Homework #3

Thermal Equilibrium and Carrier Transport – 100 points

DUE @ Beginning of Class: Thursday, September 21

- 1) Answer the following questions, showing your work where needed: (14 points)
 - a) A Si wafer is uniformly doped p-type with $N_a = 10^{15}$ cm⁻³. At T = 0 K, what are the equilibrium hole and electron concentrations?
 - b) A semiconductor is doped with an impurity concentration N such that $N >> n_i$ and all the impurities are ionized. Also, $n_0 = N$ and $p_0 = n_i^2/N$. Is the impurity a donor or an acceptor? Explain.
 - c) The electron concentration in a piece of Si maintained at 300 K under equilibrium conditions is 10^5 cm⁻³. What is the hole concentration?
 - d) For a silicon sample maintained at T = 300 K, the Fermi level is located 0.0259 eV above the intrinsic Fermi level. What are the hole and electron concentrations?
 - e) In a nondegenerate germanium sample maintained under equilibrium conditions near room temperature, it is known that $n_i = 10^{13}$ cm⁻³, $n_0 = 2p_0$, and $N_a = 0$. Determine n_0 and N_d .
- 2) For each of the following conditions, determine the position of E_{Fi} , compute $E_F E_{Fi}$, and draw a carefully dimensioned energy band diagram (for instance, use graph paper) for the Si sample. Assume temperature independence for effective mass and use $m_p^* = 0.81 m_0$ and $m_n^* = 1.18 m_0$. NOTE: E_g (Si) = 1.08 eV at 450 K and 1.015 eV at 650 K. (20 points)
 - a) T = 300 K, $N_a \ll N_d$, $N_d = 10^{15}$ cm⁻³
 - b) T = 300 K, $N_a = 10^{16}$ cm⁻³, $N_d << N_a$
 - c) T = 300 K, $N_a = 9 \times 10^{15} \text{ cm}^{-3}$, $N_d = 10^{16} \text{ cm}^{-3}$
 - d) T = 450 K, $N_a = 0$, $N_d = 10^{14}$ cm⁻³
 - e) T = 650 K, $N_a = 0$, $N_d = 10^{14}$ cm⁻³
- 3) E-Book, problem 4.17 (9 points)
- 4) E-Book, problem 4.26 (12 points)
- 5) E-Book, problem 4.34 (20 points)
- 6) E-Book, problem 4.47 (5 points)
- 7) E-Book, problem 4.55 (10 points)
- 8) E-Book, problem 4.62 (10 points)

- 1) Answer the following questions, showing your work where needed: (14 points)
 - a) A Si wafer is uniformly doped p-type with $N_a = 10^{15}$ cm⁻³. At T = 0 K, what are the equilibrium hole and electron concentrations?
 - b) A semiconductor is doped with an impurity concentration N such that $N >> n_i$ and all the impurities are ionized. Also, $n_0 = N$ and $p_0 = n_i^2/N$. Is the impurity a donor or an acceptor? Explain.
 - c) The electron concentration in a piece of Si maintained at 300 K under equilibrium conditions is 10^5 cm⁻³. What is the hole concentration?
 - d) For a silicon sample maintained at T = 300 K, the Fermi level is located 0.0259 eV above the intrinsic Fermi level. What are the hole and electron concentrations?
 - e) In a nondegenerate germanium sample maintained under equilibrium conditions near room temperature, it is known that $n_i = 10^{13}$ cm⁻³, $n_0 = 2p_0$, and $N_a = 0$. Determine n_0 and N_d .

2) For each of the following conditions, determine the position of E_{Fi} , compute $E_F - E_{Fi}$, and draw a carefully dimensioned energy band diagram (for instance, use graph paper) for the Si sample. Assume temperature independence for effective mass and use m_p^* = $0.81m_0$ and $m_n^* = 1.18m_0$. NOTE: E_g (Si) = 1.08 eV at 450 K and 1.015 eV at 650 K. (20) points)

a) T = 300 K,
$$N_a << N_d$$
, $N_d = 10^{15}$ cm⁻³

b) T = 300 K,
$$N_a = 10^{16}$$
 cm⁻³, $N_d << N_a$

a) T = 300 K,
$$N_a << N_d$$
, $N_d = 10^{15}$ cm⁻³
b) T = 300 K, $N_a = 10^{16}$ cm⁻³, $N_d << N_a$
c) T = 300 K, $N_a = 9 \times 10^{15}$ cm⁻³, $N_d = 10^{16}$ cm⁻³
d) T = 450 K, $N_a = 0$, $N_d = 10^{14}$ cm⁻³

d) T = 450 K,
$$N_a = 0$$
, $N_d = 10^{14}$ cm⁻³

e) T = 650 K,
$$N_a = 0$$
, $N_d = 10^{14}$ cm⁻³

- 3) E-Book, problem 4.17 (9 points)
- **4.17** Silicon at T = 300 K is doped with arsenic atoms such that the concentration of electrons is $n_0 = 7 \times 10^{15}$ cm⁻³. (a) Find $E_c E_F$. (b) Determine $E_F E_v$. (c) Calculate p_0 . (d) Which carrier is the minority carrier? (e) Find $E_F E_{Fi}$.

- 4) E-Book, problem 4.26 (12 points)
- **4.26** (a) Determine the values of n_0 and p_0 in GaAs at T = 300 K if $E_F E_v = 0.25$ eV.
 - (b) Assuming the value of p_0 in part (a) remains constant, determine the values of $E_F E_v$ and n_0 at T = 400 K.

- 5) E-Book, problem 4.34 (20 points)
- 4.34 Determine the equilibrium electron and hole concentrations in silicon for the following conditions:

(a)
$$T = 300 \text{ K}, N_d = 10^{15} \text{ cm}^{-3}, N_a = 4 \times 10^{15} \text{ cm}^{-3}$$

(b)
$$T = 300 \text{ K}, N_d = 3 \times 10^{16} \text{ cm}^{-3}, N_a = 0$$

(c)
$$T = 300 \text{ K}, N_d = N_a = 2 \times 10^{15} \text{ cm}^{-3}$$

(d)
$$T = 375 \text{ K}, N_d = 0, N_a = 4 \times 10^{15} \text{ cm}^{-3}$$

(e)
$$T = 450 \text{ K}, N_d = 10^{14} \text{ cm}^{-3}, N_a = 0$$

- 6) E-Book, problem 4.47 (5 points)
- **4.47** In silicon at T = 300 K, it is found that $N_a = 7 \times 10^{15}$ cm⁻³ and $p_0 = 2 \times 10^4$ cm⁻³. (a) Is the material n type or p type? (b) What are the majority and minority carrier concentrations? (c) What must be the concentration of donor impurities?

- 7) E-Book, problem 4.55 (10 points)
- **4.55** (a) Silicon at T = 300 K is doped with donor impurity atoms at a concentration of $N_d = 6 \times 10^{15}$ cm⁻³. (i) Determine $E_c E_F$. (ii) Calculate the concentration of additional donor impurity atoms that must be added to move the Fermi energy level a distance kT closer to the conduction band edge. (b) Repeat part (a) for GaAs if the original donor impurity concentration is $N_d = 1 \times 10^{15}$ cm⁻³.

- 8) E-Book, problem 4.62 (10 points)
- 4.62 Silicon atoms, at a concentration of 7×10^{15} cm⁻³, are added to gallium arsenide. Assume that the silicon atoms act as fully ionized dopant atoms and that 5 percent of the concentration added replace gallium atoms and 95 percent replace arsenic atoms. Let T = 300 K. (a) Determine the donor and acceptor concentrations. (b) Is the material n type or p type? (c) Calculate the electron and hole concentrations. (d) Determine the position of the Fermi level with respect to E_{Fi} .