Problemas Propostos

 A Figura 1.29 apresenta o losango EFGH inscrito no retângulo ABCD, sendo O o ponto de interseção das diagonais desse losango. Decidir se é verdadeira ou falsa cada uma das seguintes afirmações:

Figura 1.29

a)
$$\overrightarrow{EO} = \overrightarrow{OG}$$

f)
$$H - E = O - C$$

k)
$$\overrightarrow{AO}$$
 // \overrightarrow{OC}

b)
$$\overrightarrow{AF} = \overrightarrow{CH}$$

g)
$$|\overrightarrow{AC}| = |\overrightarrow{BD}|$$

c)
$$\overrightarrow{DO} = \overrightarrow{HG}$$

h)
$$|\overrightarrow{OA}| = \frac{1}{2}|\overrightarrow{DB}|$$

d)
$$|C - O| = |O - B|$$

i)
$$\overrightarrow{AF}$$
 // \overrightarrow{CD}

n)
$$\overrightarrow{AO}$$
 ⊥ \overrightarrow{HF}

e)
$$|H - O| = |H - D|$$

o)
$$\overrightarrow{OB} = -\overrightarrow{FE}$$

Decidir se é verdadeira ou falsa cada uma das afirmações:

a) Se
$$\vec{u} = \vec{v}$$
, então $|\vec{u}| = |\vec{v}|$.

b) Se
$$|\vec{u}| = |\vec{v}|$$
, então $\vec{u} = \vec{v}$.

c) Se
$$\vec{u}$$
 // \vec{v} , então $\vec{u} = \vec{v}$.

d) Se
$$\vec{u} = \vec{v}$$
, então $\vec{u} // \vec{v}$.

e) Se
$$\vec{w} = \vec{u} + \vec{v}$$
, então $|\vec{w}| = |\vec{u}| + |\vec{v}|$.

f)
$$|\vec{w}| = |\vec{u}| + |\vec{v}|$$
, então \vec{u} , \vec{v} e \vec{w} são paralelos.

g) Se
$$\overrightarrow{AB} = \overrightarrow{DC}$$
, então ABCD (vértices nesta ordem) é paralelogramo.

h)
$$15\vec{v} = 1-5\vec{v} = 5\vec{v}$$
.

j) Se
$$\vec{u}$$
 // \vec{v} , $|\vec{u}| = 2 e |\vec{v}| = 4$, então $\vec{v} = 2\vec{u}$ ou $\vec{v} = -2\vec{u}$.

k) Se
$$|\vec{v}| = 3$$
, o versor de $-10\vec{v}$ é $-\frac{\vec{v}}{3}$.

Com base na Figura 1.29, determinar os vetores abaixo, expressando-os com origem no ponto A:

a)
$$\overrightarrow{OC}$$
 + \overrightarrow{CH}

e)
$$\overrightarrow{EO} + \overrightarrow{BG}$$

i)
$$\overrightarrow{OG}$$
 - \overrightarrow{HO}

f)
$$2\overrightarrow{OE} + 2\overrightarrow{OC}$$

j)
$$\overrightarrow{AF} + \overrightarrow{FO} + \overrightarrow{AO}$$

c)
$$2\overrightarrow{AE} + 2\overrightarrow{AF}$$

g)
$$\frac{1}{2} \overrightarrow{BC} + \overrightarrow{EH}$$

d)
$$\overrightarrow{EH} + \overrightarrow{EF}$$

h)
$$\overrightarrow{FE} + \overrightarrow{FG}$$

4) O paralelogramo ABCD (Figura 1.30) é determinado pelos vetores \overrightarrow{AB} e \overrightarrow{AD} , sendo M e N pontos médios dos lados DC e AB, respectivamente. Determinar:

d)
$$\overrightarrow{AN} + \overrightarrow{BC}$$

b)
$$\overrightarrow{BA} + \overrightarrow{DA}$$

e)
$$\overrightarrow{MD} + \overrightarrow{MB}$$

c)
$$\overrightarrow{AC}$$
 - \overrightarrow{BC}

f)
$$\overrightarrow{BM} - \frac{1}{2} \overrightarrow{DC}$$

Figura 1.30

5) Apresentar, graficamente, um representante do vetor $\vec{u} - \vec{v}$ nos casos:

6) Determinar o vetor \vec{x} nas figuras:

7) Dados três pontos A, B e C não-colineares, como na Figura 1.31, representar o vetor x nos casos:

a)
$$\vec{x} = \overrightarrow{BA} + 2\overrightarrow{BC}$$

c)
$$\vec{x} = 3 \overrightarrow{AB} - 2 \overrightarrow{BC}$$

b)
$$\vec{x} = 2\vec{CA} + 2\vec{BA}$$

d)
$$\vec{x} = \frac{1}{2} \overrightarrow{AB} - 2 \overrightarrow{CB}$$

Figura 1.31

8) Dados os vetores u e v da Figura 1.32, mostrar, em um gráfico, um representante do vetor

c)
$$-\vec{v} - 2\vec{u}$$

d)
$$2\vec{u} - 3\vec{v}$$

Figura 1.32

9) No triângulo ABC (Figura 1.33), seja $\overrightarrow{AB} = \overrightarrow{a} e \overrightarrow{AC} = \overrightarrow{b}$. Construir um representante de cada um dos vetores

a)
$$\frac{\vec{a} + \vec{b}}{2}$$

d)
$$\vec{a} + \frac{1}{2}\vec{b}$$

b)
$$\frac{\vec{a} - \vec{b}}{2}$$

e)
$$2\vec{a} - \frac{1}{2}\vec{b}$$

c)
$$\frac{\vec{b} - \vec{a}}{2}$$

f)
$$\frac{1}{3}\vec{a} - 2\vec{b}$$

Figura 1.33

10) Dados os vetores a, b e c (Figura 1.34), apresentar, graficamente, um representante do vetor \vec{x} tal que

a)
$$\vec{x} = 4\vec{a} - 2\vec{b} - \vec{c}$$

b)
$$(\vec{a} + \vec{b} + \vec{c}) + \vec{x} = \vec{0}$$

c)
$$\vec{a} + \vec{c} + \vec{x} = 2\vec{b}$$

Figura 1.34

11) Na Figura 1.35 estão representados os vetores coplanares u, v e w . Indicar, na própria figura, os vetores

b) $\alpha \vec{u} = \beta \vec{w}$ tal que $\vec{v} = \alpha \vec{u} + \beta \vec{w}$ Teria sido possível realizar este exercício no caso de os vetores u, v e w serem não-coplanares?

Figura 1.35

12) Sabendo que o ângulo entre os vetores \vec{u} e \vec{v} é de 60°, determinar o ângulo formado pelos vetores

a)
$$\vec{u} = \vec{v}$$
 b) $-\vec{u} = 2\vec{v}$ c) $-\vec{u} = \vec{v}$ d) $3\vec{u} = 5\vec{v}$

d)
$$\vec{3}$$
 u e $\vec{5}$ v

13) Dados os vetores coplanares u, v e w representados na Figura 1.36, determinar

- b) o ângulo entre os vetores -3 v e w;
- c) o ângulo entre os vetores -2 u e w.
- 14) Demonstrar que os pontos médios dos lados de um quadrilátero qualquer são vértices de um paralelogramo.

Figura 1.36

- Demonstrar que o segmento de extremos nos pontos médios dos lados não-paralelos de um trapézio é paralelo às bases e igual à sua semi-soma.
- 16) No triângulo ABC (Figura 1.37), tem-se $\overrightarrow{BM} = \frac{1}{2} \overrightarrow{BC} e$ $\overrightarrow{BN} = \frac{1}{3} \overrightarrow{BC}$. Expressar os vetores \overrightarrow{AM} e \overrightarrow{AN} em função de AB e AC.

N M

Figura 1.37

Respostas de Problemas Propostos

- 1) a) V
- e) F
- i) V
- m) V

- b) F.
- f) F
- j) F

n) F

- c) V
- g) V,
- k) V

o) V

- d) V
- h) V:.
- 1) V

- 2) a) V
- d) V
- g) F
- j) V

- b) F
- e) F.
- h) V
- k) V

- c) F.
- f) F.
- i) F.
- j) AC

- 3) a) AE
- d) AB
- g) AH;

- b) AC
- e) AO
- h) AD

- c) AC
- f) AD
- i) AO

- 4) a) AC
- c) AB
- e) MN

- b) CA
- d) AM

- f) BD

- 6) a) u v
- b) u v
- c) v u
- d) u + v

- 11) Não
- 12) a) 120°
- b) 120°
- c) 60°
- d) 60°

- 13) b) 75°
- c) 60°