PATENT ABSTRACTS OF JAPAN

* English abstract

JP3044027 B2

(11)Publication number:

2000-117786

(43) Date of publication of application: 25.04.2000

(51)Int.CI.

B29C 45/26 B29C 45/00 G09F 9/00

(21)Application number: 10-369130

(71)Applicant: SHINKO NEEMUPUREETO KK

(22)Date of filing:

25.12.1998

(72)Inventor: YOSHIDA MITSUO

SAKATA SHOJI

(30)Priority

Priority number: 10241082

Priority date: 12.08.1998

Priority country: JP

(54) PRODUCTION METHOD FOR RESIN MOLDED PRODUCT BY INJECTION MOLDING

(57)Abstract:

PROBLEM TO BE SOLVED: To realize a simple and precise molding and enable the productivity to be increased by using a plurality of molding space parts and auxiliary space parts which encircle the entire peripheries of molding space parts communicating with an injection hole as constituents for a production method and injecting a molten resin into the auxiliary space parts through the injection hole and then into each of the molding space parts.

SOLUTION: The female die 1 and the male die 2 of a mold are lapped over each other in such a way that their reference faces 11, 21 come into contact with each other. In this state, a projecting part 23 is arranged in a recessed part 12, a projecting part 23d in a recessed part 12a and a projecting part 22 in a recessed part 13 respectively to form a molding space part 3 in each of the mated parts. In addition, auxiliary recessed parts 15, 16 are formed in a shallower level than the recessed parts 12, 13 around these parts 12, 13 and are used as

(4) (b) (4)

auxiliary space parts 31. The auxiliary recessed parts 15, 16 cover the entire periphery of the upper/lower and right/left parts of the molding space part 3 and communicate with all the parts coming into contact with the molding space part 3. Further an injection hole 14 is allowed to communicate with the auxiliary space parts 31, and a resin injected through the injection hole 14 is introduced into the auxiliary space parts 31, through which the resin is, in turn, injected into the molding space part 3.

LEGAL STATUS

[Date of request for examination]

30.07.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

(19)日本国特許庁(JP)

(12)特許公報 (B2)

(11)特許番号

特許第3044027号

(P3044027)

(45)発行日 平成12年5月22日(2000.5.22)

(24)登録日 平成12年3月10日(2000.3.10)

(51) Int. C1.7

識別記号

B 2 9 C 45/26

B 2 9 C 45/26

FΙ

請求項の数13

(全16頁)

(21)出願番号 特願平10-369130 (22)出願日 平成10年12月25日(1998.12.25) (65)公開番号 特開2000-117786(P2000-117786A) (43)公開日 平成12年4月25日(2000.4.25) 審査請求日 平成11年7月30日(1999.7.30) (31)優先権主張番号 特願平10-241082 (32)優先日 平成10年8月12日(1998.8.12) (33)優先権主張国 日本 (JP)

(73)特許権者 593148631

新光ネームプレート株式会社

神奈川県大和市桜森3丁目16番17号

(72)発明者 吉田 光夫

神奈川県大和市桜森3丁目16番17号 新光

ネームプレート株式会社内

(72)発明者 坂田 昇治

神奈川県大和市桜森3丁目16番17号 新光

ネームプレート株式会社内

(74)代理人 100078835

弁理士 村田 幹雄

審查官 加藤 友也

(56)参考文献 特開 平9-313648 (JP, A)

特開 平11-9722 (JP, A) 特開 昭55-3928 (JP, A)

最終頁に続く

(54) 【発明の名称】射出成形による樹脂成形品の生産方法

1

(57)【特許請求の範囲】

【請求項1】 対向配置した雄金型と雌金型との間の空間部に、溶融した樹脂を注入孔を介して注入し、該樹脂を固化させて成形品を形成する、射出成形による樹脂成形品の生産方法であって、

前記空間部を、前記成形品の外形に適合させて複数並設 した成形空間部と、該複数の成形空間部及び前記注入孔 に連通するもので前記複数の成形空間部の全周を囲む補 助空間部とから構成する第1のステップと、

溶融した樹脂を前記補助空間部に前記注入孔を介して注 10 入する第2のステップと、

前記樹脂を前記複数の成形空間部各々に前記補助空間部 を介して注入する第3のステップとを備えることを特徴 とする射出成形による樹脂成形品の生産方法。

【請求項2】 前記第1のステップにおいて、前記複数

2

並設させた成形空間部の相互間に前記補助空間部が配置され、該補助空間部にて前記複数並設させた各成形空間部の全周を囲んでなることを特徴とする請求項1に記載の射出成形による樹脂成形品の生産方法。

【請求項3】 前記第1のステップにおいて、前記補助空間部には、該補助空間部の厚みを増すことにより該補助空間部内における前記樹脂の流動を促進する流動促進部を設けることを特徴とする請求項1又は2に記載の射出成形による樹脂成形品の生産方法。

0 【請求項4】 前記第1のステップにおいて、前記補助空間部には、該補助空間部の厚みを減らすことにより該補助空間部内における前記樹脂の流動を規制する流動規制部を設けることを特徴とする請求項1乃至3に記載の射出成形による樹脂成形品の生産方法。

【請求項5】 前記第1のステップにおいて、前記補助

空間部には、該補助空間部及び前記成形空間部の位置を 規制するための位置決め孔を形成する位置決め部を設け ることを特徴とする請求項1乃至4に記載の射出成形に よる樹脂成形品の生産方法。

【請求項6】 前記第1のステップにおいて、前記成形空間部内及び前記補助空間部内のガスを前記空間部外に排出するためのエアベントを前記補助空間部に連通して形成することを特徴とする請求項1乃至5に記載の射出成形による樹脂成形品の生産方法。

【請求項7】 前記第1のステップにおいて、前記雄金型と前記雌金型との接触面を前記補助空間部の側方にのみ位置させることを特徴とする請求項1乃至6に記載の射出成形による樹脂成形品の生産方法。

【請求項8】 前記第3のステップの後、前記補助空間 部内に突出しビンを挿入し、前記成形空間部内及び前記 補助空間部内において固化した樹脂を離型する第4のステップを備えることを特徴とする請求項1乃至7に記載の射出成形による樹脂成形品の生産方法。

【請求項9】 前記第4のステップの後、前記成形空間 部及び補助空間部の外部へ排出した樹脂を基台上に配置 すると共に、該基台上に設けたガイド突起を前記位置決め部にて形成した位置決め孔に挿入することにより前記 樹脂と前記基台との相対位置を固定する第5のステップ を備え、

前記基台には前記成形空間部に対応した形状のブロック 部を上下動自在に設け、該ブロック部の上下動にて前記 成形空間部内に注入され固化した樹脂の前記基台上にお ける上下位置を調整自在としたことを特徴とする請求項 8に記載の射出成形による樹脂成形品の生産方法。

【請求項10】 前記樹脂は多面付けにて形成され、前記第5のステップの後、前記基台に配置された前記樹脂に対して所定の表面処理及び又は裏面処理を多面的に施す第6のステップ、及び又は前記基台に配置された前記樹脂を所定寸法に多面的に切断する第7のステップを備えたことを特徴とする請求項9に記載の射出成形による樹脂成形品の生産方法。

【請求項11】 前記第7のステップにおいて、前記樹脂は、前記成形空間部内に注入され固化した成形品と、前記補助空間部内に注入され固化した補助樹脂とに分離されることを特徴とする請求項10に記載の射出成形による樹脂成形品の生産方法。

【請求項12】 前記第7のステップにおいて、前記多面切断をレーザにて行うことを特徴とする請求項10又は11に記載の射出成形による樹脂成形品の生産方法。

【請求項13】 前記第6のステップの前後いずれかにおいて、接着層と剥離紙からなる剥離シートを前記接着層を介して前記樹脂の裏面に接着し、

前記第7のステップにおいて、前記剥離紙を残した状態 で前記樹脂を切断することを特徴とする請求項10又は 11に記載の射出成形による樹脂成形品の生産方法。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、対向配置した雄金型と雌金型との間の空間部に樹脂を注入して冷却固化させることにより成形品を形成する射出成形における成形品の生産方法であって、特にネームプレートの如き成形品を生産するための生産方法に関する。

4

[0002]

【従来の技術】主として樹脂を用いた成形品の成形方法としては、プレス加工や射出成形が知られている。なかでも射出成形はプレス加工に比べて複雑な形状の成形品を得ることが可能である点、低コストである点及び歩留率が高い点の如き利点があることから、広く用いられている。この射出成形方法は、対向配置した雄金型と雌金型(これら雄金型と雌金型を必要に応じて「金型」と総称する)の間に成形品の外形に適合した形状の空間部を形成し(以下、この空間部を「成形空間部」とする)、該成形空間部内に溶融した樹脂を注入し、該樹脂を冷却固化させることにより成形品を形成するものである。

20 【0003】この射出成形方法を金型の成形空間部に対する樹脂の注入方法に基づいて大別すると、成形空間部に直接注入する方法と、いわゆるランナシステムを用いた方法とが挙げられる。このうちランナシステムを用いた方法はいわゆる多面取りを行うための注入方法であり、成形空間部を複数並設してその中央位置にランナと呼ばれる注入路を設け、このランナの複数箇所にゲートと呼ばれる、ランナより狭径の注入路を設けたものである。そして溶融した樹脂をランナに注入し、さらにゲートを介して成形空間部に注入するものである。

30 [0004]

【発明が解決しようとする課題】近年、軽薄短小化の要請から、電子機器の筐体や各種ネームプレートを極力薄厚化する要望が高まっている。このようなネームプレートの如き薄厚成形品を射出成形方法にて成形する場合、成形空間部が薄厚であるためにその内部における圧力損失が大きく、成形空間部内において樹脂の流動性が悪い。特に上記のようなランナシステムを用いた射出成形方法においては、成形空間部に対する樹脂の流入経路がゲートという少数かつ狭い経路に限定されるために、成形空間部全体に樹脂が行き渡らない可能性が高い。したがって従来のランナシステムを用いた射出成形方法においては、薄厚成形が困難であった。

【0005】また従来の方法では、生産効率の観点からも種々の問題があった。すなわち上述のようにランナシステムを用いることができない場合、成形空間部に樹脂注入孔を連係して樹脂を直接的に注入することも考えられるが、この方法では多面取りを行うことができないために生産効率が悪かった。また多面取りを行うことができない結果、塗装等の後処理を複数の成形品に対してま50とめて行うことが困難であり、成形品毎に後処理を行う

必要が生じて、この点においても生産効率が悪かった。 さらにこのように薄厚成形が困難であることから、ネームプレートの如き成形品も肉厚状に成形せざる負えない 場合があるが、このような肉厚のネームプレートは弾性 力が強いために貼付面に沿って湾曲させた状態で長時間 保持することが困難である。したがって貼付面の曲率に 合わせた形状のネームプレートを個別的に成形する必要 があり、この点においても生産効率が悪かった。

【0006】またランナシステムを用いて多面取りを行うことができたとしても、特に成形品が薄厚である場合にはランナが成形品よりも上方に突出することが多いため、ランナを付けた状態のままでは成形品に印刷を施すことができず、結局はランナを切り離して成形品毎に後処理を行う必要が生じて、この点においても生産効率が悪かった

【0007】また従来の方法では、成形品の加工精度や外観といった観点からも種々の問題があった。例えば上記ランナシステムにおいては、雄金型と雌金型との接触面が成形品の側方に位置することになり、樹脂固化後の成形品の側面にはパーティングラインと呼ばれる線状の凸部が残ってしまう。このパーティングラインは成形品の外観を損ねることから、パーティングラインは成形品の外観を損ねることから、パーティングラインの残らない生産方法が要望されていた。また従来は、固化後の成形品を突出しビンにて突き出すことによって雌金型から排出しているが、着色ABS等の樹脂を用いた場合にはが白化して跡が残り、成形品の外観を損ねる場合があった。また透明材等の樹脂を用いた場合には裏面に突出しビン等の跡が残ってしまう為、裏面処理等の装飾が不可能であった。

【0008】あるいは従来のランナシステムにおいて は、印刷工程や切断工程の基台に対する成形品の位置決 めを行う工夫が施されていなかったので、印刷精度や切 断精度を向上させることが困難であった。このため、特 に高い位置決め精度を要求されるレーザ切断を行うこと ができず、アクリル樹脂の如き高強度の樹脂にて成形し た成形品に対してもプレス切断(回転のこ刃式等のゲー ト切断機や、ニッパ等による切断を含む) する必要があ る。しかし高強度の樹脂程、切断時にクラックが生じ易 いことから、成形品にクラックが生じて不良品となるこ とがあった。さらに従来のランナシステムにおいては、 ゲートの如き狭径の注入路を介して樹脂を注入していた ので、注入によって生ずる圧力 (応力) がゲート周辺の 狭い範囲に集中し、このゲート周辺の樹脂の密度等のみ が他の部分に比べて異なり、全体の密度等が不均一にな る場合があった。例えば液晶画面の保護等のために該液 晶画面の外側に配置される透明樹脂を従来のランナシス テムにて成形した場合、ゲートに近い部分の密度等が他 の部分の密度等に比べて異なるため、色々な角度から液 晶画面を見た場合にゲートに近い部分のみが黒くなって

画面が見えなくなるという問題があった。

【0009】本発明は従来のこのような射出成形による 樹脂成形品の生産方法の問題点に鑑みてなされたもの で、樹脂成形を簡易かつ精密に行なうことができ、また 多面取りを可能として生産性を向上することができ、さ らに優れた外観を呈することのできる射出成形による樹 脂成形品の生産方法を提供することを目的とする。

[0010]

【課題を解決するための手段】このような従来の射出成形による樹脂成形品の生産方法の問題点を解決するために請求項1に記載の本発明は、対向配置した雄金型と雌金型との間の空間部に、溶融した樹脂を注入孔を介して注入し、該樹脂を固化させて成形品を形成する、射出成形による樹脂成形品の生産方法であって、前記空間部を、前記成形品の外形に適合させて複数並設した成形空間部と、該複数の成形空間部及び前記注入孔に連通するもので前記複数の成形空間部の全周を囲む補助空間部とから構成する第1のステップと、溶融した樹脂を前記補助空間部に前記注入孔を介して注入する第2のステップと、前記樹脂を前記複数の成形空間部各々に前記補助空間部を介して注入する第3のステップとを備えることを特徴として構成されている。

【0011】また請求項2に記載の本発明は、請求項1に記載の本発明において、前記第1のステップにおいて、前記複数並設させた成形空間部の相互間に前記補助空間部が配置され、該補助空間部にて前記複数並設させた各成形空間部の全周を囲んでなることを特徴として構成されている。

【0012】また請求項3に記載の本発明は、請求項1 30 又は2に記載の本発明において、前記第1のステップに おいて、前記補助空間部には、該補助空間部の厚みを増 すことにより該補助空間部内における前記樹脂の流動を 促進する流動促進部を設けることを特徴として構成され ている。

【0013】また請求項4に記載の本発明は、請求項1 乃至3に記載の本発明において、前記第1のステップに おいて、前記補助空間部には、該補助空間部の厚みを減 らすことにより該補助空間部内における前記樹脂の流動 を規制する流動規制部を設けることを特徴として構成さ れている。

【0014】また請求項5に記載の本発明は、請求項1 乃至4に記載の本発明において、前記第1のステップに おいて、前記補助空間部には、該補助空間部及び前記成 形空間部の位置を規制するための位置決め孔を形成する 位置決め部を設けることを特徴として構成されている。

【0015】また請求項6に記載の本発明は、請求項1 乃至5に記載の本発明において、前記第1のステップに おいて、前記成形空間部内及び前記補助空間部内のガス を前記空間部外に排出するためのエアベントを前記補助 空間部に連通して形成することを特徴として構成されて

いる。

【0016】また請求項7に記載の本発明は、請求項1 乃至6に記載の本発明において、前記第1のステップに おいて、前記雄金型と前記雌金型との接触面を前記補助 空間部の側方にのみ位置させることを特徴として構成さ れている。

【0017】また請求項8に記載の本発明は、請求項1乃至7に記載の本発明において、前記第3のステップの後、前記補助空間部内に突出しピンを挿入し、前記成形空間部内及び前記補助空間部内において固化した樹脂を離型する第4のステップを備えることを特徴として構成されている。

【0018】また請求項9に記載の本発明は、請求項8に記載の本発明において、前記第4のステップの後、前記成形空間部及び補助空間部の外部へ排出した樹脂を基台上に配置すると共に、該基台上に設けたガイド突起を前記位置決め部にて形成した位置決め孔に挿入することにより前記樹脂と前記基台との相対位置を固定する第5のステップを備え、前記基台には前記成形空間部に対応した形状のブロック部を上下動自在に設け、該ブロック部の上下動にて前記成形空間部内に注入され固化した樹脂の前記基台上における上下位置を調整自在としたことを特徴として構成されている。

【0019】また請求項10に記載の本発明は、請求項9に記載の本発明において、前記樹脂は多面付けにて形成され、前記第5のステップの後、前記基台に配置された前記樹脂に対して所定の表面処理及び又は裏面処理

(例えば、着色樹脂に対しては表面処理、透明樹脂に対しては表面又は裏面処理)を多面的に施す第6のステップ、及び又は前記基台に配置された前記樹脂を所定寸法に多面的に切断する第7のステップを備えたことを特徴として構成されている。

【0020】また請求項11に記載の本発明は、請求項10に記載の本発明において、前記第7のステップにおいて、前記樹脂は、前記成形空間部内に注入され固化した成形品と、前記補助空間部内に注入され固化した補助樹脂とに分離されることを特徴として構成されている。

【0021】また請求項12に記載の本発明は、請求項10又は11に記載の本発明において、前記第7のステップにおいて、前記多面切断をレーザにて行うことを特 40 徴として構成されている。

【0022】また請求項13に記載の本発明は、請求項10又は11に記載の本発明において、前記第6のステップの前後いずれかにおいて、接着層と剥離紙からなる剥離シートを前記接着層を介して前記樹脂の裏面に接着し、前記第7のステップにおいて、前記剥離紙を残した状態で前記樹脂を切断することを特徴として構成されている。

[0023]

【発明の実施の形態】以下、本発明たる射出成形による 50 ダー6からの樹脂4がこの注入孔14を介して注入され

樹脂成形品の生産方法の第1実施形態について図面を参照して詳細に説明する。図1は射出成形機の構成を概念的に示す縦断面図である。本実施形態においては、射出成形方法により電子機器の薄厚状の筐体10が成形される。図15にはこの筐体10の組立前の正面図を示す。この図15に示すように、筐体10は一対の部品10a、10bから構成されるもので、これら部品10a、

10bは一対の金型によって同時に多面形成される。なお以下必要に応じて、射出成形の結果物を単に「成形品」と総称する。

【0024】本実施形態の射出成形方法は概略的には従来と同様、図1に示すように、対向配置した一対の金型(雌金型1と雄金型2との2プレート金型)の間の成形空間部3に溶融した樹脂4を注入し、該樹脂4を冷却固化させることにより成形品を形成するものである。すなわち、ホッパー5を介してシリンダー6内に樹脂ペレット7を投入し、この樹脂ペレット7をシリンダー6内のスクリュー8にて剪断発熱させ及び又は加熱することで溶融させる。そして溶融した樹脂4を雌金型1と雄金型2の間の成形空間部3に高圧注入し、樹脂4を冷却固化させた後、雌金型1と雄金型2とを開いて成形品をエジェクタ9にて押し出すことにより離型するものである。その後、概略的には、成形品に表面処理を施し、所定寸法に切断し、組み立てる。なお樹脂4としては、ABS(Acrylonitrile Butadiene Styrene)、PC(Polycar

bonate)、PC/ABS、ASA、アクリル (硬質、軟

質)、マグネシウム、ナイロン樹脂、ノリル樹脂(硬

質、軟質)といった熱可塑性樹脂を用いることができ

30 【0025】次に、雌金型1、雄金型2、及びこれらの間の成形空間部3について説明する。図2、図4はそれぞれ雌金型1、雄金型2の正面図、図3(a)~(d)はそれぞれ図2のA-A~D-Dまでの矢視断面図、図5(a)~(d)はそれぞれ図4のA-A~D-Dまでの矢視断面図、図6(a)~(d)はそれぞれ図3

(a) \sim (d) と図5 (a) \sim (d) の対応する各部を 重合した状態を示す断面図である。なお図2、4の符号 正視状態における上下左右方向を、雌金型1又は雄金型 2の上下左右方向とする。

【0026】雌金型1は、図2、3に示すように、従来と同様に方形状に形成されるもので、その四周端部には雄金型2と直接接触する基準面11を備える。この基準面11により囲まれた内側部分には、筐体の部品10aの外形に適合した形状の凹部12と、部品10bの外形に適合した形状の凹部13とが形成されており、また凹部12には図15に示すICチップの保持部10cの外形に適合した第2の凹部12aが形成されている。また図2、3に示すように、雌金型1の上下左右の中心位置には注入孔14が貫通孔として形成され、図1のシリンダー6からの樹脂4がこの注入孔14を介して注入され

る。なお雌金型1にはさらに補助凹部15、16、規制 凸部17、促進凹部18、及びエアベント19が設けられているが、これらについては後述する。

【0027】一方、雄金型2は、図4、5に示すように、雌金型1に対応した幅及び高さの方形状に形成されるもので、雌金型1と直接接触する平面たる基準面21を備える。また基準面21には、雌金型1側へ突出する凸部22、23が形成されている。凸部23にはさらに雌金型1側へ突出するもので図15に示すICチップの保持部10cの外形に適合した第2の凸部23aと、リ10ブ10dの形状に適合した溝部24が設けられている。このリブ10dは筐体10の内部に挟持される駆動部と制御部とを相互に分離する電磁波遮断用の隔壁として用いられる。さらにまた凸部22、23の周囲の複数箇所には短尺円柱状の凸部25が設けられている。

【0028】そして図6に示すように、雌金型1と雄金型2とを、これらの基準面11、21が相互に接するように重ね合わせた状態において、凹部12内には凸部23、凹部12a内には凸部23a、凹部13内には凸部22がそれぞれ配置される。そして、これらの間に成形空間部3が形成されている。この成形空間部3の高さ、幅、及び厚みは、成形品(本実施形態においては筐体10の部品10a、10b)の所定の高さ、幅、及び厚みに相当する。したがって成形空間部3内に樹脂4を注入して固化することにより、所定寸法の成形品を得ることができる。

【0029】ここで図2に示すように、凹部12、13の周囲には、これら凹部12、13よりも浅い凹部たる補助凹部15、16が形成されている。そしてこのように補助凹部15、16を形成することによって重合した雌金型1と雄金型2との間には、図6に示すように、補助空間部31が形成されている。この補助空間部31は、成形空間部3の上下左右の全周を囲むように連続配置されるもので、該補助空間部31によって成形空間部3の上下左右の全周が覆われている(なおこのように金型の重合によって成形空間部3及び補助空間部31を形成するまでを本方法における第1のステップとする)。

【0030】この補助空間部31はその成形空間部3と接する全ての部分において該成形空間部3に連通しており、また補助空間部31には図6(c)に示すように、注入孔14が連通している。したがって注入孔14から注入された樹脂4はまず補助空間部31に注入され(第2のステップ)、この補助空間部31を介して成形空間部3に注入される(第3のステップ)。特に補助空間部31が成形空間部3の全周に配置されているので、成形空間部3の上下左右の側辺のうちいずれの箇所においても、補助空間部31から成形空間部3内に樹脂4が注入され得る。したがって成形空間部3のあらゆる方向から該成形空間部3に対して樹脂4が流入可能となり、成形空間部3が薄厚であっても該成形空間部3内に樹脂4を

10

容易に均一流入させることが容易に可能となるので、薄厚成形品の射出成形が可能となる。またこのようにあらゆる方向から樹脂4を流入させることができるので、樹脂4に加わる注入圧力(応力)が全体に均一となり、樹脂4の密度等を均一にすることができる。したがって例えば液晶画面を保護等するための透明樹脂を成形した場合においても、透明樹脂の密度等を全体に均一にすることができ、特に応力が加わる部分は透明樹脂の外周部であって中心部をほぼ完全に均一化できるので、液晶画面の視認性を妨げることがない。なお図示は省略するが、補助空間部31における注入孔14との連通部分にはいわゆるスラッグウェルが形成されている。

【0031】図7は図6(d)に対応する縦断面図であ り、成形空間部3及び補助空間部31に樹脂4を注入し た状態を示す。この状態から所定時間経過することによ り、補助空間部31内に注入された樹脂4も成形空間部 3内に注入された樹脂4と一体に冷却固化される。この 補助空間部31内に注入され固化された樹脂4は後述す るように切断され取り除かれる。以下これらを区別する ため必要に応じて、補助空間部31及び成形空間部3に 注入され一体に固化された状態の樹脂全体を仕掛樹脂3 2、後処理において仕掛樹脂32から分離された樹脂の うち、成形空間部3に注入され固化された樹脂を成形品 (本実施形態においては筐体10の部品10a、10 b) 、補助空間部31に注入され固化された樹脂を補助 樹脂33と称する。なお、図10は仕掛樹脂32の背面 図(雌金型1に接する面を仕掛樹脂の正面、雄金型2に 接する面を仕掛樹脂の背面とする、以下同じ)、図11 (a) ~ (d) はそれぞれ図10のA-A~D-Dまで 30 の矢視断面図を示す。

【0032】ここで本実施形態においては上述のように、筐体10の一対の部品10a、10bを多面取りするため、雌金型1と雄金型2を重合した状態においては部品10aを形成する成形空間部3と部品10bを形成する成形空間部3を並設している。そして、この並設される成形空間部3の相互間にも補助空間部31が配置されており、補助空間部31を介して双方の成形空間部3に樹脂4が注入されることによって、図10に示すように多面取りが可能とされている。

【0033】また補助空間部31には、図6に示すように、該補助空間部31の厚みを増すことにより該補助空間部31内における樹脂4の流動を促進する流動促進部34は、図2に示すように、注入孔14に連続するものであって補助凹部15、16よりも深い凹部たる促進凹部18を雌金型1に設けることによって形成される。この流動促進部34は、補助空間部31内における樹脂4の流動性を高めたい方向に沿って形成されている。この流動性を高めたい方向とは通常、注入孔14と、樹脂4が注入される箇所のなかで注入孔14から最も離れた位置(最離位置)

される。

とを結ぶ方向である。ここで流動促進部34の厚み、幅、及び長さは、樹脂4の流動性(樹脂の材質、温度にて決定される)や、注入孔14から最離位置に至る距離、金型の凹凸による樹脂4の流動抵抗の大小等に基づいて、少なくとも成形空間部3の全ての部分に最も均一に樹脂4が流動するように決定される。特に本実施形態においては、凹部13と凸部22との間の成形空間部3よりも、凹部12と凸部23との間の成形空間部3の方が凹凸が多くて樹脂4の流動抵抗が高いため、凹部12と凸部23との間の成形空間部3に向かう方向に流動促進部34を形成している。なお流動促進部34の起点は注入孔14に限定されず、任意位置を起点とすることも可能である。

【0034】このような流動促進部34を補助空間部3 1に適宜配置することにより、樹脂4の流動性を任意の 方向に関して高めることができるので、空間部全体に樹 脂4を均一に注入することができる。また流動促進部3 4に流れ込んだ樹脂4は、図10、11に示すように成 形品に比べて肉厚な樹脂33aとなるが、この樹脂33 aは補助樹脂33の一部として成形品から分離処理され るので、成形品に影響を与えることがない。なお本実施 形態においては特に図3(b)において明らかなよう に、補助凹部16に比べて補助凹部15を若干深く形成 している。これは上述のように凹部12と凸部23との 間の成形空間部3の方が凹凸が多くて樹脂4の流動抵抗 が高いことから、補助凹部15にて形成される補助空間 部31側により多くの樹脂4を流入させるためである。 この意味において、補助凹部15にて形成される補助空 間部31全体が上述の流動促進部34として機能してい る。

【0035】さらに補助空間部31には、図6に示すよ うに、該補助空間部31の厚みを減らすことにより該補 助空間部31内における樹脂4の流動を規制する流動規 制部35が設けられている。この流動規制部35は、図 2に示すように、補助凹部15、16よりも雄金型2側 に突出する薄肉の規制凸部17を雌金型1に設けること によって形成される。この流動規制部35は補助空間部 31内における樹脂4の流動性を低減したい位置に配置 されている。この流動性を低減したい位置とは例えば、 注入孔14近傍や、注入孔14から凹凸の少ない成形空 間部3に至る経路である。このような位置においては、 樹脂4の流動性が高い一方、あまり流動性が高いと、凹 凸の多い成形空間部3に至る樹脂4の流動を妨げるおそ れがあるため、樹脂4の流動性を低減する必要が生じる のである。ただしこのような位置に限定されず、樹脂4 の流動性を低減したい全ての位置に流動規制部35を配 置することができる。ここで流動規制部35の厚み、 幅、及び長さは、樹脂4の流動性(樹脂の材質、温度に て決定される) 等に基づいて、少なくとも成形空間部3

の全ての部分に最も均一に樹脂4が流動するように決定

【0036】このような流動規制部35を補助空間部31に適宜配置することにより、樹脂4の流動性を任意の方向に関して低減することができるので、空間部全体に樹脂4を均一に注入することができる。また流動規制部35に流れ込んだ樹脂4は成形品に比べて薄肉な樹脂33bとなるが、この樹脂33bは補助樹脂33の一部として成形品から分離処理されるので、成形品に影響を与えることがない。

12

【0037】さらに補助空間部31には、図6に示すよ うに、該補助空間部31及び成形空間部3の位置(仕掛 樹脂32全体の位置)を規制するための位置決め部36 が設けられている。この位置決め部36は、図4に示す ように、基準面21よりも雌金型1側に突出する短尺円 柱状の凸部25を雄金型2に複数設けることによって形 成される。そして位置決め部36によって樹脂4の流入 ・固化が妨げられることによって、図10に示すように 仕掛樹脂32には複数の位置決め孔33cが形成され る。この位置決め孔33cは貫通孔であり、射出成形後 の後処理において、基台70に対する補助空間部31及 び成形空間部3の位置決め(仕掛樹脂32の位置決め) を行うために用いられる。この位置決め孔33cの具体 的使用態様については後述する。このように位置決め部 36を補助空間部31に適宜配置することにより、各処 理工程における位置決めを容易に行なうことができ、処 理精度及び処理効率が向上する。特に本実施形態におい ては位置決め部36を補助空間部31に配置したので、 位置決め孔33cが補助樹脂33の一部として成形品か ら分離処理されるので、成形品に影響を与えることがな 30 いという利点を有する。

【0038】ここで一般に、空間部に樹脂を注入する際には該空間部内のガスを金型外に排出する必要がある。このため本実施形態においては、図2に示すように、成形空間部3内及び補助空間部31内のガスを排出するためのエアベント19が補助凹部15、16に連通して形成され、すなわち補助空間部31に連通して形成されている。このエアベント19は補助空間部31内において最後に樹脂4が流入する箇所と雌金型1外部の任意箇所とを結ぶ細径の空間部として形成されており、成形空間部3内及び補助空間部31内に注入された樹脂4によって押し出されるガスがエアベント19を通って雌金型1外部に排出される。このエアベント19の径及び本数は、成形空間部3及び補助空間部31の体積、及びガスを排出すべき速度に応じて、ガスがスムーズに排出されるように決定される。

【0039】ガスを金型外に排出するためのエアベント 自体は従来の射出成形方法においても形成されていた が、従来はエアベントを成形空間部3に連通させてい た。したがって何らかの原因でガスが完全に排出されな かった場合、ガスが成形空間部3に残存して成形品に気

泡、焼け、あるいはバリなどを生じることがあった。しかしながら本実施形態のようにエアベント19を成形空間部3ではなく補助空間部31に連通させた場合には、ガスが完全に排出されず気泡などが生じた場合でも、該気泡は成形品ではなく補助樹脂33に形成され後処理において成形品から分離される。したがって成形品にガス残存に起因する障害を生じさせることがなくなる。特に本実施形態の如き薄厚成形品において気泡等の与える悪影響は大きいので上記エアベント19は有効であり、またこのように障害を除去できることから、軟質アクリル樹脂の如きガス発生の多い樹脂を用いることが可能となる。なお図10、11には気泡によって生じた焦げ33 dを示す。

【0040】また一般に、雌金型1と雄金型2との接触面に樹脂4が入り込んで固化する結果、成形品の側面にはパーティングラインが生じる。しかし本実施形態においては、図7に示すように、雌金型1と雄金型2との接触面は補助空間部31の側方にのみ位置し、該補助空間部31とのみ接触して、成形空間部3には接触していない。したがって注入された樹脂4が雌金型1と雄金型2との接触面に入り込んで生じるパーティングライン33eは、図10、11に示すように、補助樹脂33の周面にのみ形成され、成形品の外観を損ねることがない。

【0041】これまで説明した第1~第3のステップによって注入された樹脂4が固化した後、図8に示すように雄金型2が雌金型1から離型され、さらに図9に示すように固化後の仕掛樹脂32が雌金型1から離型される(第4のステップ)。この第4のステップの離型はエジェクタ9の複数の突出しピン9aにて行われるもので、各突出しピン9aは、図2、3、6、9に示すように、雌金型1から雄金型2に向けて突出して仕掛樹脂32を押圧する。ここで複数の突出しピン9a、9aは補助空間部31側に対応する位置にのみ配置されているため、その先端は補助樹脂33のみを押圧し、成形品には触れることがない。したがって図10、11に示すように、突出しピン9aの押圧によって自化することにより生じる突き出し跡33fは補助樹脂33のみに生じて、成形品の外観を損ねることがない。

【0042】この第4のステップ完了後、図10、11の仕掛樹脂32が出来上がる。なお本件出願人の成形した仕掛樹脂32の各部の厚みを参考値として挙げると、補助樹脂33は1.0mm(補助凹部15により形成される側)と0.8mm(補助凹部16により形成される側)、樹脂33aは1.6mm、樹脂33bは0.3mm、部品10a、10bは0.3mmである。

【0043】離型された仕掛樹脂32は後処理のため基台70に載置される。図12は基台70の平面図、図13は図12のA-A矢視断面図、図14は図13の基台70に仕掛樹脂32を載置した状態の断面図を示す。これら図12~14に示すように、基台70は仕掛樹脂3

14

2よりやや広い幅に形成されており(図12には仕掛樹脂32の外形線を想像線にて示す)、その載置面には複数のガイド突起71、71が設けられている。そして基台70に仕掛樹脂32を載置した状態において各位置決め孔33c内に各ガイド突起71が挿通して、基台70に対する仕掛樹脂32の水平面内における相対位置が固定される(第5のステップ)。この状態において各ガイド突起71は仕掛樹脂32の正面側には突出しておらず、仕掛樹脂32に対する表面処理の障害となることがない。なお当然のことながら各位置決め孔33cは各ガイド突起71に対応する位置及び径にて形成される。また複数の後処理において複数の基台を用いる場合には、各基台に合わせて位置や径の異なる複数種類の位置決め孔33cを形成してもよい。

【0044】そして仕掛樹脂32に対して後処理が行なわれる。この後処理は、表面処理(第6ステップ)、切断(第7ステップ)、組立て(第8ステップ)の順に行なわれる。このうち表面処理は仕掛樹脂32のうち部品10a、10bに施されるもので、塗装、メッキ、ディップ、印刷(スクリーン、オフセット、パット)、シールド性のあるテープ貼付、蒸着、ホットスタンプ、ダイヤスタンプ、注入、苛性処理等により行なわれる。特に電子機器の筐体10においては電磁遮蔽が重要となるので、電磁遮蔽塗料の塗布が行なわれる。なおこれら表面処理各々の詳細は従来と同様であるため省略する。

【0045】また外形抜きは仕掛樹脂32から部品10 a、10bを分離するために行なわれるもので、レーザ 加工、トムソン加工、金型プレス加工、彫刻刃加工(熱 加工含む)、高周波加工等により行なわれる。なお外形 30 抜きは上述の表面処理の前に行なってもよいが、複数の 部品10a、10bにまとめて表面処理を行なった後に 外形抜きを行なうことによって、一層効率のよい表面処 理を行うことができる。そして部品10a、10bを相 互に組立てることにより、筐体10を形成する。このた め、まず部品10a、10bの間に別工程で形成された 回路基板等を挟持し、これら一対の部品10a、10b を、両面テープ、熱ボンド、のり印刷、係止爪、ビス止 め、熱かしめ、高周波シール、クリップ止め、リテーナ 止めにて一体に組み付ける。なお当然のことながら、係 止爪やリテーナ止めによる組み付けを行う場合には、こ れら係止爪等を一体に射出成形すればよい。

【0046】次に、本発明の第2実施形態について説明する。図16は雌金型40の正面図、図17(a)~(d)はそれぞれ図16のA-A~D-Dまでの矢視断面図としての雌金型40と、雄金型50のうち雌金型40に対応する部分とを重合させた状態の断面図、図18は図17(c)の雌金型40と雄金型50との間の成形空間部60及び補助空間部61に樹脂4を注入した状態の断面図、図19は図18の雌金型40から雄金型50を離型した状態の断面図、図20は図19の雌金型40

30

から仕掛樹脂 41 を離型した状態の断面図、図 21 は仕掛樹脂 41 の背面図、図 22 (a) ~ (d) はそれぞれ図 21 のA-A ~ D-D までの矢視断面図を示す。なお特に説明なき構成については第1実施形態と同じである。本実施形態は射出成形方法により、図 28 に示す薄厚方形状のネームプレート 42 を成形する場合について説明する。

【0047】雌金型40は、図16、17に示すように、その四周端部に基準面43を備える。この基準面43により囲まれた内側部分には、ネームプレート42の外形適合した形状の複数の凹部44が形成されている。このように凹部44を複数形成することにより、多面取りが可能である。また図16、17に示すように、雌金型1の上下左右の中心位置には注入孔45が貫通孔として形成されている。また雌金型1には、補助凹部47、該補助凹部47よりも深い凹部たる促進凹部46、及び補助凹部47に連通する溝状のエアベント48が設けられている。一方、図17に示すように、本実施形態における雄金型50は、後述する凸部51を除いてほぼ平面状に形成されている。すなわち雄金型50は雌金型40の基準面43に直接接触するもので全体に平坦な連続面を備える。

【0048】このような雌金型40と雄金型50とを重合させることにより、図17に示すように、これらの間に成形空間部60が形成される。また雌金型1に図示のような補助凹部47を設けたので、成形空間部60の全周を囲む補助空間部61が形成される(第1ステップ)。そして注入孔45に樹脂4を注入することにより、該樹脂4はまず補助空間部61に流入し(第2ステップ)、さらに補助空間部61から成形空間部60に流入する(第3ステップ)。

【0049】第1のステップにおいては図17に示すように、雌金型1の促進凹部46によって補助空間部61の厚みが増やされることにより、流動促進部62が形成されている。したがって注入孔45から注入された樹脂4は流動促進部62において流動性を高められ、この流動促進部62の方向にはより多くの樹脂4が流入する。図21、22には流動促進部62に流入した樹脂4にて形成された肉厚の樹脂48aを示す。なお本実施形態においては雌金型40及び雄金型50が左右対称形状であり樹脂4の流動性も左右対称であるため、流動促進部62(流動促進部62を形成する促進凹部46)は、注入孔45から四隅に向けた左右対称形状に形成されている。

【0050】また第1のステップにおいては図17に示すように、雄金型50に設けた複数の凸部51にて構成される位置決め部52が設けられており、図21に示す仕掛樹脂41の補助樹脂48には複数の位置決め孔48b、48bが形成されている。このような雌金型40及び雄金型50を用いて成形された仕掛樹脂41は、図2

16

1、22に示すように、複数のネームプレート42が補助樹脂48にて囲まれると共に、一体に固化している。【0051】樹脂固化後、図18~20に示すように離型が行われる(第4のステップ)。本実施形態においても、図16、17、20に示すように、雌金型40から雄金型50に向けて突出する複数の突出しピン9a、9aにて仕掛樹脂41を押圧することにより行われる。ここでも突出しピン9aは補助空間部31側に対応する位置にのみ配置されているため、図21、22に示すように、突き出し跡48 cは補助樹脂48 oみに生じて、成形品の外観を損ねることがない。

【0052】離型された仕掛樹脂41は後処理のため基 台80に載置される。図23は基台80の平面図、図2 4 (a) (b) はそれぞれ図23のA-A矢視断面図、 B-B矢視断面図である。これら図23、24に示すよ うに、基台80には複数のガイド突起81、81が設け られており、図示は省略するが、基台80に仕掛樹脂4 1を載置した状態において各位置決め孔48b内に各ガ イド突起81が挿通して、基台80に対する仕掛樹脂4 1の水平面内における相対位置が固定される (第5のス テップ)。ここで基台80には、多面取りされる複数の 成形品それぞれに対応する位置に、該成形品よりやや広 幅の複数のブロック部82、82が配置されている。こ れらブロック部82、82は基台80に設けられた凹部 83内に出し入れ自在に納められるもので、この凹部8 3の底面とブロック部82との間に金属や紙等の任意の 材料からなるスペーサ部材84を挟むことにより、基台 80からのブロック部82の突出高さが調整可能となっ ている。図24(b)には2つのブロック部82のうち 紙面右側のブロック部82と凹部83との間にのみスペ ーサ部材84が挟まれており、該ブロック部82が基台 80から高さHだけ突出している状態を示す。このよう にブロック部82の突出高さを調整することにより、基 台80に載置された仕掛樹脂41と後処理における処理 装置例えば印刷装置との間隔を成形品毎に調整すること ができ、後処理を一層精密に行うことができる。

【0053】このように仕掛樹脂41が基台80に載置された後、該仕掛樹脂41の背面にスクリーン印刷が施される(第6のステップ)。図25はスクリーン印刷後の仕掛樹脂41の背面図、図26は図25のA-A矢視断面図である。この図25、26に示すように、仕掛樹脂41の背面のネームプレート42に対応する部分には「ABC」なる文字形の印刷63が施され、また仕掛樹脂41の背面全体に印刷63とは異なる色の印刷64が施される。

【0054】印刷終了後、成形品の切断が行われる(第7のステップ)。この切断はレーザ90を用いて行われる。図27はレーザ90による切断を概念的に示す縦断面図である。この図27に示すように、基台80に載置された仕掛樹脂41にレーザ90によるレーザ光が照射

20

40

され、補助樹脂48が複数のネームプレート42から分 離されると同時に、複数のネームプレート42が相互に 分離される。図28はネームプレート42の正面図であ

【0055】本実施形態においてはこのようにレーザ9 0を用いて切断を行っているので、複雑な形状の成形品 をも容易に切断することができると共に、プレス切断等 に比べて切断面が良好となる。特にアクリル樹脂の如き 高強度の樹脂にて成形した成形品に対してもプレス切断 (ゲート切断機及びニッパ等による切断を含む)を行う 必要がないので、成形品にクラックが生じることを防ぐ ことができる。このレーザ90による切断においてはレ ーザ90に対して被切断体たる仕掛樹脂41の相対位置 を正確に維持することが重要となるが、本実施形態にお いては上述のように位置決め孔48bとガイド突起81 との連係によってこの位置決めを達成している。すなわ ち位置決めを正確に行うことができるので、レーザ90 による切断を行うことができる。

【0056】次に、本発明の第3実施形態について説明 する。図29は剥離シート100を貼付した状態の仕掛 樹脂41の縦断面図、図30は図29のプレス切断後の 正面図、図31(a)、(b)はそれぞれ図30のA-A矢視断面図、B-B矢視断面図である。本実施形態に おいて、特に説明なき構成については第2実施形態と同 じである。本実施形態は第2実施形態の第1~第6のス テップを経た後、第2実施形態とは異なる第7のステッ プにて切断が行われる。

【0057】すなわち第6のステップ終了後、図29に 示すように、仕掛樹脂41の背面全域に剥離シート10 0が貼付される。この剥離シート100は剥離紙101 に接着層102をコーティングして構成されている。そ してこの状態でレーザ加工、トムソン加工、金型プレス 加工、彫刻刃加工 (熱加工含む)、高周波加工等による 切断を行う。この切断においてはいわゆるハーフ抜きが 行われ、基本的に成形品以外の部分が切断除去される が、図31に示すように剥離紙101は切断されること なく完全に残されており、また成形品と剥離紙101と の間の接着層102も残されている。したがって図3 0、31に示すように、剥離紙101の表面に複数の成 形品が整列された状態となり、納入時の計数や、組立工 程におけるハンドリングが一層容易となる。

【0058】さてこれまで本発明の第1~第3実施形態 について説明したが、本発明は上記に示した実施形態に 限定されず、その技術的思想の範囲内において種々異な る形態にて実施されてよいものであり、以下これら異な る形態について説明する。まず本方法にて成形される成 形品は、上記実施形態に示したものに限られず、任意形 状の成形品であってよい。また当然のことながら雌金型 及び雄金型の形状も、成形品の形状に併せて任意に変更 される。さらに第1実施形態においては部品10 aと部

18 品10bとの2つを一度に成形するものとして説明した

が、樹脂が成形空間部内に流動する限りにおいてより多 くの部品を多面取りすることが可能である。

【0059】また上記実施形態においては、補助空間部 を成形空間部の周囲に均等な形状で配置しているが、樹 脂の流動性に応じて不均等に配置することも可能であ る。さらに上記実施形態においては、雌金型に規制凸部 を設けることによって流動規制部を設けたが、雄金型に 規制凸部を設けてもよい。また同様に、雌金型でなく雄 金型に促進凹部を設けて流動促進部を設けてもよい。あ るいは雌金型と雄金型との双方に、規制凸部や促進凹部 を設けてもよい。その他、流動規制部、流動促進部、位 置決め部、エアベントの数、位置、及び形状は、上述の 条件の下、任意に定めてよい。

[0060]

【発明の効果】上記したように請求項1記載の本発明 は、空間部を、成形品の外形に適合させて複数並設した 成形空間部と、該複数の成形空間部の全周を囲む補助空 間部とから構成し、注入孔を介して前記補助空間部に溶 融した樹脂を注入し、該樹脂を補助空間部を介して複数 の成形空間部各々に注入することとしたので、これら複 数の成形空間部のあらゆる方向から該成形空間部に対し て樹脂が流入可能となり、成形空間部が薄厚であっても 該成形空間部内に樹脂を均一に流入させることが容易に 可能となるので、薄厚成形品の効率の良い射出成形が可 能となる。また例えば、製品ネームプレートを薄厚にて 形成できるので、ネームプレートの弾性力を適度に調節 でき、貼付面に合わせた湾曲状態でネームプレートを保 持できる。したがって貼付面の曲率が変わる毎にネーム 30 プレートを成形する必要がなくなり、一つのネームプレ ートを各種の添付面に添付可能となるため生産効率が向 上する。またあらゆる方向から樹脂を流入させることが できるので、樹脂に加わる注入圧力(応力)が全体に均 ーとなり、樹脂の密度等を均一にすることができる。し たがって例えば液晶画面を保護等するための透明樹脂を 成形した場合においても、透明樹脂の密度等を全体に均 一にすることができ、特に応力が加わる部分は透明樹脂 の外周部であって中心部をほぼ完全に均一化できるの で、液晶画面の視認性を妨げることがない。

【0061】しかも請求項2記載の本発明は、複数並設 させた成形空間部の相互間に補助空間部が配置され、該 補助空間部にて複数並設させた各成形空間部の全周を囲 む構成とし、このような補助空間部を介して複数の成形 空間部各々に樹脂を注入することにより、薄厚成形にお いても補助空間部を介して一層効率の良い多面取りが可 能となり、生産効率を大幅に向上させることができる。 【0062】しかもまた請求項3記載の本発明は、補助

空間部には、該補助空間部の厚みを増すことにより該補 助空間部内における樹脂の流動を促進する流動促進部を 設けたこと等により、樹脂の流動性を任意の方向に関し

て高めることができるので、空間部全体に樹脂を均一に 注入することができる。特に補助空間部に流動促進部を 設けているので、流動促進部に流入して固化した樹脂は 補助樹脂の一部として成形品から分離処理されるので、 成形品に影響を与えることがなく、より精密な薄肉成形 を行うことができる。

【0063】さらに請求項4記載の本発明は、補助空間部には、該補助空間部の厚みを減らすことにより該補助空間部内における樹脂の流動を規制する流動規制部を設けたこと等により、樹脂の流動性を任意の方向に関して低減することができるので、空間部全体に樹脂を均一に注入することができる。特に補助空間部に流動規制部を設けているので、流動規制部に流入して固化した樹脂は補助樹脂の一部として成形品から分離処理されるので、成形品に影響を与えることがなく、より精密な薄肉成形を行うことができる。

【0064】さらにまた請求項5記載の本発明は、補助空間部には、該補助空間部及び成形空間部の位置を規制するための位置決め孔を形成する位置決め部を設けたことにより、仕掛樹脂の位置決めを容易に行うことができると共に、位置決め孔が補助樹脂の一部として成形品から分離処理されるので、成形品に影響を与えることがなく、より精密な薄肉成形を行うことができる。

【0065】しかも請求項6記載の本発明は、成形空間部内及び補助空間部内のガスを空間部外に排出するためのエアベントを補助空間部に連通して形成したことにより、ガスが完全に排出されず気泡などが生じた場合でも、該気泡は成形品ではなく補助樹脂に形成され後処理において成形品から分離される。したがって成形品にガス残存に起因する障害を生じさせることがなく、より精密な薄肉成形を行うことができる。

【0066】しかもまた請求項7に記載の本発明は、第1のステップにおいて、雄金型と雌金型との接触面を補助空間部の側方にのみ位置させることにより、パーティングラインが生じた場合でも、該パーティングラインは成形品ではなく補助樹脂に形成され後処理において成形品から分離されるので、成形品に影響を与えることがなく、より精密で外観上良好な薄肉成形を行うことができる。

【0067】さらに請求項8に記載の本発明は、第3のステップの後、補助空間部内に突出しピンを挿入し、成形空間部内及び補助空間部内において固化した樹脂を離型する第4のステップを備えることにより、突出しピンの押圧による白化によって突き出し跡が生じた場合でも、該突き出し跡は成形品ではなく補助樹脂に形成され後処理において成形品から分離されるので、成形品に影響を与えることがなく、より精密で外観上良好な薄肉成形を行うことができる。

【0068】さらにまた請求項9に記載の本発明は、第4のステップの後、成形空間部及び補助空間部の外部へ

20

排出した樹脂を基台上に配置すると共に、該基台上に設けたガイド突起を位置決め部にて形成した位置決め孔に挿入することにより樹脂と基台との相対位置を固定する第5のステップを備え、基台には成形空間部に対応した形状のブロック部を上下動自在に設け、該ブロック部の上下動にて成形空間部内に注入され固化した樹脂の基台上における上下位置を調整自在としたことにより、成形品と後処理装置との相対間隔を成形品毎に調節することができ、後処理を一層精密に行うことができる。

【0069】しかも請求項10に記載の本発明は、樹脂は多面付けにて形成され、第5のステップの後、基台に配置された前記樹脂に対して所定の表面処理を多面的に施す第6のステップ及び又は基台に配置された樹脂を所定寸法に多面的に切断する第7のステップを備えたことにより、複数の成形品に対して表面処理及び切断を一括して行うことができ、生産効率を大幅に向上させることができる。

【0070】しかもまた請求項11に記載の本発明は、第7のステップにおいて、樹脂は、成形空間部内に注入され固化した成形品と、補助空間部内に注入され固化した補助樹脂とに分離されることにより、流動促進部や流動規制部にて形成され固化した樹脂、位置決め孔、焦げ、パーティングライン及び突き出し跡が補助樹脂と共に成形品から分離されるので、成形品に影響を与えることがなく、より精密で外観上良好な薄肉成形を行うことができる。

【0071】さらに請求項12に記載の本発明は、第7のステップにおいて、多面切断をレーザにて行うことにより、複雑な形状の成形品をも容易に切断することができると共に、プレス切断等に比べて切断面が良好となる。特にアクリル樹脂の如き高強度の樹脂にて成形した成形品に対してもプレス切断(ゲート切断機及びニッパ等による切断を含む)を行う必要がないので、成形品にクラックが生じることを防ぐことができる。

【0072】さらにまた請求項13に記載の本発明は、第6のステップの前後いずれかにおいて、接着層と剥離紙からなる剥離シートを接着層を介して樹脂の裏面に接着し、第7のステップにおいて、剥離紙を残した状態で樹脂を切断することにより、剥離紙の表面に複数の成形品が整列された状態となり、納入時の計数や、組立工程におけるハンドリングが一層容易となる。

【図面の簡単な説明】

【図1】本発明の第1実施形態に関連し、射出成形機の 構成を概念的に示す縦断面図である。

【図2】第1実施形態における雌金型の正面図である。

【図3】(a)~(d)はそれぞれ図2のA-A~D-Dまでの矢視断面図である。

【図4】第1実施形態における雄金型の正面図である。

【図5】 (a) \sim (d) はそれぞれ図4のA-A \sim D-50 Dまでの矢視断面図である。

【図6】 $(a) \sim (d)$ はそれぞれ図3 $(a) \sim (d)$ と図5 $(a) \sim (d)$ の対応する各部を重合した状態を示す断面図である。

【図7】図6 (d) に対応する縦断面図であり、成形空間部及び補助空間部に樹脂を注入した状態を示す。

【図8】雄金型を雌金型から離型した状態の縦断面図である。

【図9】固化後の仕掛樹脂を雌金型から離型した状態の 縦断面図である。

【図10】第1実施形態における仕掛樹脂の背面図であ 10 る。

【図11】(a) ~ (d) はそれぞれ図10のA−A~ D−Dまでの矢視断面図である。

【図12】第1実施形態における基台の平面図である。

【図13】図12のA-A矢視断面図である。

【図14】図13の基台に仕掛樹脂を載置した状態の断面図である。

【図15】第1実施形態における成形品たる筐体の組立前の正面図である。

【図16】第2実施形態における雌金型の正面図である。

【図17】 (a) \sim (d) はそれぞれ図16の $A-A\sim$ D-Dまでの矢視断面図としての雌金型と、雄金型のうち雌金型に対応する部分とを重合させた状態の断面図である。

【図18】図17 (c) に対応する縦断面図であり、成形空間部及び補助空間部に樹脂を注入した状態を示す。

【図19】雄金型を雌金型から離型した状態の縦断面図 である

【図20】固化後の仕掛樹脂を雌金型から離型した状態の縦断面図である。

【図21】第2実施形態における仕掛樹脂の背面図である。

【図22】(a) \sim (d) はそれぞれ図21の $A-A\sim$ D-Dまでの矢視断面図である。

【図23】第2実施形態における基台の平面図である。

【図24】(a)、(b)はそれぞれ図23のA-A矢視断面図、B-B矢視断面図である。

【図25】スクリーン印刷後の仕掛樹脂の背面図である。

【図26】図25のA-A矢視断面図である。

【図27】レーザによる切断を概念的に示す縦断面図である。

22

【図28】ネームプレートの正面図である。

【図29】第3実施形態において、剥離シートを貼付した状態の仕掛樹脂の縦断面図である。

【図30】プレス切断後の仕掛樹脂の正面図である。

【図31】(a)、(b) はそれぞれ図30のA—A矢 視断面図、B—B矢視断面図である。

.0 【符号の説明】

1、40 雌金型

2、50 雄金型

3、60 成形空間部

4 樹脂

5 ホッパー

6 シリンダー

7 樹脂ペレット

8 スクリュー

9 エジェクタ

0 9 a 突出しピン

10 筐体

11、21 基準面

12、13 凹部

14、45 注入孔

15、16 補助凹部

17 規制凸部

18、46 促進凹部

19 エアベント

22、23、25 凸部

24 溝部

31、61 補助空間部

32、41 仕掛樹脂

33、48 補助樹脂

34、62 流動促進部

35 流動規制部

36 位置決め部

42 ネームプレート

70、80 基台

90 レーザ

40 100 剥離シート

【図7】

【図13】

【図1】

【図2】

【図3】

【図4】

2,1

【図5】

【図31】

フロントページの続き

(58)調査した分野(Int.Cl.⁷, DB名) B29C 45/26 - 45/44