Módulo Sensor de Leitor de Impressões Digitais AS608

Proteja seu projeto com biometria – este sensor óptico de impressão digital tudo-em-um tornará a adição de detecção e verificação de impressão digital super simples. É fácil de usar e mais acessível do que nunca!

Esses módulos são normalmente usados em cofres – há um chip DSP de alta potência que faz a renderização da imagem, cálculo, localização de recursos e pesquisa. Conecte-se a qualquer microcontrolador ou sistema com serial TTL e envie pacotes de dados para tirar fotos, detectar impressões, hash e pesquisar.

Ele vem com um conector de passo de 1 mm de 8 pinos com soquetes de cabeçalho de 0,1" para plug-andplay. Você também pode facilmente cortar e soldar diretamente nos fios. O cabo é codificado por cores, por isso é fácil de conectar:

- Vermelho é alimentação de 3,3V
- Preto é TTL Serial TX
- Amarelo é TTL Serial RX
- Verde é GND

O algoritmo de impressão digital extrai recursos da imagem de impressão digital adquirida e representa as informações de impressão digital. O armazenamento, comparação e pesquisa de impressões digitais são todos feitos pela operação dos recursos de impressão digital.

O processamento de impressão digital inclui dois processos: processo de registro de impressão digital e processo de correspondência de impressão digital (no qual a correspondência de impressão digital é dividida em comparação de impressão digital (1:1) e pesquisa de impressão digital (1:N) de duas maneiras).

Quando a impressão digital é registrada, duas impressões digitais são inseridas para cada impressão digital e a imagem de entrada é processada duas vezes. O módulo de síntese é armazenado no módulo.

Quando a impressão digital é correspondida, o sensor de impressão digital é usado para inserir a imagem da impressão digital a ser verificada e processada e, em seguida, é comparada com o módulo de impressão digital no módulo (se corresponder a um módulo especificado no módulo, é chamado modo de comparação de impressão digital, ou seja, modo 1: 1. Se a correspondência com vários módulos for chamada de pesquisa de impressão digital, ou seja, modo 1:N, o módulo fornecerá o resultado correspondente (aprovado ou reprovado).

Tensão de alimentação: DC 3.3V-6v

Corrente de alimentação: Corrente: <120mA

Corrente de pico: <140mA

• Tempo da imagem da impressão digital: <1,0 segundos

Tamanho da janela: 14 x 18 mm
Arquivo de assinatura: 256 bytes

- Arquivos de modelo: 512 bytes
- Capacidade de armazenamento: 1.000
- Nível de segurança : cinco (de baixo para alto: 1,2,3,4,5)
- Taxa de falsa aceitação (FAR): <0.001% (nível de segurança 3)
- Taxa de falsa rejeição (FRR): <1,0% (nível de segurança 3)
- Tempo de pesquisa : <1,0 segundos (1:500, a média)
- Interface do PC: UART (nível lógico TTL) ou USB2.0 / USB1.1
- Taxa de transmissão de comunicação (UART): (9600 x N) bps onde N = 1 ~ 12 (padrão valor N = 6, ou seja, 57600bps)
- Temperatura: -20 ° +50 °
- Umidade Relativa: 40% RH-85% RH (sem condensação)
- Dimensões (L x W x H): 56 x 20 x 21,5 mm

Como começar com o módulo sensor de leitor de impressão digital AS608

O módulo leitor de impressão digital tornou o reconhecimento de impressão digital mais acessível e fácil de adicionar ao seu projeto. Esses módulos vêm com memória FLASH para armazenar as impressões digitais e trabalhar com qualquer microcontrolador. Esses módulos podem ser adicionados a sistemas de segurança, fechaduras, sistemas de controle de ponto e muito mais.

Hardware necessário

- Arduino UNO
- Módulo Sensor de Leitor de Impressões Digitais AS608

Conexão de hardware:

Módulo do sensor do leitor de impressão digital AS608 PinOut

- Vermelho é alimentação de 3,3V
- Preto é TTL Serial TX
- Amarelo é TTL Serial RX
- Verde é Terra

Módulo através de uma interface de comunicação serial, diretamente com comunicação de microcontrolador de alimentação de 3,3 V: Pés de transmissão de dados do módulo (2 pés TD) conectados à extremidade receptora da máquina de bits de dados (RXD), pés do módulo receptor de dados (3 pés RD) conectados ao remetente de dados máquina de bits (TXD).

Sensor de impressão digital	Arduino
VCC	5V (também funciona com 3.3V)
TX	software serial D2
RX	software serial D3
GND	GND

Instalando a Biblioteca de Sensores de Impressões Digitais Adafruit

A maneira mais fácil de controlar o módulo do sensor de impressão digital com o Arduino é usando a biblioteca Adafruit para este sensor. Siga as próximas instruções para instalar a biblioteca:

- 1. Clique aqui para baixar a <u>biblioteca do sensor de impressão digital Adafruit</u> . Você deve ter uma pasta .zip na pasta Downloads
- 2. Descompacte a pasta .zip e você deve obter a pasta Adafruit-Fingerprint-Sensor-Library-master
- 3. Renomeie sua pasta de Adafruit Fingerprint Sensor Library master pasta para a pasta Adafruit_Fingerprint_Sensor_Library
- 4. Mova a pasta para a pasta de bibliotecas de instalação do Arduino IDE
- 5. Finalmente, reabra seu Arduino IDE

Registrar uma nova impressão digital

Tendo o módulo do sensor de impressão digital conectado ao Arduino, siga as próximas etapas para registrar uma nova impressão digital. Certifique-se de ter instalado a biblioteca do sensor de impressão digital Adafruit anteriormente.

1. No Arduino IDE, vá para Arquivo > Exemplos > Biblioteca de Sensores de Impressões Digitais Adafruit > Inscrever.

- 2. Carregue o código e abra o monitor serial a uma taxa de transmissão de 9600.
- **3.** Você deve inserir um ID para a impressão digital. Como esta é sua primeira impressão digital tipo 1, clique no botão **Enviar** .

4. Coloque o dedo no scanner e siga as instruções no monitor serial.

Você será solicitado a colocar o mesmo dedo duas vezes no scanner. Se você obtiver a mensagem " **Prints matched!** ", conforme mostrado abaixo, sua impressão digital foi armazenada com sucesso. Se não, repita o processo, até conseguir.

Armazene quantas impressões digitais desejar usando este método.

Encontrando uma correspondência

Agora você deve ter várias impressões digitais salvas em diferentes IDs. Para encontrar uma correspondência com o sensor de impressão digital, siga as próximas instruções.

1. Na IDE do Arduino, vá para Arquivo > Exemplos > Biblioteca de Sensores de Impressões Digitais Adafruit > Impressão Digital e carregue o código em sua placa Arduino.

- 2. Abra o Serial Monitor a uma taxa de transmissão de 9600. Você deverá ver a seguinte mensagem:
- 3. Coloque o dedo a ser identificado no escaneamento.
- **4.** No monitor serial, você pode ver o ID que corresponde à impressão digital. Também mostra a confiança quanto maior a confiança, mais semelhante é a impressão digital com a impressão digital armazenada.

