Les Finombres : étude d'une dynamique arithmétique

Romain Bietrix Candidat : 53747 Classe préparatoire scientifique Lycée Camille Guérin

Introduction

Dans le cadre de ce travail, nous nous intéressons à une suite définie de manière originale par une relation de récurrence faisant intervenir le renversement des chiffres d'un entier naturel. Plus précisément, l'opération consiste à soustraire un entier par sa version renversée. Cette transformation simple en apparence donne naissance à des suites d'entiers présentant des comportements parfois inattendus, et constitue le point de départ de notre étude.

Le thème du TIPE de cette année, « transformation », m'a conduit à concevoir cette opération inspirée de l'arithmétique des chiffres. En observant les évolutions de ces suites, il est apparu pertinent de distinguer deux types d'entiers : les **Finombres**, qui atteignent un état stable après un nombre fini d'itérations, et les **Infinombres**, qui ne semblent jamais se stabiliser.

L'objectif de ce travail est de modéliser, analyser et classifier ces comportements à l'aide d'une approche à la fois algorithmique et mathématique. L'étude de cette dynamique, que nous avons nommée *suite des Finombres*, vise à mettre en lumière ses propriétés structurelles, ses régularités ainsi que d'éventuelles anomalies.

En raison de contraintes de format, ce document ne présente qu'une partie des résultats obtenus. Des compléments, incluant notamment des détails techniques et des expérimentations supplémentaires, sont disponibles en annexe (5) afin d'offrir une vision plus complète de la démarche entreprise.

1 Présentation du problème

On considère la suite (U_n) définie par récurrence :

$$U_0 \in \mathbb{N}, \quad U_{n+1} = |U_n - \operatorname{rev}(U_n)|$$

où rev(k) désigne l'entier obtenu en renversant les chiffres décimaux de k. Exemples: rev(123) = 321; rev(1000) = 1

On appelle **Finombre** tout entier U_0 tel que la suite (U_n) atteigne la valeur 0 en un nombre fini d'étapes. Les autres entiers sont appelés **Infinombres**.

De nombreuses questions découlent naturellement de cette définition :

- Quels sont les comportements possibles de ces suites?
- Tous les entiers sont-ils des Finombres?
- Sinon, existe-t-il une infinité de Finombres et d'Infinombres?
- Comment ces entiers sont-ils répartis?
- Peut-on estimer la « vitesse de convergence »?
- Quelles structures arithmétiques émergent?
- La base de numération a-t-elle une influence?

— Comment définir rigoureusement l'opération de renversement?

Le document présent traitera des 4 premières questions. Certaines des autres interrogations sont disponibles en annexe (5)

2 Méthodes et outils

Pour analyser cette suite, j'ai mobilisé les outils suivants :

- Programmation en OCaml afin de générer et d'examiner des millions de cas;
- Étude de la complexité de l'algorithme de calcul de U_n ;
- Recherche de motifs numériques (longueur de convergence, valeurs intermédiaires);
- Analyse de la stabilité et des cycles possibles de la suite;
- Approche théorique élémentaire des propriétés des chiffres en base 10.

3 Premiers résultats : existence et infinité des Finombres et Infinombres

Nous commençons par étudier le cas de la base 10, déjà extrêmement riche. Cette section justifie la pertinence de l'étude en établissant l'existence, puis l'infinité, des deux familles d'entiers définies précédemment. Elle condense trois mois de recherche, durant lesquels de nombreuses propriétés ont été découvertes (certaines non détaillées ici).

3.1 Existence des Finombres

Pour démontrer l'existence des Finombres, il suffit d'en exhiber au moins un. Prenons par exemple $U_0 = 100$:

$$U_0 = 100 \implies U_1 = |100 - \text{rev}(100)| = |100 - 1| = 99$$

 $U_2 = |99 - \text{rev}(99)| = |99 - 99| = 0$

Ainsi, par définition, 100 est un *Finombre*. (Dans un souci de lisibilité, on notera désormais cette suite $100 \rightarrow 99 \rightarrow 0$; cette convention sera utilisée par la suite.)

3.2 Existence des Infinombres

De même, pour démontrer l'existence des Infinombres, il suffit d'en présenter un exemple. Considérons $U_0=1012$:

$$1012 \rightarrow 1089 \rightarrow 8712 \rightarrow 6534 \rightarrow 2178 \rightarrow 6534 \rightarrow 2178 \rightarrow \dots$$

On observe ici une suite périodique non nulle : la valeur 0 n'est jamais atteinte. Par conséquent, 1012 est un *Infinombre*.

3.3 Infinité des Finombres

Nous allons maintenant démontrer qu'il existe une infinité de Finombres, en identifiant une famille infinie d'entiers vérifiant cette propriété. Cette famille est celle des palindromes.

Proposition 1 (Palindromes) Tout entier palindrome est un Finombre.

 $D\acute{e}monstration$: Soit n un entier palindrome. Par définition, on a rev(n) = n. Alors $U_0 = n \Rightarrow U_1 = |n - rev(n)| = |n - n| = 0$, donc n est un Finombre.

Or, il existe une infinité de palindromes (démontrée en Demonstration de la Proposition 1 de l'annexe Démo 5), donc une infinité de Finombres.

3.4 Infinité des Infinombres

Pour établir l'existence d'une infinité d'Infinombres, nous allons construire une famille infinie d'entiers possédant cette propriété, en nous appuyant sur certaines observations préliminaires.

Reprenons la boucle détectée précédemment :

$$2178 \to 6534 \to 2178 \to 6534 \to \dots$$

Décomposons les termes :

$$2178 = |6534 - 4356|$$
 $6534 = |2178 - 8712|$

On remarque que tous ces nombres sont des multiples de 1089. Observons quelques éléments de la table de 1089:

n	$n \times 1089$	$n \times 1089 = \text{rev}((10-n) \times 1089)$	n			
1	1089	9801	9			
2	2178	8712	8			
3	3267	7623	7			
4	4356	6534	6			
5	5445					

On observe que:

$$rev(2 \times 1089) = 8 \times 1089$$
 et $rev(6 \times 1089) = 4 \times 1089$

Cela nous mène à la propriété suivante :

Proposition 2 (Condition suffisante de périodicité) Soit $n \in \mathbb{Z}^*$ tel que rev(2n) = 8n et rev(6n) = 4n, alors 2n est un Infinombre (et initie une boucle).

 $D\acute{e}monstration :$ Soit $n \in \mathbb{N}^*$ vérifiant les conditions ci-dessus, et posons $U_0 = 2n$.

$$U_1 = |2n - \text{rev}(2n)| = |2n - 8n| = 6n$$

$$U_2 = |6n - \text{rev}(6n)| = |6n - 4n| = 2n = U_0$$

La suite est donc périodique de période 2, et n'atteint jamais 0 (car n non nul par hypothèse) : 2n est bien un Infinombre.

En posant:

$$\forall n \in \mathbb{N}, \quad a_n = \sum_{k=0}^n 1089 \times 10^{4k}$$

— ce qui correspond à une concaténation des chiffres de « 1089 » —, on génère une infinité d'entiers satisfaisant la propriété précédente (Démonstration de la Proposition 3 de l'annexe de "Démo" 5). D'où l'existence d'une infinité d'Infinombres.

4 Une répartition des Finombres non triviale

Nous allons représenter ces nombres par une image, où à chaque pixel correspond un nombre (ordonnés de gauche à droite et de haut en bas, avec 0 en haut à gauche).

— Rouge : C'est un Infinombre

— Noir : C'est un Finombre

Voici une image représentant la répartition des Finombres et des Infinombres :

(a) Représentation des 10000 premiers nombres. (b) Représentation des 160000 premiers nombres.

FIGURE 1 – Deux représentations des Finombres et Infinombres

4.1 Le cas des nombres à 1, 2 et 3 chiffres

Nous allons démontrer que tous les entiers à un, deux ou trois chiffres sont des *Finombres*. C'est en effet ce que nous pouvons observer dans la figure (a)1, où la bande représentant les 1000 premiers nombres est entièrement noires

Nombres à un chiffre

Tout entier à un chiffre est un palindrome. D'après la proposition 1, ce sont donc tous des Finombres.

Nombres à deux chiffres

Soit un entier à deux chiffres n=10a+b, avec $a\in \llbracket 1,9 \rrbracket$ et $b\in \llbracket 0,9 \rrbracket.$ Alors :

$$rev(n) = 10b + a \implies U_1 = |n - rev(n)| = |(10a + b) - (10b + a)| = 9|a - b|$$

L'ensemble des valeurs possibles de U_1 est donc contenu dans $\{0, 9, 18, \dots, 81\}$, qui sont tous des multiples de 9 et inférieurs à 100. Il suffit alors de vérifier empiriquement que ces 10 entiers mènent à 0 (ce qui est le cas) pour conclure que tous les entiers à deux chiffres sont des Finombres.

Nombres à trois chiffres

On procède de manière analogue. Soit n = 100a + 10b + c avec $a \neq 0$. On a :

$$rev(n) = 100c + 10b + a$$

$$U_1 = |n - \text{rev}(n)| = |(100a + 10b + c) - (100c + 10b + a)| = 99|a - c|$$

Ainsi, U_1 est toujours un multiple de 99 inférieur à 900. Par un raisonnement similaire au cas précédent, on peut vérifier que tous ces entiers atteignent 0 après un nombre fini d'étapes. Tous les entiers à trois chiffres sont donc des Finombres.

4.2 L'apparition de la complexité : le cas des nombres à 4 chiffres

Le premier Infinombre observé est 1012. Parmi les entiers de 4 chiffres, on en dénombre empiriquement 637 qui sont des Infinombres, ce qui montre un changement de comportement à partir de cette taille.

Pour mieux comprendre cette transition, nous étudions l'ensemble suivant :

$$E_4 = \{ m \in \mathbb{N} \mid m = |abcd - dcba|, \text{ avec } abcd \in [1000, 9999] \}$$

On peut exprimer |abcd - dcba| sous forme algébrique :

$$abcd = 1000a + 100b + 10c + d$$
; $rev(abcd) = 1000d + 100c + 10b + a$

$$|abcd - dcba| = |999(a - d) + 90(b - c)|$$

Ainsi, E_4 est inclus dans l'ensemble des entiers de la forme 999x + 90y où x = a - d et y = b - c avec $x \in [-8, 9], y \in [-9, 9].$

L'Etude peut uniquement se porter sur la moitié des valeurs car

$$|999x + 90y| = |999(-x) + 90(-y)|$$
 et $|999x + 90(-y)| = |999(-x) + 90y|$

On peut alors représenter ces entiers sur un plan (x, y), avec un tableau centré sur l'origine en coloriant les cases (ici en rouge sur la Figure 2) correspondantes aux Infinombres. Ceci nous permet de révéler des régularités remarquables :

- Les Infinombres se situent uniquement sur certaines droites d'équation x y = 11k.
- Mais tous les points sur ces droites ne sont pas nécessairement des Infinombres.

On observe en Figure 3 une condition supplémentaire : les points exclus (c'est-à-dire les Finombres représentés en rouge foncé) se trouvent tous sur les droites de la forme x + y = 5k. Ainsi, dans E_4 , un entier m est un Infinombre si et seulement si :

$$x - y \equiv 0 \mod 11$$
 et $x + y \not\equiv 0 \mod 5$

Ce critère empirique permet de prédire le comportement de nombreux entiers à 4 chiffres (ceux de E_4). On peut cependant généraliser ceci à tous les entiers de 4 chiffres en se rappellant que pour un nombre abcd, x = a - d et y = b - c. Donc un entier de 4 chiffres est un Infinombres si et seulement si :

$$a-d-(b-c) \equiv 0 \mod 11$$
 et $a-d+b-c \not\equiv 0 \mod 5$

La première condition est équivalente pour les nombres à 4 chiffres à « abcd est multiple de 11 » (Démonstration de la Proposition 4 de l'annexe "Démo" 5).

$\begin{bmatrix} x \\ y \end{bmatrix}$	0	1	2	3	4	5	6	7	8	9
-9	-810	189	1188	2187	3186	4185	5184	6183	7182	8181
-8	-720	279	1278	2277	3276	4275	5274	6273	7272	8271
-7	-630	369	1368	2367	3366	4365	5364	6363	7362	8361
-6	-540	459	1458	2457	3456	4455	5454	6453	7452	8451
-5	-450	549	1548	2547	3546	4545	5544	6543	7542	8541
-4	-360	639	1638	2637	3636	4635	5634	6633	7632	8631
-3	-270	729	1728	2727	3726	4725	5724	6723	7722	8721
-2	-180	819	1818	2817	3816	4815	5814	6813	7812	8811
-1	-90	909	1908	2907	3906	4905	5904	6903	7902	8901
0	0	999	1998	2997	3996	4995	5994	6993	7992	8991
1	90	1089	2088	3087	4086	5085	6084	7083	8082	9081
2	180	1179	2178	3177	4176	5175	6174	7173	8172	9171
3	270	1269	2268	3267	4266	5265	6264	7263	8262	9261
4	360	1359	2358	3357	4356	5355	6354	7353	8352	9351
5	450	1449	2448	3447	4446	5445	6444	7443	8442	9441
6	540	1539	2538	3537	4536	5535	6534	7533	8532	9531
7	630	1629	2628	3627	4626	5625	6624	7623	8622	9621
8	720	1719	2718	3717	4716	5715	6714	7713	8712	9711
9	810	1809	2808	3807	4806	5805	6804	7803	8802	9801

FIGURE 2 – E4 avec les Infinombres en rouge

$\begin{bmatrix} x \\ y \end{bmatrix}$	0	1	2	3	4	5	6	7	8	9
-9	-810	189	1188	2187	3186	4185	5184	6183	7182	8181
-8	-720	279	1278	2277	3276	4275	5274	6273	7272	8271
-7	-630	369	1368	2367	3366	4365	5364	6363	7362	8361
-6	-540	459	1458	2457	3456	4455	5454	6453	7452	8451
-5	-450	549	1548	2547	3546	4545	5544	6543	7542	8541
-4	-360	639	1638	2637	3636	4635	5634	6633	7632	8631
-3	-270	729	1728	2727	3726	4725	5724	6723	7722	8721
-2	-180	819	1818	2817	3816	4815	5814	6813	7812	8811
-1	-90	909	1908	2907	3906	4905	5904	6903	7902	8901
0	0	999	1998	2997	3996	4995	5994	6993	7992	8991
1	90	1089	2088	3087	4086	5085	6084	7083	8082	9081
2	180	1179	2178	3177	4176	5175	6174	7173	8172	9171
3	270	1269	2268	3267	4266	5265	6264	7263	8262	9261
4	360	1359	2358	3357	4356	5355	6354	7353	8352	9351
5	450	1449	2448	3447	4446	5445	6444	7443	8442	9441
6	540	1539	2538	3537	4536	5535	6534	7533	8532	9531
7	630	1629	2628	3627	4626	5625	6624	7623	8622	9621
8	720	1719	2718	3717	4716	5715	6714	7713	8712	9711
9	810	1809	2808	3807	4806	5805	6804	7803	8802	9801

FIGURE 3 – E4 avec les Infinombres en rouge

4.3 La complexité croissante pour les cas supérieurs

Dès les entiers à 5 chiffres, cette régularité se perd. Le nombre de combinaisons augmente considérablement (Comme nous pouvons le voir en Figure 1 (b)), et les représentations dans un plan (x, y) ne sont plus suffisantes. Les ensembles E_n se projettent alors dans des espaces de plus grande dimension (3D pour n = 6, etc.), rendant l'analyse géométrique beaucoup plus complexe.

4.4 Fonction de répartition des Finombres et des Infinombres

Nous allons maintenant quantifier la proportion de Finombres et d'Infinombres dans les entiers. Pour ceci, nous utiliserons l'approche de la fonction de repartition, comptant entre 0 et n le nombre de Finombres ou d'Infinombres.

Voici une image représentant la répartition des Finombres et des Infinombres :

(a) Répartition sur 50000.

(b) Répartion sur les 1 000 000 premiers nombres.

FIGURE 4 – Répartition des Finombres (en bleu clair) et des Infinombres (en violet)

Et voici un tableau donnant une idée de l'évolution :

Rang	nombre de Finombres	nombre d'Infinombres			
1000	1000	0			
5000	4715	285			
10 000	9363	637			
50 000	29533	20467			
100 000	54962	54038			
500 000	259254	240746			
1 000 000	515421	484580			
5 000 000	2402441	2597560			

On remarque qu'entre 10 000 et 1 000 000, les deux objets semblent être en même proportion. Cependant, cette tendance disparait vers 1 516 732 où les Infombres surpassent numériquement les Finombres, et où leur différence ne cesse de croître.

Ainsi, sans tendance visible, on ne peut conclure ici sur l'évolution asymptotique de ces objets, ni même réellement conjecturer.

5 Conclusion et perspectives

Ce travail m'a permis d'aborder une dynamique arithmétique simple dans sa définition mais riche dans son comportement. Il m'a familiarisé avec l'analyse de suites, la programmation d'exploration massive, et les limites entre intuition et preuve en mathématiques.

Le sujet étant bien plus riche, voici d'autres axe possibles de prolongement de l'étude :

- Une étude du nombre d'étapes avant convergence (temps de vol);
- Une recherche théorique approfondie sur l'absence ou l'existence de cycles non triviaux de taille quelconque;
- Une étude élargie sur les nombres à n chiffres, avec $n \ge 5$;
- Preuve formelle de la caractérisation trouvée pour n=4;
- Comportement asymptotique de la répartition des Finombres;
- Recherche d'une fonction réciproque (renvoyant l'ensemble des antécédents d'un entier par la transformation);
- Recherche de propriétés caractéristiques;
- Elargissement à d'autres bases et confrontation des résultats;
- Optimisation plus précise des algorithmes utilisés;
- Lien avec les nombres de Lychrel

Bibliographie

- L. H. Kendrick *Young Graphs : 1089 et al.*, Journal of Integer Sequences, Vol. 18 (2015), Article 15.9.7
- OEIS, suite A031877 (Nontrivial reversal numbers).
- Site personnel : https://github.com/Minrora/Finombres (code source, données et recherches supplémentaires).
 - Démonstration des propriétés annexes : https://github.com/Minrora/Finombres/
 DemoProprietes.pdf
 - Autres résultats annexes : https://github.com/Minrora/Finombres/blob/main/ Demo.pdf
 - Code source des différents programmes utilisées (Version 16): https://github.com/ Minrora/Finombres/tree/main/V16
 - Code source latex de ce document : https://github.com/Minrora/Finombres/blob/main/rapport.pdf