Set Cardinality

- 1. Prove that the set of rational numbers $\mathbb{Q} = \frac{a}{b}$ where $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^+$ is countable. *Hint:* find a bijection between $\mathbb{Z} \times \mathbb{Z}^+$ and \mathbb{N}
- 2. Use a proof by diagonalization to show that the following set is uncountable:

$$F = \{ f : \mathbb{N} \to \mathbb{N} | (a > b) \to (f(a) > f(b)) \}$$

In other words, this is the set of all strictly increasing functions that map natural numbers to natural numbers. A function is strictly increasing if larger inputs are guaranteed to produce larger outputs.

For example, $f(x) = x^2$ is strictly increasing since if a > b, then $a^2 > b^2$. However, $f(x) = (x-5)^2$ is not strictly increasing since 1 < 2 but f(1) > f(2).

- 3. Prove that every subset of the natural numbers $\mathbb N$ is countable.
- 4. Prove the following claim: If A is a countably infinite set (i.e., $|A| = |\mathbb{N}|$) and B is a finite set (i.e., $|B| = n|n \in \mathbb{N}$), then $A \cup B$ is also countable.
- 5. Prove the following claim: If A is a countably infinite set (i.e., $|A| = |\mathbb{N}|$) and B is a also a countably infinite set (i.e., $|B| = |\mathbb{N}|$), then $A \cup B$ is also countable.