Chapter 4.1: Natural Logarithm & The Number e

Expected Skills:

- Be able to specify the domain and range of $f(x) = e^x$ and $f(x) = \ln x$.
- Be able to graph $f(x) = e^x$ and $f(x) = \ln x$, labeling all intersections with the coordinate axes and all asymptotes.
- Be able to solve equations involving the natural logarithm or exponential function.
- Be able to evaluate limits involving the exponential function of the natural log function.
- Be able to differentiate the exponential function or the natural log function; also, be able to solve application problems such as tangent line, rates of change, local/absolute extrema, and curve sketching.
- Be able to perform logarithmic differentiation.

Practice Problems:

Algebraic Questions

- 1. Approximate each of the following quantities using 3 rectangles of equal width and left endpoints, as described in the lecture notes. Determine whether your approximation is an over approximation or an under approximation.
 - (a) ln 4
 - (b) ln 6
- 2. Approximate each of the following quantities using 3 rectangles of equal width and right endpoints, as described in the lecture notes. Determine whether your approximation is an over approximation or an under approximation.
 - (a) ln 4
 - (b) ln 6
- 3. Evaluate each of the following without using a calculator.
 - (a) ln 1
 - (b) $\ln e$
 - (c) $\ln(e^2)$
 - (d) $\ln \sqrt[3]{e}$

- (e) $e^{\ln 7}$
- (f) e^{0}
- 4. Use the properties of logarithms to expand (as much as possible) the expression as a sum, difference, and/or constant multiple of logarithms. (Assume that all variables are positive.)
 - (a) $\ln(5x^2\sqrt{y})$
 - (b) $\ln \frac{x^3}{y^2 z^4}$
 - (c) $\ln \sqrt[4]{x^3(x^2+3)}$
- 5. Use the properties of logarithms to condense the expression to the logarithm of a single quantity.
 - (a) $\ln 2 + \ln x$
 - (b) $3 \ln x + 4 \ln y 4 \ln z$
- 6. Solve the given equation for x. Where appropriate, you may leave your answers in logarithmic form.
 - (a) $e^x + 5 = 60$
 - (b) $11e^x + 5 = 60$
 - (c) $(3^{x-5}) 4 = 11$
 - (d) $\ln x \ln (x+1) = 2$
 - (e) $\frac{1 + \ln x}{2} = 0$
- 7. The equation $Q(t) = 30e^{-4t}$ gives the mass (in grams) of a radioactive element that will **remain** from some initial quantity after t hours of radioactive decay.
 - (a) How many grams were there initially?
 - (b) How long will it take for 40% of the element to **decay**? You may leave your answer in logarithmic form.
- 8. In a research experiment the population of a certain species is given by $P(t) = 15(7^t)$, where t is the number of weeks since the beginning of the experiment.
 - (a) How large was the population at the beginning of the experiment?
 - (b) How long will it take for the population to reach 300? You may leave your answer in logarithmic form.

Limit & Continuity Questions

For problems 9-18, evaluate the following limits by first making an appropriate substitution. If the limit does not exist, write DNE, $+\infty$, or $-\infty$ (whichever is most appropriate).

- 9. $\lim_{x \to \infty} e^x$
- 10. $\lim_{x \to -\infty} e^x$
- 11. $\lim_{x \to -\infty} \left(\frac{1}{e^x} \right)$
- 12. $\lim_{x \to \infty} e^{1/x}$
- 13. $\lim_{x \to \infty} \left(\frac{7}{e^x 8} \right)$
- 14. $\lim_{x \to -\infty} \left(\frac{7}{e^x 8} \right)$
- $15. \lim_{x \to 0^+} \ln x$
- 16. $\lim_{x \to \infty} \ln x$
- 17. $\lim_{x \to \infty} \left(\frac{\ln 6x}{\ln 2x} \right)$
- 18. $\lim_{x \to \infty} \left[\ln (x+2) \ln (3x+5) \right]$

For problems 19-22, evaluate the following limits by first making an appropriate substitution. If the limit does not exist, write DNE, $+\infty$, or $-\infty$ (whichever is most appropriate).

- 19. $\lim_{x \to \infty} \left(e^x \sin\left(e^{-x}\right) \right)$
- $20. \lim_{x \to 1} \left(\frac{\sin(\ln x^5)}{\ln x} \right)$
- $21. \lim_{x \to \frac{\pi}{2}^+} e^{\sec x}$
- 22. $\lim_{x \to 0^+} \tan^{-1} (\ln x)$

Derivative of the Natural Logarithmic Function

For problems 23-35, calculate $\frac{dy}{dx}$.

23.
$$y = \ln(x^2)$$

$$24. \ y = \frac{1}{\ln{(3x)}}$$

25.
$$y = x^2 \ln x$$

$$26. \ y = \ln\left(\frac{1}{x}\right)$$

27.
$$y = \ln(x^2 + 1)^2$$

28.
$$y = \left[\ln\left(x^2 + 1\right)\right]^2$$

$$29. \ y = \sqrt{\ln 2x}$$

30.
$$y = \tan(\ln x)$$

31.
$$y = \ln(\ln x)$$

32.
$$y = \ln|\sec x|$$

$$33. \ y = \ln|\sec x + \tan x|$$

$$34. \ y = \ln\left(x^x\right)$$

35.
$$y = \ln\left(\frac{2x+1}{\sqrt{x}(3x-4)^{10}}\right)$$

36. Use logarithmic differentiation to calculate
$$\frac{dy}{dx}$$
 if $y = \frac{2x+1}{\sqrt{x}(3x-4)^{10}}$

37. Let
$$y = x^{x^2}$$
. Use logarithmic differentiation to calculate $\frac{dy}{dx}$.

38. Let
$$y = x^{\cos x}$$
. Use logarithmic differentiation to calculate $\frac{dy}{dx}$.

39. Compute an equation of the line which is tangent to the graph of
$$f(x) = \ln(x^2 - 3)$$
 at the point where $x = 2$.

40. Find the value(s) of x at which the tangent line to the graph of
$$y = \ln(x^2 + 11)$$
 is perpendicular to $y = -6x + 5$.

4

- 41. Find the value(s) of x at which the tangent line to the graph of $y = -\ln x$ passes through the origin.
- 42. Calculate $\frac{d^2y}{dx^2}$ if $y = \ln(3x^2 + 2)$.
- 43. Sketch $f(x) = \frac{\ln x}{x}$. Label the coordinates of all critical points, inflection points, x-intercepts, y-intercepts, and holes. Also label all horizontal asymptotes and vertical asymptotes.
- 44. **Multiple Choice:** Let $y = \ln(\cos x)$. Which of the following is $\frac{dy}{dx}$?
 - (a) $(\ln x)(-\sin x) + (\cos x)(\ln x)$
 - (b) $-\tan x$
 - (c) $\cot x$
 - (d) $\sec x$
 - (e) $\frac{1}{\ln(\cos x)}$
- 45. Multiple Choice: Let $h(x) = \ln[(f(x))^2 + 1]$. Suppose that f(1) = -1 and f'(1) = 1. Find h'(1).
 - (a) -2
 - (b) -1
 - (c) 0
 - (d) 1
 - (e) 2
- 46. Consider the triangle formed by the tangent line to the graph of $y = -\ln x$ at the point $P(t, -\ln t)$, the horizontal line which passes through P, and the y-axis. Find a function A(t) which gives the area of this triangle.

Derivative of the Exponential Function

For problems 47-57, differentiate.

47.
$$y = e^{6x}$$

48.
$$q(x) = xe^{2x}$$

49.
$$y = e^x \cos x$$

50.
$$g(x) = e^{x^2(x-1)}$$

$$51. \ f(x) = \frac{1 - e^{2x}}{1 - e^x}$$

$$52. \ f(x) = \frac{\ln x}{e^x + 3x}$$

53.
$$f(x) = \ln(e^x + 5)$$

54.
$$f(x) = e^{\cos^2 2x + \sin^2 2x}$$

$$55. \ h(x) = \exp\left(\frac{1}{1 - \ln x}\right)$$

56.
$$f(x) = (\ln x)^{e^x}$$

57.
$$y = \frac{\arctan(e^x)}{r^3}$$

- 58. Compute an equation of the line which is tangent to the graph of $y = e^{3x}$ at the point where $x = \ln 2$.
- 59. Compute an equation of the line which is tangent to the curve $e^{xy^2} + y = x^4$ at (-1,0).
- 60. Find a linear function $T_1(x) = mx + b$ which satisfies both of the following conditions:
 - $T_1(x)$ has the same y-intercept as $f(x) = e^{2x}$.
 - $T_1(x)$ has the same slope as $f(x) = e^{2x}$ at the y-intercept.
- 61. The equation y'' + 5y' 6y = 0 is called a <u>differential equation</u> because it involves an unknown function y and its derivatives. Find the value(s) of the constant A for which $y = e^{Ax}$ satisfies this equation.
- 62. Sketch the given functions. Label the coordinates of all critical points, inflection points, x-intercepts, y-intercepts, and holes. Also label all horizontal asymptotes and vertical asymptotes.

(a)
$$f(x) = xe^{2x}$$

(b)
$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$