174 Yb(19 F,6n γ):XUNDL-2 2020Se02

Compiled (unevaluated) dataset from 2020Se02: Phys Rev Lett 124, 052501 (2020). Compiled by B. Singh (McMaster), Feb 26, 2020.

2020Se02: first report of a longitudinal wobbler band, where an odd nucleon aligns its angular momentum with the medium length axis in a triaxial nucleus with all the three axis of unequal lengths. $E(^{19}F)=105$, 115 MeV beam from ATLAS-ANL facility. Target=enriched 174 Yb of 13 mg/cm² thickness on 33 mg/cm² 208 Pb backing. Measured E γ , I γ , three and higher-fold $\gamma\gamma$ -coin, $\gamma(\theta)$ using 57 Ge detectors of the Gammasphere array for $E(^{19}F)=105$ MeV run, and 73 Ge detectors of the array for $E(^{19}F)=115$ MeV. Deduced high-spin levels, J^{π} , collective bands, wobbling band, B(M1)/B(E2) and B(E2,out)/B(E2,in). Comparison with particle-rotor model calculations.

In reference 26 of this paper, authors mention that spectroscopic details of this work will be presented in a forthcoming publication.

¹⁸⁷Au Levels

E(level) [†]	$J^{\pi \#}$	T _{1/2}	Comments						
0.0‡	1/2 ⁽⁺⁾ ‡								
19.5 [‡] 4	3/2(+)‡								
120.5 [@] 5	9/2-	2.3 s <i>1</i>	%IT=100						
			Half-life and decay mode from ¹⁸⁷ Au Adopted Levels in the ENSDF database (Nov 2008 update).						
353.3 [@] 5	$13/2^{-}$								
385.8 <mark>&</mark> 5	$11/2^{-}$								
496.5 ^a 5	$11/2^{-}$								
687.0 [@] 6	$17/2^{-}$								
790.0 <mark>&</mark> 6	$15/2^{-}$								
815.2 ^a 5	$15/2^{-}$								
1100.3 [@] 6	$21/2^{-}$								
1202.3 <mark>&</mark> 7	$19/2^{-}$								
1231.7 ^a 6	$19/2^{-}$								
1591.2 [@] 7	$25/2^{-}$								
1739.3 ^a 6	$23/2^{-}$								
1750.9 ^{&} 7	$23/2^{-}$								
2158.4 [@] 7	$29/2^{-}$								
2354.7 ^a 7	$27/2^{-}$								
2796.2 [@] 8	33/2-								
3013.7 ^a 7	$31/2^{-}$								
3502.0 [@] 8	$37/2^{-}$								
4259.6 [@] 9	$41/2^{-}$								
5036.5 [@] 9	45/2-								

 $^{^{\}dagger}$ From least-squares fit to the γ -ray energies, assuming 0.3 keV uncertainty for E γ values in the present work.

[‡] Level from ¹⁸⁷Au Adopted Levels in the ENSDF database (Nov 2008 update).

[#] As given in 2020Se02 based on previous data for most levels, except for the levels in SP band, which are new here.

[@] Band(A): Yrast band, $\alpha = +1/2$.

[&]amp; Band(a): Signature partner of yrast band, $\alpha = -1/2$.

^a Band(B): Wobbling band based on $11/2^-$. Interpreted as a longitudinal wobbler band from dominant, $\Delta J=1$, E2 interband transitions to the yrast band, consistent with theoretical predictions.

174 Yb(19 F,6n γ):XUNDL-2 2020Se02 (continued)

 γ (187Au)

E_{γ}	$E_i(level)$	J_i^π	E_f	J_f^π	Mult.#	$\delta^{\#}$
19.5 [†] 4	19.5	3/2(+)	0.0	1/2(+)		
101.0 2	120.5	9/2-	19.5	$3/2^{(+)}$		
232.5	353.3	13/2-	120.5	9/2-	E2	
265.3	385.8	$11/2^{-}$	120.5	9/2-	M1+E2	-0.06 I
319.0	815.2	$15/2^{-}$	496.5	$11/2^{-}$	E2	
333.8	687.0	$17/2^{-}$	353.3	$13/2^{-}$	E2+M3	-0.04 1
376.3	496.5	$11/2^{-}$	120.5	$9/2^{-}$	E2+M1	-2.677
404.5 [‡]	790.0	$15/2^{-}$	385.8	$11/2^{-}$	E2	
412.3 [‡]	1202.3	$19/2^{-}$	790.0	$15/2^{-}$	E2	
413.7	1100.3	$21/2^{-}$	687.0	$17/2^{-}$	E2+M3	-0.03 I
416.4	1231.7	19/2-	815.2	15/2-	E2	
429.2 [‡]	815.2	$15/2^{-}$	385.8	$11/2^{-}$	E2	
436.5 [‡]	790.0	$15/2^{-}$	353.3	$13/2^{-}$	M1+E2	-0.10 I
461.8	815.2	$15/2^{-}$	353.3	$13/2^{-}$	E2+M1	$-2.98\ 2$
491.1	1591.2	$25/2^{-}$	1100.3	$21/2^{-}$	E2	
507.1	1739.3	$23/2^{-}$	1231.7	$19/2^{-}$	E2	
544.3	1231.7	$19/2^{-}$	687.0	$17/2^{-}$	E2+M1	-3.44 <i>3</i>
548.6 [‡]	1750.9	$23/2^{-}$	1202.3	$19/2^{-}$	E2	
567.0	2158.4	$29/2^{-}$	1591.2	$25/2^{-}$	E2	
615.3	2354.7	$27/2^{-}$	1739.3	$23/2^{-}$	E2	
637.8	2796.2	$33/2^{-}$	2158.4	$29/2^{-}$	E2	
639.3	1739.3	$23/2^{-}$	1100.3	$21/2^{-}$	E2+M1	-3.72 + 11 - 12
659.1	3013.7	$31/2^{-}$	2354.7	$27/2^{-}$	E2	
705.8	3502.0	$37/2^{-}$	2796.2	$33/2^{-}$	E2	
757.6	4259.6	$41/2^{-}$	3502.0	$37/2^{-}$	E2	
763.7 [‡]	2354.7	$27/2^{-}$	1591.2	$25/2^{-}$	M1+E2	
776.9	5036.5	$45/2^{-}$	4259.6	$41/2^{-}$	E2	
855.2 [‡]	3013.7	$31/2^{-}$	2158.4	29/2-	M1+E2	

 $^{^\}dagger$ From 187 Au Adopted dataset in the ENSDF database (Nov 2008 update). ‡ New γ ray observed by 2020Se02. ‡ From $\gamma(\theta)$ data in 2020Se02. It is assumed by compiler that the sign of the mixing ratio in this work follows Krane-Steffen convention.

¹⁷⁴Yb(¹⁹F,6nγ):XUNDL-2 2020Se02

Level Scheme

 $^{187}_{79}\mathrm{Au}_{108}$

¹⁷⁴Yb(¹⁹F,6nγ):XUNDL-2 2020Se02

 $^{187}_{79}\mathrm{Au}_{108}$