

What You Say and How You Say It Matters: Predicting Stock Volatility Using Verbal and Vocal Cues

ACL 2019, Poster, by Yu Qin(info, RUC), Yi Yang*(business, HKUST)

Stock Prediction Task

Contents

Ideas

From CIA to BIA, Integrating Audio Features

Related Works

Empirical Methods

Statistical Modals

Classical Machine Learning

Financial

Deep Learning

Data & Data Process

S&P 500, 2017, 4Q

Model Structure

Multimodal Deep Regression Model(MDRM)

Experiment

Baselines & Training

Whole Model	Multimodal Feature Fusion	Text Feature Extraction	Modalities	
Past Volatility	Simple fusion	TF-IDF bag-of- words + SVR / RBF	Text-only	
	bc-LSTM	Word Embeddings + SVR / RBF	Audio-only	

Baselines

(a) Standard Neural Net (b) After applying dropout. Dropout ReLU R(z) = max(0, z)ReLU

Experiment

Result & Discussion

		τ =3	τ =7	τ =15	$\tau = 30$
v^{past}			0.826	0.420	0.231
tf-idf bag-of-words			0.498	0.342	0.249
word embeddings		1.667	0.549	0.345	0.275
simple fusion		1.722	0.501	0.307	0.233
bc-LSTM (text+audio) (Poria et al., 2017)			0.436	0.304	0.219
	text only	1.431	0.439	0.309	0.219
Multimodal Deep Regression Model (MDRM)	audio only	1.412	0.440	0.315	0.224
	text+audio	1.371***	0.420***	0.300**	0.217

Table 1: MSE of different models on stock volatility prediction τ -days following the conference call. The * denotes statistical significance compared to MDRM (text only) results under a one-tailed t-test (*** for $p \le 0.001$ and ** for $p \le 0.01$)

- Model is effective
- Both modalities are helpful
- Some individual vocal cues are important
- Short-term volatility prediction is hard due to PEAD(post earnings announcement drift)
- Margin gain is diminishing in long-term

Case Study: AMD Conference Call Q1 2017

Positive Word is not as Credible as it Sounds

Case 1: "Overall, from a performance standpoint, the product and the customer engagements are going as we would expect."

Case 2: "We have more memory bandwidth."

Figure 2: The change of Mean Pitch around specific sentence. Sentence with number 0 is the corresponding Case1 and Case2 sentence described in the paper.

Insights

Explainable Model

Integrate CNN

Baselines

Long/Short-term

Q&A, References

This paper:

https://www.aclweb.org/anthology/P19-1038/

Companies IR & Earnings conference call:

https://www.amd.com/en/press-releases/press-release-2017may01https://edge.media-server.com/mmc/p/adf6jk9mhttps://edge.media-server.com/mmc/p/hcz3or8m

Stock price:

https://finance.yahoo.com/quote/AMD/chart?p=AMD https://finance.yahoo.com/quote/GS/chart?p=GS

Cai Mingshi / i@unoiou.com / 2019/11/12