Analisi (M2) Appunti

Alex Bastianini

Contents

Chapter 1		Introduzione agli appunti	_ Page 3
	1.1	Le varie parti degli appunti	3
Chapter 2		Total annual?	Dana 4
Chapter 2		Integrali	_ Page 4
	2.1	Motivazioni	4
	2.2	Area sottesa a una curva Costruzione integrale di Riemann — 4 ● Proprieta' dell'integrale — 5 ● Media Integrale — 6	4
	2.3	Primitive di una funzione	8
	2.4	Funzioni integrali	8
		Teoremi fondamentali del calcolo integrale — 9 • Integrazione per parti — 9 • Cambio di variabile	e — 10
	2.5	Integrali generalizzati (impropri)	10
Chapter 3		Spazio euclideo \mathbb{R}^n	Page 12
	3.1	Operazioni su \mathbb{R}^n	12
		Proprieta' del prodotto scalare (euclideo) — 12	
	3.2	Ortogonalita'	12
	3.3	Norma euclidea Proprieta' della norma — 13	13
	3.4	Vettore normalizzato	13
	3.5	Coordinate polari	13
	0.0	Prodotto scalare in coordinate polari — 14	
	3.6	Distanza tra punti	14
		Punto di minima distanza da una retta — 15	
	3.7	Intorni	15
	3.8	Successioni in \mathbb{R}^n	15
Chapter 4		Funzioni a piu' variabili	Page 16
	4.1	Insiemi di livello	16
	4.2	Continuita'	16
		Derivata parziale	17
	4.0	Derivate parziali in $\mathbb{R}^n - 18$	11
	4.4	Derivabilita' e continuita'	18
	4.5	Differenziabilita'	18
	-	o piccolo in piu' variabili — 18	-
	4.6	Continuita' di una funzione differenziabile	19

Chapter 5	Integrali su piu' variabili	Page 21

19

19

4.7 Condizioni sufficenti per la derivabilita'

Derivate direzionali

Introduzione agli appunti

Questo e' un test per vedere come viene fuori un paragrafo di testo normale. Il testo sembra troppo piccolo pero.

1.1 Le varie parti degli appunti

Diversi box colorati per indicare diverse parti degli appunti:

Integrali

2.1 Motivazioni

Motivazioni:

- Calcolo di aree di figure curvilinee
- Lunghezze di curve (non lo faremo)

Le nostre figure curvilinee sono sottografici di funzioni.

2.2 Area sottesa a una curva

Definition 2.2.1: Area sottesa

Data $f:[a,b] \to \mathbb{R}$

$$A=\{(x,y)\in\mathbb{R}^2|x\in[a,b].0\leqslant y\leqslant f(x)\}$$

2.2.1 Costruzione integrale di Riemann

Speziamo un intervallo [a,b] in $n \in \mathbb{N}$ sotto intervalli uguali. L'ampiezza di ciuascun intervallo e' di $\frac{b-a}{n}$.

- $\bullet \ x_0 = a$
- $\bullet \ x_1 = a + \frac{b-a}{n}$
- $x_n = b$

In ogni intervallo fisso un punto arbirario ϵ_n

Definition 2.2.2: Somma di Riemann associata a una scomposizione

Data una funzione $f:[a,b] \to \mathbb{R}$, fatta la costruzione precedente (spezzettamento), $\forall n \in \mathbb{N}$ la somma di Riemann n-esima di f e' il numero seguente:

$$S_n = \sum_{k=1}^n f(\epsilon_k)(x_k - x_{k-1})$$

Esempio di somma di Riemann di una funzione $f:[2,8] \to \mathbb{R}$ con n=3:

(2.1)

Theorem 2.2.1 Integrabilita' delle funzioni continue

Sia $f:[a,b]\to\mathbb{R}$ continua. Sia (S_n) la successione delle somme di Riemann, allora:

$$\lim_{n \to +\infty} S_n = l \in \mathbb{R}$$

E non dipende da quale ϵ_n scegliamo per ogni segmento.

Definition 2.2.3: Integrale

$$\int_a^b f(x)dx = \lim_{n \to +\infty} S_n$$

La x e' una variabile **muta**.

Note:

- Se $\forall x \in [a, b]. f(x) \ge 0$, allora $\int_a^b f$ = Area del sottografico.
- $\int_a^a f = 0$ (poiche $\forall n \in \mathbb{N}.S_n = 0$)
- f(x) = k(funzione costante) $\implies \int_a^b f = (b-a)k$ (Area del rettangolo)

2.2.2 Proprieta' dell'integrale

Linearita'

Se abbiamo due funzioni f, g continue su [a,b], $A, \mu \in \mathbb{R}$

$$\int_a^b (Af(x) + \mu g(x))dx = A \int_a^b f(x)dx + \mu \int_a^b g(x)dx$$

Additivita

Data $f:[a,b] \to \mathbb{R}$ continua, dato $c \in [a,b],$ vale:

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

Note:

Convenzione su integrali con estremi "rovesciati":

Dato $f:[a,b]\to \mathbb{R}$

$$\int_{a}^{b} f = -\int_{b}^{a} f$$

In questo modo possiamo generalizzare la proprieta' addittiva togliendo dall' ipotesi la restrizione sul valore di c.

Monotonia

Se $f:[a,b] \to \mathbb{R}$ e $\forall x \in [a,b].f(x) \geq 0$, allora:

$$\int_{a}^{b} f \ge 0$$

2.2.3 Media Integrale

Premessa 1

Theorem 2.2.2 Valori intermedi

Sia $f:[a,b]\to\mathbb{R}$ continua, $x_1,x_2,\in[a,b].f(x_1)\leqslant f(x_2)$, allora:

$$\forall y \in [f(x_1),f(x_2)]. \exists c \in [x1,x2]. f(c) = y$$

Premessa 2

Theorem 2.2.3 Weierstrass

Sia $f:[a,b] \to \mathbb{R}$ continua:

$$\exists x_1, x_2 \in [a, b]. \forall x \in [a, b]. f(x_1) \leq f(x) \leq f(x_2)$$

Figure 2.1: Esempio di Weierstrass

Theorem 2.2.4 Media integrale

Sia $f:[a,b] \to \mathbb{R}$ continua, allora:

$$\exists c \in [a,b]. \frac{1}{b-a} \int_a^b f(x) dx = f(c)$$

Quindi esiste un punto c in [a,b] t.c. il rettangolo che ha come base b-a e come altezza f(c) ha la stessa area dell'integrale di f da a a b.

Dimostrazione della media integrale: Sia f continua su [a,b]. Per Weierstrass abbiamo che $\exists x_1, x_2 \in [a,b]. \forall x \in [a,b]. f(x_1) \leqslant f(x) \leqslant f(x_2)$. Per la proprieta' di monotonia risulta $\int_a^b f(x_1) dx \leqslant \int_a^b f(x) dx \leqslant \int_a^b f(x_2) dx$, ovvero $f(x_1) \leqslant \frac{1}{b-a} \int_a^b f(x) dx \leqslant f(x_2)$. Quindi per il teorema dei valori intermedi $\exists c \in [a,b]. f(c) = \frac{1}{b-a} \int_a^b f(x) dx$. ⊜

Note:

La continuita' di f e' **necessaria**. Ex:

$$f: [-1,1] \to \mathbb{R}, f(x) = x \implies \frac{1}{2} \int_{-1}^{1} x dx = 0 = f(0)(c=0)$$

Se considerassi $g:[-1,1] \to \mathbb{R}$

$$g(x) = \begin{cases} x & x \neq 0 \\ 2 & x = 0 \end{cases}$$

Si dimostra che g e' intagarbile, e che vale

$$\int_{-1}^{1} g(x)dx = 0$$

Pero' non esiste $c \in [-1, 1]$ tale che g(c) = 0, quindi non soddisfa la media integrale.

2.3 Primitive di una funzione

Definition 2.3.1: Primitiva di f

Sia $f:A\to\mathbb{R},A\subseteq\mathbb{R}$

Una funcione $F:A\to\mathbb{R}$ si dice primitiva di f
 su A se vale

$$\forall x \in A.F'(x) = f(x)$$

Example 2.3.1 (Primitiva)

 $f: \mathbb{R} \to \mathbb{R}, f(x) = \cos x \implies F(x) = \sin x$ e' una primitiva di f su \mathbb{R} . Infatti $\forall x. \frac{d}{dx} \sin x = \cos x$

Note:

 $\forall k \in \mathbb{R}$, la funzione $G(x) = \sin(x) + k$ e' anchessa primitiva di f. Quindi se F e' primitiva di f su A allora ci sono infinite primitive di f su A (una per ogni $k \in \mathbb{R}$).

Domanda: sono tutte le possibili primitive?

Proposition 2.3.1 Caratterizzazione delle primitive di una funzione su un intervallo

Sia $f:]a, b[\to \mathbb{R}$. Siano $F:]a, b[\to \mathbb{R}$ e $G:]a, b[\to \mathbb{R}$ due primitive di f su]a, b[.

Allora $\exists k \in \mathbb{R}$ tale che:

$$\forall x \in]a, b[.G(x) = F(x) + k$$

Ovvero F e G "differiscono per una costante".

Dimostrazione: Considero $H:]a, b[\to \mathbb{R}, H(x) = G(x) - F(x).$ Sappiamo che F'(x)=f(x) e G'(x)=f(x) (def. primitiva). $\frac{d}{dx}H(x) = \frac{d}{dx}G(x) - \frac{d}{dx}F(x) = f(x) - f(x) = 0.$ Dunque H ha derivata nulla su]a, b[, quindi (per coroll. Lagrange) H e' costante.

2.4 Funzioni integrali

D'ora in poi A = a, b.

Definition 2.4.1: Funzione Integrale

Sia $f: A \to \mathbb{R}$ continua.

Sia $c \in A$. Introduco $I_c : A \to \mathbb{R}$:

$$I_c(x) = \int_c^x f(t)dt$$

Nota: I_c e' ben definita essendo f continua.

Note:

1.
$$f:A \to \mathbb{R}, c \in A, I_c(x) = \int_c^x f \implies I_c(c) = \int_c^c f(t) dt = 0.$$

2. Dati $c, c' \in A, f: A \to \mathbb{R} \implies I_c(x) - I_{c'}(x) = \text{costante. Infatti:}$

$$I_c(x) - I_{c'}(x) = \int_c^x f - \int_{c'}^x f = \int_c^x f + \int_x^{c'} f = \int_c^{c'} f(t)dt = k$$

8

2.4.1 Teoremi fondamentali del calcolo integrale

Theorem 2.4.1 Fondamentale del calcolo sulla derivata della funzione integrale

Sia $f:A\to\mathbb{R}$ continua, $c\in A$. Sia I_c la funzione integrale, allora:

 I_c e' derivabile in ogni punto $x \in A$ e $I'_c(x) = f(x)$

Cioe' $\frac{d}{dx} \int_{c}^{x} f(t)dt = f(x), \forall x \in A$, quindi I_c e' **primitiva** di f(x).

Una possibile interpretazione di questo teorema e' quello della derivata dell'area sottesa che e' uguale alla funzione stessa, ovvero:

$$\forall x. f(x) \ge 0 \implies \frac{d}{dx} \text{Area} = f(x)$$

 $A = [-2, 2], f(x) = \frac{x^2}{5} + 1$:

Note:

Il teorema assicura che ogni funzione $f:A\to\mathbb{R}$ continua ammette primitive.

Dimostrazione: $f: A \to \mathbb{R}, c \in A, I_c: A \to \mathbb{R}$. Devo calcolare la derivata di I_c . Calcolo $\lim_{h \to 0^+} \frac{I_c(x+h)-I_c(x)}{h}$, che equivale a $\lim_{h \to 0^+} \frac{1}{h} \int_x^{x+h} f(t)dt$. Per teo. media integrale sappiamo che $\exists c \in [x, x+h]. f(c) = \frac{1}{h} \int_x^{x+h} f(t)dt$, quindi possiamo riscrivere la formula come $\lim_{h \to 0^+} f(c_h)$. Dato che $h \to 0^+$ e $x \le c \le x+h$, per il teo. dei carabinieri c = x, quindi $\frac{d}{dx}I_c(x) = f(x)$.

Theorem 2.4.2 Fondamentale del calcolo per integrali definiti

Sia $f:A\to\mathbb{R}$ continua su A. Sia $F:A\to\mathbb{R}$ primitiva di f
 su A. Dati $a,b\in A,$ vale:

$$\int_{a}^{b} f(x)dx = [F(b) - F(a)] = [F(x)]_{a}^{b}$$

Dimostrazione: Sia $c \in A$, $I_c : A \to \mathbb{R}$ la funzione integrale $(I_c(x) = \int_c^x f)$. Per il teo. fond. del calc. sulla derivata di I_c , I_c e' una primitiva di f su A. Per le proprieta' delle primitive, $\exists k \in \mathbb{R}. \forall x \in A. F(x) = I_c(x) + k$.

$$F(b) - F(a) = (I_c(b) + k) - (I_c(a) + k) = I_c(b) - I_c(a) = \int_c^b f - \int_c^a f = \int_a^c f + \int_c^b f = \int_a^b f$$

⊜

2.4.2 Integrazione per parti

Si parte dalla regola del prodotto delle derivate $(\frac{d}{dx}f(x)\cdot g(x)=f'(x)g(x)+f(x)g'(x))$ per trovare una regola di integrazione.

Theorem 2.4.3 Integrazione per parti

Dati $f, g: A \to \mathbb{R}$, A intervallo aperto e sia F primitiva di f su A con F,f,g continue, g derivabile e g continua:

$$\int_a^b \frac{d}{dx} (F(x)g(x))dx = \int_a^b f(x)g(x)dx + \int_a^b F(x)g'(x)dx$$

Quindi usando il teorema fondamentale:

$$[F(x)g(x)]_a^b = \int_a^b f(x)g(x)dx + \int_a^b F(x)g'(x)dx$$

$$\int_a^b f(x)g(x)dx = [F(x)g(x)]_a^b - \int_a^b F(x)g'(x)dx$$

2.4.3 Cambio di variabile

Theorem 2.4.4 Formula del cambio di variabile

Date $h:I\to A,\ f:A\to\mathbb{R},\ I,A\subseteq\mathbb{R}$ e $\exists (f\circ h):I\to\mathbb{R}.(f\circ h)(t)=f(h(t)).\ f$ continua, h derivabile e h' continua. Presi $\alpha,\beta\in I$, vale:

$$\int_{h(\alpha)}^{h(\beta)} f(x)dx = \int_{\alpha}^{\beta} f(h(t))h'(t)dt$$

Questa e' la versione generalizzata del teo. fond. del calcolo

Dimostrazione: Date due funzioni $G, H : I \to \mathbb{R}.G(z) = \int_{\alpha}^{z} f(h(t))h'(t)dt, H(z) = \int_{h(\alpha)}^{h(z)} f(x)dx$, dobbiamo dimostrare che G(z) = H(z). Ci riduciamo a dimostrare che:

- 1. $G(\alpha) = H(\alpha)$: ovvio perche' integrali su intervallo degenere $(G(\alpha) = H(\alpha) = 0)$
- 2. $\forall z \in I.G'(z) = H'(z)$:
 - $G'(z) = \frac{d}{dz} \int_{0}^{z} f(h(t))h'(t)dt = f(h(z))h'(z)$
 - $H'(z) = \frac{d}{dz} \int_{h(\alpha)}^{h(z)} f(x) dx = f(h(z))h'(z)$ (generalizzazione del teorema fondamentale del calcolo)

(3)

Note:

- 1. t integrata in α, β , allora x sara' integrata in $h(\alpha), h(\beta)$.
- 2. dx si e' trasformato in h'(t)dt $(\frac{d}{dt}h(t) = h'(t) \implies dh(t) = h'(t)dt)$

2.5 Integrali generalizzati (impropri)

Definition 2.5.1: Integrali generalizzati su intervalli illimitati

Sia $f: [a, +\infty[\to \mathbb{R}.$ Si dice che l'integrale generalizzato $\int_a^{+\infty} f(x)dx$ e' **convergente** se e' finito il limite $\lim_{r\to +\infty} \int_a^r f(x)dx := \int_a^{+\infty} f(x)dx$. Altrimenti se il limite diverge o oscilla e' detto **divergente** (o oscillante).

La definizione e' analoga per $\int_{-\infty}^{a} f(x)dx$.

Definition 2.5.2: Integrali generalizzati su intervalli limitati

Sia $f:]a,b] \to \mathbb{R}$. Si dice che l'integrale $\int_a^b f(x)dx$ e' **convergente** se il limite $\lim_{r\to a^+} \int_r^b f(x)dx$ e' finito. Altrimenti se il limite diverge o oscilla e' detto **divergente** (o oscillante). La definizione e' analoga per $f: [a,b[\to \mathbb{R}.$

Spazio euclideo \mathbb{R}^n

(Spazio **euclideo** = c'e' il prodotto scalare) $\mathbb{R}^n = \{x = (x_1, x_2, ..., x_n) | \forall j \in \{1, 2, ..., n\}. x_j \in \mathbb{R}\} = \mathbb{R} \times \mathbb{R} \times ... \mathbb{R} \text{ (n volte)}.$

- n = 1 retta reale
- n = 2 piano cartesiano
- n = 3 spazio ordinario

3.1 Operazioni su \mathbb{R}^n

- Somma di vettori: $x=(x_1,...,x_n),y=(y_1,...,y_n)$. Definiamo $x+y=(x_1+y_1,...,x_n+y_n)\in\mathbb{R}^n$
- Prodotto di $x \in \mathbb{R}^n$ per uno scalare $\lambda \in \mathbb{R}$. Dato $x = (x_1, ..., x_n), \lambda \in \mathbb{R}$, definiamo $\lambda x = (\lambda x_1, ..., \lambda x_n)$.

Definition 3.1.1: Prodotto scalare

Dati $x, y \in \mathbb{R}_n$, definiamo il prodotto scalare $< x, y >= \sum_{k=1}^n x_k y_k = x_1 y_1 + ... + x_n y_n \in \mathbb{R}^n$. Notazione alternativa: $< x, y >= x \cdot y$.

Note:

Il prodotto scalare non da' un nuovo vettore, ma solo un valore scalare!

3.1.1 Proprieta' del prodotto scalare (euclideo)

- $\forall x, y \in \mathbb{R}^n$. $\langle x, y \rangle = \langle y, x \rangle$ (simmetria)
- $\forall x, y, z \in \mathbb{R}^n$, $\lambda, \mu \in \mathbb{R}$. $\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle$ (linearita' nel primo argomento) Per simmetria vale $\langle z, \lambda x + \mu y \rangle = \lambda \langle z, x \rangle + \mu \langle z, y \rangle$ (linearita' nel secondo argomento)
- $\forall x \in \mathbb{R}^n$. $\langle x, x \rangle \ge 0$, inoltre $\langle x, x \rangle = 0 \iff x = (0, 0, ..., 0) = 0$ (vettore nullo).

3.2 Ortogonalita'

Definition 3.2.1: Vettori ortogonali

Due vettori $x, y \in \mathbb{R}^n$ si dicono **ortogonali** se vale:

$$< x, y >= 0$$

3.3 Norma euclidea

Sinonimi: modulo, lunghezza

Definition 3.3.1

Dato $x \in \mathbb{R}^n$, allora

$$||x|| = \sqrt{\langle x, x \rangle} \ge 0$$

Rappresenta la "lunghezza" del vettore usando il teorema di Pittagora.

Notazione alternativa: |x|

3.3.1 Proprieta' della norma

• $\forall x \in \mathbb{R}^n . ||\lambda x|| = |\lambda| \cdot ||x||$

• $\forall x \in \mathbb{R}^n . ||x|| = 0 \iff x = 0$

• $\forall x, y \in \mathbb{R}^n . |x + y| \le |x| + |y|$ (Disuguaglianza triangolare)

3.4 Vettore normalizzato

Definition 3.4.1: Normalizzato

Dato $x \neq 0 \in \mathbb{R}^n$, cerco r > 0 t.c.

$$|rx| = 1$$

Visto che r > 0, r|x| = 1 quindi $r = \frac{1}{|x|}$.

Il vettore $\frac{x}{|x|}$ ha norma 1 e si dice **normalizzato** di $x \in \mathbb{R}^n \setminus \{\underline{0}\}$.

 $\frac{x}{|x|}$ si dice vettore unitario.

Note:

Possiamo scrivere $x = |x| \cdot \frac{x}{|x|}$ se $x \neq 0$.

3.5 Coordinate polari

In \mathbb{R}^2 , ogni $(x,y) \neq (0,0)$ si scrive nella forma $|(x,y)| \cdot (\frac{x}{|(x,y)|}, \frac{y}{|(x,y)|})$. L'insieme di coordinate $\{(\frac{x}{|(x,y)|}, \frac{y}{|(x,y)|})|x,y \in \mathbb{R}\}$ forma una **circonferenza unitaria** (dato che il loro modulo e' sempre 1), quindi $\exists \theta \in [0, 2\pi[$ tale che $(\cos\theta, \sin\theta) = (\frac{x}{|(x,y)|}, \frac{y}{|(x,y)|})$ (θ si chiama "**argomento**" di (x,y)). Ponendo r = |(x,y)| = modulo, scriviamo:

$$(x,y) = r(\cos\theta, \sin\theta)$$

dove r > 0 e $\theta \in [0, 2\pi[$ si chiamano **coordinate polari** di (x,y).

• r = vettore unitario

3.5.1 Prodotto scalare in coordinate polari

Considero due vettori $(x, y) = (rcos\theta, rsin\theta)$ e $(n, o) = (\rho cos\gamma, \rho sin\gamma)$. Il loro prodotto scalare <(x, y), (n, o) > diventa $r\rho cos\theta cos\gamma + r\rho sin\theta sin\gamma$, che puo' essere riscritto come $r\rho cos(\gamma - \theta)$, ovvero:

$$|(x,y)| \cdot |(n,o)| \cdot cos(\gamma - \theta)$$

Proposition 3.5.1 Disuguaglianza di Cauchy-Schwarz

Dati $x, y \in \mathbb{R}^n$, vale:

$$| \langle x, y \rangle | \leq ||x|| \cdot ||y||$$

L'uguaglianza vale solo se x e y sono linearmente indipendenti.

Note: 🛉

Vale in ogni $\mathbb{R}^n \forall n \in \mathbb{N}$

Proposition 3.5.2 Quadrato di binomio

$$|x + y|^2 = |x|^2 + |y|^2 + 2 < x, y >$$

Generalizzazione di Pitagora (In due dimensioni diventa il teorema di Carneau).

Proposition 3.5.3 Disuguaglianza Triangolare

 $\forall x, y \in \mathbb{R}^n$ si ha che:

$$|x + y| \le |x| + |y|$$

: Dimostriamo il quadrato della disuguaglianza per poter usare il quadrato di binomio:

$$|x + y|^2 = |x|^2 + |y|^2 + 2 < x, y > \leq |x|^2 + |y|^2 + 2| < x, y > | \leq |x|^2 + |y|^2 + 2|x||y| = (|x| + |y|)^2$$

$$\implies |x + y|^2 \leq (|x| + |y|)^2$$

3.6 Distanza tra punti

Definition 3.6.1: Distanza fra due punti

Dati $x, y \in \mathbb{R}^n$, la distanza fra $x \in y \in |x - y|$

3.6.1 Punto di minima distanza da una retta

Problema \mathbb{R}^n , $v \neq 0$, $x \in \mathbb{R}^n$. Considero le linee $l_v = \{tv | t \in \mathbb{R}\}$, cerco fra tutti i punti di l_v quello che ha minima distanza da x. Devo minimizzare la funzione $h : \mathbb{R} \to \mathbb{R}$, h(t) = |x - tv| = distanza fra x e tv

Proposition 3.6.1

Dati $v\neq 0$ e $x\in \mathbb{R}^n,$ il punto di minima distanza $\frac{< x,v>}{|v|^2}v$ soddisfa:

$$< x - \frac{< x, v >}{|v|^2} v, v > = 0$$

Quindi il vettore che parte dal punto di minima distanza e arriva al punto x e' perpendicolare alla retta l_v .

3.7 Intorni

Definition 3.7.1: Intorno sferico di un punto

Dato $x \in \mathbb{R}^n$, r > 0, poniamo

$$D(x,r) = \{ y \in \mathbb{R}^n | |x - y| < r \}$$

D(x,r) si dice disco di centro x e raggio r.

Definition 3.7.2: Insiemi aperti

 $A \subseteq \mathbb{R}^n$ si dice aperto se:

$$\forall x \in A. \exists \epsilon > 0. D(x, \epsilon) \subseteq A$$

3.8 Successioni in \mathbb{R}^n

Una successione $(x_k)_{k\in\mathbb{N}}$ e' un vettore di k successioni: $x_k=(x_k^1,x_k^2,...,x_k^n)$ con $k\in\mathbb{N}$

Funzioni a piu' variabili

Dati $A \subseteq \mathbb{R}^n$, $B \subseteq \mathbb{R}^q$, consideriamo funzioni $f: A \to B$ (A = dominio, B = codominio). Casi modello:

- $f: \mathbb{R}^n \to \mathbb{R}$ (funzioni scalari)
- $f: \mathbb{R} \to \mathbb{R}^q$ (cammini in \mathbb{R}^q)

4.1 Insiemi di livello

Definition 4.1.1

 $A\subseteq \mathbb{R}^n, f:A\to \mathbb{R}, b\in \mathbb{R}.$ L'insieme di livello b di fe':

$$L_b = \{x \in A | f(x) = b\} = f^{-1}(b)$$

Se cammino lungo l'insieme di livello, la funzione corrispondente non cambia

4.2 Continuita'

Definition 4.2.1: Funzioni continue

 $A\subseteq \mathbb{R}^n, f:A\to \mathbb{R}, k\in A. \text{ Si dice che } f\text{ e' continua in } k\in A\text{ se } \forall (x_n)_{n\in\mathbb{N}}\in\mathbb{R}^n\text{ vale:}$

$$\begin{cases} x_n \in A & \forall n \in \mathbb{N} \\ x_n \longrightarrow k & k \longrightarrow +\infty \end{cases} \implies f(x_n) \longrightarrow f(k)$$

Proposition 4.2.1

Sia $A \subseteq \mathbb{R}^n$, $f: A \to \mathbb{R}$, $k \in A$. Allora f e' continua in k se:

$$\forall \epsilon > 0 \exists \delta > 0. \begin{cases} x \in A \\ |x - k| < \delta \end{cases} \implies |f(x) - f(k)| < \epsilon$$

4.3 Derivata parziale

Definition 4.3.1: Derivata parziale

Data $f:A\to\mathbb{R}, A\subseteq\mathbb{R}^2$. Dati $(\overline{x},\overline{y})\in A$ f si dice derivabile parzialmente rispetto a \overline{x} se:

$$\exists \lim_{h \to 0} \frac{f(\overline{x} + h, \overline{y}) - f(\overline{x}, \overline{y})}{h} = \frac{\partial f}{\partial x}(\overline{x}, \overline{y})$$

In modo analogo per $\frac{\partial f}{\partial y}(\overline{x}, \overline{y})$.

Definition 4.3.2: Gradiente

Se $f: \mathbb{R}^2 \to \mathbb{R}$ ammette derivate parziali $\forall (\overline{x}, \overline{y}) \in \mathbb{R}^2$, definiamo il **gradiente di f** come:

$$\nabla f(x,y) = (\frac{\partial f}{\partial x}(x,y), \frac{\partial f}{\partial y}(x,y))$$

 $\nabla f:\mathbb{R}^2\to\mathbb{R}^2$ (funzione vettoriale)

Note:

 $f: \mathbb{R}^2 \to \mathbb{R}, (\overline{x}, \overline{y})$ fissato:

$$\partial_x f(\overline{x}, \overline{y}) = \lim_{h \to 0} \frac{f(\overline{x} + h, \overline{y}) - f(\overline{x}, \overline{y})}{h} = \lim_{x \to \overline{x}} \frac{f(x, \overline{y}) - f(\overline{x}, \overline{y})}{x - \overline{x}}$$

Introduco una funzione $g: \mathbb{R} \to \mathbb{R}, \ g(x) = f(x, \overline{y})$, in modo che, facendo la normale derivata di g:

$$g'(\overline{x}) = \lim_{x \to \overline{x}} \frac{g(x) - g(\overline{x})}{x - \overline{x}} = \frac{\partial f}{\partial x} f(\overline{x}, \overline{y})$$

Abbiamo quindi trasformato una derivata parziale in una derivata "normale" fissando tutti i parametri tranne

4.3.1 Derivate parziali in \mathbb{R}^n

In \mathbb{R}^n , data $f: \mathbb{R}^2 \to \mathbb{R}$ possiamo riscrivere la derivata parziale cosi:

$$\frac{\partial f}{\partial x}(\overline{x}, \overline{y}) = \lim_{t \to 0} \frac{f((\overline{x}, \overline{y}) + t(1, 0)) - f(\overline{x}, \overline{y})}{t}$$

Possiamo usare quindi le basi canoniche $(e_1 = (1, ..., 0), ..., e_n(0, ..., 1))$ per indicare per quale dei valori del vettore passato come parametro vogliamo derivare.

Definition 4.3.3

 $f:\mathbb{R}^n \to \mathbb{R}, \, x=(x_1,...,x_n), \overline{x} \in \mathbb{R}^n. \text{ Per } k=\{1,...,n\}:$

$$\frac{\partial f}{\partial x_k}(\overline{x}) = \lim_{t \to 0} \frac{f(\overline{x} + te_k) - f(\overline{x})}{t}$$

4.4 Derivabilita' e continuita'

In \mathbb{R} , se una funzione era derivabile in un punto allora era anche continua, pero' se in piu' variabili non e' cosi:(guardare es slide)

4.5 Differenziabilita'

In una dimensione, possiamo dire che:

$$\exists f'(\overline{x}) \in \mathbb{R} \iff f(\overline{x} + h) = f(\overline{x}) + f'(\overline{x})h + o(h)$$

Quindi una funzione e' derivabile in un punto sse vale lo sviluppo di Taylor. Infatti, se sostituiamo x a $\overline{x} + h$, dove $x \to \overline{x}$ otteniamo il polinomio di Taylor di primo grado nel punto \overline{x} : $f(x) = f(\overline{x}) + f'(\overline{x})(x - \overline{x}) + o(x - \overline{x})$. Come vedremo, questa prposizione non vale quando aumentiamo le dimensioni. Infatti, solo in una dimensione differenziabilita' e derivabilita' coincidono.

4.5.1 o piccolo in piu' variabili

Definition 4.5.1: o piccolo

Dati $A \subseteq \mathbb{R}^n, h \in A, g : A \to \mathbb{R}$, assumendo che $0 \in A$, si dice che g e' o piccolo di $|h|^p$ (con $p \ge 0$) se:

- 1. g(0) = 0
- 2. $\forall \epsilon > 0. \exists \delta > 0. \forall h \neq 0. |h| < \delta. \frac{|g(h)|}{||h||^p} < \epsilon$

Example 4.5.1

Verifica le seguenti uguaglianze:

• $g(h, k) = h^2 + k^2 = o(|h + k|)$

$$h^2 + k^2 = |(h, k)|^2$$

Quindi:

$$\frac{|(h,k)|^2}{|(h,k)|} = |(h,k)|$$

Dobbiamo dimostrare che $\forall \epsilon > 0. \exists \delta > 0. \forall 0 < |(h,k)| < \delta. |(h,k)| < \epsilon$, che possiamo fare mettendo $\delta = \epsilon$ per ogni $\epsilon > 0$.

Possiamo riscrivere questa definizione usando le successioni:

$$g(h) = o(|h|^p) \iff \forall (h_j)_{j \in \mathbb{N}}. \begin{cases} h_j \neq 0 & \forall j \in \mathbb{N} \\ \lim_{j \to +\infty} (h_j) = 0 \end{cases} \implies \lim_{j \to +\infty} \frac{g(h_j)}{||h_j||^p} = 0$$

Definition 4.5.2: Differenziabilita' in due variabili

 $(x,y),(h,x)\in\mathbb{R}^2$. Sia $f:\mathbb{R}^2\to\mathbb{R}$. Sia $(\overline{x},\overline{y})\in\mathbb{R}^n$. Si dice che f e' differenziabile in $(\overline{x},\overline{y})$ se:

- 1. $\exists \partial_x f(\overline{x}, \overline{y}), \partial_y f(\overline{x}, \overline{y})$
- 2. Vale lo sviluppo:

$$\begin{split} f((\overline{x},\overline{y})+(h,k)) &= f(\overline{x},\overline{y}) + < \nabla f(\overline{x},\overline{y}), (h,k) > + o(|(h,k)|) = \\ f(\overline{x},\overline{y}) &+ \partial_x f(\overline{x},\overline{y})h + \partial_y f(\overline{x},\overline{y})k + o(|(h,k)|) \end{split}$$

Per $(h, k) \rightarrow (0, 0)$

4.6 Continuita' di una funzione differenziabile

Sappiamo che l'esistenza delle derivate parziali non implica la continuita' della funzione. Mostreremo pero' che se sappiamo che una funzione e' differenziabile, allora sara' sicuramente continua.

⊜

Proposition 4.6.1 Differenziabilita' implica continuita'

Data $f: \mathbb{R}^2 \to \mathbb{R}$, se f e' differenziabile in $(\overline{x}, \overline{y}) \in \mathbb{R}^2$, allora f e' continua in $(\overline{x}, \overline{y})$.

4.7 Condizioni sufficenti per la derivabilita'

Theorem 4.7.1

Sia $f: \mathbb{R}^2 \to \mathbb{R}$. Assumo $\exists \partial_x f(\overline{x}, \overline{y}), \partial_y f(\overline{x}, \overline{y})$ per ogni $(\overline{x}, \overline{y}) \in \mathbb{R}^2$. Suppongo che le derivate siano continue. Allora:

f e' differenziabile in ogni punto di \mathbb{R}^2

Note:

Questo teorema vale anche in \mathbb{R}^n . Inoltre le funzioni elementari soddisfano sempre le ipotesi nel loro dominio, quindi sono differenziabili.

Proposition 4.7.1 Lagrange per derivate parziali

4.8 Derivate direzionali

Theorem 4.8.1 Formula del gradiente

Sia $f: \mathbb{R}^2 \to \mathbb{R}$ differenziabile in $(\overline{x}, \overline{y})$, allora:

$$\forall v = (v_1, v_2) \neq (0, 0). |v| = 1:$$

$$\frac{\partial f}{\partial v}(\overline{x}, \overline{y}) = \langle gradf(\overline{x}, \overline{y}), (v_1, v_2) \rangle$$

Note:

Note: Lineare v_1, v_2 , tutte le $\partial_v f$ si scrivono conoscendo solo $\partial_x f$ e $\partial_y f$.

Integrali su piu' variabili