Reykjavik University			1
		5.10. Linear Congruence Solver	15
		5.11. Numeric Integration	15
		5.12. Fast Fourier Transform	15
DanceParty		5.13. Formulas	15
Team Reference Document		6. Geometry	15
Team Reference Document		6.1. Primitives	15
		6.2. Convex Hull	16
		6.3. Formulas	16
		7. Other Algorithms	16
		7.1. Binary Search	16
Contents		7.2. Ternary Search	17
1. Code Templates	1	7.3. 2SAT	17
1.1. Basic Configuration	1	7.4. Stable Marriage	17
1.2. C++ Header	1	7.5. Algorithm X	17
1.3. Java Template	1	7.6. nth Permutation 7.7. Cycle-Finding	18
2. Data Structures	2	7.7. Cycle-Finding 7.8. Dates	18
2.1. Union-Find	2	8. Useful Information	18
2.2. Segment Tree	$\frac{2}{2}$	8.1. Tips & Tricks	19 19
2.3. Fenwick Tree	$\frac{2}{2}$	8.2. Fast Input Reading	19
2.4. Matrix	$\frac{-}{2}$	8.3. Worst Time Complexity	19
2.5. AVL Tree	3	8.4. Bit Hacks	19
2.6. Heap	4	0.4. Dit 11ach5	13
2.7. Skiplist	5		
2.8. Dancing Links	5		
3. Graphs	6		
3.1. Breadth-First Search	6		
3.2. Single-Source Shortest Paths	6		
3.3. All-Pairs Shortest Paths	7		
3.4. Strongly Connected Components	7		
3.5. Minimum Spanning Tree	7		
3.6. Topological Sort	7		
3.7. Bipartite Matching	8		
3.8. Hopcroft-Karp algorithm	8		
3.9. Maximum Flow	8		
3.10. Minimum Cost Maximum Flow	9		
3.11. All Pairs Maximum Flow	10		
4. Strings	10		
4.1. Trie	10		
4.2. Suffix Array	11		
4.3. Aho-Corasick Algorithm	11		
4.4. The Z algorithm	12		
5. Mathematics 5.1. Fraction	12		
	12 12		
5.2. Big Integer5.3. Binomial Coefficients	12 14		
5.4. Euclidean algorithm	14		
5.4. Euclidean algorithm 5.5. Trial Division Primality Testing	14 14		
5.6. Sieve of Eratosthenes	14		
5.7. Modular Multiplicative Inverse	14		
5.8. Modular Exponentiation	14		
5.9. Chinese Remainder Theorem	15		
out. Chimoso Homeman Thousand	10		

```
Reykjavik University
----void update(int at, int by) {------------------------// 76 ------matrix<T> res(cols, rows);------------------// b5
-------while (at < n) data[at] += by, at |= at + 1; }-------// fb -------for (int i = 0; i < rows; i++)-------// 9c
------int res = 0;-------// c3 -----return res; }------// c3
------while (at >= 0) res += data[at], at = (at & (at + 1)) - 1;-------// 37 ----matrix<T> pow(int p) {---------// 68
-----return res; }------// e4 -----matrix<T> res(rows, cols), sq(*this);-------// 4d
};------// 57 -----while (p) {------// cb
-----x0(fenwick_tree(n)) { }------// 7c -----} return res; }-------
----// insert f(y) = my + c if x <= y-------// 17 ----matrix<T> rref(T &det) {-------// 89
void range_update(fenwick_tree_sq &s, int a, int b, int k) {-------// 89 -------while (k < rows && eq<T>(mat(k, c), T(0))) k++;-----// f9
------for (int i = 0; i < cols; i++)-----// ab
2.4. Matrix. A Matrix class.
                      -----swap(mat.at(k, i), mat.at(r, i));-----// 8d
public:-----T m = mat(i, c);------// e8
-----data.assign(cnt, T(0)); }-----// d0
                      ----matrix(const matrix& other) : rows(other.rows), cols(other.cols),------// fe -----} return mat; }-----
-----cnt(other.cnt), data(other.data) { }-----// ed
                      private:----// e0
----T& operator()(int i, int j) { return at(i, j); }------// e0
                      ----int cnt:-----// 6a
----void operator +=(const matrix& other) {------// c9
                      ----vector<T> data;------// 41
------for (int i = 0; i < cnt; i++) data[i] += other.data[i]; }------// e5
                      ----inline T& at(int i, int j) { return data[i * cols + j]; }------// 74
----void operator -=(const matrix& other) {------// 68
                      }:-----// b8
------for (int i = 0; i < cnt; i++) data[i] -= other.data[i]; }------// 88
----void operator *=(T other) {------// ba
                      2.5. AVL Tree. A fast, easily augmentable, balanced binary search tree.
------for (int i = 0; i < cnt; i++) data[i] *= other; }------// 40 #define AVL_MULTISET 0------// b5
------matrix<T> res(*this); res += other; return res; }------// 5d template <class T>-------// 22
------matrix<T> res(*this); res -= other; return res; }------// cf public:------// f6
------matrix<T> res(rows, other.cols);-------// 57 ------node(const T &item, node *p = NULL) : item(item), p(p),------// c5
```

```
Reykjavik University
-----node *cur = root;-------// cf ------if (!cur) cur = root;------// 0a
------if (cur->item < item) cur = cur->r;-------// eb ------if (n < sz(cur->l)) cur = cur->l;------// 25
------else if (item < cur->item) cur = cur->l;------// de ------else if (n > sz(cur->l)) n -= sz(cur->l) + 1, cur = cur->r;-----// 8b
------else break: }-------// 05 ------else break:-------// 4c
-------node *prev = NULL, **cur = &root;----------// 60 ----inline int sz(node *n) const { return n ? n->size : 0; }------// 69
-----prev = *cur;------// 31 ----inline bool left_heavy(node *n) const {-------// d7
-------if ((*cur)->item < item) cur = &((*cur)->r);------// 39 -----return n && height(n->l) > height(n->r); }-----// 9d
#if AVL_MULTISET-----// d1 ----inline bool right_heavy(node *n) const {-------// 91
------else cur = \&((*cur)->l); ------// 3b -----return n \&\& height(n->r) > height(n->l); }-----// 77
#else-----// dc ----inline bool too_heavy(node *n) const {--------// 18
------else if (item < (*cur)->item) cur = &((*cur)->l);------// e5 -----return n && abs(height(n->l) - height(n->r)) > 1; }-----// fb
------else return *cur;------// 19 ----void delete_tree(node *n) {-------// 48
#endif-------if (n) { delete_tree(n->l), delete_tree(n->r); delete n; } }------// ea
------node *n = new node(item, prev);-------// 5b -----if (!n->p) return root;-------// af
-----*cur = n, fix(n); return n; }-------// 86 ------if (n->p->l == n) return n->p->l;-------// 95
----void erase(node *n, bool free = true) {-------// 89 ------assert(false); }------
------else if (n->l) && !n->r) parent_leg(n) = n->l, n->l->p = n->p;------// 3d ------n->size = 1 + sz(n->l) + sz(n->r);-------// 14
-----node *s = successor(n);------// 16 ----#define rotate(l, r) N------// b7
------erase(s, false);-------// 17 -----node *l = n->l; \[\bar{N}\]
-----if (n->l) n->l->p = s;------// 88
                             -----parent_leg(n) = l; \(\bar{\gamma}\)------// 02
-----if (n->r) n->r->p = s;------// 42
                             -----n->l = l->r; \\ \| ------// 08
-----parent_leg(n) = s, fix(s);-----// 87
------} else parent_leg(n) = NULL;---------// 58 ------l->r = n, n->p = l; \[ \bar{N} \]
------if (free) delete n; }------// 99 ----void left_rotate(node *n) { rotate(r, l); }------// 43
-----if (!n) return NULL;------// b3 ----void fix(node *n) {-------// 42
------if (too_heavy(n)) {------// 39
------return p: }--------| 03 ------------| 65e if (right_heavy(n) && left_heavy(n->r))-------// 09
-----node *p = n->p;------node *p = n->p; }-------// af
------while (p && p->l == n) n = p, p = p->p;-------// 03 -----n = n->p; } } };-------// 85
-----return p; }-----// 83
                              Also a very simple wrapper over the AVL tree that implements a map interface.
----inline int size() const { return sz(root); }-----// e2
                             #include "avl_tree.cpp"-----// 01
----void clear() { delete_tree(root), root = NULL; }-----// d4
                              -----// ba
----node* nth(int n, node *cur = NULL) const {------// f4
                             template <class K, class V>-----// da
```

```
Reykjavik University
class avl_map {------// 3f ------memset(newloc + len, 255, (newlen - len) << 2);------// 18
public:-----delete[] q, delete[] loc;------// 74
---avl_tree<node> tree;------// b1 -----}-----// b1 -----}
------typename avl_tree<node>::node *n = tree.find(node(key, V(0)));------// ba ------loc[n] = count, q[count++] = n;------// 6b
------if (!n) n = tree.insert(node(key, V(0)));-------// cb -----if (fix) swim(count-1); }------// bf
----}-----assert(count > 0);-------// eb
------if (fix) sink(0);------// 80
2.6. Heap. An implementation of a binary heap.
                                 #define RESIZE-----// d0
                                ----int top() { assert(count > 0); return q[0]; }------// ab
#define SWP(x, v) tmp = x, x = v, v = tmp-----// fb
                                ----void heapify() { for (int i = count - 1; i > 0; i--)------// 39
struct default_int_cmp {------// 8d
                                -----if (cmp(i, (i-1)/2)) swp(i, (i-1)/2); }------// \theta b
----default_int_cmp() { }------// 35
                                ----void update_key(int n) {------// 26
----bool operator ()(const int &a, const int &b) { return a < b; } };-----// e9
                                -----assert(loc[n] != -1), swim(loc[n]), sink(loc[n]); }------// 7d
template <class Compare = default_int_cmp>------// 30
                                ----bool empty() { return count == 0; }------// f8
class heap {-----// 05
                                ----int size() { return count; }------// 86
private:----// 39
                                ----void clear() { count = 0, memset(loc, 255, len << 2); } };-----// 58
----int len, count, *q, *loc, tmp;-----// 0a
----Compare _cmp;-----// 98
                                2.7. Skiplist. An implementation of a skiplist.
----inline bool cmp(int i, int j) { return _cmp(q[i], q[j]); }------// a0
----inline void swp(int i, int j) {-------// 1c #define BP 0.20------// aa
------SWP(q[i], q[j]), SWP(loc[q[i]], loc[q[j]]); }------// 67 #define MAX_LEVEL 10--------------------------// 56
----void swim(int i) {------// 33 unsigned int bernoulli(unsigned int MAX) {------// 7b
------while (i > 0) {-------// 1a ----unsigned int cnt = 0;------// 28
------int p = (i - 1) / 2;------// 77 ----while(((float) rand() / RAND_MAX) < BP && cnt < MAX) cnt++;-----// d1
----void sink(int i) {------// ce ----struct node {------// 53
------int l = 2*i + 1, r = l + 1;------// b4 ------int *lens;------// 07
-----<mark>int</mark> m = r >= count || cmp(l, r) ? l : r;------// cc ------#define CA(v, t) v((t*)calloc(level+1, sizeof(t)))------// 25
-----swp(m, i), i = m; } }-----// 1d -------node() { free(lens); free(next); }; };------// aa
public:-----// cd ----int current_level, _size;------// 61
-----q = new int[len], loc = new int[len];-------// f8 ----skiplist() : current_level(0), _size(0), head(new node(MAX_LEVEL, 0)) { };-// 7a
------memset(loc, 255, len << 2); }------// f7 -----skiplist() { clear(); delete head; head = NULL; }-----// aa
----~heap() { delete[] q; delete[] loc; }-------// 09 ----#define FIND_UPDATE(cmp, target) \[ \sqrt{\colored}\]-------// c3
-----if (len == count || n >= len) {------// 0f
                                -----memset(pos, 0, sizeof(pos)); \[\sigma_-----// f2\]
#ifdef RESIZE-----// a9
                                 -----node *x = head; \[\sqrt{------// 0f}\]
------int newlen = 2 * len;-----// 22
                                 -----node *update[MAX_LEVEL + 1]; \[\scrip_------// 01
------while (n >= newlen) newlen *= 2;-----// 2f
                                -----// 38
------int *newq = new int[newlen], *newloc = new int[newlen];------// e3
```

```
Reykjavik University
-----pos[i] = pos[i + 1]; \(\bar{\sqrt{0}}\)-------// 68 -------if (r) r->l = this;------// θb
-----}------// 61
                                        -----pos[i] += x->lens[i]; x = x-next[i]; \sqrt{10}
                                        ----node *front, *back;-----// 23
-----update[i] = x; \\ -----// dd
                                        ----dancing_links() { front = back = NULL; }------// 8c
----node *push_back(const T &item) {------// d7
----int size() const { return _size; }------// 9a
                                        ------back = new node(item, back, NULL);------// 5d
----void clear() { while(head->next && head->next[0])-----// 91
                                        -----if (!front) front = back:-----// a2
-----erase(head->next[0]->item); }------// e6
                                        -----return back;-----// b4
----node *find(T target) { FIND_UPDATE(x->next[i]->item, target);------// 36
                                        -----return x && x->item == target ? x : NULL; }-----// 50
                                        ----node *nth(int k) { FIND_UPDATE(pos[i] + x->lens[i], k+1); return x; }-----// b8
                                        ------front = new node(item, NULL, front);------// 75
----int count_less(T target) { FIND_UPDATE(x->next[i]->item, target);------// 80
                                        ------if (!back) back = front;------// d6
-----return pos[0]; }-----// 19
                                        -----return front;-----// ef
----node* insert(T target) {------// 80
                                        ------FIND_UPDATE(x->next[i]->item, target);------// 3a
                                        ----void erase(node *n) {------// 88
------if(x && x->item == target) return x; // SET------// 07
                                        ------if (!n->l) front = n->r; else n->l->r = n->r; ------// d5
------int lvl = bernoulli(MAX_LEVEL);------// 7a
                                        ------if (!n->r) back = n->l; else n->r->l = n->l;-------// 96
------if(lvl > current_level) current_level = lvl;------// 8a
                                        ----}------------------------// ae
----x = new node(lvl, target);-----// 36
                                        ----void restore(node *n) {-------// 6d
-----for(int i = 0; i <= lvl; i++) {------// 49
                                        -----if (!n->l) front = n; else n->l->r = n;------// ab
-----x->next[i] = update[i]->next[i];------// 46
                                        ------if (!n->r) back = n; else n->r->l = n;-------------// 8d
-----x->lens[i] = pos[i] + update[i]->lens[i] - pos[0];-----// bc
                                        -----update[i] ->next[i] = x;-----// 20
                                         -----// 4f
-----update[i]->lens[i] = pos[0] + 1 - pos[i];-----// 42
3. Graphs
-----for(int i = lvl + 1: i <= MAX_LEVEL: i++) update[i]->lens[i]++:-----// 07
                                        3.1. Breadth-First Search. An implementation of a breadth-first search that counts the number of
-----size++;-----// 19
                                        edges on the shortest path from the starting vertex to the ending vertex in the specified unweighted
-----return x; }-----// c9
----void erase(T target) {------// 4d
                                        graph (which is represented with an adjacency list). Note that it assumes that the two vertices are
                                        connected. It runs in O(|V| + |E|) time.
------FIND_UPDATE(x->next[i]->item, target);------// 6b
-----if(x && x->item == target) {------// 76
                                        int bfs(int start, int end, vvi& adj_list) {------// d7
                                        ----queue<ii>> Q;------// 75
-----for(int i = 0; i <= current_level; i++) {------// 97
-----update[i]->next[i] = x->next[i];-----// 59 -----// 59
-----current_level--; } } ;-----// 59
                                        -----vi& adj = adj_list[cur.first];-----// 3f
                                        ------for (vi::iterator it = adj.begin(); it != adj.end(); it++)-----// bb
2.8. Dancing Links. An implementation of Donald Knuth's Dancing Links data structure. A linked
                                        -----Q.push(ii(*it, cur.second + 1));------// b7
list supporting deletion and restoration of elements.
                                        template <class T>-----// 82
                                        }-----// 7d
struct dancing_links {-----// 9e
----struct node {------// 62
                                         Another implementation that doesn't assume the two vertices are connected. If there is no path
                                        from the starting vertex to the ending vertex, a-1 is returned.
-----T item:-----// dd
-----node *l, *r:-----// 32
                                        int bfs(int start, int end, vvi& adj_list) {------// d7
-----node(const T &item, node *l = NULL, node *r = NULL)-----// 88
                                        ----set<<mark>int</mark>> visited;-----// b3
----: item(item), l(l), r(r) {------// 04
                                        ----queue<ii>> 0;------// bb
```

-----if (l) l->r = this;------// 1c ----Q.push(ii(start, 0));------// 3a

```
Reykjavik University
-----// db ----for (int i = 0; i < n; i++) dist[i] = i == s ? 0 : INF;------// 10
------if (cur.first == end)-------// 22 ------for (int k = 0; k < size(adj[j]); k++)------// 3f
-----return cur.second;------// b9 ------dist[adj[j][k].first] = min(dist[adj[j][k].first],-----// 61
-----/<sub>ba</sub> ------dist[j] + adj[j][k].second);-------// 47
-----vi& adj = adj_list[cur.first];-------// f9 ----for (int j = 0; j < n; j++)-------// 13
------for (vi::iterator it = adj.beqin(); it != adj.end(); it++)-------// 44 ------for (int k = 0; k < size(adj[j]); k++)---------// a0
-----if (visited.find(*it) == visited.end()) {-------// 8d -----if (dist[j] + adj[j][k].second < dist[adj[j][k].first])-----// ef
-----visited.insert(*it);-------// cb ---return dist;-----
----}--------// 0b
                                   3.3. All-Pairs Shortest Paths.
-----// 63
----return -1:-----// f5
                                  3.3.1. Floyd-Warshall algorithm. The Floyd-Warshall algorithm solves the all-pairs shortest paths
}-----// 03
                                  problem in O(|V|^3) time.
                                   void floyd_warshall(int** arr, int n) {------// 21
3.2. Single-Source Shortest Paths.
                                   ----for (int k = 0; k < n; k++)-----// 49
                                   ------for (int i = 0; i < n; i++)------// 21
3.2.1. Dijkstra's algorithm. An implementation of Dijkstra's algorithm. It runs in \Theta(|E|\log|V|)
                                   -----for (int j = 0; j < n; j++)-----// 77
time.
                                   -----if (arr[i][k] != INF && arr[k][j] != INF)-----// b1
int *dist. *dad:-----// 46
                                   -----arr[i][j] = min(arr[i][j], arr[i][k] + arr[k][j]);-----// e1
struct cmp {-----// a5
                                  }-----// 86
----bool operator()(int a, int b) {------// bb
-----return dist[a] != dist[b] ? dist[a] < dist[b] : a < b; }------// e6
                                  3.4. Strongly Connected Components.
};-----// 41
pair<int*, int*> dijkstra(int n, int s, vii *adj) {-----// 53
                                  3.4.1. Kosaraju's algorithm. Kosarajus's algorithm finds strongly connected components of a directed
----dist = new int[n];-----// 84
                                  graph in O(|V| + |E|) time.
----dad = new int[n];-----// 05
                                  #include "../data-structures/union_find.cpp"-----// 5e
----for (int i = 0; i < n; i++) dist[i] = INF, dad[i] = -1;------// d6
                                   -----// 11
                                  vector<br/>bool> visited;------// 66
----set<int. cmp> pg:-----// 04
------int cur = *pq.beqin(); pq.erase(pq.beqin());--------// 7d void scc_dfs(const vvi &adj, int u) {-----------------------------// a1
------int nxt = adj[cur][i].first,-------// b8 ----for (int i = 0; i < size(adj[u]); i++)------// c5
------ndist = dist[cur] + adj[cur][i].second;-------// 0c -----if (!visited[v = adj[u][i]]) scc_dfs(adj, v);-------// 6e
}-----// af ----order.clear();-------// 22
                                   ----union_find uf(n);-----// 6d
3.2.2. Bellman-Ford algorithm. The Bellman-Ford algorithm solves the single-source shortest paths
                                   ----vi dag;------// ae
problem in O(|V||E|) time. It is slower than Dijkstra's algorithm, but it works on graphs with
                                   ----vvi rev(n):-----// 20
negative edges and has the ability to detect negative cycles, neither of which Dijkstra's algorithm can
                                   ----for (int i = 0; i < n; i++) for (int j = 0; j < size(adj[i]); j++)------// b9
                                   -----rev[adj[i]]]].push_back(i);-----// 77
int* bellman_ford(int n, int s, vii* adj, bool& has_negative_cycle) {-------// cf ----visited.resize(n), fill(visited.begin(), visited.end(), false);-------// 04
```

```
Reykjavik University
------for (int i = 0; i < size(adi[u]); i++)-------// 90 -----if (!color[i]) {---------------------------// d5
------if (!visited[v = adj[u][i]]) S.push(v);--------// 43 -----tsort_dfs(i, color, adj, S, has_cycle);-------// 40
}-----// 97 ----while (!S.empty()) res.push_back(S.top()), S.pop();-------// 94
                               ----return res:------// 07
3.5. Minimum Spanning Tree.
                              }-----// 1f
3.5.1. Kruskal's algorithm.
                              3.7. Bipartite Matching.
#include "../data-structures/union_find.cpp"-----------------------// 5e
-----// 11
                              3.7.1. Bipartite Matching. The alternating paths algorithm solves bipartite matching in O(mn^2) time,
// n is the number of vertices-----// 18
                              where m, n are the number of vertices on the left and right side of the bipartite graph, respectively.
// edges is a list of edges of the form (weight, (a, b))-----// c6
                              vi* adi:----// cc
// the edges in the minimum spanning tree are returned on the same form-----// 4d
                              bool* done:----// b1
vector<pair<int, ii> > mst(int n, vector<pair<int, ii> > edges) {------// a7
                              int* owner:-----// 26
----union_find uf(n):-----// 04
                              int alternating_path(int left) {------// da
----sort(edges.begin(), edges.end());-----// 51
                              ----if (done[left]) return 0;------// 08
----vector<pair<int, ii> > res;------// 71
                               ----done[left] = true;-----// f2
----for (int i = 0; i < size(edges); i++)-----// ce
                               ----for (int i = 0; i < size(adj[left]); i++) {-------// 34
------if (uf.find(edges[i].second.first) !=------// d5
                               ------int right = adj[left][i];------// b6
-----uf.find(edges[i].second.second)) {------// 8c
                               ------if (owner[right] == -1 || alternating_path(owner[right])) {-------// d2
-----res.push_back(edges[i]);-----// d1
                               -----owner[right] = left; return 1;------// 26
-----uf.unite(edges[i].second.first, edges[i].second.second);-----// a2
                               ------} }------// 7a
----return 0; }-----// 83
----return res:-----// 46
}-----// 88
                              3.8. Hopcroft-Karp algorithm. An implementation of Hopcroft-Karp algorithm.
                              #define MAXN 5000-----// f7
3.6. Topological Sort.
                              int dist[MAXN+1], q[MAXN+1];-----// b8
3.6.1. Modified Depth-First Search.
                              \#define\ dist(v)\ dist[v == -1\ ?\ MAXN\ ;\ v]------// Of
void tsort_dfs(int cur, char* color, const vvi& adj, stack<int>& res,------// ca struct bipartite_graph {------------------------------// 2b
------bool& has_cycle) {-------// a8 ----int N, M, *L, *R; vi *adj;--------// fc
------int nxt = adj[cur][i];------// 53 ----~bipartite_graph() { delete[] adj; delete[] L; delete[] R; }-----// b9
------else if (color[nxt] == 1)-------------// 53 -------for(int v = 0; v < N; ++v) if(L[v] == -1) dist(v) = 0, q[r++] = v;-----// 31
------has_cycle = true;-------// c8 ------else dist(v) = INF;-------// c4
----color[cur] = 2;------// 16 ------int v = q[l++];------// 69
}-------foreach(u, adj[v]) if(dist(R[*u]) == INF)------// 63
-----dist(R[*u]) = dist(v) + 1, q[r++] = R[*u];------// f8
```

```
Reykjavik University
-----if(dfs(R[*u])) {-------// c7 ---}-----// c7
-----return true;------// 56 -----if(s == t) return 0;------// bd
-----}-----memset(d, -1, n * sizeof(int));-------// 66
----void add_edge(int i, int j) { adj[i].push_back(j); }------// 87 ------for (int v = q[l++], i = head[v]; i != -1; i = e[i].nxt)-----// 6d
-----d[q[r++] = e[i].v] = d[v]+1;-----// 7d
------memset(L, -1, sizeof(int) * N);-------// 16 -----if (d[s] == -1) break;------// 86
------memset(R, -1, sizeof(int) * M);-------// e4 ------memcpy(curh, head, n * sizeof(int));------// b6
------while(bfs()) for(int i = 0; i < N; ++i)--------// f6 --------while ((x = dfs(s, t, INF)) != 0) f += x;------// 03
}:----// cf
3.9. Maximum Flow.
                     3.9.2. Edmonds Karp's algorithm. An implementation of Edmonds Karp's algorithm that runs in
3.9.1. Dinic's algorithm. An implementation of Dinic's algorithm that runs in O(|V|^2|E|). It computes
                     O(|V||E|^2). It computes the maximum flow of a flow network.
                     struct mf_edge {-----// b3
the maximum flow of a flow network.
int q[MAXV], d[MAXV];------// e6 ----mf_edge(int _u, int _v, int _w, mf_edge* _rev = NULL) {-------// 96
----struct edge {-------------------------// 1e pair<int, vector<vector<mf_edge*> > max_flow(int n, int s, int t, vii* adj) {// 57
-----edge() { }------// 38 ----vector<wector<mf_edge*> > g(n);------// 07
----vector<edge> e, e_store;------// d0 ------for (int j = 0; j < size(adj[i]); j++) {-------// 21
----flow_network(int n, int m = -1) : n(n), ecnt(0) {-------// 80 ------ce = new mf_edge(i, adj[i][j].first, adj[i][j].second);------// ed
-----e.reserve(2 * (m == -1 ? n : m));------// 5d ------g[i].push_back(ce);------// 09
------head = new int[n], curh = new int[n];-------// 6d ------ce->rev = new mf_edge(adj[i][j].first, i, 0, ce);------// 29
------g[ce->v].push_back(ce->rev); } }------// 58
----void reset() { e = e_store; }------// 60 ------queue<int> Q; Q.push(s);------// 18
----void add_edge(int u, int v, int uv, int vu = 0) {-------// dd -------while (!Q.empty() && (cur = Q.front()) != t) {------// a7
------for (int i = 0; i < size(g[cur]); i++) {---------// 23
```

```
Reykjavik University
------mf_edge* nxt = q[cur][i];------// 86 ------dist[g[j][k]->v]) {------// ec
------if (nxt->v != s && nxt->w > 0 && !back[nxt->v])------// 3f -------dist[q[j][k]->v] = dist[j] + q[j][k]->c;-----// 3c
-----cap = min(cap, ce->w);-------// ab ------while (true) {------
-----if (cap == 0) continue;------// 92 ------cap = min(cap, cure->w);------// ff
-----assert(cap < INF);--------// fb ------if (cure->u == s) break;-------// ce
-----z->w -= cap, z->rev->w += cap;------// 67 -----cure = back[cure->u];------// 67
-----ce->w -= cap, ce->rev->w += cap;-------// 9c -----assert(cap > 0 && cap < INF);-------// 72
-----cost += cap * cure->c;-----// e4
3.10. Minimum Cost Maximum Flow. An implementation of Edmonds Karp's algorithm, modi-
                                -----cure->w -= cap;-----// 96
fied to find shortest path to augment each time (instead of just any path). It computes the maximum
                                flow of a flow network, and when there are multiple maximum flows, finds the maximum flow with
                                ------if (cure->u == s) break;-----// 43
minimum cost.
                                -----cure = back[cure->u];-----// 03
struct mcmf_edge {-----// aa
                               ------}-------// 4f
----int u. v. w. c:-----// a5
                               -----flow += cap:-----// 4f
----mcmf_edge* rev;------// 2c ___}
----mcmf_edge(int _u, int _v, int _w, int _c, mcmf_edge* _rev = NULL) {------// f7 ----// instead of deleting g, we could also-------// 5d
-----u = _u; v = _v; w = _w; c = _c; rev = _rev;-----// b2
                               ----// use it to get info about the actual flow-----// 5a
----}------// 18
                               ----for (int i = 0; i < n; i++)-----// 37
,,
-----// 31 -----delete g[i][j];------// bb
ii min_cost_max_flow(int n, int s, int t, vector<pair<int, ii> >* adj) {-----// 4d
                               ----delete[] q;-----// 37
----vector<mcmf_edge*>* q = new vector<mcmf_edge*>[n];------// 0c
                               ----delete[] back;------// 42
----for (int i = 0; i < n; i++) {------// a7
                               ----delete[] dist:-----// 28
------for (int j = 0; j < size(adj[i]); j++) {------// a1
                               ----return ii(flow, cost);------// 32
-----/mcmf_edge *cur = new mcmf_edge(i, adj[i][j].first,-----// 28
                               }-----// 16
-----adj[i][j].second.first, adj[i][j].second.second),-----// 71
*rev = new mcmf_edge(adj[i][j].first, i, 0,------// 06
                               3.11. All Pairs Maximum Flow.
3.11.1. Gomory-Hu Tree. An implementation of the Gomory-Hu Tree. The spanning tree is con-
------cur->rev = rev;------// a4
                               structed using Gusfield's algorithm in O(|V|^2) plus |V|-1 times the time it takes to calculate the max-
-----q[i].push_back(cur);-----// e1
-----g[adj[i][j].first].push_back(rev);------// 80
                               imum flow. If Dinic's algorithm is used to calculate the max flow, the running time is O(|V|^3|E|).
#include "dinic.cpp"-----// 58
----}-----// f6
                               -----// 25
----mcmf_edge** back = new mcmf_edge*[n];------// 90 pair<vii, vvi> construct_gh_tree(flow_network δg) {------// 77
----int* dist = new int[n];------// 05 ----int n = g.n, v;------// 5d
------for (int i = 0; i < n - 1; i++)------------// c3 ------par[s].second = q.max_flow(s, par[s].first, false);-------// 38
------for (int j = 0; j < n; j++)---------// 5e -----memset(d, 0, n * sizeof(int));-------// 79
-----if (dist[j] != INF)-------// dd ------memset(same, 0, n * sizeof(int));------// b0
```

```
Reykjavik University
-----same[v = q[l++]] = true;------// c8 ------it = cur->children.insert(nw).first;------// ae
----}------T head = *begin;-------// 5c
-----cap[curl[i] = mn;------// 63 ------beqin++, cur = it->second; } } }-----// 7c
----}------while (true) {-------------------------// 3e
int compute_max_flow(int s, int t, const pair<vii, vvi> &gh) {-----------// 16 ------T head = *begin;-------------------------------// 43
------cur = min(cur, gh.first[at].second), at = gh.first[at].first;------// bd ------begin++, cur = it->second; } } } };-------// 26
----return min(cur, gh.second[at][t]);-----// 6d
}-----// a2
                    4.2. Suffix Array. An O(n \log n) construction of a Suffix Tree.
                     struct entry { ii nr; int p; };-----// f9
         4. Strings
                    bool operator <(const entry &a, const entry &b) { return a.nr < b.nr; }-----// 77
4.1. Trie. A Trie class.
                     struct suffix_array {------// 87
class trie {-------// 9a ----suffix_array(string s) : s(s), n(size(s)) {-------// 26
private:-----L = vector<entry>(n), P.push_back(vi(n)), idx = vi(n);-------// ca
----struct node {-------// ae ------for (int i = 0; i < n; i++) P[0][i] = s[i] - 'a';-------// la
------for (int stp = 1, cnt = 1; cnt >> 1 < n; stp++, cnt <<= 1) {------// @e
------int prefixes, words;--------// e2 ------P.push_back(vi(n));--------// de
------for (int i = 0; i < n; i++)--------// a1
public:------L[L[i].p = i].nr = ii(P[stp - 1][i],-------// b7
----node* root:-----i + cnt < n ? P[stp - 1][i + cnt] : -1);------// e2
----template <class I>------(int i = 0; i < n; i++)-------// 34
----void insert(I begin, I end) {-------// 3c ------P[stp][L[i].p] = i > 0 &&-----// 1e
-----if (begin == end) { cur->words++; break; }------// db ---}------// c8
-----typename map<T, node*>::const_iterator it;------// 01 -----if (x == y) return n - x;------------// b6
-----it = cur->children.find(head);-------// 77 ------for (int k = size(P) - 1; k >= 0 \& x < n \& y < n; k--)------// a6
------pair<T, node*> nw(head, new node());-------// cd -----return res;-------------------------// 7e
```

```
Reykjavik University
}:------cur = cur->fail:-------// 9e
                                ------if (!cur) cur = go;------// 2f
4.3. Aho-Corasick Algorithm. An implementation of the Aho-Corasick algorithm. Constructs a
                                -----cur = cur->next[*c];-----// 58
state machine from a set of keywords which can be used to search a string for any of the keywords.
                                -----if (!cur) cur = qo;-----// 3f
struct aho_corasick {------// 78
                                ------for (out_node *out = cur->out; out = out->next)------// e0
----struct out_node {------// 3e
                                -----res.push_back(out->keyword);------// 0d
-----string keyword; out_node *next;-----// f0
                                -----}-----// fd
-----out_node(string k, out_node *n) : keyword(k), next(n) { }------// 26
                                -----return res:-----// c1
----}-----// e4
----struct ao_node {------// 40
                                }:-----// 32
-----map<char, go_node*> next;-----// 6b
-----out_node *out; go_node *fail;-----// 3e
                                4.4. The Z algorithm. Given a string S, Z_i(S) is the longest substring of S starting at i that is
-----qo_node() { out = NULL; fail = NULL; }------// 0f also a prefix of S. The Z algorithm computes these Z values in O(n) time, where n = |S|. Z values
can, for example, be used to find all occurrences of a pattern P in a string T in linear time. This is
----ao_node *ao:-----// b8
                                accomplished by computing Z values of S = TP, and looking for all i such that Z_i \geq |T|.
---aho_corasick(vector<string> keywords) {------// 4b
                                int* z_values(const string &s) {------// 4d
-----qo = new qo_node();------// 77
                                ----int n = size(s);-----// 97
------foreach(k, keywords) {-------// e4 ----int* z = new int[n];------// c4
-----go_node *cur = go;-----// 9d ----int l = 0, r = 0;-----// 1c
-----foreach(c, *k)-----// 38 ---z[0] = n;-----// 98
-----(cur->next[*c] = new go_node());-----// 75 ----z[i] = 0;------
-----queue<go_node*> q;------// 8a -------while (r < n && s[r - l] == s[r]) r++;-----// ff
------foreach(a, qo->next) q.push(a->second);-------// a3 -----z[i] = r - l; r--;-------// fc
-----go_node *s = a->second;------// cb ------while (r < n && s[r - l] == s[r]) r++;-----// b3
-----z[i] = r - l; r--; } }------// 8d
-----go_node *st = r->fail;-----// fa ----return z;------// 53
-------while (st && st->next.find(a->first) == st->next.end())------// d7 }
-----st = st->fail;-----// 3f
-----if (!st) st = go;-----// e7
                                             5. Mathematics
-----s->fail = st->next[a->first];-----// 29
-----if (s->fail) {-----// 3b
                                5.1. Fraction. A fraction (rational number) class. Note that numbers are stored in lowest common
-----if (!s->out) s->out = s->fail->out;------// 80
                                template <class T>------// 82
-----else {-----// ed
-----out_node* out = s->out;-----// bf
                                class fraction {-----// cf
-----// 8e cout->next) out = out->next;------// ca private:-------// 8e
-----out->next = s->fail->out;------// 65 ----T gcd(T a, T b) { return b == T(0) ? a : gcd(b, a % b); }------// 86
-----}----assert(d_ != 0);------// 3d
----vector<string> search(string s) {-------// 8d ------if (d < T(0)) n = -n, d = -d;------// be
------vector<string> res;------// ef ------T g = gcd(abs(n), abs(d));------// fc
-----qo_node *cur = qo;------// 61 -----n /= g, d /= g; }------// a1
------foreach(c, s) {-------// 6c ----fraction(T n_) : n(n_), d(1) { }------// 84
```

```
Reykjavik University
----fraction(const fraction<T>& other) : n(other.n), d(other.d) { }------// 01 -------int idx = i - j;-----------// 3a
-----return fraction<T>(n * other.d + other.n * d, d * other.d);}------// 3b ------digit = digit * 10 + (n[idx] - '0');------// 72
-----return fraction<T>(n * other.d - other.n * d, d * other.d);}------// 47 ------res.data.push_back(digit);---------// c9
----fraction<T> operator /(const fraction<T>& other) const {------// ca ------normalize(res.sign):------
-----return fraction<T>(n * other.d, d * other.n); }------// 35 ---}-----// d4
------if (data.empty()) data.push_back(0);--------// af
------return !(other < *this); }-------// 86 ------data.erase(data.begin() + i);-------// c6
----bool operator >(const fraction<T>& other) const {--------// c9 ------sign = data.size() == 1 && data[0] == 0 ? 1 : nsign;------// 1e
-----return other < *this; }------// 6e ---}-----// 73
------return !(*this < other); }-------// 57 ------vector<unsigned int> d(n + data.size(), 0);------// c4
------return n == other.n && d == other.d; }-------// 14 ------intx res; res.data = d; res.normalize(sign);-------// 00
----bool operator !=(const fraction<T>& other) const {-------// ec -----return res;------
-----return !(*this == other); }------// d1 ---}-----// d1 ---}
};------// 12 };------// 88
                                   ostream& operator <<(ostream& outs, const intx& n) {------// 37
5.2. Big Integer. A big integer class.
                                   ----if (n.sign == -1) outs << '-':------// 25
class intx {-----// c9 ----bool first = true;-----// bf
public:-----// 86 ----for (int i = n.size() - 1; i >= 0; i--) {-------// b1
----intx() { normalize(1); }------// 40 ------if (first) outs << n.data[i], first = false;------// 96
----intx(int n) { stringstream ss; ss << n; init(ss.str()); }-------// 7a ------unsigned int cur = n.data[i];------// d2
----intx(const intx& other) : sign(other.sign), data(other.data) { }------// 47 ------stringstream ss; ss << cur;-------// 07
------string s = ss.str();------// 0a
----friend bool operator <(const intx& a, const intx& b);------// cb -----int len = s.size();------// 4b
----friend intx operator +(const intx& a, const intx& b);------// be ------while (len < 9) outs << '0', len++;------// d0
----friend intx operator -(const intx& a, const intx& b);------// 31 -----outs << s;-----
----friend intx operator -(const intx& a);------// bc
----friend intx operator *(const intx& a, const intx& b);------// e4 ____}
----friend intx operator /(const intx& a, const intx& b);------// 05 ----return outs;-----
----friend intx operator %(const intx& a, const intx& b);------// 0b }_____// cb
----friend ostream& operator <<(ostream& outs, const intx& n);------// d7 bool operator <(const intx& a, const intx& b) {-------// f3
-----/<sub>------</sub>/<sub>-------//</sub> f6
                                  ----if (a.sign != b.sign) return a.sign < b.sign;------// 3d
protected:-----// 04 ----if (a.size())!= b.size())-------// d7
----int sign;------return a.sign == 1 ? a.size() < b.size() > b.size();-----// 21
----vector<unsigned int> data;-----// 0b ----for (int i = a.size() - 1; i >= 0; i--) if (a.data[i] != b.data[i])-----// b9
----static const unsigned int radix = 10000000000U;-------// 22 ------return a.sign == 1 ? a.data[i] < b.data[i] > b.data[i];// 0a
----void init(string n) {------// 89 }-----
-----intx res; res.data.clear();------// b6 intx operator +(const intx& a, const intx& b) {------// cc
-----unsigned int digit = 0;-----// a2
                                   ----for (int i = 0; i < a.size() || i < b.size() || carry; i++) {-------// b9
-----for (int j = 8; j >= 0; j--) {------// f7
```

```
Reykjavik University
-----carry += (i < a.size() ? a.data[i] : 0ULL) +------// 55 ----intx ik = i * k, jl = j * l;-------// e1
-----c.data.push_back(carry % intx::radix);-------// e0 -----((i + j) * (k + l) - (ik + jl)).mult_radix(n2) + jl;------// 49
-----carry /= intx::radix;------// 9b ----res.normalize(a.sign * b.sign);------// 89
---c.normalize(a.sign);------// a5 }------// fd
----return c;------// 1f intx operator /(const intx& n, const intx& d)------// 31
}------// 2e {------// 12
----long long borrow = 0;------// 60 -----r = r + y;------// fa
------borrow = borrow < 0 ? 1 : 0;-------// 58 ----return q;-------// 44
----c.normalize(a.sign);------// e4 intx operator %(const intx& n, const intx& d) {------// 54
intx operator *(const intx& a, const intx& b) {-------// 64 -----r.data.insert(r.data.begin(), 0);-------// 68
------unsigned long long res = a.data[0];------// 6a ------while (!(r < d)) r = r - d;-------// 08
-----return result;-----// 91
                            5.3. Binomial Coefficients. The binomial coefficient \binom{n}{k} = \frac{n!}{k!(n-k)!} is the number of ways to choose
----}-------// 57
                            k items out of a total of n items.
----if (n & 1) n++:-----// 77
                            int nck(int n, int k) {-----// f6
----int n2 = n >> 1:------// 79
                            ----if (n - k < k) k = n - k;------// 18
----vector<unsigned int> buff1, buff2;-----// 31
                            ----int res = 1;-----// cb
----buff1.reserve(n2); buff2.reserve(n2);-----// fe
                            ----for (int i = 1; i <= k; i++) res = res * (n - (k - i)) / i;-----// bd
----for (int at = n2 - 1; at >= 0; at--) {-----// 7f
                            ----return res;------// e4
------int idx = n - at - 1;-----// 76
                            }-----// 03
------buff1.push_back(idx < a.size() ? a.data[idx] : 0);-----// 59
-----buff2.push_back(idx < b.size() ? b.data[idx] : 0);-----// f0
                            5.4. Euclidean algorithm. The Euclidean algorithm computes the greatest common divisor of two
----}------// 9c
                            integers a, b.
----intx i. k:-----// dd
                            int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }-----// d9
----i.data = buff1; k.data = buff2;-----// 27
                             The extended Euclidean algorithm computes the greatest common divisor d of two integers a, b
----buff1.clear(); buff2.clear();-----// fd
                            and also finds two integers x, y such that a \times x + b \times y = d.
----for (int at = n - 1; at >= n2; at--) {------// f6
                            int egcd(int a, int b, int& x, int& y) {-----// 85
------int idx = n - at - 1;------// cd
                            ----if (b == 0) { x = 1; y = 0; return a; }-----// 7b
------buff1.push_back(idx < a.size() ? a.data[idx] : 0);------// af
------buff2.push_back(idx < b.size() ? b.data[idx] : 0);-----//
                            ----else {------// 00
                            ------int d = egcd(b, a % b, x, y);-----// 34
----}------// 88
                            -----x = a / b * y;------// 4a
----intx j, l;------// e7
                            -----Swap(x, y);-----// 26
----j.data = buff1; l.data = buff2;-----// 1c
                            -----return d;------// db
```

5.13. Formulas.

- Number of ways to choose k objects from a total of n objects where order matters and each item can only be chosen once: $P_k^n = \frac{n!}{(n-k)!}$
- Number of ways to choose k objects from a total of n objects where order matters and each item can be chosen multiple times: n^k
- Number of permutations of n objects, where there are n_1 objects of type 1, n_2 objects of type 2, ..., n_k objects of type k: $\binom{n}{n_1, n_2, ..., n_k} = \frac{n!}{n_1! \times n_2! \times \cdots \times n_k!}$
- Number of ways to choose k objects from a total of n objects where order does not matter and each item can only be chosen once:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{n-k} = \prod_{i=1}^k \frac{n-(k-i)}{i} = \frac{n!}{k!(n-k)!}, \binom{n}{0} = 1, \binom{0}{k} = 0$$

- Number of ways to choose k objects from a total of n objects where order does not matter and each item can be chosen multiple times: $f_k^n = \binom{n+k-1}{k} = \frac{(n+k-1)!}{k!(n-1)!}$
- Number of integer solutions to $x_1 + x_2 + \cdots + x_n = k$ where $x_i > 0$: f_k^n
- Number of subsets of a set with n elements: 2^n
- $|A \cup B| = |A| + |B| |A \cap B|$
- $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$
- Number of ways to walk from the lower-left corner to the upper-right corner of an $n \times m$ grid by walking only up and to the right: $\binom{n+m}{m}$
- Number of strings with n sets of brackets such that the brackets are balanced: $C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k} = \frac{1}{n+1} {2n \choose n}$
- Number of triangulations of a convex polygon with n points, number of rooted binary trees with n+1 vertices, number of paths across an $n \times n$ lattice which do not rise above the main diagonal: C_n
- Number of permutations of n objects with exactly k ascending sequences or runs: $\left\langle {n\atop k}\right\rangle = \left\langle {n\atop n-k-1}\right\rangle = k\left\langle {n-1\atop k}\right\rangle + (n-k+1)\left\langle {n-1\atop k-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop n-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)$
- Number of permutations of n objects with exactly k cycles: $\binom{n}{k} = \binom{n-1}{k-1} + (n-1) \binom{n-1}{k}$
- Number of ways to partition n objects into k sets: $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}, \binom{n}{0} = \binom{n}{n} = 1$
- Heron's formula: A triangle with side lengths a, b, c has area $\sqrt{s(s-a)(s-b)(s-c)}$ where
- Pick's theorem: A polygon on an integer grid containing i lattice points and having b lattice points on the boundary has area $i + \frac{b}{2} - 1$.
- Divisor sigma: The sum of divisors of n to the xth power is $\sigma_x(n) = \prod_{i=0}^r \frac{p_i^{(a_i+1)x}-1}{p_i^x-1}$ where $n = \prod_{i=0}^{r} p_i^{a_i}$ is the prime factorization.
- Divisor count: A special case of the above is $\sigma_0(n) = \prod_{i=0}^r (a_i + 1)$.
- Euler's totient: The number of integers less than n that are comprime to n are $n \prod_{p|n} \left(1 \frac{1}{p}\right)$ where each p is a distinct prime factor of n.
- König's theorem: In any bipartite graph, the number of edges in a maximum matching is equal to the number of vertices in a minimum vertex cover.
- The number of vertices of a graph is equal to its minimum vertex cover number plus the size of a maximum independent set.

6. Geometry

```
-----// f6 #include <complex>------// 8e
----if (inv) for (int i = 0: i < n: i++) x[i] /= cpx(n):------// e7 #define P(p) const point &p-----------------------------// b8
                                                        #define L(p0, p1) P(p0), P(p1)-----// 30
                                                         typedef complex<double> point:-----// f8
                                                        typedef vector<point> polygon;-----// 16
                                                         double dot(P(a), P(b)) { return real(conj(a) * b); }------// 43
                                                        double cross(P(a), P(b)) { return imag(conj(a) * b); }-----// f2
                                                         point rotate(P(p), P(about), double radians) {--------------------------------// ca
                                                         ----return (p - about) * exp(point(0, radians)) + about; }-----// 3a
                                                         point reflect(P(p), L(about1, about2)) {------// 88
                                                         ----point z = p - about1, w = about2 - about1;------// b1
                                                         ----return conj(z / w) * w + about1; }-----// ee
                                                         point proj(P(u), P(v)) { return dot(u, v) / dot(u, u) * u; }-----// 39
                                                        bool parallel(L(a, b), L(p, q)) { return abs(cross(b - a, q - p)) < EPS; }----// c2
                                                         double ccw(P(a), P(b), P(c)) { return cross(b - a, c - b); }------// 40
                                                        bool collinear(P(a), P(b), P(c)) { return abs(ccw(a, b, c)) < EPS; }------// bf</pre>
                                                        bool collinear(L(a, b), L(p, q)) {------// 9b
                                                         ----return abs(ccw(a, b, p)) < EPS && abs(ccw(a, b, q)) < EPS; }------// 86
                                                        double angle(P(a), P(b), P(c)) {------// b6
                                                         ----return acos(dot(b - a, c - b) / abs(b - a) / abs(c - b)); }------// 50
                                                         double signed_angle(P(a), P(b), P(c)) {-----// de
                                                         ----return asin(cross(b - a, c - b) / abs(b - a) / abs(c - b)); \}------// e^2
                                                        bool intersect(L(a, b), L(p, q), point &res, bool segment = false) \{------// a2\}
                                                         ----// NOTE: check for parallel/collinear lines before calling this function---// bd
                                                         ----point r = b - a, s = q - p;------// b1
                                                         ----double c = cross(r, s), t = cross(p - a, s) / c, u = cross(p - a, r) / c; --// 68
                                                         ----if (segment && (t < 0-EPS || t > 1+EPS || u < 0-EPS || u > 1+EPS))------// 54
                                                         -----return false:-----// d8
                                                         ----res = a + t * r:-----// 29
                                                        point closest_point(L(a, b), P(c), bool segment = false) {------// 30
                                                         ----if (seament) {-------// 3f
                                                        -----if (dot(b - a, c - b) > 0) return b;-----// 45
                                                         -----if (dot(a - b, c - a) > 0) return a;------// 54
                                                        ----}-----// bd
                                                         ----double t = dot(c - a, b - a) / norm(b - a);-----// 9d
                                                         ----return a + t * (b - a);-----// f6
                                                        }-----// 4a
                                                        double polygon_area_signed(polygon p) {------// e2
                                                         ----double area = 0: int cnt = size(p):-----// 5a
                                                        ----for (int i = 1; i + 1 < cnt; i++)------// 0c
                                                         -----area += cross(p[i] - p[0], p[i + 1] - p[0]);-----// 22
                                                        ----return area / 2;-----// 3a
                                                        double polygon_area(polygon p) { return abs(polygon_area_signed(p)); }------// 27
                                                        // pair<polygon, polygon> cut_polygon(const polygon &poly, point a, point b) {-// db
                                                        //--- polygon left, right;----// 6d
                                                        //--- point it(-100, -100);-----// a5
                                                        //--- for (int i = 0, cnt = poly.size(); i < cnt; i++) {------// 8d
```

```
----}------// b5
//----- point p = poly[i], q = poly[j];-----// e7
                                           }-----// cb
//----- if (ccw(a, b, p) <= 0) left.push_back(p);-----// 1f
                                            Another implementation that takes a binary predicate f, and finds an integer value x on the integer
//----- if (ccw(a, b, p) >= 0) right.push_back(p);-----// bd
                                           interval [a, b] such that f(x) \wedge \neg f(x-1).
//-----// myintersect = intersect where-----// 72
                                           int binary_search_discrete(int low, int high, bool (*f)(int)) {------// 51
//----// (a,b) is a line, (p,q) is a line segment-----// 9c
                                           ----assert(low <= high);-----// 19
//----- if (myintersect(a, b, p, q, it))-----// 8e
                                           ----while (low < high) {------// a3
//----- left.push_back(it), right.push_back(it);-----// 93
                                           -----int mid = low + (high - low) / 2;-----// 04
                                           ------if (f(mid)) high = mid;-----// ca
//--- return pair<polygon, polygon>(left, right);-----// 61
                                           -----else low = mid + 1;-----// 03
// }-----// fb
                                           ----}-----// 9b
                                           ----assert(f(low));------// 42
6.2. Convex Hull. An algorithm that finds the Convex Hull of a set of points.
                                           ----return low;------// a6
#include "primitives.cpp"-----// e0
                                           }-----// d3
#define MAXN 1000-----// d7
point hull[MAXN];-----// c8
bool cmp(const point &a, const point &b) {-----// 3e
                                           7.2. Ternary Search. Given a function f that is first monotonically increasing and then monotonic
                                           cally decreasing, ternary search finds the x such that f(x) is maximized.
----return abs(real(a) - real(b)) > EPS ?-----// 38
                                           template <class F>-----// d1
-----real(a) < real(b) : imag(a) < imag(b); }------// d3
double ternary_search_continuous(double lo, double hi, double eps, F f) {-----// e7
                                           ----while (hi - lo > eps) {------// 3e
----int n = size(p), l = 0;------// 04
----sort(p.beqin(), p.end(), cmp);-------// ea ------double m1 = lo + (hi - lo) / 3, m2 = hi - (hi - lo) / 3;------// e8
------if (i > 0 && p[i] == p[i - 1]) continue; -------// 5b ------else hi = m2; ------
----int r = l:------// 8a
----for (int i = n - 2; i >= 0; i--) {------// 8b
                                           7.3. 2SAT. A fast 2SAT solver.
-----if (p[i] == p[i + 1]) continue;------// ec
                                           #include "../graph/scc.cpp"-----// c3
------while (r - l >= 1 \& \& ccw(hull[r - 2], hull[r - 1], p[i]) >= 0) r--;----// f4
                                           -----// 63
-----hull[r++] = p[i];-----// 45
                                           bool two_sat(int n, const vii& clauses, vi& all_truthy) {------// f4
----}-----// d6
                                           ----all_truthy.clear();-----// 31
----return l == 1 ? 1 : r - 1;------// c0
                                           ----vvi adj(2*n+1);-----// 7b
                                           ----for (int i = 0; i < size(clauses); i++) {------// 9b
                                           -----adj[-clauses[i].first + n].push_back(clauses[i].second + n);------// 17
6.3. Formulas. Let a = (a_x, a_y) and b = (b_x, b_y) be two-dimensional vectors.
                                           -----if (clauses[i].first != clauses[i].second)------// 87
  • a \cdot b = |a||b|\cos\theta, where \theta is the angle between a and b.
                                           -----adj[-clauses[i].second + n].push_back(clauses[i].first + n);-----// 93
  • a \times b = |a||b|\sin\theta, where \theta is the signed angle between a and b.
                                           ----}-----// d8
  • a \times b is equal to the area of the parallelogram with two of its sides formed by a and b. Half
                                           ----pair<union_find, vi> res = scc(adj);------// 9f
   of that is the area of the triangle formed by a and b.
                                           ----union_find scc = res.first;------// 42
                                           ----vi dag = res.second;-----// 58
                7. Other Algorithms
                                           ----vi truth(2*n+1, -1);------// 00
7.1. Binary Search. An implementation of binary search that finds a real valued root of the continuous
                                           function f on the interval [a, b], with a maximum error of \varepsilon.
                                           -----int cur = order[i] - n, p = scc.find(cur + n), o = scc.find(-cur + n); -\frac{1}{5}
------double mid = (low + high) / 2, cur = f(mid);--------// 75 ------truth[cur + n] = truth[p];-------// b3
------if (abs(cur) < eps) return mid;-------// 76 -----truth[o] = 1 - truth[p];-------// 80
------else if (0 < cur) high = mid;--------// e5 ------if (truth[p] == 1) all_truthy.push_back(cur);-------// 5c
------else low = mid;--------// a7 ---}------// d9
```

Reykjavik University

```
Reykjavik University
-----if (!ptr[i][j]) continue;-----// 76
7.4. Stable Marriage. The Gale-Shapley algorithm for solving the stable marriage problem.
                               -----int ni = i + 1, nj = j + 1;-----// 34
vi stable_marriage(int n, int** m, int** w) {------// e4 ------while (true) {------------// 7f
----queue<int> q;------// f6 ------// f6 ------// 54
----for (int i = 0; i < n; i++) q.push(i);------// fe ------ptr[i][j]->d = ptr[ni][j];-----// a9
----while (!q.empty()) {------// 55 ------ptr[ni][j]->u = ptr[i][j];-----// c0
------int curm = q.front(); q.pop();------// ab -------while (true) {------// 0d
------int curw = m[curm][i];-------// cf ------if (i == rows || arr[i][nj]) break;-----// e9
-----q.push(eng[curw]);------// 8c -----ptr[i][j]->r = ptr[i][nj];-----// b3
-----else continue;-----// b4 ------ptr[i][nj]->l = ptr[i][j];------// 46
----}------head = new node(rows, -1);-------// 80
----return res;------head->r = ptr[rows][0];-------// b9
}------ptr[rows][0]->l = head;------// c1
                               ------head->l = ptr[rows][cols - 1];-----// 28
7.5. Algorithm X. An implementation of Knuth's Algorithm X, using dancing links. Solves the
                               -----ptr[rows][cols - 1]->r = head;------// 83
Exact Cover problem.
                               ------for (int j = 0; j < cols; j++) {------// 02
bool handle_solution(vi rows) { return false; }------// 63
                              ------int cnt = -1;------// 36
struct exact_cover {------// 95
                              ------for (int i = 0; i <= rows; i++)-----// 56
----struct node {------// 7e
                              ------if (ptr[i][j]) cnt++, ptr[i][j]->p = ptr[rows][j];-----// 05
-----node *l. *r. *u. *d. *p:-----// 19
                              -----ptr[rows][j]->size = cnt;------// d4
------int row, col, size;-----// ae
                              ------}------// 8f
-----/node(int row, int col) : row(row), col(col) {------// 68
                              ------for (int i = 0; i <= rows; i++) delete[] ptr[i];------// cd
-----// 8f
                              -----delete[] ptr;-----// 42
----}:------// 9e
                              ----}-------// a9
----int rows. cols. *sol:-----// 54
                              ----#define COVER(c, i, j) \\-----// 23
----bool **arr;-----// 4a
                               ---node *head:-----// c2
                               ------for (node *i = c->d; i != c; i = i->d) \[ \]------// 5c
----exact_cover(int rows, int cols) : rows(rows), cols(cols), head(NULL) {-----// ce
                               -----arr = new bool*[rows];-----// 15
                               -----j->d->u = j->u, j->u->d = j->d, j->p->size--;-----// 5a
-----sol = new int[rows];-----// 69
                               ----#define UNCOVER(c, i, j) \\-----// 17
------for (int i = 0; i < rows; i++)-----// c7
-------arr[i] = new bool[cols], memset(arr[i], 0, cols);------// 68
                               ----}-------// 8b
                              ----void set_value(int row, int col, bool val = true) { arr[row][col] = val; }-// af
                              ----void setup() {------// a8
                              ------c->r->l = c->l->r = c:-----// bb
-----node ***ptr = new node**[rows + 1];------// da ----bool search(int k = 0) {-------// 4f
------for (int i = 0; i <= rows; i++) {---------// ce -----if (head == head->r) {-------// a7
------for (int j = 0; j < cols; j++)-------// 56 ------for (int i = 0; i < k; i++) res[i] = sol[i];-----// c0
-----sort(res.begin(), res.end());------// 3e
------else ptr[i][j] = NULL;------// 40 -----return handle_solution(res);-----// dc
-----}-----// b0
```

```
-----node *c = head->r. *tmp = head->r:------// a6 ---x -= 1461 * i / 4 - 31:---------// 09
------for (; tmp != head; tmp = tmp->r) if (tmp->size < c->size) c = tmp;---// 1e ---- j = 80 * x / 2447;------------------------// 3d
------COVER(c, i, j);-------// 61 ----x = j / 11;-------// b7
-------for (node *r = c->d; !found && r != c; r = r->d) {---------// 1e ----y = 100 * (n - 49) + i + x;-------------// 70
------for (node *j = r -> r; j != r; j = j -> r) { COVER(j -> p, a, b); }-----// 3a
-----found = search(k + 1);------// f4
                                                                    8. Useful Information
------for (node *j = r->l; j != r; j = j->l) { UNCOVER(j->p, a, b); }----// 8a
8.1. Tips & Tricks.
-----UNCOVER(c, i, j);------// 64
                                                     • How fast does our algorithm have to be? Can we use brute-force?
-----return found:-----// ff
                                                     • Does order matter?
----}------------// 06
                                                     • Is it better to look at the problem in another way? Maybe backwards?
                                                     • Are there subproblems that are recomputed? Can we cache them?
                                                     • Do we need to remember everything we compute, or just the last few iterations of computation?
7.6. nth Permutation. A very fast algorithm for computing the nth permutation of the list \{0, 1, \dots, k-1\}
                                                     • Does it help to sort the data?
1}.
                                                     • Can we speed up lookup by using a map (tree or hash) or an array?
vector<int> nth_permutation(int cnt, int n) {------// 78
                                                     • Can we binary search the answer?
----vector<int> idx(cnt), per(cnt), fac(cnt);------// 9e
                                                     • Can we add vertices/edges to the graph to make the problem easier? Can we turn the graph
----for (int i = 0; i < cnt; i++) idx[i] = i;------// 80
                                                      into some other kind of a graph (perhaps a DAG, or a flow network)?
----for (int i = 1; i <= cnt; i++) fac[i - 1] = n % i, n /= i;-----// 04
                                                     • Make sure integers are not overflowing.
----for (int i = cnt - 1; i >= 0; i--)-----// 52
                                                     • Is it better to compute the answer modulo n? Perhaps we can compute the answer modulo
-----per[cnt - i - 1] = idx[fac[i]], idx.erase(idx.begin() + fac[i]);------// 41
                                                      m_1, m_2, \ldots, m_k, where m_1, m_2, \ldots, m_k are pairwise coprime integers, and find the real answer
----return per:-----// 84
                                                      using CRT?
}-----// 97
                                                     • Are there any edge cases? When n = 0, n = -1, n = 1, n = 2^{31} - 1 or n = -2^{31}? When
                                                      the list is empty, or contains a single element? When the graph is empty, or contains a single
7.7. Cycle-Finding. An implementation of Floyd's Cycle-Finding algorithm.
                                                      vertex? When the graph contains self-loops? When the polygon is concave or non-simple?
ii find_cycle(int x0, int (*f)(int)) {------// a5
                                                     • Can we use exponentiation by squaring?
----while (t != h) t = f(t), h = f(f(h));
                                                  8.2. Fast Input Reading. If input or output is huge, sometimes it is beneficial to optimize the input
----h = x0:-----// 04
                                                  reading/output writing. This can be achieved by reading all input in at once (using fread), and then
----while (t != h) t = f(t), h = f(h), mu++;------// 9d
                                                  parsing it manually. Output can also be stored in an output buffer and then dumped once in the end
----h = f(t);-----// 00
                                                  (using fwrite). A simpler, but still effective, way to achieve speed is to use the following input reading
----while (t != h) h = f(h), lam++;-----// 5e
                                                  method.
----return ii(mu, lam);-----// b4
                                                  void readn(register int *n) {------// dc
}------// 42
                                                  ----int sign = 1;------// 32
7.8. Dates. Functions to simplify date calculations.
                                                  ----register char c;------// a5
                                                  ---*n = 0:-----// 35
int intToDay(int jd) { return jd % 7; }-----// 89
int dateToInt(int y, int m, int d) {------// 96
                                                  ----while((c = getc_unlocked(stdin)) != '\n') {------// f3
----return 1461 * (y + 4800 + (m - 14) / 12) / 4 +-----// a8
                                                  -----switch(c) {------// θc
                                                  ------case '-': sign = -1; break;------// 28
-----367 * (m - 2 - (m - 14) / 12 * 12) / 12 ------// d1
                                                 -----/case ' ': goto hell;-----// fd
-----3 * ((y + 4900 + (m - 14) / 12) / 100) / 4 +------// be
                                                  -----/case '\n': goto hell;-----// 79
-----d - 32075:-----// e0
                                                  -----default: *n *= 10; *n += c - '0'; break;-----// c0
}-----// fa
                                                  ------}------// 2d
void intToDate(int jd, int &y, int &m, int &d) {------// a1
                                                  ----}------// c3
----int x, n, i, i;-------// 00
----x = jd + 68569;-----// 11 hell:-----// ba
                                                  ----*n *= sign:-----// a0
---n = 4 * x / 146097:-----// 2f
----x -= (146097 * n + 3) / 4;------// 58 }-----// 67
```

Reykjavik University

Reykjavik University 20

8.3. Worst Time Complexity.

	n	Worst AC Algorithm	Comment
	≤ 10	$O(n!), O(n^6)$	e.g. Enumerating a permutation
	≤ 15	$O(2^n \times n^2)$	e.g. DP TSP
	≤ 20	$O(2^n), O(n^5)$	e.g. $DP + bitmask technique$
	≤ 50	$O(n^4)$	e.g. DP with 3 dimensions $+ O(n)$ loop, choosing ${}_{n}C_{k} = 4$
	$\leq 10^{2}$	$O(n^3)$	e.g. Floyd Warshall's
	$\leq 10^{3}$	$O(n^2)$	e.g. Bubble/Selection/Insertion sort
	$\le 10^{5}$	$O(n \log_2 n)$	e.g. Merge sort, building a Segment tree
	$\le 10^{6}$	$O(n), O(\log_2 n), O(1)$	Usually, contest problems have $n \leq 10^6$ (e.g. to read input)

8.4. Bit Hacks.

- n & -n returns the first set bit in n.
- n & (n 1) is 0 only if n is a power of two.
- \bullet snoob(x) returns the next integer that has the same amount of bits set as x. Useful for iterating through subsets of some specified size.