

Точные решения > Нелинейные дифференциальные уравнения в частных производных (уравнения математической физики) > Нелинейные дифференциальные уравнения в частных производных второго порядка параболического типа

1. Нелинейные дифференциальные уравнения в частных производных второго порядка параболического типа (эволюционные уравнения)

1.1. Нелинейные уравнения теплопроводности с источником вида

$$rac{\partial w}{\partial t} = rac{\partial^2 w}{\partial x^2} + f(w)$$

1.
$$\frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial x^2} + aw(1-w)$$
. Уравнение Фишера.

2.
$$\frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial x^2} + aw - bw^3$$
.

3.
$$\frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial x^2} - w(1-w)(a-w)$$
. Уравнение Фитц-Хью—Нагумо.

4.
$$\frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial r^2} + aw + bw^m$$
.

5.
$$\frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial x^2} + a + be^{\lambda w}$$
.

6.
$$\frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial x^2} + aw \ln w$$
.

1.2. Нелинейные уравнения теплопроводности с источником вида

$$rac{\partial w}{\partial t} = rac{\partial}{\partial x} \Big[f(w) rac{\partial w}{\partial x} \Big] + g(w)$$

1.
$$\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(w^m \frac{\partial w}{\partial x} \right)$$
.

2.
$$\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(w^m \frac{\partial w}{\partial x} \right) + bw$$
.

3.
$$\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(w^m \frac{\partial w}{\partial x} \right) + b w^{m+1}$$
.

4.
$$\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(w^m \frac{\partial w}{\partial x} \right) + b w^{1-m}$$

5.
$$\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(w^{2n} \frac{\partial w}{\partial x} \right) + b w^{1-n}$$
.

6.
$$\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(w^n \frac{\partial w}{\partial x} \right) + bw + c_1 w^m + c_2 w^k$$

7.
$$\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(e^{\lambda w} \frac{\partial w}{\partial x} \right)$$
.

8.
$$\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(e^{\lambda w} \frac{\partial w}{\partial x} \right) + b + c_1 e^{\beta w} + c_2 e^{\gamma w}$$
.

9.
$$\frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right]$$
.

10.
$$\frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right] + g(w).$$

1.3. Другие уравнения

1.
$$\frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial x^2} + w \frac{\partial w}{\partial x}$$
. Уравнение Бюргерса.

2.
$$\frac{\partial w}{\partial t} + \sigma w \frac{\partial w}{\partial x} = a \frac{\partial^2 w}{\partial x^2} + b_0 + b_1 w + b_2 w^2 + b_3 w^3$$
.

3.
$$\frac{\partial w}{\partial t} = \frac{1}{x^n} \frac{\partial}{\partial x} \left[x^n f(w) \frac{\partial w}{\partial x} \right] + g(w)$$
.

4.
$$\frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[f(w) \left(\frac{\partial w}{\partial x} \right)^n \right] + g(w)$$
.

1.4. Нелинейные уравнения Шредингера

1.
$$i\frac{\partial w}{\partial t} + \frac{\partial^2 w}{\partial x^2} + k|w|^2w = 0$$
.
Уравнение Шредингера с кубической нелинейностью.

2.
$$i\frac{\partial w}{\partial t} + \frac{\partial^2 w}{\partial x^2} + A|w|^{2n}w = 0$$
.
Уравнение Шредингера со степенной нелинейностью.

3.
$$i \frac{\partial w}{\partial t} + \frac{\partial^2 w}{\partial x^2} + f(|w|)w = 0$$
. Уравнение Шредингера общего вида.

Веб-сайт EqWorld содержит обширную информацию о решениях различных классов обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, интегральных уравнений, функциональных уравнений и других математических уравнений.