r	b	{r, b, g, y}	{r, b, g, y}
{r, b, g, y}	g	{r, b, g, y}	r
b	r	У	{r, b, g, y}
g	{r, b, g, y}	r	b

Figure CSP-1.

A 4x4 board, top left coordinate is (0,0) through bottom right (3,3), each entry to be filled in with a color from $\{r, b, g, y\}$, such that entries in each row and each column is unique

The input board is partially filled in. Empty entries are shown with $\{r, b, g, y\}$

Solution: ?

r	b	{r, g}	{b, y}
У	g	{r, b}	{r, b}
b	r	У	{g}
{r, g}	{y}	{r, b}	{r, b}

Figure CSP-2.

A 4x4 board, top left coordinate is (0,0) through bottom right (3,3), each entry to be filled in with a color from $\{r, b, g, y\}$, such that entries in each row and each column is unique.

Run the Backtracking algorithm. When does the first instantiation of an entry fails? Ans: ?

Run the Forward Checking (FC) algorithm.

FC selects of (0,0):r as the first choice to check for all constraints related to this node.

Which domain(s) is/are reduced?

Ans: ?

r	b	{r, b, g, y}	{r, b, g, y}
{y}	g	{r, b}	{r, b}
b	r	У	{r, b, g, y}
g	{y}	{r, b}	{r, b}

Figure CSP-3.

A 4x4 board, top left coordinate is (0,0) through bottom right (3,3), each entry to be filled in with a color from $\{r, b, g, y\}$, such that entries in each row and each column is unique. The input board is partially filled in.

Arc-consistent Network after removing unsupported domain values: ?