Projet de Conception en Microélectronique Analogique Réalisation d'un CAN FLASH 6 bits

F. Goumis, M. Hage Hassan

Institut Polytechnique de Grenoble - Phelma mohamed.hage-hassan@phelma.grenoble-inp.fr ferdinand.goumis@phelma.grenoble-inp.fr

April 24, 2017

Démarches

- Cahier des charges
- Mise en place de l'échantillonneur-bloqueur
- 3 Réalisation d'un Amplificateur OTA à deux étages
- Mise en oeuvre des comparateurs synchronisés par horloge
- 5 Réalisation du décodeur en Verilog
- Schéma Global
- Layout
- 8 Conclusion/Améliorations possibles

Cahier des charges

- Une résolution du CAN-FLASH de 6 bits ce qui implique l'utilisation de $2^6 1 = 63$ comparateurs.
- Dynamique du signal en entrée $V_e \in [0.5V, 2.5V]$
- Fréquence d'échantillonnage : $f_h = 20MHz$

Principe de Fonctionnement

Figure: Schéma électrique de l'échantillonneur-bloqueur

Simulation idéale

Figure: Simulation de l'échantillonneur-bloqueur à élements idéaux

Réalisation des switchs

Addition des trucs

- Une résolution du CAN-FLASH de 6 bits ce qui implique l'utilisation de $2^6-1=63$ comparateurs.

Simuation des switchs

Figure: Simulation des switchs en CMOS

Schéma réel

Figure: Simulation des switchs en CMOS

Fonctionnement

Figure: Simulation des switchs en CMOS

Simulation de l'amplificateur à deux étages

Figure: Simulation de l'amplificateur

Simulation de l'amplificateur à deux étages - Analyse fréquentielle

Figure: Simulation de l'amplificateur en AC

Simulation final de l'Echantillonneur bloqueur

Figure: Simulation finale

Fonctionnement

Figure: Simulation finale

Simulation

Modification nécessaires

Figure: Addition des buffers et Bascules SR

Simulation après modifications

Figure: Addition des buffers et Bascules SR

Synthèse

Figure: Test du codeur thermometrique

Schéma final

Figure: Layout du switch

- Bon fonctionnement du CAN (3 erreurs sur 63 valeurs).
- Réalisé avec des éléments de base.

Améliorations possibles

- Amélioration la polarisation de sortie du comparateur.
- Meilleure isolation entre le pont de résistances et comporateurs.
- Intérêt à la surface utilisée et la consommation.
- Utilisation potentielle de transistors pour recréer les seuils.