We can prove combinatorial identities by counting bit strings with different properties, as the proof of Theorem 4 will demonstrate.

THEOREM 4

Let n and r be nonnegative integers with r < n. Then

$$\binom{n+1}{r+1} = \sum_{j=r}^{n} \binom{j}{r}.$$

Proof: We use a combinatorial proof. By Example 14 in Section 6.3, the left-hand side, $\binom{n+1}{r+1}$, counts the bit strings of length n + 1 containing r + 1 ones.

We show that the right-hand side counts the same objects by considering the cases corresponding to the possible locations of the final 1 in a string with r+1 ones. This final one must occur at position $r+1, r+2, \ldots$, or n+1. Furthermore, if the last one is the kth bit there must be r ones among the first k-1 positions. Consequently, by Example 14 in Section 6.3, there are $\binom{k-1}{r}$ such bit strings. Summing over k with $r+1 \le k \le n+1$, we find that there are

$$\sum_{k=r+1}^{n+1} {k-1 \choose r} = \sum_{j=r}^{n} {j \choose r}$$

bit strings of length n containing exactly r+1 ones. (Note that the last step follows from the change of variables j = k - 1.) Because the left-hand side and the right-hand side count the same objects, they are equal. This completes the proof.

Exercises

- **1.** Find the expansion of $(x + y)^4$
 - a) using combinatorial reasoning, as in Example 1.
 - **b)** using the binomial theorem.
- 2. Find the expansion of $(x + y)^5$
 - a) using combinatorial reasoning, as in Example 1.
 - **b**) using the binomial theorem.
- **3.** Find the expansion of $(x + y)^6$.
- **4.** Find the coefficient of x^5y^8 in $(x+y)^{13}$.
- 5. How many terms are there in the expansion of $(x + y)^{100}$ after like terms are collected?
- **6.** What is the coefficient of x^7 in $(1+x)^{11}$?
- 7. What is the coefficient of x^9 in $(2-x)^{19}$? 8. What is the coefficient of x^8y^9 in the expansion of $(3x + 2y)^{17}$?
- **9.** What is the coefficient of $x^{101}y^{99}$ in the expansion of $(2x - 3y)^{200}$?
- *10. Give a formula for the coefficient of x^k in the expansion of $(x + 1/x)^{100}$, where k is an integer.
- *11. Give a formula for the coefficient of x^k in the expansion of $(x^2 - 1/x)^{100}$, where k is an integer.
- 12. The row of Pascal's triangle containing the binomial coefficients $\binom{10}{k}$, $0 \le k \le 10$, is:

Use Pascal's identity to produce the row immediately following this row in Pascal's triangle.

- 13. What is the row of Pascal's triangle containing the binomial coefficients $\binom{9}{k}$, $0 \le k \le 9$?
- **14.** Show that if n is a positive integer, then $1 = \binom{n}{0} < \binom{n}{1} < \cdots < \binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lceil n/2 \rceil} > \cdots > \binom{n}{n-1} > \binom{n}{n} = 1$.
- **15.** Show that $\binom{n}{k} \leq 2^n$ for all positive integers n and all integers k with $0 \le k \le n$.
- **16. a)** Use Exercise 14 and Corollary 1 to show that if *n* is an integer greater than 1, then $\binom{n}{\lfloor n/2 \rfloor} \ge 2^n/n$.
 - **b)** Conclude from part (a) that if n is a positive integer, then $\binom{2n}{n} \geq 4^n/2n$.
- **17.** Show that if n and k are integers with $1 \le k \le n$, then $\binom{n}{k} < n^k/2^{k-1}$.
 - **18.** Suppose that b is an integer with $b \ge 7$. Use the binomial theorem and the appropriate row of Pascal's triangle to find the base-b expansion of $(11)_b^4$ [that is, the fourth power of the number $(11)_b$ in base-b notation].
 - **19.** Prove Pascal's identity, using the formula for $\binom{n}{r}$.
 - **20.** Suppose that *k* and *n* are integers with $1 \le k < n$. Prove the **hexagon identity**

$$\binom{n-1}{k-1}\binom{n}{k+1}\binom{n+1}{k} = \binom{n-1}{k}\binom{n}{k-1}\binom{n+1}{k+1},$$

which relates terms in Pascal's triangle that form a hexagon.

- **21.** Prove that if n and k are integers with $1 \le k \le n$, then $k \binom{n}{k} = n \binom{n-1}{k-1}$,
 - a) using a combinatorial proof. [*Hint:* Show that the two sides of the identity count the number of ways to select a subset with *k* elements from a set with *n* elements and then an element of this subset.]
 - **b)** using an algebraic proof based on the formula for $\binom{n}{r}$ given in Theorem 2 in Section 6.3.
 - **22.** Prove the identity $\binom{n}{r}\binom{r}{k} = \binom{n}{k}\binom{n-k}{r-k}$, whenever n, r, and k are nonnegative integers with $r \le n$ and $k \le r$,
 - a) using a combinatorial argument.
 - **b)** using an argument based on the formula for the number of *r*-combinations of a set with *n* elements.
 - 23. Show that if n and k are positive integers, then

$$\binom{n+1}{k} = (n+1)\binom{n}{k-1} / k.$$

Use this identity to construct an inductive definition of the binomial coefficients.

- **24.** Show that if p is a prime and k is an integer such that $1 \le k \le p-1$, then p divides $\binom{p}{k}$.
- **25.** Let n be a positive integer. Show that

$$\binom{2n}{n+1} + \binom{2n}{n} = \binom{2n+2}{n+1}/2.$$

*26. Let n and k be integers with $1 \le k \le n$. Show that

$$\sum_{k=1}^{n} \binom{n}{k} \binom{n}{k-1} = \binom{2n+2}{n+1} / 2 - \binom{2n}{n}.$$

*27. Prove the hockeystick identity

$$\sum_{k=0}^{r} \binom{n+k}{k} = \binom{n+r+1}{r}$$

whenever n and r are positive integers,

- a) using a combinatorial argument.
- b) using Pascal's identity.
- **28.** Show that if *n* is a positive integer, then $\binom{2n}{2} = 2\binom{n}{2} + n^2$
 - a) using a combinatorial argument.
 - **b)** by algebraic manipulation.
- *29. Give a combinatorial proof that $\sum_{k=1}^{n} k \binom{n}{k} = n2^{n-1}$. [*Hint:* Count in two ways the number of ways to select a committee and to then select a leader of the committee.]
- *30. Give a combinatorial proof that $\sum_{k=1}^{n} k \binom{n}{k}^2 = n \binom{2n-1}{n-1}$. [*Hint:* Count in two ways the number of ways to select a committee, with n members from a group of n mathematics professors and n computer science professors, such that the chairperson of the committee is a mathematics professor.]
- **31.** Show that a nonempty set has the same number of subsets with an odd number of elements as it does subsets with an even number of elements.
- ***32.** Prove the binomial theorem using mathematical induction.

33. In this exercise we will count the number of paths in the *xy* plane between the origin (0, 0) and point (*m*, *n*), where *m* and *n* are nonnegative integers, such that each path is made up of a series of steps, where each step is a move one unit to the right or a move one unit upward. (No moves to the left or downward are allowed.) Two such paths from (0, 0) to (5, 3) are illustrated here.

- a) Show that each path of the type described can be represented by a bit string consisting of *m* 0s and *n* 1s, where a 0 represents a move one unit to the right and a 1 represents a move one unit upward.
- **b)** Conclude from part (a) that there are $\binom{m+n}{n}$ paths of the desired type.
- **34.** Use Exercise 33 to give an alternative proof of Corollary 2 in Section 6.3, which states that $\binom{n}{k} = \binom{n}{n-k}$ whenever k is an integer with $0 \le k \le n$. [*Hint:* Consider the number of paths of the type described in Exercise 33 from (0,0) to (n-k,k) and from (0,0) to (k,n-k).]
- **35.** Use Exercise 33 to prove Theorem 4. [*Hint:* Count the number of paths with n steps of the type described in Exercise 33. Every such path must end at one of the points (n k, k) for k = 0, 1, 2, ..., n.]
- **36.** Use Exercise 33 to prove Pascal's identity. [*Hint:* Show that a path of the type described in Exercise 33 from (0,0) to (n+1-k,k) passes through either (n+1-k,k-1) or (n-k,k), but not through both.]
- **37.** Use Exercise 33 to prove the hockeystick identity from Exercise 27. [*Hint*: First, note that the number of paths from (0,0) to (n+1,r) equals $\binom{n+1+r}{r}$. Second, count the number of paths by summing the number of these paths that start by going k units upward for $k=0,1,2,\ldots,r$.]
- **38.** Give a combinatorial proof that if n is a positive integer then $\sum_{k=0}^{n} k^2 \binom{n}{k} = n(n+1)2^{n-2}$. [Hint: Show that both sides count the ways to select a subset of a set of n elements together with two not necessarily distinct elements from this subset. Furthermore, express the right-hand side as $n(n-1)2^{n-2} + n2^{n-1}$.]
- *39. Determine a formula involving binomial coefficients for the *n*th term of a sequence if its initial terms are those listed. [*Hint:* Looking at Pascal's triangle will be helpful.

Although infinitely many sequences start with a specified set of terms, each of the following lists is the start of a sequence of the type desired.]

- **a)** 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, ...
- **b**) 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, . . .

- c) 1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, ...
- **d**) 1, 1, 2, 3, 6, 10, 20, 35, 70, 126, ...
- **e**) 1, 1, 1, 3, 1, 5, 15, 35, 1, 9, ...
- **f**) 1, 3, 15, 84, 495, 3003, 18564, 116280, 735471, 4686825....

Generalized Permutations and Combinations

Introduction

In many counting problems, elements may be used repeatedly. For instance, a letter or digit may be used more than once on a license plate. When a dozen donuts are selected, each variety can be chosen repeatedly. This contrasts with the counting problems discussed earlier in the chapter where we considered only permutations and combinations in which each item could be used at most once. In this section we will show how to solve counting problems where elements may be used more than once.

Also, some counting problems involve indistinguishable elements. For instance, to count the number of ways the letters of the word SUCCESS can be rearranged, the placement of identical letters must be considered. This contrasts with the counting problems discussed earlier where all elements were considered distinguishable. In this section we will describe how to solve counting problems in which some elements are indistinguishable.

Moreover, in this section we will explain how to solve another important class of counting problems, problems involving counting the ways distinguishable elements can be placed in boxes. An example of this type of problem is the number of different ways poker hands can be dealt to four players.

Taken together, the methods described earlier in this chapter and the methods introduced in this section form a useful toolbox for solving a wide range of counting problems. When the additional methods discussed in Chapter 8 are added to this arsenal, you will be able to solve a large percentage of the counting problems that arise in a wide range of areas of study.

Permutations with Repetition

Counting permutations when repetition of elements is allowed can easily be done using the product rule, as Example 1 shows.

EXAMPLE 1 How many strings of length r can be formed from the uppercase letters of the English alphabet?

Solution: By the product rule, because there are 26 uppercase English letters, and because each letter can be used repeatedly, we see that there are 26^r strings of uppercase English letters of length r.

The number of r-permutations of a set with n elements when repetition is allowed is given in Theorem 1.

THEOREM 1

The number of r-permutations of a set of n objects with repetition allowed is n^r .

Proof: There are n ways to select an element of the set for each of the r positions in the r-permutation when repetition is allowed, because for each choice all n objects are available. Hence, by the product rule there are n^r r-permutations when repetition is allowed.

Exercises

- 1. In how many different ways can five elements be selected in order from a set with three elements when repetition is allowed?
- 2. In how many different ways can five elements be selected in order from a set with five elements when repetition is allowed?
- 3. How many strings of six letters are there?
- 4. Every day a student randomly chooses a sandwich for lunch from a pile of wrapped sandwiches. If there are six kinds of sandwiches, how many different ways are there for the student to choose sandwiches for the seven days of a week if the order in which the sandwiches are chosen matters?
- 5. How many ways are there to assign three jobs to five employees if each employee can be given more than one
- 6. How many ways are there to select five unordered elements from a set with three elements when repetition is allowed?
- 7. How many ways are there to select three unordered elements from a set with five elements when repetition is allowed?
- 8. How many different ways are there to choose a dozen donuts from the 21 varieties at a donut shop?
- 9. A bagel shop has onion bagels, poppy seed bagels, egg bagels, salty bagels, pumpernickel bagels, sesame seed bagels, raisin bagels, and plain bagels. How many ways are there to choose
 - a) six bagels?
 - b) a dozen bagels?
 - c) two dozen bagels?
 - **d)** a dozen bagels with at least one of each kind?
 - e) a dozen bagels with at least three egg bagels and no more than two salty bagels?
- 10. A croissant shop has plain croissants, cherry croissants, chocolate croissants, almond croissants, apple croissants, and broccoli croissants. How many ways are there to choose
 - a) a dozen croissants?
 - **b)** three dozen croissants?
 - c) two dozen croissants with at least two of each kind?
 - d) two dozen croissants with no more than two broccoli croissants?
 - e) two dozen croissants with at least five chocolate croissants and at least three almond croissants?
 - f) two dozen croissants with at least one plain croissant, at least two cherry croissants, at least three chocolate croissants, at least one almond croissant, at least two apple croissants, and no more than three broccoli croissants?
- 11. How many ways are there to choose eight coins from a piggy bank containing 100 identical pennies and 80 identical nickels?

- 12. How many different combinations of pennies, nickels, dimes, quarters, and half dollars can a piggy bank contain if it has 20 coins in it?
- 13. A book publisher has 3000 copies of a discrete mathematics book. How many ways are there to store these books in their three warehouses if the copies of the book are indistinguishable?
- 14. How many solutions are there to the equation

$$x_1 + x_2 + x_3 + x_4 = 17$$
,

where x_1, x_2, x_3 , and x_4 are nonnegative integers?

15. How many solutions are there to the equation

$$x_1 + x_2 + x_3 + x_4 + x_5 = 21$$
,

where x_i , i = 1, 2, 3, 4, 5, is a nonnegative integer such

- **a)** $x_1 \ge 1$? **b)** $x_i \ge 2$ for i = 1, 2, 3, 4, 5?
- c) $0 \le x_1 \le 10$?
- **d**) $0 \le x_1 \le 3, 1 \le x_2 < 4, \text{ and } x_3 \ge 15$?
- 16. How many solutions are there to the equation

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 29$$
,

where x_i , i = 1, 2, 3, 4, 5, 6, is a nonnegative integer such

- **a)** $x_i > 1$ for i = 1, 2, 3, 4, 5, 6? **b)** $x_1 \ge 1, x_2 \ge 2, x_3 \ge 3, x_4 \ge 4, x_5 > 5$, and $x_6 \ge 6$?
- c) $x_1 \leq 5$?
- **d)** $x_1 < 8$ and $x_2 > 8$?
- 17. How many strings of 10 ternary digits (0, 1, or 2) are there that contain exactly two 0s, three 1s, and five 2s?
- 18. How many strings of 20-decimal digits are there that contain two 0s, four 1s, three 2s, one 3, two 4s, three 5s, two 7s, and three 9s?
- 19. Suppose that a large family has 14 children, including two sets of identical triplets, three sets of identical twins, and two individual children. How many ways are there to seat these children in a row of chairs if the identical triplets or twins cannot be distinguished from one another?
- **20.** How many solutions are there to the inequality

$$x_1 + x_2 + x_3 \le 11,$$

where x_1, x_2 , and x_3 are nonnegative integers? [Hint: Introduce an auxiliary variable x_4 such that $x_1 + x_2 + x_3 + x_4 + x_5 + x_4 + x_5 +$ $x_4 = 11.$

- 21. How many ways are there to distribute six indistinguishable balls into nine distinguishable bins?
- 22. How many ways are there to distribute 12 indistinguishable balls into six distinguishable bins?
- 23. How many ways are there to distribute 12 distinguishable objects into six distinguishable boxes so that two objects are placed in each box?
- 24. How many ways are there to distribute 15 distinguishable objects into five distinguishable boxes so that the boxes have one, two, three, four, and five objects in them, respectively.

- **25.** How many positive integers less than 1,000,000 have the sum of their digits equal to 19?
- **26.** How many positive integers less than 1,000,000 have exactly one digit equal to 9 and have a sum of digits equal to 13?
- **27.** There are 10 questions on a discrete mathematics final exam. How many ways are there to assign scores to the problems if the sum of the scores is 100 and each question is worth at least 5 points?
- **28.** Show that there are $C(n+r-q_1-q_2-\cdots-q_r-1,n-q_1-q_2-\cdots-q_r)$ different unordered selections of n objects of r different types that include at least q_1 objects of type one, q_2 objects of type two, ..., and q_r objects of type r.
- **29.** How many different bit strings can be transmitted if the string must begin with a 1 bit, must include three additional 1 bits (so that a total of four 1 bits is sent), must include a total of 12 0 bits, and must have at least two 0 bits following each 1 bit?
- **30.** How many different strings can be made from the letters in *MISSISSIPPI*, using all the letters?
- **31.** How many different strings can be made from the letters in *ABRACADABRA*, using all the letters?
- **32.** How many different strings can be made from the letters in *AARDVARK*, using all the letters, if all three *As* must be consecutive?
- **33.** How many different strings can be made from the letters in *ORONO*, using some or all of the letters?
- **34.** How many strings with five or more characters can be formed from the letters in *SEERESS*?
- **35.** How many strings with seven or more characters can be formed from the letters in *EVERGREEN*?
- **36.** How many different bit strings can be formed using six 1s and eight 0s?
- **37.** A student has three mangos, two papayas, and two kiwi fruits. If the student eats one piece of fruit each day, and only the type of fruit matters, in how many different ways can these fruits be consumed?
- **38.** A professor packs her collection of 40 issues of a mathematics journal in four boxes with 10 issues per box. How many ways can she distribute the journals if
 - a) each box is numbered, so that they are distinguishable?
 - b) the boxes are identical, so that they cannot be distinguished?
- **39.** How many ways are there to travel in *xyz* space from the origin (0, 0, 0) to the point (4, 3, 5) by taking steps one unit in the positive *x* direction, one unit in the positive *y* direction, or one unit in the positive *z* direction? (Moving in the negative *x*, *y*, or *z* direction is prohibited, so that no backtracking is allowed.)
- **40.** How many ways are there to travel in xyzw space from the origin (0, 0, 0, 0) to the point (4, 3, 5, 4) by taking steps one unit in the positive x, positive y, positive z, or positive w direction?

- **41.** How many ways are there to deal hands of seven cards to each of five players from a standard deck of 52 cards?
- **42.** In bridge, the 52 cards of a standard deck are dealt to four players. How many different ways are there to deal bridge hands to four players?
- **43.** How many ways are there to deal hands of five cards to each of six players from a deck containing 48 different cards?
- **44.** In how many ways can a dozen books be placed on four distinguishable shelves
 - a) if the books are indistinguishable copies of the same title?
 - b) if no two books are the same, and the positions of the books on the shelves matter? [*Hint:* Break this into 12 tasks, placing each book separately. Start with the sequence 1, 2, 3, 4 to represent the shelves. Represent the books by b_i , i = 1, 2, ..., 12. Place b_1 to the right of one of the terms in 1, 2, 3, 4. Then successively place b_2 , b_3 , ..., and b_{12} .]
- **45.** How many ways can *n* books be placed on *k* distinguishable shelves
 - a) if the books are indistinguishable copies of the same title?
 - **b)** if no two books are the same, and the positions of the books on the shelves matter?
- **46.** A shelf holds 12 books in a row. How many ways are there to choose five books so that no two adjacent books are chosen? [*Hint:* Represent the books that are chosen by bars and the books not chosen by stars. Count the number of sequences of five bars and seven stars so that no two bars are adjacent.]
- *47. Use the product rule to prove Theorem 4, by first placing objects in the first box, then placing objects in the second box, and so on.
- *48. Prove Theorem 4 by first setting up a one-to-one correspondence between permutations of n objects with n_i indistinguishable objects of type i, i = 1, 2, 3, ..., k, and the distributions of n objects in k boxes such that n_i objects are placed in box i, i = 1, 2, 3, ..., k and then applying Theorem 3.
- *49. In this exercise we will prove Theorem 2 by setting up a one-to-one correspondence between the set of r-combinations with repetition allowed of $S = \{1, 2, 3, ..., n\}$ and the set of r-combinations of the set $T = \{1, 2, 3, ..., n + r 1\}$.
 - a) Arrange the elements in an r-combination, with repetition allowed, of S into an increasing sequence $x_1 \le x_2 \le \cdots \le x_r$. Show that the sequence formed by adding k-1 to the kth term is strictly increasing. Conclude that this sequence is made up of r distinct elements from T.
 - b) Show that the procedure described in (a) defines a one-to-one correspondence between the set of r-combinations, with repetition allowed, of S and the r-combinations of T. [Hint: Show the correspondence can be reversed by associating to the r-combination $\{x_1, x_2, \ldots, x_r\}$ of T, with $1 \le x_1 < x_2 < \cdots < x_r \le n + r 1$, the r-combination with

- repetition allowed from S, formed by subtracting k-1 from the kth element.]
- c) Conclude that there are C(n+r-1,r) r-combinations with repetition allowed from a set with n elements.
- **50.** How many ways are there to distribute five distinguishable objects into three indistinguishable boxes?
- **51.** How many ways are there to distribute six distinguishable objects into four indistinguishable boxes so that each of the boxes contains at least one object?
- **52.** How many ways are there to put five temporary employees into four identical offices?
- **53.** How many ways are there to put six temporary employees into four identical offices so that there is at least one temporary employee in each of these four offices?
- **54.** How many ways are there to distribute five indistinguishable objects into three indistinguishable boxes?
- **55.** How many ways are there to distribute six indistinguishable objects into four indistinguishable boxes so that each of the boxes contains at least one object?
- **56.** How many ways are there to pack eight identical DVDs into five indistinguishable boxes so that each box contains at least one DVD?
- **57.** How many ways are there to pack nine identical DVDs into three indistinguishable boxes so that each box contains at least two DVDs?
- **58.** How many ways are there to distribute five balls into seven boxes if each box must have at most one ball in it if
 - a) both the balls and boxes are labeled?
 - **b)** the balls are labeled, but the boxes are unlabeled?
 - c) the balls are unlabeled, but the boxes are labeled?
 - **d)** both the balls and boxes are unlabeled?
- **59.** How many ways are there to distribute five balls into three boxes if each box must have at least one ball in it if
 - a) both the balls and boxes are labeled?
 - **b**) the balls are labeled, but the boxes are unlabeled?

- c) the balls are unlabeled, but the boxes are labeled?
- **d)** both the balls and boxes are unlabeled?
- **60.** Suppose that a basketball league has 32 teams, split into two conferences of 16 teams each. Each conference is split into three divisions. Suppose that the North Central Division has five teams. Each of the teams in the North Central Division plays four games against each of the other teams in this division, three games against each of the 11 remaining teams in the conference, and two games against each of the 16 teams in the other conference. In how many different orders can the games of one of the teams in the North Central Division be scheduled?
- *61. Suppose that a weapons inspector must inspect each of five different sites twice, visiting one site per day. The inspector is free to select the order in which to visit these sites, but cannot visit site X, the most suspicious site, on two consecutive days. In how many different orders can the inspector visit these sites?
- **62.** How many different terms are there in the expansion of $(x_1 + x_2 + \cdots + x_m)^n$ after all terms with identical sets of exponents are added?
- ***63.** Prove the **Multinomial Theorem:** If *n* is a positive integer, then

$$(x_1 + x_2 + \dots + x_m)^n$$

$$= \sum_{n_1 + n_2 + \dots + n_m = n} C(n; n_1, n_2, \dots, n_m) x_1^{n_1} x_2^{n_2} \cdots x_m^{n_m},$$

where

$$C(n; n_1, n_2, \dots, n_m) = \frac{n!}{n_1! n_2! \cdots n_m!}$$

is a multinomial coefficient.

- **64.** Find the expansion of $(x + y + z)^4$.
- **65.** Find the coefficient of $x^3y^2z^5$ in $(x+y+z)^{10}$.
- **66.** How many terms are there in the expansion of

$$(x + y + z)^{100}$$
?

6.6

Generating Permutations and Combinations

Introduction

Methods for counting various types of permutations and combinations were described in the previous sections of this chapter, but sometimes permutations or combinations need to be generated, not just counted. Consider the following three problems. First, suppose that a salesperson must visit six different cities. In which order should these cities be visited to minimize total travel time? One way to determine the best order is to determine the travel time for each of the 6! = 720 different orders in which the cities can be visited and choose the one with the smallest travel time. Second, suppose we are given a set of six positive integers and wish to find a subset of them that has 100 as their sum, if such a subset exists. One way to find these numbers is to generate all $2^6 = 64$ subsets and check the sum of their elements. Third, suppose a laboratory has 95 employees. A group of 12 of these employees with a particular set of 25 skills is needed for a project. (Each employee can have one or more of these skills.) One way to find such a

only once. If we did not do this, the algorithm would have exponential worst-case complexity. The process of storing the values as each is computed is known as memoization and is an important technique for making recursive algorithms efficient.

```
ALGORITHM 1 Dynamic Programming Algorithm for Scheduling Talks.
procedure Maximum Attendees (s_1, s_2, ..., s_n): start times of talks;
  e_1, e_2, \ldots, e_n: end times of talks; w_1, w_2, \ldots, w_n: number of attendees to talks)
  sort talks by end time and relabel so that e_1 \le e_2 \le \cdots \le e_n
for j := 1 to n
      if no job i with i < j is compatible with job j
      else p(j) := \max\{i \mid i < j \text{ and job } i \text{ is compatible with job } j\}
      T(0) := 0
for j := 1 to n
      T(j) := \max(w_j + T(p(j)), T(j-1))
return T(n) {T(n) is the maximum number of attendees}
```

In Algorithm 1 we determine the maximum number of attendees that can be achieved by a schedule of talks, but we do not find a schedule that achieves this maximum. To find talks we need to schedule, we use the fact that talk j belongs to an optimal solution for the first j talks if and only if $w_j + T(p(j)) \ge T(j-1)$. We leave it as Exercise 53 to construct an algorithm based on this observation that determines which talks should be scheduled to achieve the maximum total number of attendees.

Algorithm 1 is a good example of dynamic programming as the maximum total attendance is found using the optimal solutions of the overlapping subproblems, each of which determines the maximum total attendance of the first j talks for some j with $1 \le j \le n-1$. See Exercises 56 and 57 and Supplementary Exercises 14 and 17 for other examples of dynamic programming.

Exercises

- 1. Use mathematical induction to verify the formula derived in Example 2 for the number of moves required to complete the Tower of Hanoi puzzle.
- 2. a) Find a recurrence relation for the number of permutations of a set with n elements.
 - b) Use this recurrence relation to find the number of permutations of a set with n elements using iteration.
- 3. A vending machine dispensing books of stamps accepts only one-dollar coins, \$1 bills, and \$5 bills.
 - a) Find a recurrence relation for the number of ways to deposit n dollars in the vending machine, where the order in which the coins and bills are deposited matters.
 - **b)** What are the initial conditions?
 - c) How many ways are there to deposit \$10 for a book of stamps?
- **4.** A country uses as currency coins with values of 1 peso, 2 pesos, 5 pesos, and 10 pesos and bills with values of

- 5 pesos, 10 pesos, 20 pesos, 50 pesos, and 100 pesos. Find a recurrence relation for the number of ways to pay a bill of n pesos if the order in which the coins and bills are paid matters.
- 5. How many ways are there to pay a bill of 17 pesos using the currency described in Exercise 4, where the order in which coins and bills are paid matters?
- *6. a) Find a recurrence relation for the number of strictly increasing sequences of positive integers that have 1 as their first term and n as their last term, where n is a positive integer. That is, sequences a_1, a_2, \ldots, a_k , where $a_1 = 1$, $a_k = n$, and $a_j < a_{j+1}$ for j = $1, 2, \ldots, k-1.$
 - **b)** What are the initial conditions?
 - c) How many sequences of the type described in (a) are there when *n* is an integer with n > 2?
- 7. a) Find a recurrence relation for the number of bit strings of length n that contain a pair of consecutive 0s.

- **b)** What are the initial conditions?
- c) How many bit strings of length seven contain two consecutive 0s?
- 8. a) Find a recurrence relation for the number of bit strings of length *n* that contain three consecutive 0s.
 - **b)** What are the initial conditions?
 - c) How many bit strings of length seven contain three consecutive 0s?
- **9.** a) Find a recurrence relation for the number of bit strings of length n that do not contain three consecutive 0s.
 - **b)** What are the initial conditions?
 - c) How many bit strings of length seven do not contain three consecutive 0s?
- *10. a) Find a recurrence relation for the number of bit strings of length n that contain the string 01.
 - **b)** What are the initial conditions?
 - c) How many bit strings of length seven contain the string 01?
 - 11. a) Find a recurrence relation for the number of ways to climb n stairs if the person climbing the stairs can take one stair or two stairs at a time.
 - **b)** What are the initial conditions?
 - c) In how many ways can this person climb a flight of eight stairs?
 - 12. a) Find a recurrence relation for the number of ways to climb n stairs if the person climbing the stairs can take one, two, or three stairs at a time.
 - **b)** What are the initial conditions?
 - c) In many ways can this person climb a flight of eight

A string that contains only 0s, 1s, and 2s is called a **ternary** string.

- 13. a) Find a recurrence relation for the number of ternary strings of length n that do not contain two consecutive 0s.
 - **b)** What are the initial conditions?
 - c) How many ternary strings of length six do not contain two consecutive 0s?
- 14. a) Find a recurrence relation for the number of ternary strings of length n that contain two consecutive 0s.
 - **b)** What are the initial conditions?
 - c) How many ternary strings of length six contain two consecutive 0s?
- *15. a) Find a recurrence relation for the number of ternary strings of length n that do not contain two consecutive 0s or two consecutive 1s.
 - **b)** What are the initial conditions?
 - c) How many ternary strings of length six do not contain two consecutive 0s or two consecutive 1s?
- *16. a) Find a recurrence relation for the number of ternary strings of length n that contain either two consecutive 0s or two consecutive 1s.
 - **b)** What are the initial conditions?
 - c) How many ternary strings of length six contain two consecutive 0s or two consecutive 1s?

- *17. a) Find a recurrence relation for the number of ternary strings of length n that do not contain consecutive symbols that are the same.
 - **b)** What are the initial conditions?
 - c) How many ternary strings of length six do not contain consecutive symbols that are the same?
- **18. a) Find a recurrence relation for the number of ternary strings of length n that contain two consecutive symbols that are the same.
 - **b)** What are the initial conditions?
 - c) How many ternary strings of length six contain consecutive symbols that are the same?
 - 19. Messages are transmitted over a communications channel using two signals. The transmittal of one signal requires 1 microsecond, and the transmittal of the other signal requires 2 microseconds.
 - a) Find a recurrence relation for the number of different messages consisting of sequences of these two signals, where each signal in the message is immediately followed by the next signal, that can be sent in n microseconds.
 - **b)** What are the initial conditions?
 - c) How many different messages can be sent in 10 microseconds using these two signals?
 - 20. A bus driver pays all tolls, using only nickels and dimes, by throwing one coin at a time into the mechanical toll collector.
 - a) Find a recurrence relation for the number of different ways the bus driver can pay a toll of n cents (where the order in which the coins are used matters).
 - **b)** In how many different ways can the driver pay a toll of 45 cents?
 - **21. a)** Find the recurrence relation satisfied by R_n , where R_n is the number of regions that a plane is divided into by n lines, if no two of the lines are parallel and no three of the lines go through the same point.
 - **b)** Find R_n using iteration.
- *22. a) Find the recurrence relation satisfied by R_n , where R_n is the number of regions into which the surface of a sphere is divided by n great circles (which are the intersections of the sphere and planes passing through the center of the sphere), if no three of the great circles go through the same point.
 - **b)** Find R_n using iteration.
- *23. a) Find the recurrence relation satisfied by S_n , where S_n is the number of regions into which three-dimensional space is divided by n planes if every three of the planes meet in one point, but no four of the planes go through the same point.
 - **b)** Find S_n using iteration.
- **24.** Find a recurrence relation for the number of bit sequences of length n with an even number of 0s.
- 25. How many bit sequences of length seven contain an even number of 0s?

- **26. a)** Find a recurrence relation for the number of ways to completely cover a $2 \times n$ checkerboard with 1×2 dominoes. [*Hint:* Consider separately the coverings where the position in the top right corner of the checkerboard is covered by a domino positioned horizontally and where it is covered by a domino positioned vertically.]
 - **b)** What are the initial conditions for the recurrence relation in part (a)?
 - c) How many ways are there to completely cover a 2×17 checkerboard with 1×2 dominoes?
- 27. a) Find a recurrence relation for the number of ways to lay out a walkway with slate tiles if the tiles are red, green, or gray, so that no two red tiles are adjacent and tiles of the same color are considered indistinguishable.
 - **b)** What are the initial conditions for the recurrence relation in part (a)?
 - c) How many ways are there to lay out a path of seven tiles as described in part (a)?
- **28.** Show that the Fibonacci numbers satisfy the recurrence relation $f_n = 5f_{n-4} + 3f_{n-5}$ for $n = 5, 6, 7, \ldots$, together with the initial conditions $f_0 = 0$, $f_1 = 1$, $f_2 = 1$, $f_3 = 2$, and $f_4 = 3$. Use this recurrence relation to show that f_{5n} is divisible by 5, for $n = 1, 2, 3, \ldots$
- *29. Let S(m, n) denote the number of onto functions from a set with m elements to a set with n elements. Show that S(m, n) satisfies the recurrence relation

$$S(m,n) = n^{m} - \sum_{k=1}^{n-1} C(n,k)S(m,k)$$

whenever $m \ge n$ and n > 1, with the initial condition S(m, 1) = 1.

- **30. a)** Write out all the ways the product $x_0 \cdot x_1 \cdot x_2 \cdot x_3 \cdot x_4$ can be parenthesized to determine the order of multiplication.
 - **b)** Use the recurrence relation developed in Example 5 to calculate C_4 , the number of ways to parenthesize the product of five numbers so as to determine the order of multiplication. Verify that you listed the correct number of ways in part (a).
 - c) Check your result in part (b) by finding C_4 , using the closed formula for C_n mentioned in the solution of Example 5.
- **31. a)** Use the recurrence relation developed in Example 5 to determine C_5 , the number of ways to parenthesize the product of six numbers so as to determine the order of multiplication.
 - **b**) Check your result with the closed formula for C_5 mentioned in the solution of Example 5.
- *32. In the Tower of Hanoi puzzle, suppose our goal is to transfer all *n* disks from peg 1 to peg 3, but we cannot move a disk directly between pegs 1 and 3. Each move of a disk must be a move involving peg 2. As usual, we cannot place a disk on top of a smaller disk.

- a) Find a recurrence relation for the number of moves required to solve the puzzle for n disks with this added restriction.
- b) Solve this recurrence relation to find a formula for the number of moves required to solve the puzzle for n disks
- c) How many different arrangements are there of the n disks on three pegs so that no disk is on top of a smaller disk?
- **d**) Show that every allowable arrangement of the *n* disks occurs in the solution of this variation of the puzzle.

Exercises 33–37 deal with a variation of the **Josephus problem** described by Graham, Knuth, and Patashnik in [GrKnPa94]. This problem is based on an account by the historian Flavius Josephus, who was part of a band of 41 Jewish rebels trapped in a cave by the Romans during the Jewish-Roman war of the first century. The rebels preferred suicide to capture; they decided to form a circle and to repeatedly count off around the circle, killing every third rebel left alive. However, Josephus and another rebel did not want to be killed this way; they determined the positions where they should stand to be the last two rebels remaining alive. The variation we consider begins with n people, numbered 1 to n, standing around a circle. In each stage, every second person still left alive is eliminated until only one survives. We denote the number of the survivor by J(n).

- **33.** Determine the value of J(n) for each integer n with $1 \le n \le 16$.
- **34.** Use the values you found in Exercise 33 to conjecture a formula for J(n). [*Hint:* Write $n = 2^m + k$, where m is a nonnegative integer and k is a nonnegative integer less than 2^m .]
- **35.** Show that J(n) satisfies the recurrence relation J(2n) = 2J(n) 1 and J(2n + 1) = 2J(n) + 1, for $n \ge 1$, and J(1) = 1.
- **36.** Use mathematical induction to prove the formula you conjectured in Exercise 34, making use of the recurrence relation from Exercise 35.
- **37.** Determine J(100), J(1000), and J(10,000) from your formula for J(n).

Exercises 38-45 involve the Reve's puzzle, the variation of the Tower of Hanoi puzzle with four pegs and *n* disks. Before presenting these exercises, we describe the Frame-Stewart algorithm for moving the disks from peg 1 to peg 4 so that no disk is ever on top of a smaller one. This algorithm, given the number of disks n as input, depends on a choice of an integer k with $1 \le k \le n$. When there is only one disk, move it from peg 1 to peg 4 and stop. For n > 1, the algorithm proceeds recursively, using these three steps. Recursively move the stack of the n-k smallest disks from peg 1 to peg 2, using all four pegs. Next move the stack of the k largest disks from peg 1 to peg 4, using the three-peg algorithm from the Tower of Hanoi puzzle without using the peg holding the n-k smallest disks. Finally, recursively move the smallest n - k disks to peg 4, using all four pegs. Frame and Stewart showed that to produce the fewest moves using their algorithm, k should be chosen to be the smallest integer

such that *n* does not exceed $t_k = k(k+1)/2$, the *k*th triangular number, that is, $t_{k-1} < n \le t_k$. The unsettled conjecture, known as Frame's conjecture, is that this algorithm uses the fewest number of moves required to solve the puzzle, no matter how the disks are moved.

- **38.** Show that the Reve's puzzle with three disks can be solved using five, and no fewer, moves.
- **39.** Show that the Reve's puzzle with four disks can be solved using nine, and no fewer, moves.
- **40.** Describe the moves made by the Frame-Stewart algorithm, with k chosen so that the fewest moves are required, for
 - a) 5 disks. c) 7 disks. **b**) 6 disks. **d**) 8 disks.
- *41. Show that if R(n) is the number of moves used by the Frame–Stewart algorithm to solve the Reve's puzzle with n disks, where k is chosen to be the smallest integer with $n \le k(k+1)/2$, then R(n) satisfies the recurrence relation $R(n) = 2R(n-k) + 2^{k} - 1$, with R(0) = 0and R(1) = 1.
- *42. Show that if k is as chosen in Exercise 41, then $R(n) - R(n-1) = 2^{k-1}$.
- *43. Show that if k is as chosen in Exercise 41, then $R(n) = \sum_{i=1}^{k} i 2^{i-1} (t_k n) 2^{k-1}$.
- *44. Use Exercise 43 to give an upper bound on the number of moves required to solve the Reve's puzzle for all integers n with 1 < n < 25.
- *45. Show that R(n) is $O(\sqrt{n}2^{\sqrt{2n}})$.

Let $\{a_n\}$ be a sequence of real numbers. The **backward dif**ferences of this sequence are defined recursively as shown next. The **first difference** ∇a_n is

$$\nabla a_n = a_n - a_{n-1}$$
.

The (k + 1)st difference $\nabla^{k+1}a_n$ is obtained from $\nabla^k a_n$ by

$$\nabla^{k+1} a_n = \nabla^k a_n - \nabla^k a_{n-1}.$$

- **46.** Find ∇a_n for the sequence $\{a_n\}$, where
 - **a**) $a_n = 4$.
- **b**) $a_n = 2n$.
- c) $a_n = n^2$.
- **d**) $a_n = 2^n$.
- **47.** Find $\nabla^2 a_n$ for the sequences in Exercise 46.
- **48.** Show that $a_{n-1} = a_n \nabla a_n$.
- **49.** Show that $a_{n-2} = a_n 2\nabla a_n + \nabla^2 a_n$.
- ***50.** Prove that a_{n-k} can be expressed in terms of a_n , ∇a_n , $\nabla^2 a_n, \ldots, \nabla^k a_n$
 - **51.** Express the recurrence relation $a_n = a_{n-1} + a_{n-2}$ in terms of a_n , ∇a_n , and $\nabla^2 a_n$.
 - **52.** Show that any recurrence relation for the sequence $\{a_n\}$ can be written in terms of a_n , ∇a_n , $\nabla^2 a_n$, The resulting equation involving the sequences and its differences is called a **difference equation**.

- *53. Construct the algorithm described in the text after Algorithm 1 for determining which talks should be scheduled to maximize the total number of attendees and not just the maximum total number of attendees determined by Algorithm 1.
 - **54.** Use Algorithm 1 to determine the maximum number of total attendees in the talks in Example 6 if w_i , the number of attendees of talk i, i = 1, 2, ..., 7, is
 - **a**) 20, 10, 50, 30, 15, 25, 40.
 - **b**) 100, 5, 10, 20, 25, 40, 30.
 - **c)** 2, 3, 8, 5, 4, 7, 10.
 - **d)** 10, 8, 7, 25, 20, 30, 5.
 - **55.** For each part of Exercise 54, use your algorithm from Exercise 53 to find the optimal schedule for talks so that the total number of attendees is maximized.
 - 56. In this exercise we will develop a dynamic programming algorithm for finding the maximum sum of consecutive terms of a sequence of real numbers. That is, given a sequence of real numbers a_1, a_2, \ldots, a_n , the algorithm computes the maximum sum $\sum_{i=1}^{k} a_i$ where $1 \le j \le k \le n$.
 - a) Show that if all terms of the sequence are nonnegative, this problem is solved by taking the sum of all terms. Then, give an example where the maximum sum of consecutive terms is not the sum of all terms.
 - **b)** Let M(k) be the maximum of the sums of consecutive terms of the sequence ending at a_k . That is, M(k) = $\max_{1 \le j \le k} \sum_{i=j}^{k} a_i$. Explain why the recurrence relation $\overline{M(k)} = \max(M(k-1) + a_k, a_k)$ holds for k =
 - c) Use part (b) to develop a dynamic programming algorithm for solving this problem.
 - d) Show each step your algorithm from part (c) uses to find the maximum sum of consecutive terms of the sequence 2, -3, 4, 1, -2, 3.
 - e) Show that the worst-case complexity in terms of the number of additions and comparisons of your algorithm from part (c) is linear.
- *57. Dynamic programming can be used to develop an algorithm for solving the matrix-chain multiplication problem introduced in Section 3.3. This is the problem of determining how the product $A_1A_2\cdots A_n$ can be computed using the fewest integer multiplications, where A_1, A_2, \ldots, A_n are $m_1 \times m_2, m_2 \times m_3, \dots, m_n \times m_{n+1}$ matrices, respectively, and each matrix has integer entries. Recall that by the associative law, the product does not depend on the order in which the matrices are multiplied.
 - a) Show that the brute-force method of determining the minimum number of integer multiplications needed to solve a matrix-chain multiplication problem has exponential worst-case complexity. [Hint: Do this by first showing that the order of multiplication of matrices is specified by parenthesizing the product. Then, use Example 5 and the result of part (c) of Exercise 41 in Section 8.4.]

Note that a_n satisfies the linear nonhomogeneous recurrence relation

$$a_n = a_{n-1} + n$$
.

(To obtain a_n , the sum of the first n positive integers, from a_{n-1} , the sum of the first n-1positive integers, we add n.) Note that the initial condition is $a_1 = 1$.

The associated linear homogeneous recurrence relation for a_n is

$$a_n = a_{n-1}$$
.

The solutions of this homogeneous recurrence relation are given by $a_n^{(h)} = c(1)^n = c$, where c is a constant. To find all solutions of $a_n = a_{n-1} + n$, we need find only a single particular solution. By Theorem 6, because $F(n) = n = n \cdot (1)^n$ and s = 1 is a root of degree one of the characteristic equation of the associated linear homogeneous recurrence relation, there is a particular solution of the form $n(p_1n + p_0) = p_1n^2 + p_0n$.

Inserting this into the recurrence relation gives $p_1n^2 + p_0n = p_1(n-1)^2 +$ $p_0(n-1) + n$. Simplifying, we see that $n(2p_1-1) + (p_0-p_1) = 0$, which means that $2p_1 - 1 = 0$ and $p_0 - p_1 = 0$, so $p_0 = p_1 = 1/2$. Hence,

$$a_n^{(p)} = \frac{n^2}{2} + \frac{n}{2} = \frac{n(n+1)}{2}$$

is a particular solution. Hence, all solutions of the original recurrence relation $a_n = a_{n-1} + n$ are given by $a_n = a_n^{(h)} + a_n^{(p)} = c + n(n+1)/2$. Because $a_1 = 1$, we have $1 = a_1 = c + 1 \cdot 2/2 = 1$ c+1, so c=0. It follows that $a_n=n(n+1)/2$. (This is the same formula given in Table 2 in Section 2.4 and derived previously.)

Exercises

- 1. Determine which of these are linear homogeneous recurrence relations with constant coefficients. Also, find the degree of those that are.

 - **a)** $a_n = 3a_{n-1} + 4a_{n-2} + 5a_{n-3}$ **b)** $a_n = 2na_{n-1} + a_{n-2}$ **c)** $a_n = a_{n-1} + a_{n-4}$ **d)** $a_n = a_{n-1} + 2$ **e)** $a_n = a_{n-1}^2 + a_{n-2}$ **f)** $a_n = a_{n-1} + n$
- **f**) $a_n = a_{n-2}$
- **g**) $a_n = a_{n-1} + n$
- 2. Determine which of these are linear homogeneous recurrence relations with constant coefficients. Also, find the degree of those that are.
 - **a**) $a_n = 3a_{n-2}$
- **c**) $a_n = a_{n-1}^2$
- **b**) $a_n = 3$ **d**) $a_n = a_{n-1} + 2a_{n-3}$
- **e**) $a_n = a_{n-1}^n / n$
- **f**) $a_n = a_{n-1} + a_{n-2} + n + 3$
- **g**) $a_n = 4a_{n-2} + 5a_{n-4} + 9a_{n-7}$
- 3. Solve these recurrence relations together with the initial conditions given.
 - **a**) $a_n = 2a_{n-1}$ for $n \ge 1$, $a_0 = 3$
 - **b**) $a_n = a_{n-1}$ for $n \ge 1$, $a_0 = 2$
 - c) $a_n = 5a_{n-1} 6a_{n-2}$ for $n \ge 2$, $a_0 = 1$, $a_1 = 0$
 - **d**) $a_n = 4a_{n-1} 4a_{n-2}$ for $n \ge 2$, $a_0 = 6$, $a_1 = 8$
 - e) $a_n = -4a_{n-1} 4a_{n-2}$ for $n \ge 2$, $a_0 = 0$, $a_1 = 1$
 - **f**) $a_n = 4a_{n-2}$ for $n \ge 2$, $a_0 = 0$, $a_1 = 4$
 - g) $a_n = a_{n-2}/4$ for $n \ge 2$, $a_0 = 1$, $a_1 = 0$

- **4.** Solve these recurrence relations together with the initial conditions given.
 - a) $a_n = a_{n-1} + 6a_{n-2}$ for $n \ge 2$, $a_0 = 3$, $a_1 = 6$
 - **b)** $a_n = 7a_{n-1} 10a_{n-2}$ for $n \ge 2$, $a_0 = 2$, $a_1 = 1$
 - c) $a_n = 6a_{n-1} 8a_{n-2}$ for $n \ge 2$, $a_0 = 4$, $a_1 = 10$
 - **d**) $a_n = 2a_{n-1} a_{n-2}$ for $n \ge 2$, $a_0 = 4$, $a_1 = 1$
 - e) $a_n = a_{n-2}$ for $n \ge 2$, $a_0 = 5$, $a_1 = -1$
 - **f**) $a_n = -6a_{n-1} 9a_{n-2}$ for $n \ge 2$, $a_0 = 3$, $a_1 = -3$
 - g) $a_{n+2} = -4a_{n+1} + 5a_n$ for $n \ge 0$, $a_0 = 2$, $a_1 = 8$
- 5. How many different messages can be transmitted in n microseconds using the two signals described in Exercise 19 in Section 8.1?
- **6.** How many different messages can be transmitted in nmicroseconds using three different signals if one signal requires 1 microsecond for transmittal, the other two signals require 2 microseconds each for transmittal, and a signal in a message is followed immediately by the next
- 7. In how many ways can a $2 \times n$ rectangular checkerboard be tiled using 1×2 and 2×2 pieces?
- **8.** A model for the number of lobsters caught per year is based on the assumption that the number of lobsters caught in a year is the average of the number caught in the two previous years.

b) Find L_n if 100,000 lobsters were caught in year 1 and 300,000 were caught in year 2.

9. A deposit of \$100,000 is made to an investment fund at the beginning of a year. On the last day of each year two dividends are awarded. The first dividend is 20% of the amount in the account during that year. The second dividend is 45% of the amount in the account in the previous year.

a) Find a recurrence relation for $\{P_n\}$, where P_n is the amount in the account at the end of n years if no money is ever withdrawn.

b) How much is in the account after *n* years if no money has been withdrawn?

*10. Prove Theorem 2.

11. The Lucas numbers satisfy the recurrence relation

$$L_n = L_{n-1} + L_{n-2}$$

and the initial conditions $L_0 = 2$ and $L_1 = 1$.

a) Show that $L_n = f_{n-1} + f_{n+1}$ for n = 2, 3, ...,where f_n is the *n*th Fibonacci number.

b) Find an explicit formula for the Lucas numbers.

12. Find the solution to $a_n = 2a_{n-1} + a_{n-2} - 2a_{n-3}$ for n = 3, 4, 5, ..., with $a_0 = 3$, $a_1 = 6$, and $a_2 = 0$.

13. Find the solution to $a_n = 7a_{n-2} + 6a_{n-3}$ with $a_0 = 9$, $a_1 = 10$, and $a_2 = 32$.

14. Find the solution to $a_n = 5a_{n-2} - 4a_{n-4}$ with $a_0 = 3$, $a_1 = 2$, $a_2 = 6$, and $a_3 = 8$.

15. Find the solution to $a_n = 2a_{n-1} + 5a_{n-2} - 6a_{n-3}$ with $a_0 = 7$, $a_1 = -4$, and $a_2 = 8$.

*16. Prove Theorem 3.

17. Prove this identity relating the Fibonacci numbers and the binomial coefficients:

$$f_{n+1} = C(n, 0) + C(n-1, 1) + \cdots + C(n-k, k),$$

where n is a positive integer and $k = \lfloor n/2 \rfloor$. [Hint: Let $a_n = C(n, 0) + C(n - 1, 1) + \dots + C(n - k, k)$. Show that the sequence $\{a_n\}$ satisfies the same recurrence relation and initial conditions satisfied by the sequence of Fibonacci numbers.]

18. Solve the recurrence relation $a_n = 6a_{n-1} - 12a_{n-2} +$ $8a_{n-3}$ with $a_0 = -5$, $a_1 = 4$, and $a_2 = 88$.

19. Solve the recurrence relation $a_n = -3a_{n-1} - 3a_{n-2}$ a_{n-3} with $a_0 = 5$, $a_1 = -9$, and $a_2 = 15$.

20. Find the general form of the solutions of the recurrence relation $a_n = 8a_{n-2} - 16a_{n-4}$.

21. What is the general form of the solutions of a linear homogeneous recurrence relation if its characteristic equation has roots 1, 1, 1, 1, -2, -2, -2, 3, 3, -4?

22. What is the general form of the solutions of a linear homogeneous recurrence relation if its characteristic equation has the roots -1, -1, -1, 2, 2, 5, 5, 7?

23. Consider the nonhomogeneous linear recurrence relation $a_n = 3a_{n-1} + 2^n$.

a) Show that $a_n = -2^{n+1}$ is a solution of this recurrence

b) Use Theorem 5 to find all solutions of this recurrence relation.

c) Find the solution with $a_0 = 1$.

24. Consider the nonhomogeneous linear recurrence relation $a_n = 2a_{n-1} + 2^n$.

a) Show that $a_n = n2^n$ is a solution of this recurrence

b) Use Theorem 5 to find all solutions of this recurrence relation.

c) Find the solution with $a_0 = 2$.

25. a) Determine values of the constants A and B such that $a_n = An + B$ is a solution of recurrence relation $a_n = 2a_{n-1} + n + 5$.

b) Use Theorem 5 to find all solutions of this recurrence relation.

c) Find the solution of this recurrence relation with $a_0 = 4$.

26. What is the general form of the particular solution guaranteed to exist by Theorem 6 of the linear nonhomogeneous recurrence relation $a_n = 6a_{n-1} - 12a_{n-2} + 8a_{n-3} + F(n)$ if

a) $F(n) = n^2$?

b) $F(n) = 2^n$?

c) $F(n) = n2^n$?

d) $F(n) = (-2)^n$?

e) $F(n) = n^2 2^n$?

f) $F(n) = n^3(-2)^n$?

g) F(n) = 3?

27. What is the general form of the particular solution guaranteed to exist by Theorem 6 of the linear nonhomogeneous recurrence relation $a_n = 8a_{n-2} - 16a_{n-4} + F(n)$ if

a) $F(n) = n^3$?

b) $F(n) = (-2)^n$?

c) $F(n) = n2^n$?

d) $F(n) = n^2 4^n$?

e) $F(n) = (n^2 - 2)(-2)^n$? f) $F(n) = n^4 2^n$?

g) F(n) = 2?

28. a) Find all solutions of the recurrence relation $a_n = 2a_{n-1} + 2n^2$.

b) Find the solution of the recurrence relation in part (a) with initial condition $a_1 = 4$.

29. a) Find all solutions of the recurrence relation $a_n = 2a_{n-1} + 3^n$.

b) Find the solution of the recurrence relation in part (a) with initial condition $a_1 = 5$.

30. a) Find all solutions of the recurrence relation $a_n =$ $-5a_{n-1}-6a_{n-2}+42\cdot 4^n$.

b) Find the solution of this recurrence relation with $a_1 =$ 56 and $a_2 = 278$.

31. Find all solutions of the recurrence relation $a_n =$ $5a_{n-1} - 6a_{n-2} + 2^n + 3n$. [Hint: Look for a particular solution of the form $qn2^n + p_1n + p_2$, where q, p_1 , and p_2 are constants.]

32. Find the solution of the recurrence relation $a_n =$ $2a_{n-1} + 3 \cdot 2^n$.

33. Find all solutions of the recurrence relation $a_n =$ $4a_{n-1} - 4a_{n-2} + (n+1)2^n$.

35. Find the solution of the recurrence relation $a_n = 4a_{n-1} - 3a_{n-2} + 2^n + n + 3$ with $a_0 = 1$ and $a_1 = 4$.

36. Let a_n be the sum of the first n perfect squares, that is, $a_n = \sum_{k=1}^n k^2$. Show that the sequence $\{a_n\}$ satisfies the linear nonhomogeneous recurrence relation $a_n = a_{n-1} + n^2$ and the initial condition $a_1 = 1$. Use Theorem 6 to determine a formula for a_n by solving this recurrence relation.

37. Let a_n be the sum of the first n triangular numbers, that is, $a_n = \sum_{k=1}^n t_k$, where $t_k = k(k+1)/2$. Show that $\{a_n\}$ satisfies the linear nonhomogeneous recurrence relation $a_n = a_{n-1} + n(n+1)/2$ and the initial condition $a_1 = 1$. Use Theorem 6 to determine a formula for a_n by solving this recurrence relation.

38. a) Find the characteristic roots of the linear homogeneous recurrence relation $a_n = 2a_{n-1} - 2a_{n-2}$. [*Note:* These are complex numbers.]

b) Find the solution of the recurrence relation in part (a) with $a_0 = 1$ and $a_1 = 2$.

*39. a) Find the characteristic roots of the linear homogeneous recurrence relation $a_n = a_{n-4}$. [*Note:* These include complex numbers.]

b) Find the solution of the recurrence relation in part (a) with $a_0 = 1$, $a_1 = 0$, $a_2 = -1$, and $a_3 = 1$.

*40. Solve the simultaneous recurrence relations

$$a_n = 3a_{n-1} + 2b_{n-1}$$
$$b_n = a_{n-1} + 2b_{n-1}$$

with $a_0 = 1$ and $b_0 = 2$.

*41. a) Use the formula found in Example 4 for f_n , the nth Fibonacci number, to show that f_n is the integer closest to

$$\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n.$$

b) Determine for which n f_n is greater than

$$\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n$$

and for which n f_n is less than

$$\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n.$$

42. Show that if $a_n = a_{n-1} + a_{n-2}$, $a_0 = s$ and $a_1 = t$, where s and t are constants, then $a_n = sf_{n-1} + tf_n$ for all positive integers n.

43. Express the solution of the linear nonhomogenous recurrence relation $a_n = a_{n-1} + a_{n-2} + 1$ for $n \ge 2$

where $a_0 = 0$ and $a_1 = 1$ in terms of the Fibonacci numbers. [*Hint*: Let $b_n = a_n + 1$ and apply Exercise 42 to the sequence b_n .]

*44. (Linear algebra required) Let A_n be the $n \times n$ matrix with 2s on its main diagonal, 1s in all positions next to a diagonal element, and 0s everywhere else. Find a recurrence relation for d_n , the determinant of A_n . Solve this recurrence relation to find a formula for d_n .

45. Suppose that each pair of a genetically engineered species of rabbits left on an island produces two new pairs of rabbits at the age of 1 month and six new pairs of rabbits at the age of 2 months and every month afterward. None of the rabbits ever die or leave the island.

a) Find a recurrence relation for the number of pairs of rabbits on the island *n* months after one newborn pair is left on the island.

b) By solving the recurrence relation in (a) determine the number of pairs of rabbits on the island *n* months after one pair is left on the island.

46. Suppose that there are two goats on an island initially. The number of goats on the island doubles every year by natural reproduction, and some goats are either added or removed each year.

a) Construct a recurrence relation for the number of goats on the island at the start of the *n*th year, assuming that during each year an extra 100 goats are put on the island.

b) Solve the recurrence relation from part (a) to find the number of goats on the island at the start of the *n*th year.

c) Construct a recurrence relation for the number of goats on the island at the start of the nth year, assuming that n goats are removed during the nth year for each $n \ge 3$.

d) Solve the recurrence relation in part (c) for the number of goats on the island at the start of the *n*th year.

47. A new employee at an exciting new software company starts with a salary of \$50,000 and is promised that at the end of each year her salary will be double her salary of the previous year, with an extra increment of \$10,000 for each year she has been with the company.

a) Construct a recurrence relation for her salary for her *n*th year of employment.

b) Solve this recurrence relation to find her salary for her *n*th year of employment.

Some linear recurrence relations that do not have constant coefficients can be systematically solved. This is the case for recurrence relations of the form $f(n)a_n = g(n)a_{n-1} + h(n)$. Exercises 48–50 illustrate this.

*48. a) Show that the recurrence relation

$$f(n)a_n = g(n)a_{n-1} + h(n),$$

for $n \ge 1$, and with $a_0 = C$, can be reduced to a recurrence relation of the form

$$b_n = b_{n-1} + Q(n)h(n),$$

where
$$b_n = g(n+1)Q(n+1)a_n$$
, with
$$Q(n) = (f(1)f(2)\cdots f(n-1))/(g(1)g(2)\cdots g(n)).$$

b) Use part (a) to solve the original recurrence relation to obtain

$$a_n = \frac{C + \sum_{i=1}^{n} Q(i)h(i)}{g(n+1)Q(n+1)}.$$

- *49. Use Exercise 48 to solve the recurrence relation $(n+1)a_n = (n+3)a_{n-1} + n$, for $n \ge 1$, with $a_0 = 1$.
- **50.** It can be shown that C_n , the average number of comparisons made by the quick sort algorithm (described in preamble to Exercise 50 in Section 5.4), when sorting n elements in random order, satisfies the recurrence relation

$$C_n = n + 1 + \frac{2}{n} \sum_{k=0}^{n-1} C_k$$

for n = 1, 2, ..., with initial condition $C_0 = 0$.

- a) Show that $\{C_n\}$ also satisfies the recurrence relation $nC_n = (n+1)C_{n-1} + 2n$ for n = 1, 2, ...
- b) Use Exercise 48 to solve the recurrence relation in part (a) to find an explicit formula for C_n .
- ****51.** Prove Theorem 4.
- ****52.** Prove Theorem 6.
 - **53.** Solve the recurrence relation $T(n) = nT^2(n/2)$ with initial condition T(1) = 6 when $n = 2^k$ for some integer k. [Hint: Let $n = 2^k$ and then make the substitution $a_k = \log T(2^k)$ to obtain a linear nonhomogeneous recurrence relation.]

Divide-and-Conquer Algorithms and Recurrence Relations

Introduction

"Divide et impera" (translation: "Divide and conquer" - Julius Caesar

Many recursive algorithms take a problem with a given input and divide it into one or more smaller problems. This reduction is successively applied until the solutions of the smaller problems can be found quickly. For instance, we perform a binary search by reducing the search for an element in a list to the search for this element in a list half as long. We successively apply this reduction until one element is left. When we sort a list of integers using the merge sort, we split the list into two halves of equal size and sort each half separately. We then merge the two sorted halves. Another example of this type of recursive algorithm is a procedure for multiplying integers that reduces the problem of the multiplication of two integers to three multiplications of pairs of integers with half as many bits. This reduction is successively applied until integers with one bit are obtained. These procedures follow an important algorithmic paradigm known as **divide-and-conquer**, and are called **divide-and-conquer algorithms**, because they *divide* a problem into one or more instances of the same problem of smaller size and they *conquer* the problem by using the solutions of the smaller problems to find a solution of the original problem, perhaps with some additional work.

In this section we will show how recurrence relations can be used to analyze the computational complexity of divide-and-conquer algorithms. We will use these recurrence relations to estimate the number of operations used by many different divide-and-conquer algorithms, including several that we introduce in this section.

Divide-and-Conquer Recurrence Relations

Suppose that a recursive algorithm divides a problem of size n into a subproblems, where each subproblem is of size n/b (for simplicity, assume that n is a multiple of b; in reality, the smaller problems are often of size equal to the nearest integers either less than or equal to, or greater than or equal to, n/b). Also, suppose that a total of g(n) extra operations are required in the conquer step of the algorithm to combine the solutions of the subproblems into a solution of the original problem. Then, if f(n) represents the number of operations required to solve the problem of size n, it follows that f satisfies the recurrence relation

$$f(n) = af(n/b) + g(n).$$

This is called a **divide-and-conquer recurrence relation**.

TABLE 1 Useful Generating Functions.	
G(x)	a_k
$(1+x)^n = \sum_{k=0}^n C(n,k)x^k$ = 1 + C(n, 1)x + C(n, 2)x ² + \cdots + x ⁿ	C(n,k)
$(1+ax)^n = \sum_{k=0}^n C(n,k)a^k x^k$ = 1 + C(n, 1)ax + C(n, 2)a^2 x^2 + \cdots + a^n x^n	$C(n,k)a^k$
$(1+x^r)^n = \sum_{k=0}^n C(n,k)x^{rk}$ = 1 + C(n, 1)x^r + C(n, 2)x^{2r} + \cdots + x^{rn}	$C(n, k/r)$ if $r \mid k$; 0 otherwise
$\frac{1 - x^{n+1}}{1 - x} = \sum_{k=0}^{n} x^k = 1 + x + x^2 + \dots + x^n$	1 if $k \le n$; 0 otherwise
$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \dots$	1
$\frac{1}{1 - ax} = \sum_{k=0}^{\infty} a^k x^k = 1 + ax + a^2 x^2 + \dots$	a^k
$\frac{1}{1 - x^r} = \sum_{k=0}^{\infty} x^{rk} = 1 + x^r + x^{2r} + \cdots$	1 if $r \mid k$; 0 otherwise
$\frac{1}{(1-x)^2} = \sum_{k=0}^{\infty} (k+1)x^k = 1 + 2x + 3x^2 + \cdots$	k+1
$\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)x^k$ $= 1 + C(n,1)x + C(n+1,2)x^2 + \cdots$	C(n + k - 1, k) = C(n + k - 1, n - 1)
$\frac{1}{(1+x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)(-1)^k x^k$ $= 1 - C(n,1)x + C(n+1,2)x^2 - \cdots$	$(-1)^k C(n+k-1,k) = (-1)^k C(n+k-1,n-1)$
$\frac{1}{(1-ax)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)a^k x^k$ $= 1 + C(n,1)ax + C(n+1,2)a^2 x^2 + \cdots$	$C(n+k-1,k)a^{k} = C(n+k-1,n-1)a^{k}$
$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$	1/k!
$\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$	$(-1)^{k+1}/k$

Note: The series for the last two generating functions can be found in most calculus books when power series are discussed.

Exercises

- 1. Find the generating function for the finite sequence 2, 2, 2, 2, 2, 2.
- 2. Find the generating function for the finite sequence 1, 4, 16, 64, 256.

In Exercises 3–8, by a **closed form** we mean an algebraic expression not involving a summation over a range of values or the use of ellipses.

- 3. Find a closed form for the generating function for each of these sequences. (For each sequence, use the most obvious choice of a sequence that follows the pattern of the initial terms listed.)
 - **a**) 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, ...
 - **b**) 0, 0, 0, 1, 1, 1, 1, 1, 1, . . .
 - $\mathbf{c)} \ \ 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, \dots$
 - **d**) 2, 4, 8, 16, 32, 64, 128, 256, ...

 - \mathbf{f}) 2, -2, 2, -2, 2, -2, ...
 - **g**) 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, . . .
 - **h)** $0, 0, 0, 1, 2, 3, 4, \dots$
- 4. Find a closed form for the generating function for each of these sequences. (Assume a general form for the terms of the sequence, using the most obvious choice of such a sequence.)
 - a) $-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, \dots$
 - **b**) 1, 3, 9, 27, 81, 243, 729, . . .
 - c) $0, 0, 3, -3, 3, -3, 3, -3, \dots$
 - **d**) 1, 2, 1, 1, 1, 1, 1, 1, 1, . . .
 - $\binom{7}{0}$, $2\binom{7}{1}$, $2^2\binom{7}{2}$, ..., $2^7\binom{7}{7}$, 0, 0, 0, 0, ...
 - \mathbf{f}) $-3, 3, -3, 3, -3, 3, \dots$
 - **g**) $0, 1, -2, 4, -8, 16, -32, 64, \dots$
 - **h**) 1, 0, 1, 0, 1, 0, 1, 0, ...
- 5. Find a closed form for the generating function for the sequence $\{a_n\}$, where
 - **a**) $a_n = 5$ for all n = 0, 1, 2, ...
 - **b**) $a_n = 3^n$ for all n = 0, 1, 2, ...
 - c) $a_n = 2$ for n = 3, 4, 5, ... and $a_0 = a_1 = a_2 = 0$.
 - **d)** $a_n = 2n + 3$ for all n = 0, 1, 2, ...
 - e) $a_n = \binom{8}{n}$ for all n = 0, 1, 2, ...
 - **f**) $a_n = \binom{n+4}{n}$ for all n = 0, 1, 2, ...
- 6. Find a closed form for the generating function for the sequence $\{a_n\}$, where
 - a) $a_n = -1$ for all n = 0, 1, 2, ...
 - **b)** $a_n = 2^n$ for n = 1, 2, 3, 4, ... and $a_0 = 0$.
 - c) $a_n = n 1$ for n = 0, 1, 2, ...
 - **d**) $a_n = 1/(n+1)!$ for n = 0, 1, 2, ...
 - e) $a_n = \binom{n}{2}$ for n = 0, 1, 2, ...
 - **f**) $a_n = \binom{10}{n+1}$ for $n = 0, 1, 2, \dots$

- 7. For each of these generating functions, provide a closed formula for the sequence it determines.
 - a) $(3x-4)^3$
- **b**) $(x^3 + 1)^3$
- c) 1/(1-5x)
- **d)** $x^3/(1+3x)$
- e) $x^2 + 3x + 7 + (1/(1-x^2))$
- f) $(x^4/(1-x^4)) x^3 x^2 x 1$ g) $x^2/(1-x)^2$ h) $2e^{2x}$

- 8. For each of these generating functions, provide a closed formula for the sequence it determines.
 - a) $(x^2 + 1)^3$

- c) $1/(1-2x^2)$ d) $x^2/(1-x)^3$ e) x 1 + (1/(1-3x)) f) $(1+x^3)/(1+x)^3$ g) $x/(1+x+x^2)$ h) $e^{3x^2} 1$
- *g) $x/(1+x+x^2)$
- **9.** Find the coefficient of x^{10} in the power series of each of these functions.

 - a) $(1+x^5+x^{10}+x^{15}+\cdots)^3$ b) $(x^3+x^4+x^5+x^6+x^7+\cdots)^3$ c) $(x^4+x^5+x^6)(x^3+x^4+x^5+x^6+x^7)(1+x+x^6+x^7)$

 - c) (x + x + x)(x + x + x + x + x)(1 + x + x + x) $x^2 + x^3 + x^4 + \cdots)$ d) $(x^2 + x^4 + x^6 + x^8 + \cdots)(x^3 + x^6 + x^9 + \cdots)(x^4 + x^8 + x^{12} + \cdots)$ e) $(1 + x^2 + x^4 + x^6 + x^8 + \cdots)(1 + x^4 + x^8 + x^{12} + \cdots)(1 + x^6 + x^{12} + x^{18} + \cdots)$
- **10.** Find the coefficient of x^9 in the power series of each of these functions.
 - **a)** $(1 + x^3 + x^6 + x^9 + \cdots)^3$
 - **b)** $(x^2 + x^3 + x^4 + x^5 + x^6 + \cdots)^3$

 - c) $(x^3 + x^5 + x^6)(x^3 + x^4)(x + x^2 + x^3 + x^4 + \cdots)$ d) $(x + x^4 + x^7 + x^{10} + \cdots)(x^2 + x^4 + x^6 + x^8 + \cdots)$
 - e) $(1 + x + x^2)^3$
- 11. Find the coefficient of x^{10} in the power series of each of these functions.
 - a) 1/(1-2x)
- **b**) $1/(1+x)^2$
- c) $1/(1-x)^3$
- **d)** $1/(1+2x)^4$
- e) $x^4/(1-3x)^3$
- 12. Find the coefficient of x^{12} in the power series of each of these functions.
 - a) 1/(1+3x)
- c) $1/(1+x)^8$
- **b**) $1/(1-2x)^2$ **d**) $1/(1-4x)^3$
- e) $x^3/(1+4x)^2$
- 13. Use generating functions to determine the number of different ways 10 identical balloons can be given to four children if each child receives at least two balloons.
- 14. Use generating functions to determine the number of different ways 12 identical action figures can be given to five children so that each child receives at most three action figures.
- **15.** Use generating functions to determine the number of different ways 15 identical stuffed animals can be given to six children so that each child receives at least one but no more than three stuffed animals.

- 16. Use generating functions to find the number of ways to choose a dozen bagels from three varieties—egg, salty, and plain—if at least two bagels of each kind but no more than three salty bagels are chosen.
- 17. In how many ways can 25 identical donuts be distributed to four police officers so that each officer gets at least three but no more than seven donuts?
- 18. Use generating functions to find the number of ways to select 14 balls from a jar containing 100 red balls, 100 blue balls, and 100 green balls so that no fewer than 3 and no more than 10 blue balls are selected. Assume that the order in which the balls are drawn does not matter.
- **19.** What is the generating function for the sequence $\{c_k\}$, where c_k is the number of ways to make change for kdollars using \$1 bills, \$2 bills, \$5 bills, and \$10 bills?
- **20.** What is the generating function for the sequence $\{c_k\}$, where c_k represents the number of ways to make change for k pesos using bills worth 10 pesos, 20 pesos, 50 pesos, and 100 pesos?
- 21. Give a combinatorial interpretation of the coefficient of x^4 in the expansion $(1 + x + x^2 + x^3 + \cdots)^3$. Use this interpretation to find this number.
- 22. Give a combinatorial interpretation of the coefficient of x^6 in the expansion $(1 + x + x^2 + x^3 + \cdots)^n$. Use this interpretation to find this number.
- **23.** a) What is the generating function for $\{a_k\}$, where a_k is the number of solutions of $x_1 + x_2 + x_3 = k$ when x_1, x_2 , and x_3 are integers with $x_1 \ge 2$, $0 \le x_2 \le 3$, and $2 \le x_3 \le 5$?
 - **b)** Use your answer to part (a) to find a_6 .
- **24. a)** What is the generating function for $\{a_k\}$, where a_k is the number of solutions of $x_1 + x_2 + x_3 + x_4 = k$ when x_1 , x_2 , x_3 , and x_4 are integers with $x_1 \ge 3$, $1 \le x_2 \le 5, 0 \le x_3 \le 4, \text{ and } x_4 \ge 1$?
 - **b)** Use your answer to part (a) to find a_7 .
- 25. Explain how generating functions can be used to find the number of ways in which postage of r cents can be pasted on an envelope using 3-cent, 4-cent, and 20-cent stamps.
 - a) Assume that the order the stamps are pasted on does
 - **b)** Assume that the stamps are pasted in a row and the order in which they are pasted on matters.
 - c) Use your answer to part (a) to determine the number of ways 46 cents of postage can be pasted on an envelope using 3-cent, 4-cent, and 20-cent stamps when the order the stamps are pasted on does not matter. (Use of a computer algebra program is advised.)
 - d) Use your answer to part (b) to determine the number of ways 46 cents of postage can be pasted in a row on an envelope using 3-cent, 4-cent, and 20-cent stamps when the order in which the stamps are pasted on matters. (Use of a computer algebra program is advised.)
- **26. a)** Show that $1/(1-x-x^2-x^3-x^4-x^5-x^6)$ is the generating function for the number of ways that the sum n can be obtained when a die is rolled repeatedly and the order of the rolls matters.

- **b)** Use part (a) to find the number of ways to roll a total of 8 when a die is rolled repeatedly, and the order of the rolls matters. (Use of a computer algebra package is advised.)
- 27. Use generating functions (and a computer algebra package, if available) to find the number of ways to make change for \$1 using
 - a) dimes and quarters.
 - **b)** nickels, dimes, and quarters.
 - c) pennies, dimes, and quarters.
 - **d)** pennies, nickels, dimes, and quarters.
- **28.** Use generating functions (and a computer algebra package, if available) to find the number of ways to make change for \$1 using pennies, nickels, dimes, and quarters
 - a) no more than 10 pennies.
 - **b)** no more than 10 pennies and no more than 10 nickels.
 - *c) no more than 10 coins.
- **29.** Use generating functions to find the number of ways to make change for \$100 using
 - a) \$10, \$20, and \$50 bills.
 - **b)** \$5, \$10, \$20, and \$50 bills.
 - c) \$5, \$10, \$20, and \$50 bills if at least one bill of each denomination is used.
 - d) \$5, \$10, and \$20 bills if at least one and no more than four of each denomination is used.
- **30.** If G(x) is the generating function for the sequence $\{a_k\}$, what is the generating function for each of these sequences?
 - a) $2a_0, 2a_1, 2a_2, 2a_3, \dots$
 - **b)** $0, a_0, a_1, a_2, a_3, \dots$ (assuming that terms follow the pattern of all but the first term)
 - c) $0, 0, 0, 0, a_2, a_3, \dots$ (assuming that terms follow the pattern of all but the first four terms)
 - **d**) a_2, a_3, a_4, \dots
 - e) $a_1, 2a_2, 3a_3, 4a_4, \dots$ [Hint: Calculus required here.]
 - **f**) a_0^2 , $2a_0a_1$, $a_1^2 + 2a_0a_2$, $2a_0a_3 + 2a_1a_2$, $2a_0a_4 + 2a_0a_1$ $2a_1a_3 + a_2^2, \dots$
- **31.** If G(x) is the generating function for the sequence $\{a_k\}$, what is the generating function for each of these sequences?
 - a) $0, 0, 0, a_3, a_4, a_5, \dots$ (assuming that terms follow the pattern of all but the first three terms)
 - **b)** $a_0, 0, a_1, 0, a_2, 0, \dots$
 - c) $0, 0, 0, 0, a_0, a_1, a_2, \dots$ (assuming that terms follow the pattern of all but the first four terms)
 - **d)** $a_0, 2a_1, 4a_2, 8a_3, 16a_4, \dots$
 - **e)** $0, a_0, a_1/2, a_2/3, a_3/4, \dots$ [Hint: Calculus required here.1
 - **f**) $a_0, a_0 + a_1, a_0 + a_1 + a_2, a_0 + a_1 + a_2 + a_3, \dots$
- **32.** Use generating functions to solve the recurrence relation $a_k = 7a_{k-1}$ with the initial condition $a_0 = 5$.
- **33.** Use generating functions to solve the recurrence relation $a_k = 3a_{k-1} + 2$ with the initial condition $a_0 = 1$.
- **34.** Use generating functions to solve the recurrence relation $a_k = 3a_{k-1} + 4^{k-1}$ with the initial condition $a_0 = 1$.

- **35.** Use generating functions to solve the recurrence relation $a_k = 5a_{k-1} - 6a_{k-2}$ with initial conditions $a_0 = 6$
- **36.** Use generating functions to solve the recurrence relation $a_k = a_{k-1} + 2a_{k-2} + 2^k$ with initial conditions $a_0 = 4$ and $a_1 = 12$.
- **37.** Use generating functions to solve the recurrence relation $a_k = 4a_{k-1} - 4a_{k-2} + k^2$ with initial conditions $a_0 = 2$ and $a_1 = 5$.
- 38. Use generating functions to solve the recurrence relation $a_k = 2a_{k-1} + 3a_{k-2} + 4^k + 6$ with initial conditions $a_0 = 20$, $a_1 = 60$.
- **39.** Use generating functions to find an explicit formula for the Fibonacci numbers.
- *40. a) Show that if n is a positive integer, then

$$\binom{-1/2}{n} = \frac{\binom{2n}{n}}{(-4)^n}.$$

- **b)** Use the extended binomial theorem and part (a) to show that the coefficient of x^n in the expansion of $(1-4x)^{-1/2}$ is $\binom{2n}{n}$ for all nonnegative integers n.
- *41. (Calculus required) Let $\{C_n\}$ be the sequence of Catalan numbers, that is, the solution to the recurrence relation $C_n = \sum_{k=0}^{n-1} C_k C_{n-k-1}$ with $C_0 = C_1 = 1$ (see Example 5 in Section 8.1).
 - a) Show that if G(x) is the generating function for the sequence of Catalan numbers, then $xG(x)^2 - G(x) +$ 1 = 0. Conclude (using the initial conditions) that $G(x) = (1 - \sqrt{1 - 4x})/(2x).$
 - **b)** Use Exercise 40 to conclude that

$$G(x) = \sum_{n=0}^{\infty} \frac{1}{n+1} {2n \choose n} x^n,$$

so that

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

- c) Show that $C_n \ge 2^{n-1}$ for all positive integers n.
- **42.** Use generating functions to prove Pascal's identity: C(n,r) = C(n-1,r) + C(n-1,r-1) when n and r are positive integers with r < n. [Hint: Use the identity $(1+x)^n = (1+x)^{n-1} + x(1+x)^{n-1}$.
- 43. Use generating functions to prove Vandermonde's identity: $C(m + n, r) = \sum_{k=0}^{r} C(m, r - k)C(n, k)$, whenever m, n, and r are nonnegative integers with r not exceeding either m or n. [Hint: Look at the coefficient of x^r in both sides of $(1+x)^{m+n} = (1+x)^m (1+x)^n$.]
- 44. This exercise shows how to use generating functions to derive a formula for the sum of the first n squares.
 - a) Show that $(x^2 + x)/(1 x)^4$ is the generating function for the sequence $\{a_n\}$, where $a_n = 1^2 + 2^2 + \dots + n^2$.
 - b) Use part (a) to find an explicit formula for the sum $1^2 + 2^2 + \cdots + n^2$.

The **exponential generating function** for the sequence $\{a_n\}$

$$\sum_{n=0}^{\infty} \frac{a_n}{n!} x^n.$$

For example, the exponential generating function for the sequence 1, 1, 1, ... is the function $\sum_{n=0}^{\infty} x^n/n! = e^x$. (You will find this particular series useful in these exercises.) Note that e^x is the (ordinary) generating function for the sequence 1, 1, 1/2!, 1/3!, 1/4!,

- **45.** Find a closed form for the exponential generating function for the sequence $\{a_n\}$, where
 - **a**) $a_n = 2$.
- **c**) $a_n = 3^n$.
- **b**) $a_n = (-1)^n$. **d**) $a_n = n + 1$.
- e) $a_n = 1/(n+1)$.
- **46.** Find a closed form for the exponential generating function for the sequence $\{a_n\}$, where
 - **a**) $a_n = (-2)^n$.
- $\mathbf{c)} \ a_n = n.$
- **b**) $a_n = -1$. **d**) $a_n = n(n-1)$.
- e) $a_n = 1/((n+1)(n+2))$.
- **47.** Find the sequence with each of these functions as its exponential generating function.

- a) $f(x) = e^{-x}$ b) $f(x) = 3x^{2x}$ c) $f(x) = e^{3x} 3e^{2x}$ d) $f(x) = (1-x) + e^{-2x}$ e) $f(x) = e^{-2x} (1/(1-x))$ f) $f(x) = e^{-3x} (1+x) + (1/(1-2x))$
- $\mathbf{g}) \ f(x) = e^{x^2}$
- **48.** Find the sequence with each of these functions as its exponential generating function.

- **a)** $f(x) = e^{3x}$ **b)** $f(x) = 2e^{-3x+1}$ **c)** $f(x) = e^{4x} + e^{-4x}$ **d)** $f(x) = (1+2x) + e^{3x}$
- e) $f(x) = e^x (1/(1+x))$
- $f(x) = xe^x$
- **49.** A coding system encodes messages using strings of octal (base 8) digits. A codeword is considered valid if and only if it contains an even number of 7s.
 - a) Find a linear nonhomogeneous recurrence relation for the number of valid codewords of length n. What are the initial conditions?
 - b) Solve this recurrence relation using Theorem 6 in Sec-
 - c) Solve this recurrence relation using generating func-
- *50. A coding system encodes messages using strings of base 4 digits (that is, digits from the set $\{0, 1, 2, 3\}$). A codeword is valid if and only if it contains an even number of 0s and an even number of 1s. Let a_n equal the number of valid codewords of length n. Furthermore, let b_n , c_n , and d_n equal the number of strings of base 4 digits of length n with an even number of 0s and an odd number of 1s, with an odd number of 0s and an even number of 1s, and with an odd number of 0s and an odd number of 1s, respectively.
 - a) Show that $d_n = 4^n a_n b_n c_n$. Use this to show that $a_{n+1} = 2a_n + b_n + c_n, b_{n+1} = b_n - c_n + 4^n,$ and $c_{n+1} = c_n - b_n + 4^n$.

- **b)** What are a_1, b_1, c_1 , and d_1 ?
- c) Use parts (a) and (b) to find a_3 , b_3 , c_3 , and d_3 .
- **d)** Use the recurrence relations in part (a), together with the initial conditions in part (b), to set up three equations relating the generating functions A(x), B(x), and C(x) for the sequences $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$, respectively.
- e) Solve the system of equations from part (d) to get explicit formulae for A(x), B(x), and C(x) and use these to get explicit formulae for a_n , b_n , c_n , and d_n .

Generating functions are useful in studying the number of different types of partitions of an integer n. A partition of a positive integer is a way to write this integer as the sum of positive integers where repetition is allowed and the order of the integers in the sum does not matter. For example, the partitions of 5 (with no restrictions) are 1 + 1 + 1 + 1 + 1, 1+1+1+2, 1+1+3, 1+2+2, 1+4, 2+3, and 5. Exercises 51–56 illustrate some of these uses.

- **51.** Show that the coefficient p(n) of x^n in the formal power series expansion of $1/((1-x)(1-x^2)(1-x^3)\cdots)$ equals the number of partitions of n.
- **52.** Show that the coefficient $p_o(n)$ of x^n in the formal power series expansion of $1/((1-x)(1-x^3)(1-x^5)\cdots)$ equals the number of partitions of n into odd integers, that is, the number of ways to write n as the sum of odd positive integers, where the order does not matter and repetitions are allowed.
- **53.** Show that the coefficient $p_d(n)$ of x^n in the formal power series expansion of $(1+x)(1+x^2)(1+x^3)\cdots$ equals the number of partitions of n into distinct parts, that is, the number of ways to write n as the sum of positive integers, where the order does not matter but no repetitions are allowed.
- **54.** Find $p_o(n)$, the number of partitions of n into odd parts with repetitions allowed, and $p_d(n)$, the number of partitions of n into distinct parts, for 1 < n < 8, by writing each partition of each type for each integer.
- **55.** Show that if n is a positive integer, then the number of partitions of n into distinct parts equals the number of partitions of *n* into odd parts with repetitions allowed;

- that is, $p_o(n) = p_d(n)$. [Hint: Show that the generating functions for $p_o(n)$ and $p_d(n)$ are equal.
- **56. (Requires calculus) Use the generating function of p(n)to show that $p(n) \leq e^{C\sqrt{n}}$ for some constant C. [Hardy and Ramanujan showed that $p(n) \sim e^{\pi \sqrt{2/3}\sqrt{n}}/(4\sqrt{3}n)$, which means that the ratio of p(n) and the right-hand side approaches 1 as *n* approaches infinity.]
- Suppose that X is a random variable on a sample space S such that X(s) is a nonnegative integer for all $s \in S$. The **probability generating function** for X is

$$G_X(x) = \sum_{k=0}^{\infty} p(X(s) = k)x^k.$$

- **57.** (Requires calculus) Show that if G_X is the probability generating function for a random variable X such that X(s) is a nonnegative integer for all $s \in S$, then
 - **a**) $G_X(1) = 1$. **b**) $E(X) = G'_X(1)$. c) $V(X) = G_X''(1) + G_X'(1) - G_X'(1)^2$.
- **58.** Let X be the random variable whose value is n if the first success occurs on the nth trial when independent Bernoulli trials are performed, each with probability of success p.
 - a) Find a closed formula for the probability generating function G_X .
 - **b)** Find the expected value and the variance of X using Exercise 57 and the closed form for the probability generating function found in part (a).
- **59.** Let m be a positive integer. Let X_m be the random variable whose value is n if the mth success occurs on the (n+m)th trial when independent Bernoulli trials are performed, each with probability of success p.
 - a) Using Exercise 32 in the Supplementary Exercises of Chapter 7, show that the probability generating function G_{X_m} is given by $G_{X_m}(x) = p^m/(1-qx)^m$, where q = 1 - p.
 - **b**) Find the expected value and the variance of X_m using Exercise 57 and the closed form for the probability generating function in part (a).
- **60.** Show that if X and Y are independent random variables on a sample space S such that X(s) and Y(s) are nonnegative integers for all $s \in S$, then $G_{X+Y}(x) = G_X(x)G_Y(x)$.

Inclusion-Exclusion

Introduction

A discrete mathematics class contains 30 women and 50 sophomores. How many students in the class are either women or sophomores? This question cannot be answered unless more information is provided. Adding the number of women in the class and the number of sophomores probably does not give the correct answer, because women sophomores are counted twice. This observation shows that the number of students in the class that are either sophomores or women is the sum of the number of women and the number of sophomores in the class minus the number of women sophomores. A technique for solving such counting problems was introduced in