Corrigé 2

1. A l'aide du cercle trigonométrique, mais sans machine à calculer, déterminer les valeurs suivantes:

a)
$$\cos(\frac{179\pi}{3})$$

b)
$$\sin(-\frac{374\pi}{6})$$
 c) $\tan(\frac{163\pi}{4})$

c)
$$\tan(\frac{163\pi}{4})$$

d)
$$\cot(-\frac{67\pi}{3})$$

a) $\cos(\frac{179\pi}{3}) = \cos(60\pi - \frac{\pi}{3}) = \cos(-\frac{\pi}{3})$. Or les points $P(-\frac{\pi}{3})$ et $P(\frac{\pi}{3})$ sont symétriques par rapport à l'axe Ox. Donc $\cos(-\frac{\pi}{3}) = \cos(\frac{\pi}{3})$. Et $\cos(\frac{\pi}{3}) = \frac{1}{2}$, d'où $\cos(\frac{179\pi}{3}) = \frac{1}{2}$.

b) $\sin(-\frac{374\pi}{6}) = \sin(-62\pi - \frac{\pi}{3}) = \sin(-\frac{\pi}{3})$. Or les points $P(-\frac{\pi}{3})$ et $P(\frac{\pi}{3})$ sont symétriques par rapport à l'axe Ox. Donc $\sin(-\frac{\pi}{3}) = -\sin(\frac{\pi}{3})$. Et $\sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$, d'où $\sin(-\frac{374\pi}{6}) = -\frac{\sqrt{3}}{2}$.

c) $\tan(\frac{163\pi}{4}) = \tan(41\pi - \frac{\pi}{4}) = \tan(-\frac{\pi}{4})$. Or les points $T(-\frac{\pi}{4})$ et $T(\frac{\pi}{4})$ sont symétriques par rapport à l'axe Ox. Donc $\tan(-\frac{\pi}{4}) = -\tan(\frac{\pi}{4})$. Et $\tan(\frac{\pi}{4}) = 1$, d'où $\tan(\frac{163\pi}{4}) = -1$.

d) $\cot(-\frac{67\pi}{3}) = \cot(-22\pi - \frac{\pi}{3}) = \cot(-\frac{\pi}{3})$. Or les points $T'(-\frac{\pi}{3})$ et $T'(\frac{\pi}{3})$ sont symétriques par rapport à l'axe Oy. Donc $\cot(-\frac{\pi}{3}) = -\cot(\frac{\pi}{3})$. Et $\cot(\frac{\pi}{3}) = \frac{\sqrt{3}}{3}$, d'où $\cot(-\frac{67\pi}{3}) = -\frac{\sqrt{3}}{3}$.

- 2. Calculer, sans machine, la valeur des fonctions trigonométriques des angles ainsi définis :

 - a) $\cos x = \pm \frac{4}{5}$, $\frac{15\pi}{2} \le x \le 8\pi$ c) $\tan x = \pm \frac{4}{3}$, $-\frac{7\pi}{2} \le x \le -3\pi$
 - b) $\sin x = \pm \frac{\sqrt{11}}{6}$, $-\frac{7\pi}{2} \le x \le -3\pi$ d) $\cot x = -\frac{2\sqrt{10}}{7}$, $11\pi \le x \le \frac{23\pi}{2}$
 - a) x est défini par $\cos x = \pm \frac{4}{5}$, $\frac{15\pi}{2} \le x \le 8\pi$.
 - Signe des fonctions trigonométriques de x.

Localisation de P(x):

$$\frac{15\pi}{2} \le x \le 8\pi \quad \Rightarrow \quad P(x) \in IV \,.$$

Donc $\cos x > 0$, $\sin x < 0$ et $\tan x < 0$.

• Valeur absolue des fonctions trigonométriques de x.

Soit α l'angle géométrique aigu défini par $\cos \alpha = \frac{4}{5}$.

A l'aide du triangle rectangle ci-contre, on en déduit $\sin \alpha$ et $\tan \alpha$:

$$\sin \alpha = \frac{3}{5}$$
 et $\tan \alpha = \frac{3}{4}$.

5 3 α 4

En conclusion : $\cos x = \frac{4}{5}$, $\sin x = -\frac{3}{5}$ et $\tan x = -\frac{3}{4}$.

- b) x est défini par $\sin x = \pm \frac{\sqrt{11}}{6}$, $-\frac{7\pi}{2} \le x \le -3\pi$.
 - \bullet Signe des fonctions trigonométriques de x. Localisation de P(x):

$$-\frac{7\pi}{2} \le x \le -3\pi \quad \Rightarrow \quad P(x) \in II.$$

Donc $\sin x > 0$, $\cos x < 0$ et $\tan x < 0$.

• Valeur absolue des fonctions trigonométriques de x.

Soit α l'angle géométrique aigu défini par $\sin \alpha = \frac{\sqrt{11}}{6}$.

A l'aide du triangle rectangle ci-contre, on en déduit $\cos \alpha$ et $\tan \alpha$:

$$\cos \alpha = \frac{5}{6}$$
 et $\tan \alpha = \frac{\sqrt{11}}{5}$.

En conclusion : $\sin x = \frac{\sqrt{11}}{6}$, $\cos x = -\frac{5}{6}$ et $\tan x = -\frac{\sqrt{11}}{5}$.

- c) x est défini par $\tan x = \pm \frac{4}{3}$, $-\frac{7\pi}{2} \le x \le -3\pi$

 \bullet Signe des fonctions trigonométriques de x.

Localisation de P(x):

$$-\frac{7\pi}{2} \le x \le -3\pi \quad \Rightarrow \quad P(x) \in II.$$

Donc $\tan x < 0$, $\sin x > 0$ et $\cos x < 0$.

• Valeur absolue des fonctions trigonométriques de x.

Soit α l'angle géométrique aigu défini par $\tan \alpha = \frac{4}{3}$.

A l'aide du triangle rectangle ci-contre, on en déduit $\sin \alpha$ et $\cos \alpha$:

$$\sin \alpha = \frac{4}{5}$$
 et $\cos \alpha = \frac{3}{5}$.

En conclusion : $\tan x = -\frac{4}{3}$, $\sin x = \frac{4}{5}$ et $\cos x = -\frac{3}{5}$.

d)
$$\cot x = -\frac{2\sqrt{10}}{7}$$
, $11\pi \le x \le \frac{23\pi}{2}$.

$$11\pi \le x \le \frac{23\pi}{2} \implies P(x) \in III$$
.

Or $P(x) \in III$ et $\cot x < 0$ sont incompatibles.

- a) Calculer $A = \sin x \frac{1}{\cos x}$ sachant que $\tan x = -\frac{1}{2}$ et $4\pi \le x \le 5\pi$.
 - b) Soit φ l'angle défini par $\sin\varphi=-\frac{2}{\sqrt{13}}$ et $65\pi<2\varphi<67\pi$.

Calculer
$$B = \frac{3\sin\varphi - 2\cos\varphi - 5\tan\varphi}{1 + \sin\varphi \cdot \cos\varphi - 3\tan^2\varphi}$$

• Localisation de P(x): a)

> $4\pi \le x \le 5\pi$ \Rightarrow $P(x) \in I \cup II$. Or $\tan x < 0$ donc $P(x) \in II$. On en déduit donc que $\sin x > 0$ et $\cos x < 0$.

• Calcul de $\sin x$ et $\cos x$:

Soit α l'angle géométrique aigu défini par $\tan \alpha = \frac{1}{2}$, alors $\sin \alpha = \frac{1}{\sqrt{5}}$ et $\cos \alpha = \frac{2}{\sqrt{5}}$.

D'où:
$$\sin x = \frac{\sqrt{5}}{5}$$
, $\cos x = -\frac{2\sqrt{5}}{5}$ et $A = \frac{7\sqrt{5}}{10}$.

- b) Localisation de $P(\varphi)$: $65\pi < 2\varphi < 67\pi \quad \Leftrightarrow \quad \frac{65\pi}{2} < \varphi < \frac{67\pi}{2} \quad \Rightarrow \quad P(\varphi) \in II \cup III \,.$ Or $\sin \varphi < 0$ donc $P(\varphi) \in III$. On en déduit donc que $\cos \varphi < 0$ et $\tan \varphi > 0$.
 - Calcul de $\cos \varphi$ et $\tan \varphi$:

 Soit α l'angle géométrique aigu défini par $\sin \alpha = \frac{2}{\sqrt{13}}$,

 alors $\cos \alpha = \frac{3}{\sqrt{13}}$ et $\tan \alpha = \frac{2}{3}$.

 D'où: $\cos \varphi = -\frac{3}{\sqrt{13}}$, $\tan \varphi = +\frac{2}{3}$ et B = -26.
- 4. Comparer, sans machine, les angles α et β dans les trois cas suivants :

a)
$$\sin \alpha = \frac{3}{4}$$
, $\alpha \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ et $\beta = \frac{5\pi}{6}$.

b)
$$\cos \alpha = \frac{2}{5}$$
, $\alpha \in [0, \pi]$ et $\beta = \frac{\pi}{3}$.

c)
$$\tan \alpha = -2$$
, $\alpha \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ et $\beta = -\frac{\pi}{3}$.

a) $\sin \alpha = \frac{3}{4}$, $\alpha \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ et $\beta = \frac{5\pi}{6}$.

 $\beta \,$ est un angle remarquable, on connaît son sinus : $\, \sin \beta = \frac{1}{2} \, .$

D'où : $\sin \alpha > \sin \beta$.

Or la fonction sinus, sur l'intervalle $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, est décroissante (lorsque la mesure de l'angle augmente, le sinus diminue).

Donc $\alpha < \beta$.

 $\beta \;$ est un angle remarquable, on connaît son cosinus : $\;\cos\beta=\frac{1}{2}\,.$

D'où: $\cos \alpha < \cos \beta$.

Or la fonction cosinus, sur l'intervalle $[0, \pi]$, est décroissante (lorsque la mesure de l'angle augmente, le cosinus diminue).

Donc $\alpha > \beta$.

c) $\tan \alpha = -2$, $\alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et $\beta = -\frac{\pi}{3}$.

 β est un angle remarquable, on connaît sa tangente : $\tan \beta = -\sqrt{3}$.

D'où : $\tan \alpha < \tan \beta$.

Or la fonction tangente, sur l'intervalle $]-\frac{\pi}{2}, \frac{\pi}{2}[$, est croissante (lorsque la mesure de l'angle augmente, la tangente augmente).

Donc $\alpha < \beta$.

5. Soit ABC un triangle rectangle en C. Déterminer le sinus et le cosinus de l'angle $\alpha = \widehat{BAC}$ sachant que AC = 5 et BC = 12. Déterminer sans calculatrice si α est plus grand ou plus petit que $\frac{\pi}{3}$.

$$\sin \alpha = \frac{BC}{AB}$$
 et $\cos \alpha = \frac{AC}{AB}$, avec $BC = 12$ et $AC = 5$.

Par Pythagore,
$$AB = \sqrt{BC^2 + AC^2} = 13$$
. Donc $\sin \alpha = \frac{12}{13}$ et $\cos \alpha = \frac{5}{13}$.

Pour comparer les angles α et $\frac{\pi}{3}$, on compare leur cosinus, car $\cos\frac{\pi}{3}$ est une valeur agréable.

 $\cos \alpha < \cos \frac{\pi}{3}$, donc $\alpha > \frac{\pi}{3}$.

6. Un polygone régulier de n côtés est inscrit dans un cercle de rayon r.

Calculer le périmètre P et l'aire A de ce polygone en fonction de r et de n.

Figure d'étude

Le polygone étant régulier, on peut le décomposer en n triangles isométriques. On en déduit la valeur de l'angle α : $\alpha = \frac{2\pi}{n}$. Ces triangles sont isocèles, la hauteur OI est donc aussi une bissectrice et une médiane.

On en déduit l'expression de $x = P_0I$ et de y = OI:

$$\sin\left(\frac{\alpha}{2}\right) = \frac{x}{r} \qquad \Rightarrow \qquad x = r \sin\left(\frac{\alpha}{2}\right)$$

$$\cos\left(\frac{\alpha}{2}\right) = \frac{y}{r} \qquad \Rightarrow \qquad y = r \cos\left(\frac{\alpha}{2}\right)$$

• Soit P le périmètre du polygone : $P = n \cdot P_0 P_1 = 2 n x = 2 n r \sin \left(\frac{\alpha}{2}\right)$

$$P = 2 n r \sin\left(\frac{\pi}{n}\right) .$$

• Soit A l'aire du polygone : $A = n x \cdot y = n r^2 \sin\left(\frac{\alpha}{2}\right) \cos\left(\frac{\alpha}{2}\right)$

$$A = n r^2 \sin\left(\frac{\pi}{n}\right) \cos\left(\frac{\pi}{n}\right)$$
.

7. Un cône de révolution est défini par son angle au sommet α (angle entre une génératrice et l'axe) et le rayon r du cercle de base.

Ce cône de révolution est une surface développable. En le découpant le long d'une génératrice, on obtient son développement : c'est un secteur circulaire.

Calculer l'angle au centre β de ce secteur circulaire.

Figure d'étude

Le rayon du secteur circulaire est la génératrice g du cône et la longueur L de l'arc est la longueur du cercle de base.

On en déduit la mesure en radians de l'angle β : $g \cdot \beta = L \Rightarrow \beta = \frac{L}{g}$.

$$\sin \alpha = \frac{r}{g} \quad \Rightarrow \quad g = \frac{r}{\sin \alpha} \qquad \text{ et } \qquad L = 2\pi r \,.$$

D'où : $\beta = 2\pi\,r\,\cdot\,\frac{\sin\alpha}{r}\,, \qquad \beta = 2\pi\,\sin\alpha\,.$

Remarque : un demi-disque permet de construire un cône de révolution dont l'angle au sommet vaut $\alpha = \frac{\pi}{6}$.

8. Pour déterminer la hauteur d'une tour, on vise son sommet depuis un point au sol, avec un angle d'élévation α ; puis on s'avance d'une distance d vers le pied de la tour et on effectue une deuxième visée avec un angle β .

Calculer la hauteur h de la tour en fonction de α , β et d.

Soit x la distance entre le deuxième point de visée et le pied de la tour.

Dans le triangle rectangle ACT:

$$h = (d+x) \tan \alpha$$
.

Dans le triangle rectangle BCT:

$$h = x \tan \beta$$
.

On en déduit la distance x puis la hauteur h:

$$(d+x) \tan \alpha = x \tan \beta \quad \Leftrightarrow \quad x = d \cdot \frac{\tan \alpha}{\tan \beta - \tan \alpha} \,, \qquad \text{d'où} \qquad h = d \cdot \frac{\tan \alpha}{\tan \beta - \tan \alpha} \,.$$

9. La figure ci-jointe est constituée d'un segment AB, d'un arc de cercle (BC) de centre O et du segment AC tangent à l'arc (BC) en C.

On connaît les mesures suivantes : $AB = 18 \, \mathrm{cm} \ \mathrm{et} \ \alpha = 30^{\circ} \, \mathrm{.}$

Calculer le périmètre $\,P\,$ et l'aire $A\,$ de cette figure.

• Calcul du rayon r:

Pour calculer le rayon r, on l'exprime en fonction des données α et AB.

$$AB = AO + r$$
, avec $AO = \frac{r}{\sin \alpha}$,

$$AB = r\left(\frac{1}{\sin\alpha} + 1\right) \quad \Leftrightarrow \quad r = \frac{AB}{\frac{1}{\sin\alpha} + 1} \quad \Leftrightarrow \quad r = 6 \text{ cm}.$$

• Calcul de AC:

$$\tan \alpha = \frac{r}{AC} \quad \Leftrightarrow \quad AC = \frac{r}{\tan \alpha} \quad \Leftrightarrow \quad AC = 6\sqrt{3} \approx 10, 4 \, \mathrm{cm} \, .$$

\bullet Calcul du périmètre $\,P$:

L'arc BC est de mesure $\beta = \frac{2\pi}{3}$ radians.

Sa longueur vaut donc $\beta \cdot r = 4\pi \,\mathrm{cm}$.

$$P = 3r + \beta r + r\sqrt{3} = r\left(3 + \frac{2\pi}{3} + \sqrt{3}\right) \approx 41 \text{ cm}.$$

\bullet Calcul de l'aire A:

Aire du triangle $\ AOC$: $\ \frac{1}{2} \ r \cdot AC = 18\sqrt{3} \ \mathrm{cm}^2 \, .$

Aire du secteur circulaire $\ OBC: \ \frac{1}{2}\,\beta\cdot r^2 = 12\pi\,\mathrm{cm}^2\,.$

D'où l'aire $\,A\,$ du domaine : $\,A=18\sqrt{3}+12\pi\approx 68,9\,\mathrm{cm}^2\,.$