Розпочато понеділок 28 грудень 2020 09:00 Стан Завершено Завершено понеділок 28 грудень 2020 11:00 Витрачено часу 1 година 59 хв Оцінка 38.0 з можливих 50.0 (76%) Питання 1 • Рівність вигляду $G(t,x,\dot{x},\ddot{x},\dots,x^{(n)})=0$, в якій $oxed{t}$ lacktriangledown — незалежна змінна, G — відома функція Завершено Балів 1,4 з 2,0 багатьох змінних \checkmark та x – шукана \checkmark функція однієї змінної \checkmark , називаємо звичайним диференціальним **рівнянням**, якщо \bigcirc функція x ефективно залежить від часу t; lacktriangle функція G ефективно залежить від похідних функції x; \bigcirc функція G не залежить від x; \bigcirc функція G ефективно залежить від першої похідної шуканої функції. • Яка з рівностей не є диференціальним рівнянням? $x^n(t) = \dot{x}(t) + 1$ $\bigcirc \dot{x}(t) = x(t) + \int\limits_{0}^{1} s \, ds$ $\sin^2 \dot{x}(t) + x(t) = t^2 + \cos^2 \dot{x}(t)$ $\hat{x}(t) = x(t) \cdot x(t-2)$

Питання 2

Завершено

Балів 2,0 з 2,0

- Функцію x=arphi(t) називаємо **розв'язком диференціального рівняння** n**-го порядку** $F(t,x,\dot{x},\ddot{x},\dots,x^{(n)})=0$, якщо

 - \bigcirc F неперервна за усіма змінними, а arphi неперервно диференційовна;
 - $\bigcirc \ arphi$ $\ arphi$ $\ arphi$ е неперервно диференційовна і перетворює рівняння в тотожність за змінною t
 - \odot φ має неперервні похідні до порядку n і перетворює рівняння в тотожність за змінною t;.
- Встановіть відповідність між диференціальними рівняннями та їхніми розв'язками.

A.
$$y^{(4)} = y + 2\pi$$
. B. $xy''' = y'' + 4$. C. $\sin y' = 1 - \cos 2y'$.

1.
$$y = 3x + \pi$$
. 2. $y = x^3 - 2x^2 + x$. 3. $y = 2\pi x - 3$. 4. $y = \cos x + 2e^{-x} - 2\pi$.

 $A \begin{bmatrix} 4 & \checkmark \end{bmatrix} \qquad B \begin{bmatrix} 2 & \checkmark \end{bmatrix} \qquad C \begin{bmatrix} 3 & \checkmark \end{bmatrix}$

 $\sin^2 \dot{x}(t) + x(t) = t^2 - \cos^2 x(t)$

Питання 6 • Якщо функція v=v(t,x) – неперервною за обома змінними та неперервнодиферинційованою за змінною x, то Завершено задача Коші $\dot{x}=v(t,x),\,x(a)=b\,$ має $\,$ єдиний розв'язок, який визначений в околі точки а 🗸 Балів 0,6 з 2,0 - Задача Коші $\dot{x}=v(t,x),\;x(a)=b\;\;$ є еквівалентною інтегральному рівнянню $\bigcirc \ x(t) = b + \int\limits_{s}^{b} v(s,x(s)) \, ds,$ $\bigcirc \hspace{0.1cm} x(t) = a + \int\limits_{-t}^{t} v(s,x(s)) \, ds \hspace{1cm} \circledcirc \hspace{0.1cm} x(t) = b + \int\limits_{-t}^{t} v(s,x(s)) \, ds$ а послідовні наближення Пікара розв'язку задачі знаходимо за рекурентними формулами $@ \ x_n(t) = b + \int\limits_a^t v(s,x_{n+1}(s)) \, ds \qquad @ \ x_{n+1}(t) = a + \int\limits_a^t v(s,x_n(s)) \, ds \qquad @ \ x_n(t) = b + \int\limits_a^t v(s,x_{n-1}(s)) \, ds$ для $n=1,2,\ldots$, а нульове наближення ${\mathfrak e}$ таким $x_0(t) = a$ • Друге наближення Пікара для розв'язку задачі Коші $\,\dot{x}=6t+x,\;\;x(0)=2\,$ має вигляд

 $x_2(t) = t^3 +$

• Систему диференціальних рівнянь $\dot{x}=f(t,x),$ $x=(x_1,\ldots,x_n),$ називаємо динамічною системою , якщо
ullet її права частина f не залежить явно від часу t ;
\bigcirc її права частина f не залежить від шуканих функцій x_1,\ldots,x_n ;
\bigcirc її права частина f динамічно змінюється з часом;
\bigcirc її права частина f є сталою вздовж розв'язків.
• Яка з систем диференціальних рівнянь є динамічною системою?
$\bigcirc \; \dot{x} = xy + e^t, \dot{y} = x + y \qquad \qquad \bigcirc \; \dot{x}_1 = x_1 - 1, \dot{x}_2 = x_2 + 2 \qquad \qquad \bigcirc \; \dot{u} = v, \dot{v} = t.$
• <i>Особливою точкою (станом рівноваги)</i> динамічної системи $\dot{x}=f(x)$ називаємо таку точку x_0 , в якій
\bigcirc векторне поле f відмінне від нуля;
○ перетинаються траєкторії;
$ ext{ }$ векторне поле f обертається в нуль;
\bigcirc векторне поле f є сталим.
$ullet$ Динамічна система з фазовим простором \mathbb{R}^2
$\left\{ egin{array}{l} \dot{x}_1 = (x_1+1)^2 + x_2^2 - 1 \ \dot{x}_2 = (x_1-2)^2 + x_2^2 - 1 \end{array} ight.$
○ не має особливих точок ○ має лише одну особливу точку ◎ має дві особливі точки.
• <i>Траєкторією</i> динамічної системи $\dot{x}=v(x),$ $x\in\mathbb{R}^n$, називаємо
 криву у фазовому просторі без точок самоперетину;
 криву у розширеному фазовому просторі, яка є графіком розв'язку;
○ стаціонарний розв'язок динамічної системи;
миньм и фэровоми просторі, запараметризовани розв _і даком ципамінної сметами.

Питання 9 Завершено Балів 1,6 з 2,0

Завершено

Балів 2,0 з 2,0

- риву у фазовому просторі, запараметризовану розв'язком динамічної системи;
- орозв'язок динамічної системи, який є періодичною функцією.
- Неперервно диференційовну функцію U=U(x), $x\in\mathbb{R}^n$, відмінну від сталої, називаємо **першим інтегралом** динамічної системи $\dot{x}=v(x)$, якщо
 - вона є стаціонарним розв'язком системи;
 - ⊚ вона є сталою вздовж траєкторій динамічної системи;
 - о вона залишається сталою в околі особливих точок;
 - вона є інтегровна вздовж розв'язків системи.
- Перевірте, яка з функцій є першим інтегралом динамічної системи

$$\left\{ egin{array}{l} \dot{x}=z,\ \dot{y}=y-z,\ \dot{z}=z-1. \end{array}
ight.$$

$$\bigcirc U = yz + x$$

$$\bigcirc U=z-x+\ln|z-1|$$

$$\bigcirc \ \ U=yz+x; \qquad \qquad \bigcirc \ \ U=z-x+\ln|z-1|; \qquad \qquad \bigcirc \ \ U=y-z+\ln|y-1|.$$

Завершено

Балів 5,0 з 5,0

Завдання А

Завдання вимагає повного письмового розв'язку

Знайдіть розв'язок задачі Коші $\,x^2y'=16x^2+xy+y^2,\;\;y(1)=0.$

- 1. Диференціальне рівняння в цьому завданні це
 - рівняння із відокремленими змінними;
 - однорідне рівняння;
 - рівнянням Бернуллі;
 - рівняння, жодного з перелічених вище типів.
- 2. Рівняння можна звести до рівняння із відокремленими змінними 🗸 , застосувавши заміну
 - v = y/x;
 - $v = 16x^2 + y^2$;
 - v = 4x + y
 - v = xy.
- 3. Загальний розв'язок диференціального рівняння має вигляд
 - $y = \operatorname{tg}(4x + C);$
 - $y = \sin \ln |Cx|$;
 - $u = \ln x 4x + C$:
 - $y = 4x \operatorname{tg} (4 \ln |x| + C)$
- 4. Розв'язком задачі Коші є функція
 - y = tg(4x 4);
 - $y = \sin \ln x$
 - $y = 4x \operatorname{tg} (4 \ln x);$
 - $y = \ln x 4x + 4.$

Питання 12

Завершено

Балів 5,0 з 5,0

Завдання В

Завдання вимагає повного письмового розв'язку

Знайдіть розв'язок задачі Коші $\,xy'+x^5y^2\cos x+4y=0,\ \, y(\pi)=rac{1}{4\pi^4}.$

- 1. Диференціальне рівняння в цьому завданні це
 - 🔾 рівняння із відокремленими змінними;
 - пінійне рівняння;
 - однорідне рівняння;
 - рівняння Бернуллі;
 - орівняння, жодного з перелічених вище типів.
- 2. Рівняння можна звести до лінійного рівняння 🗸 , застосувавши заміну
 - v = y/x;
 - $\bigcirc \ v=y^2;$
 - $v = y^2 \cos x$;
 - v = 1/y.
- 3. Загальний розв'язок диференціального рівняння має вигляд
 - $x^4y (\sin x + C) = 1, y = 0;$
 - $x^4y = \sin x + C, y = 0;$
 - $y = x^4(\sin x + C), y = 0;$
 - $y = \sin x + Cx^4, \quad y = 0.$
- 4. Розв'язком задачі Коші є функція, яка задана формулою 1 ∨ .

1.
$$y = \frac{1}{x^4(\sin x + 4)}$$
. 2. $y = \frac{\sin x + 1}{4x^4}$. 3. $y = (\sin x + 4)x^4$. 4. $y = \sin x + \frac{x^4}{4\pi^8}$.

Завершено

Балів 3,0 з 5,0

Завдання С

Завдання вимагає повного письмового розв'язку

1. Рівняння в цьому завданні є рівнянням Клеро

Розв'яжіть неявне рівняння $6y'^6(y-xy')=1$.

- y = a(y)y' + b(y);
 - y' + a(x)y = b(x);
 - y = xy' + b(y');
 - y = a(x)y' + b(y')
- у , які задані формулою 4 у . 2. Графіками розв'язків цього рівняння є прямі

1.
$$y = (Cx + 6C)^2$$
. 2. $y = Cx + 6C^6$. 3. $y = \frac{C}{x} + 6C^6$. 4. $y = Cx + \frac{1}{6C^6}$.

- 3. Це рівняння також має особливий розв'язок
 - $y = x^{\frac{6}{7}} \frac{1}{7} x^{\frac{7}{6}}$

- $\bigcirc y = rac{7}{6} \, x^7; \qquad \bigcirc y = rac{7}{6} \, x^rac{6}{7}; \qquad \bigcirc y = 7 ig(rac{x}{6}ig)^rac{6}{7}.$
- 4. Особливим називаємо такий розв'язком неявного рівняння, який в кожній 🗸 точці свого графіка торкається графіка 🗸 іншого розв'язку рівняння, причому в жодному ∨ околі цієї точки графіки не збігаютья

і його загальний вигляд

Питання 14

Завершено

Балів 5,0 з 5,0

Завдання D

Завдання вимагає повного письмового розв'язку

Знайдіть розв'язок задачі Коші $y''-y'-6y=2(3-4x)e^{2x},\quad y(0)=0,\;y'(0)=2.$

- 1. Лінійне однорідне рівняння має фундаментальну систему розв'язків e^{2x} , e^{-3x} e^{2x} , e^{-3x} e^{2x} , e^{3x}

- e^{-2x} , 1.

- 2. Частковий розв'язок неоднорідного рівняння шукаємо у вигляді
- $y_* = ae^x$
- $y_* = ax + b$
- $\bigcirc \ y_* = axe^x$ $\bigcirc \ y_* = (ax+b)e^{2x}$

і він є таким

- $\bigcirc \ y_* = 6e^{2x}$
- $@ \ y_* = 2xe^{2x}$
- $\bigcirc \ y_* = -8xe^{2x}$
- 3. Загальний розв'язок лінійного неоднорідного рівняння є сумою загального розв'язку лінійного однорідного рівняння та часткового розв'язку лінійного неоднорідного рівняння, тому
 - $\bigcirc \ y = C_1 x e^x + C_2 e^{-2x} + C_3 e^{3x}$
 - $igcup y = 2xe^{2x} + C_1e^{-2x} + C_2e^{3x}$
 - $y = 6e^{2x} + C_1e^{-2x} + C_2xe^{3x}$
 - $\bigcirc \ y = 6 8x + C_1 e^{2x} + C_2 e^{-3x}$
- 4. Розв'язком задачі Коші є функція
 - \circ $6e^{-2x} 6e^{3x}$; \circ $6e^{-2x} + 2xe^{2x}$;

- $extstyle 2xe^{2x}; extstyle 1-8x-e^{-3x}.$

Завершено

Балів 2,3 з 5,0

Завдання Е

Завдання вимагає повного письмового розв'язку

Розв'яжіть систему диференціальних рівнянь

$$\begin{cases} \dot{x}_1 = 5x_1 - 2x_2 + 8, \\ \dot{x}_2 = 5x_1 - x_2 + 9. \end{cases}$$

$$oxed{2+i}$$
 та $\lambda_2=oxed{2-i}$.

2. Серед перелічених векторів-функцій

$$u(t) = e^{2t} \left(\begin{array}{c} 2\cos t \\ 3\cos t + \sin t \end{array} \right), \quad v(t) = e^t \left(\begin{array}{c} 2\cos 2t \\ 3\sin 2t - \cos 2t \end{array} \right), \quad w(t) = e^{2t} \left(\begin{array}{c} 2\sin t \\ 3\sin t - \cos t \end{array} \right), \quad y(t) = e^{2t} \left(\begin{array}{c} 2\sin 2t \\ 3\cos 2t + \sin 2t \end{array} \right)$$

пара векторів 🔻 та 🔻 утворюють фундаментальну систему розв'язків.

- 3. Частковий розв'язок неоднорідної системи з вектором правих частин $b = (8 \,)$, $9 \,)$ треба шукати у вигляді
 - $x_* = (a_1t + b_1, a_2t + b_2);$
 - $x_* = (a_1, a_2);$
 - $x_* = e^t(a_1 \sin t, a_2 \cos t);$
 - $x_* = e^t(a_1 \sin t + b_1 \cos t, a_2 \sin t + b_2 \cos t).$
- 4. Загальний розв'язок неоднорідної системи має вигляд
 - $x_1 = e^t(c_2 c_1)\cos 2t + t 4, \ \ x_2 = e^t(2c_1\cos 2t + (3c_1 + c_1)\sin 2t) t;$
 - $x_1 = e^{2t}(c_1 \sin t + c_2 \cos t) + e^t \sin t, \quad x_2 = e^{2t}((3c_1 c_2) \cos t + (c_1 + 3c_2) \sin t);$
 - $x_1 = e^{2t}(2c_1\cos t + 2c_2\sin t) 2, \quad x_2 = e^{2t}((3c_1 c_2)\cos t + (c_1 + 3c_2)\sin t) 1.$

Питання 16

Завершено

Балів 4,6 з 5,0

Завдання F

Завдання вимагає повного письмового розв'язку з малюнками фазових портретів

Опишіть фазовий портрет динамічної системи

$$\left\{ egin{aligned} \dot{x} &= 2x^2 + y, \ \dot{y} &= y - 2x. \end{aligned}
ight.$$

в околах її особливих точок.

- 1. Динамічна система має дві особливі точки (0,0) та (-1,-2) (впишіть координати точок у форматі (х,у)).
- 2. Нехай $u=(u_1,u_2)$ нові координати в околі особливої точки, а $\dot{u}=Au$ лінеаризація динамічної системи в околі цієї точки. Серед матриць

$$\begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ -2 & 1 \end{pmatrix}, \quad \begin{pmatrix} 4 & 1 \\ 2 & 1 \end{pmatrix}, \quad \begin{pmatrix} -4 & 1 \\ -2 & 1 \end{pmatrix}$$

лише друга 🔻 та четверта 🔻 матриці є лінеаризаціями нашої динамічної системи в околі станів рівноваги.

- 3. Знайдіть власні значення і власні вектори матриць лінеаризацій.
- 4. Намалюйте фазові портрети в околі кожної точки рівноваги. Один зі станів рівноваги фокус 🔻 , а інший сідло 🔻

Типова динаміка системи в околі цих станів зображена на малюках (b) 🗸 та (d) 🗸 відповідно.

