

# Harnessing the Edge and the Cloud Together for Visual Al



Sébastien Taylor May 23, 2018

#### **About Au-Zone**



- Au-Zone Technologies is a leading provider of development tools, engineering design services, and enabling IP used for the design of intelligent embedded vision products and solutions.
- By utilizing our <u>Machine Learning</u> and <u>embedded Computer</u>
  <u>Vision</u> tools we enable our customers to quickly develop and securely deploy machine learning solutions and novel Convolutional Neural Networks on embedded hardware.



#### Introduction



- Focus on Image Classification using Deep Neural Networks
- Building a Hybrid Solution
- Problems to solve to make this work
  - Modeling the unknown
  - Distributing models to the edge efficiently
- Example
  - Face Recognition



# **Advanced Model Design**





www.xkcd.org



# **Advanced Model Balancing**









## **Architecture**





# **Hybrid Edge-Cloud Architecture**



- Typical Cloud Server
  - Multiple, large models
  - Central point
- Optional Edge Server
  - Intermediate between cloud and edge
  - Caching, computational offloading
  - Can handle training, dataset evolution
- Peer Nodes
  - Idle or more powerful
- Edge Nodes
  - Small models
  - Solution focused





## **Target Edge Devices**



- Our examples cover devices as small as Cortex-M4 and Cortex-M7
  - Sub-150 mW devices (CPU under \$3)
  - Bare metal/RTOS
  - Hundreds of KB of RAM
- Scaling up to Cortex-A and beyond
  - Examples on Cortex-A9 and Cortex-A53 (CPU under \$30)
  - Linux
  - Sub-2500 mW devices
  - Hundreds of MB of RAM



### **Architecture Flow**







## **Architecture Flow – Result Scoring**







## Architecture Flow - Model Update Size









## How to know what you do not know?





## **Architecture Flow – Result Scoring**







## How to know you do not know?



- We need to know WHEN to go to the cloud for an update.
- Models tend to be overconfident in their results.
- Softmax is relative to KNOWN labels.
- Most objects probably UNKNOWN.
- model of all unknown labels...





## **Other Solutions?**



Model the Universe…



...probably not practical on an embedded device yet.



#### Solutions – SVM Classifier



- Use the neural network as a feature extractor
- Reduces an image into a small vector
- The CNN output becomes the SVM input
- Measures how well the features fit "probability"





#### **SVM Face Detection**



- CNN can be used to extract features from an image
  - Trained to generate discriminating features
- SVM uses these features as inputs
  - Trained to fit a label and a probability from the input features
  - The probability is reliable and accurately reports unknown samples







# **Distributing Model Updates**





## Architecture Flow - Model Update Size







# **Updating the Edge**



- IoT data transmission is still expensive
- Must Keep usage to a minimum

- Compress Models
  - Specifically compress the weights
- Send differences
  - Keep differences to a minimum





# **Limits of Compression**



- Models generally do not compress well
  - Random data cannot be compressed
  - "Smooth" data can be compressed
  - Are model weights more random or are they smooth?
- Lossy compression can greatly help
  - Neural networks are very resilient to error from lossy compression
  - Some models work well even down to 2 bits per weight!



# **Lossy Compression**



# Model Accuracy vs. Model Compression



MODEL COMPRESSION RATE (PERCENTAGE)



### **Transmit Differences**



- Need to partially freeze model to avoid updating ALL weights
  - Cannot efficiently send differences if everything is changing
- If the front end is well generalized we only need to train the tail end
  - Same idea as transfer learning, in this case to help reduce data exchange
- In the SVM example we only need to update SVM weights, not the CNN model



Frozen Model 23,472 Weights

Transfer 2816 Weights (10%)





## **Summary**





## **Summary**



- Cloud can use larger, evolving models
  - Can be used to train more focused models for the edge
  - Allows us to keep smaller models at the edge
- Need to know when to ask the cloud for help
  - Accurately detect when a sample is unknown
  - Go to the cloud for verification when unknown
  - Get updated models if available
- Need to efficiently distribute model updates
  - Lossy compression
  - Partial model updates



#### Resources



- www.au-zone.com
- www.embeddedml.com
- RT1050 <a href="https://www.youtube.com/watch?v=B2zwx6BYsKg">https://www.youtube.com/watch?v=B2zwx6BYsKg</a>
- i.MX8 Model Transfer <a href="https://www.youtube.com/watch?v=z0WtwXSIA9M">https://www.youtube.com/watch?v=z0WtwXSIA9M</a>
- DeepView MLTK <a href="https://www.youtube.com/watch?v=IS0QgM1VHaY">https://www.youtube.com/watch?v=IS0QgM1VHaY</a>
- Model Compression <a href="https://www.embedded-vision.com/platinum-members/embedded-vision-alliance/embedded-vision-alliance/embedded-vision-training/documents/pages/deep-learning-software">https://www.embedded-vision.com/platinum-members/embedded-vision.com/platinum-members/embedded-vision-alliance/embedded-vision-training/documents/pages/deep-learning-software</a>
- CNN Calibration <a href="https://arxiv.org/abs/1706.04599">https://arxiv.org/abs/1706.04599</a>
- Modelling Uncertainty <a href="https://arxiv.org/abs/1509.05909">https://arxiv.org/abs/1509.05909</a>

