Written Assignment 1

Vancouver Summer Program - Algorithms - UBC

- You should work with a partner.
- You must typeset your solutions.
- **Notation.** $\mathbb{N} = \{1, 2, ...\} \subset \{0, 1, 2, ...\} = \mathbb{Z}_+$, and $\mathbb{R}_+ = [0, \infty)$.
- 1. (Enter Fibonacci) The Fibonacci sequence is defined as follows: $F_0 = F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for all integers $n \ge 2$.
 - (a) You are to derive an efficient algorithm to compute the *n*th Fibonacci number. Observe that

$$F_n = F_{n-1} + F_{n-2}$$
$$F_{n-1} = F_{n-1} + 0 \cdot F_{n-2}.$$

If we write this linear system in terms of matrices, we have

$$\begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{n-1} \\ F_{n-2} \end{bmatrix}$$

Using this linear relation, derive an algorithm to compute F_n . Your algorithm should run in time $O(\log n)$.

Hint: Use repeated squaring to compute matrix powers.

- (b) Now suppose that writing every bit of the output to memory counts as an operation that we wish to account for in our running-time analysis (in the previous part, we disregard the time required to write the output to memory). Can you compute F_n in time that is bounded by a polynomial in the size of the input? Justify your answer.
- (c) (**Bonus**) Find a if a and b are integers such that $x^2 x 1$ is a factor of $ax^{17} + bx^{16} + 1$. **Hint**: The answer is F_n for some $n \ge 1$. It is enough to show this and find n explicitly; you do not need to compute F_n .
- 2. (Time Complexity)
 - (a) Algorithms A and B spend exactly $T_A(n) = 0.1n^2\log_{10}(n)$ and $T_B(n) = 2.5n^2$ microseconds, respectively, for a problem of size n. Choose the algorithm, which is better in the Big-Oh sense, and find out a problem size n_0 such that for any larger size $n > n_0$ the chosen algorithm outperforms the other. If your problems are of the size $n \le 10^9$, which algorithm will you recommend to use?
 - (b) Let $f(n) = (\log n)^{\log n}$ and $g(n) = 2^{(\log_2 n)^2}$. Determine whether $f \in O(g)$, $f \in \Omega(g)$, or both (in which case $f \in \Theta(g)$).
 - (c) Show that for any $f,g: \mathbb{Z}_+ \to \mathbb{R}_+$, $O(f+g) = O(\max\{f,g\})$. Recall that $O(\cdot)$ is a set (see notes #1), and therefore one has to show both $O(f+g) \subset O(\max\{f,g\})$ and $O(\max\{f,g\}) \subset O(f+g)$.

1