88369 פתרון תרגיל 1 - חקר ביצועים

.(1

: משתני ההחלטה

. מטר קוב לשעה מי נהר. X_2 כמות מטר קוב לשעה מי נהר. כמות מטר קוב לשעה מי נהר. כמות מטר קוב לשעה בונקציית המטרה ב $Z=3X_1+1.5X_2$

ניסוח הבעיה כבעיית תכנון לינארי:

$$\begin{aligned} & \textit{Min } Z = 3X_1 + 1.5X_2 \\ & \textit{s.t.} \\ & X_1 + X_2 \ge 1800 \\ & X_1 \le 1600 \\ & X_2 \le 1500 \\ & 195X_1 + 125X_2 \le 170(X_1 + X_2) \Rightarrow & 25X_1 - 45X_2 \le 0 \\ & 30X_1 + 50X_2 \le 40(X_1 + X_2) \Rightarrow & -10X_1 + 10X_2 \le 0 \\ & X_1, X_2 \ge 0 \end{aligned}$$

(!) נשים לב שחייבים לכלול את אילוץ אי-השליליות (האילוץ האחרון) כחלק מניסוח הבעיה.

.(2

: משתני ההחלטה

כמות הגידול i (1=חסה, 2= עגבניה, 3=מלפפון) במושב j (1=א', 2=ב', 3=ב'). כלומר:

. כמות גידול החסה במושב אי. $-X_{11}$

.ים במושב ביות גידול החסה במושב ביי $-X_{12}$

...

. כמות גידול העגבניה במושב גיי $-X_{23}$

וכוי.

: פונקציית המטרה

$$Z = 400 \left(X_{11} + X_{12} + X_{13} \right) + 300 \left(X_{21} + X_{22} + X_{23} \right) + 100 \left(X_{31} + X_{32} + X_{33} \right)$$
 סוג הבעיה :
$$Max \ Z$$

: *האיכוצים*

:אילוצי שטח

$$X_{11} + X_{21} + X_{31} \le 400$$

$$X_{21} + X_{22} + X_{23} \le 600$$

$$X_{31} + X_{32} + X_{33} \le 300$$

: אילוצי מים

$$5X_{11} + 4X_{21} + 3X_{31} \le 1500$$

$$5X_{12} + 4X_{22} + 3X_{23} \le 2000$$

$$5X_{13} + 4X_{23} + 3X_{33} \le 900$$

$$:$$
אילוצי גידול:
$$X_{11} + X_{12} + X_{13} \le 700$$

$$X_{21} + X_{22} + X_{23} \le 800$$

$$X_{31} + X_{32} + X_{33} \le 300$$

: אילוצי אי-שליליות

$$X_{ij} \ge 0$$
 $\forall i, j = 1, 2, 3$

: התחום הנקבע עייי האילוצים

		$: Z = 4X_1$	+3X ₂	רה היא	וני המטו	כאשר פ	רון גרפי,	א). פת		
	max 2=	1x,+3x ₂								
		Pinn quae	ψ'n	æ z	וקב	כ ע	n de	kst _w		
E	3-15x2= 3x2-			. 1 1			<u></u> 			
<u> </u>	9€x,= 4 → 1	ر ا ق ا ا و	K,=.	ک،ا -3	・間書き	3 =	9.23			
-i -i -i	26 + 4·0.23+	3·1ä = 6.458		- i		1 1	1 1	<u> </u>		
F:	X,=0 ⇒ 0	'= = = x - 1	=>	2 3 X2=	1.=>	×2₹	1.5			
	2(F)>40+3·	.5= 45			_ _			· · · · · · · · · · · · · · · · · · ·		
G:	2- 2x2= 3-115	i X 2				i·-	ا ; إ ا ــ. و 	! ! !		
15	X ₂ =4	⇒ x,= 2-	7.1	= 1	. . .		1 1 1			
	26)= 41	5+3.1 - 9					<u> </u>			
I	X,=0 , X,	=	2	(L)=	0	- 1 1.				
H:	X ₂ =0	X,=2		_				<u> </u>		
	₽ (H)= 4·2	+0 = 8		_ _	_	_				

Z(G)=9:G בדיקה מגלה שהמקסימום מתקבל בנקודה

 $Z = 4X_1 + 6X_2$ ב). פתרון גרפי, כאשר פוני המטרה היא

Purple ce in a letter six air air air t=12 , well, as all every existing the second every exist.

המסקנה : אנו במצב של ריבוי פתרונות (אינסוף פתרונות). במסקנה : אנו במצב של ריבוי פתרונות (אינסוף פתרונות). Z(E)=Z(G)=12 : המקסימום של פונקציית המטרה הוא על הקטע המחבר בין הנקודות : Z(E)=Z(G)=12

4). פתרון בעזרת אלגוריתם הסימפלקס.הוספת משתני סרק (חסר/עודף):

Max
$$Z = 3X_1 + 6X_2 + 2X_3$$

s.t.
 $3X_1 + 4X_2 + X_3 + S_1 = 20$
 $X_1 + 3X_2 + 2X_3 + S_2 = 10$

 $X_1, X_2, X_3, S_1, S_2 \ge 0$

טבלת הסימלפקס (Tableau)

משתני	Z	X_1	(i)X ₂	X ₃	S_1	S ₂	אגף	יחס	מסי
הבסיס		-	., -	,	_	_	ימין		שורה
Z	1	-3	-6	-2	0	0	0		R_0
S_1	0	3	4	1	1	0	20	20/4=5	R_1
S ₂	0	1	(*)3	2	0	1	10	10/3=3 1/3 (o)	R_2

(i) – משתנה נכנס. (v) – יוצא. (*) – איבר איר (פיבוט)

 \mathbf{S}_2 : משתנה יוצא \mathbf{X}_2 : משתנה ככנס <=

פעולות השורה (הערה: כדאי להכניס לטבלה את פעולות השורה, הן הופרדו כאן מטעמים טכניים)

$$1/3R_2 \to R_2$$

$$R_0 + 6R_2 \to R_0$$

$$R_1 - 4R_2 \to R_1$$

משתני הבסיס	Z	(i)X ₁	X ₂	X ₃	S_1	S_2	אגף ימין	יחס	מסי שורה
Z	1	-1	0	2	0	2	20		R_0
S_1	0	(*)5/3	0	-5/3	1	-1/3	6 2/3	4(o)	R_1
X_2	0	1/3	1	2/3	0	1/3	3 1/3	10	R_2

 S_1 : משתנה יוצא $X_1:$ משתנה ככנס <=

פעולות השורה (הערה: כדאי להכניס לטבלה את פעולות השורה, הן הופרדו כאן מטעמים טכניים)

$$3/5 R_1 \rightarrow R_1$$

$$R_0 + R_1 \rightarrow R_0$$

$$-(1/3) R_1 + R_2 \rightarrow R_2$$

משתני הבסיס	Z	(i)X ₁	X_2	X ₃	S_1	S ₂	אגף ימיו	יחס	מסי שורה
Z	1	0	0	1	3/5	1 1/5	24		R_0
X_1	0	1	0	-1	3/5	-4/5	4	-	R_1
X_2	0	0	1	1 2/9	-1/5	3/5	2	-	R_2

לא נותרו איברים שלילייים בשורת פונקציית המטרה, לכן קיבלנו פתרון אופטימלי.

$$Z=24$$

$$X_{_{1}}=4, X_{_{2}}=2 \qquad \qquad \left(X_{_{3}}, S_{_{1}}, S_{_{2}}=0\right):$$
ערך הפתרון האופטימלי

פתרון בעזרת אלגוריתם הסימפלקס.
 הוספת משתני סרק (חסר/עודף):

$$\begin{aligned} & \textit{Max} & Z = 4X_1 + 3X_2 \\ & \textit{s.t.} \\ & 2X_1 + 3X_2 + S_1 = 6 \\ & -3X_1 + 2X_2 + S_2 = 3 \\ & 2X_1 + S_3 = 5 \\ & 2X_1 + X_2 + S_4 = 4 \\ & X_1, X_2, S_1, S_2, S_3, S_4 \ge 0 \end{aligned}$$

טבלת הסימלפקס (Tableau)

משתני	Z	(i)X ₁	X_2	S_1	S_2	S_3	S ₄	אגף	יחס
הבסיס								ימין	
Z	1	-4	-3	0	0	0	0	0	
S_1	0	2	3	1	0	0	0	6	6/2=3
S_2	0	-3	2	0	1	0	0	3	-
S_3	0	2	0	0	0	1	0	5	5/2=2.5
S_4	0	(*)2	1	0	0	0	1	4	4/2=2(o)

 S_4 : משתנה יוצא $X_1:$ משתנה יוצא <=

משתני הבסיס	Z	X_1	(i)X ₂	S_1	S_2	S_3	S_4	אגף ימין	יחס
Z	1	0	-1	0	0	0	2	8	
S_1	0	0	(*)2	1	0	0	-1	2	1(o)
S_2	0	0	7/2	0	1	0	3/2	9	18/7
S_3	0	0	-1	0	0	1	-1	1	-
X_1	0	1	1/2	0	0	0	1/2	2	4

 $\mathbf{S}_1:$ משתנה יוצא $\mathbf{X}_2:$ משתנה יוצא <=

משתני הבסיס	Z	X_1	X_2	S_1	S_2	S_3	S_4	אגף ימין	יחס
Z	1	0	0	1/2	0	0	3/2	9	
X_2	0	0	1	1/2	0	0	-1/2	1	
S_2	0	0	0	-7/4	1	0	13/4	11/2	
S_3	0	0	0	1/2	0	1	-3/2	2	
X_1	0	1	0	-1/4	0	0	3/4	3/2	

לא נותרו איברים שלילייים בשורת פונקציית המטרה, לכן קיבלנו פתרון אופטימלי. הפתרון האופטימלי:

$$Z = 9$$
 $X_1 = 1.5, X_2 = 1$ $(S_1 = 0, S_2 = 11/2, S_3 = 2, S_4 = 0)$