Albert Ludwigs Universität Freiburg

TECHNISCHE FAKULTÄT

PicoC-Compiler

Übersetzung einer Untermenge von C in den Befehlssatz der RETI-CPU

BACHELORARBEIT

Abgabedatum: 13. September 2022

Author: Jürgen Mattheis

Gutachter: Prof. Dr. Scholl

Betreung: M.Sc. Seufert

Eine Bachelorarbeit am Lehrstuhl für Betriebssysteme

ERKLÄRUNG

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig verfasst habe, keine anderen als die angegebenen Quellen/Hilfsmittel verwendet habe und alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen wurden, als solche kenntlich gemacht habe. Darüber hinaus erkläre ich, dass diese Abschlussarbeit nicht, auch nicht auszugsweise, bereits für eine andere Prüfung angefertigt wurde.

Danksagungen

Bevor der Inhalt dieser Schrifftlichen Ausarbeitung der Bachelorarbeit anfängt, will ich einigen Personen noch meinen Dank aussprechen.

Wie mein Betreuer M.Sc. Tobias Seufert und wahrscheinlich auch mein Gutachter Prof. Dr. Scholll im Verlauf dieser Bachelorarbeit und des vorangegangenen Bachelorprojektes gemerkt haben, bin ich keine Person, die irgendwelche Dinge gerne so macht wie es üblich ist, ich schreibe meine Danksagung nicht auf eine bestimmte Weise, nur weil sich irgendwann mal etabliert hat wie eine Danksagung üblicherweise aussieht. Ich halte nicht viel von künstlichen Floskeln, wie "mein aufrichtigster Dank" oder "aus tiefstem Herzen", sondern drücke im Folgenden die Dinge nur so aus, wie ich sie auch wirklich meine.

Ich halte es eher so, dass wenn mir wirklich etwas am Dank gegenüber Personen liegt, ich mir wirklich den Aufwand mache einen Text zu schreiben in dem ich diesen zum Ausdruck bringe, im anderen Fall kann man sich bei mir auf die typischen Standardfloskeln einstellen. Bei dieser Bachelorarbeit kann ich nur auf ersteres Zurückgreifen. Ich hatte selten im Studium das Gefühl irgendwo Kunde zu sein, aber bei dieser Bachelorarbeit und dem vorangegangenen Bachelorprojekt hatte ich genau diese Gefühl, obwohl die Verhältnisse eigentlich genau umgekehrt sein sollten. Die Umgang mit mir wahr echt unglaublich nett und sehr respektvoll, was ich als keine Selbverständlichkeit ansehe und sehr wertgeschätzt habe.

An erster Stelle will ich zu meinem Betreuer M.Sc. Tobias Seufert kommen, der netterweise auch bereits die Betreuung meines Bachelorprojektes übernommen hatte. Wie auch während des Bachelorprojektes, haben wir uns auch bei den Meetings während der Bachelorarbeit hervorragend verstanden. Dabei ging die Freundlichkeit und das Engagement seitens Tobias weit über das heraus, was man bereits als eine gute Betreuung bezeichnen würde.

Es gibt verschiedene Typen von Menschen, es gibt Leute, die nur genauso viel tuen, wie es die Anforderungen verlangen und nichts darüberhinaus tuen, wenn es nicht einen eigenen Vorteil für sie hat und es gibt Personen, die sich für nichts zu Schade sind und dies aus einer Philanthropie oder Leidenschafft heraus tuen, auch wenn es für sie keine Vorteile hat. Tobias konnte ich während der langen Zeit, die er mein Bachelorprojekt und dann meine Bachelorarbeit betreut hat eindeutig als letzteren Typ Mensch einordnen.

Er war sich nie zu Schade für meine vielen Fragen während der Meetings, auch wenn ich meine Zeit ziemlich oft überzogen habe¹, er hat sich bei der Korrektur dieser Schrifftlichen Ausarbeitung sogar die Mühe gemacht bei den einzelnen Problemstellen längere Textkommentare zu verfassen und das trotz dessen, dass meine Bachelorarbeit recht Umfangreich zu lesen ist² und war sich nicht zu Schade die Rolle des Nachrichtenübermittlers zwischen mir und Prof. Dr. Scholl zu übernehmen. All dies war absolut keine Selbverständlichkeit, vor allem wenn ich die Betreuung anderer Studenten, die ich kenne mit der vergleiche, die mir zu Teil wurde.

An den Kommentar zu meinen Betreuer Tobias will ich einen Kommentar zu meinem Gutachter Prof. Dr. Scholl anschließen. Ich hab während meines Bachelorprojekts und meiner Bachelorarbeit wahrscheinlich einen ziemlich eigensinnigen Eindruck gemacht, bei der Weise, wie ich bestimmte Dinge umsetzen wollte. Ich habe es sehr geschätzt, dass mir das durchgehen gelassen wurde. Es ist, wie ich die Universitätswelt als Student erlebe bei Arbeitsvorgaben keine Selbverständlichkeit, dass dem Studenten überhaupt die Freiheit und das Vertrauen gegeben wird diese auf seine eigenen Weise umzusetzen.

¹Wofür ich mich auch nochmal Entschuldigen will.

²Wobei er sich kein einziges Mal in geringster Weise entnervt darüber gezeigt hat.

Vor allem, da mein eigenes Vorgehen größtenteils Vorteile für mich hatte, da ich auf diese Weise am meisten über Compilerbau gelernt hab und eher Nachteile für Prof. Dr. Scholl, da mein eigenes Vorgehen entsprechend mehr Zeit brauchte und ich daher als Bachelorarbeit keinen dazu passenden RETI-Emulator mit Graphischer Anzeige implementieren konnte, da die restlichen Funktionalitäten des PicoC-Compilers noch implementiert werden mussten.

Glücklicherweise gibt es aber doch noch einen passenden RETI-Emulator, der den PicoC-Compiler über seine Kommandozeilenargumente aufruft, um ein PicoC-Programm visuell auf einer RETI-CPU auszuführen, für dessen Implementierung Michel Giehl sich netterweise zur Verfügung gestellt hat. Daher Danke auch an Michel Giehl, dass er sich mit meinem PicoC-Compiler ausgeinandergesetzt hat und diesen in seinen RETI-Emulator integriert hat, sodass am Ende durch unsere beiden Arbeiten ein anschauliches Lerntool für die kommenden Studentengenerationen entstehen konnte. Vor allem da er auch mir darin vertrauen musste, dass ich mit meinem PicoC-Compiler nicht irgendeinen Misst baue. Der RETI-Emulator von Michel Giehl ist unter Link³ zu finden.

Wofür ich meinem Gutachter Prof. Dr. Scholl sehr dankbar bin, ist, dass er meine damals sehr ambitionierten Ideen für mögliche Funktionalitäten, die ich in den PicoC-Compiler für die Bachelorarbeit implementierten wollte runtergeschraubt hat, was man auch selten im Studium erlebt, dass dem Studenten freiwillig weniger Arbeit gegeben wird. Bei den für die Bachelorarbeit zu implementierenden Funktionalitäten gab es bei der Implementierung viele unerwartete kleine Details, die ich vorher garnicht bedacht hatte, die in ihrer Masse ziemlich viel unerwartete Zeit zum Implementieren gebraucht haben. Mit den von Prof. Dr. Scholl festgelegten Funktionalitäten für die Bachelorarbeit ist der Zeitplan ziemlich perfekt aufgegangen. Mit meinen ambitionierten Plänen wäre es bei der Bachelorarbeit dagegeben wohl nichts geworden. Man hat daran gemerkt, dass Prof. Dr. Scholl das Wohlergehen der Studenten wichtig ist.

Mir hat die Implementierung des PicoC-Compilers tatsächlich ziemlich viel Spaß gemacht, da Compilerbau auch in mein perönliches Interessengebiet fällt. Das Aufschreiben dieser Schrifftlichen Ausarbeitung hat mir dagegen eher weniger Spaß gemacht⁴. Wobei ich allerdings sagen muss, dass ich eine große Erleichterung verspüre das ganze Wissen über Compilerbau mal aufgeschrieben zu haben, damit ich mir keine Sorgen machen muss dieses ziemlich nützliche Wissen irgendwann wieder zu vergessen. Es hilft einem auch als Programmierer ungemein weiter zu wissen, wie ein Compiler unter der Haube funktioniert, da man sich so viel besser merken, wie eine bestimmte Funktionalität einer Programmiersprache zu verwenden ist, die sonst ziemlich wilkürlich erscheinen würde, wenn man die technische Umsetzung dahinter im Compiler nicht kennt.

Ich wollte mich daher auch noch dafür Bedanken, dass mir ein so ergiebiges und interessantes Thema als Bachelorarbeit vorgeschlagen wurde und vor allem, dass auch das Vertrauen in mich gesteckt wurde, dass ich am Ende auch einen funktionsfähigen, sauber programmierten und gut durchdachten Compiler implementiere.

Zum Schluss nochmal ein abschließendes Danke an meinen Betreuer M.Sc Seufert und meinen Gutachter Prof. Dr. Scholl für die Betreuung und Bereitstellung dieser großartigen Bachelorarbeit und des vorangegangenen Bachelorprojektes und Michel Giehl für das Integrieren des PicoC-Compilers in seinen RETI-Emulator.

³https://github.com/michel-giehl/Reti-Emulator.

⁴Da es recht stressig ist im Kopf zu behalten, was man schon erklärt hat und wo noch eine Verständnislücke vorliegen könnte.

Inhaltsverzeichnis

Abbildungsverzeichnis	Ι
Codeverzeichnis	II
Tabellenverzeichnis	III
Definitionsverzeichnis	IV
	4 7 9 14 18
Literatur	\mathbf{A}

Abbildungsverzeichnis

Codeverzeichnis

0.1	PicoC-Code für 3 Funktionen
0.2	Abstrakter Syntaxbaum für 3 Funktionen
0.3	PicoC-Blocks Pass für 3 Funktionen.
0.4	PicoC-ANF Pass für 3 Funktionen.
0.5	RETI-Blocks Pass für 3 Funktionen.
0.6	PicoC-Code für Funktionen, wobei die main Funktion nicht die erste Funktion ist
0.7	RETI-Blocks Pass für Funktionen, wobei die main Funktion nicht die erste Funktion ist
0.8	RETI-Patch Pass für Funktionen, wobei die main Funktion nicht die erste Funktion ist
0.9	RETI Pass für Funktionen, wobei die main Funktion nicht die erste Funktion ist
0.10	PicoC-Code für Funktionen, wobei eine Funktion vorher deklariert werden muss
0.11	Symboltabelle für Funktionen, wobei eine Funktion vorher deklariert werden muss
0.12	PicoC-Code für Funktionsaufruf ohne Rückgabewert
0.13	Abstrakter Syntaxbaum für Funktionsaufruf ohne Rückgabewert
0.14	PicoC-ANF Pass für Funktionsaufruf ohne Rückgabewert
	RETI-Blocks Pass für Funktionsaufruf ohne Rückgabewert
	RETI-Pass für Funktionsaufruf ohne Rückgabewert
0.17	PicoC-Code für Funktionsaufruf mit Rückgabewert
0.18	Abstrakter Syntaxbaum für Funktionsaufruf mit Rückgabewert
0.19	PicoC-ANF Pass für Funktionsaufruf mit Rückgabewert
	RETI-Blocks Pass für Funktionsaufruf mit Rückgabewert
0.21	PicoC-Code für die Übergabe eines Feldes
0.22	Symboltabelle für die Übergabe eines Feldes
0.23	PicoC-ANF Pass
0.24	RETI-Block Pass für die Übergabe eines Feldes
	PicoC-Code für Call by Value für Structs
0.26	PicoC-ANF Pass für Call by Value für Structs
	RETI-Block Pass für Call by Value für Structs

Tabellenverzeichnis

Definitionsverzeichnis

Grammatikverzeichnis

0.0.1 Umsetzung von Funktionen

Um die Umsetzung von Funktionen zu verstehen, ist es erstmal wichtig zu verstehen, wie Funktionen später im RETI-Code aussehen (Unterkapitel 0.0.1.1), wie Funktionen deklariert und definiert werden können und hierbei Sichtbarkeitsbereiche umgesetzt sind (Unterkapitel 0.0.1.2). Aufbauend darauf können dann die notwendigen Schritte zur Umsetzung eines Funktionsaufrufes erklärt werden (Unterkapitel 0.0.1.3). Beim Thema Funktionsaufruf muss im speziellen nochmal darauf eingegangen werden, wie Rückgabewerte (Unterkapitel 0.0.1.3.1) umgesetzt sind und die Übergabe von Abgeleiteten Datentypen, die mehr als eine Speicherzelle belegen, wie Verbunden (Unterkapitel 0.0.1.3.3) und Feldern (Unterkapitel 0.0.1.3.2) umgesetzt ist.

0.0.1.1 Mehrere Funktionen

Die Umsetzung mehrerer Funktionen wird im Folgenden mithilfe des Beispiels in Code 0.1 erklärt. Dieses Beispiel soll nur zeigen, wie Funktionen in verschiedenen, für die Kompilierung von Funktionen relevanten Passes kompiliert werden. Das Beispiel ist so gewählt, dass es möglichst isoliert von weiterem möglicherweise störendem Code ist.

```
1 void main() {
2    return;
3 }
4
5 void fun1() {
6 }
7
8 int fun2() {
9    return 1;
10 }
```

Code 0.1: PicoC-Code für 3 Funktionen.

Im Abstrakten Syntaxbaum in Code 0.2 wird eine Funktion, wie z.B. voidfun(intparam;) { returnpara m; } mit der Komposition FunDef(IntType(), Name('fun'), [Alloc(Writeable(), IntType(), Name('fun'))], [Return(Exp(Name('param')))]) dargestellt. Die einzelnen Attribute dieses Knoten sind in Tabelle ?? erklärt.

```
File
 2
     Name './verbose_3_funs.ast',
       FunDef
         VoidType 'void',
 6
         Name 'main',
 7
8
         [],
         Γ
           Return
10
              Empty
11
         ],
       FunDef
13
         VoidType 'void',
14
         Name 'fun1',
         [],
         [],
```

```
17 FunDef
18 IntType 'int',
19 Name 'fun2',
20 [],
21 [
22 Return
23 Num '1'
24 ]
25 ]
```

Code 0.2: Abstrakter Syntaxbaum für 3 Funktionen.

Im PicoC-Blocks Pass in Code 0.3 werden die Statements der Funktion in Blöcke Block(name, stmts_instrs) aufgeteilt. Dabei bekommt ein Block Block(name, stmts_instrs), der die Statements der Funktion vom Anfang bis zum Ende oder bis zum Auftauchen eines If(exp, stmts), IfElse(exp, stmts1, stmts2), While(exp, stmts) oder DoWhile(exp, stmts)⁵ beinhaltet den Bezeichner bzw. den Name(str)-Token-Knoten der Funktion an sein Label bzw. an sein name-Attribut zugewiesen. Dem Bezeichner wird vor der Zuweisung allerdings noch eine Nummer angehängt <name>.<nummer>⁶.

Es werden parallel dazu neue Zuordnungen im Assoziativen Feld fun_name_to_block_name hinzugefügt. Das Dicionary ordnet einem Funktionsnamen den Blocknamen des Blockes, der das erste Statement der Funktion enthält und dessen Bezeichner <name>.<nummer> bis auf die angehängte Nummer identisch zu dem der Funktion ist zu⁷. Diese Zuordnung ist nötig, da Blöcke noch eine Nummer an ihren Bezeichner <name>.<nummer> angehängt haben.

```
File
 2
     Name './verbose_3_funs.picoc_blocks',
     Γ
 4
          VoidType 'void',
 6
7
8
         Name 'main',
          [],
 9
            Block
10
              Name 'main.2',
11
12
                Return(Empty())
13
14
         ],
15
       FunDef
16
         VoidType 'void',
17
         Name 'fun1',
18
          [],
19
          Γ
20
            Block
21
              Name 'fun1.1',
22
23
         ],
24
       FunDef
          IntType 'int',
```

⁵Eine Erklärung dazu ist in Unterkapitel ?? zu finden.

 $^{^6\}mathrm{Der}$ Grund dafür kann im Unterkapitel ?? nachgelesen werden.

⁷Das ist der Block, über den im obigen letzten Paragraph gesprochen wurde.

```
26 Name 'fun2',
27 [],
28 [
29 Block
30 Name 'fun2.0',
31 [
32 Return(Num('1'))
33 ]
34 ]
```

Code 0.3: PicoC-Blocks Pass für 3 Funktionen.

Im PicoC-ANF Pass in Code 0.4 werden die FunDef(datatype, name, allocs, stmts)-Knoten komplett aufgelöst, sodass sich im File(name, decls_defs_blocks)-Knoten nur noch Blöcke befinden.

```
File
     Name './verbose_3_funs.picoc_mon',
     Γ
 4
       Block
 5
         Name 'main.2',
 6
           Return(Empty())
         ],
 9
       Block
10
         Name 'fun1.1',
11
12
           Return(Empty())
13
         ],
14
       Block
15
         Name 'fun2.0',
16
17
            // Return(Num('1'))
           Exp(Num('1'))
19
           Return(Stack(Num('1')))
20
         ]
21
     ]
```

Code 0.4: PicoC-ANF Pass für 3 Funktionen.

Nach dem RETI Pass in Code 0.5 gibt es nur noch RETI-Befehle, die Blöcke wurden entfernt und die RETI-Befehle in diesen Blöcken wurden genauso zusammengefügt, wie die Blöcke angeordnet waren. Ohne die Kommentare könnte man die Funktionen nicht mehr direkt ausmachen, denn die Kommentare enthalten die Labelbezeichner <name>.<nummer> der Blöcke, die in diesem Beispiel immer zugleich bis auf die Nummer, dem Namen der jeweiligen Funktion entsprechen.

Da es in der main-Funktion keinen Funktionsaufruf gab, wird der Code, der nach dem Befehl in der markierten Zeile kommt nicht mehr betreten. Funktionen sind im RETI-Code nur dadurch existent, dass im RETI-Code Sprünge (z.B. JUMP<rel> <im>) zu den jeweils richtigen Positionen gemacht werden, nämlich dorthin, wo die RETI-Befehle, die aus den Statemtens einer Funktion kompiliert wurden anfangen.

```
1 # // Block(Name('start.3'), [])
2 # // Exp(GoTo(Name('main.2')))
3 # // not included Exp(GoTo(Name('main.2')))
4 # // Block(Name('main.2'), [])
 5 # Return(Empty())
 6 LOADIN BAF PC -1;
 7 # // Block(Name('fun1.1'), [])
 8 # Return(Empty())
 9 LOADIN BAF PC -1;
10 # // Block(Name('fun2.0'), [])
11 # // Return(Num('1'))
12 # Exp(Num('1'))
13 SUBI SP 1;
14 LOADI ACC 1;
15 STOREIN SP ACC 1;
16 # Return(Stack(Num('1')))
17 LOADIN SP ACC 1;
18 ADDI SP 1;
19 LOADIN BAF PC -1;
```

Code 0.5: RETI-Blocks Pass für 3 Funktionen.

0.0.1.1.1 Sprung zur Main Funktion

Im vorherigen Beispiel in Code 0.1 war die main-Funktion die erste Funktion, die im Code vorkam. Dadurch konnte die main-Funktion direkt betreten werden, da die Ausführung des Programmes immer ganz vorne im RETI-Code beginnt. Man musste sich daher keine Gedanken darum machen, wie man die Ausführung, die von der main-Funktion ausgeht überhaupt startet.

Im Beispiel in Code 0.6 ist die main-Funktion allerdings nicht die erste Funktion. Daher muss dafür gesorgt werden, dass die main-Funktion die erste Funktion ist, die ausgeführt wird.

```
1 void fun1() {
2 }
3
4 int fun2() {
5   return 1;
6 }
7
8 void main() {
9   return;
10 }
```

Code 0.6: PicoC-Code für Funktionen, wobei die main Funktion nicht die erste Funktion ist.

Im RETI-Blocks Pass in Code 0.7 sind die Funktionen nur noch durch Blöcke umgesetzt.

```
File
Name './verbose_3_funs_main.reti_blocks',
[
```

```
Block
         Name 'fun1.2',
 7
8
           # Return(Empty())
           LOADIN BAF PC -1;
         ],
10
       Block
         Name 'fun2.1',
11
12
13
           # // Return(Num('1'))
14
           # Exp(Num('1'))
15
           SUBI SP 1;
16
           LOADI ACC 1;
17
           STOREIN SP ACC 1;
18
           # Return(Stack(Num('1')))
19
           LOADIN SP ACC 1;
20
           ADDI SP 1;
           LOADIN BAF PC -1;
21
22
         ٦.
23
       Block
24
         Name 'main.0',
25
26
           # Return(Empty())
27
           LOADIN BAF PC -1;
28
     ]
```

Code 0.7: RETI-Blocks Pass für Funktionen, wobei die main Funktion nicht die erste Funktion ist.

Eine simple Möglichkeit ist es, die main-Funktion einfach nach vorne zu schieben, damit diese als erstes ausgeführt wird. Im File(name, decls_defs)-Knoten muss dazu im decls_defs-Attribut, welches eine Liste von Funktionen ist, die main-Funktion an Index 0 geschoben werden.

Eine andere Möglichkeit und die Möglichkeit für die sich in der Implementierung des PicoC-Compilers entschieden wurde, ist es, wenn die main-Funktion nicht die erste auftauchende Funktion ist, einen start.<nummer>-Block als ersten Block einzufügen, der einen GoTo(Name('main.<nummer>'))-Knoten enthält, der im RETI Pass 0.9 in einen Sprung zur main-Funktion übersetzt wird.

In der Implementierung des PicoC-Compilers wurde sich für diese Möglichkeit entschieden, da es für Studenten, welche die Verwender des PiocC-Compilers sein werden vermutlich am intuitivsten ist, wenn der RETI-Code für die Funktionen an denselben Stellen relativ zueinander verortet ist, wie die Funktionsdefinitionen im PicoC-Code.

Das Einsetzen des start.<nummer>-Blockes erfolgt im RETI-Patch Pass in Code 0.8, da der RETI-Patch-Pass der Pass ist, der für das Ausbessern (engl. to patch) zuständig ist, wenn z.B. in manchen Fällen die main-Funktion nicht die erste Funktion ist.

```
1 File
2  Name './verbose_3_funs_main.reti_patch',
3  [
4  Block
5  Name 'start.3',
6  [
```

```
# // Exp(GoTo(Name('main.0')))
           Exp(GoTo(Name('main.0')))
 9
         ],
10
       Block
11
         Name 'fun1.2',
12
13
           # Return(Empty())
14
           LOADIN BAF PC -1;
15
         ],
16
       Block
17
         Name 'fun2.1',
18
19
           # // Return(Num('1'))
20
           # Exp(Num('1'))
21
           SUBI SP 1;
22
           LOADI ACC 1;
23
           STOREIN SP ACC 1;
24
           # Return(Stack(Num('1')))
25
           LOADIN SP ACC 1;
26
           ADDI SP 1;
27
           LOADIN BAF PC -1;
28
         ],
29
       Block
30
         Name 'main.0',
31
32
           # Return(Empty())
33
           LOADIN BAF PC -1;
34
     ]
```

Code 0.8: RETI-Patch Pass für Funktionen, wobei die main Funktion nicht die erste Funktion ist.

Im RETI Pass in Code 0.9 wird das GoTo(Name('main.<nummer>')) durch den entsprechenden Sprung JUMP <distanz_zur_main_funktion> ersetzt und die Blöcke entfernt.

```
1 # // Block(Name('start.3'), [])
 2 # // Exp(GoTo(Name('main.0')))
3 JUMP 8;
 4 # // Block(Name('fun1.2'), [])
 5 # Return(Empty())
6 LOADIN BAF PC -1;
 7 # // Block(Name('fun2.1'), [])
8 # // Return(Num('1'))
 9 # Exp(Num('1'))
10 SUBI SP 1;
11 LOADI ACC 1;
12 STOREIN SP ACC 1;
13 # Return(Stack(Num('1')))
14 LOADIN SP ACC 1;
15 ADDI SP 1;
16 LOADIN BAF PC -1;
17 # // Block(Name('main.0'), [])
18 # Return(Empty())
19 LOADIN BAF PC -1;
```

Code 0.9: RETI Pass für Funktionen, wobei die main Funktion nicht die erste Funktion ist.

0.0.1.2 Funktionsdeklaration und -definition und Umsetzung von Sichtbarkeitsbereichen

In der Programmiersprache L_C und somit auch L_{PicoC} ist es notwendig, dass eine Funktion deklariert ist, bevor man einen Funktionsaufruf zu dieser Funktion machen kann. Das ist notwendig, damit Fehler-meldungen ausgegeben werden können, wenn der Prototyp (Definition ??) der Funktion nicht mit den Datentypen der Argumente oder der Anzahl Argumente übereinstimmt, die beim Funktionsaufruf an die Funktion in einer festen Reihenfolge übergeben werden.

Die Dekleration einer Funktion kann explizit erfolgen (z.B. int fun2(int var);), wie in der im Beispiel in Code 0.10 markierten Zeile 1 oder zusammen mit der Funktionsdefinition (z.B. void fun1(){}), wie in den markierten Zeilen 3-4.

In dem Beispiel in Code 0.10 erfolgt ein Funktionsaufruf zur Funktion fun2, die allerdings erst nach der main-Funktion definiert ist. Daher ist eine Funktionsdekleration, wie in der markierten Zeile 1 notwendig. Beim Funktionsaufruf zur Funktion fun1 ist das nicht notwendig, da die Funktion vorher definiert wurde, wie in den markierten Zeilen 3-4 zu sehen ist.

```
int fun2(int var);
   void fun1() {
 4
 5
 6
  void main() {
     int var = fun2(42);
 8
     fun1();
 9
     return;
10 }
11
  int fun2(int var) {
13
     return var;
14
```

Code 0.10: PicoC-Code für Funktionen, wobei eine Funktion vorher deklariert werden muss.

Die Deklaration einer Funktion erfolgt mithilfe der Symboltabelle, die in Code 0.11 für das Beispiel in Code 0.10 dargestellt ist. Die Attribute des Symbols (type_qual, datatype, name, val_addr, pos, size) werden wie üblich gesetzt. Dem datatype-Attribut wird dabei einfach die komplette Komposition der Funktionsdeklaration FunDecl(IntType('int'), Name('fun2'), [Alloc(Writeable(), IntType('int'), Name('var'))]) zugewiesen.

Die Varaiblen var@main und var@fun2 der main-Funktion und der Funktion fun2 haben unterschiedliche Sichtbarkeitsbereiche (Definition??). Die Sichtbarkeitsbereiche der Funktionen werden mittels eines Suffix "@<fun_name>" umgesetzt, der an den Bezeichner var drangehängt wird: var@<fun_name>. Dieser Suffix wird geändert sobald beim Top-Down⁸ Durchiterieren über den Abstrakten Syntaxbaum des aktuellen Passes ein Funktionswechsel eintritt und über die Statements der nächsten Funktion iteriert wird, für die der Suffix der neuen Funktion FunDef(name, datatype, params, stmts) angehängt wird, der aus dem name-Attribut entnommen wird.

⁸D.h. von der Wurzel zu den Blättern eines Baumes.

Ein Grund, warum Sichtbarkeitsbereiche über das Anhängen eines Suffix an den Bezeichner gelöst sind, ist, dass auf diese Weise die Schlüssel, die aus dem Bezeichner einer Variable und einem angehängten Suffix bestehen, in der als Assoziatives Feld umgesetzten Symboltabelle eindeutig sind. Damit man einer Variable direkt ihren Sichtbarkeitsbereich ablesen kann in dem sie definiert wurde, ist der Suffix ebenfalls im Name(str)-Knoten des name-Attribubtes eines Symbols der Symboltabelle angehängt. Zur beseren Vorstellung ist dies ist in Code 0.11 markiert.

Die Variable var@main, bei der es sich um eine Lokale Variable der main-Funktion handelt, ist nur innerhalb des Codeblocks {} der main-Funktion sichtbar und die Variable var@fun2 bei der es sich im einen Parameter handelt, ist nur innerhalb des Codeblocks {} der Funktion fun2 sichtbar. Das ist dadurch umgesetzt, dass der Suffix, der bei jedem Funktionswechsel angepasst wird, auch beim Nachschlagen eines Symbols in der Symboltabelle an den Bezeichner der Variablen, die man nachschlagen will angehängt wird. Und da die Zuordnungen im Assoziativen Feld eindeutig sind, kann eine Variable nur in genau der Funktion nachgeschlagen werden, in der sie definiert wurde.

Das Zeichen '@' wurde aus einem bestimmten Grund als Trennzeichen verwendet, nämlich, weil kein Bezeichner das Zeichen '@' jemals selbst enthalten kann. Damit ist ausgeschlossen, dass falls ein Benutzer des PicoC-Compilers zufällig auf die Idee kommt seine Funktion genauso zu nennen (z.B. var@fun2 als Funktionsname), es zu Problemen kommt, weil bei einem Nachschlagen der Variable die Funktion nachgeschlagen wird.

```
SymbolTable
 2
     Γ
       Symbol
 4
         {
           type qualifier:
                                     Empty()
 6
                                     FunDecl(IntType('int'), Name('fun2'), [Alloc(Writeable(),
           datatype:

    IntType('int'), Name('var'))])

                                     Name('fun2')
           name:
 8
           value or address:
                                     Empty()
 9
           position:
                                     Pos(Num('1'), Num('4'))
10
                                     Empty()
           size:
11
         },
12
       Symbol
13
14
           type qualifier:
                                     Empty()
15
                                     FunDecl(VoidType('void'), Name('fun1'), [])
           datatype:
                                     Name('fun1')
16
           name:
                                     Empty()
17
           value or address:
                                     Pos(Num('3'), Num('5'))
18
           position:
19
           size:
                                     Empty()
20
         },
21
       Symbol
22
23
           type qualifier:
                                     Empty()
24
           datatype:
                                     FunDecl(VoidType('void'), Name('main'), [])
25
                                     Name('main')
           name:
26
           value or address:
                                     Empty()
27
                                     Pos(Num('6'), Num('5'))
           position:
28
                                     Empty()
           size:
29
         },
30
       Symbol
31
         {
32
           type qualifier:
                                     Writeable()
                                     IntType('int')
           datatype:
```

```
Name('var@main')
           name:
                                     Num('0')
35
           value or address:
36
           position:
                                     Pos(Num('7'), Num('6'))
37
           size:
                                     Num('1')
38
         },
39
       Symbol
40
         {
41
                                     Writeable()
           type qualifier:
42
                                     IntType('int')
           datatype:
43
                                     Name('var@fun2')
           name:
44
           value or address:
                                     Num('0')
45
                                     Pos(Num('12'), Num('13'))
           position:
46
                                     Num('1')
           size:
47
         }
48
     ]
```

Code 0.11: Symboltabelle für Funktionen, wobei eine Funktion vorher deklariert werden muss.

0.0.1.3 Funktionsaufruf

Ein Funktionsaufruf (z.B. stack_fun(local_var)) wird im Folgenden mithilfe des Beispiels in Code 0.12 erklärt. Das Beispiel ist so gewählt, dass alleinig der Funktionsaufruf im Vordergrund steht und dieses Kapitel nicht auch noch mit z.B. Aspekten wie der Umsetzung eines Rückgabewertes überladen ist. Der Aspekt der Umsetzung eines Rückgabewertes wird erst im nächsten Unterkapitel 0.0.1.3.1 erklärt.

```
struct st {int attr1; int attr2[2];};

void stack_fun(struct st param[2][3]);

void main() {
    struct st local_var[2][3];
    stack_fun(local_var);
    return;
}

void stack_fun(struct st param[2][3]) {
    int local_var;
}
```

Code 0.12: PicoC-Code für Funktionsaufruf ohne Rückgabewert.

Im Abstrakten Syntaxbaum in Code 0.13 wird ein Funktionsaufruf stack_fun(local_var) durch die Komposition Exp(Call(Name('stack_fun'), [Name('local_var')])) dargestellt.

```
1 File
2  Name './example_fun_call_no_return_value.ast',
3  [
4   StructDecl
5   Name 'st',
6   [
7   Alloc(Writeable(), IntType('int'), Name('attr1'))
```

```
Alloc(Writeable(), ArrayDecl([Num('2')], IntType('int')), Name('attr2'))
 9
         ],
10
       FunDecl
11
         VoidType 'void',
12
         Name 'stack_fun',
13
14
           Alloc
15
             Writeable,
16
             ArrayDecl
17
18
                 Num '2'
19
                 Num '3'
20
               ],
21
               StructSpec
22
                 Name 'st',
23
             Name 'param'
24
         ],
25
       FunDef
26
         VoidType 'void',
27
         Name 'main',
28
         [],
29
           Exp(Alloc(Writeable(), ArrayDecl([Num('2'), Num('3')], StructSpec(Name('st'))),
30
           → Name('local_var')))
31
           Exp(Call(Name('stack_fun'), [Name('local_var')]))
32
           Return(Empty())
33
         ],
34
       FunDef
35
         VoidType 'void',
36
         Name 'stack_fun',
37
38
           Alloc(Writeable(), ArrayDecl([Num('2'), Num('3')], StructSpec(Name('st'))),
           → Name('param'))
39
         ],
40
         Γ
41
           Exp(Alloc(Writeable(), IntType('int'), Name('local_var')))
42
     ]
```

Code 0.13: Abstrakter Syntaxbaum für Funktionsaufruf ohne Rückgabewert.

Im PicoC-ANF Pass in Code 0.14 wird die Komposition Exp(Call(Name('stack_fun'), [Name('local_var')])) durch die Kompositionen StackMalloc(Num('2')), Ref(Global(Num('0'))), NewStackframe(Name('stack_fun'), GoTo(Name('addr@next_instr'))), Exp(GoTo(Name('stack_fun.0'))) und RemoveStackframe() ersetzt, welche in den Tabellen ?? und ?? genauer erklärt sind.

Der Knoten StackMalloc(Num('2')) ist notwendig, weil auf dem Stackframe für den Wert des BAF-Registers der aufrufenden Funktion und die Rücksprungadresse 2 Speicherzellen Platz am Anfang des Stackframes gelassen werden muss. Das wird durch den Knoten StackMalloc(Num('2')) umgesetzt, indem das SP-Register einfach um zwei Speicherzellen dekrementiert wird und somit Speicher auf dem Stack belegt wird⁹.

⁹Wobei hier "reserviert" besser passen würde.

```
Name './example_fun_call_no_return_value.picoc_mon',
4
      Block
        Name 'main.1',
           StackMalloc(Num('2'))
           Ref(Global(Num('0')))
9
           NewStackframe(Name('stack_fun'), GoTo(Name('addr@next_instr')))
10
           Exp(GoTo(Name('stack_fun.0')))
11
           RemoveStackframe()
12
           Return(Empty())
13
        ],
14
      Block
        Name 'stack_fun.0',
16
         Ε
17
           Return(Empty())
18
        ]
19
    ]
```

Code 0.14: Pico C-ANF Pass für Funktionsaufruf ohne Rückgabewert.

Im RETI-Blocks Pass in Code 0.15 werden die Kompositionen StackMalloc(Num('2')), Ref(Global(Num('0'))), NewStackframe(Name('stack_fun'), GoTo(Name('addr@next_instr'))), Exp(GoTo(Name('stack_fun.0'))) und RemoveStackframe() durch ihre entsprechenden RETI-Knoten ersetzt.

Unter den RETI-Knoten entsprechen die Kompostionen LOADI ACC GoTo(Name('addr@next_instr')) und Exp(GoTo(Name('stack_fun.0'))) noch keine fertigen RETI-Befehlen und werden später in dem für sie vorgesehenen RETI-Pass passend ergänzt bzw. ersetzt.

Für den Bezeichner des Blocks stack_fun.0 in der Komposition Exp(GoTo(Name('stack_fun.0'))) wird im Assoziativen Feld fun_name_to_block_name¹⁰ mit dem Schlüssel stack_fun, dem Bezeichner der Funktion, der im Knoten NewStackframe(Name('stack_fun')) gespeichert ist nachgeschlagen.

```
Name './example_fun_call_no_return_value.reti_blocks',
      Block
        Name 'main.1',
7
8
9
           # StackMalloc(Num('2'))
           SUBI SP 2;
           # Ref(Global(Num('0')))
10
           SUBI SP 1;
11
           LOADI IN1 0;
12
           ADD IN1 DS;
13
           STOREIN SP IN1 1;
           # NewStackframe(Name('stack_fun'), GoTo(Name('addr@next_instr')))
15
           MOVE BAF ACC;
16
           ADDI SP 3;
          MOVE SP BAF;
17
           SUBI SP 4;
```

¹⁰Dieses Assoziative Feld wurde in Unterkapitel 0.0.1.1 eingeführt.

```
STOREIN BAF ACC 0;
20
           LOADI ACC GoTo(Name('addr@next_instr'));
21
           ADD ACC CS;
22
           STOREIN BAF ACC -1;
           # Exp(GoTo(Name('stack_fun.0')))
24
           Exp(GoTo(Name('stack_fun.0')))
25
           # RemoveStackframe()
26
           MOVE BAF IN1;
27
           LOADIN IN1 BAF 0;
28
           MOVE IN1 SP;
29
           # Return(Empty())
30
           LOADIN BAF PC -1;
         ],
32
       Block
33
         Name 'stack_fun.0',
34
35
           # Return(Empty())
36
           LOADIN BAF PC -1;
37
38
    ]
```

Code 0.15: RETI-Blocks Pass für Funktionsaufruf ohne Rückgabewert.

Im RETI Pass in Code 0.15 wird nun der finale RETI-Code erstellt. Eine Änderung, die direkt auffällt, ist, dass die RETI-Befehle aus den Blöcken nun zusammengefügt sind und es keine Blöcke mehr gibt. Des Weiteren wird das GoTo(Name('addr@next_instr')) in der Komposition LOADI ACC GoTo(Name('addr@next_instr')) nun durch die Adresse des nächsten Befehls direkt nach dem dem Befehl JUMP 5, der für den Sprung zur gewünschten Funktion verantwortlich ist¹¹ ersetzt: LOADI ACC 14. Und auch der Knoten, der den Sprung Exp(GoTo(Name('stack_fun.0'))) darstellt wird durch den Knoten JUMP 5 ersetzt.

Die Distanz 5 im RETI-Knoten JUMP 5 wird mithilfe des instrs_before-Attribute des Zielblocks, der den ersten Befehl der gewünschten Funktion enthält und des aktuellen Blocks, in dem der RETI-Knoten JUMP 5 enthalten ist berechnet.

Die relative Adresse 14 direkt nach dem Befehl JUMP 5 wird ebenfalls mithilfe des instrs_before-Attributs des aktuellen Blocks berechnet. Es handelt sich bei bei 14 um eine relative Adresse, die relativ zum CS-Register berechnet wird, welches im RETI-Interpreter von einem Startprogramm im EPROM immer so gesetzt wird, dass es die Adresse enthält, an der das Codesegment anfängt.

Anmerkung 9

Die Berechnung der Adresse '<addr@next_instr>' (bzw. in der Formel adr_{danach}) des Befehls nach dem Sprung JUMP <distanz> für den Befehl LOADI ACC <addr@next_instr> erfolgt dabei mithilfe der folgenden Formel:

$$adr_{danach} = \#Bef_{vor\,akt.\,Bl.} + idx + 4 \tag{0.0.1}$$

wobei:

- es sich bei bei adr_{danach} um eine relative Adresse handelt, die relativ zum CS-Register berechnet wird.
- #Bef_{vor akt. Bl.} Anzahl Befehle vor dem momentanen Block. Es handelt sich hierbei um ein verstecktes Attribut instrs_before eines jeden Blockes Block(name, stmts_instrs, instrs_before,

¹¹Also der Befehl, der bisher durch die Komposition Exp(GoTo(Name('stack_fun.0'))) dargestellt wurde.

num_instrs, param_size, local_vars_size), welches im RETI-Patch-Pass gesetzt wird. Der Grund dafür, dass das Zuweisen dieses versteckten Attributes instrs_before im RETI-Patch Pass erfolgt ist, weil erst im RETI-Patch Pass die finale Anzahl an Befehlen in einem Block feststeht, da im RETI-Patch Pass GoTo()'s entfernt werden, deren Sprung nur eine Adresse weiterspringen würde. Die finale Anzahl an Befehlen kann sich in diesem Pass also noch ändern und steht erst nach diesem Pass fest.

- idx = relativer Index des Befehls LOADI ACC <addr@next_instr> selbst im Block.
- 4 \(\hat{=}\) Distanz, die zwischen den in Code 0.16 markierten Befehlen LOADI ACC <im> und JUMP <im> liegt und noch eins mehr, weil man ja zum n\(\tilde{a}\)chsten Befehl will.

Die Berechnug der Distanz distanz für den Sprung JUMP distanz zum ersten Befehl eines im Pass zuvor existenten Blockes erfolgt dabei nach der folgenden Formel:

$$distanz = \begin{cases} #Bef_{vor\ Zielbl.} - #Bef_{vor\ akt.\ Bl.} - idx & #Bef_{vor\ Zielbl.}! = #Bef_{vor\ akt.\ Bl.} \\ -idx & #Bef_{vor\ Zielbl.} = #Bef_{vor\ akt.\ Bl.} \end{cases}$$
(0.0.2)

wobei:

- #Bef_{vor Zielbl.} Anzahl Befehle vor dem Zielblock, der den ersten Befehl einer Funktion enthält und zu dem gesprungen werden soll. Es handelt sich hierbei um ein verstecktes Attribut instrs_before eines jeden Blockes Block(name, stmts_instrs, instrs_before, num_instrs, param_size, local_vars_size).
- $\#Bef_{vor\ akt.\ Bl.}$ und idx haben die gleiche Bedeutung wie in der Formel 0.0.1.

```
1 # // Exp(GoTo(Name('main.1')))
2 # // not included Exp(GoTo(Name('main.1')))
 3 # StackMalloc(Num('2'))
 4 SUBI SP 2;
 5 # Ref(Global(Num('0')))
 6 SUBI SP 1;
 7 LOADI IN1 0;
 8 ADD IN1 DS;
 9 STOREIN SP IN1 1;
10 # NewStackframe(Name('stack_fun'), GoTo(Name('addr@next_instr')))
11 MOVE BAF ACC;
12 ADDI SP 3;
13 MOVE SP BAF;
14 SUBI SP 4;
15 STOREIN BAF ACC 0;
16 LOADI ACC 14;
17 ADD ACC CS;
18 STOREIN BAF ACC -1;
19 # Exp(GoTo(Name('stack_fun.0')))
20 JUMP 5;
21 # RemoveStackframe()
22 MOVE BAF IN1;
23 LOADIN IN1 BAF 0;
24 MOVE IN1 SP;
25 # Return(Empty())
26 LOADIN BAF PC -1;
27 # Return(Empty())
```

```
28 LOADIN BAF PC -1;
```

Code 0.16: RETI-Pass für Funktionsaufruf ohne Rückgabewert.

0.0.1.3.1 Rückgabewert

Ein Funktionsaufruf inklusive Zuweisung eines Rückgabewertes (z.B. int var = fun_with_return_valu e()) wird im Folgenden mithilfe des Beispiels in Code 0.17 erklärt.

Um den Unterschied zwischen einem return ohne Rückgabewert und einem return 21 * 2 mit Rückgabewert hervorzuheben, wurde ist auch eine Funktion fun_no_return_value, die keinen Rückgabewert hat in das Beispiel integriert.

```
int fun_with_return_value() {
   return 21 * 2;
}

void fun_no_return_value() {
   return;
}

void main() {
   int var = fun_with_return_value();
   fun_no_return_value();
}
```

Code 0.17: PicoC-Code für Funktionsaufruf mit Rückgabewert.

Im Abstrakten Syntaxbaum in Code 0.18 wird ein Return-Statement mit Rückgabewert return 21 * 2 mit der Komposition Return(BinOp(Num('21'), Mul('*'), Num('2'))) dargestellt, ein Return-Statement ohne Rückgabewert return mit der Komposition Return(Empty()) und ein Funktionsaufruf inklusive Zuweisung des Rückgabewertes int var = fun_with_return_value() durch die Komposition Assign(Alloc (Writeable(),IntType('int'),Name('var')),Call(Name('fun_with_return_value'),[])).

```
File
 2
    Name './example_fun_call_with_return_value.ast',
 4
5
       FunDef
         IntType 'int',
 6
7
8
         Name 'fun_with_return_value',
         [],
         Γ
9
           Return(BinOp(Num('21'), Mul('*'), Num('2')))
10
         ],
11
       FunDef
         VoidType 'void',
13
         Name 'fun_no_return_value',
14
         [],
15
         Return(Empty())
```

```
],
18
     FunDef
       VoidType 'void',
19
20
       Name 'main',
21
       [],
22
       Γ
23
         Assign(Alloc(Writeable(), IntType('int'), Name('var')),
         Exp(Call(Name('fun_no_return_value'), []))
24
25
26
   ]
```

Code 0.18: Abstrakter Syntaxbaum für Funktionsaufruf mit Rückgabewert.

Im PicoC-ANF Pass in Code 0.19 wird bei der Komposition Return(BinOp(Num('21'), Mul('*'), Num('2'))) erst die Expression BinOp(Num('21'), Mul('*'), Num('2')) ausgewertet. Die hierführ erstellten Kompositionen Exp(Num('21')), Exp(Num('2')) und Exp(BinOp(Stack(Num('2')), Mul('*'), Stack(Num('1')))) berechnen das Ergebnis des Ausdrucks 21*2 auf dem Stack. Dieses Ergebnis wird dann von der Komposition Return(Stack(Num('1'))) vom Stack gelesen und in das Register ACC geschrieben und als letztes wird die Rücksprungadresse in das PC-Register geladen, die durch den NewStackframe()-Token-Knoten eine Speicherzelle nach dem Wert des BAF-Registers der aufrufenden Funktion im Stackframe gespeichert ist.

Ein wichtiges Detail bei der Funktion fun_with_return_value ist, dass der Funktionsaufruf Call(Name('fun_with_return_value'), [])) anders übersetzt wird, da die Funktion einen Rückgabewert vom Datentyp IntType() und nicht VoidType() hat. Um den Rückgabewert, der durch die Komposition Return(BinOp(Num('21'), Mul('*'), Num('2'))) in das ACC-Register geschrieben wurde für die aufrufende Funktion, deren Stackframe nun wieder das aktuelle ist auf den Stack zu schreiben, muss ein neue Komposition Exp(ACC) definiert werden. In Tabelle ?? ist die Komposition Exp(ACC) genauer erklärt.

Dieser Trick mit dem Speichern des Rückgabewertes im ACC-Register ist notwendidg, weil durch das Entfernen des Stackframes der aufgerufenen Funktion das SP-Register nicht mehr an der gleichen Stelle steht. Daher sind alle temporären Werte, die in der aufgerufenen Funktion auf den Stack geschrieben wurden unzugänglich, weil man nicht wissen kann, um wieviel die Adresse im SP-Register verglichen zu vorher verschoben ist, weil der Stackframe von unterschiedlichen aufgerufenen Funktionen unterschiedlich groß sein kann.

Die Komposition Assign(Alloc(Writeable(),IntType('int'),Name('var')),Call(Name('fun_with_return_value'),[])) wird nach dem allokieren der Variable Name('var') durch die Komposition Assign(Global(Num('0')), Stack(Num('1'))) ersetzt, welche den Rückgabewert der Funktion Name('fun_with_return_value'), welcher durch die Komposition Exp(Acc) aus dem ACC-Register auf den Stack geschrieben wurde nun vom Stack in die Speicherzelle der Variable Name('var') speichert. Hierzu muss die Adresse der Variable Name('var') in der Symboltabelle nachgeschlagen werden.

Die Komposition Return(Empty()) für ein return ohne Rückgabewert bleibt unverändert und stellt nur das Laden der Rücksprungsadresse in das PC-Register dar.

Des Weiteren ist zu beobachten, dass wenn bei einer Funktion mit dem Rückgabedatentyp void kein return-Statement explizit ans Ende geschrieben wird, im PicoC-ANF Pass eines hinzufügt wird in Form der Komposition Return(Empty()). Beim Nicht-Angeben im Falle eines Dantentyps, der nicht void ist, wird allerdings eine MissingReturn-Fehlermeldung ausgelöst.

```
Name './example_fun_call_with_return_value.picoc_mon',
 4
       Block
         Name 'fun_with_return_value.2',
           // Return(BinOp(Num('21'), Mul('*'), Num('2')))
           Exp(Num('21'))
 9
           Exp(Num('2'))
10
           Exp(BinOp(Stack(Num('2')), Mul('*'), Stack(Num('1'))))
11
           Return(Stack(Num('1')))
12
         ],
13
       Block
14
         Name 'fun_no_return_value.1',
15
16
           Return(Empty())
17
         ],
18
       Block
19
         Name 'main.0',
20
21
           // Assign(Name('var'), Call(Name('fun_with_return_value'), []))
22
           StackMalloc(Num('2'))
23
           NewStackframe(Name('fun_with_return_value'), GoTo(Name('addr@next_instr')))
24
           Exp(GoTo(Name('fun_with_return_value.2')))
25
           RemoveStackframe()
26
           Exp(ACC)
27
           Assign(Global(Num('0')), Stack(Num('1')))
28
           StackMalloc(Num('2'))
29
           NewStackframe(Name('fun_no_return_value'), GoTo(Name('addr@next_instr')))
30
           Exp(GoTo(Name('fun_no_return_value.1')))
31
           RemoveStackframe()
32
           Return(Empty())
33
         ]
34
    ]
```

Code 0.19: Pico C-ANF Pass für Funktionsaufruf mit Rückgabewert.

Im RETI-Blocks Pass in Code 0.20 werden die Kompositionen Exp(Num('21')), Exp(Num('2')), Exp(BinOp(Stack(Num('2')), Mul('*'), Stack(Num('1')))), Return(Stack(Num('1'))) und Assign(Global(Num('0')), Stack(Num('1'))) durch ihre entsprechenden RETI-Knoten ersetzt.

```
1 File
    Name './example_fun_call_with_return_value.reti_blocks',
    Γ
      Block
5
        Name 'fun_with_return_value.2',
6
          # // Return(BinOp(Num('21'), Mul('*'), Num('2')))
          # Exp(Num('21'))
9
          SUBI SP 1;
10
          LOADI ACC 21;
          STOREIN SP ACC 1;
12
          # Exp(Num('2'))
          SUBI SP 1;
```

```
LOADI ACC 2:
15
           STOREIN SP ACC 1;
16
           # Exp(BinOp(Stack(Num('2')), Mul('*'), Stack(Num('1'))))
           LOADIN SP ACC 2;
18
           LOADIN SP IN2 1;
19
           MULT ACC IN2;
20
           STOREIN SP ACC 2;
21
           ADDI SP 1;
22
           # Return(Stack(Num('1')))
23
           LOADIN SP ACC 1;
24
           ADDI SP 1;
25
           LOADIN BAF PC -1;
26
         ],
27
       Block
28
         Name 'fun_no_return_value.1',
29
30
           # Return(Empty())
31
           LOADIN BAF PC -1;
32
         ],
33
       Block
         Name 'main.0',
34
35
36
           # // Assign(Name('var'), Call(Name('fun_with_return_value'), []))
37
           # StackMalloc(Num('2'))
38
           SUBI SP 2;
39
           # NewStackframe(Name('fun_with_return_value'), GoTo(Name('addr@next_instr')))
40
           MOVE BAF ACC;
41
           ADDI SP 2;
42
           MOVE SP BAF;
43
           SUBI SP 2;
           STOREIN BAF ACC 0;
45
           LOADI ACC GoTo(Name('addr@next_instr'));
46
           ADD ACC CS;
47
           STOREIN BAF ACC -1;
48
           # Exp(GoTo(Name('fun_with_return_value.2')))
49
           Exp(GoTo(Name('fun_with_return_value.2')))
50
           # RemoveStackframe()
51
           MOVE BAF IN1;
52
           LOADIN IN1 BAF O;
53
           MOVE IN1 SP;
54
           # Exp(ACC)
55
           SUBI SP 1;
56
           STOREIN SP ACC 1;
           # Assign(Global(Num('0')), Stack(Num('1')))
58
           LOADIN SP ACC 1;
           STOREIN DS ACC 0;
59
60
           ADDI SP 1;
61
           # StackMalloc(Num('2'))
62
           SUBI SP 2;
63
           # NewStackframe(Name('fun_no_return_value'), GoTo(Name('addr@next_instr')))
64
           MOVE BAF ACC;
65
           ADDI SP 2;
66
           MOVE SP BAF;
67
           SUBI SP 2;
68
           STOREIN BAF ACC 0;
69
           LOADI ACC GoTo(Name('addr@next_instr'));
           ADD ACC CS;
```

```
TI STOREIN BAF ACC -1;

# Exp(GoTo(Name('fun_no_return_value.1')))

Exp(GoTo(Name('fun_no_return_value.1')))

# RemoveStackframe()

MOVE BAF IN1;

LOADIN IN1 BAF 0;

MOVE IN1 SP;

# Return(Empty())

LOADIN BAF PC -1;

| Coadin bar Coadin bar
```

Code 0.20: RETI-Blocks Pass für Funktionsaufruf mit Rückgabewert.

0.0.1.3.2 Umsetzung der Übergabe eines Feldes

Die Call by Reference (Definition ??) Übergabe eines Feldes an eine andere Funktion, wird im Folgenden mithilfe des Beispiels in Code 0.21 erklärt.

```
void fun_array_from_stackframe(int (*param)[3]) {

void fun_array_from_global_data(int param[2][3]) {
   int local_var[2][3];
   fun_array_from_stackframe(local_var);
}

void main() {
   int local_var[2][3];
   fun_array_from_global_data(local_var);
}
```

Code 0.21: PicoC-Code für die Übergabe eines Feldes.

Im PicoC-ANF Pass wird im Fall dessen, dass der oberste Knoten im Teilbaum, der den Datentyp darstellt und an die Funktion übergeben wird ein Feld ArrayDecl(nums, datatype) ist, dieser zu einem Zeiger PntrDecl(num, datatype) umgewandelt und der Rest des Teilbaumes, der am datatype-Attribut hängt, an das datatype-Attribut des Zeigers PntrDecl(num, datatype) drangehängt.

Diese Umwandlung des Datentyps kann in der Symboltabelle in Code 0.22 beobachtet werden. Die lokalen Variablen local_var@main und local_var@fun_array_from_global_data sind beide vom Datentyp ArrayDecl([Num('2'), Num('3')], IntType('int')) und bei der Übergabe ändert sich der Datentyp beider Variablen zu PntrDecl(Num('1'), ArrayDecl([Num('3')], IntType('int'))). Die Größe dieser Variablen ändert sich damit zu Num('1'), da ein Zeiger nur eine Speicherzelle braucht.

```
datatype:
                                  FunDecl(VoidType('void'), Name('fun_array_from_stackframe'),
              [Alloc(Writeable(), PntrDecl(Num('1'), ArrayDecl([Num('3')], IntType('int'))),
              Name('param'))])
                                  Name('fun_array_from_stackframe')
          value or address:
                                  Empty()
                                  Pos(Num('1'), Num('5'))
          position:
10
          size:
                                  Empty()
11
        },
12
      Symbol
13
14
          type qualifier:
                                  Writeable()
15
          datatype:
                                  PntrDecl(Num('1'), ArrayDecl([Num('3')], IntType('int')))
16
          name:
                                  Name('param@fun_array_from_stackframe')
17
          value or address:
                                  Num('0')
18
                                  Pos(Num('1'), Num('37'))
          position:
19
                                  Num('1')
          size:
20
        },
21
      Symbol
22
        {
23
          type qualifier:
                                  Empty()
24
          datatype:
                                  FunDecl(VoidType('void'), Name('fun_array_from_global_data'),
           25
                                  Name('fun_array_from_global_data')
          name:
26
          value or address:
                                  Empty()
27
          position:
                                  Pos(Num('4'), Num('5'))
28
          size:
                                  Empty()
29
        },
30
      Symbol
31
        {
32
          type qualifier:
                                  Writeable()
33
          datatype:
                                  PntrDecl(Num('1'), ArrayDecl([Num('3')], IntType('int')))
34
                                  Name('param@fun_array_from_global_data')
          name:
35
                                  Num('0')
          value or address:
36
                                  Pos(Num('4'), Num('36'))
          position:
37
          size:
                                  Num('1')
38
        },
39
      Symbol
40
        {
          type qualifier:
41
                                  Writeable()
42
                                  ArrayDecl([Num('2'), Num('3')], IntType('int'))
          datatype:
43
                                  Name('local_var@fun_array_from_global_data')
          name:
44
                                  Num('6')
          value or address:
45
                                  Pos(Num('5'), Num('6'))
          position:
46
                                  Num('6')
          size:
47
        },
48
      Symbol
49
        {
50
                                  Empty()
          type qualifier:
51
                                  FunDecl(VoidType('void'), Name('main'), [])
          datatype:
52
          name:
                                  Name('main')
53
          value or address:
                                  Empty()
54
          position:
                                  Pos(Num('9'), Num('5'))
55
          size:
                                  Empty()
56
        },
57
      Symbol
58
        {
59
          type qualifier:
                                  Writeable()
```

```
ArrayDecl([Num('2'), Num('3')], IntType('int'))
           datatype:
61
           name:
                                     Name('local_var@main')
62
           value or address:
                                     Num('0')
63
           position:
                                     Pos(Num('10'), Num('6'))
                                     Num('6')
           size:
65
         }
66
    ]
```

Code 0.22: Symboltabelle für die Übergabe eines Feldes.

Im PicoC-ANF Pass in Code 0.23 ist zu sehen, dass zur Übergabe der beiden Felder die Adresse des jeweiligen Feldes auf den Stack geschrieben wird. Die Adressen der beiden Felder auf den Stack zu schreiben wird durch die Kompositionen Ref(Global(Num('0'))) und Ref(Stackframe(Num('6'))) repräsentiert.

Die Komposition Ref(Global(Num('0'))) ist für Variablen in den Globalen Statischen Daten und die Komposition Ref(Stackframe(Num('6'))) ist für Variablen aus dem Stackframe. Dabei stellen die Zahlen in den Knoten Global(num) bzw. Stackframe(num) die relative Adressen relativ zum DS-Register bzw. SP-Register dar, die aus der Symboltabelle entnommen sind.

```
File
 2
    Name './example_fun_call_by_sharing_array.picoc_mon',
         Name 'fun_array_from_stackframe.2',
         Γ
           Return(Empty())
         ],
 9
       Block
10
         Name 'fun_array_from_global_data.1',
11
12
           StackMalloc(Num('2'))
13
           Ref(Stackframe(Num('6')))
14
           NewStackframe(Name('fun_array_from_stackframe'), GoTo(Name('addr@next_instr')))
           Exp(GoTo(Name('fun_array_from_stackframe.2')))
16
           RemoveStackframe()
17
           Return(Empty())
18
         ],
19
       Block
20
         Name 'main.0',
22
           StackMalloc(Num('2'))
23
           Ref(Global(Num('0')))
24
           NewStackframe(Name('fun_array_from_global_data'), GoTo(Name('addr@next_instr')))
25
           Exp(GoTo(Name('fun_array_from_global_data.1')))
26
           RemoveStackframe()
27
           Return(Empty())
28
         ]
```

Code 0.23: PicoC-ANF Pass.

Im RETI-Blocks Pass in Code 0.24 werden Kompositionen Ref(Global(Num('0'))) und

Ref(Stackframe(Num('6'))) durch ihre entsprechenden RETI-Knoten ersetzt.

```
File
     Name './example_fun_call_by_sharing_array.reti_blocks',
         Name 'fun_array_from_stackframe.2',
 7
8
           # Return(Empty())
           LOADIN BAF PC -1;
 9
         ],
10
       Block
11
         Name 'fun_array_from_global_data.1',
12
13
           # StackMalloc(Num('2'))
           SUBI SP 2;
15
           # Ref(Stackframe(Num('6')))
16
           SUBI SP 1:
17
           MOVE BAF IN1;
18
           SUBI IN1 8;
19
           STOREIN SP IN1 1;
20
           # NewStackframe(Name('fun_array_from_stackframe'), GoTo(Name('addr@next_instr')))
21
           MOVE BAF ACC;
22
           ADDI SP 3;
23
           MOVE SP BAF;
24
           SUBI SP 3;
25
           STOREIN BAF ACC 0;
26
           LOADI ACC GoTo(Name('addr@next_instr'));
27
           ADD ACC CS;
28
           STOREIN BAF ACC -1;
29
           # Exp(GoTo(Name('fun_array_from_stackframe.2')))
30
           Exp(GoTo(Name('fun_array_from_stackframe.2')))
31
           # RemoveStackframe()
           MOVE BAF IN1;
32
33
           LOADIN IN1 BAF O;
34
           MOVE IN1 SP;
35
           # Return(Empty())
36
           LOADIN BAF PC -1;
37
         ],
38
       Block
39
         Name 'main.0',
40
           # StackMalloc(Num('2'))
42
           SUBI SP 2;
43
           # Ref(Global(Num('0')))
44
           SUBI SP 1;
45
           LOADI IN1 0;
46
           ADD IN1 DS;
47
           STOREIN SP IN1 1;
48
           # NewStackframe(Name('fun_array_from_global_data'), GoTo(Name('addr@next_instr')))
49
           MOVE BAF ACC;
50
           ADDI SP 3;
51
           MOVE SP BAF;
52
           SUBI SP 9;
53
           STOREIN BAF ACC 0;
54
           LOADI ACC GoTo(Name('addr@next_instr'));
           ADD ACC CS;
```

```
STOREIN BAF ACC -1;
           # Exp(GoTo(Name('fun_array_from_global_data.1')))
57
58
           Exp(GoTo(Name('fun_array_from_global_data.1')))
59
           # RemoveStackframe()
           MOVE BAF IN1;
61
           LOADIN IN1 BAF O:
62
           MOVE IN1 SP;
63
           # Return(Empty())
64
           LOADIN BAF PC -1;
65
66
    ]
```

Code 0.24: RETI-Block Pass für die Übergabe eines Feldes.

0.0.1.3.3 Umsetzung einer Übergabe eines Verbundes

Die Call by Value (Definition ??) Übergabe eines Structs wird im Folgenden mithilfe des Beispiels in Code 0.25 erklärt.

```
struct st {int attr1; int attr2[2];};
2
4
  void fun_struct_from_stackframe(struct st param) {
5 }
  void fun_struct_from_global_data(struct st param) {
    fun_struct_from_stackframe(param);
9
10
11
  void main() {
13
    struct st local_var;
14
    fun_struct_from_global_data(local_var);
15 }
```

Code 0.25: PicoC-Code für Call by Value für Structs.

Im PicoC-ANF Pass in Code 0.26 wird zur Übergabe eines Struct, das komplette Struct auf den Stack kopiert. Das wird mittels der Komposition Assign(Stack(Num('3')), Global(Num('0'))) bzw. der Komposition Assign(Stack(Num('3')), Stackframe(Num('2'))) dargestellt.

Bei der Übergabe an eine Funktion wird der Zugriff auf ein gesamtes Struct anders gehandhabt als sonst. Normalerweise wird beim Zugriff auf ein Struct die Adresse des ersten Attributs dieses Struct auf den Stack geschrieben. Bei der Übergabe an eine Funktion wird dagegen das gesamte Struct auf den Stack kopiert.

Das wird durch eine Variable argmode_on implementiert, die auf true gesetzt wird, solange der Funktionsaufruf im Picoc-ANF Pass verarbeitet wird und wieder auf false gesetzt, wenn die Verarbeitung des Funktionaufrufs abgeschlossen ist. Solange die Variable argmode_on auf true gesetzt ist, wird immer die Komposition Assign(Stack(Num('3')), Global(Num('0'))) bzw. der Komposition Assign(Stack(Num('3')),

Stackframe(Num('2'))) für die Ersetzung verwendet. Ist die Varaible argmode_on auf false wird die Komposition Ref(Globalnum()) bzw. Ref(Stackframe(num)) für die Ersetzung verwendet.

Die Komposition Assign(Stack(Num('3')), Stackframe(Num('2'))) wird im Falle dessen, dass die Structvariable in den Globalen Statischen Daten liegt verwendet und die Komposition Assign(Stack(Num('3')), Global(Num('0'))) wird im Falle, dessen, dass die Structvariable im Stackframe liegt verwendet.

```
File
 2
    Name './example_fun_call_by_value_struct.picoc_mon',
     Γ
 4
         Name 'fun_struct_from_stackframe.2',
         Γ
           Return(Empty())
 8
         ],
9
       Block
10
         Name 'fun_struct_from_global_data.1',
11
12
           StackMalloc(Num('2'))
13
           Assign(Stack(Num('3')), Stackframe(Num('2')))
14
           NewStackframe(Name('fun_struct_from_stackframe'), GoTo(Name('addr@next_instr')))
15
           Exp(GoTo(Name('fun_struct_from_stackframe.2')))
16
           RemoveStackframe()
17
           Return(Empty())
18
         ],
19
       Block
20
         Name 'main.0',
21
22
           StackMalloc(Num('2'))
23
           Assign(Stack(Num('3')), Global(Num('0')))
24
           NewStackframe(Name('fun_struct_from_global_data'), GoTo(Name('addr@next_instr')))
25
           Exp(GoTo(Name('fun_struct_from_global_data.1')))
26
           RemoveStackframe()
27
           Return(Empty())
28
    ]
```

Code 0.26: PicoC-ANF Pass für Call by Value für Structs.

Im RETI-Blocks Pass in Code 0.27 werden die Kompositionen Assign(Stack(Num('3')), Stackframe(Num('2'))) und Assign(Stack(Num('3')), Global(Num('0'))) durch ihre entsprechenden RETI-Knoten ersetzt.

```
Name 'fun_struct_from_global_data.1',
12
13
           # StackMalloc(Num('2'))
           SUBI SP 2;
           # Assign(Stack(Num('3')), Stackframe(Num('2')))
16
           SUBI SP 3:
17
           LOADIN BAF ACC -4;
18
           STOREIN SP ACC 1;
19
           LOADIN BAF ACC -3;
20
           STOREIN SP ACC 2;
21
           LOADIN BAF ACC -2;
22
           STOREIN SP ACC 3;
23
           # NewStackframe(Name('fun_struct_from_stackframe'), GoTo(Name('addr@next_instr')))
24
           MOVE BAF ACC;
25
           ADDI SP 5;
26
           MOVE SP BAF;
27
           SUBI SP 5;
28
           STOREIN BAF ACC 0;
29
           LOADI ACC GoTo(Name('addr@next_instr'));
30
           ADD ACC CS;
31
           STOREIN BAF ACC -1;
32
           # Exp(GoTo(Name('fun_struct_from_stackframe.2')))
33
           Exp(GoTo(Name('fun_struct_from_stackframe.2')))
34
           # RemoveStackframe()
35
           MOVE BAF IN1;
36
           LOADIN IN1 BAF O;
37
           MOVE IN1 SP;
38
           # Return(Empty())
           LOADIN BAF PC -1;
39
40
        ],
41
       Block
42
         Name 'main.0',
43
44
           # StackMalloc(Num('2'))
45
           SUBI SP 2;
46
           # Assign(Stack(Num('3')), Global(Num('0')))
47
           SUBI SP 3;
48
           LOADIN DS ACC 0;
49
           STOREIN SP ACC 1;
50
           LOADIN DS ACC 1;
51
           STOREIN SP ACC 2;
52
           LOADIN DS ACC 2;
53
           STOREIN SP ACC 3;
54
           # NewStackframe(Name('fun_struct_from_global_data'), GoTo(Name('addr@next_instr')))
55
           MOVE BAF ACC;
56
           ADDI SP 5;
57
           MOVE SP BAF;
58
           SUBI SP 5;
59
           STOREIN BAF ACC 0;
60
           LOADI ACC GoTo(Name('addr@next_instr'));
61
           ADD ACC CS;
62
           STOREIN BAF ACC -1;
63
           # Exp(GoTo(Name('fun_struct_from_global_data.1')))
64
           Exp(GoTo(Name('fun_struct_from_global_data.1')))
65
           # RemoveStackframe()
           MOVE BAF IN1;
66
           LOADIN IN1 BAF O;
```

```
68 MOVE IN1 SP;
69 # Return(Empty())
70 LOADIN BAF PC -1;
71 ]
72 ]
```

Code 0.27: RETI-Block Pass für Call by Value für Structs.

Literatur