UNIVERSIDADE DO MINHO

6 de fevereiro de 2012

Álgebra Linear

Exame de Recurso - A

LEI Duração: 2 horas

Nome: ______ N⁰: _____

Ι

Relativamente às questões deste grupo indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), colocando uma circunferência no símbolo correspondente. As respostas incorrectamente assinaladas têm cotação negativa.

1. a) Se
$$AB = \begin{pmatrix} 1 & 1 \\ 0 & b \end{pmatrix}$$
, com $b \in \mathbb{R}$, e $AC = \begin{pmatrix} 2 & 3 \\ 5 & 0 \end{pmatrix}$ então $A(B+C) = \begin{pmatrix} 3 & 4 \\ 5 & b \end{pmatrix}$.

b) A matriz, de ordem
$$n, A = [a_{ij}]$$
 com $a_{ij} = i^2 + j^2$ é uma matriz simétrica. V F

c) Se
$$A=\left(\begin{array}{ccc} x & 4 & -2 \end{array}\right)$$
 e $B=\left(\begin{array}{ccc} 2 & -3 & 5 \end{array}\right)$, não existe $x\in\mathbb{R}$ tal que $AB^T=0$.

2. **a)** A matriz
$$A = \begin{pmatrix} 1 & k-3 \\ -2 & k-2 \end{pmatrix}$$
 tem característica 2 para qualquer valor real, não nulo, k . V F

b) A matriz
$$A = \begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ b+c & c+a & a+b \end{pmatrix}$$
 tem determinante nulo, $\forall a,b,c \in \mathbb{R}$. V F

c) Sendo
$$A$$
 e B matrizes de ordem $n>1$ invertíveis e $AB=I_n$, tem-se $A^{-1}=B$ e $B^{-1}=A$. V

- **3**. Sejam $\mathbf{x} = (1, 1, 1), \mathbf{y} = (1, 1, 0), \mathbf{z} = (0, 0, 1)$ e $\mathbf{w} = (0, 1, 1)$ quatro vectores de \mathbb{R}^3 .
 - a) Os vectores ${\bf x}$ e ${\bf y}$ geram um subespaço vectorial de \mathbb{R}^3 .
 - b) $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ é uma base de \mathbb{R}^3 .
 - c) Existem reais α , β e γ , tais que, $\alpha \mathbf{x} + \beta \mathbf{y} + \gamma \mathbf{z} = \mathbf{w}$.
- **4**. Seja f uma aplicação linear de \mathbb{R}^2 em \mathbb{R}^3 , tal que, f((-1,3)) = (-1,2,1) e f((-2,3)) = (3,3,3).

a)
$$f((1,0)) = (-2, -5, -4)$$
.

b)
$$f((0,0)) = (1,1,1)$$
.

c) A matriz da aplicação linear
$$f$$
 é de ordem 3×2 .

Responda às questões deste grupo justificando a sua resposta e apresentando todos os cálculos efectuados.

1. Sendo

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \\ -1 & 2 & \alpha \end{pmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{pmatrix} 6 \\ 1 \\ \beta \end{pmatrix}, \quad \mathbf{com} \ \alpha, \beta \in \mathbb{R},$$

considere o sistema $AX = \mathbf{b}$, de variáveis x, y, z, cuja matriz ampliada é $[A|\mathbf{b}]$.

a) Complete de modo a obter afirmações verdadeiras.

- **b**) Considere o sistema homogéneo $AX = \mathbf{0}$, para $\alpha = 7$, e determine o seu conjunto solução.

III

Responda às questões deste grupo justificando a sua resposta e apresentando todos os cálculos efectuados.

1. Considere o subconjunto de \mathbb{R}^3 ,

$$S = \{(x, y, z) : \mathbb{R}^3 : x + y - z = 0\}.$$

- a) Mostre que S é um subespaço de \mathbb{R}^3 .
- \mathbf{b}) Calcule, justificando, a dimensão de S.
- c) Considere $B = \{(1,0,1), (1,1,2)\}$. Verifique se B é uma base de S.
- d) Averigúe se o vector (1,2,3) pertence ao subespaço gerado pelos vectores (1,0,1) e (-1,1,0).

- **2.** Considere a matriz $A = \begin{pmatrix} 4 & 0 & 2 \\ 1 & 1 & 3 \\ 0 & 0 & -2 \end{pmatrix}$.
 - ${\bf a})$ Escreva o polinómio característico da matriz A.
 - **b**) Verifique, justificando, que $\lambda=1$ é valor próprio de A.
 - ${\bf c})$ Calcule os restantes valores próprios da matriz A.
 - d) Considere o valor próprio $\lambda=1$ e calcule o respectivo subespaço próprio.

3. Considere a aplicação linear $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que

$$f((1,1)) = (1,2,1), \quad f((-1,1)) = (-1,0,3).$$

- a) Determine f((1,0)) e f((0,1)) e indique, justificando, qual a matriz da aplicação linear f relativamente às bases canónicas de \mathbb{R}^2 e \mathbb{R}^3 .
- **b**) Determine f((x,y)) com $(x,y) \in \mathbb{R}^2$.
- c) Determine Nuc(f) e classifique, justificando, f quanto à injectividade.

4. Seja P uma matriz quadrada de ordem n, invertível, e seja $T:\mathbb{R}^{n\times n}\longrightarrow\mathbb{R}^{n\times n}$ a aplicação definida por

$$T(A) = P^{-1}AP, \quad \forall A \in \mathbb{R}^{n \times n}.$$

Mostre que T é uma aplicação linear.

Cotação:

000	cotação.					
I	II	III - 1	III - 2	III - 3	III - 4	
3	1.5 + 1	$1\!+\!1\!+\!1\!+\!1$	1 + 1 + 1 + 1.5	2 + 1 + 1.5	1.5	
3	2.5	4	4.5	4.5	1.5	