Aggregative optimization problems: relaxation and numerical resolution

Laurent Pfeiffer

Inria and CentraleSupélec, Université Paris-Saclay

Joint work with Frédéric Bonnans (Inria, L2S), Kang Liu (Polytechnique, L2S), Nadia Oudjane and Cheng Wan (EDF).

SIERRA Seminar Inria Paris November 9, 2022

Introduction

We investigate large scale aggregative optimization problem.

- Approximation by a convex mean-field optimization problem.
- Estimation of the relaxation gap.
- Numerical resolution with the conditional gradient algorithm (also called Frank-Wolfe algorithm).
- Bonnans, Liu, Oudjane, Pfeiffer, Wan. Large-scale nonconvex optimization: randomization, gap estimation, and numerical resolution, *ArXiv preprint*, 2022.

- 1 Problem formulation
- 2 Relaxation and gap estimation
- 3 Resolution
- 4 Example
- 5 Aggregative control problems
- 6 Duality and extensions

Setting

Consider the problem

$$\inf_{\mathbf{x} \in \mathcal{X}} J(\mathbf{x}) = f\left(\underbrace{\frac{1}{N} \sum_{i=1}^{N} g_i(\mathbf{x}_i)}_{\text{aggregate}}\right) + \frac{1}{N} \sum_{i=1}^{N} h_i(\mathbf{x}_i), \tag{P}$$

where
$$x = (x_1, ..., x_N) \in \mathcal{X} = \prod_{i=1}^N \mathcal{X}_i$$
.

Data:

- lacksquare \mathcal{E} , a Hilbert space (the aggregate space)
- lacksquare $g_i \colon \mathcal{X}_i \to \mathcal{E}, \ i = 1, ..., N$
- \bullet $h_i: \mathcal{X}_i \to \mathbb{R}, i = 1, ..., N$
- $f: \mathcal{E} \to \mathbb{R}$.

Interpretation

A multi-agent model:

- *N*: the number of agents
- $lackbox{}{\mathcal{X}_i}$: the decision set of agent i
- $h_i(x_i)$: individual cost function of agent i
- $\mathbf{g}_i(x_i)$: contribution of agent i to a common good
- $\frac{1}{N} \sum_{i=1}^{N} g_i(x_i)$: a common good, referred to as aggregate
- *f*: a social cost associated with the aggregate.

Wang. Vanishing Price of Decentralization in Large Coordinative Nonconvex Optimization, *SIAM J. Optimization*, 2017.

Application

Applications in energy management problems:

- Set of agents: a (large) set of small flexible consumptions units (e.g. batteries, heating devices).
 - Flexible: consumption can be shifted over time.
- Aggregate: the total consumption, at each time step of a given time interval.
- Social cost: penalty function for the difference between total consumption and a reference production level (typically highly variable because of the incorporation of renewable energy sources).
- Séguret et al. Decomposition of high dimensional aggregative stochastic control problems, *ArXiv preprint*, 2021.

Applications

Our problem covers the case **training neural networks with a** single hidden layer.

- Social cost \rightarrow fidelity function.
- Individual cost \rightarrow regulizer.

We use the same kind of relaxation as in:

Chizat, Bach. On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport, *Advances in Neural Information Processing Systems*, 2018.

Assumptions

Assumptions:

- f is convex
- lacktriangledown
 abla f is *D*-Lipschitz continuous
- for all $i=1,\ldots,N$, $\operatorname{diam}(g_i(\mathcal{X}_i))\leq D$.

All constants appearing later on depend on D but not on N. Another "numerical" assumption will be made later.

General difficulties:

- No convexity property of *J*.
- No regularity property for \mathcal{X}_i , g_i , h_i . In general, J is not differentiable.
- Large-scale (when N is large)... but N large actually helps!

- Problem formulation
- 2 Relaxation and gap estimation
- 3 Resolution
- 4 Example
- 5 Aggregative control problems
- 6 Duality and extensions

Relaxation

General idea:

- Variable x_i replaced by a **probability distribution** $\mu_i \in \mathcal{P}(\mathcal{X}_i)$.
- The terms $g_i(x_i)$ and $h_i(x_i)$ are respectively replaced by

$$\mathbb{E}_{\mu_i}[g_i] := \int_{\mathcal{X}_i} g_i(x_i) \, \mathrm{d}\mu_i(x_i), \quad \mathbb{E}_{\mu_i}[h_i] := \int_{\mathcal{X}_i} h_i(x_i) \, \mathrm{d}\mu_i(x_i).$$

The relaxed problem:

$$\inf_{\mu} \ \widetilde{J}(\mu) := f\Big(rac{1}{N}\sum_{i=1}^N \mathbb{E}_{\mu_i}[g_i]\Big) + rac{1}{N}\sum_{i=1}^N \mathbb{E}_{\mu_i}[h_i], \qquad (\widetilde{\mathcal{P}})$$

where
$$\mu = (\mu_1, ..., \mu_N) \in \prod_{i=1}^N \mathcal{P}(\mathcal{X}_i)$$
.

Remark: The cost function \tilde{J} is **convex**.

Theorem

There exists C > 0 (depending on D only) such that

$$\operatorname{Val}(\tilde{\mathcal{P}}) \leq \operatorname{Val}(\mathcal{P}) \leq \operatorname{Val}(\tilde{\mathcal{P}}) + \frac{C}{N}.$$

Proof. Lower bound of $Val(\mathcal{P})$.

Let $x \in \mathcal{X}$. Let $\mu = (\delta_{x_1}, ..., \delta_{x_N})$. Then,

$$\operatorname{Val}(\tilde{\mathcal{P}}) \leq \tilde{J}(\mu) = J(x).$$

Minimizing with respect to x yields the result.

Upper bound of Val(\mathcal{P}). Let $\varepsilon > 0$. Let $\mu \in \prod_{i=1}^{N} \mathcal{P}(\mathcal{X}_i)$ be ε -optimal for the relaxed problem.

Let $X_1,...,X_N$ be N independent random variables such that

$$Law(X_i) = \mu_i, \quad i = 1, ..., N.$$

Then, setting $Y = \frac{1}{N} \sum_{i=1}^{N} g_i(X_i)$,

$$\widetilde{J}(\mu) = f\left(\frac{1}{N}\sum_{i=1}^{N}\mathbb{E}[g_i(X_i)]\right) + \frac{1}{N}\sum_{i=1}^{N}\mathbb{E}[h_i(X_i)],$$

$$= f(\mathbb{E}[Y]) + \frac{1}{N}\sum_{i=1}^{N}\mathbb{E}[h_i(X_i)].$$

Therefore, $\mathbb{E}[J(X)] - \tilde{J}(\mu) = \mathbb{E}[f(Y)] - f(\mathbb{E}[Y])$.

Using the Lipschitz continuity of ∇f , it is easy to show that:

$$\mathbb{E}[f(Y)] - f(\mathbb{E}[Y]) \le \frac{L}{2} \mathbb{E} \Big[\|Y - \mathbb{E}[Y]\|^2 \Big]$$

Since $Y = \frac{1}{N} \sum_{i=1}^{N} g_i(X_i)$ and since the X_i are independent,

$$\|Y - \mathbb{E}[Y]\|^2 = \frac{1}{N^2} \sum_{i=1}^N \mathbb{E}\Big[\|g_i(X_i) - \mathbb{E}[g_i(X_i)]\|^2\Big] \leq \frac{D^2}{N}.$$

It finally follows that

$$\begin{split} \mathsf{Val}(\mathcal{P}) - \mathsf{Val}(\tilde{\mathcal{P}}) &\leq \mathbb{E}[J(X)] - \tilde{J}(\mu) + \varepsilon \\ &\leq \frac{L}{2} \mathbb{E} \Big[\|Y - \mathbb{E}[Y]\|^2 \Big] + \varepsilon \leq \frac{D^2 L}{2N} + \varepsilon. \end{split}$$

Theorem

Assume that $q:=\dim \mathcal{E}+1\leq N$. There exists C>0 (depending on D only) such that

$$\operatorname{Val}(\tilde{\mathcal{P}}) \leq \operatorname{Val}(\mathcal{P}) \leq \operatorname{Val}(\tilde{\mathcal{P}}) + \frac{Cq}{N^2}.$$

Proof. Let μ be as before. Using **Shapley-Folkman's** theorem, we can construct independent r.v. \tilde{X}_i , valued in \mathcal{X}_i and such that

•
$$\tilde{J}(\mu) = f(\mathbb{E}[\tilde{Y}]) + \frac{1}{N} \sum_{i} \mathbb{E}[h_i(\tilde{X}_i)]$$
, where $\tilde{Y} = \frac{1}{N} \sum_{i=1}^{N} g_i(\tilde{X}_i)$,

lacksquare All r.v. $ilde{X}_i$ are deterministic, except at most q of them.

Then
$$\mathbb{E}[\|\tilde{Y} - \mathbb{E}[\tilde{Y}]\|^2] \leq Cq/N^2$$
.

- Problem formulation
- 2 Relaxation and gap estimation
- 3 Resolution
- 4 Example
- 5 Aggregative control problems
- 6 Duality and extensions

Frank-Wolfe algorithm

Consider the following problem:

$$\inf_{x \in \mathbb{R}^n} F(x), \quad \text{subject to: } x \in K. \tag{\mathcal{P}}$$

Assumptions:

- $F: \mathbb{R}^n \to \mathbb{R}$ is convex, continuously differentiable, with Lipschitz-continuous gradient.
- $K \subseteq \mathbb{R}^n$ is convex and compact.

The **linearized problem** at \tilde{x} is defined by

$$\inf_{x \in \mathbb{R}^n} \langle \nabla F(\tilde{x}), x \rangle, \quad \text{subject to: } x \in K. \tag{$\mathcal{P}_{\text{lin}}(\tilde{x})$)}$$

We assume that it is easy to solve numerically, for any \tilde{x} .

Frank-Wolfe algorithm

Algorithm 1: Frank-Wolfe algorithm

 $\begin{array}{l} \text{Input: } \bar{x}_0 \in \mathcal{K}; \\ \textbf{for } k = 0, 1, \dots \, \textbf{do} \\ & \text{Find a solution } x_k \text{ to } \mathcal{P}_{\text{lin}}(\bar{x}_k); \\ & \text{Set } \delta_k = 2/(k+2); \\ & \text{Set } \bar{x}_{k+1} = (1-\delta_k)\bar{x}_k + \delta_k x_k; \end{array}$

end

Lemma

There exists a constant C such that

$$f(\bar{x}_k) \leq f(\bar{x}) + \frac{C}{k}, \quad \forall k > 0,$$

where \bar{x} denotes a solution of (\mathcal{P}) .

The subproblem

We call any map \mathbb{S} : $\lambda \in \mathcal{E} \mapsto (\mathbb{S}_1(\lambda), \dots, \mathbb{S}_N(\lambda)) \in \mathcal{X}$ a **best-response** function if for any $\lambda \in \mathcal{E}$,

$$\mathbb{S}_i(\lambda) \in \underset{x_i \in \mathcal{X}_i}{\operatorname{argmin}} \langle \lambda, g_i(x_i) \rangle + h_i(x_i), \quad \text{for } i = 1, \dots, N.$$

The variable λ can be here interpreted as a **price** for the contribution to the aggregate.

Numerical assumption. We assume that such a function can be easily constructed numerically. The evaluation of $\mathbb S$ relies on the resolution of N independent optimization problems.

The subproblem

Lemma

Let
$$\tilde{\mu} \in \prod_{i=1}^{N} \mathcal{P}(\mathcal{X}_i)$$
. Let $\lambda = \nabla f(\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{\tilde{\mu}_i}[g_i])$. Define

$$\hat{\mu} = \left(\delta_{\mathbb{S}_1(\lambda)}, \dots, \delta_{\mathbb{S}_N(\lambda)}\right).$$

Then $\hat{\mu}$ is a solution to

$$\inf_{\mu \in \prod_{i=1}^{N} \mathcal{P}(\mathcal{X}_i)} D\widetilde{J}(\widetilde{\mu}).\mu. \qquad (\widetilde{\mathcal{P}}_{\mathsf{lin}}(\widetilde{\mu}))$$

Proof. Straightforward calculations yield:

$$D\widetilde{J}(\widetilde{\mu}).\mu = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{\mu_i} \Big[\langle \lambda, g_i(\cdot) \rangle + h_i(\cdot) \Big].$$

Frank-Wolfe algorithm

Algorithm 2: Frank-Wolfe algorithm

```
\begin{split} & \text{Input: } \bar{\mu}^{(0)}; \\ & \textbf{for } k = 0, 1, \dots \, \textbf{do} \\ & \mid & \text{Find a solution } \mu^{(k)} \text{ to } \tilde{\mathcal{P}}_{\text{lin}}(\bar{\mu}^{(k)}); \\ & \text{Set } \delta_k = \frac{2}{k+2}; \\ & \text{Set } \bar{\mu}^{(k+1)} = (1-\delta_k)\bar{\mu}^{(k)} + \delta_k \mu^{(k)}; \end{split}
```

Difficulties:

end

- The support of $\bar{\mu}_i^{(k)}$ possibly is of cardinality k.
- How to deduce an **approximate solution** to (P) from $\bar{\mu}^{(k)}$?

Selection

Selection: A simple **stochastic method** for constructing $x \in \mathcal{X}$ out of $\mu \in \prod_{i=1}^{N} \mathcal{P}(\mathcal{X}_i)$.

Algorithm 3: Selection algorithm

Input: μ , $n \in \mathbb{N}$;

Construct a random variable $X = (X_1, ..., X_N)$ such that

$$X_1,...,X_N$$
 are independent, $Law(X_i) = \mu_i$.

for
$$j=1,...,n$$
 do
 | Draw samples $\hat{x}^j=(x_1^j,...,x_N^j)$ of $(X_1,...,X_N)$. end
 Output: $\hat{x}=\operatorname*{argmin}_{x\in\{\hat{x}^1,...,\hat{x}^n\}}J(x)$.

Selection

Lemma

Let $\mu \in \prod_{i=1}^{N} \mathcal{P}(\mathcal{X}_i)$ and let $n \in \mathbb{N}$. There exists a constant C > 0 such that for any $\varepsilon > 0$,

$$\mathbb{P}\Big[J(\hat{x}) \geq \tilde{J}(\mu) + \frac{C}{N} + \varepsilon\Big] \leq \exp\Big(-\frac{nN\varepsilon^2}{C}\Big).$$

Proof. Let X be as in the selection algorithm. We know that

$$\tilde{J}(\mu) - \mathbb{E}[J(X)] \leq \frac{C}{N}.$$

Concentration inequality: by McDiarmid's inequality, there exists C>0 such that for any $\varepsilon>0$,

$$\mathbb{P}\Big[J(X) \geq \mathbb{E}[J(X)] + \varepsilon\Big] \leq \exp\Big(-\frac{N\varepsilon^2}{C}\Big).$$

Stochastic Frank-Wolfe algorithm

Algorithm 4: Stochastic Frank-Wolfe algorithm

```
Input: \bar{\mu}^{(0)}, a sequence (n_k)_{k \in \mathbb{N}}; for k = 0, 1, ... do

Find a solution \mu^{(k)} to \tilde{\mathcal{P}}_{\text{lin}}(\bar{\mu}^{(k)}); Set \delta_k = \frac{2}{k+2}; Set \tilde{\mu}^{(k+1)} = (1 - \delta_k)\bar{\mu}^{(k)} + \delta_k\mu^{(k)}; Set \hat{x}^{(k+1)} = \text{Selection}(\tilde{\mu}^{(k+1)}, n_{k+1}); Set \bar{\mu}^{(k+1)} = \left(\delta_{\hat{x}_1^{(k+1)}}, ..., \delta_{\hat{x}_N^{(k+1)}}\right).
```

end

Practical comments

Problem formulation

• At iteration k, $\bar{\mu}^{(k)}$ and $\mu^{(k)}$ are N-uplets of Dirac measures:

$$ar{\mu}^{(k)} = (\delta_{\hat{\mathbf{x}}_{N}^{(k)}},...,\delta_{\hat{\mathbf{x}}_{N}^{(k)}}), \quad \mu^{(k)} = (\delta_{\mathbf{x}_{1}^{(k)}},...,\delta_{\mathbf{x}_{N}^{(k)}}).$$

- Thus supp $(\tilde{\mu}_i^{(k+1)}) = {\hat{x}_i^{(k)}, x_i^{(k)}}.$
- We need to simulate a random variable X_i such that

$$\mathbb{P}\left[X_i = \hat{x}_i^{(k)}\right] = \frac{k}{k+2}, \quad \mathbb{P}\left[X_i = x_i^{(k)}\right] = \frac{2}{k+2}.$$

Simulate a uniformly distributed r.v. W_i in [0,1] and define

$$X_i = \left\{ egin{array}{ll} \hat{x}_i^{(k)} & ext{if } W_i \leq k/(k+2) \\ x_i^{(k)} & ext{otherwise.} \end{array}
ight.$$

Speed up: we can simulate W_i before computing $x_i^{(k)}$ and thus figure out whether it is necessary to compute $x_i^{(k)}$ or not.

Convergence result

Theorem

There exists a constant C>0 such that for all $K\leq 2N$, for all $\varepsilon>0$, it holds:

$$\mathbb{P}\Big[J(\hat{x}^K) \geq \operatorname{Val}(\tilde{P}) + \frac{C}{K} + \varepsilon\Big] \leq \exp\Big(-\frac{N\varepsilon^2}{C_1(K) + \varepsilon C_2(K)}\Big),$$

where

$$C_1(K) = C \sum_{k=1}^{K-1} \frac{k(k+1)^2}{n_k K^2 (K+1)^2},$$

$$C_2(K) = C \max_{k \le K-1} \frac{(k+1)(k+2)}{n_k K (K+1)}.$$

Remark. We can find a C/N-optimal solution with arbitrarily small probability if $n_k \ge Ak^2/N$, with A large enough.

- 1 Problem formulation
- 2 Relaxation and gap estimation
- 3 Resolution
- 4 Example
- 5 Aggregative control problems
- 6 Duality and extensions

Numerical example

Let $A \in \mathbb{R}^{M \times N}$ and let $\bar{y} \in \mathbb{R}^{M}$. Consider:

$$\min_{x \in \{0,1\}^N} \frac{1}{N^2} ||Ax - \bar{y}||^2 = \left\| \frac{1}{N} \sum_{i=1}^N \left(A_i x_i - \frac{\bar{y}_i}{N} \right) \right\|^2.$$
 (MIQP)

Data: M = N = 100.

Remark: Problem (MIQP) is a discrete problem, over a set of cardinality 2^{100} .

Numerical example

Figure: Convergence of the relaxed optimality gap.

Left: Frank-Wolfe for the relaxed problem.

Right: Selection algorithm applied to the iterates.

Numerical example

Figure: Relaxed optimality gap for Stochastic Frank-Wolfe algorithm.

Left: Stepsize $\delta_k = 2/(k+2)$.

Right: Stepsize determined by line-search.

- 1 Problem formulation
- 2 Relaxation and gap estimation
- 3 Resolution
- 4 Example
- 5 Aggregative control problems
- 6 Duality and extensions

Setting

Mathematical setting:

- Each agent optimize a deterministic and discrete dynamical system.
- The aggregate is a time function.

Application:

- The agents are **batteries**, whose state is the state-of-charge of the battery and the control is the loading speed.
- The aggregate is the total energy consumption induced by the loading of the batteries.

Dynamics of the agents

Let $T \in \mathbb{N}$ be the time horizon, let

$$\mathcal{T} = \{0, 1, \dots, T - 1\}$$
 and $\bar{\mathcal{T}} = \{0, 1, \dots, T\}.$

For each agent i, consider:

- A family of finite **state** sets $(S_i^t)_{t \in \bar{T}}$.
- A family of finite **control** sets $(U_i^t(s_i^t))_{t \in \mathcal{T}, s_i^t \in S_i^t}$.
- For any $t \in \mathcal{T}$, for any $s_i^t \in S_i^t$, a **transition function**

$$u_i^t \in U_i^t(s_i^t) \mapsto \pi_i^t(s_i^t, u_i^t) \in S_i^{t+1}.$$

We call an element $x_i = ((s_i^t)_{t \in \mathcal{T}}, (u_i^t)_{t \in \mathcal{T}})$ a **state-control trajectory**. We denote by \mathcal{X}_i the set of elements x_i such that

$$\begin{cases} s_i^t \in S_i^t, & \forall t \in \bar{\mathcal{T}} \\ u_i^t \in U_i(s_i^t) & \text{and} \quad s_i^{t+1} = \pi_i^t(s_i^t, u_i^t), & \forall t \in \mathcal{T}. \end{cases}$$

Cost and contribution

Let $\mathcal{E} = \prod_{t \in \mathcal{T}} \mathcal{E}_t$, where every \mathcal{E}_t is a Hilbert space. For each $i = 1, \dots, N$ and for each $t \in \mathcal{T}$, fix two functions

$$g_i^t : (s_i^t, u_i^t) \mapsto g_i^t(s_i^t, u_i^t) \in \mathcal{E}_t$$
$$h_i^t : (s_i^t, u_i^t) \mapsto h_i^t(s_i^t, u_i^t) \in \mathbb{R},$$

for any $s_i^t \in S_i^t$ and for any $u_i^t \in U_i^t(s_i^t)$.

For an agent i, the individual cost h_i and the contribution function g_i are defined by

$$g_i(x_i) = \left(g_i^t(s_i^t, u_i^t)\right)_{t \in \mathcal{T}} \in \mathcal{E}$$
$$h_i(x_i) = \sum_{t \in \mathcal{T}} h_i^t(s_i^t, u_i^t).$$

Social cost and problem

For any $t \in \mathcal{T}$, let $f_t \colon \mathcal{E}_t \to \mathbb{R}$ and let $f \colon \mathcal{E} \to \mathbb{R}$ be defined by

$$f(y_0,\ldots,y_{T-1})=\sum_{t\in\mathcal{T}}f_t(y_t).$$

We consider the corresponding aggregative problem:

$$\inf_{\mathbf{x}\in\prod_{i=1}^{N}\mathcal{X}_{i}}f\left(\frac{1}{N}\sum_{i=1}^{N}g_{i}(x_{i})\right)+\frac{1}{N}\sum_{i=1}^{N}h_{i}(x_{i}).$$

which be equivalently written as...

Aggregative control problem

$$\inf_{\substack{(s_i^t)_{t \in \mathcal{T}, i=1,\dots,N} \\ (u_i^t)_{t \in \mathcal{T}, i=1,\dots,N}}} \sum_{t \in \mathcal{T}} f_t \left(\frac{1}{N} \sum_{i=1}^N g_i^t(s_i^t, u_i^t) \right) + \frac{1}{N} \sum_{i=1}^N \sum_{t \in \mathcal{T}} h_i^t(s_i^t, u_i^t),$$

$$\begin{aligned} \text{subject to:} \; \left\{ \begin{array}{ll} s_i^t \in \mathcal{S}_i^t, & \forall i = 1, \dots, \textit{N}, \, \forall t \in \bar{\mathcal{T}} \\ s_i^{t+1} = \pi_i^t(s_i^t, u_i^t), & \forall i = 1, \dots, \textit{N}, \, \forall t \in \mathcal{T} \\ u_i^t \in \textit{U}_i^t(s_i^t), & \forall i = 1, \dots, \textit{N}, \, \forall t \in \mathcal{T}. \end{array} \right. \end{aligned}$$

This is a discrete-time, finite-space optimal control problem with state set $\prod_{i=1}^{N} S_i^t$, at time t.

→ Huge cardinality, dynamic programming is **intractable**.

Best-response function

We focus now on the computation of the best-response function.

Let $\lambda = (\lambda_t)_{t \in \mathcal{T}} \in \mathcal{E}$. The associated subproblem, for agent i, reads:

$$\inf_{\substack{(s_i^t)_{t \in \tilde{\mathcal{T}}} \\ (u_i^t)_{t \in \mathcal{T}}}} \sum_{t \in \mathcal{T}} \left(\langle \lambda_t, g_i^t(s_i^t, u_i^t) \rangle + h_i^t(s_i^t, u_i^t) \right),$$

$$\begin{aligned} \text{subject to:} \; \left\{ \begin{array}{ll} s_i^t \in S_i^t, & \forall i = 1, \dots, N, \, \forall t \in \bar{\mathcal{T}} \\ s_i^{t+1} = \pi_i^t(s_i^t, u_i^t), & \forall i = 1, \dots, N, \, \forall t \in \mathcal{T} \\ u_i^t \in U_i^t(s_i^t), & \forall i = 1, \dots, N, \, \forall t \in \mathcal{T}. \end{array} \right. \end{aligned}$$

It is a discrete-time, finite-space optimal control problem with state set S_i^t , at time t.

 \rightarrow Tractable by **dynamic programming**, if $|S_i^t|$ is not too large!

Best-response function

The resolution is done in two steps.

1. Backward phase. We compute a value function,

$$(t, s_i^t) \mapsto V_i^t(s_i^t) \in \mathbb{R}.$$

It models the optimal cost for the initial time t and initial condition s_i^t .

- Define $V_i^T(s_i^T) = 0$.
- For t = T 1, T 2, ..., 0, compute

$$\begin{aligned} V_i^t(s_i^t) &= \min_{u_i^t \in U_i^t(s_i^t)} \left(\langle \lambda_t, g_i^t(s_i^t, u_i^t) \rangle + h_i^t(s_i^t, u_i^t) \right. \\ &+ V_i^{t+1} \Big(\pi_i^t(s_i^t, u_i^t) \Big) \Big), \end{aligned}$$

for all $s_i^t \in S_i^t$.

Best-response function

2. Forward phase.

- Find $\bar{s}_i^0 \in \operatorname{argmin} V_i^0(\cdot)$.
- For t = 0, 1, ..., T 1, compute

$$\begin{split} \bar{u}_i^t \in \underset{u_i^t \in U_i^t(\bar{s}_i^t)}{\operatorname{argmin}} \ \Big(\langle \lambda_t, g_i^t(\bar{s}_i^t, u_i^t) \rangle + h_i^t(\bar{s}_i^t, u_i^t) \\ + V_i^{t+1} \Big(\pi_i^t(\bar{s}_i^t, u_i^t) \Big) \Big), \end{split}$$

and set $\bar{s}_i^{t+1} = \pi_i^t(\bar{s}_i^t, u_i^t)$.

Then $((\bar{s}_i^t)_{t \in \bar{T}}, (\bar{u}_i^t)_{t \in \bar{T}})$ is a solution to the subproblem.

- 1 Problem formulation
- 2 Relaxation and gap estimation
- 3 Resolution
- 4 Example
- 5 Aggregative control problems
- 6 Duality and extensions

Dual problem

Joint work with Thibault Moquet (Optimization Master, Paris-Saclay University, now at L2S).

Without loss of generality, we assume that $h_i = 0$, $\forall i = 1, ..., N$.

Saddle-point formulation of the problem:

$$\inf_{\mu \in \prod_{i=1}^{N} \mathcal{M}(\mathcal{X}_i)} \sup_{\lambda \in \mathcal{E}} L(\mu, \lambda),$$

where the Lagrangian L is defined by

$$L(\mu,\lambda) = \left\langle \lambda, \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{\mu_i}[g_i] \right\rangle - f^*(\lambda) + \sum_{i=1}^{N} \iota_{\mathcal{P}(\mathcal{X}_i)}(\mu_i),$$

where f^* denotes the Fenchel conjugate of f, $\iota_{\mathcal{P}(\mathcal{X}_i)}$ the indicatrix function, and $\mathcal{M}(\mathcal{X}_i)$ the space of finite signed measures.

Dual problem

The dual problem reads:

$$\sup_{\lambda \in \mathcal{E}} Q(\lambda) := \left(\inf_{\mu \in \prod_{i=1}^N \mathcal{M}(\mathcal{X}_i)} L(\mu, \lambda)\right).$$

We have

$$Q(\lambda) = \inf_{\mu} \left\langle \lambda, \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{\mu_{i}}[g_{i}] \right\rangle - f^{*}(\lambda) + \sum_{i=1}^{N} \iota_{\mathcal{P}(\mathcal{X}_{i})}(\mu_{i})$$

$$= \underbrace{\frac{1}{N} \sum_{i=1}^{N} \left(\inf_{x_{i} \in \mathcal{X}_{i}} \langle \lambda, g_{i}(x_{i}) \rangle \right) - f^{*}(\lambda).}_{=:-\sigma(x)}$$

Optimality conditions

Theorem

- **I** The dual problem has a unique solution $\bar{\lambda}$.
- **2** Any μ is a solution to the relaxed problem if and only if for $\lambda = \nabla f\left(\frac{1}{N}\sum_{i=1}^{N}\mathbb{E}_{\mu_i}[g_i]\right)$, it holds that

$$supp(\mu_i) \subseteq \underset{x_i \in \mathcal{X}_i}{argmin} \langle \lambda, g_i(x_i) \rangle.$$

3 If μ is optimal, then $\bar{\lambda} = \nabla f \left(\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{\mu_i}[g_i] \right)$.

Remark. The conditions in the second statement can be interpreted as the **equilibrium conditions** for a **game** with *N* groups of infinitely many agents.

Numerical methods

- The saddle point formulation of the dual problem can be addressed with **Chambolle-Pock**'s algorithm (using Kullback-Leibler distance in the non-linear proximity operators), when the sets \mathcal{X}_i are finite, with small cardinality. When ∇f is Lipschitz continuous, f^* is strongly convex and convergence with rate $\mathcal{O}(1/k^2)$ can be achieved. Empirically less efficient than Frank-Wolfe.
- Mengdi Wang proposed a **cutting-plane** type algorithm for solving the dual problem. At each iteration, a piecewise affine approximation of σ is utilized to approximate Q. The algorithm turns out to be equivalent to the **fully corrective** variant of the Frank-Wolfe algorithm.

Extensions

What can we do if f is convex, but **not continuously differentiable** ? Example: $f = f_0 + \iota_{\Omega}$.

■ **Gap estimate**: replace *f* by its Moreau enveloppe

$$f_{\varepsilon}(y) = \inf_{z \in \mathcal{E}} \frac{1}{2\varepsilon} ||y - z||^2 + f(z).$$

Then bound $\|f - f_{\varepsilon}\|_{\infty}$, use the $1/\varepsilon$ -Lipschitz continuity of ∇f_{ε} for a suitable value of ε .

- **Numerics:** if the sets \mathcal{X}_i are finite, then Chambolle-Pock can be used again (convergence rate of $\mathcal{O}(1/k)$).
- **Numerics:** use an appropriate extension of Frank-Wolfe to for non-smooth cost (not tested yet...).

References

Silveti-Falls, Molinari, Fadili. Generalized conditional gradient with augmented lagrangian for composite minimization, *SIAM Journal on Optimization*, 2020.

Thank you for your attention!