Aufgabe 1: WKB-Energien im halbierten Oszillator (6 Punkte)

Ein Teilchen bewege sich entlang der positiven x-Achse in einem Oszillatorpotential $V(x) = m\omega^2 x^2/2$. Die Halbachse x < 0 sei aufgrund eines unendlich hohen Potentials $V(x < 0) = \infty$ für das Teilchen unzugänglich.

a) Berechnen Sie die diskreten Energie-Eigenwerte E_n des Problems mit Hilfe der WKB-Bedingung

$$\int_0^{x_E} k(x)dx = \left(n - \frac{1}{4}\right) \cdot \pi , \quad n = 1, 2, \dots$$

für die eindimensionale Bewegung mit einer harten Wand (x_E ist der klassische Umkehrpunkt).

b) Vergleichen Sie Ihr Ergebnis mit den ungeraden Zuständen des gewöhnlichen harmonischen Oszillators und begründen Sie mögliche Koinzidenzen.

Aufgabe 2: Quasistationäre Zustände (8 Punkte)

Betrachten Sie ein Teilchen, das sich im Bereich x > 0 im Potential

$$V(x) = \frac{\hbar^2}{m\lambda_0}\delta(x - a)$$

bewegt, mit $\lambda_0 > 0$. Für negative x sei $V(x < 0) = \infty$. Das Teilchen befindet sich also in einem unendlich hohen Kasten der Breite a, der aber nach einer Seite durchlässig ist.

- a) Geben Sie die Lösung der zeitunabhängigen Schrödingergleichung mit Energie $E = \hbar^2 k^2/2m > 0$ im Bereich 0 < x < a an, die die korrekte Randbedingung für x = 0 erfüllt.
- b) Leiten Sie die Gleichung für den zugehörigen Wert von k aus den Anschlussbedingungen für die Wellenfunktion bei x=a ab unter der Annahme, dass für x>a eine auslaufende ebene Welle $t\,e^{ikx}$ vorliegt. Diese Gleichung kann in der dimensionslosen Variable $\xi=ka$ in der Form

$$1 - \exp 2i\xi = 2i\xi/\beta$$

geschrieben werden, mit $\beta = 2a/\lambda_0$. Gibt es eine Lösung mit rein reellem k?

c) Machen Sie im Limes $\beta \gg 1$ für die Lösungen den Ansatz (ε und η_n seien reell)

$$\xi_n = n\pi(1-\varepsilon) - i\eta_n$$
, $n = 1, 2, \dots$

und bestimmen Sie ε und η_n jeweils in führender Ordnung in $1/\beta$ unter der Annahme, dass $\beta \gg 2\pi n$. Hinweis: Zerlegen Sie die transzendente Gleichung in Real- und Imaginärteil und verwenden Sie die Entwicklung Re $(1 - \exp 2i\xi_n) \approx (2\pi n\varepsilon)^2/2 - 2\eta_n$.

d) Bestimmen Sie die zugehörigen komplexen Energien $E_n = \text{Re}\,E_n - i\Gamma_n/2$ und geben Sie mit Hilfe der Zeitentwicklung $\sim \exp{-iE_nt/\hbar}$ stationärer Zustände eine physikalische Interpretation des Ergebnisses. An welcher Stelle versagt in diesem Beispiel die übliche Argumentation, dass die Energieeigenwerte reell sein müssen?

Aufgabe 3: Virialsatz und harmonischer Oszillator (6 Punkte)

Ein Teilchen bewege sich in einem eindimensionalen Potential der Form $V(x) = c \cdot x^{\alpha}$

a) Berechnen Sie den Kommutator $[\hat{H}, \hat{x}\hat{p}]$ durch Anwendung der allgemeinen Operatorbeziehung

$$[\hat{A}, \hat{B}\hat{C}] = [\hat{A}, \hat{B}]\,\hat{C} + \hat{B}\,[\hat{A}, \hat{C}]$$

b) Zeigen Sie, dass in einem beliebigen Energie-Eigenzustand für ein Potential der Form $V(x) \sim x^{\alpha}$ der Virialsatz

$$2\langle \hat{T} \rangle = \alpha \langle \hat{V} \rangle$$

gilt, mit $\hat{T} = \hat{p}^2/2m$ als Operator der kinetischen Energie.

c) Verifizieren Sie den Virialsatz im Fall des harmonischen Oszillators durch explizite Berechnung der Erwartungswerte $\langle \hat{x}^2 \rangle$ und $\langle \hat{p}^2 \rangle$ im *n*-ten Energie-Eigenzustand $|n\rangle$.

Hinweis: Verwenden Sie die Darstellung $\hat{x} = \ell(a+a^{\dagger})$ und $\hat{p} = \hbar(a-a^{\dagger})/(2i\ell)$ mit $\ell = \sqrt{\hbar/(2m\omega)}$ als Oszillatorlänge.