Week 3 Video 4

Automated Feature
Generation
Automated Feature Selection

Automated Feature Generation

 The creation of new data features in an automated fashion from existing data features

Multiplicative Interactions

- You have variables A and B
- New variable C = A * B

Do this for all possible variables

Multiplicative Interactions

- A well-known way to create new features
- Rich history in statistics and statistical analysis

Less Common Variant

- A/B
- You have to decide what to do when B=0

Function Transformations

- □ X²
- Sqrt(X)
- Ln(X)

Automated Threshold Selection

- Turn a numerical variable into a binary
- Try to find the cut-off point that maximizes your dependent variable
 - J48 does something very much like this
 - You can hack this in the Excel Equation solver or do this using code

Which raises the question

Why would you want to do automated feature selection, anyways?

Won't a lot of algorithms do this for you?

A lot of algorithms will

 But doing some automated feature generation before running a conservative algorithm like Linear Regression or Logistic Regression

 Can provide an option that is less conservative than just running a conservative algorithm

 But which is more conservative than algorithms that look for a broad range of functional forms

Also

 Binarizing numerical variables by finding thresholds and running linear regression

Won't find the same models as J48

A lot of other differences between the approaches

Another type of automated feature generation

- Automatically distilling features out of raw/incomprehensible data
 - Different than code that just distills well-known data, this approach actually tries to discover what the features should be
- There has been some work on this in several domains

It has not been very useful in EDM yet

Automated Feature Selection

 The process of selecting features prior to running an algorithm

First, a warning

 Doing automated feature selection on your whole data set prior to building models

 Raises the chance of over-fitting and getting better numbers, even if you use crossvalidation when building models

- You can control for this by
 - Holding out a test set
 - Obtaining another test set later

Correlation Filtering

- Throw out variables that are too closely correlated to each other
- But which one do you throw out?
- An arbitrary decision, and sometimes the better variables get filtered (cf. Sao Pedro et al., 2012)

Fast Correlation-Based Filtering (Yu & Liu, 2005)

- Find the correlation between each pair of features
 - Or other measure of relatedness Yu & Liu use entropy despite the name
 - I like correlation personally
- Sort the features by their correlation to the predicted variable

Fast Correlation-Based Filtering (Yu & Liu, 2005)

- Take the best feature
 - E.g. the feature most correlated to the predicted variable
- Save the best feature
- Throw out all other features that are too highly correlated to that best feature
- Take all other features, and repeat the process

Fast Correlation-Based Filtering (Yu & Liu, 2005)

 Gives you a set of variables that are not too highly correlated to each other, but are well correlated to the predicted variable

Example

	A	В	C	D	E	F	Predicted
A		.6	.5	.4	.3	.7	.65
В			.8	.7	.6	.5	.68
\mathbf{C}				.2	.3	.4	.62
D					.8	.1	.54
E						.3	.32
F							.58

Cutoff = .65

	A	В	C	D	E	F	Predicted
A		.6	.5	.4	.3	.7	.65
В			.8	.7	.6	.5	.68
\mathbf{C}				.2	.3	.4	.62
D					.8	.1	.54
E						.3	.32
F							.58

Find and Save the Best

	A	В	C	D	E	F	Predicted
A		.6	.5	.4	.3	.7	.65
В			.8	.7	.6	.5	.68
C				.2	.3	.4	.62
D					.8	.1	.54
E						.3	.32
F							.58

Delete too-correlated variables

	A	В	C	D	E	F	Predicted
A		.6	.5	.4	.3	.7	.65
В			.8	.7	.6	.5	.68
С				.2	.3	.4	.62
D					.8	.1	.54
Е						.3	.32
F							.58

Save the best remaining

	A	В	C	D	E	F	Predicted
A		.6	.5	.4	.3	.7	.65
В			.8	.7	.6	.5	.68
С				.2	.3	.4	.62
D					.8	.1	.54
Е						.3	.32
F							.58

Delete too-correlated variables

	A	В	C	D	E	F	Predicted
A		.6	.5	.4	.3	.2	.65
В			.8	.7	.6	.5	.68
С				.2	.3	.4	.62
D					.8	.1	.54
Е						.3	.32
F							.58

Save the best remaining

	A	В	C	D	E	F	Predicted
A		.6	.5	.4	.3	.2	.65
В			.8	.7	.6	.5	.68
C				.2	.3	.4	.62
D					.8	.1	.54
Е						.3	.32
F							.58

Note

 The set of features was the best set that was not too highly-correlated

One of the eventual features kept was the worst feature

 You can set a minimum goodness for features to keep if you want

In-Video Quiz: What Variables will be kept? (Cutoff = 0.65)

	G	H	I	J	K	L	Predicted
G		.7	.8	.8	.4	.3	.72
Н			.8	.7	.6	.5	.38
I				.8	.3	.4	.82
J					.8	.1	.75
K						.5	.65
L							.42

C) G, K, L

A) I, K, L B) I, K

D) G, H, I, J

Removing features that could have second-order effects

- Run your algorithm with each feature alone
 - E.g. if you have 50 features, run your algorithm 50 times
 - With cross-validation turned on
- Throw out all variables that are equal to or worse than chance in a single-feature model
- Reduces the scope for over-fitting
 - But also for finding genuine second-order effects

Forward Selection

- Another thing you can do is introduce an outerloop forward selection procedure outside your algorithm
- In other words, try running your algorithm on every variable individually (using cross-validation)
- Take the best model, and keep that variable
- Now try running your algorithm using that variable and, in addition, each other variable
- Take the best model, and keep both variables
- Repeat until no variable can be added that makes the model better

Forward Selection

- This finds the best set of variables rather than finding the goodness of the best model selected out of the whole data set
- Improves performance on the current data set
 - i.e. over-fitting
 - Can lead to over-estimation of model goodness
- But may lead to better performance on a held-out test-set than a model built using all variables
 - Since a simpler, more parsimonious model emerges

You may be asking

Shouldn't you let your fancy algorithm pick the variables for you?

- Feature selection methods are a way of making your overall process more conservative
 - Valuable when you want to under-fit

Automated Feature Generation and Selection

 Ways to adjust the degree of conservatism of your overall approach

Can be useful things to try at the margins

Won't turn junk into a beautiful model

Next Lecture

Knowledge Engineering