

SESA2025 Mechanics of Flight Lateral/Directional Stability

Lecture 2.4

Vertical Fin, Fuselage & Directional Stability

Effect of yaw/sideslip on vertical fin

• **Directional stability:** when yawed, the vertical tail plane creates a restoring moment.

Vertical Fin, Fuselage & Directional Stability

Effect of yaw/sideslip on vertical fin

- **Directional stability:** when yawed, the vertical tail plane creates a restoring moment.
- However, the fuselage is a destabilising contribution and retards the return to the original (directional) trim condition.

flow

Vertical Fin, Fuselage & Directional Stability

Landing/taking-off with side winds

Southampton

Directional Control

Effect of rudder

· The rudder alters the camber of the vertical tail

Analogous to elevator/horizontal stabilizer

Southampton

Directional Control

Effect of rudder

The rudder alters the camber of the vertical fin

Analogous to elevator/horizontal stabilizer

Sizing the vertical fin

Effect of rudder

- Vertical fin:
 - Directional stability
 - Flying quality (Dutch Roll dynamic mode)
- Rudder:
 - Sufficient control at take-off and landing
 - Asymmetric engine failure

Yaw-to-Roll Coupling Effect

rudder

Southampton Southampton

Roll Damping

Roll induced velocity effect

Upgoing wing angle of attack is reduced

Downgoing wing has increased angle of attack.

flow relative flow

Change in lift opposes rolling motion.

Roll & Sideslip

Roll-to-Yaw Coupling Effect

and link to yaw-to-roll coupling effect

Roll generates a yaw moment due to sideslip

 Possibly continuing the loop if not supported by lateral stability

- Need for lateral stability
 - Dihedral wing
 - High wing
 - Swept wing

Dihedral Wing & Lateral Stability

Sideslip induced Wing normal velocity creates a restoring moment

Southampton Southampton

High Wing & Lateral Stability

Side force effect due to skin friction force in sideslip

Side force due to skin friction drag caused by sideslip and boundary layers

A: Side force effect:

Skin friction drag over wing due to sideslip

Integration of the wall shear stress over the wing → skin friction drag

Clemens Vasters on Flickr [accessed 19 September 2018] licensed under CC BY 2.0

High Wing & Lateral Stability

Fuselage interference effect

B: Fuselage interference

Sideslip (spanwise flow) interfering with fuselage affects the angle of attack of a high or low wing

Low wing destabilising

Swept Wing & Lateral Stability

Normal flow difference creates restoring rolling moment

Rolling moment returns wings level

High wing + dihedral + sweep

Too stable

Dihedral + high + swept wing

Excessive lateral stability

=> poor controllability

Anhedral for high swept wing

Compromise solution

Example: Sea Harrier

The U.S. National Archives on PICRYL [accessed 20 September 2018] in the public domain