VIT-Vellore, SCOPE

CSE6037 - Deep Learning and its Applications

SUTHAR MANAN BHARATKUMAR 20MAI0016

Assessment 3

GitHub Link: https://github.com/manansuthar55/CSE6037 20MAI0016/tree/main/Assessment 3

Problem 1: Implement AlexNet on Multiclass image dataset.

```
In [ ]:
```

```
import numpy as np
from keras import layers
from keras.layers import Input, Dense, Activation, BatchNormalization, Flatten, Conv2D, M
axPooling2D
from keras.models import Model
from keras.preprocessing import image
from keras.preprocessing.image import ImageDataGenerator
import keras.backend as K
K.set_image_data_format('channels_last')
import matplotlib.pyplot as plt
from matplotlib.pyplot import imshow
```

In []:

```
path = '/content/drive/MyDrive/Colab Notebooks/AlexNet/imgclassdl1/imgclassdl1/seg_train'
train_datagen = ImageDataGenerator(rescale=1. / 255)
train = train_datagen.flow_from_directory(path, target_size=(227,227), class_mode='catego
rical')
```

Found 4439 images belonging to 6 classes.

In []:

```
fig , axs = plt.subplots(2,3,figsize = (10,10))
axs[0][0].imshow(train[0][1][12])
axs[0][0].set_title(train[0][1][12])
axs[0][1].imshow(train[0][0][10])
axs[0][1].set_title(train[0][1][10])
axs[0][2].imshow(train[0][0][5])
axs[0][2].set_title(train[0][1][5])
axs[1][0].imshow(train[0][0][20])
axs[1][0].set_title(train[0][1][20])
axs[1][1].imshow(train[0][0][25])
axs[1][1].set_title(train[0][1][25])
axs[1][2].imshow(train[0][0][13])
axs[1][2].set_title(train[0][1][13])
```

/usr/local/lib/python3.7/dist-packages/matplotlib/text.py:1165: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison

```
if s != self._text:
```

Out[]:

```
Text(0.5, 1.0, '[0. 1. 0. 0. 0. 0.]')
```


0 [0. 1. 0. 0. 0. 0.]

AlexNet Architecture

In []:

```
def AlexNet(input_shape):
    X_input = Input(input_shape)
    X = Conv2D(96,(11,11),strides = 4,name="conv0")(X_input)
    X = BatchNormalization(axis = 3, name = "bn0")(X)
    X = Activation('relu')(X)
    X = MaxPooling2D((3,3),strides = 2,name = 'max0')(X)
    X = Conv2D(256,(5,5),padding = 'same', name = 'conv1')(X)
    X = BatchNormalization(axis = 3, name='bn1')(X)
    X = Activation('relu')(X)
    X = MaxPooling2D((3,3),strides = 2,name = 'max1')(X)
    X = Conv2D(384, (3,3), padding = 'same', name='conv2')(X)
    X = BatchNormalization(axis = 3, name = 'bn2')(X)
```

```
X = Activation('relu')(X)
X = Conv2D(384, (3,3) , padding = 'same' , name='conv3')(X)
X = BatchNormalization(axis = 3, name = 'bn3')(X)
X = Activation('relu')(X)
X = Conv2D(256, (3,3) , padding = 'same' , name='conv4')(X)
X = BatchNormalization(axis = 3, name = 'bn4')(X)
X = Activation('relu')(X)
X = Activation('relu')(X)
X = MaxPooling2D((3,3), strides = 2, name = 'max2')(X)
X = Flatten()(X)
X = Dense(4096, activation = 'relu', name = "fc0")(X)
X = Dense(4096, activation = 'relu', name = 'fc1')(X)
X = Dense(6, activation='softmax', name = 'fc2')(X)
model = Model(inputs = X_input, outputs = X, name='AlexNet')
return model
```

In []:

```
alex = AlexNet(train[0][0].shape[1:])
```

In []:

```
alex.summary()
```

Model: "AlexNet"

Layer (type)	Output Shape	 Param #
<pre>input_1 (InputLayer)</pre>	[(None, 227, 227, 3)]	0
conv0 (Conv2D)	(None, 55, 55, 96)	34944
bn0 (BatchNormalization)	(None, 55, 55, 96)	384
activation (Activation)	(None, 55, 55, 96)	0
max0 (MaxPooling2D)	(None, 27, 27, 96)	0
conv1 (Conv2D)	(None, 27, 27, 256)	614656
bn1 (BatchNormalization)	(None, 27, 27, 256)	1024
activation_1 (Activation)	(None, 27, 27, 256)	0
max1 (MaxPooling2D)	(None, 13, 13, 256)	0
conv2 (Conv2D)	(None, 13, 13, 384)	885120
bn2 (BatchNormalization)	(None, 13, 13, 384)	1536
activation_2 (Activation)	(None, 13, 13, 384)	0
conv3 (Conv2D)	(None, 13, 13, 384)	1327488
bn3 (BatchNormalization)	(None, 13, 13, 384)	1536
activation_3 (Activation)	(None, 13, 13, 384)	0
conv4 (Conv2D)	(None, 13, 13, 256)	884992
bn4 (BatchNormalization)	(None, 13, 13, 256)	1024
activation_4 (Activation)	(None, 13, 13, 256)	0
max2 (MaxPooling2D)	(None, 6, 6, 256)	0
flatten (Flatten)	(None, 9216)	0
fc0 (Dense)	(None, 4096)	37752832
fc1 (Dense)	(None, 4096)	16781312
fc2 (Dense)	(None, 6)	24582

Non-trainable params: 2,752 In []: alex.compile(optimizer = 'adam' , loss = 'categorical crossentropy' , metrics=['accuracy In []: ft = alex.fit generator(train,epochs=10) alex.save("alexnet model.h5") /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py:1844: U serWarning: `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit`, which supports generators. warnings.warn('`Model.fit_generator` is deprecated and ' Epoch 1/10 Epoch 2/10 Epoch 3/10 Epoch 4/10 Epoch 5/10 Epoch 6/10 Epoch 7/10 Epoch 8/10 Epoch 9/10 Epoch 10/10 **Training Accuracy: 96.44%** In []: path test = '/content/drive/MyDrive/Colab Notebooks/AlexNet/imgclassdl1/imgclassdl1/seg t test datagen = ImageDataGenerator(rescale=1. / 255) test = test datagen.flow from directory(path test, target size=(227,227), class mode='cat Found 3000 images belonging to 6 classes. In []: preds = alex.evaluate generator(test) print ("Test Accuracy = " + str(preds[1])) /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py:1877: U serWarning: `Model.evaluate generator` is deprecated and will be removed in a future vers ion. Please use `Model.evaluate`, which supports generators. warnings.warn('`Model.evaluate generator` is deprecated and '

Testing Accuracy: 28.44%

Test Accuracy = 0.28433331847190857

Total params: 58,311,430 Trainable params: 58,308,678

As the sendel in twelferd for less consider on the contribute and bisses are not entirelized. House less consumers on

As the model in trained for less epochs, so its weights and biases are not optimized Hence less accuracy on test set.	