

範例7-1 載入資料

程式碼

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline plt.rcParams['font.sans-serif'] = ['DFKai-sb'] plt.rcParams['axes.unicode_minus'] = False%config InlineBackend.figure_format = 'retina'

import warnings
warnings.filterwarnings('ignore')

from sklearn.datasets import load iris iris = load_iris() df = pd.DataFrame(iris['data'], columns=iris['feature_names']) df['target'] = iris['target'] df = df[['sepal width (cm)', 'petal length (cm)','target']] df = df.iloc[50:]df.head()

範例7-2 取出X和y

範例7-3 取出X和y

程式碼

```
from sklearn.neighbors import KNeighborsClassifier # 初始物件 model = KNeighborsClassifier() # 機器學習 model.fit(X_train, y_train) #正確率的預測,model.score提供了簡便的正確率輸入方式 model.score(X_test, y_test)
```

■ 執行結果

0.8787878787878788

範例7-4 用標準化的資料來分析

程式碼

from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline model_pl = make_pipeline(StandardScaler(),

KNeighborsClassifier())

model_pl.fit(X_train, y_train)

model_pl.score(X_test, y_test)

■ 執行結果

0.8787878787878788

範例7-5 預測結果分析

```
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report

y_pred = model_pl.predict(X_test)

print('正確率:', accuracy_score(y_test, y_pred).round(2))

print('混亂矩陣')

print(confusion_matrix(y_test, y_pred))

print('綜合報告')

print(classification_report(y_test, y_pred))
```


正確率: 0.88

混亂矩陣

[[17 2]

[2 12]]

綜合報告					
		precision	recall	f1-score	support
	1	0.89	0.89	0.89	19
	2	0.86	0.86	0.86	14
		0.00	0.00	0.00	22
micro		0.88	0.88	0.88	33
macro	_	0.88	0.88	0.88	33
weighted	avg	0.88	0.88	0.88	33

程式碼

plot_decision_boundary(X_test, y_test, model_pl, True)

範例7-8 n_neighbors數目的選擇

程式碼

```
accs = []
for n in range(3,8):
  model_pl = make_pipeline(StandardScaler(),
                KNeighborsClassifier(n_neighbors=n))
  model_pl.fit(X_train, y_train)
  print(f'鄰居數{n},整體正確率:{model_pl.score(X_test,
y_{test}.round(2)}')
```

執行結果

鄰居數 3,整體正確率:0.85

鄰居數 4,整體正確率:0.82

鄰居數 5,整體正確率:0.88

鄰居數 6,整體正確率:0.85

鄰居數 7,整體正確率:0.88

範例7-9 用全部特徵值來分析

```
iris = load_iris()
df = pd.DataFrame(iris['data'], columns=iris['feature_names'])
df['target'] = iris['target']
df = df.iloc[50:]
#資料分割
X = df.drop('target', axis=1)
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y,
                                 test_size=0.33.
                                 random_state=42)
```

範例7-9 用全部特徵值來分析 ■

承接上一頁

■ 執行結果

羅吉斯迴歸正確率 0.939 KNN 正確率 0.909

```
#羅吉斯迴歸
from sklearn.linear_model import LogisticRegression
model_pl_lr = make_pipeline(StandardScaler(), LogisticRegression
                         (solver='liblinear'))
model_pl_lr.fit(X_train, y_train)
print(f'羅吉斯迴歸正確率{model_pl_lr.score(X_test,
y_test).round(3)}')
# KNN
model_pl_knn = make_pipeline(StandardScaler(),
KNeighborsClassifier())
model_pl_knn.fit(X_train, y_train)
print(f'KNN正確率{model_pl_knn.score(X_test,
y_test).round(3)}')
```

7-4 主成分分析

範例7-10 創建PCA用的資料

```
np.random.seed(1)
x = np.linspace(-10, 10, 100)
y = 2 * x + 4*np.random.randn(100)
df_pca = pd.DataFrame(zip(x,y), columns=['x0','x1'])
plt.scatter(x, y);
```


範例7-11 如何選擇軸,能最大化的代表這份

二維資料

程式碼

```
from sklearn.decomposition import PCA
pca = PCA(n_components=1)
X_pca = pca.fit_transform(df_pca)
X_pca[:5]
```

■執行結果

範例7-12 範例7-11 得到的軸,繪製在原來的 散布圖裡

```
#原來的資料
plt.scatter(x, y)
#將X_pca轉到原本的資料
維度
X_new =
pca.inverse_transform(X_pca
plt.scatter(X_new[:,0],
X_{new}[:,1], c='r',
alpha=0.3);
```


範例7-14 將資料標準化,然後PCA(2),再進 行KNN預測

程式碼

■ 執行結果

整體正確率: 0.85

7-5 SelectKBest

範例7-15 用SelectKBest選出最好的兩個特徵值,並指出是哪兩個欄位

程式碼

```
from sklearn.feature_selection import SelectKBest, f_classif selector = SelectKBest(f_classif, 2) selector.fit(X_train, y_train) selector.get_support()
```

■ 執行結果

```
array([False, False, True, True])
```


範例7-16 呈上例,將取出的欄位名稱列出

程式碼

X_test.columns[selector.get_support()]

■ 執行結果

```
Index(['petal length (cm)', 'petal width (cm)'], dtype='object')
```

範例7-17 創建管道器,連結標準化、 SelectKBest和K最近鄰預測

程式碼

■ 執行結果

[[19 0]

整體正確率: 0.94