Somatórios Matemática Discreta

Prof. Samy Sá

Universidade Federal do Ceará Campus de Quixadá

14 de agosto de 2020

Roteiro

Prévia

Somatórios

Definição e Notação Propriedades do Somatório Como Resolver Somatórios?

Mudanças de Índice

Considerações Finais

Prévia

Requisitos

- Conceitos de Funções
 - domínio, contradomínio, imagem, composição e inversão
- Propriedades de operações aritméticas
- Compreensão de Sequências (SEMANA 03)

Esta apresentação...

- discute o conceito de somatório
- permite resolver somas longas de forma eficiente
- inclui exemplos de resolução de somatórios

Intuitivamente, são somas dos termos de alguma sequência *

- A estrutura das sequências (domínio nos inteiros) favorece a resolução de somas longas dos seus termos em menos passos
- Nosso objetivo é utilizar as propriedades de somatórios para simplificar somas longas

^{*} Lembre-se que Sequências são FUNÇÕES!

Roteiro

Prévia

Somatórios

Definição e Notação

Propriedades do Somatório Como Resolver Somatórios?

Mudanças de Índice

Considerações Finais

Intuitivamente, são somas dos termos de alguma sequência {a_i}

- Pode ser qualquer parte da sequência e saltar elementos
- Utiliza o índice da sequência para navegar os termos a serem somados

Exemplo

A soma dos termos $a_m, a_{m+1}, ..., a_n$ pode ser expressa como

$$\sum_{j=m}^{n} a_{j}, \quad \sum_{j=m}^{n} a_{j}, \quad \text{or} \quad \sum_{m \leq j \leq n} a_{j}$$

Intuitivamente, são somas dos termos de alguma sequência $\{a_j\}$

- Pode ser qualquer parte da sequência e saltar elementos
- Utiliza uma variável de índice para navegar os termos a serem somados

Exemplo

A soma dos termos $a_m, a_{m+1}, ..., a_n$ pode ser expressa como

$$\sum_{j=m}^{n} a_{j}, \quad \sum_{j=m}^{n} a_{j}, \quad or \quad \sum_{m \leq j \leq n} a_{j}$$

Cada notação envolve quatro elementos: j, m, n, aj

• j é a variável de índice

Intuitivamente, são somas dos termos de alguma sequência $\{a_j\}$

- Pode ser qualquer parte da sequência e saltar elementos
- Utiliza uma variável de índice para navegar os termos a serem somados

Exemplo

A soma dos termos $a_m, a_{m+1}, ..., a_n$ pode ser expressa como

$$\sum_{j=m}^{n} a_{j}, \quad \sum_{j=m}^{n} a_{j}, \quad or \quad \sum_{m \leq j \leq n} a_{j}$$

Cada notação envolve quatro elementos: j, m, n, a_j

• *m* é o **valor inicial** que *j* assume

Intuitivamente, são somas dos termos de alguma sequência $\{a_j\}$

- Pode ser qualquer parte da sequência e saltar elementos
- Utiliza uma variável de índice para navegar os termos a serem somados

Exemplo

A soma dos termos $a_m, a_{m+1}, ..., a_n$ pode ser expressa como

$$\sum_{i=m}^{n} a_{i}, \quad \sum_{j=m}^{n} a_{i}, \quad \text{or} \quad \sum_{m \leq j \leq n} a_{j}$$

Cada notação envolve quatro elementos: j, m,n, aj

• *n* é o **valor final** que *j* assume

Intuitivamente, são somas dos termos de alguma sequência $\{a_j\}$

- Pode ser qualquer parte da sequência e saltar elementos
- Utiliza uma variável de índice para navegar os termos a serem somados

Exemplo

A soma dos termos $a_m, a_{m+1}, ..., a_n$ pode ser expressa como

$$\sum_{i=m}^{n} a_{i}, \quad \sum_{j=m}^{n} a_{i}, \quad \text{or} \quad \sum_{m \leq j \leq n} a_{j}$$

Cada notação envolve quatro elementos: j, m, n, ai

• ai é a sequência utilizada

Intuitivamente, são somas dos termos de alguma sequência $\{a_n\}$

- Pode ser qualquer parte da sequência e saltar elementos
- Utiliza uma variável de índice para navegar os termos a serem somados

Exemplo

A expressão
$$\sum_{i=1}^{10} a_i$$
 codifica

"a soma dos termos de a_j indo de a_1 até a_{10} ".

$$\sum_{i=1}^{10} a_i = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9 + a_{10}$$

Intuitivamente, são somas dos termos de alguma sequência $\{a_j\}$

- Pode ser qualquer parte da sequência e saltar elementos
- Utiliza uma variável de índice para navegar os termos a serem somados

Exemplo

Dada a sequência
$$a_j = 2j$$
, a expressão $\sum_{j=1}^{\infty} a_j$ codifica

$$\sum_{j=1}^{10} a_j = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9 + a_{10}$$

$$= 2.1 + 2.2 + 2.3 + 2.4 + 2.5 + 2.6 + 2.7 + 2.8 + 2.9 + 2.10$$

$$= 2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20 = 110$$

Intuitivamente, são somas dos termos de alguma sequência $\{a_n\}$

- Pode ser qualquer parte da sequência e saltar elementos
- Utiliza uma variável de índice para navegar os termos a serem somados

Exemplo

$$\sum_{j=1}^{10} a_j = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9 + a_{10}$$

Isso significa que os somatórios são implementados por laços *for.*

```
\label{eq:continuous_section} \begin{split} & \text{int j;} \\ & \text{int sum} = 0; \\ & \text{for } (j=1; i \leq 10; i++) \\ & \{ \\ & \text{sum} += a(j); \\ & \} \\ & \text{return sum;} \end{split}
```

Intuitivamente, são somas dos termos de alguma sequência {a_i}

- Pode ser qualquer parte da sequência e saltar elementos
- Utiliza uma variável de índice para navegar os termos a serem somados

Exemplo (2)

Dada a sequência
$$a_j = 2j$$
, a expressão $\sum_{j=1}^{n} a_j$ codifica

"a soma dos termos de $a_j = 2j$ de a_1 até a_{1000} ".

1000

$$\sum_{i=1}^{10} a_i = a_1 + a_2 + \ldots + a_{999} + a_{1000}$$

Intuitivamente, são somas dos termos de alguma sequência {a_i}

- Pode ser qualquer parte da sequência e saltar elementos
- Utiliza uma variável de índice para navegar os termos a serem somados

Exemplo (3)

Dada a sequência
$$a_j = 2j$$
, a expressão $\sum_{j=30}^{30} a_j$ codifica

"a soma dos termos de $a_j = 2j$ de a_{30} até a_{60} ".

$$\sum_{i=30}^{60} a_j = a_{30} + a_{31} + \ldots + a_{59} + a_{60} = 60 + 62 + \ldots + 118 + 120 = 2790$$

Intuitivamente, são somas dos termos de alguma sequência $\{a_n\}$

- Pode ser qualquer parte da sequência e saltar elementos
- Utiliza uma variável de índice para navegar os termos a serem somados

Exemplo (4)

Dada a sequência
$$a_j = j + 5$$
, a expressão $\sum_{j=30}^{60} a_j$ codifica

"a soma dos termos de $a_j = j + 5$ de a_{30} até a_{60} ".

$$\sum_{i=30}^{60} a_i = a_{30} + a_{31} + \ldots + a_{59} + a_{60} = 35 + 36 + \ldots + 64 + 65 = 1550$$

Somatórios - Outros Exemplos

Exemplo

$$\sum_{j=1}^{100} \frac{1}{j}$$

Constatação:

É a soma dos termos $a_1,a_2,a_3,...,a_{100}$ da sequência $\{a_j\}$ com $a_j=\frac{1}{j}$

Constatação:

Teremos
$$\sum_{j=1}^{100} \frac{1}{j} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{100}$$

Exemplo

$$\sum_{j=1}^{5} j^2$$

Constatação:

É a soma dos termos a_1 , a_2 , a_3 , a_4 , a_5 da sequência $\{a_j\}$ com $a_j = j^2$.

Constatação:

Teremos
$$1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1 + 4 + 9 + 16 + 25 = 55$$
.

Somatórios - Outros Exemplos

Exemplo

$$\sum_{k=4}^{8} (-1)^k$$

Constatação:

É a soma dos termos $a_4, a_5, ..., a_8$ da sequência $\{a_k\}$ com $a_k = (-1)^k$.

Constatação:

$$\textit{Teremos} \; (-1)^4 + (-1)^5 + (-1)^6 + (-1)^7 + (-1)^8 = 1 + -1 + 1 + -1 + 1 = 1.$$

Roteiro

Prévia

Somatórios

Definição e Notação

Propriedades do Somatório

Como Resolver Somatórios?

Mudanças de Índice

Considerações Finais

Propriedades do Somatório

Nosso objetivo

- Somar números de uma sequência dois a dois é ineficiente;
- Podemos economizar trabalho e tempo usando propriedades das operações aritméticas adaptadas aos somatórios.

Da Aritmética, para x, y, x números quaisquer,

$$x+y=y+x$$
 Comutatividade $(x+y)+z=x+(y+z)$ Assoaciatividade $x.(y+z)=x.y+x.z$ Distributividade

Propriedades do Somatório

Em somatórios, teremos

$$\sum_{j=m}^{n} a_{j} + b_{j} = \sum_{j=m}^{n} a_{j} + \sum_{j=m}^{n} b_{j}$$

$$\sum_{j=m}^{n} a_{j} = \sum_{j=m}^{l} a_{j} + \sum_{j=l+1}^{n} a_{j}$$

$$\sum_{i=m}^{n} k.a_{j} = k.\sum_{i=m}^{n} a_{j}$$

Comutatividade

Vamos analisar a igualdade...

Comutatividade
$$\sum_{j=m}^{n} a_j + b_j = \sum_{j=m}^{n} a_j + \sum_{j=m}^{n} b_j$$

Começando do lado esquerdo, teremos

$$\sum_{j=m}^{n} a_j + b_j = (a_m + b_m) + (a_{m+1} + b_{m+1}) + \dots + (a_n + b_n)$$

$$= (a_m + a_{m+1} + \dots + a_n) + (b_m + b_{m+1} + \dots + b_n)$$

$$= \sum_{j=m}^{n} a_j + \sum_{j=m}^{n} b_j$$

Associatividade

Vamos analisar a igualdade...

$$\sum_{j=m}^{n} a_{j} = \sum_{j=m}^{l} a_{j} + \sum_{j=l+1}^{n} a_{j}$$

Começando do lado esquerdo, teremos

$$\sum_{j=m}^{n} a_j = a_m + a_{m+1} + \dots + a_n$$

$$= a_m + a_{m+1} + \dots + a_l + a_{l+1} + \dots + a_n$$

$$= (a_m + a_{m+1} + \dots + a_l) + (a_{l+1} + \dots + a_n)$$

$$= \sum_{j=m}^{l} a_j + \sum_{j=l+1}^{n} a_j$$

Distributividade

Vamos analisar a igualdade...

$$\sum_{j=m}^{n} k.a_{j} = k.\sum_{j=m}^{n} a_{j}$$

Começando do lado esquerdo, teremos

$$\sum_{j=m}^{n} k.a_{j} = k.a_{m} + k.a_{m+1} + ... + k.a_{n}$$

$$= k.(a_{m} + a_{m+1} + ... + a_{n})$$

$$= k.\sum_{j=m}^{n} a_{j}$$

Roteiro

Prévia

Somatórios

Definição e Notação Propriedades do Somatório

Como Resolver Somatórios?

Mudanças de Índice

Considerações Finais

Nosso primeiro interesse é simplificar as expressões.

Exemplo (1)

Considere que desejamos calcular $\sum_{i=1}^{10} 2j$.

Pela distributividade, podemos simplificar a expressão para obter

$$\sum_{j=1}^{10} 2j = 2. \sum_{j=1}^{10} j$$

* Houve uma troca: invés de calcularmos $\sum_{j=1}^{10} 2j$, nos bastará calcular $\sum_{j=1}^{10} j$ para multiplicar o resultado por dois.

Nosso primeiro interesse é simplificar as expressões.

Exemplo (2)

Considere que desejamos calcular $\sum_{i=1}^{10} 2j + 3$.

Por comutatividade, podemos simplificar a expressão para obter

$$\sum_{j=1}^{10} 2j + 3 = \sum_{j=1}^{10} 2j + \sum_{j=1}^{10} 3$$

* Houve uma troca: invés de calcularmos $\sum_{j=1}^{10} 2j + 3$, nos bastará calcular $\sum_{j=1}^{10} 2j$ e $\sum_{j=1}^{10} 3$

para somá-las. Note $\sum_{j=1}^{10} 2j$ é a expressão do exemplo anterior.

Nosso primeiro interesse é simplificar as expressões.

Nosso segundo interesse é encontrar somas conhecidas no processo.

Por exemplo, nos será muito útil saber que para todo $n \in \mathbb{N}$,

$$\sum_{j=1}^{n} j = \frac{n \cdot (n+1)}{2}$$

Exemplo (1 - Continuação)

Pela fórmula,
$$\sum_{j=1}^{10} j = \frac{10.(10+1)}{2} = 110/2 = 55.$$

Agora podemos completar o primeiro exemplo, obtendo $\sum_{j=1}^{10} 2j = 2$. $\sum_{j=1}^{10} j = 2.55 = 110$

Nosso primeiro interesse é simplificar as expressões.

Nosso segundo interesse é encontrar somas conhecidas no processo.

Por exemplo, nos será muito útil saber que para todo $n \in \mathbb{N}$,

$$\sum_{j=1}^{n} j = \frac{n.(n+1)}{2}$$

Exemplo (3)

Considere que desejamos calcular $\sum_{i=1}^{10} -3j$.

Seguindo os mesmos passos do exemplo anterior, obteremos

$$\sum_{j=1}^{10} -3j = (-3). \sum_{j=1}^{10} j = (-3). \frac{10.(10+1)}{2} = (-3).55 = -165.$$

Nosso primeiro interesse é simplificar as expressões.

Nosso segundo interesse é encontrar somas conhecidas no processo.

Por exemplo, nos será muito útil saber que para todo $n \in \mathbb{N}$,

$$\sum_{j=1}^{n} j = \frac{n.(n+1)}{2}$$

Exemplo (4)

Considere que desejamos calcular $\sum_{i=1}^{100} -3j$.

Seguindo os mesmos passos do exemplo anterior, obteremos

$$\sum_{j=1}^{100} -3j = (-3). \sum_{j=1}^{100} j = (-3). \frac{100.(100+1)}{2} = (-3).5050 = -15150.$$

Nosso primeiro interesse é simplificar as expressões.

Nosso segundo interesse é encontrar somas conhecidas no processo.

Também será muito útil saber que para todo
$$n \in \mathbb{N}$$
, temos $\sum_{j=1}^m 1 = n$

Exemplo (2 - Continuação)

Obteremos
$$\sum_{j=1}^{10} 2j + 3 = \sum_{j=1}^{10} 2j + \sum_{j=1}^{10} 3 = 2 \cdot \sum_{j=1}^{10} j + 3 \cdot \sum_{j=1}^{10} 1$$

= $2 \cdot \frac{10 \cdot (10+1)}{2} + 3 \cdot 10 = 2 \cdot 55 + 30 = 140$.

Algumas Somas Importantes

Soma	Fórmula fechada
	$\frac{kr^{n+1}-k}{r-1}, r \neq 1$
$\sum_{j=0}^{n} k + dj$	$\frac{(k+(k+dn))(n+1)}{2}$
$\sum_{j=1}^{n} j$	<u>n(n+1)</u> 2
$\sum_{j=1}^{n} j^2$	<u>n(n+1)(2n+1)</u> 6
$\sum_{j=1}^{n} j^3$	$\frac{n^2(n+1)^2}{4}$

Tabela: Algumas somas importantes.

Algumas Somas Importantes

A partir destas somas conhecidas, podemos resolver muitos problemas.

Podemos também generalizar estas somas usando associatividade.

Exemplo

Considere que desejamos calcular $\sum_{i=30}^{60} i$

Observe que
$$\sum_{i=30}^{60} i = \sum_{i=1}^{60} i - \sum_{i=1}^{29} i$$
 e utilize a fórmula geral $\sum_{j=1}^{n} j = \frac{(1+n).(n)}{2}$ para calcular os termos da subtração.

Teremos
$$\sum_{i=1}^{60} i = \frac{(1+60).60}{2} = 61.30 = 1830 \ e \sum_{i=1}^{29} i = \frac{(1+29).29}{2} = 15.29 = 435.$$

$$Dai, \sum_{i=30}^{60} i = \sum_{i=1}^{60} i - \sum_{i=1}^{29} i = 1830 - 435 = 1395.$$

Algumas Somas Importantes

A partir destas somas conhecidas, podemos resolver muitos problemas.

Podemos também generalizar estas somas usando associatividade.

No caso geral, para
$$\sum_{i=m}^{l} i$$
,

Observaremos que $\sum_{i=m}^{l} i = \sum_{i=1}^{l} i - \sum_{i=1}^{m-1} i$ e utilizaremos a fórmula geral $\sum_{j=1}^{n} j = \frac{(1+n).(n)}{2}$ para calcular os termos da subtração.

Teremos
$$\sum_{i=1}^{I} i = \frac{(1+I).I}{2} e \sum_{i=1}^{m-1} i = \frac{(1+m-1).(m-1)}{2} = \frac{m.(m-1)}{2}.$$

$$Dai, \sum_{i=m}^{I} i = \sum_{i=1}^{I} i - \sum_{i=1}^{m-1} i = \frac{(1+I).I}{2} - \frac{m.(m-1)}{2} = \dots = \frac{(m+I).(I-m+1)}{2}.$$

Roteiro

Prévia

Somatórios

Definição e Notação Propriedades do Somatório Como Resolver Somatórios?

Mudanças de Índice

Considerações Finais

Mudanças de Índice

Às vezes pode ser importante mudarmos o índice de um somatório.

Exemplo

Considere a soma
$$\sum_{j=1}^{10} j + \sum_{k=3}^{12} (1-k)$$

Podemos reescrever a soma mudando o índice de uma delas:

$$\sum_{j=1}^{10} j + \sum_{k=3}^{12} (1-k) = \sum_{j=1}^{10} j + \sum_{i=1}^{10} (1-i-2) = \sum_{j=1}^{10} j + (1-j-2)$$
$$= \sum_{j=1}^{10} -1 = -1 + -1 + \dots + -1 = -10.$$

Mudanças de Índice

Às vezes pode ser importante mudarmos o índice de um somatório.

Exemplo

Considere a soma
$$\sum_{j=1}^{10} j + \sum_{k=3}^{12} (1-k)$$

Podemos reescrever a soma mudando o índice de uma delas:

$$\sum_{j=1}^{10} j + \sum_{k=3}^{12} (1-k) = \sum_{j=1}^{10} j + \sum_{i=1}^{10} (1-i-2)$$

A chave deste passo é o cálculo de que $\sum_{k=3}^{12} (1-k) = \sum_{i=1}^{10} (1-i-2).$

Mudanças de Índice

Observe...

$$\sum_{k=3}^{12} (1-k) = (1-3) + (1-4) + \dots + (1-12)$$
$$= -2 + -3 + \dots + -11$$

$$\sum_{i=1}^{10} (1-i-2) = (1-1-2) + (1-2-2) + \dots + (1-10-2)$$
$$= -2 + -3 + \dots + -11$$

Ou seja,
$$\sum_{k=3}^{12} (1-k) = \sum_{i=1}^{10} (1-i-2)$$
.

Mudanças de Índice (Cálculo)

Para realizar uma mudança do índice *j* para um novo índice *k*:

- **1.** Encontramos uma função tal que f(j) = k,
- 2. Isolamos *j* na equação cima e obtemos uma função sobre *k*,
- **3.** Substituimos *j* pela expressão obtida na soma original.

Exemplo

Seja a soma $\sum_{j=1}^{3} j^2$, desejamos indexá-la com inteiros de 0 a 4.

Ou seja, queremos reescrevê-la como $\sum_{k=0}^{4} \dots$ de forma que

$$\sum_{i=1}^{5} j^2 = \sum_{k=0}^{4} \dots$$

Que expressão usaremos?

Mudanças de Índice (Cálculo)

Para realizar uma mudança do índice *j* para um novo índice *k*:

- **1.** Encontramos uma função tal que f(i) = k.
- 2. Isolamos j na equação cima e obtemos uma função sobre k.
- **3.** Substituimos *j* pela expressão obtida na soma original.

Exemplo

Seja a soma $\sum_{j=1}^{3} j^2$, desejamos indexá-la com inteiros de 0 a 4.

1. Encontramos uma função para mapear j: de 1 até 5 para k: de 0 até 4;

$$\circ \ f(j) = j - 1$$

2. Agora fazemos j - 1 = k e isolamos j;

$$\circ$$
 $j-1=k \Rightarrow j=k+1$

3. Para completar, substituimos j por k+1 na soma, obtendo $\sum_{j=1}^{5} j^2 = \sum_{k=0}^{4} (k+1)^2$.

Roteiro

Prévia

Somatórios

Definição e Notação Propriedades do Somatório Como Resolver Somatórios

Mudanças de Índice

Considerações Finais

Algumas Somas Importantes (Complemento)

A partir destas somas conhecidas, podemos resolver muitos problemas.

Podemos também generalizar estas somas usando associatividade.

No caso geral, para
$$\sum_{i=m}^{l} i$$
,

Observaremos que $\sum_{i=m}^{l} i = \sum_{i=1}^{l} i - \sum_{i=1}^{m-1} i$ e utilizaremos a fórmula geral $\sum_{j=1}^{n} j = \frac{(1+n).(n)}{2}$ para calcular os termos da subtração.

Teremos
$$\sum_{i=1}^{I} i = \frac{(1+I).I}{2} e \sum_{i=1}^{m-1} i = \frac{(1+m-1).(m-1)}{2} = \frac{m.(m-1)}{2}.$$

$$Dai, \sum_{i=m}^{I} i = \sum_{i=1}^{I} i - \sum_{i=1}^{m-1} i = \frac{(1+I).I}{2} - \frac{m.(m-1)}{2} = \dots = \frac{(m+I).(I-m+1)}{2}.$$

Algumas Somas Importantes (Complemento)

. . .

Paramos em
$$\sum_{i=m}^{l} i = \sum_{i=1}^{l} i - \sum_{i=1}^{m-1} i = \frac{(1+l).l}{2} - \frac{m.(m-1)}{2} = \dots$$

Usaremos um truque: l = l - (m-1) + (m-1) = (l-m+1) + (m-1).

Daí,
$$\sum_{i=m}^{l} i = \sum_{i=1}^{l} i - \sum_{i=1}^{m-1} i = \frac{(1+l) \cdot l}{2} - \frac{m \cdot (m-1)}{2}$$
$$= \frac{(1+l) \cdot ((l-m+1) + (m-1))}{2} - \frac{m \cdot (m-1)}{2}$$
$$= \frac{(1+l) \cdot (l-m+1) + (1+l) \cdot (m-1)}{2} - \frac{m \cdot (m-1)}{2}$$
$$= \frac{(1+l) \cdot (l-m+1) + (1+l) \cdot (m-1) - m \cdot (m-1)}{2}$$

Algumas Somas Importantes (Complemento)

$$\sum_{i=m}^{l} i = \dots = \frac{(1+l) \cdot (l-m+1) + (1+l) \cdot (m-1) - m \cdot (m-1)}{2}$$

$$= \frac{(1+l) \cdot (l-m+1) + (1+l-m) \cdot (m-1)}{2}$$

$$= \frac{(1+l) \cdot (l-m+1) + (l-m+1) \cdot (m-1)}{2}$$

$$= \frac{((1+l) + (m-1)) \cdot (l-m+1)}{2}$$

$$= \frac{(m+l) \cdot (l-m+1)}{2}$$