2.2. Validating the Quality of the DeepSeekMath Corpus

We run pre-training experiments to investigate how the DeepSeekMath Corpus is compared with the recently released math-training corpora:

- MathPile (Wang et al., 2023c): a multi-source corpus (8.9B tokens) aggregated from textbooks, Wikipedia, ProofWiki, CommonCrawl, StackExchange, and arXiv, with the majority (over 85%) sourced from arXiv;
- **OpenWebMath** (Paster et al., 2023): CommonCrawl data filtered for mathematical content, totaling 13.6B tokens;
- **Proof-Pile-2** (Azerbayev et al., 2023): a mathematical corpus consisting of OpenWeb-Math, AlgebraicStack (10.3B tokens of mathematical code), and arXiv papers (28.0B tokens). When experimenting on Proof-Pile-2, we follow Azerbayev et al. (2023) to use an arXiv:Web:Code ratio of 2:4:1.

2.2.1. Training Setting

We apply math training to a general pre-trained language model with 1.3B parameters, which shares the same framework as the DeepSeek LLMs (DeepSeek-AI, 2024), denoted as DeepSeek-LLM 1.3B. We separately train a model on each mathematical corpus for 150B tokens. All experiments are conducted using the efficient and light-weight HAI-LLM (High-flyer, 2023) training framework. Following the training practice of DeepSeek LLMs, we use the AdamW optimizer (Loshchilov and Hutter, 2017) with $\beta_1 = 0.9$, $\beta_2 = 0.95$, and weight_decay = 0.1, along with a multi-step learning rate schedule where the learning rate reaches the peak after 2,000 warmup steps, decreases to its 31.6% after 80% of the training process, and further decreases to 10.0% of the peak after 90% of the training process. We set the maximum value of learning rate to 5.3e-4, and use a batch size of 4M tokens with a 4K context length.

Math Corpus	Size	English Benchmarks					Chinese Benchmarks		
		GSM8K	MATH	OCW	SAT	MMLU STEM	СМАТН	Gaokao MathCloze	Gaokao MathQA
No Math Training	N/A	2.9%	3.0%	2.9%	15.6%	19.5%	12.3%	0.8%	17.9%
MathPile	8.9B	2.7%	3.3%	2.2%	12.5%	15.7%	1.2%	0.0%	2.8%
OpenWebMath	13.6B	11.5%	8.9%	3.7%	31.3%	29.6%	16.8%	0.0%	14.2%
Proof-Pile-2	51.9B	14.3%	11.2%	3.7%	43.8%	29.2%	19.9%	5.1%	11.7%
DeepSeekMath Corpus	120.2B	23.8%	13.6%	4.8%	56.3%	33.1%	41.5%	5.9%	23.6%

Table 1 | Performance of DeepSeek-LLM 1.3B trained on different mathematical corpora, evaluated using few-shot chain-of-thought prompting. Corpus sizes are calculated using our tokenizer with a vocabulary size of 100K.

2.2.2. Evaluation Results

The DeepSeekMath Corpus is of high quality, covers multilingual mathematical content, and is the largest in size.

• **High-quality**: We evaluate downstream performance on 8 mathematical benchmarks using few-shot chain-of-thought prompting Wei et al. (2022). As shown in Table 1, there is a clear performance lead of the model trained on the DeepSeekMath Corpus. Figure 3 shows that the model trained on the DeepSeekMath Corpus demonstrates better performance than