P. EIJK 2-4-3-4-4-2-2-7 1/12

FIG. 1 (PRIOR ART)

P. EIJK 2-4-3-4-4-2-2-7

2/12

FIG. 2A (PRIOR ART)

FIG. 2B (PRIOR ART)

CASE (a): OUTPUT DATA-HIGH TRIGGER LEVEL TIME

FIG. 2C (PRIOR ART)

CASE (b): OUTPUT DATAMIDDLE TRIGGER LEVEL

TIME

FIG. 2D (PRIOR ART)

CASE (c): OUTPUT DATA- TIME VARIABLE TRIGGER LEVEL TIME

P. EIJK 2-4-3-4-4-2-2-7 4/12

FIG. 4

OLT-ONLY DUPLEX SYSTEM

FIG. 5 520 500 ONT #1 2N:2 SPLITTER 522-PON LT (1) -526 502 524 DOUBLE N :2 OPTICAL SPLITTER DOUBLE 2:1 OPTICAL SPLITTER PON LT (0) 0LT 514 WarmOSU 528 510 -504 PON LT (1) ONT #2 518~ PON LT Protect0SU 516 -506 PON LT (0) 512 508 ONT #N PON LT (1) PON LT (0)

PARTIAL DUPLEX SYSTEM

P. EIJK 2-4-3-4-4-2-2-7 6/12

FIG. 6

P. EIJK 2-4-3-4-4-2-2-7 7/12

FIG. 7A

FIG. 7B
TIMING REFERENCE AT WarmOSU

FIG. 7C

RX_OPT_SIGNAL (OPTICAL SIGNALS RECEIVED BY BURST MODE RECEIVER)

FIG. 7D

BMR_RESET (BURST MODE RECEIVER RESET SIGNALS-SPACED OUT BY 449/448 BITS)

FIG. 7E

RX_BMR_DATA (OUTPUT OF BURST MODE RECEIVER)

UNRECOGNIZED DATA TRANSITIONS (GARBAGE) ATM CELL ATM CELL

FIG. 8A

FLUCTUATION

PID PID PID PID PID

P. EIJK 2-4-3-4-4-2-2-7

10/12

FIG. 10A

FRAME BOUNDARIES ON WarmOSU AND ProtectOSU (SYNCHRONIZED)

FIG. 10B

DOWNSTREAM PLOAM CELLS (PL1 CONTAINS PLOAM GRANT FOR ONT #1)

FIG. 10C

UPSTREAM RECEPTION OF PLOAM CELL FROM ONT #1 (Td1, Td2=0)

FIG. 10D

UPSTREAM RECEPTION OF PLOAM CELL FROM ONT #1 (Td1>0) AT WarmOSU

FIG. 10E

UPSTREAM RECEPTION OF PLOAM CELL FROM ONT #1 (Td2>0) AT ProtectOSU

Td1: DELAY MEASURED AT WarmOSU

Td2: DELAY MEASURED AT ProtectOSU D2: TIME DIFFERENCE BETWEEN START OF FRAME IN WarmOSU AND ProtectSU, DUE TO DIFFERENCE IN DISTANCE TO SPLITTER

*SOF: START OF FRAME

P. EIJK 2-4-3-4-4-2-2-7 11/12

