# 1 million structure method for photoelectron spectra: restricted normal mode sampling, and Dyson orbital transitions

T. Northey

September 8, 2022

## Chlorobenzene normal mode sampling



(a)  $C_1-C_2$  distance



(c)  $C_1$ -Cl distance



(b)  $C_1-C_4$  distance



(d) C-H distance

- 1. Chlorobenzene has 30 normal modes
- 2. Sampling over a selection of 16 'heavy atom' modes effectively clamps the C-H bonds (fig. 1d) while keeping the other distances similar (above figures)
- 3. Doing this slightly restrains the C–C bonds (fig. 1a), but only by a difference in fwhm  $\simeq$  0.02 Å.
- 4. I used a sample size of 10,000 molecular structures for the above figures.

## Chlorobenzene normal mode sampling, vary sample size N



- From bond-distances statistics, it seems that N = 1000 and N = 10000 agree relatively closely. N = 10000 gives a smoother bell curve distribution for inter-atomic distances.
- ▶ These samples were generated using all normal modes.

## Sampling method

The sampling equation for generating the displaced molecular coordinates is,

$$\mathbf{R} = \mathbf{R}_0 + \sum_{i}^{\text{modes}} a_i \mathbf{d}_i \tag{1}$$

with starting geometry  $\mathbf{R}_0$ , and displacement unit vectors  $\mathbf{d}_i$  for each normal mode are obtained from a frequency calculation. The factors  $a_i$  are randomly generated within a bell curve centered at  $\mu=0$ , and chosen standard deviation,  $\sigma$ .

### Chlorobenzene Dyson transitions



Figure: Chlorobenzene Dyson orbital transitions between the ground state and its ion (chlorobenzene+). The transitions are from states [0, 1, 2], i.e. ground state,  $S_1$ , and  $S_2$ , to the ion states. The red line is only transitions to the ground state ion, and the blue includes transitions to states [0, 1, 2] of the ion.