Lecture 11:

Nonparametric Curve Estimation

Nonparametric Curve Estimation

We'll discuss nonparametric estimation of PDF-s and regression functions referred to as **curve estimation** or **smoothing**.

We saw how to estimate a CDF F, without making any assumptions about it. If one needs to estimate a PDF f(x) or a regression function $r(x) = \mathbb{E}(Y|X=x)$, things are different – we can't estimate them well without assuming their **smoothness**.

The Bias-Variance Tradeoff

The Bias-Variance Tradeoff

Let g denote an unknown function (density / regression). Let \widehat{g}_n denote its estimator ($\widehat{g}_n(x)$ is a random function, since it depends on the data). We typically use **integrated square error (ISE)** as a

loss
$$L(g, \hat{g}_n) = \int (g(u) - \hat{g}_n(u))^2 du$$
. The **risk** or **mean**

integrated squared error (MISE) is expectation of it,

$$R(g, \hat{g}) = \mathbb{E}\left(L(g, \hat{g})\right).$$

Lemma: Risk can be written as $R(g, \hat{g}_n) = \int b^2(x) dx + \int v(x) dx$

where $b(x) = \mathbb{E}(\widehat{g}_n(x)) - g(x)$ is the **bias** of $\widehat{g}_n(x)$ at x, and $v(x) = \mathbb{V}(\widehat{g}_n(x)) = \mathbb{E}\left[\left(\widehat{g}_n(x) - \mathbb{E}\widehat{g}_n(x)\right)^2\right]$ is the **variance**.

The Bias-Variance Tradeoff

To summarise, RISK = $BIAS^2 + VARIANCE$. When data is oversmoothed, bias is large and variance is small. When data is undersmoothed, it's the opposite. This is called the **bias-variance tradeoff** – minimizing risk is balancing these two.

To speak about KDE-s, first recall histograms.

Let $X_1, ..., X_n$ be IID on [0,1] with density f. Restricting to [0,1] is not crucial, we can always rescale to this interval. Let m be the integer number of **bins**

$$B_1 = \left[0, \frac{1}{m}\right), B_2 = \left[\frac{1}{m}, \frac{2}{m}\right), \dots, B_m = \left[\frac{m-1}{m}, 1\right]$$

The binwidth h=1/m, and ν_j denoting the # of observations in B_j ,

let
$$\hat{p}_j = \nu_j/n$$
 and $p_j = \int_{B_j} f(u) du$. The **histogram estimator** is

$$\hat{f}_n(x) = \sum_{j=1}^n \frac{\hat{p}_j}{h} I(x \in B_j)$$
. For small h , $\mathbb{E}\hat{f}_n(x) \approx f(x)$.

Theorem: For fixed x and m, let B_j be the bin containing x, then

$$\mathbb{E}(\hat{f}_n(x)) = \frac{p_j}{h} \quad \text{and} \quad \mathbb{V}(\hat{f}_n(x)) = \frac{p_j(1 - p_j)}{nh^2}$$

Doing Taylor expansion, one can also prove:

Theorem: Assuming $\int (f'(u))^2 du < \infty$, one has

$$R(\hat{f}_n, f) \approx \frac{h^2}{12} \int (f'(u))^2 du + \frac{1}{nh}$$
, which is minimized by value

$$h^* = \frac{1}{n^{1/3}} \left(\frac{6}{\int (f'(u))^2 du} \right)^{1/3}, \text{ with which } R(\hat{f}_n, f) \approx \frac{C}{n^{2/3}}$$

So with an optimally chosen bin-width, the MISE decreases at rate $n^{-2/3}$. Most parametric estimators converge at rate n^{-1} . This slower rate is the price we pay for being nonparametric. Formula for h^* is interesting, but not practical, since depends on unknownn f.

Recall the loss
$$L(h) = \int \hat{f}_n^2(x) dx - 2 \int \hat{f}_n(x) f(x) dx + \int f^2(x) dx$$
,

where last term doesn't depend on h. So we minimise first two.

Definition: The cross-validation estimator of risk is

$$\widehat{J}(h) = \int \left(\widehat{f}_n(x)\right)^2 dx - \frac{2}{n} \sum_{i=1}^n \widehat{f}_{(-i)}\left(X_i\right) \text{ where } \widehat{f}_{(-i)} \text{ is the }$$

histogram with i-th observation removed.

Theorem: That estimator is nearly unbiased: $\mathbb{E}(\widehat{J}(x)) \approx \mathbb{E}(J(x))$.

With those $\hat{f}_{(-i)}$ -s, we have to recompute the histogram n times – for all values of h. This is not very practical, and there's a shortcut:

Theorem:
$$\widehat{J}(h) = \frac{2}{(n-1)h} - \frac{n+1}{n-1} \sum_{j=1}^{m} \widehat{p}_{j}^{2}$$

On our exemplar plot, the minimum of cross-validation estimator is quite flat. The "optimal" histogram was constructed using m=73 bins.

9

How about confidence intervals?

Theorem: The $(1-\alpha)$ -confidence interval for a histogram is (assuming $m\to\infty$ and $m(n)\log(n)/n\to 0$ as $n\to\infty$) from

$$\mathcal{E}_n(x) = \left(\max\left\{\sqrt{\hat{f}_n(x)} - c, 0\right\}\right)^2$$
 – lower bound, to

$$u_n(x) = \left(\sqrt{\hat{f}_n(x)} + c\right)^2$$
 – upper bound.

95%-confidence interval for our data

Kernel Density Estimators (KDEs)

Histograms are discontinuous. **Kernel density estimators** are smoother and they converge faster to the true density.

A **kernel** is any smooth function K such that 1) $K(x) \ge 0$,

2)
$$\int K(x) dx = 1$$
, 3) $\int xK(x) dx = 0$ 4) $\sigma_K^2 = \int x^2 K(x) dx > 0$.

Two important kernels are Gaussian (normal) $K(x) = (2\pi)^{-1/2}e^{-x^2/2}$ and **Epanechnikov**

$$K(x) = \begin{cases} \frac{3}{4}(1 - x^2/5)/\sqrt{5}, & |x| < \sqrt{5} \\ 0 & \text{otherwise} \end{cases}$$

(there are many others, see Kernel page on Wiki)

In some sense, Epanechikov kernel is the best finite kernel

Definition: Given a kernel K and a positive number h, called the **bandwidth**, the **kernel density estimator** is

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x - X_i}{h}\right)$$

So it puts a smooth lump of mass 1/n at each data point X_i . Bandwidth parameter h controls the amount of smoothing – when $h \to 0$, we get infinitely-high spikes of zero width at each data point. When $h \to \infty$, we get uniform density.

Choosing K is arguably not as important as properly choosing h.

Theorem: Under some weak assumptions on f and K,

$$R(f,\hat{f}_n) \approx \frac{1}{4}\sigma_K^4 h^4 \int \left(f''(x)\right)^2 + \frac{\int K^2(x)dx}{nh}$$
 where

$$\sigma_K^2 = \int x^2 K(x) dx$$
. Optimal bandwidth $h^* = \frac{c_1^{-2/5} c_2^{1/5} c_3^{-1/5}}{n^{1/5}}$ where

$$c_1 = \int x^2 K(x) dx$$
, $c_2 = \int K^2(x) dx$ and $c_3 = \int (f''(x))^2 dx$. With

this choice of bandwidth, $R(f,\hat{f}_n) \approx \frac{c_4}{n^{4/5}}$ with some $c_4 > 0$.

So KDEs converge at rate $n^{-4/5}$, while histograms – at slower $n^{-2/3}$. It can be shown, with weak assumptions, that **no** nonparametric estimator converges faster than $n^{-4/5}$!

As with histograms, optimally choosing bandwidth = minimizing the risk.

Theorem: For any h > 0, $\mathbb{E}(\widehat{J}(h)) = \mathbb{E}(J(h))$. Also,

$$\widehat{J}(h) pprox rac{1}{hn^2} \sum_i \sum_j K^* \left(rac{X_i - X_j}{h}
ight) + rac{2}{nh} K(0)$$
 where

$$K^*(x) = K^{(2)}(x) - 2K(x)$$
 and $K^{(2)}(z) = \int K(z - y)K(y) dy$.

Particularly, if $K(x) \equiv \mathcal{N}(0,1)$, then $K^{(2)}(x) \equiv \mathcal{N}(0,2)$.

FFT helps computing this!

A remarkable (Stone's) **Theorem:** Suppose f is bounded, and \hat{f}_h is the KDE with bandwidth h, h_n being optimal h from cross-validation.

Then
$$\frac{\int \left(f(x) - \hat{f}_{h_n}(x)\right)^2 dx}{\inf_h \int \left(f(x) - \hat{f}_h(x)\right)^2 dx} \xrightarrow{P} 1$$

Confidence intervals again!

$$\mathcal{E}_n(x) = \hat{f}_n(x) - q \operatorname{se}(x), \quad u_n(x) = \hat{f}_n(x) + q \operatorname{se}(x)$$

$$se(x) = \frac{s(x)}{\sqrt{n}}, \quad s^2(x) = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i(x) - \overline{Y}_n(x))^2,$$

$$Y_i(x) = \frac{1}{h} K\left(\frac{x - X_i}{h}\right), \quad q = \Phi^{-1}\left(\frac{1 + (1 - \alpha)^{1/m}}{2}\right)$$

95%-confidence interval for our data

Curse of dimensionality: KDEs can be generalised to arbitrary dimension (all you need is a multivariate version of the kernel).

Optimal bandwidth would be $h \sim n^{-1/(4+d)}$, the risk would be $\sim n^{-4/(4+d)}$ – quickly increases with dimension.

	Dimension	Sample Size
Consider the following (Silverman,	1	4
1986) table: sample size required to	2	19
1300) table. Sample Size required to	3	67
ensure RMSE less than 0.1 at 0	4	223
(density is multivar. normal) with	5	768
(delisity is multival. normal) with	6	2790
optimal bandwidth selected:	7	10,700
	8	43,700
	9	187,000
	10	842,000