Fusion information Autonomous Agent

Lorenzo Vannini

Università degli studi di Firenze

June 29, 2023

Overview

- 1 Introduction
 - Mathematical Framework
 - Information fusion
- 2 Test Results

Introduction

This project concentrates on the study on the map fusion problem in the context of a multi-robot map building approach.

Each robot builds its own local map using its observations.

As a result, there will be a set of local maps that can be fused into a global one.

Introduction

Introduction

Suppose that each robot is equipped with a sensing device having a limited field of view depending on the robot position.

Suppose that we want to sense/monitor a given surveillance area ${\mathcal X}$

Figure 2: Robot Scanning an environment

Occupancy grid

A widely adopted environment representation is the occupancy grid map, where the vehicle's surrounding is divided into cells.

Every cell is associated with a physical location and contains the occupancy probability, i.e. the probability to be occupied by an object.

Given a cell in the occupancy grid

$$\theta_k \qquad \forall k = 1, \dots, M$$

The cell occupancy are modelled as independent binary random variables and for **every** cell and for **every** robot we have a probability

$$P_i(\theta_k) \in [0,1] \quad \forall i = 1,\ldots,N$$

that the cell is occupied given the observations collected during its trajectories

Occupancy grid

Given the probabilities $P_i(\theta_k)$ and a threshold $\varepsilon \in [0, 0.5]$, each cell is classified by the robot i as follows:

$$P_i(heta_k) = egin{cases} ext{free if} & P_i(heta_k) < arepsilon \ ext{occupied if} & P_i(heta_k) > 1 - arepsilon \ ext{uncertain otherwise} \end{cases}$$

If no prior information is available on cell θ_k , we set

$$P_i(\theta_k) = \frac{1}{2}$$

Kullback-Leibler average

The (weighted) Kullback-Leibler average (KLA) of the densities $p_1(x), \dots, p_N(x)$ is defined as

$$\bar{p} = \arg\min_{p} \sum_{i=1}^{N} \pi_{i} \int p(x) \log \frac{p(x)}{p_{i}(x)} dx$$

can be re-written as

$$\bar{p} = \frac{\prod_{i=1}^{N} p_i(x)^{\pi_i}}{\int \prod_{i=1}^{N} p_i(x)^{\pi_i} dx}$$

Information fusion

In a discrete environment, by setting $\pi_i = \frac{1}{N} \ \forall i$ the previous equation becomes

$$ar{p}(heta_i) = rac{\prod_{j=1}^N p_j(heta_i)^{\pi_j}}{\prod_{j=1}^N p_j(heta_i)^{\pi_i} + \prod_{j=1}^N (1-p_j(heta_i))^{\pi_j}}$$

Overview

- 1 Introduction
- 2 Test Results
 - Initial simple experiments
 - More Realistic Experiments
 - Travelled distance algorithm
 - · Local efficiency second algorithm

By creating a differential-drive kinematic motion model, a pure pursuit controller and a sensor model from a given path

$$\mathcal{P} = \{(x_1, y_1), \cdots, (x_K, y_K)\}$$

we can obtain the following results

Figure 3: First Robot scanning the environment

Figure 4: Second Robot scanning the environment

Figure 5: Third Robot scanning the environment

Figure 6: Final Map with range r = 6

Figure 7: Final Map with range r = 9

Figure 8: Final Map with range r = 4

Lorenzo Vannini Università degli studi di Firenze 16 / 33

In order to represent as good as possible reality we might add a Gaussian noise to the sensor model

$$\xi \sim \mathcal{N}(0, \sigma^2)$$

or a uniform noise

$$\xi \sim \sigma^2 \mathcal{U}(0,1) \ \ \sigma \in \mathbb{R}$$

At this point we might also add a coefficient $\eta_i \in [0,1]$ representing the efficiency of the i_{th} robot.

It is fair to state that the longer the path that the robot travels the more likely is for the measurements to be corrupted by external factor.

Given a path

$$\mathcal{P}_i = \{(x_1, y_1), \cdots, (x_K, y_K)\}$$

we can calculate the distance travelled by the robot i with

$$d_i = \sum_{r=1}^{K-1} \sqrt{(x_{r+1} - x_r)^2 + (y_{r+1} - y_r)^2}$$

With the previous equation

$$d_i = \sum_{r=1}^{K-1} \sqrt{(x_{r+1} - x_r)^2 + (y_{r+1} - y_r)^2}$$

we can estimate the efficiency using a decreasing function such that $\eta(d=0)=1$ and $\eta(\infty)=0$

$$\eta(d) = e^{-\alpha d} \quad \alpha \in \mathbb{R}^+$$

in our case $\alpha = 0.01$

The information fusion algorithm becomes

$$\bar{p}(\theta_i) = \frac{\prod_{j=1}^N [\frac{1}{2} + (p_j(\theta_i) - \frac{1}{2})\eta_j]^{\pi_j}}{\prod_{j=1}^N [\frac{1}{2} + (p_j(\theta_i) - \frac{1}{2})\eta_j]^{\pi_j} + \prod_{j=1}^N (1 - [\frac{1}{2} + (p_j(\theta_i) - \frac{1}{2})\eta_j])^{\pi_j}}$$

Figure 9: Final Map with η and $\xi \sim 0.1~\mathcal{U}(0,1)$

Figure 10: Final Map with η and $\xi \sim \mathcal{N}(0, 0.9)$.

Figure 11: Final Map with η and $\xi \sim \mathcal{N}(0, 0.1)$.

Lorenzo Vannini Università degli studi di Firenze 22 / 33

Travelled distance algorithm

Main idea, we should also consider the distance travelled as a measure of uncertainty.

For every point $\mathbf{p}_i = [x_i, y_i] \in \mathbb{R}^2 \quad \forall i$ we can measure the distance travelled form the origin of the i-th path and create a local efficiency $\eta^r_{ii} \ \forall r = 1, \cdots, N$

Travelled distance algorithm

Algorithm 1 Travelled Distance algorithm

$$\begin{aligned} & \textbf{Require:} \ \mathcal{P}_i = \{(x_1^{(i)}, y_1^{(i)}), \cdots, (x_K^{(i)}, y_K^{(i)})\} \ \forall i = 1, \cdots, N, \\ & 2D \ (m_1 \times m_2) \ \text{map} \\ & \text{a distance function } d \\ & \beta \geq 0 \\ & \textbf{for } i = 1, \cdots, m_1 \ \textbf{do} \\ & \textbf{for } j = 1, \cdots, m_2 \ \textbf{do} \\ & \textbf{p} = [i, j] \\ & \textbf{p} = [i, j] \\ & \textbf{propersize} \quad \Rightarrow \text{Define the point in 2D space} \\ & \textbf{for } r = 1, \cdots, N \ \textbf{do} \\ & \mu_{ij}^r = d(\textbf{p}, (x_1^{(r)}, y_1^{(r)})) \\ & \textbf{p} = (\textbf{p}, (x_1^{(r)}, y_1^{(r)})) \end{aligned} \quad \Rightarrow \text{Define the distance from p to the start}$$

$$\bar{p}(\theta_{ij}) = \frac{\prod_{r=1}^{N} [\frac{1}{2} + (p_r(\theta_{ij}) - \frac{1}{2})\eta_{ij}^r]^{\pi_r}}{\prod_{r=1}^{N} [\frac{1}{2} + (p_r(\theta_{ij}) - \frac{1}{2})\eta_{ij}^r]^{\pi_r} + \prod_{r=1}^{N} (1 - [\frac{1}{2} + (p_r(\theta) - \frac{1}{2})\eta_{ij}^r])^{\pi_r}}$$

Figure 12: First Algorithm

Travelled distance algorithm

Figure 13: Final Map with $\beta = 0.01$

Figure 14: Final Map with $\beta=0.0001$.

Lorenzo Vannini Università degli studi di Firenze 25 / 33

Main idea, we should also consider the distance **from fixed centers** as a measure of confidence.

Let's define $C = \{c_1, \dots, c_N\}$ where $c_i \in \mathbb{R}^2$ and N is the number of robots in the system.

For every point $\mathbf{p}_i = [x_i, y_i] \in \mathbb{R}^2 \ \forall i$ we can measure the **closest center** to a generic point and create a **local efficiency** $\eta^r_{ij} \ \forall r = 1, \cdots, N$.

Let's also define a $d_{max} > 0$ the maximum sensing distance.

```
Require: \mathcal{P}_i = \{(x_1^{(i)}, y_1^{(i)}), \cdots, (x_K^{(i)}, y_K^{(i)})\} \ \forall i = 1, \cdots, N,
     2D (m_1 \times m_2) map
    C = \{c_1, \dots, c_N\} where c_i \in \text{map}
     d_{\text{max}} \geq 0
     a distance function d
    for i=1,\cdots,m_1 do
            for j=1,\cdots,m_2 do
                    \mathbf{p} = [i, j]
                                                                                                        Define the point in 2D space
                    find k^* \in \{1, \dots, N\} \mid d(\mathbf{c}_{k^*}, \mathbf{p}) \le d(\mathbf{c}_l, \mathbf{p}) \ \forall k^* \ne l \quad \triangleright \text{ closest center}
                    d^* = d(\mathbf{c}_{k^*}, \mathbf{p})
                    for r=1,\cdots,N do
                          if d(\mathbf{c}_r, \mathbf{p}) \le d_{\max} then \eta_{ij}^r = 1 + \frac{d^* - d(\mathbf{c}_r, \mathbf{p})}{d_{\max} - d^*}
                           else
                                  \eta_{ij}^r = 0
       \bar{p}(\theta_{ij}) = \frac{\prod_{r=1}^{N} [\frac{1}{2} + (p_r(\theta_{ij}) - \frac{1}{2}) \eta_{ij}^r]^{\pi_r}}{\prod_{r=1}^{N} [\frac{1}{2} + (p_r(\theta_{ij}) - \frac{1}{2}) \eta_{ij}^r]^{\pi_r} + \prod_{r=1}^{N} (1 - [\frac{1}{2} + (p_r(\theta) - \frac{1}{2}) \eta_{ii}^r])^{\pi_r}}
```

Figure 15: Second Algorithm

Figure 16: Robot 1 path

Figure 17: Robot 1 Map

Occupancy Grid 100 200

Figure 18: Robot 2 path

Figure 19: Robot 2 map

Figure 20: Robot 3 path

Figure 21: Robot 3 map

Figure 22: Final Map with no algorithm

Figure 23: Final Map with $d_{\text{max}} \gg 0$

Figure 24: Final Map with $d_{\text{max}} > 0$