Dinic's algorithm for maximum flow

Question 1
20 points

Duration: 120 minutes

The figure below shows a flow network G. Perform **two** iterations of Dinic's algorithm, giving all the intermediate structures (for both iterations), namely:

- the residual network
- the level graph
- the blocking flow

For the *first* level graph also write down the maximum and minimum number of RETREAT steps executed by the algorithm for obtaining the blocking flow.

Name:

Room: Coordinates:

| Description | Room: Coordinates | Coordinat

Graph Algorithms

Duration: 120 minutes

80823456889

MA015

13.01.2016

Do not write anything here! Write down your personal identification number (učo) only. When doing so, follow the digit templates please.

Nagamochi-Ibaraki Algorithm for Global Minimum Cut

Question 2 20 points

Duration: 120 minutes

The code below is a high-level description of a function used by the Nagamochi-Ibaraki algorithm, where G = (V, E) is a graph and $c : E \to \mathbb{R}^+$ is a capacity function:

FINDLEGALORDERING (G,c)

- 1 a := some vertex of G;
- $A := \{a\};$
- 3 while $A \neq V$ do
- z := vertex most tightly connected to A;
- $5 A := A \cup \{z\};$
- 6 return vertices in order they were added to A
- a) Give a definition of a vertex most tightly connected to A (for $A \subseteq V$).
- b) Write down the Nagamochi-Ibaraki algorithm, using the **FINDLEGALORDERING** procedure. (Your answer may be text or pseudocode both are OK).
- c) Analyse the complexity of the Nagamochi-Ibaraki algorithm.
- d) What other algorithm also not based on flows, can be used to solve the Global Minimum Cut problem?

Name:

Room: Coordinates:

| Description | Room: Coordinates | Coordinat

Graph Algorithms

Duration: 120 minutes

80823456889

MA015

13.01.2016

Do not write anything here! Write down your personal identification number (učo) only. When doing so, follow the digit templates please.

Dynamic programming on trees

Question 3
20 points

Duration: 120 minutes

A dominating set for a graph G = (V, E) is a set $S \subseteq V$ such that each vertex of V is either in S, or is adjacent to a vertex in S. Now consider the following problem:

MIN-WEIGHT DOMINATING SET

INPUT: Graph G, weight function $w: V(G) \to \mathbb{R}^+$

Task: Find a dominating set $S \subseteq V(G)$ s.t. such that the value

 $\sum_{v \in S} w(v)$ is minimized.

(Note that the existence of a dominating set of size smaller than given k is one of the classic NP-complete problems.)

Your task is to show that the MIN-WEIGHT DOMINATING SET problem can be, using the dynamic programming approach, solved on **trees** in a *linear time*. If you are unable to do so, try to give at least an algorithm for the version without weights (i.e. you are looking for a dominating set of a minimum size).

Name: Room: Coordinates: sheet $u\check{c}o$ scoreDo not write anything here! Write down your personal identification number (učo) only. When doing so, follow the digit tem-80823456889

Graph Algorithms

Duration: 120 minutes

MA015

13.01.2016

Duration: 120 minutes

Name: Room: Coordinates:

 $u\check{e}o$ of the transformation of the transformation $u\check{e}o$ of $u\check{e$

Do not write anything here! Write down your personal identification number (učo) only. When doing so, follow the digit templates please.

Edmond's blossom algorithm for maximum matchings

Question 4
20 points

Below is the pseudocode of Edmond's blossom algorithm for $bipartite\ graphs$: PERFECTBIPARTITE (G)

```
\mathbf{1} \ M := \emptyset
2 T := (\{r\}, \emptyset)
                                                                       // where r is M-exposed
3 while there exists vw \in E s.t. v \in B(T) and w \notin V(T) do
       if w is M-exposed then
          M := \mathsf{AUGMENT}(vw)
5
          if there is no M-exposed vertex in G then
6
              return M
                                                                  // M is a perfect matching
7
          else
8
              T:=(\{r\},\emptyset)
                                                                      // where r is M-exposed
9
       else // w is M-covered
10
          T := \mathsf{EXTEND}(vw)
11
                                                                              // T is frustrated
12 error no perfect matching
```

- 1. using pseudocode, modify the algorithm so it works for general graphs (Do not forget to give a pseudocode for all auxiliary functions you use, however you do not need to give the code for EXTEND and AUGMENT.)
- 2. carefully analyse the complexity of your algorithm
- 3. give an example of a graph G, matching M and an alternating tree T such that T is frustrated even though there exists a perfect matching for G.

Name: Room: Coordinates: sheet $u\check{c}o$ scoreDo not write anything here! Write down your personal identification number (učo) only. When doing so, follow the digit tem-80823456889

Graph Algorithms

Duration: 120 minutes

MA015

13.01.2016

Name:	Room:	Coordinates:
		no no no n se se se s score e se se s
Do not write anything here! Write down your cation number (učo) only. When doing so, foll plates please.	1	

Basic Minimum Spanning Tree (MST) algorithms

Question 5
10 points

a) For each of the following MST algorithms give

• a high-level description how they work

- their time complexity (with a short justification)
- 1. Kruskal

2. Jarník (Prim)

3. Borůvka

b) How do you prove the *correctness* of these algorithms?

plates please.

#DH23456789

Duration: 120 minutes

Kernelization Question 6
10 points

In the kernelization algorithm for VERTEX COVER we used the following two rules for an instance (G, k):

- VC.1 If v is an isolated vertex, then remove it. (producing a new instance $(G \setminus v, k)$)
- VC.2 If v is a vertex of degree > k, then remove it and decrease k. (producing a new instance $(G \setminus v, k-1)$)

What happens when none of these two rules is applicable? (I.e. state what do we know at that moment and what should be done next.)