REGRESIÓN

Grupo 5

Manuel García Plaza José Miguel Ramírez Muñoz

Índice

- Descripción de la variable objetivo.
- 2. Propuestas de modelos.
 - a. Primera propuesta.
 - b. Modelo seleccionado.
 - c. <u>Modelos alternativos.</u>
- 3. Comprobación de significancias de las variables del modelo.
- 4. Interpretación del modelo.
 - a. Evaluación de precisión.
 - b. <u>Por coeficientes.</u>
- 5. Backup.

Objetivo para predecir: cancelaciones.

Es una variable binaria:

0: "reserva no cancelada".

1: "reserva cancelada".

Queremos **predecir** en función del resto de variables de cada reserva, si esta va a ser cancelada para poder **reducir pérdidas de dinero.**

Modelo con todas las variables.

- $R^2 = 0.34$
- **AIC** = 29796

Variables poco significativas:

- Número de reservas previas no canceladas.
- Menú tipo 2.

	Pr(> z)	
(Intercept)	< 2e-16	***
newdata\$no_of_adults	0.000654	***
newdata\$no_of_children	4.01e-05	***
newdata\$repeated_guest	3.15e-06	***
newdata\$no_of_previous_bookings_not_canceled	0.242000	
newdata\$no_of_previous_cancellations	0.000329	***
newdata\$avg_price_per_room	< 2e-16	***
newdata\$no_of_week_nights	3.16e-05	***
newdata\$no_of_weekend_nights	< 2e-16	***
newdata\$type_of_meal_planMeal Plan 2	0.069819	
newdata\$type_of_meal_planNot Selected	4.64e-11	***
newdata\$no_of_special_requests	< 2e-16	***
newdata\$required_car_parking_space	< 2e-16	***

Modelo final.

Este modelo es el anterior eliminando la variable de reservas previas sin cancelar y cambiando la variable "Meal Plan" que pasa a ser binaria:

1 = "Selecciona". 0 = "No Selecciona".

- R² = 0,34; este modelo es un 34% mejor que el modelo trivial
- **AIC** = 29803

Mediante el método **step-wise no mejora**, luego este es el modelo elegido.

Modelos alternativos:

División por tipo de habitación:

Si hacemos 6 modelos (cada uno para un tipo de habitación) intentando buscar un mejor ajuste tenemos que el mejor modelo es el que coge datos del tipo de habitación 7 (117 individuos) con:

- $R^2 = 0.71$
- **AIC** = 86

En general el resto no ajustan muy bien y tienen pocos datos.

Solo con las variables de mayor correlación:

Si probamos con un modelo con estas 3 variables obtenemos:

- $R^2 = 0.24$
- **AIC** = 34209

Tenemos **peores métricas** que en el modelo seleccionado.

<u>Summary</u>

Tests ANOVA significativos en los factores:

Parking

Proporciones muestrales.

p-valor ANOVA < 0,05.

Mes de llegada

Proporciones muestrales.

Todos los **p-valores** de ANOVA son **menores** que **0,05** excepto dos.

Efectivamente, existen diferencias estadísticamente significativas en ambas variables.

Métricas binarias (por percentiles top de scores)

- Observamos que hay más cancelaciones hasta el top 60%. El crecimiento del número de No Cancelaciones es exponencial y el de
 - No Cancelaciones es exponencial y el de cancelaciones es logarítmico.

En el top 20% se encuentra el 50% de los verdaderos positivos. En cambio, a partir del percentil 80 ya tenemos casi el 100% de ellos.

Métricas binarias (por percentiles top de scores)

 Observamos una precisión acumulada del 80% para el percentil 20. Siempre existe una mejora con respecto a la predicción del modelo trivial. En concreto, para el top 20% es entre 2 y 3 veces mejor.

Diferencias entre los percentiles dados por los scores:

TOP PERCENTILES	Nº DE INDIVIDUOS	no_of_adults	no_of_children	
<= 20	7100	1,970	0,152	
>= 80	7476	1,746	0,083	
	Porcentaje de diferencia	12,83%	84,189	
		no_of_previous_cancellations	Repeate guest	
		0,008	10	
		0,085	759	
	Porcentaje de diferencia	-90,37%	-98,68%	
		no_of_weekend_nights	no_of_week_nights	
		0,922	2,561	
		0,741	2,006	
	Porcentaje de diferencia	24,36%	27,67%	
		avg_price_per_room	no_of_special_requests	
		113,335	0,167	
		92,688	1,140	
	Porcentaje de diferencia	22,28%	-85,33%	
		lead_time	scores	
		191,966	0,816	
		31,153	0,027	
	Porcentaje de diferencia	516,21%	2891,50%	
		required_car_parking_space	type_of_meal_plan (class 1)	
		14	6.289	
		650	6.560	
	Porcentaje de diferencia	-97,85%	-4,13%	

En **número de niños**, la media del top 20 % es un 84,18% mayor que la del 20% inferior.

En número de solicitudes especiales, la media del top 20% es un 85,33% menor que la del 20% de la cola.

Podríamos clasificar el **top 20**% como personas que reservan con mayor antelación, tienen menos solicitudes especiales y viajan menos en coche que el grupo 2.

Variables que disminuyen la propensión a cancelar:

Son las variables con coeficientes negativos:

• (Intercept):

Provoca un factor independiente de 0,002 lo cual sesga hacia el 0 el modelo.

repeated_guest:

Ser cliente repetido disminuye la propensión de cancelar un 91%.

no_of_special_requests:

Personalizar la reserva (1 solicitud) disminuye la propensión de cancelar un 78%.

required_car_parking_space:

Solicitar parking reduce esta propensión un 79%.

type_of_meal_plan:

Elegir algún menú baja la propensión de cancelar un **25**%.

Variables que disminuyen la propensión a cancelar:

• room_type_reserved:

Los clientes que reservan habitación distinta del tipo 1 son menos propensos a cancelar.

- tipo 2: un 31% menos.
- tipo 4: un 21% menos.
- tipo 5: un 54% menos.
- o tipo 6: un 63% menos.
- tipo 7: un 77% menos.

market_segment (type Offline):

Aquellos que hacen la reserva **en persona** son un **63**% menos propensos a cancelar.

Variables que aumentan la propensión a cancelar:

Son las variables con coeficientes positivos:

avg_price_per_room:

Un aumento de **1**€ incrementa esta propensión un **2**%.

• lead_time:

Cada día de antelación aumenta la propensión de cancelar un 1,7%.

market_segment (type Online):

La gente que reserva online es un 140% más propensa a cancelar.

no_of_week_nights:

Cada noche entre semana aumenta la propensión a cancelar un 4,5%.

no_of_weekend_nights:

Cada noche de fin de semana aumenta la propensión a cancelar un 15%.

Variables que aumentan la propensión a cancelar:

• arrival_month:

Las reservas con mes de llegada que no es enero son más propensas a ser canceladas.

- o febrero: un 1538% más.
- marzo: un 1075% más.
- o abril: un 836% más.
- mayo: un 518% más.
- o junio: un **722%** más.
- julio: un 601% más.
- o agosto: un **563%** más.
- septiembre: un 494% más.
- o octubre: un 690% más.
- noviembre: un 1086% más.
- diciembre: un 74% más.

no_of_previous_cancellations:

Cada cancelación previa incrementa un 32% esta propensión.

• no of adults:

Cada adulto más aumenta el ratio un 12%.

no_of_children:

Cada niño incrementa el ratio un 23%.

Backup

Coeficientes del modelo final:

```
(Intercept)
                               -5.9107917
no of adults
                               0.1118634
no_of_children
                                0.2081663
repeated_guest
                               -2.4334715
no_of_previous_cancellations
                                0.2787310
avg_price_per_room
                                0.0194522
no_of_week_nights
                                0.0437110
no of weekend nights
                               0.1428774
type_of_meal_plan
                               -0.2928763
no_of_special_requests
                               -1.5191488
required_car_parking_space
                               -1.5811593
room_type_reservedRoom_Type 2 -0.3784563
room_type_reservedRoom_Type 4 -0.2306438
room_type_reservedRoom_Type 5 -0.7769555
room_type_reservedRoom_Type 6 -1.0005850
room_type_reservedRoom_Type 7 -1.4711227
market_segment_typeOffline
                               -0.9943034
market_segment_typeOnline
                                0.8756189
as.factor(arrival_month)2
                               2.7959038
as.factor(arrival_month)3
                                2.4639190
as.factor(arrival_month)4
                                2.2365525
as.factor(arrival_month)5
                                1.8216967
as.factor(arrival month)6
                                2.1065163
as.factor(arrival_month)7
                                1.9475972
as.factor(arrival_month)8
                                1.8925531
as.factor(arrival_month)9
                                1.7822127
as.factor(arrival_month)10
                               2.8674748
as.factor(arrival_month)11
                                2.4733842
as.factor(arrival_month)12
                                0.5535651
                                0.0167256
lead time
```

p-valores ANOVA (FDR):

Summary modelo por tipo habitación:

- tipo 1: $\mathbb{R}^2 = 0.34$; AIC = 22924.
- tipo 2: $\mathbb{R}^2 = 0.4$; AIC = 553.
- tipo 4: $\mathbb{R}^2 = 0.33$; AIC = 5146.
- tipo 5: $\mathbb{R}^2 = 0.53$; AIC = 193.
- tipo 6: $\mathbb{R}^2 = 0.46$; AIC = 743.
- tipo 7: $\mathbb{R}^2 = 0.71$; AIC = 86.

Summary modelo pocas variables:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-3.3737405	0.0534242	-63.15	<2e-16
newdata\$lead_time	0.0129749	0.0001781	72.87	<2e-16
newdata\$avg_price_per_room	0.0188885	0.0004344	43.48	<2e-16
newdata\$no_of_special_requests	-1.0393790	0.0211890	-49.05	<2e-16