

Artelys: optimization & analytics

△ Some figures

- Founded in 2000
- + 65% turnover growth between 2006 and 2012
- Team of 30 experts in optimization (engineers and PhDs)

△ Artelys

- Specialized in numerical
 optimization, statistics and
 decision-support to solve large
 complex business problems
- Our core competences
 - Numerical optimization and decision-support
 - Consulting services and software

Expertise in optimization & complex systems modeling

4 Artelys experts support its clients in handling their complex problems:

- Support in the usage of our optimization tools
 - Solver tuning to get the best performance
 - Bugs fixing

- Audit of optimization codes
- Modeling support
- Trainings in
 - Numerical optimization
 - Statistical analysis
 - Modeling

The most efficient **Optimization Tools**

4 AMPL

Powerful algebraic modeling language for linear and nonlinear optimization problems, with discrete or continuous variables

- Ideal for rapid prototyping and efficient use in production
- Best-in-class model presolver and automatic differentiator

4 KNITRO

- Nonlinear programming and much more...
- Active-set and interior-point/barrier algorithms for continuous optimization
- MINLP algorithms and complementary constraints for discrete optimization
- Parallel multi-start method for global optimization of nonconvex problems

FICO Xpress Optimization Suite

△ Xpress is used in virtually all business sectors

- Energy / Oil & Gas
- Mining
- Industry / Manufacturing
- Transportation / Logistics
- Marketing
- Finance / Banking
- Computational Economics
- Healthcare

Xpress: short introduction

△ Developed by Dash Optimization, acquired by FICO in 2008

- Full-featured, complete and versatile suite of tool for optimization practitioners and optimization application builders
- State-of-the-art modeling and programming language: Mosel
- Three complementary solvers: Optimizer, NonLinear, Kalis
- Deployment facilities: Insight business platform and FICO Cloud

4 Many supported interfaces asides from Mosel

- C/C++, Java, .NET, Visual Basic, Fortran
- I AMPL
- | MATLAB

4 Supported platforms

- Windows 32-bit, 64-bit
- | Linux 32-bit, 64-bit
- | Mac OS X 32-bit, 64-bit
- **Solaris**

Widely used in academia and industry

Xpress technologies and services

Access world-class professionals of optimization

- Ongoing development of solver and modeling engines by FICO's and Artelys' experts
- Addition of many extra features based on **customer feedbacks** or project requirements
- Supported by Artelys' consultants (PhD-level) who are used to solving the most difficult problems and deploying enterprise-wide optimization solutions

△ Combines efficiency and robustness for all problem classes

- Optimizer solves problems of the following classes: LP, QP, QCQP, MIP, MIQP, MIQCQP
- NonLinear solves problems of the following classes: LP, QP, QCQP, SOCP, NLP
- Kalis solves problems of the following classes: CP, scheduling, hybrid MIP/LP/CP

- Concise and efficient programming language for optimization
- Enabled for distributed competing

Provides connectors to ODBC databases, Oracle, Excel,

Access, XML

- **△** Editor
- □ Debugger
- **△** Profiler
- Process graphs

Project Explorer

—──

Seq.ipj

· f₂ Peg_Sequencing.mos

Model Explorer Project Explorer

· f_x Sequencing.mos ★ Shelf Sequencing.mos

- **4** Visualization

- 4 Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

$$\min \quad \sum_{e} c_{e} x_{e}$$

$$\mid (1) \quad x(\delta(v)) = 2 \qquad \forall v \in V$$

$$(2) \quad x(\delta(S)) \geq 2 \quad \forall S \subset V, \emptyset \neq S \neq V$$

$$\mid x_{e} \in \{0; 1\}$$

 \triangle There is n! constraints (2), we will add them iteratively

Optimization technics with FICO Optimizer

4 What is a linear problem?

4 How to build it efficiently?

Rows and then columns

Columns and then rows

Problem construction

4 Right Hand Side and row sense definition (see XPRSchgrhsrange)

Value of r	Row type	Effect
$r \ge 0$	$= b, \leq b$	$b - r \le \sum a_j x_j \le b$
$r \ge 0$	≥ b	$b \le \sum a_j x_j \le b + r$
r < 0	$= b, \leq b$	$b \le \sum a_j x_j \le b - r$
$\mathbf{r} < 0$	≥ b	$b+r \leq \sum a_j x_j \leq b$

4 Always try to mutualize call to the XPRS API function

- XPRSaddCols(...), XPRSaddRows(...), XPRSaddCuts(...)
- XPRSchgbounds(), XPRSchgcoltype(), XPRSchgobj(), XPRSchgcoeff(...)

Sparse matrix representation

■ For complex implementation the use of low level sparse data structure is the most efficient

By Rows							
values							
colind							
rowstart							

By Cols							
values							
rowind							
colstart							

$$B = \begin{pmatrix} 1 & -1 & * & -3 & * \\ -2 & 5 & * & * & * \\ * & * & 4 & 6 & 4 \\ -4 & * & 2 & 7 & * \\ * & 8 & * & * & -5 \end{pmatrix}$$

Sparse matrix representation

■ For complex implementation the use of low level sparse data structure is the most efficient

By Rows													
values	1	-1	-3	-2	5	4	6	-4	4	2	7	8	-5
colind	0	1	3	0	1	2	3	4	0	2	3	1	4
rowstart	0	3	5	8	11	13							

By Cols							
values							
rowind							
colstart							

$$B = \begin{pmatrix} 1 & -1 & * & -3 & * \\ -2 & 5 & * & * & * \\ * & * & 4 & 6 & 4 \\ -4 & * & 2 & 7 & * \\ * & 8 & * & * & -5 \end{pmatrix}$$

Sparse matrix representation

■ For complex implementation the use of low level sparse data structure is the most efficient

By Rows													
values	1	-1	-3	-2	5	4	6	-4	4	2	7	8	-5
colind	0	1	3	0	1	2	3	4	0	2	3	1	4
rowstart	0	3	5	8	11	13							

By Cols													
values	1	-2	-4	-1	5	8	4	2	-3	6	7	4	-5
rowind	0	1	3	0	1	4	2	3	0	2	3	2	4
colstart	0	3	6	8	11	13							

$$B = \begin{pmatrix} 1 & -1 & * & -3 & * \\ -2 & 5 & * & * & * \\ * & * & 4 & 6 & 4 \\ -4 & * & 2 & 7 & * \\ * & 8 & * & * & -5 \end{pmatrix}$$

■ The XPRESS presolve is very efficient and reduces a lot the problem

- Detection of redundant constraints
- Bounds tightening using constraint propagation
- Other options available: XPRS_PRESOLVEOPS

4 How to get the presolved problem?

- Solve a problem limiting the number of iteration and ask for bounds
- Useful to identify variables are fixed or to get tightened bounds

△ How to force XPRESS to keep variables in the presolved problem

Use XPRSIoadsecurevecs, useful for cutting plane or Benders algorithms

Continuous Linear Programs

4 XPRESS provides two algorithms for continuous Linear Programs

- Simplex PRIMAL/DUAL (and the parallel dual simplex)
- Barrierand CROSSOVER (why using crossover ?)

4 How to run the optimization ? XPRSminim(...) or XPRSmaxim(...)

△ How to get the optimal solution?

Use XPRSgetlptol(...) to get the primal solution, the rows activity, the dual solution and the reduced cost

4 Efficient warmstart procedure for the simplex algorithm

- XPRSgetbasis(...), XPRSloadbasis(...)
 - Warmstart is efficient when using
 - primal and only modifying the objective
 - · dual and only modifying the right hand side
- Warmstart in dual might also be useful when adding constraint to the problem

△ XPRSloadbasis documentation:

- If the problem has been altered since saving an advanced basis, you may want to alter the basis as
 follows before loading it
 - Make new variables non-basic at their lower bound (cstatus[icol]=0), unless a variable has an infinite lower bound and a finite upper bound, in which case make the variable non-basic at its upper bound
 - Make new constraints basic
 - Try not to delete basic variables, or non-basic constraints.

Callbacks available for continuous optimization are only related to log

XPRSaddcbmessage, XPRSaddcbbariteration, XPRSaddcbbarlog, XPRSaddcblplog

☐ Get the c++ material and build the lp relaxation of the TSP problem where (2) is relaxed

$$\min \quad \sum_{e} c_{e} x_{e}$$

$$\mid (1) \quad x(\delta(v)) = 2 \quad \forall v \in V$$

$$\frac{(2)}{(2)} \quad \frac{x(\delta(S)) \geq 2}{(2)} \quad \forall S \subseteq V, \emptyset \neq S \neq V$$

$$\mid x_{e} \in \{0; 1\}, x_{e} \in [0; 1]$$

- Solve the problem, and get the solution, do you have an integer solution?
- Use the Xprschgbounds to fix all variables to a given integer solution?
 - Try to build up a feasible solution satisfying (2), ie no sub tours

A MIP is defined by using in the problem columns which are not continuous

- C indicates a continuous column
- B indicates a binary column
- I indicates an integer column

△ Advanced presolve available for MIP problems

- SYMMETRY: try to detect symmetry in the problem and break them. Why is it useful?
- MIPPRESOLVE: additional presolve used at each nodes
- PREPROBING: additional presolve fixing integer at values and see implications (constraint programming technics)

△ Resolution if launch using XPRSminim or XPRSmipoptimize

- Each integer solution can be retrieved looping over the solution pool
- Sensitive analysis: <u>no dual variables available!</u>
 - fixGlobals and then get dual values for the fixed problem.

△ Stopping criterion, numerical parameters

- MIPTOL: tolerance used to declare a value is an integer
- MIPRELGAP, MIPABSGAP: relative and absolute MIP gap (ub-lb)
- MIPCUTOFF: artificial lower bound provided by the user

Change the column types to have them binary and solve the MIP relaxation

$$\begin{array}{ll} \min & \sum_{e} c_{e} x_{e} \\ | & (1) & x \left(\delta(v) \right) = 2 & \forall v \in V \\ \hline & (2) & x \left(\delta(S) \right) \geq 2 & \forall S \subset V, \emptyset \neq S \neq V \\ | & x_{e} \in \{0; 1\} \end{array}$$

- Try to detect the subtour in the solution ?
 - Simple algorithm performing aggregations of subtours

- The treatment of each node is basically a loop
 - Presolve
 - Resolution of the relaxation
 - Cut generation
 - Heuristics to obtain a feasible solution
- 4 When ending this, a variable is selected, two nodes are created and added to the tree
- Dedicated parameters allow the user to tune the XPRESS behavior at the root node and within the B&B tree
 - HEURSEARCHROOTSELECT and HEURSEARCHTREESELECT
 - CUTSELECT and TREECUTSELECT
 - PRESOLVE and MIPPRESOLVE, TREEPRESOLVE
- Several combination can be automatically determined by the XPRESS tuner (only on windows)

- Disable the cutting phase or the heuristic phase, increase their effort?
 - Look at the number of nodes (XPRS_NODES)

- △ Add the constraint breaking one/all the subtour and resolve to see the subtour was broken.
- 4 Build up a loop iterating until there is no more sub tour in the solution

- MIP callback ban be use to interact with the solver within the B&B, the most useful are
 - Optnode: after the relaxation has been solved preIntsol: each time an integer solution is found Intsol: each time an integer solution is accepted
- △ Other callbacks:
 - Nodecutoff, Chgbranch, Infnode, Chgbounds, Prenode, Newnode, Chgnode, cutmgr
- △ A callback is a function with a given prototype, see XPRSaddcbXXX to see detailed information of callback XXX.

```
int XPRS_CC XPRSaddcboptnode(
XPRSprob prob,
void (XPRS_CC *f_optnode)(XPRSprob my_prob, void *my_object, int *feas),
void *object, int priority
);
```

- △ XPRSaddcboptnode allows the user to define the a callback that will be called after each relaxation resolution
 - my_object can be used to pass user defined data structure, it will be available at each call of the callback function

- Use the Optnode to add the subtour breaking constraints within the B&B algorithm
 - Use XPRSgetlpsol() to get the optimal solution
 - The MIPINFEAS attribute returns the number of integer infeasibilities at the current nodes
- Observe that this time the B&B converge to a solution without sub tours

Use the Intsol to use a local search algorithm performing all possible inversion a tour

- 1-2-3 gives 2-1-3, 1-3-2, 3-1-2, etc.
- Any improved solution can be transfer to XPRESS using XPRSaddmipsol
- Disable heuristics and cuts generation to make you're the solution is found with your method
- $| v_1 v_2 v_3 v_4 \text{ can be improved in } v_1 v_3 v_2 v_4 \text{ iff}$ $| e_{v_1 v_2} + e_{v_3 v_4} > e_{v_1 v_3} + e_{v_2 v_4}$

Use your MIP solver to implement a VNS based heuristic with XPRESS optimizer

- Given a integer solution, chose a node v_0 and solve the TSP induced by optimizing the k neighbors of v_0
- If the solution is improved k = 0 else k += 1
- If k exceeds kMax, k=1

△ How to fix variables?

- fixGlobal can be used to fix all integer variables and then to optimize the resulting continuous integer programming
- A subset of integer variables can be fixed/unfixed using the XPRSchgbounds (with binary bounds values)

Advanced selection of a nodes ?

Get the dual values of the degree constraints and try to use them within the node selection processus