Introduction to Overdetermined Linear Systems

Contents

1 Opening Example: Polynomial Approximation

2 The Normal Equations

3 Appendix: Derivation of Normal Equation

Opening Example: Polynomial Approximation

Introduction

Problem: Fitting Functions to Data

Given data points $\{(x_i,y_i) \mid i \in \mathbb{N}[1,m]\}$, pick a form for the "fitting" function f(x) and minimize its total error in representing the data.

- With real-world data, interpolation is often not the best method.
- Instead of finding functions lying exactly on given data points, we look for ones which are "close" to them.
- In the most general terms, the fitting function takes the form

$$f(x) = c_1 f_1(x) + \dots + c_n f_n(x),$$

where f_1, \ldots, f_n are known functions while c_1, \ldots, c_n are to be determined.

Linear Least Squares Approximation

In this discussion:

- use a polynomial fitting function $p(x) = c_1 + c_2 x + \cdots + c_n x^{n-1}$ with n < m;
- minimize the 2-norm of the error $r_i = y_i p(x_i)$:

$$\|\mathbf{r}\|_{2} = \sqrt{\sum_{i=1}^{m} r_{i}^{2}} = \sqrt{\sum_{i=1}^{m} (y_{i} - p(x_{i}))^{2}}.$$

Since the fitting function is linear in unknown coefficients and the 2-norm is minimized, this method of approximation is called the **linear least squares** (LLS) approximation.

Example: Temperature Anomaly

Below are 5-year averages of the worldwide temperature anomaly as compared to the 1951-1980 average (source: NASA).

Year	Anomaly (${}^{\circ}C$)
1955	-0.0480
1960	-0.0180
1965	-0.0360
1970	-0.0120
1975	-0.0040
1980	0.1180
1985	0.2100
1990	0.3320
1995	0.3340
2000	0.4560

Example: Temperature Anomaly (cont')

Import and Plot Data

```
t = (1955:5:2000)';

y = [-0.0480; -0.0180;

-0.0360; -0.0120;

-0.0040; 0.1180;

0.2100; 0.3320;

0.3340; 0.4560];

plot(t, y, '.')
```


Example: Temperature Anomaly (cont')

Interpolation

Fitting by a Straight Line

Suppose that we are fitting data to a linear polynomial: $p(x) = c_1 + c_2 x$.

If it were to pass through all data points:

$$\begin{cases} y_1 = p(x_1) = c_1 + c_2 x_1 \\ y_2 = p(x_2) = c_1 + c_2 x_2 \\ \vdots & \vdots & \vdots \\ y_m = p(x_m) = c_1 + c_2 x_m \end{cases} \xrightarrow{\text{matrix equation}} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_m \end{bmatrix} \underbrace{\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}}_{\mathbf{c}}$$

- The above is unsolvable; instead, find c which makes the *residual* r = y Vc "as small as possible" in the sense of vector 2-norm.
- Notation: \mathbf{y} "=" $V\mathbf{c}$

Fitting by a Striaght Line: MATLAB Implementation

Revisiting the temperature anomaly example again:

Fitting by a General Polynomial

In general, when fitting data to a polynomial

$$p(x) = c_1 + c_2 x + c_3 x^2 + \dots + c_n x^{n-1},$$

we need to solve

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$
"="
$$\begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & x_m^2 & \cdots & x_m^{n-1} \end{bmatrix}
\underbrace{\begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}}_{\mathbf{c}}$$

• The solution ${\bf c}$ of ${\bf y}$ "=" $V{\bf c}$ turns out to be the solution of the normal equation

$$V^{\mathrm{T}}V\mathbf{c} = V^{\mathrm{T}}\mathbf{y}.$$

Fitting by a General Polynomial: MATLAB Implementation

Revisiting the temperature anomaly example again:

Backslash Again

The Versatile Backslash

In MATLAB, the generic linear equation Ax = b is solved by $x = A \setminus b$.

- When A is a square matrix, Gaussian elimination is used.
- When A is NOT a square matrix, the normal equation $A^{\mathrm{T}}A\mathbf{x}=A^{\mathrm{T}}\mathbf{b}$ is solved instead.
- As long as $A \in \mathbb{R}^{m \times n}$ where $m \ge n$ has rank n, the square matrix $A^{\mathrm{T}}A$ is nonsingular. (unique solution)
- Though $A^{\rm T}A$ is a square matrix, MATLAB does not use Gaussian elimination to solve the normal equation.
- Rather, a faster and more accurate algorithm is used.

The Normal Equations

LLS and Normal Equation

Big Question: How is the least square solution \mathbf{x} to $A\mathbf{x}$ "=" \mathbf{b} equivalent to the solution of the normal equation $A^{\mathrm{T}}A\mathbf{x} = A^{\mathrm{T}}\mathbf{b}$?

Theorem (Normal Equation)

Let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$. If $\mathbf{x} \in \mathbb{R}^n$ satisfies $A^T A \mathbf{x} = A^T \mathbf{b}$, then \mathbf{x} solves the LLS problems, i.e., \mathbf{x} minimizes $\|\mathbf{b} - A\mathbf{x}\|_2$.

- Idea of Proof. Enough show to that $\|\mathbf{b} A(\mathbf{x} + \mathbf{y})\|_2 \ge \|\mathbf{b} A\mathbf{x}\|_2$ for any $\mathbf{y} \in \mathbb{R}^n$.
- Useful identity.

$$\|\mathbf{u} \pm \mathbf{v}\|_{2}^{2} = \|\mathbf{u}\|_{2}^{2} + \|\mathbf{v}\|_{2}^{2} \pm 2\mathbf{u}^{T}\mathbf{v},$$
 (*)

Proof of the Theorem

Proof. Let $\mathbf{y} \in \mathbb{R}^m$ be arbitrary. Using the identity (\star) , we can write

$$\|\mathbf{b} - A(\mathbf{x} + \mathbf{y})\|_{2}^{2} = \|\mathbf{b} - A\mathbf{x}\|_{2}^{2} + \|A\mathbf{y}\|_{2}^{2} - 2\mathbf{y}^{\mathrm{T}}A^{\mathrm{T}}(\mathbf{b} - A\mathbf{x}).$$

Since ${\bf x}$ solves the normal equation $A^{\rm T}A{\bf x}={\bf b}$, the last term vanishes; since $\|A{\bf y}\|_2\geqslant 0$, it follows that

$$\|\mathbf{b} - A(\mathbf{x} + \mathbf{y})\|_{2}^{2} \ge \|\mathbf{b} - A\mathbf{x}\|_{2}^{2}.$$

Since y was chosen arbitrarily, this shows that x minimizes $\|\mathbf{b} - A\mathbf{x}\|$.

Appendix: Derivation of Normal Equation

Derivation of Normal Equation

Consider $A\mathbf{x}$ "=" \mathbf{b} where $A \in \mathbb{R}^{m \times n}$ where $m \ge n$.

• **Requirement:** minimize the 2-norm of the residual $\mathbf{r} = \mathbf{b} - A\mathbf{x}$:

$$g(x_1, x_2, ..., x_n) := \|\mathbf{r}\|_2^2 = \sum_{i=1}^m \left(b_i - \sum_{j=1}^n a_{ij}x_j\right)^2.$$

• Strategy: using calculus, find the minimum by setting

$$\mathbf{0} = \nabla g(x_1, x_2, \dots, x_n)$$

which yields n equations in n unknowns x_1, x_2, \ldots, x_n .

Derivation of Normal Equation (cont')

Noting that $\partial x_j/\partial x_k=\delta_{j,k}$, the n equations $\partial g/\partial x_k=0$ are written out as

$$0 = \sum_{i=1}^{m} 2(b_i - \sum_{j=1}^{n} a_{ij} x_j) (-a_{ik}), \quad \text{for } k \in \mathbb{N}[1, n],$$

which can be rearranged into

$$\sum_{i=1}^{m} a_{ik} b_i = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} a_{ik} x_j, \quad \text{for } k \in \mathbb{N}[1, n].$$

One can see that the two sides correspond to the $k^{\rm th}$ elements of $A^{\rm T}{\bf b}$ and $A^{\rm T}A{\bf x}$ respectively:

$$A^{\mathrm{T}}A\mathbf{x} = A^{\mathrm{T}}\mathbf{b}\,,$$

showing the desired equivalence.