

Лекция 6

Схемотехника устройств компьютерных систем Семестр 2

Тема: Системные шины.

Люлява Даниил Вячеславович, старший преподаватель кафедры ВТ Дуксин Никита Александрович, преподаватель кафедры ВТ

Системная шина

- Системная шина предназначена для соединения компонентов внутри вычислительной системы
- Основной параметр системной шины пропускная способность (бит/с)
 - Разрядность шины
 - Количество соединительных линий
 - Латентность (задержка доступа)
 - Энергопотребление
 - Максимальное расстояние передачи данных
- Системная шина является неотъемлемой частью проекта на базе процессора и используется для соединения процессорного ядра и периферийных устройств.

Пример регистровой модели для МК Attiny85

23.	Reg	ister	Summa	ry
-----	-----	-------	-------	----

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x3F	SREG	1	T	н	S	V	N	Z	C	_
0x3E	SPH	-	-	-	-	-	-	SP9	SP8	page 8 page 11
0x3D	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	page 11
0x3C	Reserved	011	0.0	0.0	01.4	-	012	0, 1	0.0	page 11
0x3B	GIMSK	-	INT0	PCIE	_	_	_	_	_	page 51
0x3A	GIFR	-	INTFO	PCIF	-	-	-	_	-	page 52
0x39	TIMSK	-	OCIE1A	OCIE1B	OCIE0A	OCIE0B	TOIE1	TOIE0	-	pages 81, 102
0x38	TIFR	-	OCF1A	OCF1B	OCF0A	OCF0B	TOV1	TOV0	-	page 81
0x37	SPMCSR	-	-	RSIG	СТРВ	RFLB	PGWRT	PGERS	SPMEN	page 145
0x36	Reserved					_				
0x35	MCUCR	BODS	PUD	SE	SM1	SM0	BODSE	ISC01	ISC00	pages 37, 51, 64
0x34	MCUSR	-	-	-	-	WDRF	BORF	EXTRF	PORF	page 44,
0x33	TCCR0B	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00	page 79
0x32	TCNT0				Timer/	Counter0				page 80
0x31	OSCCAL				Oscillator Calil	bration Register				page 31
0x30	TCCR1	CTC1	PWM1A	COM1A1	COM1A0	CS13	CS12	CS11	CS10	pages 89, 100
0x2F	TCNT1				Timer/C	Counter1				pages 91, 102
0x2E	OCR1A			Time	r/Counter1 Outp	ut Compare Reg	ister A			pages 91, 102
0x2D	OCR1C					ut Compare Reg				pages 91, 102
0x2C	GTCCR	TSM	PWM1B	COM1B1	COM1B0	FOC1B	FOC1A	PSR1	PSR0	pages 77, 90, 101
0x2B	OCR1B					ut Compare Reg	ister B			page 92
0x2A	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-		WGM01	WGM00	page 77
0x29	OCR0A					out Compare Re				page 80
0x28	OCR0B			Timer	Counter0 - Outp	out Compare Re				page 81
0x27	PLLCSR	LSM	-	-	-	-	PCKE	PLLE	PLOCK	pages 94, 103
0x26	CLKPR	CLKPCE	-	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPS0	page 32
0x25	DT1A	DT1AH3	DT1AH2	DT1AH1	DT1AH0	DT1AL3	DT1AL2	DT1AL1	DT1AL0	page 107
0x24	DT1B	DT1BH3	DT1BH2	DT1BH1	DT1BH0	DT1BL3	DT1BL2	DT1BL1	DT1BL0	page 107
0x23	DTPS1	-	-	-				DTPS11	DTPS10	page 106
0x22	DWDR	-				R[7:0]				page 140
0x21	WDTCR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	page 45
0x20	PRR	-				PRTIM1	PRTIM0	PRUSI	PRADC	page 36
0x1F	EEARH								EEAR8	page 20
0x1E 0x1D	EEARL EEDR	EEAR7	EEAR6	EEAR5	EEAR4	EEAR3	EEAR2	EEAR1	EEAR0	page 21
		_								page 21
0x1C 0x1B	Reserved	-	_	EEPM1	EEPM0	EERIE	EEMPE	EEPE	EERE	page 21
0x1A	Reserved									
0x19	Reserved									
0x18	PORTB	-		PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 64
0x17	DDRB			DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	page 64
0x16	PINB	-	-	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	page 64
0x15	PCMSK		-	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	page 52
0x14	DIDRO	-	-	ADC0D	ADC2D	ADC3D	ADC1D	AIN1D	AINOD	pages 121, 138
0x13	GPIOR2					se I/O Register 2				page 10
0x12	GPIOR1	1				se I/O Register 1				page 10
0x11	GPIOR0					se I/O Register 0				page 10
0x10	USIBR				USI Buffe	er Register				page 115
0x0F	USIDR					Register				page 115
0x0E	USISR	USISIF	USIOIF	USIPF	USIDC	USICNT3	USICNT2	USICNT1	USICNT0	page 115
0x0D	USICR	USISIE	USIOIE	USIWM1	USIWM0	USICS1	USICS0	USICLK	USITC	page 116
0x0C	Reserved					_				
0x0B	Reserved					-				
0x0A	Reserved					-				
0x09	Reserved					-				
0x08	ACSR	ACD	ACBG	ACO	ACI	ACIE	-	ACIS1	ACIS0	page 120
0x07	ADMUX	REFS1	REFS0	ADLAR	REFS2	MUX3	MUX2	MUX1	MUX0	page 134
0x06	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	page 136
0x05	ADCH					gister High Byte				page 137
0x04	ADCL				ADC Data Re	gister Low Byte				page 137
0x03	ADCSRB	BIN	ACME	IPR	-	-	ADTS2	ADTS1	ADTS0	pages 120, 137
0x02	Reserved					-				
0x01	Reserved					-				
0x00	Reserved					-				

10.4.2 PORTB - Port B Data Register

Bit	7	6	5	4	3	2	1	0	
0x18	-	-	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	PORTB
Read/Write	R	R	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

10.4.3 DDRB – Port B Data Direction Register

Bit	7	6	5	4	3	2	1	0	
0x17	-	-	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	DDRE
Read/Write	R	R	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

10.4.4 PINB - Port B Input Pins Address

Bit	7	6	5	4	3	2	1	0	
0x16	-	-	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	PINE
Read/Write	R	R	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	N/A	N/A	N/A	N/A	N/A	N/A	

Интерфейс простой системной шины

Параллельные шины. Шина ISA

Параллельные шины. Шина PCI

Шина PCI. Конфигурирование

81		18	15	0			
	Devic	ce ID	Vend	jor ID	00h		
	Sta	tus	Com	mand	04h		
		Class Code	9	Revision ID	08h		
	BIST Header Latency Cache Une Type Timer Size						
					10h		
					14h		
		Base Addres	s Registers		18h		
					1Ch		
					20h		
					24h		
		Cardbus C	IS Pointer		28h		
	Subsys	tem ID	Subsystem	Vendor ID	2Ch		
	Expansion ROM Base Address						
	Reserved						
		Rese	rved		38h		
ı	Max_Lat	Min_Grrt	Interrupt Pin	Interrupt Line	3Ch		
					-		

Системная шина Wishbone

Применение мостов для системной шины

Арбитраж системной шины

Системная шина

Коммутатор системной шины

Приемы проектирования

- В ПЛИС некоторые сигналы могут быть избыточны
 - stb/ack (строб запроса + ответ), irdy/trdy имеют смысл в схеме, где готовность
 периферийного устройства не гарантируется. В ПЛИС временной анализ проверит
 возможность распространения сигналов за заданное время
 - Адрес может быть слишком широким. Проверка только старших адресов упростит декодеры
- Группировка сигналов
- Memory-mapped registers

Приемы проектирования - группировка

- К некоторым регистрам удобнее иметь общий доступ: одна запись модифицирует несколько регистров
 - Red[7:0], Green[7:0], Blue[7:0] → RGB[23:0]
- К некоторым регистрам общий доступ не обязателен или вреден

- Тактовый сигнал с прямым управлением и данные в одном регистре попы
 сигнала изменит также и данные, поэтому их придется сохранять программно
- Решения в процессорах доступ по маске (изменяются только те разряды, для которых биты в регистре маски установлены в 1), индивидуальный доступ к разрядам (set/clear)
- Для HDL возможно описание доступа по нескольким адресам. Например:
 - 123 доступ ко всему регистру
 - 124 доступ только к регистру SPIDATA
 - 125 доступ только к регистру SPICLK
- К некоторым устройствам требуется согласованный доступ
 - Мостовые схемы с MOSFET требуют, чтобы два «сквозных» транзистора никогда не были включены одновременно. Это можно обеспечить принудительным отключением транзистора, если противоположный ему включается.

Регистры, отображенные в адресное пространство памяти (memory mapped)

- Иногда нет практического смысла разделять устройства на память и регистры. В этом случае доступ к регистру производится с применением тех же сигналов, что и доступ к памяти
- Недостаток (?) регистр должен работать на той же частоте, что и память. В синхронном проекте на базе ПЛИС это вряд ли проявит негативный эффект.
 - Исключения большие проекты, распределенные по кристаллу. Трассировка к дальним регистрам может быть проблемой.

Сочетание процессорного управления и автономной работы

- HDL дает много возможностей для совместной оптимизации проекта.
- Пример: сторожевой таймер обеспечивает генерацию прерывания, если процессор долго не обращался к определенному устройству (сбрасывая при этом счетчик сторожевого таймера)
 - Устройство может отключаться самостоятельно нагреватель получает данные от процессора и запускает внутренний таймер для отключения. Если процессор обновит данные, таймер сбросится и нагрев продолжится. Если процессор не обновит данные в течение длительного времени, нагреватель отключится самостоятельно

AXI (Advanced eXtensible Interface)

- AXI Full
- AXI-Lite
- AXI-Stream

AXI4-Lite

AXI4-Lite. Каналы чтения и записи

AXI Channel Signals						
Write Address	Write Data	Write Response	Read Address	Read Data		
AWID[M:0]	WDVALID	BRID[M:0]	ARID[M:0]	RDID[M:0]		
AWVALID	WDREADY	BVALID	ARVALID	RDVALID		
AWREADY	WDATA[N:0]	BREADY	ARREADY	RDREADY		
AWADDR[31:0]	WDSTRB[N/8:0]	BRESP[1:0]	ARADDR[31:0]	RDATA[N:0]		
AWLEN[7:0]	WDLAST		ARLEN[7:0]	RDRESP[1:0]		
AWSIZE[2:0]			ARSIZE[2:0]	RDLAST		
AWPROT[2:0]			ARPROT[2:0]			
AWBURST[1:0]			ARBURST[1:0]			
AWLOCK			ARLOCK			
AWCACHE[3:0]			ARCACHE[3:0]			
AWREGION[3:0]			ARREGION[3:0]			
AWQO\$[3:0]			ARQOS[3:0]			

		Сигналы AXI4-Lite					
Глобальные	Глобальные сигналы (Global Signals)						
ACLK	M -> S	Тактовый сигнал					
ARESETN	M -> S	Сигнал сброса					
Канал адреса	а для запи	иси (Write Address)					
AWVALID	M -> S	Сигнал валидности адреса для записи					
AWREADY	M <- S	Сигнал готовности к приёму адреса для записи					
AWADDR	M -> S	Адрес для записи					
AWWPROT	M -> S	Тип защиты					
AWCACHE	M -> S	Тип кэширования					
Канал данны	х для зап	иси (Write Data)					
WDVALID	M -> S	Сигнал валидности данных для записи					
WDREADY	M <- S	Сигнал готовности к приёму данных для записи					
WDDATA	M -> S	Данные для записи					
WDSTRB	M -> S	Шина показывает, какие байты данных должны быть записаны					
Канал отклин	ка для зап	иси (Write Response)					
BVALID	M <- S	Сигнал валидности данных об отклике					
BREADY	M -> S	Сигнал готовности к приёму данных об отклике					
BRESP	M <- S	Данные об отклике (включают статус транзакции)					
Канал адреса	для чтен	ия (Read Address)					
ARVALID	M -> S	Сигнал валидности адреса для чтения					
ARREADY	M <- S	Сигнал готовности к приёму адреса для чтения					
ARADDR	M -> S	Адрес для чтения					
ARWPROT	M -> S	Тип защиты					
ARCACHE	M -> S	Тип кэширования					
Канал данны	х для чте	ния (Read Data)					
RVALID	M <- S	Сигнал валидности данных для чтения					
RREADY	M -> S	Сигнал готовности к приёму данных для чтения					
RDATA	M <- S	Данные для чтения					
RRESP	M <- S	Данные об отклике (включают статус транзакции)					

AXI4-Lite. Транзакция на чтение

AXI4-Lite. Транзакция на запись

Пример процессорной системы класса СНК

Вопросы

Спасибо за внимание!