CS 20 Laboratory 8: Sequential Circuit Design

1. (2pt) Mealy state diagram

2. (2pt) State table

		P	resent Input (x1x	(2)	
		00	01	11	10
	S_000	S_000, 000	S_001, 001	X	S_100, 100
Present State	S_001	S_001, 001	S_011, 011	X	S_000, 000
	S_011	S_011, 011	S_010, 010	X	S_001, 001
	S_010	S_010, 010	S_110, 110	X	S_011, 011
(S_q ₁ q ₂ q ₃)	S_110	S_110, 110	S_111, 111	X	S_010, 010
	S_111	S_111, 111	S_101, 101	X	S_110, 110
	S_101	S_101, 101	S_100, 100	X	S_111, 111
	S_100	S_100, 100	S_000, 000	X	S_101, 101

3. (4pts) Table with present state, current input, next state, and output.

Curren	t input	Pro	esent Sta	ate	N	ext Stat	te		Output			
X ₁	X2	q_1	q_2	q 3	q ₁ +	q ₂ +	q ₃ +	y 1	y 2	y 3		
0	0	0	0	0	0	0	0	0	0	0		
0	0	0	0	1	0	0	1	0	0	1		
0	0	0	1	0	0	1	0	0	1	0		
0	0	0	1	1	0	1	1	0	1	1		
0	0	1	0	0	1	0	0	1	0	0		
0	0	1	0	1	1	0	1	1	0	1		
0	0	1	1	0	1	1	0	1	1	0		
0	0	1	1	1	1	1	1	1	1	1		
0	1	0	0	0	0	0	1	0	0	1		
0	1	0	0	1	0	1	1	0	1	1		
0	1	0	1	0	1	1	0	1	1	0		
0	1	0	1	1	0	1	0	0	1	0		
0	1	1	0	0	0	0	0	0	0	0		
0	1	1	0	1	1	0	0	1	0	0		
0	1	1	1	0	1	1	1	1	1	1		
0	1	1	1	1	1	0	1	1	0	1		
1	0	0	0	0	1	0	0	1	0	0		
1	0	0	0	1	0	0	0	0	0	0		
1	0	0	1	0	0	1	1	0	1	1		
1	0	0	1	1	0	0	1	0	0	1		
1	0	1	0	0	1	0	1	1	0	1		
1	0	1	0	1	1	1	1	1	1	1		
1	0	1	1	0	0	1	0	0	1	0		
1	0	1	1	1	1	1	0	1	1	0		

1	1	0	0	0	X	X	X	X	X	X
1	1	0	0	1	X	X	X	X	X	X
1	1	0	1	0	X	X	X	X	X	X
1	1	0	1	1	X	X	X	X	X	X
1	1	1	0	0	X	X	X	X	X	X
1	1	1	0	1	X	X	X	X	X	X
1	1	1	1	0	X	X	X	X	X	X
1	1	1	1	1	X	X	X	X	X	X

4. (3pts) Minimized sum-of-product K-maps of the following:

a. (1pt) Output bit y1.

		q ₁ q ₂ q ₃											
		000	001	011	010	110	111	101	100				
V1 V2	00	0	0	0	0	1	1	1	1				
X1 X2	01	0	0	0	1	1	1	1	0				
	11	X	X	X	X	X	X	X	X				
	10	1	0	0	0	0	1	1	1				

SOP expression of y_1 : x1'x2'q1 + x2q2q3' + q1q3 + x1q2'q3'

b. (1pt) Output bit y2.

		q ₁ q ₂ q ₃											
		000	001	011	010	110	111	101	100				
V1 V2	00	0	0	1	1	1	1	0	0				
X1 X2	01	0	1	1	1	1	0	0	0				
	11	X	X	X	X	X	X	X	X				
	10	0	0	0	1	1	1	1	0				

SOP expression of y_2 : $x_1'x_2'q_2 + x_2q_1'q_3 + q_2q_3' + x_1q_1q_3$

c. (1pt) Output bit y3.

		q ₁ q ₂ q ₃										
		000	001	011	010	110	111	101	100			
V1 V2	00	0	1	1	0	0	1	1	0			
X1 X2	01	1	1	0	0	1	1	0	0			
	11	X	X	X	X	X	X	X	X			
	10	0	0	1	1	0	0	1	1			

SOP expression of y₃: x1'x2'q3 + x2q1'q2' + x1q1'q2 + x2q1q2 + x1q1q2'