IPsec – Encrypted and secure IP

Chapter 20

IPsec

Overview:

- One protocol for encryption, Encapsulating Security Payload: ESP with two operating modes: Tunnel and Transport Mode
- An older protocol, Authentication Header, AH which is now deprecated (same as ESP with NULL as encryption algorithm)
- And Internet Key Exchange protocol: IKE

Standards:

```
RFC 4301: Overview (ver. 3, 2005)
```

RFC 4302: Authentication Header, AH

RFC 4303: Encapsulating security payload, ESP [2005]

RFC 7296: Key management, IKEv2 [2014]

Updates and additions (new ciphers and algorithms) in newer RFCs

IPsec objectives

- Encryption of traffic at IP level
 - Transparent for transport layer (TCP, UDP)
 - Independent of network technology
 - De-facto standard for site-to-site VPNs
 - Supported in Windows 2k and later
- (Almost) mandatory in IPv6, optional in IPv4
 - IPsec is not mandatory, but "IPv6 should support the IPsec architecture"
 - Sometimes other techniques may be more appropriate (TLS, SSH, ...)
- Application examples:
 - Network connectivity over the Internet (site → site)
 - Secure remote access (user → site and user → server)
 - Server → server traffic encryption
- Functionality in IPsec:
 - Access Control, Message integrity, Data origin authentication, Rejection of replayed packets, Confidentiality (encryption)

IPsec: Site to site and user to site

Fig. 20.8

Transport Mode – end-to-end

Offers end-to-end encryption
Often used for remote access

Drawback: End-devices must implement IPsec

Tunnel Mode – site-to-site

Offers site-to-site encryption (firewall to firewall)
Used to implement Virtual Private Networks (VPN)

Tunnel Mode – the client's view

Running traceroute from any remote location when having an IPsec (VPN) tunnel active to Chalmers:

> tracert www.dn.se

Tracing route to [217.114.89.134] over a maximum of 30 hops:

```
1 63 ms 63 ms 67 ms vpn-dialin-140-10.vpn.chalmers.se
```

2 64 ms 63 ms 62 ms cth29a-itss-gw.chalmers.se

3 64 ms 63 ms core1-itss-gw.chalmers.se

• • •

This is where the ICMP datagram is unpacked and meets the world!

IPsec protocols: ESP, (AH), IKE

The protocols:

- Encapsulating Security Payload (ESP)
 - Provides support for data integrity and message confidentiality
 - Algorithms can be different in different directions
- Authentication Header (AH)
 - Provides support for data integrity
 - Uses HMAC to verify integrity
 - Does not encrypt messages
- Internet Key exchange protocol (IKE)
 - Authenticates parties
 - Negotiates tunnel capabilities between two peers

NIST approved IPsec algorithms (2020)

Table 1: Approved Algorithms and Options

Option	Recommended	Legacy	Expected
IKE			
Version	IKEv2	IKEv1	
IKEv2 exchanges	All	-	
IKEv1 exchanges	Main Mode, Quick Mode	Aggressive Mode	
Encryption	AES-GCM, AES-CTR, AES-CBC, AES- CCM (128, 192, 256-bit keys)	TDEA ³	
Integrity/Pseudorandom Function (PRF)	HMAC-SHA256, HMAC-SHA384, HMAC-SHA512	HMAC-SHA-1	HMAC-SHA-3
Diffie-Hellman (DH) group	DH 14 to DH 21 RFC 3526 [15] and RFC 5114 [16]		DH 31 and DH 32, RFC 8031 [17]
Peer authentication ⁴	RSA, DSA, and ECDSA with 128-bit security strength (for example, RSA with 3072-bit or larger key)	RSA, DSA, and ECDSA with less than 112 bits of security strength	
Lifetime	24 hours		

GCM – Galois counter mode

CTR – Counter mode

CBC — Cipher block chaining mode

CCM – CTR mode with CBC-MAC

ESP in Transport and Tunnel mode

The ESP packet

Fig. 20.4a

Using ESP

- Padding makes sure "Next header" is properly aligned
 - Necessary if cipher requires blocks of a certain size
 - Random padding supported
- The ICV does not cover the IP header in transport mode
 - ICV is a keyed HMAC
 - But changing the IP header just means it will not reach the destination
- Sequence numbers protect against duplicates and replays
 - 32-bit number, when exhausted: negotiate a new SA (see later)
- Receiver has a window of acceptable datagram numbers
 - IP may cause out-of-order delivery , default size = 64 packets
 - Duplicate numbers and numbers below the window are discarded

Fig 20.5

Security Associations (SA)

- The SA defines a one-way relationship between sender and receiver
 - Tells how "A" sends traffic to "B"
 (A will offer B a policy. If B accepts this policy, it will send that policy back to A)
 - Two SA:s are required, one for each direction of the communication
 - Can specify: bypass, discard, or how to apply IPsec
- The Security Parameters Index (SPI) tells under what SA a received packet should be processed:
 - SPI is the index used to find the entry for a particular SA
 - Each node has a table with all SA:s
 - SPI is present in each ESP header
 - The index is local for two peers (it's just an index)

Security Associations

SPI, SA table and an SA entry

Selectors and the Security Policy Database

- Traffic selectors can be present and determine what SA a particular data packet should belong to:
 - Source and destination IP address
 - Protocol, TOS, port numbers
 - User ID (from OS)
 - Data sensitivity level
 - **–** ...
- Selectors in the Security Policy Database (SPD) in a sender:

```
src 192.168.0.0/16, dest 10.0.1.3 port 443, pass # SSL/TLS traffic
src 192.168.0.0/16, dest 10.0.0.0/8 port 139, discard # Windows file sharing
src 192.168.0.0/16, dest 10.0.0.0/8 port 80, IPsec: SPI=4 # http
src 192.168.0.0/16, dest 10.0.0.0/8, IPsec: SPI=5 # all other traffic to "the 10 network"
```


IKE – Internet Key Exchange

RFC 7296 (140 pages)

Algorithm negotiation and key creation

- IKE (Internet Key Exchange) is mandatory in IPsec
 - Must be supported by all implementations
- IPsec key management:
 - Manual configuration of addresses, algorithms and preshared keys
 - Automated key management using IKE
- Other protocols "may be used":
 - Certificate-based IKE
 - Kerberos
 - DNSsec keys from DNS server
 - SKIP (simple key integrity protocol)
 - ...
- IKE runs as an application in the system
 - In contrast to ESP which is a part of the system's IP stack

- IKE establishes SA:s, security associations:
 - Two-way authentication of peers
 - Negotiates security algorithms for the protocols
 - Handles exchange of session crypto keys

IKE overview

IKE (Oakley) extends Diffie-Hellman

- D-H used for key generation
- Cookies protect against clogging attacks
 - D-H is computational expensive
 - A cookie is sent back to requestor which must be returned:
 hash(source and destination IP addresses, port numbers, secret)

- No computations of key material or DH is done before it is returned
- If cookie comes back, IP address is ok
- Server does not have to store any state of this request
- It should not be possible to reuse a cookie by an attacker
- Nonces protect against replay attacks (guarantees freshness)
- HMAC for protection against MITM attacks
- Supports Perfect Forward Secrecy, PFS

IKEv2 Protocol

[RFC 7296]

Two rounds/phases (somewhat simplified)

- 1. Negotiate algorithms and exchange D-H parameters
- 2. Authentication, create SAs and derive keys for IPsec

proposed_alg, DH_key_exchg_i, nonce_i

1. IKE_SA_INIT

.chosen_alg, DH_key_exchg_r, nonce_r

Encr_then_MAC(k, IDi, [cert], authenticationi, SA_infoi, TSi, TSr)

2. IKE_AUTH

Encr_then_MAC(k, ID_r, [cert], authentication_r, SA_info_r, TS_i, TS_r)

Authentication includes earlier messages. Result is an SA with keys:

Sequence number (transmit)

Data authent. algorithm

Keys

Key lifetime

Encryption algorithm

Keys

IV

Key lifetime

Lifetime of SA

Mode (tunnel, transport)
MTU observed

i=initiator, r=respondent

k=key from DH or pre-shared key

SA_info = algorithms and parameters for IPsec SA creation

TS = Traffic selectors: IP address range, port range and protocol for the tunnel (from SPD database) on the initiator's and respondent's side.

Fourth message is a confirmation of TS_i and TS_r .

Key generation and Traffic selectors

- The use of D-H guarantees Perfect Forward Secrecy, PFS
 - Creation of master secret: SKEYSEED = prf (nonce; | | noncer, DH)
 - Key generation: prf (SKEYSEED, nonce; | | nonce, | | SPI; | | SPI,
- Generated keys are for each direction:

```
SK_e for encryption
SK a for autentication (integrity)
```

```
SK_e i:7ee71f3b1168b19b656e39575e985466fa86a71f802d55e6
    r:2e43283551a2408a1b8ebf16769d748118e439f2591ab562
SK_a i:ab331c5718cc21811e8bd35313a17c6149d0a7f4
    r:6111429868ff314520d43c12523b23f06e6f9e7d
```

IKE also needs some keys for internal use (for rekeying, etc)

Traffic selectors:

```
traffic selectors (i):
    0 type 7 protocol_id 0 addr 192.168.3.0 - 192.168.3.255 port 0 - 65535
traffic selectors (r):
    0 type 7 protocol_id 0 addr 192.168.5.0 - 192.168.5.255 port 0 - 65535
```

IPsec and IKE fingerprinting

Possible to detect hosts/devices supporting IPsec (i.e. IKE):

```
% ipsecscan 10.0.0.1 10.0.0.10
10.0.0.5 IPSec status: Enabled
```

- A negative reply does not mean that the host does not support or use IPsec
- IKE replies can be used to fingerprint the system (UDP port 500):

```
Starting ike-scan 1.9.4 with 1 hosts (http://www.nta-monitor.com/tools/ike-scan/)

Main Mode Handshake returned

HDR=(CKY-R=1f9e7509cf33c00f)

SA=(Enc=3DES Hash=MD5 Group=2:modp1024 Auth=PSK LifeType=Seconds LifeDuration=28800)

IKE Backoff Patterns: (Backoff=retransmission)

IP Address

No. Recv time

Delta Time

1 1456756249.384123 0.0000000

Implementation guess: Linksys Etherfast

Ending ike-scan 1.9.4: 1 hosts scanned in 60.452 seconds (0.02 hosts/sec). 1 returned handshake; 0 returned re
```

- And also to figure out the vendor of the system
- Knowing type of system, specific vulnerabilities may exist
 - IKE packet payload buffer overflow (Cisco, CheckPoint)
 - IKE response buffer overflow (multiple vendors)
 - ISAKMP packet DoS (Cisco)

IPsec and NAT (NAPT)

- IKEv2 supports NAT
- ESP is not compatible with NAT
 - NAT gateway must modify TCP and UDP checksum when IP address changes not possible
 - NAT also modifies port numbers, but ESP has no ports
- Solution is called NAT-Traversal, NAT-T [RFC 3948]
 - IKE can detect if NAT devices are present in the transmission path
 - If so, it tunnels ESP packets in a UDP connection instead (port 4500)
 - Original IP address (NAT-OA) also included to allow receiving IKE to verify it
 - Windows requires a registry change to allow NAT-T
- Not uncommon that border firewalls block port 500 and 4500 (IKE)
 - Security administrators don't like IPsec tunnels out from corporate networks
 - "Firewall friendlier" solution is to use TLS-based solutions (e.g. tunnel traffic with TLS and using port 443) even if it is not web traffic (Good and bad...)

Microsoft

- 0 = the default value: Windows can't establish security associations with servers located behind NAT devices.
- 1 = Windows can establish security associations with servers that are located behind NAT devices.
- 2 = Windows can establish security associations when both the server and VPN client are behind NAT devices.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\IPSec\AssumeUDPEncapsulationContextOnSendRule

See RFC 3715 for more details

Summary IPsec

- Protocols: ESP to protect data, IKE for key negotiation
- Modes: Tunnel mode and Transport mode
- SA, SPI, Selectors:
 - Each packet contains an SPI an index into the SA table (database)
 - Selectors determine what SA an outgoing packet belongs to [WHAT]
 - SA is a table with connection-related info (keys, etc.) [HOW]

