Dynamic pricing

Tom Archer

Code and presentation can be found here: https://github.com/tdarcher/pace_interview.git

Existing dynamic price models

· Historical:

Only consider final number of rooms Same day last year, moving average

Advanced booking
 Only consider the number of reservations
 Additive, booking curve, time series

· Combined:

Weighted average of historical and advanced

Existing dynamic price models

· Historical:

Only consider final number of rooms Same day last year, moving average

Advanced booking
 Only consider the number of reservations
 Additive, booking curve, time series

· Combined:

Weighted average of historical and advanced

1 Occupancy prediction

All data

Reduced data set

Reduced data set

Analysis of Historical trends

Predicting demand

Reduced data set

FFT of total occupancy

1 Year training set

Initial model

- Data broken down into week number and day
- Demand
 estimated to be
 the same as
 previous year

Predict occupancy from historical data

 Historical occupancy taken from day and week of previous year.

Works well for the fitted data:

Can we introduce transferability?

Similar demand curve for each room id, but a systematic shift present

Normalized demand

Hotel performance

Applying model to different hotels

$$Residual = \sum_{Day=1, N} \frac{\left| P_{Day} - P_{Day}^{fitted} \right|}{N} = 0.13$$

2.Revenue

Revenue

P>1 is not a real, the prediction must be truncated

 $Revnue = Rooms \times Cost \ per \ room \times P_{Occupancy}$

However the occupancy probability is a function of price which will create feedback if the price is changed

3. Price recommendation

Hotels which are fully occupied most of the year could benefit from a price increase, e.g. 523,520,522

Hotels which have extra capacity could try a price decrease

Considerations

 $P_{\textit{Occupancy}}(\textit{Room Price}$, Romm abundance, location)

Feed back between changing the price and the occupancy is unknown

Small changes the the price could be made to probe how the occupancy responds.

Rooms could be divided up into price bands to

promote constant occupation keeping the workload consistent

Thank you

Code and presentation can be found here: https://github.com/tdarcher/pace_interview.git