I) Qu'est ce qu'un dipôle passif

Définition:

Un dipôle est un composant électrique ou électronique, ou toute association de composants comportant deux bornes.

- ☐ Un dipôle passif est un dipôle qui ne peut pas produire de courant électrique, par lui-même : la tension entre ces bornes est nulle, quand il n'est pas parcouru par aucun courant (UAB=0) ;si IAB=0)
- Exemples: les diodes, les conducteurs ohmiques, les lampes...).

Un dipôle passif respecte la convention récepteur.

Exemples de dipôles passifs :

$\mathbf{D_{i}}$	$\mathbf{D_1}$	\mathbf{D}_2	\mathbf{D}_3	\mathbf{D}_4	
Nom	Résistance conducteur ohmique	V.D.R ou Varistance	L.D.R ''Résistance photoélectrique''	Thermistance CTN et CTP	
Symbole	A R B	A B B	A B	A B B MTC C SS30 SS40	
\mathbf{D}_{i}	\mathbf{D}_{5}	\mathbf{D}_6	\mathbf{D}_7	$\mathbf{D_8}$	
Nom	Lampe	Diode	Diode électroluminescente	Diode Zener	
Symbole	AB	A B	A B	A B	

II) Caractéristiques des dipôles passifs

1) Définition :

La caractéristique courant-tension (ou tension-courant) d'un dipôle est la courbe reliant les variations de la tension U_{AB} à ses bornes en fonction de l'intensité du courant I qui le traverse $I_{AB} = f(U_{AB})$ ou $U_{AB} = g(I_{AB})$.

La caractéristique d'un dipôle passif passe toujours par l'origine des axes ($I = 0 \Leftrightarrow U = 0$)

2) Le rôle de la caractéristique :

Grâce à la caractéristique d'un dipôle électrique on peut prévoir le comportement du dipôle sans savoir sa composition interne.

3) Activité expérimentale de la caractéristique d'un dipôle passif :

Expérience:

- ✓ D'abord vérifier que le dipôle étudié est des dipôles passifs.
- ✓ On réalise le circuit électrique ci-dessous pour chaque dipôle passif étudié et note les résultats sur un tableau (la courant passe de A vers B : I_{AB} > 0 et U_{AB} > 0)
- ✓ On répète la même expérience mais en inversant les pôles du dipôle étudié et note les résultats sur un tableau (la courant passe de B vers AB : $I_{BA} > 0$ et $U_{BA} > 0$)

Montage avec diviseur de tension

Montage avec générateur adaptable

Tableaux de valeurs :

1) Dipôle étudié: Varistance ou V.D.R." Voltage Dependant Resistor"

2.5	2.3	2	1.7	1.5	1	0.5	0	$U_{AB}(V)$	U A
260	240	230	210	220	178	138	0	I _{AB} (mA)	
	2.31	2	1.7	1.5	1	0.5	0	$U_{BA}(V)$	
	240	230	210	220	178	138	0	I _{BA} (mA)	• B

Conclusion:

La caractéristique de la Varistance ou V.D.R:

- ✓ Passe par l'origine des axes ($I=0 \Leftrightarrow U=0$)
- ✓ non Linéaire ⇒ la tension et l'intensité ne sont pas proportionnelle.
- ✓ Symétrique ⇒ le comportement du dipôle est indépendant du sens du courant.

2) Dipôle étudié: Résistance photoélectrique ou L.D.R (Light Dépendant Resistor)

Conclusion:

La caractéristique de la Résistance photoélectrique ou L.D.R :

- ✓ Passe par l'origine des axes ($I=0 \Leftrightarrow U=0$)
- ✓ Linéaire ⇒ la tension et l'intensité sont proportionnelle.
- ✓ Symétrique ⇒ le comportement du dipôle est indépendant du sens du courant.

3) Dipôle étudié: Thermistance CTN

La thermistance est une résistance électrique qui varie en fonction de la température.

 $U_{AB}(V)$

Conclusion:

La caractéristique de la Thermistance :

- ✓ Passe par l'origine des axes ($I=0 \Leftrightarrow U=0$)
- ✓ Linéaire ⇒ la tension et l'intensité sont proportionnelle.
- ✓ Symétrique ⇒ le comportement du dipôle est indépendant du sens du courant.
- ✓ Il y à 2 types de thermistance :
 - La Thermistance C.T.N "la plus utilisé" : la résistance augmente lorsque la température diminue.
 - **La Thermistance C.T.P**: la résistance augmente lorsque la température augmente.

4) Dipôle étudié : Lampe incandescente

4.9	3.8	3	1.8	1	0.70	0.25	0	$U_{AB}(V)$	• A
0.22	0.2	0.18	0.14	0.1	0.08	0.04	0	I _{AB} (A)	
4.9	3.8	3	1.8	1	0.70	0.25	0	$U_{BA}(V)$	
0.21	0.2	0.18	0.14	0.1	0.08	0.04	0	I _{BA} (A)	• B

Conclusion:

La caractéristique de la lampe:

- ✓ Passe par l'origine des axes ($I=0 \Leftrightarrow U=0$)
- ✓ Non Linéaire ⇒ la tension et l'intensité sont proportionnelle.
- ✓ Symétrique ⇒ le comportement du dipôle est indépendant du sens du courant.

Le premier dispositif capable de laisser passer le <u>courant électrique</u> dans un sens, tout en le bloquant dans l'autre, fut découvert en 1874 par Karl Ferdinand Braun.

1.2	1	0.7	0.6	0.4	0.2	0	U _{AB} (V)	A
42	20	3.5	0	0	0	0	I _{AB} (mA)	
1.2	1	0.8	0.6	0.4	0.2	0	U _{BA} (V)	<u> </u>
0	0	0	0	0	0	0	I _{BA} (mA)	В

Conclusion:

La caractéristique de la Diode :

- ✓ Passe par l'origine des axes ($I=0 \Leftrightarrow U=0$)
- ✓ Non Linéaire ⇒ la tension et l'intensité ne sont pas proportionnelle.
- ✓ Non Symétrique ⇒ le comportement du dipôle dépendant du sens du courant.
- ✓ Chaque diode est caractérisée par la tension seuil U_S exemple 0,3 V pour les diodes au germanium et 0,7 V pour les diodes au silicium.
- \checkmark Dans le sens bloqué : $U_{\mathrm{BA}} \neq 0 \Longrightarrow I_{\mathrm{BA}} = 0$

Diode bloquée

✓ Dans le sens passant :
$$0 \le U_{AB} < Us \implies I_{AB} = 0$$

Diode bloquée

$$U_{AB} \ge U_S \implies I_{AB} \ne 0$$

Diode passante

Exercice:

Dans le circuit ci-dessous, le générateur est lié en série avec une diode dont la caractéristique est donnée par la figure N°1 et un conducteur ohmique de résistance R. on donne $U_{PN} = 1,5 \text{ V}$

- 1) Donner l'expression de I l'intensité du courant électrique en fonction de U_{PN} , R et U_{BN} .
- 2) on donne I = 25 mA:

- 2-1/ Donner la tension sous la quelle fonctionne la diode.
- 2-2/ Calculer R la résistance du conducteur ohmique

6) Dipôle étudié: Diode Zener.

Contrairement à une diode conventionnelle qui ne laisse passer le courant électrique que dans un seul sens, *le sens direct*, les diodes Zener sont conçues de façon à laisser également passer le courant dans le sens inverse, mais ceci uniquement si la tension à ses bornes est plus élevée que le seuil U_Z (tension Zener)..

0.8	0.7	0.6	0.5	0.3	0.2	0	$U_{AB}(V)$	A
50	0	0	0	0	0	0	$I_{AB}(mA)$	
	6.2	6	4	3	1	0	$U_{BA}(V)$	\mathcal{A}
	80	40	0	0	0	0	$I_{BA}(mA)$	В

Conclusion:

La caractéristique de la Diode Zener :

- ✓ Passe par l'origine des axes ($I=0 \Leftrightarrow U=0$)
- ✓ Non Linéaire ⇒ la tension et l'intensité ne sont pas proportionnelle.
- ✓ Non Symétrique ⇒ le comportement du dipôle dépendant du sens du courant.
- ✓ Chaque diode Zener est caractérisée par la tension seuil U_s et la tension Zener U_z ($U_z > U_s$).
- ✓ Dans le sens bloqué :

$$\begin{array}{ll} 0\!\leq\! U_{_{BA}}\!<\! U_{_{Z}} \implies\! I_{_{BA}}\!=\! 0 &_{\text{Diode bloquée}} \\ \\ U_{_{BA}}\!\geq\!\! U_{_{Z}} \implies\! I_{_{BA}}\!\neq\! 0 &_{\text{Diode passante}} \end{array}$$

✓ Dans le sens passant :

$$0\!\leq\!U_{\rm AB}<\!Us\,\Longrightarrow\!I_{\rm AB}=\!0\qquad {}_{\rm Diode\;bloqu\acute{e}e}$$

$$U_{AB} \ge U_S \implies I_{AB} \ne 0$$
 Diode passante