# Algorithmique avancée Examen

Les calculatrices ne sont pas autorisées. Les exercices peuvent être traités dans le désordre. La notation prendra en compte le soin et la clarté de la rédaction.

#### Exercice 1.

On considère un graphe orienté G et un sommet u de G.

- 1. Quel est l'ensemble des sommets parcourus par un parcours en profondeur enraciné en u?
- $\sqrt{2}$ . Quel est l'ensemble des sommets parcourus par un parcours en profondeur enraciné en u sur le graphe obtenu en inversant le sens de toutes les arêtes?
- $\sqrt{3}$ . En déduire un algorithme permettant de déterminer les composantes fortement connexes de G.
- $\sqrt{4}$ . On admet que déterminer l'intersection de deux ensembles A et B est de complexité  $\mathcal{O}(n \log n)$ , où n = |A| + |B|. En déduire la complexité de l'algorithme précédent.

### Exercice 2.

Un théorème central en théorie des graphes est le suivant :

**Théorème 1** (Menger). Soit G un graphe non-orienté simple et u et v deux sommets de G. Pour tout entier k, il existe soit k chemins disjoints entre u et v, soit un ensemble d'au plus k-1 sommets dont la suppression déconnecte u de v.

Ce théorème a également une version basée sur les arêtes (et qui est en fait une étape dans la démonstration du théorème précédent). Il utilise la notion de chemins arêtes-disjoints, qui sont des chemins qui peuvent éventuellement partager des sommets mais n'ont aucune arête en commun.

**Théorème 2** (Menger). Soit G un graphe non-orienté simple et u et v deux sommets de G. Pour tout entier k, il existe soit k chemins arêtes-disjoints entre u et v, soit un ensemble d'au plus k-1 arêtes dont la suppression déconnecte u de v (au sens où il n'y a plus de chemin de u vers v).

Soit G un graphe non-orienté simple et u et v deux sommets de G. On construit un graphe H en remplaçant chaque arête de G par deux arêtes orientées opposées, de capacité 1. u est considéré comme la source de H et v comme son puits.

- $\sqrt{1}$ . Démontrer qu'il existe k chemins arêtes-disjoints de u à v dans G si et seulement si il existe un flot de valeur k dans H.
  - 2. Démontrer qu'il existe un ensemble d'au plus k-1 arêtes dont la suppression déconnecte u de v dans G si et seulement si il existe une coupe de capacité au plus k-1 dans H.
  - 3. Démontrer le second théorème de Menger.

#### Exercice 3.

La figure 1 montre un graphe de communication avec les capacités de chacune des liaisons. On suppose qu'un flux f de valeur 6 circule déjà entre l'émetteur s et le récepteur p le long du chemin (s,c,a,f,d,g,p) (arêtes en gras).



FIGURE 1 -

- $\sqrt{1}$ . Quelle est la valeur du flux maximal qui peut être transmis de l'émetteur au récepteur en augmentant le flux actuel (c'est à dire que le nouveau flux f' doit vérifier  $f'(e) \geq f(e)$  pour toute arête)?
- $\sqrt{\ }$  2. Pour pallier à des défaillances de liaisons, le client souhaite garder le flux actuel f et envoyer un flux supplémentaire de même valeur n'empruntant aucune arête en commun avec f. Est-ce possible? Si non, quelle est la valeur maximale du second flux dont il peut bénéficier?
- √ 3. L'augmentation de 1 de la capacité d'une arête coûte 1000 euros. Combien devez-vous dépenser pour accéder à la requête du client?

## Exercice 4.

On considère la chaîne de Markov représentée à la figure 2.



FIGURE 2 -

- $\sqrt{\,}$  1. Déterminer les composante fortement connexes du graphe. En déduire l'ensemble des états récurrents et transients.
- $\sqrt{2}$ . On considère la chaîne réduite aux états C, E et F. Ecrire la matrice de transition P de cette chaîne.
  - 3. On considère la même chaîne réduite aux états C, E et F. On note P' sa matrice de transition. Résoudre  ${}^tX={}^tXP'$ .
  - 4. Que pouvez-vous dire du comportement asymptotique de la chaîne restreinte aux états  $C,\,E$  et F ?