Assignment 1

Pragnidhved Reddy

January 8, 2024

Question 10.5.2.8:

An AP consists of 50 terms of which 3^{rd} term is 12 and the last term is 106. Find the 29^{th} term.

Solution:

General form of n^{th} term of an AP is

$$a_n = a_0 + nd \tag{1}$$

Where d is the common difference of an AP. Given that a_3 is 12.

$$a_0 + 3d = 12 (2)$$

Given that a_{50} is 106.

$$a_0 + 50d = 106 \tag{3}$$

By solving equations (2) and (3) we get d = 2 and $a_0 = 6$.

From (1), we know that

$$a_{29} = a_0 + 29d \tag{4}$$

By substituting values of a_0 and d in equation (4) we get $a_{29} = 64$.

Question 11.9.3.18:

Find the sum to n terms of the sequence 8, 88, 888, 8888...

Solution:

In the above series $a_1 = 8, a_2 = 88, a_3 = 888...$

By this observation we can conclude that

$$a_n = 88 \dots ntimes$$

This can also be represented as

$$a_n = 8(10)^0 + 8(10)^1 + \ldots + 8(10)^{n-1}$$
 (1)

Now, finding the sum of the series till n terms:

$$S_n = a_1 + a_2 + a_3 + \ldots + a_n$$

On substituting (1) in the above equation we get

$$S_n = n \times 8(10)^0 + (n-1) \times 8(10)^1 \dots + 1 \times 8(10)^{n-1}$$
 (2)

This is an AGP. Therefore,

$$10S_n = n \times 8(10)^1 + (n-1) \times 8(10)^2 + \ldots + 1 \times 8(10)^n$$
 (3)

Now, subtracting (2) from (3)

$$9S_n = 8(10)^1 + 8(10)^2 + \dots + 8(10)^n - 8n$$
$$S_n = \left(\frac{8}{9}\right) \left(\left(\frac{10^n - 1}{10 - 1}\right) 10 - n\right)$$
$$S_n = \left(\frac{80}{81}\right) (10^{n-1} - 1)$$

Therefore, the above expression is the required expression.