Tutorial 3

Detailed code measurements modelling

Professors Dr. Jaume Sanz Subirana, Dr. J. M. Juan Zornoza and Dr. Adrià Rovira Garcia

Research group of Astronomy & Geomatics (gAGE)
Universitat Politècnica de Catalunya (UPC)
Barcelona, Spain

Authorship statement

This material authorship and Intellectual Property Rights are owned by Jaume Sanz Subirana and José Miguel Juan Zornoza.

These slides can be obtained either from the server http://www.gage.upc.edu, or jaume.sanz@upc.edu. Any partial reproduction should be previously authorized by the authors, clearly indicating the slides reference.

This authorship statement must be keep untouched at all times.

June 2022

Detailed Computation of modeled pseudorange

Using files **UPC11490.050** and **UPC11490.05N** compute the SPP solution with **gLAB**.

Afterwards, calculate by hand the modelled C1 pseudo-range and the pre-fit residual for satellite PRN25 at time $\mathbf{t} = \mathbf{300}$ seconds of day 29 May 2005 (Day Of Year 149).

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

Compare the results with gLAB.

NOTE: use the Simple Nominal Model an Mapping for Tropospheric Correction.

Follow next steps:

Process the data files using the default SPP mode:

- O. Select pseudorange C1 for PRN25, at t=300 seconds.
- 1. Select orbital elements closest to t=300 seconds
- 2. Compute satellite clock offset
- 3. Compute satellite instrumental delay (TGD)
- 4. Compute satellite-receiver aprox. geometric range:
 - 4.1 Compute emission time from receiver (reception) time-tags and code pseudorange.
 - 4.2 Compute satellite coordinates at emission time
 - 4.3 Compute approximate geometric range.
- 5. Compute relativistic satellite clock correction
- 6. Compute ionospheric delay
- 7. Compute tropospheric delay
- 8. Compute modeled pseudorange from previous values:

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

0. Select pseudorange C1 for PRN25, at t=300 seconds.

Technical University of Catalonia

0. Select pseudorange C1 for PRN25, at t=300 seconds.

From RINEX measurement file **UPC11490.050**, select the *C1* pseudorange measurement at receiver time-tag for PRN25:

 $t = 300 \, sec = 0h \, 05m \, 0.000000s$ from file UPC11490.050, C1 = 22857303.996 m at t = 300 s. 0.0000000 9G 6G 1G21G 2G 5G30G14 5 29 22857303.996 22857301.3054 120115969.49948 93596862.76546 2723.29048 2122.09146 24466601.337 24466601.6684 128572940.94147 100186651.00844 -3729.38047-2905.98944 20405995.011 20405993.9894 107234297.78349 83559175.41846 1058, 26649 824.62446 22758443.914 22758442.9824 119596458.09448 93192027.40946 221.51848

Thence:

Measurement file UPC11490.050

172.61946

Pseudorange *C1* at receiver time-tag t=300: *C1*= 22857303.996 m

1.- Select orbital elements closest to t=300 seconds.

1. Selection of orbital elements:

For **PRN25**, select from file **UPC11490.05N** the <u>last transmitted</u> navigation message, <u>before t = 300 seconds</u> of DoY 149 of year 2005.

PRN

```
Transmission time:
```

1325 18 → 2005/05/29 00:00:18

These data were transmitted by PRN25 at second 18 of GPS week 1325 (i.e. 1.8000000000E+01, 1.32500000000E+03 in the message).

The associated Y Y:MM:DD:hh:mm:ss with this transmission time can be computed using the GNSS Date Converter tool of gLAB as follows:

How to use the **notepad**?

2. Satellite clock offset computation:

From file **UPC11490.05N**, compute satellite clock offset at time **t=300 s** for **PRN25**:

PRN t_0 a_0 a_1 a_2

25 5 5 29 2 0 0.0 9.401096031070E-05 9.094947017729E-13 0.00000000000E+00

8.4000000000E+01-1.061875000000E+02 4.825915304457E-09-2.255215633503E+00

-5.284324288368E-06 1.204112719279E-02 5.686655640602E-06 5.153704689026E+03

7.20000000000E+03 2.011656761169E-07-2.689273653419E+00 1.396983861923E-07

9.492799505545E-01 2.625625000000E+02-1.460408709553E+00-8.100337411567E-09

-3.643008888800E-11 1.00000000000E+00 1.32500000000E+03 0.0000000000E+00

2.8000000000E+00 0.0000000000E+00-7.450580596924E-09 8.52000000000E+02

1.8000000000E+01 0.0000000000E+00 1.0000000000E+00 0.0000000000E+00

$$t = 300sec$$

 $t_0 = 2h \ Om \ Os = 7200 \ s$

<u>Last transmitted navigation</u> message, before t = 300 seconds

$$d\overline{t}^{sat} = a_0 + a_1(t - t_0) + a_2(t - t_0)^2 = 9.400 \cdot 10^{-5} \text{ s}$$

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(\overline{dt}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

```
gAGE@gAGE-PC:/cygdrive/c/gLAB/NEW_TUT/TUT7...
octave:1> format long
          c=299792458
octave:2>
c = 299792458
loctave:3> sec= 300
lsec = 300
octave:4> toc= 2*3600+ 0*60 +0
ltoc = 7200
octave:5> a0= 9.401096031070E-05
a0 = 9.40109603107000e-05
loctave:6> a1= 9.094947017729F-13
a1 = 9.09494701772900e-13
loctave:7> a2= 0
la2 = 0
octave:8> dt_sat0=a0+a1*(sec-toc)+a2*(sec-toc)**2
dt sat0 = 9.40046847972578e-05
loctave:9> c*dt sat0
ans = 28181.8955188851
octave:10>
```

Satellite clock offset computation with MATLAB (octave)

$$t_0 = 2 \text{ h } 0 \text{ min } 0 \text{ s} = 7200 \text{ s},$$

$$a_0 = 9.401096031070$$
E-05 $a_1 = 9.094947017729$ E-13, $a_2 = 0.0000000000$ E+00 (use also $c = 299792458$ m/s).

$$d\overline{t}^{sat} = a_0 + a_1(t - t_0) + a_2(t - t_0)^2 = 9.400 \cdot 10^{-5} \text{ s}$$

Cross-checking results with gLAB

Jaume@Jaume-PC:/cygdrive/c/gLAB/win/Professional_training/WORK_FILES

Jaume@Jaume-PC:/cygdrive/c/gLAB/win/Professional_training/WORK_FILES grep MODEL gLAB.out | grep -v INFO | gawk '{if (\$6==25) print \$4,\$6,\$18}' | head -1 300.00 25 -28181.89550

Jaume@Jaume-PC:/cygdrive/c/gLAB/win/Professional_training/WORK_FILES

$$d\overline{t}^{sat} = 9.40046848 \cdot 10^{-5} \,\mathrm{s} \implies -c \,d\overline{t}^{sat} = -28181.89551 \mathrm{m}.$$

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

3. Satellite Instrumental delay (TGD)

From file UPC11490.05N, compute the Total Group Delay for PRN25:

PRN

TGD (in sec)

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

Cross-checking results with gLAB

TGD =
$$-7.450580596924E-09$$
 (in seconds)
Thus: TGD = $-7.450580596924E-09 \times c = -2.23363 \text{ m}$

Thus:
$$TGD = -7.450580596924E - 09 \times c = -2.23363 \,\mathrm{m}$$
.

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

4. Satellite-receiver geometric range computation:

Use the following values (4789032.6277, 176595.0498, 4195013.2503) as approximate coordinates.

4.1: Emission time computation from receiver time-tag and code

pseudorange:

$$T[ems] = t_{rec}(T_R) - (C1/c + dt^{sat})$$

Measurement file **UPC11490.050**

Pseudorange *C1* at receiver time-tag t=300: *C1*= 22857303.996 m

Ephemeris file UPC11490.05N

Satellite clock offset at t=38230 s dt^{sat} = 9.40046848e-05 s

(see previous results)

Thence, the emission time in GPS system time is:

 $T[ems] = 300s - (22857303.996m /c + 9.40 10^{-5}s)$

= 299.923662236054s (where c=299792458 m/s)

Measurement file **UPC11490.050**

t = 300 sec = 0h 05m 0.000000s

☐ Jaume@Portatil_Jaume:/cygdrive/c/gLAB/win/Professional_training/WO ☐ ☐ × 0.0000000 0	
	N .
22857303.996 22857301.3054 120115969.49948 93596862.76546 2723.29048	
2122.09146	
24466601.337 24466601.6684 128572940.94147 100186651.00844 -3729.38047	
-2905.98944	
20405995.011 20405993.9894 107234297.78349 83559175.41846 1058.26649	
824.62446	
22758443.914 22758442.9824 119596458.09448 93192027.40946 221.51848	
172.61946 22847797.979 22847793.9524 120066006.91748 93557939.31646 -597.92448	
22847797.979 22847793.9524 120066006.91748 93557939.31646 -597.92448 -465.90346	
22038213.121 22038210.8494 115811711.44948 90242946.64646 -2309.52148	
-1799.62646	
20171035.530 20171033.5794 105999650.93349 82597114.84546 -377.07249	
-293.81446	
22567004.856 22567003.4674 118590435.21148 92408144.24746 -2193.61648	
-1709.30346	
05 5 29 0 5 30.0000000 0 8G25G09G06G01G02G05G30G14	
22841780.362 22841777.9824 120034393.69248 93533297.24445 2715.16248	
2115.71845	
24487903.545 24487901.6274 128684880.96348 100273876.88342 -3732.94148	,

Note:

From RINEX measurement file **UPC11490.050**, select the *C1* pseudorange measurement at receiver time-tag for PRN25:

Thence:

Measurement file UPC11490.050

Pseudorange *C1* at receiver time-tag t=300: *C1*= 22857303.996 m

$T[ems] = t_{rec}(T_R) - (C1/c + dt^{sat})$

Measurement file UPC11490.050

Pseudorange *C1* at receiver time-tag t=300: *C1*= 22857303.996 m

Ephemeris file UPC11490.05N

Satellite clock offset at t=300 s

 dt^{sat} = 9.40046848e-05 s

Thence, the emission time in GPS satellite clock is:

 $T[ems] = 300s - (22857303.996 \text{ m}/c + 9.40 10^{-5}\text{s})$

= 299.923662236054s (where c=299792458 m/s)

```
octave:1> format long
octave:2> c=299792458
c = 299792458
octave:3> sec= 300
sec = 300
octave:4> dt_sat0= 9.40046848e-05
dt_sat0 = 9.40046848000000e-05
octave:5> C1=22857303.996
C1 = 22857303.9960000
octave:6> sec_ems=sec-C1/c-dt_sat0
sec_ems = 299.923662236054
octave:7>
```

Emission time computation with MATLAB (octave)

4.2: Satellite coordinates at emission time pseudorange:

Use the selected ephemeris for PRN25 (from file UPC11490.05N)

The obtained coordinates are given in an Earth-fixed reference frame (CTS) at t=T[emission]=299.92366 s.

This reference frame rotates by un amount " $\omega_E \Delta t$ " during traveling time $\Delta t = T[reception] - T[emission]$.

$$(x^{\text{sat}}, y^{\text{sat}}, z^{\text{sat}})_{\text{CTS[reception]}} = R_3(\omega_E \Delta t).(x^{\text{sat}}, y^{\text{sat}}, z^{\text{sat}})_{\text{CTS[emission]}}$$

Conventional Terrestrial Reference System (CTS):

Earth Centered, Earth-Fixed (ECEF) → the reference system rotates with Earth.

(x,y,z)

Computation of satellite coordinates from navigation message (GPSxyz.f)

• Computation of t_k time since ephemerids reference epoch t_{oe} (t and t_{oe} are given in GPS seconds of week):

$$t_k = t - t_{oe}$$

• Computation of mean anomaly M_k for t_k ,

$$M_k = M_0 + \left(\frac{\sqrt{\mu}}{\sqrt{a^3}} + \Delta n\right) t_k$$

• Iterative resolution of Kepler's equation in order to compute eccentric anomaly E_{ν} :

$$M_k = E_k - e \sin E_k$$

• Calculation of true anomaly v_k :

$$v_k = \arctan\left(\frac{\sqrt{1 - e^2} \sin E_k}{\cos E_k - e}\right)$$

• Computation of latitude argument u_k from perigee argument W, true anomaly v_k and corrections c_{uc} and c_{us} :

$$u_k = \omega + v_k + c_{uc} \cos 2(\omega + v_k) + c_{us} \sin 2(\omega + v_k)$$

Computation of satellite coordinates from navigation message (GPSxyz.f)

• Computation of radial distance r_k , taking into consideration corrections c_{rc} and c_{rs} :

$$r_k = a(1 - 2\cos E_k) + c_{rc}\cos 2(\omega + v_k) + c_{rs}\sin 2(\omega + v_k)$$

• Calculation of orbital plane inclination i_k from inclination i_o at reference epoch t_{oe} and corrections c_{ic} and c_{is} :

$$i_k = i_0 + it_k + c_{ic}\cos 2(\omega + v_k) + c_{is}\sin 2(\omega + v_k)$$

• Computation of ascending node longitude Ω_k (Greenwich), from longitude Ω_0 at start of GPS week, corrected from apparent variation of sidereal time at Greenwich between start of week and and reference time t_k =t- t_{oe} , and also corrected from change of ascending node longitude since reference epoch t_{oe} .

$$\Omega_{k} = \Omega_{0} + (\Omega - \omega_{E})t_{k} - \omega_{E}t_{oe}$$

• Calculation of coordinates in CTS system, applying three rotations (around u_k , i_k , Ω_k):

$$\begin{bmatrix} \mathbf{X}_k \\ \mathbf{Y}_k \\ \mathbf{Z}_k \end{bmatrix} = \mathbf{R}_3 (-\Omega_k) \mathbf{R}_1 (-i_k) \mathbf{R}_3 (-u_k) \begin{bmatrix} r_k \\ 0 \\ 0 \end{bmatrix}$$

Computation of satellite coordinates in an Earth-Fixed reference frame

(CTS) at t=T[emission]=299.92366 s.

```
echo "2005 149 299.92366224" > time.dat
```

```
y= -14 298 233.062 m
cat time.dat eph.dat | GPSxyz
                                                  z= 21851 197.941 m
Note: use the file "eph . dat" (with the selected Nav. Message)
                                                  CTS [emission]
Result: [25. 299.92366224 ← time
         6364868.618075 - 14298233.062153 21851197.940638 \leftarrow coord
         3.022976 ← Excentric anomaly Ek
```

```
Jaume@Jaume-PC:/cygdrive/c/gLAB/win/Professional_training/WORK_FILES
       aume-PC:/cygdrive/c/gLAB/win/Professional_training/WORK_FILES echo "2005 149 299.92366224" > time.dat
 aume@Jaume-PC:/cygdrive/c/gLAB/win/Professional_training/WORK_FILES
                                                                         cat time.dat eph.dat | GPSxyz
                           6364868.618075 -14298233.062153 21851197.940638
```

These coordinates are given in an t=T[emission]=299.92366 s, i.e. CTS [emission]

Next step is to transform these coordinates to CTS [reception]

$$(x^{\text{sat}}, y^{\text{sat}}, z^{\text{sat}})_{\text{CTS[reception]}} = R_3(\omega_E \Delta t).(x^{\text{sat}}, y^{\text{sat}}, z^{\text{sat}})_{\text{CTS[emission]}}$$

x= 6 364 868.618 m

$$(x^{\text{sat}}, y^{\text{sat}}, z^{\text{sat}})_{\text{CTS[reception]}} = R_3(\omega_E \Delta t).(x^{\text{sat}}, y^{\text{sat}}, z^{\text{sat}})_{\text{CTS[emission]}}$$

$$\begin{pmatrix} 6364789.025 \\ -14298268.493 \\ 21851197.941 \end{pmatrix} = \begin{pmatrix} \cos(\omega_E \Delta t) & \sin(\omega_E \Delta t) & 0 \\ -\sin(\omega_E \Delta t) & \cos(\omega_E \Delta t) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 6 & 364 & 868.618 \\ -14 & 298 & 233.062 \\ 21851 & 197.941 \end{pmatrix}$$

$$CTS[reception]$$

$$CTS[emission]$$

$$(x,y,z)^{satellite} \approx (6364868.618 , -14298233.062 , 21851197.940)$$

$$(x_0,y_0,z_0)_{receiver} \approx (4789032.628, 176595.050, 4195013.250)$$

$$\rho_{0,rec}^{sat} = \sqrt{\left(x^{sat} - x_{0,rec}\right)^2 + \left(y^{sat} - y_{0,rec}\right)^2 + \left(z^{sat} - z_{0,rec}\right)^2} \approx 22885470.626m$$

$$\Delta t = \frac{\rho_{0,rec}^{sat}}{c} = 0.0763 \, \text{sec}$$

$$\omega_E \Delta t = 5.56 \cdot 10^{-6} \, rad. \quad (where \quad \omega_E = 7.2921151467 \cdot 10^{-5} \, rad \, / \, \text{sec})$$

An approximate value is enough to compute Δt .

Note: Both satellite and receiver coordinates must be given in the same reference system!

→ the CTS[reception] will be used to build navigation equations.

Approximate Receiver coordinates given in the RINEX file header

 $x_{0,rec} = 4789032.6277$ $y_{0,rec} = 176595.0498$ $z_{0,rec} = 4195013.2503$ Transformation of satellite coordinates form CTS [emission] to CTS [reception]

with MATLAB (octave)

```
r0 rcv=[ 4789032.6277
                                                                      176595,0498
gAGE@gAGE-PC:/cyqdrive/c/qLAB/NEW_TUT/TUT7/WORK
                                                                                                               4195013.2503 ]
octave:1> format long
octave:2> r0_rcv=[4789032.6277
                                          176595.0498
                                                            4195013.2503]
                                                                                               (from RINEX header)
r0_rcv =
   4789032.627700000
                           176595.049800000
                                                  4195013.250300000
                                                                                               r sat= [ 6364868.61807
octave:3> r_sat= [6364868.61807 -14298233.06215 21851197.94064]
                                                                                                           -14298233.06215
r sat =
                                                                                                           21851197.94064]
    6364868.61807000 -14298233.06215000
                                                 21851197.94064000
                                                                                              CTS [emission]
octave:4> c=299792458
c = 299792458
octave:5> dt_fight=norm(r_sat-r0_rcv,2)/c
                                                                      \rho_{0,receiver}^{\text{satellite}} = \sqrt{\left(x^{\text{sat}} - x_{0,rec}^{\text{o}}\right)^{2} + \left(y^{\text{sat}} - y_{0,rec}^{\text{o}}\right)^{2} + \left(z^{\text{sat}} - z_{0,rec}^{\text{o}}\right)^{2}}
dt_fight = 0.0763377130243576
              we= 7.2921151467e-5
         7.29211514670000e-05
octave:7> theta=we*dt_fight
             5.56663393409356e-06
octave:8> R=[cos(theta) sin(theta) 0 ; -sin(theta) cos(theta) 0 ; 0 0 1]
   0.99999999984506
                          0.000005566633934
                                                  0.0000000000
                                                                    6364789.025
                                                                                         \cos(\omega_{\scriptscriptstyle F} \Delta t)
                                                                                                       \sin(\omega_{\scriptscriptstyle F} \Delta t)
                                                                                                                          6 364 868.618
  -0.000005566633934
                          0.99999999984506
                                                 0.00000000000
   0.000000000000000
                          0.000000000000000
                                                  -14298268.493
                                                                                        -\sin(\omega_E \Delta t) \cos(\omega_E \Delta t) = 0 | -14 298 233.062
octave:9> r_sat_ems=(R*r_sat')'
                                                                    21851197.941
r_sat_ems =
                                                                     CTS[reception]
    6364789.02494202 -14298268.49282210
                                                  21851197.94064000
                                                                                        \omega_{\rm E} = 7.2921151467 \cdot 10^{-5} \, rad \, / \, sec
octave:10>
```

Cross-checking results with gLAB

Jaume@Jaume-PC:/cygdrive/c/gLAB/win/Professional_training/WORK_FILES

0

Jaume@Jaume-PC:/cygdrive/c/gLAB/win/Professional_training/WORK_FILES grep MODEL gLAB.out | grep -v INFO | gawk '{if (\$6==25) print \$4,\$6,\$11,\$12,\$13}'|head -1 300.00 25 6364789.0249 -14298268.4928 21851197.9406
Jaume@Jaume-PC:/cygdrive/c/gLAB/win/Professional_training/WORK_FILES |

4.3: Geometric range computation

The geometric range between satellite coordinates at emission time and the "approximate position of the receiver" at reception time both coordinates given in the same reference system [for instance the CTS system at reception time]) is computed by:

$$\rho_{0,rec}^{sat} = \sqrt{\left(x^{sat} - x_{0,rec}\right)^2 + \left(y^{sat} - y_{0,rec}\right)^2 + \left(z^{sat} - z_{0,rec}\right)^2} \approx 22885487.555m$$

$$(x, y, z)^{satellite} = (6364789.0249 - 14298268.4928 \ 21851197.9406)_{CTS[reception]}$$

$$(x_0, y_0, z_0)_{receiver} = (4789032.6277 \ 176595.0498 \ 4195013.2503)_{CTS[reception]}$$

"Approximate" receiver coordinates at reception time.

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

Geometric range computation with octave (MATLAB)

from previous computations

```
gAGE@gAGE-PC:/cygdrive/c/gLAB/NEW_TUT/TUT7/WORK
octave:1> format long
octave:2> r_sat_ems=[6364789.02494205 -14298268.49282209
                                                                        21851197.940640007
r sat ems =
    6364789.02494205 -14298268.49282209
                                                   21851197.94064000
octave:3> r0_rcv=[4789032.6277 176595.0498
                                                              4195013.2503
r0 rcv =
   4789032.627700000
                            176595.049800000
                                                   4195013.250300000
octave:4> rho=norm(r_sat_ems-r0_rcv,2)
                                                                 \rho_{0,receiver}^{\text{satellite}} = \sqrt{\left(x^{\text{sat}} - x_{0,rec}\right)^2 + \left(y^{\text{sat}} - y_{0,rec}\right)^2 + \left(z^{\text{sat}} - z_{0,rec}\right)^2}
rho = 22885487.5547884
octave:5>
```

Cross-checking results with gLAB

```
Jaume@Jaume-PC:/cygdrive/c/gLAB/win/Professional_training/WORK_FILES

Jaume@Jaume-PC:/cygdrive/c/gLAB/win/Professional_training/WORK_FILES grep MODEL gLAB.out | grep -v INFO | gawk '{if ($6==25) print $4,$6,$17}' | head -1 300.00 25 22885487.5548

Jaume@Jaume-PC:/cygdrive/c/gLAB/win/Professional_training/WORK_FILES |
```

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c(d\overline{t}^{sat} + \Delta rel^{sat}) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

5. Relativistic clock correction:

PRN

sqrt(a)

25

5 5 29 2 0 0.0 9.401096 31070E-05 9.094947017729E-13 0.000000 000000E+00

8.40000000000E+01-1.061875(00000E+02 4.825915304457E-09-2.255215533503E+00

-5.284324288368E-06 1.204112719279E-02 5.686655640602E-06 5.153704689026E+03

7.20000000000E+03 2.011656761169E-07-2.689273653419E+00 1.396983861923E-07

9.492799505545E-01 2.625625000000E+02-1.460408709553E+00-8.100337411567E-09

-3.643008888800E-11 1.00000000000E+00 1.32500000000E+03 0.0000000000E+00

2.8000000000E+00 0.0000000000E+00-7.450580596924E-09 8.52000000000E+02

1.8000000000E+01 0.0000000000E+00 1.0000000000E+00 0.0000000000E+00

T[emission] = 299.92366224 s

GPSxyz

E = 3.022976 rad. (eccentric anomaly)

$$\Delta rel^{sat} = -2\frac{\sqrt{\mu a}}{c^2} e \sin(E) = -3.28 \cdot 10^{-9} s$$

$$\mu = 3.986005 \cdot 10^{14} \quad m^3 s^{-2}$$

$$c = 299792458 \quad m s^{-1}$$

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

Relativistic clock correction computation with MATLAB (octave)


```
\Delta rel^{sat} = -2\frac{\sqrt{\mu a}}{c^2} e \sin(E) = -3.28 \cdot 10^{-9} s
```

sqrt(a)= 5.153704689026E+03 e= 1.204112719279E-02

E = 3.022976 rad.(eccentric anomaly)
From previous computations

$$\mu = 3.986005 \cdot 10^{14} \quad m^3 s^{-2}$$

$$c = 299792458 \quad m s^{-1}$$

Cross-checking results with gLAB

```
grep MODEL gLAB.out | grep -v INFO |
gawk '{if ($6==25) print $4,$6,$22}' |head -1
```

Note: gLAB computes this relativistic correction using a different algorithm: **dt_rel= -2*r_sat_ems*v'/c/c** (see GNSS book). Where the velocity is estimated from coordinates variation from two close epochs. This is the reason of the small discrepancy.

6. Ionospheric correction

(time,
$$r_{sta}$$
, r^{sat} $\alpha 0, \alpha 1, \alpha 2, \alpha 3, \beta 0, \beta 1, \beta 2, \beta 3$) \rightarrow [iono] \rightarrow lono=2.49m

2.10 N: GPS NAV DATA RINEX VERSION / TYPE

B2AConv V2.0 gAGE/UPC 21-Dec-09 19:17 PGM / RUN BY / DATE

REALTIME EPHEMERIS FILE COMMENT

1.0245E-08 2.2352E-08 -5.9605E-08 -1.1921E-07 ION ALPHA
9.6256E+04 1.3107E+05 -6.5536E+04 -5.8982E+05 ION BETA

3.725290298462E-09 9.769962616701E-15 319488 1325 DELTA-UTC: A0,A1,T,W

13 LEAP SECONDS
END OF HEADER

$$t = 300 \,\text{sec}$$

 $(x, y, z)^{satellite} = (6364789.0249 - 14298268.4928 \ 21851197.9406)_{CTS[reception]}$
 $(x_0, y_0, z_0)_{receiver} = (4789032.6277 \ 176595.0498 \ 4195013.2503)_{CTS[reception]}$

Approximate values for receiver or satellite coordinates are enough

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

6. Ionospheric correction

The FORTRAN program iono. f implements the Klobuchar ionospheric model selected by default in gLAB.

Note: the algorithms are given in the GNSS book, Volume-1.

The Fortran code iono.f and C code Model.c are available in the CD-ROM, Volume -2

(time, r_{sta} , r^{sat} , $\alpha 0$, $\alpha 1$, $\alpha 2$, $\alpha 3$, $\beta 0$, $\beta 1$, $\beta 2$, $\beta 3$) \rightarrow iono elev, ϕ RINEX VERSION / TYPE NAVIGATION DATA 24-MAR- 0 00:23 PGM / RUN BY / DATE CCRINEXN V1.5.2 UX CDDIS TGS BROADCAST FPHFMFRTS FTLF COMMENT 0.3167D-07 0.4051D-07 -0.2347D-06 0.1732D-06 **ION ALPHA** 0.2842D+05 -0.2150D+05 -0.1096D+06 **ION BETA** 0.4301D+06 -0.121071934700D-07-0.488498130835D-13 1002 DELTA-UTC: A0,A1,T,W 319488 13 LEAP SECONDS END OF HEADER 0.0 0.783577561379D-04 0.113686837722D-11 0.000000000000D+00 0.19100000000D+03-0.10625000000D+01 0.487163149444D-08-0.123716752769D+01 -0.540167093277D-07 0.476544268895D-02 0.713579356670D-05 0.515433833885D+04 0.17280000000D+06-0.260770320892D-07-0.850753478531D+00 0.763684511185D-07 0.957259887797D+00 0.241437500000D+03-0.167990552187D+01-0.823998608564D-08

0.174650132022D-09 0.10000000000D+01 0.10020000000D+04 0.00000000000D+00 0.32000000000D+02 0.0000000000D+00 0.465661287308D-09 0.19100000000D+03 0.17280000000D+06 0.0000000000D+00 0.00000000D+00 0.0000000D+00 0.0000000D+00

Klobuchar model

$$Ion_{SLANT} = Ion_{VERT} \ m(elev)$$

$$m(elev) = \left[1 - \left(\frac{R_E}{R_E + h} \cos(elev)\right)^2\right]^{-1/2}$$

$$\begin{cases} DC \; ; \; if \left[\frac{2\pi(t-\Phi)}{P} \right] > \frac{\pi}{2} \quad (night) \end{cases}$$

Being: $A = \sum_{n=0}^{3} \alpha_{n} \varphi^{n} ; P = \sum_{n=0}^{3} \beta_{n} \varphi^{n}$ $\varphi = Geomagnetic Latitude$

Where:

$$DC = 5$$
ns

 Φ = 14 (ctt. phase offset)

t = Local Time

Cross-checking results with gLAB

cat iono.dat | iono

Solution:

 $I_1 = 2.47264 \,\mathrm{m}$ of L1 delay.

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

7. Tropospheric correction

$$Trop_{rec}^{sat} = (d_{dry} + d_{wet})m(elev) = 4.319m$$

$$d_{dry} = 2.3 e^{-0.116 \cdot 10^{-3} H}$$

$$d_{wet} = 0.1 m$$

$$m(elev) = \frac{1.001}{\sqrt{0.002001 + \sin^2(elev)}}$$

See next slides

elev:satellite elevation

H = height over the ellipsoid

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(\overline{dt}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

Satellite Elevation and Azimuth computation

The unit vectors in the local east, north and up directions as expressed in ECEF Cartesian coordinates are given by

$$\hat{\mathbf{e}} = (-\sin \lambda, \cos \lambda, 0)
\hat{\mathbf{n}} = (-\cos \lambda \sin \varphi, -\sin \lambda \sin \varphi, \cos \varphi)
\hat{\mathbf{u}} = (\cos \lambda \cos \varphi, \sin \lambda \cos \varphi, \sin \varphi)$$

$$\hat{\boldsymbol{\rho}} = \frac{\mathbf{r}^{sat} - \mathbf{r}_{rcv}}{\|\mathbf{r}^{sat} - \mathbf{r}_{rcv}\|}$$

$$\hat{\boldsymbol{\rho}} \cdot \hat{\mathbf{e}} = \cos E \sin A$$
$$\hat{\boldsymbol{\rho}} \cdot \hat{\mathbf{n}} = \cos E \cos A$$
$$\hat{\boldsymbol{\rho}} \cdot \hat{\mathbf{u}} = \sin E$$

$$E = \arcsin(\hat{\boldsymbol{\rho}} \cdot \hat{\mathbf{u}})$$
$$A = \arctan\left(\frac{\hat{\boldsymbol{\rho}} \cdot \hat{\mathbf{e}}}{\hat{\boldsymbol{\rho}} \cdot \hat{\mathbf{n}}}\right)$$

Computation of satellite elevation

```
# Using Octave or MATLAB compute:
octave
 format long
 1=2.1118187082
 f= 41.3886630584
 l=1*pi/180
 f=f*pi/180
 u=[cos(1)*cos(f);sin(1)*cos(f);sin(f)]
    r0\_rcv=[4789032.6277 	 176595.0498 	 4195013.250]
  r_sat_ems=[6364789.0249 -14298268.4928 21851197.9406]
  rho=r_sat_ems-r0_rcv
  rho=rho/norm(rho)
 elev=asin(rho*u)
 # ==> elev=0.575464444394506 (rad)
```

Computation of Tropospheric delay

```
# Using Octave or MATLAB compute:
octave
 format long
 H=166.4544
 elev=0.575464444394506
 dry=2.3*exp(-0.116e-3*H)
 wet=0.1
 m=1.001/sqrt(0.002001+sin(elev)**2)
 Tropo=(dry+wet)*m
 # ==> Tropo= 4.31889 (metres)
 exit
```

Cross-checking results with gLAB

grep MODEL gLAB.out | grep -v INFO |
 gawk '{if (\$6==25) print \$4,\$6,\$24}' |head -1

cat tropo.dat | tropo

Solution:

 $T = 4.46583 \,\mathrm{m}$.

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{0,rec}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

8. Compute the modeled pseudorange

$$C1_{rec}^{sat}[\text{modelled}] = \rho_{rec,0}^{sat} - c\left(d\overline{t}^{sat} + \Delta rel^{sat}\right) + Trop_{rec}^{sat} + Ion_{1rec}^{sat} + TGD^{sat}$$

$$\rho_{0,rec}^{sat} = 22885487.554 \,\mathrm{m}$$
 $d\overline{t}^{sat} = 9.400 \cdot 10^{-5} \, c = 28181.896 \,\mathrm{m}$
 $c \Delta rel^{sat} = -3.28 \cdot 10^{-9} \, c = -0.0983 \,\mathrm{m}$
 $Trop_{rec}^{sat} = 4.319 \,\mathrm{m}$
 $Ion_{1rec}^{sat} = 2.473 \,\mathrm{m}$
 $TGD^{sat} = -2.234 \,\mathrm{m}$

 $\rightarrow C1_{rec}^{sat}$ [modelled] = 22857311.201m

Cross-checking results with gLAB

```
grep MODEL gLAB.out | grep -v INFO | awk '{if ($6==25) print $4,$6,$10}' |head -1
```

9. Pre-fit residual:

Is the difference between measured and modeled pseudorange

Cross-checking results with gLAB

Jaume@Jaume-PC:/cygdrive/c/gLAB/win/Professional_training/WORK_FILES

Jaume@Jaume-PC:/cygdrive/c/gLAB/win/Professional_training/WORK_FILES grep PREFIT gLAB.out | grep -v INFO | gawk '{if (\$6==25) print \$4,\$6,\$8}' | head -1 aume@Jaume-PC:/cygdrive/c/gLAB/win/Professional_training/WORK_FILES

Thank you

References

- [RD-1] J. Sanz Subirana, J.M. Juan Zornoza, M. Hernández-Pajares, GNSS Data processing. Volume 1: Fundamentals and Algorithms. ESA TM-23/1. ESA Communications, 2013.
- [RD-2] J. Sanz Subirana, J.M. Juan Zornoza, M. Hernández-Pajares, GNSS Data processing. Volume 2: Laboratory Exercises. ESA TM-23/2. ESA Communications, 2013.
- [RD-3] Pratap Misra, Per Enge. Global Positioning System. Signals, Measurements, and Performance. Ganga –Jamuna Press, 2004.
- [RD-4] B. Hofmann-Wellenhof et al. GPS, Theory and Practice. Springer-Verlag. Wien, New York, 1994.

Φ gag http://www.

Acknowledgements

- The ESA/UPC GNSS-Lab Tool suit (gLAB) has been developed under the ESA Education Office contract N. P1081434.
- The data set of GRACE-A LEO satellite was obtained from the NASA Physical Oceanography Distributed Active Archive Center at the Jet Propulsion Laboratory, California Institute of Technology.
- The other data files used in this study were acquired as part of NASA's Earth Science Data Systems and archived and distributed by the Crustal Dynamics Data Information System (CDDIS).
- To Pere Ramos-Bosch for his fully and generous disposition to perform gLAB updates in his afterhours.
- To Adrià Rovira-Garcia for his contribution to the edition of this material and gLAB updating.
- To Deimos Ibáñez for his contribution to gLAB updating and making the Windows, Mac and LINUX installable versions for this tutorial.