VLAN, MPLS, and Data center

CE 352, Computer Networks
Salem Al-Agtash

Lecture 22

Slides are adapted from Computer Networking: A Top Down Approach, 7th Edition © J.F Kurose and K.W. Ross

Recap (Ethernet switch)

link-layer device with *active* role

- store, forward Ethernet frames
- examine incoming frame's MAC address, selectively forward frame to one-ormore outgoing links

plug-and-play, self-learning

switches do not need to be configured

Recap (institutional network)

Switches vs. routers

both are store-and-forward:

- routers: network-layer devices (examine networklayer headers)
- switches: link-layer devices (examine link-layer headers)

both have forwarding tables:

- routers: compute tables using routing algorithms, IP addresses
- switches: learn forwarding table using flooding, learning, MAC addresses

Recap (Addressing: routing to another LAN)

- A creates IP datagram with IP source A, destination B
- A creates link-layer frame with R's MAC address as destination address, frame contains A-to-B IP datagram

Recap (Self-learning, forwarding)

Source: A Dest: A'

frame destination, A', location unknown: *flood*

 destination A location known: selectively send on just one link

MAC addr	interface	TTL
Α	1	60
Α'	4	60

switch table (initially empty)

- Consider the network shown below. The IP and MAC addresses are shown for hosts A, B, C and D, as well as for the router's interfaces. Consider an IP datagram being sent from node B to node D.
- What is the source and destination MAC addresses on the frame at point (4)?
- What is the source and destination IP addresses of the datagram at point (4)?

Consider the network shown below. The IP and MAC addresses are shown for hosts A, B, C and D, as well as for the router's interfaces. Consider an IP datagram being sent from node B to node D.

What is the source and destination MAC addresses on the frame at point (4)?

Source (MAC): 72-9E-4A-31-9C-42

Destination (MAC): D5-Ao-EE-9A-73-D5

What is the source and destination IP addresses of the datagram at point (4)?

Source (IP): 128.119.50.107

Destination (IP): 128.119.240.116

Consider the network below with six nodes, star-connected into an Ethernet switch. Suppose that A sends a frame to A, A' replies to A, then B sends a message to B' and B' replies to B. Enter the values that are present in the switch's forwarding table after B'-to-B frame is sent and received. Assumed that the table is initially empty and that entries are added to the table sequentially.

MAC Address	Interface	TTL
		60
		60
		60
		60

Consider the network below with six nodes, star-connected into an Ethernet switch. Suppose that A sends a frame to A, A' replies to A, then B sends a message to B' and B' replies to B. Enter the values that are present in the switch's forwarding table after B'-to-B frame is sent and received. Assumed that the table is initially empty and that entries are added to the table sequentially.

MAC Address	Interface	TTL
Α	1	60
A'	4	60
В	2	60
B'	5	60

We've seen caching used in many different places in our study of networking. List the different forms of caching that occur with the protocol or network service.

Protocol/ Network service	Form of Caching
Web pages for client	
Web pages for a set of clients	
Translation pairs between a domain name and IP address	
Translation pairs between an IP address and a MAC address	
Translation pairs between a MAC address and a layer-2 switch port	

We've seen caching used in many different places in our study of networking. List the different forms of caching that occur with the protocol or network service.

Protocol/ Network service	Form of Caching
Web pages for client	Web browser caching
Web pages for a set of clients	Web proxy
Translation pairs between a domain name and IP address	Local DNS caching
Translation pairs between an IP address and a MAC address	ARP cache
Translation pairs between a MAC address and a layer-2 switch port	Learning switch catching

VLANs: motivation

consider:

CS user moves office to EE, but wants connect to CS switch? single broadcast domain:

- all layer-2 broadcast traffic
- security/privacy, efficiency issues
- Use ports to configure VLANs
- So physical location does not matter

VLANs: motivation

VLANs

Virtual Local Area Network

switch(es) supporting VLAN capabilities can be configured to define multiple *virtual* LANS over single physical LAN infrastructure.

port-based VLAN: switch ports grouped (by switch management software) so that *single* physical

... operates as multiple virtual switches

Electrical Engineering (VLAN ports 1-8)

Computer Science (VLAN ports 9-16)

Port-based VLAN

- traffic isolation: frames to/from ports 1-8 can only reach ports 1-8
- VLAN cab also be defined based on MAC addresses of endpoints, rather than switch port
- dynamic membership: ports can be dynamically assigned among VLANs
- forwarding between VLANS: done via routing/ switching (just as with separate switches)
- Scale to NVLANs by interconnecting multiple switches

VLANS spanning multiple switches

trunk port: carries frames between VLANS defined over multiple physical switches

- frames forwarded within VLAN between switches can't be 802.1 frames (must carry VLAN ID info)
- 802.1q protocol adds/removes additional header fields for frames forwarded between trunk ports

802.1Q VLAN frame format

Multiprotocol label switching (MPLS)

- Link virtualization: A network as a link layer
 - MPLS is a link layer technology that serves to interconnect IP devices
 - MPLS: a packet-switched virtual-circuit network with its own packet format and forwarding behavior
- Initial goal: high-speed IP forwarding using fixed length label (instead of IP address)
 - fast lookup using fixed length identifier (rather than shortest prefix matching)
 - borrowing ideas from Virtual Circuit (VC) approach (widely used in setting up VPN)
 - but IP datagram still keeps IP address!

Multiprotocol label switching (MPLS)

Multiprotocol label switching (MPLS)

- Runs on MPLS-capable routers
- Blending VC technology into a routed datagram network
- Link-layer frame transmitted between MPLS-capable routers
 - 20 bits Label, 3 bits for experimental use, 1 bit to indicated end of series of stacked MPLS headers, and 5 bits for "time-to-live"

MPLS capable routers

a.k.a. label-switched router

forward packets to outgoing interface based only on label value (don't inspect IP address)

MPLS forwarding table distinct from IP forwarding tables

flexibility: MPLS forwarding decisions can differ from
those of IP

- use destination and source addresses to route flows to same destination differently (traffic engineering)
- re-route flows quickly if link fails: pre-computed backup paths (useful for VoIP)

MPLS versus IP paths

 IP routing: path to destination determined by destination address alone

MPLS versus IP paths

 IP routing: path to destination determined by destination address alone

IP-only router

 MPLS routing: path to destination can be based on source and destination address

MPLS and IP router

 fast reroute: precompute backup routes in case of link failure

MPLS signaling

modify OSPF link-state flooding protocols to carry infoused by MPLS routing,

e.g., link bandwidth, amount of "reserved" link bandwidth

entry MPLS router uses RSVP-TE signaling protocol to set up MPLS forwarding at downstream routers

MPLS forwarding tables

Data center networks

10's to 100's of thousands of hosts, often closely coupled, in close proximity:

- e-business (e.g. Amazon)
- content-servers (e.g., YouTube, Akamai, Apple, Microsoft)
- search engines, data mining (e.g., Google)

challenges:

- multiple applications, each serving massive numbers of clients
- managing/balancing load, avoiding processing, networking, data bottlenecks

Inside a 40-ft Microsoft container, Chicago data center

Data center networks

Data center networks

Rich interconnection among switches, racks:

- increased throughput between racks (multiple routing paths possible)
- increased reliability via redundancy

Synthesis: a day in the life of a web request

journey down protocol stack complete!

application, transport, network, link

putting-it-all-together: synthesis!

- goal: identify, review, understand protocols (at all layers) involved in seemingly simple scenario: requesting www page
- scenario: student attaches laptop to campus network, requests/receives www.google.com

A day in the life: scenario

scenario:

- arriving mobile client attaches to network ...
- requests web page: www.google.com

A day in the life... connecting to the Internet

its own IP address, addr of first-hop router, addr of DNS server: use *DHCP*

- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.3 Ethernet
- Ethernet frame broadcast (dest: FFFFFFFFFFFF) on LAN, received at router running DHCP server
- Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

A day in the life... connecting to the Internet

DHCP server formulates DHCP ACK containing client's IP address, IP address of firsthop router for client, name & IP address of DNS server

- encapsulation at DHCP server, frame forwarded (switch learning) through LAN, demultiplexing at client
- DHCP client receives DHCP ACK reply

Client now has IP address, knows name & addr of DNS server, IP address of its first-hop router

A day in the life... ARP (before DNS, before HTTP)

before sending *HTTP* request, need IP address of www.google.com: *DNS*

- DNS query created, encapsulated in UDP, encapsulated in IP, encapsulated in Eth. To send frame to router, need MAC address of router interface: ARP
- ARP query broadcast, received by router, which replies with ARP reply giving MAC address of router interface
- client now knows MAC address of first hop router, so can now send frame containing DNS query

A day in the life... using DNS

 IP datagram containing DNS query forwarded via LAN switch from client to 1st hop router IP datagram forwarded from campus network into Comcast network, routed (tables created by RIP, OSPF, IS-IS and/or BGP routing protocols) to DNS server

demuxed to DNS server

DNS UDP

IP

Eth

Phy

Comcast network 68.80.0.0/13

INS server

DNS

 DNS server replies to client with IP address of www.google.com

A day in the life...TCP connection carrying HTTP

A day in the life... HTTP request/reply

Summary

Today:

- VLANs
- Virtualized networks as a link layer: MPLS
- Data centers

Canvas discussion:

- Reflection
- Exit ticket

Next time:

• Read 7.2, 7.3, 7.4 of KR (Wireless Links, WiFi, Cellular Internet) follow on Canvas! material and announcements

Any questions?