

## Métodos Matemáticos I Guía III Licenciatura en Física IPGG

- 1).- Sean  $w_1$  y  $w_2$  las raíces cúbicas de la unidad distintas de 1. Demuestre que satisfacen:
- a).- La ecuación  $z^2 + z + 1 = 0$ .
- b).-  $w_1w_2 = 1$ .
- c).-  $w_1 = w_2^2$ . d).- La igualdad  $(a+bz+cz^2)(a+cz+bz^2) = a^2+b^2+c^2-ab-ac-bc$  para a,b,c reales.
- 2).- Encuentre, si existe, un complejo ztal que  $|z|=\frac{1}{|z|}=|1-z|$
- 3).- Demuestre que si  $z + \frac{1}{z} \in \mathbb{R}$  entonces  $\operatorname{Im}(z) = 0$  ó |z| = 1.
- 4).- Dado los complejos 0, 1+2i y 1-i, determine un complejo z tal que junto a los complejos mencionados, formen un paralelógramo. ¿Es un rectángulo?.
- 5).- Describa el lugar geométrico de los puntos z que cumplen  $\operatorname{Im}\left(\frac{z-z_1}{z_2}\right)=0$ , si  $z_1$  y  $z_2$  son complejos no nulos.
  - 6).- Demuestre que todo complejo z que cumpla |z| = |1+z| = 1 es raíz cúbica no real de 1.
- 7).- ¿En qué vector se transforma  $\left(-\sqrt{3}+3i\right)$  al girarlo  $\frac{\pi}{2}$ ?. ¿Qué ángulo es necesario girarlo para que el resultado sea  $2\sqrt{3}i$ ?.

8).- Demostrar la identidad de Lagrange, para  $a,\,b,\,c,\,d\in\mathbb{R}:$ 

$$(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2$$

**Indicación:** Considerar el número complejo z = (a + ib)(c + id) y hallar su módulo de dos modos diferentes.

- 9).- Determinar los valores  $x, y \in \mathbb{R}$  que satisfacen la igualdad  $x + iy = (x iy)^2$ .
- 10).- Probar que las raíces n-ésimas de la unidad distintas de 1 satisfacen la ecuación:

$$1 + z + z^2 + \dots + z^{n-1} = 0$$

11).- ¿Es cierto que  $z^2 = |z|^2$ ?. Si lo es, demuestre esta identidad. si no lo es, ¿para qué valores de z es cierto?