

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190303303

FCC REPORT

Applicant: MOVILTELCO TRADE, S.L

Address of Applicant: ABTAO, 25-1Floor A-office MADRID Spain

Equipment Under Test (EUT)

Product Name: mobile phone

Model No.: A87, A87A, A87B, A87C, A87D

Trade mark: mtt

FCC ID: 2ACQKTELCO021

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 Mar., 2019

Date of Test: 12 Mar., to 02 Apr., 2019

Date of report issued: 03 Apr., 2019

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	03 Apr., 2019	Original

Tested by: Mike DU Date: 03 Apr., 2019

Test Engineer

Reviewed by: 03 Apr., 2019

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	52
Ω	FUT	CONSTRUCTIONAL DETAILS	54

4 Test Summary

Test Items	Section in CFR 47	Result		
Antenna requirement	15.203 & 15.247 (b)	Pass		
AC Power Line Conducted Emission	15.207	Pass		
Conducted Peak Output Power	15.247 (b)(3)	Pass		
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass		
Power Spectral Density	15.247 (e)	Pass		
Band Edge	15.247 (d)	Pass		
Spurious Emission	15.205 & 15.209	Pass		
Pass: The ELIT complies with the assential requirements in the standard				

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	MOVILTELCO TRADE, S.L
Address:	ABTAO,25-1Floor A-office MADRID Spain
Manufacturer/Factory:	MOVILTELCO TRADE, S.L
Address:	6 floor, building 2, Zhenyan industrial park, No.1 xiangxing road, lanlian; longgang District, Shenzhen, China.

5.2 General Description of E.U.T.

Product Name:	mobile phone	
Model No.:	A87, A87A, A87B, A87C, A87D	
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20))	
Channel numbers:	11 for 802.11b/802.11g/802.11(HT20)	
Channel separation:	5MHz	
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)	
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)	
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps	
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps	
Data speed (IEEE 802.11n):	Up to 72.2Mbps	
Antenna Type:	Internal Antenna	
Antenna gain:	-2.5dBi	
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh	
AC adapter:	US and Europe have the same adapter specifications Model: A87 Input: AC100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 1A	
Test Sample Condition:	The test samples were provided in good working order with no visible defects.	
Remarks:	item No.: A87, A87A, A87B, A87C, A87D were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.	

Operation Fi	Operation Frequency each of channel for 802.11b/g/n(HT20)						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		
Note:							
1 Channel 1 6 & 11 selected for 802 11b/g/n-HT20 as Lowest Middle and Highest channel							

Report No: CCISE190303303

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.			
Mode	Data rate		
802.11b	1Mbps		
802.11g	6Mbps		
802.11n(HT20)	6.5Mbps		

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:	tadiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antonno	CCHWADZDECK	FM7D4540D	00044	03-16-2018	03-15-2019	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2019	03-15-2020	
PiCanil og Antonna	SCHWARZBECK	VULB9163	407	03-16-2018	03-15-2019	
BiConiLog Antenna	SCHWARZBECK	VULD9103	497	03-16-2019	03-15-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019	
понт Апценна	SCHWARZBECK	DDHA9120D	910	03-16-2019	03-15-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019	
EMI Test Software	AUDIX	E3	Version: 6.110919b		b	
Pre-amplifier	HP	8447D	2944A09358	03-07-2019	03-06-2020	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2019	03-06-2020	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2019	03-06-2020	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2019	03-06-2020	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2019	03-06-2020	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2019	03-06-2020	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2019	03-06-2020	
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A	
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0			

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2019	03-06-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2019	03-06-2020
LISN	CHASE	MNIOOFOD	1 1 1 7	03-19-2018	03-18-2019
LISIN	CHASE	MN2050D	1447	03-19-2019	03-18-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cable	HP	10503A	N/A	03-07-2019	03-06-2020
EMI Test Software	AUDIX	E3	Version: 6.110919b		b

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is -2.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 1	5.207			
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kl	 Hz			
Limit:	Frequency range		HRu\/)		
LIIIII.	(MHz)				
	0.15-0.5 66 to 56* 56 to 46*				
	0.5-5	56	46		
	5-30	5-30 60 50			
	* Decreases with the loga	arithm of the frequency.			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test Instruments	AUX Equipment Test table/Insulat Remark E.U.T: Equipment Under T LISN: Line Impedence Sta Test table height=0.8m	ion plane Est bilization Network	Iter — AC power		
Test Instruments:	Refer to section 5.8 for details				
Test mode: Test results:	Refer to section 5.3 for d	etails			

Measurement Data:

With EU adapter

Product name:	mobile phone	Product model:	A87
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Remark	:EU							
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	₫B	<u>dB</u>	dBu₹	dBu₹	<u>d</u> B	
1	0.346	25.78	0.12	10.73	36.63	49.05	-12.42	Average
2	0.365	37.90	0.12	10.73	48.75	58.61	-9.86	QP
3	0.421	27.44	0.12	10.73	38.29	47.42	-9.13	Average
4	0.461	42.17	0.12	10.74	53.03	56.67	-3.64	QP
2 3 4 5 6 7	0.471	31.81	0.12	10.75	42.68	46.49	-3.81	Average
6	0.541	36.69	0.12	10.76	47.57	56.00	-8.43	QP
	0.573	25.08	0.12	10.76	35.96	46.00	-10.04	Average
8	0.686	36.44	0.13	10.77	47.34	56.00	-8.66	QP
9	0.826	22.92	0.13	10.82	33.87	46.00	-12.13	Average

10.84

10.90

10.91

46.79

32.86

45.44

56.00 -9.21 QP

56.00 -10.56 QP

46.00 -13.14 Average

Notes:

10

11

12

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

35.82

21.83

34.40

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

0.13

0.13

0.13

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

0.890

1.236

1.403

A87

Product name:

mobile phone

Test by:	Mike		Test me	ode:	Wi-Fi Tx r	node	
Test frequency:	150 kHz ~ 30 MH	łz	Phase:		Neutral		
Test voltage:	AC 120 V/60 Hz		Enviror	nment:	Temp: 22	Temp: 22.5℃ Huni: 55	
80 Level (dE	suV)						
80							\neg
70							
20					FCC PAR	RT 15.247	QP
60	. 3						
50	M 5 7	8 11				RT 15.247	AV
MMA		MANAGERIA	Mpapah-Mhalpahan-andalaha 12	of all brokely by relative the a	Kal Kanan .		
40 V W	WAY & WAY I'V	150	12	A COLOR OF THE PARTY OF THE PAR	haster radd the with the to	NA	40
30	Market Market	MANAGEM PARTY AND	house of both portion property	North State of the		MANA	1
20	WALL MAN				a so to be be the problem by the first	May 1	X.
20						Salling .	7 *
10							he
0							
.15 .2	.5	1 .	2 roquoney (MHz)	5	10	20	30
Trace: 21		F	requency (MHz)				
Remark :	EU						
	D	TICH C	11	7	^		

Product model:

Remark	: EU							
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	₫BuV	₫B	₫B	dBu₹	dBu∜	<u>dB</u>	
1	0.343	38.81	0.97	10.73	50.51	59.13	-8.62	QP
2	0.343	25.79	0.97	10.73	37.49	49.13	-11.64	Average
3	0.449	40.98	0.97	10.74	52.69	56.89	-4.20	QP
1 2 3 4 5 6 7 8 9	0.449	28.94	0.97	10.74	40.65	46.89	-6.24	Average
5	0.549	37.29	0.97	10.76	49.02	56.00		
6	0.549	26.80	0.97	10.76	38.53	46.00	-7.47	Average
7	0.686	36.83	0.97	10.77	48.57	56.00		
8	0.894	37.64	0.97	10.84	49.45	56.00	-6.55	QP
9	0.894	23.39	0.97	10.84	35.20			Average
10	1.236	21.96	0.97	10.90	33.83			Average
11	1.296	34.15		10.90	46.02	56.00	A CONTRACTOR OF THE PARTY OF TH	
12	1.959	20.96	0.98	10.96	32.90			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

With US adapter

Product name:	mobile phone	Product model:	A87
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

٠	۰	u	•	٠,		•		

Remark : US

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	₫B		dBu∜	dBu∜	<u>dB</u>	
1	0.158	38.22	0.17	10.77	49.16	65.56	-16.40	QP
1 2 3	0.158	25.63	0.17	10.77	36.57	55.56	-18.99	Average
3	0.178	21.46	0.16	10.77	32.39			Average
4 5 6 7 8 9	0.182	35.03	0.16	10.77	45.96	64.42	-18.46	QP
5	0.234	32.46	0.14	10.75	43.35	62.30	-18.95	QP
6	0.234	20.69	0.14	10.75	31.58	52.30	-20.72	Average
7	0.361	33.00	0.12	10.73	43.85	58.69	-14.84	QP
8	0.361	22.24	0.12	10.73	33.09	48.69	-15.60	Average
9	0.489	17.98	0.12	10.76	28.86	46.19	-17.33	Average
10	0.510	28.75	0.12	10.76	39.63	56.00	-16.37	QP
11	0.739	16.54	0.13	10.79	27.46	46.00	-18.54	Average
12	2.622	25.85	0.16	10.93	36.94	56.00	-19.06	QP

Notes:

- 4. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 5. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 6. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	mobile phone	Product model:	A87
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Remark	: US							
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	₫B	₫B	dBu∀	dBu₹	<u>d</u> B	
1	0.154	35.79	0.98	10.78	47.55	65.78	-18.23	QP
2	0.154	24.19	0.98	10.78	35.95			Average
3	0.178	32.33	0.95	10.77	44.05	64.59	-20.54	QP
4	0.178	19.59	0.95	10.77	31.31	54.59	-23.28	Average
5	0.277	28.57	0.96	10.74	40.27	60.90	-20.63	QP
6	0.354	33.28	0.97	10.73	44.98	58.87	-13.89	QP
2 3 4 5 6 7 8 9	0.358	20.31	0.97	10.73	32.01	48.78	-16.77	Average
8	0.385	29.26	0.97	10.72	40.95		-17.22	
	0.486	16.45	0.97	10.76	28.18	46.23	-18.05	Average
10	0.759	28.27	0.97	10.80	40.04	56.00	-15.96	QP
								0.00

10.80

10.93

27.94

27.13

46.00 -18.06 Average

46.00 -18.87 Average

Notes:

11

12

4. An initial pre-scan was performed on the line and neutral lines with peak detector.

0.97

0.99

16.17

15.21

- 5. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 6. Final Level =Receiver Read level + LISN Factor + Cable Loss.

0.763

2.581

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH	Maximum	Conducted Output P	Limit(dBm)	Result	
Test on	802.11b	802.11g	802.11n(HT20)		
Lowest	14.70	13.45	12.99		
Middle	14.90	13.71	13.18	30.00	Pass
Highest	14.46	13.40	12.90		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Toot CU	6dB E	mission Bandwidth	(MHz)	Limit/It-Lim	Dooult
Test CH	802.11b	802.11g	802.11n(HT20)	Limit(kHz)	Result
Lowest	10.00	16.56	17.52		
Middle	10.24	16.56	17.52	>500	Pass
Highest	10.24	16.56	17.52		
Test CH	99% (Occupy Bandwidth	(MHz)	Limit(kHz)	Result
Test CH	802.11b	802.11g	802.11n(HT20)	LIIIII(KHZ)	Result
Lowest	12.24	16.64	17.68		
Middle	12.24	16.64	17.68	N/A	N/A
Highest	12.24	16.64	17.76		

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Toot CU	Powe	er Spectral Density	(dBm)	Limit(dPm)	Popult
Test CH	802.11b	802.11g	802.11n(HT20)	Limit(dBm)	Result
Lowest	3.54	0.24	-0.39		
Middle	3.85	0.41	-0.13	8.00	Pass
Highest	3.56	0.18	-0.30		

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

T (D)	500 5 145 0 0 11 45 047 (1)				
Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB 558074				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Spectrum Analyzer				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plot as follows:

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15 20	00 and 15 205			
Test Method:						
	ANSI C63.10: 2		5 556074			
Test Frequency Range:	2.3GHz to 2.5G	HZ				
Test Distance:	3m		T ==			T
Receiver setup:	Frequency	Detector	RBW		BW	Remark Peak Value
	Above 1GHz	Peak RMS	1MHz 1MHz	-	<u>ИHz </u>	Average Value
Limit:	Frequenc		nit (dBuV/m @		VII 12	Remark
-	Above 1GI		54.00	,	A۱	verage Value
			74.00			Peak Value
Test Procedure:	the ground to determin 2. The EUT wantenna, watower. 3. The antennathe ground Both horizon make the make the make the makers and to find the makers and the limit spend find the EUT have 10dB	at a 3 meter at the position was set 3 meter which was more than a height is various to determine ontal and vertice as a vertice and the rota table maximum reactiver system and width with sion level of the cified, then the would be reported to the position of the would be reported to the the rota table and width with the rota table maximum reactiver system and width with the rota table and with the rota table and width with the rota table and width with the rota table and with the rota table a	camber. The top of the highest ers away from the control on the top of the maximum ical polarization. The example of the maximum of the maximum of the maximum of the maximum of the example of the examp	meter value on soft the intervalue on soft the was a to height of the was a to height of the was a to height on soft the was a to height on t	ras rotation. erference variable to four to of the fine anter arranged this fron degrees tect Fur de was 10 ped and emission	meters above eld strength. Inna are set to dis worst in 1 meter to 4 is to 360 degrees inction and displayed by the peak values ons that did not sing peak, quasi-
Test setup:		AE EUT (Turntable)	Ground Reference Plane	Pre- Co	Antenna Tov	wer
Test Instruments:	Refer to section	5.8 for detail	s			
Test mode:	Refer to section	5.3 for detail	S			
Test results:	Passed					

802.11b mode:

Product Name:	mobile phone	Product Model:	A87
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

REMAR	RK :								
			Antenna					Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000	17.13	27.37	4.69	0.00	50.87	74.00	-23.13	Peak
2	2390.000	10.33	27.37	4.69	0.00	44.07	54.00	-9.93	Average

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mot	oile phone			P	roduct Mo	odel:	A87	
Test By:	Mike	e			Te	est mode	:	802.11	Ib Tx mode
Test Channel:	Low	est channel Polarization: Horizontal				Polarization:			ntal
Test Voltage:	AC	120/60Hz			Е	nvironme	nt:	Temp:	24°C Huni: 57%
110	Level (dBuV/m)								
100									
									my
80								FCE	PART 15 (PK)
									1
60	~~ ~~	www	manu	January.	~~~~	Wanne	harmon		PART 15 (AV)
40	- a- Mm N	-C 0-0-V				, ~ 00	2 1		
865									
20									
0-	2310 2320		23	550	guenou (MIL	I=\			2422
			23		quency (MH	łz)			2422
o REMAR	к :		tenna	Free	Preamp		Limit	Over	
	к :	Readân Level F	tenna	Free	Preamp			Over Limit	
	к :		tenna actor	Cable Loss	Preamp Factor		Line		
	K :	Level F 	tenna actor	Cable Loss dB	Preamp Factor dB	Level dBuV/m 51.03	Line dBuV/m 74.00	Limit ———————————————————————————————————	Remark

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mol	oile phone			P	roduct Mo	odel:	A87		
Гest By:	Mik	е			T	est mode:	:	802.11	b Tx mod	de
Γest Channel:	Hig	hest chani	nel		Р	olarizatio	n:	Vertica	al	
Test Voltage:	AC	120/60Hz			Е	nvironme	nt:	Temp:	24 ℃	Huni: 57%
					•			•		
110 ^L	evel (dBuV/m)									
100										
80		1						FCC I	PART 15 (F	PK)
		1								
60				uno regional	1	Water Exert		FCC	PART 15 (A	AV)
			~		m		me or	10~~	m~~~	~
40										
20										
20										
0							-			
0	452			Fred	quency (MH	z)	2500			2520
0 2.		12		Fred	quency (MH	z)	2500			2520
0	ık :		ntenna	Cable	Preamp		Limit	Over	B1	
02.	K :	Level	Factor	Cable Loss	Preamp Factor	Level	Limit Line	Limit	Remark	
0 2	ık :	Level		Cable	Preamp Factor		Limit Line		Remark	
0 2	K :	Level	Factor dB/m	Cable Loss	Preamp Factor dB	Level	Limit Line dBuV/m 74.00	Limit 	 Peak	:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mol	bile phone			Pi	roduct Mo	del:	A87		
Гest By:	Mik	е			Te	est mode:		802.11	b Tx mode	Э
Test Channel:	Hig	hest chanr	nel		P	olarization	ո։	Horizo	ntal	
Test Voltage:	AC	120/60Hz			E	nvironme	nt:	Temp:	24℃ ⊦	Huni: 57%
110L	evel (dBuV/m)									_
100										
100		~								
80		1						FCC E	PART 15 (PK	0
			1					1001	ANT TO (FI	9
60	1		lana -	and the	1 _			FCC F	PART 15 (AV	<i>'</i>)
				mm	**************************************	may	~~~	Noon		35
40										
20										
20-										
	2452			Fron	woney (MU	71	2500		2	520
0-2				Freq	quency (MH	z)	2500		2	520
		Read	Intenna					Over	2	520
0-2			Intenna Factor	Cable	Preamp		Limit	Over Limit	2 Remark	520
0-2	rk :	Level	Factor	Cable	Preamp Factor		Limit Line			520
0-2	KK :	Level 	Factor 	Cable Loss dB	Preamp Factor dB	Level dBuV/m 53.19	Limit Line dBuV/m 74.00	Limit 	Remark	

Remark.

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

Product Name:	mobile phone	Product Model:	A87
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mob	ile phone			Pi	roduct Mo	odel:	A87		
est By:	Mike)			Te	est mode:		802.11	1g Tx mode	
Test Channel:	Low	est chann	el		P	olarizatio	n:	Horizo	ontal	
Test Voltage:	AC 1	120/60Hz			E	nvironme	nt:	Temp:	: 24 ℃ Hu	ni: 57%
	·									
110 Le	vel (dBuV/m)									
100										
								m	Money	
80								1	ART 15 (PK)	
)	
60	wwwww	λα- ο Λ 4α ^m	more		A-0. A	~ ~N	The start	FCC P	ART 15 (AV)	
	ammina	200 Cm	1 1 1000	a marco	v.m.		7			
40										
40										
20										
20	10 2320		235	60					2422	
20	10 2320		235		uency (MHz)			2422	
20				Frequ					2422	į.
0 23	K :	ReadA	ıntenna	Frequ	Preamp		Limit			
0 23	K :	Level	intenna Factor	Frequ Cable Loss	Preamp Factor	Level	Line	Limit		-
0 23	K :	ReadA Level	intenna Factor	Frequ Cable Loss	Preamp Factor dB	Level	Line dBuV/m	Limit ———————————————————————————————————	Remark	
0 23	K :	Level dBuV	Intenna Factor ——dB/m 27.37	Cable Loss dB	Preamp Factor dB	Level dBuV/m 51.23	Line dBuV/m 74.00	Limit 	Remark	·

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mobile phone	Product Model:	A87		
Test By:	Mike	Test mode:	802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

					Acres of the same				
REMARK		100	M	2000 000				W200000000	
	Freq		Antenna Factor					Over Limit	
-	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
1 2	2483.500 2483.500		27.57 27.57	4.81 4.81			74.00 54.00		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mob	mobile phone			Pr	Product Model:		A87			
Test By:	Mike	Mike				est mode:		802.11	802.11g Tx mode		
Test Channel:	High	Highest channel			Po	olarization):	Horizor	Horizontal		
Test Voltage:	AC	AC 120/60Hz				nvironmer	nt:	Temp:	Temp: 24°C Huni: 57%		
110 Lev	vel (dBuV/m)										
100											
	-0 -	~ ^^									
80		U ~ - U	1								
80/			1					FCC F	PART 15 (PK)		
60				In	2	×		FCC F	PART 15 (AV)		
				ď	2			~ ' '	7. 200		
40											
20											
0 24	52						2500		2520		
24:	02			Freq	uency (MH	z)	2300		2320		
DENTARY	e 1000 - 2220										
REMARK	:	ReadA	Intenna	Cable	Preamn		Limit	Over			
	Freq		Factor	Loss	Factor	Level		Limit	Remark		
=	MHz	—dBu∀		<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B			
1	2483.500	18.54	27.57	4.81	0.00	52.62	74.00	-21.38	Peak		
2	2483.500	10.93	27.57	4.81	0.00				Average		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

Product Name:	mobile phone	Product Model:	A87	A87		
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical			
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃	Huni: 57%		
110 Level (dBuV/m)		_			
100						
			mm	~		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mob	mobile phone Product Model:			A87		A87			
Test By:	Mike	9			Te	est mode:		802.11n(HT20) Tx mode		
Test Channel:	Low	est chanr	nel		Po	olarizatio	n:	Horizo	ntal	
Γest Voltage:	AC	120/60Hz			Eı	Environment:			24℃	Huni: 57%
	·									
110 Le	vel (dBuV/m)									_
100										_
								~	Ann	
80								FCC P	ART 15 (PK	o)
60								1		
60	mon	www	man	ww	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	man of the contract	my m	/√ FCC P	ART 15 (AV	<u>')</u>
	37 = 3 - 305, 13			16 -32			2			
40										
40										
20										
20	10 2320		23	50					2	422
20	10 2320		23		juency (MH:	z)			2	422
20		Read		Fred	5620	•	Limit	Otter	2	422
20 0 23			23 Antenna Factor	Fred	Preamp		Limit Line	Over Limit		
20 0 23		Level	Int enna	Cable Loss	Preamp Factor	Level				
20 0 ₂₃ REMARK	: Freq	Level dBuV	Antenna Factor ——dB/m 27.37	Cable Loss dB	Preamp Factor dB	Level dBuV/m 53.60	Line	Limit 	Remark	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mob	ile phone			Pi	Product Model:			A87		
Test By:	Mike	Э			Te	est mode:		802.11n(HT20) Tx mode			
Test Channel:	High	nest chanr	nel		P	Polarization:			Vertical		
Test Voltage:	AC	120/60Hz			E	Environment:			24 ℃ Huni:	57%	
	•				•						
110 Leve	el (dBuV/m)										
100											
80 (~~~		4								
			1					FCC	PART 15 (PK)		
60											
- 79			~~	~~~		War.	www	- FCC	PART 15 (AV)		
40						4					
20											
0							0500		2500		
245	2			Fre	quency (MF	łz)	2500		2520		
REMARK	TING .										
Tabilitatat		ReadA	ntenna	Cable	Preamp		Limit	Over			
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark		
	MHz	dBu₹	dB/m	₫B	₫B	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>			
	483.500	16.83	27.57	4.81	0.00	50.91	74.00	-23.09			
	483.500	11.36	27.57	4.81	0.00	45 44	E4 00		Average		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	mobile phone	Product Model:	A87 802.11n(HT20) Tx mode		
Test By:	Mike	Test mode:			
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		
110 Level (d	lBuV/m)				
100					
	~~~~				
80			FCC PART 15 (PK)		
			TOC PART TO (PR)		
60	h		FCC PART 15 (AV)		
	7	- Darran	Lynnamy		
40					
20					
02452		2500	2520		

#### REMARK ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark dBuV dB dBuV/m dBuV/m MHz dB/m dB 0.00 54.75 74.00 -19.25 Peak 0.00 46.42 54.00 -7.58 Average 2483.500 20.67 4.81 27.57 2483.500 12.34 27.57 4.81

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



# 6.7 Spurious Emission

# 6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:						
	Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					



# Test plot as follows:









# 6.7.2 Radiated Emission Method

6.7.2 Radiated Emiss	ion wethod							
Test Requirement:	FCC Part 15 C S	FCC Part 15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10:201	13						
Test Frequency Rang	ge: 9kHz to 25GHz							
Test Distance:	3m							
Receiver setup:	Frequency	Frequency Detector RBW VB						
	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz		BMHz Peak Value			
		RMS	1MHz	3M	lHz	Average Value		
Limit:	Frequency		t (dBuV/m @3	m)		Remark		
	30MHz-88MH		40.0			uasi-peak Value		
	88MHz-216MH 216MHz-960M		43.5 46.0			uasi-peak Value uasi-peak Value		
	960MHz-1GH		54.0			uasi-peak Value		
			54.0			Average Value		
	Above 1GHz		74.0			Peak Value		
Test Procedure:	1. The EUT wa	s placed on th		ating t	able 0			
root rootsare.						meter chamber.		
			degrees to d	etermi	ine the	position of the		
	highest radia			L - !				
		is set 3 meters				ce-receiving e-height antenna		
	tower.	icii was iiiouiii	ed on the top	Joiav	variabi	e-neigni antenna		
		height is varie	ed from one r	neter t	to four	meters above		
		o determine th				J		
			I polarization	s of th	e ante	nna are set to		
	make the me		: 4b FUT			-l to 'to		
		spected emiss				m 1 meter to 4		
						s to 360 degrees		
		aximum readir				and the second second		
		eiver system v				nction and		
		andwidth with N				0.15.1		
						0dB lower than		
						d the peak values ions that did not		
						sing peak, quasi-		
		age method a						
	sheet.							
Test setup:	Below 1GHz							
				<b>-</b>				
		:		T /-	Aı	ntenna Tower		
			_					
		≽ 3m <b>∢</b>	]	l		Search		
	EUT _	· ·		/ <u> </u>	1	Antenna		
	\	4m			n	<u>,</u>		
		^ <u> </u>	<i>K</i>		RF Te Receiv			
				<u> </u>		\		
	Turn Table				/			
	I able							
	7777777	Million I		////	////			
	Ground I	Plana						
	Ground I	Talle —						
	Above 1GHz							
	•					4		







# Measurement Data (worst case):

#### **Below 1GHz:**

#### With EU adapter

Product Name:	mobile phone	Product Model:	A87
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



REMARK	: Freq		Antenna Factor		Preamp Factor		Limit Line	Over Limit	Remark
-	MHz	dBu₹	<u>dB/m</u>	d₿	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	31.731	51.18	11.00	0.85	29.97	33.06	40.00	-6.94	QP
2	154.821	41.80	8.85	2.55	29.18	24.02	43.50	-19.48	QP
3	199.986	39.55	11.50	2.87	28.83	25.09	43.50	-18.41	QP
4	679.960	31.85	19.80	4.05	28.71	26.99	46.00	-19.01	QP
5	815.968	31.33	21.10	4.30	28.13	28.60	46.00	-17.40	QP
1 2 3 4 5 6	989.536	30.91	22.72	4.41	27.49	30.55		-23.45	1410-7-2500

### Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	mobile phone	Product Model:	A87
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



REMARK	: Freq		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
1 2	31.843 191.745	42.17 48.19	11.03 11.25	0.85 2.81	29.97 28.89	24.08 33.36		-15.92 -10.14	5 (5 TH. 5 ) ) II
2 3 4 5 6	369.405 609.922	33. 84 32. 19	14.96 19.32	3.09 3.92	28.65 28.91	23. 24 26. 52	46.00	-22.76 -19.48	QP
5 6	724.261 982.620	32.18 31.19	20.39 22.66	4.27 4.38	28.58 27.53	28.26 30.70		-17.74 -23.30	A-5-A-5 TO 17 TO 18

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



#### **Below 1GHz:**

#### With US adapter

Product Name:	mobile phone	Product Model:	A87
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



REMARK	: Freq		Antenna Factor				Limit Line	Over Limit	
	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	31.955	50.19	11.05	0.85	29.97	32.12	40.00	-7.88	QP
2	37.945	46.22	12.37	1.14	29.92	29.81	40.00	-10.19	QP
3	51.662	43.10	13.80	1.27	29.81	28.36	40.00	-11.64	QP
4	92.787	44.32	10.49	2.03	29.56	27.28	43.50	-16.22	QP
5	155.364	51.16	8.87	2.55	29.17	33.41	43.50	-10.09	QP
2 3 4 5 6	178.758	47.23	9.75	2.72	28.98	30.72	43.50	-12.78	QP

## Remark:

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	mobile phone	Product Model:	A87
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



r Loss Fa	reamp actor Level	Limit Line	Over Limit	Remark
m dB -	dB dBuV/m	$\overline{dBuV/m}$		
8 1.94 2	29.53 23.10	43.50	-20.40	QP
1 2.80 2 3 2.82 2	28.90 32.62 28.59 24.46	43.50 46.00	-10.88 -21.54	QP QP
7 26720	7m dB 20 1.25 68 1.94 78 2.73 21 2.80 03 2.82	7m dB dB dBuV/m 20 1.25 29.88 20.92 68 1.94 29.53 23.10 78 2.73 28.98 33.29 21 2.80 28.90 32.62 03 2.82 28.59 24.46	7m dB dB dBuV/m dBuV/m 20 1.25 29.88 20.92 40.00 68 1.94 29.53 23.10 43.50 78 2.73 28.98 33.29 43.50 21 2.80 28.90 32.62 43.50 03 2.82 28.59 24.46 46.00	7m dB dB dBuV/m dBuV/m dB 20 1.25 29.88 20.92 40.00 -19.08 68 1.94 29.53 23.10 43.50 -20.40 78 2.73 28.98 33.29 43.50 -10.21 21 2.80 28.90 32.62 43.50 -10.88 03 2.82 28.59 24.46 46.00 -21.54

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.





#### **Above 1GHz**

Above 1GHz										
				802.11b						
			Test ch	nannel: Lowe	est channel					
			De	tector: Peak	Value Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	53.53	30.94	6.81	41.82	49.46	74.00	-24.54	Vertical		
4824.00	53.34	30.94	6.81	41.82	49.27	74.00	-24.73	Horizontal		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	51.11	30.94	6.81	41.82	47.04	54.00	-6.96	Vertical		
4824.00	51.87	30.94	6.81	41.82	47.80	54.00	-6.20	Horizontal		
			Tost of	nannel: Mido	llo channol					
				tector: Peak						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	54.67	31.20	6.85	41.84	50.88	74.00	-23.12	Vertical		
4874.00	54.10	31.20	6.85	41.84	50.31	74.00	-23.69	Horizontal		
			Dete	ector: Averag	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	52.45	31.20	6.85	41.84	48.66	54.00	-5.34	Vertical		
4874.00	51.78	31.20	6.85	41.84	47.99	54.00	-6.01	Horizontal		
Test channel: Highest channel  Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	54.38	31.46	6.89	41.86	50.87	74.00	-23.13	Vertical		
4924.00	54.61	31.46	6.89	41.86	51.10	74.00	-22.90	Horizontal		
			Dete	ector: Averaç	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	52.26	31.46	6.89	41.86	48.75	54.00	-5.25	Vertical		
4924.00	52.65	31.46	6.89	41.86	49.14	54.00	-4.86	Horizontal		

# Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





				902.116					
802.11g  Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	51.13	30.94	6.81	41.82	47.06	74.00	-26.94	Vertical	
4824.00	52.65	30.94	6.81	41.82	48.58	74.00	-25.42	Horizontal	
			Dete	ctor: Avera	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	48.56	30.94	6.81	41.82	44.49	54.00	-9.51	Vertical	
4824.00	49.32	30.94	6.81	41.82	45.25	54.00	-8.75	Horizontal	
			Test ch	nannel: Midd	dle channel				
			De	tector: Peak	Value Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	52.55	31.20	6.85	41.84	48.76	74.00	-25.24	Vertical	
4874.00	52.76	31.20	6.85	41.84	48.97	74.00	-25.03	Horizontal	
			Dete	ctor: Avera	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	49.23	31.20	6.85	41.84	45.44	54.00	-8.56	Vertical	
4874.00	48.79	31.20	6.85	41.84	45.00	54.00	-9.00	Horizontal	
	Test channel: Highest channel								
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4924.00	52.98	31.46	6.89	41.86	49.47	74.00	-24.53	Vertical	
4924.00	53.13	31.46	6.89	41.86	49.62	74.00	-24.38	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4924.00	49.63	31.46	6.89	41.86	46.12	54.00	-7.88	Vertical	
4924.00	48.58	31.46	6.89	41.86	45.07	54.00	-8.93	Horizontal	
Remark:	Remark:								

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





				802.11n(HT	20)				
Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	50.46	36.06	6.81	41.82	51.51	74.00	-22.49	Vertical	
4824.00	50.95	36.06	6.81	41.82	52.00	74.00	-22.00	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	47.36	36.06	6.81	41.82	48.41	54.00	-5.59	Vertical	
4824.00	48.42	36.06	6.81	41.82	49.47	54.00	-4.53	Horizontal	
	Test channel: Middle channel								
			De	tector: Peak	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	50.93	36.32	6.85	41.84	52.26	74.00	-21.74	Vertical	
4874.00	51.27	36.32	6.85	41.84	52.60	74.00	-21.40	Horizontal	
			Dete	ctor: Avera	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	46.82	36.32	6.85	41.84	48.15	54.00	-5.85	Vertical	
4874.00	47.32	36.32	6.85	41.84	48.65	54.00	-5.35	Horizontal	
			Test ch	annel: High	est channel				
		T		tector: Peak	Value		T		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4924.00	50.39	36.58	6.89	41.86	52.00	74.00	-22.00	Vertical	
4924.00	51.76	36.58	6.89	41.86	53.37	74.00	-20.63	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4924.00	48.53	36.58	6.89	41.86	50.14	54.00	-3.86	Vertical	
4924.00	49.31	36.58	6.89	41.86	50.92	54.00	-3.08	Horizontal	
Remark:	Remark:  1 Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor								

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.