Database Systems - Homework 3 - Functional Dependencies & Normal Forms

Yosef Goren & Yonatan Kahalani

June 22, 2023

Contents

1	Scheme Analysis	1												
	1.1	1												
	1.2	1												
	1.3	2												
	1.4	2												
	1.5	2												
2	Scheme Analysis	3												
3	Scheme Analysis	3												
4	Vatiations on Armstrong's Axioms 4.1													
5	MongoDB	3												

1 Scheme Analysis

1.1

X is not in BCNF.

Proof.

From transitivity and reflexivity, $CG \rightarrow H$.

Note CG is not a superkey in R_3 since D is not implied by any FD since it only appears as the left operand.

Thus $CG \to D$ is not satisfied and $R_3 \notin BCNF \Rightarrow X \notin BCNF$.

1.2

No.

Proof.

- \bullet e only appears as the right operand.
- \bullet e is not prime.
- Any properkey does not contain e.
- c is not a superkey in R_2 .
- $c \to e$ violates the properties of 3NF.

1.3

By running the algorithm seen in class we get to:

A	В	С	D	Е	Н	G		A	В	С	D	Е	Н	G
	b	c	d				$\Longrightarrow_{C o E}$		b	c	d	e		
		c		е	h					c		е	h	
		С	d		h	g				С	d	е	h	g

And thus no more steps can be deduces and via the correctness of the algorithm - the decomposition does not preserve information.

1.4

Let

$$R:=\{(a_1,b,c,d,e,g_1,a_1),(a_2,b,c,d,e,g_2,a_2)\}$$

Note that $R \models F$, additionally $(a_2, b, c, d, e, g_1, a_2) \in R_1 \bowtie R_2 \bowtie R_3$, thus the decomposition does not preserve information.

1.5

First we apply the confusing algorithm seen in the tutorial:

- $Z_F := \{A, H\}$
- On inspecting R_1 : $\{A, H\} \cup (\{A, H\} \cap \{A, H\} \cap \{B, C, D\})^+ \cap \{B, C, D\}) = \{A, H\}$
- On inspecting R_2 : $B \notin R_2 \Rightarrow B \notin Z_F$
- On inspecting R_3 : $B \notin R_3 \Rightarrow B \notin Z_F$

Thus $B \notin Z_F \Rightarrow$ Dependencies are not preserved.

- 2 Scheme Analysis
- 3 Scheme Analysis
- 4 Vatiations on Armstrong's Axioms

4.1

Yes. Since this system has less of freedom than the armstrong system, any proof generated by the reduced system is also a proof in the armstrong system. In particular - our system is satisfied by the correctness of the armstrong system.

5 MongoDB