You have 15 minutes to complete this quiz. Eyes on your own paper and good luck!

1. **Definitions/Concepts.** (3 pts) Write down the Fundamental Theorem of Calculus.

2. Questions/Problems.

(a) (2 pts) Recall that when we want to estimate area under a curve for a function f(t) over the interval $t \in [a, b]$ we can use a left-hand or right-hand approximation. Let n denote the number of equally-sized subdivisions we use to divide the interval [a, b]. Then

$$\Delta t = \frac{b - a}{n}$$

and we can let $t_0 = a$, $t_1 = t_0 + \Delta t$, $t_2 = t_1 + \Delta t$, etc. Suppose you have the data:

t	0	4	8	12	16
f(t)	25	23	22	20	17

Table 1: number of students awake after t minutes into a boring lecture

Use this data to fill in the missing information:

n=4				
$\Delta t =$				
a =	b =			
$t_0 =$	$t_1 =$	$t_2 =$	$t_3 =$	$t_4 =$
$f(t_0) =$	$f(t_1) =$	$f(t_2) =$	$f(t_3) =$	$f(t_4) =$
n=2				
$\Delta t =$				
a =	b =			
$t_0 =$	$t_1 =$	$t_2 =$		
$f(t_0) =$	$f(t_1) =$	$f(t_2) =$		

(b) (3 pts each) Write out the entire word, either True or False. No justification is needed. i. If
$$\int_0^2 (3f(x) + 1) dx = 8$$
, then $\int_0^2 f(x) dx = 2$.

ii. If
$$f(x) = \int_{-2x}^{0} (1 + t^4) dt$$
, then $f(x)$ is decreasing.

iii. If
$$f(x) \le g(x)$$
 for $x \in [0, 1]$, then $\int_0^1 f(x) dx \le \int_0^1 g(x) dx$.

iv. If
$$g(x)$$
 is odd and $\int_1^3 g(x)dx = 2$, then $\int_{-3}^{-1} g(x)dx = 2$.

v. If f(t) is measured in dollars per year, and t in measured in years, then $\int_a^b f(t)dt$ is measured in dollars per years squared.

3. Computations/Algebra.

-none this week-