GROUP TEST: ALGEBRA

(1)(a) The group SO(2) acts on $\mathbb{C}[X,Y]$ as follows:

$$\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \cdot P(X, Y) = P(\cos \theta X + \sin \theta Y, -\sin \theta X + \cos \theta Y).$$

Prove that its invariant subspace $\mathbb{C}[X,Y]^{SO(2)} = \mathbb{C}[X^2 + Y^2].$

(b) Let $S = \mathbb{C}[X,Y]e^{-\pi(X^2+Y^2)}$ and let F be the Fourier transformation:

$$F\phi(x,y) = \int_{\mathbb{R}^2} \phi(u,v) e^{2\pi i(ux+vy)} du dv.$$

Prove that for any $P \in \mathbb{C}[X,Y], \phi \in S$,

$$F(P \cdot \phi) = P\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) F(\phi).$$

- (c) Describe the space $\mathbb{C}\left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right]^{SO(2)}$.
- (2)(a) What is the Galois group of $\mathbb{Q}(\zeta_7)$ over \mathbb{Q} , where $\zeta_7 = e^{2\pi i/7}$?
 - (b) Find a Galois extension field F of \mathbb{Q} such that $\operatorname{Gal}(F/\mathbb{Q}) \cong \mathbb{Z}/3\mathbb{Z}$? Are there infinitely many such Galois extensions?
 - (c) Find the quadratic subfield of $\mathbb{Q}(\zeta_7)$?