Transformers and LLMs as the New Benchmark in Early Cancer Detection

Yulia Kumar1, Kuan Huang1, Zachary Gordon1, Lais Castro1, Egan Okumu1, Patricia Morreale1 and J. Jenny Li1

Introdução: Desafio Clínico e Inovação

A Leucemia Linfoblástica Aguda (ALL) é um câncer agressivo que afeta principalmente pessoas jovens. Os métodos tradicionais são invasivos e demorados, então há uma necessidade urgente por soluções mais rápidas e acessíveis. Com isso, modelos de Inteligência Artificial, especialmente Transformers, vêm sendo aplicados para tentar superar esses desafios

Objetivos do Estudo

Os objetivos principais do estudo foram:

- Comparar o desempenho dos transformers com CNNs na detecção precoce de ALL.
- Avaliar como LLMs podem apoiar pacientes e profissionais.
- Identificar e mitigar vieses em modelos de IA.

Dataset Utilizado

O dataset usado foi retirado do Kaggle, com 3.256 imagens de esfregaços sanguíneos, divididas em quatro classes: Benigno, Early, Pre-B e Pro-B. Isso possibilitou testar a robustez dos modelos sem a necessidade de segmentação manual das imagens.

Table 1. The project dataset.

Types of ALL	The # of images	Comments		
Benign	504	Noncancerous		
Early	985	Early-stage type (L1)		
Pre	963	Middle stage type (L2)		
Pro	804	Later stage type (L3)		
Classification	4 classes	Benign, Early, Pre, Pro		

Fig. 1. The project ALL dataset (top: original benign, early, pre, pro images; bottom: corresponding segmented images).

Arquitetura dos Transformers

DAT: utiliza atenção deformável para focar em partes relevantes da imagem.

Swin Transformer: introduz uma hierarquia e desloca as janelas de atenção, o que melhora o desempenho em imagens grandes.

Isso permite que os transformers superem dificuldades de segmentação e captem padrões complexos dos dados médicos.

Metodologia e Configuração Experimental

Os modelos foram treinados em 80% dos dados, testados nos 20% restantes, com batch size de 16, imagens redimensionadas para 256x256 e otimizador SGD.

Table 3. Experimental Parameters.						
Parameter	Comment					
Initial	3256 images					
Dataset	80% for training, 20% for testing at random					
Class	4 classes (Benign, Early, Pre, Pro)					
Batch Size	16					
Input						
Image	256×256 (resized)					
Optimizer	SGD, learning rate 0.001.					
# of Epochs	300					
PyTorch	1.12.1.					
Hardware	Ubuntu 20.04.5 Linux system : AMD EPYC					
	7513 32-Core Processor 2.60GHz, 8					
	NVIDIA GeForce 3090 graphics cards, each					
	one of 24 Gb					

Resultados: Desempenho dos Modelos

Os resultados mostram que os transformers DAT e Swin superaram o ResNet-50 em praticamente todas as classes, atingindo até 97,7% de acurácia com o Swin. A VGG-16 teve excelente performance, mas os transformers se destacam pela capacidade de análise sem segmentação.

Table 2. Comparative Results of various models.

Model	Accuracy, %					
	Benign	Early	Pre	Pro	Average	
ResNet-50	89.11	83.25	98.45	100	92.7025	
VGG-16	99.01	99.49	100	100	99.6250	
DAT	89.11	96.95	99.48	100	96.3850	
Swin	92.08	99.49	99.48	100	97.7625	

Resultados: Desempenho dos Modelos

Fig. 3. Confusion Matrices for VGG-16 (top left), ResNet-50 (top right), Swin (left bottom) and DAT (right bottom).

Fig. 4. Loss Curves for VGG-16, ResNet-50, DAT, and Swin.

LLMs como Assistentes em Saúde

Fig. 5. The AssureAIDoctor's AI assistant for ALL patients.

Detecção e Análise de Viés

Fig. 8. Bias Visualizations of VGG-16 (the first convolutional layer), and DAT and Swin Models (MLP of Second Transformer Stage).

Fig. 9. CAM Results of DL Models.

Conclusões e Perspectivas Futuras

Os transformers mostram-se altamente promissores para a detecção precoce de câncer, enquanto LLMs ampliam o suporte ao paciente. O principal desafio é garantir modelos robustos e livres de viés. O futuro aponta para diagnósticos mais precisos, acessíveis e humanizados, com IA cada vez mais integrada ao cuidado em saúde.