Pr = (xx-y)(xx2+x) = (xx-y) {(xx-y)+y]2+x) = a ((a+y)2+x); Ea=0. Ea([a+p] +)= Ea(a2+2pa+p2+)= [Ea3+2pa2+p2a+)a=2p. Ε[a([a+μ]²+λ)]² = Ε[a²(a²+2μα+μ²+λ)²] = Ε[a²((a+μ²)²+(2μα+λ)² +2(maix)(a2+ p2) = Esa6 + a" (21, y2+2)+2, y2) + a2 (y4)2+2) + 0.a°. $Ea^{4}=3$ = $\sqrt{15+3(6y^{2}+2x)^{2}}$ $\sqrt{y^{2}+x^{2}}$ $\sqrt{y^{2}+x^{2}}$ $\sqrt{y^{2}+x^{2}}$ $15 + 3 \left(-2 \mu^{2} \right)$ $-4 \mu^{2}$ $||V=15+3(6\mu^2+2))+1|^2+1)^2-4\mu^2=V(x^4)$ win $6x+(\chi^2+2\chi\mu^2)=\gamma \chi^2=-(\mu^2+3)$ + (gr 2 - /22 -15+3 (4/-6)-4/12-13

min < (2+ M)2> N(2;0,1) m J (E+M)2 N (8;0,1) 28 = J 2 (E+M) N (8;0,1) 28 = ~ 2(ex+m), ExnN(E(0,1)) = 2 / e N(E,0,1) de + m \ N(&;0,1)de V 2 (EK+M) = = 2 µ.

min < 9(2+ m) > N(210,1) 5 J9 (8+m) N (8191) 28 = e ~ ~ N(& (°, 1) ~ Q(Ent p).

Jef (8+M) McE(0,1)de

5. < f; (x)7 = 0 x~M(x;h'_77) 2.a & DS: < 6 max < \(\frac{1}{2} \frac{1}{ ρης < = ti (x;) P(x;μ) = < (x; μ) (= ti (x;) + λ) > p(x;μ) ~ (x; - y;) (\(\sigma'_1 - y'_3) (\(\sigma'_1 + \lambda'), \(\sigma'_1 $V\left[\sum_{i=1}^{k}(\tilde{x}_{i}-\mu_{i})(\frac{1}{k},(\tilde{y}_{i})+\frac{\lambda}{2})\right]=V\left[\sum_{i\neq j}(\tilde{x}_{i}-\mu_{j})(\frac{1}{k},(\tilde{y}_{i})+\frac{\lambda}{2})\right]$ + V[(x;- M;)(+;(x;)+=)) $(n) = \sum_{i \neq j} V(x_j - \mu_j) (f_i(x_i) + \frac{\lambda}{2}) = \sum_{i \neq j} V(x_j - \mu_j) V(f_i(x_i) + \frac{\lambda}{2})$

Py:=<(xj-yj)(5/(xi)+))= $= \langle (x_j - y_j)(f(x_j) + x) \rangle + \langle (x_j - y_j)(\sum_{i \neq j} f(x_i) + x) \rangle$ 1E = 1E,1E; $\left(\sum_{i\neq j} f(x_i)_{i\neq j}\right) | E_j(x_j - \mu_j) = 0$

P(xi,x)=exp(2-l(x),x>- F(x)) PCX; T, NO) = +((T, NO) exp((X, T) - NO F(X)) b(y/x) x & b(x:x) b(y, 1, no) + (1-2) b(x:y) b(y, 2, no) = H(T, No) exp(<)/7+t(x)>-(No+1) F(x)). (H(T+tcx), p()(x) x & M(T, No) p(); 7+t(x), No+1) + (1-+) M(ž, No) p(); ž, t(x), (1+ an H (7 +tex) M(T+tcx),