DIPARTIMENTO DI MATEMATICA E INFORMATICA

Ι

Siano H e K ideali relativi di S e sia $x \in \mathbb{Z}$. Provare che:

- i) H (x + K) = -x + (H K)
- ii) $(x+K)^{\bullet} = -x + K^{\bullet}$.

II

Sia S un semigruppo numerico. Mostrare che se $I^{\bullet \bullet} = I$ per ogni ideale di S, allora $I^{\bullet \bullet} = I$ per ogni ideale relativo di S. [Aiuto: Usa l'Esercizo I]

III

Sia S un semigruppo numerico. Mostrare che S è simmetrico se e solo se per ogni ideale relativo I di S, si ha $I^{\bullet \bullet} = I$. [Aiuto: Usa l'Esercizo II]

IV

Sia S un semigruppo numerico e sia K il suo ideale canonico standard. Provare che S è simmetrico se e solo se S=K.

V

Un semigruppo numerico è detto buono se esistono $n \in \mathbb{N}$ e $x \in nM \setminus (n+1)M$ tali che, per ogni $s \in S$, si ha che, se $s \in hM \setminus (h+1)M$, allora $s+x \in (h+n)M \setminus (h+n+1)M$. Provare che:

i) S è buono se e solo se per ogni $s \in S$ si ha che, se $s \in hM \setminus (h+1)M$, allora $s + m(S) \in (h+1)M \setminus (h+2)M$.

Per ogni $h \in \mathbb{N}$, la funzione di Hilbert di M è definita come $H_M^0(h) := |hM \setminus (h+1)M|$, dove per h = 0 si pone hM = S.

ii) Provare che se S è buono, allora $H_M^0(h)$ è non decrescente.

VI

Sia $x \in \mathbb{Z}$. L'ideale x + S è detto ideale principale relativo di S generato da x.

- i) Sia H un ideale relativo di S. Provare che $H^{\bullet \bullet}$ è uguale all'intersezione di tutti gli ideali principali relativi di S che contengono H.
 - ii) Verificare che ogni ideale principale relativo è biduale.

VII

Sia S un semigruppo numerico minimalmente generato da $\{n_1, \ldots, n_p\}$. Sia $d = MCD(n_1, \ldots, n_{p-1})$ e supponiamo che $\left\langle \frac{n_1}{d}, \ldots, \frac{n_{p-1}}{d} \right\rangle$ sia un semigruppo numerico libero rispetto a $\left(\frac{n_1}{d}, \ldots, \frac{n_{p-1}}{d}\right)$ e che $dn_p \in \langle n_1, \ldots, n_{p-1} \rangle$. Verificare che S è libero rispetto a (n_1, \ldots, n_p) .

Sia $\{n_1,\ldots,n_p\}$ l'insieme minimale di generatori per S e siano $\lambda,\mu\in\mathbb{N}_{\geq 2}$ tali che $MCD(\lambda, \mu n_1) = 1$. Provare che $\{\lambda n_1, \dots, \lambda n_p, \mu n_1\}$ è l'insieme minimale di generatori per un semigruppo numerico.

Siano $x_1, x_2, \ldots, x_p, y_1, y_2, \ldots, y_p \in \mathbb{N}_{\geq 2}$ tali che $MCD(y_1 \cdots y_i, x_i) = 1$ per ogni $i \in \{1, \dots, p\}$. Provare che:

- i) $\{x_1x_2\cdots x_p, y_1x_2\cdots x_p, \dots, y_1y_2\cdots y_{p-1}x_p, y_1y_2\cdots y_p\}$ è l'insieme minimale di generatori per un semigruppo numerico.
 - ii) $MCD(x_1x_2\cdots x_p, y_1x_2\cdots x_p, \dots, y_1y_2\cdots y_ix_{i+1}\cdots x_p) = x_{i+1}\cdots x_p.$
- iii) $S=\langle x_1x_2\cdots x_p,y_1x_2\cdots x_p,\dots,y_1y_2\cdots y_{p-1}x_p,y_1y_2\cdots y_p\rangle$ è un semigruppo numerico libero con e(S) = p + 1

IX

Siano $x_1, x_2, \ldots, x_p, y_1, y_2, \ldots, y_p \in \mathbb{N}_{\geq 2}$ tali che $MCD(x_i, x_j) = 1$ per ogni $i \neq j$ e $MCD(x_i, y_i) = 1$ per ogni $i \in \{1, \dots, p\}$. Sia $M = x_1 \cdots x_p$. Provare che:

i) $\left\{M,\frac{y_1}{x_1}M,\dots,\frac{y_p}{x_p}M\right\}$ è l'insieme minimale di generatori per un semigruppo numerico. [Aiuto: Usa l'Esercizo VIII]

ii)
$$x_{i+1} \cdots x_p = MCD\left(M, \frac{y_1}{x_1}M, \dots, \frac{y_i}{x_i}M\right)$$
 per ogni $i \in \{1, \dots, p-1\}.$

ii) $x_{i+1} \cdots x_p = MCD\left(M, \frac{y_1}{x_1}M, \dots, \frac{y_i}{x_i}M\right)$ per ogni $i \in \{1, \dots, p-1\}.$ iii) $S = \left\langle M, \frac{y_1}{x_1}M, \dots, \frac{y_p}{x_p}M \right\rangle$ è un semigruppo numerico libero con e(S) = p+1.[Aiuto: Usa l'Esercizo VII]

Χ

Siano $a, b \in \mathbb{N}_{\geq 2}$ tali che MCD(a, b) = 1 e sia $p \in \mathbb{N}^*$. Provare che:

- i) $\{a^p, a^p + b, a^p + ab, \dots, a^p + a^ib, \dots, a^p + a^{p-1}b\}$ è l'insieme minimale di generatori per un semigruppo numerico.
- ii) $S = \langle a^p, a^p + b, a^p + ab, \dots, a^p + a^ib, \dots, a^p + a^{p-1}b \rangle$ è un semigruppo numerico libero con e(S) = p + 1. [Aiuto: Usa l'Esercizo VII]