Dimostrazioni di Analisi matematica 1

Virginia Longo, Giovanni Manfredi e Mattia Martelli

Indice

1	Disuguaglianza di Bernoulli	2
2	Teorema di Fermat	5
3	Teorema di Rolle	Ę
4	Teorema di Lagrange	6
5	Test di monotonia di f su un intervallo aperto	8
6	Cardinalità di \mathbb{R}^n	10
7	Teorema di Cauchy	12
8	Teorema di de l'Hôpital	14
9	Teorema del resto secondo Peano	15
10	Teorema del resto secondo Lagrange	18
11	Primo Teorema Fondamentale del Calcolo Integrale	2 1
12	Teorema Valor Medio Integrale	23
13	Secondo Teorema Fondamentale del Calcolo Integrale	25

Disuguaglianza di Bernoulli

Enunciato

La disuguaglianza di Bernoulli è

$$(1+x)^n \geqslant 1+nx$$
 $\forall n \in \mathbb{N}, \, \forall x \in \mathbb{R}, \, x > -1$

Dimostrazione

Per dimostrare l'enunciato, procediamo con una dimostrazione per induzione.

Dimostriamo l'enunciato per n = 0:

$$(1+x)^0 \geqslant 1 + 0x$$
$$1 \geqslant 1$$

Possiamo perciò considerare l'enunciato vero al passo n.

Dimostriamolo per n+1:

$$(1+x)^{n+1} = (1+x)(1+x)^n$$

$$\geqslant (1+x)(1+nx)$$

$$= 1+nx+x+nx^2$$

$$= 1+x(n+1)+nx^2$$

$$\geqslant 1+x(n+1)$$
Per l'enunciato del teorema

Abbiamo quindi dimostrato la disuguaglianza di Bernoulli.

Teorema di Fermat

Definizioni necessarie

Si ricordano le seguenti definizioni:

- x_0 è un punto stazionario se $f(x_0) = 0$;
- x_0 è un punto di ottimo se è un punto di massimo o di minimo locale;
- x_M è un punto di massimo locale se $M=f(x_M)\geqslant f(x) \forall x\in A$ dove M è il valore massimo locale;
- x_M è un punto di minimo locale se $m=f(x_m)\leqslant f(x) \forall x\in A$ dove m
 è il valore minimo locale.

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = (a, b) \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che:

- 1. $x_0 \in A$;
- 2. f sia derivabile in A;
- 3. x_0 sia un punto di ottimo.

Tesi

$$f'(x) = 0$$

ovvero x_0 è un punto stazionario

Dimostrazione

Caso 1 - x_0 è un punto di massimo locale

Per l'ipotesi 1 e l'ipotesi 2, quando h > 0 possiamo dire che:

$$\frac{f(x_0+h)-f(x_0)}{h} \leqslant 0$$

quando h < 0 invece possiamo dire che:

$$\frac{f(x_0+h)-f(x_0)}{h}\geqslant 0$$

quindi sempre per l'ipotesi di derivabilità valgono le seguenti affermazioni

$$\lim_{x \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = L_1 \le 0 \text{ dove } L_1 \,\exists \, \land \, L_1 \in \mathbb{R}$$

$$\lim_{x \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h} = L_2 \geqslant 0 \text{ dove } L_2 \exists \land L_2 \in \mathbb{R}$$

$$L_1 = L_2 = f'(x_0)$$

e quindi

$$0 \leqslant f'(x_0) \leqslant 0$$

da cui

$$f'(x_0) = 0$$

c.v.d.

Caso 2 - x_0 è un punto di minimo locale

Per l'ipotesi 1 e l'ipotesi 2, quando h > 0 possiamo dire che:

$$\frac{f(x_0+h)-f(x_0)}{h}\geqslant 0$$

quando h < 0 invece possiamo dire che:

$$\frac{f(x_0+h)-f(x_0)}{h} \leqslant 0$$

quindi sempre per l'ipotesi di derivabilità valgono le seguenti affermazioni

$$\lim_{x \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = L_1 \geqslant 0 \operatorname{dove} L_1 \exists \land L_1 \in \mathbb{R}$$

$$\lim_{x \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h} = L_2 \leqslant 0 \operatorname{dove} L_2 \exists \land L_2 \in \mathbb{R}$$

$$L_1 = L_2 = f'(x_0)$$

e quindi

$$0 \leqslant f'(x_0) \leqslant 0$$

da cui

$$f'(x_0) = 0$$

Teorema di Rolle

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = [a, b] \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che:

- 1. f è continua su A e derivabile su (a, b);
- 2. f(a) = f(b).

Tesi

$$\exists x_0 \in (a,b) \mid f'(x_0) = 0$$

Dimostrazione

Caso 1 - f(x) è una funzione costante

Il teorema è dimostrato, infatti $\forall x \in (a,b) \ f(x) = 0.$

Caso 2 - f(x) non è una funzione costante

Data la continuità di f(x) su A e essendo A un intervallo chiuso e limitato, vale il **teorema di** Weierstrass.

$$\exists M, m \mid f(x_m) = m \leqslant f(x) \leqslant f(x_M) = M \quad \forall x \in A$$

e almeno uno tra x_m e x_M è interno ad (a,b), dato che $m \neq M$ (f non è costante).

Visto che almeno uno dei due punti di ottimo è interno all'intervallo, posso applicare il **teorema di Fermat**, da cui ricavo che il punto di ottimo interno è un punto stazionario e quindi:

$$\exists x_0 \in (a,b) \mid f'(x_0) = 0$$

Teorema di Lagrange

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = [a, b] \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che f sia continua su A e derivabile su (a,b).

Tesi

$$\exists x_0 \in (a,b) \mid f'(x_0) = \frac{f(b) - f(a)}{b - a} = m$$

dove m è il coefficiente angolare della retta passante per a e b.

Dimostrazione

Introduco una funzione ausiliaria g(x) così definita:

$$g(x) = f(x) - \left[f(a) + \frac{f(b) + f(a)}{b - a} (x - a) \right]$$

Notiamo che g ha la regolarità di f su A:

- 1. è continua su A;
- 2. derivabile su (a, b).

Notiamo anche che:

$$g(a) = f(a) - \left[f(a) + \frac{f(b) - f(a)}{b - a} (a - a) \right]$$
$$= f(a) - \left[f(a) + 0 \right]$$
$$= f(a) - f(a) = 0$$

$$g(b) = f(b) - \left[f(a) + \frac{f(b) - f(a)}{b - a} (b - a) \right]$$
$$= f(b) - \left[f(a) + f(b) - f(a) \right]$$
$$= f(b) - f(b) = 0$$

Da cui g(a) = g(b).

Posso quindi applicare il teorema di Rolle su A:

$$\exists x_0 \in (a,b) \mid g'(x_0) = 0$$

Calcolo quindi g'(x):

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

$$g'(x_0) = 0$$

$$f'(x_0) - \frac{f(b) - f(a)}{b - a} = 0$$

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

Test di monotonia di f su un intervallo aperto

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = (a, b) \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che f sia derivabile su (a, b).

Tesi

$$f'(x) > 0 \quad \forall x \in A \Rightarrow f$$

è monotona strettamente crescente su A.

$$f'(x) < 0 \quad \forall x \in A \Rightarrow f$$

è monotona strettamente decrescente su A.

Dimostrazione

Caso 1 -
$$f'(x) > 0 \quad \forall x \in A$$

Siano $x_1, x_2 \in A \mid a < x_1 < x_2 < b$. Seleziono un sottointervallo chiuso interno ad A. Su $[x_1, x_2]$ applico il **teorema di Lagrange** a f quindi:

$$\exists x_0 \in (x_1, x_2) \mid f(x_2) - f(x_1) = f'(x_0)(x_2 - x_1)$$

essendo $f'(x_0) > 0$ e anche $x_2 - x_1 > 0$ ne segue che:

$$\forall x_1 < x_2 \Rightarrow f(x_2) > f(x_1)$$

quindi f(x) è monotona strettamente crescente, c.v.d.

Caso 2 -
$$f'(x) < 0 \quad \forall x \in A$$

Siano $x_1, x_2 \in A \mid a < x_1 < x_2 < b$. Seleziono un sottointervallo chiuso interno ad A. Su $[x_1, x_2]$ applico il **teorema di Lagrange** a f quindi:

$$\exists x_0 \in (x_1, x_2) / f(x_2) - f(x_1) = f'(x_0)(x_2 - x_1)$$

essendo $f'(x_0) < 0$ e $x_2 - x_1 > 0$ ne segue che:

$$\forall x_1 < x_2 \Rightarrow f(x_2) < f(x_1)$$

quindi f(x) è monotona strettamente decrescente, c.v.d.

Cardinalità di \mathbb{R}^n

Definizioni necessarie

Si ricorda che:

- Due insiemi hanno la stessa cardinalità quando è possibile creare una corrispondenza biunivoca tra di essi;
- Un insieme infinito può avere la stessa cardinalità di un insieme infinito da lui contenuto;

Enunciato

Ipotesi

 \mathbb{R} ha la cardinalità del continuo.

Tesi

 \mathbb{R}^n ha la cardinalità del continuo.

Dimostrazione

Come definito in precedenza per dimostrare che i due insiemi hanno la stessa cardinalità dobbiamo dimostrare che siano in corrispondenza **biunivoca**. Per semplicità restringiamo la dimostrazione all'intervallo [0,1].

Iniettività

Dato un punto generico $P(x_P, y_P)$ definiamo che le sue coordinate in questo modo:

$$x_p = 0.x_1 x_2 x_3 x_4 \dots$$
 e $y_p = 0.y_1 y_2 y_3 y_4 \dots$

L'immagine di P su \mathbb{R} è Q, così definita:

$$Q = 0.x_1 y_1 x_2 y_2 x_3 y_3 x_4 y_4 \dots$$

Ipotizziamo ora per assurdo che esista

$$P^* \neq P \mid f(P^*) = f(P)$$

$$P^* = (0.x_1^* x_2^* x_3^* x_4^* \dots, 0.y_1^* y_2^* y_3^* y_4^* \dots)$$

allora

$$f(P*) = Q = 0.x_1^* y_1^* x_2^* y_2^* x_3^* y_3^* x_4^* y_4^* \dots$$

Ma visto che

$$Q = 0.x_1 y_1 x_2 y_2 x_3 y_3 x_4 y_4 \dots$$

ne deriva che

$$P=P^*$$

il che è assurdo. Quindi f è **iniettiva**.

Suriettività

Dato

$$Q \in [0,1] = 0.q_1 q_2 q_3 q_4 \dots$$

Vale questa affermazione?

$$\exists ? P^{\circ} \in [0,1] \times [0,1] \mid f(P^{\circ}) = Q$$

Sì, P° è così definito:

$$P^{\circ} = (0.q_1 q_3 q_5 \dots, 0.q_2 q_4 q_6 \dots)$$

Da cui si ricava che f è anche **suriettiva**.

Abbiamo quindi trovato una corrispondenza biunivoca tra i due insiemi, il che dimostra che hanno la stessa cardinalità.

Teorema di Cauchy

Enunciato

Ipotesi

Date:

$$f,g:A=[a,b] \longrightarrow \mathbb{R}$$

$$x \longmapsto y=f(x)$$

$$y=g(x)$$

Supponendo inoltre f, g continue in A e derivabili in (a, b).

Tesi

$$\exists x^* \in (a,b) \mid \frac{f'(x^*)}{g'(x^*)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Dimostrazione

Introduco una funzione ausiliaria h(x) così definita:

$$h(x) = [f(b) - f(a)]g(x) - [g(b) - g(a)]f(x)$$

Notiamo che h ha la regolarità di f e di g su A:

- 1. è continua su A;
- 2. derivabile su (a, b).

Verifico se su h nell'intervallo [a,b] vale il **teorema di Rolle**:

$$h(a) = [f(b) - f(a)] g(a) - [g(b) - g(a)] f(a)$$

$$h(a) = f(b) g(a) - f(a) g(a) - f(a) g(b) + f(a) g(a)$$

$$h(a) = f(b)g(a) - f(a) g(b)$$

$$h(b) = [f(b) - f(a)] g(b) - [g(b) - g(a)] f(b)$$

$$h(b) = f(b) g(b) - f(a) g(b) - f(b) g(b) + f(b) g(a)$$

$$h(b) = f(b) g(a) - f(a) g(b)$$

h(a) = h(b), quindi posso applicare il **teorema di Rolle**, da cui si deriva che h ha un punto stazionario x^*

$$h'(x) = [f(b) - f(a)] g'(x) - [g(b) - g(a)] f'(x)$$
$$h'(x^*) = 0$$

E quindi infine

$$h'(x^*) = 0$$

$$[f(b) - f(a)] g'(x^*) - [g(b) - g(a)] f'(x^*) = 0$$

$$[f(b) - f(a)] g'(x^*) = [g(b) - g(a)] f'(x^*)$$

$$\frac{f'(x^*)}{g'(x^*)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Teorema di de l'Hôpital

Enunciato

Ipotesi

Date:

$$f,g:A=[a,b] \longrightarrow \mathbb{R}$$

$$x \longmapsto y=f(x)$$

$$y=g(x)$$

Supponendo inoltre:

- 1. f, g continue in A e derivabili in (a, b);
- 2. f, g infinitesime in $x_0 \in (a, b)$.

Tesi

Se
$$l = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$
, allora $l = \lim_{x \to x_0} \frac{f(x)}{g(x)}$

Dimostrazione

La dimostrazione avviene direttamente utilizzando il teorema di Cauchy:

$$\exists \ \theta \in (a,b) \Rightarrow \theta \in (x_0,x)$$

Aggiungo $f(x_0)$ che ricordiamo essere infinitesimo per ipotesi, poi considerando l'intervallo (x_0, x) :

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(\theta)}{g'(\theta)}$$

Da cui:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(\theta)}{g'(\theta)} = l$$

Teorema del resto secondo Peano

Definizioni necessarie

Si ricorda che il **Polinomio di Taylor** $(T_n^f(x))$ è così definito:

$$\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = (a, b) \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che:

- 1. $f \in C^n(A)$;
- 2. $x_0 \in A$.

Tesi

$$F(n): f(x) - T_n^f(x) = o((x - x_0)^n)$$

Dimostrazione

Per dimostrare l'enunciato, procediamo con una dimostrazione per induzione.

Passo Base: F(1)

Dimostriamo l'enunciato per n = 1:

$$f \in C^1(A)$$

$$f(x) - \left[f(x_0) + f'(x_0)(x - x_0) \right] \stackrel{?}{=} o((x - x_0))$$

Per la definizione di o-piccolo una funzione (f(x)) è o-piccolo di un altra (g(x)) quando il $\lim_{x\to x_0} \frac{f(x)}{g(x)} \to 0$

$$\lim_{x \to x_0} \frac{f(x) - \left[f(x_0) + f'(x_0)(x - x_0) \right]}{(x - x_0)} \stackrel{?}{\to} 0$$

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \stackrel{?}{\to} 0$$

$$f'(x_0) - f'(x_0) \to 0$$

Quindi F(1) è vera.

Ipotesi induttiva: F(n-1)

Assumiamo per ipotesi induttiva vera la seguente affermazione:

$$\forall g \in C^{n-1}(A)$$

$$g(x) - T_n^g(x) = o((x - x_0)^{n-1})$$

Che possiamo riscrivere come:

$$\lim_{x \to x_0} \frac{g(x) - T_n^g(x)}{(x - x_0)^{n-1}} \to 0$$

Verifica per F(n)

Per verificare la tesi, mi devo anche qui rifare alla definizione di o-piccolo:

$$B_{\epsilon}(0)$$

$$\lim_{x \to x_0} \frac{f(x) - T_n^f(x)}{(x - x_0)^n} \stackrel{?}{\to} 0$$

Questa è però una forma di indeterminazione $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ per risolverla, le applico il **teorema de l'Hospital**

$$\lim_{x \to x_0} \frac{\left[f(x) - T_n^f(x) \right]'}{\left[(x - x_0)^n \right]'}$$

$$\lim_{x \to x_0} \frac{f'(x) - \left[T_n^f(x)\right]'}{n(x - x_0)^{n-1}}$$

Calcolo $\left[T_n^f(x)\right]'$ a parte:

$$\left[T_n^f(x)\right]' = f'(x_0) + \frac{f''(x_0)}{2!} 2(x - x_0) + \frac{f'''(x_0)}{3!} 3(x - x_0)^2 + \dots + \frac{f^n(x_0)}{n!} n(x - x_0)^n
= f'(x_0) + f''(x_0)(x - x_0) + \frac{f'''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^n(x_0)}{(n-1)!} (x - x_0)^{n-1}
= T_{n-1}^{f'}(x)$$

Infatti se $f \in C^n(A) \Rightarrow f' \in C^{n-1}$. Quindi:

$$\lim_{x \to x_0} \frac{f'(x) - T_{n-1}^{f'}(x)}{n(x - x_0)^{n-1}}$$

Notiamo che $f' \in C^{\,n-1}$ e che $g \in C^{\,n-1}$ poniamo quindig = f'. Da cui abbiamo:

$$\lim_{x \to x_0} \frac{g(x) - T_{n-1}^g(x)}{n(x - x_0)^{n-1}}$$

Per ipotesi di induzione sappiamo che:

$$\lim_{x \to x_0} \frac{g(x) - T_n^g(x)}{(x - x_0)^{n-1}} \to 0$$

quindi anche:

$$\lim_{x \to x_0} \frac{g(x) - T_{n-1}^g(x)}{n(x - x_0)^{n-1}} \to 0$$

Teorema del resto secondo Lagrange

Definizioni necessarie

Si ricorda che il **Polinomio di Taylor** $(T_n^f(x))$ è così definito:

$$\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = (a, b) \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che:

- 1. $f \in C^{n+1}(A)$;
- 2. $x_0 \in A$.

Tesi

$$\exists \theta \in (x_0, x) \mid f(x) - T_n^f(x) = \frac{f^{n+1}(\theta)}{(n+1)!} (x - x_0)^{n+1}$$

Dimostrazione

Considero due **funzioni ausiliarie** g(x), w(x) così definite:

$$g(x) = f(x) - T_n(x) \qquad g(x) \in C^{n+1}(A)$$

$$w(x) = (x - x_0)^{n+1} \qquad w(x) \in C^{\infty}(A)$$

Calcolo $g(x_0), g'(x_0), \ldots, g^{(n+1)}(x_0)$:

$$g(x_0) = f(x_0) - \left[\frac{f(x_0)}{0!} 1 + \frac{f'(x_0)}{1!} (x_0 - x_0) + \frac{f''(x_0)}{2!} (x_0 - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x_0 - x_0)^n \right] = 0$$

$$g'(x_0) = f'(x_0) - \left[\frac{f'(x_0)}{1!} 1 + \frac{f''(x_0)}{2!} 2(x_0 - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!} n(x_0 - x_0)^{n-1} \right] = 0$$

$$g''(x_0) = 0$$

. . .

$$g^{(n)}(x_0) = 0$$

$$g^{(n+1)}(x_0) = f^{(n+1)}(x_0) - 0 = f^{(n+1)}(x_0)$$

Calcolo $w(x_0), w'(x_0), \ldots, w^{(n+1)}(x_0)$:

$$w(x_0) = (x_0 - x_0)^{n+1} = 0$$

$$w'(x_0) = (n+1)(x_0 - x_0)^n = 0$$

$$w'(x_0) = (n+1)(n)(x_0 - x_0)^{n-1} = 0$$

. . .

$$w^{(n)}(x_0) = [(n+1)!](x_0 - x_0) = 0$$

$$w^{(n+1)}(x_0) = [(n+1)!]1 = (n+1)!$$

Toniamo ora su ciò che dobbiamo dimostrare:

$$\exists \theta \in (x_0, x) \mid f(x) - T_n^f(x) = \frac{f^{n+1}(\theta)}{(n+1)!} (x - x_0)^{n+1}$$
$$\frac{f(x) - T_n^f(x)}{(x - x_0)^{n+1}} = \frac{f^{n+1}(\theta)}{(n+1)!}$$

Notiamo che $\frac{f(x)-T_n^f(x)}{(x-x_0)^{n+1}}=\frac{g(x)}{w(x)}$ quindi utilizzando il **teorema di Cauchy**:

$$\frac{g(x)}{w(x)} = \frac{g(x) - g(x_0)}{w(x) - w(x_0)}$$

$$\exists x_1 \in (x_0, x) \qquad = \frac{g'(x_1)}{w'(x_1)} = \frac{g'(x_1) - g'(x_0)}{w'(x_1) - w'(x_0)}$$

$$\exists x_2 \in (x_0, x_1) \qquad = \frac{g''(x_2)}{w''(x_2)} = \frac{g''(x_2) - g''(x_0)}{w''(x_2) - w''(x_0)}$$

$$\exists x_3 \in (x_0, x_2) \qquad = \frac{g'''(x_3)}{w'''(x_3)} = \dots$$

Iterando n volte

$$\exists \theta \in (x_0, x_n) \qquad = \frac{g^{(n+1)}(\theta)}{w^{(n+1)}(\theta)}$$

Notiamo anche che possiamo fare questo perché da come abbiamo dimostrato prima calcolandolo, $g(x_0)$, $g'(x_0)$, ..., $g^{(n)}(x_0)$ e $w(x_0)$, $w'(x_0)$, ..., $w^{(n)}(x_0)$ sono infinitesimi.

Quindi le derivate (n + 1)-esime dal precedente calcolo di g(x)ew(x) sono:

$$\frac{g^{(n+1)}(\theta)}{w^{(n+1)}(\theta)} = \frac{f^{(n+1)}(\theta)}{(n+1)!}$$

Quindi per come abbiamo definito g(x) e w(x):

$$\frac{f(x) - T_n^f(x)}{(x - x_0)^{n+1}} = \frac{g(x)}{w(x)} = \frac{g^{(n+1)}(\theta)}{w^{(n+1)}(\theta)} = \frac{f^{(n+1)}(\theta)}{(n+1)!}$$

Da cui:

$$\frac{f(x) - T_n^f(x)}{(x - x_0)^{n+1}} = \frac{f^{n+1}(\theta)}{(n+1)!}$$

$$f(x) - T_n^f(x) = \frac{f^{n+1}(\theta)}{(n+1)!} (x - x_0)^{n+1}$$

Primo Teorema Fondamentale del Calcolo Integrale

Enunciato

Ipotesi

Sia f(t) una funzione tale che

$$f: A = [a, b] \longrightarrow \mathbb{R}$$

 $t \longmapsto y = f(t)$

Supponiamo inoltre che:

- 1. G sia primitiva di f su (a, b);
- 2. f(t) sia Riemann-integrabile su (a, b)

Tesi

$$\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \sum_{i=1}^n f(c_i)(t_i - t_{i-1}) = G(b) - G(a)$$

Dimostrazione

Posti
$$a = t_0 e b = t_n$$

$$\begin{split} G(b) - G(a) &= G(t_0) - G(t_n) \\ &= G(t_n) - G(t_{n-1}) + G(t_{n-1}) + \ldots - G(t_i) + G(t_i) + \ldots - G(t_1) + G(t_1) - G(t_0) \\ &= \sum_{i=1}^{n} (G(t_i) - G(t_{i-1})) \end{split}$$

AGpossiamo applicare il **teorema di Lagrange** su $\left[t_{i-1},t_{i}\right]$

$$\exists \theta_i \in (t_{i-1}, t_i) \mid G'(\theta_i) = \frac{G(t_i) - G(t_{i-1})}{t_i - t_{i-1}}$$

$$= \sum_{i=1}^n G'(\theta_i)(t_i - t_{i-1})$$

$$= \sum_{i=1}^n f(\theta_i)(t_i - t_{i-1}) \longrightarrow S$$

Con Soutput cumulativo. Si tratta quindi di una somma di Riemann. c.v.d.

Teorema Valor Medio Integrale

Enunciato

Ipotesi

Sia f(x) una funzione limitata tale che

$$f: A = [a, b] \longrightarrow \mathbb{R}$$

 $t \longmapsto y = f(t)$

Supponiamo inoltre che:

- 1. $m = \min f \text{ su } [a, b];$
- 2. $M = \max f \operatorname{su} [a, b]$

Definizione

$$\frac{1}{b-a}\int_{a}^{b}f(t)dt$$

purché f sia Riemann-integrabile.

Proprietà 1

$$m \leqslant VMI \leqslant M$$

Dimostrazione

$$m \leqslant f(t) \leqslant M \qquad \forall t \in [a, b]$$

Integrale definito

$$\int_a^b m dt \leqslant \int_a^b f(t) dt \leqslant \int_a^b M dt$$

Per la monotonia:

$$m(b-a) \leqslant \int_{a}^{b} f(t)dt \leqslant M(b-a)$$

 $m \leqslant \frac{1}{b-a} \int_{a}^{b} f(t)dt \leqslant M$

Proprietà 2

Se
$$f \in C^0([a,b])$$
 allora:

$$\exists \theta \in [a,b] \mid f(\theta) = VMI$$

Dimostrazione

Valendo Weierstrass e Darboux:

$$m\leqslant VMI\leqslant M$$

Secondo Teorema Fondamentale del Calcolo Integrale

Definizioni necessarie

Si ricorda che è detta funzione integrale la funzione G:

$$G(x) = \int_{a}^{x} f(t)dt \qquad G: [a, b] \longmapsto \mathbb{R}$$
$$x \longmapsto G(x) = \int_{a}^{x} f(t)dt$$

Prima Forma

Enunciato

Ipotesi

Data una funzione limitata e Riemann-integrabile:

$$f:A=[a,b] \longrightarrow \mathbb{R}$$

$$t \longmapsto y=f(t)$$

Tesi

G è una funzione **continua**.

Dimostrazione

Voglio dimostrare che

$$\forall x_0 \in [a, b]$$
 $G(x_0) = \lim_{x \to x_0} G(x)$

Caso 1 - $a < x_0 < x < b$

Consideriamo quindi il limite da destra:

$$\lim_{x \to x_0^+} G(x) = \lim_{x \to x_0} \int_a^x f(t)dt =$$

$$= \lim_{x \to x_0} \left[\int_a^{x_0} + \int_{x_0}^x \right] =$$

$$= \lim_{x \to x_0} \left[G(x_0) + \int_{x_0}^x f(t)dt \right]$$

Se $\lim_{x\to x_0^+} \int_{x_0}^x f(t)dt$ fosse infinitesimo allora:

$$\lim_{x \to x_0^+} G(x) = G(x_0)$$

che dimostrerebbe la continuità di G(x). Passiamo quindi a dimostrare che $\lim_{x\to x_0^+} \int_{x_0}^x f(t)dt$ è infinitesimo:

$$m \leqslant f(t) \leqslant M$$
 accumulo tra $x_0 \ ed \ x$

$$m(x - x_0) \leqslant \int_{x_0}^x f(t)dt \leqslant M(x - x_0)$$

L'integrale definito è infinitesimo perché limitato tra quantità che tendono a 0. Questo dimostra la continuità di G(x).

c.v.d.

Caso 2 - $a < x < x_0 < b$

Consideriamo quindi il limite da sinistra:

$$\lim_{x \to x_0^-} G(x) = \lim_{x \to x_0^-} \int_a^x f(t)dt =$$

$$= \lim_{x \to x_0^-} \left[\int_a^{x_0} f(t)dt - \int_x^{x_0} f(t)dt \right] =$$

$$= \lim_{x \to x_0^-} \left[G(x_0) - \int_x^{x_0} f(t)dt \right]$$

Se $\lim_{x\to x_0^-} \int_x^{x_0} f(t)dt$ fosse infinitesimo allora:

$$\lim_{x \to x_0^-} G(x) = G(x_0)$$

che dimostrerebbe la continuità di G(x). Passiamo quindi a dimostrare che $\lim_{x\to x_0^-} \int_x^{x_0} f(t)dt$ è infinitesimo:

$$m \leqslant f(t) \leqslant M$$
 accumulo tra $x \ ed \ x_0$

$$m(x_0 - x) \leqslant \int_x^{x_0} f(t)dt \leqslant M(x_0 - x)$$

L'integrale definito è infinitesimo perché limitato tra quantità che tendono a 0. Questo dimostra la continuità di G(x).

Seconda Forma

Enunciato

Ipotesi

Data una funzione continua:

$$f:A=[a,b] \longrightarrow \mathbb{R}$$

$$t \longmapsto y=f(t)$$

Tesi

G è una funzione **derivabile**.

$$G \in C^1([a,b])$$
 e $G'(x) = f(x)$ $\forall x \in [a,b]$

Dimostrazione

Sia $x_0 \in (a, b)$, vogliamo dimostrare che G è derivabile in x_0

Caso 1 - h > 0

$$\frac{G(x_0+h)-G(x_0)}{h} = \frac{1}{h} \left[\int_a^{x_0+h} f(t)dt - \int_a^{x_0} f(t)dt \right]$$

$$= \frac{1}{h} \int_{x_0}^{x_0+h} f(t)dt$$

$$\exists \theta \in (x_0, x_0+h) | = f(\theta) \longmapsto f(x_0)$$

$$\text{per la seconda proprietà del VMI}$$

$$con h \to 0^+$$

Dimostrando che non solo G(x) è derivabile su (a,b) data l'arbitrarietà di x_0 , ma anche che la derivata di G(x) è f(x). c.v.d.

Caso 2 - h < 0

$$\begin{split} \frac{G(x_0+h)-G(x_0)}{h} &= \frac{1}{h} \left[\int_a^{x_0+h} f(t)dt - \int_a^{x_0} f(t)dt \right] \\ &= \frac{1}{h} \left[\int_a^{x_0+h} f(t)dt - \int_a^{x_0+h} f(t)dt - \int_{x_0+h}^{x_0} f(t)dt \right] \\ &= \frac{1}{-h} \int_{x_0+h}^{x_0} f(t)dt \qquad \qquad \text{VMI dif su}[x_0+h,x_0] \\ &\exists \theta \in (x_0+h,x_0)| = f(\theta) \longmapsto f(x_0) \qquad \qquad \text{per la seconda proprietà del VMI} \\ &= con \ h \to 0^- \end{split}$$

Dimostrando che non solo G(x) è derivabile su (a,b) data l'arbitrarietà di x_0 , ma anche che la derivata di G(x) è f(x). c.v.d.