Who's the Bird behind the chirp?

Kevin Zecchini 02/19/2016

Motivation

Can we classify sounds by their acoustic characteristics?

Why birds?

- Non-invasive way to track wildlife patterns
- We hear birds every day
- Can lead to classification of more complex soundscapes

Data:

- Collected from Xeno-Canto
- Only 'A' rated songs used
- Six species to classify
- 240 total recordings

Dataset

Barred Antsrike

Great Antshrike

American Robin

Dusky Antbird

Northern Cardinal

House Finch

Signal Processing

This is all the same bird - the dusky antbird!

Signal Processing

12000

Extract acoustic qualities - tone, timbre, brightness/color, tempo, rhythm

Starting Features

- Entire Signal:
 - o 15 frequency bins of avg. fourier amplitude values
 - 4 bins of amplitude distribution
 - Freq. of max amplitude
- Aggregate over 25ms frames:
 - Root mean square energy
 - Avg. number of zero crossings
 - Std. of Spectral Centroid
 - o 13 avg. Mel Frequency Cepstral Coefficients

After Feature Selection

- 5 frequency bins of avg. fourier amplitude values
- Freq. of max amplitude
- 3 bins of amplitude distribution
- First and thirteenth avg. MFCC
- Avg. number of zero crossings

Chirp! Chirp! - Who's There?

Challenges/Next Steps

- Major challenge: the time domain
 - Dynamic Time Warp and Auto Correlation
 - Align on the correct part of the song
 - Songs consist of permutation of notes/sequences
 - Account for tempo, rhythm
- Explore feature selection/creation in more depth
 - Distinguishing birds with similar frequency range
 - Unsupervised learning
- Use neural network or deep learning
- Add more birds!

Questions?

Spectogram Space

Signal Processing

MFCC

$$M(f) = 1125 \ln(1 + f/700) \tag{1}$$

Timbre - wave envelope

Dynamic Time Warp/Auto correlation

DTW = Finding the best path between two time series

- Sequences are 'warped' non-linearly in time

Contents

- Motivation/Data
- Signal Processing
- Data Analysis/Fitting a model
- Challenges and Next Steps

Resources

```
https://www.researchgate.
net/publication/224266043_Feature_set_comparison_for_automatic_bird_species_identification
http://www.academia.
```

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106198/

http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequencycepstral-coefficients-mfccs/

edu/2272643/Classification of Birds using FFT and Artificial Neural Networks

http://web.engr.oregonstate.edu/~xfern/bird-icdm09.pdf