Решите Симплексным методом с использованием двухфазного Метода искусственного базиса следующие задачи линейного программирования:

a)
$$max \rightarrow x_1 - x_2 + x_3 + 2x_4$$

 $x_1 + x_2 + x_3 + 2x_4 = 7;$
 $x_2 + x_3 + x_4 = 5;$
 $x_3 - x_4 = 3;$
 $x_j \ge 0, \ j = 1, \dots, 4.$

Первая фаза:

Вводя искусственные переменные, строим и решаем вспомогательную задачу:

$$\overline{x} = (\overline{x_1}, \overline{x_2}, \overline{x_3}, \overline{x_4}, \overline{x_5}, \overline{x_6}, \overline{x_7}) = (0, 0, 7, 0, 0, 5, 3)$$

Вторая фаза:

Среди искусственных координат \bar{x} имеются ненулевые. Значит, допустимая область исходной задачи пуста.

b)
$$max \rightarrow 2x_1 + x_2 + 3x_3 + x_4$$

 $x_1 + x_2 + 5x_3 - x_4 = 4;$
 $x_1 - x_2 - 5x_3 + 2x_4 = 1;$
 $x_j \ge 0, \ j = 1, \dots, 4.$

Первая фаза:

Вводя искусственные переменные, строими решам вспомогательную задачу:

$$\bar{x} = (2.5, 0, 0.3, 0, 0, 0)$$

Все искусственные координаты вектора небазисные.

Вектор x = (2.5, 0, 0.3, 0) оптимальный план задачи исходной. Вторая фаза заключается в том, чтобы решить исходную задачу симплексным методом.

				1	2	3	4	
В	C_B		X_B	2	1	3	1	
3		3	4	1	1	5	-1	
- 1		2	1	1	-1	-5	2	
				3	0	2	0	
				1	2	3	4	
В	C_B		X_B	2	1	3	1	
3+		3	0.3	0	0.2	1	-0.3	1.9
- 1		2	2.5	1	0	0	3.5	
			5.9	0	-0.4	0	5.1	
				1	2	3	4	
В	C_B		X_B	2	1	3	1	
2		1	1.5	0	1	5	-1.5	1.5
1		2	2.5	1	0	0	3.5	
			6.5	0	2	12	1.5	

OTBET: $x^* = (2.5, 1.5, 0, 0), f^* = 6.5.$

$$\begin{array}{llll} c) & \max \rightarrow x_1 \ + \ 10x_2 \ - \ x_3 \ + \ 5x_4 \\ & x_1 \ + \ 2x_2 \ - \ x_3 \ - \ x_4 \ = \ 1; \\ & -x_1 \ + \ 2x_2 \ + \ 3x_3 \ + \ x_4 \ = \ 2; \\ & x_1 \ + \ 5x_2 \ + \ x_3 \ - \ x_4 \ = \ 5; \\ & x_j \ge 0, \ \ j = 1, \dots, 4. \end{array}$$

Первая фаза:

Вводя искусственные переменные, строими решам вспомогательную задачу:

Среди искусственных координат \bar{x} имеются ненулевые. Значит, допустимая область исходной задачи пуста.