

Interrupção e exceção Arquitetura de Computadores

Bruno Prado

Departamento de Computação / UFS

- O que é uma interrupção?
 - É um evento criado por um <u>dispositivo de hardware</u> (interrupção) ou gerado pela <u>execução do software</u> (<u>exceção</u>) que requisita a utilização de rotinas de tratamento de interrupção (ISR)

- O que é uma interrupção?
 - É um evento criado por um <u>dispositivo de hardware</u> (interrupção) ou gerado pela execução do software (exceção) que requisita a utilização de rotinas de tratamento de interrupção (ISR)

- O que é uma interrupção?
 - É um evento criado por um dispositivo de hardware (interrupção) ou gerado pela execução do software (exceção) que requisita a utilização de rotinas de tratamento de interrupção (ISR)

- O que é uma interrupção?
 - É um evento criado por um <u>dispositivo de hardware</u> (interrupção) ou gerado pela execução do software (exceção) que requisita a utilização de rotinas de tratamento de interrupção (ISR)

- O que é uma interrupção?
 - É um evento criado por um dispositivo de hardware (interrupção) ou gerado pela execução do software (exceção) que requisita a utilização de rotinas de tratamento de interrupção (ISR)

- O que é uma interrupção?
 - É um evento criado por um dispositivo de hardware (interrupção) ou gerado pela execução do software (exceção) que requisita a utilização de rotinas de tratamento de interrupção (ISR)

- O que é uma interrupção?
 - É um evento criado por um <u>dispositivo de hardware</u> (interrupção) ou gerado pela execução do software (exceção) que requisita a utilização de rotinas de tratamento de interrupção (ISR)

- O que é uma interrupção?
 - É um evento criado por um dispositivo de hardware (interrupção) ou gerado pela execução do software (exceção) que requisita a utilização de rotinas de tratamento de interrupção (ISR)

- O que é uma interrupção?
 - É um evento criado por um dispositivo de hardware (interrupção) ou gerado pela execução do software (exceção) que requisita a utilização de rotinas de tratamento de interrupção (ISR)

▶ Por que utilizar interrupção é necessário?

- Por que utilizar interrupção é necessário?
 - Evitar a espera do processador e sem reduzir a eficiência de execução das operações

- Por que utilizar interrupção é necessário?
 - Evitar a espera do processador e sem reduzir a eficiência de execução das operações
 - Permitir o funcionamento assíncrono que evita a utilização de polling em dispositivos de E/S lentos

- Por que utilizar interrupção é necessário?
 - Evitar a espera do processador e sem reduzir a eficiência de execução das operações
 - Permitir o funcionamento assíncrono que evita a utilização de polling em dispositivos de E/S lentos

```
// Biblioteca de E/S padrão
   #include <stdio.h>
   // Função principal
   int main() {
       // Variável de nome
       char nome[50] = { 0 };
6
7
       // Mensagem de pergunta
       printf("Qual,|é,|o,|seu,|nome?\n");
       // Leitura do teclado
       scanf("%s", nome):
10
11
       // Mensagem de resposta
       printf("Oláu%s!\n", nome);
12
       // Retorno sem erros
13
14
       return 0:
15
   }
```

- Por que utilizar interrupção é necessário?
 - Evitar a espera do processador e sem reduzir a eficiência de execução das operações
 - Permitir o funcionamento assíncrono que evita a utilização de polling em dispositivos de E/S lentos

```
// Biblioteca de E/S padrão
   #include <stdio.h>
   // Função principal
   int main() {
       // Variável de nome
       char nome[50] = { 0 };
6
7
       // Mensagem de pergunta
       printf("Qual,|é,|o,|seu,|nome?\n");
8
       // Leitura do teclado
       scanf("%s", nome);
10
11
       // Mensagem de resposta
       printf("Oláu%s!\n", nome);
12
       // Retorno sem erros
13
14
       return 0:
15
   }
```

Comparativo entre tipos de interrupções

Hardware	Software
Assíncrona	Síncrona
Mascarável	Não mascarável
E/S em periféricos	Execução de operações
(envio ou recebimento	(instrução inválida ou
de dados)	divisão por zero)

- Controle de fluxo para interrupção
 - ▶ Interrupção gerada durante execução da instrução i

0x00.20	
0x00.24	
0x00.28	
	:
ì	
i + 1	
	:

- Controle de fluxo para interrupção
 - Interrupção gerada durante execução da instrução i

- Controle de fluxo para interrupção
 - Interrupção gerada durante execução da instrução i

- Controle de fluxo para interrupção
 - Interrupção gerada durante execução da instrução i

- Controle de fluxo para interrupção
 - Interrupção gerada durante execução da instrução i

- Controle de fluxo para interrupção
 - Interrupção gerada durante execução da instrução i

Evento de interrupção gerado por hardware ou software causa um desvio para ISR

- Controle de fluxo para interrupção
 - Interrupção gerada durante execução da instrução i

- Controle de fluxo para interrupção
 - Interrupção gerada durante execução da instrução i

- Controle de fluxo para interrupção
 - Interrupção gerada durante execução da instrução i

- Controle de fluxo para interrupção
 - Interrupção gerada durante execução da instrução i

- Controle de fluxo para interrupção
 - Interrupção gerada durante execução da instrução i

- Controle de fluxo para interrupção
 - Interrupção gerada durante execução da instrução i

Retorno ao fluxo anterior de execução

- Controle de fluxo para interrupção
 - Máquina de estados

Busca da próxima instrução

- Controle de fluxo para interrupção
 - Máquina de estados

Execução da operação

- Controle de fluxo para interrupção
 - Máquina de estados

Interrupções mascaráveis ficam pendentes

- Controle de fluxo para interrupção
 - Máquina de estados

É feita a checagem por interrupções pendentes

- Controle de fluxo para interrupção
 - Máquina de estados

O endereço da ISR é atribuído ao PC, caso exista alguma interrupção pendente

- Controle de fluxo para interrupção
 - Máquina de estados

Com nenhuma interrupção pendente, a próxima instrução é buscada

- Eventos de interrupção de hardware
 - São requisições assíncronas de periféricos de E/S da plataforma que solicitam do processador a execução de rotinas para realizar a transferência de dados ou para realizar ações pré-definidas pelo programador

- Eventos de interrupção de software
 - Podem ser gerados explicitamente por instruções de interrupção ou implicitamente por exceções decorrentes de operações realizadas

```
// Função principal
main:

// Interrupção de software 7

int 7

// Divisão por zero (exceção)

divi r1, r2, 0

// Instrução inválida (exceção)

.4byte 0xF0F0F0F0

// Interrupção de software 0

int 0
```

- Priorização das interrupções
 - Como as requisições são organizadas em uma fila de prioridade, é possível o aninhamento das ISRs

Fluxo principal			

- Priorização das interrupções
 - Como as requisições são organizadas em uma fila de prioridade, é possível o aninhamento das ISRs

- Priorização das interrupções
 - Como as requisições são organizadas em uma fila de prioridade, é possível o aninhamento das ISRs

- Priorização das interrupções
 - Como as requisições são organizadas em uma fila de prioridade, é possível o aninhamento das ISRs

- Priorização das interrupções
 - Como as requisições são organizadas em uma fila de prioridade, é possível o aninhamento das ISRs

- Priorização das interrupções
 - Como as requisições são organizadas em uma fila de prioridade, é possível o aninhamento das ISRs

Geralmente os menores valores de nível possuem maior prioridade (0 - máxima e *n* - mínima)

- Priorização das interrupções
 - Como as requisições são organizadas em uma fila de prioridade, é possível o aninhamento das ISRs

Geralmente os menores valores de nível possuem maior prioridade (0 - máxima e *n* - mínima)

- Priorização das interrupções
 - Como as requisições são organizadas em uma fila de prioridade, é possível o aninhamento das ISRs

Geralmente os menores valores de nível possuem maior prioridade (0 - máxima e *n* - mínima)

- Registrador de status (SR)
 - ► Índice 31

- ► Controle de interrupção (*IE*)
 - 0: Desabilitada
 - ▶ 1: Habilitado

- Registrador de status (SR)
 - ► Índice 31

- ► Controle de interrupção (*IE*)
 - 0: Desabilitada
 - 1: Habilitado

Sem efeito em interrupções não mascaráveis

- Registrador de causa de interrupção (CR)
 - ► Índice 26

Armazena o código identificador das interrupções de hardware e de software

- Registrador de endereço de interrupção (IPC)
 - ► Índice 27

Armazena o endereço da instrução onde a interrupção foi gerada ou causada

- Preparação para execução da ISR
 - Este processo se inicia antes do processador realizar a preempção do fluxo de execução
 - Os valores dos registradores CR e IPC são salvos na pilha antes de receberem o código da causa e o endereço de retorno, respectivamente
 - ► MEM[SP] = PC + 4, SP = SP 4
 - \blacktriangleright MEM[SP] = CR, SP = SP 4
 - \blacktriangleright MEM[SP] = IPC, SP = SP 4

- Operação de retorno de interrupção (reti)
 - ► Tipo F
 - \triangleright SP = SP + 4, IPC = MEM[SP]
 - \triangleright SP = SP + 4, CR = MEM[SP]
 - \triangleright SP = SP + 4, PC = MEM[SP]

Esta instrução deve ser utilizada somente para retorno de ISR

- Operação de limpeza de bit de registrador (cbr)
 - Tipo F
 - ightharpoonup R[z][x] = 0

- Operação de ajuste de bit de registrador (sbr)
 - Tipo F
 - ightharpoonup R[z][x] = 1

- Operação de interrupção de software (int)
 - ► Tipo S
 - i = 0, a simulação é finalizada
 - $i \neq 0 \rightarrow CR = i$, IPC = PC, PC = 0x0000000C

- Operação de interrupção de software (int)
 - ► Tipo S
 - ▶ i = 0, a simulação é finalizada
 - $i \neq 0 \rightarrow CR = i$, IPC = PC, PC = 0x0000000C

Não é mascarável

- ► Exceções de software
 - Instrução inválida
 - Não é mascarável
 - $V = 1, CR = IR_{31:26}, IPC = PC, PC = 0x00000004$

- Exceções de software
 - Instrução inválida
 - Não é mascarável
 - V = 1, $CR = IR_{31.26}$, IPC = PC, PC = 0x00000004
 - Divisão por zero
 - ▶ É mascarável e não fica pendente
 - $\blacktriangleright IE = 0 \rightarrow ZD = 1$
 - ► $IE = 1 \rightarrow ZD = 1$, CR = 0, IPC = PC, PC = 0x00000008

- Tabela de vetor de interrupção
 - Define o mapeamento dos endereços de ISR após a preempção do fluxo de execução

Tipo	Endereço	Mascarável	Prioridade
Inicialização	0x00000000	Não	0
Instrução inválida	0x00000004	Não	-
Divisão por zero	0x00000008	Sim	-
Software	0x000000C	Não	-
Hardware 1	0x00000010	Sim	1
Hardware 2	0x00000014	Sim	2
Hardware 3	0x00000018	Sim	3
Hardware 4	0x0000001C	Sim	4

- Controlador de interrupção
 - Determina qual dispositivo deve ter sua requisição de interrupção atendida (fila de prioridade)

- Simulando interrupções de hardware e software
 - Código de montagem

```
// Segmento de código
   .text
       // Tabela de vetor de interrupção
4
       init:
            bun main
            bun isr
6
            bun isr
            bun isr
8
            .align 5
       // Rotina de tratamento de interrupção
10
       isr:
11
            //R1 = CR
12
13
            mov r1, cr
            //R.2 = TPC
14
15
            mov r2, ipc
16
            // Retorno de TSR
17
            reti
```

- Simulando interrupções de hardware e software
 - Código de montagem

```
// Segmento de código
   .text
       // Função principal
18
       main:
19
            // SP = 32 KiB
20
            mov sp, 0x7FFC
21
            // Interrupção de software 5
22
            int 5
23
            // Habilitando interrupção (IE = 1)
24
            sbr sr[1]
25
            // Divisão por zero
26
27
            div r1, r2, r0
28
            // Instrução inválida
29
            .4byte 0xF0F0F0F0
            // Finalização de execução
30
            int 0
31
```

- Simulando interrupções de software
 - Tabela de vetor de interrupção

$$RI = O, R2 = Ox0000, CR = 0, IPC = Ox0000,$$

 $PC = Ox0000, SP = Ox0000, SR = Ox00$

- Simulando interrupções de software
 - Funções ISR e principal

$$RI = 0, R2 = 0x0000, CR = 0, IPC = 0x0000,$$

 $PC = 0x002C, SP = 0x0000, SR = 0x00$

- Simulando interrupções de software
 - Funções ISR e principal

$$RI = 0$$
, $R2 = 0$ x0000, $CR = 0$, $IPC = 0$ x0000, $PC = 0$ x0030, $SP = 0$ x1FFC, $SR = 0$ x00

- Simulando interrupções de software
 - Interrupção de software 5

$$RI = 0$$
, $R2 = 0x0000$, $CR = 5$, $PC = 0x0030$, $PC = 0x000C$, $SP = 0x1FFO$, $SR = 0x00$

- Simulando interrupções de software
 - Interrupção de software 5

$$RI = 0$$
, $R2 = 0x0000$, $CR = 5$, $PC = 0x0030$, $PC = 0x0020$, $SP = 0x1FF0$, $SR = 0x00$

- Simulando interrupções de software
 - Interrupção de software 5

$$RI = 5$$
, $R2 = 0x0000$, $CR = 5$, $IPC = 0x0030$, $PC = 0x0024$, $SP = 0x1FF0$, $SR = 0x00$

- Simulando interrupções de software
 - Interrupção de software 5

$$RI = 5$$
, $R2 = 0x0030$, $CR = 5$, $IPC = 0x0030$, $PC = 0x0028$, $SP = 0x1FF0$, $SR = 0x00$

- Simulando interrupções de software
 - Interrupção de software 5

$$RI = 5$$
, $R2 = 0x0030$, $CR = 0$, $IPC = 0x0000$, $PC = 0x0034$, $SP = 0x1FFC$, $SR = 0x00$

- Simulando interrupções de software
 - Exceção de divisão por zero

$$RI = 5$$
, $R2 = 0x0030$, $CR = 0$, $IPC = 0x0000$, $PC = 0x0038$, $SP = 0x1FFC$, $SR = 0x02$

- Simulando interrupções de software
 - Exceção de divisão por zero

$$RI = 5$$
, $R2 = 0x0030$, $CR = 0$, $IPC = 0x0038$, $PC = 0x0008$, $SP = 0x1FF0$, $SR = 0x22$

- Simulando interrupções de software
 - Exceção de divisão por zero

$$RI = 5$$
, $R2 = 0x0030$, $CR = 0$, $IPC = 0x0038$, $PC = 0x0020$, $SP = 0x1FF0$, $SR = 0x22$

- Simulando interrupções de software
 - Exceção de divisão por zero

PC = 0x0024, SP = 0x1FF0, SR = 0x22

- Simulando interrupções de software
 - Exceção de divisão por zero

$$RI = 0$$
, $R2 = 0x0038$, $CR = 0$, $IPC = 0x0038$, $PC = 0x0028$, $SP = 0x1FF0$, $SR = 0x22$

- Simulando interrupções de software
 - Exceção de divisão por zero

$$RI = 0$$
, $R2 = 0x0038$, $CR = 0$, $IPC = 0x0000$, $PC = 0x003C$, $SP = 0x1FFC$, $SR = 0x22$

- Simulando interrupções de software
 - Exceção de instrução inválida

$$RI = Ox0000$$
, $R2 = Ox0038$, $CR = Ox003C$, $IPC = Ox3C$, $PC = Ox3C$, $SP = Ox1FFC$, $SR = Ox26$

- Simulando interrupções de software
 - Exceção de instrução inválida

$$RI = Ox0000$$
, $R2 = Ox0038$, $CR = Ox003C$, $IPC = Ox3C$, $PC = Ox04$, $SP = Ox1FFO$, $SR = Ox26$

- Simulando interrupções de software
 - Exceção de divisão por zero

$$RI = OxOOOO, R2 = OxOO38, CR = OxOO3C,$$

 $IPC = Ox3C, PC = OxO4, SP = Ox1FFO, SR = Ox26$

- Simulando interrupções de software
 - Exceção de divisão por zero

$$RI = Ox003C$$
, $R2 = Ox0038$, $CR = Ox003C$, $IPC = Ox3C$, $PC = Ox04$, $SP = Ox1FFO$, $SR = Ox16$

- Simulando interrupções de software
 - Exceção de divisão por zero

RI = OxOO3C, R2 = OxOO3C, CR = OxOO3C,IPC = Ox3C, PC = OxO4, SP = Ox1FFO, SR = Ox26

- Simulando interrupções de software
 - Exceção de divisão por zero

$$RI = Ox003C$$
, $R2 = Ox003C$, $CR = Ox0000$, $IPC = Ox00$, $PC = Ox40$, $SP = Ox1FFC$, $SR = Ox26$