

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

DEPARTAMENTO DE INFORMÁTICA

Computación Gráfica – Viewing

Versión 220317

- Todo dispositivo de salida (pantalla) tienen su propio sistema de coordenadas (y dimensiones).
- Cada objeto tienen un sistemas de coordenadas. Generalmente corresponde a las coordenadas del mundo (world).
- Por lo general, sólo una parte del objeto tiene interés en ser proyectada (window).
- ¿Cómo se despliega la información en cada tipo de pantalla?

Dispositvo

Objeto (mundo)

¿Cómo realizar la proyección?

Dispositvo

Objeto (mundo)

Solución

- Decidir que parte del objeto mostrar.
- Convertirla al sistemas de coordenadas del dispositivo.

Dispositivo 2

Viewing 2D Definiciones

- Coordenadas del Dispositivo (DC): corresponden a las coordenadas del actual dispositivo y especifican en qué parte de la pantalla aparecerá el objeto
- Sistema de coordenadas universal (WC): Sistema cartesiano utilizado por las coordenadas del objeto. Las transformaciones antes vistas se basan en este sistema.

Viewing 2D Definiciones

Para no depender del tipo de dispositivo, se utiliza un sistema de coordenadas normalizado (NDC).

(0,0)

NDC: Sistema de proyección unitario.

Una *window* en coordenadas WC es llevada a NDC y luego a DC. Permite independizar la aplicación del dispositivo.

Aplicación Figura normalizada Pantalla

 $f_d(x,y)$

Dispositivo

Window: zona de interés del WC

Viewport: zona del *NDC* que especifica dónde será proyectada la *window*.

Objeto (mundo)

Pasar un punto de la Window al Viewport

Usando proporsionalidad:

$$\frac{x_w - x_{wmin}}{x_{wmax} - x_{wmin}} = \frac{x_v - x_{vmin}}{x_{vmax} - x_{vmin}}$$

Despejando:

$$x_{v} = (x_{w} - x_{wmin}) \left(\frac{x_{vmax} - x_{vmin}}{x_{wmax} - x_{wmin}} \right) + x_{vmin}$$

Pasar un punto de la Window al Viewport

Usando proporsionalidad:

$$\frac{x_w - x_{wmin}}{x_{wmax} - x_{wmin}} = \frac{x_v - x_{vmin}}{x_{vmax} - x_{vmin}}$$

Despejando:

$$x_{v} = (x_{w} - x_{wmin}) \left(\frac{x_{vmax} - x_{vmin}}{x_{wmax} - x_{wmin}} \right) + x_{vmin}$$

Constante: S_x

Pasar un punto de la Window al Viewport

Usando proporsionalidad:

$$\frac{y_w - y_{wmin}}{y_{wmax} - y_{wmin}} = \frac{y_v - y_{vmin}}{y_{vmax} - y_{vmin}}$$

Despejando:

$$y_{v} = (y_{w} - y_{wmin}) \left(\frac{y_{vmax} - y_{vmin}}{y_{wmax} - y_{wmin}} \right) + y_{vmin}$$

Pasar un punto de la Window al Viewport

Usando proporsionalidad:

$$\frac{y_w - y_{wmin}}{y_{wmax} - y_{wmin}} = \frac{y_v - y_{vmin}}{y_{vmax} - y_{vmin}}$$

Despejando:

$$y_{v} = (y_{w} - y_{wmin}) \left(\frac{y_{vmax} - y_{vmin}}{y_{wmax} - y_{wmin}} \right) + y_{vmin}$$

Constante: S_y

Se puede apreciar que:

- \blacksquare S_x y S_y son valores constantes para todos los puntos mapeados.
- Si $S_x \neq S_y$ se observarán distorsiones en la figura.
- Se define el Aspect Ratio para cada rectángulo como:

$$AR = \frac{x_{max} - x_{min}}{y_{max} - y_{min}}$$

Si el AR del window y viewport son iguales, entonces no hay distorsiones.

■ Propuesto: Determine la matriz de transformación que permite llevar un punto *p* desde el *window* al *viewport*.

$$Window(WP_i, WP_f) \rightarrow Viewport(VP_i, VP_f)$$

 $Window((-2, -2), (2, 2)) \rightarrow Viewport((0, 0), (1, 1))$

Se observa que no hay distorsión ya que *Window* y *Viewport* tienen el mismo *AR*. Además, el *Viewport* calza exacto sobre el **NDC**.

$$Window(WP_i, WP_f) \rightarrow Viewport(VP_i, VP_f)$$

 $Window((-2, -2), (2, 2)) \rightarrow Viewport((0, 0), (0, 5, 0, 5))$

Se observa que no hay distorsión ya que *Window* y *Viewport* tienen el mismo AR. Sin embargo el *Viewport* ahora ocupa $\frac{1}{4}$ del **NDC** (*zoom* out).

$$Window(WP_i, WP_f) \rightarrow Viewport(VP_i, VP_f)$$

 $Window((-2, -2), (2, 2)) \rightarrow Viewport((0, 25, 0), (0, 75, 1))$

Se produce distorsión ya que *Viewport* ocupa solo el 50 % del ancho de *Window*. No tienen el mismo *AR*.

$$Window(WP_i, WP_f) \rightarrow Viewport(VP_i, VP_f)$$

 $Window((0,0), (2,2)) \rightarrow Viewport((0,0), (1,1))$

No se produce distorsión ya que Viewport y Window tienen el mismo AR. Sin embargo se produce un efecto de zoom in. El Viewport y NDC son del mismo tamaño.