Exercise 0.1. (1) Let $G \times X \to X$ be a continuous left properly discontinuous action. Prove that the action is free.

(2) Let $r \in \mathbb{R}$ be an irrational number, and let $G = (\mathbb{Z}^2, +)$ act on $X = \mathbb{R}$ as $(n, m) \cdot t = t + n + rm$. Prove that this action is free, but not properly discontinuous. Compare with the statement of exercise 3.

Solution. (i) Suppose it is not free, so there exists $g \in G - \{e\}$ such that g.x = x for some $x \in X$. If $G \times X \to X$ is properly discontinuous, then there exists $V \subset X$ with $x \in V$ such that $V \cap gV = \emptyset$ for all $g \in G - \{e\}$. But then $x = g.x \in gV$ and $x \in V$, so $x \in V \cap gV = \emptyset$, contradiction. Hence $G \times X \to X$ can not be properly discontinuous. Taking the contraposition gives the desired result.

Suppose t = (n, m).t = t + n + rm, so n + rm = 0. But if $m \neq 0$, then $r = -\frac{n}{m} \in \mathbb{Q}$, contradicting irrationality of r, so m = 0 and hence n = 0, giving that the action is free.

Now, suppose there exists an open neighborhood V of 0 such that $(n,m) V \cap V \neq \emptyset$ implies (n,m)=(0,0). Since V is open, we can find some basis open ball $B(0,\delta) \subset V$. But by Dirichlet's approximation theorem, we can find integers n,m with $m \geq 1$ such that $|n+rm| < \delta$, which implies that $n+rm \in (n,m)V \cap B(0,\delta) \subset (n,m)V \cap V$, giving (0,0)=(n,m), but $m \geq 1$, contradiction.

Since this action is not properly discontinuous, it means that the quotient map $\mathbb{R} \to \mathbb{R}/G$ cannot be a covering map since 0, for example, has no evenly covered neighborhood(if it had, then this neighborhood would split into homeomorphic disjoint copies in \mathbb{R} satisfying which would satisfy the requirement of the action being properly discontinuous at 0).

Exercise 0.2. Let X and B be Hausdorff path-connected spaces, and let $p: X \to B$ be a local homeomorphism, i.e., for all $x \in X$, there is a neighborhood $U \subset X$ of x such that p(U) is open in B, and the restriction

$$p|_U \colon U \to p(U)$$

is a homeomorphism. Also, suppose that for all $b \in B$, $p^{-1}(\{b\})$ is finite, of the same cardinality for all points. Show that p is a covering map.

Solution. Let $F = \{1, \ldots, n := |p^{-1}(\{b\})|\} \subset \mathbb{N}$. In particular, $p^{-1}(\{b\})$ is nonempty for all $b \in B$ since it has the same cardinality for all $b \in B$ and so if it were empty, then $p^{-1}(B) = \emptyset$, contradicting p being a function. Now let $b \in B$ and let $p^{-1}(\{b\}) = \{x_1, \ldots, x_n\}$. Then by Hausdorffness, we can choose open neighborhoods $U_{1,i}$ and U_i for x_1 and x_i for all $i = 2, \ldots, n$ such that $U_{1,i} \cap U_i = \emptyset$. Let $V_1 = \bigcap_{i=2}^n U_{1,i}$ which is a neighborhood of x_1 . Now for each $i = 2, \ldots, n$, define $V_i = p^{-1}(p(V_1)) \cap U_i$. Suppose $y \in V_i \cap V_j \neq \emptyset$. Then let $\gamma : I \to V_i$ So in particular, $p(U_i)$ is an open neighborhood of b. Let $V = \bigcap_{i=1}^n p(U_i)$. Then let $U_i' = U_i \cap p^{-1}(V) \subset U_i$ which is open for each i, and since a restriction of a homeomorphism to a smaller open set is still a homeomorphism onto its image, we get that $p|_{U_i'} : U_i' \to p(U_i') = V$ is a homeomorphism for each i. Suppose $x \in U_i' \cap U_j'$ for distinct i and j. Then since the intersection of finitely many open path-connected sets with a common point is still path connected, we can choose a path $\gamma : I \to U_i' \cup U_j'$ from x_i to x_j . Thus, under

To show that the action is not properly discontinuous, we show something stronger:

Lemma 0.3. If $G \neq \{e\}$ acts properly discontinuously on \mathbb{R} , then $G \approx \mathbb{Z}$.

Proof. We have $\pi_1(\mathbb{R}/G) \approx G$. Let $\alpha \in \pi_1(\mathbb{R}/G, x_0) - \{e\}$. Then α lifts to a path $\tilde{\alpha} : I \to \mathbb{R}$ starting at some $\tilde{x_0} \in p^{-1}(x_0)$ where $p : \mathbb{R} \to \mathbb{R}/G$ is the covering map.

Firstly, we show that, for any two $y, z \in p^{-1}(x_0)$, $(y, z) \cap p^{-1}(x_0)$ is finite. For the map $\mathbb{R} \to \mathbb{R}$ by $x \mapsto g.x$ for some $g \in G$ is a homeomorphism, so letting V be an open neighborhood around $\tilde{x_0}$ for which $gV \cap V \neq \emptyset$ implies g = e, we would get that there exist infinitely many elements $g \in G$ for which $gV \subset (y, z)$ and for two distinct such $g, g', gV \cap g'V = \emptyset$ since otherwise $g^{-1}g'V \cap V \neq \emptyset$ and hence $g^{-1}g' = e$ so g = g'. Thus this would imply that there is an infinite disjoint union of open sets gV of the same measure (since $x \mapsto gx$ is a homeomorphism) contained in (y, z). Since (y, z) has finite measure, this implies that gV has measure 0, contradicting it being open.

This gives a total ordering on $p^{-1}(x_0)$ inherited from \mathbb{R} with finitely many elements in $p^{-1}(x_0)$ between any two elements in $p^{-1}(x_0)$.

Let $\tilde{x_0} \in p^{-1}(x_0)$ and $\tilde{x_0}'$ be its successor in $p^{-1}(x_0)$. We claim that the image, γ , under p of the path $\tilde{\gamma} \colon I \to \mathbb{R}$ connecting $\tilde{x_0}$ to $\tilde{x_0}'$ linearly generates $\pi_1(\mathbb{R}/G)$ as a cyclic group. Suppose $\alpha \in \pi_1(\mathbb{R}/G)$ and lift it to a path $\tilde{\alpha}$ starting at $\tilde{x_0}$. Let $\tilde{x_n} = \tilde{\alpha}(1)$. By uniqueness of lifts, we may assume by homotopy that this is the straight line path between the points $\tilde{x_0}$ and $\tilde{x_n}$, and suppose $\tilde{\alpha}^{-1}(p^{-1}(x_0)) = \{0, t_1, \ldots, t_{n-1}, 1\}$.

Now, since any loop at x_0 lifts to a path between two points in $p^{-1}(x_0)$, we thus see that there are precisely two simple loops in $\pi_1(\mathbb{R}/G)$ corresponding to the projections of the path going from $\tilde{x_i}$ to $\tilde{x_{i+1}}$ and the path going from $\tilde{x_i}$ to $\tilde{x_{i-1}}$. In particular, since the inverse of one of them is again simple, these loops are each other's inverse.

Thus, letting $\gamma \in \pi_1(\mathbb{R}/G, x_0)$ denote one of these paths, we see that $p \circ \tilde{\alpha} = \gamma^{k_1} * \ldots * \gamma^{k_n}$ where $k_i = \pm 1$. So $\alpha \in \langle \gamma \rangle$. Thus $\mathbb{Z} \approx \langle \gamma \rangle = \pi_1(\mathbb{R}/G) \approx G$.