

Indian Institute of Technology Bombay

EE 324: CONTROL SYSTEMS LAB PROBLEM SHEET 4 REPORT

February 7, 2021

Student Name Roll Number

Mantri Krishna Sri Ipsit

180070032

Contents

1	Que	estion 1	3
	1.1	Part a	:
	1.2		
	1.3	Part c	
2	Que	estion 2	
	2.1	Part a	
	2.2	Part b	1
	2.3		
	2.4	Part d	
3	Que	estion 3	7
		Part a	7
	3.2	Part b	
	3.3	Part c	
	0.0	Part d	8
4	Q116	estion 4	(
-	•	Part a	_
	4.2		
		Part c	1
	4.)	Late C	

Question 1 1

1.1 Part a

The system given is:

Figure 1: 1a

The transfer function is found using the following code:

```
// Part a
 2
   s = poly(0, 's');
 3
   G1 = 1/s^2;
   G2 = (50 * s) / (s^2 + s + 100);
   G3 = s - 2;
   G4 = 1;
   S1 = syslin('c', G1);
   S2 = syslin('c', G2);
9
   S3 = syslin('c', G3, 1);
   S4 = syslin('c', G4, 1);
   Cs = (S1 * S2 * S3)/.S4;
   disp("Transfer function of part a");
13
   disp(Cs);
14
   disp("======
15
```

The transfer function is:

$$T(s) = \frac{-100 + 50s}{-100 + 150s + s^2 + s^3}$$

1.2 Part b

The system given is:

Figure 2: 1b

The transfer function is found using the following code:

```
// Part b
  G1 = s;
3 | S1 = syslin('c', G1, 1);
```

```
S2 = S1 * S1;
 5
   G2 = 1/s;
 6 | S3 = syslin('c', G2);
   S4 = S2 + S3;
   S5 = S4 /. syslin('c', 1, 1);
9 |Cs = (S5 * syslin('c', G2))/. syslin('c', s, 1);
10 disp("Transfer function of part b");
11
   disp(Cs);
12 | disp("======
13 // -
```

The transfer function is:

$$T(s) = \frac{1+s^3}{2s+s^2+2s^4}$$

1.3 Part c

The system given is:

Figure 3: 1c

The transfer function is found using the following code:

```
// Part c
   G1 = (3*s^2) / (1 + s) + 2 * s;
   S1 = syslin('c', G1);
   G2 = 1 / (s + 2);
 5 | S2 = syslin('c', G2);
6 |S3 = S2 /. (syslin('c', 4, 1));
   S4 = S3 * S1;
   Cs = S4 /. syslin('c', 1, 1);
9
   disp("Transfer function of part c");
10
   disp(Cs);
11
   disp("=======
12
```

The transfer function is:

$$T(s) = \frac{2s + 5s^2}{6 + 9s + 6s^2}$$

Question 2 $\mathbf{2}$

2.1 Part a

We have a plant with transfer function

$$G(s) = \frac{10}{s(s+2)(s+4)}$$

If a proportionality gain of K is put in the forward path in series and then the feedback loop has been closed with unity negative feedback, then the transfer function of this complex system will be

$$T(s) = \frac{K}{1 + KG(s)} = \frac{10K}{10K + 8s + 6s^2 + s^3}$$

This is calculated using the code given below:

```
/ Question 2
  // Part a
  s = poly(0, 's');
  G = 10 / (s* (s+2) * (s+4));
  Gs = syslin('c', G);
  K = 10;
  Cs = K * Gs /. syslin('c', 1, 1);
  disp("Transfer function for K = 10");
9
  disp(Cs);
  disp("==========
```

2.2 Part b

The locii of the closed-loop poles has been plotted by varying K from 0 to 100 in the steps of 0.1 using the following code:

```
// Part b
   K = 0:0.1:100;
3
   scf();
4
   for i=1:size(K, 2)
5
       k = K(i);
6
       Cs = k * Gs /. syslin('c', 1, 1);
       [z, p, _p] = tf2zp(Cs);
       plot(real(p), imag(p), 'b*', 'LineWidth', 2);
8
9
   end
   xlabel("Real Axis", 'fontsize', 3);
   ylabel("Imaginary Axis", 'fontsize', 3);
   title(["Locus of poles of", "\frac{10K}{10K} = 65^2 + 5^3"], "fontsize", 4);
13
   xs2png(gcf(), "Q2b.png");
14
   // -
```


Figure 4: Locii of poles

2.3 Part c

The critical value of K is estimated by conditioning on K such that the smallest value of K for which any one pole falls in the right half plane. We get the critical value as 4.8. This is found using the following code:

```
// Part c
 2
    K_{\text{critical}} = -1;
 3
    for i=1:size(K, 2)
 4
        k = K(i);
 5
        Cs = k * Gs /. syslin('c', 1, 1);
 6
        [z, p, _p] = tf2zp(Cs);
        rp = real(p);
 8
        if rp(1) > 0 \mid \mid rp(2) > 0 \mid \mid rp(3) > 0
 9
             K_critical = k;
             break;
11
        end
12
    end
    disp("Estimated Critical Value of K");
13
14
    disp(K_critical);
```

Part d 2.4

We have the denominator of the transfer function T(s) as

$$D(s) = s^3 + 6s^2 + 8s + 10K$$

The R-H table will then be

If we assume K > 0, then in the first column, all entries except the one corresponding to s will be positive. For that remaining entry to also be positive, we will need:

$$48 - 10K > 0 \implies K < 4.8$$

If we take K = 4.8, then we will have a row containing all zeros at s. If we consider the row above s, we will

$$P(s) = 6s^2 + 48$$

s^3	1	8	0
s^2	6	10K	0
s	$\frac{48-10K}{6}$	0	0
1	10K	0	0

Table 1: R-H Table

and its derivative will be

$$P^{'}(s) = 12s$$

so the new R-H table will be

s^3	1	8	0	
s^2	6	10K	0	
s	12	0	0	
1	48	0	0	

Table 2: R-H Table

and conce again we have no sign changes in the first column. So the critical value of K is 4.8 which matches with the estimate calculated above.

3 Question 3

3.1Part a

We have the polynomial

$$P(s) = s^5 + 3s^4 + 5s^3 + 4s^2 + s + 3$$

its routh table is

s^5	1	5	1
s^4	3	4	3
s^3	11/3	0	0
s^2	4	3	0
s	-2.75	0	0
1	3	0	0

Table 3: Routh Table

3.2Part b

We have the polynomial

$$P(s) = s^5 + 6s^3 + 5s^2 + 8s + 20$$

its routh table is:

s^5	1	6	8
s^4	ϵ	5	20
s^3	$\frac{-5+6\epsilon}{\epsilon}$	$\frac{-20+8\epsilon}{\epsilon}$	0
s^2	$\frac{-25+50\epsilon-8\epsilon^2}{-5+6\epsilon}$	20	0
s	$\frac{-160\epsilon - 64\epsilon^2}{-25 + 50\epsilon - 8\epsilon^2}$	0	0
1	20	0	0

Table 4: Routh Table

3.3 Part c

We have the polynomial

$$P(s) = s^5 - 2s^4 + 3s^3 - 6s^2 + 2s - 4$$

its routh table is:

s^5	1	3	2
s^4	-2	-6	-4
s^3	-8	-12	0
s^2	-3	-4	0
s	$\frac{-4}{3}$	0	0
1	-4	0	0

Table 5: Routh Table

3.4 Part d

We have the polynomial

$$P(s) = s^6 + s^5 - 6s^4 + s^2 + s - 6$$

its routh table is:

s^6	1	-6	1	-6
s^5	1	0	1	0
s^4	-6	0	-6	0
s^3	-24	0	0	0
s^2	ϵ	-6	0	0
S	$\frac{-144}{\epsilon}$	0	0	0
1	$\frac{-864}{144}$	0	0	0

Table 6: Routh Table

These tables were generated using the following code:

```
1
   clc; clear;
2
  //--
3 // Question 3
4 \mid s = poly(0, 's');
5 // Part a
6
  Ga = s^5 + 3*s^4 + 5*s^3 + 4*s^2 + s + 3;
7
  disp("Part a");
  disp(["Routh Table of", "s^5 + 3*s^4 + 5*s^3 + 4*s^2 + s + 3"]);
9 disp(routh_t(Ga));
10 | disp("======="");
11 //---
12 // Part b
13 Gb = s^5 + 6*s^3 + 5*s^2 + 8*s + 20;
14 | disp("Part b");
15 | disp(["Routh Table of", "s^5 + 6*s^3 + 5*s^2 + 8*s + 20"]);
16 | disp(routh_t(Gb));
17
  disp("=======");
18 //-
19 // Part c
20 | Gc = s^5 - 2*s^4 + 3*s^3 - 6*s^2 + 2*s - 4;
  disp("Part c");
22 disp(["Routh Table of", "s^5 - 2*s^4 + 3*s^3 - 6*s^2 + 2*s - 4"]);
23 disp(routh_t(Gc));
24 | disp("======="");
25
  //--
26 // Part d
27 \mid Gd = s^6 + s^5 - 6*s^4 + s^2 + s - 6;
28 disp("Part d");
29 disp(["Routh Table of", "s^6 + s^5 - 6*s^4 + s^2 + s - 6"]);
30 | disp(routh_t(Gd));
31
  disp("======="");
```

Question 4

4.1 Part a

We need a degree 6 polynomial which has its entire row corresponding to s^3 as zeros. This means this polynomial should have a 4th degree polynomial as its factor. Keeping this in mind, the following polynomial satisfies the above criterion:

$$P(s) = s^6 + s^5 + s^4 + s^2 + s + 1 = (s^4 + 1)(s^2 + s + 1)$$

s^6	1	1	1	1
s^5	1	0	1	0
s^4	1	0	1	0
s^3	4	0	0	0
s^2	ϵ	1	0	0
s	$\frac{-4}{\epsilon}$	0	0	0
1	1	0	0	0

Table 7: R-H Table

4.2 Part b

We need a degree 8 polynomial which has its entire row corresponding to s^3 as zeros. This means this polynomial should have a 4th degree polynomial as its factor. Keeping this in mind, the following polynomial satisfies the above criterion:

$$P(s) = s^{8} + 2s^{7} + 3s^{6} + 2s^{5} + 2s^{4} + 2s^{3} + 3s^{2} + 2s + 1 = (s^{4} + 1)(s^{2} + s + 1)^{2}$$

Please see the next page

s^8	1	3	2	3	1
s^7	2	2	2	2	0
s^6	2	1	2	1	0
s^5	1	0	1	0	0
s^4	1	0	1	0	0
s^3	4	0	0	0	0
s^2	ϵ	1	0	0	0
S	$\frac{-4}{\epsilon}$	0	0	0	0
1	0	0	0	0	0

Table 8: R-H Table

4.3 Part c

We need a degree 6 polynomial which has its first entry in the row corresponding to s^3 as zero. If we take a generic degree 6 polynomial and find the entries in the row corresponding to s^3 and set it to zero we get

$$-(a_6a_1 - a_2a_5) = \frac{a_3}{a_5}(a_6a_3 - a_4a_5)$$

One possible solution for this equation is $a_6 = 1 = a_2, a_1 = 1 = a_5, a_3 = 0 = a_4 = a_0$ We then have the polynomial

$$P(s) = s^6 + s^5 + s^2 + s$$

s^6	1	0	1	0
s^5	1	0	1	0
s^4	5	0	1	0
s^3	ϵ	0.8	0	0
s^2	$\frac{-4}{\epsilon}$	1	0	0
s	$\frac{-3.2-\epsilon^2}{-4}$	0	0	0
1	1	0	0	0

Table 9: R-H Table

These were generated using the following code:

```
clc; clear;
2
  //---
  // Question 4
3
4 \mid s = poly(0, 's');
5 // Part a
6 Ga = s^6 + s^5 + s^4 + s^2 + s + 1;
7
   disp("Part a");
8 disp(["Routh Table of", "s^6 + s^5 + s^4 + s^2 + s + 1"]);
9 | disp(routh_t(Ga));
10 | disp("======="");
  //-----
11
12 // Part b
13 | Gb = Ga * (s^2 + s + 1);
  disp("Part b");
14
15 disp(["Routh Table of", "s^8 + 2s^7 + 3s^6 + 2s^5 + 2s^4 + 2s^3 + 3s^2 + 2s + 1"]);
16 | disp(routh_t(Gb));
17 | disp("======="");
  //-----
18
19 // Part c
20 | Gc = s^6 + s^5 + s^2 + s;
21 disp("Part c");
22 | disp(["Routh Table of", "s^6 + s^5 + s^2 + s"]);
23 disp(routh_t(Gc));
24 | disp("======="");
```