

COURSE UNIT DESCRIPTION

Course unit title	Course unit code
Functional Programming	

Lecturer(s)	Unit
Coordinator: Viačeslav Pozdniakov	Department of Software Engineering
	Institute of Computer Science
Other lecturers:	Faculty of Mathematics and Informatics
	Vilnius University

Cycle		Type of the course unit
	1 st (BA)	Compulsory

Mode of delivery	Semester or period when the course unit is delivered	Language of instruction
Face-to-face	3 semester	English

Prerequisites
Prerequisites: Procedural Programming, Object Oriented Programming

Number of credits allocated	Student's workload	Contact hours	Individual work
5	130	66	64

Purpose of the course unit: programme competences to be developed

Purpose of the course unit – provide functional programming basics, and introduce modern functional programming languages.

Generic competences:

- An ability to organize their own work independently (GK1.3).
- An ability to undertake literature searches and analysis, and to use databases and other sources of information (GK2.2).
- An ability independently to acquire new knowledge, methodologies, and tools and to apply them in practice (GK2.3).

Specific competences:

- Knowledge and skills of underlying conceptual basis (SK4).
- An ability to design, implement, and evaluate a computer-based system, process, component, or service to meet desired needs (SK5.3).
- An ability to select and use appropriate current techniques, models, solution patterns, skills, and tools necessary for software engineering practice involving emerging application areas (SK6.2).

Learning outcomes of the course unit: students will be able to	Teaching and learning methods	Assessment methods
Understand the principles of functional programming and recognize them. Write stateless (without any variables) programs. Investigate features of any other functional programming languages. Apply functional programming design patterns.	Lectures, discussions, group project, self- dependent reading.	Written exam, presentation of the group project assignments

		Contact hours				Individual work: time and assignments				
Course content: breakdown of the topics	Lectures	Futorials	Seminars	Practice	Laboratory work (LW)	Tutorial during LW	Contact hours	Individual work	Assignments	
Functions, types, lists, tuples	2				2		4	3	Calf damandant	
Recursion, tail recursion	2				2	2	4	3	Self-dependent reading. Laboratory	
ADT, classes, instances	2				2] ~	4	3	work 1.	
Function composition	2				2		4	3	WOIK 1.	
Higher-order functions	2				2		4	3	Self-dependent	
Monads, do-notation	4				4	2	8	7	reading. Laboratory	
Functors, Applicative functors	2				2		4	3	work 2.	
Free Monads	4				4		8	7	Self-dependent	
Reader, Writer, State monados	2				2	2	4	3	reading. Laboratory	
STM	2				2		4	3	work 3.	
Monad transformers	2				2		4	3	Self-dependent	
Monoids, Traversables, Foldables	2				2	2	4	3	reading. Laboratory	
Lazy evaluation, exceptions.	2				2	_ ~	4	work 4		
Tagless-Final style	2				2		4	3		
Preparation for exam, exam itself		1					2	14	1 h for tutorial	
									1 h for the exam	
	22	-			22			<u> </u>	13 h for preparation	
Total	32	1			32	8	66	64		

Assessment strategy	Weight	Deadline	Assessment criteria
	%		
Exam	60%	January	All correctly answered exam tasks give 6 points. A student can take part in the examination only if they have collected at least 1 point for laboratory works.
Laboratory work 1	10%	Week 4	Correctly written program gives max 1 point. One week
Laboratory work 2	10%	Week 8	penalty after deadline – 0.1 points.
Laboratory work 3	10%	Week 12	
Laboratory work 4	10%	Week 16	

Author	Publis hing	Title	Number o	or I	Publisher or URL
	year		Volume		
Required reading					
Graham Hutton	2016	Programming in Haskell, 2 nd		(Cambridge University
		edition		F	Press
Alexander Granin	2023	Functional Design and		N	Manning, MEAP
		Architecture			_
Recommended reading				•	
Bryan O'Sullivan, John	2009	Real World Haskell		(O'Reilly
Goerzen, and Don					
Stewart					
Miran Lipovača	2011	Learn You a Haskell for Great		h	nttp://
<u>-</u> I		Good!		1	earnyouahaskell.com