Census "hard to count" analysis

By Ben Welsh (https://palewi.re/who-is-ben-welsh/)

This data preparation routine was developed for the April 29, 2019, Los Angeles Times story <u>"A census undercount could cost California billions — and L.A. is famously hard to track"</u> (https://www.latimes.com/local/lanow/la-me-la-county-census-hard-to-count-20190429-htmlstory.html).

It combines the California Department of Finance's "hard to count" estimates with the tract maps published by the U.S. Census Bureau. Together they were used to make a graphic to accompany the story.

How we did it

Download the state's "hard to count" esimates.

```
In [22]: !python download.py htc
```

Download the Census Bureau's tract maps.

```
In [24]: !python download.py tracts
```

Import Python tools

```
In [1]: import pandas as pd import geopandas as gpd
```

Read in the hard-to-count data

```
In [2]: df = pd.read_excel("./data/htc/tracts.xlsx", dtype={"GEOID": str})
```

```
In [3]: df.head()
```

Out[3]:

	GEOID	CA HTC Index
0	06001400100	20
1	06001400200	16
2	06001400300	31
3	06001400400	35
4	06001400500	47

Clean it up.

```
In [4]: df_trimmed = df.rename(columns={
        "GEOID": "geoid",
        "CA HTC Index": "htc_index"
})
```

```
In [5]: df_trimmed.head()
```

Out[5]:

	geoid	htc_index
0	06001400100	20
1	06001400200	16
2	06001400300	31
3	06001400400	35
4	06001400500	47

Read in the tract maps.

```
In [6]: gdf = gpd.read_file("data/tracts/tl_2010_06_tract10.shp")
```

```
In [25]: gdf.head()
```

Out[25]:

•		STATEFP10	COUNTYFP10	TRACTCE10	GEOID10	NAME10	NAMELSAD10	MTFCC10	FU
	0	06	083	002103	06083002103	21.03	Census Tract 21.03	G5020	
	1	06	083	002402	06083002402	24.02	Census Tract 24.02	G5020	
	2	06	083	002102	06083002102	21.02	Census Tract 21.02	G5020	
	3	06	083	002010	06083002010	20.10	Census Tract 20.10	G5020	
	4	06	083	002009	06083002009	20.09	Census Tract 20.09	G5020	

Clean it up.

In [8]: gdf_trimmed.head()

Out[8]:

	geoid	geometry
0	06083002103	POLYGON ((-120.417938 34.938341, -120.417658 3
1	06083002402	POLYGON ((-120.473893 34.920814, -120.474285 3
2	06083002102	POLYGON ((-120.417658 34.938345, -120.417938 3
3	06083002010	POLYGON ((-120.411468 34.879619, -120.411413 3
4	06083002009	POLYGON ((-120.423524.34.879283120.422856.3

Merge the data and the map

```
In [9]: merged_gdf = gdf_trimmed.merge(df_trimmed, on="geoid", how="inner")
```

Output the merged file for a graphic

```
In [11]: merged gdf.to file("data/processed/tracts.shp")
```

How many of the hardest to count are here in LA County?

```
In [12]: merged_gdf['county_fips'] = merged_gdf.geoid.str.slice(2, 5)
In [17]: merged_gdf.county_fips.value_counts().head()
Out[17]: 037
                2345
         073
                 628
         059
                 583
         065
                 453
         085
                 372
         Name: county_fips, dtype: int64
In [14]: top_100 = merged_gdf.sort_values("htc_index", ascending=False).head(100)
In [18]: top_100.head()
```

Out[18]:

	geoid	geometry	htc_index	county_fips	
3473	06077000100	POLYGON ((-121.292051 37.95407, -121.293315 37	136	077	
7102	06037212305	POLYGON ((-118.2998 34.057707, -118.29871 34.0	128	037	
6966	06037209300	POLYGON ((-118.271663 34.053097, -118.2714 34	127	037	
7270	06037231710	POLYGON ((-118.287222 34.010102, -118.28722 34	123	037	
3472	06077000300	POLYGON ((-121.292051 37.95407, -121.291901 37	123	077	

```
In [19]: top_100.county_fips.value_counts()
Out[19]: 037
                 57
          077
                  7
          019
                  5
          075
                  5
                  5
          071
          073
                  4
          025
                  3
          067
                  3
                  3
          029
          053
                  2
                  2
          001
          059
                  1
          095
                  1
          047
                  1
          099
                  1
          Name: county_fips, dtype: int64
```