Introduction to the **FISHER**FieldVue Positioner

Role of a Control Valve Positioner

Figure 1-1. Role of a Control Valve Positioner; Precise Stem or Shaft Positioning

Overcoming Friction

Figure 1-2. Deadband and Hysteresis that Results from Friction

Performance With and Without a Positioner

Figure 1-3. Minimizing Deadband With A Control Valve Positioner

Positioner Operation

Figure 1-4. Valve Positioner at Start of Travel

Two Graphs: Input Vs. Output

Figure 1-7. Positioner Input And Output Relationships

Saturation

Figure 1-8. Saturation

Zero & Span: End Points of Travel

Figure 1-9. Positioner Zero and Span Calibration

Basic DVC Functions

Automatic Travel Calibration

Stem Positioning Accuracy

Speed and Stability

Common Configuration Interface

Extended Features

Configurable Operating Parameters Configurable Alerts Advanced Diagnostics Performance Diagnostics

Configurators

HART Handheld Communicator ValveLink Software AMS Software Control System Software

Communication Options

Figure 2-11. Examples Of FIELDVUE Instrument Communication Strategies

DVC Series 5000 and Series 6000

DVC5000

DVC6000

DVC 5010 & 6010: Sliding-Stem Actuator

DVC 5020 & 6020: Rotary-Shaft Actuator

DVC5000 - Principle of Operation

Figure 2-4. Principle of Operation-Type DVC5000

Front View of Terminal Box

Figure 4-14. Front View of Terminal Box

Signal Path

Figure 2-5. 4-20 mA Signal Path to PWB Assembly

Back of PWB Assembly (Puck)

Puckbak

Figure 4-9. Backside of PWB assembly

Defining Drive Signal

Figure 2-6. FIELDVUE PWB Microprocessor Drive Signal Equation

I/P Module - Familiar Technology

Figure 2-7. I/P Converter Drive Signal Reaction

Nozzle and Flapper

Figure 2-8. Flapper in Normal and Restrictive Positions

Reaction to Drive Signal

Figure 2-9. Concept of I/P Operation; Flapper Movement Exaggerated

Pressure Path

Figure 2-10. Pressure Path From I/P To Relay To Actuator

Relay

Pneurely

Figure 4-10. DVC Pneumatic Relay

Travel Sensor

Figure 4-12. Travel Sensor Potentiometer

Feedback Arm for Sliding-Stem Assemblies

Feedback Arm Detail for 667 Actuator

Feedback Arm Detail for 657 Actuator

fbarmadjust

Figure 5-2. Feedback Arm Positions to Set When Adjusting Travel Sensor Counts on a DVC 5010

Travel Feedback on 657 Actuator

Figure 4-1. Close-up of DVC5010 Mounted On Size 30-60 Type 657 Actuator

Feedback Arm and Bias Spring

Biaspring

Figure 4-17. Proper Bias Spring Installation

Feedback Arm for Rotary Assembly

Figure 5-4. Feedback Arm Position for a DVC 5020 When Adjusting Travel Sensor Counts

Travel Feedback on 1052 Actuator

Figure 4-2. DVC5020 Mounted On Size 33, Type 1052 Actuator

Exploded View of DVC5000 Components

Figure 4-4. Exploded View of a FIELDVUE Instrument

Introducing DVC6000

DVC6000 is Double Acting AND Single Acting.

Reverse Acting DVC is now possible.

Diagnostic capabilities are enhanced.

Performance is improved!

DVC Product Evolution

FIELDVUE DVC5000 Series Relay Single Acting Only

Fairchild Reversing Relay Adds Double Acting Capability

DVC6000 - Principle of Operation

DVC6000 Features - Same Mounting

Common Mounting Hardware
DVC6010, DVC6020, DVC6030
Tubing Connections - Right Side
Integral Airset
Conduit Connections - No Change

Same Mountings

DVC6000 Hardware Enhancements

Common I/P Transducer

Repackaged Components (Stab-In Design)
Terminal Box
Feedback Potentiometer

DVC6000 Hardware Enhancements

New Double Acting Relay

New Printed Wiring Board (PWB)

Minor Loop Feedback Sensor

3 Pressure Sensors

(P1, P2, Supply)

DVC6000 - Pneumatic Relay Hardware

Double Acting Relay "A" Signal Supply (I/P Output) Crossover **Disc Output Output** B Supply

Crossover Disc - Adjusted based on supply pressure

Output A - Increases with increasing signal

Output B - Decreases with increasing signal

Supply Seat B - Never allowed to open

Crossover Disc - Adjusted similar to double acting
Output A - Always at full supply pressure (exhaust port sealed)
Supply Seat A - Always open (inner valve removed)

(New '07) Single Acting *Direct* Relay "C"

Fisher has developed a simplified relay for single acting *direct* applications.

Relay C improves the reliability of the DVC6000 series instruments.

The new relay has no crossover adjustment, so it can't become misadjusted.

Less parts on the "unused output B side" of the relay means better

reliability.

(New '07) Single Acting *Direct* Relay "C"

(New '07) Single Acting *Direct* Relay "C"

With the introduction of the new relay type C.

Relay A will be used only for double acting applications.

Relay B will be used for single acting reverse applications.

Relay C will be used for single acting direct applications.

Exploded View of DVC6000 Components

