Lecture 1

What is Civil Engineering

Nikol O. Telen

Mindanao State University - General Santos

CIVIL ENGINEERING DEPARTMENT

August 21, 2023

Presentation Overview

- 1 Overview
- 2 Civil Engineering Technical Areas
 - Structural Engineering
 - Geotechnical Engineering
 - Water Resources Engineering
 - Transportation Engineering
 - Construction Engineering
- 3 Related Disciplines
- 4 Civil Engineering Processes

Overview

Civil engineering is the oldest branch of engineering that deals with providing people with a livable built environment

Civil engineering is the oldest branch of engineering that deals with providing people with a livable built environment

It deals with people's everyday needs such as:

food and water

Civil engineering is the oldest branch of engineering that deals with providing people with a livable built environment

- food and water
- livable shelter

Civil engineering is the oldest branch of engineering that deals with providing people with a livable built environment

- food and water
- livable shelter
- ways to travel

Civil engineering is the oldest branch of engineering that deals with providing people with a livable built environment

- food and water
- livable shelter
- ways to travel
- safety from disaster

CVE101 - Civil Engineering Orientation

Civil Engineering Technical Areas

Structural engineering is the technical specialty that deals with analysis and design of structures.

Structural design aims at providing a structure with sufficient level of resistance against these loads with minimum cost

Technical Sub-Areas

Technical Sub-Areas

It has several technical sub-areas, named according to the type of structure or to the type of load it carries.

■ Earthquake Engineering

Technical Sub-Areas

- Earthquake Engineering
- Wind Engineering

Technical Sub-Areas

- Earthquake Engineering
- Wind Engineering
- Structural Reliability

Technical Sub-Areas

- Earthquake Engineering
- Wind Engineering
- Structural Reliability
- Fire Engineering

Technical Sub-Areas

- Earthquake Engineering
- Wind Engineering
- Structural Reliability
- Fire Engineering
- Bridge Engineering

Technical Sub-Areas

- Earthquake Engineering
- Wind Engineering
- Structural Reliability
- Fire Engineering
- Bridge Engineering
- Dam Engineering

Technical Sub-Areas

- Earthquake Engineering
- Wind Engineering
- Structural Reliability
- Fire Engineering
- Bridge Engineering
- Dam Engineering
- Building Engineering

Technical Sub-Areas

- Earthquake Engineering
- Wind Engineering
- Structural Reliability
- Fire Engineering
- Bridge Engineering
- Dam Engineering
- Building Engineering
- Forensic Engineering

Geotechnical engineering is the technical specialty that deals with soil and rock as supporting materials for structures

It deals with the various foundation types that work between the structure and the ground.

It also deals with the stability of soil and rocks.

Technical Sub-Areas

Technical Sub-Areas

Technical areas of study pertinent to geotechnical engineering includes:

Engineering Geology

Technical Sub-Areas

- Engineering Geology
- Soil Mechanics

Technical Sub-Areas

- Engineering Geology
- Soil Mechanics
- Rock Mechanics

Technical Sub-Areas

- Engineering Geology
- Soil Mechanics
- Rock Mechanics
- Foundation Engineering

Technical Sub-Areas

- Engineering Geology
- Soil Mechanics
- Rock Mechanics
- Foundation Engineering
- Soil Improvement

Technical Sub-Areas

- Engineering Geology
- Soil Mechanics
- Rock Mechanics
- Foundation Engineering
- Soil Improvement
- Tunnel Engineering

Water resource engineering is the specialty that deals with use of water in different human needs.

It includes finding and preservation of water sources, its means of delivery to a city or region, as well as studying its movement, and its erosive effects.

Technical Sub-Areas

Technical Sub-Areas

Its core and related areas of study include:

■ Water Resources System Engineering

Technical Sub-Areas

- Water Resources System Engineering
- Hydraulic Engineering

Technical Sub-Areas

- Water Resources System Engineering
- Hydraulic Engineering
- Coastal Engineering

Technical Sub-Areas

- Water Resources System Engineering
- Hydraulic Engineering
- Coastal Engineering
- Ocean Engineering

Transportation Engineering

Transportation engineering deals with the efficient transport of people and goods.

Involved in the design of roads, harbors, and airport, as well as railways and traffic control.

Transportation Engineering

Technical Sub-Areas

Technical specialties include:

Technical Sub-Areas

Technical specialties include:

■ Transportation Planning

Technical Sub-Areas

- Transportation Planning
- Transportation System Engineering

Technical Sub-Areas

- Transportation Planning
- Transportation System Engineering
- Highway Engineering

Technical Sub-Areas

- Transportation Planning
- Transportation System Engineering
- Highway Engineering
- Railway Engineering

Technical Sub-Areas

- Transportation Planning
- Transportation System Engineering
- Highway Engineering
- Railway Engineering
- Port and Harbor Engineering

Technical Sub-Areas

- Transportation Planning
- Transportation System Engineering
- Highway Engineering
- Railway Engineering
- Port and Harbor Engineering
- Airport Engineering

Technical Sub-Areas

- Transportation Planning
- Transportation System Engineering
- Highway Engineering
- Railway Engineering
- Port and Harbor Engineering
- Airport Engineering
- Traffic Engineering

Construction engineering deals with the execution of the plan designed on paper into physical reality.

It involves management of different resources required in the construction process.

Technical Sub-Areas

Technical Sub-Areas

Engineering and management aspects include:

■ Construction Methods

Technical Sub-Areas

- Construction Methods
- Electric and Mechanical Facilities

Technical Sub-Areas

- Construction Methods
- Electric and Mechanical Facilities
- Construction Machineries

Technical Sub-Areas

- Construction Methods
- Electric and Mechanical Facilities
- Construction Machineries
- Financial and Cost management

Technical Sub-Areas

- Construction Methods
- Electric and Mechanical Facilities
- Construction Machineries
- Financial and Cost management
- Contracts and Specifications

Technical Sub-Areas

- Construction Methods
- Electric and Mechanical Facilities
- Construction Machineries
- Financial and Cost management
- Contracts and Specifications
- Health and Safety Issues

Technical Sub-Areas

- Construction Methods
- Electric and Mechanical Facilities
- Construction Machineries
- Financial and Cost management
- Contracts and Specifications
- Health and Safety Issues
- Legal Issues and Risk Management

Related Disciplines

Geomatics Engineering

A technical specialty that deals the measurement of and assembling spatial data of any natural or constructed objects in the earth.

It is involved in documentation of real estate, location of routes and points needed in construction, and collecting global data for resource analysis and utilization.

Technical Sub-Areas

Technical Sub-Areas

Technical areas of study include:

■ Plane Surveying

Technical Sub-Areas

- Plane Surveying
- Route Location

Technical Sub-Areas

- Plane Surveying
- Route Location
- Land Surveying

Technical Sub-Areas

- Plane Surveying
- Route Location
- Land Surveying
- Geodetic Surveying

Technical Sub-Areas

- Plane Surveying
- Route Location
- Land Surveying
- Geodetic Surveying
- Aerial Photography and Satellite Imaging

Technical Sub-Areas

- Plane Surveying
- Route Location
- Land Surveying
- Geodetic Surveying
- Aerial Photography and Satellite Imaging
- Geographical Information System

Environmental engineering involves the application engineering to protect human health and preserve the natural environment.

It relies on the knowledge of fundamental sciences of chemistry, biology, ecology, and health.

Technical Sub-Areas

Technical Sub-Areas

Technical areas of study include:

Water Treatment and Supply

Technical Sub-Areas

- Water Treatment and Supply
- Wastewater Treatment and Disposal

Technical Sub-Areas

- Water Treatment and Supply
- Wastewater Treatment and Disposal
- Solid Waste Disposal

Urban Planning

Urban planning integrates land use planning, infrastructure planning, and public policy for new developments or renewal of urbanized communities.

Successful urban planning requires the application of the knowledge developed in social, economic, architectural, and engineering studies

The following disciplines interact or overlap with civil engineering:

The following disciplines interact or overlap with civil engineering:

■ Applied Mechanics

The following disciplines interact or overlap with civil engineering:

- Applied Mechanics
- Architectural Engineering

The following disciplines interact or overlap with civil engineering:

- Applied Mechanics
- Architectural Engineering
- Agricultural Engineering

Other Related Disciplines

The following disciplines interact or overlap with civil engineering:

- Applied Mechanics
- Architectural Engineering
- Agricultural Engineering
- Aerospace Engineering

Other Related Disciplines

The following disciplines interact or overlap with civil engineering:

- Applied Mechanics
- Architectural Engineering
- Agricultural Engineering
- Aerospace Engineering
- Biomedical Engineering

Other Related Disciplines

The following disciplines interact or overlap with civil engineering:

- Applied Mechanics
- Architectural Engineering
- Agricultural Engineering
- Aerospace Engineering
- Biomedical Engineering
- Naval Architecture

Any kind of civil engineering project involves four main phases:

■ Planning

- Planning
- Design

- Planning
- Design
- Construction

- Planning
- Design
- Construction
- Maintenance/Operation

■ The planning stage involves the study of its effects to private or public interest.

- The planning stage involves the study of its effects to private or public interest.
- Includes feasibility studies which involves financial and legal assessment.

- The planning stage involves the study of its effects to private or public interest.
- Includes feasibility studies which involves financial and legal assessment.
- May take years to complete

Design

Design

■ Involves two stages: preliminary and final

Design

- Involves two stages: preliminary and final
- Includes the concept, scope, structure, materials, method of construction, and cost and timeline estimate

Construction

Construction

■ The actual implementation of the project.

Construction

- The actual implementation of the project.
- Includes the monitoring of financial and time aspects of the project, as well as safety and environmental regulations

Maintenance/Operation

■ Begins when the construction phase ends, and the owner accepts the completed project.

The End

Questions? Comments?