EE101: RC and RL Circuits (with DC sources)

M. B. Patil
mbpatil@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

* In practice, capacitors are available in a wide range of shapes and values, and they differ significantly in the way they are fabricated.

(http://en.wikipedia.org/wiki/Capacitor)

- * In practice, capacitors are available in a wide range of shapes and values, and they differ significantly in the way they are fabricated.

 (http://en.wikipedia.org/wiki/Capacitor)
- * To make C larger, we need (a) high ϵ , (b) large area, (c) small thickness.

- * In practice, capacitors are available in a wide range of shapes and values, and they differ significantly in the way they are fabricated. (http://en.wikipedia.org/wiki/Capacitor)
- * To make C larger, we need (a) high ϵ , (b) large area, (c) small thickness.
- * For a constant capacitance,

$$Q(t) = C v(t), \quad \frac{dQ}{dt} = C \frac{dv}{dt}, \text{ i.e. } i(t) = C \frac{dv}{dt}.$$

- * In practice, capacitors are available in a wide range of shapes and values, and they differ significantly in the way they are fabricated. (http://en.wikipedia.org/wiki/Capacitor)
- * To make C larger, we need (a) high ϵ , (b) large area, (c) small thickness.
- * For a constant capacitance,

$$Q(t) = C v(t), \quad \frac{dQ}{dt} = C \frac{dv}{dt}, \text{ i.e. } i(t) = C \frac{dv}{dt}.$$

 If v = constant, i = 0, i.e., a capacitor behaves like an open circuit in DC conditions as one would expect from two conducting plates separated by an insulator.

Plot v, p, and W versus time for the given source current. Assume v(0) = 0 V, C = 5 mF.

Plot v, p, and W versus time for the given source current.

2	20	_			
	0				
È					
	-20				

$$i(t) = C \frac{dv}{dt}$$

$$\begin{split} i(t) &= C \frac{dv}{dt} \\ v(t) &= \frac{1}{C} \int i(t) \, dt \end{split}$$

Plot v, p, and W versus time for the given source current.

$$i(t) = C \frac{dv}{dt}$$

$$\begin{split} i(t) &= C \frac{dv}{dt} \\ v(t) &= \frac{1}{C} \int i(t) \, dt \end{split}$$

Plot v, p, and W versus time for the given source current.

$$i(t) = C \frac{dv}{dt}$$

$$\begin{split} i(t) &= C \frac{dv}{dt} \\ v(t) &= \frac{1}{C} \int i(t) \, dt \end{split}$$

$$p(t) = v(t) \times i(t)$$

Plot v, p, and W versus time for the given source current.

$$i(t) = C \frac{dv}{dt}$$

$$\begin{split} i(t) &= C \frac{dv}{dt} \\ v(t) &= \frac{1}{C} \int i(t) \, dt \end{split}$$

$$p(t) = v(t) \times i(t)$$

Plot v, p, and W versus time for the given source current.

$$i(t) = C \frac{dv}{dt}$$

$$\begin{split} i(t) &= C \frac{dv}{dt} \\ v(t) &= \frac{1}{C} \int i(t) \, dt \end{split}$$

$$p(t) = v(t) \times i(t)$$

$$W(t)=\int p(t)\,dt$$

Plot v, p, and W versus time for the given source current.

$$i(t) = C \frac{dv}{dt}$$

$$v(t) = \frac{1}{C} \int i(t) \, dt$$

$$p(t) = v(t) \times i(t)$$

$$W(t)=\int p(t)\,dt$$

Plot v, p, and W versus time for the given source current.

$$i(t) = C \frac{dv}{dt}$$

$$v(t) = \frac{1}{C} \int i(t) \, dt$$

$$p(t) = v(t) \times i(t)$$

$$W(t)=\smallint p(t)\,dt$$

$$\begin{split} W(t) &= \int p(t) \, dt \\ &= C \, \int v \, \frac{dv}{dt} \, dt \\ &= C \, \int v \, dv \\ &= \frac{1}{2} \, C \, v^2 \end{split}$$

* For the given source current, plot v(t), p(t), and W(t), assuming v(0) = 0 V, C = 5 mF.

- * For the given source current, plot v(t), p(t), and W(t), assuming v(0) = 0 V, C = 5 mF.
- * Verify your results with SEQUEL.

- * For the given source current, plot v(t), p(t), and W(t), assuming v(0) = 0 V, C = 5 mF.
- * Verify your results with SEQUEL. (file: ee101_cap_power.sqproj)

* An inductor is basically a conducting coil wound around a "core."

- * An inductor is basically a conducting coil wound around a "core."
- * $V=N \frac{d\phi}{dt}=N \frac{d}{dt} \left(\mathbf{B} \cdot \mathbf{A}\right)=N \frac{d}{dt} \left[\left(\mu H\right) A\right]=N \frac{d}{dt} \left[\left(\mu N \, i\right) A\right].$ Compare with $v=L \frac{di}{dt}$. $\Rightarrow L=\mu \, N^2 \, A=\mu_r \mu_0 \, N^2 \, A \, .$

- * An inductor is basically a conducting coil wound around a "core."
- * $V = N \frac{d\phi}{dt} = N \frac{d}{dt} (\mathbf{B} \cdot \mathbf{A}) = N \frac{d}{dt} [(\mu H) A] = N \frac{d}{dt} [(\mu N i) A].$ Compare with $v = L \frac{di}{dt}$. $\Rightarrow L = \mu N^2 A = \mu_r \mu_0 N^2 A.$
- * To make L larger, we need (a) high μ_r , (b) large area, (c) large number of turns.

- An inductor is basically a conducting coil wound around a "core."
- * $V = N \frac{d\phi}{dt} = N \frac{d}{dt} (\mathbf{B} \cdot \mathbf{A}) = N \frac{d}{dt} [(\mu H) A] = N \frac{d}{dt} [(\mu N i) A].$ Compare with $v = L \frac{di}{dt}$.

$$\Rightarrow$$
 L = μ N² A = $\mu_r \mu_0$ N² A.

- * To make L larger, we need (a) high μ_r , (b) large area, (c) large number of turns.
- * For 99.8 % pure iron, $\mu_r \simeq 5,000$. For "supermalloy" (Ni: 79 %, Mo: 5 %, Fe): $\mu_r \simeq 10^6$.

- * An inductor is basically a conducting coil wound around a "core."
- * $V = N \frac{d\phi}{dt} = N \frac{d}{dt} (\mathbf{B} \cdot \mathbf{A}) = N \frac{d}{dt} [(\mu H) A] = N \frac{d}{dt} [(\mu N i) A].$ Compare with $v = L \frac{di}{dt}$. $\Rightarrow L = \mu N^2 A = \mu_t \mu_0 N^2 A.$
- * To make L larger, we need (a) high μ_r , (b) large area, (c) large number of turns.
- * For 99.8 % pure iron, $\mu_r \simeq 5,000$. For "supermalloy" (Ni: 79 %, Mo: 5 %, Fe): $\mu_r \simeq 10^6$.
- If i = constant, v = 0, i.e., an inductor behaves like a short circuit in DC conditions as one would expect from a highly conducting coil.

- An inductor is basically a conducting coil wound around a "core."
- * $V = N \frac{d\phi}{dt} = N \frac{d}{dt} (\mathbf{B} \cdot \mathbf{A}) = N \frac{d}{dt} [(\mu H) A] = N \frac{d}{dt} [(\mu N i) A].$ Compare with $v = L \frac{di}{dt}$.

$$\Rightarrow$$
 L = μ N² A = $\mu_r \mu_0$ N² A.

- * To make L larger, we need (a) high μ_r , (b) large area, (c) large number of turns.
- * For 99.8 % pure iron, $\mu_r \simeq 5,000$. For "supermalloy" (Ni: 79 %, Mo: 5 %, Fe): $\mu_r \simeq 10^6$.
- * If i = constant, v = 0, i.e., an inductor behaves like a short circuit in DC conditions as one would expect from a highly conducting coil.
- * Note: $B = \mu H$ is an approximation. In practice, B may be a nonlinear function of H, depending on the core material.

* If all sources are DC (constant), $V_{Th} = \text{constant}$.

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + v \rightarrow V_{Th} = R_{Th} C \frac{dv}{dt} + v$.

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + v \rightarrow V_{Th} = R_{Th} C \frac{dv}{dt} + v$.
- * Homogeneous solution:

$$rac{dv}{dt}+rac{1}{ au}v=0$$
 , where $au=R_{Th}$ C is the "time constant." $o v^{(h)}=K \exp(-t/ au)$.

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + v \rightarrow V_{Th} = R_{Th} C \frac{dv}{dt} + v$.
- * Homogeneous solution:

$$rac{dv}{dt}+rac{1}{ au}\,v=0$$
 , where $au=R_{Th}\,C$ is the "time constant." $ightarrow v^{(h)}=K\,\exp(-t/ au)$.

* Particular solution is a specific function that satisfies the differntial equation. We know that all time derivatives will vanish as $t \to \infty$, making i = 0, and we get $v^{(p)} = V_{Th}$ as a particular solution (which happens to be simply a constant).

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + v \rightarrow V_{Th} = R_{Th} C \frac{dv}{dt} + v$.
- * Homogeneous solution:

$$rac{dv}{dt}+rac{1}{ au}\,v=0$$
 , where $au=R_{Th}\,C$ is the "time constant." $ightarrow v^{(h)}=K\,\exp(-t/ au)$.

- * Particular solution is a specific function that satisfies the differntial equation. We know that all time derivatives will vanish as $t \to \infty$, making i = 0, and we get $v^{(p)} = V_{Th}$ as a particular solution (which happens to be simply a constant).
- * $v = v^{(h)} + v^{(p)} = K \exp(-t/\tau) + V_{Th}$.

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + v \rightarrow V_{Th} = R_{Th} C \frac{dv}{dt} + v$.
- * Homogeneous solution:

$$rac{dv}{dt}+rac{1}{ au}\,v=0$$
 , where $au=R_{Th}\,C$ is the "time constant." $ightarrow v^{(h)}=K\,\exp(-t/ au)$.

- * Particular solution is a specific function that satisfies the differntial equation. We know that all time derivatives will vanish as $t \to \infty$, making i = 0, and we get $v^{(p)} = V_{Th}$ as a particular solution (which happens to be simply a constant).
- * $v = v^{(h)} + v^{(p)} = K \exp(-t/\tau) + V_{Th}$.
- * In general, $v(t) = A \exp(-t/\tau) + B$, where A and B can be obtained from known conditions on v.

RC circuits with DC sources (continued)

* If all sources are DC (constant), we have $v(t) = A \exp(-t/\tau) + B$, $\tau = RC$.

RC circuits with DC sources (continued)

- * If all sources are DC (constant), we have $v(t)=A\exp(-t/ au)+B$, au=RC .
- * $i(t) = C \frac{dv}{dt} = C \times A \exp(-t/\tau) \left(-\frac{1}{\tau}\right) \equiv A' \exp(-t/\tau)$.

RC circuits with DC sources (continued)

- * If all sources are DC (constant), we have $v(t) = A \exp(-t/\tau) + B$, $\tau = RC$.
- * $i(t) = C \frac{dv}{dt} = C \times A \exp(-t/\tau) \left(-\frac{1}{\tau}\right) \equiv A' \exp(-t/\tau)$.
- * As $t \to \infty$, $i \to 0$, i.e., the capacitor behaves like an open circuit since all derivatives vanish.

- * If all sources are DC (constant), we have $v(t) = A \exp(-t/\tau) + B$, $\tau = RC$.
- * $i(t) = C \frac{dv}{dt} = C \times A \exp(-t/\tau) \left(-\frac{1}{\tau}\right) \equiv A' \exp(-t/\tau)$.
- * As $t \to \infty$, $i \to 0$, i.e., the capacitor behaves like an open circuit since all derivatives vanish.
- * Since the circuit in the black box is linear, any variable (current or voltage) in the circuit can be expressed as $x(t) = K_1 \exp(-t/\tau) + K_2$, where K_1 and K_2 can be obtained from suitable conditions on x(t).

* If all sources are DC (constant), $V_{Th} = \text{constant}$.

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + L \frac{di}{dt}$.

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + L \frac{di}{dt}$.
- * Homogeneous solution:

$$rac{di}{dt}+rac{1}{ au}\,i=0$$
 , where $au=L/R_{Th}$ $ightarrow i^{(h)}=K\,\exp(-t/ au)$.

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + L \frac{di}{dt}$.
- * Homogeneous solution:

$$\frac{di}{dt} + \frac{1}{\tau}i = 0$$
, where $\tau = L/R_{Th}$
 $\rightarrow i^{(h)} = K \exp(-t/\tau)$.

* Particular solution is a specific function that satisfies the differntial equation. We know that all time derivatives will vanish as $t\to\infty$, making v=0, and we get $i^{(p)}=V_{Th}/R_{Th}$ as a particular solution (which happens to be simply a constant).

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + L \frac{di}{dt}$.
- * Homogeneous solution:

$$\frac{di}{dt} + \frac{1}{\tau}i = 0$$
, where $\tau = L/R_{Th}$
 $\rightarrow i^{(h)} = K \exp(-t/\tau)$.

- * Particular solution is a specific function that satisfies the differntial equation. We know that all time derivatives will vanish as $t \to \infty$, making v = 0, and we get $i^{(p)} = V_{Th}/R_{Th}$ as a particular solution (which happens to be simply a constant).
- * $i = i^{(h)} + i^{(p)} = K \exp(-t/\tau) + V_{Th}/R_{Th}$.

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + L \frac{di}{dt}$.
- * Homogeneous solution:

$$rac{di}{dt}+rac{1}{ au}i=0$$
 , where $au=L/R_{Th}$ $ightarrow i^{(h)}=K \exp(-t/ au)$.

- * Particular solution is a specific function that satisfies the differntial equation. We know that all time derivatives will vanish as $t \to \infty$, making v = 0, and we get $i^{(p)} = V_{Th}/R_{Th}$ as a particular solution (which happens to be simply a constant).
- * $i = i^{(h)} + i^{(p)} = K \exp(-t/\tau) + V_{Th}/R_{Th}$.
- * In general, $i(t) = A \exp(-t/\tau) + B$, where A and B can be obtained from known conditions on i.

* If all sources are DC (constant), we have $i(t) = A \exp(-t/\tau) + B$, $\tau = L/R$.

- * If all sources are DC (constant), we have $i(t) = A \exp(-t/\tau) + B$, $\tau = L/R$.
- * $v(t) = L \frac{di}{dt} = L \times A \exp(-t/\tau) \left(-\frac{1}{\tau}\right) \equiv A' \exp(-t/\tau)$.

- * If all sources are DC (constant), we have $i(t) = A \exp(-t/\tau) + B$, $\tau = L/R$.
- * $v(t) = L \frac{di}{dt} = L \times A \exp(-t/\tau) \left(-\frac{1}{\tau}\right) \equiv A' \exp(-t/\tau)$.
- * As $t \to \infty$, $v \to 0$, i.e., the inductor behaves like a short circuit since all derivatives vanish.

- * If all sources are DC (constant), we have $i(t) = A \exp(-t/\tau) + B$, $\tau = L/R$.
- * $v(t) = L \frac{di}{dt} = L \times A \exp(-t/\tau) \left(-\frac{1}{\tau}\right) \equiv A' \exp(-t/\tau)$.
- * As $t \to \infty$, $v \to 0$, i.e., the inductor behaves like a short circuit since all derivatives vanish.
- * Since the circuit in the black box is linear, any variable (current or voltage) in the circuit can be expressed as $x(t) = K_1 \exp(-t/\tau) + K_2$, where K_1 and K_2 can be obtained from suitable conditions on x(t).

* V_s changes from 0 V (at $t=0^-$), to 5 V (at $t=0^+$). As a result of this change, V_c will rise. How fast can V_c change?

- * V_s changes from 0 V (at $t=0^-$), to 5 V (at $t=0^+$). As a result of this change, V_c will rise. How fast can V_c change?
- * For example, what would happen if V_c changes by 1 V in 1 μ s at a constant rate of 1 $V/1~\mu s = 10^6~V/s$?

- * V_s changes from 0 V (at $t=0^-$), to 5 V (at $t=0^+$). As a result of this change, V_c will rise. How fast can V_c change?
- * For example, what would happen if V_c changes by 1 V in 1 μ s at a constant rate of 1 $V/1~\mu s = 10^6~V/s$?
- $* \ i = C \, \frac{dV_c}{dt} = 1 \; \mu F \times 10^6 \, \frac{V}{\rm s} = 1 \; A \, .$

- * $V_{\rm s}$ changes from 0 V (at $t=0^-$), to 5 V (at $t=0^+$). As a result of this change, $V_{\rm c}$ will rise. How fast can $V_{\rm c}$ change?
- * For example, what would happen if V_c changes by 1 V in 1 μ s at a constant rate of 1 $V/1~\mu s = 10^6~V/s$?
- * $i = C \frac{dV_c}{dt} = 1 \ \mu F \times 10^6 \frac{V}{s} = 1 \ A.$
- * With i = 1 A, the voltage drop across R would be 1000 V! Not allowed by KVL.

- * V_s changes from 0 V (at $t=0^-$), to 5 V (at $t=0^+$). As a result of this change, V_c will rise. How fast can V_c change?
- * For example, what would happen if V_c changes by 1 V in 1 μ s at a constant rate of 1 $V/1~\mu s = 10^6~V/s$?
- * $i = C \frac{dV_c}{dt} = 1 \ \mu F \times 10^6 \frac{V}{s} = 1 \ A$.
- * With i = 1 A, the voltage drop across R would be 1000 V! Not allowed by KVL.
- * We conclude that $V_c(0^+) = V_c(0^-) \Rightarrow$ A capacitor does not allow abrupt changes in V_c if there is a finite resistance in the circuit.

- * V_s changes from 0 V (at $t=0^-$), to 5 V (at $t=0^+$). As a result of this change, V_c will rise. How fast can V_c change?
- * For example, what would happen if V_c changes by 1 V in 1 μ s at a constant rate of 1 $V/1~\mu s = 10^6~V/s$?
- * $i = C \frac{dV_c}{dt} = 1 \ \mu F \times 10^6 \frac{V}{s} = 1 \ A$.
- * With i = 1 A, the voltage drop across R would be 1000 V! Not allowed by KVL.
- * We conclude that $V_c(0^+) = V_c(0^-) \Rightarrow$ A capacitor does not allow abrupt changes in V_c if there is a finite resistance in the circuit.
- * Similarly, an inductor does not allow abrupt changes in i_L.

* Identify intervals in which the source voltages/currents are constant. For example,

* Identify intervals in which the source voltages/currents are constant. For example,

* For any quantity of interest x(t), write general expressions such as, $x(t) = A_1 \exp(-t/\tau) + B_1$, $t < t_1$, $x(t) = A_2 \exp(-t/\tau) + B_2$, $t_1 < t < t_2$,

 $x(t) = A_2 \exp(-t/\tau) + B_2, \quad t_1 < t < t_2,$ $x(t) = A_3 \exp(-t/\tau) + B_3, \quad t > t_2.$

* Identify intervals in which the source voltages/currents are constant. For example,

* For any quantity of interest x(t), write general expressions such as, $x(t)=A_1 \exp(-t/\tau)+B_1$, $t< t_1$,

$$x(t) = A_2 \exp(-t/\tau) + B_2, \quad t_1 < t < t_2,$$

 $x(t) = A_3 \exp(-t/\tau) + B_3, \quad t > t_2.$

* Work out suitable conditions on x(t) at specific time points using

Identify intervals in which the source voltages/currents are constant.
 For example,

* For any quantity of interest x(t), write general expressions such as,

$$x(t) = A_1 \exp(-t/\tau) + B_1, \quad t < t_1,$$

$$x(t) = A_2 \exp(-t/\tau) + B_2, \quad t_1 < t < t_2,$$

$$x(t) = A_3 \exp(-t/\tau) + B_3$$
, $t > t_2$.

- * Work out suitable conditions on x(t) at specific time points using
 - (a) If the source voltage/current has not changed for a "long" time (long compared to τ), all derivatives are zero.

$$\Rightarrow i_C = C \; \frac{dV_c}{dt} = 0 \, , \; \text{and} \; \; V_L = L \; \frac{di_L}{dt} = 0 \, . \label{eq:VL}$$

Identify intervals in which the source voltages/currents are constant.
 For example,

- * For any quantity of interest x(t), write general expressions such as,
 - $x(t) = A_1 \exp(-t/\tau) + B_1, \quad t < t_1,$
 - $x(t) = A_2 \exp(-t/\tau) + B_2, \quad t_1 < t < t_2,$
 - $x(t) = A_3 \exp(-t/\tau) + B_3, \quad t > t_2.$
- * Work out suitable conditions on x(t) at specific time points using
 - (a) If the source voltage/current has not changed for a "long" time (long compared to au), all derivatives are zero.

$$\Rightarrow i_C = C \, rac{dV_c}{dt} = 0$$
 , and $V_L = L \, rac{di_L}{dt} = 0$.

(b) When a source voltage (or current) changes, say, at $t=t_0$, $V_c(t)$ or $i_L(t)$ cannot change abruptly, i.e.,

$$V_c(t_0^+) = V_c(t_0^-)$$
, and $i_L(t_0^+) = i_L(t_0^-)$.

Identify intervals in which the source voltages/currents are constant.
 For example,

* For any quantity of interest x(t), write general expressions such as,

$$x(t) = A_1 \exp(-t/\tau) + B_1, \quad t < t_1,$$

$$x(t) = A_2 \exp(-t/\tau) + B_2, \quad t_1 < t < t_2,$$

$$x(t) = A_3 \exp(-t/\tau) + B_3, \quad t > t_2.$$

- * Work out suitable conditions on x(t) at specific time points using
 - (a) If the source voltage/current has not changed for a "long" time (long compared to τ), all derivatives are zero.

$$\Rightarrow i_C = C \, rac{dV_c}{dt} = 0$$
 , and $V_L = L \, rac{di_L}{dt} = 0$.

(b) When a source voltage (or current) changes, say, at $t=t_0$, $V_c(t)$ or $i_L(t)$ cannot change abruptly, i.e.,

$$V_c(t_0^+) = V_c(t_0^-)$$
, and $i_L(t_0^+) = i_L(t_0^-)$.

* Compute A_1 , B_1 , \cdots using the conditions on x(t).

Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1)
$$\mathbf{v}(0^-) = \mathbf{V_S}(0^-) = 0 \ \mathbf{V}$$

$$\mathbf{v}(0^+) \simeq \mathbf{v}(0^-) = 0 \ \mathsf{V}$$

Note that we need the condition at 0^+ (and not at 0^-) because Eq. (A) applies only for t >0.

(2) As
$$t\to\infty\,, i\to 0\,\to v(\infty)=V_{\text{S}}(\infty)=V_0$$

Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1)
$$v(0^-) = V_S(0^-) = 0 V$$

$$\mathbf{v}(0^+) \simeq \mathbf{v}(0^-) = 0 \ \mathsf{V}$$

Note that we need the condition at 0^+ (and not at 0^-) because Eq. (A) applies only for t>0.

(2) As
$$t\to\infty\,, i\to 0\,\to v(\infty)=V_{\text{S}}(\infty)=V_0$$

$$t = 0^+$$
: $0 = A + B$,

$$t \to \infty$$
: $V_0 = B$.

i.e.,
$$A = V_0 \, , B = -V_0$$

Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1)
$$v(0^-) = V_S(0^-) = 0 V$$

$$\mathbf{v}(0^+) \simeq \mathbf{v}(0^-) = 0 \ \mathsf{V}$$

Note that we need the condition at 0^+ (and not at 0^-) because Eq. (A) applies only for t > 0.

(2) As
$$t\to\infty\,, i\to 0\,\to v(\infty)=V_{\text{S}}(\infty)=V_0$$

$$t = 0^+$$
: $0 = A + B$,

$$t \to \infty$$
: $V_0 = B$.

i.e.,
$$A = V_0$$
, $B = -V_0$

$$v(t) = V_0 \left[1 - exp(-t/\tau) \right]$$

Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1)
$$v(0^-) = V_S(0^-) = 0 V$$

$$\mathbf{v}(0^+) \simeq \mathbf{v}(0^-) = 0 \ \mathsf{V}$$

Note that we need the condition at 0^+ (and not at 0^-) because Eq. (A) applies only for t>0.

(2) As
$$t\to\infty\,, i\to 0\,\to v(\infty)=V_{\text{S}}(\infty)=V_0$$

$$t = 0^+: 0 = A + B$$
,

$$t\to\infty\colon V_0=B\,.$$

i.e.,
$$\mathsf{A} = \mathsf{V}_0\,, \mathsf{B} = -\mathsf{V}_0$$

$$v(t) = V_0 \left[1 - \text{exp}(-t/\tau) \right]$$

(1)
$$v(0^-) = V_S(0^-) = 0 \text{ V}$$

 $v(0^+) \simeq v(0^-) = 0 \text{ V}$

Let $v(t) = A \exp(-t/\tau) + B$, t > 0

Note that we need the condition at 0^+ (and not at 0^-) because Eq. (A) applies only for t > 0.

(A)

(2) As
$$t \to \infty$$
, $i \to 0 \to v(\infty) = V_s(\infty) = V_0$

$$t = 0^+: 0 = A + B$$
,

$$t\to\infty\colon V_0=B\,.$$

i.e.,
$$A = V_0$$
, $B = -V_0$

$$v(t) = V_0 \left[1 - \text{exp}(-t/\tau) \right]$$

(1)
$$\mathbf{v}(0^{-}) = \mathbf{V_S}(0^{-}) = 0 \text{ V}$$

 $\mathbf{v}(0^{+}) \simeq \mathbf{v}(0^{-}) = 0 \text{ V}$

Note that we need the condition at 0^+ (and not at 0^-) because Eq. (A) applies only for t > 0.

(A)

(2) As
$$t \to \infty$$
, $i \to 0 \to v(\infty) = V_s(\infty) = V_0$

Imposing (1) and (2) on Eq. (A), we get

Let $v(t) = A \exp(-t/\tau) + B$, t > 0

$$\mathsf{t} = 0^+ \colon 0 = \mathsf{A} + \mathsf{B} \,,$$

$$t\to\infty\colon V_0=B\,.$$

i.e.,
$$A = V_0$$
 , $B = -V_0$

$$v(t) = V_0 \left[1 - \text{exp}(-t/\tau) \right]$$

Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1)
$$v(0^-) = V_S(0^-) = V_0$$

$$\mathsf{v}(0^+) \simeq \mathsf{v}(0^-) = \mathsf{V}_0$$

Note that we need the condition at 0^+ (and not at 0^-) because Eq. (A) applies only for t>0.

(2) As
$$t \to \infty$$
, $i \to 0 \to v(\infty) = V_S(\infty) = 0$ V

Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1)
$$\mathbf{v}(0^{-}) = \mathbf{V_S}(0^{-}) = 0 \ \mathbf{V}$$

 $\mathbf{v}(0^{+}) \simeq \mathbf{v}(0^{-}) = 0 \ \mathbf{V}$

Note that we need the condition at 0^+ (and not at 0^-) because Eq. (A) applies only for t > 0.

(2) As
$$t \to \infty$$
, $i \to 0 \to v(\infty) = V_s(\infty) = V_0$

Imposing (1) and (2) on Eq. (A), we get

$$t = 0^+$$
: $0 = A + B$,

$$t \to \infty$$
: $V_0 = B$.

i.e.,
$$A = V_0$$
, $B = -V_0$

$$v(t) = V_0 [1 - exp(-t/\tau)]$$

Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1)
$$\mathbf{v}(0^-) = V_{\mathbf{S}}(0^-) = V_0$$

$$\mathsf{v}(0^+) \simeq \mathsf{v}(0^-) = \mathsf{V}_0$$

Note that we need the condition at 0^+ (and not at 0^-) because Eq. (A) applies only for t>0.

(2) As
$$t \to \infty$$
, $i \to 0 \to v(\infty) = V_S(\infty) = 0$ V

$$t = 0^+$$
: $V_0 = A + B$,

$$t \to \infty$$
: $0 = B$.

i.e.,
$$A = V_0$$
, $B = 0$

Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1)
$$\mathbf{v}(0^{-}) = \mathbf{V_S}(0^{-}) = 0 \ \mathbf{V}$$

 $\mathbf{v}(0^{+}) \simeq \mathbf{v}(0^{-}) = 0 \ \mathbf{V}$

Note that we need the condition at 0^+ (and not at 0^-) because Eq. (A) applies only for t > 0.

(2) As
$$t \to \infty$$
, $i \to 0 \to v(\infty) = V_s(\infty) = V_0$

Imposing (1) and (2) on Eq. (A), we get

$$t = 0^+$$
: $0 = A + B$,

$$t \to \infty$$
: $V_0 = B$.

i.e.,
$$A = V_0$$
, $B = -V_0$

$$v(t) = V_0 \left[1 - \exp(-t/\tau) \right]$$

Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1)
$$v(0^-) = V_S(0^-) = V_0$$

$$\mathsf{v}(0^+) \simeq \mathsf{v}(0^-) = \mathsf{V}_0$$

Note that we need the condition at 0^+ (and not at 0^-) because Eq. (A) applies only for t > 0.

(2) As
$$t \to \infty$$
, $i \to 0 \to v(\infty) = V_s(\infty) = 0$ V

$$t = 0^+$$
: $V_0 = A + B$,

$$t \to \infty$$
: $0 = B$.

i.e.,
$$A = V_0$$
, $B = 0$

$$v(t) = V_0 \exp(-t/\tau)$$

Compute i(t), t>0.

Compute i(t), t > 0.

$$\begin{split} \text{(A)} \quad & \text{i}(t) = C\,\frac{d}{dt}\,V_0\,[1-\text{exp}(-t/\tau)] \\ \\ &= \frac{CV_0}{\tau}\,\text{exp}(-t/\tau) = \frac{V_0}{R}\,\text{exp}(-t/\tau) \end{split}$$

Compute i(t), t > 0.

$$\begin{split} (A) \quad i(t) &= C \frac{d}{dt} \, V_0 \, [1 - exp(-t/\tau)] \\ &= \frac{C V_0}{\tau} \, exp(-t/\tau) = \frac{V_0}{R} \, exp(-t/\tau) \end{split}$$

(B) Let
$$i(t) = A' \exp(-t/\tau) + B'$$
, $t > 0$.

$$\mathsf{t} = 0^+ \colon \mathsf{v} = 0 \,, \ \mathsf{V_S} = \mathsf{V}_0 \, \Rightarrow \mathsf{i}(0^+) = \mathsf{V}_0/\mathsf{R} \,.$$

$$t \to \infty$$
: $i(t) = 0$.

Using these conditions, we obtain

$$\mathsf{A}' = \frac{\mathsf{V}_0}{\mathsf{R}}, \ \mathsf{B}' = 0 \ \Rightarrow \mathsf{i}(\mathsf{t}) = \frac{\mathsf{V}_0}{\mathsf{R}} \exp(-\mathsf{t}/\tau)$$

Compute i(t), t > 0.

$$\begin{split} (A) \quad i(t) &= C \frac{d}{dt} \, V_0 \, [1 - exp(-t/\tau)] \\ &= \frac{C V_0}{\tau} \, exp(-t/\tau) = \frac{V_0}{R} \, exp(-t/\tau) \end{split}$$

(B) Let
$$i(t) = A' \exp(-t/\tau) + B'$$
, $t > 0$.

$$\mathsf{t} = 0^+ \colon \mathsf{v} = 0 \,, \ \mathsf{V_S} = \mathsf{V}_0 \, \Rightarrow \mathsf{i}(0^+) = \mathsf{V}_0/\mathsf{R} \,.$$

$$t \to \infty$$
: $i(t) = 0$.

Using these conditions, we obtain

$$\mathsf{A}' = \frac{\mathsf{V}_0}{\mathsf{R}} \,, \,\, \mathsf{B}' = 0 \, \Rightarrow \mathsf{i}(\mathsf{t}) = \frac{\mathsf{V}_0}{\mathsf{R}} \exp(-\mathsf{t}/\tau)$$

Compute i(t), t>0.

Compute i(t), t > 0.

$$\begin{split} (A) \quad i(t) &= C \frac{d}{dt} \, V_0 \, [1 - exp(-t/\tau)] \\ &= \frac{C V_0}{\tau} \, exp(-t/\tau) = \frac{V_0}{R} \, exp(-t/\tau) \end{split}$$

(B) Let
$$i(t) = A' \exp(-t/\tau) + B'$$
, $t > 0$.

$$\mathsf{t} = 0^+ \colon \mathsf{v} = 0 \,, \ \mathsf{V_S} = \mathsf{V}_0 \, \Rightarrow \mathsf{i}(0^+) = \mathsf{V}_0/\mathsf{R} \,.$$

$$t \to \infty$$
: $i(t) = 0$.

Using these conditions, we obtain

$$\mathsf{A}' = \frac{\mathsf{V}_0}{\mathsf{R}} \,, \,\, \mathsf{B}' = 0 \, \Rightarrow \mathsf{i}(\mathsf{t}) = \frac{\mathsf{V}_0}{\mathsf{R}} \exp(-\mathsf{t}/\tau)$$

Compute i(t), t > 0.

$$\begin{split} \text{(A)} \quad & i(t) = C \, \frac{d}{dt} \, V_0 \left[exp(-t/\tau) \right] \\ \\ &= - \frac{C V_0}{\tau} \, exp(-t/\tau) = - \frac{V_0}{R} \, exp(-t/\tau) \end{split}$$

Compute i(t), t > 0.

$$\begin{split} (A) \quad i(t) &= C \frac{d}{dt} \, V_0 \, [1 - exp(-t/\tau)] \\ &= \frac{C V_0}{\tau} \, exp(-t/\tau) = \frac{V_0}{R} \, exp(-t/\tau) \end{split}$$

(B) Let
$$i(t) = A' \exp(-t/\tau) + B'$$
, $t > 0$.

$$\mathsf{t} = 0^+ \colon \mathsf{v} = 0 \,, \ \mathsf{V_S} = \mathsf{V}_0 \, \Rightarrow \mathsf{i}(0^+) = \mathsf{V}_0/\mathsf{R} \,.$$

$$t \to \infty$$
: $i(t) = 0$.

Using these conditions, we obtain

$$\mathsf{A}' = \frac{\mathsf{V}_0}{\mathsf{R}} \,, \,\, \mathsf{B}' = 0 \, \Rightarrow \mathsf{i}(\mathsf{t}) = \frac{\mathsf{V}_0}{\mathsf{R}} \exp(-\mathsf{t}/\tau)$$

Compute i(t), t > 0.

$$\begin{split} \text{(A)} \quad & i(t) = C \frac{d}{dt} \, V_0 \left[\text{exp}(-t/\tau) \right] \\ \\ &= -\frac{C V_0}{\tau} \, \text{exp}(-t/\tau) = -\frac{V_0}{R} \, \text{exp}(-t/\tau) \end{split}$$

(B) Let
$$i(t) = A' \exp(-t/\tau) + B'$$
, $t > 0$.

$$t=0^+ \colon v=V_0 \,, \ V_S=0 \, \Rightarrow i(0^+)=-V_0/R \,.$$

$$t \to \infty$$
: $i(t) = 0$.

Using these conditions, we obtain

$$\mathsf{A}' = -\frac{\mathsf{V}_0}{\mathsf{R}} \,, \,\, \mathsf{B}' = 0 \, \Rightarrow \mathsf{i}(\mathsf{t}) = -\frac{\mathsf{V}_0}{\mathsf{R}} \exp(-\mathsf{t}/\tau)$$

X	e ^{-x}	$1-e^{-x}$
0.0	1.0	0.0
1.0	0.3679	0.6321
2.0	0.1353	0.8647
3.0	4.9787×10^{-2}	0.9502
4.0	1.8315×10^{-2}	0.9817
5.0	6.7379×10^{-3}	0.9933

X	e-x	$1-e^{-x}$
0.0	1.0	0.0
1.0	0.3679	0.6321
2.0	0.1353	0.8647
3.0	4.9787×10^{-2}	0.9502
4.0	1.8315×10^{-2}	0.9817
5.0	6.7379×10^{-3}	0.9933

* For $x = 5, \ e^{-x} \simeq 0, \ 1 - e^{-x} \simeq 1.$

X	e ^{-x}	$1-e^{-x}$
0.0	1.0	0.0
1.0	0.3679	0.6321
2.0	0.1353	0.8647
3.0	4.9787×10^{-2}	0.9502
4.0	1.8315×10^{-2}	0.9817
5.0	6.7379×10^{-3}	0.9933

- * For x = 5, $e^{-x} \simeq 0$, $1 e^{-x} \simeq 1$.
- * In RC circuits, $x=t/\tau \Rightarrow$ When $t=5\,\tau$, the charging (or discharging) process is almost complete.

X	e ^{-x}	$1-e^{-x}$
0.0	1.0	0.0
1.0	0.3679	0.6321
2.0	0.1353	0.8647
3.0	4.9787×10^{-2}	0.9502
4.0	1.8315×10^{-2}	0.9817
5.0	6.7379×10^{-3}	0.9933

- * For x = 5, $e^{-x} \simeq 0$, $1 e^{-x} \simeq 1$.
- * In RC circuits, $x=t/\tau \Rightarrow$ When $t=5\,\tau$, the charging (or discharging) process is almost complete.

2

time (msec)

5

0

0

-1

There are three intervals of constant V_S :

- (1) $t < t_0$
- $\text{(2) } t_0 < t < t_1$
- (3) $t > t_1$

There are three intervals of constant V_S :

- (1) $t < t_0$
- (2) $t_0 < t < t_1$
- (3) $t > t_1$

 R_{Th} seen by L is the same in all intervals:

There are three intervals of constant V_S :

- (1) $t < t_0$
- (2) $t_0 < t < t_1$
- (3) $t > t_1$

 R_{Th} seen by L is the same in all intervals:

$$\begin{aligned} & \mathsf{R}_1 = 10\,\Omega \\ & \mathsf{R}_2 = 40\,\Omega \\ & \mathsf{L} = 0.8\,\mathsf{H} \\ & \mathsf{t}_0 = 0 \\ & \mathsf{t}_1 = 0.1\,\mathsf{s} \\ \end{aligned}$$
 At $\mathsf{t} = \mathsf{t}_0^-, \, \mathsf{v} = 0\,\,\mathsf{V}, \, \mathsf{V}_\mathsf{S} = 0\,\,\mathsf{V}\,.$

$$\begin{aligned} &\text{At } t = t_0^-, \ v = 0 \ V, \ V_s = 0 \ V \, , \\ &\Rightarrow i(t_0^+) = 0 \ A \Rightarrow i(t_0^+) = 0 \ A \, . \end{aligned}$$

There are three intervals of constant V_S :

- (1) $t < t_0$
- (2) $t_0 < t < t_1$
- (3) $t > t_1$

 R_{Th} seen by L is the same in all intervals:

$$\begin{aligned} & \mathsf{R}_1 = 10\,\Omega \\ & \mathsf{R}_2 = 40\,\Omega \\ & \mathsf{L} = 0.8\,\mathsf{H} \\ & \mathsf{t}_0 = \mathsf{0} \\ & \mathsf{t}_1 = 0.1\,\mathsf{s} \end{aligned}$$

$$\begin{array}{l} \text{At } t = t_0^-, \, v = 0 \; V, \, V_S = 0 \; V \, . \\ \Rightarrow i(t_0^-) = 0 \; A \Rightarrow i(t_0^+) = 0 \; A \, . \end{array}$$

If V_s did not change at $t=t_1$, we would have

There are three intervals of constant V_s :

- (1) $t < t_0$
- (2) $t_0 < t < t_1$
- (3) $t > t_1$

 R_{Th} seen by L is the same in all intervals:

$$\begin{aligned} & \mathsf{R}_1 = 10\,\Omega \\ & \mathsf{R}_2 = 40\,\Omega \\ & \mathsf{L} = 0.8\,\mathsf{H} \\ & \mathsf{t}_0 = \mathsf{0} \\ & \mathsf{t}_1 = 0.1\,\mathsf{s} \end{aligned}$$

$$\begin{array}{l} \text{At } t = t_0^-, \, v = 0 \, \, V, \, \, V_S = 0 \, \, V \, . \\ \Rightarrow i(t_0^-) = 0 \, \, A \Rightarrow i(t_0^+) = 0 \, \, A \, . \end{array}$$

If V_s did not change at $t=t_1$, we would have

$$v(\infty)=0 \ \mathsf{V}, \ \mathsf{i}(\infty)=10 \ \mathsf{V}/10 \ \Omega=1 \ \mathsf{A} \,.$$

Using $i(t_0^+)$ and $i(\infty)$, we can obtain $i(t),\ t>0$ (See next slide).

 $\begin{aligned} & \mathsf{R}_1 = 10\,\Omega \\ & \mathsf{R}_2 = 40\,\Omega \\ & \mathsf{L} = 0.8\,\mathsf{H} \\ & \mathsf{t}_0 = 0 \\ & \mathsf{t}_1 = 0.1\,\mathsf{s} \end{aligned}$

In reality, V_S changes at $t=t_1$, and we need to work out the solution for $t>t_1$ separately.

$$\begin{aligned} & \text{R}_1 = 10\,\Omega \\ & \text{R}_2 = 40\,\Omega \\ & \text{L} = 0.8\,\text{H} \\ & \text{t}_0 = 0 \\ & \text{t}_1 = 0.1\,\text{s} \end{aligned}$$

 $t=0^-\colon$ capacitor is an open circuit, $\Rightarrow i(0^-)=6 \ V/(5 \ k+1 \ k)=1 \ mA.$

 $t=0^-\colon$ capacitor is an open circuit, \Rightarrow i(0^-) = 6 V/(5 k+1 k) = 1 mA. vc(0^-) = 6 V - 1 mA \times R₂ = 5 V \Rightarrow vc(0^+) = 5 V.

$$\begin{split} t &= 0^- \text{: capacitor is an open circuit, } \Rightarrow i(0^-) = 6 \text{ V}/(5 \text{ k} + 1 \text{ k}) = 1 \text{ mA.} \\ v_C(0^-) &= 6 \text{ V} - 1 \text{ mA} \times R_2 = 5 \text{ V} \Rightarrow v_C(0^+) = 5 \text{ V.} \\ &\Rightarrow i(0^+) = 5 \text{ V}/(5 \text{ k} + 5 \text{ k}) = 0.5 \text{ mA.} \end{split}$$

$$\begin{split} t &= 0^- \text{: capacitor is an open circuit, } \Rightarrow i(0^-) = 6 \text{ V}/(5 \text{ k} + 1 \text{ k}) = 1 \text{ mA.} \\ v_C(0^-) &= 6 \text{ V} - 1 \text{ mA} \times R_2 = 5 \text{ V} \Rightarrow v_C(0^+) = 5 \text{ V.} \\ &\Rightarrow i(0^+) = 5 \text{ V}/(5 \text{ k} + 5 \text{ k}) = 0.5 \text{ mA.} \end{split}$$

Let i(t) = A exp(-t/au) + B for t > 0, with au = 10 k × 5 μ F = 50 ms.

$$\begin{split} t &= 0^- \text{: capacitor is an open circuit, } \Rightarrow i(0^-) = 6 \text{ V}/(5 \text{ k} + 1 \text{ k}) = 1 \text{ mA.} \\ v_C(0^-) &= 6 \text{ V} - 1 \text{ mA} \times R_2 = 5 \text{ V} \Rightarrow v_C(0^+) = 5 \text{ V.} \\ &\Rightarrow i(0^+) = 5 \text{ V}/(5 \text{ k} + 5 \text{ k}) = 0.5 \text{ mA.} \end{split}$$

Let i(t) = A exp(-t/
$$au$$
) + B for t > 0, with au = 10 k × 5 μ F = 50 ms.

Using $i(0^+)$ and $i(\infty)=0$ A, we get

i(t) = $0.5 \exp(-t/\tau) \text{ mA}$.

 $t=0^-\colon$ capacitor is an open circuit, \Rightarrow i(0^-) = 6 V/(5 k+1 k) = 1 mA. $v_C(0^-)=6$ V -1 mA \times R2 = 5 V \Rightarrow v_C(0^+) = 5 V.

$$\Rightarrow i(0^+) = 5 \text{ V}/(5 \text{ k} + 5 \text{ k}) = 0.5 \text{ mA}.$$

Let i(t) = A exp(-t/
$$au$$
) + B for t > 0, with au = 10 k × 5 μ F = 50 ms.

Using $i(0^+)$ and $i(\infty)=0$ A, we get

i(t) = $0.5 \exp(-t/\tau) \text{ mA}$.

 $t=0^-\colon$ capacitor is an open circuit, \Rightarrow i(0^-) = 6 V/(5 k+1 k) = 1 mA. vc(0^-) = 6 V - 1 mA \times R₂ = 5 V \Rightarrow vc(0^+) = 5 V.

$$\Rightarrow i(0^+) = 5 \text{ V}/(5 \text{ k} + 5 \text{ k}) = 0.5 \text{ mA}.$$

Let i(t) = A exp(-t/
$$au$$
) + B for t > 0, with au = 10 k × 5 μ F = 50 ms.

Using $i(0^+)$ and $i(\infty)=0$ A, we get

i(t) = $0.5 \exp(-t/\tau) \text{ mA}$.

 $t=0^-$: capacitor is an open circuit, $\Rightarrow i(0^-)=6 \ V/(5 \ k+1 \ k)=1 \ mA$. $v_C(0^-) = 6 \ V - 1 \ mA \times R_2 = 5 \ V \Rightarrow v_C(0^+) = 5 \ V.$

$$\Rightarrow$$
 i(0⁺) = 5 V/(5 k + 5 k) = 0.5 mA.

Let i(t) = A exp(-t/
$$au$$
) + B for t > 0, with au = 10 k × 5 μ F = 50 ms.

Using $i(0^+)$ and $i(\infty) = 0$ A, we get

$$i(t) = 0.5 \exp(-t/\tau) \text{ mA}.$$

(SEQUEL file: ee101 rc2.sqproj)

M. B. Patil, IIT Bombay

* Given $v_c(0) = 0$ V, find $v_c(t)$ for t > 0. Using this $v_c(t)$, find i_1 , i_2 , i_c for t > 0. Plot v_c , i_1 , i_2 , i_c versus t.

- * Given $v_c(0) = 0$ V, find $v_c(t)$ for t > 0. Using this $v_c(t)$, find i_1 , i_2 , i_c for t > 0. Plot v_c , i_1 , i_2 , i_c versus t.
- * Find i_1 , i_2 , i_c directly (i.e., without getting v_c) by finding the initial and final conditions for each of them $(i_1(0^+) \text{ and } i_1(\infty), \text{ etc.})$ and then using them to compute the coefficients in the general expression, $x(t) = A \exp(-t/\tau) + B$.

- * Given $v_c(0) = 0$ V, find $v_c(t)$ for t > 0. Using this $v_c(t)$, find i_1 , i_2 , i_c for t > 0. Plot v_c , i_1 , i_2 , i_c versus t.
- * Find i_1 , i_2 , i_c directly (i.e., without getting v_c) by finding the initial and final conditions for each of them $(i_1(0^+) \text{ and } i_1(\infty), \text{ etc.})$ and then using them to compute the coefficients in the general expression, $x(t) = A \exp(-t/\tau) + B$.
- * Verify your results with SEQUEL (file: ee101_rc3.sqproj).

* Find $v_c(0^-)$, $v_c(\infty)$.

- * Find $v_c(0^-)$, $v_c(\infty)$.
- * Find R_{Th} as seen by the capacitor for t > 0.

- * Find $v_c(0^-)$, $v_c(\infty)$.
- * Find R_{Th} as seen by the capacitor for t > 0.
- * Solve for $v_c(t)$ and $i_1(t)$, t > 0.

- * Find $v_c(0^-)$, $v_c(\infty)$.
- * Find R_{Th} as seen by the capacitor for t > 0.
- * Solve for $v_c(t)$ and $i_1(t)$, t > 0.
- * Verify your results with SEQUEL (file: ee101_rc4.sqproj).

* Find $i(0^-)$, $i(\infty)$.

- * Find $i(0^-)$, $i(\infty)$.
- * Find R_{Th} as seen by the inductor for t > 0.

- * Find $i(0^-)$, $i(\infty)$.
- * Find R_{Th} as seen by the inductor for t > 0.
- * Solve for i(t), t > 0.

- * Find $i(0^-)$, $i(\infty)$.
- * Find R_{Th} as seen by the inductor for t > 0.
- * Solve for i(t), t > 0.
- * Verify your results with SEQUEL (file: ee101_rl2.sqproj).