Differential elimination for dynamical systems

Gleb Pogudin,

MAX team, LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris

MEGA (Effective Methods in Algebraic Geometry)
June 10, 2021

Plan

- I (Some) algebra of differential equations Differential elimination: what and why?
- II Elimination for dynamical system in theory & action
- III Open problems and conclusions Including very specific problems

Part I

(Some) Algebra of differential equations

Convergence questions: talk by S. Falkensteiner, J. Cano, R. Sendra on Tuesday

Other connections of algebra and differential equations: talk by D. Agostini, C. Fevola, Y. Mandelshtam, B. Sturmfels on Friday

Fix a ground field k.

Fix a ground field k.

Input:
$$f_1, \ldots, f_s \in k[\mathbf{x}, \mathbf{x}', \ldots, \mathbf{y}, \mathbf{y}', \ldots] =: k[\mathbf{x}^{(\infty)}, \mathbf{y}^{(\infty)}]$$

Fix a ground field k.

Input:
$$f_1, ..., f_s \in k[\mathbf{x}, \mathbf{x}', ..., \mathbf{y}, \mathbf{y}', ...] =: k[\mathbf{x}^{(\infty)}, \mathbf{y}^{(\infty)}]$$

Output: a description of

$$\sqrt{\langle f_1, f_1', f_1'', \dots, f_s, f_s', \dots \rangle}$$
 \cap differential ideal

Fix a ground field k.

Input:
$$f_1, \ldots, f_s \in k[\mathbf{x}, \mathbf{x}', \ldots, \mathbf{y}, \mathbf{y}', \ldots] =: k[\mathbf{x}^{(\infty)}, \mathbf{y}^{(\infty)}]$$

Output: a description of

$$\sqrt{\langle f_1, f_1', f_1'', \ldots, f_s, f_s', \ldots \rangle} \cap k[\mathbf{y}^{(\infty)}]$$
differential ideal

Fix a ground field k.

Input:
$$f_1, ..., f_s \in k[\mathbf{x}, \mathbf{x}', ..., \mathbf{y}, \mathbf{y}', ...] =: k[\mathbf{x}^{(\infty)}, \mathbf{y}^{(\infty)}]$$

Output: a description of

$$\sqrt{\langle f_1, f_1', f_1'', \dots, f_s, f_s', \dots \rangle} \cap k[\mathbf{y}^{(\infty)}]$$

Semantic: Relations satisfied by the **y**-component of any power series solution of $f_1 = f_2 = \ldots = f_s = 0$.

4

Fix a ground field k.

Input:
$$f_1, ..., f_s \in k[\mathbf{x}, \mathbf{x}', ..., \mathbf{y}, \mathbf{y}', ...] =: k[\mathbf{x}^{(\infty)}, \mathbf{y}^{(\infty)}]$$

Output: a description of

$$\sqrt{\langle f_1, f_1', f_1'', \dots, f_s, f_s', \dots \rangle} \cap k[\mathbf{y}^{(\infty)}]$$

Semantic: Relations satisfied by the **y**-component of any power series solution of $f_1 = f_2 = \ldots = f_s = 0$.

Toy example

$$\begin{cases} f_1 = x' - y, \\ f_2 = y' - x \end{cases} \implies y^{(2)} - y = (x' - y) + (y' - x)' \in \langle f_1, f_1', \dots, f_2, f_2', \dots \rangle$$

4

Fix a ground field k.

Input:
$$f_1, \ldots, f_s \in k[\mathbf{x}, \mathbf{x}', \ldots, \mathbf{y}, \mathbf{y}', \ldots] =: k[\mathbf{x}^{(\infty)}, \mathbf{y}^{(\infty)}]$$

Output: a description of

$$\sqrt{\langle f_1, f_1', f_1'', \dots, f_s, f_s', \dots \rangle} \cap k[\mathbf{y}^{(\infty)}]$$

Semantic: Relations satisfied by the **y**-component of any power series solution of $f_1 = f_2 = \ldots = f_s = 0$.

Toy example

$$\begin{cases} f_1 = x' - y, \\ f_2 = y' - x \end{cases} \implies y^{(2)} - y = (x' - y) + (y' - x)' \in \langle f_1, f_1', \dots, f_2, f_2', \dots \rangle$$

Moreover
$$(f_1, f_1', ..., f_2, f_2', ...) \cap k[y^{(\infty)}] = (y^{(2)} - y, y^{(3)} - y', ...).$$

Differential elimination: why?

• Eliminate non-observable variables from models.

Differential elimination: why?

• Eliminate non-observable variables from models.

• Eliminate auxiliary (non-important) variables.

Differential elimination goes back to Ritt (1930-s).

Differential elimination goes back to Ritt (1930-s).

A number of great results since then resulting in:

Differential elimination goes back to Ritt (1930-s).

A number of great results since then resulting in:

Metatheorem on differential elimination

For every elimination method X there exists at least one "differential X".

Differential elimination goes back to Ritt (1930-s).

A number of great results since then resulting in:

Metatheorem on differential elimination

For every elimination method X there exists at least one "differential X".

But

Their relative standing is different, e.g.:

differential Gröbner bases are not so popular (may be infinite)

Differential elimination goes back to Ritt (1930-s).

A number of great results since then resulting in:

Metatheorem on differential elimination

For every elimination method X there exists at least one "differential X".

But

Their relative standing is different, e.g.:

differential Gröbner bases are not so popular (may be infinite)
 But there are surprises:
 talk by R. Ait El Manssour & A.-L. Sattelberger on Friday

6

Differential elimination goes back to Ritt (1930-s).

A number of great results since then resulting in:

Metatheorem on differential elimination

For every elimination method X there exists at least one "differential X".

But

Their relative standing is different, e.g.:

- differential Gröbner bases are not so popular (may be infinite)
 But there are surprises:
 talk by R. Ait El Manssour & A.-L. Sattelberger on Friday
- in practice, characteristic sets are the most popular BLAD library by F. Boulier, available in MAPLE

Differential elimination goes back to Ritt (1930-s).

A number of great results since then resulting in:

Metatheorem on differential elimination

For every elimination method X there exists at least one "differential X".

So the problem is solved, no?

Existing algorithms are general \implies efficient computation in practice is still a challenge.

Differential elimination goes back to Ritt (1930-s).

A number of great results since then resulting in:

Metatheorem on differential elimination

For every elimination method X there exists at least one "differential X".

So the problem is solved, no?

Existing algorithms are general \Longrightarrow efficient computation in practice is still a challenge.

And the plan is?

Restrict to dynamical systems and use Effective Algebraic Geometry.

Part II

Elimination for dynamical systems: in theory and in action

System

$$\begin{cases} x'_1 = f_1(x_1, \dots, x_n), \\ \dots \\ x'_n = f_n(x_1, \dots, x_n), \end{cases}$$

where $f_1, ..., f_n \in k[x_1, ..., x_n]$.

System

$$\begin{cases} x'_1 = f_1(x_1, \dots, x_n), \\ \dots \\ x'_n = f_n(x_1, \dots, x_n), \end{cases}$$

where $f_1, \ldots, f_n \in k[x_1, \ldots, x_n]$. (more general cases can be considered, we restrict to this for simplicity)

System

$$\begin{cases} x_1' = f_1(x_1, \dots, x_n), \\ \dots \\ x_n' = f_n(x_1, \dots, x_n), \end{cases}$$

where $f_1, \ldots, f_n \in k[x_1, \ldots, x_n]$. (more general cases can be considered, we restrict to this for simplicity)

Corresponding ideal

$$\mathcal{I} := \langle \mathbf{x}' - \mathbf{f}, \mathbf{x}^{(2)} - \mathbf{f}', \ldots \rangle \subset k[\mathbf{x}^{(\infty)}].$$

Algebraic properties

- ullet ${\mathcal I}$ is prime
- ullet generators o Gröbner basis
- the variety is rational (parameters = initial conditions)

System

$$\begin{cases} x_1' = f_1(x_1, \dots, x_n), \\ \dots \\ x_n' = f_n(x_1, \dots, x_n), \end{cases}$$

where $f_1, \ldots, f_n \in k[x_1, \ldots, x_n]$. (more general cases can be considered, we restrict to this for simplicity)

Corresponding ideal

$$\mathcal{I} := \langle \textbf{x}' - \textbf{f}, \textbf{x}^{(2)} - \textbf{f}', \ldots \rangle \subset \textit{k}[\textbf{x}^{(\infty)}].$$

Algebraic properties

- ullet $\mathcal I$ is prime
- ullet generators o Gröbner basis
- the variety is rational (parameters = initial conditions)

Notation fixed for the rest of the section: n, \mathcal{I}

Elimination in dynamical systems: setup

Input:

• dynamical system

$$\begin{cases} x_1' = f_1(x_1, \dots, x_n), \\ \dots \\ x_n' = f_n(x_1, \dots, x_n). \end{cases}$$

• integer $1 \leqslant s \leqslant n$ ("to keep x_1, \ldots, x_s ")

Output:

A description of

$$\mathcal{I}_{\mathsf{elim}} := \mathcal{I} \cap k[x_1^{(\infty)}, \dots, x_s^{(\infty)}]$$

(recall
$$\mathcal{I} := \langle \mathbf{x}' - \mathbf{f}, \mathbf{x}^{(2)} - \mathbf{f}', \ldots
angle$$
)

Elimination in dynamical systems: setup

Input:

dynamical system

$$\begin{cases} x'_1 = f_1(x_1, \dots, x_n), \\ \dots \\ x'_n = f_n(x_1, \dots, x_n). \end{cases}$$

• integer $1 \leqslant s \leqslant n$ ("to keep x_1, \ldots, x_s ")

Output:

A description of

$$\mathcal{I}_{\mathsf{elim}} := \mathcal{I} \cap k[x_1^{(\infty)}, \dots, x_s^{(\infty)}]$$

(recall
$$\mathcal{I} := \langle \mathbf{x}' - \mathbf{f}, \mathbf{x}^{(2)} - \mathbf{f}', \ldots \rangle$$
)

Notation fixed for the rest of the section: n, \mathcal{I} , s, \mathcal{I}_{elim}

Elimination in dynamical systems: setup

Input:

dynamical system

$$\begin{cases} x_1' = f_1(x_1, \dots, x_n), \\ \dots \\ x_n' = f_n(x_1, \dots, x_n). \end{cases}$$

• integer $1 \leqslant s \leqslant n$ ("to keep x_1, \ldots, x_s ")

Output:

A description of

$$\mathcal{I}_{\mathsf{elim}} := \mathcal{I} \cap k[x_1^{(\infty)}, \dots, x_s^{(\infty)}]$$

(recall
$$\mathcal{I} := \langle \textbf{x}' - \textbf{f}, \textbf{x}^{(2)} - \textbf{f}', \ldots \rangle)$$

Notation fixed for the rest of the section: n, \mathcal{I} , s, \mathcal{I}_{elim}

What kind of description?

Elimination in dynamical systems: setup

Input:

dynamical system

$$\begin{cases} x_1' = f_1(x_1, \dots, x_n), \\ \dots \\ x_n' = f_n(x_1, \dots, x_n). \end{cases}$$

• integer $1 \leqslant s \leqslant n$ ("to keep x_1, \ldots, x_s ")

Output:

A description of

$$\mathcal{I}_{\mathsf{elim}} := \mathcal{I} \cap k[x_1^{(\infty)}, \dots, x_s^{(\infty)}]$$

(recall
$$\mathcal{I} := \langle \mathbf{x}' - \mathbf{f}, \mathbf{x}^{(2)} - \mathbf{f}', \ldots
angle$$
)

Notation fixed for the rest of the section: n, \mathcal{I} , s, \mathcal{I}_{elim}

What kind of description? \leftarrow depends on the questions we ask!

Given: parametric dynamical system

$$\bigvee_{\substack{\boldsymbol{\lambda} \in \mathcal{S} \\ \boldsymbol{\lambda} \in \mathcal{S} \\ \boldsymbol{\lambda} \in \mathcal{S}}} \left\{ \begin{aligned} x_1' &= f_1(\boldsymbol{\mu}, \mathbf{x}), \\ \dots & \\ x_s' &= f_s(\boldsymbol{\mu}, \mathbf{x}) \end{aligned} \right. \\ \left\{ \begin{aligned} x_{s+1}' &= f_{s+1}(\boldsymbol{\mu}, \mathbf{x}), \\ \dots & \\ x_n' &= f_n(\boldsymbol{\mu}, \mathbf{x}), \end{aligned} \right.$$

 μ : unknown scalar parameters (ground field $k=\mathbb{C}(\mu)$)

Given: parametric dynamical system

$$\begin{cases} \mathbf{x}_1' = f_1(\boldsymbol{\mu}, \mathbf{x}), \\ \dots \\ \mathbf{x}_s' = f_s(\boldsymbol{\mu}, \mathbf{x}) \end{cases}$$

$$\begin{cases} \mathbf{x}_{s+1}' = f_{s+1}(\boldsymbol{\mu}, \mathbf{x}), \\ \dots \\ \mathbf{x}_n' = f_n(\boldsymbol{\mu}, \mathbf{x}), \end{cases}$$

 μ : unknown scalar parameters (ground field $k=\mathbb{C}(\mu)$)

Informal definition

 μ_1 is identifiable if (generically) μ_1 is uniquely determined by functions $x_1(t), \ldots, x_s(t)$.

Given: parametric dynamical system

$$\begin{cases} \mathbf{x}_1' = f_1(\boldsymbol{\mu}, \mathbf{x}), \\ \dots \\ \mathbf{x}_s' = f_s(\boldsymbol{\mu}, \mathbf{x}) \end{cases}$$

$$\begin{cases} \mathbf{x}_{s+1}' = f_{s+1}(\boldsymbol{\mu}, \mathbf{x}), \\ \dots \\ \mathbf{x}_n' = f_n(\boldsymbol{\mu}, \mathbf{x}), \end{cases}$$

 μ : unknown scalar parameters (ground field $k = \mathbb{C}(\mu)$)

Informal definition

 μ_1 is identifiable if (generically) μ_1 is uniquely determined by functions $x_1(t), \ldots, x_s(t)$.

Example: s = 1

$$\begin{cases} x_1' = x_2, \\ x_2' = \mu x_1. \end{cases} \implies \mathsf{YES} \; (\mu = \frac{x_1''}{x_1})$$

Given: parametric dynamical system

$$\begin{cases} \mathbf{x}_1' = f_1(\boldsymbol{\mu}, \mathbf{x}), \\ \dots \\ \mathbf{x}_s' = f_s(\boldsymbol{\mu}, \mathbf{x}) \end{cases}$$

$$\begin{cases} \mathbf{x}_{s+1}' = f_{s+1}(\boldsymbol{\mu}, \mathbf{x}), \\ \dots \\ \mathbf{x}_n' = f_n(\boldsymbol{\mu}, \mathbf{x}), \end{cases}$$

 μ : unknown scalar parameters (ground field $k = \mathbb{C}(\mu)$)

Informal definition

 μ_1 is identifiable if (generically) μ_1 is uniquely determined by functions $x_1(t), \ldots, x_s(t)$.

Example: s = 1

$$\begin{cases} x_1' = \mu x_2, \\ x_2' = \mu x_1. \end{cases} \implies \mathsf{NO} \begin{pmatrix} \mu \leftrightarrow -\mu \\ x_2 \leftrightarrow -x_2 \end{pmatrix}$$

Given: parametric dynamical system

$$\begin{cases} \mathbf{x}_1' = f_1(\boldsymbol{\mu}, \mathbf{x}), \\ \dots \\ \mathbf{x}_s' = f_s(\boldsymbol{\mu}, \mathbf{x}) \\ \\ \mathbf{x}_{s+1}' = f_{s+1}(\boldsymbol{\mu}, \mathbf{x}), \\ \dots \\ \mathbf{x}_n' = f_n(\boldsymbol{\mu}, \mathbf{x}), \end{cases}$$

 μ : unknown scalar parameters (ground field $k = \mathbb{C}(\mu)$)

Informal definition

 μ_1 is identifiable if (generically) μ_1 is uniquely determined by functions $x_1(t),\ldots,x_s(t)$.

Example: s = 1

$$\begin{cases} x_1' = \mu x_2, \\ x_2' = \mu x_1. \end{cases} \implies \mathsf{NO} \begin{pmatrix} \mu \leftrightarrow -\mu \\ x_2 \leftrightarrow -x_2 \end{pmatrix}$$

Algebraic characterization

(Ollivier'90)

 μ_1 is identifiable \iff

 $\mu_1 \in \mathsf{the} \mathsf{ field} \mathsf{ of} \mathsf{ definition} \mathsf{ of} \mathcal{I}_{\mathsf{elim}}$

Given: parametric dynamical system

$$\begin{cases} \mathbf{x}_1' = f_1(\boldsymbol{\mu}, \mathbf{x}), \\ \dots \\ \mathbf{x}_s' = f_s(\boldsymbol{\mu}, \mathbf{x}) \\ \\ \mathbf{x}_{s+1}' = f_{s+1}(\boldsymbol{\mu}, \mathbf{x}), \\ \dots \\ \mathbf{x}_n' = f_n(\boldsymbol{\mu}, \mathbf{x}), \end{cases}$$

 μ : unknown scalar parameters (ground field $k = \mathbb{C}(\mu)$)

Informal definition

 μ_1 is identifiable if (generically) μ_1 is uniquely determined by functions $x_1(t), \ldots, x_s(t)$. Example: s=1

$$\begin{cases} x_1' = \mu x_2, \\ x_2' = \mu x_1. \end{cases} \implies \mathsf{NO} \begin{pmatrix} \mu \leftrightarrow -\mu \\ x_2 \leftrightarrow -x_2 \end{pmatrix}$$

Algebraic characterization

(Ollivier'90)

 μ_1 is identifiable \iff $\mu_1 \in \text{the field of definition of } \mathcal{I}_{\text{elim}}$ (under a mild condition, more in Ovchinnikov, Pillay, P., Scanlon'20)

Assessing identifiability via elimination

Joint with Ruiwen Dong, Christian Goodbrake, and Heather Harrington.

Overall: we compute the field of definition of $\mathcal{I}_{\text{elim}}.$

Assessing identifiability via elimination

Joint with Ruiwen Dong, Christian Goodbrake, and Heather Harrington.

Overall: we compute the field of definition of $\mathcal{I}_{\text{elim}}.$

In the next slides

- How we represent \mathcal{I}_{elim} ?
- How we compute the representation?
- How we extract the field of definition?
- Performance

How many Taylor coefficients are enough?

A tuple $(h_1,\ldots,h_s)\in\mathbb{Z}^s$ is called profile if

•
$$x_1^{(< h_1)}, \dots, x_s^{(< h_s)}$$
 are algebraically independent modulo \mathcal{I} , where $x_j^{(< i)} := (x_j, x_j', \dots, x_j^{(i-1)})$

How many Taylor coefficients are enough?

A tuple $(h_1,\ldots,h_s)\in\mathbb{Z}^s$ is called profile if

- $x_1^{(< h_1)}, \dots, x_s^{(< h_s)}$ are algebraically independent modulo \mathcal{I} , where $x_j^{(< i)} := (x_j, x_j', \dots, x_j^{(i-1)})$
- (h_1, \ldots, h_s) is maximal with this property.

Intuition: $x_1^{(< h_1)}(0), \ldots, x_s^{(< h_s)}(0)$ define $x_1(t), \ldots, x_s(t)$ up to finitely many choices (generically).

How many Taylor coefficients are enough?

A tuple $(h_1,\ldots,h_s)\in\mathbb{Z}^s$ is called profile if

- $x_1^{(< h_1)}, \dots, x_s^{(< h_s)}$ are algebraically independent modulo \mathcal{I} , where $x_j^{(< i)} := (x_j, x_j', \dots, x_j^{(i-1)})$
- (h_1, \ldots, h_s) is maximal with this property.

Example

$$\begin{cases} x_1' = -x_2, \\ x_2' = x_1 \end{cases} & & s = 1 \implies h_1 = 2$$

Representation: $\overline{\mathsf{infinite}} \to \mathsf{finite}$

How many Taylor coefficients are enough?

A tuple $(h_1,\ldots,h_s)\in\mathbb{Z}^s$ is called profile if

- $x_1^{(< h_1)}, \dots, x_s^{(< h_s)}$ are algebraically independent modulo \mathcal{I} , where $x_j^{(< i)} := (x_j, x_j', \dots, x_j^{(i-1)})$
- (h_1, \ldots, h_s) is maximal with this property.

Propositions on profiles

• (Hong, Ovchinnikov, **P.**, Yap, 2020) $x_1^{(\leqslant h_1)}, \ldots, x_s^{(\leqslant h_s)}$ generate the fraction field of $k[x_1^{(\infty)}, \ldots, x_s^{(\infty)}]/\mathcal{I}_{\text{elim}}$. (used for assessing identifiability and observability)

How many Taylor coefficients are enough?

A tuple $(h_1,\ldots,h_s)\in\mathbb{Z}^s$ is called profile if

- $x_1^{(< h_1)}, \dots, x_s^{(< h_s)}$ are algebraically independent modulo \mathcal{I} , where $x_j^{(< i)} := (x_j, x_j', \dots, x_j^{(i-1)})$
- (h_1, \ldots, h_s) is maximal with this property.

Propositions on profiles

- (Hong, Ovchinnikov, **P.**, Yap, 2020) $x_1^{(\leqslant h_1)}, \ldots, x_s^{(\leqslant h_s)}$ generate the fraction field of $k[x_1^{(\infty)}, \ldots, x_s^{(\infty)}]/\mathcal{I}_{\text{elim}}$. (used for assessing identifiability and observability)
- (Dong, Goodbrake, Harrington, P., 2021) The fields of definition of $\mathcal{I}_{\mathsf{elim}}$ and $\mathcal{I}_{\mathsf{elim}} \cap k[x_1^{(\leqslant h_1)}, \dots, x_s^{(\leqslant h_s)}]$ are the same.

How many Taylor coefficients are enough?

A tuple $(h_1,\ldots,h_s)\in\mathbb{Z}^s$ is called profile if

- $x_1^{(< h_1)}, \dots, x_s^{(< h_s)}$ are algebraically independent modulo \mathcal{I} , where $x_j^{(< i)} := (x_j, x_j', \dots, x_j^{(i-1)})$
- (h_1, \ldots, h_s) is maximal with this property.

Propositions on profiles

- (Hong, Ovchinnikov, **P.**, Yap, 2020) $x_1^{(\leqslant h_1)}, \ldots, x_s^{(\leqslant h_s)}$ generate the fraction field of $k[x_1^{(\infty)}, \ldots, x_s^{(\infty)}]/\mathcal{I}_{\text{elim}}$. (used for assessing identifiability and observability)
- (Dong, Goodbrake, Harrington, P., 2021) The fields of definition of $\mathcal{I}_{\text{elim}}$ and $\mathcal{I}_{\text{elim}} \cap k[x_1^{(\leqslant h_1)}, \dots, x_s^{(\leqslant h_s)}]$ are the same. Talk about this now!

Representation

- Profile: $(h_1,\ldots,h_s)\in\mathbb{Z}^s$ such that
 - $x_1^{(< h_1)}, \dots, x_s^{(< h_s)}$ are algebraically independent modulo $\mathcal{I}_{\text{elim}}$.
 - (h_1,\ldots,h_s) is maximal with this property.

Representation

- ullet Profile: $(h_1,\ldots,h_s)\in\mathbb{Z}^s$ such that
 - $x_1^{(< h_1)}, \dots, x_s^{(< h_s)}$ are algebraically independent modulo $\mathcal{I}_{\text{elim}}$.
 - (h_1, \ldots, h_s) is maximal with this property.
- Projections: for every $1 \leqslant i \leqslant s$, the generator of the principal ideal

$$\mathcal{I}_{\mathsf{elim}} \cap \mathbb{C}(\boldsymbol{\mu})[x_1^{(< h_1)}, \dots, x_i^{(\leqslant h_i)}, \dots, x_s^{(< h_s)}]$$

Representation

- Profile: $(h_1,\ldots,h_s)\in\mathbb{Z}^s$ such that
 - $x_1^{(< h_1)}, \dots, x_s^{(< h_s)}$ are algebraically independent modulo $\mathcal{I}_{\mathsf{elim}}.$
 - (h_1, \ldots, h_s) is maximal with this property.
- Projections: for every $1 \leqslant i \leqslant s$, the generator of the principal ideal

$$\mathcal{I}_{\mathsf{elim}} \cap \mathbb{C}(\boldsymbol{\mu})[x_1^{(< h_1)}, \dots, x_i^{(\leqslant h_i)}, \dots, x_s^{(< h_s)}]$$

Example (contd.)

$$\begin{cases} x_1' = -x_2, \\ x_2' = x_1 \end{cases} & & s = 1 \quad \& \quad h_1 = 2 \implies \mathsf{Projection:} \ x_1'' + x_1 \end{cases}$$

Representation

- Profile: $(h_1,\ldots,h_s)\in\mathbb{Z}^s$ such that
 - $x_1^{(< h_1)}, \dots, x_s^{(< h_s)}$ are algebraically independent modulo $\mathcal{I}_{\mathsf{elim}}$.
 - (h_1, \ldots, h_s) is maximal with this property.
- Projections: for every $1 \leqslant i \leqslant s$, the generator of the principal ideal

$$\mathcal{I}_{\mathsf{elim}} \cap \mathbb{C}(\boldsymbol{\mu})[x_1^{(< h_1)}, \dots, x_i^{(\leqslant h_i)}, \dots, x_s^{(< h_s)}]$$

Observation

Original system is already in this form with s = n and $h_1 = \ldots = h_n = 1$.

Profile point of view on elimination

Profile point of view on elimination

• We originally have

$$(\underbrace{1,1,\ldots,1}_{n \text{ times}})$$

Profile point of view on elimination

• We originally have

$$(\underbrace{1,1,\ldots,1}_{n \text{ times}})$$

• We aim at something like

$$(h_1,h_2,\ldots,h_s,0,\ldots,0)$$

Profile point of view on elimination

We originally have

$$(\underbrace{1,1,\ldots,1}_{n \text{ times}})$$

• We aim at something like

$$(h_1,h_2,\ldots,h_s,0,\ldots,0)$$

Transition: a sequence of sokoban-type steps:

$$\left(\dots, \underbrace{h}_{x_i, i \leqslant s}, \dots, \underbrace{1}_{x_j, j > s}, \dots\right)$$
the projection for x_i involves x_j

Profile point of view on elimination

· We originally have

$$(\underbrace{1,1,\ldots,1}_{n \text{ times}})$$

• We aim at something like

$$(h_1, h_2, \ldots, h_s, 0, \ldots, 0)$$

Transition: a sequence of sokoban-type steps:

$$\left(\dots,\underbrace{h}_{x_{i},\ i\leqslant s},\dots,\underbrace{1}_{x_{j},\ j>s},\dots\right)$$
the projection for x_{i} involves x_{j}

$$\Longrightarrow \left(\dots,\underbrace{h+1}_{x_{i}},\dots,\underbrace{0}_{x_{j}},\dots\right)$$

Computing the representation: efficiency

 use the rational parametrization to sample points and test membership efficiently;

Computing the representation: efficiency

- use the rational parametrization to sample points and test membership efficiently;
- profile h is built dynamically by the socoban algorithm (and can be chosen in a more efficient way)

Computing the representation: efficiency

- use the rational parametrization to sample points and test membership efficiently;
- profile **h** is built dynamically by the socoban algorithm (and can be chosen in a more efficient way)
- special variable change to simplify resultant computation.

How to find the field of definition?

Subtlety

The coefficients of the projections belong to the field of definition but not necessarily generate it.

How to find the field of definition?

Subtlety

The coefficients of the projections belong to the field of definition but not necessarily generate it.

Solution

Taking coefficients of one more projection on a generic plane is enough (but typically not needed and can be avoided)

Performance

The resulting algorithm is implemented in julia using OSCAR library https://github.com/pogudingleb/StructuralIdentifiability.jl

Runtimes below are on a laptop, 16 GB RAM, 1.6 GHz.

Elimination

Model	Maple	Our
Cholera	> 5 h.	3 s.
Pharm	OOM	18 s.
MAPK	OOM	28 s.
SEAIJRC	OOM	29 s.

Identifiability

Model	DAISY	SIAN	Our
Cholera	OOM	> 5 h.	18 s.
Pharm	> 5 h.	> 5h.	7 min.
MAPK	> 5 h.	> 5h.	1 min.
SEAIJRC	OOM	> 5 h.	2 min.
$NF\kappaB$	OOM	33 min.	> 5 h.

Performance

The resulting algorithm is implemented in julia using OSCAR library https://github.com/pogudingleb/StructuralIdentifiability.jl

Runtimes below are on a laptop, 16 GB RAM, 1.6 GHz.

Elimination

Model	Maple	Our
Cholera	> 5 h.	3 s.
Pharm	OOM	18 s.
MAPK	OOM	28 s.
SEAIJRC	OOM	29 s.

Identifiability

Model	DAISY	SIAN	Our
Cholera	OOM	> 5 h.	18 s.
Pharm	> 5 h.	> 5h.	7 min.
MAPK	> 5 h.	> 5h.	1 min.
SEAIJRC	OOM	> 5 h.	2 min.
$NF\kappaB$	OOM	33 min.	> 5 h.

SIAN (Hong, Ovchinnikov, **P.**, Yap, 2020) is also based in elimination for dynamical systems!

Part III Open problems and conclusions

Problem 1: Degree of a prolongation variety

Consider a variety V_1

$$\begin{cases} x_1' = x_2^2, \\ x_2' = x_1^2 \end{cases}$$

$$\deg V_1 = ?$$

Problem 1: Degree of a prolongation variety

Consider a variety V_1

$$\begin{cases} x_1' = x_2^2, \\ x_2' = x_1^2 \end{cases}$$

$$deg V_1 = 4$$

Problem 1: Degree of a prolongation variety

Consider a variety V_2

$$\begin{cases} x'_1 = x_2^2, \\ x'_2 = x_1^2, \\ x''_1 = 2x_2x'_2, \\ x''_2 = 2x_1x'_1 \end{cases}$$

$$\deg V_1 = 4$$
$$\deg V_2 = ?$$

Consider a variety V_2

$$\begin{cases} x_1' = x_2^2, \\ x_2' = x_1^2, \\ x_1'' = 2x_2x_2', \\ x_2'' = 2x_1x_1' \end{cases}$$

$$\deg V_1 = 4$$
$$\deg V_2 = 7$$

Consider a variety V_2

$$\begin{cases} x_1' = x_2^2, \\ x_2' = x_1^2, \\ x_1'' = 2x_2x_2', \\ x_2'' = 2x_1x_1' \end{cases}$$

m	1	2	3	4	5	6	7	8
$\deg V_m$	4	7	16	25	34	49	64	79

Consider a variety V_2

	$\int x_1' = x_2^2,$
J	$x_2' = x_1^2,$
)	$x_1'' = 2x_2x_2'$
	$x_2'' = 2x_1x_1'$

m	1	2	3	4	5	6	7	8
$\deg V_m$	4	7	16	25	34	49	64	79

Guessed formula

$$\deg V_m = \begin{cases} (m+1)^2, & \text{if } m \equiv 0, 1 \pmod{3}, \\ (m+1)^2 - 2, & \text{if } m \equiv 2 \pmod{3} \end{cases}$$

Consider a variety V_2

$\int x_1' = x_2^2,$
$x_2'=x_1^2,$
$x_1'' = 2x_2x_2',$
$x_2'' = 2x_1x_1'$

m	1	2	3	4	5	6	7	8
$\deg V_m$	4	7	16	25	34	49	64	79

Guessed formula

$$\deg V_m = \begin{cases} (m+1)^2, & \text{if } m \equiv 0, 1 \pmod{3}, \\ (m+1)^2 - 2, & \text{if } m \equiv 2 \pmod{3} \end{cases}$$

Why mod 3???

Consider a variety V_2

	$x_1'=x_2^2,$
J	$x_2' = x_1^2,$
)	$x_1'' = 2x_2x_2'$
	$x_2'' = 2x_1x_1'$

m	1	2	3	4	5	6	7	8
$\deg V_m$	4	7	16	25	34	49	64	79

Guessed formula

$$\deg V_m = \begin{cases} (m+1)^2, & \text{if } m \equiv 0, 1 \pmod{3}, \\ (m+1)^2 - 2, & \text{if } m \equiv 2 \pmod{3} \end{cases}$$

Why mod 3???

Similar to Jan Draisma's talk at the NASO seminar...

Predator-prey model

$$\begin{cases} x_1' = a_1 x_1 - a_2 x_1 x_2, \\ x_2' = -a_3 x_2 + a_4 x_1 x_2. \end{cases}$$

Goal: eliminate x_2

Predator-prey model

$$\begin{cases} x_1' = a_1 x_1 - a_2 x_1 x_2, \\ x_2' = -a_3 x_2 + a_4 x_1 x_2. \end{cases}$$

Goal: eliminate x_2

$$a_1=a_1,\ldots,a_4=a_4,$$

$$x_1=x_1,$$

$$x_1' = a_1 x_1 - a_2 x_1 x_2,$$

Predator-prey model

$$\begin{cases} x_1' = a_1 x_1 - a_2 x_1 x_2, \\ x_2' = -a_3 x_2 + a_4 x_1 x_2. \end{cases}$$

Goal: eliminate x_2

$$a_1 = a_1, \dots, a_4 = a_4,$$

 $x_1 = x_1,$
 $x'_1 = a_1x_1 - a_2x_1x_2,$
 $x_1^{(2)} = a_1x'_1 - a_2x'_1x_2 - a_2x_1x'_2$

Predator-prey model

$$\begin{cases} x_1' = a_1 x_1 - a_2 x_1 x_2, \\ x_2' = -a_3 x_2 + a_4 x_1 x_2. \end{cases}$$

Goal: eliminate x_2

$$a_1 = a_1, \dots, a_4 = a_4,$$

$$x_1 = x_1,$$

$$x'_1 = a_1x_1 - a_2x_1x_2,$$

$$x''_1 = a_2^2x_1x_2^2 + a_2a_3x_1x_2 +$$

$$a_1^2x_1 - a_2a_4x_1^2x_2 - 2a_1a_2x_1x_2$$

Predator-prey model

$$\begin{cases} x_1' = a_1 x_1 - a_2 x_1 x_2, \\ x_2' = -a_3 x_2 + a_4 x_1 x_2. \end{cases}$$

Goal: eliminate x_2

We have

$$a_1 = a_1, \dots, a_4 = a_4,$$

$$x_1 = x_1,$$

$$x'_1 = a_1x_1 - a_2x_1x_2,$$

$$x''_1 = a_2^2x_1x_2^2 + a_2a_3x_1x_2 +$$

$$a_1^2x_1 - a_2a_4x_1^2x_2 - 2a_1a_2x_1x_2$$

Implicit hypersurface in the $(a_1, \ldots, a_4, x_1, x_1', x_1^{(2)})$ -space.

Predator-prey model

$$\begin{cases} x_1' = a_1 x_1 - a_2 x_1 x_2, \\ x_2' = -a_3 x_2 + a_4 x_1 x_2. \end{cases}$$

Goal: eliminate x_2

$$a_1 = a_1, \dots, a_4 = a_4,$$

$$x_1 = x_1,$$

$$x'_1 = a_1x_1 - a_2x_1x_2,$$

$$x''_1 = a_2^2x_1x_2^2 + a_2a_3x_1x_2 +$$

$$a_1^2x_1 - a_2a_4x_1^2x_2 - 2a_1a_2x_1x_2$$

Implicit hypersurface in the
$$(a_1, \ldots, a_4, x_1, x_1', x_1^{(2)})$$
-space.

Result:
$$a_1 a_4 x_1^3 - a_4 x_1^2 x_1' - a_1 a_3 x_1^2 + a_3 x_1 x_1' + x_1 x_1^{(2)} - (x_1')^2 = 0$$

Predator-prey model

$$\begin{cases} x_1' = a_1 x_1 - a_2 x_1 x_2, \\ x_2' = -a_3 x_2 + a_4 x_1 x_2. \end{cases}$$

Goal: eliminate x_2

We have

$$a_1 = a_1, \dots, a_4 = a_4,$$

$$x_1 = x_1,$$

$$x'_1 = a_1x_1 - a_2x_1x_2,$$

$$x''_1 = a_2^2x_1x_2^2 + a_2a_3x_1x_2 +$$

$$a_1^2x_1 - a_2a_4x_1^2x_2 - 2a_1a_2x_1x_2$$

Implicit hypersurface in the $(a_1, \ldots, a_4, x_1, x_1', x_1^{(2)})$ -space.

Result:
$$a_1a_4x_1^3 - a_4x_1^2x_1' - a_1a_3x_1^2 + a_3x_1x_1' + x_1x_1^{(2)} - (x_1')^2 = 0$$

Tropical methods \implies Newton polytope of the implicit equation

Predator-prey model

$$\begin{cases} x_1' = a_1 x_1 - a_2 x_1 x_2, \\ x_2' = -a_3 x_2 + a_4 x_1 x_2. \end{cases}$$

Goal: eliminate x_2

We have

$$a_{1} = a_{1}, \dots, a_{4} = a_{4},$$

$$x_{1} = x_{1},$$

$$x'_{1} = a_{1}x_{1} - a_{2}x_{1}x_{2},$$

$$x''_{1} = 1 \cdot a_{2}^{2}x_{1}x_{2}^{2} + 1 \cdot a_{2}a_{3}x_{1}x_{2} +$$

$$1 \cdot a_{1}^{2}x_{1} + (-1) \cdot a_{2}a_{4}x_{1}^{2}x_{2} + (-2) \cdot a_{1}a_{2}x_{1}x_{2}$$

Implicit hypersurface in the $(a_1, \ldots, a_4, x_1, x_1', x_1^{(2)})$ -space.

Result:
$$a_1 a_4 x_1^3 - a_4 x_1^2 x_1' - a_1 a_3 x_1^2 + a_3 x_1 x_1' + x_1 x_1^{(2)} - (x_1')^2 = 0$$

Tropical methods \implies Newton polytope of the implicit equation (Strumfels, Telev, Yu; if the coefficients are generic)

Predator-prey model

$$\begin{cases} x_1' = a_1 x_1 - a_2 x_1 x_2, \\ x_2' = -a_3 x_2 + a_4 x_1 x_2. \end{cases}$$

Goal: eliminate x_2

We have

$$a_{1} = a_{1}, \dots, a_{4} = a_{4},$$

$$x_{1} = x_{1},$$

$$x'_{1} = a_{1}x_{1} - a_{2}x_{1}x_{2},$$

$$x''_{1} = 2 \cdot a_{2}^{2}x_{1}x_{2}^{2} + 3 \cdot a_{2}a_{3}x_{1}x_{2} +$$

$$2 \cdot a_{1}^{2}x_{1} + 1 \cdot a_{2}a_{4}x_{1}^{2}x_{2} + 3 \cdot a_{1}a_{2}x_{1}x_{2}$$

Implicit hypersurface in the $(a_1, \ldots, a_4, x_1, x_1', x_1^{(2)})$ -space.

Result:
$$a_1 a_4 x_1^3 - a_4 x_1^2 x_1' - a_1 a_3 x_1^2 + a_3 x_1 x_1' + x_1 x_1^{(2)} - (x_1')^2 = 0$$

Tropical methods \implies Newton polytope of the implicit equation (Strumfels, Telev, Yu; if the coefficients are generic) Let us perturb!

Predator-prey model

$$\begin{cases} x_1' = a_1 x_1 - a_2 x_1 x_2, \\ x_2' = -a_3 x_2 + a_4 x_1 x_2. \end{cases}$$

Goal: eliminate x_2

We have

$$a_1 = a_1, \dots, a_4 = a_4,$$

$$x_1 = x_1,$$

$$x'_1 = a_1 x_1 - a_2 x_1 x_2,$$

$$x''_1 = 2 \cdot a_2^2 x_1 x_2^2 + 3 \cdot a_2 a_3 x_1 x_2 +$$

$$2 \cdot a_1^2 x_1 + 1 \cdot a_2 a_4 x_1^2 x_2 + 3 \cdot a_1 a_2 x_1 x_2$$

Implicit hypersurface in the $(a_1, \ldots, a_4, x_1, x_1', x_1^{(2)})$ -space.

Result:
$$a_1 a_4 x_1^3 - a_4 x_1^2 x_1' - a_1 a_3 x_1^2 + a_3 x_1 x_1' + x_1 x_1^{(2)} - (x_1')^2 = 0$$

Tropical methods \implies Newton polytope of the implicit equation (Strumfels, Telev, Yu; if the coefficients are generic) Let us perturb!

$$a_1 a_4 x_1^3 - a_4 x_1^2 x_1' + 7 a_1^2 x_1^2 + 3 a_1 a_3 x_1^2 - 7 a_1 x_1 x_1' - 3 a_3 x_1 x_1' - x_1 x_1'' + 2(x_1')^2 = 0$$

Predator-prey model

$$\begin{cases} x_1' = a_1 x_1 - a_2 x_1 x_2, \\ x_2' = -a_3 x_2 + a_4 x_1 x_2. \end{cases}$$

Goal: eliminate x_2

We have

$$a_1 = a_1, \dots, a_4 = a_4,$$

$$x_1 = x_1,$$

$$x'_1 = a_1 x_1 - a_2 x_1 x_2,$$

$$x''_1 = 2 \cdot a_2^2 x_1 x_2^2 + 3 \cdot a_2 a_3 x_1 x_2 +$$

$$2 \cdot a_1^2 x_1 + 1 \cdot a_2 a_4 x_1^2 x_2 + 3 \cdot a_1 a_2 x_1 x_2$$

Problem

For a system

$$\begin{cases} x_1' = f(\mu, x_1, x_2), \\ x_2' = g(\mu, x_1, x_2), \end{cases}$$

where $f,g\in\mathbb{C}[\mu,x_1,x_2]$, given Newton polytopes of f and g, predict the Newton polytope of the minimal differential equation for x_1 .

 Commutative algebra and algebraic geometry provide a view on differential equations which is coherent and complementary to the analytic one.

- Commutative algebra and algebraic geometry provide a view on differential equations which is coherent and complementary to the analytic one.
- Equations defining dynamical systems are ubiquitous in applications and have interesting and useful geometry.

- Commutative algebra and algebraic geometry provide a view on differential equations which is coherent and complementary to the analytic one.
- Equations defining dynamical systems are ubiquitous in applications and have interesting and useful geometry.
- \bullet Although differential elimination has been studied for ~ 100 years, one can still compute much more.

- Commutative algebra and algebraic geometry provide a view on differential equations which is coherent and complementary to the analytic one.
- Equations defining dynamical systems are ubiquitous in applications and have interesting and useful geometry.
- \bullet Although differential elimination has been studied for ~ 100 years, one can still compute much more.
- Open problems in effective algebraic geometry of practical interest.

Acknowledgements

This work was partially supported by the Paris Ile-de-France Region and National Science Foundation.

