

SEQUENCE LISTING

<110> de Lannoy, Primal
Nowak, Grzegorz
Pestic-Dragovich, Lidija
Stojiljkovic, Ljuba
Hozak, Pavel

<120> Nuclear Myosin I B with A 16 Amino Acid N-Terminal Extension

<130> 30151/92399

<140> 09/893,371

<141> 2001-06-27

<150> 60/214,944

<151> 2000-06-29

<160> 8

<170> PatentIn version 3.2

<210> 1

<211> 1044

<212> PRT

<213> Artificial

<220>

<223> Nuclear Myosin 1 beta

<400> 1

Met Arg Tyr Arg Ala Ser Ala Leu Gly Ser Asp Gly Val Arg Val Thr
1 5 10 15

Met Glu Ser Ala Leu Thr Ala Arg Asp Arg Val Gly Val Gln Asp Phe
20 25 30

Val Leu Leu Glu Asn Phe Thr Ser Glu Ala Ala Phe Ile Glu Asn Leu
35 40 45

Arg Arg Arg Phe Arg Glu Asn Leu Ile Tyr Thr Tyr Ile Gly Pro Val
50 55 60

Leu Val Ser Val Asn Pro Tyr Arg Asp Leu Gln Ile Tyr Ser Arg Gln
65 70 75 80

His Met Glu Arg Tyr Arg Gly Val Ser Phe Tyr Glu Val Pro Pro His
85 90 95

Leu Phe Ala Val Ala Asp Thr Val Tyr Arg Ala Leu Arg Thr Glu Arg

100 105 110

Arg Asp Gln Ala Val Met Ile Ser Gly Glu Ser Gly Ala Gly Lys Thr
115 120 125

Glu Ala Thr Lys Arg Leu Leu Gln Phe Tyr Ala Glu Thr Cys Pro Ala
130 135 140

Pro Glu Arg Gly Gly Ala Val Arg Asp Arg Leu Leu Gln Ser Asn Pro
145 150 155 160

Val Leu Glu Ala Phe Gly Asn Ala Lys Thr Leu Arg Asn Asp Asn Ser
165 170 175

Ser Arg Phe Gly Lys Tyr Met Asp Val Gln Phe Asp Phe Lys Gly Ala
180 185 190

Pro Val Gly Gly His Ile Leu Ser Tyr Leu Leu Glu Lys Ser Arg Val
195 200 205

Val His Gln Asn His Gly Glu Arg Asn Phe His Val Phe Tyr Gln Leu
210 215 220

Leu Glu Gly Gly Glu Glu Thr Leu Arg Arg Leu Gly Leu Glu Arg
225 230 235 240

Asn Pro Gln Ser Tyr Leu Tyr Leu Val Lys Gly Gln Cys Ala Lys Val
245 250 255

Ser Ser Ile Asn Asp Lys Ser Asp Trp Lys Val Met Arg Lys Ala Leu
260 265 270

Ser Val Ile Asp Phe Thr Glu Asp Glu Val Glu Asp Leu Leu Ser Ile
275 280 285

Val Ala Ser Val Leu His Leu Gly Asn Ile His Phe Ala Ala Asp Glu
290 295 300

Asp Ser Asn Ala Gln Val Thr Thr Glu Asn Gln Leu Lys Tyr Leu Thr
305 310 315 320

Arg Leu Leu Gly Val Glu Gly Thr Thr Leu Arg Glu Ala Leu Thr His
325 330 335

Arg Lys Ile Ile Ala Lys Gly Glu Glu Leu Leu Ser Pro Leu Asn Leu
340 345 350

Glu Gln Ala Ala Tyr Ala Arg Asp Ala Leu Ala Lys Ala Val Tyr Ser
355 360 365

Arg Thr Phe Thr Trp Leu Val Arg Lys Ile Asn Arg Ser Leu Ala Ser
370 375 380

Lys Asp Ala Glu Ser Pro Ser Trp Arg Ser Thr Thr Val Leu Gly Leu
385 390 395 400

Leu Asp Ile Tyr Gly Phe Glu Val Phe Gln His Asn Ser Phe Glu Gln
405 410 415

Phe Cys Ile Asn Tyr Cys Asn Glu Lys Leu Gln Gln Leu Phe Ile Glu
420 425 430

Leu Thr Leu Lys Ser Glu Gln Glu Glu Tyr Glu Ala Glu Gly Ile Ala
435 440 445

Trp Glu Pro Val Gln Tyr Phe Asn Asn Lys Ile Ile Cys Asp Leu Val
450 455 460

Glu Glu Lys Phe Lys Gly Ile Ile Ser Ile Leu Asp Glu Glu Cys Leu
465 470 475 480

Arg Pro Gly Glu Ala Thr Asp Leu Thr Phe Leu Glu Lys Leu Glu Asp
485 490 495

Thr Val Lys Pro His Pro His Phe Leu Thr His Lys Leu Ala Asp Gln
500 505 510

Lys Thr Arg Lys Ser Leu Asp Arg Gly Glu Phe Arg Leu Leu His Tyr
515 520 525

Ala Gly Glu Val Thr Tyr Ser Val Thr Gly Phe Leu Asp Lys Asn Asn
530 535 540

Asp Leu Leu Phe Arg Asn Leu Lys Glu Thr Met Cys Ser Ser Met Asn
545 550 555 560

Pro Ile Met Ala Gln Cys Phe Asp Lys Ser Glu Leu Ser Asp Lys Lys
565 570 575

Arg Pro Glu Thr Val Ala Thr Gln Phe Lys Met Ser Leu Leu Gln Leu
580 585 590

Val Glu Ile Leu Arg Ser Lys Glu Pro Ala Tyr Ile Arg Cys Ile Lys
595 600 605

Pro Asn Asp Ala Lys Gln Pro Gly Arg Phe Asp Glu Val Leu Ile Arg
610 615 620

His Gln Val Lys Tyr Leu Gly Leu Met Glu Asn Leu Arg Val Arg Arg
625 630 635 640

Ala Gly Phe Ala Tyr Arg Arg Lys Tyr Glu Ala Phe Leu Gln Arg Tyr
645 650 655

Lys Ser Leu Cys Pro Glu Thr Trp Pro Met Trp Ala Gly Arg Pro Gln
660 665 670

Asp Gly Val Ala Val Leu Val Arg His Leu Gly Tyr Lys Pro Glu Glu
675 680 685

Tyr Lys Met Gly Arg Thr Lys Ile Phe Ile Arg Phe Pro Lys Thr Leu
690 695 700

Phe Ala Thr Glu Asp Ser Leu Glu Val Arg Arg Gln Ser Leu Ala Thr
705 710 715 720

Lys Ile Gln Ala Ala Trp Arg Gly Phe His Trp Arg Gln Lys Phe Leu
725 730 735

Arg Val Lys Arg Ser Ala Ile Cys Ile Gln Ser Trp Trp Arg Gly Thr
740 745 750

Leu Gly Arg Arg Lys Ala Ala Lys Arg Lys Trp Ala Ala Gln Thr Ile
755 760 765

Arg Arg Leu Ile Arg Gly Phe Ile Leu Arg His Ser Pro Arg Cys Pro
770 775 780

Glu Asn Ala Phe Phe Leu Asp His Val Arg Ala Ser Phe Leu Leu Asn
785 790 795 800

Leu Arg Arg Gln Leu Pro Arg Asn Val Leu Asp Thr Ser Trp Pro Thr
805 810 815

Pro Pro Pro Ala Leu Arg Glu Ala Ser Glu Leu Leu Arg Glu Leu Cys
820 825 830

Met Lys Asn Met Val Trp Lys Tyr Cys Arg Ser Ile Ser Pro Glu Trp
835 840 845

Lys Gln Gln Leu Gln Gln Lys Ala Val Ala Ser Glu Ile Phe Lys Gly
850 855 860

Lys Lys Asp Asn Tyr Pro Gln Ser Val Pro Arg Leu Phe Ile Ser Thr
865 870 875 880

Arg Leu Gly Thr Glu Glu Ile Ser Pro Arg Val Leu Gln Ser Leu Gly
885 890 895

Ser Glu Pro Ile Gln Tyr Ala Val Pro Val Val Lys Tyr Asp Arg Lys
900 905 910

Gly Tyr Lys Pro Arg Pro Arg Gln Leu Leu Leu Thr Pro Ser Ala Val
915 920 925

Val Ile Val Glu Asp Ala Lys Val Lys Gln Arg Ile Asp Tyr Ala Asn
930 935 940

Leu Thr Gly Ile Ser Val Ser Ser Leu Ser Asp Ser Leu Phe Val Leu
945 950 955 960

His Val Gln Arg Glu Asp Asn Lys Gln Lys Gly Asp Val Val Leu Gln
965 970 975

Ser Asp His Val Ile Glu Thr Leu Thr Lys Thr Ala Leu Ser Ala Asp
980 985 990

Arg Val Asn Asn Ile Asn Ile Asn Gln Gly Ser Ile Thr Phe Ala Gly
995 1000 1005

Gly Pro Gly Arg Asp Gly Ile Ile Asp Phe Thr Ser Gly Ser Glu

1010

1015

1020

Leu Leu Ile Thr Lys Ala Lys Asn Gly His Leu Ala Val Val Ala
1025 1030 1035

Pro Arg Leu Asn Ser Arg
1040

<210> 2
<211> 16
<212> PRT
<213> Artificial

<220>
<223> N-terminal 16 amino acid extension

<400> 2

Met Arg Tyr Arg Ala Ser Ala Leu Gly Ser Asp Gly Val Arg Val Thr
1 5 10 15

<210> 3
<211> 3661
<212> DNA
<213> Artificial

<220>
<223> NMI Beta

<400> 3
ggagcgggac gccgggtccg gcaggatgcg ctaccggca tcggccctgg gcagtgcgg 60
ggttcgagtg accatggaga gcgccttgac tgcccagac cggtagggg tgcaggactt 120
tgtcctgctg gagaatttca ccagtggggc tgccttcatt gagaacctcc ggcggcggtt 180
ccgggagaac ctcattata cctacatcg tcctgtccta gtctctgtca atccctaccg 240
agacctacag atctacagcc ggacgcatat ggaacgctac cgtgggtca gtttctatga 300
agtaccacct catttggttt cagtggtcga cactgtatac cggcacttc gtactgagcg 360
tcgggaccag gcagtgtatga tttctggaga gagtggggca ggcacacag aggccaccaa 420
gagactgctc cagttctatg cagagacctg cccagccct gaacgggtg ggcacgtcgc 480
agaccgcctg ttgcagagca accccgtgtt agaggcctt ggaatgcca agactctccg 540
caacgataac tccagccgt ttggaaagta catggatgtg cagttgact tcaagggtgc 600
ccccgtggga ggccacattc tcagttacct cctggaaaag tcccggtgg tgcacccaaa 660
tcacggagag cgaaacttcc acgtttta ccagctactg gagggggcg aggaggagac 720

tctccgtcgg ctgggcttgg aacggaaccc ccagagctac ttgtacctgg tgaagggcc 780
gtgtgc当地 gtc当地 cca当地 tcaacgacaa gagtgactgg aaggttatga ggaaggcgct 840
gtccgtcatt gacttc当地 aggatgaagt ggaggacttg ctc当地 catcg tggccagcgt 900
cctacatctg ggcaacatcc actttgctgc tgacgaggac agcaatgccc agttactac 960
tgagaaccag ct当地 aaatatc tgaccaggct cttgggtgtg gaaggtacaa cacttaggga 1020
agccctgacc cacaggaaga tcatcgccaa gggggaaagag ctc当地 gagcc cactgaacct 1080
tgaacaggcg gcatatgcaa gggatgc当地 tgccaaggct gtgtacagcc ggacattcac 1140
ctggctggtc agaaagatca ataggtcact ggc当地 tctaag gacgctgaga gccccagctg 1200
gc当地 aaggcacc acggttcttgg ggtcccttgg catttacggc tttgaagtgt ttc当地 cataa 1260
cagcttc当地 gag cagttctgca tcaactactg caatgagaag ctgc当地 gagc tcttcatcga 1320
gctgactctc aagtc当地 gagc aggaggaata cgaggctgag ggc当地 tc当地 ggttgg 1380
ccagtaacttca aacaacaaga tcatctgtga cttggtagag gagaagttca agggcatcat 1440
ctccatcttgg gatgaagagt gc当地 tgc当地 tggggaggcc acggacctga ctttcttgg 1500
gaagttggag gacactgtca agccccaccc tcaacttcttgg acgc当地 aacgc tc当地 gagcca 1560
gaagaccagg aaatccctag accgagggga gttccgc当地 ctgc当地 ttttgc当地 ctggagaggt 1620
gacctacagt gtactgggt ttctggataa aaacaatgac ct当地 ct当地 tcc local ggaacctgaa 1680
ggagaccatg tgc当地 ct当地 tgaacccat catggccagg tgc当地 ttgc当地 agatgagct 1740
cagtgacaag aagc当地 cc当地 gag gacgggtggcc accc当地 agtgc当地 cctgc当地 gagctc 1800
gtggagatcc tgaggtctaa ggagccttggcc tatatccggt gcatcaagcc aaacgacgccc 1860
aagc当地 cc当地 gg gtc当地 ctttgc当地 tgaggtgctc atccgacatc aggtgaagta cctggactg 1920
atggagaatc tgc当地 cgtgc当地 cagagctggc tttgc当地 ttc当地 gtc当地 caaaaata 1980
ctgc当地 gaggtt acaagtc当地 act gtgccc当地 gagag acatggccca tgtggcagg acggccccc当地 2040
gatgggtgtgg cc当地 gtgggtggt cagacacctc ggctacaagc cagaagagta caaaaatggc 2100
aggactaaga tcttcatccg attccccaaag accttatttgc ccacagagga ctcccttggaa 2160
gtccggc当地 ggcc agagtcttagc caccaagatc caggc当地 ggcccttggggctt tc当地 attggc当地 ga 2220
cagaaatttc tccgggtgaa gcgatcagcc atctgtatcc agtcatggt gctggcaca 2280
ctggggccggaa ggaaggc当地 gagc caagaggaag tggc当地 gagcc agaccatccg tgc当地 actcatc 2340
cgtggcttca ttttgc当地 cccca ttc当地 cccccgg tgc当地 ct当地 gaga atgc当地 ttcttgc当地 cttggaccac 2400

gtgcgcgcct	cattttgct	taacctgagg	cgcaactgc	cccggaaatgt	tctggacacc	2460
tcctggccca	cacccccacc	tgcctgaga	gaggcctcag	aactgctacg	ggaactgtgc	2520
atgaagaaca	tggtgtggaa	gtactgccgg	agcatcagcc	ctgagtggaa	gcagcagctg	2580
cagcaaaagg	cggtggttag	tgaattttc	aaggcaaga	aggacaacta	ccccagagt	2640
gtccccagac	tcttcattag	cacacggctt	ggcacagagg	agatcagccc	cagagtgcct	2700
caatccttgg	gctctgaacc	catccagtat	gccgtgccc	tggtaaaata	cgaccgtaag	2760
ggttacaagc	ctcgccccc	gcagctgctg	ctcacgccc	gtgctgtgg	cattgtggag	2820
gatgctaaag	tcaagcagag	aattgattat	gccaacctaa	ccgaaatctc	tgtcagtagc	2880
ctgagtgata	gcctatttgt	gcttcacgtg	cagcgtgaag	acaacaagca	gaagggagat	2940
gtggtgctgc	agagtgatca	tgtgatcgag	acactaacca	agacggccct	cagtgtgac	3000
cgcgtgaaca	atatcaacat	caaccaggc	agcataacgt	ttgcaggggg	tccaggcagg	3060
gacggcatca	ttgacttcac	atcgggctca	gagttctca	tcaccaaggc	taagaatggc	3120
cacctggctg	tggtgccccc	acggctgaat	tctcggtgat	gaaggctgcg	gtggaccgct	3180
cctgactcct	gatgcttccc	ttagtcccct	cctccctcc	gacttaccaa	aaactcaagc	3240
ttccaaacag	ggatccatgg	acaccctcaa	aaccacgct	gcaaactcct	gccttctgct	3300
cgcgcctct	tgaggtgatc	aggagccagg	gagctacccc	atgagtggc	caggccggc	3360
cacaccaata	gaaaagcaga	ggcctgagca	ggccaggcca	gccctctgct	gatgccaat	3420
atctaagaca	aggaaattt	aactgagggtt	ttctctgaga	tttttgcgt	ctttatagga	3480
aactatttt	ttaagaaagc	catttccta	ccctaaacac	actggatgtg	ttttccctg	3540
cctcgaacag	ggcaaggaat	gtaactgaaa	gactgactgg	gtgggctgg	aaggtccct	3600
tcttgccaa	cctttccta	ttcccttgtc	tgcctgtcca	tccacctgca	ccttttagcc	3660
a						3661

<210> 4
 <211> 20
 <212> PRT
 <213> Artificial

<220>

<223> NMI Beta Peptide Overlapping Consensus Start Site

<400> 4

Ala Ser Ala Leu Gly Ser Asp Gly Val Arg Val Thr Met Glu Ser Ala
 1 5 10 15

Leu Thr Ala Arg
20

<210> 5
<211> 22
<212> DNA
<213> Artificial

<220>
<223> Myosin I primer

<400> 5
caggaggtaa ctgagaatgt gg

22

<210> 6
<211> 27
<212> DNA
<213> Artificial

<220>
<223> Adapter primer

<400> 6
ccatcctaat acgactcact atagggc

27

<210> 7
<211> 24
<212> PRT
<213> Artificial

<220>
<223> peptide encoded by 5' region of mouse NMI Beta cdna

<400> 7

Met Arg Tyr Arg Ala Ser Ala Leu Gly Ser Asp Gly Val Arg Val Thr
1 5 10 15

Met Glu Ser Ala Leu Thr Ala Arg
20

<210> 8
<211> 104
<212> DNA
<213> Artificial

<220>
<223> 5' region of mouse NMI Beta cdna

<400> 8

agcggggcgc cgggtccggc aggatgcgct accgggcata ggcctgggc agtgacgggg 60
ttcgagtgac catggagagc gccttgactg cccgagaccg ggta 104