

AD-A073 833

SYSTEMS CONSULTANTS INC RIDGECREST CALIF
217B PREDICT, SYSTEM RELIABILITY PREDICTION COMPUTER PROGRAM. V--ETC(U)
MAR 77

F/G 9/2
N00123-73-C-0243

UNCLASSIFIED

GIDEP-E071-0295

NL

1 OF 2
AD
A073833

N 1977

E071-0295

(1)

REG 3686-127-77
2 March 1977

LEVEL II

217B PREDICT SYSTEM RELIABILITY PREDICTION COMPUTER PROGRAM

AD A 073 833

VOLUME I. USER MANUAL

DEVELOPED BY
SYSTEMS CONSULTANTS INCORPORATED
RIDGECREST, CALIFORNIA 93555

DDC FILE COPY

This is an informal report containing preliminary information. It is not an official report of the Naval Weapons Center and must not be used as a basis for action unless enclosed in official correspondence in which the purpose of the transmittal is made clear.

79 04 02 177

NAVAL WEAPONS CENTER
CHINA LAKE, CALIFORNIA 93555

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

15 JUN 1977

GIDEP FORM 1A:1-77

(18) PAGE 1 OF 2

GOVERNMENT-INDUSTRY DATA EXCHANGE PROGRAM

DOCUMENT SUMMARY SHEET

GIDEP

Completion of Summary Sheet is Optional - Please Type All Information - See Instructions On Reverse

1. GIDEP INDEX NUMBER 195.20.00.00-X7-01	2. DOCUMENT TYPE <input checked="" type="checkbox"/> H	SPEC NONSTD PART	TEST RPT <input checked="" type="checkbox"/> X GEN RPT	3. ACCESS NUMBER E071-0295
---	---	------------------	---	-------------------------------

4. COMPONENT/PART NAME PER GENERIC CODE Computer Software, Operating Manuals	6. ORIGINATOR'S DOCUMENT TITLE AND NUMBER 217B PREDICT, System Reliability Prediction Computer Program, Volume I, User Manual. REG 3686-127-77			
---	---	--	--	--

7. MFR NOTIFICATION <input type="checkbox"/> COPY OF REPORT	<input checked="" type="checkbox"/> NOT APPLICABLE	8. DOCUMENT ISSUE (Month, Year) Mar 1977
--	--	---

9. THIS DOCUMENT (SUPERSEDES) (SUPPLEMENTS) GIDEP INDEX/ACCESS NUMBER None

10. MFR AND H4 CODE NO.	11. MFR PART NO.	12. IND/GOV'T STD NO.	13. TOTAL TESTED	14. EXCEEDED MFR CATALOG SPECS <input type="checkbox"/> YES <input checked="" type="checkbox"/> NO
A None	None	None	N/A	
B				
C				

15. SPECS, ETC, REQD TO UTILIZE DOCUMENT	ENCL	SUBMITTED AS/WITH GIDEP INDEX/ACCESS NO.
A None		
B		
C		

16. ITEM	TEST OR ENVIRONMENT	PER SPEC	SPEC PARAGRAPH METHOD/CONDITION	ENVIR CODE	NO. TESTED	NO. FAILED
	N/A					
			(15) N00123-73-C-0243			
			N00123-76-C-0340			

17. SUMMARY

347.40.00.00-X7-CR

The 217B PREDICT computer program provides the capability of performing system reliability predictions in accordance with the complex part failure rate models in MIL-HDBK-217B. The computer program also contains procedures for entering user derived non-MIL-HDBK-217B part failure rates, and for deriving dormant part failure rates in accordance with established failure rate data and techniques. With a minimum of indoctrination the user can perform extensive, fully documented reliability predictions at a minimal cost. The cost savings are achieved by:

- (1) Providing complete prediction data for 1 to 13 life cycle events from a single set of input data, thereby minimizing the cost in preparing the data deck and in operating the computer.

(Continuation on Page 2)

18. KEY WORDS FOR INDEXING	Operating Failure Rates, Dormant Failure Rates, Automated Prediction, MTBF, Failure Rate Techniques
----------------------------	---

19. GIDEP REPRESENTATIVE M. H. Sloan	20. PARTICIPANT ACTIVITY Naval Weapons Center, China Lake, California
---	--

409 905 int

17. SUMMARY

- (2) Requiring only exceptions to the "standard" part failure rate definitions at the part level, thereby reducing the cost of preparing the data deck.
 - (3) Using a set of "standard" part failure rates that are recalculated by the computer only if redefined at the part level, thereby minimizing the computer operating cost.

The user manual provides all necessary information required to use the computer program. It does not presuppose any prior computer knowledge on the part of the user. However, it does assume a working knowledge of the failure rate models and techniques in MIL-HDBK-217B, and experience in deriving non-MIL-HDBK-217B failure rates.

The 217B PREDICT computer program is written in standard FORTRAN V language for the UNIVAC 1110 computer and has been used on numerous reliability predictions for the Naval Weapons Center, China Lake, California. The program is adaptable to any large scale digital computer. The computer program contains 5,311 source statements, and uses approximately 37,000 words of storage for coding and storage arrays. For information regarding the computer program contact:

Systems Consultants Incorporated
543 Graaf Street
Ridgecrest, California 93555
(Attention: Mr. R. H. Butler)

ABSTRACT

The 217B PREDICT computer program provides an automated capability of readily performing fully documented system reliability predictions. Using a simplified set of input data, the computer program provides operating and dormant prediction data for multiple life cycle events in a concise, readily understandable output format. In addition, all failure rates and failure rate sources used in the prediction are fully documented in the printout to permit verification of all part failure rates.

This manual provides all necessary information required to use the computer program. It does not presuppose any prior computer knowledge on the part of the user. However, it does assume a working knowledge of the failure rate models and techniques in MIL-HDBK-217B, and experience in deriving non-MIL-HDBK-217B failure rates.

This manual is designed to provide:

- (1) A simplified introduction to the computer program data submittal requirements, with examples.
- (2) A preliminary set of failure rate derivation guidelines.
- (3) An extensive discussion of the computer program submittal requirements and part failure rate models.
- (4) An appendix that outlines the Stored Failure Rate Data and data submittal requirements necessary to perform reliability predictions.

NOTE: The intent of the computer program is to provide an active analytical tool that is responsive to the needs of the reliability community. As such, the computer program and this manual are subject to periodic updates in general accordance with the revisions to MIL-HDBK-217. Therefore, for proper implementation, all suggestions or discrepancies noted by the user should be submitted in writing to:

Systems Consultants Incorporated
543 Graaf Street
Ridgecrest, California 93555
(Attention: Mr. R. H. Butler)

-1-

79 04 02 1

Accession For	
NTIS GRAF	<input checked="" type="checkbox"/>
DDC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	<input type="checkbox"/>
By _____	
Distribution/ _____	
Availability Codes _____	
Distr	Avail and/or special

4

ACKNOWLEDGEMENT

The 217B PREDICT computer program described in this report was designed and developed by R. H. Butler and J. G. Sahm of Systems Consultants Incorporated. Development of this program was funded by the Naval Weapons Center, China Lake, California under Contracts N00123-73-C-0243 and N00123-76-C-0340, and by Systems Consultants Incorporated.

* * * * *

The authors are indebted to numerous persons at Systems Consultants Incorporated and at the Naval Weapons Center for their encouragement and support in the development of 217B PREDICT. In particular, we wish to thank R. L. Seles of Systems Consultants Incorporated for his extensive evaluation of the computer program data base, techniques, and output.

* * * * *

EXECUTIVE SUMMARY

The 217B PREDICT computer program provides the capability of performing system reliability predictions in accordance with the complex part failure rate models in MIL-HDBK-217B. The computer program also contains procedures for entering user-derived non-MIL-HDBK-217B part failure rates, and for deriving dormant part failure rates in accordance with established failure rate data and techniques.

The methodology used in the computer program is based on establishing a set of "standard" part failure rates and part failure rate parameters that are used unless specifically excepted by the user at the part level. The part failure rate parameters define the appropriate environmental factors, operating stress factors, application factors, dormant (operating-to-non-operating) factors, etc., for the respective parts. The failure rate definitions stored within the computer program can be used directly, or can be modified and supplemented to establish the "standard" part failure rate definitions for the user's system. Parts not fitting the "standard" definitions are then specifically excepted at the part level by the user. This technique allows the user to minimize the amount of data that must be entered at the part level by modifying the stored part failure rate definitions to reflect the majority of the part types in his system. The "standard" part failure rate definitions used in performing the prediction are printed out as part of the "summary" data by the computer program. Any deviations from the "standard" part failure rate definitions are printed out at the part level in the prediction data.

The 217B PREDICT computer program is written in the computer-independent FORTRAN IV and V languages and is easily adapted to any large scale digital computer. With a minimum of indoctrination the user can perform extensive, fully documented reliability predictions at a minimal cost. The cost savings are achieved by:

- (1) Providing complete prediction data for 1 to 13 life cycle events from a single set of input data, thereby minimizing the cost in preparing the data deck and in operating the computer.
- (2) Requiring only exceptions to the "standard" part failure rate definitions at the part level, thereby reducing the cost of preparing the data deck.
- (3) Using a set of "standard" part failure rates that are recalculated by the computer only if redefined at the part level, thereby minimizing the computer operating cost.

TABLE OF CONTENTS

<u>Section</u>		<u>Page</u>
I.	GENERAL OVERVIEW.	1.1
1.	Introduction.	1.1
2.	Organization of the Manual.	1.1
3.	Computer Program Techniques	1.2
II.	COMPILING THE INPUT DATA.	2.1
1.	General Discussion.	2.1
2.	Parts Count Failure Rate Data	2.6
3.	Applied Stress Failure Rate Data.	2.11
III.	SAMPLE PREDICTION	3.1
1.	Configuration Data.	3.1
2.	Life Cycle Event Data	3.1
3.	Data Preparation.	3.1
4.	Output Data	3.3
IV.	GENERAL PREDICTION GUIDELINES	4.1
1.	Reliability Prediction Tasks.	4.1
2.	Part Failure Rate Derivation Guidelines	4.2
3.	Discussion of Inherent Reliability.	4.5
V.	COMPUTER PROGRAM DETAILS.	5.1
1.	Data Deck Setup	5.1
2.	Data Preparation.	5.1
3.	System/Subsystem Reliability Model.	5.8
4.	Part Failure Rate Model	5.9
5.	Computer Program Calculations of Part Failure Rates	5.10
VI.	REFERENCES.	6.1
Appendix A	Stored Part Data and Coding Form Definitions.	A-1
Appendix B	Outline of Part Codes and Coding Forms.	B-1

TABLE OF CONTENTS (Cont'd)

LIST OF FIGURES

<u>Figure</u>		<u>Page</u>
1.1	Symbolic Functional Diagram for the 217B PREDICT Computer Program.	1.3
2.1	Generalized Arrangement of Assembly/Fabrication Drawing Data for 217B PREDICT Computer Program.	2.1
2.2	Preliminary System Configuration Data (Example)	2.7
2.3	Preliminary System Reliability Model (Example).	2.7
2.4	Preliminary Life Cycle Events (Example)	2.7
3.1	System Configuration for Sample Prediction.	3.2
3.2	Life Cycle Events for Sample Prediction	3.2
3.3	Condensed Failure Rate Data For Assumed Output Driver Configuration.	3.10
3.4	Detailed and Condensed Failure Rate Data for Electronic Abacus	3.16
3.5	Reliability Summary for Computing System.	3.26
4.1	Hypothetical Failure Rate Curve for Electronic Parts.	4.6
4.2	Hypothetical Failure Rate Curve for Mechanical Parts.	4.7
5.1	Generalized 217B PREDICT Program Deck Setup	5.2

LIST OF TABLES

<u>Table</u>		<u>Page</u>
2.1	Parts Count Computer Coding Forms (Example)	2.8
2.2	Preliminary Stress Analysis (Example)	2.12
2.3	Applied Stress Computer Coding Forms (Example).	2.13
3.1	Sample Prediction Computer Coding Forms	3.4
4.1	Generalized Electrical Environmental Factors.	4.4
4.2	Environmental Descriptions.	4.4

SECTION I

GENERAL OVERVIEW

1. INTRODUCTION

The 217B PREDICT computer program provides an automated capability of performing a fully documented system reliability prediction in accordance with the specific methodology in MIL-HDBK-217B (Reference 1), and in general accordance with established techniques for deriving non-electrical and dormant part failure rates. The computer program characteristics, as outlined below, provide an easily used, yet flexible, analysis tool that can be readily used for conceptual, preliminary, or detailed stress analysis predictions.

- o The input data and output data are in direct accordance with the system documentation and with the definitions in MIL-HDBK-217B.
- o With a minimum of input data, the computer program provides failure rate data for all applicable life cycle events.
- o The output data are self-explanatory, and provide part failure rate traceability by documenting all part failure rate parameters and data sources used in performing each prediction.

2. ORGANIZATION OF THE MANUAL

The 217B PREDICT User Manual contains five major sections and two appendices. As outlined below, the sections provide progressively greater insight regarding the use of the computer program in performing reliability predictions, whereas the appendices provide the data necessary to implement the computer program in performing reliability predictions.

- o Section I. General overview of the computer program.
- o Section II. Simplified exercise in compiling the data for the computer program, with examples.
- o Section III. Complex exercise in compiling the data for the computer program, with the corresponding computer printout.
- o Section IV. General prediction guidelines.
- o Section V. Extensive computer program details.
- o Section VI. References.
- o Appendix A. Stored part data and coding form definitions.
- o Appendix B. Outline of part codes and coding forms.

3. COMPUTER PROGRAM TECHNIQUES

Communicating with the computer program is particularly simple for the reliability analyst since all input data are in direct accordance with the assembly/fabrication drawings, e.g., R2 = RCR20G320FM, and in general accordance with the common usage terms reflected in MIL-HDBK-217B, e.g., S₂ = "S₂" = reverse voltage factor for semiconductors.

The primary imposition on the user is the need to code the general part type as defined in Sections II and III, e.g., 402 = Carbon Composition Resistor. This coding minimizes the amount of input data from the user and yet provides a very definitive part description for the computer printout.

The input data for the computer program are prepared using fixed format computer coding forms that are keypunched on computer data cards for batch submittal to the UNIVAC 1110 computer as described in Sections II and III. The failure rate data and reliability data are then compiled in general accordance with the following computer program techniques as outlined in Figure 1.1.

Note: Reference is made to the UNIVAC 1110 computer throughout this manual because the program was developed for use on the UNIVAC 1110 computer at the Naval Weapons Center, China Lake, California. However, the computer program is written in the FORTRAN IV and V languages and should be adaptable to any large scale digital computer.

a. Stored Part Data

The computer program contains a set of part failure rate definitions that are used unless otherwise modified by the user. The user can supplement and/or modify the Stored Part Data using Supplemental Part Data cards, thereby establishing a unique set of "Standard" part failure rate definitions that reflect his system. Unless otherwise specified, these parameter definitions are used to calculate the dormant, assumed, or applied stress part failure rates in accordance with the complex stress analysis failure rate models in MIL-HDBK-217B as defined herein.

In addition, the user defines the system documentation and environmental stress conditions applicable to the prediction using the System/Subsystem Control Cards.

b. Detailed Failure Rate Subroutine

The Detailed Failure Rate Subroutine is used to reflect explicit part numbering data and part failure rate information. The user enters the part information in direct accordance with the assembly/fabrication drawings, and identifies all exceptions to the "Standard" part failure rate definitions using Assembly/Subassembly Data Cards. This technique significantly reduces the amount of failure rate information required at the part level, while providing explicit part failure rate data for 1 to 3 sets of operating, semioperating, or dormant environmental conditions.

FIGURE I.1 SYMBOLIC FUNCTIONAL DIAGRAM FOR THE 217 B PREDICT COMPUTER PROGRAM

c. Condensed Failure Rate Subroutine

The Condensed Failure Rate Subroutine is used to provide dormant or assumed stress failure rate data using part count techniques. For example, using the preceding configuration data and the "Standard" part failure rate definitions, the computer program can provide operating or dormant failure rates for an additional 1 to 10 environmental conditions. Therefore the Detailed and Condensed Failure Rate Subroutines can be used to provide total life cycle failure rate information from a single set of input data.

The Condensed Failure Rate Subroutine can also be readily used to perform preliminary predictions for 1 to 5 environmental conditions. The user enters the part information in terms of part type using the Condensed Part Data Cards, and obtains failure rate data that is in direct accordance with the "Standard" part failure rate definitions. These data are in general accordance with the data resulting from a detailed stress analysis prediction, because the same failure rate models and general part failure rate parameters are used for the part failure rate derivation.

d. Prediction Summary Subroutine

The Prediction Summary Subroutine summarizes the failure rate data and assumptions, and compiles the system/subsystem reliability data. The user identifies the life cycle event relationship of the above failure rate data and all associated one-shot devices using Reliability Summary Cards, and obtains reliability data for individual life cycle events or for overall mission events. In addition, all "Standard" part failure rate definitions established by the user are documented in the printout, thereby explicitly defining all failure rate data and sources used in performing the prediction.

SECTION II
COMPILING THE INPUT DATA

1. GENERAL DISCUSSION

The 217B PREDICT computer program does not require any prior computer experience on the part of the user. However, the computer program is based on the assumption that the user has a working knowledge of the failure rate models and techniques in MIL-HDBK-217B, and experience in deriving non-MIL-HDBK-217B part failure rates. In addition, the user should be acquainted with the computer program concept as outlined in Section I, plus its applications and limitations as defined herein. Detailed procedures and assumptions are presented in Section V.

a. Hardware Indenture Levels

The user must organize the assembly/fabrication drawing data in terms of "system," "subsystem," "assembly," and "subassembly" levels as depicted in Figure 2.1. The computer program compiles the part failure rate data at the "assembly" and "subassembly" levels. These data are then summarized at the "subsystem" and "system" levels, with the computed Mean-Time-Between-Failures (MTBF) and reliability (based on the exponential function) for each life cycle event.

FIGURE 2.1. Generalized Arrangement of Assembly/Fabrication Drawing Data for 217B PREDICT Computer Program.

b. Data Preparation/Submittal

The 217B PREDICT computer program input data are prepared using fixed format computer coding forms and are keypunched on computer data cards for batch submittal to the UNIVAC 1110 computer. The data cards provide explicit computer control in performing the reliability prediction as defined in Appendices A and B, and as outlined below:

(1) Computer Control Cards

@ Card format. UNIVAC 1110 computer control cards, used to identify and execute the 217B PREDICT computer program at the Naval Weapons Center, China Lake, California.

(2) Supplemental Data Cards

Card 1 Format. Used to document additional failure rate data sources used in performing the prediction (not mandatory).

Card 2 Format. Used to submit modifications or additions to the Stored Part Data as defined in Appendix A (not mandatory).

(3) System/Subsystem Control Cards

Card 3 Format. Used to explicitly define the system.

Card 4 Format. Used to explicitly define each subsystem in the system (not mandatory).

Card 5 Format. Used to define the environmental stress conditions to be used for each set of failure rate data (type of failure rate data, equivalent MIL-HDBK-217B environment, and ambient temperature).

(4) Assembly/Subassembly Data Cards

Card 6 Format. Used to explicitly define each assembly in the subsystem.

Card 7 Format. Used to explicitly define each subassembly in the assembly (not mandatory).

Detailed Data Card (Detailed Failure Rate Subroutine only). Used to explicitly define each part in the assembly or subassembly, and to define all exceptions to the "Standard" part failure rate definitions.

Condensed Data Card (Condensed Failure Rate Subroutine only). Used to define each part type and part quantity in the assembly.

(5) Reliability Summary Cards

Card 8 Format. Used to identify the applicable failure rate data and one-shot reliability data for each life cycle event. These data are used in the Prediction Summary Subroutine to compile the overall system reliability data.

c. Type of Failure Rate Data.

The user evaluates and modifies the Stored Part Data as defined in Appendix A to establish the "Standard" part failure rate definitions for the prediction. The Applied Stress Part Data provide minimum operating and dormant failure rate conditions for the Detailed and Condensed Failure Rate Subroutines, and minimize the amount of data to be entered at the part level for the Detailed Failure Rate Subroutine. The Assumed Stress Part Data provide nominal operating failure rate conditions for the Detailed and Condensed Failure Rate Subroutines. These data are defined as:

- (1) Applied Stress Part Data (APPLIED) = minimum operating failure rate conditions as modified at the part level to reflect detailed stress analysis data for a mature design that is explicitly defined.
- (2) Assumed Stress Part Data (ASSUMED) = nominal operating failure rate conditions that reflect assumed stress data for an early design that is not explicitly defined. The assumed primary stress ratio (S_1) is in general accordance with the definitions in Section 3 of MIL-HDBK-217B; the remaining parameters are in accordance with the Applied Stress Part Data.
- (3) Dormant Part Data (DORMANT) = minimum operating failure rate conditions times a dormant failure rate π -factor (operating-to-nonoperating failure rate multiplier). This technique provides dormant data that reflects the impact of ambient temperature and part quality.

Inclusion of dormant data in the computer program was considered to be mandatory, yet the resolution of the uncertainties regarding the RADC and Redstone dormant data in References 2, 3, and 4 was beyond the scope of the current development of the computer program. A preliminary evaluation of the dormant data with regard to MIL-HDBK-217B operating data was performed, and generalized dormant π -factors were derived as presented in Appendix A. Use of these factors will provide part failure rate data in general accordance with the RADC and Redstone dormant data, and will also reflect the impact of ambient temperature and part quality. These data and procedures will be used pending further studies of dormant versus operating part failure rates.

d. Part Failure Rate Model.

The following general part failure rate model as used in the computer program is a logical extension of the general part failure rate model in MIL-HDBK-217B.

$$\lambda_p = \lambda_b (\pi_E) \left(\prod_{i=1}^n \pi_i \right) \pi_D$$

Where: λ_p = part failure rate for the applicable environment and operating/nonoperating state in failures per million hours

λ_b = basic operating part failure rate as defined in MIL-HDBK-217B

π_E = appropriate environmental π -factor for the applicable part type

\prod = mathematical symbol for "the product of"

π_i = value of the i^{th} π -factor for the applicable part type as defined in MIL-HDBK-217B (not applicable to non-MIL-HDBK-217B parts)

π_D = dormant (operating-to-nonoperating) π -factor (π_D reflects nonoperating failure rate data ÷ operating failure rate data for a specific set of environmental conditions = 1.0 for operating part failure rates)

Note: Use of any nonstandard (non-MIL-HDBK-217B) part failure rate requires good engineering judgement, must be fully substantiated in the reliability prediction report, and is subject to procuring agency approval.

The non-MIL-HDBK-217B data presented herein reflects part failure rate data and techniques used over the last several years in performing reliability predictions at the Naval Weapons Center, China Lake, California. These data are included for the convenience of the user. However, it should be noted that the inclusion of these data does not reflect any prior approval on the part of any procuring agency.

e. System/Subsystem Reliability Model

The system and subsystem reliability data compiled using the 217B PREDICT computer program reflects a series reliability model wherein failure of any part constitutes system failure. The "subsystem" and "system" reliability, less the one-shot devices, as calculated by 217B PREDICT assumes statistically independent part failures that exhibit a constant failure rate for the time period being evaluated. These reliabilities are calculated using the exponential function:

$$R(t) = \exp \left(-t \sum_{i=1}^n \lambda_i (10^{-6}) \right)$$

Where: $R(t)$ = "subsystem" or "system" reliability as a function of time

\exp = base "e" of the natural logarithm to the power indicated

t = time in hours

λ_i = failure rate of the i^{th} part for the applicable environment and operating/dormant state in failures per million hours.

The one-shot device reliabilities are expressed in terms of probability and are incorporated into the system reliability using the equation:

$$R(s) = R(t) \cdot \sum_{j=1}^k P(\text{one-shot})_j$$

Where: $R(s)$ = overall "system or "subsystem" reliability

$R(t)$ = "system" or "subsystem" reliability, less one-shot devices, as calculated using the exponential reliability function

$P(\text{one-shot})_j$ = probability of successful operation of the j^{th} one-shot device

X The computer program does not contain any provisions for handling non-series reliability configurations. If non-series reliability calculations are required, it is recommended that the above series model be repressed in the printout. The remaining failure rate data would then be submitted to manual calculation techniques or alternate computer programs, e.g., Reference 5.

2. PARTS COUNT FAILURE RATE DATA

a. Early Design Information

The data depicted in Figures 2.2, 2.3, and 2.4 are representative of the type of basic information necessary to perform a reliability prediction for early design hardware. These data would be compiled by the reliability analyst using engineering judgement and very limited design information.

b. "Standard" Part Failure Rate Definitions.

Comparison of the part data in Figure 2.2 to the Stored Part Data as defined in Appendix A indicates that:

- (1) The part quality and application is inadequately defined. However, the resistor and capacitor part definitions indicate the use of established reliability level parts. If the analyst is unable to obtain clarification, the Stored Part Data for a military application could be assumed to be applicable without modification.
- (2) The Electromechanical Timer is not reflected in the Stored Part Data. Therefore, the reliability analyst must research the available documentation and define an operating failure rate that reflects the part, part application, and operating environment. If the Stored Part Data does not include the failure rate data source used, the analyst documents same using the Card 1 format as defined in Appendix A. The part failure rate data are added to the Stored Part Data using the Card 2C format as depicted in Table 2.1. If the Card 2C format does not explicitly define the part failure rate derivation, it is the responsibility of the analyst to include the additional information in the basic report.

c. System Configuration Data

The system configuration data are compiled on the Computer Coding Forms in Appendix B, as depicted in Table 2.1. By entering the environmental stress data using the Card 5B format (Condensed Failure Rate Subroutine only), the user can enter the part data on the simplified Condensed Part Data Cards. As depicted in Table 2.1, the environmental stress conditions for each life cycle event are in terms of the type of failure rate data (APPLIED, ASSUMED, or DORMANT), the equivalent MIL-HDBK-217B environmental symbol, and the ambient temperature in degrees Celsius. If the above data are not specifically defined, the analyst defines said conditions in terms of established documentation, e.g., environmental criteria and guidelines in MIL-STD-1670 (Reference 6). The number of part solder connections (#C) is stored by the computer program for the Stored Part Data. The number of part solder connections for data entered on a 2C Card, or other connections, must be entered separately. The part data are entered on the Condensed Part Data Cards in terms of Part Code and Part Quantity only. Although the preliminary parts list does not reflect printed wiring boards or connectors, it is reasonable to assume that they should be included. Detailed procedures and assumptions are presented in Section V.

FIGURE 2.2 PRELIMINARY SYSTEM CONFIGURATION DATA (EXAMPLE)

FIGURE 2.3 PRELIMINARY SYSTEM RELIABILITY MODEL (EXAMPLE)

FIGURE 2.4 PRELIMINARY LIFE CYCLE EVENTS (EXAMPLE)

TABLE 2.1. Parts Count Computer Coding Forms (Example)

1. Q CARDS. UNIVAC 1110 computer control cards as defined in Appendix B.
 2. CARD 2C. Add part failure rate information to the Stored Part Data.

3. CARD 3. Define System Description.

CARD 5B. Define Environmental Stress Conditions for Condensed PR Subroutine. 4.

5. CARD 6. Define first Assembly Description.

6. CONDENSED PART DATA CARD. Define each of the Assembly Part Types and Quantity.

TABLE 2.1. Parts Count Computer Coding Forms (Example) (Continued)

7. CARD 6. Define second Assembly Description.

ASSEMBLY DESCRIPTION									
Part No	Part								
Code	Qty	Code	Qty	Code	Qty	Code	Qty	Code	Qty
1	1	2	3	4	5	6	7	8	9
10	1	11	12	13	14	15	16	17	18
19	1	20	21	22	23	24	25	26	27
28	1	29	30	31	32	33	34	35	36
37	1	38	39	40	41	42	43	44	45
46	1	47	48	49	50	51	52	53	54
55	1	56	57	58	59	60	61	62	63
64	1	65	66	67	68	69	70	71	72
73	1	74	75	76	77	78	79	80	81
82	1	83	84	85	86	87	88	89	90
91	1	92	93	94	95	96	97	98	99
99	1	99	99	99	99	99	99	99	99

8. CONDENSED PART DATA CARD. Define each of the Assembly Part types and Quantity.

CONDENSED PART DATA									
Part	Part	Part	Part	Part	Part	Part	Part	Part	Part
Code	Qty	Code	Qty	Code	Qty	Code	Qty	Code	Qty
1	1	2	3	4	5	6	7	8	9
10	1	11	12	13	14	15	16	17	18
19	1	20	21	22	23	24	25	26	27
28	1	29	30	31	32	33	34	35	36
37	1	38	39	40	41	42	43	44	45
46	1	47	48	49	50	51	52	53	54
55	1	56	57	58	59	60	61	62	63
64	1	65	66	67	68	69	70	71	72
73	1	74	75	76	77	78	79	80	81
82	1	83	84	85	86	87	88	89	90
91	1	92	93	94	95	96	97	98	99
99	1	99	99	99	99	99	99	99	99

9. Card 8. Define the Reliability Summary Cards.

LINE CYCLE EVENT DESC									
Event	No	Event	No	Event	No	Event	No	Event	No
Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr
1	1	2	3	4	5	6	7	8	9
10	1	11	12	13	14	15	16	17	18
19	1	20	21	22	23	24	25	26	27
28	1	29	30	31	32	33	34	35	36
37	1	38	39	40	41	42	43	44	45
46	1	47	48	49	50	51	52	53	54
55	1	56	57	58	59	60	61	62	63
64	1	65	66	67	68	69	70	71	72
73	1	74	75	76	77	78	79	80	81
82	1	83	84	85	86	87	88	89	90
91	1	92	93	94	95	96	97	98	99
99	1	99	99	99	99	99	99	99	99

LINE CYCLE EVENT DESC									
Event	No	Event	No	Event	No	Event	No	Event	No
Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr
1	1	2	3	4	5	6	7	8	9
10	1	11	12	13	14	15	16	17	18
19	1	20	21	22	23	24	25	26	27
28	1	29	30	31	32	33	34	35	36
37	1	38	39	40	41	42	43	44	45
46	1	47	48	49	50	51	52	53	54
55	1	56	57	58	59	60	61	62	63
64	1	65	66	67	68	69	70	71	72
73	1	74	75	76	77	78	79	80	81
82	1	83	84	85	86	87	88	89	90
91	1	92	93	94	95	96	97	98	99
99	1	99	99	99	99	99	99	99	99

LINE CYCLE EVENT DESC									
Event	No	Event	No	Event	No	Event	No	Event	No
Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr
1	1	2	3	4	5	6	7	8	9
10	1	11	12	13	14	15	16	17	18
19	1	20	21	22	23	24	25	26	27
28	1	29	30	31	32	33	34	35	36
37	1	38	39	40	41	42	43	44	45
46	1	47	48	49	50	51	52	53	54
55	1	56	57	58	59	60	61	62	63
64	1	65	66	67	68	69	70	71	72
73	1	74	75	76	77	78	79	80	81
82	1	83	84	85	86	87	88	89	90
91	1	92	93	94	95	96	97	98	99
99	1	99	99	99	99	99	99	99	99

LINE CYCLE EVENT DESC									
Event	No	Event	No	Event	No	Event	No	Event	No
Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr
1	1	2	3	4	5	6	7	8	9
10	1	11	12	13	14	15	16	17	18
19	1	20	21	22	23	24	25	26	27
28	1	29	30	31	32	33	34	35	36
37	1	38	39	40	41	42	43	44	45
46	1	47	48	49	50	51	52	53	54
55	1	56	57	58	59	60	61	62	63
64	1	65	66	67	68	69	70	71	72
73	1	74	75	76	77	78	79	80	81
82	1	83	84	85	86	87	88	89	90
91	1	92	93	94	95	96	97	98	99
99	1	99	99	99	99	99	99	99	99

LINE CYCLE EVENT DESC									
Event	No	Event	No	Event	No	Event	No	Event	No
Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr
1	1	2	3	4	5	6	7	8	9
10	1	11	12	13	14	15	16	17	18
19	1	20	21	22	23	24	25	26	27
28	1	29	30	31	32	33	34	35	36
37	1	38	39	40	41	42	43	44	45
46	1	47	48	49	50	51	52	53	54
55	1	56	57	58	59	60	61	62	63
64	1	65	66	67	68	69	70	71	72
73	1	74	75	76	77	78	79	80	81
82	1	83	84	85	86	87	88	89	90
91	1	92	93	94	95	96	97	98	99
99	1	99	99	99	99	99	99	99	99

LINE CYCLE EVENT DESC									
Event	No	Event	No	Event	No	Event	No	Event	No
Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr
1	1	2	3	4	5	6	7	8	9
10	1	11	12	13	14	15	16	17	18
19	1	20	21	22	23	24	25	26	27
28	1	29	30	31	32	33	34	35	36
37	1	38	39	40	41	42	43	44	45
46	1	47	48	49	50	51	52	53	54
55	1	56	57	58	59	60	61	62	63
64	1	65	66	67	68	69	70	71	72
73	1	74	75	76	77	78	79	80	81
82	1	83	84	85	86	87	88	89	90
91	1	92	93	94	95	96	97	98	99
99	1	99	99	99	99	99	99	99	99

TABLE 2.1. Parts Count Computer Coding Forms (Example) (Continued)

10. @ CARDS. UNIVAC 1110 computer control cards as defined in Appendix B.

3. APPLIED STRESS FAILURE RATE DATA

a. Preliminary Design Information

The data depicted in Figures 2.2, 2.3, and 2.4 are representative of the type of basic information necessary to perform a preliminary reliability prediction using stress analysis data as depicted in Table 2.2. The necessary data would be compiled by the reliability analyst using engineering judgement and very limited design information.

b. "Standard" Part Failure Rate Definitions

Comparison of the part data in Table 2.2 to the Stored Part Data as defined in Appendix A indicates that:

- (1) The part quality and application is inadequately defined, however, the resistor and capacitor part definitions indicate the use of established reliability level parts. If the analyst is unable to obtain clarification, the Stored Part Data for a military application could be assumed to be applicable with a minimum of modifications. The Stored Part Data are modified using the Card 2B format as depicted in Table 2.3 to reflect the users hardware and to minimize the data entries at the part level.
- (2) As noted in Section II.2.b(2), the Electromechanical Timer is not reflected in the Stored Part Data. Therefore, the reliability analyst must research and define an appropriate operating part failure rate that reflects the part, part application, and operating environment. The part failure rate is added to the Stored Part Data using the Card 2C format.

c. System Configuration Data

The system configuration data are compiled on the Computer Coding Forms in Appendix B, as depicted in Table 2.3. By entering the environmental stress data using the Card 5A format (Detailed Failure Rate Subroutine only), the user can enter detailed part data and all exceptions to the "Standard" part failure rate definitions at the part level using the Detailed Part Data Cards. The number of part solder connections (#C) is stored by the computer program for the Stored Part Data. The number of part solder connections for data entered on a 2C Card, or other connections, must be entered separately. As depicted in Table 2.3 the environmental stress conditions for each life cycle event are in terms of the type of failure rate data (APPLIED, ASSUMED, or DORMANT), the equivalent MIL-HDBK-217B environmental symbol, and the ambient temperature in degrees Celsius. If the above data are not specifically defined, the analyst defines said conditions in terms of established documentation, e.g., environmental criteria and guidelines in MIL-STD-1670 (Reference 6). Although the preliminary parts list does not reflect printed wiring boards or connectors, it is reasonable to assume that they should be included. Detailed procedures and assumptions are presented in Section V.

STRESS ANALYSIS WORKSHEET SYSTEM

TABLE 2.2. PRELIMINARY STRESS ANALYSIS (EXAMPLE)

PART DESIGN.				PART TYPE & QUALITY				VALUE OR NUMBER				REVERSE VOLTAGE				STRESS AT 25°C — °C				DRAWING	
								RATED		APPLIED		TYPE STRESS		APPLIED STRESS		RATING		RATIO		COMMENTS	
												— ALL CURRENTS AND VOLTAGES WITHIN SPECIFICATIONS —		— ALL CURRENTS AND VOLTAGES WITHIN SPECIFICATIONS —		— ALL CURRENTS AND VOLTAGES WITHIN SPECIFICATIONS —		— ALL CURRENTS AND VOLTAGES WITHIN SPECIFICATIONS —		— ALL CURRENTS AND VOLTAGES WITHIN SPECIFICATIONS —	
U1,2,3	512 BIT PROM	MC14503		U3-4	MAND GATE	5402		U1-3	2N2222A	CEO-40	<4	<0.1	POWER	<.05	0.5	<0.1					
U3-4	MAND GATE	5402		Q1-3	NPN XSTR	2N2901A		CEO-60	<6	<0.1	POWER	<.06	0.6	POWER	<.02	0.2	<0.1				
Q1-3	NPN XSTR	2N2901A		Q4-6	PNP XSTR	2N2901A		CEO-60	<8	<0.1	CURRENT	<.02	0.2	CURRENT	<.05	0.5	<0.1				
Q4-6	PNP XSTR	2N2901A		CR1-5	DIODE	1N4838		BV-80			POWER	<.10	0.25	POWER	<.02	0.25	<0.1				
CR1-5	DIODE	1N4838		VR1-2	9V ZENER	1N938A					POWER	<.01	0.125	POWER	<.07	0.25	<0.1				
VR1-2	9V ZENER	1N938A		R1	RCR07	3.9K					POWER	<.01	0.125	POWER	<.02	0.25	<0.1				
R1	RCR07	3.9K		R2-5	RCR07	XXX					POWER	<.02	0.25	POWER	<.01	0.125	<0.1				
R2-5	RCR07	XXX		R6-7	RNR55	XXX					POWER	<.01	0.125	POWER	<.07	0.25	<0.1				
R6-7	RNR55	XXX		R8	RCR07	5.1K					POWER	<.02	0.25	POWER	<.01	0.125	<0.1				
R8	RCR07	5.1K		R9-13	RNR55	XXX					POWER	<.02	0.25	POWER	<.01	0.125	<0.1				
R9-13	RNR55	XXX		R14-15	RCR07	XXX					POWER	<.02	0.25	POWER	<.01	0.125	<0.1				
R14-15	RCR07	XXX		R16-17	RNR74	100					POWER	<.02	0.25	POWER	<.01	0.125	<0.1				
R16-17	RNR74	100		R18-19	RCR07	XXX					POWER	<.02	0.25	POWER	<.01	0.125	<0.1				
R18-19	RCR07	XXX		R20-24	RNR55	XXX					VOLTAGE	<50	500	VOLTAGE	<50	500	<0.1				
R20-24	RNR55	XXX		C1-4	CK70	.001					VOLTAGE	8	20	VOLTAGE	12	20	0.6				
C1-4	CK70	.001		C5	CSR13	68					VOLTAGE	<50	500	VOLTAGE	12	20	0.6				
C5	CSR13	68		C6	CSR13	68					VOLTAGE	<50	500	VOLTAGE	12	20	0.6				
C6	CSR13	68		C7	CSR06	.001					VOLTAGE	<50	500	VOLTAGE	12	20	0.6				
C7	CSR06	.001		C8-C9	CSR13	33					VOLTAGE	<50	500	VOLTAGE	<50	500	<0.1				
C8-C9	CSR13	33		C10-12	CK70	.001					— INTEGRATOR —				— ALL CURRENTS AND VOLTAGES WITHIN SPECIFICATIONS —				— ALL CURRENTS AND VOLTAGES WITHIN SPECIFICATIONS —		
C10-12	CK70	.001		U1-3	OP AMP	UA741					POWER	<.01	0.125	POWER	<.02	0.125	<0.1				
U1-3	OP AMP	UA741		R1-8	RNR55	XXX					POWER	.025	0.125	POWER	.01	0.125	0.2				
R1-8	RNR55	XXX		R9-10	RNR55	105Ω					POWER	<.01	0.125	POWER	<.01	0.125	<0.1				
R9-10	RNR55	105Ω		R11	RNR55	2.05K					VOLTAGE	<50	500	VOLTAGE	<50	500	<0.1				
R11	RNR55	2.05K		C1-4	CK70	.001					VOLTAGE	8	20	VOLTAGE	8	20	0.4				
C1-4	CK70	.001		C5-6	CSR13	33					VOLTAGE	<50	500	VOLTAGE	<50	500	<0.1				
C5-6	CSR13	33		C7-8	CK70	.001					VOLTAGE	<50	500	VOLTAGE	<50	500	<0.1				

TABLE 2.1. Applied Stress Computer Coding Forms

1. Q CARDS. UNIVAC 1110 computer control cards as defined in Appendix B.
 2. CARD 2B. Modify part failure rate parameters in the Stored Part Data.

PART DESCRIPTION		PART FOR EQUIVALENCE												MODIFIED PART PARAMETER												REMOVED PART PARAMETER																																																																											
PART CODE		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
1-1	-	1-1	1-2	1-3	1-4	1-5	1-6	1-7	1-8	1-9	1-10	1-11	1-12	1-13	1-14	1-15	1-16	1-17	1-18	1-19	1-20	1-21	1-22	1-23	1-24	1-25	1-26	1-27	1-28	1-29	1-30	1-31	1-32	1-33	1-34	1-35	1-36	1-37	1-38	1-39	1-40	1-41	1-42	1-43	1-44	1-45	1-46	1-47	1-48	1-49	1-50	1-51	1-52	1-53	1-54	1-55	1-56	1-57	1-58	1-59	1-60	1-61	1-62	1-63	1-64	1-65	1-66	1-67	1-68	1-69	1-70	1-71	1-72	1-73	1-74	1-75	1-76	1-77	1-78	1-79	1-80	1-81	1-82	1-83	1-84	1-85	1-86	1-87	1-88	1-89	1-90	1-91	1-92	1-93	1-94	1-95	1-96	1-97	1-98	1-99	1-100
2-1	-	2-1	2-2	2-3	2-4	2-5	2-6	2-7	2-8	2-9	2-10	2-11	2-12	2-13	2-14	2-15	2-16	2-17	2-18	2-19	2-20	2-21	2-22	2-23	2-24	2-25	2-26	2-27	2-28	2-29	2-30	2-31	2-32	2-33	2-34	2-35	2-36	2-37	2-38	2-39	2-40	2-41	2-42	2-43	2-44	2-45	2-46	2-47	2-48	2-49	2-50	2-51	2-52	2-53	2-54	2-55	2-56	2-57	2-58	2-59	2-60	2-61	2-62	2-63	2-64	2-65	2-66	2-67	2-68	2-69	2-70	2-71	2-72	2-73	2-74	2-75	2-76	2-77	2-78	2-79	2-80	2-81	2-82	2-83	2-84	2-85	2-86	2-87	2-88	2-89	2-90	2-91	2-92	2-93	2-94	2-95	2-96	2-97	2-98	2-99	2-100
2-2	-	2-1	2-2	2-3	2-4	2-5	2-6	2-7	2-8	2-9	2-10	2-11	2-12	2-13	2-14	2-15	2-16	2-17	2-18	2-19	2-20	2-21	2-22	2-23	2-24	2-25	2-26	2-27	2-28	2-29	2-30	2-31	2-32	2-33	2-34	2-35	2-36	2-37	2-38	2-39	2-40	2-41	2-42	2-43	2-44	2-45	2-46	2-47	2-48	2-49	2-50	2-51	2-52	2-53	2-54	2-55	2-56	2-57	2-58	2-59	2-60	2-61	2-62	2-63	2-64	2-65	2-66	2-67	2-68	2-69	2-70	2-71	2-72	2-73	2-74	2-75	2-76	2-77	2-78	2-79	2-80	2-81	2-82	2-83	2-84	2-85	2-86	2-87	2-88	2-89	2-90	2-91	2-92	2-93	2-94	2-95	2-96	2-97	2-98	2-99	2-100
2-3	-	2-1	2-2	2-3	2-4	2-5	2-6	2-7	2-8	2-9	2-10	2-11	2-12	2-13	2-14	2-15	2-16	2-17	2-18	2-19	2-20	2-21	2-22	2-23	2-24	2-25	2-26	2-27	2-28	2-29	2-30	2-31	2-32	2-33	2-34	2-35	2-36	2-37	2-38	2-39	2-40	2-41	2-42																																																										

3. CARD 2C: Add part failure rate information to the Stored Part Data.

- #### **4. CARD 3. Define System Description.**

5. CARD 5A: Define Environmental Stress Conditions for Detailed FR Subroutine.

- ## 6. CARD 6. Define first Assembly Description

କରୁଣାରେ ଦେଖିଲୁଗା ହେଲା ଏହା
କରୁଣାରେ ଦେଖିଲୁଗା ହେଲା ଏହା

TABLE 2.3. Applied Stress Computer Coding Forms (Continued)

DETAILED PART DATA CARD. Define parts and exceptions to "standard" definitions.

8. CARD 6. Define second Assembly Description.

TABLE 2.3. Applied Stress Computer Coding Forms (Continued)

9. DETAILED PART DATA CARD.

10. CARD 8. Define the Reliability Summary Cards.

TABLE 2.3. Applied Stress Computer Coding Forms (Continued)

10. CARD 8. Reliability Summary Cards (Continued)

Circuit Analysis Report Data									
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130
131	132	133	134	135	136	137	138	139	140
141	142	143	144	145	146	147	148	149	150
151	152	153	154	155	156	157	158	159	160
161	162	163	164	165	166	167	168	169	170
171	172	173	174	175	176	177	178	179	180
181	182	183	184	185	186	187	188	189	190
191	192	193	194	195	196	197	198	199	200
201	202	203	204	205	206	207	208	209	210
211	212	213	214	215	216	217	218	219	220
221	222	223	224	225	226	227	228	229	230
231	232	233	234	235	236	237	238	239	240
241	242	243	244	245	246	247	248	249	250
251	252	253	254	255	256	257	258	259	260
261	262	263	264	265	266	267	268	269	270
271	272	273	274	275	276	277	278	279	280
281	282	283	284	285	286	287	288	289	290
291	292	293	294	295	296	297	298	299	300
301	302	303	304	305	306	307	308	309	310
311	312	313	314	315	316	317	318	319	320
321	322	323	324	325	326	327	328	329	330
331	332	333	334	335	336	337	338	339	340
341	342	343	344	345	346	347	348	349	350
351	352	353	354	355	356	357	358	359	360
361	362	363	364	365	366	367	368	369	370
371	372	373	374	375	376	377	378	379	380
381	382	383	384	385	386	387	388	389	390
391	392	393	394	395	396	397	398	399	400
401	402	403	404	405	406	407	408	409	410
411	412	413	414	415	416	417	418	419	420
421	422	423	424	425	426	427	428	429	430
431	432	433	434	435	436	437	438	439	440
441	442	443	444	445	446	447	448	449	450
451	452	453	454	455	456	457	458	459	460
461	462	463	464	465	466	467	468	469	470
471	472	473	474	475	476	477	478	479	480
481	482	483	484	485	486	487	488	489	490
491	492	493	494	495	496	497	498	499	500
501	502	503	504	505	506	507	508	509	510
511	512	513	514	515	516	517	518	519	520
521	522	523	524	525	526	527	528	529	530
531	532	533	534	535	536	537	538	539	540
541	542	543	544	545	546	547	548	549	550
551	552	553	554	555	556	557	558	559	560
561	562	563	564	565	566	567	568	569	570
571	572	573	574	575	576	577	578	579	580
581	582	583	584	585	586	587	588	589	590
591	592	593	594	595	596	597	598	599	600
601	602	603	604	605	606	607	608	609	610
611	612	613	614	615	616	617	618	619	620
621	622	623	624	625	626	627	628	629	630
631	632	633	634	635	636	637	638	639	640
641	642	643	644	645	646	647	648	649	650
651	652	653	654	655	656	657	658	659	660
661	662	663	664	665	666	667	668	669	670
671	672	673	674	675	676	677	678	679	680
681	682	683	684	685	686	687	688	689	690
691	692	693	694	695	696	697	698	699	700
701	702	703	704	705	706	707	708	709	710
711	712	713	714	715	716	717	718	719	720
721	722	723	724	725	726	727	728	729	730
731	732	733	734	735	736	737	738	739	740
741	742	743	744	745	746	747	748	749	750
751	752	753	754	755	756	757	758	759	760
761	762	763	764	765	766	767	768	769	770
771	772	773	774	775	776	777	778	779	780
781	782	783	784	785	786	787	788	789	790
791	792	793	794	795	796	797	798	799	800
801	802	803	804	805	806	807	808	809	810
811	812	813	814	815	816	817	818	819	820
821	822	823	824	825	826	827	828	829	830
831	832	833	834	835	836	837	838	839	840
841	842	843	844	845	846	847	848	849	850
851	852	853	854	855	856	857	858	859	860
861	862	863	864	865	866	867	868	869	870
871	872	873	874	875	876	877	878	879	880
881	882	883	884	885	886	887	888	889	890
891	892	893	894	895	896	897	898	899	900
901	902	903	904	905	906	907	908	909	910
911	912	913	914	915	916	917	918	919	920
921	922	923	924	925	926	927	928	929	930
931	932	933	934	935	936	937	938	939	940
941	942	943	944	945	946	947	948	949	950
951	952	953	954	955	956	957	958	959	960
961	962	963	964	965	966	967	968	969	970
971	972	973	974	975	976	977	978	979	980
981	982	983	984	985	986	987	988	989	990
991	992	993	994	995	996	997	998	999	1000

11. A CARDS. UNIVAC 1110 computer control cards as defined in Appendix B.

SECTION III

SAMPLE PREDICTION

1. CONFIGURATION DATA

In compiling the data to perform a reliability prediction using the computer program, the user must organize his hardware in terms of "system," "subsystem," "assembly," and "subassembly" as depicted in Figure 3.1. The user should note for the summary all one-shot devices that are to be "predicted" using device reliability data instead of time-dependent failure rate data, i.e. part (n+1) in Figure 3.1. The user must also evaluate the applicability of the series system assumption in Section II.1.e. If the user's system contains non-series functions, these data must be isolated as separate data in the computer printout for proper data manipulation in the basic report.

2. LIFE CYCLE EVENT DATA

The user must define all dormant and operating life cycle events that are to be included in the prediction. These definitions should be in direct accordance with specified system requirements for proper data comparison upon completion of the reliability prediction. The life cycle events should be explicitly defined in terms of environmental severity, operating versus dormant state, containerized versus non-containerized storage, event durations, and event temperatures for inclusion in the failure rate data base. The user must also acquire or derive the necessary stress analysis data for formal, explicit prediction results. If these data are not available, the acceptability of the assumed stress part data techniques must be defined by the user.

3. DATA PREPARATION

To prepare the above data for the computer program, the user:

- a. Compiles the "system," "subsystem," "assembly," and "subassembly" description on the appropriate cards, and identifies the appropriate environmental conditions for the Detailed and/or Condensed Failure Rate Subroutines using the Card 5A and/or 5B format. These data define the hardware documentation, the failure rate subroutines, and environmental conditions to be used.

Note: Condensed Failure Rate Data for an assumed hardware configuration (OUTPUT STAGE) can be combined with detailed stress data (ELECTRONIC ABACUS) if submitted prior to implementing the Detailed Failure Rate Subroutine.

- b. Evaluates applicability of the Stored Part Data and modifies same, as necessary, using the Card 2B format to establish the "Standard" part failure rate parameters for the prediction.
- c. If the Condensed Failure Rate Subroutine only is to be used, the user compiles the part code and part quantity data on the Condensed Part Data Cards. If the user wants additional condensed failure rate data, he must duplicate his Condensed Part data and resubmit same as an additional subsystem (OUTPUT STAGE).

FIGURE 3.1. SYSTEM CONFIGURATION FOR SAMPLE PREDICTION

FIGURE 3.2. LIFE CYCLE EVENTS FOR SAMPLE PREDICTION

- d. If the Detailed Failure Rate Subroutine, or the Detailed and Condensed Failure Rate Subroutines are to be used, the user compiles, or has compiled, the assembly/fabrication drawing part reference designator and part number data on the Detailed Part Data Cards. The user then evaluates each part data card to enter the part code and all exceptions to the "Standard" part failure rate parameters.

If the user wants 6 to 10 sets of condensed failure rate data, he inserts a second 5B Card after each set of subsystem part data, i.e., prior to the next 3, 4, or 8 Card in his data deck. The computer program will use the part configuration data stored for the first 5B Card to provide a second set of condensed failure rate data (see Figure 1.1).

- e. Defines all additional part data that must be included, i.e., PWB Wave Solder Connections, etc. The number of part solder connections (#C) is stored by the computer program for the Stored Part Data. The number of part connections for data entered on a 2C Card, or other connections, must be entered separately.
- f. Defines all additional part failure rate data that must be stored in the computer program using the Card 2A or 2C format, e.g., 801 Electromechanical Timer.
- g. Defines the applicable failure rate data and one-shot reliability data for each life cycle event.
- h. Organizes data deck in accordance with Figure 2.1, adds appropriate computer control cards to compile the program deck, and submits same to the computer.

4. OUTPUT DATA

Each set of data (Detailed Failure Rate Data, Condensed Failure Rate Data, and Prediction Summary Data) from the computer is uniquely identified, dated, page numbered, and contains its own subsystem or system summary. This allows the user to include the data as separate appendices to his report. The basic report should contain all necessary supplemental failure rate or reliability data.

TABLE 3.1 Sample Prediction Computer Coding Forms

1. Supplemental Part Data.

22 301 ELECTROMECH TIMER 940C1 42.357 SEC 25T(1) 508
22 201 NON-METAL PLASTIC CAP-CAP STYRE 507
22 102 102
22 101 101
22 100 100
22 99 99
22 98 98
22 97 97
22 96 96
22 95 95
22 94 94
22 93 93
22 92 92
22 91 91
22 90 90
22 89 89
22 88 88
22 87 87
22 86 86
22 85 85
22 84 84
22 83 83
22 82 82
22 81 81
22 80 80
22 79 79
22 78 78
22 77 77
22 76 76
22 75 75
22 74 74
22 73 73
22 72 72
22 71 71
22 70 70
22 69 69
22 68 68
22 67 67
22 66 66
22 65 65
22 64 64
22 63 63
22 62 62
22 61 61
22 60 60
22 59 59
22 58 58
22 57 57
22 56 56
22 55 55
22 54 54
22 53 53
22 52 52
22 51 51
22 50 50
22 49 49
22 48 48
22 47 47
22 46 46
22 45 45
22 44 44
22 43 43
22 42 42
22 41 41
22 40 40
22 39 39
22 38 38
22 37 37
22 36 36
22 35 35
22 34 34
22 33 33
22 32 32
22 31 31
22 30 30
22 29 29
22 28 28
22 27 27
22 26 26
22 25 25
22 24 24
22 23 23
22 22 22
22 21 21
22 20 20
22 19 19
22 18 18
22 17 17
22 16 16
22 15 15
22 14 14
22 13 13
22 12 12
22 11 11
22 10 10
22 9 9
22 8 8
22 7 7
22 6 6
22 5 5
22 4 4
22 3 3
22 2 2
22 1 1

2. System Description.

卷之三

3. Condensed Failure Rate Data for 1st Subsystem.

4. Condensed Failure Rate Data for 2nd Subsystem.

TABLE 3.1. Sample Prediction Computer Coding Forms (Continued)

5. Control Cards for 3rd Subsystem.

6. Part Data Cards for 1st Assembly.

TABLE 3.1. Sample Prediction Computer Coding Forms (Continued)

7. Part Data Cards for 1st Subassembly in the 1st Assembly

TABLE 3.1. Sample Prediction Computer Coding Forms (Continued)

8. Part Data Cards for 2nd Subassembly in the 1st Assembly

TABLE 3.1. Sample Prediction Computer Coding Forms (Continued)

9. Part Data Cards for 2nd Assembly.

TABLE 3.1. Sample Prediction Computer Coding Forms (Continued)

02/28/77

OUTPUT STAGE FOR COMPUTING SYSTEM

*** CONDENSED PART FAILURE RATE DATA FOR ***
 (TO BE DEF) OUTPUT DRIVER

		DUE NO (ASSUMED)	
		ASSUMED AT FAIL. RATE AT 35 C	
PART DESCRIPTION	PART QTY	ASSUMED FAIL. RATE AT 35 C	ASSUMED MS FAIL. RATE AT 55 C
MONO S/NSI DIG I/C	6	.02620	.10410
MONO LSI DIG I/C	2	.07218	.23221
MONO RAM INTEG CKT	1	.15510	.45887
MOS S/NSI DIG I/C	2	.05004	.12561
SI NPN TRANSISTOR	7	.00301	.01682
SI PNP TRANSISTOR	5	.06469	.02776
SIB SILICON DIODE	8	.00449	.03185
CARBON COMP RES	18	.00052	.00265
W/W CHS POWER RES	9	.01755	.04988
U/V POWER RESISTOR	8	.01039	.02880
HTLC PPA/PLSTC CAP	11	.00014	.00029
SOLID TANTALUM CAP	6	.00023	.00051
PWB CONNECTOR	2	.09180	.14588
RACK & PANEL CONN	2	.09380	.14588
TWO-SIDED PW BOARD	1*	.00120	.00240
PART CONNECTIONS	78*	.00044	.00044
			3.14386
(TO BE DEF) OUTPUT DRIVER	87	1.27232	3.67493

NOTE: * = PART QTY NOT INCL IN TOTAL

FIGURE 3.3 OUTPUT DRIVER FR DATA

FIGURE 3.4 ASSUMED OUTPUT DRIVER FAILURE RATE DATA

FIGURE 3.5 ASSUMED OUTPUT DRIVER FAILURE RATE SUMMARY

FIGURE 3.3. Condensed Failure Rate Data for Assumed Output Driver Configuration

02/28/77		OUTPUT STAGE FOR COMPUTING SYSTEM		BNG NO (ASSUMED)		PAGE 2	
BNG NUMBER	ASSEMBLY OR SUBASSEMBLY DESCRIPTION	PART QTY	ASSUMED MS FAIL. RATE AT 35 C	PART QTY	ASSUMED MS FAIL. RATE AT 55 C	PART QTY	ASSUMED MS FAIL. RATE AT 45 C
(TO BE DEF)	OUTPUT DRIVER	87	1.27232	3.67493	3.14388	•	•
• • •	• • •	•	•	•	•	•	•
OUTPUT STAGE FOR COMPUTING SYSTEM		TOTAL PART QTY AND ENVIRONMENTAL STRESS FAILURE RATE		67	1.27232	3.67493	3.14388
ENVIRONMENTAL STRESS MEAN-TIME-BEFORE FAILURES (HOURS)		765964.80		272113.77	318078.06		

FIGURE 1.1 DISTRIBUTED EB DATA

FIGURE 3.3. Condensed Failure Rate Data for Assumed Output Driver Configuration (Cont'd)

02 / 28 / 77

OUTPUT STAGE FOR COMPUTING SYSTEM

THE PARTS LISTED ON THE FOLLOWING PAGE ARE NOT INCLUDED IN TOTAL OF PARTS

FIGURE 3.3 OUTPUT DRIVER FR DATA

FIGURE 3-3 Condensed Failure Rate Data for Assumed Output Duration Configuration (Cont'd)

02/28/77		OUTPUT STAGE FOR COMPUTING SYSTEM		DNG NO (ASSUMED)		PAGE 2	
DNG NUMBER	ASSEMBLY OR SUBASSEMBLY DESCRIPTION	(TO BE REF)	OUTPUT DRIVER	PART FAIL. RATE QTY AT 25 C	DORMANT GF FAIL. RATE AT 40 C	PART FAIL. RATE AT 65 C	DORMANT MS FAIL. RATE AT 55 C
OUTPUT STAGE FOR COMPUTING SYSTEM							
TOTAL PART QTY AND ENVIRONMENTAL STRESS FAILURE RATE ENVIRONMENTAL STRESS MEAN-TIME-BEFORE FAILURES (HOURS)							
87	45514730.67	02197	10778309.12	09278	42861	35163	44887
						2845515.26	2227830.28

FIGURE 3.3 OUTPUT DRIVER FR DATA**Failure Rate Data for Assumed Output Driver Configuration (Cont'd)****FIGURE 3.3 CONDENSED FAILURE RATE DATA FOR ASSUMED OUTPUT DRIVER CONFIGURATION (CONT'D)**

02/28/77		OUTPUT STAGE FOR COMPUTING SYSTEM										DUG NO (ASSUMED)																													
		PART 1					PART 2					PART 3					PART 4																								
(RANKING COLUMN)																																									
DOPANT 6% @ 40°C																																									
GENERAL PART		PART	QTY	-FR SUM-	-2-	-FR SUM-	-2-	-FR SUM-	-2-	-FR SUM-	-2-	-FR SUM-	-2-	-FR SUM-	-2-	-FR SUM-	-2-	-FR SUM-	-2-	-FR SUM-	-2-																				
DESCRIPTION																																									
MONO S/M/SI BIG I/C		6	.00391	17.611		.01623	17.450		.06263	14.412		.05986	17.013		.07460	16.664																									
SI PNP TRANSISTOR		5	.00175	7.951		.01062	11.443		.07111	16.592		.06353	18.078		.08728	14.004																									
MONO LSI BIG I/C		2	.00279	12.679		.01053	11.347		.03979	9.286		.03697	10.320		.04619	10.290																									
SI NPN TRANSISTOR		7	.00172	7.033		.01018	16.976		.06478	15.580		.05993	17.033		.06326	14.092																									
MONO RAN INTEG CKT		1	.00296	13.453		.00992	10.697		.03638	8.489		.03235	9.209		.04040	9.001																									
PUB CONNECTOR		2	.00216	9.841		.00839	9.040		.02811	6.560		.01167	3.321		.02817	6.274																									
RACK & PANEL CORM		2	.00216	9.841		.00839	9.040		.02811	6.560		.01167	3.321		.02817	6.274																									
ROS S/M/SI BIG I/C		2	.00130	5.937		.00601	6.476		.02811	6.554		.02229	6.561		.02968	6.613																									
STD SILICON DIODE		8	.00690	3.636		.00547	5.894		.04385	10.230		.03653	10.396		.04006	8.025																									
U/V CMS POWER RES		9	.00037	2.612		.00199	2.144		.00844	1.969		.00537	1.527		.00885	1.971																									
PART CONNECTIONS		78*	.00034	1.562		.00137	1.480		.00275	.644		.00137	.391		.00309	.488																									
MILC PPR/PLSTIC CAP		11	.00061	2.794		.00125	1.349		.00276	.645		.00262	.744		.00603	1.343																									
U/V POWER RESISTOR		8	.00031	1.404		.00104	1.118		.00423	.987		.00273	.776		.00446	.994																									
SOLID TANTALUM CAP		6	.00047	2.117		.00103	1.115		.00279	.650		.00242	.669		.00582	1.296																									
CARBON CORP RES		18	.00009	.417		.00031	.337		.00267	.622		.00133	.310		.00239	.533																									
TWO-SIDED PW BOARDS		1*	' .00002	.109		.00005	.052		.00010	.022		.00027	.027		.00024	.053																									
* = PART QTY NOT INCLUDED IN TOTAL OF PARTS																																									

FIGURE 3.3 OUTPUT DRIVER FR DATA
Condensed Failure Rate Data for Assumed Output Driver Configuration (Cont'd)

02/28/77

ELECTRONIC ABACUS

PAGE 1

*** DETAILED PART FAILURE RATE FOR ***
X6641199A ARITHMETIC CONTROL UNIT

BASIC	PART/DRAWING NUMBER	PART DESCRIPTION	QTY	APPLIED GF AT .35 C	APPLIED NS AT .55 C	APPLIED AI AT .45 C	FAIL. RATE FAIL. RATE FAIL. RATE	EXCEPTIONS TO APPLIED STRESS PART FR PARAMETERS IN PREDICTION SUMMARY
U1	M36510/201C1B/JB-MCM53C3	MONO RAM INTEG CKT	1	.15510	.45887	.39023		
U2	M36510/201C1B/JB-MCM5303	MONO RAM INTEG CKT	1	.15510	.45887	.39023		
CR1	JANTX1N6A2B	STD SILICON DIODE	1	.00253	.01872	.01547		
CR2	JANTX1N4330	STD SILICON DIODE	1	.00632	.04679	.03866	A = 1.5	
CR3	JANTX1N493B	STD SILICON DIODE	1	.00289	.02139	.01767	S2 = 0.8	
R1	AC076512JH	CARBON COMP RES	1	.00052	.00265	.00148		
R2	AC076512JH	CARBON COMP RES	1	.00073	.00380	.00210	S1=0.28	
R3	AC076426JH	CARBON COMP RES	1	.00083	.00424	.00237	R = 1.6	
R4	AC076392JH	CARBON COMP RES	1	.00052	.00265	.00149		
C1	M30003/01-530-C5R13/P	SOLID TANTALUM CAP	1	.00280	.00681	.00610	S1= 0.4	SR= 0.6
C2	M30003/01-2538-C5R13/P	SOLID TANTALUM CAP	1	.00071	.00174	.00156	S1= 0.6	
C3	C4628X102M	CERAMIC CAPACITOR	1	.04002	.08417	.08208		
X6841085A	X6841085A	PWB CONNECTOR	2	.09746	.15149	.12165	N = 21	
X6841132-	X6841132-	RACK & PANEL CONN	1	.08666	.13483	.10819	N = 18	
X6641235C	X6641235C	ELECTROMECH TIMER	1	.42.85700	.107.14250	.107.14250		
X6641328-	X6641328-	TWO-SIDED PW BOARD	1*	.00120	.00240	.00360	N = 55	
		PART CONNECTIONS	5*	.00044	.00044	.00044		
		PART CONNECTIONS	52*	.00044	.00044	.00044		
ASSEMBLY SUBTOTAL			18	43.72723	109.02110	108.71497	NOTE: * = PART NOT INCL IN TOTAL	

FIGURE 3.4 ELECT. ABACUS FR DATA

FIGURE 3.4. Detailed and Condensed Failure Rate Data for Electronic Abacus

02/28/77
*** DETAILED PART FAILURE RATE FOR ***
X6841101C INTEGRATOR

ELECTRONIC ABACUS
PAGE 4
BUG NO X03886000

DESIG	PART/DRAWING NUMBER	PART DESCRIPTION	PART QTY	APPLIED GF FAIL. RATE AT 35 C	APPLIED MS FAIL. RATE AT 55 C	APPLIED AI FAIL. RATE AT 45 C	EXCEPTIONS TO APPLIED STRESS PART FAI. RATE FOR PARAMETERS IN PREDICTION SUMMARY
U1	M38510/1010386C,LM101A	MONO S/M51 LIN 1/C	1	0.0384	.13873	.12380	
U2	M38510/1010386C,LM101A	MONO S/M51 LIN 1/C	1	0.0384	.13873	.12380	
U3	M38510/1010386C,LM101A	MONO S/M51 LIN 1/C	1	0.0384	.13873	.12380	
R1	RNR5520511M	HIGH STAB FILM RES	1	0.0040	.01513	.00921	
R2	RNR552052FM	HIGH STAB FILM RES	1	0.0040	.01513	.00921	
R3	RNR5527502FM	HIGH STAB FILM RES	1	0.0040	.01513	.00921	
R4	RNR55C7500FM	HIGH STAB FILM RES	1	0.0040	.01513	.00921	
R5	RNR55C2611FM	HIGH STAB FILM RES	1	0.0040	.01513	.00921	
R6	RNR55C5361FM	HIGH STAB FILM RES	1	0.0040	.01513	.00921	
R7	RNR55C1050FM	HIGH STAB FILM RES	1	0.0040	.01707	.01034	S1= 0.2
R8	RNR55C1050FM	HIGH STAB FILM RES	1	0.0040	.01707	.01034	S1= 0.2
R9	RNR55C2052FM	HIGH STAB FILM RES	1	0.0040	.01513	.00921	
R10	RNR55C2051FM	HIGH STAB FILM RES	1	0.0040	.01513	.00921	
R11	RNR55C2051FM	HIGH STAB FILM RES	1	0.0040	.01513	.00921	
C1	CMA05181FPM	MICA CAPACITOR	1	0.0067	.00224	.00150	
C2	CMA05F181FPM	MICA CAPACITOR	1	0.0067	.00224	.00150	
C3	M39006/01-2043	NON SOLID TANTAL CAP	1	0.0612	.09500	S1= 0.5	
C4	CMA05F181FPM	MICA CAPACITOR	1	0.0067	.00224	.00150	
C5	M39003/01-4539,CS13/P	SOLID TANTALUM CAP	1	0.0047	.00115	.00103	S1= 0.2
C6	M39007/01-2538,CS13/P	SOLID TANTALUM CAP	1	0.0017	.00040	.00036	
C7	M39014/01-1405,CKR06/M	CERAMIC CAPACITOR	1	0.0400	.00842	.00821	0 = 1.0
C8	M39014/01-1405,CKR06/M	CERAMIC CAPACITOR	1	0.0400	.00842	.00821	0 = 1.0
C9	M39014/01-1405,CKR06/M	CERAMIC CAPACITOR	1	0.0400	.00842	.00821	0 = 1.0
A6841085A	X6841132-	PWB CONNECTOR	1	2.72326	4.36065	3.43658	N = 22
X6841132-	X6841329-	RACK & PANEL CONN	1	2.72326	4.36065	3.43658	N = 22
X6841329-		TWO-SIDED PN BOARD	1	0.00120	.00240	.00160	N = 73
		PART CONNECTIONS	70+	.00044	.00044	.00044	
X6841101C	INTEGRATOR		25	5.67095	9.48068	7.54803	NOTE: * = PART GTV NOT INCL IN TOTAL

FIGURE 3.4. Detailed and Condensed Failure Rate Data for Electronic Abacus (Cont'd)

FIGURE 3.5. Output Driver Part Failure Rate Data for Electronic Abacus

02/28/77		ELECTRONIC ABACUS												02/28/77		ELECTRONIC ABACUS											
DNG NUMBER	ASSEMBLY OR SUBASSEMBLY DESCRIPTION	PART QTY				APPLIED GS				PART QTY				APPLIED GS				PART QTY				APPLIED GS					
X6841197-X6841198A	ASSEMBLY SUBTOTAL ABER LOGIC MULTIPLIER UNIT	10	43.72723	109.02110	108.71497	14	.22246	.53009	.46633	29	.51174	1.36860	1.16970	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----		
X6841199A	ARITHMETIC CONTROL UNIT	61	44.46663	110.92039	110.35100	-----	-----	-----	-----	25	5.67095	9.48068	7.54803	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----		
X6841101C	INTEGRATOR	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----		
ELECTRONIC ABACUS																											
TOTAL PART QTY AND ENVIRONMENTAL STRESS FAILURE RATE		86				50.13738				120.40107				117.89902				8305.57				8481.83					
ENVIRONMENTAL STRESS MEAN-TIME-BEFORE FAILURES (HOURS)																											

FIGURE 3.4. Detailed and Condensed Failure Rate Data for Electronic Abacus (Cont'd)

PAGE 6

02/28/77

ELECTRONIC ABACUS

Dwg No. 003P06000

GENERAL PART DESCRIPTION	PART QTY	APPLIED @ 0 °C			APPLIED @ 45 °C		
		-FR SUM-	-X-	-FR SUM-	-X-	-FR SUM-	-X-
ELECTROMECH TIMER	1	42.85700	85.479	107.14250	88.988	107.14250	90.876
QUB CONNECTOR	7	3.26456	6.511	5.20298	4.321	4.13270	3.505
RACK & PANEL CONN	2	2.93192	5.640	4.52935	3.762	3.59213	3.047
HONO RAN INTEG CKT	3	.46531	.928	1.37662	1.143	1.17068	.993
CERAMIC CAPACITOR	7	.17210	.343	.36193	.301	.35295	.299
PART CONNECTIONS	251+	.11044	.220	.11044	.092	.11044	.094
HONO S/RSI LIN 1/C	3	.10152	.202	.41620	.346	.37141	.315
HIGH STAB FILM RES	20	.08572	.171	.30930	.257	.18002	.159
INSUL FILM RES	8	.06454	.129	.12091	.100	.09037	.077
HONO S/RSI DIG 1/C	2	.05640	.112	.20877	.173	.19953	.169
ZENER DIODE	2	.03395	.068	.19880	.165	.18387	.156
MONSOLID TANTA CAP	1	.02906	.058	.10612	.088	.09900	.081
S10 SILICON DiODE	5	.01681	.034	.12433	.103	.10273	.087
SOLID TANTALUM CAP	8	.01076	.021	.02621	.022	.02346	.020
W/W POWER RESISTOR	1	.01039	.021	.02840	.024	.02247	.019
SI PNP TRANSISTOR	3	.00943	.019	.06013	.050	.05342	.045
SI NPN TRANSISTOR	3	.00651	.013	.04051	.014	.03635	.031
TWO-SIDED PW BOARD	4+	.00480	.010	.00960	.008	.01440	.012
CARBON COMP RES	7	.00416	.008	.02127	.018	.01189	.010
MICA CAPACITOR	3	.00201	.004	.00672	.006	.00450	.004
* = PART QTY NOT INCLUDED IN TOTAL OF PARTS							

FIGURE 3.4 ELECT. ABACUS FR DATA

FIGURE 3.4. Detailed and Condensed Failure Rate Data for Electronic Abacus (Cont'd)

02/28/77

ELECTRONIC ABACUS

*** CONDENSED PART FAILURE RATE DATA FOR ***
N6841199A ARITHMETIC CONTROL UNIT

BUG NO. N68386088

PAGE 1

		PART DESCRIPTION		PART QTY		FAIL. RATE AT 25 C		FAIL. RATE AT 40 C		FAIL. RATE AT 65 C		FAIL. RATE AT 60 C		FAIL. RATE AT 55 C	
MONO S/M/SI DIG I/C	2			.00005		.00270		.01044		.01019		.01224			
MONO RAM INTEG CKT	3			.00296		.00992		.03638		.03618		.03857			
S1 NPN TRANSISTOR	3			.00025		.00145		.00954		.00908		.00854			
S1 PNP TRANSISTOR	3			.00035		.00212		.01422		.01345		.01271			
STD SILICON DIODE	5			.00010		.00068		.00548		.00501		.00457			
ZENER DIODE	2			.00035		.00311		.01891		.01819		.01749			
CARBON COMP RES	7			.00001		.00002		.00015		.00019		.00011			
INSUL FILM RES	8			.00001		.00003		.00009		.00009		.00006			
HIGH STAB FILM RES	9			.00001		.00002		.00009		.00009		.00009			
W/W POWER RESISTOR	1			.00016		.00013		.00053		.00056		.00054			
CERAMIC CAPACITOR	4			.00310		.00644		.01372		.01353		.02677			
SOLID TANTALUM CAP	6			.00098		.00017		.00046		.00043		.00091			
PWB CONNECTOR	6			.00108		.00419		.01406		.00651		.01258			
RACK & PANEL CONN	6			.00108		.00419		.01406		.00651		.01258			
ELECTROMECH TIMER	1			.28571		1.71428		2.85713		4.28570		5.71427			
TWO-SIDED PW BOARD	3*			.00002		.00005		.00010		.00010		.00024			
PART CONNECTIONS	181*			.00000		.00002		.00004		.00002		.00004			
N6841199A ARITHMETIC CONTROL UNIT	61			.32076		1.82999		3.28951		4.64531		6.18745			

NOTE: * = PART QTY NOT INCL IN TOTAL

FIGURE 3.4 ELECT. ABACUS FR DATA

FIGURE 3.4. Detailed and Condensed Failure Rate Data for Electronic Abacus (Cont'd)

02/26/77

ELECTRONIC ABACUS

*** CONDENSED PART FAILURE RATE DATA FOR 200
N6841161C INTEGRATOR

02/26/77

PAGE 2

ELECTRONIC ABACUS		BORMANT 68				BORMANT 6M				BORMANT NS			
		FAIL. RATE AT 25 C		FAIL. RATE AT 40 C		FAIL. RATE AT 65 C		FAIL. RATE AT 60 C		FAIL. RATE AT 55 C			
PART DESCRIPTION	QTY												
MONO SYNTH LIN I/C	3	.00064		.00317		.01387		.01300		.01513			
HIGH STAR FILM RES	11	.00001		.00002		.00009		.00006		.00009			
CERAMIC CAPACITOR	3	.00310		.00444		.01372		.01355		.02677			
MONOSOLID TANTA CAP	1	.00464		.01040		.04203		.03900		.08915			
MICA CAPACITOR	3	.00011		.00082		.00335		.00274		.00525			
SOLID TANTALUM CAP	2	.00008		.00017		.00046		.00043		.00091			
PWB CONNECTOR	1	.00108		.00119		.0106		.00651		.01254			
RACK & PANEL CONN	1	.00108		.00119		.0106		.00651		.01254			
TWO-SIDED PU BOARD	14	.00002		.00003		.00010		.00010		.00022			
PART CONNECTIONS	70*	.00000		.00002		.00004		.00002		.00006			
N6841161C INTEGRATOR		25	.01903	.05191		.16744		.14278		.25748			

NOTE: * PART 677 NOT INCL IN TOTAL

FIGURE 3.4 ELECT. ABACUS FR DATA
 ***** AFILIABILITY SUMMARY *****

51

ELECTRONIC ABACUS		DNG NO 403466008		PAGE 3	
DNG NUMBER	ASSEMBLY OR SUBASSEMBLY DESCRIPTION	PART QTY	BORRANT GF FAIL. RATE AT 25 C	BORRANT GF FAIL. RATE AT 40 C	BORRANT MS FAIL. RATE AT 60 C
X6841199A	ARITHMETIC CONTROL UNIT	41	.32076	1.48999	4.65531
X6841181C	INTEGRATOR	25	.01903	.05191	.14278
ELECTRONIC ABACUS	
TOTAL PART QTY AND ENVIRONMENTAL STRESS FAILURE RATE		86	2943007.49	1.08190	4.76009
ENVIRONMENTAL STRESS MEAN-TIME-BEFORE FAILURES (HOURS)				3.45696	6.44493
				289271.86	208851.55
					155160.65

FIGURE 3.4. Detailed and Condensed Failure Rate Data for Electronic Abacus (Cont'd)

Figure 3.3: Output of Relytex Data // FIGURE 3.3 RELIABILITY SUMMARY //

FIGURE 3.4 ELECT. ABACUS FR DATA

02/28/77		ELECTRONIC ABACUS										Dwg No 16138&6008		PAGE 4	
		PART QTY					PART QTY					(RANKING COLUMN)		PART QTY	
GENERAL PART DESCRIPTION		PART QTY		PART QTY		PART QTY		PART QTY		PART QTY		PART QTY		PART QTY	
ELECTROMECH TIMER	1	.26571	64.086	1.71628	91.093	2.85713	82.649	4.28570	89.508	5.71427	88.663				
CERAMIC CAPACITOR	2	.02172	6.392	.04511	2.397	.04606	2.779	.09487	1.981	.18736	2.907				
MONO RAM INTEGR CKT	3	.00887	2.611	.02977	1.382	.10915	3.157	.10254	2.141	.11571	1.795				
PWB CONNECTOR	7	.00757	2.227	.02936	1.560	.09840	2.846	.04554	.951	.08803	1.366				
MONOSOLID TANTAL CAP	1	.00468	1.376	.01040	.553	.0203	1.216	.03900	.814	.0515	1.321				
MONO S/M/SI LIN I/C	3	.00199	.586	.00951	.506	.0162	1.204	.03901	.815	.06539	>704				
RACK & PANEL CONN	2	.00216	.636	.00839	.446	.0211	.813	.01301	.772	.0515	.390				
SI PNP TRANSISTOR	3	.00105	.308	.00637	.338	.0267	1.234	.04035	.843	.01812	.591				
ZENER DIODE	2	.00110	.324	.00622	.331	.03782	1.094	.03638	.760	.03499	.543				
MONO S/M/SI DIG I/C	2	.00130	.384	.00541	.287	.02088	.604	.02037	.425	.02451	.380				
PART CONNECTIONS	251*	.00110	.325	.00642	.235	.00884	.256	.00442	.092	.00994	.154				
SI NPN TRANSISTOR	3	.00074	.217	.00436	.252	.02862	.828	.02711	.564	.03668	.399				
STD SILICON DIODE	5	.00050	.147	.00342	.182	.02740	.793	.02504	.523	.02283	.354				
MICA CAPACITOR	3	.00034	.099	.00245	.130	.01005	.291	.00822	.172	.01568	.243				
SOLID TANTALUM CAP	8	.00062	.183	.00138	.073	.00372	.107	.00345	.072	.00726	.113				
HIGH STAB FILM RES	20	.00012	.036	.00035	.019	.00177	.051	.00127	.026	.00178	.028				
INSUL FILM RES	6	.00004	.013	.00025	.013	.00074	.021	.0047	.010	.00079	.012				
TWO-SIDED PW BOARD	4*	.00010	.028	.00019	.010	.00038	.011	.0038	.008	.00096	.015				
W/W POWER RESISTOR	1	.00004	.011	.00013	.007	.00053	.015	.0036	.007	.00054	.008				
CARBON COMP RES	7	.00004	.C10	.00012	.006	.00104	.030	.00062	.013	.00078	.012				
* = PART QTY NOT INCLUDED IN TOTAL OF PARTS															

FIGURE 3.4. Detailed and Condensed Failure Rate Data for Electronic Abacus (Cont'd)

02 / 28 / 77

COMPUTING SYSTEM

DUG NO X4194304A

PAGE 1

*** GENERAL INFORMATION ***

INTRODUCTION: THE ENCLOSED RELIABILITY PREDICTION DATA WERE COMPILED USING THE "21TB PREDICT" COMPUTER PROGRAM. THE PROGRAM CALCULATES INDIVIDUAL PART FAILURE RATES USING THE STANDARD PART FAILURE RATE PARAMETERS DEFINED HEREIN UNLESS OTHERWISE DEFINED AT THE PART LEVEL. DETAILED PROCEDURES AND ASSUMPTIONS USED ARE OUTLINED BELOW AND ARE DISCUSSED IN THE BASIC REPORT.

DATA SOURCES: THE PART FAILURE RATE DATA WERE DERIVED IN ACCORDANCE WITH THE PROCEDURES AND DATA IN THE FOLLOWING REFERENCES.

DATA SOURCES: THE PART FAILURE RATE DATA WERE DERIVED IN ACCORDANCE WITH THE PROCEDURES AND DATA IN THE FOLLOWING REFERENCES.

2178 MIL-HDBK-217B AND NOTICE 1, 'RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT', SEPT 1976
RED - US ARMY REDSTONE ARSENAL STORAGE REPORT LC-66-1, 'MISSILE MATERIAL RELIABILITY PREDICTION HANDBOOK', MAY 1976
RADC1 - ROME AIR DEVELOPMENT CENTER REPORT RADC-TR-75-22, 'MONELLECTRIC RELIABILITY NOTEBOOK', JAN 1975
RADC2 - ROME AIR DEV CENTER REPORT RADC-TR-73-248, 'DORMANCY & POWER ON-OFF CYCLING EFFECTS ON RELIABILITY', AUG 1973
FARADA - FAILURE RATE DATA HANDBOOK, NAVAL FLEET MISSILE SYSTEM ANALYSIS AND EVALUATION GROUP, MAR 1968 AND UPDATES
MANUAL - 217B PREDICT SYSTEM IN RELIABILITY PREDICTION COMPUTER PROGRAM USER MANUAL DEFINITION FOR NONMIL-HDBK-217 DATA
REPORT - SEE THE BASIC RELIABILITY PREDICTIONS REPORT FOR MORE DEFINITIVE DEFINITIONS OF THE DATA AS NOTED HEREIN

THE UNIVERSITY OF TORONTO LIBRARIES

RELIABILITY DATA: THE FOLLOWING RELIABILITY DATA ARE BASED ON THE ASSUMPTION THAT THE SYSTEM CONTAINS NO MAJOR REDUNDANT SECTIONS AND THEREFORE CAN BE TREATED AS A SERIES SYSTEM WHEREIN ANY FAILURE CONSTITUTES SYSTEM FAILURE. THE EVENT RELIABILITY, LESS THE ONE-SHOT DEVICES, ARE CALCULATED USING THE EXPONENTIAL FUNCTION BASED ON THE ASSUMPTION THAT THE PART FAILURES ARE STATISTICALLY INDEPENDENT OF ONE ANOTHER AND EXHIBIT A CONSTANT FAILURE RATE FOR THE LIFE CYCLE BEING EVALUATED.

SYSTEM AND LIFE CYCLE EVENT DESCRIPTION	STRESS DATA	AMBIENT TEMP	MIL-HDBK-217B ENVIRONMENT	EVENT FAIL.	EVENT RATE	EVENT DURATION	EVENT RELIABILITY
<hr/>							
1. CONTROLLED STORAGE IN DEPOT ENVIR	DORMANT @ 25 C	GROUND, BENIGN		.02197	3. yrs	.99942277	
OUTPUT STAGE FOR COMPUTING SYSTEM ELECTRONIC ABACUS	DORMANT @ 25 C	GROUND, BENIGN		.33979	3. yrs	.99111011	
<hr/>							
SYSTEM LEVEL FAILURE RATE SUBTOTAL:				.36176	3. yrs	.90053801	
COMPUTING SYSTEM							.90053801
<hr/>							
2. UNPACKAGED TRUCK OR RAILWAY SHIPMENT	DORMANT @ 45 C	GROUND, MOBILE		.42861	1. MON	.99966716	
OUTPUT STAGE FOR COMPUTING SYSTEM ELECTRONIC ABACUS	DORMANT @ 65 C	GROUND, MOBILE		.45666	1. MON	.99747960	

FIGURE 3.8 RELIABILITY SUMMARY

FIGURE 3.5. Reliability Summary For Computing System

02/28/77

COMPUTING SYSTEM

PAGE 2

*** SUMMARY OF RELIABILITY DATA ***

BUC NO X4194504A

SYSTEM AND LIFE CYCLE EVENT DESCRIPTION

STRESS AMBIENT MIL-MIL-217B
DATA TEMP ENVIRONMENT

2. UNPACKAGED TRUCK OR RAILWAY SHIPMENT

EVENT FAIL RATE DURATION RELIABILITY

SYSTEM LEVEL FAILURE RATE SUBTOTAL:

COMPUTING SYSTEM

3.08557 1. NOW .99716755

.99716755

3. UNPACKAGED ELECTRONICS SHOP STORAGE

OUTPUT STAGE FOR COMPUTING SYSTEM
ELECTRONIC ABACUS

DORMANT 3 40 C GROUNDED, FIXED
DORMANT 3 40 C GROUNDED, FIXED

SYSTEM LEVEL FAILURE RATE SUBTOTAL:

COMPUTING SYSTEM

.09278 1. NOW .99986655

1.88190 2. NOW .99725620

4. ELECTRONICS SHOP USAGE IN FIELD ENVIR

OUTPUT STAGE FOR COMPUTING SYSTEM
ONE-SHOT: FUZABLE LINKS
ELECTRONIC ABACUS

ASSUMED 0 35 C GROUNDED, FIXED

APPLIED 0 35 C GROUNDED, FIXED

SYSTEM LEVEL FAILURE RATE SUBTOTAL:
COMPUTING SYSTEM

50.13738 1. NOW .9988800

1.97468 2. NOW .99712112

.99712112

5. UNPACKAGED SHIPBOARD DEEP STORAGE

OUTPUT STAGE FOR COMPUTING SYSTEM
ELECTRONIC ABACUS

DORMANT 0 55 C NAVAL, SHELTERED

DORMANT 0 60 C NAVAL, SHELTERED

4.35143 1. NOW .96201061

4.78809 2. NOW .99303377

FIGURE 3.5. Reliability Summary For Computing System (Cont'd)

02/28/77

COMPUTING SYSTEM

DUG NO X4194334A

PAGE 4

*** SUMMARY OF RELIABILITY DATA ***

SYSTEM AND LIFE CYCLE EVENT DESCRIPTION

8. UNPACKAGED FLIGHT DECK READY STORAGE

SYSTEM LEVEL FAILURE RATE SUBTOTAL:

COMPUTING SYSTEM

6.89360 20. DAY .99669664

.99669664

9. AIRBORNE FLIGHT TEST MONITORING USAGE

OUTPUT STAGE FOR COMPUTING SYSTEM

ONE-SHOT: FUZZY LINKS

ELECTRONIC ABACUS

SYSTEM LEVEL FAILURE RATE SUBTOTAL:

COMPUTING SYSTEM

ASSURED @ 45 C AIRBORNE, INHABITED
APPLIED @ 45 C AIRBORNE, INHABITED

.99845350

3.14388 10. DAY .99924375
117.89902 10. DAY .997000
121.04291 10. DAY .99845350

.99845350

*** SUMMARY OF FAILURE RATE DATA ***

FAILURE DATA: THE FOLLOWING FAILURE RATE DATA WERE DERIVED IN ACCORDANCE WITH THE NOTED STRESS AND ENVIRONMENTAL CONDITIONS. FOR EXPLICIT PART FAILURE RATE DEFINITIONS SEE PART FAILURE RATE PRINTOUT (NOTE: FAILURE RATES ARE IN FAILURES PER MILLION HOURS)

1. OUTPUT STAGE FOR COMPUTING SYSTEM

STRESS DATA USED ASSUMED ASSUMED

KIL-HOOK-217B ENVIR = GF ENVIR AT 45 C

AMBIENT TEMPERATURE = AT 35 C

AT 45 C

ASSUMED AT 45 C

DORMANT DORMANT

GF ENVIR ENVIR

AT 40 C AT 35 C

AT 40 C AT 35 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

NS ENVIR ENVIR

AT 60 C AT 60 C

NS ENVIR ENVIR

AT 60 C AT 60 C

NS ENVIR ENVIR

AT 60 C AT 60 C

NS ENVIR ENVIR

AT 60 C AT 60 C

NS ENVIR ENVIR

AT 60 C AT 60 C

NS ENVIR ENVIR

AT 60 C AT 60 C

NS ENVIR ENVIR

AT 60 C AT 60 C

NS ENVIR ENVIR

AT 60 C AT 60 C

NS ENVIR ENVIR

AT 60 C AT 60 C

2. OUTPUT STAGE FOR COMPUTING SYSTEM

STRESS DATA USED ASSUMED ASSUMED

KIL-HOOK-217B ENVIR = GF ENVIR AT 40 C

AMBIENT TEMPERATURE = AT 25 C

AT 40 C

ASSUMED AT 40 C

DORMANT DORMANT

GF ENVIR ENVIR

AT 40 C AT 35 C

AT 40 C AT 35 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

AT 60 C AT 60 C

DORMANT DORMANT

NS ENVIR ENVIR

02/28/77

COMPUTING SYSTEM

BUG NO X4146306A

PAGE 5

*** SUMMARY OF FAILURE RATE DATA ***

FAILURE DATA: THE FOLLOWING FAILURE RATE DATA WERE DERIVED IN ACCORDANCE WITH THE NOTED STRESS AND ENVIRONMENTAL CONDITIONS. FOR EXPLICIT PART FAILURE RATE DEFINITIONS SEE PART FAILURE RATE PRINTOUT (NOTE: FAILURE RATES ARE IN FAILURES PER MILLION HOURS)

3. ELECTRONIC ABACUS

STRESS DATA USED	APPLIED	APPLIED	BORRANT	BORRANT	PORRANT	PORRANT
MIL-HDBK-217D ENVIR = GF ENVIR	AT 45 C	60 ENVIR	GF ENVIR	60 ENVIR	NU ENVIR	NU ENVIR
AMBIENT TEMPERATURE = AT 35 C	AT 55 C	AT 45 C	AT 25 C	AT 40 C	AT 65 C	AT 55 C
FAILURE RATE TOTAL =	50.13736	120.10107	117.899C2	.33979	1.8019U	3.45696
RIBF TOTAL (HOURS) =	19945.20	8305.57	6481.83	2943001.49	531370.13	289271.86

*** FAILURE RATE PARAMETER DEFINITIONS ***

CODING FORMAT: THE FOLLOWING CODING FORMAT IS USED HEREIN TO DEFINE THE PART FAILURE RATE PARAMETERS IN RECOGNIZABLE TERMINOLOGY, I.E. IN GENERAL ACCORDANCE WITH MIL-HDBK-217B DEFINITIONS. THIS FORMAT IS USED TO DEFINE THE STANDARD PART FAILURE RATE PARAMETERS, AND TO IDENTIFY THE EXCEPTIONS TO THE STANDARD PART FAILURE RATE PARAMETERS AT THE PART LEVEL IN THE ENCLOSED PRINTOUT XYV=ZZZ, WHERE: X = FAILURE RATE COLUMN LIMITATION AT THE PART LEVEL ONLY. LIMITS THE APPLICABILITY OF THE SPECIFIED PART FAILURE RATE PARAMETER TO A SINGLE LIFE CYCLE EVENT AT THE PART LEVEL IN THE ENCLOSED PART FAILURE RATE PRINTOUT. IF BLANK, THE FAILURE RATE PARAMETER APPLIES TO EACH OF THE LIFE CYCLE EVENTS NOTED.

YY = PART FAILURE RATE PARAMETER SYMBOL IN GENERAL ACCORDANCE WITH MIL-HDBK-217B AS DEFINED BELOW.
ZZZ = PART FAILURE RATE PARAMETER VALUE USED TO CALCULATE THE PART FAILURE RATE, OR TO DEFINE THE USE OF 'OPER' OR 'DORM' PART FAILURE RATES AT THE PART LEVEL IF DIFFERENT THAN THE REST OF THE ASSEMBLY.

PARAMETER SYMBOLS: THE FOLLOWING PART FAILURE RATE PARAMETER SYMBOLS AS USED HEREIN ARE IN GENERAL ACCORDANCE WITH MIL-HDBK-217B.

SYN	DEFINITION	SYN	DEFINITION
A	SEMICONDUCTOR APPLICATION FACTOR	LH	LASER LAPBDA MEDIA FAILURE RATE
B	LASER BALLAST FACTOR	LP	LASER LASGBA PUMP HOURS FAIL RATE
BV	U-N XSTR REVERSE C-E VOLTAGE RATING	M	U-N XSTR NETWORK MATCHING FACTOR
C	COMPLEXITY OR CONSTRUCTION FACTOR	N	ACTIVE CONN PINS OR PWB HOLES
C	LASER COUPLING CLEARNLNESS FACTOR	SB	SYNCHRO/RESOLVER # BRUSHES FACTOR
CF	RELAY OR SWITCH CONTACT FORM FACTOR	AB	# BOOTS IN ROW OR RAM INTEG CKT
CV	CVR CAPACITOR VALUE FACTOR	FC	# ACTIVE PART CONNECTIONS
CV	NUMBER OF CYCLES OR MATINGS	FG	IGATES IN DIGITAL INTEG CIRCUIT
B1	LASER DISCHARGE CURRENT (mA)	BT	# XSTRS IN LINEAR INTEG CIRCUIT
F	CKT FUNCTION OR FAMILY/QUALITY FACTOR	O	LASER GAS OVERFILL FACTOR
F	U-N XSTR FREQUENCY/POWER FACTOR	OP	ROTARY DEVICE OPERATING TIME(HRS)
FR	PART FAILURE RATE (FAIL/MILLION HRS)	OS	LASER OPTICAL SURFACES FACTOR
JN	INSERT/INSUL MATERIAL TEMP RATING	P	INTEGRATED CIRCUIT PACKAGE FACTOR
L	INTEGRATED CIRCUIT LEARNING FACTOR	P	LASER BEAM AVER POWER OUTPUT(kW)
LB	LAMBDA BASIC-PART FA LESS FACTORS	ZM	SEMICOND START OF TEMP DEATING (C)
LC	LASER LAMBDA COUPLING FAILURE RATE	V	ROTARY DEVICE 2 MECH FAILURES
		Q	PART QUALITY LEVEL
		VC	U-N XSTR OPERATING C-E VOLTAGE

FIGURE 3.6 RELIABILITY SUMMARY

FIGURE 3.5. Reliability Summary For Computing System (Cont'd)
 Figure 3.4 with control/p data // Figure 3.5 with control/p data // Figure 3.6 reliability summary

02/28/77 COMPUTING SYSTEM

DUG NO X6174306A

PAGE 6

BORNT FACTORS: THE FOLLOWING BORNT FOR FACTORS WERE USED AS NOTED HEREIN IN THE ABSENCE OF ESTABLISHED DORMANT FAILURE RATE DATA

ELECT = ESTIMATED DORMANT ELECTRICAL PART FAILURE RATE = 0.10 TIMES THE APPLIED STRESS PART FAILURE RATE
 MECH = ESTIMATED DORMANT MECHANICAL PART FAILURE RATE = 0.04 TIMES THE OPERATING PART FAILURE RATE

ENVIRONMENTAL FACTORS: THE FOLLOWING ENVIRONMENTAL FACTORS WERE USED AS NOTED HEREIN. THE EST-1 ENVIRONMENTAL FACTORS REFLECT A TYPICAL MIX OF ELECTRICAL PARTS IN AN AIRBORNE MISSILE AND WERE ONLY USED IN THE ABSENCE OF ESTABLISHED ENVIRONMENTAL DATA.

BEAD = ENVIR FACTORS, THERMISTOR: 68* 1, SFR 1, GFR 3, GM 25, NSM 14, NM 19, AJ 12, AU 16, ML 57 (STW PER 2170 ENVIR)
 DISK = ENVIR FACTORS, THERMISTOR: 68* 1, SFR 1, GFR 5, GM 25, NSM 14, NM 19, PI 12, AU 15, ML 55 (STW PER 2170 ENVIR)
 EST(1) = ENVIR FACTORS, GEN ELECT: 68* 1, SFR 1, GFR 6, GM 10, NSM 15, NM 20, AJ 15, AU 30, ML 40 (STW PER 2170 ENVIR)

*** STANDARD PART FAILURE RATE DATA USED ***

PART FR DATA: THE FOLLOWING FAILURE RATE DATA AND SOURCES WERE USED TO CALCULATE THE INDIVIDUAL PART FAILURE RATES FOR THIS PREDICTION UNLESS OTHERWISE NOTED AT THE PART LEVEL IN THE ENCLOSED PART FAILURE RATE PRINTOUT

PART #	CODE	DESCRIPTION	PART FR EQUIV OR PART DEFINITION	OPERATING SOURCE	ENVIR. FACTORS	DORMANT FR. SOURCE	FACTOR-SOURCE	APPLIED STRESS PART FR PARAMETERS OR OPERATING PART FR AND ENVIRONMENT	ASSURED STRESS
101 MONO S/M51 DIG I/C			2170	2170	.100	REDSTN	#6*	20, L = 1.0, Q = 2.0, P = 1.0, RC = 16	
102 MONO S/M51 LIN I/C			2170	2170	.100	PC-101	PI-	21, L = 1.0, Q = 2.0, RC = 10	
103 MONO LSI BIG I/C			2170	2170	.100	PC-101	#6*	100, L = 1.0, Q = 2.0, P = 1.0, RC = 16	
105 MONO RAM INTEG C/R			2170	2170	.100	PC-101	#6*	512, L = 1.0, Q = 2.0, P = 1.0, RC = 16	
107 MOS S/M51 BIG I/C			2170	2170	.100	PC-101	R6*	20, L = 1.0, Q = 2.0, P = 1.0, RC = 14	
301 SI NPN TRANSISTOR			2170	2170	.634	REDSTN	S1*	0.1, S2* = 0.3, C = 1.0, A = 0.7, Q = 0.4, PC = 1.3	
302 SI PNP TRANSISTOR			2170	2170	.634	PC-301	R	1.0, TS = 25, TM = 175, RC = 3	
310 STD SILICON DIODE			2170	2170	.244	REDSTN	S1*	0.1, S2* = 0.3, C = 1.0, A = 0.7, Q = 0.4, PC = 3	
312 ZENER DIODE			2170	2170	.176	REDSTN	S1*	0.1, A = 1.0, Q = 1.0, TS = 25, TM = 175, RC = 2	
402 CARBON COMP RES		NCR STYLE RESISTOR	2170	2170	.028	REDSTN	S1*	0.1, R = 1.0, Q = 1.0, AC = 2	\$1= 0.1
406 W/W CMS POWER RES		HER STYLE RESISTOR	2170	2170	.012	PC-401	S1*	0.1, R = 1.0, Q = 1.0, AC = 2	\$1= 0.1

FIGURE 3.5 Reliability Summary For Computing System (Cont'd)
 FIGURE 3.5 Output Data // FIGURE 3.4 Input Control // FIGURE 3.4 Input Control FG DATA // FIGURE 3.6 RELIABILITY SUMMARY

02/28/77

COMPUTING SYSTEM

BUG NO 14194306A

PAGE 7

*** STANDARD PART FAILURE RATE DATA USED ***			
PART CODE	PART DESCRIPTION	PART FOR EQUIV OR PART DEFINITION	OPER FR SOURCE
			DORMANT FR FACTOR-SOURCE
405	INSUL FILM RES	BLK STYLE RESISTOR	2170 .004 REDSTN S1= 0.1, F= 1.0, G= 2
406	HIGH STAB FILM RES	BLK STYLE RESISTOR	2170 .004 PC-405 S1= 0.1, F= 1.0, G= 2
407	W/N POWER RESISTOR	BLK STYLE RESISTOR	2170 .012 PC-401 S1= 0.1, F= 1.0, G= 2
504	MLC PPR/PLSTC CAP	CNR STYLE CAP	2170 1.000 REDSTN S1= 0.1, F= 125, G= 1,0, TR= 0.0, AC= 2
505	CERAMIC CAPACITOR	CKA STYLE CAP	2170 .159 REDSTN S1= 0.1, F= 125, G= 10, AC= 2
506	MONSOLID TANTA CAP	CLR STYLE CAP	2170 1.000 REDSTN S1= 0.1, F= 1.0, G= 2
507	MICA CAPACITOR	CNR STYLE CAP	2170 1.000 REDSTN S1= 0.1, F= 1.0, G= 2
510	SOLID TANTALUM CAP	CSR STYLE CAP	2170 1.000 REDSTN S1= 0.1, F= 0.3, SR=0.07, G= 2
701	PLG CONNECTOR	1/2 MATED PAIR	2170 .040 MANUAL IN= 0, Q= MS, N= 20, TA= 0.0, CV= 0.0
702	RACK & PANEL CONN	1/2 RATED PAIR	2170 .040 MANUAL BC- N/A IN= 0, Q= MS, N= 20, TA= 0.0, CV= 0.0
801	ELECTROMECH TIMER	RADC1 EST(1)	.040 ELECT OPER FR, GF ENV = 42.85700
901	TWO-SIDED PW BOARD	2170 .040 MANUAL N= 100	
906	PART CONNECTIONS	PC-903 .040 PC-903 OPER FR, GF ENV = .00064	

FIGURE 3.5. Reliability Summary For Computing System (Cont'd)

FIGURE 3.6 RELIABILITY SUMMARY

SECTION IV

GENERAL PREDICTION GUIDELINES

1. RELIABILITY PREDICTION TASKS

The tasks to be performed and the techniques to be used in performing a reliability prediction, either manually or with a computer program, are very similar. The primary benefit offered by a computer program is the automation and the accuracy of the part failure rate calculations, and of the assembly and system failure rate summaries. However, the use of a computer program does not alleviate the responsibility of the reliability analyst to explicitly define the following data for each reliability prediction that he performs.

- o System Definition. Define the system and its component parts in terms of established hardware documentation.
- o Life Cycle Events. Define each life cycle event to be accounted for in terms of specified or implied system requirements.
- o Environments. Define the equivalent environment for each life cycle event in general accordance with MIL-HDBK-217B definitions.
- o Ambient Temperature. Define the ambient temperature for the system and its component parts for each life cycle event in terms of specified or implied requirements.
- o Reliability Model(s). Derive the appropriate system reliability mathematical model(s) for each life cycle event in terms of the system operational requirements.
- o One-Shot Devices. Research, define, and justify the appropriate reliability data for all one-shot devices in the system.
- o Non-MIL-HDBK-217B Failure Rates. Research, define, and justify the appropriate part failure rates for all system parts not addressed in MIL-HDBK-217B.
- o MIL-HDBK-217B Failure Rates. Research and define all of the part failure rate parameters in MIL-HDBK-217B for each of the appropriate parts in the system.

2. PART FAILURE RATE DERIVATION GUIDELINES

Reliability predictions for governmental agencies are usually required to be prepared in accordance with the general requirements of MIL-STD-756, in conjunction with the specific methodology of MIL-HDBK-217. However, these documents require the use of supplemental data and procedures for mechanical, electromechanical, and nonstandard electronic parts in all environments, and for standard electronic parts in nonoperating environments. The objective of the following guidelines is to standardize the data sources and procedures used in performing reliability predictions. It should be noted that the inclusion of these guidelines does not reflect any prior approval on the part of any procuring agency.

The data sources and failure rate guidelines presented herein are intended to supplement the failure rate data for operating electronic parts and prediction procedures in MIL-HDBK-217B. Adherence to these data sources and guidelines will result in more consistent, meaningful failure rates for standard and nonstandard parts in dormant and operating environments. It should be noted that these sources and guidelines are not intended to cover all contingencies, and are not a substitute for good engineering judgement.

a. Operating Part Failure Rate Guidelines

- (1) Standard Part Failure Rate Data. Failure rate data for all standard electrical/electromechanical parts shall be derived from MIL-HDBK-217B in accordance with Section 2.0 (Part Stress Analysis Prediction). All part parameter data and data source(s) shall be recorded for the Part Stress Analysis Prediction.
- (2) Nonstandard Part Failure Rate Data. Failure rate data for operating parts not contained in MIL-HDBK-217B shall be derived in accordance with one of the following procedures which are listed in order of preference. (Note: Use of any nonstandard part failure rate requires good engineering judgement, must be fully substantiated in the prediction report, and is subject to procuring agency approval.)
 - o Part failure rate based on extensive data from a current, established source. Record failure rate, data source, and source environment. (Note: Reference 4 has been released as a current data source, but is still subject to evaluation and general acceptance.)
 - o Part failure rate based on equivalency of part characteristics to an established standard or nonstandard part. Record characteristics which make the part equivalent, the failure rate, data source, and source environment.
 - o Part failure rate based on limited industrial/government test data such as FARADA (Reference 7). Record failure rate, data source, source environment, plus all additional data and assumptions used in deriving the part failure rate.

- (3) Nonstandard Part Environmental π -factors. In the absence of established environmental modifiers (π -factors) for the non-standard parts, the generalized environmental π -factors of Table 4.1 can be used to convert the source failure rate to the operating environment(s) of interest as defined in Table 4.2. For example, a failure rate for an operating uninhabited aircraft environment (A_U) from the RADC Nonelectronic Reliability Notebook (Reference 4) would be multiplied by $10 \div 30 = 0.333$ to derive an equivalent mobile ground environment (G_M) failure rate. These generalized environmental factors reflect a typical mix of MIL-HDBK-217B electrical parts in a typical airborne missile system. Again, it should be noted that the inclusion of the above data does not reflect any prior approval on the part of any procuring agency.

b. Dormant Part Failure Rates Guidelines

The Redstone and RADC data in References 2, 3, and 4 represent the most current sources for dormant failure rate data. However, these data are very limited and have not been fully evaluated for applicability in performing reliability predictions. Therefore, caution should be exercised in their use. In the absence of more definitive data, it is recommended herein that the dormant failure rates be estimated by multiplying the minimum stress operating part failure rates times an operating-to-dormant π -factor.

Inclusion of dormant data in the computer program was considered to be mandatory, yet the resolution of the uncertainties regarding the RADC and Redstone dormant data in References 2, 3, and 4 was beyond the scope of the current development of the computer program. A preliminary evaluation of the dormant data with regard to MIL-HDBK-217B operating data was performed, and generalized dormant π -factors were derived as presented in Appendix A. These factors will provide part failure rate data in general accordance with the RADC and Redstone dormant data, and will also reflect the impact of ambient temperature and part quality. These data and procedures will be used pending further studies of dormant versus operating part failure rates.

In the absence of established dormant part failure rate data, the generalized dormant π -factor of 0.1 is used for electrical/electro-mechanical parts as depicted in Reference 8. Based on a preliminary evaluation of the FARADA and RADC nonelectronic data (References 4 and 7), a 25:1 ratio between operating and nonoperating failure rates for mechanical parts is probably more realistic than the 10:1 ratio that has been accepted for electronic parts. This ratio of 0.04 will be used pending further studies of dormant versus operating part failure rates for nonelectronic parts.

TABLE 4.1 Generalized Electrical Environmental Factors

	MIL-HDBK-217B ENVIRONMENTAL SYMBOL VERSUS ENVIRONMENTAL FACTOR							
See Table 4.2	G _B	G _F	G _M	N _S	N _U	A _I	A _U	M _L
Nonstandard Part	1	6	10	15	20	15	30	40

TABLE 4.2. Environmental Descriptions

Environment (Environmental Symbol for π_E Factors)	Nominal Military Operating or Dormant Conditions, with Typical Examples
Ground, Benign (G _B)	Optimum operating or dormant conditions. 1. Research/development laboratory 2. Containerized or noncontainerized depot storage in a controlled environment 3. Containerized field or shipboard storage in controlled environment
Ground, Fixed (G _F)	Fixed ground, sheltered or unsheltered conditions. 1. Heated or unheated building 2. Exposed ground installation 3. Noncontainerized field/ready storage
Ground, Mobile or Portable (G _M)	Mobile/portable ground installation. 1. Truck/tank/mobile-launcher installation 2. Nonairborne aircraft installation in an airfield environment 3. Noncontainerized field mobile storage
Naval, Sheltered (N _S)	Fixed interior shipboard or submarine installation in semicontrolled environment. 1. Interior ship installation 2. Noncontainerized shipboard storage in semicontrolled environment
Naval, Unsheltered (N _U)	Fixed exposed shipboard installation or mobile/portable shipboard or submarine installation. 1. Hangar deck or flight deck shipboard installation 2. Nonairborne aircraft installation in shipboard environment 3. Noncontainerized shipboard ready storage in hangar deck or flight deck environment
Airborne, Inhabited (A _I)	Aircraft cockpit or cabin installation.
Airborne, Uninhabited (A _U)	Aircraft non-cockpit/non-cabin installation.
Missile, Launch (M _L)	Launch and sustained airborne missile flight.

3. DISCUSSION OF INHERENT RELIABILITY

Reliability may be expressed as the probability that a device will perform its task under a given set of conditions, where the device could be an individual piece part or a complex system of parts. It may also be expressed in terms of Mean-Time-Between-Failure (MTBF) i.e., the mean or statistical average time which may be expected between random failures of a large population of the devices under a given set of conditions.

Inherent reliability is defined as the potential reliability of a design. With a completely mature design, suitable for manufacture and use, and with no degradation caused by workmanship, assembly, defective parts, improper test procedures, or previous environmental degradation, the inherent reliability is the reliability potential of the physical device under a specified set of conditions. Consequently, inherent reliability predictions consider only the random failure rates for the individual piece parts, solder joints, printed circuit boards, etc., and assumes a proven mature design with quality control and assurance programs adequate to remove all manufacturing defects prior to equipment delivery.

An inherent prediction considers each of the events in the system life cycle as an independent event i.e., the reliability for each life cycle event is considered as if no degradation from previous events has occurred. This is equivalent to an assumption of perfect reliability ($R = 1.0$) at the beginning of each life cycle event.

The inherent reliability prediction provides the capability of comparing the reliability of similar equipments and evaluating the effects of changes to equipment, and provides the baseline from which estimates of field reliability, logistic requirements, maintainability requirements, and overall life cycle reliability can be derived given the necessary supplemental data.

Predictions of inherent reliability in accordance with MIL-HDBK-217B take into consideration both electrical stress and the severity of the environment in which the device is operating. For example, the shock, vibration, and temperature levels associated with missile Launch and Sustained Free Flight are normally more severe than those during missile Captive Flight. As a result, more incipient failures are likely to be induced, and the predicted MTBF will typically be lower for Launch and Sustained Free Flight than for Captive Flight.

Mean-Time-Between-Failure (MTBF) is merely a convenient means of expressing the failure rate of a device. Mathematically, it is equal to the reciprocal of the device failure rate during the constant failure rate period. MTBF bears no direct relationship with the useful (or prewearout) life of the device. It is quite possible for the predicted inherent MTBF to exceed the useful life of a device under certain conditions. This only reflects the fact that the failure rate is low during the constant failure rate period and does not "anticipate" the wearout of the device.

A hypothetical failure rate characteristic for virtually all electrical/electromechanical parts is shown in Figure 4.1. The failure rate curve is characterized by two periods of relatively high failure rate, an initial high failure rate period which is caused by so called "infant mortality," and a final high failure rate period which is caused by wearout at the end of the parts useful life. The failure rate during the constant failure rate period for these parts is readily derived using the specific methodology in MIL-HDBK-217B.

FIGURE 4.1. Hypothetical Failure Rate Curve
for Electronic Parts

Mechanical parts do not follow the typical characteristic shown in Figure 4.1. Instead, they exhibit an increasing failure rate as a function of time as the hypothetical failure rate characteristic of Figure 4.2 indicates i.e., wearout failures begin to occur (albeit at a low rate) as soon as the mechanical parts are operated. Estimates of the relatively constant failure rate period associated with these parts are derived from evaluation of raw or semi-statistical data as reflected in FARADA or the RADC nonelectronic data (References 4 and 7). Use of these data requires good engineering judgement and is normally subject to procuring agency approval.

FIGURE 4.2. Hypothetical Failure Rate Curve
for Mechanical Parts

The purpose of quality control, system burn-in, and parts screening during the manufacturing process is to remove infant mortality failures prior to field delivery, so that the higher reliability level associated with the middle of the curve applies to the hardware in the field. Scheduled preventive maintenance is required to prevent the wearout of individual piece parts from degrading the reliability level achieved by the hardware in the field.

SECTION V
COMPUTER PROGRAM DETAILS

1. DATA DECK SETUP

The 217B PREDICT computer program input data are arranged in general accordance with Figure 5.1 for batch submittal to the UNIVAC 1110 computer. These data are prepared and keypunched using computer coding forms and data processing cards as defined in Appendix A and as discussed below:

a. UNIVAC 1110 Control Cards

The required control card data for the 217B PREDICT computer program data submittal to the UNIVAC 1110 computer are depicted in Figure 5.1 and are defined explicitly in Appendix B. The UNIVAC 1110 control cards use a Free Format, wherein fields on the cards are separated by commas. Spaces are also inserted between some data items for clarity. It should be noted that the computer control card data is subject to current revision updates of the Programmer Reference Manual UP-4144 (Reference 9) and is presented herein for reference only.

b. 217B PREDICT Data Deck

The general arrangement of the 217B PREDICT computer program input data is depicted in Figure 5.1. These data are in Fixed Format that is right hand justified for all numerical entries and is left hand justified for all alphanumerical entries as defined in Appendix A. Coding forms for these data are outlined in Appendix B for the user's convenience.

2. DATA PREPARATION

The prediction data are compiled for the computer program in accordance with the major engineering tasks normally required to manually perform a reliability prediction as outlined below:

a. Configuration Data

Arrange the assembly/fabrication drawing data in terms of "system," "subsystem" (not mandatory), "assembly," and "subassembly" (not mandatory) levels as depicted in Figure 2.1. Evaluate the applicability of the series reliability model to the hardware configuration being evaluated. If the series model is not directly applicable, modify the above configuration data, as required, to provide the appropriate data for the manual calculations that will be required of the resultant computer data.

FIGURE 5.1. GENERALIZED 217B PREDICT PROGRAM DECK SET-UP

b. Card 1, Data Source Reference (not mandatory)

Use the Card 1 format to document the failure rate data sources used in performing the prediction, less those already noted in the Stored Part Data (see Appendix A). The data sources, as documented in the prediction summary, provide the capability of explicitly defining the part failure rate data source for traceability.

c. Card 2A, Environmental π -Factors (not mandatory)

Use the Card 2A format to enter environmental π -factors that are not defined in MIL-HDBK-217B or in the Stored Part Data (see Appendix A). The environmental π -factors provide the ability to include and document new environmental data as they become available.

d. Card 2B, Modify Stored Part Data (not mandatory)

Use the Card 2B format to modify the Stored Part Data (see Appendix A) and/or to use the data for an alternate part code as a failure rate equivalency for the part. Modification of the Stored Part Data provides the ability to define and document the failure rate parameters for the majority of the parts in the user's system, thereby minimizing the data that must be entered at the part level (Detailed Failure Rate Subroutine only).

Note: In selecting a part code for a nonstored part type it is preferable to select a non-assigned part code within the applicable part category depicted in Appendices A or B. However, if a non-assigned part code is not available, the user can use a preassigned part code if it is not used elsewhere in the user's system. Although the user is constrained to the 180 part codes in the Appendices, these data are considered to be adequate for all applications when used to reflect generic part types, e.g., Carbon Composition Resistor, not RCR07 Resistor. For example, in a recent prediction for an airborne missile system with 5,310 piece parts, only 66 part types were used.

Multiple 2B Cards can be submitted for a specific part code if extensive part failure rate parameter modifications are required, or Card 2B can be followed by a Card 2C if part failure rate modifications and data source modifications are required.

It should be noted that the equivalent code references the Stored Part Data definitions as modified by previously submitted 2B Card definitions, e.g., if the part quality for part code 101 was changed from Q = 2 to Q = 5, and then part code 101 was defined as the failure rate equivalency for part code 803, the part quality for part code 803 would also be Q = 5.

If additional explanatory information is required to explicitly define the origin and derivation of the failure rate data used, it is the responsibility of the reliability analyst to include same in the basic report.

e. Card 2C, Supplement Stored Part Data (not mandatory)

Use the Card 2C format to modify and/or supplement the Stored Part Data (see Appendix A). Supplementing the Stored Part Data provides the ability to include and document non-MIL-HDBK-217B operating failure rate data and/or dormant failure rate data.

Again, if additional explanatory information is required to explicitly define the origin and derivation of the part failure rate data used, it is the responsibility of the reliability analyst to include same in the basic report.

f. Card 3, System Description

Use the Card 3 format to explicitly define and document the system being evaluated.

g. Card 4, Subsystem Description (not mandatory)

Use the Card 4 format to explicitly define and document each subsystem, if applicable, in the users system.

h. Card 5A, Detailed Environmental Stress Conditions

Use the Card 5A format to define and document the environmental stress conditions to be used for 1 to 3 detailed failure rate data sets (Detailed Failure Rate Subroutine only). The environmental stress conditions are defined in terms of:

- o The ambient temperature in degrees Celsius for the system or subsystem being evaluated.
- o The appropriate environment in accordance with MIL-HDBK-217B environmental symbols.
- o The type of failure rate data (APPLIED, ASSUMED, or DORMANT) as defined below.

Note: The Type of Failure Rate Data can be redefined at the assembly level for the Detailed and Condensed Failure Rate Subroutine, and at the subassembly and part level for the Detailed Failure Rate Subroutine, e.g., the system/subsystem failure rate data may be based on Applied Stress Part Data, yet one assembly is not powered. The Type of Failure Rate Data for that assembly can be changed on the assembly card (Card 6).

The user can also select which set of failure rate data shall be used for the part ranking in the failure rate summary. This summary defines the summation of the part failure rates for each part type, i.e., part code, and the percentage of the total system/subsystem failure rate for each part type.

1. Type of Failure Rate Data

The user evaluates and modifies the Stored Part Data as defined in Appendix A to establish the "Standard" part failure rate definitions for the prediction. The Applied Stress Part Data provide minimum operating and dormant failure rate conditions for the Detailed and Condensed Failure Rate Subroutines, and minimize the amount of data to be entered at the part level for the Detailed Failure Rate Subroutine. The Assumed Stress Part Data provide nominal operating failure rate conditions for the Detailed and Condensed Failure Rate Subroutines. These data are defined as:

- (1) Applied Stress Part Data (APPLIED) = minimum operating failure rate conditions as modified at the part level to reflect detailed stress analysis data for a mature design that is explicitly defined.
- (2) Assumed Stress Part Data (ASSUMED) = nominal operating failure rate conditions that reflect assumed stress data for an early design that is not explicitly defined. The assumed primary stress ratio (S_1) is in general accordance with the definitions in Section 3 of MIL-HDBK-217B; the remaining parameters are in accordance with the Applied Stress Part Data.
- (3) Dormant Part Data (DORMANT) = minimum operating failure rate conditions times a dormant failure rate π -factor (operating-to-nonoperating failure rate multiplier). This technique provides dormant data that reflects the impact of ambient temperature and part quality.

Inclusion of dormant data in the computer program was considered to be mandatory, yet the resolution of the uncertainties regarding the RADC and Redstone dormant data in References 2, 3, and 4 was beyond the scope of the current development of the computer program. A preliminary evaluation of the dormant data with regard to MIL-HDBK-217B operating data was performed, and generalized dormant π -factors were derived as presented in Appendix A. Use of these factors will provide part failure rate data in general accordance with the RADC and Redstone dormant data, and will also reflect the impact of ambient temperature and part quality. These data and procedures will be used pending further studies of dormant versus operating part failure rates.

j. Card 5B, Condensed Environmental Stress Conditions

Use the Card 5B format to define and document the environmental stress conditions to be used for 1 to 5 sets of condensed failure rate data using the Condensed Failure Rate Subroutine. The environmental stress conditions are in terms of ambient temperature, environment, and type of failure rate data (APPLIED, ASSUMED, or DORMANT) as previously defined.

Submitting a 5A and 5B Card prior to the part data tells the computer program that the part type and quantity data versus assembly shall be stored for all following data. Therefore condensed failure rate data for an assumed hardware configuration can be combined with detailed stress data only if submitted as system or subsystem data prior to implementing the Detailed Failure Rate Subroutine (see Sample Prediction, Section III).

k. Card 6, Assembly Description

Use the Card 6 format to explicitly define and document each assembly in the users subsystem or system (Detailed and Condensed Failure Rate Subroutines). This card can also be used to redefine the Type of Failure Rate Data to be used for the assembly, or to zero the failure rates if the assembly is not applicable to a specific life cycle event.

l. Card 7, Subassembly Description (not mandatory)

Use the Card 7 format to explicitly define and document each sub-assembly in the user's assembly (Detailed Failure Rate Subroutine only). This card can also be used to redefine the Type of Failure Rate Data to be used for the subassembly, or to zero the failure rates if the subassembly is not applicable to a specific life cycle event.

m. Detailed Part Data Card

The Detailed Part Data Card (Detailed Failure Rate Subroutine only) includes the part reference designator, part number, part type, part quantity, and all exceptions to the "Standard" part failure rate definitions. The Type of Failure Rate Data for the part can be redefined.

n. Condensed Part Data Card

The Condensed Part Data Card (Condensed Failure Rate Subroutine only) is limited to the part type and part quantity. These data are compiled in the process of using the Detailed Failure Rate Subroutine or are defined by the user in the absence of Card 5A and Detailed Part Data Cards.

o. Card 8A, Life Cycle Event Description (not mandatory)

Use the Card 8A format to explicitly define each life cycle event(s) to be predicted. If the series reliability model is not appropriate, the user can inhibit the computer printout of the reliability data by not submitting any Card 8 data, thereby obtaining the failure rate summary only for use in alternate calculation techniques.

p. Card 8B, One-Shot Reliability (not mandatory)

Use the Card 8B format to define the one-shot device description, data source, reliability, and applicable subsystem or system. Identify the subsystems using "SS(n)," where (n) reflects the order that the subsystem Card 4's are submitted to the computer, i.e., the first subsystem Card 4 in the system data deck would be "SS1."

Multiple 8B Cards may be submitted to define all of the one-shot devices in the user's system. However, if additional explanatory information is required to explicitly define the origin and derivation of the one-shot reliability data used, it is the responsibility of the reliability analyst to include same in the basic report.

q. Card 8C, Life Cycle Event Subsystem Failure Rate Data (not mandatory)

Use the Card 8C format to define the subsystem failure rate data sets and one-shot reliabilities that are to be included in the printout for each life cycle event. Identify the subsystems using the "SS(n)" format as defined above, and the end of the applicable subsystem failure rate data sets by entering "SYS." Identify the applicable subsystem failure rate data sets in terms of the Cards 5A and 5B failure rate data set numbers, e.g., 6 = the Card 5B failure rate data set consisting of FR TYPE6, ^ESYM6, and TEMP6. Card 5A contains failure rate data sets 1 through 3 and the initial Card 5B submitted for the subsystem contains failure rate data sets 4 through 8. If a second Card 5B is submitted for the subsystem, the failure rate data sets are defined as data sets 9 through 13.

The Card 8C format can be used to combine subsystem failure rate data and one-shot reliability data to reflect the system reliability for a single life cycle event, e.g., for Missile Launch and Sustained Free Flight. This format can also be used to reflect multiple life cycle events, e.g., Airborne Captive Flight, plus Missile Launch and Sustained Free Flight.

3. SYSTEM/SUBSYSTEM RELIABILITY MODEL

The system and subsystem reliability data compiled using the 217B PREDICT computer program reflects a series reliability model wherein failure of any part constitutes system failure. The "subsystem" and "system" reliability, less the one-shot devices as calculated by 217B PREDICT assumes statistically independent part failures that exhibit a constant failure rate for the time period being evaluated. These reliabilities are calculated using the exponential function:

$$R(t) = \exp \left(-t \sum_{i=1}^n \lambda_i (10^{-6}) \right)$$

Where: $R(t)$ = "subsystem" or "system" reliability as a function of time

\exp = base "e" of the natural logarithm to the power indicated

t = time in hours

λ_i = failure rate of the i^{th} part for the applicable environment and operating/dormant state in failures per million hours.

The one-shot device reliabilities are expressed in terms of probability and are incorporated into the system reliability using the equation:

$$R(s) = R(t) \div \prod_{j=1}^k P(\text{one-shot})_j$$

Where: $R(s)$ = overall "system or "subsystem" reliability

$R(t)$ = "system" or "subsystem" reliability, less one-shot devices, as calculated using the exponential reliability function

$P(\text{one-shot})_j$ = probability of successful operation of the j^{th} one-shot device

The computer program does not contain any provisions for handling non-series reliability configurations. If non-series reliability calculations are required, it is recommended that the above series model be repressed in the printout. The remaining failure rate data would then be submitted to manual calculation techniques or alternate computer programs, e.g., Reference 5.

4. PART FAILURE RATE MODEL

The following general part failure rate model as used in the computer program is a logical extension of the general part failure rate model in MIL-HDBK-217B.

$$\lambda_p = \lambda_b (\pi_E) \left(\prod_{i=1}^n \pi_i \right) \pi_D$$

Where: λ_p = part failure rate for the applicable environment and operating/nonoperating state in failures per million hours

λ_b = basic operating part failure rate as defined in MIL-HDBK-217B

π_E = appropriate environmental π -factor for the applicable part type

\prod = mathematical symbol for "the product of"

π_i = value of the i^{th} π -factor for the applicable part type as defined in MIL-HDBK-217B (not applicable to non-MIL-HDBK-217B parts)

π_D = dormant (operating-to-nonoperating) π -factor (π_D reflects nonoperating failure rate data \div operating failure rate data for a specific set of environmental conditions = 1.0 for operating part failure rates)

Note: Use of any nonstandard (non-MIL-HDBK-217B) part failure rate requires good engineering judgement, must be fully substantiated in the reliability prediction report, and is subject to the procuring agency approval.

The non-MIL-HDBK-217B data presented herein reflects part failure rate data and techniques used over the last several years in performing reliability predictions at the Naval Weapons Center, China Lake, California. These data are included for the convenience of the user. However, it should be noted that the inclusion of these data does not reflect any prior approval on the part of any procuring agency.

5. COMPUTER PROGRAM CALCULATIONS OF PART FAILURE RATES

The operating part failure rates are calculated using the Applied or Assumed Part Failure Rate Definitions (Stored Part Data) in Appendix A as modified by the user. As noted in Section I, the Applied Stress Part Data can be modified at the part level (Detailed Failure Rate Subroutine only) thereby providing definitive stress data on a part-by-part basis. Whereas the Assumed Stress Part Data provides the capability of performing a reliability prediction using assumed configuration and/or application data. The dormant part failure rates are calculated using the Dormant Failure Rate Factor and the Applied Part Failure Rate Definitions as modified by the user. The MIL-HDBK-217B part failure rate equations as implemented by the computer program are outlined below.

a. Monolithic Bipolar and MOS Integrated Circuits

$$\lambda_p = \pi_L \cdot \pi_Q \cdot [C_1 \cdot \pi_T + C_2 \cdot \pi_E] \cdot \pi_p \text{ per MIL-HDBK-217B}$$

$$= L \cdot Q \cdot [f(\#) \cdot f(TJ) + f(\#) \cdot (E)] \cdot P \cdot D \text{ per 217B PREDICT}$$

Where: L = Stored production learning factor = 1.0

Q = Stored Class B quality factor = 2.0

f(#) = C1 and C2 is a function of the number of gates (#G), transistors (#T), or BITS (#B), as defined in Appendix A

f(TJ) = π_{T1} is a function of the junction temperature (TJ) entered by the user at the part level, or as a function of the ambient temperature as defined in MIL-HDBK-217B

E = Stored MIL-HDBK-217B environmental factors

P = Stored package lead factor = 1.0

D = Stored dormant failure factor = 0.1 based on Redstone Class B Bipolar Digital I/C (1-20 gates) dormant failure rate divided by MONO S/MSI DIG I/C Applied Stress Part Failure Rates in Ground Fixed environment with TJ = +25°C. This value is assumed to be applicable to all Class B integrated circuits. Note: D = 1.0 when calculating the operating part failure rate.

The dormant part failure rates are calculated using the Dormant Failure Rate Factor and the Applied Stress Part Failure Rate with the junction temperature set equal to the ambient temperature.

b. Hybrid Circuits

Each hybrid microcircuit is a fairly unique device. Since none of the devices have been standardized, their complexity cannot be determined from their name or function. Similar hybrids can have a wide range of complexity that limits the categorization of these devices. If hybrids are included in a design, it is the responsibility of the reliability analyst to thoroughly investigate their use and construction on an individual basis, and to document same in the basic report. Therefore, it is considered herein to be cost effective to limit the users entry to the base failure rate and associated π -factors for his devices.

$$\lambda_p = \lambda_b \cdot \pi_T \cdot \pi_E \cdot \pi_Q \cdot \pi_F \text{ per MIL-HDBK-217B}$$

$$= LB \cdot f(T) \cdot E \cdot Q \cdot F \cdot D \text{ per 217B PREDICT}$$

Where: LB = Lambda basic, stored base failure rate. Although a value for lambda basic is stored it is not intended to reflect the users device. The user must derive and enter the applicable value for his particular device(s) using the Card 2B format. If extensive hybrids are used in the design, the user should enter a composite value for lambda basic in the Stored Part Data for the dormant failure rate calculations, and then modify this value as required at the part level.

f(T) = $\pi_T(T)$ is a function of the package mounting base temperature, which is assumed to be equivalent to the ambient temperature, unless otherwise defined by the user at the part level.

E = Stored MIL-HDBK-217B environmental factors

Q = Stored Class B quality factor = 1.0

F = Stored circuit function factor as defined in Appendix A

D = Stored dormant failure rate factor = 0.1. In the absence of specific data, the Monolithic Bipolar Circuit derivation is assumed to be applicable.

c. Tubes, Electronic Vacuum

$$\lambda_p = \lambda_b \cdot \pi_E \text{ per MIL-HDBK-217B}$$

= LB·E·D per 217B PREDICT

Where: LB = Lambda basic, stored base failure rate
 E = Stored MIL-HDBK-217B environmental factors
 D = Stored dormant failure rate factor as depicted in Appendix A. Based on equivalent Redstone dormant failure rate divided by the appropriate tube failure rate in MIL-HDBK-217B in Ground Fixed environments, or by equating to the above data for a similar device.

d. Laser Devices

Helium/Neon and Argon Ion

$$\lambda_p = \pi_E \cdot [\lambda_{MEDIA} + \lambda_{COUPLING}] \text{ per MIL-HDBK-217B}$$

= E·(LM + LC)·D per 217B PREDICT

CO_2 Sealed

$$\lambda_p = \pi_E \cdot [\pi_0 \cdot \pi_B \cdot \lambda_{MEDIA} + \pi_{OS} \cdot \lambda_{COUPLING}] \text{ per MIL-HDBK-217B}$$

= E·[O·B·f(DI) + OS·LC]·D per 217B PREDICT

CO_2 Flowing

$$\lambda_p = \pi_E \cdot [\lambda_{MEDIA} + \pi_{OS} \cdot \lambda_{COUPLING}] \text{ per MIL-HDBK-217B}$$

= E·[O.0 + OS·f(P)]·D per 217B PREDICT

YAG and Ruby Rod

$$\lambda_p = \pi_E \cdot [\lambda_{MEDIA} + \lambda_{PUMP} + \pi_C \cdot \pi_{OS} \cdot \lambda_{COUPLING}] \text{ per MIL-HDBK-217B}$$

= E·[LM + LP + C·OS·LC]·D per 217B PREDICT

Where: E = Stored MIL-HDBK-217B environmental factors

LM = Lambda media, stored base failure rate

LC = Lambda coupling, stored base failure rate

O = Stored gas overfill factor = 1.0

B = Stored ballast factor = 1.0

f(P) = $\lambda_{COUPLING}$ is a function of the average output laser beam power (P) in kilowatts

OS = Stored number of optical surfaces = 2.0

LP = Lambda pump, stored base failure rate

f(DI) = λ_{MEDIA} is a function of the discharge current (DI) in milliamperes

C = Stored coupling cleanliness factor = 30

D = Stored dormant failure rate factor = 0.04. In the absence of definitive data, the estimated mechanical factor is assumed to be applicable.

e. Microwave Power Transistors

$$\lambda_p = \lambda_b \cdot \pi_Q \cdot \pi_A \cdot \pi_F \cdot \pi_T \cdot \pi_M \cdot \pi_E \text{ per MIL-HDBK-217B}$$

= LB · Q · A · F · f(V) · M · E · D per 217B PREDICT

Where: LB = Lambda basic, stored base failure rate

Q = Stored JANTX quality factor = 2.0

A = Stored application factor = 1.0

F = Stored operating power and frequency factor = 1.0

f(V) = π_T is a function of the operating voltage (VC), the rated BV_{CES} (BV), and the peak junction temperature (T) as defined in Appendix A.

M = Stored matching network factor = 1.0

E = Stored MIL-HDBK-217B environmental factors

D = Stored dormant failure rate factor = 0.32. Based on Redstone JANTX Microwave Transistor (Gold Refractory Metalization) dormant failure rate divided by MICROWAVE XSTR, AU Applied Stress Part failure rate in Ground Fixed environment.

f. Semiconductors

$$\lambda_p = \lambda_b \cdot \pi_E \cdot \pi_A \cdot \pi_Q \cdot \pi_{S2} \cdot \pi_C \cdot \pi_R \text{ per MIL-HDBK-217B}$$

= f(λ) · E · A · Q · S2 · C · R · D per 217B PREDICT

Where: $f(\lambda)$ = λ_b = base failure rate as a function of the primary applied stress ratio (S1), the temperature that derating is started (TS), the maximum junction temperature (TJ), and the ambient temperature

E = Stored MIL-HDBK-217B environmental factors

A = Stored application factor as defined in Appendix A

Q = Stored quality factor as defined in Appendix A

S2 = Stored reverse voltage factor as defined in Appendix A

C = Stored complexity factor as defined in Appendix A

R = Stored power or current rating factor = 1.0

D = Stored dormant failure rate factor as defined in Appendix A. Based on equivalent Redstone dormant failure rate divided by the appropriate semiconductor Applied Stress part failure rate in Ground Fixed environment at +25°C, or by equating to the above data for a similar part.

g. Resistors

$$\lambda_p = \lambda_b \cdot \pi_E \cdot \pi_R \cdot \pi_Q \text{ per MIL-HDBK-217B}$$

= $f(\lambda) \cdot E \cdot R \cdot Q \cdot D$ per 217B PREDICT

Where: $f(\lambda) = \lambda_b$ = base failure rate as a function of the primary applied (power) stress ratio (S_1) and the ambient temperature

E = Stored MIL-HDBK-217B environmental factors

R = Stored resistance factor = 1.0

Q = Stored quality factor as defined in Appendix A

D = Stored dormant failure rate factor as defined in Appendix A. Based on equivalent Redstone dormant failure rate divided by the appropriate resistor Applied Stress part failure rate in Ground Fixed environment at $+25^\circ\text{C}$, or by equating to the above data for a similar part.

h. Potentiometers

$$\lambda_p = \lambda_b \cdot \pi_{TAPS} \cdot \pi_R \cdot \pi_V \cdot \pi_C \cdot \pi_E \cdot \pi_Q \text{ per MIL-HDBK-217B}$$

= $f(\lambda) \cdot TP \cdot R \cdot V \cdot C \cdot E \cdot Q \cdot D$ per 217B PREDICT

Where: $f(\lambda) = \lambda_b$ = base failure rate as a function of the primary applied (power) stress ratio (S_1) and the ambient temperature. The applied stress ratio is a function of the applied power, the power rating, the ganged factor, and the loading effect on the potentiometer as defined in MIL-HDBK-217B

TP = Stored potentiometer taps factor = 1.0

R = Stored resistance factor = 1.0

V = Stored voltage ratio factor = 1.0

C = Stored construction factor = 1.0

E = Stored MIL-HDBK-217B environmental factors

Q = Stored quality factor as defined in Appendix A

D = Stored dormant failure rate factor as defined in Appendix A. Based on equivalent Redstone dormant failure rate divided by the appropriate potentiometer Applied Stress part failure rate in Ground Fixed environment at $+25^\circ\text{C}$, or by equating to the above data for a similar part.

i. Capacitors

$$\lambda_p = \lambda_b \cdot \pi_E \cdot \pi_{CV} \cdot \pi_{SR} \cdot \pi_Q \text{ per MIL-HDBK-217B}$$

= $f(\lambda) \cdot E \cdot CV \cdot SR \cdot Q \cdot TR \cdot D$ per 217B PREDICT

Where: $f(\lambda) = \lambda_b$ = base failure rate as a function of the primary applied (voltage) stress ratio (S_1), the ambient temperature, the voltage limit temperature rise (TR), and the rated temperature (RT) for the device

E = Stored MIL-HDBK-217B environmental factors

CV = Stored capacitance value factor = 1.0

SR = Stored series resistance factor = 1.0

Q = Stored quality factor as defined in Appendix A

TR = Stored voltage limit temperature rise in degrees Celsius = 0.0

D = Stored dormant failure rate factor as defined in Appendix A. Based on equivalent Redstone or RADC dormant failure rate divided by the appropriate capacitor Applied Stress part failure rate in Ground Fixed environment at +25°C, or by equating to the above data for a similar part.

j. Transformers and Inductors

$$\lambda_p = \lambda_b \cdot \pi_E \cdot \pi_f \text{ per MIL-HDBK-217B}$$

= $f(\lambda) \cdot D \cdot F \cdot D$ per 217B PREDICT

Where: $f(\lambda) = \lambda_b$ = base failure rate as a function of the style of transformer or inductor as defined in Appendix A, the insulation temperature rating (IN) in degrees Celsius, and the temperature rise (TR)

E = Stored MIL-HDBK-217B environmental factors

F = Stored family and quality factors as defined in Appendix A

D = Stored dormant failure rate factor = 0.5. The RADC and Redstone dormant failure rate data are considered herein to be inadequate for defining explicit factors. The above estimate is based on a cursory comparison of these data to the Applied Stress part failure rates for the transformers and inductors in a Ground Fixed environment at +25°C.

Dormant part failure rates are calculated with zero temperature rise (TR).

k. Motors

$$\lambda_p = [\lambda_b \cdot \pi_F + (P_{POP} \cdot 10^4) / t_{op}] \cdot \pi_E \text{ per MIL-HDBK-217B}$$

$$= [f(\lambda) \cdot (F) + (\%M \cdot 10^4) / OP] \cdot E \cdot D \text{ per 217B PREDICT}$$

Where: $f(\lambda) = \lambda_b$ = base failure rate as a function of insulation temperature rating (IN) in degrees Celsius, plus the frame and hot spot temperature rise (TR) in degrees Celsius

F = Stored family and quality factor as defined in Appendix A

%M = Stored percentage of mechanical motor failures during operating time (OP) = 0.5

OP = Stored operating time (OP) in hours = 2,000

E = Stored MIL-HDBK-217B environmental factors. In the absence of definitive data, the π_E factor for G_B and S_F are assumed herein to equal 1.0, and the π_E factor for M_L is assumed herein to equal 93 (10 times AU factor) based on the relay and switch data.

D = Stored dormant failure rate factor = 1.0. The RADC dormant failure rate data are considered herein to be inadequate for defining explicit factors. The above estimate is based on a cursory comparison of these data to the Applied Stress part failure rates for motors in a Ground Fixed environment at +25°C.

l. Blowers and Fans

Each motor and fan as defined in MIL-HDBK-217B will be a fairly unique device. Given that the specified data is available, the reliability analyst will be required to thoroughly investigate their use and construction on an individual basis, and to document same in the basic report. Therefore, it is considered herein to be cost effective to limit the users entry to just the resulting operating part failure rate for his device(s).

Although the fixed service life operating part failure rate from MIL-HDBK-217B is stored, it is not intended to reflect the users device. The user must derive and enter the applicable value for his particular device(s) using the Card 2C format.

The dormant part failure rate is estimated by multiplying the operating part failure rate times the dormant failure rate factor of 1.0. The RADC dormant failure rate data are considered herein to be inadequate for defining explicit factors. The above estimate is based on a cursory evaluation of these data and various operating part failure rate data from MIL-HDBK-217B, RADC Nonelectronic Notebook, and FARADA.

m. Synchros and Resolvers (Low Speed, Low Load)

$$\lambda_p = \lambda_b \cdot \pi_S \cdot \pi_N \cdot \pi_E \text{ per MIL-HDBK-217B}$$

= $f(\lambda) \cdot S \cdot \#B \cdot E \cdot D$ per 217B PREDICT

Where: $f(\lambda) = \lambda_b$ = base failure rate as a function of the ambient temperature and the frame temperature rise (TR)

S = Stored size factor as defined in Appendix A

#B = Stored number of brushes and quality factor = 4.0

E = Stored MIL-HDBK-217B environments factors as a function of part quality (Q). In the absence of definitive data, the π_E factor for S_F are assumed to equal G_B , and for M_L are assumed to equal 10 times the A_U factor based on relay and switch data.

D = Stored dormant failure rate factor = 0.5. The RADC dormant failure rate data are considered herein to be inadequate for defining explicit factors. The above estimate is based on a cursory comparison of these data to the Applied Stress part failure rate data in a Ground Fixed environment at +25°C. Dormant part failure rates are calculated with zero temperature rise.

n.

n. Elapsed Time Meters

$$\lambda_p = \lambda_b \cdot \pi_T \cdot \pi_E \text{ per MIL-HDBK-217B}$$

= $LB \cdot T \cdot E \cdot D$ per 217B PREDICT

Where: LB = Lambda basic, stored base failure rate

T = Stored temperature factor = 0.5

E = Stored MIL-HDBK-217B environmental factors as a function of part quality (Q). In the absence of definitive data, the π_E factor for N_S and N_U is assumed herein to be equal to the factors for the resolvers and synchros.

D = Stored dormant failure rate factor = 0.5. In the absence of definitive data, the dormant failure rate factor is assumed herein to be equivalent to the resolvers and synchros.

o. Connectors (1/2 Mated Pair)

$$\lambda_p = [\lambda_b \cdot \pi_E \cdot \pi_p + N \cdot \lambda_{CYC}] / 2 \text{ per MIL-HDBK-217B}$$

$$= [(f(\lambda)/2) \cdot E \cdot f(P) + N \cdot f(CY)/2] \cdot D \text{ per 217B PREDICT}$$

Where: $f(\lambda) = \lambda_b$ = base failure rate as a function of the insert material class (IN), the ambient temperature, and the temperature rise (TR)

E = Stored MIL-HDBK-217B environmental factors as a function of part quality (Q)

$f(P) = \pi_p$ = active contacts factor as a function of the number of active contacts (N)

N = Number of active contacts

$f(CY) = \lambda_{CYC}$ = base cycling failure rate as a function of the cycling rate (CY) = zero for CY = 0.0

D = Stored dormant failure rate factor = 0.04. The RADC and Redstone dormant failure rate data are considered herein to be inadequate for defining explicit factors. The above estimate is based on a cursory comparison of these data to the Applied Stress part failure rate data in a Ground Fixed environment at +25°C.

p. Relays

$$\lambda_p = \lambda_T \cdot \pi_L \cdot \pi_E \cdot \pi_C \cdot \pi_{CYC} \cdot \pi_F \text{ per MIL-HDBK-217B}$$

$$= f(\lambda) \cdot f(L) \cdot E \cdot CF \cdot CY \cdot F \cdot D \text{ per 217B PREDICT}$$

Where: $f(\lambda) = \lambda_T$ = base failure rate as a function of the part temperature rating and the ambient temperature

$f(L) =$ Stored loading factor as a function of the primary stress (current) ratio (S1) and the type of relay load (RL = RES, IND, or LMP)

E = Stored MIL-HDBK-217B environmental factors as a function of the part quality (Q)

CF = Stored contact form factor = 3.0

CY = Stored cycling rate in cycles per hour = 1.0
 F = Stored application and construction factor = 5.0
 D = Stored dormant failure factor = 0.04. The RADC and Redstone dormant failure rate data are considered herein to be inadequate for defining explicit factors. The above estimate is based on a cursory comparison of these data to the Applied Stress part failure rate data in a Ground Fixed environment at +25°C.

q. Switches

$$\lambda_p = \lambda_b \cdot \pi_E \cdot \pi_C \cdot \pi_{CYC} \text{ per MIL-HDBK-217B}$$

= LB·E·CF·CY·D per 217B PREDICT

Where: LB = λ_b = Stored base failure rate
 E = Stored MIL-HDBK-217B environmental factors
 CF = Stored contact form factor = 1.0
 CY = Stored cycling rate in cycles per hour = 1.0
 D = Stored dormant failure rate factor = 1.0. The RADC and Redstone dormant failure rate data are considered herein to be inadequate for defining explicit factors. The above estimate is based on a cursory comparison of these data to the Applied Stress part failure rate data in a Ground Fixed environment at +25°C.

r. Printed Wiring Boards

$$\lambda_p = \lambda_b \cdot N \cdot \pi_E \text{ per MIL-HDBK-217B}$$

= $f(\lambda) \cdot N \cdot E \cdot D$ per 217B PREDICT

Where: $f(\lambda)$ = λ_b = base failure rate as a function of the type of printed wiring board
 N = Stored number of plated through holes = 100
 E = Stored MIL-HDBK-217B environmental factors

D = Stored dormant failure rate factor = 0.04. The RADC dormant failure rate data, as depicted in the Redstone report, indicates a dormant factor of 0.008. However, in the absence of definitive background information, the judgement is made herein to use the above factor to provide a conservative estimate of the dormant part failure rate.

s. Solder Connections

$$\lambda_p = \lambda_b \cdot E \cdot D \text{ per 217B PREDICT}$$

Where: λ_b = Base failure rate as a function of the type of solder connection. These data were extracted from the Miscellaneous Part Section in MIL-HDBK-217B, and are assumed herein to be equivalent to a Ground Fixed environment.

E = Stored environmental factors for connectors are assumed herein to be applicable for deriving failure rates at environments of greater or lesser severity

D = Stored dormant failure rate factor = 0.04. The factor is considered herein to represent a reasonable compromise between the data presented in the RADC and Redstone reports.

t. Non-MIL-HDBK-217B Parts

$$\lambda_p = \lambda_b \cdot E \cdot D \text{ per 217B PREDICT}$$

Where: λ_b = Base failure rate at a specified environment as defined by the user

E = The appropriate environmental factors as defined by the user

D = The appropriate dormant failure rate factor as defined by the user

SECTION VI

REFERENCES

1. MIL-HDBK-217B and Notice 1, "Military Standardization Handbook, Reliability Prediction of Electronic Equipment," 7 September 1976.
2. Rome Air Development Center Technical Report No. RADC-75-248, "Dormancy and Power On-Off Cycling Effects on Electronic Equipment and Part Reliability," August 1973.
3. U. S. Army Redstone Arsenal Storage Report LC-76-1, "Missile Material Prediction Handbook, Parts Count Prediction," May 1976.
4. RADC-TR-75-22, "RADC Nonelectronic Reliability Notebook," January 1975.
5. National Aeronautics and Space Administration Technical Report 32-1543, "Reliability Computation from Reliability Block Diagrams," 1 December 1971.
6. MIL-STD-1670A, "Military Standard, Environmental Criteria and Guidelines for Air-Launched Weapons," 30 July 1976.
7. Failure Rate Data (FARADA) Handbook, Naval Fleet Missile Systems Analysis and Evaluation Group, March 1968 and updates.
8. TRW Systems Group Report No. D00289 (GIDEP Report Number 347.20.00.00-G4-04). "An Investigation of the Ratio Between Standby and Operating Part Failure Rates," February 1971.
9. Naval Weapons Center Utility Program Number UP-4144, "Sperry UNIVAC 1110 Series Executive System Programmer Reference Manual," 1975.

APPENDIX A
STORED PART DATA
AND
CODING FORM DEFINITIONS

TABLE OF CONTENTS

	<u>Page</u>
Figure A.1	Generalized 217B PREDICT PROGRAM DECK SETUP.
Table A.1	A-1
Table A.2	Stored Part Data for 217B PREDICT Computer Program . .
	A-2
Table A.3	Supplemental Data Card Definitions
	A-7
Table A.4	System Control Card Definitions.
	A-11
Table A.5	Assembly/Subassembly Data Card Definitions
	A-14
	Reliability Summary Card Definitions
	A-18

FIGURE A.1. GENERALIZED 217B PREDICT PROGRAM DECK SET-UP

TABLE A.1. STORED PART DATA FOR 217B PREDICT COMPUTER PROGRAM

*** GENERAL INFORMATION ***

INTRODUCTION: THE ENCLOSED RELIABILITY PREDICTION DATA WERE COMPILED USING THE '217B PREDICT' COMPUTER PROGRAM. THE PROGRAM CALCULATES INDIVIDUAL PART FAILURE RATES USING THE STANDARD PART FAILURE RATE PARAMETERS DEFINED HEREIN UNLESS OTHERWISE DEFINED AT THE PART LEVEL. DETAILED PROCEDURES AND ASSUMPTIONS USED ARE OUTLINED BELOW AND ARE DISCUSSED IN THE BASIC REPORT.

DATA SOURCES: THE PART FAILURE RATE DATA WERE DERIVED IN ACCORDANCE WITH THE PROCEDURES AND DATA IN THE FOLLOWING REFERENCES.

- 217B = MIL-HDBK-217B AND NOTICE 1, 'RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT', SEPT 1976
- REFSTN = US ARMY RESTONE ARSENAL STORAGE REPORT LC-76-1, 'MISSILE MATERIAL RELIABILITY PREDICTION HANDBOOK', MAY 1976
- RADC1 = SAME AIR DEVELOPMENT CENTER REPORT RADC-TR-73-22, 'NONELECTRONIC RELIABILITY NOTEBOOK', JAN 1975
- RADC2 = SAME AIR DEV CENTER REPORT RADC-TR-73-248, 'DURABILITY & POWER ON-OFF CYCLING EFFECTS ON RELIABILITY', AUG 1973
- PARAFA = FAILURE RATE DATA HANDBOOK, NAVAL FLEET MISSILE SYSTEM ANALYSIS AND EVALUATION GROUP, MAR 1968 AND UPDATES
- HANUAL = 217B PREDICT SYSTEM RELIABILITY PREDICTION COMPUTER PROGRAM USER MANUAL DEFINITION FOR NON-MIL-HDBK-217B DATA REPORT
- SEE THE BASIC RELIABILITY PREDICTIONS REPORT FOR MORE DEFINITIVE DEFINITIONS OF THE DATA AS NOTED HEREIN

*** FAILURE RATE PARAMETER DEFINITIONS ***

CODING FORMAT: THE FOLLOWING CODING FORMAT IS USED HEREIN TO DEFINE THE PART FAILURE RATE PARAMETERS IN RECOGNIZABLE TERMINOLOGY. I.E. IN GENERAL ACCORDANCE WITH MIL-HDBK-217B DEFINITIONS. THIS FORMAT IS USED TO DEFINE THE STANDARD PART FAILURE RATE PARAMETERS, AND TO IDENTIFY THE EXCEPTIONS TO THE STANDARD PART FAILURE RATE PARAMETERS AT THE PART LEVEL IN THE ENCLOSED PRINTOUT

XYY-ZZZZ, WHERE: X = FAILURE RATE COLUMN LIMITATION AT THE PART LEVEL ONLY. LIMITS THE APPLICABILITY OF THE SPECIFIED PART FAILURE RATE PARAMETER TO A SINGLE LIFE CYCLE EVENT AT THE PART LEVEL IN THE ENCLOSED PART FAILURE RATE PRINTOUT. IF BLANK, THE FAILURE RATE PARAMETER APPLIES TO EACH OF THE LIFE CYCLE EVENTS NOTED.

YY = PART FAILURE RATE PARAMETER SYMBOL IN GENERAL ACCORDANCE WITH MIL-HDBK-217B AS DEFINED BELOW.
ZZZZ = PART FAILURE RATE PARAMETER VALUE USED TO CALCULATE THE PART FAILURE RATE, OR TO DEFINE THE USE OF 'OPEN' OR 'DORN' PART FAILURE RATES AT THE PART LEVEL IF DIFFERENT THAN THE REST OF THE ASSEMBLY.

PARAMETER SYMBOLS: THE FOLLOWING PART FAILURE RATE PARAMETER SYMBOLS AS USED HEREIN ARE IN GENERAL ACCORDANCE WITH MIL-HDBK-217B.

SYM	DEFINITION	SYM	DEFINITION
A	SEMICONDUCTOR APPLICATION FACTOR	I	LAMBDA MEDIA FAILURE RATE
B	LASER BALLAST FACTOR	J	LP = RES VALUE FACTOR/SECOND PER RATING
BV	U-N XSTR REVERSE C-E VOLTAGE RATING	K	LP = TYPE RELAY LOAD (RES, IND, OR LNP)
C	COMPLEXITY OR CONSTRUCTION FACTOR	M	U-W 2STR NETWORK MATCHING FACTOR
C	LASER COUPLING CLEANLINESS FACTOR	N	RT = CAPACITOR RATED TEMPERATURE (C)
CF	RELAY OR SWITCH CONTACT FORM FACTOR	BB	S = SYNCNCO OR RESOLVER SIZE FACTOR
CV	CTR CAPACITOR VALUE FACTOR	BB	CSR = CAPACITOR SERIES RESISTANCE
CY	NUMBER OF CYCLES OR RATINGS	BT	S1 = PRIMARY OPERATING STRESS RATIO
D1	LASER DISCHARGE CURRENT (mA)	BT	S2 = SEMICONDUCTOR REVERSE VOLT FACTOR
F	CKT FUNCTION OR FAMILY/FAMILY FACTOR	BT	U-N ASTA PEAK JUNCTION TEMP(C)
F	U-N ASTA FREQUENCY/POWER FACTOR	O	T = HYBRID & ETM TEMPERATURE FACTOR
FR	PART FAILURE RATE (FAIL/MILLION HRS)	OP	TJ = INTEGR CKT JUNCTION TEMPERATURE(C)
IN	INSERT/INSUL MATERIAL TEMP RATING	OS	TM = SEMICON MAX OPER JUNCTION TEMP (C)
L	INTEGRATED CIRCUIT LEARNING FACTOR	P	TP = POTENTIOMETER TAP CONNECTION FACTOR
LB	LAMBDA BASIC-PART FR LESS FACTORS	P	TR = INDUCT/ROTARY/CONN TEMP RISE (C)
LC	LASER LAMBDA COUPLING FAILURE RATE	TS	TS = SEMICON START OF TEMP DERATING (C)
		V	V = POTENTIOMETER VOLTAGE FACTOR
		VC	U-Y XSTR OPERATING C-E VOLTAGE

TABLE A.1. Stored Part Data for 217B PREDICT Computer Program (Cont'd)

BORNTANT FACTORS: THE FOLLOWING BORNTANT FR FACTORS WERE USED AS NOTED HEREIN IN THE ABSENCE OF ESTABLISHED DORMANT FAILURE RATE DATA

ELECT = ESTIMATED BORNTANT ELECTRICAL PART FAILURE RATE = 6.10 TIMES THE APPLIED STRESS PART FAILURE RATE
 MECH = ESTIMATED BORNTANT MECHANICAL PART FAILURE RATE = 0.04 TIMES THE OPERATING PART FAILURE RATE

ENVIRONMENTAL FACTORS: THE FOLLOWING ENVIRONMENTAL FACTORS WERE USED AS NOTED HEREIN. THE EST-1 ENVIRONMENTAL FACTORS REFLECT A TYPICAL MIX OF ELECTRICAL PARTS IN AN AIRBORNE MISSILE AND WERE ONLY USED IN THE ABSENCE OF ESTABLISHED ENVIRONMENTAL DATA.

BEAD = ENVIR FACTORS, TRANSISTOR: GB= 1, SF= 1, 6F= 5, 6H= 25, HS= 14, HU= 19, AI= 12, AU= 16, ML= 57 (SYN PER 217D ENVIR)
 DISK = ENVIR FACTORS, TRANSISTOR: GB= 1, SF= 1, 6F= 5, 6H= 25, HS= 14, HU= 19, PI= 12, AU= 15, ML= 55 (SYN PER 217D ENVIR)
 EST(1) = ENVIR FACTORS, GEN ELECT: GB= 1, SF= 1, 6F= 6, 6H= 10, HS= 15, HU= 20, AI= 15, AU= 30, ML= 40 (SYN PER 217D ENVIR)

4.0. STANDARD PART FAILURE RATE DATA USED ***

PART FR DATA: THE FOLLOWING FAILURE RATE DATA AND SOURCES WERE USED TO CALCULATE THE INDIVIDUAL PART FAILURE RATES FOR THIS PREDICTION UNLESS OTHERWISE NOTED AT THE PART LEVEL IN THE ENCLOSED PART FAILURE RATE PRINTOUT

NOTE: 1. ASTERISK (*) IDENTIFIES THOSE ENTRIES THAT REQUIRE ADDITIONAL DEFINITIVE DISCUSSION IN THE BASIC REPORT.

2. THE PART CODE IS A SEMI-ARBITRARY PART IDENTIFIER USED FOR COMPUTER PROGRAM CONTROL IN PERFORMING THIS PREDICTION.

3. OPEN FR SOURCE, ENVIR FACTORS, AND DORM FR SOURCE IDENTIFIES THE DATA SOURCE USED, I.E. THE FAILURE RATE SOURCE OR PART PARAMETER SOURCE PREVIOUSLY NOTED IN THIS SUMMARY, OR DATA EQUIVALENCE TO AN ALTERNATE PART CODE (PC-XXX).

4. BORNTANT PART FAILURE RATE IS ESTIMATED BY MULTIPLYING THE APPLIED STRESS OPERATING FAILURE RATE AS DEFINED BELOW TIMES THE BORNTANT FR FACTOR. UNLESS OTHERWISE NOTED, THE DORMANT FAILURE RATE FACTOR IS THE FAILURE RATE FROM THE BORNTANT SOURCE FOR A SPECIFIED ENVIRONMENT DIVIDED BY THE APPLIED STRESS PART FAILURE RATE AT THE SAME ENVIRONMENT. WITH THE CONSERVATIVE CONSTRAINT THAT THE DORMANT FR FACTOR SHALL NOT BE GREATER THAN 1.0 NOR LESS THAN 0.001

PART CODE	PART DESCRIPTION	PART FR EQUIV OR PART DEFINITION	OPER FR FACTORS	ENVIR	DORMANT FR FACTORS-SOURCE	APPLIED STRESS PART FR OPERATING PART FR AND ENVIRONMENT	ASSURED STRESS
101	MONO S/M/SI DIG I/C	2170	217B	+100	REDSTN #G= 20, L= 1.0, Q= 2.0, P= 1.0, PC= 14		
102	MONO S/M/SI LIN I/C	2170	217B	+100	PC-101 #F= 32, L= 1.0, Q= 2.0, P= 1.0, PC= 10		
103	MONO LS1 DIG I/C	2170	217B	+100	PC-101 #G= 100, L= 1.0, Q= 2.0, P= 1.0, PC= 16		
104	MONO ROM INTEG CKT	2170	217B	+100	PC-101 #B= 1032, L= 1.0, Q= 2.0, P= 1.0, PC= 16		
105	MONO RAM INTEG CKT	2170	217B	+100	PC-101 #B= 1032, L= 1.0, Q= 2.0, P= 1.0, PC= 16		
107	ROS S/M/SI DIG I/C	2170	217B	+100	PC-101 #G= 20, L= 1.0, Q= 2.0, P= 1.0, PC= 14		
108	ROS S/M/SI LIN I/C	2170	217B	+100	PC-101 #F= 32, L= 1.0, Q= 2.0, P= 1.0, PC= 10		
109	ROS LS1 DIG I/C	2170	217B	+100	PC-101 #G= 100, L= 1.0, Q= 2.0, P= 1.0, PC= 16		
110	ROS ROM INTEG CKT	2170	217B	+100	PC-101 #B= 1032, L= 1.0, Q= 2.0, P= 1.0, PC= 16		
111	ROS RAM INTEG CKT	2170	217B	+100	PC-101 #B= 1032, L= 1.0, Q= 2.0, P= 1.0, PC= 16		
113	THK FILM DIG MTO	2170	217B	+100	PC-101 #B= 1.0, Q= 1.0, F= 0.8, PC= 24		
114	THK FILM LIN MTO	2170	217B	+100	PC-101 #E= 1.0, Q= 1.0, F= 1.0, PC= 24		
115	THK FILM MTO, MIX DIG & LIN CKTS	2170	217B	+100	PC-101 #B= 1.0, Q= 1.0, F= 1.1, PC= 24		
117	THIN FILM DIG HYB	2170	217B	+100	PC-101 #B= 1.0, Q= 1.0, F= 0.8, PC= 24		
118	THIN FILM LIN HYB	2170	217B	+100	PC-101 #B= 1.0, Q= 1.0, F= 1.0, PC= 24		
119	THIN FILM MTO, MIX DIG & LIN CKTS	2170	217B	+100	PC-101 #B= 1.0, Q= 1.0, F= 1.1, PC= 24		
201	RECEIVER TUBE TRIODE, TETRODE	2170	217P	.002	REDSTN LB= 5.0, PC= 8		

TABLE A.1. Stored Part Data for 217B PREDICT Computer Program (Cont'd)

*** STANDARD PART FAILURE RATE DATA USED ***									
PART CODE	PART DESCRIPTION	PART FOR EQUIV OR PART DEFINITION	OPEN FA SOURCE	ENVIR FACTORS	DORMANT FA FACTOR-SOURCE	APPLIED STRESS PART FA PARAMETERS ON OPERATING PART FA AND ENVIRONMENT	ASSUMED STRESS		
202	PWA RECT TUBE	217B	217B	.002	PC-201	LB= 10, LC= 8			
203	LOW PWR KLYSTRON	LOCAL OSCILLATOR	217B	.003	REDSTN	LB= 30, LC= 8			
204	HIGH PWR KLYSTRON	<10 MEGANOTTS	217B	.032	PC-305	LB= 200, LC= 8			
205	MAGNETRON	<10 KILOWATTS	217B	.032	REDSTN	LB= 200, LC= 8			
206	TWT	<100 WATTS	217B	.028	REDSTN	LB= 30, LC= 8			
207	TRIODE XRAY TUBE	217B	.002	PC-201	LB= 75, LC= 8				
208	TETRODE XRAY TUBE	TETRODE & PENTODE	217B	.002	PC-201	LB= 100, LC= 8			
209	CAT	217B	.002	PC-201	LB= 15, LC= 8				
212	LASER, HELIUM/NEON	217B	.040	MECH	LB= 84, LC= 0.1, FC= 4				
213	LASER, ARGON ION	217B	.040	MECH	LB= 457, LC= 6.0, FC= 4				
214	LASER, CO ₂ SEALED	217B	.040	MECH	LB= 20, LC= 10, 0 = 1.0, 0 = 1.0, OS= 2.0				
215	LASER, CO ₂ FLOWING	217B	.040	MECH	LB= 0.1, OS= 2.0, FC= 4				
216	LASER, SS, YAG ROB	217B	.040	MECH	LB= 0.1, LC= 16.3, LP= 1.6K, C = 30, OS= 2.0				
217	LASER, SS, RUBY RD	217B	.040	MECH	LB= 1.0K, LC= 16.3, LP= 1.6K, C = 30, OS= 2.0				
219	MICROWAVE XSTR, AL ALUM METALIZATION	217B	.320	PC-220	LB= 0.1, 0 = 2.0, A = 1.0, F = 1.0, VC= 6.0				
220	MICROWAVE XSTR, AU GOLD METALIZATION	217B	.320	REDSTN	EV= 15, T = 110, M = 1.0, FC= 3				
220	MICROWAVE XSTR, AU GOLD METALIZATION	217B	.320	REDSTN	EV= 15, T = 120, M = 1.0, FC= 3				
301	SI NPN TRANSISTOR	217B	.634	REDSTN	S1= 0.1, S2= 0.3, C = 1.0, A = 0.7, 0 = 0.4, S1= 0.3				
302	SI PNP TRANSISTOR	217B	.634	PC-301	R= 1.0, TS= 25, TH= 175, FC= 3				
303	GE NPN TRANSISTOR	217B	.634	PC-301	S1= 0.1, S2= 0.3, C = 1.0, A = 0.7, 0 = 0.4, S1= 0.3				
304	GE PNP TRANSISTOR	217B	.634	PC-301	R= 1.0, TS= 25, TH= 100, FC= 3				
305	FIELD EFFECT XSTR	217B	.043	REDSTN	S1= 0.1, TS= 25, TH= 100, FC= 3				
306	UNIJUNCTION XSTR	217B	1.000	REDSTN	TH= 175, FC= 3				
310	STD SILICON DIODE	217B	.244	REDSTN	S1= 0.1, Q= 1.6, TS= 25, TH= 175, FC= 3				
311	GERMANIUM DIODE	217B	.244	PC-310	R= 1.0, TS= 25, TH= 100, FC= 2				
312	ZENER DIODE	217B	.176	REDSTN	S1= 0.1, A = 1.0, Q= 1.0, TS= 25, TH= 175, S1= 0.3				
313	THYRISTOR/SCR	217B	.634	PC-301	AC= 2				
314	VARIACOR DIODE	217B	.244	PC-310	S1= 0.1, Q= 5.0, TS= 25, TH= 175, FC= 2				
315	STEP AC/VY DIODE	217B	.244	PC-310	S1= 0.1, Q= 5.0, TS= 25, TH= 175, FC= 2				
316	TUNNEL DIODE	217B	.244	PC-310	S1= 0.1, Q= 5.0, TS= 25, TH= 175, FC= 2				
317	SI RF DETECT DIODE	217B	.320	PC-320	S1= 0.1, Q= 3.5, TS= 25, TH= 150, FC= 2				

TABLE A.1. Stored Part Data for 217B PREDICT Computer Program (Cont'd)

*** STANDARD PART FAILURE RATE DATA USED ***							
PART CODE	PART DESCRIPTION	PART FOR EQUIV OR PART DEFINITION	OPER. FA SOURCE	ENVIR. FACTORS	BURNOUT FA FACTOR-SOURCE	APPLIED STRESS PART FA PARAMETERS ON OPERATING PART FA AND ENVIRONMENT	ASSURED STRESS
310 S1 8P PIN DIODE		217B	.320	PC-220	S1= 0.1, q = 3.5, TS= 25, TN= 150, RC= 2	S1= 0.3	
319 6E 8P DETECT DIODE		217B	.320	PC-220	S1= 0.1, q = 3.5, TS= 25, TN= 70, RC= 2	S1= 0.3	
320 6E 8P MIXER DIODE		217B	.320	PC-207	S1= 0.1, q = 3.5, TS= 25, TN= 70, RC= 2	S1= 0.3	
401 ACCURATE L/N RES	RES STYLE RESISTOR	217B	.012	REDSTN	S1= 0.1, r = 1.0, v = 1.0, RC= 2	S1= 0.1	
402 CARBON COMP RES	RCR STYLE RESISTOR	217B	.028	REDSTN	S1= 0.1, r = 1.0, v = 1.0, RC= 2	S1= 0.1	
403 PWR FILM RESISTOR	R0 STYLE RESISTOR	217B	1.600	REDSTN	S1= 0.1, r = 1.0, v = 1.0, RC= 2	S1= 0.1	
404 W/U CHS POWER RES	CHS POWER RES	217B	.0012	PC-401	S1= 0.1, r = 1.0, v = 1.0, RC= 2	S1= 0.1	
405 INSUL. FILM RES	BLR STYLE RESISTOR	217B	.006	REDSTN	S1= 0.1, r = 1.0, v = 1.0, RC= 2	S1= 0.1	
406 HIGH STAB FILM RES	BLR STYLE RESISTOR	217B	.004	PC-405	S1= 0.1, r = 1.0, v = 1.0, RC= 2	S1= 0.1	
407 W/U POWER RESISTOR	BLR STYLE RESISTOR	217B	.012	PC-401	S1= 0.1, r = 1.0, v = 1.0, RC= 2	S1= 0.1	
409 LOW TEMP W/U POT	RA STYLE POT	217B	.052	REDSTN	S1= 0.1, r = 1.0, v = 2.0, v = 1.0, TR= 1.0	S1= 0.1	
410 SEMI-PINCH W/U POT	RAK STYLE POT	217B	.052	REDSTN	S1= 0.1, r = 1.0, v = 2.0, v = 1.0, TR= 1.0	S1= 0.1	
411 NON-W/U POT	RJR STYLE POT	217B	.032	REDSTN	S1= 0.1, r = 1.0, v = 1.0, TR= 1.0	S1= 0.1	
412 POWER W/U POT	RP STYLE POT	217B	.016	PC-413	S1= 0.1, r = 1.0, v = 1.0, TR= 1.0	S1= 0.1	
413 PRECISION W/U POT	RA STYLE POT	217B	.016	REDSTN	S1= 0.1, r = 1.0, v = 2.5, v = 1.0, TR= 1.0	S1= 0.1	
414 W/U TRIMMER POT	RTR STYLE POT	217B	.008	REDSTN	S1= 0.1, r = 1.0, v = 1.0, v = 1.0, RC= 3	S1= 0.1	
415 COMPOSITION POT	RV STYLE POT	217B	.514	REDSTN	S1= 0.1, r = 1.0, v = 2.5, v = 1.0, TR= 1.0	S1= 0.1	
417 READ TRANSISTOR	ATH24 STYLE	217B	.006	PC-416	LB=-.021	RC= 2	S1= 0.3
418 DISK TRANSISTOR	ATH6 STYLE	217B	.006	REDSTN	LB=-.065	RC= 2	S1= 0.3
501 BUTTON MICA CAP	CB STYLE CAPACITOR	217B	.283	REDSTN	S1= 0.1, q = 5.0, RC= 2	S1= 0.3	
502 TEMP COMP CERN CAP	CC STYLE CAPACITOR	217B	.071	RAD2	S1= 0.1, q = 5.0, RC= 2	S1= 0.3	
503 ALUM ELECTRO CAP	CE STYLE CAPACITOR	217B	.988	RAD2	S1= 0.1, q = 3.0, RC= 2	S1= 0.3	
504 ATLC POLYPLASTIC CAP	CHB STYLE CAP	217B	1.000	REDSTN	S1= 0.1, RT= 125, q = 1.0, TR= 0.0, RC= 2	S1= 0.3	
505 CERAMIC CAPACITOR	CKA STYLE CAP	217B	.159	REDSTN	S1= 0.1, RT= 125, q = 1.0, TR= 0.0, RC= 2	S1= 0.3	
506 MONSOLIO TANTO CAP	CLR STYLE CAP	217B	1.000	REDSTN	S1= 0.1, RT= 125, q = 1.0, TR= 0.0, RC= 2	S1= 0.3	
507 ALCA CAPACITOR	CMA STYLE CAP	217B	1.000	REDSTN	S1= 0.1, RT= 125, q = 1.0, TR= 0.0, RC= 2	S1= 0.3	
508 PAPER/PLASTIC CAP	CPV STYLE CAP	217B	1.000	REDSTN	S1= 0.1, RT= 125, q = 1.0, TR= 0.0, RC= 2	S1= 0.3	
509 PLASTIC CAPACITOR	CRN STYLE CAP	217B	1.000	REDSTN	S1= 0.1, RT= 125, q = 1.0, TR= 0.0, RC= 2	S1= 0.3	
510 SOLID TANTALUM CAP	CSR STYLE CAP	217B	1.000	REDSTN	S1= 0.1, q = 0.3, SR= 0.07, RC= 2	S1= 0.3	
512 ALUM-OXIDE CAP	CU STYLE CAPACITOR	217B	.103	REDSTN	S1= 0.1, q = 3.0, RC= 2	S1= 0.3	
512 VARI-CERAMIC CAP	CV STYLE CAPACITOR	217B	.297	REDSTN	S1= 0.1, q = 4.0, RC= 2	S1= 0.3	
514 GLASS CAPACITOR	CYR STYLE CAP	217B	.400	REDSTN	S1= 0.1, q = 1.0, CV= 1.0, RC= 2	S1= 0.3	
516 VARI-PISTON CAP	PC STYLE CAPACITOR	217B	.297	PC-517	S1= 0.1, q = 3.0, RC= 2	S1= 0.3	
601 LOU PUP PULSE XFMN	MIL-T-21038 STYLE	217B	.500	MANUAL	F= 1.5, IM= 120, TR= 5.0, RC= 5	S1= 0.3	
602 PULSE TRANSFORMER	MIL-T-227 STYLE	217B	.503	MANUAL	F= 1.5, IM= 130, TR= 30, RC= 5	S1= 0.3	
603 AUDIO TRANSFORMER	MIL-T-227 STYLE	217B	.500	MANUAL	F= 3.0, IM= 130, TR= 30, RC= 5	S1= 0.3	

TABLE A.1. Stored Part Data for 217B PREDICT Computer Program (Cont'd)

*** STANDARD PART FAILURE RATE DATA USED ***									
PART CODE	PART DESCRIPTION	PART IN EQUIV OR PART DEFINITION	OPERATING SOURCE	ENVIR. FACTORS	BORRANT /A FACTOR-SOURCE	APPLIED STRESS PART FA PARAMETERS OR OPERATING PART FA AND ENVIRONMENT	ASSUMED STRESS		
604 POWER TRANSFORMER	MIL-T-27 STYLE	2178	.500	MANUAL	F = 8.0, IN = 130.	TR = 30, <i>frc</i> = 10			
605 RF TRANSFORMER	MIL-C-15905 STYLE	2178	.500	MANUAL	F = 12, IN = 130.	TR = 30, <i>frc</i> = 5			
607 PULSE INDUCTOR	MIL-T-27 STYLE	2178	.500	MANUAL	F = 1.5, IN = 130.	TR = 5.0, <i>frc</i> = 2			
608 AUDIO INDUCTOR	MIL-T-27 STYLE	2178	.500	MANUAL	F = 3.0, IN = 130.	TR = 5.0, <i>frc</i> = 2			
609 POWER INDUCTOR	MIL-T-27 STYLE	2178	.500	MANUAL	F = 8.0, IN = 130.	TR = 5.0, <i>frc</i> = 2			
610 RF INDUCTOR	MIL-C-15905 STYLE	2178	.500	MANUAL	F = 12, IN = 130.	TR = 5.0, <i>frc</i> = 2			
612 AC BRUSHLESS MOTOR		2178	1.000	MANUAL	F = 5.0, <i>fc</i> = 5	TR = 50, <i>zrh</i> = 0.5, <i>op</i> = 2k			
613 COMMUTATOR MOTOR		2178	1.000	MANUAL	F = 24, <i>fc</i> = 5	TR = 50, <i>zrh</i> = 0.5, <i>op</i> = 2k			
615 FAN/BLOWER	2178 FIXED LIFE	2178	1.000	MANUAL	OPER FR, <i>gf env</i> =	2.046600			
616 SYNCHRO		2178	.500	MANUAL	S = 2.0, <i>fb</i> = 6.0	TR = 40, <i>zrh</i> = 6.0			
617 RESOLVER		2178	.500	MANUAL	S = 3.0, <i>fb</i> = 4.0	TR = 40, <i>zrh</i> = 4.0			
619 ELAPSED TIME METER AC TYPE		2178	.500	MANUAL	Lb = 20, <i>fb</i> = 0.5,	<i>zrh</i> = 0, <i>frc</i> = 2			
701 PUB CONNECTOR	1/2 RATED PAIR	2178	.040	MANUAL	IN = B, <i>a</i> = <i>frc</i> N/A	MS, <i>n</i> = 10, <i>tr</i> = 0.0, <i>cy</i> = 0.0			
702 RACK & PANEL CONN	1/2 MATED PAIR	2178	.040	MANUAL	IN = B, <i>a</i> = <i>frc</i> N/A	MS, <i>n</i> = 20, <i>tr</i> = 0.0, <i>cy</i> = 0.0			
703 CABLE CONNECTOR	1/2 MATED PAIR	2178	.040	MANUAL	IN = B, <i>a</i> = <i>frc</i> N/A	MS, <i>n</i> = 30, <i>tr</i> = 0.0, <i>cy</i> = 0.0			
704 COAXIAL CONNECTOR	1/2 RATED PAIR	2178	.040	MANUAL	IN = C, <i>a</i> = <i>frc</i> N/A	MS, <i>n</i> = 2.0, <i>tr</i> = 0.0, <i>cy</i> = 0.0			
707 RELAY, 85C RATING		2178	.040	MANUAL	S1= 0.1, <i>fb</i> = MS	<i>cf</i> = 3.0, <i>zrh</i> = 5.0, <i>rl-res</i>			
708 RELAY, 125C RATING		2178	.040	MANUAL	S1= 0.1, <i>fb</i> = MS	<i>cf</i> = 3.0, <i>zrh</i> = 5.0, <i>rl-res</i>			
711 TOGGLE SWITCH	SNAP-ACTION	2178	1.000	MANUAL	Lb = .01, <i>fb</i> = MS	<i>cf</i> = 1.0, <i>zrh</i> = 0, <i>rl-res</i>			
712 PUSHBUTTON SWITCH		2178	1.000	MANUAL	Lb = .01, <i>fb</i> = MS	<i>cf</i> = 1.0, <i>zrh</i> = 0, <i>rl-res</i>			
713 SENSITIVE SWITCH	2 ACTIVE POLES	2178	1.000	MANUAL	Lb = .407, <i>fb</i> = MS	<i>cf</i> = 1.0, <i>zrh</i> = 0, <i>rl-res</i>			
714 ROTARY SWITCH	2 CERAMIC WAFERS	2178	1.000	MANUAL	Lb = .404, <i>fb</i> = MS	<i>cf</i> = 1.0, <i>zrh</i> = 0, <i>rl-res</i>			
901 TWO-SIDED PW BOARD		2178	.040	MANUAL	N = 100				
902 MULTILAYER PW BD		2178	.040	MANUAL	N = 100				
903 PWB WAVE SOLDER		2178	.040	MANUAL	OPER FR, <i>gf env</i> =	.00044			
904 HAND SOLDER		2178	.040	MANUAL	OPER FR, <i>gf env</i> =	.00390			
905 REFLW LAP SOLDER		2178	.040	MANUAL	OPER FR, <i>gf env</i> =	.00012			
906 PART CONNECTIONS	PWB WAVE SOLDER	PC-903	.040	PC-903	OPER FR, <i>gf env</i> =	.00044			
920 PART TO BE DEFINED			.000						

TABLE A.2. Supplemental Data Card Definitions

a. CARD 1A. Add Data Source Reference to Summary Printout (Not Mandatory).

COLUMN		DATA DESCRIPTION (DATA LEFT HAND JUSTIFIED UNLESS OTHERWISE NOTED)
1-2		Enter "1A." Card 1A documents additional references used in performing the reliability prediction (limit of 0 to 9 Card 1A entries).
4-9		Arbitrary Data Source Abbreviation used to reference the data source used for the Card 2A and 2C part parameter inputs.
A-7	11-76	Data Source Report Number, Title, and Release Date.

b. CARD 1B. Data Source Continuation Card (Not Mandatory).

COLUMN		DATA DESCRIPTION (DATA LEFT HAND JUSTIFIED UNLESS OTHERWISE NOTED)
1-2		Enter "1B." Card 1B provides continuation of Card 1A data (limit of 0 to 1 Card 1B entries for each Card 1A entry).
4-9		Card 1A Data Source Abbreviation
11-53		Continuation of Card 1A documentation.

AD-A073 833 SYSTEMS CONSULTANTS INC RIDGECREST CALIF
217B PREDICT, SYSTEM RELIABILITY PREDICTION COMPUTER PROGRAM, V--ETC(U)
MAR 77

F/G 9/2
N00123-73-C-0243

NL

UNCLASSIFIED

GIDEP-E071-0295

2 OF 2
AD
A073833

END
DATE
FILED
10-79
DDC

TABLE A.2. Supplemental Data Card Definitions (Continued)

c. CARD 2A. Add Environmental Factors to Stored Part Data (not mandatory).

<u>COLUMN</u>	<u>DATA DESCRIPTION (DATA LEFT HAND JUSTIFIED UNLESS OTHERWISE NOTED)</u>
1-2	Enter "2A." Card 2A defines additional environmental factors to be used for operating and dormant failure rate data as defined by the user on Card 2C (limit of 0 to 9 Card 2A entries).
4-9	Data Source Abbreviation as defined on Card 1A and as modified herein to specifically define the environmental factors for computer program control.
11-20	The user may include a brief description. This description will be added to the "ENVIR FACTORS" printout from the computer, e.g., ENVIR FACTORS, GEN ELECT.
22-24	Enter the MIL-HDBK-217B environmental symbol and equal sign for the summary printout, i.e., GF =.
25-26 (typical)	Enter the environmental factor to be used, e.g., 1 or 1.0 (right hand justified). Data defaults to zero for the program and to blank for the printout in the absence of an entry.

A-8

TABLE A.2. Supplemental Data Card Definitions (Continued)

d. CARD 2B. Modify or Equate to Stored Part Data (not mandatory).

<u>COLUMN</u>	<u>DATA DESCRIPTION (DATA LEFT HAND JUSTIFIED UNLESS OTHERWISE NOTED)</u>
1-2	Enter "2B." Used to modify stored part failure rate parameters or to use the stored data as a failure rate equivalency to a new part. This card can be used in conjunction with Card 2C, but must always precede same (number of Card 2B entries is not limited).
4-6	Enter 3 digit part code in accordance with Table B.1 for computer control.
8-25	Enter part type description for part level printout and summary printout.
27-44	Enter failure rate equivalency or additional part information (not mandatory).
46-48	Enter preassigned part code failure rate equivalency (not mandatory).
49	Enter "*" if the following part parameter data is to modify the assumed value for S1. (typical)
50-51 (typical)	Enter the data symbol for the part parameter to be modified as defined in Table B.
52 (typical)	Enter "-" for summary printout.
53-56 (typical)	Enter new part parameter data to be used for the prediction.
80	Enter "*" if additional discussion of part is provided in the basic report.

A-9

TABLE A.2. Supplemental Data Card Definitions (Continued)

e. CARD 2C. Supplement or Equate to Stored Part Data (not mandatory).

COLUMN	DATA DESCRIPTION (DATA LEFT HAND JUSTIFIED UNLESS OTHERWISE NOTED)
1-2	Enter "2C." Used to supplement or equate to the Stored Part Data. This card can be used in conjunction with Card 2B, but must always follow same (number of Card 2C entries is not limited).
4-6	Enter 3 digit part code in accordance with Table A.1 for computer control.
8-25	Enter part type description for part level printout and summary printout.
27-32	Enter operating failure rate Data Source Abbreviation as defined in Table A.1 or as defined on Card A1 for summary printout.
34-39	Enter operating failure rate as defined in data source (in f/10 ⁶ hours).
41-42	Enter equivalent MIL-HDBK-217B environmental symbol for above failure rate.
44-49	Define environmental factors to be used in terms of the Data Source Abbreviation as defined in Table A.1 or on Card 2A. Enter PC-XXX if stored factors for equivalent part are to be used, where XXX equals the 3 digit part code for the equivalent part.
51-56	Must enter Data Source Abbreviation for the dormant failure rate or failure rate factor as defined in Table A.1 or on Card 1A. Enter PC-XXX if stored factor for equivalent part is to be used, where XXX equals the 3 digit part code for the equivalent part.
58-63	Enter dormant failure rate as defined in data source (in f/10 ⁶ hours) if the computer program is to calculate the failure rate factor.
65-66	Enter equivalent MIL-HDBK-217B environmental symbol for above failure rate.
68-72	If the dormant failure rate factor is predefined enter same. If the derivation of the factor requires additional explanation, it is the responsibility of the user to provide same in the report.
80	Enter "*" if additional discussion of part is provided in the basic report.

COULD

A-10

TABLE A.3. System Control Card Definitions

a. <u>CARD 3. System Description</u>	
<u>COLUMN</u>	<u>DATA DESCRIPTION (DATA LEFT HAND JUSTIFIED UNLESS OTHERWISE NOTED)</u>
1	Enter "3." Card 3 identifies and documents the user's "system" (number of Card 3 entries is not limited).
3-50	Enter a definitive description of the "system."
52-63	Enter the assembly/fabrication drawing number and revision.

b. <u>CARD 4. Subsystem Description (not mandatory)</u>	
<u>COLUMN</u>	<u>DATA DESCRIPTION (DATA LEFT HAND JUSTIFIED UNLESS OTHERWISE NOTED)</u>
1	Enter "4." Card 4 identifies and documents each "subsystem" in the "system." The subsystem description data will default to the system description data in the absence of Card 4 (number of Card 4 entries is not limited).
3-50	Enter a definitive description of the subsystem.
52-63	Enter the assembly/fabrication drawing number and revision.
65-66	Enter the number of duplicate subsystems, defaults to 1.0 in the absence of an entry (right hand justified).

TABLE A.3. System Control Card Definitions (Continued)

c. CARD 5A. Environmental Stress Conditions for Detailed FR Subroutine

<u>COLUMN</u>	<u>DATA DESCRIPTION (DATA LEFT HAND JUSTIFIED UNLESS OTHERWISE NOTED)</u>
1-2	Enter "5A." Can submit one 5A Card per subsystem data deck.
4	Define the subsystem failure rate data set to be used for the part ranking in the Detailed Failure Rate Summary, e.g., 2 = FR TYPE2, "E" SYM2, and TEMP2.
6-12 (typical)	Define the Type of Failure Rate Data (APPLIED, ASSURED, or DORMANT).
14-15 (typical)	Define the equivalent MIL-HDBK-217B environmental symbol.
17-19 (typical)	Define the ambient temperature for the subsystem in degrees Celsius (right hand justified).

A-12

101

TABLE A.3. System Control Card Definitions (Continued)

d. **CARD 5B.** Environmental Stress Conditions for Condensed FR Subroutine

COLUMN	DATA DESCRIPTION (DATA LEFT HAND JUSTIFIED UNLESS OTHERWISE NOTED)
#	FR TYPE 4
1-2	Enter "5B." Can submit one 5B Card per subsystem data deck. Given a 5A and 5B Card are submitted, a second 5B Card can be entered at the end of the subsystem part data to define an additional five failure rate data sets, i.e., prior to the next 3, 4, or 8 Card in the data deck.
4	Define the subsystem failure rate data set to be used for the part ranking in the Condensed Failure Rate Summary, e.g., 5 = FR TYPE5, E = SYM5, and TEMP5.
6-12	Define the Type of Failure Rate Data (APPLIED, ASSUMED, or DORMANT). (typical)
14-15	Define the equivalent MIL-HDBK-217B environmental symbol. (typical)
17-19	Define the ambient temperature for the subsystem in degrees Celsius (right hand justified). (typical)

TABLE A.4. Assembly/Subassembly Data Card Definitions

a. CARD 6. Assembly Description

<u>COLUMN</u>	<u>DATA DESCRIPTION (DATA LEFT HAND JUSTIFIED UNLESS OTHERWISE NOTED)</u>
1	Enter "6." Defines each "assembly" in the users "subsystem/subsystems" (number of Card 6 entries is not limited).
3-14	Enter the assembly/fabrication drawing number and revision.
16-51	Enter a definitive description of the assembly.
53-54	Enter number of duplicate assemblies, defaults to 1.0 if blank (right hand justified).
56 (typical)	Define the Type of Failure Rate Data for the assembly if different than definition on Cards 5A or 5B. Enter P = APPLIED, S = ASSUMED, Ø = DORMANT. (Note: Computer program will not accept zero as an input), or N = Not Applicable (sets all assembly failure rates to zero). This provides the capability to change the type of Failure Rate Data for the detailed failure rate data set 1 to 3 or for the condensed failure rate data set 4 to 8. However, it should be noted that changing data set 4 to 8 will affect the first and second 5B Card (if submitted).
77	Alphabetical or numerical code for manual assembly sorting (not mandatory).

TABLE A.4. Assembly/Subassembly Data Card Definitions (Continued)

b. CARD 7. Subassembly Description (not mandatory)

<u>COLUMN</u>	<u>DATA DESCRIPTION (DATA LEFT HAND JUSTIFIED UNLESS OTHERWISE NOTED)</u>
1	Enter "7." Defines each "subassembly" in the users "assembly" (number of Card 7 entries is not limited).
3-14	Enter the assembly/fabrication drawing number and revision.
16-51	Enter a definitive description of the subassembly.
53-54	Enter number of duplicate subassemblies, defaults to 1.0 if blank (right hand justified).
56 (typical)	Define the Type of Failure Rate Data for the subassembly if different than the definition on Card 5A. Enter P = APPLIED, S = ASSUMED, 0 = DORMANT. (Note: Computer program will not accept zero as an input), or N = Not Applicable (sets all subassembly failure rates to zero).
77	Alphabetical or numerical code for manual assembly sorting (not mandatory).
78	Alphabetical or numerical code for manual subassembly sorting (not mandatory).

TABLE A.4. Assembly/Subassembly Data Card Definitions (Continued)

c. Detailed Part Data Card (Detailed FR Subroutine Only)

COLUMN	DATA DESCRIPTION (DATA LEFT HAND JUSTIFIED UNLESS OTHERWISE NOTED)
2-7	Enter assembly/fabrication drawing part reference designator (number of Detailed Part Data Card entries is not limited).
9-31	Enter assembly/fabrication drawing part number, plus any additional descriptive data as appropriate for interpreting the part number.
33-35	Enter part quantity, defaults to 1.0 if blank (right hand justified).
37-39	Enter 3 digit part code as modified by user for computer control.
41 (typical)	Limits modified part parameter to 1 of the 3 failure rate data sets on Card 5A, e.g., 2 = change applicable to failure rate data set 2 only. Data applies to all three failure rate data sets if blank. If entries with same parameter symbol are used, enter blank first.
42-43 (typical)	Enter the data symbol for the part parameter to be modified as defined in Table A.1. Enter "FR" if the Type of Failure Rate Data for the part is affected.
44 (typical)	Enter "=" for part level printout.
45-48 (typical)	Enter new part parameter value to be used (right hand justified). If Type of Failure Rate Data for part differs from the assembly definitions, then enter OPER = applied data, DORM = dormant data, or N/A = not applicable (sets part failure rate to zero).
77	Alphabetical or numerical code for manual assembly sorting (not mandatory).
78	Alphabetical or numerical code for manual subassembly sorting (not mandatory).
80	Enter "*" if next card is Detailed Part Data Continuation Card.

A-16

TABLE A.4. Assembly/Subassembly Data Card Definitions (Continued)

d. Detailed Part Data Continuation Card (not mandatory)

<u>COLUMN</u>	<u>DATA DESCRIPTION (DATA LEFT HAND JUSTIFIED UNLESS OTHERWISE NOTED)</u>
2-7	Enter assembly/fabrication drawing part reference designator (limit of 0 to 1 Continuation Cards for each Detailed Part Data Card).

9
(typical)

Limits modified part parameter to 1 of 3 sets of environmental stress conditions, i.e., 1 = FR TYPE1, 2 = FR TYPE2, or 3 = FR TYPE3.

10-11
(typical)

Enter the data symbol for the part parameter to be modified as defined in Table A.1. Enter "FR" if the Type of Failure Rate Data for the part is affected.

12
(typical)

Enter "—" for part level printout.

13-16
(typical)

Enter new part parameter value to be used (right hand justified). Can enter OPER, DORM, or N/A if Type of Failure Rate Data is affected.

77
78
(typical)

Alphabetical or numerical code for manual assembly sorting (not mandatory). Alphabetical or numerical code for manual subassembly sorting (not mandatory).

e. Condensed Part Data Card (Condensed FR Subroutine Only)

<u>COLUMN</u>	<u>DATA DESCRIPTION (DATA LEFT HAND JUSTIFIED UNLESS OTHERWISE NOTED)</u>
2-4 (typical)	Enter 3 digit part code as modified by user for computer control (number of Condensed Part Data Card entries is not limited).

6-8
(typical)

Enter part quantity, defaults to 1.0 if blank (right hand justified).

77
(typical)

Alphabetical or numerical code for manual assembly sorting (not mandatory).

TABLE A.5. Reliability Summary Card Definitions

a. CARD 8A. Life Cycle Event Description (not mandatory, Absence of 8A Card will inhibit the reliability summary in the printout).		COLUMN	DATA DESCRIPTION (DATA LEFT HAND JUSTIFIED UNLESS OTHERWISE NOTED)
1-2 Enter "8A." Defines the life cycle event(s) for the printout (number of Card 8A entries is not limited).			
4 The system summary of the subsystem data is inhibited if a "*" is entered.			
6-42 Enter a definitive description of the life cycle events(s).			
b. CARD 8B. One-shot Description and Reliability (not mandatory)		COLUMN	DATA DESCRIPTION (DATA LEFT HAND JUSTIFIED UNLESS OTHERWISE NOTED)
1-2 Enter "8B." Provide individual one-shot data (number of Card 8B entries is not limited).			
4-6 Define the applicable subsystem using "SSn" format, where "n" reflects the order that the subsystem 4 Cards are submitted in the data deck, e.g., the first subsystem Card 4 would be "SS1." If the one-shot is applicable to the system Card 3 enter "SYS."			
8-34 Enter a definitive description for the one-shot.			
36-41 Define the Data Source wherein the one-shot reliability is derived. If the derivation is submitted in the basic report enter REPORT.			
43-49 Enter the one-shot reliability.			

TABLE A.5. Reliability Summary Card Definitions (Continued)

COLUMN	DATA DESCRIPTION (DATA LEFT HAND JUSTIFIED UNLESS OTHERWISE NOTED)
1-2	Enter "8C." Define the failure rate data for the life cycle event (limit of 1 to 2 Card 8C data sets for each Card 8A entry).
4-6 (typical)	Define the applicable subsystem using the "SSn" format, where "n" reflects the order that the subsystem 4 Cards are submitted in the data deck, e.g., the first subsystem Card 4 would be "SS1." The end of the applicable subsystem failure rate data must be noted by entering "SYS."
8-9 (typical)	Define the subsystem failure rate data set to be used on the 5A and 5B Cards, e.g., 5 = FR TYPES, 1 = SYMS, and TEMP5 (right hand justified). If a second 5B Card is submitted, define the second set of 5B failure rate data sets as 9 through 13.
A-19	Enter "*" if one-shot reliability data as defined on Card 8B is to be included in the printout for the subsystem.
11 (typical)	Enter "*" if one-shot reliability data as defined on Card 8B is to be included in the printout for the subsystem.
13-16 (typical)	Enter the absolute value for the duration, e.g., 1 or 1.0 (right hand justified). Duration data defaults to last Card 8C entry for the life cycle event if blank.
18-20 (typical)	Enter the units for the duration as SEC, MIN, HRS, DAY, WKS, MON, or YRS.

APPENDIX B
OUTLINE OF PART CODES
AND
CODING FORMS

TABLE OF CONTENTS

	<u>Page</u>
Table B.1	Outline of 217B PREDICT Part Codes B-1
Table B.2	Outline of UNIVAC 1110 Control Cards B-2
Table B.3	Outline of Supplemental Data Cards ; B-3
Table B.4	Outline of System Control Cards. B-4
Table B.5	Outline of Assembly/Subassembly Data Cards B-5
Table B.6	Outline of Reliability Summary Cards B-6

TABLE B.1. OUTLINE OF 217B PREDICT PART CODES

PART CODE	GENERAL PART TYPE	PART CODE	GENERAL PART TYPE	PART CODE	GENERAL PART TYPE
101	MONO S/MSI DIG I/C	401	RBR STYLE RESISTOR	701	PWB CONNECTOR
102	MONO S/MSI LIN I/C	402	RCR STYLE RESISTOR	702	RACK AND PANEL CONN
103	MONO LSI DIG I/C	403	RD STYLE RESISTOR	703	CABLE CONNECTOR
104	MONO ROM INTEG CKT	404	RER STYLE RESISTOR	704	COAXIAL CONNECTOR
105	MONO RAM INTEG CKT	405	RLR STYLE RESISTOR	705	
106		406	RNR STYLE RESISTOR	706	
107	MOS S/MSI DIG I/C	407	RWR STYLE RESISTOR	707	RELAY, 85C RATING
108	MOS S/MSI LIN I/C	408		708	RELAY, 125C RATING
109	MOS LSI DIG I/C	409	RA STYLE POT	709	
110	MOS ROM INTEG CKT	410	RK STYLE POT	710	
111	MOS RAM INTEG CKT	411	EJR STYLE POT	711	TOGGLE SWITCH
112		412	RP STYLE POT	712	PUSHBUTTON SWITCH
113	THK FILM DIG HYBRID	413	RR STYLE POT	713	SENSITIVE SWITCH
114	THK FILM LIN HYBRID	414	RTR STYLE POT	714	ROTARY SWITCH
115	THK FILM HYBRID, MIX	415	RV STYLE POT	715	
116		416		716	
117	THIN FILM DIG HYBIRD	417	BEAD THERMISTOR	717	
118	THIN FILM LIN HYBRID	418	DISK THERMISTOR	718	
119	THIN FILM HYBRID, MIX	419		719	
120		420		720	
201	RECEIVER TUBE	501	CB STYLE CAPACITOR	801	
202	PWR RECT TUBE	502	CC STYLE CAPACITOR	802	
203	LOW PWR KLYSTRON	503	CE STYLE CAPACITOR	803	
204	HIGH PWR KLYSTRON	504	CHR STYLE CAPACITOR	804	
205	MAGNETRON	505	CKR STYLE CAPACITOR	805	
206	TWT	506	CLR STYLE CAPACITOR	806	
207	TRIODE XMIT TUBE	507	CMR STYLE CAPACITOR	807	
208	TETRODE XMIT TUBE	508	CPV STYLE CAPACITOR	808	
209	CRT	509	CQR STYLE CAPACITOR	809	
210		510	CSR STYLE CAPACITOR	810	
211		511		811	
212	LASER, HELIUM/NEON	512	CU STYLE CAPACITOR	812	
213	LASER, ARGON ION	513	CV STYLE CAPACITOR	813	
214	LASER, CO2 SEALED	514	CYR STYLE CAPACITOR	814	
215	LASER, CO2 FLOWING	515		815	
216	LASER, SS, YAG ROD	516	PC STYLE CAPACITOR	816	
217	LASER, SS, RUBY ROD	517		817	
218		518		818	
219	ALUM BOND RF POWER XSTR	519		819	
220	GOLD BOND RF POWER XSTR	520		820	
301	SI NPN TRANSISTOR	601	LOW PWR PULSE XFMR	901	TWO-SIDED PW BOARD
302	SI PNP TRANSISTOR	602	PULSE TRANSFORMER	902	MULTILAYER PW BOARD
303	GE NPN TRANSISTOR	603	AUDIO TRANSFORMER	903	PWB WAVE SOLDER
304	GE PNP TRANSISTOR	604	POWER TRANSFORMER	904	HAND SOLDER
305	FIELD EFFECT XSTR	605	RF TRANSFORMER	905	REFLOW LAP SOLDER
306	UNIJUNCTION XSTR	606		906	PART CONN PER PROG
307		607	PULSE INDUCTOR	907	
308		608	AUDIO INDUCTOR	908	
309		609	POWER INDUCTOR	909	
310	STD SILICON DIODE	610	RF INDUCTOR	910	
311	GERMALINIUM DIODE	611		911	
312	ZENER DIODE	612	AC BRUSHLESS MOTOR	912	
313	THYRISTOR/SCR	613	COMMUTATOR MOTOR	913	
314	VARIACTOR DIODE	614		914	
315	STEP RCVY DIODE	615	FAN/BLOWER	915	
316	TUNNEL DIODE	616	SYNCHRO	916	
317	SI RF DETECT DIODE	617	RESOLVER	917	
318	SI RF MIXER DIODE	618		918	
319	GE RF DETECT DIODE	619	ELAPSED TIME METER	919	
320	GE RF MIXER DIODE	620		920	PART TO BE DEFINED

NOTE: * THE 900 SERIES PART TYPES ARE NOT INCLUDED IN THE SYSTEM PARTS COUNT

TABLE B.2. OUTLINE OF UNIVAC 110 CONTROL CARDS *

CRUN# (PROG NO.) | NO DRAFT (O, NO.) | NVC CODE (PROG DESQ) | **END OUTPUT PG 9 200 IF BLANK** | RUN TIME = 2 MINUTES IF BLANK
 GASS, AX 3600297X2178

ASSIGN ADDITIONAL STORAGE TAPES

EXECUTE PROGRAM CARD (WITH 2170 BRENDA MIA DECK)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
0	x	0	T	3	6	0	0	2	3	7	4	2	1	7	8	.	P	R	E	D	I	C	T	Add	217	0	P	R	E	D	I	C	T	DATA	DECK]]																																																														

END OF PROGRAM CARDS (RON)

* THIS PAGE ILLUSTRATES THE CONTROL CARDS REQUIRED TO EXECUTE THE 2170 PREDICT PROGRAM ON THE UNIVAC 1110 COMPUTER AT THE NAVAL WEAPONS CENTER, CHINA LAKE, CALIFORNIA. THE REQUIRED CONTROL CARDS WILL VARY WITH THE TYPE OF COMPUTER AND THE INSTALLATION PECULIARITIES.

TABLE B.3. OUTLINE OF SUPPLEMENTAL DATA CARDS

CARD 1A: ADD DATA SOURCE REFERENCE FOR RELIABILITY SUMMARY PRINTOUT (NOT MANDATORY)

DATA SOURCE REPORT NUMBER, TITLE, AND RELEASE DATE

CARD 19 : DATA SOURCE CONTINUATION CARD (NOT MANDATORY)

DATA SOURCE REPORT (CONTINUATION)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

DATA SOURCE ADDN

CARD 2A : ADD ENVIRONMENTAL FACTORS TO STORED PART DATA (NOT MANDATORY)

CARD 2B: MODIFY OR EQUATE TO STORED PART DATA (NOT MANDATORY)

CARD 2C: SUPPLEMENT OR EQUATE TO STORED PART DATA (NOT MANDATORY)

TABLE B.4. OUTLINE OF SYSTEM CONTROL CARDS

CARD 3: SYSTEM DESCRIPTION

CARD 4: SUBSYSTEM DESCRIPTION (NOT MANDATORY)

A graph showing the relationship between "Long. (deg.)" and "Lat. (deg.)". The x-axis is labeled "Long. (deg.)" and the y-axis is labeled "Lat. (deg.)". Both axes range from -90 to 179. A diagonal line with a positive slope passes through the origin, representing the equation Lat. = Long.

CARD 5A : ENVIRONMENTAL STRESS CONDITIONS FOR DETAILED FR SUBROUTINE ((PER SUBSYSTEM))

CARD 5B: ENVIRONMENTAL STRESS CONDITIONS FOR CONDENSED FR SUBROUTINE (I-2 PER SUBSYSTEM)

TABLE 8-5. OUTLINE OF ASSEMBLY / SUBASSEMBLY DATA CARDS

CARD 6: ASSEMBLY DESCRIPTION AND CARD 7: SUBASSEMBLY DESCRIPTION (NOT MANDATORY)

DETAILED PART DATA CARD AND CONTINUATION CARD (DETAILED FA SUBROUTINE ONLY)

CONDENSED PART DATA CARD (CONDENSED FR SUBROUTINE ONLY)

TABLE B.6. OUTLINE OF RELIABILITY SUMMARY CARDS

CARD 9A: EVENT DESCRIPTION AND FOR DATA FOR ALL SUBSYSTEMS (IF APPLICABLE)

CARD 88: ONE-SHOT DESCRIPTION AND RELABILITY (NOT MANDATORY)

CARD 8C: INDIVIDUAL FR DATA FOR I-8 SUBSYSTEMS AND SYSTEM (IF APPLICABLE)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
 SUBSYS No. (H = ADD SUBSYS No. (SUBSYS No.
 OR SYS.) ONE-SHOT) (OR SYS)
 ONE-SHOT ABSOL /units /units /units /units
 ABSOL /units /value /value /value /value
 /FR DATA) /FR DATA) /FR DATA) /FR DATA)
 SET SET SET SET
 DURATION DURATION DURATION DURATION
 SUBSYS DATA SUBSYS DATA SUBSYS DATA SUBSYS DATA