DIGITAL ELECTRONICS LAB EXPERIMENT – 2

PULKIT PANDEY 2K19/EP/076

AIM: To verify the truth table of half adder and full adder.

THEORY:

HALF ADDER: A half adder is an MSI circuit that adds two binary digits, giving a SUM bit and a CARRY bit as in the logic truth table. If A and B are the two input bits then SUM is the XOR of A & B:

$$Sum = AB' + A'B$$

Similarly CARRY is the AND of A & B:

Circuit Diagram: Half Adder

INPUTS		OUTPUTS		
Α	В	SUM	CARRY	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Truth Table: Half Adder

K-map for Carry K-map for Sum

K-MAPS for half adder.

SIMULATION

FULL ADDER: A full adder is an MSI circuit that adds two input bits and carry from the previous stage and outputs a SUM bit and a CARRY OUT bit. A and B are the main bits, C is the carry from the previous stage. Sum produced is:

$$Sum = A'B'C+A'BC'+AB'C'+ABC$$

CARRY is the output carry bit and is:

Carry = AB+BC+AC

Circuit Diagram: Full Adder

INPUTS			OUTPUTS	
Α	В	С	SUM	CARRY
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Truth Table: Full Adder

K-MAPS for full adder.

