TD 3: Nombres complexes

Exercice 1 - Forme algébrique et forme exponentielle

1.1 Écrire les complexes suivants sous forme algébrique.

(i) $e^{i\pi}$

(ii) $4 e^{i\pi/3}$

(iii) $2e^{-i\pi/4}$

1.2 Calculer le module et l'argument, puis mettre sous forme exponentielle chacun des nombres complexes suivants.

- (i) -5
- (ii) -3i
- (iii) 1+i
- (iv) $\frac{\sqrt{3}}{3} i$

Exercice 2 - Résolution d'équations

Résoudre dans $\mathbb C$ les équations suivantes.

2.1 $z^4 = 8\sqrt{2}(1-i),$

2.3 $z^2 - (3i - 7)z + 10 - 11i = 0$

2.2 $z^3 = 4\sqrt{2}(1+i)$.

2.4 $z^2 - (3-2i)z + 5 - i = 0$,

Exercice 3 - Intégration de fractions

Le but de cet exercice est de calculer une primitive de $f: x \mapsto \frac{x}{x^4 - 1}$.

3.1 Trouver des complexes α , β , γ , δ tels que $f(x) = \frac{\alpha}{x-1} + \frac{\beta}{x+1} + \frac{\gamma}{x-i} + \frac{\delta}{x+i}$. **note**: On pourra par exemple réduire la partie de droite au même dénominateur et procéder à une identification des coefficients avec la partie de gauche.

- **3.2** Soit $g(x) = (x-1) \cdot f(x)$. Calculer g(1) sachant que $f(x) = \frac{x}{(x-1)(x+1)(x-i)(x+i)}$.
- **3.3** Calculer maintenant g(x) en remplaçant f(x) par le membre de droite de l'égalité de la question 1. Que vaut alors g(1)?
- **3.4** Proposer une méthode efficace pour déterminer les nombres α , β , γ et δ de la question 1.
- **3.5** Trouver maintenant des réels a, b, c, et d tels que $\frac{x}{x^4 1} = \frac{a}{x 1} + \frac{b}{x + 1} + \frac{cx + d}{x^2 + 1}$.
- **3.6** En déduire une primitive pour f(x).
- **3.7** Appliquer la méthode vue précédemment pour trouver une primitive de $\frac{1}{x^3 x^2 + x 1}$.

Exercice 4 - Linéarisation

(exam. 2022)

4.1 Montrer que $(\cos x)^3(\sin x)^2 = \frac{2\cos(x) - \cos(3x) - \cos(5x)}{16}$. **note :** Commencer par utiliser $\cos x = \frac{e^{ix} + e^{-ix}}{2}$ et $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$, et par développer le membre gauche.

- **4.2** En déduire la valeur de $I = \int_0^{\pi/2} (\cos x)^3 (\sin x)^2 dx$.
- 4.3 Les règles de Bioche indiquent qu'on peut calculer I en effectuant le changement de variable $t = \sin(x)$. Retrouver la valeur de I en procédant de la sorte et commenter.

note: On rappelle que $(\cos x)^2 = 1 - (\sin x)^2$.