

Lecture 9 Approximation

Department of
Electrical
Engineering and
Computer Science

The Approximation Problem

Input values
$$\overline{x}^q \in X \subset \Re^{n+1}$$
 $q = 1,..., M$

$$\overline{x}^q = \left[\begin{array}{ccc} x_0^q & x_1^q & x_2^q & \dots & x_n^q \end{array} \right]^T$$

Output values $\overline{y}^q \in Y \subset \Re^{l+1}$ q = 1,..., M

$$\overline{y}^q = \left[y_1^q \ y_2^q \ \dots y_l^q \right]^T$$

Training Set with <u>real-</u> <u>valued</u> inputs and outputs

Fit a model: $\hat{\overline{y}} = f(\overline{x}; \overline{w})$

 \overline{w} are the parameters of the model

to minimize the loss function

$$J(\overline{w}) = \sum_{k} J^{q}(\overline{w}) = \sum_{k} e(\hat{\overline{y}}^{q}, \overline{y}^{q}; \overline{w})$$

 $e(\hat{\overline{y}}, \overline{y}; w)$ is an error function

by adapting the parameters \overline{w}

Approximation = curve-fitting / regression

x = available (sample)
 data points

The Problem with Approximation

A finite number of points are given in real space

⇒ An infinite number of functions are compatible with it.

How should we choose the best?

Question to ask: Which function is most likely to be correct for unknown data?

x = available (sample)
 data points

Is this a good approximation?

Why not?

x = available (sample)
 data points

What about this one?

Better?

x = available (sample)
 data points

And this one?

Probably the best!

The Problem with Approximation

A finite number of points are given in real space

 \Rightarrow An infinite number of functions are compatible with it.

How should we choose the best?

Question to ask: Which function is most likely to be correct for unknown data?

Answer:

"One should not increase, beyond what is necessary, the number of entities required to explain anything" William of Ockham \rightarrow Occam's Razor

"Everything should be made as simple as possible, but no simpler "

Attributed to Albert Einstein

The simplest adequate model is likelier to be correct.

Why are feedforward networks approximators?

Consider a 1 hidden-layer net with *n* inputs and one output. The network can be written as:

$$\hat{y}_i = f_i \left[\sum_{j=0}^m w_{ij} f_j \left(\sum_{k=0}^n w_{jk} x_k \right) \right]$$
 where *i* is the only output neuron

Assume
$$f_i(u) = u$$
 (linear output) $\Rightarrow \hat{y}_i = \sum_j w_{ij} f_j \left(\sum_k w_{jk} x_k \right)$

Thus $f_j(u)$ serve as **basis functions**

i.e. a weighted sum of several nonlinear functions, f_i , defined over the input space

Recall the sinusoidal basis $f(x) = \sum_{i} a_{i} \cos(w_{i}x + \theta_{i})$ = Fourier series approximation

Let
$$n = 1$$
, $m = 2$

$$w_{11}^{o} f_{1}(w_{11}^{h} X + w_{10}^{h}) + w_{12}^{o} f_{2}(w_{21}^{h} X + w_{20}^{h})$$

By adding several scaled and possibility reversed sigmoids, we can form pretty much any function. This remains true even if n > 1

Department of
Electrical
Engineering and
Computer Science

Let
$$n = 1$$
, $m = 2$

$$w_{11}^{o} f_{1} \left(w_{11}^{h} x + w_{10}^{h} \right) \quad w_{12}^{o} f_{2} \left(w_{21}^{h} x + w_{20}^{h} \right)$$

$$\hat{f}$$

$$w_{11}^{o} f_{1} (w_{11}^{h} x + w_{10}^{h}) - w_{12}^{o} f_{2} (w_{21}^{h} x + w_{20}^{h})$$

Department of Electrical Engineering and Computer Science

Two Real Examples with 3 Hidden Neurons

The Universal Approximation Theorem

(Cybenko; Funahashi; Hornik, Stinchcombe & White)

Let $f^{(\cdot)}$ be a non-constant, bounded and monotonically increasing continuous function.

Let
$$I_n \equiv [0,1]^n$$

Let $C(I_n)$ be the space of continuous functions on I_n

Then, given any $\Phi \in C(I_n)$ and $\varepsilon > 0$

 \exists integer m and real constants a_i, b_i, w_{ik}

$$j = 1, ..., m$$

 $k = 1, ..., n$

such that we can find:

$$\left| \hat{\Phi}(x_1, \ldots, x_n) = \sum_{j=1}^m a_j f\left(\sum_{k=1}^n w_{jk} x_k + b_j\right) \right|$$

i.e. any cont. function on I_n can be approximated to arbitrary precision using <u>one</u> hidden layer of sigmoid neurons

and $\left| \hat{\Phi}(x_1, ..., x_n) - \Phi(x_1, ..., x_n) \right| < \varepsilon \ \forall x_1, ..., x_n \in I_n$

Applications for Approximation

Modeling:

Given data points from an input-output system

$$\left\{\left(\chi^{k},y^{k}\right)\right\}$$

determine $F: x^k \to y^k$

e.g.

F(heart rate, blood pressure) = autonomic nervous system function

F(externally monitored plant variables) = internal variables.

or, for a dynamical system

$$\dot{x} = F(x)$$

use data points $|(x^k, \dot{x}^k)|$ to find $\hat{F}(x) = \dot{x}$

Prediction:

Given a time series x_t

hypothesize
$$x_t = F(x_{t-1},...,x_{t-m}; \mathbf{w})$$

Then use approximation to find F. This works also when the system has external inputs

Compare with a linear autoregressive model:

$$X_{t} = \sum_{k=1}^{n} \alpha_{i} X_{t-k}$$

$$| x_{t} = F(x_{t-1}, ..., x_{t-m}; \mathbf{w}) = \sum_{j=1}^{m} w_{ij}^{o} f\left(\sum_{k=1}^{n} w_{jk}^{h} x_{t-k} + w_{j0}^{h}\right)$$

College of
Engineering
& Applied
Science

Radial Basis Function Networks

College of **Engineering** & Applied Science

Department of Electrical Engineering and Computer Science

Radial Basis Function (RBF) Networks

where

and

 $\overline{w} = \begin{bmatrix} w_0 & w_1 & \dots & w_m \end{bmatrix}^T \quad (m+1)\text{-dim}$

 $\overline{h} = \begin{bmatrix} h_0 & h_1 & \dots & h_m \end{bmatrix}^T$ (m+1)-dim

 $\overline{C} = \begin{bmatrix} C_1 & C_2 & \dots & C_n \end{bmatrix}$ *n*-dim $G_j(u) = e^{\frac{-u}{2\sigma_j^2}}$ Gaussian

 $\hat{y} = \overline{w}^T \overline{h}$ linear

Radial Basis Functions

since σ_j is a scalar, the contours on x_1 - x_2 are circular (equal variance)

A more general form would be to use $h_j = e^{-\left|(\bar{x}-\bar{C}_j)^T \Sigma^{-1}(\bar{x}-\bar{C}_j)\right|}$

where Σ is a symmetric $n \times n$ matrix with non-negative diagonal values

One can use $\Sigma^{-1} = K^T K$ where K is any real $n \times n$ matrix – weighting matrix.

Training RBF Networks

Option 1:

- Choose fixed \overline{C}_j , σ_j , \forall_j
- Train \overline{W}

Given training set

$$X = |\overline{x}^1, \overline{x}^2, \ldots, \overline{x}^N|$$

$$Y = y^1, y^2, \ldots, y^N$$

define

$$H = |\overline{h}^1, \overline{h}^2, \ldots, \overline{h}^N|$$

where
$$\overline{h}^q = \begin{bmatrix} 1 & h_1(\overline{x}^q) & \dots & h_m(\overline{x}^q) \end{bmatrix}^T$$

Now training \overline{w} is finding weights

for the linear estimate $y = \overline{w}^T \overline{h}$

using the training set $H \rightarrow Y$

(or use other linear estimation methods)

Note: σ_i s could be identical or different.

Option 2:

- Adapt centers \overline{C}_{j} through self-organization
- Fix $\sigma_j \quad \forall_j$
- Obtain H using the \overline{C}_j , σ_j
- •Train \overline{w} using LMS etc.

we'll do this later

Notes: $\overline{\mathfrak{S}}_{j}$'s can be obtained by <u>k-means clustering</u> or some other clustering method

by j can be identical for each j or chosen heuristically

Option 3:

Treat σ_j , \overline{C}_{jk} , w_j as parameters in an optimization problem and train them all by gradient descent or some other method.

Full Supervised Learning