Affine Objects

Mohamed Hashi

May 19, 2016

1.1 Topology

Definition 1 (Sieve). Let C be a category and $\alpha \in C$. A sieve S on α is a subpresheaf of $h(\alpha)$. Explicitly, for each $c \in C$, S(c) is a subset of $Hom(c,\alpha)$ such that $fg \in S(Dom(g))$ for all $f \in S(c)$ and for all $g \in h(c)$.

The maximal sieve on a, which is h(a), will be denoted by max(a).

Definition 2 (Sieve category). Let C be a category and $a \in C$. The sieve category Sieves(a) is the subobject poset of the presheaf h(a).

Definition 3 (Pullback of sieve). Let C be a category and $a, b \in C$. Let S be a sieve on a. Let $f: b \to a$.

For any $c \in C$ the sieve f^*S on b is given by $f^*S(c) = \{g \in Hom(c, b) : fg \in S(c)\}.$

To show that this is actually a subpresheaf of h(b), let $k: c \to c'$ and $h \in f^*S(c')$. Hence $fh \in S(c')$ and so $fhk \in S(c)$. Conclude that $hk \in f^*S(c')$.

This defines a functor f^* : Sieves(a) \rightarrow Sieves(b).

Definition 4 (Grothendieck Topology). A Grothendieck topology \mathcal{T} is a family $\mathcal{T}(a)$ of 'covering' sieves for every $a \in C$ with the following conditions:

- $\max(\alpha) \in \mathfrak{T}(\alpha)$
- $f^*R \in \mathfrak{T}(\mathfrak{a}')$ if $R \in \mathfrak{T}(\mathfrak{a})$ for all $f : \mathfrak{a}' \to \mathfrak{a}$
- if $f^*R \in \mathfrak{T}(a')$ for all $f \in S$ with $S \in \mathfrak{T}(a)$ then $R \in \mathfrak{T}(a)$

Definition 5 (Basis). Let C be a category with pullbacks. A Grothendieck pretopology \mathcal{B} is a collection $\mathcal{B}(a)$ of families $\{f_i:a_i\to a\}$ of 'covering' morphisms for every $a\in C$ with the following conditions.

- every isomorphism is a covering singleton family,
- (Stability) The pullback of a covering family is a covering family. If $\{f_i : a_i \to a\}$ is covering and $g : b \to a$, then $\{f'_i : a_i \times_a b \to b\}$ is covering.
- (Transitivity) If $\{f_i: a_i \to a\}$ is a covering family and $\{f_{ij}: a_{ij} \to a_i\}$ for every i, then $\{f_{ij}: a_{ij} \to a\}$ is a covering family.

Generating a topology from a basis: take any sieve containing a covering family to be a covering sieve.

1.1.1 Sheaves

Definition 6 (Sheaves). Let (C, \mathcal{T}) be a site. Let $\mathfrak{F} \in \hat{C}$.

A presheaf that admits a unique amalgamation for every matching family is called a sheaf. The category Shv(C) is the full subcategory in \hat{C} all sheaves. Let i be the inclusion functor $Shv(C) \to \hat{C}$.

In other words, we call \mathfrak{F} a sheaf if the map

$$\mathfrak{F}(\mathfrak{a}) \to \mathfrak{F}(R)$$

$$a: x \mapsto \{\mathfrak{F}(\mathfrak{i})(x)\}_{\mathfrak{i} \in R}$$

is an isomorphism.

Definition 7 (Plus construction). Let (C, T) be a site. Let $a, a' \in C$ and $f : a \to a'$. Let $\mathfrak{F} \in \hat{C}$. Define the functor $(-)^+ : \hat{C} \to \hat{C}$ as follows

On objects:

$$(\mathfrak{F})^+(\mathfrak{a}) = \frac{\{(R,\phi) \mid R \in \mathfrak{T}(\mathfrak{a}), \phi \in \Gamma(R;\mathfrak{F})\}}{\sim},$$

$$(\mathfrak{F})^+(f)([(R,\varphi)]) = [(f^*R,\varphi h(f))].$$

The equivalence relation is defined as:

$$(R, \varphi) \sim (S, \varphi)$$

if $\phi = \varphi$ on some $Q \subset R \cap S$

Let $L:\mathfrak{F}\to\mathfrak{F}'$. Then

$$((L)^+)_{\mathfrak{a}}([(R,\phi)]) = [(R,L\circ\phi)]$$

This functor comes with a natural transformation $\omega: \mathrm{Id} \to (-)^+$ defined by

$$\omega_{\mathfrak{F},\mathfrak{a}}(x) = [(\max(\mathfrak{a}), y]$$

$$y(i) = \mathfrak{F}(i)(x).$$

Lemma 8. Let \mathfrak{F} be a presheaf, \mathfrak{G} a sheaf and $g:\mathfrak{F}\to\mathfrak{G}$ a morphism in $\hat{\mathsf{C}}$. Then g factors through $\omega_{\mathfrak{F}}$ via a unique g'.

Lemma 9. For every presheaf \mathfrak{F} , $(\mathfrak{F})^+$ is separated.

Lemma 10. If \mathfrak{F} is separated, then \mathfrak{F} is a sheaf.

Definition 11. Define $sh = (-)^+ \circ (-)^+$.

Lemma 12 (Sheafification adjunction). Let Y = (C, T) be a site. The functor sh is left adjoint to the inclusion $\hat{Y} \to Shv(C)$ with unit

$$\omega_{\mathfrak{F}}^2 = \omega_{(\mathfrak{F})^+} \circ \omega_{\mathfrak{F}}$$

1.1.2 Relative topology

Definition 13 (Relative topology). Let (C, T) be a site. Let $a \in C$.

Set $\mathfrak{T}_{\mathfrak{a}}(f)=\{R^f:\,R\in\mathfrak{T}(b)\}.$ Define the induced topology $\mathfrak{T}_{\mathfrak{a}}$ on $C_{\mathfrak{a}}$ by, for each $f\in C_{\mathfrak{a}}$

$$\mathfrak{T}_{\mathfrak{a}}(f) = Q^{f}(\mathfrak{T}(Dom(f))).$$

Lemma 14. \mathcal{T}_a defines a Grothendieck topology

Proof. Axiom 1: Q^f is an equivalence of posets. So the terminal object is send to the terminal object. Hence $max(f) \in \mathcal{T}_{\alpha}(f)$.

Axiom 2 & 3 are consequences of: Q^f is an equivalence and Q^f commutes with sieve pullback.

Definition 15 (Oversite). Let Y = (C, T) be a site. Let $a \in C$. Define the site Y_a to be the category C_a with the induced topology T_a .

Definition 16 (Natural transformation s). Let (C, T) be a site. Let $a, b \in C$ and $f: b \to a$.

Let $\{x_i\}$ be a compatible family indexed by a sieve R on b. The same set $\{x_i\}$ is a compatible family on f indexed by $Q^f(R)$. Define the natural transformation

$$s: \mathfrak{u} \circ (-)^+ \to (\mathfrak{u} \circ -)^+$$

$$\begin{split} s_{\mathfrak{F}} : \mathfrak{u} \circ (\mathfrak{F})^+ &\to (\mathfrak{u} \circ \mathfrak{F})^+ \\ s_{\mathfrak{F},f} ([(x_i)_{i \in R}]) &= [(x_i)_{i \in O^f(R)}]. \end{split}$$

Lemma 17 (Restriction commutes with plus). The transformation $s_{\mathfrak{F}}$ is an isomorphism of functors.

Proof. We use the variables from definition? The morphism $s_{\mathfrak{F},f}$ has an inverse, again sending the set to itself and applying Q^f on the indexing sieve. These are mutual inverses, so $s_{\mathfrak{F},f}$ is an isomorphism for each f.

Lemma 18 (s and ω commute). Let $\mathfrak F$ be a presheaf on $(C, \mathfrak T)$. Let $f: b \to a \in C$. Then $\omega_{\mathfrak u \circ \mathfrak F} = s_{\mathfrak F} \circ (\mathfrak u \circ \omega_{\mathfrak F})$.

Proof. For any section $x \in \Gamma(b;\mathfrak{F})$. Let $x_i = \mathfrak{F}(i)(x)$ for any morphism $i \in C$. Note that $Q^f(max(f)) = max(b)$. This implies that the compatible family $\{x_i\}$ indexed by the maximal sieve on f is sent by s to the same set $\{x_i\}$ indexed by the maximal sieve on b. In diagram form, that

$$\begin{array}{c} u \circ \mathfrak{F} \\ \downarrow u \circ \omega_{\mathfrak{F}} \\ u \circ (\mathfrak{F})^{+} \stackrel{s}{\longrightarrow} (u \circ \mathfrak{F})^{+} \end{array}$$

commutes.

Corollary 19. Let $(C, \mathcal{T}, \mathfrak{O})$ be a ringed site. Let $b \in C$. Let M be a $\Gamma(1; \mathfrak{O})$ -module. The morphism $\omega^2_{\lambda(M),1,b}: \lambda(M)(b) \to \Lambda(M)(b)$ is isomorphic to

$$\omega^2_{\lambda(M\otimes \mathfrak{O}(\mathfrak{b})),\mathfrak{b},\textit{Id}_b}:\lambda(\lambda(M\otimes \mathfrak{O}(\mathfrak{b}))\to \Lambda(\lambda(M\otimes \mathfrak{O}(\mathfrak{b})).$$

Definition 20. Let P be the plus functor and $U = u \circ -$. Define

$$s^2: U \circ P \circ P \rightarrow P \circ P \circ U$$

as

$$s_{\mathfrak{F}}^2 = P(s_{\mathfrak{F}}) \circ s_{P(\mathfrak{F})}.$$

Lemma 21. Let \mathfrak{F} be a presheaf on (C,\mathfrak{T}) . Let $f:b\to a\in C$. Let \mathfrak{F} be a presheaf on C. Then $\omega^2_{u\circ\mathfrak{F}}=s^2_{\mathfrak{F}}\circ(u\circ\omega^2_{\mathfrak{F}})$.

Proof. Let $\alpha \in C$. We have

$$\omega_{\mathfrak{u}\circ\mathfrak{F}}^2=\omega_{(\mathfrak{u}\circ\mathfrak{F})^+}\circ\omega_{\mathfrak{u}\circ\mathfrak{F}},$$

$$s^2_{\mathfrak{F}} = (s_{\mathfrak{F}})^+ \circ s_{(\mathfrak{F})^+},$$

$$\mathfrak{u}\circ\omega_{\mathfrak{F}}^2=\mathfrak{u}\circ(\omega_{(\mathfrak{F})^+}\circ\omega_{\mathfrak{F}}).$$

Let $x \in \Gamma(b; \mathfrak{u} \circ \mathfrak{F})$.

Then

$$\omega^2_{u \circ \mathfrak{F}, f}(x) = ((x_i)_{i \in max(Dom(\mathfrak{j}))_{\mathfrak{f}}})_{\mathfrak{f} \in max(f)}$$

with $x_i = \mathfrak{F}i(x)$. We also have

$$\mathfrak{u}\circ \omega^2_{\mathfrak{F},f}(x)=((x_i)_{i\in max(Dom(\mathfrak{j}))_{\mathfrak{j}}})_{\mathfrak{j}\in max(\mathfrak{b})},$$

where $\text{Dom}(j) \in \mathsf{C}_{\mathfrak{a}}.$ Apply $s_{(\mathfrak{F})^+}$ on this to get

$$((x_i)_{i \in \max(Dom(j))_i})_{j \in \max(f)}$$

where $\mathsf{Dom}(\mathfrak{j}) \in \mathsf{C}.$ Lastly, apply $(s_{(\mathfrak{F})^+})^+$ to get

$$((x_i)_{i \in max(Dom(j))_j})_{j \in max(f)}$$

where $Dom(j) \in C_a$. The statement of the lemma is established.

Corollary 22. Let Y=(C,T). Let $a,b\in C$. Let $f:b\to a$. Sheafifying and restricting commute via the iso

$$s^2: sh_b \circ *|_b \to *|_b \circ sh_a.$$

Lemma 23 (λ commutes with restriction). Let $(C, \mathcal{T}, \mathfrak{O})$ be a ringed site. Let $f : b \to a \in C$. The functors $\mathfrak{u} \circ \lambda$ and $\lambda \circ (- \otimes \Gamma(\mathfrak{a}; \mathfrak{O}))$ are the same functor.

Lemma 24 (λ counit commute with restriction). Let C be a category. Let $\alpha \in C$. Let ε be the counit of the adjunction $\lambda \dashv \Gamma(1;-)$ on C. Let ε_{α} be the counit of the adjunction $\lambda_{\alpha} \dashv \Gamma(1;-)$ on C_{α} . Let \mathfrak{F} be a presheaf module on C. By lemma ?, $\lambda(\Gamma(1;\mathfrak{F}))\big|_{\alpha} = \lambda(\Gamma(1;\mathfrak{F}) \otimes \Gamma(\alpha;\mathfrak{D}))$. We have $\mathfrak{u} \circ (\varepsilon) = \varepsilon_{\alpha}$ on this presheaf module.

Proof. Let $f: b \to a \in C_a$. Let $m \otimes r \in \lambda(\Gamma(1; \mathfrak{F}) \otimes \Gamma(a; \mathfrak{D}))(f) = \Gamma(1; \mathfrak{F}) \otimes \Gamma(b; \mathfrak{D})$. Then both maps do $m \otimes r \mapsto rm$.

Lemma 25 (λ commutes with restriction). Let (C, T, \mathfrak{O}) be a ringed site. Let $f : b \to a \in C$. The functors $\mathfrak{u} \circ \Lambda$ and $\Lambda \circ (-\otimes \Gamma(\mathfrak{a}; \mathfrak{O}))$ are isomorphic functors.

Lemma 26 (Λ counit commute with restriction). Let C be a category. Let $\alpha \in C$. Let ε be the counit of the adjunction $\Lambda \dashv \Gamma(1;-)$ on C. Let ε_{α} be the counit of the adjunction $\Lambda_{\alpha} \dashv \Gamma(1;-)$ on C_{α} . Let \mathfrak{F} be a presheaf module on C. By lemma ?, $\Lambda(\Gamma(1;\mathfrak{F}))\big|_{\alpha} = \Lambda(\Gamma(1;\mathfrak{F}) \otimes \Gamma(\alpha;\mathfrak{D}))$. We have $\mathfrak{u} \circ (\varepsilon) = \varepsilon_{\alpha}$ on this presheaf module.

Proof.

Lemma 27. Let (C, T) be a site. Let $a \in C$. Consider the conunit ε of $\Gamma(1; -) \dashv \Lambda(-)$ on C and the counit ε_a of the same adjunction on C_a . Then $\varepsilon|_a = \varepsilon_a$.

Proof. Let \mathfrak{F} be a sheaf module on C. Let $f:b\to a\in C$. We want to show that $\epsilon_{\mathfrak{F},a,f}:\Lambda(\Gamma(1;\mathfrak{F}))\to \mathfrak{F}$ is the same map as $\epsilon_{\mathfrak{F}}\big|_{af}:\Lambda(\Gamma(1;\mathfrak{F}))\to \mathfrak{F}$

$$\alpha:\lambda(\Gamma(1;\mathfrak{F}))\to\mathfrak{F},$$

$$\mathfrak{m}\otimes \mathfrak{r}\mapsto \mathfrak{m}\mathfrak{r}$$

composed with $\omega^2_{\lambda(\Gamma(1;\mathfrak{F}))}$.

2 Caffine objects

2.1 Caffine objects

Definition 28 (Caffine object). Let $Y = (C, \mathcal{T}, \mathcal{D})$ be a ringed site. Let $\alpha \in C$ be an object. We call α caffine if the unit η and co-unit ϵ of the adjunction $\Gamma(1;-)\dashv \Lambda(-)$ on Y_{α} are natural isomorphisms.

Example 29 (Examples of caffine objects). The main example to keep in mind is $Spec(R) \in Sch$.

Definition 30 (caffine cover). Let $(X, \mathcal{T}, \mathcal{D})$ be a ringed site. A family of maps $\{a_i \to a\}$ is called a caffine covering of a if every a_i is caffine and the family is a covering family.

Definition 31. We say that a ringed site $(C, \mathcal{O}, \mathfrak{T})$ has enough affines if any object admits a caffine covering.

Lemma 32. Let $(C, \mathcal{T}, \mathfrak{O})$ be a ringed site. Let $a \in C$. Let $\{b_i \to a\}$ be a caffine covering on a. Assume every map $b_i \to a$ is restrictive. Then the counit ϵ of the adjunction $\Gamma(1;-)\dashv \Lambda(-)a$ is a natural isomorphism.

Proof. Let \mathfrak{F} be a quasi-coherent sheaf module. Set $M=\Gamma(\mathfrak{a};\mathfrak{F})$. Set $M_i=\Gamma(b_i;\mathfrak{F})$. Set $\beta_i=\varepsilon_{\mathfrak{F},\mathfrak{a}}\big|_{b_i}$. By lemma ? $\beta_i\cong\varepsilon_{b_i}$, hence beta_i is an isomorphism.

Lemma 33. Let (C, T, \mathfrak{O}) be a ringed site. Let $a \in C$. Let M be a $\Gamma(a; \mathfrak{O})$ -module. The component

$$\omega^2_{\lambda(M),a}:\lambda(M)\to\Lambda(M)$$

at Id_{α} of the sheafification morphism

$$\omega^2_{\Lambda(M)}:\lambda(M)\to\Lambda(M)$$

is equal to the unit of $\Lambda \dashv \Gamma(1; -)$ in C_a .

Proof. Consider the following maps, which you get by repeatedly calling on an adjunction.

$$Id : \Lambda(M) \to \Lambda(M)$$

 $\omega^2_{\Lambda(M)}:\lambda(M)\to\Lambda(M)$ use sheafification adjunction, see lemma ..

$$\omega^2_{\lambda(M),\mathfrak{a}}M \to \Gamma(\mathfrak{a};\Lambda(\mathfrak{M}))$$
 take sections at \mathfrak{a}

We took the adjunct of Id with respect to the sheafification adjunction as the first step. Then we took the adjunct of the result wrt the λ ajunction. Hence we get the adjunct of Id wrt the Λ adjunction. so the last map is actually the unit of the Λ adjunction.

Corollary 34. Let (C, T, \mathfrak{O}) be a ringed site. Let $a \in C$ be caffine. Then $\omega^2_{\lambda(M),a}$ is an isomorphism for any $\mathfrak{O}(a)$ -module M.

Theorem 35 (Morphism between caffines is restrictive). Let $Y = (C, \mathcal{T}, \mathfrak{O})$. Let $f : b \to a \in C$ be a morphism between caffine objects, then f is restrictive.

Proof. Let \mathfrak{F} be a quasi-coherent module on Y_a . Let $M = \Gamma(a; \mathfrak{F})$. Since a is caffine, we have $\mathfrak{F} = \Lambda(M)$.

We have to show that the adjunct, along the extension of scalars adjunction, of $\mathfrak{F}(f)$

$$\Gamma(\mathfrak{a};\mathfrak{F})\otimes_{\Gamma(\mathfrak{a};\mathfrak{D})}\Gamma(\mathfrak{b};\mathfrak{D})\to\Gamma(\mathfrak{b};\mathfrak{F})$$

is an isomorphism.

This adjunct is the component at b of the natural transformation $\omega^2_{\lambda(\Gamma(1;\mathfrak{F})),a}$. Since b is caffine, this component is an isomorphism.

9