Definitions

$$\lim \sup E_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_k$$

$$= \{x : x \in E_n \text{ for infinitely many } n\}$$

$$= -\lim \inf \{-E_n\}$$

$$\lim \inf E_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_n$$

$$= \{x : x \in E_n \text{ for all but finitely many } n\}$$

$$= -\lim \sup \{-E_n\}$$

De Morgan's Laws:

$$\left(\bigcup_{\alpha \in A} E_{\alpha}\right)^{c} = \bigcap_{\alpha \in A} E_{\alpha}^{c}$$
$$\left(\bigcap_{\alpha \in A} E_{\alpha}\right)^{c} = \bigcup_{\alpha \in A} E_{\alpha}^{c}$$

Equivalence relation:

- Reflexive: $x \sim x$
- Symmetric: $x \sim y \iff y \sim x$
- Transitive: $x \sim y \wedge y \sim z \implies x \sim z$

Useful inverse properties:

$$f^{-1}\left(\bigcup_{\alpha \in A} E_{\alpha}\right) = \bigcup_{\alpha \in A} f^{-1}(E_{\alpha})$$
$$f^{-1}\left(\bigcap_{\alpha \in A} E_{\alpha}\right) = \bigcap_{\alpha \in A} f^{-1}(E_{\alpha})$$
$$f^{-1}(E^{c}) = (f^{-1}(E))^{c}$$

Partial Ordering:

- \bullet X nonempty
- Reflexivity: xRx
- Antisymmetry: $xRy \wedge yRx \implies x = y$
- Transitivity: $xRy \wedge yRz \implies xRz$

Linear ordering:

- Partial ordering
- $\forall x, y$, either xRy or yRx

Well-ordering:

• Linearly ordered

• Every nonempty subset has a least element

Choice function:

$$\prod_{\alpha \in A} X_{\alpha} = \left\{ f : A \to \bigcup_{\alpha \in A} X_{\alpha} \land f(\alpha \in X_{\alpha}) \, \forall \alpha \in A \right\}$$

Metric space: $\rho: X \times X \to [0, \infty]$

- 1. $\rho(x,y) = 0 \iff x = y$
- $2. \ \rho(x,y) = \rho(y,x)$
- 3. $\rho(x,y) \le \rho(x,z) + \rho(z,y)$

Open and Closed Sets:

- E open $\iff \forall x \in E, \exists \varepsilon > 0 \text{ s.t. } B_{\varepsilon}(x) \subseteq E$
- E closed $\iff E^c$ open
- $\{U_x\}$ open $\Longrightarrow \bigcup_{x \in A} U_x$ open
- $\{F_x\}$ closed $\Longrightarrow \bigcap_{x \in A} F_x$ closed

Density:

- $E \subseteq X$ dense $\iff \overline{E} = X$
- E nowhere dense \iff $(\overline{E})^{\circ} = \emptyset$
- X separable $\iff \exists E \subseteq X$ countable and dense

Complete: $E \subseteq X$ complete $\iff \forall \{x_n\} \in E, x_n \rightarrow x \in E$

Distance:

- $\rho(x, E) = \inf{\{\rho(x, y) : y \in E\}}$
- $\rho(E, F) = \inf \{ \rho(x, y) : x \in E, y \in F \}$
- diam $E = \sup \{ \rho(x, y) : x, y \in E \}$
- E bounded \iff diam $E < \infty$
- E totally bounded $\iff \forall \varepsilon > 0, E \subseteq \bigcup_{i=1}^N B_{\varepsilon}(x_i)$

Algebra: $A \subseteq P(X)$ such that for $E_1, \ldots, E_n \subseteq A$,

- 1. $\bigcup_{i=1}^n E_i \in \mathcal{A}$
- $2. E \in \mathcal{A} \implies E^c \in \mathcal{A}$

Sigma Algebra:

- Algebra
- $\bigcup_{i=1}^{\infty} E_i \in \mathcal{A} \text{ for } \{E_i\} \in \mathcal{A}$
- $E \in \mathcal{A} \implies E^c \in \mathcal{A}$

Equivalently, \mathcal{A} is a σ -algebra if for $\{E_i\} \in \mathcal{A}$, $E_1 \subseteq E_2 \subseteq \cdots \implies \bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$.

Borel Algebra: the σ -algebra generated by the open sets of X

Measure: $\mu: \mathcal{M} \to [0, \infty]$ satisfies

1. $\mu(\emptyset) = 0$

2. $\{E_j\} \in \mathcal{M}$ pairwise disjoint, $\mu\left(\bigcup_{j=1}^{\infty} E_j\right)$ $\sum_{i=1}^{\infty} \mu(E_k)$

Outer Measure:

1. $\mu^*(\emptyset) = 0$

2. $A \subseteq B \implies \mu^*(A) < \mu^*(B)$

3. $\mu^* \left(\bigcup_{j=1}^{\infty} A_j \right) \le \sum_{j=1}^{\infty} \mu^* (A_j)$

Carathéodory Criterion: If $\mu^*(E) = \mu^*(E \cap A) +$ $\mu^*(E \cap A^c)$, A is μ^* -measurable

Lebesgue-Stieltjes Measure:

$$\mu^*(A) = \inf \left\{ \sum_{n} \rho(a_i, b_i) \middle| A \subseteq \bigcup_{i} (a_i, b_i) \right\}$$

for

• $\rho(a,b) = b - a$ on \mathbb{R}

• $\rho(\mathbf{a}, \mathbf{b}) = \prod_{j=1}^{n} (b_j - a_j)$ on \mathbb{R}^n

Hausdorff Measure:

$$\mathcal{H}_{\alpha} = \inf \left\{ \lim_{\varepsilon \to 0} \sum_{k} \operatorname{diam} (A_{k})^{\alpha} \middle| A \subseteq \bigcup_{k} A_{k}, \operatorname{diam} A_{k} \le \varepsilon \right\} \stackrel{\longleftarrow}{\Longleftrightarrow} x \in \overline{E}$$

$$\iff B_{\varepsilon}(x) \cap E \neq \emptyset \quad \forall \varepsilon > 0$$

Lebesgue-Stieltjes Measure:

$$\mu^*(A) = \inf \left\{ \sum_{i} \rho(a_i, b_i) \middle| A \subseteq \bigcup_{i} (a_i, b_i) \right\}$$

for $\rho(a,b] = f(b) - f(a)$ and f monotone increasing. If f is further right-continuous, $\mu^*(a,b] = \rho(a,b]$.

Useful Results

Archimedean Property: $\forall x \in \mathbb{R}, \exists n \in \mathbb{Z} \text{ s.t. } x < n$

Zorn's Lemma: If X is partially ordered and every linearly ordered subset of X has an upper bound, Xhas a maximal element

Well-ordering principle: Every non-empty set can be well-ordered

Axiom of Choice: If $\{X_{\alpha \in A}\} \neq \emptyset$, $\prod_{\alpha \in A} X_{\alpha} \neq \emptyset$

Cardinality Results:

• card $X \leq \text{card } Y \iff \text{card } Y \geq \text{card } X$

• Either card $X \leq \text{card } Y$ or card $Y \leq \text{card } X$

• card X < card P(X)

Schröder-Berstein Theorem: If $f:X\hookrightarrow Y$ and $g: Y \hookrightarrow X$, then $\exists h: X \hookrightarrow Y$

Countability Results:

• X countable \iff card X < card \mathbb{N} $\mu(X) = 0$

• X, Y countable $\implies X \times Y$ countable

• $A, \{X_{\alpha}\}_{{\alpha} \in A}$ countable $\Longrightarrow \bigcup_{{\alpha} \in A} X_{\alpha} X_{\alpha}$ count-

• Every open set in \mathbb{R} is a countable disjoint union of open intervals

Metric space results:

• $E^{\circ} = \bigcup_{O \subseteq E} O \subseteq E$

• $E \subseteq \overline{E} = \bigcap_{F \supset E} F$

• $\lim_{n\to\infty} \rho(\mathbf{x},\mathbf{y}) = 0 \iff \lim_{n\to\infty} \rho(x_i^n,y_i^n) = 0$

Characterization of Closure: For all $x \in X$, $E \subseteq X$,

 \iff E closed

 $\iff \exists \{x_n\} \subseteq E \text{ s.t. } x_n \to x$

Continuity results:

• $\{f_n\} \in \mathbb{R}$ continuous and $f_n \to f$ uniformly \Longrightarrow f continuous

• f continuous on bounded set $\implies f$ attains a max/min on the set

Ascoli-Arzela: With (X, ρ) bounded and separable, $\{f_n\} \in \mathcal{F} \text{ equicontinuous (i.e. } \forall x \in X \exists O_x > 0\}$ 0 s.t. $\sigma(f_n(x), f_n(y)) < \varepsilon \ \forall y \in O_x$, and the closure of $\{f_n(x): 0 \le n < \infty\}$ compact for all $x \in X$, $\exists f_{n_k} \to f$ pointwise for f continuous.

Characterization of compactness:

 \iff E compact

 \iff E complete and totally bounded

every sequence has convergent subsequence with limit in E

 \iff every open cover has finite subcover

Generated σ -algebras: $\mathcal{E} \subseteq M(\mathcal{F}) = \bigcap_{\mathcal{F} \subseteq \mathcal{A}} \mathcal{A} \implies 7$. If $\mu\left(\bigcup_{j=1}^{\infty} E_j\right) < \infty$, $\mu(\limsup E_j)$ $M(\mathcal{E}) \subseteq M(\mathcal{F})$

Generating Borel sets: If $\{X_i\}$ are separable,

$$igoplus_{i=1}^n \mathcal{B}_{X_i} = \mathcal{B}_{X_1} imes \mathcal{B}_{X_2} imes \cdots imes \mathcal{B}_{X_n} \ = \mathcal{B}_{X_1 imes X_2 imes \cdots imes X_n}$$

Properties of Measures:

- 1. Monotonicity: $E \subseteq F \in \mathcal{M} \implies \mu(E) \leq \mu(F)$
- 2. Subadditivity: $\mu\left(\bigcup_{j=1}^{\infty} E_j\right) \leq \sum_{j=1}^{\infty} \mu(E_j)$
- 3. Continuity from below: $E_1 \subseteq E_2 \subseteq \cdots \Longrightarrow$ $\mu\left(\bigcup_{j=1}^{\infty} E_j\right) = \lim_{j \to \infty} \mu(E_j)$
- 4. Continuity from above: $E_1 \supseteq E_2 \supseteq \cdots \land \mu(E_1) < \cdots$ $\infty \implies \mu\left(\bigcap_{j=1}^{\infty} E_j\right) = \lim_{j \to \infty} \mu(E_j)$
- 5. $E, F \in \mathcal{M} \implies \mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$
- 6. $\mu(\liminf E_j) \leq \liminf \mu(E_k)$

7. If
$$\mu\left(\bigcup_{j=1}^{\infty} E_j\right) < \infty$$
, $\mu(\limsup E_j) \geq \lim \sup \mu(E_j)$

Property of Outer measure: If $\sum_{k=1}^{\infty} \mu^*(E_k) < \infty$, $\mu^*(\limsup E_k) = 0$

Carathéodory Process: $\mu(E) = \mu^*(E)|_{\mathcal{M}}$ is a measure if μ^* is an outer measure and \mathcal{M} is the collection of μ^* measurable sets (a sigma algebra)

Properties of the Lebesgue Measure:

- for any interval $I \subseteq \mathbb{R}$, $\mu(I) = \rho(I)$.
- $\mu^*(E+a) = \mu^*(E)$
- $\mu^*(rE) = |r| \, \mu^*(E)$

Property of the Hausdorff Measure: If $\mathcal{H}_{\alpha}(A)$ < ∞ , $\mathcal{H}_{\beta}(A) = 0$ for $\beta > \alpha$.

Approximation of Measurable Sets:

- $\exists O$ open such that $E \subseteq O$ and $\mu(O) \ge \mu(E) \ge$ $\mu(O) - \varepsilon$
- $\exists K$ closed such that $\mu(K) \leq \mu(E) \leq \mu(K) + \varepsilon$