Fall'19 CSCE 629

Analysis of Algorithms

Fang Song
Texas A&M U

Lecture 18

- An excursion to data structures
- Amortized analysis

Credit: based on slides by K. Wayne

Recall: priority queue for Dijkstra's algorithm

PriorityQueue Q: set of n elements w. associated key values (alarm)

- Change-key(x). change key value of an element
- Delete-min. Return the element with smallest key, and remove it.
- Can be done in $O(\log n)$ time (by a heap)

```
Dijkstra(G,s) // initialize d(s) = 0, others d(u) = \infty
Make Q from V using d(\cdot) as key value

While Q not empty
u \leftarrow \text{Delete-min}(Q)
O(nlogn)
// pick node with shortest distance to s
For all edges (u,v) \in E
If d(v) > d(u) + l(u,v)
d(v) \leftarrow d(u) + l(u,v) and Change-key(v)
```

Dijkstra

 $O((m+n)\log n)$

Further improvement possible by Fibonacci heap [More to come]

N.B. BFS uses ordinary Queue. Dijkstra = BFS+Priority Queue

Recall: disjoint-set for Kruskal's algorithm

- Disjoint-set (aka Union-Find) data structure
 - Make-Set(x): create a singleton set containing x
 - Find—Set(x): return the "name" of the unique set containing x
 - Union(x, y): merge the sets containing x and y respectively

	Linked list	Balanced tree
Find (worst-case)	$\Theta(1)$	$\Theta(\log n)$
Union (worst-case)	$\Theta(n)$	$\Theta(\log n)$
Amortized analysis: k unions and k finds, starting from singleton	$\Theta(k \log k)$	$\Theta(k \log k)$

Today

A taste of data structures & amortized analysis

Implementing Priority Queue

PriorityQueue: set of n elements w. associated key values

- Change-key. change key value of an element
- Delete-min. Return the element with smallest key, and remove it.
- Insert/Delete
- Goal: $O(\log n)$ time worst-case

(Sorted) Array?

- \odot Change-key: O(1)
- \otimes Insert: $\Omega(n)$

(Sorted) Linked list?

- \odot Delete-min: O(1)
- \otimes Insert: $\Omega(n)$

Binary heaps

- Binary complete tree. Perfectly balanced, except for bottom level
- Heap-ordered tree. For every node, $key(child) \ge key(parent)$
- Binary heap. Heap-ordered complete binary tree

https://photos.com/featured/doum-palm-hyphaene-coriacea-and-james-warwick.html?product=poster

Representing a binary heap

- Array representation. H[1,2,...,n]
 - Parent of node at k is at $\lfloor k/2 \rfloor$

• Children of node at k is at 2k and 2k + 1

Binary heap: Insert

 Insert. Add new node at end; repeatedly exchange new node with its parent until heap order is restored.

Binary heap: Delete-min

Extract Min at root; upgrade last node to root and "heapify" it!

Implementing priority queue

Operation	Linked list	Binary heap	Fibonacci Heap*
Insert	O(n)	$O(\log n)$	0(1)
Delete- min	0(1)	$O(\log n)$	$O(\log n)$
Change- key	O(n)	$O(\log n)$	0(1)

Disjoint-set data structure

- Goal. Three operations on a collection of disjoint sets.
 - Make-Set(x): create a singleton set containing x
 - Find Set(x): return "name" of the unique set containing x
 - Union(x, y): merge the sets containing x and y respectively

Performance parameters

- k=number of calls to the three op's
- *n*=number of elements

Simple implementation by an array

- Array Component[x]: name of the set containing x
 - FIND(x): O(1)
 - UNION(x, y): $\Theta(n)$ update all nodes in sets containing x and y

Some improvement

- Maintain the list of elements in each set.
- Choose the name for the union to be the name of the larger set [so changes are fewer]
- \odot UNION(x, y): still $\Theta(n)$ in the worst-case

But this rarely happens... can we refine the analysis?

Amortized analysis

- Amortized analysis. Determine worst-case running time of a sequence of k data structure operations.
 - Standard (worst-case) analysis can be too pessimistic if the only way to encounter an expensive operation is when there were lots of previous cheap operations

Theorem. A sequence of k Union costs $O(k \log k)$. [contrast w. $O(k^2)$]

- Pf. [Aggregate method]
 - Start from singletons. After k unions, at most 2k nodes involved.
 - Any Component[x] changes only when merged with a larger set;
 - i.e., change of name implies doubling of the set size; \rightarrow # changes at most $\log_2(2k)$
 - \rightarrow $O(k \log k)$ for a sequence of k Unions [i.e., each has amortized cost $O(\log k)$].

Parent-link representation

Represent each set as a tree

- Each element has an explicit parent pointer in the tree
- The root (points to itself) serves as the "name"
- FIND(x): find the root of the tree containing x
- UNION(x, y): merge trees containing x and y.

Naïve linking

Naïve linking: link root of first tree to root of second tree

- Observation. A Union can take $\Theta(n)$ in the worst case
 - Find root of this tree: determined by the height of the tree

Link-by-size

Link-by-size: maintain a tree size (# of nodes in the set) for each root node; link smaller tree to larger

- Observation. Union takes $O(\log n)$ in the worst case. _ -
- Pf. [NB. time

 height]
 - (By Induction) For every root node r: $size[r] \ge 2^{height(r)}$
 - \rightarrow (worst-case) height $\leq \log n$

Disjoint-set summary

	Array / Naïve linking	Link-by-Size (Balanced tree)	Link-by-Size w. path-compressing
Find (worst-case)	$\Theta(1)$	$\Theta(\log n)$	$\Theta(\log n)$
Union (worst-case)	$\Theta(n)$	$\Theta(\log n)$	$\Theta(\log n)$
Amortized cost: k unions and k finds, starting from singleton	$\Theta(k \log k)$	$\Theta(k \log k)$	$\Theta(k\alpha(k))$

 $\alpha(n)$: inverse Ackermann function; ≤ 4 for any practical cases