

Curso de Tecnologia em Sistemas de Computação Disciplina: Fundamentos de Algoritmos para Computação Professoras: Susana Makler e Sulamita Klein

Gabarito da EP da Aula 03

Observações:

- 1. Em algumas questões serão dadas o desenvolvimento e em outras apenas a resposta.
- 2. É importante que você tente resolver cada exercício justificando cada passo <u>antes</u> de ler o gabarito. Desta forma, você estará mais preparado para entender o raciocínio usado, será capaz de avaliar onde acertou e onde errou.
- 3. Lembre-se que muitos exercícios podem ser resolvidos usando raciocínios diferentes. Nós desenvolvemos apenas um, tente encontrar outras formas, ajuda a compreender melhor os conceitos.
- 1. Sejam A e B dois subconjuntos de um conjunto universo U, tais que $B \subseteq A$. Usando o princípio aditivo prove que n(A B) = n(A) n(B).

Resposta: Lembremos (Exercício 4 da aula 2) que $A \cup B = (A-B) \cup B$, sendo $(A-B) \cap B = \emptyset$.

Como $B \subseteq A$ temos que $A \cup B = A$. Logo, resulta $A = A \cup B = (A-B) \cup B$, implicando em $n(A) = n(A \cup B) = n((A-B) \cup B)$. Como $(A-B) \cap B = \emptyset$, usando o princípio aditivo, obtemos:

$$n(A) = \underbrace{n((A-B) \cup B)}_{Princpio \ aditivo}$$

$$= n(A-B) + n(B)$$
Portanto, $n(A-B) = n(A) - n(B)$.

2. Quantos números inteiros entre 1 e 100 inclusive são divisíveis por 3 ou por 7.

DICA: Considere

$$A = \{x \in \mathbb{Z} | 1 \le x \le 100 \text{ e } x = 3k \text{ para algum } k \in \mathbb{N} \}$$
$$B = \{x \in \mathbb{Z} | 1 \le x \le 100 \text{ e } x = 7k \text{ para algum } k \in \mathbb{N} \}$$

e use o princípio de inclusão e exclusão.

Resposta: Temos que $A = \{x \in \mathbb{N} | 1 \le x \le 100 \text{ e } x = 3k \text{ para algum } k \in \mathbb{N}\} = \{3, 6, 9, 12, 15, \dots, 93, 96, 99\} \text{ e } B = \{x \in \mathbb{N} | 1 \le x \le 100 \text{ e } x = 7k \text{ para algum } k \in \mathbb{N}\} = \{7, 14, 21, 28, \dots, 91, 98\}.$

Como queremos os números que são divisíveis por 3 ou por 7 então precisamos encontrar: $\{x \in \mathbb{N} | x \in A \text{ ou } x \in B\} = A \cup B$. Portanto, devemos calcular $n(A \cup B) = n(A) + n(B) - n(A \cap B)$.

Calculemos n(A), n(B) e $n(A \cap B)$.

Dado que os elementos de A são da forma $1 \le x = 3k \le 100, k \in \mathbb{N}$ então deve ser $\frac{1}{3} \le k \le \frac{100}{3}$ e $k \in \mathbb{N}$, logo tem-se que $1 \le k \le 33$. Isto é,

 $A = \{3.1, 3.2, \dots, 3.33\}$ donde resulta que n(A) = 33. Analogamente para B, temos que o máximo $k \in \mathbb{N}$ tal que $7k \le 100$ é k = 14, implicando que n(B) = 14. Como $A \cap B = \{x \in \mathbb{N} | x = 3 \times 7 \times k, k \in \mathbb{N}\} = \{x \in \mathbb{N} | x = 21k, k \in \mathbb{N}\}$, tem-se que $n(A \cap B) = 4$.

Logo, a quantidade de números naturais que são divisíveis por 3 ou por 7 é $n(A \cup B) = n(A) + n(B) - n(A \cap B) = 33 + 14 - 4 = 43$.

3. Use os princípios aditivo ou de inclusão e exclusão para determinar, em cada caso, a quantidade de números naturais entre 1 e 60 que verificam (i)-(v).

Sejam $A = \{x \in \mathbb{N} | 1 < x < 60 \text{ e } x = 2k \text{ para algum } k \in \mathbb{N} \} = \{2, 4, 6, \dots, 56, 58\} \text{ e } B = \{x \in \mathbb{N} | 1 < x < 60 \text{ e } x = 3k \text{ para algum } k \in \mathbb{N} \} = \{3, 6, 9, \dots, 54, 57 \}.$

(i) são divisíveis por 2 e por 3.

Resposta: Como queremos os números que são divisíveis por 2 e por 3 então temos que encontrar: $\{x \in \mathbb{N} | x \in A \text{ e } x \in B\} = A \cap B = \{x \in \mathbb{N}\} | x \text{ é divisível por 6}\} = \{6, 12, 18, \dots, 48, 54\}$. Observemos que o último elemento deste conjunto é 54 = 6.9, portanto, $n(A \cap B) = 9$.

Logo, os números inteiros entre 1 e 60 que são divisíveis por 2 e por 3 tem no total 9 números.

(ii) são divisíveis por 2 ou por 3.

Resposta: Observe que n(A) = 29 e n(B) = 19, pois o último elemento de A é 58 = 2.21 e de B é 57 = 3.19.

O conjunto de números que são divisíveis por 2 ou por 3 é $A \cup B$, portanto devemos calcular $n(A \cup B) = n(A) + n(B) - n(A \cap B) = 29 + 19 - 9 = 39$.

Portanto, os números inteiros entre 1 e 60 que são divisíveis por 2 ou por 3 tem no total 39 números.

(iii) não são divisíveis nem por 2 nem por 3.

Resposta: Sejam $A \cup B = \{x \in \mathbb{N} | 1 < x < 60, x = 2k \text{ ou } x = 3k \text{ para algum } k \in \mathbb{N}\} = \{2, 3, 4, 6, \dots, 54, 56, 57, 58\} \text{ e } C = \{x \in \mathbb{N} | 1 < x < 60\} = \{2, 3, 4, \dots, 57, 58, 59\}.$

Vimos que $n(A \cup B) = 39$. Por outro lado, observe que n(C) = 58.

Queremos encontrar todos os números que não são divisíveis nem por 2 nem por 3, logo queremos os números que estão no conjunto C, mas que não está no conjunto $A \cup B$. Como $A \cup B \subseteq C$ então, pelo exercício 1 desta lista, temos que $n(C - (A \cup B)) = n(C) - n(A \cup B)$, isto é, $n(C - (A \cup B)) = 58 - 39 = 19$.

Logo, os números inteiros entre 1 e 60 que não são divisíveis nem por 2 nem por 3, tem no total 19 números.

(iv) são ímpares divisíveis por 3 ou são divisíveis por 2.

Resposta: Seja $D = \{x \in \mathbb{N} | 1 < x < 60, x = 3k \text{ e impar para algum } k \in \mathbb{N}\} = \{3, 9, \dots, 51, 57\}$. Observe que $D = \{x \in \mathbb{N} | 1 < x < 60, x = 3(2m-1), m \in \mathbb{N}\}$. Portanto, o primeiro elemento corresponde a m = 1, o segundo a m = 2 e assim seguimos até que o último elemento corresponde a m = 10. Logo, n(D) = 10.

Como queremos os números que são divisíveis por 2 ou, por 3 que são ímpares, então temos que encontrar: $n(A \cup D)$. Como $A \cap D = \emptyset$, pelo princípio aditivo resulta $n(A \cup D) = n(A) + n(D) = 29 + 10 = 39$.

Logo, os números inteiros entre 1 e 60 que são divisíveis por 2 ou, por 3 que são ímpares, tem no total 39 números.

(v) são divisíveis por 2 ou por 3 ou por 5.

Resposta: Seja $E = \{x \in \mathbb{N} | 1 < x < 60 \text{ e } x = 5k \text{ para algum } k \in \mathbb{N}\} = \{5, 10, \dots, 50, 55\}.$

Queremos os números que são divisíveis por 2 ou por 3 ou por 5, então temos que encontrar: $n(A \cup B \cup E)$. Pelo princípio de inclusão e exclusão sabemos que $n(A \cup B \cup E) = n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cup B \cup C)$.

Lembre que n(A)=29, n(B)=19. Observe também que n(E)=11, $n(A\cap E)=5, n(B\cap E)=3$ e $n(A\cap B\cap E)=1$.

Portanto,
$$n(A \cup B \cup E) = 29 + 19 + 11 - 9 - 5 - 3 + 1 = 43$$
.

Logo, os números inteiros entre 1 e 60 que são divisíveis por 2 ou por 3 ou por 5 tem no total 43 números.

- 4. Foram consultadas 200 pessoas que estavam pesquisando preços de televisores em lojas de eletrodomésticos. As respostas foram as seguintes:
 - 40% perguntaram pela marca A;
 - 35% pela marca B;
 - 10% pelas marcas $A \in B$;
 - 35% somente perguntaram por outras marcas.

Use o princípio de adição ou o princípio da inclusão e exclusão para determinar:

(i) quantidade de pessoas que perguntaram pelos preços das televisões de marcas A ou B.

Temos que:

- 40% perguntaram pela marca A, isto é, $\frac{40}{100} \times 200 = 80$ pessoas; 35% pela marca B, isto é, $\frac{35}{100} \times 200 = 70$ pessoas; 10% pelas marcas A e B, isto é, $\frac{10}{100} \times 200 = 20$ pessoas; 25% somente perguntaram por outras marcas, isto é, $\frac{25}{100} \times 200 = 50$ pessoas.

Resposta: Como queremos o número de pessoas que perguntaram pelos preços das televisões A ou B, então temos que encontrar o número de pessoas que estão no conjunto A ou no conjunto B, isto é, $n(A \cup B) = n(A) + n(B) - n(A \cap B) = 80 + 70 - 20 = 130$ pessoas.

(ii) número de pessoas que perguntaram pela marca A e não pela marca B (lembre-se que $(A - B) \cup B = A \cup B$ e $(A - B) \cap B = \emptyset$).

Resposta:

O conjunto das pessoas que perguntaram pela marca A e não pela marca $B \in A - B$, então devemos calcular n(A - B). Vimos que

$$n(A \cup B) = n((A - B) \cup B)) = n(A - B) + n(B)$$

Daí temos que:

$$n(A - B) = n(A \cup B) - n(B) = 130 - 70 = 60.$$