CONFIDENCE INTERNAL

The average time taken for customers to complete a purchase is 4 minutes with a standard deviation of 1 minute. Find the probability that a randomly selected customer will complete a purchase within 6 minutes? Assume Gaussian

The average order value on an e-commerce website is \$50, with a standard deviation of \$5.

What is the probability that a randomly selected order will have a value exceeding \$60?

10%

5%

Average body temperature has a mean of 98.6°F and a standard deviation of 0.5°F.

What is the probability that a randomly chosen patient has a body temperature higher than 99.5°F?

The average time taken for customers to complete a purchase is 4 minutes with a standard deviation of 1 minute. What is the probability that the average time of the next 5 customers is less than 6 minutes?

The average order value on an e-commerce website is \$50, with a standard deviation of \$5.

What is the probability that the average of the next 3 orders exceeds \$60?

Jample -> making con (historia about pap.

$$S_1 = \begin{bmatrix} X_1 & X_2 & \dots & X_{20} \end{bmatrix} X S_1$$
 $S_2 = \begin{bmatrix} - & - & - \\ - & - & - \end{bmatrix} X S_2$
 $S_3 = \begin{bmatrix} - & - & - \\ - & - & - \end{bmatrix} X S_4$
 $S_4 = \begin{bmatrix} - & - & - \\ - & - & - \end{bmatrix} X S_4$
 S_{ample}

$$\frac{1}{\mu} = \frac{1}{x_1} \times \frac{1}{x_2} \times \frac{1}{x_3} \times \frac{1}{x_2} \times \frac{1}{x_3} \times \frac{1}{x_2} \times \frac{1}{x_3} \times \frac{1}{x$$

$$\sigma = \rho \delta \rho^{\gamma} S d$$

$$\sigma = \int_{\frac{2\pi}{3}}^{2\pi} (x_1^2 - \mu)^2$$

$$\chi_{4} - - - \chi_{20}$$

Standard ever

Sample $S_1 = X_1 X_2 X_3 X_4 - \cdots X_{20}$ Sample $= (X_1 + X_2 + X_3 - \cdots X_{20})/20 = X_{S_1}$ Sample $S + d = (X_1 - \overline{X}_{S_1})^2$ Student f distribution Unbrased estimator. $= (X_1 + X_2 + X_3 - \cdots X_{20})/20 = X_{S_1}$ Unbrased estimator. $= (X_1 + X_2 + X_3 - \cdots X_{20})/20 = X_{S_1}$ Bessel Correction

1) pop mean ?? pop std
$$\times$$
2) pop mean ?? pop std \times

$$95\%$$

$$-1.96 \angle \frac{X_{S_1} - \mu}{\sqrt{5}n} \angle 1.96$$

$$= \frac{X_{S_1} - \mu}{\sqrt{5}n}$$

$$Z_{-95}$$
 $X_{S1}-\mu$ Z_{+95} Z_{-95} Z_{-95} Z_{+95} Z_{-95} $Z_{$

S1:[35,36,33,37,34,35] M=35S2:[20,37,17,50,53,33] M=35

Bootstrathing: Samples (Repritition is allowed)

[34,36] <-[24,46] 52

