Math 300

Corse Notes

Contents

1	Sets and quantifiers			
	.1 Introduction to set notation			
	.2 Quantifiers			
	.3 Proofs with quantifiers			
2	Logical connectives			
	2.1 Negation			
	2.2 Logical connectives			
3	Sets operations and functions			
	3.1 Assorted abbreviations			
	Union, intersection, containment, and complement			
	3.3 First definitions and examples			
	3.4 Injectivity and surjectivity			

3 Sets operations and functions

3.1 Assorted abbreviations

abbr.	Latin	meaning
e.g.	exempli gratia	for example
i.e.	$id\ est$	that is
viz.	videlicet	namely
cf.	confer	compare (erroneously: see)
ff.	folis	following
ibid.	ibidem	in the same place (followed by page number)
op. cit.	$opere\ citato$	in the work cited (in the same work)
loc. cit.	$loco\ citato$	in the place cited (on the same page)
QED	$quod\ erat\ demonstrandum$	that which was to be shown

3.2 Union, intersection, containment, and complement

Let A and B be sets.

Definition. The union of A and B is

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$$

Example. If A and B are the sets of even and odd integers, respectively, then $A \cup B = \mathbb{Z}$.

Definition. The intersection of A and B is

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}.$$

Example. We have

$$\mathbb{N} = \mathbb{Z} \cap \mathbb{R}_{>0}$$

where $R_{\geq 0} = \{x \in \mathbb{R} \mid x \geq 0\}$ is the set of nonnegative real numbers.

Definition. We say that A and B are disjoint when $A \cap B = \emptyset$.

Example. Every set A is disjoint from the empty set \varnothing .

Definition. We say that A is a *subset* of B if

$$\forall x : (x \in A \to x \in B).$$

In this case, we write $A \subseteq B$.

Examples. We have

i. $\varnothing \subseteq A$ for every set A,

ii.
$$\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$$

Definition. The difference of A and B is

$$B \backslash A = \{ x \in B \mid x \notin A \}.$$

Example. The set of irrational numbers is $\mathbb{R}\setminus\mathbb{Q}$.

Definition. If $A \subseteq B$, then the *complement* of A in B is $A^c = B \setminus A$.

Example. The complement of the set of even integers is the set of odd integers.

Claim. Let A, B, and C be sets. If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

To prove this, we will assume that $A \subseteq B$ and $B \subseteq C$, and we must deduce that $A \subseteq C$.

Proof. Fix $x \in A$. From $A \subseteq B$ we obtain $x \in B$, and from $B \subseteq C$ we conclude that $x \in C$.

3.3 First definitions and examples

Let A and B be sets.

Informal Definition. A function $f: A \to B$ is a rule that assigns to each $x \in A$ a unique $f(x) \in B$.

$$\forall x \in A : \exists ! y \in B : y = f(x)$$

Remark. We sometimes write $x \mapsto f(x)$ to

Examples. i. Consider

$$f: \mathbb{N} \to \mathbb{N}$$
$$k \mapsto 2k.$$

ii. The identity function on A is

$$f:A\to A$$
$$x\mapsto x.$$

iii. The constant function $f: A \to B$ with value $b \in B$ is

$$f: A \to B$$
$$x \mapsto b.$$

- iv. The empty function $f: \varnothing \to B$ is completely determined by the value it assigns each element in \varnothing .
- v. If $A \subseteq B$ then the associated inclusion function is

$$f: A \to B$$
$$x \mapsto x.$$

vi. We may consider a property P(x) that elements $x \in A$ can satisfy as a function

$$P: A \to \mathbb{B}$$
$$x \mapsto P(x)$$

where $\mathbb{B} = \{\top, \bot\}$ is the Boolean domain, comprising the truth values true \top and false \bot .

Definition. The *composition* of $f: A \to B$ and $g: B \to C$ is

$$g \circ f : A \to C$$

 $x \mapsto q(f(x)).$

3.4 Injectivity and surjectivity

Definition. The function $f: A \to B$ is said to be *injective* if f(x) = f(y) implies x = y.

$$\forall x, y \in A : (f(x) = f(y)) \implies (x = y)$$

Claim. The function $f: \mathbb{N} \to \mathbb{N}$ given by f(k) = 2k is injective.

Proof. Let $k, \ell \in \mathbb{N}$ and suppose that $f(k) = f(\ell)$. Dividing both sides of $2k = 2\ell$ by 2 yields $k = \ell$.

Claim. The constant function $f : \mathbb{R} \to \mathbb{Z}$ with value 0 is not injective.

We must show that

$$\exists x, y \in \mathbb{R} : (f(x) = f(y)) \land (x \neq y).$$

Proof. We have f(1) = 0 = f(2) but $1 \neq 2$.

Definition. The function $f:A\to B$ is called *surjective* when for every $y\in B$ there is an $x\in A$ with f(x)=y.

$$\forall y \in B : \exists x \in A : f(x) = y$$

Claim. The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is not surjective.

We must show that

$$\exists y \in \mathbb{R} : \forall x \in \mathbb{R} : f(x) \neq y$$

Proof. From $x^2 \geq 0$ for all $x \in \mathbb{R}$, it follows that $f(x) \neq -1$ for all $x \in \mathbb{R}$.

Definition. We say that $f: A \to B$ is *bijective* when it is both injective and surjective.

Claim. The function $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = 2x is bijective.

Proof. If $x, y \in \mathbb{R}$ satisfy 2x = 2y, then division by 2 yields x = y. This proves injectivity. To establish surjectivity, let $y \in \mathbb{R}$ be arbitrary and observe that $2(\frac{y}{2}) = y$.