Vol. 63 No. 3 JUCHE106(2017).

(자연과학)

주체106(2017)년 제63권 제3호

(NATURAL SCIENCE)

1 - 니트로소 - 2 - 나프톨의 합성

황금혁, 석래형

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《최신과학기술에 기초하여 에네르기생산방식을 개선하며 나라의 경제를 에네르기절약 형으로 전환하여야 합니다.》(《조선로동당 제7차대회에서 한 중앙위원회사업총화보고》 단행본 47 폐지)

먼적외선복사가열방식은 최신과학기술에 기초한 에네르기절약형기술이다.

2-나프톨을 니트로소화, 킬레트화하여 얻은 1-니트로소-2-나프톨철착체는 새로운 형의 적외선흡수제인 동시에 먼적외선복사가열의 기본물질로서 새로운 형의 적외선복사제로 리용할수 있다.[1]

우리는 2-나프톨의 니트로소화반응을 리론적으로 해석하고 1-니트로소-2-나프톨 합성반응의 최적조건을 확립하였다.

1. 리론적고찰

2-나프톨의 HOMO에 따르는 경계전자밀도를 HyperChem 8.0.3의 PM3법으로 계산한 결과 C_1 원자에서 가장 크며(0.445~0) 따라서 S_E 반응은 반드시 C_1 원자에서 우선적으로 일어난다. 니트로소화반응은 친전자시약인 NO^+ 의 생성단계, π^- 및 σ^- 착체생성단계, 나프톨핵의 재생단계로 이루어지는 S_E 2반응물림새로 진행된다.

2-나프톨의 니트로소화반응특징은 NaNO₂이 산분해될 때 생성되는 HNO₂의 불안정성에 기초하고있으며 낮은 온도, 묽은 용액상태에서만 진행된다는것이다.

니트로소화반응에서는 2-나프톨용액을 정확히 조제하여야 하는데 이를 위해서는 고 체가성소다의 량을 계산량의 1.25배정도로 하여야 한다.

그러나 선행연구[2]에서는 2-나프톨용해제인 가성소다와 니트로소화시약인 아질산나 트리움을 다같이 2-나프톨과 같은 물질량비로 취하고 산분해용으로는 40% 류산을 리용 하였으며 반응온도와 시간을 기본인자로 보았다.

류산에 의한 아질산나트리움의 분해는 순간적으로 일어나며 류산산성매질에서 생성되는 NO⁺은 매우 불안정할뿐아니라 니트로소화반응속도도 대단히 빠르다. 또한 반응을 낮은 온도, 묽은 용액상태에서만 진행시켜야 하므로 결국 반응시간과 반응온도는 거의나 영향을 미치지 않는다.

2. 실험방법 및 직교표작성

1L들이 자기비커에 증류수 100mL와 98% 2-나프톨 14.4g을 넣고 5g의 가성소다로 40% 용액을 제조하여 넣는다. 이것을 90∼95℃에서 1h동안 가열하여 2-나프톨을 모두 푼 다음 0℃까지 랭각시킨다. 온도계, 교반기, 환류랭각기, 적하장치가 설치된 4구플라스크 에 이 용액을 넣고 물-얼음-소금욕에서 온도를 0℃로 유지하면서 여기에 아질산나트리 움 8.3g을 100mL의 증류수에 푼 용액을 첨가한다. 충분히 교반하면서 4% 류산을 용액의 pH 가 6으로 될 때까지 1h동안 적하한다. 이때 용액은 처음에는 연황색으로, 다음에는 연황갈 색으로 되며 황갈색의 침전물이 생긴다. 침전물을 흡인려과한다.

우리는 선행연구결과와 기초실험자료에 기초하여 2-나프톨과 아질산나트리움의 물질 량비와 류산의 적하속도, 매질의 pH를 기본영향인자로 설정하고 실험계획법으로 1-니트 로소-2-나프톨합성반응의 최적조건을 확립하였다.

인자와 수준은 표 1과 같이 하였다.

표 1		인자와	수준
-----	--	-----	----

인자	수준				
인사	1	2	3		
A(2-나프톨과 아질산나트리움의 물질량비)	1:1.1	1:1.2	1:1.3		
$B(류산적하속도/(mL \cdot min^{-1}))$	12	8	4		
C(pH)	4	5	6		

실험은 L₀(3⁴)형직교표에 따라 진행하였으며 실험결과와 SN비는 표 2와 같다. 보조표와 분산분석표는 표 3, 4와 같다.

표 2 I (3⁴)형지교표야 SNHI

표 3 보조표

	立 2. Lg(3)8号亚亚军 3NUI					五 3. 王工五							
No.	Α	В	С	е	거둠률/%	SN ^H]	-	수준	A		В	C	e
								1	16.56	55 21	.384	22.703	24.458
1	1	1	1	1	75	4.771		2	29.73	5 23	.987	23.657	23.078
2	1	2	2	2	78	5.497		3	24.49	7 25	.426	24.437	23.261
3	1	3	3	3	81	6.297							
4	2	1	2	3	89	9.080	표 4. 분산분석표						
7	_	1	2	J	0)	7.000	No.	인자	변동	자유도	분산	분산비	기여률/%
5	2	2	3	1	92	10.607	1	A	29.310	2	14.655	78.369	87.724
6	2	3	1	2	91	10.048	2	В	2.797	2	1.398	7.476	7.344
_			_	_	0.5		3	C	0.503	2	0.252	1.348	0.390
7	3	1	3	2	85	7.533	4	e	0.357	2	0.187	110.0	0.000
8	3	2	1	3	86	7.884	5	(e)	(0.357)	(2)	(0.187)		(4.542)
9	3	3	2	1	89	9.080	6	Ť	32.904	8	. ,		100

3. 실험결과 및 해석

분산분석결과로부터 얻은 최적조건은 A₂B₃C₃ 즉 물질량비 1:1.2, 류산적하속도 4mL/min, pH 6이며 이때 거둠률은 91~92%이다.

합성한 1-니트로소-2-나프톨을 벤졸로 재결정화한 다음 얇은충크로마토그라프분석 한 결과 시료에 불순물이 없다는것을 확인하였다.

1-니트로소-2-나프톨의 녹음점은 109℃이다.

푸리에변화적외선분광기(《Nicolet 6700》)로 생성물의 적외선흡수스펙트르를 측정하였

다.(그림 1)

그림 1에서 보는바와 같이 3 280cm⁻¹에서 나프탈린핵에 결합된 C-H신축진동에 해당한 흡수띠가, 3 053cm⁻¹에서 나프탈린핵의 C-H신축진동에 해당한 흡수띠가, 1 600cm⁻¹에서 나프탈린핵의 C=C신축진동에 해당한 흡수띠가, 1 632cm⁻¹에서 나프토키논옥심의 C=O신축진동에 해당한 흡수띠가 나타났다. 또한 1 172, 1 215cm⁻¹에서 C-N신축진동에 해당한 흡수띠가, 1

그림 1. 1-니트로소-2-나프톨의 IR스펙트르 1-표준물질, 2-합성물질

에서 C-N신축진동에 해당한 흡수띠가, 1 407, 1 465 cm⁻¹에서 N=O신축진동에 해당한 흡 NO. 수띠가 나타났다.

적외선스펙트르분석결과로부터 1-니트로소-2-나프톨이 정확히 합성되였으며 1-니트로소-2-나프톨은 케토-에놀호변이성화된 상태(그림 2)에서 나프토키논옥심과의 평형혼합물상태로 존재한다는것을 알수 있다.

맺 는 말

2-나프톨의 니트로화반응성을 해석하고 1-니트로소-2-나프톨합성의 최적조건을 밝혔다. 최적조건은 다음과 같다. 2-나프톨과 아질산나트리움의 물질량비 1:1.2, 류산적하속도 4mL/min, pH 6.

참 고 문 헌

- [1] J. N. Matin et al.; Organ. Synth., 92, 1298, 2012.
- [2] 井本稔; 大有機化学 2, 朝倉書店, 345, 1963.

주체105(2016)년 11월 5일 원고접수

Synthesis of 1-Nitroso-2-Naphtol

Hwang Kum Hyok, Sok Thae Hyong

We analyzed nitration reactivity of 2-naphtol and established the optimum conditions of synthesis of 1-nitroso-2-naphtol.

The optimum conditions are as follows: the ratio of 2-naphtol and sodium nitrite is 1:1.2, the dropping rate of sulphuric acid is 4mL/min and pH is 6.

Key words: 1-nitroso-2-naphtol, 2-naphtol