Schéma de correction 2017

Qu	estic	n	Solution		
	1		cours	2	
	2		cours	5	
	3	а	$v_0 = \sqrt{v_{0x}^2 + v_{0z}^2} = \sqrt{50^2 + 25^2} \frac{\text{m}}{\text{s}} \approx 55.9 \frac{\text{m}}{\text{s}}$ $\alpha = \tan^{-1} \left(\frac{v_{0z}}{v_{0x}}\right) = \tan^{-1} \left(\frac{25}{50}\right) \approx 26.6 ^{\circ}$	2	
A		b	• Au point d'impact dans l'eau: $z=0$ $ \rightarrow \frac{g}{2 \cdot v_{0x}^2} \cdot x^2 - x \cdot \tan \alpha - 25 = 0 \ (\rightarrow \text{\'eq. du } 2^{\text{nd}} \text{ degr\'e}) \Rightarrow x_I \approx 298 \text{ m} $ • Au sommet: $v_z = 0$ $ \rightarrow t_S = \frac{v_{0z}}{g} = \left(\frac{25}{9.81}\right) s \approx 2,55 \text{ s} $ $ \rightarrow z_S = -\frac{1}{2} \cdot g \cdot t_S^2 + v_{0z} \cdot t_S + z_0 = \left(-\frac{1}{2} \cdot 9,81 \cdot 2,55^2 + 25 \cdot 2,55 + 25\right) m $ $ \Rightarrow z_S \approx 56,9 \text{ m} $	3	
	1		cours	3	
	2		$R = \sqrt{\frac{2 \cdot m \cdot U_{acc}}{ q \cdot B^2}} \to R \sim \sqrt{U_{acc}} (m, q \text{ et } B \text{ constants})$	2	
В	3	а	$B = \sqrt{\frac{2 \cdot m \cdot U_{acc}}{ q \cdot R^2}} = \sqrt{\frac{2 \cdot 68u \cdot 1000}{2e \cdot 0.2655^2}} \approx 0.1 \text{ T}$	2	
		b	$R' = \sqrt{\frac{2 \cdot m' \cdot U_{acc}}{ a' \cdot B^2}} = \sqrt{\frac{2 \cdot 70u \cdot 1000}{2e \cdot 0, 1^2}} \approx 0,2694 \text{ m} \rightarrow d = 2(R' - R) \approx 7,75 \text{ mm}$	3	
		4	Vrai, l'ion subit une accélération centripète.	1	
		5	Inverser \vec{E} et \vec{B}	1	
С	2 3		cours	3	
			cours	2	
			cours	1	
	4		• $9i = 0.01 \text{ m} \iff i = \left(\frac{1}{900}\right) \text{ m}$ • $\lambda = \frac{i \cdot a}{D} = \left(\frac{0.03 \cdot 10^{-2}}{900 \cdot 0.5}\right) \text{ m} \approx 6.67 \cdot 10^{-7} \text{ m} \approx 667 \text{ nm}$ • $f = \frac{c}{\lambda} = \left(\frac{3 \cdot 10^8}{6.67 \cdot 10^{-7}}\right) \frac{1}{s} = 4.5 \cdot 10^{14} \text{ Hz} = 450 \text{ THz}$	3	
		b	$\delta = \frac{a}{D} \cdot x_5 = \frac{a}{D} \cdot 4 \cdot \frac{\lambda \cdot D}{a} = 4 \cdot \lambda = 4 \cdot 6,67 \cdot 10^{-7} \text{m} \approx 2,67 \cdot 10^{-6} \text{m} \approx 2,67 \mu\text{m}$	1	
		 5	$i \sim \lambda \text{ et } \lambda_{eau} = \frac{\lambda_{air}}{n_{aav}} < \lambda_{air} \rightarrow i'$	2	

		1	cours	1
	2		cours	2
	3		cours	2
D		а	$p = \frac{h}{\lambda} = \left(\frac{6,626 \cdot 10^{-34}}{350 \cdot 10^{-9}}\right) \frac{\text{kg·m}}{\text{s}} \approx 1,89 \cdot 10^{-27} \frac{\text{kg·m}}{\text{s}}$	1
	4	b	$v = \sqrt{\frac{2}{m} \cdot \left(\frac{h \cdot c}{\lambda} - W_S\right)} = \sqrt{\frac{2}{9,109 \cdot 10^{-31}} \cdot \left(\frac{6,626 \cdot 10^{-34} \cdot 3 \cdot 10^8}{350 \cdot 10^{-9}} - 2,24 \cdot e\right)} \approx 6,77 \cdot 10^5 \frac{\text{m}}{\text{s}}$	3
		С	$\lambda_S = \frac{h \cdot c}{W_S} = \left(\frac{6.626 \cdot 10^{-34} \cdot 3 \cdot 10^8}{2,24 \cdot e}\right) \text{m} \approx 5.54 \cdot 10^{-7} \text{ m} \approx 554 \text{ nm}$	1
	5		cours	2
	1		cours	1
	2		cours	5
	3		β^+ : $^{124}_{55}$ Cs $\rightarrow ^{124}_{54}$ Xe* + $^{0}_{+1}$ e + υ	2
E	4		• $N(t = 2 \text{ min}) = N_0 \cdot e^{-\lambda \cdot t} = \frac{m_0 \cdot N_A}{M} \cdot e^{-\frac{\ln 2}{t_1/2} \cdot t} \approx \frac{7.8 \cdot 10^{-6} \cdot 6.022 \cdot 10^{23}}{124u} \cdot e^{-\frac{\ln 2}{30.8} \cdot 120}$ $\rightarrow N(t = 2 \text{ min}) \approx 2.54 \cdot 10^{15}$	
			• $A(t = 2 \text{ min}) = \lambda \cdot N(t = 2 \text{ min}) = \frac{\ln 2}{t_{1/2}} \cdot N(t = 2 \text{ min}) = \frac{\ln 2}{30.8} \cdot 2,54 \cdot 10^{15}$ $\rightarrow A(t = 2 \text{ min}) \approx 5,72 \cdot 10^{13} \text{ Bq}$	3
		5	Vrai, comme $t = 3 \cdot t_{1/2}$, alors $A(t) = \frac{A_0}{2^3} = \frac{A_0}{8} = 0,125 \cdot A_0 \rightarrow 12,5 \% \text{ de } A_0$	1