Week 8

Thaqib Mo.

March 19, 2021

1 The Rank of a Matrix and Matrix Inverses

Definition 1.1: Rank of a Matrix

Let $A \in M_{m \times n}(\mathbb{F})$ the rank of A denoted by rank(A) is rank of the linear transformation $L_A : \mathbb{F}^n \to \mathbb{F}^m$.

$$rank(A) = \dim R(L_A) = \dim L_A(\mathbb{F}^n)$$

Remark 1.1. Let $A \in M_{m \times n}$ and let a_1, \ldots, a_n be column vectors of A then

$$rank(A) = dim Col(A)$$

Where Col(A) is the column space of A defined by

$$Col(A) = span(\{a_1, a_2, \dots, a_n\})$$

Proof. The range of L_A $R(L_A)$ is generated by $\{L_A(e_1), L_A(e_2), \ldots, L_A(e_n)\}$. Therefore

$$R(L_A) = \operatorname{span}(L_A(e_1), L_A(e_2), \dots, L_A(e_n))$$

$$= \operatorname{span}(Ae_1, Ae_2, \dots, Ae_n)$$

$$= \operatorname{span}(a_1, a_2, \dots, a_n)$$

$$= \operatorname{rank}(A)$$

Since $Ae_i = a_i$.

Remark 1.2. Let $A \in M_{m \times n}$ then $\operatorname{rank}(A) \leq \min(m, n)$. Since $\{a_1, \ldots, a_n\}$ generates A.

Therefore dim $R(L_A) \leq n$. Since $R(L_A) \subset \mathbb{F}^m$ therefore dim $R(L_A) \leq m$.

Lemma 1.1

Let $T: V \to W$ be linear if V_0 is a subspace of V then

- (1) $T(V_0) = \{T(x) \mid x \in V_0\}$ is a subspace of W
- (2) If dim $V_0 < \infty$ then dim $V_0 = \dim T(V_0)$.

1.1 Rank of matrix products

Theorem 1.2

Let $A \in M_{m \times n}$ let $P \in M_{m \times m}$ and $Q \in M_{n \times n}$ be invertible. Then

- (1) rank(AQ) = rank(A).
- (2) rank(PA) = rank(A).
- (3) rank(PAQ) = rank(A).

Proof Sketch.

(1) Since Q is invertible $L_Q(\mathbb{F}^n) = \mathbb{F}^n$. Therefore

$$\dim R(L_{AQ}(\mathbb{F}^n)) = \dim R(L_A(\mathbb{F}^n)) = \operatorname{rank}(A)$$

(2) We can apply Lemma 1.1 with $T = L_P$ and $V = W = \mathbb{F}^n$ and $V_0 = L_A(\mathbb{F}^n) \subseteq V$. Then we have

$$\dim R(L_A(\mathbb{F}^n)) = \dim L_P(L_A(\mathbb{F}^n))$$

$$\operatorname{rank}(A) = \dim L_P(L_A(\mathbb{F}^n))$$

$$\operatorname{rank}(A) = \operatorname{rank}(PA)$$

Corollary 1.1.1: Invertible Matrix Theorem 2

Let $A \in M_{n \times n}$ is invertible if and only if rank(A) = n.

Proof. (\Rightarrow) Using the above theorem we have rank $(A) = \operatorname{rank}(AA^{-1}) = \operatorname{rank}(I_n) = n$.

 (\Leftarrow) If $\operatorname{rank}(A) = n$ then $n = \dim L_A(\mathbb{F}^n) = n$. Therefore L_A is onto $\to L_A$ is an isomorphism $\to A$ is invertible.

Corollary 1.1.2

Elementary Row/Column operations are rank preserving.

Proof. Since B = EA therefore $\operatorname{rank}(B) = \operatorname{rank}(EA) = \operatorname{rank}(A)$ because E is a square matrix. Same applies to column version.

Theorem 1.3

Let $A \in M_{m \times n}$ then using a finite number of row and column operations we can transform A into the form

$$A' = \begin{bmatrix} I_r & O_1 \\ O_2 & O_3 \end{bmatrix}$$

Where O_1, O_2, O_3 are zero matrices and r = rank(A).

Proof.

$$A \leadsto A' = \begin{bmatrix} 1 & 0 & 0 & \cdots \\ 0 & & & \\ 0 & & B & \\ \vdots & & & \end{bmatrix} \leadsto \begin{bmatrix} 1 & 0 & 0 & \cdots \\ 0 & I_k & O_1 \\ 0 & & & \\ \vdots & O_2 & O_3 \end{bmatrix}$$

Using some elementary row / column operations we can transform A to A' then inductively we can transform B' in the form. Then we have

$$rank(A) = dim span(e_1, e_2, ..., e_r, 0, 0...) = r$$

Theorem 1.4

Let rank(A) = r, then using finite row/column operations we can transform A into the D_{upper} form.

$$D_{upper} = \begin{bmatrix} 1 & d_{12} & d_{13} & \cdots & d_{1,r} & d_{1,r+1} & \cdots & d_{1n} \\ 0 & 1 & d_{23} & \cdots & d_{2,r} & d_{2,r+1} & \cdots & d_{2n} \\ \vdots & \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 & d_{r,r+1} & \cdots & d_{rn} \\ 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{bmatrix}.$$

Proof. It is clear that $rank D_{upper} = r$.

1.2 Rank of Matrix Properties

Corollary 1.2.1

Let $A \in M_{m \times n}$ then there exists invertible matrices with size $m \times m$ and $n \times n$ such that

$$D = BAC$$

where

$$D = \begin{bmatrix} I_r & O_1 \\ O_2 & O_3 \end{bmatrix}$$

Proof. Since we are applying a finite number of row/column operations we have

$$D = \underbrace{R_k R_{k-1} \dots R_1}_{B} A \underbrace{C_1 C_2 \dots C_p}_{C}$$

B and C are both invertible since they are product of elementary matrices.

Corollary 1.2.2

1. $rank(A) = rank(A^t)$

Proof. Let D = BAC where B, C are invertible matrices. Then

$$D^t = (BAC)^t = C^t A^t B^t$$

Since B^t and C^t are invertible we have $rank(A^t) = rank(D^t)$.

$$D^t = \begin{bmatrix} I_r^t & O_1^t \\ O_2^t & O_3^t \end{bmatrix}$$

Since D^t is in the same form as D we have $rank(D^t) = r = rank(D)$.

Corollary 1.2.3

rank(A) is the dimension of subspace generated by the rows of A.

Proof. The columns of A are rows of A^t and using the previous corollary we have the result.

1.3 Rank of Matrix Product

Theorem 1.5

Let A, B be matrices such that the product AB is defined then

$$\operatorname{rank}(AB) \leq \min\{\operatorname{rank}(A),\operatorname{rank}(B)\}$$

Proof.

$$R(L_{AB}) = \{AB\mathbf{x} \mid x \in \mathbb{F}^p\} \subseteq \{A\mathbf{y} \mid y \in \mathbb{F}^n\}$$

Therefore $\operatorname{rank}(AB) \leq \operatorname{rank}(A)$. For B we have

$$\operatorname{rank}(AB) = \operatorname{rank}((AB)^t) = \operatorname{rank}(B^t A^t) \le \operatorname{rank}(B^t) = \operatorname{rank}(B).$$

2 Four Fundamental Subspaces of a Matrix

Definition 2.1: Four Fundamental Subspaces

Let $A \in M_{m \times n}(\mathbb{F})$

#1 $\operatorname{Col}(A) = \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{F}^n\} \subseteq \mathbb{F}^m$. Span of the column vectors of A. Column Space of A

#2 Row(A) = Col(A^t). Span of the row vectors of A. Row Space of A

#3 Null(A) = $\{\mathbf{x} \in \mathbb{F}^n \mid A\mathbf{x} = \mathbf{0}\}$ Null Space of A

#4 $\text{Null}(A^T) = \{\mathbf{x} \in \mathbb{F}^m \mid A^T\mathbf{x} = \mathbf{0}\}$ Left Null Space of A

Theorem 2.1

Let $A \in M_{m \times n}(\mathbb{F})$

- (1) $\operatorname{Col}(A)$ and $\operatorname{Null}(A)$ are subspaces of \mathbb{F}^m ; $\operatorname{Row}(A)$ and $\operatorname{Null}(A^t)$ are subspaces of \mathbb{F}^n .
- (2) $\operatorname{rank}(A) = \dim \operatorname{Col}(A) = \dim \operatorname{Row}(A)$.
- (3) $\operatorname{nullity}(A^T) = m \operatorname{rank}(A)$ and $\operatorname{nullity}(A) = n \operatorname{rank}(A)$

Proof Sketch. (3) The nullity (A) is the dimension of Null(A) so if we apply Rank-Nullity Theorem on L_A : $\mathbb{F}^m \to \mathbb{F}^n$ we have

$$rank(L_A) + nullity(L_A) = n$$

$$\rightsquigarrow \operatorname{rank}(A) + \operatorname{nullity}(A) = n$$

The same applies to A^t and using $rank(A) = rank(A^T)$.

3 The Inverse of a Matrix

Theorem 3.1: Invertible Matrix Theorem 3

Let $A \in M_{n \times n}(\mathbb{F})$ then the following are equivalent

#1 A is invertible

$$\#2 \operatorname{Col}(A) = \mathbb{F}^n$$

#3
$$\operatorname{Row}(A) = \mathbb{F}^n$$

#4 A is a product of elementary matrices.

Proof. (1) \Leftrightarrow (2). Since A is invertible $\operatorname{rank}(A) = \dim \operatorname{Col}(A) = n$ therefore $\operatorname{Col}(A) = \mathbb{F}^n$. On the other hand if $\operatorname{Col}(A) = \mathbb{F}^n$ then again we have A is invertible. Similarly we have prove (1) \Leftrightarrow (3). (1) \Rightarrow (4) Let

$$A = E_1 E_2 \cdots E_p$$

Then since each E_i is elementary the inverse exists and we define

$$A^{-1} = E_p^{-1} E_{p-1}^{-1} \cdots E_1^{-1}$$

 $(4) \Rightarrow (1)$ Assume A is invertible then rank(A) = n and by Corollary 1.2.1 we have

$$D = \begin{bmatrix} I_r & O_1 \\ O_2 & O_3 \end{bmatrix}$$

Since r = rank(A) we have r = n. Therefore $D = I_n$. So we have

$$I_n = BAC$$

$$B^{-1}I_nC^{-1} = A$$

Since B, C were product of elementary matrices their inverse is a product of elementary matrix. Therefore $A = B^{-1}C^{-1}$ is a product of elementary matrix.

Remark 3.1. The Let $A \in M_{n \times n}(\mathbb{F})$ then notation $B = (A \mid I_n)$ represents the extended matrix of dimension $(n \times 2n)$, where the first n columns $(b_i)_{i=1}^n = a_i$ and $(b_i)_{i>n} = I_i$.

Theorem 3.2: Algorithm to find Inverse

If A is an invertible matrix then we can transform

$$(A \mid I_n) \stackrel{\mathcal{R}}{\leadsto} (I_n \mid A^{-1})$$

Where \mathcal{R} is a **finite** sequence of **row** operations.

Conversely if $A \in M_{n \times n}(\mathbb{F})$ and there exists B such that

$$(A \mid I_n) \stackrel{\mathcal{R}}{\leadsto} (I_n \mid B)$$

Where \mathcal{R} is a **finite** sequence of **row** operations. Then $B = A^{-1}$.

Proof. (\Rightarrow) We have

$$A^{-1}(A \mid I_n) = (A^{-1}A \mid A^{-1}I_n) = (I_n \mid A^{-1})$$

This holds because A^{-1} is multiplied with ever column. By the invertible matrix theorem since A^{-1} is invertible it is a product of elementary matrices. We let

$$A^{-1} = E_p E_{p-1} \cdots E_1$$

Therefore

$$E_p E_{p-1} \cdots E_1(A \mid I_n) = (I_n \mid A^{-1})$$

So if we perform the row operations E_1, E_2, \dots, E_p we can transform the matrices.

(\Leftarrow) Let $G_1 \dots G_p$ be the elementary matrices obtained by applying the finite row operations on $(A \mid I_n)$. Therefore we have

$$G_p \dots G_1(A \mid I_n) = (I_n \mid B)$$

$$G(A \mid I_n) = (I_n \mid B)$$

$$(GA \mid GI_n) = (I_n \mid B)$$

$$(GA \mid G) = (I_n \mid G)$$

So $GA = I_n$ and G = B, therefore $BA = I_n$ and by the invertible matrix theorem 2 we have $B = A^{-1}$.