History

Type	Author	Citation	Literature Cutoff Date		
Full Evaluation	G. Gürdal, E. A. Mccutchan	NDS 136, 1 (2016)	1-Jul-2016		

 $Q(\beta^{-})=-10504\ 15$; $S(n)=13566.5\ 22$; $S(p)=6.11\times10^{3}\ 3$; $Q(\alpha)=-2748\ 3$ S(2n)=23883.1 17, S(2p)=9529.0 25 (2012Wa38).

⁷⁰Se <u>Levels</u>

Cross Reference (XREF) Flags

		A B C D	⁷⁰ Br ε de ⁹ Be(⁷⁰ Se	ecay (79.1 ms) E ${}^{40}\text{Ca}({}^{36}\text{Ar},\alpha 2\text{p}\gamma), {}^{58}\text{Ni}({}^{14}\text{N},\text{pn}\gamma)$ ecay (2.2 s) F ${}^{58}\text{Ni}({}^{14}\text{N},\text{pn}\gamma), {}^{60}\text{Ni}({}^{12}\text{C},2\text{n}\gamma)$ e., ${}^{70}\text{Se}'\gamma)$ G Coulomb excitation							
E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡	XREF	Comments							
0.0	0+	41.1 min <i>3</i>	ABCDEFG	$\%\varepsilon + \%\beta^{+} = 100$ T _{1/2} : from 1974Te04.							
944.52 ^{&} 5	2+	2.23 ps <i>14</i>	BCDEFG	Q=+ (2007Hu03) T _{1/2} : from weighted average of 2.27 ps 26 (2014Ni09) and 2.22 ps 14 (2008Lj01) using recoil distance Doppler shift method. Others: 1.0 ps 2 from recoil distance Doppler shift method (1986He17) and 1.1 ps 3 (1975GuYV). J ^π : from 944.51γ E2 to 0 ⁺ . Q: from nuclear reorientation effect in Coulomb excitation (2007Hu03).							
1599.9 ^a 3	2+	3.3 [#] ps 9	BCDEF	$T_{1/2}$: Other: < 5.2 ps effective half-life from recoil distance Doppler shift method (2014Ni09).							
2010.3 3	(0 ⁺)		EF	J^{π} : from 1600.1 γ E2 to 0 ⁺ . J^{π} : (0 ⁺) from 1065.8 γ Q to 2 ⁺ in 1981Ah03. Authors tentatively assigned (0 ⁺) for this level based on isotropic angular distribution. Other: (0 ⁺) in 1980Wa19, based on the isotropic angular distribution.							
2038.8 5	4+	0.97 ps 7	BCDEF	T _{1/2} : Others: < 3.3 ps, effective half-life from recoil distance Doppler shift method (2014Ni09) and 1.0 ps (1986He17) using recoil distance Doppler shift method deduced from singles data and 2.3 ps <i>6</i> (1975GuYV). J ^π : from 1094.4γ E2 to 2 ⁺ ; assumed E2 cascade member.							
2382.5 ^a 4 2518.6 6	4 ⁺ 3 ⁽⁻⁾	<12 [@] ps <1.7 ps	B DEF CDEF	 J^π: from 782.6γ E2 to 2⁺; 1438.1γ E2 to 2⁺; assumed E2 cascade member. T_{1/2}: upper limit from effective half-life of 1.29 ps 40 from recoil distance Doppler shift method (2014Ni09). Other: 4.2 ps 6 using recoil distance Doppler shift method (1986He17) using singles data. J^π: from 1574.1γ D to 2⁺; 868.8γ from 5⁻. 							
2553.1 <i>10</i> 3003.2 ^{&} 5	6+	1.32 ps <i>21</i>	E B DEF	J^{π} : (4+) proposed in 40 Ca(36 Ar, α 2p γ), 58 Ni(14 N,pn γ). T _{1/2} : other: 2.7 ps 6 from recoil distance Doppler shift method, deduced using							
2120 6 3			.	singles (1986He17). J^{π} : from 964.39 γ E2 to 4 ⁺ ; assumed E2 cascade member.							
3139.6 <i>3</i> 3218.4 ^{<i>a</i>} <i>6</i> 3356.4 <i>11</i>	(6 ⁺)		F D E	J^{π} : from 835.9 γ to 4 ⁺ ; assumed E2 cascade member.							
3387.4 5	5-	6.1 [#] ps 17	DEF	J^{π} : from 528 γ E2 from 7 ⁻ , 1348.6 γ to 4 ⁺ .							
3524.1 <i>6</i> 3644 <i>10</i> 3788.9 <i>6</i>	(5 ⁻)	<9 [@] ps	DEF B DE DEF	J^{π} : from 1005.5γ (E2) to 3 ⁽⁻⁾ ; 1485.2γ (E1) to 4 ⁺ . Other: (4) in 1981Ah03. J^{π} : (6 ⁺) proposed in ⁴⁰ Ca(³⁶ Ar,α2pγ), ⁵⁸ Ni(¹⁴ N,pnγ). J^{π} : J from D+Q 264.8γ to (5 ⁻), π from systematics in 1980Wa19. Other: (5) in 1981Ah03.							
3915.4 ^c 5 4037.6 ^{&} 5	7 ⁻ 8 ⁺	<15 [@] ps <4 [@] ps	B DEF B DEF	J^{π} : from 912.2 γ E1 to 6 ⁺ , 691.5 γ from 8 ⁺ . J^{π} : from 1034.4 γ E2 to 6 ⁺ ; assumed E2 cascade member.							

Adopted Levels, Gammas (continued)

⁷⁰Se Levels (continued)

E(level) [†]	J^{π}	T _{1/2} ‡	XREF	Comments
4187.4 ^a 8	(8 ⁺)		D	J^{π} : from 969.0 γ to (6 ⁺); assumed E2 cascade member.
4324.5 9			E	
4410.7 6	0+		DE	17 (0 ot) 6 P(DGO): 40G (364 - 2) 58N; (14N) 1603 7 + 6t
4607.0 ^b 6 4896.7 ^d 6	8+		B DE	J^{π} : (8,9 ⁺) from R(DCO) in 40 Ca(36 Ar, α 2p γ), 58 Ni(14 N,pn γ), 1603.7 γ to 6 ⁺ .
4955.0 12	(9 ⁻)		DE B E	J ^{π} : from 981.3 γ to 7 ⁻ ; 468.0 γ to (8 ⁻); assumed E2 cascade member. J ^{π} : (9) from 348.0 γ to 8 ⁺ suggested in ε decay (2000Pi15) but the placement of the γ transition is uncertain.
5205.8 ^{&} 5	(10^{+})		B DE	J^{π} : from 1168.12 γ to 8 ⁺ ; assumed E2 cascade member.
5209.1° 6	(9^{-})		DE	J^{π} : from 1293.6y to 7 ⁻ ; assumed E2 cascade member.
5308.1 ^a 10 5693.2 ^b 6	(10^+)		D D DE	J^{π} : from 1120 γ to (8 ⁺); assumed E2 cascade member.
5805.5 ^d 6	(10^+)		B DE	J^{π} : from 1086.2 γ to 8 ⁺ ; assumed E2 cascade member.
6017.0 <i>15</i>	(11^{-})		DE B E	J^{π} : from 908.7 γ to (9 ⁻); assumed E2 cascade member.
6490.0° 6	(11^{-})		DE	J^{π} : from 1280.9 γ to (9 ⁻); assumed E2 cascade member.
6510.2 ^{&} 5	(12^{+})		DE	J^{π} : from 1304.45 γ to (10 ⁺); assumed E2 cascade member.
6602 ^a 5	(12^{+})		D	J^{π} : from 1294 γ to (10 ⁺); assumed E2 cascade member.
6873.0 ^d 6	(13^{-})		DE	J^{π} : from 1967.5 γ to (11 ⁻); assumed E2 cascade member.
6956.9 ^b 6	(12^{+})		DE	J^{π} : from 1263.6 γ to (10 ⁺); assumed E2 cascade member.
7305.8 9	(13-)	1.6 ns 2	Е	$T_{1/2}$: quoted by 1989My01; generalized centroid-shift method. J^{π} : from 796.5 γ to 12 ⁺ ; 348.0 γ to (12 ⁺); proposed based on Weisskopf estimates in 1989My01.
7554.0 ^c 7	(13^{-})		D	J^{π} : from 1064.0 γ to (11 ⁻); assumed E2 cascade member.
7940.8 & <i>5</i>	(14^{+})		DE	J^{π} : from 1430.6 γ to 12 ⁺ ; assumed E2 cascade member.
8017.7 ^d 7	(15^{-})		D	J^{π} : from 1144.7 γ to (13 ⁻); assumed E2 cascade member.
8029 ^a 5	(14^{+})		D	J^{π} : from 1427.2 γ to (12 ⁺); assumed E2 cascade member.
8316.3 ^b 6 8349.5 <i>13</i>	(14^+)		D E	J^{π} : from 1359.4 γ to (12 ⁺); assumed E2 cascade member.
8771.8 ^c 8	(15^{-})		D	J^{π} : from 1217.8 γ to (13 ⁻); assumed E2 cascade member.
9430.3 ^b 6	(16^{+})		D	J^{π} : from 1114.0 γ to (14 ⁺); assumed E2 cascade member.
9496.2 ^{&} 6	(16^{+})		DE	J^{π} : from 1555.3 γ to (14 ⁺); assumed E2 cascade member.
9624.1 ^d 7	(17^{-})		D	J^{π} : from 1606.4 γ to (15 ⁻); assumed E2 cascade member.
10084.1° 8	(17 ⁻)		D	J^{π} : from 1312.3 γ to (15 ⁻); assumed E2 cascade member.
10646.2 ^b 6 11120.5 9	(18^{+})		D D	J^{π} : from 1215.9 γ to 16 ⁺ ; assumed E2 cascade member.
11268.5 <mark>&</mark> <i>11</i>	(18^{+})		D	J^{π} : from 1772.3 γ to (16 ⁺); assumed E2 cascade member.
11532.2 ^d 10	(19^{-})		D	J^{π} : from 1908.1 γ to (17 ⁻); assumed E2 cascade member.
11778.5° 12	(19 ⁻)		D	J^{π} : from 1694.4 γ to (17 ⁻); assumed E2 cascade member.
12267.7 ^b 7	(20^+)		D	J^{π} : from 1621.5 γ to (18 ⁺); assumed E2 cascade member.
13160.5 ^{&} 15	(20^+)		D	J^{π} : from 1892 γ to (18 ⁺); assumed E2 cascade member.
13181.4 ^d 11 13727.0 ^c 14	(21^{-})		D	J^{π} : from 1649.2 γ to (19 ⁻); assumed E2 cascade member.
13727.0° 14 14257.7 ^b 11	(21^{-})		D	J^{π} : from 1948.4 γ to (19 ⁻); assumed E2 cascade member.
14257.7° 11 15251° 3	(22^+) (23^-)		D D	J^{π} : from 1990.0 γ to (20 ⁺); assumed E2 cascade member. J^{π} : from 2070 γ to (21 ⁻); assumed E2 cascade member.
15806 ^c 7	(23^{-})		D D	J^{π} : from 2079 γ to (21 ⁻); assumed E2 cascade member.
16490 ^b 3	(24^{+})		D	J^{π} : from 2232 γ to (22 ⁺); assumed E2 cascade member.
17870 ^d 4	(25^{-})		D	J^{π} : from 2618 γ to (23 ⁻); assumed E2 cascade member.
17966 ^c 7	(25-)		D	J^{π} : from 2160 γ to (23 ⁻); assumed E2 cascade member.

Adopted Levels, Gammas (continued)

⁷⁰Se Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
19218 ^b 5	(26^+)	D	J^{π} : from 2728 γ to (24 ⁺); assumed E2 cascade member.
20246 ^c 8	(27^{-})	D	J^{π} : from 2280 γ to (25 ⁻); assumed E2 cascade member.

[†] From a least-squares fit to E γ 's, by evaluators. Δ E γ =1 keV is assumed when no uncertainty is available.

[‡] From recoil distance Doppler shift method (2008Lj01), unless otherwise noted.

[#] From recoil distance Doppler shift method (1986He17), using singles data.

[®] Effective lifetime from recoil distance method, not corrected for the side feedings (1986He17).

[&]amp; Band(A): g.s. yrast band.

^a Band(B): Band based on 1600, 2⁺.

^b Band(C): Band based on 4607, 8⁺.

^c Band(D): Band based on 3915, 7⁻.

^d Band(E): Band based on 4896, (9⁻).

γ (70Se)

Adopted Levels, Gammas (continued)

							, .		
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^π	Mult.&	δ^d	α^{e}	Comments
944.52	2+	944.51 5	100	0.0	0+	E2		4.82×10 ⁻⁴	$\alpha(K)$ =0.000429 6; $\alpha(L)$ =4.50×10 ⁻⁵ 7; $\alpha(M)$ =7.00×10 ⁻⁶ 10; $\alpha(N)$ =5.96×10 ⁻⁷ 9 B(E2)(W.u.)=19.7 13
1599.9	2+	655.1 5	100 <i>21</i>	944.52	2+	M1+E2 ^a	-1.0 +1-2	0.00109 4	$\alpha(K)$ =0.00097 3; $\alpha(L)$ =0.000103 3; $\alpha(M)$ =1.60×10 ⁻⁵ 5; $\alpha(N)$ =1.36×10 ⁻⁶ 4 B(E2)(W.u.)=33 14; B(M1)(W.u.)=0.009 4 δ : Other: 1.4 +2.3–0.6 (1980Wa19).
		1600.1 7	25 5	0.0	0+	E2		2.79×10 ⁻⁴	$\alpha(K)$ =0.0001367 20; $\alpha(L)$ =1.414×10 ⁻⁵ 20; $\alpha(M)$ =2.20×10 ⁻⁶ 3; $\alpha(N)$ =1.88×10 ⁻⁷ 3 B(E2)(W.u.)=0.19 8 Mult.: Q from $\gamma(\theta)$ in ⁵⁸ Ni(¹⁴ N,pn γ), ⁶⁰ Ni(¹² C,2n γ); M2 excluded by comparison to RUL.
2010.3	(0 ⁺)	1065.8 [@] 3	100 [@]	944.52	2+	(E2)		3.63×10^{-4}	$\alpha(K)$ =0.000323 5; $\alpha(L)$ =3.38×10 ⁻⁵ 5; $\alpha(M)$ =5.26×10 ⁻⁶ 8; $\alpha(N)$ =4.48×10 ⁻⁷ 7
2038.8	4+	438.9 5	0.8 7	1599.9	2+	[E2]		0.00415	$\alpha(K)$ =0.00368 6; $\alpha(L)$ =0.000400 6; $\alpha(M)$ =6.21×10 ⁻⁵ 9; $\alpha(N)$ =5.20×10 ⁻⁶ 8 B(E2)(W.u.)=17 15
		1094.4 <i>1</i>	100 3	944.52	2+	E2		3.41×10 ⁻⁴	$\alpha(K)$ =0.000304 5; $\alpha(L)$ =3.18×10 ⁻⁵ 5; $\alpha(M)$ =4.94×10 ⁻⁶ 7; $\alpha(N)$ =4.22×10 ⁻⁷ 6 B(E2)(W.u.)=21.5 18
2382.5	4+	782.6 <i>3</i>	100 12	1599.9	2+	E2 ^b		7.71×10^{-4}	$\alpha(K)=0.000687 \ 10; \ \alpha(L)=7.25\times10^{-5} \ 11;$ $\alpha(M)=1.128\times10^{-5} \ 16; \ \alpha(N)=9.57\times10^{-7} \ 14$ B(E2)(W.u.)>5.2
		1438.1 7	8.×10 ¹ 5	944.52	2+	E2 ^b		2.54×10 ⁻⁴	$\alpha(K)$ =0.0001692 24; $\alpha(L)$ =1.755×10 ⁻⁵ 25; $\alpha(M)$ =2.73×10 ⁻⁶ 4; $\alpha(N)$ =2.33×10 ⁻⁷ 4 B(E2)(W.u.)>0.20
2518.6	3 ⁽⁻⁾	1574.1 9	100	944.52		D			δ: $δ$ =-0.26 15 (1981Ah03); 0.0 (1980Wa19).
2553.1 3003.2	6+	1608.6 [‡] 620.7 9	100 [#] 3 <i>I</i>	944.52 2382.5		[E2]		1.45×10^{-3}	$\alpha(K)$ =0.001291 19; $\alpha(L)$ =0.0001376 21; $\alpha(M)$ =2.14×10 ⁻⁵ 4; $\alpha(N)$ =1.81×10 ⁻⁶ 3 B(E2)(W.u.)=8 3
		964.39 5	100 4	2038.8	4+	E2		4.58×10 ⁻⁴	$\alpha(K)$ =0.000408 6; $\alpha(L)$ =4.28×10 ⁻⁵ 6; $\alpha(M)$ =6.66×10 ⁻⁶ 10; $\alpha(N)$ =5.67×10 ⁻⁷ 8 B(E2)(W.u.)=29 5
3139.6 3218.4	(6 ⁺)	2195.0 [@] 3 215 5 835.9 4	100 [@] 11 7 100 11	944.52 3003.2 2382.5	6 ⁺ 4 ⁺				
3356.4 3387.4	5-	973.9 [‡] 868.8 <i>4</i>	100 [#] 57 9	2382.5 2518.6	4 ⁺ 3 ⁽⁻⁾	[E2]		5.91×10 ⁻⁴	$\alpha(K)$ =0.000526 8; $\alpha(L)$ =5.54×10 ⁻⁵ 8; $\alpha(M)$ =8.61×10 ⁻⁶ 13; $\alpha(N)$ =7.32×10 ⁻⁷ 11 B(E2)(W.u.)=4.0 14

γ (⁷⁰Se) (continued)

E_i (level)	J_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.&	$\alpha^{m{e}}$	Comments
	$\frac{3_i}{5^-}$	$\frac{L_{\gamma}}{1348.6 \ 4}$	$\frac{1\gamma}{100 \ 12}$	$\frac{L_f}{2038.8} \frac{J_f}{4^+}$	$\frac{\text{E1(+M2)}^{\textit{C}}}{\text{E1(+M2)}^{\textit{C}}}$		δ : +0.12 with large error (1981Ah03); 0.0 (1980Wa19).
3387.4		1348.6 4	22 7	2038.8 4 2518.6 3 ⁽⁻⁾	$(E2)^{b}$	4.15×10^{-4}	$\alpha(K)=0.000370 \ 6; \ \alpha(L)=3.87\times10^{-5} \ 6; \ \alpha(M)=6.02\times10^{-6} \ 9;$
3524.1	(5 ⁻)	1005.5 /	22 7	2318.0 3	(E2)°	4.13×10	α (N)=5.13×10 ⁻⁷ 8 B(E2)(W.u.)>0.64
		1485.2 5	100 13	2038.8 4+	(E1) ^C	3.29×10^{-4}	Mult., δ : D+Q, -0.06 +9-2 (1981Ah03). α (K)=8.00×10 ⁻⁵ 12; α (L)=8.22×10 ⁻⁶ 12; α (M)=1.278×10 ⁻⁶ 18; α (N)=1.095×10 ⁻⁷ 16 B(E1)(W.u.)>1.1×10 ⁻⁵
3644		1261 10	100	2382.5 4+			B(E1)(W.u.)>1.1×10
3788.9	(6-)	264.8 3	100	3524.1 (5 ⁻)	D+O		Mult., δ : D+Q, 0.0< δ <3.7 (1980Wa19). Other: Q (1981Ah03).
3915.4	7-	126.6 3	5.7 20	3788.9 (6 ⁻)	DiQ		(17011 mos).
5,1011	,	528.0 2	28.7 20	3387.4 5	E2 ^b	0.00233	$\alpha(K)$ =0.00207 3; $\alpha(L)$ =0.000223 4; $\alpha(M)$ =3.46×10 ⁻⁵ 5; $\alpha(N)$ =2.91×10 ⁻⁶ 4 B(E2)(W.u.)>11
		912.2 <i>I</i>	100 4	3003.2 6 ⁺	E1	2.17×10^{-4}	$\alpha(K)=0.000194 \ 3; \ \alpha(L)=2.00\times10^{-5} \ 3; \ \alpha(M)=3.12\times10^{-6} \ 5; \ \alpha(N)=2.66\times10^{-7} \ 4$ B(E1)(W.u.)>2.6×10 ⁻⁵
							Mult., δ : E1+M2 with δ =-0.15 5 (1981Ah03), however, this results in an M2 strength which exceeds the RUL.
4037.6	8+	1034.4 <i>I</i>	100	3003.2 6 ⁺	E2	3.89×10^{-4}	$\alpha(K)$ =0.000346 5; $\alpha(L)$ =3.62×10 ⁻⁵ 5; $\alpha(M)$ =5.64×10 ⁻⁶ 8; $\alpha(N)$ =4.80×10 ⁻⁷ 7 B(E2)(W.u.)>7.0
							Mult.: Q from R(DCO) in 58 Ni(14 N,pn γ), 60 Ni(12 C,2n γ); M2 excluded by comparison to RUL.
4187.4	(8^{+})	969.0 <i>6</i>	100	$3218.4 (6^+)$			
4324.5		937.0 [‡]		3387.4 5-			
		1321.3 [‡]		3003.2 6 ⁺			
4410.7		495.3 <i>3</i>	100	3915.4 7-			
4607.0	8+	569 2	18 8	4037.6 8 ⁺			
		691.5 6	56 8	3915.4 7			
10067	(0-)	1603.7 6	100 12	3003.2 6 ⁺			
4896.7	(9-)	486.0 <i>3</i> 981.3 2	29 <i>9</i> 100 <i>7</i>	4410.7 3915.4 7 ⁻			
4955.0		348.0 f‡	100 [#]	4607.0 8 ⁺			
5205.8	(10^{+})	1168.12 8	100	4037.6 8 ⁺			
5209.1	(9-)	1293.6 <i>3</i>	100	3915.4 7			
5308.1	(10^{+})	1120.7 6	100	4187.4 (8 ⁺)			
5693.2	(10^+)	1086.2 2	100 7	4607.0 8+			
5805.5	(11^{-})	1655.4 <i>9</i> 908.7 2	41 <i>6</i> 100	4037.6 8 ⁺ 4896.7 (9 ⁻)			
	(11)	1062.0 [‡]	100 100 [#]				
6017.0		1062.0*	100"	4955.0			

S

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$\mathrm{I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$
6490.0	$\overline{(11^{-})}$	1280.9 2	100	5209.1 (9-)	9624.1	(17^{-})	1606.4 3	100	8017.7 (15-)
6510.2	(12^{+})	1304.45 9	100	5205.8 (10 ⁺)	10084.1	(17^{-})	1312.3 <i>3</i>	100	8771.8 (15 ⁻)
6602	(12^{+})	1294 5	100	5308.1 (10 ⁺)	10646.2	(18^{+})	1215.9 2	100	9430.3 (16+)
6873.0	(13^{-})	1067.5 2	100	5805.5 (11-)	11120.5	, ,	1624.3 <i>6</i>	100	9496.2 (16+)
6956.9	(12^{+})	1263.6 <i>3</i>	100 10	5693.2 (10 ⁺)	11268.5	(18^{+})	1772.3 9	100	9496.2 (16 ⁺)
		1750.9 9	37 5	5205.8 (10 ⁺)	11532.2	(19^{-})	1908.1 7	100	9624.1 (17-)
7305.8	(13^{-})	348.0 f‡		6956.9 (12+)	11778.5	(19^{-})	1694.4 9	100	10084.1 (17-)
		796.5 [‡]		6510.2 (12 ⁺)	12267.7	(20^+)	1621.5 <i>3</i>	100	10646.2 (18+)
7554.0	(13^{-})	1064.0 <i>3</i>	100	6490.0 (11 ⁻)	13160.5	(20^{+})	1892 <i>I</i>	100	11268.5 (18+)
7940.8	(14^{+})	1430.6 <i>I</i>	100	6510.2 (12 ⁺)	13181.4	(21^{-})	1649.2 <i>4</i>	100	11532.2 (19-)
8017.7	(15^{-})	1144.7 2	100	6873.0 (13 ⁻)	13727.0	(21^{-})	1948.4 <i>6</i>	100	11778.5 (19-)
8029	(14^{+})	1427.2 9	100	$6602 (12^+)$	14257.7	(22^{+})	1990.0 9	100	$12267.7 (20^{+})$
8316.3	(14^{+})	1359.4 <i>3</i>	100 8	6956.9 (12+)	15251	(23^{-})	2070 <i>3</i>	100	13181.4 (21-)
		1806.0 <i>6</i>	36 5	$6510.2 (12^{+})$	15806	(23^{-})	2079 7	100	13727.0 (21-)
8349.5		1043.7 [‡]	100 [#]	7305.8 (13 ⁻)	16490	(24^{+})	2232 3	100	$14257.7 (22^{+})$
8771.8	(15^{-})	1217.8 <i>3</i>	100	7554.0 (13-)	17870	(25^{-})	2618 2	100	15251 (23-)
9430.3	(16^{+})	1114.0 <i>3</i>	100 10	8316.3 (14 ⁺)	17966	(25^{-})	2160 2	100	15806 (23-)
		1489.4 <i>3</i>	63 7	7940.8 (14 ⁺)	19218	(26^+)	2728 <i>4</i>	100	16490 (24+)
9496.2	(16^{+})	1555.3 <i>3</i>	100	7940.8 (14 ⁺)	20246	(27^{-})	2280 4	100	$17966 (25^{-})$

[†] From 40 Ca(40 Ca, $^{2}\alpha^{2}$ p γ), unless otherwise noted.

6

[‡] From 40 Ca(36 Ar, α 2p γ).

[#] From ⁴⁰Ca(³⁶Ar,α2pγ). ^(a) From ⁵⁸Ni(¹⁴N,pnγ), ⁶⁰Ni(¹²C,2nγ).

[&]amp; From $\gamma(\theta)$, R_{DCO} and γ -deexcitation pattern in 58 Ni(14 N,pn γ), 60 Ni(12 C,2n γ) (1981Ah03) or $\gamma(\theta)$ and linear polarization measurements in 60 Ni(12 C,2n γ) (1980Wa19), unless otherwise stated.

a D+Q from $\gamma(\theta)$ in 58 Ni(14 N,pn γ), 60 Ni(12 C,2n γ); $\Delta\pi$ = no from level scheme. b Q from $\gamma(\theta)$ in 58 Ni(14 N,pn γ), 60 Ni(12 C,2n γ); M2 excluded by comparison to RUL. c D+Q (or D) from $\gamma(\theta)$ in 58 Ni(14 N,pn γ), 60 Ni(12 C,2n γ); $\Delta\pi$ = yes from level scheme. d From $\gamma(\theta)$ in 58 Ni(14 N,pn γ) (1981Ah03).

^e Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^f Multiply placed.

Level Scheme

Intensities: Relative photon branching from each level

 $^{70}_{34}{\rm Se}_{36}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

