Ordre de grandeur du champ magnétique

A quelle distance d'un fil parcouru par un courant de 1 A, son champ magnétique est-il plus faible que le champ magnétique terrestre?

Ancienne définition de l'ampère avant 2019

Calculer le courant qui doit traverser deux fils infinis parallèles distant de 1 m et traversé par la même intensité I, pour que la force d'attraction entre eux soit de $F = 2.10^{-7}$ N.

Indice: utiliser la loi de Laplace.

Champ crée par une bobine torique

Une bobine torique est constituée de N spires jointives régulièrement enroulées sur un tore d'axe (Oz) et parcourues par la même intensité i. On suppose que $N \gg 1$. Un tore est engendré par la rotation d'un cercle autour d'un axe de révolution. Le tore considéré a une section circulaire de rayon R_1 , et le centre de sa section se trouve a une distance R_2 de l'axe de révolution du tore.

— Déterminer en tout point de l'espace le champ magnétostatique crée par la bobine.

Champ crée dans un câble coaxial

On peut modéliser un câble coaxial comme deux cylindre concentrique infini de rayon R_1 et R_2 . Ces deux cylindres sont parcourus par le même courant dans la direction donné par l'axe de révolution du cylindre mais de sens opposé +I et -I. Le cylindre intérieur est considéré comme un conducteur plein parcouru par une densité de courant uniforme. Le cylindre extérieur a une épaisseur finie e très petite devant son rayon, et est aussi parcouru par une densité de courant uniforme.

— Déterminer en tout point de l'espace le champ magnétostatique crée par le câble coaxial.

Magnéton de Bohr

Dans un modèle de Bohr de l'atome d'hydrogène, l'électron décrit une orbite circulaire de rayon r autour du proton en une période T.

— Donner une expression du moment magnétique de l'électron dans l'atome d'hydrogène en fonction de r et T.

En mécanique quantique on peut montrer à l'aide de l'inégalité d'Heisenberg que $E_c \times T \simeq \frac{h}{2}$ avec E_c l'énergie cinétique de l'électron et h la constante de Planck.

— En déduire une expression du moment magnétique de l'électron ne faisant plus intervenir r et T, mais plutôt $\hbar = \frac{h}{2\pi}$ et la masse de l'électron m.

On donne $\hbar \sim 10^{-34}$ J.s et $m \sim 10^{-30}$ kg.

— En déduire un ordre de grandeur du moment magnétique de l'électron, aussi appelé dans ce modèle magnéton de Bohr μ_B .

Moment magnétique d'un aimant

Le moment magnétique total d'un aimant est du à la somme de tous les moments microscopiques de ses atomes.

— Combien y-a-t-il d'atomes dans un aimant de 1 cm de côté? On donnera une réponse en estimant un ordre de grandeur.

Le moment magnétique d'un atome est de l'ordre du magnéton de Bohr μ_B .

— Quel est l'ordre de grandeur du moment magnétique d'un aimant?

Champs magnétique terrestre

Connaissant le moment magnétique de la Terre $M_{\text{Terre}} = 7, 5.10^{22} \text{ A.m}^2$, calculer l'ordre de grandeur du champ magnétique terrestre à Mantes-la-Jolie.

Résultante des forces extérieures sur un dipôle magnétique

Soit une spire par courue par un courant i plongée dans un champ magnétique extérieur uniforme $\vec{B}_{\rm ext}.$

- A l'aide de la force de Laplace, donner l'expression de la force élémentaire \overrightarrow{dF} exercée par le champ magnétique extérieur $\overrightarrow{B}_{\text{ext}}$ sur un élément de spire \overrightarrow{dl} .
- Écrire la résultante des forces comme l'intégrale de \overrightarrow{dF} sur toute la spire. Sachant que le courant i est constant sur toute la spire et le champ \overrightarrow{B}_{ext} est uniforme, montrer que la résultante des forces est nulle.

Induction et Dipole

Soit une spire parcourue par un courant i plongée dans un champ magnétique extérieur $\vec{B}_{\rm ext}$.

- Donner l'expression de la force électromotrice induite dans la spire en fonction du flux qui la traverse.
- Donner la définition du flux magnétique à travers la surface plane qui s'appuie sur la spire.
- Calculer la puissance P reçue par le circuit électrique en fonction du courant i et de $\vec{B}_{\rm ext}$.
- En supposant que i ne dépende pas du temps et que \vec{B}_{ext} est uniforme sur la section de la spire, relier P au produit scalaire du moment magnétique de la spire et de \vec{B}_{ext} .
- En déduire que la puissance électrique reçue par une spire en mouvement dérive de l'énergie potentielle du moment magnétique de la spire.