$$H = \{(x_1, x_2, \dots x_n): a_1x_1 + a_2x_2 + \dots + a_nx_n = 0\}$$

donde a_1, a_2, \ldots, a_n son números reales fijos, no todos cero.

22. En \mathbb{R}^5 encuentre una base para el hiperplano

$$H = \{(x_1, x_2, x_3, x_4, x_5): 2x_1 - 3x_2 + x_3 + 4x_4 - x_5 = 0\}$$

De los problemas 23 al 31 encuentre una base para el espacio de solución del sistema homogéneo dado.

23.
$$x + 5v = 0$$

24.
$$8x_1 - 56x_2 = 0$$

25.
$$x + 5v = 0$$

$$-2x - 10y = 0$$

26.
$$x - y - z = 0$$

 $2x - y + z = 0$

$$27. -x + 3y - 12z = 0
7x - 3y + z = 0$$

28.
$$x-4y + 6z = 0$$

 $5x-6y + 8z = 0$
 $11x-6y + 22z = 0$

29.
$$x_1 - 6x_2 + 11x_3 + 6x_4 = 0$$

 $-15x_1 + 26x_2 - 13x_3 - 10x_4 = 0$
 $-3x_1 + 2x_2 + 5x_3 + 2x_4 = 0$

30.
$$5x_1 + 8x_2 - 8x_3 - 3x_4 = 0$$

 $10x_1 + 11x_2 - 11x_3 - 2x_4 = 0$
 $12x_1 + 11x_3 - 8x_4 = 0$

31.
$$-2w + 4x + 2y - 2z = 0$$

 $w - 2x + 2y = 0$
 $2w - x + y - 2z = 0$

- 32. Encuentre una base para \mathbb{D}_3 , el espacio vectorial de matrices diagonales de 3×3 . ¿Cuál es la dimensión de \mathbb{D}_3 ?
- 33. ¿Cuál es la dimensión D_n , el espacio de matrices diagonales de $n \times n$?
- **34.** Sea \mathbb{S}_{nn} el espacio vectorial de matrices simétricas de $n \times n$. Demuestre que \mathbb{S}_{nn} es un subespacio de \mathbb{M}_{nn} y que dim $\mathbb{S}_{nn} = [n(n+1)]/2$.
- 35. Suponga que $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ son vectores linealmente independientes en un espacio vectorial V de dimensión n y m < n. Demuestre que $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m\}$ se puede aumentar a una base para V. Esto es, existen vectores $\mathbf{v}_{m+1}, \mathbf{v}_{m+2}, \ldots, \mathbf{v}_n$ tales que $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$ es una base. [Sugerencia: Vea la demostración del teorema 5.5.5.]
- **36.** Sea $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ una base en V. Sean $\mathbf{u}_1 = \mathbf{v}_1, \mathbf{u}_2 = \mathbf{v}_1 + \mathbf{v}_2, \mathbf{u}_3 = \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3, \dots, \mathbf{u}_n = \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3, \dots, \mathbf{u}_n = \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3, \dots, \mathbf{u}_n = \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_3$
- 37. Demuestre que si $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ genera a V, entonces dim V = n. [Sugerencia: Utilice el resultado del problema 5.4.61.]
- **38.** Sean H y K dos subespacios de V tales que $H \subseteq K$ y dim $H = \dim K < \infty$. Demuestre que H = K.
- **39.** Sean H y K dos subespacios de V. Defina $H + K = \{\mathbf{h} + \mathbf{k} : \mathbf{h} \in H y \mathbf{k} \in K\}$.
 - a) Demuestre que H + K es un subesapcio de V.
 - **b)** Si $H \cap K = \{0\}$, demuestre que dim $(H + K) = \dim H + \dim K$.
- **41.** Demuestre que dos vectores \mathbf{v}_1 y \mathbf{v}_2 en \mathbb{R}^2 con puntos terminales en el origen son colineales si y sólo si dim gen $\{\mathbf{v}_1, \mathbf{v}_2\} = 1$.
- **42.** Demuestre que los tres vectores \mathbf{v}_1 , \mathbf{v}_2 y \mathbf{v}_3 en \mathbb{R}^3 con puntos terminales en el origen son coplanares si y sólo si dim gen $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \le 2$.