AI 인공지능 개발과정

인공지능, 머신러닝, 딥러닝의 이해

(주) 뤼이드

송호연 이사

목차

- 인공지능, 머신러닝, 딥러닝의 이해
 - 5-1. 인공지능
 - 5-2. 머신러닝
 - 5-3. 딥러닝
 - 5-4. Scikit-Learn을 활용한 머신러닝 실습

학습목표

- 인공지능, 머신러닝, 딥러닝의 이해
 - 01. 인공지능에 대해 이해한다.인공지능 개념과 유형에 대해 알아보자
 - 02. 머신러닝에 대해 이해한다. 머신러닝 개념과 유형에 대해 알아보자
 - 03. 딥러닝에 대해 이해한다. 딥러닝 개념과 성공이유에 대해 알아보자
 - 04. Scikit-Learn 실습을 통해 머신러닝을 이해한다. 실습을 통해 머신러닝을 이해한다.

인공지능, 머신러닝, 딥러닝

인공지능 정의

인공지능 유형

인공지능(Artificial Intelligence, AI)는 "지능형 소프트웨어"를 의미합니다.

0

인공지능, 머신러닝, 딥러닝

인공지능, 머신러닝, 딥러닝

인공지능은 사람의 지능을 모방하여 사람이 하는 것과 같이 복잡한 일을

할 수 있는 기계를 만드는 것을 말한다.

보편적으로 인공지능이 가장 넓은 개념이고, 인공지능을 구현하는 방법 중

ARTIFICIAL INTELLIGENCE
Early artificial intelligence stirs excitement.

MACHINE LEARNING
Machine learning begins to flourish.

DEEP LEARNING
Deep learning breakthroughs drive Al boom.

출처: https://blogs.nvidia.co.kr/2016/08/03/difference_ai_learning_machinelearning/, https://brunch.co.kr/@gdhan/10

인공지능이란

인공지능 이라는 용어는 1956년 존 매카시(John McCarthy)가 '인텔리전트한 기계를 만드는

과학과 공학(The science and engineering of making intelligent machines)이라고

인공지능 정의

인공지능의 개념이 혼란스러운 이유는 인공지능의 정의가 명확하지 않기 때문이다.

'인공지능 - 현대적접근(Artificial Intelligence-A Modern Approach)에서는 네가지 관점에서

인간처럼 생각하는	인간처럼 행동하는
New effort to make computers think.	The art of creating machines that perform functions that require intelligence when performed by people.
이성적으로 생각하는	이성적으로 행동하는
The study of the computations that make it possible to perceive, reason, and act.	Computational Intelligence is the study of the design of intelligent agent.

출처 : https://www.artificial-solutions.com/blog/homage-to-john-mccarthy-the-father-of-artificial-intelligence, https://brunch.co.kr/@gdhan/10

인공지능 4가지 유형

'인공지능과 딥러닝' 이라는 책에 인공지능의 **4**가지 유형이 나온다.

[레벨1] 단순한 제어 프로그램	[레벨2] 패턴이 다양한 고전적 인공지능
단순한 제어 프로그램 탑재 제품을 마케팅적으로 '인공지능 탑재'라 광고 (세탁/청소)	입력과 출력 관계를 맺는 방법의 수가 극단적으로 많고 세련된 경우 (탐색/추론, 지식베이스 활용)
[레벨3] 머신러닝을 받아들인 인공지능	[레벨4] 딥러닝을 받아들인 인공지능
데이터를 바탕으로 학습되는 기계학습 알고리즘 이용 (레벨2+기계학습 -> 레벨3)	기계학습을 할 때 입력값의 특징(Feature) 을 사람이 입력하지 않고 기계가 직접 학습하여 Feature를 추출

출처 : https://brunch.co.kr/@gdhan/1

머신러닝 정의

머신러닝 유형

머신러닝 정의

머신러닝 정의에는 머신러닝 용어를 만든 아서 사무엘의 **1959**년 정의와 톰 미첼의 **1998**년 정의가 있으며, 최근에는 톰 미첼의 정의가 많이 쓰인다.

아서 사무엘(Arthur Lee Samuel)은 머신러닝을 '컴퓨터가 명시적으로 프로그램되지 않고도 학습할 수 있도록 하는 연구분야' 라고 정의했다.

일반 프로그램 머신러닝 프로그램 다음 수식을 계산한 결과는? □와 △에 들어갈 정수는? 문제 조건 B - 입력 A: 숫자 -3x2 =- 조건 B : 곱하기x -4x-3 =Ⅰ - 동작 X : 숫자를 $5 \times \Box + 5 \times 4 = 0$ □ = 1 -5x8 =곱해서 결과 출력 $8 k \Box + 3 k \triangle = 5$ $\triangle = -1$ -7x-6 =

출처: https://brunch.co.kr/@gdhan/1

머신러닝 정의

톰 미첼(tom Mitchell)은 '만약 어떤 작업 T에서 경험 E를 통해 성능 측정 방법인 P로 측정했을 때 성능이 향상된다면 이런 컴퓨터 프로그램은 학습을 한다고 말한다.

□와 △에 들어갈 정수는?

- $3 \times \Box + 2 \times \triangle = 1$ - $1 \times \Box + 4 \times \triangle = -3$ - $5 \times \Box + 5 \times \triangle = 0$

 $-8x - 3x \triangle = 5$

[작업T] □와 △구하기 [성능P] 수식이 정확할 확률 [경험E] 입력값 (3,2) (1,4) (5,5)(8,3)를 입력, 출력값 1, -3, 0, 5를 도출하도록 학습 - 학습: 경험 E를 통해 가중치 (□=1,△=-1)를 찾는것

출처: https://brunch.co.kr/@gdhan/1

전통적인 소프트웨어 개발 방법 (1)

```
MAXIMUM = 10

4 is ok

13 is too high

10 is ok

11 print "x > MAXIMUM

10 print "x > Sx is too high"

11 print "x > Sx is too high"

12 is ok

13 is too high

15 ok

16 print "x > Sx is too high

17 print "x > Sx is ok"

18 print "x > Sx is ok"

19 print "x > Sx is ok"

10 print "x > Sx is ok"

10 print "x > Sx is ok "

11 print "x > Sx is ok "

12 print "x > Sx is ok "

13 print "x > Sx is ok "

14 print "x > Sx is ok "

15 print "x > Sx is ok "

16 print "x > Sx is ok "

17 print "x > Sx is ok "

18 print "x > Sx is ok "

19 print "x > Sx is ok "

10 print "x > Sx is ok "

11 print "x > Sx is ok "

12 print "x > Sx is ok "

13 print "x > Sx is ok "

14 print "x > Sx is ok "

15 print "x > Sx is ok "

16 print "x > Sx is ok "

17 print "x > Sx is ok "

18 print "x > Sx is ok "

19 print "x > Sx is ok "

10 print "x > Sx is ok "

11 print "x > Sx is ok "

12 print "x > Sx is ok "

13 print "x > Sx is ok "

14 print "x > Sx is ok "

15 print "x > Sx is ok "

16 print "x > Sx is ok "

17 print "x > Sx is ok "

18 print "x > Sx is ok "

19 print "x > Sx is ok "

10 print "x > Sx is ok "

10 print "x > Sx is ok "

11 print "x > Sx is ok "

12 print "x > Sx is ok "

13 print "x > Sx is ok "

14 print "x > Sx is ok "

15 print "x > Sx is ok "

16 print "x > Sx is ok "

17 print "x > Sx is ok "

18 print "x > Sx is ok "

19 print "x > Sx is ok "

10 print "x > Sx is ok "

10 print "x > Sx is ok "

11 print "x > Sx is ok "

12 print "x > Sx is ok "

13 print "x > Sx is ok "

14 print "x > Sx is ok "

15 print "x > Sx is ok "

16 print "x > Sx is ok "

17 print "x > Sx is ok "

18 print "x > Sx is ok "

19 print "x > Sx is ok "

10 print "x > Sx is ok "

10 print "x > Sx is ok "

11 print "x > Sx is ok "

12 print "x > Sx is ok "

13 print "x > Sx is ok "

14 print "x > Sx is ok "

15 print "x > Sx is ok "

16 print "x > Sx is ok "

17 print "x > Sx is ok "

18 print "x > Sx is ok
```

출처: https://books.google.co.kr/books/about/Become_an_AI_Company_in_90_Days.html?id=esb5uwEACAAJ&redir_esc=y

머신러닝 정의

머신러닝은 소프트웨어를 만드는 다른 방법입니다. 머신러닝(machine learning) 엔지니어는 데이터를 사용하여 모델(또는 알고리즘)에게 특정 작업 수행 방법을 가르칩니다.

머신러닝 정의

1단계

개발자가 학습 데이터를 전달받습니다. 누군가가 개발자에게 프로그램이 어떻게 동작해야 한다는 예시가 담겨있는 데이터를 전달합니다.

Example model input	Desired model output
7	OK
11	Too high
34	Too high
10	OK
9	OK

Example model input	Desired model output
17	Too high
-78	OK
0	OK
1	OK
18	Too high

출처 : https://books.google.co.kr/books/about/Become_an_AI_Company_in_90_Days.html?id=esb5uwEACAAJ&redir_esc=y

머신러닝 정의

2단계

개발자는 작업을 수행할 수 있도록 알고리즘을 학습시킵니다. 처음에는 모델이 예측에 계속 실패하지만, 개발자가 더 많은 데이터를

보여줄 수록,

머신러닝 모델은 점차적으로 성능이 좋아집니다.

Example Model input	Desired Model output	Algorithm prediction	feedback
7	OK	Too high	Wrong
11	Too high	Too high	Corret

출처: https://books.google.co.kr/books/about/Become_an_AI_Company_in_90_Days.html?id=esb5uwEACAAJ&redir_esc=y

머신러닝 정의

3단계

개발자는 소프트웨어를 배포합니다.

결국 알고리즘은 충분한 데이터를 통해 학습하여 좋은 결과를 내기 시작합니다.

이제 개발자가 소프트웨어를 배포할 수 있습니다.

머신러닝 정의

	전통적인 소프트웨어 개발	머신러닝 소프트웨어 개발
개발 접근법	개발자는 명시적으로 컴퓨터에게 해야 할 일을 알려줘야 합니다.	개발자는 데이터를 통해서 특정 작업을 수행하도록 알고리즘을 학습시킵니다.
데이터 요구사항	데이터가 거의 필요하지 않습니다. 인간이 직접 데이터로부터 논리를 만들어냅니다.	프로젝트의 성공이 데이터의 품질과 양에 크게 의존하고 있습니다.
적응력	환경이 변했을 때 소프트웨어 디자인을 다시 해야 합니다.	새로운 환경이 오더라도 새로운 데이터를 보여주면 적응합니다.

머신러닝 유형

머신러닝은 다음과 같은 지도학습, 비지도학습, 강화학습의 세 가지 종류가 있다.

- 지도학습(Supervised Learning)
 - · 입력과 결과값을 이용한 학습
 - · 분류(Classification), 회귀(Regression)
 - · (학습모델)SVM, Decision Tree, kNN, 선형/로지스틱 회귀
- 비지도학습(Unsupervised Learning)
 - · 입력만을 이용한 학습
 - · 군집화(Clustering), 압축(Compression)
 - · (학습모델) K-means 클러스터링
- 강화학습(Reinforcement Learning)
- · 결과값 대신 리워드(reward) 주어짐
- · Action Selection, Policy Learning
- · (학습모델) MDP(Markov Decision Process)

출처: https://brunch.co.kr/@gdhan/1

딥러닝 개념

딥러닝 성공 이유

딥러닝 개념

딥러닝은 인간의 뇌 신경망을 모방한 인공신경망의 한 종류이다.

인간의 뇌는 1000억 개가 넘는 신경세포가 100조 개 이상의 시냅스를 통해 병렬적으로 연결되어 있다

각각의 뉴런은 가지돌기를 통해 다른 뉴런에서 입력 신호를 받아서 축삭돌기를 통해

다른 뉴런으로 신호를 내보낸다. 시냅스는 뉴런과 뉴런을 연결하는 역할을 한다.

추러시를 느 이러디 시를가 이저희 유라이 H 이서 때 일어난다.

출처: https://brunch.co.kr/@gdhan/1

딥러닝 개념

인공신경망 뉴런 모델은 <mark>생물학적인 뉴런을</mark> 수학적으로 모델링<mark>한 것이다.</mark>

즉 생물학적인 뉴런이 전 페이지 그림과 같이 다른 여러개의 뉴런으로부터

입력 값을 받아서 세포체에 저장하다가 <mark>자신의 용량을 넘어서면 외부로 출력 값</mark>을 내보내는 것처럼,

인공신경망 뉴런은 여러 입력 값을 받아서 일정 수준이 넘어서면 활성화되어 출력 값을

Neuron model:

출처: https://brunch.co.kr/@gdhan/1

○ 딥러닝 개념

인공신경망은 수학적으로 모델링된 인공 뉴런들을 여러개 쌓아서 만들 수 있다.

아래 그림들과 Layer1(입력층), Layer2(은닉층), Layer3(출력층)로 구성된 인공신경망이다.

이리 모델은 이고 내려면에 나는 단층 퍼셉트론(Multi-Layer Perceptron)이라고 한다.

출처: https://brunch.co.kr/@gdhan/1

딥러닝의 성공 이유

딥러닝이 최근 유행한 데는 크게 세가지 요인이 있다.

대 알고리즘 BIG data H/W 발달 기존 신경망 한계 극복 + 풍부한 학습데이터 + 등력향상 (신경망 계산량↑)

출처 : https://brunch.co.kr/@gdhan/1

Scikit-Learn을 활용한 머신러닝 실습

Scikit-Learn을 활용한 머신러닝 실습

이 머신러닝 실습

Colab 에서 머신러닝 실습을 진행하겠다.

보스턴 주택 가격 데이터로 회귀 모델을 만들어 보겠다.

출처 : https://link.chris-chris.ai/ai-lecture-5

Scikit-Learn을 활용한 머신러닝 실습

이 머신러닝 실습

https://link.chris-chris.ai/ai-lecture-5

짚어보기

- 인공지능, 머신러닝, 딥러닝의 이해
 - 01. 인공지능에 대해 이해한다.인공지능 개념과 유형에 대해 알아보자
 - 02. 머신러닝에 대해 이해한다. 머신러닝 개념과 유형에 대해 알아보자
 - 03. 딥러닝에 대해 이해한다.딥러닝 개념과 성공이유에 대해 알아보자
 - 04. scikit-learn 실습을 통해 머신러닝을 이해한다.

AI 인공지능 개발과정

인공지능, 머신러닝, 딥러닝의 이해

(주) 뤼이드

송호연 이사

AI 인공지능 개발 과정 온라인 교육 콘텐츠

감사합니다.

THANKS FOR WATCHING

