A、 程式說明:

本次作業為比較 merge sort 及 insertion sort,當使用者輸入一個 size(大於 0)時,程式會隨機產生一個大小為 size 的 array,接著 為了避免第二次排序時使用已排好的陣列,所以產生一個 array2 複製 array裡面的資料。最後將兩組相同的資料分別經過 insertion sort 以及 merge sort,分別記錄 insertion sort 和 merge sort 的時間。在執行時,輸入不同 size 分別記錄不同 size 的 insertion sort 和 merge sort 的時間

B、 程式結果:

(單位為秒)

size	100	1000	5000	10000	20000	50000	100000	150000	200000
time(insertion sort)	0	0.002	0.04	0.145	0.562	3.425	14.493	32.793	57.017
time(merge sort)	0	0	0.001	0.003	0.004	0.01	0.022	0.035	0.044

Insertion sort 圖形:

Merge sort 圖形:

Insertion sort 和 merge sort 比較

C、 結果分析:

觀察圖三,我們可以發現 insertion sort 的複雜度明顯大於 merge sort,當 size 變大時,insertion sort 的執行秒數和 merge sort 的執行秒數差異會越來越大。觀察圖一,當 size 變大 10 倍,insertion sort 的執行秒數大約變大 100 倍,所以我們可以得知 insertion sort 的時間複雜度確實為 $O(n^2)$ 。觀察圖二,merge sort 的時間複雜度會小於 $O(n^2)$ 且大於 O(n),所以可以得知 merge sort 的時間複雜度確實為 $O(n\log n)$ 。