2022-23 First Semester MATH1063 Linear Algebra II (1003)

Assignment 5 Suggested Solutions

- 1. (a) If $\mathbf{x} \in N(A)$, $A\mathbf{x} = \mathbf{0}$, then $A^T A\mathbf{x} = A^T \mathbf{0} = \mathbf{0}$ and $x \in N(A^T A)$. Thus, $N(A) \subseteq N(A^T A)$.
 - (b) If $\mathbf{x} \in \mathrm{N}(A^T A)$, $A^T A \mathbf{x} = A^T (A \mathbf{x}) = \mathbf{0}$. Then $A \mathbf{x} \in \mathrm{N}(A^T)$. On the other hand, $A \mathbf{x} = \sum_i x_i \mathbf{a}_i \in \mathrm{Col}(A)$, so $A \mathbf{x} \in \mathrm{Col}(A) \cap \mathrm{N}(A^T)$. Since $\mathrm{Col}(A) \perp \mathrm{N}(A^T)$, so $\mathrm{Col}(A) \cap \mathrm{N}(A^T) = \{\mathbf{0}\}$, then $A \mathbf{x} = \mathbf{0}$ and it implies that $\mathbf{x} \in \mathrm{N}(A)$ and $\mathrm{N}(A^T A) \subseteq \mathrm{N}(A)$. Based on (a) and (b). $\mathrm{N}(A^T A) = \mathrm{N}(A)$.

(c) $\begin{cases} \operatorname{rank}(A) + \operatorname{Nullity} \text{ of } A = \# \text{ of columns in } A = n \\ \operatorname{rank}(A^T A) + \operatorname{Nullity} \text{ of } A^T A = \# \text{ of columns in } A^T A = n \end{cases}$

From (c), we know A and A^TA have the same rank. When A has rank n, A^TA is also of rank n and therefore nonsingular.

- 2. (a) If $\mathbf{x} \in \operatorname{Col}(A^T A)$, then $\mathbf{x} = A^T A \mathbf{y}$ for some $\mathbf{y} \in \mathbb{R}^n$. That is, $\mathbf{x} = A^T A \mathbf{y} = A^T (A \mathbf{y})$, then $\mathbf{x} \in \operatorname{Col}(A^T)$. Thus, $\operatorname{Col}(A^T A) \subseteq \operatorname{Col}(A^T)$.
 - (b) If $\mathbf{x} \in \text{Col}(A^T)$, then $\mathbf{x}^T \mathbf{z} = 0 \quad \text{for any } \mathbf{z} \in \mathcal{N}(A)$

Since $N(A) = N(A^T A)$ and $N(A^T A)^{\perp} = Col((A^T A)^T) = Col(A^T A)$, then it implies that \mathbf{x} is orthogonal to any vectors in $N(A^T A)$ and hence $\mathbf{x} \in Col(A^T A)$. Then $Col(A^T) \subseteq Col(A^T A)$.

- (c) Based on (a) and (b), $Col(A^TA) = Col(A^T)$.
- 3. (a) Fit the points into the model and denote the coefficient matrix as A:

$$\begin{cases} 0 = c_0 + c_1 \cdot 0 \\ 1 = c_0 + c_1 \cdot 0 \\ 1 = c_0 + c_1 \cdot 1 \end{cases} \rightarrow \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \rightarrow (A^T A)^{-1} A^T \mathbf{b} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

since rank(A) = 2. So $f(t) = \frac{1}{2} + \frac{1}{2}t$.

(b) To fit the quadratic function $f(t) = c_0 + c_1 t + c_2 t^2$, denote $\mathbf{c} = [c_0, c_1, c_2]'$, then

1

$$A\mathbf{c} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 6 \\ 12 \end{bmatrix} = \mathbf{b},$$

since rank
$$(A) = 3$$
, we find $A^T A = \begin{bmatrix} 4 & 9 & 29 \\ 9 & 29 & 99 \\ 29 & 99 & 353 \end{bmatrix}$, $A^T \mathbf{b} = \begin{bmatrix} 20 \\ 70 \\ 254 \end{bmatrix}$ and

$$\rightarrow (A^T A)^{-1} A^T \mathbf{b} = \frac{1}{440} \begin{bmatrix} 436 & -306 & 50 \\ -306 & 571 & -135 \\ 50 & -135 & 35 \end{bmatrix} \begin{bmatrix} 20 \\ 70 \\ 254 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}.$$

So
$$f(t) = -t + t^2$$
.

(c) $f(t) = c_0 + c_1 \sin(t) + c_2 \cos(t)$. Denote $\mathbf{c} = [c_0, c_1, c_2]'$, then

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & \sin 1 & \cos 1 \\ 1 & \sin 2 & \cos 2 \\ 1 & \sin 3 & \cos 3 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix} \quad \rightarrow \quad \hat{\mathbf{c}} = (A^T A)^{-1} A^T \mathbf{b} = \begin{bmatrix} 1.5 \\ 0.1 \\ -1.41 \end{bmatrix},$$

since rank(A) = 3. So $f(t) = 1.5 + 0.1\sin(t) - 1.41\cos(t)$.

(d) The general equation for a circle is $2xc_1 + 2yc_2 + (r^2 - c_1^2 - c_2^2) = x^2 + y^2$. Denote $r^2 - c_1^2 - c_2^2 = c_3$, then

$$\begin{bmatrix} 2x_1 & 2y_1 & 1 \\ 2x_2 & 2y_2 & 1 \\ 2x_3 & 2y_3 & 1 \\ 2x_4 & 2y_4 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} x_1^2 + y_1^2 \\ x_2^2 + y_2^2 \\ x_3^2 + y_3^2 \\ x_4^2 + y_4^2 \end{bmatrix}, \text{ i.e. } \begin{bmatrix} -2 & -4 & 1 \\ 0 & 4.8 & 1 \\ 2.2 & -8 & 1 \\ 4.8 & -3.2 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 5.76 \\ 17.21 \\ 8.32 \end{bmatrix}.$$

By using MATLAB, we have

$$\hat{\mathbf{c}} = (A^T A)^{-1} A^T \mathbf{b} = \begin{bmatrix} 0.575 & -0.643 & 6.68 \end{bmatrix}^T.$$

So $r = \sqrt{c_3 + c_1^2 + c_2^2} \approx 2.73$ and the equation should be $(x - c_1)^2 + (y - c_2)^2 = r^2$. The least squares circle centers at (0.58, -0.64) with radius 2.73 (rounded to two decimal places).

4. No, it is not necessarily true, since \mathbf{y} is only orthogonal to one vector $\mathbf{x} \in S$ but not necessarily orthogonal to all vectors in S.

Consider $S = \text{span}\{(1,2,0)', (0,1,0)'\}$, $\mathbf{x} = (1,2,0)' \in S$, $\mathbf{y} = (-2,1,0)'$ and $\mathbf{v} = (-1,3,0)'$. Then $\mathbf{x} \perp \mathbf{y}$, but $\mathbf{y} \notin S^{\perp}$ since \mathbf{y} is not orthogonal to $(0,1,0)' \in S$.

5. (a)
$$\operatorname{Proj}_g f = \frac{\langle f, g \rangle}{\langle g, g \rangle} g = \frac{\int_{-1}^1 x dx}{\int_{-1}^1 1 dx} \cdot 1 = 0$$
, suggesting $f \perp g$ in this inner product space.

(b)
$$\operatorname{Proj}_g f = \frac{\langle f, g \rangle}{\langle g, g \rangle} g = -\sin(2x)$$
, since

$$\langle f, g \rangle = \int_{-\pi}^{\pi} x \sin(2x) dx = -\frac{1}{2} x \cos(2x) \Big|_{-\pi}^{\pi} + \int_{0}^{\pi} \cos(2x) dx = -\pi$$

and
$$\langle g, g \rangle = \int_{-\pi}^{\pi} \sin^2(2x) dx = \int_{0}^{\pi} 1 - \sin(4x) dx = \pi.$$

6. (a) They are orthogonal in this inner product space since

$$\langle 1, 2x - 1 \rangle = \int_0^1 1 \cdot (2x - 1) \, dx = x^2 - x \Big|_0^1 = 0.$$

(b) The norm induced by the inner product gives

$$||1||^2 = \langle 1, 1 \rangle = \int_0^1 1 \cdot 1 \, dx = 1;$$

$$||2x-1||^2 = \int_0^1 (2x-1)^2 dx = \frac{1}{3}.$$

Therefore

$$||1|| = 1$$
 and $||2x - 1|| = \frac{1}{\sqrt{3}}$.

(c) Due to the previous results, we have $\{1, \sqrt{3}(2x-1)\}$ as an orthonormal basis for S. Then the least squares approximation to $h(x) = x^{1/2}$ from S is given by

$$\hat{h}(x) = c_1 \cdot 1 + c_2 \cdot \sqrt{3}(2x - 1)$$

where

$$c_1 = \langle 1, x^{1/2} \rangle = \int_0^1 \sqrt{x} \, dx = \frac{2}{3};$$

$$c_2 = \langle \sqrt{3}(2x - 1), x^{1/2} \rangle = \int_0^1 \sqrt{3}(2x - 1)\sqrt{x} \, dx = \frac{2\sqrt{3}}{15}.$$

Thus

$$\hat{h}(x) = \frac{4}{5} \left(x + \frac{1}{3} \right).$$

7. (a) Note that span $\{\mathbf{x}_1, \mathbf{x}_2\} = \mathbb{R}^2$, we only need to perform G-S process on \mathbf{x}_1 and \mathbf{x}_2 . Let $\mathbf{v}_1 = \mathbf{x}_1 = (1, 2)^T$,

Let
$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\langle \mathbf{x}_2, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 = (0, 1)^T - \frac{2}{5} (1, 2)^T = \frac{1}{5} (-2, 1)^T.$$

$$\mathbf{u}_1 = \mathbf{v}_1 / \|\mathbf{v}_1\| = \frac{1}{\sqrt{5}} (1, 2)^T, \quad \mathbf{u}_2 = \frac{1}{5\sqrt{5}} (-2, 1)^T.$$

So an orthonormal basis is $\left\{\frac{1}{\sqrt{5}}(1,2)^T, \frac{1}{\sqrt{5}}(-2,1)^T\right\}$.

(b) So an orthonormal basis is $\left\{ (1,0,0)^T, \frac{1}{\sqrt{2}}(0,1,1)^T, \frac{1}{\sqrt{2}}(0,1,-1)^T \right\}$.

(c) Let
$$\mathbf{v}_1 = \mathbf{x}_1 = (4, 2, 2, 1)^T$$
,

Let
$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\langle \mathbf{x}_2, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 = (2, 0, 0, 2)^T - \frac{10}{25} (4, 2, 2, 1)^T = \frac{1}{5} (2, -4, -4, 8)^T$$
,

Let
$$\mathbf{v}_3 = \mathbf{x}_3 - \frac{\langle \mathbf{x}_3, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{x}_3, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 = (0, 1, -1, 0)^T$$
.

$$\mathbf{u}_1 = \mathbf{v}_1 / \|\mathbf{v}_1\| = \frac{1}{5} (4, 2, 2, 1)^T, \quad \mathbf{u}_2 = \frac{1}{5} (1, -2, -2, 4)^T, \quad \mathbf{u}_3 = \frac{1}{\sqrt{2}} (0, 1, -1, 0)^T.$$

So an orthonormal basis is $\{(1,0,0)^T, \frac{1}{\sqrt{2}}(0,1,1)^T, \frac{1}{\sqrt{2}}(0,1,-1)^T\}$.

8. (a)
$$\begin{cases} \frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 + \frac{1}{2}x_4 &= 0\\ -\frac{1}{2}x_1 - \frac{1}{2}x_2 + \frac{1}{2}x_3 + \frac{1}{2}x_4 &= 0 \end{cases} \rightarrow \begin{cases} x_1 + x_2 &= 0\\ x_3 + x_4 &= 0 \end{cases}$$

So
$$N(A) = \text{span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix} \right\}$$
. Note that $(1, -1, 0, 0)^T$ and $(0, 0, 1, -1)^T$ are

orthogonal, normalization gives $\{\frac{1}{\sqrt{2}}(1,-1,0,0)^T, \frac{1}{\sqrt{2}}(0,0,1,-1)^T\}$.

(b) Let
$$B = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1 \end{pmatrix}$$
, then $\operatorname{Col}(B) = \operatorname{N}(A)$ and the projection matrix Q that

projects vectors in \mathbb{R}^4 onto N(A) should be

$$Q = B(B^TB)^{-1}B^T = BB^T = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix},$$

since the columns in B are orthonormal vectors.

9. Since Q is an orthogonal matrix, then $QQ^T = I$. Hence we have

$$1 = \det(I) = \det(Q)\det(Q^T) = \det(Q)\det(Q) = d^2 \quad \to \quad |d| = 1.$$

- 10. (a) True. Because $\operatorname{rank}(A^T) = \operatorname{rank}(A)$ and $\operatorname{rank}(A) = \operatorname{rank}(A^T A)$. Different null spaces though.
 - (b) False. $\mathbf{y} \in \operatorname{Col}(A^T) \cap \operatorname{N}(A) = \{\mathbf{0}\}.$
 - (c) True. Q is orthogonal, then $Q^T = Q^{-1}$, $(Q^T)^{-1} = Q = (Q^T)^T$. Q^T is also orthogonal.
 - (d) False. $(3Q)(3Q)^T = 9QQ^T = 9I \neq I$.