Machine Intelligence

Lecture 4: Reasoning under uncertainty - probabilities

Thomas Dyhre Nielsen

Aalborg University

MI Autumn 2017

Tentative course overview

Topics:

- Introduction
- Search-based methods
- Constrained satisfaction problems
- Representing domains endowed with uncertainty
- Bayesian networks
- Machine learning
- Planning
- Reinforcement learning
- Multi-agent systems

MI Autumn 2017

Degrees of Belief to Probability

Certainty

Certainty in Search

Assumptions for using search for solving planning problems:

- Current state is fully known
- Actions have deterministic effects

Certainty in CSP and Logic

- Possible worlds are possible or impossible (according to given constraints/propositions)
- Propositions are fully known/believed, or unknown
- Generalization: soft constraints possible worlds are more or less desirable

More realistic scenarios

- Agents do not observe the world perfectly
- Actions have uncertain effects
- Propositions are believed only with a certain confidence

Degrees of Belief for Propositions

In reality, states of knowledge may better be represented by degrees of belief:

$$\begin{split} &\textit{Bel(light_on} \leftarrow \textit{switch_on} \land \textit{breaker_up}) = 0.7 \\ &\textit{Bel}(\neg \textit{umbrella} \rightarrow \textit{rain}) = 1.5 \\ &\textit{Bel(umbrella} \rightarrow \textit{rain}) = 0.2 \\ &\textit{Bel(global_warming)} = 0.8 \end{split}$$

Question: what rules must (rational) degrees of belief obey?

Measuring Beliefs

Let p be any proposition, e.g.

rain_tomorrow pollution → global_warming AaB_scores_goal_in_next_match

Consider a betting ticket:

Ticket

GLOBAL GAMBLING INC. shall pay to the owner of this ticket

\$ 1

if p is true

How much are you willing to pay for this ticket? (At least \$ 0!) For how much are you willing to sell this ticket? (Certainly for \$ 1!) What is the price at which you would just as well buy or sell? (In between \$ 0 and \$ 1!)

Assumption: After buying/selling of tickets, an oracle will reveal whether p is true.

Gambling and Dutch books

In a horse race a bookmaker has offered the following odds and attracted a bet for each horse.

Horse number	Odds	Implied prob.	Bet price	To be paid
1	1-1	$\frac{1}{1+1} = 0.5$	100\$	100\$ + 100\$
2	3-1	$\frac{1}{3+1} = 0.25$	50\$	50\$+ 150\$
3	4-1	$\frac{1}{4+1} = 0.2$	40\$	40\$ + 160\$
4	9-1	$\frac{1}{9+1} = 0.1$	20\$	20\$ + 180\$

Whichever horse wins the bookmaker pays 200\$ but makes 210\$.

 \leadsto we have a Dutch Book/money pump - a collection of bets that would give sure losses due to incoherent beliefs.

Ticket trading and Dutch books

Price elicitation

Consider two agents: the elicitor (E) and the subject (S). Both E and S are in possession of tickets for various propositions $p, q \dots$

- ullet E asks S for a price for tickets for each of the propositions p, q, \dots
- After S has set prices for all propositions, S must be ready to either buy from E or sell to E tickets at these prices.

The price set by S for proposition p, denoted Bel(p) is a measure of S's belief in the truth of p.

Ticket trading and Dutch books

Price elicitation

Consider two agents: the elicitor (E) and the subject (S). Both E and S are in possession of tickets for various propositions $p, q \dots$

- ullet E asks S for a price for tickets for each of the propositions p, q, \dots
- After S has set prices for all propositions, S must be ready to either buy from E or sell to E tickets at these prices.

The price set by S for proposition p, denoted Bel(p) is a measure of S's belief in the truth of p.

Dutch Book

E can make a **Dutch Book** against S, if S has set prices $Bel(p), Bel(q), \ldots$ for some propositions, such that E can make a combination of buying/selling deals with S, so that E will gain from these deals (and S will lose), under all possible combinations of truth values for p,q,\ldots

Ticket trading and Dutch books

Price elicitation

Consider two agents: the elicitor (E) and the subject (S). Both E and S are in possession of tickets for various propositions $p, q \dots$

- ullet E asks S for a price for tickets for each of the propositions p, q, \dots
- After S has set prices for all propositions, S must be ready to either buy from E or sell to E tickets at these prices.

The price set by S for proposition p, denoted Bel(p) is a measure of S's belief in the truth of p.

Dutch Book Theorem

E (elicitor) can make a Dutch book against S (subject), if and only if S's prices do *not* obey

- $0 \leq \textit{Bel}(p) \leq 1$
- Bel(t) = 1 for any **tautology** t (proposition that is always true)
- $\bullet \ \ \text{If} \ p \wedge q \ \text{is a contradiction (proposition that is never true)} \ , \ \text{then} \ \textit{Bel}(p) + \textit{Bel}(q) = \textit{Bel}(p \vee q)$

Basic Probability Calculus

Probability Measures

Probability theory is built on the foundation of variables and worlds.

Worlds described by the variables:

- Filled: {true, false}
- Shape: {circle, triangle, star}

as well as position.

Probability measures

 Ω : set of all possible worlds (for a given, fixed set of variables). A **probability measure over** Ω , is a function P, that assigns **probability values**

$$P(\Omega') \in [0,1]$$

to subsets $\Omega' \subseteq \Omega$, such that

Axiom 1:
$$P(\Omega) = 1$$
.

Axiom 2: if
$$\Omega_1 \cap \Omega_2 = \emptyset$$
, then $P(\Omega_1 \cup \Omega_2) = P(\Omega_1) + P(\Omega_2)$.

Simplification for finite Ω

If all variables have a finite domain, then

- Ω is finite, and
- a probability distribution is defined by assigning a probability value

$$P(\omega)$$

to each individual possible world $\omega \in \Omega$.

For any $\Omega' \subseteq \Omega$ then

$$P(\Omega') = \sum_{\omega \in \Omega'} P(\omega)$$

 $P(\Omega') = 0.08 + 0.13 + 0.03 + 0.21 = 0.45$

From now on, we will only consider variables with finite domains.

A probability distribution over possible worlds defines probabilities for propositions α :

$$\begin{split} P(\alpha) &= P(\{\omega \in \Omega \mid \omega \models \alpha\}) \\ &= \sum_{\omega:\alpha \text{ is true in } \omega} P(\omega) \end{split}$$

Example

•
$$P(Shape = circle) =$$

A probability distribution over possible worlds defines probabilities for propositions α :

$$\begin{split} P(\alpha) &= P(\{\omega \in \Omega \mid \omega \models \alpha\}) \\ &= \sum_{\omega:\alpha \text{ is true in } \omega} P(\omega) \end{split}$$

Example

- P(Shape = circle) = 0.5
- P(Filled = false) =

A probability distribution over possible worlds defines probabilities for propositions α :

$$\begin{split} P(\alpha) &= P(\{\omega \in \Omega \mid \omega \models \alpha\}) \\ &= \sum_{\omega:\alpha \text{ is true in } \omega} P(\omega) \end{split}$$

Example

- P(Shape = circle) = 0.5
- P(Filled = false) = 0.4
- $P(Shape = c \land Filled = f) =$

A probability distribution over possible worlds defines probabilities for propositions α :

$$\begin{split} P(\alpha) &= P(\{\omega \in \Omega \mid \omega \models \alpha\}) \\ &= \sum_{\omega:\alpha \text{ is true in } \omega} P(\omega) \end{split}$$

Example

- P(Shape = circle) = 0.5
- P(Filled = false) = 0.4
- $P(Shape = c \land Filled = f) = 0.1$

A probability distribution over possible worlds defines probabilities for propositions α :

$$\begin{split} P(\alpha) &= P(\{\omega \in \Omega \mid \omega \models \alpha\}) \\ &= \sum_{\omega:\alpha \text{ is true in } \omega} P(\omega) \end{split}$$

Example

Assume probability for each world is 0.1:

- P(Shape = circle) = 0.5
- P(Filled = false) = 0.4
- $P(Shape = c \land Filled = f) = 0.1$

Another example

$$\begin{split} P(\textit{Color} = \textit{red}) &= 0.08 + 0.13 + 0.03 + 0.21 \\ &= 0.45 \end{split}$$

Axiom

If A and B are disjoint, then $P(A \cup B) = P(A) + P(B)$.

Example

Consider a deck with 52 cards. If $\mathcal{A}=\{2,3,4,5\}$ and $\mathcal{B}=\{7,8\}$, then

$$P(A \cup B) =$$

Axiom

If A and B are disjoint, then $P(A \cup B) = P(A) + P(B)$.

Example

Consider a deck with 52 cards. If $\mathcal{A}=\{2,3,4,5\}$ and $\mathcal{B}=\{7,8\},$ then

$$P(A \cup B) = P(A) + P(B) = \frac{4}{13} + \frac{2}{13} = \frac{6}{13}.$$

Axiom

If A and B are disjoint, then $P(A \cup B) = P(A) + P(B)$.

Example

Consider a deck with 52 cards. If $\mathcal{A}=\{2,3,4,5\}$ and $\mathcal{B}=\{7,8\}$, then

$$P(A \cup B) = P(A) + P(B) = \frac{4}{13} + \frac{2}{13} = \frac{6}{13}.$$

More generally

If $\mathcal C$ and $\mathcal D$ are not disjoint, then $P(\mathcal C\cup\mathcal D)=P(\mathcal C)+P(\mathcal D)-P(\mathcal C\cap\mathcal D).$

Example

If
$$\mathcal{C} = \{2, 3, 4, 5\}$$
 and $\mathcal{D} = \{\spadesuit\}$, then

$$P(C \cup D) =$$

Axiom

If A and B are disjoint, then $P(A \cup B) = P(A) + P(B)$.

Example

Consider a deck with 52 cards. If $\mathcal{A}=\{2,3,4,5\}$ and $\mathcal{B}=\{7,8\}$, then

$$P(A \cup B) = P(A) + P(B) = \frac{4}{13} + \frac{2}{13} = \frac{6}{13}.$$

More generally

If $\mathcal C$ and $\mathcal D$ are not disjoint, then $P(\mathcal C\cup\mathcal D)=P(\mathcal C)+P(\mathcal D)-P(\mathcal C\cap\mathcal D).$

Example

If
$$\mathcal{C} = \{2, 3, 4, 5\}$$
 and $\mathcal{D} = \{\spadesuit\}$, then

$$P(\mathcal{C} \cup \mathcal{D}) = \frac{4}{13} + \frac{1}{4} - \frac{4}{52} = \frac{25}{52}.$$

- Given new information (**evidence**), degrees of belief change.
- Evidence can consist of:
 - learning that a certain proposition p is true ("switch_up")
 - measuring the value of some variable ("room_ai = 0.2.90")
 - obtaining partial information on the value of some variable ("room_ai \neq 0.2.90")
 - ...
- In all cases: evidence can be represented as the set of possible world Ω' not ruled out by the observation.

How should the probabilities be updated, when I observe Ω' ?:

- Given new information (evidence), degrees of belief change.
- Evidence can consist of:
 - learning that a certain proposition p is true ("switch_up")
 - measuring the value of some variable ("room_ai = 0.2.90")
 - obtaining partial information on the value of some variable ("room_ai \neq 0.2.90")
 - ...
- In all cases: evidence can be represented as the set of possible world Ω' not ruled out by the observation.

How should the probabilities be updated, when I observe Ω' ?:

- Given new information (**evidence**), degrees of belief change.
- Evidence can consist of:
 - learning that a certain proposition p is true ("switch_up")
 - measuring the value of some variable ("room_ai = 0.2.90")
 - obtaining partial information on the value of some variable ("room_ai \neq 0.2.90")
 - ...
- In all cases: evidence can be represented as the set of possible world Ω' not ruled out by the observation.

How should the probabilities be updated, when I observe Ω' ?:

• worlds that are not consistent with evidence have probability 0

- Given new information (**evidence**), degrees of belief change.
- Evidence can consist of:
 - learning that a certain proposition p is true ("switch_up")
 - measuring the value of some variable ("room_ai = 0.2.90")
 - obtaining partial information on the value of some variable ("room_ai \neq 0.2.90")
 - ...
- In all cases: evidence can be represented as the set of possible world Ω' not ruled out by the observation.

How should the probabilities be updated, when I observe Ω' ?:

- worlds that are not consistent with evidence have probability 0
- the probabilities of worlds consistent with evidence are proportional to their probability before observation, and they must sum to 1

Definition

The conditional probability of Ω_2 given Ω_1 is

$$P(\Omega_2 \mid \Omega_1) = \frac{P(\Omega_2 \cap \Omega_1)}{P(\Omega_1)}$$

Example

 $P(\Omega_2 \mid \Omega_1) = 0.18 + 0.29$ (division by $P(\Omega_1)$ already in green numbers)

Definition

The conditional probability of Ω_2 given Ω_1 is

$$P(\Omega_2 \mid \Omega_1) = \frac{P(\Omega_2 \cap \Omega_1)}{P(\Omega_1)}$$

Example

 $P(\Omega_2 \mid \Omega_1) = 0.18 + 0.29$ (division by $P(\Omega_1)$ already in green numbers)

Another example

(probability for each world is 0.1)

$$\begin{split} P(\textit{S=circ.} \mid \textit{Fill} = f) &= \frac{P(\textit{S=circ.} \land \textit{Fill} = f)}{P(\textit{Fill} = f)} \\ &= \frac{0.1}{0.4} = 0.25 \end{split}$$

Conditional probability

Definition

The conditional probability of Ω_2 given Ω_1 is

$$P(\Omega_2 \mid \Omega_1) = \frac{P(\Omega_2 \cap \Omega_1)}{P(\Omega_1)}$$

Example

 $P(\Omega_2 \mid \Omega_1) = 0.18 + 0.29$ (division by $P(\Omega_1)$ already in green numbers)

Another example

(probability for each world is 0.1)

$$\begin{split} P(\textit{S=circ.} \mid \textit{Fill} = f) &= \frac{P(\textit{S=circ.} \land \textit{Fill} = f)}{P(\textit{Fill} = f)} \\ &= \frac{0.1}{0.4} = 0.25 \end{split}$$

What is the probability of P(S=star | Fill = f)?

13

Two important rules

Bayes rule

For propositions p, e:

$$P(p \mid e) = \frac{P(e \land p)}{P(e)} = \frac{P(e \mid p)P(p)}{P(e)}$$

Bayes rule

For propositions p, e:

$$P(p \mid e) = \frac{P(e \land p)}{P(e)} = \frac{P(e \mid p)P(p)}{P(e)}$$

Example

A doctor observes symptoms and wishes to find the probability of a disease:

$$P(\textit{disease} \,|\, \textit{symp.}) = \frac{P(\textit{symp.} \,|\, \textit{disease}) P(\textit{disease})}{P(\textit{symp.})}$$

Bayes rule

For propositions p, e:

$$P(p \mid e) = \frac{P(e \land p)}{P(e)} = \frac{P(e \mid p)P(p)}{P(e)} = \frac{P(e \mid p)P(p)}{P(e \land p) + P(e \land \neg p)}$$

Example

A doctor observes symptoms and wishes to find the probability of a disease:

$$P(\textit{disease} \,|\, \textit{symp.}) = \frac{P(\textit{symp.} \,|\, \textit{disease}) P(\textit{disease})}{P(\textit{symp.})}$$

Bayes rule

For propositions p, e:

$$P(p \mid e) = \frac{P(e \land p)}{P(e)} = \frac{P(e \mid p)P(p)}{P(e)} = \frac{P(e \mid p)P(p)}{P(e \land p) + P(e \land \neg p)}$$

Chain rule

For propositions p_1, \ldots, p_n :

$$P(p_1 \wedge \ldots \wedge p_n) = P(p_1)P(p_2 \mid p_1) \cdots P(p_i \mid p_1 \wedge \ldots \wedge p_{i-1}) \cdots P(p_n \mid p_1 \wedge \ldots \wedge p_{n-1})$$

Both rules are immediate consequences of the definition of conditional probability!

Random Variables and Distributions

Random Variables

Variables defining possible worlds on which probabilities are defined are called **random variables**.

Distributions

For a random variable A, and $a \in D_A$ we have the probability

$$P(A = a) = P(\{\omega \in \Omega \mid A = a \text{ in } \omega\})$$

The **probability distribution of** A is the function on D_A that maps a to P(A=a). The distribution of A is denoted

Joint Distributions

Extension to several random variables:

$$P(A_1,\ldots,A_k)$$

is the **joint distribution of** A_1, \ldots, A_k . The joint distribution maps tuples (a_1, \ldots, a_k) with $a_i \in D_{A_i}$ to the probability

$$P(A_1 = a_1, \dots, A_k = a_k)$$

Chain rule for distributions

With random variables instead of propositions, the chain rule becomes:

$$P(A_1, ..., A_n) = P(A_1)P(A_2 \mid A_1) \cdots P(A_i \mid A_1, ..., A_{i-1}) \cdots P(A_n \mid A_1, ..., A_{n-1})$$

Note: each $P(p_i \mid p_1 \land \ldots \land p_{i-1})$ was a *number*. Each $P(A_i \mid A_1, \ldots, A_{i-1})$ is a *function* on tuples (a_1, \ldots, a_i) .

Bayes' rule for variables

Bayes' rule can also be written for variables:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Bayes' rule can also be written for variables:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{\sum_{A} P(A,B)}$$

Bayes' rule can also be written for variables:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{\sum_{A} P(A,B)} = \frac{P(B|A)P(A)}{\sum_{A} P(B|A)P(A)}$$

Bayes' rule can also be written for variables:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{\sum_{A} P(A,B)} = \frac{P(B|A)P(A)}{\sum_{A} P(B|A)P(A)}$$

Example

Consider the variables

- Temp : $sp(Temp) = \{l, m, h\}$
- Sensor : $sp(Sensor) = \{l, m, h\}$

$$P(\mathsf{Temp}) = (0.1, 0.6, 0.3)$$

 $\begin{array}{c|cccc} P(\mathsf{Sensor}|\mathsf{Temp}) = & & & & \\ & & \mathsf{Temp} & & \\ \hline & \mathsf{I} & \mathsf{m} & \mathsf{h} \\ \hline & \mathsf{0} & \mathsf{I} & 0.8 & 0.1 & 0.05 \\ \mathsf{g} & \mathsf{m} & 0.15 & 0.8 & 0.1 \\ \mathsf{o} & \mathsf{h} & 0.05 & 0.1 & 0.85 \\ \end{array}$

Bayes' rule can also be written for variables:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{\sum_{A} P(A,B)} = \frac{P(B|A)P(A)}{\sum_{A} P(B|A)P(A)}$$

Example

Consider the variables

• Temp: $\operatorname{sp}(\mathsf{Temp}) = \{l, m, h\}$

• Sensor : $sp(Sensor) = \{l, m, h\}$

Assume we observe S = low:

 $P(T|\mathsf{low}) = \frac{P(\mathsf{low}|T)P(T)}{\sum_{T} P(\mathsf{low}|T)P(T)} =$

$$P(\mathsf{Temp}) = (0.1, 0.6, 0.3)$$

$$\begin{array}{c|cccc} P(\mathsf{Sensor}|\mathsf{Temp}) = & & & & \\ & \mathsf{I} & \mathsf{Temp} \\ \hline & \mathsf{I} & \mathsf{m} & \mathsf{h} \\ \hline & \mathsf{O} & \mathsf{I} & 0.8 & 0.1 & 0.05 \\ \mathsf{G} & \mathsf{M}' & \mathit{O/ILB}' & \mathit{O/IS} & \mathit{O/IL} \\ \mathsf{O} & \mathsf{I} & \mathit{O/ISS}' & \mathit{O/II} & \mathit{O/ISS}' \\ \end{smallmatrix}$$

Bayes' rule can also be written for variables:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{\sum_{A} P(A,B)} = \frac{P(B|A)P(A)}{\sum_{A} P(B|A)P(A)}$$

Example

Consider the variables

- Temp : $sp(Temp) = \{l, m, h\}$
- Sensor : $sp(Sensor) = \{l, m, h\}$

Assume we observe
$$S = \text{low}$$
: $P(T|\text{low}) = \frac{P(\text{low}|T)P(T)}{\sum_{T}P(\text{low}|T)P(T)} =$

$$P(\mathsf{Temp}) = (0.1, 0.6, 0.3)$$

 $P(\mathsf{Sensor}|\mathsf{Temp}) =$

		remp	
	I	m	h
Sensor	0.8	0.1	0.05
≝ m/	10/1/5	10/8	0/./1
Ν̈́	101.05	0/1	0/85/

$$P(\mathsf{low}|T)P(T) = \\ | \mathsf{Temp} \\ \mathsf{I} \quad \mathsf{m}$$

Bayes' rule can also be written for variables:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{\sum_{A} P(A,B)} = \frac{P(B|A)P(A)}{\sum_{A} P(B|A)P(A)}$$

Example

Consider the variables

- Temp : $sp(Temp) = \{l, m, h\}$
- Sensor : $sp(Sensor) = \{l, m, h\}$

Assume we observe S = low:

$$P(T|\mathsf{low}) = \frac{P(\mathsf{low}|T)P(T)}{\sum_{T}P(\mathsf{low}|T)P(T)} =$$

$$P(\mathsf{Temp}) = (0.1, 0.6, 0.3)$$

P(Sensor|Temp) = I Temp

		- 1-	
	1	m	h
ğΙ	0.8	0.1	0.05
Sensor M H	0/15/	10/18	Ø/./I/
ις γ	0/05/	0/1	0/85/

	I	Temp m	h
S = low	0.08 / 0.155	0.06 / 0.155	0.015 / 0.155
P	(low T)P(T) =		
	-	Temp	

		Temp			
	- 1	m	h		P(S = low)
S = low	0.08	0.06	0.015	\rightarrow	0.155

Bayes' rule can also be written for variables:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{\sum_{A} P(A,B)} = \frac{P(B|A)P(A)}{\sum_{A} P(B|A)P(A)}$$

Example

Consider the variables

• Temp :
$$sp(Temp) = \{l, m, h\}$$

• Sensor :
$$sp(Sensor) = \{l, m, h\}$$

$$P(\mathsf{Temp}) = (0.1, 0.6, 0.3)$$

Assume we observe S = low:

$$P(T|\mathsf{low}) = \frac{P(\mathsf{low}|T)P(T)}{\sum_{T} P(\mathsf{low}|T)P(T)} =$$

		Temp		
	- 1	m	h	
S = low		0.39	0.09	_
P(low T)P	$\dot{C}(T) =$			
ì	Ter	np	1	
1	m	ľ	1	P(S = low)
S = low 0.0	0.0	6 0.0	15 -	→ 0.155

Independence

Example: Football statistics

Results for Bayern Munich and SC Freiburg in seasons 2001/02 and 2003/04. (Not counting the matches Munich vs. Freiburg):

$$D_{\mathit{Munich}}) = D_{\mathit{Freiburg}} = \{\mathit{Win, Draw, Loss}\}$$

2001/02

Munich: LWDWWWWWWWLDLDLDLWLDWWWDWDDWWWW
Freiburg: WLLDDWLDWDWLLLDDLWDDLLLLLLLWLW

2003/04

Munich: WDWWLDWWDWLWWDDWDWLWWWDDWWWLWWLL Freiburg: LDDWDWLWLLLWWLWLLDDWDDLLLWLD

Summary:

	F			
Munich	W	D	L	
W	12	9	15	36 16
D	3	4	9	16
L	6	4	2	12
	21	17	26	

Independence of Outcomes

The joint distribution of Munich and Freiburg:

P(Munich,Freiburg):

1 (Wallich, Felburg).					
		Freiburg			
Munich	W	D	L	$P(\mathit{Munich})$	
W	.1875	.1406	.2344	.5625	
D	.0468	.0625	.1406	.25	
L	.0937	.0625	.0312	.1875	
P(Freiburg)	.3281	.2656	.4062		

Independence of Outcomes

The joint distribution of Munich and Freiburg:

P(Munich,Freiburg):

	1 (Warner, reburg).					
		Freiburg				
Munich	W	D	L	$P(\mathit{Munich})$		
W	.1875	.1406	.2344	.5625		
	.571	.529	.577			
D	.0468	.0625	.1406	.25		
	.143	.235	.346			
L	.0937	.0625	.0312	.1875		
	.285	.235	.077			
P(Freiburg)	.3281	.2656	.4062			

Conditional distribution: $P(Munich \mid Freiburg)$

Independence of Outcomes

The joint distribution of *Munich* and *Freiburg*:

P(Munich,Freiburg):

	P(Wurlich,Freiburg).					
		Freiburg				
Munich	W	D	L	$P(\mathit{Munich})$		
W	.1875	.1406	.2344	.5625		
	.571	.529	.577			
D	.0468	.0625	.1406	.25		
	.143	.235	.346			
L	.0937	.0625	.0312	.1875		
	.285	.235	.077			
P(Freiburg)	.3281	.2656	.4062			

Conditional distribution: *P*(*Munich* | *Freiburg*)

We have (almost):

$$P(Munich | Freiburg) = P(Munich)$$

The variables *Munich* and *Freiburg* are **independent**.

Definition of Independence

The variables A_1, \ldots, A_k and B_1, \ldots, B_m are **independent** if

$$P(A_1,...,A_k \mid B_1,...,B_m) = P(A_1,...,A_k)$$

This is equivalent to:

$$P(B_1,\ldots,B_m\mid A_1,\ldots,A_k)=P(B_1,\ldots,B_m)$$

and also to:

$$P(A_1, ..., A_k, B_1, ..., B_m) = P(A_1, ..., A_k) \cdot P(B_1, ..., B_m)$$

Compact Specifications by Independence

Independence properties can greatly simplify the specification of a joint distribution:

M =	W	F = D	L	P(M)
W			tont	.5625
D	,	$_{ m F}$ are inde	beugo.	.25
L	$_{ m M}$ and	r		.1875
P(F)	.3281	.2656	.4062	

The probability for each possible world then is defined, e.g.

$$P(M = D, F = L) = 0.25 \cdot 0.4062 = 0.10155$$

Example

Joint distribution for variables

 $\begin{array}{ll} \textit{Sex}: & D_{\textit{Sex}} = \{\textit{male}, \textit{female}\} \\ \textit{Hair length}: & D_{\textit{Hair length}} = \{\textit{long}, \textit{short}\} \\ \textit{Height}: & D_{\textit{Height}} = \{\textit{tall}, \textit{medium}\} \\ \end{array}$

	Sex			
	m	ale	fen	nale
	Hair length		Hair I	length
Height	long	short	long	short
tall	0.06	0.24	0.07	0.03
medium	0.04	0.16	0.28	0.12

P(Hair length, Height) P(Height), P(Height | Hair length):

	Hair l		
Height	long	short	
tall	0.13	0.27	0.4
	0.289	0.49	
medium	0.32	0.28	0.6
	0.711	0.51	

→ Hair length and Height are not independent.

Example Continued

 $P(\textit{Hair length}, \textit{Height} \mid \textit{Sex} = \textit{female}), P(\textit{Height} \mid \textit{Sex} = \textit{female}), P(\textit{Height} \mid \textit{Hair length}, \textit{Sex} = \textit{female}):$

	Hair length		
Height	long	short	
tall	0.14	0.06	0.2
	0.2	0.2	
medium	0.56	0.24	8.0
	8.0	8.0	

→ Hair length and Height are independent given Sex=female.

Also: Hair length and Height are independent given Sex=male.

 \leadsto Hair length and Height are independent given Sex.

Conditionally Independent Variables

Definition of Conditional Independence

The variables A_1, \ldots, A_n are conditionally independent of the variables B_1, \ldots, B_m given C_1, \ldots, C_k , if

$$P(A_1, ..., A_n \mid B_1, ..., B_m, C_1, ..., C_k) = P(A_1, ..., A_n \mid C_1, ..., C_k)$$

Agenda: use conditional independence to facillitate specification of probability distributions on complex state spaces