Cây Quyết Định (Decision Tree)

Cây quyết định

 Dùng cấu trúc cây để đưa ra một hàm phân lớp cần học (hàm mục tiêu có giá trị rời rạc)

Figure 1: Cây ra quyết định chỉ ra khách hàng nào thường mua máy tính

- Một cây quyết định có thể được biểu diễn (diễn giải) bằng một tập các luật IF-THEN (dễ đọc và dễ hiểu)
- Được áp dụng thành công trong rất nhiều các bài toán ứng dụng thực tế

• Cho tập dữ liệu sau:

• Có điểm dữ liệu mới với giá trị thuộc tính x=1, màu của điểm này nên là gì? (nên phân vào lớp nào?)

• Đó là cây ra quyết định đơn giản với một node phân loại kiểm tra x = x < 2.

• Nếu kểm tra x < 2, chúng ta lấy nhánh trái và gán nhãn màu xanh da trời, nếu kiểm tra không đúng ($x \ge 2$), chúng ta lấy nhánh phải và gán nhãn màu xanh lá cây.

Bây giờ tập dữ liệu có 3 lớp:

- Cây quyết đĩnh cũ không hiệu quả, với mẫu dữ liệu mới (x, y)
 - Nếu $x \ge 2$, chúng ta có thể vẫn tự tin phân loại vào lớp xanh lá cây
 - Nếu x < 2, chúng ta không thể phân loại ngay vào lớp xanh ra trời, nó cũng có thể đỏ.

Chúng ta cần thêm node quyết định vào cây quyết định

Đó là ý tưởng chính của cây ra quyết định.

Biểu diễn cây quyết định

- Mỗi nút trong (internal node) biểu diễn một thuộc tính cần kiểm tra giá trị đối với các ví dụ (mẫu).
- Mỗi nhánh (branch) từ một nút sẽ tương ứng với một giá trị có thể của thuộc tính gắn với nút đó.
- Mỗi nút lá (leaf node) biểu diễn một lớp.
- Một cây quyết định học được sẽ phân lớp đối với một ví dụ, bằng cách duyệt cây từ nút gốc đến một nút lá
- ullet ightarrow Nhãn lớp gắn với nút lá đó sẽ được gán cho ví dụ cần phân lớp

Học các cây quyết định

Bài toán: Học xem khi nào thì nên ngồi bàn đợi tại một restaurant:

- 1. Alternate: Có restaurant nào cạnh đây không?
- 2. Bar: Liệu có khu vực quầy bar có thể ngồi không?
- 3. Fri/Sat: hôm nay là thứ 6 hay thứ 7?
- 4. Hungry: có đang đói không?
- 5. Patrons: Số người trong restaurant (None, Some, Full)
- 6. Price: khoảng giá (\$, \$\$, \$\$\$)
- 7. Raining: ngoài trời có mưa không?
- 8. Reservation: đã đặt trước chưa?
- 9. Type: loại restaurant (French, Italian, Thai, Burger)
- 10. WaitEstimate: thời gian chờ đợi (0-10, 10-30, 30-60, >60)

Biểu diễn thuộc tính giá trị

Example	Attributes							Target			
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Cây quyết định

- Biểu diễn giả thiết cần học.
- Ví dụ:

Thuật toán học cây quyết định

- Mục đích: Tìm cây nhỏ nhất quán với tập mẫu huấn luyện.
- Ý tưởng: Tìm kiếm heuristic chọn thuộc tính quan trọng nhất để phân tách (đệ quy)

```
function DTL(examples, attributes, default) returns a decision tree
   if examples is empty then return default
   else if all examples have the same classification then return the classification
   else if attributes is empty then return Mode (examples)
   else
        best \leftarrow \text{Choose-Attributes}, examples
        tree \leftarrow a new decision tree with root test best
       for each value v_i of best do
             examples_i \leftarrow \{elements of examples with best = v_i\}
            subtree \leftarrow DTL(examples_i, attributes - best, Mode(examples))
            add a branch to tree with label v_i and subtree subtree
        return tree
```

Chọn thuộc tính

 Ý tưởng: chọn thuộc tính (giá trị) sao cho sao cho nó giúp phân tách tập mẫu thanh hai tập thuần khiết (chỉ có positive hay chỉ có negative).

Patrons? là lựa chọn tốt hơn

Sử dụng lý thuyết thông tin

- để cài đặt Choose-Attribute trong thuật toán DTL:
- Lượng thông tin (Entropy):

$$I(P(v_1), ..., P(v_n)) = \sum_{i=1-n} -P(v_i) \log_2 P(v_i)$$

Đối với tập có p mẫu positive và n negative:

$$I(\frac{p}{p+n}, \frac{n}{p+n}) = -\frac{p}{p+n} \log_2 \frac{p}{p+n} - \frac{n}{p+n} \log_2 \frac{n}{p+n}$$

Lợi thông tin (Information gain)

• chọn thuộc tính A chia tập huấn luyện E thành các tập con E_1, \ldots, E_v tính theo giá trị của A, và giả sự A có v giá trị khác nhau.

Lợi thông tin (IG) là độ giảm trong entropy trong việc test thuộc tính:

$$remainder(A) = \sum_{i=1}^{v} \frac{p_i + n_i}{p + n} I(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i})$$

Chọn thuộc tính có IG lớn nhất

$$IG(A) = I(\frac{p}{p+n}, \frac{n}{p+n}) - remainder(A)$$

Lợi thông tin (Information gain)

Trong tập mẫu của ví dụ, p = n = 6, I(6/12, 6/12) = 1 bit

Xét thuộc tính Patrons và Type (và các thuộc tính khác):

$$IG(Patrons) = 1 - \left[\frac{2}{12}I(0,1) + \frac{4}{12}I(1,0) + \frac{6}{12}I(\frac{2}{6}, \frac{4}{6})\right] = .541 \text{ bits}$$

$$IG(Type) = 1 - \left[\frac{2}{12}I(\frac{1}{2}, \frac{1}{2}) + \frac{2}{12}I(\frac{1}{2}, \frac{1}{2}) + \frac{4}{12}I(\frac{2}{4}, \frac{2}{4}) + \frac{4}{12}I(\frac{2}{4}, \frac{2}{4})\right] = 0 \text{ bits}$$

Patrons có giá trị IG cao nhất nên được DTL chọn làm gốc của cây quyết định.

Lợi thông tin (Information gain)

Cây quyết định học bởi DTL từ 12 ví dụ:

Nhỏ hơn cây quyết định đưa ra lúc đầu

Xây dựng cây quyết định

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Xây dựng cây quyết định

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

The following table consists of training data from an employee database. The data have been generalized. For example, "31 . . . 35" for *age* represents the age range of 31 to 35. For a given row entry, *count* represents the number of data tuples having the values for *department*, *status*, *age*, and *salary* given in that row.

department	status	age	salary	count
sales	senior	3135	46K50K	30
sales	junior	2630	26K30K	40
sales	junior	3135	31K35K	40
systems	junior	2125	46K50K	20
systems	senior	3135	66K70K	5
systems	junior	2630	46K50K	3
systems	senior	4145	66K70K	3
marketing	senior	3640	46K50K	10
marketing	junior	3135	41K45K	4
secretary	senior	4650	36K40K	4
secretary	junior	2630	26K30K	6