

## SES 2024届高一下数学测验(4)22.03.23

学校: 上海市实验学校 姓名: 邓扬成 班级: <u>高 - (4)</u> 考场/座位号: **48** 



一、填空题

## 二、解答题

月 
$$a^2=b^2+c^2-2$$
 becos只  
 $= )100=b^2+c^2-170$  bc  
 $= )c^2-bc+b^2-100=0$   
 $vous-独 (=) 6=0$  or  $b^2-100\le 0$  iff.  $b\in \{\frac{20.73}{3}\}$   $V(0.10]$   
 $a^0$  形解 (=) 6>0 and  $b^2-100\ge 0$  iff.  $b\in (10,\frac{20.73}{3})$   
3 元神 (=) 6<0 iff  $b\in (\frac{20.73}{3},+\infty)$ 

$$| (\frac{1}{5})^{\alpha} \in R(f) \Big|_{f(x) = \sin 2x + 1\cos 2x} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x + 1\cos x = 1} = R(g) \Big|_{g(x) = \sin x = 1} = R(g) \Big|_{g(x) = \cos x = 1} = R(g) \Big|_{g(x) = 1} = R$$

13 (1) 
$$\frac{a}{\sin A} = \frac{b}{\sin B}$$
  $2a = \sqrt{7}$   $b = 3$ 

$$1^{10}C^{21}$$
.  $\cos \beta = \frac{1+7-9}{2\times 1\times 17} = -\frac{7}{2\sqrt{7}} < 0$ 

$$a^{\circ} C = 2$$
.  $\cos \beta = \frac{1}{\sqrt{7}} > 0 \times$ 

$$\Rightarrow$$
  $\cos c = \frac{\sqrt{c}}{2}$ 

$$\frac{2a}{\sinh A} = \frac{b}{\sinh B} = \frac{c}{\sin C} = 1$$

$$\Rightarrow a = \sinh A \cdot b = \sinh B$$

$$= \frac{\sqrt{3}}{4} \frac{(2 + \sqrt{2})}{4}$$

$$= \frac{\sqrt{2}}{4} \cdot \frac{(2+\sqrt{2})}{4}$$

$$= \frac{\sqrt{2}+1}{2}$$

$$= \frac{\sqrt{2}+1}{2}$$

附加题. 15