

2. OPERAÇÕES LÓGICAS SOBRE PROPOSIÇÕES

Operações Lógicas são certas operações que, quando pensamos, efetuamos muitas vezes sobre proposições.

Operações Lógicas fundamentais: negação, conjunção, disjunção, exclusiva, condicional e bicondicional.

2.1. NEGAÇÃO (¬) (~) (Não)

Chama-se negação de uma proposição **p** a proposição representada por "**não p**", cujo valor lógico é a verdade(V) quando **p** é falsa e a falsidade(F) quando **p** é verdadeira.

Simbolicamente, a negação de **p** indica-se pela notação "¬**p**", que se lê: "**não p**".

Tabela da Verdade:

р	¬р
٧	F
F	٧

Ou seja, pelas igualdades: $\neg V = F$, $\neg F = V$ e $V(\neg p) = \neg V(p)$

Ex:

(1) **q**:
$$7 < 3$$
 (F) e \neg q: $7 < 3$ (V), portanto, $V(\neg q) = \neg V(q) = \neg F = V$

(2) p:
$$2 + 3 = 5$$
 (V) e ¬p: $2 + 3 # 5$ (F), portanto, $V(\neg p) = \neg V(p) = \neg V = F$

Na linguagem comum a negação efetua-se, nos casos mais simples, antepondo o advérbio "**não**" ao verbo da proposição dada. Assim, p. ex, a negação da proposição:

p: O Sol é uma estrela. ¬p: O Sol não é uma estrela.

Ou expressões tais como: "não é verdade que", "é falso que".

Ex: q: Paulo é policial;

¬q: Não é verdade que Paulo é policial; ou ¬q: É falso que Paulo é policial.

2.2. CONJUNÇÃO (∧) (E)

Chama-se conjunção de duas proposições \mathbf{p} e \mathbf{q} a proposição representada por " \mathbf{p} e \mathbf{q} ", cujo valor lógico é a verdade(V) quando as proposições \mathbf{p} e \mathbf{q} são ambas verdadeiras e a falsidade(F) nos demais casos.

Simbolicamente, a conjunção de duas proposições \mathbf{p} e \mathbf{q} é indicada com a notação: " $\mathbf{p} \wedge \mathbf{q}$ ", que se lê: " $\mathbf{p} \in \mathbf{q}$ ".

Tabela da Verdade:

р	q	p∧q
V	٧	٧
V	F	F
F	V	F
F	F	F

Ou seja, pelas igualdades: $V \wedge V = V$, $V \wedge F = F$, $F \wedge V = F$, $F \wedge F = F$ e $V(p \wedge q) = V(p) \wedge V(q)$

Ex:

(1) p: A neve é branca. (V)

 \neg **q**: 2 < 5 (V), portanto temos: p \wedge q: A neve é branca **e** 2 < 5 (V). $V(p \wedge q) = V(p) \wedge V(q) = V \wedge V = V$.

2.3. DISJUNÇÃO (V) (OU)

Chama-se disjunção de duas proposições **p** e **q** a proposição representada por "**p** ou **q**", cujo valor lógico é a verdade(V) quando ao menos uma das proposições **p** e **q** é verdadeira e a falsidade(F) quando as proposições **p** e **q** são ambas falsas.

Simbolicamente, a disjunção de duas proposições \mathbf{p} e \mathbf{q} , é indicada com a notação: " $\mathbf{p} \vee \mathbf{q}$ ", que se lê: " \mathbf{p} ou \mathbf{q} ".

Tabela da Verdade:

р	q	$p \vee q$
٧	٧	V
٧	F	٧
F	٧	٧
F	F	F

Ou seja, pelas igualdades:

$$V \lor V = V$$
, $V \lor F = V$, $F \lor V = V$, $F \lor F = F$ e $V(p \lor q) = V(p) \lor V(q)$

Ex:

(1) p: Paris é capital da França (V)

q: 9-4=5 (V), portanto temos, p
$$\vee$$
 q: Paris é capital da França **ou** 9-4=5 (V)
$$V(p \vee q) = V(p) \vee V(q) = V \vee V = V$$

2.4. DISJUNÇÃO EXCLUSIVA (v) (OU)

Na linguagem comum a palavra "**ou**" tem dois sentidos. Assim, p. ex: consideremos as duas seguintes proposições compostas:

P: Carlos é médico ou professor (disjunção inclusiva) - fraca

Q: Mário é alagoano ou gaúcho (disjunção exclusiva) - forte

De um modo geral, chama-se disjunção exclusiva de duas proposições \mathbf{p} e \mathbf{q} a proposição representada simbolicamente por " $\mathbf{p} \underline{\vee} \mathbf{q}$ ", que se lê: "ou \mathbf{p} ou \mathbf{q} " ou " \mathbf{p} ou \mathbf{q} ", mas não ambos, cujo valor lógico é a verdade(V) somente quando \mathbf{p} ou \mathbf{q} é verdadeira, mas não quando \mathbf{p} e \mathbf{q} são ambas verdadeiras, e a falsidade(F) quando \mathbf{p} e \mathbf{q} são ambas verdadeiras ou ambas falsas.

Tabela da Verdade:

р	q	p⊻q
٧	٧	F
٧	F	٧
F	V	٧
F	F	F

Ou seja, pelas igualdades:

$$V \underline{\vee} V = F$$
, $V \underline{\vee} F = V$, $F \underline{\vee} V = V$, $F \underline{\vee} F = F$ e $V(p \underline{\vee} q) = V(p) \underline{\vee} V(q)$

2.5. CONDICIONAL (→) (SE .. ENTÃO)

Chama-se proposição condicional ou apenas condicional uma proposição representada por "**se p então q**", cujo valor lógico é a falsidade(F) no caso em que **p** é verdadeira e **q** é falsa e a verdade(V) nos demais casos.

Simbolicamente, a condicional de duas proposições \mathbf{p} e \mathbf{q} é indicada com a notação: " $\mathbf{p} \to \mathbf{q}$ ", que se lê de uma das seguintes maneiras:

- (i) p é condição suficiente para q
- (ii) q é condição necessária para p

Na condicional " $\mathbf{p} \to \mathbf{q}$ ", diz-se que \mathbf{p} é o antecedente e q o conseqüente. O símbolo " \to " é chamado símbolo de implicação.

O valor lógico da condicional de duas proposições

Tabela da Verdade:

р	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Ou seja, pelas igualdades:

$$V \rightarrow V = V, V \rightarrow F = F, F \rightarrow V = V, F \rightarrow F = V e V(p \rightarrow q) = V(p) \rightarrow V(q)$$

Ex:

(1) **p**: Galois morreu em duelo (V)

q: pi é um número real (V)

 $\mathbf{p} \rightarrow \mathbf{q}$: Se Galois morreu em duelo, então pi é um número real (V)

$$V(p \rightarrow q) = V(p) \rightarrow V(q) = V \rightarrow V = V$$

(2) p: O mês de Maio tem 31 dias (V)

q: A Terra é plana (F)

p → q: Se o mês de Maio tem 31 dias, então a Terra é plana (F)

$$V(p \rightarrow q) = V(p) \rightarrow V(q) = V \rightarrow F = F$$

(3) p: Dante escreveu os Lusíadas (F)

q: Cantor criou a Teoria dos Conjuntos (V)

 $\mathbf{p} \rightarrow \mathbf{q}$: Se Dante escreveu os Lusíadas, então Cantor criou a Teoria dos Conjuntos (V)

$$V(p \rightarrow q) = V(p) \rightarrow V(q) = F \rightarrow V = V$$

(4) p: Santos Dummont nasceu no Ceará (F)

q: O ano tem nove meses (F)

 $\mathbf{p} \rightarrow \mathbf{q}$: Se Santos Dummont nasceu no Ceará, então o ano tem nove meses (V)

$$V(p \to q) = V(p) \to V(q) = F \to F = V$$

NOTA: Uma condicional $\mathbf{p} \to \mathbf{q}$ não afirma que o conseqüente \mathbf{q} se deduz ou é conseqüência do antecedente \mathbf{p} . Assim, p. ex., as condicionais:

7 é um número ímpar → Brasília é uma cidade 3+5 = 9 → Santos Dummont nasceu no Ceará

Não estão a afirmar, de modo nenhum, que o fato de "Brasília ser uma cidade" se deduz do fato de "7 ser um número ímpar" ou que a proposição "Santos Dummont nasceu no Ceará" é conseqüência da proposição "3+5 = 9". O que uma condicional afirma é unicamente uma relação entre os valores lógicos do antecedente e de conseqüente de acordo com a tabela da verdade anterior.

2.6. BICONDICIONAL (↔) (SE E SOMENTE SE)

Chama-se proposição bicondicional ou apenas condicional uma proposição representada por "**p se e somente se q**", cujo valor lógico é a verdade(V) quando **p** e **q** são ambas verdadeiras ou ambas falsas, e a falsidade(F) nos demais casos. Simbolicamente, a bicondicional de duas proposições **p** e **q** é indicada com a notação: $\mathbf{p} \leftrightarrow \mathbf{q}$, que também se lê de uma das seguintes maneiras:

- (i) **p** é condição necessária e suficiente para **q**
- (ii) q é condição necessária e suficiente para p

O valor lógico da bicondicional de duas proposições

Tabela da Verdade:

р	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	٧	F
F	F	V

Ou seja, igualdades:

$$V \leftrightarrow V = V, V \leftrightarrow F = F, F \leftrightarrow V = F, F \leftrightarrow F = V e V(p \leftrightarrow q) = V(p) \leftrightarrow V(q)$$

Ex:

(1) **p**: Roma fica na Europa (V)

q: A neve é branca (V)

 $\mathbf{p} \leftrightarrow \mathbf{q}$: Roma fica na Europa se e somente se a neve é branca (V)

$$V(p \leftrightarrow q) = V(p) \leftrightarrow V(q) = V \leftrightarrow V = V$$

(2) **p**: Lisboa é capital de Portugal (V)

q: tag pi/4 = 3 (F)

 $\mathbf{p} \leftrightarrow \mathbf{q}$: Lisboa é capital de Portugal **se e somente se** tag pi/4 = 3 (F)

$$V(p \leftrightarrow q) = V(p) \leftrightarrow V(q) = V \leftrightarrow F = F$$

- (3) p: Vasco da Gama descobriu o Brasil (F)
 - q: Tiradentes foi enforcado (V)
 - $\mathbf{p} \leftrightarrow \mathbf{q}$: Vasco da Gama descobriu o Brasil **se e somente se** Tiradentes foi enforcado (F)

$$V(p \leftrightarrow q) = V(p) \leftrightarrow V(q) = F \leftrightarrow V = F$$

- (4) p: A Terra é plana (F)
 - **q**: 2 é um número ímpar (F)
 - p ↔ q: A Terra é plana se e somente se 2 é um número ímpar (V)

$$V(p \leftrightarrow q) = V(p) \leftrightarrow V(q) = F \leftrightarrow F = V$$