۱۲ جلسهی یازدهم

پیش از ورود به بحث، در زیر برای یادآوری تعاریفی معادل برای مفهوم تایپ آوردهایم. فرض کنید $A\subseteq M$ و $ar{a}\in M$ و $m\models T$

۱. مینویسیم $\mathfrak{M}(A)$ در $\mathfrak{M}(a)$ و میگوییم که $p(\bar{x})$ و میگوییم که $p(\bar{x})\in S_n^{\mathfrak{M}}(A)$ در $p(\bar{x})$ در $p(\bar{x})$ در $p(\bar{x})$ در $p(\bar{x})$ در $p(\bar{x})$ هرگاه $p(\bar{x})$ یک مجموعه ی سازگار بیشینال از فرمولها باشد با متغیر $p(\bar{x})$ که با $p(\bar{x})$ در $p(\bar{x})$ هرگاه سازگار است. طبق این تعریف، اگر $p(\bar{x})$ آنگاه

$$p(\bar{x}) \in S_n^{\mathfrak{M}}(A) \Leftrightarrow p(\bar{x}) \in S_n^{\mathfrak{N}}(A)$$

میگوییم دو عنصرِ $a,b\in M$ روی a همتایپند، و مینویسیم a هرگاه تایپی چون میگوییم دو عنصرِ $a,b\in M$ روی $a,b\in M$ روی $a,b\in M$ چنان موجود باشد که هر دوی a,b آن را برآورده کنند؛ معادلاً هرگاه توسیع $p(x)\in S_n^\mathfrak{M}(A)$ و تایپی چون $p(x)\in S_n^\mathfrak{M}(A)$ موجود باشد چنان که a,b هر دو $p(x)\in S_n^\mathfrak{M}(A)$ را برآورند. $p(x)=\mathrm{tp}^\mathfrak{M}(a/A)=\mathrm{tp}^\mathfrak{M}(b/A)$

فرض کنیم $N \supseteq A$ نه لزوماً توسیعی مقدماتی از \mathfrak{M} باشد و $n \supseteq A$ در این صورت مینویسیم $a \equiv_A b$ هرگاه هر دوی $a \equiv_A b$ را برآورده کنند.

۲. مینویسیم $p(\bar x)\in S_n^{\mathfrak M}(A)$ ، و میگوییم که $p(\bar x)$ و میگوییم که $p(\bar x)\in S_n^{\mathfrak M}(A)$ است، هرگاه توسیع مقدماتی $\mathfrak M \succ \mathfrak M$ و عنصر $\bar b \in N$ چنان موجود باشند که $p(\bar x)=\mathrm{tp}^{\mathfrak M}(\bar b/A)$ که در این جا، بنا به تعریف

$$\operatorname{tp}^{\mathfrak{N}}(\bar{b}/A) = \{\phi(\bar{x}) | \mathfrak{N} \models \phi(\bar{b})\}.$$

- $ar{a}\equiv_Aar{b}$ برای هر دو مدل $ar{b}\in N$ که $A\subseteq M,N$ که $A\subseteq M,N$ و هر $ar{a}\in M$ و هر $B\in M$ و هر $B\in M$ برای هر دو مدل $B:\mathfrak{g}:\mathfrak{M}\to\mathfrak{R}$ و مدل $B:\mathfrak{g}:\mathfrak{M}\to\mathfrak{R}$ و نگاشتهای مقدماتی $B:\mathfrak{M}\to\mathfrak{R}$ و نگاشتهای مقدماتی $B:\mathfrak{g}:\mathfrak{M}\to\mathfrak{R}$ و نگاشتهای مقدماتی $B:\mathfrak{g}:\mathfrak{M}\to\mathfrak{R}$ و نگاشتهای مقدماتی $B:\mathfrak{g}:\mathfrak{g}:\mathfrak{g}$ و نگاشتهای مقدماتی $B:\mathfrak{g}:\mathfrak{g}:\mathfrak{g}$ و نگاشتهای مقدماتی $B:\mathfrak{g}:\mathfrak{g}:\mathfrak{g}$ و نگاشتهای مقدماتی $B:\mathfrak{g}:\mathfrak{g}:\mathfrak{g}:\mathfrak{g}$
- $\mathfrak{M}\succ\mathfrak{M}$ برای دو چندتایی $ar{a}\equiv_Aar{b}$ مینویسیم $ar{a}\equiv_Aar{b}$ هرگاه یک توسیع مقدماتی .۴ موجود باشد به همراه یک اتومرفیسم $\mathfrak{M}\to\mathfrak{M}$ چنان که $ar{a}\equiv_Aar{b}$

همان گونه که از تعاریف بالا برمی آید، تعریف تایپ بسته به توسیعهای مقدماتی یک مدل است. اگر یک مدل است. اگر یک مدل سِتُرگ (فعلاً نه به معنای اصطلاحیش و تنها به معنی بسیار بزرگ)، مثلاً به نام M داشتیم که همه ی مدلها به طور مقدماتی در آن می نشستند به راحتی می شد بگوییم هر تایپ $p(\bar{x}) \in S_n^{\mathfrak{m}}(A)$ برای یک $\bar{a} \in M$ برای یک نیم گزاره ی زیر را بیان و اثباتش را به این جلسه موکول کرده بودیم.

 $|N| \leq |M|^{leph}$ دارد چنان که $\mathfrak{M} \models T$ آنگاه T مدلی ω ـ اشباع مانند $\mathfrak{M} \succ \mathfrak{M}$ دارد چنان که

M باشد. فرض کنید $M_{\gamma}(x)$ شمارشی از همه تایپهای روی زیرمجموعههای متناهی M باشد. $M_{\gamma}(x)$ النصل $M_{\gamma}(x)$ باشد. $M_{\gamma}(c_{\gamma})$ و النصل تعداد این چنین تایپها، حداکثر $M_{\gamma}(x)$ و النصل $M_{\gamma}(x)$ و النصل $M_{\gamma}(c_{\gamma})$ و النصل و بنا به طور متناهی ارضاء پذیر است $M_{\gamma}(c_{\gamma})$ و النصل و بنا به لونهایم اسکولم از اندازه و فشردگی، مجموعه و یادشده دارای مدلی از اندازه و حداکثر (و بنا به لونهایم اسکولم از اندازه و دقیقاً برابر با به لونهایم اسکولم از اندازه و دقیقاً برابر با با به لونهایم است. این مدل را $M_{\gamma}(x)$ مینامیم و روند بالا را بدان اعمال می کنیم تا به مدل $M_{\gamma}(x)$ برسیم. گلریم $M_{\gamma}(x)$ و نامیم و باشد که بدین رهگذر حاصل شده است و قرار می دهیم $M_{\gamma}(x)$ برای یک $M_{\gamma}(x)$ و $M_{\gamma}(x)$ و و از این رو در $M_{\gamma}(x)$ و از این رو در $M_{\gamma}(x)$

نکته ۱۱۷:

- ω مدلی $\mathfrak{N}, \alpha_1, \ldots, \alpha_n$ مدلی $\mathfrak{N} \models T$ مدلی عباشد و $\mathfrak{N}, \alpha_1, \ldots, \alpha_n \in N$ مدلی $\mathfrak{N} \models T$ مدلی د. $\mathrm{Th}(\langle \mathfrak{N}, \alpha_1, \ldots, \alpha_n \rangle)$ مدلی اشباع برای
- ۲. اگر برای هر \mathbb{N} مجموعه ی $S_n(\mathrm{Th}(\mathfrak{N}))$ شمارا باشد، آنگاه برای هر $n \in \mathbb{N}$ مجموعه ی $S_n(\mathrm{Th}(\langle \mathfrak{N}, \alpha_1, \dots, \alpha_k \rangle))$

اثبات شمارهی ۲. نگاشت

$$S_n(\operatorname{Th}(\langle \mathfrak{N}, \alpha_1, \dots, \alpha_n \rangle) \to S_{n+k}(T)$$

 $p(x_1, \dots, x_n, \alpha_1, \dots, \alpha_k) \mapsto p(x_1, \dots, x_n, x_{n+1}, \dots, x_{n+k})$

نگاشتی یک به یک است. شمارا بودنِ فضای دامنهی آن از شمارا بودن فضای بُردِ آن نتیجه می شود.

 $S_{\mathsf{Y}}(T)$ بنا به تمرین زیر، ممکن است که در یک تئوری T مجموعه $S_{\mathsf{N}}(T)$ شمارا باشد ولی $S_{\mathsf{N}}(T)$ ناشمارا:

تمرین ۱۱۸:

- ۱. نشان دهید که در $(\mathbb{R},+,\bullet)$ تعداد تایپهای با یک متغیر، دو تاست و تعداد تایپهای با دو متغیر برابر با \aleph .
- ۲. نشان دهید که در $(\mathbb{R},+,\cdot,<]$ تعداد تایپهای با یک متغیر، سه تاست و تعداد تایپهای با دو متغیر برابر با $(\mathbb{R},+,\cdot,<)$

در جلسهی پیش همچنین اثبات قضیهی زیر را وعده کرده بودیم.

 $n \in \mathbb{N}$ برای هر $S_n(T)$ برای هر است اگروتنهااگر $S_n(T)$ برای هر شمارا باشد.

M در $S_n(T)$ در T دارای مدل شمارای شباع \mathfrak{M} باشد، برای هر $n\in\mathbb{N}$ هر تایپ در $S_n(T)$ در $S_n(T)$ در برآورده می شود. بنابراین $S_n(T)$

 $\alpha_1,\ldots,\alpha_n\in M$ شمارا باشد، بنا بر مورد دوم در نکته بالا، برای هر $S_n(T)$ شمارا باشد، بنا بر مورد دوم در نکته بالا، برای هر $S_1(\operatorname{Th}(\langle \mathfrak{M},\bar{\alpha}\rangle))$ مجموعه بن $S_1(\operatorname{Th}(\langle \mathfrak{M},\bar{\alpha}\rangle))$ نیز شماراست. پس مدل شمارای $S_1(\operatorname{Th}(\langle \mathfrak{M},\bar{\alpha}\rangle))$ در آن برآورده شود. نیز مدلی شمارا چون $S_1(\operatorname{Th}(\langle \mathfrak{M},\bar{\alpha}\rangle))$ در آن برآورده می شوند. اجتماع که همه بی تاییهای متعلق به $S_1(\operatorname{Th}(\langle \mathfrak{M},\bar{\alpha}\rangle))$ برای هر $S_1(\operatorname{Th}(\langle \mathfrak{M},\bar{\alpha}\rangle))$ در آن برآورده می شوند. اجتماع زنجیر $S_1(\operatorname{Th}(\langle \mathfrak{M},\bar{\alpha}\rangle))$ هایی که از این رهگذر حاصل می شود، مدل مطلوب است.

تمرین ۱۲۰: نشان دهید که اگر T یک مدل اول داشته باشد که ω – اشباع باشد، آنگاه T یک تئوری \times . \times – جازم است.

 $\mathfrak{M},\mathfrak{M}\cong\mathfrak{M}$ دو مدل شمارای اشباع باشند آنگاه $\mathfrak{M}\mathfrak{M}\cong\mathfrak{M}$.

اثبات. گیریم $M=(a_i)_{i\in\omega}$ و $M=(b_i)_{i\in\omega}$. از آنجا که $\mathfrak N$ اشباع است، عنصری چون b را چنان شامل است که

 $b \equiv a$.

به همین ترتیب از آنجا که $\mathfrak M$ اشباع است، عنصری چون a را چنان شامل است که

 $b,b \equiv aa$.

برای اثبات این گفته، فرض کنید $\phi(x,b)$ فرمولی باشد که توسط b. برآورده می شود. پس داریم $\phi(x,b)$ قرمولی باشد که توسط $\mathfrak{M}\models\exists x\quad \phi(x,a)$ از آنجا که $\mathfrak{M}\models\exists x\quad \phi(x,b)$ در $\mathfrak{M}\models\exists x\quad \phi(x,b)$ آنگاه هر بخش متناهی از p(x,a) در $p(x,b)=\mathrm{tp}(b,b)$ شماراست، این تایپ در آن به کلی برآورده می شود.

پس نگاشت مقدماتی f. g را با ضابطه g را با ضابطه g و g را با ضابطه g را با ضابطه g را در دارد. فرض کنیم نگاشت مقدماتی g ساخته شده است که نگاشت، g را در دامنه و g را در بُرد دارد. قرار می دهیم g را در دامنه و g را در بُرد دارد. قرار می دهیم g را در دامنه و g را در بُرد دارد. قرار می دهیم g را چنان می یابیم که g را به همین مقدماتی بودن نگاشت g عنصری چون g عنصری چون g و عنصری چون g می یابیم که ترتیب قرار می دهیم g را به g را توسیعی و نگریریم که g را به g را به g را توسیعی از g می گیریم که g را به را به را به را به g را به را به

 $\pi(x)$ نکته ۱۲۲: مدلهای اشباع را گاهی مدلهای فشرده نیز میخوانند، از آن جهت که هرگاه M مجموعهای از فرمولها باشد که به طور متناهی در یک مدلِ اشباعِ \mathfrak{M} برآورده می شود، آنگاه M عنصری دارد که این تایب را برآورده کند.

I فرانیلتری روی F خانوادهای از مدلهای تئوری T باشد و G فرافیلتری روی G خانوادهای از مدلهای تئوری G باشد و G فرافیلتری روی G آنگاه G مدلی است G اشباع.

گزاره ی بالا را در جلسه ی بعد ثابت خواهیم کرد. پیش از آن بدین نکته توجه می دهیم که مدلی که در گزاره ی بالا بدان اشاره شده است، در حقیقت، ω_1 اشباع است؛ بدین معنی که هر تایپ روی یک زیرمجموعه ی شمارا از آن در آن برآورده می شود.