Aufgabe 1 (F06T1A2). Sei $f = X^{17} + Y^{41}(X^3 + X + 1) - Y \in \mathbb{C}[X, Y]$.

- (a) Man zeige, daß f als Polynom in X über dem Koeffizientenring $\mathbb{C}[Y]$ irreduzibel ist. (Hinweis: Eisenstein-Kriterium)
- (b) Man zeige, daß f ein irreduzibles Element im Ring $\mathbb{C}[X,Y]$ ist.

(8 Punkte)

Aufgabe 2 (H10T1A2). Sei G eine Gruppe mit $|G| = 595 = 5 \cdot 7 \cdot 17$ und $H \leqslant G$ eine Untergruppe mit |H| = 5. Zeigen Sie:

- (a) H ist ein Normalteiler von G.
- (b) H liegt im Zentrum von G.

(6 Punkte)

Aufgabe 3 (F06T3A6). Sind L/K und M/L endliche Körpererweiterungen und ist M/K galoissch mit Galoisgruppe G, so ist auch der Körper

$$K\left(\bigcup_{\sigma\in G}\sigma(L)\right)$$

galoissch über K. (5 Punkte)

Aufgabe 4 (F03T2A1). Sei p eine Primzahl mit $p \equiv 1 \mod 4$. Zeigen Sie:

- (a) Es gibt eine natürliche Zahl x mit $x^2 \equiv -1 \mod p$.
- (b) p ist kein Primelement im Hauptidealring $\mathbb{Z}[i]$ der ganzen Gaußschen Zahlen.
- (c) Es gibt natürliche Zahlen x, y mit $p = x^2 + y^2$.

(6 Punkte)