MAT1512

May/June 2011

CALCULUS A

Duration · 2 Hours

100 Marks

EXAMINERS:

FIRST: SECOND. MRS SB MUGISHA DR ZE MPONO **PROF I NAIDOO**

Instructions to candidates:

- The use of a pocket calculator is NOT permissible.
- This paper consists of three pages. Answer ALL questions
- Show ALL your workings.

QUESTION 1

1 1 Determine the following limits (if it exists)

(a)
$$\lim_{x \to 2} f(x)$$
 if $f(x) = \begin{cases} x^2 & \text{if } x < 2 \\ 3 & \text{if } x = 2 \\ 3x - 2 & \text{if } x > 2 \end{cases}$ (4)

(b)
$$\lim_{x \to -3} \frac{x^2 - 9}{2x + x^2 - 3}$$
 (4)

(c)
$$\lim_{x \to -\infty} \frac{2x + x^2 + 1}{2x^2 - x + 1}$$
 (4)

(d)
$$\lim_{x \to 0^{-}} \left(\frac{2}{x} - \frac{2}{|x|} \right)$$
 (4)

12 (a) Use the Squeeze Theorem to show that
$$\lim_{x \to \infty} \frac{\sin(e^x)}{x} = 0.$$
 (5)

(b) Hence, evaluate
$$\lim_{x \to \infty} \frac{\sin e^x}{\sqrt{x^2 + 2}}$$
. (3)

[24]

QUESTION 2

Let f(x) = |x - 1|

(a) Show that
$$f$$
 is continuous at $x = 1$ by using the definition of continuity. (6)

(b) Use the definition of the derivative to show that f'(1) does not exist (4)

[10]

QUESTION 3

(3.1) Find the first derivatives of the following functions using the appropriate rules for differentiation Simplify your answer.

(a)
$$y = \frac{1}{\sqrt{x}} \left(x^2 - \frac{2}{x} \right)$$
. (3)

$$(b) \ \ y = \frac{\sin x}{1 + \cos x}. \tag{6}$$

$$(c) y = e^{2x} \cos 4x. \tag{4}$$

(d)
$$F(x) = \int_{\sqrt{x}}^{x} \sqrt{t^2 + 1} dt$$
. (5)

(3.2) For the function $x^3y^4 - 5 = x^3 - x^2 + y$ find the equation of the tangent line at the point (2, -1).

[25]

QUESTION 4

Determine the following integrals

$$(a) \int \frac{4}{x(4\ln x + 1)} dx \tag{3}$$

$$(b) \int x^2 \sqrt{x^3 + 2} \, dx \tag{3}$$

$$(c) \int \cos^2 x \sin^3 x \, dx \tag{4}$$

[TURN OVER]

 $(d) \int_{0}^{1} \frac{e^{2x}}{1 + e^{2x}} dx \tag{5}$

[15]

QUESTION 5

Let $f(x) = -x^2$ and $g(x) = x^2 - 2x$

(a) Sketch the graphs of f and g on the same axes (4)

(b) Find the area of the region determined by the intersection of the curves of f and g. (6)

[10]

QUESTION 6

Solve the following Initial Value Problem

$$xy\frac{dy}{dx} = \ln x, \ y(1) = 2$$

[6]

QUESTION 7

Let $F(x, y) = x^4 - 3x^2y^3 + 5y$.

(a) Find the first partial derivatives F_x and F_y . (2)

(b) Let F(x, y) = 0

(i) Use your answers in (a) above to write down $\frac{dy}{dx}$. (2)

(ii) Confirm your answer in (i) by finding $\frac{dy}{dx}$ using implicit differentiation (6)

[10]

TOTAL: [100]

©