Éléments de symétrie d'une courbe

Soit f une fonction numérique et $\mathscr C$ sa courbe représentative dans un repère orthogonal.

I - Axe de symétrie

Pour montrer que la droite Δ d'équation x=a est un axe de symétrie de la courbe $\mathscr C$, on peut utiliser l'une des méthodes suivantes :

- Démontrer que : $\forall x \in D_f$ on a $2a x \in D_f$ et f(a x) = f(x)
- Démontrer que : $\forall x \in D_f$ on a $a x \in D_f$, $a + x \in D_f$ et f(2a x) = f(a + x)
- Démontrer que : la fonction g(x) = f(a x) est paire.

Dans ce cas on peut restreindre l'étude de f à $[a, +\infty[\cap D_f]$ et on obtient la courbe complète par symétrie par rapport à la droite Δ .

II - Centre de symétrie

Pour montrer que le point I(a,b) est un axe de symétrie de la courbe \mathscr{C} , on peut utiliser l'une des méthodes suivantes :

- Démontrer que : $\forall x \in D_f$ on a $2a x \in D_f$ et f(2a x) + f(x) = 2b
- Démontrer que : $\forall x \in D_f$ on a $a x \in D_f$, $a + x \in D_f$ et f(a x) + f(a + x) = 2b
- Démontrer que : la fonction g(x) = f(a x) + b est impaire.

Dans ce cas on peut restreindre l'étude de f à $[a, +\infty[\cap D_f]$ et on obtient la courbe complète par symétrie par rapport à I.

III - Fonction périodique

Définition 1. Une fonction f est dite **périodique de période** t (ou t- périodique) ssi :

- · t est non nul,
- · pour tout $x \in D_f$, x + t et x t sont dans D_f et f(x + t) = f(x).

On dit que t est une période de f, et la plus petite période strictement positive est la période de f. En général la période est notée T.

Pour tout x de D_f et tout **entier relatif** k, f(x + kT) = f(x).

Conséquences

Pour représenter graphiquement une fonction f de période T, il suffit de :

- choisir un intervalle I de longueur T inclus dans D_f ;
- tracer (en rouge)la partie \mathscr{C} de la courbe de f restreinte à cet intervalle I:
- translater la partie \mathscr{C} par les translations de vecteurs $(kT)\vec{i}$ avec k entier relatif.

Cas des fonctions trigonométriques

- Les fonctions $x \mapsto \cos x$ et $x \mapsto \sin x$ sont périodiques de période 2π c'est à dire : $\cos(x + 2\pi) = \cos x$ et $\sin(x + 2\pi)$
- La fonction $x \mapsto \tan x$ est périodique de période π c'est à dire : $\tan(x + \pi) = \tan x$

Cas général:

Les fonctions $x \mapsto \cos(ax + b)$ et $x \mapsto \sin(ax + b)$ ont pour période $T = \frac{2\pi}{|a|}$ La fonction $x \mapsto \tan(ax + b)$ a pour période $T = \frac{\pi}{|a|}$

Réduction de domaine d'étude

- Si f est T-périodique alors on peut restreindre le domaine d'étude à tout domaine du type $[a, a+T] \cap D_f$ pour tout réel a, ainsi on obtient la courbe complète de f sur ce domaine.
- Si f est T-périodique et paire (resp. impaire) alors on peut restreindre le domaine d'étude au domaine $\left[0,\frac{T}{2}\right]\cap D_f$ ainsi on obtient la courbe complète sur $\left[-\frac{T}{2},\frac{T}{2}\right]\cap D_f$ par symétrie par rapport à l'axe des ordonnées (resp. par symétrie par rapport à O origine du repère).
- Si f est T-périodique et $\mathscr C$ admet un axe de symétrie Δ (resp. un centre de symétrie I) alors on peut restreindre le domaine d'étude au domaine $\left[a, a+\frac{T}{2}\right]\cap D_f$ ou au domaine $\left[a-\frac{T}{2}, a\right]\cap D_f$ ainsi on obtient la courbe complète sur $\left[a-\frac{T}{2}, a+\frac{T}{2}\right]\cap D_f$ par symétrie par rapport à l'axe Δ (resp. par symétrie par rapport un point I).

Exercice 2. On considère la fonction f définie par : $f(x) = \frac{\sin x}{\sin x + \cos x}$

- 1. Déterminer D_f et puis montrer que f est de période π .
- 2. Montrer que le point $A(-\frac{\pi}{4}; \frac{1}{2})$ est un centre de symétrie de \mathscr{C}_f . En déduire un domaine simple pour l'étude de f

$$\begin{array}{ll} \textit{D\'{e}monstration.} & 1. \ f(x) \text{ existe} \Leftrightarrow \sin x + \cos x \neq 0 \\ \Leftrightarrow \sin x \neq -\cos x \\ \Leftrightarrow \sin x \neq \sin (x - \frac{\pi}{2}) \\ \Leftrightarrow x \neq \frac{3\pi}{4} + k\pi, k \in \mathbb{Z} \\ \text{Montrons que } \pi \text{ est la p\'{e}riode de } f. \\ x \in D_f \Leftrightarrow x \neq \frac{3\pi}{4} + k\pi \Leftrightarrow x + \pi \neq \frac{7\pi}{4} + k\pi \Leftrightarrow x + \pi \in D_f. \end{array}$$

$$x \in D_f \Leftrightarrow x \neq \frac{3\pi}{4} + k\pi \Leftrightarrow x - \pi \neq -\frac{\pi}{4} + k\pi \Leftrightarrow x - \pi \in D_f.$$

$$f(x + \pi) = \frac{\sin(x + \pi)}{\sin(x + \pi) + \cos(x + \pi)} = \frac{-\sin x}{-\sin x - \cos x} = \frac{\sin x}{\sin x + \cos x} = f(x)$$

2.
$$2a - x = -\frac{\pi}{2} - x$$

 $x \in D_f \Leftrightarrow x \neq \frac{3\pi}{4} + k\pi \Leftrightarrow -\frac{\pi}{2} - x \neq -\frac{7\pi}{4} + k\pi \Leftrightarrow -\frac{\pi}{2} - x \in D_f$
 $\Leftrightarrow 2a - x \in D_f$

$$f(2a-x) + f(x) = \frac{\sin(-\frac{\pi}{2} - x)}{\sin(-\frac{\pi}{2} - x) + \cos(-\frac{\pi}{2} - x)} + \frac{\sin x}{\sin x + \cos x}$$

$$f(2a-x)+f(x) = \frac{\cos x}{\cos x + \sin x} + \frac{\sin x}{\sin x + \cos x} = 1$$

Donc le point A est bien un centre de symétrie de \mathcal{C}_f .

Proposons un d'étude de f.

f est de période $T=\pi$ et l'abscisse du centre de symétrie est $a=-\frac{\pi}{4}$, on peut appliquer la

formule
$$\left[a, a + \frac{T}{2}\right] \cap D_f$$

$$\left[-\frac{\pi}{4}, -\frac{\pi}{4} + \frac{\pi}{2}\right] \cap D_f = \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \cap D_f = \left]-\frac{\pi}{4}, \frac{\pi}{4}\right]$$

<u>Conclusion</u>: on peut étudier f sur $\left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$ puis obtenir la courbe complète par symétrie par rapport à A sur $\left[-\frac{3\pi}{4}, -\frac{\pi}{4} \right] \cup \left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$.