COMP 760 Week 8: Product Manifolds and Latent Manifolds

By Joey Bose and Prakash Panangaden

Admin stuff week 8

Final Project Presentations

Google Sheet Signup:

https://docs.google.com/spreadsheets/d/ 1FVd1WnqZJ0KcZbtNjfncEJST-PZbwbWW8cE7IGJr_Vw/edit?usp=sharing

Product Manifolds

Product Manifolds

Consider $\mathcal{M}_1, ..., \mathcal{M}_k$ smooth manifolds

Product manifold is the cartesian product :

$$\mathcal{M} = \mathcal{M}_1 \times \mathcal{M}_2 \times \ldots \times \mathcal{M}_k$$

- A point $p \in \mathcal{M}$ is defined as $p = (p_1, ..., p_k) : p_i \in \mathcal{M}_i$

Product Manifolds Exponential Map and Distance

$$\mathcal{M} = \mathcal{M}_1 \times \mathcal{M}_2 \times \ldots \times \mathcal{M}_k$$

The exponential map also decomposes across manifolds

$$\exp_p(v) = (\exp_{p_1}(v_1), ..., \exp_{p_k}(v_k))$$

The distance becomes the sum of distance over each manifold in the product:

$$d_{\mathcal{M}}(x,y) = \sum_{i}^{k} d_{\mathcal{M}_{i}}(x_{i}, y_{i})$$

Examples

 $\blacksquare \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \simeq \mathbb{R}^{n_1 + n_2}$

• Torus: $\mathbb{T}^k = \mathbb{S}^1 \times ... \times \mathbb{S}^k$

Latent Geometry

What kind of structure can we ask of a latent space?

- Take the latent space to be an explicit manifold (e.g. Spherical, Hyperbolic).
- The latent space can also be an implicit manifold given to us by the decoder.
- We can impose symmetry constraints (e.g. equivariance).
- What if we want a causal representation? Can we make the latent space be a DAG?

Implicit Latent Manifolds

$$x = f(z)$$

Generated sample Latent sample

• f can be the decoder in VAE for instance.

Implicit Latent Manifolds

Using an application of Taylors approximation to:

$$||f(z + \Delta z_1) - f(z + \Delta z_2)||^2$$

We get the following metric at point z

$$G = J_z^T J_z$$
 — Jacobian at z

Group Actions

- 1. We have a set \mathscr{X} and $f:\mathscr{X}\to\mathbb{R}$
- 2. Group Gacts on $\mathscr X$

$$T_g: \mathcal{X} \to \mathcal{X} \quad \forall g \in G$$

$$\forall g1,g2 \in G, T_{g2g1}: T_{g2} \circ T_{g1}$$

If \mathcal{X} is a (finite) Vector Space then $T_g \in GL(n)$

3. Extending the action to functions

$$\mathbb{T}_g: f \to f' \qquad f'(T_g(x)) = f(x)$$

<u>Groups</u>

- 1. $e \in G$ Identity
- $2.(a \circ b) \circ c = a \circ (b \circ c)$ Associativity
- 3. $\forall a \in G \ \exists b \in G$ $a \circ b = e$

Unique Inverses

Equivariance

Equivariance

Let X and Y be two sets with an action of a group G. A map $\phi: X \to Y$ is called G-equivariant, if it respects the action, i.e.,

$$g \cdot \phi(x) = \phi(g \cdot x), \forall g \in G \text{ and } x \in X.$$

• A map $\chi: X \to Y$ is called G-invariant, if $\chi(x) = \chi(g \cdot x), \forall g \in G$ and $x \in X$.

Equivariance in Latent Space

- The latent space itself can be equivariant or invariant to some pre-defined group.
- Partitions of the latent dimensions could be equivariant or invariant to different groups.
- The latent space could decompose as a product of groups.

Identifiability in Generative Models

$$x = f(z)$$

Generated sample Latent sample

In practice different training runs could lead to drastically different latent spaces.

Identifiability in Generative Models

4 trainings runs of the same VAE model

Fig credit: http://www2.compute.dtu.dk/
~sohau/weekendwithbernie/

Identifiability in Generative Models

- If p_{θ} is a density parameterized by θ then a generative model is identifiable if $\theta \to p_{\theta}$ is bijective.
- Otherwise two different models might give equally good results but we don't know which to trust.

Most modern deep generative models are not identifiable.

Rethinking Generative Modeling with Weak Supervision

Assume you have access to both pre and postinterventional data.

Q. Can we recover the causal graph in this setting?

Structural Causal Model

- An SCM C, describing the relation between causal variables $z_1, ..., z_n$, with domains \mathcal{Z}_i
- Exogenous noise variables $\epsilon_1, ..., \epsilon_n$, with domains \mathcal{E}_i
- A directed acyclic graph $\mathcal{G}(C)$
- Causal Mechanisms $f_i: \mathscr{E}_i \times \prod_{j \in pa_i} \mathscr{Z}_j \to \mathscr{Z}_i$
- A unique solution $s:\mathcal{E}\to\mathcal{Z}$ by successively applying the causal mechanisms
- A stochastic intervention $(I, (\tilde{f}_i)_{i \in I})$ that modifies the SCM by replacing for a subset of the causal variables, called the intervention target set $I \subset \{1, ..., n\}$

Latent Causal Model

$$\mathcal{M} = \langle C, \mathcal{X}, g, \mathcal{F}, p_{\mathcal{F}} \rangle$$

- An acyclic faithful SCM C
- $\hspace{1cm} \textbf{An observation space } \mathcal{X}$
- A decoder $g: \mathcal{Z} \to \mathcal{X}$, that is diffeomorphic on its image
- A set $\mathcal F$ of interventions on C
- $lacksquare{1}{2}$ A probability measure $p_{\mathscr{J}}$ over \mathscr{F}

LCM Isomorphism

$$\mathcal{M} = \langle C, \mathcal{X}, g, \mathcal{F}, p_{\mathcal{F}} \rangle$$

- Let $\mathscr{M} = \langle C, \mathscr{X}, g, \mathscr{F}, p_{\mathscr{F}} \rangle$ and $\mathscr{M}' = \langle C', \mathscr{X}, g', \mathscr{F}', p_{\mathscr{F}'} \rangle$ be two LCMs
- An LCM isomorphism is a graph isomorphism $\phi: \mathcal{G}(C) \to \mathcal{G}(C')$
- Along with element wise diffeomorphisms for noise and causal variables
- lacksquare \mathcal{M}' are equivalent if there exists an LCM iso between them

Weakly Supervised Generative Process

$$\mathcal{M} = \langle C, \mathcal{X}, g, \mathcal{F}, p_{\mathcal{F}} \rangle$$

$$\epsilon \sim p_{\mathscr{E}}$$
,

$$z = s_I(\epsilon), \quad x = g(z)$$

$$\mathcal{I} \sim p_{\mathcal{J}}, \quad \forall i \in I, \ \tilde{e}_i \sim p_{\tilde{\mathcal{E}}_i}, \ \forall i \notin I, \ \tilde{e}_i = e_i, \quad \forall i \notin I, \ \tilde{e}_i = e_i, \quad \tilde{z} = \tilde{s}_I(\tilde{\epsilon}), \quad \tilde{x} = g(\tilde{z})$$

Identifiability: Brehmer et. Al 2022

Theorem 1 (Identifiability of \mathbb{R} -valued LCMs from weak supervision). Let $\mathcal{M} = \langle \mathcal{C}, \mathcal{X}, g, \mathcal{I}, p_{\mathcal{I}} \rangle$ and $\mathcal{M}' = \langle \mathcal{C}', \mathcal{X}, g', \mathcal{I}', p'_{\mathcal{I}'} \rangle$ be LCMs with the following properties:

- The LCMs have an identical observation space \mathcal{X} .
- The SCMs C and C' both consist of n real-valued endogeneous causal variables and corresponding exogenous noise variables, i. e. $\mathcal{E}_i = \mathcal{Z}_i = \mathcal{E}_i' = \mathbb{R}$.
- The intervention sets \mathcal{I} and \mathcal{I}' consist of all atomic, perfect interventions, $\mathcal{I} = \{\emptyset, \{z_0\}, \dots, \{z_n\}\}$ and similar for \mathcal{I}' .
- The intervention distribution $p_{\mathcal{I}}$ and $p'_{\mathcal{I}'}$ have full support.

Then the following two statements are equivalent:

- 1. The LCMs entail equal weakly supervised distributions, $p_{\mathcal{M}}^{\mathcal{X}}(x,\tilde{x}) = p_{\mathcal{M}'}^{\mathcal{X}}(x,\tilde{x})$.
- 2. The LCMs are equivalent, $\mathcal{M} \sim \mathcal{M}'$.

Implications of Identifiability

- Assume we have access to data pairs (x, \tilde{x})
- We can then train an LCM with parameters by Maximum Likelihood!
- Because of identifiability the trained LCM and ground-truth LCM are the same up to relabelling.
- lacksquare and \mathcal{M}' are equivalent if there exists an LCM iso between them

