Trabalho Prático

O objetivo do trabalho será:

- Compreender a definição de derivada como limite da razão de variação média.
- Interpretar geometricamente a derivada como inclinação da reta tangente.
- Aplicar o conceito de derivada a funções elementares e visualizar esse conceito com o apoio de gráficos.

Problema 1: Achar a equação da Reta que Passa por Dois Pontos

- Dados os pontos A = (1, 4) e B = (3, 6).
- Usamos a fórmula da equação da reta: $y y_0 = m(x x_0)$.
- Coeficiente angular: $m = \frac{6-4}{3-1} = 1$.
- Equação: $y 4 = 1(x 1) \Rightarrow y = x + 3$.

Problema 2: Achar a equação da Reta Tangente ao gráfico de $f(x)=x^2$ no ponto A=(2,4)

- 1. Motivação: Como determinar a equação da reta tangente se conhecemos apenas um ponto? Pense, por exemplo, na velocidade exata que o velocímetro de um carro indica em determinado instante.
- 2. Estratégia: Usar o conceito de limite com retas secantes se aproximando da tangente.
- 3. Vamos escolher pontos cuja abscissa seja perto de x=2:

Começamos com o ponto
$$B = (4, f(4)) = (4, 16)$$
 equação da reta: $y = 6x - 8$

Vamos agora com o ponto C = (3, 9) equação da reta: y = 5x - 6

Tabela dos Coeficientes Angulares da reta secante - m_s

x	f(x)	m_s
2,5	6,25	4,5
2,1	4,41	4,1
2,01	4,0401	4,01

Observa-se que o coeficiente angular das retas secantes se aproximam do coeficiente angular 4, que será o coeficiente angular da reta tangente.

Conclusão: Definição de Derivada

• O coeficiente angular da reta tangente é o limite das secantes:

$$m = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{(2+h)^2 - 4}{h}$$

• Calculando:

$$\frac{4+4h+h^2-4}{h} = \frac{4h+h^2}{h} = 4+h \Rightarrow \lim_{h\to 0} (4+h) = 4$$

• Portanto, a reta tangente tem equação: $y-4=4(x-2) \Rightarrow y=4x-4$.

Atividade com Python

- 1. Desenhar o gráfico de $f(x) = x^2$ e marcar o ponto A = (2, f(2)).
- 2. Criar uma sequência de valores de x que se aproximem de 2 pela direita. (Como na tabela abaixo)
- 3. Calcular os valores de f(x) na tabela.
- 4. Calcular o valor do coeficiente angular da reta secante com o ponto A=(2,4) e para cada ponto da tabela (x,f(x)). (Siga o exemplo)

	\overline{x}	f(x)	Coef. Angular da Secante com $A = (2, 4)$
2	2,5	6,25	$m_s = \frac{6,25-4}{2,5-2} = 4,5$
2	2,4		,
2	2,3		
2	2,1		
2	,01		

- 5. Determinar a equação das retas secantes com os pontos da tabela.
- 6. Determine com base na tabela e nos gráficos, o valor do limite do coeficiente angular das secantes quando $x \to 2$.
- 7. Com o valor determinado acima, determine a equação da reta tangente.
- 8. Esboce a reta tangente, as retas secantes no mesmo sistema que a parábola $f(x)=x^2$. (Como na figura abaixo)

Gráfico com Retas Secantes e Tangente

Atividade 2

- 1. Repita esse processo para a função $f(x)=x^3$ no ponto x=1. Qual é a derivada nesse ponto?
- 2. Repita esse processo para a função $f(x) = \sqrt{x}$ no ponto x = 1. Qual é a derivada nesse ponto?