1. (10 points) Suppose you have a computer with machine epsilon $\epsilon = 10^{-7}$. Let

$$f(x) = \ln(1 + x^2).$$

- (a) If $x = 10^{-4}$ what result would the computer give for f(x)?
- (b) Find a way to compute $f(10^{-4})$ to full machine accuracy and carry out the computation.
- 2. (15 points) Let

$$A = \begin{pmatrix} 4 & -2 \\ 2 & 5 \end{pmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 6 \\ 9 \end{bmatrix}.$$

- (a) Solve $A\mathbf{x} = \mathbf{b}$, using the LU factorization, forward elimination and back substitution.
- (b) Find an approximate solution to $A\mathbf{x} = \mathbf{b}$ by doing two Jacobi iterations starting at $\mathbf{x}^{(0)} = (3, 2)^T$.
- (c) Find an approximate solution to $A\mathbf{x} = \mathbf{b}$ by doing two Gauss-Seidel iterations starting at $\mathbf{x}^{(0)} = (3, 2)^T$.
- 3. (15 points) Determine by two methods the polynomial of degree ≤ 2 whose graph passes through the points (1,2),(2,6) and (3,0). Verify that both methods give you the same answer.
- 4. (20 points) Let

$$I = \int_{1}^{2} \frac{dx}{x}.$$

- (a) Compute T_4 , the 4-panel trapezoid rule approximation to I. Compare your answer with the exact value of I.
- (b) Compute CT_4 , the 4-panel corrected trapeziod rule approximation to I. Compare your answer with the exact value of I.
- (c) Suppose you computed T_{16} , the 16-panel trapezoid rule approximation to I. What answer would you expect (approximately)? Do not actually carry out the computation.
- (d) How many panels would you need to compute I with an error of $< 10^{-6}$ using the trapezoid rule ?
- 5. (10 points) Let

$$g(x) = \frac{x^3 + 6x}{3x^2 + 2}.$$

- (a) Show that $\alpha = \sqrt{2}$ is a fixed point of g.
- (b) Let $x_0 = 1.5$. Compute x_1, x_2 and x_3 for the fixed point iterations $x_{n+1} = g(x_n)$.
- (c) Prove that if x_0 if chosen sufficiently close to α , the fixed point iterates converge to α (at least) quadratically.

6. (15 points) Consider the nonlinear system

$$x^2 + y^2 = 4$$
$$x^2 - y^2 = 1$$

- (a) Find all solutions to the system. (It might help to draw a picture.)
- (b) We wish to find a solution to the system by Newton's method. If $(x_0, y_0) = (1, 1)$ what is (x_1, y_1) ? Do not reduce to a single equation.
- 7. (15 points) Consider the initial value problem

$$\frac{dy}{dt} = ty^2, \qquad y(1) = 2.$$

- (a) Verify that the solution is $Y(t) = \frac{2}{2-t^2}$. Find approximations to Y(1.2) by using
- (b) two steps of the Euler method with h = .1.
- (c) one step of the Improved Euler method with h = .2. In (b) and (c) compare your answers with the exact solution.