Machine Learning

APRENDIZAJE AUTOMÁTICO

Anibal Sosa, PhD

what society thinks I

what my friends think I do

what my parents think I do

>>> from scipy import SVM

what other programmers think I do

what I think I do

what I really do

OBJETIVOS DE APRENDIZAJE

- Identificar problemas que se puedan resolver a partir de modelos de aprendizaje supervisado, ya sea de clasificación o de regresión.
- Aplicar modelos de K-NN y de regresión logística a conjuntos de datos, para responder a preguntas de negocio involucrando modelos de aprendizaje supervisado utilizando el lenguaje python.
- Comparar modelos de aprendizaje supervisado con respecto a métricas de ajuste, utilizando diferentes protocolos de evaluación

Regresión logística

KNN

Aprendizaje no supervisado

Aprendizaje supervisado

Métricas de Evaluación de la regresión

APRENDIZAJE AUTOMÁTICO (APRENDIZAJE DE

MAQUINA VS APRENDIZAJE ESTADISTICO)

- El aprendizaje de máquina tiene que ver más con los resultados. En este sentido su valor será caracterizado únicamente por su rendimiento.
- En el modelado estadístico se trata más de encontrar relaciones entre variables y la importancia de esas relaciones, al tiempo que se puede buscar una predicción.

APRENDIZAJE SUPERVISADO

¿Cómo le puedo enseñar a un niño que es una pelota? Set de entrenamiento

¿Qué patrones distinguen las pelotas de los demás juguetes?

¿Es esta una pelota?

APRENDIZAJE NO SUPERVISADO

Organiza tus juguetes

¿Qué estructura hay en los datos?

Aprendizaje supervisado

- Aprender a partir de un "experto"
- Datos de entrenamiento
 etiquetados con una clase o valor:

• Meta: predecir una clase o valor

Aprendizaje no supervisado

- Sin conocimiento de una clase o valor objetivo
- Los datos no están etiquetados

• Meta: descubrir patrones, estructura, factores no observados o una representación mas simple

Presupuestos de Publicidad

Aprendizaje supervisado

Factores/atributos/variables independientes, Dependiente, objetivo,

Aprendizaje no supervisado

Edad	Ingresos	Tiene carro?
24	1'200.000	NO Datos etiquetados:
23	4'500.000	SI "Respuestas correctas"
45	1'250.000	SI disponibles
32	1'100.000	NO

Edad	Ingresos
24	1'200.000
23	4'500.000
45	1'250.000
32	1'100.000
	

Factores/atributos/variables

34 3'500.000

predictores, explicativos

?

respuesta, salida

¿Cuál es el valor predicho para una instancia dada?

¿Se puede encontrar alguna estructura en los datos?

Aprendizaje supervisado

Aprendizaje no supervisado

REGRESIÓN

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

REGRESIÓN

- Encontrar modelos, f, que permitan predecir valores continuos:
 - KNN
 - Regresión lineal
 - Regresión polinómica
 - Árboles de regresión
 - . . .
- Valores numéricos de la variable o función objetivo
- Baseline: medida de evaluación dada por un modelo que predice una medida de tendencia central (e.g. el promedio)

REGRESIÓN

Predicción:

- Procesos de caja negra
- Estimar el valor objetivo Y dado los valores de los predictores X

• Inferencia:

- ¿Cuáles son los predictores asociados con la respuesta?
- ¿Cuál es la relación entre la variable respuesta y cada uno de los predictores?
- ¿Se puede considerar esa relación lineal o se trata de una relación más compleja?

Ventas = f(TV, Radio, Peri'odicos)

ISLR, 2013

RESIDUOS

Residuos: diferencia entre los valores reales y los valores predichos RSS (Residual Sum of Squares): suma de los residuos al cuadrado

MÉTRICAS DE REGRESIÓN

Coeficiente de correlación (Pearson: [-1;1]): indica la fuerza de la relación lineal entre los predictores y la variable objetivo, que puede ser positiva o negativa

- | rho | = 0 no hay correlación
- | rho| = 0.10 correlación muy débil
- | rho | = 0.25 correlación débil
- | rho | = 0.50 correlación media
- | rho | = 0.75 correlación fuerte
- | rho | = 0.90 correlación muy fuerte
- | rho | = l correlación perfecta

$$\rho_{x,y} = \frac{Cov(x,y)}{\sigma_x \sigma_y}$$

Coeficiente de determinación (R²): indica el porcentaje de la varianza que pudo ser explicada por los predictores a partir de la relación lineal

MÉTRICAS DE REGRESIÓN

• MAE (mean absolute error):

$$\frac{1}{m}\sum_{1}^{m}|h_{\theta}(x_{i})-y_{i}|$$

• MSE (mean square error):

$$\frac{1}{m}\sum_{1}^{m}(h_{\theta}(x_i)-y_i)^2$$

• RMSE (root mean square error):

$$\int \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$

• R² (coeficiente de determinación):

$$1 - \frac{\sum_{1}^{m} (h_{\theta}(x_{i}) - y_{i})^{2}}{\sum_{1}^{m} (y_{i} - \bar{y})^{2}}$$

MÉTRICAS DE REGRESIÓN

- Se puede demostrar que el error de las métricas basadas en el RSS de un modelo, es decreciente con respecto al número de variables predictivas d que considera.
- No se puede considerar MSE, RMSE, R² como métricas de evaluación para comparar modelos con un número de predictores diferentes -> se deben ajustar con una penalización de la cardinalidad
 - Mallow's Cp (minimizar)

$$C_p = \frac{1}{n} (RSS + 2d\hat{\sigma}^2)$$

AIC (Akaike Information Criteria) (minimizar)

$$AIC = \frac{1}{n\hat{\sigma}^2} (RSS + 2d\hat{\sigma}^2)$$

BIC (Bayesian Information Criteria) (minimizar)

$$AIC = \frac{1}{n\hat{\sigma}^2}(RSS + 2d\hat{\sigma}^2)$$
$$BIC = \frac{1}{n}(RSS + \log(n)d\hat{\sigma}^2)$$

R² ajustado (maximizar)

$$R_{adj}^2 = 1 - \frac{\sum_{1}^{m} (h_{\theta}(x_i) - y_i)^2 / (n - d - 1)}{\sum_{1}^{m} (y_i - \bar{y})^2 / (n - 1)}$$

REGRESIÓN — CUIDADO!

Correlación y causalidad son dos cosas muy diferentes

CLASIFICACIÓN: REGRESIÓN LOGÍSTICA, KNN

CLASIFICACIÓN

Vamos a enviar un folleto costoso de promoción a nuestra base de clientes, pero no podemos enviarlo a todos los clientes.

Tenemos los datos históricos de los clientes que en el pasado han comprado el producto en cuestión.

Según nuestra base de datos, le enviamos un folleto a:

- ¿Un hombre de 33 años y estrato 5?
- ¿Una mujer de 42 años y estrato 3?
- ¿Una mujer de 28 años y estrato 3?

Género	Edad	Estrato	CLASE
Hombre	52	4	COMPRA
Mujer	28	3	No compra
Hombre	33	5	No compra
Mujer	26	5	COMPRA
Mujer	35	4	No compra
Hombre	51	3	COMPRA
Mujer	28	3	COMPRA

CLASIFICACIÓN

- Encontrar modelos que describan clases para futuras predicciones:
 - KNN
 - Árboles de decisión
 - Regresión logística
 - Redes neuronales
 - . . .
- Valores discretos de la variable objetivo (categóricos)
- Incluye modelos que no solo clasifican sino que estiman las probabilidades de cada clase

http://www.jacmp.org/index.php/jacmp/article/view/5187/html_374

CLASIFICACIÓN

- Baseline: (modelo nulo) medida de evaluación dada por un clasificador que escoge siempre la clase mayoritaria.
- Modelo de Bayes: (modelo saturado) el mejor modelo posible con los datos disponibles (modelo generador de los datos). Límite superior de comparación. En general no se conoce.

¿REGRESIÓN LINEAL PARA CLASIFICACIÓN?

Ejemplo: tenemos los datos que relacionan la cantidad de grasas consumidas y el peso de las personas → Regresión

- Si un doctor estima que mas de 95kg implica riesgo de diabetes, el problema se convierte en uno de clasificación: 0=a salvo, 1=en peligro
- Una regresión lineal podría ayudar a estimar el límite sobre el cual se estaría en peligro de diabetes
- No se puede interpretar estas predicciones como probabilidades (valores no están en [0;1])
- Poco robusto.

- Algoritmo de clasificación, no de regresión
- Parte de la idea de la regresión lineal, cuyo resultado es modificado para poder obtener una salida **binaria**: sólo permite distinguir entre 2 clases.
 - Churn vs. Stay
 - Compra vs. No compra
 - Cliente valioso vs. Cliente no valioso
- Se agrega una transformación del resultado de la regresión lineal a partir de una función de distribución acumulativa logística, también conocida como función logit o sigmoide.

$$f(\mathbf{z}) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

• El modelo pasa de:

$$h_{\Theta}(X) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

$$h_{\Theta}(X) = \mathbf{f}(\mathbf{z}) = \mathbf{\sigma}(\theta_0 + \theta_1 x_1 + \dots + \theta_n x_n),$$

$$\text{con } \max(f(\mathbf{z})) = 1 \quad \text{y} \quad \min(f(\mathbf{z})) = 0$$

- $\sigma(z)$ es la función sigmoide o logística
- Se pueden interpretar los valores de $\sigma(z)$ como **probabilidades** de que una instancia con atributos X pertenezca a la clase Y=1:

$$P(Y = 1 | x_1, ..., x_n) = p_1(X) = \sigma(\theta_0 + \theta_1 x_1 + ... + \theta_n x_n)$$

- Comportamiento:
 - Si y=1, queremos que $p_1(X) \approx 1$, luego $\boldsymbol{\Theta}^T X \gg \mathbf{0}$
 - Si y=0, queremos que $p_1(X) \approx \mathbf{0}$, luego $\boldsymbol{\Theta}^T X \ll \mathbf{0}$
- Predicción: se establece un valor de umbral, por ejemplo 0.5
 - Predecir clase $1 \text{ si } p_1(X) \ge 0.5$, cuando $\boldsymbol{\Theta}^T X \ge 0$
 - Predecir clase 0 de otra manera
- Se puede establecer un umbral diferente si se quiere ser mas o menos robusto en la clasificación

$$p_1(X) = \frac{1}{1 + e^{-\boldsymbol{\Theta}^T X}}$$

- Coeficientes θ_i :
 - $\bullet \log\left(\frac{p_1(X)}{1-p_1(X)}\right) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$
 - Relación lineal entre los coeficientes y el logaritmo de la razón de probabilidades (odds ratio)
 - Un crecimiento de una unidad de x_1 indica que el log de la razón de probabilidades va a crecer θ_1 unidades.
 - El signo indica la dirección de la influencia.
 - Difícil de interpretar logs, se exponencian los coeficientes $\exp(\theta_i)$, por l'unidad de $\exp(\theta_i)$, los odds de y=l aumentan $\exp(\theta_i)$ veces; por l'unidades de $\exp(\theta_i)$, los odds de y=l aumentan $\exp(\theta_i)^{10}$ veces.
 - Análisis de sensibilidad de p(y=1) con respecto a una variable, fijando las otras en sus valores promedios.
 - Prueba de hipótesis para evaluar la **significancia** de cada coeficiente (diferencia de 0).

- Razón de probabilidades
 - A probabilidades altas, razón alta y viceversa

$p_1(X)$	odds
1,0	+Inf
0,99	99
0,75	3
0,5	1
0,25	0,33
0	0

• El algoritmo de regresión logística determina una frontera de decisión lineal

$$h_{\Theta}(X) = f(-3 + x_1 + x_2)$$

Predecir la clase roja de cruz cuando:

- $h_{\Theta}(X)$ ≥ 0.5
- $f(-3 + x_1 + x_2) \ge 0.5$

• Para fronteras de decisión no lineales: usar polinomios de un mayor orden

$$h_{\Theta}(X) = f(-1 + x_1^2 + x_2^2)$$

Predecir la clase roja de cruz cuando:

- $h_{\Theta}(X) \ge 0.5$
- $f(-1 + x_1^2 + x_2^2) \ge 0.5$

¿Qué se puede hacer si se tienen más de 2 clases?

- Para problemas de clasificación con más de 2 clases, es necesario utilizar una aproximación de 1 vs. todos
- Un clasificador por regresión logística es necesario para cada clase
- Para una nueva instancia, la clase con la mayor probabilidad en su propio modelo es predicha

→ También se puede hacer regresión logística multinomial con la función softmax

Confounding

- Problema que ocurre cuando un modelo de regresión no considera variables independientes relevantes (confounding variables)
- Posibles efectos en la relación entre variables independientes y dependiente:
 - Sobrestimar / Subestimar la fortaleza de una relación
 - Cambiar la dirección de una relación
 - Esconder un efecto que en realidad existe

Causas

- La variable no incluida debe estar correlacionada con la variable dependiente
- La variable no incluida debe estar correlacionada con al menos una variables independiente del modelo

- Consideraciones
 - Produce estimación de probabilidades
 - No hay parámetros a afinar, solo las variables independientes a considerar.
 - Permite variables independientes numéricas y categóricas
 - Estimación de parámetros eficiente computacionalmente
 - No se ve afectado por situaciones de multicolinealidad leves. Casos importantes se pueden resolver con una regularización L2.
 - Se puede utilizar descenso de gradiente para encontrar los parámetros (mismas ecuaciones de actualización de parámetros que para regresión lineal, cambiando la función de predicción)
 - No es ideal en casos de muchas variables categóricas
 - No es muy flexible (lineal) aunque se puede extender polinómicamente.

OTROS MODELOS PARA CLASIFICACIÓN, BASADOS EN LA IDEA DE REGRESIÓN

- Multinomial logistic regression: regresión con mas de 2 categorías (mlogit() de mlogit)
- Robust logistic regression: a prueba de outliers y observaciones influenciadoras (glmRob() de robust)
- Ordinal logistic regression: categorías ordenadas (lrm() de rms)
- Generalized lineal models (glm() de stats): relaja la normalidad de los residuos generalizando de la familia lineal a la familia exponencial de modelos, permite varios tipos de regresiones (lineal, binomial, poisson, gamma, ..)
- Generalized additive models (GAMs) y vector GAMs:
 - Generalización de los modelos lineales que permite remplazar los predictores por funciones suavizadas no lineales de los mismos (splines, polinomios, funciones de saltos)
 - La forma de las funciones no lineales no se especifica, es determinada por los datos
 - Gran capacidad predictiva y de interpolación, resistente al overfitting
 - gam() de gam

CLASIFICACIÓN: REGRESIÓN LOGÍSTICA

- 03-LogReg-Ejemplo
 - Cuaderno de regresión logística desde cero
 - Uso del método LogisticRegression de sklearn
 - Uso del paquete statsmodels para calcular los coeficientes y la significancia de las variables predictoras.

CLASIFICACIÓN: REGRESIÓN LOGÍSTICA

 Desarrollar la parte de regresión logística, que se encuentra especificada en el documento 03-SAHeartDisease-LogReg+KNN.html

KNN: K-NEAREST NEIGHBORS

OBJETIVOS DE APRENDIZAJE

- Identificar problemáticas que se puedan resolver a partir de modelos de aprendizaje supervisado, ya sea de clasificación o de regresión.
- Aplicar modelos de K-NN y de regresión logística a conjuntos de datos, para responder a preguntas de negocio involucrando modelos de aprendizaje supervisado utilizando el lenguaje python.
- Comparar modelos de aprendizaje supervisado con respecto a métricas de ajuste, utilizando diferentes protocolos de evaluación

KNN (K NEAREST NEIGHBORS): K VECINOS MÁS CERCANOS

- Algoritmo de aprendizaje supervisado para clasificación y regresión
- Simple: asignar la clase o valor agregado de las instancias conocidas que se encuentran mas cerca de la instancia a predecir
- Basado en las instancias de aprendizaje, no en un modelo subyacente probabilístico/estadístico
- Aprendizaje **perezoso**: en realidad el algoritmo solo se ejecuta en el momento que se requiere predecir una nueva instancia a partir de una predicción local
- Depende de la definición de una función de distancia, que se escogerá según la cantidad y características de las variables independientes

KNN — DISTANCIAS

- Ejemplos de medidas de similitud o distancia utilizadas para encontrar los vecinos mas cercanos:
 - Euclidiana: tamaño del segmento linear que une las dos instancias comparadas.

$$egin{split} \mathrm{d}(\mathbf{p},\mathbf{q}) &= \mathrm{d}(\mathbf{q},\mathbf{p}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \dots + (q_n-p_n)^2} \ &= \sqrt{\sum_{i=1}^n (q_i-p_i)^2}. \end{split}$$

- Manhattan: basada en una organización
 - en bloques rectilíneos

 Coseno: coseno del ángulo entre las dos instancias comparadas → Alta dimensionalidad y big data

$$sim(x, y) = cos(\theta_{x,y}) = \frac{x. y}{\|x\| \|y\|} = \frac{\sum_{i} x_{i} * y_{i}}{\sqrt{(\sum_{i} x_{i} * x_{i}) * \sum_{i} y_{i} * y_{i}}}$$

• Parámetro K: número de vecinos mas cercanos a considerar para establecer la clase o valor de una nueva instancia KNN: K=10

Parámetro K

- El resultado puede ser drásticamente diferente para diferentes valores de K
- Un valor de K grande suavizará los límites entre clases/valores (alto sesgo, baja varianza)
- Un valor de K pequeño resultará en límites muy flexibles (bajo sesgo, alta varianza)
- El valor de K óptimo se encuentra empíricamente

KNN: K=100

James et al, ISLR, 2013

- K controla el overfitting (sobre aprendizaje) y el underfitting (sub aprendizaje
- Modelos mas sencillos (K mas grandes) previenen el overfitting, pero pueden por el contrario irse hacia el underfitting
- Modelos mas complejos (K mas pequeños) previenen el underfitting, pero pueden por el contrario irse hacia el overfitting
- El K ideal que sirva para todos los casos no existe, depende de cada dataset específico

En el caso de la utilización de KNN para la regresión las mismas consideraciones aplican

- En el panel izquierdo: se aplica KNN con un valor de K=1 (azul) y K=9 (rojo)
- En el panel derecho, se puede ver el valor de RMSE para diferentes valores de K (en verde). También se puede ver, por comparación el nivel de error de la regresión lineal simple (punteada en negro)

KNN - MALDICIÓN DE LA DIMENSIONALIDAD

KNN - MALDICIÓN DE LA DIMENSIONALIDAD

- KNN puede llegar a ser un muy buen estimador cuando se considera un pequeño número P de variables predictivas ($P \le 4$, con un buen número de ejemplos).
- KNN puede ser inútil cuando P es grande: todo está mucho mas lejos cuando se consideran altas dimensiones

Ejemplo: considerar el 10% de los vecinos más cercanos.

En altas dimensiones esos puntos no necesariamente son locales

KNN: CARACTERÍSTICAS

- Perezoso (lazy learning), no paramétrico y no lineal
- Método local:
 - Puede encontrar particularidades muy específicas a ciertas regiones
 - Su uso (sobre todo en regresión) sólo permite estimaciones en los rangos de las variables del set de aprendizaje (extrapolación no tiene mucho sentido)
- Maldición de la dimensionalidad: no utilizar cuando el número de atributos es grande
- Al basarse en la distancia, es muy sensible a la unidad de medida de los atributos, y a atributos que no aportan poder predictivo (e.g. el color de los ojos no debería considerarse para predecir la edad de una persona)
- No sabe que hacer con los missing values, ni con variables categóricas (extensión → KnnCat)
- Complejidad temporal cuando hay muchos registros (extensión → CNN)

CLASIFICACIÓN: KNN

- 03-KNN-Ejemplo
 - Algoritmo k-nn desde cero
 - Uso del método neighbors.KNeighborsClassifier de sklearn

CLASIFICACIÓN: KNN

 Continuar con la parte de k-nn en el cuaderno 03-SAHeartDisease-LogReg+KNN.html

£ 16000

12000

MÉTRICAS DE EVALUACIÓN

- Necesidad de evaluar la calidad de los modelos de aprendizaje automático
- Diferentes criterios a tener en cuenta:
 - Correctitud de la predicción
 - Simplicidad (parsimonia)
 - Interpretabilidad
 - Tiempo de aprendizaje o de predicción
 - Escalabilidad (importante para Big Data)

- Una matriz de confusión evalua diferentes métricas de correctitud, que permiten establecer objetivos de negocio
- Se utilizan dos calificadores para describir cada una de sus casillas:
 - Un calificador de la correctitud de la predicción con respecto a la realidad: Verdadero o Falso
 - Un calificador del tipo de la predicción: Positivo o Negativo, con respecto a cada clase de interés (i.e churn)
- Dependiendo del contexto los tipos de error pueden ser mas costosos que otros

			Predicción		
_			Churn P	No churn	
	Realidad	Churn ⁺	VP	FN - Tipo II	
		No churn	FP - Tipo I	VN	

- La diagonal (en verde) muestra las instancias correctamente clasificadas. Las demás casillas resume diferentes tipos de error:
 - Tipo I: Falsos positivos
 - Tipo II: Falsos negativos

¿Qué pasa cuando hay mas de dos clases?

 Interpretarían el caso de la detección de un email spam

TP, TN:

FP: , consecuencia:

FN: , consecuencia:

 Interpretar el caso del diagnóstico de una enfermedad grave?

TP, TN:

FP: , consecuencia:

FN: , consecuencia:

		Predicción		
		Churn P	No churn	
Realidad	Churn ⁺	VP	FN - Tipo II	
Nealluau	No churn	FP - Tipo I	VN	

 Interpretar el caso de la prospección de clientes de un crédito de consumo (baja aceptación)

TP, TN:

FP: , consecuencia:

FN: , consecuencia:

- Tasa de correctitud (categorization accuracy) = (VP+VN)/(VP+VN+FP+FN)
- Error de mala clasificación (opposite of accuracy) = (FP+FN)/(VP+VN+FP+FN): probabilidad de error
- Precisión= VP / (VP+FP): valor de predicción positiva, P(Real+ | Predicho+)
- Recall (o TPR o sensibilidad)= VP / (VP+FN): qué proporción de todos los positivos reales pude identificar como tal, P(Predicho+|Real+)
- Especificidad (o TNR) = VN / (VN+FP): qué proporción de todos los negativos reales pude identificar como tal, P(Predicho-|Real-)
- Tasa de falsos positivos (o FPR) = FP / (VN+FP)

Medida-F (F-Score): Promedio armónico entre precisión y recall

2* (Precisión*Recall) / (Precisión+Recall)

Imaginemos el problema de detección de spam mail e interpretemos cada métrica

Imaginemos el problema de diagnóstico de cáncer e interpretemos cada métrica

¿Cuál es la relación entre especificidad y FPR? ¿Cómo son la especificidad y sensibilidad del baseline?

- Coeficiente de concordancia Kappa
 - Para datos nominales u ordinales
 - Concordancia entre las predicciones y las clases reales
 - Sustrae el efecto de concordancia por suerte (AC) del valor del accuracy (concordancia observada - OA)
 - Valores van de 0 a 1
 - Muy útil sobretodo cuando las clases no están balanceadas
 - Diagnóstico de enfermedades raras
 - Clientes que acepten productos de crédito)

• Kappa =
$$\frac{OA - AC}{1 - AC}$$

Baseline 1-(AC)

- Coeficiente de concordancia Kappa
 - Para datos nominales u ordinales
 - Concordancia entre las predicciones y las clases reales
 - Sustrae el efecto de concordancia por suerte (AC) del valor del accuracy (concordancia observada - OA)
 - Valores van de 0 a 1
 - Muy útil sobretodo cuando las clases no están balanceadas
 - Diagnóstico de enfermedades raras
 - Clientes que acepten productos de crédito)

25 A 25 A 2							
VI		+	-	TOTAL	OA	=	0,63
reales	+	10	4	14	AC	=	0,59
reales	-	3	2	5	Карр	a =	0,11
	TOTAL	13	6	19			

Accuracy (OA) = (10+2)/19=0.63(AC) = (13/19 * 14/19) + (6/19 * 5/19) = 0.59Kappa = (OA-AC)/(1-AC) = 0.11

		Predic	Predicciones		_		
		+	-	TOTAL	OA	=	0,97
rooloo	+	0	3	3	AC	=	0,97
reales	-	0	97	97	Карр	a =	0,00
	TOTAL	0	100	100			

Accuracy (OA) = (0+97)/100=0.97(AC) = (0/100 * 3/100) + (100/100 * 97/100) = 0.97Kappa = (OA-AC)/(1-AC) = 0

		Predicciones					
		+	-	TOTAL	OA	=	0,69
roolos	+	1475	988	2463	AC	=	0,50
reales	-	556	1981	2537	Карр	a =	0,38
	TOTAL	2031	2969	5000			

MÉTRICAS DE CLASIFICACIÓN TALLER: CÁLCULO DE MÉTRICAS

Los clientes son usualmente categorizados en perfiles de comportamiento de compra de productos o servicios.

Suponga que se creó un modelo para clasificar los clientes en una de 4 clases posibles (esporádico, fiel, parcial y promocional), cuya matriz de confusión presentamos a continuación:

	PREDICCIÓN					
REALIDAD	Esporádico Fiel Parcial Promocion				Total	
Esporádico	61	8	1	0	70	
Fiel	0	56	17	0	73	
Parcial	0	0	15	0	15	
Promocional	0	0	0	24	24	
Total	61	64	33	24	182	

En grupos de tres personas calcule las métricas de evaluación de un modelo de clasificación cuyos resultados están reflejados en la tabla siguiente (ver PDF)

TALLER DE CLASIFICACIÓN: CÁLCULO DE MÉTRICAS

- Trabajar en grupo sobre la tarea para posterior socialización.
- Indicar los integrantes de cada grupo.
- Socialización del taller.

MÉTRICAS DE CLASIFICACIÓN (ROC AUC, LOG-LIKELIHOOD, DEVIANCE, AIC, ENTROPÍA, BIC)

Evaluación de modelos probabilísticos de clasificación:

- Métricas que permiten comparar modelos con resultados probabilísticos como regresión logística, Naïve Bayes, árboles de decisión, KNN, etc., sobre el mismo dataset
- No deben ser la base para establecer metas de negocio
- Insensibles a diferentes costos del error de las diferentes clases
- Utilidad de los gráficos de densidad de probabilidad para entender los efectos de las variables predictivas

- ROC AUC (Area under the Curve)
 - Receiver Operating Curve: Curva de la tasa de los verdaderos positivos (recall o sensibilidad) contra los falsos positivos (1-especificidad)
 - Clasificadores binarios
 - Se hace variar el umbral de definición de predicción positiva y negativa
 - Permite establecer con los clientes posibles compromisos entre los dos tipos de errores

Wikipedia.org

Log-Likelihood (log-verosimilitud)

- Si el modelo explica los datos, las predicciones del modelo deben ser verosímiles (plausibles)
- Logaritmo del producto de las **probabilidades predichas** de las **categorías reales**, por un modelo con unos parámetros Θ dados
- Siempre negativa, entre mas cercana a 0 mejor
- Ejemplo:
 - Tenemos 5 clientes cuyas predicciones de un modelo son "correctas".
 - 2 clientes compran y el modelo les otorga las probabilidades $P(Compra = Si|\Theta)$ de 0,8 y 0,9 (resp.)
 - 3 clientes no compran y el modelo les otorga probabilidades $P(Compra = Si|\Theta)$ de 0,2, 0,3 y 0,9(resp.)
 - ¿Cuál es el log-likelihood de este modelo con ese set de datos?

 $Log\mathcal{L}(\Theta|Compra) = \ln(\prod_{i=1}^{5} P(categoriaCompraReal(i)|\Theta))$

$$= \ln(0.8 * 0.9 * 0.8 * 0.7 * 0.1) = \ln(0.8) + \ln(0.9) + \ln(0.8) + \ln(0.7) + \ln(0.1) = \sum_{i=1}^{5} \ln(P(i|\Theta))$$

$$= -3.093$$

Deviance ("desvío")

• Medida de ajuste de modelos de probabilidad basada en el **log-likelihood** $D = -2 * (Log \mathcal{L}(\Theta|Y) - S)$

- Supone conocer una constante **S** que representa el log-likelihood del **modelo** saturado, pero como nos interesan las diferencias entre modelos, se cancelan
- Si suponemos un valor de S=0, el deviance se puede considerar como una versión análoga inversa del R² para clasificación con probabilidades, ya que representa cuanta variación falta por explicar.
- Un menor valor indica un mejor ajuste

AIC (Akaike Information Criteria)

- Mide la cantidad de información relativa que se pierde al usar un modelo como estimador en vez del modelo saturado, por lo que sirve para comparar y seleccionar modelos estadísticos (también aplica para regresión).
- No mide la calidad del modelo en sí, el AIC no permite establecer si los modelos comparados son buenos o malos.
- Es una variante del deviance que incluye una penalización con respecto al número de parámetros con propósitos de regularización de la complejidad del modelo.

$$AIC = -2 * (Log\mathcal{L}(\Theta|Y)) + 2 * numParams(\Theta)$$

- Entre más datos se tengan, mejor será el desempeño de esta métrica. Para pequeños datasets existe una variante (AICc)
- Un menor valor indica un mejor ajuste (se pierde menos información). Pueden haber valores negativos.

BIC (Bayesian Information Criteria)

• Medida análoga al AIC, con una penalización diferente de la complejidad del modelo (también aplica para regresión).

$$BIC = -2 * (Log \mathcal{L}(\Theta|Y)) + \ln(n) * numParams(\Theta)$$

con n siendo el número de registros

Un menor valor indica un mejor ajuste. Pueden haber valores negativos.

REFERENCIAS

- Introduction to Statistical Learning with Applications in R (ISLR), G. James, D. Witten, T. Hastie & R. Tibshirani, 2014
- Practical Data Science with R, Nina Zumel & John Mount, Manning, 2014
- Data Mining (4th Edition), Ian Witten, Eibe Frank, Mark A. Hall & Christopher
 J. Pal, Elsevier, 2016
- Machine Learning, Tom M. Mitchell, McGraw-Hill, 1997
- Data Science for Business, Foster Provost & Tom Fawcett, O'Reilly, 2013
- False positives, false negatives and confusion matrices, Carlos Guestrin, 2017
- http://www.cs.waikato.ac.nz/ml/weka/mooc/dataminingwithweka/

