Biostatistics Methods II – Software Practicals Likelihood and Survival Analysis

Dimitris Rizopoulos

Erasmus University Medical Center

A Very Basic Introduction to R

The aim of this short section is to provide a very fast introduction in the R statistical programming language that will be used during the practical sessions of this course.

* Data Structures

- we have two basic types of variables, namely variables of type numeric, which are usually continuous (e.g., weight, age, etc.), and variables of type factor, which are categorical (e.g., sex, treatment, etc.).
- data sets in R are usually stored in data.frames. Typically, each row of the data frame denotes a subject and the columns denote the different variables recorded on that patient. These variables can be continuous (i.e., numeric) or categorical (i.e., factor).

* Manipulating Data

- in the following we will work with the data frame aids.id. To access this data frame you need to load package JM using the command library(JM).
- type aids.id to see how this data set looks like. For instance, you can see that variable Time is a continuous variable and is of type numeric whereas variable gender is a factor.
- to extract a variable from the data frame we use the symbol \$. For instance, the following code extracts the variable sex from the data frame aids.id:

aids.id\$sex

With a similar code you can also transform a variable. For instance, the following code defines a new variable in the data frame which equals the natural logarithm of the Time variable:

aids.id\$logTime <- log(aids.id\$Time)

To convert a numeric variable into a factor we use the factor() function. For example, the following code, transforms variable death into a factor:

- * Using formula to Define Regression Models
 - the way to define in R the relationship between a response variable and a set of predictors is via a formula. In the following examples, we will denote the response variable by y, a continuous predictor by x and a categorical predictor, i.e., a factor by f
 - A model that postulates that the average y is related to the main effect of x and the main effect of f:

$$y \sim x + f$$

A model that postulates that the average y is related to the main effects of x and f, and the interaction effect between x and f:

```
y \sim x + f + x:f
# equivalently the above can be shortened to y \sim x * f
```

 A model that postulates that the average y is related to the linear and quadratic effects of x:

```
y ~ x + I(x^2)
```

Likelihood - Practical 1: Linear Regression Models in R

The purpose of this practical is to illustrate how standard linear regression models can be fitted in R.

You are strongly encouraged to do this practical interactively by executing the following command (preferably):

EP03survival::load_practical("Likelihood")

or online by pointing your web browser to the following url:

https://emcbiostatistics.shinyapps.io/EP03_Likelihood_Practical1

The following questions are based on the PBC dataset. This dataset is available as object pbc2.id. If you decide to directly work in Rstudio instead of the online tutorial, before continuing you will need to load package JM using the command library("JM")¹.

From this dataset we will use the following variables:

- * serBilir: baseline serum bilirubin in mg/dl.
- * drug: the treatment indicator with values 'placebo' and 'D-penicil'.
- * age: baseline age in years.
- * sex: the sex indicator with values 'male' and 'female'.
- * serChol: baseline serum cholesterol in mg/dl.
- * prothrombin: baseline prothrombin time in sec.

- Q1 We want to see how the log-transformed serum bilirubin is related with the rest of the variables. Start by fitting an additive linear regression model, using function lm(), and interpret the results you obtain from the summary() method.
- Q2 Check the residuals of this model using the plot() method; before calling plot(), set par(mfrow = c(2, 2)) in order to obtain the first basic plots in one figure.
- Q3 We believe that the association between serBilir and each one of age, serChol and prothrombin could be different between males and females. Extend the previous model to accommodate this. Use again the summary() method to get a detailed output and interpret the results.

¹If you have not already installed package **JM** in your machine, you will need to do so using the command install.packages("JM").

- Q4 We would like to statistically test whether the extra interaction terms really improve the fit of the model. Using an F-test (the analogous of the likelihood ratio test for linear regression models), compare the interaction model with the additive model. In R this is done using the anova() function.
- Q5 Given that the F-test suggests that some of the interaction terms are significant, we proceed to see which of the interactions terms seem to improve the model. To find these, we could directly look at the individual p-values from the summary() output of the last model (hint: use coef(summary(...)) to extract the coefficients table from the summary() output). However, one issue is that these p-values are not corrected for multiple testing. Using the p.adjust() function obtain the adjusted p-values.
- Q6 In a second analysis, the researchers are interested in studying the relationship between the natural logarithm of serum bilirubin and serum cholesterol corrected for age and sex. It is believed that the relationship may be nonlinear. Use a 3rd degree polynomial of serum cholesterol to explore this.
- Q7 Investigate whether the relationship is truly nonlinear but first fitting the model that assumes linearity (null hypothesis), and following comparing this model with the previous model (alternative hypothesis) using an F-test and the anova() function.

Survival - Practical 1: Standard Survival Analysis

The purpose of this practical is to illustrate how standard statistical analysis of survival data can be performed in R.

You are strongly encouraged to do this practical interactively by executing the following command (preferably):

EP03survival::load_practical("Basic_Survival")

or online by pointing your web browser to the following url:

https://emcbiostatistics.shinyapps.io/EP03_Survival_Practical1

The following questions are based on the AIDS dataset. This dataset is available as object aids from package JM. If you decide to directly work in Rstudio instead of the online tutorial, before continuing you will need to load packages survival and JM using the commands library("survival") and library("JM"), respectively².

From this dataset we will use the following variables:

- * Time: the observed time-to-death in months.
- * death: the event indicator; '1' denotes death and '0' censored observation.
- * drug: the treatment indicator with values 'ddC' and 'ddI'.
- * gender: the sex indicator with values 'male' and 'female'.

- Q1 Calculate and plot the Kaplan-Meier estimator of the survival function based on all the data. Which is the median survival time and its 95% confidence interval? (hint: Section 2.1, Survival Analysis in R Companion)
- Q2 Calculate and plot the Breslow estimators of the survival functions for ddC and ddI, separately. Calculate also the estimates of the 50%, 60% and 70% percentiles of the survival distribution with their 95% confidence intervals. (hint: Section 2.1, Survival Analysis in R Companion)
- Q3 Calculate the 8- and 10-month survival probability with its corresponding 95% confidence interval. You will need to use the summary() function for survfit objects. (hint: Section 2.1, Survival Analysis in R Companion)

²If you have not already installed package **JM** in your machine, you will need to do so using the command install.packages("JM").

- Q4 Compare with the log-rank Peto & Peto modified Gehan-Wilcoxon tests if the survival curves for the two treatment groups differ statistically significantly. <u>Before</u> doing the analysis, which of the two tests you expect to yield the smaller *p*-value and why? (hint: Section 2.2, Survival Analysis in R Companion)
- Q5 Do the same for gender, i.e., calculate the Kaplan-Meier (or Breslow) estimators of the survival functions for males and females, and compare the results from the log-rank Peto & Peto modified Gehan-Wilcoxon tests. Which test you should trust more in this case and why? (hint: Section 2.2, Survival Analysis in R Companion)

Survival - Practical 2: AFT Models for Time-to-Event Data

The purpose of this practical is to illustrate how Accelerated Failure Time model can be fitted in R.

You are strongly encouraged to do this practical interactively by executing the following command (preferably):

EP03survival::load_practical("AFT_Models")

or online by pointing your web browser to the following url:

https://emcbiostatistics.shinyapps.io/EP03_Survival_Practical2

The following questions are based on the Lung data set. This data set is available as object lung from package survival. If you decide to directly work in Rstudio instead of the online tutorial, before continuing you will need to load package survival using the command library("survival").

From this data set we will use the following variables:

- * time: the observed time-to-death in days.
- * status: the event indicator; '1' denotes censored and '2' denotes death.
- * age: age in years.
- * ph.karno: Karnofsky performance score rated by the physician.
- * sex: the sex indicator with values 'male' and 'female'.

- Q1 Our initial hypothesis is that the time-to-death is affected by sex, age and ph.karno. In addition, we also believe that the effects of age and ph.karno are not the same for males and females. Transform this initial hypothesis into a suitable AFT model. For the error terms assume the extreme value distribution, which as we have seen corresponds to the Weibull distribution for the time-to-death. (hint: Section 3.1, Survival Analysis in R Companion)
- Q2 We would like to test whether some aspects of our initial hypothesis are supported by the data. In particular, we are interested in testing: (a) whether sex has at all an effect in the time-to-death, and (b) whether the effects of age and ph.karno are equal for the males and females. Based on the results of these two hypotheses, simplify the model appropriately. (hint: Section 3.3, Survival Analysis in R Companion)

- Q3 For the final model obtained in Q2 create an effects plot depicting how the average failure time changes with increasing values of ph.karno, for males and females at median age of their respective groups, i.e., for the median age for males and the median age for females. (hint: Section 3.2, Survival Analysis in R Companion)
- Q4 Check whether the assumption of the extreme value distribution for the error terms is violated using the AFT residuals. What is your conclusion? (hint: Section 3.4, Survival Analysis in R Companion)

Survival - Practical 3: Cox PH Models for Time-to-Event Data

The purpose of this practical is to illustrate how the Cox proportional hazards model can be fitted in R.

You are strongly encouraged to do this practical interactively by executing the following command (preferably):

EP03survival::load_practical("Cox_Models")

or online by pointing your web browser to the following url:

https://emcbiostatistics.shinyapps.io/EP03_Survival_Practical3

The following questions are based on the AIDS data set. This data set is available as object aids from package JM. If you decide to directly work in Rstudio instead of the online tutorial, before continuing you will need to load packages survival and JM using the commands library("survival") and library("JM"), respectively³.

From this data set we will use the following variables:

- * Time: the observed time-to-death in months.
- * death: the event indicator; '1' denotes death and '0' censored observation.
- * CD4: baseline CD4 cell count measurement.
- * drug: the treatment indicator with values 'ddC' and 'ddI'.
- * AZT: indicator denoting whether the patient was enrolled because of AZT 'intolerance' or AZT 'failure'.

- Q1 Fit a Cox model that relaxes the linearity assumption for the effect of CD4 using natural cubic splines with 3 degrees of freedom. In addition, include the main effects of drug and AZT, and the interaction effects of CD4 with both drug and AZT. (hint: Section 4.1, Survival Analysis in R Companion)
- Q2 Use a likelihood ratio test to test whether the model can be reduced by dropping all interaction terms. Depending on the result choose the model that you will use for the remaining questions unless otherwise stated. (hint: Section 4.3, Survival Analysis in R Companion)

³If you have not already installed package **JM** in your machine, you will need to do so using the command install.packages("JM").

- 10
 - Q3 Use the summary() method to obtain a detailed summary of the fitted model. What is the interpretation of the estimated coefficient for drug? In addition, in the output you have values for exp(coef) and exp(-coef). What do these values represent? (hint: Section 4.1, Survival Analysis in R Companion)
 - Q4 Using the model of Q1, create an effects plot depicting how the average log hazard ratio changes with increasing values of CD4, for 'ddI' and 'ddC' patients who had enrolled because of either AZT 'intolerance' or AZT 'failure'. What do you observe? (hint: Section 4.2, Survival Analysis in R Companion)
 - Q5 Using the Kaplan-Meier estimator to compare whether the proportional hazards assumption is justified for AZT. (hint: Section 4.4, Survival Analysis in R Companion)

Survival - Practical 4: Extensions of the Cox Model

The purpose of this practical is to illustrate how to a representative Cox PH regression analysis including the extensions seen in the last sections of Chapter 4 and in Chapter 5.

You are strongly encouraged to do this practical interactively by executing the following command (preferably):

EP03survival::load_practical("Cox_Extensions")

or online by pointing your web browser to the following url:

https://emcbiostatistics.shinyapps.io/EP03_Survival_Practical4

The following questions are based on the Lung data set. This data set is available as object lung from package survival. If you decide to directly work in Rstudio instead of the online tutorial, before continuing you will need to load package survival using the command library("survival"). In addition, you will also need package splines that can be similarly loaded with the command library("splines").

From this data set we will use the following variables:

- * time: the observed time-to-death in days.
- * status: the event indicator; '1' denotes censored and '2' denotes death.
- * age: age in years.
- * ph.karno: Karnofsky performance score rated by the physician.
- * sex: the sex indicator with values 'male' and 'female'.
- * ph.ecog: ECOG performance score (0=good 5=dead).

Perform the following analysis:

Q1 Our initial hypothesis is that the time-to-death is affected by sex, age and ph.karno. Also, the physicians believe that the effect of ph.karno and age may be nonlinear in the log-hazard scale. Moreover, the (possibly nonlinear – model using natural cubic splines with 3 degrees of freedom) effects of age and ph.karno on the log-hazard scale are not the same for males and females. Transform this initial hypothesis into a suitable Cox PH model. (hint: Section 4.1, Survival Analysis in R Companion)

The aim here is to do a realistic analysis of a survival dataset with a Cox PH model. This involves the following steps:

a. We first translate our initial hypothesis into a full model that contains all terms of interest. This includes all covariates we are interested in and also possibly nonlinear and interaction terms.

- 12
- b. We then first test the important assumption behind the model. In the case of the Cox model that is the proportional hazards assumption. (In the case of an AFT model that is the distribution of the error terms). We need to do that first and rectify any problems with these assumptions **before** proceeding to simplify the model using hypothesis testing.
- c. Then we continue by performing an omnibus test for all interaction terms in the model and see if we can drop them. Typically, using a p-value threshold higher than 5%, e.g., we can use 15%. This is to ensure that we do not miss any potentially interesting interactions. If the test suggests that some interactions may seem to improve the fit of the model, then we can proceed to see which interaction terms specifically achieve that. We test then each interaction separately, and at the end we can correct the p-values for multiple testing. Hence, at the final stage of this step we will know which interaction terms we will keep in the model.
- d. We do the same for the nonlinear terms. Namely, first, we start by the omnibus test, and if the p-value is smaller than 15%, we are going to see which nonlinear terms we need. Hence, at the final stage of this step, we will know our final model. Note, that unless the aim is to do prediction, it is not advisable to remove non statistically significant covariates from the final model.
- e. Finally, we interpret the results using the table of coefficients and effect plots if necessary.
- Q2 We are interested in estimating survival probabilities for males and females with the median age and with the average Karnofsky score. (hint: Section 5.1, Survival Analysis in R Companion)
 - Which are the median survival times and their 95% confidence limits for males and females with median age and average Karnofsky score?
 - Plot the corresponding survival curves.
 - What are the corresponding survival probabilities for 200, 400, 600 and 800 days?
- Q3 For the rest of the questions we consider the additive Cox PH model with sex, age and ph.karno fitted in the original lung database (i.e., not the two databases before and after 170 days). It is believed that the baseline hazard of death has a completely different shape for patients with ECOG score greater than 0 compared to patients with ECOG equal to 0, i.e., the hazard functions of the two groups is not analogous. First, from the ph.ecog variable that takes values from 0 to 3, and construct the variable ph.ecog2 that is 0 if ph.ecog was 0, and 1 otherwise. Then, fit an appropriate Cox model that takes the feature described above into account, and then interpret the results. (hint: Section 5.2, Survival Analysis in R Companion)
- Q4 The team of physicians of the North Central Cancer Treatment Group (who are responsible for the Lung study) believe that the effects of sex, age and ph.karno in the risk of

death are different for the two ECOG groups. Extend the model of Q3 accordingly and test whether this hypothesis is supported by the data for each of the two predictors. (hint: Section 5.2, Survival Analysis in R Companion)