"大雾实验工具"的开发

《程序设计进阶与实践》大作业报告

姓名 (组长)	孙旭磊	学号	PB21000270
姓名(组员1)	秦沁*	学号	PB21111630
姓名(组员2)	赵弈	学号	PB21000033
姓名(组员3)	鲍政廷	学号	PB21111741
姓名(组员4)	张学涵	学号	PB21000079
项目名称	大雾实验工具——绘制图像&计算不确定度&生成计算公式		

1 项目需求分析

大物实验在评课社区、知乎等网站上一直饱 受争议,有多名同学指出实验报告撰写耗时长、 专业作图软件难以使用、Word 中打数学公式麻 烦等问题。鉴于此,曾经有学长在开发过一款大 物实验数据处理工具,这是非常好的创意。但是, 这款软件入门成本太高,故了解它的人很少。

本小组开发的大雾实验工具是一款网页应用, 无需安装任何软件,更不需要有编程基础,没有 任何学习成本。本工具的目标用户是中国科学技 术大学大一本科生,着力于解决其撰写实验报告 时最耗时的三件事情,即"绘制图像""计算不确 定度""在电脑上书写公式"。

当然,一些高级软件也能出色地完成上述的本工具的功能,如专业绘图软件 Origin,专业计算软件 Matlab 等。但我们的项目不是去取代这些强大的软件,而是将它们本地化。这些软件功能繁多,故学习成本相对较高,但我们的软件为每一个大物实验都写了专门的处理工具,封装到只需要用户上传数据表格的程度。相比动辄几个 GB 的专业软件来说,我们的工具更加友好,更加便捷,更加有针对性——更加有效。

2 项目功能设计

2.1 总体功能说明

大雾实验工具是本组成员 2022 春季学期程 序设计进阶与实践的大作业项目。本工具搭建于 网页平台,支持任何设备自由访问。传入实验数 据后,本工具立刻完成绘制图像、计算不确定度、 生成计算公式一系列操作,并将最终结果整理成 一份 Word 文档,下载后即可直接使用。本工具 支持一级大物的所有实验,大大提升了学生们撰 写实验报告的效率。由于本工具只是将传入的实 验数据进行自动分析,故不会造成抄袭、造假等 学术不端问题。

2.2 具体功能点说明

使用本工具时,用户只需输入他们做实验时测量到的原始数据,而无需任何额外的计算处理,用户所要做的只有按照规定的格式上传 Excel 文档。本工具支持 xlsx, csv 等各种格式的数据表格。具体而言,每个实验都会有一张示例数据表供用户参考,如图 1 的界面所示。用户也可以直接下载示例数据,并直接在它的基础上进行修改。因此,本工具没有任何学习成本,是一款即点即用、免安装的简单轻应用。

图 1: "拉伸法测钢丝杨氏模量"的工具界面

绘制图像

本工具根据输入的数据以及实验原理,自动生成美观的实验图像,支持平滑去噪、数据拟合、双 y 图等多种图像生成需求,如图 2 所示。

图 2: 平滑连接的光电效应伏安特性曲线

计算不确定度

本工具在生成的 Word 文档中渲染了各种公式,如图 3 所示。用户可以直观看到不确定度每一步的计算过程,并在自己的报告中直接使用这些算式与结果。

生成计算公式

在 Word 文档中除了有已经渲染好的公式外,我们还提供了它们的 IèTeX 源码,如图 4 所示。这极大方便了用 IèTeX, Markdown 等排版实验报告的用户,他们再也不需要手动敲入每一个算式了。

钢丝直径 d 的平均值:

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_{i} = \frac{0.291 + 0.292 + 0.293 + 0.294 + 0.295}{5} \text{ mm} = 0.293 \text{ mm}$$

钢丝直径 d 的标准差:

$$\begin{split} &\sigma_d = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (d_i - \overline{d})^2} \\ &= \sqrt{\frac{(0.291 - 0.293)^2 + (0.292 - 0.293)^2 + (0.293 - 0.293)^2 + (0.294 - 0.293)^2 + (0.295 - 0.293)^2}}{5 - 1} \text{ mm} \\ &= 0.0015811 \text{ mm} \end{split}$$

钢丝直径 d 的 B 类不确定度:

$$\Delta_{B,d} = \sqrt{\Delta_{tX}^2 + \Delta_{tD}^2} = \sqrt{0.004^2 + 0.005^2} \text{ mm} = 0.0064031 \text{ mm}$$

钢丝直径 d 的展伸不确定度:

$$\begin{split} U_{d,P} &= \sqrt{(t_P \frac{\sigma_d}{\sqrt{n}})^2 + (k_P \frac{\Delta_{B,d}}{C})^2} = \sqrt{(2.78 \times \frac{0.0015811}{\sqrt{5}})^2 + (1.96 \times \frac{0.0064031}{3})^2 \text{ mm}} \\ &= 4.6222 \times 10^{-3} \text{ mm} \ , P = 0.95 \end{split}$$

图 3: 不确定度计算的详细过程

0.293)^2+(0.295-0.293)^2}{5-1}}\\mathrm{mm}\\

&=0.0015811\,\mathrm{mm}

\end{aligned}

\$\$

钢丝直径 d 的 B 类不确定度:

\$\$

\Delta_{B,d}=\sqrt{\Delta_\text{仪}^2+\Delta_\text{估

 $^2=\sqrt{0.004^2+0.005^2}\$ mathrm{mm}=0.0064031\, mathrm{mm}

\$\$

钢丝直径 d 的展伸不确定度:

\$\$

\begin{aligned}

 $U_{(d,P)} &= \sqrt{L_P\left(\frac{h_{(h,P)}}{h_{(h,p)}}\right)^2 + \left(\frac{h_{(h,p)}}{h_{(h,p)}}\right)^2 + \left(\frac{h_{(h$

 $$$ = \sqrt{\left(1.96\times (0.0015811)(\sqrt{5})\right)^2 + \left(1.96\times (0.004031)(3)\right)^2} \cdot (0.0064031)(3)\right)^2} \cdot (0.0064031)(3)$

 $\&=4.6222 \times 10^{-3}\,\mathrm{mathrm\{mm\}}, P=0.95$

图 4: 不确定度算式的 IATEX 源码

2.3 功能点设计细节

本工具后端使用 Python 编写,使用的包与模块如表 1 所示。前端由 HTML 编写,并使用了Flask Web 应用框架。

表 1: 本工具使用的全部 Python 包与模块

Python 包或模块	用途	
chardet	检测用户上传的数据表格的编码	
collections	通过 namedtuple 使代码更清晰	
Flask	Web 应用框架	
latex2mathml	IFTEX 代码转换为 MathML 代码	
lxml	MathML 代码转 Office MathML	
math, numpy	不确定度数字运算	
matplotlib	绘制物理图像	
os, random, shutil	后台文件操作与管理	
pandas	数据表格处理	
python-docx	生成 Word 文档	
scipy	数据拟合	
sympy	不确定度符号运算	
time, threading	定时删除生成的 Word 文档	
traceback	打印运行错误以便调试	

2.3.1 图像绘制

图像由 matplotlib 绘制。我们的规范如下:

- 面向绘图对象作图: fig, ax = matplotlib
 .pyplot.subplots()
- 设置副刻度为主刻度的一半,主刻度为默认:
 ax.xaxis.set_minor_locator(matplotlib
 .ticker.AutoMinorLocator(2))
- 刻度朝内: matplotlib.rcParams["xtick .direction"] = matplotlib.rcParams ["ytick.direction"] = "in"

- 若一张图有且只有一组点线,则点使用红色(color="r"),线使用蓝色(color="b"), 且线覆盖在点的上面;若一张图有多组点线,则同一组点线的颜色应当相同,并依次使用蓝(b)、红(r)、绿(g)、紫(m)、橙(orange)、青(c)。
- 点的类型使用实心圆("o"),若一张图有多组点线,则依次使用实心圆(o)、正方形(s)、上三角(^)、菱形(D)、下三角(v)、星号(*)。
- 线条粗细使用 linewidth=1.5, 点的大小使用 markersize=3, 可视数据量、数据组数适当调整, 但应保持统一性。
- 绘制双 y 轴图使用 matplotlib.axes.Axes 对象的 twinx() 方法。
- 只有一组点线的图,一般不显示图例。
- 图像字体: SourceHanSansSC-Regular.otf
- 轴标签和标题中的物理量名称与单位应使用 LYT_FX。

2.3.2 数据处理

无论使绘制图像时的线性拟合,还是计算不确定度的大小,都绕不开数据处理。我们利用pandas, scipy, sympy 等包自主编写了 calc.py 应用程序接口,它提供以下函数:

科学计数法输出 numlatex: (num: float,

prec: int = 5) -> str

|返回一个数的科学计数法形式的 LATeX 代码

num: 要转成科学计数法的数字 prec: 有效数字位数 (默认值: 5)

不确定度计算 analyse: (data: pandas.DataFrame, symbol_Y: str = "Y", unit_m: str = "", delta_b1: float = 0., delta_b2: float = 0., unit_b: str = "") -> collections symbol: str = "x", unit: str = "", confidence_C: float = 3., confidence_P: float = 0.95) -> collections.namedtuple ("AnalyseData", ["average", "averagex", "averagex2", "sigma", "sigmax", "sigmax2", "delta_b", "delta_bx", "delta_bx2", "unc", "uncx", "uncx2"]) | 计算一组数据的平均值、标准差、不确定度 data: 要处理的一组实验数据 delta_b1: 仪器最大允差 Δ_{α} (默认值: 0) delta_b2: 估读最大允差 $\Delta_{\rm ft}$ (默认值: 0) symbol: 数据的物理符号(默认值: "x") unit: 数据的单位(默认值: "") confidence_C: 置信系数 C (默认值: 3) confidence_P: 置信概率 P (默认值: 0.95)

AnalyseData.average/averagex/averagex2: 数据的平均值/平均值计算过程的 LATEX 代 码/计算过程的 MathML-IATEX 代码

AnalyseData.sigma/sigmax/sigmax2:数据 的标准差/标准差计算过程的 LATEX 代码/计 算过程的 MathML-IATEX 代码

AnalyseData.delta_b/delta_bx/delta_bx2: 数据的 B 类不确定度/B 类不确定度计算过程 的 LATEX 代码/计算过程的 MathML-LATEX 代 码

AnalyseData.unc/uncx/uncx2: 数据的展伸 不确定度/展伸不确定度计算过程的 LATEX 代 码/计算过程的 MathML-IATEX 代码

最小二乘法线性回归 analyse_lsm: (data_X: pandas.DataFrame, data_Y: pandas .DataFrame, symbol_X: str = "X",

.namedtuple("AnalyseLsmData", ["m", "mx", "mx2", "b", "bx", "bx2", "r", "rx", "rx2", "s_m", "s_mx", "s_mx2", "s_b", "s_bx", "s_bx2"]) |将一组数据用最小二乘法拟合成一条直线| data_X: x轴数据(自变量数据) data_Y: y轴数据(因变量数据) symbol_X: 自变量物理符号 (默认值: "X") symbol_Y: 因变量物理符号 (默认值: "Y") unit_m: 斜率的单位(默认值: "") unit_b: 截距的单位(默认值: "") AnalyseData.m/mx/mx2: 拟合直线的斜 率/斜率计算过程的 IATEX 代码/计算过程的 MathML-IATEX 代码 AnalyseData.b/bx/bx2: 拟合直线的截 距/截距计算过程的 LATEX 代码/计算过程的 MathML-IATFX 代码 AnalyseData.r/rx/rx2: 线性拟合的相关系 数/相关系数计算过程的 LATEX 代码/计算过 程的 MathML-IATeX 代码 AnalyseData.s_m/s_mx/s_mx2: 拟合直线的 斜率标准差/斜率标准差计算过程的 LATEX 代 码/计算过程的 MathML-LATEX 代码 AnalyseData.s_b/s_bx/s_bx2: 拟合直线的 截距标准差/截距标准差计算过程的 LATEX 代 码/计算过程的 MathML-IATEX 代码

不确定度合成 analyse_com: (exp: str, varr: tuple = (), constt: tuple = (), unit: str = "", confidence_P: float = 0.95) -> collections.namedtuple("AnalyseComData", ["ans", "unc", "ansx", "uncx", "finalx", "ansx2", "uncx2", "finalx2"])

根据表达式计算物理量的值和其对应的不确定度 exp: 物理量计算表达式(字符串),为一个物理量=一些物理量(或常量)之积与之商的形式,如 E=4*pi**2*1/T**2 代表 $E=\frac{4\pi^2l}{T^2}$ varr: 物理量(元组),元组的每个元素均为元组,该子元组的第 1 个元素为物理量名,第 2 个元素为物理量值,第 3 个元素为其不确定度(默认值: ())

constt: 常量(元组),元组的每个元素均为元组,该子元组的第1个元素为常量名,第2个元素为常量值(默认值:())

unit: 要计算的物理量的单位(默认值: "")confidence_P: 置信概率 *P*(默认值: 0.95)AnalyseData.ans/ansx/ansx2: 表达式的计算值/表达式计算过程的 IFT_EX 代码/计算过程的 MathML-IFT_EX 代码

AnalyseData.unc/uncx/uncx2: 合成不确定 度的计算值/合成不确定度计算过程的 LATEX 代码/计算过程的 MathML-LATEX 代码

AnalyseData/finalx/finalx2: 最终结果 (表达式计算值 ± 合成不确定度计算值)的 LATEX 代码/最终结果的 MathML-LATEX 代码

2.3.3 文档生成

Word 文档由 python-docx 生成。我们的规范如下:

- 字体使用微软雅黑: document.styles ['Normal'].font.name = "微软雅黑"
- 文档第一行是实验名称:
 document.add_paragraph(name())
 随后注明:

"【Latex 代码在下面,请向下翻阅】"

- 内容跨度较大的段落之间应当用一个空行。
- 文档中插入的数据一般保留 4 或 5 位有效数字: "%.5g"%x, 线性拟合的相关系数 r 保留 8 位有效数字。
- 若某张图片正好在第2页开头,而第1页尾 部有很多空白区域,为避免误解,应在第1页 的最后一个段落之后注明"【本文档不只有一 页,请向下翻阅】"。
- 插入表格使用 docx.document.Document 对 象的 add_table() 方法。

鉴于不确定度的计算方法是固定的、算法化的,我们利用 1xml 等包自主编写了 insert.py 应用程序接口,这样只需调用几个函数,就可以在 Word 文档中完成数学算式的渲染与添加。具体函数如下:

LATEX 代码转 Word 对象

latex_to_word: (latex_code: str) -> Any
MathML-IATEX 转为可渲染的 Office MathML
latex_code: MathML-IATEX 代码
注: 使用 docx.oxml.text.paragraph.CT_P
对象的 append() 方法即可在 Word 中插入渲染好的 Office MathML 算式,通常的用法是
document.add_paragraph()._element
.append(latex_to_word(latex_code))

不确定度计算插入 insert_data: (docu: Any, name: str, data: AnalyseData, option: str) -> None

在 Word 文档中插入不确定度计算的全部过程 docu: 文档对象 docx.document.Document

name: 该物理量的名称

data: 上述 analyse() 函数的返回值

option: 插入选项, "word" 表示插入渲染好

的公式,"latex" 表示插入 LATEX 源码

最小二乘法线性回归插入 insert_data_lsm:

(docu: Any, data: AnalyseData, option:
str) -> None

在 Word 文档中插入线性拟合的全部过程 docu, option: 与 insert_data() 函数一致。data: 上述 analyse_lsm() 函数的返回值

3 测试、运行情况

4 设计、开发过程中的难点

第一,编程技术上的困难。无论是编程基础 较薄弱、对实现的接口不够熟悉,还是本地调试 不充分,都会造成程序错误,影响本项目的质量。

第二,对物理实验本身的了解不够。有的物理实验原理复杂、参考资料有限,且实验课程标准在不断变化,这会使程序生成的报告存在瑕疵,影响本项目的声誉。

5 小组分工

孙旭磊:组织策划、前端与前后端衔接、数据处理 API、公式插入 API、数据处理程序示例、制作海报、宣传片并宣传推广、修订实验报告,5个实验处理模块的制作。

秦沁:宣传推广、修订实验报告,4个实验处 **7** 理模块的制作。

赵奕: 技术与安全支持、修订实验报告,4个实验处理模块的制作。

鲍政廷:制作海报、增订实验报告,6个实验 处理模块的制作。

张学涵:实验报告、增订数据处理 API, 5 个实验处理模块的制作。

6 总结与收获

本次实践不仅能帮助其他同学更轻松地完成 大物实验报告,我们自己也受益良多。

分工与合作 我们分工明确,每个人的任务都有截止时间,这使我们小组的进度有序推进。以往的经历中,代码与相关工作往往都是独立完成,代码规范与项目进程完全由自己安排。但是在这种大工程中,相关代码需要符合规范,需要与队友交接,工作进度也要与队友进度相符。在这种分工体系下,每个人都要完成自己的任务,并顾及与他人的交互。

代码规范性 本次大作业中,我们建立了统一的码风,并制定了自主编写的 API 的使用说明。这样做一方面可以使得产品最终具有一致性——不同人写的代码能够基本一致;另一方面也使得最终的检验与调整能够更加方便——规范的代码提高了代码的可读性,降低了代码的审核成本。

软件开发技巧 在本次实践中,我们使用 git 进行 协作,代码注释清楚,帮助文档详细。这大大 提高了我们的开发效率。

7 参考资料

A Appendix

此页不打印

未完成:斜率计算过程的 $ext{LMT}_{ ext{E}}$ X 与 MathML 代码,截距与 Pearson's r 的计算公式错误,最终结果有效位数:不确定度应只有 1 位。