범주형자료분석팀

2팀

김정훈 김상태 김민정 박정현 이윤희

INDEX

- 1. 자료의 형태
- 2. 분할표
- 3. 독립성 검정
- 4. 연구의 종류
- 5. 확률의 비교

자료의 형태

자료의 형태

양적 자료

(Quantitative)

이산형 자료 (Discrete)

연속형 자료 (Continuous)

질적 자료

(Qualitative)

명목형 자료 (Nominal)

순서형 자료 (Ordinal)

자료

자료의 형태

순서형 자료 : 증상 정도

증상 정도					
핵 심각	조금 심각	보통	괜찮음	리얼 쌩쌩함	

" 명목형 자료분석 방법을 사용할 수도 있음 "

- 하지만 순서에 대한 정보 무시로 검정력에 심각한 손실 초래
- 따라서 순서형 자료들에 일정한 점수를 할당하여 <mark>양적인 자료</mark>의 형태로 다루는 경우도 있음

분할표

분할표

3차원 분할표

2차원 분할표

부분분할표					
학과	1744	학회			
	성별	합격	불합격		
통계	남자	11	25		
	여자	10	27		
경영	남자	16	4		
	여자	22	10		
경제	남자	14	5		
	여자	7	12		

주 변 분 할표					
성별	학회				
	합격	불합격			
남자	11 +16 + 14	25 + 4 + 5			
여자	10 + 22 + 7	27 + 10 + 12			

X : 성별

Y : 합격 / 불합격

Z : 학과

독립성 검정

기대도수

정의

• $\mu_{ij} = n\pi_{i+}\pi_{+j}$

성질

X, Y가 독립이면 각 자리의 결합 확률은
주변확률의 곱과 같다.

독립성 검정

독립성 검정

$$\boldsymbol{H_0}: n_{ij}\pi_{ij} = \mu_{ij}$$

X와 Y는 독립이다

$$\boldsymbol{H_1}: n_{ij}\pi_{ij} \neq \mu_{ij}$$

독립이 아니다

값의 차가 크면 독립이 아닐 가능성 ↑ : 관계에 대한 연구 필요

독립성 검정

피어슨 카이제곱 검정

통계량

•
$$X^2 = \sum \frac{(n_{ij} - \mu_{ij})^2}{\mu_{ij}} \sim x^2_{(I-1)(J-1)}$$

(관측도수-기대도수) 차이에 집중!

논리구조

표본크기 고정, $n_{ij} - \mu_{ij}$ 클수록 통계량 커짐

통계량이 커지므로 p값 작아짐 독립이 아닐 확률 증가

연구의 종류

확률의 비교

확률의 비교

확률의 비교 측도

이항 반응변수에 대하여

두 그룹을 비교하는 측도들을 제시

비율의 차이

상대 위험도

오즈비

확률의 비교 - 오즈비

오즈(odds)

실패분의 성공 :
$$\frac{\pi}{1-\pi}$$

오즈비(odds ratio)

각 행의 오즈끼리의 비 :
$$odds\ ratio(\theta) = \frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)} = \frac{1$$
행의 오즈 2행의 오즈

범위: $\theta \geq 0$

 $\theta>1$: 첫 째 행의 오즈가 두 번째 행의 오즈보다 크다

 $1>\theta\geq 0$: 두 번째 행의 오즈가 첫 째 행의 오즈보다 크다

➡ 서로 역수 관계 : 같은 정도의 연관성

독립 : $\theta = 1$