Pandoc with Amsthm Defined in YAML Front Matter

Kolen Cheung

May 8, 2016

Contents

Co	ontents	1
1	First Heading	1
2	Second Heading Subheading	5
3	Test	8

1 First Heading

Theorem 1.1. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Lemma. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{s=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Proposition. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Corollary. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Definition 1.1. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{\substack{n \text{ prime} \\ 1 - p^{-s}}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

Conjecture 1.1. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{\substack{n \text{ prime}}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

Example 1.1. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{\substack{n \text{ prime} \\ 1 - p^{-s}}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

Postulate 1.1. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

Problem 1.1. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{\substack{p \text{ prime}}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

Remark. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Note. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Case 1.1. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Proof. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

Repeating once:

Theorem 1.2. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Lemma. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Proposition. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Corollary. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Definition 1.2. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

Conjecture 1.2. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdot \dots \cdot \frac{1}{1 - p^{-s}} \cdot \dots$$

Example 1.2. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

Postulate 1.2. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{\substack{n \text{ prime}}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

Problem 1.2. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{\substack{n \text{ prime} \\ 1 - p^{-s}}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

Remark. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Note. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Case 1.2. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Proof. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{\substack{p \text{ prime}}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

2 Second Heading

Theorem 2.1. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Lemma. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Proposition. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Corollary. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Definition 2.1. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{\text{prime}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdot \cdots \frac{1}{1 - p^{-s}} \cdots$$

Conjecture 2.1. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{\substack{n \text{ prime}}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdot \cdots \frac{1}{1 - p^{-s}} \cdot \cdots$$

Example 2.1. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{\substack{n \text{ prime}}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

Postulate 2.1. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

Problem 2.1. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{\substack{p \text{ prime}}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

Remark. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Note. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Case 2.1. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Proof. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

Subheading

Theorem 2.2. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

6

Lemma. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Proposition. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Corollary. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Definition 2.2. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{\substack{p \text{ prime}}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

Conjecture 2.2. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{\substack{p \text{ prime}}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

Example 2.2. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{\substack{n \text{ prime}}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

Postulate 2.2. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

Problem 2.2. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

Remark. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Note. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Case 2.2. The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Proof. Leonhard Euler showed that this series equals the Euler product

$$\zeta(s) = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}} = \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots \frac{1}{1 - p^{-s}} \cdots$$

3

Test

Proof. This one has 2 amsthm classes, which should be disallowed. In this case the filter will pick the first valid amsthm class to be the LaTeX environment and ignore the rest.

Theorem 3.1. This one has multiple classes, where only 1 of them is amsthm class, this should be valid.