## WORKSHEET: SECTION 2.2 (THE LIMIT OF A FUNCTION)

1. The function f(x) is graphed below. Use the graph to fill in the blanks. If the limit does not exist, write DNE.



(a) 
$$\lim_{x \to 4^{-}} f(x) =$$
\_\_\_\_\_\_\_

(b) 
$$\lim_{x \to 4^+} f(x) =$$
\_\_\_\_\_

(c) 
$$\lim_{x\to 4} f(x) =$$
**D NE**

(e)  $\lim_{x \to 6^{-}} f(x) = 6$ 

(f) 
$$\lim_{x \to 6^+} f(x) = _{-5}$$

(g) 
$$\lim_{x\to 6} f(x) =$$
 **DNE**

(h) 
$$f(6) = _{6}$$

(i) 
$$\lim_{x \to 8} f(x) = _{-5}$$

2. The function g(x) is graphed below. Use the graph to fill in the blanks.



Write the equation of any vertical asymptotes:

- (a)  $\lim_{x \to 4^{-}} g(x) = \underline{\qquad + \infty}$
- (b)  $\lim_{x \to 4^+} g(x) =$ \_\_\_\_\_
- (c)  $\lim_{x\to 4} g(x) =$  **DNE**
- (d) g(4) = 0
- (e)  $\lim_{x \to 8} g(x) =$ \_\_\_\_\_\_
- (f) g(8) = 10

x=4 is a VA

3. Evaluate the limits below by graphing  $f(x) = \begin{cases} x+1 & x<0 \\ x-1 & 0 \leq x < 2 \\ 1+\sqrt{x-2} & 2 < x \end{cases}$ 





(b)  $\lim_{x \to 2} f(x) = 1$ 

 $\lim_{x\to 2^+} f(x) = \lim_{x\to 2^-} f(x) = 1$ 

(c) For which values a does  $\lim_{x\to a} f(x)$  exist?

For all values  $x \in \text{except } x = 0$ .

4. Sketch the graph of an example of a function f that satisfies all of the given conditions.

(a)  $\lim_{x \to 0} f(x) = 1$ 

(b) 
$$\lim_{x \to 3^{-}} f(x) = -2$$

(c) 
$$\lim_{x \to 3^+} f(x) = 4$$

(d) 
$$f(0) = 2$$

(e) 
$$f(3) = 1$$

(f) 
$$\lim_{x \to -1^+} f(x) = \infty$$

