LAB 2

Exercise:

1) Perform all data preprocessing tasks and feature selection on "Exercise-CarData.csv"

```
In [1]: # Import Libraries
    import numpy as np
    import pandas as pd
    import seaborn as sns
    from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import MinMaxScaler, StandardScaler, LabelEncoder
    , OneHotEncoder
```

υa [·]	ta:								
	Price	Age	KM	FuelType	HP	MetColor	Automatic	CC	Doors
\									
0	13500	23.0	46986.0	Diesel	90.0	1.0	0	2000	3
1	13750	23.0	72937.0	Diesel	90.0	1.0	0	2000	3
2	13950	24.0	41711.0	Diesel	90.0	NaN	0	2000	3
3	14950	26.0	48000.0	Diesel	90.0	0.0	0	2000	3
4	13750	30.0	38500.0	Diesel	90.0	0.0	0	2000	3
5	12950	32.0	61000.0	Diesel	90.0	0.0	0	2000	3
6	16900	27.0	NaN	Diesel	NaN	NaN	0	2000	3
7	18600	30.0	75889.0	NaN	90.0	1.0	0	2000	3
8	21500	27.0	19700.0	Petrol	192.0	0.0	0	1800	3
9	12950	23.0	71138.0	Diesel	NaN	NaN	0	1900	3

In [3]: # Statistics print("\nData statistics :\n\n",datasets.describe()) print ("\n\nDataTypes of Features :\n\n",datasets.dtypes) print("\n") datasets.info()

Data statistics :

,	Unnamed: 0	Price	e Age	9	KM HP
\ count	1436.000000	1436.000000	1336.000000	1421.0000	00 1430.000000
mean	717.500000	10730.824513	55.672156	68647.23997	72 101.478322
std	414.681806	3626.964585	18.589804	37333.02358	39 14.768255
min	0.000000	4350.000000	1.000000	1.00000	90 69.000000
25%	358.750000	8450.000000	43.000000	43210.00000	90.000000
50%	717.500000	9900.000000	60.000000	63634.00000	00 110.000000
75%	1076.250000	11950.000000	70.000000	87000.00000	00 110.000000
max	1435.000000	32500.000000	80.000000	243000.00000	90 192.000000
	MetColor	Automatic	CC	Doors	Weight
count	1286.000000	1436.000000	1436.000000	1436.000000	1436.00000
mean	0.674961	0.055710	1566.827994	4.033426	1072.45961
std	0.468572	0.229441	187.182436	0.952677	52.64112
min	0.000000	0.000000	1300.000000	2.000000	1000.00000
25%	0.000000	0.000000	1400.000000	3.000000	1040.00000
50%	1.000000	0.000000	1600.000000	4.000000	1070.00000
75%	1.000000	0.000000	1600.000000	5.000000	1085.00000
max	1.000000	1.000000	2000.000000	5.000000	1615.00000

DataTypes of Features :

Unnamed: 0	int64
Price	int64
Age	float64
KM	float64
FuelType	object
HP	float64
MetColor	float64
Automatic	int64
CC	int64
Doors	int64
Weight	int64
dtype: object	

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1436 entries, 0 to 1435
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype					
0	Unnamed: 0	1436 non-null	int64					
1	Price	1436 non-null	int64					
2	Age	1336 non-null	float64					
3	KM	1421 non-null	float64					
4	FuelType	1336 non-null	object					
5	HP	1430 non-null	float64					
6	MetColor	1286 non-null	float64					
7	Automatic	1436 non-null	int64					
8	CC	1436 non-null	int64					
9	Doors	1436 non-null	int64					
10	Weight	1436 non-null	int64					
dtype	dtypes: float64(4), int64(6), object(1)							
memo	memory usage: 123.5+ KB							

a) Data Transformation

```
In [4]: # Create Data for Transformation
        # Replace "Nan" with 0
        # Replace FuelType with "NaN"
        datasets = datasets.replace(np.nan, 0, regex=True)
        X \text{ new} = datasets
        X new['FuelType'] = pd.to numeric(X new['FuelType'],errors='coerce')
        X new=X new.values
        print("\nData for transformation : \n\n", X new[0:5,:])
        Data for transformation :
         [[0.0000e+00 1.3500e+04 2.3000e+01 4.6986e+04
                                                               nan 9.0000e+01
          1.0000e+00 0.0000e+00 2.0000e+03 3.0000e+00 1.1650e+03]
         [1.0000e+00 1.3750e+04 2.3000e+01 7.2937e+04
                                                              nan 9.0000e+01
          1.0000e+00 0.0000e+00 2.0000e+03 3.0000e+00 1.1650e+03]
         [2.0000e+00 1.3950e+04 2.4000e+01 4.1711e+04
                                                              nan 9.0000e+01
          0.0000e+00 0.0000e+00 2.0000e+03 3.0000e+00 1.1650e+03]
         [3.0000e+00 1.4950e+04 2.6000e+01 4.8000e+04
                                                              nan 9.0000e+01
          0.0000e+00 0.0000e+00 2.0000e+03 3.0000e+00 1.1650e+03]
         [4.0000e+00 1.3750e+04 3.0000e+01 3.8500e+04
                                                              nan 9.0000e+01
          0.0000e+00 0.0000e+00 2.0000e+03 3.0000e+00 1.1700e+03]]
In [5]: # Perform scaling on Data
        scaler = MinMaxScaler()
        X_scaled = scaler.fit_transform(X_new)
        print("\nScaled Data : \n\n", X_scaled[0:5,:])
        Scaled Data:
         [0.000000000e+00\ 3.25044405e-01\ 2.87500000e-01\ 1.93358025e-01
                     nan 4.68750000e-01 1.00000000e+00 0.00000000e+00
          1.00000000e+00 3.3333333e-01 2.68292683e-01]
         [6.96864111e-04 3.33925400e-01 2.87500000e-01 3.00152263e-01
                     nan 4.68750000e-01 1.00000000e+00 0.00000000e+00
          1.00000000e+00 3.3333333e-01 2.68292683e-01]
         [1.39372822e-03 3.41030195e-01 3.00000000e-01 1.71650206e-01
                     nan 4.68750000e-01 0.00000000e+00 0.00000000e+00
          1.00000000e+00 3.3333333e-01 2.68292683e-01]
         [2.09059233e-03 3.76554174e-01 3.25000000e-01 1.97530864e-01
                     nan 4.68750000e-01 0.00000000e+00 0.00000000e+00
          1.00000000e+00 3.3333333e-01 2.68292683e-01]
         [2.78745645e-03 3.33925400e-01 3.75000000e-01 1.58436214e-01
                     nan 4.68750000e-01 0.00000000e+00 0.00000000e+00
          1.00000000e+00 3.3333333e-01 2.76422764e-01]]
```

```
In [6]: # Perform standardization on Data
            std = StandardScaler()
            X std = std.fit transform(X new)
            print("\nStandardized Data : \n\n", X std[0:5,:])
            Standardized Data:
             [[-1.73084506  0.76376268  -1.26023883  -0.55444821
                                                                        nan -0.68571051
                0.80893626 -0.24289308 2.31497633 -1.08513865 1.75856113]
             [-1.72843274  0.83271485  -1.26023883  0.1325441
                                                                       nan -0.68571051
               0.80893626 -0.24289308 2.31497633 -1.08513865
                                                                1.75856113]
             [-1.72602041 0.88787659 -1.21647334 -0.69409155
                                                                       nan -0.68571051
              -1.23619133 -0.24289308 2.31497633 -1.08513865 1.75856113]
              [-1.72360808 1.16368529 -1.12894236 -0.52760492
                                                                       nan -0.68571051
              -1.23619133 -0.24289308 2.31497633 -1.08513865 1.75856113]
             [-1.72119575 0.83271485 -0.95388041 -0.7790953
                                                                       nan -0.68571051
               -1.23619133 -0.24289308 2.31497633 -1.08513865 1.853577 11
b) Handling Categorical Data
    In [7]: # Load Data
             # Replace "?,??,???...." to "NaN"
             # Replace Doors value from string to corresponding numbers
             # Convert Doors feature from object to int64
             # Replace FuelType from "NaN" to "Unknown"
            datasets = pd.read csv('/home/nihar/Desktop/ML/Lab2/Exercise-CarData.csv',se
            p=',\?*',engine='python')
            datasets.Doors = [numbers[item] for item in datasets.Doors]
            datasets['Doors'] = pd.to_numeric(datasets['Doors'],errors='coerce')
            datasets['FuelType'] = datasets['FuelType'].replace(np.nan, 'Unknown', regex
            =True)
            X new = datasets.values
             print("\nData for LabelEncoder : \n\n", X new[0:10,:])
            Data for LabelEncoder:
             [[0 13500 23.0 46986.0 'Diesel' 90.0 1.0 0 2000 3 1165]
             [1 13750 23.0 72937.0 'Diesel' 90.0 1.0 0 2000 3 1165]
             [2 13950 24.0 41711.0 'Diesel' 90.0 nan 0 2000 3 1165]
             [3 14950 26.0 48000.0 'Diesel' 90.0 0.0 0 2000 3 1165]
```

```
[[0 13500 23.0 46986.0 'Diesel' 90.0 1.0 0 2000 3 1165]
[1 13750 23.0 72937.0 'Diesel' 90.0 1.0 0 2000 3 1165]
[2 13950 24.0 41711.0 'Diesel' 90.0 nan 0 2000 3 1165]
[3 14950 26.0 48000.0 'Diesel' 90.0 0.0 0 2000 3 1165]
[4 13750 30.0 38500.0 'Diesel' 90.0 0.0 0 2000 3 1170]
[5 12950 32.0 61000.0 'Diesel' 90.0 0.0 0 2000 3 1170]
[6 16900 27.0 nan 'Diesel' nan nan 0 2000 3 1245]
[7 18600 30.0 75889.0 'Unknown' 90.0 1.0 0 2000 3 1245]
[8 21500 27.0 19700.0 'Petrol' 192.0 0.0 0 1800 3 1185]
[9 12950 23.0 71138.0 'Diesel' nan nan 0 1900 3 1105]]
```

```
In [8]: # Convert FuelType into Numeric values

le = LabelEncoder()
   X_new[ : ,4] = le.fit_transform(X_new[ : ,4])
   print("\nNumeric FuelType : \n\n", X_new[0:100,4])
```

Numeric FuelType :

In [9]: # Create one column for each FuelType dummy = pd.get_dummies(datasets['FuelType']) print("\n\nDummy :\n",dummy.iloc[0:10,:]) datasets = datasets.drop(['FuelType'],axis=1) datasets = pd.concat([dummy,datasets],axis=1) print("\n\nFinal Data :\n",datasets.iloc[0:17,:])

Dur	Dummy:								
	CNG	Diesel	Petrol	Unknown					
0	0	1	0	Θ					
1	0	1	0	Θ					
2	0	1	0	0					
3	0	1	0	0					
4	0	1	0	0					
5	0	1	0	0					
6	0	1	0	0					
7	0	0	0	1					
8	0	0	1	0					
9	0	1	0	0					

Fin	al Data	:								
	CNG	Diesel	Petrol	Unkn	own U	nnamed: 0	Price	Age	KM	HP
\										
0	0	1	0		0	0	13500	23.0	46986.0	90.0
1	0	1	0		0	1	13750	23.0	72937.0	90.0
2	0	1	0		0	2	13950	24.0	41711.0	90.0
3	0	1	0		0	3	14950	26.0	48000.0	90.0
4	0	1	0		0	4	13750	30.0	38500.0	90.0
5	0	1	0		0	5	12950	32.0	61000.0	90.0
6	0	1	0		0	6	16900	27.0	NaN	NaN
7	0	0	0		1	7	18600	30.0	75889.0	90.0
8	0	0	1		0	8	21500	27.0	19700.0	192.0
9	0	1	0		0	9	12950	23.0	71138.0	NaN
10	0	0	1		0	10	20950	25.0	31461.0	192.0
11	0	0	1		0	11	19950	22.0	43610.0	192.0
12	0	0	1		0	12	19600	25.0	32189.0	192.0
13	0	0	1		0	13	21500	31.0	23000.0	192.0
14	0	0	1		0	14	22500	32.0	34131.0	192.0
15	0	0	1		0	15	22000	28.0	18739.0	NaN
16	0	0	1		0	16	22750	30.0	34000.0	192.0
	MetCol	or Aut	omatic	CC	Doors	Weight				
Λ	1	Λ	^	2000	2	1165				

	Mercoroi	Automatic	CC	2 וטטע	weight
0	1.0	0	2000	3	1165
1	1.0	0	2000	3	1165
2	NaN	0	2000	3	1165
3	0.0	0	2000	3	1165
4	0.0	0	2000	3	1170
5	0.0	0	2000	3	1170
6	NaN	0	2000	3	1245
7	1.0	0	2000	3	1245
8	0.0	0	1800	3	1185
9	NaN	0	1900	3	1105
10	0.0	0	1800	3	1185
11	0.0	0	1800	3	1185
12	0.0	0	1800	3	1185
13	1.0	0	1800	3	1185
14	1.0	0	1800	3	1185
15	0.0	0	1800	3	1185
16	1.0	0	1800	3	1185

c) Handling the missing value

```
In [10]: # Load Data
         # Replace "?,??,???...." to "NaN"
         # Replace Doors value from string to corresponding numbers
         # Convert Doors feature from object to int64
         datasets = pd.read csv('/home/nihar/Desktop/ML/Lab2/Exercise-CarData.csv',se
         p=',\?*',engine='python')
         datasets.Doors = [numbers[item] for item in datasets.Doors]
         datasets['Doors'] = pd.to numeric(datasets['Doors'],errors='coerce')
         X new = datasets.values
         print("\nData for LabelEncoder : \n\n", X new[0:10,:])
         Data for LabelEncoder:
          [[0 13500 23.0 46986.0 'Diesel' 90.0 1.0 0 2000 3 1165]
          [1 13750 23.0 72937.0 'Diesel' 90.0 1.0 0 2000 3 1165]
          [2 13950 24.0 41711.0 'Diesel' 90.0 nan 0 2000 3 1165]
          [3 14950 26.0 48000.0 'Diesel' 90.0 0.0 0 2000 3 1165]
          [4 13750 30.0 38500.0 'Diesel' 90.0 0.0 0 2000 3 1170]
          [5 12950 32.0 61000.0 'Diesel' 90.0 0.0 0 2000 3 1170]
          [6 16900 27.0 nan 'Diesel' nan nan 0 2000 3 1245]
          [7 18600 30.0 75889.0 nan 90.0 1.0 0 2000 3 1245]
          [8 21500 27.0 19700.0 'Petrol' 192.0 0.0 0 1800 3 1185]
          [9 12950 23.0 71138.0 'Diesel' nan nan 0 1900 3 1105]]
In [11]: # Removing the row with all null values
         datasets.dropna(how='all',inplace=True)
         print("\nNew Data :\n\n", datasets.iloc[0:10,1:11])
         New Data :
             Price
                     Age
                               KM FuelType
                                                    MetColor Automatic
                                                                           CC
                                                                               Doors
            13500
                   23.0 46986.0
                                   Diesel
                                            90.0
                                                        1.0
                                                                     0
                                                                        2000
                                                                                  3
                                                                     0
            13750
                   23.0
                         72937.0
                                   Diesel
                                            90.0
                                                        1.0
                                                                        2000
                                                                                  3
         1
                                                                                  3
         2
            13950 24.0 41711.0
                                   Diesel
                                            90.0
                                                        NaN
                                                                     0
                                                                        2000
                                                                                  3
         3
            14950
                   26.0 48000.0
                                   Diesel
                                            90.0
                                                        0.0
                                                                     0
                                                                        2000
                                                                                  3
            13750
         4
                   30.0
                        38500.0
                                   Diesel
                                            90.0
                                                        0.0
                                                                     0
                                                                        2000
                                                                                  3
         5
            12950
                   32.0 61000.0
                                   Diesel
                                            90.0
                                                                     0
                                                                        2000
                                                        0.0
                                                                                  3
         6
            16900
                   27.0
                                   Diesel
                                                        NaN
                                                                     0
                                                                        2000
                             NaN
                                             NaN
                                                                                  3
         7
            18600
                   30.0
                        75889.0
                                      NaN
                                            90.0
                                                        1.0
                                                                     0
                                                                        2000
                                                                                  3
            21500
                   27.0
                        19700.0
                                           192.0
                                                                        1800
         8
                                   Petrol
                                                        0.0
                                                                    0
                                                                                  3
            12950 23.0 71138.0
                                   Diesel
                                             NaN
                                                        NaN
                                                                     0
                                                                        1900
            Weight
         0
              1165
         1
              1165
         2
              1165
         3
              1165
         4
              1170
         5
              1170
         6
              1245
         7
              1245
         8
              1185
         9
              1105
```

```
In [12]: # Imputation (Replacing null values with mean value of that attribute)

# Using Imputer function to replace NaN values with mean of that parameter value
imputer = SimpleImputer(missing_values = np.nan,strategy = "mean")

# Fitting the data, function learns the stats
imputer = imputer.fit(X_new[:,[0,1,2,3,5,6,7,8,9,10]])

# fit_transform() will execute those stats on the input ie. X[:, 1:3]
X_new[:,[0,1,2,3,5,6,7,8,9,10]] = imputer.transform(X_new[:,[0,1,2,3,5,6,7,8,9,10]])

# filling the missing value with mean
print("\n\nNew Data with Mean Value for NaN : \n\n", X_new[0:10,:])
```

New Data with Mean Value for NaN :

memory usage: 134.6+ KB

```
[[0.0 13500.0 23.0 46986.0 'Diesel' 90.0 1.0 0.0 2000.0 3.0 1165.0]
[1.0 13750.0 23.0 72937.0 'Diesel' 90.0 1.0 0.0 2000.0 3.0 1165.0]
[2.0 13950.0 24.0 41711.0 'Diesel' 90.0 0.6749611197511665 0.0 2000.0 3.0 1165.0]
[3.0 14950.0 26.0 48000.0 'Diesel' 90.0 0.0 0.0 2000.0 3.0 1165.0]
[4.0 13750.0 30.0 38500.0 'Diesel' 90.0 0.0 0.0 2000.0 3.0 1170.0]
[5.0 12950.0 32.0 61000.0 'Diesel' 90.0 0.0 0.0 2000.0 3.0 1170.0]
[6.0 16900.0 27.0 68647.23997185081 'Diesel' 101.47832167832168 0.6749611197511665 0.0 2000.0 3.0 1245.0]
[7.0 18600.0 30.0 75889.0 nan 90.0 1.0 0.0 2000.0 3.0 1245.0]
[8.0 21500.0 27.0 19700.0 'Petrol' 192.0 0.0 0.0 1800.0 3.0 1185.0]
[9.0 12950.0 23.0 71138.0 'Diesel' 101.47832167832168 0.6749611197511665 0.0 1900.0 3.0 1105.0]]
```

d) Correlation

```
In [13]: datasets.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 1436 entries, 0 to 1435
         Data columns (total 11 columns):
              Column
                           Non-Null Count
          #
                                           Dtype
              _ _ _ _ _
                           -----
         - - -
                                           int64
          0
              Unnamed: 0 1436 non-null
              Price
                           1436 non-null
                                           int64
          1
          2
              Age
                           1336 non-null
                                           float64
          3
                                           float64
              KM
                           1421 non-null
              FuelType
          4
                           1336 non-null
                                           object
          5
                           1430 non-null
                                           float64
          6
                           1286 non-null
                                           float64
              MetColor
          7
              Automatic
                           1436 non-null
                                           int64
          8
                           1436 non-null
                                           int64
              \mathsf{CC}
              Doors
          9
                           1436 non-null
                                           int64
          10 Weight
                           1436 non-null
                                           int64
         dtypes: float64(4), int64(6), object(1)
```

```
In [14]: # Selecting features based on correlation
# Generating the correlation matrix

corr = datasets.iloc[:,1:11].corr()
corr.head(10)
```

Out[14]:

	Price	Age	KM	HP	MetColor	Automatic	CC	Doors	Wei
Price	1.000000	-0.878407	-0.574720	0.309902	0.112041	0.033081	0.165067	0.185326	0.581
Age	-0.878407	1.000000	0.512735	-0.157904	-0.099659	0.032573	-0.120706	-0.157027	-0.464
KM	-0.574720	0.512735	1.000000	-0.335285	-0.093825	-0.081248	0.299993	-0.036191	-0.026
HP	0.309902	-0.157904	-0.335285	1.000000	0.064749	0.013755	0.053758	0.097162	0.086
MetColor	0.112041	-0.099659	-0.093825	0.064749	1.000000	-0.013973	0.029189	0.086203	0.057
Automatic	0.033081	0.032573	-0.081248	0.013755	-0.013973	1.000000	-0.069321	-0.027654	0.057
СС	0.165067	-0.120706	0.299993	0.053758	0.029189	-0.069321	1.000000	0.126768	0.651
Doors	0.185326	-0.157027	-0.036191	0.097162	0.086203	-0.027654	0.126768	1.000000	0.302
Weight	0.581198	-0.464299	-0.026271	0.086737	0.057142	0.057249	0.651450	0.302618	1.000

In [15]: # Generating the correlation heatmap
sns.heatmap(corr)

Out[15]: <AxesSubplot:>

Out[16]: (9,)

```
In [17]: datasets = pd.concat([datasets['FuelType'],datasets[selected_columns]],axis=
         print(datasets.iloc[0:10,:])
                                                                                Doors
           FuelType Price
                              Age
                                        ΚM
                                               HP
                                                    MetColor
                                                              Automatic
                                                                            \mathsf{CC}
         0
             Diesel
                      13500
                             23.0
                                   46986.0
                                              90.0
                                                         1.0
                                                                          2000
                                                                                    3
                                                                                    3
         1
             Diesel
                      13750
                             23.0
                                   72937.0
                                              90.0
                                                         1.0
                                                                      0
                                                                          2000
                                                                                    3
         2
             Diesel
                      13950
                             24.0
                                   41711.0
                                              90.0
                                                         NaN
                                                                      0
                                                                          2000
                                                                                    3
         3
             Diesel
                      14950
                             26.0
                                   48000.0
                                              90.0
                                                         0.0
                                                                          2000
                                                                      0
                                                                                    3
         4
             Diesel 13750
                                                         0.0
                             30.0
                                   38500.0
                                              90.0
                                                                      0
                                                                          2000
         5
             Diesel 12950
                             32.0
                                   61000.0
                                              90.0
                                                         0.0
                                                                      0
                                                                          2000
                                                                                    3
         6
             Diesel
                      16900
                             27.0
                                              NaN
                                                         NaN
                                                                          2000
                                       NaN
                                                                                    3
         7
                NaN
                      18600
                             30.0
                                   75889.0
                                              90.0
                                                         1.0
                                                                      0
                                                                          2000
                                                                                    3
             Petrol
         8
                      21500
                             27.0
                                   19700.0
                                             192.0
                                                         0.0
                                                                          1800
                                                                      0
                                                                                    3
         9
             Diesel 12950 23.0
                                   71138.0
                                                         NaN
                                                                          1900
                                               NaN
            Weight
         0
               1165
         1
               1165
         2
               1165
         3
               1165
         4
               1170
         5
               1170
         6
               1245
         7
              1245
         8
               1185
         9
               1105
```

In []: