Contents

ACYCLE	1 -
WHAT THEY SAY	4 -
COPYRIGHT	6 -
1. ACKNOWLEDGMENTS	7 -
2. REFERENCES	8 -
3. SOFTWARE SPECIFICATIONS	10 -
3.1 SYSTEM REQUIREMENTS	10 -
3.2 DOWNLOADING THE ACYCLE SOFTWARE	11 -
3.3 MATLAB VERSION	12 -
3.3.1 Toolboxes	12 -
3.3.2 Installation	12 -
3.3.3 Startup	12 -
3.3.4 Git Clone and Updating	13 -
3.4 MAC VERSION	15 -
3.4.1 Introduction	15 -
3.4.2 AcycleX.X-Mac-green	15 -
3.5 WINDOWS VERSION	18 -
3.5.1 Introduction	18 -
3.5.2 AcycleX.X-Win-Installer	18 -
3.5.3 AcycleX.X-Win-green	18 -
3.6 DATA REQUIREMENTS	19 -
4. ACYCLE GRAPHICAL USER INTERFACE (GUI)	20 -
4.1 FUNCTIONS AND GUI	20 -
4.2 FILE	21 -
4.3 EDIT	21 -
4.4 PLOT	22 -
4.5 BASIC SERIES	25 -
Insolation	25 -
Astronomical Solution	27 -
Length-of-day & Day-of-year	27 -
Signal/Noise Generator	28 -
LR04 Stack	30 -
Examples	30 -
4.6 MATH	35 -
Sort/Unique/Delete-empty	
Interpolation	
Interpolation Series	
Select Parts	
Merge Series	
Multiply Series	
Add Gaps	

Remove Parts	37 -
Remove Peaks	37 -
Clipping	37 -
Changepoint	37 -
Standardize	38 -
Principal Component	38 -
Log-transform	38 -
Derivative	39 -
Simple Function	39 -
Utilities	39 -
Find max/min	39 -
Image:	39 -
Show Image	39 -
RGB to Grayscale	39 -
Image Profile	39 -
Plot Digitizer	40 -
4.7 TIME SERIES	42 -
Detrending Curve Fitting	42 -
Smoothing	43 -
Moving Average	43 -
Moving Median	43 -
Bootstrap	43 -
Prewhitening	44 -
Spectral Analysis	
Evolutionary Spectral Analysis	47 -
Wavelet transform	48 -
Coherence & Phase	49 -
Lead/Lag Relationship	50 -
Filtering	51 -
Dynamic Filtering	
Amplitude Modulation	55 -
Build Age Model	55 -
Age Scale Tuning	
Sedimentation Rate to Age Model	
Power Decomposition Analysis	59 -
Sedimentary Noise Model	
Correlation Coefficient (COCO/eCOCO)	
TimeOpt	
eTimeOpt	
Spectral Moments	68 -
4.8 HELP	
What's New	
Manuals	
Find Updates	
Copyright	
Contact	
4.9 MINI-ROBOT	72 -

5. DYNOT MODEL DESCRIPTION	73 -
5.1 DATA FORMAT	73 -
5.2 STARTUP	73 -
5.3 SETTINGS	74 -
5.4. RUNNING THE DYNOT MODEL	77 -
5.5. OUTPUT FILES	78 -
6. CASE STUDIES	79 -
TYPICAL PROCEDURES IN CYCLOSTRATIGRAPHY	79 -
EXAMPLE #1: INSOLATION	81 -
Step 1: Load data	81 -
Step 2: Data pre-processing	82 -
Step 3: Detrending	82 -
Step 4: Power Spectral Analysis	83 -
Step 4: Evolutionary Spectral Analysis	
EXAMPLE #2: LA2004 ASTRONOMICAL SOLUTION (ETP)	86 -
Step 1: Load data	86 -
Step 2: Data pre-processing	87 -
Step 3: Detrending	87 -
Step 4: Power Spectral Analysis	88 -
Step 5: Evolutionary Spectral Analysis	89 -
Step 6: Wavelet transform	90 -
EXAMPLE #3: CARNIAN CYCLOSTRATIGRAPHY	
Step 1. Load Data	92 -
Step 2. Data Preparation	93 -
Step 3. Interpolation	93 -
Step 4. Detrending	95 -
Step 5. Power spectral analysis	96 -
Step 6. Evolutionary power spectral analysis	98 -
Step 7. Correlation coefficient	99 -
Step 8. Filtering	103 -
Step 9. Age model and tuning	104 -
Step 10. Repeat steps	106 -
REFERENCES	- 107 -