C S 358H: Intro to Quantum Information Science

Sayam Sethi

October 2024

Contents

1	Distinguishability of Mixed States	2
2	Reduced GHZ	3
3	Bloch Sphere	6
4	Separable and Entangled States	8
5	Entanglement and Mixed States	11

1 Distinguishability of Mixed States

Question 1.1

Question. Let ρ and σ be two different single qubit density matrices. Prove that ρ and σ are distinguishable — that is, there exists some measurement basis such that the probabilities of the outcomes is different in the two cases.

Hint: Use the fact that $\sigma - \rho$ is necessarily a nonzero Hermitian matrix and the fact that any Hermitian matrix can be diagonalized.

Proof. Using the hint, we consider the fact that $\sigma - \rho$ is a nonzero Hermitian matrix and that it can be diagonalized. Therefore, there exists an eigenbasis for $\sigma - \rho$, say $\{|b_1\rangle, |b_2\rangle\}$, that has eigenvalues λ_1, λ_2 . Now let us assume that measuring the two states in this eigenbasis gives probabilities p_{σ}, p_{ρ} respectively for measuring the first eigenbasis. Now consider the difference between these probabilities

$$p_{\sigma} - p_{\rho} = \langle b_1 | \sigma | b_1 \rangle - \langle b_1 | \rho | b_1 \rangle$$

= $\langle b_1 | \sigma - \rho | b_1 \rangle = \lambda_1$ (1)

Now, since $\{|b_1\rangle, |b_2\rangle\}$ is an eigenbasis for $\sigma - \rho$ and since the trace for $\sigma - \rho$ is 0, both eigenvalues have to be non-zero since $\sigma - \rho$ is non-zero to begin with. Therefore, we get that the probabilities of measuring $|b_1\rangle$ is different for both σ and ρ (and similarly the difference in probability of measuring $|b_2\rangle$ is also non-zero). Thus, the basis $\{|b_1\rangle, |b_2\rangle\}$ distinguishes between the two states.

2 Reduced GHZ

Consider the *n*-qubit "Schrödinger cat state" (or "generalized GHZ state")

$$\frac{|0\cdots 0\rangle + |1\cdots 1\rangle}{\sqrt{2}}.$$

Question 2.1

Question. What probability distribution over n-bit strings do we observe if we Hadamard the first n-1 qubits, then measure all n qubits in the $\{|0\rangle, |1\rangle\}$ basis? Show your work.

Solution. We compute the density matrix of the cat state as

$$\rho = \frac{|0 \cdots 0\rangle \langle 0 \cdots 0| + |0 \cdots 0\rangle \langle 1 \cdots 1| + |1 \cdots 1\rangle \langle 0 \cdots 0| + |1 \cdots 1\rangle \langle 1 \cdots 1|}{2}$$
(2)

Now, we can write the Hadamard operator over the first n-1 qubits as

$$\mathbf{H}^{\otimes n-1} \otimes \mathbf{I} = (|+\rangle \langle 0| + |-\rangle \langle 1|)^{\otimes n-1} \otimes (|0\rangle \langle 0| + |1\rangle \langle 1|)$$
(3)

Now, if we apply the operator to ρ , we get

$$(\mathbf{H}^{\otimes n-1} \otimes \mathbf{I})\rho(\mathbf{H}^{\otimes n-1} \otimes \mathbf{I})^{\dagger} = (\mathbf{H}^{\otimes n-1} \otimes \mathbf{I})\rho(\mathbf{H}^{\otimes n-1} \otimes \mathbf{I})$$

$$\implies \rho' = \frac{1}{2}((|+\rangle \langle +|)^{\otimes n-1} \otimes |0\rangle \langle 0| + (|+\rangle \langle -|)^{\otimes n-1} \otimes |0\rangle \langle 1| \qquad (4)$$

$$+ (|-\rangle \langle +|)^{\otimes n-1} \otimes |1\rangle \langle 0| + (|-\rangle \langle -|)^{\otimes n-1} \otimes |1\rangle \langle 1|)$$

Now, we compute the probability of measuring a bitstring $|b\rangle = |b_1 \cdots b_n\rangle$ as

Pr [measuring
$$b$$
] = $\langle b | \rho' | b \rangle = \langle b_1 \cdots b_n | \rho' | b_1 \cdots b_n \rangle$
= $\frac{1}{2} (\frac{1}{2^{n-1}} \cdot |\langle b_n | 0 \rangle|^2 + \frac{(-1)^{\sum_{i=1}^{n-1} b_i}}{2^{n-1}} \cdot \langle b_n | 0 \rangle \langle 1 | b_n \rangle$
+ $\frac{\sum_{i=1}^{n-1} b_i}{2^{n-1}} \cdot \langle b_n | 1 \rangle \langle 0 | b_n \rangle + \frac{1}{2^{n-1}} \cdot |\langle b_n | 1 \rangle|^2)$
= $\frac{1}{2} \left(\frac{1}{2^{n-1}} \cdot |\langle b_n | 0 \rangle|^2 + \frac{1}{2^{n-1}} \cdot |\langle b_n | 1 \rangle|^2 \right)$, the middle two terms vanish
= $\frac{1}{2} \left(\frac{1}{2^{n-1}} \right) = \frac{1}{2^n}$, since b_n is either 0 or 1

See Question 2.3 for work that shows how we computed the middle two terms (that eventually vanish since either $\langle b_n | 0 \rangle$ or $\langle b_n | 1 \rangle$ is going to be 0). For the other two terms, we just have squares of the amplitudes since the two inner products we multiply are conjugates of each other.

Question 2.2

Question. Is this the same distribution or a different one, from what we'd have seen if we took the following state, applied Hadamards to the first n-1 qubits, and then measured all n qubits in the $\{|0\rangle, |1\rangle\}$ basis:

$$\frac{\left|0\cdots0\right\rangle \left\langle 0\cdots0\right|+\left|1\cdots1\right\rangle \left\langle 1\cdots1\right|}{2}.$$

Show your work.

Solution. If we apply the apply the operator computed in Equation 3 to the above state (say its density matrix is σ), we get

$$(\mathbf{H}^{\otimes n-1} \otimes \mathbf{I}) \sigma (\mathbf{H}^{\otimes n-1} \otimes \mathbf{I})^{\dagger} = (\mathbf{H}^{\otimes n-1} \otimes \mathbf{I}) \sigma (\mathbf{H}^{\otimes n-1} \otimes \mathbf{I})$$

$$\implies \sigma' = \frac{1}{2} (|+\rangle \langle +|^{\otimes n-1} \otimes |0\rangle \langle 0| + |-\rangle \langle -|^{\otimes n-1} \otimes |1\rangle \langle 1|)$$
(6)

Now, we compute the probability of measuring a bitstring $|b\rangle = |b_1 \cdots b_n\rangle$ as

Pr [measuring
$$b$$
] = $\langle b | \rho' | b \rangle = \langle b_1 \cdots b_n | \rho' | b_1 \cdots b_n \rangle$
= $\frac{1}{2} (\frac{1}{2^{n-1}} \cdot |\langle b_n | 0 \rangle|^2 + \frac{1}{2^{n-1}} \cdot |\langle b_n | 1 \rangle|^2)$
= $\frac{1}{2} \left(\frac{1}{2^{n-1}}\right) = \frac{1}{2^n}$, since b_n is either 0 or 1

Therefore, the probability distributions are the same.

Question 2.3

Question. What probability distribution over n-bit strings do we observe if we Hadamard all n qubits, then measure all n qubits in the $\{|0\rangle, |1\rangle\}$ basis? Show your work.

Solution. We can define the Hadamard operator over all n qubits as

$$\mathbf{H}^{\otimes n} = (|+\rangle \langle 0| + |-\rangle \langle 1|)^{\otimes n} \tag{8}$$

Now, if we apply the operator to ρ , we get

$$(\mathbf{H}^{\otimes n})\rho(\mathbf{H}^{\otimes n})^{\dagger} = (\mathbf{H}^{\otimes n})\rho(\mathbf{H}^{\otimes n})$$

$$\implies \rho'' = \frac{1}{2}(|+\rangle\langle +|^{\otimes n} + |+\rangle\langle -|^{\otimes n} + |-\rangle\langle +|^{\otimes n} + |-\rangle\langle -|^{\otimes n})$$
(9)

Now, we compute the probability of measuring a bitstring $|b\rangle = |b_1 \cdots b_n\rangle$ as

Pr [measuring
$$b$$
] = $\langle b | \rho'' | b \rangle = \langle b_1 \cdots b_n | \rho'' | b_1 \cdots b_n \rangle$
= $\frac{1}{2} \left(\frac{1}{2^n} + \frac{(-1)^{b \cdot 1^n}}{2^n} + \frac{(-1)^{b \cdot 1^n}}{2^n} + \frac{1}{2^n} \right)$, $b \cdot 1^n$ is dot product of b with $1 \cdots 1$
= $\begin{cases} \frac{1}{2^{n-1}} & \text{if } b \cdot 1^n = 0\\ 0 & \text{otherwise} \end{cases}$ (10)

Note that we get the middle two terms as $\frac{(-1)^{b\cdot 1^n}}{2^n}$ since $\langle b_i|+\rangle \cdot \langle -|b_i\rangle = \langle b_i|-\rangle \langle +|b_i\rangle = -1$ only if bit $b_i=1$. For the other two terms, we get the square of the product since the inner products are conjugates of each other.

Therefore, we have a probability of measuring bitstrings with even number of 1's as $\frac{1}{2^{n-1}}$ and we have 0 probability of measuring bitstrings with odd number of 1's.

Question 2.4

Question. Is this the same distribution or a different one, than if to the following state we apply Hadamards to all n qubits and then measure all n qubits in the $\{|0\rangle, |1\rangle\}$ basis:

$$\frac{|0\cdots 0\rangle \langle 0\cdots 0| + |1\cdots 1\rangle \langle 1\cdots 1|}{2}.$$

Show your work.

Solution. If we apply the operator computed in Equation 8 to σ , we get

$$(\mathbf{H}^{\otimes n})\sigma(\mathbf{H}^{\otimes n})^{\dagger} = (\mathbf{H}^{\otimes n})\sigma(\mathbf{H}^{\otimes n})$$

$$\implies \sigma'' = \frac{1}{2}(|+\rangle\langle +|^{\otimes n} + |-\rangle\langle -|^{\otimes n})$$
(11)

Now, we compute the probability of measuring a bitstring $|b\rangle = |b_1 \cdots b_n\rangle$ as

Pr [measuring
$$b$$
] = $\langle b | \sigma'' | b \rangle = \langle b_1 \cdots b_n | \sigma'' | b_1 \cdots b_n \rangle$
= $\frac{1}{2} \left(\frac{1}{2^n} + \frac{1}{2^n} \right) = \frac{1}{2^n}$ (12)

Therefore, the probability distributions are different.

3 Bloch Sphere

Question 3.1

Question. Give two different decompositions of the 1-qubit mixed state

$$\rho = \begin{bmatrix} \cos^2(\pi/8) & 0\\ 0 & \sin^2(\pi/8) \end{bmatrix}$$

as a mixture of two pure states. Show your work. What do these decompositions correspond to physically? Draw a 2D-sketch of the Bloch sphere to aid your explanation.

Solution. One trivial decomposition for the given state ρ is $\cos^2 \pi/8$ probability of having the $|0\rangle$ state and $\sin^2 \pi/8$ probability of measuring the $|1\rangle$ state.

Now, for obtaining a second possible decomposition, we compute the coefficients of ρ in the generalised representation of any state in the Bloch sphere. We have

$$\rho = \frac{1}{2} \left(\mathbf{I} + x \mathbf{X} + y \mathbf{Y} + z \mathbf{Z} \right)$$

$$\implies \cos^{\pi} / 8 = 1 + z, \sin^{2} \pi / 8 = 1 - z, x + iy = 0, x - iy = 0$$

$$\implies z = 2 \cos^{2} \pi / 8 - 1 = \cos \pi / 4 = \frac{1}{\sqrt{2}}, x = y = 0$$
(13)

Therefore, the state ρ is on the Z axis with the z coordinate of $\frac{1}{\sqrt{2}}$. Now, let us try to decompose the state with one state as the $|+\rangle$ state (this has coordinates (1,0,0)). Now, let us assume that the other state $|\psi\rangle$ will have coordinates (x,y,z). We can write ρ in terms of density matrices given by $|+\rangle$ and $|\psi\rangle$ as

$$\rho = p \mid + \rangle \langle + \mid + (1 - p) \mid \psi \rangle \langle \psi \mid, \text{ where } p \text{ is the probability of the } \mid + \rangle \text{ state}$$

$$\Longrightarrow \left(0, 0, \frac{1}{\sqrt{2}}\right) = p(1, 0, 0) + (1 - p)(x, y, z)$$

$$\Longrightarrow 0 = p + (1 - p)x, 0 = (1 - p)y, \frac{1}{\sqrt{2}} = (1 - p)z$$

$$\Longrightarrow x = \frac{p}{p - 1}, y = 0, z = \frac{1}{\sqrt{2}(1 - p)} \quad (y = 0 \text{ since } p = 1 \text{ gives a contradiction})$$

$$(14)$$

Now, we also know that $x^2 + y^2 + z^2 = 1$ since $|\psi\rangle$ is a pure state and therefore, we can solve for p and we get $p = \frac{1}{4}$. Now, we can compute x and z as

$$x = \frac{-1}{3}, z = \frac{2\sqrt{2}}{3} \tag{15}$$

Therefore, we can write $|\psi\rangle$ as

$$|\psi\rangle = \frac{2\sqrt{2} - 1}{3}|0\rangle - \frac{1}{3}|1\rangle \tag{16}$$

Therefore, we have another decomposition for ρ as $|+\rangle$ with probability $\frac{1}{4}$ and $|\psi\rangle$ with probability $\frac{3}{4}$. We show the different decompositions in the Bloch sphere below

Figure 1: Bloch sphere indicating the different decompositions. The black circle indicates the position of ρ . The states in green and yellow are the states $|0\rangle$ and $|1\rangle$ respectively. The states in blue and red are the states $|+\rangle$ and $|\psi\rangle$ respectively. The lines connecting each of these pairs of states passes through ρ .

4 Separable and Entangled States

$$\begin{aligned} |\psi_1\rangle &= \frac{|00\rangle + i |01\rangle + i |10\rangle - |11\rangle}{2} \\ |\psi_2\rangle &= \frac{3}{5} |01\rangle - \frac{4}{5} |10\rangle \\ |\psi_3\rangle &= \frac{1}{\sqrt{3}} |00\rangle + \frac{1}{\sqrt{3}} |01\rangle + \frac{1}{\sqrt{6}} |10\rangle - \frac{1}{\sqrt{6}} |11\rangle \end{aligned}$$

Question 4.1

Question. Put the above states into Schmidt form:

$$|\psi\rangle = \sum_{i} \lambda_{i} |\alpha_{i}\rangle |\beta_{i}\rangle$$

In other words, find orthonormal bases $\{|\alpha_0\rangle, |\alpha_1\rangle\}$ for the first qubit and $\{|\beta_0\rangle, |\beta_1\rangle\}$ for the second qubit, such that you can write the state without cross terms $|\alpha_0\rangle |\beta_1\rangle$ or $|\alpha_1\rangle |\beta_0\rangle$. Show your work.

Hint: you should not need to use the singular value decomposition to find the Schmidt form.

Solution. We can write $|\psi_1\rangle$ as

$$|\psi_{1}\rangle = \frac{|00\rangle + i|01\rangle + i|10\rangle - |11\rangle}{2}$$

$$= \frac{1}{\sqrt{2}}|0\rangle \frac{|0\rangle + i|1\rangle}{\sqrt{2}} + \frac{i}{\sqrt{2}}|1\rangle \frac{|0\rangle + i|1\rangle}{\sqrt{2}}$$

$$= |ii\rangle$$
(17)

Therefore, for $|\psi_1\rangle$ we have the orthonormal basis $\{|i\rangle, |-i\rangle\}$ for both qubits for the Schmidt form.

 $|\psi_2\rangle$ is already in Schmidt form with the basis states $\{|0\rangle, |1\rangle\}$ for the first qubit and the basis states $\{|1\rangle, |0\rangle\}$ for the second qubit.

We can write $|\psi_3\rangle$ as

$$|\psi_{3}\rangle = \frac{1}{\sqrt{3}}|00\rangle + \frac{1}{\sqrt{3}}|01\rangle + \frac{1}{\sqrt{6}}|10\rangle - \frac{1}{\sqrt{6}}|11\rangle$$

$$= \sqrt{\frac{2}{3}}|0+\rangle + \sqrt{\frac{1}{3}}|1-\rangle$$
(18)

Therefore, for $|\psi_3\rangle$ we have the orthonormal basis $\{|0\rangle, |1\rangle\}$ for the first qubit and $\{|+\rangle, |-\rangle\}$ for the second qubit for the Schmidt form.

Question 4.2

Question. Calculate how many ebits of entanglement each of these states have. Please show your work/justify your reasoning for each of your answers. (Keep in mind, this answer need

not be an integer.)

Solution. $|\psi_1\rangle$ has an entanglement entropy of 0 since its Schmidt coefficients are 1 and all others are 0. Therefore, all terms would be 0 and hence the sum would also be 0.

We can compute the entanglement entropy of $|\psi_2\rangle$ as

$$E[|\psi_2\rangle] = -\left(\frac{3}{5}\right)^2 \log_2\left(\frac{3}{5}\right)^2 - \left(\frac{4}{5}\right)^2 \log_2\left(\frac{4}{5}\right)^2 \approx 0.942$$
 (19)

We can compute the entanglement entropy of $|\psi_3\rangle$ as

$$E[|\psi_3\rangle] = -\left(\frac{2}{3}\right)\log_2\left(\frac{2}{3}\right) - \left(\frac{1}{3}\right)\log_2\left(\frac{1}{3}\right) \approx 0.918 \tag{20}$$

Question 4.3

Question. For each of the states you found with non-zero entanglement entropy in part (b), show explicitly that there exists no factorization of the states into a tensor product of two single qubit states.

Proof. Note: After solving Question 5.1, an easy way to solve this question would be to just show that we have multiple non-zero Schmidt coefficients [the eigenvalues], thus implying that there exists no factorization of the states into a tensor product of two single qubit states since they are entangled. But since I had already solved this part before that, I am leaving the solution below unchanged.

Let us assume that we can decompose $|\psi_2\rangle$ into a tensor product of two single qubit states. Therefore, we can write

$$|\psi_{2}\rangle = (a_{1} |0\rangle + b_{1} |1\rangle) \otimes (a_{2} |0\rangle + b_{2} |1\rangle)$$

$$= a_{1}a_{2} |00\rangle + a_{1}b_{2} |01\rangle + b_{1}a_{2} |10\rangle + b_{1}b_{2} |11\rangle$$

$$\implies \frac{3}{5} = a_{1}b_{2}, -\frac{4}{5} = b_{1}a_{2}, \quad a_{1}a_{2} = b_{1}b_{2} = 0$$
(21)

On solving these equations, we get a contradiction on applying the condition that the states are normalized. Therefore, $|\psi_2\rangle$ cannot be factorized into a tensor product of two single qubit states.

Similarly, let us assume that we can decompose $|\psi_3\rangle$ into a tensor product of two single qubit states. Therefore, we can write

$$|\psi_{3}\rangle = (a_{1}|0\rangle + b_{1}|1\rangle) \otimes (a_{2}|0\rangle + b_{2}|1\rangle)$$

$$= a_{1}a_{2}|00\rangle + a_{1}b_{2}|01\rangle + b_{1}a_{2}|10\rangle + b_{1}b_{2}|11\rangle$$

$$\Rightarrow \frac{1}{\sqrt{3}} = a_{1}a_{2}, \frac{1}{\sqrt{3}} = a_{1}b_{2}, \frac{1}{\sqrt{6}} = b_{1}a_{2}, -\frac{1}{\sqrt{6}} = b_{1}b_{2}$$
(22)

Similarly, on solving these equations and enforcing the normality constraint, we arrive at a contradiction. Therefore, $|\psi_3\rangle$ cannot be factorized into a tensor product of two single qubit states.

5 Entanglement and Mixed States

Question 5.1

Question. Suppose Alice has n qubits and Bob has n qubits of a shared 2n-qubit pure state $|\psi\rangle$. Prove that the following are equivalent:

- i. Alice and Bob's systems are entangled.
- ii. Alice's local density matrix is a mixed state.
- iii. Both local density matrices are mixed states.

Recall that to prove several properties are equivalent, you must show they each have an ifand-only-if relationship with every other. One way to make this shorter is to write a chain of proofs, like A implies B, B implies C, and C implies A.

Hint: Consider the Schmidt decomposition.

Proof. Without loss of generality, we can write the state posessed by Alice and Bob using Schmidt decomposition as

$$|\psi_A \psi_B\rangle = \sum_{i=1}^{2^n} \lambda_i |\alpha_i\rangle |\beta_i\rangle$$
, where $\{\alpha_i\}_1^{2^n}$ and $\{\beta_i\}_1^{2^n}$ are orthonormal bases vectors (23)

Now we prove $\mathbf{i} \Longrightarrow \mathbf{ii}$:

If Alice and Bob's systems are entangled, then there exists at least more than one $\lambda_i \neq 0$. Alice's local density matrix can be written as

$$\rho_A = \sum_{\lambda_i \neq 0} |\lambda_i|^2 |\alpha_i\rangle \langle \alpha_i| \tag{24}$$

Now, since we have more than one $\lambda_i \neq 0$, the density matrix ρ_A has more than one eigenvalues (since all $|\alpha_i\rangle$ are linearly independent) and hence it has a rank > 1. Therefore, Alice's local density matrix is a mixed state. Hence, $i \implies ii$.

Now we prove $ii \Longrightarrow iii$:

We can still write Alice's density matrix as written in Equation 24 (since we make no assumptions from i). Since Alice's density matrix is a mixed state, it has a rank > 1. Therefore, there exists more than one $\lambda_i \neq 0$. Bob's local density matrix can be written as

$$\rho_B = \sum_{\lambda_i \neq 0} |\lambda_i|^2 |\beta_i\rangle \langle \beta_i| \tag{25}$$

Since Bob's density matrix also has more than one non-zero eigenvalues (they share the same eigenvalues in the Schmidt decomposition), Bob's density matrix is also a mixed state. Hence, $ii \implies iii$.

Now we prove $iii \Longrightarrow i$:

Again we can still write Bob's density matrix as written in Equation 25 (since we make no assumptions from ii). Since Bob's density matrix is a mixed state, it has a rank > 1.

Therefore, there exists more than one $\lambda_i \neq 0$. Therefore, the original state $|\psi_A \psi_B\rangle$ has more than one λ_i that are non-zero. This implies that the original state is entangled. Hence, $iii \implies i$.

Thus, we have shown that $i \iff ii \iff iii$. Hence, proved.