

CNNs Concepts

Lamia Zain lamiahasan4@gmail.com LinkedIn

June,14, 2024

Connect Sessions | Purpose

A Connect Session IS:

- Focused on learning, encouragement & graduation for a group of students coached by a Udacity Session Lead
- Setting weekly study goals
- Helping each other with progress (including peer to peer)
- Keeping everyone accountable for their responsibilities
- A way to meet individuals in tech field & learn about the industry
- Mandatory

A Connect Session IS NOT:

- A social meetup
- A study group
- A substitute for online learning
- Optional

Let's check your progress

You are encouraged to spend at lest 10 hours/week to graduate.

Presentation date

U UDACITY

Attendance is taken automatically

Please change your name to be First Name and Last name on Zoom Like: Lamia Zain

Change yourName on Zoom

UDACITY Change your Name on Zoom

Products

Solutions

Resources

Personal

zoom

Profile

Meetings

Webinars

Personal Contacts Personal Devices

Whiteboards

Surveys NEW Recordings Scheduler

Settings Reports

Session Lead role:

Communication Chart

Issue	Where to go?
Classroom access/ Withdrawal/ Graduation issues/ Plagiarism/ Project Review Inquiries	Email support@udacity.com
Technical Issues, Attendance, Content Related Issues/ Project inquiries	Session Lead
Session Switch/ Community related issues	Community Moderators

2024

Four-weeks Agenda, Weekly schedule

Week 10	Jun 12, 2024			Finish the lessons below from the Convolutional Neural Networks Introduction to CNNs CNN Concepts [Work on/submit the #3 project: Landmark Classification & Tagging for Social Media]	Convolutional Neural Networks Introduction to CNNs CNN Concepts
Week 11	Jun 19, 2024			Finish the lessons below from the Convolutional Neural Networks CNNs in Depth [Work on/submit the #3 project: Landmark Classification & Tagging for Social Media]	Convolutional Neural Networks CNNs in Depth
Week 12	Jun 26, 2024			Finish the lessons below from the Convolutional Neural Networks Transfer Learning [Work on/submit the #3 project: Landmark Classification & Tagging for Social Media]	Convolutional Neural Networks Transfer Learning
Week 13	Jul 3, 2024			Finish the lessons below from the Convolutional Neural Networks Autoencoders [Work on/submit the #3 project: Landmark Classification & Tagging for Social Media]	Convolutional Neural Networks Autoencoders Project Walkthrough: Landmark Classification & Tagging for Social Media
Week 14	Jul 10, 2024	Jul 10, 2024	Landmark Classification & Tagging for Social Media	Finish the lessons below from the Convolutional Neural Networks Object Detection and Segmentation [Work on/submit the #3 project: Landmark Classification & Tagging for Social Media]	Convolutional Neural Networks Object Detection and Segmentation Project Walkthrough: Landmark Classification & Tagging for Social Media

Student Milestone | Revoking

REVOKING

Revoking is the process by which Udacity removes a student from a Nanodegree program.

AWS reserves the right to revoke you from the program if you do not comply with program requirements.

CRITERIA

Students can be revoked if they fail to:

- Submit Project 1
- Complete the required concepts

Code of Conduct | Plagiarism

BASIC RULES

- Project submissions must consist of original work
- Submitted projects will be scanned for plagiarism
- Students who are found to have plagiarised will risk their Nanodegree being revoked
- Read the honor code and the rubric carefully for all projects

Recap

Let's Test the previously trained Network

Calculate testing dataset Loss
Calculate testing dataset Accuracy

Training Techniques

Save the best model with the lowest Validation Loss


```
Threshold = 0.001 #Very small value
Patience = 0
Patience Limit = 3
Looping Epochs:
           Looping Training batches:
                      Accumulate Calculated Batch Loss
           Looping Validation batches:
                      Accumulate Calculated Batch Loss
           Compare The current Validation Loss with the previous one:
                      if Comparison <= Threshold
                                 Patience +=1
                                 If Patience == Patience Limit:
                                            Break: #Which loop will be broken?
                      else: #To make sure Patience for consecutive epochs
                                 Patience = 0
```


Which Can lead to Vanishing gradients and which can lead to Exploding gradients?

Min-Max Scaling (Normalization):

This technique scales the data to a fixed range, usually between 0 and 1.

$$X_normalized = (X - X.min())/(X.max() - X.min())$$

Standardization (Z-score normalization):

Standardization transforms the data to have a mean of 0 and a standard deviation of 1.

$$X_{standardized} = (X - X.mean())/X.std()$$

• Log Transformation:

Log transformation is used to reduce the skewness of the data. It applies a logarithmic function to the data, which can help in making the data more normally distributed.

<u>Transforms</u>

Other Initialization Method,

1- ToTensor(),

• This transforms takes a **np.array** or a **PIL image** of integers in the **range 0-255** and transforms it to a float tensor in the range 0.0 - 1.0.

2-PILToTensor()

What Is the difference between ToTensor and PILToTensor?

2- Normalize():

- Normalize(mean, std)
- Normalize a tensor image with mean and standard deviation.

3-RandomErasing():

• Randomly selects a rectangle region in a torch. Tensor image and erases its pixels

4-<u>Resize()</u>:

- Resize the input image to the given size.
- Img_Transform=transforms.Resize(size=(224,224))
- Img Transform(Img);

Other Initialization Method,

5- resized crop():

- Crop the given image and resize it to desired size.
 - **img** (*PIL Image or Tensor*) Image to be cropped. (0,0) denotes the top left corner of the image.

Apply as many transforms as you want to your Image using transforms.Compose([Transform1,Transform2,,])

Find Mean and STD of image dataset

It's also a good approach to standardize your dataset. Read about standardization and normalization here

$$Image\ Channel\ Mean(\bar{x}) = \frac{\sum\ Channel\ pixel\ values}{Number\ of\ all\ pixels(n)} = \frac{\sum\ x_i}{n}$$

$$Image\ Channel\ Std(S) = \sqrt{\frac{\sum\ (x_i^2 - 2\bar{x}\ x_i + \bar{x}^2)}{n}} = \sqrt{\frac{(\sum\ x_i^2 - 2\bar{x}\ \sum\ x_i + n\bar{x}^2)}{n}} = \sqrt{\frac{\sum\ x_i^2}{n} - \frac{2\bar{x}\ \sum\ x_i}{n}} + \bar{x}^2 = \sqrt{\frac{\sum\ x_i^2}{n} - 2\bar{x}^2} + \bar{x}^2} = \sqrt{\frac{\sum\ x_i^2}{n} - \bar{x}^2}$$

```
def Normalize(dataloader):
    #finding mean and std for input images
    summ means, squared sum mean, num batches= 0, 0, 0
   num batches = len(dataloader)
    for data, label in dataloader:
        # Mean over batch, height and width, but not over the channels
        summ means += torch.mean(data) #sum of means for all batches
        squared sum mean += torch.mean(data**2) #sum of mean of squares for all batches
    mean gray = summ means / len(dataloader) #num batches = len(dataloader)
    # std = sqrt(E[X^2] - (E[X])^2)
    std gray = (squared sum mean / num batches - mean gray ** 2) ** 0.5
    print("Mean is ",mean_gray.item()," STD is ",std_gray.item())
    return mean gray, std gray
Normalize(trainloader)
```

UDACITY

RESTRICTED, CONFIDENTIAL, DO NOT SHARE

Let's see a code example

Weights Initialization

Weight Initialization <u>Methods in</u> <u>Pytorch</u>

Hidden layer 1

Output layer 2

IL = [2,6,5]Initial Weights = $[1 \ 0 \ 1]$ b = 0.3Activation function → Sigmoid

Dot product

$$H0 = {}^{0}_{0}w0 * x0 + {}^{0}_{1}w0 * x1 + {}^{0}_{2}w0 * x2 = 7$$

Sigmoid function:

$$y = \frac{1}{1 + e^{-x}}$$

$$\sigma 0 = \frac{1}{1 + e^{-H_0}} = 0.990$$

IL = [2,6,5]Initial Weights = [1,0,1]
b=0.3
Activation function \rightarrow Sigmoid

Output layer 2

Dot product

$$H1 = {}_{0}^{1}w0 * x0 + {}_{1}^{1}w0 * x1 + {}_{2}^{1}w0 * x2 = 7$$

Sigmoid function:

$$y = \frac{1}{1 + e^{-x}}$$
$$\sigma 1 = \frac{1}{1 + e^{-H_1}} = 0.990$$

IL = [2,6,5]Initial Weights = [1,0,1]b = 0.3Activation function → Sigmoid

Output layer 2

Dot product $H2 = {}^{2}_{0}w0 * x0 + {}^{2}_{1}w0 * x1 + {}^{2}_{2}w0 * x2 = 7$

Sigmoid function:

$$y = \frac{1}{1 + e^{-x}}$$

$$\sigma 2 = \frac{1}{1 + e^{-H2}} = 0.990$$

Default Initialization Method

The default weight initialization method in PyTorch, also known as the default initialization, initializes the weights of a neural network layer using a uniform distribution.

For each weight **W** ij in the weight matrix **W** of the layer:

- Draw a random value \mathbf{r} from a uniform distribution $\mathbf{U}(-1/\operatorname{sqrt}(\mathbf{k}), 1/\operatorname{sqrt}(\mathbf{k}))$ where \mathbf{k} is the number of input units to the layer.
- Assign W ii to the value of r.

The range of the uniform distribution is centered around zero, allowing positive and negative weights.

Other Initialization Method,

2- Uniform Initialization:

- Same as the default Method, but you can specify the range of values for the uniform distribution.
- PyTorch provides the torch.nn.init.uniform_() for this.

3- Normal Initialization:

- Weights are drawn from a normal (Gaussian) distribution.
- The torch.nn.init.normal_() is used for this.
- You can specify the mean and standard deviation of the distribution.

4- Xavier/Glorot Initialization:

- Commonly used for layers with the **tanh** or **sigmoid** activation functions.
- It scales the weights by a factor that depends on the **number of input and output** units of the layer.
- The torch.nn.init.xavier_uniform_() and torch.nn.init.xavier_normal_() functions are used to perform Xavier/Glorot initialization.

5- He Initialization:

- Commonly used for layers with the ReLU activation function
- It scales the weights by a factor that depends on the **number of input units** to the layer.
- The torch.nn.init.kaiming_uniform_() and torch.nn.init.kaiming_normal_() functions implement He initialization.

Let's see a code example

Break (10 minutes)

Satisfaction Survey

History of CNNs

Based on Winning the

ImageNet Large Scale Visual
Recognition Challenge(ILSVRC)

History of CNNs

<u>LeNet-5</u> (1998):

- By Yann LeCun, along with his colleagues.
- LeNet-5 was designed to recognize handwritten digits.

ALEXNET (2012):

- Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton introduced <u>AlexNet</u>
- Deeper architecture (More Filters, Applied RELU Afs, max pooling, dropout, and data augmentation)
- AlexNet was trained for 6 days simultaneously on two Nvidia Geforce GTX 580 GPUs which is the reason for why
 their network is split into two pipelines.
- Reduced error rate from 26% to 15.3%.

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

History of CNNs

ZFNet(2013):

- It was mostly an achievement by **tweaking the hyper-parameters** of **AlexNet** while maintaining the same structure with additional Deep Learning elements.
- It achieved a top-5 error rate of 14.8% which is now already half of the prior mentioned non-neural error rate.

GoogLeNet/Inception(2014):

- It used a novel element which is called an **inception module** (batch normalization, image distortions and RMSprop).
- It achieved a top-5 error rate of 6.67%.

type	patch size/	output	depth	#1×1	#3×3 reduce	#3×3	#5×5	#5×5	pool	params	ops
	stride	size			reduce		reduce		proj		
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1 \times 1 \times 1024$	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

History of CNNs

VGGNet (2014):

- 16 Convolutional layers
- Many Filters.
- Trained on 4 GPUs for 2–3 weeks.
- VGGNet consists of 138 million parameters, which can be a bit challenging to handle.

ResNet (2015):

- Residual Neural Network (ResNet) by Kaiming He t al Trained on 4 GPUs for 2–3 weeks.
- introduced anovel architecture with "skip connections" and features heavy batch normalization
- Thanks to this technique they were able to train a NN with 152 layers while still having lower complexity than VGGNet
- error rate of 3.57%

The difference between CNNS and multi perceptron networks when classifying Images

	CNNs	MLPs
Architecture	 Convolutional layers that apply filters to the input image. Capturing local spatial patterns. followed by pooling layers that downsample the feature maps 	 MLPs consist of fully connected layers where each neuron is connected to every neuron in the previous and subsequent layers MLPs do not take into account the spatial structure of the input data. Too Unnecessary Many Parameters
Parameter Sharing	 Use parameter sharing, i.e, the same filter is applied to different regions of the input image. Smaller number of learnt parameters compared to MLPs Hence better for huge input data like images 	 Each neuron is trained independently Network learns unique weights for every connection. Large number of parameters. Computationally expensive for image data.
Translation Invariance	Due to their use of convolutional and pooling layers, they can detect local patterns regardless of their position in the image.	Sensitive to the position of pixels in the input image, making them less robust to translation or slight changes in input position.

Any Question?

Thank you

