PRESENTAZIONE DEL CORSO DI FISICA II (SCIENZE CHIMICHE)

A.A. 2021/2022

LORENZO ROVIGATTI, DIPARTIMENTO DI FISICA

COSA NE PENSANO GLI STUDENTI

WARNING Risk of death

- Sito: http://www.roma1.infn.it/~rovigatl/didattica/current/
- Email: lorenzo.rovigatti@uniroma1.it
- Stanza 104, primo piano dell'edificio Fermi (CU033)
- 4° anno di corso (3 anni a Chimica Industriale)

- Sito: http://www.roma1.infn.it/~rovigatl/didattica/current/
- Email: lorenzo.rovigatti@uniroma1.it
- Stanza 104, primo piano dell'edificio Fermi (CU033)
- 4° anno di corso (3 anni a Chimica Industriale)

- Sito: http://www.roma1.infn.it/~rovigatl/didattica/current/
- Email: lorenzo.rovigatti@uniroma1.it
- Stanza 104, primo piano dell'edificio Fermi (CU033)
- 4° anno di corso (3 anni a Chimica Industriale)

- Sito: http://www.roma1.infn.it/~rovigatl/didattica/current/
- Email: lorenzo.rovigatti@uniroma1.it
- Stanza 104, primo piano dell'edificio Fermi (CU033)
- 4° anno di corso (3 anni a Chimica Industriale)

- Sito: http://www.roma1.infn.it/~rovigatl/didattica/current/
- Email: lorenzo.rovigatti@uniroma1.it
- Stanza 104, primo piano dell'edificio Fermi (CU033)
- 4° anno di corso (3 anni a Chimica Industriale)

ORARI

LEZIONI IN AULA III (DAL 28/09 AL 14/01)

- Martedì, 16:00 18:00
- Mercoledì, 16:00 18:00
- Venerdì, 14:00 17:00

LINK STREAMING

RICEVIMENTO

- Martedì 11:00 13:00
- Qualunque altro giorno (previo appuntamento)

COME SCRIVERE UN'EMAIL

Da	pincopallo.42839183@studenti.uniroma1.it
Α	lorenzo.rovigatti@uniroma1.it
Oggetto	FIS2: richiesta ricevimento
Testo	Caro [Gentile] professore,
	le scrivo per chiederle delucidazioni riguardo a [] lei sarebbe disponibile il giorno []
	saluti [cordiali saluti],
	Pinco Pallo

REGOLE

- Alcuni studenti in aula, altri in streaming
- Mascherine e distanziamento obbligatori
- Ricevimento: avvisatemi sempre per evitare assembramenti

REGOLE

- Alcuni studenti in aula, altri in streaming
- Mascherine e distanziamento obbligatori
- Ricevimento: avvisatemi sempre per evitare assembramenti

PROBLEMI

- Difficile per chi è a casa fare domande/interagire col docente
- Le esercitazioni sono pensate per essere svolte in gruppetti

REGOLE

- Alcuni studenti in aula, altri in streaming
- Mascherine e distanziamento obbligatori
- Ricevimento: avvisatemi sempre per evitare assembramenti

PROBLEMI

- Difficile per chi è a casa fare domande/interagire col docente
- Le esercitazioni sono pensate per essere svolte in gruppetti

QUALCHE SOLUZIONE

- Chi può venga in aula
- Non siate timidi!

REGOLE

- Alcuni studenti in aula, altri in streaming
- Mascherine e distanziamento obbligatori
- Ricevimento: avvisatemi sempre per evitare assembramenti

PROBLEMI

- Difficile per chi è a casa fare domande/interagire col docente
- Le esercitazioni sono pensate per essere svolte in gruppetti

QUALCHE SOLUZIONE

- Chi può venga in aula
- Non siate timidi!

IL CORSO

- 9 crediti 90 ore (di lezione)
- ullet pprox 60% lezioni frontali, pprox 40% esercizi/esercitazioni

IL CORSO

- 9 crediti 90 ore (di lezione)
- $\approx 60\%$ lezioni frontali, $\approx 40\%$ esercizi/esercitazioni

IL PROGRAMMA

- Elettrostatica (campo e potenziale elettrostatico, conduttori, condensatori, dielettrici), **3 settimane**
- Corrente elettrica (corrente, resistenza elettrica, semplici reti elettriche), **2 settimane**
- Magnetostatica (campo magnetico, forza di Lorentz, leggi di Laplace, legge di Ampère, materiali magnetici), 3 settimane
- Campo elettromagnetico (induzione elettromagnetica, leggi di Maxwell), 2 settimane
- Onde elettromagnetiche (onde, riflessione e rifrazione, interferenza, diffrazione), **2 settimane**

• Moltissime (macro)molecole sono cariche (proteine, DNA, ioni)

- Moltissime (macro)molecole sono cariche (proteine, DNA, ioni)
- I metodi e gli strumenti basati su quanto diremo sono innumerevoli
 - Spettrometro di massa
 - Risonanza magnetica
 - Motori elettrici
 - Strumenti ottici (microscopi, lenti, ecc.)
 - Scattering della luce (DLS, SLS, ecc.)

- Moltissime (macro)molecole sono cariche (proteine, DNA, ioni)
- I metodi e gli strumenti basati su quanto diremo sono innumerevoli
 - Spettrometro di massa
 - Risonanza magnetica
 - Motori elettrici
 - Strumenti ottici (microscopi, lenti, ecc.)
 - Scattering della luce (DLS, SLS, ecc.)
- Il corso è progettato per esercitare le vostre abilità di risoluzione dei problemi ("problem solving")

- Moltissime (macro)molecole sono cariche (proteine, DNA, ioni)
- I metodi e gli strumenti basati su quanto diremo sono innumerevoli
 - Spettrometro di massa
 - Risonanza magnetica
 - Motori elettrici
 - Strumenti ottici (microscopi, lenti, ecc.)
 - Scattering della luce (DLS, SLS, ecc.)
- Il corso è progettato per esercitare le vostre abilità di risoluzione dei problemi ("problem solving")
- I fisici dicono la stessa cosa della chimica: siate migliori di loro!

Soft Matter

COMMUNICATION

View Article Online

Cite this: Soft Matter, 2021, 17, 10

Received 11th November 2020, Accepted 24th November 2020

DOI: 10.1039/d0sm02004d

rsc.li/soft-matter-journal

Recharging N95 masks using a van de Graaff generator for safe recycling†

K. Sugihara 📵

Van de Graaff generator

L'ESAME

• Scritto + orale

L'ESAME

- Scritto + orale
- Entrambi verteranno su tutto il programma

L'ESAME

- Scritto + orale
- Entrambi verteranno su tutto il programma
- Il compito scritto sarà in linea con (ma ≠ da) gli esercizi proposti o fatti in aula

L'ESAME

- Scritto + orale
- Entrambi verteranno su tutto il programma
- Il compito scritto sarà in linea con (ma ≠ da) gli esercizi proposti o fatti in aula
- Non potete portare il libro (o appunti) ma solo penna e calcolatrice

L'ESAME

- Scritto + orale
- Entrambi verteranno su tutto il programma
- Il compito scritto sarà in linea con (ma ≠ da) gli esercizi proposti o fatti in aula
- Non potete portare il libro (o appunti) ma solo penna e calcolatrice
- Trovate sempre i compiti delle sessioni precedenti sul mio sito

DISABILITÀ E DSA

Sapienza offre agli studenti con disabilità e DSA dei servizi specifici, ed è bene rivolgersi alle figure opportune già dall'inizio del semestre

VI INVITO QUINDI A CONTATTARE

- lo sportello disabilità e DSA
- la referente di Facoltà, Prof.ssa Laura Varone (laura.varone@uniroma1.it)

ALCUNI DETTAGLI

- Il testo di riferimento è: P. Mazzoldi, M. Nigro, C. Voci (MNV), "Elementi di Fisica Elettromagnetismo e Onde", EdiSES
- Il programma si trova anche in altri libri (Serway, Mencuccini, ...)
- Le spiegazioni avverrano alla lavagna (virtuale): niente slide (con piccole eccezioni per far vedere filmati e pagine interattive)
- Le "lavagnate" verranno messe online nella sezione del diario delle lezioni
- I miei appunti saranno messi online, ma **non** sono da considerare materiale didattico

ALCUNI DETTAGLI

- Il testo di riferimento è: P. Mazzoldi, M. Nigro, C. Voci (MNV), "Elementi di Fisica Elettromagnetismo e Onde", EdiSES
- Il programma si trova anche in altri libri (Serway, Mencuccini, ...)
- Le spiegazioni avverrano alla lavagna (virtuale): niente slide (con piccole eccezioni per far vedere filmati e pagine interattive)
- Le "lavagnate" verranno messe online nella sezione del diario delle lezioni
- I miei appunti saranno messi online, ma non sono da considerare materiale didattico

ALCUNI DETTAGLI

- Il testo di riferimento è: P. Mazzoldi, M. Nigro, C. Voci (MNV), "Elementi di Fisica Elettromagnetismo e Onde", EdiSES
- Il programma si trova anche in altri libri (Serway, Mencuccini, ...)
- Le spiegazioni avverrano alla lavagna (virtuale): niente slide (con piccole eccezioni per far vedere filmati e pagine interattive)
- Le "lavagnate" verranno messe online nella sezione del diario delle lezioni
- I miei appunti saranno messi online, ma non sono da considerare materiale didattico
- Repetita iuvant: gli esercizi saranno svolti principalmente da voi

ALCUNI CONSIGLI

- La matematica è un presupposto imprescindibile per questo corso
- Seguite il corso, venite alle esercitazioni
- Partecipate attivamente in aula (specialmente durante le esercitazioni)
- Se qualcosa non è chiaro **attivatevi subito**: domandate a lezione, venite al ricevimento, *ecc*.

ALCUNI CONSIGLI

- La matematica è un presupposto imprescindibile per questo corso
- Seguite il corso, venite alle esercitazioni
- Partecipate attivamente in aula (specialmente durante le esercitazioni)
- Se qualcosa non è chiaro **attivatevi subito**: domandate a lezione, venite al ricevimento, *ecc*.

CONSIGLI SPECIFICI PER GLI SCRITTI

- Fate **sempre** gli esercizi consigliati
- Conviene prima risolvere gli esercizi in maniera simbolica e poi calcolare il risultato numerico finale
- Attenti ai segni di vettore e alle unità di misura: non avrò pietà!

COMPRENSIONE, PIÙ DIFFICILE

COME RISOLVERE UN PROBLEMA DI FISICA COMPRENSIONE, PIÙ DIFFICILE

• Leggere il testo <u>lentamente</u> e <u>con attenzione</u>

COME RISOLVERE UN PROBLEMA DI FISICA COMPRENSIONE, PIÙ DIFFICILE

- Leggere il testo <u>lentamente</u> e <u>con attenzione</u>
- Capire quali processi fisici sono coinvolti

COMPRENSIONE, PIÙ DIFFICILE

- Leggere il testo lentamente e con attenzione
- Capire quali processi fisici sono coinvolti
- Interpretare/prevedere il comportamento del sistema fisico senza scrivere equazioni

COMPRENSIONE, PIÙ DIFFICILE

- Leggere il testo lentamente e con attenzione
- Capire quali processi fisici sono coinvolti
- Interpretare/prevedere il comportamento del sistema fisico senza scrivere equazioni

COMPRENSIONE, PIÙ DIFFICILE

- Leggere il testo lentamente e con attenzione
- Capire quali processi fisici sono coinvolti
- Interpretare/prevedere il comportamento del sistema fisico senza scrivere equazioni

COMPRENSIONE, PIÙ DIFFICILE

- Leggere il testo lentamente e con attenzione
- Capire quali processi fisici sono coinvolti
- Interpretare/prevedere il comportamento del sistema fisico <u>senza</u> <u>scrivere equazioni</u>

SVOLGIMENTO, PIÙ SEMPLICE

• Scrivere i dati (cioè ciò che fornisce il problema)

COMPRENSIONE, PIÙ DIFFICILE

- Leggere il testo lentamente e con attenzione
- Capire quali processi fisici sono coinvolti
- Interpretare/prevedere il comportamento del sistema fisico <u>senza</u> <u>scrivere equazioni</u>

- Scrivere i dati (cioè ciò che fornisce il problema)
- Identificare le incognite (cioè ciò che serve per risolvere il problema)

COMPRENSIONE, PIÙ DIFFICILE

- Leggere il testo lentamente e con attenzione
- Capire quali processi fisici sono coinvolti
- Interpretare/prevedere il comportamento del sistema fisico <u>senza</u> <u>scrivere equazioni</u>

- Scrivere i dati (cioè ciò che fornisce il problema)
- Identificare le incognite (cioè ciò che serve per risolvere il problema)
- Collegare dati e incognite tramite le formule (col libro, se serve)

COMPRENSIONE, PIÙ DIFFICILE

- Leggere il testo lentamente e con attenzione
- Capire quali processi fisici sono coinvolti
- Interpretare/prevedere il comportamento del sistema fisico <u>senza</u> <u>scrivere equazioni</u>

- Scrivere i dati (cioè ciò che fornisce il problema)
- Identificare le incognite (cioè ciò che serve per risolvere il problema)
- Collegare dati e incognite tramite le formule (col libro, se serve)
- Svolgere i calcoli

Come si comporta questo sistema fisico?

Come si comporta questo sistema fisico?

Dipende da quanto è cattivo il professore...

Il piano è fermo, la carica si può muovere: cosa succede?

Il piano è fermo, la carica si può muovere: cosa succede?

E se la carica fosse positiva?

I piani sono fermi, la carica è in movimento: cosa succede?

Una spira entra in una regione di campo magnetico: cosa succede?

MATEMATICA: COSA CI SERVIRÀ?

- Vettori
- Geometria
- Trigonometria
- Derivate
- Integrali
 - singoli
 - doppi e tripli
 - di linea

MATEMATICA: COSA CI SERVIRÀ?

- Vettori
- Geometria
- Trigonometria
- Derivate
- Integrali
 - singoli
 - doppi e tripli
 - di linea

VETTORI

Definiamo
$$ec{a}=(a_x,a_y,a_z)$$
 e $ec{b}=(b_x,b_y,b_z)$

- 1. Quanto vale $\vec{a} + \vec{b}$? E $\vec{a} \vec{b}$?
- 2. Com'è definito il modulo di \vec{a} , a? Cosa rappresenta?
- 3. Com'è definito il versore \hat{a} ? Cosa rappresenta?
- 4. Qual è il prodotto scalare $\vec{a} \cdot \vec{b}$?
- 5. Esprimere $\vec{a}\cdot\vec{b}$ tramite a e b, i moduli di \vec{a} e \vec{b} , e l'angolo tra loro compreso, θ
- 6. Dati a,b e θ scrivere l'espressione del modulo del prodotto vettoriale $\vec{a} imes \vec{b}$

TRIGONOMETRIA

- 1. Come si passa da radianti a gradi e viceversa?
- 2. Quanto vale $\sin 0$?
- 3. Quanto vale $\cos 0$?
- 4. Quanto vale $\sin^2 \theta + \cos^2 \theta$?
- 5. Qual è la definizione di $\tan \theta$?
- 6. Quanto vale $\frac{\mathrm{d}\sin\theta}{\mathrm{d}\theta}$?

• Quanto vale il modulo del vettore (2, 4, -3)?

- Quanto vale il modulo del vettore (2, 4, −3)?
- Quanto vale l'angolo compreso tra (3, 3, 0) e (2, 1, -5)?

- Quanto vale il modulo del vettore (2, 4, −3)?
- Quanto vale l'angolo compreso tra (3, 3, 0) e (2, 1, -5)?
- Un vettore di modulo 3 giace sul piano (x, y) e forma un angolo di $\pi/6$ con l'asse x. Quali sono le sue componenti?

- Quanto vale il modulo del vettore (2, 4, −3)?
- Quanto vale l'angolo compreso tra (3, 3, 0) e (2, 1, -5)?
- Un vettore di modulo 3 giace sul piano (x, y) e forma un angolo di $\pi/6$ con l'asse x. Quali sono le sue componenti?
- Determinare il vettore $\vec{w} = \vec{a} + \vec{b}$, dove $\vec{a} = (1, 1, 3)$ e $\vec{b} = (-1, 3, 2)$

- Quanto vale il modulo del vettore (2, 4, −3)?
- Quanto vale l'angolo compreso tra (3, 3, 0) e (2, 1, -5)?
- Un vettore di modulo 3 giace sul piano (x, y) e forma un angolo di $\pi/6$ con l'asse x. Quali sono le sue componenti?
- Determinare il vettore $\vec{w} = \vec{a} + \vec{b}$, dove $\vec{a} = (1, 1, 3)$ e $\vec{b} = (-1, 3, 2)$
 - Il vettore (2, -2, 1) è o meno ortogonale a \vec{w} ?

- Quanto vale il modulo del vettore (2, 4, −3)?
- Quanto vale l'angolo compreso tra (3, 3, 0) e (2, 1, -5)?
- Un vettore di modulo 3 giace sul piano (x, y) e forma un angolo di $\pi/6$ con l'asse x. Quali sono le sue componenti?
- Determinare il vettore $\vec{w} = \vec{a} + \vec{b}$, dove $\vec{a} = (1, 1, 3)$ e $\vec{b} = (-1, 3, 2)$
 - Il vettore (2, -2, 1) è o meno ortogonale a \vec{w} ?
 - Dire se il vettore (21, 15, − 12) è parallelo a \vec{w} e, se sì, discutere il suo verso in relazione a quello di \vec{w}

 Un aereo percorre 100 Km in direzione nord, per poi virare e percorrere 150 Km in direzione nord 30° est ed infine percorrere 300 Km in direzione est. Calcolare lo spostamento risultante in modulo, direzione e verso.

- Un aereo percorre 100 Km in direzione nord, per poi virare e percorrere 150 Km in direzione nord 30° est ed infine percorrere 300 Km in direzione est. Calcolare lo spostamento risultante in modulo, direzione e verso.
- Un giocatore di golf in tre colpi riesce a gettare la sua palla nella buca. Il primo tiro sposta la palla di 12 m a nord, il secondo di 6 m a sud-est (cioè con un angolo $-\pi/4 = -45^{\circ}$) ed il terzo tiro di 3 m a sud-ovest (cioè con un angolo $-3\pi/4 = -135^{\circ}$). Quale spostamento è necessario per mandare la palla in buca in un colpo solo?

GEOMETRIA

ALCUNI ESEMPI

- Perimetro ed area di una circonferenza
- Area e volume di una sfera
- Volume di un cilindro
- Volume di una calotta sferica

DERIVATE

- 1. Data $f(x)=x^2-rac{3}{4}x^5+3$, quanto vale $rac{\mathrm{d}f(x)}{\mathrm{d}x}$?
- 2. Data $f(x,y)=2xy^2-x^2-rac{3}{4}x^5+3y+5$, quanto vale $rac{\partial f(x,y)}{\partial x}$?
- 3. Data f(x(t),t), qual è la differenza fra $\frac{\mathrm{d}f}{\mathrm{d}t}$ e $\frac{\partial f}{\partial t}$?

INTEGRALI

- 1. Data $f(x)=-\frac{1}{3}x^2+5$, qual è l'espressione dell'integrale indefinito $\int f(x)\mathrm{d}x$?
- 2. Data la funzione definita sopra, quanto vale $\int_0^2 f(x) dx$?
- 3. Integrali di linea: cosa sono, come si calcolano? Esempio: $\int_A^B \vec{F} \cdot d\vec{s}$
- 4. Integrali multipli: vedremo come si usano le coordinate sferiche e polari