Espaces vectoriels, familles de vecteurs

Table des matières

1	Introduction : rappels sur \mathbb{R}^n									
	1.1	1.1 Généralités : définitions								
		Le plan \mathbb{R}^2 , ses droites vectorielles								
		L'espace \mathbb{R}^3 , ses droites et plans vectoriels								
2	Familles de vecteurs : généralités									
	2.1	Le vocabulaire des espaces vectoriels								
	2.2	Sous-espaces vectoriels, familles génératrices								
	2.3	Familles liées, familles libres								
3	Théorie de la dimension									
	3.1	Définitions	2							
	3.2	Dimension et sous-espaces vectoriels	3							
	3.3	Rang d'une famille de vecteurs								
4	Applications linéaires 14									
	4.1^{-}	Calcul de noyau et d'image	4							
		La formule du rang								

1 Introduction : rappels sur \mathbb{R}^n

1.1 Généralités : définitions

Définitions

On note $\vec{v} = (x_1, \dots, x_n)$ un vecteur générique de \mathbb{R}^n . Les x_i sont des réels, les coordonnées cartésiennes de \vec{v} . On représente \mathbb{R}^n pour n = 1, 2, 3 comme une droite, un plan, un espace tridimensionnel.

Opérations sur les vecteurs

- → Addition On peut additionner des vecteurs de même format, composante par composante
- ▶ Multiplication par un scalaire On peut multiplier un vecteur par un scalaire, composante par composante

Combinaison linéaire

Étant donnés des vecteurs $\vec{u}_1 \dots \vec{u}_p$ de même format, on dit que \vec{v} est combinaison linéaire de ces vecteurs si on peut écrire : $\vec{v} = \lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + \lambda_3 \vec{u}_3 + \dots + \lambda_p \vec{u}_p$, où $\lambda_1, \lambda_2, \dots, \lambda_p \in \mathbb{R}$.

- 2(1,2) 3(2,-2).
- Vérifier que (1, -1) est combinaison linéaire de (2, 3) et (1, 2).
- À quelle condition sur a, b, c la vecteur (a, b, c) est-il combinaison linéaire de (1, 0, 1), et (1, -1, -1)?

Définition 1 (Matrice d'une famille de vecteurs)

Soit $\mathcal{F} = (\vec{u}_1, \vec{u}_2, \dots, \vec{u}_p)$ une famille de vecteurs de \mathbb{R}^n .

La matrice de la famille \mathcal{F} est la matrice dont les vecteurs colonnes sont les \vec{u}_i , soit

la matrice
$$A = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ \vec{u_1} & \vec{u_2} & \cdots & \vec{u_p} \\ \downarrow & \downarrow & \downarrow \end{bmatrix} p$$
 colonnes

Matrice de la famille et combinaisons linéaires

Pour
$$\Lambda = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_p \end{bmatrix}$$
, un vecteur des coefficients, on a $\vec{v} = \lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + \ldots + \lambda_p \vec{u}_p = A\Lambda$.

$$(\Lambda = \lambda \ majuscule = Lambda)$$

L'algorithme du pivot de Gauss

(fournie par l'alg. du pivot de Gauss)

Matrice augmentée $\begin{cases} \pi_1 + \frac{1}{\pi_2 + \dots + 1} & \text{ if } \text{ in } \text{ in$

Vocabulaire des systèmes échelonnés

- \star) Inconnue principale : associée à un des pivots $\pi_i \neq 0$
- \star) Inconnue secondaire : pas associée à un pivot. Elle joue le rôle de paramètre.
- *) Compatibilité : le système admet des solutions ssi on a 0 en face des lignes nulles.

$$\text{Système \'echelonn\'e} \left\{ \begin{array}{l} \pi_1 + ---- = \dots \\ \pi_2 + --- = \dots \\ 0 = \kappa_1 \\ 0 = \kappa_2 \end{array} \right\} \text{ \'equations \'e efficaces \'empatibilit\'e}$$

1.2 Le plan \mathbb{R}^2 , ses droites vectorielles

On s'intéressera plus particulièrement aux droites du plan qui passent par l'origine :

Définition 2 (Droite vectorielle, vecteur directeur)

Une droite vectorielle \mathcal{D} est un sous-ensemble du plan $\mathcal{D} \subset \mathbb{R}^2$ dont les vecteurs sont exactement les multiples d'un certain vecteur $\vec{d} \in \mathbb{R}^2$ (fixé) non-nul $(\vec{d} \neq 0)$.

- On note alors $\mathcal{D} = \text{Vect}(\vec{d})$.
- On dit que la droite $\mathcal D$ est la droite **engendrée** (ou dirigée) par le vecteur $\vec d$.
- On dit que le vecteur \vec{d} est un vecteur directeur de la droite \mathcal{D} .

Remarque

La droite vectorielle $\operatorname{Vect}(\vec{d})$ est la *(seule !)* droite du plan \mathbb{R}^2 qui passe par l'origine $\vec{0}$ et par l'extrémité du vecteur directeur \vec{d} .

La droite $\mathcal{D} = \mathrm{Vect}(\vec{d})$ est donc formée de tous les multiples de \vec{d} , parmi lesquels on a placé $2\vec{d}$ et $-\vec{d}$.

Proposition 3 (Équation de droite)

$$ax + by = 0.$$

Proposition 4 (Intersection de deux droites)

Soient \mathcal{D}_1 , \mathcal{D}_2 deux droites \mathcal{D}_1 et \mathcal{D}_2 distinctes $(\mathcal{D}_1 \neq \mathcal{D}_2)$ du plan \mathbb{R}^2 . Alors l'intersection de \mathcal{D}_1 , \mathcal{D}_2 est l'origine : $\mathcal{D}_1 \cap \mathcal{D}_2 = \left\{ \vec{0} \right\}$.

1.3 L'espace \mathbb{R}^3 , ses droites et plans vectoriels

Définition 5 (Sous-espaces vectoriels, vecteurs directeurs)

- ▶ Droite vectorielle $\mathcal{D} = \text{Vect}(\vec{d})$
- Plan vectoriel $\mathcal{P} = \text{Vect}(\vec{u}, \vec{v})$

Proposition 6 (Équation de plan)

$$ax + by + cz = 0.$$

Proposition 7 (Système d'équation d'une droite)

$$a_1x + b_1y + c_1z = 0$$

$$a_2x + b_2y + c_2z = 0$$

Proposition 8 (Intersection de deux plans)

Soient $\mathcal{P}_1, \mathcal{P}_2$ deux plans distincts de l'espace \mathbb{R}^3 . Alors leur intersection est une droite vectorielle :

$$\mathcal{P}_1 \cap \mathcal{P}_2 = \mathcal{D} = \operatorname{Vect}\left(\vec{d}\right).$$

2 Familles de vecteurs : généralités

2.1 Le vocabulaire des espaces vectoriels

Définition 9 (Vocabulaire des espaces vectoriels)

▶ Espace vectoriel

C'est un ensemble E dont les éléments sont des « vecteurs » $\vec{u} \in E$.

- Il y a un « vecteur nul » $\vec{0}$.
- ▶ Pour tous vecteurs $\vec{u}, \vec{v} \in E$, l'addition $\vec{u} + \vec{v}$ fait sens
- ▶ Pour tout scalaire $\lambda \in \mathbb{R}$, et vecteur $\vec{u} \in E$, le produit $\lambda \cdot \vec{u}$ fait sens.
- Ces deux opérations satisfont aux mêmes règles de calcul formel que celles pour \mathbb{R}^n .

▶ Combinaisons linéaires

Ces deux opérations permettent de former des combinaisons linéaires :

- \star) de deux vecteurs : $\lambda \vec{u} + \mu \vec{v}$
- *) d'une famille finie : $\lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + \ldots + \lambda_p \vec{u}_p = \sum_{k=1}^p \lambda_k \vec{u}_k$

Exemples d'espaces vectoriels:

- Les espaces cartésiens \mathbb{R}^n
- Les espaces de matrices $\mathcal{M}_{n,p}(\mathbb{R})$
- Les espaces de polynômes $\mathbb{R}[X]$, $\mathbb{R}_n[X]$
- L'espace des applications $\mathcal{F}(D,\mathbb{R})$, où $D\subseteq\mathbb{R}$.
- ightharpoonup L'espace des suites réelles $\mathbb{R}^{\mathbb{N}}$.

2.2 Sous-espaces vectoriels, familles génératrices

Définition 10 (Sous-espace vectoriel)

Soit E un espace vectoriel.

On appelle sous-espace vectoriel de E un sous-ensemble $F \subseteq E$ qui

- est non-vide et contient le vecteur nul : $\vec{0} \in F$ et qui
- est stable par combinaisons linéaires : $\forall \vec{u}, \vec{v} \in F, \ \forall \lambda, \mu \in \mathbb{R}$, on a $\lambda \vec{u} + \mu \vec{v} \in F$.

Montrer qu'une partie est un sous-espace vectoriel

- ▶ Montrer que $\{P \in \mathbb{R}[X]/P(1) = P'(2)\}$ est un sous-espace vectoriel de $\mathbb{R}[X]$.
- ▶ Montrer que $\{y' = y\}$ est un sous-espace vectoriel de $\mathcal{C}^{\infty}(\mathbb{R})$.
- ▶ Montrer que $\{y' = y + 1\}$ n'est pas un sous-espace vectoriel de $\mathcal{C}^{\infty}(\mathbb{R})$.

Définition 11 (Sous-espace vectoriel engendré)

Soit $\mathcal{F} = (\vec{u}_1, \vec{u}_2, \dots, \vec{u}_p)$ une famille finie de vecteurs d'un espace vectoriel E.

On appelle sous-espace vectoriel engendré par \mathcal{F} l'ensemble des vecteurs de E qui sont combinaison linéaire des vecteurs qui composent \mathcal{F} .

En d'autres termes :
$$\operatorname{Vect}(\mathcal{F}) = \left\{ \underbrace{\lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + ... + \lambda_p \vec{u}_p}_{\text{comb. lin. des } \vec{u}_i}, \text{ pour } \lambda_1, \lambda_2, ..., \lambda_p \in \mathbb{R} \right\}.$$

Caractérisation

- ightharpoonup Comme son nom laisse à penser, l'ensemble $\operatorname{Vect}(\mathcal{F})$ est un sous-espace vectoriel de E.
- En outre, $\operatorname{Vect}(\mathcal{F})$ est le **plus petit** s-e. v. contenant les vecteurs de la famille \mathcal{F} . Plus précisément, $\operatorname{Vect}(\mathcal{F})$ est inclus dans tous les s-e. v. $G \subseteq E$ contenant la famille \mathcal{F} . (Si $\mathcal{F} \subset G$, alors $\operatorname{Vect}(\mathcal{F}) \subseteq G$.)

Remarque dans \mathbb{R}^n : les deux présentations d'un sous-espace vectoriel

Aller-retour entre deux présentations d'un sous-espace vectoriel de \mathbb{R}^n par l'alg. du pivot.

- 1. on échelonne le système d'équations
- 2. on exprime les inconnues principales en termes des inc. secondaires (paramètres)
- 3. on fait apparaître des vecteurs à droite (éq. tautologique pour les paramètres) : $\vec{X} = \sum_{x \text{ inc. sec.}} x \vec{v}_x$
- ▶ base → équations
 - 1. on échelonne la matrice augmentée générique de la famille génératrice ${\mathcal F}$
 - 2. les conditions de compatibilité donnent un système d'équations du sous-espace.

Passer d'un système d'équations à une base:

Soit
$$F = \left\{ \vec{X} = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 \text{ tels que } \left\{ \begin{aligned} x + y + z + t &= 0 \\ x + 2y + 3z + 4t &= 0 \end{aligned} \right\}$$

Cet ensemble de \mathbb{R}^4 est défini par un système d'équations linéaires. C'est donc un s-e. v. de \mathbb{R}^4 .

Pour
$$\vec{X} = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4$$
, on résout
$$\vec{X} \in F \iff \left\{ \begin{array}{c} 1x + y + z + t = 0 \\ x + 2y + 3z + 4t = 0 \end{array} \right. \iff \left\{ \begin{array}{c} 1x + y + z + t = 0 \\ 1y + 2z + 3t = 0 \end{array} \right. \iff \left\{ \begin{array}{c} x = z + 2t \\ y = -2z - 3t \\ z = z \\ y = t \end{array} \right\} \text{ \'eq}^{\text{ns}} \text{ tautologiques}$$

$$\iff \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = z \underbrace{\begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix}}_{=\vec{u}_1} + t \underbrace{\begin{pmatrix} 2 \\ -3 \\ 0 \\ 1 \end{pmatrix}}_{=\vec{u}_2} \iff \vec{X} \in \operatorname{Vect}(\vec{u}_1, \vec{u}_2).$$

Trouver un système d'équations d'un sous-espace vectoriel engendré:

(Conditions de compatibilité du système augmenté générique)

Définition 12 (Famille génératrice)

Soit $\vec{u}_1, ..., \vec{u}_p$ une famille de vecteurs d'un espace vectoriel E.

On dit que la famille $\mathcal{F} = (\vec{u}_1, ..., \vec{u}_p)$ est **génératrice** si $\text{Vect}(\mathcal{F}) = E$.

On dit alors aussi que l'espace E est engendré par $\vec{u}_1,...,\vec{u}_p$.

Reformulation: caractère générateur et décomposabilité automatique

La famille \mathcal{F} est génératrice ssi tout vecteur $\vec{v} \in R$ est combinaison linéaire des vecteurs $\vec{u}_1, ..., \vec{u}_p$ de \mathcal{F} :

$$\forall \vec{v} \in E, \quad \exists \lambda_1, ..., \lambda_p \in \mathbb{R}, \quad \vec{v} = \lambda_1 \vec{u}_1 + ... + \lambda_p \vec{u}_p.$$

Proposition 13 (Sous-famille génératrice)

Soit \mathcal{F} une famille de vecteurs d'un espace vectoriel E.

Supposons que \mathcal{F} contienne une sous-famille $\mathcal{G} \subseteq \mathcal{F}$ qui soit génératrice.

Alors la famille \mathcal{F} est elle-même génératrice.

Montrer le caractère générateur:

Dans
$$\mathbb{R}^2$$
, soit \mathcal{F} la famille formée des vecteurs $\vec{u}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\vec{u}_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, et $\vec{u}_3 = \begin{pmatrix} 3 \\ 7 \end{pmatrix}$.

Montrons que la famille \mathcal{F} est génératrice dans \mathbb{R}^2 .

▶ Approche directe

Cherchons l'équation de Vect $(\vec{u}_1, \vec{u}_2, \vec{u}_3)$. Pour $\vec{v} = \begin{pmatrix} a \\ b \end{pmatrix}$, on a l'équivalence :

$$\left[\vec{v} \in \text{Vect}(\vec{u}_1, \vec{u}_2, \vec{u}_3)\right] \iff \left[\text{le système } x\vec{u}_1 + y\vec{u}_2 + z\vec{u}_3 = \vec{v} \quad (\mathcal{S}) \text{ est compatible.}\right]$$

On échelonne le système (S):

$$x\vec{u}_1 + y\vec{u}_2 + z\vec{u}_3 = \vec{v} \iff x \begin{pmatrix} 1\\2 \end{pmatrix} + y \begin{pmatrix} 2\\3 \end{pmatrix} + z \begin{pmatrix} 3\\7 \end{pmatrix} = \begin{pmatrix} a\\b \end{pmatrix} \iff \begin{cases} x + 2y + 3z = a\\2x + 3y + 7z = b \end{cases}$$

$$\iff \begin{cases} x + 2y + 3z = a\\ -y + z = b - 2a \end{cases} \iff \begin{cases} x + 5z = a + 2(b - 2a)\\ y - z = b - 2a \end{cases}$$

À la dernière étape, le système est échelonné.

Il n'y a alors aucune (=0) équation dans laquelle on a pu éliminer les inconnues x, y et z.

Ce système est donc « automatiquement compatible » (0 condition de compatibilité) pour $\vec{v} \in \mathbb{R}^2$.

La famille ${\mathcal F}$ est donc génératrice.

▶ Première sous-famille génératrice

Soit $\mathcal{G}_3=(\vec{u}_1,\vec{u}_2)$ la famille extraite en excluant le vecteur \vec{u}_3 (d'où l'indice $_3$!)

Vérifions que la famille \mathcal{G}_3 est génératrice (en fait même une base de \mathbb{R}^2 !)

La matrice de la famille
$$\mathcal{G}_3$$
 est $P_3 = \begin{bmatrix} \uparrow & \uparrow \\ \vec{u}_1 & \vec{u}_2 \\ \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$.

Cette matrice est inversible car son déterminant vaut $\det(P_3) = 1 \times 3 - 2 \times 2 = -1 \neq 0$.

De plus, son inverse est donné par :
$$P_3^{-1} = \frac{1}{\det(P_3)} \cdot \text{complémentaire} = \frac{1}{-1} \cdot \begin{bmatrix} 3 & -2 \\ -2 & 1 \end{bmatrix}$$

 $(La\ complémentaire\ de\ \begin{bmatrix} a & c \\ b & d \end{bmatrix}\ est\ \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}\ :\ comme\ qui\ dirait\ la\ transposée\ de\ la\ comatrice...)$

Il vient donc : $P_3^{-1} = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$. Ainsi pour $\vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ vecteur générique, on a : $\vec{v} = \lambda \vec{u}_1 + \mu \vec{u}_2 \iff \begin{pmatrix} x \\ y \end{pmatrix} = P_3 \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \iff \begin{pmatrix} \lambda \\ \mu \end{pmatrix} = P_3^{-1} \begin{pmatrix} x \\ y \end{pmatrix} \iff \begin{cases} \lambda = -3x + 2y \\ \mu = 2x - y \end{cases}$

On obtient ainsi:

$$\underbrace{\begin{pmatrix} x \\ y \end{pmatrix}}_{\overrightarrow{v}} = \underbrace{(-3x+2y)}_{\lambda} \underbrace{\begin{pmatrix} 1 \\ 2 \end{pmatrix}}_{\overrightarrow{u}_1} + \underbrace{(2x-y)}_{\mu} \underbrace{\begin{pmatrix} 2 \\ 3 \end{pmatrix}}_{\overrightarrow{u}_2}.$$

2.3 Familles liées, familles libres

Définition 14 (Dépendance linéaire)

Soit $\vec{u}_1, ..., \vec{u}_p$ une famille de vecteurs d'un espace vectoriel E.

▶ Relation de dépendance linéaire (abrégé en : rel. de dép. lin.) Une relation de dépendance linéaire entre $\vec{u}_1, ..., \vec{u}_p$ est une équation de la forme :

$$\lambda_1 \cdot \vec{u}_1 + \lambda_2 \cdot \vec{u}_2 + \ldots + \lambda_p \cdot \vec{u}_p = \vec{0}$$
 (soit $\sum_{i=1}^p \lambda_i \vec{u}_i = \vec{0}$),

pour un certain p-uplet de scalaires $\lambda_1, \lambda_2, ..., \lambda_p \in \mathbb{R}$.

(les λ_i sont appelés les **coefficients** de la relation de dépendance linéaire)

- La relation triviale, les relations non-triviales
 On a toujours (pour n'importe quelle famille de vecteurs): $0 \cdot \vec{u}_1 + 0 \cdot \vec{u}_2 + \ldots + 0 \cdot \vec{u}_p = \vec{0}$.
 Cette relation de dépendance linéaire avec $\forall i \in [1, p], \ \lambda_i = 0$ est dite triviale.
 Les autres rel. de dép. lin. (celles dont au moins un des λ_i est non-nul) sont dites non-triviales.
- Famille liée On dit que la famille $\mathcal{F} = (\vec{u}_1, ..., \vec{u}_p)$ est liée si elle vérifie une rel. de dép. lin. non-triviale.

Recherche des relations de dépendance linéaire:

Soit
$$\mathcal{F} = (\vec{u}_1, \vec{u}_2, \vec{u}_3)$$
 la famille formée des vecteurs : $\vec{u}_1 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$, $\vec{u}_2 = \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix}$, $\vec{u}_3 = \begin{pmatrix} -2 \\ -3 \\ 0 \end{pmatrix}$.

Cherchons les relations de dépendance linéaire vérifiées par \mathcal{F} .

On résout, pour $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ coefficients inconnus, l'équation :

$$\lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + \lambda_3 \vec{u}_3 = \vec{0} \iff \lambda_1 \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + \lambda_2 \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix} + \lambda_3 \begin{pmatrix} -2 \\ -3 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff \begin{cases} -\lambda_2 - 2\lambda_3 = 0 \\ \lambda_1 & -3\lambda_3 = 0 \\ 2\lambda_1 + 3\lambda_2 & = 0 \end{cases} \iff \begin{cases} \lambda_1 = 3\lambda_3 \\ \lambda_2 = -2\lambda_3 \\ (\lambda_3 = \lambda_3) \end{cases}$$

Ainsi la famille \mathcal{F} vérifie la relation de dépendance linéaire : $3\vec{u}_1 - 2\vec{u}_2 + \vec{u}_3 = \vec{0}$. (on vérifie!) Les autres relations de dépendance linéaire satisfaites par \mathcal{F} sont les multiples de celle-ci

Proposition 15 (Réécriture d'une relation de dépendance linéaire)

Soit $\mathcal{F} = (\vec{u}_1, ..., \vec{u}_p)$ une famille de vecteurs d'un espace vectoriel E.

On suppose que \mathcal{F} est liée.

Alors l'un des vecteurs \vec{u}_j de \mathcal{F} s'écrit comme combinaison linéaire des autres :

il existe
$$j \in [1, p]$$
, et il existe $\lambda_1, \dots, \widehat{\lambda_j}, \dots, \lambda_p$, tels que : $\vec{u}_j = \sum_{\substack{i=1 \ i \neq j}}^n \lambda_i \vec{u}_i$

Pour la rel. de dép. lin. de l'exemple 2.3:

La rel. de dép. lin. $3\vec{u}_1 - 2\vec{u}_2 + \vec{u}_3 = \vec{0}$ peut aussi s'écrire des trois façons suivantes : $\vec{u}_1 = -\frac{2}{3}\vec{u}_2 - \frac{1}{3}\vec{u}_3$ $\vec{u}_2 = -\frac{3}{2}\vec{u}_1 + \frac{1}{2}\vec{u}_3$ $\vec{u}_3 = -3\vec{u}_1 + 2\vec{u}_3.$

Définition 16 (Indépendance linéaire)

Soit $\vec{u}_1, ..., \vec{u}_p$ une famille de vecteurs d'un espace vectoriel E.

▶ Indépendance linéaire

On dit que les vecteurs $\vec{u}_1, ..., \vec{u}_p$ sont linéairement indépendants s'ils ne vérifient aucune relation de dépendance linéaire non-triviale.

▶ Famille libre

On dit que la famille $\mathcal{F} = (\vec{u}_1, ..., \vec{u}_p)$ si les vecteurs qui la composent sont linéairement indépendants. (c'est donc un simple synonyme)

Remarques

Soit $\vec{u}_1, ..., \vec{u}_p$ une famille libre dans espace vectoriel E. Alors :

- Aucun des \vec{v}_i n'est nul.
- Les \vec{v}_i sont tous différents.
- Les sous-familles de ${\mathcal F}$ sont libres aussi.

Exemple: montrer qu'une famille est libre:

Soit
$$\mathcal{F} = (\vec{u}_1, \vec{u}_2, \vec{u}_3)$$
 la famille formée des vecteurs : $\vec{u}_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \vec{u}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \vec{u}_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

Cherchons les relations de dépendance linéaire vérifiées par \mathcal{F} .

On résout, pour $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ coefficients inconnus, l'équation :

$$\lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + \lambda_3 \vec{u}_3 = \vec{0} \iff \lambda_1 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \lambda_3 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\iff \begin{cases} \lambda_2 + \lambda_3 = 0 \\ \lambda_1 + \lambda_3 = 0 \\ \lambda_1 + \lambda_2 = 0 \end{cases} \iff \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ \lambda_3 = 0 \end{cases}$$

Ainsi la seule rel. de dép. lin. satisfaite par la famille \mathcal{F} est triviale : $0\vec{u}_1 - 0\vec{u}_2 + 0\vec{u}_3 = \vec{0}$. La famille \mathcal{F} est donc libre.

Approche matricielle

 $(dans \mathbb{R}^n)$ On trouve si \mathcal{F} est liée en résolvant $AX = \vec{0}$, pour A matrice de la famille.

La proposition suivante étudie la complétion d'une famille libre par un nouveau vecteur :

Proposition 17 (Appendice à une famille libre)

Soit $\mathcal{F} = \vec{u}_1, ..., \vec{u}_n$ une famille libre, et \vec{v} un vecteur quelconque.

Alors de deux choses l'une :

- le vecteur \vec{v} est combinaison linéaire de $\vec{u}_1, ..., \vec{u}_n : \vec{v} = \sum_{i=1}^n \lambda_i \vec{u}_i = \lambda_1 \vec{u}_1 + ... + \lambda_n \vec{u}_n$ Alors la famille $\mathcal{F} || \vec{v}$ est liée
- le vecteur \vec{v} n'est pas combinaison linéaire de $\vec{u}_1,...,\vec{u}_n$: Alors la famille $\mathcal{F}||\vec{v}|$ est libre

Application: montrer qu'une famille est libre

En pratique, pour montrer qu'une famille de trois vecteurs $\mathcal{F} = (\vec{u}_1, \vec{u}_2, \vec{u}_3)$ est libre, on peut utiliser la rédaction par étapes :

- 1. vérifier que $\vec{u}_1 \neq \vec{0}$,
- **2.** vérifier que \vec{u}_2 n'est pas colinéaire à \vec{u}_1 ,
- **3.** montrer que \vec{u}_3 n'est pas coplanaire à \vec{u}_1, \vec{u}_2 .

3 Théorie de la dimension

La notion générale en mathématiques de **dimension** formalise la hiérarchisation entre :

- ▶ dimension 0 : les points isolés (un grain de sable, un atôme à la Démocrite)
- ▶ dimension 1 : les lignes ou courbes (un câble, un spaghetti)
- ▶ dimension 2 : les surfaces (un drap étendu, une feuille de papier)
- ▶ dimension 3 : les volumes (une brique, l'eau contenue dans une bouteille)

On en développe une définition pour les (sous-)espaces vectoriels, et quelques propriétés, notamment la formule du rang.

L'intuition qui en découle forme un outil puissant en algèbre linéaire et permet souvent :

- de (parfois...) s'épargner de fastidieux (et périlleux!) calculs,
- de vérifier aisément la cohérence des résultats obtenus.

3.1 Définitions

Définition 18 (Base d'un espace vectoriel E)

Soit $\vec{u}_1,...,\vec{u}_n$ une famille (finie!) de vecteurs d'un espace vectoriel E.

On dit que la famille $\mathcal{B} = (\vec{u}_1, ..., \vec{u}_n)$ est une base de E, si :

- ightharpoonup est libre (pas de relation de dépendance linéaire non-triviale entre les vecteurs de $\mathcal B$) et
- \mathcal{B} est génératrice : $Vect(\mathcal{B}) = E$ (tout entier)

Proposition 19 (Décomposition dans une base)

Soit E un espace vectoriel de dimension fini, et soit $\mathcal{B} = (\vec{u}_1, ..., \vec{u}_n)$ une base.

Alors tout vecteur $\vec{v} \in E$ peut être décomposé de manière unique comme combinaison linéaire de vecteurs des vecteurs de \mathcal{B} .

$$\forall \vec{v} \in \mathbb{E}, \ \exists ! (x_1, x_2, ..., x_n) \in \mathbb{R}^n, \quad \vec{v} = x_1 \vec{u}_1 + x_2 \vec{u}_2 + ... + x_p \vec{u}_p = \sum_{i=1}^n x_i \vec{u}_i$$

Réciproque

Cette propriété (existence et unicité de la décomposition) caractérise les bases parmi les familles de vecteurs de E.

Bases canoniques:

- ightharpoonup Base canonique de \mathbb{R}^n
- Base canonique de $\mathcal{M}_{n,p}(\mathbb{R})$
- ▶ Base canonique de $\mathbb{R}_n[X]$

Définition 20 (-Proposition : dimension)

Soit E un espace vectoriel.

- 1. On dit que E est de dimension finie si E admet une base (finie!) $\mathcal{B} = (\vec{u}_1, ..., \vec{u}_n)$.
- **2.** (*Proposition*) Toutes les bases de E sont alors formées du même nombre de vecteurs : si $\mathcal{B} = (\vec{u}_1, ..., \vec{u}_n)$ est une base de E, alors **toute autre base** $\mathcal{B}' = (\vec{v}_1, ..., \vec{v}_p)$ de E contient le même nombre de vecteurs que \mathcal{B} . (c'est-à-dire : p = n.)
- **3.** La dimension de E est alors le nombre de vecteurs d'une base quelconque \mathcal{B} . On note $\dim(E) \in \mathbb{N}$ cet invariant de E.

Démonstration: Admis.

Dimension des espaces vectoriels usuels:

- $ightharpoonup \mathbb{R}^n$ on a : dim $(\mathbb{R}^n) = n$
- $ightharpoonup \mathcal{M}_{n,p}(\mathbb{R})$ on a: dim $(\mathcal{M}_{n,p}(\mathbb{R})) = np$
- $ightharpoonup \mathbb{R}_n[X]$ on a : dim $(\mathbb{R}_n[X]) = n+1$ (attention!)

Droites et plans vectoriels

- Si $\dim(E) = 1$, on dit que E est une **droite vectorielle**
- Si $\dim(E) = 2$, on dit que E est un **plan vectoriel**

3.2 Dimension et sous-espaces vectoriels

Proposition 21 (Dimension d'un sous-espace vectoriel)

Si $F \subseteq E$ avec E de dim. finie, alors :

- F est de dim. finie aussi, et $\dim(F) \leq \dim(E)$
- il y a égalité $ssi\ F = E\ (tout\ entier)$.

Démonstration: Admis.

Interprétation du cas d'égalité

Ainsi: • un point ne contient pas d'autre point que lui-même,

- une droite ne contient pas d'autre droite qu'elle-même.
- un plan ne contient pas d'autre plan que lui-même,
- un espace (de dim. 3) ne contient pas d'autre espace (de dim. 3) que lui-même.

Sous-espaces vectoriels de \mathbb{R}^2 :

Sous-espaces vectoriels de \mathbb{R}^3 :

3.3 Rang d'une famille de vecteurs

Dans tout ce qui suit (Subsection 3.3): Soit $\mathcal{F} = (\vec{u}_1, \dots, \vec{u}_p)$ une famille de p vecteurs d'un espace vectoriel E tel que dim(E) = n.

Définition 22 (Rang d'une famille de vecteurs)

On appelle rang de la famille \mathcal{F} , la dimension du sous-espace vectoriel engendré par \mathcal{F} . On note $rg(\mathcal{F}) = dim(Vect(\mathcal{F}))$.

Proposition 23 (Calcul dans \mathbb{R}^n)

Soit
$$\mathcal{F} = (\vec{u}_1, \vec{u}_2, \dots, \vec{u}_p)$$
 une famille de vecteurs de \mathbb{R}^n , et $A = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ \vec{u}_1 & \vec{u}_2 & \cdots & \vec{u}_p \\ \downarrow & \downarrow & \downarrow \end{bmatrix}$ sa matrice.

Alors, une fois la matrice A échelonnée (= à la fin du pivot de Gauss), le nombre de pivots restant est égal au rang $rg(\mathcal{F})$ de la famille de vecteurs \mathcal{F} .

Les majorations automatiques du rang

Soit $\mathcal{F} = (\vec{u}_1, \dots, \vec{u}_p)$ une famille de p vecteurs d'un espace vectoriel E tel que dim(E) = n. Alors on a à la fois $\operatorname{rg}(\mathcal{F}) \leqslant p$ (nb de vecteurs) et $\operatorname{rg}(\mathcal{F}) \leqslant n$ (dimension)

Proposition 24 (Liberté, génération en terme de rang)

Soit \mathcal{F} une famille finie de vecteurs d'un espace vectoriel E de dimension finie. Notons $p = \operatorname{Card}(\mathcal{F})$ et $n = \dim(E)$. Alors :

- La famille \mathcal{F} est libre $ssi \operatorname{rg}(\mathcal{F}) = p$ (rang = nb de vecteurs de \mathcal{F})
- La famille \mathcal{F} est **génératrice** $ssi \operatorname{rg}(\mathcal{F}) = n$ (rang = dimension de E)
- La famille \mathcal{F} est une base $ssi\ p = n$ et $rg(\mathcal{F}) = p = n$ (bon nb de vecteurs)

Démonstration: Admis.

Reformulation opératoire du dernier point

Si p = n, il suffit d'avoir \mathcal{F} libre ou génératrice pour déduire que \mathcal{F} est une base

4 Applications linéaires

4.1 Calcul de noyau et d'image

 $(\ Remarque\ utile\ pour \quad v\'erifier\ la\ r\'esolution\ d'un\ système\ lin\'eaire \quad)\\ trouver\ le\ noyau\ en\ «\ calcul\ mental\ »$

- On résout le syst. d'équa^{ns} $A.\vec{X} = \vec{0}$ pour $\vec{X} = (x_1, ..., x_p)_{\text{col.}}$ (1 équation par ligne)
- (Après échelon^{nt} : alg. du pivot de Gauss :) les **inconnues principales** (« à pivot ») s'expriment en fonction des (svt 1 seule) **inc. secondaires** (paramètres)
- On ajoute des éqns tautologiques pour écrire $A.\vec{X} = \vec{0} \Leftrightarrow \vec{X} = z_1 \vec{v}_1 + ... + z_{\nu} \vec{v}_{\nu}$,
- On conclut : $\operatorname{Ker}(A) = \operatorname{Vect}(\vec{v}_1, \dots, \vec{v}_{\nu})$ et $\nu = \dim[\operatorname{Ker}(A)]$ (= nullité)

4.2 La formule du rang

	$\operatorname{rg}(M)$	0	1	2	3	
	$\dim[\operatorname{Ker}(M)]$	3	2	1	0	
٠						. (M de rg 3) : M inversible : $\vec{C}_1, \vec{C}_2, \vec{C}_3$ base de \mathbb{R}^3 (cas douteux) . (M de rg 2) : 1 rel. de dép. lin. entre $\vec{C}_1, \vec{C}_2, \vec{C}_3,$ (2 sont libres)
						. (M de rg 2) : 1 rel. de dep. lin. entre $C_1, C_2, C_3, (2 sont libres)$. . (M de rg 1) : $\vec{C}_1, \vec{C}_2, \vec{C}_3$ sont colinéaires tous les 3
						. (M de rg 0) : $M \equiv 0$ soit $\vec{C}_1 = \vec{C}_2 = \vec{C}_3 = \vec{0}$