12. Слабка топологія і слабка збіжність

Ми розглянули поняття сильної топології і сильної збіжності в нормованому просторі E, а також сильної топології і сильної збіжності в спряженому просторі E^* . Ці топології та поняття збіжності спиралися на поняття норми. Розглянемо відповідні поняття слабкої топології і слабкої збіжності в нормованих просторах E і E^* .

Озн. 12.1. Слабкою топологією в просторі E^* називається топологія, визначена локальною базою нуля, тобто сукупністю множин

$$U_{f_1,...,f_n,\varepsilon} = \left\{ x \in L : \left| f_i(x) \right| < \varepsilon, i = 1, 2, ..., n \right\},$$

 $\partial e = f_1, f_2, ..., f_n$ — скінченна сукупність неперервних функціоналів, а \mathcal{E} — довільне додатне число.

Лема 12.1. Слабка топологія слабкіша за вихідну топологію простору L.

Доведення. Розглянемо скінчену сукупність неперервних функціоналів $f_1, f_2, ..., f_n$ і довільне додатне число ε . Тоді внаслідок неперервності функціоналів $f_1, f_2, ..., f_n$ множина $U_{f_1, ..., f_n, \varepsilon}$ ε відкритою в вихідній топології простору L, оскільки прообразом відкритої множини при неперервному відображенні ε відкрита множина, і містить нуль, тобто ε околом нуля, оскільки ці функціонали ε лінійними. Перетин двох таких околів сам містить множину точок, в яких скінченна кількість функціоналів за модулем менше ε , отже, виконується критерій локальної бази. Оскільки нова топології, вона ε слабкішою. \blacksquare

Зауваження 12.1. Слабка топологія ϵ найменшою з усіх топологій, в яких ϵ неперервними всі лінійні функціонали, неперервні у природній топології простору.

Зауваження 12.2. У нормованому просторі слабка топологія задовольняє аксіому T_2 , але може не задовольняти першу аксіому зліченності, отже, вона не описується за допомогою збіжних послідовностей.

Озн. 12.2. Послідовність $\{x_n\}_{n=1}^{\infty}$ називається **слабко збіжною**, якщо вона ϵ збіжною в слабкій топології.

Лема 12.2. Послідовність $\{x_n\}_{n=1}^{\infty}$ елементів лінійного топологічного простору L є слабко збіжною до $x_0 \in L$ тоді і лише тоді, коли для будь-якого неперервного лінійного функціонала f на L числова послідовність $f(x_n)$ збігається до $f(x_0)$.

Доведення. Необхідність. Не обмежуючи загальності, розглянемо випадок, коли $x_0=0$. Якщо для будь-якого околу $U_{f_1,\dots,f_k,\varepsilon}$ в слабкій топології існує таке число N, що $x_n\in U_{f_1,\dots,f_k,\varepsilon}$ для всіх $n\geq N$, то ця умова виконується і для околу $U_{f,\varepsilon}$, де $f\in L^*$ — довільний фіксований функціонал, а це означає, що $f\left(x_n\right)\to 0$ при $n\to\infty$.

Достатність. Припустимо, що $f(x_n) \to 0$ для будь-якого $f \in L^*$. Тоді ця умова виконується і для всіх функціоналів $f_i \in L^*, i=1,2,...,k$, що визначають довільний окіл в слабкій топології:

$$U_{f_{i},f_{2},...,f_{k},\varepsilon} = \left\{ x \in L : \left| f_{i}(x) \right| < \varepsilon, i = 1,2,...,k \right\}.$$

Виберемо числа N_i так, щоб $\left|f_i(x_n)\right| < \varepsilon$ при $n \ge N_i$ і покладемо $N = \max_{i=1,\dots,k} N_i$. Отже, при всіх $n \ge N$ виконується умова $x_n \in U$. Це означає, що послідовність $\left\{x_n\right\}_{n=1}^{\infty}$ збігається в слабкій топології.

Лема 12.3. Будь-яка сильно збіжна послідовність ϵ слабко збіжною, але не навпаки.

Доведення. Відповідно до леми 12.1, слабка топологія слабкіша за вихідну топологію лінійного топологічного простору, тому будь-яка послідовність, що збігається в сильній топології, буде збігатися і в слабкій.

Обернене твердження ϵ невірним, тому що, наприклад, в просторі l_2 послідовність ортів $e_n = (0,0,...,0,1,0,...)$ слабко збігається до нуля, але не збігається до нуля сильно.

Розглянемо поняття слабкої збіжності в нормованому просторі E .

Теорема 12.1. Якщо послідовність $\{x_n\}_{n=1}^{\infty}$ слабко збігається в нормованому просторі E, то існує така константа C, що

$$||x_n|| \leq C$$
,

тобто будь-яка слабко збіжна послідовність в нормованому просторі ϵ обмеженою.

Доведення. Розглянемо в просторі E^* множини

$$A_{kn} = \{ f \in E^* : |f(x_n)| \le k \}, k, n = 1, 2, \dots$$

Оскільки при фіксованому x_n функціонали $\varphi_{x_n}(f) = f(x_n)$ є неперервними (лема 11.2), множини A_{kn} є замкненими.

Дійсно,

$$f_m \to f$$
, $f_m \in A_{kn} \Rightarrow \varphi_{x_n}(f_m) = f_m(x_n) \le k \Rightarrow f(x_n) \le k$.

Отже, множина

$$A_k = \bigcap_{n=1}^{\infty} A_{kn}$$

 ϵ замкненою. Оскільки послідовність $\{x_n\}_{n=1}^{\infty}$ збігається слабко, послідовність $\varphi_{x_n}(f)$ ϵ обмеженою для кожного $f \in E^*$. Дійсно,

$$x_n \xrightarrow{w} x \Rightarrow \varphi_{x_n}(f) = f(x_n) \rightarrow f(x) \Rightarrow \exists k > 0 : |f(x_n)| \le k$$
.

Отже, будь-який функціонал $f \in E^*$ належить деякій множині A_k , тобто

$$E^* = \bigcup_{k=1}^{\infty} A_k .$$

Оскільки простір E^* є повним (теорема 11.3), то за теоремою Бера хоча б одна з множин A_k , наприклад, A_{k_0} повинна буди щільною в деякій кулі $S(f_0, \varepsilon)$. Оскільки множина A_{k_0} є замкненою, це означає, що

$$S(f_0,\varepsilon)\subset \overline{A}_{k_0}=A_{k_0}$$

Звідси випливає, що послідовність $\left\{ \varphi_{x_n}\left(f\right) \right\}_{n=1}^{\infty}$ є обмеженою на кулі $S\left(f_0, \epsilon\right)$, а значить, на будь-якій кулі в просторі E^* , оскільки E^* є лінійним топологічним простором. Зокрема, це стосується одиничної кулі. Таким чином, послідовність $\left\{ x_n \right\}_{n=1}^{\infty}$ є обмеженою як послідовність елементів з E^{**} . Оскільки природне відображення $\pi: E \to E^{**}$ є ізометричним, це означає обмеженість послідовності $\left\{ x_n \right\}_{n=1}^{\infty}$ в просторі E.

Теорема 12.2. Послідовність $\{x_n\}_{n=1}^{\infty}$ елементів нормованого простору E слабко збігається до $x \in E$, якщо

- 1) значення $\|x_n\|$ ϵ обмеженими в сукупності деякою константою M ;
- 2) $f(x_n) \to f(x)$ для будь-яких функціоналів f, що належать множині, лінійні комбінації елементів якого скрізь щільними в E^* .

Доведення. Із умови 2) і властивостей операцій над лінійними функціоналами випливає, що якщо φ — лінійна комбінація функціоналів f, то

$$\varphi(x_n) \to \varphi(x)$$
.

Нехай φ — довільний елемент з E^* і $\{\varphi_k\}_{k=1}^\infty$ — сильно збіжна до φ послідовність лінійних комбінацій із функціоналів f, тобто $\|\varphi_k - \varphi\| \to 0$ (вона завжди існує внаслідок щільності). Покажемо, що $\varphi(x_n) \to \varphi(x)$.

Нехай M задовольняє умову

$$||x_n|| \le M$$
, $n = 1, 2, ...$ i $||x|| \le M$.

Оскільки $\varphi_{\scriptscriptstyle k} o \varphi$, то

$$\forall \varepsilon > 0 \ \exists K \in \mathbb{N} : \forall k \ge K \ \|\varphi - \varphi_k\| < \varepsilon.$$

3 цього випливає, що

$$\begin{aligned} \left| \varphi(x_n) - \varphi(x) \right| &\leq \left| \varphi(x_n) - \varphi_k(x_n) \right| + \left| \varphi_k(x) - \varphi(x) \right| + \left| \varphi_k(x_n) - \varphi_k(x) \right| \leq \\ &\leq \left\| \varphi - \varphi_k \right\| M + \left\| \varphi - \varphi_k \right\| M + \left| \varphi_k(x_n) - \varphi_k(x) \right| \leq \\ &\leq \varepsilon M + \varepsilon M + \left| \varphi_k(x_n) - \varphi_k(x) \right|. \end{aligned}$$

За умовою теореми, $\varphi_k(x_n) \to \varphi_k(x)$ при $n \to \infty$. Отже,

$$\varphi(x_n) - \varphi(x) \to 0$$
 при $n \to \infty \quad \forall \varphi \in E^*$.

Розглянемо поняття слабкої топології в спряженому просторі E^* . Спочатку згадаємо, що із означення 11.3 сильної топології в спряженому просторі випливає, що цю топологію можна задати за допомогою локальної бази нуля. Наведемо її еквівалентне формулювання.

Озн. 12.4. Сильною топологією в спряженому просторі E^* називається топологія, визначена локальною базою нуля, тобто сукупністю множин

$$B_{\varepsilon,A} = \{ f \in E^* : |f(x)| < \varepsilon, x \in A \subset E \},$$

де A — довільна обмежена множина в E, а ${\it E}$ — довільне додатне число.

Зауваження 12.3. Оскільки будь-яка скінченна множина є обмеженою, то слабка топологія в E^* є слабкішою, ніж сильна топологія цього простору.

Озн. 12.5. Послідовність $\{f_n\}_{n=1}^{\infty}$ називається **слабко збіжною**, якщо вона є збіжною в слабкій топології E^* , інакше кажучи, $f_n(x) \to f(x)$ для кожного $x \in E$.

Зауваження 12.4. В спряженому просторі сильно збіжна послідовність ϵ одночасно слабко збіжною, але не навпаки.

В спряженому просторі мають місце теореми, аналогічні теоремам 12.1 і 12.2.

Теорема 12.3. Якщо послідовність лінійних функціоналів $\{f_n\}_{n=1}^{\infty}$ слабко збігається на банаховому просторі E, то існує така константа C, що

$$||f_n|| \leq C$$
,

тобто будь-яка слабко збіжна послідовність простору, спряженого до банахова простору, ϵ обмеженою.

Теорема 12.4. Послідовність лінійних функціоналів $\{f_n\}_{n=1}^{\infty}$ елементів спряженого простору E^* слабко збігається до $f \in E$, якщо

- 1) послідовність $\left\|f_{n}\right\|$ ϵ обмеженою, тобто
 - $\exists C \in R^1 : ||f_n|| \le C, \ n = 1, 2, ...;$
- 2) $\varphi_x(f_n) \to \varphi_x(f)$ для будь-яких елементів x, що належать множині, лінійні комбінації елементів якого скрізь щільними в E.

Простір E^* лінійних неперервних функціоналів, заданих на просторі E, можна тлумачити і як простір, спряжений до простору E, і як основний простір, спряженим до якого є простір E^{**} . Відповідно, слабку топологію в просторі E^* можна ввести або за означенням 12.4 (через скінченні множини елементів простору E), або як в основному просторі відповідно до означення 12.1 (через функціонали із простору E^{**}). Для рефлексивних просторів це одне й теж, а для нерефлексивних просторів ми таким чином отримуємо різні слабкі топології.

- **Озн. 12.6.** Топологія в спряженому просторі E^* , що вводиться за допомогою простору E^{**} (як в означенні 12.1), називається слабкою і позначається як $\sigma(E^*, E^{**})$.
- **Озн. 12.7.** Топологія в спряженому просторі E^* , що вводиться за допомогою простору E (як в означенні 12.4), називається *-слабкою і позначається як $\sigma(E^*,E)$

Зауваження 12.5. Очевидно, що *-слабка топологія в E^* є більш слабкою, ніж слабка топологія простору E, тобто в слабкій топології не менше відкритих множин, ніж в *-слабкій топології.

Література

- 1. Садовничий В.А. Теория операторов. М.: Изд-во Моск. ун-та, 1986. с. 114–117.
- 2. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. (5-е изд.) М.: Наука, 1981. с. 192–202.