Revision Supervision Questions - 3F3

1 (a) A source generates a stream of symbols S_n , n = 0, 1, ... and each symbol takes one of two possible values, either A or B. The probability of symbol S_n depends only upon the value of symbol S_{n-1} . Let $p(i_n|i_{n-1})$ denote the probability that $S_n = i_n$ given $S_{n-1} = i_{n-1}$. These probabilities are given in the following table.

$$\begin{array}{c|cccc}
 & p(i_n|i_{n-1}) \\
 & S_{n-1} = A & S_{n-1} = B \\
\hline
S_n = A & 0.7 & 0.1 \\
S_n = B & 0.3 & 0.9
\end{array}$$

- (i) Let $p(i_0)$ denote the probability that $S_0 = i_0$. Explain how $p(i_n)$, the probability that $S_n = i_n$, may be calculated. [10%]
- (ii) Show that a possible probability mass function for p(in), for all n ≥ 0, is [10%]

- (iii) Show that the random process S_0, S_2, S_4, \ldots , generated by the same source but retaining only source symbols with even time indices, is a Markov chain, and determine its transition probability matrix. [30%]
- (b) The characteristic function of a random variable X is defined using the mathematical expectation \mathbb{E} as $\varphi_X(t) = \mathbb{E}[\exp(iXt)]$ where t is a real number.
 - (i) Let X have probability density function $f_X(x)$. Determine the relationship between $\varphi_X(t)$ and the Fourier transform of $f_X(x)$. [10%]
 - (ii) Let $f_X(x)$ be the following triangular shaped function

$$f_X(x) = 1/b\left(1 - \frac{|x|}{b}\right)$$
 for $|x| \le b$

and $f_X(x) = 0$ for |x| > b. Determine $\varphi_X(t)$ (using the Data Book). [10%]

(iii) Express $\varphi_X(t)$ as a power series in t and hence find $\mathbb{E}[X^0]$, $\mathbb{E}[X^2]$ and $\mathbb{E}[X^4]$. [30%]

2 Consider the following autoregressive process

$$X_n + a_1 X_{n-1} + a_2 X_{n-2} = \sigma W_n$$

where $\{W_n\}$ is a zero-mean white noise process with variance 1 and σ a positive constant.

(a) Find the power spectrum of $\{X_n\}$.

[10%]

(b) Let $\{V_n\}$ be the moving average process

$$V_n = b_0 E_n + b_1 E_{n-1}$$

where $\{E_n\}$ is a zero-mean white noise process with variance 1. Find the power spectrum of $\{V_n\}$. [10%]

(c) Let Y_n be the noisy measurement of X_n given by

$$Y_n = X_n + V_n$$
.

Assume the noise sequences $\{W_n\}$ and $\{E_n\}$ are independent. Find the power spectrum of $\{Y_n\}$. [15%]

(d) Based on measurements of $\{V_n\}$, the power spectrum of $\{V_n\}$ is estimated to be

$$\hat{S}_V(\omega) = 2 + 2\cos\omega$$

Show that valid estimates of b_0 and b_1 are $b_0 = b_1 = 1$ and $b_0 = b_1 = -1$. [25%]

(e) Show that

$$\begin{bmatrix} R_{XX}[0] & R_{XX}[1] \\ R_{XX}[1] & R_{XX}[0] \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = - \begin{bmatrix} R_{XX}[1] \\ R_{XX}[2] \end{bmatrix},$$

$$R_{XX}[0] + a_1R_{XX}[1] + a_2R_{XX}[2] = \sigma^2$$
.

[30%]

(f) Based on measurements of Y_n as in (c), the following estimates are made for its autocorrelation function:

$$\widehat{R}_{YY}[0] = 4.74,$$
 $\widehat{R}_{YY}[1] = 0.54,$ $\widehat{R}_{YY}[2] = 1.41$

Use these values to estimate the power spectrum of $\{X_n\}$.

[10%]

(TURN OVER

2 Let X_n follow an equation described by a linear trend in noise,

$$X_n = a + bn + W_n$$

where $\{W_n\}$ is a zero mean wide-sense stationary random process and a, b are unknown constants. Let $x_0, x_1, \ldots, x_{N-1}$ be a batch of N of data points.

- (a) Find the least squares estimate $\hat{\theta} = (\hat{a}, \hat{b})^{T}$ of the unknown parameters $\theta = (a, b)^{T}$ and show that this least squares estimate is unbiased. (The superscript T denotes transpose.) [30%]
- (b) Find the variance $\mathbf{E}(\hat{\theta}\hat{\theta}^{\mathrm{T}}) \theta\theta^{\mathrm{T}}$. [20%]
- (c) Show that the variance tends to 0 as N increases. (You may assume W_n is white noise.) [10%]
- (d) The model can be used to describe a data set with a linear trend and a sinusoidal component. Let $W_n = c \sin(\omega_0 n + \phi)$ where ϕ is a Uniform random variable with range $(-\pi, \pi)$,
 - (i) Show W_n is wide-sense stationary and find its mean and autocorrelation function. [20%]
 - (ii) Find the power spectral density of W_n . [10%]
 - (iii) How might an estimate of ω_0 be found from the data? [10%]