Project Euler #129: Repunit divisibility

This problem is a programming version of Problem 129 from projecteuler.net

A number consisting entirely of ones is called a repunit. We shall define R(k) to be a repunit of length k; for example, R(6) = 111111.

Given that n is a positive integer and $\gcd(n,10)=1$, it can be shown that there always exists a value, k, for which R(k) is divisible by n, and let A(n) be the least such value of k; for example, A(7)=6 and A(41)=5.

The least value of n for which A(n) first exceeds ten is 17.

Given n, compute A(n).

Input Format

The first line of input contains T, the number of test cases.

Each test case consists of a single line containing single integer, n.

Constraints

$$\gcd(n,10)=1$$

Test files #1-2:

 $1 \leq T \leq 20000$

 $1 \le n \le 10^6$

Test files #3-6:

 $1 \le T \le 100$

 $1 \le n \le 10^{13}$

Output Format

For each test case, output a single line containing a single integer, A(n).

Sample Input

Sample Output

Explanation

As mentioned in the problem statement, A(7)=6 and A(41)=5.