

Table of Contents

第一章	样本统计量	3
1.1	描述统计量	3
1.2	读取数据	4
1.3	数据行业和地区分布	6
1.4	数值型变量	8
1.5	分类变量	10
1.6	样本相关系数	12
1.7	分布特征	14
第二章	专题: 贸易相关度量	15
2.1	产业内分工	15
2.2	垂直专业化	18
2.3	出口多样化	18
2.4	产品复杂度	19
2.5	显性竞争优势	19

探索性数据分析 (Exploratory data analysis, EDA) 是在进行推断性统计建模之前,对数据的分布、变量之间的关系、观测之间的聚集等特性用汇总统计、作图等方法进行探索。

本部分主要包含两部分内容,一是常用的统计描述分析,如集中趋势的度量、离散程度的度量、分布形状的度量等;另一部分内容是结合经济学研究中常见的指标的计算方法,给出计算过程,并将结果以图形的方式展示出来,如直方图、散点图、箱线图等。

本章涉及到的数据集有: - World Bank Enterprise Surveys数据; - 中国家庭健康营养调查数据 - 中国家庭跟踪调查数据 (CFPS)等为例 - BACI双边贸易流数据;

首先还是载入必要的库:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%run pyfiles/set_chinese_font.py
```

第一章 样本统计量

1.1 描述统计量

给定观测值, $\{x_1,\cdots,x_n\}$,常用的描述统计量有:

• 样本均值定义为:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• 样本方差定义为:

$$Var(x) = \frac{1}{n-1}\sum_{i=1}^n (x_i-\bar{x})^2$$

• 样本标准差定义为:

$$s_x = \sqrt{Var(x)}$$

• 样本协方差定义为:

$$S_{xy} = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})$$

• 样本相关系数

$$r = \frac{cov(x,y)}{\sigma_x \sigma_y} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^n (y_i - \bar{y})^2}}$$

• 变异系数

标准差与平均数的比值称为变异系数(Cefficient of variation)

$$CV = \frac{s_x}{\bar{x}}$$

• 偏度系数具有 n 个值的样本的样本偏度为:

$$g_1 = \frac{m_3}{{m_2}^{3/2}} = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^3}{\left(\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2\right)^{3/2}}$$

• 样本峰度系数对于具有 n 个值的样本的样本峰度为:

$$g_2 = \frac{m_4}{m_2^2} - 3 = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^4}{\left(\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2\right)^2} - 3$$

1.2 读取数据

这里使用世界银行中国企业调查(2024)数据,阐释实际应用中如何进行进行统计描述。原数据为 Stata 格式的数据,可以使用 Pandas 中pd.read_stata()函数读取:

data.shape

data.head()

(2189, 340)

数据集中大量使用了值标签的方式,这里 convert_categoricals = True 将数据保留为分类变量,而非底层数值。

1.2 读取数据 5

可以看到原数据包含 2189 个观察值和 340 个变量。原数据集变量数量太多为便于展示,我们仅保留其中一些。各变量的准确定义请参见世界银行网站上的DATA DESCRIPTION:

	id	industry	size	region	status
idstd					
1509768	27	Electronics	Large	Central	Shareholding company with non-trade
1509769	32	Other Services	Small	North	Shareholding company with non-trade
1509770	40	Other Services	Small	East	Shareholding company with non-trade
1509771	59	Electrical & Computer Products	Small	Central	Shareholding company with non-trade
1509772	66	Garments	Medium	East	Shareholding company with non-trade

将数值变量转换为数值:

errors= "coerce")

1.3 数据行业和地区分布

可以看一下在不同行业样本的分布情况,用 df.groupby 分组结合 count() 方法统计企业数量:

```
fig, ax = plt.subplots(figsize = (8, 6))
df.groupby(by='industry',observed=False)["id"].count().plot(kind='bar', ax=ax)
ax.set_ylabel("Frequency")
plt.show()
```


或者计算样本不同地区的分布比例,然后绘制饼状图:

```
import seaborn as sns
fig, ax = plt.subplots(figsize=(8, 8))
df.groupby(by="region", observed=False)["id"].count().plot(
   kind='pie',
   autopct='%1.1f%%',
   startangle=90,
   pctdistance=0.75,
   wedgeprops={'edgecolor': 'black', 'linewidth': 1},
   colormap='tab10',
```

```
ax=ax
)
ax.set_ylabel("")
plt.show()
```


1.4 数值型变量

一种获取基本的统计描述的方法是应用 df.describe() 函数,报告数值型变量的非空观测值个数、均值、标准差等。这里使用了 df.select_dtype()来选择数值型变量:

```
pd.options.display.float_format = '{:.2f}'.format
df.select_dtypes(np.number).describe()
```

1.4 数值型变量 9

	id	year_began	employees_began	electricity_per_month(kWh)	total_annual_sales	sa
count	2189.00	2173.00	1935.00	1905.00	1965.00	17
mean	13253.99	2010.26	133.90	1516420.16	240367444.53	22
std	10903.50	10.70	2294.53	19855007.62	1492907619.98	15
min	27.00	1911.00	1.00	1.00	0.00	0.
25%	5540.00	2004.00	6.00	2000.00	3000000.00	30
50%	10037.00	2012.00	15.00	16000.00	15000000.00	15
75%	16092.00	2018.00	50.00	120000.00	78000000.00	80
max	41570.00	2024.00	100400.00	780000000.00	37100000000.00	51

当然,可以利用相应的统计量函数结合 df.agg() 函数进行计算,如 count, min, max 等,也可以自定义函数。如下面等极差 data_range、分位数差 IQR,变异系数 CV:

```
def data_range(x):
 return x.max() - x.min()
def IQR(x):
 return x.quantile(0.75) - x.quantile(0.25)
def CV(x):
 return x.std()/x.mean()
methods = ['count', 'min', 'max',
          'mean', 'median',
          'std',
          data_range,
          IQR,
          CV,
          'skew',
          'kurt']
results = df.select_dtypes(np.number).agg(methods )
results
```

	id	year_began	employees_began	electricity_per_month(kWh)	total_
count	2189.00	2173.00	1935.00	1905.00	1965.0
min	27.00	1911.00	1.00	1.00	0.00
max	41570.00	2024.00	100400.00	780000000.00	371000
mean	13253.99	2010.26	133.90	1516420.16	240367
median	10037.00	2012.00	15.00	16000.00	150000
std	10903.50	10.70	2294.53	19855007.62	149290
data_range	41543.00	113.00	100399.00	779999999.00	371000
IQR	10552.00	14.00	44.00	118000.00	750000
CV	0.82	0.01	17.14	13.09	6.21
skew	1.20	-2.28	43.20	32.81	15.13
kurt	0.38	11.57	1888.20	1249.86	282.80

1.5 分类变量

数据中的分类变量可以用.unique()方法查看分类变量的类别取值:

```
print(df['size'].unique())
```

```
['Large', 'Small', 'Medium', 'Extra Large']
Categories (4, object): ['Small' < 'Medium' < 'Large' < 'Extra Large']</pre>
```

df.value_counts() 统计每个唯一值出现的次数:

df['size'].value_counts()

size
Small 891
Medium 532
Large 384
Extra Large 382

Name: count, dtype: int64

如果加上 normalize=True 参数则能直接显示每个类别的比例,这对于饼

1.5 分类变量 11

图等可视化非常有用。下面的例子,使用"企业面临的最大障碍"变量进行说明。

在问卷的回复中有"不适用(Does not apply)"、"不知道(Don't know (spontaneous))",这两种情况设为缺失值。除此之外,有 15 种情况:

```
values= {"Does not apply":np.nan, "Don't know (spontaneous)":np.nan}
df['biggest_obstacle'] = df['biggest_obstacle'].replace(values).astype("category")
```

C:\Users\admin\AppData\Local\Temp\ipykernel_21004\2765214923.py:2: FutureWarning: The behavior of ['biggest_obstacle'] = df['biggest_obstacle'].replace(values).astype("category")

我们希望绘制一幅饼状图,表示在回复该问题的企业中占比例最高的障碍有哪些。但种类较多会使图形杂乱,最好将其他占比较小的值定义为"其他",然后绘制图形:

```
fig, ax = plt.subplots(figsize=(8, 8))
value_counts = df['biggest_obstacle'].value_counts(
                normalize=True, ascending=False)
top_n = 7
other_proportion = value_counts.iloc[top_n:].sum()
df_concat = pd.concat(
  [value_counts.head(top_n), pd.Series({'Other': other_proportion})]
  )
df_concat.plot(
   kind = "pie",
    autopct='%1.1f%%',
    startangle=90,
    pctdistance=0.75,
    wedgeprops={'edgecolor': 'black', 'linewidth': 1},
    colormap='tab10',
    ax=ax
  )
ax.set_title("Sampling Size(%)", fontsize=16)
ax.set_ylabel("")
plt.show()
```


1.6 样本相关系数

数据集中的数值型变量,可以使用 df.corr() 函数计算 Pearson 或 Spearman 相关系数。数据中的分类变量,也有不同情况,有的可以转换成二值变量,如 website,有的是无序分类变量如 industry,region。还有有序分类变量,如 size。因此:

- 把二值变量转换为 0/1 变量;
- 把有序变量转换为 1/2/3 等;
- 整合数据, 计算相关系数。

```
binary_var = ['female_manager','website','R&D']
order_var = ['size']
others = ['id', 'industry', 'region', 'status', 'biggest_obstacle']
#
binary_map = {'Yes': 1, 'No': 0}
df_num = pd.DataFrame()
for var in binary_var:
```

```
df_num[var] = df[var].map(binary_map)
size_mapping = {'Small': 1, 'Medium': 2, 'Large': 3, 'Extra Large': 4}
df_num['size_num'] = df['size'].map(size_mapping)
for var in num_vars:
    df_num[var] = df[var]
```

这样就可以使用 df.corr() 函数计算相关系数了,这里将相关系数用 Seaborn 库等 heatmap() 函数绘制一幅热图:

1.7 分布特征

样本峰度、偏度

QQplot

第二章 专题: 贸易相关度量

BACI 提供了 200 个国家/地区的双边贸易流数据,涵盖产品层面(5000 种产品)。这些产品与"协调制度"命名法(6 位代码)相对应。这里使用了HS12 版本的数据。

文件中包含的变量:

- t: year
- i: ISO numeric code of the exporting country
- j: ISO numeric code of the importing country
- k: HS product code
- v: value of trade flow in thousands of USD
- q: weight of trade flow in metric tons

2.1 产业内分工

对于许多国家而言,国际贸易的很大一部分发生在同一产业内,即使采用高水平的统计分解仍是如此。一个广泛被用来度量产业内贸易重要性的指标是 Grubel - Lioyd 指数:

$$GL_{k}^{ij} = 1 - \frac{|X_{k}^{ij} - M_{k}^{ij}|}{X_{k}^{ij} + M_{k}^{ij}}$$

其中, X_k^{ij} 表示 i 国出口到 j 国的商品(或部门)的数额;

• GL 指数介于 0 到 1。如果一个国家的某产业只有进口或只有出口,指数将为 0,没有产业内贸易。

- 取值随加总水平上升而上升; 建议使用 SITC 3 位数上应用。
- 对一个国家层面

$$GL^{ij} = 1 - \frac{\sum |X_k^{ij} - M_k^{ij}|}{\sum (X_k^{ij} + M_k^{ij})}$$

下面的代码利用贸易流数据构造进口变量;将 HS 6 代码与 SITC 代码匹配,并转换为 3 位数产业;在 3 位数产业上分组、求和;按公式计算 GL_k^{ij} 和 GL^{ij} 。### 相似性指数

通常情况下,经济规模相似的国家(如国内生产总值)会有更多的产业内贸易。helpman1987imperfect 提出一个相似性指数:

$$SI^{ij} = 1 - \left(\frac{GDP^i}{GDP^i + GDP^j}\right)^2 - \left(\frac{GDP^j}{GDP^i + GDP^j}\right)^2$$

如果是一组国家 A,令 s^{jA} 表示国家 j 在 A 组国家中 GDP 所占比重:

$$1 - \sum_{j \in A} (s^{jA})^2$$

贸易重叠指数,

$$TO = 2 \times \frac{\sum_{k=1}^{K} min(X_k, M_k)}{\sum_{k=1}^{K} (X_k + M_k)}$$

2.1 产业内分工 17

	Country	NY.GDP.MKTP.KD	SI
economy			
USA	United States	21443388432051.00	0.49
CHN	China	16706875253648.50	0.50
JPN	Japan	4534320578755.85	0.34
DEU	Germany	3702230996915.75	0.30
GBR	United Kingdom	3223545410805.62	0.27
		•••	
KIR	Kiribati	254185355.45	0.00
MHL	Marshall Islands	221100000.00	0.00
PLW	Palau	215413135.65	0.00
NRU	Nauru	99840563.67	0.00
TUV	Tuvalu	45116847.78	0.00

贸易重叠指数:

```
# overlap = ex_im[['i','ex','im']].copy()

# overlap['TO'] = overlap.groupby(['i'])[['ex','im']].apply(lambda x:2 * np.sum(np.min(x[['ex','im']], axis= 1)))

# # 与 GDP 数据合并,保留其中的相似性指数 SI

# overlap.index = overlap.index.map(country_iso_dict)

# df_final = pd.merge(GDP, overlap,

# left_index=True,

# right_index=True)[['Country','SI','TO']].dropna()

# df_final
```

2.2 垂直专业化

hummels2001nature 提出的垂直专业化指数表示了出口货物中中间产品的进口投入值。它可以通过投入产出表来计算:

$$VS_k^i = \left(\frac{\text{imported inputs}^i}{\text{gross output}^i}\right) \times \text{export}_k^i$$

分子表示进口投入,分母表示总产出。第一项表示进口投入在生产总值中的 贡献。这个比率乘以出口值得出出口价值中所包含的进口投入品的量。如果 没有使用进口投入,则垂直专业化值等于零。类似的方法可用于国家层面该 指标的计算,即将各个产业的垂直化专业水平简单相加。

$$VS^i = \sum_k VS^i_k$$

2.3 出口多样化

度量出口多样化的最简单的方法是用 Herfindahl 集中度指数,用各产业在总出口中份额的平分和表示。

$$h^i = \sum_k (s^i)^2$$

其中 s^i 表示部门 k 在国家 i 出口或进口中的份额; h^i 的取值介于 1/K 和 1之间, 其中 K 是进口或出口的产品数目。上面的相似性指数, 实质是 1-H。

也可以对其标准化,使其取值介于 0-1 之间。标准化的 Herfindahl 指数为:

$$nh^i = \frac{h^i - 1/K}{1 - 1/K}$$

def herfindahl(data, standardized=False):

s = data/ data.sum()

h = (s**2).sum()

if standardized is True:

h = (h - 1/len(data))/(1-1/len(data))

return h

2.4 产品复杂度 19

```
# baci = pd.read_csv("../datasets/BACI_HS22_Y2022_V202401b.csv",

# dtype={"k":str})

# data = baci.copy()

# data['SITC'] = data['k'].map(hs_sitc_dict).str[:3]

# data = data.groupby(['i','SITC'], as_index=False)['v'].sum()

# herfindahl_index = data.groupby("i")["v"].apply(herfindahl, standardized = True)

# fig, ax = plt.subplots(figsize=(10,6))

# herfindahl_index.hist(bins=20, ax=ax)

# ax.set_xlabel("Herfindahl Index")

# ax.set_ylabel("Frequency")

# plt.show()
```

2.4 产品复杂度

2.5 显性竞争优势

balassa1965trade 定义的显性竞争优势(Revealed Comparative Advantage, RCA)为:

$$RCA_{cpt} = \frac{E_{cpt}/E_{ct}}{E_{nt}/E_{t}}$$

其中,

- E_{cpt} 是国家 c 在时间 t 出口的产品 p;
- E_{ct} 是国家 c 在时间 t 的总出口;
- E_{nt} 是时间 t 产品 p 的总出口;
- E_t 是时间 t 的世界出口。