Jugal Marfatia

Instrumental Variable (PS 3)

Question 1

```
In [1]: import pandas as pd

df = pd.read_excel('/Users/jugalmarfatia/Downloads/excelfiles/affairs.xls')

df = df.rename(columns=lambda x: x.strip())
    df.head()
```

Out[1]:

	id	male	age	yrsmarr	kids	relig	educ	occup	ratemarr	naffairs	affair	vryhap	hapavg	avgmarr	unhap	vryrel	smerel
0	4	1	37.0	10.0	0	3	18	7	4	0	0	0	1	0	0	0	0
1	5	0	27.0	4.0	0	4	14	6	4	0	0	0	1	0	0	0	1
2	6	1	27.0	1.5	0	3	18	4	4	3	1	0	1	0	0	0	0
3	11	0	32.0	15.0	1	1	12	1	4	0	0	0	1	0	0	0	0
4	12	0	27.0	4.0	1	3	17	1	5	3	1	1	0	0	0	0	0

A. Regression

$$Kids_i = \alpha_0 + \alpha_1 Age_i + \alpha_2 Yrsmarr_i + e_i$$

```
In [2]: import statsmodels.formula.api as sm
    ols = sm.ols(formula="kids ~ age + yrsmarr", data=df).fit()
    print(ols.summary())
```

Dep. Variabl	Dep. Variable:			R-sq	uared:		0.330	
Model:			kids OLS	_	R-squared:		0.327	
Method:		Least :	Squares	F-st	atistic:		147.0	
Date:		Fri, 21 Se	ep 2018	Prob	(F-statisti	c):	1.21e-52	
Time:		1:	3:29:51	Log-	Likelihood:		-254.32	
No. Observat	cions:		601	AIC:			514.6	
Df Residuals	S:		598	BIC:			527.8	
Df Model:			2					
Covariance Type:		noi	nrobust					
	coef	std e	 rr	t	P> t	[0.025	0.975]	
Intercept	0.3990	0.00	 63	6.364	0.000	0.276	0.522	
age	-0.0029	0.0	03 -	-1.116	0.265	-0.008	0.002	
yrsmarr	0.0502	2 0.00	04 1	11.626	0.000	0.042	0.059	
Omnibus:			======================================		Durbin-Watson:		2.076	
Prob(Omnibus		0.000		Jarque-Bera (JB):		15.057		
Skew:		-0.300	Prob	(JB):		0.000538		
Kurtosis:			2.508	Cond	. No.		145.	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

B. Regression

First run two regressions:

$$Kids_i = \alpha_0 + \alpha_1 Age_i + e_i$$

$$Age_i = \beta_0 + \beta_1 \ Yrsmarr_i + u_i$$

Predict \hat{e}_i and \hat{u}_i

Run regression:

$$\hat{e}_i = \theta_0 + \theta_1 \ \hat{u}_i + v_i$$

```
In [3]: ols_y = sm.ols(formula="kids ~ age ", data=df).fit()
    ols_x1 = sm.ols(formula="age ~ yrsmarr", data=df).fit()

df['kids_error'] = df['kids'] - ols_y.predict()
    df['age_error'] = df['age'] - ols_x1.predict()

ols = sm.ols(formula="kids_error ~ age_error", data=df).fit()

print(ols.summary())
OLS Regression Results
```

============	OLS Regles:	======================================	-========
Dep. Variable:	kids_error	R-squared:	0.111
Model:	OLS	Adj. R-squared:	0.110
Method:	Least Squares	F-statistic:	75.14
Date:	Fri, 21 Sep 2018	Prob (F-statistic):	4.10e-17
Time:	13:29:52	Log-Likelihood:	-280.04
No. Observations:	601	AIC:	564.1
Df Residuals:	599	BIC:	572.9
Df Model:	1		
Covariance Type:	nonrobust		
=======================================			

========	=========	=========	-========	=========		========
	coef	std err	t	P> t	[0.025	0.975]
Intercept age_error	1.023e-16 -0.0234	0.016 0.003	6.5e-15 -8.668	1.000 0.000	-0.031 -0.029	0.031 -0.018
Omnibus: Prob(Omnibus) Skew: Kurtosis:	ıs):	0.	.000 Jarqu .740 Prob	in-Watson: ue-Bera (JB): (JB): . No.	:	2.069 77.054 1.85e-17 5.84

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

C. Regression

Run regressions:

```
Kids_i = \omega_0 + \omega_1 \,\hat{u}_i + v_i
```

```
In [4]: ols = sm.ols(formula="kids ~ age_error", data=df).fit()
    print(ols.summary())
```

=========									
Dep. Variable	e:		kids	R-squ	ared:		0.001		
Model:			OLS	Adj.	-0.000				
Method:		Least Squ	ares	F-sta	F-statistic:				
Date:		Fri, 21 Sep	2018	Prob	(F-statistic):	0.361		
Time:		13:2	9:52	Log-L	ikelihood:		-374.04		
No. Observat:	ions:		601	AIC:			752.1		
Df Residuals	:		599	BIC:			760.9		
Df Model:			1						
Covariance Ty	ype:	nonro	bust						
=========	======	========	=====	======	=======	=======	=======		
	coef	std err		t	P> t	[0.025	0.975]		
Intercept	0.7155	0.018	3	8.838	0.000	0.679	0.752		
age_error	-0.0029	0.003	_	0.915	0.361	-0.009	0.003		
Omnibus:		 261	===== .852	===== Durbi	======= n-Watson:		2.049		
Prob(Omnibus) :	0.000		Jarqu	e-Bera (JB):		120.379		
Skew:		-0.952		Prob(JB):		7.25e-27		
Kurtosis:		1	.914	Cond.	No.		5.84		
=========	=======		=====	======	========	========	:=======		

OLS Regression Results

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Yes they are the same because:

$$u_i = Age_i - \beta_0 + \beta_1 \ Yrsmarr_i$$

Therefore:

$$Kids_i = \omega_0 + \omega_1 \hat{u}_i + v_i = \omega_0 + \omega_1 (Age_i - \beta_0 + \beta_1 Yrsmarr_i) + v_i$$

Implies: We get the same coeffecient estimates.

Question 2

IV estimate using GMM

```
In [5]: from linearmodels.iv import IVGMM

mod = IVGMM.from_formula(formula="kids ~ 1 + [age ~ yrsmarr]", data=df).fit()

print(mod.summary)
```

IV-GMM Estimation Summary

______ kids Dep. Variable: R-squared: 0.0789 Estimator: IV-GMM Adj. R-squared: 0.0774 No. Observations: 601 F-statistic: 225.97 Date: Fri, Sep 21 2018 P-value (F-stat) 0.0000 Time: 13:29:52 Distribution: chi2(1) Cov. Estimator: robust

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
Intercept	-0.4481	0.0834	-5.3700	0.0000	-0.6117	-0.2846
age	0.0358	0.0024	15.032	0.0000	0.0311	0.0405

Endogenous: age

Instruments: yrsmarr

GMM Covariance Debiased: False

Robust (Heteroskedastic)

IV estimate using 2SLS

```
In [6]: ols = sm.ols(formula="age ~ yrsmarr", data=df).fit()
    df['age_hat'] = ols.predict()
    ols = sm.ols(formula="kids ~ age_hat", data=df).fit()
    print(ols.summary())
```

OLS Regression Results									
Dep. Variabl	.e:		 kids	R-squ	 lared:		0.328		
Model:				_	R-squared:		0.327		
Method:		Least Squ		_	-		292.6		
Date:		_			(F-statistic)	:	1.04e-53		
Time:		-			ikelihood:		-254.94		
No. Observat	ions:		601	AIC:			513.9		
Df Residuals	:		599	BIC:	522.7				
Df Model:			1						
Covariance T	ype:	nonro	bust						
========	coef	std err	=====	t	P> t	[0.025	0.975]		
Intercept	-0.4481	0.070	 -6	.431	0.000	-0.585	-0.311		
age_hat	0.0358	0.002	17	.105	0.000	0.032	0.040		
Omnibus:	=======	 19	===== .672	===== Durbi	======== .n-Watson:	=======	 2.083		
Prob(Omnibus):	0	.000	Jarqu	ie-Bera (JB):		15.594		
Skew:		-0	.306	Prob(JB):		0.000411		
Kurtosis:		2	.502	Cond. No.			154.		

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

IV using Coeffecient ratio i.e.

$$\beta_{iv} = \frac{\beta_{yz}}{\beta_{xz}}$$

```
In [7]: ols = sm.ols(formula="age ~ yrsmarr", data=df).fit()
    ols1 = sm.ols(formula="kids ~ yrsmarr", data=df).fit()
    print("Beta_IV_beta_ratio: " + str(ols1.params[1]/ols.params[1]))

Beta_IV_beta_ratio: 0.035816413472169316
```

IV using sample covariance ratio i.e.

```
\beta_{iv} = \frac{scov(y,z)}{scov(x,z)}
In [8]: \begin{bmatrix} scov_z x = df[['age', 'yrsmarr']].cov() \\ scov_z y = df[['kids', 'yrsmarr']].cov() \\ print("Beta_IV_scov_ratio: " + str(scov_zy.loc['kids', 'yrsmarr']/scov_zx.loc['age', 'yrsmarr'])) \\ Beta_IV_scov_ratio: 0.03581641347216924
```

The results from above four methods show that indeed we get the same IV estimates using the different techinques.