Instituto Superior de Engenharia de Coimbra

Exame de Equipam, de Imagiologia Médica/Normal - Curso de Eng. Biom.	12/2/2011
NOME	N°

IMPORTANTE:

- RESPONDA A APENAS 10 DAS SEGUINTES ALÍNEAS
- o Identifique todas as folhas de resposta.
- o Insira todas as 2 folhas de resposta numa folha de ponto identificada.
- o Assinale, no enunciado, a **única** hipótese correcta.
- Cotação: respostas certas = 2 valores: respostas erradas = -0,66 valores.
- o Para anular uma resposta escreva "anulado" na caixa respectiva.
- o Em todas as perguntas considerar a velocidade do som nos tecidos c=1540m/s.
- 1. Nos tubos de raios-X, estes são produzidos no ânodo a partir do feixe de electrões pelos seguintes mecanismos:

A: Radiação Compton e efeito fotoelectrico	B: Radiação Compton e radiação de travagem ("Brehmstrahlung")
<u>C</u> : Radiação característica e radiação de travagem ("Brehmstrahlung")	D: Radiação característica e efeito fotoeléctrico.

- **2.** Considere o gráfico ao lado. Qual a combinação de respostas às seguintes afirmações é correcta?
- **2.1** Para raios-X, o coeficiente de atenuação linear total é a diferença entre os coeficientes de atenuação linear devidos ao efeito fotoeléctrico e ao efeito Compton;

O efeito Compton é sempre dominante relativamente ao efeito fotoeléctrico

A: VERDADEIRO, VERDADEIRO	B: VERDADEIRO, FALSO
C: FALSO, VERDADEIRO	<u>D</u> : FALSO, FALSO

2.2 O efeito Compton é prejudicial à boa definição da imagem;

O contraste entre osso e tecidos é melhor para energias dos fotões mais altas

A: VERDADEIRO, VERDADEIRO	<u>B</u> : VERDADEIRO, FALSO
C: FALSO, VERDADEIRO	D: FALSO, FALSO.

3. Uma amostra recém-preparada de um isótopo radioactivo tem uma actividade de 10mCi. Passadas 4h a sua actividade é de 8mCi.

3.1. Determine a constante de decaimento e o tempo de semi-vida.

$\underline{\mathbf{A}}: 1,55 \times 10^{-5} \mathbf{s}^{-1}; 12,4 \mathbf{h}$	B: $9.93 \times 10^{-9} \mathbf{s}^{-1}$; $12.4 \mathbf{h}$
C: $9,93 \times 10^{-9} \mathbf{s}^{-1}; 1380 \mathbf{h}$	D: $1,55 \times 10^{-5} \mathbf{s}^{-1}; 1380 \mathbf{h}$

3.2. Quantos núcleos do isótopo radioactivo existiam na amostra inicial?

<u>A</u> : $2,39 \times 10^{13}$	B: 194×10 ¹²
C: 39×10 ¹⁵	D: 3,45×10 ⁸

Duração: 2h30m. 1/3

<u>Instituto Superior de Engenharia de Coimbra</u>

Exame de	Equipam. de Imagiologia Médica/Normal - 0	Curso de Eng ^a .Biom.	12/2/2011
NOME			_N°
4. Um tran	sdutor eléctrico para ecografia deve ser amortecio	do para:	
A: evit	ar que se danifique.	B: alongar o sinal.	

D: melhorar a resolução transversal.

5. Em ecografia, considerando um coeficiente de atenuação médio dos tecidos de 0,5 dB/MHz/cm, qual deverá ser o valor da taxa de compensação tempo-ganho para que os ecos sejam registados pela electrónica de leitura com amplitudes aproximadamente independentes da profundidade a que foram gerados. Considerar uma frequência de 2,5MHz.

A: 0,957 dB/μs	B: 34,2 dB/μs
<u>C</u> : 0,385 dB/μs	D: 112 dB/ms

6. Os agentes contrastantes para ecografia podem ser microesferas ocas preenchidas por um material

A: rádio-opaco, tal como o bário	B: ferromagnético
C: de coeficiente de atenuação elevado	<u>D</u> : gasoso

7. Em ressonância magnética, porque razão é desejável um campo magnético \mathbf{Z}_0 elevado?

<u>C</u>: melhorar a resolução axial.

A: aumentar a frequência de precessão	B: diminuir o tempo de relaxação T2
<u>C</u> : aumentar a intensidade do sinal recolhido	D: aumentar o tempo de relaxação T2

8. Um tomógrafo por ressonância magnética funciona com um campo magnético $\mathbf{Z}_0 = 1\,\mathbf{T}$ e um gradiente de campo $\mathbf{G}_z = 0.352\,\mathbf{T}/\mathbf{m}$.

8.1. Queremos seleccionar para aquisição de imagem uma fatia situada a *10 cm* do isocentro. Qual deve ser a frequência central do impulso de radiofrequência?

A: 8765 kHz	B: 32,4 MHz
C: 149 MHz	<u>D</u> : 44,08 MHz

8.2. Queremos que a fatia mencionada na alínea anterior tenha uma espessura de *1 cm.* Qual deverá ser a largura de banda do sinal de radiofrequência?

<u>A</u> : 74,9 kHz	B: 3,47 MHz
C: 1,49 MHz	D: 12,3 kHz

Duração: 2h30m.