This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

V hicl havin	g a fu l c ll or battery energy supply n twork
Patent Number: Publication date: Inventor(s): Applicant(s): Requested Patent: Application Number:	□ <u>US5760488</u>
EC Classification: Equivalents:	B60K28/14 B60L3/00, B60R16/02B4, B60L11/18R, H01M8/04H □ EP0724980
Abstract	
The invention relates an energy supply network for a vehicle powered by a fuel cell or by a battery. The energy supply network according to the invention is configured as an IT-network in which the consuming devices linked with the load current circuit are electrically connected with the vehicle body by a low impedance. An insulation monitoring device which consists of a measuring-bridge balancing stage and a buffer amplifier stage is connected between the load current circuit and the vehicle body. Data supplied from the esp@cenet database - 12	

19 BUNDESREPUBLIK

DEUTSCHLAND

PatentschriftDE 195 03 749 C 1

DEUTSCHES PATENTAMT

21) Aktenzeichen:

195 03 749.9-32

2 Anmeldetag:

4. 2.95

Offenlegungstag:

Veröffentlichungstag

der Patenterteilung: 18. 4.96

(5) Int. Cl.⁶: **B 60 L 3/04**B 60 L 11/18

H 02 H 3/16

B 60 R 16/02

G 01 R 27/18

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(3) Patentinhaber:

Daimler-Benz Aktiengesellschaft, 70567 Stuttgart, DE

2 Erfinder:

Sonntag, Josef, Dipl.-Ing., 89257 Illertissen, DE

(5) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DE 33 39 890 C2 DE-PS 6 88 497 DD 1 21 858 CH 6 13 313 A5

Horch-Entwurf zu DIN VDE 0100, Teil 410 A3, Abschnitt U13, Juni 1989;

(G) Fahrzeug mit einem brennstoffzellen- oder batteriegespeisten Energieversorgungsnetz

Elektrofahrzeuges auf Fahrzeugkarosseriepotential zu legen. Dies kann zu Berührspannungsgefahren und Korrosionsproblemen aufgrund von Brennstoffzellen- oder Batterieleckströmen führen. Stationäre Energieversorgungsnetze können als IT-Netz realisiert sein, bei dem die elektrischen Verbraucher untereinander zum Schutz vor hohen Berührungsspannungen mit einem gemeinsamen Schutzleiter verbunden sind. Die Isolation der Laststromleitungen kann beispielsweise mittels einer Brückenschaltung überwacht werden, welche bei einer Unsymmetrie der Isolationswiderstände anspricht.

Es wird vorgeschlagen, das brennstoffzellen- oder batteriegespeiste Energieversorgungsnetz eines Fahrzeuges als IT-Netz auszuführen, bei dem die mit dem Laststromkreis verknüpften Verbraucher niederohmig mit der Fahrzeugkarosserie elektrisch verbunden sind. Bevorzugt ist zusätzlich eine aus einer Meßbrückenabgleichstufe und einer meßsignalaufbereitenden Trennverstärkerstufe bestehende Isolationsüberwachungseinrichtung zwischen den Laststromkreis und die Fahrzeugkarosserie eingeschleift.

Verwendung z. B. für Elektrofahrzeuge.

Die Erfindung bezieht sich auf ein Fahrzeug mit einem brennstoffzellen- oder batteriegespeisten Energieversorgungsnetz, wie z.B. ein Elektrofahrzeug mit 5 brennstoffzellengespeistem bzw. batteriegespeistem Elektroantrieb.

Ein derartiges Fahrzeug ist beispielsweise in der Patentschrift DE 33 39 890 C2 offenbart. Bei dem daraus bekannten Energieversorgungsnetz ist ein Anschluß der 10 Batterie ebenso wie jeweils ein Anschluß der von der Batterie gespeisten stromverbrauchenden Anlagenteile und folglich eine der beiden Laststromkreisleitungen auf das Potential der Fahrzeugkarosserie gelegt.

Beim Auftreten von Gleichspannungen, die eine ma- 15 sion geschützt ist. ximale Berührungsspannung von 120 V überschreiten, muß in solchen Netzen gemäß einer VDE-Vorschrift ein Schutz gegen indirektes Berühren bereitgestellt werden. Bei brennstoffzellen- oder batteriegetriebenen Kraftfahrzeugen besteht außerdem eine erhöhte Ge- 20 fahr von Isolationsfehlern durch die mechanische Belastung in Form von Vibrationen. In Batterie- oder Brennstoffzellensystemen, z.B. aus PEM-Brennstoffzellen, können aufgrund der Gas- und Fluidkreisläufe elektrische Leckströme auftreten, die gefährliche Berührungs- 25 spannungen zwischen verschiedenen Betriebsmitteln hervorrufen und zudem zu Korrosionserscheinungen führen können. Zudem besteht die Gefahr, daß auftretende Lichtbögen als Zündquelle dienen. Wegen den strom(FI)- oder Fehlerspannungs(FU)-Schutzschalter als Berührungsspannungsschutz nicht eingesetzt werden. Bei Brennstoffzellensystemen, die in stationären Anlagen im Einsatz sind, können die entsprechenden Anlagenteile direkt mit Erde elektrisch verbunden wer- 35 den Dies ist für nichtstationäre, mobile Systeme, wie Fahrzeuge, nicht in dieser Weise möglich, so daß hier der Bedarf nach einer anderen Schutzmaßnahme be-

Als eine Möglichkeit der Auslegung eines begrenzten 40 Energieversorgungsnetzes mit eigenem Transformator oder Generator ist das sogenannte IT-Netz bekannt, siehe Norm-Entwurf zu DIN VDE 0100, Teil 410 A3, Abschnitt 413, Juni 1989. Beim IT-Netz wird eine zu hohe Berührungsspannung dadurch verhindert, daß alle 45 zu schützenden Verbraucher untereinander mit einem Erdungsschutzleiter verbunden werden, gegenüber dem der Laststromkreis isoliert ist. Der Isolationswiderstand des Laststromkreises wird herkömmlicherweise durch ein Isolationsüberwachungsgerät laufend kontrolliert.

Aus der Patentschrift DD 1 21 858 ist beispielsweise eine Erdschlußüberwachung für isoliert betriebene Gleichstromnetze bekannt, bei der über einen Spannungsteiler ein Netzpunkt mit Erdpotential geschaffen und dieser über einen Widerstand mit Erdpotential ver- 55 sten Energieversorgungsnetzes eines Elektrofahrzeubunden wird. Bei einer Anordnung, wie sie in der Patentschrift DE-PS 6 88 497 beschrieben ist, wird zur Überwachung des Isolationswiderstandes an einem Gleichspannungsnetz für Oberleitungsomnibusse ein Relais verwendet, von dem je eine von zwei gegenein- 60. ander geschalteten Erregerspulen zwischen einen der beiden Stromabnehmer und die Fahrzeugmasse eingeschleift ist. Aus der Patentschrift CH 613 313 A5 ist eine Einrichtung zur Isolationsüberwachung eines nicht geerdeten Gleichstromnetzes mit einer zwischen den 65 Netzleitern liegenden Brückenschaltung bekannt, bei welcher der eine Brückenzweig aus Hilfswiderständen und der andere Brückenzweig aus den Isolationswider-

ständ n der Netzleiter gegen Erde gebildet ist. Eine die Unsymmetrie der Isolationswiderstände erfassende Überwachungsschaltung beinhaltet ein Koppelglied zur nichtgalvanischen Signalüber ragung, dessen Eingangselement ein von der genannten elektrischen Unsymmetrie abhängiges Signal abgibt, das von einem Ausgangselement erfaßt und in ein elektrisches Erkennungssignal umgesetzt wird.

Der Erfindung liegt als technisches Problem die Bereitstellung eines Fahrzeugs mit einem brennstoffzellenoder batteriegespeisten Energieversorgungsnetz zugrunde, das gegen hohe Berührungsspannungen und die Brandsicherheit gefährdende Zündquellen Betriebssicherheit gewährleistet und gegen übermäßige Korro-

Dieses Problem wird durch ein Fahrzeug mit den Merkmalen des Anspruchs 1 gelöst. Hierzu ist der Laststromkreis des brennstoffzellen- oder batteriegespeisten Energieversorgungsnetzes nach Art eines IT-Netzes ausgeführt, bei dem die eine Laststromkreisleitung über und die andere unter dem Potential der Fahrzeugkarosserie liegt und bei dem die mit dem Laststromkreis verknüpften Fahrzeugkomponenten niederohmig, z. B. mit einem Widerstandswert von kleiner als 1 Ω , mit der Fahrzeugkarosserie elektrisch verbunden sind.

Eine Weiterbildung der Erfindung nach Anspruch 2 bietet in einer vorteilhaften Weise die Möglichkeit zur' Überwachung des Isolationswiderstandes zwischen den Laststromkreisleitungen und der Fahrzeugkarosserie anlagenbedingten Leckströmen können Fehler 30 mittels einer Meßbrückenabgleichstufe und einer deren Meßsignal aufbereitenden Trennverstärkerstufe. Diese Anordnung kommt folglich mit einer einzigen Meßbrükkenabgleichstufe und einem einzigen Trennverstärker zur Isolationsüberwachung beider Laststromkreisleitungen aus. In Ausgestaltung der Erfindung nach Anspruch 3 ist vorgesehen, den Laststromkreis so ausreichend hochohmig mit der Fahrzeugkarosserie zu verbinden, daß einerseits das Auftreten zu hoher Ableitströme und andererseits ein ungewolltes Ansprechen der Isolationsüberwachung bei unterhalb eines vorgegebenen Schwellenwertes liegenden Brennstoffzellen- oder Batterieleckströmen verhindert wird.

> In einer Weiterbildung der Erfindung nach Anspruch 4 besitzt die Isolationsüberwachungseinrichtung einen oder mehrere Trimmpotentiometer, um die der Meßbrückenabgleichstufe zugeführten Laststromkreisspannungen bezüglich des Fahrzeugkarosseriepotentials symmetrieren und/oder den Meßbereich der Meßbrükkenabgleichstufe an vorgebbare Alarmgrenzen bzw. den Trennverstärkermeßbereich anpassen zu können.

> Eine bevorzugte Ausführungsform der Erfindung ist in den Zeichnungen dargestellt und wird nachfolgend beschrieben. Hierbei zeigen:

> Fig. 1 einen Schaltplan eines brennstoffzellengespeiges und

> Fig. 2 ein detailliertes Schaltbild einer in dem brennstoffzellengespeisten Energieversorgungsnetz von Fig. 1 vorgesehenen Isolationsüberwachungseinrich-

> Das in Fig. 1 schaltplanmäßig dargestellte, brennstoffzellengespeiste Energieversorgungsnetz eines Elektrofahrzeuges gliedert sich in einen Stromerzeugungssystemteil (1) und einen Fahrzeugverbraucherteil (2). Als elektrische Energiequelle enthält das Stromerzeugungssystem (1) einen Brennstoffzellenstapel (3) aus zwei parallelen Reihen von je sechs PEM-Brennstoffzellen (G1 bis G12). Die positiven Ausgänge der beiden

Brennstoffzellenreihen sind über Sicherungen und ein Schaltelement (K1) zu einem positiven Versorgungsspannungsanschluß geführt, von dem die positive Leitung (L+) des Laststromkreises für das Elektrofahrzeug abgeht, Analog sind die negativen Ausgänge der beiden Brennstoffzellenreihen über Sicherungen (F1) und StrommeBeinrichtungen (P1, P2) gemeinsam zu einem negativen Spannungsversorgungsanschluß geführt, von dem die negative Leitung (L⁻) des Laststromkreises abgeht. Bevorzugt wird eine zweipolige Trennung 10 durch das Schaltelement (K1).

Der Laststromkreis ist hierbei als IT-Netz verschaltet, d.h. alle stromverbrauchenden Anlagenteile werden über die beiden Laststromkreisleitungen (L+, L-) gespeist die mit der Fahrzeugkarosserie hochohmig durch 15 eine Isolationsüberwachung (6) verbunden sind, während als Schutzmaßnahme vor zu hoher Berührungsspannung alle zu schützenden Anlagenteile untereinander niederohmig mit einem Restwiderstand kleiner als 1 Ω mit der Fahrzeugkarosserie verbunden sind. Die Karosserie ist in Fig. 1 deshalb durch das Erdungszeichen (4) symbolisiert. Das IT-Netz ist potentialmäßig symmetrisch zum Karosseriepotential ausgelegt, d. h. die Spannung (-120V) auf der negativen Laststromkreisleitung (+120V) auf der positiven Laststromkreisleitung (L⁺), wobei ohne Beschränkung der Allgemeinheit das Karosseriepotential mit 0 V angenommen wird. Diese Laststromkreissymmetrierung hat den Vorteil, daß bei einem Schadensfall, z. B. im Brennstoffzellenstapel (3), der 30 einen Leckstromfluß zwischen einer Laststromkreisleitung (L+ oder L-) zur Karosserie (4) und zurück über den hochohmigen Widerstand der Isolationsüberwachung (6) verursacht, dieser Leckstrom bei einer Spannungsdifferenz von 240 V und einem Isolationswiderstand deutlich über 10 kΩ sehr gering ist. Würde hingegen eine Laststromkreisleitung auf Karosseriepotential gelegt, so könnte im Schadensfall von der anderen Laststromkreisleitung zur Karosserie ein Kurzschlußstrom entsprechend einer Spannungsdifferenz von 240 V und einen Widerstand nahe 0 Ω entstehen. Da Leckströme häufig Korrosionen verursachen, lassen sich letztere durch die bevorzugt gewählte Laststromkreissymmetrierung kleiner halten als im unsymmetrischen Fall, und zwar durch die halbierte Spannungsdifferenz von 120 V statt 240 V bei einseitiger Erdung und die hochohmige Isolationsüberwachung zwischen Laststromkreis und Chassis, was bei einseitiger Erdung nicht möglich ist.

Vom Laststromkreis werden noch innerhalb des Stromerzeugungssystems Hilfsantriebe (M1) unter Zwischenschaltung jeweiliger Sicherungen (F2) und DC/ AC-Wandler mit Dreiphasenwechselstrom elektrisch versorgt. Diese Hilfsantriebe (M1) werden für den Brennstoffzellenfluidkreislauf benötigt. In gleicher Weise speist der Gleichstrom-Laststromkreis mit den 55 Brennstoffzellen (G1 bis G12) als elektrische Energiequellen über Vorsicherungen (F4, F5) im Fahrzeugverbraucherteil (2) angeordnete Hilfsantriebe (M2) und den Fahrmotor (M3) des Elektrofahrzeuges mit vorgeschaltetem DC/AC-Wandler (U1) mit Dreiphasenwechsel- 50

Das als IT-Netz ausgelegte, brennstoffzellengespeiste Energieversorgungsnetz ist des weiteren mit einer Isolationsüberwachungseinrichtung (6) im Stromerzeugungssystemteil (1) ausgestattet. Diese Einrichtung (6) bildet eine ausreichend hochohmige Verbindung der beiden Laststromkreisleitungen (L+, L+) gegen das Fahrzeugkarosseriepotential (4), vorzugsweise mit ei-

nem Widerstandswert größer als 10 k Ω , wobei die Überwachungseinrichtung (6) über Vorsicherungen (F3) an die Laststromkreisleitungen (L+, L-) angeschlossen ist. Der von der Isolationsüberwachungseinrichtung (6) bereitgestellte und überwachte Isolationswiderstand der Laststromkreisleitungen (L⁺, L⁻) gegenüber dem Fahrzeugchassis (4) ist ausreichend hochohmig ausgeführt, um einerseits ein Ansprechen der Isolationsüberwachung bei kleinen Brennstoffzellenleckströmen unterhalb eines vorgebbaren Schwellenwertes von ca. 1 mA bis 5 mA zu vermeiden und andererseits sicherzustellen, daß der im Fehlerfall eventuell auftretende Ableitstrom multipliziert mit dem Erdungswiderstand aller mit dem Chassis verbundenen Anlagenteile kleiner ist als die maximal zulässige Berührungsspannung von 120 V. Bevorzugt wird ein maximaler Ableitstrom unter 100 mA.

In Fig. 2 ist der genaue Aufbau der Einrichtung (6) zur Isolationswiderstandsüberwachung schaltungstechnisch 20 im Detail dargestellt. Sie besteht aus einer Meßbrückenabgleichstufe (7) und einer nachgeschalteten, meßsignalaufbereitenden Trennverstärkerstufe (8). Der Meßbrückenabgleichstufe (7) sind die beiden Laststromkreisleitungen (L⁺, L⁻), die im Normalfall auf +120V (L-) entspricht dem negativen Wert der Spannung 25 beziehungsweise - 120V liegen, sowie das 0V-Karosseriepotential eingangsseitig zugeführt. Zwischen den Laststromkreispotentialen liegen eingangsseitig ein erster Spannungsteiler mit zwei gleich großen Widerständen (R3, R4) von z. B. je 10 kΩ sowie ein zweiter, aus zwei gleich großen und gegenüber denjenigen des ersten Spannungsteilers höherohmigen Widerständen (R1, R2) sowie einem dazwischenliegenden Trimmpotentiometer (P1) bestehender Spannungsteiler. Der Abgriff des Trimmpotentiometers (P1) ist ebenso wie der Mittelpunkt des ersten Spannungsteilers an das Karosseriepotential angeschlossen. Durch das Trimmpotentiometer (P1) läßt sich aufgrund dieser Verschaltung die Symmetrierung der Systemspannung exakt aufrecht erhalten bzw. wiederherstellen. Zwischen den Mittelpunkt eines dritten, zu den ersten beiden parallel zwischen den Laststromkreispotentialen (+ 120 V, -120 V) liegenden Spannungsteilers mit z. B. denjenigen (R1, R2) des zweiten Spannungsteilers entsprechenden Widerständen (R5, R6) und den Mittelpunkt des ersten Spannungstei-45 lers ist eine Meßbrücke in Form einer Serienschaltung aus einem ersten, niederohmigeren Widerstand (R8), z. B. 4,7 kΩ, einem zweiten Trimmpotentiometer (P2) und einem höherohmigeren Widerstand (R7), z. B. 33 $k\Omega$, eingeschleift.

> Zwischen dem Mittelabgriff des zweiten Trimmpotentiometers (P2) und dem zum höherohmigeren Widerstand (R7) gelegenen Potentiometeranschluß wird die Ausgangsspannung (U_s) der Meßbrückenabgleichstufe (7) abgegriffen, welche Abweichungen von der Spannungssymmetrierung und damit mögliche Isolationswiderstandsveränderungen anzeigt. Diese Ausgangsspannung (Ua) wird der Trennverstärkerstufe (8) zugeführt, wobei ein Anschluß direkt auf den invertierenden Eingang eines Trennverstärkers (10) gegeben wird, während der andere Eingangszweig über einen Widerstand (R9) an den nichtinvertierenden Eingang eines durch Rückkopplung seines Ausgangssignals an den invertierenden Eingang, als Impedanzwandler geschalteten Operationsverstärkers (9) geführt ist. Der Impedanz-65 wandlerausgang ist zum nichtinvertierenden Trennverstärkereingang geführt. Am Ausgang des Trennverstärkers (10) steht dann das der Isolationswiderstandsüberwachung dienende Ausgangsspannungssignal (Uav) an.

Der Impedanzwandler-Operationsverstärk r (9) stellt einen h chohmigen Eingang für den Trennverstärker (10) bereit und verhindert dadurch eine zu starke Belastung der Meßbrücke (R8, P2, R7). Über eine entsprechende Einstellung des zweiten Trimmpotentiometers (P2) läßt sich die dort abfallende Spannung (Ua) jeweils so einstellen, daß sie durch die Trennverstärkerstufe (8) auf den Ausgangssignalbereich des Trennverstärkers (10), der z. B. durch den Bereich zwischen 0 V und 10 V gebildet ist, abgebildet wird.

Solange kein Schadensfall vorliegt, fällt über der Meßbrücke (R8, P2, R7) ersichtlich keine Spannung ab, da beide Eingangsknoten auf 0 V liegen. Sobald ein Schadensfall eintritt, der die beiden Laststromkreisspannungen gegenüber dem Nullpotential unsymme- 15 trisch macht, fällt an der Meßbrücke (R8, P2, R7) éine Spannung ungleich null ab, so daß der Schadensfall detektierbar ist. Tritt beispielsweise ein Kurzschluß zwischen der positiven Laststromkreisleitung (L⁺) und Masse auf, so fällt über der Meßbrücke (R8, P2, R7) 20 dieselbe Spannung von 120 V ab wie über dem Widerstand (R5), während über dem Widerstand (R3) keine Spannung abfällt. Über das Meßbrückenpotentiometer (P2) und die Trennverstärkerstufe (8) wird die geänderte Meßbrückenspannung in eine entsprechend geänderte, 25 detektierbare Ausgangssignalspannung der Trennverstärkerstufe (8) umgewandelt. Funktionell analoge Verhältnisse ergeben sich für die anderen, in Betracht kommenden Schadensfälle.

Erkennbar benötigt die Einrichtung (6) zur Überwachung des Isolationswiderstandes, die nach dem Prinzip einer abgeglichenen Meßbrücke funktioniert, nur eine einzige meßsignalaufbereitende Trennverstärkerstufe (8) für beide Laststromkreisleitungen (L⁺, L⁻). In nicht näher gezeigter Weise können in einem Kraftfahrzeug-Steuergerät durch Vorgabe entsprechender Spannungsschwellenwerte eine oder mehrere Alarmstufen eingestellt werden. Beispielsweise kann bei einer ersten, niedrigeren Abweichung die Auslösung eines Voralarms durch ein optisches und/oder akustisches Warnsignal und bei Auftreten einer größeren Abweichung dann die Auslösung eines Hauptalarms erfolgen, bei dem eine Systemabschaltung stattfindet.

Das beschriebene Energieversorgungsnetz bietet folglich durch Realisierung als IT-Netz mit Isolationsüberwachung einen zuverlässigen Schutz vor zu hohen Berührungsspannungen und Berührungsströmen und wirkt somit dem Auftreten übermäßiger Korrosion durch Brennstoffzellenleckströme entgegen Weitere Vorteile sind die Brandsicherheit und die Betriebssischerheit. Es versteht sich, daß ein erfindungsgemäßes Energieversorgungsnetz in analoger Weise auch für andere Fahrzeugtypen als Elektrofahrzeuge verwendbar ist, bei denen die Speisung eines solchen Netzes durch Brennstoffzellen bzw. durch andere Batterietypen vor- 55 gesehen ist.

Patentansprüche

- 1. Fahrzeug mit einem brennstoffzellen- oder batte- 60 riegespeisten Energieversorgungsnetz, dadurch gekennz ichnet; daß
 - der Laststromkreis nach Art eines IT-Netzes ausgelegt ist, wobei die eine (L⁺) der beiden, die angeschlossenen stromverbrauchenden Anlagenteile speisenden Laststromkreisleitungen (L⁺, L⁻) auf ein Potential oberhalb und die andere (L⁻) auf ein Potential unter-

halb des Potentials der Fahrzeugkarosserie (4) gelegt ist und wobei die Laststromkreisleitungen (L⁺, L⁻) mit der Fahrzeugkarosserie (4) h chohmig verbunden sind, und daß

- die an den Laststromkreis angeschlossenen, stromverbrauchenden Anlagenteile niederohmig mit der Fahrzeugkarosserie (4) elektrisch verbunden sind.

2. Fahrzeug nach Anspruch 1, weiter gekennzeichnet durch eine Einrichtung (6) zur Überwachung des Isolationswiderstandes zwischen dem Laststromkreis und der Fahrzeugkarosserie (4), wobei die Einrichtung eine Meßbrückenabgleichstufe (7) und eine meßsignalaufbereitende Trennverstärkerstufe (8) beinhaltet.

3. Fahrzeug nach Anspruch 2, weiter dadurch gekennzeichnet, daß der Laststromkreis dergestalt hochohmig mit der Fahrzeugkarosserie (4) elektrisch verbunden ist, daß einerseits keine Ableitströme größer als 100 mA entstehen und andererseits die Einrichtung (6) zur Überwachung des Isolationswiderstandes bei Brennstoffzellen- oder Batterieleckströmen unterhalb eines zwischen 1 mA und 5 mA liegenden Schwellenwertes noch nicht anspricht.

4. Fahrzeug nach Anspruch 2 oder 3, weiter dadurch gekennzeichnet, daß die Meßbrückenabgleichstufe (7) einen oder mehrere Trimmpotentiometer (P1, P2) zur Symmetrierung der zugeführten Spannungen der Laststromkreisleitungen (L+, L-) bezüglich des Fahrzeugkarosseriepotentials (4) und/oder zur Ausgangssignalanpassung an den Meßbereich der Trennverstärkerstufe (8) mit vorgebbaren Alarmgrenzen aufweist.

Hierzu 2 Seite(n) Zeichnungen

Fig. 2

