Devoir surveillé n° 6 Version 1

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

- Fonctions contractantes -

Soit $a, b \in \mathbb{R}$ avec a < b. Soit $f : [a, b] \to [a, b]$ telle que, pour tout $x, x' \in [a, b]$ avec $x \neq x'$, on a :

$$|f(x) - f(x')| < |x - x'|.$$

- 1) Montrer que f est continue sur [a, b].
- 2) Montrer que l'équation f(x) = x admet une unique solution dans [a, b].

II. Une équation fonctionnelle.

- $\square \mathscr{C}^0(\mathbb{R},\mathbb{R})$ est l'ensemble des fonctions continues de \mathbb{R} dans \mathbb{R} .
- \square L'objectif du problème est d'étudier les ensembles $\mathscr E$ et $\mathscr F$ suivants :

$$\mathscr{E} = \{ f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R}) \mid \forall (x, y) \in \mathbb{R}^2, \ f(x + y) + f(x - y) = 2f(x)f(y) \}.$$

 ${\mathscr F}$ est la partie constituée des éléments f de ${\mathscr E}$ tels que :

- f n'est pas la fonction identiquement nulle.
- f s'annule au moins une fois sur \mathbb{R} .

Première Partie:

- 1) Montrer que la fonction cosinus est dans l'ensemble \mathscr{E} .
- 2) Démontrer la formule : $\forall (x,y) \in \mathbb{R}^2$, $\operatorname{ch} x \operatorname{ch} y + \operatorname{sh} x \operatorname{sh} y = \operatorname{ch}(x+y)$. En déduire que la fonction ch est dans l'ensemble \mathscr{E} .
- 3) Soit f dans \mathscr{E} ; on définit pour tout α :

$$f_{\alpha}(x): \mathbb{R} \to \mathbb{R}$$
.
 $x \mapsto f(\alpha x)$.

Montrer que pour tout réel α , la fonction f_{α} est dans \mathscr{E} .

4) On fixe un élément f de \mathscr{E} .

En donnant à x et à y des valeurs particulières, prouver que :

a) f(0) vaut 0 ou 1.

- **b)** Si f(0) = 0, alors f est la fonction identiquement nulle.
- c) Si f(0) = 1, alors f est une fonction paire.

Deuxième Partie:

On pourra utiliser librement le résultat suivant :

Si a est un élément fixé de \mathbb{R}_+^* et si $D_a = \left\{ a \frac{p}{2^q} \mid p \in \mathbb{Z}, q \in \mathbb{N} \right\}$, tout réel est limite d'une suite d'éléments de D_a .

Soit f un élément de \mathscr{F} . On pose $E = \{x > 0 \mid f(x) = 0\}$.

- 5) a) En utilisant un résultat de la première partie, montrer que f(0) = 1, et que f s'annule au moins une fois sur \mathbb{R}_{+}^{*} .
 - b) Montrer que E admet une borne inférieure que l'on note a.
 - c) Montrer que pour tout $n \in \mathbb{N}^*$, il existe $x_n \in E$ tel que $x_n \in [a, a + 1/n[$. En déduire qu'il existe une suite d'éléments de E qui converge vers a.
 - d) En utilisant la continuité de f en a, prouver que f(a) = 0. En déduire que : a > 0.
 - e) En utilisant le théorème des valeurs intermédiaires, montrer que : $\forall x \in [0, a[, f(x) > 0.$
- 6) On pose $\omega = \frac{\pi}{2a}$, et on note

$$g: \mathbb{R} \to \mathbb{R} .$$
$$x \mapsto \cos(\omega x)$$

a) Soit $q \in \mathbb{N}$. En se rappelant que f(0) = 1, montrer que

$$f\left(\frac{a}{2^q}\right) + 1 = 2\left[f\left(\frac{a}{2^{q+1}}\right)\right]^2.$$

b) En déduire, en raisonnant par récurrence sur q, que :

$$\forall q \in \mathbb{N}, \ f\left(\frac{a}{2^q}\right) = g\left(\frac{a}{2^q}\right).$$

On démontrerait de même le résultat suivant, que le candidat pourra utiliser librement : si $q \in \mathbb{N}$ est fixé, alors $\forall p \in \mathbb{N}$, $f\left(p\frac{a}{2q}\right) = g\left(p\frac{a}{2q}\right)$.

- c) Prouver que : $\forall x \in D_a, \ f(x) = g(x).$
- d) En déduire que f = g.
- 7) En déduire tous les éléments de \mathscr{F} .

III. Les polynômes de Bernoulli.

Dans tout ce problème, on identifiera un polynôme et la fonction polynomiale qui lui est associée.

1) Question de cours : Soit $P \in \mathbb{R}_n[X]$. Montrer qu'il existe un polynôme $Q_0 \in \mathbb{R}_{n+1}[X]$ vérifiant $Q'_0 = P$. Déterminer en fonction de Q_0 tous les polynômes Q vérifiant Q' = P.

On considère une suite de polynômes $(B_n)_{n\in\mathbb{N}}$ (suite de Bernoulli) par les relations suivantes :

- (a) $B_0 = 1$;
- (b) $\forall n \in \mathbb{N}, B'_{n+1} = (n+1)B_n;$
- (c) $\forall n \in \mathbb{N}^*, \int_0^1 B_n(t) dt = 0.$
 - 2) Montrer l'existence et l'unicité d'une telle suite (B_n) .
 - 3) Expliciter les polynômes B_1 , B_2 et montrer que $B_3 = X^3 \frac{3}{2}X^2 + \frac{1}{2}X$.
 - 4) Montrer que, pour tout $n \in \mathbb{N}$, B_n est un polynôme unitaire de degré n.
 - **5)** Montrer que, pour tout $n \in \mathbb{N}$ vérifiant $n \ge 2$, $B_n(0) = B_n(1)$.
 - **6)** Montrer que, pour tout $n \in \mathbb{N}$, B_n vérifie l'équation :

$$\forall x \in \mathbb{R}, \ B_n(1-x) = (-1)^n B_n(x).$$

Indication: on pensera à utiliser l'unicité obtenue à la question 2).

Dans toute la suite, on note pour tout $n \in \mathbb{N}$: $\beta_n = B_n(0)$ (n^e nombre de Bernoulli).

- 7) Expliciter les valeurs de β_1 , β_2 et β_3 .
- 8) Montrer que, pour tout entier $n \ge 3$ impair, $\beta_n = 0$.
- 9) Montrer que, pour tout $n \in \mathbb{N}$,

$$B_n = \sum_{k=0}^n \binom{n}{k} \beta_k X^{n-k}.$$

Indication: on pourra commencer par exprimer $B_n^{(k)}$ en fonction de B_{n-k} .

10) En déduire que, pour tout $n \ge 2$,

$$\sum_{k=0}^{n-1} \binom{n}{k} \beta_k = 0.$$

En déduire enfin pour tout $n \ge 1$ une expression de β_n en fonction de $\beta_0, \ldots, \beta_{n-1}$.

11) Écrire dans le langage Python une fonction Bernoulli(n) prenant en argument un entier naturel n et renvoyant la valeur de β_n .