由于 $K_1 \cap K_2 = \emptyset$, 所以 g 是函数。

g 显然是满射。

对任意 $x, y \in K_1 \cup K_2, x \neq y$, 分三种情况讨论:

(1) 若 $x \in K_1, y \in K_2$ 或 $x \in K_2, y \in K_1$,则由 $K_1 \neq K_2$ 和教材定理 2.1 知, $g(x) \neq g(y)$ 。

- (2) 若 $x,y \in K_1$, 则由 f 是双射知, $f(x) \neq f(y)$,从而由教材定理 2.1 知, $g(x) \neq g(y)$ 。
- (3) 若 $x, y \in K_2$, 则教材定理 2.1 直接有, $g(x) \neq g(y)$ 。

因此,g 是单射,从而是双射。从而有 $K_1 \cup K_2 \approx \{K_1, K_2\} \times K_2$ 。

由此得证:
$$\kappa + \kappa = \operatorname{card}(K_1 \cup K_2) = \operatorname{card}(\{K_1, K_2\} \times K_2) = 2 \cdot \kappa$$
。

(7)

证明: 设 K 为一基数为 κ 的集合,作 $f: K \to (\{\emptyset\} \to K), \forall x \in K, f(x) = \{\langle\emptyset, x\rangle\}$ 。显然 f 是 双射。

因此有
$$K \approx (\{\emptyset\} \to K)$$
。从而有: $\kappa^1 = \operatorname{card}(\{\emptyset\} \to K) = \operatorname{card} K = \kappa$ 。

(8)

证明:对任意自然数 $n \in \mathbb{N}$,显然有 $\operatorname{card}(\{n\}) = 1, n \cap \{n\} = \emptyset$ 。

故有
$$n+1 = \operatorname{card}(n \cup \{n\}) = \operatorname{card}(n^+) = n^+$$
。