Hierarchical models

Dr. Jarad Niemi

STAT 544 - Iowa State University

February 19, 2024

Outline

- Motivating example
 - Independent vs pooled estimates
- Hierarchical models
 - General structure
 - Posterior distribution
- Binomial hierarchial model
 - Posterior distribution
 - Prior distributions
- Stan analysis of binomial hierarchical model
 - informative prior
 - default prior
 - ullet integrating out heta
 - across seasons

Andre Dawkin's three-point percentage

Let $Y_s = \sum_{j=1}^{n_s} Y_{sj}$ be the number 3-pointers Andre Dawkin's makes in season s, and assume

$$Y_s \stackrel{ind}{\sim} Bin(n_s, \theta_s)$$
 or, equivalently, $Y_{sj} \stackrel{ind}{\sim} Ber(\theta_s) \ j = 1, \dots, n_s$

where

- ullet n_s are the number of 3-pointers attempted and
- ullet θ_s is the probability of making a 3-pointer in season i.

Do these models make sense?

- ullet The 3-point percentage every season is the same, i.e. $heta_s= heta.$
- The 3-point percentage every season is independent of other seasons.
- The 3-point percentage a season should be similar to other seasons.

Andre Dawkin's three-point percentage

Let $Y_g = \sum_{j=1}^{n_g} Y_{gj}$ be the number of 3-pointers Andre Dawkin's makes in game g, and assume

$$Y_g \overset{ind}{\sim} Bin(n_g, \theta_g)$$
 or, equivalently, $Y_{gj} \overset{ind}{\sim} Ber(\theta_g) \, j = 1, \dots, n_g$

where

- ullet n_g are the number of 3-pointers attempted in game i and
- θ_g is the probability of making a 3-pointer in game i.

Do these models make sense?

- The 3-point percentage every game is the same, i.e. $\theta_q = \theta$.
- The 3-point percentage every game is independent of other games.
- The 3-point percentage a game should be similar to other games.

Andre Dawkin's 3-point percentage

date	opponent	made	attempts	game
2013-11-08	davidson	0	0	1
2013-11-12	kansas	0	0	2
2013-11-15	florida atlantic	5	8	3
2013-11-18	unc asheville	3	6	4
2013-11-19	east carolina	0	1	5
2013-11-24	vermont	3	9	6
2013-11-27	alabama	0	2	7
2013-11-29	arizona	1	1	8
2013-12-03	michigan	2	2	9
2013-12-16	gardner-webb	4	8	10
2013-12-19	ucla	1	5	11
2013-12-28	eastern michigan	6	10	12
2013-12-31	elon	5	7	13
2014-01-04	notre dame	1	4	14
2014-01-07	georgia tech	1	5	15
2014-01-11	clemson	0	4	16
2014-01-13	virginia	1	1	17
2014-01-18	nc state	3	7	18
2014-01-22	miami	2	6	19
2014-01-25	florida state	3	6	20
2014-01-27	pitt	6	7	21
2014-02-01	syracuse	4	9	22
2014-02-04	wake forest	4	7	23
2014-02-08	boston college	0	1	24

Andre Dawkin's 3-point percentage

Hierarchical models

Consider the following model

$$y_{ij} \stackrel{ind}{\sim} p(y|\theta_i)$$

$$\theta_i \stackrel{ind}{\sim} p(\theta|\phi)$$

$$\phi \sim p(\phi)$$

where

- y_{ij} for $i = 1 \dots, n_i$ are the observed data ,
- \bullet $\theta = (\theta_1, \dots, \theta_n)$ and ϕ are parameters, and
- \bullet only ϕ has a prior that is set.

This is a hierarchical or multilevel model.

Posterior distribution for hierarchical models

The joint posterior distribution of interest in hierarchical models is

$$p(\theta,\phi|y) \propto p(y|\theta,\phi)p(\theta,\phi) = p(y|\theta)p(\theta|\phi)p(\phi) = \Big[\prod_{i=1}^n p(y_i|\theta_i)p(\theta_i|\phi)\Big]p(\phi).$$

where $p(y_i|\theta_i) = \prod_{j=1}^{n_i} p(y_{ij}|\theta_i)$. The joint posterior distribution can be decomposed via

$$p(\theta, \phi|y) = p(\theta|\phi, y)p(\phi|y)$$

where

$$p(\theta|\phi, y) \propto p(y|\theta)p(\theta|\phi) = \prod_{i=1}^{n} p(y_i|\theta_i)p(\theta_i|\phi) \propto \prod_{i=1}^{n} p(\theta_i|\phi, y_i)$$

$$p(\phi|y) \propto p(y|\phi)p(\phi)$$

$$p(y|\phi) = \int p(y|\theta)p(\theta|\phi)d\theta$$

$$= \int \cdots \int \prod_{i=1}^{n} [p(y_i|\theta_i)p(\theta_i|\phi)] d\theta_1 \cdots d\theta_n$$

$$= \prod_{i=1}^{n} \int p(y_i|\theta_i)p(\theta_i|\phi)d\theta_i$$

$$= \prod_{i=1}^{n} p(y_i|\phi)$$

Three-pointer example

Let $Y_{i,g}$ be an indicator that 3-point attempt i in game g was successful for $i=1,\ldots,n_g$ and $Y_g=\sum_{i=1}^{n_g}Y_{i,g}$. Assume

$$Y_{i,g} \overset{ind}{\sim} Ber(\theta_g)$$
 or, equivalently $Y_g \overset{ind}{\sim} Bin(n_g, \theta_g)$ $\theta_g \overset{ind}{\sim} Be(\alpha, \beta)$ $\alpha, \beta \sim p(\alpha, \beta)$

In this example,

- $\phi = (\alpha, \beta)$
- $Be(\alpha, \beta)$ describes the variability in 3-point percentage across games, and
- we are going to learn about this variability.

Decomposed posterior

$$Y_g \overset{ind}{\sim} Bin(n_g, \theta_g) \quad \theta_g \overset{ind}{\sim} Be(\alpha, \beta) \quad \alpha, \beta \sim p(\alpha, \beta)$$

Conditional posterior for θ :

$$p(\theta|\alpha, \beta, y) = \prod_{i=1}^{n} p(\theta_g|\alpha, \beta, y_g) = \prod_{i=1}^{n} Be(\theta_g|\alpha + y_g, \beta + n_g - y_g)$$

Marginal posterior for (α, β) :

$$\begin{array}{ll} p(\alpha,\beta|y) & \propto p(y|\alpha,\beta)p(\alpha,\beta) \\ p(y|\alpha,\beta) & = \prod_{i=1}^n p(y_g|\alpha,\beta) = \prod_{i=1}^n \int\limits_{\beta} p(y_g|\theta_g)p(\theta_g|\alpha,\beta)d\theta_g \\ & = \prod_{i=1}^n \binom{n_g}{y_g} \frac{B(\alpha+y_g,\beta+n_g-y_g)}{B(\alpha,\beta)} \end{array}$$

Thus $y_a|\alpha, \beta \stackrel{ind}{\sim} \text{Beta-binomial}(n_a, \alpha, \beta)$.

A prior distribution for α and β

Recall the interpretation:

- ullet α : prior successes
- β : prior failures

A more natural parameterization is

- prior expectation: $\mu = \frac{\alpha}{\alpha + \beta}$
- prior sample size: $\eta = \alpha + \beta$

Place priors on these parameters or transformed to the real line:

- logit $\mu = \log(\mu/[1-\mu]) = \log(\alpha/\beta)$
- $\log \eta$

A prior distribution for α and β

It seems reasonable to assume the expectation (μ) and size (η) are independent a priori:

$$p(\mu, \eta) = p(\mu)p(\eta)$$

Let's construct a prior that has

- $P(0.1 < \mu < 0.5) \approx 0.95$ since most college basketball players have a three-point percentage between 10% and 50% and
- ullet is somewhat diffuse for η but has more mass for smaller values.

Let's assume an informative prior for μ and η perhaps

- $\mu \sim Be(6, 14)$
- $\eta \sim Exp(0.05)$

```
a = 6
b = 14
e = 1/20
```

Prior draws

```
n <- 1e4
prior_draws <- data.frame(mu = rbeta(n, a, b),</pre>
                        eta = rexp(n, e) %>%
  mutate(alpha = eta* mu.
        beta = eta*(1-mu))
prior draws %>%
  tidyr::gather(parameter, value) %>%
  group by(parameter) %>%
  summarize(lower95 = quantile(value, prob = 0.025),
           median = quantile(value, prob = 0.5),
           upper95 = quantile(value, prob = 0.975))
# A tibble: 4 v 4
  parameter lower95 median upper95
  <chr>
             <dbl> <dbl> <dbl> <dbl>
             0.129 3.87
1 alpha
                          23.9
             0.359 9.61
2 heta
                          51.4
       0.514 13.8 72.4
3 eta
4 m11
             0.124 0.292 0.511
cor(prior_draws$alpha, prior_draws$beta)
[1] 0.7951507
```

```
model_informative_prior = "
data
  int<lower=0> G: // data
  int<lower=0> n[G]:
  int<lower=0> y[G];
  real<lower=0> a; // prior
  real<lower=0> b;
  real<lower=0> e:
parameters {
  real<lower=0,upper=1> mu;
  real<lower=0> eta:
  real<lower=0,upper=1> theta[G]:
transformed parameters {
  real<lower=0> alpha;
  real<lower=0> beta:
  alpha = eta* mu :
  beta = eta*(1-mu):
model
        ~ beta(a,b):
  m11
       ~ exponential(e);
  eta
  // implicit joint distributions
  theta beta(alpha, beta);
        ~ binomial(n.theta):
```

Stan

r

Inference for Stan model: anon_model.

4 chains, each with iter=10000; warmup=5000; thin=1;

post-warmup draws per chain=5000, total post-warmup draws=20000.

mu mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat mu 0.44 0.00 0.05 0.34 0.41 0.44 0.47 0.53 5429 1 alpha 12.55 0.20 9.54 2.18 5.86 9.92 16.31 38.22 2318 1 beta 15.82 0.24 11.73 3.02 7.62 12.60 20.47 46.71 2356 1 theta[1] 0.44 0.00 0.12 0.19 0.36 0.44 0.51 0.69 14333 1 theta[2] 0.44 0.00 0.12 0.19 0.36 0.44 0.51 0.69 14333 1 theta[3] 0.49 0.00 0.10 0.31 0.43 0.49 0.56 0.70 14108 1 theta[3] 0.49 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17874 1 </th <th></th>											
eta 28.37 0.44 21.02 5.28 13.63 22.59 36.84 83.82 2315 1 alpha 12.55 0.20 9.54 2.18 5.86 9.92 16.31 38.22 2318 1 beta 15.82 0.24 11.73 3.02 7.62 12.60 20.47 46.71 2356 1 theta[1] 0.44 0.00 0.12 0.19 0.36 0.44 0.52 0.70 14481 1 theta[3] 0.49 0.00 0.12 0.19 0.36 0.44 0.51 0.69 14333 1 theta[3] 0.49 0.00 0.10 0.31 0.43 0.49 0.56 0.70 14108 1 theta[4] 0.45 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17874 1 theta[5] 0.42 0.00 0.12 0.17 0.34 0.42 0.49 0.65 12842		mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff	Rhat
alpha 12.55 0.20 9.54 2.18 5.86 9.92 16.31 38.22 2318 1 beta 15.82 0.24 11.73 3.02 7.62 12.60 20.47 46.71 2356 1 theta[1] 0.44 0.00 0.12 0.19 0.36 0.44 0.52 0.70 14481 1 theta[2] 0.44 0.00 0.12 0.19 0.36 0.44 0.51 0.69 14333 1 theta[3] 0.49 0.00 0.10 0.31 0.43 0.49 0.56 0.70 14108 1 theta[4] 0.42 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17874 1 theta[6] 0.41 0.00 0.10 0.22 0.34 0.41 0.47 0.60 13657 1 theta[7] 0.40 0.00 0.12 0.15 0.32 0.40 0.47 0.6	mu	0.44	0.00	0.05	0.34	0.41	0.44	0.47	0.53	5429	1
beta 15.82 0.24 11.73 3.02 7.62 12.60 20.47 46.71 2356 1 theta[1] 0.44 0.00 0.12 0.19 0.36 0.44 0.52 0.70 14481 1 theta[2] 0.44 0.00 0.12 0.19 0.36 0.44 0.52 0.70 144081 1 theta[3] 0.49 0.00 0.10 0.31 0.43 0.49 0.56 0.70 14108 1 theta[3] 0.49 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17874 1 theta[6] 0.41 0.00 0.10 0.22 0.34 0.41 0.47 0.62 10365 1 theta[7] 0.40 0.00 0.12 0.15 0.32 0.40 0.47 0.62 10365 1 theta[8] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.73 15136 1 theta[9] 0.49 0.00 0.12	eta	28.37	0.44	21.02	5.28	13.63	22.59	36.84	83.82	2315	1
theta[1]	alpha	12.55	0.20	9.54	2.18	5.86	9.92	16.31	38.22	2318	1
theta[2] 0.44 0.00 0.12 0.19 0.36 0.44 0.51 0.69 14333 1 theta[3] 0.49 0.00 0.10 0.31 0.43 0.49 0.56 0.70 14108 1 theta[4] 0.45 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17874 1 theta[5] 0.42 0.00 0.12 0.17 0.34 0.42 0.49 0.56 0.512842 1 theta[6] 0.41 0.00 0.10 0.22 0.34 0.41 0.47 0.60 13657 1 theta[7] 0.40 0.00 0.12 0.15 0.32 0.40 0.47 0.62 10358 1 theta[8] 0.47 0.00 0.12 0.28 0.41 0.49 0.57 0.76 11804 1 theta[9] 0.49 0.00 0.12 0.28 0.41 0.49 0.57 0.76 11804 1 theta[10] 0.46 0.00 0.10 0.27 0.39 0.46 0.52 0.66 16617 1 theta[11] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.52 0.66 16617 1 theta[12] 0.49 0.00 0.11 0.31 0.43 0.49 0.55 0.69 14221 1 theta[13] 0.51 0.00 0.11 0.32 0.40 0.49 0.55 0.69 14221 1 theta[14] 0.41 0.00 0.11 0.32 0.44 0.51 0.58 0.74 11588 1 theta[15] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.55 0.69 14221 1 theta[16] 0.36 0.00 0.11 0.17 0.32 0.39 0.46 0.55 0.69 14221 1 theta[16] 0.36 0.00 0.11 0.17 0.32 0.39 0.46 0.55 0.69 1421 1 theta[16] 0.36 0.00 0.11 0.17 0.32 0.39 0.46 0.55 0.69 1421 1 theta[16] 0.36 0.00 0.11 0.17 0.32 0.39 0.46 0.55 0.69 1421 1 theta[16] 0.36 0.00 0.11 0.17 0.32 0.39 0.46 0.55 0.69 1421 1 theta[17] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.55 0.69 1421 1 theta[19] 0.44 0.00 0.10 0.24 0.39 0.47 0.54 0.55 0.68 15593 1 theta[19] 0.41 0.00 0.10 0.22 0.39 0.47 0.54 0.59 0.64 15593 1 theta[19] 0.41 0.00 0.10 0.22 0.39 0.47 0.54 0.52 0.66 17013 1 theta[20] 0.45 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17013 1 theta[21] 0.55 0.00 0.11 0.35 0.47 0.54 0.50 0.63 18378 1	beta	15.82	0.24	11.73	3.02	7.62	12.60	20.47	46.71	2356	1
theta[3]	theta[1]	0.44	0.00	0.12	0.19	0.36	0.44	0.52	0.70	14481	1
theta[4] 0.45 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17874 1 theta[5] 0.42 0.00 0.12 0.17 0.34 0.42 0.49 0.65 12842 1 theta[6] 0.41 0.00 0.10 0.22 0.34 0.41 0.47 0.60 13657 1 theta[7] 0.40 0.00 0.12 0.15 0.32 0.40 0.47 0.62 10358 1 theta[8] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.73 15136 1 theta[9] 0.49 0.00 0.10 0.27 0.39 0.46 0.52 0.66 16617 1 theta[10] 0.46 0.00 0.10 0.27 0.39 0.46 0.52 0.66 16617 1 theta[11] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.55 0.66 16617 1 theta[12] 0.49 0.00 0.10 0.31 0.43 0.49 0.55 0.66 14621 1 theta[13] 0.51 0.00 0.11 0.17 0.32 0.39 0.46 0.59 9644 1 theta[14] 0.41 0.00 0.11 0.18 0.43 0.49 0.55 0.69 14221 1 theta[15] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.50 14221 1 theta[16] 0.36 0.00 0.11 0.17 0.32 0.39 0.46 0.50 169 14221 1 theta[17] 0.47 0.00 0.11 0.18 0.34 0.41 0.48 0.62 11585 1 theta[18] 0.47 0.00 0.11 0.17 0.32 0.39 0.46 0.59 10164 1 theta[19] 0.41 0.00 0.11 0.12 0.29 0.37 0.44 0.57 6682 1 theta[19] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.73 15593 1 theta[19] 0.41 0.00 0.10 0.24 0.37 0.44 0.50 0.64 15963 1 theta[19] 0.41 0.00 0.10 0.24 0.37 0.44 0.50 0.64 15963 1 theta[19] 0.41 0.00 0.10 0.24 0.37 0.44 0.50 0.64 15963 1 theta[20] 0.45 0.00 0.10 0.26 0.38 0.45 0.52 0.66 17013 1 theta[21] 0.55 0.00 0.11 0.35 0.47 0.54 0.62 0.79 7677 1 theta[22] 0.44 0.00 0.0 0.0 0.26 0.38 0.45 0.50 0.63 18378 1	theta[2]	0.44	0.00	0.12	0.19	0.36	0.44	0.51	0.69	14333	1
theta[5] 0.42 0.00 0.12 0.17 0.34 0.42 0.49 0.65 12842 1 theta[6] 0.41 0.00 0.10 0.22 0.34 0.41 0.47 0.60 13657 1 theta[7] 0.40 0.00 0.12 0.15 0.32 0.40 0.47 0.62 10358 1 theta[8] 0.47 0.00 0.12 0.28 0.41 0.49 0.57 0.76 11804 1 theta[9] 0.49 0.00 0.12 0.28 0.41 0.49 0.57 0.76 11804 1 theta[10] 0.46 0.00 0.10 0.27 0.39 0.46 0.52 0.66 16617 1 theta[11] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.59 0.644 1 theta[12] 0.49 0.00 0.10 0.31 0.43 0.49 0.55 0.69 14221 1 theta[13] 0.51 0.00 0.11 0.13 0.43 0.49 0.55 0.69 14221 1 theta[14] 0.41 0.00 0.11 0.18 0.34 0.41 0.48 0.62 11565 1 theta[15] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.59 10164 1 theta[16] 0.36 0.00 0.11 0.17 0.32 0.39 0.46 0.59 10164 1 theta[17] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.59 10164 1 theta[18] 0.44 0.00 0.10 0.31 0.43 0.41 0.48 0.62 1568 1 theta[19] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.73 15593 1 theta[19] 0.41 0.00 0.10 0.26 0.39 0.47 0.54 0.73 15593 1 theta[20] 0.45 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17013 1 theta[21] 0.55 0.00 0.10 0.26 0.38 0.45 0.52 0.68 17013 1 theta[21] 0.55 0.00 0.10 0.26 0.38 0.49 0.50 0.63 18378 1	theta[3]	0.49	0.00	0.10	0.31	0.43	0.49	0.56	0.70	14108	1
theta[6] 0.41 0.00 0.10 0.22 0.34 0.41 0.47 0.60 13657 1 theta[7] 0.40 0.00 0.12 0.15 0.32 0.40 0.47 0.63 13657 1 theta[8] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.73 15136 1 theta[9] 0.49 0.00 0.12 0.28 0.41 0.49 0.57 0.76 11804 1 theta[10] 0.46 0.00 0.10 0.27 0.39 0.46 0.52 0.66 16617 1 theta[11] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.52 0.66 16617 1 theta[12] 0.49 0.00 0.10 0.31 0.43 0.49 0.55 0.69 14221 1 theta[13] 0.51 0.00 0.11 0.32 0.44 0.51 0.58 0.74 11588 1 theta[14] 0.41 0.00 0.11 0.18 0.34 0.41 0.48 0.62 11585 1 theta[15] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.59 9644 1 theta[16] 0.36 0.00 0.11 0.12 0.29 0.37 0.44 0.57 6682 1 theta[17] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.73 15593 1 theta[18] 0.44 0.00 0.10 0.24 0.37 0.44 0.50 0.64 15963 1 theta[19] 0.41 0.00 0.10 0.24 0.37 0.44 0.50 0.64 15963 1 theta[20] 0.45 0.00 0.10 0.21 0.35 0.42 0.48 0.61 14077 1 theta[21] 0.55 0.00 0.11 0.35 0.47 0.54 0.52 0.66 17013 1 theta[21] 0.55 0.00 0.11 0.35 0.47 0.54 0.50 0.63 18378 1	theta[4]	0.45	0.00	0.10	0.26	0.39	0.45	0.52	0.66	17874	1
theta[7] 0.40 0.00 0.12 0.15 0.32 0.40 0.47 0.62 10358 1 theta[8] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.73 15596 1 theta[9] 0.49 0.00 0.12 0.28 0.41 0.49 0.57 0.76 11804 1 theta[10] 0.46 0.00 0.10 0.27 0.39 0.46 0.52 0.66 16617 1 theta[11] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.52 0.66 16617 1 theta[12] 0.49 0.00 0.10 0.31 0.43 0.49 0.55 0.69 14221 1 theta[13] 0.51 0.00 0.11 0.32 0.44 0.51 0.58 0.69 14221 1 theta[14] 0.41 0.00 0.11 0.18 0.34 0.49 0.55 0.69 14221 1 theta[15] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.52 15585 1 theta[16] 0.36 0.00 0.11 0.18 0.34 0.41 0.48 0.62 11585 1 theta[16] 0.36 0.00 0.11 0.17 0.32 0.39 0.46 0.59 10164 1 theta[17] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.57 6682 1 theta[18] 0.44 0.00 0.10 0.24 0.37 0.44 0.50 0.64 15963 1 theta[19] 0.41 0.00 0.10 0.24 0.37 0.44 0.50 0.64 15963 1 theta[20] 0.45 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17013 1 theta[21] 0.55 0.00 0.11 0.35 0.47 0.54 0.62 0.79 7677 1 theta[22] 0.44 0.00 0.10 0.26 0.38 0.45 0.50 0.63 18378 1	theta[5]	0.42	0.00	0.12	0.17	0.34	0.42	0.49	0.65	12842	1
theta[8] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.73 15136 1 theta[9] 0.49 0.00 0.12 0.28 0.41 0.49 0.57 0.76 11804 1 theta[10] 0.46 0.00 0.10 0.27 0.39 0.46 0.52 0.66 16617 1 theta[11] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.59 9644 1 theta[12] 0.49 0.00 0.10 0.31 0.43 0.49 0.55 0.69 14221 1 theta[13] 0.51 0.00 0.11 0.32 0.49 0.55 0.69 14221 1 theta[14] 0.41 0.00 0.11 0.18 0.34 0.41 0.48 0.62 11585 1 theta[15] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.59 9644 1 theta[16] 0.36 0.00 0.11 0.12 0.29 0.37 0.44 0.57 6682 1 theta[17] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.73 15593 1 theta[18] 0.44 0.00 0.10 0.24 0.37 0.44 0.50 0.64 15963 1 theta[19] 0.41 0.00 0.10 0.24 0.37 0.42 0.48 0.61 14077 1 theta[20] 0.45 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17013 1 theta[21] 0.55 0.00 0.11 0.35 0.47 0.54 0.62 0.79 7677 1 theta[22] 0.44 0.00 0.10 0.26 0.38 0.44 0.50 0.63 18378 1	theta[6]	0.41	0.00	0.10	0.22	0.34	0.41	0.47	0.60	13657	1
theta[9] 0.49 0.00 0.12 0.28 0.41 0.49 0.57 0.76 11804 1 theta[10] 0.46 0.00 0.10 0.27 0.39 0.46 0.52 0.66 16617 1 theta[11] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.59 9644 1 theta[12] 0.49 0.00 0.10 0.31 0.43 0.49 0.55 0.69 14221 1 theta[13] 0.51 0.00 0.11 0.32 0.44 0.51 0.58 0.74 11588 1 theta[14] 0.41 0.00 0.11 0.18 0.34 0.41 0.48 0.62 11585 1 theta[15] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.59 10164 1 theta[16] 0.36 0.00 0.11 0.12 0.29 0.37 0.44 0.57 6682 1 theta[17] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.73 15593 1 theta[18] 0.44 0.00 0.10 0.24 0.37 0.44 0.50 0.64 15963 1 theta[19] 0.41 0.00 0.10 0.21 0.35 0.42 0.48 0.61 14077 1 theta[20] 0.45 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17013 1 theta[21] 0.55 0.00 0.11 0.35 0.47 0.54 0.62 0.79 7677 1 theta[22] 0.44 0.00 0.10 0.26 0.38 0.44 0.50 0.63 18378 1	theta[7]	0.40	0.00	0.12	0.15	0.32	0.40	0.47	0.62	10358	1
theta[10] 0.46 0.00 0.10 0.27 0.39 0.46 0.52 0.66 16617 1 theta[11] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.59 9644 1 theta[12] 0.49 0.00 0.10 0.31 0.43 0.49 0.55 0.69 14221 1 theta[13] 0.51 0.00 0.11 0.32 0.44 0.51 0.58 0.74 11588 1 theta[14] 0.41 0.00 0.11 0.18 0.34 0.41 0.48 0.62 11585 1 theta[15] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.59 10164 1 theta[16] 0.36 0.00 0.11 0.12 0.29 0.37 0.44 0.57 6682 1 theta[17] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.73 15593 1 theta[18] 0.44 0.00 0.10 0.24 0.37 0.44 0.50 0.64 15963 1 theta[19] 0.41 0.00 0.10 0.21 0.35 0.42 0.48 0.61 14077 1 theta[20] 0.45 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17013 1 theta[21] 0.55 0.00 0.11 0.35 0.47 0.54 0.50 0.63 18378 1	theta[8]	0.47	0.00	0.12	0.24	0.39	0.47	0.54	0.73	15136	1
theta[11] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.59 9644 1 theta[12] 0.49 0.00 0.10 0.31 0.43 0.49 0.55 0.69 14221 1 theta[13] 0.51 0.00 0.11 0.32 0.44 0.51 0.58 0.74 11588 1 theta[14] 0.41 0.00 0.11 0.18 0.34 0.41 0.48 0.62 11585 1 theta[15] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.59 10164 1 theta[16] 0.36 0.00 0.11 0.17 0.32 0.39 0.46 0.59 10164 1 theta[17] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.73 15593 1 theta[18] 0.44 0.00 0.10 0.24 0.37 0.44 0.50 0.64 15963 1 theta[19] 0.41 0.00 0.10 0.21 0.35 0.42 0.48 0.61 14077 1 theta[20] 0.45 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17013 1 theta[21] 0.55 0.00 0.11 0.35 0.47 0.54 0.50 0.63 18378 1	theta[9]	0.49	0.00	0.12	0.28	0.41	0.49	0.57	0.76	11804	1
theta[12] 0.49 0.00 0.10 0.31 0.43 0.49 0.55 0.69 14221 1 theta[13] 0.51 0.00 0.11 0.32 0.44 0.51 0.58 0.74 11588 1 theta[14] 0.41 0.00 0.11 0.18 0.34 0.41 0.48 0.62 11585 1 theta[15] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.59 10164 1 theta[16] 0.36 0.00 0.11 0.12 0.29 0.37 0.44 0.57 6682 1 theta[17] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.73 15593 1 theta[18] 0.44 0.00 0.10 0.24 0.37 0.44 0.50 0.64 15963 1 theta[19] 0.41 0.00 0.10 0.21 0.35 0.42 0.48 0.61 14077 1 theta[20] 0.45 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17013 1 theta[21] 0.55 0.00 0.11 0.35 0.47 0.54 0.62 0.79 7677 1 theta[22] 0.44 0.00 0.10 0.26 0.38 0.44 0.50 0.63 18378 1	theta[10]	0.46	0.00	0.10	0.27	0.39	0.46	0.52	0.66	16617	1
theta[13] 0.51 0.00 0.11 0.32 0.44 0.51 0.58 0.74 11588 1 theta[14] 0.41 0.00 0.11 0.18 0.34 0.41 0.48 0.62 11585 1 theta[15] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.59 10164 1 theta[16] 0.36 0.00 0.11 0.12 0.29 0.37 0.44 0.57 6682 1 theta[17] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.73 15593 1 theta[18] 0.44 0.00 0.10 0.24 0.37 0.44 0.50 0.64 15963 1 theta[19] 0.41 0.00 0.10 0.21 0.35 0.42 0.48 0.61 14077 1 theta[20] 0.45 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17013 1 theta[21] 0.55 0.00 0.11 0.35 0.47 0.54 0.50 0.63 18378 1	theta[11]	0.39	0.00	0.11	0.17	0.32	0.39	0.46	0.59	9644	1
theta[14] 0.41 0.00 0.11 0.18 0.34 0.41 0.48 0.62 11585 1 theta[15] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.59 10164 1 theta[16] 0.36 0.00 0.11 0.12 0.29 0.37 0.44 0.57 6682 1 theta[17] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.73 15593 1 theta[18] 0.44 0.00 0.10 0.24 0.37 0.44 0.50 0.64 15963 1 theta[19] 0.41 0.00 0.10 0.21 0.35 0.42 0.48 0.61 14077 1 theta[20] 0.45 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17013 1 theta[21] 0.55 0.00 0.11 0.35 0.47 0.54 0.62 0.79 7677 1 theta[22] 0.44 0.00 0.10 0.26 0.38 0.44 0.60 0.63 18378 1	theta[12]	0.49	0.00	0.10	0.31	0.43	0.49	0.55	0.69	14221	1
theta[15] 0.39 0.00 0.11 0.17 0.32 0.39 0.46 0.59 10164 1 theta[16] 0.36 0.00 0.11 0.12 0.29 0.37 0.44 0.57 6682 1 theta[17] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.73 15593 1 theta[18] 0.44 0.00 0.10 0.24 0.37 0.44 0.50 0.64 15963 1 theta[19] 0.41 0.00 0.10 0.21 0.35 0.42 0.48 0.61 14077 1 theta[20] 0.45 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17013 1 theta[21] 0.55 0.00 0.11 0.35 0.47 0.54 0.62 0.79 7677 1 theta[22] 0.44 0.00 0.10 0.26 0.38 0.44 0.60 0.63 18378 1	theta[13]	0.51	0.00	0.11	0.32	0.44	0.51	0.58	0.74	11588	1
theta[16] 0.36 0.00 0.11 0.12 0.29 0.37 0.44 0.57 6682 1 theta[17] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.73 15593 1 theta[18] 0.44 0.00 0.10 0.24 0.37 0.44 0.50 0.64 15963 1 theta[19] 0.41 0.00 0.10 0.21 0.35 0.42 0.48 0.61 14077 1 theta[20] 0.45 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17013 1 theta[21] 0.55 0.00 0.11 0.35 0.47 0.54 0.62 0.79 7677 1 theta[22] 0.44 0.00 0.10 0.26 0.38 0.44 0.50 0.63 18378 1	theta[14]	0.41	0.00	0.11	0.18	0.34	0.41	0.48	0.62	11585	1
theta[17] 0.47 0.00 0.12 0.24 0.39 0.47 0.54 0.73 15593 1 theta[18] 0.44 0.00 0.10 0.24 0.37 0.44 0.50 0.64 15963 1 theta[19] 0.41 0.00 0.10 0.21 0.35 0.42 0.48 0.61 14077 1 theta[20] 0.45 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17013 1 theta[21] 0.55 0.00 0.11 0.35 0.47 0.54 0.62 0.79 7677 1 theta[22] 0.44 0.00 0.10 0.26 0.38 0.44 0.60 0.63 18378 1	theta[15]	0.39	0.00	0.11	0.17	0.32	0.39	0.46	0.59	10164	1
theta[18] 0.44 0.00 0.10 0.24 0.37 0.44 0.50 0.64 15963 1 theta[19] 0.41 0.00 0.10 0.21 0.35 0.42 0.48 0.61 14077 1 theta[20] 0.45 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17013 1 theta[21] 0.55 0.00 0.11 0.35 0.47 0.54 0.62 0.79 7677 1 theta[22] 0.44 0.00 0.10 0.26 0.38 0.44 0.50 0.63 18378 1	theta[16]	0.36	0.00	0.11	0.12	0.29	0.37	0.44	0.57	6682	1
theta[19] 0.41 0.00 0.10 0.21 0.35 0.42 0.48 0.61 14077 1 theta[20] 0.45 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17013 1 theta[21] 0.55 0.00 0.11 0.35 0.47 0.54 0.62 0.79 7677 1 theta[22] 0.44 0.00 0.10 0.26 0.38 0.44 0.50 0.63 18378 1	theta[17]	0.47	0.00	0.12	0.24	0.39	0.47	0.54	0.73	15593	1
theta[20] 0.45 0.00 0.10 0.26 0.39 0.45 0.52 0.66 17013 1 theta[21] 0.55 0.00 0.11 0.35 0.47 0.54 0.62 0.79 7677 1 theta[22] 0.44 0.00 0.10 0.26 0.38 0.44 0.50 0.63 18378 1	theta[18]	0.44	0.00	0.10	0.24	0.37	0.44	0.50	0.64	15963	1
theta[21] 0.55 0.00 0.11 0.35 0.47 0.54 0.62 0.79 7677 1 theta[22] 0.44 0.00 0.10 0.26 0.38 0.44 0.50 0.63 18378 1	theta[19]	0.41	0.00	0.10	0.21	0.35	0.42	0.48	0.61	14077	1
theta[22] 0 44 0 00 0 10	theta[20]	0.45	0.00	0.10	0.26	0.39	0.45	0.52	0.66	17013	1
	theta[21]	0.55	0.00	0.11	0.35	0.47	0.54	0.62	0.79	7677	1
	theta[22]					0.38	0.44	0.50	0.63	18378	1

stan

```
plot(r, pars=c('eta', 'alpha', 'beta'))
ci_level: 0.8 (80% intervals)
outer_level: 0.95 (95% intervals)
```


stan

plot(r, pars=c('mu','theta'))

Comparing independent and hierarchical models

A prior distribution for α and β

In Bayesian Data Analysis (3rd ed) page 110, several priors are discussed

- $(\log(\alpha/\beta), \log(\alpha+\beta)) \propto 1$ leads to an improper posterior.
- $(\log(\alpha/\beta), \log(\alpha+\beta)) \sim Unif([-10^{10}, 10^{10}] \times [-10^{10}, 10^{10}])$ while proper and seemingly vague is a very informative prior.
- $(\log(\alpha/\beta), \log(\alpha+\beta)) \propto \alpha\beta(\alpha+\beta)^{-5/2}$ which leads to a proper posterior and is equivalent to $p(\alpha, \beta) \propto (\alpha+\beta)^{-5/2}$.

Stan - default prior

```
model default prior <- "
data
  int<lower=0> G;
  int<lower=0> n[G]:
  int<lower=0> v[G];
parameters {
  real<lower=0> alpha;
  real<lower=0> beta;
  real<lower=0.upper=1> theta[G]:
model
  // default prior
  target += -5*log(alpha+beta)/2:
  // implicit joint distributions
  theta ~ beta(alpha.beta);
        ~ binomial(n,theta);
m2 <- stan_model(model_code = model_default_prior)</pre>
r2 <- sampling(m2, dat, c("alpha", "beta", "theta"), iter = 10000,
               control = list(adapt delta = 0.9))
Warning: There were 818 divergent transitions after warmup. See
https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
```

Marginal posterior for α, β

An alternative to jointly sampling θ, α, β is to

- 1. sample $\alpha, \beta \sim p(\alpha, \beta|y)$, and then
- 2. sample $\theta_g \overset{ind}{\sim} p(\theta_g | \alpha, \beta, y_g) \overset{d}{=} Be(\alpha + y_g, \beta + n_g y_g)$.

The marginal posterior for α, β is

$$p(\alpha,\beta|y) \propto p(y|\alpha,\beta)p(\alpha,\beta) = \left[\prod_{g=1}^G \mathsf{Beta-binomial}(y_g|n_g,\alpha,\beta)\right]p(\alpha,\beta)$$

Stan - beta-binomial

```
# Marginalized (integrated) theta out of the model
model_marginalized <- "
data
  int<lower=0> G:
  int<lower=0> n[G]:
  int<lower=0> y[G];
parameters {
  real<lower=0> alpha;
  real<lower=0> beta:
model
  target += -5*log(alpha+beta)/2:
        ~ beta_binomial(n,alpha,beta);
generated quantities
  real<lower=0,upper=1> theta[G];
  for (i in 1:G)
    theta[i] = beta rng(alpha+v[i].beta+n[i]-v[i]);
m3 <- stan_model(model_code = model_marginalized)</pre>
r3 <- sampling(m3, dat, iter = 10000)
```

Stan - beta-binomial

Inference for Stan model: anon_model.
4 chains, each with iter=10000; warmup=5000; thin=1;
post-warmup draws per chain=5000, total post-warmup draws=20000.

	mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_{eff}	Rhat	
alpha	3272.33	984.91	114326.51	1.80	6.22	15.68	67.45	6192.47	13474	1	
beta	3684.92	1145.66	135896.11	2.13	7.09	17.69	75.14	7073.72	14070	1	
theta[1]	0.47	0.00	0.12	0.21	0.41	0.47	0.53	0.73	19405	1	
theta[2]	0.47	0.00	0.12	0.21	0.41	0.47	0.53	0.73	19501	1	
theta[3]	0.51	0.00	0.10	0.34	0.45	0.50	0.56	0.73	13524	1	
theta[4]	0.48	0.00	0.10	0.28	0.42	0.48	0.53	0.68	20289	1	
theta[5]	0.45	0.00	0.12	0.18	0.39	0.46	0.52	0.67	16614	1	
theta[6]	0.44	0.00	0.09	0.23	0.38	0.45	0.50	0.60	12029	1	
theta[7]	0.43	0.00	0.12	0.15	0.37	0.44	0.50	0.63	11106	1	
theta[8]	0.50	0.00	0.12	0.27	0.43	0.49	0.55	0.77	17402	1	
theta[9]	0.52	0.00	0.12	0.31	0.44	0.50	0.57	0.80	10324	1	
theta[10]	0.48	0.00	0.09	0.29	0.42	0.48	0.53	0.67	18925	1	
theta[11]	0.42	0.00	0.11	0.18	0.36	0.44	0.49	0.61	9252	1	
theta[12]	0.51	0.00	0.09	0.34	0.45	0.50	0.56	0.71	14135	1	
theta[13]	0.52	0.00	0.10	0.35	0.45	0.51	0.58	0.76	10134	1	
theta[14]	0.44	0.00	0.11	0.20	0.38	0.45	0.51	0.63	12469	1	
theta[15]	0.42	0.00	0.11	0.18	0.37	0.44	0.50	0.61	8810	1	
theta[16]	0.40	0.00	0.12	0.12	0.33	0.42	0.49	0.59	6684	1	
theta[17]	0.50	0.00	0.12	0.27	0.43	0.49	0.55	0.77	17733	1	
theta[18]	0.46	0.00	0.09	0.27	0.41	0.47	0.52	0.65	18477	1	
theta[19]	0.44	0.00	0.10	0.22	0.39	0.45	0.51	0.63	15034	1	
theta[20]	0.48	0.00	0.10	0.28	0.42	0.48	0.53	0.68	20435	1	
theta[21]	0.55	0.00	0.12	0.38	0.47	0.53	0.62	0.83	6096	1	

Jarad Niemi (STAT544@ISU) Hierarchical models February 19, 2024

24 / 36

Posterior samples for α and β

Comparing all models

Posterior sample for θ_{22}

```
game <- 22
theta22 <- extract(r3, "theta")$theta[,game]
hist(theta22, 100,
     main=paste("Posterior for game against", d$opponent[game], "on", d$date[game]),
     xlab="3-point probability",
     vlab="Posterior")
```

Posterior for game against syracuse on 2014-02-01

θ s are not independent in the posterior

3-point percentage across seasons

An alternative to modeling game-specific 3-point percentage is to model season-specific 3-point percentage. The model is exactly the same, but the data changes.

season	У	n
1	36	95
2	64	150
3	67	171
4	64	152

Due to the low number of seasons (observations), we will use an informative prior for α and β .

Stan - beta-binomial

```
model seasons <- "
data
  int<lower=0> G; int<lower=0> n[G]; int<lower=0> y[G];
  real<lower=0> a; real<lower=0> b; real<lower=0> e;
parameters {
  real<lower=0,upper=1> mu;
  real<lower=0> eta;
transformed parameters {
  real<lower=0> alpha:
  real<lower=0> beta:
  alpha = eta * mu;
  beta = eta * (1-mu);
model
     " beta(a,b);
  eta ~ exponential(e):
  v ~ beta binomial(n.alpha.beta):
generated quantities
  real<lower=0,upper=1> theta[G];
  for (g in 1:G) theta[g] = beta_rng(alpha+y[g], beta+n[g]-y[g]);
```

Run stan

Stan - hierarchical model for seasons

```
Inference for Stan model: anon_model.
4 chains, each with iter=10000; warmup=5000; thin=1;
post-warmup draws per chain=5000, total post-warmup draws=20000.
```

	mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_{eff}	Rhat
alpha	4.90	0.03	3.09	0.92	2.61	4.23	6.45	12.54	11353	1
beta	7.97	0.04	4.63	1.81	4.57	7.05	10.38	19.41	11997	1
mu	0.38	0.00	0.06	0.25	0.33	0.38	0.42	0.50	10904	1
eta	12.87	0.07	7.56	2.88	7.31	11.35	16.72	31.53	11712	1
theta[1]	0.38	0.00	0.05	0.29	0.35	0.38	0.41	0.47	19424	1
theta[2]	0.42	0.00	0.04	0.35	0.40	0.42	0.45	0.50	19340	1
theta[3]	0.39	0.00	0.04	0.32	0.37	0.39	0.41	0.46	20016	1
theta[4]	0.42	0.00	0.04	0.34	0.39	0.42	0.44	0.49	19726	1
lp	-402.07	0.01	1.07	-404.87	-402.49	-401.74	-401.30	-401.02	7343	1

Samples were drawn using NUTS(diag_e) at Fri Feb 16 09:00:17 2024. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

Stan - hierarchical model for seasons

Stan - hierarchical model for seasons

Probabilities that 3-point percentage is greater in season 4 than in the other seasons:

```
theta = extract(r_seasons, "theta")[[1]]
mean(theta[,4] > theta[,1])

[1] 0.73465
mean(theta[,4] > theta[,2])

[1] 0.45475
mean(theta[,4] > theta[,3])

[1] 0.699
```

Summary - hierarchical models

Two-level hierarchical model:

$$y_{ij} \stackrel{ind}{\sim} p(y|\theta_i) \qquad \theta_i \stackrel{ind}{\sim} p(\theta|\phi) \qquad \phi \sim p(\phi)$$

Conditional independencies:

- $y_{ij} \perp \!\!\! \perp y_{ij'} | \theta$ for $j \neq j'$
- $y_{ij} \perp \!\!\! \perp y_{i'j'} | \theta$ for $i \neq i'$ and any j, j'
- $\theta_i \perp \!\!\! \perp \theta_{i'} | \phi$ for $i \neq i'$
- $y_{ij} \perp \!\!\! \perp \phi | \theta$ for any i, j
- $y_{ij} \perp \!\!\! \perp y_{i'j'} | \phi$ for $i \neq i'$ and any j, j'
- $\theta_i \perp \!\!\! \perp \theta_{i'} | \phi, y \text{ for } i \neq i'$

Summary - extension to more levels

Three-level hierarchical model:

$$y \sim p(y|\theta)$$
 $\theta \sim p(\theta|\phi)$ $\phi \sim p(\phi|\psi)$ $\psi \sim p(\psi)$

When deriving posteriors, remember the conditional independence structure, e.g.

$$p(\theta, \phi, \psi|y) \propto p(y|\theta)p(\theta|\phi)p(\phi|\psi)p(\psi)$$