

Register map description of the XENSIV™ PAS CO2

About this document

Scope and purpose

This application note provides a detailed description of the register map of XENSIV[™] PAS CO2.

Table of contents

Abou	ıt this document	1
Table	e of contents	1
1	Register map access method	2
2	Register map	3
3	Description of different registers	4
3.1	Product and revision ID register (PROD_ID)	
3.2	Sensor status register (SENS_STS)	5
3.3	Measurement period configuration registers (MEAS_RATE_H and MEAS_RATE_L)	
3.4	Measurement mode configuration register (MEAS_CFG)	
3.5	CO ₂ concentration result register (CO2PPM_H and CO2PPM_L)	
3.6	Measurement status register (MEAS_STS)	12
3.7	Interrupt pin configuration register (INT_CFG)	
3.8	Alarm threshold register (ALARM_TH_H and ALARM_TH_L)	16
3.9	Pressure compensation registers (PRES_REF_H and PRES_REF_L)	
3.10	Automatic baseline offset compensation reference	18
3.11	Scratch pad register (SCRATCH_PAD)	19
3.12	Soft reset register (SENS_RST)	
Revi	sion history	

Register map access method

Register map access method 1

The registers that can be accessed by the user's application via the communication interfaces are covered here. Registers need to be addressed byte-wise.

Table 1 Bit access terminology

Mode	Symbol	Description
	Symbot	
Read/Write	rw	This bit or bitfield can be written or read.
Read	r	This bit or bitfield is read-only.
Write	w	This bit or bitfield is write-only (read as 0 _H).
Read/Write hardware or firmware affected	rwh	As rw, but bit or bitfield can also be modified by hardware or firmware.
Read hardware or firmware affected	rh	As r, but bit or bitfield can also be modified by hardware or firmware.
Sticky	S	Bits with this attribute are "sticky" in one direction. If their reset value is overwritten once they can be switched again into their reset state only by a reset operation. Software and internal logic (except reset-like functions) cannot switch this type of bit into its reset state by writing directly to the register. The sticky attribute can be combined with other functions (e.g. "rh").
Reserved/Not implemented	0	Bitfields named "0" indicate functions not implemented. They have the following behavior: • Reading these bitfields returns 0H.
		Writing these bitfields has no effect.
		These bitfields are reserved. When writing, software should always set such bitfields to $0_{\rm H}$ to preserve compatibility with future products.
Reserved/Not defined	Res	Certain bitfields or bit combinations in a bitfield can be marked as "Reserved", indicating that the behavior of the device is undefined for that combination of bits. Setting the register to such an undefined value may lead to unpredictable results. When writing, the software must always set such bitfields to legal values.

Register map

2 **Register map**

Name	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Reset
PROD_ID	0x00		PROD r		REV r					0x4F
SENS_STS	0x01	SEN_RDY rh	PWM_DIS_ST rh	ORTMP rhs	ORVS rhs	ICCER rhs	ORTMP_CLR W	ORVS_CLR W	ICCER_CLR W	0xC0
MEAS_RATE_H	0x02				VA rw					0x00
MEAS_RATE_L	0x03				VA rw					0x3C
MEAS_CFG	0x04		0 w	PWM_OUTEN rw	PWM_MODE rw		_CFG wh		MODE wh	0x24
СО2РРМ_Н	0x05				VA r					0x00
CO2PPM_L	0x06				VA r					0x00
MEAS_STS	0x07		0 w	Res rh	DRDY rhs	INT_STS rhs	ALARM rhs	INT_STS_CLR W	ALARM_CLR w	0x00
INT_CFG	0x08		0 rw		INT_TYP rw	INT_FUNC ALARM_TYP				0x11
ALARM_TH_H	0x09		VAL rw							0x00
ALARM_TH_L	0x0A		VAL rw							0x00
PRESS_REF_H	0x0B		VAL rwh							
PRESS_REF_L	0x0C		VAL rwh							
CALIB_REF_H	0x0D				VA rw					0x01
CALIB_REF_L	0x0E				VA rv					0x90
SCRATCH_PAD	0x0F	VAL rw								0x00
SENS_RST	0x10	SRTRG W								0x00
Reserved	0x11 		D-	ad & Write a	Reserved	_	ommunication -			
	0x14		Ke	au ol Write acces	ss to those registe	ris generate a Ci	ommunication el	1101		
Reserved	0x15 0xFF		Read	& Write access to	Reserved those registers (_	acknowledge cor	ndition.		

Description of different registers

3 Description of different registers

3.1 Product and revision ID register (PROD_ID)

This register displays the device's product and version ID. Write accesses to this register are ignored.

Register name: PROD_ID Address: 0x00

Field	Bits	Туре	Description
PROD	7:5	r	Product ID This bitfield indicates the product type. 001 _b : Revision 1.
REV	4:0	r	Revision ID This bitfield indicates the product and firmware revision. 0001 _b : Revision 1.

Description of different registers

3.2 Sensor status register (SENS_STS)

This register displays and controls the status of the sensor. Write accesses to the read-only bits of this register are ignored.

Register name: SENS_STS Address: 0x01

Field	Bits	Туре	Description
SEN_RDY	7	rh	Sensor ready bit
			This bit indicates if the initialization of the sensor after power-on reset has been performed correctly.
			0 _b : The sensor has not been initialized correctly.
			1 _b : The sensor has been initialized correctly.
PWM_DIS_ST	6	rh	PWM_DIS pin status
			This bit indicates the level read at pin PWM_DIS .
			0 _b : A low level is read at pin PWM_DIS .
			1 _b : A high level is read at pin PWM_DIS .
			Note: This bit is updated at every transition at pin PWM_DIS .
ORTMP	5	rhs	Out-of-range temperature error bit (sticky bit)
			This bit indicates if a condition where the temperature has been outside the specified valid range has been detected.
			0 _b : No error has occurred.
			1 _b : An error has occurred.
			This bit is cleared by setting SENS_STS.ORTMP_CLR .
ORVS	4	rhs	Out-of-range VDD12V error bit (sticky bit)
			This bit indicates if a condition where VDD12V has been outside the specified valid range has been detected.
			0 _b : No error has occurred.
			1 _b : An error has occurred.
			This bit is cleared by setting bit SENS_STS.ORVS_CLR .

ICCER	3	rhs	Communication error notification bit (sticky bit)
			This bit indicates if a non-valid command has been received by the serial communication interface.
			0 _b : No invalid command received.
			1 _b : An invalid command has been received.
			This bit is cleared by setting SENS_STS.ICCER_CLR .
ORTMP_CLR	2	w	Out-of-range temperature error clear bit Writing this bit with 1_b clears the sticky bit SENS_STS.ORTMP. This bit is read back as 0_b .
ORVS_CLR	1	w	Out-of-range VDD12V error clear bit Writing this bit with 1_b clears the sticky bit SENS_STS.ORVS. This bit is read back as 0_b .
ICCER_CLR	0	w	Communication error clear bit Writing this bit with 1_b clears the sticky bit SENS_STS.ICCER. This bit is read back as 0_b .

Description of different registers

3.3 Measurement period configuration registers (MEAS_RATE_H and MEAS_RATE_L)

Registers MEAS_RATE_H and MEAS_RATE_L define the measurement period used in continuous mode. The concatenation of MEAS_RATE_H (MSB) and MEAS_RATE_L (LSB) define the period. The concatenated value is coded as a two's complement signed short integer (1 bit = 1 s).

Values above $0FFF_H$ are treated as being equal to FFF_H (4095 s). Values below 0005_H are treated as being equal to 0005_H (5 s).

Writing a non-valid value to this field generates a communication error (bit **SENS_STS.ICCER** set).

Note: When writing to MEAS_RATE_H and MEAS_RATE_L, the new value is not immediately considered by the device. It is internally latched at the next transition from idle to continuous mode.

Register name: MEAS_RATE_H Address: 0x02

Reset value: 0x00

Field	Bits	Туре	Description
0	7:4	rw	Reserved This bitfield shall be written with $0_{\text{H.}}$
VAL	3:0	rwh	MSB of the measurement period in continuous mode The concatenation of this value with bitfield MEAS_RATE_L defines the measurement period in continuous mode. Note: Values above 0F _H reserved. Writing a non-valid value to this field generates a communication error (bit SENS_STS.ICCER set) and sets the bitfield to 0F _H .

Register name: MEAS_RATE_L Address: 0x03

Field	Bits	Туре	Description
VAL	7:0	rwh	LSB of the measurement period in continuous mode
			The concatenation of this value with bitfield MEAS_RATE_H.VAL defines the measurement period in continuous mode.

	Note: Values 00_H to 04_H are reserved. Writing a non-valid value to this field generates a communication error (bit SENS_STS.ICCER set) and sets the bitfield to 05_H .

Description of different registers

Measurement mode configuration register (MEAS_CFG) 3.4

This register defines the operation settings of the device.

Register name: MEAS_CFG Address: 0x04

Field	Bits	Туре	Description
Res	7:6	rwh	Reserved
			This bitfield shall be written with 00 _b .
PWM_OUTEN	5	rwh	PWM output software enable bit
			0 _b : PWM output is disabled by software.
			1 _b : PWM output is enabled by software.
			Note 1: The actual state of pin PWM depends on both MEAS_CFG.PWM_OUTEN and pin PWM_DIS .
			Note 2: This bit is automatically set at a high to low transition at pin PWM_DIS .
PWM_MODE	4	rw	PWM mode configuration
			0 _b : PWM single-pulse mode.
			1 _b : PWM pulse-train mode.
BOC_CFG	3:2	rwh	Baseline offset compensation configuration
			00_b : Automatic baseline offset compensation (ABOC) disabled. No offset compensation occurs.
			01_{b} : ABOC enabled. The offset is periodically updated at each BOC computation.
			Note: In single-shot mode, ABOC correction factor is applied but the ABOC scheme is not active and not updated.
			10 _b : Forced compensation.
			Note: After the forced compensation is done, device automatically reconfigures itself into ABOC (MEAS_CFG.BOC_CFG = 01_b).
			11 _b : Reserved.

OP_MODE	1:0	rwh	Sensor operating mode
			00 _b : Idle mode.
			01_b : Single-shot mode enabled. Writing 01_b to this field triggers a single measurement sequence. This field is reset by firmware automatically.
			10₀: Continuous mode enabled.
			11 _b : Reserved (as 00 _b).

Description of different registers

CO₂ concentration result register (CO2PPM_H and CO2PPM_L) 3.5

Registers CO2PPM_H and CO2PPM_L are used to display the result of the last CO2 concentration measurement. The concatenation of CO2PPM_H (MSB) and CO2PPM_L (LSB) define the CO2 concentration value. The concatenated CO_2 concentration value is coded as a two's complement signed short integer (1 bit = 1 ppm). This field is updated at the end of each measurement sequence.

Reading register CO2PPM_L clears bit MEAS_STS.DRDY.

When reading the CO₂ concentration value, the user shall first read registers CO2PPM_H and then CO2PPM_L.

Register name: CO2PPM_H Address: 0x05

Reset value: 0x00

Field	Bits	Туре	Description
VAL	7:0	rh	MSB of the CO ₂ concentration value
			The concatenation of this value with bitfield CO2PPM_L.VAL gives the CO ₂ concentration value.

Register name: CO2PPM_L Address: 0x06

Field	Bits	Туре	Description
VAL	7:0	rh	LSB of the CO ₂ concentration value
			The concatenation of this value with bitfield CO2PPM_H.VAL gives the CO2 concentration value.
			Reading this bitfield clears bit MEAS_STS.DRDY.

Description of different registers

Measurement status register (MEAS_STS) 3.6

This register displays the status information of the sensor. Write accesses to the read-only bits of this register are ignored.

Register name: MEAS_STS Address: 0x07

Field	Bits	Туре	Description
0	7:6	rw	Reserved
			This bitfield is read as 00 _b .
Res	5	rh	Reserved
			This bit is reserved.
DRDY	4	rhs	Data ready bit (sticky bit)
			This bit indicates if new data are available in register CO2PPM_H and CO2PPM_L.
			0 _b : No new data are available.
			1 _b : Unread data are available. This bit is set at the end of every measurement sequence.
			This bit is cleared by reading CO2PPM_L.
INT_STS	3	rhs	INT pin status bit
			This bit indicates if pin INT has been latched to active state (in case of alarm or data ready).
			0 _b : Pin INT has not been latched to active state.
			1 _b : Pin INT has been latched to active state. This bit is set at the end of every measurement sequence in case of a latching condition.
			This bit is cleared by setting bit MEAS_STS.INT_STS_CLR.

ALARM	2	rhs	Alarm notification (sticky bit)
			This bit indicates if a threshold violation occurred.
			0 _b : No violation occurred.
			1_{b} : Violation occurred. This bit is set at the end of every measurement sequence in case of violation.
			This bit is cleared by setting bit MEAS_STS.ALARM_CLR.
INT_STS_CLR	1	w	INT pin status clear bit
			Writing this bit with 1_b clears the sticky bit MEAS_STS.INT_STS and forces pin INT to inactive level.
			This bit is read back as 0 _b .
ALARM_CLR	0	w	Alarm notification clear bit
			Writing this bit with 1 _b clears the sticky bit MEAS_STS.ALARM.
			This bit is read back as 0 _b .

Description of different registers

Interrupt pin configuration register (INT_CFG) 3.7

This register defines the configuration of pin **INT**.

Register name: INT_CFG Address: 0x08

Field	Bits	Туре	Description
0	7:5	rw	Reserved This bitfield shall be written with 00_b .
INT_TYP	4	rw	Pin INT electrical configuration 0 _b : Pin INT is configured as push-pull and low active. 1 _b : Pin INT is configured as push-pull and high active. Note: Writing this bitfield forces pin INT to inactive state.
INT_FUNC	3:1	rw	Pin INT function configuration 000 _b : Pin INT is inactive. 001 _b : Pin INT is configured as alarm threshold violation notification pin. 010 _b : Pin INT is configured as data ready notification pin. 011 _b : Pin INT is configured as sensor busy notification pin. 100 _b : Pin INT is configured as early measurement start notification pin (this function only is available in continuous mode with MEAS_CFG.OP_MODE = 10 _b , otherwise the pin is inactive). 101 _b : Reserved 111 _b : Reserved

ALARM_TYP	0	rw	Alarm type configuration bit
			This bitfield defines if an alarm is issued in case of lower or higher threshold violation.
			0 _b : Crossing down – the concatenated value of register ALARM_TH_H and ALARM_TH_L is defined as a lower threshold register.
			1 _b : Crossing up – the concatenated value of register ALARM_TH_H and ALARM_TH_L is defined as a higher threshold register.

Description of different registers

Alarm threshold register (ALARM_TH_H and ALARM_TH_L) 3.8

Registers ALARM_TH_H and ALARM_TH_L define the value used as a threshold for the alarm violation. The concatenation of ALARM_TH_H (MSB) and ALARM_TH_L (LSB) define the threshold value that shall be considered by the device. The concatenated alarm threshold value is coded as a 2's complement signed short integer (1 bit = 1 ppm).

Register name: ALARM_TH_H Address: 0x09

Reset value: 0x00

Field	Bits	Туре	Description
VAL	7:0	rw	MSB of the alarm threshold
			The concatenation of this value with bitfield ALARM_TH_L.VAL defines the threshold value.

Register name: ALARM_TH_L Address: 0x0A

Field	Bits	Туре	Description
VAL	7:0	rw	LSB of the alarm threshold
			The concatenation of this value with bitfield ALARM_TH_H.VAL defines the threshold value.

Description of different registers

3.9 Pressure compensation registers (PRES_REF_H and PRES_REF_L)

Registers PRES_REF_L and PRES_REF_H are used to capture the atmospheric pressure to be compensated. The concatenation of PRES_REF_H (MSB) and PRES_REF_L (LSB) define the pressure value that shall be considered by the device. The concatenated pressure value is coded as an unsigned short integer (1 bit = 1 hPa). Since even small variations of the external pressure may lead to significant changes in the output provided by the sensor, it must be ensured that a coherent value is available for the sensor. For that purpose, PRES_REF_H and PRES_REF_L are associated with two internal shadow registers from which the device reads the pressure value to be used by the internal firmware. When writing to PRES_REF_L, the complete 16-bit pressure value is loaded into the shadow registers. When writing to PRES_REF_H, the shadow registers are not updated. Therefore, to update the pressure value, the user has to write first PRES_REF_H and then PRES_REF_L.

Pressure compensation is de facto deactivated if the default value is not updated.

For correct operation, the user shall ensure that pressure value programmed is within the specified pressure operating range of the device. The valid range of operation is 750 hPa to 1150 hPa.

Values below 750 hPa will be treated as 750 hPa (register automatically updated). Similarly, values above 1150 hPa will be treated at 1150 hPa (register automatically updated). If a value outside this range is written, bit **SENS_STS.ICCER** is set.

Register name: PRES_REF_H Address: 0x0B

Reset value: 0x03

Field	Bits	Туре	Description
VAL	7:0	rwh	MSB of the pressure compensation value
			The concatenation of this value with bitfield PRESS_REF_L.VAL gives the pressure compensation value.

Register name: PRES_REF_L Address: 0x0C

Field	Bits	Туре	Description
VAL	7:0	rwh	LSB of the pressure compensation value
			The concatenation of this value with bitfield PRESS_REF_H.VAL gives the pressure compensation value.

Description of different registers

Automatic baseline offset compensation reference 3.10

Registers CALIB_REF_H and CALIB_REF_L define the reference value used for the ABOC and the force calibration. The concatenation of CALIB_REF_H (MSB) and CALIB_REF_L (LSB) define the reference value. The concatenated offset value is coded as a two's complement signed short integer (1 bit = 1 ppm).

Values must be comprised between 350 ppm and 900 ppm. Values below 350 ppm will be treated as 350 ppm (register automatically updated). Similarly, values above 900 ppm will be treated at 900 ppm (register automatically updated). If a value outside this range is written, bit **SENS_STS.ICCER** is set.

Register name: CALIB_REF_H Address: 0x0D

Reset value: 0x01

Field	Bits	Туре	Description
VAL	7:0	rwh	MSB of the ABOC
			The concatenation of this value with bitfield CALIB_REF_L.VAL gives the currently used reference value.

Register name: CALIB_REF_L Address: 0x0E

Field	Bits	Туре	Description
VAL	7:0	rwh	LSB of the ABOC
			The concatenation of this value with bitfield CALIB_REF_H.VAL gives the currently used reference value.

Description of different registers

3.11 Scratch pad register (SCRATCH_PAD)

This register provides a readable and writable address space for data integrity test during runtime. This register is not associated with a specific hardware functionality.

Register name: SCRATCH_PADAddress: 0x0F

Field	Bits	Туре	Description
VAL	7:0	rw	Read/Write value
			This bit field is "don't care" for the device.

Description of different registers

Soft reset register (SENS_RST) 3.12

This register is used to trigger a soft reset.

In case an invalid command is received, bit **SENS_STS.ICCER** is set.

Register name: SENS_RST Address: 0x10

Field	Bits	Туре	Description
SRTRG	7:0	w	Soft reset trigger
			Writing A3 _H to this field triggers a soft reset event.
			Writing BC _H to this field resets the ABOC context.
			Writing CF_H to this field saves the force calibration offset immediately in the internal non-volatile memory.
			Writing DF _H to this field disables the Stepwise Reactive IIR Filter.
			Writing FC _H to this field resets the forced calibration correction factor.
			Writing FE_H to this field enables the Stepwise Reactive IIR Filter (by default enabled).
			Other values are reserved. Writing a non-valid value to this field generates a communication error (bit SENS_STS.ICCER set).
			This bit is read back as 00 _H .

Programming guide for XENSIV[™] PAS CO2

Revision history

Revision history

Document version	Date of release	Description of changes
V 1.0	04.11.2020	Creation
V 2.0	01.07.2021	Filter implemented, added filter settings
V 2.1	01.07.2022	Updated product ID and notes

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-07-01
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2022 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference AN_2011_PL38_2011_133156

IMPORTANT NOTICE

The information contained in this user manual is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this user manual must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this user manual.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.