Development of a Sensor-based Portable Data Collection System for Climbers

Candidate: Luca Taddeo

Supervisor: Dr. Andrea Janes

Table of Contents

- 1. Introduction
- 2. Objective
- 3. Implementation
- 4. Evaluation
- 5. Conclusion

The Internet of Things

Sports Climbing

Enhance the sportive experience through integrated technological solutions

The Objective

Develop a System to collect Data about Indoor Climbing Activity

The Approach

- Research of Existing Solutions
- Definition of Requirements
 - Comparison of Alternatives
- Selection of Technologies

Current Research

Stereo Cameras Fitness Wearables

Smart Sensors

System Requirements

Non-Intrusiveness

Accuracy of Data

Respect for Privacy

Cost-Effectiveness

Broad Accessibility

Universal Applicability

Low/Zero Maintenance

For all Climbing Styles

Sensors on Quickdraws

Not for every climbing style Insuffucient battery life Stability of connection Consistency of output

Possible Issues and Downsides

What Data can be collected?

Hardware Components

The Sensors

Several Sensors Resistant Build Structure Long Battery Life

Bluetooth Low Energy Low Power Components

Open Source Software Suite, SDK and API

Lightweight

~ 18 days of estimated battery life

Bridging Device

Mobile Library

Integrate Sensors With Third-Party Mobile Apps

Device Library

Develop Custom
Firmware for Sensors

Movesense SDK

Architecture of the Data Collection System

The Data Formatter standardizes the output of the application, using JSON

```
"type": "object",
        "properties": {
            "Timestamp": {"type": "integer"},
            "Sensor": {
                "type": "string",
                "enum": [
                    "LinearAcceleration",
                    "AngularVelocity",
                    "MagneticField",
10
11
                    "HeartRate",
                    "Temperature"
12
13
14
            },
            "Value": {
15
                "type": "object",
16
                "properties": {
17
                    "x": {"type": "number"},
18
                    "y": {"type": "number"},
19
                    "z": {"type": "number"}
20
21
22
23
        "required": ["Sensor", "Value", "Timestamp"]
24
25 }
```

Evaluation of the solution through unit tests

Validate the JSON file with the Schema in 4 edge cases

Disconnection of Sensor

Disconnection of Smartphone

Fatal Error of the Application

Smartphone Battery Dead

Measure the battery consumption of Accelerometer and Gyroscope

- ~ 18 days of estimated battery life
- ~ 17 days of battery life

System to Collect Data about Indoor Climbing Activity

using accelerometers and gyroscopes applied on climbing quickdraws