

where, C= Specific heat capacity for the process

Adiabatic process $\Rightarrow \triangle Q=0$ [No heat transfer] At constant volume \implies $Q_v = \Delta U = nC_v \Delta T$

At constant pressure \Rightarrow $Q_n = \triangle U + W = nC_p \triangle T$

Work done from P-V Graph

Isobaric process

Isochoric process

Expansion

Area under P-V diagram gives work done by the gas

 $W=P(V_2-V_1)$

 $W=P\triangle V=0$

Isobaric

-Isothermal

Adiabatic

Isochoric

Compression $W_{adiabatic} > W_{isothermal} > W_{isobaric} > W_{isochoric}$

Cyclic process

- W=are inside the graph
- For clockwise process, W=-ve For anti-clockwise process, W=+ve

Thermodynamic processes

Adiabatic process

- Q=0 [no exchange of heat]
- Rapid or spontaneous process/insulated vessel

 $Q = \Delta U + W$

Compression

W = - ve ∆U = + ve

△U1=>Temperature1 ⇒ Pressure[†]

Expansion

W=-ve ∆U=+ve

∆U↓=>Temperature↓ ⇒Pressure_

Equation of state PV^{γ} = constant $TV^{\gamma-1}$ = constant

 $PT^{\left[\frac{\gamma-1}{\gamma}\right]}$ = constant

Work done by the gas

 $W = -\Delta U = nC_v(T_1 - T_2)$ $=n\frac{f}{2}R(T_i-T_f)$

 $W = \frac{nR}{\gamma - 1} (T_i - T_f)$

Slope of adiabatic process = $\gamma \times$ slope of isothermal process specific heat of gas $\implies C=0$

 $C=\frac{Q}{\Lambda+} \rightarrow Q=0$

•» **02**

Isothermal process

⇒∆T=0 ⇒∆U=0 eg: - perfectly conducting slow process

> $Q = \Delta U + W$ Q=W

equation of states > PV=Constant Workdone by the gas W=2.303 nRT $\log \left(\frac{V_2}{V}\right)$

W=2.303 nRT $log(\frac{P_1}{P_2})$

Slope of adiabatic process = $\gamma \times$ slope of isothermal process specific heat $C=\infty$

03 (%-

Isobaric process

 $\triangle P = 0$

 $Q = \Delta U + W$

equation of state $\Rightarrow V \propto T$

Work done by the gas $W=P\triangle V=P(V_2-V_1)=nR(T_2-T_1)$ specific heat

 $\Rightarrow C_p = \left(1 + \frac{f}{2}\right) R$

Isochoric process

 $\Delta V=0$ or V=constantequation of state $\Rightarrow P \propto T \Rightarrow \frac{P_1}{P_2} = \frac{T_1}{T_2}$ Work done by the gas

 $\Delta V=0 \Rightarrow W=0$ specific heat

$$\Rightarrow C_{V} = \frac{f}{2}R$$
$$= \frac{R}{\gamma - 1}$$

Heat Engine

'Device that converts heat into work'

(surrounding) Low temp

efficiency(1)

 η_{max} => When Q_2 =0 or T_2 =0K (not possible)

Carnot Engine

Refrigerator and heat pump

Relationship between

$$\beta = \frac{1 - \eta}{\eta}$$

$$(COP)_{heat\ pump} = 1 + (COP)_{refrigerator}$$

Cascaded engine

THERMODYNAMICS