3 Graphics and Image Data Representation

- · Categories of Images
 - o 1-Bit Images, 8-Bit Grey-Level Images, 24-Bit Color Images
 - o Definitions, Storing space, and Usage
 - The feature of 32-bit color image
- 8-Bit Color Images
 - Concept and features
 - Applications
- LUTs(Color Lookup Tables)
- Dithering Algorithm
 - an N*N matrix represents N^2+1 levels of intensity
 - 打印机

4 Color in Image and Video

- Gamma Correction
 - Concept
 - Method: $R \to R' = R1/\gamma \to (R')\gamma \to R$
- · Other color models
 - HSL(HSB)——hue, Saturation, Lightness/Brightness
 - HSV——Hue Saturation Value
 - HIS—Hue, Saturation and Intensity
 - HCI——C=Chroma
 - HVC——V=valu
- · Color Models in Images
 - RGB color model for CRT Display
 - CMY color model
 - Transformation from RBG to CMY
- · Color Models in Video
 - o YUV, YIQ, YCbCr
 - o Definition and application
 - · Relationship of various models

$$Y = 0.299R + 0.587G + 0.114B$$

Chrominance as: $-U = B - Y; V = R - Y$
 $I = 0.736(R - Y) - 0.268(B - Y)$
 $Q = 0.478(R - Y) + 0.413(B - Y)$
 $Cb = (B - Y)/1.772 + 0.5$
 $Cr = (R - Y)/1.402 + 0.5$

5 Fundamental Concepts in Video

- · Types of Video Signals
 - o Component video, Composite Video, s-Video
 - Concepts and Usages
- Analog Video
 - Related Concepts
 - Progressive and interlace scanning
 - vertical retrace and horizontal retrace
 - Field and frame
 - NTSC, PAL and SECAM
 - How to encoding and decoding the composite video signal
 - · Chroma subsampling
- · Digital video CCIR standard
 - NTSC standard
 - 525 lines; 858 pixels(where, 720 is visible)
 - 4:2:2 schema
 - one pixel——2bytes
 - 4CIF/CIF/QCIF/SQCIF
 - HDTV

6 Basics of Digital Audio

- Quantization
 - o Sampling in the amplitude dimension
 - Uniform sampling
 - Nonuniform sampling
- · Nyquist Theorem
 - Nyquist rate
 - For correct sampling, sampling rate must be at least twice the maximum frequency content in the signal
 - Nyquist frequency: Half the Nyquist rate
- · Some basic concepts
 - SNR
 - SQNR
 - Linear and Nonlinear Quantization
 - U-Law; A-Law
- · Coding of Audio
 - o PCM, Pulse Code Modulation
 - o DPCM, Difference version of PCM
 - o ADPCM, Adaptive DPCM
- · How to calculate the bit-rate of coded audio signal

采样频率48kHz,量化位数32位,4声道:每个采样点4*32=128bit,每秒48000个采样点,bit-rate为128*48000 bit/sec

- · PCM signal encoding and decoding
- DPCM workflow

7 Lossless Compression Algorithms

- · Basics of Information Theory
 - o The entropy of an information source(熵)
 - Alphabet S={s1,s2,...,sn}
 - $\eta = H(S)$
 - $\sum_{i=1}^n p_i \log_2 p_i$
 - Self-information: $\log_2 \frac{1}{P_1}$
 - The concept of entropy
 - A measure of the disorder of a system
 - The more entropy, the more disorder
- · Identifying often-occurring symbols as short codewords
- · Lossless Coding Algorithms
 - RLC(Run-Length Coding)
 - Variable-Length Coding
 - Shannon-Fano algorithm
 - Huffman Coding
 - Adaptive Huffman Coding
 - Dictionary-Based Coding
 - Arithmetic Coding
- · Lossless Image Compression
 - Differential Coding
 - Lossless JPEG

8 Lossy Compression Algorithms

- · The Rate-Distortion Theory
 - Distortion Measures
 - MSE, SNR, PSNR
 - The concept of R(D)
- · Quantization: The heart of any lossy sheme
 - Nonuniform Scaler Quantization
 - The Lloyd-Max Quantizer
 - The companded Quantize
 - Uniform Scalar Quantization
 - Two types quantizers: midrise and midtread
- · Transform Coding
 - 1D DCT
 - o 2D DCT

9 Image Compression Standards

- Main Steps in JPEG Image Compression
- JPEG Modes
 - Sequential Mode
 - o Progressive Mode
 - Hierarchical Mode
 - Lossless Mode
- JPEG Bitstream

10 Basic Video Compression Techniques

- Basic Concept
 - o Temporal redundancy: Predictive Coding
 - Subtract images in time order
 - Code the residual error
 - Better methods:
 - Search for the right parts
 - Motion Estimation
 - Motion Compensation
- Video Compression Based on Motion Compensation
 - Reduce spatial redundancy and temporal redundancy
 - o Intra-Frame: similar as JPEG
 - Inter-Frame: based on motion prediction and compensation
- · The three main steps
 - Motion estimation: motion vector search
 - Motion-compensation: based prediction
 - o Derivation of the prediction error
- · Search For Motion Vectores
 - \circ Criteria of matching(MAD(i,j))
 - Sequential Search
 - o 2D-Logarithmic-search
 - Hierarchical Search
- H.261-Overview
 - o 2 video format: QCIF, CIF
 - o 2 type frame image: I-Frame, P-Frame
 - o Coding method: Intra-frame, inter-frame
- Quantization in H.261
 - Constant Step-size in the range [2, 62] instead of 8*8matrixes

$$QDCD = \lfloor \frac{DCT}{step\ size} \rfloor = \lfloor \frac{DCT}{2 \times scale} \rfloor$$

o Intra-frame, for DC, stepsize=8

- H.263-overview
 - sub-QCIF, 4CIF and 16CIF
 - o GOBs don't have a fixed size
 - half-pixel positions
- · Optional H.263 Coding Modes
 - Unrestricted motion vector mode
 - Syntax-based arithmetic coding mode
 - Advanced prediction mode(4 MV for a macroblock)
 - PB-frames mode

11 MPEG Video Coding

- MPEG-1-Overview
 - Support only non-interlaced Video
 - o 352*240 for NTSC at 30 fps
 - o 352*288 for PAL at 25 fps
 - 4:2:0 chroma subsampling
- Difference from H.261
 - B frames——Bidirectional Motion Compensation
 - Format specifications
 - o Picture can be divided into 1 or more slices
 - o Different quantization tables for intra- and inter- coding
 - Motion vectors to be of 0.5pixel
 - Larger gaps between I and P frames and larger motion-vector search range
- MEPG-2 Scalabilities
 - SNR
 - Spatial
 - Temporal
 - Data
- Other Major difference from MPEG-1
 - o Better resilience to errors
 - Support to 4:2:2 and 4:\$:4 chroma subsampling
 - Nonlinear restricted structure
 - More restricted slice structure
 - o More flexible video formats
- MPEG-4-Overview
 - User interactivities
 - A large range between 5kbps and 10Mbps
 - Some characteristics
 - Motion Compensation
 - Object based coding
 - Arbitrary Shape Coding
 - Static texture coding
 - Face object coding and Animation
 - Body object coding and Animation