Parsing Lab

Questions in Lecture 6

Given this grammar and lexicon

```
\begin{array}{c} \textbf{Lexicon} \\ \textbf{Det} \rightarrow \textbf{that} \mid \textbf{this} \mid \textbf{the} \mid \textbf{a} \\ \textbf{Noun} \rightarrow \textbf{book} \mid \textbf{flight} \mid \textbf{meal} \mid \textbf{money} \\ \textbf{Verb} \rightarrow \textbf{book} \mid \textbf{include} \mid \textbf{prefer} \\ \textbf{Pronoun} \rightarrow \textbf{I} \mid \textbf{she} \mid \textbf{me} \\ \textbf{Proper-Noun} \rightarrow \textbf{Houston} \mid \textbf{NWA} \\ \textbf{Aux} \rightarrow \textbf{does} \\ \textbf{Preposition} \rightarrow \textbf{from} \mid \textbf{to} \mid \textbf{on} \mid \textbf{near} \mid \textbf{through} \\ \end{array}
```

\mathcal{L}_1 in CNF

 $S \to NP VP$

 $S \rightarrow X1 VP$

 $X1 \rightarrow Aux NP$

 $S \rightarrow book \mid include \mid prefer$

 $S \rightarrow Verb NP$

 $S \rightarrow X2 PP$

 $S \rightarrow Verb PP$

 $S \rightarrow VPPP$

 $NP \rightarrow I \mid she \mid me$

 $NP \rightarrow TWA \mid Houston$

 $NP \rightarrow Det Nominal$

 $Nominal \rightarrow book \mid flight \mid meal \mid money$

Nominal → *Nominal Noun*

 $Nominal \rightarrow Nominal PP$

 $VP \rightarrow book \mid include \mid prefer$

 $VP \rightarrow Verb NP$

 $VP \rightarrow X2 PP$

 $X2 \rightarrow Verb NP$

 $VP \rightarrow Verb PP$

 $VP \rightarrow VP PP$

 $PP \rightarrow Preposition NP$

From Jurafsky, D and Martin, J, "Speech and Language Processing," 2018, ch 13

Parse the following sentence

Book	the	flight	through	Houston

From Jurafsky, D and Martin, J, "Speech and Language Processing," 2018, ch 13

Retrieve all possible parse trees

Book	the	flight	through	Houston

Given this corpus, show its complete PCFG:

```
( (S
  (NP-SBJ (DT The) (NN move))
  (VP (VBD followed)
   (NP
     (NP (DT a) (NN round))
                                                                      N =
     (PP (IN of)
      (NP
       (NP (JJ similar) (NNS increases))
       (PP (IN by)
                                                                      S =
         (NP (JJ other) (NNS lenders)))
       (PP (IN against)
         (NP (NNP Arizona) (|| real) (NN estate) (NNS loans))))))
                                                                      R =
   (S-ADV
     (NP-SBI (-NONE- *))
     (VP (VBG reflecting)
      (NP
       (NP (DT a) (VBG continuing) (NN decline))
       (PP-LOC (IN in)
        (NP (DT that) (NN market))))))
  (..)))
```

Exercise 4 - The CKY algorithm for PCFG

Example by Michael Collins

Given the grammar:

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	IN	NP	1.0

\Rightarrow	sleeps	1.0
\Rightarrow	saw	1.0
\Rightarrow	man	0.7
\Rightarrow	woman	0.2
\Rightarrow	telescope	0.1
\Rightarrow	the	1.0
\Rightarrow	with	0.5
\Rightarrow	in	0.5
	$\begin{array}{c} \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \end{array}$	⇒ saw ⇒ man ⇒ woman ⇒ telescope ⇒ the ⇒ with

Generate the best parse tree for the sentence:

The woman saw the man with the telescope

Exercise 4 - The CKY algorithm for PCFG

Example by Michael Collins

Generate the best parse tree for the sentence:

The woman saw the man with the telescope

 Given the hyp and ref parse trees below, compute recall, precision and f-measure

Exercise 6 - Lexicalised CFG

Given the following CFG grammar, convert it into LCFG

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow P NP$

 $P \rightarrow with$

 $V \rightarrow saw$

 $NP \rightarrow NP PP$

NP → astronomers

 $NP \rightarrow ears$

NP → saw

 $NP \rightarrow stars$

NP → telescope