CSE 2315 - Lecture 1.2 September 1, 2020 Luke Sweeney UT Arlington

1 Propositional Logic

Propositional logic is deriving a logical conclusion by combining many propositions and using formal logic to determine the truth of arguments.

An **argument** is a sequence of statements in which the conjunction of the initial statements (called the premises/hypotheses) is said to imply the final statement (the conclusion). An argument can be represented symbolically as

$$(P_1 \wedge P_2 \wedge P_3 \wedge \cdots \wedge P_n) \rightarrow Q$$

A valid argument is when the truth of the hypotheses leads to the truth of the conclusion.

A argument is valid if whenever the hypotheses are all true, the conclusion must also be true. In other words, $(P_1 \wedge P_2 \wedge \cdots \wedge P_n) \rightarrow Q$ is a tautology.

How to Arrive at a Valid Argument

a **proof sequence** is a sequence of wffs in which each wff is either a hypothesis or the result of applying one of the formal system's derivation rules to earlier wffs in the sequence.

2 Rules for Propositional Logic

- Equivalence Rules
 - Allow individual wffs to be rewritten
 - Truth preserving rules
- Inference Rules
 - Allow new wff to be derived
 - Work only in one direction

Equivalence Rules

Expression	Equivalent To	Abbreviation for Rule
$R \vee S$	$S \vee R$	Commutative -
$R \wedge S$	$S \wedge R$	comm
$R \lor S) \lor Q$	$R \vee (S \vee Q)$	Associative -
$(R \wedge S) \wedge Q$	$R \wedge (S \wedge Q)$	ass
$(R \vee S)'$	$R' \wedge S'$	De Morgan's Laws -
$(R \wedge S)'$	$R' \vee S'$	De Morgan
$R \to S$	$R' \vee S$	Implication - imp
R	(R')'	Double negation - dn
$P \leftrightarrow Q$	$(P \to Q) \land (Q \to P)$	Equivalence - equ

Inference Rules

From	Can Derive	Abbreviation for Rule
$R, R \to S$	S	Modus ponens - mp
$R \to S, S'$	R'	Modus tollens - mt
R, S	$R \wedge S$	Conjunction - con
$R \wedge S$	R, S	Simplification - sim
R	$R \vee S$	Addition - add

From	Can Derive	Name / Abbreviation
$P \rightarrow Q, Q \rightarrow R$	$P \rightarrow R$	Hypothetical syllogism- hs
PVQ,P'	Q	Disjunctive syllogism- ds
$P \rightarrow Q$	$Q' \rightarrow P'$	Contraposition- cont
$Q' \rightarrow P'$	$P \rightarrow Q$	Contraposition- cont
P	ΡΛΡ	Self-reference - self
PVP	P	Self-reference - self
$(P \land Q) \to R$	$P \rightarrow (Q \rightarrow R)$	Exportation - exp
P, P'	Q	Inconsistency - inc
PΛ(QVR)	$(P \Lambda Q) V (P \Lambda R)$	Distributive - dist
$PV(Q\Lambda R)$	$(P V Q) \Lambda (P V R)$	Distributive - dist

Examples

• Simplify $(A' \vee B') \vee C$

1. $(A' \vee B') \vee C$

hyp

2. $(A \wedge B)' \vee C$

1, De Morgan

3. $(A \wedge B) \rightarrow C$

2, imp

To prove an argument of the form

$$P_1 \wedge P_2 \wedge \cdots \wedge P_n \to R \to Q$$

The deduction method allows for the use of R as an additional hypothesis and thus prove

$$P_1 \wedge P_2 \wedge \cdots \wedge P_n \wedge R \to Q$$

Example

Prove $(A \to B) \land (B \to C) \to (A \to C)$. We can use the deduction method to rewrite in the form $(A \to B) \land (B \to C) \land A \to C$

1. $A \rightarrow B$

hyp

 $2. B \rightarrow C$

hyp

3. *A*

hyp

4. B

1, 3, mp

5. C

2, 4, mp