TREE BASED MODELS

Marco Longo Francesca Ricci Maria Rotella

MASTER IN

ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

AA 2024/2025

TREE BASED MODELS

RANDOM SURVIVAL FOREST

CASE STUDY: EMPLOYEE CHURN

AGENDA

RANDOM SURVIVAL FOREST

EMPLOYEE CHURN

Dataset Overview

- Variables involved
- Preliminary Survival Analysis
 - Results with Kaplan-Meier and Cox models
- Tree Based Models
 - Decision Trees
 - Random Forest
- Random Survival Forest
 - Model Overview
 - Parameters Tuning
 - Splitting Methods
 - Application in R and Results
 - Variable Importance
 - Evaluation and Comparison of Models

15,000 observations - 10 variables, including:

- Time-to-event variables:
 - time_spend_company: follow-up (months)
 - **left**: the event, indicating whether the employee left the company

Covariates:

- satisfaction_level: Satisfaction index (decimal between 0 and 1)
- last_evaluation: Last evaluation received (decimal between 0 and I)
- number_project: Number of projects assigned to the employee
- average_monthly_hours: Average monthly working hours
- work_accident: Workplace accidents (boolean)
- promotion_last_5years: Promotions in the last 5 years (boolean)
- department: Corporate department (e.g., IT, support, HR, sales)
- salary: Salary level (low, medium, high)

DATASET OVERVIEW

RANDOM SURVIVAL FOREST

EMPLOYEE CHURN

Survival Analysis

- Survival Analysis studies the time until the occurrence of an event
- In this case, the event is an employee leaving their job
- Observations may be **censored**: for instance, if the employee is still with the company at the end of the observation period (follow up)
- Objective: To analyze and estimate the probability that an individual will remain with the company over a given period of time, using survival functions and statistical methods

TREE BASED MODELS

- Tree-based models are widely used for prediction tasks in both **regression** and **classification**.
- Models:
 - Decision Trees
 - Random Forest
- Strengths:
 - High flexibility in adapting to different types of data and problems
 - Strong performance on real-world datasets
 - Ability to handle both categorical and numerical variables efficiently

Classification - Decision Tree in R with rpart (method="class")

TREE BASED MODELS

Survival - Decision Tree in R with **rpart** (method="**exp**")

TREE BASED MODELS

RANDOM SURVIVAL FOREST

- The Random Survival Forest (**RSF**) algorithm is an extension of Random Forests tailored for **survival** analysis.
- They are **non-parametric** models capable of handling censored data effectively.
- The log-rank test is used for splitting nodes during tree construction.

HOW RSF ALGORITHM WORKS

- RSF builds multiple decision trees using bootstrap samples from the dataset.
- At each node, the **log-rank test** is used to determine the best split by comparing survival distributions.
- RSF selects a subset of covariates for splitting during the construction of each tree.
- Predictions are aggregated across all trees in the forest to estimate survival probabilities or risk.
- RSF handles censored data effectively and does not require the proportional hazards assumption.
- Implementation in R with randomForestSRC
 - Training: rfsrc
 - Survival Curve: plot.survival
 - Variable Importance: vimp

RANDOM SURVIVAL FOREST

Analysis: **RSF** - Family: **surv**

Sample size: 10499 – No. of deaths: 2487 – No. of trees: 1000

Forest terminal node size: 15 - No. of variables tried at each split: 5

Total no. of variables: 7 - Resampling used to grow trees: swor

Resample size used to grow trees: 6635 - No. of random split points: 10

RANDOM SURVIVAL FOREST

	LOGRANK	LOGRANK SCORE
Average no. of terminal nodes	249.14	395.36
(OOB) CRPS	3.1532	3.8133
(OOB) stand. CRPS	0.0371	0.0449
(OOB) Requested performance error	0.0891	0.1110
(OOB) C-index	0.9112	0.8900

RANDOM SURVIVAL FOREST

RANDOM SURVIVAL FOREST

Variable importance

VARIABLE IMPORTANCE

Variable importance

VARIABLE IMPORTANCE

RSF and Kaplan-Meier Brier Scores

RSF RESULTS EVALUATION

RSF and Kaplan-Meier CPRS Scores

RSF RESULTS EVALUATION

RSF RESULTS EVALUATION

	LOGRANK
(OOB) C-index	0.9112
(TEST SET) C-index	0.9138

Prediction on a sample of employees (TEST SET)

PREDICTION ON TEST SET

Prediction for two employees with different satisfaction level

PREDICTION ON TEST SET

Prediction for two employees with different salary level

PREDICTION ON TEST SET

Prediction for two employees with different no. of projects

PREDICTION ON TEST SET

	Model	Optimized Model
C-index	0.9138	0.9261

Chinese Pig Prediction Problem

WARNING

CONCLUSIONS

- Random Survival Forests excelled in handling censored data and non-proportional hazards
- Variable importance and parameter tuning proved essential for optimization
- The availability of a large dataset (15000 observations)
 positively impacted sampling and model robustness
- Having 7 covariates allowed clearer identification of key variables, enabling a more robust evaluation of variable importance.
- Made effective use of numerical covariates without the need for transformations, addressing traditional limitations in survival models.
- Practical implementation in R confirmed their real-world applicability and reliability.

TREE BASED MODELS

THANKS

RANDOM SURVIVAL FOREST

EMPLOYEE CHURN