Semaine du 26/02/2024

Chapitre T1 – Description d'un système thermodynamique

Plan du cours

I Descriptions microscopiques et macroscopiques

- I.1 Solide, liquide et gaz
- **I.2** Échelles microscopique et macroscopique
 - \rightarrow Préciser les paramètres nécessaires à la description d'un état microscopique et d'un état macroscopique sur un exemple.

II Description d'un système thermodynamique

- II.1 Système thermodynamique
- II.2 Variables d'état
- II.3 Température et pression
 - $\rightarrow~$ Relier qualitativement les valeurs des grandeurs macroscopiques aux propriétés du système à l'échelle microscopique.
- II.4 Équilibre thermodynamique

III Modèle du gaz parfait

- III.1 Équation d'état
 - → Exploiter l'équation d'état du gaz parfait pour décrire le comportement d'un gaz.
- III.2 Énergie interne
 - → Exploiter l'expression de la variation de l'énergie interne d'un gaz considéré comme parfait.

IV Phase condensée

→ Exploiter l'expression de la variation de l'énergie interne d'un système considéré incompressible et indilatable en fonction de sa température.

Questions de cours

- → Présenter le modèle du gaz parfait et/ou d'une phase condensée indilatable et incompressible et énoncer leurs équations d'état.
- → Donner la définition de la capacité thermique à volume constant et de ses équivalents molaire et massique.
- $\rightarrow\,\,$ Retrouver l'expression de la capacité thermique molaire à volume constant d'un gaz parfait monoatomique.
- → Citer la valeur de la capacité thermique massique de l'eau.

Chapitre T2 – Bilans d'énergie, premier principe de la thermodynamique

Plan du cours

I Conservation de l'énergie lors d'une transformation

- I.1 Transformation thermodynamique
 - → Exploiter les conditions imposées par le milieu extérieur pour déterminer l'état d'équilibre final.
- **I.2** Énergie du système
 - \rightarrow Citer les différentes contributions microscopiques et macroscopiques à l'énergie d'un système.
- **I.3** Premier principe
 - \rightarrow Analyser qualitativement les différents termes intervenant dans l'écriture du premier principe.

II Transfert d'énergie : travail

- II.1 Travail des forces de pression
 - \rightarrow Évaluer un travail par découpage en travaux élémentaires et sommation sur un chemin donné dans le cas d'une seule variable.
- II.2 Diagramme de Clapevron
 - \rightarrow Interpréter géométriquement le travail des forces de pression dans un diagramme de Clapeyron.

III Transfert thermique

III.1 Différents modes de transferts thermiques

 \rightarrow Caractériser qualitativement les trois modes de transfert thermique : conduction, convection, rayonnement.

III.2 Flux thermique

 \rightarrow Exploiter la relation entre flux thermique, résistance thermique et écart de température, l'expression de la résistance thermique étant donnée.

IV Bilan d'énergie

IV.1 Enthalpie

- → Exprimer le premier principe sous forme de bilan d'enthalpie dans le cas d'une transformation monobare avec équilibre mécanique dans l'état initial et dans l'état final.
- \rightarrow Exprimer l'enthalpie $H_m(T)$ du gaz parfait à partir de l'énergie interne.
- → Citer l'ordre de grandeur de la capacité thermique massique de l'eau liquide.

IV.2 Calorimétrie

 $\rightarrow\,\,$ Conduire un bilan d'énergie sur un système modélisé par un gaz parfait ou par une phase condensée incompressible et indilatable.

IV.3 Loi de Newton

 \rightarrow Effectuer un bilan d'énergie pour un système incompressible et indilatable en contact avec un thermostat : établir et résoudre l'équation différentielle vérifiée par la température du système.

Questions de cours

- \rightarrow Définir le vocabulaire usuel des transformations : isochore, isotherme, isobare, monotherme, adiabatique.
- → Enoncer le premier principe en définissant soigneusement tous les termes.
- → Définir l'enthalpie d'un système et donner ses propriétés. Exprimer le premier principe sous forme de bilan d'enthalpie dans le cas d'une transformation monobare avec équilibre mécanique dans l'état initial et l'état final.
- \rightarrow Dans le cas d'un gaz parfait, exprimer C_p et/ou C_v à partir du coefficient isentropique γ et de la relation de Mayer.
- → Définir la résistance thermique d'un matériau en introduisant soigneusement les grandeurs utilisées (schéma!) et leurs unités.
- \rightarrow Donner la valeur de la capacité thermique massique de l'eau.