Große Wiederholung des Vorkurses

Aufgabe 1: Vektoren

Gegeben seien die Vektoren $\vec{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ und $\vec{b} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$.

- (a) Bestimmen Sie die Länge von $\vec{c} = \vec{a} + \vec{b}$.
- (b) Bestimmen Sie das Skalarprodukt $\vec{a} \cdot \vec{b}$.
- (c) Bestimmen Sie einen Vektor, der auf \vec{a} und \vec{b} senkrecht steht.

Aufgabe 2: Grenzwerte

Bestimmen Sie die folgenden Grenzwerte:

(a)
$$\lim_{x\to 0} \frac{e^x - 1}{x}$$

(b)
$$\lim_{x \to \infty} \frac{x^2 + 4x - 3}{2x^2 + 1}$$

Dr. Rainer Wanke

Übungsblatt 14

09.04.2020

Aufgabe 3: Kurvendiskussion

Bestimme die Null- und Extremstellen der Funktion $f(x) = 2x^2 - x^4$ und skizziere sie.

Aufgabe 4: Taylor-Entwicklung

Wie lautet die Taylor-Entwicklung der Funktion $f(x) = e^x$?

Aufgabe 5: Integrale

Bestimmen Sie eine Stammfunktion bezüglich x für die folgenden Funktionen.

(a)
$$f(x) = a x^n \text{ mit } a, n \in \mathbb{R} \text{ und } n \neq -1$$

(b)
$$f(x) = x^2 \ln x$$

(c)
$$f(x) = x \cos x$$

Aufgabe 6: Komplexe Zahlen

Schreiben Sie in der Form x + iy (mit $x, y \in \mathbb{R}$, $i^2 := -1$).

(a)
$$\frac{1}{1-2i}$$

(b)
$$e^{-i\frac{\pi}{4}}$$

Aufgabe 7: Eulersche Formel

Leiten Sie aus der eulerschen Formel für $e^{i(x+y)}$ die Additionstheoreme für $\cos{(x+y)}$ und $\sin{(x+y)}$ her.

Aufgabe 8: Matrizen

Gegeben seien die zwei Matrizen $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ und $B = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$.

(a) Berechnen Sie Summe und Produkt von A und B.

(b) Berechnen Sie die Determinante der Matrix A und ihr Inverses A^{-1} , falls dieses existiert.