UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE INFORMÁTICA (DPI)

PROVA 2 ID: 33

Rafael Zardo Crevelari – ES105468

Disciplina: Pesquisa Operacional Professor: Mauro Nacif Rocha

04 de julho 2022

RESPOSTAS:

Problema 1:

Sejam as variáveis de decisão:

xA = quilogramas de café comprados na fazenda 1.

xB = quilogramas de café comprados na fazenda 2.

xC = quilogramas de café comprados na fazenda 3.

Seja a função objetivo:

Minimizar Custo = 3 * xA + 4 * xB + 4,50 * xC.

Sejam os sujeitos A:

Gourmet) $0.3 * xA + 0.1 * xB + 0.4 * xC \ge 450$.

Arábico) $0.4 * xA + 0.5 * xB + 0.5 * xC \ge 400$.

Conilon) $0.3 * xA + 0.4 * xB + 0.1 * xC \ge 350$.

Fazenda1) $xA \le 850$.

Fazenda2) xB \leq 850.

Fazenda3) $xC \le 850$.

Solução ótima obtida através do lingo

Objective value: 5098.333

Variable	Value	Reduced Cost
XA	850.0000	0.000000
XB	123.3333	0.000000
XC	456.6667	0.000000
Row	Slack or Surplus	Dual Price
GOURMET	0.000000	-9.333333
ARABICO	230.0000	0.000000
CONILON	0.000000	-7.666667
FAZENDA1	0.000000	2.100000
FAZENDA2	726.6667	0.000000
FAZENDA3	393.3333	0.000000

Tabela com solução ótima do problema: (valores aproximados)

Fazenda	Quantidade adquirida (kg)	Gourmet (kg)	Arábico (kg)	Conilon (kg)	Custo (R\$)
1	850	255	340	255	R\$ 2.550,00
2	123,33	12,33	61,66	49,33	R\$ 493,32
3	456,66	182,66	228,33	45,66	R\$ 2.054,97
Total:	1430	449,99	629,99	349,99	R\$ 5.098,29

Problema 2:

Utilizando o método dual simplex, temos, a seguinte modelagem:

Sejam as variáveis de decisão:

xA = quilogramas de café comprados na fazenda 1.

xB = quilogramas de café comprados na fazenda 2.

xC = quilogramas de café comprados na fazenda 3.

Seja a função objetivo:

Maximizar Custo = -3 * xA - 4 * xB - 4,50 * xC.

Sejam os sujeitos A:

Gourmet) $-0.3 * xA - 0.1 * xB - 0.4 * xC \le -450$.

Arábico) -0,4 * xA - 0,5 * xB - 0,5 * xC \leq -400.

Conilon) $-0.3 * xA - 0.4 * xB - 0.1 * xC \le -350$.

Fazenda1) $xA \le 850$.

Fazenda2) xB \leq 850.

Fazenda3) $xC \le 850$.

Tableau 1:

	Base	хA	хВ	хC	S1	S2	S3	S4	S5	S6	b
	-f	3	4	4,5	0	0	0	0	0	0	0
L1	S1	-0,3	-0,1	-0,4	1	0	0	0	0	0	-450
L2	S2	-0,4	-0,5	-0,5	0	1	0	0	0	0	-400
L3	S3	-0,3	-0,4	-0,1	0	0	1	0	0	0	-350
L4	S4	1	0	0	0	0	0	1	0	0	850
L5	S5	0	1	0	0	0	0	0	1	0	850
L6	S6	0	0	1	0	0	0	0	0	1	850

A variável mais negativa de \mathbf{b} é -450 e está localizado na fileira L1. Assim, a variável $\mathbf{S1}$ sairá da base. O menor valor da razão entre |3/(-0,3)|, |4/(-0,1)| e |4,5/(-0,4)| é |3/(-0,3)| = 10 e está localizado na coluna 1. Assim, a variável \mathbf{xA} entrará na base.

Com isso, podemos concluir que o pivô é o elemento -0,3.

A partir disso, basta realizar os seguintes cálculos para obter o Tableau 2:

- L1'= L1 / -0,3
- L2' = L2 + 0.4L1'
- L3' = L3 + 0.3L1'
- L4'= L4 − L1'
- L5'= L5
- L6'= L6

Tableau 2:

	Base	хA	хВ	хС	S1	S2	S3	S4	S5	S6	b
	-f	0	3	0,5	10	0	0	0	0	0	-4500
L1	xΑ	1	0,3333	1,3333	-3, 3333	0	0	0	0	0	1500
L2	S2	0	-0,3667	0,0333	-1,3333	1	0	0	0	0	200
L3	S3	0	-0,3	0,3	-1	0	1	0	0	0	100
L4	S4	0	-0,3333	-1,3333	3,3333	0	0	1	0	0	-650
L5	S5	0	1	0	0	0	0	0	1	0	850
L6	S6	0	0	1	0	0	0	0	0	1	850

Problema 3:

De acordo com a análise de sensibilidade: Ranges in which the basis is unchanged:

Objective Coefficient Ranges:

Variable XA XB XC	Current Coefficient 3.000000 4.000000 4.500000	Allowable Increase 2.100000 14.00000 11.50000	Allowable Decrease INFINITY 2.875000 3.500000
Row GOURMET ARABICO CONILON	Current RHS 450.0000 400.0000 350.0000	Allowable Increase 147.5000 230.0000 272.5000	Allowable Decrease 171.2500 INFINITY 46.25000
FAZENDA1 FAZENDA2	850.0000 850.0000	205.5556 INFINITY	655.5556 726.6667

Nota-se que podemos incrementar até 205,5556 kg na disponibilidade da Fazenda 1 (Row Fazenda1), para que não haja mudança na base. Contudo, o problema propõe incrementar 300 kg (1150 – 850) na disponibilidade da Fazenda 1, logo, percebe-se que 300 > 205,5556. Assim, fica evidente que a afirmação é **FALSA**, uma vez que um incremento de 300 kg provocará mudança na base.

850.0000

Problema 4:

De acordo com a análise de sensibilidade: Ranges in which the basis is unchanged:

FAZENDA3

Objective Coefficient Ranges:

INFINITY

393.3333

Variable XA XB XC	Current Coefficient 3.000000 4.000000 4.500000	Allowable Increase 2.100000 14.00000 11.50000	Allowable Decrease INFINITY 2.875000 3.500000
	Right	hand Side Ranges:	
	Current	Allowable	Allowable
Row	RHS	Increase	Decrease
GOURMET	450.0000	147.5000	171.2500
ARABICO	400.0000	230.0000	INFINITY
CONILON	350.0000	272.5000	46.25000
FAZENDA1	850.0000	205.5556	655.5556
FAZENDA2	850.0000	INFINITY	726.6667
FAZENDA3	850.0000	INFINITY	393.3333

Nota-se que podemos incrementar até 147,5 kg na demanda de café Gourmet (Row Gourmet), para que não haja mudança na base. Com isso, o problema solicita que aumentamos a 100 kg na demanda de café Gourmet (550 – 450), logo, percebe-se que 100 < 147,5. Assim, fica evidente que um incremento de 100 kg não provocara mudança na base. Contudo, um incremento de 100 kg resultara em um aumento de (100 X 9,3333 (preço dual de Gourmet)), ou sejam R\$ 933,33 reais em seu custo total e não de R\$ 900,00 como afirma o exercício, logo a afirmação é **FALSA**.

Problema 5:

A nova coluna inserida no modelo Primal corresponderia a uma nova restrição no modelo Dual: $0.2*y1+0.1*y2+0.7*y3 \le C_4$

Onde y1, y2 e y3 são os preços duais das três restrições. Assim, temos: $0.2*9.33+0.1*0+0.7*7.66 \le C_4$ $24.022 \le C_4 \Rightarrow C_4 \ge 24.022$

Ou seja, para que o custo do kg do café da Fazenda 4 seja interessante economicamente é necessário que ela tenha um custo inferior a R\$ 24,022.