Math135 - October 29'th, 2015

Everything We Know About Congruences

 $a \equiv r \pmod{n}$

- $\bullet \iff m \mid (a-b)$
- $a \mod m = b \mod m$
- Transitive: $[a \equiv b \pmod{m}] \land [b \equiv c \pmod{m}] \implies a \equiv c \pmod{m}$
- Symetric: $a \equiv b \pmod{m} \iff b \equiv a \pmod{m}$
- Reflective: $a \equiv a \pmod{m}$
- You can multiply, add, or subtract a to the left side and b to the right side so long as $a \equiv b \pmod{m}$
- You can divide both sides by n if gcd(n, m) = 1 (Co-prime)

Congruent Iff Same Remainder (CISR)

Let $a, b, c \in \mathbb{N}$ where m > 0 $a \equiv b \pmod{m} \iff a$ and b have the same remainder when divided by m.

Linear Congruence

Let $a, c, m \in \mathbb{Z}$ where m > 0 A relation of the form

$$ax \equiv c \pmod{m}$$

is called a Linear Congruence in the variable x. A solution is an integer $ax_0 \equiv c \pmod{m}$

Examples:

i)
$$4x \equiv 5 \pmod{8}$$

 $4x - 5 = 8k$
 $4x - 8k = 5$
 $\gcd(4, -8) = 4$
 $4 \nmid -8$
 \therefore No solution

ii)
$$5x \equiv 3 \pmod{7}$$

 $5x - 3 = 7k$
 $5x - 7k = 3$
 $5x + 7y = 3 \text{ (Let } y = -k)$
 $x = 2, y = 1$
 $x = 2 + 7n \text{ (By LDET2)}$
 $\therefore x \equiv 2 \pmod{7}$

```
iii) 2x \equiv 4 \pmod{6}

2x - 4 = 6k

2x - 6k = 4

2x + 6y = 4

\gcd(2, 6) = 2

2|4 Thus there is a solution

By inspection, x = -1, y = 1

x = -1 + 3n By LDET2

x \equiv -1 \pmod{3}

x \equiv 3 \pmod{3}
```

Generalised Linear Congruence Rules:

- i) A solution does not always exist.
- ii) gcd(a, m)|c means a solution exists.
- iii) To find a particular solution, convert into a linear diophantine equation using: $ax \equiv c \pmod{m} \implies (ax c) = mk, k \in \mathbb{N}$

Generalised Linear Congruence Rules:

Example) Solve
$$x^2 \equiv 6 \pmod{10}$$

- There is no efficient way to solve polynomial congruences.

$$x \pmod{10}$$
 0 1 2 3 4 5 6 7 8 9
 $x^2 \pmod{10}$ 0 1 4 9 6 5 6 9 4 1

- As we can see, $x \equiv 4, 6 \pmod{10}$