

Pilot Moodle-DWH

Behind the scenes of a DWH in the Oracle Cloud

Technical implementation from the bucket to the dashboard

Dr. Andrea Kennel, fhnw

Dr. Andrea Kennel

Consultant

Lecturer for Databases

Coach for Project Management

University of Applied Sciences Northwestern Switzerland

Brugg/Windisch, Switzerland

andrea.kennel@fhnw.ch andrea@infokennel.ch www.infokennel.ch

Motivation

- Students write exams in Moodle
- We want to improve the quality of examinations and examination questions
- The analysis options in Moodel are limited

28.05.2025 www.fhnw.ch

3

Moodle: Time analysis

Antworten-Rückblick			
Schritt	Zeit	Aktion	
1	3. März 2025, 13:23:04	Antwo	rten-Rückbl
2	3. März 2025, 13:25:25	Schritt	Zeit
		1	3. März 2025, 13:23:04
3	3. März 2025, 13:27:43	2	3. März 2025, 13:27:12
4	3. März 2025, 13:34:53	3	3. März 2025, 13:34:53

Was		Wann	Zeit
Start		13:23:04	
Wegvon	1	13:25:25	00:02:21
Wegvon	2	13:27:12	00:01:47
Wegvon	1	13:27:43	00:00:31
Wegvon	3	13:30:47	00:03:04
	1	00:02:52	
	2	00:01:47	
	3	00:03:04	

02.04.2025 www.fhnw.ch

Moodle DWH: Time analysis

02.04.2025

Overview

29. April 2025 www.fhnw.ch

6

From Moodle to the bucket

Plugin

moodle

Bucket

From Moodle to the bucket with PHP-function cURL_exec


```
// PUT to a Pre-Authenticated Requests enabled Oracle Object Storage Bucket.
$url = $DB->get field('report datawarehouse bkends', 'url', ['id' => $backendid]);
// Initiate cURL object.
$curl = curl init();
// Set your URL.
curl setopt($curl, CURLOPT URL, $url . $filename);
// Indicate your protocol.
curl setopt($curl, CURLOPT PROTOCOLS, CURLPROTO HTTPS);
// Set HTTP method to PUT.
curl setopt($curl, CURLOPT PUT, 1);
// Indicate the file you want to upload.
curl setopt($curl, CURLOPT INFILE, fopen($tempfolder . '/' . $filename, 'rb'));
// Execute.
curl exec($curl);
```


Data protection

User is double anonymised

- 1. Anonymise users in Moodle
- 2. Export hash only

(SELECT MD5(username) FROM mdl_user WHERE id = qzat.userid) AS "qzatuserid",

3. Data 'knocked flat' as csv into the bucket

From the bucket to the staging with DBMS_CLOUD.COPY_DATA

```
v_full_path VARCHAR2(2000) := p_bucket_path || p_file_name;
— DECLARE
 l_TABLE_NAME
                      DBMS_QUOTED_ID := '"DATA_VERSION_BACH"';
                      DBMS_QUOTED_ID := '"OBJ_STORE_CRED"';
 l CREDENTIAL NAME
 l_FILE_URI_LIST
                      CLOB := v full path;
 l FIELD LIST
                      CLOB :=
     "SOURCESYSTEM"
                                      CHAR (4000)
                                      CHAR (4000)
    ,"AUTHORIZEDUSERS"
    ,"QUESTIONID"
                                      CHAR
```

Data from CSV 1:1 into a table

11

The data model of the source

The Moodle data model is open to the public, but complex and large

https://www.examulator.com/er/4.0/tables/quiz.html

The source data model (extract)

29. April 2025 www.fhnw.ch

12

13

The model in the cleansing

14

From the staging to the cleansing

```
INSERT INTO MD_CLEANSING.quiz (
    load_id,
    sourcesystem,
    quiz_id,
    authorizedusers,
    quiz_name,
    quiz_grade)

SELECT DISTINCT
    p_load_id load_id,
    sourcesystem,
    quizid quiz_id,
    authorizedusers,
    quizname quiz_name,
    quizgrade quiz_grade
FROM MD_STAGING.data_view d;
```

```
INSERT INTO MD_CLEANSING.guestion_attempt_step_data (
    load id,
    sourcesystem,
   authorizedusers,
   question_attempt_step_data_id,
   question_attempt_step_id,
   step data name,
    step data value)
SELECT DISTINCT
 p load id load id,
  sourcesystem sourcesystem,
  authorizedusers authorizedusers,
  questionattemptstepdataid question attempt step data id,
 qastepid question_attempt_step_id,
  questionattemptstepdataname step data name,
 questionattemptstepdatavalue step_data_value
FROM MD_STAGING.data_view
WHERE questionattemptstepdataid IS NOT NULL;
```


-ade-Prozes CORE

15

The model in the core

Lade-Prozes CORE

The model in the core

Lade-Prozes CORE

17

The model in the core

Lade-Prozes CORE

18

The model in the core

From the cleansing to the core

1. Fill HUB H Question

Surrogate key for HUB h_question_sid

Srouce keys question_id

load_id

From the cleansing to the core

2. Fill Satellites for HUB

S_Question_info

Find foreign key to HUB via source key

h_question_sid

From the cleansing to the core

3. Fill Link between HUB

L_Question_Question_Answer

Surrogate key for Link

I_question_question_answer_sid

Find both foreign keys to HUB via source key

h_question_sid
h_question_answer_sid

Views for easier access to core

Views for easier access to core

Views for easier access to core

MART Layer

Purpose of the mart: Provide data for analyses

- Different approach than in the core: Tailored to the needs of end users.
- Different concepts and conventions for modelling

Bilder: Adobe Stock

28

Time analysis: ADAPT modelling

From the core to the mart – Question

30

From the core to the mart – Submission time segment

e-Prozess CORE

From the core to the mart – Submission time segment

```
INSERT INTO MD MART.DM F Question Submission Time Segment
SELECT
 MD ID Question,
 quiz attempt user hash MD ID Candidate,
 time prev start time,
 createdunixtime end time, time spent duration, load id
FROM (
 SELECT
   d q.MD ID Question,
   ga.guiz attempt user hash,
   LAG(step.createdunixtime, 1, 0) OVER (PARTITION BY qa.QUIZ ATTEMPT USER HASH
        ORDER BY step.createdunixtime) AS time prev,
   step.createquiixtime
   LAG(step.createdunixtime, 1, 0) OVER (PARTITION BY qa.QUIZ ATTEMPT USER HASH
     ORDER BY step.createdunixtime) AS time spent
 FROM md core.V QUESTION ATTEMPT qa JOIN
   MD CORE.V QUESTION ATTEMPT STEP step
     ON qa.H QUESTION ATTEMPT SID = step.H QUESTION ATTEMPT SID JOIN
   MD MART.DM D Question d q ON d q.QU MD BK question id = q.question id AND d q.QZ MD BK load id = q.load id
 WHERE qa.load id = this load id)
```


From the core to the mart – Submission time segment

Important: Test data!

Specially created and timed Moodle exam

→ Protocol

Interface for End User: Oracle APEX

39

Interface for End User: Oracle APEX

41

From the core to the mart – MC answer option

Choise of answer option

₱ STEP_DATA_NAME	STEP_DATA_VALUE
choice0	1
choice1	1
choice2	0
choice3	0
choice4	0
_order	680,684,681,683,682

???

ChatGPT!

Answer option

QUESTIONANSWERSID	 ⊕ ANSWER
683	<pre>SELECT gruppen_name</pre>
681	<pre><</pre>
684	SELECT ig.gruppen_name <p <="" dir="ltr" th=""></p>
682	<pre>SELECT gruppen_name</pre>
680	<pre>SELECT i</pre>

From the core to the mart – MC answer option

SELECT c.step data name, c.original step_data_value, REGEXP SUBSTR(o.order values, '[^,]+', 1,

₱ STEP_DATA_NAME	STEP_DATA_VALUE	
choice0	1	
choice1	1	
choice2	0	
choice3	0	
choice4	0	
_order	680,684,681,683,682	

CAST(SUBSTR(c.step data name, 7) AS INT) + 1)

AS questionanswersid,

♦ STEP_DATA_NAME	ORIGINAL_STEP_DATA_VALUE	QUESTIONANSWERSID
choice0	1	680
choice1	1	684
choice2	0	681
choice3	0	683
choice4	0	682

From the core to the mart – MC answer option

Hints for using ChatGPT:

- → Provide context about the required part of the data model
- → Precise wording (this requires that I know exactly what I want)
- → Understanding of the data model
- → Understanding how the data is related
- → Test cases → Response received can be checked
- → Step-by-step approach

MC answer option in APEX

45

MC answer option in APEX

First extension: kprime and mtf

Problem:

Require other data from other source tables

First extension: kprime and mtf

- Analysing the data model in the source
- Export of the data, analysis in Excel
- Adaptations in all layers of the DWH

- 1. Several versions of data extracts
- 2. Staging: new table
- 3. Cleansing: tables with more attributes
- 4. Core: new satellites, hubs and links
- 5. Mart: more marts

What is the easiest way to tackle this?

- Several versions of data extracts
- 2. Staging: new table
- 3. Cleansing: tables with more attributes
- 4. Core: new satellites, hubs and links
- 5. Mart: more marts

1. Attributes can be NULL

- Several versions of data extracts
- 2. Staging: new table
- 3. Cleansing: tables with more attributes
- 4. Core: new satellites, hubs and links
- 5. Mart: more marts

2. Staging always only contains data from the current load

One table per version

View that merges all tables with UNION

50

Code version-dependent

Several versions of data extracts

3. Staging always only contains data from the current load

2. Staging: new table

3. Cleansing: tables with more attributes

Tables get more attributes

4. Core: new satellites, hubs and links

New tables

5. Mart: more marts

Code version dependent

51

- Several versions of data extracts
- 2. Staging: new table
- 3. Cleansing: tables with more attributes
- 4. Core: new satellites, hubs and links
- 5. Mart: more marts

4. Core expandable, because Data Vault

Flexible solutions

- 1. View for staging
- 2. Always delete data in cleansing
- 3. Core as Data Vault
- 4. Views on core
- 5. IF (NOT) EXISTS in scripts

29. April 2025 www.fhnw.ch

53

What could come next?

- 1. Evaluation of Multiple Choice
- 2. Points achieved
- 3. Points achieved in correlation to duration
- 4. Export more than one test at a time
- 5. User Management

Overview

29. April 2025 www.fhnw.ch

55

Conclusion

- 1. Pilot brings added value
- 2. Easy to expand
- 3. Flexible thanks to clear concepts

Dr. Andrea Kennel

Consultant

Lecturer for Databases

Coach for Project Management

University of Applied Sciences Northwestern Switzerland

Brugg/Windisch, Switzerland

andrea.kennel@fhnw.ch andrea@infokennel.ch www.infokennel.ch