BCSE 3rd Year 2nd Semester Examination, 2020-21

Database management Systems

Full marks: 70 Time: 3 hours

Instructions

- Arrange the pages in sequence and form a single pdf.
- File name will be last two digits of your class roll followed by your first name. Additionally, for Lateral Entry students file name must start with L and for readmitted students file name must start with R.
- On the top of the first page write your Class Roll Number, Exam Roll Number (if available) and Name.
- Send the answer script at: sksjuexam@gmail.com
- In case of any query please call at 9433526300

CO	1 Understand the fundamental concepts of DBMS and relational model	[15]
1.	a) Discuss on model based constraint in relational model.	2
	b) A tuple is to be deleted from a relation. It is also being referred by an	nother
	relation. How the deletion can be accomplished?	2
	c) Comment on having a derived attribute in a relation.	3
	or	
	a) Discuss on the utility of data dictionary.	2
	b) Comment on the atomicity of an attribute in a relation.	2
	c) Compare full outer join and full outer union.	2
	d) Comment on the commutativeness of projection operation in relation	nal algebra. 1

2. Consider the following relations:

STUDENT (\underline{ROLL} , NAME) , ASSIGNMENT ($\underline{ASSIGN_ID}$, DT_OF_ISSUE), SUBMISSION(\underline{ROLL} , ASSIGN_ID)

STUDENT contains list of all students, ASSIGNMENT contains list of all assignments and SUBMISSION contains data corresponding to the submission of assignments made by the students.

- a) Write down the **relational algebra** expression for the following: i) for each student find the assignment id(s) of the assignment(s) not submitted by him/her.
 - ii) Find the name of the students who have submitted all the assignments. 2+2
- b) Write down the **relational calculus** expression to find out the name of the students who have submitted no assignment.

	c) What is the relation between the two relational calculus expression:				
	$NOT(\exists x)(P(x))$ and $(\exists x)(NOT\ P(x))$. Explain your answer.	2			
CO	2 Represent the database using Entity-Relation Model and design the database	[15]			
3.	a) Consider there exists one to one relationship between two entity types A a	nd B.			
	Discuss how the participation constraint influences the corresponding design	of			
	database.	5.5			
	b) Compare shared subclass and category in EER diagram.	2.5			
	or				
	a) Each user has user-id, name and contact number. Disk is partitioned and e	each			
	partition has partition id and address. User can access number of partition	s and in			
	a partition number of users can work. Draw the ERD. Take care so that or				
	find out last time of access for a partition and the same by a specific user.	Also			
	show the tables corresponding to the ERD.	6			
	b) Explain the design of relations for generalization-specialization scenario				
	disjoint and total specialization.	2			
4.	Consider the following scenario: A teacher can teach multiple subjects. For a	•			
	also there may be number of teachers capable of teaching. In a programme, r	ıumber			
	of subjects may be taught. There may exist common Subjects across the				
	programmes. System must be able to provide information on the expertise of				
	teacher, teachers available for a subject, subjects in a program and also the a				
	allotment of the teacher for a subject in a programme. Draw the ERD and de	sign the			
	database.	7			
CO	3 Understand functional dependency and normalize the database	[15]			
	a) Consider a schema to store the following information related to different p				
٥.	in the university: Project_id (it is unique for each project), Project name, Star				
	End date, Funded By, Fund Amount, Project Investigator information (consisting				
	of, Emp_ID of the coordinator, Name, e-mail id), information for the co-				
	investigators (for each co-investigator information like investigator is kept), and for				
	each staff working in the project keep staff_id, staff name, Date of birth, Date of				
	join and salary.				
	Further assume the following FDs:				
	Project_id→ Project_Name, Start date, End date, Funded by, Fund Amount,	Project			
	Investigator	. J			
	Emp_Id→ Name, e-mail id				
	Staff_id→ staff name, Date of Birth				
	Project_id, staff_id→ Date of join, Salary				
	Normalize the scheme to avoid null value, redundancy and update anomalies	. Show			
	the steps.	8			
	b) How will you define a functional dependency in a set as redundant one?	2			
	c) MVD is a consequence of 1NF – explain.	3			
	d) If $A \rightarrow B$ and $A \rightarrow C$ then show that $A \rightarrow BC$	2			

CO4 Interact with database using SQL, PL/SQL, Trigger	[15]				
6. a) Consider the following tables (no need to create, they exist):					
STUDENT(ROLL, NAME) contains list of all students					
SUBJECT(SUB_CODE, SUB_NAME, FULL_MARKS, PASS_MARKS) contains					
list of all subjects					
RESULT(ROLL, SUB_CODE, SCORE) contains entries provided to	he student				
appeared in the examination for the corresponding subject.	appeared in the examination for the corresponding subject.				
Write down the SQL statement for the following:					
i) For each student show the sub_code in which he/she did	not appear in				
the examination.	3				
ii) Find the name of the subjects in which nobody has failed	d (considering				
only those who have appeared in the exam).	3				
iii) Find the name and total score for those students with total					
than 400. List must appear in the descending order of tot					
b) Consider the tables described in question 6)a). Take the measure					
whenever an entry is made into RESULT table, if the score is less	-				
marks in the corresponding subject then in BACKLOG table an er	<u> </u>				
made to store corresponding roll and sub_code.	5				
CO5 Conceptualize the principles of query optimization, transaction processing,	concurrency				
control, recovery	[10]				
7. a) Compare execution of queries based on binary search tree and B/F	B+tree. 2				
b) Discuss how will you handle SELECT and PROJECT operation to	optimize the				
query.	3				
c) Write a concurrent schedule that will result into deadlock under tw	o phase				
locking protocol. Now evaluate the same schedule under time stamp	based protocol.				
	5				
or					
a) Two large relations are to be joined frequently. It is not possible to sort them on					
join attribute. What will you do to optimize the operation?	2				
b) Consider a DBMS follows steal/no force approach. It has adopted log based					
recovery. To ensure the durability and recovery what has to be done to maintain the					
log information properly?	6				
c) Secondary index provides logical ordering of data – explain.	2				