Mathematics 1

Exam 4.C

April 28, 2014

Name:	. 50	LNS

Section:

Do not grade problem:

Read all directions carefully. Do any 4 of the 5 problems. You must indicate CLEARLY the problem not to be counted for credit. If you do all five problems and do not indicate one to be omitted, then your grade will be the sum of your scores on the first four problems. Show all work; partial credit may be given but only if correct work and reasoning are shown and explained. Correct answers without work shown may not receive full credit.

1. For each of the following series determine whether the series converges or diverges. Justify all conclusions completely.

(NoTE: It say " of (at) dwass" - 2pt)

a. Create a geometric series with nonzero common ratio that converges to 166. Glos- [16 = a + ar + ar + + ar + = = = 1 pt Pick any 0>0 - say a=2

24 a Then 166 = = = > 1-r= = = = = = = = = = = = = = = = . Serve and write down a clear formula for the coefficient a_k of $(x-4)^k$ for this (I) (We do this by substitution in the geometric Series formula Pt or whether & I that the fire of the "t" 10pt, (3 = 3 (1-(-x-1))

S+x = S+(x-4)+4 9+(x-4)

Getmal herecome think *,

yeth and the come think *, eure ax, [=2]

21 they just write out

('X-4) + The display gives a clear description 1 1+(= x=4)+(=x=4)+ Then need to give an termila

Gr = Lell

(II) Canalso do thus by weing the Taylor Sever Formula

$$f(x) = 3(-1)(5+x)^{-2}$$
 = $f'(-1) = \frac{3}{9} - \alpha_0$
 $f'(x) = 3(-1)(5+x)^{-2}$ = $f''(y) = \frac{3}{9} - \alpha_0$

$$f'(x) = 3(-1)(-2)(3-x)^{-\frac{1}{2}} \Rightarrow \frac{f'(x)}{2!} = \frac{3(-1)^{\frac{1}{2}}2!(9)^{-\frac{3}{2}}}{2!} = -\frac{3}{9^{\frac{3}{2}}} \rightarrow 0.$$

Comproduce kth der in guess based on pattern that $a_k = \frac{(-1)^{\frac{k}{3}}}{9^k}$

Again, Ok to give partial sum with the but must have explicit fremula for a indication that $G_R = \frac{(-1)^{k/3}}{9^{k}}$

3. Find the interval of convergence for the power series
$$\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{5^k \cdot k} (x-5)^k$$
. Show all work and justify all conclusions.

15+ Use Ratioleston
$$\left[\frac{(-1)^{n+1}}{5^{n},k}(x-5)^{n}\right]$$
. Need to abs.

水炒

For correct
$$\lim_{k\to\infty} \frac{(k+1)^{5t} + term}{k+1} = \lim_{k\to\infty} \frac{\left| \frac{(-1)^{k+1}}{5^{k+1}(k+1)} (x-5)^{k+1} \right|}{\left| \frac{(-1)^{k}}{5^{k}} (x-5)^{k} \right|}$$

$$= \lim_{K \to \infty} \frac{5^{h}}{5^{k+1}} \cdot \frac{k}{k+1} \cdot \frac{1 \times -51^{h+1}}{1 \times -51^{h}} = \frac{1}{5} \cdot 1 \cdot 1 \times -51 < 1$$

Tomake this <! need 1x-5/25

1. Radol any = 5

Interval of convergence but still need to examine endpoints

Correct Su)

Still need to examine emaporary

(i) Put X=0 into original series

(ii) Put X=10 into original series

(iii) Put X=10 into original series

(iv) Put X=10 into

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1}{4!}}{SO}$$

$$CD = \frac{1 - \frac{1}{2} + \frac{1}{4!} - \frac{1$$

4. a. Find the Taylor polynomial of degree 5 centered at 0, that is $P_5(x)$, for the function $2\cos(3x)$.

4 pts Id.
$$\rightarrow P_5(x) = \sum_{k=0}^{5} \frac{f(k)}{k!} x^k$$

$$\begin{cases} f_{|x|=2\cos(3x)}, f_{|0|=2\cos(2x)} \\ f'_{|x|=-6\sin(3x)}, f'_{|0|=-6\sin(2x)} \\ f''_{|x|=-18\cos(3x)}, f''_{|0|=-18\cos(2x)} \\ f''_{|x|=3\sin(3x)}, f''_{|0|=0} \\ f''_{|x|=-3\cdot 162\cos(3x)}, f'''_{|0|=162} \\ f'''_{|x|=-3\cdot 162\sin(3x)}, f'''_{|0|=0} \end{cases} = 2 + \frac{0 \cdot x}{1!} - \frac{18 \cdot x^2}{2!} + \frac{0 \cdot x^3}{3!} + \frac{162 \cdot x^4}{4!} + \frac{0 \cdot x^5}{5!} \\ = 2 - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} +$$

b. Suppose that we use $P_5(x)$ to approximate $2\cos(3x)$ on the interval $-\frac{1}{10} \le x \le \frac{1}{10}$. Give a bound on the error for this approximation. Your final answer should be a number. Justify your answer. You may want to use the general error relationship

$$|f(x) - P_n(x)| \le \frac{M_{n+1}}{(n+1)!} |x - a|^{n+1}.$$

We have n=5, a=0 (From part a, centered at a)

$$M_6 = max \left| \frac{d^6}{dx^6} (2co(3x)) \right| = \left| 2.3 \, ^6 co(3x) \right| \, m_6 = \frac{1}{10} \, ^6 \times ^6 \, ^6 \, M_6 \ge 2.3 \, ^6 \, M_6 \ge 2.3$$

together right.

113 Second Solution. The McLauren Senestor ZCO(3x) is

Because all terms have even degree, all expressions $\frac{2 \cdot 3^{3k} \times^{2k}}{(2k)!}$ are positive, so the McLausen series is alternating. Also, For $-1 \le x \le \frac{1}{10}$ $\ge 9x^2 > \frac{27}{5}x^2 > \cdots$ the terms are 10.

Use the error estemple from the Alternatury Seves Test:

$$|2 \cos(3x) - P_5| \le |15^{t} \text{ omitted ferm From the server}| = |\frac{2.36 \times 6}{61}|$$

$$| \le 2.36 \left(\frac{1}{10}\right)^6$$

5. Let $\sum_{k=0}^{\infty} c_k(x-2)^k$ be a power series. Assume that using the ratio test it is
shown that the series has radius of convergence 6. (All parts of this problem
deal with this series.)
a. Find, with justification, the value of $\lim_{k \to \infty} \left \frac{c_{k+1}}{c_k} \right $.
(7pts) a. Find, with justification, the value of $\lim_{k\to\infty} \left \frac{c_{k+1}}{c_k} \right $. $R. or C = 6 \Rightarrow m$ ratio test, need $ x-2 < 6$ to meta catio (Sult <)
$\frac{1}{16} \left \frac{C_{KA}(x-c)^{K+1}}{C_{K}(x-c)^{K+1}} \right = \lim_{K \to \infty} \left \frac{C_{K+1}}{C_{K}} \right x-2 = 1 \Rightarrow \lim_{K \to \infty} \left \frac{C_{K+1}}{C_{K}} \right = 1$ $\frac{1}{16} x-2 = 6$ $\frac{1}{16} x-2 = 6$
this = 1 (No in to) = lim Charl =
b. If we twice differentiate the given power series we get the power series
$\sum_{k=0}^{\infty} k(k-1)c_k(x-2)^{k-2}$. Find, with justification, the radius of conver-
$\kappa=2$
Lace Ratio feet 30ts (une (a)) need at for
Gence of this new series. The convergence of this new series of this new series of this new series. The convergence of this new series of this
20+3 (1 X-21 <6 R.MC = 6 (20t)
c. Find, with justification, the radius of convergence of the power series $\sum_{k=0}^{\infty} \frac{c_k 3^k}{k!} (x-2)^k$
20ts - Wa ratio hot
$\frac{ C_{k+1} ^{2}}{ C_{k+1} ^{2}} \frac{ C_{k+1} ^{2}}{ C_{k+1} ^{2}} = I_{k} \frac{ C_{k+1} }{ C_{k} ^{2}} \frac{ X_{k+1} ^{2}}{ C_{k+1} ^{2}} \frac{ X_{k+1} ^{2}}{ X_{k+1} ^{2}} \frac{ X_{k+1} ^{2}}{ X_{k+1} ^{2}} $ $= I_{k+1} \frac{ C_{k+1} ^{2}}{ C_{k} ^{2}} \frac{ X_{k+1} ^{2}}{ X_{k+1} ^{2}} \frac{ X_{k+1} $
$\frac{1}{k!}$ $(x-2)^n$
20th = /m / Cx+1/5 - 2 . 3 . 1x-21
= 400.3.1X-21=0 <1
So there all for all x. So Royce = co) (2pt: (Ans)
a the man of the section of the sect

2p+2