

Problem Statement

Isola's current copper foil roll changeover solution is largely a manual process and takes 2 min which is far longer than it should, decreasing their ability to fill out next-day Printed Circuit Board (PCB) orders. Along with that it currently can only hold 2 rolls, because of this it has become a bottleneck in the PCB material production line.

Concept: Dual Head Lifter

The automated hoist system features two independently driven cranes designed to efficiently replace copper rolls. The system utilizes two lifters, each capable of holding a roll, for quicker and smoother roll changes. With the ability to pick up and deposit rolls without damaging the copper, the machine reduces stress on the operator, making it a highly effective and reliable solution for automated or semi-automated roll replacement.

Pros	Cons
 Holds 2 rolls Can be attached to existing gantry Allows rolls to be picked up and dropped simultaneously, speeding up changeover time All loads are vertical 	 May not fit on the existing gantry Requires a second drive system May be expensive

Full Assembly

CAD Model of Z-Axis

- System uses a ball screw driven by a Mitsubishi servo motor
- Uses four 30mm hollow stainless steel linear shafts to connect to the Y-axis
- Frame is made of welded 10mm stainless steel plate. Laser cut with machined straight grooves for alignment.

CAD Model of Y-Axis

- System uses a rack and pinion along with linear rails to move the end effector
- The Y axis is moved up and down by the Z axis design
- Weight: ~230 lbs
- Whole design is made out of stainless steel

CAD Model of Y-Axis

Closer look at the linear rails

pinion

CAD Model of X-Axis

CAD Model of X-Axis

CAD Model of X-Axis

Electrical schematic

Control flow schematic

Control flow example

	Crane 1	Crane 2
1	Move from home to pallet position 1	Move from home to staged position 2
2	Open crane 1 jaws	Open crane 2 jaws
3	Lower crane 1 over pallet roll 1	Lower crane 2 over staged roll 2
4	Confirm alignment and close jaws	Confirm alignment and close jaws
5	Lift pallet roll 1	Lift staged roll 2
6	Move from pallet position 1 to staged position 2	Move from staged position 2 to far home position
7	Lower pallet roll 1 and place in staging chuck 2	Wait for crane 1 step 7 to complete
8	Lift empty crane 1 head	Wait for crane 1 step 8 to complete
9	Move to near home position	Move to empty pallet roll 1 position.
10	Wait at near home position	Lower staged roll 2 and place in empty pallet roll 1 position
11	Wait at near home position	Lift empty crane 2 head
12	Wait at near home position	Move to near home position

Success Criteria that were tested

Changeover Time

- 1. Generate simplified CAD design
- Create analytical model of system in MATLAB
- Simulate a set of roll changeover scenarios with Simulink
- 4. Determine the changeover time with the CAD specifications
- 5. Evaluate results, determine if success criteria are met, and decide how to iterate on initial design

Weight Capacity

- Isolate the affected parts of assembly
- 2. Run static FEA
 - a. Define Fixture and load locations
- If passed, run dynamic FEA
- 4. Evaluate results
 - a. Determine if success criteria are met
 - b. Decide how to iterate on initial design

Timing analysis results - Simulation in Simulink

- 1: Move Z Axis Down no roll14 in (0.3556m) -
- 2: Move Y Axis in -
- 3: Move Z Axis Up with roll 14in (0.3556m) -
- 4: Move X Axis 3.7m -
- 5: Move Z Axis down with roll -
- 6: Move Y Axis out -
- 7: Move Z Axis up no roll -

Time

- 1: 1.5 s
- 2: 2 s
- 3: 5 s
- 4: 20 s
- 5: 4.5 s
- 6: 2 s
- 7: 1.5 s

Total = 36 s

Z-axis Weight Capacity Analysis - Solidworks

Simulations

FOS of .76 with 1300 lbf

1000lbs for copper roll

o 300lbs for y-axis

- CAD software
 - Fusion 360
- Stress Report
 - O https://docs.google.com/document/d/1KZtlbDu P4CQBt1wj39I0JRIAjMUCrfVk/edit?usp=sharin g&ouid=117687347861756154722&rtpof=true &sd=true

Y-axis Weight Capacity Analysis - Solidworks Simulations

- FOS of 1.7 with
 1000 lbf
- CAD software
 - Solidworks
- Stress Report
 - https://docs.google.com/document/d/1j
 Z49amwHMNin8M4D6h1QPXJ2rFmE6
 KR2/edit?usp=sharing&ouid=11768734
 7861756154722&rtpof=true&sd=true

Model name: 100_Y-AXIS-ASSEMBLY Study name: Static 1(-Default-) Plot type: Factor of Safety Factor of Safety1 Criterion: Automatic Factor of safety distribution: Min FOS = 1.7

CAD Model of End Effector

- 1000 lbf downwards on where the copper roll would be place
- Safety factor of 1.2
 - Can hold max of 1200 lbf.

CAD Model of End Effector

- 626 N + 100 N applied sideways to simulate fast acceleration
- Safety factor of 1.3
 - Can withstand acceleration up to 943 N

Engineering Standards

- Device should follow the following OSHA standards: 1910, 1926, 1809
- Device should follow Class 6 clean room standards
- Device should interface with Mitsubishi PLC control systems by following IEC 61131-3
- Device should be built using ISO 724 Metric threaded hardware.

Project Success Criteria

Criterion (Requirement)	Threshold (Halt & Review)	Team's concept	POR Risk (H, M, L)	Comments
Number of rolls staged on machine	4	5	L	The dual hoist system adds extra roll space
Changeover time	40 sec	36 sec (worse case scenario)	М	Even at worst case scenario team is able to keep the change over time under 40 sec.
Per roll weight capacity	500 lb	750 lbs	L	Controllable by design
Clean room standard	Class 6	Class 6	L	The components used in the design rated to maintain air cleanliness levels of a maximum of 1,000 particles per cubic meter

Video demonstration of Project

BOM

X axis (horizontal)				
x drive motor	HK-RT2034WBJ	Mitsubishi		<u>Link</u>
x drive motor driver	MR-J5-200G4	Mitsubishi		
x drive main pulley	8MX-60S-62	Gates Corp	\$ 500.00	Link
x drive main pulley bushing	3020 24MM 7859-6524	Gates Corp	\$ 50.50	<u>Link</u>
x drive Idler pulley bushing	Gates 3020 25MM Bushing	Gates Corp		Link
x drive Idler pulley tensioner	TUUFLN25	Misumi	\$ 100.00	<u>Link</u>
x drive motor pulley	8MX-30S-21	Gates Corp	\$ 200.00	Link
x drive motor pulley bushing	1108/19mm 7858-0119	Gates Corp	\$ 30.00	Link
x drive drive pulley	8MX-60S-21	Gates Corp	\$ 200.00	Link
x drive drive pulley bushing	2012 24MM 7858-2524	Gates Corp	\$ 30.00	<u>Link</u>
x axis pillow block bearing	Ultra Class Series UCP - Pillow Block - Wide Inner Ring, Set Screw (UCP-7/8)	Misumi	\$ 80.00	<u>Link</u>
x drive belt	LL8MGT-036 (inquire abt 62)	Gates Corp	\$ 100.00	Link
x reducer belt	8MGT-1120 P.L. 44.09 140 Teeth	Gates Corp	\$ 100.00	Link
x axis linear rail	HGW35CA2R3700ZBCII	HIWIN	-	Link
x optical limit switches	PR-F51CP	Keyence	\$ 150.00	<u>Link</u>

BOM

Z axis (lift)				
z drive motor	HK-RT2034W	Mitsubishi	\$ 2,000.00	Link
z ball screw	RBS-R40-10T4-FSI-600-822-0.05-M	Hiwin	-	Link
z linear shaft	SSPJ30-1000	Misumi	\$ 894.80	Link
z linear shaft bearings	LMK30MUU	Misumi	\$ 227.00	Link
z linear shaft mounts	SSTHWS30b	Misumi	\$ 150.00	Link
z drive coupling	SCXW55-19-25	Misumi	\$ 50.00	Link
z limit switches	PR-M51CP	Keyence	\$ 150.00	Link
z ball screw supports	FK-30B	Hiwin	\$ 300.00	Link
z locating pins	AJPNGB5-P6-B8-G5-RAC	Misumi	\$ 5.48	Link

BOM

Y axis (end effector)			
y actuation motor	86N-DHT-A6MD1	Dynamic Motor Motion	\$ 292.00 <u>Link</u>
y motor driver	DYN4-H01A2-00	Dynamic Motor Motion	\$ 235.00
y Pinion	GEAS1.5-30-15-B-13	Misumi	\$ 45.00 <u>Link</u>
y Rack	RGEAS1.5-300-Z	Misumi	\$ 186.00 <u>Link</u>
y linear rail	SSE2BWML16G-669	Misumi	\$ 543.00 <u>Link</u>
y through beam	PR-G51CP	Keyence	\$ 150.00 Link
y limit switches	KSK6-AP-4H	Automation Direct	\$ 35.00 Link
y limit switch bracket	ST18C7W	Automation Direct	\$ 7.25 Link
Total			\$6,779

Management: Risks

Risk Number	Triggered (Y/N)	Description of Risk	Owner/ Responsible	Туре	Severity (H/M/L)	Mitigation Strategy	Actions to Mitigate
R2		Our industrial partner may not be able to meet on a regular schedule since he is the Plant Engineering Manager	Team	Commun ication	М		We will talk to our industry partner about meeting at different times

R3	N	The team may not be able to properly model the full-scale system with a smaller scale prototype, leading to uncertainties in the design.	Team	Technical	L	Address	We will ask for assistance from our IP or from our mentors
R4	N	The team cannot test if the solution will have a 20 year lifespan, only make estimates and design in safety factors, so it is possible that the final solution may not last that long.	Team	Technical	M	Address	We will ask for assistance from our IP or from our mentors
R5	N	The Return on Investment (ROI) of the project may not be under 2 years if the final solution is too expensive	Team	Financial	Н	Address	We will talk to the IP and see if there is anything we can do

Evaluation of Planned vs Actual schedule

- The only time we fell behind schedule was completing the BOM
 - This happened because we had to change parts out a few times (mainly the Y axis motor and sensors)
- Overall we met our schedule for every big milestone

Color Key				
Completed on/before time				
Was late less than one week				
Was late more than one week				

Milestone	Due Date
Design Review	Oct 31st
Preliminary Prototype Plan	Nov 2nd
Sourcing Parts both electrical and mechanical	Feb 5th
Initial Prototype Complete (CAD model and Analysis) & Design Review	Jan 23st
Second Design Review	Mar 5th
Final project delivery date	Apr 28th

Conclusion

- Our team fully designed a twin hoist system to accelerate the copper roll changeover process
- Our team hit all of our success criteria and deliverable

Suggestions for future work

- The control of the axis (the PID's) can be further optimized using Mitsubishi's built in PID tuning.
 - This could further improve the timing of the system
- Modify model to increase the FOS of the Z-axis to at least 1
 - May have to modify the bracket
- We made the assumption that the X-axis rails could hold the weight of the hoists (as we do not know the inside structure of the rails)
 - New rails may have to be made to support the new weight

Questions?