第九讲

王伟文 暨南大学

1 度量空间

度量空间 (\mathcal{T}, ρ) 由非空集合 \mathcal{T} 及度量 $\rho: \mathcal{T} \times \mathcal{T} \to \mathbb{R}$ 组成, 其中度量 ρ 满足

- 非负性: $\forall (\theta, \tilde{\theta}) \in \mathcal{T} \times \mathcal{T}, \rho(\theta, \tilde{\theta}) \geq 0.$ $\rho(\theta, \tilde{\theta}) = 0$ 当且仅当 $\theta = \tilde{\theta}$.
- 对称性: $\forall (\theta, \tilde{\theta}) \in \mathcal{T} \times \mathcal{T}, \rho(\theta, \tilde{\theta}) = \rho(\tilde{\theta}, \theta).$
- 三角不等式: $\forall (\theta, \tilde{\theta}, \hat{\theta}) \in \mathcal{T}^3$

$$\rho(\theta, \tilde{\theta}) \le \rho(\theta, \hat{\theta}) + \rho(\hat{\theta}, \tilde{\theta}).$$

例 1.1.
$$(\mathbb{R}^d, \rho)$$
, 欧氏距离 $\rho(\theta, \tilde{\theta}) = \sqrt{\sum_{i=1}^d (\theta_i - \tilde{\theta_i})^2}$.

例 1.2.
$$(\{0,1\}^d,\rho)$$
, 汉明 (Hamming) 距离 $\rho(\theta,\tilde{\theta})=\frac{1}{d}\sum_{i=1}^d\mathbb{I}_{\{\theta_i=\tilde{\theta}_i\}}$

例 1.3. $(C[0,1],\rho)$, 其中 C[0,1] 表示所有在 [0,1] 上连续的函数的集合

$$\rho(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|$$

接下来我们将回答如何"测量"一个度量空间的"大小".

定义 1.1: 覆盖数 $\mathcal{N}(\delta; \mathcal{T}, \rho)$

给定集合 $\mathcal{C}=\{\theta^1,\theta^2,\ldots,\theta^n\}\subset\mathcal{T}$ 及常数 $\delta>0$. 若 $\forall\theta\in\mathcal{T},\exists i\in[n]$ 使得

$$\rho(\theta, \theta^i) \leq \delta,$$

则称 C 为集合 T 在度量 ρ 下的 δ -覆盖. 集合 T 的 δ -覆盖数 $\mathcal{N}(\delta; T, \rho)$ 即为 T 的最小 δ -覆盖的元素个数, 其中"最小"指元素个数最少.

评论. 若 $\mathcal{C} = \{\theta^1, \theta^2, \dots, \theta^n\}$ 为 \mathcal{T} 的 δ -覆盖, 则

$$\mathcal{T} \subseteq \bigcup_{i \in [n]} \mathcal{B}_{\rho}(\theta^i; \delta)$$

其中 $\mathcal{B}_{\rho}(\theta^{i};\delta)$ 为在度量 ρ 下以 δ 为半径, θ^{i} 为中心的球.

例 1.4. 考虑闭区间 $\mathcal{T} = [-1,1]$, 定义度量 $\rho(\theta,\tilde{\theta}) = |\theta - \tilde{\theta}|$, 则

$$\mathcal{N}(\delta; \mathcal{T}, \rho) \le 2 + \frac{1}{\delta}.$$

定义集合 $\mathcal{C} = \{-1, -1 + 2\delta, -1 + 4\delta, \cdots, -1 + 2n\delta, 1\} \subset \mathcal{T}$, 其中 $n = \lfloor \frac{1}{\delta} \rfloor$, 容易知道 \mathcal{C} 为 [-1, 1] 上的 δ-覆盖.

$$\mathrm{card}(C) = \lfloor \frac{1}{\delta} \rfloor + 2 \leq \frac{1}{\delta} + 2,$$

因此

$$\mathcal{N}(\delta; \mathcal{T}, \rho) \le 2 + \frac{1}{\delta}.$$

推广至 d-维空间,

$$\mathcal{N}(\delta; [-1,1]^d, \|\cdot\|_{\infty}) \le \left(2 + \frac{1}{\delta}\right)^d.$$

定义 1.2: 填充数 (Packing number) $\mathcal{M}(\delta; \mathcal{T}, \rho)$

给定集合 $\mathcal{P} = \{\theta^1, \theta^2, \dots, \theta^m\} \subset \mathcal{T}$ 及常数 $\delta > 0$, 若对任意 $i, j \in [m]$ 且 $i \neq j$ 有

$$\rho(\theta^i, \theta^j) > \delta$$

则称 \mathcal{P} 为度量 ρ 下集合 \mathcal{T} 的 δ -填充 (packing). 集合 \mathcal{T} 的填充数 $\mathcal{M}(\delta; \mathcal{T}, \rho)$ 为最大 δ -填充的元素个数,其中"最大"指元素个数最多.

引理 1.1

给定度量空间 (T, ρ) , 对任意 $\delta > 0$,

$$\mathcal{M}(2\delta; \mathcal{T}, \rho) \stackrel{(a)}{\leq} \mathcal{N}(\delta; \mathcal{T}, \rho) \stackrel{(b)}{\leq} \mathcal{M}(\delta; \mathcal{T}, \rho)$$

证明. **b**. 这里只需证明 \mathcal{T} 的最大 δ -填充同时也是 δ -覆盖.

记 $\mathcal{P} = \{\theta^1, \theta^2, \dots, \theta^m\} \subset \mathcal{T}$ 为 \mathcal{T} 的一个最大 δ -填充, 其中 $m = \mathcal{M}(\delta; \mathcal{T}, \rho)$.

若 \mathcal{P} 不是集合 \mathcal{T} 的 δ-覆盖, 则存在 $\tilde{\theta} \in \mathcal{T}$ 使得

$$\rho(\tilde{\theta}, \theta^i) > \delta \quad \forall i \in [m].$$

故 $\mathcal{P}\{\tilde{\theta}\}$ 是 \mathcal{T} 的一个 δ -填充, 与 \mathcal{P} 为最大 δ -填充矛盾.

a. 这里需要证明任意 2δ -填充的元素个数总是不超过任意 δ -覆盖的元素个数.

记 $\mathcal{P} = \{\theta^1, \theta^2, \dots, \theta^m\} \subset \mathcal{T}$ 为 \mathcal{T} 的 2δ -填充, $\mathcal{C} = \{\tilde{\theta}^1, \tilde{\theta}^2, \dots, \tilde{\theta}^n\} \subset \mathcal{T}$ 为 \mathcal{T} 的 δ -覆盖.

因为 $\mathcal{P} \subset \mathcal{T}$, \mathcal{T} 为 δ-覆盖, 故 $\forall \theta^i \in \mathcal{P}$, $\exists \tilde{\theta}^j \in \mathcal{C}$ 使得

$$\rho(\theta^i, \tilde{\theta}^j) \le \delta.$$

同时, 若 $\forall \theta^k \in \mathcal{P}$ 且 $\theta^k \neq \theta^i$, 有 $\rho(\theta^k, \tilde{\theta}^j) > \delta$, 否则

$$\rho(\theta^i, \theta^k) \le \rho(\theta^i, \tilde{\theta}^j) + \rho(\theta^k, \tilde{\theta}^j) \le 2\delta$$

与 \mathcal{P} 为 2δ -填充矛盾.

上述关系表明, 对于任意 $\theta^i \in \mathcal{P}$, 存在唯一 $\tilde{\theta}^j \in \mathcal{C}$ 满足

$$\rho(\theta^i, \tilde{\theta}^j) \le \delta$$

由鸽巢原理知

$$\operatorname{card}(\mathcal{P}) \leq \operatorname{card}(\mathcal{C})$$

因此

$$\mathcal{M}(2\delta; \mathcal{T}, \rho) \leq \mathcal{N}(\delta; \mathcal{T}, \rho)$$

例 1.5. 回顾例 1. 4. 考虑闭区间 $\mathcal{T} = [-1,1]$, 度量 $\rho(\theta,\tilde{\theta}) = |\theta - \tilde{\theta}|$. 定义集合 $\mathcal{P} = \{-1,-1 + 2(1+\epsilon)\delta, -1 + 4(1+\epsilon)\delta, \cdots, -1 + 2(n-1)(1+\epsilon)\delta\} \subset \mathcal{T}$, 其中 $n = \lfloor \frac{1}{\delta} \rfloor$, $\delta < 1$, $0 < \epsilon < \frac{\delta}{1-\delta}$, 容易知道 \mathcal{P} 为 [-1,1] 上的 2δ -填充.

$$-1 + 2(n-1)(1+\epsilon)\delta < -1 + 2(\frac{1}{\delta} - 1)(1 + \frac{\delta}{1-\delta})\delta = 1$$
$$\rho(\theta^i, \theta^j) \ge 2(1+\epsilon)\delta > 2\delta \quad \forall \theta^i, \theta^j \in \mathcal{P}.$$

由引理 1.1 知

$$\lfloor \frac{1}{\delta} \rfloor \leq \mathcal{M}(2\delta; \mathcal{T}, \rho) \leq \mathcal{N}(\delta; \mathcal{T}, \rho) \leq \lfloor \frac{1}{\delta} \rfloor + 2.$$

若δ充分小

$$\log \mathcal{N}(\delta; \mathcal{T}, \rho) \asymp \log(\frac{1}{\delta})$$

推广至 d 维空间

$$\log \mathcal{N}(\delta; [-1, 1]^d, \|\cdot\|_{\infty}) \asymp d \log(\frac{1}{\delta})$$

集合的 Minkowski 和

$$\mathcal{A} + \mathcal{B} = \{ \boldsymbol{x} + \boldsymbol{y} : \boldsymbol{x} \in \mathcal{A}, \boldsymbol{y} \in \mathcal{B} \}$$

定理 1.1

考虑 \mathbb{R}^d 上的两个范数 $\|\cdot\|$ 及 $\|\cdot\|'$,定义 $\mathcal{B}=\{oldsymbol{x}\in\mathbb{R}^d:\|oldsymbol{x}\|\leq 1\}$ 及 $\mathcal{B}'=\{oldsymbol{x}\in\mathbb{R}^d:$ $\|x\|' \le 1$ }, 在度量 $\|\cdot\|'$ 下 $\mathcal B$ 的 δ -覆盖数满足

$$\left(\frac{1}{\delta}\right)^d \frac{\operatorname{vol}(\mathcal{B})}{\operatorname{vol}(\mathcal{B}')} \overset{(a)}{\leq} \mathscr{N}(\delta; \mathcal{B}, \|\cdot\|') \overset{(b)}{\leq} \frac{\operatorname{vol}(\frac{2}{\delta}\mathcal{B} + \mathcal{B}')}{\operatorname{vol}(\mathcal{B}')}$$

证明. \boldsymbol{a} . 设 $\mathcal{C} = \{\theta^1, \dots, \theta^n\} \subseteq \mathcal{B}$ 为 \mathcal{B} 在 $\|\cdot\|'$ 下的 δ -覆盖, 故 $\forall \theta \in \mathcal{B}$, $\exists \theta^i \in \mathcal{C}$, 使得

$$\|\theta - \theta^i\|' \le \delta,$$

从而 $\theta - \theta^i \in \delta \mathcal{B}', \ \theta \in \theta^i + \delta \mathcal{B}', \$ 因此

$$\mathcal{B} \subseteq \bigcup_{i \in [n]} \{ \theta^i + \delta \mathcal{B}' \}$$

故有

$$\operatorname{vol}(\mathcal{B}) \leq \sum_{i=1}^n \operatorname{vol}(\theta^i + \delta \mathcal{B}') = n \operatorname{vol}(\delta \mathcal{B}') = n \delta^d \operatorname{vol}(\mathcal{B}')$$

即

$$\left(\frac{1}{\delta}\right)^d \frac{\operatorname{vol}(\mathcal{B})}{\operatorname{vol}(\mathcal{B}')} \le n$$

上式对任意 δ -覆盖均成立, 故

$$\left(\frac{1}{\delta}\right)^d \frac{\mathtt{vol}(\mathcal{B})}{\mathtt{vol}(\mathcal{B}')} \leq \mathcal{N}(\delta;\mathcal{B},\|\cdot\|')$$

b. 设 $\mathcal{P} = \{\tilde{\theta}^1, \tilde{\theta}^2, \dots, \tilde{\theta}^m\}$ 为 \mathcal{B} 在 $\|\cdot\|'$ 下的最大 δ-填充, , 定义 $\mathcal{B}_{\|\cdot\|'}(\tilde{\theta}^i, \delta)$, $i \in [m]$, 因为

$$\|\tilde{\theta}^i - \tilde{\theta}^j\| > \delta,$$

所以

$$\mathcal{B}_{\|\cdot\|'}(\tilde{\theta}^i,\delta) \cap \mathcal{B}_{\|\cdot\|'}(\tilde{\theta}^j,\delta) \quad \forall \tilde{\theta}^i, \tilde{\theta}^j \in \mathcal{P}.$$

接下来证明 $\bigcup_{i \in [m]} \mathcal{B}_{\|\cdot\|'}(\tilde{\theta}^i, \delta) \subseteq \mathcal{B} + \frac{\delta}{2}\mathcal{B}'.$ $\forall \theta \in \bigcup_{i \in [m]} \mathcal{B}_{\|\cdot\|'}(\tilde{\theta}^i, \delta), \exists \tilde{\theta}^i \in \mathcal{P}$ 使得

$$\theta \in \mathcal{B}_{\|\cdot\|'}(\tilde{\theta}^i, \delta) \Longrightarrow \|\theta - \tilde{\theta}^i\|' \le \frac{\delta}{2}$$

同 (a) 的证明, $\theta \in \tilde{\theta}^i + \frac{\delta}{2}\mathcal{B}'$, 又因为 $\tilde{\theta}^i \in \mathcal{B}$, 故 $\theta \in \mathcal{B} + \frac{\delta}{2}\mathcal{B}'$.

因此

$$\begin{split} \operatorname{vol}(\bigcup_{i \in [m]} \mathcal{B}_{\|\cdot\|'}(\tilde{\theta}^i, \delta)) &= \sum_{i=1}^m \operatorname{vol}(\mathcal{B}_{\|\cdot\|'}(\tilde{\theta}^i, \delta))) \\ &= m \operatorname{vol}(\frac{\delta}{2} \mathcal{B}') \\ &\leq \operatorname{vol}(\mathcal{B} + \frac{\delta}{2} \mathcal{B}') \end{split}$$

整理得到

$$m \leq \frac{\operatorname{vol}(\mathcal{B} + \frac{\delta}{2}\mathcal{B}')}{\operatorname{vol}(\frac{\delta}{2}\mathcal{B}')} = \frac{\operatorname{vol}\left(\frac{2}{\delta}\mathcal{B} + \mathcal{B}'\right)}{\operatorname{vol}(\mathcal{B}')}$$

由引理 1.1

$$\mathcal{N}(\delta; \mathcal{B}, \|\cdot\|') \le m \le \frac{\operatorname{vol}\left(\frac{2}{\delta}\mathcal{B} + \mathcal{B}'\right)}{\operatorname{vol}(\mathcal{B}')}.$$

例 1.6. 取 $\|\cdot\| = \|\cdot\|' = \|\cdot\|_{\infty}$,此时 $\mathcal{B} = \mathcal{B}'$,对于度量空间 $(\mathcal{B}_{\|\cdot\|_{\infty}}(\mathbf{0},1), \|\cdot\|_{\infty})$,注意到 $\mathcal{B}_{\|\cdot\|_{\infty}}(\mathbf{0},1) = [-1,1]^d$,应用定理 1.1 可得到

$$\left(\frac{1}{\delta}\right)^d \le \mathcal{N}(\delta; [-1, 1]^d, \|\cdot\|_{\infty}) \le \left(\frac{2}{\delta} + 1\right)^d$$
$$d\log\frac{1}{\delta} \le \log\mathcal{N}(\delta; [-1, 1]^d, \|\cdot\|_{\infty}) \le d\log(\frac{2}{\delta} + 1)$$

2 Gaussian 复杂度和 Rademacher 复杂度

给定集合 $\mathcal{T} \subseteq \mathbb{R}^d$, 定义典则 Gaussian 过程

$$G_{\theta} = \langle \theta, \boldsymbol{w} \rangle \quad \forall \theta \in \mathcal{T}, w_i \overset{i.i.d.}{\sim} \mathcal{N}(0, 1),$$

称

$$\mathscr{G}(\mathcal{T}) = \mathbb{E}_{\boldsymbol{w}}[\sup_{\theta \in \mathcal{T}} \langle \theta, \boldsymbol{w} \rangle]$$

为集合 T 的 Gaussian 复杂度.

类似地, 定义 Rademacher 过程

$$R_{\theta} = \langle \theta, \epsilon \rangle \quad \forall \theta \in \mathcal{T},$$

其中 $\epsilon = (\epsilon_i)_{i \in [d]}$ 各元素为相互独立的 Rademacher 变量.

称

$$\mathscr{R}(\mathcal{T}) = \mathbb{E}_{\boldsymbol{\epsilon}}[\sup_{\boldsymbol{\theta} \in \mathcal{T}} \langle \boldsymbol{\theta}, \boldsymbol{\epsilon} \rangle]$$

为集合 T 的 Rademacher 复杂度.

例 2.1. 考虑集合 $\mathcal{B}_2^d(1) = \{\theta \in \mathbb{R}^d : \|\theta\|_2 \le 1\}$, 计算 $\mathscr{R}(\mathcal{B}_2(1))$ 和 $\mathscr{G}(\mathcal{B}_2^d(1))$.

$$\begin{split} \mathscr{R}(\mathcal{B}_2^d(1)) &= \mathbb{E}_{\epsilon} [\sup_{\theta \in \mathcal{B}_2^d(1)} \langle \theta, \epsilon \rangle] \\ &= \mathbb{E}_{\epsilon} [\left\langle \frac{\epsilon}{\|\epsilon\|_2}, \epsilon \right\rangle] \\ &= \mathbb{E}_{\epsilon} \|\epsilon\|_2 \\ &= \mathbb{E}_{\sqrt{\sum_{i=1}^d \epsilon_i^2}} = \sqrt{d} \end{split}$$

类似地,

$$\mathscr{G}(\mathcal{B}_2^d(1)) = \mathbb{E}\|\boldsymbol{w}\|_2 = \mathbb{E}\sqrt{\sum_{i=1}^d w_i^2} \leq \sqrt{\sum_{i=1}^d \mathbb{E}w_i^2} = \sqrt{d}$$

例 2.2. 考虑一致 *b*-有界函数类 \mathcal{F} , 即 $\forall f \in \mathcal{F}$, $\|f\|_{\infty} \leq b$. 给定 n 个数据点 $x_1^n = (x_i)_{\{i \in [n]\}}$, 定义集合

$$\mathcal{F}(x_1^n)/n = \{(f(x_1), f(x_2), \cdots, f(x_n))/n : f \in \mathcal{F}\},$$

计算 $\mathscr{G}(\mathcal{F}(x_1^n)/n)$.

$$\mathcal{G}(\mathcal{F}(x_1^n)/n) = \mathbb{E}_{\boldsymbol{w}} [\sup_{f \in \mathcal{F}} \langle f(x_1^n)/n, \boldsymbol{w} \rangle]$$

$$= \mathbb{E}_{\boldsymbol{w}} \left[\sup_{f \in \mathcal{F}} \sum_{i=1}^n \frac{f(x_i)w_i}{n} \right]$$

$$\leq \mathbb{E}_{\boldsymbol{w}} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sqrt{\sum_i (f(x_i))^2 \|\boldsymbol{w}\|_2} \right]$$

$$\leq \mathbb{E}_{\boldsymbol{w}} \frac{b}{\sqrt{n}} \|\boldsymbol{w}\|_2 \leq \frac{b}{\sqrt{n}} \sqrt{n} = b.$$

引理 2.1

对任意 $\mathcal{T} \subseteq \mathbb{R}^d$

- $(1) \ \mathscr{R}(\mathcal{T}) \le \sqrt{\frac{\pi}{2}}\mathscr{G}(\mathcal{T}),$
- (2) $\mathscr{G}(\mathcal{T}) \leq 2\sqrt{\log d}\mathscr{R}(\mathcal{T}).$