Lecture 23: Inferential statistics

Wednesday, November 22, 2023

Your Teaching Fellows:

003/004: Zahra Abolghasem Bronwen Grocott

Vasileia Karasavva Ni An

010: Thalia Lang

Ruoning Li

Malina Lemmons

Irene Wen

Lectures: MWF 12:00 PM - 1:00 PM (003); 1:00 PM - 2:00 PM (004); 2:00 PM - 3:00 PM (010)

Office hours: Tuesdays 2:00 PM – 4:00 PM

Apply for the PSYC 217 Poster Award!

The winning submission receives the opportunity to present their team's poster at the 26th Annual PURC in March/April, including free printing for a full-sized poster, and personalized coaching to make that poster as excellent as it can be!

ONE MEMBER of your group submits:

- 1. Project title
- 2. Project abstract
- 3. All group members' names
- 4. PDF, WORD or PPT of your poster

Apply at:

Type 1 and Type 2 error

			What's true in the Population?	
			H _o is true	H _o is not true
	Your Decision based on Sample	Reject H _o	Type 1 Error α	Correct Decision 1 - β
ower:		Retain H _o	Correct Decision 1 - α	Type 2 Error β

Power:

- Probability of correctly rejecting a false null hypothesis
- The ability to detect an effect if one truly exists

Type 1 and Type 2 error

- Power and Type 2 error rate (different sides of same coin) depend on 3 factors:
 - Sample size
 - Magnitude of effect (effect size)
 - Alpha level

Type 1 and Type 2 error

- Sample size
 - Greater the sample size, greater the power
 - Less error in data to detect effect
- Magnitude of effect (effect size)
 - The larger the difference is in the population, the easier it is to detect, thus greater power
- Alpha level
 - The larger our alpha level, the easier it is to find data consistent with research hypothesis (reject null hypothesis), thus greater power

As the size of an effect increases, what happens to Type I error rate and Type 2 error rate? -1 = Decreases, 0 = No Change; 1 = Increases

p hacking

A set of ethically questionable research practises (QRPs) researcher use to

get significant results

- Data peeking
- Creative data trimming
- Outcome-reporting bias
- Adding covariates
- HARKing (Hypothesizing After the Results are Known)
- Spit in the face of science and ethics

Based on: http://davidjjohnson.wordpress.com/2013/08/08/wired-suggests-p-hacking-as-a-cheat-code/

Inferential Statistics Overview

- Null & Research Hypotheses
- Sampling distribution
- t-test logic
- Statistically significant
- Type 1 and Type 2 errors
- Apply your understanding

Learning objectives

- Explain the relationship between a sample and a population.
- Describe at least three errors in judgment people commonly make.
- Discuss the importance of relying on base rate data from large samples rather than small samples or single cases.
- Define the gambler's fallacy.
- Generate a null hypothesis and a research hypothesis
- List the 3 steps in hypothesis testing.
- Explain how a sampling distribution is made
- Explain the logic of the numerator and denominator in the t-ratio.
- Explain the meaning of "statistically significant."
- Compare an obtained statistic to a critical value and decide what to do with the null hypothesis.
- Explain when a researcher would use an F test rather than a t test to analyze data.
- Distinguish between Type I and Type II errors.
- Define alpha and power (in hypothesis testing context).
- Describe the relationship among effect size, power, Type I error rate, and Type II error rate
- Define and describe p hacking

Learning objectives

- By the end of today, you'll be able to
 - Describe the pros and cons of quantitative versus qualitative methods
 - Compare and contrast quantitative and qualitative methods
 - Define naturalistic observation, systematic observation, case studies, and archival research
 - Recognise examples of each of the above methods
 - Appreciate the important role that qualitative methods play in research

Goals of science

Describe behaviour

Predict behaviour

Explain behaviour

Determine causes of behaviour

Reign of quantitative research

Quantitative methods

Unit of analysis: Numerical data

Method of analysis:Statistical analysis

Qualitative methods

Unit of analysis: Personal experience and open-ended responses

Method of analysis:Interpretation of responses

Quantitative vs. Qualitative methods

Quantitative methods

- Pros:
 - Excellent for testing hypotheses
 - Allow for effects and differences to be measurable and tangible
 - Allow us to determine if differences are likely to be due to chance helps draw valid conclusions

Cons:

- Limits understanding of behaviours and thoughts to numerical representations of them
- Validity of turning thoughts and behaviours into numbers?

Quantitative vs. Qualitative methods

- Qualitative methods
 - Pros:
 - Excellent for generating and testing hypotheses
 - Allow for in-depth verbal understanding of human behaviour
 - Escapes issues related to distilling thoughts and behaviours into numbers
 - Cons:
 - Conclusions drawn may be due to random chance or personal biases
 - Can be extremely time-consuming and difficult to interpret

- Naturalistic observation
 - Obtain/gather/record information from people in the "field"
 - Can sidestep ethically problematic experimental manipulations

© London School of Economics and Political Science 2005

- Participant observation
 - The observer is participating along with the people being observed
 - Purpose is made known to people in the group

Concealed observation

Either the observation itself is concealed, or the purpose of the observations is

concealed

Ethical considerations may be problematic

A researcher is studying hand washing in a women's washroom. To do this, the researcher hides in a bathroom stall in a campus women's washroom.

