Discrete Structures

Today's Lecture

- Properties of relations
- Reflexive, Symmetric and Transitive Relations
- Properties of "Less than" relations
- Properties of Congruence Modulo 3
- Transitive closure of a relations

Representing Relations Using Digraphs

Definition

A directed graph, or digraph, consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs).

The vertex a is called the initial vertex of the edge (a, b), and the vertex b is called the terminal vertex of this edge.

We can use arrows to display graphs.

Representing Relations Using Digraphs

Example: Display the digraph with V = {a, b, c, d} and E = {(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)}.

An edge of the form (b, b) is called a loop.

Representing Relations Using Digraphs

Let $A = \{3, 4, 5, 6, 7, 8\}$ and define a relation R on A as follows:

For all $x, y \in A$, $x R y \Leftrightarrow 2 \mid (x - y)$.

Draw the directed graph of *R*.

Note that 3 R 3 because 3 – 3 = 0 and 2 | 0 since 0 = 2 · 0. Thus there is a loop from 3 to itself. Similarly, there is a loop from 4 to itself, from 5 to itself, and so forth, since the difference of each integer with itself is 0, and 2 | 0.

Note also that 3 R 5 because 3 – 5 = –2 = 2 · (–1). And 5 R 3 because 5 – 3 = 2 = 2 · 1. Hence there is an arrow from 3 to 5 and also an arrow from 5 to 3. The other arrows in the directed graph, are obtained by similar reasoning.

Directed Graph of a Relation

Let $A = \{3, 4, 5, 6, 7, 8\}$ and define a relation R on A as follows:

For all $x, y \in A$, $x R y \Leftrightarrow 2 \mid (x - y)$.

Draw the directed graph of *R*.

We will now look at some useful ways to classify relations.

Definition: A relation R on a set A is called **reflexive**, if $(a, a) \in R$ for every element $a \in A$.

Are the following relations on {1, 2, 3, 4} reflexive?

•
$$R = \{(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)\}$$
 No

•
$$R = \{(1, 1), (2, 2), (3, 3)\}$$

A relation on a set A is not **reflexive** if there exist some element $a \in A$ such that $(a, a) \notin R$.

Definitions

- A relation R on a set A is called symmetric
 if (b, a)∈R whenever (a, b)∈R for all a, b∈A.
- A relation R on a set A is called **antisymmetric** if a = b whenever $(a, b) \in R$ and $(b, a) \in R$.
- A relation R on a set A is called asymmetric if (a, b)∈R implies that (b, a) ∉R for all a, b∈A.

Are the following relations on {1, 2, 3, 4} symmetric, antisymmetric, or asymmetric?

- $R = \{(1, 1), (1, 2), (2, 1), (3, 3), (4, 4)\}$ Symmetric
- $R = \{(1, 1)\}$ Antisymmetric.
- $R = \{(1, 3), (3, 2), (2, 1)\}$ Asymmetric.
- $R = \{(4, 4), (3, 3), (1, 4)\}$ Antisymmetric.

Definition: A relation R on a set A is called **transitive** if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$ for a, b, $c \in A$.

Are the following relations on {1, 2, 3, 4} transitive?

•
$$R = \{(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)\}$$
 Yes

•
$$R = \{(1, 3), (3, 2), (2, 1)\}$$
 No

•
$$R = \{(2, 4), (4, 3), (2, 3), (4, 1)\}$$
 No

Let $A = \{0, 1, 2, 3\}$ and define relations R, S, and T on A as follows:

- $R = \{(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)\},$
- $S = \{(0, 0), (0, 2), (0, 3), (2, 3)\},$
- $T = \{(0, 1), (2, 3)\}.$
- a. Is R reflexive? symmetric? transitive?
- b. Is *S* reflexive? symmetric? transitive?
- c. Is *T* reflexive? symmetric? transitive?

Let $A = \{0, 1, 2, 3\}$ and define relations R, S, and T on A as follows:

• $R = \{(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)\};$

The directed graph of R has the appearance shown below

1/10/2025

Let $A = \{0, 1, 2, 3\}$ and define relations R, S, and T on A as follows:

•
$$S = \{(0, 0), (0, 2), (0, 3), (2, 3)\};$$

The directed graph of *S* has the appearance shown below

Let $A = \{0, 1, 2, 3\}$ and define relations R, S, and T on A as follows:

•
$$T = \{(0, 1), (2, 3)\}.$$

The directed graph of *T* has the appearance shown below

3 • < • 2

How many different reflexive relations can be defined on a set A containing n elements?

Solution: Relations on R are subsets of A \times A, which contains n^2 elements.

- Therefore, different relations on A can be generated by choosing different subsets out of these n² elements, so there are 2^{n²} relations.
- A reflexive relation, however, must contain the n elements (a, a) for every a∈A.
- Consequently, we can only choose among $n^2 n = n(n-1)$ elements to generate reflexive relations, so there are $2^{n(n-1)}$ of them.

Properties of "Less Than" relation

Define a relation R on \mathbf{R} (the set of all real numbers) as follows:

For all $x, y \in R$, $x R y \Leftrightarrow x < y$.

a. Is R reflexive? b. Is R symmetric? c. Is R transitive?

R is not reflexive:

R is reflexive if, and only if, $\forall x \in \mathbb{R}, x \in \mathbb{R}$. By definition of R, this means that $\forall x \in \mathbb{R}, x < x$. But this is false: $\exists x \in \mathbb{R}$ such that $x \not < x$.

As a counterexample, let x = 0 and note that $0 \not< 0$. Hence R is not reflexive.

Properties of "Less Than" relation

Define a relation R on R (the set of all real numbers) as follows:

For all $x, y \in R$, $x R y \Leftrightarrow x < y$.

a. Is R reflexive? b. Is R symmetric? c. Is R transitive?

R is not symmetric:

R is symmetric if, and only if, $\forall x, y \in \mathbb{R}$, if x R y then y R x.

By definition of R, this means that $\forall x, y \in \mathbf{R}$, if x < y then y < x. But this is false: $\exists x, y \in \mathbf{R}$ such that x < y and $y \not < x$. As a counterexample, let x = 0 and y = 1 and note that 0 < 1 but $1 \not < 0$. Hence R is not symmetric.

Properties of "Less Than" relation

Define a relation R on R (the set of all real numbers) as follows:

For all $x, y \in R$, $x R y \Leftrightarrow x < y$.

a. Is R reflexive? b. Is R symmetric? c. Is R transitive?

R is not transitive:

R is transitive if, and only if, for all $x, y, z \in \mathbb{R}$, if x R y and y R z then x R z.

By definition of R, this means that for all x, y, $z \in \mathbf{R}$, if x < y and y < z, then x < z. But this statement is true by the transitive law of order for real numbers. Hence R is transitive.

Properties of Congruence Modulo 3

Define a relation T on **Z** (the set of all integers) as follows:

For all integers m and n, m T $n \Leftrightarrow 3 \mid (m - n)$.

This relation is called congruence modulo 3.

a. Is T reflexive? b. Is T symmetric? c. Is T transitive?

T is Reflexive

Suppose *m* is a particular but arbitrarily chosen integer.

[We must show that m T m.] Now m - m = 0. But $3 \mid 0$ since $0 = 3 \cdot 0$.

Hence $3 \mid (m - m)$. Thus, by definition of T, $m \mid T \mid m$.

Hence T is reflexive.

Properties of Congruence Modulo 3

Define a relation T on **Z** (the set of all integers) as follows:

For all integers m and n, m T $n \Leftrightarrow 3 \mid (m - n)$.

This relation is called congruence modulo 3.

a. Is T reflexive? b. Is T symmetric? c. Is T transitive?

T is Symmetric

Suppose m and n are particular but arbitrarily chosen integers that satisfy the condition m T n. [We must show that n T m.] By definition of T, since m T n then $3 \mid (m-n)$. By definition of "divides," this means that m-n=3k, for some integer k. Multiplying both sides by -1 gives n-m=3(-k). Since -k is an integer, this equation shows that $3 \mid (n-m)$. Hence, by definition of T, n T m.

Properties of Congruence Modulo 3

Define a relation T on **Z** (the set of all integers) as follows:

For all integers m and n, m T $n \Leftrightarrow 3 \mid (m - n)$.

This relation is called **congruence modulo 3**.

a. Is T reflexive? b. Is T symmetric? c. Is T transitive?

T is Transitive

Suppose m, n, and p are particular but arbitrarily chosen integers that satisfy the condition m T n and n T p. [We must show that m T p.] By definition of T, since m T n and n T p, then $3 \mid (m-n)$ and $3 \mid (n-p)$. By definition of "divides," this means that m-n=3r and n-p=3s, for some integers r and s. Adding the two equations gives (m-n)+(n-p)=3r+3s, and simplifying gives that m-p=3(r+s). Since r+s is an integer, this equation shows that $3 \mid (m-p)$. Hence, by definition of T, m T p.

Combining Relations

- Relations are sets, and therefore, we can apply the usual set operations to them.
- If we have two relations R_1 and R_2 , and both of them are from a set A to a set B, then we can combine them to $R_1 \cup R_2$, $R_1 \cap R_2$, or $R_1 R_2$.
- In each case, the result will be another relation from A to B.

Combining Relations

There is another important way to combine relations.

Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The **composite** of R and S is the relation consisting of ordered pairs (a, c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

In other words, if relation R contains a pair (a, b) and relation S contains a pair (b, c), then SoR contains a pair (a, c).

Combining Relations

Example: Let D and S be relations on $A = \{1, 2, 3, 4\}$.

- D = $\{(a, b) \mid b = 5 a\}$ "b equals (5 a)"
- S = {(a, b) | a < b} "a is smaller than b"
- D = $\{(1, 4), (2, 3), (3, 2), (4, 1)\}$
- $S = \{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}$
- $S \circ D = \{ (2,4), (3,3), (3,4), (4,2), (4,3), (4,4) \}$
- D maps an element a to the element (5 a), and afterwards S maps (5 a) to all elements larger than (5 a), resulting in

$$S \circ D = \{(a,b) \mid 5-a < b\} \text{ or } S \circ D = \{(a,b) \mid a+b > 5\}.$$

The Relation Induced by a Partition

A partition of a set A is a finite or infinite collection of nonempty, mutually disjoint subsets whose union is A. A partition of a set A by subsets A_1, A_2, \ldots, A_6 .

The Relation Induced by a Partition

Definition

Given a partition of a set *A*, the **relation induced by the partition**, *R*, is defined on *A* as follows:

For all $x, y \in A$, $x R y \Leftrightarrow$ there is a subset A_i of the partition such that both x and y are in A_i .

Example

```
Let A = \{0, 1, 2, 3, 4\} and consider the following partition of A: \{0, 3, 4\}, \{1\}, \{2\}.
```

Find the relation *R* induced by this partition.

Solution Since {0, 3, 4} is a subset of the partition,

```
0 R 3 because both 0 and 3 are in {0, 3, 4}, 3 R 0 because both 3 and 0 are in {0, 3, 4}, 0 R 4 because both 0 and 4 are in {0, 3, 4}, 4 R 0 because both 4 and 0 are in {0, 3, 4}, 3 R 4 because both 3 and 4 are in {0, 3, 4}, 4 R 3 because both 4 and 3 are in {0, 3, 4},
```

Also, 0 R 0 because both 0 and 0 are in {0, 3, 4}, 3 R 3 because both 3 and 3 are in {0, 3, 4}, 4 R 4 because both 4 and 4 are in {0, 3, 4}.

1/10/2025

Example (Contd.)

Since {1} is a subset of the partition,

1 R 1 because both 1 and 1 are in {1},

and since {2} is a subset of the partition,

2 R 2 because both 2 and 2 are in {2}.

Hence

$$R = \{ (0, 0), (0, 3), (0, 4), (1, 1), (2, 2), (3, 0), (3, 3), (3, 4), (4, 0), (4, 3), (4, 4) \}.$$

Lecture Summery

- Properties of relations
- Reflexive, Symmetric and Transitive Relations
- Properties of "Less than" relations
- Properties of Congruence Modulo 3
- Transitive closure of a relations