Decoder-based models

Decoder-based models are trained to generate coherent and contextually relevant text by autoregressively predicting the next word or token based on the preceding ones.

Some of the most common decoder-based models are GPT-2 and GPT-3 proposed by OpenAI, which are adept at understanding the context provided and generating output that corresponds to the input they receive.

Figure 1.44 - Encoder and decoder of the transformer

Feedforward

Multi-head attention

Masked
multi-head attention

Figure 1.42 - A decoder block

		<s0s></s0s>	Je	vais	bien
$\frac{Q_{i}K_{i}^{T}}{d_{k}} =$	<\$0\$>	9.125	7.5	1.25	5.625
	Je _	5.0	12.37	3.12	8.75
	= vais	7.25	5.0	10.37	1.25
	bien	1.5	1.37	1.87	10.0

\times
75
25
0.0

To predict the word next to the word <*sos*>, our model should not attend all the words to the right of <*sos*>

So, mask all the words to the right of *<sos>*

		<sos></sos>	Je	vais	bien
$\frac{Q_{i}K_{i}^{T}}{d_{k}} =$	<sos></sos>	9.125	- 000		-∞
	Je	5.0	12.37	- 000	-∞
	vais	7.25	5.0	10.37	1.25
	bien	1.5	1.37	1.87	10.0

Figure 1.50 – Masking all the words to the right of Je with $-\infty$

		<sos></sos>	Je	vais	bien
$\frac{Q_{i}K_{i}^{T}}{d_{k}} =$	<sos></sos>	9.125	$-\infty$	-∞	-∞
	Je	5.0	12.37	- ∞	$\cdot \infty$
	vais	7.25	5.0	10.37	-∞
	bien	1.5	1.37	1.87	10.0

Figure 1.51 – Masking all the words in the right of vais with $-\infty$

- Now, we can apply the softmax function to the preceding matrix and multiply the result by the value matrix, , and obtain the final attention matrix, .
- Similarly, we can compute *h* number of attention matrices, concatenate them, and multiply the result by a new weight matrix, , and create the final attention matrix, , as shown:

$$M = \text{Concatenate}(Z_1, Z_2, \dots Z_i, \dots Z_h)W_0$$

Multi-head attention(encoder-decoder attention)

- The query matrix, Q_i , is created by multiplying the attention matrix, M, by the weight matrix, W_i^q .
- The key and value matrices are created by multiplying the encoder representation, R, by the weight matrices, W^K and W^V, respectively. This is shown in the following figure:

Figure 1.54 - Query and key matrices

Masked multi-head attention

- instead of feeding the input directly to the decoder, we convert it into an
- embedding (output embedding matrix) and add positional encoding, and then feed it to the
- decoder.