Information Theory and Coding - Prof. Emere Telatar

Jean-Baptiste Cordonnier, Sebastien Speierer, Thomas Batschelet

October 4, 2017

1 Data compression

Given an alphabet \mathcal{U} (e.g. $\mathcal{U} = \{a, ..., z, A, ..., Z, ...\}$), we want to assign binary sequences to elements of \mathcal{U} , i.e.

$$e: \mathcal{U} \to 0, 1^* = \{\emptyset, 0, 1, 00, 01, ...\}$$

For \mathcal{X} a set

$$\mathcal{X}^n \equiv \{(x_0...x_n), x_i \in \mathcal{X}\}$$
$$\mathcal{X}^* \equiv \bigcup_{n \ge 0} \mathcal{X}^n$$

Definition 1.

A code \mathcal{C} is called singular if

$$\exists (u, v) \in \mathcal{U}^2, u \neq v \quad s.t. \quad C(u) = C(v)$$

Non singular code is defined as opposite

Definition 2.

A code \mathcal{C} is called uniquily decodable if

$$\forall u_1, ..., u_n, v_1, ..., v_n \in \mathcal{U}^* \quad s.t. \quad u_1, ..., u_n \neq v_1, ..., v_n$$

we have

$$C(u_1)C(u_n) \neq C(v_1)C(v_n)$$

i.e, C^* is non-singular

Definition 3.

Suppose $\mathcal{C}: \mathcal{U} \to \{0,1\}^*$ and $\mathcal{D}: \mathcal{V} \to \{0,1\}^*$ we can define

$$\mathcal{C} \times \mathcal{D} : \mathcal{U} \times \mathcal{V} \to \{0,1\}^*$$

as

$$(\mathcal{C} \times \mathcal{D})(u, v) \to \mathcal{C}(u)\mathcal{D}(v)$$

Definition 4.

Given $\mathcal{C}: \mathcal{U} \to \{0,1\}^*$, define

$$\mathcal{C}^*:\mathcal{U}^*\to\{0,1\}^*$$

as

$$\mathcal{C}^*(u_1, u_n) = \mathcal{C}(u_1)...\mathcal{C}(u_n)$$

1.0.1 Markov chains

For a Markov Chaine $A \to B \to C \to D$, the joint probability distribution of the RVs should be p(a)p(b|a)p(c|b)p(d|c)

• The reverse of a MC is a MC

Kraft-sum Definition: The Kraftsum of a code C is $KS(C) = \sum_{u} 2^{-|C(u)|}$

- if C is prefix free then $KS(C) \leq 1$
- if C is non singular, then $KS(C) \leq 1 + \min_{u} |C(u)|$
- $KS(C^n) = KS(C)^n$

Theorem: for any U and associated p(u) there exists a prefix free code C s.t.

$$E[|C(U)|] < 1 + \sum_{u \in U} p(u) \log \frac{1}{p(u)}$$

Theorem: if $KS(C) \leq 1$ then there exists a prefix free code C' such that |C(u)| = |C'(u)| for all u Corollar: if C is uniquely decodable, then there exists C' that is prefix free with the same word lengths

Entropy Definition: the entropy of a random variable U is

$$H(U) = \sum_{u \in U} p(u) \log \frac{1}{p(u)} = E_U \left[\log \frac{1}{p(u)} \right]$$

Theorem: if C is uniquely decodable then $E[|C(U)|] \ge H(U)$

Properties of optimal prefix free codes

- 1. $p(u) < p(v) \to |u| > |v|$
- 2. The two longest codewords have the same length
- 3. The 2 least probable letters are assigned codewords that differ in the last bit

1.0.2 Hoffman algorithm

- Combine the 2 least likely symbols
- Sum their probability and assign it a new fictive symbol
- Repeat