IN THE CLAIMS

Amendments to the Claims:

Please amend Claim 1.

This listing of claims will replace all prior versions, and listing of claims in the application.

Listing of Claims:

Claim 1 (currently amended): Method of determining the velocity v and anellipticity η parameters for processing seismic traces <u>obtained from seismic receivers</u> in a common midpoint (CMP) gather including an anelliptic NMO correction, comprising:

- a preliminary step to define a plurality of nodes (dtn, τ_0) , the said nodes being indicative of parameters dtn and τ_0 representing the NMO correction for the maximum offset and the zero offset travel time in hyperbolic coordinates, the said preliminary step being followed by
 - for each node (dtn, τ_0) defined in the preliminary step, the following steps:
- for static NMO correction of traces in the CMP gather as a function of the values of the said parameters dtn, τ_0 at the node considered, and
- for calculating the semblance function associated with the said NMO correction for the node considered; and
- for each picked time t_0 , a step including determination of the maximum semblance node (dtn (t_0) , τ_0 (t_0)),
- a step to convert the dtn (t_0) and τ_0 (t_0) parameters so as to obtain the velocity $V(t_0)$ and an ellepticity $\eta(t_0)$ laws
- and a step of processing the seismic traces in view of the velocity $V(t_0)$ and an ellepticity $\eta(t_0)$ laws.

Claim 2 (original): Method according to claim 1, wherein the nodes are defined during the preliminary step in an analysis volume (dtn, τ_{O} , t_{O}) determined by minimum and maximum values respectively [dtn_{min},dtn_{max}] [τ_{Omin} , τ_{Omax}] and [t_{Omin} , t_{Omax}] of the dtn, τ_{O} , and t_{O} parameters.

Claim 3 (original): Method according to claim 2, wherein, during the preliminary step, a corridor [dtn_{min} (t_0), dtn_{max} (t_0)], [τ_{Omax} (t_0), τ_{Omax} , (t_0)] for max changing dtn and τ_0 parameters is delimited inside the analysis volume as a function of plausible velocity V and anellipticity η values, the nodes (dtn, τ_0) defined for applying the NMO correction being then located along the corridor thus delimited.

Claim 4 (previously presented): Method according to claim 1, further comprising, for each node (dtn, τ_0), a stacking step of the corrected seismic traces, following the semblance function calculation step.

Claim 5 (original): Method according to claim 4, wherein the stacking of corrected traces is done using only near offset traces.

Claim 6 (previously presented): Method according to claim 4, further comprising for each picked time, and following the step for determining the maximum semblance node, a step of checking that values dtn and τ_0 of the maximum semblance node correspond to a stacking extreme value for the same values dtn and τ_0 .

Claim 7 (previously presented): Method according to claim 1, further comprising a step of selecting and adjusting the pickings obtained, following the step implemented for determining the maximum semblance node (dtn (t_0) , τ_0 (t_0)) for each picked time t_0 , before the conversion step.

Claim 8 (original): Method according to claim 7, wherein the said step of selecting and adjusting the pickings comprises a step of only retaining pickings dtn and τ_O for which time to the highest semblance pickings is greater than a predefined value.

Claim 9 (original): Method according to claim 8, wherein the said step of selecting and adjusting the pickings also comprises a step for adjusting the retained pickings dtn and τ_O by parabolic interpolations using values about the said picked values.

Claim 10 (original): Method according to claim 9, wherein the said step of selecting and adjusting pickings also comprises a step of eliminating retained and adjusted pickings dtn and τ_O when it is impossible to calculate the Dix interval velocities between the picking considered and higher semblance pickings.

Claim 11 (previously presented): Method according to claim 1, wherein the processing applied to seismic traces is an NMO correction process implementing a static correction .

CORR NMO.

5

Claim 12 (original): Method according to claim 11, wherein, during the preliminary step, the NMO corrections CORR $_{\rm NMO}$ are calculated for all nodes (dtn, τ_O) including in the analysis volume and all offsets of processed seismic traces.

Claim 13 (original): Method according to claim 12, wherein the NMO correction carried out for each node (dtn, τ_O), consists of applying NMO corrections CORR NMO calculated during the preliminary step.

Claim 14 (previously presented): Method according to claim 11, wherein for a given (dtn, τ_O) pair, the static NMO correction CORR NMO of a seismic trace with offset x is carried out according to the following equation:

CORR NMO (x) =
$$-\tau_O + \sqrt{\tau_0^2 + \frac{\text{din} (\text{dtn} + 2\tau_0)}{x_{\text{max}}^2}}$$
 x^2 in which X_{max} represents the maximum offset in the CMP gather.

Claim 15-19 (withdrawn)

Claim 20 (previously presented): Method according to claim 14, wherein, during the final conversion step, the parameters dtn (t_0) , and (τ_0) are converted to the velocity law $v(t_0)$ according to the following equation:

$$V = \frac{x_{\text{max}}}{\sqrt{dtn(dtn + 2\tau_O)\frac{t_O}{\tau_O}}}$$

Claim 21 (previously presented): Method according to claim 14, wherein, during the final conversion step, the parameter τ_O (t_O) is converted to the anellepticity η (t_O) law according to $\eta = \frac{1}{8} \left(\frac{t_O}{\tau_O} - 1 \right)$

Claim 22 (previously amended): Method according to claim 20, wherein parameter dtn is defined with respect to the velocity v and anellepticity η according to the following equation:

$$dtn = \frac{8\eta}{1 + 8\eta} t_0 + \sqrt{\left(\frac{t_0}{1 + 8\eta}\right)^2 + \frac{x_{\text{max}}^2}{(1 + 8\eta)V_2}}$$

Claim 23 (original): Method according to claim 21, wherein parameter τ_O is defined according to an ellepticity η according to the following equation:

$$\tau_O = \frac{t_O}{1 + 8\eta}$$

Claim 24 (withdrawn)

Claim 25 (original): Method according to claim 2, further comprising, for each node (dtn, τ_0) , a stacking step of the corrected seismic traces, following the semblance function calculation step.

Claim 26 (original): Method according to claim 25, wherein the stacking of corrected traces is done using only near offset traces.

Claim 27 (original): Method according to claim 25, further comprising for each picked time, and following the step for determining the maximum semblance node, a step of checking that values dtn and τ_0 of the maximum semblance node correspond to a stacking extreme value for the same values dtn and τ_0 .

Claim 28 (original): Method according to claim 2, further comprising a step of selecting and adjusting the pickings obtained, following the step implemented for determining the maximum semblance node (dtn (t_0) , τ_0 (t_0)) for each picked time τ_0 , before the conversion step.

Claim 29 (original): Method according to claim 28, wherein the said step of selecting and adjusting the pickings comprises a step of only retaining pickings dtn and τ_0 for which time to the highest semblance pickings is greater than a predefined value.

Claim 30 (original): Method according to claim 29, wherein the said step of selecting and adjusting the pickings also comprises a step for adjusting the retained pickings dtn and τ_0 by parabolic interpolations using values about the said picked values.

Claim 31 (original): Method according to claim 30, wherein the said step of selecting and adjusting pickings also comprises a step of eliminating retained and adjusted pickings dtn and τ_0 when it is impossible to calculate the Dix interval velocities between the picking considered and higher semblance pickings.

Claim 32 (original): Method according to claim 2, wherein the processing applied to seismic traces is an NMO correction process implementing a static correction CORR NMO.

Claim 33 (original): Method according to claim 32, wherein, during the preliminary step, the NMO corrections $CORR_{NMO}$ are calculated for all nodes (dtn. τ_0) including in the analysis volume and all offsets of processed seismic traces.

Claim 34 (original): Method according to claim 32, wherein the NMO correction carried out for each node (dtn, τ_0), consists of applying NMO corrections CORR NMO calculated during the preliminary step.

Claim 35 (original): Method according to claim 32, wherein for a given (dtn, τ_0) pair, the static NMO correction CORR NMO of a seismic trace with offset x is carried out according to the following equation:

CORR_{NMO} (x) = -
$$t_0$$
 + $\sqrt{r_0^2 + \frac{dtn \left(dtn + 2r_0\right)}{x_{max}^2}}$ x^2 in which X_{max} represents the maximum offset in the CMP gather.

Claim 36-39 (withdrawn)

Claim 40 (currently amended): Method according to claim 36 2, wherein the processing applied to seismic traces is a PSTM migration using a static NMO correction CORR PSTM, and wherein, for a given pair (dtn and τ_O), the static NMO correction CORR PSTM is carried out according to the following equation:

CORR_{PSTM} (x) =
$$-t_0 + \sqrt{\frac{r_0^2}{4} + \frac{din (din + 2r_0) (x - x + h)^2}{x^2_{max}}} + \sqrt{\frac{r_0^2}{4}} + \frac{din (din + 2r_0) (x - x + h)^2}{x^2_{max}}$$

where:

- x_m represents the coordinates of the midpoints,
- $x x_m$ represents the migration aperture PSTM,
- h is the half source receiver offset,
 - xmax is the maximum offset and aperture of the migration.

Claim 41 (original): Method according to claim 35, wherein, during the final conversion step, the parameters dtn (t_0) and (t_0) are converted to the velocity law v (t_0) according to the

following equation:
$$V = \frac{x_{\text{max}}}{\sqrt{dtn(dtn + 2\tau_O)\frac{t_O}{\tau_O}}}$$

Claim 42 (original): Method according to claim 35, wherein, during the final conversion step, the parameter τ_0 (t_0) is converted to the anellepticity π (t_0) law according to $\eta = \frac{1}{8} \left(\frac{t_0}{\tau_0} - 1 \right)$

Claim 43 (original): Method according to claim 41, wherein parameter dtn is defined with respect to the velocity v and an ellepticity η according to the following equation:

$$dtn = \frac{8\eta}{1 + 8\eta} t_0 + \sqrt{\left(\frac{t_0}{1 + 8\eta}\right)^2 + \frac{x_{\text{max}}^2}{(1 + 8\eta)V_2}}$$

Claim 44 (original): Method according to claim 42, wherein parameter τ_0 is defined according to an ellepticity η according to the following equation:

$$\tau_O = \frac{t_O}{1 + 8\eta}$$

Claim 45 (original): Method according to claim 3, further comprising, for each node (dtn, τ_0), a stacking step of the corrected seismic traces, following the semblance function calculation step.

Claim 46 (original): Method according to claim 45, wherein the stacking of corrected traces is done using only near offset traces.

Claim 47 (original): Method according to claim 45, further comprising for each picked time, and following the step for determining the maximum semblance node, a step of checking that values dtn and τ_0 of the maximum semblance node correspond to a stacking extreme value for the same values dtn and τ_0 .

Claim 48 (original): Method according to claim 3, further comprising a step of selecting and adjusting the pickings obtained, following the step implemented for determining the maximum semblance node $(dtn(t_o), \tau_o(t_o))$ for each picked time t_o , before the conversion step.

Claim 49 (original): Method according to claim 48, wherein the said step of selecting and adjusting the pickings comprises a step of only retaining pickings dtn and τ_0 for which time to the highest semblance pickings is greater than a predefined value.

Claim 50 (original): Method according to claim 49, wherein the said step of selecting and adjusting the pickings also comprises a step for adjusting the retained pickings dtn and τ_0 by parabolic interpolations using values about the said picked values.

Claim 51 (original): Method according to claim 50, wherein the said step of selecting and adjusting pickings also comprises a step of eliminating retained and adjusted pickings dtn and τ_0 when it is impossible to calculate the Dix interval velocities between the picking considered and higher semblance pickings.