bnorml

Computes $\mathbf{B}_P \cdot \mathbf{e}_{\theta} \times \mathbf{e}_{\zeta}$ on computational boundary, $\partial \mathcal{D}$.

[called by: xspech.] [calls: coords and casing.]

contents

1

bno	orml	1
1.1	free-boundary constraint	1
1.2	compute the normal field on a regular grid on the computational boundary	1

1.1 free-boundary constraint

- 1. The normal field at the computational boundary, $\partial \mathcal{D}$, should be equal to $(\mathbf{B}_P + \mathbf{B}_C) \cdot \mathbf{e}_{\theta} \times \mathbf{e}_{\zeta}$, where \mathbf{B}_P is the "plasma" field (produced by internal plasma currents) and is computed using virtual casing, and \mathbf{B}_C is the "vacuum" field (produced by the external coils) and is given on input.
- 2. The plasma field, \mathbf{B}_P , can only be computed after the equilibrium is determined, but this information is required to compute the equilibrium to begin with; and so there is an iteration involved.
- 3. Suggested values of the vacuum field can be self generated; see xspech for more documentation on this.

1.2 compute the normal field on a regular grid on the computational boundary

- 1. For each point on the computational boundary, casing is called to compute the normal field produced by the plasma currents.
- 2. (There is a very clumsy attempt to parallelize this which could be greatly improved.)
- 3. An FFT gives the required Fourier harmonics.

bnorml.h last modified on 18-07-26 10:31:20.5:

SPEC subroutines;