

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

AQA GCSE Maths: Higher

Rearranging Formulas

Contents

- * Formulas where Subject Appears Once
- * Formulas where Subject Appears Twice

Formulas where Subject Appears Once

Your notes

Simple Rearranging

What are formulas?

- A formula is a rule, definition or relationship between different quantities, written in shorthand using letters (variables)
 - They include an **equals** sign
- Some examples you should be **familiar** with are:
 - The equation of a straight line

$$y = mx + c$$

• The area of a trapezium

• Area =
$$\frac{(a+b)h}{2}$$

Pythagoras' theorem

$$a^2 + b^2 = c^2$$

How do I rearrange formulas?

- The letter (variable) that is on its own on one side is called the subject
 - y is the subject of y = mx + c
- To make a different letter the subject, we need to rearrange the formula
 - This is also called **changing the subject**
- The method is as follows:
 - First, remove any fractions
 - Multiply both sides by the lowest common denominator
 - Then use **inverse** (opposite) **operations** to get the variable on its own
 - This is similar to solving equations

For example, make X the subject of $\frac{5x+6}{2} = y$

- First remove fractions
 - Multiply both sides by 2 5x + 6 = 2y
- Then get X on its own
 - Subtract 6 from both sides 5x = 2y 6
 - Divide both sides by 5

$$x = \frac{2y - 6}{5}$$

- There may be more than one correct way to write an answer
 - The following are acceptable **alternative** forms

$$x = \frac{2y}{5} - \frac{6}{5}$$

$$x = \frac{2(y-3)}{5}$$

$$x = 0.4(y-3)$$

$$x = 0.4y - 1.2$$

Should I expand brackets?

- Expand brackets if it releases the variable you want from inside the brackets
 - If not, you can leave them in
- To make X the subject of 3(1 + x) = y
 - X is **inside** the brackets, so **expand**

$$3 + 3x = y$$

Rearrange

$$3x = y - 3$$
$$x = \frac{y - 3}{3}$$

- To make x the subject of (1+k)x = y
 - X is **not inside** the brackets, so you do **not** need to expand
 - Instead, **divide** both sides by the **bracket** (1 + k)

$$x = \frac{y}{1+k}$$

What if I get fractions in fractions?

• Some rearrangements can lead to fractions in fractions

$$x = \frac{\frac{3}{t}}{2}$$

■ Either rewrite with a divide sign, ÷, then use the method of dividing two fractions

$$x = \frac{3}{t} \div 2$$

$$x = \frac{3}{t} \div \frac{2}{1}$$

$$x = \frac{3}{t} \times \frac{1}{2}$$

$$x = \frac{3}{2t}$$

• Or multiply top and bottom by the the lowest common denominator of the two fractions and cancel

$$x = \frac{\frac{5}{y}}{\frac{t}{8}} \text{ becomes } x = \frac{\frac{5}{y} \times 8y}{\frac{t}{8} \times 8y} = \frac{40}{ty}$$

What if I end up dividing by a negative?

Remember that $\frac{a}{-b}$ (minus **below**) is the same as $\frac{-a}{b}$ (minus **above**) and the same as $-\frac{a}{b}$ (minus **outside**)

- Though be careful, as $\frac{-a}{-b}$ is $\frac{a}{b}$
- $-2x = y 3 \text{ becomes } x = \frac{y 3}{-2} \text{ (minus below)}$
 - This is the same as $X = \frac{-(y-3)}{2}$ (minus above) or $-\frac{y-3}{2}$ (minus outside)
 - brackets are required for minus above
 - brackets are assumed for minus outside
 - You can also expand the brackets

$$\frac{-(y-3)}{2} = \frac{-y+3}{2} = \frac{3-y}{2}$$

Examiner Tips and Tricks

 Mark schemes will accept different forms of the same answer, as long as they are correct and fully simplified

Worked Example

Make X the subject of the following.

(a)
$$4m + 5x = 3$$

Get 5x on its own by subtracting 4m from both sides

$$5x = 3 - 4m$$

Get x on its own by dividing both sides by 5

$$x = \frac{3 - 4m}{5}$$

$$\text{(b)} 3t = \frac{2}{x}$$

Remove fractions by multiplying both sides by the denominator, x

Your notes

Get x on its own by dividing both sides by 3t

$$x = \frac{2}{3t}$$

$$(c)A = \frac{9(1-4x)}{2g}$$

Remove fractions by multiplying both sides by the denominator, 2g

$$2gA = 9(1 - 4x)$$

3tx = 2

x is inside the brackets

Expand the brackets to release the x term

$$2gA = 9 - 36x$$

One way to get x on its own is by subtracting 9 then dividing by -36 Or you can first add 36x to both sides, to create positive 36x on the left

$$2gA + 36x = 9$$

Now get x on its own by subtracting 2gA then dividing by 36

$$36x = 9 - 2gA$$
$$x = \frac{9 - 2gA}{36}$$

$$x = \frac{9 - 2gA}{36}$$

Other accepted forms of the answer are

$$\frac{2gA-9}{-36}$$
, $\frac{-(2gA-9)}{36}$, $-\frac{2gA-9}{36}$, $\frac{1}{4}-\frac{gA}{18}$

Formulas where Subject Appears Twice

Your notes

Subject Appears Twice

How do I rearrange formulae where the subject appears twice?

- If the subject appears twice, you will need to factorise at some point
 - E.g. When making X the subject of X + Xy = 3 2y
 - Factorise out X on the left to get x(1+y) = 3-2y
 - Notice that the subject now only appears once!
 - Then divide both sides by (1 + y) to get $x = \frac{3 2y}{1 + y}$
- If the subject appears twice, and any of these are inside a set of brackets, you will need to expand these brackets first
 - E.g. When making X the subject of c(x+2) x = f
 - Expand the bracket first to cx + 2c x = f
 - Keep the X terms on one side cx x = f 2c
 - X can then be made the subject using factorising as above
- If the **subject appears on two sides of a formula**, you will need to bring those terms to the **same side** before you can factorise
 - E.g. When making X the subject of 3x = y pX
 - Add px to both sides first to form 3x + px = y
 - X can then be made the subject using **factorising** as above

How do I factorise powers of a subject?

- If the subject appears twice, and both have the same power, you will need to collect these terms together before applying their inverse
 - E.g. When making X the subject of $X^2 = -pX^2 + r$

- Add px^2 to both sides first to form $x^2 + px^2 = r$
- x^2 can then be factorised out $x^2(1+p) = r$ to give $x^2 = \frac{r}{1+p}$
 - Now take plus-or-minus square roots

$$X = \pm \sqrt{\frac{r}{1+p}}$$

- Be careful when square rooting, or cube rooting etc
 - E.g. To make X the subject of $X^3 = \frac{t^3 + 1}{t^3 + 8}$
 - The whole right hand side must be cube rooted

$$X = \sqrt[3]{\frac{t^3 + 1}{t^3 + 8}}$$

- This cannot be simplified further
- The right hand side is **not** equal to $\frac{t+1}{t+2}$, (this is a **common error**)

Worked Example

Rearrange the formula $p = \frac{2 - ax}{x - h}$ to make x the subject.

Get rid of the fraction by multiplying both sides by the expression on the denominator

$$p(x-b) = 2 - ax$$

Expand the brackets on the left hand side to 'release' the X

$$px - pb = 2 - ax$$

Bring the terms containing X to one side of the equals sign and any other terms to the other side

$$px - pb = 2 - ax$$

$$(+ax)$$

Page 8 of 9

SaveMyExams

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

$$px - pb + ax = 2$$

$$(+pb)$$

$$px + ax = 2 + pb$$

Factorise the left-hand side to bring \boldsymbol{X} outside of the brackets, so that it appears only once

$$x(p+a) = 2 + pb$$

Make x the subject by dividing by the whole expression (p + a)

$$x = \frac{2 + pb}{p + a}$$