Probabilidade e estatística - Aula 13 Estatística descritiva - Apresentação de dados

Dr. Giannini Italino Alves Vieira

Universidade Federal do Ceará - Campus de Crateús

2024

- Distribuição de frequências
- Histograma

Diagrama de caixas

Estatística descritiva - Apresentação de dados

- Na aula passada fizemos um estudos sobre algumas medidas úteis para resumir dados, tais como: média da amostra, variância da amostra, mediana, amplitude, moda e os quartis.
- Na aula de hoje veremos alguns recursos para podermos fazer apresentações de
- Resumos e apresentações de dados, quando bem constituídos, são fundamentais

Estatística descritiva - Apresentação de dados

- Na aula passada fizemos um estudos sobre algumas medidas úteis para resumir dados, tais como: média da amostra, variância da amostra, mediana, amplitude, moda e os quartis.
- Na aula de hoje veremos alguns recursos para podermos fazer apresentações de dados, tais como: diagrama de ramo e folhas, distribuição de frequências, histograma e o diagrama de caixa.
- Resumos e apresentações de dados, quando bem constituídos, são fundamentais

Estatística descritiva - Apresentação de dados

- Na aula passada fizemos um estudos sobre algumas medidas úteis para resumir dados, tais como: média da amostra, variância da amostra, mediana, amplitude, moda e os quartis.
- Na aula de hoje veremos alguns recursos para podermos fazer apresentações de dados, tais como: diagrama de ramo e folhas, distribuição de frequências, histograma e o diagrama de caixa.
- Resumos e apresentações de dados, quando bem constituídos, são fundamentais para fazermos uma boa análise estatística, uma vez que, a partir destes, podemos extrair características importantes dos dados e também ter noção sobre o tipo de modelo que é mais apropriado na solução do problema.

- Um diagrama de ramo e folhas é um bom recurso para se obter uma apresentação visual de um conjunto de dados.
- Contudo, esse recurso só pode ser utilizado em dados, digamos x_1, x_2, \ldots, x_n , em que cada número x_i consiste em, no mínimo, dois dígitos.

Construção de um diagrama de Ramo e folhas

Para construirmos um diagrama de ramo e folhas procedemos da seguintes forma:

- Divida cada número x_i em duas partes: um ramo, contendo um ou mais dígitos iniciais e uma folha, contendo os dígitos restantes;
- Liste os valores do ramo em uma coluna vertical e, ao lado de cada ramo, coloque a folha para cada observação;
- Escreva as unidades para os ramos e folhas no gráfico.

- Um diagrama de ramo e folhas é um bom recurso para se obter uma apresentação visual de um conjunto de dados.
- Contudo, esse recurso só pode ser utilizado em dados, digamos x_1, x_2, \ldots, x_n , em que cada número x_i consiste em, no mínimo, dois dígitos.

- Divida cada número xi em duas partes: um ramo, contendo um ou mais dígitos
- Liste os valores do ramo em uma coluna vertical e, ao lado de cada ramo, coloque
- Escreva as unidades para os ramos e folhas no gráfico.

- Um diagrama de ramo e folhas é um bom recurso para se obter uma apresentação visual de um conjunto de dados.
- Contudo, esse recurso só pode ser utilizado em dados, digamos x_1, x_2, \ldots, x_n , em que cada número x_i consiste em, no mínimo, dois dígitos.

Construção de um diagrama de Ramo e folhas

Para construirmos um diagrama de ramo e folhas procedemos da seguintes forma:

- Divida cada número x_i em duas partes: um ramo, contendo um ou mais dígitos iniciais e uma folha, contendo os dígitos restantes;
- Liste os valores do ramo em uma coluna vertical e, ao lado de cada ramo, coloque a folha para cada observação;
- Escreva as unidades para os ramos e folhas no gráfico

- Um diagrama de ramo e folhas é um bom recurso para se obter uma apresentação visual de um conjunto de dados.
- Contudo, esse recurso só pode ser utilizado em dados, digamos x_1, x_2, \ldots, x_n , em que cada número x_i consiste em, no mínimo, dois dígitos.

Construção de um diagrama de Ramo e folhas

Para construirmos um diagrama de ramo e folhas procedemos da seguintes forma:

- Divida cada número x_i em duas partes: um ramo, contendo um ou mais dígitos iniciais e uma folha, contendo os dígitos restantes;
- Liste os valores do ramo em uma coluna vertical e, ao lado de cada ramo, coloque a folha para cada observação;
- Escreva as unidades para os ramos e folhas no gráfico

- Um diagrama de ramo e folhas é um bom recurso para se obter uma apresentação visual de um conjunto de dados.
- Contudo, esse recurso só pode ser utilizado em dados, digamos x_1, x_2, \ldots, x_n , em que cada número x_i consiste em, no mínimo, dois dígitos.

Construção de um diagrama de Ramo e folhas

Para construirmos um diagrama de ramo e folhas procedemos da seguintes forma:

- Divida cada número x_i em duas partes: um ramo, contendo um ou mais dígitos iniciais e uma folha, contendo os dígitos restantes;
- Liste os valores do ramo em uma coluna vertical e, ao lado de cada ramo, coloque a folha para cada observação;
- Escreva as unidades para os ramos e folhas no gráfico

- Um diagrama de ramo e folhas é um bom recurso para se obter uma apresentação visual de um conjunto de dados.
- Contudo, esse recurso só pode ser utilizado em dados, digamos x_1, x_2, \ldots, x_n , em que cada número x_i consiste em, no mínimo, dois dígitos.

Construção de um diagrama de Ramo e folhas

Para construirmos um diagrama de ramo e folhas procedemos da seguintes forma:

- Divida cada número x_i em duas partes: um ramo, contendo um ou mais dígitos iniciais e uma folha, contendo os dígitos restantes;
- Liste os valores do ramo em uma coluna vertical e, ao lado de cada ramo, coloque a folha para cada observação;
- Escreva as unidades para os ramos e folhas no gráfico.

Exemplo: As medições humanas fornecem uma ampla área de aplicação para métodos estatísticos. O artigo "A Longitudinal Study of the Development of Elementary School Children's Private Speech" (Merrill-Palmer Q., 1990: 443-463) relatou um estudo com crianças falando sozinhas (fala privada). Pensou-se que a fala privada seria relacionado ao QI, porque o QI deve medir a maturidade mental, e era sabido que a fala privada diminui à medida que os alunos progridem nas séries primárias. O estudo incluiu 33 alunos cujas pontuações de QI na primeira série são dados aqui:

> 82 96 99 102 103 103 106 107 108 108 108 108 110 110 111 113 113 113 113 115 115 118 118 119 121 122 122 127 132 136 140 146

Ramo	Fo	lha											Frequência
8	2												1
9	6	9											2
10	2	3	3	6	7	8	8	8	8	9			10
11	0	0	1	3	3	3	3	5	5	8	8	9	12
12	1	2	2	7									4
13	2	6											2
14	0	6											2

Ramo: dígitos das dezenas e das centenas; Folha: dígitos das unidades

 Note que em um diagrama ordenada de ramo e folhas é bem fácil encontrar características dos dados. Por exemplo, no diagrama acima temos que

 $q_2 = \mathsf{Md} = 113, \;\; q_1 = 108, \;\; q_3 = 119 \;\; 108 \; \mathsf{e} \; 113 \; \mathsf{s\~{a}o} \; \mathsf{modas}$

Ramo	Fo	lha											Frequência
8	2												1
9	6	9											2
10	2	3	3	6	7	8	8	8	8	9			10
11	0	0	1	3	3	3	3	5	5	8	8	9	12
12	1	2	2	7									4
13	2	6											2
14	0	6											2

Ramo: dígitos das dezenas e das centenas; Folha: dígitos das unidades

 Note que em um diagrama ordenada de ramo e folhas é bem fácil encontrar características dos dados. Por exemplo, no diagrama acima temos que

 $q_2 = \mathsf{Md} = 113, \;\; q_1 = 108, \;\; q_3 = 119 \;\; 108 \; \mathsf{e} \; 113 \; \mathsf{s\~{a}o} \; \mathsf{modas}$

Ramo	Fo	lha											Frequência
8	2												1
9	6	9											2
10	2	3	3	6	7	8	8	8	8	9			10
11	0	0	1	3	3	3	3	5	5	8	8	9	12
12	1	2	2	7									4
13	2	6											2
14	0	6											2

Ramo: dígitos das dezenas e das centenas; Folha: dígitos das unidades

 Note que em um diagrama ordenada de ramo e folhas é bem fácil encontrar características dos dados. Por exemplo, no diagrama acima temos que

 $q_2 = Md = 113, \ q_1 = 108, \ q_3 = 119 \ 108 \ e \ 113 \ s ilde{a}$ o modas

Ramo	Fo	lha											Frequência
8	2												1
9	6	9											2
10	2	3	3	6	7	8	8	8	8	9			10
11	0	0	1	3	3	3	3	5	5	8	8	9	12
12	1	2	2	7									4
13	2	6											2
14	0	6											2

Ramo: dígitos das dezenas e das centenas; Folha: dígitos das unidades

 Note que em um diagrama ordenada de ramo e folhas é bem fácil encontrar características dos dados. Por exemplo, no diagrama acima temos que

$$q_2 = Md = 113, \ \ q_1 = 108, \ \ \ q_3 = 119 \ \ 108$$
 e 113 são modas.

- Um outro recurso útil para se fazer apresentação de dados é por meio da distribuição de freguências.
- A distribuição de frequências apresenta um resumo mais compacto dos dados, em

- Um outro recurso útil para se fazer apresentação de dados é por meio da distribuição de frequências.
- A distribuição de frequências apresenta um resumo mais compacto dos dados, em relação ao diagrama de ramo e folhas.

Distribuição de frequências

Para construir uma distribuição de frequências procedemos da seguinte maneira:

- ▶ Dividir a faixa de dados em intervalos de classes (intervalos em que os dados assumem valores);
- ► Se possível, os intervalos de classe devem ter mesmo comprimento, de modo a aumentar a informação visual da distribuição de frequências;
- Especificar a frequência com que os dados assumem valores em cada intervalo de classe considerado.

- Um outro recurso útil para se fazer apresentação de dados é por meio da distribuição de frequências.
- A distribuição de frequências apresenta um resumo mais compacto dos dados, em relação ao diagrama de ramo e folhas.

Distribuição de frequências

- Dividir a faixa de dados em intervalos de classes (intervalos em que os dados assumem valores);
- Se possível, os intervalos de classe devem ter mesmo comprimento, de modo a aumentar a informação visual da distribuição de frequências;
- Especificar a frequência com que os dados assumem valores em cada intervalo de classe considerado.

- Um outro recurso útil para se fazer apresentação de dados é por meio da distribuição de frequências.
- A distribuição de frequências apresenta um resumo mais compacto dos dados, em relação ao diagrama de ramo e folhas.

Distribuição de frequências

- Dividir a faixa de dados em intervalos de classes (intervalos em que os dados assumem valores);
- Se possível, os intervalos de classe devem ter mesmo comprimento, de modo a aumentar a informação visual da distribuição de frequências;
- Especificar a frequência com que os dados assumem valores em cada intervalo de classe considerado.

- Um outro recurso útil para se fazer apresentação de dados é por meio da distribuição de frequências.
- A distribuição de frequências apresenta um resumo mais compacto dos dados, em relação ao diagrama de ramo e folhas.

Distribuição de frequências

- Dividir a faixa de dados em intervalos de classes (intervalos em que os dados assumem valores);
- Se possível, os intervalos de classe devem ter mesmo comprimento, de modo a aumentar a informação visual da distribuição de frequências;
 - Especificar a frequência com que os dados assumem valores em cada intervalo de classe considerado.

- Um outro recurso útil para se fazer apresentação de dados é por meio da distribuição de frequências.
- A distribuição de frequências apresenta um resumo mais compacto dos dados, em relação ao diagrama de ramo e folhas.

Distribuição de frequências

- Dividir a faixa de dados em intervalos de classes (intervalos em que os dados assumem valores);
- Se possível, os intervalos de classe devem ter mesmo comprimento, de modo a aumentar a informação visual da distribuição de frequências;
- Especificar a frequência com que os dados assumem valores em cada intervalo de classe considerado.

Exemplo

- Considere novamente os dados do exemplo anterior.
- Temos que uma distribuição de frequências para esses dados é dada por

Int. de classe	Frequência	Frequência relativa
$80 < x \le 90$	1	1/33
$90 < x \le 100$	2	2/33
$100 < x \le 110$	12	12/33
$110 < x \le 120$	10	10/33
$120 < x \le 130$	4	4/33
$130 < x \le 140$	3	3/33
$140 < x \le 150$	1	1/33

Distribuição de freguências para os dados do exemplo 1.

Exemplo

- Considere novamente os dados do exemplo anterior.
- Temos que uma distribuição de frequências para esses dados é dada por

Int. de classe	Frequência	Frequência relativa
	1	1/33
$90 < x \le 100$		
$100 < x \le 110$	12	12/33
$110 < x \le 120$	10	10/33
$120 < x \le 130$	4	4/33
$130 < x \le 140$		
$140 < x \le 150$	1	1/33

Distribuição de frequências para os dados do exemplo 1

Exemplo

- Considere novamente os dados do exemplo anterior.
- Temos que uma distribuição de frequências para esses dados é dada por

Int. de classe	Frequência	Frequência relativa
	1	1/33
$90 < x \le 100$		
$100 < x \le 110$	12	12/33
$110 < x \le 120$	10	10/33
$120 < x \le 130$	4	4/33
$130 < x \le 140$		
$140 < x \le 150$	1	1/33

Distribuição de frequências para os dados do exemplo 1.

Exemplo

- Considere novamente os dados do exemplo anterior.
- Temos que uma distribuição de frequências para esses dados é dada por

Int. de classe	Frequência	Frequência relativa
$80 < x \le 90$	1	1/33
$90 < x \le 100$	2	2/33
$100 < x \le 110$	12	12/33
$110 < x \le 120$	10	10/33
$120 < x \le 130$	4	4/33
$130 < x \le 140$	3	3/33
$140 < x \le 150$	1	1/33

Distribuição de frequências para os dados do exemplo 1.

- Na distribuição de frequências, podemos ainda apresentar a frequência relativa, que é calculada como sendo a razão entre a frequência observada em cada intervalo de classe sobre o número total de observações na amostra.
- Note que quando usamos a distribuição de frequências para apresentar dados então temos algumas "perdas" de informações. Por exemplo, se quiséssemos saber qual o valor foi mais frequente na amostra então não conseguimos obter essa informação a partir da distribuição de frequências.

- Na distribuição de frequências, podemos ainda apresentar a frequência relativa, que é calculada como sendo a razão entre a frequência observada em cada intervalo de classe sobre o número total de observações na amostra.
- Note que quando usamos a distribuição de frequências para apresentar dados então temos algumas "perdas" de informações. Por exemplo, se quiséssemos saber qual o valor foi mais frequente na amostra então não conseguimos obter essa informação a partir da distribuição de frequências.

 Um histograma é um recurso para se dispor, visualmente, a distribuição de frequências dos dados.

Para construir um histograma procedemos da seguinte forma

- Marque os limites dos intervalos de classe em um eixo horizontal
- Nomeie o eixo vertical com as frequências ou frequências relativas;
- Acima de cada intervalo de classe, desenhe um retângulo em que sua altura seja igual a frequência (ou frequência relativa) correspondente àquele intervalo de classe.
- Por exemplo, se considerarmos a distribuição de frequências do exemplo anterior, temos que o histograma é

• Um histograma é um recurso para se dispor, visualmente, a distribuição de frequências dos dados.

Para construir um histograma procedemos da seguinte forma:

- Por exemplo, se considerarmos a distribuição de frequências do exemplo anterior,

• Um histograma é um recurso para se dispor, visualmente, a distribuição de frequências dos dados.

Para construir um histograma procedemos da seguinte forma:

- Marque os limites dos intervalos de classe em um eixo horizontal;
- Por exemplo, se considerarmos a distribuição de frequências do exemplo anterior,

• Um histograma é um recurso para se dispor, visualmente, a distribuição de frequências dos dados.

Para construir um histograma procedemos da seguinte forma:

- Marque os limites dos intervalos de classe em um eixo horizontal;
- Nomeie o eixo vertical com as frequências ou frequências relativas;
- Por exemplo, se considerarmos a distribuição de frequências do exemplo anterior,

 Um histograma é um recurso para se dispor, visualmente, a distribuição de frequências dos dados.

Para construir um histograma procedemos da seguinte forma:

- Marque os limites dos intervalos de classe em um eixo horizontal;
- Nomeie o eixo vertical com as frequências ou frequências relativas;
- Acima de cada intervalo de classe, desenhe um retângulo em que sua altura seja igual a frequência (ou frequência relativa) correspondente àquele intervalo de classe.
- Por exemplo, se considerarmos a distribuição de frequências do exemplo anterior, temos que o histograma é

Histograma dos dados do problema anterior

Note que o histograma, assim como o diagrama de ramo e folhas, fornece uma impressão visual da forma da distribuição dos dados, assim como informações sobre tendência central e o espalhamento ou dispersão dos dados.

Histograma dos dados do problema anterior

Note que o histograma, assim como o diagrama de ramo e folhas, fornece uma impressão visual da forma da distribuição dos dados, assim como informações sobre tendência central e o espalhamento ou dispersão dos dados.

Diagrama de caixas - Box plots

- O diagrama de ramo e folhas e o histograma são bons recursos de impressões visuais de dados, na medida que fornecem informações sobre características dos dados.
- Veremos agora um outro importante recurso, de apresentação gráfica dos dados, que descreve simultaneamente várias características importantes dos dados, tais como: centro, dispersão, simetria e identificações de observações atípicas (outliers).

Diagrama de caixas

Para construir um diagrama de caixas procedemos da seguinte forma:

- Crie um retângulo em que estão representadas a mediana e os quartis;
- A partir do retângulo, para cima, segue uma linha até o maior ponto amostral que não exceda $L_s=q_3+\frac{3}{2}(q_3-q_1)$ (q_3-q_1) é chamado de distância interquartil e é um medida de dispersão alternativa ao desvio padrão);
- De mono análogo, da parte inferior do retângulo, para baixo, segue uma linha até o menor valor amostral que não seja menor do que $L_i = q_1 \frac{3}{2}(q_3 q_1)$
- Um ponto que estiver acima de L_s ou abaixo de L_i é chamado de outlier.

- O diagrama de ramo e folhas e o histograma são bons recursos de impressões visuais de dados, na medida que fornecem informações sobre características dos dados.
- Veremos agora um outro importante recurso, de apresentação gráfica dos dados, que descreve simultaneamente várias características importantes dos dados, tais como: centro, dispersão, simetria e identificações de observações atípicas (outliers).

Diagrama de caixas

- Crie um retângulo em que estão representadas a mediana e os quartis;
- A partir do retângulo, para cima, segue uma linha até o maior ponto amostral que não exceda $L_s=q_3+\frac{3}{2}(q_3-q_1)$ (q_3-q_1) é chamado de distância interquartil e é um medida de dispersão alternativa ao desvio padrão);
- De mono análogo, da parte inferior do retângulo, para baixo, segue uma linha até o menor valor amostral que não seja menor do que $L_i = q_1 \frac{3}{2}(q_3 q_1)$
- Um ponto que estiver acima de L_s ou abaixo de L_i é chamado de outlier.

- O diagrama de ramo e folhas e o histograma são bons recursos de impressões visuais de dados, na medida que fornecem informações sobre características dos dados.
- Veremos agora um outro importante recurso, de apresentação gráfica dos dados, que descreve simultaneamente várias características importantes dos dados, tais como: centro, dispersão, simetria e identificações de observações atípicas (outliers).

Diagrama de caixas

- Crie um retângulo em que estão representadas a mediana e os quartis;
- A partir do retângulo, para cima, segue uma linha até o maior ponto amostral que não exceda $L_s=q_3+\frac{3}{2}(q_3-q_1)$ (q_3-q_1) é chamado de distância interquartil e é um medida de dispersão alternativa ao desvio padrão);
- De mono análogo, da parte inferior do retângulo, para baixo, segue uma linha até o menor valor amostral que não seja menor do que $L_i = q_1 \frac{3}{2}(q_3 q_1)$
- Um ponto que estiver acima de L_s ou abaixo de L_i é chamado de outlier.

- O diagrama de ramo e folhas e o histograma são bons recursos de impressões visuais de dados, na medida que fornecem informações sobre características dos dados.
- Veremos agora um outro importante recurso, de apresentação gráfica dos dados, que descreve simultaneamente várias características importantes dos dados, tais como: centro, dispersão, simetria e identificações de observações atípicas (outliers).

Diagrama de caixas

- Crie um retângulo em que estão representadas a mediana e os quartis;
- A partir do retângulo, para cima, segue uma linha até o maior ponto amostral que não exceda $L_s=q_3+\frac{3}{2}(q_3-q_1)$ (q_3-q_1) é chamado de distância interquartil e é um medida de dispersão alternativa ao desvio padrão);
- De mono análogo, da parte inferior do retângulo, para baixo, segue uma linha até o menor valor amostral que não seja menor do que $L_i = q_1 \frac{3}{2}(q_3 q_1)$
- Um ponto que estiver acima de L_s ou abaixo de L_i é chamado de outlier.

- O diagrama de ramo e folhas e o histograma são bons recursos de impressões visuais de dados, na medida que fornecem informações sobre características dos dados.
- Veremos agora um outro importante recurso, de apresentação gráfica dos dados, que descreve simultaneamente várias características importantes dos dados, tais como: centro, dispersão, simetria e identificações de observações atípicas (outliers).

Diagrama de caixas

- Crie um retângulo em que estão representadas a mediana e os quartis;
- A partir do retângulo, para cima, segue uma linha até o maior ponto amostral que não exceda $L_s=q_3+\frac{3}{2}(q_3-q_1)$ (q_3-q_1) é chamado de distância interquartil e é um medida de dispersão alternativa ao desvio padrão);
- De mono análogo, da parte inferior do retângulo, para baixo, segue uma linha até o menor valor amostral que não seja menor do que $L_i = q_1 \frac{3}{2}(q_3 q_1)$
- Um ponto que estiver acima de L_s ou abaixo de L_i é chamado de outlier.

- O diagrama de ramo e folhas e o histograma são bons recursos de impressões visuais de dados, na medida que fornecem informações sobre características dos dados.
- Veremos agora um outro importante recurso, de apresentação gráfica dos dados, que descreve simultaneamente várias características importantes dos dados, tais como: centro, dispersão, simetria e identificações de observações atípicas (outliers).

Diagrama de caixas

- Crie um retângulo em que estão representadas a mediana e os quartis;
- A partir do retângulo, para cima, segue uma linha até o maior ponto amostral que não exceda $L_s = q_3 + \frac{3}{2}(q_3 q_1)$ $(q_3 q_1)$ é chamado de distância interquartil e é um medida de dispersão alternativa ao desvio padrão);
- De mono análogo, da parte inferior do retângulo, para baixo, segue uma linha até o menor valor amostral que não seja menor do que $L_i = q_1 \frac{3}{2}(q_3 q_1)$
- Um ponto que estiver acima de L_s ou abaixo de L_i é chamado de outlier.

- O diagrama de ramo e folhas e o histograma são bons recursos de impressões visuais de dados, na medida que fornecem informações sobre características dos dados.
- Veremos agora um outro importante recurso, de apresentação gráfica dos dados, que descreve simultaneamente várias características importantes dos dados, tais como: centro, dispersão, simetria e identificações de observações atípicas (outliers).

Diagrama de caixas

- Crie um retângulo em que estão representadas a mediana e os quartis;
- A partir do retângulo, para cima, segue uma linha até o maior ponto amostral que não exceda $L_s = q_3 + \frac{3}{2}(q_3 q_1)$ ($q_3 q_1$ é chamado de distância interquartil e é um medida de dispersão alternativa ao desvio padrão);
- De mono análogo, da parte inferior do retângulo, para baixo, segue uma linha até o menor valor amostral que não seja menor do que $L_i = q_1 \frac{3}{2}(q_3 q_1)$
- Um ponto que estiver acima de L_s ou abaixo de L_i é chamado de outlier.

llustrando a ideia do diagrama de caixas

Exemplo

 Se considerarmos os dados do primeiro exemplo dessa aula, temos que o diagrama de caixas é o seguinte:

- Na figura acima temos que $q_1 = 108$, $q_2 = Md = 113$ e $q_3 = 119$.
- Temos que a linha superior se estende até observação 132, uma vez que ela é a maior observação abaixo de $L_s=q_3+\frac{3}{2}(q_3-q_1)=119+\frac{3}{2}(119-108)=135.5$
- Similarmente, a linha inferior se estende até a observação 96, uma vez que ela é a menor observação acima de $L_i = q_1 \frac{3}{2}(q_3 q_1) = 108 \frac{3}{2}(119 108) = 91.5$.
- Note que há também quatro outliers nessa amostra.

- Na figura acima temos que $q_1 = 108$, $q_2 = Md = 113$ e $q_3 = 119$.
- Temos que a linha superior se estende até observação 132, uma vez que ela é a maior observação abaixo de $L_s=q_3+\frac{3}{2}(q_3-q_1)=119+\frac{3}{2}(119-108)=135.5$.
- Similarmente, a linha inferior se estende até a observação 96, uma vez que ela é a menor observação acima de $L_i=q_1-\frac{3}{2}(q_3-q_1)=108-\frac{3}{2}(119-108)=91.5$.
- Note que há também quatro outliers nessa amostra.

- Na figura acima temos que $q_1 = 108$, $q_2 = Md = 113$ e $q_3 = 119$.
- Temos que a linha superior se estende até observação 132, uma vez que ela é a maior observação abaixo de $L_s=q_3+\frac{3}{2}(q_3-q_1)=119+\frac{3}{2}(119-108)=135.5$.
- Similarmente, a linha inferior se estende até a observação 96, uma vez que ela é a menor observação acima de $L_i=q_1-\frac{3}{2}(q_3-q_1)=108-\frac{3}{2}(119-108)=91.5$.
- Note que há também quatro outliers nessa amostra.

- Na figura acima temos que $q_1 = 108$, $q_2 = Md = 113$ e $q_3 = 119$.
- Temos que a linha superior se estende até observação 132, uma vez que ela é a maior observação abaixo de $L_s=q_3+\frac{3}{2}(q_3-q_1)=119+\frac{3}{2}(119-108)=135.5$.
- Similarmente, a linha inferior se estende até a observação 96, uma vez que ela é a menor observação acima de $L_i = q_1 \frac{3}{2}(q_3 q_1) = 108 \frac{3}{2}(119 108) = 91.5$.
- Note que há também quatro outliers nessa amostra.