Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №1 по дисциплине «Методы машинного обучения» на тему «Разведочный анализ данных. Исследование и визуализация данных»

Выполнил: студент группы ИУ5-24М Лещев А.О.

1. Цель лабораторной работы

Изучить различные методы визуализации данных [1].

2. Задание

Требуется выполнить следующие действия [1]:

- Выбрать набор данных (датасет).
- Создать ноутбук, который содержит следующие разделы:
 - 1. Текстовое описание выбранного набора данных.
 - 2. Основные характеристики датасета.
 - 3. Визуальное исследование датасета.
 - 4. Информация о корреляции признаков.
- Сформировать отчет и разместить его в своем репозитории на GitHub.

3. Ход выполнения работы

3.1. Текстовое описание набора данных

В качестве набора данных используются метрологические данные с метеостанции HI-SEAS (Hawaii Space Exploration Analog and Simulation) за четыре месяца (с сентября по декабрь 2016 года) [2].

Данный набор данных состоит из одного файла SolarPrediction.csv, содержащего все данные этого датасета. Данный файл содержит следующие колонки:

- UNIXTime временная метка измерения в формате UNIX;
- Data дата измерения;
- Тіте время измерения (в местной временной зоне);
- Radiation солнечное излучение (B_T/M^2) ;
- Temperature температура (°F);
- Pressure атмосферное давление (дюймов ртутного столба);
- Humidity относительная влажность (%);
- WindDirection(Degrees) направление ветра (°);
- Speed скорость ветра (миль/ч);
- TimeSunRise время восхода (в местной временной зоне);
- TimeSunSet время заката (в местной временной зоне).

3.2. Основные характеристики набора данных

Подключим все необходимые библиотеки:

```
In [1]: from datetime import datetime
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    import seaborn as sns
```

Настроим отображение графиков [3, 4]:

```
In [2]: # Enable inline plots
       %matplotlib inline
        # Set plot style
        sns.set(style="ticks")
        # Set plots formats to save high resolution PNG
        from IPython.display import set_matplotlib_formats
        set_matplotlib_formats("retina")
  Зададим ширину текстового представления данных, чтобы в дальнейшем текст
в отчёте влезал на А4:
In [3]: pd.set_option("display.width", 70)
  Загрузим непосредственно данные:
In [4]: data = pd.read_csv("./SolarPrediction.csv")
  Преобразуем временные колонки в соответствующий временной формат:
In [5]: data["UNIXTime"] = (pd
                             .to_datetime(data["UNIXTime"], unit="s", utc=True)
                             .dt.tz_convert("Pacific/Honolulu"))
        data["Data"] = data["UNIXTime"].dt.date
        data["Time"] = data["UNIXTime"].dt.time
        data["TimeSunRise"] = (pd
                                .to_datetime(data["TimeSunRise"],
                                             infer_datetime_format=True)
                                .dt.time)
        data["TimeSunSet"] = (pd
                               .to_datetime(data["TimeSunSet"],
                                            infer_datetime_format=True)
                               .dt.time)
        data = data.rename({"Data": "Date",
                            "WindDirection(Degrees)": "WindDirection"},
                           axis=1)
  Проверим полученные типы:
In [6]: data.dtypes
Out[6]: UNIXTime
                         datetime64[ns, Pacific/Honolulu]
        Date
                                                    object
        Time
                                                    object
        Radiation
                                                   float64
        Temperature
                                                     int64
        Pressure
                                                   float64
```

Humidity	int64
WindDirection	float64
Speed	float64
TimeSunRise	object
TimeSunSet	object
dtype: object	

Посмотрим на данные в данном наборе данных:

```
In [7]: data.head()
```

Out[7]:				UNIXTi	me		Date	Time	Radiat	ion	\
	0	2016-09-29	23	:55:26-10:	00	2016-0	9-29	23:55:26	1	.21	
	1	2016-09-29	23	:50:23-10:	00	2016-0	9-29	23:50:23	1	.21	
	2	2016-09-29	23	:45:26-10:	00	2016-0	9-29	23:45:26	1	.23	
	3	2016-09-29	23	:40:21-10:	00	2016-0	9-29	23:40:21	1	.21	
	4	2016-09-29	23	:35:24-10:	00	2016-0	9-29	23:35:24	1	.17	
		Temperatu	сe	Pressure	Hu	midity	Wind	Direction	Speed	\	
	0	4	18	30.46		59		177.39	5.62		
	1	4	18	30.46		58		176.78	3.37		
	2	4	18	30.46		57		158.75	3.37		
	3	4	18	30.46		60		137.71	3.37		
	4	4	18	30.46		62		104.95	5.62		
		TimeSunRise	e T:	imeSunSet							
	0	06:13:00)	18:13:00							
	1	06:13:00)	18:13:00							
	2	06:13:00)	18:13:00							
	3	06:13:00)	18:13:00							
	4	06:13:00)	18:13:00							

Очевидно, что все эти временные характеристики в таком виде нам не особо интересны. Преобразуем все нечисловые столбцы в числовые. В целом колонка UNIXTime нам не интересна, дата скорее интереснее в виде дня в году. Время измерения может быть интересно в двух видах: просто секунды с полуночи, и время, нормализованное относительно рассвета и заката.

```
df["DayPart"] = (df["TimeInSeconds"] - sunrise) / (sunset - sunrise)
        df = df.drop(["UNIXTime", "Date", "Time",
                      "TimeSunRise", "TimeSunSet"], axis=1)
        df.head()
Out[9]:
           Radiation
                      Temperature
                                   Pressure
                                             Humidity
                                                       WindDirection
                                                                       Speed
        0
                1.21
                                      30.46
                                                                        5.62
                               48
                                                   59
                                                               177.39
        1
                1.21
                               48
                                      30.46
                                                   58
                                                               176.78
                                                                        3.37
        2
                1.23
                                                                        3.37
                               48
                                      30.46
                                                   57
                                                               158.75
        3
                1.21
                               48
                                      30.46
                                                   60
                                                               137.71
                                                                        3.37
        4
                1.17
                               48
                                      30.46
                                                   62
                                                               104.95
                                                                        5.62
           Day TimeInSeconds DayPart
        0 273
                      86126.0 1.475602
        1 273
                      85823.0 1.468588
        2 273
                      85526.0 1.461713
        3 273
                      85221.0 1.454653
        4 273
                      84924.0 1.447778
In [10]: df.dtypes
Out[10]: Radiation
                          float64
         Temperature
                            int64
         Pressure
                          float64
         Humidity
                            int64
         WindDirection
                          float64
         Speed
                          float64
         Day
                            int64
         TimeInSeconds
                          float64
         DayPart
                          float64
         dtype: object
```

С такими данными уже можно работать. Проверим размер набора данных:

In [11]: df.shape

Out[11]: (32686, 9)

Проверим основные статистические характеристики набора данных:

In [12]: df.describe()

Out[12]:		Radiation	Temperature	Pressure	Humidity	\
	count	32686.000000	32686.000000	32686.000000	32686.000000	
	mean	207.124697	51.103255	30.422879	75.016307	
	std	315.916387	6.201157	0.054673	25.990219	
	min	1.110000	34.000000	30.190000	8.000000	
	25%	1.230000	46.000000	30.400000	56.000000	
	50%	2.660000	50.000000	30.430000	85.000000	
	75%	354.235000	55.000000	30.460000	97.000000	

max	1601.260000	71.000000	30.560000	103.000000	
	WindDirection	Speed	Day	TimeInSeconds	\
count	32686.000000	32686.000000	32686.000000	32686.000000	
mean	143.489821	6.243869	306.110965	43277.574068	
std	83.167500	3.490474	34.781367	24900.749819	
min	0.090000	0.000000	245.000000	1.000000	
25%	82.227500	3.370000	277.000000	21617.000000	
50%	147.700000	5.620000	306.000000	43230.000000	
75%	179.310000	7.870000	334.000000	64849.000000	
max	359.950000	40.500000	366.000000	86185.000000	
	DayPart				
count	32686.000000				
mean	0.482959				
std	0.602432				
min	-0.634602				
25%	-0.040139				
50%	0.484332				
75%	1.006038				
max	1.566061				

3.3. Визуальное исследование датасета

Оценим распределение целевого признака — мощности солнечного излучения:

In [13]: sns.distplot(df["Radiation"]);

Видно, что имеется большой перевес в пользу практически нулевого излучения. Оценим, наскольки мощность солнечного излучения зависит от наличия солнца на небе:

```
In [14]: sns.jointplot(x="DayPart", y="Radiation", data=df, kind="hex");
```


Видно, что если солнца нет на небе, то мощность солнечного излучения стремится к нулю. Посмотрим на распределение мощности излучения в течение дня:

Теперь оценить влияние времени дня на мощность солнечного излучения будет заметно проще:

```
In [16]: sns.jointplot(x="DayPart", y="Radiation", data=dfd, kind="hex");
```


Посмотрим также на зависимость мощности солнечного излучения от температуры:

In [17]: sns.jointplot(x="Temperature", y="Radiation", data=dfd, kind="kde");

Видно, что некоторая зависимость определённо есть, но не настолько большая, насколько хотелось бы. Возможно на большей выборке эта зависимость стала бы ещё менее заметной.

Построим парные диаграммы по всем показателям по исходному набору данных:

In [18]: sns.pairplot(df, plot_kws=dict(linewidth=0));

Видно, что близкая к линейной зависимость есть только между временем с начала дня и приведение этого времени к промежутку наличия солнца на небе. Кроме того, видно выброс по скорости ветра, который происходил в один день и во время которого мощность солнечного излучения была близка к нулю. Имеет смысл учесть это при дальнейшем использовании этого набора данных и либо убрать этот выброс вообще, либо следить за тем, чтобы модели не переобучались на скорость ветра.

3.4. Информация о корреляции признаков

Построим корреляционную матрицу по всему набору данных:

```
In [19]: df.corr()
```

111 [10].	u1:0011()					
Out[19]:		Radiation 7	Γemperature	Pressure	Humidity \	
	Radiation	1.000000	0.734955	0.119016	-0.226171	
	Temperature	0.734955	1.000000	0.311173	-0.285055	
	Pressure	0.119016	0.311173	1.000000	-0.223973	
	Humidity	-0.226171	-0.285055	-0.223973	1.000000	
	WindDirection	-0.230324	-0.259421	-0.229010	-0.001833	
	Speed	0.073627	-0.031458	-0.083639	-0.211624	
	Day	-0.081320	-0.370794	-0.332762	-0.063760	
	${\tt TimeInSeconds}$	0.004348	0.197227	0.091066	0.077851	
	DayPart	0.005980	0.198520	0.094403	0.075513	
		WindDirection	on Speed	Day	${\tt TimeInSeconds}$	\
	Radiation	-0.23032	24 0.073627	-0.081320		
	Temperature	-0.25942	21 -0.031458	-0.370794	0.197227	
	Pressure	-0.22901	10 -0.083639	-0.332762	0.091066	
	Humidity	-0.00183	33 -0.211624	-0.063760	0.077851	
	${\tt WindDirection}$	1.00000	0.073092	0.153255	-0.077956	
	Speed	0.07309	92 1.000000	0.174336	-0.057908	
	Day	0.1532	55 0.174336	1.000000	-0.007094	
	${\tt TimeInSeconds}$	-0.0779	56 -0.057908	-0.007094	1.000000	
	DayPart	-0.07813	30 -0.056095	-0.010052	0.998980	
		DayPart				
	Radiation	0.005980				
	Temperature	0.198520				
	Pressure	0.094403				
	Humidity	0.075513				
	WindDirection					
	Speed	-0.056095				
	Day	-0.010052				
	${\tt TimeInSeconds}$	0.998980				
	DayPart	1.000000				

Визуализируем корреляционную матрицу с помощью тепловой карты:

```
In [20]: sns.heatmap(df.corr(), annot=True, fmt=".2f");
```


Видно, что мощность солнечного излучения заметно коррелирует с температурой, что было показано выше с помощью парного графика. Также заметно коррелируют время дня и проекция этого времени на промежуток светового дня. При этом последняя характеристика слегка больше коррелирует с целевым признаком, так что, возможно, следует использовать именно эту характеристику.

4. Список использованной литературы

- Ю.Е. 1. Гапанюк Лабораторная работа «Разведочный анализ данвизуализация ных. Исследование И данных» [Электронный peugapanyuk/ml course Wiki GitHub. 2019. URL: cypc https://github.com/ugapanyuk/ml course/wiki/LAB EDA VISUALIZATION (дата обращения: 13.02.2019).
- 2. dronio. Solar Radiation Prediction [Electronic resource] // Kaggle. 2017. URL: https://www.kaggle.com/dronio/SolarEnergy (дата обращения: 18.02.2019).
- 3. The IPython Development Team. IPython 7.3.0 Documentation [Electronic resource] // Read the Docs. 2019. URL: https://ipython.readthedocs.io/en/stable/ (дата обращения: 20.02.2019).
- 4. Waskom M. seaborn 0.9.0 documentation [Electronic resource]. 2018. URL: https://seaborn.pydata.org/ (дата обращения: 20.02.2019).
- 5. Chrétien M. Convert datetime.time to seconds [Electronic resource] // Stack Overflow. 2017. URL: https://stackoverflow.com/a/44823381 (дата обращения: 20.02.2019).