

학습 목표

BST의 균형을 유지하는

AVL 트리 알고리즘에 대해 학습한다

Data Structures in Python Chapter 7 - 2

- Binary Search Tree(BST)
- BST Algorithms
- AVL Tree
- AVL Algorithms

Agenda & Readings

- AVL Tree Introduction
 - Binary Search Tree Review
 - AVL Tree Introduction
 - Balance factor
 - Single/Double Rotation
- Reference:
 - Problem Solving with Algorithms and Data Structures Chapter 6 - Tree
 - Wikipedia: <u>AVL tree</u>

Binary search trees - Review

- Balanced and unbalanced BST
 - The best-case time complexity of BST operations is $O(\log_2 N)$, and the worst-case O(N).

Binary search trees - Review

- Many algorithms exist for keeping BST balanced
 - Adelson-Velskii and Landis (AVL) tree (height-balanced tree)
 - Weight-balanced trees
 - Red-black trees;
 - Splay trees and other self-adjusting trees
 - **B-trees** and other (e.g., 2-4 trees) multiway search trees

AVL Tree - Good but not Perfect Balance

AVL Tree (1962)

- Named after two Russian mathematicians
- Georgii Adelson-Velsky (1922 2014)
- Evgenii Mikhailovich Landis (1921-1997)

AVL Tree - Good but not Perfect Balance

AVL Tree Algorithm:

- Named after two Russian mathematicians in 1962
- Georgii Adelson-Velsky (1922 2014)
- Evgenii Mikhailovich Landis (1921-1997)
- AVL tree is a height-balanced binary search tree.
 - Balance factor of a node
 - bf = height(left subtree) height(right subtree)
 - May store current heights in each node or compute it on the fly
 - For every node, heights of left and right subtree can differ by no more than one.

Balance Factor

Balance Factor

Balance Factor

Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or -2 for some node
 - Only nodes on the path from insertion point to the root node have possibly changed in height.
 - So, after the insertion, go back up to the root node by node.
 - If a new balance factor (the difference h_{left} h_{right}) is **2 or -2**, adjust tree by **rotation** around the node.

LL Case - Single Right Rotation

LL Case - Single Right Rotation

RR Case - Single Left Rotation

Single Rotation Exercise:

AVL tree balanced?

Single Rotation Exercise:

AVL tree balanced after adding 45?

Single Rotation Exercise:

AVL Tree Balanced?

- Insertion of 34
- Imbalance at?
- Balance factor?

Double rotation RL case

- Insertion of 34
- Imbalance at 30
- Balance factor 2

Double rotation RL case

- Insertion of 34
- Imbalance at 30
- Balance factor 2

- RL case (RR + LL cases)
 - Rotate at 40, LL case
 - Rotate at 30, RR case

Double rotation RL case

- Insertion of 34
- Imbalance at 30
- Balance factor 2

- RL case (RR + LL cases)
 - Rotate at 40, LL case
 - Rotate at 30, RR case

Double rotation - RL Case

Double rotation - RL Case

Double rotation - RL Case

Double rotation - LR Case

Time Complexity

• Since AVL trees are always balanced, the time complexity of AVL tree shows $O(\log_2 n)$ for most operations.

operation	Sorted List	Hash Table	Binary Search Tree	AVL Tree
put	O(n)	0(1)	O(n)	$O(log_2 n)$
get	$O(\log_2 n)$	0(1)	O(n)	$O(\log_2 n)$
in	$O(\log_2 n)$	0(1)	O(n)	$O(\log_2 n)$
del	O(n)	0(1)	O(n)	$O(log_2 n)$

Summary (1/2)

- The numbered circles represent the nodes being rebalanced.
- The lettered triangles represent subtrees which are themselves balanced AVL trees.
- A blue number next to a node denotes possible balance factors
- (those in parentheses occurring only in case of deletion).

Source: www.wikipedia.com

Summary (2/2)

- AVL tree is a height-balanced binary search tree(BST).
- Arguments for AVL tree:
 - The time complexity of AVL tree shows $O(\log_2 n)$ for most operations.
 - The height balancing adds no more than a constant factor to the speed of insertion or deletion.
- Arguments against using AVL tree:
 - Difficult to program & debug

학습 정리

1) AVL 트리는 자동적으로 균형을 잡아주는 고전적인 이진탐색트리 알고리즘이다

- 2) Balance factor를 이용해 트리의 균형을 맞추는 작업의 시간복잡도는 $O(\log n)$ 이다
- 3) 단일회전(Single rotation)에는 LL, RR case가 있고, 이중회전(Double rotation)에는 LR, RL case가 있다

