Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики **Кафедра «Прикладная математика»**

ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ «ВЫЧИСЛИТЕЛЬНЫЕ КОМПЛЕКСЫ»

Выполнил студент группы 3630102/70201

Густомясов Евгений

Проверил к. ф.-м. н., доцент

Баженов Александр Николаевич

Санкт-Петербург 2020

Содержание

1	Постановка задачи			
	1.1	Задача 1	2	
	1.2	Задача 2		
2	Теория			
	2.1	Признак Бека	2	
	2.2	Теорема	2	
	2.3	Теорема Адамара		
3	Pea	лизация	3	
4	Результаты			
	4.1	Задача 1	3	
	4.2	Задача 2	4	
C	пис	сок иллюстраций		
	1	Проверка правильности решения задачи 1 критерием Бека	3	
	2	Проверка правильности решения задачи 1		
	3	Критерий Бека для задачи размерности 3	4	
	4	Вычислительный эксперимент для задачи размерности 3		
	5	Критерий Бека для задачи размерности 4		
	6		5	

1 Постановка задачи

1.1 Задача 1

Имеем 2х2 матрицу А: $\begin{pmatrix} 1 & 1 \\ 1.1 & 1 \end{pmatrix}$

Пусть все элементы матрицы
$$a_{ij}$$
 имеют теперь радиус ϵ : $rada_{ij}=\epsilon$. Получаем $\begin{bmatrix} [1-\epsilon,1+\epsilon] & [1-\epsilon,1+\epsilon] \\ [1.1-\epsilon,1.1+\epsilon] & [1-\epsilon,1+\epsilon] \end{bmatrix}$

Определить, при каком радиусе ϵ матрица (1.1) содержит особенные матрицы.

1.2 Задача 2

Имеем n x n матрицу **A**:
$$\begin{pmatrix} 1 & [0,\epsilon] & \dots & [0,\epsilon] \\ [0,\epsilon] & 1 & \dots & [0,\epsilon] \\ \vdots & \vdots & \vdots & \vdots \\ [0,\epsilon] & [0,\epsilon] & \dots & 1 \end{pmatrix}$$

Определить, при каком радиусе ϵ матрица (1.2) содержит особенные матрицы.

2 Теория

Интервальная матрица $\mathbf{A} \in \mathbb{IR}^{nxn}$ называется неособенной, если неособенны все точечные матрицы $A \in \mathbf{A}$. Интервальная матрица называется особенной, если она содержит особенную точечную матрицу.

Признак Бека 2.1

Пусть интервальная матрица $\mathbf{A} \in \mathbb{IR}^{nxn}$ такова, что ее середина mid A неособенна и

$$\rho(|(midA)|^{-1} \cdot radA) < 1 \tag{1}$$

Тогда А неособенна.

2.2 Теорема

Пусть интервальная матрица $\mathbf{A} \in \mathbb{IR}^{nxn}$ такова, что ее середина mid A неособенна и

$$\max_{i \le j \le n} (radA \cdot |(midA)|^{-1})_{jj} \ge 1 \tag{2}$$

Тогда А - особенная.

2.3 Теорема Адамара

Интервальная матрица с диагональным преобладанием является неособенной.

3 Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования Python в среде разработки PyCharm. Использованы библиотеки питру для реализации вычислений. Исходный код лабораторной работы приведён в приложении в виде ссылки на репозиторий GitHub.

4 Результаты

4.1 Задача 1

Воспользуемся для решения теоремой о максимальном элементе диагонали. Имеем интервальную матрицу

$$\mathbf{A} = \begin{pmatrix} [1-\epsilon, 1+\epsilon] & [1-\epsilon, 1+\epsilon] \\ [1.1-\epsilon, 1.1+\epsilon] & [1-\epsilon, 1+\epsilon] \end{pmatrix}$$
 (3)

Рассчитаем для нее середину:

$$midA = \begin{pmatrix} 1 & 1 \\ 1.1 & 1 \end{pmatrix} \tag{4}$$

а также радиус:

$$radA = \begin{pmatrix} \epsilon & \epsilon \\ \epsilon & \epsilon \end{pmatrix} \tag{5}$$

Определитель середины отличен от 0, т.е. матрица не вырождена и можно применить теорему.

Имеем:

$$radA \cdot |(midA)|^{-1} = \begin{pmatrix} \epsilon & \epsilon \\ \epsilon & \epsilon \end{pmatrix} \cdot \begin{pmatrix} 10 & 10 \\ 11 & 10 \end{pmatrix} = \begin{pmatrix} 21\epsilon & 20\epsilon \\ 21\epsilon & 20\epsilon \end{pmatrix}$$
 (6)

Среди элементов диагонали ищем максимальный и применяем (2): $\epsilon \geq \frac{1}{21}$.

Проверим с помощью программы. В ней реализованы критерий Бека и данная теорема. На вход подается ϵ и далее выдается результат:

```
G. C:\WINDOWS\system32\cmd.exe
First task
Enter eps:
0.048
Beck result: undefined ; rho = 1.968
Diag max result: true, special matrix ; max in diagonal = 1.008
```

Рис. 1: Проверка правильности решения задачи 1 критерием Бека

Попробуем улучшить оценку.

Введем $\delta = 0.1$ - разность неединичного элемента исходной матрицы и 1.

```
Имеем оценку \epsilon = \frac{\delta}{n^2}.
Тогда получаем \epsilon = 0.025.
Проверим:
```

```
C:\WINDOWS\system32\cmd.exe

First task

Enter eps:
0.025

Det: ( -0.2025 , 0.0025 )
```

Рис. 2: Проверка правильности решения задачи 1

4.2 Задача 2

C помощью критерия Бека и теоремы о максимальном элементе диагонали получим для размерности n=3 следующие значения.

```
Second task.
Enter dim:
3
(Epsilon: 1.29
Beck result: undefined ; rho = 4.657
Diag max result: true, special matrix ; max in diagonal = 1.023
```

Рис. 3: Критерий Бека для задачи размерности 3

Однако оценка является грубой и не включает 1, которая очевидно приводит к тому, что матрица является особенной. Можно попробовать уточнить ее.

Построим численный эксперимент: ϵ будет меняться от 0 с шагом 0.01. На каждой итерации вычисляется определитель матрицы и в случае, если 0 входит в интервал, матрицу считаем особенной.

Посмотрим результаты для матрицы размером 3х3.

```
Second task.
Enter dim:
3
Det: ( -0.0092 , 1.39022 )
Epsilon: 0.58
```

Рис. 4: Вычислительный эксперимент для задачи размерности 3

Видим, что нижняя граница интервала существенно уменьшилась и теперь подходят $\epsilon \geq 0.58$.

Аналогично рассмотрим для матрицы 4х4.

Критерий Бека и теорема о максимальном элементе диагонали приводят к результату:

```
Second task.
Enter dim:
4
Epsilon: 1.22
Beck result: undefined ; rho = 6.715
Diag max result: true, special matrix ; max in diagonal = 1.011
```

Рис. 5: Критерий Бека для задачи размерности 4

Результат снова не включает 1. Поэтому проведем аналогичный численный эксперимент.

```
Second task.
Enter dim:
4
Det: ( -0.05141 , 1.52082 )
Epsilon: 0.39
```

Рис. 6: Вычислительный эксперимент для задачи размерности 4

Результат, полученный в ходе эксперимента: $\epsilon \ge 0.39$.

Можно заметить, что результаты (4) и (6) близки к нарушению диагонального преобладания (т. Адамара): $\epsilon > \frac{1}{n-1}$, так как максимальная сумма элементов вне диагонали равна $\epsilon * (n-1)$. Полученный при эксперименте отрезок входит в $(\frac{1}{n-1}, +\infty)$.