# ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

# 3D SolidWorks Tutorial

# Dr. Lynn Fuller

webpage: <a href="http://people.rit.edu/lffeee">http://people.rit.edu/lffeee</a>

**Electrical and Microelectronic Engineering** 

**Rochester Institute of Technology** 

**82 Lomb Memorial Drive** 

Rochester, NY 14623-5604

email: Lynn.Fuller@rit.edu

microE program webpage: <a href="http://www.microe.rit.edu">http://www.microe.rit.edu</a>



2-11-16 3D\_SolidWorks\_Tutorial.pptx

## INTRODUCTION - 3D DESIGN SOFTWARE

There are a few different kinds of 3D design software available for use by RIT students. The preferred software for compatibility with the 3D printers is Inventor. This software can be downloaded for free by students from the internet. SolidWorks is another software that can be found on RIT computers in Mechanical Engineering. Both of these programs use similar vocabulary and functions, so after learning one software, it is not difficult to transition to another. The basic operations are either identical or very similar with only minor nuances between programs.

S SOLIDWORKS

Above graphics from software websites.



AUTODESK.

PROFESSIONAL 2016

### SOLIDWORKS EDUCATION EDITION



Software is available in the PC labs owned by the Mechanical Engineering Department. You can use these PC's (except sometimes when a class/lab is being taught). You can sign on with your RIT user account and password. PC labs in GLE-2260 and ENG-1535.

## SOLID WORKS SOFTWARE



## **Click on Part**



## **WORKSPACE**



### SET UNITS AND GRID



## SELECT PLANE ... START SKETCH



### CHANGE VIEWS AND BANNERS



Middle mouse button lets you zoom in/out and rotate the view



Top banner can be symbols or tabs, click on small arrow on left



Tools banner is shown under top banner.

Note: you can select visible tabs by right clicking on any of the existing tabs and selecting the tabs you want shown.

## EXAMPLE SKETCH USING CORNER RECTANGLE



To draw a 100um by 40um rectangle. Click Sketch and Corner Rectangle. Then zoom in on the origin symbol using the middle mouse button (roll towards you) so that the 100um size rectangle can be seen once defined. Then click on the dot at the origin and drag to the other corner (approximate dimensions). The exact dimensions can be set in the parameters box on the left. When that object is correct click on the green check mark.

## **SKETCH**



### **SMART DIMENSION**



### EXTRUDE 2D SKETCH TO MAKE 3D OBJECT



To convert the 2D sketch into a 3D object select Features > Extrude Boss/Base. Set the height in the properties box on the left. Click on the green check box when done.

### 2D EXTRUDE TO 3D AND Y DIMENSION SET TO 2um



### INSERTING A SPLIT



### **SPLIT**



## **VIEW OF BODY 1 AFTER SPLIT**



## **VIEW OF BODY 2 AFTER SPLIT**



## **COMPLETED SPLIT**



## STUDY (SIMULATION)



Apply Material
Fixtures to support structure
External Loads

.

•

Create Mesh Run This Study



Simulation Advisor



# PROPERTIES OF SI, Al, SiO2, Si3N4

|                               | Silicon | Aluminum | SiO2 | Si3N4 |
|-------------------------------|---------|----------|------|-------|
| Density (g/cm3)               | 2.33    | 2.7      | 2.5  | 3.1   |
| Thermal Expansion (E-6/(°C)   | 2.6     |          |      |       |
| Thermal Conductivity (w/(m°C) | 149     |          |      |       |
| Young's Modulus (GPa)         | 112     | 68       | 73   | 385   |
| Shear Modulus (GPa)           | 70      |          |      |       |
| Poisson Ratio                 | 0.28    |          |      |       |
| Yield Strength (GPa)          | 12      |          |      |       |
| Tensile Strength (GPa)        | 14      |          |      |       |
| More                          |         |          |      |       |
| •                             |         |          |      |       |



still working on these entries

## CREATING A CUSTOM MATERIAL

Create a new folder (such as MEMS) in the Custom Materials folder.
Copy Silicon from the Silicons folder and put it the folder created and name it Polysilicon Click on Polysilicon, enter Thermal Coefficient of expansion 2.33E-6/°K Apply





## SELECT SPLIT BODIES



## ADDING FORCE TO A SURFACE AND FIXTURE



## CREATE FINITE ELEMENT ANALYSIS (FEA) MESH



## **DISPLACEMENT SOLUTION**



## Von Mesis - STRESS RESULTS



## Richard von Mises

#### von Mises, von Mises Yield Criterion

von Mises, an applied mathematician forced to leave Germany in 1933, came to Harvard in 1939. He gave the first university course on powered flight in 1913, and made and piloted a 600-horsepower aircraft for the Austrian army.

von Mises developed a criterion for the yield stress of ductile materials that employs the total distortional strain energy in the sample. Originally developed for mathematical convenience, the model provides a better fit to data obtained on ductile samples than the Tresca criterion. Written in terms of the principal stresses this criterion states that yield will occur when:

 $\sigma_{\mathbf{M}} = (1/2[(\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2])^{0.5}$ . The value of  $\sigma_{\mathbf{M}}$  can be obtained from a uniaxial yield stress determination since for uniaxial tension  $\sigma_1 = \sigma_y = \text{yield stress}$ , and  $\sigma_2 = \sigma_3 = 0$ , so that  $\sigma_{\mathbf{M}} = \sigma_y$ . The term in the square root is also proportional to the shear stress on the octahedral planes of the coordinate system defined by the principal axes.







### **CALCULATIONS**





## **ADDING ANIMATION**



### **ANIMATION**





## OTHER STRUCTURES OF INTEREST











Thermal Actuators

**Fixed Points in Red** 

## OTHER STRUCTURES OF INTEREST



**Springs** 

**Fixed Points in Red** 



Multilayer Different Materials



Simple Bridge



## **REFERENCES**

- 1. Solid Works website help.
- 2. Dr. Fuller's Tutorial on 3D printing. See webpage



## HOMEWORK - SOLID WORKS TUTORIAL

- 1. Duplicate the drawing and evaluation of a simple cantilever with different dimensions.
- 2. Draw and evaluate one of the structures on page 30.

