

ВЫСШАЯ ШКОЛА ЭКОНОМИКИ

Физический факультет

Лабороторная работа №1.5

Исследование явления резонанса в последовательной и параллельной RLC-цепи.

Практикум выполнил: Мамонтов Владислав Эдуардович Курс 1, группа 1

Преподаватель практикума: Михаил Игоревич Банников

Содержание

1.	Пос	ледовательное подключение
	1.1.	Схема установки
	1.2.	Оборудование
	1.3.	Теория
	1.4.	Ход работы
	1.5.	Вывод

1. Последовательное подключение

1.1. Схема установки

1.2. Оборудование

Цифровой осциллограф со встроенным генератором сигналов синусоидальной формы, резисторы различного номинала, конденсаторы, индуктивные элементы, макетная плата для монтажа электрических схем

1.3. Теория

$$U_{in} = U_L + U_C + U_R \tag{1}$$

$$Ae^{i\omega t} = L\frac{d^2q}{dt^2} + \frac{dq}{dt}R + \frac{q}{C}$$
 (2)

$$\ddot{q} + 2\gamma\dot{q} + \omega_0^2 q = \frac{A}{L}e^{i\omega t}, \gamma = \frac{R}{2L}, \omega_0^2 = \frac{1}{LC}$$
 (3)

$$q(t) = q_o(t) + q_c(t) \tag{4}$$

Где $q_o(t)$ - решение однородного уравнения, вида затухающей экспоненты, которая при значениях времени порядка $1/\gamma$ будет порядка нуля в сравнении со всеми величинами в задаче. Проверим частное решение вида $q=Be^{iwt}$ подстанвкой

$$-Bw^2e^{iwt} + 2i\gamma Bwe^{iwt} + Bw_0^2e^{iwt} = \frac{A}{L}e^{iwt}$$

$$\tag{5}$$

$$-Bw^2 + 2i\gamma Bw + Bw_0^2 = \frac{A}{L} \tag{6}$$

$$B(w) = \frac{A}{L} \frac{1}{(w_0^2 - w^2) + 2i\gamma w} \tag{7}$$

$$U_C = \frac{q}{C} = \frac{Be^{iwt}}{C} \tag{8}$$

$$U_R = IR = \dot{q}R = iBwe^{iwt} \tag{9}$$

$$|U_R| = \frac{R}{L} \frac{w}{\sqrt{(w_0^2 - w^2) + 4\gamma^2 w^2}}$$
 (10)

$$\frac{d|U_R|}{dw}(w_0) = 0\tag{11}$$

 $U_R(w_0)$ - максимальное значение Напряжения при достижении резонансной частоты

1.4. Ход работы

Соберем цепь как на первом рисунке.

L = 9.3mH

 $R = 891\Omega$

C = 39.5pF

Для данных значений параметров цепи расчитаем теоритическое значение собственной частоты и добротности контура.

$$w_0 = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{9.3 \cdot 10^{-3} \times 39.5 \cdot 10^{-12}}} \approx 260kHz$$

$$\Omega = \frac{1}{R}\sqrt{\frac{L}{C}} \approx 17$$

Снимим амплитудно-чатсотную и фазово-частотную характеристики, посторим их графики в безразмерных по У осях: Из геометрического сысла добротности найдем его на АЧХ и ФЧХ, как ширина безразмерного промежутка на высоте $\frac{\sqrt{2}}{2}$ на АЧХ или ширина промежутка на ФЧХ, на котором разница фаз составляет 45 градусов.

По графикам, значение резонансной частоты составляет $w_0 = 225kHz$, Значение добротности: $\Omega = 225/(232-217) = 15$

В резонансном режиме импеданс цепи равен: $Z = R + r_L$

Померенное нами напряжение на втором канале даст выражение для силы тока, протекающей в цепи, представив ее цепью постоянного тока:

$$U_2 = IR (12)$$

$$I = \frac{U_2}{R} \tag{13}$$

По закону Кирхгоффа для всей цепи:

$$Ir_L + IR = U_1 \tag{14}$$

$$Ir_L + U_2 = U_1 \tag{15}$$

$$r_L = \frac{U_1 - U_2}{I} = R - \frac{U_1}{U_2}R = R(1 - \frac{U_1}{U_2})$$
(16)

значение отношения напряжений представлены на графике АЧХ: $\frac{U_2}{U_1}=0.465$ следовательно $r_L=891(2.15-1)\approx 1kOm$

1.5. Вывод

Эксперементальное значение добротности достаточно близко к теоретическому, хотя получилось чуть меньше. Это можно объяснить как раз вычесленным значением активного сопротивления катушки, которое, надо сказать зависит еще и от частоты вынужденных колебаний, а значит и добротность контура тоже будет не константой для каждого конкретного контура.