P&O Computerwetenschappen: Schrijfopdracht 1

Team Geel

1 Testbed

Het virtual testbed stelt een wereld met een doelwit en eventuele hindernissen voor. Dit testbed genereert de nieuwe posities van de drone, rekening houdend met fysische wetten, en toont een 3D-beeld. Anderzijds berekent de autopilot aan de hand van wat zijn camera ziet, de oriëntatie van de vleugels. Op deze manier kan de drone het doelwit bereiken. De beelden die de autopilot krijgt komen van het testbed.

2 Motion & vision

Dit onderdeel bestaat uit een aantal subroutines. Een eerste routine creëert een wereld met een doel en geeft een beginpositie voor de drone. De tweede routine is de camera, die op basis van de positie en oriëntatie van het vliegtuig een afbeelding genereert van de wereld. Deze afbeelding wordt op het scherm getoond en aan een beeldherkenningsroutine doorgegeven. Momenteel lijkt het ons doenbaar om zelf een algoritme voor beeldherkenning te bedenken. Indien de latere opgaves het moeilijker maken lijkt OpenCV een degelijk framework om ons verder te helpen.

Een motion planning systeem gebruikt de informatie uit de beeldherkenning om het traject van de drone te bepalen en de nodige correcties in te plannen. Voor de eerste deadline kunnen we recht naar de gekleurde kubus bewegen maar in latere onderdelen gaan we hiervoor een geavanceerder algortime moeten uitdenken. De geplande correcties worden door een controle-routine uitgevoerd. De bewegingen van de drone wijzigen wat de drone ziet. Dit geeft de drone feedback op zijn acties en laat het toe verder bij te sturen. Los van de eigenlijke simulatie zijn er nog twee routines. Om te zien wat er gebeurt is verder een graphics engine nodig die de drone en wereld visueel voorstelt. Eventueel kan een GUI handig zijn om parameters makkelijk te kiezen en informatie overzichtelijk weer te geven.

3 Rendering

Het volledige programma is in Java geschreven. LWJGL zorgt voor het renderen van de graphics voor de gebruiker. LWJGL is immers heel licht en zeker krachtig genoeg voor de eenvoudige graphics waar het programma mee werkt. Andere opties zoals JavaFX en JMonkey lijken ons minder geschikt. JavaFX is trager maar makkelijker om mee te starten en JMonkey bevat te veel functionaliteiten die we niet nodig hebben waardoor we LWJGL's low level eigenschappen verkiezen.

Tabel 1: Huidige Verdeling

Onderdeel	Verdeling
Physics Engine	Flor, Florian, Tomas
Visual Representation	Arno (basics), Toon
Image recognition	Arno, Tomas
Autopilot control	Bernardo

Tabel 2: Eigen deadlines

Week	Visual representation	Image recognition	Autopilot	Physics
16/09	Voorstelling objecten	Degelijke research	Manual	Werkende draft
		+ hoog niveau	control	versie
23/09	Basis implementatie van	Basis werkend algoritme	Planning	Nieuwe versie
	de wereld met camera		research	a.d.h.v visuele
	input naar drone.		+ uitvoering	hulp
30/09	Tweaks en bugfixes	Polishing en optimizatie	Finishing	Physics werkt
			touches	volledig
			planning	

Figuur 1: Voorlopig klassendiagram op zeer hoog niveau