Sorting

Selection Sort

• For each pass, select the **minimum** value in the unsorted sequence and put it in its sorted place.

Find the smallest item, swap it with the item in the first position

Find the next smallest item, swap it with the item in the second position

Find the next smallest item, swap it with the item in third position

. . .

• N-1 passes

CS14: Summer 2019

Selection Sort

	pass 12 4 2 26 7 30 19 11 2
--	--

Selection Sort

Sorted Minimum

pass	12	4	2	26	7	30	19	11	21
P=1	2	4	12	26	7	30	19	11	21
P=2	2	4	12	26	7	30	19	11	21
P=3	2	4	7	26	12	30	19	11	21
P=4	2	4	7	11	12	30	19	26	21
P=5	2	4	7	11	12	30	19	26	21
P=6	2	4	7	11	12	19	30	26	21
P=7	2	4	7	11	12	19	21	26	30
P=8	2	4	7	11	12	19	21	26	30

Running time = $O(n^2)$

Bubble Sort

- Compare adjacent items and swap them if the left item is less than the right item
- N-1 passes
- Naïve implementation
 - Continue for N-1 passes
- Optimizations
 - Check if no swapping on previous pass
 - On each pass, traverse 1 less item
 - Bubble-up and bubble-down

Bubble Sort

pass	10	14>	< 2	16>	√ 7	21>	< 8
P=1	10	/2	14>	< 7 ⁻	16>	< 8 *	21
P=2	2	10>	7	14	<u>8</u>	16	21
P=3	2	7	10	8	14	16	21
P=4	2	7	8	10	14	16	21
P=5	2	7	8	10	14	16	21

Running time = $O(n^2)$ on all implementations. Can be *linear* if data already sorted – check for no swaps.

Insertion Sort

- Insert **next** item into correct position in sorted subset of items to be sorted so far.
- Make N-1 passes

Insertion Sort

pass	34	26	8	61	17	51	32	9	22
P=1	26	34	8	61	17	51	32	9	22
P=2	8	26	34	61	17	51	32	9	22
P=3	8	26	34	61	17	51	32	9	22
P=4	8	17	26	34	61	51	32	9	22
P=5	8	17	26	34	51	61	32	9	22
P=6	8	17	26	32	34	51	61	9	22
P=7	8	9	17	26	32	34	51	61	22
P=8	8	9	17	22	26	32	34	51	61

Running time = $O(n^2)$. Can be *linear* if data already sorted – check if item to be inserted is larger than largest item in sorted subsequence sorted so far.

Divide-and-Conquer

- Divide-and-conquer is a general algorithm design paradigm:
 - Divide: the problem into a number of smaller instances of same problem (sub-problems)
 - Conquer: the sub-problems by solving them recursively. If problem is small enough, solve directly.
 - Combine: the solutions to the sub-problems into solution for original problem

Examples:

- Merge sort
- Quick sort

CS14: Summer 2019

Mcige Suit

Divide-and-Conquer

- Divide: Divide the n-element sequence to be sorted into two subsequences of n/2 each, i.e., S into two disjoint subsets S_1 and S_2 .
- Conquer: Sort the two subsequences S_1 and S_2 recursively using merge sort.
- Combine: Merge the two sorted sequences to produce sorted answer.

- The base case for the recursion are sub problems of size 0 or 1 (sorted).
- Merge Sort is a sorting algorithm based on the divide-and-conquer paradigm

Merging Two Sorted Sequences

- The combine step of merge sort consists of merging two sorted sequences *A* and *B* into a sorted sequence *C*
- Merging two sorted sequences, and implemented by means of a doubly linked list each with n/2 elements takes O(n) time.

```
Algorithm merge(A, B)
   Input sequences A and B with
        n/2 elements each
   Output sorted sequence of A \cup B
   C \leftarrow empty sequence
   while \neg A.isEmpty() \land \neg B.isEmpty()
       if A.first().element() < B.first().element()
           C.insertLast(A.remove(A.first()))
       else
           C.insertLast(B.remove(B.first()))
   while \neg A.isEmpty()
   C.insertLast(A.remove(A.first()))
   while \neg B.isEmpty()
   C.insertLast(B.remove(B.first()))
   return C
```

Merge Sort

- Merge Sort on an input sequence S with n elements consists of three steps:
 - O Divide: partition S into two sequences S_1 and S_2 of about n/2 elements each
 - Conquer: recursively sort S_1 and S_2
 - Combine: merge S₁ and S₂
 into a unique sorted
 sequence

```
Algorithm mergeSort(S, C)
Input sequence S with n
elements, comparator C
Output sequence S sorted according to C
if S.size() > 1
(S_1, S_2) \leftarrow partition(S, n/2)
mergeSort(S_1, C)
mergeSort(S_2, C)
S \leftarrow merge(S_1, S_2)
```

Merge Sort - Merge

Partition

• Recursive call, partition

• Recursive call, partition

• Recursive call, base case

• Recursive call, base case

• Merge

• Recursive call, ..., base case, merge

• Merge

• Recursive call, ..., merge, merge

Merge

Merge Sort

CS14: Summer 2019

Analysis of Merge Sort

- The height h of the merge sort tree is $O(\log n)$
 - Each recursive merge sort call divides sequence by 2
- The overall amount of work done at the nodes of depth i is O(n)
 - Partition and merge 2^i sequences of size $n/2^i$
 - \circ 2*i*+1 recursive calls
- Thus, the total running time of merge sort is $O(n \log n)$

Quicksort

- Quicksort algorithm based on the divide-and-conquer paradigm:
 - Divide: pick a random element
 x (called pivot) and partition S
 into
 - L elements less than x
 - E elements equal x
 - G elements greater than x
 - Conquer: sort *L* and *G*
 - \circ Combine: join L, E and G

• Pivot selection

• Partition, recursive call, pivot selection

• Partition, recursive call, base case

• Recursive call, ..., base case, join

• Recursive call, pivot selection

• Partition, ..., recursive call, base case

• Join, join

Worst-case Running Time

- The worst case for quicksort occurs when the pivot is the unique minimum or maximum element
- One of L and G has size n-1 and the other has size 0
- The running time is proportional to the sum

$$n + (n - 1) + \dots + 2 + 1$$

• Thus, the worst-case running time of quicksort is $O(n^2)$ depth time

Expected Running Time

- Consider a recursive call of quicksort on a sequence of size s
 - \circ Good call: the sizes of L and G are each less than 3s/4
 - \circ **Bad call:** one of **L** and **G** has size greater than 3s/4
- A call is good with probability 1/2
 - 1/2 of the possible pivots cause good calls:

Summary of Sorting Algorithms

Algorithm	Time	Notes		
Selection sort	$O(n^2)$	in-place slow (good for small inputs)		
Insertion sort	$O(n^2)$	in-place slow (good for small inputs)		
Quicksort	O(n log n) expected	in-place, randomized fastest (good for large inputs)		
Heapsort	$O(n \log n)$	in-place fast (good for large inputs)		
Mergesort	$O(n \log n)$	sequential data access fast (good for huge inputs)		

Lower Limit on Worst Case Time Bound on Sorting

- Comparison Sorts the sorted order is determined based only on comparisons between the input elements.
- It turns out that we can show a lower limit on the worst case time bound on sorting for comparison sorts
- Without loss of generality, we can consider that all of the input elements are distinct. This makes all comparison operations equivalent.

Decision Tree

Worst Case Bounds

- For n entries, there are n! permutations
- Consider a decision tree with height h and L reachable leaves
- A tree of height h has no more than 2h nodes
- Therefore: $n! \le L \le 2^h$
- $h \ge lg(n!)$
- $h = \Omega(n \lg n)$ (use Stirling's approximation, equation 3.19, p. 58 in CLRS)

64, 8, 217, 512, 27, 728, 40, 1, 343, 125, 313

Pæs	0	1	2	3	4	5	6	7	8	9
P=1		-								
P=2										
P=3										

64, 8, 217, 512, 27, 728, 40, 1, 343, 125, 313

Pæs	0	1	2	3	4	5	6	7	8	9
P=1	40	1	512	343	64	125		217	8	
				313				27	728	
P=2	1	512	125		40		64			
	8	313	27		343					
		217	728							
P=3	1	125	217	313		512		728		
	8			343						
	27									
	40									
	64									

Running time - O(kN) where k is digit length

- Works on integers with d-digits
- Idea:
 - O Sort (bin) integers into bins based upon least significant digit
 - Resort based upon next least significant
 - Continue until most significant digit
- O(n) sort

Sorting Stability

- Duplicate numbers appear in the same order in the output as they did in the input.
 - Think about the sorting algorithms which ones are stable?
 - Swaps introduce the chance for re-ordering.