http://sjcj. nuaa. edu. cn E-mail:sjcj@ nuaa. edu. cn Tel/Fax: +86-025-84892742

一种高性能 R-LWE 格加密算法的电路结构及其 FPGA 实现

芮康康 王成华 苏赛龙 刘伟强

(南京航空航天大学电子信息工程学院,南京,211106)

摘 要:随着量子计算机的发展,传统的公钥加密方案,如RSA加密和椭圆曲线加密算法(Elliptic curve cryptography,ECC)受到了严重威胁。为了对抗量子攻击,基于格的密码学引起了关注,其中环错误学习(Ring-learning with error,R-LWE)格加密算法具有电路实现简单、抗量子攻击等优点,在硬件加密领域具有极大的应用潜力。本文从硬件应用的角度,提出并实现了一种R-LWE加密方案中多项式乘法的并行电路结构,采用了数论转换(Number theoretic transforms, NTT)方法,并使用了两个并行的蝶形运算单元。结果表明在增加较少硬件资源的情况下,本文设计的算法提升了42%的运算速度。

关键词:格密码;环错误学习;数论转换;现场可编程门阵列实现

中图分类号: TN7 文献标志码: A

High Performance Hardware Architecture of Lattice - Based Cryptography and Its FPGA Implementation

Rui Kangkang, Wang Chenghua, Fan Sailong, Liu Weiqiang

(College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China)

Abstract: With the development of quantum computers, conventional public cryptographic schemes such as RSA and elliptic curve cryptography (ECC) are under serious threat. To resist the quantum attacks, lattice-based cryptography has attracted research attention, in which the ring-learning with error (R-LWE) lattice encryption algorithm has great application potential in the field of encryption because of its easy implementation and quantum attack resistance. From the perspective of hardware application, a parallel circuit architecture of polynomial multiplication in R-LWE encryption scheme is proposed and implemented. The number theoretic transforms (NTT) method and two parallel butterfly operation units are used. The results show that the proposed algorithm can improve the performance by up to 42% with slightly increased hardware resource.

Key words: lattice-based cryptography; ring-learning with error (R-LWE); number theoretic transforms (NTT); field-programmable gate array (FPGA) implementation

基金项目:国家自然科学基金(61771239)资助项目;江苏省自然科学基金(BK20151477)资助项目。

收稿日期:2017-09-05;修订日期:2017-12-04

引 言

在信息安全问题越来越突出的背景下,需要更高安全性的加密算法来保障个人信息和隐私。解决信息安全问题,最常用的手段是对信息进行加密。目前,后量子密码(Post-quantum cryptography)^[1]已成为国内外众多学者的重点研究对象。此类加密技术基于特定数学领域的困难问题,不依赖于任何量子理论现象,但其计算安全性可以抵御当前已知任何形式的量子计算攻击。更为重要的是,它们与当前网络系统具有较高的兼容性。美国国家标准局(NIST)^[2]、美国国家安全局(NSA)^[3]以及欧洲电信标准协会(ETSI)^[4]正在制定后量子密码标准,预计2018年左右NIST将发布首批后量子密码标准。

基于格难题的密码算法是目前公钥加密技术中一个新的研究热点,此类密码算法具有加密效率高、硬件实现简单及抗量子攻击等优点,是后量子时代极具潜力的密码方案。而在由格难题构造的公钥密码方案中,基于环错误学习(Ring-learning with error, R-LWE)的加密方案在性能上有着较显著的优势^[5],它不仅具有基于格难题构造的公钥加密方案的各种优点,而且还支持理论安全性的证明^[6]。文献[7]设计了一种 R-LWE 加密方案中的多项式乘法器,它是一种基于快速傅里叶变换(Fast Fourier transformation,FFT)的高效乘法器,硬件资源消耗较少。在传统设计中,人们通常通过降低系统时钟频率、减少冗余信号翻转等方法来降低系统功耗^[8],但是工作效率和系统性能也会随之下降。

本文提出了一种基于 R-LWE 格加密中多项式乘法的硬件结构。为了加快多项式乘法的运算速度,本文使用数论变换(Number theoretic transforms, NTT)方法,通过两个并行的蝶形运算 PE(Processing element)处理单元,加速 NTT 的实现。在保证资源消耗较低的前提下,本文的实现较大地提升了运算速度。

1 格加密算法原理

1.1 格加密理论

根据向量空间的概念,格的定义[9]如下:

定义 $v_1, v_2, \dots, v_n \in \mathbb{R}^m$ 设为一组线性无关的向量。由 v_1, v_2, \dots, v_n 生成的格 L 指的是向量 v_1, v_2, \dots, v_n 线性组合构成的向量集合,且其所使用的系数均在整数域 \mathbf{Z} 中,即 $\mathbf{L}(v_1, v_2, \dots, v_k) = \{a_1v_1 + a_2v_2 + \dots + a_nv_n | a_1, a_2, \dots, a_n \in \mathbf{Z}\}$ 。

任意一组可以生成格的线性无关的向量都称为格的基,格的基中的向量个数称为格的维度。任意两组这样的向量中,向量的个数相同。格类似于向量空间,但格是由基中的向量使用整数系数进行线性组合而构成的,而向量空间使用的则是任意系数。直观上,经常将格看成是按规律排列的属于 R"的一系列点,每个点都是一个向量的末端。

R-LWE 问题与LWE 问题在形式上十分相似,并且具有标准LWE 问题的很多特性,两者的搜索问

题和判定问题几乎可以等价。Lyubashevsky等证明了:如果用多项式量子时间算法求解理想格上的 SVP问题是困难的,那么对于任何的量子时间算法来说,求解 R-LWE 问题也将是困难的[10]。

综上,R-LWE 加密方案的不足之处在于加解密过程中使用到了多项式乘法,使得 R-LWE 方案的 电路设计较之于 LWE 方案更为复杂(LWE 公钥长度大),电路开销也变得更大。但是与 RSA, ECC 等涉及到指数运算的加密方案相比,R-LWE 方案仍旧比较易于设计且节省资源。经典和后量子公钥密码对比如表1所示。

	*					
	密码体制	算法	数学难题	优势	不足	_
	公钥密码体制	R-LWE	格难题	① 简单,易于实现	环多项式乘法	
				② 效率高		
		LWE		③ 抗量子攻击	公钥长度大	
		RSA	大整数分解	现有实现方案多	复杂,运行慢,	_
		ECC	椭圆离散对数	密钥短	不抗量子攻击	

表 1 经典和后量子公钥密码对比

Tab. 1 Comparison between classical and post quantum public key cryptography

1.2 格加密算法流程

格加密算法方案主要包括密钥生成、加密和解密3个部分[11],具体实现如算法1所示。

算法1 基于R-LWE的公钥密码算法

密钥:选择 r_1, r_2 服从高斯分布 D_s ,令 $p = r_1 - t \cdot r_2 \in \mathbf{R}$ 。则公钥为p,私钥为 r_2 。 r_1 为高斯噪声,生成密钥后不再需要。 $t \in \mathbf{R}$ 在加密过程中保持不变,满足均匀分布。

加密:输入信息为 $m \in \{0,1\}^n$,选择 e_1,e_2,e_3 服从高斯分布 $D_{\sigma \circ}$ 令 $\overline{m} = f(m) \in \mathbb{R}$ 。则密文为[$c_1 = t \cdot e_1 + e_2, c_3 = p \cdot e_1 + e_3 + \overline{m}$] $\in \mathbb{R}^2$ 。

解密:解密的结果为 $m' = c_1 \cdot r_2 + c_2 \in \{0,1\}^n$ 。其中, D_σ 是整数域上的离散高斯分布,期望是0,标准 差是 σ ;R是多项式环 $Z_q[x]/(x^n+1)$,q为素数且 $q=1 \mod 2n$,n为多项式的最高次数,f(m)实现模域变换,将输入信息从[0,1]信息范围转换到[0,q-1]的范围。

2 环多项式乘法

对于R-LWE密码算法,其中最为重要且耗时的是环多项式乘法。环多项式乘法有两种实现方式,分别为SchoolBook乘法和NTT数论变换乘法方法。

2.1 SchoolBook 乘法

SchoolBook多项式算法公式为

$$ab = \left[\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} a_i b_j x^{i+j} \right] \operatorname{mod} \langle x^n + 1 \rangle = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} (-1)^{\left\lfloor \frac{i+j}{n} \right\rfloor} a_i b_j x^{(i+j) \operatorname{mod} n}$$
 (1)

经典的 SchoolBook 多项式乘法复杂度为 $O(n^2)$,需要 n^2 个乘法和 $(n-1)^2$ 个加减法。由于 n是 2 的幂,模 n操作可以实现为一个右移的寄存器,对于 $(-1)^{\left\lfloor\frac{i+j}{n}\right\rfloor}$,当 i+j < n时,它等于 1,否则 $i+j \leq 2n-2$ 时等于 -1。对于经典的 SchoolBook算法实现,资源消耗较少,但是运算耗时较长。

2.2 NTT 数论变换乘法

NTT是在FFT的数论基础上实现的。由于FFT是在复数域上的变换,而且还是浮点运算,存在精度和效率的问题。而在很多应用中,需要对整数商环内的序列进行变换,在这种情况下FFT性能无法满足要求,而NTT却能很好地解决这一问题。NTT变换形式与FFT一样,只是将FFT中的旋转因子由复数变成了整数,避免了浮点运算,使得运算效率也大为提高[12]。

数论变换是以正整数q为模的整数环 \mathbf{Z}_q 上定义的线性正交变换。设 $x(n) \in \mathbf{Z}_q, n=0,1,2,\cdots,N-1$, $k=0,1,2,\cdots,N-1$,则称

$$X(k) = \sum_{n=0}^{N-1} x(n) w^{nk} \pmod{q}$$
 (2)

$$x(n) = N^{-1} \sum_{k=0}^{N-1} X(k) w^{-nk} \pmod{q}$$
(3)

为NTT,式(2)和式(3)分别为NTT正变换和NTT反变换。其中w为模q的N阶本原单位根,满足

$$w^N = 1 \bmod q \tag{4}$$

$$w^{N/2} \equiv -1 \mod q \equiv (q-1) \mod q \tag{5}$$

为整数且满足

$$N \times N^{-1} \equiv 1 \bmod q \tag{6}$$

用时间抽取算法将原序列x(n)按照序号的奇偶性拆分成两个序列 $x_1(n)$ 和 $x_2(n)$,则对应的NTT变换变为

$$X(k) = \sum_{n=0}^{N-1} x(n) w^{nk} = \sum_{n=0}^{N/2} x_1(n) w^{2nk} + \sum_{n=0}^{N/2} x_2(n) w^{(2n+1)k} = X_1(k) + w^k X_2(k)$$
 (7)

将 k 的取值范围变为原来的一半,则

$$X\left(k + \frac{N}{2}\right) = X_1(k) + w^{k + \frac{N}{2}}X_2(k) = X_1(k) - w^k X_2(k)$$
(8)

通过将原N点的NTT 变换进行拆分,得到的新序列 $X_1(k),X_2(k)$ 变为N/2点的NTT 变换。继续将 $X_1(k),X_2(k)$ 进行拆分,得到N/4点的NTT 变换。依此类推,直到得到2点的NTT 变换,即

$$X_{\frac{N}{2}-1}(0) = x_{r}(n) + \left(w^{\frac{N}{2}}\right)^{0} x_{r}(n+1)$$
 (9)

$$X_{\frac{N}{2}-1}(1) = x_{r}(n) - \left(w^{\frac{N}{2}}\right)^{0} x_{r}(n+1)$$
 (10)

式中 $x_r(n)$ 为x(n)序列序号位倒置之后的排列。

以上进行的运算称之为蝶形运算,求一个N点的 NTT,共需要执行 $\log_2 N$ 轮的蝶形运算。为便于理解,NTT 变换的过程可以用蝶形图来描述,本文以8点的蝶形图为例,具体如图 1所示。

对于NTT多项式乘法而言,需要先将多项式进行数论变换,然后对应元素相乘,最后再进行逆数论变换,即可得到多项式乘法结果。NTT多项式乘法算法如算法2所示。

算法2 NTT多项式乘法算法输入: $a,b \in \mathbf{Z}_a$

Fig. 1 Butterfly structure of eight-point NTT

输出: $c \in \mathbf{Z}_q$ $A = \operatorname{NTT}(a), B = \operatorname{NTT}(b)$ for i = 0: n - 1 $C[i] = A[i] \cdot B[i]$ end $c = \operatorname{NTT}^{-1}(C)$ return c

3 NTT环多项式高效乘法器硬件设计

本文所使用的参数取自于文献[7]:多项式环系数的最高次数n=128,模质数 $q=2^{16}+1=65537$ 。本文设计的多项式乘法器电路结构如图2所示。

Fig. 2 Structure of the polynomial multiplier implemented in this work

本文设计的R-LWE方案中的多项式乘法器结构由PE,NTT和MUL等部件组成。PE单元是NTT的一部分,本文在图中把PE独立出来,是为了单独说明PE单元,本文的代码实现中PE与NTT也放在了两个不同模块。首先是BITREV模块,该功能是进行NTT变换之前的预处理,将原序列进行位置置换排序,得到蝶形运算的顺序,并控制从存储器RAM中读写数据。接着是RAMA和RAMB存储模块,这两个模块用来存储多项式系数a和b,RAM的大小是 128×17 bit。系数a,和b,按序加载到乘法器中,并存进RAM。NTT模块也具有逆NTT的功能,区别是输入的旋转因子不同,它与PE处理单元相连,共同完成NTT数论变换的功能。此处的NTT模块主要是控制从存储器中读取相应的数据,然后将相应的数据按序送入蝶形运算单元,接着将蝶形运算单元输出的结果返回到NTT中,再调用下一次蝶形运算,每次变换均需要 2×7 轮操作,每一轮运算的结果作为下一轮运算的初始值。PE

处理单元模块就是蝶形运算单元,包括乘加和取余操作,每个时钟周期计算NTT的一个节点,将处理完成的结果返回NTT模块。进行NTT数论变换后,a,b各个系数将在MUL乘法单元中对应相乘,然后将得到的结果送到逆NTT模块中,进行逆数论变换得到最终的结果。

PE处理单元的结构电路如图 3 所示。根据蝶形运算

Fig.3 Structure of PE processing element

规则,将系数a和旋转因子相乘然后取余,最后是加减b运算。对于取余操作,余数是 $p=2^{16}+1=65537$ 。因此可得

$$65\,536 \equiv -1\,\mathrm{mod}\,65\,537\tag{11}$$

$$Res[33:0] \equiv 2^{16} \times Res[33:16] + Res[15:0] \equiv -1 \times Res[33:16] + Res[15:0] \equiv Res[15:0] - Res[33:16] \equiv 65537 + Res[15:0] - Res[33:16]$$
(12)

因此可将取余操作转化为简单的加减操作,比起直接调用 Xilinx 的取余 IP 核大大节省了资源消耗。

本文多项式乘法器的设计包含了两个PE处理单元和两个NTT数论变换模块,这样在进行NTT变换时,a和b两个多项式系数可以同时进行变换运算。蝶形运算需要的旋转因子是相同的,因此两个模块旋转因子可以直接获取得到,不需要重复调用,性能得到了大幅提升。在执行逆向NTT时,由于只有一个多项式需要运算,故只需要用到一个逆NTT模块,PE模块为NTT和逆NTT模块重复调用,节省了资源,也不消耗额外的时钟。本文的设计采用并行电路结构,是一种以提升速度为目的的硬件实现,文献[8]中的设计则采用串行电路结构,资源消耗相对较低,两种设计将会有不同的应用领域。

4 结果分析

在 Vivado2016.4 软件平台上进行硬件代码设计,然后在 Kintex-7 KC705 FPGA 开发板上进行板级测试,对应的参数 n=128, q=65 537,测试最高频率可达 330 MHz,仿真测试图如图 4 所示。

图 4 本设计仿真测试

Fig. 4 Simulation of the proposed design

本文还编写了MATLAB测试脚本来测试代码结果数据的正确性,经过测试,FPGA硬件输出数据正确,所得波形与预期一致。

在 Vivado 软件中综合实现后,电路的资源消耗报告如表 2 所示。由表中数据可以看出,本文设计的多项式乘法器的结构资源消耗较少,只用了 461个 Slice。这是因为一个 Slice 含有 4 个 LUT 和 8 个 FF,所以设计中大量消耗 LUT 资源是不明智的。本文的设计最高频率可达 330 MHz,而且完成一次环多项式乘法只需要 1 358个时钟周期,即完成一次多项式乘法需要 4.12 μs。

对比表中文献[7]的实现,同是NTT乘法实现,本模块使用了两个NTT和两个PE,使得乘法处理速度大大提高,并且优化了部分结构的设计,使得消耗的Slice数目也相对较少,虽然多使用了一个DSP,但性能比现有文献中的更好。SchoolBook实现消耗的资源数非常少,但是却会消耗大量的时钟数,这是由于它的复杂度是 $O(n^2)$,本文设计复杂度为 $O(n\log_2 n)$,速度比它要快得多。综合来看,本设计在资源消耗不大的情况下,速度(周期)较NTT乘法提高了42%,较 SchoolBook

乘法提高了92%,资源和性能对比如图5所示。可见,本设计在格密码系统硬件上具有巨大的性能优势。

表 2 本设计电路资源消耗表

Tab. 2 Circuit resource consumption of the proposed design

消耗资源	本文设	NTT乘	SchoolBook
	计方案	法[7]	乘法[7]
LUT	1 137	1 407	547
FF	1 837	1 123	555
Slice	461	535	201
BRAM	2.5	2.5	1.5
DSP	2	1	1
Freq/MHz	330	209	320
Cycles	1 358	2 342	16 670
Mul/s	243 004	89 239	19 196

Fig.5 Comparison of resource consumption, maximum frequency and clock cycle

5 结束语

本文设计采用两个NTT模块和两个PE处理单元的并行电路结构,使多项式乘法的处理速度几乎提高了一半,并且优化了部分结构,使得资源消耗也较少。结果表明,当参数为n=128,q=65537时,完成一次环多项式乘法只需要1358个时钟周期,最快只需要4.12 μ s即可完成,是一种高速的多项式乘法器设计。因此,本设计能够更好地应用在格密码方案的硬件系统中,有助于提高密码系统的整体处理速度。

参考文献:

- [1] Chen L, Jordan S, Liu Y, et al. Report on post-quantum cryptography[R/OL]. http://dx.doi.org/10.6028/NIST.IR.8105, 2016.
- [2] Yasuda T. Report on workshop on cybersecurity in a post-quantum world [R/OL]. http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm, 2015.
- [3] NSA. NSA suite B cryptography [EB/OL]. https://www.nsa.gov/ia/programs/suiteb_cryptography/, 2015-8-19.
- [4] 4th ETSI/IQC workshop on quantum safe cryptography[EB/OL]. https://www.etsi.org/standards/how does etsi make standards/10-news-events/events/1072-ws-on-quantumsafe-2016, 2016.
- [5] 蒋亚丽. 基于格的密码方案的研究与设计[D]. 济南:山东大学, 2011.

 Jiang Yali. Research and design of a lattice based cryptographic scheme [D]. Jianan: Shandong University, 2011.
- [6] Ajtai M. Generating hard instances of lattice problems[C]// Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. New York, USA:ACM, 1996: 99-108.
- [7] Pöppelmann T, Güneysu T, Hevia A, et al. Towards efficient arithmetic for lattice-based cryptography on reconfigurable hardware[M]. Berlin Heidelberg: Springer, 2012.
- [8] 袁博, 刘红侠. 小数乘法器的低功耗设计与实现[J]. 数据采集与处理, 2013, 28(3): 376-381.

 Yuan Bo, Liu Hongxia. Design and implementation of a low power decimal multiplier[J] Journal of Data Acquisition and Processing, 2013, 28(3): 376-381.

- [9] 周福才. 格理论与密码学[M]. 北京: 科学出版社, 2013.
 Zhou Fucai. Lattice theory and cryptography [M]. Beijing: Science Press, 2013.
- [10] Lyubashevsky V, Peikert C, Regev O. On ideal lattices and learning with errors over rings [J]. Journal of the ACM, 2013, 60 (6): 1-35.
- [11] Pöppelmann T, Güneysu T. Towards practical lattice-based public-key encryption on reconfigurable hardware[C]// International Conference on Selected Areas in Cryptography. Berlin, Heidelberg: Springer, 2013: 68-85.
- [12] Winkler F. Polynomial algorithms in computer algebra[M]. Des Moines: Springer Science & Business Media, 2012.

作者简介:

芮康康(1990-),男,硕士, 研究方向:加密算法硬件实 现,E-mail:kangrui@nuaa. edu.cn。

王成华(1963-),男,教授,研究方向:集成电路设计与测试、通信电路与系统。

范赛龙(1995-),男,硕士,研究方向:加密算法硬件实现。

刘伟强(1983-),通信作者, 男,博士,副教授。研究方向:数字信号处理及加密 算法的VLSI实现,E-mail: 254903115@qq.com。

(编辑:王静)