Memória interna

MAC 344 - Arquitetura de Computadores Prof. Siang Wun Song

Baseado parcialmente em W. Stallings - Computer Organization and Architecture

Memória magnética de núcleo de ferrite

 Nos computadores antigos, a chamada memória interna RAM era feita de núcleos de ferrite (magnetic-core memory). (Daí o nome core memory usado até hoje para indicar memória interna.)

Source: Science Museum, London

Dependendo de como o núcleo de ferrite é magnetizado, ele representa 0 ou 1.

Source: IBM Early Computers, MIT Press

A memória de núcleo de ferrite é do tipo não-volátil: o valor armazenado não se perde quando a energia é desligada e depois religada.

Memória interna DRAM e SRAM

Hoje a memória RAM é feita de semi-condutor (Silício).

Pode ser de dois tipos: DRAM e SRAM, ambos os tipos voláteis (o seu conteúdo se perde quando o computador é desligado e depois religado).

- DRAM (Dynamic RAM): usada na memória principal.
- O capacitor armazena ou não carga elétrica, representando 1 e 0, resp.
- Quando carregado, o capacitor pode perder carga por vazamento.
- Para manter um capacitor que representa 1 sempre carregado, um pulso de refrescamento é aplicado periodicamente. Daí o nome dinâmico.

Memória interna DRAM

Exemplo: Samsung 1-Gbit DRAM. Note a regularidade na disposição dos bits da memória DRAM, permitindo uma maior densidade (i.e. mais bits por unidade de área do Silício).

Modern DRAM chip with 8 internal memory banks.

Source: https://www.cl.cam.ac.uk/teaching/1718/SysOnChip/materials.d/kg1-energy/zhp343475fdd.html

Memória interna SRAM

- SRAM (Static RAM): usada na memória cache, menos densa, mais rápida e mais custosa do que DRAM.
- A memória estática mantém o dado inalterado, desde que haja energia.
- Uma célula para 1 bit é composta de 4 transistores (T₁, T₂, T₃, T₄) conectados de tal modo que mantêm sempre um de dois estados lógicos estáveis.
- No estado 1, C_1 é alto e C_2 é baixo, com T_1 e T_4 desligados e T_2 e T_3 ligados.
- No estado 0, C₁ é baixo e C₂ é alto, com T₁ e T₄ ligados e T₂ e T₃ desligados.
- Ambos estados são estáveis, desde que haja uma voltagem direta DC aplicada.
 Assim, SRAM também é volátil.

Address line controla os transistores T5 e T6 para permitir escrita ou leitura da memória.

Para escrever, o valor (1 ou 0) é aplicado a Bit line, para definir um dos 2 estados estáveis.

Para ler, o valor do bit é lido na Bit line.

Source: W. Stallings

Memória interna SRAM

Uma outra forma de repressentar uma célula (um bit) SRAM: por meio de duas portas inversoras (portas NÃO). A figura da direita mostra uma célula de um bit em CMOS.

nttps://lis-people.ee.ethz.ch/ kgi/aries/5.ntm

- Há dois estados estáveis:
 - $Q = 1 e \overline{Q} = 0$
 - $Q = 0 e \overline{Q} = 1$
- Para ler:
 - Linha WL alta liga transistores M5 e M6
 - Valor Q é transmitido para BL (e valor \overline{Q} para \overline{BL})
- Para escrever:
 - Valor desejado (1 ou 0) é armazenado em BL e o complemento em \overline{BL}
 - Linha WL alta liga transistores M5 e M6

Memória interna DRAM e SRAM

Comparação entre DRAM e SRAM.

- Ambas são voláteis.
- A célula DRAM é mais simples e ocupa menos espaço que uma célula SRAM.
- Portanto DRAM é mais densa (mais células por unidade de área) e mais barata.
- Por outro lado, DRAM requer uma circuitaria de refrescamento. Para memórias grandes, esse custo fixo é mais que compensado pelo menor custo.
- Daí DRAM é preferida para memórias grandes e SRAM (que é um pouco mais rápida) é mais usada em memória cache.

Tipos de ROM (Read Only Memory)

- ROM é uma memória cujo conteúdo é fixo e não pode ser alterado.
- Há vários tipos de ROMs: todos são não-voláteis, i.e. não requerem energia para manter o seu conteúdo.
- Um importante uso de ROM é em processador CISC para armazenar o microprograma.
- ROM pode ser fabricado com portas NOR ou NAND, com um layout denso.
- Como ROM n\u00e3o pode ser alterada, erro de um bit pode acarretar em discartar um lote inteiro.

ROM baseado em portas NOR

- Na ROM baseada em NOR, o endereço entra num decodificador e ativa uma das linhas de saída do decodificador: a linha ativada contém 1 e todas as demais 0.
- Se essa linha entra no NOR, a saída é 0, senão é 1.

ROM baseado em portas NOR

- A ROM é não-volátil. Mas quando a energia é desligada tudo se apaga.
- Vocês podem explicar então por que a ROM é não-volátil?
- É porque quando a energia é religada os valores estão novamente disponíveis, por estarem codificados na entrada das portas.

Como está o meu aprendizado?

Projete uma ROM com 4 linhas usando portas NAND.

Linha	Dado			
	D_0	D_1	D_2	D_3
$\overline{I_0}$	1	0	1	1
I_1	0	1	1	0
12	1	0	1	0
I_3	1	1	1	1

A linha endereçada (por exemplo $\it l_{\rm 2}$) vale 0, todas as demais valem 1. Solução no próximo slide.

Como está o meu aprendizado?

Projete uma ROM com 4 linhas usando portas NAND.

Linha	Dado			
	D_0	D_1	D_2	D_3
	1	0	1	1
<i>I</i> ₁	0	1	1	0
l_2	1	0	1	0
$\bar{l_3}$	1	1	1	1

Solução: a linha endereçada (por exemplo l_2) vale 0, todas as demais valem 1. A palavra correspendente a l_2 tem como conteúdo 1 0 1 0.

Como está o meu aprendizado?

Projete uma ROM com 4 linhas usando portas NAND.

Linha	Dado			
	D_0	D_1	D_2	D_3
	1	0	1	1
<i>I</i> ₁	0	1	1	0
12	1	0	1	0
$\bar{l_3}$	1	1	1	1

Solução: a linha endereçada (por exemplo l_2) vale 0, todas as demais valem 1. A palavra correspendente a l_2 tem como conteúdo 1 0 1 0.

Tipos de ROM (Read Only Memory)

- PROM (Programable ROM): como ROM, também pode ser escrita uma só vez. A escrita é por meio elétrico e pode ser feita depois de fabricada a pastilha.
- PROM oferece mais flexibilidade, mas ROM ainda é preferível para grandes quantidades.
- EPROM (Erasable Programable ROM): leitura e esrita é como numa PROM. Porém, antes de uma operação de escrita, toda a memória é apagada por meio de radiação ultra-violeta. Esse processo pode ser repetido para gravar um novo conteúdo.
- EPROM é mais custosa.
- EEPROM (Electrically Erasable ROM): não é necessário apagar todo o conteúdo para atualização, apenas bytes selecionados são alterados. A escrita de uma EEPROM é demorada: centenas de micro-segundos por byte.
- EEPROM é mais custosa e menos densa.

Memória flash ou flash memory

- Flash memory, introduzida nos anos 80, é uma memória intermediária entre EPROM e EEPROM, em custo e funcionalidade.
- Recebe o nome flash devido à velocidade com que pode ser alterada: uma memória flash por ser apagada em poucos segundos.
- É possível apagar blocos de memória, mas não no nível de byte.
- Dois tipos: NOR e NAND.
- Como EPROM, flash memory usa um transistor por bit, portanto é bastante densa.

Memória flash ou flash memory

- Há um limite no número de ciclos de escrita de uma memória flash.
- Esse limite é entre 10.000 a 100.000 para memória flash do tipo NOR e de 100.000 a 1.000.000 para o tipo NAND.

https://focus.ti.com/pdfs/omap/diskonchipvsnor.pdf

 Em 2012, usando uma técnica de auto-cura, Macronix relata a invenção de uma memória flash que sobrevive 100 milhões de ciclos de escrita.

https://spectrum.ieee.org/semiconductors/memory/flash-memory-survives-100-million-cycles

Deteção e correção de erros de memória

- Erros de leitura e escrita de memória podem ocorrer, e.g. por problemas de voltagem nas linhas ou radiações.
- Códigos de deteção e de correção são usados para detectar ou corrigir erros de memória.
- De modo geral, para uma palavra original de M bits que queremos gravar na memória, K bits adicionais, obtidos como uma função dos M bits, são acrescentados, formando um código de M + K bits.
- Esse código é gravado na memória.
- Após a leitura do código (M + K bits) da memória, usando os M bits lidos, calculamos com a mesma função os K bits que são então comparados com os K bits lidos.
- Se a comparação der igualdade, então consideramos o código lido correto.
- Se a comparação der desigualdade, detectamos um erro de leitura. Dependendo do código usado, podemos corrigir o erro.

Código de deteção de erro

Um bit paridade (K = 1) é acrescentado a cada palavra original da memória de M bits.

O bit paridade é escolhido de tal modo que o número de 1's do código resultante (palavra+paridade) é par (ou ímpar).

Seja o código 00110 (último bit é paridade)

se lido como 01110 (erro de 1 bit: erro detectado) se lido como 00111 (erro de 1 bit: erro detectado) se lido como 01111 (erro de 2 bits: nao detectado)

Em geral: erro detectado se há um no. ímpar de bits errados erro não detectado se há um no. par de bits errados

Código de deteção de erro

O bit paridade (paridade par) pode ser obtido fazendo o ou-exclusivo dos bits da palavra original.

Palavra =
$$x_1 x_2 x_3 x_4$$

o bit paridade
$$x_5 = x_1 \oplus x_2 \oplus x_3 \oplus x_4$$

onde ⊕ representa a operação *ou exclusivo*.

Código de correção de erro - código de Hamming

Source: Wikipedia

Hamming queria fazer Engenharia, mas não tinha recursos. Acabou fazendo Matemática pois conseguiu uma bolsa na Universiade de Chicado, onde não havia curso de engenharia. Fez depois mestrado e doutorado em Matemática. Trabalhou na Bell Labs e inventou o famoso código de Hamming. Não se arrendeu de ter feito Matemática, pois o profundo conhecimento teórico o ajudou a resolver um problema de pesquisa de vanguarda: se o computador sabe detectar um erro de memória, por que não pode corrigi-lo?. Hamming recebeu o Turing Award em 1968.

Código de correção de erro - código de Hamming

- O código de deteção pode detectar erro, mas não se sabe qual bit está erro. O dado precisa ser lido de novo da memória ou retransmitido no caso de transmissão de dados.
- O código de Hamming é um código de correção que sabe qual bit errado, quando há apenas 1 bit errado. Assim é possível corrigi-lo. Pode corrigir erro de memória, de disco RAID (que usa código de Hamming estendido capaz de corrigir erro de 1 bit e detecção de erros em 2 bits), e em comunicação de dados entre computadores.

Código de correção de erro - código de Hamming

Seja uma palavra original de M=4 bits. Vamos acrescentar nesse caso mais K=3 bits adicionais.

Usamos o diagrama abaixo apenas para fim didático, no caso específco de palavra de 4 bits. O método com diagrama não serve para o caso geral em que a palavra possui mais bits. Mostramos como tratar do caso geral mais tarde.

Palavra de M = 4 bits e K = 3 bits adicionais

- Seja a palavra dada 1101.
- Para obter os K = 3 bits extras, vamos considerar 1101 como os bits nas regiões de interseção AB, AC, BC, ABC, onde A, B, C são diagramas de Venn.

Como obter os K = 3 bits adicionais

- Acrescentamos um bit de paridade em cada uma das 3 regiões vazias acima para dar paridade par em A, B, e C.
- Os 7 bits (4 da palavra original e 3 adicionais) formam o código de Hamming.

Erro em 1 bit da palavra original

- Erro de 1 bit na palavra original pode ser localizado e corrigido.
- Tal erro pode ser detectado de modo simples, como se segue.

Erro em 1 bit da palavra original

- Calculamos os bits de paridade:
 Região A: paridade errada. Região B: paridade OK.
- Região C: paridade errada. Temos 2 paridades erradas.
 Logo regiao AC errada e o bit de AC deve ser 1.

Erro em 1 bit da palavra original

- Calculamos os bits de paridade:
 Região A: paridade errada. Região B: paridade OK.
- Região C: paridade errada. Temos 2 paridades erradas.
 Logo regiao AC errada e o bit de AC deve ser 1.

Erro em 1 dos K bits adicionais

- Erro de 1 dos K bits adicionais não causa problema, pois não afeta a palavra original.
- Tal erro (apesar de n\u00e3o importante) pode ser detectado de modo simples, como se segue.

Erro em 1 dos K bits adicionais

- Calculamos os bits de paridade:
 Região A: paridade errada. Região B: paridade OK.
- Região C: paridade OK. Temos 1 paridade errada. Logo regiao A errada e o bit de A deve ser 1.

Uma palavra de *M* bits precisa de *K* bits adicionais

- Para o caso geral de uma palavra de M bits, quantos bits adicionais são necessários? Isto é: Dado M, quanto vale K?
- Suponha que o código de Hamming lido (de M + K bits) pode ou estar correto ou errado em no máximo 1 bit. Não consideramos erros em mais de um bit. O código de Hamming não funciona para este caso.
- Depois de lido o código de Hamming, calculamos K paridades.
 - Se 0 paridade está errada: a palvra está correta.
 - Se 1 ou mais paridades erradas: um dos M + K bits foi lido erradamente.

Uma palavra de *M* bits precisa de *K* bits adicionais

- Calculadas K paridades, cada uma podendo estar correta ou errada: temos assim 2^K possibilidades.
- Se zero paridade está errada, então o código de Hamming foi lido corretamente.
- Se 1 ou mais paridades erradas, então isso indica algum dos M + K bits do código está errado.
 - Temos $2^K 1$ possibilidades cada uma indicando um dos M + K bits errado.
 - Devemos ter portanto: $2^K 1 \ge M + K$.
 - Portanto K deve ser tal que $2^K 1 K \ge M$.
 - Exemplo: para M = 4 e K = 3 temos $2^3 1 3 = 4 \ge 4$.
 - Para M = 8 e K = 4 temos $2^4 1 4 = 11 \ge 8$.

Caso geral: palavra de M bits

Seja uma palavra dada de *M* bits. O código de Hamming precisa de K bits adicionais, com a condição: $2^K - 1 - K > M$.

Palavra de M bits	Exemplo $M = 2^s$	K bits adicionais
4	4	3
5 até 11	8	4
12 até 26	16	5
27 até 57	32	6
58 até 120	64	7
121 até 247	128	8

- Temos $2^K > M + 1 + K > M$. Para $M = 2^s$, $2^K > M$ ou $2^K > 2^s$. Assim temos K > s. Podemos fazer $K = s + 1 = \log M + 1$.
- Para M grande, o overhead é menor. Mas lembre-se que o código só funciona para erro de um só bit no código.

Código de Hamming para palavra de M=8 bits

Vamos mostrar a obtenção do código de Hamming para uma palavra de M=8 bits. Numere os bits de

$$m_1 m_2 m_3 m_4 m_5 m_6 m_7 m_8$$

A essa palavra de 8 bits vamos acrescentar 4 bits adicionais, formando o código de Hamming de 12 bits.

Numere os bits do código de Hamming como sendo:

$$X_1X_2X_3X_4X_5X_6X_7X_8X_9X_{10}X_{11}X_{12}$$

Inserir os *M* bits originais no código de Hamming

$$x_1$$
 = a determinar
 x_2 = a determinar
 x_3 = m_1
 x_4 = a determinar
 x_5 = m_2
 x_6 = m_3
 x_7 = m_4
 x_8 = a determinar
 x_9 = m_5
 x_{10} = m_6
 x_{11} = m_7
 x_{12} = m_8

Falta obter x_1, x_2, x_4, x_8 : note índices todos potências de 2.

Obtenção dos bits adicionais

Os 4 bits adicionais x_1, x_2, x_4 e x_8 são assim calculados, onde \oplus representa a operação *ou exclusivo*:

$$\begin{aligned}
 x_1 &= x_3 \oplus x_5 \oplus x_7 \oplus x_9 \oplus x_{11} \\
 x_2 &= x_3 \oplus x_6 \oplus x_7 \oplus x_{10} \oplus x_{11} \\
 x_4 &= x_5 \oplus x_6 \oplus x_7 \oplus x_{12} \\
 x_8 &= x_9 \oplus x_{10} \oplus x_{11} \oplus x_{12}
 \end{aligned}$$

Observe que a operação ou-exclusivo é equivalente à paridade par.

Uma regra simples para chegar às fórmulas

$$\begin{array}{lcl} x_1 & = & x_3 \oplus x_5 \oplus x_7 \oplus x_9 \oplus x_{11} \\ x_2 & = & x_3 \oplus x_6 \oplus x_7 \oplus x_{10} \oplus x_{11} \\ x_4 & = & x_5 \oplus x_6 \oplus x_7 \oplus x_{12} \\ x_8 & = & x_9 \oplus x_{10} \oplus x_{11} \oplus x_{12} \end{array}$$

1 a 12 em binário	8	4	2	1
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0

Uma regra simples para chegar às fórmulas

```
X_3 \oplus X_5 \oplus X_7 \oplus X_9 \oplus X_{11}
         = X_3 \oplus X_6 \oplus X_7 \oplus X_{10} \oplus X_{11}
         = x_5 \oplus x_6 \oplus x_7 \oplus x_{12}
X8
         = x_9 \oplus x_{10} \oplus x_{11} \oplus x_{12}
```

1 a 12 em binário	8	4	2	1
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0

Uma regra simples para chegar às fórmulas

```
\begin{array}{rcl} x_1 & = & x_3 \oplus x_5 \oplus x_7 \oplus x_9 \oplus x_{11} \\ x_2 & = & x_3 \oplus x_6 \oplus x_7 \oplus x_{10} \oplus x_{11} \\ x_4 & = & x_5 \oplus x_6 \oplus x_7 \oplus x_{12} \\ x_8 & = & x_9 \oplus x_{10} \oplus x_{11} \oplus x_{12} \end{array}
```

1 a 12 em binário	8	4	2	1
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0

Correção de erro

Agora suponha que esses 12 bits são lidos como sendo:

Se não houver erro, então cada y_i é igual seu respectivo x_i .

Se houver erro em um bit apenas, é possível detectar esse erro e corrigi-lo.

Para isso fazemos o seguinte cálculo de 4 bits de paridade, denominados k_1 , k_2 , k_3 e k_4 .

Correção de erro

$$k_{1} = y_{1} \oplus y_{3} \oplus y_{5} \oplus y_{7} \oplus y_{9} \oplus y_{11}$$

$$k_{2} = y_{2} \oplus y_{3} \oplus y_{6} \oplus y_{7} \oplus y_{10} \oplus y_{11}$$

$$k_{3} = y_{4} \oplus y_{5} \oplus y_{6} \oplus y_{7} \oplus y_{12}$$

$$k_{4} = y_{8} \oplus y_{9} \oplus y_{10} \oplus y_{11} \oplus y_{12}$$

Se
$$k_1 = k_2 = k_3 = k_4 = 0$$
, então não há erro.

Senão o número binário codificado pelos 4 bits $k_4k_3k_2k_1$ determina a posição do bit errado.

Correção de erro

$$k_{1} = y_{1} \oplus y_{3} \oplus y_{5} \oplus y_{7} \oplus y_{9} \oplus y_{11}$$

$$k_{2} = y_{2} \oplus y_{3} \oplus y_{6} \oplus y_{7} \oplus y_{10} \oplus y_{11}$$

$$k_{3} = y_{4} \oplus y_{5} \oplus y_{6} \oplus y_{7} \oplus y_{12}$$

$$k_{4} = y_{8} \oplus y_{9} \oplus y_{10} \oplus y_{11} \oplus y_{12}$$

Exemplo, se $k_4k_3k_2k_1 = 0111$ entao o bit y_7 está errado.

Uma referênciaa:

Vera Pless. Introduction to the theory of error-correcting codes. New York: Wiley, 1982, ISBN 0471086843

- O código de Hamming não funciona para erro em mais de um bit no código.
- Há uma extensão do método que permitea corrigir erros de 1 bit e detectar erros de 2 bits (mas sem corrigi-los).
 Esse método usa um bit a mais, i.e. K + 1 bits adicionais. (Não vamos ver esse método aqui.)
- Em comunicação da dados, onde uma sequência longa de bits é transmitida de um local a outro, é comum uma série consecutiva de bits ser danificada.
- Veremos um truque que permite detectar e corrigir erros em uma sequência de bits.
- (Uau, que legal!, não posso perder essa dica! :-)

- Escolha um número M entre 5 a 11. Invente um número de M bits e escreva o código de Hamming.
- Agora erre um bit nesse código e use a técnica para corrigir o erro.

Solução no próximo slide.

 Escolha um número M entre 5 a 11. Invente um número de M bits e escreva o código de Hamming.

Resposta: por exemplo escolhi M = 7 e o dado de 7 bits como sendo 1001110.

Temos então um código de 7 + 4 = 11 bits.

$x_1 x_1$	2 X ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆		<i>x</i> ₇	<i>x</i> ₈	<i>x</i> ₉	<i>x</i> ₁₀	<i>x</i> ₁₁
1 1	1	1	0	0		1	0	1	1	0
	1	a 11 en	n binári	io	8	4	2	1		
		1			0	0	0	1		
		2	!	1	0	0	1	0		
		3	;		0	0	1	1		
		4			0	1	0	0		
		5	,	İ	0	1	0	1		
		6	i		0	1	1	0		
		7			0	1	1	1		
		8	;		1	0	0	0		
		9	1		1	0	0	1		
		10	0	1	1	0	1	0		
		1	1		1	0	1	1		

Agora erre um bit nesse código e use a técnica para corrigir o erro.

 $k_1 = 1, k_2 = 1, k_3 = 1, k_4 = 0$ e $k_4 k_3 k_2 k_1 = 0111$ Logo y_7 errado (devia ser 1).

Vamos ilustrar por um exemplo em comunicação de dados.

- Uma mensagem constituída de um número de pacotes (cada pacote tem M bits) deve ser enviada de um local a outro.
- O meio de transmissão é sujeito a chuvas e trovoadas :-) quando um raio pode danificar uma sequência de bits consecutivos.
- Não queremos apenas detectar erro de transmissão e pedir para retransmitir os pacotes errados. Queremos corrigir os erros.

pacote de Hamming
pacote de Hamming
pacote de Hamming

- Vamos acrescentar a cada pacote de M bits os K bits adicionais conforme estudamos no código de Hamming. Chamamos cada pacote assim incrementado de pacote de Hamming.
- Vamos considerar os pacotes de Hamming em uma matriz onde cada elemento é um pacote de Hamming.

 Se transimitirmos esses pacotes de Hamming sequencialmente, um a um, então o dano de um raio (que estraga uma série consecutiva de bits) pode ser irrecuperável. Nada adiatou :-(.

Agora vem a idéia brilhante :-).

 Se transimitirmos esses pacotes de Hamming sequencialmente, um a um, então o dano de um raio (que estraga uma série consecutiva de bits) pode ser irrecuperável. Nada adiatou :-(.

Agora vem a idéia brilhante :-).

A idéia brilhante

- Basta transmitirmos a matriz por coluna. No outro lado da recepção coletamos os bits recebidos para reconstruir a matriz.
- Agora aplicamos método de Hamming para cada pacote de Hamming recebido.

A idéia brilhante

Cor azul = bits danificaods

- Basta transmitirmos a matriz por coluna. No outro lado da recepção coletamos os bits recebidos para reconstruir a matriz.
- Cada bit errado (bit azul na figura) está num pacote de Hamming. Por isso, podemos corrigi-los.

A idéia brilhante

Cor azul = bits danificaods

- Basta transmitirmos a matriz por coluna. No outro lado da recepção coletamos os bits recebidos para reconstruir a matriz.
- Com sorte, pode até aguentar erros de várias sequências de bits. Basta não ter mais um erro em cada pacote.

Marque as afirmações corretas.

- DRAM e SRAM são ambas voláteis, mas SRAM precisa de circuitaria de refrescamento para repor as cargas que se perdem por vazamento.
- 2 DRAM e SRAM são ambas não-voláteis e assim seu conteúdo não se perde mesmo sem energia elétrica.
- ORAM e SRAM são ambas voláteis, mas DRAM precisa de circuitaria de refrescamento para repor as cargas que se perdem por vazamento.
- A memória ROM é não-volátil mas EPROM é volátil.
- 5 Todos os tipos de memória ROM são não-voláteis.
- A memória flash pode ser regravada mas somente pelo fabricante.
- O número de ciclos de escrita numa memória flash é grande mas não é ilimitado.
- 3 O uso de um bit de paridade pode corrigir erros de memória quando há apenas um bit errado.
- O código de Hamming serve para corrigir erros de memória quando há apenas um bit errado.

Desejo usar o códido de Hamming para corrigir erro de memória.

Qual das duas alternativas está mais adequada?

- Dvemos escolher M bem grande, digamos 2¹⁰. Assim, nesse caso, usaremos apenas 11 bits adicionais, uma grande economia.
- Para proteger contra erro de leitura de um dado grande, digamos 2¹⁰ de bits, o melhor é dividir esse dado em blocos menores e para cada um deles usar o código de Hamming.