Lecture 3: Linear Regression

MAST30034 Applied Data Science

Dr. Karim Seghouane School of Mathematics & Statistics The University of Melbourne

August 8, 2023

Outline

- Linear Regression Model
- Estimation Issues
- Feature Selection
- Significance of regression coefficients
- Model Selection
- Regularization

Linear Regression Model

- Linear regression is a useful tool for predicting a continuous response.
- Response variables: y_i ∈ ℝ and p-dimensional vector of predictors (explanatory variables/features),
 x_i = (x_{i1},...,x_{ip})^T ∈ ℝ^p.
- Given n samples $\{x_i, y_i\}_{i=1}^n$, the aim is to approximate the response variable y_i using a linear combination of the predictors

$$y_i = \beta_0 + \sum_{j=1}^{p} x_{ij}\beta_j + \epsilon_i = \mathbf{x}_i^{\top} \boldsymbol{\beta} + \epsilon_i,$$

where $\boldsymbol{\beta} = (\beta_0, \dots, \beta_p)^{\top}$, $\mathbb{E}(\epsilon_i) = 0$, and $\mathbb{V}(\epsilon_i) = \sigma^2$.

Goal is to estimate the regression coefficients β and σ^2 given the data.

Least square (LS)

How do we fit the linear model to a set of training data?

- We estimate coefficients with $\widehat{\beta}$.
- We choose value of $\widehat{\beta}$ that minimises the residual sum of squares

$$RSS(\beta) = (Y - X\beta)^{T} (Y - X\beta),$$

where $Y=(y_1,...,y_n)^T$, $\beta=(\beta_0,\beta_1,...,\beta_p)^T$ and X is the $n\times(p+1)$ matrix defined by

$$X = \left[\begin{array}{cccc} 1 & x_{11} & \dots & x_{1p} \\ \vdots & & & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{array} \right].$$

Analytical minimization of LS solution

The least square estimator is given by

$$\begin{split} \hat{\beta}^{LS} &= \operatorname{argmin}_{\beta} \; \mathsf{RSS} \; (\beta), \\ &= \operatorname{argmin}_{\beta} (Y - X\beta)^T (Y - X\beta), \\ &= (X^T X)^{-1} X^T Y \quad \text{only holds if } X \text{ is full rank} \end{split}$$

obtained via differentiating w.r.t β and set the first derivative to zero

$$\frac{\partial RSS(\beta)}{\partial \beta} = -2X^{T}(Y - X\beta).$$

The estimate of the error variance is

$$\widehat{\sigma}^2 = \frac{RSS(\widehat{\beta}^{LS})}{n-p-1}.$$

Assumptions and how do we check them

Recall:
$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip} + \epsilon_i$$
.

- 1. The predictors are accurately observed.
- 2. Linear relationship between the response and predictors.
- 3. Independent errors and constant variance.
- 4. X is full rank. This is an important assumption because a full rank X implies that X^TX is invertible and therefore the normal equations $X^TX\beta=X^TY$ have a unique solution. n>p and the $\{x_i\}_{i=1}^n$ are not linear combinations of each other. This can be checked $\det(\mathbb{X}^T\mathbb{X})\neq 0$. Full rank of \mathbb{X} : n>p and the $\{x_i\}_{i=1}^n$ are not linear combinations of each other. Tool: Check that $\det(\mathbb{X}^T\mathbb{X})\neq 0$.

Hint: It is VERY important for you to assess the validity of the above assumptions with valid plots and tests.

Least square (LS): Asymptotic

Recall that the least square estimator is given by

$$\hat{\beta}^{LS} = (X^T X)^{-1} X^T Y.$$

- The Gauss-Markov theorem implies $\hat{\beta}^{LS}$ has the smallest mean squared error (MSE) of all linear estimators with NO bias.
- Consistency: $\hat{\beta}^{LS} \rightarrow_{p} \beta$.
- Asymptotic normality. $\hat{\beta}^{LS}$ follows asymptotically a normal distribution by central limit theorem.

Interpreting regression coefficient estimates

Recall:
$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \dots + \hat{\beta}_p x_{ip}$$
.

- Interpretation: 1 unit increase in x_1 corresponds to an estimated $\widehat{\beta}_1$ (unit) increase in the response.
- But the value of $\widehat{\beta}$ changes due to sampling variation.....
- If β_1 is plausibly 0, then we say x_1 is not a significant/useful feature.

Why perform feature selection?

Reasons for feature selection:

- Model is more interpretable to stakeholders. Imagine asking a doctor to remember the effect of 50 clincial features on MI risk.
- Higher predictive accuracy. The presence of a large number of non-significant variables may mask effect of significant features.
- Faster computation. Smaller number of features means lower computation time.

How to perform feature selection?

Approaches to feature selection:

- Stepwise regression
- Best subset regression
- Penalised regression

Test significance of regression coefficients

Does the feature X_j predict the response Y?

- We test H_0 : $\beta_j = 0$ (no effect) v.s. H_a : $\beta_j \neq 0$ (there is an effect).
- T-test: under H_0 , $\hat{eta}_j/\left(\sqrt{m{v}}_j\hat{\sigma}
 ight)\sim t_{n-p-1}$
- If $\hat{\beta}_j / \left(\sqrt{v_j} \hat{\sigma} \right) > t_{n-p-1,1-\alpha/2}$ or $\hat{\beta}_j / \left(\sqrt{v_j} \hat{\sigma} \right) < t_{n-p-1,1-\alpha/2}$ we reject H_0
- Unique effect: Usefulness of x_j the other features $x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_p$ are in the model.

Significance of regression coefficients

Recall:
$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip} + \epsilon_i$$
.

- Unique effect (β_j)
- Marignal effect $y_i = \beta_0 + \beta_j x_{ij} + \epsilon_i$.
- Careful when predictors are dependent
- Independent predictors (PCA)

Significance of regression coefficient

Does x_{ij} affect the response y_i

- $H_0: \beta_j = 0 \text{ v.s. } H_a: \beta_j \neq 0$
- F-test

$$F = \frac{\left(\frac{RSS_1 - RSS_2}{p_2 - 1}\right)}{\left(\frac{RSS_2}{n - p_2}\right)}$$

where RSS_1 is the residual sum of squares of intercept model, RSS_2 is our model. p_2 is the number of parameters.

• Under H_0 , F follows an F distribution with $(p_2 - 1, n - p_2)$ degrees of freedom

Comparing two nested models

Consider the the pair of nested models:

$$\mathcal{M}_0 = \{X_1, \dots X_q\}$$
 vs. $\mathcal{M}_1 = \{X_1, \dots X_q, X_{q+1}, \dots, X_p\}$. Are the extra features X_{q+1}, \dots, X_p necessary?

The F-statistic is

$$F = rac{(n-p-1)(\mathsf{RSS}_0 - \mathsf{RSS}_1)}{(p-q)\mathsf{RSS}_0} \sim \mathcal{F}_{p-q,n-p-1}.$$

If F is large, we can say that at least one of the features X_{q+1},\ldots,X_p is significant. Therefore, \mathcal{M}_1 is preferred over \mathcal{M}_0 .

Goodness of fit

Does the model fit the data well?

• R-square (coefficient of determination):

$$R^2 = 1 - \frac{RSS}{SS_{total}},$$

where
$$SS_{total} = \sum (y_i - \bar{y})^2$$
.

- R^2 is between 0 and 1.
- Is larger R^2 better ? Is it enough when comparing different models ?

Other Selection Methods: Selection Criteria

Selection criterion: Akaike information criterion (AIC) and Bayesian information criterion (BIC) are commonly used for variable selection problem.

Negative maximum log-likelihood + a penalty term

$$AIC = -\log(L(\hat{\beta})) + k$$
, $BIC = -\log(L(\hat{\beta})) + \frac{1}{2}k\log n$,

where k is model degrees of freedom and n is the number of observations.

The individual magnitude of the AIC/BIC value is not important.

e.g. $AIC(M_1) = 200$ would not lead to any conclusion but having $AIC(M_1) = 200$ and $AIC(M_2) = 150$ suggests M_2 is a better model than M_1 .

Selection criteria

Some challenges:

- Simply applying these criterion for an exhaustive search is computationally expensive, even for p is moderately large.
- e.g. p = 10 and k = 7 which implies $C_7^{10} = 120$ candidate subsets for selection.
- How to find a good model?

Subset Selection

This approach involves identifying a subset of the p predictors that we believe to be related to the response. We then fit a model using least squares on the reduced set of variables.

- To perform best subset selection, we fit a separate least squares regression for each possible combination of the p predictors.
- Forward Stepwise Selection and Backward Stepwise Selection both search through p(p+1)/2 models to identify the best one.

Penalised regression

The idea of shrinkage is to perform a linear regression, while regularizing or shrinking the coefficients $\hat{\beta}$ toward 0.

Why would shrunk coefficients be better?

- Bias-variance tradeoff: Shrinkage introduces bias, but may significantly decrease the variance of the estimates. Modern statistics has explored the trade-off, where it may be worth accepting some bias for a reduction in variance.
- Result of Shrinking: Large number of coefficient estimates are zero (Lasso) or close to zero (Ridge) → this will help us identify the predictors that exhibit the strongest effects.
- The two best-known techniques for shrinkage are ridge regression and the Lasso.

Bias-variance Illustration

Bias and variance tradeoff of penalised regression estimator

Let $\hat{\beta}$ be an estimator for regression coefficients in the model $Y=X\beta+\epsilon.$

Total Error
$$(\hat{\beta}) = \mathbb{E}\left[Y - X\hat{\beta}\right]^2$$
,

$$= \left(\mathbb{E}[X\hat{\beta}] - X\beta\right)^2 + \mathbb{E}[(X\hat{\beta} - \mathbb{E}[X\hat{\beta}])^2] + \sigma_{\epsilon}^2$$
,

$$= \mathsf{Bias}^2 + \mathsf{Variance} + \mathsf{Irreducible Error}$$
.

Bias of $\hat{\beta}^{LS}=0$. But variance can be very high under multicollinearity or near singularity of $X^{\top}X$.

Irreducible Error: the noise term in the true relationship that cannot fundamentally be reduced by any model.

Bias-variance trade-off

- Bias is reduced and variance is increased in relation to model complexity.
- Considering overall error, the best spot is the level of complexity at which the increase in bias is equivalent to the reduction in variance.
 For a model complexity exceeds the best spot, we are over-fitting the model
- In practice, one need to explore different levels of model complexity and then choose the one minimizing the overall error.

Ridge Regression

Ridge regression solves the following optimization

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

to obtain

$$\hat{eta}^{Ridge} = \operatorname*{argmin}_{eta} \left(\operatorname{RSS}(eta) + \lambda \sum_{j=1}^{p} eta_{j}^{2}
ight)$$

where $\lambda \geq 0$ is a tuning parameter that controls the amount of shrinkage

Solution of Ridge Regression

The RSS for ridge regression (after centring inputs X) is expressed as

$$RSS(\beta, \lambda) = (Y - X\beta)^{T} (Y - X\beta) + \lambda \beta^{T} \beta$$

One can obtain a closed-form solution to ridge regression problem with a similar procedure with least square

$$\hat{\beta}^{Ridge} = (X^T X + \lambda I_p)^{-1} X^T Y.$$

Inclusion of λ makes the problem non-singular even if X^TX is not invertible (singular). This was the original motivation for ridge regression (Hoerl and Kennard, 1970).

Ridge Regression

Ridge regression is like least squares but shrinks the estimated coefficients towards zero.

- As $\lambda \to 0$, $\hat{\beta}^{Ridge} \to \hat{\beta}^{LS}$ and $\lambda \to \infty$, $\hat{\beta}^{Ridge} \to 0$
- Bias of $\hat{\beta}^{Ridge}$ is non-zero! But it is an acceptable tradeoff for lower variance.
- Determining λ is important but also difficult, in practice, where we use cross-validation.
- Note that the intercept term, β_0 , is not penalized.
- Standardization: scale each variable before running Ridge is essential, this prevent penalizing some coefficients more than others.

Lasso - Least Absolute Shrinkage and Selection Operator

- The penalty term $\sum_{j=1}^{p} \beta_{j}^{2}$ will shrink all of the coefficient towards zero, but it will not set any of them exactly to zero (unless $\lambda = \infty$).
- The final model includes all p predictors.
- This issue is solved by Lasso regression.
- The Lasso coefficients, $\hat{\beta}^{Lasso}$, is obtained by minimizing the quantity

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

Lasso - Least Absolute Shrinkage and Selection Operator

This leads to

$$\hat{\beta}^{Lasso} = \underset{\beta}{\operatorname{argmin}} \left(\operatorname{RSS}(\beta) + \lambda \sum_{j=1}^{p} |\beta_j| \right)$$

where $\lambda \geq 0$ is the tuning parameter.

If $X^{\top}X = I$, the solution has the form

$$\hat{\beta}_j^{Lasso} = \operatorname{sgn}(\hat{\beta}_j^{LS}) \left(|\hat{\beta}_j^{LS}| - \frac{\lambda}{2} \right)_+.$$

Shrinkage as constrained optimisation

The method of Lagrange multipliers enables the reformulation of coefficient estimates of ridge and Lasso regression as

$$\begin{split} \hat{\beta}^{Ridge}: & \quad \min_{\beta} \sum_{i=1}^{n} \left(y_{i} - \beta_{0} - \sum_{j=1}^{p} x_{ij} \beta_{j} \right)^{2} \\ & \quad \text{subject to } \sum_{j=1}^{p} \beta_{j}^{2} \leq t, \\ & \quad \ell_{2} \text{ penalty/regularization} \\ \hat{\beta}^{Lasso}: & \quad \min_{\beta} \sum_{i=1}^{n} \left(y_{i} - \beta_{0} - \sum_{j=1}^{p} x_{ij} \beta_{j} \right)^{2} \\ & \quad \text{subject to } \sum_{i=1}^{p} |\beta_{j}| \leq t, \\ & \quad \ell_{1} \text{ penalty/regularization} \end{split}$$

for $t \ge 0$; and where there is a one-on-one correspondence between t and tuning parameter λ .

Feasible region and location of solution

Contours of the error and the constraint function for the Lasso and Ridge

t controls the amount of shrinkage. Smaller t implies more shrinkage.

Variable selection property of Lasso

- Why the ℓ_1 shrinkage promotes sparsity?
- Does ℓ_2 shrinkage (ridge regression) also give a sparse solution?

The lasso performs ℓ_1 , so that there are "corners" in the constraint, which in two dimensions corresponds to a diamond. If the sum of squares "hits" one of these corners, then the coefficient corresponding to the axis is shrunk to zero.

Ridge regression bring the value of coefficients close to 0 whereas Lasso regression force some of the coefficient to be exactly equal to 0.

Remarks

Regularization in simple terms is a process of introducing additional information in order to solve an ill posed problem or to prevent over-fitting. Elastic net penalty combine both Lasso and Ridge **Pros:**

- Lower computational cost than best subset ans stepwise regression.
- Feasible for ultrahigh dimensional problems: $p \gg n$.

Cons:

- Estimates are sensitive to the choice of t or λ .
- Does not do well when true value of coefficients are large and most features are significant.
- Coefficients are biased.