

Circuit Simulation Project

https://esim.fossee.in/circuit-simulation-project

Name of the participant: Rohan Jitendra Pandya

Title of the circuit: Decoder Circuit (4-bit to Analog Voltage)

Theory/Description: Decoder is a combinational circuit that has 'n' input lines and maximum of 2ⁿ output lines. One of these outputs will be active High based on the combination of inputs present, when the decoder is enabled. That means decoder detects a particular code. The outputs of the decoder are nothing but the min terms of 'n' input variables lines, when it is enabled.

2 to 4 Decoder has two inputs A_1 & A_0 and four outputs Y_3 , Y_2 , Y_1 & Y_0 . The **block diagram** of 2 to 4 decoder is shown in the following figure.

One of these four outputs will be '1' for each combination of inputs when enable, E is '1'. The **Truth table** of 2 to 4 decoder is shown below.

Enable	Inputs		Outputs			
E	Aı	A _o	Y ₃	Y ₂	Yı	Y _o
0	x	х	0	0	0	0
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0

Here in this case the highlighted case in the truth table is simulated, whose output plots are shown in the below figures.

5V represents a high logic level and 0V represents low logic level in the multimeter.

Circuit Diagram(s):

Outputs:

Multimeter values:

■ MultiMeter	_	×	■ MultiMeter	_	×
Node RMS Value ? 0.000000 Volts			Branch RMS Value a5#branch_1_0 0.000000 Amp		
■ MultiMeter	_	×	■ MultiMeter	_	×
Node RMS Value a0 0.000000 Volts			Branch RMS Value a5#branch_1_1 0.050 Amp		
■ MultiMeter	_	×	■ MultiMeter	_	×
Node RMS Value a1 5.0 Volts			Branch RMS Value a5#branch_1_2 0.000000 Amp		
■ MultiMeter	_	×	■ MultiMeter	_	\times
Node RMS Value y0 0.000000 Volts			Branch RMS Value a5#branch_1_3 0.000000 Amp		
■ MultiMeter	_	×	■ MultiMeter	_	\times
Node RMS Value y1 0.000000 Volts			Branch RMS Value v1#branch 0.000000 Amp		
■ MultiMeter	_	×	■ MultiMeter	_	×
Node RMS Value y2 5.0 Volts			Branch RMS Value v2#branch 0.000000 Amp		
■ MultiMeter				_	×
Node RMS Value y3 0.000000 Volts					

Plots:

References:

https://www.tutorialspoint.com/digital circuits/digital circuits decoders.htm