Plano de Especificação Formal em Redes de Petri – Jogo ODS 14

1) Objetivo e Escopo

Formalizar o comportamento do jogo educativo ODS 14 (navio, coleta de lixo, resgate de fauna, ondas e cards) por meio de **Redes de Petri** (RdP), permitindo **verificação de propriedades** (segurança, vivacidade, ausência de deadlock, limitação de recursos, metas de onda) e **análise de desempenho** (vazão de capturas, taxa de resgates, penalidades).

2) Escolhas de Modelagem

- · Tipo de RdP:
- RdP Colorida (CPN) para distinguir tipos de lixo (garrafa, sacola, pneu) e animais (peixe, tartaruga) sem multiplicar sub-redes idênticas.
- **RdP Temporizada** (Time Petri Nets, TPN) para modelar spawn (inter-arrival), cooldown do disparo, duração de ondas e expiração de projéteis (redes).
- **Hierárquica/Modular:** sub-redes independentes para *Spawn*, *Disparo/Projétil*, *Captura*, *Resgate*, *Onda/Meta*, *Card/Pausing*.
- **Granularidade:** nível de evento (spawn, disparo, colisão, resgate, penalidade, avanço de onda). A movimentação contínua é **abstraída** por habilitação de transições (e.g., "projétil e lixo se encontram" ≈ transição Capturar habilitada sob condições lógicas/temporais).

3) Vocabulário Formal

3.1 Definição (simplificada)

Uma RdP temporizada e colorida $\mathcal{N}=(P,T,F,W,C,M_0,I)$, onde: - P é o conjunto de lugares; T é o conjunto de transições; $F\subseteq (P\times T)\cup (T\times P)$ é o fluxo; W as multiplicidades (pesos) nos arcos. - C é o conjunto de cores (tipos): LIXO = {garrafa, sacola, pneu}, ANIMAL = {peixe, tartaruga}, REDE, ONDA etc. - M_0 é a marcação inicial; $I:T\to [a,b]$ atribui **janela temporal** (mín-máx de firing) às transições temporizadas.

3.2 Tokens e Cores

- Tokens em P_Lixos | carregam cor | LIXO | e atributos (pontos, reciclagem).
- Tokens em P_Animais carregam cor ANIMAL .
- Tokens em P_Redes representam projéteis ativos.
- Tokens em P_Meta | carregam progresso da reciclagem e meta da onda.
- Tokens em | P_0nda | identificam a onda atual.

4) Decomposição em Sub-Redes

4.1 Sub-rede de Onda/Meta

Intuição: controla duração e objetivo (meta de reciclagem) da onda. - Lugares: P_OndaAtual,, P_Meta (progresso), P_TempoOnda, P_OndaConcluida, P_PausaCard. - Transições:

4.2 Sub-rede de Spawn (Lixo e Animais)

- Lugares: P_SpawnLixo, P_Lixos, P_SpawnAnimal, P_Animais.
- Transições temporizadas: $T_GeraLixo$ (taxa λ_lixo variando por onda), $T_GeraAnimal$ (taxa
- Guardas/cores: seleção probabilística da cor do token (mix da onda). Em CPN, usar case / if para garrafa/sacola/pneu.

4.3 Sub-rede de Disparo/Projétil (Rede)

- Lugares: P_RedePronta (cooldown), P_Redes (ativas).
- Transições: T_Dispara (consome de P_RedePronta), produz em P_Redes), T_Recarga (temporizada; repõe token em P_RedePronta após cooldown), T_ExpiraRede (temporizada; remove de P_Redes).
- Propriedade: **limitação** de projéteis simultâneos via capacity de P_Redes ou bound em P_RedePronta .

4.4 Sub-rede de Captura (Rede × Lixo)

- Lugares: P_Redes , P_Lixos , P_Capturas , P_Pontuacao , P_Meta .
- Transição: T_Capturar (sincroniza presença de uma REDE e um LIXO habilitando coleta). Efeitos:
- Remove 1 token de P_Redes e 1 de P_Lixos (da mesma "área lógica").
- Produz 1 token em P_Capturas (log de evento), incrementa P_Pontuacao , avança P_Meta (via T_AvancaMeta).
- Propriedades: **vivacidade** (enquanto há lixo e redes, captura permanece possível) e **limitação** (não criar tokens fantasma).

4.5 Sub-rede de Resgate/Proteção (Navio × Animal × Rede)

- Lugares: P_Animais , P_Resgates , P_Penalidades , P_Pontuacao .
- Transições: T_Resgatar (Navio encontra Animal), T_FeriuAnimal (Rede atinge Animal).
- Efeitos:
- T_Resgatar : remove 1 ANIMAL de P_Animais , adiciona em P_Resgates e incrementa P_Pontuacao .
- T_FeriuAnimal: remove 1 ANIMAL de P_Animais e 1 REDE de P_Redes , adiciona 1 penalidade.
- Propriedade: **segurança** (sempre que T_FeriuAnimal dispara, há decremento coerente em pontuação/reciclagem).

4.6 Sub-rede de Card/Pausa

- Lugares: P_PausaCard , P_InputContinuar .
- Transições: T_MostraCard (entra em pausa), T_ContinuaJogo (sai da pausa).
- Invariantes: Em modo pausa, transições de jogo (spawn, captura, etc.) ficam **inibidas** (modelar por inibição ou partição de modos com lugares de controle).

5) Mapeamento Eventos ↔ RdP

Evento do jogo	Transição (RdP)	Pré-condições (lugares)	Pós-efeitos
Iniciar Onda	T_IniciaOnda	P_OndaAtual vazio, P_PausaCard vazio	token em P_OndaAtual, P_TempoOnda
Spawn Lixo	T_GeraLixo	P_SpawnLixo, mix da onda	token colorido em P_Lixos
Spawn Animal	T_GeraAnimal	P_SpawnAnimal	token em P_Animais
Disparar Rede	T_Dispara	P_RedePronta	token em P_Redes , inicia T_ExpiraRede
Capturar Lixo	T_Capturar	P_Redes & P_Lixos	P_Capturas, P_Pontuacao , P_Meta
Resgatar Animal	T_Resgatar	P_Animais	P_Resgates, P_Pontuacaot
Ferir Animal	T_FeriuAnimal	P_Redes , P_Animais	P_Penalidades↑, P_Pontuacao↓, P_Meta↓
Meta atingida	T_FinalizaOnda	P_Meta ≥ objetivo	P_OndaConcluida, P_PausaCard
Tempo esgotado	T_TempoEsgota	relógio da onda	P_OndaConcluida, P_PausaCard
Avançar para próxima	T_ContinuaJogo	P_PausaCard, P_InputContinuar	limpa P_PausaCard, novo T_IniciaOnda

6) Marcação Inicial ($M_{ m 0}$) – Exemplo

- P_OndaAtual: 1 token (onda 1)
- P_Meta: 0 tokens (progresso = 0, meta = 15 via parâmetro)
- P_TempoOnda : 1 token com temporizador D_1
- P_RedePronta : 1 token (cooldown ok)
- P_Lixos , P_Animais , P_Redes : vazios
- P_Pontuacao , P_Resgates , P_Penalidades : 0
- P_PausaCard : vazio

7) Propriedades a Verificar

7.1 Segurança (Safety)

• P1 – Coerência de captura: Ao disparar T_Capturar , sempre existe 1 REDE e 1 LIX0 consumidos; não há criação de tokens sem causa.

- **P2 Proteção à fauna:** T_FeriuAnimal implica decrementos em P_Pontuacao e/ou P_Meta conforme regras.
- **P3 Pausa consistente:** Com token em P_PausaCard, transições de jogo (spawn/captura/resgate) ficam bloqueadas.

7.2 Vivacidade/Liveness

• L1 – Sem deadlock em onda ativa: Enquanto P_OndaAtual tiver token e jogo não estiver pausado, existe sequência infinita de habilitações (spawn e interações) até T_FinalizaOnda / T_TempoEsgota.

7.3 Limitação/Boundedness

- B1 Redes/projéteis limitados: | P_Redes | ≤ K | (ex.: bound pelo pool).
- **B2 Lixos/Animais:** limites superiores dependem das taxas e limpeza; parametrizar para manter estados finitos.

7.4 Invariantes (esboço)

- P-invariante de modo: m(P_OndaAtual) + m(P_OndaConcluida) = 1 por onda.
- P-invariante de pausa: m(P_PausaCard) ∈ {0,1} e m(P_PausaCard)=1 ⇒ spawn/captura/resgate inibidos.
- **T-invariantes (ciclos):** ciclos de disparo Disparar→Expirar/Colidir para redes.

8) Métricas e Desempenho

- Vazão de T_Capturar (capturas por segundo) e de T_Resgatar (resgates por segundo).
- Taxa de penalidades (disparos indevidos em animais).
- Tempo médio para atingir meta por onda; probabilidade de finalizar por meta vs. por tempo.

9) Plano de Validação/Verificação

- 1. Ferramentas (sugestões):
- 2. CPN Tools (CPN/temporal), TINA (Time Petri Nets), PIPE (Petri net), TimeNet.
- 3. Experimentos:
- 4. Cenários básicos: (i) baixa taxa de lixo, (ii) alta taxa, (iii) cooldown maior/menor, (iv) mais animais.
- 5. Stress test: taxas máximas para checar boundedness e ausência de deadlock.
- 6. Propriedades formais:
- 7. Model checking para reachability (atingir meta), invariantes (modo/pausa), ausência de deadlock.
- 8. Calibração:
- 9. Ajuste de I(T) (intervalos temporais) para refletir parâmetros do jogo (spawnRate, cooldown, duração da onda, expiração da rede).

10) Especificações FormaIS (Incidência – exemplo mínimo)

Considere o submodelo Captura com lugares $P=\{P_R,P_L,P_C\}$ e transição $T=\{T_C\}$ (R=redes, L=lixos, C=capturas). Matriz de incidência $C=C^+-C^-$:

$$C^- = egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}, \quad C^+ = egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}, \quad C = egin{bmatrix} -1 \ -1 \ +1 \end{bmatrix}.$$

Para marcação $M=(r,l,c)^T$, T_C habilita se $r\geq 1 \land l\geq 1$. Disparo: M'=M+C (consome 1 de P_R , 1 de P_L , produz 1 em P_R). Em CPN, restrinja por cor (pareamento válido Rede × Lixo).

11) Traços de Execução (Cenários)

Cenário A (normal): T_IniciaOnda → spawns T_GeraLixo / T_GeraAnimal → disparos T_Dispara → T_Capturar / T_Resgatar → T_FinalizaOnda (meta) → card T_MostraCard → T_ContinuaJogo.
 Cenário B (penalidade): T_Dispara + T_FeriuAnimal → P_Penalidades↑ e P_Pontuacao↓ → ainda assim onda conclui por T_TempoEsgota.

12) Rastreabilidade Jogo ↔ RdP

- Disparo/rede ↔ Sub-rede Disparo/Projétil.
- Coleta/reciclagem ↔ Sub-rede Captura + Onda/Meta.
- Resgate/penalidade ↔ Sub-rede Resgate/Proteção.
- Card/pausa ↔ Sub-rede Card/Pausa.

13) Entregáveis

- Modelo CPN/TPN (.cpn ou .net) com sub-redes e parâmetros por onda.
- Especificações formais (este plano + matrizes/incidências dos principais submodelos).
- Relatório de verificação (propriedades, logs de firing, gráficos de vazão/tempo).

14) Extensões Futuras

- Boss/evento (macro-lixo): nova sub-rede com estados de fase e vida.
- Power-ups (rede maior, ímã): lugares de buffer e transições de ativação/expiração.
- Mobile (toques): entrada de eventos como lugares de input.