Nuclear Physics

Hertzberg, Joakim D.

April 11, 2024

Contents

1	Par	ticles and their properties	2
	1.1	The atomic mass unit	2
	1.2	The electron	2
	1.3	The proton	2
	1.4	The neutron	
	1.5	The positron	
2			3
	2.1	lpha-radiation	3
	2.2	$\boldsymbol{\beta}$ -radiation	3
	2.3	$oldsymbol{\gamma}$ -radiation	3
3	Nuc	clear Reactions	4
	3.1	Transmutation	4
	3.2	Energy released	4
	3.3	Binding Energy	

1 Particles and their properties

1.1 The atomic mass unit

The atomic mass unit (also AMU) is defined as $1.6605390710^{-27} Kg$. It has the unit u. It was defined such that the mass of a proton (and a neutron, which has the same mass) is 1u.

1.2 The electron

The electron is an elementary particle, which is a particle that has no building blocks, but is itself among the smallest possible building blocks. The mass of an electron is 0.000548579909~u, and it has a charge of $1.60217663 \times 10^{-19}~C$, which is equal to the elementary charge e.

1.3 The proton

The proton is a non-elementary particle, which consists of quarks which are elementary particles. It has a mass of 1 u, and is positively charged by +1 e.

1.4 The neutron

The neutron is, as it's name implies, neutrally charged, meaning it has a charge of 0, it does however have the same mass as a proton, i.e. 1 u.

1.5 The positron

The *positron* is something which may also be encountered, and can easily be confused with the proton. It is significant to note that the positron is an *elementary particle*, and is the anti-matter form of the *electron*, so it has the same mass $(0.000548579909 \ u)$, and a charge of $+1 \ e$.

2 Types of radiation

2.1 α -radiation

Alpha Radiation or Alpha Decay is when a particle releases another particle, a so-called α -particle as it decays.

$${}_{Z}^{A}X \rightarrow {}_{Z-2}^{A-4}X' + {}_{2}^{4}\alpha$$

What is an α -particle?

An alpha-particle looks exactly like a He-nucleus, that is, two protons & 2 neutrons. Ignoring the amount of electrons, following is true:

$${}^4_2\alpha = {}^4_2He$$

2.2 β -radiation

Beta Radiation or Beta Decay is when a particle releases an electron and a neutrino as it decays, by a neutron splitting into an electron and a proton.

$${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}X' + {}_{-1}^{0}e + \bar{v}$$

Sidenote:

Since elements release electrons as they decay, and gain a proton, the element itself changes to the next element over in the periodic table.

2.3 γ -radiation

3 Nuclear Reactions

3.1 Transmutation

It is possible to transmute one particle into the other by fusion. For example:

$$^{14}_{7}N + ^{4}_{2}He \rightarrow ^{17}_{8}O + ^{1}_{1}H$$

3.2 Energy released

In nuclear reactions, there is often a mass deficit (Δm) , which is then related to a certain energy which that mass converts into, ΔE . Said energy is provided by Albert Einstein's famos equation:

$$E = mc^2$$

Which can be translated into:

$$\Delta E = \Delta mc^2$$

3.3 Binding Energy

It has been found by scientists that there is more energy in an atom than the sum of all its $nucleons^1$, this mass represents the $binding\ energy$, which is the energy that is contained by the bonds which hold the neutrons particles together in the nucleus. This means that we can conclude following for an element ${}_Z^AX$:

$$m_X - \Delta m = (Z)m_p + (A - Z)m_n$$

NOTE: Binding energy is almost always the energy released (see 3.2)

Example:

 ^{54}Fe has a mass of 53.9396082 u, a proton (with accompanying electron) has a mass of 1.0078250319 u, and a neutron has a mass of 1.0086649 u.

Q: Find the binding energy of iron-54 Let E_b be binding energy

$$m_{Fe} - \Delta m = 53.9396 \ u = 26(m_p) + (54 - 26)(m_n)$$

 $53.9396082 - \Delta m = 26(1.0078250319) + 28(1.0086649)$
 $53.9396082 - \Delta m = 52.42873823$
 $\Delta m = 53.9396082 - 52.42873823$
 $\Delta m = 1.51086997 \ u$

$$\therefore (\Delta E = \Delta m \times c^2) \wedge (\Delta E = E_b)$$

$$E_b = \Delta m \times c^2$$

Convert m from AMU to Kg.

$$m = 1.51086997 \times 1.66053907 \times 10^{-17} = 2.50885861 \times 10^{-17}$$

 $E_b = 2.50885861 \times 10^{-17} (299792458)^2$
 $E_b = 2.254849673 J$

¹A nucleon is either a proton or neutron, i.e. a component of the nucleus