

CS/IS F214 Logic in Computer Science

MODULE: TEMPORAL LOGICS

State Machines for Modelling

21-11-2018 Sundar B. CS&IS, BITS Pilani 0

State Machines as Models

- We will study the use of <u>state machines</u> for modeling:
 - in particular, we will use <u>paths in a state machine as</u> <u>models</u>
 - for providing the meaning of formulas written in a temporal logic.
- This logic is referred to as Linear Temporal Logic where :
 - formulas are interpreted in the context of paths
 - along which the truth (or falsity) of atomic propositions could change

State Machines and Graphs

- A state machine can be represented as <u>a vertex-labeled</u>, <u>directed graph</u>:
 - $\langle S, \rightarrow, L \rangle$ where
 - **S** is a <u>set of states</u>
 - → is the <u>transition</u> relation (i.e. a <u>total</u>, <u>ordered</u>, <u>binary</u> <u>relation</u> on S)
 - L is a <u>labeling function</u>:
 - i.e. **L** : **S** --> **P**(Atoms)
 - where **P(Atoms)** is the <u>power-set</u> of **Atoms**, which is a <u>set of atomic propositions</u>

State Machine – Example: I/O in a hard disk

- Operation of a hard disk (assumed to have a single platter i.e. a single head):
 - Disk must be <u>activated to rotate</u>
 - Rotation must be steady to accept requests
 - Request queue may only contain <u>requests of the same</u> <u>type</u>
 - e.g. all *read* requests with the same *cylinder* address
 i.e. *track* address
 - <u>Seeking is required</u> to position the head over the track
 - <u>Request will be pending until</u> the requested (sector) address rotates under the head

State Machine - Example

- Often, we use a pictorial representation of a state machine.
 - e.g. state machine M depicting operation of a hard disk:

$$S = \{ s_1, s_2, s_3, s_4, s_5, s_6, s_7 \}$$

$$L(s_1) = \{ i \}$$

$$L(s_2) = \{ i,o \}$$

$$L(s_3) = \{ a,o \}$$

$$L(s_4) = \{ s,o \}$$

$$L(s_5) = \{ p,o \}$$

$$L(s_6) = \{ o,w \}$$

$$L(s_7) = \{ o,r \}$$

Sundar B. CS&IS, BITS Pilani

4

State Machines and Semantics

- Interpretation using state machine, $\langle S, \rightarrow , L \rangle$:
 - Each state in S is a point in time
 - i.e. a point in future (or time $\delta >= 0$ from now)
 - L is an assignment of truth values to all propositional atoms
 - i.e. in a given state:
 - the <u>valuation of all propositional atoms</u> can be stated as the <u>subset of those atoms that are TRUE</u>
 - \rightarrow is total
 - i.e. from every state, there is an outgoing transition
 - therefore we will consider paths that are infinite

State Machines - Paths

- Define paths as <u>infinite sequences of states</u>
 - A *path* in a model $M = (S, \rightarrow, L)$ is an infinite sequence of states $s_1, s_2, ...$ in **S** such that:
 - $\forall i i >= 1 --> s_i \rightarrow s_{i+1}$
- We will denote paths as:
 - $s_1 \rightarrow s_2 \rightarrow ...$
- A path $\pi = s_1 \rightarrow s_2 \rightarrow ...$ is a <u>possible future</u> in our system:
 - it is first in state s_1 , then it is in state s_2 , and so on.
- We will denote the suffix of a path π starting at state s_i as π^i
 - e.g. π^4 is $s_4 \rightarrow s_5 \rightarrow ...$

