COURSE OUTLINE8

ELNG 153: Fundamentals of Electrical Engineering (3 credit)

Semester I: 2021/22

Class Hours: 7:00 - 8:55

Venue: LT |

Facilitator: Ing. Nana Twum Duah (MIET, PE-GhIE)

Teaching Assistance: Dennis A. Akuetteh

[0557724716]

Keziah Boamah

[0240378063]

Office Hours:

Phone:

Email: nana.duah@uenr.edu

Prerequisite Course (s): Physics and Elective Mathematics.

Required Text (s):

- Boylestad R., Introductory Circuit Analysis, ISBN 9780133923605, 978129098951
- C. K. Alexander, M. N.O. Sadiku, Fundamentals of Electric Circuits, ISBN 978-0078028229
- Hughes E., Electrical and Electronics Technology(10ed.,Pearson Education), ISBN 8131733661, 9788131733660
- Theraja B.L, Theraja R.K, A Text Book of Electrical Technology, ISBN 8121924413, 9788121924412
- Giorgio R., James K, Fundamentals of Electrical Engineering.
- ELNG 153, Fundamentals of Electrical Engineering hand book.

Course Description

Units and Measurement: Basic and Derived Units, SI Units, Definition of Work, Energy and

Power, Efficiency, Number Systems, Introduction to Types of Signals and Systems.

Passive Elements: Resistors, Capacitors and Inductors

Introduction to Electrical Circuits: Ohm's Law, Kirchhoff's Laws, Series and Parallel

connection, superposition and reciprocity theorems.

PABIO

AC Circuits: AC in inductive, resistive and capacitive circuits, complex number representation of AC parameters, Single and Three phase AC circuits.

Simple Magnetic Circuits: Magnetism, Ohm's law for magnetic circuit; Analogy between electric circuits and Magnetic Circuits

Course Objectives:

By the end of the course student will be able to;

- Solve simple DC and AC electrical circuit using Kirchhoff's Laws, Superposition and reciprocity theorems.
- Solve three phase balanced System.
- Compute apparent, real, and reactive and power factor of a complex load for single and three phase system
- Calculate the flux, flux density, and magnetic field intensity, and currents in simple magnetic structures

Course Content

- Unit 1: Units of measurement, Electrical Quantities, Introduction to Passive elements; Resistors, Capacitors, Inductors.
- Unit 2: Ohm's Law, Work, Energy and Power, Efficiency, ideal sources, Open and short circuits.
- Unit 3: Kirchhoff's Laws, Current and voltage divider rule, electrical network elements, Series and Parallel connection, Wye to delta Conversion
- Unit 4: Superposition and reciprocity theorems.
- Unit 5: Sinusoidal AC voltage, Sinusoidal wave, response of Basic R, L, and C elements
- Unit 6: Method of Analysis AC circuits, Power in AC, Power factor, resonance
- Unit 7: Three Phase systems, balance, Non-sinusoidal circuits, Fourier series
- Unit 8: Magnetism, Ohm's law for magnetic circuit; Analogy between electric circuits and Magnetic Circuits

Teaching and Learning Strategies

Lecturers, Tutorials, group work, laboratory work

Assessment

A combination of formative and summative assessment including group tasks, quizzes, Midsem, assignments and examination will be used.

Assessment weighting

End-of-semester examination/

Term Paper: 60%

Midsem 15%

Quiz I 5%

Quiz 2 5%

Quiz 3 5%

Quiz 4 5%

Assignments 5%

Class participation Bonus Mark

Course Policy

Submit class assignment to the TA before lecture begins - deliberates with students' punishment for late submission

Class attendance will be taken every lecture

Students should not be 5 minutes late for a lecture – agree on punishment with students Immediately Ask questions on something you don't understand

Contact me through my TAs or email. Contact me directly only during emergency situations.

Week	Content		Objectives	Activities	Resources
I	i.	Introduction and	Describe the aims of	Review of	
		overview of	the course and its	prerequisite	PPT of ELNG
		course	importance as a	courses	153
	ii.	Units of	foundation course in		Lecture notes
		measurement	the programme.	Facilitator's	I
				presentation	

				Ç		
	Quiz I		•	understanding on	discussion	I53
3	Quiz I		•	circuit Text students	whole class	PPT of ELNG
				of open and short		
			•	Know the application		
			_	Know the application		
			•	Identify ideal sources		
				involving them		
		circuits		simple calculations		
		Open and short		energy, and perform		
		Energy Power and Efficiency,	-	power, work and		
	iv.	Ohm's Law,	•	Explain electrical		
		and AC sources	•	State and apply Ohm's law.		
	iii.	Introduction DC	_	State and analy Ohio?		
		Inductors.		inductor	discussion	
		Capacitors,		stored in capacitor ad	class	1/2
		Resistors,	•	Calculate the energy	and whole	Lecture notes
		Passive elements;		Capacitors, Inductors.	presentation	153
2	ii.	Introduction to	•	Describe Resistors,	Facilitator's	PPT of ELNG
			•			
				Voltage		
			•	Explain Current and		
				SI units.		
				calculations involving		
			•	Perform simple		
				used.		
				and how is properly		
			•	Understand prefixes	discussion.	
		Quantities,		importance.	class	
	i.	Electrical	•	Know SI units and its	and whole	

	Features of electric circuits		topics learnt from		Lecture notes
	or networks, Kirchhoff's		week I – 3		2
	or networks, Kirchhoff's Laws,	•	week I – 3 Identify the principal features of electric circuits Apply Kirchhoff's Laws to simple electric circuits Apply the passive sign	Facilitator's presentation and whole class discussion	2
			convention to compute the power consumed or supplied by circuit elements		
4	quiz 2 Series and Parallel connection, Current and voltage divider rule, Wye to delta Conversion Wye to delta Conversion, superposition and reciprocity theorems.	•	Apply voltage and current divider rule in electrical circuit Identify series and parallel connections in a network Perform Wye to delta Conversion, Apply Superposition and Reciprocity theorem in dc electrical circuits.	Facilitator's presentation and whole class discussion	Questions from reference books PPT of ELNG 153 Lecture notes 2/3
5	Quiz 3	•	Appreciate why AC is used in Preference to DC.	Facilitator's presentation and whole	PPT of ELNG 153 Lecture notes 4

	C: :11AC		<u> </u>	
	Sinusoidal AC voltage,	 Define Sinusoidal A 		
	Sinusoidal wave,	voltage and its	discussion	
	Introduction to phasors,	characteristics		
	response of Basic R, L, and	 Calculate period an 	nd	
	C elements	frequency of		
		waveform		
		Derive the average		
		and RMS value of		
		sinusoidal signal.		
		Calculate peak, mea	an	
		and rms values of a		
		sine wave.		
		 Apply phasors 		
		Derive formulae for	r	
		the response of bas	sic	
		L, R and C element		
		to a sinusoidal volta	age	
		and current		
6	Mid sem	•		
7	Introduction to complex	Solve AC circuits	Facilitator's	PPT of ELNG
	numbers, Method of	using complex	presentation	153
	Analysis AC circuits, Power	numbers	and whole	Lecture notes
	in AC, Power factor,	• Solve AC circuits	class	4/5
	resonance	using Kirchhoff's ar	nd discussion	
		superposition's		
		theorem		
		Understand the		
		meaning of		
		instantaneous and		
		average power.		

		Т	1
		 Compute the power factor of a complex load. compute apparent, real, and reactive 	
		 power for complex loads. Draw the power triangle Explain Resonance 	
8	quiz 4 Three Phase systems, balance three phase, Introduction to Non- sinusoidal circuits, Fourier series	 Learn three-phase AC power notation; compute load currents and voltages for balanced wye and delta loads. Explain Non-sinusoidal signal Apply Fourier analysis to Non-sinusoidal circuits 	PPT of ELNG 153 Lecture notes 6
9	Magnetism, Ohm's law for magnetic circuit; Analogy between electric circuits and Magnetic Circuits	 Review the basic principles of magnetism and whole Use the concepts of reluctance and magnetic circuit equivalents to compute magnetic flux and currents in simple magnetic structures 	PPT of ELNG 153 Lecture notes 7

	•	Generate the	
		equivalent magnetic	
		circuit diagram, and	
		calculate the total	
		equivalent reluctance	
	•	Calculate the flux,	
		flux density, and	
		magnetic field	
		intensity.	
10		End of Semester	
11			