Information and Computation

Lecture 1

Joint entropy, conditional entropy and mutual information

A probability refresher

• **Definition.** A joint ensemble XY is a tuple $(A_X \times A_Y, p_{XY})$ with

$$p_X(x) = \sum_{y \in A_Y} p_{XY}(x, y)$$

$$p_Y(y) = \sum_{x \in A_Y} p_{XY}(x, y)$$

$$p_{XY}(x|y) = \frac{p_{XY}(x, y)}{p_Y(y)}$$

Joint entropy

• **Definition.** The entropy (rate) of an ensemble XY is

$$H(XY) = -\sum_{x \in X, y \in Y} p_{XY}(x, y) \log p_{XY}(x, y)$$

Example.

$$P(+cils, +cils) = \frac{1}{4} \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{$$

Conditional entropy

• **Definition**. Conditional information, $h(x|y) = -\log(p(x|y))$

• **Definition**. Conditional entropy given event y

$$H(X|y) = -\sum_{x \in A_X} p(x|y) \log(p(x|y))$$

Definition. Conditional entropy

$$H(X|Y) = \sum_{y} p_{Y}(y)H(X|y)$$

	Days with no rain	Days with rain
Rotterdam	212	153
Atacama desert	360	5

Exercise 1.1 - Let us assume that you are living in the Atacama desert where it rarely rains. How much information do the messages 0 and 1 carry?

	Days with no rain	Days with rain
Rotterdam	212	153
Atacama desert	360	5

Exercise 1.1 - Let us assume that you are living in the Atacama desert where it rarely rains. You receive a 0. How much information does this message carry?

Exercise 1.2 - Now let us assume that you live in the Netherlands where it does rain quite often, but certainly not every day. How much information do the messages 0 and 1 carry?

	Days with no rain	Days with rain
Summer	182	1
Winter	30	152

Exercise 1.1 - Let us assume that you are living in the Atacama desert where it rarely rains. You receive a 0. How much information does this message carry?

Exercise 1.2 - Now let us assume that you live in the Netherlands where it does rain quite often, but certainly not every day. You receive a 0. Does the message contain information?

Exercise 1.3 - Finally, let us assume that you live in the Netherlands but (boldly) also that you are aware of the current season. You receive a 0. Does the message 0 carry the same information in summer and in winter?

	Days with no rain	Days with rain
Summer	182	1
Winter	30	152

• Compute *H*(Season), *H*(Weather)

Compute H(Season, Weather)

Compute H(Season|Weather=rain)

P_	NoR	RAIN
S	<u>182</u> 365	<u>1</u> 365
Vict	30	152

Exercise

• Show that $H(X|Y) \ge 0$

Exercise. Chain rule

• Show that H(XY) = H(X|Y) + H(Y)

Exercise

- Show that
 - $H(X,Y) \geq H(X)$
 - $H(X) \ge H(X|Y)$ (conditioning always reduces entropy)

Mutual information

• **Definition**. Mutual information

$$I(X;Y) = H(X) + H(Y) - H(XY)$$

Exercise

- Show that
 - $\min(H(X), H(Y)) \ge I(X; Y) \ge 0$

Data processing inequality

• Show that
$$I(X;Y) \ge I(X;f(Y))$$

Let $2 = f(Y)$ and let us expand $J(X:YZ)$ in two ways:

1) $J(X:YZ) = J(X) + H(YZ) - H(XYZ) + H(YZ) - H(YZ) + H(XYZ)$

= $J(X:Y) + H(YZ) - H(XZZ) - H(YZ) + H(XYZ)$

= $J(X:Y) + H(ZZZ) - H(ZZXZ)$

= $J(X:Y)$

2)
$$I(x:yz) = I(x:z) + H(yz) - H(xyz) - H(z) + H(xz)$$

= $I(x:z) + \sum_{z} P(z) (H(x|z) - H(xy|z))$
= $I(x:z) + \sum_{z} P(z) (H(x|z) - H(xy|z))$

Hence:

$$I(x;\lambda) = I(x;\beta) + \{ b(\beta) I(x;\lambda | \beta) \}$$

You will do great in the exam if you can

- Evaluate entropy, conditional entropy and mutual information
- Derive basic properties of the above

Resources

- Lecture notes
- Slides
- "Elements of information theory". Cover and Thomas. Chapter 2.1-2.8
- "Information Theory, Inference, and Learning Algorithms". MacKay.
 Chapter 2