METHOD OF WASHERS

1. You are given the curves y = x and $y = x^2$. Consider the region bounded by these two curves in the first quadrant. It is rotated about the y axis. Find the volume generated.

2. You are given the functions $y=x^2$ and y=x. Consider the region bounded by the two functions in the first quadrant. The region is rotated about the x axis. Find the volume generated.

- 3. You are given the region bounded by the parabola $y=x^2$, x=2 and the x axis. This region is rotated about the y axis. Find the volume generated.
- 4. You are given the functions $y = x^2 + \frac{1}{2}$ and the function y = x over the interval $x \in [0,2]$. The region is revolved about the x axis. Find the volume generated.
- 5. You are given the region bounded by the curve $y=x^2$ x=2 and the x axis. The region is rotated about the line y = 4. Find the volume of generated.

- 6. You are given the region bounded by the curves $y=x^2$ x=2 and the x axis. The region is rotated about the vertical line x = 5. Find the volume of the region.
- 7. Find the volume of the solid that results when the region bounded by the function $y=x^2$ and y=9 is revolved about the x axis.
- 8. Find the volume of the solid that results when the region enclosed by $y = x^2 + 1$ and y = x + 3 is revolved about the x axis.
- 9. You are given a sphere of radius R. A cylindrical hole is bored out of the sphere through its center. Find the volume of the remaining solid.

DIFFUCULT QUESTION VOLUME OF TORUS

10. You are given the circle $(x - b)^2 + y^2 = b^2$ centered at (b,0). It is rotated about the line x = a where a > 2b. Find the volume of the torus.

DIFFUCULT QUESTION

11. You are given the parabola $y=x^2$ bounded above by the line y=1. This region is revolved around the vertical line x=2. Find the volume of the solid generated. It looks like an upside down Bundt cake.

METHOD OF WASHERS

1. You are given the curves y = x and $y = x^2$. Consider the region bounded by these two curves in the first quadrant. It is rotated about the y axis. Find the volume generated.

Right function

Left function

$$dt = dy$$

$$y = x^2$$

$$y = x$$

$$R = x_r = \sqrt{y}$$
 $r = x_l = y$

$$r = x_l = y$$

The curves intersect at the points (0,0) and (1,1)

$$V = \int_a^b \pi(R^2 - r^2) dt$$

$$V = \int_{y=0}^{y=1} \pi(x_r^2 - x_l^2) \, dy$$

$$V = \int_{y=0}^{y=1} \pi \left(\left(\sqrt{y} \right)^2 - y^2 \right) dy$$

$$V = \pi \int_{y=0}^{y=1} (y - y^2) dy$$

$$V = \pi \left(\frac{y^2}{2} - \frac{y^3}{3} \right) \Big|_0^1$$

$$V = \pi \left(\frac{1}{2} - \frac{1}{3}\right) - 0 = \frac{\pi}{6}$$

2. You are given the functions $y = x^2$ and y = x. Consider the region bounded by the two functions in the first quadrant. The region is rotated about the x axis. Find the volume generated.

High function

Low function

dt=dx

$$R = y_h = x$$

$$R = y_h = x \qquad r = y_l = x^2$$

The points of intersection are (0,0) and (1,1)

$$V = \int_{a}^{b} \pi(R^2 - r^2) dt$$

$$x=1$$

$$V = \int_{x=0}^{x=1} \pi (y_h^2 - y_l^2) dx$$

$$V = \int_{x=0}^{x=1} \pi(x^2 - x^4) dx$$

$$V = \pi \left(\frac{x^3}{3} - \frac{x^5}{5} \right) \Big|_0^1$$

$$V = \pi \left(\frac{1}{3} - \frac{1}{5}\right)$$

$$V = \frac{2\pi}{15}$$

3. You are given the region bounded by the parabola $y=x^2$, x=2 and the x axis. This region is rotated about the y axis. Find the volume generated.

Right function Left function dt = dy

$$R = x_r = 2 r = x_l = \sqrt{y}$$

The bounds of integration are y = 0 to y = 4

$$V = \int_{a}^{b} \pi (R^{2} - r^{2}) dt$$

$$V = \int_{y=0}^{y=4} \pi (x_{r}^{2} - x_{l}^{2}) dy$$

$$V = \int_{y=0}^{y=4} \pi (4 - (\sqrt{y})^{2}) dy$$

$$V = \int_{y=0}^{y=4} \pi (4 - y) dy$$

$$V = \pi \left(4y - \frac{y^{2}}{2}\right)\Big|_{0}^{4}$$

$$V = \pi \left(16 - \frac{16}{2}\right) - (0)$$

$$V = 8\pi$$

4. You are given the functions $y = x^2 + \frac{1}{2}$ and the function y = x over the interval $x \in [0,2]$. The region is revolved about the x axis. Find the volume generated.

High function

$$dt = dx$$

$$y = x^2 + \frac{1}{2}$$

$$y = x$$

$$R = y_h = x^2 + \frac{1}{2}$$
 $r = y_l = x$

$$r = y_l = x$$

$$V = \int_a^b \pi(R^2 - r^2) dt$$

$$V = \int_{x=0}^{x=2} \pi (y_h^2 - y_l^2) dx$$

$$V = \int_{x=0}^{x=2} \pi \left(\left(x^2 + \frac{1}{2} \right)^2 - x^2 \right) dx$$

$$V = \pi \int_{x=0}^{x=2} \left(x^4 + x^2 + \frac{1}{4} - x^2 \right) dx$$

$$V = \pi \int_{x=0}^{x=2} \left(x^2 + \frac{1}{4}\right) dx$$

$$V = \pi \left(\frac{x^3}{3} + \frac{x}{4} \right) \Big|_0^2$$

$$V = \pi \left(\frac{8}{3} + \frac{1}{2}\right) = \frac{19\pi}{3}$$

5. You are given the region bounded by the curve $y=x^2$ x=2 and the x axis. The region is rotated about the line y = 4. Find the volume of generated.

Large radius
$$R = 4$$

Small radius
$$r = 4 - y = 4 - x^2$$

$$dt = dx$$

$$V = \int_{a}^{b} \pi (R^{2} - r^{2}) dt$$

$$V = \int_{x=0}^{x=2} \pi (4^{2} - (4 - x^{2})^{2}) dx$$

$$V = \int_{x=0}^{x=1} \pi (16 - (16 - 8x^2 + x^4)) dx$$

$$V = \int_{x=0}^{x=1} \pi (8x^2 - x^4) dx$$

$$V = \pi \left(\frac{8x^3}{3} - \frac{x^5}{5} \right) \Big|_0^1$$

$$V = \pi \left(\frac{8}{3} - \frac{1}{5}\right) = \frac{37\pi}{15}$$

6. You are given the region bounded by the curves $y = x^2$ x = 2 and the x axis. The region is rotated about the vertical line x = 5. Find the volume of the region.

$$R = 5 r = 5 - x = 5 - \sqrt{y} dt = dy$$

The bounds of integration are y = 0 and y = 4.

$$V = \int_{a}^{b} \pi \left(R^2 - r^2 \right) dt$$

$$V = \int_{y=0}^{y=5} \pi (5^2 - (5-x)^2) dy$$

$$V = \int_{y=0}^{y=5} \pi \left(25 - \left(5 - \sqrt{y}\right)^{2}\right) dy$$

$$V = \int_{y=0}^{y=5} \pi \left(25 - \left(25 - 10\sqrt{y} + y\right)\right) dy$$

$$V = \int_{y=0}^{y=5} \pi \left(10\sqrt{y} - y\right) dy$$

$$V = \pi \left(\frac{20}{3} y^{3/2} - \frac{y^2}{2} \right) \Big|_0^5$$

$$V = \pi \left(\frac{20\sqrt{125}}{3} - \frac{25}{2} \right)$$

7. Find the volume of the solid that results when the region bounded by the function $y=x^2$ and y=9 is revolved about the x axis.

High function

Low function

$$y = 9$$

$$y = x^2$$

$$R = y_h = 9$$

$$r = y_l = x^2$$

$$V = \int_{a}^{b} \pi (R^2 - r^2) dt$$
$$V = \int_{a}^{b} \pi (y_h^2 - y_l^2) dx$$

$$V = \int_{x=-3}^{x=3} \pi (9^2 - (x^2)^2) dx$$

$$V = \pi \int_{x=-3}^{x=3} (81 - x^4) dx$$

Even symmetry:

$$V = 2\pi \int_{x=0}^{x=3} (81 - x^4) dx$$

$$V = 2\pi \left(81 x - \frac{x^5}{5}\right)\Big|_0^3$$

$$V = 2\pi \left(243 - \frac{243}{5}\right)$$

$$V = \frac{1944\pi}{5}$$

8. Find the volume of the solid that results when the region enclosed by $y = x^2 + 1$ and y = x + 3 is revolved about the x axis.

$$y_h = x + 3 \qquad \qquad y_l = x^2 + 1$$

$$R = y_h$$
 $r = y_l$

$$R = x + 3 \qquad \qquad r = x^2 + 1$$

Bounds:
$$x^2 + 1 = x + 3$$
 $x^2 - x - 2 = 0$ $x = -1 \& x = 2$

$$V = \int_{a}^{b} \pi \left(R^2 - r^2 \right) dt$$

$$V = \int_{x=-1}^{x=2} \pi \left(y_h^2 - y_l^2 \right) dx$$

$$V = \int_{x=-1}^{x=2} \pi ((x+3)^2 - (x^2 + 1)^2) dx$$

$$V = \int_{x=-1}^{x=2} \pi \left((x^2 + 6x + 9) - (x^4 + 2x^2 + 1) \right) dx$$

$$V = \int_{x=-1}^{x=2} \pi \left(-x^4 - x^2 + 6x + 8 \right) dx$$

$$V = \pi \left(-\frac{x^5}{5} - \frac{x^3}{3} + 3x^2 + 8x \right) \Big|_{-1}^{2}$$

$$V = \pi \left[\left(-\frac{32}{5} - \frac{8}{3} + 12 + 16 \right) - \left(-\frac{-1}{5} - \frac{-1}{3} + 3 - 8 \right) \right]$$

$$V = \pi \left[28 - \frac{32}{5} - \frac{8}{3} - \frac{1}{5} - \frac{1}{3} + 5 \right]$$

$$V = \pi \left[33 - \frac{33}{5} - \frac{9}{3} \right] = \frac{117\pi}{5}$$

9. You are given a sphere of radius R. A cylindrical hole is bored out of the sphere through its center. Find the volume of the remaining solid.

We need to get H.

Use Pythagorean theorem.

$$R^2 = H^2 + \left(\frac{R}{2}\right)^2$$
 $H^2 = \frac{3R^2}{4}$ $H = \frac{\sqrt{3} R}{2}$

$$H^2 = \frac{3R^2}{4}$$

$$H = \frac{\sqrt{3} R}{2}$$

$$V = \int_{a}^{b} \pi (r_2^2 - r_1^2) dt$$

$$V = \int_{y=-H}^{y=H} \pi \left(x^2 - \left(\frac{R}{2}\right)^2\right) dy$$

$$V = \int_{y=-H}^{y=H} \pi \left(R^2 - y^2 - \left(\frac{R}{2}\right)^2 \right) dy$$

$$V = 2\pi \int_{y=0}^{y=H} \left(\frac{3R^2}{4} - y^2 \right) dy$$

$$V = 2\pi \left(\frac{3R^2 y}{4} - \frac{1}{3} y^3 \right) \Big|_{0}^{H}$$

$$V = 2\pi \left(\frac{3R^2H}{4} - \frac{H^3}{3}\right)$$

DIFFUCULT QUESTION VOLUME OF TORUS

10. You are given the circle $(x - b)^2 + y^2 = b^2$ centered at (b,0). It is rotated about the line x = a where a > 2b. Find the volume of the torus.

Rewrite the equation:

$$x - b = \pm \sqrt{b^2 - y^2}$$

$$x = b \pm \sqrt{b^2 - y^2}$$
Left
$$R = a - x_l = a - \left(b - \sqrt{b^2 - y^2}\right)$$

$$R = a - b + \sqrt{b^2 - y^2}$$

$$R = (a - b) + \sqrt{b^2 - y^2}$$

$$V = \int_{y = -b}^{y = b} (\pi R^2 - \pi r^2) dy$$

$$V = \pi \int_{y = -b}^{y = b} \left(\pi \left((a - b) + \sqrt{b^2 - y^2}\right)^2 - \pi \left((a - b) - \sqrt{b^2 - y^2}\right)^2\right) dy$$

$$V = \pi \int_{y = -b}^{y = b} \left(\left((a - b) + \sqrt{b^2 - y^2}\right)^2 - \left((a - b) - \sqrt{b^2 - y^2}\right)^2\right) dy$$

Expanding and cancelling – there is a lot of cancellation:

$$V = \pi \int_{y=-b}^{y=b} \left(4(a-b) \sqrt{b^2 - y^2} \right) dy$$

Symmetry:

$$V = 8 (a - b) \pi \int_{y=0}^{y=b} \sqrt{b^2 - y^2} dy$$

$$let y = b \sin \theta \qquad dy = b \cos \theta \ d\theta$$

$$V = 8 (a - b) \pi \int_{\theta=0}^{\theta=\pi/2} \sqrt{b^2 - b^2 \sin^2 \theta} b \cos \theta d\theta$$

$$V = 8 (a - b) b^2 \pi \int_{\theta=0}^{\theta=\pi/2} \sqrt{1 - \sin^2 \theta} \cos \theta d\theta$$

$$V = 8 (a - b) b^2 \pi \int_{\theta=0}^{\theta=\pi/2} \cos^2 \theta \ d\theta$$
$$V = 8 (a - b) b^2 \pi \left[\frac{\theta}{2} - \frac{\sin 2\theta}{4} \right]_0^{\pi/2}$$

$$V = 8 (a - b) b^2 \pi \left[\left(\frac{\pi}{4} - \frac{\sin \pi}{4} \right) - (0) \right]$$

$$V = 2 \pi (a - b) \pi b^2$$

Note this is the circumference formed by the center of the circle – multiplied by the cross sectional area of the circle.

DIFFUCULT QUESTION

11. You are given the parabola $y=x^2$ bounded above by the line y=1. This region is revolved around the vertical line x=2. Find the volume of the solid generated. It looks like an upside down Bundt cake.

Left function Right function
$$x = -\sqrt{y} \qquad x = \sqrt{y}$$

$$x_l = -\sqrt{y} \qquad x_r = \sqrt{y}$$

$$R = 2 - x_l = 2 + \sqrt{y} \qquad r = 2 - x_r = 2 - \sqrt{y}$$

$$V = \int_{y=0}^{y=1} (\pi R^2 - \pi r^2) dy$$

$$V = \pi \int_{y=0}^{y=1} \left(\left(2 + \sqrt{y} \right)^2 - \left(2 - \sqrt{y} \right)^2 \right) dy$$

Expand and simplify. There is a lot of cancellation.

$$V = \pi \int_{y=0}^{y=1} (4\sqrt{y}) dy$$

$$V = 4\pi \int_{y=0}^{y=1} \sqrt{y} dy$$

$$V = \frac{8\pi}{3} y^{3/2} \Big|_{0}^{1}$$

$$V = \frac{8\pi}{3}$$

