## 1 正則性

岩井雅崇 2023/04/11

以下断りがなければ、 $\Omega$  は  $\mathbb C$  の領域 (連結開集合) とする.

## 問 1.1 • 次の問いに答えよ.

- (a) 「複素数  $a_n$  からなる級数  $\sum_{n=1}^{\infty} a_n$  が絶対収束する」ことの定義を述べよ.
- (b) 複素数  $a_n$  からなる級数  $\sum_{n=1}^\infty a_n$  が絶対収束するとする. このとき全単射  $f:\mathbb{N}\to\mathbb{N}$  について,  $\sum_{n=1}^\infty a_{f(n)}$  も絶対収束して極限値は  $\sum_{n=1}^\infty a_n$  であることを示せ.

## 問 1.2 \* 次の問いに答えよ.

- (a) 「 $\Omega$  上の関数列  $f_n$  が  $\Omega$  上の関数 f に一様収束する」ことの定義を述べよ.
- (b)  $\Omega$  上の関数列  $f_n$  と  $\Omega$  上の関数 f であって、任意の  $z \in \Omega$  について  $\lim_{n \to \infty} f_n(z) = f(z)$  であるが、 $f_n$  が f に一様収束しない例をあげよ.
- (c)  $\Omega$  上の関数列  $f_n$  が  $\Omega$  上の関数 f に一様収束すると仮定する. 任意の自然数 n について  $f_n$  が  $\Omega$  上で連続ならば, f も  $\Omega$  上で連続であることを示せ.
- 問 1.3  $\bullet$ (コーシー・リーマン方程式) f(z) を  $\Omega$  上の複素数値  $C^{\infty}$  級関数とする.  $z=x+iy\in\mathbb{C}$  とし f(z) を (x,y) の関数 f(x,y) と考え, f(x,y)=u(x,y)+iv(x,y) とおく. (u,v) は実数値  $C^{\infty}$  級関数とする.) 次は同値であることを示せ.
  - (a) f(z) は  $\Omega$  上で正則である.
  - (b)  $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$  かつ  $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$  が成り立つ.
- 問1.4 \*次の関数は正則関数であるか判定せよ.
  - (a)  $f(z) = \bar{z}$
  - (b)  $f(z) = |z|^2$
  - (c)  $f(z) = \frac{1}{z}$  (ただし定義域は  $\mathbb{C} \setminus \{0\}$  とする.)
- 問 1.5~f(z) を  $\mathbb C$  上の正則関数とする.このとき  $g(z)=\overline{f(\overline z)}$  もまた  $\mathbb C$  上の正則関数であることを示せ.
- 問 1.6~f(z) を  $\Omega$  上の正則関数とする. 任意の  $z\in\Omega$  について f'(z)=0 となるならば f は定数関数であることを示せ.
- 問  $1.7 z = x + iy \in \mathbb{C}$  として複素偏微分を次で定義する.

$$\frac{\partial}{\partial z} := \frac{1}{2} \left( \frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right), \quad \frac{\partial}{\partial \overline{z}} := \frac{1}{2} \left( \frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$

- f(z) を  $\Omega$  上の  $C^{\infty}$  級関数とするとき, 次は同値であることを示せ.
- (a) f(z) は  $\Omega$  上で正則である.
- (b)  $\Omega$ 上で  $\frac{\partial f}{\partial \bar{z}} \equiv 0$ .

問1.8 引き続き問1.7 の通りの記号を用いる. 次の問いに答えよ.

- $(\mathbf{a}) \ f(z)$ を  $\Omega$  上の正則関数とするとき,  $f'(z) = \frac{\partial f}{\partial z}$  であることを示せ.
- (b) f(z) を  $\Omega$  上の  $C^{\infty}$  級関数とするとき, 次を示せ.

$$\frac{\partial}{\partial z}\frac{\partial}{\partial \bar{z}}f(z) = \frac{1}{4}\left(\frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2}\right)f(z)$$

演習の問題は授業ページ (https://masataka123.github.io/2023\_summer\_complex/) にもあります.右下の QR コードからを読み込んでも構いません.

