Université Abdelmalek Essaadi, ENSA Al Hoceima Première année, AP1, Année universitaire 2018-2019 - Algèbre I-

Younes Abouelhanoue

TD3: Variables Anneaux et Corps

Exercice 1

On définit sur \mathbb{Z}^2 deux lois de compositions internes notées + et * par :

$$(a,b) + (c,d) = (a+c,b+d)$$
 et $(a,b)*(c,d) = (ac,ad+bc)$

1/ Montrer que $(\mathbb{Z}^2, +, *)$ est un anneau commutatif.

2/ Montrer que $A=\{(a,0)\ /\ a\in\mathbb{Z}\}\;$ est un sous anneau de $(\mathbb{Z}^2,+,*).$

Exercice 2

Pour $(a,b)\in\mathbb{R}^2$, on pose

$$aTb = a + b - 1$$
 et $a * b = ab - a - b + 2$

Montrer que $(\mathbb{R}, T, *)$ est un corps.

Exercice 3

Soit A un anneau, On dit qu'un élément a de A est nilpotent s'il existe $k \in \mathbb{N}$ tel que $a^k = 0$

1/ Montrer que si a et b sont nilpotents et que ab=ba alors a+b et nilpotent.

2/ Montrer que si b est nilpotent et $a \in A$ tel que ab = ba alors ab est nilpotent.

3/ Montrer que si a est nilpotent alors 1-a est inversible.

Exercice 4

Soit (A,+,.) un anneau commutatif et E une patie non vide tel que

$$I(E) = \{ a \in A \, / \, \forall x \in E \text{ on a } ax = 0 \}$$

 $\ \, \textbf{Montrer que I(E) est un ideal de } (A,+,.). \\$

Exercice 5

On munit l'ensemble A de deux lois

$$a \oplus b = a + b + 1$$
 et $a \otimes b = a.b + a + b$

1/ Montrer que (A,\oplus,\otimes) est un anneau

2/ Montrer que l'applictaion $f:(A,+,.)\to (A,\oplus,\otimes)$ définie par f(a)=a-1 est un isomorphisme d'anneaux.