CLAIMS

1	1.	A method of broadband radio frequency analysis comprising the steps of:
2		receiving a frequency hopping radio input signal for broadband analysis, said input
3		signal having segments at different hopping frequencies and different hopping
4		times,
5		for each segment,
6		determining from the input signal a hopping time of the segment,
7		processing the segment to determine a frequency of the segment, and
8		processing the segment to determine signal parameters.
9 10	2.	The method of Claim A1 wherein said determining step determines the start time and the stop time of the segment.
1	3.	The method of Claim 1 wherein the input signal is an analog signal, wherein the analog
2		signal is down converted to an intermediate frequency signal and wherein the broadband
3		radio frequency analysis includes producing a digital signal by digitizing the intermediate
4		frequency signal.
1	4.	The method of Claim 1 wherein the input signal is a base band signal and wherein the
2		broadband radio frequency analysis includes producing a digital signal by digitizing the
3		baseband signal.
4	5.	The method of Claim 1 wherein the input signal is an analog signal and wherein the
5		broadband radio frequency analysis includes producing a digital signal by digitizing the
6		analog signal using alias sampling.
1	6.	The method of Claim 1 wherein the input signal is an analog signal and wherein the
2		broadband radio frequency analysis includes producing a digital signal by digitizing the
3		analog signal.

pa1001_04^03^29.fi.doc Atty Doc No: CELE-01001US0

- 7. The method of Claim 6where the digital signal is stored in a FIFO memory.
- 1 8. The method of Claim 6 where the digital signal is stored in a memory having a capacity
- 2 sufficient to store the segments for a time period used for analyzing the digitized signal.
- 9. The method of Claim 6 where the digital signal is processed using digital signal processing.
- 1 10. The method of Claim 9 where the signal processing includes down converting, decimating
- 2 and filtering of segments to form converted segments.
- 1 11. The method of Claim 6 where the hopping time is determined using digital signal processing.
- 1 12. The method of Claim 6 where signal frequency is determined using digital signal processing.
- 1 13. The method of Claim 6 where signal parameters are calculated using digital signal
- 2 processing.
- 1 14. The method of Claim 1 where the radio frequency analysis includes the step of frequency
- 2 converting the input signal to a lower intermediate frequency.
- 1 15. The method of Claim 1 where the input signal is collected by a receive antenna.
- 1 16. The method of Claim 1 where the input signal is collected by a direct-wired connection.
- 1 17. The method of Claim 1 where the signal processing includes signal demodulation.
- 1 18. The method of Claim 1 where the signal processing includes measuring a signal rise time
- 1 19. The method of Claim 1 where the signal processing includes measuring a signal fall time.

1 20. The method of Claim 1 where the signal processing includes measuring an amplitude ripple. 1 21. The method of Claim 1 where the signal processing includes measuring a symbol rate. 1 22. The method of Claim 1 where the signal processing includes measuring a signal modulation 2 depth. 1 23. The method of Claim 1 where the signal processing includes determining transmitted 2 symbols. 1 24. The method of Claim 1 where the signal processing includes measuring symbol jitter. 25. The method of Claim 1 where the signal processing includes measuring segment duration. 1 1 26. The method of Claim 1 where the signal processing includes measuring an interval between a 2 start time of a first segment and a start time of a successive segment. 1 27. The method of Claim 1 where the signal processing includes identifying and measuring 2 amplitude and frequency for spurs, harmonics and stray signals. 28. The method of Claim 1 where the signal processing includes comparing measured signal 1 2 parameters with reference signal parameters to determine compliance with a specification. 1 29. The method of Claim 1 where the signal processing includes calculating a carrier frequency 2 for each segment.

frequency for each segment of the digital signal using spectral analysis.

30. The method of Claim 1 where the input signal is an analog signal, where the analog signal is

digitized to form a digital signal, where the signal processing includes calculating a carrier

1

2

3

- 1 31. The method of Claim 30 where the spectral analysis includes a digital Fourier transform.
- 1 32. The method of Claim 30 where the carrier frequency is calculated from a power spectrum
- 2 using a center of mass algorithm about a largest component in the power spectrum.
- 1 33. The method of Claim 32 where a mean value of the largest component in the power spectrum
- 2 is used to refine the carrier frequency calculation.
- 1 34. The method of Claim 1 where the signal processing includes calculating signal bandwidth.
- 1 35. The method of Claim 34 where bandwidth is calculated using spectral analysis.
- 1 36. The method of Claim 1 where the input signal is an analog signal, where the analog signal is
- 2 digitized to form a digital signal, where the signal processing includes calculating signal
- 3 bandwidth for each segment of the digital signal using spectral analysis and where the
- 4 spectral analysis uses a digital Fourier transform.
- 1 37. The method of Claim 36 where the bandwidth is based on identifying a bandwidth value
- where a spectrum drops to a threshold level below a peak.
- 1 38. The method of Claim 37 where the bandwidth is based on the bandwidth containing a given
- 2 percentage of the signal energy.
- 1 39. The method of Claim 1 where the signal processing includes measuring a symbol rate and
- where the symbol rate is calculated one for each signal segment independent of the other
- 3 segments.
- 1 40. The method of Claim 1 where the signal processing includes measuring a symbol rate and
- where the symbol rate is calculated by spectral analysis.

pa1001_04^03^29.fi.doc Atty Doc No: CELE-01001US0

- 1 41. The method of Claim 1 where the signal processing includes signal demodulation to form a 2 demodulated signal and where the signal processing includes measuring a symbol rate where 3 the symbol rate is calculated by analysis of zero crossing times in the demodulated signal. 42. The method of Claim 41 where time differences between zero crossings is calculated from 1 2 zero crossing times. 43. The method of Claim 42 where a TOT histogram is compiled of the time differences as 1 2 deltaTOTs. 1 44. The method of Claim 43 where a symbol period estimate of a symbol period is formed from 2 a center of mass of a first major peak in the TOT histogram. 45. The method of Claim 44 where the symbol period is calculated by, 1 2 computing the modulo of the delta TOTs and the symbol period estimate, 3 unwrapping the modulo results about the symbol period estimate, fitting a straight line to the unwrapped data, 4 using a slope of the straight line to refine the symbol period estimate thereby 5
- 1 46. The method of Claim 45 where the straight line fit uses a least squares fit.

producing a final value for the symbol period.

pa1001_04^03^29.fi.doc Atty Doc No: CELE-01001US0

6

1	47. A method of broadband radio frequency analysis comprising the steps of:
2	receiving an input signal for broadband analysis where said input signal has segments
3	wherein said segments have different segment frequencies, wherein each
4	segment has a segment frequency, wherein each segment has a segment
5	bandwidth, and wherein the segment frequency for each one of the segments
6	differs from the segment frequencies of other ones of the segments by amounts
7	that are greater than the bandwidth of one or more of the segments,
8	determining from the input signal start times and stop times of said segments, and
9	for each segment,
10	processing the segment to determine said segment frequency and said
11	segment bandwidth, and
12	processing the segment to determine signal parameters.
1	48. A method of broadband radio frequency analysis comprising the steps of:
2	receiving an input signal for broadband analysis where said input signal has segments
3	wherein said segments have different segment frequencies, wherein each
4	segment has a segment frequency, wherein each segment has a segment
5	bandwidth, and wherein the segment frequency for each one of the segments
6	differs from the segment frequencies of other ones of the segments by
7	amounts that are greater than the bandwidth of one or more of the segments,
8	determining from the input signal start times and stop times of said segments, and
9	for each segment,
10	processing the segment to determine segment amplitude between the start time and a
11	stop time,
12	processing the segment to determine said segment frequency and said segment
13	bandwidth, and
14	processing the segment to determine signal parameters.

pa1001_04^03^29.fi.doc Atty Doc No: CELE-01001US0