Лабораторная работа №1.1 «Экспериментальная проверка уравнения Эйнштейна для фотоэффекта»

Драчов Ярослав акультет общей и прикладной физики МФТИ

10 ноября 2020 г.

1 Введение

В данной лабораторной работе будет происследована зависимость фототока от величины задерживающего потенциала и частоты падающего излучения, что позволит вычислить величину постоянной Планка.

2 Теоретическое введение

 Φ отоэффект — испускание электронов фотокатодом, облучаемым светом — хорошо объясняется фотонной теорией света: фотон с энергией $\hbar\omega$ выбивает электрон из поверхности металла и сообщает электрону кинетическую энергию.

Энергетический баланс этого взаимодействия описывается уравнением:

$$\hbar\omega = W + E_{\text{max}},\tag{1}$$

где W — работа выхода электрона из катода, $E_{\rm maax}$ — максимальная кинетическая энергия электрона после выхода из фотокатода. Реально энергетический спектр вылетевших из фотокатода электронов непрерывный — он простирается от нуля до $E_{\rm max}$.

Для измерения энергии вылетевших фотоэлектронов вблизи фотокатода обычно располагается второй электрод (анод), на который подаётся задерживающий (V<0) или ускоряющий (V>0) потенциал. При достаточно больших ускоряющих напряжениях фототок достигает насыщения (рис. 1): все испущенные электроны попадают на анод. При задерживающих потенциалах на анод попадают лишь электроны, обладающие достаточно большой кинетической энергией, в то время как медленно движущиеся электроны заворачиваются полем и возвращаются на катод. При некотором значении $V=-V_0$ (потенциал запирания) даже наиболее быстрые фотоэлектроны не могут достичь анода.

Максимальная кинетическая энергия $E_{\rm max}$ электронов связана с запирающим потенциалом V_0 очевидным соотношением: $E_{\rm max}=eV_0$. Поставляя

Рис. 1: Зависимость фототока от напряжения на аноде

это соотношение в равенство (1), мы получаем уравнение Эйнштейна для фотоэффекта:

$$eV_0 = \hbar\omega - W. \tag{2}$$

Чтобы определить величину запирающего напряжения, нам надо правильно экстраполировать получаемую токовую зависимость к нулю, т. е. определить, какова функциональная зависимость I(V). Расчёт для простейшей геометрии — плоский катод, освещаемый светом, и параллельный ему анод — приводит к зависимости

$$\sqrt{I} \propto (V_0 - V).$$
 (3)

то есть, корень квадратный из фототока линейно зависит от запирающего напряжения.

Для экспериментальной проверки уравнения Эйнштейна по графикам $\sqrt{I} = f(V)$ определяются потенциалы запирания V_0 при разных частотах и строится зависимость $V_0(w)$, которая, как следует из (2), должна иметь вил

$$V_0(\omega) = \frac{\hbar\omega - W}{e}. (4)$$

Потенциал запирания V_0 для всякого данного катода линейно зависит от частоты света ω . По наклону прямой на графике $V_0(\omega)$ (рис. 2) можно опре-

Рис. 2: Зависимость потенциала запирания от частоты

делить постоянную Планка:

$$\frac{dV_0}{d\omega} = \frac{\hbar}{e}. ag{5}$$

Как показывает формула (5), угол наклона прямой $V_0(\omega)$ не зависит от рода вещества, из которого изготовлен фотокатод. От рода вещества, однако, зависит величина фототока, работа выхода W и форма кривой I(V) (рис. 1). Всё это определяет выбор пригодных для опыта катодов.

В особенноости важноо, чтобы кривая I(V) достаточноо круто подходила к нулю.

3 Экспериментальная установка

Схема установки приведена на рис. 3. Свет от источника S (электриче-

Рис. 3: Схема экспериментальной установки

ская лампа накаливания) с помощью конденсора фокусируется на входную щель призменного монохроматора УМ-2, выделяющего узкий спектральный интервал, и попадает на катод фотоэлемента Ф-25. В качестве катода в данноом фотоэлементе используется Na₂ K Sb(Cs) покрытие. На рис. 4 показаны относительная спектральная чувствительность фотокатода (6a)

Рис. 4: Чувствительность фотокатода (a) и характеристика излучения лампы накаливания (б)

и спектральная характеристика излучения лампы накаливания (66).

Призменный монохроматр-спектрометр УМ-2 (универсальный монохроматор) предназначен для спектральных исследований в диапазоне от 0,38 до 1,00 мкм. Основные элементы монохроматора представлены на рис. 5.

Рис. 5: Схема монохроматора

- 1. Входная щель 16 снабжённая микрометрическим винтом 9, который позволяет открывать щель на нужную ширину (в диапазоне $0.01-4~{\rm MM}$).
- 2. Коллиматорный объектив 2, снабжённый микрометрическим винтом 8. Винт позволяет смещать объектив относительно щели при фокусировке спектральных линий различных цветов.
- 3. Сложная спетральная призма 3, установленная на поворотноом столике 6. Призма 3 состоит из трёх склеенных призм Π_1, Π_2 и Π_3 . Первые две призмы с преломляющими углами 30° изготовлены из тяжёлого флинта, обладающего большой дисперсией. Промежуточная призма Π_3 сделана из крона. Лучи отражаются от её гипотенузой грани и поворачиваются на 90°. Благодаря такому устройству дисперсия призм Π_1 и Π_2 складываются.
- 4. Поворотный столик 6, вращающийся вокруг вертикальной оси при помощи микрометрического винта с отсчётным барабаном. На барабан нанесена винтовая дорожка с градусными делениями. Вдоль дорожки скользит указатель барабана. При вращении барабана призма поворачивается, и в центре поля зрения появляются различные участки спектра.
- 5. Зрительная труба, состоящая из объектива 4 и блока окуляра 5. Объектив даёт изображение входной щели 1 различных цветов в своей фокальной плоскости. В этой же плоскости расположено острие указателя 10. Изображение щели рассматривается через окуляр 5.

Тумблеры, расположенные на основании спектрометра, позволяют включать лампачки осветителей шкал и указателя спектральных линий. Яркость освещения указателя регулируется реостатом.

В случае необходимости, освободив винт 12, блок окуляра можно заменить входной щелью фотоэлемента, пропускающей всего одну из линий спектра на фотоэлемент.

- 6. Массивный корпус 11, предохраняющий прибор от повреждений и загрязнений.
- 7. Оптическая скамья, на которой могут перермещаться рейтеры с источником света Π и конденсатором K, служащим для концентрации света на входной щели. Входная щель спектрометра, конденсор и источник должны быть на одной высоте. Проходящий через входую щель световой пучок хорошо заполняет конденсор и призму, если выполнено соотношение $D_k/b = D_2/f_2 = 1/6$, где D_k диаметр конденсора, b расстояние от конденсора до входной щели, D_2 и f_2 диаметр и фокусное расстояние коллиматорного объектива 2.

Изображение удобно наблюдать на белом колпачке с крестиком (таким колпачком прикрывают щель при юстировке системы).

8. Пульт управления (на рис. 3 не показан), служащий для питания лампы накаливания и осветительной системы спектрометра.

4 Ход работы

Используя окуляр, прооградуируем барабан монохроматора по спектру неоновой лампы (таблица 1) Пользуясь полученной градуировкой снимем

α , °
2786
2742
2716
2684
2644
2616
2584
2560
2514
2236

Таблица 1: Градуировка барабана монохроматора по спектру неоновой лампы

зависимость запирающего напряжения от частоты излучения падающего света (таблица 2). Построим график данной зависимости (рис. 6). По графику определим постоянную Планка:

$$\frac{dV_0}{d\omega} = (577 \pm 7) \cdot 10^{-18} B \cdot c = \frac{\hbar}{e}.$$
 (6)

Откуда

$$\hbar = (0.921 \pm 0.011) \cdot 10^{-34} \text{Дж} \cdot \text{c.}$$
 (7)

Табличное же значение постоянной Планка: $\hbar \approx 1,054 \cdot 10^{-34} \text{Дж} \cdot \text{с}$. По этому же графику можно найти красную границу спектра:

$$\omega_{\kappa} = (2.25 \pm 0.04) \cdot 10^{15} c^{-1} \implies \lambda_{\kappa} = \frac{2\pi c}{\omega_{\kappa}} = (837 \pm 16) \cdot 10^{1} \text{Å}, \quad (8)$$

$\omega, 10^{15} \cdot c^{-1}$	U_3 , B
2,897	0,37
2,976	0,42
3,058	0,47
3,126	0,51
3,154	0,52
3,205	0,55
3,490	0,71

 Таблица 2: Зависимость запирающего напряжения от частоты излучения падающего света

Рис. 6: Зависимость запирающего напряжения от частоты излучения падающего света

и работу выхода:

$$W = \hbar \omega_{\kappa} = 1,30 \pm 0,03$$
 B. (9)

Для длины волны $\lambda=6507$ Å также измерим зависимость фототока от напряжения на аноде (таблица 3). По данной зависимости построим график $\sqrt{I}=f(V)$ (рис. 7). Если предположить что данная зависимость должна быть линейной, то значение запирающего напряжения будет отличаться от того, что мы наблюдаем на эксперименте и будет численно равно 0.396 ± 0.015 В.

5 Выводы

В ходе выполнения работы мы пронаблюдали явление фотоэффекта и с помощью уравнения Эйнштейна измерили постоянную Планка, а также оценили красную границу спектра и работу выхода для нашей установки. Причина небольшого несовпадения полученного значения постоянной

$U_{\rm A},{ m B}$	U_{Φ} , B
0,019	0,240
-0,040	0,193
-0,077	0,164
-0,118	0,132
-0,150	0,109
-0,178	0,0883
-0,216	0,0626
-0,251	0,0430
-0,283	0,0290
-0,314	0,0185
-0,354	0,0095
-0,369	0,0075

Таблица 3: Зависимость фототока от напряжения на аноде

Планка с её табличным значением кроется в неточности использованной в данной работе методики измерений. Возможно, мы бы наблюдали полное совпадение экспериментальных данных с табличными в пределах погрешности, если бы находили запирающее напряжение по ВАХ для каждой отдельной частоты, т. к. мы убедились, что данный факт действительно влияет на

Какой-то график

получаемые результаты. $15.0(3) \times 10^{-4}$

Рис. 7: Зависимость фототока от напряжения на аноде