

Telecomunicaciones

Proyecto Integrador I

Tecnologías de Conectividad

Señales y Transmisión

Señales y Transmisión

1. Señales Digitales:

- Representan datos binarios (0 y 1).
- Menos susceptibles al ruido.
- Ejemplos: Comunicación de datos en redes informáticas.

2. Señales Analógicas:

- Continuas, pueden tomar cualquier valor dentro de un rango.
- Más susceptibles al ruido.
- Ejemplos: Señales de audio y video.

Medios de enlaces

Medios de enlaces

Medios Guiados:

- Par Trenzado: Usado en redes Ethernet.
- Cable Coaxial: Alta capacidad de transmisión.
- Fibra Óptica: Alta velocidad y larga distancia.

Medios No Guiados:

- Radiofrecuencia (RF): Usado en Wi-Fi, Bluetooth.
- Infrarrojo (IR): Comunicación a corta distancia.
- Microondas: Enlaces punto a punto de larga distancia.

1. Edge:

- BLE
- Zigbee
- LoRaWAN
- NB-IoT
- Z-Wave
- Thread
- 12C
- SPI
- UART
- GPIO

2. Fog:

- MQTT
- CoAP
- AMQP
- Modbus
- OPC UA
- Profibus
- Profinet

3. Cloud:

- HTTP/HTTPS
- AMQP
- WebSocket
- TR-069
- OMA-DM

4. Interconexión Interna del Dispositivo:

- 12C
- SPI
- UART
- GPIO
- CAN

- Wi-Fi (IEEE 802.11)
 - Características:
 - Protocolo de red inalámbrica.
 - Usado en hogares, oficinas, y entornos urbanos.
 - Ventajas:
 - Alta velocidad.
 - Amplia disponibilidad.
 - Desventajas:
 - Consumo de energía relativamente alto.
 - Puede ser menos seguro si no se configura correctamente.
 - Estandar de Uso:
 - IEEE 802.11.

- Bluetooth Low Energy (BLE)
 - Características:
 - Comunicación inalámbrica de corto alcance.
 - Bajo consumo de energía.
 - Ventajas:
 - Ideal para dispositivos portátiles y aplicaciones de proximidad.
 - Fácil integración.
 - Desventajas:
 - Alcance limitado.
 - Estandar de Uso:
 - IEEE 802.15.1.

Zigbee

- Características:
 - Protocolo de red de baja energía.
 - Utilizado en automatización del hogar e industrial.

Ventajas:

- Puede soportar muchos dispositivos en una red.
- Bajo consumo de energía.

Desventajas:

- Menor velocidad de datos.
- Alcance corto comparado con Wi-Fi.

Estandar de Uso:

IEEE 802.15.4.

LoRaWAN

- Características:
 - Protocolo de red de área amplia de baja potencia.
 - Utilizado en ciudades inteligentes y monitoreo ambiental.
- Ventajas:
 - Gran alcance.
 - Bajo consumo de energía.
- Desventajas:
 - Baja velocidad de datos.
- Estandar de Uso:
 - LoRa Alliance.

NB-IoT

- Características:
 - Protocolo de red celular de baja potencia.
 - Utilizado en áreas rurales y urbanas.
- Ventajas:
 - Buena penetración en interiores.
 - Bajo consumo de energía.
- Desventajas:
 - Velocidad de datos baja.
- Estandar de Uso:
 - 3GPP.

Z-Wave

- Características:
 - Protocolo de automatización del hogar.
 - Funciona en la capa de aplicación y red del modelo OSI.
- Ventajas:
 - Baja interferencia.
 - Mensajes pueden saltar entre hasta 4 nodos.
- Desventajas:
 - Comunicación en texto plano sin cifrado predeterminado.
- Estandar de Uso:
 - Z-Wave Alliance.

Thread

- Características:
 - Protocolo de red de malla para el hogar inteligente.
 - Basado en IPv6.
- Ventajas:
 - Alta seguridad.
 - Escalable y confiable.
- Desventajas:
 - Necesita un router de borde para conectar con Internet.
- Estandar de Uso:
 - Thread Group.

Matter

- Características:
 - Protocolo unificado para el hogar inteligente.
 - Amplia interoperabilidad.
- Ventajas:
 - Soporte de múltiples fabricantes.
 - Mejora la interoperabilidad entre dispositivos.
- Desventajas:
 - Aún en proceso de adopción masiva.
- Estandar de Uso:
 - Connectivity Standards Alliance.

MQTT

- Características:
 - Protocolo de mensajería ligera.
 - Utiliza el modelo publish-subscribe.
- Ventajas:
 - Eficiente en términos de ancho de banda.
 - Ideal para conexiones intermitentes.
- Desventajas:
 - La seguridad depende de la implementación.
- Estandar de Uso:
 - OASIS.

CoAP

- Características:
 - Protocolo de aplicación ligero.
 - Basado en HTTP.
- Ventajas:
 - Ideal para dispositivos con recursos limitados.
 - Multicast support.
- Desventajas:
 - Funcionalidades limitadas en comparación con HTTP.
- Estandar de Uso:
 - IETF.

AMQP

- Características:
 - Protocolo de mensajería avanzada.
 - Alta fiabilidad y interoperabilidad.
- Ventajas:
 - Fiabilidad.
 - Interoperabilidad.
- Desventajas:
 - Más complejo y pesado comparado con MQTT.
- Estandar de Uso:
 - OASIS.

HTTP/HTTPS

- Características:
 - Protocolo de transferencia de hipertexto.
 - Utilizado para comunicación web.
- Ventajas:
 - Amplia adopción.
 - Facilita la integración con la web.
- Desventajas:
 - Mayor sobrecarga comparado con protocolos más ligeros como MQTT.
- Estandar de Uso:
 - IETF.

Modbus

- Características:
 - Protocolo de comunicación industrial.
 - Amplio soporte y uso.
- Ventajas:
 - Simplicidad.
 - Amplio soporte.
- Desventajas:
 - Limitado en términos de velocidad y funcionalidad comparado con otros protocolos.
- Estandar de Uso:
 - Modbus Organization.

OPC UA

- Características:
 - Protocolo de comunicación para la automatización industrial.
 - Interoperabilidad entre dispositivos de diferentes fabricantes.
- Ventajas:
 - Alta seguridad.
 - Funciona en diferentes tipos de redes.
- Desventajas:
 - Complejidad en la implementación.
- Estandar de Uso:
 - OPC Foundation.

Profibus

- Características:
 - Protocolo de campo de procesos.
 - Utilizado en automatización industrial.
- Ventajas:
 - Alta velocidad.
 - Fiabilidad.
- Desventajas:
 - Requiere cableado específico.
- Estandar de Uso:
 - PROFIBUS & PROFINET International.

Profinet

- Características:
 - Protocolo de red industrial basado en Ethernet.
 - Alta velocidad y flexibilidad.
- Ventajas:
 - Integración con IT.
 - Flexibilidad.
- Desventajas:
 - Requiere conocimientos específicos para su configuración.
- Estandar de Uso:
 - PROFIBUS & PROFINET International.

4-20 mA

- Características:
 - Sistema de transmisión de señales analógicas.
 - Robustez y larga distancia de transmisión.
- Ventajas:
 - Inmunidad al ruido.
 - Uso en entornos industriales.
- Desventajas:
 - Requiere conversión de señales para integración digital.
- Estandar de Uso:
 - ISA (International Society of Automation).

0-20 mA

- Características:
 - Sistema de transmisión de señales analógicas.
 - Similar a 4-20 mA pero con diferente rango de corriente.
- Ventajas:
 - · Simplicidad.
 - Amplio uso en sistemas industriales.
- Desventajas:
 - Más susceptible al ruido comparado con 4-20 mA.
- Estandar de Uso:
 - ISA (International Society of Automation).

0-10V

- Características:
 - Sistema de transmisión de señales analógicas basado en voltaje.
 - Comúnmente utilizado en control de procesos.

Ventajas:

- Simplicidad.
- Bajo costo de implementación.
- Desventajas:
 - Susceptible al ruido e interferencias.
- Estandar de Uso:
 - ISA (International Society of Automation).

0-24V

- Características:
 - Sistema de señalización basado en voltaje.
 - Utilizado para activar relés y actuadores.
- Ventajas:
 - Facilidad de uso.
 - Común en aplicaciones industriales.
- Desventajas:
 - Requiere cuidado en el manejo debido al mayor voltaje.
- Estandar de Uso:
 - ISA (International Society of Automation).

- CAN (Controller Area Network)
 - Características:
 - Protocolo de comunicación serial.
 - Utilizado en automoción e industria.
 - Ventajas:
 - Fiabilidad.
 - Tolerancia a fallos.
 - Desventajas:
 - Complejidad en la implementación.
 - Estandar de Uso:
 - ISO 11898.

Consultas

¡Muchas gracias!

