

Python Sciences

Bonnes pratiques

Outils Numériques / Semestre 5 Institut d'Optique / B3_1

• Exemple 1a

```
N = 10
vect = []
for i in range(N):
    vect.append(0)
```

Exemple 1b

```
import numpy as np
N = 10
vect = np.zeros(N)
```


• Exemple 1a

```
N = 10
vect = []
for i in range(N):
    vect.append(0)
```

```
print(type(vect))
```

```
<class 'list'>
```

Exemple 1b

```
import numpy as np
N = 10
vect = np.zeros(N)
```

```
print(type(vect))
```

<class 'numpy.ndarray'>

Exemple 1a

```
N = 10
vect = []
for i in range(N):
    vect.append(0)
```

```
print(type(vect))
```

```
<class 'list'>
```

```
INSTITUT _____ | Lud'OPTIQUE _____ d'E
```

```
Temps exécution :

N=10 ~1 us

N=1000 ~100 us
```

• Exemple 1b

```
import numpy as np
N = 10
vect = np.zeros(N)
```

```
print(type(vect))
```

<class 'numpy.ndarray'>

```
Temps exécution : N=10 \sim 0.25 \text{ us} N=1000 \sim 0.6 \text{ us}
```

Exécution: Core(TM) i7-9750H CPU @ 2.60GHz / 32 Go RAM

```
Py_DECREF(shape1);
 > numpy
                                                          Py_DECREF(shape2);
                                                           return -1;
   meson.build

    Exemple 1b

> simd
                                             87
                                                   /* See array assign.h for parameter documentation */
      common
                                             88
                                                   NPY_NO_EXPORT int
                                                   raw array is aligned(int ndim, npy intp cons
                                                                                           import numpy as np
  > | dlpack
                                                                      char *data, npy_intp co
                                             90
                                                                                           N = 10
                                             91
  > simd
                                             92
    doxyfile.
                                                                                           vect = np.zeros(N)
                                             93
                                                        * The code below expects the following:
    array_assign.c
                                                        * * that alignment is a power of two,
    array_assign.h
                                                        * * that casting from pointer to uintp gives a sensible representation
                                                            we can use bitwise operations on (perhaps *not* req. by C std,
    binop override.h
                                                            but assumed by glibc so it should be fine)
                                                        * * that casting stride from intp to uintp (to avoid dependence on the
    Collasfuncs.c
                                                            signed int representation) preserves remainder wrt alignment, so
    cblasfuncs.h
                                                            stride%a is the same as ((unsigned intp)stride)%a. Req. by C std.
```



```
Temps exécution :

N=10 ~1 us

N=1000 ~100 us
```

Temps exécution : $N=10 \sim 0.25 \text{ us}$ $N=1000 \sim 0.6 \text{ us}$

Exécution: Core(TM) i7-9750H CPU @ 2.60GHz / 32 Go RAM

import numpy as np
data = np.random.rand(1000,5)
print(data.shape)

(1000, 5)


```
import numpy as np
data = np.random.rand(1000,5)
print(data.shape)
```

• Exemple 2a

```
v1 = []
v2 = []
for i in range(len(data)):
    v1.append(data[i, 1])
    v2.append(data[i, 2])
print(type(v1))
```

class 'list'>

(1000, 5)

Exemple 2b

```
v1 = data[:, 1]
v2 = data[:, 2]
print(type(v1))
```

<class 'numpy.ndarray'>


```
import numpy as np
data = np.random.rand(1000,5)
print(data.shape)
```

• Exemple 2a

```
v1 = []
v2 = []
for i in range(len(data)):
    v1.append(data[i, 1])
    v2.append(data[i, 2])
print(type(v1))
```

<class 'list'>

Temps exécution : ~400 us

(1000, 5)

Exemple 2b

```
v1 = data[:, 1]
v2 = data[:, 2]
print(type(v1))
```

<class 'numpy.ndarray'>

Temps exécution : ~0,5 us

Fonctions / Exemple 3

```
def sinus(t, A, f):
    return A*np.sin(2*np.pi*f*t)

time_vect = np.linspace(0, 1, 1001)
```

• Exemple 3a

```
TF = np.fft.fft(sinus(time_vect, 1, 10))
plt.figure()
plt.plot(time_vect, sinus(time_vect, 1, 10))
```

Exemple 3b

```
sig = sinus(time_vect, 1, 10)
TF = np.fft.fft(sig)
plt.figure()
plt.plot(time_vect, sig)
```


Fonctions / Paramètres optionnels

```
def sinus(t, A=1, f=100):
    return A*np.sin(2*np.pi*f*t)

time_vect = np.linspace(0, 1, 101)
```

```
A1 = sinus(time_vect)
A2 = sinus(time_vect, A=10)
A3 = sinus(time_vect, A=10, f=200)
```


Fonctions / Paramètres optionnels

```
def sinus(t, A=1, f=100):
    return A*np.sin(2*np.pi*f*t)

time_vect = np.linspace(0, 1, 101)

A1 = sinus(time_vect)
A2 = sinus(time_vect, A=10)
A3 = sinus(time_vect, A=10, f=200)

f = 100 \text{ Hz}
f \approx 10 \text{ms}
```


Critère de Shanonn-Nyquist non respecté

Fonctions / Paramètres optionnels

```
def sinus(t, A=1, f=100):
    if(isinstance(t, np.ndarray)):
        Te = t[0] - t[1]
        if(1/Te < 2*f) print('Shannon
    sampling frequency warning !!')
        return A*np.sin(2*np.pi*f*t)

A1 = sinus(time_vect)
A2 = sinus(time_vect, A=10)
A3 = sinus(time_vect, A=10, f=200)
```


- Différents types de fichiers
 - ASCII / texte
 - Binaires

Fichier CSV

Codage ASCII Délimiteur de colonnes (défaut : point-virgule)

	A	В	С
1	#CHANNEL:CH1		
2	#SIZE=4000		
3	Index	Time(s)	Volt(V)
4	1	0.000000e+00	3.200000e-01
5	2	4.000000e-05	-8.000000e-02
6	3	8.000000e-05	-4.400000e-01
7	4	1.200000e-04	-6.000000e-01
8	5	1.600000e-04	-6.800000e-01

• Selon les applications

Données

Fichier CSV

Codage ASCII Délimiteur de colonnes (défaut : point-virgule)

Fichier JPG

Codage binaire En-tête spécifique


```
En-tête

1  #CHANNEL:CH1
2  #SIZE=4000
3  Index, Time(s), Volt(V)
```

- 4 1,0.000000e+00,3.200000e-01
- 5 2,4.000000e-05,-8.000000e-02
- 6 3,8.000000e-05,-4.400000e-01
- 7 4,1.200000e-04,-6.000000e-01
- 8 5,1.600000e-04,-6.800000e-01

JFIF file structure					
Segment	Code	Description			
SOI	FF D8	Start of Image			
JFIF-APP0	FF E0 s1 s2 4A 46 49 46 00	see below			
JFXX-APP0	FF E0 s1 s2 4A 46 58 58 00	optional, see below			

... additional marker segments (for example SOF, DHT, COM)

SOS	FF DA	Start of Scan	
	compressed image data		
EOI	FF D9	End of Image	

• Exemple 4a

```
f = open("B3_data_01.csv", "r")
cpt = 0
N = 10
for line in f:
    if cpt < N:
        print(line)
        cpt += 1
f.close()</pre>
```



```
#CHANNEL:CH1

#SIZE=4000

Index,Time(s),Volt(V)

1,0.0000000e+00,3.200000e-01

2,4.0000000e-05,-8.000000e-02

3,8.0000000e-05,-4.400000e-01
```

• Exemple 4a

```
f = open("B3_data_01.csv", "r")
cpt = 0
HEADER = 2
NB_DATA = 4000
delimiter = ','
t = np.zeros(NB_DATA)
v = np.zeros(NB_DATA)
```

```
for line in f:
    if (cpt > HEADER) and (cpt < (HEADER +
        NB_DATA + 1)):
        data = line.split(delimiter)
        t[cpt-HEADER-1] = float(data[1])
        v[cpt-HEADER-1] = float(data[2])
        cpt += 1
f.close()</pre>
```

```
INSTITUT
d'OPTIQUE
GRADUATE SCHOOL
ParisTech
Expérimental
```

```
#CHANNEL:CH1

#SIZE=4000

Index,Time(s),Volt(V)

1,0.000000e+00,3.200000e-01

2,4.000000e-05,-8.000000e-02

3,8.000000e-05,-4.400000e-01
```

• Exemple 4a

```
f = open("B3_data_01.csv", "r")
cpt = 0
HEADER = 2
NB_DATA = 4000
delimiter = ','
t = np.zeros(NB_DATA)
v = np.zeros(NB_DATA)
```

Temps exécution : ~6 ms (pour 4000 données)


```
Temps exécution : ~11 ms (pour 4000 données)
```

```
for line in f:
    if (cpt > HEADER) and (cpt < (HEADER +
        NB_DATA + 1)) :
        data = line.split(delimiter)
        t[cpt-HEADER-1] = float(data[1])
        v[cpt-HEADER-1] = float(data[2])
    cpt += 1
f.close()</pre>
```

• Exemple 4b

```
data = np.genfromtxt("B3_data_01.csv",
  delimiter=',', skip_header=2,
  skip_footer=6)
t = data[:,1]
v = data[:,2]
```