Ειδικά Θέματα Επιχειρησιακής Έρευνας 3^η Εργασία

Η εργασία είναι υποχρεωτική και έχει βαρύτητα 30% επί της συνολικής βαθμολογίας.

Άσκηση 1.

Να υπολογιστεί η μέγιστη τιμή που μπορεί να λάβει η συνάρτηση

$$f(x) = \alpha x^5 - \beta x^4 + \gamma x^3 - \delta x^2 + \theta$$

με τη χρήση ακόλουθων μεθόδων:

Α) Μέθοδος Δυαδικής Αναζήτησης - Διχοτόμησης (Bisection Search)

Το διάστημα στο οποίο θα εφαρμόσετε τη μέθοδο θα προκύψει από τη διερεύνηση της συνάρτησης (π.χ. γραφική παράσταση). Σχετικά με τη συνθήκη τερματισμού χρησιμοποιείστε τη σχέση $|\underline{x}-\overline{x}|\leq 2\varepsilon$. Η τιμή της παραμέτρου ε θα δοθεί από ε σάς, π.χ. $\varepsilon=10^{\circ}-6$.

Η μέθοδος θα πρέπει να υλοποιηθεί στο Matlab.

B) Μέθοδος Newton-Raphson

Χρησιμοποιείστε ένα σημείο εκκίνησης (x_1) και για τη συνθήκη τερματισμού χρησιμοποιείστε τη σχέση $|x_{i+1}-x_i|\leq \epsilon$. Η τιμή της παραμέτρου ϵ θα δοθεί από εσάς, π.χ. $\epsilon=10^{\circ}$ -6.

Η μέθοδος θα πρέπει να υλοποιηθεί στο Matlab.

Γ) **Μέθοδος Generalized Reduced Gradient (GRG)** που είναι ενσωματωμένη στον solver του MS Excel ή τη μέθοδο **fminsearch** που είναι ενσωματωμένη στο Optimization toolbox του Matlab. Οι τιμή εκκίνησης που θα χρησιμοποιήσετε θα προκύψει από τη διερεύνηση της συνάρτησης (π.χ. γραφική παράσταση).

https://www.solver.com/excel-solver-grg-nonlinear-solving-method-stopping-conditions

https://www.mathworks.com/help/optim/ug/fminsearch-algorithm.html

Προσοχή: Οι συντελεστές α , β , γ , δ και θ θα προκύψουν από τα στοιχεία του A.M. σας, π.χ. για τον φοιτητή με A.M. Π17123 α =1, β =7, γ =1, δ =2 και θ =3.

Ασκηση 2.

Να διερευνήσετε αν το ακόλουθο πρόβλημα βελτιστοποίησης χωρίς περιορισμούς έχει ολικό μέγιστο.

$$f(x,y) = \alpha x - \beta y - x^2 + \gamma xy - y^2$$

Προσοχή: Οι συντελεστές α, β και γ θα προκύψουν από τα τρία τελευταία στοιχεία του Α.Μ. σας, π.χ. για τον φοιτητή με Α.Μ. Π17123 α=1, β=2 και γ=3. Στην περίπτωση που κάποιο στοιχείο στο Α.Μ. σας είναι μηδέν τότε να το αντικαταστήσετε με τον αριθμό 1.

Άσκηση 3.

Να λυθεί το ακόλουθο μη γραμμικό πρόγραμμα χρησιμοποιώντας τη μέθοδο των πολλαπλασιαστών Lagrange. Επίσης, να δικαιολογηθεί αν η λύση αποτελεί ολικό βέλτιστο.

$$Min f(x,y) = x^2 + \alpha y^2$$

υπό τον περιορισμό:

$$g(x,y) = \alpha x + \alpha y = \alpha$$

Να γίνει η γραφική παράσταση της συνάρτησης f(x,y), του περιορισμού g(x,y) και του σημείου που αποτελεί τη λύση. Μπορείτε να χρησιμοποιήσετε οποιοδήποτε λογισμικό επιθυμείτε. Προτείνεται το Matlab και το Geogebra (https://www.geogebra.org/3d).

Προσοχή: Ο συντελεστής α θα προκύψει από το άθροισμα των στοιχείων του Α.Μ. σας, π.χ. για τον φοιτητή με Α.Μ. Π17123 είναι α=14.

Ημερομηνία παράδοσης

Η καταληκτική ημερομηνία παράδοσης των εργασιών είναι η Δευτέρα 01/03/2021.

Παραδοτέα

Τα παραδοτέα αποτελούν το έγγραφο pdf με τις λύσεις των ασκήσεων καθώς και τα αντίστοιχα αρχεία Matlab ή/και Excel που θα χρησιμοποιήσετε. Τα παραδοτέα θα πρέπει να σταλούν μέσω ηλεκτρονικού ταχυδρομείου στον λογαριασμό (gkoron@unipi.gr) του διδάσκοντα καθώς και να υποβληθούν στην ενότητα "Εργασίες" στη σελίδα του μαθήματος στο GUNET μέχρι την ημερομηνία παράδοσης.