Totale ou non totale

La présence d'ion thiocyanate SCN^- dans le sang et les urines révèle une intoxication à l'ion cyanure (provenant d'un incendie, d'une eau contaminée, etc.). Pour détecter la présence de l'ion thiocyanate dans un échantillon d'urine, un test simple consiste à y ajouter l'ion fer (III) Fe^{3+} .

Protocole

Étape 1 :

Préparer trois tubes à essais, numérotés de 1 à 3, contenant chacun les trois solutions suivantes :

Solution aqueuse	Concentration en quantité de matière	Volume (en mL)	
S ₁ : thiocyanate de potassium	5,0 mmol·L ^{−1} en ion SCN [−]	2,0	
S ₂ : chlorure de fer (III)	5,0 mmol· L^{-1} en ion Fe^{3+}	2,0	

<u>Étape 2</u> :

Ajouter la solution aqueuse indiquée dans le tableau ci-dessous dans le tube à essai mentionné.

Tube n°	Solution	Concentration en quantité de matière	Volume (en mL)
1	eau	_	1,0
2	S' ₁ : thiocyanate de potassium	50 mmol·L ^{−1} en ion SCN [−]	1,0
3	S'2 : chlorure de fer (III)	50 mmol·L ^{−1} en ion Fe ³⁺	1,0

Mettre en œuvre le protocole.

Exploitation

- 1. Calculer les quantités de matière initiales $n_{i,Fe^{3+}}$ et $n_{i,SCN^{-}}$ des deux réactifs mis en présence dans les 4 tubes à essai à l'étape 1.
- 2. Dans l'hypothèse où la réaction est totale, déterminer le réactif limitant pour le mélange de l'étape 1.
- 3. Quelle est l'utilité du tube 1?
- 4. Préciser l'espèce chimique mise en évidence par l'ajout de la solution S'₁ de thiocyanate de potassium dans le tube n° 2, lors de l'étape 2.
- 5. Préciser l'espèce chimique mise en évidence par l'ajout de la solution S'₂ de nitrate de fer (III) dans le tube n° 3, lors de l'étape 2.
- 6. Déterminer le caractère total ou non de la transformation qui a eu lieu à l'issue de l'étape 1.
- 7. Compléter l'équation de la réaction entre l'ion thiocyanate et l'ion fer (III).

$$Fe^{3+}(aq) + SCN^{-}(aq)$$
 $Fe(SCN)^{2+}(aq)$

Constante d'équilibre

L'ion thiocyanate SCN^- réagit donc avec l'ion fer (III) Fe^{3+} suivant une transformation non totale. L'espèce colorée formée, l'ion $Fe(SCN)^{2+}$, servait autrefois de «faux sang» dans les films.

Tube à essais

 V_1 (en mL)

 V_2 (en mL)

 V_3 (en mL)

1

1

8

1

2

2

7

1

3

3

6

1

4

1

7

2

5

2

2

6

1

6

3

Protocole

- Numéroter six tubes à essais de 1 à 6.
- À l'aide de pipettes graduées, et selon les indications du tableau ci-contre, introduire dans chaque tube à essais :
 - un volume V_1 de la solution S_1 ;
 - un volume V_2 d'eau ;
 - un volume V_3 de la solution S_2 .
- Agiter le contenu des tubes à essais et attendre dix minutes que la réaction soit terminée.
- Mesurer l'absorbance $A_{475,j}$ des mélanges contenus dans les tubes à essais n° 1 à 6 ($\lambda=475$ nm).

Mettre en œuvre le protocole.

Exploitation

8. En supposant que la loi de Beer-Lambert est vérifiée, montrer que l'avancement final x_f de la réaction est donné par la relation :

$$x_f = \frac{A_{475} \times V}{\varepsilon_{475} \times \ell}$$

où $V=V_1+V_2+V_3$, $\varepsilon_{475}=9080~\mathrm{L\cdot mol^{-1}\cdot cm^{-1}}$ est le coefficient d'absorption molaire à 475 nm de l'ion Fe(SCN)²⁺ et ℓ est la largeur de la solution traversée par le faisceau du spectrophotomètre.

- 9. Exprimer le quotient de réaction à l'équilibre $Q_{r,eq}$ en fonction de $[Fe^{3+}]_f$, $[SCN^-]_f$, $[Fe(SCN)^{2+}]_f$ et c° .
- 10. Compléter le tableau suivant :

Tube à essais	1	2	3	4	5	6
$n_{ m SCN^-,i}$						
$n_{\mathrm{Fe}^{3+},\mathrm{i}}$						
x_f						
$[\text{Fe}(\text{SCN})^{2+}]_f$						
${\rm [SCN^-]}_f$						
$[\mathrm{Fe^{3+}}]_f$						
$Q_{r,\mathrm{eq}}$						

- 11. Comparer les différentes valeurs de $Q_{r,eq}$ obtenues et commenter.
- 12. En déduire une valeur de la constante d'équilibre K(T) de la réaction avec son incertitude-type.