

COMP 273

Digital Logic (Part 2)

Information Representation in Today's Computers

Prof. Joseph Vybihal

Announcements

• Ass#1 out this week

Readings

- Our textbook
 - Chapter 2.4 Sign & unsigned numbers
- Wikipedia
 - Binary number
 - Octal number
 - Hexadecimal number

At Home

- What does this ASCII message say:
- Compute the following binary equation: 10110 + 11001 00001
- Start reading the Soul Of A New Machine
- Think of data representation as we did in class.

binary

Tabular encodings

ASCII Machine Language

binary numbers

integers reals

Tabular encodings are an ad-hock **mapping** of a string of bits to some meaning.

ASCII => symbol displayed on screen ML => circuitry that has an effect Need ROMS to convert to meaning.

Binary numbers are **true numbers** in the mathematical
sense, supporting all normal
operators like + - * / etc.
Do not need ROMS for meaning.

Computers Use

- Binary
 - Flags, numbers, strings and encodings
- Hexadecimal
 - A more convenient human readable form
- Octal
 - Historical
 - Current
 - Unix permissions
 - C, Perl special character escape codes

Part 1

Number Representations

Understanding number systems is important for this course since computers operate in number systems not commonly used by humans

Numerical Binary Representation

Counting in binary:

0000	U
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8

9

 Ω

Good to memorize

Another way is to add

McGill

1001

1010

Numerical Binary Representation

<u>System</u>	Base	<u>Digits</u>
Decimal	10	0,1,2,3,4,5,6,7,8,9
Binary	2	0,1
Octal	8	0,1,2,3,4,5,6,7
Hexadecimal	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
		10 11 12 13 14 15

All number systems use Positional Notation:

$$152_{10} = 1 \times 10^2 + 5 \times 10^1 + 2 \times 10^0 = \sum_{i=0}^{n} a_i * base^i$$

Base Conversions can use the Positional Notation as a rule

• Decimal to Binary

$$123_{10} = N_2 = 1111011_2$$

$$123 / 2 = 61 R 1$$
 $61/2 = 30 R 1$
 $30/2 = 15 R 0$
 $15/2 = 7 R 1$
 $7/2 = 3 R 1$
 $3/2 = 1 R 1$
 $1/2 = 0 R 1$
Read

Base Conversions can use the Positional Notation as a rule

• Decimal to Hex

$$53241_{10} = N_{16} = CFF9_{16}$$

 $53241/16 = 3327 R 9$
 $3327/16 = 207 R F$
 $207/16 = 12 R F$
 $12/16 = 0 R C$

• Binary to Decimal

$$1011_2 = N_{10} = 11_{10}$$
$$= 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 = 11_{10}$$

Hex to Decimal

$$1AB_{16} = N_{10} = 427_{10}$$

$$= 1x16^{2} + Ax16^{1} + Bx16^{0}$$

$$= 1x16^{2} + 10x16^{1} + 11x16^{0} = 427_{10}$$

McGill

Binary to Hex Conversion

Notice that 1 nibble \equiv 1 hex digit

(it works in both directions)

$$0000_2 = 0_{16}$$

 $0001 = 1$
 $0010 = 2$
 $0011 = 3$
 $0100 = 4$

•

•

$$1111 = F$$

What does this equal to? $001001001111_2 = ?$

$$F310_{16} = ?$$

Binary and Octal Conversion

Notice that every 3 bits $\equiv 1$ octal digit (it works in both directions)

$$000_2 = 0_8$$

 $001 = 1$
 $010 = 2$
 $011 = 3$
 $100 = 4$
 $101 = 5$
 $110 = 6$

111 = 7

What does this equal to? $100111010101_2 = ?$ $123_8 = ?$

McGill Vybihal (c) 2015

Why so many representations?

- Humans are used to decimal
 - Convert binary to decimal... slow
 - Do fast binary conversions...
 - Bytes are 8 bits = 2 Hex digits
 - Since Binary to Hex conversion requires simple circuitry and since Hex is more readable to humans, the computer often auto converts binary to hex for error dumps
- Therefore Dec, Bin & Hex conversions
 - Octal was a cool fad...

Why Octal?

- No reason these days other than educational
- Historically the PDP11, a famous powerful mini computer from the 80s was based on Octal
- Teaching of octal still occurs because of that machine

Part 2

Binary Encodings

Introduction to Computer Systems

ns white the second sec

ASCII Code: Character to Binary

0	0011	0000	o	0100	1111	m	0110	1101
1	0011	0001	P	0101	0000	n	0110	1110
2	0011	0010	Q	0101	0001	٥	0110	1111
3	0011	0011	R	0101	0010	P	0111	0000
4	0011	0100	S	0101	0011	. q	0111	0001
5	0011	0101	T	0101	0100	r	0111	0010
6	0011	0110	Ū	0101	0101	s	0111	0011
7	0011	0111	v	0101	0110	t	0111	0100
8	0011	1000	W	0101	0111	u	0111	0101
9	0011	1001	x	0101	1000	v	0111	0110
A	0100	0001	Y	0101	1001	w	0111	0111
B	0100	0010	z	0101	1010	x	0111	1000
C	0100	0011	a	0110	0001	У	0111	1001
Г	0100	0100	b	0110	0010	z	0111	1010
E	0100	0101	c	0110	0011		0010	1110
F	0100	0110	đ	0110	0100	,	0010	0111
G	0100	0111	е	0110	0101	:	0011	1010
Н	0100	1000	£	0110	0110	;	0011	1011
Ι	0100	1001	g	0110	0111	?	0011	1111
J	0100	1010	h	0110	1000	Ţ	0010	0001
K	0100	1011	I	0110	1001	,	0010	1100
L	0100	1100	j	0110	1010		0010	0010
M	0100	1101	k	0110	1011	(0010	1000
N	0100	1110	1	0110	1100)	0010	1001
						space	0010	0000

Memory to Device

<u>Page</u>

Often hardware is present, in the form of a ROM, to help convert one representation into another.

19

Tabular Mappings: Screen

1001110

Register with binary value

ROM (ASCII Table)

Circuitry to draw the letter (i.e. each wire lights up a pixel)

(x,y,color)

Tabular Mappings: Printer

1001110

Register with binary ASCII value

Printer
ROM
(ASCII Table)

McGill

Tabular Mappings: Keyboard

Register with binary ASCII value

Keyboard ROM (ASCII Table)

Scan codes

McGill

Part 3

Data Representations & Mathematics

Data Types

- Data has 3 representations...
 - A <u>logical</u> description
 - How it truly looks (integer, real, char),
 - How it truly behaves:
 - Behaviour is defined by operations/operators
 - Operations are algorithms
 - A <u>physical</u> construction
 - Based on the logical definition
 - A circuit that <u>implements</u> the algorithms

Basic Principles of Data

Imagining our own data

- First we need to imagine our data type:
 - Legal operators
 - A philosophical abstraction of what is being recorded (e.g. characters do not really exist)
- Second we need to determine how we want to represent the information in binary
 - Size in bits

Question

• How could we implement a string data type?

An example with issues

If bit size is 4 and we want to store integers:

0000

0001

0010

0011

0100

0101

0110

0111

•

What are the next values?

<u>Issues</u>:

- Is there a limit?
 - What should happen at that limit?
- Overflow looks like?
- Negative looks like?

Binary Mathematics

28

Binary Addition

```
1 The carry

1011
+0010
Addition in binary functions identically with decimal

1101<sub>2</sub>
257
+ 102
-----
359<sub>10</sub>
```

Carry past defined type size:

- A physical property constraint
- Called an *Arithmetic Overflow*, what about *signed overflow*?

McGill

Binary Subtraction

- To make computers easier to build...
 - X Y = X + (-Y) = X + (2's complement of Y)
- Two's Complement Notation:
 - Conversion process...
 - Take Y
 - Flip Y's bits
 - Then add 1
 - Now your value is in Two's Complement
- Add

An Example

00111 _____ Convert to 2's comp.

?

Take value: 00101

Flip bits: 11010

Add 1: 11011

Now finish the problem:

Overflow _____

$$00010_2 \quad \longleftarrow \quad 7 - 5 = 2$$

Base 10 Two's Complement Method

$$-N = Base^{size} - N$$

E.G.:
$$-12_{10} = 10^2 - 12 = 100 - 12 = 88_{10}$$

Get 15 + 88

$$-N = 2^{\text{size}} - N$$

Drop carry= 3

Gives 103

$$-27_{10} = 2^8 - 11011_2 =$$
 Carry in

10000000

Properties:

- 00011011

• Unique 0

• MSB is sign bit

11100101 = flip bits + 1

- -2^{n-1} to $+2^{n-1}$
- $\bullet -(-Y) = +Y$

Gill Vybihal (c) 2015

Signed Binary Numbers using 2's Complement

```
0000 0000 0000 0000 0000 0000 0000 0000 two
0000 0000 0000 0000 0000 0000 0000 0001 two
                                                      1<sub>ten</sub>
0000 0000 0000 0000 0000 0000 0000 0010<sub>two</sub>
                                                      2<sub>ten</sub>
01111111111111111111111111111111111<sub>two</sub>
                                        = 2.147,483,645_{ten}
                                        = 2,147,483,646_{ten}
01111111111111111111111111111111<sub>two</sub>
= 2,147,483,647_{ten}
=-2,147,483,648_{ten}
=-2,147,483,647_{ten}
1000 0000 0000 0000 0000 0000 0000 0010<sub>two</sub>
                                        =-2,147,483,646_{ten}
1111 1111 1111 1111 1111 1111 1111 1101<sub>two</sub>
                                                     -3<sub>ten</sub>
1111 1111 1111 1111 1111 1111 1111 1110 two
                                                     -2<sub>ten</sub>
-1<sub>ten</sub>
sign
```


Signed Number Representation

Sign & Magnitude Method

Sign bit

S Magnitude

Bit size

In other words:

8-bit +7 = 00000111

8-bit -7 = 10000111

The MSB is S

Notice problems with this?

000000000 = +0

10000000 = -0

This is not corrected for in hardware sometimes (simple calculators)

McGill

Basic Signed vs. 2's Complement

- Benefits...
 - Basic Signed
 - Easy to read
 - No pre-conversion needed
 - 2's Complement
 - Only one zero value
 - Auto subtracts when adding two numbers
 - Assuming we ignore the overflow...

