IOP Publishing | Astro Ltd Laser Physics

Laser Phys. 32 (2022) 075201 (5pp)

https://doi.org/10.1088/1555-6611/ac6e44

Relations between the average bipartite entanglement and N-partite correlation functions

Haiqing Huang¹, Irfan Ahmed^{2,3,*}, Ahmed Ali³, Xin-wei Zha^{1,4}, Raymond Hon-Fu Chan⁵ and Yanpeng Zhang^{2,*}

- ¹ Xijing College, Xi'an, Shaanxi 710123, People's Republic of China
- ² Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- ³ Department of Electrical Engineering, Sukkur IBA, Sukkur 65200, Sindh, Pakistan
- ⁴ School of Engineering and Technology, Xi'an Fanyi University, Xi'an, Shaanxi 710105, People's Republic of China

E-mail: iahmed8-c@my.cityu.edu.hk and ypzhang@mail.xjtu.edu.cn

Received 17 April 2021 Accepted for publication 14 January 2022 Published 20 May 2022

Abstract

We study the relations between the average bipartite entanglement and the N-partite length of correlation. We show that the N-partite length of correlation can completely determine the average bipartite entanglement for two and three-qubits. For four-, five- and six-qubit systems, the N-partite correlation functions may not determine the average bipartite entanglement. These results are novel and promising for pure state.

Keywords: average bipartite entanglement, N-partite correlation functions, maximally multi-qubit entangled state

1. Introduction

Entanglement is considered as the central resource for quantum information and computation [1-4], and numerous theoretical and experimental works have been done in the field [5-8]. Since the last decade, a lot of efforts have been made to quantify the amount of entanglement of various multipartite states [9, 10]. In particular, investigations have been focused on maximally entangled states [11-13]. Bipartite entanglement is well understood but such characterization or classification in multiqubit states is still very challenging. On the other hand, when studying the entanglement between n particles, a natural extension is to consider N-partite correlations, i.e.

the expectation value of the product of n measurement results. The holistic property of composite systems containing nonclassical correlations in their subsystems, has potential for many quantum processes [10]. For bipartite quantum systems, Schmidt decomposition allows single sum state vector under certain condition [14]. However, generally Schmidt decomposition does not exist for composite systems containing more than two subsystems [14]. Interestingly, existence of entanglement of pure states is fully captured by N-partite correlation functions [15–17]. A pure N-particle state is entangled if and only if the squared N-partite correlation functions averaged over uniform choices of local observables exceed a certain bound. In this letter, we investigate the relation between average bipartite entanglement and the N-partite length of correlation. We find that the N-partite length of correlation can completely determine the average bipartite entanglement for two and three-qubits. For four to six-qubit systems,

⁵ Department of Mathematics, City University of Hong Kong, Hong Kong SAR, People's Republic of China

^{*} Authors to whom any correspondence should be addressed.

the N-partite correlation functions cannot determine average bipartite entanglement.

2. The relations between the average bipartite entanglement and the N-partite correlation functions

In 2008, Facchi *et al* [11] proposed that the multipartite entanglement of a system of qubits can be characterized in terms of the distribution function of bipartite over all possible bipartitions of the qubits, namely

$$\pi_{\text{ME}} = \left(\begin{array}{c} n \\ n_A \end{array}\right)^{-1} \sum_{|A|=n_A} \pi_A,\tag{1}$$

where $n_A = [n/2]$, and the purity reads $\pi_A = \operatorname{Tr}_A \rho_A^2$, where $\rho_A = \operatorname{Tr}_A |\psi\rangle\langle\psi|$ is the reduced density matrix of party A. The purity ranges between $\frac{1}{2^{n_A}} \leqslant \pi_A \leqslant 1$. The quantity π_{ME} in equation (1) measures the average bipartite entanglement over all possible balanced bipartitions. For a maximally multiqubit entangled state, π_{ME} is minimal. In the following, we will investigate the relation between the average bipartite entanglement and the N-partite length of correlation.

2.1. Two-qubit pure states

We have

$$|\psi\rangle_{12} = a_0|00\rangle + a_1|01\rangle + a_2|10\rangle + a_3|11\rangle.$$
 (2)

Then we have

$$\rho_{12} = |\psi\rangle_{12|12} \langle \psi|. \tag{3}$$

It has been shown [13]

$$\operatorname{Tr} \rho_{12}^2 = \frac{1}{4} + \frac{1}{4} \left(F_1 + F_2 + F_{12} \right) \tag{4}$$

$$\tau_2 = \frac{1}{4} - \frac{1}{4} \left(F_1 + F_2 - F_{12} \right) \tag{5}$$

where

 $\tau_2 = |\langle \psi | \sigma_{1y} \otimes \sigma_{2y} | \psi^* \rangle|^2$, here the τ_2 is taken from [18],

$$F_{i} = \langle \psi | \hat{\sigma}_{ix} | \psi \rangle^{2} + \langle \psi | \hat{\sigma}_{iy} | \psi \rangle^{2} + \langle \psi | \hat{\sigma}_{iz} | \psi \rangle^{2}$$
 (6)

$$F_{ij} = \langle \psi | \hat{\sigma}_{ix} \hat{\sigma}_{jx} | \psi \rangle^{2} + \langle \psi | \hat{\sigma}_{ix} \hat{\sigma}_{jy} | \psi \rangle^{2} + \langle \psi | \hat{\sigma}_{ix} \hat{\sigma}_{jz} | \psi \rangle^{2}$$

$$+ \langle \psi | \hat{\sigma}_{iy} \hat{\sigma}_{jx} | \psi \rangle^{2} + \langle \psi | \hat{\sigma}_{iy} \hat{\sigma}_{jy} | \psi \rangle^{2} + \langle \psi | \hat{\sigma}_{iy} \hat{\sigma}_{jz} | \psi \rangle^{2}$$

$$+ \langle \psi | \hat{\sigma}_{iz} \hat{\sigma}_{jx} | \psi \rangle^{2} + \langle \psi | \hat{\sigma}_{iz} \hat{\sigma}_{jy} | \psi \rangle^{2} + \langle \psi | \hat{\sigma}_{iz} \hat{\sigma}_{jz} | \psi \rangle^{2}.$$
 (7)

We have

$$\pi_{\text{ME}} = \frac{1}{2} (\pi_1 + \pi_2),$$
(8)

where
$$\pi_1 = \text{Tr}_1 \rho_1^2 = \frac{1}{2} + \frac{1}{2} F_1$$
, $\pi_2 = \text{Tr}_2 \rho_2^2 = \frac{1}{2} + \frac{1}{2} F_2$.

$$\pi_{\text{ME}} = \frac{1}{2} + \frac{1}{4} (F_1 + F_2).$$
(9)

Using (4)–(9), we have

$$\pi_{\rm ME} = \frac{1}{4} \left(5 - F_{12} \right) \tag{10}$$

or

$$F_{12} = 5 - 4\pi_{\rm ME}.\tag{11}$$

From (11), we know the length of correlation F_{12} can completely determine the average bipartite entanglement π_{ME} for two-qubit states.

For product state, we know that $\pi_{\rm ME}=1$, therefore $F_{12}=1$. For Bell states, one finds that $\pi_{\rm ME}=\frac{1}{2}$, therefore $F_{12}=3$. Hence the correlation functions arrive the maximally value [19].

2.2. Three-qubit systems

We have

$$|\psi\rangle_{123} = a_0 |000\rangle + a_1 |001\rangle + a_2 |010\rangle + a_3 |011\rangle + a_4 |100\rangle + a_5 |101\rangle + a_6 |110\rangle + a_7 |111\rangle. \quad (12)$$

Then we have

$$\rho_{123} = |\psi\rangle_{123,123} \langle \psi|. \tag{13}$$

Similarly, it has been shown that [13]

$$\operatorname{Tr}\rho_{123}^2 = \frac{1}{8} + \frac{1}{8} \left(F_1 + F_2 + F_3 + F_{12} + F_{13} + F_{23} + F_{123} \right) \tag{14}$$

$$0 = \frac{1}{8} - \frac{1}{8} \left(F_1 + F_2 + F_3 - F_{12} - F_{13} - F_{23} + F_{123} \right) \quad (15)$$

where

$$F_{ijk} = \langle \psi | \hat{\sigma}_{ix} \hat{\sigma}_{jx} \hat{\sigma}_{kx} | \psi \rangle^{2} + \langle \psi | \hat{\sigma}_{ix} \hat{\sigma}_{jx} \hat{\sigma}_{ky} | \psi \rangle^{2} + \langle \psi | \hat{\sigma}_{ix} \hat{\sigma}_{jx} \hat{\sigma}_{kz} | \psi \rangle^{2} + \langle \psi | \hat{\sigma}_{ix} \hat{\sigma}_{jy} \hat{\sigma}_{kx} | \psi \rangle^{2} + \langle \psi | \hat{\sigma}_{ix} \hat{\sigma}_{jy} \hat{\sigma}_{ky} | \psi \rangle^{2} + \langle \psi | \hat{\sigma}_{ix} \hat{\sigma}_{jy} \hat{\sigma}_{kz} | \psi \rangle^{2} + \cdots + \langle \psi | \hat{\sigma}_{iz} \hat{\sigma}_{jz} \hat{\sigma}_{kx} | \psi \rangle^{2} + \langle \psi | \hat{\sigma}_{iz} \hat{\sigma}_{jz} \hat{\sigma}_{ky} | \psi \rangle^{2} + \langle \psi | \hat{\sigma}_{iz} \hat{\sigma}_{jz} \hat{\sigma}_{kz} | \psi \rangle^{2}.$$

$$(16)$$

The average bipartite entanglement can be expressed as

$$\pi_{\text{ME}} = \frac{1}{3} (\pi_1 + \pi_2 + \pi_3).$$
(17)

Using (14)–(17), we have

$$\pi_{\rm ME} = \frac{1}{6} \left(7 - F_{123} \right) \tag{18}$$

or

$$F_{123} = 7 - 6\pi_{\text{ME}}. (19)$$

From (19), we know that the length of correlation F_{123} can completely determine average bipartite entanglement π_{ME} for three-qubit states.

For product state, we know that $\pi_{\rm ME}=1$, therefore $F_{123}=1$. For Greenberger–Horne–Zeilinger (GHZ) states, one finds that: $\pi_{\rm ME}=\frac{1}{2}$, therefore $F_{123}=4$. Hence again, correlation functions arrive their maximally value.

2.3. Four to six qubits systems

We have

$$\begin{split} |\psi\rangle_{1234} &= a_0 \, |0000\rangle + a_1 \, |0001\rangle + a_2 \, |0010\rangle + a_3 \, |0011\rangle \\ &+ a_4 \, |0100\rangle + a_5 \, |0101\rangle + a_6 \, |0110\rangle + a_7 \, |0111\rangle \\ &+ a_8 \, |1000\rangle + a_9 \, |1001\rangle + a_{10} \, |1010\rangle + a_{11} \, |1011\rangle \\ &+ a_{12} \, |1100\rangle + a_{13} \, |1101\rangle + a_{14} \, |1110\rangle + a_{15} \, |1111\rangle \, . \end{split}$$

Then, we have

$$\operatorname{Tr}\rho_{1234}^{2} = \frac{1}{16} + \frac{1}{16}(F_{1} + F_{2} + F_{3} + F_{4} + F_{12} + F_{13} + F_{14} + F_{23} + F_{24} + F_{34} + F_{123} + F_{124} + F_{134} + F_{234} + F_{1234})$$
(21)

$$\tau_4 = \frac{1}{16} - \frac{1}{16} (F_1 + F_2 + F_3 + F_4)$$
$$-F_{12} - F_{13} - F_{14} - F_{23} - F_{24} - F_{34}$$
$$+F_{123} + F_{124} + F_{134} + F_{234} - F_{1234}) \tag{22}$$

where

$$F_{ijkl} = \langle \psi | \hat{\sigma}_{ix} \hat{\sigma}_{jx} \hat{\sigma}_{kx} \hat{\sigma}_{lx} | \psi \rangle^{2} + \langle \psi | \hat{\sigma}_{ix} \hat{\sigma}_{jx} \hat{\sigma}_{kx} \hat{\sigma}_{ly} | \psi \rangle^{2}$$

$$+ \langle \psi | \hat{\sigma}_{ix} \hat{\sigma}_{jx} \hat{\sigma}_{kx} \hat{\sigma}_{lz} | \psi \rangle^{2}$$

$$+ \langle \psi | \hat{\sigma}_{ix} \hat{\sigma}_{jx} \hat{\sigma}_{ky} \hat{\sigma}_{lx} | \psi \rangle^{2} + \langle \psi | \hat{\sigma}_{ix} \hat{\sigma}_{jx} \hat{\sigma}_{ky} \hat{\sigma}_{ly} | \psi \rangle^{2}$$

$$+ \langle \psi | \hat{\sigma}_{ix} \hat{\sigma}_{jx} \hat{\sigma}_{ky} \hat{\sigma}_{lz} | \psi \rangle^{2} + \cdots$$

$$+ \langle \psi | \hat{\sigma}_{iz} \hat{\sigma}_{jz} \hat{\sigma}_{kz} \hat{\sigma}_{lx} | \psi \rangle^{2} + \langle \psi | \hat{\sigma}_{iz} \hat{\sigma}_{jz} \hat{\sigma}_{kz} \hat{\sigma}_{ly} | \psi \rangle^{2}$$

$$+ \langle \psi | \hat{\sigma}_{iz} \hat{\sigma}_{jz} \hat{\sigma}_{kz} \hat{\sigma}_{lz} | \psi \rangle^{2}$$

$$+ \langle \psi | \hat{\sigma}_{iz} \hat{\sigma}_{jz} \hat{\sigma}_{kz} \hat{\sigma}_{lz} | \psi \rangle^{2}$$

$$(23)$$

$$\tau_{4} = \left| \left\langle \psi \left| \sigma_{1y} \otimes \sigma_{2y} \otimes \sigma_{3y} \otimes \sigma_{4y} \right| \psi^{*} \right\rangle \right|^{2}. \tag{24}$$

Here the τ_4 is taken from [18], and

$$\pi_{\text{ME}} = \frac{1}{6} \left(\pi_{12} + \pi_{13} + \pi_{14} + \pi_{23} + \pi_{24} + \pi_{34} \right). \tag{25}$$

Using (21)–(24), we have

$$\pi_{\text{ME}} = \frac{1}{6} \left(9\frac{1}{4} - 4\tau_4 - \frac{3}{4} \left(F_{123} + F_{124} + F_{134} + F_{234} \right) - \frac{1}{4} F_{1234} \right) \tag{26}$$

0

$$F_{1234} = 37 - 16\tau_4 - 3(F_{123} + F_{124} + F_{134} + F_{234}) - 24\pi_{ME}.$$
(27)

From (26), we know for four-qubit systems, the correlation functions cannot determine the average bipartite entanglement.

For product state, we know that

$$\tau_4 = 0, \pi_{\text{ME}} = 1, F_{123} = F_{124} = F_{134} = F_{234} = 1,$$

therefore $F_{1234} = 1$. For GHZ states, one finds that [19]:

$$\pi_{\text{ME}} = \frac{1}{2}, \tau_4 = 1, F_{123} = F_{124} = F_{134} = F_{234} = 0$$

therefore $F_{1234} = 9$. For maximally entangled states, one finds that:

$$\pi_{\text{ME}} = \frac{1}{3}, \tau_4 = 0, F_{123} + F_{124} + F_{134} + F_{234} = 8,$$

therefore $F_{1234} = 5$.

For five-qubits, similarly, we have

$$\operatorname{Tr} \rho_{12345}^2 = \frac{1}{32} + \frac{1}{32} (F_1 + F_2 + F_3 + F_4 + F_5$$

$$+ F_{12} + F_{13} + F_{14} + F_{15} + F_{23} + F_{24} + F_{25} + F_{34}$$

$$+ F_{35} + F_{45} + F_{123} + F_{124} + F_{125} + F_{134} + F_{135}$$

$$+ F_{145} + F_{234} + F_{235} + F_{345} + F_{1234} + F_{1235}$$

$$+ F_{1245} + F_{1345} + F_{2345} + F_{12345})$$

$$= \frac{1}{32} - \frac{1}{32} (F_1 + F_2 + F_3 + F_4 + F_5)$$

$$-F_{12} - F_{13} - F_{14} - F_{15} - F_{23} - F_{24} - F_{25} - F_{34}$$

$$-F_{35} - F_{45} + F_{123} + F_{124} + F_{125} + F_{134} + F_{135} + F_{145}$$

$$+F_{234} + F_{235} + F_{345} - F_{1234} - F_{1235}$$

$$-F_{1245} - F_{1345} - F_{2345} + F_{12345})$$

$$\pi_{\text{ME}} = \frac{1}{10} \left(\pi_{12} + \pi_{13} + \pi_{14} + \pi_{15} + \pi_{23} + \pi_{24} + \pi_{25} + \pi_{34} + \pi_{35} + \pi_{45} \right).$$

Then we have

$$\pi_{\text{ME}} = \frac{1}{10} \begin{pmatrix} 22\frac{1}{4} - (F_{123} + F_{124} + F_{125} + F_{134} + F_{135} + F_{145} + F_{234} + F_{235} + F_{245} + F_{345}) \\ -\frac{1}{4} (F_{1234} + F_{1235} + F_{1245} + F_{1345} + F_{2345}) - F_{12345} \end{pmatrix}$$
(28)

or,

$$F_{12345} = 22\frac{1}{4} - (F_{123} + F_{124} + F_{125} + F_{134} + F_{135} + F_{145} + F_{234} + F_{235} + F_{245} + F_{345})$$

$$-\frac{1}{4} (F_{1234} + F_{1235} + F_{1245} + F_{1345} + F_{2345}) - 10\pi_{ME}.$$
(29)

For product state,

$$\pi_{\text{ME}} = 1, F_{123} = F_{124} = F_{134} = F_{234} = 1, F_{1234} = 1,$$
 $F_{12345} = 1.$

For GHZ states, one finds:

$$\pi_{\text{ME}} = \frac{1}{2}, F_{123} = F_{124} = F_{134} = F_{234} = 0.,$$

$$F_{1234} = F_{1235} = F_{1245} = F_{1345} = F_{2345} = 1, F_{12345} = 16.$$

For maximally entangled states, one finds:

$$\pi_{\text{ME}} = \frac{1}{4}, F_{123} = F_{124} = \dots = F_{345} = 1,$$

$$F_{1234} = F_{1235} = F_{1245} = F_{1345} = F_{2345} = 3, F_{12345} = 6.$$

For n = 6 qubits, one can show that

$$\operatorname{Tr} \rho_{123456}^2 = \frac{1}{64} + \frac{1}{64} (F_1 + F_2 + F_3 + F_4 + F_5 + F_6 + F_{12} + F_{13} + F_{14} + \dots + F_{56} + F_{123} + F_{124} + F_{125} + \dots + F_{456} + F_{1234} + F_{1235} + \dots + F_{3456} + F_{12345} + F_{123456} + \dots + F_{23456} + F_{123456})$$

$$\tau_6 = \frac{1}{64} - \frac{1}{64} (F_1 + F_2 + F_3 + F_4 + F_5 + F_6)$$

$$-F_{12} - F_{13} - F_{14} - \dots - F_{56}$$

$$+F_{123} + F_{124} + F_{125} + \dots + F_{456}$$

$$-F_{1234} - F_{1235} - \dots - F_{3456}$$

$$+F_{12345} + F_{12346} + \dots + F_{23456} - F_{123456})$$

$$\tau_6 = \left| \langle \psi | \, \sigma_{1y} \otimes \sigma_{2y} \otimes \sigma_{3y} \otimes \sigma_{4y} \otimes \sigma_{5y} \otimes \sigma_{6y} | \psi^* \rangle \right|^2. \tag{30}$$

Then, we have

$$\pi_{\text{ME}} = \frac{1}{20} \begin{pmatrix} 31 + 3\tau_6 - \frac{1}{2} (F_{1234} + F_{1235} + \dots + F_{3456}) \\ -\frac{1}{2} (F_{12345} + F_{12346} + \dots + F_{23456}) - \frac{1}{2} F_{123456} \end{pmatrix}$$
(31)

or

$$F_{123456} = 62 + 6\tau_6 - (F_{1234} + F_{1235} + \dots + F_{3456}) - (F_{12345} + F_{12346} + \dots + F_{23456}) - 40\pi_{ME}.$$
 (32)

For product state,

$$au_6 = 0, F_{1234} + F_{1235} + \dots + F_{3456} = 1,$$

 $F_{12345} + F_{12346} + \dots + F_{23456} = 1, \pi_{ME} = 1, F_{123456} = 1.$

For GHZ states, one finds:

$$au_6 = 1, F_{1234} + F_{1235} + \dots + F_{3456} = 1,$$

$$F_{12345} + F_{12346} + \dots + F_{23456} = 0, \pi_{ME} = \frac{1}{2}, F_{123456} = 33.$$

For the maximally entangled states, one finds:

$$au_6 = 1, F_{1234} + F_{1235} + \dots + F_{3456} = 3,$$

$$F_{12345} + F_{12346} + \dots + F_{23456} = 0, \pi_{ME} = \frac{1}{8},$$

$$F_{123456} = 18.$$

From equations (27), (29) and (32), the correlation function does not depend on the average bipartite entanglement uniquely for four, five and six qubit states.

3. Conclusion

In summary, we introduce a relationship between the average bipartite entanglement and the N-partite length of correlation. We show that the N-partite length of the correlation can completely determine the average bipartite entanglement for two and three-qubit. For four, five, six-qubit GHZ states, we find that the N-partite correlation functions are larger than those of maximally entangled states. These results are novel and promising for pure state.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61705182), National Science Foundation of Shannxi Province (2017JQ6024).

References

- Nielsen M A and Chuang I 2002 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
- [2] Ekert A K 1991 Quantum cryptography based on Bell's theorem *Phys. Rev. Lett.* 67 661–3
- [3] Kempe J 1999 Multiparticle entanglement and its applications to cryptography *Phys. Rev.* A 60 910
- [4] Zha X, Da Z, Ahmed I and Zhang Y 2018 Two forms for 3-uniform states of eight-qubits *Laser Phys. Lett.* 15 055206
- [5] Wootters W K 1998 Entanglement of formation of an arbitrary state of two qubits *Phys. Rev. Lett.* 80 2245–8
- [6] Facchi P, Marzolino U, Parisi G, Pascazio S and Scardicchio A 2008 Phase transitions of bipartite entanglement *Phys. Rev.* Lett. 101 050502
- [7] Zha X, Ahmed I and Zhang Y 2020 Constructing five qutrit absolutely maximally entangled state via recurrence relation *Laser Phys.* 30 075201
- [8] Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, Hänsel W, Hennrich M and

- Blatt R 2011 14-qubit entanglement: creation and coherence *Phys. Rev. Lett.* **106** 130506
- [9] Schön C, Solano E, Verstraete F, Cirac J I and Wolf M M 2005 Sequential generation of entangled multiqubit states *Phys. Rev. Lett.* 95 110503
- [10] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Quantum entanglement Rev. Mod. Phys. 81 865–942
- [11] Facchi P, Florio G, Parisi G and Pascazio S 2008 Maximally multipartite entangled states *Phys. Rev.* A 77 060304
- [12] Goyeneche D, Alsina D, Latorre J I, Riera A and Zyczkowski K 2015 Absolutely maximally entangled states, combinatorial designs, and multiunitary matrices *Phys. Rev.* A 92 032316
- [13] Zha X, Yuan C and Zhang Y 2013 Generalized criterion for a maximally multi-qubit entangled state *Laser Phys. Lett.* 10 45201
- [14] Pati A K 2000 Existence of the Schmidt decomposition for tripartite systems *Phys. Lett.* A 278 118–22
- [15] Tran M C, Dakić B, Arnault F, Laskowski W and Paterek T 2015 Quantum entanglement from random measurements Phys. Rev. A 92 50301
- [16] Tran M C, Dakić B, Laskowski W and Paterek T 2016 Correlations between outcomes of random measurements Phys. Rev. A 94 42302
- [17] Hassan A S M and Joag P S 2009 Geometric measure for entanglement in *N*-qudit pure states *Phys. Rev.* A **80** 42302
- [18] Wong A and Christensen N 2001 Potential multiparticle entanglement measure *Phys. Rev.* A **63** 044301
- [19] Eltschka C and Siewert J 2020 Maximum N-body correlations do not in general imply genuine multipartite entanglement *Quantum* 4 229