Exam title

Candidate nr. 10037

Department of Physics, Norwegian University of Science and Technology, Trondheim Norway

TFY4235 - Computational physics (Last updated on May 3, 2021)

Abstract

Short abstract

CONTENTS Cand. 10037

Contents

Ι	Introduction	2
II	Code overview	3
III	Results and Discussion	4
1	Problem 2A: SIR model	4
2	Problem 2B: Stochastic SIR model	4
3	Problem 2C: Stochastic SEIIaR model	5

Introduction

Code overview

PART **III**

Results and Discussion

1 Problem 2A: SIR model

Figure 1: SIR equations with $\beta = 0.25\,\mathrm{day}^{-1},\, \tau = 10\,\mathrm{day}.$

Figure 2: Infected people compared with the analytical approximation at the early stages.

2 Problem 2B: Stochastic SIR model

Table 1: The maximum value of β giving a peak less than 0.2 of the infected fraction, and the minimum value of R(0) (vaccinated) avoiding exponential growth.

Parameter	value	$0.2 - \max_{t \in [0,\infty]} R(t)$	Initial log-slope
R(0)	$\begin{array}{c} 0.28020370 \\ 0.59987499 \end{array}$	$8.319 \cdot 10^{-7}$	$-1.74 \cdot 10^{-15}$
1.0			
0.8			
.0.6			— Susceptible — Infected

Figure 3: Solution of stochastic SIR equations with $\beta = 0.25\,\mathrm{day}^{-1},\, \tau = 10\,\mathrm{day}.$

3 Problem 2C: Stochastic SEIIaR model'

References

REFERENCES Cand. 10037

Figure 4: Infected people compared with the analytical approximation at the early stages. Stochastic and continuous model.

Figure 5: Probability of an outbreak as a function of initial number of infected people.

REFERENCES Cand. 10037

Figure 6: Solution of the stochastic SEIIaR-equations.

Figure 7: Comparison of the solution of the Stochastic SEIIaR-equations with the deterministic SIR-model. The number of infected people I in the stochastic model is $E+I+I_a$.

REFERENCES Cand. 10037

Figure 8: Probability of an outbreak as a function of r_s .