Algoritmi di feature selection

Simone Rutigliano

Corso di Laurea in Informatica Magistrale

12 dicembre 2014

Outline

PageRank
HITS
SALSA
ReConRank
SimRank
TripleRank
mRMR
PICSS

 $\textbf{RapidMiner} \begin{cases} \textit{SHSEL} & \textit{Information Gain} \\ \textit{Correlation} \end{cases}$ GreedyTopDown

Algoritmi Java RapidMiner - LOD Extension PageRank HITS SALSA ReConRank SimRank TripleRank mRMR PICSS

PageRank

Implementazione del Wrapper Model:

- Utilizzare lo stesso algoritmo sia per la feature selection sia per la fase di raccomandazione
- Subset ottimizzato per la raccomandazione

Algoritmi Java RapidMiner - LOD Extension PageRank HITS SALSA ReConRank SimRank TripleRank mRMR PICSS

HITS

Creazione del subset attraverso l'utilizzo dell'algoritmo di Hyperlink-Induced Topic Search basato sul ranking di risorse in base a due metriche:

- Hub
- Authority

Implementazioni trovate:

- http://goo.gl/4pWAq4
- http://goo.gl/qSDXru

PageRank HITS SALSA ReConRank SimRank TripleRank mRMR PICSS

SALSA

- Combinazione di HITS e PageRank
- Usa i punteggi di Hub e Autority
- Crea un grafo bipartito $G = (V_1 \cup V_2, E)$ dove
 - V₁ rappresenta il set degli Hub
 - V₂ rappresenta il set degli Autority
 - Una risorsa può essere contenuta sia in un set che nell'altro

Implementazione trovata:

• http://goo.gl/DtHa4K

PageRank HITS SALSA ReConRank SimRank TripleRank mRMR PICSS

ReConRank

Tratto dal paper [HHD06]

- Basato su due ranking:
 - ResourceRank: Associa uno score basato sul PageRank alle risorse del grafo RDF
 - ContextRank: Permette di inglobare la provenienza del contenuto semantico nel calcolo del ranking
- Computazione molto onerosa
- Implementazioni trovate
 - http://goo.gl/PnZfNc
 - http://goo.gl/oCwQWe

Algoritmi Java RapidMiner - LOD Extension PageRank HITS SALSA ReConRank SimRank TripleRank mRMR PICSS

SimRank

Tratto dal paper [JW02] Algoritmo per il calcolo di similarità tra due nodi all'interno di un grafo G

- Esegue un random walk con ripartenza da un nodo fissato *u* su un grafo k-partito
- Gli score risultati misureranno la similarità tra il nodo *u* e tutti gli altri nodi del grafo

Implementazione trovata:

• http://goo.gl/9cLDda

PageRank HITS SALSA ReConRank SimRank TripleRank mRMR PICSS

TripleRank

Tratto dal paper [FSSS09]

- Consiste in una generalizzazione di HITS nel contesto dei Linked Data
- Permette di valutare al meglio le proprietà delle entità e di filtrare le relazioni semantiche dell'entità stessa presente nella linked data

Implementazione trovata:

• http://goo.gl/Pb3vEr (Richiede l'utilizzo di Matlab)

Algoritmi Java RapidMiner - LOD Extension PageRank HITS SALSA ReConRank SimRank TripleRank mRMR PICSS

mRMR

Tratto dall'articolo [PLD05] e approfondito in [Rut14]

- Consiste nel calcolo della
 - minima ridondanza tra le features
 - massima rilevanza delle features con la classe target Implementazione trovata:
 - http://goo.gl/YQUx1s

PageRank HITS SALSA ReConRank SimRank TripleRank mRMR PICSS

PICSS

Trattato nella PhD Thesis di Meymandpour e negli articoli correlati [MD14] e [MD13]

- Tecnica di ranker ottenuta combinando:
 - Partitioned Information Content : Seleziona una partizione della LOD in base al contesto da analizzare
 - Semantic Similarity measure: Pesa gli archi tra feature in base all'information content che quel predicato apporta all'entità (Più viene utilizzato quel predicato meno apporto informativo conterrà)
- Non sono state trovate implementazioni di questo approccio

RapidMiner Linked Open Data Extension

L'estensione per RapidMiner inerente i LOD sviluppata dalla University of Mannaheim ¹ permette di utilizzare i seguenti algoritmi per la feature selection sui Linked Open Data:

- Greedy Top Down
- TSEL tramite Information Gain
- SHSEL tramite Information Gain

¹Sito di riferimento http://goo.gl/uoUx1k

Optimal Feature Selection - Example

Greedy Top Down

Strategia di ricerca Greedy di tipo top down per la feature selection

 Seleziona i nodi più rappresentativi da diversi livelli della gerarchia

TSEL - Information Gain

Tree-based feature selection tratto da [?]

 Seleziona le feature più rappresentative da ogni ramo della gerarchia

SHSEL - Information Gain ...

Descritto dal paper [?] e nel corrispettivo sito ²

- The core idea of our SHSEL approach is to identify features with similar relevance, and select the most valuable abstract features, i.e. features from as high as possible levels of the hierarchy, without losing predictive power.
- In our approach, to measure the similarity of relevance between two nodes, we use standard correlation and information gain measure.
- L'approccio prevede due fasi:
 - Selezione iniziale
 - Pruning

²http://goo.gl/NNlnuE

... SHSEL - Information Gain ...

In the first step, initial SHSEL, we are trying to identify, and filter out the ranges of nodes with similar relevance in each branch of the hierarchy

... SHSEL - Information Gain

In the second step, SHSEL Pruning, we are trying to select only the most valuable features from the previously reduced set, based on their information gain value

References I

Thomas Franz, Antje Schultz, Sergej Sizov, and Steffen Staab.

Triplerank: Ranking semantic web data by tensor decomposition.

In Proceedings of the 8th International Semantic Web Conference, ISWC '09, pages 213–228, Berlin, Heidelberg, 2009. Springer-Verlag.

References II

Aidan Hogan, Andreas Harth, and Stefan Decker.

Reconrank: A scalable ranking method for semantic web data with context.

In In 2nd Workshop on Scalable Semantic Web Knowledge Base Systems, 2006.

Glen Jeh and Jennifer Widom.

Simrank: A measure of structural-context similarity.

In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '02, pages 538-543, New York, NY, USA, 2002. ACM.

References III

Rouzbeh Meymandpour and Joseph G. Davis.
Lodify: A hybrid recommender system based on linked open data.

In 11th Extended Semantic Web Conference (ESWC 2014), Crete, Greece, 2014.

References IV

Hanchuan Peng, Fuhui Long, and Chris Ding.
Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27:1226–1238, 2005.

Simone Rutigliano.

https://github.com/Simoruty/mRMR-slides, 2014.

くロンマラン くまとくまと