SEMESTER 6

APPLIED ELECTRONICS AND INSTRUMENTATION

ELECTRIC DRIVES AND CONTROL

Course Code	PCAET601	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GXEST104 Introduction to Electrical and Electronics Engineering	Course Type	Theory

Course Objectives:

- 1. To study and analyze various electrical drives and its control.
- 2. To design and analyze various power converter circuits for various applications.

Module No.	Syllabus Description	Contact Hours
	DC and AC Machines DC machines – Principle of operation of DC generator, constructional	
	details, EMF equation, types of generators. Principle of operation of DC	
1	motors. Electrical and mechanical characteristics of DC series, shunt and compound motors, applications.	11
	AC machines – Principle of operation, rotating magnetic field, single phase and three phase induction motors.	
	Power Devices and Controlled Rectifiers	
	Power devices – Power BJT, power MOSFET and IGBT - steady state and	
	switching characteristics. Drive requirements. Design of simple drive	
	circuits for power BJT, power MOSFET and IGBT. Principle of DC motor	
2	control. Principle of PWM switching control. Two quadrant and four	
	quadrant converter circuit.	12
	Controlled rectifiers - Principle of phase controlled converter operation.	
	Single phase half wave and full wave controlled rectifiers with R, RL and	
	battery loads.	

3	Inverters Single phase inverters - half bridge, full bridge and push pull inverter, Three phase voltage source inverter. Fundamental concepts of PWM schemes, Sine triangle PWM, Space vector PWM, harmonic distortion factors for three phase inverters.	10
4	Induction Motor Drives and Vector Control Techniques Induction motor drives – Torque-speed characteristics of induction motor, Speed control by varying stator frequency and voltage. Voltage source inverter driven induction motor, application of PWM for induction motor drive. Vector Control Techniques – Concepts of Direct Torque Control (DTC), Field Oriented Control (FOC), Comparison of vector control and scalar control. Application of Vector control drives.	11

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
•	2 Questions from each	• Each question carries 9 marks.	
	module.	• Two questions will be given from each module, out	
•	Total of 8 Questions, each	of which 1 question should be answered.	
	carrying 3 marks	• Each question can have a maximum of 3 sub	60
		divisions.	
	(8x3 = 24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Illustrate the concept of DC Machines and AC Machines	К3
CO2	Analyze the behavior of Power devices and Controlled Rectifier circuits	K4
CO3	Design and analyze Inverter circuits	K4
CO4	Understand and analyze induction motor drives and vector control techniques	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									3
CO2	3	3	2									3
CO3	3	3	2									3
CO4	3	3	2									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Theory and performance of Electrical Machines	J B Gupta	SK Kataria and Sons	15 th Edition, 2015			
2	Power Electronics: Essentials and Applications	L. Umanand	Wiley India Pvt. Ltd.	1 st Edition, 2009			
3	Power Electronics: Converters Application and Design	Ned Mohan, Tore M. Undeland, William P. Robbins	John Wiley and Sons	3 rd Edition, 2002			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	A Textbook of Electrical Technology. AC and DC Machines (Volume II)	B.L Theraja and A.K Theraja	S Chand and Company Ltd	Multicolor Edition, 2020 Reprint				
2	Electric Motor Drives, Modeling Analysis and Control	R. Krishnan	РНІ	1 st Edition, 2001				
3	Power Electronics: Circuits, Devices and Applications	Mohammad H Rashid	Pearson	4 th Edition, 2017				

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/108/104/108104140/ https://nptel.ac.in/courses/108108077				
2	https://archive.nptel.ac.in/courses/108/104/108104140/ https://nptel.ac.in/courses/108108077				
3	https://archive.nptel.ac.in/courses/108/104/108104140/ https://nptel.ac.in/courses/108108077				
4	https://archive.nptel.ac.in/courses/108/104/108104140/ https://nptel.ac.in/courses/108108077				

INDUSTRIAL INSTRUMENTATION

Course Code	PCAET602	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCAET303 Transducers and Measurements	Course Type	Theory

Course Objectives:

1. To understand the working of different types of temperature, pressure, displacement, level and flow sensors

Module No.	Syllabus Description	Contact Hours
1	Temperature Measurement Resistance Thermometers – Linear approximation and quadratic approximation, principle of operation. Thermistors – Construction, characteristics, applications, Resistance Temperature detectors. Thermocouples – Laws, types, comparisons with other temperature sensors. Thermopiles, Different types of pyrometers, Infrared guns, electronic temperature switches, fluidic sensors, Johnson noise thermometer, Humidity and moisture measurement.	9
2	Pressure and displacement Measurement Mechanical devices – Bellows, Bourdon tube, diaphragm, types of variable inductance and capacitance, strain gauge and its types, piezo electric type, potentiometric type, mano meters. Low pressure and vaccum measurements – Pirani gauge, McLeod gauge, ionization gauge. Differential Pressure Transmitters – Pneumatic transmitter. Displacement measurements – LVDT, RVDT, Proximity sensors, Hall effect devices.	9

	Flow and Viscosity Measurement	
	Differential pressure flow meters - Laminar and turbulent flow,	
	Bernoulli's theorem, Orifice plate, Venturi Tubes and Nozzles, Pitot	
	Tubes.	
	Positive Displacement Flowmeters - Reciprocating piston meters, Oval	
	gear meters, Nutating disc flow meter.	
3	Mass Flowmeters - Radiation type, Angular Momentum type, Impeller	9
	Turbine Flow meter, Constant torque type.	
	Electromagnetic and ultrasonic flow meter.	
	Measurement of Viscosity – Principle, Newtonian fluids, Viscometer types	
	– Saybolt and Red wood.	
	Capillary Viscometers – Differential Pressure type.	
	Level and Turbidity Measurement	
	Level Measurement Methods - Dip stick, Sight glass, Float Type level	
	indicator, Ball float, hydrostatic pressure level sensor. Displacer Type -	
	Torque tube assembly.	
4	Electrical Methods - Resistance, Conductance, Inductive and Capacitive	9
	level gauging. Ultrasonic Method, Microwave Level Switches, Non-	
	contacting optical level sensor, Rotating Paddle Switches, laser sensor.	
	Turbidity Measurement – Electronic turbidity meters.	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A		Part B	Total
•	2 Questions from each	• Each question carries 9 marks.	
	module.	• Two questions will be given from each module, out	
•	Total of 8 Questions, each	of which 1 question should be answered.	
	carrying 3 marks	• Each question can have a maximum of 3 sub	60
		divisions.	
	(8x3 = 24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the working of different types of temperature sensors	K2
CO2	Illustrate the various types of pressure and displacement measurement techniques	К2
CO3	Analyze the working of various flow and viscosity measurement devices	K4
CO4	Illustrate the different types of level and turbidity sensors	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3						2				3
CO2	3	3						2				3
CO3	3	3						2				3
CO4	3	3						2				3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	A course in Electrical and Electronic Measurements and Instrumentation	A K. Sawhney	Dhanpat Rai & Co. Limited	2/e, 2015			
2	Principles of Industrial Instrumentation	D Patranabis	Tata McGraw Hill	3/e, 2017			
3	Industrial Instrumentation & Control	S. K. Singh,	Tata McGraw Hill	3/e, 2009			

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Applied Instrumentation in the Process Industries – A survey	Andrew W.G,	Gulf Publishing Company	2001
2	Process / Industrial Instruments & Controls Handbook	Douglas M. Considine	McGraw Hill	5/e, 2009
3	Flow measurement, 2nd Edition 1995.	Spitzer D. W.,	Butterworth Heinemann	2 nd Edition, 1995
4	Instrumentation Reference Book	Noltingk B.E.	Butterworth Heinemann	2/e, 2013

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://nptel.ac.in/courses/108105064				
2	https://nptel.ac.in/courses/108105064				
3	https://nptel.ac.in/courses/108105064				
4	https://archive.nptel.ac.in/courses/103/105/103105130/				

CMOS CIRCUIT DESIGN

Course Code	PEAET631	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCAET302: Electronic Devices and Circuits	Course Type	Theory

Course Objective:

1. This course aims to impart the basic knowledge of CMOS analog circuits design and enable the students to design integrated circuits.

Module No.	Syllabus Description	Contact Hours		
	Basic MOS Device physics - Review of MOS Characteristics and Second			
	order effects (only basic theoretical concepts).			
1	Single Stage Amplifiers. Common Source Stage with Different Load types,	9		
	Source Follower, Common Gate and Cascode Stage			
	Differential Amplifiers - Single-ended and differential operation, Basic			
	differential pair, Common-mode response, Differential pair with MOS load,			
2	Gilbert Cell.			
	Current Mirror: Simple, Cascode and Basic concepts of active current	9		
	Mirror.			
	Frequency Response of Amplifiers: Miller Effect, Poles and Zeros,			
3	Frequency Response Analysis of Common Source, Source Follower,	9		
	Common Gate and Differential Pair.			
	Phase Locked Loops - Mathematical model of VCO, Phase Detector, Basic			
4	PLL Topology, Type I and Type II(Charge Pump) PLL, Stability Analysis of			
	PLL, Non Ideal Effects in PLL, Application of PLL - Frequency	0		
	Multiplication, Frequency synthesizer and Skew reduction. Block Diagram	9		
	of Digital PLL.			

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A		Part B	Total
•	2 Questions from each	• Each question carries 9 marks.	
	module.	• Two questions will be given from each module, out	
•	Total of 8 Questions, each	of which 1 question should be answered.	
	carrying 3 marks	• Each question can have a maximum of 3 sub	60
		divisions.	
	(8x3 = 24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Analyze various Single stage Amplifiers with different types of loads	К3				
CO2	Design and Analyse Differential Amplifiers	К3				
CO3	Design various types of current mirrors	К3				
CO4	Analyze the frequency response of single stage and differential amplifiers	К3				
CO5	Implement PLL for various applications	К3				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2			2							3
CO2	3	2	2	2	2							3
CO3	3	2	2	2	2							3
CO4	3	2	2	2	2							3
CO5	3	2	2	3	3							3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Design of Analog CMOS Integrated Circuits	Behzad Razavi	McGraw-Hill	2/e, 2017						
2	CMOS Digital Integrated Circuits, Analysis and Design	Sung-Mo Kang, Yusuf Leblebici, Chulwoo Kim	McGraw-Hill	Revised 4/e, 2019						

	Reference Books										
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year							
1	CMOS Analog Circuit Design	Phillip E. Allen, Douglas R. Holbery	Oxford	2004							
2	CMOS: Circuits Design, Layout and Simulation	R. Jacob Baker	Wiley	2 nd edition, 2009							
3	CMOS: Circuit Design, Layout and Simulation (IEEE Press Series on Microelectronic Systems)	R. Jacob Baker	Wiley-IEEE Press	4 th edition, 2019							

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://archive.nptel.ac.in/courses/117/101/117101105/ https://archive.nptel.ac.in/courses/108/107/108107129/								
2	https://archive.nptel.ac.in/courses/117/101/117101105/ https://archive.nptel.ac.in/courses/108/107/108107129/								
3	https://archive.nptel.ac.in/courses/117/101/117101105/ https://archive.nptel.ac.in/courses/108/107/108107129/								
4	https://archive.nptel.ac.in/courses/117/101/117101105/ https://archive.nptel.ac.in/courses/108/107/108107129/								

SEMESTER S6 INSTRUMENTATION FOR AGRICULTURE

Course Code	РЕАЕТ632	CIE Marks	40
Teaching Hours/Week (L:T:P:R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCAET303 Transducers and Measurements	Course Type	Theory

Course Objectives:

- 1. To explain and apply fundamental principles of agricultural instrumentation to monitor key parameters
- **2.** Describe the function and importance of different soil sensors and demonstrate their use in real-world agricultural scenarios.
- **3.** To analyze and classify different soil types (sandy, clay, silt, loamy) based on their characteristics and evaluate their suitability for various agricultural practices.
- **4.** Able to evaluate and optimize various agricultural practices, such as irrigation methods and greenhouse climate control, using data collected from sensors and environmental monitoring systems.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Agricultural Instrumentation and Soil Types Fundamentals of Agricultural Instrumentation, Importance of instrumentation and control in agriculture. Overview of precision agriculture and smart farming. Agricultural parameters to be monitored - soil moisture, temperature, humidity, pH, nutrient levels, light intensity, and CO ₂ levels. Classification and characteristics of different soil types - sandy, clay, silt. Loamy soil. Soil Monitoring Systems - Soil Sensors - Soil moisture sensor, capacitive sensors. Soil temperature sensors - thermocouples, RTDs, thermistors. Gypsum block soil moisture sensors. Soil pH sensors - ion-selective electrodes.	9

	Water Quality Parameters - pH, electrical conductivity, dissolved oxygen, turbidity.					
2	Basic principles of water quality sensors. Irrigation Systems - Necessity and methods - overhead, center pivot, lateral move, micro irrigation systems, irrigation scheduling, and irrigation efficiencies (basic concepts only).					
3	Greenhouse Monitoring and Climate Control. Basics of Greenhouses - Introduction to greenhouse structures and their importance. Environmental control in greenhouses - temperature, humidity, light, and CO ₂ management. Environmental Sensors - hair hygrometer, dry and wet bulb hygrometer. Light sensors - photodiodes, pyranometers. CO ₂ sensors - NDIR sensors. Microclimate Monitoring, Importance of microclimate in greenhouse and field agriculture.	9				
4	Plant growth monitoring - Leaf area, length, evapotranspiration, wetness & respiration measurement, electromagnetic radiations photosynthesis, infrared & UV bio sensor methods in agriculture. Weather Stations - Components and functionality - Anemometers, sonic anemometers, surface flux measurement. Ground water occurrence - confined and unconfined aquifers Introduction to vertical farming and hydroponics.	9				

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
•	2 Questions from each	• Each question carries 9 marks.	
	module.	• Two questions will be given from each module, out	
•	Total of 8 Questions, each	of which 1 question should be answered.	
	carrying 3 marks	• Each question can have a maximum of 3 sub	60
		divisions.	
	(8x3 = 24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the necessity and fundamentals of instrumentation in agriculture	К2
CO2	Illustrate learn about different soil and water parameters and their properties	К2
CO3	Familiarize various sensors and their applications in monitoring agricultural parameters	К2
CO4	Design and implement effective soil and environmental monitoring systems	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2		3	3	3					3
CO2	3	2	2		3	3	3					3
CO3	3	2	2		3	3	3					3
CO4	3	2	3		3	3	3					3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Process Control and	Curtis D. Johnson	Pearson Education	8 th edition			
1	Instrumentation Technology	Curus D. Johnson	India	2015			
2	Industrial Instrument and	C V Singh	McGraw Hill	3 rd Edition			
2	Control	S K Singh	Education	2017			
3	3 Textbook of Soil Science T. Biswas, S Mukherjee		McGraw Hill	2 nd edition			
3 Textbook of Soil Science		T. Biswas, S Mukherjee	Education	2017			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Textbook on Fundamentals of Soil Science	M. Yuvaraj	Brillion Publishing	2023				
2	Agricultural Automation: Fundamentals and Practices	Francis J. Pierce, Qin Zhang	CRC Press	2013				
3	Process Control: Instrument Engineers' Handbook	Béla G. Lipták	Butterworth- Heinemann	2013				

	Video Links (NPTEL, SWAYAM)				
Module No. Link ID					
1	https://archive.nptel.ac.in/courses/126/105/126105016/				
2	https://archive.nptel.ac.in/courses/126/105/126105019/				
3	https://www.youtube.com/watch?v=xT1Nlyo_CxI				
4	https://onlinecourses.nptel.ac.in/noc24_ag10/preview				

DISCRETE CONTROL SYSTEMS

Course Code	РЕАЕТ633	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCAET501: Control System Theory	Course Type	Theory

Course Objectives:

- 1. To understand the signal conversion and processing involved in discrete data control systems
- 2. To carry out stability analysis of discrete time control systems
- **3.** To acquire knowledge in state space representation of systems

Module No.	Syllabus Description	Contact Hours
	Introduction to DCS	
	Basic Elements of discrete data control systems, advantages of discrete	
	data control systems, examples. Signal conversion & processing:	
	Digital signals & coding, data conversion & quantization, sample and	
1	hold devices. Mathematical modelling of the sampling process, Design of	9
	maximum sampling frequency of digital systems in terms of the	
	sensor delay; Data reconstruction and filtering of sampled signals: Zero	
	Order hold & First order Hold.	
	Discrete Time Control Systems	
_	Pulse transfer function, Z transform analysis of closed loop and open loop	
2	systems- Steady state error analysis of digital systems- Examples on static	9
	error coefficients. Bilinear transformation- mapping from s-plane to z-plane	
	Analysis of Discrete Time Control Systems	
3	Stability analysis of linear digital control systems - Routh Hurwitz criteria,	9
	Jury's test. Root loci of digital control systems - rules for construction of root	

	locus. Frequency domain analysis - Bode plots- Gain margin and Phase	
	State Space Analysis	
4	State space representation of discrete time systems- State space model-various canonical forms from transfer function, Conversion of transfer function model to state space model, Discrete time State transition matrix, Solution of discrete state equations, Controllability and Observability, Pole placement using state feedback.	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject			Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part A Part B	
2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out of	
• Total of 8 Questions, each	which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the basic elements, their functions and Interconnections in a digital control system.	К2
CO2	Develop the pulse transfer function and steady state error analysis of digital control systems	КЗ
CO3	Understand frequency domain analysis and analyse stability of linear digital control systems.	КЗ
CO4	Develop state space representation of discrete time systems and find solution of state equation.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2								2
CO2	3	3	3	2								2
CO3	2	3	3	3	3							2
CO4	3	3	3	3								2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Discrete- Time Control Systems	Katsuhiko O g a t a	Prentice Hall of India, 2005	2 nd Edition, 2005				
2	Digital control systems	B. C. Kuo	Oxford University Press	2 nd Edition, 2007				
3	Digital Control and State variable methods	M. Gopal	Tata McGraw Hill	4 th Edition, 2009				

Reference Books								
Sl. No Title of the Book Name of the Author/s Publisher and Yo								
1	Continuous & Discrete Control Systems	John Dorsey	Tata McGraw Hill	2001				
2	Modem Control Systems	Richard C Dorf and Robert H. Bishop	Pearson Education	2001				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://nptel.ac.in/courses/108103008						
2	https://nptel.ac.in/courses/108103008						
3	https://nptel.ac.in/courses/108103008						
4	https://nptel.ac.in/courses/108103008						

AUTOMOTIVE ELECTRONICS

Course Code	PEAET634	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCAET501 Control System Theory	Course Type	Theory

Course Objectives:

- 1. To illustrate Electronic Engine control system and cruise control systems.
- **2.** To analyse various automotive electronic systems, hybrid drives and power management systems.

Module No.	Syllabus Description					
1	Basics of Electronic Engine Control Overview of electronics in vehicles, Need for Electronic Engine Control, Concept of an Electronic Engine Control System, Inputs and outputs to engine control system, Electronic Fuel Control System, Closed Loop Electronic Fuel Control System and Electronic Ignition System	8				
2	Vehicle Motion ControlsRepresentative Cruise Control System – Digital Cruise ControlConfiguration and block diagram, cruise control speed performance. Digitalspeed control.Cruise Control Electronics - Basic concepts of Stepper Motor based andVacuum Operated Actuator. Basics of Antilock Braking System, ElectronicSuspension Control System and Electronic Steering Control.	10				
3	Power Systems and Hybrid Drives Battery management system – Battery types and its maintenance, Capacity Rating, Battery charging methods, Battery tests. Modern battery types -	10				

	Lithium-ion battery, Fuel cells, Ultra capacitors.					
	Charging System – Basic charging system principle, Alternator in vehicles,					
	rectification of AC to DC, Example of charging circuit, smart charging.					
	Engine Starting system – Introduction, starting requirements, block diagram					
	of starting system, electronic starter control Concept of Electric vehicles,					
	Hybrid Drive concept, Types of hybrid – series, parallel, micro, mild and					
	strong hybrid. Concept of Recuperative brake system.					
	Automotive Instrumentation and Diagnostics					
	Modern Automotive Instrumentation – General and computer based					
	instrumentation system, Advantages of Computer-Based Instrumentation.					
4	Fuel Level Measurement and Indication, Vehicle Speed Measurement, High-					
	Speed Digital Communications - CAN Protocol (Basics concepts only), Trip					
	Information Computer, Airbag deployment. Electronic Control System					
	Diagnostics, Service Bay Diagnostic Tool, On-board Diagnosis (OBD II)					

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Demonstrate the working of electronic engine control systems	K2			
CO2	Illustrate the cruise control systems	K2			
CO3	Design the power systems and hybrid drive for vehicles.	К3			
CO4	Understand the automotive instrumentation systems and vehicle diagnostics	К2			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3									3
CO2	3	2	3									3
CO3	3	2	3									3
CO4	3	2	3									3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Understanding Automotive Electronics: An Engineering Perspective	William B. Ribbens	Butterworth- Heinemann Inc	8th Edition, 2017				
2	Bosch Automotive Electrics and Automotive Electronics: Systems and Components, Networking and Hybrid Drive	Bosch	Springer	5th Edition, 2013				
3	Automobile Electrical and Electronic Systems	Tom Denton	Elsevier	3 rd Edition, 2004				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Automotive Electronics Design Fundamentals	Najamuz Zaman	Springer	1st Edition, 2015				
2	Automotive Electrical and Electronics	A K Babu	Khanna Book Publishing	2nd Edition, 2017				
3	Hillier's Fundamentals of Motor Vehicle Technology	V.A.W Hillier	Oxford	6th Edition, 2012				
4	Automotive Electrical Equipment	P L Kohli	McGraw Hill	1st Edition, 2017				
5	Automotive Electricity and Electronics	Barry Hollembeak	Cengage Learning	7 th Edition, 2018				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://archive.nptel.ac.in/courses/107/106/107106088/						
2	https://archive.nptel.ac.in/courses/107/106/107106088/						
3	https://archive.nptel.ac.in/courses/107/106/107106088/						
4	https://archive.nptel.ac.in/courses/107/106/107106088/						

BIOMEDICAL IMAGING

Course Code	PEAET636	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCECT402 Signals and Systems	Course Type	Theory

Course Objectives:

- 1. To introduce the fundamental concepts of biomedical imaging and its analysis.
- 2. To understand various medical imaging modalities and their applications.
- **3.** To learn techniques for image enhancement, segmentation, and analysis.
- **4.** To apply image analysis techniques to real-world biomedical problems.
- **5.** To gain practical experience through laboratory exercises and projects.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Biomedical Imaging - Introduction to Biomedical Image Analysis, Medical Imaging Modalities- X-ray, CT, MRI, Ultrasound, PET and Microscopy. Image Acquisition and Reconstruction, Image Storage, Retrieval, and Communication - Applications of Biomedical Imaging	9
2	Image Pre-processing and Enhancement Image Pre-processing- Noise Reduction, Smoothing, and Filtering - Image Enhancement Techniques - Histogram Equalization, Contrast Stretching, Homomorphic Filtering, and Multiresolution Analysis - Edge Detection Techniques: Sobel, Canny, and Laplacian - Image Restoration and De-noising Techniques.	9
3	Image Segmentation and Feature Extraction Image Segmentation Techniques - Thresholding, Region Growing, and Clustering - Advanced Segmentation Methods: Watershed, Level Set, and Graph Cut - Feature Extraction: Shape, Texture, and Intensity-based features - Feature Selection and Dimensionality Reduction Techniques.	9

	Image Analysis and Applications					
	Image Classification Techniques - Supervised and Unsupervised					
	Learning - Pattern Recognition and Machine Learning in Biomedical					
4	Image Analysis - Case Studies: Tumor Detection, Organ Segmentation, and					
	Disease Diagnosis - Evaluation Metrics for Image Analysis: Sensitivity					
	Specificity, and ROC Curves - Current Trends and Future Directions in					
	Biomedical Image Analysis					

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	Two questions will be given from each module, out of	
• Total of 8 Questions, each	which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome						
CO1	Understand the principles of various biomedical imaging modalities	K2					
CO2	Apply image pre-processing and enhancement techniques	К3					
CO3	Perform image segmentation and feature extraction for biomedical applications	K4					
CO4	Analyze biomedical images using classification and pattern recognition techniques	K4					
CO5	Evaluate the performance of image analysis methods in real-world biomedical problems	K5					

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2									3
CO2	3	3	3	2								3
CO3	3	3	3	2	2							3
CO4	3	3	3	3	2							3
CO5	3	3	3	3	3	2						3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Biomedical Image Analysis	Rangaraj M. Rangayyan	CRC Press						
2	Digital Image Processing	Rafael C. Gonzalez, Richard E. Woods	Pearson Education	4th Edition, 2018					
3	Medical Image Processing, Reconstruction and Restoration	Jiri Jan	CRC Press	2005					
4	Medical Imaging Signals and Systems	Jerry L. Prince, Jonathan Links	Pearson Education	2006					

	Reference Books							
Sl. No	Title of the Book Name of the Auth		Name of the Publisher	Edition and Year				
_	Image Processing,	Milan Sonka, Vaclav	Canada I comina	4th Edition,				
1	Analysis, and Machine Vision	Hlavac, Roger Boyle	Cengage Learning	2014				
2	Pattern Recognition and Machine Learning	Christopher Bishop	Springer	2006				
3	Medical Image Analysis	Atam P. Dhawan	Wiley-Interscience	2003				
4	Handbook of MedicalImaging	Jacob Beutel, Harold L. Kundel, Richard L. Van Metter	SPIE Press	2000				

Video Links (NPTEL, SWAYAM)								
Module No.								
1	Introduction to Biomedical Imaging: NPTEL Lecture Series by Prof. Arun Kumar Thittai							
2	Image Processing Techniques: NPTEL Course on Digital Image Processing by Prof. P. K. Biswas							
3	Advanced Image Segmentation: NPTEL Course on Medical Image Analysis by Ganapathy Krishnamurthi							
4	Machine Learning in Medical Imaging: NPTEL Course on Deep Learning for Computer Vision by Prof. Vineeth N Balasubramanian							

DIGITAL IMAGE PROCESSING

Course Code	PEAET635	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs.30 Min.
Prerequisites (if any)	PBECT504 Digital Signal Processing	Course Type	Theory

Course Objectives:

- 1. To establish a theoretical foundation for fundamental concepts in Digital Image Processing
- 2. Comprehend the algorithms utilized in two-dimensional signal processing.
- **3.** Apply image processing techniques to address engineering challenges.

Module No.	Syllabus Description	Contact Hours
	Digital Image Fundamentals - Image representation, basic relationship	
	between pixels, elements of DIP system, elements of visual perception-	
	simple image formation model. Digital Camera working principles	
	Brightness, Contrast, Hue, Saturation.	
1	Colour image fundamentals - RGB, CMY, HIS models, 2D sampling,	9
	Quantization.	
	Review of matrix theory - Row and column ordering - Toeplitz, Circulant	
	and block matrix.	
	2D Image transforms - DFT and its properties, DCT, KL transform and	
	Singular Value Decomposition.	
	Image Enhancement - Spatial domain methods - point processing- intensity	
2	transformations, histogram processing, image subtraction, image averaging.	9
	Spatial filtering- smoothing filters, sharpening filters.	
	Frequency domain methods - low pass filtering and high pass filtering.	
2	Image Restoration - Degradation model, Unconstrained restoration-	0
3	Lagrange multiplier and constraint restoration	9

	Inverse filtering - removal of blur caused by uniform linear motion.	
	Feature Extraction - Introduction to feature extraction techniques-Harris	
	corner detection, SIFT	
	Feature descriptors - Histogram of Oriented Gradients (HOG), Scale	
	Invariant Features	
	Image Classification - Support Vector Machine, Decision Trees, Object	
	Detection using HOG, Object Detection using Viola-Jones Algorithm.	
4	Image Segmentation - Thresholding, Region-based segmentation, Clustering	9
	techniques (k-means).	
	Morphological Operations - Dilation and Erosion, Opening and Closing, Hit-	
	or-Miss transformation, Boundary Extraction, Region filling,	

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation (Evaluate and Analyze): 20 marks

- Each student should design, implement, and analyze a digital image processing system for various applications.
- System development can be accomplished using
 - Python: OpenCV, NumPy, Scikit-image
 - MATLAB: Image Processing Toolbox
- Each student should do minimum two microprojects from each of the below Topics 1 to 5. Topic 6 is not compulsory.

• Topic 1: Basic Image Manipulation

- Grayscale Conversion: Convert color images to grayscale.
- Image Resizing: Implement different resizing techniques (nearest neighbor, bilinear, bicubic).
- Image Cropping: Allow users to crop specific regions of an image.
- Image Rotation: Rotate images by specified angles.
- Image Flipping: Flip images horizontally or vertically.

• Topic 2: Image Enhancement

- Contrast Adjustment: Adjust image contrast using linear or non-linear methods.
- Brightness Adjustment: Modify image brightness.
- Histogram Equalization: Enhance image contrast using histogram equalization.
- Image Sharpening: Apply sharpening filters to enhance image details.

• Topic 3: Image Filtering

- Averaging Filter: Apply a smoothing filter to reduce noise.
- Median Filter: Remove noise while preserving edges.
- Gaussian Blur: Create a Gaussian blur effect.
- Edge Detection: Implement edge detection techniques (Sobel, Canny).

• Topic 4: Image Analysis

- Image Segmentation: Divide an image into meaningful regions.
- Object Detection: Detect specific objects within an image.
- Feature Extraction: Extract relevant features from images

• Topic 5: Image Classification

- Traffic Sign Recognition: Classify common traffic signs (stop, yield, speed limit, etc.).
- Cat vs. Dog Classification: Build a model to differentiate between cat and dog images.
- Classify fruits (apples, oranges, bananas).

• Topic 6 (optional): Advanced Image Classification with Machine Learning

- Recognize different types of flowers.
- Classify types of cars (sedan, SUV, truck).
- Detect objects in images (faces, cars, pedestrians).

The project deliverables consist of the following components:

- Detailed design specifications
- Identification and resolution of technical challenges
- Designed and developed algorithms
- Implementation results and performance evaluations
- Comprehensive project report, incorporating methodology, results, challenges, and recommendations.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. Each question carries 9 marks. 	60
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Identify and summarize the aspects of digital image processing.	К2				
CO2	Demonstrate knowledge of the significance of transforms in digital image processing.	К2				
CO3	Apply principles and techniques of image restoration, enhancement, and segmentation.	K2				
CO4	Utilize modern principles and techniques for classifying and segmenting images.	К3				
CO5	Model and solve engineering problems by utilizing digital image processing algorithms.	K5				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2								3
CO2	3	2	2	2								3
CO3	3	2	2	2	2							3
CO4	3	2	2	2	2							3
CO5	3	2	3	2	2	2	2	2			3	3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year					
1	Digital Image Processing	Gonzalez Rafel C	Pearson Education	1/e, 2009					
2	Fundamentals of digital image processing	Jain Anil K	Prentice Hall	1/e, 1989					
3	Foundations of Computer Vision	Antonio Torralba	MIT Press	1/e, 2024					
4	Computer Vision: Algorithms and Applications	Richard Szeliski,	Springer	2/e, 2010					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Digital image processing	Kenneth R Castleman	Pearson Education	2/e, 2003					
2	Digital image processing	Pratt William K	John Wiley	4/e, 2007					
3	Hands-On Image Processing with Python	Sandipan Dey	Packt Publishing	1/e, 2024					
4	Computer Vision with Python 3	Saurabh Kapur	Packt Publishing	1/e, 2017					
5	Programming Computer Vision with Python	Jan Erik Solem	O'Reilly Media	1/e, 2012					

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://www.youtube.com/playlist?list=PL1F076D1A98071E24						
2	https://www.youtube.com/playlist?list=PL1F076D1A98071E24						
3	https://www.youtube.com/playlist?list=PL1F076D1A98071E24						
4	https://www.youtube.com/playlist?list=PL1F076D1A98071E24						
•	https://www.youtube.com/playlist?list=PLwdnzlV3ogoVsma5GmBSsgJM6gHv1QoAo						

EMBEDDED SYSTEM DESIGN

Course Code	PEAET695	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs.30 Min.
Prerequisites (if any)	PBECT404 Microcontrollers	Course Type	Theory

Course Objectives:

- **1.** To introduce the building blocks of Embedded System and various Embedded Development strategies
- 2. To impart knowledge of RTOS and processor scheduling algorithms

Module No.	Syllabus Description	Contact Hours
	Introduction to Embedded Systems Definition of Embedded System, Embedded Systems Vs General	
1	Computing Systems, History of Embedded Systems, Classification, Major Application Areas, Purpose of Embedded Systems, Characteristics and Quality Attributes of Embedded Systems.	8
	Typical Embedded System Core of the Embedded System – General Purpose and Domain Specific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS).	
2	Memory – ROM, RAM, Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems, Sensors and Actuators, Communication Interface – Onboard and External Communication Interfaces.	10
	RTOS Based Embedded System Design	
3	Operating System Basics, Types of Operating Systems, Tasks, Process and Threads, Multi processing and Multi-tasking, Task Scheduling, Task Communication – Shared Memory, Message Passing, Device Drivers, How to Choose an RTOS.	9
4	Embedded system development process Requirements, Architecture, Selection of Operating system, Processor Selection, Development platform, Programming language - Coding issues,	
4	Code optimization, Efficient input/output-Testing and debugging, Verify the software on the host system, Verify the software on the embedded system	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

- The students should design a complete embedded system which has real life application and is socially relevant.
- Select any ARM Cortex M processor, 16 bit Microcontroller or higher configuration devices.
- The project can be done as design and simulation or complete hardware implementation
- The project needs to be done as an individual project.

At the completion of the project, the students should be familiar with the following:

- Select an appropriate processor/Microcontroller for designing an embedded system
- Design an embedded system with limited resources
- Program the microcontroller/ARM Cortex M processor
- Interface various sensors/actuators/modules to the embedded system
- Parameters to be considered while developing the system for industrial purposes.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B		
• 2 Questions from each	• 2 questions will be given from each		
module.	module, out of which 1 question should be		
• Total of 8 Questions, each	answered.		
carrying 3 marks	• Each question can have a maximum of 3	60	
(8x3 =24marks)	sub divisions.		
	• Each question carries 9 marks.		
	(4x9 = 36 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome						
CO1	Understand fundamental embedded systems design paradigms, architectures, possibilities and challenges	К2					
CO2	Analyze the sub systems of an embedded system and their interaction in the functionality of the embedded systems	К2					
CO3	Practically apply gained theoretical knowledge to develop embedded systems.	КЗ					
CO4	Apply formal techniques of simulation, testing, verification and validation in designing reliable and safe embedded systems.	К3					

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3		3							3
CO2	3		3		3							3
CO3	3	2	3		3							3
CO4	3		3		3	3	3					3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Introduction to Embedded Systems	Shibu K. V	Tata McGraw Hill	2 nd Edition, 2017							
2	Embedded System Design – A unified hardware/software Introduction	Frank Vahid, Tony Givargis	John Wiley	2006							
3	Embedded Systems- Architecture, Programming and Design	Raj Kamal	Tata McGraw Hill	3 rd Edition, 2017							
4	Embedded Systems: An Integrated Approach	Lyla B. Das	Pearson	1 st Edition, 2012							

Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Embedded System Design	Steve Heath	Elsevier/ Newnes	2 nd Edition, 2002						
2	Embedded Microcontrollers and Processor Design	Greg Osborn	Pearson	2011						
3	Embedded Microcomputer Systems – Real Time Interfacing	Jonathan W. Valvano	Cengage Learning	2 nd Edition, 2011						

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://nptel.ac.in/courses/108102045								
2	https://nptel.ac.in/courses/108102045								
3	https://nptel.ac.in/courses/108102045 https://archive.nptel.ac.in/courses/106/105/106105172/								
4	https://nptel.ac.in/courses/108102045 https://archive.nptel.ac.in/courses/106/105/106105172/								

SEMESTER S6

LOGIC AND DISTRIBUTED CONTROL SYSTEM

Course Code	PBAET604	CIE Marks	60
Teaching Hours/Week (L:T:P:R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Nil	Course Type	Theory

Course Objectives:

- **1.** To design logic control systems for industrial applications.
- **2.** To design PLC based control systems using ladder programming.
- **3.** To describe distributed control system (DCS) and its components.
- **4.** To explain networking protocols at different levels in hierarchical control

Module No.	Syllabus Description	Contact Hours
	Programmable Logic Controllers – power supplies and isolators.	
	Program and Data organization in PLC – Input and Output modules, Discrete	
_	AC/DC, Analog Input/Output, Modular PLC.	
1	PLC programming Methods – IEC 61131-3 standard, Ladder programming.	9
	Basic PLC with Load and Store operations, PLC with Conditional	
	Instructions.	
	General PLC programming procedures, programming on-off inputs/ outputs,	
	auxiliary commands and functions, PLC basic Functions, register basics,	
	timer functions, counter functions, Arithmetic functions, comparison	
2	functions, Skip and MCR functions, data move systems.	9
	PLC Advanced intermediate functions - Utilizing digital bits sequencer	
	functions, Basic ladder diagram examples.	
	Distributed control system (DCS) - Introduction, DCS configuration with	
3	associated accessories, analog control, direct digital control, control console	9
	equipment, control unit (Relay Rack mounted equipment), local control	

	units, attributes of DCS and DCS Flow sheet symbols.			
	DCS System Integration I/O hardware stations, Set-point station control,			
	Engineering interface and operator interfaces in DCS.			
	Computers in process control - Direct Digital Control (DDC). Centralized			
	control, Hierarchical control, Supervisory Control and Data Acquisition			
	Systems (SCADA).			
4	Standard communication protocols for Instrumentation - Introduction,	9		
	Advantages and limitations of HART Protocol, FIELDBUS and PROFIBUS.			
	Industrial applications of PLC, SCADA, DCS and open systems for			
	following plants - Thermal power plant and Steel Plant.			

Note: It is mandatory that a *course project* should be done by the students in a group of maximum 4 members. The project can be in any of the following areas.

- 1. A typical application level wired Logic control system using combinational and/or sequential logic circuit. The entire logic control system (Both the system to be controlled and the designed logic controller) need to be implemented in hardware.
- A typical application level logic control system with PLC as the controller. The entire logic control system (Both the system to be controlled and the PLC with ladder program) need to be implemented in hardware.

The course project should have interim evaluations and final evaluation which also includes a presentation and demonstration.

Steps involved in PBL:

- Selection of relevant topic.
- Selecting the system (mechanical/electrical/hydraulic/pneumatic) to be controlled.
- Selecting proper sensors.
- Designing the logic controller with digital circuits or using a PLC with Ladder programming.
- Hardware implementation of the logic control system by integrating the system, sensors and the controller developed.

Sample project ideas:

- Bottle filling system control
- Sensor based Traffic light controller
- Robotic arm/manipulator control
- Coffee wending machine

- Renewable power generation management
- Coin counter

Upon successful completion of the project, the student is expected to attain skills to design and make medium complexity logic control systems using combinational and/or sequential logic circuits and also using Programmable Logic Controllers (PLC) with ladder programming.

Evaluation parameters:

- Relevance of the topic
- Hardware Implementation
- Presentation skills

Course Assessment Method (CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total	
5	30	12.5	12.5	60	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total		
2 Questions from each	• 2 questions will be given from each module,			
module.	out of which 1 question should be answered.			
• Total of 8 Questions,	• Each question can have a maximum of 2 sub			
each carrying 2 marks	divisions.	40		
(8x2 =16 marks)	Each question carries 6 marks.			
(4x6 = 24 marks)				

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Design and implement logic control systems for industrial applications	K6
CO2	Design and implement PLC based control systems using ladder programming	К6
CO3	Describe distributed control system (DCS) and its components	K2
CO4	Explain networking protocols at different levels in hierarchical control	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3		3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3	3	3
CO3	3	2	2	2								3
CO4	3	2	2	2								3

	Text Books								
Sl. No	Title of the Book	e of the Book Name of the Author/s		Edition and Year					
1	Programmable Logic Controllers	W. Bolton	Elsevier	4 th Edition 2006					
2	Distributed computer control for Industrial Automation	Popovic and Bhatkar	MareeetDekkar, N.York	1990					
3	Computer based Industrial Control	Krishna Kant	Prentice Hall, New Delhi	2010					
4	Distributed Control Systems	Michael P Lukcas	Van Nostrand Reinhold Co., New York	1986					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Programmable Logic Controllers - Principles and Applications	John.W.Webb, Ronald A Reis	Prentice Hall	5th Edition, 2002					
2	Programmable Logic Controllers	Frank D. Petruzella	McGraw Hill, New York	2nd Edition, 2019					
3	Elements of Process Control Applications	Deshpande P.B and Ash R.H	ISA Press, New York	1981					
4	Computer Aided Process Control	Singh	Prentice Hall	2004					
5	Programmable logic devices and logic controllers	Enrique Mandado, Jorge Marcos, Serafín A. Pérez	Prentice Hall	1996					
6	Process Control Instrumentation Technology	Curtis D. Johnson	Pearson	8th Edition, 2005					

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://archive.nptel.ac.in/noc/courses/noc19/SEM1/noc19-me04/						
2	https://archive.nptel.ac.in/noc/courses/noc19/SEM1/noc19-me04/						
3	https://archive.nptel.ac.in/noc/courses/noc19/SEM1/noc19-me04/						
4	https://archive.nptel.ac.in/noc/courses/noc19/SEM1/noc19-me04/						

PBL Course Elements

L: Lecture	R: Project (1 Hr.), 2 Faculty Members					
(3 Hrs.)	Tutorial	Practical	Presentation			
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation(Progress and Final Presentations)			
Group discussion	Project Analysis	Data Collection	Evaluation			
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)			
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video			

Assessment and Evaluation for Project Activity

Sl. No	Evaluation for	Allotted
		Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer	4
	Sessions	
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

SEMESTER S6

DESIGN THINKING AND PRODUCT DEVELOPMENT

(Common to Group A & Group B)

Course Code	GXEST605	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	60
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To guide students through the iterative stages of design thinking, including empathizing with users, defining problems, ideating solutions and developing Proof of Concepts (PoC) and technical feasibility studies.
- To promote the development of critical thinking skills by engaging students in integrative inquiry, where they ask meaningful questions that connect classroom knowledge with realworld applications.
- 3. To equip students with the ability to involve in product design considering the sustainability, inclusivity, diversity and equity aspects.

Module No.	Syllabus Description						
1	Fundamentals of design thinking and product development: Overview of stages of product development lifecycle; Design thinking -Definition-Design thinking for product innovation; Bringing social impact in ideation-Identifying societal needs-understanding multi-faceted issues-community engagement and empathetic design- technological innovation meeting societal needs; Understanding and Bridging the divide using Human Centered Design (HCD); Designing for inclusivity in product development-embracing user diversity - Long term impact - sustainability encompassing environmental, economic and social dimensions; Technology Readiness Level in the Innovation Life-cycle; Performing a self-check on innovative	Hours 6					

	ideas - Originality of idea- understanding innovation landscape -	
	patentability - understanding the economic landscape - Unique Selling	
	Proposition (USP) - Repeatability and Manufacturability - Sustainability -	
	Leveraging business models for comprehensive analysis	
	Empathize: Design thinking phases; Role of empathy in design thinking;	
	Methods of empathize phase - Ask 5 Why/ 5 W+H questions; Empathy	
	maps - Things to be done prior to empathy mapping - Activities during and	
	after the session; Understanding empathy tools - Customer Journey Map -	
2	Personas.	6
	Define : Methods of Define Phase: Storytelling, Critical items diagrams,	
	Define success.	
	Ideation: Stages of ideation; Techniques and tools - Divergent thinking	
	tools - Convergent thinking tools - Idea capturing tools; Cross-industry	
	inspiration; Role of research in ideation - Market research - consumer	
	research - leveraging research for informed ideation; Technological trends -	
	navigating the technological landscape - Integrating emerging technologies;	
3	Feasibility studies - technical, economic, market, operational, legal, and	6
	ethical feasibility; Ideation session- techniques and tips.	
	Proof of Concept (PoC): Setting objectives; Risk assessment; Technology	
	scouting; Document and process management; Change management;	
	Knowledge Capture; Validating PoC; Story telling in PoC presentation	
	Design: Navigating from PoC to detailed design; Developing Specification	
	Requirement Document (SRD)/Software Requirement Specification (SRS);	
	Design for manufacturability; Industrial standards and readability of code;	
	Design to cost; Pre-compliance; Optimized code; Design Failure Mode and	
	Effects Analysis (DFMEA); Forecasting future design changes.	
	Effects Analysis (ETIMEA), Tolecusung lutture design changes.	
	Prototyping: Alpha prototypes; Beta prototypes; Transition from design to	
4	prototype; Goals and expectations for Alpha and Beta prototypes; Effective	6
	strategies for maintaining timeline in prototyping; Testing and refining	
	Alpha prototypes; Transitioning to Beta prototypes.	
	Pilot build: Definition and purpose of a pilot build; setting objectives;	
	Identification and selection of manufacturing partner for pilot build; Testing	
	procedures in pilot build; Scaling from pilot build to full-scale production /	
	implementation.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignments	Internal Examination	Reflective Journal and Portfolio	Total
5	20	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Empathize to capture the user needs and define the objectives with due consideration of various aspects including inclusivity, diversity and equity	K5
CO2	Ideate using divergent and convergent thinking to arrive at innovative ideas keeping in mind the sustainability, inclusivity, diversity and equity aspects.	К6
CO3	Engage in Human Centric Design of innovative products meeting the specifications	K5
CO4	Develop Proof of Concepts (PoC), prototypes & pilot build of products and test their performance with respect to the Specification Requirement Document.	K4
CO5	Reflect on professional and personal growth through the learnings in the course, identifying areas for further development	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2		2	3	3	3	2	2		3
CO2	3	2	3		2	3	3	3	2	2		3
CO3	3	2	3		2	3	3	2	2	2		3
CO4	3	2	2		3	3	3	2	2	2		3
CO5	3					3	3	2	2	2		3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl.	Title of the Book	Name of the	Name of the	Edition			
No	Title of the book	Author/s	Publisher	and Year			
1	Product Sense: Engineering your ideas into reality	Dr. K R Suresh Nair	NotionPress.com	2024			
2	Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation	Tim Brown	HarperCollins Publishers Ltd.	2009			
3	Design Thinking for Strategic Innovation	Idris Mootee	John Wiley & Sons Inc.	2013			

Sample Assignments:

- 1. Evaluate and prepare a report on how the aspects including inclusivity, diversity and equity are taken into consideration during the empathize and define phases of the Miniproject course.
- 2. Evaluate and prepare a report on how the aspects including sustainability, inclusivity, diversity and equity are taken into consideration during the ideate phase of the Miniproject course.
- 3. Evaluate and prepare a report on how User-Centric Design (UCD) is used in the design and development of PoC of the product being developed in the Miniproject course.
- 4. Prepare a plan for the prototype building of the product being developed in the Miniproject course.
- 5. Report on the activities during the empathize phase including the maps & other materials created during the sessions.
- 6. Report on the activities during the define phase including the maps & other materials created during the sessions.
- 7. Report of all the ideas created during the ideation phase of the Miniproject course through the tools including SCAMPER technique, SWOT analysis, Decision matrix analysis, six thinking hats exercise
- 8. Prepare a full scale production plan for the product being developed in the Miniproject course.
- 9. Create a Stanford Business Model Canvas related to the Miniproject.

An industrial visit of at least a day for experiential learning and submit a report on the learnings, for example industry standards and procedures.

SEMESTER S6 TRANSDUCERS AND MEASUREMENTS

Course Code	OEAET611	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	NIL	Course Type	Theory

Course Objectives:

- 1. To familiarize the basics of Instrumentation system and its quality parameters.
- 2. To understand and apply the concepts of various transducers and other measuring instruments.

Module No.	Syllabus Description	Contact Hours
	Basics of Measurement- Generalized block diagram of Instrumentation	
	system, Standards, Calibration of meters, Static and Dynamic characteristics	
	of transducers, Errors in measurements and its analysis.	
1	Measurement of resistance, capacitance and inductance: DC and AC bridges,	9
	Sources and detectors- Balance Equation, Wheatstone Bridge, Maxwell's	
	inductance bridge and Schering bridge	
	Transducers - Classification of transducers, Factors influencing choice of	
	transducer. Passive transducers: Principle of operation, Construction details,	
	characteristics, types and applications of Resistance transducers:	
2	Potentiometer, Strain gauge, RTD, Thermistor. Inductive Transducer:	9
	LVDT. Capacitive transducers: Variable air gap-Variable Area-Variable	
	permittivity.	
	Active transducers- Principle of operation, Construction details,	
	Characteristics, types and applications of Thermocouple, Piezo electric	
3	transducer, Hall effect transducer, Photovoltaic Cell.	9
3	Opto-electric Transducers- Photodiode, Phototransistor, LDR	7
	Accelerometers: Piezoelectric, potentiometric, LVDT accelerometer.	

	Non-Contact type transducers- Infrared-Ultrasonic proximity sensors,	
	Optical level sensor-Ultrasonic level sensor, Radiation pyrometer.	
4	Measuring, Display, Analysing and Recording Instruments- Working and Torque equations of PMMC, PMMI, Electrodynamometer. Digital Storage oscilloscope, LCD displays, Spectrum Analyzer, Peak response voltmeter, True RMS meter, Strip chart recorder, XY Plotter.	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A		Part B	Total
•	2 Questions from each	•	Each question carries 9 marks.	
	module.	•	Two questions will be given from each module, out	
•	Total of 8 Questions, each	of which 1 question should be answered.		
	carrying 3 marks	• Each question can have a maximum of 3 sub		60
			divisions.	
	(8x3 = 24marks)		(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Illustrate the basic concepts and performance characteristics involved in a measurement system.	K2
CO2	Explain the principle and working of various transducers, measuring, display, analysing & recording instruments	K2
CO3	Identify the bridge circuits that can be used for measuring unknown values of passive devices.	К3
CO4	Select different transducers according to the required field of application.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	3											3
CO3	3	3			3							3
CO4	3	3			3	3	3		3			3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Electronic Instrumentation and Measurements	David A Bell	Oxford	3 rd Edition, 2017			
2	Sensors and Transducers	D. Patranabis	PHI learning Pvt Ltd	2 nd Edition, 2003			
3	Electrical Measurements and Measuring systems	Golding E W and Widdis F C	Wheeler &co	1993			
4	A Course in Electronic Measurements and Instrumentation	A K Shwany	Dhanpath Rai & Co	2015			

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Electronic Instrument Design	Kim R Fowler	Oxford reprint	2015		
2	Principles of measurement system	John Bentley	Pearson	4 th Edition		
3	Electronic Instrumentation and Measurements	Kalsi HS	Mc Graw hill	4 th edition, 2019		
4	Transducers & Instrumentation	D V S Murty	PHI learning Pvt Ltd	2 nd Edition, 2008		
5	Introduction to Transducers	Arun K Ghosh	PHI learning Pvt Ltd	4 th edition, 2014		

Video Links (NPTEL, SWAYAM)				
	Link ID			
NPTEL VIDEO: Sensors & Actuators	https://archive.nptel.ac.in/courses/108/108/108108147/			

SEMESTER S6

BIOMEDICAL ENGINEERING

Course Code	OEAET612	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	NIL	Course Type	Theory

Course Objectives:

- 1. To familiarize biomedical engineering and its applications.
- **2.** To understand the physiology of major systems of the body for designing biomedical devices.
- **3.** To impart knowledge about various biomedical devices.

Module No.	Syllabus Description	Contact Hours
1	Introduction to biomedical instrumentation system, overview of physiological systems - heart, lungs and muscles. Sources of bioelectric potential - Resting and action potential, propagation of action potentials. Bioelectric potentials (introduction only) - ECG, EEG, EMG, ERG, EOG and EGG. Electrode theory - Nernst relation. Bio potential electrodes - microelectrodes, skin surface electrodes and needle electrodes.	9
2	Overview of electro conduction system of the heart. Electrocardiography - ECG lead configurations, ECG recording system, Einthoven triangle, analysis of ECG signals. Measurement of blood pressure - Direct, indirect and relative methods, auscullatory method, oscillometric and ultrasonic non-invasive pressure measurement. Measurement of blood flow - Electromagnetic and ultrasonic blood flow meters.	9

3	Overview of the human nervous system, action potential of brain, brain waves, types of electrodes, placement of electrodes, evoked potential, EEG recording and analysis of EEG. Electromyography - Nerve conduction velocity, instrumentation system for EMG measurement. Overview of the physiology of respiratory system, Respiratory parameters, spirometer, body plethysmographs, gas exchange and distribution.	9
4	Therapeutic Equipments (Principle, block schematic diagram, working and applications) - Pacemakers, cardiac defibrillators, heart–lung machine, dialyzers, surgical diathermy equipment and ventilators. Medical Imaging systems (Basic Principle only) - X-ray imaging, properties and production of X-rays, computed tomography, Magnetic resonance imaging system and nuclear medicine system. Ultrasonic imaging system - introduction and basic principle. Colour doppler systems.	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out of	
• Total of 8 Questions, each	which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the need and applications of biomedical instrumentation	K2
CO2	Understand the physiology of major systems of the body for designing biomedical devices.	К3
CO3	Illustrate the principle of patient monitoring and therapeutic systems	K2
CO4	Explain the principle of medical imaging techniques	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		3	2	3	3		3				3
CO2	3		3	2		3		3				3
CO3	3		3	2	3	3		3				3
CO4	3		3	2	3	3		3				3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Handbook of Biomedical Instrumentation	Khandpur R.S	McGraw-Hill	3 rd Edition, 2014				
2	Medical Instrumentation: Application and Design	John G. Webster, Amit J. Nimunkar	WILEY	5 th Edition, 2020				
3	Biomedical Instrumentation And Measurements	Leslie Cromwell, Fred J. Weibell, Erich A. Pfeiffer	Pearson Education India	2 nd Edition, 2015				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Introduction to Biomedical Instrumentation: The technology of the patient care	Barbara L. Christe	Cambridge University Press	2 nd Edition, 2017				
2	Introduction to Biomedical equipment Technology	Joseph J.carr and John M. Brown	Wiley and Sons	4 th Edition, 2000				
3	Principle of Biomedical Instrumentation and Measurement	Richard Aston	Merrill Education/Prentice Hall.	1 st Edition, 1990				

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/108/105/108105101/				
2	https://archive.nptel.ac.in/courses/108/105/108105101/ https://archive.nptel.ac.in/courses/102/105/102105090/				
3	https://archive.nptel.ac.in/courses/108/105/108105101/ https://archive.nptel.ac.in/courses/102/105/102105090/				
4	https://archive.nptel.ac.in/courses/102/105/102105090/				

SEMESTER S6

MICROCONTROLLERS

Course Code	OEAET613	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	-	Course Type	Theory

Course Objectives:

- 1. To learn Microcontroller architecture and its programming
- 2. To learn Embedded system design to develop a product.

Module No.	Syllabus Description	Contact Hours
1	Microcontroller Architecture – General internal architecture, Address bus, Data bus, control bus. The 8051 Microcontroller - Features of 8051 microcontroller, Block diagram of 8051- program status word (PSW), accumulator, program counter. Memory organization – RAM & ROM, register banks and stack, Special Function Registers (SFRs), I/O port organization, Interrupts.	9
2	Instruction Set of 8051 and Addressing modes - Classification of instruction set - Data transfer group, arithmetic group, logical group, branching group. Addressing modes - Types. Accessing the data from internal and external memory.	8
3	Programming 8051 Using Assembly Language - Introduction to 8051 assembly language programming. Data types and directives, Concept of subroutine. Software delay programming. Programming 8051 Using Embedded C Language - Introduction to embedded C – advantages.	9
4	Timer / Counter in 8051 - Timer registers - Timer0, Timer1. Configuration of timer registers. Timer mode programming. Counter mode. Serial Communication in 8051 - Serial communication - modes and protocols, RS-232 pin configuration and connection. Serial port programming - transmitting and receiving. Programming the interrupts - Use external, timer and serial port interrupts. Interrupt priority settings.	10

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
•	2 Questions from each	• Each question carries 9 marks.	
	module.	• Two questions will be given from each module, out	
•	Total of 8 Questions, each	of which 1 question should be answered.	
	carrying 3 marks	• Each question can have a maximum of 3 sub	60
		divisions.	
	(8x3 = 24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Outline the architecture of a Microcontroller	K2
CO2	Develop Microcontroller programs	К5
CO3	Design various interfaces to Microcontroller	К5
CO4	Design and implement an Embedded System	K6

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3	3	3	2	3			2				2
CO3	3	3	3	3	3			2				2
CO4	3	3	3	3	3	3	3	3	3	3	3	3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
	The 8051 Microcontroller and	Muhammad Ali Mazidi		Second,			
1	Embedded Systems Using	Janice Gillispie Mazidi	Printice Hall -Inc	2007			
	Assembly and C	Rolin D. McKinlay		2007			
	The 8051 Microcontroller	Kenneth J Ayala					
2	Architecture, Programming and	Dhananjay V Gadre	Cengage Learning	2010			
	Applications						

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	8051 hardware Description	Datasheet	Intel Corporation	1992				
2	Microprocessors and Microcontrollers	Lyla B. Das	Pearson Education	2011				

Video Links (NPTEL, SWAYAM)				
	Link ID			
NPTEL course I	Microprocessors and Microcontrollers - https://nptel.ac.in/courses/106108100			
NPTEL course II	Microcontrollers and Applications - https://nptel.ac.in/courses/117104072			

SEMESTER S6 POWER ELECTRONICS LAB

Course Code	PCAEL607	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCAET503 Power Electronics	Course Type	Lab

Course Objectives:

1. To design and implement various power electronic circuits

Expt. No.	Experiments						
	Part A – Bread board/PCB (Minimum of 6 Experiments)						
1	Power BJT drive circuits						
2	Power MOSFET drive circuits						
3	Snubber circuits						
4	Three phase diode bridge rectifier						
5	Single phase Controlled rectifiers with R and RL loads						
6	Realization of basic Buck, Boost and Buck-Boost converters						
7	Application of PWM IC TL 494						
8	DC to AC inverter using MOSFET & IC						
9	Realization of simple SMPS						
Part B –	Should be done using SPICE/MATLAB/TINA-TI (Minimum of 6 Experiments)						
10	Drive circuits for Power BJT						
11	Drive circuits for Power MOSFET						
12	Snubber circuits – shunt and series						
13	Three phase diode bridge rectifier						
14	Single phase Controlled rectifiers with R and RL loads						
15	Realization of Buck, Boost and Buck-Boost converters						
16	Realization of Isolated Converters - Push-Pull, Half bridge and Full bridge configurations						

18	Realization of simple SMPS
19	DC motor speed control

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Design and demonstrate the functions of Power electronic circuits	К3
CO2	Design and simulate the functioning of power electronic circuits using simulation tools	К3
CO3	Function effectively as an individual and in a team to accomplish the given task	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3					3	3	2		3
CO2	3	3	3		3			3	3	2		3
CO3	2	2	2					3	3	2		3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Power Electronics (An Indian Adaptation): Converters, Applications and Design	Ned Mohan, Tore M. Undeland and William P. Robbins	Wiley	3 rd Edition, 2022							
2	Power Electronics: Devices, Circuits, and Applications	M H Rashid	Pearson Education	4 th Edition, 2017							

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted.