

Database Design & Applications

Conversion of an E-R Schema to Tables

Converting Strong Entity Types

- Each entity type becomes a table
- Each single-valued attribute becomes a column
- Derived attributes are ignored
- Composite attributes are represented by components
- Multi-valued attributes are represented by a separate table
- The key attribute of the entity type becomes the primary key of the table

Employee (<u>E#</u>, Name, Street, Floor, Building, Date_Of_Joining)

Emp_Skillset(<u>E#</u>, <u>Skills</u>)

Employee

E#

PK

Name

Street

Floor

Building

DOJ

E#

PK/FK

Skills

PK

Converting Strong Entity Types

As per the rules:

- Derived attributes are ignored
- Composite attributes are represented by components
- Multi-valued attributes are represented by a separate table
- The primary key of Employee table will become the foreign key in Emp_SkillSet Table

- Weak entity types are converted into a table of their own
- The primary key of the strong entity act as a foreign key in the table.
- This foreign key along with the key of the weak entity form the composite primary key of this table

The Relational Schema:

Employee (EmpCode, EmpName, DateOfJoining, SkillSet)

Dependent (EmpCode, Dependant_ID, Name, Address)

EMPLOYEE		DEPENDENT	
EmpCode	PK	 EmpCode	PK/FK
EmpName		Dependent_ID	PK
DateOfJoining		Name	
SkillSet		Address	

Converting Relationships

- The representation of relationships depends on the cardinality and the degree of the relationship.
- The possible cardinalities are:
 - o 1:1
 - o 1:M
 - o M:N
- The degrees are:
 - Unary
 - Binary
 - o Ternary

Unary (1:1)

- Consider employees who are also a couple.
- The primary key field itself will become foreign key in the same table.
- Employee (E#, Name,..... Spouse)

Unary (1:1)

Conversion of Unary (1:1) Relationship to table

Employee	Table	- A
EmpCode	PK	7/
EmpName		
DateofJoining		
SkillSet		7 /
Spouse	FK	

Unary (1:N)

- Consider there are multiple employees, and few employees among them work as a manager.
- The primary key field itself will become foreign key in the same table

Employee (E#, Name, ... Manager)

Unary (1:N)

Conversion of Unary (1:N) Relationship to table

Employe	e Table	
Emp Code	PK	7/
Emp Name		7
DateofJoining	g	
SkillSet		1_
Manager	FK	

Unary (M:N)

- Consider there are multiple employees, and few employees gives guarantee for other employees.
- One employee can give guarantee for many employees
- A employee can take the guarantee from many employees.
- There will be two resulting tables:
 - One to represent the entity
 - Another to represent the many to many relationship

Unary (M:N)

Conversion of Unary (M:N) Relationship to tables

EMPLOYEE			Guaranty	
EmpCode	PK	ॏऻ	Guarantor	PK/FK
EmpName			Beneficiary PK	PK/FK
DateOfJoining				
SkillSet				

- Combination of Participation types: In binary (1:1) relationship if combination of participation exists, the primary key of the partial participation will become the foreign key of the total participation.
- Conversion of total and partial participation to tables

Conversion of total and partial participation to tables

Binary 1:1

• Uniform Participation type: If both the entities take uniform participation in the Binary (1:1) relationship the primary key of either of the participants can become a foreign key in the other.

Conversion of Binary (1:1) Uniform participation into tables

Employee Table		
Emp Code PK	Ch a	ir.
EmpName		ш
DateofJoining	itemNo	PK
	Model	FK
SkillSet	Location	
Sits On FK	_	

Binary 1: N

 The primary key of the "1" side of the relationship becomes a foreign key in the relation
on the "N" side

Binary 1: N

Conversion of binary (1:N) relationship to tables

Binary M: N

- A new table is created to represent relationship
- This new table contains two foreign keys one from each of participating entities
- The primary key of new table is the combination of two foreign keys

Binary M: N

Conversion of Binary (M:N) relationship to tables

Ternary Relationship

- A new table is created to represent relationship
- The new table contains three foreign keys- one from each of the participating entities
- The primary key of new table is the combination of all three foreign keys

Assumptions:

There are multiple banks and each bank has many branches.

Each branch has multiple customers

Customers have various types of accounts in any branch

Some Customers also had taken different types of loans from these bank branches

One customer can have multiple accounts and Loans

Final Bank Schema

Thank You!

