

N-Channel 30-V (D-S) MOSFET

PRODUCT SUMMARY			
V _{DS} (V)	$r_{DS(on)}(\Omega)$	I _D (A)	
30	0.0135 @ V _{GS} = 10 V	10	
	0.020 @ V _{GS} = 4.5 V	8	

FEATURES

• TrenchFET® Power MOSFET

SO-8 s S D S Top View

Ordering Information: Si4410DY Si4410DY-T1 (with Tape and Reel)

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C UNLESS OTHERWISE NOTED)						
Parameter	Symbol	Limit	Unit			
Drain-Source Voltage	V _{DS}	30	.,			
Gate-Source Voltage		V _{GS}	±20			
0 1 0 17 17000	T _A = 25°C		10			
Continuous Drain Current (T _J = 150°C) ^a	T _A = 70°C	I _D	8			
Pulsed Drain Current		I _{DM}	50	A		
Continuous Source Current (Diode Conduction) ^a		I _S	2.3			
Mandana Para Pirata di 2	T _A = 25°C		2.5	10/		
Maximum Power Dissipation ^a	T _A = 70°C	P _D	1.6	w		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C		

THERMAL RESISTANCE RATINGS						
Parameter	Symbol	Limit	Unit			
Maximum Junction-to-Ambient ^a	R _{thJA}	50	0000			
Maximum Junction-to-Foot (Drain)	R _{thJF}	22	°C/W			

Notes a. Surface Mounted on FR4 Board, $t \le 10$ sec.

Vishay Siliconix

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)								
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
Static								
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1.0			V		
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100	nA		
Zoro Cata Valtago Drain Current		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$			1			
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			25	μΑ		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	20			Α		
Desir Course On Otata Desiratora 3	_	V _{GS} = 10 V, I _D =10 A		0.011	0.0135	Ω		
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 4.5 V, I _D = 5 A		0.015	0.020			
Forward Transconductancea	9fs	V _{DS} = 15 V, I _D = 10 A		38		S		
Diode Forward Voltage ^a	V _{SD}	I _S = 2.3 A, V _{GS} = 0 V		0.7	1.1	V		
Dynamic ^b								
Gate Charge	Qg	$V_{DS} = 15 \text{ V}, \ V_{GS} = 5 \text{ V}, \ I_{D} = 10 \text{ A}$		20	34	nC		
Total Gate Charge	Q _{gt}	V 45 V V 40 V L 40 A		37	60			
Gate-Source Charge	Q _{gs}	$V_{DS} = 15 \text{ V}, \ V_{GS} = 10 \text{ V}, \ I_D = 10 \text{ A}$		7				
Gate-Drain Charge	Q _{gd}	$V_{DS} = 15 \text{ V}, \ V_{GS} = 10 \text{ V}, \ I_D = 10 \text{ A}$		7.0				
Gate Resistance	R _g		0.5	1.5	2.6	Ω		
Turn-On Delay Time	t _{d(on)}			19	30			
Rise Time	t _r	V_{DD} = 25 V, R_L = 25 Ω $I_D \cong$ 1 A, V_{GEN} = 10 V, R_G = 6 Ω		9	20			
Turn-Off Delay Time	t _{d(off)}			70	100	ns		
Fall Time	t _f			20	80			
Source-Drain Reverse Recovery Time	t _{rr}	I _F = 2.3 A, di/dt = 100 A/μs		40	80			

Notes a. Pulse test; pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. b. Guaranteed by design, not subject to production testing. Values shown are for product revision A.

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

V_{SD} - Source-to-Drain Voltage (V)

V_{GS} - Gate-to-Source Voltage (V)

