CS 331: Artificial Intelligence Propositional Logic I

Knowledge-based Agents

- Can represent knowledge
- And reason with this knowledge
- How is this different from the knowledge used by problem-specific agents?
 - More general
 - More flexible

2

Outline

- 1. Knowledge-based Agents
- 2. The Wumpus World
- 3. Logic

3

Knowledge-based Agents

- Knowledge of problem solving agents is specific and inflexible
- Knowledge-based agents can benefit from knowledge expressed in very general forms, combining information in different ways to suit different purposes
- Knowledge-based agents can combine general knowledge with current percepts to infer hidden aspects of the current state

4

Knowledge-based Agents

Flexibility of knowledge-based agents:

- Accept new tasks in the form of explicitly described goals
- Achieve competence quickly by being told or learning new knowledge about the environment
- Adapt to changes in the environment by updating the relevant knowledge

5

Knowledge is definite

- · Knowledge of logical agents is always definite
- That is, each proposition is entirely true or entirely false
- Agent may be agnostic about some propositions
- · Logic doesn't handle uncertainty well

The Knowledge Base (KB) A knowledge base is a set of "sentences" Each sentence is expressed in a knowledge representation language and represents some assertion about the world

The Wumpus World

- Wumpus eats anyone that enters its room
- Wumpus can be shot by an agent, but agent has one arrow
- Pits trap the agent (but not the wumpus)
- Agent's goal is to pick up the gold

14

The Wumpus World

· Performance measure:

- +1000 for picking up gold, -1000 for death (meeting a live wumpus or falling into a pit)
- -1 for each action taken, -10 for using arrow

• Environment:

- 4x4 grid of rooms
- Agent starts in (1,1) and faces right
- Geography determined at the start:
 - · Gold and wumpus locations chosen randomly
 - Each square other than start can be a pit with probability 0.2

15

The Wumpus World

· Actuators:

- Movement:
 - · Agent can move forward
 - Turn 90 degrees left or right
- Grab: pick up an object in same square
- Shoot: fire arrow in straight line in the direction agent is facing

16

The Wumpus World

· Sensors:

- Returns a 5-tuple of five symbols eg. [stench, breeze, glitter, bump, scream] (note that in this 5-tuple, all five things are present. We indicate absence with the value None)
- In squares adjacent to the wumpus, agent perceives a stench
- In squares adjacent to a pit, agent perceives a breeze
- In squares containing gold, agent perceives a glitter
- When agent walks into a wall, it perceives a bump
- When wumpus is killed, it emits a woeful scream that is perceived anywhere

17

The Wumpus World

- Biggest challenge: Agent is ignorant of the configuration of the 4x4 world
- Needs logical reasoning of percepts in order to overcome this ignorance
- Note: retrieving gold may not be possible due to randomly generated location of pits
- Initial knowledge base contains:
 - Agent knows it is in [1,1]
 - Agent knows it is a safe square

The Wumpus World Environment **Properties**

- Fully or Partially observable?
- · Deterministic or stochastic?
- Episodic or sequential?
- Static or dynamic?
- Discrete or continuous?
- Single agent or multiagent?

Wumpus World Example A Α

19

Wumpus World Example

A = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit
S = Stench
V = Visited
W = Wumpus

1st percept is:

[None, None, None, None, None]

(Corresponding to [Stench, Breeze, Glitter, Bump, Scream])

Agent concludes squares [1,2], [2,1] are safe. We mark them with OK. A cautious agent will move only to a square that it knows is OK.

Agent now moves to [2,1]

21

Wumpus World Example

2nd percept is:

[None, Breeze, None, None, None]

Must be a pit at [2,2] or [3,1] or both. We mark this with a P?.

Only one square that is OK, so the agent goes back to [1,1] and then to [1,2]

A = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit
S = Stench
V = Visited
W = Wumpus

22

20

Wumpus World Example

A = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit
S = Stench
V = Visited
W = Wumpus

3rd percept is:

[Stench, None, None, None, None]

Wumpus must be nearby. Can't be in [1,1] (by rules of the game) or [2,2] (otherwise agent would have detected a stench at

Therefore, Wumpus must be in [1,3]. Indicate this by W!.

Lack of breeze in [1,2] means no pit in [2,2], so pit must be in [3,1].

23

Wumpus World Example

Note the difficulty of this inference:

- · Combines knowledge gained at different times and at different places.
- · Relies on the lack of a percept to make one crucial step

At this point, the agent moves to [2,2].

A = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit
S = Stench
V = Visited
W = Wumpus

Wumpus World Example

1,4	2,4 P?	3,4	4,4
1,3 w!	S G B	3,3 P?	4,3
1,2 s	2,2	3,2	4,2
v	v		
ок	OK		
1,1	2,1 B	3,1 P!	4,1
v	v		
oĸ	OK		

We'll skip the agent's state of knowledge at [2,2] and assume it goes to [2,3].

Agent detects a glitter in [2,3] so it grabs the gold and ends the game

Note: In each case where the agent draws a conclusion from the available information, that conclusion is guaranteed to be correct if the available information is correct

25

Logic

Logic must define:

- 1. Syntax of the representation language
 - Symbols, rules, legal configurations
- 2. Semantics of the representation language
 - Loosely speaking, this is the "meaning" of the
 - Defines the truth of each sentence with respect to each possible world
 - Everything is either true or false, no in between

26

Models

- We will use the word model instead of "possible world"
- "m is a model of α " means that sentence α is true in model m
- Models are mathematical abstractions which fix the truth or falsehood of every relevant sentence
- Think of it as the possible assignments of values to the variables
 - E.g. the possible models for x + y = 4 are all possible assignments of numbers to x and y such that they add

27

Entailment

 $\alpha \models \beta$ means α entails β i.e. β follows logically from α , where α and β are sentences

Mathematically, $\alpha \models \beta$ if and only if in every model in which α is true, β is also true.

Another way: if α is true, then β must also be true.

Entailment Applied to the Wumpus World

- Suppose the agent moves to [2,1]
- Agent knows there is nothing in [1,1] and a breeze in [2,1]
- These percepts, along with the agent's knowledge of the rules of the wumpus world constitute the KB
- Given this KB, agent is interested if the adjacent squares [1,2], [2,2] and [3,1] contain pits.

Entailment Applied to the Wumpus World 2³ = 8 possible models because [1,2], [2,2] and [3.1] can take each take values true or false that there is a pit there The 3 models inside the line marked KB are those in which the KB is true 30

Logical inference

- Entailment can be applied to derive conclusions (we call this carrying out logical inference)
- Model checking: enumerates all possible models to check that α is true in all models in which KB is true
- If an inference algorithm i can derive α from the KB, we write KB $|-i\alpha|$
- The above is pronounced "α is derived from KB by i" or "i derives α from KB"

33

Soundness

- An inference algorithm that derives only entailed sentences is called sound or truthpreserving
- Soundness is a good thing!
- If an inference algorithm is unsound, you can make things up as it goes along and derive basically anything it wants to

34

Completeness

- An inference algorithm is complete if it can derive any sentence that is entailed
- For some KBs, the number of sentences can be infinite
- Can't exhaustively check all of them, need to rely on proving completeness

35

In Summary

- Soundness: *i* is sound if whenever KB \mid $_{i}\alpha$, it is also true that KB \mid = α
- Completeness: *i* is complete if whenever *KB* $\models \alpha$, it is also true that *KB* $\models \alpha$

Correspondence to the Real World

If the KB is true in the real world, then any sentence α derived from the KB by a sound inference procedure is also true in the real world.

Grounding

- Defined as the connection, if any, between logical reasoning processes and the real environment in which the agent exists
- How do we know that the KB is true in the real world?
- · Deep philosophical question
- We'll respond with the following:
 - Rely on sensors to accurately perceive the world
 - Learning produces general rules (derived from perceptual experience). Learning can be fallible but it has the potential to fix its mistakes.

38

Things you should know

- Properties of a knowledge-based agent
- What a knowledge-base is
- What entailment and inference mean
- Desirable properties of inference algorithms such as soundness and completeness