ED – Seminario 6/10/2016 Grafos

María del Rosario Suárez Fernández

Dijkstra

- Algoritmo de caminos mínimos
- Objetivo
 - Determinar el camino mas corto desde el nodo origen al resto de los nodos del grafo
- Aplicaciones
 - Encaminamiento de paquetes por los routers
 - Reconocimiento de lenguaje hablado
 - Enrutamiento de aviones y tráfico aéreo

Encontrar el camino mínimo entre A y F

Matriz de Pesos F ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 10 ∞ ∞ ∞ 8 D ∞ 6 ∞ ∞ Ε 2 ∞ ∞ ∞ ∞ ∞ F ∞ ∞ ∞ ∞ ∞ ∞

Nodos	Paso1			
Α	(A-A,0)	 	 	
В				
С				
D				
E				
F				

Nodos	Paso1			
Α	(A-A,0)	 	 	
В	(A-B,4)			
С	(A-C,2)			
D	∞			
E	∞			
F	∞			

Nodos	Paso1	Paso2				
Α	(A-A,0)					
В	(A-B,4)	(C-B,3)				
С	(A-C,2)	(A-C,2)				
D	∞	(C-D,10)				
E	∞	(C-E,12)				
F	∞	∞				

Nodos	Paso1	Paso2	Paso3			
Α	(A-A,0)					
В	(A-B,4)	(C-B,3)	(C-B,3)			
С	(A-C,2)	(A-C,2)				- -
D	∞	(C-D,10)	(B-D,8)			
E	∞	(C-E,12)	∞			
F	∞	∞	∞			

Nodos	Paso1	Paso2	Paso3	Paso4		
Α	(A-A,0)					
В	(A-B,4)	(C-B,3)	(C-B,3)			
С	(A-C,2)	(A-C,2)				
D	∞	(C-D,10)	(B-D,8)	(B-D,8)		
E	∞	(C-E,12)	⊗	(D-E,10)		
F	∞	∞	∞	(D-F,14)		

Nodos	Paso1	Paso2	Paso3	Paso4	Paso5	
Α	(A-A,0)					
В	(A-B,4)	(C-B,3)	(C-B,3)			
С	(A-C,2)	(A-C,2)				-
D	∞	(C-D,10)	(B-D,8)	(B-D,8)		
E	∞	(C-E,12)	∞	(D-E,10)	(D-E,10)	
F	∞	∞	∞	(D-F,14)	(E-F,12)	

Nodos	Paso1	Paso2	Paso3	Paso4	Paso5	
Α	(A-A,0)					
В	(A-B,4)	(C-B,3)	(C-B,3)			
С	(A-C,2)	(A-C,2)				
D	∞	(C-D,10)	(B-D,8)	(B-D,8)		
E	∞	(C-E,12)	∞	(D-E,10)	(D-E,10)	
F	∞	∞	∞	(D-F,14)	(E-F,12)	(E-F,12)

Encontrar el camino desde A a todos los nodos

Paso1: Inicialización

Matriz de Pesos

	Α	В	С	D	E
Α	8	10	8	30	100
В	8	8	50	8	8
C	8	8	8	8	10
D	8	8	20	8	60
Ε	8	8	8	8	8

$$V = \{B, C, D, E\}$$

	А	В	С	D	E
D	∞	10	∞	30	100
D	А	В	С	D	Е
P		Α	Α	Α	Α

Paso2: Elegir un vértice $w \in V - \{A\}$ tal que D[w] sea mínimo Agregar w al conjunto solución

$$V - \{A\} = \{B, C, D, E\}$$

7	А	В	С	D	Е
U	∞	10	∞	30	100

Mínimo → B

$$S = \{A, B\}$$

$$V = \{C, D, E\}$$

Paso3: Para cada $v \in \{C, D, E\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v=C

$$D[C] \leftarrow min(D[C], D[B]+C[B,C])$$

 $D[C] \leftarrow min(\infty,10+50)=60$

_	Α	В	С	D	Е
D	∞	10	∞	30	100
D	Α	В	С	D	E
Ρ	Α	Α	Α	Α	Α

Paso3: Para cada $v \in \{C, D, E\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v=C

$$D[C] \leftarrow min(D[C], D[B]+C[B,C])$$

 $D[C] \leftarrow min(\infty,10+50)=60$

D	Α	В	С	D	Е
U	∞	10	60	30	100
0	Α	В	С	D	E
Р	Α	Α	В	Α	Α

Paso3: Para cada $v \in \{C, D, E\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v=D

 $D[D] \leftarrow min(D[D], D[B]+C[B,D])$

 $D[D] \leftarrow min(30,10+\infty)=30$

D	Α	В	С	D	Е
	∞	10	60	30	100
	Α	В	С	D	E
Р	Α	А	В	Α	Α

No mejora

Paso3: Para cada $v \in \{C, D, E\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v=E

D[E]
$$\leftarrow$$
 min (D[E], D[B]+C[B,E])
D[E] \leftarrow min(100,10+ ∞)=100

	D	Α	В	С	D	E
	∞	10	60	30	100	
Р	Α					
	Α	Α	В	Α	Α	

No mejora

Paso4: Elegir un vértice $w \in V - \{A,B\}$ tal que D[w] sea mínimo Agregar w al conjunto solución

$$V - \{A,B\} = \{C, D, E\}$$

∞ 10 60 30 100	_	А	В	С	D	Е
	U	∞	10	60	30	100

Mínimo → D

$$S = \{A, B, D\}$$

$$V = \{C, E\}$$

Paso5: Para cada $v \in \{C, E\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v=C

$$D[C] \leftarrow min (D[C], D[D] + C[D,C])$$

 $D[C] \leftarrow min(60,30+20) = 50$

D	Α	В	С	D	E
	∞	10	60	30	100
Р	Α	В	С	D	Е
	Α	Α	В	Α	Α

Paso5: Para cada $v \in \{C, E\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v=C

$$D[C] \leftarrow min (D[C], D[D] + C[D,C])$$

 $D[C] \leftarrow min(60,30+20) = 50$

D	Α	В	С	D	E
Р	Α	В	С	D	Е
	А	Α	D	А	Α

Paso6: Para cada $v \in \{C, E\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v=E

$$D[E] \leftarrow min (D[E], D[D] + C[D, E])$$

 $D[E] \leftarrow min(100,30+60)=90$

D	Α	В	С	D	E
	∞	10	50	30	100
Р	Α	В	С	D	E
	Α	Α	D	Α	Α

Paso6: Para cada $v \in \{C, E\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v=E

$$D[E] \leftarrow min (D[E], D[D] + C[D, E])$$

 $D[E] \leftarrow min(100,30+60) = 90$

D	Α	В	С	D	Е
	∞	10	50	30	90
Р	А	В	С	D	Е
	Α	Α	D	Α	D

Paso7: Elegir un vértice w ∈ V - {A,B,D} tal que D[w] sea mínimo Agregar w al conjunto solución

$$V - \{A,B,D\} = \{C, E\}$$

	Α	В	С	D	Е
U	∞	10	50	30	90

Mínimo → C

$$S = \{A, B, D, C\}$$

$$V = \{E\}$$

Paso8: Para cada $v \in \{E\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v=E

$$D[E] \leftarrow min (D[E], D[C]+C[C,E])$$

 $D[E] \leftarrow min(90,50+10)=60$

	А	В	С	D	E
	∞				
Р	Α	В	С	D	Е
	Α	Α	D	А	D

Paso8: Para cada $v \in \{E\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v=E

$$D[E] \leftarrow min (D[E], D[C]+C[C,E])$$

 $D[E] \leftarrow min(90,50+10)=60$

	Α				
D	∞	10	50	30	60
Р					
	Α	Α	D	А	С

Paso9: Elegir un vértice $w \in V - \{A,B,D,C\}$ tal que D[w] sea mínimo Agregar w al conjunto solución

 $V - \{A,B,D,C\} = \{E\}$

	Α	В	С	D	Е
D	∞	10	50	30	60
Р	А	В	С	D	Е
		Α	D	Α	С

$$S = \{A, B, D, C, E\}$$

Mínimo → E

$$V = \{ \}$$

Final del proceso

D	Α	В	С	D	Е
U	∞	10	50	30	60

Mínimo → E

$$S = \{A, B, D, C, E\}$$

Aplicar **Dijkstra** desde el nodo A y obtener los posibles caminos desde el nodo A al resto de los nodos

Recorrido	Candidatos
{ }	{1}
{1}	{2,6,8}
{1,2}	{6,8,3}
{1,2,6}	{8,3,7}
{1,2,6,8}	{3,7,9,10}
{1,2,6,8,3}	{7,9,10,4,5}
{1,2,6,8,3,7}	{9,10,4,5}
{1,2,6,8,3,7,9}	{10,4,5}
{1,2,6,8,3,7,9,10}	{4,5,11}
{1,2,6,8,3,7,9,10,4}	{5,11}
{1,2,6,8,3,7,9,10,4,5}	{11}
{1,2,6,8,3,7,9,10,4,5,11}	{ }

Recorrido	Candidatos
{ }	{A}

Recorrido	Candidatos
{ }	{ A }
{ A }	{C,D,E}

Recorrido	Candidatos
{ }	{A}
{ A }	{C,D,E}
{A,C}	{D,E,B,F}

Recorrido	Candidatos
{ }	{A}
{ A }	{C,D,E}
{A,C}	{D,E,B,F}
{A,C,D}	{E,B,F}

Recorrido	Candidatos
{ }	{ A }
{ A }	{C,D,E}
{A,C}	{D,E,B,F}
{A,C,D}	{E,B,F}
{A,C,D,E}	{B,F,H}

Recorrido	Candidatos
{ }	{A}
{ A }	{C,D,E}
{A,C}	{D,E,B,F}
{A,C,D}	{E,B,F}
{A,C,D,E}	{B,F,H}
{A,C,D,E,B}	{F,H,G}

Recorrido en anchura - Ejemplo

Recorrido	Candidatos
{ }	{A}
{ A }	{C,D,E}
{A,C}	{D,E,B,F}
{A,C,D}	{E,B,F}
{A,C,D,E}	{B,F,H}
{A,C,D,E,B}	{F,H,G}
{A,C,D,E,B,F}	{H,G}

Recorrido en anchura - Ejemplo

Recorrido	Candidatos
{ }	{A}
{ A }	{C,D,E}
{A,C}	{D,E,B,F}
{A,C,D}	{E,B,F}
{A,C,D,E}	{B,F,H}
{A,C,D,E,B}	{F,H,G}
{A,C,D,E,B,F}	{H,G}
{A,C,D,E,B,F,H}	{G}

Recorrido en anchura - Ejemplo

Recorrido	Candidatos
{ }	{ A }
{ A }	{C,D,E}
{A,C}	{D,E,B,F}
{A,C,D}	{E,B,F}
{A,C,D,E}	{B,F,H}
{A,C,D,E,B}	{F,H,G}
{A,C,D,E,B,F}	{H,G}
{A,C,D,E,B,F,H}	{G}
{A,C,D,E,B,F,H,G}	{ }

Recorrido	Candidatos
{ }	{1}
{1}	{2,6,8}
{1,2}	{3,6,8}
{1,2,3}	{4,5,6,8}
{1,2,3,4}	{5,6,8}
{1,2,3,4,5}	{6,8}
{1,2,3,4,5,6}	{7 , 8}
{1,2,3,4,5,6,7}	{ 8 }
{1,2,3,4,5,6,7,8}	{9,10}
{1,2,3,4,5,6,7,8,9}	{10}
{1,2,3,4,5,6,7,8,9,10}	{11}
{1,2,3,4,5,6,7,8,9,10,11}	{ }

Recorrido	Candidatos
{ }	{ A }

Recorrido	Candidatos
{ }	{ A }
{ A }	{B,C,E}

Recorrido	Candidatos
{ }	{ A }
{ A }	{B,C,E}
{A,B}	{F,C,E}

Recorrido	Candidatos
{ }	{ A }
{ A }	{B,C,E}
{A,B}	{F,C,E}
{A,B,F}	{G,C,E}

Recorrido	Candidatos
{ }	{A}
{ A }	{B,C,E}
{A,B}	{F,C,E}
{A,B,F}	{G,C,E}
{A,B,F,G}	{H,C,E}

Recorrido	Candidatos
{ }	{A}
{ A }	{B,C,E}
{A,B}	{F,C,E}
{A,B,F}	{G,C,E}
{A,B,F,G}	{H,C,E}
{A,B,F,G,H}	{C, E}

Recorrido	Candidatos
{ }	{A}
{ A }	{B,C,E}
{A,B}	{F,C,E}
{A,B,F}	{G,C,E}
{A,B,F,G}	{H,C,E}
{A,B,F,G,H}	{C,E}
{A,B,F,G,H,C}	{ E }

Recorrido	Candidatos
{ }	{A}
{ A }	{B,C,E}
{A,B}	{F,C,E}
{A,B,F}	{G,C,E}
{A,B,F,G}	{H,C,E}
{A,B,F,G,H}	{C,E}
{A,B,F,G,H,C}	{ E }
{A,B,F,G,H,C,E}	{ }

TAREAS PARA CASA

Entregar un pdf con las soluciones, <u>de</u>
<u>forma individual</u>, en el enlace del
Campus Virtual antes del día 20 de
Octubre a las 12:00

Ejercicios para casa

- Calcular el camino de coste mínimo desde el nodo <u>A al resto</u> de los nodos
- Indicar paso a paso como se va obteniendo
 - Indicar como llegar desde

 <u>A a cada nodo</u> si existe
 un camino, así como el
 coste del mismo

Ejercicios para casa

- Calcular el recorrido en profundidad desde el nodo C
- Calcular el recorrido en profundidad desde el nodo D
- Calcular el recorrido en profundidad desde el nodo H
- En todos los casos mostrar el proceso paso a paso