ECE 215

Practice Problems

- 1. Calculate the cutoff frequency for a circuit with:
 - a. $R = 1k\Omega$ and C = 3nF

b. $R = 5k\Omega$ and $C = 1.5\mu F$

- 2. What should the resistor value be for the following filters:
 - a. $f_{cutoff} = 1.5kHz$ and C = 500 nF

b. $f_{cutoff} = 417Hz$ and C = 56nF

c. $f_{cutoff} = 2kHz$ and $C = 500 \mu F$

3. Are the circuits below high or low pass filters? How do you know?

(c)

(d)

ECE 215

4. Calculate the cutoff frequency of the following systems.
(a) A transmission line modeled as an R-L circuit with R=4 Ω and L=5 $\mu\text{H}.$
(b) An R-C low pass filter with R=60 Ω and C=5nF
(c) A C-R high pass filter with R=100 Ω and C=8 $\mu F.$
5. Your communications radio has a lower frequency bound of 800kHz. You know it has a capacitor value
of 100nF, but what is the resistor value?
6. Design a high pass filter to get rid of a DC bias (0Hz) using a 100- Ω resistor you have available.

7. For the circuit below, what is the magnitude of the gain, $\left|\frac{v_o}{v_{in}}\right|$, at 60 Hz?

