Цель работы - сопоставление опытных характеристик асинхронного двигателя с характеристиками, рассчитанными по круговой диаграмме.

1. ОСНОВНОЕ ОБОРУДОВАНИЕ

Круговая диаграмма позволяет построить рабочие и механические характеристики асинхронного двигателя на основе опытов холостого хода и короткого замыкания.

Объектом исследования в лабораторной установке, электрическая схема которой показана на рис. 1, является трехфазный асинхронный двигатель с фазным ротором. В цепь фазного ротора с целью регулирования скорости вращения, тока, момента и коэффициента мощности можно вводить различные элементы — как пассивные, так и активные. В этом заключаются его существенные преимущества перед короткозамкнутым ротором.

Рис. 1. Полная электрическая схема лабораторной установки В качестве нагрузки на валу исследуемого двигателя установлен электромагнитный тормоз ЭТ. Источником регулируемого трехфазного

напряжения служит трансформатор **PH**. Переключатель **П** позволяет измерять трехфазную мощность с помощью однофазного ваттметра, как модуль алгебраической суммы показаний **P'** и **P"** в положениях 1 и 2.

M_2	[дел] [Н·м]	0,15	0,33	0,7	1,3	1,7	2,5
n	[об/мин]	96	95	93	89	86	76

M_2	[дел] [Н·м]	0,35	0,5	0,6	1	1,2	1,4
n	[об/мин]	95	92	86	80	75	70

Таблица 3 Результаты измерений опыта холостого хода

U_{ab}	[B]	70	90	110	130	170	190
U_{bc}	[B]	70	90	110	130	170	190
U_{ca}	[B]	70	90	110	130	170	190
I_b	[A]	0,5	1	1,5	1,9	2,2	2,5
Ia	[A]	0,5	1	1,5	1,9	2,2	2,5

P ₀ '	дел. [Вт]	9,5	12,5	16,5	22	29	37
$I_{\rm c}$	[A]	0,5	1	1,	1,9	2,2	2,5
P ₀ "	дел. [Вт]	9,5	12,5	16,5	22	29	37
$U_{0\phi}$	[B]	40,4	52	63,5	75	98,1	109,6
$I_{0 \Phi}$	[A]	0,5	1	1,5	1,9	2,2	2,5
Р _{0ф}	[Вт]	6,3	8,3	11	14,7	19,3	24,7
$U_{0 \phi} I_{0 \phi}$	[BA]	20,2	52	95,2	142,5	215,8	274
$\cos\phi_{0\phi}$		0,3155	0,16	0,115	0,103	0,089	0,09

$$\begin{split} P_{o\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[9, 5 + 9, 5 \right] = 6, 3 \text{ BT} \\ P_{o\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[12, 5 + 12, 5 \right] = 8, 3 \text{ BT} \\ P_{o\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[16, 5 + 16, 5 \right] = 11 \text{ BT} \\ P_{o\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[22 + 22 \right] = 14, 7 \text{BT} \\ P_{o\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[29 + 29 \right] = 19, 3 \text{ BT} \\ P_{o\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[37 + 37 \right] = 24, 7 \text{ BT} \\ I_{o\varphi} &= \frac{1}{3} \cdot \left[I_A + I_B + I_C \right] = \frac{1}{3} \cdot \left[0, 5 + 0, 5 + 0, 5 \right] = 0, 5 \text{ A} \\ I_{o\varphi} &= \frac{1}{3} \cdot \left[I_A + I_B + I_C \right] = \frac{1}{3} \cdot \left[1, 5 + 1, 5 + 1, 5 \right] = 1, 5 \text{ A} \\ I_{o\varphi} &= \frac{1}{3} \cdot \left[I_A + I_B + I_C \right] = \frac{1}{3} \cdot \left[1, 9 + 1, 9 + 1, 9 \right] = 1, 9 \text{ A} \end{split}$$

$$\begin{split} &I_{o\varphi} = \frac{1}{3} \cdot \left[I_A + I_B + I_C \right] = \frac{1}{3} \cdot \left[1 + 1 + 1 \right] = 1 \; A \\ &I_{o\varphi} = \frac{1}{3} \cdot \left[I_A + I_B + I_C \right] = \frac{1}{3} \cdot \left[2, 2 + 2, 2 + 2, 2 \right] = 2, 2 \; A \\ &I_{o\varphi} = \frac{1}{3} \cdot \left[I_A + I_B + I_C \right] = \frac{1}{3} \cdot \left[2, 5 + 2, 5 + 2, 5 \right] = 2, 5 \; A \\ &U_{o\varphi} \cdot I_{o\varphi} = \frac{1}{3 \cdot \sqrt{3}} \cdot (U_{AB} + U_{BC} + U_{AC}) \cdot I_{o\varphi} = \frac{1}{3 \cdot \sqrt{3}} \cdot (70 + 70 + 70) \cdot 0, 5 = 20, 2 \; BA \\ &U_{o\varphi} \cdot I_{o\varphi} = \frac{1}{3 \cdot \sqrt{3}} \cdot (U_{AB} + U_{BC} + U_{AC}) \cdot I_{o\varphi} = \frac{1}{3 \cdot \sqrt{3}} \cdot (90 + 90 + 90) \cdot 1 = 52 \; BA \\ &U_{o\varphi} \cdot I_{o\varphi} = \frac{1}{3 \cdot \sqrt{3}} \cdot (U_{AB} + U_{BC} + U_{AC}) \cdot I_{o\varphi} = \frac{1}{3 \cdot \sqrt{3}} \cdot (110 + 110 + 110) \cdot 1, 5 = 95, 2 \; BA \\ &U_{o\varphi} \cdot I_{o\varphi} = \frac{1}{3 \cdot \sqrt{3}} \cdot (U_{AB} + U_{BC} + U_{AC}) \cdot I_{o\varphi} = \frac{1}{3 \cdot \sqrt{3}} \cdot (130 + 130 + 130) \cdot 1, 9 = 142, 5 \; BA \\ &U_{o\varphi} \cdot I_{o\varphi} = \frac{1}{3 \cdot \sqrt{3}} \cdot (U_{AB} + U_{BC} + U_{AC}) \cdot I_{o\varphi} = \frac{1}{3 \cdot \sqrt{3}} \cdot (170 + 170 + 170) \cdot 2, 2 = 215, 8 \; BA \\ &U_{o\varphi} \cdot I_{o\varphi} = \frac{1}{3 \cdot \sqrt{3}} \cdot (U_{AB} + U_{BC} + U_{AC}) \cdot I_{o\varphi} = \frac{1}{3 \cdot \sqrt{3}} \cdot (170 + 170 + 170) \cdot 2, 2 = 215, 8 \; BA \\ &U_{o\varphi} \cdot I_{o\varphi} = \frac{1}{3 \cdot \sqrt{3}} \cdot (U_{AB} + U_{BC} + U_{AC}) \cdot I_{o\varphi} = \frac{1}{3 \cdot \sqrt{3}} \cdot (190 + 190 + 190) \cdot 2, 5 = 274 \; BA \end{split}$$

$$\cos \varphi_{0\varphi} = \frac{P_{0\varphi}}{U_{0\varphi} \cdot I_{0\varphi}} = \frac{6,3}{20} = 0,315$$

$$\cos \varphi_{0\varphi} = \frac{P_{0\varphi}}{U_{0\varphi} \cdot I_{0\varphi}} = \frac{8,3}{52} = 0,16$$

$$\cos \varphi_{0\varphi} = \frac{P_{0\varphi}}{U_{0\varphi} \cdot I_{0\varphi}} = \frac{11}{95,2} = 0,115$$

$$\cos \varphi_{0\varphi} = \frac{P_{0\varphi}}{U_{0\varphi} \cdot I_{0\varphi}} = \frac{14,7}{142,5} = 0,103$$

$$\cos \varphi_{0\varphi} = \frac{P_{0\varphi}}{U_{0\varphi} \cdot I_{0\varphi}} = \frac{19,3}{215,8} = 0,089$$

$$\cos \varphi_{0\varphi} = \frac{P_{0\varphi}}{U_{0\varphi} \cdot I_{0\varphi}} = \frac{24,7}{274} = 0,09$$

Таблица 4 **Результаты измерений опыта короткого замыкания**

U_{ab}	[B]	25	45	58	80	94	110
U _{bc}	[B]	25	45	58	80	94	110
Uca	[B]	25	45	58	80	94	110
I_b	[A]	3,25	4	5,5	6,75	6,75	8,9
I_a	[A]	3,25	4	5,5	6,75	6,75	8,9
P _K '	дел. [Вт]	10,25	15,75	30	38,5	70,5	95
I_{c}	[A]	3,25	4	5,5	6,75	6,75	8,9
P _κ ''	дел. [Вт]	10,25	15,75	30	38,5	70,5	95
$U_{\kappa \varphi}$	[B]	14,42	25,95	33,45	46,15	54,22	92,47
$I_{\kappa \varphi}$	[A]	3,25	4	5,5	6,75	7,5	8,9
$P_{\kappa \varphi}$	[B _T]	6,8	10,5	20	25,6	47	63,3
$U_{\kappa \varphi} \; I_{\kappa \varphi}$	[BA]	46,875	103,8	184	311,5	366	823
$\cos\phi_{\kappa\varphi}$		0,145	0,101	0,108	0,082	0,128	0,076

$$\begin{split} I_{k\varphi} &= \frac{1}{3} \cdot \left[I_A + I_B + I_C \right] = \frac{1}{3} \cdot \left[3,25 + 3,25 + 3,25 \right] = 3,25 \text{ A} \\ I_{k\varphi} &= \frac{1}{3} \cdot \left[I_A + I_B + I_C \right] = \frac{1}{3} \cdot \left[4 + 4 + 4 \right] = 4 \text{ A} \\ I_{k\varphi} &= \frac{1}{3} \cdot \left[I_A + I_B + I_C \right] = \frac{1}{3} \cdot \left[5,5 + 5,5 + 5,5 \right] = 5,5 \text{ A} \\ I_{k\varphi} &= \frac{1}{3} \cdot \left[I_A + I_B + I_C \right] = \frac{1}{3} \cdot \left[6,75 + 6,75 + 6,75 \right] = 6,75 \text{ A} \\ I_{k\varphi} &= \frac{1}{3} \cdot \left[I_A + I_B + I_C \right] = \frac{1}{3} \cdot \left[7,5 + 7,5 + 7,5 \right] = 7,5 \text{ A} \\ I_{k\varphi} &= \frac{1}{3} \cdot \left[I_A + I_B + I_C \right] = \frac{1}{3} \cdot \left[8,9 + 8,9 + 8,9 \right] = 8,9 \text{ A} \\ P_{k\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[10,25 + 10,25 \right] = 6,8 \text{ BT} \\ P_{k\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[13,75 + 15,75 \right] = 10,5 \text{ BT} \\ P_{k\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[30 + 30 \right] = 20 \text{ BT} \\ P_{k\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[30 + 30 \right] = 20 \text{ BT} \\ P_{k\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[95 + 95 \right] = 63,3 \text{ BT} \\ U_{k\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[95 + 95 \right] = 63,3 \text{ BT} \\ U_{k\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[95 + 95 \right] = 63,3 \text{ BT} \\ U_{k\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[95 + 95 \right] = 63,3 \text{ BT} \\ U_{k\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[95 + 95 \right] = 63,3 \text{ BT} \\ U_{k\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[95 + 95 \right] = 63,3 \text{ BT} \\ U_{k\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[95 + 95 \right] = 63,3 \text{ BT} \\ U_{k\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[95 + 95 \right] = 63,3 \text{ BT} \\ U_{k\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[95 + 95 \right] = 63,3 \text{ BT} \\ U_{k\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[95 + 95 \right] = 63,3 \text{ BT} \\ U_{k\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[95 + 95 \right] = 63,3 \text{ BT} \\ U_{k\varphi} &= \frac{1}{3} \cdot \left[P' + P'' \right] = \frac{1}{3} \cdot \left[95 + 95 \right] = 63,3 \text{ BT} \\ U_{k\varphi} &= \frac{1}{3} \cdot \left[95 + 95 \right] = \frac{1}{3} \cdot \left[95 + 9$$

$$\begin{split} \cos \varphi_{\kappa \varphi} &= \frac{P_{\kappa \varphi}}{U_{\kappa \varphi} \cdot I_{\kappa \varphi}} = \frac{6.8}{46.875} = 0.145 \\ \cos \varphi_{\kappa \varphi} &= \frac{P_{\kappa \varphi}}{U_{\kappa \varphi} \cdot I_{\kappa \varphi}} = \frac{10.5}{103.8} = 0.101 \\ \cos \varphi_{\kappa \varphi} &= \frac{P_{\kappa \varphi}}{U_{\kappa \varphi} \cdot I_{\kappa \varphi}} = \frac{20}{184} = 0.108 \\ \cos \varphi_{\kappa \varphi} &= \frac{P_{\kappa \varphi}}{U_{\kappa \varphi} \cdot I_{\kappa \varphi}} = \frac{25.6}{311.5} = 0.082 \\ \cos \varphi_{\kappa \varphi} &= \frac{P_{\kappa \varphi}}{U_{\kappa \varphi} \cdot I_{\kappa \varphi}} = \frac{47}{366} = 0.128 \\ \cos \varphi_{\kappa \varphi} &= \frac{P_{\kappa \varphi}}{U_{\kappa \varphi} \cdot I_{\kappa \varphi}} = \frac{63.3}{823} = 0.076 \end{split}$$

Таблица 5 Результаты измерений рабочих характеристик двигателя

I_b	[A]	2,4	2,5	2,7	2,8	3,1	3,5
Ia	[A]	2,4	2,5	2,7	2,8	3,1	3,5
P'	дел. [Вт]	27	68	-7	-16	-48	-40
I_{c}	[A]	2,4	2,5	2,7	2,8	3,1	3,5
P''	дел. [Вт]	64	20	80	9	105	120
n	[об/мин]	95	92	86	80	75	70
M_2	[дел] [Н·м]	0,35	0,5	0,6	1	1,2	1,4
P ₁	[Вт]	91	88	73	64	27	80
$I_{1\phi}$	[A]	2,4	2,5	2,7	2,8	3,1	3,5
P ₂	[Вт]	3,5	4,75	5,4	8,4	9,42	10,3
$3U_{1\varphi}I_{1\varphi}$	[BA]	720	750	810	840	930	1050
η	-	0,04	0,07	0,074	0,13	0,35	0,13

$\cos \phi_1$	-	0,126	0,0117	0,09	0,76	0,03	0,076

$$\begin{split} &I_{I_{\varphi}} = \frac{1}{3} \cdot \left[I_{A} + I_{B} + I_{C} \right] = \frac{1}{3} \cdot \left[2, 4 + 2, 4 + 2, 4 \right] = 2, 4 \text{ A} \\ &I_{I_{\varphi}} = \frac{1}{3} \cdot \left[I_{A} + I_{B} + I_{C} \right] = \frac{1}{3} \cdot \left[2, 5 + 2, 5 + 2, 5 \right] = 2, 5 \text{ A} \\ &I_{I_{\varphi}} = \frac{1}{3} \cdot \left[I_{A} + I_{B} + I_{C} \right] = \frac{1}{3} \cdot \left[2, 7 + 2, 7 + 2, 7 \right] = 2, 7 \text{ A} \\ &I_{I_{\varphi}} = \frac{1}{3} \cdot \left[I_{A} + I_{B} + I_{C} \right] = \frac{1}{3} \cdot \left[2, 8 + 2, 8 + 2, 8 \right] = 2, 8 \text{ A} \\ &I_{I_{\varphi}} = \frac{1}{3} \cdot \left[I_{A} + I_{B} + I_{C} \right] = \frac{1}{3} \cdot \left[3, 1 + 3, 1 + 3, 1 \right] = 3, 1 \text{ A} \\ &I_{I_{\varphi}} = \frac{1}{3} \cdot \left[I_{A} + I_{B} + I_{C} \right] = \frac{1}{3} \cdot \left[3, 5 + 3, 5 + 3, 5 \right] = 3, 5 \text{ A} \end{split}$$

$$\begin{split} &P_2 = M_2 \cdot \frac{2\pi n}{60} = 0,35 \cdot \frac{2 \cdot 3,14 \cdot 95}{60} = 3,5 \text{ BT} \\ &P_2 = M_2 \cdot \frac{2\pi n}{60} = 0,5 \cdot \frac{2 \cdot 3,14 \cdot 92}{60} = 4,75 \text{ BT} \\ &P_2 = M_2 \cdot \frac{2\pi n}{60} = 0,6 \cdot \frac{2 \cdot 3,14 \cdot 86}{60} = 5,4 \text{ BT} \\ &P_2 = M_2 \cdot \frac{2\pi n}{60} = 1 \cdot \frac{2 \cdot 3,14 \cdot 80}{60} = 8,4 \text{ BT} \\ &P_2 = M_2 \cdot \frac{2\pi n}{60} = 1,2 \cdot \frac{2 \cdot 3,14 \cdot 70}{60} = 9,42 \text{ BT} \\ &P_2 = M_2 \cdot \frac{2\pi n}{60} = 1,4 \cdot \frac{2 \cdot 3,14 \cdot 70}{60} = 10,3 \text{ BT} \\ &\eta = \frac{P_2}{P_1} = \frac{3,5}{91} = 0,04 \\ &\eta = \frac{P_2}{P_1} = \frac{4,75}{64} = 0,07 \\ &\eta = \frac{P_2}{P_1} = \frac{5,4}{64} = 0,13 \\ &\eta = \frac{P_2}{P_1} = \frac{10,3}{80} = 0,13 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{91}{720} = 0,126 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{88}{750} = 0,117 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{73}{810} = 0,09 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{64}{840} = 0,76 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{27}{930} = 0,03 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{80}{1050} = 0,076 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{80}{1050} = 0,076 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{80}{1050} = 0,076 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{80}{1050} = 0,076 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{80}{1050} = 0,076 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{80}{1050} = 0,076 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{80}{1050} = 0,076 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{80}{1050} = 0,076 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{80}{1050} = 0,076 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{80}{1050} = 0,076 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{80}{1050} = 0,076 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{80}{1050} = 0,076 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{80}{1050} = 0,076 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{80}{1050} = 0,076 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{80}{1050} = 0,076 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{80}{1050} = 0,076 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{80}{1050} = 0,076 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{80}{1050} = 0,076 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{80}{1050} = 0,076 \\ &\cos \varphi_1 = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{P_1}{3U_{1\varphi}I_{1\varphi}} = \frac{P$$

2. ОБРАБОТКА ОПЫТНЫХ ДАННЫХ

1.1 Для удобства сравнения, механические характеристики, построенные по данным табл. 1.1 и 1.2, следует совместить, как это показано на рис. 2.

Рис. 2. Естественная и реостатная механические характеристики двигателя

1.2. По результатам опыта холостого хода (табл. 1.3) необходимо построить графики $\mathbf{I}_{o\phi} = \mathbf{f}(\mathbf{U}_{o\phi})_{\mathbf{U}} \cos \phi_{o\phi} = \mathbf{f}(\mathbf{U}_{o\phi})_{\mathbf{B}\mathbf{U}}$ вид этих зависимостей показан на рис. 3. Значения \mathbf{I}_{0} и $\cos \phi_{o}$ определяются при номинальном фазном напряжении $\mathbf{U}_{\phi H}$ и заносятся в табл. 6.

Рис. 3. Характеристики холостого хода двигателя

1.3. По результатам опыта короткого замыкания необходимо построить графики $\mathbf{I}_{\kappa \phi} = \mathbf{f}(\mathbf{U}_{\kappa \phi})$; $\mathbf{P}_{\kappa \phi} = \mathbf{f}(\mathbf{U}_{\kappa m})$; $\mathbf{cos} \phi_{\kappa \phi} = \mathbf{f}(\mathbf{U}_{\kappa \phi})$. Вид этих зависимостей показан на рис. 4. Значения \mathbf{P}_{κ} и $\mathbf{cos} \phi_{\kappa}$, определяются при номинальном фазном токе $\mathbf{I}_{\phi H}$ и заносятся в табл. 6.

Рис. 4. Характеристики короткого замыкания двигателя

Таблица 6 Величины, полученные в ходе проведения опытов холостого хода, короткого замыкания и в результате расчетов

I _o [A]	cosφo	φο	U' _{кф} [В]	Ι' _{кф} [А]	I _K [A]	$\cos\phi_{\scriptscriptstyle K}$
3	0,105	18.2	429	5,7	5,6	0,145
φ_{κ}	P _k [B _T]	r _k [Ом]	х _к [Ом]	r ₁ [Ом]	r' ₂ [Ом]	I _{max} [A]
21.2	63	4.9	2.3	1.4	1.5	8,9

При построении круговой диаграммы вектор номинального фазного напряжения $U_{H\varphi}$ откладывают вертикально в произвольном масштабе. Диаметр окружности **ОН**, изображающий максимальный индуктивный ток I_{max} , выбирается равным 300-400 мм. В таком случае масштаб токов составляет $m_i = I_{max}/OH$. Точка **О** получается в результате построения вектора тока I_0 , а точка K - в результате построения вектора I_0 . Дуга **ОАК** соответствует двигательному режиму работы асинхронной машины.

Дальнейшее построение по диаграмме:

 $O'B \mid OH; \ KL \perp OH; \ KN: NL = r_2': r_1, \$ таким образом определяется положение линии OT. Теперь круговая диаграмма позволяет для заданного $\dot{I}_1 = m_i \cdot \overline{O'A}$ вычислить потребляемую мощность $P_1 = m_p \cdot \overline{AC}$ и полезную мощность $P_2 \approx P_{\text{мех}} = m_p \cdot \overline{AF}$. Масштаб мощности $m_p = m_1 \cdot m_i \cdot U_{\text{нф}}, \ m_1$ число фаз обмотки статора.

Кроме того, при известных ϕ_1 , P_1 и P_2 можно определить $\cos \phi_1$ и η .

Рис. 5 – Круговая диаграмма