NEONEXUS

ANÁLISIS DE SENTIMIENTO EN REDES SOCIALES CON SPARK NLP

Minería de opinión en tiempo real usando Big Data y Deep Learning sobre Twitter

ORIGEN E IMPORTANCIA DEL PROYECTO

Redes Sociales como Fuente de Opinion Pública

El desafio empresarial: comprender al cliente

Solución humana y tecnológica: análisis de sentimiento

Convertir millones de opiniones digitales en decisiones humanas y empáticas

PREGUNTAS CLAVE PARA DEFINIR LA ESTRATEGIA DEL PROYECTO

20ué red social nos permitiria acceder a opiniones en tiempo real?

2 Qué empresa elegiriamos como modelo para la prueba de concepto?

¿Oue herramienta usariamos para extraer esos datos de forma eficiente?

Empresa seleccionada para la prueba de concepto: NVIDIA

Twitter Sentiment Analysis

DESCRIPCIÓN TÉCNICA DEL PROYECTO

NeoNexus

NeoNexus

Fase 1: BERT + TF-IDF (con PCA)

- BERT: Representación semántica profunda.
- TF-IDF: Peso estadistico de têrminos relevan-
- PCA: Reducción de TF-IDF de 5000 a 3000 dimensiones

Esta configuracion fue efectiva en etapas tempranas de validación y sirvio como referencia para pruebas posteriores.

Fase 2: BERT + TF-IDF + Word2Ved

Se añadió WordVec (300 dimensiones, entrenado con Spark NI.P) para enriquecer la representación. Sin embatgo, el costo computacional superó los beneficios en rendimiento. lo que llevó a reconsiderar está estrategia.

Fase 3: BERT + Word2Vec

Se eliminó TF-IDF, manteniendo BERT y Word-2Vec. Esta configuración redujo la complejiddad dimensional, manteniendo profundidad semántice y contexto distribuido. Junto a mejoras estructurales del modelo y un dataset balancéado de 400.000 registros, se lograron mejores resultados

HYPERPARAMETER OPTIMIZATION

USING OPTUNA

LEARNING RATE 0.000124

WEIGHT DECAY 6.7e-06

DROPOUT 0.417

ACTIVATION FUNCTION Mish

OPTIMIZER AdamW

NeoNexus

TRAINING LOSS

0.3818

Importancia de Hiperparámetros

Q

MODEL NAME	F1-SCORE	ACCURACY	RECALL CLA	SS 0 LASL 1	STRUCTURE
best_model_0.417099468279443_	_{pth} 0,8029	0,8029	0,7869	0,8195	Sentiment
best_model_0.417053810332437_	pth 0,8029	0,8029	0,7873	0,8246	Sentiment
best_model_0.417973405104036_	pth 0,8024	0,8028	0,7807	0,8245	Sentiment
best_model_0.419087691088377_	pth 0,8024	0,8028	0,7802	0,8706	Sentiment
best_model_0.417270347679399_	pth 0,8023	0,8028	0,7818	0,8244	Sentiment
best_model_0.416872384039581_	pth 0,8023	0,8028	0,7804	0,8235	Sentiment
best_model_0.419353783763525_	pth 0,8023	0,8028	0,7810	0,8710	Sentiment
best_model_0.417076307020645_	pth 0,8022	0,8023	0,7902	0,8233	Sentiment

CONFUSION MATRIX

ACCURACY: 0.8029

F1-SCORE: 0.8029

PREDICTED

ACTUAL

PREDICTED

	0	1		
	157,371	42,629		
D	36,156	163,656		

MODEL STACKING

FOR SENTIMENT CLASSIFICATION

INDIVIDUAL DEEP LEARNING MODELS

LOGISTIC REGRESSION (STACKING)

F1-score: 0,8025 Accuracy: 0,8025

Confusion matrix

Actual 0 121,173 28,827 Actual 1 30,403 119,456

XGBOOST (STACKING)

F1-score: 0,8043 Accuracy: 0,8043

BEST PERFORMANCE DUE TO NON-LINEAR INTERACTION CAPTURE AND FLEXIBLE WEIGHTING

SHAP analysis for model interpretability (XGBoost stacking)

SELECCIÓN OPTIMIZADA DE EXPERTOS CON ESTRATEGIA GREEDY

RESULTADOS FINALES: COMPARATIVA DE META-MODELOS

REGRESIÓN LOGÍSTICA META-MODELO

F1-score:

0.8055

Accuracy

0.8055

37474]

MATRIZ DE CONFUSION

[162526

[40284 | 159528]

MODELO INTERPRETABLE
Y COMPUTACIONALMENTE EFICIENTE

XGBOOST - META-MODELO

F1-score:

0.8062

Accuracy

0.8063

MATRIZ DE CONFUSIÓN

[162333

37667]

[39796

160016]

MEJOR RENDIMIENTO GENERAL, CAPTURA INTERACCIONES NÓ LINEALES

AMBOS MODELOS MUESTRAN RENDIMIENTO COMPETITIVO. XGBOÓST ES LIGERAMENTE SUPERIOR, PERO LA REGRESION LOGISTICA ES MAS INTERPRETABLE Y ADECUADA EN ESCENARIOS CON RECURSOS LIMITADOS

CONFUSION MATRIX

POSITIVO NEGATIVO
386
25
69
69

F1-SCORE 0,89

82.88%

NeoNexus

DESPLIEGUE DE COMPONENTES Y MODELO

CONCLUSIONES Y FUTURAS MEJORAS

CONCLUSIONES

Big Data

Machine Learning

Cloud Computing

- Solución escalable, eficiente y en tiempo real
- XGBoost + Staking + Greedy garantizaron calidad y relevancia del análisis

FUTURAS MEJORAS

Incluir análisis de sentimiento neutral

Explorar nuevos modelos expertos

Optimizar hiperparámetrosde XGBoost

Probar reducción de dimensionalidad (t-SNE + TF-IDF)

Aňadir métricas avanzadas (ROC-AUC, Precision-Recall)

Anălisis de palabras frecuentes en clases positivas/negativas

Este proyecto no solo es un logro técnico, sino también una demostración clara del poder transformador de la inteligencia Artificial y el Machine Learning en ámbitos empresariales y sociales, acercando cada vez más la tecnologia al servicio humano y empático con lás personas.

GRACIAS POR VUESTRA ATENCIÓN

