Temporal information facilitates statistical learning of spectrally degraded speech

Katherine M. Simeon¹, Hillary E. Snyder¹, Casey Lew-Williams², & Tina M. Grieco-Calub¹

¹Northwestern University, Dept. Of Communication Sciences & Disorders ²Princeton University, Dept. Of Psychology

Linguistic Society Of America Annual Meeting Washington D.C. – January 7, 2016

Auditory Statistical Learning

- Adults and infants can track statistical properties of speech units
- •Statistical learning is important for speech segmentation

Segmenting degraded speech

- Underlying assumption in statistical learning: Ability to discriminate individual speech units
- Discriminating speech units can be disrupted by spectral degradation
- Hearing devices, such as cochlear implants, spectrally degrade speech
- •The present study lends insight into how speech segmentation works when processing degraded signals

The Present Study

- •Our question: How can spectral degradation affect statistical learning?
- •Experiment 1 (Exp 1): Segmenting speech with spectral degradation
- •Experiment 2 (Exp 2): Segmenting spectrally degraded speech with a proportion of overt boundaries

Noise-band vocoding

Unprocessed

16-Channel

8-Channel

Shannon et al., 1995

The Stimulus

$tibudo go latu {\color{red}pabiku} go latu daro pitibudo$

	Transitional Probability	Trisyllabic Sequences
High TP	TP = 1.0	pabiku, tibudo
Low TP	TP = 0.5	golatu, daropi
Novel (did not occur in speech stream)	TP = 0.0	robaku, dolati

Exp 1: Segmenting Vocoded Speech

Methods:

- •NH Adult Participants (N=48; 16 per listening condition)
- Exposure period where participant listened to speech stream
- 2-Alternative Forced Choice Task

Exp 1: Segmenting Vocoded Speech

Methods:

- •NH Adult Participants (N=48; 16 per listening condition)
- Exposure period where participant listened to speech stream
- •2-Alternative Forced Choice Task

Disrupting Statistical Learning

- This suggests that spectral resolution is necessary for statistical learning
- •Why does spectral degradation disrupt statistical learning?
 - Inability to discriminate individual speech sounds
 - Inability to track statistics

Syllable Recognition Task

- Same participants as in Experiment 1
- Presented with a monosyllabic sound in the same listening condition heard in Experiment 1
- Identified sound on push button array

Task performance differences

Why Pause?

golatupabikugolatudaropitibudodaropipabikugolatutibudodar opigolatu **pabiku** golatudaropigolatupabikugolatuda ropigolatudaropigolatutibudodaropigolatutibudogolatudaropi golatudaropigolatutibudodaropi **tibudo** daropipabiku daropigolatupabikudaropigolatupabikudaropigo

- Isolating specific sequences provide a temporal hint that is preserved in vocoding
- Insert pauses by flanking 20% of high TP sequences with 500 ms intervals of silence
 - 6.6% of all trisyllabic sequences in the stream were "isolated"

Lew-Williams et al., 2011

Exp 2: Isolated Sequences

Exp 2: Isolated Sequences

Summary

- •Spectral degradation disrupts statistical learning
 - Degradation interferes with ability to track statistics
- •Other information, such as overt word boundaries, in the signal can facilitate the speech segmentation task
 - We can see this effect with a small amount of pauses
 - Varies based on amount of spectral degradation
 - Does not generalize to sequences that were not isolated

Acknowledgments

Sarah Schwartz

Paul Reinhardt

Members of the Hearing & Language Lab

