Oppgave 1:

3.1-2

De skraverte områdene viser de ikke-negative løsningene som oppfyller begrensningene.

a)
$$x_1 + 3 \times z \leq 6$$

b)
$$4x_1 + 3x_2 \le 12$$

d) Alle nestribsjoner.

$$z = 2x_1 + 3x_2$$

b) Slope-intercept form of equations:

$$z = 6$$
: $z = -\frac{2}{3}x_1 + 2$

$$\xi = 12$$
: $\chi_{z} = -\frac{2}{3} \chi_{1} + 4$

$$Z = 18$$
: $X_2 = -\frac{2}{3} \times_1 + 6$

The three lines have the same slope, but intercept the X_2 -axis in different places. The larger Ξ is, the greater X_2 is at the intercept.

Opp. 29 Las folgade MP-nodell grafisk

a) max
$$z = 3x, + 6x_2$$
, (milfan kjøn). (1)

 $3x_1 + 2x_2 \leq 18$,

 $x_1 + x_2 \leq 18$,

 $x_1 + x_2 \leq 18$,

 $x_2 \leq 7$
 $-7x_1 + 8x_2 \leq 0$

(6)

The op Honal Solution is at the intersection of constant (2) and (6). $3 \times 7 + 2 \times 2 = (8)$ $-7 \times_{2} + 8 \times_{2} = 0$ $A \times = 0, \quad \begin{bmatrix} 3 & 2 \\ -7 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 18 \\ 0 \end{bmatrix}.$

 $\begin{bmatrix} 1 & 2/3 & | & 6 \\ -7 & 8 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2/3 & | & 6 \\ 0 & 38/3 & | & 42 \end{bmatrix}$

 $\sim \begin{bmatrix} 1 & 2/3 & | & 6 & \\ 0 & 1 & | & 63/19 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & 72/19 \\ 0 & 1 & | & 63/19 \end{bmatrix}$

 $-f_{hus} \circ \left(\frac{\chi_{1}^{*}}{\chi_{2}^{*}} \right) = \begin{bmatrix} \frac{72}{19} \\ 63/_{19} \\ \frac{3.79}{3.32} \end{bmatrix} \circ 2^{*} = \frac{594}{19} \approx 31.263.$

Oppgare 30

a) Linson proglemming model of

 $\chi = (\chi_1, \chi_2, \chi_3)^T$.

Min Z= ITX S, E.

2×1+1×2+ =×3 = 400, [\$ Million]

 $\frac{1}{2}X_1 + \frac{7}{2}X_2 + 1X_3 = 100$

0 X, + = X, + 2 X3 2 300.

Oppg. 3

c) Å investere i 100 enheter av type 1, 100 enheter av type 2 og 200 enheter av type 3 resulterer i en total investering på 400 millioner dollar. Det skaper en inntektsstrøm på 400, 300 og 550 millioner dollar om henholdsvis 5, 10 og 20 år.

d) Resultat av prøv-og-feil metode for løsning av optimeringsproblemet.

4	Α	В	С	D	E	F	G	Н	1	J
1	Investment Problem, 3.5-6									
2										
3		x1: Units of asset ty	135							
4		x2: Units of asset ty	94							
5		x3: Units of asset type 3 =		80						
6										
7		Constraints:								
8		Contribution from asset type x_i:								
9		Years in the future:	x1	x2	x3	Sum:		Min. Required Cash Flow		
10		5	2	1	0.5	404	>=	400		
11		10	0.5	0.5	1	194.5	>=	100		
12		20	0	1.50	2	301	>=	300		
13										
14		Minimize required investment, $z = x1 + x2 + x3$:								
15		z =	309							
16										

e) Resultat av å løse optimeringsproblemet via Solver i Excel.

4	Α	В	С	D	Е	F	G	Н	1	J
1	Inv	estment Problem, 3	.5-6							
2										
3		x1: Units of asset ty	100							
4		x2: Units of asset type 2 =		200						
5		x3: Units of asset type 3 =		0						
6										
7		Constraints:								
8			sset type x_i:							
9		Years in the future:	x1	x2	x3	Sum:		Min. Requ	ired Cash	Flow
10		5	2	1	0.5	400	>=	400		
11		10	0.5	0.5	1	150	>=	100		
12		20	0	1.50	2	300	>=	300		
13										
14		Minimize required investment, z = x1 + x2 + x3:								
15		z =	300							
16										

Oppgave 4:

Distribusjonsnettveck:

a) La hantene i distribusjonsnettverhet være nummerert som på figuren over.

La antall enheter fraktel gjennom kant i være xi.
La hostnaden av å frakte én enhet gjennom kant i
være ci.

La Im vone settet our indekser for hanter med en owne begrensning på flyt av vaver, og la $\{m: i \in I_m\}$ vone maksimal flyt i disse kantene.

La pri og prz vone antall enheter produset i fabrikk Fl og F2. La dwi og dwz vone ettersporsel i vovehus W1 og W2.

b) Planleggingsproblemet på summasjonsform blir:

min
$$Z = \sum_{i=1}^{7} C_i X_i$$
, shik at

$$x_i \leq m_i$$
, $i \in I_m = \{2, 5\}$ (maksimal flyt)

$$X_1 + X_2 + X_3 = P_{F1}$$
 (produksjon i F1)
 $X_4 - X_2 = P_{F2}$ (produksjon i F2)

$$X_1 + X_6 - X_7 = d_{W1}$$

$$X_5 + X_7 - X_6 = d_{W2}$$
(ettersporsel, W1 og W2)