MOwNiT - arytmetyka komputerowa

1. Wyznaczyć doświadczalnie parametry reprezentacji liczb zmiennoprzecinkowych (**float**, **double**, **long double**) i porównać uzyskane wartości dla różnych architektur, systemów operacyjnych i kompilatorów. Sprawdzić, czy reprezentacje są zgodne ze standardem IEEE.

Parametry do wyznaczenia:

- o liczba bajtów używana do przechowywania zmiennej danego typu,
- o liczba bitów na mantysę,
- o liczba bitów na cechę (wliczając znak),
- o "maszynowe epsilon" najmniejsza liczba, dla której 1.0+e > 1.0,
- o występowanie i sposób reprezentacji wartości specjalnych (±0, ±Inf, NaN).
- 2. Wykonać obliczenia wg podanych poniżej wzorów dla 101 równoodległych wartości *x* z przedziału [0.99, 1.01]:

•
$$f(x) = x^8 - 8x^7 + 28x^6 - 56x^5 + 70x^4 - 56x^3 + 28x^2 - 8x + 1$$

•
$$f(x) = (((((((x-8)x+28)x-56)x+70)x-56)x+28)x-8)x+1$$

•
$$f(x) = (x-1)^8$$

•
$$f(x) = e^{(8\ln(abs(x-1)))}, x \neq 1$$

Porównać wyniki. Objaśnić różnice w wynikach.

- 3. Wyznaczyć wartości funkcji $f(x) = \operatorname{sqrt}(x^2 + 1) 1$, $g(x) = x^2 / (\operatorname{sqrt}(x^2 + 1) + 1)$, dla argumentu $x = 8^{-1}$, 8^{-2} , 8^{-3} , Sprawdzić, czy wyznaczone wartości dla obu funkcji (matematycznie tożsamych) są takie same i spróbować uzasadnić ewentualne różnice. Jak obliczać z kolei wartości dla dużych argumentów (np. x bliskiego największej liczbie typu double)?
- 4. Moduł liczby zespolonej z = x + iy może być obliczany przy pomocy wzorów:

$$\bullet \qquad \mid z \mid = \sqrt{x^2 + y^2}$$

•
$$|z| = \sqrt{1 + \left(\frac{w}{v}\right)^2}$$

•
$$|z| = 2v \left[\frac{1}{4} + \left(\frac{w}{2v} \right)^2 \right]^{1/2}$$

gdzie $v = \max\{|x|, |y|\}$, $w = \min\{|x|, |y|\}$. Porównać wyniki dla dużych i małych liczb x i y. Dobrać dane tak, aby widoczne były różnice pomiędzy wynikami uzyskanymi różnymi wzorami.

- 5. Rozważmy funkcję $f(x) = (e^x 1) / x$. Można wykazać (jak?), że $\lim_{x \to 0} f(x) = 1$
 - a) Sprawdzić tę własność obliczając na komputerze wartość funkcji dla $x = 10^{-k}$ dla k = 1, ..., 15. Czy rezultaty są zgodne z oczekiwaniami?
 - b) Powtórzyć obliczenia tym razem korzystając ze wzoru:

$$f(x) = (e^x - 1) / \ln(e^x)$$
.

Porównać rezultaty z tymi uzyskanymi w punkcie a). Spróbować wyjaśnić ewentualne różnice.

W obu przypadkach podać, dla jakiej precyzji liczb robiono obliczenia oraz zwrócić uwagę na typ argumentów i wyników dla funkcji bibliotecznych wykorzystywanych w obliczeniach.

- 6. W dokładnej arytmetyce ciąg $x_{k+1} = 111 (1130 3000/x_{k-1})/x_k$, $x_0 = 11/2$, $x_1 = 61/11$ jest rosnący i zbieżny do 6. Obliczyć na swoim komputerze x_{34} (dla zmiennych typu *float, double, long double*) i spróbować wyjaśnić uzyskane wyniki. Dokładna wartość (zaokrąglona do 4 cyfr znaczących) jest równa $x_{34} = 5.998$.
- 7. Wyznaczyć kolejne elementy ciągu $x_{k+1} = x_k + 3x_k (1 x_k)$, $x_0 = 0.1$, i porównać otrzymane wartości dla różnej precyzji zmiennych (*float*, *double*, *long double*). Powtórzyć doświadczenie dla przekształconej postaci wzoru: $x_{k+1} = 4x_k 3x_k x_k$. Spróbować wyjaśnić otrzymane wyniki.
- 8. Dana jest zależność rekurencyjna $3x_{k-1} 10x_k + 3x_{k+1} = 0$. Wartości początkowe $x_0 = 1$, $x_1 = 1/3$. Wyznaczyć wartości x_k i x_{k+1} dla k = 45. Następnie korzystając z wyznaczonych wartości x_k i x_{k+1} obliczyć x_1 i x_0 , wykonując rekurencję w tył. Porównać wyznaczone wartości x_1 i x_0 z dokładnymi wartościami początkowymi 1 i 1/3. Wykonać obliczenia dla różnej precyzji zmiennych (*float*, *double*, *long double*). Skomentować różnice. Co będzie, jeśli wszędzie liczbę 3 zastąpimy przez liczbę 2 lub 20, lub 30?
- 9. Niech ciąg x_k będzie zdefiniowany:

$$x_1 = 4$$
, $x_{k+1} = 2^{2(k+1)+1} \cdot \frac{\sqrt{1 + x_k^2 / 2^{2(k+1)}} - 1}{x_k}$

Zaproponować inną postać tego związku i obliczyć x_{30} dwoma sposobami. Skomentować i spróbować objaśnić otrzymane wyniki.

10. Dla $x_0 > 1$ ciag

$$x_{k+1} = 2^{k+1} (\sqrt{1 + 2^{-k} x_k} - 1)$$

jest zbieżny do $log(x_0+1)$. Przekształcić wzór tak, by uniknąć utraty dokładności. Porównać dwa sposoby liczenia wyrazów ciągu.

11. Dany jest wielomian Wilkinsona W(x) = (x-1)(x-2)...(x-20). Przekształcić wielomian do postaci $W(x) = x^{20} + a_{19}x^{19} + ... + a_1 x + a_0$. Podać wyznaczone wartości współczynników a_i . Dla x = 1 oraz x = 20 dokładna wartość wielomianu wynosi 0. Obliczyć wartość wielomianu dla x = 1 oraz x = 20. Do wyznaczenia wartości wielomianu wykorzystać schemat Hornera oraz dowolny schemat sumacyjny.

12. Niech

$$x_n = \int_0^1 t^n (t+5)^{-1} dt$$

Wiadomo, że $x_0 = \ln 6 - \ln 5 = \ln 1.2$. Całka powyższa może być obliczona za pomocą wzoru rekurencyjnego: $x_n = n^{-1} - 5x_{n-1}$. Stosując ten wzór rekurencyjny obliczyć x_0 , x_1, \ldots, x_{20} . Zwrócić uwagę, czy i dla jakich n obliczony wynik jest ujemny. Czy tak powinno być? Obliczyć analitycznie x_{20} wykorzystując do funkcji podcałkowej szereg Taylora, a następnie na podstawie tego wzoru wyliczyć w komputerze wartość x_{20} . Po wyznaczeniu x_{20} zastosować rekurencję wstecz, tj. obliczyć kolejno $x_{19}, x_{18}, \ldots, x_0$. Czy otrzymane x_0 jest poprawne? Wykonać obliczenia dla różnej precyzji zmiennych (*float*, *double*, *long double*). Skomentować i spróbować objaśnić otrzymane wyniki.

13. Przybliżoną wartość pochodnej funkcji f(x) w punkcie x można obliczyć ze wzoru:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

Wykorzystać ten wzór do obliczenia pochodnej funkcji f(x) = sin(x) + cos(3x) w punkcie x = 1 dla $h = 2^{-n}$ (n = 0, 1, 2, ..., 40). Wykonać obliczenia dla różnej precyzji zmiennych. Zwrócić uwagę na typ argumentów i wyników dla funkcji bibliotecznych wykorzystywanych w obliczeniach. Jak wytłumaczyć, że od pewnego momentu zmniejszenie wartości h nie poprawia przybliżenia wartości pochodnej? Jak zachowują się wartości 1+h? Obliczone przybliżenia pochodnej porównać z dokładną wartością pochodnej.