Coq Cheatsheet

1 Syntax

Wahrheitswerte wie True, False haben den Typ Prop.

Ein Prädikat ist eine Funktion, die nach Prop abbildet, z.B.

```
Definition relation: X \to X \to Prop.
```

ist eine Typdefinition binärer Prädikate (Relationen auf X). Eine konkrete Relation ist z.B.:

```
Definition id (x y: X) : Prop := x = y.
```

Zu lesen als: id x y, wobei x und y vom Typ x sind, ist vom Typ prop und ist wahr (also äquivalent zu prop genau dann, wenn x = y gilt.

Konjunktion	$A \wedge B$	A /\ B
Disjunktion	$A \vee B$	A \/ B
Implikation	$A \rightarrow B$	A -> B
Biimplikation	$A \leftrightarrow B$	A <-> B
Negation	$\neg A$	~ A oder A -> False
Allquantor	$\forall x \in X(p(x))$	forall x : X, p x
	$\forall x \in X, y \in X, z \in Z(p(x, y, z))$	forall (x y :X) (z : Z), p x y z
Existenzquantor	$\exists x \in X(p(x))$	exists x : X, px

Eine(zu beweisende) Aussage wird mit Lemma oder Theorem eingeleitet. Das Lemma

```
Lemma involution (R:relation): forall x y: X, (inv (inv R)) x y \leftrightarrow R x y. Proof. ... Qed.
```

mit Namen involution besagt, dass für beliebige Relationen R gilt, dass inv (inv R) = R, extensiv über die Paare der Relation R definiert: $(x,y) \in \text{inv (inv R)} \Leftrightarrow (x,y) \in \text{R}$. Nach Proof. ist der Beweis zu führen (siehe Taktiken) der mit Qed. zu beenden ist.

2 Taktiken

Taktik	Ergebnis
assert (A = B).	Unterbeweis für $A = B$ öffnen
unfold id, inv.	Definition von id und inv im Ziel einsetzen
unfold id, inv in H.	Definition von id und inv in Hypothese H einsetzen

Ziel	Taktik	Ergebnis
A /\ B	split.	zwei Beweisziele: A und B
A <-> B	split.	zwei Beweisziele: A -> B und B -> A
A \/ B	left. oder right.	Ziel: A (left) oder B (right)
forall x : X, A	intro. oder intro x.	Kontext: x : X, Ziel: A
forall x y : X, A	intros. oder intros x0 y0.	Kontext: x0, y0 : X, Ziel: A
A -> B	intro. oder intro H.	Kontext: H: A, Ziel: B
A -> B -> C	intros. oder intros H1 H2.	Kontext: H1: A und H2: B, Ziel: C
~ A	intro. oder intro H.	Kontext: H: A, Ziel: False

Die Argumente von intro und intros sind frei wählbar; wenn weggelassen, generiert Coq Bezeichnungen automatisch.

Kontext	Taktik	Ergebnis
H: A /\ B	destruct H. oder destruct H as [H1 H2].	Kontext: H1: A und H2: B
H: A \/ B	destruct H. oder destruct H as [H1 H2].	Beweisziel 1 mit Kontext H1: A
		Beweisziel 2 mit Kontext H2: B
H: exists x : X, A	destruct H. oder destruct H as [x' H1].	Kontext: x' : X und H1: A
H: False oder	contradiction.	Beweisziel gelöst
H1: A und H2: ~ A		
H: A -> B und	apply H in H1.	Kontext: H1: B
H1: A		
H: forall x : X,		
A x -> B x	apply H in H1.	Kontext: H1: В у
und H1: A y		

Die Argumente von destruct in eckigen Klammern nach dem Schlüsselwort as sind frei wählbar.

Kontext	Ziel	Taktik	Ergebnis
H: A	A	apply H. oder assumption.	Ziel gelöst
H: A -> B	В	apply H.	Ziel: A
H: A <-> B	В	apply H.	Ziel: A
H: A <-> B	A	apply H.	Ziel: B
H: forall x : X, A x -> B x	Ву	apply H.	Ziel: A y
H: forall x : X, A x <-> B x	Ву	apply H.	Ziel: A y
H: forall x : X, A x <-> B x	A y	apply H.	Ziel: B y
z : X	exists x : X, A x	exists z.	Ziel: A z

Kontext	Taktik	Ergebnis
	$\texttt{rewrite} \rightarrow \texttt{H.}$	Ziel: Alle freien A werden durch B ersetzt
H: A = B	$\texttt{rewrite} \leftarrow \texttt{H.}$	Ziel: Alle freien B werden durch A ersetzt
	$\mathtt{rewrite} o \mathtt{H} \; \mathtt{in} \; \mathtt{H1}.$	Hypothese H1: Alle freien A werden durch B ersetzt
	$\texttt{rewrite} \leftarrow \texttt{H} \; \texttt{in} \; \texttt{H1}.$	Hypothese H1: Alle freien B werden durch A ersetzt

Ziel	Taktik	Ergebnis
A = A	reflexivity.	Beweisziel gelöst