Unit-N Differential Calculus et several yariables
PARTIAL DIFFERENTIATION

1) If
$$u = (x-y)^{+} + (y-y)^{+} + (y-y)^{+} + (y-x)^{+}$$
 show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} = 0$

given:

$$\frac{\partial u}{\partial x} = 4(x-y)^3 + 4(x-x)^3(-1)$$

$$\frac{\partial u}{\partial y} = 4(x-y)^3 (1) + 4(y-y)^3$$
 ②

$$\frac{\partial u}{\partial \gamma} = 4(\gamma - \gamma)^3(-1) + 4(\gamma - \infty)^3$$

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial \eta} = 4 \left[(x/y)^3 - (y/x)^3 - (x/y)^3 + (y/\eta)^3 + (y/\eta)^3 + (y/\eta)^3 + (y/\eta)^3 \right]$$

=0

2). If
$$u = \log (x^2 + y^2 + \eta^2)$$
 prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial \eta^2} =$

$$\frac{1}{x^2+y^2+y^2}$$

ywer -

$$= 2 \left[\frac{y^2 + \eta^2 - \infty^2}{(\infty^2 + y^2 + \eta^2)^2} \right] \qquad \bigcirc$$

Similarly

$$\frac{\partial^{2} u}{\partial y^{2}} = 2 \left[\frac{x^{2} + y^{2} - y^{2}}{(x^{2} + y^{2} + y^{2})^{2}} \right] = 0$$

$$\frac{\partial^{2} u}{\partial \eta^{2}} = 2 \left[\frac{x^{2} + y^{2} - \eta^{2}}{(x^{2} + y^{2} + \eta^{2})^{2}} \right]$$

Adding (1), (2), (3) we get

$$\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial y^{2}} = 2 \left[y^{2} + y^{2} - x^{2} + x^{2} + y^{2} - y^{2} + x^{2} + y^{2} - y^{2} \right]$$

$$(x^{2} + y^{2} + y^{2})^{2}$$

$$= 2 \left[x^{2} + y^{2} + \eta^{2} \right]$$

$$(x^{2} + y^{2} + \eta^{2})^{2}$$

$$= \frac{2}{x^2 + y^2 + \eta^2} //$$

3). If
$$R^2 = x^2 + y^2$$
 then show that
$$\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 k}{\partial y^2} = \frac{1}{h} \left[\left(\frac{\partial k}{\partial x} \right)^2 + \left(\frac{\partial k}{\partial y} \right)^2 \right]$$

Given:

$$n^2 = x^2 + y^2$$

Differentiating (1) positially w. R. t'x' we get

$$\frac{\partial \mathcal{L}}{\partial x} = 2x$$

$$\frac{\partial \mathcal{R}}{\partial \infty} = \frac{\infty}{\mathcal{R}} \tag{A}$$

Now,
$$\frac{\partial^2 \mathcal{H}}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{x}{\mathcal{H}} \right)$$

$$=\frac{9.1-x}{2}$$

$$= \frac{\Re - \infty \cdot \infty}{\Re} \qquad [Using(A)]$$

$$= \frac{\mu^2 - x^2}{\mu^3} \qquad \bigcirc$$

Similarly
$$\frac{\partial^2 R}{\partial y^2} = \frac{R^2 - y^2}{R^3}$$

$$= \frac{2 n^2 - r^2}{n^3} \left[0.002 + y^2 = n^2 \right]$$

$$=\frac{1}{g}$$
 ... (A)

Now
$$\left(\frac{\partial \mathcal{H}}{\partial x}\right)^2 = \frac{x^2}{2\ell^2}$$

$$\left(\frac{\partial n}{\partial y}\right)^2 = \frac{y^2}{n^2}$$

$$\frac{\partial u}{\partial x} + \left(\frac{\partial u}{\partial y}\right)^2 = \frac{x^2}{u^2} + \frac{x^2}{u^2}$$

$$=\frac{x^2+y^2}{n^2}$$

$$\frac{1}{n} \left[\left(\frac{\partial n}{\partial x} \right)^2 + \left(\frac{\partial n}{\partial y} \right)^2 \right] = \frac{1}{n} \dots (B)$$

$$\left(\frac{\partial^2 n}{\partial x^2} + \frac{\partial^2 n}{\partial y^2}\right) = \frac{1}{n} \left[\left(\frac{\partial n}{\partial x}\right)^2 + \left(\frac{\partial n}{\partial y}\right)^2 \right]$$

If
$$u = \cos^{-1}\left(\frac{x+y}{\sqrt{x+y}}\right)$$
 then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = -\frac{1}{2} \cot u$

ly wen:
$$\mu = \cos^{-1}\left(\frac{x+y}{5x+Jy}\right)$$

resu is the homogeneous function in x and y of degree

$$\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \frac{\partial}{\partial y} \right) + \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} \frac{\partial}{\partial y} \right) = \frac{1}{2} \cos u.$$

$$\infty \left(-\sin u\right) \frac{\partial u}{\partial \infty} + y \left(-\sin u\right) \frac{\partial u}{\partial y} = \frac{1}{2} \cos u$$

$$\frac{\partial u}{\partial n} + y \frac{\partial u}{\partial y} = \frac{-1}{2} \cot u$$

du log u

$$\log u = \frac{x^3 + 4^3}{3x^2 + 4^9}$$

$$= x^3 \left[1 + (4/x)^3 \right]$$

$$x = 3 + 4(4/x)$$

$$= x^2 \left[(4/x) \right]$$

By vouler's Theorem.

$$x \cdot \frac{\pi}{1} \cdot \frac{9x}{9\pi} + 4 \cdot \frac{\pi}{1} \cdot \frac{9h}{9\pi} = 3 \log \pi$$

3). If
$$\mu = \tan^{-1}\left(\frac{x^3 + y^3}{x^2 - y}\right)$$
 from prove $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$

$$u = \tan^{-1}\left(\frac{x^3 + y^3}{x^2 + y^3}\right)$$

tanu =
$$\frac{x^3 + y^3}{3c - y}$$

$$= x^3 \left[1 + (y/x)^3 \right]$$

$$3c \left[1 - (y/x) \right]$$

. . tan u is a homogeneous function of degree 2.

By wuler Theorem

$$\frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{2 \tan u}{8 ec^2 u}$$

$$x^{2} u_{xx} + 2xy \cdot u_{xy} + y^{2} u_{yy} = n(n-1)u$$

$$= 2(2-1)u \quad (n=2)$$

5) If
$$u = f(x-y, y-\eta, \eta-x)$$
 show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial \eta} = 0$

$$x - y = x_1$$

$$y - y = x_2$$

$$y - x = x_3$$

x = x - y	x2 = y-n	E3 = 4-2
$\frac{\partial \infty}{\partial x^1} = 1$	$\frac{\partial x}{\partial x^3} = 0$	30c = -1
$\frac{\partial x_1}{\partial y} = -1$	$\frac{\partial x_2}{\partial y} = 1$	<u>d</u> 23 ≥ 0
$\frac{\partial \mathcal{J}}{\partial x^{\prime}} = 0$	<u> </u>	3 x3 = 1

$$u = f(x-y, y-y, y-x) = f(x, x_2, x_3)$$

Now

$$\frac{\partial x}{\partial x} = \frac{\partial x}{\partial x}, \quad \frac{\partial x}{\partial x} + \frac{\partial x}{\partial x}, \quad \frac{\partial x}{\partial x} + \frac{\partial x}{\partial x}, \quad \frac{\partial x}{\partial x}$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial x} =$$

Similarly

$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial x_1} \cdot \frac{\partial x_2}{\partial y} + \frac{\partial u}{\partial x_2} \cdot \frac{\partial x_2}{\partial y} + \frac{\partial u}{\partial x_3} \cdot \frac{\partial x_3}{\partial y}$$

$$= \frac{\partial u}{\partial x_1} (-1) + \frac{\partial u}{\partial x_2} (1) + \frac{\partial u}{\partial x_3} (0) \left[\text{string(A)} \right]$$

$$\frac{\partial u}{\partial y} = -\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x_2}$$

$$\frac{\partial u}{\partial \eta} = \frac{\partial u}{\partial x_1} \cdot \frac{\partial x_2}{\partial z} + \frac{\partial u}{\partial x_2} \cdot \frac{\partial x_2}{\partial x_3} + \frac{\partial u}{\partial x_3} \cdot \frac{\partial x_3}{\partial \eta}$$

$$= \frac{\partial u}{\partial x_{1}}(0) + \frac{\partial u}{\partial x_{2}}(-1) + \frac{\partial u}{\partial x_{3}}(1)$$
[Visitg(A)]

$$= -\frac{\partial u}{\partial x_2} + \frac{\partial u}{\partial x_3}$$

Adding 0, D, 3 we get

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial y} = 0.$$

6). If
$$y = f(x, y)$$
 where $x = x$ rose, $y = x$ sine show that

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial x}\right)^2 + \frac{1}{\gamma^2} \left(\frac{\partial z}{\partial \theta}\right)^2$$

$$\frac{\partial x}{\partial x} = \cos \theta$$

$$\frac{\partial x}{\partial x} = \cos \theta$$

$$\frac{\partial x}{\partial \theta} = -x\sin \theta$$

$$\frac{\partial y}{\partial \theta} = x\cos \theta$$

$$\frac{\partial y}{\partial \theta} = x\cos \theta$$

$$\frac{\partial y}{\partial \theta} = x\cos \theta$$

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial x} \cdot \frac{\partial \infty}{\partial x} + \frac{\partial Z}{\partial y} \cdot \frac{\partial y}{\partial x}$$

$$= \frac{\partial Z}{\partial x} \cdot \frac{\partial \infty}{\partial y} + \frac{\partial Z}{\partial y} \sin \left[\text{Using Jable} \right] \quad 0$$

$$\left(\frac{\partial Z}{\partial x} \right)^2 = \left(\frac{\partial Z}{\partial x} \cos + \frac{\partial Z}{\partial y} \sin \right)^2$$

$$= \left(\frac{\partial z}{\partial x}\right)^2 \cos^2 \theta + \left(\frac{\partial z}{\partial y}\right)^2 \sin^2 \theta + 2\frac{\partial z}{\partial x} \frac{\partial z}{\partial y} \sin^2 \theta + 2\frac{\partial z}{\partial x} \frac{\partial z}{\partial y} \sin^2 \theta + 2\frac{\partial z}{\partial y}$$

$$\frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial \theta} + \frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial \theta}$$

$$=\frac{\partial z}{\partial x}\left(-\mu\sin\theta\right)+\frac{\partial z}{\partial y}\left(r\cos\theta\right)$$
 Using Jacke

$$\frac{1}{r} \frac{\partial z}{\partial \theta} = -\frac{\partial z}{\partial x} \text{ Aire } + \frac{\partial z}{\partial y} \text{ cose}$$

$$\left(\frac{1}{\gamma} \frac{\partial z}{\partial \theta}\right)^2 = \left(\frac{\partial z}{\partial y} \cos \theta - \frac{\partial z}{\partial \cos} \sin \theta\right)^2$$

$$\frac{1}{7^2} \left(\frac{\partial z}{\partial \theta} \right)^2 = \left(\frac{\partial z}{\partial y} \right)^2 \cos^2 \theta + \left(\frac{\partial z}{\partial x} \right)^2 \sin^2 \theta - 2 \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} \sin \theta \cos \theta$$

$$\left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2 = \left(\frac{\partial z}{\partial \infty}\right)^2 \left(\cos^2\theta + \sin^2\theta\right) + \left(\frac{\partial z}{\partial y}\right)^2$$

(ca20 + sin20)

$$\left(\frac{\partial z}{\partial \tau}\right)^{2} + \frac{1}{\tau^{2}} \left(\frac{\partial z}{\partial \theta}\right)^{2} = \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}.$$

If y = u(x, y) where $u = e^{u} \cos v$ and $y = e^{u} \sin v$ Show that $y \frac{\partial z}{\partial u} + \infty \frac{\partial z}{\partial v} = e^{2u} \frac{\partial z}{\partial y}$

$$\frac{\partial x}{\partial u} = e^{u} \cos v$$

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}$$

$$= \frac{\partial z}{\partial \infty} \cdot e^{u} \cos v + \frac{\partial z}{\partial y} \cdot e^{u} \sin v \quad [Using table]$$

$$\frac{\partial z}{\partial u} = x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 0$$

Also

$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v}$$

$$= \frac{\partial z}{\partial x} \cdot \left(-e^{\frac{\pi}{2}} \sin v \right) + \frac{\partial z}{\partial y} \cdot e^{\frac{\pi}{2}} \cos v \left[\text{using Jable} \right]$$

$$\frac{\delta z}{\partial v} = -y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} - 3$$

Adding @ + @

$$\frac{4}{\partial u} + \frac{\partial z}{\partial v} = \frac{\partial z}{\partial v} + \frac{\partial z}{\partial v} + \frac{\partial z}{\partial v} - \frac{\partial z}{\partial v} + \frac{\partial z}{\partial v} + \frac{\partial z}{\partial v}$$

$$= (4^{2} + x^{2}) \frac{\partial z}{\partial v}$$

$$= (e^{2u} \sin^{2} u + e^{2u} \cos^{2} u) \frac{\partial z}{\partial v}$$

$$= e^{2u} \left(\sin^2 v + \cos^2 v \right) \frac{\partial z}{\partial y}$$

8) If
$$z = u^2 + v^2$$
, $x = u^2 - v^2$, $y = uv$ find $\frac{\partial z}{\partial x}$

$$\frac{\partial z}{\partial u} = 2u$$
 $\frac{\partial z}{\partial v} = 2v$

$$\frac{\partial z}{\partial \infty} = \frac{\partial z}{\partial \alpha} \cdot \frac{\partial u}{\partial \alpha} + \frac{\partial z}{\partial \gamma} \cdot \frac{\partial v}{\partial \alpha}$$

$$\frac{\partial z}{\partial x} = 2u \frac{\partial u}{\partial x} + 2v \frac{\partial u}{\partial x}$$
 [see table] (9)

Green:- $x = u^2 - v^2$, partially differentiating w. r. t'x' $1 = 2u \frac{\partial u}{\partial x} - 2v \frac{\partial v}{\partial x}$

$$y=uv$$
, Partially differentiating w. R. t 'oc'
$$0=v\frac{\partial u}{\partial c}+u\frac{\partial v}{\partial c}$$

From D + 8.

$$\frac{\partial u}{\partial x} = \frac{u}{2(u^2+v^2)}$$

$$\frac{\partial V}{\partial x} = \frac{-V}{2(u^2 + V^2)} \qquad (6)$$

$$\frac{\partial z}{\partial x} = \frac{2u^2}{2(u^2 + v^2)} - \frac{2v^2}{2(u^2 + v^2)}$$

$$=\frac{x}{z}$$

9) If
$$x = \mu(1+v)$$
 $y = o(1+u)$ find $\frac{\delta(x,y)}{\delta(u,v)}$.

gend
$$\frac{\delta(x,y)}{\delta(u,v)}$$
.

$$\frac{\partial x}{\partial u} = (1+v)$$
 $\frac{\partial x}{\partial x} = u$

$$\frac{\partial y}{\partial u} = v$$
 $\frac{\partial y}{\partial v} = 1 + u \cdot v(A)$

$$\frac{\partial(\alpha, \gamma)}{\partial(\alpha, \gamma)} = \frac{\partial \alpha}{\partial \alpha} \frac{\partial \gamma}{\partial \alpha}$$

$$= (1+10)(1+11) - 11$$

$$= 1+11+11 - 11$$

$$= 1+11+11 - 11$$

$$ff y_i = \frac{x_2 x_3}{x_1}$$
 $y_2 = \frac{x_3 x_1}{x_2}$ $y_3 = \frac{x_1 x_2}{x_3}$ Show that

the facolian of 4, 42, 43 with respect to x, x21/2

$$y_2 = 3c_3x$$
, $y_3 = x_1x_2$

$$\frac{\partial y_2}{\partial x_1} = \frac{x_3}{\partial x_1}$$
 $\frac{\partial y_3}{\partial x_2} = \frac{x_2}{x_3}$

$$\frac{\partial y_2}{\partial x_2} = \frac{-x_3 x_1}{x_2} \qquad \frac{\partial y_3}{\partial x_2} = \frac{x_1}{x_3}$$

$$\frac{\partial y_3}{\partial x_2} = \frac{x_1}{x_3}$$

$$\frac{\partial y_1}{\partial x_3} = \frac{x_1}{x_2}$$

$$\frac{\partial y_3}{\partial x_3} = \frac{x_1}{x_2}$$

$$\frac{\partial(\gamma_1, \gamma_2, \gamma_3)}{\partial(x_1, x_2, x_3)} = \frac{|\partial y_1/\partial x_1|}{|\partial y_2/\partial x_1|} \frac{|\partial y_1/\partial x_2|}{|\partial y_2/\partial x_2|} \frac{|\partial y_1/\partial x_2|}{|\partial y_3/\partial x_2|} \frac{|\partial y_1/\partial x_3|}{|\partial y_3/\partial x_2|} \frac{|\partial y_1/\partial x_3|}{|\partial y_3/\partial x_3|}$$

assing (

14)

= U-UV

(A)

$$\frac{\partial x}{\partial y} = -u$$

$$\frac{\partial y}{\partial v} = u - u \omega$$

$$J = \frac{\partial(\infty, y, \infty)}{\partial(u, v, \omega)}$$

$$J = \frac{\partial(\infty, y, \infty)}{\partial(u, v, \omega)} = \frac{\partial \infty}{\partial u} \frac{\partial \infty}{\partial v} \frac{\partial \omega}{\partial v} \frac{\partial \omega}{\partial$$

=
$$(1-1)$$
 [$(u-u)$ $(uv) + u^2vw$]
+ u [$uv(v-vw)+uv$.

$$= (1-10) \left[u^{2} v - u^{2} w + u^{2} w w \right] + u \left[u^{2} v^{2} \right]$$

$$= u^{2} v - u^{2} / v^{2} + u^{2} / v^{2}$$

$$= u^{2} v - u^{2} / v^{2} + u^{2} / v^{2}$$

$$\frac{\partial(\alpha,\gamma,\omega)}{\partial(\alpha,\gamma,\omega)} = \alpha^2 \gamma.$$

9) If $x = u \cos v$, $y = u \sin v$, show that $\frac{\partial(u,v)}{\partial(x,y)} = \frac{\partial(x,y)}{\partial(x,v)}$

x = u cosy	y=u sinv	
doc = cosv	dy = sinv	(A),
doc = -using	34 = 17 coss.	

$$\frac{g(n'\lambda)}{g(2\pi)} = \frac{g(3\pi)g\lambda}{gx(3\lambda)}$$

= 11 (cos² v + u sin² v)

J= u

Now we have to express u and winterme of 2e, 4y

SC = MCOSP, y=u Sin V

$$(-\infty^2 + y^2 = u^2 (\cos^2 x) + \sin^2 x)$$

$$= u^2$$

$$u = \sqrt{x^2 + y^2}$$

$$u = \sqrt{x^2 + y^2}$$

$$\frac{\partial u}{\partial x} = \frac{8x}{8x^2 + y^2}$$

$$= x$$

$$\frac{\partial v}{\partial x} = \frac{1}{1 + \sqrt{3}x^2} \left(\frac{y}{x^2} \right)$$

$$= x^2 \left(\frac{y}{x^2}\right)$$

$$\frac{\partial v}{\partial y} = \frac{1}{1 + y^2/x^2} \left(\frac{1}{x} \right)$$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} \left(\frac{\partial y}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial y}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial y}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} \right) = \frac{\partial}{\partial y}$$

$$J' = \frac{3c^2}{(x^2 + y^2)^{3/2}} + \frac{y^2}{(x^2 + y^2)^{3/2}}$$

$$= x^2 + y^2$$

$$(x^2 + y^2)^{3/2}$$

$$J' = \frac{1}{u} \left[\frac{1}{2} u^2 \sqrt{x^2 + y^2} \right] \Theta$$

13). Find the Value of the Jacobian d(u,v), where

$$u = x^{2} - y^{2}$$

$$\frac{\partial u}{\partial x} = 9x$$

$$\frac{\partial u}{\partial x} = -2y$$

$$\frac{\partial u}{\partial y} = -2y$$

$$\frac{\partial u}{\partial y} = 2x$$

$$\frac{\partial(\alpha, v)}{\partial(\alpha, v)} = \frac{\partial \alpha}{\partial \alpha} \frac{\partial \alpha}{\partial \alpha} \frac{\partial \alpha}{\partial \alpha} \frac{\partial \alpha}{\partial \alpha}$$

$$=4(x^{2}+y^{2})$$

= $4x^{2}$

oc=Rceso	y=2800
Dx = ceso	dy = sino
de = reine	90 = 10010

$$\frac{9(x^{10})}{9(x^{10})} = \frac{98/92}{9x/92} = \frac{98/92}{9x/92}$$

$$= |\cos \theta| - rgine$$

$$= r \cos^{2}\theta + r \sin^{2}\theta$$

$$= r \cos^{2}\theta + r \cos^{2}\theta + r \sin^{2}\theta$$

$$= r \cos^{2}\theta + r \cos^{2}\theta + r \cos^{2}\theta$$

$$= r \cos^{2}\theta + r \cos^{2}\theta + r \cos^{2}\theta + r \cos^{2}\theta$$

$$= r \cos^{2}\theta + r \cos^{2}\theta + r \cos^{2}\theta + r \cos$$

14). If $u = \infty y + yy + y\infty$, $v = \infty^2 + y^2 + Z^2$ and $w = \infty + y + y$ determine whether is a functional relationship between u, v, w and if so, find it?

u= sey+97+ 72	$V = \infty^2 + y^2 + \eta^2$	m= 20-14+2	
da = y+y	<u>∂v</u> = 250	∂w 21.	2
du = Ztoc	$\frac{\partial v}{\partial y} = 2y$	<u>dw</u> =1	
du Excty	2 = 27 8 Z	$\frac{\partial co}{\partial z} \ge 1$	

$$\frac{\partial (\alpha, v, \omega)}{\partial (\alpha, v, \omega)} = \frac{\partial \alpha}{\partial \alpha} \frac{\partial \alpha}{\partial y} \frac{\partial \alpha}{\partial z}$$

$$\frac{\partial (\alpha, v, \omega)}{\partial \alpha} = \frac{\partial \alpha}{\partial x} \frac{\partial \alpha}{\partial y} \frac{\partial \alpha}{\partial z}$$

$$\frac{\partial \alpha}{\partial x} \frac{\partial \alpha}{\partial y} \frac{\partial \alpha}{\partial z}$$

$$\frac{\partial \alpha}{\partial x} \frac{\partial \alpha}{\partial y} \frac{\partial \alpha}{\partial z}$$

$$\frac{\partial \alpha}{\partial x} \frac{\partial \alpha}{\partial y} \frac{\partial \alpha}{\partial z}$$

$$\frac{\partial \alpha}{\partial z} \frac{\partial \alpha}{\partial y} \frac{\partial \alpha}{\partial z}$$

= 2
$$\left[q^2 - yz + zy - m^2 - mx + y^2 - x^2 + xz + x^2 - xy + xy - y^2 \right]$$

Hence the functional quelationship excists between

TAYLER'S THEOREM!

$$f(x,y) = f(a,b) + [(x-a)f_{x}(a,b) + (y-b)f_{y}(a,b)]$$

$$+ \frac{1}{2} \cdot [(x-a)^{2} f_{xx}(a,b) + 2(x-a)(y-b)f_{xy}$$

$$(a,b) + (y-b)^{2} f_{yy}(a,b)f_{xy}$$

Toylor's series as far as quadratic terms.

***	Faration	Value at (1, T/4).
	$f(x,y) = e^{x} \cos y$	f(:, T/4)=e-1-=e J2 J2
	foces, y) = excesy	$\int \infty (1, T/4) = e/J_2.$
	fac(x,y)=ercosy	bac(1, 7/4)= e/52.
	by (xy)= -essing	by=[1,17/4)=-e/52
	fyy (or, y) = -excesy	fy (1, T/4) = - e/52
	l lacula accomi	(1 T/1) = - e/1

We k. k that
$$\begin{cases}
(x,y) = f(a,b) + [(x-a)fx(a,b) + (y-b)fy(a,b)] \\
+\frac{1}{2!} [(x-a)^2 fxx(a,b) + 2(x-a)(y-b)fxy(a,b)] \\
(a,b) + (y-b)^2 fy(a,b) + \cdots
\end{cases}$$

John a = 1 b=
$$\pi/4$$

 $g(x,y) = g(1,\pi/4) + [(x-1)]_{x}(1,\pi/4) + (y-\pi/4) fy(1,\pi/4)$
 $+ \frac{1}{2!}[(x-1)^{2}]_{xx}(1,\pi/4) + 2(x-1)[y-\pi/4)f_{xy}(1,\pi/4)$
 $+ (y-\pi/4)^{2}f_{yy}(1,\pi/4) + \cdots (g^{2})$

Such in B we get.

$$e^{x}\cos y \stackrel{?}{=} e^{+} \left[\stackrel{(x-1)}{=} e^{-} + \left(y - \sqrt{1/4} \right) \left(-\frac{e}{\sqrt{3}} \right) \right]$$

$$+ \frac{1}{2} \left[\stackrel{(x-1)}{=} \left(\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(y - \sqrt{1/4} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \right]$$

$$+ \left(y - \sqrt{1/4} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e}{\sqrt{3}} \right) + 2 \left(x - \frac{e}{\sqrt{3}} \right) \left(-\frac{e$$

$$\frac{1}{100} = \frac{1}{100} = \frac{1}$$

16). Expand tan-14/5c in the neighbourhood of (1,1).

Jurction

Value out (1,1).

Let f(x,y)=fax y/se

f(1,1) = tout's

 $\beta_{x}(x,y) = \frac{1}{1 + y^{2}/2} \cdot (-y)$

 $= -\frac{y}{x^2 + y^2}$ $= -\frac{y}{(x^2 + y^2)^{-1}}$

fx(1,0=-1/2

by (se,y) = 1 1 1+y2 se

 $1+\frac{y^2}{2}$ $\frac{\infty}{2c^2+y^2}$

 $= x \left(x^2 + y^2\right)^{-1}$

by (1,1) = 1/2

free (x,y) = (q)(-1)(x2+y2)-2.20

(x2+y2) 2

fxx(1,1) = 1/2

$$\int_{0}^{1} (x,y) = (x^{2}+y^{2}) 1-x\cdot 2x$$

$$(x^{2}+y^{2})^{2}$$

$$= y^{2}-x^{2}$$

$$(x^{2}+y^{2})^{2}$$

fry (1,1) =0.

fyy(1,1) = - 1/2

We know that.

$$\begin{cases} (x,y) = f(a,b) + [(x-a)/x (a,b) + (y-b)/y (a,b)] \\
+ \frac{1}{2!} [(x-a)^2 f_{xx} (a,b) + 2(x-a)(y-b)/xy \\
(a,b) + (y-b) + (y$$

Put a = 1 , b = 1

$$tan = \{(x,y)\}$$

 $= \{(1,1) + [(\infty-1)]_{2}(1,1) + (y-1)[y]_{1}(1,1) = \{(1,1) + (y-1)]_{2} = \{(1,1) + (y-1)\}_{2} = \{(1,1) + (y-1)\}_{2} = \{(1,1) + (y-1)\}_{2} = \{(1,1) + (y-1)\}_{2} = \{(1,1) + (y-1)$

(1,1)+2(x-1)(y-1)fxy(1,1)+(y-1)+qy(1))

$$= \frac{\pi}{4} + \left[(2-1)(-\frac{1}{2}) + (y-1)(\frac{1}{2}) \right]$$

$$+ \frac{1}{21} \left[(2-1)^2 \cdot \frac{1}{2} + 2(2x-1)(y-1)(0) + (y-1)^2(\frac{1}{2}) \right]$$

Maxima AND MINIMA

1. Let f(m,y) be the given function.

7. Find $\frac{\partial f}{\partial n} = 0$, $\frac{\partial f}{\partial y} = 0$, and find.

The Stationary points.

3. Find $r = \frac{\partial^2 f}{\partial x^2}$, $s = \frac{\partial^2 f}{\partial x \partial y}$, $t = \frac{\partial^2 f}{\partial y^2}$.

4. Calcilaite 86-32

Rule 1:

If rent to and 86-59 to, then f has

a minimum Value

Rule 2!

If robbelo, and re-solo, then I has
a Marinum Volue.

Rule 3!. It rt-82 Lo, then f has neither manimum nor minimum. Such a point is called a saddle point.

Rule 4) If 86 - 50 =0. Then further in vestigation is required.

				Gas	and the Samuel Sam	19 0 01101	al	22 - 4 +3	23
1)	Frid	the	mumiscan	(Orc)	queumanc	D-4CMAS	~		

$\int (x,y) = 3x^2$	-y2+x3.
$\frac{\partial f}{\partial x} = bx + 3x^2$	2t = -2y
OF 50	3y =0
$\Rightarrow 6x + 3x^2 = 0$	=> -2y 20
30(2+30)=0	y 20.
x=0 x=-2	12 (1)

Turning points are (0,0) (-2,0).

	At (0,0)	A+ (-2,0)
$\gamma = \partial^2 f_{\partial x^2} = 6 + 6 \infty$	6 > 0	6-12=-6<0
$S = \frac{0^2 f}{0 x df} = 0$	Opt August	
$t = \frac{\partial^2 f}{\partial y^2} = -2$	-2<0	2.20.
7+ -32	-12 <0	(2 >0
Result:	7 > 0, 7 - 5 ² < 0 (0,0) - Saddle poult	7<0, 7+-5°>0 (-2,0)-maximum point
Maximum Value D	p 1 is = 3 (-2)2	·(0) + (-2)3.

...

$$\{(x,y) = x^3 + y^3 - 30xy$$

$$\frac{\partial f}{\partial x} = 3x^2 - 2\alpha y$$

$$\frac{\partial f}{\partial x} = 3x^2 - 2\alpha y$$

$$\frac{\partial f}{\partial y} = 3y^2 - 2\alpha x$$

$$\frac{\partial f}{\partial y} = 0$$

$$\frac{\partial f}{\partial y} = 0$$

$$\frac{\partial f}{\partial y} = 3y^2 - 3\alpha x$$

$$\frac{\partial f}{\partial y} = 0$$

$$\frac{\partial$$

To find turning point:
To solve (1) and (2)

Sub @ in @ we get $\frac{x^{4}}{a^{2}} - ax \ge 0$ $x^{4} - a^{3}x \ge 0$ $x(x^{3} - a^{3}) \ge 0$

When	X20	C	9 20	
	Rza		y za.	t

3)

Turning pts a	A+ (0,0)	At (a,a)
$V = \frac{\partial^2 f}{\partial x^2} = 6x$	0	60
S=2f =-3a	-30	-3a
$t = \frac{\partial^2 f}{\partial y^2} = 6y$	0	6 a
M-32	-9a ² 10	362- aa² >0 1). Haco, rc
Result:	Saddlepoint	rt-s²>0 ., maximum
when alo, Man. Value = a3+0	23_303 = -03.	2). If aro, 7?
when aco, Minimum Value =	-a3-a3-3a3	Minimum

Examine $f(x,y) = x^3 + y^3 - 12x - 3y + 20$ for its extreme value

$$\frac{\partial f}{\partial x} = 3x^2 - 12$$

$$\frac{\partial f}{\partial x} = 3y^2 - 8$$

	8	/		
	200 200		Of =0.	and the same
	2 -12 =0 -H =0	O. A. C. Lane	342-3=0	and and
	C= <u>+</u> 2		y =±1	
Je	uring points	ave (2,1) (2,-1), (-2,1)	, (-2,-1)
	At (2,1)	At(2,-1)	At(-2,)	At (-2,-
2=92f	12	12	-12	~12
9=92t	0	D	0	0
t=32f	6	-6	6	-6
oy2	72	-72	-72	72
= 36004				
Result:	Υ>0	7>0	720	740

Yt-520

(2,-1) is a

Saddle

point

rt-szo

(24) isa

Saddle

poût

rt-5270

(2,-1) is a

maximum

point

8t-5270

(2,1) is a

point

minimum

The minimum value of
$$f$$
 is
$$f(2,1) = 2^3 + (1)^3 - 12(2) - 3(1) + 20$$

The minimum value of Bis $\begin{cases} (-2,-1) = (-2)^3 + (-1)^3 - 12(-2) - 3(-1) + 20 \end{cases}$

4). Investigate the maxima of the function

$$g(x,y) = x^3y^2(1-x-y)$$

$$= x^3y^2 - x^4y^2 - x^3y^3$$

$$\frac{\partial f}{\partial x} = 3x^2y^2 - 4x^3y^2 - 3x^2y^3$$

$$= x^2y^2(3 - 4x - 3y)$$

$$=\infty$$

$$\frac{\partial f}{\partial x} = 0$$

$$\frac{\partial f}{\partial y} = 2y^3 \cdot -2x^2 y - 3y^2 x^3$$

$$= x^3 y (2 - 2x - 3y)$$

$$\frac{\partial f}{\partial y} = 0$$

To find twening points :-

Twining points (0,0) $(\frac{1}{2},\frac{1}{3})$.

- 2 .		2	
$\gamma = \frac{\partial^2 f}{\partial x^2}$. 0
∂x^2	0		6(1/2)(1/3)(1-1-1/3)
$= x^2y^2(-4)+3-4x-3y$			
20cy2			= -1/9
		1	

(At 0,0)

$$S = \frac{3^{2}f}{3x^{3}(-2)+(2-2x-3q)}$$

$$= y \int x^{3}(-2)+(2-2x-3q)$$

 $=x^2y(6-80c-9y)$

= 6xy2 (1-2x-y).

$$= \left(\frac{1}{2}\right)^{2} \left(\frac{1}{3}\right) \left(6 - 4 - 8\frac{1}{3}\right)$$

$$= \frac{1}{12} \left(2 - 8\frac{1}{3}\right)$$

$$= \frac{1}{12} \left(-\frac{2}{3}\right)$$

$$= -\frac{1}{12} \left(2 - 8\frac{1}{3}\right)$$

At (1/2, 1/3)

$$= \frac{3}{3} \left\{ y(-3) + (2-2x-3y) \right\}$$

is reeded

8=0

$$\left(\frac{1}{2}\right)^{2}\left(2-1-2\right)$$
= $-1/8$ < 0

$$\left(\frac{-1}{9}\right)\left(\frac{-1}{8}\right) - \left(\frac{-1}{18}\right)^{2}$$

$$\left(\frac{1}{2},\frac{1}{3}\right)$$
 is a

maximum point

Man. volue = /432)

Multiplier Method: Lagrange's

Let u = f(x, y, v).

be a given function for which the exclusion values to be determined, subject to the condition 9 (00, 4, 8)=0.

*
$$F(x,y,y) = g(x,y,y) + \lambda g(x,y,y)$$

Find extreme value

$$\int = x^2 + y^2 + y^2 \longrightarrow 0$$

$$g = ax + by + cy - b \longrightarrow 0$$

$$F(x,y,y) = (x^2 + y^2 + y^2) + \lambda(ax + by + cz - b)$$

$$\frac{\partial t}{\partial x} = 0$$

$$\frac{\partial f}{\partial z} = 0$$

$$\infty = -\lambda a$$

$$y = -\lambda b$$

We get
$$a\left(\frac{-\lambda a}{2}\right) + b\left(\frac{-\lambda b}{2}\right) + c\left(\frac{-\lambda c}{2}\right) = b$$

$$-\lambda \left[a^2 + b^2 + c^2\right] = 2b$$

$$\lambda = \frac{-2p}{a^2 + b^2 + c^2}$$

$$x = ab$$
, $y = bb$, $z = cb$
 $a^2 + b^2 + c^2$, $a^2 + b^2 + c^2$

The minimum value of the function $\int_{-\infty}^{\infty} e^{2z^2+y^2+z^2}$ is attained at the point $\left(\frac{ap}{2a^2}, \frac{bp}{2a^2}, \frac{cp}{2a^2}\right)$.

The minimum value is obtained by and these values in (1) we get

$$\int = \frac{a^2 p^2 + b^2 p^2 + c^2 p^2}{(a^2 + b^2 + c^2)^2}$$

$$= \frac{b^2(a^2+b^2+c^2)}{(a^2+b^2+c^2)^2}$$

$$= b^2$$

 $a^2 + b^2 + c^2$

This is the minimum value

2). Find the maximum value of $x^m y^n z^p$ when x + y + z = a.

Let f=xmynzp and g=xx+y+z-a

DF =0

δx

max y z + λ=0

$$m \propto m - 1 y^n z^p = n \propto m y^{n-1} z^p = p \propto m y^n z^{p-1}$$

$$\frac{mx^{m-1}y^{n}x^{p}}{x^{m}y^{n}z^{p}} = \frac{nx^{m}y^{n-1}x^{p}}{x^{m}y^{n}z^{p}} = \frac{px^{m}y^{n}x^{p-1}}{x^{m}y^{n}z^{p}}$$

$$\frac{m}{x} = \frac{n}{y} = \frac{p}{x}$$

$$= \frac{m+n+p}{x+y+x}$$

$$= \frac{m+n+p}{x}$$

Itence Max value of forceurs when

Sub 6, \$\P\$, \$\S\$ in \$ = \alpha my^2 the max balue

$$\int = \left(\frac{am}{m+n+p}\right)^m \left(\frac{an}{m+n+p}\right)^n \left(\frac{ap}{m+n+p}\right)^p$$

$$\oint = a^{m+n+p} \frac{m^n n^n p^p}{(m+n+p)^{m+n+p}}$$

3). A sectangular vox, open at the top, is to have a volume of 82 cc. Find the dimensions of the look, that sequires the least material for its Construction.

Let x,y,y be the length, breadth and height of the box resp. When it evapoures least material, the surface area of the box should be least.

The Surface area S = xy + xy y + 2yx. Hence we have to minimize is subject to the condition that the Volume of the box xyy = 32

$$F = (xy + 2yy + 2yx) + \lambda (xyy - 32) - 0$$

$$\frac{\partial F}{\partial x} = 0$$

$$\frac{\partial F}{\partial y} = 0$$

$$\frac{\partial F}{\partial z} = 0$$

$$\frac{\partial F}{\partial z} = 0$$

 $y + 2\eta + \lambda \eta y = 0$ $y + 2\eta = -\lambda y \eta$ $-\lambda = 1 + 2$ χ

2x+2y+xzx=0 2x+2z=-xz=0 -x=1+2 x=0

200+24 = - yah -> = 3 + 3 -> = 2 + 3

9y = 0

2ey y -32=p= B

From 0 + 3 $\frac{1}{Z} + \frac{2}{3} = \frac{1}{Z} + \frac{2}{3}$ $2 \frac{1}{Z} = \frac{2}{3} = \frac{2}{3}$ $2 \frac{1}{Z} = \frac{2}{3} = \frac{2}{3}$ $2 \frac{1}{Z} = \frac{2}{3} = \frac{2}{3}$

Form @ 4 PD $\frac{1}{2} + \frac{9}{5} = \frac{9}{7} + \frac{9}{5}$ $\frac{1}{2} + \frac{9}{5} = \frac{9}{7} + \frac{9}{5}$ $\frac{1}{2} + \frac{9}{5} = \frac{9}{7} + \frac{9}{5}$

Sub @ in @

(22)(22)(2) = 32 $42^3 = 32$ $2^3 = 32/4 = 8$

[From 8]

. The dimensions of box are fix 2