Chap. 3
Regular Languages and Regular Grammars

Agenda of Chapter 3

- Regular Expressions
- Connection Between Regular Expressions and Regular Languages
- Regular Grammars
 - Right-Linear Grammar
 - Left-Linear Grammar

Definition of regular expressions

Regular expressions

hegular expression.

- One way of describing regular languages.
- Use notations involving strings, ((), ()) (+), (→)
- Ex) $(a+b\cdot c)^*$ \rightarrow $(\{a\} \cup \{bc\})^*$

[Formal definition] regular expressions

- Σ: a given alphabet lungue 是 地 alphabet.
- 1. Primitive regular expressions : \emptyset λ symbols in Σ
- 2. If r_1 , r_2 are regular expressions then r_1+r_2 , $r_1\cdot r_2$, r_1^* , (r_1) are regular expressions
- A string is regular expressions (iff) 州州 参 歌

it can be derived from the primitive regular expressions

by a finite number of applications of the rules in 2.

$$Ex)[(a+b\cdot c)*]\cdot(c+\emptyset)) \rightarrow re$$

Languages assoc. with regular expressions (1/2)

- Language L(r) denoted by regular expressions r
 - 1. Ø denotes empty set () \(\(\square\) \(\square\)

 - 3. a denotes {a} (a) = [a].

If r1, r2 are regular expressions then

4.
$$L(r_1+r_2) = L(r_1) U L(r_2)$$

5.
$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

7.
$$L(r_1^*) = (L(r_1))^*$$

- Precedence rule

Languages assoc. with regular expressions (2/2)

```
Ex3.3] r=(a+b)^*(a+bb)
L(r) = |wa,wbb| |we|ab|^* ||a,b||
                                                                             (00) = (00) = (00) = (00) x 作业 数 性 数 x
Ex3.4] r = (aa)^* (bb)^* b
      L(r) = \{ O_{n} \}_{n \ge 0}^{n} \}_{n \ge 0}^{n} = \{ O_{n} \}_{n \ge 0}^{n} \}
Ex3.5] \Sigma = \{0, 1\}
      L(r)=\{w\in\Sigma^*\mid w \text{ has at least one pair of consequtive zeros}\}
      \mathbf{r} = (0+1)^{\mathsf{T}} \cdot 00 \cdot (0+1)^{\mathsf{T}}
Ex8.6] Give a regular expression r for the languages
                                                                                                             01110161
 L(r)=\{w\in\{0,1\}^*\mid w \text{ has no pair of consecutive zeros}\} r=(/+0)^*(0+\lambda) r=(/+0)^*(0+\lambda) r=(/+0)^*(0+\lambda) Equivalence of two regular expressions r_1 \otimes r_2
      - r_1 \& r_2 denote the same language
```

Reg. Expressions denote reg. languages (1/3)

Let r be a regular expression, Then there exist an nfa accepting L(r). Consequently, L(r) is a regular language. Proof)

1. begin with automata accepting the languages for the simple

Automatica.

2. Assume that we have $M(r_1)$ and $M(r_2)$ accepting languages

denoted by r_1 and r_2 . M(r) M(r)

Reg. Expressions denote reg. languages(2/3)

Proof continued) L(r,) U L(r_) 3. Construct automata for $r_1 + r_2$, r_1r_2 , r_1^* $M(r_1)$ $M(r_2)$ 李利. 1. P. $M(r_1)$

Reg. Expressions denote reg, languages (3/3)

Reg. Expressions for reg. languages(1/3)

- Goal
 - Find a reg. expressions corresponding to a reg. language
- ☐ Generalized transition graph
 - Edges are labeled with regular expressions

Simplifying a generalized transition graph

Reg. Expressions for reg. languages(2/3)

[Theorem 3.2] L: regular language

There exists a regular expressions r such that L=L(r)

Proof) Let (M) be an infa accepting L (M has only one final state (which is not the initial state))

- 1. Interpret M to a generalized transition graph
- 2. Applying the simplifying techniques until reaching the situation r_1

3. Then the regular expression is

$$r = r_1^* r_2 (r_4 + r_3 r_1^* r_2)^*$$

Reg. Expressions for Reg. Languages (3/3)

+ 村 宇延州 variable 中 川川

Right- and Left-Linear Grammars (1/2)

- \square A grammar G = (V, T, S, P) is right-linear \uparrow
 - all products are of the form

- \square A grammar G=(V,T,S,P) is **left-linear**
 - all products are of the form

 $A \rightarrow Bx \mid x$ where A, $B \in V$, and $x \in T^*$

- left side of production
 - at most one variable
- right side of production
 - Variables must consistently be either the rightmost or leftmost symbol

附伊

A->2B/x. A,BEV; and ZET* G=(V,T,S,P)

hight-linear.

Right- and Left-Linear Grammars (2/2)

Ex3.12]

S-as S-as-aas. -- ... - Or.

Right-linear grammar
$$G_1 = (\{S\}, \{a,b\}, S, P_1)$$

 $S \rightarrow abS$ a right inext from $S \rightarrow abS \rightarrow abS$

- Left-linear grammar $G_2 = (\{S,S_1,S_2\}, \{a,b\}, S,P_2)$ $S \rightarrow S_1ab, S_1 \rightarrow S_1ab|S_2, S_2 \rightarrow a S=S_1ab, S_1ab|S_2, S_2 \rightarrow a S=S_1ab, S_1ab|S_2 ...$ $r = \alpha \cdot (ab)^*ab. \qquad \Rightarrow S \cdot (ab)^*ab \Rightarrow S \cdot (ab)^*ab$
- Ex3.13] A linear grammar $G = (\{S,A,B\},\{a,b\},S,P)$ $S \rightarrow A$, $A \rightarrow aB \mid \lambda$, $B \rightarrow Ab$ (most grammer CO)

Regular Grammars Theorem 3.3 and 141 1 32 314 Regular Grammars

Right-linear grammars generates Reg. Lang. (1/2)

Theorem 3.3] Grammar → FA (transition graph)

If G=(V,T,S,P) is a right-linear, then L(G) is a regular language.

Note) When $ab...cD \Rightarrow ab...cdE$ is arrived by using $D \rightarrow dE$ In fa, there is an edge labeled with d from D to E.

D d E

- A state of nfa: variable in sentential form
- String already processed: terminal prefix of sentential form

of transitioner 393

" notomost acept 3/2 3/3 2/4 G3

Automoter,

Regular Grammars Regular Grammars Regular Grammars Generates Reg. Lang. (2/2)

Proof Continued)

GRON REAL LIGHT - FAX NOWN OCCEPT

i) For an arbitrary $w \in L(G)$, we have

$$V_0 \Rightarrow V_1V_1 \Rightarrow V_1V_2V_j \Rightarrow V_1V_2...V_kV_n \Rightarrow V_1V_2...V_kV_l = W$$

Since we have a transition graph for each derivation, we can consequently find a extended transition $V_f \in \delta^*(V_0)$, where $V_f \in \delta^*(V_0)$

(N) ~ (T) ~ (T)

ii) For an arbitrary $w \in L(M)$, there exist a sequence $V_0, V_1, ..., V_n$ with edges labeled as $v_1, v_2 ... v_n$

Thus, w must have the form $w = v_1 v_2 ... v_k v_l$, and the derivation $V_0 \Rightarrow \vec{v}_1 V_i \Rightarrow v_1 \vec{v}_2 V_j \Rightarrow v_1 v_2 ... v_k V_n \Rightarrow v_1 v_2 ... v_k v_l$ is possible.

Automotio glori stiffetts productional NET Shall gla. \therefore w \notin L(G).

可如 以外子

Ex3.14] Construct a FA accepting the language generated by

 $V_0 \rightarrow aV_1$, $V_1 \rightarrow abV_0 \mid b \rightarrow 0$ Nt 6 8. (N' M)

RL - DTA き Regular. 例.

We 4級

Right-linear grammars for Reg. Lang.(1/2)

- □ DFA → grammar
 - States of dfa: variables in grammar
 - Symbols causing transitions: terminals in productions

Theorem 3.4] DFA → grammar

If L is a regular language on Σ then we have a right linear grammar $G=(V,\Sigma,S,P)$ such that L=L(G)

Construction of a right-linear grammar G

From definition,

we have a dfa $M=(Q, \Sigma, \delta, q, F)$ accepting L, where

$$Q = \{q_0, q_1, ..., q_n\}, \Sigma = \{a_1, a_2, ..., a_m\}, \delta(q_i, a_j) = q_k.$$

We can construct a grammar $G = (V, \Sigma, S, P)$ with $V = \{q_0, q_1, ..., q_n\}$,

For
$$\delta(q_i, a_j) = q_k$$
 $\rightarrow q_i \rightarrow a_j q_k$ which $q_i \rightarrow q_i \rightarrow q_i$

If
$$q_k$$
 is in F $\Rightarrow q_k \rightarrow \lambda$

Right-linear grammars for Reg. Lang. (2/2)

```
Proof of L(G)=L(M)
        (1) Show that all w = a_i a_i ... a_k a_l in L(M) can be generated by G_k
             From the fact that we have transitions,
ক্ ক্লা \delta(q_0, a_i) = q_p, \delta(q_p, a_j) = q_r, ... , \delta(q_s, a_k) = q_t, \delta(q_t, a_l) = q_f We can make the corresponding derivation
             q_0 \Rightarrow a_i q_p \Rightarrow a_i a_i q_r \Rightarrow a_i a_i ... a_k q_t \Rightarrow a_i a_i ... a_k a_l q_f \Rightarrow a_i a_i ... a_k a_l derivation
             Therefore, w \in L(G).
        (2) For all w \in L(G), we have the same derivation, which directly
             implies \delta^*(q_0, a_i a_j ... a_k a_l) = q_f.
                                                         8 (D. O. Oz. .. ar. a.) + O.
             Therefore, w is accepted by the corresponding dfa.
G=(12,Q,B,B+), [a,b],Qo, )
        Ex3.15) Construct a right-linear grammar for L(aab*a)
                                          stable broduction
               Histo Automata
                                                                                accept the Automoter.
                                                            8. Qs- 6Q2 AQ1
                                                                                                       17
                Lonsition / Production Heroung Park, School of CSE
```

Equivalence between Reg. Lang. & Reg. Grammars

Equivalence of dfa and nfa

Theorem 3.5] Thosen 3.3,3.4 意 想 想.

L is regular iff there exist a left-linear grammar G such that L=L(G)

[Propositions] 神光 但 (她 畸刊)

- We have a G^{LL} generating L ⇒ we can find a G^{RL} generating L^R
- L is regular ⇔ L^R is regular

[Proof of Theorem 3.5]

la Regular # 73/2

We have a $G^{LL} \Rightarrow L$ is regular

is regular ⇒ We have a G└└

Equivalence between Reg. Lang. & Reg. Grammars

Equivalence of dfa and nfa

```
[Proof of Propositions 1] \forall GLL generating L, \exists GRL generating L<sup>R</sup>

G^{LL} \Rightarrow P: A \rightarrow BV, A \rightarrow V \quad (A,BeV, VeT^*).

G^{RL} \Rightarrow P': A \rightarrow VB, A \rightarrow V^R \quad L(G^{RL}) = L^R.

ex) \quad L = f(ab)^n \mid n \ge 1.

G^{LL}: S \rightarrow Sab. \mid ab.

G^{RL}: S \rightarrow baS \mid ba. \quad L(G^{RL}) = f(ba) \mid n \ge 1.
```

[Proof of Propositions 2] L is regular \Leftrightarrow (L^R) is regular

Equivalence between Reg. Lang. & Reg. Grammars

Equivalence of dfa and nfa

