

GPY0033A

PWM Amplifier with Audio Mixer

Jan 31, 2013 Version 1.0

Table of Contents

		<u>P</u>	AGE
1.	GEN	NERAL DESCRIPTION	3
2.	FE <i>F</i>	ATURES	3
3.	BLC	OCK DIAGRAM	3
4.	SIG	NAL DESCRIPTIONS	4
	4.1.	PAD ASSIGNMENT	4
	4.2.	PACKAGE PIN ASSIGNMENT	5
5.	ELE	ECTRICAL SPECIFICATIONS	6
	5.1.	ABSOLUTE MAXIMUM RATINGS	6
	5.2.	THERMAL CHARACTERISTICS	6
	5.3.	DC CHARACTERISTICS (V _{DD} =5.0V, T _A = 25°C UNLESS OTHERWISE SPECIFIED)	6
	5.4.	TYPICAL PERFORMANCE CHARACTERISTICS	7
		5.4.1. Output Power vs. Supply Voltage	7
		5.4.2. THD+N (from MICIN)	7
		5.4.3. THD+N (from PWM)	9
6.	APF	PLICATION INFORMATION	10
	6.1.	GPY0033A TYPICAL APPLICATION CIRCUIT 1	10
	6.2.	GPY0033A TYPICAL APPLICATION CIRCUIT 2	10
	6.3.	GPY0033A TYPICAL APPLICATION CIRCUIT 3	11
	6.4.	GPY0033A TYPICAL APPLICATION CIRCUIT 4	11
7.	PAC	CKAGE/PAD LOCATIONS	12
	7.1.	ORDERING INFORMATION	12
	7.2.	PACKAGE INFORMATION	12
		7.2.1. SOP-14	12

PWM AMPLIFIER WITH AUDIO MIXER

1. GENERAL DESCRIPTION

The GPY0033A is an audio amplifier, designed especially for PWM signal. It can accept PWM signal directly without any external device. In addition, it also provides a channel for analog signal to mix with the PWM signal; that is, the sound of microphone is easy to work with the PWM sound. GPY0033A is also built in the anti-pop circuit to minimize the turn-on and turn-off pop noise. Normally, it is applied for GPC series, GPF series, GPL series and other GENERALPLUS products. The GPY0033A is easily to be used in various applications and products

2. FEATURES

- Wide Operation Range: 2.4V 5.5V
- Bridge-Tied Load (BTL)
- Low Distortion: THD+N < 1% (Typ.) (For VDD = 5.0V, R_L = 8.0 Ω & P_{out} = 800mW)
- High Output Power: P_{OUT} > 0.8W (For VDD = 5.0V, THD+N =1.0%, f =1.0KHz & $R_L = 8\Omega$)
- Low Shutdown Current: < 1.0µA
- Low Supply Current
- Minimize the turn-on and turn-off pop noise
- Fast Startup Time

3. BLOCK DIAGRAM

GPY0033A:

4. SIGNAL DESCRIPTIONS

GPY0033A:

Mnemonic	PIN No.	Type	Description	Electrical Characteristics
STBY	2	I	Standby control, low active. An internal resistor is pulled to ground weakly	-
MICIN	3	1	Channel for analog signal input	-
BYPASS	4	0	Reference voltage for OP positive terminal, a 0.1uF capacitor is necessary	VDD/2
PWMP	5	1	PWM positive terminal. An internal resistor is pulled to ground weakly when STBY is high.	-
PWMN	6	1	PWM negative terminal. An internal resistor is pulled to ground weakly when STBY is high.	-
SPKP	9	0	The positive terminal for speaker	-
VDD	10	1	Power VDD	2.4V – 5.5V
VSS	12	I	Power Ground	-
SPKN	13	0	The negative terminal for speaker	-

4.1. PAD Assignment

The IC substrate should be connected to VSS

4.2. Package Pin Assignment

5

5. ELECTRICAL SPECIFICATIONS

5.1. Absolute Maximum Ratings

Characteristics	Symbol	Ratings
DC Supply Voltage	V ₊	< 5.5V
Input Voltage Range	V_{IN}	-0.5V to V+ + 0.5V
Operating free-air Temperature Range	T _A	-40°C to + 85°C
Operating junction Temperature Range	$T_\mathtt{J}$	-40°C to + 150°C
Storage Temperature	T _{STO}	-50°C to + 150°C

Note: Stresses beyond those given in the Absolute Maximum Rating table may cause permanent damage to the device. For normal operational conditions see AC/DC Electrical Characteristics.

5.2. Thermal Characteristics

Characteristics	Symbol	Value	Unit	
SOP-14 Package Thermal Resistance	R _{THJA}	90	°C/W	

5.3. DC Characteristics (V_{DD} =5.0V, T_A = 25°C unless otherwise specified)

GPY0033A:

Item	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Operation Voltage	Temperature = 25°C	V_{DD}	2.4	1	5.5	V
Shutdown Current	STBY=GND	I _{STBY}	-	0.2	1.0	uA
Operating Current	$V_{DD} = 5.5V$, $\overline{STBY} = V_{DD}$, No Load	I _{DD}	-	3.5	5.5	mA
	V _{DD} = 2.4V~3.3V		0.5*V _{DD}	-	-	V
Input High Voltage	V _{DD} = 3.3V~5.5V	V _{IH}	0.45*V _{DD}	-	-	
	V _{DD} = 2.4V~3.3V		-	-	0.3*V _{DD}	.,
Input High Voltage	V _{DD} = 3.3V~5.5V	V _{IL}	-	-	0.25*V _{DD}	V
Total Harmonic Distortion +	V_{DD} = 5.0V, R_L = 8.0 Ω , P_{OUT} = 500mW	TUDIN		0.0		0/
Noise	f = 1.0KHz, R_F =33kΩ, R_I =30kΩ	THD+N	-	0.2	-	%
	V _{DD} = 5.0V, THD+N = 1%,					
	$f = 1.0KHz$, $R_L = 8.0\Omega$,	P _{OUT}	-	900	-	mW
Output Power	R_F =33k Ω , R_I =30k Ω					
(From MICIN)	V _{DD} = 5.0V, THD+N = 10%					
	$f = 1.0KHz$, $R_L = 8.0\Omega$,	P _{OUT}	-	1200	-	mW
	R_F =33k Ω , R_I =30k Ω					
Output Offset Voltage	V _{IN} =0V	Vos	-	-	30	mV
Enable Time	V _{DD} = 5.0V, C3=0.1μF,	T _{ON}	-	-	20	ms
Shutdown Time	V _{DD} = 5.0V, C3=0.1μF,	T _{OFF}	-	_	70	ms

5.4. Typical Performance Characteristics

5.4.1. Output Power vs. Supply Voltage

Condition: R_F = 33k Ω , R_1 =30k Ω , C_1 =2.2 μ F, signal input from MICIN

5.4.2. THD+N (from MICIN)

Condition: $R_F = 33k\Omega$, $R_1=30k\Omega$, $C_1=2.2\mu F$

Ap

5.4.3. THD+N (from PWM)

Condition: PWM signal → 2nd delta-sigma modulation, 6.144 MHz clock rate and 96 KHz sample rate

♦ THD+N deeply depends on the PWM signal quality

6. APPLICATION INFORMATION

6.1. GPY0033A Typical Application Circuit 1

• R_F is for volume control, the microphone gain = $(R_F//300k\Omega)/R_{1}$; the internal resistance between MICIN and SPKN is approx. $300k\Omega$.

6.2. GPY0033A Typical Application Circuit 2

• R_F is for volume control, the audio input gain = $(R_F//300k\Omega)/R_1$; the internal resistance between MICIN and SPKN is approx. $300k\Omega$.

Jan 31, 2013 Version: 1.0

6.3. GPY0033A Typical Application Circuit 3

6.4. GPY0033A Typical Application Circuit 4

• R_F is for volume control, the audio input gain = $(R_F//300k\Omega)/R_1$; the internal resistance between MICIN and SPKN is approx. $300k\Omega$.

7. PACKAGE/PAD LOCATIONS

7.1. Ordering Information

Product Number	Package Type		
GPY0033A - C	Chip form		
GPY0033A - HS02x	Green Package – SOP-14 (150mil)		

Note: Package form number (x = 1 - 9, serial number).

7.2. Package Information

7.2.1. SOP-14

Ownshall		Dimension in inch			
Symbol	Min.	Тур.	Max.		
Α	0.058	0.064	0.068		
A1	0.004	-	0.010		
В	0.13	0.016	0.020		
C	0.0075	0.008	0.0098		

Sumb al		Dimension in inch			
Symbol	Min.	Тур.	Max.		
D	0.336	0.341	0.344		
E	0.150	0.154	0.157		
е	-	0.050	0.050		
Н	0.228	0.236	0.244		
L	0.015	0.025	0.050		
θ°	0	-	8		

8. DISCLAIMER

The information appearing in this publication is believed to be accurate.

Integrated circuits sold by Generalplus Technology are covered by the warranty and patent indemnification provisions stipulated in the terms of sale only. GENERALPLUS makes no warranty, express, statutory implied or by description regarding the information in this publication or regarding the freedom of the described chip(s) from patent infringement. FURTHERMORE, GENERALPLUS MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. GENERALPLUS reserves the right to halt production or alter the specifications and prices at any time without notice. Accordingly, the reader is cautioned to verify that the data sheets and other information in this publication are current before placing orders. Products described herein are intended for use in normal commercial applications. Applications involving unusual environmental or reliability requirements, e.g. military equipment or medical life support equipment, are specifically not recommended without additional processing by GENERALPLUS for such applications. Please note that application circuits illustrated in this document are for reference purposes only.

9. REVISION HISTORY

Date	Revision #	Description	Page
Jan 31, 2012	1.0	Modify the maximum operating current.	15
Sep 06, 2012	0.3	Preliminary version	15

15