Computer Vision 1: Homework 7

Deadline 13.12. 12:15

Important: Submit your programming solutions through Moodle. The deadline for submitting your work is always on Thursday, at 12.15, the week after handing out the homework. For other, non-programming homework, bring your solution with you to the exercise class. For each homework problem, one student will be chosen at random to present their solution.

Programming tasks.

Figure 1 is an aerial view of an airport. We will use Hough transform to detect the principal runway in the image. You can find this image aiport.tif on Moodle.

Figure 1: Aerial view of an airport. Source: Gonzalez/Woods' DIP book

- Read the image and generate the edge image using Canny Edge Detector with $\sigma = 2$. Choose the lower threshold high enough to get rid of the edges around the principal runway.
- Using skimage.transform.hough_line, compute the Hough transform of the image. Note that the input to the Hough transform is the binary edge image.
- Using skimage.transform.hough_line_peaks, extract the first 3 peaks in the Hough transform.
- Visualize the edge image, the Hough transform and the lines corresponding to the 3 peaks together. The result should be similar to Figure 2.

Hint: see an example of plotting Hough transform at http://scikit-image.org/docs/dev/auto_examples/edges/plot_line_hough_transform.html.

Other tasks.

1. Given a point P(x, y) in a 2D xy-plane and a line L runs through P. The point $H(x_0, y_0) \in L$ is the projection of the origin O(0, 0) on L, the length of OH is ρ and the angle between OH and the x-axis is θ . See Figure 3 for a visualization. Prove the normal representation of L:

$$x\cos\theta + y\sin\theta = \rho$$

Figure 2: Hough transform result with 3 peaks.

2. Recall that 2-dimensional Hough space is a 2D grid divided into accumulator cells. Suppose the size of the grid is $P \times Q$ where P is the number of θ 's and Q is the number of ρ 's, the number of edge points is N. Compute the time complexity of the Hough transform for 2D line detection as a function of P, Q and N. If not all possible θ but only the gradient of each pixel is considered, how does that complexity change?

Figure 3: (ρ, θ) parameterization of a line in the xy-plane.