MATH-UA.0325-001, Analysis: Midterm Exam

Monday, November 9

Name:		
Net ID:		

This is a take home exam. No late submission will be accepted for ANY reason. Please upload the file in standard format and name it

FirstnameLastname_midterm.pdf.

The submission is due by Tuesday 10th of November at 11.00 New York time, please be careful with time zones.

Use a pen and not a pencil.

Please respect NYU's Code of Academic Integrity:

https://www.nyu.edu/about/policies-guidelines-compliance/policies-and-guidelines/academic-integrity-for-students-at-nyu.html

Problem	Points	Your Score
1	10	
2	10	
3	10	
4	10	
Total	40	

To any completely blank exercise will be assigned 2 points.

1. Give an example of a series $\sum_{n=1}^{\infty} a_n$ which is convergent but not absolutely convergent.

3. Let $\{x_n\}$ be recursively defined as

$$\begin{cases} x_{n+1} = x_n - x_n^2 \\ x_1 = \frac{1}{2} \end{cases}$$

- a) Prove that x_n is a decreasing sequence.
- b) Prove by induction that $x_n \geq 0$ for all $n \in \mathbb{N}$.
- c) Prove that $\lim_n x_n$ exists (you can appeal to known theorems).
- d) Find $\lim_{n} x_n$.

3. Let $\{x_n\}$ be a sequence such that

$$|x_{n+1} - x_n| \le \frac{1}{n^2}.$$

Prove that $\{x_n\}$ is Cauchy.

- 4. Prove or disprove (by providing a counterexample) the following statements:
 - (i) Let $\{x_n\}$ and $\{y_n\}$ be two sequences. If $\{x_n\}$ is bounded and

$$\lim_{n} y_n = 0,$$

then

$$\lim_{n} x_n y_n = 0.$$

(ii) Let $\{x_n\}$ and $\{y_n\}$ be two sequences. If $\{x_n\}$ is bounded and

$$\lim_{n} y_n = +\infty,$$

then

$$\lim_{n} x_{n} y_{n} = +\infty.$$