Show that 2SAT is NL-complete.

Step-by-step solution

Step 1 of 4

NL - completeness:- A language B is NL- complete if

- 1. $B \in NL$, and
- 2. Every A in NL is log space reducible to B, that is B is NL-hard.

Now we have to prove that 2SAT is NL -complete.

We know that $2SAT = {\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula in } 2cnf}$.

We know the fact that NL = CONL

Thus if we prove that $\overline{2SAT}$ is NL-complete, then that implies that 2SAT is NL-complete.

Comment

Step 2 of 4

To prove $\overline{2SAT}$ is *NL*-complete, we have to prove the two conditions of NL-completeness.

(i) $\overline{2SAT} \in NL$

In order to prove $\overline{2SAT} \in NL$ construct the graph NTM M as follows:

 $M = \text{"On input } \phi$:

(1) Construct graph G such that ϕ is not satisfiable if and only if there two vertices u, v

the paths uv and vu are in G.

- (2) For each variable x create a node labeled x and another labeled x.
- (3) Now non-deterministically select a vertex x in G.
- (4) Check if G contain both $x \ x \overline{x}$ and $\overline{x}x$ paths using NL algorithm for PATH.
- (5) If both paths exist, then accept
- (6) Otherwise reject ".

The entire construction is done in \log – space and M decides $\overline{2SAT}$ in \log space only.

Thus $\overline{2SAT} \in NL$

Comment

Step 3 of 4

(ii)
$$\overline{2SAT}$$
 is NL _hard:

We do this by reducing path to $\overline{2SAT}$.

Construction of ϕ :

- Given G, s, t we have to construct a 2-cnf formula ϕ such that G has an s, t path if and only if ϕ is unsatisfiable.
- $v(G) = \{s, t, y_1, ... y_n\}$
- The resulting formula ϕ consists of m+1 variables $x, y_1, ... y_m$

- The vertex s is identified with x and the vertex t with x.
- The asses of ϕ will be $x \vee x$ and $\overline{u} \vee u$ every edge (u,v) of G.

Comment

Step 4 of 4

 \rightarrow In order to show that this construction works, first assume that G has an s,t path. Let this path be $s,u_1,...u_kt$. Then ϕ contains the clause $(\overline{x}\vee u_1),(\overline{u_1}\vee u_2)...(\overline{u_k},\overline{x})$

If we designs x = 1, at least one of these clauses is not satisfied on the other hand, if x = 0, then the clause $(x \lor x)$ of ϕ is not satisfied. So ϕ is zero for any assignment of $(x, y_1, ..., y_m)$.

- \rightarrow Conversely, suppose that G contains no s-t path.
- Let U be the set of vertices in G reachable from s,V the set of vertices from which t is reachable and $w:V(G)(U\vee V)$.

By hypothesis and construction U,V,W are pair wise disjoint, and there are no edges from U to $V \cup W$ or from $U \cup W$ to V. let us assign the rue value to every variable in $U \cup W$ and the false value to every variable in V. it is now simple to check that ϕ is satisfied for this truth assignment.

Comment