Organizační úvod

Poznámka (Zápočet)

Za vypracování domácích úloh.

Poznámka (Zkouška)

Písemná, ale Covid?

Úvod

MA je na rovném prostoru \mathbb{R}^n Naším cílem je vybudovat analýzu na nerovném? prostoru, tzv. varietě.

Poznámka (literatura)

Skripta – Krump, Souček, Těšínský: MA ve varietách

Sborník příkladů – Kopáček: Příklady z matematiky pro fyziky III.

1 Opakování

'Odvozovali' (přes limity velikosti rozdělení jdoucí k nule) jsme si:

Křivkový integrál 1. druhu, křivkový integrál 2. druhu. Integrální věty (pol. 19. stol, moderní formulace Cardan (1945)): Věta o potenciálu, Greenova věta

Plošný integrál 1. druhu, plošný integrál 2. druhu. Integrální věty: Stokesova věta, Gauss-Ostrogradského věta

${f 2}$ Stokesova věta v $\mathbb{R}^n,$ diferenciální formy v \mathbb{R}^n

Věta)^{2.1} (Moderní (= obecná) formulace Stokesovy věty = Cíl (Cartan

$$\int_{S} d\omega = \int_{\delta S} \omega$$

Kde S je buď 'singulární' \neg -plocha v R^n (tato část) nebo \neg -varieta s okrajem (3. část).

2.1 Vnější algebra vektorového prostoru

Motivace: Jak násobit vektory z \mathbb{R}^n ?

Poznámka

Násobení na \mathbb{R}^n zachovává Eklidovskou normu (tzn. $||x \cdot y| = ||x|| \cdot ||y||$) pouze v dimenzích 1, 2, 4, 8 (= \mathbb{R} , \mathbb{C} , kvaterniony, oktocosi).

Definice 2.1 (Algebra)

Algebra nad tělesem k $(=\mathbb{R})$ je vektorový prostor \mathbb{A} nad k s bilineárním zobrazením

Algebra je asociativní, jestliže co asi.

Algebra má jednotku, jestliže existuje co asi ;)

Definice 2.2

Nechť Λ je vektorový prostor nad \mathbb{R}

Poznámka (Vlastnosti vnější algebry)

 $\dim \Lambda*(\mathbb{V})=2^n,$ protože každý vektor je určen bázovými vektory, kterých je jako podmnožinn prvkové množiny

TODO

$$e_I \wedge e_J = 0$$
, je-li $I \cap J \neq \emptyset$ = $sgn(\text{permutace})e_{I \cup J}$, je-li $I \cap J = \emptyset$

Je-li $\omega \in \Lambda^k(\mathbb{V})$ a $\tau \in \Lambda^l(\mathbb{V})$, potom $\omega \wedge \tau = (-1)^{kl} \tau \wedge \omega \in \Lambda k + l(\mathbb{V})$.

Důkaz

(Dokázat, že prohození je právě $k \cdot l$, následně z linearity násobení)

Věta 2.2

Nechť \mathbb{V} je vektorový prostor s bází $e_1, \ldots e_n$. Nechť $v_1, v_2, \ldots v_k \in \mathbb{V}$, $kde\ 1 \leq k \leq n$. Potom $v_i = \sum_{j=1}^n v_i^j e_j$ a označme $\mathbb{W} = \left(v_i^j\right)_{j=1,\ldots,n;i=1,\ldots,k}$ je matice $n \times k$ jejich souřadnice (sloupec i je vektor i). Je-li J k-prvková podmnožina $\{1,\ldots,n\}$, označ $W_j := (v_i^j)_{j \in I; i=1,\ldots,k}$ (minor $k \times k$). Potom $v_1 \wedge v_2 \wedge \ldots k = \sum_{|J|=k} (\det(W_j)) e_J$.

 $D\mathring{u}kaz$

Posčítáním. A dokázáním, že to je definice determinantu.

Definice 2.3 (Skalární součin na $\Lambda * (\mathbb{V})$)

Nechť Vje vektorový prostor se skalárním součinem (?, symetrický) $<\cdot,\cdot>$ a e_1,\ldots,e_n je ortonormální báze V.

Definujeme skalární součin ve $\Lambda * (\mathbb{V})$ jako:

{...}

TODO!

Úmluva

 \mathbb{R}^n chápeme jako Euklidovský prostor se standardní bází $e_1, \dots e_n$ a TODO!

 $Nap \check{r} iklad$

Nechť R je rovnoběžnostěn v \mathbb{R}^n určený vektory v_1, \ldots, v_k , kde $1 \leq k \leq n$. Potom k-dimenzionální objem R je roven:

$$\operatorname{vol}_k(R) = ||v_1 \wedge \ldots \wedge v_k||,$$

kde ||x|| je euklidovská norma.

 $D\mathring{u}kaz$

TODO!

TODO TODO!

Definice 2.4 (Vektorový součin v \mathbb{R}^n)

Nechť $v_1,\ldots,v_{n-1}\in\mathbb{R}^n$. Potom jejich vektorový součin $v_1\times v_2\times\cdots\times v_{n-1}\in\mathbb{R}^n$ je definován jako * $(v_1\times\cdots\times v_{n-1})=v_1\wedge v_2\wedge\ldots\wedge v_{n-1}$

Poznámka

Ve skriptech označeno $[v_1, \ldots, v_{n-1}].$

Poznámka (Platí)

$$v_1 \times \dots \times v_{n-1} = (-1)^{n-1} * (v_1 \wedge \dots \wedge v_{n-1})(zCv.2TODO)$$

 $\forall \omega \in \mathbb{R}^n : \langle \omega, v_1 \times \cdots \times v_{n-1} \rangle = \det(\omega | v_1 | cdots | v_{n-1})$

2.2 Rozložitelné k-vektory

Nechť \mathbb{V} je vektorový prostor. Nechť $\omega \in \Lambda^k(\mathbb{V})$. Položme

$$\ker \omega := \{ v \in \mathbb{V} | \omega \wedge v = 0 \} .$$

Platí 1. ker ω je podprostor

Definice 2.5 (Rozložitelné *k*-vektory)

 $\omega \in \Lambda^k(\mathbb{V})$ je rozložitelný, pokud existují $v_1, \ldots, v_k \in \mathbb{V}$ takové, že $\omega = v_1 \wedge \ldots \wedge v_k$.

Platí 2. $v_1 \wedge \ldots \wedge v_k \neq 0 \Leftrightarrow$ vektory v_1, \ldots, v_k jsou lineárně nezávislé.

Platí 3. Nechť $\omega = v_1 \wedge \ldots \wedge v_k \neq 0$. Potom

$$\ker \omega = \mathrm{LO}(v_1, \ldots, v_k)$$

Definice 2.6

$$R_k(\mathbb{V}) := \{ \omega \in \Lambda^k(\mathbb{V}) | \omega \neq 0$$
rozložitelný \}

 $G_k(\mathbb{V}) := \{L | Lk \text{- dimensionální podprostor } \mathbb{V}\}$ (tzv. Grassmannian)

Platí 4. Zobrazení $\varphi: R_k(\mathbb{V}) \to G_k(\mathbb{V})$: $\omega \to \ker \omega$ je na, ale není prosté. Skutečně máme $\ker \omega = \ker \omega' \Leftrightarrow \exists \alpha \in \mathbb{R}? : \omega' = \alpha \omega.$

Například (Nerozložitelné k-vektory)

Platí 5. Pro $\mathbb{V}=\mathbb{R}^n$ jsou všechny 1-vektory, n-vektory i (n-1)-vektory rozložitelné.

Příklad

Rozložte $e_{123} + e_{124} + e_{234} \in \Lambda^3(\mathbb{R}^4)$, kde $e_{123} = e_{\{1,2,3\}}$.

Musíme tedy hledat v \mathbb{R}^4 a "výše".

Příklad

Najděte nerozložitelný 2-vektor $\omega \in \Lambda^2(\mathbb{R}^4)$

Poznámka (Projektivní prostor)

Mezi nejdůležitější Grassmanniany patří projektivní prostor:

Nechť Vje vektorový prostor. Polož $P(V) := \{1\text{-dimensionální podprostor V}\}.$

Tvrdíme $P(\mathbb{V}) = G_1(\mathbb{V})$.

TODO?

Věta 2.3 (Plückerovo vnoření)

$$G_k(\mathbb{V}) \to ?P(\mathbb{R}^{(nnadk)})$$

, je- $li \dim \mathbb{V} = n$

3 Variety, Stokesova věta na varietách