Storage

CMPSCI 445 Fall 2008

Disks and DBMS Design

- * DBMS stores information on disks.
- This has major implications for DBMS design!
 - READ: transfer data from disk to main memory (RAM) for data processing.
 - WRITE: transfer data from RAM to disk for <u>persistent</u> storage.
 - Both are high-cost operations, relative to in-memory operations, so must be planned carefully!

Why Not Store Everything in Main Memory?

- * Main memory is volatile. We want data to be saved between runs. (Obviously!)
- * Costs too much. \$100 will buy you either 1GB of RAM or 160GB of disk today.
- * 32-bit addressing limitation.
 - 2³² bytes can be directly addressed in memory.
 - Number of objects cannot exceed this number.

Basics of Disks

- Unit of storage and retrieval: disk block or page.
 - A disk block/page is a contiguous sequence of bytes.
 - Size of a DBMS parameter, 4KB or 8KB.
- Disks support direct access to a page.
- Unlike RAM, time to retrieve a page varies!
 - It depends upon the location on disk.
 - Therefore, relative placement of pages on disk has major impact on DBMS performance!

Components of a Disk

* Platters spin (say, 7200rpm).

* Arm assembly is moved in or out to position a head on a desired *track*.

* Only one head reads/ writes at any one time.

* Tracks under heads make a *cylinder* (imaginary!).

* Each track is divided into sectors (whose size is fixed).

* *Block size* is a multiple of *sector size*.

Accessing a Disk Page

- Time to access (read/write) a disk block:
 - seek time (moving arms to position disk head on track)
 - rotational delay (waiting for block to rotate under head)
 - transfer time (actually moving data to/from disk surface)
- Seek time and rotational delay dominate.
 - Seek time varies from about 1 to 20msec
 - Rotational delay varies from 0 to 10msec
 - Transfer rate is about 1msec per 4KB page
- * Key to lower I/O cost: reduce seek/rotation delays!

Arranging Pages on Disk

- * `Next' block concept:
 - blocks on same track, followed by
 - blocks on same cylinder, followed by
 - blocks on adjacent cylinder
- * Blocks in a file should be arranged sequentially on disk (by `next'), to minimize seek and rotational delay.
- For a sequential scan, <u>pre-fetching</u> several pages at a time is a big win!

Buffer Management in a DBMS

Page Requests from Higher Levels

- * Data must be in RAM for DBMS to operate on it!
- * Table of <frame#, pageid> pairs is maintained.

More on Buffer Management

- * Requestor of page must unpin it, and indicate whether page has been modified:
 - dirty bit is used for this.
- Page in pool may be requested many times,
 - a *pin count* is used. A page is a candidate for replacement iff *pin count* = 0.
- * CC & recovery may entail additional I/O when a frame is chosen for replacement. (Write-Ahead Log protocol; more later.)

When a Page is Requested ...

- * If requested page is not in pool:
 - Choose a frame for replacement
 - If frame is dirty, write it to disk
 - Read requested page into chosen frame
- * *Pin* the page and return its address.
- ► If requests can be predicted (e.g., sequential scans) pages can be <u>pre-fetched</u> several pages at a time!

Buffer Replacement Policy

- Frame is chosen for replacement by a replacement policy:
 - Least-recently-used (LRU), Clock, MRU etc.
- ❖ Policy can have big impact on # of I/O's; depends on the access pattern.
- * <u>Sequential flooding</u>: Nasty situation caused by LRU + repeated sequential scans.
 - # buffer frames < # pages in file means each page request causes an I/O. MRU much better in this situation (but not in all situations, of course).

DBMS vs. OS File System

OS does disk space & buffer mgmt: why not let OS manage these tasks?

- * Differences in OS support: portability issues
- * Some limitations, e.g., files can't span disks.
- * Buffer management in DBMS requires ability to:
 - pin a page in buffer pool, force a page to disk (important for implementing CC & recovery),
 - adjust *replacement policy*, and pre-fetch pages based on access patterns in typical DB operations.