Sublinear-space P systems with active membranes

Antonio E. Porreca Alberto Leporati Giancarlo Mauri Claudio Zandron

> Dipartimento di Informatica, Sistemistica e Comunicazione Università degli Studi di Milano-Bicocca

13th International Conference on Membrane Computing 28–31 August 2012, Budapest, Hungary

The story so far...

Definition

Space complexity for P system is measured as

#membranes + #objects

Theorem

P systems working in polynomial (resp., exponential) space have the same computing power as Turing machines working in polynomial (resp., exponential) space

Conjecture

The same holds for larger space bounds (work in progress)

But what about smaller space bounds?

We have two problems:

- 1. Separate input space from working space
- 2. We need weaker uniformity conditions

P systems with active membranes and input alphabet

Definition

- $\qquad \qquad \blacksquare = (\Gamma, \triangle, \Lambda, \mu, w_1, \dots, w_d, R)$
- ightharpoonup Γ is a working alphabet, Δ a disjoint input alphabet
- Input objects cannot be created during the computation:
 - ▶ $[a \rightarrow w]^{\alpha}_{h}$ at most one object $b \in \Delta$ in w (in that case, a = b)
 - ▶ $a \begin{bmatrix} a \\ b \end{bmatrix}$ $b \in \Delta$ then a = b
 - $[a]_b^{\alpha} \rightarrow [b]_b^{\beta}$ if $b \in \Delta$ then a = b
 - ▶ $[a]_b^{\alpha} \to b$ if $b \in \Delta$ then a = b
 - ▶ $[a]_h^{\alpha} \rightarrow [b]_h^{\beta} [c]_h^{\gamma}$ if $b \in \Delta$ (resp., $c \in \Delta$) then a = b and $c \notin \Delta$ (resp., a = c and $b \notin \Delta$)

Space complexity with input alphabet

Definition

- ▶ The size |C| of a configuration C is the sum of the number of membranes and non-input objects in C
- ▶ The space required by a computation $\vec{\mathcal{C}} = (\mathcal{C}_0, \dots, \mathcal{C}_k)$ is

$$|\vec{\mathcal{C}}| = \max\{|\mathcal{C}_0|, \dots, |\mathcal{C}_k|\}$$

▶ The space required by a P system is

$$|\Pi| = \sup\{|\vec{\mathcal{C}}| : \vec{\mathcal{C}} \text{ is a computation of } \Pi\}$$

▶ A family $\Pi = \{\Pi_x : x \in \Sigma^*\}$ works in space f(n) iff $|\Pi_x| \le f(|x|)$ for each $x \in \Sigma^*$

Generalised uniformity conditions

Definition (see Murphy, Woods)

Let E and F be classes of functions. A family of P systems $\Pi = \{\Pi_x : x \in \Sigma^*\}$ is said to be (E, F)-uniform if and only if

- ▶ There exists a function $f \in F$ such that $f(1^n) = \Pi_n$, i.e., mapping the unary representation of each natural number to an encoding of the P system processing all inputs of length n
- ▶ There exists a function $e \in E$ mapping each string $x \in \Sigma^*$ to a multiset $e(x) = w_x$ (represented as a string) over the input alphabet of Π_n , where n = |x|
- ▶ For each $x \in \Sigma^*$ we have $\Pi_x = \Pi_n(w_x)$, i.e., Π_x is Π_n with the multiset encoding x placed inside the input membrane

DLOGTIME Turing machines I

Definition

- A deterministic log-time (**DLOGTIME**) Turing machine is a Turing machine having a read-only input tape of length n, a constant number of read-write work tapes of length $O(\log n)$, and a read-write address tape, also of length $O(\log n)$
- The input tape is not accessed by using a sequential tape head (as the other tapes are); instead, during each step the machine has access to the i-th symbol on the input tape, where i is the number written in binary on the address tape (if $i \geq |n|$ the machine reads an appropriate end-of-input symbol, such as a blank symbol)
- ▶ The machine is required to operate in time $O(\log n)$

DLOGTIME Turing machines II

Proposition (Mix Barrington, Immerman, Straubing, JCSS 90)

DLOGTIME Turing machines are able to

- compute the length of their input
- compute sums, differences and logarithms of numbers of O(log n) bits
- decode simple pairing functions on strings of length $O(\log n)$
- extract portions of the input of size O(log n)

DLOGTIME Turing machines are used as a uniformity condition for circuits (e.g., AC^0 circuits)

DLOGTIME-uniform families of P systems I

Definition

A family of P systems is **DLOGTIME**-uniform if the following predicates (describing a mapping $1^n \mapsto \Pi_n$) are **DLOGTIME**-computable

- ▶ ALPHABET(1^n , m) holds for a single integer m such that $\Gamma \cup \Delta \subseteq \{0,1\}^m$, i.e., each symbol of the alphabets of Π_n (whose index is provided in unary notation) can be represented as a binary number of m bits
- ▶ LABELS(1^n , m) is true for a single integer m such that $\Lambda \subseteq \{0,1\}^m$
- ▶ INSIDE(1^n , h_1 , h_2) holds iff the membrane labelled by h_1 is immediately contained in h_2 in the initial configuration of Π_n
- ▶ INPUT(1^n , h) holds iff the input membrane of Π_n is h
- ▶ MULTISET(1^n , h, i, a) holds iff the i-th symbol of the string representing the initial multiset contained in membrane h is a

DLOGTIME-uniform families of P systems II

- ▶ #EVOLUTION(1ⁿ, h, α, a, m) holds iff Π_n has m object evolution rules of the form $[a \to w]_h^\alpha$
- ▶ EVOLUTION(1ⁿ, h, α , a, i, j, b) is true when the i-th rule of the form $[a \rightarrow w]_h^{\alpha}$ (under any chosen, fixed total order of the rules) has $w_i = b$
- ► SEND-IN(1ⁿ, h, α , a, β , b) iff a $[]_h^{\alpha} \rightarrow [b]_h^{\beta} \in R$
- ► SEND-OUT $(1^n, h, \alpha, a, \beta, b)$ iff $[a]_h^{\alpha} \rightarrow []_h^{\beta} b \in R$
- ▶ DISSOLVE $(1^n, h, \alpha, a, b)$ iff $[a]_h^{\alpha} \rightarrow b \in R$
- ► ELEM-DIVIDE $(1^n, h, \alpha, a, \beta, b, \gamma, c)$ iff $[a]_h^{\alpha} \to [b]_h^{\beta} [c]_h^{\gamma} \in R$

The encoding of the input must also be **DLOGTIME**-computable

► ENCODING(x, i, a) holds when the i-th object of the input multiset encoding x is a

Initial configuration

Later configuration

Simulating $\delta(\mathbf{r}, \mathbf{b}, \mathbf{a}) = (\mathbf{s}, \mathbf{b}, +1, -1)$

Simulating $\delta(\mathtt{r},\mathtt{b},\mathtt{a})=(\mathtt{s},\mathtt{b},+1,-1)$

Simulating $\delta(\mathtt{r},\mathtt{b},\mathtt{a})=(\mathtt{s},\mathtt{b},+1,-1)$

Proposition

The P systems described above work in $O(\log n)$ space

DLOGTIME-uniformity of the input encoding

Lemma

The ENCODING predicate is **DLOGTIME**-computable

Proof.

We just add subscripts to the input string, denoting their positions

$$\mathsf{ENCODING}(x,i,a_j) \iff j=i \land x_i=a$$

The RHS expression can be checked in **DLOGTIME**

DLOGTIME-uniformity of the membrane structure

$$\begin{split} \mathsf{INSIDE}(1^n,h_1,h_2) &\iff (h_1 = \mathtt{i}_{\ell(n)-1} \wedge h_2 = \mathtt{h}) \vee \\ & (h_1 = \mathtt{i}_j \wedge h_2 = \mathtt{i}_{j+1} \wedge 0 \leq j < \ell(n)-1) \vee \\ & (h_1 = \mathtt{w}_j \wedge h_2 = \mathtt{h} \wedge 0 \leq j < s(n)) \vee \\ & (h_1 = a_\mathtt{i} \wedge h_2 = \mathtt{h} \wedge a \in \Sigma) \vee \\ & (h_1 = a_\mathtt{w} \wedge h_2 = \mathtt{h} \wedge a \in \Sigma) \end{split}$$

DLOGTIME-uniformity of the rules

Just an example:

$$egin{align} [q_{i,w}^t
ightarrow q_{i,w}^{t+1}]_{ ext{h}}^0 & ext{for } 0 \leq t < rac{n}{2} + \ell(n) + 1, \ q \in Q, 0 \leq i < n, 0 \leq w < s(n) \end{split}$$

EVOLUTION(1^n , h, 0, $q_{i,w}^t$, 0, j, b) can be checked in **DLOGTIME**

Main result

Theorem

Let M be a deterministic Turing machine with an input tape (of length n) and a work tape of length $O(\log n)$. Then, there exists a (DLT, DLT)-uniform family Π of confluent recogniser P systems with active membranes working in logarithmic space such that $L(M) = L(\Pi)$.

Corollary

 $\textbf{L}\subseteq \textbf{(DLT},\textbf{DLT)}\text{-}\textbf{LMCSPACE}_{\mathcal{AM}}.$

Conclusions & open problems

- "New" uniformity condition for P systems
- ► Conjecture: applicable to most previous results
- Logspace P systems with active membranes are at least as powerful as logspace Turing machines
- Is the converse result true?
- ▶ If it is not the case, what else is contained? NL? P?

Köszönöm a figyelmet!

[Thanks for your attention!]