Modelos de Dados Longitudinais

Introdução; Representação Gráfica

Inês Sousa

Departamento de Matemática

Universidade do Minho

1.° semestre

Bibliografia

- * Diggle P.J., Heagerty P., Liang K-Y. and Zeger S.L. (2002), Analysis of Longitudinal Data, Oxford
- * Verbeke G. and Molenberghs G. (2000), Linear Mixed Models for Longitudinal Data, Springer

* Bates J. and Pinheiro D. (2002), Mixed Effects Models in S and S-Plus, Springer

Objectivos Finais do Curso

- Identificar um conjunto de dados longitudinais.
- Decidir aplicar métodods estatísticos para dados longitudinais.
- Manipular bases de dados longitudinais em R.
- Apresentar dados longitudinais visualmente através de gráficos.
- Fazer uma análise exploratória que apoie o modelo longitudinal usado, tanto para a estrutura de correlação, bem como para o valor médio da população.

Objectivos Finais do Curso (cont.)

- Caracterizar um modelo linear para dados longitudinais.
- Estimar parâmetros do modelos longitudinal por máxima verosimilhança.
- Fazer inferência sobre os parâmetros do modelo longitudinal e identificar qual o melhor método a utilizar.
- Utilizar métodos de diagnóstico para o modelo longitudinal aplicado.
- Interpretar os resultados obtidos da análise estatística no contexto do problema.

Introdução

O que são **Dados Longitudinais**?

- Dados Longitudinais são gerados por medidas repetidas ao longo do tempo em diferentes indivíduos.
- Assuminos sempre independência entre os indivíduos.
- Análise de Dados Longitudinais combina técnicas de análise multivariada e análise de séries temporais.
- Série Temporal é uma única série longa, Longitudinais são várias séries mais curtas.
- Medidas de diferentes indivíduos são independentes, impossibilidade de usar clássica análise multivariada

Estudos Longitudinais / Medidas Repetidas

- **Desenhos Clássicos** (Cross-sectional): *única* medida em uma variável em cada indivíduo
- Desenhos Multivariados: única medida em mais do que uma variáveis em cada indivíduo
- Desenhos Medidas Repetidas: múltipas medidas em uma variável em cada indivíduo
- Desenhos Longitudinais: Desenhos de medidas repetidas
 ao longo do tempo

 Um conjunto de medidas repetidas só é longitudinal se for ao longo do TEMPO
- Multivariate Longitudinal Designs

Exemplo: Crescimento Humano

• Cross-sectional: medir altura de vários indivíduos com diferentes idades. Mais ráido

• Multivariate: medir altura e peso de vários indivíduos com diferentes idade.

• Longitudinal: seleccionar vários indivíduos com a mesma idade, e medir altura (tb peso) numa sequência de tempos.

Exemplo: Medidas Repetidas não necessariamente Longitudinais

- Oftalmologia: medidas em ambos os olhos em cada indivíduo.
- Experimentos em animais: tratamentos aplicados a conjuntos de animais, e não animais únicos.
- Experimentos em Educação: aplicar políticas a diferentes escolas/turmas, e obter respostas para vários alunos por turma/escola
- Gémeos: Tratamentos em gémeos

Permitem distinguir: efeitos do cohort e efeitos da idade/tempo

Permitem distinguir: efeitos do cohort e efeitos da idade/tempo

Permitem distinguir: efeitos do cohort e efeitos da idade/tempo

Permitem distinguir: efeitos do cohort e efeitos da idade/tempo

Exemplo 1: Número de células CD4+

Cohort de 369 HIV seropositivos, medidas do número de células CD4+ a aproximadamente intervalos de 6-meses.

Número de medidas repetidas, e tempos de medidas, são diferentes para cada indivíduo.

Exemplo 1: Número de células CD4+

Objectivos da análise longitudinal destes dados:

- estimar o tempo médio até ao decréscimo de células CD4+
- estimar a progressão para sujeitos individuais, considerando o erro de medida na determinação de céluas CD4+
- caracterizar o grau de heterogeneidade entre indivíduos, no grau de progressão
- identificar factores de predição para mudanças nos valores das células CD4+

Exemplo 2: Ensaio Clínico Anestesia (PCA)

Estudo caso-controlo

- Dados de um ensaio clínico para o uso de uma anestesia controlada pelo doente.
- A droga pode ser tomada apenas em intervalos de tempo controladas.
- Dados: corresponde ao número de vezes que o paciente auto-administra a droga num intervalo de 4 horas, durante 2 dias.
- Dados para 65 pacientes.
- Há dois grupos de tratamento:
 - 2mg morfina, com 8 minutos de espera
 - 1mg morfina, com 4 minutos de espera

Exemplo 2: Ensaio Clínico Anestesia (PCA)

Exemplo 3: Tratamento Esquizofrenia (PANSS)

- Ensaio clínico aleatorizado, para terapias à base de drogas
- Três tratamentos:
 - haloperidol (standard)
 - placebo
 - risperidone (novo)
- Dropout por causa de "resposta inadequada ao tratamento"

Treatment	Número de não dropouts na semana					
	0	1	2	4	6	8
haloperidol	85	83	74	64	46	41
placebo	88	86	70	56	40	29
risperidone	345	340	307	276	229	199
total	518	509	451	396	315	269

Exemplo 3: Tratamento Esquizofrenia (PANSS)

Neste gráfico não conseguimos ver a progressão, isto to tem a ver com o tamanho do gráfico

O que estes exemplos têm em comum

- Há observações repetidas em cada unidade experimental.
- Unidades podem ser assumidas independentes réplicas séries temporais.
- Múltiplas respostas em cada unidade possivelmente correlacionads.

As observações são independentes umas das outras mas correlacionados entre si (nos diferentes momentos de medição/observação)

- Os objectivos podem ser formulados como problemas de regressão.
- A escolha do modelo estatístico depende do tipo de variável resposta.

Vantagens dos Métodos Longitudinais

• Economia em número de indivíduos; cada sujeito serve como o seu próprio controlo;

São necessárias menos pessoas, pq temos mais observações em diferentes momentos. Cada pessoa funciona como controlo de si próprio ao longo tempo.

- Variação entre indivíduos excluída do erro;
- Fornece estimadores mais eficientes do que desenhos cross-sectional/transversais, com o mesmo número e padrão dos dados observados;
- Permite separar efeito de idade (mudanças ao longo do tempo em cada indivíduo) de efeitos de cohort/grupo (diferenças entre indivíduos em baseline) ⇒ estudos transversais não permite fazer;

Conseguimos saber a média populacional, mas também a media individual e quanto cada individuo se afasta da media de grupo

• Permite-nos obter informação sobre mudanças ao nível individual.

Vantagens dos Métodos Longitudinais

- Mais flexível em desenhos de investigação;
 - sem necessidade de todos terem os dados recolhidos nos mesmos momentos - ≠ tempos de medida, tempo pode ser contínuo.
 - sem necessidade de todos serem medidos o mesmo número de vezes \neq número de medidas.
- Identificar padrões temporais nos dados;
 - A variável resposta aumenta/diminui/estabiliza ao longo do tempo?
 - É o padrão geral linear ou não linear?
 - Há evidência de pontos de mudança de efeitos?
- Incluir preditores que variam com o tempo;
- Incluir efeitos de interação com o tempo
 - Testar se os efeitos dos preditores variam ao longo do tempo.

Objectivos Científicos

Filosofia Pragmática: Métodos de análise devem ter em consideração os objectivos científicos do estudo.

All models are wrong, but some models are useful, G.E.P. Box

O que queremos?

- ▶ compreender cientificamente vs. descrever empiricamente?
- ▶ focar ao nível individual vs. ao nível da população?
- comportamento em média vs. variação à volta da média?

Objectivos Científicos (cont.)

Example: Política de redução de fumadores

Perspectiva de Saúde Pública - "De que forma as políticas irão afectar a saúde da comunidade" (população em média)

Perspectiva Clínica - "De que forma as políticas irão afectar a saúde do **meu** paciente?" (ao nível do indivíduo)

Correlação e porque importa ...

• Diferentes medidas, no tempo, no mesmo indivíduo estão tipicamente correlacionados

• Esta correlação deve ser reconhecida no processo de inferência

Notação Letras Gregas representam parâmetros e Letras Romanas são quantidades observadas

- $f(y;\theta)$ genérico para função densidade ou distribuição de probabilidade, com θ o vector de parâmetros
- i = 1, ..., m número de indivíduos
- $j = 1, ..., n_i$ número de observações no indivíduo i
- $t_{i1}, ..., t_{in_i}$ tempos das observações no indivíduo i
- $y_{i1}, ..., y_{in_i}$ as observações/realizações
- $\boldsymbol{x}_{i1},...,\boldsymbol{x}_{in_i}$ vectores de covariáveis
- $\mathbf{Y}_i = (Y_{i1}, ..., Y_{in_i})$ n_i -vector de respostas variáveis aleatórias
- ullet μ_i, V_i valor esperado e matrix variância de $oldsymbol{Y}_i$
- $N = \sum_{i} n_{i}$ total número de observações

$$Y_{it} = \alpha + \beta * t + \epsilon_{it}$$
 $i = 1, ..., m = 20$ $t = 1, ..., n = 10$

$$Y_{it} = \alpha + \beta * t + \epsilon_{it}$$
 $i = 1, ..., m = 20$ $t = 1, ..., n = 10$

$$Y_{it} = \alpha + \beta * t + \epsilon_{it}$$
 $i = 1, ..., m = 20$ $t = 1, ..., n = 10$

$$Y_{it} = \alpha + \beta * t + \epsilon_{it}$$
 $i = 1, ..., m = 20$ $t = 1, ..., n = 10$

Estimadores pontuais para os parâmetros, e erros padrões

	ignorando correlação		reconhecendo correlação		
	estimador	s.e.	estimador	s.e.	
$\alpha = 5$	5.037	0.330	5.037	0.424	
$\beta = 0.5$	0.506	0.053	0.506	0.035	

Estudos Transversais vs Longitudinais

Modelo de Regressão
$$Y_i = X_i \beta + \epsilon_i$$

• Cross-sectional $(n_i = 1)$

$$Y_{i1} = \beta_c x_{i1} + \epsilon_{i1}, \quad i = 1, ..., m$$

- $-\beta_c$ representa a diferença em média de Y entre duas sub-populações que diferem por uma unidade em x.
- Observações repetidas extensão do modelo

$$Y_{ij} = \beta_c x_{i1} + \beta_L (x_{ij} - x_{i1}) + \epsilon_{ij}, \quad j = 1, ..., n_i, i = 1, ..., m$$
$$(Y_{ij} - Y_{i1}) = \beta_L (x_{ij} - x_{i1}) + \epsilon_{ij} - \epsilon_{i1}$$

 $-\beta_L$ reprensenta a mudança esperada em Y ao longo do tempo por unidade de mudança em x para um indivíduo específico.

Estudos Transversais vs Longitudinais

- Em CS a base é a comparação de indivíduos com um valor particular de x em relação a outros indivíduos com diferentes valores.
- Em LDA cada indivíduo é o seu próprio controle. β_L é estimado pela comparação de medidas em dois tempos de um mesmo indivíduo assumindo que x muda ao longo do tempo.
- Em LDA podemos distinguir o grau de variação de Y ao longo do tempo para um indivíduo, da variação de Y entre indivíduos.

Estudos Transversais vs Longitudinais - exemplo

- Suponhamos que queremos estimar o estado imunológico de um homem pelo seu nível de células CD4+.
- Em CS, informação é "emprestada" de outros indivíduos para ultrapassar erro de medida. Mas, ao fazer a média de todas as pessoas, ignoramos a diferença natural em CD4+ entre indivíduos.
- Em LDA, informação é "emprestada" das medidas ao longo do tempo nos indivíduos de interesse, bem como da variabilidade entre indivíduos.
- pequena variabilidade entre indivíduos, o estimador é fiável usando apenas informação de outros indivíduos como no CS caso.
- alta variabilidade entre eindivíduos, a informação dos outros indivíduos não é fiável, é necessario considerar variabilidade entre indivíduos.

Desenhos Balanceados e Não Balanceados

Com $Y_{ij} = j^{th}$ medida no indivíduo i e t_{ij} = tempo em que foi medido Y_{ij}

• Desenho Balanceado: $t_{ij} = t_j$ para todos os indivíduos i

 Desenho Não Balanceado: todos os tempos podem ser diferentes

Nota: Um desenho balanceado pode gerar uma base de dados não balanceada.

Missing Data (Dados Omissos/Faltantes)

• dados faltantes na sequência temporal (intermittent missing): faltar a uma consulta; instrumento não está a funcionar.

• perder indivíduos em determinado ponto do estudo (loss to follow-up): mudança de endereço; paciente não quer participar, mas por razões não relacionadas com o tópico de estudo.

• sair do estudo (dropout): morrer; tratamento não está a ajudar.

Exemplo 1: Número de células CD4+

Cohort de 369 HIV seropositivos, medidas do número de células CD4+ a aproximadamente intervalos de 6-meses.

Número de medidas repetidas, e tempos de medidas, são diferentes para cada indivíduo.

Exemplo 2: Ensaio Clínico Anestesia (PCA)

Exemplo 2: Ensaio Clínico Anestesia (PCA)

Uma amostra aleatória de progressões individuais

Um gráfico bem melhor - spaghetti plot!

Um gráfico bem melhor - spaghetti plot!

Qual o melhor gráfico a utilizar?

- Gráfico de pontos mostra um decréscimo com o tempo.
- Mas a informação ao nível individual está perdida.
- Plot de linhas é confuso, muito cheio, e não é possível distinguir o efeito dos diferentes tratamentos.
- Mas, mostra um decréscimo no tempo, bem como uma tendência para pessoas com picos sairem dos estudo logo de seguida (dropout).
- O gráfico com as médias mostra o efeito do tratamento bastante claro.
- Mas não mostra variabilidade da população em torno da média.
- Como seria possível corrigir?

Tabela Sumário - placebo

Week	Mean	Variance	Correlation						
0	55.44	109.15	1.00	0.7	0.49	0.48	0.59	0.43	
1	56.96	163.91	•	1.00	0.77	0.63	0.60	0.60	
2	53.61	190.14	•	•	1.00	0.76	0.53	0.44	
4	52.40	138.25	•	•	•	1.00	0.55	0.65	
6	55.43	175.26	•	•	•	•	1.00	0.90	
8	52.56	172.13		•	•	•	•	1.00	

Tabela Sumário - haloperidol

Week	Mean	Variance	Correlation					
0	56.60	150.16	1.00	0.64	0.55	0.56	0.45	0.40
1	53.18	149.82	•	1.00	0.75	0.70	0.75	0.66
2	51.18	174.52	•	•	1.00	0.83	0.87	0.75
4	50.75	178.19	•	•	•	1.00	0.91	0.83
6	45.93	173.99	•	•	•	•	1.00	0.92
8	44.64	156.99	•	•	•	•	•	1.00

Tabela Sumário - risperidone

Week	Mean	Variance	Correlation						
0	55.28	141.39	1.00	0.51	0.38	0.38	0.27	0.21	
1	49.04	119.18		1.00	0.80	0.65	0.64	0.60	
2	46.84	126.91	•	•	1.00	0.77	0.74	0.68	
4	43.42	147.33	•	•	•	1.00	0.88	0.74	
6	41.88	247.17	•	•	•	•	1.00	0.80	
8	43.44	188.41		•	•	•	•	1.00	

Tabela Sumário - Mais do que um tratamento?

- tabelas separadas para cada grupo de tratamento
- procurar semelhanças e diferenças

Tabela Sumário - Que covariáveis são significativas?

• usar resíduos do modelo ajustado por "ordinary least squares"

Como representar dados não balanceados

Como representar a média para os dados CD4

- Em cada tempo calcular a média. Não ocorrem 2 ou mais medidas exactamente ao mesmo tempo.
- Útil para dados **Não Balanceados**
- Agrupar os dados: estimar a média em cada tempo, como a média empírica de todas as observações que ocorrem numa janela (eg. aos 6 meses, numa janela de 5 a 7 meses)

$$\hat{\mu}(t) = \text{average } \{y_{ij} : |t_{ij} - t| < h/2\}$$

Como representar dados não balanceados

Como representar a média para CD4 (Kernel Smoothing)

• Função Kernel k(.) (pdf simétrica)

• Com uma bandwidth h

$$\hat{\mu}(t) = \frac{\sum y_{ij} \ k \left\{ (t_{ij} - t)/h \right\}}{\sum k \left\{ (t_{ij} - t)/h \right\}}$$

Como representar a média para CD4 (Smoothing Spline)

- Smoothing Spline: encontrar uma "curva suave", equilibrando minimização dos erros e suavidade
 - pequena penalidade $(h) \Rightarrow$ uma linha que interpola os dados
 - grande penalidade $(h) \Rightarrow$ linha suave que não se ajusta tão bem aos dados
 - penalidade automática $(h) \Rightarrow$ cross-validation, de cada vez retirar um ponto dos dados e encontrar o parâmetro h que minimiza o erro de perdição
 - Hastie & Tibshirani (1990) Generalized Additive Models
 ou Wood (2006) Generalized Additive Models : An
 Introduction to R
 - smooth.spline(); lowess(); loess()

Dados CD4 - Smoothing

Dados e Uniform Kernel

Dados CD4 - Smoothing

Dados, Uniform e Gaussian Kernel

Dados CD4 - Smoothing

Dados, Gaussian Kernels com bandas larga e pequena

