL CPX OIL VAR OIL CPX DIL VAC C9L 159 matches including ankyrin proteins	2.4e-283 2.3c-270 5.5e-10 9.7e-10 1.8e-09 3.3c-09 5.1e-09 1.7c-08, 2.8e-08 5.1e-07 8.7e-07 8.8e-07 1.7e-06 7.8e-05	195/201 185/201 19/57 22/54 16/47 11/23 19/72 20/52 14/47 15/47 23/81 22/61 23/81 8/27	97 92 33 40 34 47 26 38 29 31 28 36 28 29	(Mossman et al., 1996) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Mossman et al., 1996) (Peters et al., 1995) U34774 (Goebel et al., 1990) (Shchelkunov et al., 1995) AB002377 (Spehner et al., 1988) (Kotwal and Moss, 1988a) (Goebel et al., 1990) (Safronov et al., 1996) (Shchelkunov et al., 1996) (Shchelkunov et al., 1996) (Shchelkunov et al., 1996) (Goebel et al., 1996) (Goebel et al., 1990)

173R B5R B7R	156377 3	317 35. 317 317 259	ps/hr protein/ EEV gp42 complement control protein VAC VAR-I (BSH:B6R) CPX D17L 186 matches to complement control protein family	1.6e-232 7.1e-220 2.1e-12 <7.7e-05	312/317 294/316 16/52	98 93 30	(Takahashi-Nishimaki et al., 1991) (Engelstad et al., 1992) (Isaacs et al., 1992) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Safronov et al., 1996)
174R <i>B6R</i> B7R	156995 1 6	173 20. 173 65 685	20.2k protein VAC VAR-BSH (I:B8R) NAD-protein ADP ribosyl- transferase phage T4	1.5e-121 6.0e-40 0.56	173/173 62/65 17/56	100 95 30	(Goebel et al., 1990) (Shehelkunov et al., 1995) SXBPT4
175R B7R	157566 I	177 20 182 184 182	7 20.7k protein VAC VAC C8L CPX D12L EF-hand catcium-binding domain	7.8e-129 0.16 0.49	95/108 9/44 8/36	87 20 22	(Goebel et al., 1990) (Goebel et al., 1990) (Safronov et al., 1996)
176R 88R B8R	158301 2 2 2	226 26 272 266 266 274	31k interferon-gamma receptor (f) VAC VAR-BSH (l:B9R) ECT swinepox C6	3.3e-164 3.0e-153 2.6e-151 3.2e-09	116/123 111/123 110/123 12/31	94 90 89 38	(Upton et al., 1992) (Alcami and Smith, 1995) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Mossman et al., 1995b) (Massung et al., 1993)

ORF ^a	START STOP	AA ⁿ kDa	name / (putative) function / homologies ^e	BLAST ^d expect	BLAST ^c AA id	HSS ^f	references
left t	erminal	region:				\ ,7-,1_	
177R B9R	158458 158676	72 8.3 77 240 237	8.3k protein VAC capripox T4 protein shope fibroma virus	3.0e-49 1.2e-09 0.0057	60/60 16/44 15/50	100 36 30	(Goebel et al., 1990) M28823 F43692
178R B10R	158639 159115	158 17.9 166 530 689	17.9k protein VAC swinepox VC04 kelch protein D. melanogaster	4.7e-110 0.040 0.14	146/146 13/42 12/54	100 30 27	(Goebel et al., 1990) (Massung et al., 1993) (Xue and Cooley, 1993) (Senkevich et al., 1993b)
179R BIIR	159187 159411	74 8.5 88	8.5k proteIn VAC 177 matches to glu/asn rich proteins	9.2c-43	70/73	95	(Goebel et al., 1990)
180R B12R B12R	159478 160329	283 33.3 283 134 300 300	protein kinase VAC VAR-I VAC BIR VAR-I BIR t20 matches mainly to protein kinase family	1.8e-207 8.7e-26 1.7e-54 7.7e-53 <0.34	282/283 31/54 26/53 25/53	99 57 49 47	(Howard and Smith, 1989) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Shchelkunov et al., 1995)
181R B13R B13R	160437 160787	116 13.0 116 344 341 353 344 357 355 372 372	VAC VAR-! (BSH:B12R) CPX crmA VAC C12L (SPI-1) Ectromelia serpin rabbitpox SPI-1 CPX SPI-1 VAR-! B25R (BSH:B21R) CPX serpin-like protein 135 matches mainly to serpins	3.0e-72 2.7e-69 2.8e-39 2.1e-23 9.2e-23 5.5e-22 1.4e-21 1.7e-21	111/116 105/114 66/100 25/34 24/34 25/34 25/36 25/36	95 92 66 73 70 73 69 73	(Kotwal and Moss, 1989) (Smith et al., 1989) (Ray et al., 1992) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Pickup et al., 1986) (Goebel et al., 1990) (Senkevich et al., 1993b) (Ali et al., 1994) (Shchelkunov et al., 1995) (Ali et al., 1994)
182R B14R	160762 161430	222 24.9 222 345 345 341	ICE inhibitor/SPI-2 (f2) VAC VAC WR rabbit pox SPI-2 CPX crmA	<0.12 6.2e-158 9.4e-156 1.6e-153 4.5e-148	218/222 215/221 211/221 203/220	98 97 95 92	see above (Goebel et al., 1990) (Kotwal and Moss, 1989) (Ali et al., 1994) (Pickup et al., 1986)
B13R		344	VAR-I (BSH:B12R) 309 matches see above	1.5e-146 <1.3e-21	203/220	92	(Shchelkunov et al., 1995)

183 R B15 R B14 R	161506 161937	143 149 149 153 181 159 151 190 149 149	16.7	16.7k protein VAC VAR-I (BSH:B13R) VAR-I DIL (BSH:D2L) VAC C16L/B22R capripox T3A rabbit fibroma T3A VAC A52R VAC WR K7R VAR-I C4R CPX M6R	3.6e-105 9.1e-104 8.8e-31 1.0e-26 1.4e-17 2.6e-07 0.073 0.21 0.30 0.51	97/98 95/98 25/52 25/52 17/42 17/44 10/28 7/22 7/22 7/22	98 96 48 48 40 38 35 31 31	(Smith and Chan, 1991) (Goebel et al., 1990) (Shchelkunov et al., 1995) (Shchelkunov et al., 1995) (Goebel et al., 1990) (Gershon and Black, 1989a) (Upton et al., 1987) (Goebel et al., 1990) (Boursnell et al., 1988) (Shchelkunov et al., 1995) (Safronov et al., 1996)
184R B16R B17R	162021 163001	326 326 326 290 69 296	36,6	interleukin-18 receptor (IL-18R) VAC-WR B15R CPX B16 VAC VAR-1 (BSH:deleted) HS type II IL-1 receptor 271 matches mainly to IL-1 receptors, growth factor receptors and Ig family proteins	2.8e-229 2.3e-217 4.4e-202 8.1e-38 1.7e-36 <0.011	323/326 306/326 287/290 59/68 28/75	99 93 98 86 37	(Alcami and Smith, 1992) (Spriggs et al., 1992) (Smith et al., 1991) (Spriggs et al., 1992) (Gocbel et al., 1990) (Shchelkunov et al., 1995) U64094
185L <i>B17L</i> B15L	1 6 4069 1 6 3047	340 340 340	39.6	39.6k protein VAC VAR-BSH (I:B18L)	4.8e-248 2.7e-241	335/340 325/340		(Goebel et al., 1990) (Shchelkunov et al., 1995)
186R <i>B18R</i> B19R	164209 165933	574 574 574	68.0	68k ank-like protein VAC VAR-I (BSH:B16R) 100 matches mainly to poxylrus ankyrin proteins	0.0 0.0 <0.53	560/574 539/574	97 93	(Smith et al., 1991) (Goebel et al., 1990) (Shehelkunov et al., 1995)
187R	165999 166703	234	27.5	surface antigen, IFN-alpha/beta receptor (f)				(Ueda et al., 1990) (Symons et al., 1995) (Colamonici et al., 1995)
<i>B19R</i> B20R		353 354 569		VAC (WR:B18R) VAR-1 (BSH:B17R) HS interleukin-1 receptor 28 matches mainly to IL-1 receptors	1.4c-163 1.53-149 0.0051 <0.53	218/233 111/133 15/43	93 83 34	(Goebel et al., 1990) (Sheheikunov et al., 1995) (McMahan et al., 1991)
188R	167202	70	8.2	8.2k protein (f)				

ORF ³	START STOP	AAb	kDac	name / (putative) function / homologies?	BLAST ^d expect	BLAST ^c AA ld	HSS ¹	references
left t	erminal	regio	1:	THE THE PERSON OF THE PERSON O	CAPCEL	אה וע	(70)	
B22R	167414	1897		VAR-BSH (I:B26R)	9.9e-23	31/38	81	(Shchelkunov et al., 1995)
189R	167897	188	21.7	21.7k protein				,
B22R	168463	181		VAC B22R/C16L	2.9e-111	061101	0.1	/m
DIL		153		VAR-1(BSH:D2L)		95/104	91	(Goebel et al., 1990)
-,0		149		VAC BISR	1.2e-88	66/71	92	(Shchelkunov et al., 1995)
		159		capripox T3A	7.2e-19	25/52	48	(Goebel et al., 1990)
		151		VAC C6L	8.0e-05	15/45	33	(Gershon and Black, 1989a)
		156		VAR (I:D9L;BSH:D12L)	0.25	12/46	26	(Goebel et al., 1990)
	-	130		אאת (נוטאטןסמנטוצט)	0.26	12/46	26	(Shchelkunov et al., 1995)
190R/ 004L	168531 169232	233	26.9	45k ank-like protein (f2)				
B23R	1.07	386		VAC (C17L/B23R)	60-150	1101110		
DIL	İ	91		VAR-BSH	6.20-159	110/110		(Goebel et al., 1990)
		669		CPX host range	9.1e-31	46/49	93	(Shchelkunov et al., 1995)
		452		VAR-I D6L (BSH:D8L)	1.1e-13 1.7e-11	22/50	44	(Spehner et al., 1988)
Ì		574		VAR-1 B19R (BSH: B16R)	1.76-11 1.26-05	21/50	42	(Shchelkunov et al., 1995)
		574		VAC BISR (WR: BI7R)	8.6e-05	22/73	30	(Shchelkunov et al., 1995)
		634		VAC C9L	0.00011	22/73 11/24	30	(Goebel et al., 1990)
		585		VAR-I GIR	0.00011	22/74	45	(Kotwal and Moss, 1988a)
		516		orf virus	0.0088	15/49	29	(Shehelkunov et al., 1995)
		153		VAR-I D7L (BSH:DIOL)	0.0000	12/28	30	(Sullivan et al., 1995b)
191R/	169309	102	12.1	45k ank-like protein	אומים	14/40	42	(Shchelkunov et al., 1995)
003L	169617			(f1)				
B23R		386		VAC C17L/B23R	1.3e-39	62/63	98	(Goebel et al., 1990)
192R/	170305	176	19.7	secr. TNF receptor (f)				Attack to the second
002L	170835	355		CPX crmB	5.1e-71	76/83	91	(Upton et al., 1991a)
G2R		348		VAR-BSH	1.0e-66	73/83	87	(Hu et al., 1994)
		326		Myxoma virus T2	4.9e-30	21/37	56	(Shehelkunov et al., 1995)
		325		Rabbit fibroma Virus T2	1.8e-28	17/36	47	(Upton et al., 1991a)
		202		CPX C4L	8.7e-15	30/51	58	(Upton et al., 1987) (Heller et al., 1990)
B25R		346		HS TNF receptor	1.9c-08	14/26	53	
		259		VAC (C19L/B25R)	0.00026	16/19	84	(Safronov et al., 1996) (Goebel et al., 1990)
		277		human CD40L receptor	0.0015	11/24	45	(Stamencovic et al., 1989)
				30 matches to TNF receptors	< 0.39	••••	,,,	(Stanichedale St at., 1393)
				and surface proteins				
193R/	171267	136	14.9	35k major secr. protein				(Patel et al., 1990)
001L	171677			chemokine receptor (f)				(Graham et al., 1997)
B29R		244		VAC (C23L/B29R)	6.0e-57	41/42	97	(Goebel et al., 1990)
G5R		253		VAR-I	8.9e-51	46/49	93	(Shchelkunov et al., 1995)
		246		CPX ORF B	5.6e-49	40/42	95	(Hu et al., 1994)
		258		SFV T1 protein	2.5e-20	23/42	54	(Upton et al., 1987)
		260		Myxoma virus T1/35kDa	1.5e-14	21/42	50	(Graham et al., 1997)
				-			30	(Orangin et al., 139/)

Application No.: 10/566,586 Reply to Non-Final Office Action of April 1, 2011

- ^a Open reading frame coding for at least 65 amino acids (for exceptions see text); minor ORFs located in reverse orientation within large ORFs or ORFs located in the repeat regions of the ITRs (see text) are not listed; the MVA ORFs (boldface), listed consecutively as appearing in the genome, and homologs in the Copenhagen strain (in Italics), in the variola strains and in the molluscum contagiosum, are listed in this row. Split ORFs are boxed.
 - ^b Number of deduced amino acids (AA) encoded within an ORF.
 - $^{\rm c}$ Predicted $M_{\rm r}$ (kDa) for the unmodified protein.
- ^d The lowest Poisson probability determined by the BLAST search (Altschul *et al.*, 1990). The Expect value of 0.0 indicates a probability of zero that an alignment occurs by chance; low Expect values correspond to high homology and vice versa.
 - ^e Amino acid identity (AA id) of first high-scoring segment pair in the BLASTp protocol.
 - Amino acid identity of first high-scoring segment pair (HSS)%.
 - ⁹ Homologies based on searching PIR and SWISS-PROT databases (BLASTp nr).
 - ^h Duplicated ORFs located in ITRs.
 - Fragment; complete homologous ORF present in related poxvirus (see reference).
- J Variola India (I) or variola Bangladesh (BSH) sequences; in cases where the variola sequences are not identical, the variola strain first appearing in the blast search protocol is listed.
 - ^k ank, ankyrin.
 - ¹HS, homo sapiens.
 - ^m MM, Mus musculus.

Please REPLACE References, pages 46-53, in the specification as follows:

REFERENCES

- Adamkiewicz, T. V., McSherry, C., Bach, F. H., and Houchins, J. P. (1994). Natural killer lectin-like receptors have divergent carboxy-termini, distinct from C-type lectins. *Immunogenetics* 39, 218–218.
- Ahn, B. Y., Gershon, P. D., Jones, E. V., and Moss, B. (1990a). Identification of rpo30, a vaccinia virus RNA polymerase gene with structural similarity to a eucaryotic transcription elongation factor. *Mol. Cell. Biol.* 10, 5433–5441.
- Ahn, B. Y., Jones, E. V., and Moss, B. (1990b). Identification of the vaccinia virus gene encoding an 18-kilodalton subunit of RNA polymerase and demonstration of a 5' poly(A) leader on its early transcript. J. Virol. 64, 3019–3024.
- Ahn, B. Y., and Moss, B. (1992a). Glutaredoxin homolog encoded by vaccinia virus is a virion-associated enzyme with thioltransferase and dehydroascorbate reductase activities. *Proc. Natl. Acad. Sci. USA* 89, 7060–7064.
- Ahn, B. Y., and Moss, B. (1992b). RNA polymerase-associated transcription specificity factor encoded by vaccinia virus. *Proc. Natl. Acad. Sci. USA* 89, 3536–3540.
- Ahn, B. Y., Rosel, J., Cole, N. B., and Moss, B. (1992). Identification and expression of rpo19, a vaccinia virus gene encoding a 19-kilodalton DNA-dependent RNA polymerase subunit. *J. Virol.* 66, 971–982.
- Akopian, T. A., Kaverina, E. N., Naroditsky, B. S., and Tikhonenko, T. I. (1992). Nucleotide sequence analysis of the avian adenovirus CELO (FAV1) DNA fragment (92-100%). *Mol. Gen. Microbiol. Virol.* 11, 19-23.
- Alcami, A., and Smith, G. L. (1992). A soluble receptor for interleukin-1 beta encoded by vaccinia virus: A novel mechanism of virus modulation of the host response to infection. *Cell* 71, 153–167.
- Alcami, A., and Smith, G. L. (1995). Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. *J. Virol.* 69, 4633–4639.
- Ali, A. N., Turner, P. C., Brooks, M. A., and Moyer, R. W. (1994). The SPI-1 gene of rabbitpox virus determines host range and is required for hemorrhagic pock formation. *Virology* 202, 305–314.
- Altenburger, W., Suter, C. P., and Altenburger, J. (1989). Partial deletion of the human host range gene In the attenuated vaccinia virus MVA. *Arch. Virol.* 105, 15–27.
- Altschul, S. F., and Gish, W. (1996). Local alignment statistics. *Methods Enzymol.* 266, 460–480.
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. *J. Mol. Biol.* 215, 403–410.
- Amegadzie, B. Y., Ahn, B. Y., and Moss, B. (1991a). Identification, sequence, and expression of the gene encoding a Mr 35,000 subunit of the vaccinia virus DNA-dependent RNA polymerase. *J. Biol. Chem.* 266, 13712–13718.
- Amegadzie, B. Y., Ahn, B. Y., and Moss, B. (1992). Characterization of a 7-kilodalton subunit of vaccinia virus DNA-dependent RNA polymerase with structural similarities to the smallest subunit of eukaryotic RNA polymerase II. J. Virol. 66, 3003–3010.

- Amegadzie, B. Y., Holmes, M. H., Cole, N. B., Jones, E. V., Earl, P. L., and Moss, B. (1991b). Identification, sequence, and expression of the gene encoding the second-largest subunit of the vaccinia virus DNA-dependent RNA polymerase. *Virology* 180, 88–98.
- Antolne, G., Scheiflinger, F., Holzer, G., Langmann, T., Falkner, F. G., and Dorner, F. (1996). Characterization of the vaccinia MVA hemagglutinin gene locus and its evaluation as an insertion site for foreign genes. *Gene* 177, 43–46.
- Baker, M. E., and Blasco, R. (1992). Expansion of the mammalian 3 beta-hydroxysteroid dehydrogenase/plant dihydroflavonol reductase superfamily to include a bacterial cholesteroi dehydrogenase, a bacterial UDP-galactose-4-epimerase, and open reading frames in vaccinia virus and fish lymphocystis disease virus. *FEBS Lett.* 301, 89–93.
- Banham, A. H., and Smith, G. L. (1992). Vaccinia virus gene B1R encodes a 34-kDa serine/threonine protein kinase that localizes in cytoplasmic factories and is packaged into virions. *Virology* 191, 803–812.
- Baylis, C. D., and Smith, G. L. (1997). Vaccinia virion protein VP8, the 25kDa product of the L4R gene, binds single-stranded DNA and RNA with similar affinity. *Nucleic Acids Res.* 25, 3984–3990.
- Baylis, S. A., Twigg, S. R., Vydelingum, S., Dixon, L. K., and Smith, G. L. (1993). Three African swine fever virus genes encoding proteins with homology to putative helicases of vaccinia virus. *J. Gen. Virol.* 74, 1969–1974.
- Baylis, C. D., and Condit, R. C. (1995). The vaccinia virus A18R gene product is a DNA-dependent ATPase. J. Biol. Chem. 270, 1550-1556.
- Beattie, E., Tartagia, J., and Paoletti, E. (1991). Vaccinia virus-encoded elF-2 alpha homolog abrogates the antiviral effect of interferon. *Virology* 183, 419–422.
- Bertholet, C., Drillien, R., and Wittek, R. (1985). One hundred base pairs of 5' flanking sequence of a vaccinia virus late gene are sufficient to temporally regulate late transcription. *Proc. Natl. Acad. Sci. USA* 82, 2096–2100.
- Binns, M. M., Boursnell, M. E., Tomley, F. M., and Campbell, J. (1989). Analysis of the fowlpoxvirus gene encoding the 4b core polypeptide and demonstration that it possesses efficient promoter sequences. *Virology* 170, 288–291.
- Binns, M. M., Britton, B. S., Mason, C., and Boursnell, M. E. (1990). Analysis of the fowlpox virus genome region corresponding to the vaccinia virus D6 to A1 region: Location of, and variation in, non-essential genes in poxviruses. J. Gen. Virol. 71, 2873–2881.
- Binns, M. M., Stenzler, L., Tomley, F. M., Campbell, J., and Boursnell, M. E. (1987). Identification by a random sequencing strategy of the fowlpoxvirus DNA polymerase gene, its nucleotide sequence and comparison with other viral DNA polymerases. *Nucleic Acids Res.* 15, 6563–6573.
- Binns, M. M., Tomley, F. M., Campbell, J., and Boursnell, M. E. (1988). Comparison of a conserved region in fowlpox virus and vaccinia virus genomes and the translocation of the fowlpox virus thymidine kinase gene. J. Gen. Virol. 69, 1275–1283.
- Blasco, R., Cole, N. B., and Moss, B. (1991). Sequence analysis, expression, and deletion of a vaccinia virus gene encoding a homolog of profilin, a eukaryotic actin-binding protein. *J. Virol.* 65, 4598–4608.
- Boursnell, M. E., Foulds, I. J., Campbell, J. I., and Binns, M. M. (1988). Non-essential genes in the vaccinia virus Hindll K fragment: A gene related to serine protease inhibitors and a gene related to the 37K vaccinia virus major envelope antigen. *J. Gen. Virol.* 69, 2995–3003.
- Brady, W. A., Kokoris, M. S., Fitzgibbon, M., and Black, M. E. (1996). Cloning, characterization, and modeling of mouse and human guanylate kinases. *J. Biol. Chem.* 271, 16734–16740.
- Broyles, S. S., and Fesler, B. S. (1990). Vaccinia virus gene encoding a component of the viral early transcription factor. *J. Virol.* **64**, 1523–1529.
- Broyles, S. S., and Moss, B. (1986). Homology between RNA polymerases of poxviruses, prokaryotes, and eukaryotes: Nucleotide sequence and transcriptional analysis of vaccinia virus genes en-

- coding 147-kDa and 22-kDa subunits. *Proc. Natl. Acad. Sci. USA* 83, 3141-3145.
- Broyles, S. S., and Moss, B. (1987). Identification of the vaccinia virus gene encoding nucleoside triphosphate phosphohydrolase I, a DNA-dependent ATPase. *J. Virol.* **61,** 1738–1742.
- Broyles, S. S., and Pennington, M. J. (1990). Vaccinia virus gene encoding a 30-kilodalton subunit of the viral DNA-dependent RNA polymerase. *J. Virol.* **64**, 5376–5382.
- Bult, C. J., White, O., Olsen, G. J., Zhou, L., Fleischmann, R. D., Sutton, G. G., Blake, J. A., and Venter, J. C. (1996). Complete genome sequence of the methanogenic archeon, *Methanococcus jannaschii*. Science 273, 1058–1073.
- Buyse, I. M., Shao, G., and Huang, S. (1995). The retinoblastoma protein binds to RIZ, a zinc-finger protein that shares an epitope with the adenovirus E1A. *Proc. Natl. Acad. Sci. USA* 92, 4467–4467.
- Cabirac, G. F., Strayer, D. S., Sell, S., and Leibowitz, J. L. (1985). Characterization, molecular cloning, and physical mapping of the Shope fibroma virus genome. *Virology* 143, 663–670.
- Calvert, J. G., Ogawa, R., Yanagida, N., and Nazerian, K. (1992). Identification and functional analysis of the fowlpox virus homolog of the vaccinia virus p37K major envelope antigen gene. *Virology* 191, 783–792.
- Campbell, I. G., Freemont, P. S., Foulkes, W., and Trowsdale, J. (1992). An ovarian tumor marker with homology to vaccinia virus contains an IgV-like region and multiple transmembrane domains. *Cancer Res.* 52, 5416–5420.
- Cao, J. X., Gershon, P. D., and Black, D. N. (1995). Sequence analysis of Hindill Q2 fragment of capripoxvirus reveals a putative gene encoding a G-protein-coupled chemokine receptor homologue. *Virology* 209, 207–212.
- Cao, J. X., Koop, B. F., and Upton, C. (1997). A human homolog of the vaccinia virus Hindlil K4L gene is a member of the phospholipase D superfamily. *Virus Res.* 48, 11–18.
- Carroll, M. W., and Moss, B. (1997). Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: Propagation and generation of recombinant viruses in a nonhuman mammalian cell line. Virology 238, 198–205.
- Cavallaro, K. F., and Esposito, J. J. (1992). Sequences of the raccoon poxvirus hemagglutinin protein. *Virology* 190, 434–439.
- Chang, C., Rodriquez, A., Carretero, M., Lopez-Botet, M., Phillips, J. H., and Lanier, L. L. (1995a). Molecular characterization of human CD94: A type II membrane glycoprotein related to the C-type lectin superfamily. *Eur. J. Immunol.* 25, 2433–2437.
- Chang, H. W., Uribe, L. H., and Jacobs, B. L. (1995b). Rescue of vaccinia virus lacking the E3L gene by mutants of E3L. J. Virol. 69, 6605–6608.
- Chang, H. W., Watson, J. C., and Jacobs, B. L. (1992). The E3L gene of vaccinia virus encodes an inhibitor of the Interferon-induced, double-stranded RNA-dependent protein kinase. *Proc. Natl. Acad. Sci. USA* 89, 4825–4829.
- Chang-Yeh, A., Mold, D. E., and Huang, R. C. C. (1991). Identification of a novel murine IAP-promoted placenta-expressed gene. *Nucleic Acids Res.* 19, 3667–3672.
- Chen, W., Drillien, R., Spehner, D., and Buller, R. M. (1992). Restricted replication of ectromelia virus in cell culture correlates with mutations in virus-encoded host range gene. *Virology* 187, 433-442.
 Chertov, O., Telezhinskaya, I. N., Zaitseva, E. V., Golubeva, T. B.,
- Chertov, O., Telezhinskaya, I. N., Zaitseva, E. V., Golubeva, T. B., Zinov'ev, V. V., Ovechkina, L. G., Mazkova, L. B., and Malygin, E. G. (1991). Amino acid sequence determination of vaccinia virus immunodominant protein p35 and identification of the gene. *Biomed. Sci.* 2, 151–154.
- Ciliberto, G., Dente, L., and Cortese, R. (1985). Cell-specific expression of a transfected human alpha1-antitrypsin gene. *Cell*, 531–540.
- Colamonici, O. R., Domanski, P., Sweltzer, S. M., Larner, A., and Buller, R. M. (1995). Vaccinia virus B18R gene encodes a type I interferonbinding protein that blocks Interferon alpha transmembrane signaling. J. Biol. Chem. 270, 15974–15978.
- ing. J. Biol. Chem. 270, 15974–15978.

 Coppola, T., Waldmann, R., Borsotto, M., Heurteaux, C., Romey, G., Mattei, M. G., and Lazdunski, M. (1994). Molecular cloning of a

- murine N-type calcium channel alpha1 subunit. Evidence for isoforms, brain distribution, and chromosomal localization. *FEBS Lett.* **338**, 1–5.
- Cudmore, S., Blasco, R., Vincentelli, R., Esteban, M., Sodeik, B., Griffiths, G., and Krijnse Locker, J. (1996). A vaccinia virus core protein, p39, is membrane associated. *J. Virol.* **70**, 6909–6921.
- Davies, M. V., Elroy-Stein, O., Jagus, R., Moss, B., and Kaufman, R. J. (1992). The vaccinia virus K3L gene product potentiates translation by inhibiting double-stranded-RNA-activated protein kinase and phosphorylation of the alpha subunit of eukaryotic initiation factor 2. *J. Virol.* 66, 1943–1950.
- Davis, R. E., and Mathews, C. K. (1993). Acidic C terminus of vaccinia virus DNA-binding protein interacts with ribonucleotide reductase. *Proc. Natl. Acad. Sci. USA* 90, 745–749.
- Deblandre, G., Marinx, O., Evans, S., Majjaj, S., Leo, O., Caput, D., Huez, G., and Wathelet, M. (1995). Expression cloning of an interferoninducible 17-kDa membrane protein implicated in the control of cell growth. *J. Biol. Chem.* 270, 23860–23866.
- Demkowicz, W. E., Maa, J. S., and Esteban, M. (1992). Identification and characterization of vaccinia virus genes encoding proteins that are highly antigenic in animals and are immunodominant in vaccinated humans. *J. Virol.* 66, 386–398.
- Douglas, N. J., and Dumbell, K. R. (1996). DNA sequence variation as a clue to the phylogenesis of orthopoxviruses. *J. Gen. Virol.* 77, 947–951.
- Drillien, R., Spehner, D., Villeval, D., and Lecocq, J. P. (1987). Similar genetic organization between a region of fowlpox virus DNA and the vaccinia virus Hindill J fragment despite divergent location of the thymidine kinase gene. *Virology* 160, 203–209.

 Dubel, S. J., Starr, T. V. B., Hell, J., Ahlijanian, M. K., Enyeart, J. J.,
- Dubel, S. J., Starr, T. V. B., Hell, J., Ahlijanian, M. K., Enyeart, J. J., Catterall, W. A., and Snutch, T. P. (1992). Molecular cloning of the alpha-1 subunit of an omega-conotoxin-sensitive calcium channel. *Proc. Natl. Acad. Sci. USA* 89, 5058–5062.
- Duncan, S. A., and Smlth, G. L. (1992a). Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress. *J. Virol.* 66, 1610–1621.
- Duncan, S. A., and Smith, G. L. (1992b). Vaccinia virus gene SalF5R is non-essential for virus replication in vitro and in vivo. *J. Gen. Virol.* 73, 1235–1242.
- Dyster, L. M., and Niles, E. G. (1991). Genetic and biochemical characterization of vaccinia virus genes D2L and D3R which encode virion structural proteins. *Virology* 182, 455–467.
- Earl, P. L., Jones, E. V., and Moss, B. (1986). Homology between DNA polymerases of poxviruses, herpesviruses, and adenoviruses; Nucleotide sequence of the vaccinia virus DNA polymerase gene. *Proc. Natl. Acad. Sci. USA* 83, 3659–3663.
- Elhabazi, A., Lang, V., Herold, C., Freeman, G. J., Bensussan, A., Boumsell, L., and Bismuth, G. (1997). The human semaphorin-like leukocyte cell surface molecule CD100 associates with a serine kinase activity. J. Biol. Chem. 272, 23515–23520.
- Engelstad, M., Howard, S. T., and Smith, G. L. (1992). A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. *Virology* 188, 801–810.
- Ensser, A., and Fleckenstein, B. (1995). The Alcelaphine herpesvirus type 1 has a semaphorin-like gene. *J. Gen. Virol.* **76**, 1063–1067.
- Fernando, M. R., Sumimoto, H., Nanri, H., Kawabata, S., Iwanaga, S., Minakami, S., Fukumaki, Y., and Takeshige, K. (1994). Cloning and sequencing of the cDNA encoding human glutaredoxin. *Biochim. Biophys. Acta* 1218, 229–231.
- Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., Bult, C. J., Tomb, J. F., Dougherty, B. A., and Merrick, J. M. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. *Science* 269, 496–512.
- Fleming, S. B., Blok, J., Fraser, K. M., Mercer, A. A., and Robinson, A. J. (1993). Conservation of gene structure and arrangement between vaccinia virus and orf virus. *Virology* 195, 175–184.
- Franke, C. A., Wilson, E. M., and Hruby, D. E. (1990). Use of a cell-free

- system to identify the vaccinia virus L1R gene product as the major late myristylated virion protein M25. *J. Virol.* **64**, 5988–5996.
- Funahashi, S., Sato, T., and Shida, H. (1988). Cloning and characterization of the gene encoding the major protein of the A-type inclusion body of cowpox virus. *J. Gen. Virol.* 69, 35–47.
- Furuyama, T., Inagaki, S., Kosugi, A., Noda, S., Saitoh, S., Ogata, M., Iwahashi, Y., Miyazaki, N., Hamaoka, T., and Tohyama, M. (1996). Identification of a novel transmembrane semaphorin expressed on lymphocytes. *J. Biol. Chem.* 271, 33376–33381.
- Gershon, P. D., Ahn, B. Y., Garfield, M., and Moss, B. (1991). Poly(A) polymerase and a dissociable polyadenylation stimulatory factor encoded by vaccinia virus. *Cell* 66, 1269–1278.
- Gershon, P. D., Ansell, D. M., and Black, D. N. (1989). A comparison of the genome organization of capripoxvirus with that of the orthopoxviruses. *J. Virol.* **63**, 4703–4708.
- Gershon, P. D., and Black, D. N. (1989a). A capripoxvirus pseudogene whose only intact homologs are in other poxvirus genomes. *Virology* 172, 350–354.
- Gershon, P. D., and Black, D. N. (1989b). The nucleotide sequence around the capripoxvirus thymidine kinase gene reveals a gene shared specifically with leporipoxvirus. *J. Gen. Virol.* 70, 525–533.
- Gershon, P. D., and Moss, B. (1990). Early transcription factor subunits are encoded by vaccinia virus late genes. *Proc. Natl. Acad. Sci. USA* 87, 4401–4405.
- Gershon, P. D., and Moss, B. (1993). Stimulation of poly(A) tail elongation by the VP39 subunit of the vaccinia virus-encoded poly(A) polymerase. *J. Biol. Chem.* **268**, 2203–2210.
- Gillard, S., Spehner, D., Drillien, R., and Kirn, A. (1986). Localization and sequence of a vaccinia virus gene required for multiplication in human cells. *Proc. Natl. Acad. Sci. USA* 83, 5573–5577.
- Giorda, R., Ohmachi, T., and Ennis, H. L. (1989). Organization of a gene family developmentally regulated during *Dictyostelium discoideum* spore germination. *J. Mol. Biol.* 205, 63–69.
- Giorda, R., Weisberg, E. P., Ip, T. K., and Trucco, M. (1992). Genomic structure and strain-specific expression of the natural killer cell receptor NKR-P1. *J. Immunol.* 149, 1957–1963.
- Goebel, S. J., Johnson, G. P., Perkus, M. E., Davis, S. W., Winslow, J. P., and Paoletti, E. (1990). The complete DNA sequence of vaccinia virus. *Virology* 179, 247–266, 517–563.
 Gong, S. C., Lai, C. F., and Esteban, M. (1990). Vaccinia virus induces
- Gong, S. C., Lai, C. F., and Esteban, M. (1990). Vaccinia virus induces cell fusion at acid pH and this activity is mediated by the N-terminus of the 14-kDa virus envelope protein. *Virology* 178, 81–91.
- Graham, K. A., Lalani, A. S., Macen, J. L., Ness, T. L., Barry, M., Liu, L. Y., Lucas, A., Clark-Lewis, I., Moyer, R. W., and McFadden, G. (1997). The T1/35kDa family of poxvirus-secreted proteins bind chemokines and modulate leukocyte influx into virus-infected tissues. *Virology* 229, 12–24.
- Grosenbach, D. W., Ulaeto, D. O., and Hruby, D. E. (1997). Palmitylation of the vaccinia virus 37-kDa major envelope antigen. Identification of a conserved acceptor motif and biological relevance. *J. Biol. Chem.* 272, 1956–1964.
- Guan, K. L., Broyles, S. S., and Dixon, J. E. (1991). A Tyr/Ser protein phosphatase encoded by vaccinla virus. *Nature* **350**, 359–362.
- Gum, J. R. J., Hicks, J. W., Toribara, N. W., Kim, Y. S., and Siddiki, B. (1994). Molecular cloning of human intestinal mucin (MUC2) cDNA: Identification of the amino terminal and overall sequence similarity to pre-pro-von Willebrand factor. *J. Biol. Chem.* 269, 2440–2446.
- Gvakharia, B. O., Koonin, E., and Mathews, C. (1996). Vaccinia virus G4L gene encodes a second glutaredoxin. *Virology* 226, 408–411.
- Hall, K. T., Boumsell, L., Schultze, J. L., Boussiotis, V. A., Dorfman, D. M., Cardoso, A. A., Bensussan, A., Nadler, L. M., and Freeman, G. J. (1996). Human CD100, a novel leukocyte semaphorin that promotes B-cell aggregation and differentiation. *Proc. Natl. Acad. Sci. USA* 93, 11780–11785.
- Hall, R. L., and Moyer, R. W. (1991). Identification, cloning, and sequencing of a fragment of *Amsacta moorei* entomopoxvirus DNA containing the spheroidin gene and three vaccinia virus-related open reading frames. *J. Virol.* 65, 6516–6527.

- Hamann, J., Fiebig, H., and Strauss, M. (1993). Molecular cloning of the early activation antigen CD69, a type II integral membrane protein with a C-type lectin domain. *J. Immunol.* 150, 4920–4927.
- Hansen, M., Albers, M., Backes, U., Coblenz, A., Leuther, H., Neu, R., Schreer, A., Schafer, B., Zimmerman, M., and Wolf, K. (1996). The sequence of a 23.4 kb segment on the right arm of chromosome VII from Saccharomyces cerevisiae reveals CLB6, SPT6, RP28A and NUP57 genes, a Ty3 element and 11 new open reading frames. Yeast 12, 1273–1277.
- Heller, R. A., Song, K., Onasch, M. A., Fischer, W. H., Chang, D., and Ringold, G. M. (1990). Complementary DNA cloning of a receptor for tumor necrosis factor and demonstration of a shed form of the receptor. *Proc. Natl. Acad. Sci. USA* 87, 6151–6155.
- Hirt, P., Hiller, G., and Wittek, R. (1986). Localization and fine structure of a vaccinia virus gene encoding an envelope antigen. *J. Virol.* 58, 757–764.
- Hooda-Dhingra, U., Patel, D. D., Pickup, D. J., and Condit, R. C. (1990). Fine structure mapping and phenotypic analysis of five temperature-sensitive mutations in the second largest subunit of vaccinia virus DNA-dependent RNA polymerase. *Virology* 174, 60–69. Houchins, J. P., Yabe, T., McSherry, C., and Bach, F. H. (1991). DNA
- Houchins, J. P., Yabe, T., McSherry, C., and Bach, F. H. (1991). DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. *J. Exp. Med.* 173, 1017–1020.
- J. Exp. Med. 173, 1017–1020.

 Howard, S. T., Chan, Y. S., and Smith, G. L. (1991). Vaccinia virus homologues of the Shope fibroma virus inverted terminal repeat proteins and a discontinuous ORF related to the tumor necrosis factor receptor family. Virology 180, 633–647.
- Howard, S. T., and Smith, G. L. (1989). Two early vaccinia virus genes encode polypeptides related to protein kinases. *J. Gen. Virol.* 70, 3187–3201.
- Hruby, D. E., and Ball, L. A. (1982). Mapping and identification of the vaccinia virus thymidine kinase gene. *J. Virol.* 43, 403–409.
- Hu, F. Q., and Pickup, D. J. (1991). Transcription of the terminal loop region of vaccinia virus DNA is initiated from the telomere sequences directing DNA resolution. *Virology* 181, 716–720.
- Hu, F. Q., Smlth, C. A., and Plckup, D. J. (1994). Cowpox virus contains two copies of an early gene encoding a soluble secreted form of the type II TNF receptor. *Virology* 204, 343–356.
- Huang, M. E., Chuat, J. C., and Gallbert, F. (1994). A possible yeast homolog of human active-gene-repairing helicase ERCC6. *Biochem. Biophys. Res. Commun.* 201, 310–317.
- Hutson, R. A., Zhou, Y., Collins, M. D., Johnson, E. A., Hatheway, C. L., and Sugiyama, H. (1996). Genetic characterization of *Chlostridium botulinum* type A containing silent type B neurotoxin gene sequences. *J. Biol. Chem.* 271, 10786–10792.
- Isaacs, S. N., Wolffe, E. J., Payne, L. G., and Moss, B. (1992). Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. *J. Virol.* 66, 7217–7224.
- Jackson, R. J., and Bults, H. G. (1990). A myxoma virus nucleotide sequence with homology to the vaccinia virus RNA polymerase 22-kDa subunit gene. *Nucleic Acids Res.* 18, 5290.
- Jackson, R. J., and Bults, H. G. (1992). The myxoma virus thymidine kinase gene: sequence and transcriptional mapping. J. Gen. Virol. 73, 323–328.
- Jackson, R. J., Hall, D. F., and Kerr, P. J. (1996). Construction of recombinant myxoma viruses expressing foreign genes from different intergenic sites without associated attenuation. *J. Gen. Virol.* 77, 1569–1575.
- Jensen, O. N., Houthaeve, T., Shevchenko, A., Cudmore, S., Ashford, T., Mann, M., Griffiths, G., and Krijnse Locker, J. (1996). Identification of the major membrane and core proteins of vaccinia virus by twodimensional electrophoresis. J. Virol. 70, 7485-7497.
- Johnson, G. P., Goebel, S. J., Perkus, M. E., Davis, S. W., Winslow, J. P., and Paoletti, E. (1991). Vaccinia virus encodes a protein with similarity to glutaredoxins. *Virology* **181**, 378–381.
- Kane, E. M., and Shuman, S. (1992). Temperature-sensitive mutations in the vaccinia virus H4 gene encoding a component of the virion RNA polymerase. *J. Virol.* 66, 5752–5762.

- Kane, E. M., and Shuman, S. (1993). Vaccinia virus morphogenesis is blocked by a temperature-sensitive mutation in the 17 gene that encodes a virion component. *J. Virol.* 67, 2689–2698.
- Kao, S. Y., and Bauer, W. R. (1987). Blosynthesis and phosphorylation of vaccinia virus structural protein VP11. *Virology* 159, 399–407.
- Katsanis, N., Fitzgibbon, J., and Fisher, E. M. C. (1996). Paralogy mapping: Identification of a region in the human MHC triplicated onto human chromosomes 1 and 9 allows the prediction and isolation of novel PBX and NOTCH loci. *Genomics* 35, 101–108.
- Keck, J. G., Baldick, C. J., Jr., and Moss, B. (1990). Role of DNA replication in vaccinia virus gene expression: A naked template is required for transcription of three late trans-activator genes. *Cell* 61, 801–809.
- Keck, J. G., Kovacs, G. R., and Moss, B. (1993). Overexpression, purification, and late transcription factor activity of the 17-kilodalton protein encoded by the vaccinia virus A1L gene. J. Virol. 67, 5740-5748.
- Kerr, S. M., and Smith, G. L. (1989). Vaccinia virus encodes a polypeptide with DNA ligase activity. *Nucleic Acids Res.* 17, 9039–9050.
- Kim, U., Wang, Y., Sanford, T., Zeng, Y., and Nishikura, K. (1994). Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. *Proc. Natl. Acad. Sci. USA* 91, 11457–11461.
- Kolodkin, A. L., Matthes, D. J., and Goodman, C. S. (1993). The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. *Cell* **75**, 1389–1399.
- Koonin, E. V. (1993). A highly conserved sequence motif defining the family of MutT-related proteins from eubacteria, eukaryotes and viruses. *Nucleic Acids Res.* 21, 4847.
- Koonin, E. V., and Senkevich, T. G. (1992). Vaccinia virus encodes four putative DNA and/or RNA helicases distantly related to each other. *J. Gen. Virol.* 73, 989–993.
- Koonin, E. V., Senkevich, T. G., and Chernos, V. I. (1993). Gene A32 product of vaccinia virus may be an ATPase involved in viral DNA packaging as indicated by sequence comparisons with other putative viral ATPases. *Virus Genes* 7, 89–94.
- Kotwal, G. J. (1996). The great escape. Immune evasion by pathogens. *Immunologist* 4/5, 157–164.
- Kotwal, G. J., and Moss, B. (1988a). Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant. *Virology* 167, 524–537.
- Kotwal, G. J., and Moss, B. (1988b). Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. *Nature* 335, 176–178.
- Kotwal, G. J., and Moss, B. (1989). Vaccinia virus encodes two proteins that are structurally related to members of the plasma serine protease inhibitor superfamily *J. Virol.* 63, 600–606. [Published erratum appears in *J. Virol.*, 1990, 64(2), 966]
- Kovacs, G. R., and Moss, B. (1996). The vaccinia virus H5R gene encodes late gene transcription factor 4: purification, cloning, and overexpression. *J. Virol.* **70**, 6796–6802.
- Krijnse-Locker, J., Schleich, S., Rodriguez, D., Goud, B., Snijder, E. J., and Griffiths, G. (1996). The role of a 21-kDa viral membrane protein in the assembly of vaccinia virus from the intermediate compartment. *J. Biol. Chem.* 271, 14950–14958.
- Kumar, S., and Boyle, D. B. (1990). Mapping of a major early/late gene of fowlpox virus. *Virus Res.* 15, 175–186.
- Kwiatkowski, D. J., and Bruns, G. A. P. (1988). Human profilin: Molecular cloning sequence comparison, and chromosomal analysis. *J. Biol. Chem.* 263, 5910–5915.
- Ladner, R. D., McNulty, D. E., Carr, S. A., and Roberts, G. D. (1996). Characterization of distinct nuclear and mitochondrial forms of human deoxyuridine triphosphate nucleotidohydrolase. *J. Biol. Chem.* 271, 7745–7751.
- Lanier, L. L. (1997). Natural killer cell receptors and MHC class I interactions. *Curr. Opin. Immunol.* 9, 126–131.
- Lin, S., and Broyles, S. S. (1994). Vaccinia protein kinase 2: A second essential serine/threonine protein kinase encoded by vaccinia virus. *Proc. Natl. Acad. Sci. USA* 91, 7653–7657.

- Lin, S., Chen, W., and Broyles, S. S. (1992). The vaccinia virus B1R gene product is a serine/threonine protein kinase. *J. Virol.* 66, 2717–2723.
- Lindberg, F. P., Gresham, H. D., Schwarz, E., and Brown, E. J. (1993). Molecular cloning of integrin-associated protein: An immunoglobulin family member with multiple membrane spanning domains implicated in alpha-v beta-3-dependent ligand binding. *J. Cell. Biol.* 123, 485–496.
- Loskutoff, D. J., Linders, M., Keuer, J., Veerman, H., van Heerikhuizen, H., and Pannekoek, H. (1987). Structure of the human plasminogen activator inhibitor 1 gene. Nonrandom distribution of introns. *Biochemistry* 26, 3763–3768.
- Maa, J. S., Rodriguez, J. F., and Esteban, M. (1990). Structural and functional characterization of a cell surface binding protein of vaccinia virus. *J. Biol. Chem.* 265, 1569–1577.
- Martin, K. H., Grosenbach, D. W., Franke, C. A., and Hruby, D. E. (1997). Identification and analysis of three myristylated vaccinia virus late proteins. *J. Virol.* 71, 5218–5226.
- Massung, R. F., Jayarama, V., and Moyer, R. W. (1993). DNA sequence analysis of conserved and unique regions of swinepox virus: Identification of genetic elements supporting phenotypic observations including a novel G protein-coupled receptor homologue. *Virology* 197, 511–528.
- Massung, R. F., Liu, L. I., Qi, J., Knight, J. C., Yuran, T. E., Kerlavage, A. R., Parsons, J. M., Venter, J. C., and Esposito, J. J. (1994). Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975. *Virology* 201, 215–240.
- Massung, R. F., Loparev, V. N., Knight, J. C., Totmenin, A. V., Chizhikov, V. E., Parsons, J. M., Safronov, P. F., Gutorov, V. V., Shchelkunov, S. N., and Esposito, J. J. (1996). Terminal region sequence variations in variola virus DNA. *Virology* 221, 291–300.

 Massung, R. F., McFadden, G., and Moyer, R. W. (1992). Nucleotide
- Massung, R. F., McFadden, G., and Moyer, R. W. (1992). Nucleotide sequence analysis of a unique near-terminal region of the tumorigenic poxvirus, Shope fibroma virus. *J. Gen. VIrol.* 73, 2903–2911.
- Mayr, A., and Malicki, K. (1966). Attenuierung von virulentem Hühnerpockenvirus in Zeilkulturen und Eigenschaften des attenuierten Virus. Zentralb. Vet. Med. B. 13, 1–13.
- Mayr, A., Stickl, H., Müller, H. K., Danner, K., and Singer, H. (1978). The smallpox vaccination strain MVA: Marker, genetic structure, experience gained with the parenteral vaccination and behavior in organisms with a debilitated defence mechanism. *Zbl. Bakt. Hyg. l.Abt. Orig. B* 167, 375–390.
- McIntosh, A. A., and Smith, G. L. (1996). Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus. *J. Virol.* 70, 272–281.
- McMahan, C. J., Slack, J. L., Mosley, B., Cosman, D., Lupton, S. D., Brunton, L. L., Grubin, C. E., Wignall, J. M., Jenkins, N. A., and Brannan, C. I. (1991). A novel IL-1 receptor, cloned from B cells by mammalian expression, is expressed in many cell types. *EMBO J.* 10, 2821–2832.
- Meis, R. J., and Condit, R. C. (1991). Genetic and molecular biological characterization of a vaccinia virus gene which renders the virus dependent on Isatin-beta-thiosemicarbazone (IBT). *Virology* 182, 442–454.
- Mercer, A. A., Fraser, K. M., Stockwell, P. A., and Robinson, A. J. (1989). A homologue of retroviral pseudoproteases in the parapoxvirus, orf virus. *Virology* 172, 665–668.
- Mercer, A. A., Green, G., Sullivan, J. T., Robinson, A. J., and Drillien, R. (1996). Location, DNA sequence and transcriptional analysis of the DNA polymerase gene of orf virus. *J. Gen. Virol.* 77, 1563–1568.
- Mercer, A. A., Lyttle, D. J., Whelan, E. M., Fleming, S. B., and Sullivan, J. T. (1995). The establishment of a genetic map of orf virus reveals a pattern of genomic organization that is highly conserved among divergent poxviruses. *Virology* 212, 698–704.
- Merchlinsky, M., and Moss, B. (1989). Nucleotide sequence required for resolution of the concatemer junction of vaccinia virus DNA. *J. Virol.* 63, 4354–4361.
- Messmer, B., and Dreyer, C. (1993). Requirements for nuclear translo-

- cation and nucleolar accumulation of nucleolin of *X. laevis. Eur. J. Cell Biol.* 61, 369–382.
- Meurs, E., Chong, K., Galabru, J., Thomas, N. S., Kerr, I. M., Williams, B. R., and Hovanessian, A. G. (1990). Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. *Cell* 62, 379–390.
- Meyer, H., Osterrieder, N., and Czerny, C. P. (1994). Identification of binding sites for neutralizing monoclonal antibodies on the 14-kDa fusion protein of orthopox viruses. *Virology* 200, 778–783.
- Meyer, H., and Rziha, H. J. (1993). Characterization of the gene encoding the A-type inclusion protein of camelpox virus and sequence comparison with other orthopoxviruses. *J. Gen. Virol.* 74, 1679–1684.
- Meyer, H., Sutter, G., and Mayr, A. (1991). Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. *J. Gen. Virol.* 72, 1031–1038.
- Miller, C. G., Shchelkunov, S. N., and Kotwal, G. J. (1997). The cowpox virus-encoded homolog of the vaccinia virus complement control protein is an inflammation modulatory protein. *Virology* 229, 126–133.
- Moolenaar, W. H., Kranenburg, O., Postma, F. R., and Zondag, G. C. M. (1997). Lysophosphatidic acid: G-protein signalling and cellular responses. *Curr. Opin. Cell Biol.* 9, 168–173.
- Moore, J. B., and Smith, G. L. (1992). Steroid hormone synthesis by a vaccinia enzyme: A new type of virus virulence factor *EMBO J.* 11, 1973–1980. [Published erratum appears in *EMBO J.* 1992, 11(9), 3490]
- Morgan, J. R., Cohen, L. K., and Roberts, B. E. (1984). Identification of the DNA sequences encoding the large subunit of the mRNA-capping enzyme of vaccinia virus. *J. Virol.* 52, 206–214.
- Moss, B. (1996). Poxviridae: The viruses and their replication. *In* "Fields Virology" (B. N. Fields, D. M. Knipe, R. M. Chanock, J. Melnick, B. Rolzman, and R. Shope, Eds.). Raven Press, Philadelphia.
- Mossman, K., Lee, S. F., Barry, M., Boshkov, L., and McFadden, G. (1996). Disruption of M-T5, a novel myxoma virus gene member of the poxvirus host range superfamily, results in dramatic attenuation of myxomatosis in infected European rabbits. *J. Virol.* 70, 4394–4411.
- Mossman, K., Ostergaard, H., Upton, C., and McFadden, G. (1995a). Myxoma virus and Shope fibroma virus encode dual-specificity tyrosine/serine phosphatases which are essential for virus viability. *Virology* 206, 572–582.
- Mossman, K., Upton, C., Buller, R. M., and McFadden, G. (1995b). Species specificity of ectromelia virus and vaccinia virus interferongamma binding proteins. *Virology* 208, 762–769.
- Mustafa, A., and Yuen, L. (1991). Identification and sequencing of the *Choristoneura biennis* entomopoxvirus DNA polymerase gene. *DNA Seq.* 2, 39–45.
- Naase, M., Nicholson, B. H., Fraser, K. M., Mercer, A. A., and Robinson, A. J. (1991). An orf virus sequence showing homology to the 14K 'fusion' protein of vaccinia virus. *J. Gen. Virol.* 72, 1177–1181.
- Neumann, H., and Zillig, W. (1990). Nucleotide sequence of the viral protein TPX of the TTV1 variant VT3. *Nucleic Acids Res.* 18, 2171.
- Niles, E. G., Condit, R. C., Caro, P., Davidson, K., Matusick, L., and Seto, J. (1986). Nucleotide sequence and genetic map of the 16-kb vaccinia virus *Hin*dIII D fragment. *Virology* 153, 96–112.
- Niles, E. G., Lee-Chen, G. J., Shuman, S., Moss, B., and Broyles, S. S. (1989). Vaccinia virus gene D12L encodes the small subunit of the viral mRNA capping enzyme. *Virology* 172, 513–522.
- Niles, E. G., and Seto, J. (1988). Vaccinia virus gene D8 encodes a virion transmembrane protein. *J. Virol.* **62**, 3772–3778.
- Nishiyama, Y., Tanaka, T., Naitoh, H., Mori, C., Fukumoto, M., Hiai, H., and Toyokuni, S. (1997). Overexpression of integrin-associated protein (CD47) in rat kidney treated with a renal carcinogen, ferric nitrilotriacetate. *Jpn. J. Cancer Res.* 88, 120–128.
- O'Connell, M. A., Krause, S., Higuchi, M., Hsuan, J. J., Totty, N. F., Jenny, A., and Keller, W. (1995). Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. *Mol. Cell. Biol.* 15, 1389–1397.
- Ogawa, R., Calvert, J. G., Yanagida, N., and Nazerian, K. (1993). Insertional inactivation of a fowlpox virus homologue of the vaccinia virus

- F12L gene inhibits the release of enveloped virions. *J. Gen. Virol.* 74, 55–64.
- Okabe, I., Bailey, L. C., Attree, O., Srinivasan, S., Perkel, J. M., Laurent, B. C., Carlson, M., Nelson, D. L., and Nussbaum, R. L. (1992). Cloning of human and bovine homologs of SNF2/SWI2: A global activator of transcription in yeast *S. cerevisiae*. *Nucleic Acids Res.* 20, 4649–4655.
- Osborne, R. J., Symonds, T. M., Sriskantha, A., Lai-Fook, J., Fernon, C. A., and Dall, D. J. (1996). An entomopoxvirus homologue of the vaccinia virus D13L-encoded 'rifampicin resistance' protein. *J. Gen. Virol.* 77, 839–846.
- Parkinson, J. E., and Smith, G. L. (1994). Vaccinia virus gene A36R encodes a M(r) 43-50 K protein on the surface of extracellular enveloped virus. *Virology* 204, 376–390.
- Parks, R. J., Lichty, B. D., Karakis, C., and Evans, D. H. (1994). Characterization of the Shope fibroma virus DNA ligase gene. *Virology* 202, 642–650.
- Passarelli, A. L., Kovacs, G. R., and Moss, B. (1996). Transcription of a vaccinia virus late promoter template: Requirement for the product of the A2L intermediate-stage gene. J. Virol. 70, 4444–4450.
- Patel, A. H., Gaffney, D. F., Subak-Sharpe, J. H., and Stow, N. D. (1990). DNA sequence of the gene encoding a major secreted protein of vaccinia virus, strain Lister. *J. Gen. Virol.* 71, 2013–2021.
- Patel, D. D., and Pickup, D. J. (1989). The second-largest subunit of the poxvirus RNA polymerase is similar to the corresponding subunits of procaryotic and eucaryotic RNA polymerases. *J. Virol.* 63, 1076–1086.
- Pena, L., Yanez, R. J., Revilla, Y., Vinuela, E., and Salas, M. L. (1993). African swine fever virus guanylyltransferase. *Virology* 193, 319–328.
- Perkus, M. E., Goebel, S. J., Davis, S. W., Johnson, G. P., Limbach, K., Norton, E. K., and Paoletti, E. (1990). Vaccinia virus host range genes. *Virology* 179, 276–286.
- Perkus, M. E., Goebel, S. J., Davis, S. W., Johnson, G. P., Norton, E. K., and Paoletti, E. (1991). Deletion of 55 open reading frames from the termini of vaccinia virus. *Virology* 180, 406–410.
- Peters, L. L., John, K. M., Lu, F. M., Eicher, E. M., Higgins, A., Yialamas, M., Turtzo, L. C., Otsuka, A. J., and Lux, S. E. (1995). Ank3 (epithelial ankyrin), a widely distributed new member of the ankyrin gene family and the major ankyrin in kidney, is expressed in alternatively spliced forms, including forms that lack the repeat domain. *J. Cell Biol.* 130, 313–330.
- Pickup, D. J., Ink, B. S., Hu, W., Ray, C. A., and Joklik, W. K. (1986). Hemorrhage in lesions caused by cowpox virus is induced by a viral protein that is related to plasma protein inhibitors of serine proteases. *Proc. Natl. Acad. Sci. USA* 83, 7698–7702.
- Plucienniczak, A., Schroeder, E., Zettlmeissl, G., and Streeck, R. E. (1985). Nucleotide sequence of a cluster of early and late genes in a conserved segment of the vaccinia virus genome. *Nucleic Acids Res.* 13, 985–998.
- Prabhakaran, K., Harris, E. B., and Randhawa, B. (1996). Properties of lysophospholipase in *Mycobacterium leprae*. *J. Basic Microbiol.* **36**, 341–349.
- Print, C., Leung, E., Harrison, J., and Watoson, J. (1994). Cloning of a gene encoding a human leukocyte protein characterized by extensive heptad repeats. *Gene* 144, 221–228.
- Quick, S. D., and Broyles, S. S. (1990). Vaccinia virus gene D7R encodes a 20,000-dalton subunit of the viral DNA-dependent RNA polymerase. *Virology* 178, 603-605.
- Ray, C. A., Black, R. A., Kronheim, S. R., Greenstreet, T. A., Sleath, P. R., Salvensen, G. S., and Pickup, D. J. (1992). Viral Inhibition of inflammation: Cowpox virus encodes an inhibitor of the interleukin-1β converting enzyme. *Cell* **69**, 597–604.
- Reppert, S. M., Weaver, D. R., Cassone, V. M., Godson, C., and Kolakowski, L. F. (1995). Melatonin receptors are for the birds: Molecular analysis of two receptor subtypes differentially expressed in chick brain. *Neuron* 15, 1003–1015.
- Rodriguez, D., Esteban, M., and Rodriguez, J. R. (1995). Vaccinia virus A17L gene product is essential for an early step in virion morphogenesis. *J. Virol.* 69, 4640–4648.

- Rodriguez, J. F., and Esteban, M. (1987). Mapping and nucleotide se quence of the vaccinia virus gene that encodes a 14-kilodalton fusior protein. J. Virol. 61, 3550–3554.
- Rodriguez, J. F., Kahn, J. S., and Esteban, M. (1986). Molecular cloning encoding sequence, and expression of vaccinia virus nucleic acid dependent nucleoside triphosphatase gene. *Proc. Natl. Acad. Sci USA* 83, 9566–9570.
- Rodriguez, J. F., and Smith, G. L. (1990). IPTG-dependent vaccinia virus Identification of a virus protein enabling virion envelopment by Golg membrane and egress. *Nucleic Acids Res.* 18, 5347–5351.
- Roper, R. L., Payne, L. G., and Moss, B. (1996). Extracellular vacciniz virus envelope glycoprotein encoded by the A33R gene. *J. Virol.* 70, 3753–3762.
- Rosel, J., and Moss, B. (1985). Transcriptional and translational mapping and nucleotide sequence analysis of a vaccinia virus gene encoding the precursor of the major core polypeptide 4b. *J. Virol.* 56, 830–838.
- Rosel, J. L., Earl, P. L., Weir, J. P., and Moss, B. (1986). Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the Hindlll H genome fragment. *J. Virol.* 60, 436–449.
- Roseman, N. A., Evans, R. K., Mayer, E. L., Rossi, M. A., and Slabaugh, M. B. (1996). Purification and characterization of the vaccinia virus deoxyuridine triphosphatase expressed In *Escherichia coli. J. Biol. Chem.* 271, 23506–23511.
- Roseman, N. A., and Slabaugh, M. B. (1990). The vaccinia virus *HindIII* F fragment: Nucleotide sequence of the left 6.2 kb. *Virology* 178, 410–418.
- Ruby, J., Błuethmann, H., Aguet, M., and Ramshaw, I. A. (1995). CD40 ligand has potent antiviral activity. *Nature Med.* 1, 437–441. [See comments]
- Safronov, P. F., Petrov, N. A., Riazankina, O. I., Totmenin, A. V., Shchel-kunov, S. N., and Sandakhiev, L. S. (1996). Genes of a circle of hosts for the cowpoxvirus. *Dokl. Akad. Nauk.* 349, 829–833.
- Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. *Proc. Natl. Acad. Sci. USA* **74**, 5463–5467.
- Schmitt, J. F., and Stunnenberg, H. G. (1988). Sequence and transcriptional analysis of the vaccinia virus HindIII I fragment. *J. Virol.* 62, 1889–1897.
- Schmutz, C., Payne, L. G., Gubser, J., and Wittek, R. (1991). A mutation in the gene encoding the vaccinia virus 37,000-M(r) protein confers resistance to an inhibitor of virus envelopment and release. *J. Virol.* 65, 3435–3442.
- Schneider, S. S., Schlck, C., Fish, K. E., Miller, E., Pena, J. C., Treter, S., Hui, S. M., and Silverman, G. A. (1995). A serine proteinase inhibitor locus at 18q21.3 contains a tandem duplication of the human squamous cell carcinoma antigen gene. *Proc. Natl. Acad. Sci. USA* 92, 3147–3151.
- Schnitzlein, W. M., and Tripathy, D. N. (1991). Identification and nucleotide sequence of the thymidine klnase gene of swinepox virus. *Virology* 181, 727–732.
- Schweizer, M., and Neumann-Haefelin, D. (1995). Phylogenetic analysis of primate foamy virus by comparison of pol sequences. *Virology* 207, 577–582.
- Senkevich, T. G., Bugert, J. J., Sisler, J. R., Koonin, E. V., Darai, G., and Moss, B. (1996). Genome sequence of a human tumorigenic poxvirus: prediction of specific host response-evasion genes. *Science* 273, 813–816.
- Senkevich, T. G., Koonín, E. V., Bugert, J. J., Darai, G., and Moss, B. (1997). The genome of molluscum contagiosum virus: analysis and comparison with other poxviruses. *Virology* 233, 19–42.
- Senkevich, T. G., Koonin, E. V., and Buller, R. M. (1993a). A poxvirus protein with a RING zinc finger motif is of crucial importance for virulence. *Virology* 198, 118–128.
- Senkevich, T. G., Muravnik, G. L., Pozdnyakov, S. G., Chizhkov, V. E., Ryazankina, O. I., Shchelkunov, S. N., Koonin E. V., and Chernos, V. I.

- (1993b). Nucleotide sequence of Xhol O fragment of ectromelia virus DNA reveals significant differences from vaccinia virus. *Virus Res.* **30**, 73–88.
- Seralini, G. E., Underhill, C. M., Smith, C. L., Nguyen, V. T., and Hammond, G. L. (1989). Biological half-life and transfer of maternal corticosteroid-binding globulin to amniotic fluid in the rabbit. *Endocrinology* 125, 1321–1325.
- Shchelkunov, S. N., Blinov, V. M., Resenchuk, S. M., Totmenin, A. V., and Sandakhchiev, L. S. (1993a). Analysis of the nucleotide sequence of a 43 kbp segment of the genome of variola virus India-1967 strain. *Virus Res.* 30, 239–258.
- Shchelkunov, S. N., Blinov, V. M., and Sandakhchiev, L. S. (1993b). Ankyrin-like proteins of variola and vaccinia viruses. *FEBS Lett.* 319, 163–165.
- Shchelkunov, S. N., Blinov, V. M., Totmenin, A. V., Marennikova, S. S., Kolykhalov, A. A., Frolov, I. V., Chizhikov, V. E., Gytorov, V. V., Gashikov, P. V., and Belanov, E. F. (1993c). Nucleotide sequence analysis of variola virus Hindll M, L, I genome fragments. *Virus Res.* 27, 25–35.
- Shchelkunov, S. N., Marennikova, S. S., Blinov, V. M., Resenchuk, S. M., Totmenin, A. V., Chizhikov, V. E., Guturov, V. V., Safronov, P. F., Kurmanov, R. K., and Sandakhchiev, L. S. (1993d). Entire coding sequence of the variola virus. *Dokl. Akad. Nauk.* 328, 629–632.
- Shchelkunov, S. N., Massung, R. F., and Esposito, J. J. (1995). Comparison of the genome DNA sequences of Bangladesh-1975 and India-1967 variola viruses. *Virus Res.* 36, 107–118.
- Shida, H. (1986). Nucleotide sequence of the vaccinia virus hemagglutinin gene. *Virology* 150, 451–462.
- Shuman, S. (1992). Vaccinia virus RNA helicase: An essential enzyme related to the DE-H family of RNA-dependent NTPases. *Proc. Natl. Acad. Sci. USA* 89, 10935–10939.
- Shuman, S., and Moss, B. (1987). Identification of a vaccinia virus gene encoding a type I DNA topoisomerase. *Proc. Natl. Acad. Sci. USA* 84, 7478–7482.
- Skimmer, M. A., Moore, J. B., Binns, M. M., Smith, G. L., and Boursnell, M. E. (1994). Deletion of fowlpox virus homologues of vaccinia virus genes between the 3 beta-hydroxysteroid dehydrogenase (A44L) and DNA ligase (A50R) genes. *J. Gen. Virol.* 75, 2495–2498.
- Slabaugh, M., Roseman, N., Davis, R., and Mathews, C. (1988). Vaccinia virus-encoded ribonucleotide reductase: Sequence conservation of the gene for the small subunit and its amplification in hydroxyurearesistant mutants. J. Virol. 62, 519–527.
- Smith, G. L., and Chan, Y. S. (1991). Two vaccinia virus proteins structurally related to the interleukin-1 receptor and the immunoglobulin superfamily. J. Gen. Virol. 72, 511–518.
- Smith, G. L., Chan, Y. S., and Howard, S. T. (1991). Nucleotide sequence of 42 kbp of vaccinia virus strain WR from near the right inverted terminal repeat. *J. Gen. Virol.* 72, 1349–1376.
- Smith, G. L., Howard, S. T., and Chan, Y. S. (1989). Vaccinia virus encodes a family of genes with homology to serine proteinase inhibitors. *J. Gen. Virol.* 70, 2333–2343.
- Spehner, D., Gillard, S., Drittien, R., and Kirn, A. (1988). A cowpox virus gene required for multiplication in Chinese hamster ovary cells. *J. Virol.* **62**, 1297–1304.
- Spriggs, M. K., Hruby, D. E., Maliszewski, C. R., Pickup, D. J., Sims, J. E., Buller, R. M., and VanSlyke, J. (1992). Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. *Cell* 71, 145-152.
- Stamencovic, I., Clark, E. A., and Seed, B. (1989). A B-lymphocyte activation molecule related to the nerve growth factor receptor and induced by cytokines in carcinomas. *EMBO J.* 8, 1403–1410.
- Strayer, D. S., Jerng, H. H., and O'Connor, K. (1991). Sequence and analysis of a portion of the genomes of Shope fibroma virus and malignant rabbit fibroma virus that is important for viral replication in lymphocytes. *Virology* 185, 585–595.
- Stroobant, P., Rice, A. P., Gullick, W. J., Cheng, D. J., Kerr, I. M., and Waterfield, M. D. (1985). Purification and characterization of vaccinia virus growth factor. *Cell* 42, 383–393.
- Sullivan, J. T., Fleming, S. B., Robinson, A. J., Mercer, A. A. (1995a).

- Sequence and transcriptional analysis of a near-terminal region of the orf virus genome. *Virus Genes* 11, 21–29.
- Sullivan, J. T., Fraser, K. M., Fleming, S. B., Robinson, A. J., and Mercer, A. A. (1995b). Sequence and transcriptional analysis of an orf virus gene encoding ankyrin- like repeat sequences. *Virus Genes* 9, 277–282.
- Sullivan, J. T., Mercer, A. A., Fleming, S. B., and Robinson, A. J. (1994). Identification and characterization of an orf virus homologue of the vaccinia virus gene encoding the major envelope antigen p37K. *Virology* 202, 968–973.
- Sung, T. C., Roper, R. L., Zhang, Y., Rudge, S. A., Temel, R., Hammond, S. M., Morris, A. J., Moss, B., Engebrecht, J., and Frohman, M. A. (1997). Mutagenesis of phospholipase D defines a superfamily including a trans-Golgi viral protein required for poxvirus pathogenicity. *EMBO J.* 16, 4519–4530.
- Sutter, G., and Moss, B. (1992). Nonreplicating vaccinia vector efficiently expresses recombinant genes. *Proc. Natl. Acad. Sci. USA* 89, 10847–10851.
- Sutter, G., Wyatt, L. S., Foley, P. L., Bennink, J. R., and Moss, B. (1994). A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. *Vaccine* 12, 1032–1040.
- Symons, J. A., Alcami, A., and Smith, G. L. (1995). Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. *Cell* 81, 551–560.
- Takahashi, R., Ole, M., and Ichihashi, Y. (1994). N-terminal amino acid sequences of vaccinia virus structural proteins. *Virology* 202, 844–852.
- Takahashi-Nishimaki, F., Funahashi, S., Miki, K., Hashizume, S., and Sugimoto, M. (1991). Regulation of plaque size and host range by a vaccinia virus gene related to complement system proteins. *Virology* 181, 158–164.
- Talbott, R. L., Sparger, E. E., Lovelace, K. M., Fitch, W. M., Pedersen, N. C., Luclw, P. A., and Elder, J. H. (1989). Nucleotide sequence and genomic organization of feline immunodeficiency virus. *Proc. Natl. Acad. Sci. USA* 86, 5743–5747.
- Tamin, A., Esposito, J., and Hruby, D. (1991). A single nucleotide substitution in the 5'-untranslated region of the vaccinia N2L gene is responsible for both alpha-amanitin-resistant and temperature-sensitive phenotypes. *Virology* 182, 393–396.
- Tan, J. L., and Spudich, J. A. (1990). Developmentally regulated proteintyrosine kinase genes in *Dictyostelium discoideum*. *Mol. Čell. Biol.* 10, 3578–3583.
- Tartaglia, J., Perkus, M. E., Taylor, J., Norton, E. K., Audonnet, J. C., Cox, W. I., Davis, S. W., van der Hoeven, J., Meignier, B., Riviere, M., Languet, B., and Paoletti, E. (1992). NYVAC: A highly attenuated strain of vaccinia virus. *Virology* 188, 217–232.
 Tartaglia, J., and Paoletti, E. (1985). Physical mapping and DNA se-
- Tartaglia, J., and Paoletti, E. (1985). Physical mapping and DNA sequence analysis of the rifamplein resistance locus in vaccinia virus. Virology 147, 394–404.
- Tartaglia, J., Winslow, J., Goebel, S., Johnson, G. P., Taylor, J., and Paoletti, E. (1990). Nucleotide sequence analysis of a 10.5 kbp Hindill fragment of fowlpox virus: Relatedness to the central portion of the vaccinia virus Hindill D region. *J. Gen. Virol.* 71, 1517–1524.
- Tengelsen, L. A., Slabaugh, M. B., Bibler, J. K., and Hruby, D. E. (1988). Nucleotide sequence and molecular genetic analysis of the large subunit of ribonucleotide reductase encoded by vaccinia virus. Virology 164, 121–131.
- Tomley, F., Binns, M., Campbell, J., and Boursnell, M. (1988). Sequence analysis of an 11.2 kilobase, near-terminal, BamHI fragment of fowl-pox virus. *J. Gen. Virol.* 69, 1025–1040.
- Twardzik, D. R., Brown, J. P., Ranchalis, J. E., Todaro, G. J., and Moss, B. (1985). Vaccinia virus-infected cells release a novel polypeptide functionally related to transforming and epidermal growth factors. *Proc. Natl. Acad. Sci. USA* 82, 5300–5304.
- Ueda, Y., Morikawa, S., and Matsuura, Y. (1990). Identification and nucleotide sequence of the gene encoding a surface antigen induced by vaccinia virus. *Virology* 177, 588–594.

- Upton, C., DeLange, A. M., and McFadden, G. (1987). Tumorigenic poxviruses: genomic organization and DNA sequence of the telomeric region of the Shope fibroma virus genome. *Virology* **160**, 20–30.
- Upton, C., Macen, J. L., Schreiber, M., and McFadden, G. (1991a). Myxoma virus expresses a secreted protein with homology to the tumor necrosis factor receptor family that contributes to viral virulence. *Virology* **184**, 370–382.
- Upton, C., Macen, J. L., Wishart, D. S., and McFadden, G. (1990a). Myxoma virus and malignant rabbit fibroma virus encode a serpin-like protein important for virus virulence. *Virology* 179, 618–631.
- Upton, C., Mossman, K., and McFadden, G. (1992). Encoding of a homolog of the IFN-g receptor by myxoma virus. *Science* **258**, 1369–1372.
- Upton, C., Opgenorth, A., Traktman, P., and McFadden, G. (1990b). Identification and DNA sequence of the Shope fibroma virus DNA topoisomerase gene. *Virology* 176, 439–447.
- Upton, C., Stuart, D., and McFadden, G. (1991b). Identification and DNA sequence of the large subunit of the capping enzyme from Shope fibroma virus. *Virology* **183**, 773–777.
- Upton, C., Stuart, D. T., and McFadden, G. (1993). Identification of a poxvirus gene encoding a uracil DNA glycosylase. *Proc. Natl. Acad. Sci. USA* 90, 4518–4522.
- Van Meir, E., and Wittek, R. (1988). Fine structure of the vaccinia virus gene encoding the precursor of the major core protein 4a. *Arch. Virol.* 102, 19–27.
- Vanslyke, J. K., Whitehead, S. S., Wilson, E. M., and Hruby, D. E. (1991). The multistep proteolytic maturation pathway utilized by vaccinia virus P4a protein: A degenerate conserved cleavage motif within core proteins. *Virology* 183, 467–478.
- Vassalli, J. D., Huarte, J., Bosco, D., Sappino, A. P., Sappino, N., Velardi, A., Wohlwend, A., Erno, H., Monard, D., and Belin, D. (1993). Proteasenexin 1 as an androgen-dependent secretory product of the murine seminal vesicle. *EMBO J.* 12, 1871–1898.
- Venkatesan, S., Gershowitz, A., and Moss, B. (1982). Complete nucleotide sequences of two adjacent early vaccinia virus genes located within the inverted terminal repetition. *J. Virol.* 44, 637–646.
- Vos, J. C., Sasker, M., and Stunnenberg, H. G. (1991). Vaccinia virus capping enzyme is a transcription initiation factor. *EMBO J.* **10**, 2553–2558.
- Vydelingum, S., Baylis, S. A., Bristow, C., Smith, G. L., and Dixon, L. K. (1993). Duplicated genes within the variable right end of the genome of a pathogenic isolate of African swine fever virus. *J. Gen. Virol.* 74, 2125–2130.
- Wang, S., and Shuman, S. (1995). Vaccinia virus morphogenesis is blocked by temperature-sensitive mutations in the F10 gene, which encodes protein kinase 2. *J. Virol.* **69**, 6376–6388.
- Way, M., Sanders, M., Chafel, M., Tu, Y. H., Knight, A., and Matsudaira, P. (1995). Beta-scruin, a homolog of the actin crosslinking protein scruin, is localized to the acrosomal vesicle of Limulus sperm. *J. Cell. Sci.* 108, 3155–3162.
- Wei, Y. F., Robins, P., Carter, K., Caldecott, K., Pappin, D. J. C., Yu, G. L., Wang, R. P., Shell, B. K., Nash, R., Schar, P., Barnes, D. E., Haseltine,

- W. A., and Lindahl, T. Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination. *Mol. Cell. Biol.* 15, 3206–3216.
- Weinrich, S. L., and Hruby, D. E. (1986). A tandemly-oriented late gene cluster within the vaccinia virus genome. *Nucleic Acids Res.* 14, 3003–3016.
- Weir, J. P., and Moss, B. (1983). Nucleotide sequence of the vaccinia virus thymidine kinase gene and the nature of spontaneous frameshift mutation. *J. Virol.* 46, 530–537.
- Whayeb, S. H., Yamamoto, K., Tojo, H., and Honda, T. (1996). Genetic analysis of the chromosomal region encoding lysophospholipase L2 of Vibrio cholerae O1. *Biochim. Biophys. Acta* 1300, 1–4.
- Wilson, R., Ainscough, R., Anderson, K., Baynes, C., Berks, M., Bonfield, J., Burton, J., Connell, M., Copsey, T., Cooper, J., Coulson, A., Craxton, M., Dear, S., Du, Z., Durbin, R., Favello, A., Fulton, L., Gardner, A., Green, P., Hawkins, T., Hillier, L., Jier, M., Johnston, L., Jones, M., Kershaw, J., Kirsten, J., Laister, N., Latreille, P., Lightning, J., Lloyd, C., McMurray, A., Mortimore, B., O'Callaghan, M., Parsons, J., Percy, C., Rifken, L., Roopra, A., Saunders, D., Shownkeen, R., Smaldon, N., Smith, A., Sonnhammer, E., Staden, R., Sulston, J., Thierry-Mieg, J., Thomas, K., Vaudin, M., Vaughan, K., Waterston, R., Watson, A., Weinstock, L., Wilkinson-Sproat, J., and Wohldman, P. (1994). 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 368, 32–38.
- Wolffe, E. J., Katz, E., Weisberg, A., and Moss, B. (1997). The A34R glycoprotein gene is required for induction of specialized actin-containing microvilli and efficient cell-to-cell transmission of vaccinia virus. *J. Virol.* 71, 3904–3915.
- Wolffe, E. J., Moore, D. M., Peters, P. J., and Moss, B. (1996). Vaccinla virus A17L open reading frame encodes an essential component of nascent viral membranes that is required to initiate morphogenesis. *J. Virol.* 70, 2797–2808.
- Wright, C. F., Keck, J. G., Tsai, M. M., and Moss, B. (1991). A transcription factor for expression of vaccinia virus late genes is encoded by an intermediate gene. *J. Virol.* **65**, 3715–3720.
- Xue, F., and Cooley, L. (1993). Kelch encodes a component of intercellular bridges in Drosophila egg chambers. *Cell* **72**, 681–693.
- Yanez, R. J., Rodriquez, J. M., Nogal, M. L., Yuste, L., Enriques, C., Rodriguez, J. F., and Vinuela, E. (1993). Analysis of the complete nucleotide sequence of African Swine Fever Virus. *Virology* 208, 249–278.
- Yang, W. P., and Bauer, W. R. (1988). Purification and characterization of vaccinia virus structural protein VP8. *Virology* **167**, 578–584.
- Yuen, L., Noiseux, M., and Gomes, M. (1991). DNA sequence of the nucleoside triphosphate phosphohydrolase I (NPH I) of the *Choristoneura biennis* entomopoxvirus. *Virology* **182**, 403–406.
- Zantinge, J. L., Krell, P. J., Derbyshire, J. B., and Nagy, E. (1996). Partial transcriptional mapping of the fowlpox virus genome and analysis of the EcoRl L fragment. *J. Gen. Virol.* 77, 603–614.
- Zhang, H., Scheirer, D. C., Fowle, W. H., and Goodman, H. M. (1992). Expression of antisense gene blocks chloroplast differentiation in Arabidopsis. *Plant Cell* 4, 1575–1588.