

Vibration Measurement System

Engenharia de Sistemas

Equipa H

Tabela de conteúdos

- Organização de Equipa
- Desafio
- Orçamento
- Estudo de mercado
- Arquitetura
- System Breakdown Structure
- Resultados
- Ferramentas utilizadas
- KPI
- Trabalho a realizar

Equipa

Sérgio Silva | Líder

Catarina Reste João Freixo

Diogo Andrade Pedro Barros

Francisco Sousa Ricardo Silva

Gonçalo Queirós Vitória Correia

Cliente | Orientador
Ataollah Mokhberdoran

Organização de equipa - Cargos

Líder	Sub-Líder	Secretária	Responsável Documentação	Responsável Validação	Facilitador
Sérgio Silva	Diogo Andrade	Catarina Reste	Gonçalo Queirós	João Freixo	Pedro Barros

Organização de equipa - Sub-Equipas

Aquisição de Dados	Comunicação Servidor Cliente	Comunicação Base de Dados	Interface Gráfica
Diogo Andrade	João Freixo	Sérgio Silva	Pedro Barros
Catarina Reste	Ricardo Silva	Gonçalo Queirós	
Francisco Sousa	Vitória Correia		

Avaliação

Método utilizado:

- 1. Atribuir cotação, entre -2 e 2, a cada elemento
- 2. A soma das cotações atribuídas tem que ser igual a 0

AVA	_IAÇÃO										
Realizada por:	Catarina Reste										
		Semana1	Semana2	Semana3	Semana4	Semana5	Semana6	Semana7	Semana8	Semana9	Total
	Diogo Andrade	Semana	Scritting	Semanas	Semanar	Semanas	Semando	Jemana,	Semando	Semanas	0
	Francisco Sousa										0
	Gonçalo Queirós										0
	João Freixo										0
	Pedro Barros										0
	Ricardo Silva										0
	Sérgio Silva										0
	Vitória Correia										0
	Total:	0	0	0	0	0	0	0	0	0	

Gestão de Risco

Causa	Risco	Probabilidade	Impacto	Estratégia
Datas	Atraso na conclusão de tarefas	Provável	Aceitável	Rever e redefinir a distribuição de tarefas
	Atraso na entrega do material	Possível	Crítico	Procurar material alternativo emprestado; realizar tarefas que não dependam do material
	Escolha de material/solução incorreta	Possível	Crítico	Estudar novamente o tópico, mais aprofundadamente
Material -	Material danificado	Improvável	Crítico	Tentar obter material extra ou soluções alternativas
	Desconhecimento da tecnologia	Possível	Crítico	Estudar mais sobre a tecnologia a utilizar antes de realizar as tarefas
Equipa _	Falta de comunicação	Possível	Aceitável	Aumentar o contacto entre os membros da equipa; realização mais frequente de reuniões entre equipa e sub-equipa
	Conflito entre membros	Improvável	Aceitável	Tratar do assunto com os membros em questão; caso não seja possível, comunicar ao líder da equipa

Gestão de Projeto

Distribuição de tarefas:

- Feita semanalmente nas reuniões de equipa
- Equipas ajustadas conforme as necessidades semanais.

Controlo de versões:

- Repositório hospedado na plataforma GitHub
- Documentos adicionais guardados no Google Drive da equipa

Desafio

Sistema de medição de vibração para ser utilizado na monitorização da vibração de uma torre eólica.

Objetivo do Produto

- Detetar defeitos;
- Antecipar possíveis falhas;
- Garantir operação contínua e eficiente;
- Permitir agendar reparações durante um período de baixa vibração.

Requisitos

Código	Requisito	Importância
MF1	Medição da vibração com frequência entre 0.1Hz e 100Hz	Alta
MF2	Comunicação entre o módulo Arduino e a Raspberry Pi realizar-se por Wi-Fi	Alta
MN3	O conjunto Arduino + Sensor estar protegido das condições ambientais	Média
PF1	Comunicação entre a Raspberry Pi e a base de dados	Alta
PN2	Formatação da informação durante comunicação com o servidor	Baixa
PN3	Os dados transmitidos devem ser menos de 5MB/5 minutos	Média
AN1	Aplicação aceder à base de dados	Alta
AF2	Visualização dos dados recorrendo a gráficos	Média
AF3	Análise básica dos dados e respetiva representação	Alta
AN4	Acesso à aplicação através de um web browser	Média

Estudo de Mercado

Produto	Utilizações Preferenciais	Custo	
Microstrain's G-Link-200	Aplicações ao ar livre	Solicitação de cotação	
Dynapar OnSiteTM Monitoring	Análise em frequência detalhada	Solicitação de cotação	
Fluke 3563 Vibration	Análise de condição de equipamento em tempo real	Solicitação de cotação	
DEWESoft's Wind	Plano de monitorização de turbinas eólicas	Solicitação de cotação	
Bently Nevada Ranger Pro	Previsão de manutenção para operações de grande escala Solicitação de cotação		
PCB's Echo Wireless	Operações a grande escala com base de dados local	ocal \$6400	
enDAQ's W-Series Sensors Operações a grande escala com personalização		\$2500 ou mais	
Erbessd 3X Wireless	Monitorização no local com uma app para tablets	\$1995 ES - H	

Arquitetura Funcional

System Breakdown Structure

Orçamento

Componentes Utilizados	Preço
Arduino Uno WiFi Rev2 *	57,55€
ADXL357 *	106,02€
Raspberry Pi Pico W	7,50€
Raspberry Pi 2 Model B	35,95€
TP-Link TL-WN722N	8,90€
	Total = 272.47€

^{*} Foram compradas 2 unidades deste componentes

Ferramentas Utilizadas

Protótipo

Pin out board do Sensor

Circuito de aquisição de dados

Unidade de medições

Unidade Central

Resultados

KPI's - Gestão de equipa

Requisitos completos: ~95%

Tarefas entregues fora de tempo(%): ~10%

• Orçamento gasto: 54%

KPI's - Técnicos

• Time to Boot: ~1 min 13 s

Mean Time to Recover (Unidade de medições): ~14 seconds

Mean Time to Recover (Unidade central): ~1 min 13 s

Tempo Entre Vibrações e Apresentação de Dados na GUI: 1 - 10s

Trabalho a realizar

- Implementar mecanismo de proteção de dados (garantir privacidade):
 Encriptação dos dados;
- Configurar Raspberry de modo a que pudessem existir múltiplos Arduinos a realizar medições;
- Produzir uma Placa de Circuito Impresso para tornar a placa de aquisição de dados mais robusta;
- Implementar tamanho de janela dinâmica para FFT.

