Crypto Assignment 3

Name: CHE Yulin, Student#: 20292673

Q1 SHA-1 Restriction

- **Answer**: it is enough for hashing any message in the near feature and to attack the SHA-1 with brute force approach is impossible with current computing power. The specific analysis is as follows.
- **Enough Length**: It will take a long time until we reach messages longer than 2^{64} bits, which we want to hash sequentially. To put things in perspective, SHA-1's performance on modern CPUs is about 0.7 cycles/bit. Assuming a 5 GHz clock, it would take 80 years to hash 2^{64} bits. More CPUs do not help.
- **Security Level**: SHA-1 has a security level of 2^{80} bits for brute-force collision attacks. Attackers reach that level of power long before single files reach 2^{64} bits. And the best attacks made by Xiaoyun Wang, Andrew Yao and Frances Yao can find collisions in the full version of SHA-1, requiring 2^{63} operations.

Q2 DSS k-value Leak

- **Answer**: a user's private key is compromised if k-value is compromised.
- **Formula**: two formulas are adopted to generate (r, s) as the signature part in DSS. If a person gets k from the sender, with (r, s) and global public key (p, q, g), x could be deduced.

$$r = (g^k \mod p) \mod q$$

$$s = [k^{-1}(h(m) + xr)] \mod q$$

• **Deduction**: the deduction procedure is as follows.

$$s = [k^{-1}(h(m) + xr)] \mod q$$

$$\to ks \mod q = (h(m) + xr) \mod q$$

$$\to (ks - h(m)) \mod q = xr \mod q$$

$$\to (ks - h(m)) \cdot r^{-1} \mod q = x \mod q$$

• Conclusion: thus, we can $get x \mod q$, in formula

$$x \mod q = (ks - h(m)) \cdot r^{-1} \mod q$$
.
Here, k, s, m, r, q are all known things.

Q3 Diffe-Hellman Protocol Attack

- **Answer**: the attack procedure is elaborated as follows, namely**session key establishment phase** and **modification or control**, the user Alice is denoted as A, the middle-man is denoted as M, the user Bob is denoted as B.
- · session key establishment phase
 - 1. M generate two random private keys namely X_{M1} , X_{M2} , and then he computes the corresponding public keys namely Y_{M1} , Y_{M2}
 - 2. Alice generate private key X_A , and computes the corresponding public key Y_A , and then pass Y_A to Bob
 - 3. M intercepts Y_A , and pass Y_{M1} to Bob. M computes the session key between himself and Alice, in formula $K_2 = (Y_A)^{X_{M2}} \mod q$.
 - 4. Bob gets Y_{M1} and computes session key in formula $K_1=(Y_{M1}^{X_B})\mod q$
 - 5. Bob pass Y_B to Alice
 - 6. M intercepts Y_B , and pass Y_{M2} to Alice. M computes session key between himself and Bob, in formula $K_1 = (Y_B)^{X_{M_1}} \mod q$
 - 7. Alice gets Y_{M2} , and computes session key in formula $K2 = (Y_{M2})^{X_A} \mod q$

After session key establishment phase, Bob and Alice assumes that they share the session key with each other. However, in fact, Bob and M shares K_1 while Alice and M sahres K_2 .

- message modification or control phase
 - 1. Alice sends a message to Bob, $E(K_2, M)$
 - 2. M intercepts the message, decrypts the message with session key $\!K_2$ and gets the message $\!M$
 - 3. M sends $E(K_1,M)$ without modification or sends $E(K_1,M^{changed})$ with modification to Bob

In message modification or control phase, M is able to either modify the message or simply intercept the message.

• **weakness**: this lies in the lack of authentification of communicators, which could be fixed with the introduction of digital signature and public key certificate.

Q4 Kerberos Key Classificatin

- Answer: there are three types of secret keys, corresponding to three phases in Kerberos
 authentification dialogue, namely authentification service exchange, ticket-granting service
 exchange and client/server authentification exchange.
- Classification on Generated Time
 - \circ **keys established before** K_c denotes client's token shared between the client and AS, K_{tgs} denotes the secret key shared between AS and TGS, K_v denotes the secret key shared between TGS and V

• **keys established In dialogue** $K_{c,tgs}$ denotes the secret key shared between the client and TGS, $K_{c,v}$ denotes the secret key shared between the client and V

Classification on Three Phases for Authentification

In each phase, the keys used to keep the authentification of entities of communications are pointed out.

- \circ obtaining ticket-grant ticket phase K_c
- \circ obtaining service-grant ticket phase: $K_{c,tgs}$
- \circ obtaining service phase $K_{c,v}$
- Classification on Two Phases for Confidentiality for Newly Generated Keys
 - \circ establishing $K_{c,tgs}$ phase: K_c , K_{tgs}
 - \circ establishing $K_{c,v}$ phase: $K_{c,tgs}$, K_v
- Hierarchical Protection Pictorial Description

Q5 Kerberos Authentification

- **Answer**: This is to prevent the use of the tickets from workstation other than the one that initially requested them.
- **Elaboration**: if there is no network address of C, attackers are able to intercept the ticket and used identity ID_C to send messages to server V, from other workstations which are different from C.
- Attack Example: if there is no network address of C, in client-server authentification phase, the attacker is able to intercept C's message Ticket_v ||Auth_c, and sends it to sever to obtain the service from V.

Q6 SSL vs IPsec

- **Answer**: The reason mainly lies in that SSL is built upon TCP transport protocol with states and connections which requires synchronizations, while IPsec is much deeper without guaranteeing connections.
- **SSL**: The SSL session is bidirectional and thus stateful. Hence synchronization is necessary. The change cipher spec protocol is just for this purpose.
- **IPSec**: On the contrary, the IPSec association is for one direction only and is not stateful, and there is thus no need to do the synchronization. Hence IPSec does not need such a protocol.