(19)日本国特許庁(JP)

(12) 特 許 公 報(B2)

(11)特許番号

特許第3378222号 (P3378222)

(45)発行日 平成15年2月17日(2003.2.17)

(24)登録日 平成14年12月6日(2002.12.6)

(51) Int.Cl.7		識別記号	FΙ			
H01M	4/58		H01M	4/58		
	4/02			4/02	С	
	10/40			10/40	Z	

請求項の数4(全 6 頁)

(21)出願番号	特願2000-62455(P2000-62455)	(73)特許権者	000224798
(62)分割の表示	特願平11-162866の分割		同和鉱業株式会社
(22)出願日	平成11年5月6日(1999.5.6)		東京都千代田区丸の内1丁目8番2号
		(72)発明者	小山内 英世
(65)公開番号	特開2000-323142(P2000-323142A)		東京都千代田区丸の内1丁目8番2号
(43)公開日	平成12年11月24日(2000.11.24)		同和鉱業株式会社内
審查請求日	平成12年3月10日(2000.3.10)	(72)発明者	西佐古 将
			東京都千代田区丸の内1丁目8番2号
			同和鉱業株式会社内
		(72)発明者	仁科 正行
			東京都千代田区丸の内1丁目8番2号
			同和鉱業株式会社内
	·	(74)代理人	100075214
			弁理士 丸岡 政彦
		審査官	富士 美香
		-	
			最終頁に続く

(54) 【発明の名称】 非水系二次電池用正極活物質および正極並びに二次電池

(57) 【特許請求の範囲】

【請求項1】 Co、Ni、Mn の群から選ばれる1種以上の元素とリチウムとを主成分とするリチウム複合酸化物からなる多孔質の粒子であって、水銀圧入法による細孔分布測定での細孔平均径が $0.1\sim1\mu$ mの範囲内であり、 $0.01\sim1\mu$ mの径をもつ細孔の容積の合計が $0.01cm^3/g$ 以上である粒子からなることを特徴とする非水系二次電池用正極活物質。

【請求項2】 請求項1に記載の正極活物質を用いたことを特徴とする非水系二次電池用正極。

【請求項3】 正極活物質がリチウムイオンを可逆的に 挿入・脱着可能なリチウム複合酸化物であり、該正極活 物質と炭素系導電材および結着剤の混合物が、集電体上 に膜状に形成された正極において、上記正極活物質が、 請求項1に記載の粒子であり、一次粒子が集合した多孔 質の二次粒子塊として、炭素系導電材の樹状ネットワーク内に保持されていることを特徴とする非水系二次電池 用正極。

【請求項4】 請求項1に記載の正極活物質を用いたことを特徴とする非水系二次電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、非水系二次電池用 の正極活物質と正極および上記正極活物質を用いた二次 電池の改良に関する。

[0002]

【従来の技術】近年、エレクトロニクス機器の小型高性 能化とコードレス化が進み、これら携帯機器用の駆動電 源として二次電池に関心が集まっている。特にリチウム イオン二次電池に代表される非水系二次電池は高電圧・ 高エネルギー密度を有する電池として期待が大きい。非水系二次電池に用いられる正極活物質としては、リチウムイオンを可逆的に挿入脱着することのできる化合物、例えばLiCoO2やLiNiO2などリチウムと遷移金属を主体とする複合酸化物(以下、リチウム複合酸化物と記す)が代表的である。このようなリチウム複合酸化物のうち、すでに実用化されているリチウム二次電池用正極活物質としては上記のLiCoO2があるが、このLiCoO2はエネルギー密度の向上余地がなく、また資源的に希少で高価なコバルトを用いていることから高価な材料である。そのため代替材料として、高エネルギー密度を得ることが可能なLiNiO2や、安価で資源的に豊富なマンガンを用いた LiMn2O4等の材料開発も精力的に行われている。

【0003】これらのリチウム複合酸化物は、酸化物としては比較的高い電子伝導性を有するが、集電体と活物質間の電子伝導性を向上させるために、グラファイト、アセチレンブラック等の導電剤が正極合材中に添加される。また、活物質、導電剤、集電体を接着して活物質層を作製するために結着剤が用いられる。一方、これら非水系二次電池は、水溶媒系に比べ、溶媒の液粘性が高く、導電性が低いため、低温特性や負荷特性が劣るという欠点があった。非水系二次電池の主要用途である携帯機器のうち、ノートパソコンやビデオカムコーダーにおいては放電末期においても高率放電を要求されるため、特に負荷特性の改良は重要課題である。

【0004】非水系二次電池の負荷特性を改良するための従来技術として、以下のような多くの試みがなされている。電池設計面では電極面積の拡大化や電極活物質層の多孔化などの対策がなされている。例えば、特開平6-333558号公報の発明では、正極合剤中の導電材(炭素粉末)をグラファイトと無定形炭素粉末との混合物とすることで、正極板の空孔率を調整し負荷特性を改良している。

【0005】しかしながら電池の内容積は一定であるから、このような対策は、他方では、電極への活物質の充填量、すなわち電池容量の制約となってしまう。そのため、負荷特性改良には電極構成材料や電解液、セパレータ等の材料側での改良も要望されている。

【0006】正極活物質に関しても、微粒子化により活物質表面と電解液との接触面積を増大させて負荷特性を改良する試みがなされている。例えば、特開平9-320603号公報の発明においては、可燃性液体中に活物質原料を乳濁させた溶液を噴霧焼成後、熱処理することにより得られる粉末状活物質は、粒子径が0.1μm程度の微粒子の二次集合体であり、高電流密度での充放電特性が改良されている。

【0007】しかしながらこのように活物質を微粒子化すると、導電材や結着剤の必要量も増加してしまい、正極板への活物質の充填率が制約されてしまう。また微粒子化に伴い塗料化時の塗膜の機械的性質が硬く脆くな

り、電池組立時の捲回工程で塗膜の剥離が生じ易いという問題も生じてしまう。特開平9-129230号公報には、SE M観察における定方向径が0.1~2μmの微小結晶粒子と、SEM観察における定方向径が2~20μmの球状二次粒子との混合物を正極活物質に用いることにより、電池極板への活物質の充填性を改良する技術が開示されている。しかしながら、このような方法では球状二次粒子内部への電解液の浸透・拡散経路に対する配慮がなされていないため、一次粒子径の微粒子化による負荷特性改良効果が発現できないという問題があった。

[0008]

【発明が解決しようとする課題】以上のように、電池設計面での電極活物質層の多孔化、正極活物質そのものの微粒子化など負荷特性の改良が試みられているが、このような対策は他方では電極への活物質充填量、すなわち電池容量の制約となる等の課題があった。したがって本発明の目的は、正極への活物質の充填性を損なうことなく負荷特性の改良が可能な正極活物質及び正極並びにそれらを用いた非水系二次電池を供することにある。

[0009]

【課題を解決するための手段】本発明者らは上記の課題について、正極活物質と正極の構造の観点より鋭意検討を重ねた結果、正極活物質粒子の微粒子化による負荷特性の改良効果と、微粒子化に伴う導電材・結着剤の必要量増加の抑制とを両立させるためには、正極活物質粉末の粒子形態を多孔質の球状二次粒子に制御することが有効であることを確認した。

【0010】多孔質の構造とすることで、微細な一次粒 子表面と電解液の固液接触面積が大きくなり、また粒子 内部から粒子表面に開口する細孔 (オープンポアー) の 平均径を最適化する事により、細孔内の電解質の移動拡 散を容易にして、高率充放電時の内部抵抗の増加が抑制 できる。また、形状が球状二次粒子であることから、粉 体としての流動性の改善や、有機溶媒を用いて塗料化し た時のスラリー粘度の低減も期待できる。このような多 孔質の球状二次粒子を正極活物質として用いて、炭素系 導電材及び結着剤と混合して集電体上に膜状に正極合剤 層を形成する。得られた正極合剤層は、正極活物質の多 孔質球状二次粒子が、炭素系導電材の樹状ネットワーク 内に保持された構造となる。そのため、集電体表面か ら、各々の二次粒子への導電材のネットワークを形成す るのに必要な導電材の量や、正極合剤層の結着強度を確 保するのに必要な結着剤の量を低減でき、その結果とし て正極への活物質の充填量を向上できる。

【0011】すなわち、本発明は、第1に、Co、Ni、Mnの群から選ばれる1種以上の元素とリチウムとを主成分とするリチウム複合酸化物からなる多孔質の粒子であって、水銀圧入法による細孔分布測定での細孔平均径が0.1~1μmの範囲内であり、0.01~1μmの径をもつ細孔の容積の合計が0.01cm³/g以上である粒子からなることを

特徴とする非水系二次電池用正極活物質;第2に、前記 第1に記載の正極活物質を用いたことを特徴とする非水 系二次電池用正極;第3に、正極活物質がリチウムイオ ンを可逆的に挿入・脱着可能なリチウム複合酸化物であ り、該正極活物質と炭素系導電材および結着剤の混合物 が、集電体上に膜状に形成された正極において、上記正 極活物質が前記第1に記載の正極活物質であり、一次粒 子が集合した多孔質の二次粒子塊として、炭素系導電材 の樹状ネットワーク内に保持されていることを特徴とす る非水系二次電池用正極;第4に、前記第1に記載の正 極活物質を用いたことを特徴とする非水系二次電池を提 供するものである。

[0012]

【発明の実施の形態】本発明の非水系二次電池用正極は、正極活物質がリチウムイオンを可逆的に挿入・脱着可能なリチウム複合酸化物であり、該正極活物質と炭素系導電材および結着剤の混合物が、集電体上に膜状に形成された正極において、上記正極活物質が、一次粒子が集合した多孔質の二次粒子塊として、炭素系導電材の樹状ネットワーク内に保持されていることを特徴とし、負荷特性の優れた非水系二次電池に好適な正極である。ここで、リチウム複合酸化物とは、Co、Ni、Mnの群から選ばれる1種以上の遷移元素とリチウムを主成分とする層状あるいは擬層状あるいはスピネル構造を持つ酸化物のことを示す。

【0013】正極の構造を上記のように設定することにより、活物質と電解液の接触面積を大きくして活性化分極を低減し、且つ高粘度の有機電解液を用いた場合でも濃度分極を抑制できる適切な電解液の通路を確保することができる。その結果として、高率充放電時でも容量低下の少ない、負荷特性に優れた非水系二次電池を作製できる。

【0014】このような非水系二次電池用正極を作製す るためには、活物質の選定が重要である。すなわち本発 明の正極活物質は、Co、Ni、Mnの群から選ばれる1種類 以上の遷移元素とリチウムを主成分とする複合酸化物か らなる開口性の細孔を有する球状二次粒子であって、水 銀圧入法による細孔分布測定での細孔平均径が0.1~1µ mの範囲内であり、0.01~1μmの径をもつ細孔の容積の 合計が0.01cm³/g 以上であることを特徴とする。細孔径 分布の測定法としては、水銀圧入法とガス吸脱着法が代 表的なものであり、前者は数 n m~数百 μ m程度の大き な細孔径の測定に、後者は数Å~数十nmの微小細孔の 測定に有効である。本発明では水銀圧入法を用いて評価 した (測定装置には、カンタクローム社(米国)製:商 品名 ポアマスター60を用いた)。なお、水銀圧入法 で測定した細孔径分布には二次粒子間の空隙分も含まれ るが、本発明での活物質粉末の細孔平均径は、この空隙 分を除いた二次粒子の内部細孔についてのみ算出した値 である。

【0015】本発明において、細孔平均径を0.1~1μmの範囲に規定するのは、この下限未満では負荷特性の改良効果が不十分であり、この上限を超えると負荷特性の改良効果は飽和し、また内部細孔が大き過ぎることによるタップ密度低下の弊害が生ずるためである。なお、ここでの細孔平均径とは粒子間空隙を除外するために0.01から1μmの範囲で細孔分布を測定した結果から算出したものである。また、上記範囲の径の細孔の合計容積を0.01cm³以上に規定するのは、この数値未満では負荷特性が著しく低下するためである。

【0016】本発明の正極活物質は、上記球状二次粒子の平均粒子径が4~20μmであり、タップ密度が1.8g/cc以上であり、且つクーパープロット法による体積減少率の変曲点が 500kg/cm²以上であることが、さらに望ましい。以下にその理由を説明する。球状二次粒子の平均粒子径が4μm未満であると、粉体としての流動性が悪化したり、有機溶剤と混合して塗料化する際にスラリー粘度が上昇するので好ましくない。また、平均粒子径が20μmを超えると、二次粒子内部への電子伝導性が低下するために負荷特性が劣化する。

【0017】タップ密度が1.8g/cc未満であると、活物質と炭素系導電材及び結着剤を混合した後に加圧・成形して正極の体積密度を調整する際に、高い加圧加重を必要とし工業的に不利益となる。本発明の正極活物質を用いて正極を作製する際の加圧加重は、正極の体積密度を3g/ccとする場合で、0.3~2ton/cm²であれば良い。なお、本発明で用いた測定方法は、タップ密度がJIS 2 2 504 に基づくタップ法で、粒度分布についてはレーザー散乱法である。

【0018】また、多孔質の球状二次粒子の形状を、正極の作製工程内で維持させるためには、この二次粒子を構成する一次粒子間の凝集力を規定する必要がある。特に、正極合材を塗料化して集電体上に塗布する場合は、塗料化時の分散工程で二次粒子が解粒されやすく、負荷特性の改善効果が低下する恐れがある。顆粒状粉体の凝集状態の評価法としては、粉体の圧縮過程での体積減少率(下記式の左項)を加圧圧力(自然対数目盛)でプロットするクーパー(Cooper)プロット法が一般的に用いられる。

[0019]

[式] $(V_0 - V_P)$ / $(V_0 - V_F)$ = $a_1 \times \exp(-k_1/P) + a_2 \times \exp(-k_2/P)$

P:加圧圧力(kg/cm²)

V_o: 初期充填体積(cm³)

V_P: P kg/cm²加圧時の充填体積(cm³)

V_F: 最密充填体積(cm³)

定数: k₁, k₂, a₁, a₂

【0020】このように粉体の圧縮過程での体積減少率をクーパープロットした際に、直線回帰できない場合、すなわち2本の直線が交差する変曲点を示す場合があ

る。この場合は、凝集粒子が加圧によって破壊されて、 圧縮挙動が変化したことを意味する。本発明では多孔質 二次粒子の強度を規定するため、正極活物質粉末を圧縮 した時の体積減少率をクーパープロット法で解析した時 の体積減少率の変曲点を指標とする。なお、測定条件と して、加圧圧力範囲は0~2.5ton/cm²とし、上記式にお けるV_Fは2.5ton/cm²での充填体積として体積減少率を 算出した。

【0021】上記クーパープロット法による体積減少率の変曲点が 500kg/cm²以上であれば、通常の正極製造工程において、多孔質二次粒子の破壊が生じることはない。なお、体積減少率の変曲点が明確に測定されない場合は、500kg/cm²以上で 加圧した成形体を割って、破面の SEM像を観察し、二次粒子の破壊が生じていなければよい。また、本発明での多孔質の球状二次粒子とは、球状二次粒子表面から内部に貫通する多数のオープンポアを有し、且つそのオープンポアの径が通常倍率での SEM 写真で十分観察され得る程度の大きさ、すなわちオープンポアの径が 5nm以上であるような粒子を示す。

【0022】以下に、本発明における多孔質の球状二次粒子の製造法について説明する。特開平7-37576号公報には、本発明の二次粒子と類似した、球状あるいは楕円体状の二次粒子が開示されているが、このような粒子は、硫酸塩をアルカリで中和して得られた板状の一次粒子が集合した球状の水酸化物を、リチウム塩と混合酸成して得られる。一般に、硫酸塩を用いて得られる木酸化物においては、タップ密度が高く、平均粒径は1~5mm程度であり、また水酸化物中に微量に残留する硫酸根の存在により、焼成時の一次粒子間の焼結が抑制され、出発原料である水酸化物の形骸を保持するため、得られる発原料である水酸化物の形骸を保持するため、得られる発原料である水酸化物の形骸を保持するため、得られる発度がの細孔平均径は5mm以下となる。しかし、このような方法においても、特に硫酸塩を中和する際の液温、pH、液中塩濃度、中和速度等を制御することにより、本発明の正極活物質粉末の調製が可能である。

【0023】すなわち、硫酸塩を中和する際の液温、p H、液中塩濃度、中和速度等を制御することにより、タ ップ密度が比較的低く、0.1~1μm以上の平均径を有 し、かつ細孔の合計容積が0.01cm3/g 以上の水酸化物を 調製することができる。また、これをリチウム塩と混合 焼成することにより、細孔を残したまま、焼結によりタ ップ密度を改善し、上記したような特徴をもつ正極活物 質粉末を調製することが可能になる。また、このような 方法の他にも、遷移元素とリチウムの各化合物の混合物 を直接、あるいは仮焼したものを造粒し、本焼成する方 法によっても、上記したような特徴をもつ正極活物質粉 末の調製は可能である。その具体的な方法と一つとして は、Mn、Co、Niの群から選ばれる1種以上の遷移元素と リチウムの各化合物の混合物を500~800℃で 5~20時間 仮焼し、次いで仮焼した焼成物を解粒分散後、噴霧、造 粒し、仮焼温度より30℃以上高く且つ900℃以下の温度

で 1~5時間本焼成することによって、多孔質の球状二 次粒子を製造することができる。

【0024】上記の多孔質球状二次粒子からなる正極活物質で構成される非水系二次電池用正極は次の方法によって製造できる。この正極は、その集電体がアルミニウム箔であり、それに活物質として上記多孔質球状二次粒子が保持されたものである。このような正極は、湿式法の場合、結着剤であるポリフッ化ビニリデン3~6重量%と導電剤である炭素3~9重量%とを上記多孔質二次粒子の正極活物質85~94重量%と共に混合して溶媒であるNーメチルピロリドン(NMP)を適宜加えてペースト状に調製した後、集電体材料の両面に塗布、乾燥、プレスして製造する。また、乾式法の場合は、結着剤であるポリテトラフルオロエチレン(PTFE)3~6重量%と導電剤である炭素3~9重量%とを上記多孔質球状二次粒子の正極活物質85~94重量%と混練・成形した後、得られた成形物を圧延して製造する。

【0025】上記正極活物質の電池特性の評価は、上記正極に加え、負極に金属リチウムを、セパレータにはポリプロピレンのフィルムを用いて行う。電解液には炭酸エチレンと炭酸ジエチレンを体積比で1:1に混合した液に電解質としてLiPF。を1mo1/dm³の濃度で溶解させたものを用いる。充放電は0.5mA/cm²の電流密度で行い、4.3 Vまで充電し、その後2.7Vまで放電して正極活物質の単位重量当たりの放電容量とする。負荷特性は電流密度0.5mA/cm²で充電した後、放電を電流密度5.0mA/cm²、10mA/cm²でそれぞれ行う。評価の指標は電流密度0.5mA/cm²で放電したときの放電容量を容量保持率(%)とする。以下、実施例をもって詳細に説明するが、本発明の範囲はこれらによって限定されるものではない。

[0026]

【実施例1】水酸化リチウム、水酸化ニッケル、水酸化 コバルトを各金属のモル比が105:90:10の割合で、ボ ールミルで混合粉砕し、得られた混合粉末を1ton/cm²の 圧力下で加圧成形し、この成型体を焼成用原料とした。 この原料を770℃で10時間、空気気流中で焼成(仮焼)し た。得られた焼成物を純水に40重量%の濃度になるよう に懸濁させた後、後工程の本焼成後の粒子が多孔質にな るように硝酸および硝酸リチウムを添加、表面改質し、 湿式ビーズミルで2時間解粒粉砕し、噴霧乾燥法により 球状に乾燥造粒した。この造粒粉を、800℃で2時間、酸 素気流中で焼成(本焼成)し、臼式解砕機で解粒した後、 スクリーン分級機で整粒した。このようにして得られた リチウム複合酸化物は、細孔平均径0.363μm、0.01~1 μ mの径をもつ細孔の合計容積が 8.4×10^{-2} cm $^3/g$ である 多孔質の球状二次粒子であった。この実施例1のリチウ ム複合酸化物を正極活物質として用いて正極板を作製 し、750kg/cm²の圧力でプレスしたが、多孔質球状二次 粒子は破壊されておらず、十分な負荷特性が得られた。

[0027]

【実施例2】実施例1に対し、仮焼温度を650℃に条件を変更して行った。実施例1に比べ仮焼温度を下げることで一次粒子の結晶性を低下させ、一次粒子間の焼結を促進させ、細孔容積をコントロールした。このようにして得られたリチウム複合酸化物は、細孔平均径 $0.137\,\mu$ m、 $0.01\sim 1\,\mu$ mの径をもつ細孔の合計容積が 1.8×10^{-2} cm³/gである多孔質の球状二次粒子であった。

[0028]

【比較例 1 】実施例 1 に対し、水酸化ニッケルおよび水酸化コバルトをそれぞれの硫酸塩を中和して調製したものを用いて行った。このようにして得られた正極活物質は、細孔平均径 0.053 μ m、0.01~1 μ mの径をもつ細孔の合計容積が 1.8×10^{-3} cm 3 /g である多孔質の球状二次粒子であった。

[0029]

【比較例 2 】実施例 1 に対し、湿式ビーズミルでの解粒分散時間を 4 時間にして行った。実施例 1 に比べ解粒分散時間を長くすることで一次粒子の結晶性を低下させ、なおかつ表面を活性化させる (アモルファス化)ことで、一次粒子間の焼結を促進させ、細孔容積を意図的に小さくコントロールした。このようにして得られた正極活物質は、一次粒子の焼結が進み、細孔平均径0.211 μ m、0.01~1 μ mの径をもつ細孔の合計容積が5.0×10 $^{-3}$ cm 3 /gである多孔質の球状二次粒子であった。

[0030]

【比較例3】実施例1に対して、仮焼粉を懸濁させた水溶液に、過剰の硝酸および硝酸リチウムを添加(実施例1の場合の2倍)することにより、さらに表面改質したのものである。実施例1に比べ硝酸および硝酸リチウムを多く添加することで、一次粒子間の焼結を促進させ、細孔容積を意図的に小さくコントロールした。このようにして得られた正極活物質は、細孔平均径0.300 μ m、0.01 \sim 1 μ mの径をもつ細孔の容積が1.6 \times 10 $^{-3}$ cm 3 /g で、焼結の進んだ球状の二次粒子であった。

[0031]

【比較例4】水酸化リチウム、水酸化ニッケル、水酸化

コバルトを各金属のモル比が105:90:10の割合で、ボールミルで粉砕混合し、得られた混合粉末を1ton/cm²の圧力下で加圧成形し、この成型体を焼成用原料とした。この原料を770℃で10時間、空気気流中で焼成した。この焼成粉を、臼式解砕機で解粒した後、スクリーン分級機で整粒した。このようにして得られた正極活物質は、細孔平均径0.085 μ m、0.01~1 μ mの径をもつ細孔の容積が3.2×10⁻³cm³/gで、一次粒子が凝集した形の二次粒子であった。

[0032]

【比較例5】実施例1に対し、水酸化リチウム、水酸化 ニッケル、水酸化コバルトを各金属のモル比を105:8 7:13に、仮焼温度を800℃、湿式ビーズミルでの解粒分 散時間を 30分、本焼成温度を830℃にして行った。実施 例1に比べ仮焼温度を高く、なおかつ、解粒分散時間を 短くすることで、一次粒子径が大きく、見かけ密度の低 い状態の二次粒子を意図的に調製した。このようにして 得られた正極活物質は、焼結の進んでいない一次粒子で 構成された多孔質の球状二次粒子であった。比較例5の 正極活物質をもとに正極板を作製し、750kg/cm2の圧力 でプレスしたが、多孔質二次粒子は破壊が進んでいるの が観察された。実施例1~2と比較例1~4の細孔分布 の測定結果と負荷特性について表1に示す。この表から 細孔平均径が0.1μm~1μmの範囲内にあり、0.01μm ~1 µ mの径を持つ細孔の容積が活物質単位重量(1g)あた り0.01 cm³以上の場合のみ、高い負荷特性を示し、それ 以外は負荷特性が劣ることがわかる。また、実施例1~ 2と比較例5の平均粒径、タップ密度、クーパープロッ ト法による体積減少率の変曲点について表2に示す。こ の表から実施例1~2の場合、タップ密度が1.8g/cm³以 上で、なおかつ、クーパープロットの体積減少率の変曲 点が両者とも500kg/cm²以上であり、前述の数値以下で ある比較例 5 に比べて高い負荷特性を示すことがわか

[0033]

【表1】

実施例 1~2 と比較例 1~4 の細孔分布測定および負荷特性測定結果

			負荷特性(容量保持率(%))		
	均細孔径 (μm)	細孔容積 (cm ³ /g)*	5mA/cm ² 放電	10mA/cm ² 放電	
実施例 1	0.363	8.4×10 ⁻²	97.1	79.1	
実施例 2	0.137	1.8×10 ⁻²	95.6	79.9	
比較例1	0.053	1.8×10 ⁻³	91.1	65.2	
比較例2	0.211	5.0×10-3	89.5	68.4	
比較例3	0.300	1.6×10 ⁻³	92.3	67.1	
比較例 4	0.085	3.2×10 ⁻³	95.8	66.5	

^{*}活物質単位重量当たりの細孔径0.01μm~1μm

[0034]

【表 2】

減少率の変極点

	平均 粒径 (µm)	タップ 密度 (g/cm ³)	体積減少率の 変曲点 (kg/cm ²)	負荷特性 (容量保持率(%))	
				5mA/cm ² 放電	10mA/cm ² 放電
実施例1	10.1	1.88	730	97.1	79.1
実施例 2	9.72	2.15	1500	95.6	79.9
比較例 5	12.1	1.35	310	91.2	69.0

【0035】図1は実施例1、2および比較例5で得られた正極活物質の圧縮過程での体積減少率を示すクーパープロット図であり、変曲点が500kg/cm²に達しない比較例5の場合に対して、実施例1の場合は500kg/cm²を超える730kg/cm²であり、実施例2の図示されていない変曲点は1500kg/cm²である。

[0036]

【発明の効果】以上述べたように、本発明の非水系二次電池用正極においては、正極活物質がLiイオンを可逆的に挿入・脱着可能なLi複合酸化物から調製された一次粒子が集合した多孔質の二次粒子であって、水銀圧入法による細孔分布測定での細孔平均径が0.1~1μπの範囲内

で、0.01~1μmの径をもつ細孔の合計容積が0.01cm³/g 以上であり、特に球状二次粒子としては平均粒子径が 4 ~20μm、タップ密度1.8g/cc以上で、且つクーパープロット法による体積減少率の変曲点が500kg/cm²以上という特性を有するので、上記正極活物質と炭素系導電剤および結着剤の混合物が集電体状に膜状に形成された正極として、高率充放電時でも容量低下の少ない負荷特性の優れた非水系二次電池に好適である。

【図面の簡単な説明】

【図1】実施例1,2および比較例5で得られた正極活物質粉末の圧縮過程での体積減少率を示すクーパープロット図である。

【図1】

フロントページの続き

(56)参考文献 特開 平10-255763 (JP, A)

特開 平9-306546 (JP, A)

(58)調査した分野(Int. Cl. 7, DB名)

HO1M 4/58 HO1M 4/02 HO1M 10/40

JP Patent No. 3378222

[Claim 1]

A positive electrode active material for a non-aqueous secondary battery, comprising porous particles of a composite lithium oxide which mainly contains lithium and one or more elements selected from the group consisting of Co, Ni and Mn, wherein

an average pore diameter according to the pore distribution measurement by a mercury-injection method is in the range from 0.1 to 1 μ m, the sum of the volumes of pores having a diameter in the range from 0.01 to 1 μ m is 0.01 cm³/g or greater.

[Claim 2]

A positive electrode for a non-aqueous secondary battery, employing a positive electrode active material set forth in claim 1.

[Claim 3]

A positive electrode for a non-aqueous secondary battery characterized in that:

a positive electrode active material comprises a composite lithium oxide capable of reversibly intercalating and removing lithium ions; and

the mixture of said positive electrode material, a carbonaceous conductor material and a binder is formed in a filmy shape onto a current collector,

wherein said positive electrode active material comprises particles set forth in claim 1, which are formed into porous, agglomerated secondary particles composed of aggregated primary particles, and is held in an arborescent network of said carbonaceous conductor material.

[Claim 4]

A non-aqueous secondary battery employing a positive electrode active material set forth in claim 1.

