The red queen in the kingdom of recombination

Thibault Latrille, Laurent Duret, Nicolas Lartillot

Laboratoire de Biométrie et Biologie Évolutive (LBBE), UMR CNRS 5558, Lyon

July 4, 2016

Ad-hoc meeting, LBBE

CHAPTER 1

Once upon a time in the kingdom of recombination...

...there was recombination hotspots

...there was a zinc-finger protein

...there was erosion of hotspots

...there was recombination hotspots

...there was a zinc-finger protein

PRDM9 targets sequences located at recombination hotspots.

Parvanov et al (2010), Baudat et al (2010)

...there was a zinc-finger protein that induces a double strand break

Coop & Myers (2007), Myers et al (2010)

...there was erosion of hotspots

Coop & Myers (2007), Myers et al (2010)

The red queen own paradox: PRDM9 governs hotspots, but kills them slowly

The red queen own paradox: PRDM9 governs hotspots, but kills them slowly

END OF CHAPTER 1

Red queen hypothesis:

In reference to an evolutionnary system, continuing adaptation is needed in order for a species to maintain its relative fitness among the system it is co-evolving with.

- Can we construct a population genetic model that exhibits red queen dynamic?
- From qualitative explanation to a quantitative model.

CHAPTER 2

A population genetic model built to Her Majesty the red queen

- Stepping into the territory of Wright-Fisher simulations
- Peeking at simulated trajectory
- Exploration of parameters space

Stepping into the territory of Wright-Fisher simulations

Peeking at simulated trajectory

PRDM9 frequency over time for each alllele

hotspots recombination rate over time for each allele

Succession or polymorphism of PRDM9?

Phase diagram of the red queen Round 1: Diversity of PRDM9 (D) vs Population size

Phase diagram of the red queen Round 2: Diversity of PRDM9 (D) vs Mutation rate

Phase diagram of the red queen Round 3: Recombination rate (R) vs Population size

END OF CHAPTER 2

- What intuition can be derived from this model ?
- From a quantitative to an analytical model

CHAPTER 3

A journey to the sovereignty of mathematics

Coupled equations for all PRDM9 alleles

- 1. K_t is the number of PRDM9 alleles in the population.
- 2. $x_{i,t}$ is the frequency of the i^{th} PRDM9 allele.
- 3. $\theta_{i,t}$ is the recombination rate associated to the i^{th} PRDM9 allele.
- 4. Assume there is no drift.

$$\begin{cases} \frac{\mathrm{d}\mathbf{x_{i,t}}}{\mathrm{d}t} = \frac{\alpha}{\mathbf{R_t}} \left(\boldsymbol{\theta_{i,t}} - \mathbf{R_t} \right) \mathbf{x_{i,t}}, \ \forall i \in \{1, \dots, K_t\} \\ \frac{\mathrm{d}\boldsymbol{\theta_{i,t}}}{\mathrm{d}t} = -\rho \mathbf{x_{i,t}} \boldsymbol{\theta_{i,t}}, \ \forall i \in \{1, \dots, K_t\} \\ \mathbf{R_t} = \sum_{i \in K_t} \mathbf{x_{i,t}} \boldsymbol{\theta_{i,t}} \end{cases}$$

Decoupling the equations: Mean field approximation in polymorphic regime

- 1. x_t is the frequency of PRDM9.
- 2. θ_t is the recombination rate associated to PRDM9.
- 3. Assume there is no drift.
- 4. Approximate R_t as a constant parameter.

$$\begin{cases} \frac{\mathrm{d}x_t}{\mathrm{d}t} = \frac{\alpha}{R} (\theta_t - R) x_t \\ \frac{\mathrm{d}\theta_t}{\mathrm{d}t} = -\rho x_t \theta_t \end{cases}$$

Numerical resolution of the equations for a single allele

And back to polymorphism using delayed equations

Approximate sum of alleles as an integral of a single allele

$$\Delta T = \Delta T \sum_{i \in K_t} x_{i,t} \simeq \int_0^\infty x_t dt = \frac{1 - R_\infty}{\rho R}$$

Approximation for the mean recombination rate (R)

$$\left\{ egin{aligned} \Delta T &\simeq rac{1-R_{\infty}}{
ho R} \ \Delta T &\simeq \left(2lpha N_{
m e} u rac{1-R}{R}
ight)^{-1} \ 0 &\simeq 1-R_{\infty} + R \log(R_{\infty}) \end{aligned}
ight.$$

$$\Rightarrow \begin{cases} \frac{(1-R)(1-R_{\infty})}{R^2} \simeq \frac{2vr_0}{\alpha u} \\ 0 \simeq 1-R_{\infty} + R\log(R_{\infty}) \end{cases}$$

$$\Rightarrow R \simeq 1 - \sqrt{\frac{2vr_0}{\alpha u}}$$

Recombination rate (R) vs Population size

Approximation of D, the diversity at the PRDM9 locus

$$\mathbf{D} = \left(\sum_{i \in K_t} x_{i,t}^2\right)^{-1} = \left(\int_0^\infty x_t^2 \mathrm{d}t\right)^{-1} \int_0^\infty x_t \mathrm{d}t \simeq 12N_e u$$

Diversity of PRDM9 (D) vs Population size

Diversity of PRDM9 (D) vs Mutation rate

EPILOGUE

Conclusion:

- We can mathematically estimate mean recombination rate (R) directly from the parameters. It is independent of population size.
- We can mathematically estimate diversity of PRDM9 (D) directly from the parameters. It is increasing with regard to population size and mutation rate at the PRDM9 locus.

Perspective:

- What can we tell about turn-over? The landscape of hotspots?
- What about the data ?

THE END

Thank you for your attention

If you have any questions, feel free to answer them...

