MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent institution of MAHE, Manipal)

MANIPAL

Basic Electrical Technology

2. Magnetic Circuits & Electromagnetism

LECTURE 15 - 15 DEC 2021

Parallel Magnetic Circuits

Parallel Magnetic Circuit

- More than one path for flux
- ➤ Can be compared to a parallel electric circuit which has more than one path for electric current

$$\blacktriangleright \Phi = \Phi_1 + \Phi_2$$

$$S_{AB} = rac{l_{AB}}{\mu_0 \, \mu_{rAB} \, A_{AB}}$$

$$S_{ADCB} = \frac{l_{ADCB}}{\mu_0 \, \mu_{rADCB} \, A_{ADCB}}$$

$$S_{AFEB} = \frac{l_{AFEB}}{\mu_0 \, \mu_{rAFEB} \, A_{AFEB}}$$

Analogous Electrical Circuit

Parallel Magnetic Circuit

$$Arr (Mmf)_{Total} = \Phi S_{AB} + \Phi_1 S_{ADCB}$$

OR

(Mmf)_{Total} = $\Phi S_{AB} + \Phi_2 S_{AFEB}$

Analogous Electrical Circuit

Parallel Magnetic Circuit

- More than one path for magnetic flux
- Can be compared to a parallel electric circuit which has more than one path for electric current

$$\emptyset_1 = \emptyset_2 + \emptyset_3$$

 S_1 = Reluctance of path EFAB

 S_2 = Reluctance of path BE

 S_3 = Reluctance of path BCDE

Total mmf required = mmf_{EFAB} + mmf_{BE} or mmf_{BCDE} NI = $\emptyset_1 S_1 + \emptyset_2 S_2 = \emptyset_1 S_1 + \emptyset_3 S_3$

 $ightharpoonup S_1$, S_2 and S_3 must be determined from calculation of $\frac{l}{A\mu_0\mu_r}$ for those paths of the magnetic circuit in which \emptyset_1 , \emptyset_2 and \emptyset_3 exist respectively

Analogous
Electric circuit

Parallel Magnetic Circuit with Air Gap

mmf required for this circuit would be the sum of: (i) that required for central limb (air-gap + core material) and, (ii) that required for either of two parts (not both)

Parallel Magnetic Circuit with Air Gap

$$S_{g-left}$$

$$S_{g-center}$$

$$S_{AFEB}$$

$$S_{AFEB}$$

$$S_{ACDB}$$

$$F$$

$$S_{AFEB} = \frac{(L_{AFEB} - L_{gleft})}{\mu_0 \; \mu_{rAFEB} \; A_{AFEB}}$$

$$S_{g-center} = \frac{L_{gcenter}}{\mu_0 A_{g-center}}$$

$$S_{AB} = \frac{(L_{AB} - L_{gcenter})}{\mu_0 \, \mu_{rAB} \, A_{AB}}$$

$$S_{g-left} = \frac{L_{gleft}}{\mu_0 \ A_{g-left}}$$

$$S_{ACDB} = \frac{L_{ACDB}}{\mu_0 \; \mu_{rACDB} \; A_{ACDB}}$$

Illustration 6

The magnetic circuit shown in Fig. is made of a material having relative permeability of 2000. The central limb is wound with 1000 turns and has an air gap of length of 2 mm. The side limb air gap is 8 mm. Calculate the current required to set up a flux of 2.6 mWb in the central limb. Mean lengths of various sections are as follows: AB = 24 cm, ACDB = AFGHEB = 60 cm. Cross sectional area of the structure is 10 cm^2 .

Ans: 4, 98 A

Illustration 7

A coil carrying a current of 2.8 A is wound on the left limb of the cast steel symmetrical frame of uniform square cross section 16 cm² as shown in Fig. Calculate the number of turns in the coil to produce a flux of 1.8 mWb in the air gap of 0.2 cm length. The relative permeability of cast steel is 1200.

Ans: 1480

Illustration 8

The magnetic circuit shown in Figure is made of a material having relative permeability of 2000. The limb AB is wound with 1000 turns. Find the current through the coil to produce a flux of 4 mWb in the limb AB. The length of each air gap is 2 mm and the square cross-sectional area of the frame is 9 cm².

Ans: 8.255387 A