1 Задания

1.1 Автоматическая классификация документов

Реализуйте систему, которая на основе базы вопросов и тегов к ним, буде предлагать варианты тегов, которые подходят к новым вопросам.

Формат запуска программы в режиме обучения:

Ключ	Значение
input	входной файл с вопросами
output	выходной файл с рассчитанной статистикой

Формат запуска программы в режиме классификации:

Ключ	Значение
stats	файл со статистикой полученной на предыдущем этапе
input	входной файл с вопросами
output	выходной файл с тегами к вопросам

Формат входных файлов при обучении:

```
<Kоличество строк в вопросе [n]>
<Ter 1>,<Ter 2>,...,<Ter m>
<3аголовок вопроса>
<Teкст вопроса [n строк]>
```

Формат входных файлов при запросах:

```
<Количество строк в вопросе [n]>
<Заголовок вопроса>
<Текст вопроса [n строк]>
```

Формат выходного файла: для каждого запроса в отдельной строке выводится предполагаемый набор тегов, через запятую.

1.2 Исправление ошибок в поисковых запросах

Реализуйте систему, которая на основе статистики о предыдущих запросах пользователей, будет предлагать исправление опечаток в новых запросах.

Формат запуска программы в режиме обучения:

Ключ	Значение
input	входной файл с запросами пользователей
output	выходной файл с рассчитанной статистикой

Формат запуска программы в режиме исправления ошибок:

Ключ	Значение
stats	файл со статистикой полученной на предыдущем этапе
input	входной файл с запросами
variants	количество необходимых вариантов исправления
output	выходной файл с вариантами исправлений

Формат выходного файла: на каждый запрос выводится требуемое количество исправлений по одному исправлению в строке, если исправлений не хватает, то выводятся пустые строки до требуемого числа.

1.3 Параллельная внешняя сортировка

Осуществить параллельную сортировку файлов с парами ключ-значение, размер которых превышает доступный объём оперативной памяти.

Ключи: последовательности байт фиксированной длины не длиннее 1КВ.

Значения: последовательности байт фиксированной длины не длиннее 16КВ.

Формат запуска:

Ключ	Значение
keys	входной файл с ключами
values	входной файл со значениями
out-keys	выходной файл с ключами
out-values	выходной файл со значениями

Формат файлов:

```
uint64_t [n] --- количество значений в файле uint64_t [1] --- длина значений в байтах (uint8_t * 1) * n --- n значений по 1 байт
```

1.4 diff

Реализуйте аналог стандартной утилиты diff.

Утилита diff предназначена для выявления минимальных различий между двумя файлами, т.е. нахождениию минимальной последовательности операций вставки, удаления или замены строк в первом файле на строки из второго файла, чтобы в итоге получился второй файл.

Решение основанное на методе динамического программирования может претендовать только на оценку 3 в силу ограничения на размерности анализируемых файлов, вытекающих из большого размера таблицы, необходимой для метода динамического программирования.

Работа программы, процедура её запуска, формат ввода и вывода должны быть аналогична работе исходной утилиты diff. Должны поддерживаться следующие опции: -i, -E, -Z, -b, -w, -B, -t.

1.5 Архиватор

Необходимо реализовать два известных метода сжатия данных для сжатия одного файла. Методы сжатия выбираются из следующих групп:

- Арифметическое кодирование, кодирование по Хаффману
- LZ77, LZW, BWT+MTF+RLE

Формат запуска должен быть аналогичен формату запуска программы gzip. Должны быть поддерживаться следующие ключи: -c, -d, -k, -l, -r, -t, -1, -9. Должно поддерживаться указание символа дефиса в качестве стандартного ввода.

1.6 Текстовый поиск

Реализуйте систему для поиска статей по заданным словам. Формат запуска в режиме индексирования:

Ключ	Значение
input	входной файл со статьями
output	выходной файл с индексом

Формат запуска в режиме поиска:

Ключ	Значение
index	входной файл с индексом
input	входной файл с запросами
output	выходной файл с ответами на запросы
full-output	переключение формата выходного файла на подробный

Формат файлов для индексации:

```
<doc id="12" url="https://en.wikipedia.org/wiki?curid=12" title="Anarchism">
<Teкcт статьи>
</doc>
<doc id="25" url="https://en.wikipedia.org/wiki?curid=25" title="Autism">
<Teкcт статьи>
</doc>

Формат файла с запросами:

<word 1>
<word 1>
<word 1> | <word 2>
<word 1> | <word 2>
</word 1> | <word 2> & <word 3>) | (<word 4> & (<word 5> | ~<word 6>))
```

Формат выходного файла:

Если опция --full-output не указана: на каждый запрос в отдельной строке выводится количество документов подпадающих под запрос.

Если опция --full-output указана: на каждый запрос выводится отдельная строка, с количеством документов подпадающих под запрос, а затем названия всех документов подпадающих под запрос по одному названию в строке.

1.7 Поиск на графе

Реализуйте систему для поиска пути в графе дорог с использованием эвристических алгоритмов.

Ключ	Значение
nodes	входной файл с перекрёстками
edges	входной файл с дорогами
output	выходной файл с графом

Ключ	Значение
graph	входной файл с графом
input	входной файл с запросами
output	выходной файл с ответами на запросы
full-output	переключение формата выходного файла на подробный

Файл узлов:

```
<id> <lat> <lon>
```

Файл рёбер:

```
<длина дороги в вершинах [n]> <id 1> <id 2> ... <id n>
```

Выходной файл:

Если опция --full-output не указана: на каждый запрос в отдельной строке выводится длина кратчайшего пути между заданными вершинами с относительной погрешностью не более 1e-6.

Если опция --full-output указана: на каждый запрос выводится отдельная строка, с длиной кратчайшего пути между заданными вершинами с относительной погрешностью не более 1e-6, а затем сам путь в формате как в файле рёбер.

Расстояние между точками следует вычислять как расстояние между точками на сфере с радиусом 6371км, если пути между точками нет, вывести -1 и длину пути в вершинах 0.

1.8 Аудиопоиск

Реализуйте систему для поиска аудиозаписи по небольшому отрывку.

Ключ	Значение
input	входной файл с именами файлов для индексации
output	выходной файл с индексом

Ключ	Значение
index	входной файл с индексом
input	входной файл с запросами
output	выходной файл с ответами на запросы

Все файлы будут даны в формате МРЗ с частотой дискретизации 44100Гц.

Входные файлы содержат в себе имена файлов с аудио записями по одному файлу в строке.

Результатом ответа на каждый запрос является строка с названием файла, с которым произошло совпадение, либо строка "! NOT FOUND", если найти совпадение не удалось.

1.9 Пространственный поиск

Реализуйте систему для определения принадлежности точки одному из многоугольников на плоскости.

Ключ	Значение
input	входной файл с многоугольниками
output	выходной файл с индексом

Ключ	Значение
index	входной файл с индексом
input	входной файл с запросами
output	выходной файл с ответами на запросы

Формат входного файла:

 <количество вершин многоугольника [n]> <x 1> <y 1> <x 2> <y 2> ... <x n> <y n>

Формат файла запросов:

Для каждого запроса выведите номер многоугольника внутри которго содержится точка (многоугольники нумеруются с нуля) либо -1.

1.10 Поиск ближайших соседей

Дано множество точек в многомерном пространстве. Для каждой точки из файла с запросами вам необходимо вывести номер ближайшей к ней точки из исходного множества в смысле простого евклидова расстояния. Если ближайших точек несколько, то выведите номер любой из них.

Формат входных файлов при построении структуры:

Ключ	Значение
input	входной файл с точками
output	выходной файл со структурой для поиска

Формат входного файла:

```
<dimensions>
```

```
<x_1,1> <x_1,2> ... <x_1,dimensions>
<x_2,1> <x_2,2> ... <x_2,dimensions>
```

Формат запуска программы в режиме поиска:

Ключ	Значение
struct	файл со структурой для поиска, полученной на предыдущем этапе
input	входной файл с запросами
output	выходной файл с ответами на запросы

Формат входного файла:

```
<dimensions>
<q_1,1> <q_1,2> ... <q_1,dimensions>
<q_2,1> <q_2,2> ... <q_2,dimensions>
```

2 Литература

- Керниган Б., Пайк Р. "Практика программирования"
- Ватолин Д., Ратушняк А., Смирнов М., Юкин В. "Методы сжатия данных. Устройство архиваторов, сжатие изображений и видео."
- Кормен Т., Лейзерсон Ч., Ривест Р. "Алгоритмы. Построение и анализ"
- Кнут Д. "Искусство программирования"
- Седжвик Р. "Фундаментальные алгоритмы на С++"
- Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, "Introduction to Information Retrieval"
- Tao Li, Mitsunori Ogihara, George Tzanetakis, "Music Data Mining"