gsel26/11/019-C1)

Name of the student A. Scimiuas. leg No 192211019 computer science engineering. Department or. v. Jaganathan. Cuide Name experimental Analysis of sum & RF Title for used Adentification using keystroke demarnics. 1. Introduction: - Approved paragraph - 1: (ADV. V. Inchwa AMA) * lescalet about: Comparision of suppost vector machine and randomforest for user identification using keywoke dynamics. * Importance! Evaluating classification performance accuracy and feature importance for keyetrobe based authentication. * Applications: Cybersecurity, user authentication, frand prevention. paragraph - 2: * No. of related actides in last 5 years: · Google Schold - 52 asticles. · ScienceDirect - 37 ostides. * most cited-findings!

a killoushy & maxion, IEEE, 2009 - Sum effective for biometric authentication. [Hal-seience - 29]

- b. Teh et al. patteen recognition, 2013 Landomforestprovides better feature delection. [springer - 50]
- high-dimensional keystrokedata [chevier-42]
- Found RF outperforming sum in user authentication tacks. [springer-50]

paragraph-3!

- 4 Unanswered solution: No direct statistical compacision A SUM and RF on keystroke authebication.
- * Dim: Compare classification accuracy and Statistical significance of SVM vs RF for Keystroke depromiss.

In will High

PARIS ALLERAND POR THE

2 Materials and Methods:

paragraph-1:

& Study setting: SSE, SIMATS

* Ethical approval: 10/A (No human samples his ently mobiled).

\$ No. of groups: 2(gum, RF)

- * Sample size | group: 10 each
- * Zotal sample site: 20
- * G-power: 80% (killoushy & makion, 1666, 2009)

paragraph-1:

- * Dataset source: collected from come keystroke dynamics
- Feature catraction: Hold time, flight time, dwell time computed from keystroke events.

pagagraph-3:

- * preprocessing steps!
 - · outlier detetion and removal using 2-scole method
 - · Feature normalization vering trin-Mar Scaling
 - · Splitting data set into 80% training and 20% testing sets.

paragraph 4:

& Testing Setup;

- · feature Extraction: python & Schit-leaen.
- · Model training: sum us Romdom Forest.
- · Evaluation metrici : Accuracy, precision, lecall / FI-Stole, Loc-AUC cueve.

paragraph-5:

· Data Collection method: Accuracy values recorded from multiple test runs and averaged for reliability. paragraph - 6:11

- * Statistical softwale: spss
- * Independent variables: modeltupe (sum vs RA)
- * rependent-variables: classification accuracy.
- * Analysis: Andependent sample 6-test, Descriptive statistics, Graphical representation (confusion matrix, Bachaet).

3. lesuits and Discussion!

paragraph-11:

& summary of results: et has higher mean accuracy than sum.

paragraph-21

- * secriptive table: Sum (88.14%) RF (93.38%).
- * killouetry & Marion, 1666, 2009 similar results observed in keystroke authentication.
- * Teh et al. pattern recognition, 2013- Found RF reducing
- John positives in biometrics.

 A conseneus:
 Random Forest performs significantly better.

pocagraph-3:

- · Statistically significance (Independent-sample t-ten
 - p20.05, Indicating significant difference
 - · pp significantly outperforms sum in keystroke classification.

paragraph-4:

- * Graphical Representation of Results:
 - · confusion mertrex for both models to visualize misclassifications.
 - · Barchaet comparing accuracy score of sum of RF.
 - · ROC-AUC Cueve to show performance of both classifiers.

paragraph-t:

* himitations!

- · small dataset, which may limit generale zation.
- · landomforest might overfit, requiring turing.
- Keystroke timing voeiables due to user behaviour differences

paragraph-6:

* fature scopes

- · Expand dataset to test voluntness.
- · Experiment with Leep learning models like CNN-LSTM.
- · Amprove real-time keystroke authentication veing ensemble models.

4. conducion:

Significantly outperforms SUM en user Adentification veing keystroke dynamics (pco.05).

Title1:

T-Test

Group Statistics

	GROUP	N	Mean	Std. Deviation	Std. Error Mean
ACCURACY	SVM	10	88.7430	.65296	.20648
	RF	10	93.3870	.47237	.14938

Independent Samples Test

Levene's Test for Equality of Variances

Hest for Equality of Means

						Significance		Mean	Std. Error	95% Confidence Interval of the . Difference	
		F	Sig	t	df	One-Sided p	Two-Sided p	Difference	Difference	Lower	Upper
ACCURACY	Equal variances assumed	1.342	.262	-18.222	18	< 001	<.001	-4.54400	.25485	-5.17942	-4.10858
	Equal variances not assumed			-18.222	16.395	<.001	<.001	-4.64400	.25485	-5.18320	-4.10480

