

SEQUENCE LISTING

<110> LAGARIAS, JOHN
KOICHI, TAKAYUKI
FRANKENBERG, NICOLE
GAMBETTA, GREGORY
MONTGOMERY, BERONDA

<120> HY2 FAMILY OF BILIN REDUCTASES

<130> 407T-907720US

<140> US 09/870,406
<141> 2001-05-29

<150> 60/271,758
<151> 2001-02-26

<150> 60/210,286
<151> 2000-06-08

<160> 57

<170> PatentIn version 3.0

<210> 1
<211> 30
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 1
acagcgagat tcaaaggccc attaaccgga

30

<210> 2
<211> 30
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 2
gggtttacag tgatatctgc aagacttcta

30

<210> 3
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 3		
taatgcttgc gacaaacagg		20
<210> 4		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> Primer		
<400> 4		
gttcatctca gggccaaaaa		20
<210> 5		
<211> 22		
<212> DNA		
<213> Artificial		
<220>		
<223> Primer		
<400> 5		
gccttcagaa atcagacctc aa		22
<210> 6		
<211> 21		
<212> DNA		
<213> Artificial		
<220>		
<223> Primer		
<400> 6		
ctgggtgtgg tgatcgaatc t		21
<210> 7		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> Primer		
<400> 7		
ctgccaagct tcatttggtt		20
<210> 8		
<211> 20		
<212> DNA		

<213> Artificial		
<220>		
<223> Primer		
<400> 8		
gcaggagctg cagacaatct		20
<210> 9		
<211> 22		
<212> DNA		
<213> Artificial		
<220>		
<223> Primer		
<400> 9		
caatgcaggt ttaacttcag ca		22
<210> 10		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> Primer		
<400> 10		
ccatggaaa gtctgcaaat		20
<210> 11		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> Primer		
<400> 11		
tcaagccctt ttccaacatc		20
<210> 12		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> Primer		
<400> 12		
ttccccatct gaactcaacc		20

<210> 13
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 13
aatgatgcat ggtgttggtg 20

<210> 14
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 14
gctcgagggaa aagtcatcca 20

<210> 15
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 15
cgtttgtctc actgaaaactg 20

<210> 16
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 16
caatcatctt gaaaatgcaga 20

<210> 17
<211> 30
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 17		
gaagatctgt ctctgctgtc tcgtataagg		30
<210> 18		
<211> 36		
<212> DNA		
<213> Artificial		
<220>		
<223> Primer		
<400> 18		
tccccccgggt tagccgataa attgtcctgt taaatc		36
<210> 19		
<211> 28		
<212> DNA		
<213> Artificial		
<220>		
<223> Primer		
<400> 19		
aaggatccat ggccgtcaact gatttaag		28
<210> 20		
<211> 36		
<212> DNA		
<213> Artificial		
<220>		
<223> Primer		
<400> 20		
acgcgtcgac tattattgga taacatcaaa taagac		36
<210> 21		
<211> 29		
<212> DNA		
<213> Artificial		
<220>		
<223> Primer		
<400> 21		
ggaattcatc tttgattcat ttctcaatg		29
<210> 22		
<211> 36		
<212> DNA		

<213> Artificial	
<220>	
<223> Primer	
<400> 22	
atagtttagcg gccgctcatt tgtgagagga ggaggc	36
<210> 23	
<211> 31	
<212> DNA	
<213> Artificial	
<220>	
<223> Primer	
<400> 23	
ggaattcatc acaaatcaaa gattcaaaaag c	31
<210> 24	
<211> 40	
<212> DNA	
<213> Artificial	
<220>	
<223> Primer	
<400> 24	
atagtttagcg gccgcttata gatcaaaaag cacagtgtgg	40
<210> 25	
<211> 30	
<212> DNA	
<213> Artificial	
<220>	
<223> Primer	
<400> 25	
ggaattcatc tcacttactt ccattccctc	30
<210> 26	
<211> 37	
<212> DNA	
<213> Artificial	
<220>	
<223> Primer	
<400> 26	
atagtttagcg gccgcttatt ctgggagatc aaataac	37

<210> 27
 <211> 3997
 <212> DNA
 <213> Artificial

 <220>
 <223> Plsmid pPROLarA122/H01-RBS-SLR0116

 <400> 27

cagaattcat	taaagaggag	aaaggtacca	tgagtgtcaa	cttagcttcc	cagttgcggg	60
aagggacgaa	aaaatcccac	tccatggcg	agaacgtcg	ctttgtcaaa	tgcttcctca	120
agggcggtgt	cgagaaaaat	tcctaccgta	agctggttgg	caatctctac	tttgtctaca	180
gtgccatgga	agagggaaatg	gcaaaaattta	aggaccatcc	catcctcagc	cacatttact	240
tccccgaact	caaccgcaaa	caaagcctag	agcaagacct	gcaattctat	tacggctcca	300
actggcggca	agaagtgaaa	atttctgccg	ctggccaagc	ctatgtggac	cgagtcggc	360
aagtggccgc	tacggccct	gaattgttgg	tggcccattc	ctacacccgt	tacctggggg	420
atctttccgg	cggtcaaatt	ctcaagaaaa	ttgcccaaaa	tgccatgaat	ctccacgatg	480
gtggcacagc	tttctatgaa	ttgcccaca	ttgatgacga	aaaggcttt	aaaaatacct	540
accgtcaagc	tatgaatgat	ctgcccattg	accaagccac	cgccgaacgg	attgtggatg	600
aagccaatga	cgccttgcc	atgaacatga	aaatgttcaa	cgaacttgaa	ggcaacctga	660
tcaaggcgat	cggcattatg	gtgttcaaca	gcctcacccg	tcgcccag	caaggcagca	720
ccgaagttgg	cctcgccacc	tccgaaggct	agttaaagag	gagaaaggat	ccatggccgt	780
cactgattta	agtttgcacca	attcttcct	gatgcctacg	ttgaacccga	tgattcaaca	840
gttggccctg	gcatcgccg	ctagttggca	aagttaccc	ctcaagccct	atcaattgcc	900
ggaggatttg	ggctacgtag	aaggccgcct	ggaaggggaa	aagttagtga	ttgaaaatcg	960
gtgctaccaa	acgccccagt	ttcgcaaaat	gcatttggag	ttggccaagg	tggcaaagg	1020
gttggatatt	ctccactgtg	taatgtttcc	tgagccttta	tacggtctac	cttggatgg	1080
ctgtgacatt	gtggccggcc	ccgggtggagt	aagtgcggct	attgcggatc	tatccccac	1140
ccaaagcgat	cgcattgc	ccgcagcgt	ccaaaaatca	ttggcagagc	taggcagcc	1200
agaatttgag	caacaacggg	aattgcccc	ctggggagaa	atattttctg	aatattgttt	1260
attcatccgt	cccagcaatg	tcactgaaga	agaaagattt	gtacaaaggg	tagtggactt	1320
tttgc当地	cattgtcacc	aatccatcgt	tgccgaaccc	ttgtctgaag	ctcaaacttt	1380

ggagcaccgt caggggcaaa ttcattactg ccaacaacaa cagaaaaatg ataaaacccg	1440
tcgggtactg gaaaaagctt ttggggaagc ttggcgaa cggtatatga gccaaagtctt	1500
atttgatgtt atccaataat cttagggcat caaataaaac gaaaggctca gtcgaaagac	1560
tgggccttc gtttatctg ttgttgtcg gtgaacgctc tcctgagtag gacaaatccg	1620
ccgcctaga cctagggat atattccgct tcctcgctca ctgactcgct acgctcggtc	1680
gttcgactgc ggcgagcgg aatggcttac gaacggggcg gagatttcct ggaagatgcc	1740
aggaagatac ttaacaggg a gtgagaggg ccgcggcaaa gccgttttc cataggctcc	1800
ccccccctga caagcatcac gaaatctgac gctcaa atca gtggtggcga aacccgacag	1860
gactataaaag ataccaggcg tttccccctg gcggctccct cgtgcgtct cctgttcctg	1920
ccttcgggtt taccgggtgtc attccgctgt tatggccgctg tttgtctcat tccacgcctg	1980
acactcagtt ccgggttaggc agttcgctcc aagctggact gtatgcacga acccccggtt	2040
cagtccgacc gctgcgcctt atccggtaac tatcgcttg agtccaaccc ggaaagacat	2100
gcaaaagcac cactggcagc agccactggt aattgattta gaggagttag tcttgaagtc	2160
atgcgccggt taaggctaaa ctgaaaggac aagtttttgt gactgcgtc ctccaagcca	2220
gttacctcgg ttcaaagagt tgtagctca gagaaccttc gaaaaaccgc cctgcaaggc	2280
ggtttttcg tttcagagc aagagattac gcgcagacca aaacgatctc aagaagatca	2340
tcttattaat cagataaaat attactagat ttca gtcgcaaa tttatctttt caaatgtac	2400
acctgaagtc agccccatac gatataagtt gttactagtg cttggattct caccaataaa	2460
aaacgcccgg cggcaaccga gcgttctgaa caaatccaga tggagttctg aggtcattac	2520
tggatctatc aacaggagtc caagcgagct ctcgaacccc agagtccgc tcagaagaac	2580
tcgtcaagaa ggcgatagaa ggcgatgcgc tgcgaatcgg gagcggcgat accgtaaagc	2640
acgaggaagc ggtcagccca ttgcggccca agctttcag caatatcagc ggtagccaac	2700
gctatgtcct gatagcggtc cgccacaccc agccggccac agtcgatgaa tccagaaaag	2760
cggccatttt ccaccatgat attcgcaag caggcatcgc catgggtcac gacgagatcc	2820
tcgcccgtcgg gcatgcgcgc cttgagcctg gcgaacagtt cggctggcgc gagccctga	2880
tgctcttcgt ccagatcatc ctgatcgaca agaccggctt ccatccgagt acgtgcgtcgc	2940
tcgatgcgtat gtttcgttgc ttggcgtaaat gggcaggtag ccggatcaag cgtatgcagc	3000
cggccatttgc catcagccat gatggatact ttctcgccag gagcaagggtg agatgacagg	3060

agatcctgcc	ccggcaacttc	gcccaatagc	agccagtccc	ttcccgcttc	agtgacaacg	3120
tcgagcacag	ctgcgcaagg	aacgccccgtc	gtggccagcc	acgatagccg	cgctgcctcg	3180
tcctgcagtt	cattcagggc	accggacagg	tcggtcttga	aaaaaagaac	cgggcgcccc	3240
tgcgctgaca	gccggaacac	ggcggcatca	gagcagccga	ttgtctgttg	tgcccagtca	3300
tagccgaata	gcctctccac	ccaagcggcc	ggagaacctg	cgtgcaatcc	atttgttca	3360
atcatgcgaa	acgatcctca	tcctgtctct	tgatcagatc	ttgatcccct	gcgccatcag	3420
atccttggcg	gcaagaaggc	catccagttt	actttgcagg	gcttcccaac	cttaccagag	3480
ggcgccccag	ctggcaattc	cgacgtctgt	gtgaaattgt	gagcggataa	caatttcaca	3540
cagggccctc	ggacaccgag	gagaatgtca	agaggcgaac	acacaacgtc	ttggagcgcc	3600
agaggaggaa	cgagctaaaa	cgagctttt	ttgcctgcg	tgaccagatc	ccggagttgg	3660
aaaacaatga	aaaggcccc	aagtagtta	tcctaaaaaa	agccacagca	tacatcctgt	3720
ccgtccaagc	agaggagcaa	aagctcattt	ctgaagagga	cttgttgcgg	aaacgacgag	3780
aacagttgaa	acacaaactt	gaacagctac	ggaactcttg	tgcgtaagga	aaagtaagga	3840
aaacgattcc	ttctaacaga	aatgtcctga	gcaatcacct	atgaactgtc	gactcgagca	3900
tagcatttt	atccataaga	ttagcggatc	taaccttac	aattgtgagc	gctcacaatt	3960
atgatagatt	caatttgtgag	cgataacaa	tttcaca			3997

<210> 28
<211> 29
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 28
atcggtacca tgagtgtcaa cttagcttc 29

<210> 29
<211> 43
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 29
attggatcct ttctcctttaactagcct tcggaggtgg cga 43

<210> 30
<211> 23
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 30
cgatatatcat gtcccata cta 23

<210> 31
<211> 28
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 31
gcgcggccgc ttagccata aattgtcc 28

<210> 32
<211> 2160
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (248)..(469)

<220>
<221> CDS
<222> (653)..(769)

<220>
<221> CDS
<222> (852)..(947)

<220>
<221> CDS
<222> (1034)..(1126)

<220>
<221> CDS
<222> (1213)..(1344)

<220>
<221> CDS
<222> (1419)..(1523)

<220>
<221> CDS

<222> (1612)..(1662)

<220>

<221> CDS

<222> (1743)..(1913)

<400> 32

gaattcccc ca cgtcaacgtg actgtgcatt ccacgtggcg gatgtgggcc ctata gttgg 60

accatgactc ggacggatgt tgaaattcat tgtcggtgcc aattgcgtt gtctca tgc 120

aactgtgaaa attttatctc ttttatagat aaagaatctt gctttttca gtttcagta 180

tgaagaagaa ttgaagagag tgtccgagga aggagacctt tggtttcagt ttgtgagtct 240

tgttgta atg gct tta tca atg gag ttt ggg ttt tca att ggg tca tgc 289
Met Ala Leu Ser Met Glu Phe Gly Phe Ser Ile Gly Ser Cys
1 5 10

ttc aag gca cca aac cca cct gtt cta atc tct gca agc cct aat aag 337
Phe Lys Ala Pro Asn Pro Val Leu Ile Ser Ala Ser Pro Asn Lys
15 20 25 30

atc aat ttc acg ttg aga agg aga aag aaa aga ttc tta ctt aga gtc 385
Ile Asn Phe Thr Leu Arg Arg Lys Lys Arg Phe Leu Leu Arg Val
35 40 45

tct gct gtg tcg tat aag gaa ttc gca gag tct gct tta gaa gaa acc 433
Ser Ala Val Ser Tyr Lys Glu Phe Ala Glu Ser Ala Leu Glu Glu Thr
50 55 60

agg aaa agg atc gtt ctt gaa cct tca cat ctc cag gtatatgcaa 479
Arg Lys Arg Ile Val Leu Glu Pro Ser His Leu Gln
65 70

ttacatttcg ttagtgttagt gggaggatta tatttctcat tggttctgc tgtgaatttt 539
gggtaaattt atttgagttt tcatttagaa ccaaacaat aactttactg ttatagactg 599
cttatataag taaaagttca gatttgttt ttctaatcac gaaactgttt cag gaa 655
Glu
75

aag tat agt agc atg aca gga cta gat ggt aag acc gaa ctt caa atg 703
Lys Tyr Ser Ser Met Thr Gly Leu Asp Gly Lys Thr Glu Leu Gln Met
80 85 90

ctt gct ttt aaa tct tca aag att aga ctc ttg agg agt atg gca ata 751
Leu Ala Phe Lys Ser Ser Lys Ile Arg Leu Leu Arg Ser Met Ala Ile
95 100 105

gag aat gag aca atg cag gtttaacttc agcagtacaa actgattgct 799
Glu Asn Glu Thr Met Gln
110

ttagtcccat ttccttactt tcaattgatt gattgttgc atcttcgc ttt ag gtc ttt 857

Val Phe
115

gac ttt gcg ggt ttc atg gag cct gag tat gat act ccc ata ttc tgt 905
Asp Phe Ala Gly Phe Met Glu Pro Glu Tyr Asp Thr Pro Ile Phe Cys
120 125 130

gct aac ttt ttc aca tct acc aac gtt aac ata gtt gta ttg 947
Ala Asn Phe Phe Thr Ser Thr Asn Val Asn Ile Val Val Leu
135 140 145

taagttatct tctagttatg ctggagttat caggctgtta ttgtccaaac tgatgttcaa 1007

tatTTTactg tatgttcttc tttagg gac ctt aat cct ttg cat cag ttg act 1060
Asp Leu Asn Pro Leu His Gln Leu Thr
150

gac cag acg gat tac caa gac aag tat tat aac aag ata atg tcc ata 1108
Asp Gln Thr Asp Tyr Gln Asp Lys Tyr Tyr Asn Lys Ile Met Ser Ile
155 160 165 170

tat cac aaa tat gct gag gtgaccacaa gaatacacca aattactcaa 1156
Tyr His Lys Tyr Ala Glu
175

ttgcaagtaa acctaattgct gaggtgtaaa tgactgatct tgagatttat ttgcag act 1215
Thr

ttc cca tgg gga ggg aaa ttg act ggt gaa tcc ata aag ttt ttc tcg 1263
Phe Pro Trp Gly Gly Lys Leu Thr Gly Glu Ser Ile Lys Phe Phe Ser
180 185 190

cct ttg gtg atg tgg act agg ttt tcg tct agc aaa gaa aaa cat aag 1311
Pro Leu Val Met Trp Thr Arg Phe Ser Ser Lys Glu Lys His Lys
195 200 205

gct ttg ttc tct gcg ttt cta gag tac tat cag gtatatactc agcggccaaa 1364
Ala Leu Phe Ser Ala Phe Leu Glu Tyr Tyr Gln
210 215 220

agctaagggtt ttattggaaa ctttgactga gaatctatca tcttcttcct acag gca 1421
Ala

tgg ctt gag atg aca atc caa gtg agg gag gag atg gaa cca tct cat 1469
Trp Leu Glu Met Thr Ile Gln Val Arg Glu Glu Met Glu Pro Ser His
225 230 235

gtg aga gcc aat tgt gaa gca caa cac aag tac ctg aca tgg cga gca 1517
Val Arg Ala Asn Cys Glu Ala Gln His Lys Tyr Leu Thr Trp Arg Ala
240 245 250

caa aag gtgatttcat ttccctttgt gtaatttgca tgtttgaaca gacactgtat 1573
Gln Lys
255

ctgtattgtt acaatggata ttgatttggt gtttcag gat cct gga cat ggt ctt	1629
Asp Pro Gly His Gly Leu	
260	
ctt aaa aga tta gta ggt gaa gca aag gca aag gtataaaaga tttgatccca	1682
Leu Lys Arg Leu Val Gly Glu Ala Lys Ala Lys	
265	270
ttagtgtccc cattattaat tagcttgta agatgtgaa aatgattga acaaaaatcag	1742
gag ctg cta agg gat ttc ctg ttc aat ggg gtg gat gag tta ggc aca	1790
Glu Leu Leu Arg Asp Phe Leu Phe Asn Gly Val Asp Glu Leu Gly Thr	
275	280
	285
aaa aca ttc att gat tac ttt cca gag tac caa aca gaa gat gga act	1838
Lys Thr Phe Ile Asp Tyr Phe Pro Glu Tyr Gln Thr Glu Asp Gly Thr	
290	295
	300
gta agc gat aaa cga agt atc att ggg aag tca tat gaa act cgt cca	1886
Val Ser Asp Lys Arg Ser Ile Ile Gly Lys Ser Tyr Glu Thr Arg Pro	
305	310
	315
	320
tgg gat tta aca gga caa ttt atc ggc taacaatgat atatgtgaac	1933
Trp Asp Leu Thr Gly Gln Phe Ile Gly	
325	
aagtcagatt tcagagtcat caacacaaga ggacgtgaac ttaggaaagt aggaataaga	1993
aagagcagca tgaggagtct ctcaggtcta tctgcatttc aagatgattt tttgagttac	2053
catgcattgt agtttacaa gtgttagctct cagcccttca tcaaaatgag aatccctcgag	2113
tatgatatga ttttaatgaa aatgtattcg tctctaccta atcaaca	2160
<210> 33	
<211> 329	
<212> PRT	
<213> Arabidopsis thaliana	
<400> 33	
Met Ala Leu Ser Met Glu Phe Gly Phe Ser Ile Gly Ser Cys Phe Lys	
1	5
	10
	15
Ala Pro Asn Pro Pro Val Leu Ile Ser Ala Ser Pro Asn Lys Ile Asn	
20	25
	30
Phe Thr Leu Arg Arg Lys Lys Arg Phe Leu Leu Arg Val Ser Ala	
35	40
	45
Val Ser Tyr Lys Glu Phe Ala Glu Ser Ala Leu Glu Glu Thr Arg Lys	

50

55

60

Arg Ile Val Leu Glu Pro Ser His Leu Gln Glu Lys Tyr Ser Ser Met
65 70 75 80

Thr Gly Leu Asp Gly Lys Thr Glu Leu Gln Met Leu Ala Phe Lys Ser
85 90 95

Ser Lys Ile Arg Leu Leu Arg Ser Met Ala Ile Glu Asn Glu Thr Met
100 105 110

Gln Val Phe Asp Phe Ala Gly Phe Met Glu Pro Glu Tyr Asp Thr Pro
115 120 125

Ile Phe Cys Ala Asn Phe Phe Thr Ser Thr Asn Val Asn Ile Val Val
130 135 140

Leu Asp Leu Asn Pro Leu His Gln Leu Thr Asp Gln Thr Asp Tyr Gln
145 150 155 160

Asp Lys Tyr Tyr Asn Lys Ile Met Ser Ile Tyr His Lys Tyr Ala Glu
165 170 175

Thr Phe Pro Trp Gly Lys Leu Thr Gly Glu Ser Ile Lys Phe Phe
180 185 190

Ser Pro Leu Val Met Trp Thr Arg Phe Ser Ser Ser Lys Glu Lys His
195 200 205

Lys Ala Leu Phe Ser Ala Phe Leu Glu Tyr Tyr Gln Ala Trp Leu Glu
210 215 220

Met Thr Ile Gln Val Arg Glu Glu Met Glu Pro Ser His Val Arg Ala
225 230 235 240

Asn Cys Glu Ala Gln His Lys Tyr Leu Thr Trp Arg Ala Gln Lys Asp
245 250 255

Pro Gly His Gly Leu Leu Lys Arg Leu Val Gly Glu Ala Lys Ala Lys
260 265 270

Glu Leu Leu Arg Asp Phe Leu Phe Asn Gly Val Asp Glu Leu Gly Thr

275

280

285

Lys Thr Phe Ile Asp Tyr Phe Pro Glu Tyr Gln Thr Glu Asp Gly Thr
290 295 300

Val Ser Asp Lys Arg Ser Ile Ile Gly Lys Ser Tyr Glu Thr Arg Pro
305 310 315 320

Trp Asp Leu Thr Gly Gln Phe Ile Gly
325

<210> 34
<211> 329
<212> PRT
<213> Arapidopsis thaliana

<400> 34

Met Ala Leu Ser Met Glu Phe Gly Phe Ser Ile Gly Ser Cys Phe Lys
1 5 10 15

Ala Pro Asn Pro Pro Val Leu Ile Ser Ala Ser Pro Asn Lys Ile Asn
20 25 30

Phe Thr Leu Arg Arg Arg Lys Lys Arg Phe Leu Leu Arg Val Ser Ala
35 40 45

Val Ser Tyr Lys Glu Phe Ala Glu Ser Ala Leu Glu Glu Thr Arg Lys
50 55 60

Arg Ile Val Leu Glu Pro Ser His Leu Gln Glu Lys Tyr Ser Ser Met
65 70 75 80

Thr Gly Leu Asp Gly Lys Thr Glu Leu Gln Met Leu Ala Phe Lys Ser
85 90 95

Ser Lys Ile Arg Leu Leu Arg Ser Met Ala Ile Glu Asn Glu Thr Met
100 105 110

Gln Val Phe Asp Phe Ala Gly Phe Met Glu Pro Glu Tyr Asp Thr Pro
115 120 125

Ile Phe Cys Ala Asn Phe Phe Thr Ser Thr Asn Val Asn Ile Val Val
130 135 140

Leu Asp Leu Asn Pro Leu His Gln Leu Thr Asp Gln Thr Asp Tyr Gln
145 150 155 160

Asp Lys Tyr Tyr Asn Lys Ile Met Ser Ile Tyr His Lys Tyr Ala Glu
165 170 175

Thr Phe Pro Trp Gly Gly Lys Leu Thr Gly Glu Ser Ile Lys Phe Phe

Ser Pro Leu Val Met Trp Thr Arg Phe Ser Ser Ser Lys Glu Lys His
195 200 205

Lys Ala Leu Phe Ser Ala Phe Leu Glu Tyr Tyr Gln Ala Trp Leu Glu
210 215 220

Met Thr Ile Gln Val Arg Glu Glu Met Glu Pro Ser His Val Arg Ala
225 230 235 240

Asn Cys Glu Ala Gln His Lys Tyr Leu Thr Trp Arg Ala Gln Lys Asp
245 250 255

Pro Gly His Gly Leu Leu Lys Arg Leu Val Gly Glu Ala Lys Ala Lys
260 265 270

Glu Leu Leu Arg Asp Phe Leu Phe Asn Gly Val Asp Glu Leu Gly Thr
275 280 285

Lys Thr Phe Ile Asp Tyr Phe Pro Glu Tyr Gln Thr Glu Asp Gly Thr
290 295 300

Val	Ser	Asp	Lys	Arg	Ser	Ile	Ile	Gly	Lys	Ser	Tyr	Glu	Thr	Arg	Pro
305					310					315					320

Trp Asp Leu Thr Gly Gln Phe Ile Gly
325

<210> 35

<211> 236

<212> PRT

<213> Synechococcus sp.

<400> 35

```

Met Phe Asp Ser Phe Leu Asn Glu Leu His Ser Asp Ile Thr Lys Arg
1          5           10          15

```

Gly Gly Ser Pro Leu Pro Leu Pro Glu Gly Leu Glu Glu Cys Arg Ser
 20 25 30

Ser Lys Ser Ser Val Ile Gln Ser Trp Leu Trp Asp Val Pro Gly
35 40 45

Phe Arg Arg Trp Arg Val Thr Arg Leu Asp Ala Gly Asp Ser Leu Gln
50 55 60

Val Phe Asn Ser Val Ala Tyr Pro Asp Tyr Asn Tyr Asp His Pro Leu
65 70 75 80

Met Gly Val Asp Leu Leu Trp Phe Gly Ala Arg Gln Lys Leu Val Ala
85 90 95

Val Leu Asp Phe Gln Pro Leu Val Gln Asp Lys Asp Tyr Leu Asp Arg
100 105 110

Tyr Phe Ser Gly Leu Lys Glu Leu Asn Gln Arg Phe Pro Asp Leu Asn
 115 120 125

Gly Glu Glu Thr Met Arg Ser Phe Asp Pro Asn Gln Tyr Phe Ser Ser
 130 135 140

Trp Leu Leu Phe Cys Arg Gly Gly Ala Glu Gln Ala Asp Leu Ser Leu
 145 150 155 160

Pro Lys Ala Phe Ser Ala Phe Leu Lys Ala Tyr Trp Asp Leu His Asp
 165 170 175

Asn Ala Lys Ser Ile Pro Ser Thr Ile Pro Pro Glu Glu Val Lys Asn
 180 185 190

Leu Gln Asp Lys Tyr Asp Ile Tyr Ser Ala Glu Arg Asp Pro Ala His
 195 200 205

Gly Leu Phe Thr Ser His Phe Gly Lys Asp Trp Ser Asn Arg Phe Leu
 210 215 220

His Glu Phe Leu Phe Pro Ala Ser Ser Ser His Lys
 225 230 235

<210> 36
 <211> 257
 <212> PRT
 <213> Synechococcus sp.

<400> 36

Met Thr Asn Gln Arg Phe Lys Ser Thr Asp Pro Val Asn Ile Glu Gly
 1 5 10 15

Trp Ser Trp Gln Pro Phe Leu Glu Asp Ala Ile Lys Arg Leu Glu Gly
 20 25 30

Leu Asn Val Glu Pro Tyr Pro Val Pro Asp Arg Phe Leu Gln Arg Glu
 35 40 45

Asp Gln Thr Gly Ser Lys Ser Lys Ser Ile Pro Val Thr Thr Ala Thr
 50 55 60

Trp Ala Cys Lys Thr Glu Lys Phe Arg Gln Val Arg Ala Ala Cys Val
 65 70 75 80

Ser Ala Gly Ser Ala Ala Ser Val Leu Asn Phe Val Ile Asn Pro Lys
 85 90 95

Ser Thr Tyr Gly Leu Pro Phe Phe Gly Gly Asp Leu Val Thr Phe Pro
 100 105 110

Ala Gly His Leu Leu Ala Leu Asp Leu Gln Pro Ala Ile Lys Thr Asp
 115 120 125

Glu Val His Thr Thr His Val Trp Asp Arg Leu Ile Pro Ile Phe Glu
130 135 140

Arg Trp Arg Asp Gln Leu Pro Tyr Gly Gly Pro Ile Pro Glu Glu Ala
145 150 155 160

Gln Pro Phe Phe Ser Pro Gly Phe Leu Trp Thr Arg Leu Pro Leu Gly
165 170 175

Glu Glu Gly Asp Glu Leu Ile Gln Ser Ile Val Arg Pro Ala Phe Asn
180 185 190

Asp Tyr Leu Asp Leu Tyr Leu Glu Leu Ala Ala Ser Ala Glu Arg Val
195 200 205

Thr Asp Glu Arg Ser Glu Val Leu Leu Gln Gly Gln Arg Lys Tyr Thr
210 215 220

Asp Tyr Arg Ala Glu Lys Asp Pro Ala Arg Gly Met Leu Thr Arg Phe
225 230 235 240

His Gly Ser Glu Trp Thr Glu Ala Tyr Ile His Thr Val Leu Phe Asp
245 250 255

Leu

<210> 37

<211> 241

<212> PRT

<213> Prochlorococcus marinus

<400> 37

Met Asn Lys Leu Met Leu Gln Asp Leu His Asn Asn Leu Lys Arg Arg
1 5 10 15

Ile Ile Ser His Gly Gly Lys Pro Ile Glu Val Glu Asn Gly Met Ser
20 25 30

Glu Arg Phe Ser His Lys Gln Asp Thr Val Ile Lys Ser Trp Leu Trp
35 40 45

Asp Val Pro Gly Phe Arg Arg Trp Arg Val Thr Arg Met Asp Ala Gly
50 55 60

Asp Lys Leu Gln Val Leu Asn Ser Val Ala Tyr Pro Ala Tyr Thr Asn
65 70 75 80

Asp Lys Pro Ile Leu Gly Ile Asp Ile Leu Trp Phe Gly Leu Lys Arg
85 90 95

Lys Leu Val Ala Val Leu Asp Phe Gln Pro Leu Val Gln Glu Glu Arg
100 105 110

Tyr Phe Cys Arg Tyr Tyr Lys Asp Leu Gln Ile Leu Lys Asn Arg Phe

115

120

125

Val Asp Phe Asn Ser Gln Lys Thr Met Lys Ile Tyr Asp Ser Asn Lys
130 135 140

Tyr Phe Ser Pro Trp Val Leu Leu Tyr Asn Gly Ser Phe Asp Asp Leu
145 150 155 160

Gln Cys Ser Leu Ala Lys Ile Leu Asp Glu Phe Leu His Ala Tyr Trp
165 170 175

Gln Val Asp Asn Asn Asn Ser Arg Glu Tyr Ile Lys Ile Ile Pro Ser
180 185 190

Lys Val Glu Gln Leu His Ile Asn Tyr Asp Ile Tyr Ser Ala Glu Arg
195 200 205

Asp Pro Ala His Gly Leu Phe Lys Ser Tyr Phe Gly Gln Thr Trp Ala
210 215 220

Asp Gln Phe Val Arg Glu Phe Leu Phe Pro His Ser His Leu Thr Ala
225 230 235 240

Asp

<210> 38

<211> 257

<212> PRT

<213> PROCHLOROCOCCUS MARINUS

<400> 38

Met Ile Ile Lys Arg Asp Asn Ser Leu Ser Lys Ile Asp Leu Arg Asp
1 5 10 15

Trp Ile Trp Thr Pro Phe Phe Asn Asp Leu Val Asp Lys Leu Ser Val
20 25 30

Phe Glu Ile Glu Pro Tyr Pro Val Ser His Asp Phe Leu Ser Lys Glu
35 40 45

Ser Ile Thr Gly Ser Arg Arg Asn Pro Val His Val Thr Thr Leu Thr
50 55 60

Trp Ala Ala Lys Phe Glu Lys Ile Lys Gln Val Arg Leu Ala Cys Ile
65 70 75 80

Lys Gly Gly Glu Ser Leu Ser Val Phe Asn Leu Leu Ile His Pro Leu
85 90 95

Asn Asp Tyr Asp Leu Pro Phe Phe Gly Ala Asp Phe Val Thr Leu Pro
100 105 110

Asn Gly His Leu Leu Ala Leu Asp Leu Gln Pro Ala Leu Lys Leu Asp
115 120 125

Asn	Ile	His	Thr	Glu	Asn	Val	Trp	Pro	Arg	Leu	Ile	Pro	Leu	His	Asp
	130					135					140				
His	Trp	Gln	Ser	Leu	Leu	Pro	Ser	Gly	Gly	Glu	Ile	Pro	Lys	Glu	Ala
	145					150				155			160		
Glu	Pro	Tyr	Phe	Ser	Pro	Gly	Phe	Leu	Trp	Ser	Arg	Leu	Pro	Leu	Ser
						165				170			175		
Lys	Glu	Ser	Asp	Asn	Ile	Ile	Ser	Glu	Ile	Leu	Arg	Pro	Ala	Phe	Gly
						180				185			190		
Glu	Tyr	Leu	Ser	Leu	Tyr	Ile	Glu	Leu	Leu	His	Ile	Ala	Lys	Pro	Leu
						195				200			205		
Lys	Lys	Glu	Arg	Ala	Leu	Lys	Ile	Leu	Glu	Gly	Gln	Lys	Ala	Tyr	Ile
						210				215			220		
Asn	Tyr	Arg	Ser	Thr	Lys	Asp	Pro	Ala	Arg	Ala	Met	Leu	Cys	Arg	Phe
						225				230			235		240
Tyr	Gly	Lys	Glu	Trp	Thr	Glu	Asp	Tyr	Ile	His	Lys	Val	Leu	Phe	Asn
						245				250			255		

Ile

<210>	39
<211>	248
<212>	PRT
<213>	Synechocystis sp.

<400> 39

Met	Ala	Val	Thr	Asp	Leu	Ser	Leu	Thr	Asn	Ser	Ser	Leu	Met	Pro	Thr
1					5				10				15		

Leu	Asn	Pro	Met	Ile	Gln	Gln	Leu	Ala	Leu	Ala	Ile	Ala	Ala	Ser	Trp
					20				25				30		

Gln	Ser	Leu	Pro	Leu	Lys	Pro	Tyr	Gln	Leu	Pro	Glu	Asp	Leu	Gly	Tyr
					35				40			45			

Val	Glu	Gly	Arg	Leu	Glu	Gly	Glu	Lys	Leu	Val	Ile	Glu	Asn	Arg	Cys
					50				55			60			

Tyr	Gln	Thr	Pro	Gln	Phe	Arg	Lys	Met	His	Leu	Glu	Leu	Ala	Lys	Val
						65				70			75		80

Gly	Lys	Gly	Leu	Asp	Ile	Leu	His	Cys	Val	Met	Phe	Pro	Glu	Pro	Leu
									85			90		95	

Tyr	Gly	Leu	Pro	Leu	Phe	Gly	Cys	Asp	Ile	Val	Ala	Gly	Pro	Gly	Gly
									100			105		110	

Val Ser Ala Ala Ile Ala Asp Leu Ser Pro Thr Gln Ser Asp Arg Gln
 115 120 125
 Leu Pro Ala Ala Tyr Gln Lys Ser Leu Ala Glu Leu Gly Gln Pro Glu
 130 135 140
 Phe Glu Gln Gln Arg Glu Leu Pro Pro Trp Gly Glu Ile Phe Ser Glu
 145 150 155 160
 Tyr Cys Leu Phe Ile Arg Pro Ser Asn Val Thr Glu Glu Glu Arg Phe
 165 170 175
 Val Gln Arg Val Val Asp Phe Leu Gln Ile His Cys His Gln Ser Ile
 180 185 190
 Val Ala Glu Pro Leu Ser Glu Ala Gln Thr Leu Glu His Arg Gln Gly
 195 200 205
 Gln Ile His Tyr Cys Gln Gln Gln Lys Asn Asp Lys Thr Arg Arg
 210 215 220
 Val Leu Glu Lys Ala Phe Gly Glu Ala Trp Ala Glu Arg Tyr Met Ser
 225 230 235 240
 Gln Val Leu Phe Asp Val Ile Gln
 245
 <210> 40
 <211> 490
 <212> PRT
 <213> Anabaena sp.
 <400> 40
 Met Ser Leu Thr Ser Ile Pro Ser Leu Arg Glu Gln Gln His Pro Leu
 1 5 10 15
 Ile Arg Gln Leu Ala Asp Cys Ile Glu Glu Val Trp His Gln His Leu
 20 25 30
 Asp Leu Ser Pro Tyr His Leu Pro Ala Glu Leu Gly Tyr Val Glu Gly
 35 40 45
 Arg Leu Glu Gly Glu Lys Leu Thr Ile Glu Asn Arg Cys Tyr Gln Thr
 50 55 60
 Pro Gln Phe Arg Lys Met His Leu Glu Leu Ala Lys Val Gly Asn Met
 65 70 75 80
 Leu Asp Ile Leu His Cys Val Met Phe Pro Arg Pro Glu Tyr Asp Leu
 85 90 95
 Pro Met Phe Gly Cys Asp Leu Val Gly Gly Arg Gly Gln Ile Ser Ala
 100 105 110
 Ala Ile Ala Asp Leu Ser Pro Val His Leu Asp Arg Thr Leu Pro Glu

115	120	125
Ser Tyr Asn Ser Ala Leu Thr Ser Leu Asn Thr Leu Asn Phe Ser Gln		
130	135	140
Pro Arg Glu Leu Pro Glu Trp Gly Asn Ile Phe Ser Asp Phe Cys Ile		
145	150	155
Phe Val Arg Pro Ser Ser Pro Glu Glu Glu Ala Met Phe Leu Gly Arg		
165	170	175
Val Arg Glu Phe Leu Gln Val His Cys Gln Gly Ala Ile Ala Ala Ser		
180	185	190
Pro Val Ser Ala Glu Gln Lys Gln Gln Ile Leu Ala Gly Gln His Asn		
195	200	205
Tyr Cys Ser Lys Gln Gln Asn Asp Lys Thr Arg Arg Val Leu Glu		
210	215	220
Lys Ala Phe Gly Val Asp Trp Ala Glu Asn Tyr Met Thr Thr Val Leu		
225	230	235
240		
Phe Asp Leu Pro Glu Met Ser Leu Thr Ser Ile Pro Ser Leu Arg Glu		
245	250	255
Gln Gln His Pro Leu Ile Arg Gln Leu Ala Asp Cys Ile Glu Glu Val		
260	265	270
Trp His Gln His Leu Asp Leu Ser Pro Tyr His Leu Pro Ala Glu Leu		
275	280	285
Gly Tyr Val Glu Gly Arg Leu Glu Gly Glu Lys Leu Thr Ile Glu Asn		
290	295	300
Arg Cys Tyr Gln Thr Pro Gln Phe Arg Lys Met His Leu Glu Leu Ala		
305	310	315
320		
Lys Val Gly Asn Met Leu Asp Ile Leu His Cys Val Met Phe Pro Arg		
325	330	335
Pro Glu Tyr Asp Leu Pro Met Phe Gly Cys Asp Leu Val Gly Gly Arg		
340	345	350
Gly Gln Ile Ser Ala Ala Ile Ala Asp Leu Ser Pro Val His Leu Asp		
355	360	365
Arg Thr Leu Pro Glu Ser Tyr Asn Ser Ala Leu Thr Ser Leu Asn Thr		
370	375	380
Leu Asn Phe Ser Gln Pro Arg Glu Leu Pro Glu Trp Gly Asn Ile Phe		
385	390	395
400		
Ser Asp Phe Cys Ile Phe Val Arg Pro Ser Ser Pro Glu Glu Ala		
405	410	415

Met Phe Leu Gly Arg Val Arg Glu Phe Leu Gln Val His Cys Gln Gly
 420 425 430

 Ala Ile Ala Ala Ser Pro Val Ser Ala Glu Gln Lys Gln Gln Ile Leu
 435 440 445

 Ala Gly Gln His Asn Tyr Cys Ser Lys Gln Gln Gln Asn Asp Lys Thr
 450 455 460

 Arg Arg Val Leu Glu Lys Ala Phe Gly Val Asp Trp Ala Glu Asn Tyr
 465 470 475 480

 Met Thr Thr Val Leu Phe Asp Leu Pro Glu
 485 490

 <210> 41
 <211> 245
 <212> PRT
 <213> Nostoc punctiforme

 <400> 41

 Met Ser Phe Thr Ser Met Pro Ser Leu Arg Glu Gln Gln His Pro Leu
 1 5 10 15

 Ile Arg Gln Leu Ala Asp Cys Ile Glu Ala Ala Trp His Gln His Leu
 20 25 30

 Asp Leu Ser Pro Tyr His Leu Pro Asp Glu Leu Gly Tyr Val Glu Gly
 35 40 45

 Arg Leu Glu Gly Glu Lys Leu Thr Ile Glu Asn Arg Cys Tyr Gln Thr
 50 55 60

 Pro Gln Phe Arg Lys Met His Leu Glu Leu Ala Asn Ile Gly Asn Met
 65 70 75 80

 Leu Asp Ile Leu His Cys Val Met Phe Pro Arg Pro Gln Tyr Asn Leu
 85 90 95

 Pro Met Phe Gly Cys Asp Leu Val Gly Gly Arg Gly Gln Ile Ser Ala
 100 105 110

 Ala Ile Ala Asp Leu Ser Pro Ile Gln Leu Glu Arg Thr Leu Pro Glu
 115 120 125

 Ser Tyr Thr Thr Ala Leu Ala Gln Leu Pro Val Leu Asn Phe Ser Gln
 130 135 140

 Pro Arg Glu Leu Pro Glu Trp Gly Asn Ile Phe Ser Asp Phe Cys Ile
 145 150 155 160

 Phe Val Arg Pro Gly Ser Pro Glu Glu Ala Met Phe Leu Ser Arg
 165 170 175

 Val Arg Glu Phe Leu Asp Ile His Cys Met Gln Ala Ile Ala Ser His

180	185	190
Pro Val Ser Val Glu Gln Val Thr Gln Asn Leu Ala Gly Gln His Asn		
195	200	205
Tyr Cys Thr Lys Gln Gln Asn Asp Lys Thr Arg Arg Val Leu Glu		
210	215	220
Lys Ala Phe Gly Pro Val Trp Ala Glu Asn Tyr Met Thr Thr Val Leu		
225	230	235
Phe Asp Leu Pro Thr		
245		
<210> 42		
<211> 248		
<212> PRT		
<213> Synechocystis sp.		
<400> 42		
Met Ala Val Thr Asp Leu Ser Leu Thr Asn Ser Ser Leu Met Pro Thr		
1	5	10
		15
Leu Asn Pro Met Ile Gln Gln Leu Ala Leu Ala Ile Ala Ser Trp		
20	25	30
Gln Ser Leu Pro Leu Lys Pro Tyr Gln Leu Pro Glu Asp Leu Gly Tyr		
35	40	45
Val Glu Gly Arg Leu Glu Gly Glu Lys Leu Val Ile Glu Asn Arg Cys		
50	55	60
Tyr Gln Thr Pro Gln Phe Arg Lys Met His Leu Glu Leu Ala Lys Val		
65	70	75
		80
Gly Lys Gly Leu Asp Ile Leu His Cys Val Met Phe Pro Glu Pro Leu		
85	90	95
Tyr Gly Leu Pro Leu Phe Gly Cys Asp Ile Val Ala Gly Pro Gly Gly		
100	105	110
Val Ser Ala Ala Ile Ala Asp Leu Ser Pro Thr Gln Ser Asp Arg Gln		
115	120	125
Leu Pro Ala Ala Tyr Gln Lys Ser Leu Ala Glu Leu Gly Gln Pro Glu		
130	135	140
Phe Glu Gln Gln Arg Glu Leu Pro Pro Trp Gly Glu Ile Phe Ser Glu		
145	150	155
		160
Tyr Cys Leu Phe Ile Arg Pro Ser Asn Val Thr Glu Glu Glu Arg Phe		
165	170	175
Val Gln Arg Val Val Asp Phe Leu Gln Ile His Cys His Gln Ser Ile		
180	185	190

Val Ala Glu Pro Leu Ser Glu Ala Gln Thr Leu Glu His Arg Gln Gly
 195 200 205

 Gln Ile His Tyr Cys Gln Gln Gln Lys Asn Asp Lys Thr Arg Arg
 210 215 220

 Val Leu Glu Lys Ala Phe Gly Glu Ala Trp Ala Glu Arg Tyr Met Ser
 225 230 235 240

 Gln Val Leu Phe Asp Val Ile Gln
 245

 <210> 43
 <211> 247
 <212> PRT
 <213> Synechocystis sp.

 <400> 43

 Met Gln Ser Pro Pro Ser Glu Ser Ser Ser Thr Val Ala Pro Leu Ile
 1 5 10 15

 Pro Ser Leu Ala Glu Thr Ile Arg Gly Ala Trp Ile Gly Leu Pro Glu
 20 25 30

 Leu Lys Pro Leu Asp Ala Asp Ser Asp Phe Ser Ser Ile Glu Gly Gln
 35 40 45

 Leu Glu Gly Asp Asp Leu Leu Ile Arg Asn Glu Leu Leu Cys Cys Arg
 50 55 60

 Val Gly Arg Lys Ile His Leu Glu Leu Ala Arg Leu Gly Arg Gly Leu
 65 70 75 80

 Gln Ile Leu His Cys Val Trp Phe Pro Asp Pro Arg Phe Asp Leu Pro
 85 90 95

 Ile Phe Gly Ala Asp Ile Val Ala Gly Pro Ala Gly Val Ser Ala Ala
 100 105 110

 Ile Val Asp Leu Ser Pro Val Ser Gly Thr Leu Pro Ser Gly Ile Glu
 115 120 125

 Thr Ala Leu Ala Gly Thr Pro Ser Pro Ala Phe Arg Gln Val Arg Asp
 130 135 140

 Leu Pro Gly Trp Gly Thr Ile Phe Ser Pro His Val Cys Phe Ile Arg
 145 150 155 160

 Pro Asp Gly Ala Glu Glu Glu Val Leu Phe Arg Ser Arg Val Glu Glu
 165 170 175

 Val Leu Thr Ile Leu Arg Thr Ala Val Leu Gln Thr Ala Cys Glu Pro
 180 185 190

Ala Thr Ala Ala Ser Thr Ile Arg Arg Tyr Glu Gly Gln Leu Ser Tyr
195 200 205

Cys Leu Gln Gln Lys Arg Asn Asp Lys Thr Arg Arg Val Leu Glu Lys
210 215 220

Ala Phe Asp Ala Ser Trp Ala Asp Arg Tyr Ile Glu Glu Leu Leu Phe
225 230 235 240

Asp Asp Pro Leu Pro Pro Gly
245

<210> 44

<211> 243

<212> PRT

<213> Prochlorococcus marinus

<400> 44

Leu Asn Leu Leu Ser Lys Ser Leu Thr Lys Thr Lys Leu Ile Asp Pro
1 5 10 15

Leu Ile Leu Thr Leu Leu Gln Asn Ile Lys Val Gln Arg Ser Lys Leu
20 25 30

Asn Asp Leu Asn Cys Ile Glu Val Asp Pro Lys Leu Ser Asn Ile Ile
35 40 45

Ser Asn Glu Glu Gly Lys Glu Leu Tyr Ile Glu Asn Glu Phe Tyr Lys
50 55 60

Ala Lys Gly Phe Arg Lys Leu His Ile Glu Val Ala Glu Phe Ser Lys
65 70 75 80

Ser Leu Lys Ile Leu His Cys Val Phe Phe Pro Asp Pro Lys Tyr Asp
85 90 95

Ile Pro Ile Phe Gly Met Asp Leu Val Lys Val Asn Glu Leu Val Ser
100 105 110

Ala Ala Ile Val Asp Leu Ser Pro Ser Ser Lys Asn Gln Asn Leu Lys
115 120 125

Tyr Asp His Leu Leu Ser His Ile Asp Lys Ser Val Phe Lys Ser Lys
130 135 140

Arg Glu Ile Pro Ile Trp Gly Asn Ile Phe Ser Lys Asn Val Phe Phe
145 150 155 160

Ala Ser Leu Lys Asn Glu Ser Glu Lys Asn Ala Phe Cys Lys Ile Val
165 170 175

Asp Asn Tyr Leu Ser Val Leu Ile Gln Leu Ser Gln Ser Thr Ser Pro
180 185 190

Asp Ser Asp Tyr Glu Ile Ile Glu Glu Arg Ile Asn Tyr Gln Lys Asn

195

200

205

Tyr Cys Val Gln Gln Met Lys Asn Glu Lys Thr Ser Leu Val Leu Leu
210 215 220

Lys Tyr Phe Asp Lys Val Trp Val Asp Glu Tyr Ile Lys Lys Val Leu
225 230 235 240

Phe Asp Phe

<210> 45
<211> 236
<212> PRT
<213> Synechocystis sp.

<400> 45

Met Phe Asp Ser Phe Leu Asn Glu Leu His Ser Asp Ile Thr Lys Arg
1 5 10 15

Gly Gly Ser Pro Leu Pro Leu Pro Glu Gly Leu Glu Glu Cys Arg Ser
20 25 30

Ser Lys Ser Ser Ser Val Ile Gln Ser Trp Leu Trp Asp Val Pro Gly
35 40 45

Phe Arg Arg Trp Arg Val Thr Arg Leu Asp Ala Gly Asp Ser Leu Gln
50 55 60

Val Phe Asn Ser Val Ala Tyr Pro Asp Tyr Asn Tyr Asp His Pro Leu
65 70 75 80

Met Gly Val Asp Leu Leu Trp Phe Gly Ala Arg Gln Lys Leu Val Ala
85 90 95

Val Leu Asp Phe Gln Pro Leu Val Gln Asp Lys Asp Tyr Leu Asp Arg
100 105 110

Tyr Phe Ser Gly Leu Lys Glu Leu Asn Gln Arg Phe Pro Asp Leu Asn
115 120 125

Gly Glu Glu Thr Met Arg Ser Phe Asp Pro Asn Gln Tyr Phe Ser Ser
130 135 140

Trp Leu Leu Phe Cys Arg Gly Gly Ala Glu Gln Ala Asp Leu Ser Leu
145 150 155 160

Pro Lys Ala Phe Ser Ala Phe Leu Lys Ala Tyr Trp Asp Leu His Asp
165 170 175

Asn Ala Lys Ser Ile Pro Ser Thr Ile Pro Pro Glu Glu Val Lys Asn
180 185 190

Leu Gln Asp Lys Tyr Asp Ile Tyr Ser Ala Glu Arg Asp Pro Ala His
195 200 205

Gly Leu Phe Thr Ser His Phe Gly Lys Asp Trp Ser Asn Arg Phe Leu
 210 215 220
 His Glu Phe Leu Phe Pro Ala Ser Ser Ser His Lys
 225 230 235
 <210> 46
 <211> 235
 <212> PRT
 <213> Synechocystis sp.
 <400> 46
 Met Phe Asp Pro Phe Leu Glu Glu Leu Gln Thr Gly Ile Gln Ala Arg
 1 5 10 15
 Gly Gly Ile Ser Val Glu Val Pro Ala Gly Leu Glu His Asn Gln Ser
 20 25 30
 Gln Lys Gly Ser Ser Thr Ile Gln Ser Trp Leu Trp Gln Val Pro Gly
 35 40 45
 Phe Arg Arg Trp Arg Val Thr Arg Leu Asp Ala Gly Asp Ser Leu Gln
 50 55 60
 Val Leu Asn Ser Val Ala Tyr Pro Asp Phe Asp Leu Asp His Pro Leu
 65 70 75 80
 Met Gly Val Asp Leu Leu Trp Phe Gly Ala Arg Gln Lys Leu Val Ala
 85 90 95
 Val Leu Asp Phe Gln Pro Leu Val Gln Asp Lys Asp Tyr Leu Asp Arg
 100 105 110
 His Phe Asp Gly Leu Lys Asp Leu Asn Ala Arg Phe Pro Asp Leu Asn
 115 120 125
 Gly Glu Glu Thr Met Arg Ser Phe Asp Pro Asn Gln Tyr Phe Ser Ser
 130 135 140
 Trp Leu Leu Phe Cys Arg Gly Ser Glu Glu Ala Asp Arg Ser Leu
 145 150 155 160
 Pro Lys Ala Phe Ser Ala Phe Leu Lys Ala Tyr Trp Gly Leu His Asp
 165 170 175
 Glu Ala Ser Lys Glu Pro Ser Ser Ile Ser Pro Gly Asp Val Glu Arg
 180 185 190
 Leu Gln Asn Ala Tyr Asp Val Tyr Ser Ala Glu Arg Asp Pro Ala His
 195 200 205
 Gly Leu Phe Thr Ser His Phe Gly Lys Glu Trp Ser Asp Arg Phe Leu
 210 215 220

His	Glu	Phe	Leu	Phe	Pro	Ala	Ser	Gln	Pro	Ala					
225					230					235					
<210> 47															
<211> 241															
<212> PRT															
<213> Prochlorococcus sp.															
<400> 47															
Met	Asn	Lys	Leu	Met	Leu	Gln	Asp	Leu	His	Asn	Asn	Leu	Lys	Arg	Arg
1						5			10				15		
Ile	Ile	Ser	His	Gly	Gly	Lys	Pro	Ile	Glu	Val	Glu	Asn	Gly	Met	Ser
						20			25			30			
Glu	Arg	Phe	Ser	His	Lys	Gln	Asp	Thr	Val	Ile	Lys	Ser	Trp	Leu	Trp
						35			40			45			
Asp	Val	Pro	Gly	Phe	Arg	Arg	Trp	Arg	Val	Thr	Arg	Met	Asp	Ala	Gly
					50				55			60			
Asp	Lys	Leu	Gln	Val	Leu	Asn	Ser	Val	Ala	Tyr	Pro	Ala	Tyr	Thr	Asn
						65			70			75			80
Asp	Lys	Pro	Ile	Leu	Gly	Ile	Asp	Ile	Leu	Trp	Phe	Gly	Leu	Lys	Arg
						85			90			95			
Lys	Leu	Val	Ala	Val	Leu	Asp	Phe	Gln	Pro	Leu	Val	Gln	Glu	Glu	Arg
						100			105			110			
Tyr	Phe	Cys	Arg	Tyr	Tyr	Lys	Asp	Leu	Gln	Ile	Leu	Lys	Asn	Arg	Phe
						115			120			125			
Val	Asp	Phe	Asn	Ser	Gln	Lys	Thr	Met	Lys	Ile	Tyr	Asp	Ser	Asn	Lys
						130			135			140			
Tyr	Phe	Ser	Pro	Trp	Val	Leu	Leu	Tyr	Asn	Gly	Ser	Phe	Asp	Asp	Leu
						145			150			155			160
Gln	Cys	Ser	Leu	Ala	Lys	Ile	Leu	Asp	Glu	Phe	Leu	His	Ala	Tyr	Trp
						165			170			175			
Gln	Val	Asp	Asn	Asn	Asn	Ser	Arg	Glu	Tyr	Ile	Lys	Ile	Ile	Pro	Ser
						180			185			190			
Lys	Val	Glu	Gln	Leu	His	Ile	Asn	Tyr	Asp	Ile	Tyr	Ser	Ala	Glu	Arg
						195			200			205			
Asp	Pro	Ala	His	Gly	Leu	Phe	Lys	Ser	Tyr	Phe	Gly	Gln	Thr	Trp	Ala
						210			215			220			
Asp	Gln	Phe	Val	Arg	Glu	Phe	Leu	Phe	Pro	His	Ser	His	Leu	Thr	Ala
						225			230			235			240

<210> 48
<211> 236
<212> PRT
<213> Prochlorococcus sp.

<400> 48

Met Phe Glu Ser Leu Lys Asn Phe Val Lys Thr Asn Ile Glu Asp Leu
1 5 10 15

Asp Gly Lys Glu Leu Glu Ile Ser Lys Glu Phe Lys Glu His His Asn
20 25 30

Lys Asp Ser Lys Tyr Ile Ile Lys Asn Trp Ile Phe Glu Ser Gln Gln
35 40 45

Tyr Arg Lys Trp Arg Ile Thr Lys Leu Asp Gly Gly Asp Lys Leu Gln
50 55 60

Val Phe Asn Thr Val Ala Tyr Pro Asn Phe Lys Ser Glu Phe Pro Ile
65 70 75 80

Leu Gly Ala Asp Ile Leu Trp Phe Gly Thr Ser Gln Lys Leu Leu Ala
85 90 95

Ile Phe Asp Tyr Gln Pro Leu Ile Gln Glu Lys Lys Tyr Leu Gln Lys
100 105 110

Tyr Cys Ser Ser Leu Asp Phe Ile Lys Asn Gln Tyr Ser Val Phe Asp
115 120 125

Asn His Lys Met Lys Asn Ile Tyr Asp Ser Lys Lys Tyr Phe Ser Pro
130 135 140

Trp Val Met Ile Cys Arg Gly Asn Lys Leu Asn Leu Asp Arg Asp Leu
145 150 155 160

Asn Asn Ile Phe Cys Ser Phe Val Ser Asn Tyr Leu Thr Ile Asn Lys
165 170 175

Leu His Gln Asn Asn Gln Phe Leu Asp Leu Glu Gln Ile Lys Asn Asn
180 185 190

Gln Ile Asp Tyr Asp Lys Tyr Ser Ala Glu Lys Asp Pro Ala Asp Lys
195 200 205

Leu Phe Lys Thr Phe Phe Gly Glu Thr Trp Thr Glu Asn Phe Ile Asn
210 215 220

Asn Phe Leu Phe Thr Leu Asn His Asn Pro Leu Lys
225 230 235

<210> 49
<211> 280

<212> PRT

<213> Nostoc punctiforme

<400> 49

Met Leu Asn Ser Gln Ser Pro Leu Arg Asn Val Ala Leu Phe Leu Ile
1 5 10 15

Asn Glu Thr Cys Met Ile Ala Ile Thr Tyr Phe His Ala Arg Val Asn
20 25 30

Lys Ser Cys Ser Met Tyr Lys Pro Phe Leu Glu Phe Leu Glu Lys Glu
35 40 45

Leu Phe Gln Arg Phe Asp Leu Gln Ser Arg Val Ile Pro Pro Gly Leu
50 55 60

Glu Phe Lys Val Ser Asp Arg Gly Arg Asn Pro Ala Thr Ile Arg Ser
65 70 75 80

Trp Cys Tyr Gln Ser Gln Glu Leu Arg Lys Ile Arg Tyr Thr Tyr Ile
85 90 95

Asp Ala Gly Glu Ser Ala Gln Ile Phe Asn Ser Val Val Tyr Pro Ser
100 105 110

His Asn Tyr Asp Leu Pro Leu Leu Gly Ile Asp Phe Leu Ser Phe Gly
115 120 125

Lys Val Lys Asn Leu Ile Val Leu Asp Phe Gln Pro Leu Phe Gln Asp
130 135 140

Glu Asp Tyr Gln Asn Lys Tyr Ile Ala Pro Leu Lys Tyr Leu His Asn
145 150 155 160

Lys Tyr Pro Asp Leu Ala Gln Asn Leu Glu Met Lys Phe Tyr Asp Ala
165 170 175

Asn Gln Tyr Phe Ser Lys Tyr Leu Leu Phe Ala Lys Thr Asp Ala Glu
180 185 190

Thr Val Ser Thr Arg Val Phe Glu Ala Phe Gln Asp Tyr Leu Asn Leu
195 200 205

Tyr Trp Gln Met Leu Ala Asp Ala Gln Ala Leu His Asp Pro Glu Asp
210 215 220

Ile Gln Arg Ile Val Lys Ala Gln Lys Asp Tyr Asp Gln Tyr Ser Ala
225 230 235 240

Asp Arg Asp Pro Ala Ser Gly Leu Phe Ser Ser Tyr Phe Gly His Glu
245 250 255

Trp Ala Glu Arg Phe Leu His Glu Phe Leu Phe Glu Asp Ala Val Pro
260 265 270

Leu Ala Val Ser Ala Ser Lys Arg
275 280

<210> 50
<211> 257
<212> PRT
<213> Synechocystis sp.

<400> 50

Met Thr Asn Gln Arg Phe Lys Ser Thr Asp Pro Val Asn Ile Glu Gly
1 5 10 15

Trp Ser Trp Gln Pro Phe Leu Glu Asp Ala Ile Lys Arg Leu Glu Gly
20 25 30

Leu Asn Val Glu Pro Tyr Pro Val Pro Asp Arg Phe Leu Gln Arg Glu
35 40 45

Asp Gln Thr Gly Ser Lys Ser Ile Pro Val Thr Thr Ala Thr
50 55 60

Trp Ala Cys Lys Thr Glu Lys Phe Arg Gln Val Arg Ala Ala Cys Val
65 70 75 80

Ser Ala Gly Ser Ala Ala Ser Val Leu Asn Phe Val Ile Asn Pro Lys
85 90 95

Ser Thr Tyr Gly Leu Pro Phe Phe Gly Asp Leu Val Thr Phe Pro
100 105 110

Ala Gly His Leu Leu Ala Leu Asp Leu Gln Pro Ala Ile Lys Thr Asp
115 120 125

Glu Val His Thr Thr His Val Trp Asp Arg Leu Ile Pro Ile Phe Glu
130 135 140

Arg Trp Arg Asp Gln Leu Pro Tyr Gly Gly Pro Ile Pro Glu Glu Ala
145 150 155 160

Gln Pro Phe Phe Ser Pro Gly Phe Leu Trp Thr Arg Leu Pro Leu Gly
165 170 175

Glu Glu Gly Asp Glu Leu Ile Gln Ser Ile Val Arg Pro Ala Phe Asn
180 185 190

Asp Tyr Leu Asp Leu Tyr Leu Glu Leu Ala Ala Ser Ala Glu Arg Val
195 200 205

Thr Asp Glu Arg Ser Glu Val Leu Leu Gln Gly Gln Arg Lys Tyr Thr
210 215 220

Asp Tyr Arg Ala Glu Lys Asp Pro Ala Arg Gly Met Leu Thr Arg Phe
225 230 235 240

His Gly Ser Glu Trp Thr Glu Ala Tyr Ile His Thr Val Leu Phe Asp

245

250

255

Leu

<210> 51
<211> 262
<212> PRT
<213> Synechocystis sp.

<400> 51

Met Ser Ile Asp Leu Arg Ala Ser Ser Leu Asp Pro Val Gln Ile Pro
1 5 10 15

Gly Trp Arg Trp Gln Pro Phe Leu Asp Glu Ala Ser Ala Ala Leu Lys
20 25 30

Pro Phe Asn Pro Ser Pro Tyr Pro Ile Ala Glu Thr Phe Leu Gln Lys
35 40 45

Glu Gly Ser Thr Gly Ser Lys Ala Lys Pro Val Pro Val Thr Thr Ala
50 55 60

Thr Trp Ala Cys Ser Thr Asp Lys Leu Arg Gln Val Arg Cys Ala Cys
65 70 75 80

Val Glu Ala Gly Met Ala Ala Ser Val Leu Asn Phe Val Ile Asn Pro
85 90 95

Ser Cys Arg Phe Asp Leu Pro Phe Phe Gly Ala Asp Leu Val Thr Leu
100 105 110

Pro Asn Gly His Leu Leu Ala Leu Asp Leu Gln Pro Val Asp Lys Ala
115 120 125

Asp Pro Asp His Thr Gln Pro Val Trp Glu Arg Leu Met Pro Leu Phe
130 135 140

Glu Arg Trp Gln Ala Glu Leu Pro Asp Gly Gly Pro Ile Pro Glu Glu
145 150 155 160

Ala Gln Pro Tyr Phe Ser Pro Ala Phe Leu Trp Thr Arg Ile Pro Leu
165 170 175

Gly Glu Gly Asp Glu Leu Ile Glu Arg Val Ile Arg Pro Ala Phe
180 185 190

Ile Asp Tyr Leu Gln Leu Tyr Leu Asn Leu Val Ala Glu Ala Glu Pro
195 200 205

Val Ser Asp Asp Arg Ala Glu Leu Leu Ser Gly Gln Lys Arg Tyr
210 215 220

Thr Ala Tyr Arg Ala Glu Lys Asp Pro Ala Arg Gly Met Leu Thr Arg
225 230 235 240

Phe	Tyr	Gly	Ser	Glu	Trp	Thr	Glu	Ser	Tyr	Ile	His	Gly	Val	Leu	Phe
				245				250						255	
Asp	Leu	Glu	Asp	Ala	Ala										
				260											
<210>	52														
<211>	257														
<212>	PRT														
<213>	Prochlorococcus	marinus													
<400>	52														
Met	Ile	Ile	Lys	Arg	Asp	Asn	Ser	Leu	Ser	Lys	Ile	Asp	Leu	Arg	Asp
1			5					10					15		
Trp	Ile	Trp	Thr	Pro	Phe	Phe	Asn	Asp	Leu	Val	Asp	Lys	Leu	Ser	Val
			20				25					30			
Phe	Glu	Ile	Glu	Pro	Tyr	Pro	Val	Ser	His	Asp	Phe	Leu	Ser	Lys	Glu
		35					40					45			
Ser	Ile	Thr	Gly	Ser	Arg	Arg	Asn	Pro	Val	His	Val	Thr	Thr	Leu	Thr
		50					55					60			
Trp	Ala	Ala	Lys	Phe	Glu	Lys	Ile	Lys	Gln	Val	Arg	Leu	Ala	Cys	Ile
65				70					75			80			
Lys	Gly	Gly	Glu	Ser	Leu	Ser	Val	Phe	Asn	Leu	Leu	Ile	His	Pro	Leu
			85				90					95			
Asn	Asp	Tyr	Asp	Leu	Pro	Phe	Phe	Gly	Ala	Asp	Phe	Val	Thr	Leu	Pro
			100				105					110			
Asn	Gly	His	Leu	Leu	Ala	Leu	Asp	Leu	Gln	Pro	Ala	Leu	Lys	Leu	Asp
			115				120					125			
Asn	Ile	His	Thr	Glu	Asn	Val	Trp	Pro	Arg	Leu	Ile	Pro	Leu	His	Asp
			130				135					140			
His	Trp	Gln	Ser	Leu	Leu	Pro	Ser	Gly	Gly	Glu	Ile	Pro	Lys	Glu	Ala
145				150					155			160			
Glu	Pro	Tyr	Phe	Ser	Pro	Gly	Phe	Leu	Trp	Ser	Arg	Leu	Pro	Leu	Ser
			165					170				175			
Lys	Glu	Ser	Asp	Asn	Ile	Ile	Ser	Glu	Ile	Leu	Arg	Pro	Ala	Phe	Gly
			180				185					190			
Glu	Tyr	Leu	Ser	Leu	Tyr	Ile	Glu	Leu	Leu	His	Ile	Ala	Lys	Pro	Leu
			195				200					205			
Lys	Lys	Glu	Arg	Ala	Leu	Lys	Ile	Leu	Glu	Gly	Gln	Lys	Ala	Tyr	Ile
			210				215					220			

Asn Tyr Arg Ser Thr Lys Asp Pro Ala Arg Ala Met Leu Cys Arg Phe
225 230 235 240

Tyr Gly Lys Glu Trp Thr Glu Asp Tyr Ile His Lys Val Leu Phe Asn
245 250 255

Ile

<210> 53
<211> 257
<212> PRT
<213> Prochlorococcus sp.

<400> 53

Met Leu Ile Gln Asn Thr Ile Phe Tyr Ser Gln Glu Trp Arg Trp Ala
1 5 10 15

Lys Phe Ile Lys Phe Leu Ile Ser Gln Leu Asp Asn Tyr His Cys Val
20 25 30

Glu His Lys Ile Ala Ser Asp Phe Ser Tyr Lys Glu Ser Ser Tyr Gly
35 40 45

Ser Lys Lys Ser Lys Lys Asn Ile Asn Leu Phe Thr Trp Gly Ala Thr
50 55 60

His Gln Lys Arg Ile Asn Phe Ala Arg Ala Val Cys Ile Asn Ser Pro
65 70 75 80

Asn Tyr Ser Val Leu Asn Phe Leu Ile Ile Pro Lys Thr Ser Tyr Asn
85 90 95

Ile Pro Phe Leu Gly Val Asp Phe Val Ser Leu Pro Thr Ser His Leu
100 105 110

Leu Val Leu Asp Phe Gln Pro Ser Leu Lys Val Glu Asn Gln Phe Asn
115 120 125

Ser Glu Leu Leu Glu Gln Ile Ile Lys Leu Lys Lys Ser Cys His Ser
130 135 140

Ser Leu Pro Val Ala Glu Lys Met Ser Glu Gln Val Ala Lys Phe Phe
145 150 155 160

Ser Pro Gly Leu Ile Trp Ser Arg Leu Ala Lys His Gln Asp Ser Asp
165 170 175

Asn Leu Ile Glu Asn Gln Leu Tyr Asp Ser Phe Lys Glu Tyr Leu Asn
180 185 190

Leu Tyr Leu Lys Thr Leu Phe Glu Ser Glu Glu Val Gly His Gly Leu
195 200 205

Gln Gln Glu Leu Ile Asn Gly Gln Asn Asp Tyr Leu Asn Tyr Arg Arg

210

215

220

Asp Asn Asp Pro Ala Arg Pro Met Leu Ser Ser Leu Phe Gly Lys Asp
225 230 235 240

Phe Thr Glu Ser Leu Ile Asn Lys Val Leu Phe Ser Thr Asn Lys Val
245 250 255

Leu

<210> 54
<211> 255
<212> PRT
<213> Nostoc punctiforme

<400> 54

Met Asn Ser Glu Arg Ser Asp Val Thr Leu Tyr Gln Pro Phe Leu Asp
1 5 10 15

Tyr Ala Ile Ala Tyr Met Arg Ser Arg Leu Asp Leu Glu Pro Tyr Pro
20 25 30

Ile Pro Thr Gly Phe Glu Ser Asn Ser Ala Val Val Gly Lys Gly Lys
35 40 45

Asn Gln Glu Glu Val Val Thr Thr Ser Tyr Ala Phe Gln Thr Ala Lys
50 55 60

Leu Arg Gln Ile Arg Ala Ala His Val Gln Gly Gly Asn Ser Leu Gln
65 70 75 80

Val Leu Asn Phe Val Ile Phe Pro His Leu Asn Tyr Asp Leu Pro Phe
85 90 95

Phe Gly Ala Asp Leu Val Thr Leu Pro Gly Gly His Leu Ile Ala Leu
100 105 110

Asp Met Gln Pro Leu Phe Arg Asp Asp Ser Ala Tyr Gln Ala Lys Tyr
115 120 125

Thr Glu Pro Ile Leu Pro Ile Phe His Ala His Gln Gln His Leu Ser
130 135 140

Trp Gly Gly Asp Phe Pro Glu Glu Ala Gln Pro Phe Phe Ser Pro Ala
145 150 155 160

Phe Leu Trp Thr Arg Pro Gln Glu Thr Ala Val Val Glu Thr Gln Val
165 170 175

Phe Ala Ala Phe Lys Asp Tyr Leu Lys Ala Tyr Leu Asp Phe Val Glu
180 185 190

Gln Ala Glu Ala Val Thr Asp Ser Gln Asn Leu Val Ala Ile Lys Gln
195 200 205

Ala Gln Leu Arg Tyr Leu Arg Tyr Arg Ala Glu Lys Asp Pro Ala Arg
 210 215 220
 Gly Met Phe Lys Arg Phe Tyr Gly Ala Glu Trp Thr Glu Glu Tyr Ile
 225 230 235 240
 His Gly Phe Leu Phe Asp Leu Glu Arg Lys Leu Thr Val Val Lys
 245 250 255
 <210> 55
 <211> 329
 <212> PRT
 <213> Arapidopsis thaliana
 <400> 55
 Met Ala Leu Ser Met Glu Phe Gly Phe Ser Ile Gly Ser Cys Phe Lys
 1 5 10 15
 Ala Pro Asn Pro Pro Val Leu Ile Ser Ala Ser Pro Asn Lys Ile Asn
 20 25 30
 Phe Thr Leu Arg Arg Arg Lys Lys Arg Phe Leu Leu Arg Val Ser Ala
 35 40 45
 Val Ser Tyr Lys Glu Phe Ala Glu Ser Ala Leu Glu Glu Thr Arg Lys
 50 55 60
 Arg Ile Val Leu Glu Pro Ser His Leu Gln Glu Lys Tyr Ser Ser Met
 65 70 75 80
 Thr Gly Leu Asp Gly Lys Thr Glu Leu Gln Met Leu Ala Phe Lys Ser
 85 90 95
 Ser Lys Ile Arg Leu Leu Arg Ser Met Ala Ile Glu Asn Glu Thr Met
 100 105 110
 Gln Val Phe Asp Phe Ala Gly Phe Met Glu Pro Glu Tyr Asp Thr Pro
 115 120 125
 Ile Phe Cys Ala Asn Phe Phe Thr Ser Thr Asn Val Asn Ile Val Val
 130 135 140
 Leu Asp Leu Asn Pro Leu His Gln Leu Thr Asp Gln Thr Asp Tyr Gln
 145 150 155 160
 Asp Lys Tyr Tyr Asn Lys Ile Met Ser Ile Tyr His Lys Tyr Ala Glu
 165 170 175
 Thr Phe Pro Trp Gly Gly Lys Leu Thr Gly Glu Ser Ile Lys Phe Phe
 180 185 190
 Ser Pro Leu Val Met Trp Thr Arg Phe Ser Ser Ser Lys Glu Lys His
 195 200 205

Lys Ala Leu Phe Ser Ala Phe Leu Glu Tyr Tyr Gln Ala Trp Leu Glu
210 215 220

Met Thr Ile Gln Val Arg Glu Glu Met Glu Pro Ser His Val Arg Ala
225 230 235 240

Asn Cys Glu Ala Gln His Lys Tyr Leu Thr Trp Arg Ala Gln Lys Asp
245 250 255

Pro Gly His Gly Leu Leu Lys Arg Leu Val Gly Glu Ala Lys Ala Lys
260 265 270

Glu Leu Leu Arg Asp Phe Leu Phe Asn Gly Val Asp Glu Leu Gly Thr
275 280 285

Lys Thr Phe Ile Asp Tyr Phe Pro Glu Tyr Gln Thr Glu Asp Gly Thr
290 295 300

Val Ser Asp Lys Arg Ser Ile Ile Gly Lys Ser Tyr Glu Thr Arg Pro
305 310 315 320

Trp Asp Leu Thr Gly Gln Phe Ile Gly
325

<210> 56

<211> 205

<212> PRT

<213> Hordeum vulgare

<400> 56

Met Asp Phe Met Leu Gln Ser Ser Leu His Cys Lys Val Pro Asn Gly
1 5 10 15

Ala Ile Asp Ile Thr Ser Leu Phe Ile Asn Leu Asn Ala Ser Thr Asp
20 25 30

Ala Pro His Phe Ile Met Glu Phe Ile Gln Gly Ser Pro Thr Ser Met
35 40 45

Val Val Leu Leu Asp Leu Leu Pro Arg Lys Asp Leu Ala Leu His Pro
50 55 60

Glu Tyr Ile Glu Lys Tyr Tyr Glu Asp Thr Glu Val Asp Lys Gln Arg
65 70 75 80

Lys Ile Ile Glu Gln Leu Pro Gln Ala Arg Pro Tyr Leu Ser Pro Ser
85 90 95

Leu Phe Val Arg Ser Ala Phe Ser Pro Thr Ala Val Phe Phe Thr Ile
100 105 110

Asp Cys Gly Lys Gly Glu Gly Thr Leu Glu Glu Ile Val His Gly
115 120 125

His Leu Ala Ser Val Val Lys Gly Ile Leu Gln Ile Trp Leu Asp Thr

130	135	140
Cys Ala Ser Asp Ala Ser Glu Met Glu Glu Gly	Glu Arg Glu Ile Met	
145 150	155	160
Val Lys Arg Asp Arg Thr Val Arg Ser Lys Ser Ile Glu Val Asp Leu		
165	170	175
Thr Ala Asn Leu Pro Arg Met Phe Gly Pro Asp Val Ser Gly Arg Ile		
180	185	190
Ile Ala Glu Ile Arg Lys Ala Phe Gly Val Gln Glu Gly		
195	200	205
<210> 57		
<211> 319		
<212> PRT		
<213> Arapidopsis thaliana		
<400> 57		
Met Ala Met Ile Phe Cys Asn Thr Leu Tyr Ser Ser Ser Ser Pro Ser		
1 5 10		15
Tyr Leu Ser Pro Leu Thr Ser Lys Pro Ser Arg Phe Ser Lys Asn Leu		
20 25 30		
Arg Pro Arg Ala Gln Phe Gln Ser Met Glu Asp His Asp Asp His Leu		
35 40 45		
Arg Arg Lys Phe Met Glu Phe Pro Tyr Val Ser Pro Thr Arg Lys Gln		
50 55 60		
Leu Met Val Asp Leu Met Ser Thr Val Glu Asn Arg Leu Gln Ser Gln		
65 70 75 80		
Leu Leu Pro Cys Asn Leu Pro Pro Asp Val Arg Asn Phe Asn Asn Pro		
85 90 95		
Asn Gly Ser Ala Glu Ala Ser Leu His Ile Arg Ser Gly Asp Lys Ser		
100 105 110		
Ser Pro Ile Asp Phe Val Ile Gly Ser Trp Ile His Cys Lys Ile Pro		
115 120 125		
Thr Gly Val Ser Leu Asn Ile Thr Ser Ile Ser Gly Phe Leu Asn Ser		
130 135 140		
Ser Thr Lys Ala Pro Asn Phe Val Val Glu Leu Ile Gln Ser Ser Ser		
145 150 155 160		
Lys Ser Leu Val Leu Ile Leu Asp Leu Pro His Arg Lys Asp Leu Val		
165 170 175		
Leu Asn Pro Asp Tyr Leu Lys Glu Tyr Tyr Gln Asp Thr Ala Leu Asp		
180 185 190		

Ser His Arg Gln Ser Leu Leu Lys Leu Pro Glu Val Asn Pro Tyr Val
195 200 205

Ser Pro Ser Leu Phe Val Arg Ser Ala Phe Ser Pro Thr Ala Ser Met
210 215 220

Leu Lys Ile Asp Ala Glu Glu Glu Asp Lys Leu Glu Glu Ile Leu Arg
225 230 235 240

Asp His Val Ser Pro Ala Ala Lys Glu Val Leu Glu Val Trp Leu Glu
245 250 255

Arg Cys Val Lys Glu Glu Glu Lys Ile Val Val Gly Glu Glu Glu
260 265 270

Arg Met Glu Leu Glu Arg Arg Asp Lys Ser Phe Arg Arg Lys Ser Ile
275 280 285

Glu Asp Asp Leu Asp Leu Gln Phe Pro Arg Met Phe Gly Glu Glu Val
290 295 300

Ser Ser Arg Val Val His Ala Ile Lys Glu Ala Phe Gly Val Leu
305 310 315