

Solutions Assignment 4

Ex. 1: Who invented the t-distribution? What was his occupation?

Ex. 2: Let X denote the sample of undergraduate students taking the midterm and Y the sample of graduates students taking the midterm. Assume that both samples are i.i.d. normal with means mu_1 and mu_2 respectively and the same (unknown) variance. Test the hypthesis H_0: mu_1 = mu_2 against the alternative using the test statistic from the lectures. You are given the following values: m=90, n=8, $X_bar=29.405$, $Y_bar=31.38$, $S_X^2=7875.41$, $S_Y^2=671.88$, alpha 0=0.25. What do you conclude? What is the p-value in this case?

We conclude a 2-sc.ple + kst. We calculate

$$U_{90,8} = \frac{(90+8-2)^{1/2}(29.405-31.38)}{(\frac{2}{40}+\frac{4}{8})(7875.41+671.88)} = -0.558$$

$$T_{90+6-2}(1-0.125) = T_{96}(0.875) = 1.157$$
=D Fail to reject the =pp-value $T_{16}(-0.558) + 1 - T_{16}(0.558)$

$$= 0.56 111$$

Ex. 3: Show that the two-sample test statistic U has t-distribution with m+n-2 degrees of freedom, if mu 1=mu 2.

9.1.2 Of students dischy conclude correctly, 2 pts. lach) 4

- (a) We know that if $0 < y < \theta$, then $\Pr(Y_n \le y) = (y/\theta)^n$. Also, if $y \ge \theta$, then $\Pr(Y_n \le y) = 1$. Therefore, if $\theta \le 1.5$, then $\pi(\theta) = \Pr(Y_n \le 1.5) = 1$. If $\theta > 1.5$, then $\pi(\theta) = \Pr(Y_n \le 1.5) = (1.5/\theta)^n$.
- (b) The size of the test is

$$\alpha = \sup_{\theta \ge 2} \pi(\theta) = \sup_{\theta \ge 2} \left(\frac{1.5}{\theta}\right)^n = \left(\frac{1.5}{2}\right)^n = \left(\frac{3}{4}\right)^n.$$

9.1.4

Thus, $\alpha = 0.05$ if and only if $\Phi(5c) = 0.975$. It is found from a table of the standard normal distribution that 5c = 1.96 and c = 0.392.

9.1.6

If H_0 is true, then X will surely be smaller than 3.5. If H_1 is true, then X will surely be greater than 3.5. Therefore, the test procedure which rejects H_0 if and only if X > 3.5 will have probability 0 of leading to a wrong decision, no matter what the true value of θ is.

9.2.8

(a) The p.d.f.'s $f_0(x)$ and $f_1(x)$ are as sketched in Fig. S.9.3. Under H_0 it is impossible to obtain a value of X greater than 1, but such values are possible under H_1 . Therefore, if a test procedure rejects H_0 only if x > 1, then it is impossible to make an error of type 1, and $\alpha(\delta) = 0$. Also,

Figure S.9.3: Figure for Exercise 8a of Sec. 9.2.

(b) To have $\alpha(\delta) = 0$, we can include in the critical region only a set of points having probability 0 under H_0 . Therefore, only points x > 1 can be considered. To minimize $\beta(\delta)$ we should choose this set to have maximum probability under H_1 . Therefore, all points x > 1 should be used in the critical region.

(5)

9.5.2 (a,b only)

When $\mu_0 = 20$, the statistic U given by Eq. (9.5.2) has a t distribution with 8 degrees of freedom. The value of U in this exercise is 2.

- (a) We would reject H_0 if $U \ge 1.860$. Therefore, we reject H_0 .
- (b) We would reject H_0 if $U \leq -2.306$ or $U \geq 2.306$. Therefore, we don't reject H_0 .

(a)
$$U = (9)^{1/2} \frac{22-20}{\left(\frac{72}{8}\right)^{1/2}} = 2$$
To $(0.95) = 1.860$

(b) $T_8^{-1}[0.975] = 2.306$ = Tail to reject

9.7.7 (a) Here, $\overline{X}_m = 84/16 = 5.25$ and $\overline{Y}_n = 18/10 = 1.8$. Therefore, $S_1^2 = \sum_{i=1}^{16} X_i^2 - 16(\overline{X}_m^2) = 122$ and $S_2^2 = \sum_{i=1}^{10} Y_i^2 - 10(\overline{Y}_n^2) = 39.6$. It follows that $\hat{\sigma}_1^2 = \frac{1}{16} S_1^2 = 7.625$ and $\hat{\sigma}_2^2 = \frac{1}{10} S_2^2 = 3.96$.

$$S_2^2 = \sum_{i=1}^{10} Y_i^2 - 10(\overline{Y}_n^2) = 39.6$$
. It follows that

$$\hat{\sigma}_1^2 = \frac{1}{16}S_1^2 = 7.625$$
 and $\hat{\sigma}_2^2 = \frac{1}{10}S_2^2 = 3.96$.

If $\sigma_1^2 = \sigma_2^2$, the following statistic V will have the F distribution with 15 and 9 degrees of freedom: $V = \frac{S_1^2/15}{S_2^2/9}$.

(b) If the test is to be carried out at the level of significance 0.05, then H_0 should be rejected if

