Robot Perception: Pose from Projective Transformations

Kostas Daniilidis

Using the projective transformation the pose of a robot with respect to a planar pattern:

Pose from reference points on plane $Z_w=0$

Pose from Projective Transformation

Recall the projection from world to camera

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} \sim K \begin{pmatrix} r_1 & r_2 & r_3 & T \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ W \end{pmatrix}$$

and assume that all points in the world lie in the ground plane Z=0.

Then the transformation reads

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} \sim K \begin{pmatrix} r_1 & r_2 & T \end{pmatrix} \begin{pmatrix} X \\ Y \\ W \end{pmatrix}$$

Pose from Projective Transformation

Recall the projection from world to camera

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} \sim K \begin{pmatrix} r_1 & r_2 & r_3 & T \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ W \end{pmatrix}$$

and assume that all points in the world lie in the ground plane Z=0.

Then the transformation reads

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} \sim K \begin{pmatrix} r_1 & r_2 & T \end{pmatrix} \begin{pmatrix} X \\ Y \\ W \end{pmatrix}$$

H is a transformation from \mathbb{P}^2 to \mathbb{P}^2 :

$$H \sim K \begin{pmatrix} r_1 & r_2 & T \end{pmatrix}$$

Is it a projective transformation? Let us inspect its determinant:

$$\detegin{pmatrix} r_1 & r_2 & T \end{pmatrix} = T^T(r_1 imes r_2)$$

which vanishes only if the camera lies in the ground plane Z=0. In this case all points would project on a line.

Since $det(K) = f^2$, H is invertible iff

$$T^T(r_1 \times r_2) \neq 0$$

H is a transformation from \mathbb{P}^2 to \mathbb{P}^2 :

$$H \sim K \begin{pmatrix} r_1 & r_2 & T \end{pmatrix}$$

Is it a projective transformation? Let us inspect its determinant:

$$\detig(r_1 \quad r_2 \quad Tig) = T^T(r_1 imes r_2)$$

which vanishes only if the camera lies in the ground plane Z=0. In this case all points would project on a line.

Since $det(K) = f^2$, H is invertible iff

$$T^T(r_1 \times r_2) \neq 0$$

H is a transformation from \mathbb{P}^2 to \mathbb{P}^2 :

$$H \sim K \begin{pmatrix} r_1 & r_2 & T \end{pmatrix}$$

Is it a projective transformation? Let us inspect its determinant:

$$\detegin{pmatrix} r_1 & r_2 & T \end{pmatrix} = T^T(r_1 imes r_2)$$

which vanishes only if the camera lies in the ground plane Z=0. In this case all points would project on a line.

Since $det(K) = f^2$, H is invertible iff

$$T^T(r_1 \times r_2) \neq 0$$

Suppose we estimate an H from $N \geq 4$ correspondences.

Let us assume that we know the intrinsic parameters K.

Pose estimation means finding R,T given H and intrinsics K.

We observe that

$$K^{-1}H = \begin{pmatrix} r_1 & r_2 & T \end{pmatrix}$$

has specific properties: its first two columns are orthogonal unit vectors.

Nothing guarantees that that the ${\cal H}$ we computed will satisfy this condition.

Suppose we estimate an H from $N \geq 4$ correspondences.

Let us assume that we know the intrinsic parameters K.

Pose estimation means finding R,T given H and intrinsics K.

We observe that

$$K^{-1}H = \begin{pmatrix} r_1 & r_2 & T \end{pmatrix}$$

has specific properties: its first two columns are orthogonal unit vectors.

Nothing guarantees that that the ${\cal H}$ we computed will satisfy this condition.

Suppose we estimate an H from $N \geq 4$ correspondences.

Let us assume that we know the intrinsic parameters K.

Pose estimation means finding R, T given H and intrinsics K.

We observe that

$$K^{-1}H = \begin{pmatrix} r_1 & r_2 & T \end{pmatrix}$$

has specific properties: its first two columns are orthogonal unit vectors.

Nothing guarantees that that the ${\cal H}$ we computed will satisfy this condition.

Let us name the columns of $K^{-1}H$:

$$K^{-1}H = \begin{pmatrix} h_1' & h_2' & h_3' \end{pmatrix}$$

We seek orthogonal r_1 and r_2 that are the closest to h'_1 and h'_2 . The solution to this problem is given by the Singular Value Decomposition.

We find the orthogonal matrix R that is the closest to $\begin{pmatrix} h_1' & h_2' & h_1' \times h_2' \end{pmatrix}$: $\arg\min \|R - \begin{pmatrix} h_1' & h_2' & h_1' \times h_2' \end{pmatrix}\|_F^2$

$$\underset{R \in SO(3)}{\operatorname{arg\,min}} \|R - \begin{pmatrix} h'_1 & h'_2 & h'_1 \times h'_2 \end{pmatrix}\|_F^2$$

Let us name the columns of $K^{-1}H$:

$$K^{-1}H = \begin{pmatrix} h_1' & h_2' & h_3' \end{pmatrix}$$

We seek orthogonal r_1 and r_2 that are the closest to h'_1 and h'_2 . The solution to this problem is given by the Singular Value Decomposition.

We find the orthogonal matrix R that is the closest to $\begin{pmatrix} h_1' & h_2' & h_1' imes h_2' \end{pmatrix}$:

$$\underset{R \in SO(3)}{\operatorname{arg\,min}} \|R - \begin{pmatrix} h'_1 & h'_2 & h'_1 \times h'_2 \end{pmatrix}\|_F^2$$

$$\underset{R \in SO(3)}{\operatorname{arg\,min}} \|R - \begin{pmatrix} h'_1 & h'_2 & h'_1 \times h'_2 \end{pmatrix}\|_F^2$$

$$\begin{pmatrix} h_1' & h_2' & h_1' \times h_2' \end{pmatrix} = USV^T$$

then the solution is

$$R = U \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \det(UV^T) \end{pmatrix} V^T$$

The diagonal matrix is inserted to guarantee that det(R) = 1.

$$\underset{R \in SO(3)}{\operatorname{arg\,min}} \|R - \begin{pmatrix} h'_1 & h'_2 & h'_1 \times h'_2 \end{pmatrix}\|_F^2$$

$$\begin{pmatrix} h_1' & h_2' & h_1' \times h_2' \end{pmatrix} = USV^T$$

then the solution is

$$R = U \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \det(UV^T) \end{pmatrix} V^T$$

The diagonal matrix is inserted to guarantee that det(R) = 1.

$$\underset{R \in SO(3)}{\operatorname{arg\,min}} \|R - \begin{pmatrix} h'_1 & h'_2 & h'_1 \times h'_2 \end{pmatrix}\|_F^2$$

$$\begin{pmatrix} h_1' & h_2' & h_1' \times h_2' \end{pmatrix} = USV^T$$

then the solution is

$$R = U \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \det(UV^T) \end{pmatrix} V^T$$

The diagonal matrix is inserted to guarantee that det(R) = 1.

$$\underset{R \in SO(3)}{\operatorname{arg\,min}} \|R - \begin{pmatrix} h'_1 & h'_2 & h'_1 \times h'_2 \end{pmatrix}\|_F^2$$

$$\begin{pmatrix} h_1' & h_2' & h_1' \times h_2' \end{pmatrix} = USV^T$$

then the solution is

$$R = U \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \det(UV^T) \end{pmatrix} V^T$$

The diagonal matrix is inserted to guarantee that det(R) = 1.

Using the projective transformation the pose of a robot with respect to a planar pattern:

