因果推断系列读书会

An Interventionist Approach to Mediation Analysis

报告人: 胡文杰

北京大学数学科学学院博士生

huwenjie@pku.edu.cn

基础信息

- 该论文的基础信息
 - •论文作者: James Robins
 - •提出了FFRCISTG,Gformula等工作,在因果推断 领域有很大贡献。

James M. Robins

professor of epidemiology and biostatistics <u>harvard school</u> of public health Verified email at hsph.harvard.edu

TITLE	CITED BY	YEAR
Marginal structural models and causal inference in epidemiology JM Robins, MA Hernan, B Brumback Epidemiology 11 (5), 550-560	3824	2000
Causal diagrams for epidemiologic research S Greenland, J Pearl, JM Robins Epidemiology, 37-48	2714	1999
Estimation of regression coefficients when some regressors are not always observed JM Robins, A Rotnitzky, LP Zhao Journal of the American statistical Association 89 (427), 846-866	2210	1994
Causal diagrams for empirical research J Pearl Biometrika 82 (4), 669-688	1848	1995
A structural approach to selection bias MA Hernán, S Hernández-Díaz, JM Robins Epidemiology, 615-625	1813	2004
A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect J Robins Mathematical modelling 7 (9-12), 1393-1512	1748	1986
Analysis of semiparametric regression models for repeated outcomes in the presence of missing data	1525	1995

JM Robins, A Rotnitzky, LP Zhao Journal of the american statistical association 90 (429), 106-121

论文背景

- · Robins认为Pearl的NPSEM-IE(nonparametric structure equation model with independent errors)的模型对于counterfactual因果模型的描述不够精确。该文章主要详细阐述了中介分析的一种新视角。
- · Robins认为自己在该论文中提出的interventionist方法在实际中更能被各个领域的专家所接受。同时也能更好的看出中介分析识别性的一些假设。

以往的进展

- · 该文章主要基于Robins的FFRCISTG(finest fully randomized causal interpreted structural tree model)/SWIG(Single World Intervention Graph)以及Pearl的NPSEM-IE。关于中介分析,之前往往关心下面一些参数。
- · 如果将处理A和中介变量都看成处理,则可定义 CDE(controlled direct effect):
- $CDE_{a,a'}(m) = E[Y(a',m) Y(a,m)]$
- 另一个则是PDE(pure direct effect)或NDE(natural direct effect)
- $PDE_{a,a'} = E[Y(a', M(a)) Y(a, M(a))]$

解决的科学问题

- · 先分析了CDE和PDE的识别性问题。
- · 然后提出了基于干预的中介分析新框架。
- 并给出了识别性的一些定理。

解决问题的思路

· Robins在该文章中的想法是:将处理A分解成两部分N和O,其中N对中介变量M有作用,而O对结局变量Y有作用。

· Pearl的图模型与Robins 的FFRCISTG模型

Definition 1 (NPSEM Counterfactual Existence Assumption).

- (i) For each variable $V \in \mathbf{V}$ and assignment $\widetilde{\mathbf{pa}}$ to $\mathrm{pa}_{\mathcal{G}}(V)$, the parents of V in \mathcal{G} , we assume the existence of a counterfactual variable $V(\widetilde{\mathbf{pa}})$.
- (ii) For any set \mathbf{R} , with $\mathbf{R} \neq \mathrm{pa}_{\mathcal{G}}(V)$, $V(\tilde{\mathbf{r}})$ is defined recursively via:

$$V(\tilde{\mathbf{r}}) = V\left(\tilde{\mathbf{r}}_{(pa_{\mathcal{G}}(V)\cap\mathbf{R})}, (\mathbf{P}\mathbf{A}_V \setminus \mathbf{R})(\tilde{\mathbf{r}})\right), \tag{14}$$

where $(\mathbf{P}\mathbf{A}_V \setminus \mathbf{R})(\tilde{\mathbf{r}}) \equiv \{V^*(\tilde{\mathbf{r}}) \mid V^* \in \mathrm{pa}_{\mathcal{G}}(V), V^* \notin \mathbf{R}\}.$

· Pearl的图模型与Robins 的FFRCISTG模型

Definition 2 (FFRCISTG Independence Assumption²⁷).

For every
$$\mathbf{v}^{\dagger}$$
, the variables $\left\{ V(\mathbf{p}\mathbf{a}_{V}^{\dagger}) \mid V \in \mathbf{V}, \ \mathbf{p}\mathbf{a}_{V}^{\dagger} = \mathbf{v}_{\mathrm{pa}_{\mathcal{G}}(V)}^{\dagger} \right\}$ (17)

are mutually independent.

The NPSEM-IE model is the submodel of the FFRCISTG obeying the stronger independence assumption:²⁸

Definition 3 (NPSEM-IE Independence Assumption).

The variables $\{ \boldsymbol{\epsilon}_V \mid V \in \mathbf{V} \}$ are mutually independent. This is equivalent to:

The sets of variables
$$\left\{ \left\{ V(\mathbf{p}\mathbf{a}_{V}^{\dagger}) \mid for \ all \ \mathbf{p}\mathbf{a}_{V}^{\dagger} \right\} \middle| V \in \mathbf{V} \right\}$$
 (18)

are mutually independent.

- 例子
- ・在FFRCISTG模型下,我们假设 $Z \perp M(z) \perp Y(z,m)$
- 而在NPSEM-IE模型下,我们假设 $Z \perp \{M(z=0), M(z=1)\} \perp \{Y(z,m) \text{ for all } z,m\}$
- · 例如在NPSEM-IE模型假设中,有 $M(1) \perp Y(0,m)$,而该条件在FFRCISTG模型中并不一定成立。

- 例子
- 在FFRCISTG模型下,我们假设
 Z ⊥ M(z) ⊥ Y(z, m)
- ・ 而在NPSEM-IE模型下,我们假设 $Z \perp \{M(z=0), M(z=1)\} \perp \{Y(z,m) \text{ for all } z,m\}$
- 例如在NPSEM-IE模型假设中 · 有 $M(1) \perp Y(0,m)$,而该条件在FFRCISTG模型中并不一定成立。

· Robins and Richardson的SWIG图模型,是一种表示方式,能够更直观的看出变量之间的相关关系。

·构造SWIG的方法。

The SWIT $\mathcal{G}(\mathbf{a})$ resulting from intervening to set the variables in \mathbf{A} to \mathbf{a} in a directed acyclic graph \mathcal{G} with vertex set \mathbf{V} is constructed in two steps as follows:

(1) Split Nodes: For every $A \in \mathbf{A}$ split the node into a random and fixed component, labelled A and a respectively, as follows:

Splitting: Schematic Illustrating the Splitting of Node A

Thus the random half inherits all edges directed into A in \mathcal{G} ; the fixed half inherits all edges directed out of A.

Let the resulting graph be \mathcal{G}^* . For each random vertex V in \mathcal{G}^* , let \mathbf{a}_V denote the subset of fixed vertices that are ancestors of V in \mathcal{G}^* .

(2) Labeling: For every random node V in \mathcal{G}^* , label it with $V(\mathbf{a}_V)$ (see the schematic below).

It is implicit here that if $\mathbf{a}_V = \emptyset$ then $V(\mathbf{a}_V) = V$. The resulting graph is the SWIT $\mathcal{G}(\mathbf{a})$. Let $\mathbb{V}(\mathbf{a}) \equiv \{V(\mathbf{a}_V) \mid V \in \mathbf{V}\}$ be the set of random vertices in $\mathcal{G}(\mathbf{a})$.

labeling: Schematic showing the nodes $V(\mathbf{a}_V)$ in $\mathcal{G}(\mathbf{a})$ for which $a \in \mathbf{a}_V$.

实例

River Blindness Treatment Study

· A表示是否进入随机化实验, M表示是否接受药物,结局变量Y表示视力是否下降。S表示是否有机会得到抗过敏药, R表示是否接受抗过敏药。U为未观测混杂变量(是否接受药物治疗的倾向)。

· 由于某些原因,我们只有(A, M, Y)的数据。

CDE的识别性

- · 在上述例子中,对A=O的群体,U与M正相关.而在A=1的群体中,由于M随机给定,所以U和M独立.
- p(Y|A=a, M=m) = p(Y(a, m)),从而CDE(m)可识别。

PDE的识别性

- · 在上述例子中的PDE都是不识别的。
- · 然后Robins讨论了更简单情形下的识别性。在该情形下,在NPSEM-IE(nonparametric structure equation model with independent error)模型中是可识别的
- · 在FFRCISTG模型中不可识别,但可以做到部分识别(得到PDE的上下界)。

WHY?

The proof of this result, under the NPSEM-IE is as follows:

$$\operatorname{med}_{a,a'} \equiv \sum_{m} (\mathbb{E}[Y \mid m, a] - \mathbb{E}[Y \mid m, a']) p(m \mid a')$$
$$= \left(\sum_{m} \mathbb{E}[Y \mid m, a] p(m \mid a')\right) - \mathbb{E}[Y \mid a']$$

$$\begin{split} p(Y(a, M(a') = m) &= y) \\ &= \sum_{m} p(Y(a, M(a') = m) = y \,|\, M(a') = m) p(M(a') = m) \\ &= \sum_{m} p(Y(a, m) = y) p(M(a') = m) \\ &= \sum_{m} p(Y = y \,|\, A = a, M = m) p(M = m \,|\, A = a') \end{split}$$

• This follows from the fact that the proof relies on the cross-world independence $Y(a,m) \perp M(a')$.

实例: Nicotine-Free Cigarette

- · 有随机戒烟实验数据。吸烟状态A, 6个月后的高血压状态M, 以及一年后的结局变量Y。
- · 文章假设尼古丁对Y的作用都是通过M造成的,其他毒素对M没有作用。同时M到Y没有未观测的混杂变量。
- PDE = E[Y(a = 1, M(a = 0))] E[Y(a = 0, M(a = 0))]
- ・ 而 $E[Y(a = 1, M(a = 0))] = \sum_{m} E[Y|A = 1, M = m]p(m|A = 0)$,从而PDE可识别。

Expanded DAG

Given a DAG \mathcal{G} with a single treatment variable A, an expanded graph \mathcal{G}^{ex} for A is a DAG constructed by first adding a set of new variables $\{A^{(1)}, \ldots, A^{(p)}\}$ corresponding to a decomposition of the treatment A into p separate components (proposed by the investigator); every variable $A^{(i)}$ is a child of A with the same state space and $A^{(i)}(a) = a$, but A has no other children in \mathcal{G}^{ex} ; each child C_j of A in \mathcal{G} has in \mathcal{G}^{ex} a subset of $\{A^{(1)}, \ldots, A^{(p)}\}$ as its set of parents.

Expanded DAG

•
$$PDE = E[Y(n = 0, o = 1)] - E[Y(n = 0, o = 0)]$$

•
$$PDE = \sum_{m} E[Y|O = 1, M = m]p(m|N = 0)$$

•
$${O = 1, M = m} = {A = 1, M = m}$$

•
$${N = 0, M = m} = {A = 0, M = m}$$

•
$$PDE = \sum_{m} E[Y|A = 1, M = m]p(m|A = 0)$$

- 文章给出了三种类型的数据
- · 第一种: 从实验中得到的原始数据(A,M,Y), 其中A是随机化的。
- · 第二种: 随机化(N,O)的得到的四组的数据,在每一组中 (n,o)属于{0,1}^2。
- · 第三种: 第二种数据中n=o的这一部分数据。

- p(M = m, Y = y | A = a) = p(M(n = a, o = a) = m, Y(n = a, o = a) = y | A = a) =p(M(n = a, o = a) = m, Y(n = a, o = a) = y)
- · 由上式可以看出第三种数据的分布可以由第一种数据识别。
- 从而我们的目标就是当 $n \neq o$ 时去识别E[Y(n,o)]。

Proposition 1 *If for some* $x \in \{0,1\}$ *the following two conditions hold:*

$$p(M(n=x,o=0) = m) = p(M(n=x,o=1) = m),$$

$$p(Y(n=1,o=x^*) = y \mid M(n=1,o=x^*) = m)$$

$$= p(Y(n=0,o=x^*) = y \mid M(n=0,o=x^*) = m),$$
(14)

where $x^* = 1 - x$, then:

$$p(M(n=x,o=x^*)=m,Y(n=x,o=x^*)=y)$$

$$=p(Y(n=x^*,o=x^*)=y \mid M(n=x^*,o=x^*)=m)p(M(n=x,o=x)=m).$$
(16)

Proof:

$$\begin{split} p(M(n\!=\!x,o\!=\!x^*),Y(n\!=\!x,o\!=\!x^*)) \\ &= p(Y(n\!=\!x,o\!=\!x^*)\,|\,M(n\!=\!x,o\!=\!x^*))p(M(n\!=\!x,o\!=\!x^*)) \\ &= p(Y(n\!=\!x^*,o\!=\!x^*)\,|\,M(n\!=\!x^*,o\!=\!x^*))p(M(n\!=\!x,o\!=\!x)). \end{split}$$

Proposition 2 Assume the distribution of the variables on an unexpanded DAG \mathcal{G} is positive. Under an FFRCISTG corresponding to the population SWIG $\mathcal{G}^{ex}(n,o)$ there is no vertex that has both n and o as parents if and only if the joint distributions $p(V(n=x,o=x^*))$ for $x \neq x^*$ are identified from the counterfactual distributions p(V(n=x,o=x)). Further, since P(V(n=x,o=x)) = P(V(a=x)), also from the distribution of the variables in \mathcal{G} .

对于单个处理的识别性条件

Lemma 1 Assume the distribution of the variables on an unexpanded DAG \mathcal{G} is positive. Under an FFRCISTG corresponding to an expanded (population) graph \mathcal{G}^{ex} for treatment A, the intervention distribution $p(V(a^{(1)} = x^{(1)}, \dots, a^{(p)} = x^{(p)}))$ is identified by the g-formula applied to \mathcal{G}^{ex} from the data on \mathcal{G} if for every child C_j of A in \mathcal{G} , the set of parents of C_j in \mathcal{G}^{ex} that are components of A take the same value. \mathcal{G}^{ex}

Generalizations

Theorem 1 If $V(\pi, a, a')$ is edge consistent, then under the NPSEM-IE for the DAG \mathcal{G} ,

$$p(V(\pi, a, a')) = \prod_{i=1}^{K} p(V_i \mid a \cap pa_i^{\pi}, a' \cap pa_i^{\overline{\pi}}, pa_i^{\mathcal{G}} \setminus A).$$
 (26)

Theorem 2 Under the FFRCISTG model associated with the edge expanded DAG \mathcal{G}^e , for any edge consistent π , a, a':

$$p^{e}(V(a^{\pi})) = \prod_{i=1}^{K} p^{e}(V_i \mid a^{\pi} \cap \operatorname{pa}_i^{\mathcal{G}^e}, \operatorname{pa}_i^{\mathcal{G}^e} \setminus A). \tag{27}$$

讨论

- 这篇文章将处理A分成了几个成分,然后去利用这成分来进行中介分析,并研究其识别性条件。
- · 但是在实际应用时,A应该如何分解往往很困难。
- 同时FFRCISTG的相关论文很少,研究的人不多。

文献/资源列表

- James M. Robins. A new approach to causal inference in mortality studies with sustained exposure periods application to control of the healthy worker survivor effect. Mathematical Modeling, 7:1393–1512, 1986.
- Richardson, Thomas S., and James M. Robins. "Single world intervention graphs (SWIGs): A unification of the counterfactual and graphical approaches to causality." Center for the Statistics and the Social Sciences, University of Washington Series. Working Paper 128.30 (2013): 2013.
- Richardson, Thomas S., and James M. Robins. "Single world intervention graphs: a primer." *Second UAI workshop on causal structure learning, Bellevue, Washington*. 2013.

联系我们

• 公众号:集智俱乐部

• 公众号:集智学园

• 添加读书会负责人为好友,参与线上讨论

集智学园

集智俱乐部

