Bayesian Compromise Estimators

Valentin Zulj

2023-10-24

- Introduction
- 2 BMA
- Candidate Models
- 4 Bayesian Stacking
- 5 Examples

- Introduction
- 2 BMA
- Candidate Models
- 4 Bayesian Stacking
- 5 Examples

Introduction

- The common form of a statistical analysis is given by the following two steps:
 - Select the best model
 - Apply the model as if it was the truth/the best overall
- The first step usually relies on either
 - model selection criteria (WAIC/*IC/CV), often data driven, or
 - scientific theory.
- However, it is quite easy to criticize the model selection step. For example:
 - Model selection can be unstable. Small changes of input data may yield radically different model choice.
 - Very different models can have similar performance overall. Then, discriminating between them is often difficult.
- What are the possible consequences? Poor generalizability and inference.
 - Unstable selection means the model may perform badly with out-of-sample data.
 - Ad-hoc choices between similar models may yield sub-optimal selection.
 - Model selection uncertainty not properly represented in final analysis
- Compromise modeling is one way of dealing with the issue. Particularly good at countering poor generalizability.

Compromise Modeling - General Idea

Suppose that φ is some quantity of interest, and that

- ullet There are K candidate models under consideration, and
- ullet Each candidate model produces $arphi_k$ as and approximation of arphi.

Then, compromise modeling entails us a weighted average of the candidates,

$$\bar{\varphi} = \sum_{k=1}^{K} w_k \varphi_k,$$

as the final approximation of φ . Here w_k are model specific weights that can be estimated to suit the purpose of the analysis.

Example: Variable Selection in Linear Regression

Let $\mathbf{y}=(y_1,\dots,y_n)^T$ be a vector of (continuous) outcomes and \mathbf{X} be a matrix of covariates to use in linear regression.

Problem: Which subset $X_k \subset X$ of variables gives the best regression model?

Example: Variable Selection in Linear Regression

Let $\mathbf{y}=(y_1,\dots,y_n)^T$ be a vector of (continuous) outcomes and \mathbf{X} be a matrix of covariates to use in linear regression.

Problem: Which subset $X_k \subset X$ of variables gives the best regression model?

Common solution: Use some off-the-shelf procedure to chose "optimal" subset.

Example: Variable Selection in Linear Regression

Let $\mathbf{y}=(y_1,\dots,y_n)^T$ be a vector of (continuous) outcomes and \mathbf{X} be a matrix of covariates to use in linear regression.

Problem: Which subset $X_k \subset X$ of variables gives the best regression model?

Common solution: Use some off-the-shelf procedure to chose "optimal" subset.

Alternative solution: Consider several different subsets, and combine their information by a weighted average. For example,

- If φ is the posterior predictive distribution, $\bar{\varphi} = \sum_k w_k \cdot p(\tilde{\mathbf{y}}|\mathbf{y}, \mathbf{X}_k)$,
- If φ is the posterior predictive mean, $\bar{\varphi} = \sum_k w_k \cdot E[\tilde{\mathbf{y}}|\mathbf{y}, \mathbf{X}_k]$.

Note that both $p(\tilde{\mathbf{y}}|\mathbf{y},\mathbf{X}_k)$ and $E[\tilde{\mathbf{y}}|\mathbf{y},\mathbf{X}_k]$ are derived as usual. The new step in this procedure is finding suitable weights w_1,\dots,w_K . In Bayesian theory, Bayesian model averaging and Bayesian stacking are the prominent ways of doing so.

- Introduction
- 2 BMA
- Candidate Models
- 4 Bayesian Stacking
- 5 Examples

Bayesian Model Averaging

Bayesian model averaging (BMA) is concerned with $\varphi=p(\Delta|D)$, where

- \bullet Δ could be a new observation, $\tilde{\mathbf{y}},$ or a vector of regression coefficients, $\ ,$ and
- D is the data.

Bayesian Model Averaging

Bayesian model averaging (BMA) is concerned with $\varphi=p(\Delta|D)$, where

- ullet Δ could be a new observation, $\tilde{\mathbf{y}}$, or a vector of regression coefficients, , and
- D is the data.

The BMA posterior probability for Δ is given as

$$p(\Delta|D) = \sum_{k=1}^{K} p(\Delta|M_k, D) \cdot p(M_k|D).$$

Here, M_k denotes the k:th candidate model, and

- $p(\Delta|M_k, D)$ is the posterior probability for Δ given model k.
- ullet $p(M_k|D)$ is the posterior probability of the model M_k .

Compare to the compromise posterior predictive on last slide, and note that $w_k=p(M_k|D)$ shows how to weight each model.

Problems in Practice

- Posterior distributions of advanced models can be hard (impossible) to find.
 For BMA, this amounts to
 - ullet The usual difficulty of finding $p(\Delta|M_k,D)$, and
 - \bullet The additional step of finding the model posterior, $p(M_k|D).$ In particular, computing the integrated likelihood.
- Some simple problems have analytical solutions (see e.g. Raftery, Madigan, and Hoeting 1997 for a linear regression example).
- MCMC Model Composition (MCMCMC) simplifies things by generating a Markov chain that moves through the model space (I think it can be applied using the BMA package).
- Another issue of BMA has to do with the behavior of the weights in large samples. To discuss this, some further notation has to be introduced.

- Introduction
- 2 BMA
- Candidate Models
- Bayesian Stacking
- Examples

${\mathcal M}$ -open and ${\mathcal M}$ -closed

To formalize the last drawback of BMA, and to motivate the use of Bayesian stacking, the properties of the candidate models employed need to be considered. Thus, let $\mathcal{M} = \{M_1, \dots, M_K\}$ be the set of candidate models. Then

- \mathcal{M} -closed means the true data generating model is included in \mathcal{M} , although it is not known which of the candidates it is, while
- \mathcal{M} -complete means that the true model is *not* in \mathcal{M} , but we still use \mathcal{M} since the true model may be too complicated in terms of computations, interpretations, etc.
- \mathcal{M} -open means that the true model is *not* in \mathcal{M} , and there is no knowledge of how to specify an explicit form of the true model.

${\mathcal M}$ -open and ${\mathcal M}$ -closed

To formalize the last drawback of BMA, and to motivate the use of Bayesian stacking, the properties of the candidate models employed need to be considered. Thus, let $\mathcal{M}=\{M_1,\dots,M_K\}$ be the set of candidate models. Then

- $m{\cdot}$ \mathcal{M} -closed means the true data generating model is included in \mathcal{M} , although it is not known which of the candidates it is, while
- \mathcal{M} -complete means that the true model is not in \mathcal{M} , but we still use \mathcal{M} since the true model may be too complicated in terms of computations, interpretations, etc.
- \mathcal{M} -open means that the true model is *not* in \mathcal{M} , and there is no knowledge of how to specify an explicit form of the true model.

It is known that, as $n\to\infty$, the BMA weight of the candidate closest to the true model (in terms of KL divergence) tends to 1. That is,

- ullet For \mathcal{M} -closed, this is great since BMA will chose the true model.
- ullet For ${\mathcal M}$ -complete/open, BMA clearly selects the wrong model.

I would argue that $\mathcal{M} ext{-complete/open}$ is more realistic. So what to do?

- Introduction
- 2 BMA
- Candidate Models
- 4 Bayesian Stacking
- 5 Examples

Some preliminaries: Let

- $\bullet \ \mathbf{w} = (w_1, \dots, w_k)^T$, and suppose it belongs to some set \mathcal{W} , and
- \bullet S(P,Q) be a scoring rule, measuring the similarity of two distributions P and Q.

Some preliminaries: Let

- $oldsymbol{\mathbf{w}} = (w_1, \dots, w_k)^T$, and suppose it belongs to some set \mathcal{W} , and
- \bullet S(P,Q) be a scoring rule, measuring the similarity of two distributions P and Q.

Then, Bayesian stacking weights are given by

$$\mathbf{w}^* = \underset{\mathbf{w} \in \mathcal{W}}{\operatorname{argmax}} \ S\left(\sum_{k=1}^K w_k p(\tilde{\mathbf{y}}|\mathbf{y}, M_k), p_{\mathsf{true}}(\tilde{\mathbf{y}}|\mathbf{y})\right).$$

That is, \mathbf{w}^* is the weight vector that maximizes the similarity between the stacked posterior predictive and the true posterior predictive distribution

Of course, $p_{\mathsf{true}}(\tilde{\mathbf{y}}|\mathbf{y})$ is not known, and some kind of empirical approximation is required. One way of estimating \mathbf{w}^* is using leave-one-out cross-validation.

- Clyde and Iversen (2013) introduce it in Bayesian setting,
- Le and Clarke (2017) theoretically motivate use of CV for weight estimation,
- Yao et al. (2018) use general scoring rules.

Of course, $p_{\mathsf{true}}(\tilde{\mathbf{y}}|\mathbf{y})$ is not known, and some kind of empirical approximation is required. One way of estimating \mathbf{w}^* is using leave-one-out cross-validation.

- Clyde and Iversen (2013) introduce it in Bayesian setting,
- Le and Clarke (2017) theoretically motivate use of CV for weight estimation,
- Yao et al. (2018) use general scoring rules.

Using the weight vector estimated by cross-validation, the stack is given by

$$\sum_{k=1}^{K} w_k^* p(\tilde{\mathbf{y}}|\mathbf{y}, M_k),$$

which is very similar to the frequentist jackknife model averaging.

Scoring Rules

For Bayesian stacking, it is common to use either

- The \log score, $LS(P,y) = \log[p(y)]$, or
- The energy score, $ES(P,y)=\frac{1}{2}E_P\|Y-Y'\|^{\beta}-\mathbb{E}_p\|Y-y\|^{\beta}.$ Here, Y and Y' both follow P independently. $\beta=2$ is common in practice.

The major difference is that stacking using the \log score gives a stacked posterior distribution, while stacking using the $\beta=2$ energy score gives a stacked posterior mean.

Depending on the objective of the analysis, either approach may be suitable.

- Introduction
- 2 BMA
- Candidate Models
- 4 Bayesian Stacking
- 5 Examples

Example Using rstanarm and loo

 ${\tt loo::stacking_weights} \ \ {\rm gives} \ \log {\sf -score} \ \ {\rm weights}. \ \ {\sf See} \ \ {\sf stylized} \ \ {\sf example} \ \ {\sf below}.$

```
library("rstanarm"); library("loo")
# Fitting the candidate models
cand1 \leftarrow stan_glm(y \sim X1, data = df)
cand2 \leftarrow stan glm(v \sim X1 + X2, data = df)
cand2 \leftarrow stan_glm(y \sim X1 + X2 + X3, data = df)
# LOO-CV approximation
loo1 <- loo(cand1); loo2 <- loo(cand2); loo3 <- loo(cand3)
# Pointwise LOO ELPD
lpd_point <- cbind(loo1$pointwise[,"elpd_loo"],</pre>
                     loo2$pointwise[,"elpd_loo"],
                     loo3$pointwise[,"elpd_loo"])
stacking_weights(lpd_point) # Estimates the weights
```

An example using real data is given in the enclosed R script.

Research Example

Ongoing work aims to evaluate Bayesian stacking using frequentist asymptotics. In particular, the focus is to establish the *oracle property*

$$\frac{\|\mathbf{y} - \sum_k w_k^* E[\mathbf{y}|M_k]\|^2}{\inf_{\mathbf{w} \in \mathcal{W}} \|\mathbf{y} - \sum_k w_k E[\mathbf{y}|M_k]\|^2} \overset{p}{\longrightarrow} 1.$$

This means that no candidate, nor any other average using the same candidates and weights from \mathcal{W} , provides smaller asymptotic error than Bayesian stacking.

Research Example

Ongoing work aims to evaluate Bayesian stacking using frequentist asymptotics. In particular, the focus is to establish the *oracle property*

$$\frac{\|\mathbf{y} - \sum_k w_k^* E[\mathbf{y}|M_k]\|^2}{\inf_{\mathbf{w} \in \mathcal{W}} \|\mathbf{y} - \sum_k w_k E[\mathbf{y}|M_k]\|^2} \overset{p}{\longrightarrow} 1.$$

This means that no candidate, nor any other average using the same candidates and weights from \mathcal{W} , provides smaller asymptotic error than Bayesian stacking.

To date, the oracle has been established for Bayesian stacking of linear regression models using $\mathcal{N}(\mathbf{0}, \mathbf{S})$, as the prior for β , where $\mathbf{S} > 0$ is symmetric.

The results of a simulation are given on the next slide. The curve gives the ratio of the Bayesian stacking squared error to the squared error of the best candidate.

Research Example

References

- Clyde, Merlise, and Edwin S Iversen. 2013. "Bayesian Model Averaging in the m-Open Framework." In *Bayesian Theory and Applications*. Oxford: Oxford University Press.
- Le, Tri, and Bertrand Clarke. 2017. "A Bayes Interpretation of Stacking for m-Complete and m-Open Settings." *Bayesian Analysis* 12 (3): 807–29.
- Raftery, Adrian E., David Madigan, and Jennifer A. Hoeting. 1997. "Bayesian Model Averaging for Linear Regression Models." *Journal of the American Statistical Association* 92 (437): 179–91.
- Yao, Yuling, Aki Vehtari, Daniel Simpson, and Andrew Gelman. 2018. "Using Stacking to Average Bayesian Predictive Distributions (with Discussion)." Bayesian Analysis 13 (3): 917–1003.