Deccan Education Society's

Navinchandra Mehta Institute of Technology & Development

CERTIFICATE

This is to certify that Mr. Krutarth Prasad Bodas of
M.C.A. Semester I with Roll No. C23021 has
completedAllpractical's of MCAL13
Advance Database Management System under my
supervision in this college during the year 2023-
2024.

CO	R1: Journal	R2: Performance	R3:	R4: Mock	Attendance
		during lab	Implementation	Viva	
		session	using different		
			problem solving		
			techniques		
CO1					
CO2					
CO2					
CO3					
CO4					

Practical-in-charge

Head of Department

MCA Department (NMITD)

	MCAL13 ADBMS Lab INDEX				
Sr.No	Title	СО	Date	Sign	
1	Implementation of Partitions: Range, List. Self-Learning Topics: Hash Partition, Composite partition	CO1	05/09/2023		
2	Analytical Queries Roll_Up, CUBE, First, Last, Lead, Lag, Rank and Dense Rank Self-Learning Topics: Cume_list, Percent_rank	CO3	06/09/2023 08/09/2023		
3	Implementation of, • Abstract Data Type • Reference Self-Learning Topics: Nested ADT, Inheritance	CO1	11/09/2023 13/09/2023		
4	ETL Transformation with Pentaho 1. Copy data from Source & store to Target 2. Adding Sequence 3. Adding Calculator 4. Concatenation of Two Fields 5. Splitting of Two Fields 6. Number Range 7. String Operations 8. Sorting Data 9. Implement the Merge Join 10. Implement data validations on table data 11. Replace Strings 12. Splitting Fields to Rows	CO2	27/09/2023 04/10/2023 11/10/2023		
5	Introduction to R, Install packages Loading packages Data types, checking variable type,printing variable and objects (Vector, Matrix, List, Factor, Data frame, Table) c-binding and rbinding Reading and Writing data: Setw(), getw(), data(),rm() Attaching and Detaching data Reading data from the console Loading data from different data sources(CSV,Excel)	CO4	25/10/2023 30/10/2023		
6	Data preprocessing techniques in R Naming and Renaming variables Adding a new variables	CO4	01/11/2023 01/12/2023		

	Dealing with missing value Dealing with categorical data Data reduction using subsetting			
7	Implementation and analysis of Linear regression through graphical methods.	CO4	04/12/2023	
8	Implementation and Analysis Classification algorithms like Naïve Bayesiam, K-Nearest Neighbour, ID3, C4.5	CO4	08/12/2023	
9	Implementation and analysis of Apriori Algorithm using Market Basket Analysis	CO4	11/12/2023	
10	Implementation and analysis of clustering algorithms like K-means, Agglomarative	CO4	12/12/2023	

Practical No.: 1

Implementation of Different Types of Partitions

RANGE PARTITIONING

```
SQL> CREATE TABLE employee21sales range
   (Salesman id NUMBER(5),
3
    salesman name VARCHAR2(30),
4
    sales amount NUMBER(10),
5
    sales date DATE)
6
    PARTITION BY RANGE(sales date)
 7
8
    PARTITION sales jan2002 VALUES LESS
THAN(TO DATE('01/02/2002','DD/MM/YYYY')),
    PARTITION sales feb2002 VALUES LESS
THAN(TO DATE('01/03/2002','DD/MM/YYYY')),
    PARTITION sales mar2002 VALUES LESS
THAN(TO DATE('01/04/2002','DD/MM/YYYY')),
    PARTITION sales apr2002 VALUES LESS
THAN(TO DATE('01/05/2002','DD/MM/YYYY'))
12 )
13
Table created.
SQL> SELECT TABLE NAME, PARTITION NAME FROM USER TAB PARTITIONS WHERE
    TABLESPACE NAME='USERS';
no rows selected
SQL> insert into employee21sales range values(1,'Krutarth
Bodas',3000,TO DATE('12/02/2002','DD/MM/YYYY'));
1 row created.
SQL> SELECT*FROM employee21sales range;
SALESMAN ID SALESMAN NAME SALES AMOUNT
                                                   SALES DAT
______
                 Krutarth Bodas
    1
                                     3000
                                                    12-FEB-02
SQL> insert into employee21sales range values(2,'Noel
Ruke',4000,TO DATE('06/03/2002','DD/MM/YYYY'));
1 row created.
```

SQL> SELECT*FROM employee21 sales range;

SALESMAN_ID	SALESMAN_NAME	SALES_AMOUNT	SALES_DAT
1	Krutarth Bodas	3000	12-FEB-02
2	Noel Ruke	4000	06-MAR-02

SQL> insert all

2 into employee21sales range values(3,'Atharv

Mhabadi',5000,TO DATE('02/04/2002','DD/MM/YYYY'))

3 into employee21sales range values(4,'Ganesh

Mahinnd',6000,TO DATE('10/01/2002','DD/MM/YYYY'))

4 into employee21sales range values(5,'Chandresh

Chouhan',7000,TO DATE('20/04/2002','DD/MM/YYYY'))

5 into employee21sales range values(6,'Aditya

Chande',8000,TO DATE('12/02/2002','DD/MM/YYYY'))

6 into employee21sales range values(7,'Aman

Mishra',9000,TO DATE('18/03/2002','DD/MM/YYYY'))

7 into employee21sales range values(8,'Shivtej

Patil',9500,TO DATE('27/04/2002','DD/MM/YYYY'))

8 select*from dual;

6 rows created.

SQL> SELECT*FROM employee21 sales range;

SALESMAN_ID	SALESMAN_NAME	SALES_AMOUNT	SALES_DAT
4	Ganesh Mahinnd	6000	10-JAN-02
1	Krutarth Bodas	3000	12-FEB-02
6	Aditya Chande	8000	12-FEB-02
2	Noel Ruke	4000	06-MAR-02
7	Aman Mishra	9000	18-MAR-02
3	Atharv Mhabadi	5000	02-APR-02
5	Chandresh Chouhan	7000	20-APR-02
8	Shivtej Patil	9500	27-APR-02

8 rows selected.

SQL> select*from employee21sales range partition(sales jan2002);

SALESMAN_ID SALESMAN_NAME SALES_AMOUNT SALES_DAT

4 Ganesh Mahinnd 6000 10-JAN-02

SQL> select*from employee21sales range partition(sales feb2002);

SALESMAN_ID	SALESMAN_NAME	SALES_AMOUNT	SALES_DAT
1	Krutarth Bodas	3000	12-FEB-02
6	Aditya Chande	8000	12-FEB-02

LIST PARTITIONING

```
SQL> CREATE TABLE KB21sales list
     (salesman id NUMBER(5),
 3
     salesman name VARCHAR2(30),
 4
     sales city VARCHAR2(30),
 5
     sales amount NUMBER(10),
 6
     sales date DATE)
 7
     PARTITION BY LIST(sales city)
 8
 9
     PARTITION sales west VALUES('Virar', 'Saphale'),
     PARTITION sales Harbur VALUES('Vashi', 'Panvel', 'Juinagar'),
10
     PARTITION sales central VALUES('Thane', 'Kanjurmarg'),
11
12
     PARTITION sales other VALUES(DEFAULT)
13
14
     enable row movement
15
```

SQL> DESC KB21sales list;

Table created.

Name	Null?	Type
SALESMAN ID		NUMBER(5)
SALESMAN NAME		VARCHAR2(30)
SALES_CITY		VARCHAR2(30)
SALES_AMOUNT		NUMBER(10)
SALES DATE		DATE

SQL> SELECT TABLE_NAME,PARTITION_NAME FROM USER_TAB_PARTITIONS WHERE 2 TABLESPACE_NAME='USERS';

no rows selected

```
SQL> insert into KB21sales_list values(1,'Noel Ruke','Virar','2000',TO_DATE('12/01/2002','DD/MM/YYYY'));
```

1 row created.

```
SQL> insert into KB21sales_list values(2,'Mahesh Kamble','Panvel','3000',TO_DATE('15/02/2002','DD/MM/YYYY'));
```

1 row created.

SQL> insert all

2 into KB21sales list values(3,'Atharv

Mhabadi', 'Juinagar', '3500', TO DATE ('06/03/2002', 'DD/MM/YYYY'))

3 into KB21sales list values(4,'Chandresh

Chouhan', 'Kanjurmarg', '3600', TO DATE ('08/04/2002', 'DD/MM/YYYY'))

4 into KB21sales list values(5, 'Krutarth

Bodas', 'Thane', '4000', TO DATE ('03/05/2002', 'DD/MM/YYYY'))

5 into KB21sales list values(6,'Omkar

Bodas', 'Saphale', '4500', TO DATE ('04/06/2002', 'DD/MM/YYYY'))

6 into KB21sales list values(7,'Amogh

Bodas', 'Vashi', '4200', TO DATE ('05/07/2002', 'DD/MM/YYYY'))

7 into KB21sales list values(8,'Aditya

Chande', 'Virar', '3700', TO DATE('08/09/2002', 'DD/MM/YYYY'))

8 select*from dual;

6 rows created.

SQL> select * from KB21sales list;

SALESMAN_ID	SALESMAN_NAME	SALES_CITY	SALES_AMOUNT	SALES_DAT
1	Noel Ruke	Virar	2000	12-JAN-02
6	Omkar Bodas	Saphale	4500	04-JUN-02
8	Aditya Chande	Virar	3700	08-SEP-02
2	Mahesh Kamble	Panvel	3000	15-FEB-02
3	Atharv Mhabadi	Juinagar	3500	06-MAR-02
7	Amogh Bodas	Vashi	4200	05-JUL-02
4	Chandresh Chouha	an Kanjurma	arg 3600	08-APR-02
5	Krutarth Bodas	Thane	4000	03-MAY-02

8 rows selected.

SQL> insert all

2 into KB21sales_list values(9,'Shivtej Patil','Charni Road','2500',TO DATE('06/07/2002','DD/MM/YYYY'))

3 into KB21sales_list values(10,'Pranav Jadhav','Grant Road','2600',TO DATE('16/08/2002','DD/MM/YYYY'))

4 select*from dual;

2 rows created.

SQL> SELECT*FROM KB21sales list partition(sales west);

SALESMAN ID SALESMAN NAME SALES CITY SALES AMOUNT SALES DAT 1 Noel Ruke Virar 2000 12-JAN-02 6 Omkar Bodas Saphale 4500 04-JUN-02 8 Aditya Chande Virar 3700 08-SEP-02

MCA SEM 1 : ADBMS LAB	DES'S NMITD	C23021
IVICA JEIVI I . ADDIVIJ LAD	DES STATALLE	C23021

SQL> SELECT*FROM KB21sales_list partition(sales_harbur);

SALESMAN_ID	SALESMAN_NAME	SALES_CITY	SALES_AMOUNT	SALES_DAT
2	Mahesh Kamble	Panvel	3000	15-FEB-02
3	Atharv Mhabadi	Juinagar	3500	06-MAR-02
7	Amogh Bodas	Vashi	4200	05-JUL-02

SQL> SELECT*FROM KB21sales_list partition(sales_central);

SALESMAN_ID	SALESMAN_NAME	SALES_CITY	SALES_AMOUNT	SALES_DAT
4	Chandresh Chouhan	Kanjurmarg	3600	08-APR-02
5	Krutarth Bodas	Thane	4000	03-MAY-02

SQL> SELECT*FROM KB21sales_list partition(sales_other);

SALESMAN_ID	SALESMAN_NAME	SALES_CITY	SALES_AMOUNT	SALES_DAT	
9	Shivtej Patil	Charni Road	2500	06-JUL-02	
10	Pranav Jadhav	Grant Road	2600	16-AUG-02	

HASH PARTIONING

```
SQL> CREATE TABLE sales_krutarth21 (salesman_id NUMBER(5), salesman_name VARCHAR2(30), sales_amount NUMBER(10), week_no NUMBER(2))
PARTITION BY HASH(salesman_id)
PARTITIONS 4
;
```

Table created.

SQL> insert into sales krutarth21 values(101,'Krutarth',45000,12);

1 row created.

SQL> insert into sales krutarth21 values(102,'Noel',46000,13);

1 row created.

SQL> insert into sales_krutarth21 values(103,'Atharv',47000,11);

1 row created.

SQL> select*from sales krutarth21;

SALESMAN_ID SALESMAN_NAME SALES_AMOUNT WEEK_NO 102 Noel 46000 13 103 Atharv 47000 11 101 Krutarth 45000 12

SQL> insert all

- 2 into sales krutarth21 values(104,'Shivtej',48000,14)
- 3 into sales krutarth21 values(105,'Pranav',49000,17)
- 4 into sales_krutarth21 values(106,'Shriraj',46000,18)
- 5 into sales krutarth21 values(107,'Rushikesh',45000,22)
- 6 into sales krutarth21 values(108,'Uzma',47000,27)
- 7 into sales krutarth21 values(109,'Divya',44000,24)
- 8 select*from dual;

6 rows created.

SQL> select*from sales_krutarth21;

SALESMAN_ID	SALESMAN_NAME	SALES_AMOUNT	WEEK_NO
108	Uzma	47000	27
104	Shivtej	48000	14
102	Noel	46000	13
103	Atharv	47000	11
105	Pranav	49000	17
107	Rushikesh	45000	22
109	Divya	44000	24
101	Krutarth	45000	12
106	Shriraj	46000	18
0			

9 rows selected.

SQL> SELECT TABLE_NAME, PARTITION_NAME FROM USER_TAB_PARTITIONS WHERE TABLESPACE_NAME='SYSTEM';

TABLE_NAME	PARTITION_NAME
SALES_KRUTARTH21	SYS_P401
SALES_KRUTARTH21	SYS_P402
SALES_KRUTARTH21	SYS_P403
SALES_KRUTARTH21	SYS_P404

SQL> select*from sales_krutarth21 partition(SYS_P401);

SALESMAN_ID	SALESMAN_NAME	SALES_AMOUNT	WEEK_NO
108	Uzma	47000	27

SQL> select*from sales_krutarth21 partition(SYS_P402);

SALESMAN_ID	SALESMAN_NAME	SALES_AMOUNT	WEEK_NO
104	Shivtej	48000	14

SQL> select*from sales_krutarth21 partition(SYS_P403);

SALESMAN_ID	SALESMAN_NAME	SALES_AMOUNT	WEEK_NO
102	Noel	46000	13
103	Atharv	47000	11
105	Pranav	49000	17
107	Rushikesh	45000	22
109	Divya	44000	24

SQL> select*from sales_krutarth21 partition(SYS_P404);

SALESMAN_ID	SALESMAN_NAME	SALES_AMOUNT	WEEK_NO
101	Krutarth	45000	12
106	Shriraj	46000	18

COMPOSITE PARTITIONING

```
SQL> CREATE TABLE purchase
2 (
3 purchase no NUMBER,
4 purchase date DATE,
5 Product NUMBER,
6 Quantity NUMBER
7)
8 PARTITION BY RANGE(purchase date)
9 SUBPARTITION BY HASH(Product)SUBPARTITIONS 4
10 (
11 PARTITION order1 VALUES LESS
12 THAN(TO DATE('01/02/2023','DD/MM/YYYY')),
13 PARTITION order2 VALUES LESS
14 THAN(TO DATE('01/03/2023','DD/MM/YYYY')),
15 PARTITION order3 VALUES LESS
16 THAN(TO DATE('01/04/2023','DD/MM/YYYY')),
17 PARTITION order4 VALUES LESS
18 THAN(TO DATE('01/05/2023','DD/MM/YYYY'))
19);
Table created.
```

SQL> SELECT TABLE_NAME, PARTITION_NAME FROM USER_TAB_PARTITIONS 2 WHERE TABLESPACE NAME='SYSTEM';

MCA SEM 1 : ADBMS LAB DES'S NMITD C23021

TABLE_NAME PARTITION_NAME

PURCHASE ORDER1

PURCHASE ORDER2

PURCHASE ORDER3

PURCHASE ORDER4

SQL> INSERT INTO purchase

2 VALUES(11,TO DATE('11/02/2023','DD/MM/YYYY'),101,5);

1 row created.

SQL> INSERT INTO purchase

2 VALUES(12,TO_DATE('31/01/2023','DD/MM/YYYY'),102,4);

1 row created.

SQL> INSERT INTO purchase

2 VALUES(13,TO_DATE('03/03/2023','DD/MM/YYYY'),103,2);

1 row created.

SQL> SELECT * FROM purchase PARTITION(order1);

PURCHASE_NO	PURCHASE_	PRODUCT	QUANTITY
12	31-JAN-23	102	4

SQL> SELECT * FROM purchase PARTITION(order2);

PURCHASE_NO	PURCHASE_	PRODUCT	QUANTITY
11	11-FEB-23	101	5

SQL> SELECT * FROM purchase PARTITION(order3);

PURCHASE_NO	PURCHASE_	PRODUCT	QUANTITY
13	03-MAR-23	103	2

SQL> SELECT * FROM purchase PARTITION(order4);

no rows selected

Practical No.: 2

Implementation of Analytical Queries

```
SQL> CREATE TABLE Employee21data (Emp_no NUMBER(5), Dep_no NUMBER(5), Birth_date DATE, Salary NUMBER(10), Comm NUMBER(8), Job VARCHAR2(30) ) .
```

Table created.

SQL> insert all

into Employee21data values(101,10,TO_DATE('03/09/2002','DD/MM/YYYY'),30000,2000,'Manager') into Employee21data values(102,11,TO_DATE('13/07/2003','DD/MM/YYYY'),23000,1000,'Designer') into Employee21data values(103,11,TO_DATE('22/08/2003','DD/MM/YYYY'),23500,1000,'Designer') into Employee21data values(104,12,TO_DATE('21/04/2004','DD/MM/YYYY'),22000,800,'Tester') into Employee21data values(105,12,TO_DATE('17/11/2003','DD/MM/YYYY'),21000,800,'Tester') into Employee21data values(106,13,TO_DATE('04/02/2004','DD/MM/YYYY'),18000,400,'Developer') into Employee21data values(107,13,TO_DATE('04/12/2002','DD/MM/YYYY'),19000,800,'Developer') into Employee21data values(108,14,TO_DATE('15/06/2005','DD/MM/YYYY'),12000,500,'Sales') into Employee21data values(109,14,TO_DATE('19/02/2004','DD/MM/YYYY'),12500,550,'Sales') into Employee21data values(110,14,TO_DATE('14/11/2005','DD/MM/YYYY'),13500,600,'Sales') select*from dual;

10 rows created.

SQL> select*from Employee21data;

EMP_NO	DEP_NO	BIRTH_DAT	SALARY	COMM	JOB
101	10	03-SEP-02	30000	2000	Manager
102	11	13-JUL-03	23000	1000	Designer
103	11	22-AUG-03	23500	1000	Designer
104	12	21-APR-04	22000	800	Tester
105	12	17-NOV-03	21000	800	Tester
106	13	04-FEB-04	18000	400	Developer
107	13	04-DEC-02	19000	800	Developer
108	14	15-JUN-05	12000	500	Sales
109	14	19-FEB-04	12500	550	Sales
110	14	14-NOV-05	13500	600	Sales

ROLLUP

SQL> SELECT Dep_no,Job,count(*),sum(salary)

- 2 from Employee21data
- 3 group by rollup(Dep_no,Job);

DEP_NO	JOB	COUNT(*)	SUM(SALARY)
10	Manager	1	30000
11	Designer	2	46500
12	Tester	2	43000
13	Developer	2	37000
14	Sales	3	38000
10		1	30000
11		2	46500
12		2	43000
13		2	37000
14		3	38000
		10	194500

11 rows selected.

SQL> select Dep no, Job, sum(salary)

- 2 from Employee21data
- 3 where Dep_no in(10,11)
- 4 group by Dep no, rollup(Job);

DEP_NO	JOB	SUM(SALARY)
10	Manager	30000
11	Designer	46500
10	_	30000
11		46500

SQL> select Dep_no,Job,sum(salary)

- 2 from Employee21data
- 3 where Dep no in(12,13,14)
- 4 group by Dep_no, rollup(Job);

DEP_NO	JOB	SUM(SALARY)
12	Tester	43000
13	Developer	37000
14	Sales	38000
12		43000
13		37000
14		38000

SQL> SELECT Dep_no,Job,count(*),sum(salary)
2 from Employee21data

- 3 group by job,rollup(Dep_no);

DEP_NO	JOB	COUNT(*)	SUM(SALARY)
10	Manager	1	30000
11	Designer	2	46500
12	Tester	2	43000
13	Developer	2	37000
14	Sales	3	38000
	Manager	1	30000
	Designer	2	46500
	Tester	2	43000
	Developer	2	37000
	Sales	3	38000

10 rows selected.

CUBE

SQL> SELECT Dep_no,Job,count(*),sum(salary)
2 from Employee21data

- 3 group by cube(Dep no,Job);

DEP_NO	JOB	COUNT(*)	SUM(SALARY)
		10	194500
	Sales	3	38000
	Tester	2	43000
	Manager	1	30000
	Designer	2	46500
	Developer	2	37000
10		1	30000
10	Manager	1	30000
11		2	46500
11	Designer	2	46500
12		2	43000
DEP_NO	JOB	COUNT(*)	SUM(SALARY)
12	Tester	2	43000
13		2	37000
13	Developer	2	37000
14	_	3	38000
14	Sales	3	38000

RANK

- SQL> select Emp_no,Dep_no,salary,comm,
 2 rank() over(partition by Dep_no order by salary)as Rank
- 3 from Employee21data;

EMP_NO	DEP_NO	SALARY	COMM	RANK
101	10	30000	2000	1
102	11	23000	1000	1
103	11	23500	1000	2
105	12	21000	800	1
104	12	22000	800	2
106	13	18000	400	1
107	13	19000	800	2
108	14	12000	500	1
109	14	12500	550	2
110	14	13500	600	3

10 rows selected.

DENSE RANK

SQL> select Emp_no,Dep_no,salary,comm,

- 2 dense_rank() over(partition by Dep_no order by salary)as Rank 3 from Employee21data;

EMP_NO	DEP_NO	SALARY	COMM	RANK
101	10	30000	2000	 1
102	11	23000	1000	1
103	11	23500	1000	2
105	12	21000	800	1
104	12	22000	800	2
106	13	18000	400	1
107	13	19000	800	2
108	14	12000	500	1
109	14	12500	550	2
110	14	13500	600	3

LEAD

SQL> select Emp_no,Birth_date,

- 2 lead(Birth_date,1) over(order by Birth_date) as "next"
- 3 from Employee21data;

EMP_NO	BIRTH_DAT	next
101	03-SEP-02	04-DEC-02
107	04-DEC-02	13-JUL-03
102	13-JUL-03	22-AUG-03
103	22-AUG-03	17-NOV-03
105	17-NOV-03	04-FEB-04
106	04-FEB-04	19-FEB-04
109	19-FEB-04	21-APR-04
104	21-APR-04	15-JUN-05
108	15-JUN-05	14-NOV-05
110	14-NOV-05	

10 rows selected.

LAG

SQL> select Emp_no,Birth_date,

- 2 lag(Birth_date,1) over(order by Birth_date) as "Previous"
- 3 from Employee21data;

EMP_NO	BIRTH_DAT	Previous
101 107 102 103 105	03-SEP-02 04-DEC-02 13-JUL-03 22-AUG-03 17-NOV-03	03-SEP-02 04-DEC-02 13-JUL-03 22-AUG-03
106 109 104 108 110	04-FEB-04 19-FEB-04 21-APR-04 15-JUN-05 14-NOV-05	17-NOV-03 04-FEB-04 19-FEB-04 21-APR-04 15-JUN-05

FIRST

SQL> select Dep_no,salary,

- 2 max(salary)keep(DENSE_RANK FIRST ORDER BY salary desc)
- 3 over(PARTITION BY Dep no)"max"
- 4 from Employee21data;

DEP_NO	SALARY	max
10	30000	30000
11	23000	23500
11	23500	23500
12	22000	22000
12	21000	22000
13	18000	19000
13	19000	19000
14	12000	13500
14	12500	13500
14	13500	13500

10 rows selected.

LAST

SQL> select Dep_no,salary,

- 2 min(salary)keep(DENSE_RANK LAST ORDER BY salary desc)
- 3 over(PARTITION BY Dep no)"min"
- 4 from Employee21data;

DEP_NO	SALARY	min
10	30000	30000
11	23000	23000
11	23500	23000
12	22000	21000
12	21000	21000
13	18000	18000
13	19000	18000
14	12000	12000
14	12500	12000
14	13500	12000

Practical No.: 3

Implementation of ORDBMS Concepts like ADT, Reference

```
SQL> create type KB name As object
 3 fname varchar(20),
 4 mname varchar(20),
 5 Iname varchar(20)
 6);
 7 /
Type created.
SQL> create type KBB address As object
 2 (
 3 street varchar(20),
 4 city varchar(20),
 5 pincode number(10)
 6);
 7 /
Type created.
SQL> create table Friend1
 2 (
 3 c id number(5) primary key,
 4 c name KB name,
 5 c_add KBB address,
 6 c_phno number(10)
 7);
Table created.
SQL> insert into Friend1
 2 values(1,KB name('Krutarth','P','Bodas'),
 3 KBB address('Charai', 'Thane', 400602), 7249183848);
1 row created.
SQL> insert into Friend1
 2 values(2,KB name('Noel','D','Ruke'),
 3 KBB address('Gimavhne', 'Dapoli', 415712), 7499752165);
1 row created.
```

```
SQL> select*from Friend1;
   C ID
 C NAME(FNAME, MNAME, INAME)
 C_ADD(STREET, CITY, PINCODE)
 C PHNO
KB NAME('Krutarth', 'P', 'Bodas')
KBB ADDRESS('Charai', 'Thane', 400602)
7249183848
   C ID
 C NAME(FNAME, MNAME, INAME)
 C ADD(STREET, CITY, PINCODE)
 C PHNO
KB NAME('Noel', 'D', 'Ruke')
KBB ADDRESS('Gimavhne', 'Dapoli', 415712)
7499752165
SQL> insert into Friend1
 2 values(3,KB name('Atharv','S','Mhabadi'),
 3 KBB address('Peth','Pune',415412),7499752888);
1 row created.
SQL> insert into Friend1
 2 values(4,KB name('Vinay','V','Wagh'),
 3 KBB address('Taddev','Mumbai',400012),8779621917);
1 row created.
SQL> insert into Friend1
 2 values(5,KB name('Avaneesh','S','Bagaitkar'),
 3 KBB address('Gimavhne','Dapoli',400603),7249156165);
```

1 row created.

SQL> DESC Friend1; Null? Name Type C ID NOT NULL NUMBER(5) C NAME KB NAME C ADD **KBB ADDRESS** C PHNO NUMBER(10) SQL> set describe depth 2; SQL> desc Friend1; Name Null? Type C ID NOT NULL NUMBER(5) C NAME KB NAME VARCHAR2(20) **FNAME MNAME** VARCHAR2(20) **INAME** VARCHAR2(20) C ADD **KBB ADDRESS** STREET VARCHAR2(20) **CITY** VARCHAR2(20) **PINCODE** NUMBER(10) C PHNO NUMBER(10) SQL> select c.c add.street from Friend1 c where c id=1; C ADD.STREET Charai SQL> select*from Friend1; C ID C NAME(FNAME, MNAME, INAME)

C ADD(STREET, CITY, PINCODE)

KB NAME('Krutarth', 'P', 'Bodas')

KBB ADDRESS('Charai', 'Thane', 400602)

C_PHNO

7249183848

20

C_ID
C_NAME(FNAME, MNAME, INAME)
C_ADD(STREET, CITY, PINCODE)
C_PHNO
Z KB_NAME('Noel', 'D', 'Ruke') KBB_ADDRESS('Gimavhne', 'Dapoli', 415712) 7499752165
C_ID
C_NAME(FNAME, MNAME, INAME)
C_ADD(STREET, CITY, PINCODE)
C_PHNO
3 KB_NAME('Atharv', 'S', 'Mhabadi') KBB_ADDRESS('Peth', 'Pune', 415412) 7499752888
C_ID
C_NAME(FNAME, MNAME, INAME)
C_ADD(STREET, CITY, PINCODE)
C_PHNO 4
KB_NAME('Vinay', 'V', 'Wagh') KBB_ADDRESS('Taddev', 'Mumbai', 400012) 8779621917
C_ID
C_NAME(FNAME, MNAME, INAME)
C_ADD(STREET, CITY, PINCODE)
C_PHNO
5 KB_NAME('Avaneesh', 'S', 'Bagaitkar') KBB_ADDRESS('Gimavhne', 'Dapoli', 400603) 7249156165

C23021

SQL> select c name from Friend1;

C NAME(FNAME, MNAME, INAME)

KB NAME('Krutarth', 'P', 'Bodas')

KB NAME('Noel', 'D', 'Ruke')

KB NAME('Atharv', 'S', 'Mhabadi')

KB NAME('Vinay', 'V', 'Wagh')

KB NAME('Avaneesh', 'S', 'Bagaitkar')

SQL> select c id,c.c name.Iname from Friend1 c;

C_ID	C_NAME.INAME
1	Bodas
2	Ruke
3	Mhabadi
4	Wagh
5	Bagaitkar

SQL> select c id,c.c name.fname from Friend1 c;

C ID C NAME.FNAME 1 Krutarth 2 Noel Atharv 3 4 Vinay 5 Avaneesh

SQL> select c.c name.fname||' '||c.c name.mname||' '||c.c name.Iname from Friend1 c;

C.C_NAME.FNAME||"||C.C_NAME.MNAME||"||C.C_NAME.INAME

Krutarth P Bodas Noel D Ruke Atharv S Mhabadi Vinay V Wagh Avaneesh S Bagaitkar

SQL> alter type KBB_address

2 add attribute(name KB name)cascade;

Type altered.

SQL> create table Friend2

- 2 (c id number(5),
- 3 add1 KBB address);

Table created.

SQL> insert into Friend2

- 2 values(6,
- 3 KBB address('Charai', 'Thane', 400601,
- 4 KB name('Kishore','D','Pawar')));

1 row created.

SQL> desc Friend2;

Name	Null?	Type	
C_ID		NUMBER(5)	
ADD1		KBB ADDRESS	

SQL> select c id from Friend2;

SQL> select c id,c.add1.street,c.add1.name.fname from Friend2 c;

C_{ID}	ADD1.STREET	ADD1.NAME.FNAME
6	Charai	Kishore

SQL> create or replace type stud type as object

- 2 (roll_no number(5),
- 3 name varchar2(30)
- 4);
- 5 /

Type created.

SQL> create table Students of stud_type;

Table created.

SQL> insert into Students values(stud type(1,'KPB'));

1 row created.

SQL> insert into Students values(stud_type(2,'NDR'));

1 row created.

SQL> select*from Students;

ROLL_NO	NAME
1	KPB
2	NDR

SQL> insert into Students values(stud_type(3,'ASM'));

1 row created.

SQL> insert into Students values(stud_type(4,'ASB'));

1 row created.

SQL> insert into Students values(stud type(5,'GMK'));

1 row created.

SQL> select*from Students;

ROLL_NO	NAME
1	КРВ
2	NDR
3	ASM
4	ASB
5	GMK

SQL> select roll_no from Students;

ROLL_NO
1
2
3
4
5

SQL> select s.roll_no from Students s;

ROLL_NO
1
2
3
4
5

SQL> select*from Students s 2 where s.name='ASM';

SQL> select*from Students s 2 where s.name='GMK';

REF &DREF

```
SQL> CREATE OR REPLACE type Dog as object
     (Breed varchar2(25),
 3
     Name varchar2(25),
     BirthDate DATE);
 5
Type created.
SQL> create table pet_dog of Dog;
Table created.
SQL> insert into pet_dog values (
 2 Dog('Den','Stella','02-Dec-16'));
1 row created.
SQL> insert into pet_dog values (
 2 Dog('Lab','Shiro','23-Oct-23'));
1 row created.
SQL> insert into pet_dog values (
 2 Dog('Pug','Coco','18-Apr-17'));
1 row created.
```

MCA SEM 1 : ADBMS LAB		DES'S NMITD	C23021		
SQL> select REF(A) from p REF(A)					
000028020917E719F0A309 0042A0	49C3A208A8C	CA4E970A92A2420 <i>A</i>	AB333248EBA81B37FC2C2E44EC		
C10000					
000028020952BDAD8042B C0042A0	000028020952BDAD8042B94B2FA48C084BB2D5C72F2A2420AB333248EBA81B37FC2C2E44E C0042A0				
C10001					
0000280209F5C554FBA60H 0042A0 C10002	F4284A481EF6	EF08D4BC12A2420 <i>A</i>	AB333248EBA81B37FC2C2E44EC		
SQL> create table Owner					
2 (OwnerName varchar2	2(15),				
3 PETKEPT REF Dog);					
Table created.					
SQL> describe Owner					
Name	Null?	Type			
OWNERNAME		VARCHAR2(15)			
PETKEPT		REF OF DOG			
90I.S					
SQL> insert into Owner					
2 select'Den',3 REF(A)					
4 from pet_dog A					
5 where Name ='Stella';					
o where rame - stema,					

1 row created.

0000220208F5C554FBA60F4284A481EF6EF08D4BC12A2420AB333248EBA81B37FC2C2E44EC

Pug

MCA SEM 1 : ADBMS LAB	DES'S NMITD		
SQL> select OwnerName, DEREF(O.PET	TKEPT)		
2 from Owner O;			
OWNERNAME			
DEREF(O.PETKEPT)(BREED, NAME, BIRTHDATE)			
Den	·		
DOG('Den', 'Stella', '02-DEC-16')			
Lab			
DOG('Lab', 'Shiro', '23-OCT-23')			
Pug			

DOG('Pug', 'Coco', '18-APR-17')

C23021

Practical No.: 4

Implementation of ETL transformation with Pentaho

Create Table

SQL> create table ADB

- 2 (
- 3 roll_no numeric(6),
- 4 fname varchar2(10),
- 5 lname varchar2(10),
- 6 fees numeric(6),
- 7 other_fees numeric(6),
- 8 marks numeric(7)
- 9);

Table created.

SQL> select*from ADB;

ROLL_NO	FNAME	LNAME	FEES	OTHER_FEES	MARKS
11	Sam	Smith	2000	500	85
12	Glenn	Hog	2000	800	75
13	Ros	Taylor	2000	400	90
14	Prithvi	Shaw	2000	650	78
15	John	Gross	2000	950	55
16	Pat	Rock	2000	500	85
17	Steve	Hope	2000	800	75
18	Tom	Lathon	2000	400	90
19	Tonny	Stark	2000	650	78
20	Kane	Williams	on 2000	950	55

Transformation 1:

Step 1: - In the data integration folder open "Spoon (Windows Batch File)".

Step 2 : - Go to File→New→Transformation.

Step 3: - Import SQL Table to Pentaho

Design tab →Input folder → Drag and drop Table input

Double Click On Input

Click on new

Connect to the Database: Fill in the details as below. Here enter User Name & Password same as your database username and password. Then click on Test.

Click $OK \rightarrow$

Again Ok

Get SQL select statement... in table input window

Import table: In t1, under tables, select the required table (In this case ADB).

Click on OK→Click on Yes

Preview in Table input window →OK

Click Close \rightarrow OK

Step 4: - Show output: Drag and Drop Table Output

Hold the mouse pointer on Table input and select and drag the output connector to the Table output.

Double Click on Table Output. In the Table Output Window, give name to the Target table, check the check boxes and click on Get fields.

If the Transformation is successful, you will see green ticks.

SQL> select*from ADB1;

ROLL_NO	FNAME	LNAME	FEES	OTHER_FEES	MARKS
11	Sam	Smith	2000	500	85
12	Glenn	Hog	2000	800	75
13	Ros	Taylor	2000	400	90
14	Prithvi	Shaw	2000	650	78
15	John	Gross	2000	950	55
16	Pat	Rock	2000	850	61
17	Steve	Норе	2000	950	75
18	Tom	Lathon	2000	250	65
19	Tonny	Stark	2000	650	84
20	Kane	Williamson	2000	380	57

TRANSFORMATION 2: Add sequence.

- **Step 1:** Repeat Steps 2 and 3 from TRANSFORMATION 1.
- **Step 2: -** Perform transformation (Add sequence). Drag and drop Add Sequence from the transform folder under the Design tab

Hold the mouse pointer on Table input and select and drag the output connector to the Add sequence.

Double click on Add sequence and fill in the details as shown below→Click on OK.

Step 3: - Perform transformation (Sort rows) Drag and drop Sort rows from the transform folder under the Design tab.

Hold the mouse pointer on Add sequence and select and drag the output connector to the Sort rows.

Step 4: Repeat Step 4 from TRANSFORMATION 1. If the Transformation is successful, you will see green ticks.

	step: Table outp	out (10 row	5)	1111	19		Ur.	
# ^	ROLL_NO	FNAME	LNAME	FEES	OTHER_FEES	MARKS	valuename	
1	20	Kane	Williamson	2000	380	57	46	
2	19	Tonny	Stark	2000	650	84	41	
3	18	Tom	Lathon	2000	250	65	36	
4	17	Steve	Норе	2000	950	75	31	
5	16	Pat	Rock	2000	850	61	26	
6	15	John	Gross	2000	950	55	21	
7	14	Prithvi	Shaw	2000	650	78	16	
8	13	Ros	Taylor	2000	400	90	11	
9	12	Glenn	Hog	2000	800	75	6	
10	11	Sam	Smith	2000	500	85	1	

SQL> select*from ADB11;

ROLL_NO	FNAME	LNAME	FEES	OTHER_FEES	MARKS	VALUENAME
11	Sam	Smith	2000	500	85	1
12	Glenn	Hog	2000	800	75	6
13	Ros	Taylor	2000	400	90	11
14	Prithvi	Shaw	2000	650	78	16
15	John	Gross	2000	950	55	21
16	Pat	Rock	2000	850	61	26
17	Steve	Hope	2000	950	75	31
18	Tom	Lathon	2000	250	65	36
19	Tonny	Stark 2	2000	650	84	41
20	Kane V	Williamson	2000	380	57	46

TRAMSFORMATION 3: - Calculator

Repeat Steps 1 to 3 from TRANSFORMATION 1.

Step 4: - Perform Transformation Drag and drop Calculator from Transform folder under Design tab.

Hold the mouse Pointer on Table input and select and drag the output connector to the Caculator.

Double Click on Calculator and fill in the details as shown below.

This will add the values in Fees column & Other Fees column as result will be stored in TotalFee column. Click on OK.

Step 5: - Repeat Step 4 from TRANSFORMATION 1. If the Transformation is successful, you will see green ticks.

^	ROLL_NO	FNAME	LNAME	FEES	OTHER_FEES	MARKS	TotalFee	
	_	Kane	Williamson	2000	380	57	2380.00	
		Tonny	Stark	2000	650	84	2650.00	
		Tom	Lathon	2000	250	65	2250.00	
	17	Steve	Норе	2000	950	75	2950.00	
	16	Pat	Rock	2000	850	61	2850.00	
	15	John	Gross	2000	950	55	2950.00	
	14	Prithvi	Shaw	2000	650	78	2650.00	
	13	Ros	Taylor	2000	400	90	2400.00	
	12	Glenn	Hog	2000	800	75	2800.00	
0	11	Sam	Smith	2000	500	85	2500.00	

SQL> select*from ADB2;

ROLL_NO	FNAME	LNAME	FEES	OTHER_FEES	MARKS	TOTALFEE
11	Sam	Smith	2000	500	85	2500
12	Glenn	Hog	2000	800	75	2800
13	Ros	Taylor	2000	400	90	2400
14	Prithvi	Shaw	2000	650	78	2650
15	John	Gross	2000	950	55	2950
16	Pat	Rock	2000	850	61	2850
17	Steve	Hope	2000	950	75	2950
18	Tom	Lathon	2000	250	65	2250
19	Tonny	Stark	2000	650	84	2650
20	Kane	Williamson	2000	380	57	2380

TRANSFORMATION 4: - Concat Fields.

- Step 1: Repeat Steps 2 and 3 from TRANSFORMATION 1.
- **Step 2: -** Perform Transformation. Drag and drop Concat Fields from Transform folder under Design tab.

Hold the mouse Pointer on Table input and select and drag the output connector to the Concat Fields.

Double Click on Concat Fields and fill in the details as shown below→Click on OK.

Step 3: - Repeat Step 4 from TRANSFORMATION 1. If the Transformation is successful, you will see green ticks.

SQL> select*from NEW;

ROLL_NO	FNAMI	E LNAME	FEES	OTHER_FEES	MARKS	S FULLNAME
11	Sam	Smith	2000	500	85	Sam _Smith
12	Glenn	Hog	2000	800	75	Glenn _Hog
13	Ros	Taylor	2000	400	90	Ros_Taylor
14	Prithvi	Shaw	2000	650	78	Prithvi_Shaw
15	John	Gross	2000	950	55	John_Gross
16	Pat	Rock	2000	850	61	Pat_Rock
17	Steve	Норе	2000	950	75	Steve_Hope
18	Tom	Lathon	2000	250	65	Tom_Lathon
19	Tonny	Stark	2000	650	84	Tonny_Stark
20	Kane	Williamson	2000	380	57	Kane_Williamson

TRANSFORMATION 5: - Split Fields.

Step 1: - Repeat Steps 2 and 3 from TRANSFORMATION 1 (Import output table of concat fields transformation as Table input).

Step 2: - Perform Transformation. Drag and drop Concat Fields from Transform folder under Design tab.

Hold the mouse Pointer on Table input and select and drag the output connector to the Split Fields.

Double Click on Split Fields and fill in the details as shown below→Click on OK

Step 3: - Repeat Step 4 from TRANSFORMATION 1. If the Transformation is successful, you will see green ticks.

SQL> select*from New1;

Gross

16

17

18

Lathon

Hope

Rock

Pat

Steve

Tom

ROLL_NO	FNAME	LNAME	FEES	OTHER_FEES	MARKS FIR	STNAME
LASTNAME						
11 Smith	Sam	Smith	2000	500	85	Sam
12 Hog	Glenn	Hog	2000	800	75	Glenn
13 Taylor	Ros	Taylor	2000	400	90	Ros
14 Shaw	Prithvi	Shaw	2000	650	78	Prithvi
15	John	Gross 2	2000	950	55	John

850

950

250

61

75

65

Pat

Steve

Tom

Rock 2000

Hope 2000

Lathon 2000

MCA SEM 1 : ADBMS LAB DES'S NMITD

C23021

ROLL_NO FNAME LNAME FEES OTHER_FEES MARKS FIRSTNAME

LASTNAME

.....

19 Tonny Stark 2000 650 84 Tonny

Stark

20 Kane Williamson 2000 380 57 Kane

Williamson

TRANSFORMATION 6: Number Range

- **Step 1: -** Repeat Steps 2 and 3 from TRANSFORMATION 1.
- **Step 2:** Perform Transformation. Drag and drop Number Range from Transform folder under Design tab.

Hold the mouse Pointer on Table input and select and drag the output connector to the Number range.

Double Click on Number range and fill in the details as shown below→Click on OK

Step 3: - Repeat Step 4 from TRANSFORMATION 1. If the Transformation is successful, you will see green ticks.

SQL> select*from ADB4;

ROLL_NO	FNAME	E LNAME	FEES	OTHER_FEES	MARKS	GRADE
11	Sam	Smith	2000	500	85	O
12	Glenn	Hog	2000	800	75	A+
13	Ros	Taylor	2000	400	90	O+
14	Prithvi	Shaw	2000	650	78	A+
15	John	Gross	2000	950	55	B+
16	Pat	Rock	2000	850	61	A
17	Steve	Hope	2000	950	75	A+
18	Tom	Lathon	2000	250	65	A
19	Tonny	Stark	2000	650	84	O
20	Kane	Williamson	2000	380	57	B+

TRANSFORMATION 7: String Operations

- **Step 1: -** Repeat Steps 2 and 3 from TRANSFORMATION 1.
- **Step 2:** Perform Transformation. Drag and drop Number Range from Transform folder under Design tab.

Hold the mouse Pointer on Table input and select and drag the output connector to the String operations.

Double Click on String operations and fill in the details as shown below→Click on OK.

Step 3: - Repeat Step 4 from TRANSFORMATION 1. If the Transformation is successful, you will see green ticks.

	ROLL_NO	FNAME	LNAME	FEES	OTHER_FEES	MARKS	first	last
	20	Kane	Williamson	2000	380	57	Kane	WILLIAMSON
	19	Tonny	Stark	2000	650	84	Tonny	STARK
3	18	Tom	Lathon	2000	250	65	Tom	LATHON
1	17	Steve	Hope	2000	950	75	Steve	HOPE
5	16	Pat	Rock	2000	850	61	Pat	ROCK
6	15	John	Gross	2000	950	55	John	GROSS
7	14	Prithvi	Shaw	2000	650	78	Prithvi	SHAW
8	13	Ros	Taylor	2000	400	90	Ros	TAYLOR
9	12	Glenn	Hog	2000	800	75	Glenn	HOG
10	11	Sam	Smith	2000	500	85	Sam	SMITH

SQL> select*from ADB5;

ROLL_NO	FNAME	LNAME	FEES	OTHER_FEES	MARKS	FIRST
LAST						
11	Sam	Smith	2000	500	85	Sam
SMITH						
12	Glenn	Hog	2000	800	75	Glenn
HOG						
13	Ros	Taylor	2000	400	90	Ros
TAYLOR						
14	Prithvi	Shaw	2000	650	78	Prithvi
SHAW						
15	John	Gross 2	2000	950	55	John
GROSS						
16	Pat	Rock 20	000	850	61	Pat
ROCK						
17	Steve	Hope 20	000	950	75	Steve
HOPE						
18	Tom	Lathon 200	00	250	65	Tom
LATHON						
19	Tonny	Stark 200	00	650	84	Tonny
STARK						
20	Kane	Williamson 20	000	380	57	Kane
WILLIAMS	SON					

TRANSFORMATION 8: Merge Join

Step 1: - Drag and drop 2 Data Grid from Input folder under Design tab.

Rename them as Employee & Department.

Step 2: - Double click on them and insert records into respective grids→ Click on OK

Step 2: - Perform Sort rows transformation for both data grids respectively. Click on OK.

Step 3: - Drag and Drop Merge join from joins folder under Design tab. Hold the mouse Pointer on both the sort rows and select and drag the output connector to the Merge join as shown below.

Step 4: - Double click on Merge join and fill in the details as shown below to perform INNER join→Click on OK.

Debug the transformation and perform Quick launch

🎇 Exar	mine previev	v data			
Rows of	step: INNER	(10 rows)			
# ^	EmpID	EMPName	DepNo	DepNo_1	DepName
1	109.0	Tonny	3.0	3.0	PURCHASE
2	106.0	Rock	3.0	3.0	PURCHASE
3	103.0	Rocky	3.0	3.0	PURCHASE
4	110.0	Yashu	2.0	2.0	MARKETING
5	107.0	Raj	2.0	2.0	MARKETING
6	104.0	Ronnie	2.0	2.0	MARKETING
7	102.0	Tom	2.0	2.0	MARKETING
8	108.0	Sid	1.0	1.0	IT
9	105.0	Roy	1.0	1.0	IT
10	101.0	John	1.0	1.0	IT

Step 5: - Double click on Merge join and fill in the details as shown below to perform LEFT OUTER join—Click on OK.

Debug the transformation and perform Quick launch

	step. LLI I C	UTER (12 rows)			
ŧ ^	EmpID	EMPName	DepNo	DepNo_1	DepName
	112.0	Makya	5.0	<null></null>	<null></null>
2	111.0	Adi	4.0	<null></null>	<null></null>
3	109.0	Tonny	3.0	3.0	PURCHASE
1	106.0	Rock	3.0	3.0	PURCHASE
5	103.0	Rocky	3.0	3.0	PURCHASE
5	110.0	Yashu	2.0	2.0	MARKETING
7	107.0	Raj	2.0	2.0	MARKETING
3	104.0	Ronnie	2.0	2.0	MARKETING
)	102.0	Tom	2.0	2.0	MARKETING
0	108.0	Sid	1.0	1.0	IT
1	105.0	Roy	1.0	1.0	IT
12	101.0	John	1.0	1.0	IT

Step 6: - Double click on Merge join and fill in the details as shown below to perform RIGHT OUTER join→Click on OK.

ows of	step: RIGHT	OUTER (10 row	s)		
# ^	EmpID	EMPName	DepNo	DepNo_1	DepName
1	109.0	Tonny	3.0	3.0	PURCHASE
2	106.0	Rock	3.0	3.0	PURCHASE
3	103.0	Rocky	3.0	3.0	PURCHASE
4	110.0	Yashu	2.0	2.0	MARKETING
5	107.0	Raj	2.0	2.0	MARKETING
6	104.0	Ronnie	2.0	2.0	MARKETING
7	102.0	Tom	2.0	2.0	MARKETING
8	108.0	Sid	1.0	1.0	IT
9	105.0	Roy	1.0	1.0	IT
10	101.0	John	1.0	1.0	IT

Step 6: - Double click on Merge join and fill in the details as shown below to perform FULL OUTER join→Click on OK

Debug the transformation and perform Quick launch

S Examine preview data

Rows of step: FULL OUTER (12 rows)

# ^	EmpID	EMPName	DepNo	DepNo_1	DepName
1	112.0	Makya	5.0	<null></null>	<null></null>
2	111.0	Adi	4.0	<null></null>	<null></null>
3	109.0	Tonny	3.0	3.0	PURCHASE
4	106.0	Rock	3.0	3.0	PURCHASE
5	103.0	Rocky	3.0	3.0	PURCHASE
6	110.0	Yashu	2.0	2.0	MARKETING
7	107.0	Raj	2.0	2.0	MARKETING
8	104.0	Ronnie	2.0	2.0	MARKETING
9	102.0	Tom	2.0	2.0	MARKETING
10	108.0	Sid	1.0	1.0	IT
11	105.0	Roy	1.0	1.0	IT
12	101.0	John	1.0	1.0	II

TRANSFORMATION 9: Data validations

Step 1: - Drag and drop Data Grid from Input folder under Design tab.

Rename it as Product.

Step 2: - Double click on Product data grid and insert records as shown below→ Click on OK.

Step 3: - Drag and drop Data validator from Validation folder under Design tab.

Hold the mouse pointer on Product data grid and select and drag the output connector to the Data validator

Double clickc on Data validator→New Validattion

Give Valiadtion Name and click OK.

Select the validation to edit and fill in the details as shown below.

Click on add to set validation, set it as Shifted & press Enter and click on ok

Hold the mouse pointer on Data validator and select and drag the output connector to the Dummy. Select Main output of step.

Step 5: - Drag and drop another Dummy from Flow folder under the Design tab and connect it to the data validator. Select Error handling of step. In the next window click in Copy.

Step 6: - Quick Launch the transformation selecting one dummy file each.

Practical No.: 5

Introduction To R Programming

```
> x = 1
> print(x)
[1] 1
> class(x)
[1] "numeric"
> y="c"
> print(y)
[1] "c"
> is.character(y)
[1] TRUE
```

Vector Operations

```
> x = c(11.8,24.7,37.9)
> y = c(8,7,3)
> x*y
[1] 94.4 172.9 113.7
> x-y
[1] 3.8 17.7 34.9
> x+y
[1] 19.8 31.7 40.9
># using matrix() function
> m = matrix(c(11,12,13,55,60,65,66,72,78),nrow=3,ncol=3)
> m
  [,1] [,2] [,3]
[1,] 11 55 66
[2,] 12 60 72
[3,] 13 65 78
> dim(m)
```

```
[1] 3 3

> m = matrix(c(11,12,13,55,60,65,66,72,78),nrow=3,ncol=3,byrow = TRUE)

> m

[,1] [,2] [,3]

[1,] 11 12 13

[2,] 55 60 65

[3,] 66 72 78
```

cbind column bind and rbind row bind

```
>x=c(3,2,9)

> y=c(12,13,14)

> cbind(x,y)

    x y

[1,] 3 12

[2,] 2 13

[3,] 9 14

>rbind(x,y)

    [,1] [,2] [,3]

    x 3 2 9

    y 12 13 14
```

Matrix Multiplication

```
> p = 3*m

> p

[,1] [,2] [,3]

[1,] 33 36 39

[2,] 165 180 195

[3,] 198 216 234

> n = matrix(c(4,5,6,13,14,15,24,25,26),nrow = 3,ncol = 3)

> q = m+n

> q
```

```
[,1] [,2] [,3]
```

- [1,] 15 25 37
- [2,] 60 74 90
- [3,] 72 87 104
- > mdash=t(m)
- > mdash

- [1,] 11 55 66
- [2,] 12 60 72
- [3,] 13 65 78

Determinant

```
> s_det = det(s)
```

>s = matrix(c(2,3,4,14,15,16,21,22,23),nrow=3,ncol=3,byrow = TRUE)

- $> s_det$
- [1] 2.109424e-15
- $> r \det = \det(m)$
- $> r \det$
- [1]0

DataFrame

- >student_id = c(1,2,3)
- > student_names = c("Krutarth","Chandresh","Aditya")
- > position = c("First", "Second", "Third")
- > data = data.frame(student id,student names,position)
- > data

student_id student_names position

- 1 1 Krutarth First
- 2 2 Chandresh Second
- 3 3 Aditya Third

```
> data$student_id [1]
[1] 1
> names(data)
[1] "student_id" "student_names" "position"
```

Table Command

```
> smoke = matrix(c(51,43,22,92,28,21,68,22,9),ncol=3,byrow=TRUE)
```

```
> colnames(smoke) = c("High","Low","Middle")
```

- > rownames(smoke) = c("current", "former", "never")
- > smoke = as.table(smoke)
- > smoke

2 107

Aditya

	High	Low	Middle
current	51	43	22
former	92	28	21
never	68	22	9

Operation in csv file

```
>cs = read.table("ccV1.csv",sep = ",", header = T)
```

>cs Emp_no Emp_name Salary 1 101 Krutarth 12000 2 102 Aditya 12400 Chandresh 3 103 10000 > # dimension dim(cs) [1] 3 3 head(cs,2)Emp name Salary Emp no 1 101 Krutarth 12000

9400

Load first two lines at the bottom

> tail(cs,2)

	Emp_no	Emp_name	Salary
2	107	Aditya	9400
4	108	Krutarth	5850

Operation in xlsx file

- > csvv = XLConnect::readWorksheetFromFile("demo.xlsx",sheet=1)
- > csvv

RollNo	Name	Marks
21	Krutarth	88
22	Aditya	79
23	Chandresh	84

Practical No.: 06

Implementation of Data PreProcessing Techniques:

- Naming & Renaming Varaiables , Adding a new variables
- Dealing with missing value

> print(data)

- Dealing with categorical data
- Data reduction using subsetting

```
> library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
  filter, lag
The following objects are masked from 'package:base':
  intersect, setdiff, setequal, union
> data <- data.frame(
+ ID = 1:5,
+ Name = c("Krutarth", "Aditya", "Chandresh", "Noel", "Atharv"),
+ Age = c(21, 23, 20, NA, 28),
+ Score = c(85, 92, 78, 65, 89))
> print(data)
 ID
       Name
                 Age
                         Score
1 1
       Krutarth
                  21
                           85
2 2
       Aditya
                  23
                           92
3 3
      Chandresh 20
                          78
4 4
      Noel
                  NA
                          65
5 5
      Athary
                   28
                           89
> data <- data %>%
+ rename(UserID = ID, FullName = Name)
```

> print(data)

```
UserID FullName Age Score
1
    1
          Krutarth
                      21
                           85
    2
                           92
2
         Aditya
                      23
3
    3
         Chandresh
                      20
                          78
4
    4
         Noel
                      NA 65
                      28
                            89
5
    5
         Atharv
> data$Grade <- ifelse(data$Score >= 90, "A", ifelse(data$Score >= 80, "B", "C"))
> print(data)
 UserID FullName Age Score Grade
1
    1
          Krutarth
                     21
                            85
                                   В
2
    2
          Aditya
                     23
                            92
                                   A
3
    3
                            78
        Chandresh
                     20
                                    \mathbf{C}
4
    4
         Noel
                                    \mathbf{C}
                     NA
                            65
5
    5
        Atharv
                      28
                            89
                                    В
> data <- na.omit(data)</pre>
> print(data)
 UserID FullName Age Score Grade
    1
1
          Krutarth
                      21
                                   В
                            85
2
    2
          Aditya
                      23
                           92
                                   A
3
    3
        Chandresh
                      20
                            78
                                    \mathbf{C}
5
    5
         Atharv
                      28
                            89
                                   В
> data$Gender <- factor(c("Male", "Male", "Male", "Male"))</pre>
> print(data)
 UserID FullName Age Score Grade Gender
1
    1
         Krutarth
                      21
                           85
                                   В
                                          Male
2
    2
         Aditya
                      23
                                          Male
                           92
                                    A
3
    3
        Chandresh
                     20
                           78
                                    \mathbf{C}
                                          Male
5
    5
         Atharv
                      28
                            89
                                    В
                                          Male
> subset data <- subset(data, Age > 20)
```

MCA SEM 1 : ADBMS LAB	DES'S NMITD	C23021
IVICA SEIVI I : ADBIVIS LAB	DES SINIVILID	C23U21

U	serID	FullName	Age	Score	Grade	Gender
1	1	Krutarth	21	85	В	Male
2	2	Aditya	23	92	A	Male
3	3	Chandresh	20	78	C	Male
5	5	Atharv	28	89	В	Male

> print(subset_data)

U	serID	FullName	Age	Score	Grade	Gender
1	1	Krutarth	21	85	В	Male
2	2	Aditya	23	92	A	Male
5	5	Atharv	28	89	В	Male

Practical .: 7

Implementation & Analysis of Linear Regression through graphical methods.

```
> data(mtcars)
> model <- lm(mpg \sim wt, data = mtcars)
> summary(model)
Call:
lm(formula = mpg \sim wt, data = mtcars)
Residuals:
  Min
          1Q Median
                         30
                               Max
-4.5432 -2.3647 -0.1252 1.4096 6.8727
Coefficients:
       Estimate Std. Error t value Pr(>|t|)
                      1.8776 19.858 < 2e-16 ***
(Intercept) 37.2851
                   0.5591 -9.559 1.29e-10 ***
         -5.3445
wt
Signif. codes: 0 "0.001" 0.01" 0.05" 10.05" 1
Residual standard error: 3.046 on 30 degrees of freedom
Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
> plot(mtcars$wt, mtcars$mpg, main = "Scatterplot of Weight vs. MPG with Regression
Line",
    xlab = "Weight", ylab = "Miles Per Gallon", pch = 16, col = "blue")
> abline(model, col = "red", lwd = 2)
> par(mfrow = c(2, 2))
> plot(model, pch = 16, col = "blue")
> par(mfrow = c(1, 1))
```


Practical No.: 8

Implementation & Analysis Classification algorithms like Naïve Bayesian, K-Nearest Neighbour, ID3, C4.5.

Decision Tree:

```
> library(class)
> library(e1071)
> library(rpart)
> library(C50)
> library(ggplot2)
> library(ROCR)
> data(iris)
> set.seed(123)
> train indices <- sample(1:nrow(iris), 0.7 * nrow(iris))
> train data <- iris[train indices, ]
> test data <- iris[-train indices, ]</pre>
> dt model <- rpart(Species ~ ., data = train data, method = "class")
> dt pred <- predict(dt model, test data, type = "class")
> dt accuracy <- sum(dt pred == test data$Species) / nrow(test data)
> cat("Decision Tree Accuracy:", dt accuracy, "\n")
Decision Tree Accuracy: 0.9777778
> print(summary)
function (object, ...)
UseMethod("summary")
<bytecode: 0x000000016fb2d20>
<environment: namespace:base>
> rpart.plot(dt model, type = 2, extra = 101)
```


Decision Tree Plot

Nayive Bayesian:

- > library(class)
- > library(e1071)
- > library(rpart)
- > library(rpart.plot)
- > library(C50)
- > library(ggplot2)
- > library(ROCR)
- > data(iris)
- > set.seed(123)
- > nb_model <- naiveBayes(Species ~ ., data = train_data)
- > train indices <- sample(1:nrow(iris), 0.7 * nrow(iris))
- > train data <- iris[train indices,]
- > test_data <- iris[-train_indices,]</pre>
- > nb_model <- naiveBayes(Species ~ ., data = train_data)
- > nb pred <- predict(nb model, test data[, -5])
- > nb accuracy <- sum(nb pred == test data\$Species) / nrow(test data)
- > cat("Naive Bayes Accuracy:", nb_accuracy, "\n")

Naive Bayes Accuracy: 1

```
> summary(nb_model)
```

Length Class Mode

```
apriori 3 table numeric
```

tables 4 -none-list

levels 3 -none- character

isnumeric 4 -none- logical

call 4 -none- call

```
> nb_table <- table(Actual = test_data$Species, Predicted = nb_pred)
```

```
> ggplot(as.data.frame.table(nb_table), aes(x = Actual, y = Predicted, fill = Freq)) +
```

```
+ geom tile()+
```

+ labs(title = "Naive Bayes Confusion Matrix",

```
+ x = "Actual",
```

+ y = "Predicted")

K-Nearest:

```
install.packages("cluster")
install.packages("factoextra")
install.packages("gridextra")
library(cluster)
> library(factoextra)
> data<-animals
> data<-na.omit(data)
> head(data,n=10)
     war fly ver end gro hai
                1
                        2
                             1
ant
       1
            1
                   1
            2
               1
                        2
                             2
bee
       1
                    1
               2
cat
       2
            1
                    1
                        1
                             2
cpl
       1
            1
                1
                     1
                       1
                             2
chi
       2
            1
                2
                     2 2
                             2
       2
            1
                2
                     1 2
                             2
cow
       2
            2
                2
                     1 2
                             1
duc
                     2 1
       2
            2
                 2
                             1
eag
       2
                        2
ele
            1
                2
                     2
                              1
            2
       1
                1
                        1
                              1
fly
                     1
> kn<-kmeans(data,centers=2,nstart=25)
> kn2<-kmeans(data,centers=3,nstart=25)
> kn3<-kmeans(data,centers=4,nstart=25)
> kn4<-kmeans(data,centers=5,nstart=25)
> plot1<-fviz cluster(kn,geom="point",data=data)+ggtitle("2 clusters")
> plot2<-fviz cluster(kn2,geom="point",data=data)+ggtitle("3 clusters")
> plot3<-fviz cluster(kn3,geom="point",data=data)+ggtitle("4 clusters")
> plot4<-fviz cluster(kn4,geom="point",data=data)+ggtitle("5 clusters")
> library(gridExtra)
> grid.arrange(plot1,plot2,plot3,plot4,nrow=2)
```


K-Nearest Plot

ID 3:

- > id3 model <- rpart(Species ~ ., data = train data, method = "class")
- > id3_pred <- predict(id3_model, test_data, type = "class")</pre>
- > id3_accuracy <- sum(id3_pred == test_data\$Species) / nrow(test_data)
- > cat("ID3 Accuracy:", id3_accuracy, "\n")

ID3 Accuracy: 0.9777778

> rpart.plot(id3_model, type = 2, extra = 101)

C4.5:

- > id3_model <- rpart(Species ~ ., data = train_data, method = "class")
- > id3 pred <- predict(id3 model, test data, type = "class")</pre>
- > id3 accuracy <- sum(id3 pred == test data\$Species) / nrow(test data)
- > cat("ID3 Accuracy:", id3 accuracy, "\n")

ID3 Accuracy: 0.9777778

- > rpart.plot(id3 model, type = 2, extra = 101)
- > c45 model <- C5.0(train data[, -5], train data\$Species)
- > c45 pred <- predict(c45 model, newdata = test data[, -5])
- > c45_accuracy <- sum(c45_pred == test_data\$Species) / nrow(test_data)
- > cat("C4.5 Accuracy:", c45 accuracy, "\n")

C4.5 Accuracy: 0.9777778

> plot(c45 model)

C 4.5 Plot

Practical .: 9

Implementation & Analysis of Apriori Algorithm using Market Basket Analysis

```
> library(arules)
```

Loading required package: Matrix

Attaching package: 'arules'

The following objects are masked from 'package:base':

abbreviate, write

- > library(arulesViz)
- > data("Groceries")
- > summary(Groceries)

transactions as itemMatrix in sparse format with

9835 rows (elements/itemsets/transactions) and

169 columns (items) and a density of 0.02609146

most frequent items:

whole milk other vegetables rolls/buns soda
2513 1903 1809 1715

yogurt (Other)
1372 34055

element (itemset/transaction) length distribution:

sizes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2159 1643 1299 1005 855 645 545 438 350 246 182 117 78 77 55 46
17 18 19 20 21 22 23 24 26 27 28 29 32
29 14 14 9 11 4 6 1 1 1 1 3 1
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.000 3.000 4.409 6.000 32.000

includes extended item information - examples:

```
labels level2
                       level1
1 frankfurter sausage meat and sausage
    sausage sausage meat and sausage
3 liver loaf sausage meat and sausage
> rules <- apriori(Groceries, parameter = list(support = 0.001, confidence = 0.5))
Apriori
Parameter specification:
confidence minval smax arem aval originalSupport maxtime support minlen
    0.5 0.1 1 none FALSE
                                     TRUE
                                                5 0.001
                                                            1
maxlen target ext
   10 rules TRUE
Algorithmic control:
filter tree heap memopt load sort verbose
  0.1 TRUE TRUE FALSE TRUE 2 TRUE
Absolute minimum support count: 9
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
sorting and recoding items ... [157 item(s)] done [0.00s].
creating transaction tree ... done [0.02s].
checking subsets of size 1 2 3 4 5 6 done [0.01s].
writing ... [5668 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
> plot(rules, method = "graph", control = list(type = "items"))
Warning: Unknown control parameters: type
Available control parameters (with default values):
layout = stress
circular
            = FALSE
ggraphdots
              = NULL
edges = <environment>
```

nodes = <environment>

nodetext = <environment>

colors = c("#EE0000FF", "#EEEEEEFF")

engine = ggplot2

max = 100

verbose = FALSE

Warning message:

Too many rules supplied. Only plotting the best 100 using 'lift' (change control parameter max if needed).

Error in UseMethod("depth"):

no applicable method for 'depth' applied to an object of class "NULL"

Error in diff.default(xscale):

VECTOR ELT() can only be applied to a 'list', not a 'raw'

Practical .:10

Implementation & analysis of clustering algorithms like K-means & Agglomarative, Divisive.

> head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

```
1
       5.1
               3.5
                        1.4
                                 0.2 setosa
2
       4.9
               3.0
                        1.4
                                 0.2 setosa
3
       4.7
               3.2
                        1.3
                                 0.2 setosa
4
       4.6
               3.1
                        1.5
                                 0.2 setosa
5
       5.0
               3.6
                        1.4
                                 0.2 setosa
6
       5.4
               3.9
                        1.7
                                 0.4 setosa
```

> ggplot(iris, aes(Petal.Length, Petal.Width, color = Species)) + geom_point()

Error in ggplot(iris, aes(Petal.Length, Petal.Width, color = Species)):

could not find function "ggplot"

- > library(ggplot2)
- > ggplot(iris, aes(Petal.Length, Petal.Width, color = Species)) + geom_point()
- > set.seed(20)
- > irisCluster <- kmeans(iris[, 3:4], 3, nstart = 20)
- > irisCluster

K-means clustering with 3 clusters of sizes 52, 48, 50

Cluster means:

Petal.Length Petal.Width

- 1 4.269231 1.342308
- 2 5.595833 2.037500
- 3 1.462000 0.246000

Clustering vector:

Within cluster sum of squares by cluster:

 $[1]\ 13.05769\ 16.29167\ \ 2.02200$

(between SS / total SS = 94.3 %)

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"
- > irisCluster\$cluster <- as.factor(irisCluster\$cluster)
- > ggplot(iris, aes(Petal.Length, Petal.Width, color = irisCluster\$cluster)) + geom_point()

Agglomerative:

- > clusters <- hclust(dist(iris[,3:4]), method = 'average')
- > plot(clusters)
- > clusterCut <- cutree(clusters, 3)</pre>
- > table(clusterCut, iris\$Species)

clusterCut setosa versicolor virginica

1	50	0	0
2	0	45	1
3	0	5	49

Divisive:

- > eatures <- iris[, c("Sepal.Length", "Sepal.Width")]
- > hclust result <- hclust(dist(features), method = "complete")</pre>
- > num clusters <- 3
- > clusters <- cutree(hclust_result, k = num_clusters)</pre>
- > iris\$cluster <- as.factor(clusters)
- > ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, color = cluster))+geom_point(size = 3)+ ggtitle("Divisive Clustering of Iris Dataset")+labs(color = "Cluster")+ theme_minimal()

