Introduction

H. Irem Türkmen

irem@yildiz.edu.tr

Yıldız Technical University

Computer Engineering Department

BLM5106- Advanced Algorithm Analysis and Design

Algorithm Analysis

• Resources:

- Introduction to Design & Analysis of Algorithms, Anany Levitin, 2011
- Cormen, Leiserson, Rivest, Stein, "Introduction to Algorithms, 3E", MIT Press, 2009
- Algorithms, Fourth Edition, R. Sedgewick and K. Wayne (http://algs4.cs.princeton.edu), 2013
- The Algorithm Design Manual, Steven Skiena, 2010

• Grading:

- Project: 1
- Midterm Exam(s) 1
- Final Exam

Contents

- 1. Fundamentals for Algorithms
- 2. Fundamentals of the Analysis of Algorithms Efficiency, Asymptotic Analysis Algorithm Analysis, Complexities, Big OH, Big Theta, Big Omega, Orders of Growth
- 3. Analysis of Non-Recursive and Recursive Algorithms
 Running Time, Recurrence Relation, Backward Substitution
- Analysis of Divide and Conquer Algorithms
 Brute Force, Exhaustive Search, Decrease and Conquer
- 5. **Hashing Algorithms**
- 6. **Dynamic Programming**Rod cutting, Matrix-chain multiplication, Elements of dynamic programming,
 Optimal binary search trees

Contents

7. Greedy Algorithms

Activity-selection problem , Elements of the greedy strategy

8. Midterm

9. Amortized Analysis

Aggregate analysis, The accounting method, The potential method, Dynamic tables

10. Advanced Data Structures

B-trees, Fibonacci Heaps, AVL trees

11. Elementary Graph Algorithms

Representations of graphs, Breadth-first search, Depth-first search, Topological sort, strongly connected components

12. Presentations

13. String Matching

The naive string-matching algorithm, The Rabin-Karp algorithm, String matching with finite automata, The Knuth-Morris-Pratt algorithm

14. Approximation Algorithms

The vertex-cover problem, The traveling-salesman problem, The set-covering problem, Randomization and linear programming, The subset-sum problem

Notion of Algorithm

• An algorithm is a sequence of unambiguous instructions for solving a problem, for obtaining a required output for any legitime input in a finite amount of time.

Analyzing an Algorithm

How good is the algorithm?
 Correctness
 Efficiency (Time, Space) An algorithm is efficient if it has a polynomial running time.
 Simplicity
 Generality

Does there exist a better algorithm?
 Lower bounds
 Optimality

Fundamental Data Structures

Linear Data Structures

Arrays, Linked lists, Stack, Queue

Graphs

Nodes, Edges, Adjacency matrix and Adjacency lists

• Trees

Rooted Trees, Ordered Trees

Sets and Dictionaries

• Universal set, Bit vector, Using the list structure

Fundamentals of the Analysis of Algorithm Efficiency

- System independent effects:
 - Algorithm
- System dependent effects
 - Hardware : CPU, memory, cache
 - Software: compiler, interpreter, etc.
 - System : OS, network, etc.

Fundamentals of the Analysis of Algorithm Efficiency

- Measuring an Input's Size
 - Product of two matrices: total number of elements N in the matrices being multiplied
 - Evaluating a polinomial: polynomial's degree
- Units for Measuring Running Time

$$T(n) \approx c_{op}C(n)$$

Assuming that C(n) = 1/2 n(n-1), how much longer will the algorithm run if we double its input size?

$$C(n) = \frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \approx \frac{1}{2}n^2$$

$$\frac{T(2n)}{T(n)} \approx \frac{c_{op}C(2n)}{c_{op}C(n)} \approx \frac{\frac{1}{2}(2n)^2}{\frac{1}{2}n^2} = 4.$$

Orders of growth

order of growth	name	typical code framework	description	example	T(2N) / T(N)
1	constant	a = b + c;	statement	add two numbers	1
log N	logarithmic	while (N > 1) { N = N / 2; }	divide in half	binary search	~ 1
N	linear	for (int i = 0; i < N; i++) { }	loop	find the maximum	2
N log N	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N ²	quadratic	for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { }	double loop	check all pairs	4
N 3	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }</pre>	triple loop	check all triples	8
2N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	

Worst-Case, Best-Case, and Average-Case Efficiencies

```
ALGORITHM SequentialSearch(A[0..n-1], K)
```

```
//Searches for a given value in a given array by sequential search //Input: An array A[0..n-1] and a search key K //Output: The index of the first element in A that matches K // or -1 if there are no matching elements i \leftarrow 0 while i < n and A[i] \neq K do i \leftarrow i + 1 if i < n return i else return -1
```

- Worst-case $C_{worst}(n) = n$
- Best-case $C_{best}(n) = 1$
- Average-case $C_{avg}(n) = [1*p/n+2*p/n+...+i*p/n+...+n*p/n]+n(1-p)$
 - (a) probability of a successful search is equal to p ($0 \le p \le 1$)
 - (b) probability of the first match occurring in the ith position of the list is the same for every i