Tema 2. Lógica Formal

Razonamiento y representación del conocimiento

- El ser humano siempre ha representado y transmitido el conocimiento utilizando el lenguaje (natural)
- Ahora queremos representar ese conocimiento en una computadora para que un programa (agente) inteligente pueda hacer uso de él

- Problemas del lenguaje natural:
 - Redundancias
 - "Soy más mayor que mi hermano"
 - "Sube arriba"
 - Ambigüedades
 - "Vi un elefante en mi patio"

- La lógica formal nos proporciona una herramienta de representación del conocimiento sin redundancias ni ambigüedades.
- También nos permite establecer los principios de la inferencia básica

- Tipos de lógica formal
 - Lógica proposicional → elemento básico: proposición
 - Lógica de primer orden → elementos básicos: términos y predicados

- Lenguaje del cálculo proposicional
 - Enunciado:
 - Pensamiento expresable por palabras o por escrito
 - Puede ser: verdadero, falso, absurdo, improbable, etc.
 - "¿Tienes hambre?", "buenas tardes"
 - Proposiciones: enunciados a los que solamente se les puede dar valor de verdadero o falso:
 - "Llueve", "es tarde", "hace calor", "El coche es rojo"

Conectivas

- Elementos que permiten construir nuevas proposiciones a partir de otras ya existentes
- Negación lógica: ¬
- Disyunción lógica: V
- Conjunción lógica: Λ
- Establecemos dos tipos de proposiciones
 - Simples → se representan con letras p, q, r, ..., A, B, ...
 - Compuestas → Se obtienen de las simples mediante conectivas:
 ¬a, aVb, aΛb, ...

- Negación lógica:
 - Si p es una proposición, llamaremos negación lógica de p a la proposición no p y la denotaremos por ¬p, p' o p
 - Ejemplo:
 - p: llueve, ¬p: no llueve
 - q: hace frío, ¬q: no hace frío

- Disyunción lógica:
 - Disyunción lógica inclusiva: (pVq) p ó q será verdadera cuando p sea verdadera, q sea verdadera o p y q sean verdaderas
 - Ejemplo: p: el coche es rojo
 q: el coche es un deportivo
 (pVq): el coche es rojo o es un deportivo
 - Disyunción lógica exclusiva (XOR): (pVq) p o q será verdadera cuando p sea verdadera o q sea verdadera pero no cuando ambas lo sean
 - e Ejemplo: p: juan practica el fútbol q: juan practica el baloncesto

 $(p\overline{V}q)$: juan o practica el fútbol o el baloncesto

- Conjunción lógica:
 - Sean p y q dos proposiciones, (pΛq) p y q es verdad sí y solo sí p es verdad y q es verdad
 - Ejemplo: p: el coche es rojo

q: el coche es un deportivo

(p∧q): el coche es un deportivo rojo

- Conectivas lógicas secundarias
 - Implicación material
 - Si p entonces q, p → q
 - Toma valor de verdad a menos de que p sea verdad y q falso p → q =
 ¬p V q (Ejercicio: comprobarlo)
 - p: Ilueve, q: me mojo, $(p \rightarrow q)$: Si Ilueve entonces me mojo
 - Implicación recíproca
 - Dada la proposición p ← q llamaremos implicación recíproca de la dada a la proposición p → q
 - Implicación bidireccional
 - p si y solo si q, p ↔ q
 - Falsa cuando p y q toman diferentes valores de verdad

Tablas de verdad

р	¬р
V	F
F	V

р	q	pVq
V	V	V
V	F	V
F	V	V
F	F	F

р	q	p∇q
V	V	F
V	F	V
F	V	V
F	F	F

р	q	pΛq
V	V	V
V	F	F
F	V	F
F	F	F

р	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

р	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

- Dada una proposición compuesta, ésta puede ser:
 - Tautología: si los valores de verdad son todos verdaderos
 - Contradicción: si los valores de verdad son todos falsos
 - Contingencia: si los valores de verdad son verdaderos y falsos

р	q	proposición
V	V	V
V	F	V
F	V	V
F	F	V

р	q	proposición
V	V	F
V	F	F
F	V	F
F	F	F

р	q	proposición
V	V	V
V	F	F
F	V	V
F	F	F

- Ejercicios. Determina el valor de verdad de las siguientes expresiones lógicas:
- $p \rightarrow (\neg p \rightarrow p)$
- $(p \wedge \neg q) \wedge q$
- $(rVp)\Lambda \neg (qvp)$
- Si se conoce que $(q\Lambda \neg r) \rightarrow p$ es FALSO
- Determina el valor de verdad de: (¬rV¬p)→(pΛ¬r)

- La lógica proposicional no es suficiente para hacer inferencias del tipo:
 - Confuncio es un hombre
 - Todos los hombres son mortales
 - Entonces, Confuncio es mortal
- La lógica de primer orden (LPO) incluye el concepto de término que hace referencia a los elementos que constituyen las proposiciones

- Alfabeto, compuesto de
 - Símbolos de variables: x, y, z, ..., x_1 , y_1 , ...
 - Símbolos de constantes: primeras letras del alfabeto, mayúsculas o minúsculas
 - Símbolos de función: f, g, h, ...
 - La aridad hace referencia al número de parámetros
 - Símbolos de predicado: P, Q, R, K, ...
 - Símbolos de conectivas: ¬, V, Λ, →, ↔
 - Cuantificadores:
 - Universal, para todo: ∀
 - Existencial, existe un: 3
 - Símbolos de puntuación: paréntesis y coma

Alfabeto – ejemplos

- Lenguaje de teoría de conjuntos
 - Igualdad: sí tiene
 - Predicados: n-arios: Un predicado binario → pertenece
 - Constantes: una: conjunto vacío
 - Funciones: no tiene
- Lenguaje de teoría elemental de números
 - Igualdad: sí tiene
 - Predicados n-arios: Un predicado binario → <
 - Constantes: 0
 - Funciones:
 - Una unaria: S (sucesor)
 - Dos binarias: + (suma) y · (producto)

- Ejemplo de predicado
 - Queremos representar: "Uno sumado a dos es igual a tres"
 - Identificamos:
 - Términos: "Uno", "dos", "tres" y "Uno sumado a dos"
 - Relaciones o predicados:

"es igual a" \rightarrow ES_IGUAL(a, b)

Funciones: "sumado a" → sumadoa(a, b)

ES_IGUAL(sumadoa(1, 2), 3)

Funciones

 Operan con términos y como resultado devuelven un término (concepto de función bien formada fbf)

Predicados

- Operan con términos y como resultado devuelven verdadero o falso
- Pedro es el jefe de Luis
 - Términos: "Pedro", "Luis"
 - Predicados: ES_JEFE(a, b)

ES_JEFE(Pedro, Luis)

- Cuantificador universal (∀)
 - ∀x se interpreta: "para todo valor que pueda tomar x..."
 - Nos pemite formar expresiones y reglas del tipo "Todos los seres humanos son mortales"

```
\forall x \ ES\_HUMANO(x) \rightarrow ES\_MORTAL(x)
```

- Cuantificador existencial (3)
 - ∃x se interpreta: "existe al menos un x tal que..." o "Para algún x..."

Hay por lo menos un satélite: ∃x SATÉLITE(x)

- La lógica de primer orden tiene como principal característica un gran potencia expresiva
- Esto permite representar cualquier conocimiento en forma de expresión lógica...
 - Y analizarlo
 - Comprobar su validez
 - Extraer nuevo conocimiento
 - Aprender
 - Etc.