UCSC Silicon Valley Extension Advanced C Programming

Minimum Spanning Tree

Radhika Grover

Minimum Spanning Tree -applications

- Minimum cost routing spanning trees
- Electronic circuits use least amount of wire to connect pins
- Image segmentation

Minimum Spanning Tree -applications

- Image segmentation
- Network design: Connecting all homes via cable

MST vs Shortest path

Minimum Spanning Tree

Spanning Tree: Tree that contains all vertices of graph G

Does any other spanning tree have lower cost?

Example

Which of the following are minimum spanning trees?

Weighted Graph

- Weight of an edge represented
 - 1. Cost: Amount of effort to travel from one place to another
 - 2. Capacity: Maximum amount of flow that can be transported from one place to another
- Representation using adjacency list and array

Representation Weighted Graph

Adjacency list: Each node contains an additional field cost

Representation Weighted Graph

Adjacency array: Use a 2 - dimensional array a [i][j] to store weight

a [i] [j] = very large value if there is no edge between i and j

	0	1	2	3	4
0	X	2	6	5	X
1	2	X	X	X	10
2	6	X	X	X	7
3	5	X	X	X	1
4	X	10	7	1	X

X = very large value

Minimum Spanning Tree Exercise

- Given an edge weighted graph, find a subtree spanning all vertices whose weight is minimum.
- Greedy algorithms with optimal solution
 - 1. Prim's algorithm
 - 2. Kruskal's algorithm

Prim's algorithm (informal)

- 1. Pick an arbitrary starting vertex s and mark it as reached, set key = 0
- 2. Add all other vertices of G to a min priority queue with key = ∞
- 3. Remove the vertex u with minimum key from queue and add to MST
- 4. Update keys and predecessor value of vertices (v) adjacent to u if weight (u, v) < key (v)
- 5. Repeat steps 3 and 4 until queue is empty
- 6. Return MST

id	1	0	2	3	4	5	6
key							
Р							

Step 1: Pick 1 as starting vertex, key = 0 $MST = \{ 1 \}$ $P = \{-1\}$

id	1	0	2	3	4	5	6
key	0	8	8	8	8	8	8
P	-1	-1	-1	-1	-1	-1	-1

id	0	2	3	4	5	6
key	2	6	7	2	1	8
Р	1	1	1	1	1	-1

Step 2: Update P-1 keys P of vertices adjacent to starting vertex

Minimum Priority Queue

id	0	2	3	4	5	6
key	2	6	7	2	1	8
Р	1	1	1	1	1	-1

Step 3: Move vertex with minimum key into MST

$$MST = \{ 1, 5 \}$$

 $P = \{-1, 1\}$

Step 4: Update keys and P of vertices(v) adjacent to 5(u) if weight (5, v) < key (v)

id	0	2	3	4	6
key	2	6	7	2	8
Р	1	1	1	1	5

Minimum Priority Queue

id	2	3	4	6
key	6	7	2	8
Р	1	1	1	5

Step 5: Move vertex with minimum key into MST $MST = \{1, 5, 0\}$ $P = \{-1, 1, 1\}$

Step 6: Update keys and P of vertices(v) adjacent to 0(u) if weight (0, v) < key (v)

id	2	3	4	6
key	6	7	2	8
Р	1	1	1	5

Minimum Priority Queue

id	2	3	6
key	6	7	8
Р	1	1	5

Step 7: Move vertex with minimum key into MST $MST = \{1, 5, 0, 4\}$

$$P = \{-1, 1, 1, 1\}$$

Step 8: Update keys and P of vertices(v) adjacent to 4(u) if weight (4, v) < key (v)

id	2	3	6
key	6	3	8
Р	1	4	5

Minimum Priority Queue

id	2	6
key	6	8
Р	1	5

Step 9: Move vertex with minimum key into MST $MST = \{1, 5, 0, 4, 3\}$ $P = \{-1, 1, 1, 1, 4\}$

Minimum Priority Queue

id	6
key	8
P	5

Step 10: Move vertex with minimum key into MST $MST = \{1, 5, 0, 4, 3, 2\}$

$$P = \{-1, 1, 1, 1, 4, 1\}$$

Step 11: Move vertex with minimum key into MST $MST = \{1, 5, 0, 4, 3, 2, 6\}$ $P = \{-1, 1, 1, 1, 4, 1, 5\}$

Example (Prim's) - Solution

Minimum Cost = 22

Performance of Prim's algorithm

With binary min-heap

Step 1: Build min heap O(V)

Step 2: Extract - min O(log V) - Repeat | V | times

Step 3: Decrease - key O(log V) - Repeat O(E) times

Total time: $O(V \log V) + O(E \log V) = O(E \log V)$

With Fibonacci heap

Step 1: Build min O(V)

Step 2: Extract min O(log V) - Repeat | V | times

Step 3: Decrease - key O(1) - Repeat O(E) times

Total time: $O(V \log V + E)$

Kruskal's algorithm

Idea

- Sort the edges into nondecreasing order by weight
- Add lowest cost edge to MST, if it does not create a cycle

Adding edge (0,2) to MST will create a cycle

How to detect a cycle?

Kruskal's algorithm

Detecting a cycle:

Union - Find algorithm - Check whether an undirected graph has a cycle

For each edge, create a subset using vertices

Select (1, 5) with lower weight

Select (1, 4) with 2nd lowest weight

Select (1, 4) with 3rd lowest weight

Select (1, 4) with 4th lowest weight

Select (1, 2)
Cannot select (1, 3) or (0,3) Why?

Select (5, 6)

Minimum Cost = 22

Kruskal's algorithm (informal)

- 1. Add each vertex of the graph to a separate set to create disjoint set T
- 2. Sort the edges of E into non decreasing order by weight w
- 3. While T is not spanning:
 - Remove an edge with minimum weight emin
 - if e_{min} connects two different sets (T₁ and T₂)

add it to T and combine the set T₁ and T₂ into a single set;

else

discard e_{min};

4. return T

When the algorithm terminates, the forest T will contain only one connected component.