Ещё немного интерполяции

Рассмотрим на координатной плоскости множество точек вида (i,j), $0 \le i,j,i+j \le n$, и n(n+1)/2 вещественных чисел $w_{i,j}$. Нас будут интересовать многочлен $f \in \mathbb{R}[x,y]$ степени не выше n, удовлетворяющего равенствам $f(i,j) = w_{i,j}$ при всех (i,j), $0 \le i,j,i+j \le n$.

- 1. Докажите, что существует не более одного такого многочлена.
- 2. Предположим, что $w_{i,j}=0$ при всех (i,j)< n. Докажите, что искомый многочлен имеет вид $\sum_{i,j\geqslant 0, i+j=n} w_{i,j} {x\choose i} {y\choose j}$.
- 3. Докажите, приведя явную формулу, что искомый многочлен всегда существует.

Пусть теперь заданы два произвольных множества $\{x_0, x_1, \ldots, x_n\}$, $\{y_0, y_1, \ldots, y_n\}$ и набор из n(n+1)/2 вещественных чисел $w_{i,j}$, где $0 \leqslant i,j,i+j \leqslant n$. Нас интересует многочлен $f \in \mathbb{R}[x,y]$ степени не выше n, удовлетворяющий равенствам $f(x_i,y_j) = w_{i,j}$ при всех (i,j), $0 \leqslant i,j,i+j \leqslant n$. Очевидно, что доказательство его единственности аналогично доказательству задачи 1.

- 4. Предположим, что $w_{i,j} = 0$ при всех (i,j) < n. Докажите, приведя явную формулу, что искомый многочлен существует.
- 5. Докажите, что искомый многочлен всегда существует.

Ясно, что аналогичная интерполяция возможна для многочленов любого количества переменных.

Немного делимостей

- 6. Пусть $P(x, x^3) = 0$ для всех вещественных x. Обязательно ли $P(x, y) : (x^3 y)$?
- 7. Многочлен $P \in \mathbb{R}[x,y]$ зануляется во всех точках единичной окружности. Обязательно ли P(x,y) : (x^2+y^2-1) ?
- 8. Многочлен $P \in \mathbb{R}[x,y]$ зануляется во всех точках гиперболы $y = \frac{1}{x}$. Обязательно ли P(x,y):(xy-1)?
- 9. Два многочлена $P,Q \in \mathbb{R}[x,y]$ имеют бесконечно много общих корней. Следует ли из этого, что у них есть общий непостоянных множитель?
- 10. Существует ли многочлен $P \in \mathbb{R}[x,y]$ такой, что $P(x,y)^2 + 1$ делится на $x^2 + y^2 + 1$?

Однородные многочлены

- 11. Пусть однородный многочлен $P \in \mathbb{R}[x,y]$ зануляется хотя бы в одной точке прямой ax + by = 0. Докажите, что P(x,y) : (ax + by).
- 12. Известно, что многочлен $P \in \mathbb{R}[x,y]$ делит однородный многочлен $Q \in \mathbb{R}[x,y]$. Докажите, что P тоже однородный.
- 13. Найдите все вещественные числа a, для которых найдётся такой ненулевой многочлен $P \in \mathbb{R}[x,y]$, что многочлен $P(x^2+y^2,axy)$ делит многочлен $P(x,y)^2$.
- 14. Многочлены $P,Q \in \mathbb{R}[x]$ таковы, что P(x) P(y) делится на Q(x) Q(y). Докажите, что существует многочлен S(x) такой, что P(x) = S(Q(x)).

Задачи с многочленами

- 15. Существует ли многочлен $P \in \mathbb{R}[x,y]$ такой, что $P(\mathbb{R}^2) = \mathbb{R}_{>0}$?
- 16. Существует ли многочлен $P \in \mathbb{R}[x,y]$ такой, что множества $\{(x,y) \mid P(x,y) > 0\}$ и $\{(x,y) \mid x,y > 0\}$ совпадают?
- 17. Про многочлен $P \in \mathbb{R}[x,y]$ известно, что для любого неотрицательного целого числа n каждый из многочленов P(n,y) и P(x,n) имеет степень не выше n. Докажите, что

23.11.2022

степень многочлена P(x,x) чётна.

- 18. Докажите, что для любого чётного числа $n\geqslant 2$ найдётся многочлен степени n, удовлетворяющий условию предыдущей задачи.
- 19. Существует ли функция $g: \mathbb{Q}^2 \to \mathbb{Q}$ такая, что для любого рационального числа t функции g(t,y) и g(x,t) совпадают с некоторыми многочленами одной переменной на всём \mathbb{Q} , но сама g не является многочленом?
- 20. Существует ли функция $f: \mathbb{R}^2 \to \mathbb{R}$ такая, что для любого вещественного числа t функции f(t,y) и f(x,t) совпадают с некоторыми многочленами одной переменной на всём \mathbb{R} , но сама f не является многочленом?
- 21. Дано натуральное число d. Найдите все функции $f: \mathbb{R}^2 \to \mathbb{R}$ такие, что для любых вещественных чисел A, B, C, D функция f(At + B, Ct + D) на всём \mathbb{R} совпадает с некоторым многочленом степени не выше d.

Несколько переменных и целые точки

- 22. Даны n пар $(a_1,b_1), (a_2,b_2), \ldots, (a_n,b_n)$ взаимно простых целых чисел. Докажите, что существует однородный многочлен $P \in \mathbb{Z}[x,y]$ такой, что при всех $i=\overline{1,n}$ верны равенства $P(a_i,b_i)=1$.
- 23. Рассмотрим все многочлены $P \in \mathbb{Z}[x,y,z]$, для которых условия P(a,b,c) = 0 и a = b = c равносильны. Найдите наибольшее целое число r такое, что для любого такого многочлена и целых чисел m,n число P(n,n+m,n+2m) кратно m^r .

- 1. Предположим, что есть два такие многочлена и обозначим через g(x,y) их разность. Многочлен g(x,0) имеет n+1 корень, т. е. он тождественно равен нулю. Значит, g(x,y)кратно y, т. е. $g(x,y) = yg_1(x,y)$. Аналогично, рассматриваем $g_1(x,1)$ и получаем, что g(x,y) кратно y-1 и т. д. В итоге получим, что g(x,y) кратен $y(y-1)\dots(y-n)$, что очевидно неверно.
- 2. Легко проверить непосредственной подстановкой.
- 3. Подходит многочлен $\sum_{i,j\geqslant 0,i+j=n} w_{i,j} {x\choose i} {y\choose j} {n-x-y\choose n-i-j}$.

 4. Подходит многочлен $\sum_{i,j\geqslant 0,i+j=n} w_{i,j} \cdot \frac{(x-x_0)(x-x_1)...(x-x_{i-1})}{(x_i-x_0)(x_i-x_1)...(x_i-x_{i-1})} \cdot \frac{(y-y_0)(y-y_1)...(y-y_{j-1})}{(y_j-y_0)(y_j-y_1)...(y_j-y_{j-1})}$.
- 5. Воспользуйтесь результатом предыдущего пункта и предположением индукции.
- 6. 7.
- 8.
- 9.
- 10.
- 11. 12.
- 13. Предположим, что при некотором $a \in \mathbb{R}$ многочлен $P \in \mathbb{R}[x,y]$ удовлетворяет условию. Пусть $P(x,y) = \sum_{i=0}^d Q_i(x,y)$, где каждый $Q_i, i = \overline{0,d},$ — однородный многочлен степени i, а $Q_d(x,y)$ ещё и ненулевой многочлен. Однородная часть наибольшей степени многочлена $P(x^2+y^2,axy)$ равна $Q_d(x^2+y^2,axy)$, а у многочлена $P(x,y)^2$ она равна $Q_d(x,y)^2$. Так как их степени совпадают, то $P(x,y)^2 = kP(x^2+y^2,axy)$. Заменив многочлен P(x,y) на $k^{-1}P(x,y)$, получим многочлен, который удовлетворяет равенству $P(x,y)^2 = P(x^2 + y^2, axy)$. Рассмотрим ненулевой однородный многочлен $Q_i(x,y)$ наибольшей степени i < d, если такой существует. Тогда у многочлена $P(x,y)^2$ есть однородная часть $2Q_d(x,y)Q_i(x,y)$ степени d+i, а у многочлена $P(x^2 + y^2, axy)$ нет однородной части со степенью между 2i и 2d. Полученное противоречие говорит о том, что $P(x,y) = Q_d(x,y)$. Обозначим $P(x,y) = y^d Q(\frac{x}{y})$, где $Q \in \mathbb{R}[t]$. При такой замене получим тождество $a^d(\frac{x}{y})^dQ(\frac{x^2+y^2}{axy}) = Q^2(\frac{x}{y})$. Пусть t_1, t_2, \ldots, t_s — все различные комплексные корни многочлена Q, а k_1, k_2, \ldots, k_s их соответствующие кратности. Тогда тождество для многочлена Q примет вид $\prod_{i=1}^s (t-t_i)^{2k_i} = a^d \prod_{i=1}^s (\frac{t^2}{a} - t_i t + \frac{1}{a})^{k_i} = \prod_{i=1}^s (t^2 - a t_i t + 1)^{k_i}$. Очевидно, что каждое t_i может занулить только один множитель $t^2 - a t_i t + 1$, поэтому, сравнивая корни обеих частей, заключаем, что каждый такой множитель является полным квадратом. Значит для каждого корня t_j верно равенство $a^2t_j^2=4$, но корни многочленов $t^2 \mp 2t + 1$ равны ± 1 , следовательно $a^2 = 4$ и $a = \pm 2$. При a = 2 корень $t_1 = 1$ зануляет "свою" скобку t^2-2t+1 и корень $t_2=-1$ зануляет "свою" скобку t^2+2t+1 , следовательно, мы получим верное тождество для любого выбора степеней k_1 и k_2 с суммой d. Соответственно, под условие задачи будет подходить любой многочлен $P(x,y) = b(x-y)^{k_1}(x+y)^{k_2}, b \in \mathbb{R}$. В случае a = -2 корень $t_1 = 1$ зануляет "чужую" скобку $t^2-at_2t+1=t^2-2t+1$ и корень $t_2=-1$ зануляет "чужую" скобку $t^2 - at_1t + 1 = t^2 + 2t + 1$, следовательно, получится верное тождество только при $k_1 = k_2$. Соответственно, под условие задачи будет подходить любой многочлен $P(x,y) = b(x-y)^k (x+y)^k = b(x^2 - y^2)^k, b \in \mathbb{R}.$
- 14. Предположим, что для некоторых многочленов $P,Q \in \mathbb{R}[x]$ выполняется условие

P(x)-P(y)=R(x,y)(Q(x)-Q(y)). Обозначим $\deg P=p, \deg Q=q$ и запишем $R(x,y)=\sum_{i=0}^{p-q}R_i(x,y),$ где каждый $R_i, \ i=\overline{0,p-q},$ — однородный многочлен степени i, а $Q_{p-q}(x,y)$ ещё и ненулевой многочлен. Тогда верно равенство $x^p-y^p=Q_{p-q}(x,y)(x^q-y^q),$ откуда следует, что $x^q-y^q\mid x^p-y^p.$ Это возможно, если и только если $q\mid p,$ поскольку $x^n-y^n=\prod_{i=0}^n(x-\xi^iy),$ где ξ — корень n-й степени из единицы с наименьшим ненулевым аргументом. Пусть a и b — старшие коэффициенты многочленов P и Q соответственно. Тогда пара многочленов $(P-ab^{-\frac{p}{q}}Q^{\frac{p}{q}},Q)$ также удовлетворяет условиям задачи, причём степень первого многочлена уменьшилась. Продолжая этот процесс далее, в некоторый момент придём к нулевому многочлену. Требуемое представление P(x) в виде S(Q(x)) легко восстанавливается по действиям, проведённым с первым многочленом.

- 15. Например, $P(x,y) = x^2 + (xy-1)^2$ всегда положителен и $P(x,\frac{1}{x}) = x^2$ сюрьективна на $\mathbb{R} > 0$.
- 16. **Нет.** Что-то простое.
- 17. Не ограничивая общности, пусть $\deg P_x(x,y)=a\leqslant b=\deg P_y(x,y)$. Тогда можно записать равенство $P(x,y)=P_b(x)y^b+P_{b-1}y^{b-1}+\ldots+P_0(x)$, где $P_i\in\mathbb{R}[x],\ i=\overline{0,b}$. Подставляя вместо x целые числа от 0 до b-1, получим, что у ненулевого многочлена $P_b(x)$ степени не выше a есть по крайней мере $b\geqslant a$ корней. Это возможно только при $\deg P_b=b=a$, т. е. в многочлене P присутствует одночлен x^ay^b максимальной степени 2b и других одночленов такой степени нету. Значит, $\deg P(x,x)=2b$ чётное число.
- 18. **Navid** утверждает, что все многочлены, удовлетворяющие условию задачи, задаются формулой $a_0 + xy(a_1 + (x-1)(y-1)(a_2 + \ldots + (a_{n-1} + (x-n+1)(y-n+1)a_n)\ldots)))$.
- 19. Существует. Занумеруем все рациональные числа в произвольном порядке: r_1, r_2, \ldots и рассмотрим функцию $Q(x,y) = \sum_{i=0}^{\infty} \prod_{j=0}^{i} (x-r_j)(y-r_j)$. Для любого рационального числа r_k функции $Q(r_k,y)$ и $Q(x,r_k)$ представляют собой многочлены степени k-1. При этом, очевидно, что Q(x,y) не является многочленом, поскольку степень k-1 многочлена одной переменной, с которым она может совпадать, не ограничена.
- 20. **Нет.** Предположим, что функция f удовлетворяет условиям задачи. Так как множество \mathbb{R} несчётно, то найдутся неотрицательное целое число n и несчётное подмножество $B \subset \mathbb{R}$, такие что $\deg f(x,y) = n$ при всех $y \in B$. Значит, для каждого фиксированного $y \in B$ можно записать равенство $f(x,y) = \sum_{i=0}^n a_n(y) x^n$ для всех $x \in \mathbb{R}$. Выберем n+1 точку x_0, x_1, \ldots, x_n и решим систему уравнений $f(x_i, y) = \sum_{i=0}^n a_n(y) x_i^n$ относительно $a_n(y)$, получим (т. к. определитель Вандермонда ненулевой) равенства $a_k(y) = \sum_{j=0}^n c_{kj} f(x_j, y)$ для некоторых вещественных чисел $c_{kj}, 0 \leqslant k, j \leqslant n$. Рассмотрим функцию $g(x,y) = \sum_{k=0}^n \sum_{j=0}^n c_{kj} f(x_j,y) x^k$. Каждый множитель $f(x_j,y)$ многочлен степени не выше n, следовательно, вся функция многочлен степени не выше 2n. Кроме того, при каждом фиксированном x функции f(x,y) и g(x,y) являются многочленами переменной y и совпадают на всём B, т. е. они совпадают везде. Следовательно, f(x,y) = g(x,y) на всём \mathbb{R}^2 .

21.

22.

23.