# Principal components analysis

Victor Kitov

v.v.kitov@yandex.ru

#### Table of Contents

- Linear algebra reminder
- 2 Dimensionality reduction intro
- Principal component analysis
- 4 Construction of principal components
- 5 Proof of optimality of principal components

### Scalar product reminer

- Here we will assume  $\langle a, b \rangle = a^T b$
- $||a|| = \sqrt{\langle a, a \rangle}$
- Signed projection of x on a is equal to  $\langle x, a \rangle / \|a\|$
- Unsigned projection (length) of x onto a is equal to  $|\langle x,a\rangle|/\|a\|$

### Eigenvectors, eigenvalues

- If for some  $A \in \mathbb{R}^{D \times D}$  there exist scalar  $\lambda$  and D-dimensional vector v such that  $Av = \lambda v$  then
  - v is called eigenvector of A
  - $\lambda$  is called eigenvalue of A, corresponding to eigenvector v.
- $\exists v \neq 0$ :  $Av = \lambda v \Leftrightarrow (A \lambda I) v = 0 \Leftrightarrow det(A \lambda I) = 0$ . So all eigenvalues satisfy  $det(A \lambda I) = 0$  which
  - is a polynomial equation of order D
  - so has D solutions<sup>1</sup> (accounting for their multiplicity, possibly complex)

<sup>&</sup>lt;sup>1</sup>According to Fundamental theorem of algebra.

### Symmetric matrices

- Matrix  $A \in \mathbb{R}^{D \times D}$  is called *symmetric* if  $A^T = A$ .
- Properties:
  - All eigenvalues of symmetric matrix are real.
  - Eigenvectors, corresponding to different eigenvalues of symmetric matrix *B* are orthogonal to each other.
  - If  $\tilde{\lambda}$  is a repeated root of  $\det(A \lambda I) = 0$  for some symmetric  $A \in \mathbb{R}^{D \times D}$  with multiplicity m then there exist m orthonormal eigenvectors of A, corresponding to  $\tilde{\lambda}$ .
  - For any symmetric matrix  $A \in \mathbb{R}^{D \times D}$  there exists orthonormal basis of eigenvectors of this matrix.

#### Vector derivatives

• Suppose  $x = [x^1, ... x^D]$  and  $f(x) = f(x^1, ... x^D)$ . Vector derivative

$$\frac{\partial f(x)}{\partial x} := \begin{pmatrix} \frac{\partial f(x)}{\partial x^1} \\ \frac{\partial f(x)}{\partial x^2} \\ \cdots \\ \frac{\partial f(x)}{\partial x^D} \end{pmatrix}$$

• For any  $x, b \in \mathbb{R}^D$  it holds that<sup>2</sup>:

$$\frac{\partial [b^T x]}{\partial x} = b$$

• For any  $x \in \mathbb{R}^D$  and symmetric  $B \in \mathbb{R}^{D \times D}$  it holds that<sup>3</sup>:

$$\frac{\partial [x^T B x]}{\partial x} = 2Bx$$

<sup>&</sup>lt;sup>2</sup>Prove it.

<sup>&</sup>lt;sup>3</sup>Prove it. How will the formula change for non-symmetric B?

#### Table of Contents

- 1 Linear algebra reminder
- 2 Dimensionality reduction intro
- 3 Principal component analysis
- 4 Construction of principal components
- 5 Proof of optimality of principal components

### Dimensionality reduction

#### Feature selection / Feature extraction



**Feature extraction:** find transformation of original data which extracts most relevant information for machine learning task.

### Applications of dimensionality reduction

#### Applications:

- visualization in 2D or 3D
- reduce operational costs on data storage, transfer and processing
  - memory
  - disk
  - CPU usage
- remove multi-collinearity to improve performance of some machine-learning models

### Categorization of dimensionality reduction methods

#### Supervision:

- supervised
- unsupervied

#### Mapping to reduced space:

- linear
- non-linear

Principal components analysis - linear unsupervised method of dimensionality reduction.

#### Table of Contents

- 1 Linear algebra reminder
- Dimensionality reduction intro
- Principal component analysis
  - Definition
  - Applications of PCA
  - Application details
- 4 Construction of principal components
- 5 Proof of optimality of principal components

Principal components analysis - Victor Kitov
Principal component analysis
Definition

- 3 Principal component analysis
  - Definition
  - Applications of PCA
  - Application details

# Projections, orthogonal complements

- For point x and subspace L denote:
  - p: the projection of x on L
  - h: orthogonal complement
  - x = p + h,  $\langle p, h \rangle = 0$ .
- For training set  $x_1, x_2, ... x_N$  and subspace L find:
  - projections:  $p_1, p_2, ...p_N$
  - orthogonal complements:  $h_1, h_2, ... h_N$ .

# Best subspace fit⁴

#### Definition 1

Best-fit k-dimensional subspace for a set of points  $x_1, x_2, ... x_N$  is a subspace, spanned by k vectors  $v_1, v_2, ... v_k$ , solving

$$\sum_{n=1}^{N} \|h_n\|^2 \to \min_{v_1, v_2, \dots v_k}$$

#### Proposition 1

Vectors  $v_1, v_2, ... v_k$ , solving

$$\sum_{n=1}^{N} \|p_n\|^2 \to \max_{\nu_1, \nu_2, \dots \nu_k}$$

also define best-fit k-dimensional subspace.

<sup>&</sup>lt;sup>4</sup>Prove 1 using that  $||x||^2 = ||p||^2 + ||h||^2$  for x = p + h and  $\langle p, h \rangle = 0$ .

### Definition of PCA

#### Definition 2

Principal components  $a_1, a_2, ... a_k$  are vectors, forming orthonormal basis in the k-dimensional subspace of best fit.

- Properties:
  - Not invariant to translation:
    - center data before PCA:

$$x \leftarrow x - \mu$$
 where  $\mu = \frac{1}{N} \sum_{n=1}^{N} x_n$ 

- Not invariant to scaling:
  - scale features to have unit variance before PCA

### Example: line of best fit

 In PCA the sum of squared perpendicular distances to line is minimized:



 What is the difference with least squares minimization in regression?

# Example: plane of best fit



- Principal component analysis
  - Definition
  - Applications of PCA
  - Application details

#### Visualization



# Data filtering

Remove noise to get a cleaner picture of data distribution:



X. Huo and Jihong Chen (2002). Local linear projection (LLP). First IEEE Workshop on Genomic Signal Processing and Statistics (GENSIPS), Raleigh, NC, October. http://www.gensips.gatech.edu/proceedings/.

# Economic description of data

#### Faces database:



# Eigenvectors (called eigenfaces)

Projections on first several eigenvectors describe most of face variability.



### Text analysis

- Objects=text files
- Binary, TF, TF-IDF representations have huge *D*.
  - ullet math operations with X inefficient
    - ML methods work longer
- Sparsity induces complications with query matching
  - consider query "automobile"
  - simple cosine-metric matching won't match documents with "car", "bus", etc.

# Latent semantic analysis (LSA)

#### Latent semantic analysis (LSA)

Get economical document representations with coordinates of most important PCA components found without centering.

#### Comments:

- usually 200-300 components are sufficient.
- Do not center X before computing PCA
  - otherwise will lose sparsity of X
  - $\mu \approx 0$  anyway, because most features are 0.
- Techically done with truncated SVD of X.

Principal components analysis - Victor Kitov
Principal component analysis
Application details

- Principal component analysis
  - Definition
  - Applications of PCA
  - Application details

# Quality of approximation

Consider vector x. Since all D principal components form a full othonormal basis, x can be written as

$$x = \langle x, a_1 \rangle a_1 + \langle x, a_2 \rangle a_2 + \dots + \langle x, a_D \rangle a_D$$

Let  $p^K$  be the projection of x onto subspace spanned by first K principal components:

$$p^{K} = \langle x, a_1 \rangle a_1 + \langle x, a_2 \rangle a_2 + ... + \langle x, a_K \rangle a_K$$

Error of this approximation is

$$h^K = x - p^K = \langle x, a_{K+1} \rangle a_{K+1} + \dots + \langle x, a_D \rangle a_D$$

## Quality of approximation

Using that  $a_1, ... a_D$  is an orthonormal set of vectors, we get

$$||x||^{2} = \langle x, x \rangle = \langle x, a_{1} \rangle^{2} + \dots + \langle x, a_{D} \rangle^{2}$$
$$||p^{K}||^{2} = \langle p^{K}, p^{K} \rangle = \langle x, a_{1} \rangle^{2} + \dots + \langle x, a_{K} \rangle^{2}$$
$$||h^{K}||^{2} = \langle h^{K}, h^{K} \rangle = \langle x, a_{K+1} \rangle^{2} + \dots + \langle x, a_{D} \rangle^{2}$$

We can measure how well first K components describe our dataset  $x_1, x_2, ... x_N$  using relative loss

$$L(K) = \frac{\sum_{n=1}^{N} \|h_n^K\|^2}{\sum_{n=1}^{N} \|x_n\|^2}$$
 (1)

or relative score

$$S(K) = \frac{\sum_{n=1}^{N} \|p_n^K\|^2}{\sum_{n=1}^{N} \|x_n\|^2}$$
 (2)

Evidently L(K) + S(K) = 1.

### Contribution of individual component

Contribution of  $a_k$  for explaining x is  $\langle x, a_k \rangle^2$ . Contribution of  $a_k$  for explaining  $x_1, x_2, ... x_N$  is:

$$\sum_{n=1}^{N} \langle x_n, a_k \rangle^2$$

Explained variance ratio:

$$E(a_k) = \frac{\sum_{n=1}^{N} \langle x_n, a_k \rangle^2}{\sum_{d=1}^{D} \sum_{n=1}^{N} \langle x_n, a_d \rangle^2} = \frac{\sum_{n=1}^{N} \langle x_n, a_k \rangle^2}{\sum_{n=1}^{N} \|x_n\|^2}$$

- Explained variance ratio measures relative contribution of component  $a_k$  to explaining our dataset  $x_1, ... x_N$ .
- Note that  $\sum_{k=1}^{K} E(a_k) = S(K)$ .

# How many principal components to select?

- Data visualization: 2 or 3 components.
- Take most significant components until their explained variance ratio falls sharply down:



• Or take minimum K such that  $L(K) \le t$  or  $S(K) \ge 1 - t$ , where typically t = 0.95.

### PCA solution

- Center  $x_1, ... x_N$  to have zero mean.
- Scale  $x_1, ... x_N$  to have equal variance.
- Form  $X = [x_1^T; ...x_N^T]^T \in \mathbb{R}^{N \times D}$
- Estimate sample covariance matrix of x:  $\hat{\Sigma} = \frac{1}{N} X^T X$
- Find eigenvalues  $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_D \geq 0$  and corresponding eignevectors  $a_1, a_2, ... a_D$ .
- $a_1, a_2, ... a_k$  are first k principal components, k = 1, 2, ... D.
- Sum of squared projections onto  $a_i$  is  $||Xa_i||^2 = \lambda_i$ .
- Explained variance ratio by component a; is equal to

$$\frac{\lambda_i}{\sum_{d=1}^D \lambda_d}$$

#### Table of Contents

- Linear algebra reminder
- Dimensionality reduction intro
- 3 Principal component analysis
- 4 Construction of principal components
- 5 Proof of optimality of principal components

#### Constructive definition of PCA

- Principal components  $a_1, a_2, ... a_D \in \mathbb{R}^D$  are found such that  $\langle a_i, a_j \rangle = \begin{cases} 1, & i = j \\ 0 & i \neq i \end{cases}$
- Xa<sub>i</sub> is a vector of projections of all objects onto the *i*-th principal component.
- For any object x its projections onto principal components are equal to:

$$p = A^T x = [\langle a_1, x \rangle, ... \langle a_D, x \rangle]^T$$

where  $A = [a_1; a_2; ...a_D] \in \mathbb{R}^{D \times D}$ .

#### Constructive definition of PCA

- **1 a**<sub>1</sub> is selected to maximize  $||Xa_1||$  subject to  $\langle a_1, a_1 \rangle = 1$
- ②  $a_2$  is selected to maximize  $||Xa_2||$  subject to  $\langle a_2, a_2 \rangle = 1$ ,  $\langle a_2, a_1 \rangle = 0$
- ③  $a_3$  is selected to maximize  $||Xa_3||$  subject to  $\langle a_3, a_3 \rangle = 1$ ,  $\langle a_3, a_1 \rangle = \langle a_3, a_2 \rangle = 0$  etc.
  - It turns out that:
    - $a_1, ... a_k$  form k-dimensional subspace of best fit.
    - $a_1, a_2, ...$  are first, second,... eigenvectors of  $X^T X$  (ordered by decreasing eigenvalue).

### Derivation: 1st component

$$\begin{cases} \|Xa_1\|^2 \to \max_{a_k} \\ \|a_1\| = 1 \end{cases} \tag{3}$$

Lagrangian of optimization problem (3):

$$\textit{L}(\textit{a}_1, \mu) = \textit{a}_1^{\mathsf{T}} \textit{X}^{\mathsf{T}} \textit{X} \textit{a}_1 - \mu (\textit{a}_1^{\mathsf{T}} \textit{a}_1 - 1) \rightarrow \mathsf{extr}_{\textit{a}_1, \mu}$$

$$\frac{\partial L}{\partial a_1} = 2X^T X a_1 - 2\mu a_1 = 0$$

so  $a_1$  is selected from a set of eigenvectors of  $X^TX$ .

### Derivation: 1st component

Since

$$||Xa_1||^2 = (Xa_1)^T Xa_1 = a_1^T X^T Xa_1 = \lambda a_1^T a_1 = \lambda$$

 $a_1$  should be the eigenvector, corresponding to the largest eigenvalue  $\lambda_1.$ 

Comment: If many many eigenvector directions corrsponding to  $\lambda_1$  exist, select arbitrary eigenvector, satisfying constraint of (3).

### Derivation: 2nd component

$$\begin{cases} \|Xa_2\|^2 \to \max_{a_2} \\ \|a_2\| = 1 \\ a_2^T a_1 = 0 \end{cases} \tag{4}$$

Lagrangian of optimization problem (4):

$$L(a_2, \mu) = a_2^T X^T X a_2 - \mu(a_2^T a_2 - 1) - \alpha a_1^T a_2 \to \text{extr}_{a_2, \mu, \alpha}$$

$$\frac{\partial L}{\partial a_2} = 2X^T X a_2 - 2\mu a_2 - \alpha a_1 = 0 \tag{5}$$

### Derivation: 2nd component

By multiplying by  $a_1^T$  we obtain:

$$a_1^T \frac{\partial L}{\partial a_1} = 2a_1^T X^T X a_2 - 2\mu a_1^T a_2 - \alpha a_1^T a_1 = 0 \tag{6}$$

Since  $a_2$  is selected to be orthogonal to  $a_1$ :

$$2\mu a_1^T a_2 = 0$$

Since  $a_1^T X^T X a_2$  is scalar and  $a_1$  is eigenvector of  $X^T X$ :

$$a_1^T X^T X a_2 = (a_1^T X^T X a_2)^T = a_2^T X^T X a_1 = \lambda_1 a_2^T a_1 = 0$$

It follows that (6) simplifies to  $\alpha a_1^T a_1 = \alpha = 0$  and (5) becomes

$$X^T X a_2 - \mu a_2 = 0$$

So  $a_2$  is selected from a set of eigenvectors of  $X^TX$ .

### Derivation: 2nd component

Since

$$||Xa_2||^2 = (Xa_2)^T Xa_2 = a_2^T X^T Xa_2 = \lambda a_2^T a_2 = \lambda$$

 $a_2$  should be the eigenvector, corresponding to second largest eigenvalue  $\lambda_2$ .

Comment: If many many eigenvector directions corrsponding to  $\lambda_2$  exist, select arbitrary eigenvector, satisfying constraints of (4).

### Derivation: k-th component

$$\begin{cases} \|Xa_k\|^2 \to \max_{a_k} \\ \|a_k\| = 1 \\ a_k^T a_1 = \dots = a_k^T a_{k-1} = 0 \end{cases}$$
 (7)

#### Table of Contents

- 1 Linear algebra reminder
- 2 Dimensionality reduction intro
- Principal component analysis
- 4 Construction of principal components
- 5 Proof of optimality of principal components

### Componentwise optimization leads to best fit subspace

#### Theorem 1

Let  $L_k$  be the subspace spanned by  $a_1, a_2, ... a_k$ . Then for each k  $L_k$  is the best-fit k-dimensional subspace for X.

Proof: use induction. For k=1 the statement is true by definition since projection maximization is equivalent to distance minimization.

Suppose theorem holds for k-1. Let  $L_k$  be the plane of best-fit of dimension with dim L=k. We can always choose an orthonormal basis of  $L_k$   $b_1$ ,  $b_2$ , ...  $b_k$  so that

$$\begin{cases} ||b_k|| = 1 \\ b_k \perp a_1, b_k \perp a_2, \dots b_k \perp a_{k-1} \end{cases}$$
 (8)

by setting  $b_k$  perpendicular to projections of  $a_1, a_2, ... a_{k-1}$  on  $L_k$ .

### Componentwise optimization leads to best fit subspace

Consider the sum of squared projections:

$$||Xb_1||^2 + ||Xb_2||^2 + ... + ||Xb_{k-1}||^2 + ||Xb_k||^2$$

By induction proposition  $L[a_1, a_2, ... a_{k-1}]$  is space of best fit of rank k-1 and  $L[b_1, ... b_{k-1}]$  is some space of same rank, so sum of squared projections on it is smaller:

$$||Xb_1||^2 + ||Xb_2||^2 + ... + ||Xb_{k-1}||^2 \le ||Xa_1||^2 + ||Xa_2||^2 + ... + ||Xa_{k-1}||^2$$

and

$$||Xb_k||^2 \le ||Xa_k||^2$$

since  $b_k$  by (8) satisfies constraints of optimization problem (7) and  $a_k$  is its optimal solution.

### Summary

 Every symmetric matrix A can be decomposed into rotation, scaling and backward rotation:

$$A = P\Lambda P^T$$

- Sample covariance matrix  $\frac{1}{N}X^TX$  is symmetric and  $\geq 0$ .
  - so it has non-negative eigenvalues  $\lambda_1 \geq ... \geq \lambda_D \geq 0$  with corresponding eigenvectors  $a_1,...a_D$ .
  - spread of distribution is characterized by eigenvalues.

### Summary

- Dimensionality reduction common preprocessing step for efficiency and numerical stability.
- Subspace of best fit of rank k for training set  $x_1, ... x_N$  is k-dimensional subspace  $\mathcal{L}(b_1, ... b_k)$ , minimizing:

$$||h_1||^2 + ... + ||h_N||^2 \to \min_{b_1,...b_k}$$

- Solution vectors are called top k principal components.
- Principal component analysis expression of x in terms of first k principal components.
- It is unsupervised linear dimensionality reduction.
- Solution: principal components  $a_1, ... a_k$  are top k eigenvectors of  $X^T X$ .