### Коллоквиум по дискретной математике 2

### Ми (@technothecow)

### Содержание

| 1 | Лог  | ика и машины Тьюринга                                                                                                                |
|---|------|--------------------------------------------------------------------------------------------------------------------------------------|
|   | 1.1  | Структуры и сигнатуры. Нормальные структуры. Изоморфизм структур                                                                     |
|   | 1.2  | Формулы первого порядка данной сигнатуры. Параметры (свободные переменные) форму-                                                    |
|   |      | лы. Предложения                                                                                                                      |
|   | 1.3  | Оценка переменных. Значение терма и формулы в данной структуре при данной оценке.                                                    |
|   |      | Независимость значения формулы от значений переменных, не являющихся ее параметрами.                                                 |
|   | 1.4  | Значение терма и формулы на наборе элементов структуры. Выразимые в структуре мно-                                                   |
|   |      | жества (отношения, функции, элементы). Примеры выразимых множеств.                                                                   |
|   | 1.5  | Значение формулы при изоморфизме структур. Элементарная эквивалентность структур.                                                    |
|   |      | Изоморфные структуры элементарно эквивалентны                                                                                        |
|   | 1.6  | Значение формулы при изоморфизме структур. Сохранение выразимых множеств автомор-                                                    |
|   |      | физмами структуры. Примеры невыразимых множеств.                                                                                     |
|   | 1.7  | Эквивалентность формул первого порядка. Лемма о фиктивном кванторе. Общезначимые                                                     |
|   |      | и выполнимые формулы. Квантор всеобщности и общезначимость.                                                                          |
|   | 1.8  | Основные эквивалентности логики первого порядка. Замена подформулы на эквивалентную.                                                 |
|   | 1.9  | Пропозциональные формулы и задаваемые ими булевы функции. Тавтологии первого порядка.                                                |
|   |      | Лемма о корректной подстановке                                                                                                       |
|   |      | Понятие корректной подстановки («терм свободен для переменной в формуле»). Пример                                                    |
|   |      | некорректной подстановки. Лемма о корректной подстановке (без доказательства). Переиме-                                              |
|   |      | нование связанной переменной. Общезначимость формул вида $\forall x \varphi \to \varphi(t/x)$ и $\varphi(t/x) \to \exists x \varphi$ |
|   |      | в случае корректной подстановки.                                                                                                     |
|   | 1.12 | Переименование связанной переменной (без доказательства). Теорема о предваренной нор-                                                |
|   |      | мальной форме.                                                                                                                       |
|   | 1.13 | Понятие теории первого порядка. Примеры содержательных теорий. Модель теории. Логи-                                                  |
|   |      | ческое (семантическое) следование (для теорий и предложений)                                                                         |
|   | 1.14 | Исчисление предикатов с равенством (в гильбертовской форме). Теорема о полноте и кор-                                                |
|   |      | ректности исчисления предикатов (без доказательства). Теорема о компактности в двух                                                  |
|   |      | формах: про выполнимость теории и про логическое следование из теории                                                                |
|   | 1.15 | Теорема компактности (без доказательства). Любой пример применения.                                                                  |
|   |      | Одноленточная машина Тьюринга (допустимо неформальное определение с лентой и голов-                                                  |
|   |      | кой). Сложение натуральных чисел (при унарном и бинарном кодировании)                                                                |
|   | 1.17 | Многоленточная машина Тьюринга (допустимо неформальное определение с лентами и го-                                                   |
|   |      | ловками). Удвоение входного слова за линейное время.                                                                                 |
|   | 1.18 | Конфигурации одноленточной и многоленточной машин Тьюринга. Меры сложности «вре-                                                     |
|   |      | мя» и «зона» и их соотношение в обоих случаях                                                                                        |
|   | 1.19 | Сокращение ленточного алфавита и его цена                                                                                            |
|   |      | Сокращение числа лент и его цена                                                                                                     |
|   |      |                                                                                                                                      |
| 2 |      | ислимость                                                                                                                            |
|   | 2.1  | Вычислимые функции (при интуитивном понимании алгоритма). Разрешимые и перечис-                                                      |
|   |      | лимые множества. Связь конечности, разрешимости и перечислимости. Разрешимые мно-                                                    |
|   | 2.2  | жества под действием операций алгебры множеств и декартова произведения                                                              |
|   | 2.2  | Перечислимые множества под действием операций алгебры множеств, декартова произве-                                                   |
|   |      | дения и проекции. Теорема Поста.                                                                                                     |
|   | 2.3  | Теорема о графике вычислимой функции. Перечислимость образа и прообраза множества                                                    |
|   |      | под действием вычислимой функции.                                                                                                    |
|   | 2.4  | Непустые перечислимые множества суть, в точности, области значений вычислимых тоталь-                                                |
|   |      | ных функций.                                                                                                                         |
|   | 2.5  | Полуразрешимость. Перечислимые множества суть, в точности, области определения вы-                                                   |
|   |      | числимых функций.                                                                                                                    |

| 2.6  | Перечислимые множества суть, в точности, проекции разрешимых. Теорема о свойствах,                                      |    |
|------|-------------------------------------------------------------------------------------------------------------------------|----|
|      | равносильных перечислимости (доказательство на основе утверждений предшествующих                                        |    |
|      | вопросов)                                                                                                               | 11 |
| 2.7  | Универсальная вычислимая функция (в классе вычислимых функций $\mathbb{N} \stackrel{p}{\to} \mathbb{N}$ ). Т-Предикаты. |    |
|      | Неразрешимость проблем самоприменимости и остановки                                                                     | 11 |
| 2.8  | Неразрешимость проблем самоприменимости и остановки. Примеры перечислимого нераз-                                       |    |
|      | решимого и неперечислимого множеств                                                                                     | 12 |
| 2.9  | Пример вычислимой функции, не имеющей вычислимого тотального продолжения. Область                                       |    |
|      | определения вычислимой функции, не имеющей вычислимого тотального продолжения, пе-                                      |    |
|      | речислима, но не разрешима.                                                                                             | 12 |
| 2.10 | Невозможность универсальной вычислимой тотальной функции.                                                               |    |
| 2.11 | Пример непересекающихся перечислимых множеств, не отделимых никаким разрешимым                                          |    |
|      | МНОЖЕСТВОМ                                                                                                              | 12 |
| 2.12 | Главная универсальная вычислимая функция. Вычислимое биективное кодирование пар                                         |    |
|      | натуральных чисел. Построение главной у.в.ф. с помощью произвольной у.в.ф                                               | 13 |
| 2.13 | Теорема Клини о неподвижной точке                                                                                       | 13 |
| 2.14 | Бесконечность множества неподвижных точек в смысле теоремы Клини. Теорема о рекурсии                                    |    |
|      | как следствие теоремы Клини. Пример применения теоремы о рекурсии.                                                      | 13 |
| 2.15 | Вычислимость индекса композиции вычислимых функций. Совместная рекурсия: решение                                        |    |
|      | «систем уравнений» (с тотальными правыми частями)                                                                       | 14 |

#### 1 Логика и машины Тьюринга

#### 1.1 Структуры и сигнатуры. Нормальные структуры. Изоморфизм структур.

Структура – кортеж множеств  $(M, \mathcal{F}, \mathcal{R}, \mathcal{C})$ , где

- 1. M непустое множество, носитель структуры
- 2.  $\mathcal{F}$  множество функций вида  $f: M^n \to M$
- $3. \,\, \mathcal{R}$  множество кортежей из M
- 4. C подмножество M

Сигнатура — кортеж попарно непересекающихся множеств (Fnc, Prd, Cnst), где Fnc — множество функциональных символов с заданной валентностью, Prd — непустое множество предикатных символов с заданной валентностью и Cnst — множество константных символов. (просто набор символов)

\* $\sigma$ -структура (или интерпретация сигнатуры  $\sigma$ ) – это формально кортеж  $\mathcal{M} = (M, \mathcal{F}, \mathcal{R}, \mathcal{C}, \mathcal{I})$ , где  $\mathcal{I}(Fnc) = \mathcal{F}, \ \mathcal{I}(Prd) = \mathcal{R}$  и  $\mathcal{I}(Cnst) = \mathcal{C}$ . Вводим обозначения:  $\mathcal{I}(Fnc) = f^{\mathcal{M}}, \ \mathcal{I}(Prd) = R^{\mathcal{M}}$  и  $\mathcal{I}(Cnst) = c^{\mathcal{M}}$ . Для задания  $\sigma$ -структуры достаточно только M и  $\mathcal{I}$ . Фактически, мы придаем значение имеющимся значкам из сигнатуры  $\sigma$ : берем носитель и говорим, что делают с ним функции и что делают с ним предикаты.

Нормальная структура – содержащая двувалентный предикатный символ "=" :=  $\{(a,a) \in M^2 \mid a \in M\}$ , где M – носитель структуры.

Изоморфизм структур: интепретации  $\mathcal{M}$  и  $\mathcal{N}$  сигнатуры  $\sigma$  с носителями M и N соответственно изоморфны если существует биекция  $\eta\colon M\to N$  для которой выполняются следующие свойства:

- 1.  $\eta(f^{\mathcal{M}}(a_1,\ldots,a_n)) = f^{\mathcal{N}}(\eta(a_1),\ldots,\eta(a_n))$
- 2.  $(a_1, \ldots, a_n) \in R^{\mathcal{M}} \iff (\eta(a_1), \ldots, \eta(a_n)) \in R^{\mathcal{N}}$
- 3.  $\eta(c^{\mathcal{M}}) = c^{\mathcal{N}}$ , где c один символ

### 1.2 Формулы первого порядка данной сигнатуры. Параметры (свободные переменные) формулы. Предложения.

Формулы первого порядка – это выражения в логике первого порядка (предикатной логике), построенные по правилам синтаксиса, установленным для данной сигнатуры.

Формулы первого порядка строятся из термов и предикатов, используя логические связки и кванторы. Основные элементы синтаксиса формул первого порядка:

- 1. Термы: 1) переменные; 2) константы; 3) если  $t_1,\ldots,t_n$  термы, а f функция с валентностью n, то  $f(t_1,\ldots,t_n)$  тоже терм
- 2. Атомарные формулы: предикаты, примененные к термам.
- 3. Сложные формулы: атомарные формулы, соединенные логическими операциями  $(\neg, \land, \lor, \rightarrow, \leftrightarrow)$  и кванторами  $(\forall, \exists)$ .

Свободные переменные формулы – это переменные, которые не находятся под действием кванторов ( $\forall$  или  $\exists$ ) внутри этой формулы. То есть, они не "связаны" кванторами и могут принимать любые значения из области определения. Множество свободных переменных в формуле  $\varphi$  обозначается как  $FV(\varphi)$ . Множество всех переменных в формуле обозначается как  $V(\varphi)$ .

Предложения в логике первого порядка – это формулы, которые не содержат свободных переменных, то есть все переменные в них связаны кванторами. Такие формулы имеют логическое значение (истинность или ложность) в интерпретации.

## 1.3 Оценка переменных. Значение терма и формулы в данной структуре при данной оценке. Независимость значения формулы от значений переменных, не являющихся ее параметрами.

Оценка переменных – способ присвоения конкретных значений переменным в формуле. По сути это функция  $\mu$ , которая ставит в соответствие  $\kappa a \varkappa c \partial o \tilde{u}$  (в том числе свободной!) переменной какое-то значение. Значение терма t и формулы  $\varphi$  в данной структуре  $\mathcal{M}$  при данной оценке  $\mu$ :

1. если t – переменная, то t принимает значение  $\mu(t)$ 

- 2. если t константный символ c, то t принимает значение интерпретации c в  $\mathcal{M}$ :  $c^{\mathcal{M}}$
- 3. если t функция f, применяемая к термам  $t_1, \ldots, t_n$ , то значение t это  $f^{\mathcal{M}}(v_1, \ldots, v_n)$ , где  $v_1, \ldots, v_n$  это значения термов при данной оценке
- 4. если  $\varphi$  атомарная формула  $P(t_1, \ldots, t_n)$ , то она истинна, если  $(v_1, \ldots, v_n) \in \mathbb{R}^{\mathcal{M}}$ , где  $v_1, \ldots, v_n$  это значения термов при данной оценке
- 5. для сложных формул  $\varphi$  используются стандартные логические правила

Независимость значения формулы от значений переменных, не являющихся ее параметрами: для любых оценок  $\pi_1, \pi_2$ , терма t и формулы  $\varphi$  выполняется:

- 1. если для всех  $x \in V(t)$ :  $\pi_1(x) = \pi_2(x)$ , тогда  $[t](\pi_1) = [t](\pi_2)$
- 2. если для всех  $x \in FV(\varphi)$ :  $\pi_1(x) = \pi_2(x)$ , тогда  $[\varphi](\pi_1) = [\varphi](\pi_2)$

Доказательство:

- 1. индукция по построению терма t:
  - (a) если t=z, тогда  $[t](\pi_1)=\pi_1(z)=\pi_2(z)=[t](\pi_2)$
  - (b) если  $t = f(a_1, \ldots, a_n)$ , тогда  $[t](\pi_1) = f([a_1](\pi_1), \ldots, [a_n](\pi_1)) = f([a_1](\pi_2), \ldots, [a_n](\pi_2)) = [t](\pi_2)$  в силу  $V(a_i) \subseteq V(t)$  по предположению индукции.
- 2. индукция по построению формулы  $\varphi$ :
  - (a) если  $\varphi = P(a_1, \dots, a_n)$ , то для каждого терма  $a_i$  имеем  $V(a_i) \subseteq FV(\varphi)$ , поэтому  $[\varphi](\pi_1) = P([a_1](\pi_1), \dots, [a_n](\pi_1)) = P([a_1](\pi_2), \dots, [a_n](\pi_2)) = [t](\pi_2)$
  - (b) если  $\varphi = \neg \psi$ , тогда  $[\varphi](\pi_1) = 1 [\psi](\pi_1) = 1 [\psi](\pi_2) = [\varphi](\pi_2)$  по предположению индукции в силу  $FV(\varphi) = FV(\psi)$ .
  - (c) если  $\varphi = \psi_1 \wedge \psi_2$ , тогда по предположению индукции в силу  $FV(\psi_i) \subseteq FV(\varphi)$  выполняется  $[\varphi](\pi_1) = \min([\psi_1](\pi_1), [\psi_2](\pi_1)) = \min([\psi_1](\pi_2), [\psi_2](\pi_2)) = [\varphi](\pi_2)$ . Случаи других связок аналогичны.
  - (d) если  $\varphi = \forall z\psi$ , тогда  $[\varphi](\pi_1) = \min_{m \in M} [\psi](\pi_1 + (z \to m))$ . Так как  $FV(\psi) \subseteq FV(\varphi) \cup \{z\}$ , рассмотрим как работает  $\pi_1 + (z \to m)$  на  $FV(\varphi) \cup \{z\}$ .
    - і. если  $y \in FV(\varphi)$ , то поскольку  $z \notin FV(\varphi), y \neq z$ , следовательно  $(\pi_1 + (z \to m)(y) = \pi_1(y) = \pi_2(y) = (\pi_2 + (z \to m))(y)$ .
    - ії. если y=z, тогда  $(\pi_1+(z\to m)(y)=m=(\pi_2+(z\to m))(y).$

Таким образом, для любого  $y \in FV(\psi)$  имеем  $(pi_1 + (z \to m))(y) = (pi_2 + (z \to m))(y)$ . По предположению индукции заключаем  $[\psi](\pi_1 + (z \to m)) = [\psi](\pi_2 + (z \to m))$ , из чего следует  $[\varphi](\pi_1) = [\varphi](\pi_2)$ . Случай квантора существования аналогичен.

## 1.4 Значение терма и формулы на наборе элементов структуры. Выразимые в структуре множества (отношения, функции, элементы). Примеры выразимых множеств.

Значение терма или формулы  $\alpha(x_1,\ldots,x_n)$  на наборе элементов  $y=(y_1,\ldots,y_n)$  структуры  $\mathcal M$  определяется значением функции  $\alpha^{\mathcal M}(y)=[\alpha](\pi+(x_1\to y_1)+\ldots+(x_n\to y_n)),$  где  $\pi$  – любая оценка.

Выразимые в структуре  $\mathcal{M}$  множества – это множества  $D\subseteq\mathcal{M}$ , которые можно описать с помощью формул логики первого порядка

Примеры:

- 1. пустое множество:  $\varphi(x) = (x \neq x)$
- 2. носитель структуры  $\mathcal{M}$ :  $\varphi(y) = (y = y)$
- 3. четные числа:  $\varphi(z) = \exists a(a \in \mathbb{N} \land a + a = z)$

Выразимые в структуре предикаты – это предикаты, для которых существуют эквивалентные формулы логики первого порядка

### 1.5 Значение формулы при изоморфизме структур. Элементарная эквивалентность структур. Изоморфные структуры элементарно эквивалентны.

\*Если  $\sigma$ -предложение  $\varphi$  истинно в  $\mathcal{M}$ , то это обозначается так:  $\mathcal{M} \models \varphi$ 

\*Модель предложения  $\varphi$  в языке сигнатуры  $\sigma$  – это модель теории  $\{\varphi\}$ .

Элементарная эквивалентность структур:  $\sigma$ -структуры  $\mathcal{M}$  и  $\mathcal{N}$  эквивалентны если  $Th(\mathcal{M}) = Th(\mathcal{N})$ . Обозначение:  $\mathcal{M} \equiv \mathcal{N}$ 

Значение формулы  $\varphi$  при изоморфизме  $\eta$  структур  $\mathcal{M}$  и  $\mathcal{N}$ : для любого  $a \in M^n$  и любой формулы  $\varphi$  равносильны  $\mathcal{M} \models \varphi(a)$  и  $\mathcal{N} \models \varphi(\eta(a))$ .

(?) Доказательство: по определению изоморфизма  $\varphi^{\mathcal{N}}(\eta(a)) = \eta(f^{\mathcal{M}}(a))$  и  $\eta(True^{\mathcal{M}}) = True^{\mathcal{N}}$ 

Элементарная эквивалентность изоморфных структур: изоморфные структуры элементарно эквивалентны.

(?) Доказательство: следует из равносильности  $\mathcal{M} \models \varphi(a)$  и  $\mathcal{N} \models \varphi(\eta(a))$ .

### 1.6 Значение формулы при изоморфизме структур. Сохранение выразимых множеств автоморфизмами структуры. Примеры невыразимых множеств.

Значение формулы при изоморфизме структур: см. билет 1.5

Сохранение выразимых множеств автоморфизмами структуры: семейство выразимых множеств сохраняется между автоморфизмами

(?) Доказательство: пусть  $A\subseteq M$  выразимо в  $\mathcal{M}$ . Это значит, что  $a\in A\iff \mathcal{M}\models \varphi(a)$ . Для автоморфизма  $\eta\colon a\in A\iff \mathcal{M}\models \varphi(a)\iff \mathcal{N}\models \varphi(\eta(a))\iff \eta(a)\in \eta(A)$ 

Примеры невыразимых множеств: множество всех простых чисел (для этого необходимо проверять все возможные делители); множество натуральных чисел, являющихся степенью двойки (для этого требуется, например, рекурсия, которой нет).

## 1.7 Эквивалентность формул первого порядка. Лемма о фиктивном кванторе. Общезначимые и выполнимые формулы. Квантор всеобщности и общезначимость.

Эквивалентность формул первого порядка: формулы  $\varphi$  и  $\psi$  являются эквивалентными, если их значения совпадают в любой интерпретации при любой оценке. Обозначение  $\varphi \equiv \psi$ .

Лемма о фиктивном кванторе: пусть x не лежит в множестве свободных переменных формулы  $\varphi$ , тогда  $\varphi = \forall x \varphi$ 

Доказательство:  $[\forall x\varphi](\pi) = \min_{m \in M} [\varphi](\pi + (x \to m))$ . Так как  $x \notin FV(\varphi)$ , для всех  $y \in FV(\varphi)$  выполнено  $(\pi + (x \to m))(y) = \pi(y)$ . По лемме о независимости значения формулы от значений переменных, не являющихся ее параметрами (см. билет 1.3), заключаем  $[\varphi](\pi + (x \to m)) = [\varphi](\pi)$  для всех  $m \in M$ . Отсюда  $[\forall x\varphi](\pi) = \min_{m \in M} [\varphi](\pi + (x \to m)) = \min_{m \in M} [\varphi](\pi)$ 

Общезначимая формула – формула, истинная при любой интерпретации и оценке.

Выполнимая формула — формула, для которой существует интерпретация и оценка, в которой она истинна.

Квантор всеобщности и общезначимость: формула  $\varphi$  общезначима  $\iff$  формула  $\forall y \varphi$  общезначима Доказательство:

- 1. слева направо: формула общезначима, значит для любых оценок равна единице, в частности для оценок вида  $(\pi + (y \to m))$  для всех  $m \in M$ , поэтому  $[\forall y \varphi](\pi) = 1$
- 2. справа налево:  $\forall y \varphi$  общезначима, значит для любых оценок  $[\varphi](\pi + (y \to m)) = 1$  для всех  $m \in M$ . Однако для любой оценки  $\pi$  имеем  $\pi = (\pi + (y \to \pi(y)))$ , поэтому  $[\varphi](\pi) = 1$  для всех оценок  $\pi$ .

<sup>\*</sup>Теория в языке сигнатуры  $\sigma$  – это какое-то множество  $\sigma$ -предложений.

<sup>\*</sup>Модель теории T в языке сигнатуры  $\sigma$  – это такая  $\sigma$ -структура  $\mathcal{M}$ , что все предложения в ней истинны.

<sup>\*</sup>Теория  $\sigma$ -структуры  $\mathcal{M}$  – это все  $\sigma$ -предложения, истинные в  $\mathcal{M}$ . Обозначение:  $Th(\mathcal{M})$ .

### 1.8 Основные эквивалентности логики первого порядка. Замена подформулы на эквивалентную.

Основные эквивалентности логики первого порядка для произвольных  $\varphi$  и  $\psi$ :

- 1. Пусть x не является параметром  $\psi$ , тогда  $\forall \{\exists\} x (\varphi \land \{\lor\} \psi) \equiv \forall \{\exists\} x \varphi \land \{\lor\} \psi$  (итого 4 равенства)
- 2.  $\forall x(\varphi \wedge \psi) = \forall x\varphi \wedge \forall x\psi$
- 3.  $\forall x(\varphi \lor \psi) = \forall x\varphi \lor \forall x\psi$
- 4.  $\neg \forall x \varphi \equiv \exists x \neg \varphi$
- 5.  $\neg \exists x \varphi \equiv \forall x \neg \varphi$

Доказательство: TODO

Пусть  $\varphi$  – какая-то формула,  $\varphi \equiv \varphi'$ , тогда замена  $\varphi$  на  $\varphi'$  эквивалентна в случаях использования логического и, или, не, импликации, "тогда и только тогда", квантора всеобщности и существования.

Доказательство: TODO

Замена подформулы на эквивалентную: пусть  $\varphi \equiv \varphi'$  и  $\psi'$  была получена путем замены вхождений  $\varphi$  в  $\psi$  на  $\varphi'$ , тогда  $\psi \equiv \psi'$ .

Доказательство: TODO

### 1.9 Пропозциональные формулы и задаваемые ими булевы функции. Тавтологии первого порядка.

Пропозициональная формула – формула, построенная из пропозициональных переменных (простых букв) с помощью булевых связок.

Каждая пропозициональная формула задаёт булеву функцию, так как для каждого набора значений переменных (истина или ложь) формула принимает одно определённое значение (истина или ложь). То есть, если у вас есть пропозициональная формула A с переменными p и q, можно построить таблицу истинности, которая покажет значение формулы для всех возможных значений p и q.

Тавтология – это формула, истинная при любых значениях ее переменных. Любая тавтология общезначима.

#### 1.10 Лемма о корректной подстановке.

\*Терм t свободен для переменной x в формуле  $\varphi$ , если при подстановке терма t вместо переменной x в формуле  $\varphi$  не происходит никаких изменений значений других свободных переменных. Иными словами, терм t можно подставить на место x в  $\varphi$  без появления новой привязки переменных, которая может изменить интерпретацию формулы. Обозначение:  $t-x-\varphi$ .

\*Замена y на x в формуле  $\varphi$  обозначается как  $\varphi(y/x)$ 

Лемма о корректной подстановке: в любой интерпретации при любой оценке  $\pi$  для всех  $\varphi$  - формул, t,s - термов, и x - переменной, если  $t-x-\varphi$ , то выполняется:

$$[s(t/x)](\pi) = [s](\pi + (x \to [t](\pi)))$$
 μ  $[\varphi(t/x)](\pi) = [\varphi](\pi + (x \to [t](\pi)))$ 

TODO: доказательство

# 1.11 Понятие корректной подстановки («терм свободен для переменной в формуле»). Пример некорректной подстановки. Лемма о корректной подстановке (без доказательства). Переименование связанной переменной. Общезначимость формул вида $\forall x \varphi \to \varphi(t/x)$ и $\varphi(t/x) \to \exists x \varphi$ в случае корректной подстановки.

см. билет 1.10

Пример некорректной подстановки: возьмем формулу  $\varphi(x,y) = \forall y (P(x,y))$  и терм t=y. Подставляем:  $\varphi(x/t,y) = \forall y (P(y,y))$ . Смысл формулы изменен т.к. терм не свободен для переменной в формуле.

Переименование связанной переменной:

Лемма 1. Пусть  $y \notin V(\varphi)$  (т.е. y нет в  $\varphi$ ), тогда  $\forall x \varphi \equiv \forall y \varphi(y/x)$ .

Лемма 2. Для любого терма t и любой формулы  $\varphi$ , если  $y \notin V(\varphi)$ , то для любой оценки  $\pi$  верно:  $[t(y/x)](\pi) = [t](\pi + (x \to \pi(y)))$  и  $[\varphi(y/x)](\pi) = [\varphi](\pi + (x \to \pi(y)))$ 

- 1.  $\forall x \varphi \rightarrow \varphi(t/x)$ , если t свободен для x в  $\varphi$
- 2.  $\varphi(t/x) \to \exists x \varphi(x)$ , если t свободен для x в  $\varphi$

TODO: дописать доказательства

### 1.12 Переименование связанной переменной (без доказательства). Теорема о предваренной нормальной форме.]

Переименование связанной переменной:

Лемма 1. Пусть  $y \notin V(\varphi)$  (т.е. y нет в  $\varphi$ ), тогда  $\forall x \varphi \equiv \forall y \varphi(y/x)$ .

Лемма 2. Для любого терма t и любой формулы  $\varphi$ , если  $y \notin V(\varphi)$ , то для любой оценки  $\pi$  верно:  $[t(y/x)](\pi) = [t](\pi + (x \to \pi(y)))$  и  $[\varphi(y/x)](\pi) = [\varphi](\pi + (x \to \pi(y)))$ 

\*Предваренная формула – такая, что имеет кванторы только в кванторном префиксе в начале формулы.

Teopeма о предваренной нормальной форме: для любой формулы найдется эквивалентная ей предваренная.

Доказательство: индукция по построению. Разберем все случаи:

- 1. Если формула атомарная, то она уже предваренная.
- 2. Если формула начинается с квантора, то по предположению индукции заменяем формулу под этим квантором на эквивалентную предваренную.
- 3. Если формула начинается с отрицания, то по предположению индукции заменяем формулу под отрицанием на эквивалентную предваренную и проносим отрицание вовнутрь, переменяя кванторы.
- 4. Если в формуле главная связка бинарная, то по предположению индукции заменяем формулы под связкой на эквивалентные предваренные и переименовываем связанные переменные так, чтобы все кванторы можно было вынести наружу и выносим их.

#### 1.13 Понятие теории первого порядка. Примеры содержательных теорий. Модель теории. Логическое (семантическое) следование (для теорий и предложений).

Теория первого порядка – логическая система, включающая в себя сигнатуру (набор символов, включающий константы, функции и предикаты), аксиомы (набор утверждений или формул, принимаемых без доказательств) и правила вывода (правила, по которым из аксиом и других утверждений можно выводить новые утверждения)

Примеры содержательных теорий:

- 1. Теория групп:
  - (a) Сигнатура: бинарная операция \* и константа e
  - (b) Аксиомы: ассоциативность, существование нейтрального элемента, существование обратного элемента
- 2. Теория колец:
  - (а) Сигнатура: две бинарные операции: + и \* и константы 0 и 1.
  - (b) Аксиомы: дистрибутивность, ассоциативность, коммутативность, существование обратного элемента по сложению

Модель теории – это интерпретация сигнатуры, в которой все аксиомы теории истинны. Например, для теории групп это множество целых чисел с операцией сложения и нулем.

Логическое следование – отношение между формулами и теориями, которое говорит, что если истинны определенные формулы, то и другие формулы истинны.

Для теорий: Теория T логически следует из множества аксиом A, если любая модель A также является моделью T.

Для предложений: Предложение  $\varphi$  логически следует из теории T ( $T \models \varphi$ ), если  $\varphi$  истинно в каждой модели T.

# 1.14 Исчисление предикатов с равенством (в гильбертовской форме). Теорема о полноте и корректности исчисления предикатов (без доказательства). Теорема о компактности в двух формах: про выполнимость теории и про логическое следование из теории.

Исчисление предикатов с равенством – это система логики первого порядка, включающая равенство как основной предикат. В гильбертовской форме исчисления предикатов используются аксиомы и правила вывода.

Аксиомы для равенства:

- 1. Рефлексивность:  $\forall x(x=x)$
- 2. Симметричность:  $\forall x \forall y (x = y \rightarrow y = x)$
- 3. Транзитивность:  $\forall x \forall y \forall z (x = y \land y = z \rightarrow x = z)$
- 4. Замена в формулах: если t терм, а P предикат, то  $\forall x \forall y (x = y \to (P(x) \leftrightarrow P(y)))$

Общие аксиомы и правила вывода:

- 1. Аксиомы логики первого порядка
- 2. Правило Modus Ponens: из  $\varphi$  и  $\varphi \to \psi$  следует  $\psi$
- 3. Правило обобщения: из  $\varphi$  следует  $\forall x \varphi$ , если x не свободная в  $\varphi$

Теорема о полноте и корректности исчисления предикатов: если  $\varphi$  логически следует из A, тогда и только тогда  $\varphi$  выводима из A в исчислении предикатов.

Теорема о компактности: если любая конечная подсистема множества предложений имеет модель, то и все множество имеет модель.

Теорема о компактности в форме про выполнимость теории: если каждое конечное подмножество множества формул T выполнимо, то и все множество T выполнимо.

Теорема о компактности в форме про логическое следование из теории: формула  $\varphi$  логически следует из теории T тогда и только тогда, когда  $\varphi$  логически следует из некоторого конечного подмножества теории T.

TODO: дополнить доказательствами

#### 1.15 Теорема компактности (без доказательства). Любой пример применения.

см. билет 1.14

Пример: хотим показать, что существует бесконечное множество.

Пусть T — это теория, содержащая набор формул  $F = \{\varphi_n : n \in \mathbb{N}\}$ , где  $\varphi_n$  утверждает, что в нашем множестве существует как минимум n различных элементов. Любое конечное подмножество F выполнимо в модели потому что можно найти конечное число элементов, принадлежащих множеству. Применяем теорему компактности: раз каждое подмножество F имеет модель, то и все множество F имеет модель, значит существует модель, содержащая бесконечно много элементов.

## 1.16 Одноленточная машина Тьюринга (допустимо неформальное определение с лентой и головкой). Сложение натуральных чисел (при унарном и бинарном кодировании).

Одноленточная машина Тьюринга — это теоретическая модель вычислений, состоящая из следующих частей: лента (бесконечная в обе стороны, разделенная на ячейки, каждая из которых может хранить один символ из конечного алфавита, который обычно содержит спец.символ "пусто": #), головка для чтения/записи (устройство, которое может перемещаться влево или вправо по ленте, считывать символы с ленты и записывать символы на ленту), множество состояний (конечное множество состояний, одно из которых является начальным, а одно или несколько могут быть конечными) и таблица переходов (определяет правила, по которым машина переходит из одного состояния в другое, в зависимости от символа под головкой)

Сложение натуральных чисел в унарном виде: очевидно

Сложение натуральных чисел в бинарном виде: пусть длина одинаковая, числа записаны в виде " $[0,1]^*+[0,1]^*$  тогда сначала идем вправо до конца, ставим знак равенства, идем влево до конца, и если там 1/0, тогда помечаем символ "решеткой идем вправо до конца и после знака равно ставим 1/0,

потом идем до знака плюса, берем 1/0, помечаем символ "плюсом идем вправо до конца и к последнему числу добавляем 1/0. таким образом получим запись в сломанной троичной системе счисления. осталось только перевести в бинарную

TODO: переписать с каким-нибудь нормальным алгоритмом

### 1.17 Многоленточная машина Тьюринга (допустимо неформальное определение с лентами и головками). Удвоение входного слова за линейное время.

Многоленточная машина Тьюринга — это расширение классической машины Тьюринга, у которой есть несколько лент и несколько головок для чтения/записи. Каждая лента бесконечна в обе стороны и содержит свой собственный алфавит символов.

Удвоение входного слова за линейное время: копируем символы пока не дойдем до решетки. Как дошли до решетки, идем на верхней ленте влево в начало слова и повторяем процедуру.

### 1.18 Конфигурации одноленточной и многоленточной машин Тьюринга. Меры сложности «время» и «зона» и их соотношение в обоих случаях.

Конфигурация машины Тьюринга – это описание текущего состояния машины, которое включает состояние машины, содержимое ленты (лент), позиция головки (головок).

Время выполнения (или временная сложность) алгоритма на машине Тьюринга — это количество шагов, которые машина делает для выполнения задачи. Временная сложность оценивается в зависимости от размера входных данных n.

Зона выполнения (или пространственная сложность) алгоритма на машине Тьюринга – это количество ячеек ленты, которые машина использует для выполнения задачи.

Существуют работы, которые показывают, что алгоритм, выполненный на МТ из k лент эмулируется за  $T\log T$  на двуленточной МТ.

Многоленточные машины Тьюринга более эффективны по времени (например, задача удвоения входного слова) по сравнению с одноленточными машинами, так как позволяют параллельно обрабатывать несколько лент и перемещаться быстрее по необходимым данным. Однако, пространственная сложность остаётся асимптотически такой же, как и для одноленточных машин.

#### 1.19 Сокращение ленточного алфавита и его цена.

См. страницы 21-24 в "Введении в сложность вычислений" Крупского

#### 1.20 Сокращение числа лент и его цена.

См. страницы 24-27 в "Введении в сложность вычислений" Крупского

#### 2 Вычислимость

# 2.1 Вычислимые функции (при интуитивном понимании алгоритма). Разрешимые и перечислимые множества. Связь конечности, разрешимости и перечислимости. Разрешимые множества под действием операций алгебры множеств и декартова произведения.

Вычислимая функция – это такая частичная функция  $f: \mathbb{N} \to \mathbb{N}$ , что для нее существует программа (алгоритм), которая на любом входе  $x \in \text{dom } f$  выписывает f(x), а иначе зацикливается.

Разрешимое множество – такое множество, чья характеристическая функция (функция, которая ест элемент и выплевывает единицу если элемент в множестве и ноль иначе) вычислима.

Перечислимое множество – такое множество, для которого есть программа, которая последовательно выписывает все элементы множества и только их. Для каждого элемента множества должно существовать  $k \in \mathbb{N}$ , что после k-ого шага элемент будет выписан.

Связь конечности, разрешимости и перечислимости: 1) конечно, значит разрешимо; 2) разрешимо, значит перечислимо.

Доказательство: 1) конечно, значит можно пронумеровать элементы  $\{a_1,...,a_n\}$ . Искомая характеристическая функция равна дизъюнкции (логическому или) булевских значений  $x=a_1\vee x=a_2\vee\ldots\vee x=a_n$ . Для пустой функции всегда возвращаем ноль, что также вычислимо.

2) перебираем все натуральные числа и выводим текущее если характеристическая функция вернула единицу

Разрешимые множества под действием операций алгебры множеств и декартова произведения: A,B – разрешимы:  $A \cup B, A \cap B, A \times B, \overline{A}, \overline{B}$ 

Доказательство: выразим характеристические функции:  $\chi_{A\cup B}(x) = \max(\chi_A(x), \chi_B(x))$ , и т.д.

#### 2.2 Перечислимые множества под действием операций алгебры множеств, декартова произведения и проекции. Теорема Поста.

Перечислимые множества под действием операций алгебры множеств, декартова произведения и проекции: A, B – перечислимы  $\implies$  перечислимы:  $A \cup B, A \cap B, A \times B, \operatorname{pr}^i A, \operatorname{pr}^i B$ .

Доказательство: перечислимость  $A \cup B$ : просто выводим числа по очереди; перечислимость  $A \cap B$ : по очереди выполняем по шагу алгоритмов A и B и когда получаем очередной элемент  $a_i$  выводим его только если нам уже попадался равный ему  $b_j$ . Аналогично поступаем с новыми элементами из B; перечислимость  $A \times B$ : по очереди выполняем по шагу алгоритмов для A и B и когда получаем очередной элемент  $a_i$  выписываем пары со всеми до этого полученными  $b_1, \ldots, b_k$ . Аналогично поступаем и для B; перечислимость проекции: просто для каждого нового  $a = (a_1, \ldots, a_n)$  выводим  $a_i$ .

Теорема Поста: множество разрешимо 👄 его дополнение и оно само перечислимо.

Доказательство: 1) слева направо следует из леммы о связи конечности, разрешимости и перечислимости (билет 2.1)

2) справа налево доказывается с помощью следующего вычислимого алгоритма: будем выполнять по очереди по одному шагу алгоритма для множества и его дополнения. Рано или поздно в первом или втором появится наш проверяемый элемент

### 2.3 Теорема о графике вычислимой функции. Перечислимость образа и прообраза множества под действием вычислимой функции.

Теорема о графике вычислимой функции: функция вычислима  $\iff$  ее график перечислим (то есть множество пар (x, f(x)))

Доказательство: 1) справа налево: просто ждем пока выдаст нужную пару 2) слева направо: переберем все пары  $(x,k) \in \mathbb{N}$ . x – значение, k – количество шагов, которые проделываются для вычисления x. Таким образом, если за конечное число шагов значение вычисляется, мы выведем пару.

Перечислимость образа и прообраза множества под действием вычислимой функции: пусть множество A – перечислимо и f – вычислимая функция. Тогда f(A) и  $f^{-1}(A)$  перечислимы.

Доказательство: пусть  $G \subseteq \mathbb{N} \times \mathbb{N}$  – график f, тогда множества  $M_1 = G \cap (A \times \mathbb{N})$  и  $M_2 = G \cap (\mathbb{N} \times A)$  перечислимы так как являются пересечением двух перечислимых множеств. Заметим, что  $f(A) = \operatorname{pr}^2 M_1$  и  $f^{-1}(A) = \operatorname{pr}^1 M_2$ .

### 2.4 Непустые перечислимые множества суть, в точности, области значений вычислимых тотальных функций.

Лемма: множество A перечислимо  $\iff A=\varnothing$  или  $\exists f\colon \mathbb{N}\to A,$  что f – тотальная и rng f=A.

Доказательство: 1) справа налево: все элементы A выпишет программа, последовательно вычисляющая  $f(0), f(1), \ldots$  (вычисление f(n) всегда заканчивается за конечное количество шагов ибо f тотальная и вычислимая).

2) Пусть элементы A выписывает программа p. Тогда пусть m – число шагов в программе p до вывода первого числа. Определим f следующим образом: f(x) =последнему числу после m+x шагов. Докажем, что любое  $x \in A$  лежит в образе f. Для x должно существовать такое  $k \in \mathbb{N}$ , что после k шагов x выводится программой p. Тогда f(k-m)=x.

Следствие: если f вычислима, тогда dom f и rng f перечислимы.

Доказательство: следует из перечислимости образа и прообраза множества под действием вычислимой функции (см. билет 2.3): dom  $f = f^{-1}(\mathbb{N})$ , rng  $f = f(\mathbb{N})$ .

### 2.5 Полуразрешимость. Перечислимые множества суть, в точности, области определения вычислимых функций.

\*Полухарактеристическая функция  $\varphi$  множества A задается  $\varphi = \begin{cases} 1, & \text{если } x \in A \\ \text{неопр.}, & \text{иначе} \end{cases}$ 

Полуразрешимое множество – такое, что его полухарактеристическая функция вычислима.

Лемма: множество перечислимо 👄 множество полуразрешимо

Доказательство: 1) слева направо: если перечислимо A, то перечислимо и  $A \times \{1\} = \Gamma(\varphi)$ . По теореме о графике вычислимой функции (см. билет 2.3),  $\varphi$  вычислима.

2) справа налево: если  $\varphi$  вычислима, то  $A = \text{dom } \varphi$  перечислима по следствию (см. билет 2.4)

## 2.6 Перечислимые множества суть, в точности, проекции разрешимых. Теорема о свойствах, равносильных перечислимости (доказательство на основе утверждений предшествующих вопросов).

Перечислимые множества в точности проекции разрешимых: множество  $A\subseteq \mathbb{N}^n$  перечислимо  $\iff$   $\exists B\subseteq \mathbb{N}^{n+1}$  разрешимое, что  $A=\operatorname{pr}^1(B)$ .

Доказательство: 1) справа налево: B разрешимо  $\implies B$  перечислимо  $\implies \operatorname{pr}^1(B) = A$  перечислимо

2) слева направо: возьмем перечисляющую элементы A программу p. Пусть  $B = \{(x,k) \in \mathbb{N}^{n+1} \mid$  программа p выписывает x на шаге  $k\}$ . Заметим, что построенное множество отвечает требованиям: B действительно разрешимо (на входе (x,k) запустим k шагов p и если вывелось x, то элемент лежит, иначе нет) и  $A = \operatorname{pr}^1(B)$  (т.к. для каждого  $x \in A \exists k \in \mathbb{N}$  – такое, что за k шагов программы p выведется x).

Пусть  $A \subseteq \mathbb{N}$ , тогда следующее равносильно:

- 1. А перечислимо
- 2.  $\exists f \colon \mathbb{N} \to \mathbb{N}$  вычислимая частичная, что  $A = \mathrm{dom}\ f$
- 3.  $\exists f \colon \mathbb{N} \to \mathbb{N}$  вычислимая частичная, что  $A = \operatorname{rng} f$
- 4.  $A=\varnothing$  или  $\exists f\colon \mathbb{N}\to\mathbb{N}$  вычислимая тотальная, что  $A=\mathrm{rng}\ f$
- 5.  $\exists B \subseteq \mathbb{N}^2$  разрешимое, что  $A = \operatorname{pr}^1(B)$

Доказательство: 1<->5) см. лемму выше; 1<->4) см. билет 2.4 (лемма); 1->2) см. билет 2.5 (берем полухарактеристическую функцию); 2->1) см. билет 2.4 (следствие); 4->3) очев.; 3->1) см. билет 2.4 (следствие);

## 2.7 Универсальная вычислимая функция (в классе вычислимых функций $\mathbb{N} \stackrel{p}{\to} \mathbb{N}$ ). Т-Предикаты. Неразрешимость проблем самоприменимости и остановки.

Универсальная вычислимая функция – такая  $U \colon \mathbb{N}^2 \to \mathbb{N}$ , если она вычислима и для любой вычислимой функции f существует индекс i такой, что  $U_i = f$ .

Т-Предикат: пусть U - у.в.ф. и  $\mathcal{U}$  - программа, вычисляющая U, тогда определим множество  $T = \{(n,x,k) \mid \text{ алгоритм } \mathcal{U} \text{ останавливается на входе } (n,x) \text{ за } k \text{ шагов} \}$ . Т-Предикатом называется функция  $T(n,x,k) := (n,x,k) \in T$ .

Неразрешимость проблемы самоприменимости: невозможно создать алгоритм, определяющий, завершится ли программа на собственном коде.

Доказательство: если существует такой алгоритм p(x), возвращающий ноль если программа x зацикливается на вводе x и единицу иначе, то существует программа  $f(x) = \begin{cases}$  зацикливается, если p(x) = 1 завершается, если  $p(x) = 0 \end{cases}$ . Рассмотрим случаи: если p(x) = 0, то по определению f зацикливается, но f(f) завершается; если p(x) = 1, то по определению f завершается, но f(f) зацикливается. Противоречие.

Неразрешимость проблемы остановки: нет алгоритма g, который бы определял, завершится ли программа на данном входе.

Доказательство: если бы такой алгоритм существовал, то существовал бы и алгоритм p(x) = g(x, x), проверяющий самоприменимость, но такого алгоритма нет.

#### 2.8 Неразрешимость проблем самоприменимости и остановки. Примеры перечислимого неразрешимого и неперечислимого множеств.

Неразрешимость проблем самоприменимости и остановки: см. билет 2.7

Пример перечислимого неразрешимого множества: пусть U - у.в.ф., d(x) = U(x,x) тогда  $K = \{x \in \mathbb{N} \mid$ d(x) - определено}

Доказательство: 1) перечислимость следует из того, что K = dom d – вычислимой функции 2) предположим, что K – разрешимо, тогда определим вычислимую функцию  $f(x) = \begin{cases} 0, & x \notin K \\ \text{неопр.}, & x \in K \end{cases}$ . Существует n, что  $U_n=f$ . Тогда рассмотрим, лежит ли n в K: если да, то d(n) не определено, значит  $n \notin K$ ; если нет, то d(n) = 0 - определено, значит  $n \in K$ . В обоих случаях противоречия, значит предположение ложно.

Пример неперечислимого множества: множество  $\overline{K}$  – если бы оно было перечислимо, то по теореме Поста (см. билет 2.2) K было бы разрешимо, что неправда.

#### Пример вычислимой функции, не имеющей вычислимого тотального продолжения. Область определения вычислимой функции, не имеющей вычислимого тотального продолжения, перечислима, но не разрешима.

Пример вычислимой функции, не имеющей вычислимого тотального продолжения: пусть U - у.в.ф., тогда d(x) = U(x, x) - искомый пример.

Доказательство: 1) d - вычислима

2) Пусть g продолжает d, тогда существует вычислимая тотальная h(x) = g(x) + 1. Для h существует n, что  $U_n = h$ . Разберем случаи: если  $n \notin \text{dom } d$ , тогда не определено U(n,n), но  $U(n,n) = U_n(n) = h(n)$ определено, значит  $n \in \text{dom } d$ , тогда  $d(n) = U(n,n) = U_n(n) = h(n) = g(n) + 1 = d(n) + 1$  - противоречие.

Область определения вычислимой функции, не имеющей вычислимого тотального продолжения, перечислима, но не разрешима: Пусть вычислимая функция f не имеет вычислимого тотального продолжения, тогда dom f перечислимо, но не разрешимо.

Доказательство:

- 1) перечислимость из следствия (см. билет 2.4)
- 2) от противного: пусть dom f разрешимо, тогда существует характеристическая функция g. Определим  $h(x) = \begin{cases} f(x), & \text{если } g(x) = 1 \\ 0, & \text{если } g(x) = 0 \end{cases}$ . Таким образом мы получили вычислимое тотальное продолжение, противоречие.

#### Невозможность универсальной вычислимой тотальной функции. 2.10

Невозможность универсальной вычислимой тотальной функции: тотальной у.в.ф. не может быть. Доказательство: от противного: пусть U - тотальная у.в.ф., тогда возьмем диагональ d(x) = U(x,x) и построим f(x) = d(x) + 1 - тотальная вычислимая функция. Значит существует n, что  $U_n = f$ . Рассмотрим значение f(n):  $f(n) = U_n(n) = U(n,n) = d(n)$ , но f(n) = d(n) + 1 по определению, противоречие.

#### 2.11Пример непересекающихся перечислимых множеств, не отделимых никаким разрешимым множеством.

\*Сначала нужно решить упражнение: существует вычислимая функция f, не имеющая вычислимого тотального продолжения, т. ч. rng  $f = \{0, 1\}$ .

доказательство: пусть 
$$U$$
 - у.в.ф. и  $d(x) = U(x,x)$ . Определим  $f(x) = \begin{cases} 0, & d(x) = 0 \\ 1, & d(x) \neq 0 \end{cases}$ . Если бы довычислимое тотальное продолжение  $f$ , тогда существовало бы и тотальное продолжение  $d(x)$ .

было вычислимое тотальное продолжение f, тогда существовало бы и тотальное продолжение d(x).

Пример непересекающихся перечислимых множеств, не отделимых никаким разрешимым множеством: рассмотрим f из упражнения выше и положим  $A = f^{-1}(1)$  и  $B = f^{-1}(0)$ .

Доказательство: 1) непересекаемость очев.

2) перечислимость из теоремы о графике вычислимой функции (см. билет 2.3)

<sup>\*</sup>Отделимость: множество C отделяет A от B, если  $A\subseteq C$  и  $B\subseteq \overline{C}$ 

3) неотделимость разрешимой функцией: если разрешимое C отделяет A и B, тогда вычислимая тотальная характеристическая функция q множества C продолжает f, чего не может быть, противоречие.

## 2.12 Главная универсальная вычислимая функция. Вычислимое биективное кодирование пар натуральных чисел. Построение главной у.в.ф. с помощью произвольной у.в.ф.

Главная универсальная вычислимая функция – такая частичная вычислимая  $U\colon \mathbb{N}^2\to\mathbb{N},$  что для любой частичной вычислимой функции  $F\colon \mathbb{N}^2\to\mathbb{N}$  существует вычислимая тотальная функция  $s\colon \mathbb{N}\to\mathbb{N},$  что  $F_i=U_{s(i)}$ 

Вычислимое биективное кодирование пар натуральных чисел: пусть  $\langle \cdot, \cdot \rangle$ :  $\mathbb{N}^2 \to \mathbb{N}$  – произвольная тотальная биекция. Определим тотальные функции  $\pi_1$  и  $\pi_2$ , что  $\pi_1(\langle n_1, n_2 \rangle) = n_1$  и  $\pi_2(\langle n_1, n_2 \rangle) = n_2$ . Функции  $\pi_1$  и  $\pi_2$  вычислимы.

Доказательство: опишем алгоритм вычисления  $\pi_1$  (для  $\pi_2$  аналогично). Для заданного  $n \in \mathbb{N}$  перебираем все пары  $(a,b) \in \mathbb{N}^2$  пока не найдем такого, что  $\langle a,b \rangle = n$  и вернем a. Мы найдем такую пару так как функция - тотальная биекция.

Построение главной у.в.ф. с помощью произвольной у.в.ф.: *редакторское примечание*: построение совсем нетривиальное, просто внимательно следим за руками

Построение: пусть U - у.в.ф.. Определим нашу г.у.в.ф. так:  $W(n,x) = U(\pi^1(n), \langle \pi^2(n), x \rangle)$ .

Проверим, что она г.у.в.ф.: 1) вычислимость: мы берем вычислимую функцию и подставляем вычислимые аргументы, все ок.

2) Пусть  $V: \mathbb{N}^2 \to \mathbb{N}$  - какая-то вычислимая функция. Зададим еще одну функцию на основе  $V: V'(x) = V(\pi^1(x), \pi^2(x))$ , она тоже вычислимая, тогда для нее существует какое-то l, что  $U_l = V'$ . И последнее: для V искомая  $s(n) = \langle l, n \rangle$ , она вычислимая тотальная.

Теперь магия:  $W(s(n),x) = W(\langle l,n\rangle,x) = U(\pi^1(\langle l,n\rangle),\langle \pi^2(\langle l,n\rangle),x\rangle = U(l,\langle n,x\rangle) = U_l(\langle n,x\rangle) = V'(\langle n,x\rangle) = V(\pi^1(\langle n,x\rangle),\pi^2(\langle n,x\rangle)) = V(n,x)$ 

#### 2.13 Теорема Клини о неподвижной точке

Теорема: пусть U - г.у.в.ф.,  $f\colon \mathbb{N}\to\mathbb{N}$  - тотальная вычислимая функция, тогда существует такое n, что  $U_n=U_{f(n)}$ 

Доказательство: пусть V(k,x) = U(U(k,k),x) - вычислимая тотальная. Из главности у.в.ф. найдется тотальная  $s \colon \mathbb{N} \to \mathbb{N}$ , что U(s(k),x) = V(k,x) = U(U(k,k),x). Композиция f и s тоже вычислима, поэтому существует  $t \in \mathbb{N}$ , что  $U_t = f \circ s$ . Имеем  $U(s(t),x) = V(t,x) = U(U(t,t),x) = U(U_t(t),x) = U((f \circ s)(t),x) = U(f(s(t)),x)$ . Искомое n = s(t).

### 2.14 Бесконечность множества неподвижных точек в смысле теоремы Клини. Теорема о рекурсии как следствие теоремы Клини. Пример применения теоремы о рекурсии.

Бесконечность множества неподвижных точек в смысле теоремы Клини: пусть U - г.у.в.ф. и  $f: \mathbb{N} \to \mathbb{N}$  - тотальная, тогда бесконечно множество X, состоящее n таких, что  $U_n = U_{f_n}$ .

Доказательство: от противного, пусть X конечно, тогда оно разрешимо и существует вычислимая функция g, что ни один ее индекс в U не лежит в X. Пусть m – индекс g в U. Рассмотрим  $h(x) = \begin{cases} m, & \text{если } x \in X \\ f(x), & \text{если } x \not\in X \end{cases}$ . В силу разрешимости X, h тотальная вычислимая. По теореме Клини, существует n, что  $U_n = U_{h(n)}$ . Разберем случаи: если  $n \in X$ , тогда  $U_n = U_{h(n)} = U_m = g$ , что противоречит определению g; если  $n \notin X$ , тогда  $U_n = U_{h(n)} = U_{f(n)}$ , но это значит что  $n \in X$ , противоречие.

Теорема о рекурсии: пусть  $V\colon \mathbb{N}^2 \to \mathbb{N}$  - вычислимая частичная функция. Тогда существует n, что  $U_n=V_n$ 

Доказательство: берем  $s\colon \mathbb{N}\to\mathbb{N},$  что  $V_n=U_{s(n)}.$  По теореме Клини существует x, что  $U_{s(x)}=U_x.$  Подставляем этот  $x\colon U_x=U_{s(x)}=V_x.$ 

Пример использования теоремы о рекурсии: существует вычислимая функция  $f(x) = \begin{cases} 1, & x = 0 \\ x \cdot f(x-1), & x > 0 \end{cases}$ 

Доказательство: построим  $V\colon \mathbb{N}^2\to \mathbb{N}$  следующим образом:  $V_k(x)=\begin{cases} 1, & x=0\\ x\cdot V_K(x_1), & x>0 \end{cases}$ . По теореме о рекурсии находим n, что для какой-то г.у.в.ф. U выполняется  $U_n=V_n$ . Индукция по x показывает что функция  $U_n$  удовлетворяет условиям. (TODO: каким условиям? почему вся задача вообще не очевидная?)

## 2.15 Вычислимость индекса композиции вычислимых функций. Совместная рекурсия: решение «систем уравнений» (с тотальными правыми частями).

Вычислимость индекса композиции вычислимых функций: для г.у.в.ф. U существует вычислимая тотальная функция  $c\colon \mathbb{N}^2 \to \mathbb{N}$ , что для любых  $p,q \in \mathbb{N}$  выполняется  $U_{c(p,q)} = U_p \circ U_q$ 

Доказательство: возьмем вычислимую  $V(n,x)=(U_{\pi^1(n)}\circ U_{\pi^2(n)})(x)$ . Существует тотальная вычислимая  $s\colon \mathbb{N}\to\mathbb{N}$ , что  $V_n=U_{s(n)}$ . Положим  $c(x,y)=s(\langle x,y\rangle)$  и имеем:  $U_{c(p,q)}=U_{s(\langle p,q\rangle)}=V_{\langle p,q\rangle}=U_{\pi^1(\langle p,q\rangle)}\circ U_{\pi^2(\langle p,q\rangle)}=U_p\circ U_q$ 

Совместная рекурсия: ТООО