

MNMGDatalog: A Scalable Multi-Node Multi-GPU Datalog Engine

Ahmedur Rahman Shovon (ashov@uic.edu), Sidharth Kumar (sidharth@uic.edu) University of Illinois Chicago

Introduction

Declarative programming focuses on "WHAT" to achieve rather than "HOW"

Users				
UserID	UserName	UserEmail	Country	
101	Alice	alice@example.com	USA	
102	Bob	bob@example.com	USA	
103	Eve	eve@example.com	Canada	

Datalog rules to compute Transitive Closure (TC) of a relation

TC(x, y) :- Edge(x, y).
TC(x, z) :- TC(x, y), Edge(y, z).

Operationalized as a **fixed-point iteration** using F_G

$F_G(T) \triangleq G \cup \prod_{\bullet} \prod_{1,2} (\rho_{0/1}(T) \bowtie_1 G)$

Datalog rules compiled down to iterative relational algebra operators

HPC paved the way for parallelizing iterative relational algebra where current Datalog engines target only multi-core CPUs and single-GPU systems

Multi-threaded	Distributed (Apache Spark)	Multi-node Multi-threaded	Single-GPU	Multi-node Multi-GPUs
Soufflé	RDFox	SLOG	GPUJoin	
LogicBlox	Radlog	PRAM	GPULog	
Nemo	BigDatalog		GPUDatalog	

MNMGDatalog is the first multi-node, multi-GPU (MNMG) Datalog engine

Highest performant Datalog engine
Single-GPU: Up to 7× speedup over GPULog
Multi-threaded: Up to 33× over Soufflé
Distributed: Up to 31.9× speedup over SLOG spanning 32 GPUs

Challenges

Iterative relational algebra on MNMG systems is challenging due to high communication overhead, synchronization cost, and repeated materialization.

Requirements for MNMGDatalog Engine

Implementation of MNMGDatalog Engine

MNMGDatalog uses radix-hash partitioning and non-uniform all-to-all communication with GPU-aware hash tables for efficient tuple materialization

Local aggregation and tuple materialization in fixed point iteration

Radix-hash-based data partitioning Calculate Radix Distributed Initial based Edge Edge Edge Destination GPU hash(1) % n = 1hash(2) % n = 0 hash(2) % n = 0 6 3 hash(3) % n = 1hash(4) % n = 1hash(5) % n = 1hash(4) % n = 16 hash(6) % n = 0 5

Configurable buffer preparation and all-to-all communication strategy 3

*n = total gpus

Experiments

We evaluate **MNMGDatalog** against state-of-the-art single-GPU, shared-memory, and distributed multi-node Datalog engines up to 32 A100 GPUs

Experiment platform and datasets

Polaris supercomputer from Argonne National Lab
CPU: AMD EPYC 7543P processors with 32 cores
GPU: 4 NVIDIA A100 GPUs per node interconnected by NVLink
Environment: CUDA (12), SLOG(32 threads), Soufflé (128 threads)

Benchmark: Transitive Closure, Same Generation, Connected Component **Datasets**: Stanford large network, SuiteSparse, Road network datasets

Buffer preparation and communication

1 MPI CPU Sort	2 MPI CPU Two pass
3 CUDA-Aware-MPI Sorting	4 CUDA-Aware-MPI Two pass

Single-GPU evaluation for Transitive Closure (TC)

Dataset	TC		Time (s)		
name	edges	MNMGDATALOG	GPULOG	Soufflé	GPUJoin
com-dblp	1.91B	13.58	26.95	232.99	OOM
fe_ocean	1.67B	66.34	72.74	292.15	100.30
usroads	871M	75.07	78.08	222.76	364.55
vsp_finan	910M	81.14	82.75	239.33	125.94
Gnutella31	884M	4.75	7.64	96.82	OOM

Single-GPU evaluation for Same Generation (SG)

Dataset name	SG size	MNMGDATALOG	Time (s) GPULOG	Soufflé	cuDF
fe_body	408M	9.08	18.41	74.26	OOM
loc-Brightkite	92.3M	1.66	11.67	48.18	OOM
fe_sphere	205M	3.55	7.88	48.12	OOM
CA-HepTH	74M	0.60	4.79	20.12	21.24

Strong scaling for single iterative join up to 32 GPUs – total 10M tuples)

Weak scaling for single iterative join up to 32 GPUs – 10M tuples per GPU)

Multi-node evaluation for TC, SG, and CC up to 32 GPUs

Conclusion

Our contributions:

- First ever Datalog engine designed for multi-node multi-GPU HPC systems, outperforming state-of-the-art shared-memory, distributed-memory, and GPU-based engines
- Introduces novel GPU-Aware communication and buffer preparation strategies for scalable recursive query evaluation
- Supports recursive aggregation for Datalog rules using high-throughput GPU kernels (Accepted for publication at ICS 2025)

Acknowledgement

This work was funded in part by NSF RII Track-4 award 2132013, NSF collaborative research award 2217036, and NSF collaborative research award 2221811. We are thankful to the ALCF's Director's Discretionary (DD) program for providing us with compute hours to run our experiments on the Polaris supercomputer located at the Argonne National Laboratory.