Algebraic Topology

Hoyan Mok

 $\mathrm{May}\ 1,\ 2022$

Contents

C	onte	nts		
1	Homotopy and Fundamental Group			
	§1	Homotopy		
	§2	Fundamental Group		
	§ 3	Examples of Fundamental Groups		
		$3.1 S^1 \ldots \ldots \ldots$		
		$3.2 S^n, n > 2 \ldots \ldots \ldots \ldots$		
	$\S 4$	Homotopy Types		
	§ 5	Retractability		
2	Van-Kampen Theorem			
	§ 6	Free Abelian Group and Finitely Generated Group .		
	§7	Free Product of Groups		
	§ 8	Van-Kampen Theorem		
3	Covering Space			
	§ 9	Covering space		
bi	bliog	graphy		
Sy	mbo	ol List		
Index				

Chapter 1

Homotopy and Fundamental Group

§1 Homotopy

Definition 1.1 (Homotopy). $f,g \in C(X,Y)$. If $\exists H \in C(X \times [0,1],Y)$ s.t. H(x,0) = f(x), H(x,1) = g(x), then we say f and g are **homotopic**, denoted by $f \simeq g \colon X \to Y$ or just $X \to Y$. H is called a **homotopy** between f and g, denoted by $H \colon f \simeq g$ or $f \simeq_H g$.

For $t \in [0,1]$, $h_t: X \to Y$; $x \mapsto H(x,t)$ is called a *t-slice*.

If f is homotopic to a constant mapping, we say that f is **null-homotopic**.

A *linear homotopy* is a homotopy between two functions to $Y \subseteq \mathbb{R}^n$ that change linearly, i.e.

$$H(x,t) = (1-t)f(x) + tg(x).$$

Theorem 1.1 (Maps to convex set are homotopic). $f, g \in C(X, Y)$. If Y is a convex set in \mathbb{R}^n , then $f \simeq g$.

Proof. Consider linear homotopy.

Theorem 1.2. Homotopic relation is an equivalence relation.

Proof. reflexity. $f \simeq f$, just take H(x,t) = f(x) for any t (Such homotopy is called a **constant homotopy**).

Symmetry. $f \simeq g$ then $g \simeq f$. Just take $\bar{H}(x,t) = H(x,1-t)$ (Here \bar{H} is called the inverse of H).

Transivity. $f \simeq g \land g \simeq h \rightarrow f \simeq h$. Let

$$H_1H_2(x,2t) = \begin{cases} H_1(x,2t) & t \in [0,1/2], \\ H_2(x,2t-1) & t \in [1/2,1]. \end{cases}$$

We can see that H_1H_2 is also a homotopy (see Theorem ?? in Point Set Topology)

Hence, we can define **homotopy classes** on C(X,Y), denoted by [X,Y].

As you might expect after reading the proof of Theorem 1.2, the homotopies between mappings within a homotopy class form a group.

Theorem 1.3 (Composition of homotopies). $f_1 \simeq f_2 \colon X \to Y$, $g_1 \simeq g_2 \colon Y \to Z$, then $g_1 \circ f_1 \simeq g_2 \circ f_2 \colon X \to Z$.

Proof i. Let $F: f_1 \simeq f_2, G: g_1 \simeq g_2$. Define:

$$F: X \times [0,1] \to Y \times [0,1]; (x,t) \mapsto (F(x,t),t).$$

It can be verified that $G \circ \mathbf{F} \colon g_1 \circ f_1 \simeq g_2 \circ g_2 \colon X \to Z$.

Proof ii. Let $F: f_1 \simeq f_2, G: g_1 \simeq g_2$.

We can verify that $H_1: (x,t) \mapsto g_1 \circ F(x,t)$ is a homotopy between $g_1 \circ f_1$ and $g_1 \circ f_2$; Similarly $H_2: g_1 \circ f_2 \simeq g_2 \circ f_2$ can be defined.

Now consider $H = H_1H_2$, or in detailed,

$$H(x,t) = \begin{cases} g_1 \circ F(x,2t) & (x,t) \in X \times [0,1/2] \\ G(f_2(x),2t-1). & (x,t) \in X \times [1/2,1] \end{cases}$$

Lemma 1 (Identity map in convex space is null-homotopic). $X \subset \mathbb{R}^n$ is a convex space. $\forall x_0 \in X$, $\mathrm{id}_X \simeq (x \mapsto x_0)$.

Proof. The linear homotopy can be constructed as:

$$H_{x_0}(x,t) = tx + (1-t)x_0.$$

Theorem 1.4 (Continuous mappings from a convex set are null-homotopic). $X \subseteq \mathbb{R}^n$ is a convex set. $\forall f \in C(X,Y)$, f is null-homotopic.

Proof. Let $H_{x_0}(x,t) = tx + (1-t)x_0$. Then, any $f: X \to Y$ can be written as $f = f \circ \operatorname{id}_X$, hence $f \simeq f \circ H_{x_0}(x,1) = (x \mapsto f(x_0))$, which means f is null-homotopic.

Theorem 1.5 (Constant mappings to a path-connected space belong to one homotopy class). If Y is a path-connected space, $y_0 \in Y$, then $[X,Y] = [x \mapsto y_0]$ (i.e. homotopy class of constant mapping to $\{y_0\}$)

Proof. Let $f_1(x) = y_1$, $f_2(x) = y_2$ be two constant mappings, a is a path from y_1 to y_2 . Then the homotopy between f_1 and f_2 can be defined as:

$$H(x,t) = a(t).$$

Definition 1.2 (Homotopy relative to a set). Let $A \subseteq X$, $H: f \simeq g$. If $\forall a \in A$, $\forall t \in [0,1]$, f(a) = g(a) = H(a,t), we say that f and g are **homotopic relative to** A, denoted by $H: f \simeq g$ rel A.

We can have parallel results as Theorem 1.2 and Theorem 1.3:

Theorem 1.6. Given $A \subseteq X$, $\simeq \text{rel}A$ is an equivalence relation in C(X,Y).

Theorem 1.7 (Composition of relative homotopies). $f_1 \simeq f_2 \colon X \to \mathbb{R}$ $Y \text{ rel } A, g_1 \simeq g_2 \colon Y \to Z \text{ rel } B, \text{ and } f_1(A) \subset B, \text{ then } g_1 \circ f_1 \simeq$ $q_2 \circ f_2 \colon X \to Z$.

Definition 1.3 (Fixed-endpoint Homotopy). Let a, b be two paths in X. If $a \simeq b \operatorname{rel} \{0, 1\}$, we say that a and b are fixed-endpoint ho*motopic*. The paths in X modulus fixed-point homotopy is denoted by [X], called the **path** classes. The path class which a belongs to is denoted by $\langle a \rangle$.

§2 Fundamental Group

Fundamental group of a topological space at a point is the path classes at this point. We need to introduce the multiplicative structure of path classes.

Theorem 2.1. Let a, b, c, d be four paths in X.

$$\begin{split} a \simeq b \ \mathrm{rel} \ \{0,1\} \ \leftrightarrow \ \bar{a} \simeq \bar{b} \ \mathrm{rel} \ \{0,1\}, \\ a \simeq b \ \mathrm{rel} \ \{0,1\} \wedge c \simeq d \ \mathrm{rel} \ \{0,1\} \wedge a(1) = c(0) \ \rightarrow \ ac \simeq bd \ \mathrm{rel} \ \{0,1\}. \end{split}$$

Definition 2.1 (Inverse and product of path classes). $\alpha, \beta \in [X]$, $a \in \alpha, b \in \beta$. b(0) = a(1). We define $\alpha^{-1} := \langle \bar{a} \rangle$ to be the *inverse* of the path class α , and $\alpha\beta := \langle ab \rangle$ to be the **product** of the two path classes α and β .

While the product of paths does not obey associativity, we have:

Theorem 2.2 (Associativity of product of path classes). $\alpha, \beta, \gamma \in$ [X]. $(\alpha\beta)\gamma = \alpha(\beta\gamma)$ (if they are productible).

Proof. Consider $\forall a \in \alpha, \forall b \in \beta, \forall c \in \gamma$. Let

$$\tilde{a}(t) = t/3,$$

 $\tilde{b}(t) = t/3 + 1/3,$
 $\tilde{c}(t) = t/3 + 2/3.$

 \tilde{a}, \tilde{b} and \tilde{c} are three paths in [0, 1], and $\tilde{a}(\tilde{b}\tilde{c}) \simeq (\tilde{a}\tilde{b})\tilde{c}$ rel $\{0, 1\}$, since [0,1] is convex, therefore there is a linear homotopy between the two product paths.

Now Let $f: [0,1] \to X$ be

$$f(t) = \begin{cases} a(3t), & t \in [0, 1/3]; \\ b(3t-1), & t \in [1/3, 2/3]; \\ c(3t-2), & t \in [2/3, 1]. \end{cases}$$

$$a(bc) = f \circ \tilde{a}(\tilde{b}\tilde{c}) \simeq f \circ (\tilde{a}\tilde{b})\tilde{c} = (ab)crel\{0,1\}, \text{ by Theorem 1.3.} \quad \Box$$

Theorem 2.3 (Identity-like properties of point path). $\alpha \in [X]$. Let the initial and the terminal point of α be x_0 and x_1 . (i) $\alpha^{-1}\alpha = \langle t \mapsto x_1 \rangle$, $\alpha \alpha^{-1} = \langle t \mapsto x_0 \rangle$; (ii) $\alpha \langle t \mapsto x_0 \rangle = \alpha = \langle t \mapsto x_1 \rangle \alpha$.

Proof. Note that $id_{[0,1]}$ is a path in the convex set [0,1].

For now path classes are not closed under production.

Definition 2.2 (Fundamental group). $x_0 \in X$. The path classes of loops at x_0 (paths that have both endpoints at x_0), equiped with production, is the **fundamental group** of X at x_0 , denoted by $\pi_1(X, x_0).$

Definition 2.3 (Homomorphism induced by continuous function). $f \in C(X,Y), x_0 \in X$. We define

$$f_{\pi} : [X] \to [Y], \quad \langle a \rangle \mapsto \langle f \circ a \rangle$$

where a is a path in X.

The limitation of f_{π} on $\pi_1(X, x_0)$ is said to be a **homomor**phism induced by f.

For simplicity, we would write such homomorphism by f_{π} (without explicitly referring limitation).

Theorem 2.4 (Isomorphism induced by homeomrphism). Let f be a homeomorphism from X to Y, then $\forall x_0 \in X$, f_{π} is an isomorphism from $\pi_1(X, x_0)$ to $\pi_1(Y, f(x_0))$.

Proof.

$$f^{-1} \circ f = \mathrm{id}_X \to (f^{-1})_{\pi} \circ f_{\pi} = \mathrm{id}_{\pi_1(X, x_0)};$$

$$f \circ f^{-1} = \mathrm{id}_Y \to f_{\pi} \circ (f^{-1})_{\pi} = \mathrm{id}_{\pi_1(Y, f(x_0))},$$

therefore $(f^{-1})_{\pi}$ is the inverse of f_{π} . An invertible homomorphism is an isomorphism.

Theorem 2.5 (Fundamental group of product space). $x_0 \in X$, $y_0 \in Y$.

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0).$$

Proof. Let $j_X \in C(X \times Y, X)$ and $j_Y \in C(X \times Y, Y)$ be projections $(j_X(x,y)=x, j_Y(x,y)=y)$, and define a homomorphism

$$\varphi \colon \quad \pi_1(X \times Y, (x_0, y_0)) \quad \to \quad \pi_1(X, x_0) \times \pi_1(Y, y_0);$$

$$\gamma \quad \mapsto \quad ((j_X)_\pi(\gamma), (j_Y)_\pi(\gamma)).$$

 φ is a monomorphism. Let $\langle c \rangle \in \ker \varphi$ i.e.

$$\varphi(\langle c \rangle) = (\langle t \mapsto x_0 \rangle, \langle t \mapsto y_0 \rangle).$$

Let

$$H_X: j_X \circ c \simeq t \mapsto x_0 \text{ rel } \{0\}, \quad H_Y: j_Y \circ c \simeq t \mapsto y_0 \text{ rel } \{0\}.$$

The homotopy between c and $t \mapsto (x_0, y_0)$ is defined as

$$F: [0,1]^2 \to X \times Y; (t,s) \mapsto (H_X(t,s), H_Y(t,s)).$$

$$\varphi$$
 is an epimorphism. $\forall \langle a \rangle \in \pi_1(X, x_0)$ and $\forall \langle b \rangle \in \pi_1(Y, y_0)$. $c: t \mapsto (a(t), b(t)) \in C([0, 1], X \times Y). \langle c \rangle \in \varphi^{-1}(\{(\langle a \rangle, \langle b \rangle)\}).$

Theorem 2.6 (Fundamental groups of path connected space at different points are isomorphic). X is path connected, $x_1, x_2 \in X$. $\pi_1(X, x_1) \cong \pi_1(X, x_2).$

Proof. $\langle a \rangle \in \pi_1(X, x_1), \langle b \rangle \in \pi_1(X, x_2), \langle c \rangle$ is a path class with initial point x_1 and terminal point x_2 .

It can be verified that

$$g_c \colon \pi_1(X, x_1) \to \pi_2(X, x_2); \langle a \rangle \mapsto \langle \bar{c}ac \rangle$$
 (2-1)

is a homomorphism. Same as $g_{\bar{c}}(\langle b \rangle) = cb\bar{c}$.

$$g_c \circ g_{\bar{c}}(\langle b \rangle) = \langle \bar{c}cb\bar{c}c \rangle = \mathrm{id}_{\pi_1(X,x_2)};$$

$$g_{\bar{c}} \circ g_c(\langle a \rangle) = \langle c\bar{c}ac\bar{c} \rangle = \mathrm{id}_{\pi_1(X,x_2)},$$

therefore g_c is an isomorphism.

With Theorem 2.6, we can write the fundamental group of a path-connected space X by $\pi_1(X)$.

For different path-connected branches, a topological space can have different fundamental groups, while they are isomorphic within one branch.

Theorem 2.7. Let X and Y be two topological spaces, $f_1 \simeq f_2 \colon X \to Y$, $x_0 \in X$, $f_1(x_0) = y_1$, $f_2(x_0) = y_2$; If $\exists c \in C([0,1],Y)$ s.t. $c(0) = y_1$, $c(1) = y_2$, and g_c is defined as in Eq. (2-1), then $g_c \circ f_{1,\pi} = f_{2,\pi}$.

Proof.

Definition 2.4 (Simply connected). If the fundamental group of a path connected space X is trivial i.e. $\pi_1(X) \cong \{1\}$, we say that X is *simply connected*.

Theorem 2.8 (Convex set is simply connected). If $X \subset \mathbb{R}^n$ is convex, then X is simply connected.

Proof.
$$x_0 \in X$$
, $a \in C([0,1], X)$ s.t. $a(0) = a(1) = x_0$. $H_{a,x_0}(s,t) = (1-t)a(s) + tx_0$.

Examples of Fundamental Groups

S^1 3.1

Definition 3.1 (Lift). Let X, Y, Z be three topological spaces, and $f \in C(X,Z), p \in C(Y,Z)$. If $\tilde{f} \in C(X,Y)$, s.t. $f = p \circ \tilde{f}$, we say that f is a **lift** of f.

In some case, given f and p, \tilde{f} might do not exist.

Lemma 2 (Lift of path). $a \in C([0,1], S^1), p: \mathbb{R} \to S^1; x \mapsto e^{2\pi xi}$. Let $t_0 \in \mathbb{R}$ s.t. $p(x_0) = a(0)$. There exists a unique lift $\tilde{a} \in$ $C([0,1],\mathbb{R})$ of a s.t. $\tilde{a}(0) = x_0$.

Proof. Existence. The collection of open sets that the images under a do not cover S^1 , $\{(\alpha_i, \beta_i) \cap [0, 1] \mid a_i, b_i \in \mathbb{R}^I \wedge S^1 \subsetneq a((\alpha_i, \beta_i))\}$, is a cover of [0,1] by the definition of continuity. Since [0,1] is compact, there exists a finite subcover $\{(\alpha_i, \beta_i) \cap [0, 1] \mid a_i, b_i \in$ $\mathbb{R}^n \wedge S^1 \subseteq a((\alpha_i, \beta_i))$, where $n \in \mathbb{N}$. By dividing these open intevals into closed intevals that has no inner points intersecting, we can get $\Omega = \{I_k := [t_i, t_{i+1}] \mid k \in m\}$ (This can be done by sorting α_i and β_i).

The mapping p is locally homeomorphic i.e. there exists $[x_i, x_i'] \subset$ \mathbb{R} s.t. $p_i := p|_{[x_i, x_i']} : [x_i, x_i'] \to a(I_i)$ is a homeomorphism (and $p_i(x_i) = a(t_i)$, therefore $\tilde{a}_i := p_i^{-1} \circ a$ is a lift of $a_i := a|_{I_i}$.

Since $p_0(t_0) = a(t_0)$, $p_{i+1}(t_i) = p_i(t_i)$, we can define piecewisely the lift of a by $\tilde{a} = \bigcup \{\tilde{a}_i \mid i \in m\}.$

Uniqueness. Let \tilde{a}' be another lift of a, $p(\tilde{a}'(t) - \tilde{a}(t)) = p \circ$ $\tilde{a}'(t)/p \circ \tilde{a}(t) = a(t)/a(t) = 1$, therefore $\tilde{a}'(t) - \tilde{a}(t) \in \mathbb{Z}$. Since [0, 1] is connected, the image of $t \mapsto \tilde{a}'(t) - \tilde{a}(t)$ must be connected, which is possible only if it is constant. $\tilde{a}'(0) = \tilde{a}(0) = x_0$, therefore $\tilde{a} = \tilde{a}'$.

Notice that we have the freedom to set $\tilde{a}(0) \in \mathbb{Z}$ (the lift is unique after setting that), what really matter is the difference $\tilde{a}(1) - \tilde{a}(0)$. One can proof that $q(a) := \tilde{a}(1) - \tilde{a}(0)$ does not depend on the chose of $\tilde{a}(0) \in \mathbb{Z}$. We call q(a) the **loop number** of path a.

Lemma 3 (Two loops that are never antipodal have the same loop number). Let a, b be two loops at z_0 in S^1 . If $\forall t \in [0,1], a(t) \neq 0$ -b(t), then q(a) = q(b).

Proof. Choose $\tilde{a}(0) = \tilde{b}(0) = 0$ (if not so, just translate the lift by an integer). In this case, $q(a) = \tilde{a}(1), q(b) = b(1)$.

If $q(a) \neq q(b)$, without loss of generality, q(a) > q(b), then f := $t \mapsto \tilde{a}(t) - b(t)$ is a continuous function from a compact space [0, 1] to \mathbb{R} , therefore by the connectedness of [0,1], $\exists t_0 \in [0,1]$ s.t. $f(t_0) =$ $1/2 \in [0, q(a) - q(b)], \text{ when }$

$$p \circ \tilde{a}(t_0) + p \circ \tilde{b}(t_0) = e^{2\pi i(\tilde{b}(t_0) + 1/2)} + e^{2\pi i\tilde{b}(t_0)} = 0.$$

Lemma 4 (Same loop number iff homotopic ralative to endpoint). Let a, b be two loops at z_0 in S^1 . $a \simeq b \operatorname{rel} \{0\}$ iff q(a) = q(b).

Proof. →: Let $H: a \simeq b \operatorname{rel}\{0\}$, $h_s = t \mapsto H(t, s)$, $f_t = s \mapsto H(t, s)$. $\forall (t, s) \in [0, 1]^2$, $U:=\{H(t, s)e^{i\theta} \mid \theta \in (-\pi, \pi)\} \in \mathscr{U}_{S^1}(H(t, s))$. Since $f_t \in C([0, 1], S^1)$, $\exists V(s) \in \mathscr{U}_{[0, 1]}(s)$ s.t. $H(V(s)) \subset U$. Which means, $\forall t \in [0, 1]$, $\forall s_1, s_2 \in V(s)$, $f_t(s_1) \neq -f_t(s_2)$ or $h_{s_1}(t) \neq -h_{s_2}(t)$. By Lemma 3, $q(h_s) = q(h_{s'})$.

 $\Omega = \{V(s) \mid s \in [0,1]\}$ is an open cover of the compact space [0,1], therefore has a finite subcover $\Omega = \{V_i \in \Omega \mid i \in n\}$. In each $V(s_i)$, h_s has the same loop numbers.

We therefore have
$$q(a) = q(h_0) = q(h_1) = q(b)$$
.
 $\leftarrow: H: [0,1]^2 \to S^1; (t,s) \mapsto p((1-s)\tilde{a}(t) - s\tilde{b}(t)).$

Theorem 3.1. $\pi_1(S^1) \cong \mathbb{Z}$.

Proof.
$$z_0 \in S^1$$
. Let $Q: \pi_1(S^1, z_0) \to \mathbb{Z}; \langle a \rangle \mapsto q(a)$. $\forall \langle a \rangle, \langle b \rangle \in \pi_1(S^1, z_0)$, choose $\tilde{a}(1) = \tilde{b}(0)$,

$$\begin{split} Q(\langle a \rangle \langle b \rangle) &= Q(\langle ab \rangle) = q(ab) \\ &= \tilde{b}(1) - \tilde{a}(0) = \tilde{b}(1) - \tilde{b}(0) + \tilde{a}(1) - \tilde{a}(0) = q(a) + q(b) \\ &= Q(\langle a \rangle) + Q(\langle b \rangle), \end{split}$$

which means Q is a homomorphism.

By Lemma 4, Q is a monomorphism. $\forall n \in \mathbb{Z}, Q(\langle t \mapsto e^{2\pi nti} \rangle) = n$, therefore Q is also an epimorphism.

3.2 S^n , n > 2

The situation for S^n is much simpler:

Theorem 3.2. $\forall n \in \mathbb{N}$, if $n \geq 2$, then S^n is simply connected.

Proof. Let $x_0 \in S^n$, and a be a loop at x_0 in S^n . $x \in S^n$ and $x \neq x_0$. Embed S^n into \mathbb{R}^{n+1} and let $B(x; \delta)$ be a (n+1)-D ball with radius δ around x that $x_0 \notin B(x; \delta)$.

 $a^{-1}(B(x;\delta)\cap S^n)$ is a collection of open, disjoint intervals in [0,1], which can be considered as an open cover of $a^{-1}(\{x\})$, which

is compact. Let the finite subcover of $a^{-1}(\{x\})$ be $\{(\alpha_i, \beta_i) \cap [0, 1] \mid \alpha_i, \beta_i \in \mathbb{R}, i \in m\}$, where $m \in \mathbb{N}$.

Let $P: \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \times \mathbb{R} \to \mathbb{R}^{n+1}$ be:

$$P(y, y_0, r) = \frac{y - y_0}{\|y - y_0\|} r + y_0,$$

which means project y to the sphere with radius r around y_0 . Now we define the loop b that go as:

$$b(t) = \begin{cases} a(t), & t \notin (\alpha_i, \beta_i), \forall i \in m; \\ P[P(a(t), x, \delta), 0, 1], & t \in (\alpha_i, \beta_i) - a^{-1}(\{x\}), \exists i \in m; \\ \lim_{\substack{t' \to t \\ t' \in (\alpha_i, \beta_i) - a^{-1}(\{x\})}} b(t'), & t \in a^{-1}(\{x\}) \cap (\alpha_i, \beta_i), \exists i \in m, \end{cases}$$

and the homotopy between a and b can be written as

$$H: [0,1]^2 \to S^n; (t,s) \mapsto P[(1-s)a(t) + sb(t), 0, 1].$$

Since b is a loop in $S^n - \{x\}$, while $S^n - \{x\} \cong \mathbb{R}^n$ (by stere-ographic projection), which is simply connected, we know that b is homotopic to $t \mapsto x_0$ i.e. null-homotopic.

By Theorem 2.5, the fundamenal group of $T^2 := S^1 \times S^1$ is $\pi_1(T^2) \cong \mathbb{Z} \times \mathbb{Z}$, which is not isomorphic to S^2 , therefore $T^2 \ncong S^2$.

§4 Homotopy Types

Definition 4.1 (Homotopy type). If $\exists f \in C(X,Y), \exists g \in C(Y,X)$ s.t.

$$g \circ f \simeq \mathrm{id}_X,$$
 $f \circ g \simeq \mathrm{id}_Y,$

then we say X and Y are **homotopy equivalent**, or they are of the same **homotopy type**, denoted by $X \simeq Y$. f is called a **homotopy map** or a **homotopy equivalence** from X to Y, and g is called a **homotopy inverse** of f.

An inverse of a homotopy map is not unique. Some examples of spaces having same homotopy types:

- $\mathbb{R} \simeq \mathbb{R}^n \ (n \in \mathbb{N}_+).$
- $X \times [0,1] \simeq X$.

Theorem 4.1. If $X \simeq Y$ and f is a homotopy map from X to Y, $f(x_0) = y_0$, then f_{π} is an isomorphism from $\pi_1(X, x_0)$ to $\pi_1(Y, y_0)$.

Proof.

Spaces with the simplest homotopy type are contractable spaces.

Definition 4.2 (Contractable space). If $X \simeq \{x\}$, we call X a contractable space.

§5 Retractability

Definition 5.1 (Retractability). $A \subset X$, $i: A \to X$ is an *inclusion* from A to X, meaning $\forall a \in A$, i(a) = a. If $\exists r \in C(X, A)$ s.t. $r \circ i = \mathrm{id}_A$, then A is called a *retract* of X, r is a *retraction*, and X is said to be *retractable*.

Definition 5.2 (Deformation retractability). $A \subset X$, $i: A \to X$ is an inclusion. If $\exists r \in C(X, A)$ s.t. $r \circ i = \mathrm{id}_A \wedge H \colon i \circ r \simeq \mathrm{id}_X$, then A is called a **deformation retract** of X, H is a **deformation retraction** of X, and X is said to be **deformation retractable**.

Theorem 5.1 (Spaces are homotopically equivalent to their deformation retracts). If $X \simeq Y$ and X is a deformation retract of Y, then $X \simeq Y$. And, the retraction $r: Y \to X$ and the inclusion $i: X \to Y$ are homotopy inverse to each other.

Theorem 5.2 (Contractable space can be deformatively retracted to all its points). If X is a contractable space, $\forall x \in X$, $\{x\}$ is a deformation retract of X.

Definition 5.3 (Strong deformation retractability). $A \subset X$, $i: A \to X$ is an inclusion. If $\exists r \in C(X, A)$ s.t. $r \circ i = \mathrm{id}_A \wedge H : i \circ r \simeq \mathrm{id}_X \operatorname{rel}A$, then A is called a **strong deformation retract** of X, H is a **strong deformation retraction** of X, and X is said to be **strongly deformation retractable**.

Some examples:

- $X \times [0,1]$ has strong deformation retracts $X \times \{t\}$ for each $t \in [0,1].$
- S^{n-1} is a strong deformation retract of $\mathbb{R}^n \setminus \{0\}$.
- Topological cone $CX = X \times [0,1]/X \times \{1\}$ has a strong deformation retract at the tip of the cone i.e. $X \times \{1\}$.
- Möbius belt can be strong-deformatively retracted to the circle which is the centre line of the belt.

Chapter 2

Van-Kampen Theorem

§6 Free Abelian Group and Finitely Generated Group

In this section, we only talk about Abelian groups, and their multiplications are called "addition", i.e. (G, +).

Definition 6.1 (Free Abelian group). Let (F, +) be an Abelian group. If $\exists A \subset F$ s.t. $\forall f \in F, \exists ! n_f : A \to \mathbb{Z}$ s.t.

$$f = \sum_{a \in A} n_f(a)a$$
, $\operatorname{card}\{a \in A \mid n_f(a) \neq 0\} \in \mathbb{N}$,

then we call F a **free Abelian group**, A is a **basis** of F.

In plain words, all elements in F can be uniquely decided by finite integer-linear combinations of the elements in A. Notice that A can be infinite.

Typical free Abelian groups are integer vectors groups \mathbb{Z}^n $(n \in \mathbb{N}_+)$, while Z

Theorem 6.1 (Homomorphism induced by any function of basis to a group). Let F be a free Abelian group, A be a basis of F, G is another Abelian group. $\forall f \colon A \to G$, $\exists ! \varphi \in \operatorname{Hom}(F,G)$ s.t. $\forall a \in A$, $\varphi(a) = f(a)$.

Proof. If $x = \sum_{i \in m} n_i a_i \in F$ $(n_i \in \mathbb{Z}, m \in \mathbb{N}, a_i \in A)$, then

$$\varphi(x) = \sum_{i \in m} n_i f(a_i).$$

Definition 6.2 (Finitely generated Abelian group). (F, +) is an Abelian group. If $\exists A \subset F$ s.t. card $A \in \mathbb{Z}$ and $\forall f \in F$, $\exists n_f \colon A \to \mathbb{Z}$ s.t.

$$f = \sum_{a \in A} n_f(a)a,$$

then F is called a *finitely generated Abelian group*, A *generates* F. A is a *generating set* of F.

Theorem 6.2 (Finitely generated iff quotient of a free Abelian group). F is an Abelian group. F is finitely generated \leftrightarrow there exists a free Abelian group H, $\exists j: H \to F$ s.t. j is an epimorphism.

Definition 6.3 (Direct sum of Abelian group). Let H_i $(i \in n)$ be Abelian subgroups of H. If $\forall h \in H, \exists ! h_i \ (i \in n)$ s.t.

$$h = \sum_{i \in n} h_i,$$

then we say that H is a **direct sum** of H_i $(i \in n)$, denoted as:

$$H = \bigoplus_{i \in n} H_i.$$

If H_i are not subgroup of H and $H \cong \bigoplus_{i \in n} H_i$, H is also called a direct sum of H_i $(i \in n)$. In order to avoid confusion, this is called an outer direct sum.

The following theorem is very useful to construct a direct sum:

Theorem 6.3. H_1 , H_2 , H are Abelian groups. If $H = H_1 + H_2$ (this is the Abelian group version of $H = H_1H_2$) and $H_1 \cap H_2 = \{0\}$, then $H = H_1 \oplus H_2$.

Theorem 6.4. Let $j: H \to F$ be an epimorphism, F is a free Abelian group.

$$H \cong \ker j \oplus F$$
.

We define some concepts that are very familiar in vector spaces:

Definition 6.4 (Independence and basis). Let H be an Abelian group, A is a subset of H. If $\forall n \colon A \to \mathbb{Z}$,

$$\sum_{a \in A} n(a)a = 0 \rightarrow \forall a \in A, \ n(a) = 0,$$

then A is an independent set. And if A generates H, we call it a basis of H.

Theorem 6.5. Let H be an Abelian group, and there exists a basis of H. All bases of H have same cardinality.

§7 Free Product of Groups

§8 Van-Kampen Theorem

Chapter 3

Covering Space

§9 Covering space

Definition 9.1 (Even cover). Let $p: E \to B$ be a continuous surjective, \mathscr{T}_E is the topology of E, U be an open subset of B, I be an index set. If $\exists \langle V_i \rangle_{i \in I} \in \mathscr{T}_E^I$ s.t.

$$p^{-1}(U) = \coprod_{i \in I} V_i,$$

and $p|_{U_i}: U_i \to U$ is a homeomorphism from U_i to U, then U is said to be evenly covered by p. Each U_i is called a **sheet** or a **slice**.

Definition 9.2 (Covering space). Let $p: E \to B$ be a continuous surjective. If $\forall b \in B, \exists U \in \mathscr{U}(b)$ (evenly covered neighbourhood) s.t. U is evenly covered by p, then we call (E, p) a covering space, p is a covering map, B is the base space.

Many authors ([4]) impose path connectivity and local path connectivity onto E and B.

Theorem 9.1. Let (E, p) be a covering space. p is an open mapping.

Proof. Let G be an open set in E. $\forall b \in p(G), \exists U \in \mathcal{U}(b)$ s.t. U is evenly covered by p.

Choose $e \in p^{-1}(b)$, which should be contained in a sheet $V \subset p^{-1}(U)$. $V \cap G$ is open, and since $p|_V$ is a homoemorphism, $p(V \cap G) \subset U \cap p(G) \subset p(G)$ is an open set contained in G which b belongs to.

Therefore,
$$p(G)$$
 is open.

Theorem 9.2 (Restriction of a covering map). Let (E, p) be a covering space onto B, $B_0 \subset B$, $E_0 = p^{-1}(B_0)$. $(E_0, p|_{E_0})$ is a covering space onto B_0 .

Theorem 9.3 (Product of covering maps). Let (E, p) and (F, q) be covering spaces onto B and C. The **product** of (E, p) and (F, q) (E and F, or p and q)

$$p \times q \colon E \times F \to B \times C;$$

 $(e, f) \mapsto (p(e), q(f)),$

is also a covering map (onto $B \times C$).

bibliography

- [1] A. I. Kostrikin. *Introduction to Algebra. Basic Algebra Structures*. 2nd ed. Vol. 3. Springer. ISBN: 9780387907116.
- [2] James Munkres. *Topology*. 2nd ed. Prentice Hall, 2000. URL: http://mathcenter.spb.ru/nikaan/2019/topology/4.pdf.
- [3] James R. Munkres. *Elements of Algebraic Topology*. Westview Press, 1996. ISBN: 9780201627282.
- [4] 尤承业. 基础拓扑学讲义. 北京: 北京大学出版社, 1997. ISBN: 9787301031032.

Symbol List

Here listed the important symbols used in these notes

$H : f \simeq g \operatorname{rel} A, 3$
$\pi_1(X), \frac{7}{}$
$\pi_1(X,x_0), 5$
$q(a), \frac{9}{}$
$q(\omega)$, σ
$[X], {f 4}$
$X \simeq Y$, 11
$[X,Y], \frac{2}{2}$

Index

base space, 17	generating set, 15
basis, 14, 16	
constant homotopy, 2 contractable space, 12	homomorphism induced by f , 5 homotopic, 1
covering map, 17	homotopic relative to A , $\frac{3}{}$
covering space, 17	homotopy, 1
deformation retract, 12 deformation retractable, 12 deformation retraction, 12 direct sum, 15	homotopy classes, 2 homotopy equivalence, 11 homotopy equivalent, 11 homotopy inverse, 11 homotopy map, 11
evenly covered	homotopy type, 11
neighbourhood, 17	inclusion, 12
finitely generated Abelian	independent, 16
group, 15	inverse, 4
fixed-endpoint homotopic, 4 fixed-endpoint homotopy, 4 free Abelian group, 14 fundamental group, 5	lift, 8 linear homotopy, 1 loop number, 9
generate, 15	null-homotopic, 1

INDEX 22

path classes, 4	slice, 17
product, 4, 18	strong deformation retract,
	13
retract, 12	strong deformation
retractable, 12	retraction, 13
retraction, 12	strongly deformation
	retractable, 13
sheet, 17	
simply connected, 7	t-slice, 1