NumPy

Big Data Kristiania University College

Departamento de Automática

Objectives

- 1. Understand the limitations of plain Python in scientific computation
- 2. Introduce NumPy3. Fluent array manipulation with Numpy

Bibliography

Jake VanderPlas. Python Data Science Handbook. Chapter 2. O'Reilly. (Link).

Table of Contents

- I. Introduction
 - Understanding Data Types in Python
 - NumPy
- 2. Matrix creation and manipulation
 - Matrix creation
 - NumPy data types
 - NumPy array attributes
 - Accessing single elements
 - Accessing subarrays
 - Reshaping of arrays
 - Concatenation of arrays

- Splitting of arrays
- 3. Universal functions
 - Motivation
 - Concept
 - Arithmetic functions
 - Aggregations
 - Broadcasting
- 4. Comparisons, masks and Boolean logic
 - Motivation
- Structured arrays

Introduction

Understanding Data Types in Python (I)

```
Static typing
/* C code */
int result = 0;
for(int i=0; i<100; i++){
    result += i;
}</pre>
```

- Data types must be declared
- Data types cannot change
- Error detection in compilation
- Variables names are, basicly, labels

Dynamic typing

```
# Python code
result = 0
for i in range(100):
    result += i
```

- Data types are not declared
- Data types can change
- Error detection in run-time
- Variables are complex data structures (even for simple types)

Introduction

Understanding Data Types in Python (II)

Dynamic typing must be implemented somewhere ...

```
Python 3.4 source code

struct _longobject {
    long ob_refcnt;
    PyTypeObject *ob_type;
    size_t ob_size;
    long ob_digit[1];
};
```


Understanding Data Types in Python (III)

A Python list may contain different types

```
In [1]: L3 = [True, "2", 3.0, 4]
    ...: [type(item) for item in L3]
Out[1]: [bool, str, float, int]
```


Introduction

Understanding Data Types in Python (IV)

Standard Python data types are powerful and flexible

- Flexibility has a price: Reduced performance
- Not an big issue in generic programming
- A big issue in scientific programming
- We require efficient data manipulation mechanisms: NumPy

NumPy: Python package for numeric computation

- Efficient array implementation
- Fast mathematical functions
- Random numbers generation
- Static data types: Less flexibility

Most Python modules for AI/ML depend on NumPy, in particular

• Pandas (dataframes), Scikit-learn (ML), Seaborn (data visualization)

Introduction

NumPy

NumPy must be imported in order to be available

• Remember, you can use np? or np. <TAB>

The main component of NumPy is ndarray

- Python object
- Efficient matrix representation
- Homogeneus elements

Convention

```
^^I^^I^^Iimport numpy as np
^^I^^I^^I
```

Matrix creation

NumPy functions for array creation from lists

- Lists must contain the same type, NumPy will upcast if needed
- np.array([1, 4, 2, 5, 3])
- np.array([1, 2, 3, 4], dtype='float32'): Explicit data type
- np.array([3.14, 4, 2, 3]):Upcast

NumPy functions for array creation from scratch

- np.zeros(10, dtype=int): All zeros
- np.ones((3, 5), dtype=float):All ones
- np.full((3, 5), 3.14): Fill matrix
- np.arange(0, 20, 2): Similar to Python's range()
- np.linspace(0, 1, 5): Evenly spaced numbers
- np.random.random((3, 3)): Random numbers
- np.random.normal(0, 1, (3, 3)): Random normal numbers
- np.random.randint(0, 10, (3, 3)): Random integers
- np.eye(3): Identity matrix
- np.empty(3): Empty matrix

NumPy data types

Python is implemented in C

• Data types in NumPy are based on those in C

Two styles to declare types

- String:
 np.zeros(10,
 dtype='int16')
- NumPy object: np.zeros(10, dtype=np.int16)

ДАТА ТҮРЕ	DESCRIPTION
bool_	Boolean (True or False) stored as a byte
int_	Default integer type
intc	Identical to C
intp	Integer used for indexing
int8	Byte
int16	Integer
int32	Integer
int64	Integer
uint8	Unsigned integer
uint16	Unsigned integer
uint32	Unsigned integer
uint64	Unsigned integer
float_	Shorthand for float64
float16	Half precision float
float32	Single precision float
float64	Double precision float
complex_	Shorthand for complex128
complex64	Complex number
complex128	Complex number

NumPy array attributes

Ndarray objects expose several attributes

- ndim: Dimensions
- shape: Size of each dimension
- size: Number of elements
- dtype: Data type
- itemsize: Size of each element (in bytes)
- nbytes: Size of the array (in bytes)

```
x = np.random.randint(10, size=(3,
4))
print("x ndim: ", x.ndim)
print("x shape:", x.shape)
print("x size: ", x.size)
print("dtype:", x.dtype)
print("itemsize:", x.itemsize)
print("nbytes:", x.nbytes)
^^I^^I^I
```

Accessing single elements

Unidimensional array

• array[index]

Unidimensional array from the end

• array[-index]

Multidimensional array

• array[row,column]

Warning

Ndarray has fixed types, values can be truncaded without warning. Big source of problems!

Accessing subarrays

Slice notation can be used with ndarray

• x[start:stop:step]

Default values

- Start = 0
- Stop = Size of dimension
- Step = 1

Step may take a negative value

• Reverse order

These operations return a view

• Use copy() to get a copy

Unidimensional array

Multidimensional a rray

```
x[:2, :3] # 2 rows, 3 columns
x[:3, ::2] # all rows, every other
column
x[::-1, ::-1]
```


Reshaping of arrays

Reshaping arrays is a very common task

• Change data number of dimensions

Important ndarray method: reshape()

- Changes the dimensions of an array
- Sizes must match

Conversion of 1-D arrays into column or row matrices

- Using method reshape()
- Using the keyword np.newaxis

General reshaping

```
-D to row
```

1-D to column

```
x.reshape((3, 1))
x[:, np.newaxis]
^1^1^1
```


Concatenation of arrays

Three methods to join arrays

- np.concatenate()
- np.vstack()
- np.hstack()

```
In [1]: x = np.array([1, 2, 3])
In [2]: y = np.array([3, 2, 1])
In [3]: np.concatenate([x, y])
Out[1]: array([1, 2, 3, 3, 2, 1])
--I--I
```

```
In [1]: x = np.array([1, 2, 3])
In [2]: grid = np.array([[9, 8, 7],
                          [6, 5, 4]])
In [3]: np.vstack([x, grid])
Out [107]:
array([[1, 2, 3],
       [9, 8, 7],
       [6, 5, 411)
~~I~~I~~I
```


Splitting of arrays

np.split() ^^I^^I^^IIn [1]: x = [1, 2, 3, 99, 99, 3, 2, 1] ^^I^^I^^IIn [2]: x1, x2, x3 = np.split(x, [3, 5]) ^^I^^I^IIn [3]: print(x1, x2, x3) ^^I^I^I^III [1 2 3] [99 99] [3 2 1] ^^I^I^IIII

Three methods to split arrays

- np.split()
- np.vsplit()
- np.hsplit()

np.vstack()

Motivation

Python may be ridiculously slow

- Run-time type checks and function dispatching
- Evident when an operation is repeated over a collection of data

```
Performance test

def compute_reciprocals(values):
    output = np.empty(len(values))
    for i in range(len(values)):
        output[i] = 1.0 / values[i]
    return output

big_array = np.random.randint(1, 100, size=1000000)
# Stardand CPython
%timeit compute_reciprocals(big_array)
# 3.59 s ± 139 ms per loop
# NumPy
%timeit (1.0 / big_array)
#5.41 ms ± 182 µs per loop
^^I^^I
```


Universal functions (II)

Concept

Vectorized operations: Functions that are aware of NumPy's static typing

- Avoid dynamic type-checking
- Loop related code pushed into the compiled layer
- Hugely improved performance
- Perform an operation with the first element and then it to the rest

In NumPy, vectorized operations are named universal functions, of ufuncs

- Regular functions
- Arrays as arguments (one or multi-dimensional)
- Operates between arrays of different sizes (broadcasting)

In order to take advantange of NumPy's performance, ufuncs must be used

Arithmetic functions (I)

NumPy makes use of Python's native arithmetic operators

- Used like regular Python operators
- Operators are wrappers for NumPy's functions

OPERATOR	Equivalent upunc	DESCRIPTION
+	np.add	Addition (e.g., $I + I = 2$)
-	np.subtract	Subtraction (e.g., $3 - 2 = 1$)
-	np.negative	Unary negation (e.g., -2)
*	np.multiply	Multiplication (e.g., $2 * 3 = 6$)
/	np.divide	Division (e.g., $\frac{3}{2} = 1.5$)
//	np.floor_divide	Floor division (e.g., $3 // 2 = 1$)
**	np.power	Exponentiation (e.g., $2 ** 3 = 8$)
%	np.mod	Modulus/remainder (e.g., $9 \% 4 = 1$)

Arithmetic functions (II)

^^T^T^T

```
x = np.arange(4)
print("x =", x)
print("x + 5 = ", x + 5)
print("x - 5 = ", x - 5)
print("x * 2 = ", x * 2)
print("x / 2 =", x / 2)
print("x // 2 =", x // 2)
                           # floor division
np.add(x, 2)
                           # array plus scalar
--I--I
```

Universal functions

```
print("-x = ", -x)
print("x ** 2 = ", x ** 2)
print("x % 2 = ", x % 2)
```

Basic functions

Absolute value

• np.absolute(x) and np.absolute(x)

Trigonometric functions

- np.sin(theta), np.cos(theta), np.tan(theta)
- np.arcsin(theta),np.arccos(theta),np.arctan(theta)

Exponents and logarithms

- np.exp(x),np.exp2(x),np.power(base, x)
- np.log(x), np.log2(x), np.log10(x)

Advanced mathematical functions

Checkout module scipy.special for exotic mathematical functions

Output as argument

- Avoid temporal variables using out argument in ufuncs
- Example: np.multiply(x, 10, out=y)

Special functions

Aggregation functions

- Applied to any ufunc
- reduce(x): Repeatedly applies an ufunc to the elements of an array until only a single result remains
- accumulate(x): Like reduce(), but it stores intermediate values
- outer(x): Compute the output of all pairs of two different inputs

```
^^I^^I^^IIn [1]: x = np.arange(1, 6)
^^I^^I^^IIn [2]: np.add.reduce(x)
^^I^^I^^IOut[1]: 15
^^T^^T^^T
```

```
^^I^^I^^IIn [1]: np.add.reduce(x)
^^I^^I^^IOut[1]: 15
~~I~~I~~I
```

```
^^I^^I^^IIn [132]:np.multiply.outer(
    x, x)
^^I^^I^^Iarray([[ 1, 2, 3, 4,
-------
               [2, 4, 6, 8,
^^T^^T^^T
               [3, 6, 9, 12,
    15].
```


Aggregations (I)

Many ufuncs to summarize data

- Basic step in exploratory data analysis
- Argument axis determines to which dimension the summary is to be applied

Function	NaN-safe version	Description
np.sum	np.nansum	Compute sum of elements
np.prod	np.nanprod	Compute product of elements
np.mean	np.nanmean	Compute mean of elements
np.std	np.nanstd	Compute standard deviation
np.var	np.nanvar	Compute standard deviation
np.min	np.nanmin	Find minimum value
np.max	np.nanmax	Find maximum value
np.argmin	np.nanargmin	Find index of minimum value
np.argmax	np.nanargmax	Find index of maximum value
np.median	np.nanmedian	Compute median of elements
np.percentile	np.nanpercentile	Compute rank-based statistics of elements
np.any	N/A	Evaluate whether any elements are true
np.all	N/A	Evaluate whether all elements are true

Universal functions: Aggregations (II)

(Download dataset)

• Use wget or curl to download the file within iPython

```
^^I import pandas as pd
^^I data = pd.read_csv('president_heights.csv')
^^I heights = np.array(data['height(cm)'])
^^I print(heights)
^^I print("Mean height: ", heights.mean())
^^I print("Standard deviation:", heights.std())
^^I print("Minimum height:
                              ", heights.min())
^^I print("Maximum height:
                              ", heights.max())
^^I print("25th percentile:
                              ", np.percentile(heights, 25))
^^I print("Median:
                              ", np.median(heights))
^^I print("75th percentile:
                              ", np.percentile(heights, 75))
--I--I
```


Aggregations (III)

```
Basic data analysis example (Continuation)

^^I^^I\^I\matplotlib inline
^^I^^I\matplotlib.pyplot as plt
^^I^^I\matplotlimport matplotlib.pyplot as plt
^^I^^I\mathred{Import seaborn; seaborn.set() # set plot style

^^I^^I\mathred{Import seaborn; seaborn.set() # set plot style

^^I^^I\mathred{Import seaborn; seaborn.set() # set plot style

^^I\mathred{Import inport seaborn; seaborn.set() # set plot style

^^I\mathred{Import inport seaborn; seaborn.set() # set plot style

^^I\mathred{Import inport inport
```


Broadcasting (I)

Broadcasting is a mechanism to operate over arrays of different sizes

- Used in ufuncs
- Implicit array expansion through three rules

Broadcasting rules

- I. Rule I: If the two arrays differ in their number of dimensions, the shape of the one with fewer dimensions is padded with ones on its leading (left) side.
- 2. Rule 2: If the shape of the two arrays does not match in any dimension, the array with shape equal to I in that dimension is stretched to match the other shape.
- 3. Rule 3: If in any dimension the sizes disagree and neither is equal to 1, an error is raised.

Broadcasting (II)

$$np.ones((3,3)) + np.arange(3)$$

np. arange(3).reshape((3,1))+np. arange(3)

Array expansion does not consume memory!

Broadcasting (III)

Normalization

```
^^I^^I^^IX = np.random.random((10, 3))
^^I^^I^^IXmean = X.mean(0)
^^I^^I^^IX_centered = X - Xmean
^^I^^I^^I
```

3D plot

Comparisons, masks and Boolean logic

00000

Comparisons, masks and Boolean logic

Motivation (I)

(Download dataset)

```
Example

Interport numpy as np
Interport pandas as pd

Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches
Interport pandas to extract rainfall inches
Interport pandas to extract rainfall inches
Interport pandas as pd
Interport pandas to extract rainfall inches as a ndarray
Interport pandas as pd
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inches as a ndarray
Interport pandas to extract rainfall inche
```

Comparisons, masks and Boolean logic

00000

Comparisons, masks and Boolean logic

Motivation (II)

Data filtering is a recurrent task

- How many rainy days were there in the year?
- What is the average precipitation on those rainy days?
- How many days were there with more than half an inch of rain?

Two filtering methods in NumPy

- Boolean arrays masks
- Fancy indexing

Boolean arrays masks (I)

We've seen arithmetic ufuncs ...

- ... but they also support comparison and boolean operations
- Return an array of booleans

Operator	Ufunc
==	np.equal
!=	np.not_equal
<	np.less
<=	np.less_equal
>	np.greater
>=	np.greater_equal

Ufunc
np.bitwise_and
np.bitwise_or
np.bitwise_xor
np.bitwise_not

Comparisons, masks and Boolean logic

00000

Comparisons, masks and Boolean logic

Boolean arrays masks (II)

```
^^I^^I^^I^^Iprint(x)
^^I^^I^^I^^I[[5, 0, 3, 3]
^^I^^I^^I^^I [7, 9, 3, 5]
^^I^^I^^I^^I [2, 4, 7, 6]]
^^I^^I^^I^^Inp.count_nonzero(x < 6) # Returns 8
^^I^^I^^I^^Inp.sum(x < 6) # Returns 8</pre>
^^I^^I^^I^^Inp.sum(x < 6, axis=1) # By row, returns
      array([4,2,2])
^^I^^I^^I^^Inp.any(x > 8) # Returns True
^^I^^I^^I^^Inp.any(x < 0) # Returns False
^^I^^I^^I^^Inp.all(x < 10) # Returns True
^1^1^1^1^1^1^1 Inp.sum(^((inches <= 5) \mid (inches >= 1))
COTCOTOCT
```

Comparisons, masks and bo

Fancy indexing

So far we've seen three accessing methods

- Simple indices (x [1])
- Slices (x [:5])
- Boolean masks (x [x>0])

Fancy indexing: Pass arrays on indices instead of scalars

Example

```
^\[\text{Inition}\]\text{inition} = rand.randint(100, size=10)
\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{inition}\[\text{inition}\]\text{init
```

The shape of the result reflects the shape of the index arrays rather than the shape of the array being indexed

Structured arrays (I)

Some times, we need to group data

- Example: Store name, age and weight of several people
- Different data types for each attribute

```
Non-structured array

^^I^^I^^Iname = ['Alice', 'Bob', 'Cathy', 'Doug']

^^I^^I^^Iage = [25, 45, 37, 19]

^^I^^I^^Iweight = [55.0, 85.5, 68.0, 61.5]

^^I^^I
```

Solution: Structured arrays

Structured arrays (II)

```
Structured array manipulation

\[
\text{array manipulation} \\
\text{array
```

These kind of structures are day-to-day used

• Pandas is a much better choice

