$\text{Li}_{\nu}(z)$, where $z=e^{\beta\mu}$ is a fugacity, using $\int d^d\mathbf{k}=2\pi^{d/2}/\Gamma(d/2)\int dkk^{d-1}$ and the integrals

$$\int_0^\infty dx \, \frac{zx^{\nu-1}}{e^x - z} = \Gamma(\nu) \mathrm{Li}_{\nu}(z)$$

$$\int_0^\infty dx \, \frac{zx^{\nu-1}}{e^x + z} = -\Gamma(\nu) \mathrm{Li}_{\nu}(-z)$$
(21)

valid for $\text{Re}(\nu) > 0$. The result, as expected, is proportional to T/λ_T^d :

$$\mathcal{F} = -sT \left(\frac{mT}{2\pi}\right)^{d/2} \operatorname{Li}_{(d+2)/2}(sz)$$
 (22)

There are two important limits to consider. For Bose gases near Bose-Einstein condensation, physically the interesting limit is $\mu/T \to 0$. Since $\text{Li}_{\nu}(1) = \zeta(\nu)$, where ζ is Riemann's zeta function, this leads us to define the scaling functions $c_d(\mu/T)$:

$$\mathcal{F} = -\frac{\pi m T^2}{12} c_2(\mu/T) \qquad (d=2)$$

$$\mathcal{F} = -\frac{\zeta(5/2)m^{3/2}T^{5/2}}{(2\pi)^{3/2}} c_3(\mu/T) \qquad (d=3)$$
(23)

where we have used $\zeta(2) = \pi^2/6$. With the above normalizations, $c_d = 1$ for a single free boson when $\mu/T = 0$.

The above formulas are well-defined for fermions at zero chemical potential. Using

$$-\operatorname{Li}_{\nu}(-1) = \left(1 - \frac{1}{2^{\nu - 1}}\right)\zeta(\nu) \tag{24}$$

one finds as $\mu/T \to 0$:

$$c_2 = \frac{1}{2}, \qquad c_3 = 1 - \frac{1}{2\sqrt{2}}$$
 (free fermions) (25)

It should be pointed out that the coefficients c_d are analogous to the Virasoro central charge for relativistic systems in d = 1, as discussed in [27].

The other interesting limit is $T/\mu \to 0$, i.e. $z \to \infty$ or $z \to 0$, depending on the sign of the chemical potential. Here the scaling forms are naturally based on the