目次

第1章	環上の加群	2
1.1	歴史的背景と動機付け・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
	1.1.1 歴史的背景	2
	1.1.2 環論からの動機	3
	1.1.3 線型代数からの動機	3
	1.1.4 表現論からの動機	3
	1.1.5 幾何学からの動機	4
	1.1.6 代数幾何からの動機	4
1.2	定義と例	4
1.3	部分加群と生成	5
	1.3.1 部分加群	5
	1.3.2 生成された部分加群	5
	1.3.3 商加群	5
	1.3.4 ねじれ	5
1.4	加群の射	6
	1.4.1 定義と可逆性	6
	1.4.2 標準分解	6
	1.4.3 射の集合	7
1.5	加群の圏・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
1.6	直和と自由加群・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
1.7	単因子論	8
2	1.7.1 整数行列	9
	1.7.2 体係数多項式の行列	9
	1.7.3 特性行列	10
1.8	Jordan 標準形と最小多項式	11
1.9	有限生成アーベル群の基本定理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
1.0	PRILMO WHO ET REAL PRINCE OF THE PRINCE OF T	
第2章	テンソル積とテンソル代数	12
第3章	有限群の表現論	13
第4章	Noether 加群	14
参考文献		15

第1章

環上の加群

線型空間とアーベル群とを含んださらに一般的な代数系「環の作用を受けるアーベル群」を,イデアルの考え方を基に定義する.すると,環自体が自身の上の加群と見做せ,イデアルはその部分加群である.

基本的に,ある代数的対象に対して,モノイドからの作用の付加を module という.本質的に群作用との関連が深い.

記法. 環を,単位的で可環とする.

1.1 歴史的背景と動機付け

homology 代数の手法を用いて環を調べる際には加群が本質的に活躍する.

- イデアルの商として自然に加群が考えられる.
- ullet F-線型空間の自己同型の問題を解決するには,F[X]-加群の理論を構築すれば良い.最小多項式や固有多項式など.
- 群の表現とは,線型に作用する線型空間を指すが,これを調べるには群環 k[G] 上の加群の理論を構築すれば良い. $\mathbb{C}[G]$ は半単純環になる.また,有限次元表現の構造定理と特徴量としての指標とを得る.指標はある種の不変量で, 異なる表現を区別できる.

1.1.1 歴史的背景

環上の加群の理論を要請した数学的対象は3つあり,1つは整数(数論),もう1つは代数曲線(代数幾何学)で,最後は不変式である.不変式は環をなし,これを不変にする作用は群をなす.随伴作用素なども,対合に対する不変式だと思える.

歴史 1.1.1. 不変式という対象を最初に発見したのは Boole 1841 である.すべての代数方程式は判別式を持ち,変数の一次分数変換について定数倍しか変わらない.そう,判別式は不変式である.不変式が不変式たる所以は線形代数と関係が深い,現代では判別式は行列について定義されている.方程式の不変式環はすべて有限生成であるが,その計算は次数が上がるに連れてどんどん難しくなっていく.

定義 1.1.2.

(1) $S \subset \operatorname{GL}_n(K)$ について,不変式のなす環を

$$K[x_1, \cdots, x_n]^S := \{ f \in K[x_1, \cdots, x_n] \mid \forall_{\sigma \in S} \sigma(f) = f \}$$

と表す.

系 $\mathbf{1.1.3.}$ 任意の対称式は,不変対称式によって表せる: $\mathbb{R}[x_1,\cdots,x_n]^{S_n}=\mathbb{R}[s_1,\cdots,s_n]$.ただし, s_1,\cdots,s_n は基本対称式とした.

定理 **1.1.4** (Hilbert 14). 部分群 $G < \operatorname{GL}_n(K)$ に関して,条件 $\exists_{m \in \mathbb{N}} \exists_{h_1, \cdots, h_m \in K[x_1, \cdots, x_n]} K[x_1, \cdots, x_n]^G = K[h_1, \cdots, h_m]$ が成り 立つかを考える.

- (1) G が置換からなる群の場合,成り立つ.
- (2) G が有限群の場合,成り立つ (Hilbert). またこのとき,生成系 h_1, \cdots, h_m はいずれも次数を |G| 以下に出来る (Noether の定理).
- (3) 一般の G については偽である (永田の反例).

1.1.2 環論からの動機

命題 **1.1.5** (イデアルの剰余が加群になる).一意分解整域 $A=\mathbb{C}[X,Y,Z]$ のイデアル I=(X,Y,Z) は 2 元では生成されない. [証明] .

- (1) I, I^2 は A のイデアルなので,特に部分 A-加群である.よって,商 I/I^2 はもはやイデアルではないが,A-加群ではある.(こて離陸).
- (2) I の元は I/I^2 に 0 で作用する $(\forall_{a\in I,x\in I/I^2}$ $ax=0\in I/I^2)$ ので, I/I^2 は a+I $(a\in A)$ の作用を受ける A/I-加群でもある. $A/I=\mathbb{C}$ より,これは I/I^2 が \mathbb{C} -線型空間であることを意味する. $I/I^2=\mathbb{C}X+\mathbb{C}Y+\mathbb{C}Z$ は基底 X,Y,Z を持つから, $\dim_{\mathbb{C}}I/I^2=3$.
- (3) 仮に $f,g\in I$ がイデアル I を生成するならば ,それらの像 \overline{f} , $\overline{g}\in I/I^2$ は I/I^2 を生成する必要があるが ,これは $\dim_{\mathbb{C}}I/I^2=3$ に矛盾 .

要諦 $1.1.6.~I/I^2 = \mathbb{C}X + \mathbb{C}Y + \mathbb{C}Z$ という間隙のような空間に注目することでこのようにスッキリ証明でき,そのための言葉を提供する程度には加群は抽象的な理論である.

1.1.3 線型代数からの動機

命題 1.1.7 (線型空間の自己同型の問題を解決するにはその係数の多項式の加群の理論を構築すれば良い). F を体とする. 次の対象は一対一に対応する.

- (1) F-線型空間 V と自己同型 $\varphi \in \operatorname{End}(V)$ の組.
- (2) F[X]-加群 M .

定理 1.1.8 (単項イデアル整域上の有限生成加群の構造定理). A を単項イデアル整域とし,M を有限生成 A-加群とする.このとき,A のイデアルの増大列 $I_1 \subset I_2 \subset \cdots \subset I_r$ であって,

$$M \simeq A/I_1 \oplus \cdots \oplus A/I_r$$

を満たすものがただ一つ存在する.

要諦 1.1.9. これは有限 Abel 群の構造定理 ($A=\mathbb{Z}$ の場合) の一般化となっている.また,A=F[X] の場合のこの定理は,Jordan 標準形の存在と一意性を含意する.

1.1.4 表現論からの動機

定義 1.1.10.

- (1) 群 G の k 上の表現とは , k-線型空間 V と準同型 $\rho:G\to \mathrm{GL}(V)(=\mathrm{Aut}_k(V))$ の組 (V,ρ) のことを指す .
- (2) G の表現 (V,ρ) が既約であるとは, $V\neq 0$ であり, $0\subsetneq W\subsetneq V$ を満たす V の部分空間 W であって G の作用で閉じているものが存在しないことを指す $\stackrel{1}{\overset{1}{}}$

例 1.1.11. $\mathbb{C}[X_1,\cdots,X_n]$ は S_n の \mathbb{C} 上の表現となっている.

^{†1} 単純群や体に似ている概念である.

第 1 章 環上の加群 4

定理 1.1.12. 有限群 G の任意の有限次元表現は,既約表現の直和に一意的に分解する.G の有限次元表現は指標で特徴付けられる: $\forall_{g\in G} \operatorname{Tr} \rho(g) = \operatorname{Tr} \rho'(g) \iff (V,\rho)\simeq (V',\rho')$.

定理 1.1.13. 群 G の表現と,群環 $\mathbb{C}[G]$ 上の加群は一対一に対応する.

1.1.5 幾何学からの動機

幾何学的な対象をその上の層を使って調べるように,環とその上の加群とは切り離せない.[1]

加群は基本的にベクトル束の一般化と思える.というのも,R-加群は,R を空間 X 上の関数のなす環として,X 上のベクトル束の切断がなす空間だと思える.X がコンパクトハウスドルフ空間として,これを C^* -代数 $C(X,\mathbb{C})$ に対応させる対応は,関手 $Top \to C^*$ -Alg op を定め,これを Gelfand 双対性という.この代数-幾何の双対性を最初から定義としたのが代数多様体の現代的な扱いである.この源霊性を Grothendieck に与えたのは作用素環の考え方であるかもしれない.

1.1.6 代数幾何からの動機

スキーム論では,可換環 A から定められる空間 $\operatorname{Spec} A$ を \mathbb{R}^n の開集合に当たる一番基本的な対象とする. $\operatorname{Spec} \mathbb{C}[X_1,\cdots,X_n]=\mathbb{A}^n_{\mathbb{C}}$ の極大イデアルと \mathbb{C}^n の元とは一対一対応している. $\operatorname{Spec} \mathbb{C}[X,Y]/(X^2+Y^2-1)$ を $\{(a,b)\in\mathbb{C}^2\mid a^2+b^2-1=0\}$ に当たる空間とする.この空間で A-加群を考えることは, $\operatorname{Spec} A$ 上のベクトル束(各点に生えた線型空間で連続に接続されているもの)を考えることに相当する.代数幾何で微分形式などを考えるには,加群の理論が必要となる.

1.2 定義と例

環の作用を受けるアーベル群を加群という.加群はベクトル束の一般化とみなせる.こうして, Geometry-Algebra duality と関係が深い.

定義 **1.2.1** (module on a ring, ring of scalars). 零でない環A に対して左A-加群M とは,アーベル群M とそれへの左作用を定める環準同型 $\varphi:A\to \operatorname{End}(M)$ の組 (M,φ) をいう. $a,b\in A,x,y\in M$ として公理を書き下せば次の通り.

- (1) $\varphi(a) \in \operatorname{End}(M) : a(x+y) = ax + ay$.
- (2) 和を保つ: (a + b)x = ax + bx.
- (3) 積を保つ:a(bx) = (ab)x.
- (4) 単位元を保つ: 1x = x.

環A を係数環といい,その元をスカラーという.

例 1.2.2.

- (1) A = F が体のとき , F-加群とは F-線型空間をいう . これは一点上のベクトル束 $F \to 1$ とみなせる .
- (2) $A = \mathbb{Z}$ のとき, \mathbb{Z} -加群とはアーベル群をいう.
- (3) アーベル群が自明群 M=1 のとき、零 A-加群という.これが RMod の零対象である (RMod もアーベル圏になる).
- (4) 環 R 自体も,乗法を R の R 自身への作用とみれば,R-加群である.より一般的に,環準同型 $\varphi:A\to B$ について, $a\cdot b=\varphi(a)b\ (a\in A,b\in B)$ によって B は A-加群とみなせる.
- (5) A の左イデアルとは, A の部分 A-加群をいう.
- (6) X を位相空間とし, $R:=C(X,\mathbb{C})$ を連続関数環とする.複素ベクトル束 $E\to X$ の切断全体の空間 $\Gamma(E)$ は,各点で積を取る作用によって $C(X,\mathbb{C})$ -加群となる.

要諦 1.2.3 (interpretation of modules as generalized vector bundles). こうして,最も一般的な例として,ベクトル束を考えられることを確認した.実際,加群はベクトル束の一般化だと考えられる. $^{\dagger 2}$

 $^{^{\}dagger 2}$ In many contexts one regard modules as the canonical generalization of the notion of vector bundles, with better formal properties.

1.3 部分加群と生成

生成された部分加群には 2 つの同値な定義がある.構成する際には,写像の空間として $R^{(S)}$ などとすれば良いが,これはたしかにベクトル束(の切断)の一般化になっているともみなせる.

1.3.1 部分加群

定義 **1.3.1** (submodule). R-加群の部分集合 $N \subset M$ について,M の加法 $+: M \times M \to M$ と R 作用 $R \times M \to M$ の R のの制限の像が R に収まるとき,R を R の R-部分加群という.

補題 1.3.2 (部分加群の特徴付け). M を R-加群とし, $N \subset M$ を部分集合とする.次の 2 条件は同値.

- (1) N は R-部分加群である.
- (2) $\forall_{y,z\in N} \ y-z\in N \ \text{thom} \ \forall_{r\in R} \ \forall_{y\in N} \ ry\in N \ .$

補題 1.3.3 (intersection, sum). M を R-加群とする.

- (1) R-部分加群の族 $(N_i)_{i\in I}$ について,共通部分 $\cap_{i\in I}N_i$ も M の R-部分加群である.
- (2) R-部分加群の有限族 $(N_i)_{i\in[n]}$ について ,和 $\sum_{i=1}^n N_i = \{y_1+\cdots+y_n\in M\mid y_i\in N_i\}$ も R-部分加群である .

1.3.2 生成された部分加群

定義 1.3.4 (generated submodule, system of generators, finitely generated). $S \subset M$ を部分集合とする.

- (1) $[S]_R := \bigcap \{N \hookrightarrow M \mid N \text{ id } M \text{ o部分加群で } S \text{ を含む} \}$ を S で生成された R-部分加群という .
- (2) $M = [S]_R$ を満たすとき, S を M の生成系という.
- (3) $|S| < \infty$ を満たす生成系を持つとき,M を有限生成という.

補題 1.3.5 (生成された部分加群の元の表示).

$$[S]_R = \{a_1x_1 + \dots + a_nx_n \in M \mid a_i \in R, x_i \in S, n \in \mathbb{N}\} \simeq_{Set} R^{(S)} = \{f \in R^S \mid \forall_{s \in S} f(s) = 0 \text{ f.e.}\}.$$

[証明].

- \supset $[S]_R$ は演算について閉じている必要があるから, \supset である必要がある.
- \subset 右辺は S を含む M の R-加群となっている $.[S]_R$ の最小性から .

1.3.3 商加群

定義 **1.3.6** (fuctor module / quotient module). N を M の R-部分加群とする.加法群としての剰余群 $\overline{M}=M/N$ に対して,スカラー倍 $R \times \overline{M} \to \overline{M}$ を $r\overline{x}=\overline{rx}$ で定めると,これは R-加群になる.これを剰余 R-加群または商 R-加群という.

1.3.4 ねじれ

加群において,ねじれと直交性が交差する.群におけるねじれとは位数有限な元であった.これは群に対する標準的な $\mathbb Z$ の作用によって加群とみたときのねじれ元とみなせる.Hilbet 空間における直交補空間とは,2 つ加群上に定義された双線型 写像 $F: M \times N \to P$ に関する零化イデアルであった.

定義 1.3.7 (annihilator, torsion element, torsion part). M を R-加群とする.

- (1) 部分集合 $S \subset M$ に対して, $Ann_R(S) := \{a \in R \mid \forall_{x \in S} \ ax = 0\}$ を零化イデアルという.
- (2) $Ann(x) \neq 0$ を満たす元 x をねじれ元という.
- (3) ねじれ元の全体 $M_0 := \{x \in M \mid \operatorname{Ann}(x) \neq 0\}$ は部分 R-加群をなす.これをねじれ部分という.
- (4) $M_0=0$ のとき M をねじれなしといい , $M_0=M$ のとき M をねじれ R-加群という .

例 1.3.8. $M=\mathbb{Z}/(m)$ $(m\geq 2)$ はねじれ加群である.任意の元 $\overline{x}\in\mathbb{Z}/(m)$ に対して, $m\overline{x}=0$ である.

議論 1.3.9 (annihilator and Galois connection). 加群の双線型写像 $M\times N\to P$ を介して定まる零化イデアルは,M と N の部分集合の間に Galois 対応を与え,これに伴う閉包演算子は span より強い:Span $(S)\le {\rm Ann}({\rm Ann}(S))$.Banach 空間においては, ${\cal J}$ ルム閉部分空間の生成の特徴付けにも使われた.Galois 接続とは,部分群と部分体の間の対応の一般化で,一般の順序集合の間の随伴関係: $f:A\to B,g:B\to A$ s.t. $\forall_{a\in A,b\in B}$ $a\le g(f(a))$, $b\le f(g(b))$ をいう.射 \le を同型 = としても成り立つとき,これを特に Galois 対応という.

定義 1.3.10 (Galois connection induced from a relation). 一般の関係 $E \subset X \times Y$ について,これが定まる Galois 接続とは,次の写像の組 (V_E, I_E) を言う:

- $(1) V_E: P(X) \to P(Y); S \mapsto P_E(S) := \{ y \in Y \mid \forall_{x \in X} \ x \in S \Rightarrow E(x, y) \}$
- (2) $I_E: P(Y) \to P(X); T \mapsto I_E(T) := \{x \in X \mid \forall_{y \in Y} \ y \in T \Rightarrow E(x, y)\}$

命題 **1.3.11** (closure operator from Galois connection). $I_E \circ V_E$, $V_E \circ I_E$ は閉包演算子 (= 冪等モナド) である. すなわち , それぞれについて次の 3 条件が成り立つ :

- (1) $\forall_{S \in P(X)} S \subset I_E \circ V_E(S)$.
- (2) $\forall_{S \in P(X)} V_E \circ I_E \circ V_E(S) = V_E(S)$.
- (3) $I_E \circ V_E$ は冪等で共変である.

1.4 加群の射

1.4.1 定義と可逆性

定義 1.4.1 (homomorphism of modules). R 加群の間の写像 $f:M \to M'$ が次の 2 条件を満たすとき , f を R-準同型という:

- (1) $\forall_{x,y \in M} f(x + y) = f(x) + f(y)$.
- (2) $\forall_{r \in R} f(rx) = rf(x)$.

補題 1.4.2. R-準同型 $f: M \to M'$ について,次の2条件は同値.

- (1) f は可逆である.
- (2) f は全単射である.

1.4.2 標準分解

定義 1.4.3 (image, kernel, cokernel, coimage). R-準同型 $f:M \to M'$ について,

- (1) $\text{Im } f := \{ f(x) \in M' \mid x \in M \}$ を像と呼ぶ.
- (2) Ker $f := \{x \in M \mid f(x) = 0\}$ を核と呼ぶ.
- (3) Coker f := M'/Im f を余核と呼ぶ.
- (4) $\operatorname{Coim} f := M/\operatorname{Ker} f$ を余像と呼ぶ.

補題 1.4.4. R-準同型 $f: M \rightarrow M'$ について,

(1) $\operatorname{Im} f$ は M' の R-部分加群である.

(2) Ker f は M の R-部分加群である.

命題 1.4.5 (準同型定理). 任意の R-準同型 $f:M\to M'$ は , 自然な同型

を引き起こす.

1.4.3 射の集合

定義 1.4.6 (dual module). R-加群 M について , $M^* := \operatorname{Hom}_R(M,R)$ は再び加群をなす . これを双対加群という .

1.5 加群の圏

モノイド圏におけるモノイド対象上の加群

アーベル群から,環上の加群を作る構成は,一般のモノイド圏で定義できる.基本的にモノイド圏からの stuff の付加を module という.特に,R が体である場合を考えて Vect についての言及だと思うと,感慨深い.

定義 **1.5.1** (module over a monoid in a monoidal category). モノイド圏 (C, \otimes) におけるモノイド対象 $R \in C$ について,R-加群のなす圏を RMod で表す.

例 1.5.2. C = Ab で \otimes がテンソル積であるとき, モノイド対象 R とは環である.

定義 1.5.3 (cokernel, kernel, zero morphism).

(1) 終対象 1 を持つ圏 C において , 射 $f:A\to B$ の余核とは , 次の押し出し $\mathrm{Coker}\,(f):=1\mathop{\sqcup}_A B$ または $\mathrm{coker}\,f:B\to\mathrm{Coker}\,f$ のことをいう:

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow & & \downarrow \\
1 & \longrightarrow \text{Coker } (f)
\end{array}$$

(2) 始対象 0 を持つ圏 C において,射 $f:A\to B$ の核とは,次の引き戻し $\operatorname{Ker}(f):=1$ $\underset{A}\sqcup B$ また t は $\operatorname{ker} f:\operatorname{Ker} f\to A$ のことをいう:

$$\begin{array}{c|c}
\operatorname{Ker} (f) & \longrightarrow 0 \\
\downarrow p & & \downarrow \\
A & \xrightarrow{f} B
\end{array}$$

- (3) 零対象 O を持つ圏 C において , 標準的な射 $A \to O$, $O \to B$ を合成して得られる射 $A \to B$ を , 零射 O_{AB} という .
- (4) 零対象 O を持つ圏において,射 f の核とは零射 O との等化子で,余核とは零射 O との余等化子となる.

例 1.5.4.

- (1) 圏 C = Ab, RMod では, Coker(f) = B/Im f である.
- (2) 圏 C = Grpでは , $\operatorname{Coker}(f) = B/\langle \operatorname{Im} f \rangle_{\operatorname{nor}}$ である .

定義 1.5.5 (additive category, pre-abelian, abelian).

(1) 零対象 O をもち,有限積と有限和を備え,標準的な同型 $X \prod Y \xrightarrow{\sim} X \prod Y$ を備える圏を加法圏という $^{\dagger 3}$.

 $^{^{\}dagger 3}$ https://en.wikipedia.org/wiki/Additive_category

- (2) 任意の射が核と余核を持つような加法圏 C をプレ・アーベル圏という 14
- (3) プレ・アーベル圏では、任意の射 $f: A \to B$ が標準分解 $A \stackrel{p}{\to} \operatorname{Coker} (\ker f) \stackrel{f}{\to} \operatorname{Ker} (\operatorname{coker} f) \stackrel{i}{\to} B$ を持つ.
- (4) プレ・アーベル圏であって,次の同値な条件を満たす圏をアーベル圏という.
 - (a) 任意の射 $f:A\to B$ が定める射 $\overline{f}:\mathrm{Coim}\,f\to\mathrm{Im}\,f$ が可逆である.したがって,標準分解が完全列 $A\to\mathrm{Im}\,f\to B$ を与える.
 - (b) 任意のモノ射が核で,任意のエピ射が余核である.

注 1.5.6. 加法圏は同値な定義があり, 普通は Ab 上の豊穣圏と導入される.

命題 1.5.7. R が可換環であるとき, RMod はアーベル圏になる.

命題 **1.5.8.** RMod の射がモノ/エピであることと,U:RMod \to Set の像がモノ/エピ(したがって単射・全射)であることは 同値 .
「5

注 1.5.9. 任意のアーベル圏は balanced であることと合わせると , 補題 1.4.2 の主張を得る .

命題 1.5.10. RMod は任意の積と余積を持つ.ただし積とは,集合の直積上に各点毎の演算を定義したもので,余積は,集合の直積の有限個の成分のみが零でない元からなる部分加群である.したがって,有限の場合は積と余積は同型.

1.6 直和と自由加群

加群の直和とは、台となるアーベル群の直和の上に作用を(各点積として)延長したものとする。するとこれは、ベクトル束の直和(Whitney 和ともいう)の「双対」とも捉えられる。

命題 1.6.1. 和 $N = N_1 + \cdots + N_n$ に対して,次の3条件は同値.

- (1) 直和である: $N=N_1\oplus\cdots\oplus N_n$. すなわち, 和の表し方は一意的である.
- (2) 線型独立: $\forall_{y_1 \in N_1, \dots, y_n \in N_n} y_1 + \dots + y_n = 0 \Rightarrow y_1 = \dots = y_n = 0$.
- (3) $\forall_{i=1,\dots,n-1} (N_1 + \dots + N_i) \cap N_{i+1} = 0$.

定義 1.6.2. 部分集合 $B\subset M$ であって,R 上線型独立かつ M の生成元であるものが存在するとき,M は自由 R-加群であるといい,B を基底であるという.

補題 1.6.3. 集合 S 上に生成される自由加群 $R^{(S)}$ は,次のような直和で表せる: $R^{(S)}\simeq\bigoplus_{c\in S}R$.

定理 1.6.4. M を有限生成自由 R-加群とする M の任意の基底は有限個の元からなり,その濃度は一定である.

定義 1.6.5 (rank of a ring). M の階数とは , M の基底の元の数とし , rankM と表す .

1.7 単因子論

一般の単項イデアル整域について,標準形の理論が成り立つ.これは,有限生成な単項イデアル整域係数加群について,構造定理が成り立つことによる.単因子の計算法は,行列式因子が与える(定理の証明抽出).

記法 **1.7.1** (fundamental matrix). 次の基本行列の定める左作用を考える(行基本変形). これらの基本行列はユニモジュラーである.

(1) $P_n(i,j)$ を , 単位行列の i 行と j 行を入れ替えたもので , 行の入れ替え変換に対応する行列とする .

^{†4} 任意の極限とよ極限を持つ Ab 上の豊穣圏 , と定義しても良い .

^{†5} https://ncatlab.org/nlab/show/Mod

- (2) $Q_n(i;-1)$ を , 単位行列の a_{ii} 成分の符号を反転させたもので , 行の -1 倍変換に対応する行列とする .
- (3) $R_n(i,j;c)$ を,単位行列に a_{ij} 成分だけ c である行列を足したもので,行の定数倍を加える変換に対応する行列とする.

同様の行列の右作用を考えると,同種の列基本変形に対応する.

定義 1.7.2 (unimodular). 環 $M_n(\mathbb{Z})$ の可逆元を単模行列といい,これがなす群を $\mathrm{GL}_n(\mathbb{Z})$ で表す.一般の単項イデアル整域 R について,環 $M_n(R)$ の元で行列式が単元になる行列を単模行列という.R が体のとき,行列が単模であることと正則であることは同値.

1.7.1 整数行列

定理 **1.7.3** ((Smith) normal form). 任意の $A \in M_{mn}(\mathbb{Z})$ は, $\forall_{1 \leq i \leq r-1} e_i | e_{i+1}$ を満たす自然数の組 (e_1, \cdots, e_r) が一意的に存在して,標準形 $\operatorname{diag}(e_1, \cdots, e_r, 0, \cdots, 0)$ と相似である.

注 1.7.4. 一般の単項イデアル整域 R については , $\forall_{1 < i < r-1}\ (e_i) \supset) e_{i+1}$ という条件になり , 一意性は単元倍を除いて定まる .

定義 1.7.5. 任意の $A \in M_{mn}(\mathbb{Z})$ について , $(\mathbf{e}_1, \cdots, \mathbf{e}_r)$ を単因子といい , r を階数という .

例 1.7.6.

$$A = \begin{pmatrix} 2 & 4 & 0 \\ 0 & 8 & 0 \\ 4 & 0 & 12 \end{pmatrix}$$

系 1.7.7 (ユニモジュラー行列の特徴付け). $A\in M_n(\mathbb{Z})$ がユニモジュラー行列であるとき,A は基本行列の積として表せる(し,逆もなりたつ).

[証明]. ユニモジュラー行列について,そのn次の行列式因子は $d_n = |\det A| = e_1 \cdots e_n = 1$ となる(行列式因子は最大公約数なので正の値である). ゆえに, e_i の間の整除関係より, $\forall_{i \in [n]} e_i = 1$ を得る.すなわち,基本行列の積P,Qが存在して, $PAQ = E \Leftrightarrow A = P^{-1}Q^{-1}$ と基本行列の積で表せる.

1.7.2 体係数多項式の行列

 $M_n(K[x])$ の元を ,x-行列と呼ぶこととすると ,これは $M_n(K)$ の一般化である.また ,これは行列係数の多項式環 $M_n(K)[x]$ と自然に同一視できる.

定義 **1.7.8.** n 次の x-行列 A(x) のすべての k 次小行列式の(モニックな)最大公約数を,A(x) の k 次行列式因子といい, $d_k(x)$ で表す. $d_k(x)=0$ とは,k 次小行列式がすべて 0 であることとする.

補題 1.7.9 (行列式因子は行列の相似類を特徴付ける). 相似な行列の間で, n 個の行列式因子は一致する.

[証明].基本変形によって,行列式因子は変わらないことを示せば良い.

基本変形のうち,行の交換・他の行に K^* -倍を加える変換は,A(x) の小行列全体の集合を,各元の単元倍しか変えないため,行列式因子を変えない.

定理 **1.7.10.** 任意の n 次 x-行列 A(x) は,一意的な標準形 $\mathrm{diag}(e_1,\cdots,e_r,0,\cdots,0)$ に対等である.ただし, $e_i(x)$ はモニックな多項式で, $e_i(x)$ は $e_{i-1}(x)$ で割り切れるとする.

[証明].

存在 n>1 についての数学的帰納法により証明する.

A(x)=O のとき,これはすでに標準形である. $A(x)\neq 0$ のとき,基本変形によって,A(x) と対等な行列であって,(1,1)-成分が 0 でないものが存在する.そのようなものの中で,(1,1)-成分の次数が最小であるものを一つ取る.基本変

形により,特に(1,1)-成分がモニックであるもの

$$B(x) = \begin{pmatrix} e_1 & b_{12} & \cdots & b_{1n} \\ b_{21} & \ddots & \ddots & \vdots \\ b_{n1} & \cdots & \cdots & b_{nn} \end{pmatrix}$$

が取れる.

(2) この B(x) の第1行・第1列の成分は, すべて e_1 で割り切れる.

実際 $,e_1 \mid b_{1j}$ と仮定すると ,K[x] は $\deg:K[x]\setminus\{0\}\to\mathbb{N}$ を Euclid 関数とする Euclid 整域だから , ある $r,q\in K[x]$ が存在して , $\deg(r)<\deg(e_1)$ かつ $b1j=e_1q+r$ を満たす . すると , $b_{1,j}$ を (1,1)-成分へ移動し , e_1 の q 倍を引くと , B(x) の取り方に矛盾する . こうして , B(x) と対等な行列

$$C(x) = \begin{pmatrix} e_1 & 0 & \cdots & 0 \\ 0 & c_{22} & \ddots & c_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & c_{n2} & \cdots & c_{nn} \end{pmatrix}$$

を得る.

(3) 帰納法の仮定より, $(c_{ij})_{2\leq i,j\leq n}$ と対等な行列 $\mathrm{diag}(e_2,\cdots,e_r,0,\cdots,0)$ が存在する.これについて, $e_1|e_2$ を示せば良い. $e_2=e_1q+r$ かつ r=0 \vee $\mathrm{deg}(r)\leq \mathrm{deg}(e_1)$ である. $r\neq 0$ ならば,基本変形により,C(x) に対等な行列で(1,1)の成分が r であるものが作れる.これは e_1 の選び方に矛盾するから,r=0 である.

すなわち, C(x) は $D(x) = \operatorname{diag}(e_1, \dots, e_r, 0, \dots, 0)$ に対等である.

一意性 D(x) の n 個の行列式因子は明らかに

$$d_k(x) \begin{cases} e_1(x) \cdots e_k(x), & k \leq r, \\ 0, & k > r, \end{cases}$$

である.これより, $\forall_{k\in[r]}\;e_k=rac{d_k}{d_{k-1}}$ と表せるから, (d_k) が一意的であるのと同様に, (e_k) も一意的である.

要諦 1.7.11. なるほど,環上の加群論はたしかに環論の応用である.

系 1.7.12 (行列の相似性の特徴付け). x-行列 A(x), B(x) について,次の2条件は同値.

- (1) A, B は対等である.
- (2) A, B の階数 r と単因子 e_1, \cdots, e_r が一致する.
- (3) B = PAQ となるような 2 つの可逆行列 $P,Q \in GL_n(K[x])$ が存在する.

系 1.7.13.

- (1) x-行列が可逆であることと,単位行列に対等であることとは同値.
- (2) 任意の可逆行列は基本行列の積として表せる.
- (3) 可逆行列は, 左または右基本変形のどちらか一方のみで単位行列に変換される.

1.7.3 特性行列

x-行列に対して単因子論が必要であったが, $M_n(K)$ の標準形の理論にどうつながるかといえば,特性行列としてつながる.

定義 1.7.14 (characteristic matrix). 行列 $A \in M_n(K)$ に対し, x-行列 xE - A を, A の特性 x-行列という.

定義 1.7.15 (degree).

$$A(x) = A_0 x^k + A_1 x^{k-1} + \dots + A_{k-1} x + A_k, \quad A_0 \neq 0$$

によって,自然な同一視 $M_n(K[x]) \simeq M_n(K)[x]$ が導かれる.このとき k を, A(x) の冪次数という.

定理 1.7.16. $A, B \in M_n(K)$ について,次の2条件は同値.

- (1) A,B は相似である: $A \sim B$. すなわち , $\exists_{P \in \mathrm{GL}_n(K)} B = P^{-1}AP$.
- (2) 特性 x-行列 xE A, xE B は対等である.

系 1.7.17. $A \in M_n(K)$ は, tA に相似である.

命題 1.7.18.

(1) 冪次数 k の x-行列 $P(x) \in M_n(K[x])$ が

$$P(x) = P_0 x^k + P_1 x^{k-1} + \dots + P_{k-1} x + P_k, \quad P_0 \neq O,$$

$$P(x) = P_1(x)(xE - B) + P$$

と表されるとする.このとき,

$$P = P_0 B^k + P_1 B^{k-1} + \dots + P_{k-1} B + P_k$$

となる.

(2) 冪次数 k の x-行列 $Q(x) \in M_n(K[x])$ が

$$Q(x) = Q_0 x^l + Q_1 x^{l-1} + \dots + Q_{l-1} x + Q_l, \quad Q_0 \neq O,$$

$$Q(x) = (xE - A)Q_1(x) + Q$$

と表されるとする.このとき,

$$Q = A^{l}Q_{0} + A^{l-1}Q_{1} + \dots + AQ_{l-1} + Q_{l}$$

となる.

1.8 Jordan 標準形と最小多項式

1.9 有限生成アーベル群の基本定理

有限次元線型空間論における定理 $V\simeq K^n$ の,一般の単項イデアル整域 R 上の R-有限生成加群への一般化である.可逆性の特徴付けは,行列式が R^{\times} であることとなる.ここでは, $R=\mathbb{Z}$ の場合について示す.

定理 ${f 1.9.1.}\ R$ を単項イデアル整域,M を自由 R-加群で ${
m rank}M=m$ とする.このとき,M の任意の R-部分加群 N も自由 R-加群で, ${
m rank}N\leq m$ が成り立つ.

例 ${f 1.9.2}$ (線形空間論との違い). $M=\mathbb{Z}, N=2\mathbb{Z}$ とすると , $N\subset M$ であるが , ${
m rank}M={
m rank}N$ である .

定理 1.9.3. M を有限生成自由 \mathbb{Z} -加群,N を M の \mathbb{Z} -部分加群とする.このとき,N も自由 \mathbb{Z} -加群で $\mathrm{rank}N \leq \mathrm{rank}M$ となり,また, $e_1|e_2|\cdots|e_s$ を満たす一意的な $e_1,\cdots,e_s\in\mathbb{N}$ が存在し,M のある基底 $\{u_1,\cdots,u_r\}$ について, $\{e_1u_1,\cdots,e_su_s\}$ $(s\leq r)$ が N の基底になるように出来る.

系 1.9.4. 有限生成なアーベル群 M は,次の巡回群の直積と同型になる: $\mathbb{Z}^r \times \mathbb{Z}/\langle e_1 \rangle \times \cdots \times \mathbb{Z}/\langle e_s \rangle$.ただし, e_i は 2 以上の自然数で, $e_1|\cdots|e_s$ を満たし,r と e_1,\cdots , e_s は M に対して一意的に定まる.

第2章

テンソル積とテンソル代数

第3章

有限群の表現論

第4章

Noether **加群**

参考文献

[1] 斎藤毅『数学原論』