CAT OR DOG: PREDICTIVE MODELING STAT GU4243 - APPLIED DATA SCIENCE

Group 6

Columbia University

March 5, 2018

- 1 OUTLINE
- 2 Introduction
 - Us
 - Motivation
 - Scope
- METHOD
 - Exploratory analysis
 - Feature extraction
 - Statistical machine learning models
 - Tuning and training
- 4 Results
- **5** Discussion

GROUP MEMBERS

Wanting Cheng, Mingkai Deng, Jiongjiong Li, Kai Li, Daniel Parker

Why do this?—Motivation

WHY DO THIS?—MOTIVATION

SPEC & SCOPE

[C] arry out model evaluation and selection for predictive analytics on image data ... [using] a set of 4387 labeled images of cats and dogs ... creat[e] a mobile AI program that accurately distinguishes between [them] ... balance between the complexity of variables/features/models used and the predictive performance.

SPEC & SCOPE

EXPLORATORY ANALYSIS

What makes one animal different from another? [Intuition] What approaches did previous semesters' groups employ? [Research]

 \bullet SIFT = scale-invariant feature transformation.

- SIFT = scale-invariant feature transformation.
- **2** HOG = histogram of oriented gradients.

- SIFT = scale-invariant feature transformation.
- **2** HOG = histogram of oriented gradients.
- **3** LBP = local binary patterns.

- SIFT = scale-invariant feature transformation.
- **2** HOG = histogram of oriented gradients.
- \bullet LBP = local binary patterns.
- \bullet HSV = hue, saturation, value.

- SIFT = scale-invariant feature transformation.
- **2** HOG = histogram of oriented gradients.
- \bullet LBP = local binary patterns.
- \bullet HSV = hue, saturation, value.
- \bullet RGB = red, green, blue.

• Gradient boosting machine—the baseline.

- Gradient boosting machine—the baseline.
- 2 Random forests.

- Gradient boosting machine—the baseline.
- 2 Random forests.
- 3 TensorFlow/Keras neural network.

- Gradient boosting machine—the baseline.
- 2 Random forests.
- **3** TensorFlow/Keras neural network.
- Support vector machine.

- Gradient boosting machine—the baseline.
- 2 Random forests.
- TensorFlow/Keras neural network.
- Support vector machine.
- Adaptive boosting ("AdaBoost").

- Gradient boosting machine—the baseline.
- 2 Random forests.
- TensorFlow/Keras neural network.
- Support vector machine.
- Adaptive boosting ("AdaBoost").
- Extreme gradient boosting ("XGBoost").

TUNING AND TRAINING

Simplifying heuristic: use all features, rather than subsets. Preference for built-in package functions, rather than a generalized syntax.

HOW WE FINALIZED MODELS—FLOWCHART

Training Cost

Computation time and memory use for: 1. Feature extraction

2. Model training

Test / Use Cost

Computation time for: 1. Feature extraction 2. Classification

ACCURACY

Comparison

• Other extractions and combinations thereof.

- Other extractions and combinations thereof.
- ② Dataset manipulation to "grow" more training data for free.

- Other extractions and combinations thereof.
- ② Dataset manipulation to "grow" more training data for free.
- Other models.

- Other extractions and combinations thereof.
- ② Dataset manipulation to "grow" more training data for free.
- **3** Other models.
- Ensembling.

- Other extractions and combinations thereof.
- ② Dataset manipulation to "grow" more training data for free.
- **3** Other models.
- Ensembling.
- **⑤** ...

Thank you!