Yufei Lin Problem Set 3 Sep 30^{th} 2019

Problem Set 3

Question

Prove that if $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$, then $\lim_{x\to a} f(x) \cdot g(x) = L \cdot M$.

Proof:

We know $\forall x$ such that $0 < |x - a| < \delta_1, |f(x) - L| < \epsilon_1$, and such that $0 < |x - a| < \delta_2, |g(x) - M| < \epsilon_2$. In order for these two inequalities to hold at the same time, we need to have $0 < |x - a| < \delta = \min(\delta_1, \delta_2)$. Then, we would have $|g(x) - M| \cdot |f(x) - L| < \epsilon_1 \cdot \epsilon_2$, based on the theorem that if 0 < a, b and a < c, b < d then ab < cd. Also, from the theorem that $|a| \cdot |b| = |ab|$. Then we would have the following:

$$|g(x) - M| \cdot |f(x) - L| < \epsilon_1 \epsilon_2$$

$$|f(x) \cdot g(x) - M \cdot f(x) - L \cdot g(x) + LM| < \epsilon_1 \epsilon_2$$

By another theorem that |a| + |b| < |a + b|, we could on both sides of the inequality add $|M \cdot f(x) + L \cdot g(x) - 2LM|$. Also, we know that $0 < \epsilon_1, \epsilon_2$. Thus, $\epsilon_1 \epsilon_2 = |\epsilon_1 \epsilon_2|$. Then, we would have for the inequality:

$$|f(x) \cdot g(x) - M \cdot f(x) - L \cdot g(x) + LM| + |M \cdot f(x) + L \cdot g(x) - 2LM| \tag{1}$$

$$|f(x) \cdot g(x) - M \cdot f(x) - L \cdot g(x) + LM + M \cdot f(x) + L \cdot g(x) - 2LM| \tag{2}$$

$$|\epsilon_1 \epsilon_2| + |M \cdot f(x) + L \cdot g(x) - 2LM| \tag{3}$$

Where (2) < (1) and (1) < (3). Thus, (2) < (3).

Then we have:

$$(2) < |\epsilon_1 \epsilon_2| + |M \cdot f(x) + L \cdot g(x) - LM - LM|$$

$$(2) < |\epsilon_1 \epsilon_2| + |M \cdot f(x) - LM + L \cdot g(x) - LM|$$

$$(2) < |\epsilon_1 \epsilon_2| + |M \cdot (f(x) - L) + L \cdot (g(x) - M)|$$

$$(2) < |\epsilon_1 \epsilon_2| + |M(f(x) - L) + L(q(x) - M)|$$

Also, we know from the definition of a limit that $|f(x) - L| < \epsilon_1$, $|g(x) - M| < \epsilon_2$. We

would therefore have:

$$|M| \cdot |f(x) - L| < |M| \cdot \epsilon_1$$

$$|L| \cdot |g(x) - M| < |L| \cdot \epsilon_2$$

$$\therefore |M \cdot (f(x) - L)| < |M \cdot \epsilon_1|, |L \cdot (g(x) - M)| < |L \cdot \epsilon_2|$$

Thus, we would have a new inequality:

$$|\epsilon_1 \epsilon_2| + |M(f(x) - L)| + |L(g(x) - M)| < |\epsilon_1 \epsilon_2| + |M \cdot \epsilon_1 + L \cdot \epsilon_2|$$

From there, we could say that $|f(x)\cdot g(x)-LM|<|\epsilon_1\epsilon_2|+|M\cdot\epsilon_1+L\cdot\epsilon_2|\leq\epsilon$ Assume $\epsilon_1\epsilon_2\leq\frac{\epsilon}{2}$. From there we know, $\epsilon_1,\epsilon_2\leq\sqrt{\frac{\epsilon}{2}}$. On the other hand, from $|M\cdot\epsilon_1+L\cdot\epsilon_2|\leq\frac{\epsilon}{2}$. We know that $|M\cdot\epsilon_1+L\cdot\epsilon_2|\leq|M\cdot\epsilon_1|+|L\cdot\epsilon_2|$. In order for the previous inequality to hold, we assign $|M\cdot\epsilon_1|<\epsilon/4$ and $|L\cdot\epsilon_2|<\epsilon/4$. Therefore, $\epsilon_2<\frac{\epsilon}{4\cdot|M|}$ and $\epsilon_1<\frac{\epsilon}{4\cdot|L|}$, where $L,M\neq0$. If we have $\epsilon_1<\min(\frac{\epsilon}{4\cdot|L|},\sqrt{\frac{\epsilon}{2}})$ and $\epsilon_1<\min(\frac{\epsilon}{4\cdot|M|},\sqrt{\frac{\epsilon}{2}})$. Also, if we have L or M equal to 0. We can just say $\epsilon_1<\sqrt{\frac{\epsilon}{2}}$ and $\epsilon_2<\sqrt{\frac{\epsilon}{2}}$. Then, we have ϵ to be a very small number. We then have $\lim_{x\to a}f(x)\cdot g(x)=L\cdot M$.

Question

Suppose that $\lim_{x\to a} f(x)$ exists, and that $\lim_{x\to a} f(x) = L$. Suppose M is any number. Then prove that $\lim_{x\to a} (Mf(x))$ exists, and $\lim_{x\to a} (Mf(x)) = M \lim_{x\to a} f(x)$.

Proof:

Suppose $\epsilon_1 = \frac{\epsilon}{|M|}$ where $|M| \neq 0$ and $\forall x$ such that $0 < |x - a| < \delta, |f(x) - L| < \epsilon$. From the theorem that $|a| \cdot |b| = |ab|$. Thus, $|M| \cdot |f(x) - L| = |M(f(x) - L)|$. Then, we know that

$$M \cdot |f(x) - L| = |M(f(x) - L)| < |M| \cdot \epsilon$$

 $|M \cdot f(x) - LM| < |M \cdot \epsilon| = \epsilon$

Then we could have $|M \cdot f(x) - LM|$ be a small number and therefore, $\lim_{x\to a} (M \cdot f(x)) = L \cdot M$. Also, because $\lim_{x\to a} f(x)$ is a number, then we know that $M \cdot \lim_{x\to a} f(x) = M \cdot L$. Therefore, $M \cdot \lim_{x\to a} f(x) = \lim_{x\to a} (M \cdot f(x))$.

If we have M = 0, then we know that on the left hand side, we are finding the limit of 0, which is 0. And on the right hand side, we have $0 \cdot L = 0$. Therefore, the theorem still holds.

Question

Show that a function cannot have two different limits at a. That is, if $\lim_{x\to a} f(x)$ exists, and $\lim_{x\to a} f(x) = L$, and $\lim_{x\to a} f(x) = M$, then we must have L = M.

Proof:

Suppose we have L < M and we assign $0 < \epsilon \le \frac{M-L}{2}$ such that $2\epsilon \le M-L$ and $L+\epsilon \le M-\epsilon$ therefore, $(M-\epsilon,M+\epsilon)\cap (L-\epsilon,L+\epsilon)=\emptyset$. Also, $\forall x$ such that $0<|x-a|<\delta,|f(x)-L|<\epsilon$ and $|f(x)-M|<\epsilon$. From that we have $L-\epsilon < f(x)< L+\epsilon$ and $M-\epsilon < f(x)< M+\epsilon$. Then, we know that we need to have two different f(x) in order to have f(x) to be in two different ranges. This means f(x) is not a one-to-one relationship, thus not a function. Therefore, for f(x) there should be only one possible function. Then, if $\lim_{x\to a} f(x)$ exists, and $\lim_{x\to a} f(x) = L$, and $\lim_{x\to a} f(x) = M$, then we must have L=M.

Chapter 5. #8

(i) Counter Example

For instance, if we let $f(x) = \frac{1}{x^2}$ and $g(x) = -\frac{1}{x^2}$, then we have $f(x) + g(x) = \frac{1}{x^2} + (-\frac{1}{x^2}) = 0$. And if $x \to 0$, then both $\lim_{x \to 0} f(x)$ and $\lim_{x \to 0} g(x) = L$ do not exist, but $\lim_{x \to 0} (f(x) + g(x)) = \lim_{x \to 0} 0 = 0$ which do exist. Therefore, a counter example.

If we were to generalize this situation, for any polynomial f(x) that does not contain a constant, let $g(x) = \frac{1}{f(x)}$ and $h(x) = -\frac{1}{f(x)}$. As $x \to 0$, $\lim_{x \to 0} f(x)$ and $\lim_{x \to 0} g(x) = L$ do not exist, but $\lim_{x \to 0} (f(x) + g(x)) = \lim_{x \to 0} 0 = 0$ which do exist.

(ii) Proof

Assume, $\lim_{x\to 0} g(x)$ does not exist. From the theorem I, we have proved that $\lim_{x\to 0} (f(x)+g(x))=\lim_{x\to 0} f(x)+\lim_{x\to 0} g(x)$. It is because $\lim_{x\to 0} (f(x)+g(x))$ exist, and $\lim_{x\to 0} f(x)$ exist. By definition of a real number such that the difference between any two real number is a real number. Thus, $\lim_{x\to 0} (f(x)+g(x))-\lim_{x\to 0} f(x)$ exist, which contradicts with our assumption. Therefore, $\lim_{x\to 0} g(x)$ does not exist.

(iii) Proof

Suppose $\lim_{x\to 0}(f(x)+g(x))=M$ exist and $\lim_{x\to 0}f(x)=L$, and $\lim_{x\to 0}g(x)$ does not exist. Then, $\lim_{x\to 0}-f(x)=-L$. We also know that $\lim_{x\to 0}(f(x)+g(x))-f(x)=\lim_{x\to 0}g(x)=M-L$. Thus, $\lim_{x\to 0}g(x)$ exist. Then we have a contradiction. Thus, $\lim_{x\to 0}(f(x)+g(x))=M$ does not exist.

(iv) Counter Example

Let f(x) = x and $g(x) = \sqrt{x}$, such that for $x \to -1$, f(x) has a limit and g(x) does not exist. However, for $f(x) \cdot g(x) = x \cdot \sqrt{x} = 1$, $\lim_{x \to -1} (f(x) \cdot g(x)) = \lim_{x \to -1} 1 = 1$, which means the limit of f(x)g(x) exist.

Chapter 5. #9

Chapter 5. #10

(a) Proof

Suppose $\lim_{x\to a} f(x) = l$. Then, $\forall \epsilon > 0, \exists \delta > 0$. If $|x-a| < \delta$, then $|f(x)-l| < \epsilon$. Suppose g(x) = f(x) - l, then we have $\forall x, |x-a| < \delta, |g(x)| < \epsilon$. Thus, $|g(x)-0| < \epsilon$. Then we have $\lim_{x\to a} g(x) = 0$. Thus, $\lim_{x\to a} f(x) - l = 0$.

(b) Proof

Let g(x) = f(x-a). Suppose $\lim_{x\to 0} f(x) = L$. Then, $\forall \epsilon_1 > 0, \exists \delta_1 > 0$ such that $\forall x_1$, if $0 < |x_1 - 0| < \delta_1$, then $|f(x) - L| < \epsilon_1$.

Let $x_1 = x - a$, so $\forall \epsilon_1 > 0, \exists \delta_1 > 0$ such that $\forall x$, if $0 < |(x - a) - 0| < \delta_1$, then $|f(x - a) - L| < \epsilon_1$.

Therefore, $\lim_{x\to 0} f(x) = \lim_{x\to a} f(x-a)$.

(c) Proof

Let $g(x) = f(x^3)$. Suppose $\lim_{x\to 0} f(x) = L$. Let $\epsilon > 0$ choose $\delta_1 > 0$ such that $\forall y$, if $0 < |y| < \delta_1$, then $|f(x) - L| < \epsilon$. Let $\delta = \delta_1^{\frac{1}{3}} > 0$. Suppose $0 < |x| < \delta$, then $0 < |x| < \delta_1^{\frac{1}{3}}$. So $0 < |x^3| = |x|^3 < \delta_1$. Let $y = x^3$, we know $|y| < \delta_1$. So $|f(y) - L| < \epsilon$. Then, $|f(x^3) - L| < \epsilon$. As a result, $|g(x) - L| < \epsilon$.

(d) Example

$$f(x) = \begin{cases} 0 & x < 0 \\ x & x \ge 0 \end{cases}$$

Then, let $g(x) = f(x^2)$.

$$g(x) = f(x^2) = \begin{cases} 0 & x^2 < 0 \\ 1 & x^2 \ge 0 \end{cases}$$

 $\lim_{x\to 0} g(x) = 1$ while $\lim_{x\to 0} f(x)$ does not exist.