Welcome to instats

The Session Will Begin Shortly

START

Spatial Data Analysis and Visualization in R

Session 11: Visualization of Vector Data with tmap

instats

Grammar of graphics

- A framework for building statistical graphics
- Implemented in **ggplot2**
- Also implemented in tmap but differently

Grammar of graphics building blocks

- Data: The dataset being visualized.
- Aesthetic Mappings: How data maps to visual properties (e.g., position, color, size).
- Geometric Objects: Shapes representing the data (e.g., points, lines, bars).
- Scales: Rules linking data values to aesthetic values.
- Transformations: Adjustments to data or coordinates (e.g., log scales).
- Statistical Summaries: Computed data representations (e.g., means, trends).
- Facets: Layouts for splitting data into subsets for comparison.

Implementation in tmap

tm_shape	Data and coordinates	tm_shape
tm_layer_1 tm_layer_2 tm_layer_k	Data-driven map layers	tm_polygons tm_symbols tm_lines tm_text tm_raster
tm_facets	Facets (small multiples)	tm_facets_wrap tm_facets_grid
tm_layer_aux_1 tm_layer_aux_2 tm_layer_aux_k	Auxiliary map layers	tm_basemap tm_tiles tm_grid tm_graticules
tm_component_1 tm_component_2 tm_component_k	Map components	tm_compass tm_scalebar tm_credits tm_logo
tm_style	Overall style	tm_style tm_layout
tm_layout	Layout options	tm_view tm_plot tm_options

Specify the 'shape' with tm_shape()

- In tmap, a spatial data object is called a "shape"
- It can be an object of any supported class (including sf, terra, and stars objects)
- What you can also specify here:
 - → bbox bounding box
 - → crs projection (CRS)

Add data-driven map layers

- A data-driven map layer is a layer of a specific geometry type,
 e.g. polygons
- It is data-driven because a data variable can be mapped to a *map* variable, e.g. fill color
- Most fundamental ones:
 - → tm_polygons() generates a layer of polygons
 - → tm_lines() generates a layer of polylines
 - → tm_symbols() generates a layer of symbols

Add auxiliary map layers

- Auxiliary map layers are layers without data-mapping possibility.
- Common ones:
 - → tm_basemap() adds a basemap. More on this in Session 12
 - → tm_grid()/tm_graticules() add grid/graticule lines

Add map components

- Map components are objects that can be placed anywhere on the map
- Common ones:
 - → tm_scalebar() scale bar
 - → tm_compass() map compass
 - → tm_title() title
- Also legends are map components

Recap

- tmap uses the Grammar of Graphics but slightly differently than ggplot2
- Use tm_shape to specify the spatial object
- Use the data-driven map layer functions, like tm_polygons() to create thematic maps
- Use the component functions, like tm_compass to enhance the map

STOP