5.

$$\left(\frac{E_{y}}{E_{0y}}\right)^{2} + \left(\frac{E_{x}}{E_{0x}}\right)^{2} - \frac{2E_{x}E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \cos \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}} \frac{E_{y}}{E_{0x}E_{0y}} \sin \delta = \sin^{2} \delta$$

$$= \lim_{E \to y} \int_{E_{0x}}$$

$$S = \pi/2$$
 \Rightarrow $\left(\frac{E_{\gamma}}{E_{0\gamma}}\right)^{2} + \left(\frac{E_{\chi}}{E_{0\chi}}\right)^{2} = 1$

$$8 = \pi/2$$
, $E_{0x} = E_{0y} = E_{0} =$ $E_{y} + E_{x} = F_{0}$

6. energy stored=energy flown out= $\frac{1}{2}V\mu_0K^2$

⁷.
$$L = \frac{\mu_0 N^2 h}{2\pi} \ln \frac{b}{a}$$
; $W = \frac{1}{2} L I^2 = \frac{\mu_0 N^2 h I^2}{2\pi} \ln \frac{b}{a}$

8. a) E. $2\pi Y = \pi Y B$ => E = $\frac{Y}{2}B$ Force on outer cylinder - Q. b B => torque = - Q b B

Similarly torque on uner cylinder = $+\frac{1}{12}a^{2}B$.

Total angular momenta imported when B=0 $L = \int_{B_{0}}^{\infty} -\frac{1}{2}(b^{2}-a^{2})Bdt = \frac{1}{2}B_{0}(b^{2}-a^{2})$, where $B_{0} = \mu_{0}nI$ b) In between the charged cylinders $|F| = \frac{1}{2\pi t_{0}r} = \frac{1}{2\pi t_{0}r}$ radially outward in xy plane | | | = | fo(Ē X B) | = 6 <u>Q/L</u>. μon I → corcumferential

Angular momentum denity rxg → pointing into the Total angular momentum

$$L = \int_{a}^{b} Y \cdot \frac{R}{2\pi L Y} \cdot \mu_{o} n \Gamma 2\pi Y dY L$$

$$= R \mu_{o} n \Gamma \int_{a}^{b} Y dY = R \frac{B_{o}}{2} (b^{2} - a^{2})$$

