Relativistic Non-Ideal Flows

Laureando: Jacopo Tissino Relatore: prof. Roberto Turolla

24/09/2019

The Schwarzschild metric

Flat metric:

$$\mathrm{d}s^2 = -\,\mathrm{d}t^2 + \mathrm{d}r^2 + r^2\Big(\mathrm{d}\theta^2 + \sin^2\theta\,\mathrm{d}\varphi\Big)\,.$$

Schwarzschild metric:

$$\mathrm{d}s^2 = -\left(1 - \frac{2M}{r}\right)\mathrm{d}t^2 + \frac{1}{1 - \frac{2M}{r}}\mathrm{d}r^2 + r^2\left(\mathrm{d}\theta^2 + \sin^2\theta\,\mathrm{d}\varphi\right),$$

where c = G = 1.

The Schwarzschild metric

Image credit: https://www.physicsforums.com/insights/schwarzschild-metric-part-1-gps-satellites/.

The stress-energy tensor

The component $T^{\mu\nu}$ is the flux of μ -th component of the four-momentum p^{μ} through a surface of constant coordinate x^{ν} . For an ideal fluid ($\eta = \xi = \kappa = 0$) in the Local Rest Frame:

$$T^{\mu
u}_{ ext{ideal fluid}} = egin{bmatrix}
ho & & & & \ &
ho & & & \ &
ho & & & \ &
ho & & &
ho \ & &
ho & &
ho \ & &
ho & &
ho \ & &
ho \ & &
ho \ \end{pmatrix}_{ ext{fid}} \,,$$

where $\rho = \rho_0(1+\varepsilon)$.

Tetrads: the Local Rest Frame

A tetrad is a set of vectors $V^{\mu}_{(\alpha)}$ which are Fermi-Walker transported and satisfy:

$$g_{\mu\nu}V^{\mu}_{(\alpha)}V^{\nu}_{(\beta)}=\eta_{(\alpha)(\beta)}$$
 .

If we assume spherical symmetry and stationarity, we can determine the whole tetrad if we have the normalized radius r/2M and the velocity v.

The Local Rest Frame

The Local Rest Frame

The radiation moments

$$w_0 = \int I \, d\Omega$$

$$w_1 = \int I \cos \theta \, d\Omega$$

$$w_2 = \int I \left(\cos^2 \theta - \frac{1}{3} \right) d\Omega$$

radiation energy density radiation energy flux radiation shear stress.

The radiation moments

The full stress-energy tensor

$$T^{\mu
u} = T^{\mu
u}_{\mathsf{ideal fluid}} + egin{bmatrix} w_0 & w_1 & 0 & 0 \ w_1 & rac{1}{3}w_0 + w_2 & 0 & 0 \ 0 & 0 & rac{1}{3}w_0 - rac{1}{2}w_2 \ 0 & 0 & rac{1}{3}w_0 - rac{1}{2}w_2 \end{bmatrix}_{\mathsf{fid}}$$

The equations to solve are:

$$\nabla_{\mu} T^{\mu\nu} = 0 \qquad \qquad 2 \text{ equations}$$

$$\nabla_{\mu} \big(\rho_0 u^{\mu} \big) = 0 \qquad \qquad 1 \text{ equation}$$
 conservation of photon number
$$\qquad \qquad 2 \text{ equations}.$$

Singularities

There is a singularity in the Euler equation at $v = v_s$:

$$(v^2 - v_s^2) \frac{(yv)'}{yv} - 2v_s^2 + \frac{M}{y^2r} = -\frac{r}{yv(p+\rho)} ((\Gamma - 1)s_0 + vs_1).$$

Also, since we assume $w_2 = f(\tau)w_0$, there is another singularity at the zeroes of:

$$v^2 - vf(\tau) - \frac{1}{3}$$

Accretion efficiency

The Eddington luminosity is attained when the radiation pressure on a test hydrogen atom equals the gravitational pull on it. We have approximately:

$$\frac{L_{\mathsf{Edd}}}{M} = \frac{4\pi c G m_p}{\sigma_T} \approx 3.27 \times 10^4 \frac{L_{\odot}}{M_{\odot}} \,.$$

From the fit, fixing \dot{M} , we get $L=4\pi r^2 w_1$. We look at $I=L/L_{\rm Edd}$ in terms of $\dot{m}=\dot{M}c^2/L_{\rm Edd}$.

Accretion efficiency

