Name:	
4-digit code:	

- Write your name and the last 4 digits of your SSN in the space provided above.
- The test has five (5) pages, including this one.
- Enter your answer in the box(es) provided.
- You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given in parentheses at the right of the problem number.
- No books, notes or calculators may be used on this test.

Page	Max. points	Your points
2	25	
3	25	
4	25	
5	25	
Total	100	

Problem 1 (10 pts). Find the area of the region that is enclosed between the curves $x = 2y^2$ and $x = 4 + y^2$.

A =

Problem 2 (15 pts). Find the volume of the solid that is obtained by rotating the region bounded by the curves $x = 2\sqrt{y}$, x = 0 and y = 9 about the y-axis.

Problem 3 (15 pts). Find the volume of the solid generated when the region enclosed by the curves $x = 1 + y^2$, y = 1, y = 2 and x = 0 is revolved about the x-axis.

$$V =$$

Problem 4 (10 pts). Use the Fundamental Theorem of Calculus to find the derivative of

$$f(x) = \int_{1-3x}^{1} \frac{u^3}{1+u^2} \, du.$$

$$f'(x) =$$

Problem 5 (15 pts). Find a positive value of k such that the average value of $f(x) = 2 + 6x - 3x^2$ over the interval [0, k] is equal to 3.

$$k =$$

Problem 6 (10 pts). Evaluate the integral $\int \sec^3 x \tan x \, dx$.

Problem 7 (15 pts). Evaluate the integral $\int_0^{1/\sqrt{3}} \frac{x^2 - 1}{x^4 - 1} dx$.

$$A =$$

Problem 8 (10 pts). Find the average value of the function f(x) = 1/x over the interval [1, e].

$$f_{ave} =$$