

TEST FOR MATHEMATICS FOR UNIVERSITY ADMISSION (TMUA)

MOCK TEST 4 QUESTIONS

SECTION 1

- 1. What is the differential of x^x ?
 - A. $x * x^{x-1}$
 - B. $x^x \ln x$
 - C. $x^x \ln(x)^2$
 - D. $x^x(\ln(x) + 1)$
 - E. $x^x(\ln(x) + x)$
- 2. How many ways can you rearrange the word *pepper*?
 - A. 30
 - B. 120
 - C. 720
 - D. 60
 - E. 80
- 3. The 6th term of an arithmetic sequence is equal to the 8th. What is the ratio of the first term and the common difference?
 - A. -11
 - B. -7
 - C. -13
 - D. -24
 - E. -3
- 4. What is the value of x if $\frac{2^{(25^{\chi-5})}}{4^{(5^{\chi})}} = \frac{1}{4}$?
 - A. log_57
 - B. log_53
 - C. log_52
 - D. 0
 - E. 5

5. To $f(x) = x^3$ apply the following transformations:

- 1. Translation 3 units in the x-axis
- 2. Reflection in the y-axis
- 3. Stretch 2 units in the y-axis
- 4. Reflection in the x-axis

What is the resulting function?

A.
$$2(x+3)^3$$

B.
$$2(x-3)^3$$

C.
$$(2x + 3)^3$$

D.
$$(2x + 6)^3$$

E.
$$-2(x-3)^3$$

6. Let $f(n+1) = (1 - \sqrt{f(n)})^2$, $f(n) \ge 1$. What is f(n+2)?

A.
$$f(x)$$

B.
$$2 - \sqrt{f(n)}$$

C.
$$(1 - \sqrt{1 - f(n)})^2$$

D. $(2 + \sqrt{f(n)})^2$

D.
$$(2 + \sqrt{f(n)})$$

E.
$$(2 - f(n))^2$$

7. Which graph represents $\sin x^2 * \sqrt{x+1}$?

C.

8. Consider the following statements:

-0.5

-1.0

- 1. Those who like Computer Science like Maths
- 2. Those who like Engineering like Physics
- 3. Those who do not like Physics do not like Maths

Which of the following are necessary consequences of the above?

D.

-0.5

-1.0

- 1. Those who like Engineering like Maths
- 2. Those who like Computer Science like Physics
- 3. Those who like Maths do not like Engineering
- 4. Those who like Engineering do not like Computer Science
- 5. Those who like Computer Science like Engineering
- A. Only 2 and 3
- B. Only 1 and 4
- C. Only 4 and 5
- D. Only 1, 3 and 5
- E. Only 2

- 9. A box contains 3 coins, 2 fair and one two-headed. If I toss a random coin and I get heads, what is the probability I choose the two headed coin?

 - A. $\frac{2}{3}$ B. $\frac{1}{3}$ C. $\frac{1}{2}$ D. $\frac{3}{4}$ E. $\frac{1}{4}$

- 10. The quadratic f passes through the point (2,-9) and has a turning point at (-2,-25). Find an expression for f.
 - A. $-x^2 + 6x 18$
 - B. $x^2 + 3x 19$
 - C. $-x^2 + 5x 15$
 - D. $x^2 + 4x 21$
 - E. $x^2 2x 27$

- 11. Find the coefficient of x in the expression $(1+x) + (1+x)^2 + (1+x)^3 + (1+x)^4 + (1+x)^4$ $\cdots + (1 + x)^7$
 - A. 36
 - B. 60
 - C. 28
 - D. 24
 - E. 21

- 12. How many solutions does $log_{(x-1)^2}(x^2+x+1)=2$ have?
 - A. 0
 - B. 1
 - C. 2
 - D. 3
 - E. 4
- 13. How many ways can you form a correct bracketing with 8 brackets (e.g: "()()()()")?
 - A. 24
 - B. 4
 - C. 128
 - D. 16
 - E. 14

- 14. 5 coins are thrown. What is the probability of getting two of the same in a row?

 - A. $\frac{31}{32}$ B. $\frac{7}{8}$ C. $\frac{15}{16}$ D. $\frac{1}{16}$ E. $\frac{13}{25}$

15. Given 5 straight unique lines on a plane, what is the minimum and maximum areas they leave behind?

- A. (10, 25)
- B. (10, 15)
- C. (6, 15)
- D. (5, 24)
- E. (6, 24)

16. What is the shortest distance between $(x-2)^2 + (y+3)^2 = 5(x+3)^2 + (y-9)^2 = 4$?

- A. $3\sqrt{5}$
 - B. $11 \sqrt{5}$
 - C. $7 2\sqrt{5}$
 - D. $13 \sqrt{5}$
 - E. $7 \sqrt{5}$

17. What is the differential of $x^{x \ln x}$?

- A. $x^{x \ln x} (\ln x + x)$
- B. $x^{x \ln x} \ln x (\ln x + 2)$
- C. $x^{x \ln x} x \ln x$
- D. $x^{x \ln x} \ln x^2$
- E. $x^{x \ln x}$

- 18. What is the value of $\sqrt{28 6\sqrt{3}} + \sqrt{9 4\sqrt{2}}$?
 - A. $3\sqrt{3} + 2\sqrt{2} 2$
 - B. $5\sqrt{3} + 3\sqrt{2}$
 - C. $2\sqrt{3} + 6\sqrt{2} 3$
 - D. $2\sqrt{3} + 7\sqrt{2}$
 - E. $3\sqrt{3} + 2\sqrt{2} 1$

- 19. Let f(x) = (x-2)(x-p). Find the set of values of p such that f is never less than -
- 4.
- A. $-2 \le p \le 4$
- B. $3 \le p \le 8$
- C. $-2 \le p \le 6$
- D. $-4 \le p \le 3$
- E. $-1 \le p \le 6$

- 20. How many solutions does $\sin 2x \cos 3x$ have? $(0 \le x \le 2\pi)$
 - A. 5
 - B. 7
 - C. 3
 - D. 11
 - E. 9

SECTION 2

- 1. What is the differential of $y = \frac{x}{x + \frac{x}{x + \frac{x}{x}}}$ assuming x > 0?
 - A. $\frac{1-x^2}{x+2y}$ B. $\frac{1-y}{x+2y}$ C. $\frac{1-xy}{x+2y}$ D. $\frac{x+2y}{1-y}$ E. $\frac{1-x}{x+2y}$

- 2. There is a bag with 30 balls 14 of them green and the rest blue. What are the odds of selecting 10 balls of the same colour from a random sample?

 - A. $\frac{17}{4321}$ B. $\frac{1}{2234}$ C. $\frac{3}{245}$ D. $\frac{25}{5739}$ E. $\frac{1}{3335}$

3. What is the solution to x and y of the following system of equations?

$$x^{2} - y^{2} = 1$$

$$x^{2} + y^{2} = 4$$

$$y = kx + c \quad k, c > 0$$

A.
$$(-\sqrt{\frac{5}{2}}, \sqrt{\frac{3}{2}})$$

B. $(\sqrt{\frac{3}{2}}, \sqrt{\frac{5}{2}})$
C. $(\sqrt{\frac{2}{3}}, -\sqrt{\frac{5}{2}})$

B.
$$(\sqrt{\frac{3}{2}}, \sqrt{\frac{5}{2}})$$

C.
$$(\sqrt{\frac{2}{3}}, -\sqrt{\frac{5}{2}})$$

- D. There are no solutions
- E. There are multiple solutions
- 4. What is the value of a? (The triangle is equilateral with size 1)

A.
$$\frac{9-2\sqrt{3}}{46}$$

B.
$$\frac{7-2\sqrt{5}}{35}$$

A.
$$\frac{9-2\sqrt{3}}{46}$$
B. $\frac{7-2\sqrt{5}}{35}$
C. $\frac{11-4\sqrt{3}}{46}$
D. $\frac{7-3\sqrt{5}}{32}$

D.
$$\frac{7-3\sqrt{5}}{32}$$

E.
$$\frac{8-7\sqrt{3}}{24}$$

- 5. The first term in a geometric sequence is $5\sqrt{3}$ and the 4th is $\frac{3}{10}$. What is the sum to infinity?
 - A. $\frac{27\sqrt{3}}{11}$
 - B. $\frac{15\sqrt{5}}{7}$
 - C. It can be multiple values
 - D. $\frac{27\sqrt{5}}{25}$
 - E. $\frac{50\sqrt{3}}{7}$
- 6. Find the coefficient of x^4 in the expansion $(x^5 \frac{1}{x^3})^{12}$
 - A. 792
 - B. 624
 - C. 786
 - D. 445
 - E. 354

- 7. The sum to infinity of a geometric sequence is 2 while the sum to infinity of the squares of the same sequence is 8. What is the sum to infinity of the sequence of cubes?

 - A. $\frac{3\sqrt{3}}{7}$ B. $\frac{13}{2\sqrt{2}}$ C. $\frac{18}{7}$ D. $\frac{22}{9}$

 - E. $\sqrt{5}$

8. Let
$$f(x) = -x^2 + 2$$
 and let $x_0 = \frac{\pi}{4}$, $x_{n+1} = f(x_n)$. What is the value of x_∞ ?

- A. $\frac{\pi^2}{6}$
- B. 1
- C. $\tan\left(\frac{\pi}{4}\right)$
- D. 0
- E. The series does not converge

9. A student comes up with the following proof

$$-20 = -20$$

$$16 - 36 = 25 - 45$$

$$4^{2} - 9x4 = 5^{2} - 9x5$$

$$4^{2} - 9x4 + \frac{81}{4} = 5^{2} - 9x5 + \frac{81}{4}$$

$$(4 - \frac{9}{2})^{2} = (5 - \frac{9}{2})^{2}$$

$$4 = 5$$

- A. There is a mistake in step IV only
- B. There is a mistake in step II and step IV
- C. There is a mistake in step IV and step V
- D. There is a mistake in step V only
- E. There are no mistakes

- 10. What is the maximum value $\sin x \cos x$ can produce?
 - A. $\sqrt{3}$
 - B. $\frac{\sqrt{2}}{2}$ C. $\frac{\sqrt{3}}{2}$ D. $\frac{1}{2}$
- 11. Find what interval the function $(\cos x \sin x)(\tan 2x \sqrt{3})$ is strictly positive $(0 \le x \sin x)$ $x \leq \pi$)
 - A. $(\frac{1}{6}\pi, \frac{1}{4}\pi) \cup (\frac{2}{3}\pi, \frac{3}{4}\pi)$
 - B. $(\frac{1}{6}\pi, \frac{1}{4}\pi) \cup (\frac{3}{4}\pi, \pi)$
 - C. $(\frac{1}{6}\pi, \frac{2}{3}\pi) \cup (\frac{4}{5}\pi, \pi)$
 - D. $(\frac{1}{6}\pi, \frac{2}{3}\pi) \cup (\frac{3}{4}\pi, \pi)$
 - E. $(0, \pi)$

- 12. What is the probability that x^2 has remainder 4 when divided by 7? ($x \le 100$)

 - A. $\frac{7}{10}$ B. $\frac{3}{10}$ C. $\frac{1}{3}$ D. $\frac{2}{5}$ E. $\frac{1}{7}$

13. Which value of n and m make the following fraction a whole number?

$$10^{n+2m}6^{n-m}15^{n+3m}4^{2n}$$

$$12^{3m}8^{n+m}20^{n-2m}$$

- A. $5n \ge 3m$
- B. $n \ge 3m$
- C. $2n \ge 5m$
- D. $2n \ge 3m$ and $3n \ge 5$
- E. $n \ge m$

- 14. How many 0s does 143! have?
 - A. 26
 - B. 32
 - C. 45
 - D. 34
 - E. 62

- 15. This question has ONLY one correct answer
 - A. If f(x) > 0 then x > 0
 - B. f(x) > 0 if and only if x > 0
 - C. If f(x) > 0 then $x \in (3,7)$
 - D. f(x) > 0 if and only if $x \in (3,7)$
 - E. All of them are correct

16. Let $f^{n+1}(x) = \frac{d}{dx} f^n(x)$ and $f^1(x) = e^{(x^2)}$. What is f^5 ?

A.
$$4e^{(x^2)}(4x^4+12x^2+3)$$

B.
$$4e^{(x^2)}(2x^4 + 9x^2 + 3)$$

C.
$$4e^{(x^2)}(5x^4 + 8x^2 + 3)$$

D.
$$4e^{(x^2)}(4x^4 + 8x^2 + 3x)$$

E.
$$4e^{(x^2)}(3x^4 + 7x^2 + 2)$$

17. Which of the following represent local minima of the function f given this representation of the derivative?

- A. G and I
- B. Fand H
- C. A, C and E
- D. B and D
- E. Conly

18. What is the indefinite integral of $\frac{\ln \sqrt{x+1}}{\sqrt{x+1}}$?

A.
$$\sqrt{x+1}(\ln(x+1)-2)$$

B.
$$(x+1)(\ln(\sqrt{x+1})-2)$$

C. $\frac{(\ln(x+1)-2)}{\sqrt{x+1}}$

$$\mathsf{C.} \ \frac{(\ln(x+1)-2)}{\sqrt{x+1}}$$

D.
$$2\sqrt{x+1}(\ln(x+1)-1)$$

D.
$$2\sqrt{x+1}(\ln(x+1)-1)$$

E. $\sqrt{x+1}(\ln(\sqrt{x+1})-2)$

- 19. $2^x 1$ is prime then x is a prime. Which of the following is a counter example to this?
 - A. 127
 - B. 255
 - C. 2047
 - D. 63
 - E. None of the above

END OF SECTION 2

2 WRITTEN ANSWERS 18