Тема 8. Факториал. Метод Шёнхаге

С. Б. Гашков, И. С. Сергеев

Быстрый вариант алгоритма вычисления n! был предложен Шёнхаге около 1994 г. — он имеет сложность $O(M(\log n!)) = O(M(n\log n))$ и основан на идее «деления пополам».

Обозначим через $\{p_i\}$ последовательность простых натуральных чисел в порядке возрастания. Известно, что число простых чисел, не превосходящих n, равно $\pi(n) \sim \frac{n}{\ln n}$ (Адамар, Валле Пуссен).

Метод Шёнхаге состоит в выполнении следующих вычислений в обратном порядке:

$$n! = 2^k x_0, \quad x_0 = x_1^2 y_1, \quad x_1 = x_2^2 y_2, \quad x_2 = x_3^2 y_3, \quad \dots, \quad x_s = 1,$$

где y_i является произведением всех простых множителей, входящих в x_{i-1} в нечетной степени, и поэтому x_i является квадратом; k — степень вхождения двойки в n!. Например,

$$21! = 2^{18}x_0, \quad x_0 = 3^9 \cdot 5^4 \cdot 7^3 \cdot 11 \cdot 13 \cdot 17 \cdot 19,$$

$$x_1 = 3^4 \cdot 5^2 \cdot 7, \quad y_1 = 3 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19,$$

$$x_2 = 3^2 \cdot 5, \quad y_2 = 7.$$

$$x_3 = 3, \quad y_3 = 5,$$

$$x_4 = 1, \quad y_4 = 3.$$

Пусть $e_i(N)$ — степень, в которой число p_i входит в N. Известно (и легко проверяется), что

$$e_i(n!) = \lfloor n/p_i \rfloor + \lfloor n/p_i^2 \rfloor + \lfloor n/p_i^3 \rfloor + \dots = \lfloor n/p_i \rfloor + e_i(\lfloor n/p_i \rfloor!).$$
 (1)

Принципиально вычисление факториала состоит из трех этапов: (I) поиск простых чисел $p_i \leq n$, (II) вычисление показателей $e_i(n!)$ и $e_i(y_j)$, (III) непосредственное вычисление факториала при помощи действий вида x^2y .

1 Этап III

Рассмотрим третий этап. Оценим величину чисел x_i и y_i .

Лемма 1. Пусть $n! < 2^{2^t}$. Тогда $x_i < 2^{2^{t-i}}$ и если простое число p делит y_i , то $p \le n/2^{i-2}$.

Доказательство. Первое неравенство следует из соотношений $x_i^2 \le x_{i-1}$ и $x_0 \le n!$. Докажем второе.

- а) Если $p|y_i$, то $p|x_{i-1}$, $p^2|x_{i-2}$ и т.д. Окончательно, $p^{2^{i-1}}|x_0$.
- б) Заметим, что $e_i(n!) < n/p_i + n/p_i^2 + \ldots = n/(p_i-1)$, откуда $e_i(n!) \le n-1$.
- в) Следовательно, если $p^m|n!$, то $p\leq 2n/m$. Действительно, если $p_i>2n/m$, то

$$e_i(n!) = |n/p_i| + e_i(|n/p_i|!) \le 2|n/p_i| - 1 \le 2|m/2| - 1 < m.$$

г) Поэтому из а) следует, что $p \le n/2^{i-2}$.

Оценим сложность вычисления y_j , если даны $e_i(y_j)$. Сложность перемножения 2^s чисел длины b не превосходит

$$2^{s-1}M(b) + 2^{s-2}M(2b) + \ldots + M(2^{s-1}b) = O(sM(2^{s}b)).$$

По лемме число y_j является произведением не более чем $\pi(n/2^{j-2})$ (простых) чисел длины $\log_2 n$, следовательно, вычисляется со сложностью $O(M(n/2^j)\log n)$.

Число x_{j-1} , если даны числа x_j и y_j вычисляется со сложностью $O(M(2^{t-j}))$, т.к. число x_j согласно лемме имеет длину не более 2^{t-j} , а y_j — не более, чем x_{j-1} , т.е. 2^{t-j+1} .

Суммируя сложность вычисления y_j и x_{j-1} по всем j и учитывая, что $2^t = O(n \log n)$, получаем для сложности этапа III оценку

$$\sum_{j=0}^{\log_2 n} O(M(n/2^j) \log n + M(2^t/2^j)) = O(M(n) \log n + M(2^t)) = O(M(n \log n)).$$

2 Этап II

Заметим, что достаточно вычислить только набор показателей $e_i(n!)$, т.к. для любого j показатель $e_i(y_j)$ совпадает с (j-1)-м разрядом числа $e_i(n!)$ (нумерация с нуля). Действительно, по построению:

$$e_i(n!) = e_i(y_1) + 2e_i(y_2) + \dots + 2^{s-1}e_i(y_s).$$

При каждом i показатель $e_i(n!)$ вычисляется по формуле (1) за $O(\log n)$ делений и сложений $\log n$ -разрядных чисел, т.е. со сложностью $O(M(\log n)\log n)$. Общая сложность, следовательно, не превосходит $\pi(n)O(M(\log n)\log n)=O(nM(\log n))$.

3 Этап I

Если вычисления выполняются схемой из функциональных элементов, то все необходимые простые числа p_i следует считать известными заранее. Однако при программной реализации целесообразно рассмотреть случай, когда эти простые числа тоже должны быть вычислены.

Далее мы без доказательства будем использовать известное соотношение

$$\ln \ln n < \sum_{i \le \pi(n)} \frac{1}{p_i} < \ln \ln n + C,$$

справедливое при любом n > 2.

Пусть нам даны простые числа, не превосходящие \sqrt{n} . Тогда остальные простые числа в интервале $[\sqrt{n}, n]$ могут быть найдены методом «решета Эратосфена». Для этого последовательными сложениями вычисляются последовательности

$$p_i, 2p_i, \ldots, m_i p_i,$$

такие, что $m_i = \lfloor n/p_i \rfloor$. Всего эти последовательности состоят не более чем из $n \sum_{i \leq \pi(\sqrt{n})} \frac{1}{p_i} = \Theta(n \log \log n)$ чисел. Таким образом, сложность их вычисления составляет $O(n \log n \log \log n)$.

Заметим, что два упорядоченных набора длины k и l могут быть соединены в один упорядоченный набор не более чем за k+l-1 операций сравнения элементов последовательностей. Как следствие, набор из m упорядоченных наборов суммарной длины N можно упорядочить за $O(N\log m)$ операций сравнения, если проводить попарные объединения в бинарном дереве. Операция сравнения чисел длины b имеет сложность O(b).

Разобьем исходные последовательности на группы: в j-й группе — последовательности, соответствующие числам p_i , $\pi(n^{2^{-1-j}}) < i \le \pi(n^{2^{-j}})$, где $1 \le j < \log_2 \log_2 n$.

По построению, j-я группа состоит из

$$n \sum_{\pi(n^{2^{-1-j}}) < i \le \pi(n^{2^{-j}})} \frac{1}{p_i} = n\Theta(\log(2^{-j}/2^{-1-j})) = O(n)$$

чисел. При этом в j-й группе не более $\pi(n^{2^{-j}}) < n^{2^{-j}}$ последовательностей.

Таким образом, сложность упорядочивания чисел в j-й группе можно оценить как $O(n \log n^{2^{-j}}) = 2^{-j} O(n \log n)$ операций сравнения $\log_2 n$ -разрядных чисел, т.е. $2^{-j} O(n \log^2 n)$. Суммарная сложность упорядочиваний по всем группам следовательно оценивается как $O(n \log^2 n)$.

Полученные $\log_2\log_2 n$ упорядоченных наборов длины не более n упорядочиваются за $\log_2\log_2 n$ операций объединения, при этом длина всех промежуточных упорядоченных наборов не превосходит n — сложность этого шага $O(n\log n\log\log n)$.

Если обозначить через P(n) сложность генерации последовательности простых чисел, не превосходящих n, то получено соотношение

$$P(n) \le P(\sqrt{n}) + O(n\log^2 n),$$

откуда следует $P(n) = O(n \log^2 n)$.

Окончательно для сложности программной реализации вычисления n! получаем оценку $O(M(n \log n) + n \log^2 n)$.