Math, Science, and Engineering Handbook

```
Daniel Kelley <daniel.kelley@gmp.san-jose.ca.us>
July 4, 2022
```

1 Math

1.1 Integrals

```
1 \int x^n dx = \frac{x^{n+1}}{n+1}
2 \int \frac{dx}{x} = \ln x
3 \int e^x dx = e^x
4 \int \cos(x) dx = \sin(x)
5 \int \sin(x) dx = -\cos(x)
6 \int \sec^2(x) dx = \tan(x)
7 \int \csc^2(x) dx = -\cot(x)
8 \int \sec(x) \cdot \tan(x) dx = \sec(x)
9 \int \csc(x) \cdot \cot(x) dx = -\csc(x)
10 \int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}(\frac{x}{a})
11 \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1}(\frac{x}{a})
12 \int \tan(x) dx = -\ln(\cos(x))
13 \int \cot(x) dx = \ln(\sin(x))
14 \int \sec(x) dx = \ln(\sec(x) + \tan(x))
15 \int \csc(x) dx = -\ln(\csc(x) + \cot(x))
```

1.2 Formulas

```
Quadratic Approximation f(u+x) = f(u) + f'(u) \cdot x + f''(u) \cdot x^2/2 FTC2 \qquad \qquad d/dx \int_0^x f(t)dt = f(x) FTC2 \text{ Chain Rule} \qquad d/dx \int_0^{g(x)} f(t)dt = g'(x) \cdot f(g(x)) Weighted Average \int_a^b f(x)w(x)dx/\int_a^b w(x)dx
```

1.3 L'Hôpital's Rule

$$\lim_{x \to a} f(x)/g(x) = \lim_{x \to a} f'(x)/g'(x)$$

0/0	Straight up
∞/∞	Straight up
$0 \cdot \infty$	Rewrite as quotient
0_0	Rewrite as $e^{ln(f)}$
∞^0	Rewrite as $e^{ln(f)}$
1^{∞}	Rewrite as $e^{ln(f)}$
$\infty - \infty$	Good luck
Otherwise	Forget it.

1.4 Vector Products

Dot Product

Figure 1: Dot Product

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos(\theta)$$

The scalar value of the dot product is the sum of the product of the vector components $\Sigma a_i \cdot b_i$ Geometrically, the scalar value is the length of the projection of \vec{B} onto \vec{A} .

Cross Product

Figure 2: Cross Product

$$\vec{A} \times \vec{B} = |\vec{A}| |\vec{B}| \sin(\theta) \hat{n}$$

Geometrically, the vector value of the cross product is the area of the parallelogram formed by \vec{B} and \vec{A} times the unit vector \hat{n} normal to the plane of the parallelogram following the right hand rule.

Special Values

$$\vec{A} \cdot \vec{B} > 0$$
 θ is acute.
 $\vec{A} \cdot \vec{B} < 0$ θ is obtuse.
 $\vec{A} \cdot \vec{B} = 0$ Vectors are orthogonal.
 $\vec{A} \times \vec{B} = 0$ Vectors are parallel.

1.5 Parametric Vector Calculus

Position
$$\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} \qquad \int \vec{v}(t)dt \\ \vec{v}(t) = x'(t)\hat{i} + y'(t)\hat{j} \qquad \int \vec{a}(t)dt \qquad \frac{ds}{dt}\vec{T}$$
 Acceleration
$$d\vec{v}(t)/dt \qquad d^2\vec{r}(t)/dt^2 \qquad \vec{v}(t) = x''(t)\hat{i} + y''(t)\hat{j}$$
 Arc Length
$$\frac{ds}{dt} = \sqrt{x'(t)\hat{i} + y'(t)\hat{j}}$$
 Unit Tangent
$$\vec{T} = \vec{v}/|\vec{v}|$$

1.6 Partial Differentiation

Tangent Plane to
$$f(x_0, y_0)$$
 $z - z_0 = (\frac{\partial f}{\partial x})_{x_0}(x - x_0) + (\frac{\partial f}{\partial y})_{y_0}(y - y_0)$
Approximation $f(x, y) = z_0 + \frac{\partial f}{\partial x}(x - x_0) + \frac{\partial f}{\partial y}(y - y_0)$

1.7 Least Square Line

$$\left(\sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i\right)^{-1} \left(\sum_{i=1}^{n} x_i y_i\right) = \binom{a}{b} \text{ for } y = ax + b \text{ given } n \text{ points } (x_i, y_i)$$

1.8 Second Derivative Test

Given f(x, y) critical points (x_c, y_c) where $\frac{\partial f}{\partial x} = 0$ and $\frac{\partial f}{\partial y} = 0$ $A = \frac{\partial^2 f}{\partial x^2} @(x_c, y_c)$ $B = \frac{\partial^2 f}{\partial x \partial y} @(x_c, y_c)$ $C = \frac{\partial^2 f}{\partial y^2} @(x_c, y_c)$ $AC - B^2 > 0, A > 0 \text{ or } C > 0 \quad \text{Minimum point}$ $AC - B^2 > 0, A < 0 \text{ or } C < 0 \quad \text{Maximum point}$ $AC - B^2 < 0 \quad \text{Saddle point}$ $AC - B^2 = 0 \quad \text{Need higher order terms to conclude}$

1.9 Differential Chain Rule

$$f(x(t), y(t), z(t)); \frac{df}{dt} = f_x \frac{dx}{dt} + f_y \frac{dy}{dt} + f_z \frac{dz}{dt}$$

1.10 Level Curves and Surfaces

The *level curve* for a function f(x, y) is the set of points (x, y) where f(x, y) = C for constant C.

1.11 Gradient

The gradient ∇f of function f is a vector of the partial derivatives of f for each independant variable; e.g. $\nabla f(x,y) = \langle f_x, f_y \rangle$. $\nabla f \perp f(x,y)$, i.e. gradient \perp level curve.

The directional derivitive of f at the point P in the direction of \vec{u} is $\frac{df}{ds}\Big|_{P,\vec{u}} = \nabla f(P) \cdot \vec{u}$.

Given an *objective* function f and a *constraint* function g = C for constant C, the *extrema* of f are found when $\nabla f \parallel \nabla g$. The *Lagrange multiplier* λ is $\frac{\nabla f}{\nabla g}$.

1.12 Center of Mass

- M Mass
- δ Density Function
- \bar{x} x center
- \bar{y} y center

$$M = \int \int_{R} \delta \, dA$$
$$\bar{x} = \frac{1}{M} \int \int_{R} x \delta \, dA$$
$$\bar{y} = \frac{1}{M} \int \int_{R} y \delta \, dA$$

1.13 Moment of Inertia

- I_x Moment about x axis
- I_v Moment about y axis

$$I_{x} = \int \int_{R} \delta y^{2} \, dy$$
$$I_{y} = \int \int_{R} \delta x^{2} \, dx$$

1.14 Change of Variables

$$\int \int_{R} f(x, y) \, dx \, dy = \int \int_{R} g(u, v) |J| \, du \, dv$$

$$g(u, v) = f(x(u, v), y(u, v))$$

$$|J| = \left| \frac{\partial(x, y)}{\partial(u, v)} \right| = \left| \frac{\partial x}{\partial u} \quad \frac{\partial x}{\partial v} \right|$$

$$\left| \frac{\partial y}{\partial u} \quad \frac{\partial y}{\partial v} \right| \cdot \left| \frac{\partial y}{\partial u} \right| = 1$$

1.15 Vector Field

 \vec{F} Field

M Field component in x direction (\hat{i}) $F_{\hat{i}}$

N Field component in y direction (\hat{j}) F_y

C Curve $\vec{r}(t) = \langle x(t), y(t) \rangle$

$$\vec{F}(x,y) = \langle M, N \rangle$$

$$\vec{F}(x,y) = M(x,y)\hat{i} + N(x,y)\hat{j}$$

$$\operatorname{curl} \vec{F} = N_x - M_y$$

$$\operatorname{div} \vec{F} = M_x + N_y$$

1.16 Line Integral

$$C = \vec{r}(t)$$

$$s = \text{arc-length}(C)$$

$$\vec{r}(t) = \langle x(t), y(t) \rangle$$

$$P(t) = M(x, y)$$

$$Q(t) = N(x, y)$$

Work

Force on particle along a curve.

Figure 3: Work

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} \vec{F} \cdot \hat{T} \, ds$$

$$= \int_{C} \langle M, N \rangle \cdot \langle dx, dy \rangle$$

$$= \int_{C} M \, dx + N \, dy$$

$$= \int_{C} (P + Q) \, dt$$

Flow

Flow across a curve.

Figure 4: Flow

$$\int_{C} \vec{F} \cdot \hat{n} \, ds = \int_{C} \langle M, N \rangle \cdot \langle dy, -dx \rangle$$
$$= \int_{C} -N \, dx + M \, dy$$
$$= \int_{C} (Q + P) \, dt$$

1.17 Gradient Field

If
$$\vec{F}(x, y) == \nabla f$$

$$\int_{a}^{b} \vec{F} \cdot d\vec{r} = f(b) - f(a)$$
 Fundamental Theorem for Line Integrals
$$\int_{C_{1}} \vec{F} \cdot d\vec{r} = \int_{C_{2}} \vec{F} \cdot d\vec{r}$$
 Path independence
$$\oint \vec{F} \cdot d\vec{r} = 0$$
 If \vec{r} is a closed path

1.18 Green's Theorem

$$\oint_{C} \vec{F} \cdot d\vec{r} = \iint_{R} curl(\vec{F}) dA$$
 tangental
$$\oint_{C} \vec{F} \cdot \hat{n} ds = \iint_{R} div(\vec{F}) dA$$
 normal

2 Science

2.1 Units

Quantity	MKS	Name	Abbrev.
Angle		radian	rad
Solid Angle		steradian	sr
Area	m^2		
Volume	m^3		
Frequency	s^{-1}	Hertz	Hz
Velocity	$m \cdot s^{-1}$		
Acceleration	$m \cdot s^{-2}$		
Angular Velocity	$rad \cdot s^{-1}$		
Angular Acceleration	$rad \cdot s^{-2}$		
Density	$kg \cdot m^{-3}$		
Momentum	$kg \cdot m \cdot s^{-1}$		
Angular Momentum	$kg \cdot m^2 \cdot s^{-1}$		
Force	$kg \cdot m \cdot s^{-2}$	Newton	N
Work, Energy	$kg \cdot m^2 \cdot s^{-2}$	Joule	J
Power	$kg \cdot m^2 \cdot s^{-3}$	Watt	W
Torque	$kg \cdot m^2 \cdot s^{-2}$		
Pressure	$kg \cdot m^{-1} \cdot s^{-2}$	Pascal	Ра

2.2 Lab Reports

Abstract Objective Method Data Analysis

Conclusion Bibliography

2.3 Laws

Newton's 1st Law $\sum \mathbf{F} = 0 \Leftrightarrow \dot{\mathbf{v}}$ Newton's 2nd Law $\mathbf{F} = m\mathbf{a} = \dot{\mathbf{p}}$ Newton's 3rd Law $\mathbf{F}_a = -\mathbf{F}_a$

Gravity $\mathbf{F} = m\mathbf{g}; \mathbf{g} = 9.81 \text{ m/s}$

Hooke's Law $F_x = -k\Delta x; k = \text{spring constant}$

Force $N = kg \cdot m \cdot s^{-2}$ Energy $J = N \cdot m$

Power $W = J \cdot s^{-1}$ Momentum $\mathbf{p} = m \cdot \mathbf{v}$

Kinetic Energy $K = \frac{1}{2}m\mathbf{v}^2 = \frac{\mathbf{p}^2}{2m}$

Momentum is conserved

Energy is conserved

2.4 Mechanics Problem Workflow

Draw a good picture.

Decorate with forces with a free body diagram for each body.

Choose a suitable coordinate system.

Decompose forces on each body.

Determine acceleration for each body.

Determine 1d equations of motion for each body, including necessary constraints.

Reconstruct multidimensional motion vectors.

Algebraically determine kinematics as needed.

3 Engineering

3.1 DC Ohm's Law

$$I = \frac{E}{R} = \frac{P}{E} = \sqrt{\frac{P}{R}}$$

$$R = \frac{E}{I} = \frac{E^2}{P} = \frac{P}{I^2}$$

$$E = IR = \frac{P}{I} = \sqrt{PR}$$

$$P = EI = I^2R = \frac{E^2}{R}$$

3.2 AC Ohm's Law

$$I = \frac{E}{Z} = \frac{P}{E\cos(\theta)} = \sqrt{\frac{P}{Z\cos(\theta)}}$$

$$Z = \frac{E}{I} = \frac{E^2\cos(\theta)}{P} = \frac{P}{I^2\cos(\theta)}$$

$$E = IZ = \frac{P}{I\cos(\theta)} = \sqrt{\frac{PZ}{\cos(\theta)}}$$

$$P = EI\cos(\theta) = I^2Z\cos(\theta) = \frac{E^2\cos(\theta)}{Z}$$

Bibliography

- [1] Robert G. Brown, *Introductory Physics I*. http://webhome.phy.duke.edu/ rgb/Class/intro-physics-1/intro-physics-1.pdf
- [2] Allied Radio Corporation, *Allied's Electronics Data Handbook*. https://archive.org/details/AlliedsElectronicsDataHandbook