# HyperGCN: A New Method of Training Graph Convolutional Networks on Hypergraphs

Presenter: Keyan

#### outline

- Hpyergraph introduction
- GCN backgroud
- Contributions
  - 1-HyperGCN
  - HyperGCN
  - FastHyperGCN
- Result Comparison
- Conclusion
- Questions

#### Hypergraph introduction

- Hypergraph provides a flexable modeling tool to model a complex and go beyond pairwise relationships.
- datasets examples: co-authors, email communacations
- usually we can define two vertices to construct a common graph. However for a

hypergraph, a hypereage will contain multible vertices.

• like the right side picture.



#### GCN backgroud

- The main idea is to use a node's neighbors and neighbors' neighbors', etc information to represent the node's final represent information. The closer neighbors have more influences.
- The forward model for a simple two-layer GCN formula used here:

$$Z = f_{GCN}(X, A) = \operatorname{softmax} \left( \bar{A} \operatorname{ReLU} \left( \bar{A} X \Theta^{(1)} \right) \Theta^{(2)} \right), \tag{1}$$

• Here, X is the feature data matrix which contained graph signals, A is a adjacency matrix.  $\theta^{(1)}$  is the input-to-hidden weight matrix,  $\theta^{(2)}$  is the hidden-to-output weight matrix. Both  $\theta$  are trained using gradient descent.

### GCN backgroud

• GCN training for SSL: For multi-class, classification with q classes, they minimise cross-entropy:

$$\mathcal{L} = -\sum_{i \in \mathcal{V}_L} \sum_{j=1}^q Y_{ij} \ln Z_{ij}, \tag{2}$$

• VL is the set of labeled examples.

#### Contributions

- proposed a new training method for training Semi supervised learning on hypergraph and also introduce its variants.
- 1-HyperGCN
- HyperGCN
- FastHyperGCN

## 1-HyperGCN

- new idea is to use Hypergraph Laplacian over a simplified hypergraph
  - 1.For each hyperedge e, let  $(i_e, j_e) = argmax_{i,j \in e} |S_i S_j|$ , breaking ties randomly. S is the signal defined on the hypernodes. this step is to find two vertices that represent largest signals of each hyperedge.
  - 2.A weighted simple graph G is constructed by adding step1 edges with weights  $w(\{i_e,j_e\})=w(e)$ , where w(e) is the weights of the hypereage e. let As denote the weighted adjacency matrix of G.
  - 3. The symmetrically normalised hypergraph Laplacian is:

$$\mathbb{L}(S) := (I - D^{-\frac{1}{2}} A_S D^{-\frac{1}{2}}) S$$

- the D is degree matrix of As.
- ullet The L(s) laplacian matrix is the input  $\bar{A}$  for GCN to perform.

## 1-HyperGCN

- in the above GCN process, when applied to a hypernode, in the neural message-passing framework(2017)  $h_v^{(\tau+1)} = \sigma \bigg( (\Theta^{(\tau)})^T \sum_{u \in \mathcal{N}(v)} ([\bar{A}_S^{(\tau)}]_{v,u} \cdot h_u^{(\tau)}) \bigg).$ 
  - $h_v^{(\tau+1)}$  is the new hidden layer representation of node v
  - σ is a non-linear activation function
  - $\bullet$   $\tau$  is the epoch number
  - N (u) is the set of neighbours of v
  - $[\bar{A}_{S}^{(\tau)}]_{v,u}$  is the weight on the edge {v, u} after normalisation

# 1-HyperGCN

for epoch  $\tau$ , use two nodes based on max L2 norm max hidden layer represtation to determine hyperedge



#### **HyperGCN**

- HyperGCN: a variant enhancing 1-HyperGCN with mediators.
- what are mediators:
  - those ignored nodes on each hyperedge. Since those ignored nodes cause signal loss, they use these nodes as mediators.
- weights of each mediators edge:

When adding one connecting mediators, the corelated edge will be 2|e|-3, so the weight of

each mediators edge is  $\frac{1}{2|e|-3}$ .



Figure 2: Hypergraph Laplacian [8] vs. the generalised hypergraph Laplacian with mediators [7]. Our approach requires at most a linear number of edges (1 and 2|e| - 3 respectively) while HGNN [17] requires a quadratic number of edges for each hyperedge.

#### **FastHyperGCN**

- use just the initial features X (without the weights) to construct the hypergraph Laplacian matrix(with mediators)
  - training time is much less than other methods.
  - the results performance is worse than HyperGCN

| Model↓  | Metric → | Training time | Density | Training time (DBLP) | Training time (Pubmed) |  |
|---------|----------|---------------|---------|----------------------|------------------------|--|
| HGNN    |          | 170s          | 337     | 0.115s               | 0.019s                 |  |
| FastHyp | erGCN    | <b>143</b> s  | 352     | 0.035s               | 0.016s                 |  |

Table 1: average training time of an epoch (lower is better)

## Result Comparison

Table 4: Results of SSL experiments. We report mean test error  $\pm$  standard deviation (lower is better) over 100 train-test splits. Please refer to section 5 for details.

| Data                                                                          | Method       | <b>DBLP</b> co-authorship        | Pubmed co-citation                 | Cora<br>co-authorship              | Cora<br>co-citation              | Citeseer<br>co-citation          |
|-------------------------------------------------------------------------------|--------------|----------------------------------|------------------------------------|------------------------------------|----------------------------------|----------------------------------|
| $\mathbf{X}^{\mathcal{H}}$                                                    | CI<br>MLP    | $54.81 \pm 0.9 \\ 37.77 \pm 2.0$ | $52.96 \pm 0.8$<br>$30.70 \pm 1.6$ | $55.45 \pm 0.6$<br>$41.25 \pm 1.9$ | $64.40 \pm 0.8 \\ 42.14 \pm 1.8$ | $70.37 \pm 0.3 \\ 41.12 \pm 1.7$ |
| $\mathcal{H}, \mathbf{X}$ $\mathcal{H}, \mathbf{X}$                           | MLP + HLR    | $30.42 \pm 2.1$                  | $30.18 \pm 1.5$                    | $34.87 \pm 1.8$                    | $36.98 \pm 1.8$                  | $37.75 \pm 1.6$                  |
|                                                                               | HGNN         | $25.65 \pm 2.1$                  | $29.41 \pm 1.5$                    | $31.90 \pm 1.9$                    | $32.41 \pm 1.8$                  | $37.40 \pm 1.6$                  |
| $\mathcal{H}, \mathbf{X}$ $\mathcal{H}, \mathbf{X}$ $\mathcal{H}, \mathbf{X}$ | 1-HyperGCN   | $33.87 \pm 2.4$                  | $30.08 \pm 1.5$                    | $36.22 \pm 2.2$                    | $34.45 \pm 2.1$                  | $38.87 \pm 1.9$                  |
|                                                                               | FastHyperGCN | $27.34 \pm 2.1$                  | $29.48 \pm 1.6$                    | $32.54 \pm 1.8$                    | $32.43 \pm 1.8$                  | $37.42 \pm 1.7$                  |
|                                                                               | HyperGCN     | $24.09 \pm 2.0$                  | $25.56 \pm 1.6$                    | $30.08 \pm 1.8$                    | $32.37 \pm 1.7$                  | $37.35 \pm 1.6$                  |

Table 5: Results (lower is better) on sythetic data and a subset of DBLP showing that our methods are more effective for noisy hyperedges.  $\eta$  is no. of hypernodes of one class divided by that of the other in noisy hyperedges. Best result is in bold and second best is underlined. Please see Section [6]

| Method       | $\eta = 0.75$                     | $\eta = 0.70$   | $\eta = 0.65$   | $\eta = 0.60$    | $\eta = 0.55$   | $\eta = 0.50$   | sDBLP           |
|--------------|-----------------------------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|
| HGNN         | $\textbf{15.92} \pm \textbf{2.4}$ | $24.89 \pm 2.2$ | $31.32 \pm 1.9$ | $39.13 \pm 1.78$ | $42.23 \pm 1.9$ | $44.25 \pm 1.8$ | $45.27 \pm 2.4$ |
| FastHyperGCN | $28.86 \pm 2.6$                   | $31.56 \pm 2.7$ | $33.78 \pm 2.1$ | $33.89 \pm 2.0$  | $34.56 \pm 2.2$ | $35.65 \pm 2.1$ | $41.79 \pm 2.8$ |
| HyperGCN     | $22.44 \pm 2.0$                   | $29.33 \pm 2.2$ | $33.41 \pm 1.9$ | $33.67 \pm 1.9$  | $35.05 \pm 2.0$ | $37.89 \pm 1.9$ | $41.64 \pm 2.6$ |

#### Conclusion

- This paper introduces a new Hypergraph convlutional network traing method and it's variations.
- the main idea is to simplify the hypergraph to a simple graph, and then use Laplacian construction for performing GCN.
- For saving the training time, try to use FastHyperGCN, the trainning time is much less than HyperGCN

#### Questions

- How to use the meditors?
  - store the signals in feature matrix? or weights matrix?
- what is Y represent in cross-entropy.

# Thank you