Lecture Notes

Winter 2019

MATA37 - CALCULUS II FOR THE MATHEMATICAL SCIENCES

LEC03, Jan 18th, 2:00pm - 3:00pm

Instructor:

Dr. Kathleen Smith

Email: smithk@utsc.utoronto.ca

Office: IC458 Office Hours: TBA

1 Darboux Def of $\int_a^b f(x)dx$

Setup f is bounded on [a,b] ie. $\exists c \in \mathbb{R}^+, \ni : |f(x)| < c, \forall x \in [a,b]$

Let $a, b \in \mathbb{R}, a < b$

Suppose f is bdd(bounded), on [a, b] Let $P = \{x_i\}_{i=0}^n$ be any partition of [a, b].

for $i = 1 \dots n$

define $m_i = \inf\{f(x)|x \in [x_{i-1}, x_i]\}$

define $M_i = \sup\{f(x)|x \in [x_{i-1}, x_i]\}$

then the Uppersum: $U(f,p) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$

and the lowersum: $L(f,p) = \sum_{i=1}^{n} m_i(x_i - x_{i-1})$

Now let's look at Consider this again

$$f(x) = \begin{cases} 0 & x \in \mathbb{Q} \\ 1 & x \in \mathbb{I} \end{cases}$$

Compute L(f, P) where P is any partition of [0,3]

Sol'n:

recall: $m_i = \inf\{f(x) | x \in [x_{i-1}, x_i]\}$

The possible values of f(x) are simply 1 or 0. Because of the density of \mathbb{Q} and \mathbb{I} .

 $m_i = \inf\{0, 1\} = 0$

$$\therefore L(f,p) = \sum_{i=1}^{n} m_i(x_i - x_{i-1}) = \sum_{i=1}^{n} 0 \cdot (x_i - x_{i-1}) = 0$$

Definition

Let $a, b \in \mathbb{R}$, a < b suppose that f is bdd on [a, b] let P be any partition of [a, b] We say that our function is integrable on [a, b] if and only if:

$$\sup\{L(f,P)|\forall P\in[a,b]\} = \inf\{U(f,P)|\forall P\in[a,b]\} = \int_a^b f(x)dx$$

This definition is only used to prove that certain integrals don't exist.

$\mathbf{2}$ **Proof**

Prove that the following is not integrable on [2,3]

$$f(x) = \begin{cases} 0 & x \in \mathbb{Q} \\ 1 & x \in \mathbb{I} \end{cases}$$

Let's compute the lower sums and the upper sums.

We know that from L(f, P) = 0

and for the U(f, P)

we know that $M_i = \sup\{f(x)|x \in [x_{i-1},x_i]\}$

f(x) can only be 0 or 1, because \mathbb{Q} and \mathbb{I} are dense.

therefore,
$$M_i = 1$$
 and $U(f, p) = \sum_{i=1}^{n} 1 \cdot (x_i - x_{i-1})$

therefore,
$$M_i = 1$$
 and $U(f, p) = \sum_{i=1}^{n} 1 \cdot (x_i - x_{i-1})$
= $(x_1 - x_0) + (x_2 - x_1) + (x_3 - x_2) \cdot \dots + (x_n - x_{n-1})$ dramatic cancellations.
= $-x_0 + x_n = -0 + 3 = 3$

Because P is arbitrary, $L(f,P)=0 \forall P$ and $U(f,P)=3 \forall P$ $\therefore sup\{L(f,P)=0\}$ and inf(U(f,P)=3)

$$\therefore sup\{L(f,P)=0\}$$
 and $inf(U(f,P)=3)$

as
$$0 \neq 3$$
, thus $\sup\{L(f,P)|\forall P \in [a,b]\} \neq \inf\{U(f,P)|\forall P \in [a,b]\} = \int_a^b f(x)dx$