

FEA SIMULATION

- Model Specifications
- Abaqus Modelling
- Types of Models
- Analysis of FEA Results

MODEL SPECIFICATIONS

Materials

- Plies Kevlar 49/Epoxy (102, 103, 105, 106)
- Core Nomex Honeycomb (104)
 (Aramid Fibre, Phenolic Coated)
- 3. Cohesive (0.001 mm layers)

Plies - Kevlar 49/epoxy

Continuum Shell Element

Elastic (MPa)								
E1	E2	E3	Nu12	Nu13	Nu23	G12	G13	G23
76000	5500	5500	0.34	0.34	0.4	2300	2300	1800

Hashin Damage (MPa)					
Longitudinal Tensile Strength	Longitudinal Compressive Strength	Transverse Tensile Strength	Transverse Compressive Strength	Longitudinal Shear Strength	Transverse Shear Strength
1400	235	12	53	34	34

Damage Evolution (kN)					
Longitudinal Tensile Fracture Energy	Longitudinal Compressive Fracture Energy	Transverse Tensile Fracture Energy	Transverse Compressive Fracture Energy		
117.8	52.8	0.3	0.8		

Material Properties

Core – Nomex Honeycomb (Aramid Fibre, Phenolic Coated)

• Solid (3D Stress), Homogeneous Element

Elastic (MPa)								
E1	E2	E3	Nu12	Nu13	Nu23	G12	G13	G23
0.1	0.1	60	0	0	0	0.1	25	17

Cohesive

Cohesive Element

Cohesive Behavior (MPa)							
K _{nn}	K _{ss}	K _{tt}					
1,000,000	800,000	800,000					
	Quads Damage (MPa)						
Nominal Stress Normal-only mode	Nominal Stress First Direction	Nominal Stress Second Direction					
30	60	60					
Damage Evolution (kN) (Power BK =1)							
Normal Mode Fracture Energy	Shear Mode Fracture Energy First Direction	Shear Mode Fracture Energy Second Direction					
0.2	0.8	0.8					

ABAQUS MODELLING

• 7 Modules:

- 1. Part
- 2. Property
- 3. Assembly
- 4. Step

- 5. Load
- 6. Mesh
- 7. Job

1. PART

3. STEP & LOAD

4. MESH

TYPES OF MODELS

1. Unrepaired (Undamaged)

- 3. Circular Taper-Sanded
- 4. Rectangular Step-Sanded

A. 102 and 103

B. 102, 103, & 104

TYPES OF MODELS (CONTD.)

1. UNREPAIRED

TYPES OF MODELS (CONTD.)

2. CIRCULAR SCARFED

Circular Patch (102): R25.4 mm

TYPES OF MODELS (CONTD.)

3. RECTANGULAR SCARFED

ANALYSIS OF RESULTS

ODB: 0904_UR_12b.odb | Abaqus/Standard 6.12-2 | Wed Apr 09 11:46:38 Malay Peninsula Standard Time 2014

Step: Step-1 Increment 111: Step Time = 0.4650 Primary Var: U, Magnitude Deformed Var: U Deformation Scale Factor: +5.457e+00

ANALYSIS OF RESULTS

- Reaction force at the loading nodes
 - ✓ Plot of Force vs. Displacement
 - ✓ Damage on 1st ply (102)
- Maximum force for various models compared
- Other results studied:
 - ✓ Stresses and damage patterns on plies, patches, cohesive elements and honeycomb core

1. UNREPAIRED MODEL

ODB: 0904_UR_12b.odb Abaqus/Standard 6.12-2 Wed Apr 09 11:46:38 Malay Peninsula Standard Time 2014

Step: Step:1
Increment 111: Step Time = 0.4650
Primary Var: HSNFCCRT
Deformed Var: U Deformation Scale Factor: +5.457e+00

1. UNREPAIRED MODEL

2. CIRCULAR SCARFED MODEL

2. CIRCULAR SCARFED MODEL

3. RECTANGULAR SCARFED MODEL

ODB: 0804_RS_11.odb Abaqus/Standard 6.12-2 Tue Apr 08 22:46:43 Malay Peninsula Standard Time 2014

Increment 71: Step Time = 0.3550
Primary Var: HSNFCCRT
Deformed Var: U Deformation Scale Factor: +7.154e+00

3. RECTANGULAR SCARFED MODEL

SUMMARY

MAXIMUM LOAD (kN)					
Undamaged Panel	Repaired Panel (Circular Scarfed)	Repaired Panel (Rectangular Scarfed)			
0.605	0.610	0.548			

CONCLUSION

- ✓ The optimum repair method and parameters were determined and validated
- ✓ Simulate various models using FEA to determine the optimum model and parameters for the chosen repair method – [scarf repair] (NUS & PKU)
- ✓ The optimum repair method was validated (for its mechanical performance) by fabricating the model and conducting 3point bending test (UofT)