## Relatório do Projeto Final de Laboratório de Circuitos Digitais - Fase 1 Grupo 14: Fábio Miguel e Luís Gustavo



## Diagrama de estados:

O diagrama representa a nossa máquina de estados, temo o s\_inicia que é o ponto de partida após o reset. Nenhum registrador muda aqui, serve para alinhar a MEF. após isso, vamos para o s\_le, que coloca PC no barramento, lê a memória e prepara a carga de IR e o incremento do PC. s\_decodifica examina o opcode e decide se a instrução é LOAD ou qualquer outra, se for LOAD vai para o s\_executa\_load, coloca IR no barramento, lê a memória e carrega o dado em AC, caso a instrução nãoseja LOAD, s\_decodifica vai diretamente para s\_le.



## Simulação:

Linha 1 (AC):  $0000 \rightarrow 00AA$  e permanece; Linha 2 (IR): 0000, 0210, 0011, 0406, 0513...;

Linha 3 (PC): 00, 01, 02, 03, 04...;

Linha 4 (estado\_atual): s\_inicia, s\_le, s\_decodifica, s\_executa\_load, s\_le, s\_decodifica, s\_le...;

Linha 5 (addrBus): segue o PC nos fetiches e vira 10 apenas no ciclo s\_executa\_load.

As transições ocorrem exatamente como definidas no VHDL, s\_inicia  $\rightarrow$  s\_le  $\rightarrow$  s\_decodifica  $\rightarrow$  (se LOAD) s\_executa\_load  $\rightarrow$  s\_le... Para instruções cujo opcode é diferente de 02, o processador retorna diretamente a s\_le, como previsto. Iniciamos com PC, IR e AC zerados, no primeito retch (s\_le) o processador coloca o endereço 00 no barramento, lê 0210 e grava no IR, simultaneamente o PC é incrementado para 01. Em decodifica, detecta-se que o opcode é 02 (LOAD) e o barramento de endereço muda para 10, apontando o operando. No ciclo seguinte (s\_executa\_load), o dado de memória 00AA é lido de 10 e carregado no AC, com LOAD concluído, a FSM retorna a s\_le e o PC = 01 inicia o fetch da próxima instrução (0011), assim, concluímos que o nosso processador, FSM e a função LOAD estão funcionando como o esperado para a fase 1 do projeto.