Convex hull:		_ ~	Comments
• conv $C = \left\{ \sum_{i=1}^k \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, 0 \leq 0 \leq 1, 1^T 0 = 1 \right\}$			allest convex set that contains C . set as long as C is also finite.
Affine hull: • aff $C = \left\{ \sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C \text{ for } i = 1, \dots, k, 1^{T} \mathbf{\theta} = 1 \right\}$		• Different from the con	affine set that contains C . vex set, θ_i is not restricted between 0 and 1
Conic hull:			infinite set. If aff C contains the origin, it is also a subspace. convex conic that contains C .
• $A = \left\{ \sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, \theta_i > 0 \text{ for } i = 1, \dots, k \right\}$ Ray:		• The ray is an infinite s	vex and affine sets, θ_i does not need to sum up 1. set that begins in \mathbf{x}_0 and extends infinitely in direction of \mathbf{v} . In other
• $\mathcal{R} = \{\mathbf{x}_0 + \theta \mathbf{v} \mid \theta \ge 0\}$ Hyperplane:		words, it has a beginn \bullet It is an infinite set \mathbb{R}^{n} .	ing, but it has no end. $^{-1}\subset\mathbb{R}^{n}\text{ that divides the space into two halfspaces.}$
• $\mathcal{H} = \{ \mathbf{x} \mid \mathbf{a}^T \mathbf{x} = b \}$ • $\mathcal{H} = \{ \mathbf{x} \mid \mathbf{a}^T (\mathbf{x} - \mathbf{x}_0) = 0 \}$		$\bullet \ a^{\perp} = \{ \mathbf{v} \mid \mathbf{a}^{T} \mathbf{v} = 0 \} \text{ is the } \mathbf{v}$	the set of vectors perpendicular to \mathbf{a} . It passes through the origin. rigin by \mathbf{x}_0 , which is any vector in \mathcal{H} .
• $\mathcal{H} = \mathbf{x}_0 + a^{\perp}$ Halfspaces:		• They are infinite sets	of the parts divided by \mathcal{H} .
• $\mathcal{H}_{-} = \{ \mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \leq b \}$ • $\mathcal{H}_{+} = \{ \mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \geq b \}$			
Euclidean ball: • $B(\mathbf{x}_c, r) = {\mathbf{x} \mid \mathbf{x} - \mathbf{x}_c _2 \le r}$ • $B(\mathbf{x}_c, r) = {\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^{T} (\mathbf{x} - \mathbf{x}_c) \le r}$		 B(x_c, r) is a finite set as long as r < ∞. x_c is the center of the ball. r is its radius. 	
• $B(\mathbf{x}_c, r) = \{\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c) \mid (\mathbf{x} - \mathbf{x}_c) \le r\}$ • $B(\mathbf{x}_c, r) = \{\mathbf{x}_c + r \ \mathbf{u}\ \mid \ \mathbf{u}\ \le 1\}$ Ellipsoid:		 r is its radius. ε is a finite set as long as P is a finite matrix. 	
• $\mathcal{E} = \{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}_c) \le 1 \}$ • $\mathcal{E} = \{ \mathbf{x}_c + \mathbf{A} \mathbf{u} \mid \mathbf{u} \le 1 \}$, where $\mathbf{A} = \mathbf{P}^{1/2}$.		 \(\mathbb{E}\) is a finite set as long as \(\mathbb{P}\) is a finite matrix. \(\mathbb{P}\) is symmetric and positive definite, that is, \(\mathbb{P} = \mathbb{P}^{\dagger} > 0.\) \(\mathbb{x}_c\) is the center of the ellipsoid. 	
		The lengths of the senA is invertible. Whe	ni-axes are given by $\sqrt{\lambda_i}$. In it is not, we say that $\mathcal E$ is a degenerated ellipsoid (degenerated
Norm cone:		ellipsoids are also conv	"Norm cone", it is a set, not a scalar.
• $C = \{[x_1, x_2, \cdots, x_n, t]^T \in \mathbb{R}^{n+1} \mid \mathbf{x} \in \mathbb{R}^n, \mathbf{x} _p \le t\} \subseteq \mathbb{R}^{n+1}$ Proper cone: $K \subset \mathbb{R}^n$ is a proper cone when it has the following properties			ses the dimension of ${\bf x}$ in 1. he second-order cone, quadratic cone, Lorentz cone or ice-cream cone.
• K is a convex cone, i.e., $\alpha K \equiv K, \alpha > 0$.	g properties	set S . For the generali	used to define the generalized inequality (or partial ordering) in some zed inequality, one must define both the proper cone K and the set S . for $\mathbf{x}, \mathbf{y} \in S$ (generalized inequality)
 K is closed. K is solid. K is pointed, i.e., -K ∩ K = {0}. 		• $x < y \iff y - x \in int$ • There are two cases $y = y + y = y = y = y$	K for $\mathbf{x}, \mathbf{y} \in S$ (strict generalized inequality). Where K and S are understood from context and the subscript K is
in is pointed, i.e., in the following the fo		dropped out:	d $K = \mathbb{R}^n_+$ (the nonnegative orthant). In this case, $\mathbf{x} \leq \mathbf{y}$ means that
		matrices, S_+^n is the positive definite in	d $K = S_+^n$ or $K = S_{++}^n$, where S^n denotes the set of symmetric $n \times n$ e space of the positive semidefinite matrices, and S_{++}^n is the space of the natrices. S_+^n is a proper cone in S^n (??). In this case, the generalized
		positive semidefindenote $X > 0$ and	means that $\mathbf{Y} - \mathbf{X}$ is a positive semidefinite matrix belonging to the site cone \mathcal{S}^n_+ in the subspace of symmetric matrices \mathcal{S}^n . It is usual to $\mathbf{X} \succeq 0$ to mean than \mathbf{X} is a positive definite and semidefinite matrix, se $0 \in \mathbb{R}^{n \times n}$ is a zero matrix.
		• Another common $ \{ \mathbf{c} \in \mathbb{R}^n \mid c_1 + c_2 t + \cdots \\ x_1 + x_2 t + \cdots + x_n t^{n-1} \le c_n \} $	usage is when $S = \mathbb{R}^n$ and $K = +c_nt^{n-1} \ge 0$, for $0 \le t \le 1$. In this case, $\mathbf{x} \le_K \mathbf{y}$ means that $\{y_1 + y_2t + \dots + y_nt^{n-1}\}$.
			ality has the following properties: $\mathbf{x}_K \mathbf{v}$, then $\mathbf{x} + \mathbf{u} \leq_k \mathbf{y} + \mathbf{v}$ (preserve under addition).
			$\mathbf{z}_K \mathbf{z}$, then $\mathbf{x} \leq_K \mathbf{z}$ (transitivity). $\mathbf{x} \leq_K \mathbf{y}$ for $\alpha \geq 0$ (preserve under nonnegative scaling). \mathbf{y}).
		$ ightharpoonup$ If $\mathbf{x}_i \leq_K \mathbf{y}_i$, for $i = 1$	$\mathbf{x}_{K} \mathbf{x}$, then $\mathbf{x} = \mathbf{y}$ (antisymmetric). $\mathbf{x}_{i} = 1, 2,, \text{ and } \mathbf{x}_{i} \to \mathbf{x} \text{ and } \mathbf{y}_{i} \to \mathbf{y} \text{ as } i \to \infty$, then $\mathbf{x} \leq_{K} \mathbf{y}$.
		we say that \mathbf{x} and \mathbf{y} a $<$ and $>$).	ring because $\mathbf{x} \not\succeq_K \mathbf{y}$ and $\mathbf{y} \not\succeq_K \mathbf{x}$ for many $\mathbf{x}, \mathbf{y} \in S$. When it happens, re not comparable (this case does not happen in ordinary inequality,
		(for maximum, $\mathbf{x} \succeq_K \mathbf{y}$ where $\mathbf{x} + K$ denotes t is comparable with \mathbf{x}	element of S with respect to the proper cone K if $\mathbf{x} \leq_K \mathbf{y}$, $\forall \mathbf{y} \in S$, $\forall \mathbf{y} \in S$. It means that $S \subseteq \mathbf{x} + K$ (for the maximum, $S \subseteq \mathbf{x} - K$), he set K shifted from the origin by \mathbf{x} . Note that any point in $K + \mathbf{x}$ and is greater or equal to \mathbf{x} in the generalized inequality mean. The
		unique if it does.	rily have a minimum (maximum), but the minimum (maximum) is element of S with respect to the proper cone K if $\mathbf{y} \leq_K \mathbf{x}$ only when
		y = x (for the maximal (x + x)) (for the maximal (x + x)) that any point in x - x	$(\mathbf{y} \succeq_K \mathbf{x} \text{ only when } \mathbf{y} = \mathbf{x})$. It means that $(\mathbf{x} - K) \cap S = \{\mathbf{x}\}$ for minimal $(\mathbf{x}) \cap S = \{\mathbf{x}\}$, where $\mathbf{x} - K$ denotes the reflected set K shift by \mathbf{x} . Note K is comparable with \mathbf{x} and is lower or equal to \mathbf{x} in the generalized
		• When $K = \mathbb{R}_+$ and $S =$ the maximal is equal t	
			scalar-valued function $f: \mathbb{R}^n \to \mathbb{R}$ is nondecreasing, it means that ave $\tilde{h}(\mathbf{u}) \leq \tilde{h}(\mathbf{v})$. Similar results hold for decreasing, increasing, and anctions.
Dual cone: • $K^* = \{ \mathbf{y} \mid \mathbf{x}^T \mathbf{y} \ge 0, \ \forall \ \mathbf{x} \in K \}$		 K* is a cone, and it is convex even when the original cone K is nonconvex. K* has the following properties: 	
		 K* is closed and convex. K₁ ⊆ K₂ implies K₁* ⊆ K₂*. If K has a nonempty interior, then K* is pointed. 	
		▶ If the closure of I	pty interior, then K^* is pointed. X is pointed then K^* has a nonempty interior. of the convex hull of K . Hence, if K is convex and closed, $K^{**} = K$.
Polyhedra: $\bullet \ \mathcal{P} = \left\{ \mathbf{x} \mid \mathbf{a}_{j}^{T} \mathbf{x} \leq b_{j}, j = 1, \dots, m, \mathbf{a}_{j}^{T} \mathbf{x} = d_{j}, j = 1, \dots, p \right\}$			or may not be an infinite set. It of the intersection of m halfspaces and p hyperplanes.
• $\mathcal{P} = \{ \mathbf{x} \mid \mathbf{a}_j^{\dagger} \mathbf{x} \le b_j, j = 1, \dots, m, \mathbf{a}_j^{\dagger} \mathbf{x} = d_j, j = 1, \dots, p \}$ • $\mathcal{P} = \{ \mathbf{x} \mid \mathbf{A} \mathbf{x} \le \mathbf{b}, \mathbf{C} \mathbf{x} = \mathbf{d} \}, \text{ where } \mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_m \end{bmatrix}^{T} \text{ and } \mathbf{a}_j^{T} \mathbf{a}_j^$	$\mathbf{c} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_m \end{bmatrix}^T$	• Subspaces, hyperplane polyhedra.	es, lines, rays line segments, and halfspaces are all special cases of
Simplex:		 The nonnegative orthocial polyhedron. Simplexes are a subfar	ant, $\mathbb{R}^n_+ = \{ \mathbf{x} \in \mathbb{R}^n \mid x_i \le 0 \text{ for } i = 1, \dots n \} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{I}\mathbf{x} \ge 0 \}$, is a spenily of the polyhedra set.
• $S = \text{conv } \{\mathbf{v}_m\}_{m=0}^k = \{\sum_{i=0}^k \theta_i \mathbf{v}_i \mid 0 \le \mathbf{\theta} \le 1, 1^T \mathbf{\theta} = 1\}$ • $S = \{\mathbf{x} \mid \mathbf{x} = \mathbf{v}_0 + \mathbf{V} \mathbf{\theta}\}, \text{ where } \mathbf{V} = \begin{bmatrix} \mathbf{v}_1 - \mathbf{v}_0 & \dots & \mathbf{v}_n - \mathbf{v}_0 \end{bmatrix} \in \mathbb{R}$	$\mathbb{R}^{n imes k}$	Also called k-dimension	
• $S = \{\mathbf{x} \mid \mathbf{A}_1 \mathbf{x} \leq \mathbf{A}_1 \mathbf{v}_0, 1^T \mathbf{A}_1 \mathbf{x} \leq 1 + 1^T \mathbf{A}_1 \mathbf{v}_0, \mathbf{A}_2 \mathbf{x} = \mathbf{A}_2 \mathbf{v}_0 \}$ Linear inequalities in x Linear equalities		independent.	tall matrix, i.e., $\operatorname{rank}(\mathbf{V}) = k$. All its column vectors are independent.
$\begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \end{bmatrix} \text{ and } \mathbf{AV} = \begin{bmatrix} \mathbf{I}_{k \times k} \\ 0_{n-k \times n-k} \end{bmatrix}$ $\alpha\text{-sublevel set:}$			
• $C_{\alpha} = \{\mathbf{x} \in \text{dom}(f) \mid f(\mathbf{x}) \leq \alpha\}$ (regarding convexity), where • $C_{\alpha} = \{\mathbf{x} \in \text{dom}(f) \mid f(\mathbf{x}) \geq \alpha\}$ (regarding concavity), where		$\alpha \in \mathbb{R}$. • The converse is not true.	we) function, then sublevel sets of f are convexes (concaves) for any are: a function can have all its sublevel set convex and not be a convex
		function. $\bullet \ C_{\alpha} \subseteq \text{dom}(f)$	
Function Union: $C = A \cup B$ Intersection: $C = A \cap B$	Not in most of the cases. Yes, if A and B are convex set	ι?	onvexity Comments
Convex function: $f : \text{dom}(f) \to \mathbb{R}$ • $f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$, where $0 \le \theta \le 1$.	Yes.		 Graphically, the line segment between (x, f(x)) and (y, f(y)) lies always above the graph f. In terms of sets, a function is convex iff a line segment within
• $dom(f)$ shall be a convex set to f be considered a convex function.			• In terms of sets, a function is convex iff a line segment within dom (f), which is a convex set, gives an image set that is also convex.
			 dom f is convex iff all points for any line segment within dom (f) belong to it. First-order condition: f is convex iff dom (f) is convex and f(y) ≥
			$f(\mathbf{x}) + \nabla f(\mathbf{x})^{T}(\mathbf{y} - \mathbf{x}), \forall \mathbf{x}, \mathbf{y} \in \text{dom}(f), \mathbf{x} \neq \mathbf{y}$, being $\nabla f(\mathbf{x})$ the gradient vector. This inequation says that the first-order Taylor approximation is a <i>underestimator</i> for convex functions. The first-order condition requires that f is differentiable.
			• If $\nabla f(\mathbf{x}) = 0$, then $f(\mathbf{y}) \ge f(\mathbf{x}), \forall \mathbf{y} \in \text{dom}(f)$ and \mathbf{x} is a global minimum.
			• Second-order condition: f is convex iff $dom(f)$ is convex and $\mathbf{H} \geq 0$, that is, the Hessian matrix \mathbf{H} is a positive semidefinite matrix. It means that the graphic of the curvature has a positive (upward) curvature at \mathbf{x} . It is important to note that, if $\mathbf{H} >$
			$0, \forall \mathbf{x} \in \text{dom}(f)$, then f is strictly convex. But is f is strictly convex, not necessarily that $\mathbf{H} > 0, \forall \mathbf{x} \in \text{dom}(f)$. Therefore, strict convexity can only be partially characterized.
Affine function $f : \mathbb{R}^n \to \mathbb{R}^m$ $\bullet \ f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}, \text{ where } \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m, \mathbf{x} \in \mathbb{R}^n$	Yes, if the domain $S \subseteq \mathbb{R}^n$ is a $f(S) = \{f(\mathbf{x}) \mathbf{x} \in S\} \subseteq \mathbb{R}^m$ is all		• The affine function, $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$, is a broader category that encompasses the linear function, $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$. The linear function
			has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the
			has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an
			 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex.
			 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁ + ··· + x_nA_n ≤ B, is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved opti-
Exponential function $f: \mathbb{R} \to \mathbb{R}$	Yes.		 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁ + ··· + x_nA_n ≤ B, is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$	It depends on the matrix P :		 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁ + ··· + x_nA_n ≤ B, is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved opti-
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$	 It depends on the matrix P: f is convex iff P ≥ 0. f is strictly convex iff P > 0 		 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁ + ··· + x_nA_n ≤ B, is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved opti-
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$	 It depends on the matrix P: f is convex iff P ≥ 0. f is strictly convex iff P > 0 f is concave iff P ≤ 0. f is strictly concave iff P < 		 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁ + ··· + x_nA_n ≤ B, is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved opti-
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T\mathbf{P}\mathbf{x} + \mathbf{p}^T\mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and	It depends on the matrix P : • f is convex iff $P \ge 0$. • f is strictly convex iff $P > 0$. • f is concave iff $P \le 0$.	·. 0.	 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁ + ··· + x_nA_n ≤ B, is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved opti-
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$	 It depends on the matrix P: f is convex iff P ≥ 0. f is strictly convex iff P > 0. f is concave iff P ≤ 0. f is strictly concave iff P < It depends on a f is convex iff a ≥ 1 or a ≤ 0. 	·. 0.	 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁ + ··· + x_nA_n ≤ B, is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved opti-
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$	It depends on the matrix P : • f is convex iff $P \ge 0$. • f is strictly convex iff $P > 0$. • f is concave iff $P \le 0$. • f is strictly concave iff $P < 0$. It depends on a . • f is convex iff $a \ge 1$ or $a \le 0$. • f is convex iff $a \ge 1$.	·. 0.	 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁ + ··· + x_nA_n ≤ B, is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved opti-
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$.	It depends on the matrix P : • f is convex iff $P \ge 0$. • f is strictly convex iff $P > 0$. • f is concave iff $P \le 0$. • f is strictly concave iff $P < 0$. It depends on a . • f is convex iff $a \ge 1$ or $a \le 0$. • f is concave iff $a \ge 1$. Yes.	·. 0.	 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁ + ··· + x_nA_n ≤ B, is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved opti-
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$	It depends on the matrix P : • f is convex iff $P \ge 0$. • f is strictly convex iff $P > 0$. • f is concave iff $P \le 0$. • f is strictly concave iff $P < 0$. It depends on a . • f is convex iff $a \ge 1$ or $a \le 0$. • f is concave iff $0 \le a \le 1$. Yes.	·. 0.	 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁ + ··· + x_nA_n ≤ B, is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function:	It depends on the matrix P : • f is convex iff $P \ge 0$. • f is strictly convex iff $P > 0$. • f is concave iff $P \le 0$. • f is strictly concave iff $P < 0$. It depends on a . • f is convex iff $a \ge 1$ or $a \le 0$. • f is concave iff $0 \le 0$. Yes.	·. 0.	 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁ + ··· + x_nA_n ≤ B, is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally. When it is defined f(x) _{x=0} = 0, dom(f) = ℝ.
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \leq 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \mathbf{x} _p$, where $p \in \mathbb{N}_{++}$.	It depends on the matrix P : • f is convex iff $P \ge 0$. • f is strictly convex iff $P > 0$. • f is concave iff $P \le 0$. • f is strictly concave iff $P < 0$. It depends on a . • f is convex iff $a \ge 1$ or $a \le 0$. • f is concave iff $0 \le a \le 1$. Yes. Yes.	0 .	 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁ + ··· + x_nA_n ≤ B, is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally. When it is defined f(x) _{x=0} = 0, dom(f) = ℝ.
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \mathbf{x} _p$, where $p \in \mathbb{N}_{++}$. Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}$.	It depends on the matrix P : • f is convex iff $P \ge 0$. • f is strictly convex iff $P > 0$. • f is concave iff $P \le 0$. • f is strictly concave iff $P < 0$. It depends on a . • f is convex iff $a \ge 1$ or $a \le 0$. • f is concave iff $0 \le a \le 1$. Yes. Yes.	0 .	 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁ + ··· + x_nA_n ≤ B, is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally. When it is defined f(x) _{x=0} = 0, dom(f) = ℝ.
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \leq 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \mathbf{x} _p$, where $p \in \mathbb{N}_{++}$. Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$. Maximum function (pointwise maximum): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$. Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \min\{f_1(x), \dots, f_n(x)\}$.	It depends on the matrix P : • f is convex iff $P \ge 0$. • f is strictly convex iff $P > 0$. • f is concave iff $P \le 0$. • f is strictly concave iff $P < 0$. It depends on a . • f is convex iff $a \ge 1$ or $a \le 0$. • f is concave iff $0 \le a \le 1$. Yes. Yes. Yes.	0 .	 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁+···+x_nA_n ≤ B, is a special case of affine function. In other words, f(S) = {x x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally. When it is defined f(x) _{x=0} = 0, dom (f) = ℝ. It can be proved by triangular inequality. This function is interpreted as the approximation of the max-
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \mathbf{x} _p$, where $p \in \mathbb{N}_{++}$. Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}$. Maximum function (pointwise maximum): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$. Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \min\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$.	It depends on the matrix P : • f is convex iff $P \ge 0$. • f is strictly convex iff $P > 0$. • f is concave iff $P \le 0$. • f is strictly concave iff $P < 0$. It depends on a . • f is convex iff $a \ge 1$ or $a \le 0$. • f is concave iff $0 \le 0$. Yes. Yes. Yes. Yes.	0 .	 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁+···+x_nA_n ≤ B, is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally. When it is defined f(x) _{x=0} = 0, dom (f) = ℝ. It can be proved by triangular inequality.
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \ \mathbf{x}\ _p$, where $p \in \mathbb{N}_{++}$. Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}$. Maximum function (pointwise maximum): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$. Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \min\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$. Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log(e^{x_1} + \dots + e^{x_n})$	It depends on the matrix P : • f is convex iff $P \ge 0$. • f is strictly convex iff $P > 0$. • f is concave iff $P \le 0$. • f is strictly concave iff $P < 0$. It depends on a . • f is convex iff $a \ge 1$ or $a \le 0$. • f is concave iff $0 \le 0$. Yes. Yes. Yes. Yes. Yes.	0 .	 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁ + ··· + x_nA_n ≤ B, is a special case of affine function. In other words, f(s) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally. When it is defined f(x) _{x=0} = 0, dom (f) = ℝ. It can be proved by triangular inequality. This function is interpreted as the approximation of the maximum element function, since max {x₁,,x_n} ≤ f(x) ≤ max {x₁,,x_n} + log n
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \mathbf{x} _p$, where $p \in \mathbb{N}_{++}$. Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{t_1, \dots, t_n\}$. Maximum function (pointwise maximum): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$. Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \min\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$. Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log(e^{x_1} + \dots + e^{x_n})$	It depends on the matrix P : • f is convex iff $P \ge 0$. • f is strictly convex iff $P > 0$. • f is concave iff $P \le 0$. • f is strictly concave iff $P < 0$. • f is strictly concave iff $P < 0$. It depends on P • f is convex iff P • f is convex iff P • f is concave iff P • f is convex iff P • f • f is convex iff P • f is convex if	o. netion.	 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = e^T. In this case, we have f(x) = e^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The inverse image of affine function. In other words, f(S) = {x A(x) ≤ B} is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally. When it is defined f(x) _{x=0} = 0, dom (f) = ℝ. It can be proved by triangular inequality. It can be proved by triangular inequality. It can be proved by triangular inequality. X is positive semidefinite, i.e., X > 0 ∴ X ∈ Sⁿ₊₊. X is positive semidefinite, i.e., X > 0 ∴ X ∈ Sⁿ₊₊.
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \mathbf{x} _p$, where $p \in \mathbb{N}_{++}$. Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}$. Maximum function (pointwise maximum): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$. Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \min\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$. Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log(e^{x_1} + \dots + e^{x_n})$ Log-determinant function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log \mathbf{X} $	 It depends on the matrix P: f is convex iff P ≥ 0. f is strictly convex iff P > 0. f is concave iff P ≤ 0. f is concave iff P ≤ 1. It depends on a f is convex iff a ≥ 1 or a ≤ 1. Yes. Ye	owing statements hold for \mathbb{R} and $g: \mathbb{R}^n \to \mathbb{R}$: avex, \tilde{h} is nondecreasing,	 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁ + ··· + x_nA_n ≤ B, is a special case of affine function. In other words, f(s) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally. When it is defined f(x) _{x=0} = 0, dom (f) = ℝ. It can be proved by triangular inequality. This function is interpreted as the approximation of the maximum element function, since max {x₁,,x_n} ≤ f(x) ≤ max {x₁,,x_n} + log n
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{p}^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \mathbf{x} _p$, where $p \in \mathbb{N}_{++}$. Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}$. Maximum function (pointwise maximum): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$. Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \min\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$. Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log[\mathbf{x}]$ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f = g \circ h$, i.e., $f(\mathbf{x}) = (h \circ g)(\mathbf{x}) = h(g(\mathbf{x}))$, where:	It depends on the matrix P : • f is convex iff $P \ge 0$. • f is strictly convex iff $P > 0$. • f is concave iff $P \le 0$. • f is strictly concave iff $P < 0$. It depends on a . • f is convex iff $a \ge 1$ or $a \le 0$. • f is concave iff $0 \le 0$. Yes. Yes. Yes. Yes. Yes. Yes. Yes. Yes. Yes. Yes. f is convex if f is convex function of the cases. Yes. Yes. Yes. Yes. Yes. Yes. Yes.	owing statements hold for \mathbb{R} and $g:\mathbb{R}^n\to\mathbb{R}$: vex, \tilde{h} is nondecreasing, is case, dom (h) is either	 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The inverse image of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally. When it is defined f(x) _{x=0} = 0, dom (f) = ℝ. It can be proved by triangular inequality. It can be proved by triangular inequality. This function is interpreted as the approximation of the maximum element function, since max {x₁,,x_n} ≤ f(x) ≤ max {x₁,,x_n} + log n The composition function allows us to see a large class of functions as convex (or concave).
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^{T}\mathbf{P}\mathbf{x} + p^{T}\mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_{+} \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \ \mathbf{x}\ _p$, where $p \in \mathbb{N}_{++}$. Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$. Maximum function (pointwise maximum): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$. Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(\mathbf{R}^n)$ • $f(x) = \log(\mathbf{R}^n)$ Log-determinant function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f = g \circ h$, i.e., $f(x) = (h \circ g)(\mathbf{x}) = h(g(\mathbf{x}))$, where: • $g : \mathbb{R}^n \to \mathbb{R}^k$ • $h : \mathbb{R}^k \to \mathbb{R}$.	It depends on the matrix P : • f is convex iff $P \ge 0$. • f is strictly convex iff $P > 0$. • f is concave iff $P \le 0$. • f is strictly concave iff $P < 0$. It depends on a . • f is convex iff $a \ge 1$ or $a \le 0$. • f is concave iff $0 \le 0$. Yes. Yes. Yes. Yes. Yes. Yes. Yes. Yes. Yes. Yes. f is convex if f is convex function of the cases. Yes. Yes. Yes. Yes. Yes. Yes. Yes.	owing statements hold for \mathbb{R} and $g: \mathbb{R}^n \to \mathbb{R}$: nction. nction. nction.	 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = e^T. In this case, we have f(x) = e^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁ + ··· + x_nA_n ≤ B, is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally. It can be proved by triangular inequality. This function is interpreted as the approximation of the maximum element function, since max {x₁,,x_n} ≤ f(x) ≤ max {x₁,,x_n} + log n X is positive semidefinite, i.e., X > 0 ∴ X ∈ Sⁿ₊₊. The composition function allows us to see a large class of functions as convex (or concave). For scale composition, the remarkable ones are: If g is convex then f(x) = h(g(x)) = exp g(x) is convex. If g is concave and dom (g) ⊆ R₊₊, then f(x) = h(g(x)) = lg(x) is concave and dom (g) ⊆ R₊₊, then f(x) = h(g(x)) = g^p(x) If g is convex and dom (g) ⊆ R₊₊, then f(x) = h(g(x)) = g^p(x)
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \ \mathbf{x}\ _p$, where $p \in \mathbb{N}_{++}$. Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$. Maximum function (pointwise maximum): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$. Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \min\{f_1(x), \dots, f_n(x)\}$. Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(x)$ Log-determinant function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f = g \circ h$, i.e., $f(x) = (h \circ g)(x) = h(g(x))$, where: • $g : \mathbb{R}^n \to \mathbb{R}^k$ • $h : \mathbb{R}^k \to \mathbb{R}$.	It depends on the matrix P: • f is convex iff P ≥ 0. • f is strictly convex iff P > 0. • f is concave iff P ≤ 0. • f is concave iff P ≤ 0. • f is convex iff a ≥ 1 or a ≤ 0. • f is convex iff a ≥ 1 or a ≤ 1. Yes.	owing statements hold for $\rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}$: wex. \tilde{h} is nonincreasing, is case, \tilde{h} is nonincreasing, is cave, \tilde{h} is nonincreasing,	 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = e^T. In this case, we have f(x) = e^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁x₁ + ··· + x_nA_n ≤ B, is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally. It can be proved by triangular inequality. This function is interpreted as the approximation of the maximum element function, since max {x₁,,x_n} ≤ f(x) ≤ max {x₁,,x_n} + log n X is positive semidefinite, i.e., X > 0 ∴ X ∈ Sⁿ₊₊. The composition function allows us to see a large class of functions as convex (or concave). For scale composition, the remarkable ones are: If g is convex then f(x) = h(g(x)) = exp g(x) is convex. If g is convex then dom (g) ⊆ R₊₊, then f(x) = h(g(x)) = log g(x) is convex and dom (g) ⊆ R₊₊, then f(x) = h(g(x)) = log (x) is convex.
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^{T}\mathbf{P}\mathbf{x} + p^{T}\mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_{+} \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \ \mathbf{x}\ _p$, where $p \in \mathbb{N}_{++}$. Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$. Maximum function (pointwise maximum): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$. Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(\mathbf{R}^n)$ • $f(x) = \log(\mathbf{R}^n)$ Log-determinant function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f = g \circ h$, i.e., $f(x) = (h \circ g)(\mathbf{x}) = h(g(\mathbf{x}))$, where: • $g : \mathbb{R}^n \to \mathbb{R}^k$ • $h : \mathbb{R}^k \to \mathbb{R}$.	It depends on the matrix P: • f is convex iff P ≥ 0. • f is strictly convex iff P > 0. • f is concave iff P ≤ 0. • f is concave iff P ≤ 0. • f is convex iff a ≥ 1 or a ≤ 0. • f is convex iff a ≥ 1 or a ≤ 1. Yes.	nction. over gatatements hold for \mathbb{R} and \mathbb{R} is nondecreasing, is case, dom (h) is either an across a case, dom (h) is either across, \mathbb{R} is nondecreasing, is case, dom (h) is either across, \mathbb{R} is nondecreasing, across, \mathbb{R} is nonincreasing, across, \mathbb{R} is nonincreasing, across, \mathbb{R} is nonincreasing, across, \mathbb{R} and \mathbb{R} is nonincreasing, \mathbb{R} is nonincreasing, \mathbb{R} is nonincreasing, across, \mathbb{R} is nonincreasing, \mathbb{R} is no \mathbb{R} and \mathbb{R} is no \mathbb{R} and \mathbb{R} is no \mathbb{R} is no \mathbb{R} and \mathbb{R} is no \mathbb{R} is no \mathbb{R} is no \mathbb{R} and \mathbb{R} is no \mathbb{R} i	 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this case, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x, A₁ + · · · · x, A_n ≤ B is a special case of affine function. In other words, f(S) = (x A(x) ≤ B) is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally. It can be proved by triangular inequality. This function is interpreted as the approximation of the maximum element function, since max {x₁, , x_n} ≤ f(x) ≤ max {x₁, , x_n} + log n This function is interpreted as the approximation of the maximum element function, since max {x₁, , x_n} ≤ f(x) ≤ max {x₁, , x_n} + log n X is positive semidefinite, i.e., X > 0 ∴ X ∈ Sⁿ_{n+}. The composition function allows us to see a large class of functions as convex (or concave). For scale composition, the remarkable ones are: If g is convex then f(x) = h(g(x)) = exp g(x) is convex. If g is concave and dom (g) ⊆ R₊₊₊, then f(x) = h(g(x)) = log g(x) is concave. If g is convex then f(x) = h(g(x)) = -log (-g(x)) is convex. If g is convex then f(x) = h(g(x)) = -log (-g(x)) is convex. If g is convex then f(x) = h(g(x)) = -log (-g(x)) is convex.
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \ \mathbf{x}\ _p$, where $p \in \mathbb{N}_{++}$. Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}$. Maximum function (pointwise maximum): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$. Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log[\mathbf{x}]$ Log-determinant function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f = g \circ h$, i.e., $f(\mathbf{x}) = (h \circ g)(\mathbf{x}) = h(g(\mathbf{x}))$, where: • $g : \mathbb{R}^n \to \mathbb{R}^k$ • $h : \mathbb{R}^k \to \mathbb{R}$.	It depends on the matrix P: • f is convex iff P ≥ 0. • f is strictly convex iff P > 0. • f is concave iff P ≤ 0. • f is concave iff P ≤ 0. • f is concave iff P ≤ 1. It depends on a • f is convex iff a ≥ 1 or a ≤ 1. • f is concave iff 0 ≤ a ≤ 1. Yes. Yes	owing statements hold for \mathbb{R} and $g:\mathbb{R}^n\to\mathbb{R}$: nection. o. o. o. o. o. o. o. o. o.	 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c⁷. In this case, we have f(x) = c⁷x, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁ · · · · · x_nA_n ≤ B₁ is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMII problems and solved optimally. It can be proved by triangular inequality. It can be proved by triangular inequality. This function is interpreted as the approximation of the maximum element function, since max {x₁, , x_n} ≤ f(x) ≤ max {x₁, , x_n} + log n X is positive semidefinite, i.e., X > 0 ∴ X ∈ Sⁿ₊₊. The composition function allows us to see a large class of functions as convex (or concave). For example, the f(x) = h(g(x)) = exp g(x) is convex. If g is concave and dom (g) ⊆ R₊₊, then f(x) = h(g(x)) = log g(x) is concave. If g is concave and dom (g) ⊆ R₊₊, then f(x) = h(g(x)) = f(x) is concave, where p ≥ 1. If g is concave and dom (g) ⊆ R₊₊, then f(x) = h(g(x)) = gⁿ(x) is convex, where p ≥ 1. If g is concave the f(x) = h(g(x)) = -log (-g(x)) is convex, where the f(x) = h(x) = h(x)
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^{T}\mathbf{P}\mathbf{x} + p^{T}\mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_{+} \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \ \mathbf{x}\ _p$, where $p \in \mathbb{N}_{++}$. Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$. Maximum function (pointwise maximum): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$. Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(\mathbf{R}^n)$ • $f(x) = \log(\mathbf{R}^n)$ Log-determinant function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f = g \circ h$, i.e., $f(x) = (h \circ g)(\mathbf{x}) = h(g(\mathbf{x}))$, where: • $g : \mathbb{R}^n \to \mathbb{R}^k$ • $h : \mathbb{R}^k \to \mathbb{R}$.	It depends on the matrix P: • f is convex iff P ≥ 0. • f is strictly convex iff P > 0. • f is concave iff P ≤ 0. • f is concave iff P ≤ 0. • f is concave iff P ≤ 1. It depends on a • f is convex iff a ≥ 1 or a ≤ 1. Yes.	owing statements hold for $\rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \rightarrow \mathbb{R}$: avex, \tilde{h} is nondecreasing, is case, dom (h) is either cave, \tilde{h} is nondecreasing, is case, \tilde{h} is nondecreasing, is statements hold for $\tilde{h} \rightarrow \mathbb{R}$ and $\tilde{h} \in \mathbb{R}$ is a set of convex \tilde{h} is nondecreasing in \tilde{h} and \tilde{h} is nondecreasing in \tilde{h} and \tilde{h} is nondecreasing in \tilde{h} and \tilde{h} is a set of convex	 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c^T. In this exect, we have f(x) = c^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMII), A(x) = x₁A₁ + · · · + x_nA_n ≤ B₁ is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally. It can be proved by triangular inequality. It can be proved by triangular inequality. This function is interpreted as the approximation of the maximum element function, since max {x₁, , x_n} ≤ f(x) ≤ max {x₁, , x_n} + log n X is positive semidefinite, i.e., X > 0 ∴ X ∈ Sⁿ_n. The composition function allows us to see a large class of functions as convex (or concave). For scale composition, the remarkable ones are: If g is concave and dom (g) ⊆ R₊₊, then f(x) = h(g(x)) = log g(x) is convex. If g is concave and dom (g) ⊆ R₊₊, then f(x) = h(g(x)) = 1/g(x) is convex and dom (g) ⊆ R₊₊, then f(x) = h(g(x)) = g^P(x) is convex (where p ≥ 1. If g is concave and dom (g) ⊆ R₊₊, then f(x) = h(g(x)) = g^P(x) is convex (where p ≥ 1. If g is concave the f is convex (p = h(x)) = h(x) =
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^{T}\mathbf{P}\mathbf{x} + p^{T}\mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_{+} \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \ \mathbf{x}\ _p$, where $p \in \mathbb{N}_{++}$. Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$. Maximum function (pointwise maximum): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$. Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(\mathbf{R}^n)$ • $f(x) = \log(\mathbf{R}^n)$ Log-determinant function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f = g \circ h$, i.e., $f(x) = (h \circ g)(\mathbf{x}) = h(g(\mathbf{x}))$, where: • $g : \mathbb{R}^n \to \mathbb{R}^k$ • $h : \mathbb{R}^k \to \mathbb{R}$.	It depends on the matrix P: • f is convex iff P ≥ 0. • f is strictly convex iff P > 0. • f is concave iff P ≤ 0. • f is concave iff P ≤ 0. • f is strictly concave iff P < It depends on a • f is convex iff a ≥ 1 or a ≤ 1. Yes.	owing statements hold for \mathfrak{p} and $g:\mathbb{R}^n\to\mathbb{R}$: nection. o. o. o. o. o. o. o. o. o.	 has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c⁷. In this save, we have f(x) = c⁷. In this case, as the inner matrix inequality (LMI), A(x) = x₁A₁ + ···+x_nA_n ≤ B, is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally. It can be proved by triangular inequality. It is concave and the follows us to see a large class of functions as convex (or concave). For scale composition, the remarkable ones are: If g is concave and dom (g) ⊆ R₊₊₊, then f(x) = h(g(x)) = l g g(x) is convex. If g is concave and dom (g) ⊆ R₊₊, then f(x) = h(g(x)) = l g g(x) is convex and dom (g) ⊆ R₊₊, then f(x) = h(g(x)) = g^p(x) is convex. If g is convex and dom (g) ⊆ R₊₊, then f(x) = h(g(x)) = g^p(x) is convex (proved tomposition, we have the follow, then f(x) = h o g is convex, where p ≥ 1. If g is convex in f(x) = h(g(x)) = -log (-g(x)) is convex. For vector composition, we have the follow, then f = h o g is convex (proved components of the large the file for the file for the convex. Fe h o g is a convex function when h(x) = log (∑^k₁₋₁ e^k₁) and the largest g is a convex. f h o g is a convex function when h(x)
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^{T}\mathbf{P}\mathbf{x} + p^{T}\mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_{+} \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \ \mathbf{x}\ _p$, where $p \in \mathbb{N}_{++}$. Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$. Maximum function (pointwise maximum): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$. Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(\mathbf{R}^n)$ • $f(x) = \log(\mathbf{R}^n)$ Log-determinant function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f = g \circ h$, i.e., $f(x) = (h \circ g)(\mathbf{x}) = h(g(\mathbf{x}))$, where: • $g : \mathbb{R}^n \to \mathbb{R}^k$ • $h : \mathbb{R}^k \to \mathbb{R}$.	It depends on the matrix P: • f is convex iff P ≥ 0. • f is strictly convex iff P > 0. • f is concave iff P ≤ 0. • f is concave iff P ≤ 0. • f is trictly concave iff P < It depends on a • f is convex iff a ≥ 1 or a ≤ 1. • f is concave iff 0 ≤ a ≤ 1. Yes.	owing statements hold for $\rightarrow \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$: over, \tilde{h} is nondecreasing, is case, dom (h) is either cave, \tilde{h} is nondecreasing, is case, \tilde{h} is nondecreasing, is case, \tilde{h} is nondecreasing, over \tilde{h} is nondecreasing, over \tilde{h} is nondecreasing, over \tilde{h} is nondecreasing, over \tilde{h} is nondecreasing in $(g_i)_{i=1}^k$ is a set of convex, \tilde{h} is nonincreasing, over \tilde{h} is nondecreasing on, and $(g_i)_{i=1}^k$ is nondecreasing in and $(g_i)_{i=1}^k$ is nondecreasing in and $(g_i)_{i=1}^k$ is a set of extension of the function $(-\infty)$ to the point not in	 has its origin fixed at 0 after the transformation, whereas the affine function does not nocessarily have it, when not, this makes the affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c⁷. In this case, we have f(x) = c⁷x, which is the inner product between the vector c and x. The innerse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The inner matrix inequolity (LMI), A(x) = x,A₁ + ··· + x₀A_n ≤ B, is a special case of affine function. In other words, f(x) = (x A(x) ≤ B) is a convex set if x is convex. Many optimization problems can be formulated as LMI problems and solved optimally. This function is interpreted as the approximation of the maximum element function, since max {x₁,,x_n} ≤ f(x) ≤ max {x₁,,x_n} + log n X is positive semidefinite, i.e., X > 0 ∴ X ∈ S^{**}_{**}. The composition function allows us to see a large class of functions as convex (or concave). For scale composition, the remarkable ones are: If g is convex then f(x) = h(g(x)) = expg(x) is convex. If g is convex and dom (g) ⊆ R₊, then f(x) = h(g(x)) = 1/g(x) is convex. If g is convex and dom (g) ⊆ R₊, then f(x) = h(g(x)) = 1/g(x) is convex. If g is convex and dom (g) ⊆ R₊, then f(x) = h(g(x)) = g^p(x) is convex, where dom (f) = {x g(x) x y x x x x x x x x
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^{T}\mathbf{P}\mathbf{x} + p^{T}\mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_{+} \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \ \mathbf{x}\ _p$, where $p \in \mathbb{N}_{++}$. Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$. Maximum function (pointwise maximum): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$. Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(\mathbf{R}^n)$ • $f(x) = \log(\mathbf{R}^n)$ Log-determinant function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f = g \circ h$, i.e., $f(x) = (h \circ g)(\mathbf{x}) = h(g(\mathbf{x}))$, where: • $g : \mathbb{R}^n \to \mathbb{R}^k$ • $h : \mathbb{R}^k \to \mathbb{R}$.	It depends on the matrix P: • f is convex iff P≥ 0. • f is strictly convex iff P> 0. • f is concave iff P≤ 0. • f is concave iff P≤ 0. • f is concave iff P≤ 0. • f is strictly concave iff P < It depends on a • f is convex iff a≥ 1 or a≤ 0. • f is concave iff 0 ≤ a ≤ 1. Yes. Y	owing statements hold for \mathbb{R} and $g:\mathbb{R}^n\to\mathbb{R}$. O. O. O. O. O. O. O. O. O.	 has its origin fixed at 0 after the transformation, whereas the affine function does not nocessarily have it, when not, this makes the affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c⁷. In this case, we have f(x) = c⁷x, which is the inner product between the vector c and x. The innerse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The inner matrix inequolity (LMI), A(x) = x,A₁ + ··· + x₀A_n ≤ B, is a special case of affine function. In other words, f(x) = (x A(x) ≤ B) is a convex set if x is convex. Many optimization problems can be formulated as LMI problems and solved optimally. This function is interpreted as the approximation of the maximum element function, since max {x₁,,x_n} ≤ f(x) ≤ max {x₁,,x_n} + log n X is positive semidefinite, i.e., X > 0 ∴ X ∈ S^{**}_{**}. The composition function allows us to see a large class of functions as convex (or concave). For scale composition, the remarkable ones are: If g is convex then f(x) = h(g(x)) = expg(x) is convex. If g is convex and dom (g) ⊆ R₊, then f(x) = h(g(x)) = 1/g(x) is convex. If g is convex and dom (g) ⊆ R₊, then f(x) = h(g(x)) = 1/g(x) is convex. If g is convex and dom (g) ⊆ R₊, then f(x) = h(g(x)) = g^p(x) is convex, where dom (f) = {x g(x) x y x x x x x x x x
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ • $f(x) = x^a$ Power function $f: \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x ^p$, where $f(x) = x ^p$ where $f(x) = x ^p$, where $f(x) = x ^p$ where $f(x) = x ^p$ and $f(x) = x ^p$ where $f(x) = x ^p$, where $f(x) = x ^p$ and $f(x) = x ^p$, where $f(x) = x ^p$ and $f(x) = x ^p$, where $f(x) = x ^p$ and $f(x) = x ^p$. Maximum function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$. Maximum function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \min\{f_1(x), \dots, f_n(x)\}$. Minimum function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \min\{f_1(x), \dots, f_n(x)\}$. Log-sum-exp function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(x)$ Composite function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log x $ Composite function $f(x) = x ^{1/n}$ • $f(x) = x ^{1/n}$ Nonnegative weighted sum: $f: \text{dom}(f) \to \mathbb{R}$ • $f(x) = x ^{1/n}$ • $f(x)$	It depends on the matrix P: • f is convex iff P ≥ 0. • f is strictly convex iff P > 0. • f is concave iff P ≤ 0. • f is concave iff P ≤ 0. • f is factory concave iff P < It depends on a • f is convex iff a ≥ 1 or a ≤ 0. • f is concave iff 0 ≤ a ≤ 1. Yes.	owing statements hold for \mathbb{R} and $g:\mathbb{R}^n \to \mathbb{R}$: avex, \tilde{h} is nondecreasing, is case, dom (h) is either examples and $g:\mathbb{R}^n \to \mathbb{R}^k$. And $g:\mathbb{R}^n \to \mathbb{R}^k$ is nonincreasing, acave, \tilde{h} is nonincreasing, oving statements hold for $\tilde{k} \to \mathbb{R}$ and $g:\mathbb{R}^n \to \mathbb{R}^k$.	 has its origin fixed at 0 after the transformation, whereas the affline function odoes not necessarily have it (when not, this makes the affline function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = e^T. In this case, we have f(x) = e^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁+···+x_nA_n ≤ B, is a special case of affine function. In other words, f(x) = {x A(x) ≤ B} is a convex set if s is convex. Many optimization problems can be formulated as LMI problems and solved optimally. It can be proved by triangular inequality. It can be proved by triangular inequality. It is a positive semidefinite, i.e., X > 0 ∴ X ∈ Sⁿ_{e+}. It composition function allows us to see a large class of functions as convex (or concave). For scale composition, the remarkable ones are: If g is convex then f(x) = h(g(x)) = exp g(x) is convex. If g is convex then f(x) = h(g(x)) = exp g(x) is convex. If g is convex then f(x) = h(g(x)) = log (-g(x)) is convex. If g is convex where p ≥ 1. If g is convex where p ≥ 1. If g is convex where f ≥ h, (x) = h, (x) = h (g(x)) = h
• $f(\mathbf{x}) = e^{a\mathbf{x}} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T\mathbf{P}\mathbf{x} + p^T\mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = \mathbf{x} ^p$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \ \mathbf{x}\ _p$, where $p \in \mathbb{N}_{++}$. Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$. Minimum function (pointwise maximum): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{f_1(x), \dots, f_n(x)\}$. Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log (e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log \mathbf{X} $ Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f : \mathbb{R}^n \to \mathbb{R}^k$. • $h : \mathbb{R}^k \to \mathbb{R}$.	It depends on the matrix P: • f is convex iff P ≥ 0. • f is concave iff P ≤ 0. • f is concave iff P ≤ 0. • f is concave iff P ≤ 0. • f is strictly concave iff P < It depends on a • f is convex iff a ≥ 1 or a ≤ 0. • f is concave iff 0 ≤ a ≤ 1. Yes.	owing statements hold for \mathbb{R} and $g:\mathbb{R}^n \to \mathbb{R}$: netion. O. O. O. O. O. O. O. O. O.	 has its origin fixed at 0 after the transformation, whereas the affline function odoes not necessarily have it (when not, this makes the affline function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = e^T. In this case, we have f(x) = e^Tx, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁+···+x_nA_n ≤ B, is a special case of affine function. In other words, f(x) = {x A(x) ≤ B} is a convex set if s is convex. Many optimization problems can be formulated as LMI problems and solved optimally. It can be proved by triangular inequality. It can be proved by triangular inequality. It is a positive semidefinite, i.e., X > 0 ∴ X ∈ Sⁿ_{e+}. It composition function allows us to see a large class of functions as convex (or concave). For scale composition, the remarkable ones are: If g is convex then f(x) = h(g(x)) = exp g(x) is convex. If g is convex then f(x) = h(g(x)) = exp g(x) is convex. If g is convex then f(x) = h(g(x)) = log (-g(x)) is convex. If g is convex where p ≥ 1. If g is convex where p ≥ 1. If g is convex where f ≥ h, (x) = h, (x) = h (g(x)) = h
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ • $f(x) = x^a$ Power function $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x ^p$, where $p \leq 1$. Logarithm function: $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \mathbf{x} \mathbf{g} x$ Minkwocki distance, p -norm function, or I_p norm function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \mathbf{x} \mathbf{g} x$ Maximum element: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$. Maximum function (pointwise maximum): $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \min\{f_1(x), \dots, f_n(x)\}$. Log-sum-exp function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \min\{f_1(x), \dots, f_n(x)\}$. Log-sum-exp function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(\mathbb{R}^n)$ Log-determinant function $f: \mathbb{S}^n_+ \to \mathbb{R}$ • $f(x) = \log \mathbf{X} $ Composite function $f: \mathbf{h} \circ \mathbf{g} : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log \mathbf{X} $ Composite function $f: \mathbf{h} \circ \mathbf{g} : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log \mathbf{x} $ Composite function $f: \mathbf{h} \circ \mathbf{g} : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log \mathbf{x} $ Power function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log \mathbf{x} $ Composite function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log \mathbf{x} $ Nonnegative weighted sum: $f: \mathrm{dom}(f) \to \mathbb{R}$ • $f(x) = \log \mathbf{x} $	It depends on the matrix P: • f is convex iff P ≥ 0. • f is strictly convex iff P > 0. • f is concave iff P ≤ 0. • f is strictly concave iff P < It depends on a • f is convex iff a ≥ 1 or a ≤ • f is concave iff 0 ≤ a ≤ 1. Yes. Yes	wing statements hold for \Rightarrow \mathbb{R} and $g:\mathbb{R}^n \to \mathbb{R}$: Nex., $\tilde{h}:$ sin nonincreasing, since $\tilde{h}:$ is nonincreasing in $\tilde{h}:$ is nonincreasing in $\tilde{h}:$ is nonincreasing, since $\tilde{h}:$ is nonincreasing in $\tilde{h}:$ is nonincreasing, and $\tilde{h}:$ is n	 has its origin fixed at 0 after the transformation, whereas the affine function looks not necessarily have it (when not, this makes the affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = C¹. In this case, we have f(x) = c¹x, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also convex. The linear matrix inequality (LMI), A(y) = x A₁ + · · · x · A × A ≤ B is a special case of affine function. In other words, f(S) = {x A(x) ≤ B} is a convex set if Y is convex. Many optimization problems can be formulated as LMI problems and solved optimization problems can be formulated as LMI problems and solved optimization problems. It can be proved by triangular inequality. The composition function allows us to see a large class of functions as convex (or concave). If x is convex them f(x) = h(x(x)) = exp x(x) is convex. If x is convex and dom (x) ⊆ Z_{***}, then f(x) = h(x(x)) = log x(x) is log x(x) is convex. If x is convex and dom (x) ⊆ Z_{***}, then f(x) = h(x(x)) = l(x(x)) =
• $f(x) = e^{nx} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ • $f(x) = x^a$ • $f(x) = \mathbf{x} ^p$, where $p \leq 1$. Logarithm function: $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \mathbf{x} ^p$, where $p \leq 1$. Logarithm function: $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \mathbf{x} = \mathbf{x}$ • $f(x) = \mathbf{x} = \mathbf{x}$ • $f(x) = \mathbf{x} = \mathbf{x}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or I_p norm function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \mathbf{x} _p$, where $p \in \mathbb{N}_{++}$. Maximum element: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max\{x_1, \dots, x_n\}$. Maximum function (pointwise maximum): $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \min\{f_1(x), \dots, f_n(x)\}$. Log-sum-exp function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(x]$ Composite mean function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log[X]$ Composite function $f = h \circ g: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = x = f(x) = f(x) = f(x) = f(x)$ • $f(x) = x = f(x) = f(x) = f(x) = f(x)$ • $f(x) = x = f(x) = f(x) = f(x) = f(x)$ • $f(x) = x = f(x) = f(x) = f(x) = f(x)$ • $f(x) = x = f(x) = f(x) = f(x) = f(x)$ • $f(x) = x = f(x) = f(x) = f(x) = f(x)$ • $f(x) = x = f(x) = f(x) = f(x) = f(x)$ • $f(x) = x = f(x) = f(x) = f(x) = f(x)$ • $f(x) = x = f(x) = f(x) = f(x) = f(x) = f(x)$ • $f(x) = x = f(x) = f($	It depends on the matrix P: • f is convex iff P≥ 0. • f is concave iff P > 0. • f is concave iff P < 0. • f is concave iff P < 0. • f is trictly concave iff P < It depends on a • f is convex iff a ≥ 1 or a ≤ • f is concave iff 0 ≤ a ≤ 1. Yes.	wing statements hold for \Rightarrow \mathbb{R} and $g:\mathbb{R}^n \to \mathbb{R}$: Nex., $\tilde{h}:$ sin nonincreasing, since $\tilde{h}:$ is nonincreasing in $\tilde{h}:$ is nonincreasing in $\tilde{h}:$ is nonincreasing, since $\tilde{h}:$ is nonincreasing in $\tilde{h}:$ is nonincreasing, and $\tilde{h}:$ is n	 has its origin fixed at 0 after the transformation, whereas the affine function bods not necessarily have it (when not, this makes the affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c⁷. In this case, we have f(x) = c⁷x, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = (x f(x) ∈ C), is also convex. The linear matrix inequality (LMI), A(x) = x₁A₁ + ···+x_nA_n ≤ B_n is a special case of affine function. In other words, f(S) = {x A(x) ≤ B } is a convex affine function problems can be formulated as LMI problems and solved optimally. This function is interpreted as the approximation of the maximum element function, since max {x₁,,x_n} ≤ f(x) ≤ max {x₁,,x_n} + log n X is positive semidefinite, i.e., X > 0 ∴ X ∈ Sⁿx. If x is convex then f(x) = h(x(x)) = exp x(x) is convex. If y is concave and dom (g) ⊆ R_{n+1}, then f(x) = h(y(x)) = lyg(x) is convex. If y is concave and dom (g) ⊆ R_{n+1}, then f(x) = h(y(x)) = x lyg(x) is convex. If y is convex then f(x) x x x x x x x x x
• $f(x) = e^{nx} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T\mathbf{P}\mathbf{x} + p^T\mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \mathbf{x}^n$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = \mathbf{x} ^p$, where $p \leq 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \mathbf{x} _p$, where $p \in \mathbb{N}_+$. Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max \{f_1(x), \dots, f_n(x)\}$. Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \min \{f_1(x), \dots, f_n(x)\}$. Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log (e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log (e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log \mathbb{R}$ • $f(x) = \log \mathbb{R}$ Composite function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log \mathbb{R}$ $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log \mathbb{R}$ Posspective function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log \mathbb{R}$ • $f(x) = (x \in \mathbb{R}^n)$ • $f(x) = (x \in \mathbb{R}^n)$ • $f(x) = (x \in \mathbb{R}^n)$ Perspective function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = (x \in \mathbb{R}^n)$ • $f(x) = x/t$, where $x \in \mathbb{R}^n$, $t \in \mathbb{R}$.	It depends on the matrix P: • f is convex iff P≥ 0. • f is strictly convex iff P> 0. • f is strictly concave iff P < It depends on a • f is convex iff a≥ 1 or a≤ 0. • f is concave iff 0 ≤ a ≤ 1. Yes. Y	owing statements hold for \mathbb{R} and $g:\mathbb{R}^n\to\mathbb{R}$: over, \tilde{h} is nondereasing, is case, dom (h) is either cave, \tilde{h} is nonincreasing, is case, dom (h) is a vector, \mathbb{R} is nonincreasing, oving statements hold for \mathbb{R} and \mathbb{R} . over, \mathbb{R} is nonincreasing, over, \mathbb{R} is nonincreasing, over \mathbb{R} is a vector, vector function), where vector, \mathbb{R} is nonincreasing, and \mathbb{R} is a set of incave, \mathbb{R} is nonincreasing, and \mathbb{R} is a set of extension of the function \mathbb{R} is a set of \mathbb{R} incompact of \mathbb{R} incompact of \mathbb{R} incompact of \mathbb{R} is a set of extension of the function \mathbb{R} convex or concave functions, then concave functions, then convex or concave function, in \mathbb{R} is and if \mathbb{R} is an if \mathbb{R} is an if \mathbb{R} is an incompact of \mathbb{R} is an incompact of \mathbb{R} in \mathbb{R} in \mathbb{R} in \mathbb{R} in \mathbb{R} is an incompact of \mathbb{R} in \mathbb{R} is an incompact of \mathbb{R} in \mathbb{R} in \mathbb{R} in \mathbb{R} is a vector of \mathbb{R} in \mathbb{R} in \mathbb{R} in \mathbb{R} in \mathbb{R} in \mathbb{R} is nonincreasing in \mathbb{R} in \mathbb{R} in \mathbb{R} in \mathbb{R} in \mathbb{R} in \mathbb{R} is nonincreasing in \mathbb{R} in	 has its origin fixed at 0 after the transformation, whereas the affine function looks not necessarily have it (when not, this makes the affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c⁷. In this case, we have f(x) = c⁷x, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = (x f(x) ∈ C), is also convex. The finear wadriz inequality (LMI), A(x) = x, A₁ + · · · · x, A_n ≤ B, is a special case of affine function. In other words, f(S) = (x A(x) ≤ B) is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally. It can be proved by triangular inequality. It can be proved by triangular inequality. X is positive semidefinite, i.e., X > 0 ∴ X ∈ S[*]₁. The composition function allows us to see a large class of functions as convex (or concave). For scale composition, the remarkable ones are: If g is convex then f(x) = h(g(x)) = exp g(x) is convex. If g is convex then f(x) = h(g(x)) = exp g(x) is convex. If g is convex then f(x) = h(g(x)) = -log (-g(x)) is convex. If g is convex then f(x) = h(g(x)) = -log (-g(x)) is convex. If g is convex then f(x) = h(g(x)) = -log (-g(x)) is convex. If g is convex then f(x) = h(g(x)) = -log (-g(x)) is convex. If g is convex then f(x) = h(g(x)) = -log (-g(x)) is convex. If g is convex then f(x) = h(g(x)) = -log (-g(x)) is convex. For well or good is given the function h(x) = (∑^{k-1}₁ eⁿ) and g; g₂ g, a convex functions. For 0 < p ≤ 1, the fine fine hind in hind is given the fine of g is convex (convexes) and nonnegatives, then f = h o g is concave (convexes) and nonnegatives, then f = h o g is convex (convexes) and nonnegatives, then f = h o g is convex (convexes) and nonnegatives, then f = h o g is convex (convexes) and nonneg
• $f(x) = e^{nx} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^n$ • $f(x) = x ^p$, where $p \leq 1$. Logarithm function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x ^p$, where $p \leq 1$. Logarithm function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkwooki distance, p -norm function, or I_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = x \log x$ Minkwooki distance, p -norm function, or I_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = x \log x$ Minkwooki distance, p -norm function, or I_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = x \log x$ Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max \{f_1(x), \dots, f_n(x)\}$. Maximum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \min \{f_1(x), \dots, f_n(x)\}$. Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log (e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log (e^{x_1} + \dots + e^{x_n})$ Composite function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log x$ Integral function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log x$ • $f(x) = x + x + x + x $ • $f(x) = x + x + x + x + x $ • $f(x) = x + $	It depends on the matrix P: • f is convex iff P ≥ 0. • f is strictly convex iff P > 0. • f is strictly concave iff P < 0. • f is concave iff P ≤ 0. • f is strictly concave iff P < It depends on a • f is convex iff a ≥ 1 or a ≤ 0. • f is concave iff 0 ≤ a ≤ 1. Yes.	owing statements hold for \mathbb{R} and $g:\mathbb{R}^n\to\mathbb{R}$: one of the property of	 has its origin fixed at 0 after the transformation, whereas the affine function bodinear). Graphically, we can think of an affine function as a linear transformation plus as shift from the origin of b. A special case of the linear function is when A = e⁷. In this case, we have f(x) = e⁷x, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = (x f(x) ∈ C), is also convex. The inverse image of C, f⁻¹(C) = (x f(x) ∈ C), is also convex. The inverse image of C, f⁻¹(C) = (x f(x) ∈ X), is also convex. The inverse image of C, f⁻¹(C) = (x f(x) ∈ X), is also convex. The inverse image of C, f⁻¹(C) = (x f(x) ∈ X), is also convex. The inverse image of C, f⁻¹(C) = (x f(x) ∈ X), is also convex. The facult is interpreted as the approximation of the maximum chement function, since max {x₁,,x_n} ≤ f(x) ≤ (x f(x) ≤ X) is a special case of affine function, since max {x₁,,x_n} ≤ f(x) ≤ max {x₂,,x_n} + log n X is positive semidefinite, i.e., X > 0 ∴ X ∈ Sⁿ₊. It can be proved by triangular inequality. X is positive semidefinite, i.e., X > 0 ∴ X ∈ Sⁿ₊. The composition function allows us to see a large class of functions as convex (or concave). If g is concave and dom (g) ⊆ ℝ₊, then f(x) = h(g(x)) = log(g(x)) = log(g(x))
• $f(x) = e^{nx} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ Power function $f: \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^n$ Power of absolute value: $f: \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \leq 1$. Logarithm function: $f: \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \log x$ Minikvoski distance, p -norm function, or I_p norm function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log x $ Maximum element: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max \{f_1(x), \dots, f_n(x)\}$. Maximum function (pointwise maximum): $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max \{f_1(x), \dots, f_n(x)\}$. Minimum function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \min \{f_1(x), \dots, f_n(x)\}$. Log-sum-exp function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log (e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log p(x)$ $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log p(x)$ Composite function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log p(x)$ $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log p(x)$ Nonnegative weighted sum: $f: \dim(f) \to \mathbb{R}$ • $f(x) = \log p(x)$ $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log p(x)$ Projective function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log p(x)$ • $f(x) = \log p(x)$ Nonnegative weighted sum: $f: \dim(f) \to \mathbb{R}$ • $f(x) = \log p(x)$ Projective function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log p(x)$ Projective function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = p(x)$ • $f(x) =$	It depends on the matrix P: • f is convex iff P ≥ 0. • f is strictly convex iff P > 0. • f is strictly concave iff P < 0. • f is concave iff P ≤ 0. • f is strictly concave iff P < It depends on a • f is convex iff a ≥ 1 or a ≤ 0. • f is concave iff 0 ≤ a ≤ 1. Yes.	owing statements hold for \mathbb{R} and $g:\mathbb{R}^n\to\mathbb{R}$: one of the property of	 has its origin fixed at 0 after the transformation, whereas the affine function tools not accessify have it (when not, this makes the affine function is a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = c⁷. In this case, we have f(x) = c⁸ x, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = (x f(x) ∈ C), is also convex. The inverse image of C, f⁻¹(C) = (x f(x) ∈ C), is also convex. The inverse image of C, f⁻¹(C) = (x f(x) ∈ x A + · · · + x A ∈ S), is a special case of affine antenton. In other words, f(5) = (x f(x) ≤ B) is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally. It can be proved by triangular inequality. X is positive semidefinite, i.e., X > 0 · · X ∈ Sⁿ₊. It can be proved then f(x) = h(g(x)) = cxp g(x) is convex. If g is convex then f(x) = h(g(x)) = cxp g(x) is convex. If g is convex then f(x) = h(g(x)) = -log (-g(x)) is convex. If g is convex and dom (g) ⊆ ℝ₊, then f(x) = h(g(x)) = g^p(x) is good in go
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n$, $\mathbf{p} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ • $f(x) = \mathbf{x} ^n$ Power function $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \mathbf{x} ^n$, where $p \leq 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_{+} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_{+} \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_{+} \to \mathbb{R}$ • $f(x) = \mathbf{x} _p$, where $p \in \mathbb{N}_{++}$. Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \mathbf{x} _p$, where $p \in \mathbb{N}_{++}$. Maximum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max \{x_1, \dots, x_n\}$. Maximum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max \{f_1(x), \dots, f_n(x)\}$. Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log (e^{x_1} + \dots + e^{x_n})$ Geometric mean function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log (e^{x_1} + \dots + e^{x_n})$ Log-determinant function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log (\mathbb{R})$ Composite function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log (\mathbb{R})$ Composite function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log (\mathbb{R})$ Composite function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log (\mathbb{R})$ $f(x) = x = x = x = x = x = x = x = x = x =$	It depends on the matrix P: • f is convex iff P ≥ 0. • f is strictly convex iff P > 0. • f is strictly concave iff P < 0. • f is concave iff P ≤ 0. • f is strictly concave iff P < It depends on a • f is convex iff a ≥ 1 or a ≤ 0. • f is concave iff 0 ≤ a ≤ 1. Yes.	owing statements hold for \mathbb{R} and $g:\mathbb{R}^n\to\mathbb{R}$: one of the property of	 has its origin fixed at 0 after the transformation, whereas the affine function modificate). Graphically, we can think of an affine function as a linear transformation plus shift from the origin of b. A special case of the linear function is when A = c². In this case, we have f(x) = c²x, which is the inner product between the vector c and x. The inverse image of C, f⁻¹(C) = (x f(x) ∈ C), is also convex. The inverse image of C, f⁻¹(C) = (x f(x) ∈ C), is also convex. The inverse image of C, f⁻¹(C) = (x f(x) ∈ C), is also convex. The inverse image of C, f⁻¹(C) = (x f(x) ∈ C), is also convex. The inverse image of C, f⁻¹(C) = (x f(x) ∈ C), is also convex. The inverse image of C, f⁻¹(C) = (x f(x) ∈ C), is also convex. The inverse image of C, f⁻¹(C) = (x f(x) ∈ C), is also convex. The composition function, since max (x₁,,x_n) ≤ f(x) ≤
• $f(x) = e^{nx} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n$, $\mathbf{P} \in \mathbb{R}^{n\times n}$, and $a,b \in \mathbb{R}$ • $f(x) = x^n$ Power function $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \mathbf{x} ^n$, where $p \leq 1$. Logarithm function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \ \mathbf{x}\ _p$, where $p \in \mathbb{N}_+$. Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \ \mathbf{x}\ _p$, where $p \in \mathbb{N}_+$. Maximum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max \{x_1, \dots, x_n\}$. Maximum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max \{f_1(x), \dots, f_n(x)\}$. Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(x)$ Composite function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(x)$ Projective function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(x)$ Projective function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = x$ • $f(x) =$	It depends on the matrix P: • f is convex iff P ≥ 0. • f is strictly convex iff P > 0. • f is strictly concave iff P < 0. • f is concave iff P ≤ 0. • f is strictly concave iff P < It depends on a • f is convex iff a ≥ 1 or a ≤ 0. • f is concave iff 0 ≤ a ≤ 1. Yes.	owing statements hold for \mathbb{R} and $g:\mathbb{R}^n\to\mathbb{R}$: one of the property of	 as its origin faced at 0 after the transformation, whereas the affine function of one not necessarily have it (when not, this nakes the affine function in onlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = e^T. In this case, we have f(x) = e^Tx, which is the inner product between the vector and x. The inverse image of C, f⁻¹(C) = (x f(x) ∈ C), is also convex. If a special case of effine function. In other words, f(X) = (x A(x) ≤ B) is a convex at X is so convex. May optimization problems can be formulated as LMI problems and solved optimization problems can be formulated as LMI problems and solved optimization problems can be formulated as LMI problems and solved optimization function allows us to zero a large class of functions as convex (or constave). For scale composition function allows us to zero a large class of functions as convex (or constave). For scale composition, the remarkable ones are: If y is convex than f(x) = h(g(x)) = exp g(x) is convex. If y is convex and dom (y) ⊆ R₊₊, then f(x) = h(g(x)) = log g(x) is convex. If y is convex and dom (y) ⊆ R₊₊, then f(x) = h(g(x)) = log g(x) is convex. For exact composition, we have the following examples: If g(x) = h(x) + h(x) + h(g(x)) = -log (-g(x)) is convex, then h(x) = h(g(x)) = h(g(x
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^* \mathbf{P} \mathbf{x} + \mathbf{p}^* \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n$, $\mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ • $f(x) = x^n$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^n$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x ^n$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x = x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x = x$ • $f(x) = x = x$ Minkweeki distance, p -norm function, or I_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = x = x$ • $f(x) = x = $	It depends on the matrix P: • f is convex iff P ≥ 0. • f is strictly convex iff P > 0. • f is strictly concave iff P < 0. • f is concave iff P ≤ 0. • f is strictly concave iff P < It depends on a • f is convex iff a ≥ 1 or a ≤ 0. • f is concave iff 0 ≤ a ≤ 1. Yes.	owing statements hold for R and $g: \mathbb{R}^n \to \mathbb{R}$: Invex, \tilde{h} is nondecreasing, is case, dom (h) is either and R is nonincreasing, is case, R is nonincreasing, is case, R is nonincreasing, and R is nonincreasing, and R is nondecreasing in R is nondecreasing in R is nondecreasing in R is nonincreasing, and R is nonincreasing in an R is nonincreasing in R is nonincreasing, and R is R is nonincreasing in R is R is nonincreasing in R is R in R is nonincreasing in R is non	 has its origin fixed and after the transformation, whereas the affine function on all more affine function with smales the affine function modifinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. A special case of the linear function is when A = e^T. In this case, we have \(\((x) = e^T_{x}, \) which is the himer product between the vector and \(x \). The inverse image of \(C, f^{-1}(C) = \{x \mid f(x) = C_{x}\}, x + x, x \) ≤ S, so a special case of affine function. In other words, \(f(0) = f(x) = f(x) \) is a special case of affine function. In other words, \(f(0) = f(x) = f(x) = f(x) \) and \(f(0) = f(x) = f(x
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^n \operatorname{Px} + p^n x + r \in \mathbb{R}$, where $x, p \in \mathbb{R}^n, P \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ • $f(x) = x^n$ Power function $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x^n$ Power of absolute value: $f: \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^n$ • f	It depends on the matrix P: • f is convex iff P ≥ 0. • f is strictly convex iff P > 0. • f is concave iff P ≤ 0. • f is concave iff P ≤ 0. • f is convex iff a ≥ 1 or a ≤ . • f is convex iff a ≥ 1 or a ≤ . • f is concave iff 0 ≤ a ≤ 1. Yes. • Scalar composition: the followard for the cases. Yes. Yes. Yes. Yes. Yes. • Scalar composition: the followard for the cases. Yes. Yes. Yes. Yes. Yes. • Scalar composition: the followard for the cases. Yes. Yes. Yes. Yes. • Scalar composition: the followard for the cases. Yes. Yes. • Scalar composition: the followard for the cases. Yes. • Scalar composition: the followard for the cases. Yes. • Is convex if h is contant for the contant for the case in each argument of x, and function for simply, g₁: ℝ ^k → ℝ for 1 ≤ i ≤ k. • Is convex if h is is contant for the case in each argument of x, and functions. • If is convex if h is is contant for the contant	owing statements hold for \mathbb{R} and $g: \mathbb{R}^n \to \mathbb{R}$: o. o. o. o. o. o. o. o. o. o	 bas is origin faced at 0 after the transformation, whereas the affine function of one not necessarily have it token not this nades the affine function nonlinear). Graphically, we can think of an affine function as a finear transformation plus a shift from the origin of b. A special case of the linear function is when A = c!. In this case, we have \((x) = c^2 x\), which is the hime product between the vector cand x. The inverse image of C, f' \((C) = (x f(x) \in C)\) is also convexed. It is a spoular case of affine function. In other words, f(x) = \((x) A(x) \in B)\) is a convexe at f1 is a convex at f1 is 5 convex. Many optimization problems can be formulated as LMI problems and solved optimally. X is positive semidefinite, i.e., X > 0 \(. \) X ∈ S* The composition function allows us to see a large class of functions as convex for concave, and dom \((x) = k_1 (x) = k_1 (x) = k_2 (x)) = log \((x) \) is its convex. If y is concave and dom \((x) = k_1 (x) = k_1 (x) = k_2 (x)) = log \((x) \) is convex. If y is concave and dom \((x) = k_1 (x) = k_1 (x) = k_1 (x)) = log \((x) \) is convex. If y is concave that \((x) = k_1 (x) = k_1 (x) = k_1 (x) \) is convex, where \(x > 1 \) is its convex. If y is convex that \((x) = k_1 (x) = k_1 (x) = k_1 (x) \) is convex, where \(x > 1 \) is a convex at \((x) = k_1 (x)
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^n \operatorname{Px} + p^T x + r \in \mathbb{R}$, where $x, p \in \mathbb{R}^n$, $P \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ • $f(x) = x^n$ Power function $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x^n$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^n$, where $p \leq 1$. Logarithm function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x ^n$, where $p \in \mathbb{N}_+$ • $f(x) = x = x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x \log x$ Minkweeki distance, p -norm function, or I_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = x \log x$ Minkweeki distance, p -norm function, or I_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max \{f_1(x), \dots, f_n(x)\}$. Maximum function (pointwise maximum): $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max \{f_1(x), \dots, f_n(x)\}$. Minimum function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \min \{f_1(x), \dots, f_n(x)\}$. Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \lim_{x \to \infty} f(x)$ • $f(x) = \lim_{x \to \infty} f(x)$ Composite function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log (x^{n_1} + \dots + x^{n_n})$ • $f(x) = \log x $ Composite function $f : \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \log x $ Composite function $f : \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \log x $ • $f(x) = x^{n_1} \to \mathbb{R}^n$ is the perspective function given by $g(x) = x $ • $g(x) = x^{n_1} \to \mathbb{R}^n$ is the perspective function. • $f(x) = x^{n_1} \to \mathbb{R}^n$ is the perspective function. • $f(x) = x^{n_1} \to \mathbb{R}^n$ is the perspective function. • $f(x) = x^{n_1} \to \mathbb{R}^n$ is the perspective function. • $f(x) = x^{n_1} \to \mathbb{R}^n$ is the perspective function. • $f(x) = x^{n_1} \to \mathbb{R}^n$ is the perspective function. • $f(x) = x^{n_1} \to \mathbb{R}^n$ is the perspective function. • $f(x) = x^{n_1} \to \mathbb{R}^n$ is the perspective function. • $f(x) = x^{n_1} \to \mathbb{R}^n$ is the perspective function. • $f(x) = x^{n_1} \to \mathbb{R}^n$ is the perspective function. • $f(x) = x^{n_1} \to \mathbb{R}^n$ is the perspective function. • $f(x) = x^{n_1} \to \mathbb{R}^n$ is the perspective function.	It depends on the matrix P: • f is convex iff P ≥ 0. • f is strictly convex iff P > 0. • f is concave iff P ≥ 0. • f is concave iff P ≥ 0. • f is concave iff P ≥ 0. • f is convex iff a ≥ 1 or a ≤ . • f is concave iff 0 ≤ a ≤ 1. Yes. Yes	owing statements hold for \mathbb{R} and $g: \mathbb{R}^n \to \mathbb{R}$: o. o. o. o. o. o. o. o. o. o	 but its origin fixed at 0 after the transformation, whereas the affine function nonlinear). Graphically, we can think of an affine function monlinear). Graphically, we can think of an affine function as these transformation plus a slid from the origin of b. A special case of the linear function is when A = cT. In this case, we have x(1 = cT_x, which is the hiner product between the vector and X. The inverse image of C, f⁻¹(C) = x f(x) ∈ C , is also convex at The linear castic insensity (E, Min, X) = x₁A₁ × −x₂A₂ ≤ B₁ is a popular case of affine function. In other words, f(5) = x A(x) ≤ B is a convex at 15 is convex. May optimization problems can be foreunisted as LMI problems and solved optimally. X is positive semideficially, i.e., X > 0 . X ∈ S⁰₀. X is positive semideficially, i.e., X > 0 . X ∈ S⁰₀. The composition function allows us to see a large class of functions as convex (or convex). For scale rampoid fun, the remarkable oras are:
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^n \operatorname{Px} + p^n x + r \in \mathbb{R}$, where $x, p \in \mathbb{R}^n, P \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ • $f(x) = x^n$ Power function $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x^n$ Power of absolute value: $f: \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^n$ • f	It depends on the matrix P: • f is convex iff P ≥ 0. • f is strictly convex iff P > 0. • f is concave iff P ≥ 0. • f is concave iff P ≥ 0. • f is concave iff P ≥ 0. • f is convex iff a ≥ 1 or a ≤ . • f is concave iff 0 ≤ a ≤ 1. Yes. Yes	owing statements hold for \mathbb{R} and $g: \mathbb{R}^n \to \mathbb{R}$: o. o. o. o. o. o. o. o. o. o	 but its origin fixed at 0 after the transformation, whereas the affine function nonlinear). Graphically, we can think of an affine function monlinear). Graphically, we can think of an affine function as these transformation plus a slid from the origin of b. A special case of the linear function is when A = cT. In this case, we have x(1 = cT_x, which is the hiner product between the vector and X. The inverse image of C, f⁻¹(C) = x f(x) ∈ C , is also convex at The linear castic insensity (E, Min, X) = x₁A₁ × −x₂A₂ ≤ B₁ is a popular case of affine function. In other words, f(5) = x A(x) ≤ B is a convex at 15 is convex. May optimization problems can be foreunisted as LMI problems and solved optimally. X is positive semideficially, i.e., X > 0 . X ∈ S⁰₀. X is positive semideficially, i.e., X > 0 . X ∈ S⁰₀. The composition function allows us to see a large class of functions as convex (or convex). For scale rampoid fun, the remarkable oras are:
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^n \operatorname{Px} + p^n x + r \in \mathbb{R}$, where $x, p \in \mathbb{R}^n, P \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ • $f(x) = x^n$ Power function $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x^n$ Power of absolute value: $f: \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^n$ • f	It depends on the matrix P: • f is convex iff P ≥ 0. • f is strictly convex iff P > 0. • f is concave iff P ≥ 0. • f is concave iff P ≥ 0. • f is concave iff P ≥ 0. • f is convex iff a ≥ 1 or a ≤ . • f is concave iff 0 ≤ a ≤ 1. Yes. Yes	owing statements hold for \mathbb{R} and $g: \mathbb{R}^n \to \mathbb{R}$: o. o. o. o. o. o. o. o. o. o	 but its origin fixed at 0 after the transformation, whereas the affine function nonlinear). Graphically, we can think of an affine function monlinear). Graphically, we can think of an affine function as these transformation plus a slid from the origin of b. A special case of the linear function is when A = cT. In this case, we have x(1 = cT_x, which is the hiner product between the vector and X. The inverse image of C, f⁻¹(C) = x f(x) ∈ C , is also convex at The linear castic insensity (E, Min, X) = x₁A₁ × −x₂A₂ ≤ B₁ is a popular case of affine function. In other words, f(5) = x A(x) ≤ B is a convex at 15 is convex. May optimization problems can be foreunisted as LMI problems and solved optimally. X is positive semideficially, i.e., X > 0 . X ∈ S⁰₀. X is positive semideficially, i.e., X > 0 . X ∈ S⁰₀. The composition function allows us to see a large class of functions as convex (or convex). For scale rampoid fun, the remarkable oras are:
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^p \Pr_x + p^*x + r \in \mathbb{R}$, where $x, p \in \mathbb{R}^n$, $P \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ • $f(x) = x^a$ Power function $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x ^p$, where $p \leq 1$. Logarithm function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \log x$ Negative entropy function: $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = \log x$ Minkwooki distance, p -norm function, or I_p norm function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = x _p$, where $p \in \mathbb{N}_+$. Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = x _p$, where $p \in \mathbb{N}_+$. Maximum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max_x \{f_1, \dots, f_n(x)\}$. Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \max_x \{f_1(x), \dots, f_n(x)\}$. Integral function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log(e^{x_1} + \dots + e^{x_n})$ Geometric mean function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = \log[x]$ Composite function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(x) = g _{x \to \infty} f(x) _{x \to \infty} f$	It depends on the matrix P: • f is convex iff P ≥ 0. • f is strictly convex iff P > 0. • f is concave iff P ≥ 0. • f is concave iff P ≥ 0. • f is concave iff P ≥ 0. • f is convex iff a ≥ 1 or a ≤ . • f is concave iff 0 ≤ a ≤ 1. Yes. Yes	owing statements hold for \mathbb{R} and $g: \mathbb{R}^n \to \mathbb{R}$: o. o. o. o. o. o. o. o. o. o	 but its origin fixed at 0 after the transformation, whereas the affine function nonlinear). Graphically, we can think of an affine function monlinear). Graphically, we can think of an affine function as these transformation plus a slid from the origin of b. A special case of the linear function is when A = cT. In this case, we have x(1 = cT_x, which is the hiner product between the vector and X. The inverse image of C, f⁻¹(C) = x f(x) ∈ C , is also convex at The linear castic insensity (E, Min, X) = x₁A₁ × −x₂A₂ ≤ B₁ is a popular case of affine function. In other words, f(5) = x A(x) ≤ B is a convex at 15 is convex. May optimization problems can be foreunisted as LMI problems and solved optimally. X is positive semideficially, i.e., X > 0 . X ∈ S⁰₀. X is positive semideficially, i.e., X > 0 . X ∈ S⁰₀. The composition function allows us to see a large class of functions as convex (or convex). For scale rampoid fun, the remarkable oras are:
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(x) = ax^n \operatorname{Px} + p^n x + r \in \mathbb{R}$, where $x, p \in \mathbb{R}^n, P \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ • $f(x) = x^n$ Power function $f: \mathbb{R}_+ \to \mathbb{R}$ • $f(x) = x^n$ Power of absolute value: $f: \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^n$ • f	It depends on the matrix P: • f is convex iff P ≥ 0. • f is strictly convex iff P > 0. • f is concave iff P ≥ 0. • f is concave iff P ≥ 0. • f is concave iff P ≥ 0. • f is convex iff a ≥ 1 or a ≤ . • f is concave iff 0 ≤ a ≤ 1. Yes. Yes	owing statements hold for \mathbb{R} and $g: \mathbb{R}^n \to \mathbb{R}$: o. o. o. o. o. o. o. o. o. o	 but its origin fixed at 0 after the transformation, whereas the affine function nonlinear). Graphically, we can think of an affine function monlinear). Graphically, we can think of an affine function as these transformation plus a slid from the origin of b. A special case of the linear function is when A = cT. In this case, we have x(1 = cT_x, which is the hiner product between the vector and X. The inverse image of C, f⁻¹(C) = x f(x) ∈ C , is also convex at The linear castic insensity (E, Min, X) = x₁A₁ × −x₂A₂ ≤ B₁ is a popular case of affine function. In other words, f(5) = x A(x) ≤ B is a convex at 15 is convex. May optimization problems can be foreunisted as LMI problems and solved optimally. X is positive semideficially, i.e., X > 0 . X ∈ S⁰₀. X is positive semideficially, i.e., X > 0 . X ∈ S⁰₀. The composition function allows us to see a large class of functions as convex (or convex). For scale rampoid fun, the remarkable oras are:
• $f(\mathbf{x}) = e^{a\mathbf{x}} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = a\mathbf{x}^T \mathbf{P} \mathbf{x} + p^T \mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n$, $\mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$ • $f(\mathbf{x}) = \mathbf{x}^n$ Power function $f : \mathbb{R}_+ \to \mathbb{R}$ • $f(\mathbf{x}) = \mathbf{x}^n$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(\mathbf{x}) = \mathbf{x}^n$ • $f(\mathbf{x}) = \mathbf{x}^n$ Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(\mathbf{x}) = \mathbf{x}^n$ • $f(\mathbf{x}) $	It depends on the matrix P: • f is convex iff P ≥ 0. • f is strictly convex iff P > 0. • f is concave iff P ≥ 0. • f is concave iff P ≥ 0. • f is concave iff P ≥ 0. • f is convex iff a ≥ 1 or a ≤ . • f is concave iff 0 ≤ a ≤ 1. Yes. Yes	owing statements hold for \mathbb{R} and $g: \mathbb{R}^n \to \mathbb{R}$: o. o. o. o. o. o. o. o. o. o	 but its origin fixed at 0 after the transformation, whereas the affine function nonlinear). Graphically, we can think of an affine function monlinear). Graphically, we can think of an affine function as these transformation plus a slid from the origin of b. A special case of the linear function is when A = cT. In this case, we have x(1 = cT_x, which is the hiner product between the vector and X. The inverse image of C, f⁻¹(C) = x f(x) ∈ C , is also convex at The linear castic insensity (E, Min, X) = x₁A₁ × −x₂A₂ ≤ B₁ is a popular case of affine function. In other words, f(5) = x A(x) ≤ B is a convex at 15 is convex. May optimization problems can be foreunisted as LMI problems and solved optimally. X is positive semideficially, i.e., X > 0 . X ∈ S⁰₀. X is positive semideficially, i.e., X > 0 . X ∈ S⁰₀. The composition function allows us to see a large class of functions as convex (or convex). For scale rampoid fun, the remarkable oras are:

