Statistical Methodology for Software Engineering

Hadas Lapid, PhD

Contents

Non-Parametric Comparison of Two Independent Group Means:

The Wilcoxon Rank Sum Test / Mann–Whitney–Wilcoxon/ Mann–Whitney U test

Reference:

https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test#Calculations

Inapplicable cases for t-test

- Small samples (<10 per group)
- Skewed/unsymmetrical mutual distribution
- Ordinal data with unequal bin size

Nonparametric Methods

- Do not assume any distributional form
- Refer to the variable as ordinal/discrete rather than continuous
- Indicate a shift between distributions (equivalent to comparison of means)
- Size dependent

(Mann-Whitney-Wilcoxon /Mann-Whitney Test)

- Y₁ and Y₂ are two numerical, independent, samples.
- D₁ and D₂ distributions of respective parent populations
- Test Hypothesis:

 $H_0: D_1$ expected value = D_2 expected value

 $H_1: D_1$ expected value $\neq D_2$ expected value

In other words:

D₁ and D₂ have similar center of mass, or D₁ is shifted with respect to D₂

$$y \stackrel{d}{=} x + \Delta$$

FIGURE 6.4

Skewed population distributions identical in shape but shifted

Wilcoxon Rank Sum Test notations

- $N = n_1 + n_2$
- n₁, n₂ = sample size of 1st and 2nd group respectively.
- Data samples are ranked from 1 to N
- If two or more values are equal, mean ranks are assigned
- T_1 , T_2 = sum of ranks in 1st and 2st groups respectively

$$H_0: D_1 = D_2 \rightarrow \frac{T_1}{n_1} \approx \frac{T_2}{n_2}$$
 $H_1: D_1 \neq D_2 \rightarrow \frac{T_1}{n_1} \neq \frac{T_2}{n_2}$

Wilcoxon Rank Sum Test Numerical Example

- Hypothesis: rats exposed to caffeine complete an IQ assignment faster than placebo rats.
- 5 rats were dosed with caffeine, 8 rats were given placebo.
- Time to complete the assignment was measured

$$\begin{array}{l} H_0: D = D_{placebo} \rightarrow \frac{T_{caffeine}}{n_{caffeine}} \approx \frac{T_{placebo}}{n_{placebo}} \\ H_1: D_{caffeine} < D_{placebo} \rightarrow \frac{T_{caffeine}}{n_{caffeine}} \leq \frac{T_{placebo}}{n_{placebo}} \end{array}$$

Numerical Example

Y _{caffeine}	14	9	6	7	11
Rank	9	4	1	2	6
(placebo)					

$$T_{\text{caffeine}} = 22$$
, $n_{\text{caffeine}} = 5$, $\frac{T_{\text{caffeine}}}{n_{\text{caffeine}}} = \frac{22}{5} = 4.4$

Y _{placebo}	10	16	12	24	8	18	45	13
Rank	5	10	7	12	3	11	13	8
(placebo)								

$$T_{\text{placebo}} = 69$$
, $n_{\text{placebo}} = 8$, $\frac{T_{\text{placebo}}}{n_{\text{placebo}}} = \frac{69}{8} = 8.625$

- For technical reasons, test distributions based on T_{caffeine}
- Reject H₀ if the T_{caffeine} is unusually small

How small is T_{caffeine}?

Calculate all possibilities for choosing 5 ranks with sum ≤ 22

Allocation #	1	2	3	4	5	6	7	8	9	10	11	12	13	T _{caffeine}
1	X	Х	Χ	Χ	X									15
2	Χ	Х	Х	Х		Х								16
3	Χ	Х	Х	Х			Х							17
4	Χ	Х	Х		Х	Х								17
41	Χ	Х	Х			Х				X				22
42	Χ	Χ		Х		Х			Х					22

Calculating Wilcoxon's 1-sided P_{value}

• # of combinations to choose 5 (k) ranks from 13 (n) optional ranks:

$$\binom{n}{k} = \binom{13}{5} = \frac{13!}{5! \cdot 8!} = 1287$$

- Under H_{0} , the probability for each combination is: $\frac{1}{1287}$
- Probability for rank sum 22 is $\frac{42}{1287}$ = P_v = 0.0333
- $0.033 < 0.05 \rightarrow P_v < \alpha$
- Reject H₀ and decide H₁

Calculating Wilcoxon's 2-sided P_{value}

• If H_1 : $D_{caffeine} \neq D_{placebo}$ we would need to account for all possibilities of large values (all possibilities from 48 to 55)

$$\rightarrow P_V(2-sided) = \frac{42+42}{1287} = 0.0666$$

$$0.06>0.05 \rightarrow P_V>\alpha$$

Wilcoxon Rank-Sum Test Large Sample Normal Approximation

- If T₁ or T₂ are large (large sample size), then by central limit theorem, this sum will have approximately normal distribution.
- Use normal approximation to determine if the sum of ranks is significantly large/small.
- Standardization will be done on the mean and s.d. of T:

$$\mu(T_1) = \frac{n_1}{2}(N+1)$$

$$\mu(T_2) = \frac{n_2}{2}(N+1)$$

$$\sigma(T_1) = \sigma(T_2) = \sqrt{\frac{n_1 \cdot n_2(N+1)}{12}}$$

$$Z = \frac{T - \mu(T)}{\sigma(T)}$$

Large Sample Normal Approximation - Example

- Used only if n_1 , $n_2 > 10$
- For purpose of illustration, use example shown above:

$$\mu(T_{caffeine}) = \frac{n_{caffeine} \cdot (N+1)}{2} = \frac{5 \cdot 14}{2} = 35$$

$$\sigma = \sqrt{\frac{n_{caffeine} \cdot n_{placebo}}{12}} = \sqrt{\frac{5 \cdot 8 \cdot 14}{12}} = 6.83$$

$$Z = \frac{T - \mu(T)}{\sigma(T)} = \frac{22 - 35}{6.83} = -1.903$$

- Under standardized normal approximation: P(z=-1.903) = 0.0285 (1-sided)
- Comparable to the exact test (0.033), approximated P_v is more permissive towards H_1
- Most computer programs use the large sample approximation