CMPE 16 - HomeWork 1

John Allard, id:1437547

October 6th, 2014

- 1. Express each of the sets below by listing all of their elements when the set is finite, and otherwise listing at least 6 elements.
 - (a) $\{9n-7: n \in \mathbb{Z}\}$

Answer: $\{\ldots -7, 2, 11, 20, 29, 38 \ldots\}$

(b) $\{x \in \mathbb{Z} : 2x^2 - 7 < 43\}$

Answer: $\{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}$

(c) $\{x \in \mathbb{Z} : 2x^2 - 7 \le 43\}$

Answer: $\{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$

(d) $\{n \in \mathbb{Z} : 0 < n^2 - 4 < 38\}$

Answer: $\{3, 4, 5, 6, 7\}$

(e) $\{\sin \frac{n\pi}{2} : n \in \mathbb{Z} \text{ and } n \text{ is } odd\}$

Answer : $\{1, -1\}$

(f) $\{X \subseteq \{1,2,3,4\} : |X| = 2\}$

Answer: $\{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}$

(g) $\{1,2,3\} \times \{1,2\}$

Answer: $\{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)\}$

(h) $\{1,2,3\} \times \mathbb{N} \times \emptyset$

Answer: \emptyset

- 2. For each of the sets below give the size of the set if it is finite, and otherwise state that it is infinite.
 - (a) $\{1,2,3\}$

Answer: 3

(b) ∅

Answer: 0

(c) $\{\emptyset\}$

Answer: 1

(d) $\{\{\emptyset\}, \emptyset\}$

Answer: 2

(e) (Save me the trouble of having to rewrite the purposfully tedious nested brackets)

Answer: 3

(f) $\{\mathbb{N}, \emptyset, \mathbb{Z}\}$

Answer: 1

(g) $\{1,2,3,4,5\} \times \{7,8,9\} \times \{10,11,12,13\}$

Answer: 60

(h) The power set of $\{a,b,c,d,e,f\}$

Answer : $2^6 = 128$

- 3. For the problem let $A = \{3n + 4 \mid n \in \mathbb{N}\}$, $B = \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}$ and $C = \{n^2 3 \mid n \in \mathbb{Z}\}$. State whether each of the statements below is True or False and justify your answer.
 - (a) $B \subseteq A$

Answer : False. $0 \in B$ but $0 \notin A$ Therefor $B \nsubseteq A$

(b) $C \subseteq N$

Answer: False. $\{-3, -1\} \in C$ but $a > 0 \ \forall a \in \mathbb{N}$. Therefor C contains members that \mathbb{N} does not and thus $C \not\subseteq \mathbb{N}$

(c) $A \subseteq \mathbb{Z}$

Answer: True, $a \in \mathbb{Z} \ \forall \ a \in A$, therefor $A \subseteq \mathbb{Z}$

(d) $A \subseteq \mathbb{Z}$

Answer: True. Here is a short proof-like justification. $a \in \mathbb{Z} \ \forall \ a \in A$, but also $-5000 \in \mathbb{Z}$ while $-5000 \notin A$ therefor $A \subseteq \mathbb{Z}$

- 4. Give the power set of each of the sets below.
 - (a) $\{1, 2, 3\}$ Answer: $\{\{\emptyset\}, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$
 - (b) $\{\emptyset\}$ Answer : $\{\emptyset\}$
 - (c) $\{1, \mathbb{R}\}\$ Answer : $\{\emptyset, \{1\}, \{\mathbb{R}\}, \{1, \mathbb{R}\}\}\$
 - (d) $\{\emptyset, \{\emptyset\}\}$

Answer: $\{\emptyset, \{\emptyset\}, \{\emptyset\}\}\$ (This one was confusing, the emptyset would appear twice so one should be removed because you can't have redundant items in a single set, I think ...?)