

Group 5 Team Batak (TB)

Table of Contents

Meet the Team

SageMaker Deployment Options

- ☐ Real-Time Inference Endpoint
- □ Batch Transform

Amazon SageMaker Cookbook

- \square Chapter 1
- ☐ Chapter 2
- ☐ Chapter 3

Summary

Meet the Team

Edward Vincent "VINCE" Duero

Fave Childhood Series: Naruto Fave Series Now: Silicon Valley

Rosiel Jazmine "ROSE" Villareal

Fave Childhood Series: Avatar - The Last Airbender Fave Series Now: The Good Place

Jericho Carlo "ECHO" Agudo

Fave Childhood Series: Detective Conan

Fave Series Now: Bridgerton

SageMaker Deployment Options

Real-time Inference Endpoint
Batch Transform

Real-Time Inference Endpoint

Use SageMaker Real-Time Inference

- For inference workloads when you have real-time, interactive, low latency requirements
- For providing a persistent, real-time endpoint

 When you want to call an endpoint that accepts data input and outputs a model prediction in real-time, i.e., it gives you a response anytime you want

SageMaker Real-time Inference Hosting Options

Single model

Multiple models in one container behind one endpoint

Multiple models for serial inference pipeline behind one endpoint

Multiple models w/c use different containers behind one endpoint

SageMaker Real-time Inference Features

Auto Scale Models

Host Storage Volumes (EBS)

Test Model **Versions** using Production Variants

Note: Specify traffic distribution or variants

Monitor Drifts in Data, Model, Bias, Feature Attribution

Note: Currently supports only tabular data, single model endpoint

SageMaker Real-time Inference Use Cases

Batch Transform

Input Data

Output Predictions

Use Batch Transform

- For getting inferences for large datasets
- For preprocessing datasets to remove noise or bias
- For running inference when a persistent endpoint is not needed
- For associating input records with inferences to assist results interpretation

- For getting predictions for datasets in bulk or batches instead of streams
- For preprocessing entire datasets

How SageMaker Batch Transform Works

Distributes workload between compute instances

Processes one file per instance or splits a file into mini-batches

Stores **output files** in a specified location, e.g. S3 bucket, with same names as input files + .out file extension

SageMaker Batch Transform Use Cases

NLP Preprocessing

X	blog	eshop	faq	fpage
blog	24	1	0	1
eshop	1	6	1	2
faq	0	1	3	0
fpage	6	2	2	4
listing	3	2	3	1
php	2	0	0	4
spage	1	3	0	3

Real-time Inference

Batch Transform

- Persistent instances stay running until shut down
- Predicts for individual records in real-time

- Instances torn down when job completes
- Predicts for groups of records

Amazon SageMaker Cookbook

Chapter 1 Summary

- gentle introduction in using Amazon SageMaker

What we learned:

- How to perform a basic machine learning project in Amazon SageMaker
 - How to perform a machine learning project the AWS way
- How to deploy an inference endpoint for the trained model and how to invoke the endpoint to retrieve predictions

Chapter 2 Summary

deep dive into how Amazon SageMaker works internally

What we learned:

- How to implement a custom model in Python and R
 - Create train and serve scripts
 - Build docker image from scripts and upload to a repository
 - Use image to create a machine learning model in a project

Chapter 2 Summary

Chapter 3 Summary

 demonstration on the different machine learning libraries and frameworks in Amazon Sagemaker

What we learned:

- How to generate a synthetic dataset
- How to train and deploy a model using the following:
 - TensorFlow and Keras
 - PyTorch
 - scikit-learn

Chapter 3 Summary - Synthetic dataset

```
def formula(x)
   if x >= -2000:
      return x
   else:
      return -x - 4000
```

```
def generate_synthetic_data(n_samples=1000,
    start=-5000, end=5000):
    np.random.seed(42)
    x = np.random.randint(
        low=start,
        high=end,
        size=(n_samples,)).astype(int)
    y = np.vectorize(formula)(x) + \
    np.random.normal(150, 150, n_samples)
    return (x,y)
```


Chapter 3 Summary - Libraries and frameworks

TensorFlow and Keras

Entrypoint:

 can use the environment variables set by SageMaker for the entrypoint script.

Deployment:

 can directly use deploy() function.

Notes:

industry-focused

PyTorch

Entrypoint:

 separate inference script for deployment.

Deployment:

 PyTorchModel needs to be used and initialized.

Notes:

research-oriented

scikit-learn

Entrypoint:

 model_fn() function needs to be defined.

Deployment:

 can directly use deploy() function.

Notes:

 simple and beginner friendly

Summary

SageMaker Deployment Options

V

Real-Time Inference Endpoint

V

Batch Transform

Amazon SageMaker Cookbook

V

Chapter 1

V

Chapter 2

V

Chapter 3

apper_ph